ACTION-BASED DYNAMICAL MODELING FOR THE MILKY WAY DISK

WILMA H. TRICK1, JO BOVY2, AND HANS-WALTER RIX1

1 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany; trick@mpia.de
2 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4, Canada

Received 2015 October 22; revised 2016 May 3; accepted 2016 May 18; published 2016 October 14

ABSTRACT

We present RoadMapping, a full-likelihood dynamical modeling machinery that aims to recover the Milky Way’s (MW) gravitational potential from large samples of stars in the Galactic disk. RoadMapping models the observed positions and velocities of stars with a parameterized, three-integral distribution function (DF) in a parameterized axisymmetric potential. We investigate through differential test cases with idealized mock data how the breakdown of model assumptions and data properties affect constraints on the potential and DF. Our key results are: (i) If the MW’s true potential is not included in the assumed model potential family, we can—in the axisymmetric case—still find a robust estimate for the potential, with only $\lesssim 10\%$ difference in surface density within $|z| \leq 1.1$ kpc inside the observed volume. (ii) Modest systematic differences between the true and model DF are inconsequential. E.g., when binning stars to define sub-populations with simple DFs, binning errors do not affect the modeling as long as the DF parameters of neighboring bins differ by $< 20\%$. In addition, RoadMapping ensures unbiased potential estimates for either (iii) small misjudgements of the spatial selection function (i.e., $\lesssim 15\%$ at the survey volume’s edge), (iv) if distances are known to within 10%, or (v) if proper motion uncertainties are known within 10% or are smaller than $\delta u \lesssim 1$ mas yr$^{-1}$. Challenges are the rapidly increasing computational costs for large sample sizes. Overall, RoadMapping is well suited to making precise new measurements of the MW’s potential with data from the upcoming Gaia releases.

Key words: Galaxy: disk – Galaxy: fundamental parameters – Galaxy: kinematics and dynamics – Galaxy: structure

1. INTRODUCTION

Through dynamical modeling we can infer the Milky Way’s (MW) gravitational potential from stellar motions (Binney & Tremaine 2008; Binney 2011; Rix & Bovy 2013). Observational information on the 6D phase-space coordinates of stars is currently growing at a rapid pace, and will be taken to a whole new level in quantity and precision by the upcoming data from the Gaia mission (Perryman et al. 2001). Yet, rigorous and practical modeling tools that turn position–velocity data of individual stars into constraints both on the gravitational potential and on the distribution function (DF) of stellar orbits are scarce (Rix & Bovy 2013).

The Galactic gravitational potential is fundamental for understanding the MW’s dark matter and baryonic structure (Famaey 2012; Rix & Bovy 2013; Strigari 2013; Read 2014) and the stellar-population-dependent orbit DF is a basic constraint on the Galaxy’s formation history (Binney 2013; Sanders & Binney 2015).

There are a variety of practical approaches to the dynamical modeling of discrete collisionless tracers, such as the stars in the MW, e.g., Jeans modeling (Kuijken & Gilmore 1989; Bovy & Tremaine 2012; Garbari et al. 2012; Zhang et al. 2013; Büdenbender et al. 2015), action-based DF modeling (with parametric DFs: Bovy & Rix 2013; Pfiff et al. 2014; Sanders & Binney 2015; Das & Binney 2016; with marginalization over non-parametric DFs: Magorrian 2014), torus modeling (McMillan & Binney 2008, 2012, 2013), or made-to-measure modeling (Syer & Tremaine 1996; de Lorenzi et al. 2007; Hunt & Kawata 2014). Most of them—explicitly or implicitly—describe the stellar distribution through a DF. Not all of them avoid binning to exploit the full discrete information content of the data.

Recently, Binney (2012b) and Bovy & Rix (2013) proposed constraining the MW’s gravitational potential by combining parameterized axisymmetric potential models with DFs that are simple analytic functions of the three orbital actions to model discrete data.

Bovy & Rix (2013) (BR13 hereafter) put this in practice by implementing a rigorous modeling approach for so-called mono-abundance populations (MAPs), i.e., sub-sets of stars with similar [Fe/H] and [α/Fe] within the Galactic disk, which seem to follow simple DFs (Bovy et al. 2012a, 2012b, 2012c). Given an assumed (axisymmetric) model for the Galactic potential and action-based DF (Binney 2010; Binney & McMillan 2011; Ting et al. 2013) they calculated the likelihood of the observed (x, v) for each MAP, using SEGUE G-dwarf stars (Yanny et al. 2009). They also accounted for the complex but known selection function of the kinematic tracers (Bovy et al. 2012c). For each MAP the modeling resulted in an independent estimate of the same gravitational potential. Taken as an ensemble, they constrained the disk surface density over a wide range of radii (\sim4–9 kpc), and powerful constrained the disk mass scale length and the stellar-disk-to-dark-matter ratio at the Solar radius.

BR13 made, however, a number of quite severe and idealizing assumptions about the potential, the DF, and the knowledge of observational effects. These idealizations could plausibly translate into systematic errors on the inferred potential, well above the formal error bars of the upcoming surveys with their wealth and quality of data.

In this work we present RoadMapping (“Recovery of the Orbit Action Distribution of Mono-Abundance Populations and Potential Nference for our Galaxy”), an improved, refined, flexible, robust, and well-tested version of the original dynamical modeling machinery by BR13. Our goal is to
explore which of the assumptions BR13 made and which other aspects of data, model, and machinery limit RoadMapping’s recovery of the true gravitational potential.

We investigate the following aspects of the RoadMapping machinery that become especially important for a large number of stars. (i) Numerical inaccuracies must not be an important source of systematics (Section 2.6). (ii) As parameter estimates become much more precise, we need more flexibility in the potential and DF model, and efficient strategies to find the best fit parameters. The improvements made in RoadMapping as compared to the machinery used in BR13 are presented in Section 2.8. (iii) RoadMapping should be an unbiased estimator (Section 3.1).

We also explore how different aspects of the observational experiment design impact the parameter recovery: (i) We consider the importance of the survey volume geometry, size, shape, and position within the MW to constrain the potential (Section 3.2). (ii) We ask what happens if our knowledge of the sample selection function is imperfect, and potentially biased (Section 3.3). (iii) We investigate how to best account for individual, and possibly misjudged, measurement uncertainties (Section 3.4). (iv) We determine which of several stellar sub-populations is best for constraining the potential (Section 3.7).

One of the strongest assumptions is restricting the dynamical modeling to a certain family of parameterized functions for the gravitational potential and the DF. We investigate how well we can hope to recover the true potential, when our models do not encompass the true DF (Section 3.5) and potential (Section 3.6).

For all of the above aspects we show plausible and illustrative examples on the basis of investigating mock data. The mock data is generated from galaxy models outlined in Sections 2.1–2.4 following the procedure in Appendices A–B and analyzed according to the description of the RoadMapping machinery in Sections 2.5–2.8. Section 3 compiles our results on the investigated modeling aspects. In particular, our key results about the systematics introduced by using wrong DF or potential models are presented in the Sections 3.5 and 3.6. Section 4 finally summarizes and discusses our findings.

2. DYNAMICAL MODELING

In this section we summarize the basic elements of RoadMapping, the dynamical modeling machinery presented in this work, which in many respects follows BR13 and makes extensive use of the galpy Python package for galactic dynamics\(^5\) (Bovy 2015).

2.1. Coordinate System

Our modeling takes place in the Galactocentric rest-frame with cylindrical coordinates \(\mathbf{x} \equiv (R, \phi, z)\) and corresponding velocity components \(\mathbf{v} \equiv (v_R, v_\phi, v_z)\). If the stellar phase-space data is given in observed heliocentric coordinates, position \(\mathbf{\tilde{x}} \equiv (R_A, \text{decl.}, m - M)\) in right ascension R.A., declination decl. and distance modulus \((m - M)\), and velocity \(\mathbf{\tilde{v}} \equiv (v_{R_A}, \text{cos(decl.)}, \mu_{\text{decl.}}, v_{\text{los}})\) as proper motions and line-of-sight velocity, the data \((\mathbf{x}, \mathbf{v})\) has to be converted into the Galactocentric rest-frame coordinates \((\mathbf{x}, \mathbf{v})\) using the Sun’s position and velocity. We assume for the Sun

\[
(R_\odot, \phi_\odot, z_\odot) = (8 \text{ kpc}, 0^\circ, 0 \text{ kpc})
\]

\[
(v_R, v_\phi, v_z) = (0, 230, 0) \text{ km s}^{-1}.
\]

2.2. Actions

Stellar orbits in (axisymmetric) gravitational potentials are best described and fully specified by the three actions \(J \equiv (J_R, J_\phi, J_z)\), defined as

\[
J_i \equiv \frac{1}{2m} \oint_{\text{orbit}} p_i dx_i,
\]

which is evaluated along the orbit with position, \(x(t)\), and momentum, \(p(t)\), in a given potential, \(\Phi\). Actions have several convenient properties which make them excellent orbit labels and ideal as arguments for orbit DFs: actions are integrals of motion; actions have an intuitive physical meaning as they quantify the amount of oscillation of the orbit in each coordinate direction; actions—together with a set of angle coordinates \(\theta\)—form canonical conjugate phase-space coordinates, i.e., the Jacobian determinant \(|\partial(J, \theta)/\partial(x, v)| = 1\) with Cartesian \(x\) and \(v\). The angles \(\theta(t) \propto t\) evolve linearly in time and specify the position of the star along the orbit. (For a full introduction to angle-action variables see Binney & Tremaine 2008, Section 3.5.)

Action calculation from a star’s phase-space coordinates, \((x, v) \xrightarrow{\Phi} J\), is typically very computationally expensive. Only for some special, separable potentials does Equation (1) simplify significantly. The triaxial Stäckel potentials (de Zeeuw 1985) are the most general potentials, that allow exact action calculations using a single quadrature. Some flattened axisymmetric Stäckel potentials are quite similar to our Galaxy’s potential (Batsleer & Dejonghe 1994; Famaey & Dejonghe 2003; Binney & Tremaine 2008, Section 3.5.3). The spherical isochrone potential (Henon 1959; Binney & Tremaine 2008, Section 3.5.3) is the most general special case for which the action calculation is analytic without any integration. In all other potentials, actions have to be numerically estimated; see Sanders & Binney (2016) for a recent review of action estimation methods. According to Sanders & Binney (2016), the best compromise of speed and accuracy for the Galactic disk is the Stäckel fudge by Binney (2012a) for axisymmetris potentials. In addition we use action interpolation grids (Binney 2012a; Bovy 2015) to speed up the calculation. The latter is one of the improvements employed by RoadMapping, which was not used in BR13.

2.3. Potential Models

For the gravitational potential in our modeling we assume a family of parameterized models. We use: a MW-like potential with disk, halo, and bulge (DHB-Pot); the spherical isochrone potential (Iso-Pot); and the 2-component Kuzmin-Kutuzov Stäckel potential (Batsleer & Dejonghe 1994; KKS-Pot), which also displays a disk and halo structure. Table 1 summarizes all reference potentials used in this work together with their free parameters, \(p_B\). The true circular velocity at the Sun was chosen to be \(v_{\text{circ}}(R_\odot) = 230 \text{ km s}^{-1}\) for all potential models. The Iso-Pot allows both accurate and particularly fast action
calculations; we therefore use it for tests requiring a large number of analyses. The KKS-Pot and DHB-Pot were chosen for their more realistic galaxy shape and because their closed-form expression for \(\Phi(R, z) \) makes the computation of forces and densities fast and easy. The KKS-Pot also allows for exact action calculations, while the DHB-Pot has physically more intuitive potential parameters but requires the Stäckel fudge to estimate actions. The parameter values of KKS-Pot and DHB-Pot in Table 1 were chosen to resemble the MW potential from Bovy (2015) (MW14-Pot). The density distribution of all these potentials is illustrated in Figure 1.

2.4. Stellar Distribution Functions

A stellar distribution function \(\text{DF}(x, v) \) can be considered as the probability of a star to be found at \((x, v) \). Using orbit DFs in terms of \((J, \theta) \) instead has the advantage that the distribution of stars in \(\theta \) is uniform and the orbit DF reduces...
effectively to a function of the actions J only. As $|\partial (J, \theta)/\partial (x, v)| = 1$, the function $DF(J)$ can still be thought of as a probability in (x, v).

The action-based quasi-isothermal distribution function (qDF) by Binney (2010) and Binney & McMillan (2011) is a simple DF which we will employ as a specific example throughout this work to describe individual stellar sub-populations. This is motivated by the findings of Bovy et al. (2012a, 2012b, 2012c) and Ting et al. (2013) on the simple phase-space structure of stellar MAPs and BR13’s successful application. The qDF has the form

$$qDF(J|P_{DF}) = f_{\Theta}(J_{R}, L_{z}|P_{DF}) \times f_{\sigma}(J_{z}, L_{z}|P_{DF})$$

with some free parameters, P_{DF}, and

$$f_{\Theta}(J_{R}, L_{z}|P_{DF}) = n \times \frac{\Omega}{\pi \sigma_{R}^{2}(R_{z})^{\kappa}} \exp \left(-\frac{\kappa J_{R}}{\sigma_{R}^{2}(R_{z})} \right) \times [1 + \tanh (L_{z}/L_{0})]$$

$$f_{\sigma}(J_{z}, L_{z}|P_{DF}) = \frac{\nu}{2\pi \sigma_{z}^{2}(R_{z})} \exp \left(-\frac{\nu J_{z}}{\sigma_{z}^{2}(R_{z})} \right)$$

(Binney & McMillan 2011). Here R_{z}, Ω, κ and ν are functions of L_{z} and denote, respectively, the guiding-center radius, circular, radial/epicentral, and vertical frequency of the near-circular orbit with angular momentum L_{z} in a given potential. The term $[1 + \tanh (L_{z}/L_{0})]$ suppresses counter-rotation for orbits in the disk with $L_{z} < L_{0}$ (with $L_{0} \sim 10$ km s$^{-1}$ kpc).

Following BR13, we choose the functional forms

$$n(R_{z}|P_{DF}) \propto \exp \left(-\frac{R_{z}}{h_{R}} \right)$$

$$\sigma_{R}(R_{z}|P_{DF}) = \sigma_{R,0} \times \exp \left(-\frac{R_{z} - R_{\odot}}{h_{R, R}} \right)$$

$$\sigma_{z}(R_{z}|P_{DF}) = \sigma_{z,0} \times \exp \left(-\frac{R_{z} - R_{\odot}}{h_{R, z}} \right),$$

which indirectly set the stellar number density, and radial and vertical velocity dispersion profiles. The qDF has therefore a set of five free parameters P_{DF}: the density scale length of the tracers h_{R}, the radial and vertical velocity dispersion at the Solar position R_{\odot}, $\sigma_{R,0}$ and $\sigma_{z,0}$, and the scale lengths $h_{R, R}$ and $h_{R, z}$, that describe the radial and vertical shape decrease of the velocity dispersion. RoadMapping allows to fit any number of DF parameters simultaneously, while BR13 kept $\{\sigma_{R,0}, h_{R, R}\}$ fixed. Throughout this work we make use of a few example stellar populations whose qDF parameters are given in Table 2; most tests use the hot and cool qDFs, which correspond to kinematically hot and cool populations, respectively. The warmer (cooler and colder) qDFs in Table 2 were chosen to have the same anisotropy $\sigma_{R,0}/\sigma_{z,0}$ as the cool (hot) qDF, with X being a free parameter describing the temperature difference. Hotter populations have shorter tracer scale lengths (Bovy et al. 2012c) and the velocity dispersion scale lengths were fixed according to Bovy et al. (2012b).

One indispensable step in our dynamical modeling technique (Sections 2.5–2.6), as well as in creating mock data (Appendix A), is to calculate the (axisymmetric) spatial tracer density $\rho_{DF}(x|P_{DF})$ for a given DF and potential. Analogously to BR13,

$$\rho_{DF}(R, z|P_{DF}) = \int_{-\infty}^{\infty} DF(J | R, z, v|P_{DF}) d^{3}v$$

$$\approx \int_{-n_{z}}^{n_{z}} \int_{-n_{R}}^{n_{R}} \int_{-n_{z}}^{n_{z}} DF(J | R, z, v|P_{DF}) d^{3}v d_{z} d_{R},$$

where $\sigma_{R}(R|P_{DF})$ and $\sigma_{z}(R|P_{DF})$ are given by Equations (6) and (7). Each integral is evaluated using a N_{r}th order Gauss–Legendre quadrature. For a given p_{0} and P_{DF} we explicitly calculate the density on $N_{r} \times N_{z} \times N_{v}$ regular grid points in the (R, z) plane and interpolate $\ln \rho_{DF}$ in between using bivariate spline interpolation. The grid is chosen to cover the extent of the observations (for $|z| > 0$, because the model is symmetric in z by construction). The total number of actions to be calculated to set up the density interpolation grid is $N_{r}^{2} \times N_{z}^{3}$, which is one of the factors limiting the computation speed. To complement the work by BR13, we will specifically work out in Section 2.6 and Figure 2 how large N_{r}, N_{z} and n_{v} have to be chosen to get the density with a sufficiently high numerical accuracy.

2.5. Data Likelihood

As data, D, we consider here the positions and velocities of a sub-population of stars within a given survey selection function, $SF(x)$,

$$D \equiv \{x_{i}, v_{i}\} \text{ (star } i \text{ in given sub-population)}$$

$$\wedge (SF(x_{i}) > 0).$$

For simplicity, we assume in most tests of this study contiguous, spherical SFs centered on the Sun, which are functions of x only and which we motivate in Appendix B. The maximum radius of this spherical observed volume is denoted by r_{max}.4

Name	qDF Parameters P_{DF}				
hot	h_{R} (kpc)	$\sigma_{R,0}$ (km s$^{-1}$)	$\sigma_{z,0}$ (km s$^{-1}$)	$h_{R, R}$ (kpc)	$h_{R, z}$ (kpc)
2	55	66	8	7	
3.5	42	32	8	7	
cooler	27.5	33	8	7	
2 + X%	55	66 - X%	8	7	
warmer	32 + X%	32 + X%	8	7	

Note. These parameters are used to create 6D phase-space mock data sets for stellar populations of different kinematic temperature. The parameter X is explained in Section 2.4.

Table 2

Reference Parameters for the qDF in Equations (2)–(7)
We fit a model potential and DF (here, the qDF) which are specified by a number of fixed and free model parameters,

\[p_M = \{ p_{DF}, p_\theta \} . \]

The orbit of the \(i \)th star in a potential with \(p_\theta \) is labeled by the actions \(J_i \equiv \{ J(x, v) | p_{\theta} \} \) and the DF evaluated for the \(i \)th star is then DF \((J | p_{\theta}) \equiv \text{DF}(J(x, v) | p_{\theta}) | p_{DF} \).

The likelihood of the data given the model is, following BR13 and McMillan & Binney (2013),

\[
\mathcal{L}(D | p_M) = \prod_{i} p(x_i, v_i | p_M) = \prod_{i} \frac{\text{DF}(J_i | p_M) \cdot \text{SF}(x_i)}{\int \text{DF}(J(x, v) | p_M) \cdot \text{SF}(x) \, d^3x \, d^3v} \approx \prod_{i} \frac{\text{DF}(J_i | p_M)}{\int \rho_{DF}(R, |z||p_M) \cdot \text{SF}(x) \, d^3x} ,
\]

where \(N_\ast \) is the number of stars in \(D \), and in the last step we used Equation (8).\(^5\) \(\int^N_{*} \text{SF}(x_i) \) is independent of \(p_M \), so we treat it as unimportant proportionality factor. We find the best fitting \(p_M \) by maximizing the posterior probability distribution, \(p(p_M | D) \), which is, according to Bayes’ theorem

\[p(p_M | D) \propto \mathcal{L}(D | p_M) \cdot p(p_M), \]

where \(p(p_M) \) is some prior probability distribution on the model parameters. We assume flat priors in both \(p_\theta \) and

\[p_{DF} = \{ \ln h_R, \ln \sigma_{R,0}, \ln \sigma_{\alpha,0}, \ln h_{\alpha,R}, \ln h_{\alpha,z} \} \]

(10) throughout this work. Then pdf and likelihood are proportional to each other and differ only in units.

In this case, where we use uninformative priors, a maximum likelihood estimation procedure (e.g., via the expectation-maximization algorithm and parameter uncertainty estimates from the Fisher information matrix) would lead to the same result as the Bayesian inferential procedure described in this work (see Section 2.8). We expect, however, that in due course increasingly informative priors will become available (like, e.g., rotation curve measurements from maser sources by Reid et al. 2009) and Bayesian inference is therefore the preferred framework.

2.6. Likelihood Normalization

The normalization in Equation (9) is a measure for the total number of tracers inside the survey volume,

\[M_{\text{tot}} = \int \rho_{DF}(R, |z||p_M) \cdot \text{SF}(x) \, d^3x . \]
In the case of an axisymmetric Galaxy model and SF(\mathbf{x}) = 1 within the observation volume (as in most tests in this work), the normalization is essentially a two-dimensional integral in the (R, z) plane over \(\rho_{DF} \) with finite integration limits. We evaluate the integrals using Gauss–Legendre quadratures of order 40. The integral over the azimuthal direction can be solved analytically.

It turns out that a sufficiently accurate evaluation of the likelihood is computationally expensive, even for only one set of model parameters. This expense is dominated by the number of action calculations required, which in turn depends on \(N_s \), and the numerical accuracy of the tracer density interpolation grid with \(N_s^2 \times N_s^3 \) grid points in Equation (8) needed for the likelihood normalization in Equation (11). The accuracy of the normalization has to be chosen high enough, such that the resulting numerical error

\[
\delta M_{\text{tot}} \equiv \frac{M_{\text{tot, approx}}(N_s, N_s, n_s) - M_{\text{tot}}}{M_{\text{tot}}} \quad (12)
\]

does not dominate the numerically calculated log-likelihood, i.e.,

\[
\ln L_{\text{approx}}(\mathbf{D}|\mathbf{P}_M) = \sum_i N_s \ln \text{DF}(\mathbf{J}_i|\mathbf{P}_M) - N_s \ln(M_{\text{tot}})
- N_s \ln(1 + \delta M_{\text{tot}}),
\]

with

\[
\ln(1 + \delta M_{\text{tot}}) \leq \frac{1}{N_s},
\]

and therefore \(\delta M_{\text{tot}} \lesssim 1/N_s \). Otherwise, numerical inaccuracies could lead to systematic biases in the potential and DF recovery. For data sets as large as \(N_s = 20,000 \) stars, which in the age of Gaia could very well be the case, one needs a numerical accuracy of 0.005% in the normalization. We made sure that this is satisfied for all analyses in this work. Figure 2 demonstrates how the numerical accuracy for analyses with the DHB-Pot depends on the spatial and velocity resolution of the grid and that the accuracy we use, \(N_s = 16, N_s = 24 \) and \(n_s = 5 \), is sufficient.\(^6\) It has to be noted however, that the optimal values for \(N_s, N_s, \) and \(n_s \) depend not only on \(N_s \), but also on the kinematic temperature of the population (and to a certain degree even on the choice of potential\(^7\)) and it has to be checked on a case-by-case basis what the optimal accuracy is.

McMillan & Binney (2013), who use a similar modeling approach and likelihood normalization, argued that the required accuracy for the normalization scales as \(\log_{10}(1 + \delta M_{\text{tot}}) \leq 1/N_s \Rightarrow \delta M_{\text{tot}} \lesssim 2.3/N_s \), which is satisfied for our tests as well. They evaluate the integrals in the normalization via Monte Carlo integration with \(\sim 10^9 \) sample points in action space. Our approach uses a tracer density interpolation grid for which the resolution needs to be optimized by hand, but it has the advantage that it then only requires the calculation of \(N_s^2 \times N_s^3 \sim 4 \cdot 10^6 \) actions per normalization.

\[2.7. Measurement Uncertainties\]

Measurement uncertainties of the data have to be incorporated in the likelihood. We assume Gaussian uncertainties in the observable space \(\mathbf{y} = (\mathbf{R}, \varphi) = (\text{R.A., decl.}, (m - M), \mu_{\text{R.A.}}, \cos(\text{decl.}), \mu_{\text{decl.}}, v_{\text{los}}) \), i.e., the \(i \)-th star’s observed \(\mathbf{y}_i \) is drawn from the normal distribution \(N[\mathbf{y}_i, \delta \mathbf{y}_i] \equiv \prod_i \delta y_{i,k} \equiv \prod_i \exp\left(-\frac{(y_{k,i} - y_{k,i})^2}{2(\delta y_{k,i})^2}\right) / \sqrt{2\pi(\delta y_{k,i})^2} \), with \(y_{i,k} \) being the star’s true phase-space position, \(\delta y_{i,k} \) its uncertainty, and \(y_{k,i} \) the \(k \)-th coordinate component of \(\mathbf{y} \). Stars follow the \(\text{DF}(\mathbf{y'}|\mathbf{P}_M|\rho_{DF}) \) (\(\equiv \text{DF}(\mathbf{y'}) \) for short) convolved with the measurement uncertainties \(N[0, \delta \mathbf{y}_i] \). The selection function \(\text{SF}(\mathbf{y}) \) acts on the space of uncertainties (uncertainty affected) observables. Then the probability of one star becomes

\[
\bar{p}(\mathbf{y}_i|\mathbf{P}_\rho, \rho_{DF}, \delta \mathbf{y}_i) \equiv \frac{\text{SF}(\mathbf{y}_i) \cdot \int \text{DF}(\mathbf{y'}) \cdot N[\mathbf{y}_i, \delta \mathbf{y}_i] d\mathbf{y}'}{\int \left(\text{DF}(\mathbf{y'}) \cdot \int \text{SF}(\mathbf{y}) \cdot N[\mathbf{y}_i, \delta \mathbf{y}_i] d\mathbf{y} \right) d\mathbf{y'}}. \quad (15)
\]

In the case of uncertainties in distance and/or (R.A., decl.) the evaluation of this is very expensive computationally, especially if the stars have heteroscedastic \(\delta y \), which is the case for realistic data sets, and the normalization needs to be calculated for each star separately. In practice, we compute the convolution using Monte Carlo (MC) integration with \(N_{\text{samples}} \) samples,

\[
\bar{p}_{\text{approx}}(\mathbf{y}_i|\mathbf{P}_\rho, \rho_{DF}, \delta \mathbf{y}_i) \approx \frac{\text{SF}(\mathbf{\bar{x}}_i)}{M_{\text{tot}}} \cdot \frac{1}{N_{\text{samples}}} \sum_{n=1}^{N_{\text{samples}}} \text{DF}(\mathbf{\bar{x}}_i, \mathbf{v}[\mathbf{y}_{i,n}]) \quad (16)
\]

with \(\mathbf{y}_{i,n} \sim N[\mathbf{y}_i, \delta \mathbf{y}_i] \).

In addition, this approximation assumes that the star’s position, \(\mathbf{\bar{x}}_i \), is perfectly measured. As the SF is also velocity independent, this simplifies the normalization drastically to \(N_{\text{tot}} \) in Equation (11). Measurement uncertainties in R. A. and decl. are often negligible anyway. The uncertainties in the Galactocentric velocities \(\mathbf{v}_i = (v_R, v_T, v_z) \) depend not only on \(\delta \mu \) and \(\delta v_{\text{los}} \), but also on the distance and its uncertainty, which we do not neglect when drawing MC samples, \(\mathbf{y}_{i,n} \), from the full uncertainty distribution, \(N[\mathbf{y}_i, \delta \mathbf{y}_i] \).

An analogous but one-dimensional treatment of measurement uncertainties in only \(v_z \) was already applied by BR13. Similar approaches ignoring measurement uncertainties in the likelihood normalization and using MC sampling of the error ellipses were also used by McMillan & Binney (2013) and Das & Binney (2016). In Section 3.4, Figure 9 (Test 6.2 in Table C1), we will investigate the breakdown of our approximation for non-negligible distance uncertainties.

Figure 3 demonstrates that in the absence of position uncertainties, the \(N \) needed for the convolution integral to
converge depends as
\[N_{\text{samples}} \propto (\delta v_{\text{max}})^2 \]
on the uncertainties in the (1D) velocities. Figure 3 is based on analyses of mock data sets with different proper motion uncertainties, \(\delta \mu\) (see Test 2 in Table C1 for all parameters). The proper motion uncertainty, \(\delta \mu\), translates to heteroscedastic velocity uncertainties according to
\[\delta v_{\text{km s}^{-1}} = 4.74047 \cdot r_{\text{kpc}} \cdot \delta \mu_{\text{mas yr}^{-1}}, \]
with \(r\) being the distance of the star to the Sun. Stars with larger \(\delta v\) require more \(N_{\text{samples}}\) for the integral over their measurement uncertainties to converge; Figure 3 therefore shows how the \(N_{\text{samples}}\)—needed for the \(pdf\) of the whole data set to be converged—depends on the largest velocity error, \(\delta v_{\text{max}} \equiv \delta v_{r_{\text{max}}},\) within the data set.

These mock data sets each contained \(N_b = 10,000\) stars. We found that for \(N_b = 5000\) the required \(N_{\text{samples}}\) to reach a given accuracy becomes smaller for \(V_{\text{circ}}(R_g)\), but remains similar for \(b\). The former is consistent with our expectation that we need higher accuracy and therefore more \(N_{\text{samples}}\) for larger data sets. The latter seems to be a special property of the Iso-Pot (see also the discussion in Section 3.3).

2.8. Fitting Procedure

To search the \((p_{\phi}, p_{\text{DF}})\) parameter space for the maximum of the \(pdf\) in Equation (9), we go beyond the single fixed grid search by BR13 and employ an efficient two-step procedure: Nested-grid search and Monte-Carlo Markov Chain (MCMC).

The first step employs a nested-grid search to find the approximate peak and width of the \(pdf\) in the high-dimensional \(p_M\) space with a low number of likelihood evaluations:

- **Initialization.** For \(N_b\) free model parameters, \(p_M\), we start with a sufficiently large grid with \(3^N\) regular points.
- **Evaluation.** We evaluate the \(pdf\) at each grid-point similar to BR13 (their Figure 9). An outer loop iterates over the potential parameters, \(p_{\phi}\), and pre-calculates all \(N_b \times N_{\text{samples}} + N_b^2 \times N_b^2\) actions required for the likelihood calculation (see Equations (8), (9) and (16)). Then an inner loop evaluates Equation (9) (or (16)) for all DF parameters, \(p_{\text{DF}},\) in the given potential.
- **Iteration.** For each of the model parameters, \(p_{\phi}\), we marginalize the \(pdf\). A Gaussian is fitted to the marginalized \(pdf\) and the peak \(\pm 4\sigma\) become the boundaries of the next grid with \(3^N\) grid points. The grid might still be too coarse or badly positioned to fit Gaussians. In that case we either zoom into the grid point with the highest probability or shift the current range to find new approximate grid boundaries. We proceed with iteratively evaluating the \(pdf\) on finer and finer grids, until we have found a reliable \(4\sigma\) fit range in each of the \(p_M\) dimensions. The central grid point is then very close to the best fit \(p_M\), and the grid range is of the order of the \(pdf\) width.

- **The fiducial qDF.** To save time by pre-calculating actions, they have to be independent of the choice of \(p_{\text{DF}}\). However, the normalization in Equation (11) requires actions on a \(N_b^2 \times N_b^2\) grid and the grid ranges in velocity space \(do\) depend on the current \(p_{\text{DF}}\) (see Equation (8)). To relax this, we follow BR13 and use a fixed set of \(qDF\) parameters (the fiducial \(qDF\)) to set the grid velocity boundaries in Equation (8) globally for a given \(p_{\phi}\). Choosing a fiducial \(qDF\) that is very different from the true \(DF\) can, however, lead to large biases in the \(p_M\) recovery. BR13 did not account for that. RoadMapping avoids this as follows: to successively get closer to the optimal fiducial \(qDF\)—with the (yet unknown) best fit \(p_{\text{DF}}\)—we use in each iteration step of the nested-grid search the central grid point of the current \(p_M\) grid as the fiducial \(qDF\)’s \(p_{\text{DF}}\). As the nested-grid search approaches the best fit values, the fiducial \(qDF\) approaches its optimum as well.

- **Computational expense.** Overall, the computation speed of this nested-grid approach is dominated (in descending order of importance) by a) the complexity of potential and action calculation, b) the \(N_b \times N_{\text{samples}} + N_b^2 \times N_b^2\) actions required to be calculated per \(p_{\phi},\) c) the number of potential parameters, and d) the number of DF parameters.

The second step samples the shape of the \(pdf\) using MCMC. Formally, calculating the \(pdf\) on a fine grid like BR13 (e.g., with \(K = 11\) grid points in each dimension) would provide the same information. However the number of expensive \(pdf\) evaluations scales as \(K^{N_b}\). For a high-dimensional \(p_{\phi}\) \((N_b > 4),\) an MCMC approach might sample the \(pdf\) much faster: we use emcee by Foreman-Mackey et al. (2013) and release the walkers very close to the best fit \(p_{\text{DF}}\) found by the nested-grid search, which assures fast convergence in much less than \(K^{N_b}\).
pdf evaluations. We also use the best fit p_M of the grid search as fiducial qDF for the whole MCMC. In doing so, the normalization varies smoothly with different p_M and is less sensitive to the accuracy in Equation (8).

3. RESULTS

We are now in a position to examine the limitations of action-based modeling posed in the introduction using our RoadMapping machinery. We explore: (i) whether the parameter estimates are unbiased, (ii) the role of the survey volume, (iii) imperfect selection functions, (iv) measurement uncertainties, and what happens if the true (v) DF or (vi) potential are not included in the space of models.

We will rely on mock data as input to explore the limitations of the modeling. The mock data is generated directly from the fiducial potential and DF models introduced in Sections 2.3 and 2.4, following the procedure described in Appendix A. With the exception of the test suite on measurement uncertainties in Section 3.4, we assume that phase-space uncertainties are negligible. All tests are also summarized in Table C1. We do not explore the breakdown of the assumption that the system is axisymmetric and in steady state nor the impact of resonances, which is not possible in the current setup using mock data drawn from axisymmetric galaxy models. We plan, however, to investigate this in a future paper, where we will apply RoadMapping to N-body simulations of disk galaxies.
3.1. Model Parameter Estimates in the Limit of Large Data Sets

The MAPs in BR13 contained between 100 and 800 objects, which implied broad pdfs for the model parameters, p_M. Several consequences arise in the limit of much larger samples, say $N_* = 20,000$. (i) As outlined in Section 2.6 and investigated in Figure 2 (Test 1 in Table C1), higher numerical accuracy is needed due to the likelihood normalization requirement, $M_{\text{tot}} \lesssim 1/N_*$ (see Equation (14)), which drives the computing time. (ii) The pdf(s) of the p_M become Gaussian, with a pdf width (i.e., the standard error (SE) on the parameter estimate) that scales as $1/\sqrt{N_*}$. The former is demonstrated in Figure 4 (Test 3.1 in Table C1) and we also verified that the latter is true. (iii) Any bias in the pdf expectation value has to be considerably less than the SE. Figure 5 (Test 3.2 in Table C1) illustrates that RoadMapping behaves like an unbiased maximum likelihood estimator; the average parameter estimates from many mock data sets are very close to the input p_M, and the distribution of the actual parameter estimates are Gaussian around it.

3.2. The Role of the Survey Volume Geometry

To explore the role of the survey volume at a given sample size, we devise two suites of mock data sets.

The first suite draws mock data for two different potentials (Iso-Pot and DHB-Pot) and four volume wedges (see Table C1 as Test 3.2). Lack of bias in the parameter estimates. Maximum likelihood estimators converge to the true parameter values for large numbers of data points and have a Gaussian spread—if the model assumptions are fulfilled. To test that these conditions are satisfied for RoadMapping, we create 320 mock data sets, which come from two different stellar populations and five spherical observation volumes (see legends). (All model parameters are summarized in Table C1 as Test 3.2.) Bias and relative standard error (SE) are derived from the marginalized pdf for two model parameters (isochrone scale length b in the first row, and qDF parameter $h_{q,1}$ in the second row). The second column displays a histogram of the 320 bias offsets. As it closely follows a normal distribution, our modeling method is therefore well-behaved and unbiased. The black dots denote the pdf expectation value for the 32 analyses belonging to the same p_M.

Appendix B) with different extent and at different positions within the Galaxy, illustrated in the upper panel of Figure 6. Otherwise the data sets are generated from the same p_M (see Test 4 in Table C1). To isolate the role of the survey volume geometry and position, the mock data sets all have the same number of stars ($N_* = 20,000$), and are drawn from identical total survey volumes (4.5 kpc3, achieved by adjusting the angular width of the wedges). We investigate these rather unrealistic survey volumes to test (i) if there are regions in the Galaxy where stars are on intrinsically more informative orbits and (ii) if spatial cuts applied to the survey volume (e.g., to avoid regions of large dust extinction or measurement uncertainties) would therefore strongly affect the precision of the potential constraints. To make this effect—
if it exists—noticeable, we choose some extreme but illustrative examples.

The results are shown in Figure 6. The wedges all have the same volume and all give results of similar precision. There are some minor and expected differences, e.g., $v_{\text{sec}}(R_0)$ and radial scale lengths (b and a_{halo}) are slightly better recovered for a large radial extent and the halo fraction at the Sun, f_{halo}, for volumes centered around R_0. In the case of an axisymmetric model galaxy, the extent in ϕ direction is not expected to matter. Overall radial extent and vertical extent seem to be equally important to constrain the potential. Figure 6 implies, therefore, that volume offsets or spatial cuts of the survey volume in the radial or vertical direction have at most a modest impact—even in case of the very large sample size at hand.

The second suite of mock data sets was already introduced in Section 3.1 (see also Test 3.2 in Table C1), where mock data sets were drawn from five spherical volumes around the Sun with different r_{max}, for two different stellar populations. The results of this second suite are shown in Figure 5 and exemplify the effect of the size of the survey volume.

Figure 5 demonstrates that, given a choice of p_{DF}, a larger volume always results in tighter constraints. There is no obvious trend that a hotter or cooler population will always give better results; it depends on the survey volume and the model parameter in question.

While it appears that the argument for significant radial and vertical extent is generic, we have not done a full exploration of all combinations of p_{DF} and volumes.

In reality, different regions in the Galaxy have different stellar number densities and different measurement uncertainties, which should therefore be the major factor to drive the precision of the potential recovery when choosing a survey volume.

3.3. Impact of Misjudging the Selection Function of the Data Set

The survey SF (see also Appendix B) is sometimes not perfectly determined. While the pattern of the survey area on the sky may be complex, it is usually precisely known. It is the uncertainties (e.g., in completeness) in the line-of-sight directions that is most prone to systematic misassessment. We therefore focus here on completeness misjudgements (with a simplified angular pattern) and investigate how much this could affect the recovery of the potential. We do this by creating mock data in the DHB-Pot within a spherical survey volume with radius r_{max} around the Sun (see Test 5 in Table C1) and a spatially varying completeness function

$$\text{completeness}(r) \equiv 1 - \epsilon_r \frac{r}{r_{\text{max}}}, \quad (17)$$

which drops linearly with the distance, r, from the Sun. The completeness function can be understood as the probability of a star at distance r to be detected (see also Equation (18)). In the RoadMapping analysis on the other hand, we assume constant completeness ($\epsilon_r = 0$). The incompleteness parameter ϵ_r of the mock data therefore quantifies how much we misjudge the SF. This mock test captures the relevant case of stars being less likely to be observed (than assumed) the further away they are (e.g., due to unknown dust obscuration).

Figure 7 demonstrates that the potential recovery with RoadMapping is quite robust against somewhat wrong assumptions about the completeness of the data, i.e., $\epsilon_r \lesssim 0.15$ for the hot and $\epsilon_r \lesssim 0.2$ for the cool population. The cool population is more robust, because it is less affected by the SF misjudgement at high $|z|$ than the hot population. Our simple model SF affects stars at large and small radii in equal proportion. As long as the misjudgement is small, the tracer scale length parameter, h_R, can still be reliably recovered, and, with it, the potential.

We have also investigated several test suites using the Iso-Pot. The recovery of $v_{\text{rot}}(R_0)$ and the qDF parameters at different ϵ_r is qualitatively and quantitatively similar to Figure 7 for the DHB-Pot. The isochrone scale length, b, however, is recovered independently of ϵ_r—probably because rotation curve measurements in the plane alone, which are not affected by the SF cuts, give reliable constraints on b. When not including tangential velocity measurements in the analysis (which is done by marginalizing the likelihood in Equation (9) over v_T), the parameters are well recovered only for $\epsilon_r \lesssim 0.15$ and $\epsilon_r \lesssim 0.2$ for the hot and cool population, respectively. As this is in concordance with our findings for the DHB-Pot, this result seems to be valid for different choices of potentials.

For spatial completeness functions varying with the distance from the plane $|z|$ only, the Iso-Pot potential
Measurement uncertainties and their Effect on the Parameter Recovery

Measurement uncertainties in proper motions and distance dominate over uncertainties in position on the sky (R.A., decl.) and line-of-sight velocity, which can be more accurately determined.

The range of proper motion uncertainties in this section, 1–5 mas yr⁻¹, is the approximate measurement accuracy that can be achieved by combining catalogs from ground-based surveys like the Sloan Digital Sky Survey (SDSS; Abazajian et al. 2003), the USNO-B catalog (Monet et al. 2003), 2MASS (Skrutskie et al. 2006), and the Pan-STARRS1 photometric catalog (PS1; Kaiser et al. 2010). Space-based surveys can do even better. The Hipparcos (ESA 1997) and Tycho-2 (Høg et al. 2000) catalogs achieve δμ ~ 2.5 mas yr⁻¹ (and even δμ ~< 1 mas yr⁻¹ for all stars with V < 12), which will be soon superseded by Gaia with only δμ ~ 0.3 mas yr⁻¹ at its faint end at magnitude G ~ 20 (de Bruijne et al. 2014).

We first investigate the impact of (perfectly known) proper motion uncertainties on the precision of the potential parameter recovery (see Test 6.1 in Table C1). Figure 8 demonstrates that for data sets with δμ as high as 5 mas yr⁻¹ the precision degrades by a factor of no more than ~2 as compared to a data set without measurement uncertainties. The precision gets monotonically better for smaller δμ, being larger only by a factor of ~1.15 at δμ = 1 mas yr⁻¹. With relative standard errors on the recovered parameters of only a few percent at most for 10,000 stars, this means we still get quite precise constraints on the potential, as long as we know the proper motion uncertainties perfectly.

We also note that, in this case, the relative and absolute difference in recovered precision between the precise and the uncertainty affected data sets does not seem to depend strongly on the kinematic temperature of the stellar population.

Secondly, we investigate the impact of additional measurement uncertainties in distance (modulus). In the absence of constraints on the potential, as long as we know the proper motion uncertainties perfectly.

Figure 8. Effect of proper motion uncertainties, δμ, on the precision of potential parameter recovery for two stellar populations of different kinematic temperature (see Test 6.1 in Table C1 for all model parameters). The relative standard error (SE) derived from the marginalized pdf for each model parameter was determined for precise data sets without measurement uncertainties (solid lines, with dotted lines indicating the error) and for data sets affected by different proper motion uncertainties δμ and δvlos = 2 km s⁻¹ (data points with error bars), but no uncertainties in position. The errors come from taking the mean over several data sets.

Figure 9. Potential parameter recovery using the approximation for the model probability convolved with measurement uncertainties in Equation (16). We show the pdf offset and relative width (i.e., standard error SE) for potential parameters recovered from mock data sets (which were created according to Test 6.2 in Table C1). The data sets in the upper panels are affected only by proper motion uncertainties, δμ, (and δvlos = 2 mas yr⁻¹), while the data sets in the lower panels also have distance (modulus) uncertainties, δ(m − M), as indicated in the legend. For data sets with δμ ≤ 3 mas yr⁻¹, Equation (16) was evaluated with Nsamples = 800, for δμ > 3 mas yr⁻¹ we used Nsamples = 1200. In the absence of distance uncertainties, Equation (16) gives unbiased results. For b(m − M) > 0.2 mag (i.e., δr/r > 0.1; for r ~ 3 kpc), however, biases of several σ are introduced, as Equation (16) is only an approximation for the true likelihood in this case.

Figure 10. Effect of a systematic underestimation of proper motion uncertainties, δμ, on the recovery of the model parameters. (The true model parameters used to create the mock data are summarized as Test 6.3 in Table C1, four of them are indicated as black dotted lines in this figure.) The mock data was perturbed according to proper motion uncertainties, δμ = δμvalid = δμσλ, as indicated on the x-axis. In the RoadMapping analysis (see likelihood in Equation (16)), however, we underestimated the true δμ by 10% (circles, solid lines) and 50% (triangles, dashed lines). The symbols denote the best fit parameters with ±1σ error bars of several mock data sets. The lines connect the mean of corresponding data realizations to guide the eye.

5 Combining observations from the SDSS Data Release 1 with the USNO-B catalog based on the Palomar Observatory Sky Survey’s (POSS) photographic plates from the 1950s lead to proper motion measurements precise to δμ ~ 3 or 5 mas yr⁻¹ depending on magnitude r < 18 or r < 20, respectively (Gould & Kollmeyer 2004; Munn et al. 2004). The same accuracy can be achieved when using the four years of measurements by the PS1 only. By careful calibration of USNO-B and 2MASS with PS1, Sesar et al. (2015) got proper motions as accurate as δμ ~ 1.5 mas yr⁻¹ for r < 18. The Large Synoptic Survey Telescope (LSST, Ivezić et al. 2008b) planned for 2021 might even achieve δμ ~< 1 mas yr⁻¹ during its 10 years of scanning the sky (Ivezić et al. 2008a).
distance uncertainties, the uncertainty-convolved model probability given in Equation (16) is unbiased (see upper left panel in Figure 9). When including distance (modulus) uncertainties, Equation (16) is just an approximation for the true likelihood; the systematic bias thus introduced in the parameter recovery gets larger with the size of $\delta(m-M)$, as demonstrated in Figure 9, lower panels (see also Test 6.2 in Table C1). We find, however, that in the case of $\delta(m-M) \lesssim 0.2$ mag (if also $\delta \mu \lesssim 2$ mas yr$^{-1}$ and a maximum distance of $r_{\text{max}} = 3$ kpc, see Test 6.2 in Table C1) the potential parameters can still be recovered within 2σ. This corresponds to a relative distance uncertainty of $\sim 10\%$. The overall precision of the potential recovery is also not degraded much by introducing distance uncertainties of less than 10\%.

How does this compare with the distance uncertainties expected for \textit{Gaia}? For a typical red clump giant star with $M_I \sim 0$ mag and $(V-I) \sim 1$ mag at a distance of $r = 3$ kpc we estimate (using the magnitude transformation by Jordi et al. (2010) and the uncertainty parameterization by de Brujin et al. (2014)) a parallax uncertainty of $\sigma_\pi \sim 11$ mas, which is consistent with a distance uncertainty of less than 5\%, and a proper motion uncertainty of $\delta \mu \sim 6$ mas yr$^{-1}$, which is negligible. For the case that the modeling is not restricted to giant stars only, a quick investigation by Rene Andrae (private communication) of stars at $r = 3$ kpc ± 5 pc from the \textit{Gaia} universe model snapshot catalog (GUMS; Robin et al. 2012) revealed that a magnitude cut at $G \sim 15$ mag in the overall \textit{Gaia} data set should keep all distance uncertainties within 3 kpc below $\sim 10\%$, while also preserving \textit{Gaia}’s simple SF.

We therefore found that in case we perfectly know the measurement uncertainties (and the distance uncertainty is negligible or of the order of the uncertainties expected from \textit{Gaia} within ~ 3 kpc), the convolution of the model probability with the measurement uncertainties gives precise and accurate constraints on the model parameters—even if the measurement uncertainty itself is quite large.

Lastly, Figure 10 investigates the effect of a systematic underestimation of the true proper motion uncertainties, $\delta \mu$, by 10\% and 50\% (see also Test 6.3 in Table C1). We find that this causes a bias in the parameter recovery that grows seemingly linear with $\delta \mu$. For an underestimation of only 10\%, however, the bias becomes $\lesssim 2\sigma$ for 10,000 stars—even for $\delta \mu \sim 3$ mas yr$^{-1}$.

The size of the bias also depends on the kinematic temperature of the stellar population and the model parameter considered (see Figure 10). The qDF parameters are, for example, better recovered by hotter populations. This is because the relative difference between the true $\sigma_i(R)$ (with $i \in \{R, z\}$) and measured $\sigma_i(R)$ (which comes from the deconvolution with an underestimated velocity uncertainty) is smaller for hotter populations.

3.5. The Impact of Deviations of the Data from the Idealized Distribution Function

Our modeling approach assumes that each stellar population follows a simple DF; here we use the qDF. In this section we explore what happens if this idealization does not hold. We investigate this issue by creating mock data sets that are drawn from two distinct qDFs of different temperatures\footnote{Following the observational evidence, our mock data populations with cooler qDFs also have longer tracer scale lengths.} (see Table 2 and Test 7 in Table C1) in the DHB-Pot, and analyze the composite mock data set by fitting a single qDF to it. The velocity distributions of some mock data sets and their best fit qDFs are illustrated in Figure 11, and Figure 12 shows the tracer density residuals between data and best fit in the (R, z)...
plane. Figures 13 and 14 compare the input and best fit parameters. In Example 1 we choose qDFs of widely different temperatures and vary their relative fraction of stars in the composite mock data set (Figure 13); in Example 2 we always mix mock data stars from two different qDFs in equal proportion, but vary by how much the qDFs’ temperatures differ (Figure 14).

The first set of tests mimics a DF that has wider wings or a sharper core in velocity space than a qDF (see Figure 11), and slightly different radial and vertical tracer density profiles (similar to Figure 12). The second test could be understood as mixing neighboring MAPs in the [α/Fe]-versus-[Fe/H] plane due to large bin sizes or abundance measurement errors (cf. BR13).

We consider the impact of the DF deviations on the recovery of the potential and the qDF parameters separately.

We find from Example 1 that the potential parameters can be more robustly recovered if a mock data population is polluted by a modest fraction (≤30%) of stars drawn from a much cooler qDF, as opposed to the same pollution of stars from a hotter qDF. When considering the case of a 50/50 mix of contributions from different qDFs in Example 2 there is a systematic, but mostly small, bias in recovering the potential parameters, monotonically increasing with the qDF parameter difference. In particular, for fractional differences in the qDF parameters of <20% the systematics are insignificant even for sample sizes of \(N_x = 20,000 \), as used in the mock data.

Overall, the circular velocity at the Sun is very reliably recovered to within 2% in all these tests. But the best fit \(v_{\text{circ}}(R, z) \) is not always unbiased at the implied precision.

The recovery of the effective qDF parameters, in light of non-qDF mock data, is quite intuitive (in Figures 13 and 14 we therefore show only \(h_R \)); the effective qDF temperature lies between the two temperatures from which the mixed DF of the mock data was drawn; in all cases the scale lengths of the velocity dispersion fall-off, \(h_{\sigma, R} \) and \(h_{\sigma, z} \), are shorter than the true scale lengths because the stars drawn form the hotter qDF dominate at small radii, while stars from the cooler qDF (with its longer tracer scale length) dominate at large radii; the recovered tracer scale lengths, \(h_R \), vary smoothly between the input values of the two qDFs that entered the mix of mock data. The latter is also demonstrated in Figure 12: the radial tracer...
density profile of the mock data is steeper than a single qDF in the mid-plane and more shallow at higher $|z|$; overall the best fit h_R therefore lies in between.

We note that in the cases where the systematic bias in the potential parameter recovery becomes as big as several σ, a direct comparison of the true mock data set and best fit distribution (see Figure 11) can sometimes already reveal that the assumed DF is not a good model for the data.

We also performed the same tests for the spherical Iso-Pot instead of the galaxy-like DHB-Pot and for a much higher sampling of the mixing rate and qDF difference, X. The results are qualitatively and quantitatively very similar and therefore independent of the exact choice of potential.

Overall, we find that the potential inference is quite robust to modest deviations of the data from the assumed DF.

3.6. The Implications of a Gravitational Potential not from the Space of Model Potentials

We now explore what happens when the mock data were drawn from one axisymmetric potential family, here MW14-Pot, and are then modeled considering potentials from another axisymmetric family, here KKS-Pot (see Table 1 and Figure 1). In the analysis we assume the circular velocity at the Sun to be v_{circ} and fit qDF parameters in Figure 17. The data is very well recovered, even though the fitted potential family did not incorporate the true potential.

Figure 15. Comparison of the spatial distribution of mock data in R and z created in the MW14-Pot potential and with two different stellar populations (see Test 8 in Table C1 for all mock data model parameters), and the best fit distribution recovered by fitting the family of KKS-Pot potentials to the data. The best fit potentials are shown in Figure 16 and the corresponding best fit qDF parameters in Figure 17. The data is very well recovered, even though the fitted potential family did not incorporate the true potential. We get the best results for the local density, the surface density, and disk-to-halo ratio between $R \sim 4$ kpc and $R \sim 8$ kpc, i.e., where most of the tracer stars used in the analysis are located (see Figure 15).

The local density distribution is, in general, less reliably constrained than the forces, but we still capture the essentials. Exceptions are the inner regions $R \lesssim 3$ kpc, where the KKS-Pot model is missing a bulge by construction, and the local radial density profile, which is somewhat misjudged by the KKS-Pot model. The cool population, where most stars are confined to regions close to the mid-plane, recovers the flatness of the disk better than the hot population, but overall the best fit disk is slightly less dense in the mid-plane than the true disk. While it is generally possible to generate very flattened density distributions from Stäckel potentials, it might be difficult to simultaneously have a roundish halo and to require that both Stäckel components have the same focal distance (see Table 1).

The disk-to-halo surface density fraction within $|z| = 1.1$ kpc is not tightly constrained ($\lesssim 20\%$), but recovered within the errors inside of the survey volume. Using a wrong potential model does therefore not necessarily lead to biases in local dark matter measurements.

Overplotted in Figure 16 is also the KKS-Pot with the parameters from Table 1, which were fixed based on a (by-eye) fit directly to the force field (within $r_{max} = 4$ kpc from the Sun) and the rotation curve of the MW14-Pot. The potential found with the RoadMapping analysis is an even better fit. This demonstrates that RoadMapping infers a potential that, in its actual properties, resembles the input potential for the mock data in regions of large tracer density as closely as possible, given the differences in functional forms.

Figure 17 compares the true qDF parameters with the best fit qDF potentials belonging to the best fit potentials from Figure 16, and we also overplot the actual physical scale lengths and velocity dispersion as estimated directly from the mock data. While we recover h_R, $\sigma_{0,z}$, and h_z within the errors, we misjudge the parameters of the vertical velocity dispersion (σ_{z}, and especially h_z), even though the actual mock data distribution is well reproduced. This discrepancy could be connected to the KKS-Pot not being able to reproduce the flatness of the disk. Also, σ_z and h_z in Equations (6)–(7) are scaling profiles for the qDF (cf. BR13), and how close they are to the actual velocity profile depends on the choice of potential; that is, the physical velocity dispersion is well recovered even if the qDF velocity dispersion parameters are not. Figure 17 stresses once more that the actual parameter values of action-based DFs have always to be considered together with the potential in which they were derived. This is of importance in studies that use a fiducial potential to fit action-based DFs to stellar data, like, e.g., Sanders & Binney (2015) and Das & Binney (2016).

3.7. The Influence of the Stellar Population’s Kinematic Temperature

Overall, we found that it does not make a big difference if we use hot or cool stellar populations in our modeling.

How precise and reliable model parameters can be recovered does, to a certain extent, depend on the kinematic temperature of the data, as well as on the model parameter in question and...
on the observation volume. But there is no easy rule of thumb as to what combination would give the best results (see Figure 5). There are two exceptions.

First, the circular velocity at the Sun, $v_{\text{circ}}(R_\odot)$, is always best recovered with cooler populations (see Figures 8, 10, 13, and 14, and for the recovery of $v_{\text{circ}}(R)$ at $R = R_\odot$ see Figure 16) because more stars are on near-circular orbits (see Figure 18). Cooler populations are also less sensitive to misjudgements of (spatial) selection functions at large $|z|$ (see Figure 7). There is, however, the caveat that cool populations are more susceptible to non-axisymmetric streaming motions in the disk.
Second, hotter populations seem to be less sensitive to misjudgements of proper motion measurement uncertainties (see Figure 10) and pollution with stars from a cooler population (see Figures 13 and 14) because of their higher intrinsic velocity dispersion (see Figure 19).

In addition, we find indications in Figure 16 that different regions within the Galaxy are best probed by populations of different kinematic temperature; the hot population gives the best constraints on the radial local and surface density profiles at a smaller radius than the cool population because of its smaller tracer scale length. The cool population with most stars close to the mid-plane recovers the flatness of the disk more reliably.

4. SUMMARY AND DISCUSSION

Recently implementations of action DF-based modeling of 6D data in the Galactic disk have been put forth, in part to lay the groundwork for Gaia (BR13; McMillan & Binney 2013; Piffl et al. 2014; Sanders & Binney 2015).

We present RoadMapping, an improved implementation of the dynamical modeling machinery of BR13, to recover the MW’s gravitational potential by fitting an orbit DF to stellar populations within the Galactic disk. In this work we investigated the capabilities, strengths, and weaknesses of RoadMapping by testing its robustness against the breakdown of some of its assumptions—for well-defined, isolated test cases using mock data. Overall, the method works very well and is robust, even when there are small deviations of the model assumptions from the “real” Galaxy.

RoadMapping applies a full likelihood analysis and is statistically well-behaved. It goes beyond BR13 by allowing for a straightforward and flexible implementation of different model families for potential and DF. It also accounts for selection effects by using full 3D selection functions (given some symmetries).

4.1. Computational Speed

Large data sets in the age of Gaia require increasingly accurate likelihood evaluations and flexible models. To be able to deal with these computational demands we sped up the RoadMapping code by combining a nested-grid approach with MCMC and by faster action calculation using the Stöckel (Binney 2012a) interpolation grid by Bovy (2015). Our approach therefore allows us to explore the full pdf, while similar studies (e.g., Piffl et al. 2014; Sanders & Binney 2015; Das & Binney 2016) focus more on the model with maximum likelihood only. This also makes RoadMapping slower; fitting three DHB-Pot and five qDF parameters in each of the analyses in Tests 5 and 7 (see Table C1) takes, for example, ~25–30 hr on 25 CPUs. This is still a feasible computational effort as long as we restrict ourselves to potentials with a closed-form expression for $\Phi(R,z)$ (as done in this work). An equivalent analysis using, e.g., a double exponential disk (requiring integrals over Bessel functions) would take several days to weeks for $N = 20,000$. In any case, the application of RoadMapping to millions of stars will be a task for supercomputers, and calls for even more improvements and speed-up in the fitting machinery.

4.2. Properties of the Data Set

We could show that RoadMapping can provide potential and DF parameter estimates that are very accurate (i.e., unbiased) and precise in the limit of large data sets as long as the modeling assumptions are fulfilled.

In case the data set is affected by substantive measurement uncertainties, the potential can still be recovered to high precision, as long as these uncertainties are perfectly known and distance uncertainties are negligible. For large proper motion uncertainties, e.g., $\delta\mu \sim 5$ mas yr$^{-1}$, the formal errors on the parameters are only twice as large as in the case of no measurement uncertainties. However, properly accounting for measurement uncertainties is computationally expensive.

For the results to be accurate within 2σ (for 10,000 stars), we need to know to within 10% both the true stellar distances (at $r_{\text{max}} \lesssim 3$ kpc and $\delta\mu \lesssim 2$ mas yr$^{-1}$) and the true proper motion uncertainties (with $\delta\mu \lesssim 3$ mas yr$^{-1}$).

The distance condition is an artifact of the likelihood approximation (Equation (16)) that RoadMapping uses to save computation time, and the reason why we will have to restrict the RoadMapping modeling to stars with small distance uncertainties.

Fortunately, the measurement uncertainties of the final Gaia data release with $\delta\mu \lesssim 0.3$ mas yr$^{-1}$ at $G \lesssim 20$ mag, and $\delta\mu/r \lesssim 5\%$ at $r \sim 3$ kpc for $G < 15$ mag (see Section 3.4 and de Bruijne et al. 2014) will be well below these limits and...
promise accurate potential constraints. Before the final *Gaia* data release, however, we might have to restrict the modeling to suitable giant tracers with small uncertainties.

The main caveat of Tests 2 and 6.1–6.3 in Section 3.4 (see Table C1) concerning measurement uncertainties is the use of the *Iso-Pot*, which we chose for computational speed reasons. However, Tests 5 and 7, which we run for both *DHB-Pot* and *Iso-Pot*, gave qualitatively and quantitatively very similar results for both potentials. This makes us confident that also our results about measurement uncertainties are independent of the actual choice of potential.

We also found that the location of the survey volume within the Galaxy matters little. At a given sample size a larger survey volume with large coverage in both radial and vertical direction will give the tightest constraints on the model parameters.

The potential recovery with *RoadMapping* seems to be robust against minor misjudgements of the spatial data SF, in particular to a completeness overestimation of $\lesssim 15\%$–20% at the edge of a survey volume with $r_{\text{max}} = 3 \text{ kpc}$.

We found indications that populations of different scale lengths and temperatures probe different regions of the Galaxy because the best potential constraints are achieved where most of the stellar tracers are located. This supports the approach by BR13, who measured for each MAP the surface mass density only at one single best radius to account for missing flexibility in their potential model.

While cooler populations probe the Galaxy rotation curve better and hotter populations are less sensitive to pollution, overall stellar populations of different kinematic temperature seem to be equally well suited for dynamical modeling.

4.3. Deviations from the DF Assumption

RoadMapping assumes that stellar sub-populations can be described by simple DFs. We investigated how much the modeling would be affected if the assumed family of DFs would differ from the stars’ true DF.

In Example 1 in Section 3.5 we considered true stellar DFs being (i) hot with more stars with low velocities and less stars at small radii than assumed (reddish data sets in Figures 11 and 13), or (ii) cool with broader velocity dispersion wings and less stars at large radii than assumed (bluish data sets). We find that case (i) would give more reliable results for the potential parameter recovery.

Binning of stars into MAPs in $[\alpha/\text{Fe}]$ and $[\text{Fe/H}]$, as done by BR13, could introduce systematic errors due to abundance uncertainties or too large bin sizes—always assuming MAPs follow simple DF families (e.g., the qDF). In Example 2 in Section 3.5 we found that, in the case of 20,000 stars per bin, differences of $\lesssim 20\%$ in the qDF parameters of two neighboring bins can still give quite good constraints on the potential parameters.

The relative differences in the qDF parameters $\sigma_{R,0}$ and $\sigma_{\phi,0}$ of neighboring MAPs in Figure 6 of BR13 (which have bin sizes of $[\text{Fe/H}] = 0.1 \text{ dex}$ and $\Delta [\alpha/\text{Fe}] = 0.05 \text{ dex}$) are indeed smaller than 20%. For the h_R parameter, however, the bin sizes in Figure 6 of BR13 might not yet be small enough to ensure no more than 20% of difference in neighboring bins.

The qDF is a specific example for a simple DF for stellar sub-populations that we used in this paper, but it is not essential.
for the RoadMapping approach. Future studies might apply slight alternatives or completely different DFs to the data.

4.4. Gravitational Potential Beyond the Parameterized Functions Considered

In addition to the DF, RoadMapping also assumes a parametric model for the gravitational potential. We test how using a potential of Stäckel form (KKS-Pot, Batsleer & Dejonghe 1994) affects the RoadMapping analysis of mock data from a different potential family with halo, bulge, and exponential disk (MW14-Pot, Bovy 2015). The potential recovery is quite successful; we properly reproduce the mock data distribution in configuration space, and the best fit potential is—within the limits of the model—as close as it gets to the true potential, even outside of the observation volume of the stellar tracers.

For as many as 20,000 stars, constraints already become so tight that it should presumably be possible to distinguish between different parametric MW potential models (e.g., the DHB-Pot and the KKS-Pot).

Fitting parameterized potentials of Stäckel form to MW data (see, e.g., Batsleer & Dejonghe 1994; Famaey & Dejonghe 2003) has the advantage of allowing action calculations that are accurate and fast. It does, however, limit the space of potentials that can be investigated, as different potential components are all required to have the same focal distance. Using the Stäckel filter (Binney 2012a) together with parameterized potentials made up from physically motivated building blocks (exponential disks, power-law dark matter halo etc.), as was done by BR13, seems to be the most promising approach—even though there still remain several challenges concerning computational speed to be solved.

4.5. Different Modeling Approaches Using Action-Based DFs

BR13 focused on MAPs for a number of reasons. First, they seem to permit simple DFs (Bovy et al. 2012a, 2012b, 2012c), i.e., approximately qDFs (Ting et al. 2013). Second, all stars must orbit in the same potential. While each MAP can yield different DF parameters, it will also provide a (statistically) independent estimate of the potential. This allows for a valuable cross-checking reference. In some sense, the RoadMapping approach focuses on constraining the potential, treating the DF parameters as nuisance parameters. That we were able to show in this work that RoadMapping results are quite robust to the form of the DF not being entirely correct motivates this approach further.

Magorrian (2014) introduced a framework that avoids specific parameterizations of action-based DFs and marginalizes over all possible DFs to constrain the potential. While this is the proper way to treat a nuisance DF, it appears to be computationally very challenging.

For reasons of galaxy and chemical evolution, the DF properties are astrophysically linked between different MAPs (Sanders & Binney 2015). In its current implementation, RoadMapping treats all MAPs as independent and does not exploit such correlations. Ultimately, the goal is to do a consistent chemodynamical model that simultaneously fits the potential and DF $U, [X/H]$ (where $[X/H]$ is $[Fe/H]$ and other elements either referenced to H or Fe, i.e., $[X/H]$ denotes the whole abundance space) with a full likelihood analysis. This has not yet been attempted with RoadMapping because the behavior is quite complex.

Since the first application of RoadMapping by BR13 there have been two similar efforts by Piffl et al. (2014) and Sanders & Binney (2015) to constrain the Galactic potential and/or orbit DF for the disk.

Piffl et al. (2014) fitted both potential and a $f(J)$ to giant stars from the RAVE survey (Steinmetz et al. 2006) and the vertical stellar number density profiles in the disk by Jurič et al. (2008). They did not include any chemical abundances in the modeling. Instead, they used a superposition of action-based DFs to describe the overall stellar distribution at once: a superposition of qDFs for cohorts in the thin disk, a single qDF for the thick disk stars, and an additional DF for the halo stars. Taking proper care of the selection function requires a full likelihood analysis, which is computationally expensive. Piffl et al. (2014) choose to circumvent this difficulty by directly fitting (i) histograms of the three velocity components in eight spatial bins to the velocity distribution predicted by the DF and (ii) the vertical density profile predicted by the DF to the profiles by Jurić et al. (2008). The vertical force profile of their best fit mass model nicely agrees with the results from BR13 for $R > 6.6$ kpc. The disadvantage of their approach is that by binning the stars spatially, a lot of information is not used.

Sanders & Binney (2015) focused on understanding the abundance-dependence of the DF, relying on a fiducial potential. They developed extended distribution functions (eDF), i.e., functions of both actions and metallicity for a superposition of thin and thick disks, each consisting of several cohorts described by qDFs, a DF for the halo, a functional form of the metallicity of the interstellar medium at the time of birth of the stars, and a simple prescription for radial migration. They applied a full likelihood analysis accounting for selection effects and found a best fit for the eDF in the fixed fiducial potential by Dehnen & Binney (1998) to the stellar phase-space data of the Geneva-Copenhagen Survey (Nordström et al. 2004; Holmberg et al. 2009), metallicity determinations by Casagrande et al. (2011), and the stellar density curves by Gilmore & Reid (1983). Their best fit predicted the velocity distribution of SEGUE dwarfs (Ahn et al. 2014) quite well, but had biases in the metallicity distribution, which they attributed to being a problem with the SEGUE metallicities.

Das & Binney (2016) proceeded recently in a similar fashion to constrain an eDF for halo stars.

4.6. Future Work

We know that real galaxies, including the MW, are not axisymmetric. Using N-body models, we will explore in a subsequent paper how the recovery of the gravitational potential with RoadMapping will be affected when data from a non-axisymmetric disk galaxy system with spiral arms gets interpreted through axisymmetric models. There are several interesting scientific questions for which a RoadMapping investigation of galaxy simulations could be a pragmatic approach to address them: (i) What is the influence of spiral arms and resonances on the modeling outcome? (ii) Can we recover the potential well enough to calculate actions so accurate that clumps in orbit space can be identified? This is important to be able to compare clumps in action space to clustering of stars in abundance space. (iii) How do results
from RoadMapping, i.e., the potential and DF, compare with results from Jeans models?

We thank Glenn van de Ven for suggesting the use of Kuzmin-Kutuzov Stäckel potentials in this case study, the anonymous referee for her/this very helpful comments and suggestions, James J. Binney and Payel Das (University of Oxford) for valuable discussions, and Rene Andreia (MPIA) for an estimate of Gaia distance uncertainties. W.H.T. and H.-W. R. acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP 7) ERC Grant Agreement n. [321035]. J.B. acknowledges the financial support from the Natural Sciences and Engineering Research Council of Canada.

APPENDIX A

MOCK DATA

The mock data in this work is generated according to the following procedure. We assume that the positions and velocities of our stellar mock sample are indeed drawn from our assumed family of potentials (Section 2.3) and DFs (Section 2.4), with given parameters p_Φ and p_{DF}. The DF is in terms of actions, while the transformation $(x, v) \xrightarrow{\Phi} J_i$ is computationally much more expensive than its inversion. We therefore employ the following efficient two-step method for creating mock data, which also accounts for a spatial survey selection function SF(x) (see Appendix B).

In the first step we draw stellar positions x_i. We start by setting up the interpolation grid for the tracer density $\rho(R, ||p_\Phi||, p_{DF})$ generated according to Section 2.4.11 Next, we sample random positions (R_i, z_i, ϕ_i) uniformly within the observable volume. Using an MC rejection method we then shape the sample distribution to follow $\rho(R, ||p_\Phi||, p_{DF})$. To apply a non-uniform completeness function, we use the rejection method a second time. The resulting set of positions, x_i, follows the distribution $p(x) \propto \rho_{DF}(R, ||p_\Phi||, p_{DF}) \times SF(x)$.

In the second step we draw velocities, v_i. For each of the positions (R_i, z_i) we first sample velocities from a Gaussian envelope function in velocity space which is then shaped toward DF $J[R, z, v ||p_\Phi||, p_{DF}]$ using a rejection method. We now have a mock data set satisfying $(x_i, v_i) \rightarrow p(x, v) \propto DF(J[x, v ||p_\Phi||, p_{DF}) \times SF(x)$.

Measurement uncertainties can be added to the mock data by applying the following modifications to the above procedure. We assume Gaussian uncertainties in the heliocentric phase-space coordinates $\tilde{x} = (R_A, \text{decl.}, (m - M))$, $\tilde{v} = (\mu x, \text{cos (decl.).}, v_{los})$ (see Section 2.1). In the case of distance and position uncertainties, stars virtually scatter in and out of the observed volume. To account for this, we draw the true x_i from a volume that is larger than the actual observation volume, perturb the x_i according to the position uncertainties and then reject all stars that now lie outside of the observed volume. This mirrors the random scatter around the detection threshold for stars whose distances are determined from the apparent brightness and the distance modulus. We then sample true v_i (given the true x_i) as described above and perturb them according to the velocity uncertainties.

We show examples of mock data sets (without measurement uncertainties) in action space (Figure 18) and configuration space (x, v) (Figure 19). The mock data generated from the qDF follow the expected distributions in configuration space. The distribution in action space illustrates the intuitive physical meaning of actions. The stars of the cool population have, in general, lower radial and vertical actions, as they are on more circular orbits. Circular orbits with $J_R = 0$ and $J_z = 0$ can only be observed in the Galactic mid-plane. The different ranges of angular momentum, L_z, in the two example observation volumes reflect $L_z \sim R \times v_{circ}$ and the volumes’ different radial extent. The volume at larger z contains stars with higher J_z. An orbit with $L_z \ll J_R(R_z)$ can only reach into a volume at $\sim R_z$, if it is more eccentric and has therefore larger J_R. This, together with the effect of asymmetric drift, explains the asymmetric distribution of J_R versus L_z in Figure 18.

APPENDIX B

SELECTION FUNCTIONS

Any survey’s selection function (SF) can be understood as defining an effective sample sub-volume in the space of observables, e.g., position on the sky (limited by the pointing of the survey), distance from the Sun (limited by brightness and detector sensitivity), colors, and metallicity of the stars (limited by survey mode and targeting). The SF can therefore be thought of as having both a spatial small scale structure (due to pencil beam pointing, dust obscuration, etc.) and some overall spatial characteristics (e.g., mean height above the plane and mean Galactocentric radius of the stars). The treatment of realistic and complex SFs was already demonstrated in BR13 (who used the pencil beam SF of the SEGUE survey: Bovy et al. 2012c and Bovy et al. 2016) (who investigated the effect of dust extinction). In this work we aim to make a generic and basic exploration of search volume shapes and, as shown by Bovy et al. (2016), this should be possible without explicitly considering the spatial SF substructure. Inspired by the contiguous nature of the Gaia SF, which is basically only limited by a magnitude cut, and the fact that this magnitude cut would—in the absence of small scale structure—translate to a sharp distance cut for standard candle tracer populations like red clump stars, we therefore use in our modeling a simple spatial SF of spherical shape with radius r_{max} around the Sun,

$$SF(x) = \begin{cases} \text{completeness}(x) & \text{if } |x - x_0| \leq r_{max}, \\ 0 & \text{otherwise}. \end{cases} $$

We set $0 \leq \text{completeness}(x) \leq 1$ everywhere inside the observed volume, so it can be understood as a position-dependent detection probability for a star at x. Unless explicitly stated otherwise, we simplify to completeness$(x) = 1$. Additionally, we use in Figure 6 (Test 4 in Table C1) and Figures 18–19 for illustrative purposes some rather unrealistic survey volumes which are angular segments of a cylindrical annulus (wedge), i.e., the volume with $R \in [R_{min}, R_{max}]$, $\phi \in [\phi_{min}, \phi_{max}]$, $z \in [z_{min}, z_{max}]$ within the model Galaxy.

APPENDIX C

SUMMARY OF TEST SUITES

Table C1 lists all the different tests in this work and summarizes the model parameters, figures and results.

11 For the creation of the mock data we use $N_s = 20$, $N_v = 40$ and $n_s = 5$ in Equation (8).
Table C1
Summary of Test Suites in this Work.

Test	Potential	Model for Mock Data	Model in Analysis	Figures and Results			
Test 1: Numerical accuracy in calculating the likelihood normalization Survey volume: Numerical accuracy:	DHB-Pot	Iso-Pot, all parameters free qDF, all parameters free (fixed and known)	Figure 2	Suitable accuracy for our tests: \(N_x = 16, N_y = 24, n_a = 5 \). Higher spatial resolution is required for cooler populations.			
Test 2: Numerical convergence of convolution with measurement uncertainties Survey volume: Numerical accuracy:	Iso-Pot	Iso-Pot, all parameters free qDF, all parameters free (fixed and known)	Figure 3	The number of required MC samples scales as \(N_{\text{samples}} \propto (\delta v_{\text{max}})^2 \), with \(\delta v_{\text{max}} \) being the largest \(\delta v \) in the data set. If \(N_x \) is smaller, less accuracy, i.e., less \(N \), is needed to reach a given accuracy.			
Test 3.1: Shape of the model parameters’ pdf for large data sets Survey volume: Numerical accuracy:	Iso-Pot	Iso-Pot, all parameters free qDF, all parameters free (fixed and known)	Figure 4	The pdf becomes a multivariate Gaussian in the limit of large data. The width of the pdf scales as \(1/\sqrt{N_x} \).			
Test 3.2: Parameter estimates are unbiased; Influence of survey volume size Survey volume: Numerical accuracy:	Iso-Pot	Iso-Pot, free parameter: \(b \) qDF, free parameters: \(\ln h_M, \ln \sigma_M, \ln h_{\text{gas}} \).	Figure 5	RoadMapping behaves like an unbiased maximum likelihood estimator. Larger survey volumes lead to tighter constraints, even at the same \(N_x \).			
Test 4: Influence of position and shape of survey volume on parameter recovery Survey volume: Numerical accuracy:	(i) Iso-Pot or (ii) DHB-Pot	(i) Iso-Pot, all parameters free (ii) DHB-Pot, free parameters: \(v_{\text{esc}}(R_s), a_{\text{disk}}, f_{\text{halo}} \) qDF, all parameters free (fixed and known)	Figure 6	The exact position and shape of the survey volume plays only a minor role. Having both large radial and vertical extent should give the tightest constraints.			
Test 5: Influence of wrong assumptions about the spatial SF on parameter recovery Survey volume: Completeness: Numerical accuracy:	DHB-Pot	DHB-Pot, free parameters: \(v_{\text{esc}}(R_s), a_{\text{disk}}, f_{\text{halo}} \) qDF, all parameters free (fixed and known)	Figures 7	For minor misjudgements of a radially symmetric SF (i.e., \(\epsilon_s \leq 0.15 \) for hot and \(\epsilon_s \leq 0.2 \) for cool populations) the potential recovery is still robust.			
Test 6.1: Effect of proper motion uncertainties on precision of potential recovery Survey volume: Uncertainties:	Iso-Pot	Iso-Pot, all parameters free qDF, all parameters free (fixed and known)	Figure 8	If \(\delta v \) is perfectly known, the precision of the potential parameter recovery is only a factor \(\sim 1.15-2 \) worse.			
Test 6.2:	Potential: Iso-Pot	DF: qDF	Survey Volume: sphere around Sun, \(r_{\text{max}} = 3 \) kpc	Uncertainties: \(\delta R, \delta A, \delta \text{decl.} = 0 \), \(\delta V_{\text{los}} = 2 \) km s\(^{-1}\), \(\delta \mu = 1, 2, 3, 4 \) or 5 mas yr\(^{-1}\), (i) \(\delta (m - M) = 0 \) or (ii) \(\delta (m - M) = 0 \) (see Figure 9)	\(N_{\mu} = 10,000 \)	Figure 9	The approximate likelihood in Equation (16) is the true likelihood in the absence of distance uncertainties. For distance uncertainties \(\lesssim 10\% \) at \(r_{\text{max}} \lesssim 3 \) kpc, which is the case for Gaia and \(G \lesssim 15 \), the introduced bias is still less than \(2\sigma \).
Test 6.3:	Potential: Iso-Pot	DF: qDF	Survey Volume: sphere around Sun, \(r_{\text{max}} = 3 \) kpc	Uncertainties: \(\delta R, A, \delta \text{decl.} = 0 \), \(\delta V_{\text{los}} = 2 \) km s\(^{-1}\), \(\delta \mu = 1, 2, 3, 4 \) or 5 mas yr\(^{-1}\), (i) \(\delta (m - M) = 0 \) or (ii) \(\delta (m - M) = 0 \) (see Figure 9)	\(N_{\mu} = 10,000 \)	Figure 10	The bias introduced by underestimating \(b_{\mu} \) grows with \(b_{\mu} \). If \(b_{\mu} \leq 3 \) mas yr\(^{-1}\) and \(b_{\mu} \) is underestimated by \(10\% \) the bias is only \(\sim 2\sigma \) or less.
Test 7 :	Potential: DHB-Pot	DF: mix of two qDFs...	Survey volume: sphere around Sun, \(r_{\text{max}} = 2 \) kpc	\(N_{\mu} = 20,000 \)	Figures 11–14	Example 1: Hot qDF-like populations polluted by up to \(\sim 30\% \) of stars from a much cooler population give reliable potential constraints. This is not true for the opposite case. Example 2: Differences of \(\lesssim 20\% \) in qDF parameters do not matter when mixing sub-populations, e.g., due to finite binning in abundance space and abundance Errors.	
Test 8 :	Potential: MW14-Pot	DF: hot or cool qDF	Survey volume: sphere around Sun, \(r_{\text{max}} = 4 \) kpc	\(N_{\mu} = 20,000 \)	Figures 15–17	Figures 15–17	We find a good approximation for the true potential, especially where most stars are located, given the limitations of the wrong assumed potential model family.

Note. Reference potentials and qDFs are introduced in Tables 1 and 2, respectively. Parameters that are not left free in the analysis are always fixed to their true value. Unless stated otherwise, all mock data sets have SFs with completeness \((x) = 1 \) and no measurement uncertainties, and we use \(N_{\mu} = 16, N_{i} = 24, n_{s} = 5 \) as the numerical accuracy for calculating the likelihood normalization (see Section 2.6). The first column indicates the test suite; the second column the potential, DF, and SF model, etc., used for the mock data creation; the third column the corresponding model assumed in the RoadMapping analysis; and the last column lists the figures belonging to the test suite and summarizes the results.
REFERENCES

Abazajian, K., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2003, AJ, 126, 2081

Ahn, C. P., Alexandroff, R., Allende Prieto, C., et al. 2014, ApJS, 211, 17

Batsleer, P., & Dejonghe, H. 1994, A&A, 287, 43

Binney, J. 2010, MNRAS, 401, 2318

Binney, J. 2011, Pram, 77, 39

Binney, J. 2012a, MNRAS, 426, 1324

Binney, J. 2012b, MNRAS, 426, 1328

Binney, J. 2013, NewAR, 57, 29

Binney, J., & McMillan, P. 2011, MNRAS, 413, 1889

Binney, J., & Tremaine, S. 2008, Galactic Dynamics (2nd ed.; Princeton, NJ: Princeton Univ. Press)

Bovy, J. 2015, ApJS, 216, 29

Bovy, J., & Rix, H.-W. 2013, ApJ, 779, 115 (BR13)

Bovy, J., Rix, H.-W., Green, G. M., Schlaufy, E. F., & Finkbeiner, D. P. 2016, ApJ, 818, 130

Bovy, J., Rix, H.-W., & Hogg, D. W. 2012a, ApJ, 751, 131

Bovy, J., Rix, H.-W., Hogg, D. W., et al. 2012b, ApJ, 755, 115

Bovy, J., Rix, H.-W., Liu, C., et al. 2012c, ApJ, 753, 148

Bovy, J., & Tremaine, S. 2012, ApJ, 756, 89

Büdenbender, A., van de Ven, G., & Watkins, L. L. 2015, MNRAS, 452, 956

Casagrande, L., Schönrich, R., Asplund, M., et al. 2011, A&A, 530, A138

Dehnen, W., & Binney, J. 1998, MNRAS, 294, 429

de Lorenzi, F., Debattista, V. P., Gerhard, O., & Sambhus, N. 2007, MNRAS, 376, 71

de Zeeuw, T. 1985, MNRAS, 216, 273

ESA (ed.) 1997, in ESA Special Publication, The HIPPARCOS and TYCHO catalogues. Astrometric and photometric star catalogues derived from the ESA HIPPARCOS Space Astrometry Mission, 1200

Famaey, B. 2012, in SF2A-2012: Proc. Annual meeting of the French Society of Astronomy and Astrophysics, ed. S. Boissier et al., 15

Famaey, B., & Dejonghe, H. 2003, MNRAS, 340, 752

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306

Garbari, S., Liu, C., Read, J. I., & Lake, G. 2012, MNRAS, 425, 1445

Gilmore, G., & Reid, N. 1983, MNRAS, 202, 1025

Gould, A., & Kollmeier, J. A. 2004, ApJS, 152, 103

Henon, M. 1959, AN, 22, 126

Høg, E., Fabricius, C., Makarov, V. V., et al. 2000, A&A, 355, L27

Holmberg, J., Nordström, B., & Andersen, J. 2009, A&A, 501, 941

Hunt, J. A. S., & Kawata, D. 2014, MNRAS, 443, 2112

Ivezić, Z., Monet, D. G., Bond, N., et al. 2008a, in IAU Symp. 248, A Giant Step: from Milli- to Micro-arcsecond Astrometry, ed. W. J. Jin, I. Platais, & M. A. C. Perryman (Cambridge: Cambridge Univ. Press), 537

Ivezić, Z., Tyson, J. A., Abel, B., et al. 2008b, arXiv:0805.2366

Jordi, C., Gebran, M., Carrasco, J. M., et al. 2010, A&A, 523, A48

Jurić, M., Ivezić, Z., Brooks, A., et al. 2008, ApJ, 673, 864

Kaiser, N., Burgett, W., Chambers, K., et al. 2010, Proc. SPIE, 7733, 77330E

Kuijken, K., & Gilmore, G. 1989, MNRAS, 239, 605

Majerrot, J., 2014, MNRAS, 437, 2250

McMillan, P. J., & Binney, J. 2012, MNRAS, 419, 2251

McMillan, P. J., & Binney, J. J. 2008, MNRAS, 390, 429

McMillan, P. J., & Binney, J. J. 2013, MNRAS, 433, 1411

Monet, D. G., Levine, S. E., Canziani, B., et al. 2003, AJ, 125, 984

Munn, J. A., Monet, D. G., Levine, S. E., et al. 2004, AJ, 127, 3034

Munn, J. A., Monet, D. G., Levine, S. E., et al. 2008, AJ, 136, 395

Nordström, B., Mayor, M., Andersen, J., et al. 2004, A&A, 418, 989

Perryman, M. A. C., de Boer, K. S., Gilmore, G., et al. 2001, A&A, 369, 339

Piffl, T., Binney, J., McMillan, P. J., et al. 2014, MNRAS, 445, 3133

Read, J. I. 2014, JPhG, 41, 063101

Reid, M. J., Menten, K. M., Zheng, X. W., et al. 2009, ApJ, 700, 137

Rix, H.-W., & Bovy, J. 2013, ARA&A, 21, 61

Robin, A. C., Lari, X., Reylé, C., et al. 2012, A&A, 543, A100

Sanders, J. L., & Binney, J. 2015, MNRAS, 449, 3479

Sanders, J. L., & Binney, J. 2016, MNRAS, 457, 2107

Sesar, B., Bovy, J., Bernard, E. J., et al. 2015, ApJ, 809, 59

Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163

Steinmetz, M., Zwintz, T., Siebert, A., et al. 2006, AJ, 132, 1645

Stigari, L. E. 2013, PSB, 531, 1

Syer, D., & Tremaine, S. 1996, MNRAS, 282, 223

Ting, Y.-S., Rix, H.-W., Bovy, J., & van de Ven, G. 2013, MNRAS, 434, 652

Yanny, B., Rockosi, C., Newberg, H. J., et al. 2009, AJ, 137, 4377

Zhang, L., Rix, H.-W., van de Ven, G., et al. 2013, ApJ, 772, 108