HOLONOMIC \mathcal{D}-MODULES WITH BETTI STRUCTURE

Takuro Mochizuki
Takuro Mochizuki
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan.
E-mail: takuro@kurims.kyoto-u.ac.jp

2000 Mathematics Subject Classification. — 14F10, 32C38.
Key words and phrases. — holonomic D-modules, Betti structure, Stokes structure.
HOLONOMIC \mathcal{D}-MODULES WITH BETTI STRUCTURE

Takuro Mochizuki

Abstract. — We define the notion of Betti structure for holonomic \mathcal{D}-modules which are not necessarily regular singular. We establish the fundamental functorial properties. We also give auxiliary analysis of holomorphic functions of various types on the real blow up.

Résumé. — Nous définissons la notion de la structure Betti pour les \mathcal{D}-modules holonome qui ne sont pas nécessairement singulière régulière. Nous établissons les propriété fondamentaux. Nous aussi donnons l’analyse supplémentaire pour les fonctions holomorphes diverses sur l’éclatement réel.
CONTENTS

1. Introduction .. 1
 1.1. Pre-Betti structure .. 2
 1.2. Betti structure in the one dimensional case 2
 1.3. Betti structure in the higher dimensional case 4
 1.4. Main goal ... 7
 1.5. Acknowledgement ... 8

2. Preliminary ... 11
 2.1. Notation and words ... 11
 2.2. Beilinson's construction .. 15

3. Good holonomic \mathcal{D}-modules and their de Rham complexes 21
 3.1. Good holonomic \mathcal{D}-modules ... 21
 3.2. De Rham complexes .. 29

4. Some sheaves on the real blow up ... 35
 4.1. Holomorphic functions ... 35
 4.2. C^∞-functions ... 38
 4.3. Nilsson type functions ... 43
 4.4. Push-forward ... 51
 4.5. Characterization by growth order .. 55
 4.6. Flatness of the sheaf of holomorphic functions with moderate growth 63
 4.7. Push-forward of good \mathcal{D}-modules and real blow up 66

5. Complexes on the real blow up associated to good meromorphic flat
 bundles ... 71
 5.1. De Rham complexes ... 71
 5.2. Duality ... 78
 5.3. Functoriality ... 81
 5.4. A rigidity property (Appendix) ... 83
6. Good K-structure .. 91
 6.1. Good meromorphic flat bundles 91
 6.2. Good holonomic \mathcal{D}-modules with good K-structure (Local case) 97
 6.3. Good pre-K-holonomic \mathcal{D}-modules 100
 6.4. Meromorphic flat connections with good K-structure 105
 6.5. Preliminary for push-forward 112

7. K-holonomic \mathcal{D}-modules .. 115
 7.1. Preliminary .. 115
 7.2. K-Betti structure .. 117
 7.3. $K(\ast D)$-Betti structure .. 121

8. Functoriality properties .. 125
 8.1. Statements .. 125
 8.2. Step 1 ... 126
 8.3. Step 2 ... 128
 8.4. Some resolutions .. 132
 8.5. Step 3 ... 134

9. Derived category of algebraic K-holonomic \mathcal{D}-modules 139
 9.1. Standard exact functors .. 139
 9.2. Push-forward and pull-back 141
 9.3. Tensor product and inner homomorphism 147
 9.4. K-structure of the space of morphisms 148

Bibliography ... 155
CHAPTER 1

INTRODUCTION

In this paper, we introduce the notion of Betti structure for holonomic \mathcal{D}-modules, motivated by a question in [13]. For regular holonomic \mathcal{D}-modules, it is clearly defined by the Riemann-Hilbert correspondence, which is a basis of the theory of mixed Hodge modules ([55]–[58]). Namely, a Betti structure of a regular holonomic \mathcal{D}_X-module \mathcal{M} is defined to be a \mathbb{Q}-perverse sheaf \mathcal{F} with an isomorphism $\alpha : \mathcal{F} \otimes \mathbb{C} \simeq \text{DR}_X \mathcal{M}$. It has a nice functorial property for some of standard functors such as pull back, push-forward, dual etc., in the algebraic situation.

As for the non-regular case, there has been a significant progress toward a generalized Riemann-Hilbert correspondence between holonomic \mathcal{D}-modules and some topological objects, a kind of perverse sheaves equipped with “Stokes structure” in some sense. The asymptotic analysis for good meromorphic flat bundles ([33], [52] and [47]) and the existence of resolution of turning points ([26], [27], [47]) lead us a rather satisfactory understanding of the structure of meromorphic flat bundles. Moreover, the recent work of A. D’Agnolo and M. Kashiwara [10], [11] based on the theory of Ind-sheaves [24] gives us a description of holonomic \mathcal{D}-modules in terms of some topological objects. It should also lead us to a thorough theory of Betti structure of holonomic \mathcal{D}-modules.

However, except in the one dimensional case, it turned out that a rather complicated machinery is necessary for the complete description of generalized Riemann-Hilbert correspondence. (See [11] and [24]. See also [54].) In this study, we shall directly define the notion of “Betti structure” for holonomic \mathcal{D}-modules with functorial property by using only the classical machinery of holonomic \mathcal{D}-modules and perverse sheaves. It still requires non-trivial tasks, and provides us with non-trivial consequences on the compatibility of the Stokes structure and the \mathbb{Q}-structure. We hope that it would be useful for direct understanding of Betti structures and for a further study toward the generalized Riemann-Hilbert correspondence, at least temporarily.
1.1. Pre-Betti structure

To define the notion of Betti structure of a holonomic \mathcal{D}_X-module \mathcal{M}, it is a most naive idea to consider a pair of \mathbb{Q}-perverse sheaf \mathcal{F} and an isomorphism $\alpha : \mathcal{F} \otimes \mathbb{C} \simeq \text{DR}_X(\mathcal{M})$ as above, which is called a pre-Betti structure of \mathcal{M} in this paper. A holonomic \mathcal{D}_X-module with a pre-Betti structure is called a pre-\mathbb{Q}-holonomic \mathcal{D}_X-module. We should say that pre-Betti structure is too naive for the following reasons:

- It is not so intimately related with Stokes structure.
- Although pre-Betti structures have nice functoriality with respect to dual and proper push-forward, they are not functorial with respect to the push-forward for open immersion, the pull back, the nearby cycle and vanishing cycle functors. Recall that the de Rham functor is not compatible with the latter class of functors, when irregular singularities are present.

It is the main goal in this paper to introduce a condition for a pre-Betti structure to be a “Betti structure”. We use an inductive way on the dimension of the support, which was a strategy of M. Saito to define his mixed and pure Hodge modules [55] and [57].

In the following, a \mathbb{Q}-structure of a \mathbb{C}-perverse sheaf $\mathcal{F}_\mathbb{C}$ is a \mathbb{Q}-perverse sheaf $\mathcal{F}_\mathbb{Q}$ with an isomorphism $\mathcal{F}_\mathbb{Q} \otimes_\mathbb{Q} \mathbb{C} \simeq \mathcal{F}_\mathbb{C}$.

1.2. Betti structure in the one dimensional case

We explain our condition for Betti structure in the one dimensional case.

1.2.1. The generalized Riemann-Hilbert correspondence in the one dimensional case. — We know the well established theory on the general structure of holonomic \mathcal{D}-modules on curves (the generalized Riemann-Hilbert correspondence). Namely, in the one dimensional case, we have a natural bijective correspondence between meromorphic flat bundles and local systems with Stokes structure, and any holonomic \mathcal{D}-modules are described as the gluing of meromorphic flat bundles and skyscraper \mathcal{D}-modules. We shall review it very briefly. For simplicity, we consider holonomic \mathcal{D}-modules on $X = \Delta = \{|z| < 1\}$ which may have a singularity at the origin $D = \{O\}$.

1.2.1.1. The Stokes structure of meromorphic flat bundles. — Let V be a meromorphic flat bundle on (X, D). Let $\pi : \bar{X}(D) \to X$ be the real blow up along D. Let \mathcal{L} be the local system on $\bar{X}(D)$ associated to the flat bundle $V|_{X - D}$. Let P be any point of $\pi^{-1}(D)$. According to the classical asymptotic analysis, we have the Stokes filtration \mathcal{F}^P of the stalk \mathcal{L}_P given by the growth order of flat sections with respect to any meromorphic frame of V. The meromorphic flat bundle V can be reconstructed from the flat bundle $V|_{X - D}$ and the system of filtrations $\{\mathcal{F}^P \mid P \in \pi^{-1}(D)\}$, which is the Riemann-Hilbert-Birkhoff correspondence for meromorphic flat bundles on curves.
Let V^\vee be the dual of V as a meromorphic flat bundle, and let $V_i := D_X V^\vee$ be the dual of V^\vee as a D_X-module. Let us recall that the de Rham complexes $\text{DR}_X(V)$ and $\text{DR}_X(V_i)$ can be described in terms of Stokes filtrations. Let $\mathcal{L}^{\leq D}$ and $\mathcal{L}^{< D}$ be the constructible subsheaves of \mathcal{L} such that $\mathcal{L}^{\leq D}_{\mathcal{P}} = \mathcal{F}^P_{\leq 0}(\mathcal{L}_P)$ and $\mathcal{L}^{< D}_{\mathcal{P}} = \mathcal{F}^P_{< 0}(\mathcal{L}_P)$. Then, we have natural isomorphisms:

$$\text{DR}(V) \simeq R\pi_* \mathcal{L}^{\leq D}[1], \quad \text{DR}(V_i) \simeq R\pi_* \mathcal{L}^{< D}[1].$$

1.2.1.2. **Gluing of holonomic D-modules.** — Let us very briefly recall a key construction due to A. Beilinson [4] on the gluing of holonomic D-modules, which we will review in §2.2 in more details. (See also [32] and [59] for the other formalisms for gluing.) Let \mathcal{M} be any holonomic D_X-module such that $V := \mathcal{M}(\ast D)$ is a meromorphic flat bundle on (X, D). We have the natural morphisms $V_i \xrightarrow{a_0} \mathcal{M} \xrightarrow{b_0} V$. According to [4], we have the D-modules $\Xi_z(V)$ and $\psi_z(V)$ associated to V, with morphisms

$$\psi_z(V) \xrightarrow{a_1} \Xi_z(V) \xrightarrow{b_1} \psi_z(V), \quad V_i \xrightarrow{a_2} \Xi_z(V) \xrightarrow{b_2} V.\tag{2}$$

It can be shown that $b_0 \circ a_0 = b_2 \circ a_2$. We also have $b_2 \circ a_1 = 0$ and $b_1 \circ a_2 = 0$. We obtain the D-module $\phi_z(\mathcal{M})$ as the cohomology of the naturally associated complex:

$$V_i \longrightarrow \Xi_z(V) \oplus \mathcal{M} \longrightarrow V.\tag{3}$$

We have the naturally induced morphisms $\psi_z(V) \xrightarrow{\text{can}} \phi_z(\mathcal{M}) \xrightarrow{\var} \psi_z(V)$. Then, \mathcal{M} is reconstructed as the cohomology of the complex:

$$\psi_z(V) \longrightarrow \Xi_z(V) \oplus \phi_z(\mathcal{M}) \longrightarrow \psi_z(V).\tag{4}$$

Recall that $\Xi_z(V)$, $\psi_z(V)$, and $\phi_z(\mathcal{M})$ are called the maximal extension, the nearby cycle sheaf, and the vanishing cycle sheaf of \mathcal{M}.

1.2.2. **Betti structure of holonomic D-modules on curves.** — We explain when a pre-Betti structure of holonomic D-modules seems eligible to be called a Betti structure in the one dimensional case. Essentially, the condition describes a compatibility with the Stokes structure.

1.2.2.1. **Good \mathbb{Q}-structure of meromorphic flat bundles.** — Let V be a meromorphic flat bundle on (X, D), and let \mathcal{L} denote the associated local system on $\tilde{X}(D)$ with the Stokes structure. A \mathbb{Q}-structure of V is a \mathbb{Q}-structure of the associated local system on $X \setminus D$, which is equivalent to a \mathbb{Q}-structure of \mathcal{L}. It is called a good \mathbb{Q}-structure of V if the Stokes filtrations \mathcal{F}^P ($P \in \pi^{-1}(D)$) are defined over \mathbb{Q}, with respect to the induced \mathbb{Q}-structure of \mathcal{L}. By the isomorphisms (1), we obtain the pre-Betti structures of V and V_i. Moreover, it is easy to observe that $\psi_z(V)$ and $\Xi_z(V)$ are also naturally equipped with pre-Betti structures such that the morphisms a_i and b_i ($i = 1, 2$) are compatible with pre-Betti structures.
1.2.2. Betti structure of holonomic \mathcal{D}-modules on curves. — Let \mathcal{M} be a holonomic \mathcal{D}-module on (X, D) such that $V := \mathcal{M}(\ast D)$ is a meromorphic flat bundle. Let (\mathcal{F}, α) be a pre-Betti structure of \mathcal{M}. We call it a Betti structure if the following holds:

- The induced \mathbb{Q}-structure on $\text{DR}(V|_{X-D})$ induces a good \mathbb{Q}-structure of V. As remarked above, we have the induced pre-Betti structures on V and $V^!$.

- The natural morphisms a_0 and b_0 are compatible with the pre-Betti structures.

Note that we obtain a pre-Betti structure on $\phi_z(\mathcal{M})$ from the expression as the cohomology of the complex (3), and the morphisms var and can are compatible with the pre-Betti structures. The pre-Betti structure of \mathcal{M} can be reconstructed from the pre-Betti structure of $\phi_z(\mathcal{M})$ and the good \mathbb{Q}-structure of V.

1.3. Betti structure in the higher dimensional case

We would like to generalize the notion of Betti structure in the higher dimensional case.

1.3.1. Good meromorphic flat bundle and good \mathbb{Q}-structure. — Let X be any complex manifold with a simple normal crossing hypersurface D. It is fundamental to understand the structure of good meromorphic flat bundles on (X, D), which is now well established after the work of H. Majima, C. Sabbah and the author. (See [33], [47], [48], [52] and [54]. See [49] for a survey.) Very briefly, the asymptotic analysis for meromorphic flat bundles on curves can be naturally generalized for good meromorphic flat bundles in the higher dimensional case, and we obtain the Riemann-Hilbert-Birkhoff correspondence, which is a natural correspondence between good meromorphic flat bundles and local systems with Stokes structure.

Let us recall it very briefly. Let (V, ∇) be a good meromorphic flat bundle. Let $\pi : \tilde{X}(D) \to X$ be the real blow up along D, which means in this paper the fiber product of the real blow up along the irreducible components of D taken over X. Let \mathcal{L} be the local system on $\tilde{X}(D)$ associated to $V|_{X-D}$. For any point $P \in \pi^{-1}(D)$, we have the Stokes filtration \mathcal{F}^P of the stalk \mathcal{L}_P. It satisfies a compatibility condition with the Stokes filtrations \mathcal{F}^Q for Q which are close to P. We can reconstruct V from $V|_{X-D}$ and the system of filtrations $\{\mathcal{F}^P | P \in \pi^{-1}(D)\}$. Moreover, if we are given a local system with the family of Stokes filtrations $\{\mathcal{F}^P | P \in \pi^{-1}(D)\}$ satisfying the compatibility condition, we have the corresponding good meromorphic flat bundle V. This is the Riemann-Hilbert-Birkhoff correspondence for good meromorphic flat bundles.

As in the one dimensional case, the de Rham complexes of V and $V^!$ are described in terms of the local system \mathcal{L} with the Stokes structure. We obtain the constructible subsheaf $\mathcal{L}^{<D}$ of \mathcal{L} which consists of flat sections with the moderate growth. It is described as $\mathcal{L}^{<D} = \mathcal{F}_0^D(\mathcal{L}_P) (P \in \pi^{-1}(D))$ in terms of the Stokes filtrations. Let $\mathcal{L}^{<D}$ be the constructible subsheaf of \mathcal{L}, which consists of flat sections with rapid
1.3. BETTI STRUCTURE IN THE HIGHER DIMENSIONAL CASE

It is also described in terms of the Stokes filtration (see §5.1.2). Then, we have $\text{DR}_X(V) \simeq R\pi_*L^{\leq \dim X}$ and $\text{DR}_X(V_i) \simeq R\pi_*L^{< D}[\dim X]$. For any holomorphic function g on X such that $g^{-1}(0) = D$, we obtain $\text{DR}_X(V)$ and $\text{DR}_X(V_i)$ with morphisms as in (1).

As in the one dimensional case, a \mathbb{Q}-structure of V is a \mathbb{Q}-structure of the associated local system on $X \setminus D$, which is the same as a \mathbb{Q}-structure of L. It is called a good \mathbb{Q}-structure of V if the Stokes filtrations are defined over \mathbb{Q}. If V is equipped with a good \mathbb{Q}-structure, the \mathcal{D}_X-modules V, V_i, $\Xi_g(V)$ and $\psi_g(V)$ are naturally equipped with pre-Betti structures, and the natural morphisms as in (2) are compatible with the pre-Betti structures.

1.3.2. Good \mathbb{Q}-structure of meromorphic flat connections. — In the higher dimensional case, not all meromorphic flat bundles are good, which is one of the main difficulties. Let us recall local resolutions of turning points due to K. Kedlaya [26], [27]. (See [52] for the original conjecture. See also [44] and [47] for the algebraic case.)

Let X be a complex manifold with a hypersurface D. Let V be a reflexive \mathcal{O}_X-\mathcal{O}_D-module with a flat connection, which is called a meromorphic flat connection [38]. For any $P \in X$, there exist a neighbourhood X_P of P in X and a projective birational morphism $\lambda_P : \tilde{X}_P \rightarrow X_P$ such that (i) \tilde{X}_P is smooth and $\tilde{D}_P := \lambda_P^{-1}(D)$ is normal crossing, (ii) $X_P \setminus \tilde{D}_P \simeq X_P \setminus D$, (iii) $\tilde{V}_P := \lambda_P^*V$ is a good meromorphic flat bundle on $(\tilde{X}_P, \tilde{D}_P)$. (See Theorem 8.2.2 of [27].) Such (X_P, λ_P) is called a local resolution of V in this paper. If X and V are algebraic, we have a global resolution. (See Theorem 8.1.3 of [27] or Theorem 16.2.1 of [47].)

Then, the notion of good \mathbb{Q}-structure is generalized for meromorphic flat connections which are not necessarily good. Namely, a \mathbb{Q}-structure of V is called good if the induced \mathbb{Q}-structure of good meromorphic flat bundles \tilde{V}_P are good for any local resolutions (X_P, λ_P). Even in this case, the de Rham complexes $\text{DR}_X(V)$ and $\text{DR}_X(V_i)$ have naturally induced \mathbb{Q}-structures. Moreover, if we are given a holomorphic function g on X such that $g^{-1}(0) = D$, the holonomic \mathcal{D}_X-modules $\psi_g(V)$ and $\Xi_g(V)$ are naturally equipped with pre-Betti structures, with which the morphisms in (2) are compatible.

1.3.3. Cells and gluing. — Let us recall that any holonomic \mathcal{D}-module \mathcal{M} can be described as the gluing of a “cell” and a holonomic \mathcal{D}-module \mathcal{M}' whose support $\text{Supp} \mathcal{M}'$ is strictly smaller than $\text{Supp} \mathcal{M}$. Namely, for any $P \in \text{Supp} \mathcal{M}$, there exists a tuple $\mathcal{C} = (Z, U, \varphi, V)$ as follows:
(Cell 1) : \(\varphi : Z \to X \) is a morphism of complex manifolds such that \(P \in \varphi(Z) \) and that \(\dim Z \) is equal to the dimension of \(\text{Supp} \mathcal{M} \) at \(P \). We impose that there exists a neighbourhood \(X_P \) of \(P \) in \(X \) such that \(\varphi : Z \to X_P \) is projective.

(Cell 2) : \(U \subset Z \) is the complement of a hypersurface \(D_Z \). We impose that the restriction \(\varphi|_U \) is an immersion, and that there exists a hypersurface \(H \) of \(X_P \) such that \(\varphi^{-1}(H) = D_Z \).

(Cell 3) : \(V \) is a good meromorphic flat bundle on \((Z, D_Z) \). We impose \(\mathcal{M}(*H) = \varphi| V \) for a hypersurface \(H \) as in (Cell 2). Note that we obtain the natural morphisms \(\varphi|_V^! : \mathcal{M} \to \varphi|_V \).

Such \(C \) is called a cell of \(\mathcal{M} \) at \(P \). A holomorphic function \(g \) on \(X \) is called a cell function for \(C \) if \(\varphi(U) = \text{Supp} \mathcal{M} \setminus g^{-1}(0) \). We set \(g_Z := g \circ \varphi \). We have natural isomorphisms \(\varphi|_Z \Xi [g_Z(V)] \simeq \Xi [g](V) \) and \(\varphi|_Z \psi_{g_Z}(V) \simeq \psi_g(\varphi|_Z(V)) \).

By the formalism of Beilinson, the \(D_X \)-module \(\phi_g(\mathcal{M}) \) is obtained as the cohomology of the complex:

\[
\varphi|_V^! \to \Xi [g] \varphi|_V \oplus \mathcal{M} \to \varphi|_V.
\]

We have the description of \(\mathcal{M} \) around \(P \) as the cohomology of the complex:

\[
\psi_g(\varphi|_V) \to \Xi [g] \varphi|_V \oplus \phi_g(\mathcal{M}) \to \psi_g(\varphi|_V).
\]

In other words, \(\mathcal{M} \) is described as the gluing of the cell \(C \) and \(\phi_g(\mathcal{M}) \).

1.3.4. Betti structure. —

1.3.4.1. Compatibility of cell and pre-Betti structure. — We introduce the compatibility condition of a cell \(C \) and a pre-Betti structure \(\mathcal{F} \) of \(\mathcal{M} \). We say that \(\mathcal{F} \) and \(C \) are compatible if the following holds:

- Note that the flat bundle \(V|_U \) has an induced \(\mathbb{Q} \)-structure. We suppose that it is a good \(\mathbb{Q} \)-structure in the sense of §1.3.2.
- By the first condition, \(\varphi|_V, \varphi|_V^!, \Xi [g] \varphi|_V \) and \(\psi_g(\varphi|_V) \) are equipped with the induced pre-Betti structures. Then, we impose that the morphisms \(\varphi|_V^! : \mathcal{M} \to \varphi|_V \) are compatible with pre-Betti structures.

Such a cell \(C \) is called a \(\mathbb{Q} \)-cell of \(\mathcal{M} \) at \(P \). Since \(\phi_g(\mathcal{M}) \) is the cohomology of the complex (5), it is equipped with the induced pre-Betti structure.

1.3.4.2. Inductive definition of Betti structure. — Let us define the notion of Betti structure of \(\mathcal{M} \) at \(P \), inductively on the dimension of \(\text{Supp} \mathcal{M} \). If \(\dim \text{Supp} \mathcal{M} = 0 \), a Betti structure is defined to be a pre-Betti structure. Let us consider the case \(\dim \text{Supp} \mathcal{M} \leq n \). We say that a pre-Betti structure of \(\mathcal{M} \) is a Betti structure at \(P \) if there exists an \(n \)-dimensional \(\mathbb{Q} \)-cell \(C = (Z, \varphi, U, V) \) at \(P \) with the following property:

- \(\dim \left(\text{Supp} \mathcal{M} \cap X_P \right) \setminus \varphi(Z) < n \) for some neighbourhood \(X_P \) of \(P \) in \(X \).
- For a cell function \(g \) for \(C \), the induced pre-Betti structure of \(\phi_g(\mathcal{M}) \) is a Betti structure at \(P \). Note that \(\dim \text{Supp} \phi_g(\mathcal{M}) < n \) by the first condition.
A holonomic \mathcal{D}-module with Betti structure is called a \mathbb{Q}-holonomic \mathcal{D}-module. Morphisms of \mathbb{Q}-holonomic \mathcal{D}_X-modules are defined to be morphisms of pre-\mathbb{Q}-holonomic \mathcal{D}_X-modules.

Remark 1.3.1. — The above is not exactly the same as the definition in §7.2, but they give equivalent objects.

1.4. Main goal

1.4.1. The category of \mathbb{Q}-holonomic \mathcal{D}-modules.

Besides giving the details on the above arguments, it is our main purpose to show that our notion of Betti structure is nice. The category of \mathbb{Q}-holonomic \mathcal{D}-modules should contain the holonomic \mathcal{D}-modules naturally induced from any meromorphic flat connections with a good \mathbb{Q}-structure, for which we have the following theorem.

Theorem 1.4.1. — Let X be any complex manifold with a hypersurface D. Let V be any meromorphic flat connection on (X, D) with a good \mathbb{Q}-structure. Then, the natural pre-Betti structures of V and V_1 are Betti structures.

See Theorem 8.1.3 for a refined result. Some of the functors for holonomic \mathcal{D}-modules should be enriched with Betti structures, as in the following theorems.

Theorem 1.4.2 (Theorem 8.1.1). — Let $F : X \to Y$ be any projective morphism of complex manifolds. For any \mathbb{Q}-holonomic \mathcal{D}_X-module M, the push-forward F_i^*M are also naturally \mathbb{Q}-holonomic for any i.

Theorem 1.4.3 (Theorem 8.1.4). — Let X be any complex manifold with a hypersurface D. Let M be any \mathbb{Q}-holonomic \mathcal{D}_X-module. Then, $M \otimes \mathcal{O}_X(*D)$ has a unique Betti structure, for which $M \to M \otimes \mathcal{O}_X(*D)$ is compatible with the Betti structures.

Theorem 1.4.4 (Proposition 8.3.7). — Let X be any complex manifold with a hypersurface D. Let M be any \mathbb{Q}-holonomic \mathcal{D}_X-module. Let V be any meromorphic connection on (X, D) with a good \mathbb{Q}-structure. Then, $M \otimes V$ is naturally a \mathbb{Q}-holonomic \mathcal{D}_X-module.

The following is an easier result.

Theorem 1.4.5. —

- The category of \mathbb{Q}-holonomic \mathcal{D}_X-modules is abelian.
- The dual of \mathbb{Q}-holonomic \mathcal{D}_X-modules are naturally \mathbb{Q}-holonomic.
- Let M be a \mathbb{Q}-holonomic \mathcal{D}_X-module. Let $M' \subset M$ be a subobject in the category of pre-\mathbb{Q}-holonomic \mathcal{D}_X-modules. Then, M' is also \mathbb{Q}-holonomic. We have a similar claim for quotients.
By using the theorems, we obtain that the category of \mathbb{Q}-holonomic \mathcal{D}-modules contains expected objects. For example, it contains the holonomic \mathcal{D}-modules obtained from the structure sheaf of any algebraic variety by successive use of the pull back and the push-forward by algebraic morphisms, and the exponential twist by algebraic functions. (This type of holonomic \mathcal{D}-modules are closely related with extended exponential-motivic \mathcal{D}-modules in [28].) It implies the compatibility of the \mathbb{Q}-structure and the Stokes structure for some naturally obtained meromorphic flat bundles. Such phenomena are expected in the non-commutative Hodge theory [25].

In the algebraic case, the derived category of \mathbb{Q}-holonomic \mathcal{D}-modules is equipped with standard functoriality, so called 6-operations.

Theorem 1.4.6. — The category of \mathbb{Q}-holonomic algebraic \mathcal{D}-modules is equipped with the standard functors such as dual, push-forward, pull-back, tensor product, and inner homomorphism, compatible with those for the category of holonomic algebraic \mathcal{D}-modules with respect to the forgetful functor.

1.4.2. Analysis on real blow up. — We also give some analysis on the real blow up, which is a complement to [54]. Very briefly, we can capture the Stokes structure by considering the de Rham complex on the real blow up, at least in the case of good meromorphic flat bundles. We have several useful classes of functions on the real blow up, the moderate growth, the rapid decay, and the Nilsson type. We study or review the fundamental property of the sheaves of such functions and the corresponding de Rham complexes. We will not restrict ourselves to our main purpose, i.e., the study on Betti structure. For example, we shall prove that the sheaf of holomorphic functions of moderate growth is flat over the sheaf of holomorphic functions on the underlying space (Theorem 4.1.1). Although we will not use it in this paper, it is quite basic, and the author expects that it would be useful for a further study.

Remark 1.4.7. — G. Morando informed the author that the theory of ind-sheaves [24] provides us with a powerful method to study analysis on the real blow up. (See also the recent work by A. D’Agnolo and M. Kashiwara [10].) While the author hopes that it would make the subject more transparent, he also hopes that his direct way would also be significant for our understanding at this moment.

1.5. Acknowledgement

I am grateful to C. Sabbah for discussions and for his kindness. He sent an earlier version of his monograph [54], which invited me to this study. He also pointed an error in an earlier version of this paper. I thank H. Esnault, who attracted my attention to Betti structure of holonomic \mathcal{D}-modules. This study much owes to the foundational works on holonomic \mathcal{D}-modules and perverse sheaves due to many people, among all A. Beilinson, J. Bernstein, P. Deligne, M. Kashiwara, Z. Mebkhout, and...
M. Saito. I am grateful to G. Morando for useful discussions. Special thanks goes to K. Vilonen. I thank P. Schapira for a valuable discussion. I am grateful to A. Ishii and Y. Tsuchimoto for their constant encouragement. I am grateful to M. Hien, M-H. Saito, C. Simpson and Sz. Szabo for stimulating discussions. The author thanks the referee for his thorough reading and a lot of of useful and valuable suggestions to improve this monograph.

This work was supported by the Grant-in-Aid for Scientific Research (C) (No. 22540078), Japan Society for the Promotion of Science.
2.1. Notation and words

2.1.1. Dual, push-forward and de Rham functor. — We prepare some notation. See very useful text books [17] and [22] for more details and precisions on \mathcal{D}-modules. Let X be a complex manifold with $\dim X = d_X$. Let \mathcal{D}_X denote the sheaf of holomorphic differential operators on X. In this paper, \mathcal{D}_X-module means left \mathcal{D}_X-module. Let $\text{Hol}(X)$ be the category of holonomic \mathcal{D}_X-modules, and let $\mathcal{D}^{b}_{\text{hol}}(\mathcal{D}_X)$ be the derived category of cohomologically bounded holonomic \mathcal{D}_X-complexes. Let Ω^j_X denote the sheaf of holomorphic j-forms. The invertible sheaf Ω^d_X is denoted by Ω^1_X. The sheaves of $C^\infty(p,q)$-forms are denoted by $\Omega^{p,q}_X$.

The dual functor on the derived category of \mathcal{D}_X-modules is denoted by $\mathcal{D}^*_{\mathcal{D}_X}$, i.e., $\mathcal{D}^*_{\mathcal{D}_X}(M \otimes \mathcal{D}_V) \cong (\mathcal{D}^*_{\mathcal{D}_X}M) \otimes \mathcal{D}_V^\vee$.

\textbf{Lemma 2.1.1.} Let M be any holonomic \mathcal{D}_X-module. Let V be any \mathcal{D}_X-module, which is coherent and locally free as an \mathcal{O}_X-module. Its dual is denoted by V^\vee. Then, we have a natural isomorphism

$$\mathcal{D}_X(M \otimes^D V) \simeq (\mathcal{D}_X M) \otimes^D V^\vee.$$

\textbf{Proof} We recall Remark 3.4 in [22]. For any left \mathcal{D}_X-module \mathcal{N}, we have the left \mathcal{D}_X-action on $\mathcal{D}_X \otimes^D \mathcal{N}$. It is also equipped with a right \mathcal{D}_X-action given by the multiplication $(f \otimes m) \cdot g = fg \otimes m$ for $g \in \mathcal{D}_X$. The two-sided $(\mathcal{D}_X, \mathcal{D}_X)$-module is denoted by \mathcal{N}_1. Similarly, we have a left action of \mathcal{D}_X on $\mathcal{D}_X \otimes^D \mathcal{N}$ (the tensor product \otimes^D is taken for the \mathcal{O}_X-module structure of \mathcal{D}_X given by the right multiplication) given by the multiplication $g \cdot (f \otimes m) = gf \otimes m$ for $g \in \mathcal{D}_X$, and a right \mathcal{D}_X-action given by $(f \otimes m) \cdot v = fv \otimes m - f \otimes vm$ for a tangent vector v.

The two-sided \((\mathcal{D}_X, \mathcal{D}_X)\)-module is denoted by \(\mathcal{N}_2\). We have a naturally defined \(\mathcal{O}_X\)-
morphism \(\mathcal{N} \rightarrow \mathcal{N}_1\) given by \(m \mapsto 1 \otimes m\). It is naturally extended to a morphism
of left \(\mathcal{D}_X\)-modules \(\mathcal{N}_2 \rightarrow \mathcal{N}_1\). Actually, it is an isomorphism and compatible with the
right \(\mathcal{D}_X\)-action, as remarked in [22].

We have two left \(\mathcal{D}_X\)-actions on \(\mathcal{D}_X \otimes \Omega_D^{\otimes -1}\). The first one is the natural one, and
the second one is induced by the right \(\mathcal{D}_X\)-action. They induce two \(\mathcal{O}_X\)-actions. Let
\((\mathcal{D}_X \otimes \Omega_D^{\otimes -1}) \otimes_{\mathcal{O}_X} \mathcal{N}\) denote the tensor product with respect to the \(i\)-th one. Each is
equipped with two left \(\mathcal{D}_X\)-actions. From the consideration in the previous paragraph,
we obtain a natural isomorphism \(i : \mathcal{N} \otimes_{\mathcal{O}_X} (\mathcal{D}_X \otimes \Omega_D^{\otimes -1}) \rightarrow \mathcal{N} \otimes_{\mathcal{O}_X} (\mathcal{D}_X \otimes \Omega_D^{\otimes -1})\),
compatible with the \(\mathcal{D}_X\)-actions.

Let us return to Lemma 2.1.1. We have the following natural isomorphisms of
\(\mathcal{D}_X\)-modules:

\[
\begin{align*}
\text{(6)} & \quad \mathcal{D}_X(\mathcal{M} \otimes^D V) = R\text{Hom}_{\mathcal{D}_X}(\mathcal{M} \otimes^D V, \mathcal{D}_X \otimes \Omega_D^{\otimes -1}) \\
& \quad \simeq R\text{Hom}_{\mathcal{D}_X}(\mathcal{M}, V^\vee \otimes_{\mathcal{O}_X} (\mathcal{D}_X \otimes \Omega_D^{\otimes -1})) \\
& \quad \simeq R\text{Hom}_{\mathcal{D}_X}(\mathcal{M}, V^\vee \otimes_{\mathcal{O}_X} (\mathcal{D}_X \otimes \Omega_D^{\otimes -1})) = (\mathcal{D}_X \mathcal{M}) \otimes^D V^\vee
\end{align*}
\]

Here, the first one is obtained by using Godement type injective resolution, and the
second one is induced by \(i\) above.

For any field \(R\), let \(R_X\) denote the sheaf on \(X\) associated to the constant presheaf
valued in \(R\). Let \(D^b(R_X)\) (resp. \(D^b_c(R_X)\)) denote the derived category of cohomologically bounded (resp. bounded constructible) \(R_X\)-complexes, and let \(\text{Per}(X, R)\)
denote the category of \(R\)-perverse sheaves. Let \(\omega_{X, R}\) denote the dualizing complex
of \(R_X\)-modules. It will be denoted by \(\omega_X\) if there is no risk of confusion. The dual
functor on the derived category of \(R_X\)-modules is also denoted by \(\mathcal{D}_X\), i.e., for an
\(R_X\)-complex \(F^\bullet\), let \(\mathcal{D}_X F^\bullet := R\text{Hom}_{R_X}(F^\bullet, \omega_{X, R})\).

The de Rham functor is denoted by \(\text{DR}_X\), i.e., \(\text{DR}_X \mathcal{M} := \Omega_X \otimes_{\mathcal{O}_X}^L \mathcal{M} = \Omega_X^\bullet \otimes_{\mathcal{O}_X}^L \mathcal{M}[d_X]\). According to [19], it gives a functor of triangulated categories

\[\text{DR}_X : D^b_{\text{hol}}(\mathcal{D}_X) \rightarrow D^b_{\text{hol}}(\mathcal{C}_X)\]

compatible with the \(t\)-structures, where the \(t\)-structure of \(D^b_{\text{hol}}(\mathcal{D}_X)\) is the natural
one, and the \(t\)-structure of \(D^b_{\text{hol}}(\mathcal{C}_X)\) is given by the middle perversity. In particular,
it induces an exact functor \(\text{DR}_X : \text{Hol}(X) \rightarrow \text{Per}(X, \mathbb{C})\). We can identify \(\omega_X = \text{DR}_X \mathcal{O}_X[d_X]\). It is easy to observe that \(\text{DR}_X \mathcal{M} = 0\) implies \(\mathcal{M} = 0\) for \(\mathcal{M} \in \text{Hol}(X)\).
The functor \(\text{DR}_X : \text{Hol}(X) \rightarrow \text{Per}(X, \mathbb{C})\) is faithful, although it is not full in general.

Let \(F : X \rightarrow Y\) be a morphism of complex manifolds. The push-forward for
\(\mathbb{C}_X\)-complexes in the derived category is denoted by \(RF_*\). (It is also denoted by \(F_*\)
if there is no risk of confusion.) Its \(i\)-th perverse cohomology is denoted by \(F^i_*\). Put

\[\mathcal{D}_{X \rightarrow Y} := \mathcal{O}_X \otimes_{\mathbb{C}_Y} F^{-1}\mathcal{D}_Y, \quad \mathcal{D}_{Y \leftarrow X} := \Omega_X \otimes_{\mathbb{C}_Y} F^{-1}(\mathcal{D}_Y \otimes_{\mathbb{C}_Y} \Omega_Y^{\otimes -1}).\]
The push-forward for \(\mathcal{D}_X \)-complexes is denoted by \(F_\ast \), i.e., \(F_\ast \mathcal{M} = RF_* (\mathcal{D}_{Y \leftarrow X} \otimes \mathcal{L}_X \mathcal{M}) \). Its \(i \)-th cohomology is denoted by \(F_\ast^i \).

Recall that these functors are compatible on the derived categories. Let \(F : X \rightarrow Y \) be a proper morphism of complex manifolds. We have natural transformations

\[
\text{DR}_Y \circ F_\ast \simeq RF_* \circ \text{DR}_X,
\quad \mathcal{D}_X \circ \text{DR}_X \simeq \text{DR}_X \circ \mathcal{D}_X,
\quad \mathcal{D}_Y \circ F_\ast \simeq F_\ast \circ \mathcal{D}_X.
\]

In [58], the following diagram is constructed and it is proved to be commutative (see Theorem 3.3 of [58]):

\[
\begin{array}{ccc}
RF_* \mathcal{D}_X \text{DR}_X & \xrightarrow{\simeq} & RF_* \mathcal{D}_X \\
\downarrow & & \downarrow \\
\mathcal{D}_Y RF_* \text{DR}_X & \xrightarrow{\simeq} & \mathcal{D}_Y \text{DR}_Y \\
\end{array}
\]

2.1.2. Hypersurfaces. — For any hypersurface \(D \subset X \), let \(\mathcal{O}_X(*D) \) denote the sheaf of meromorphic functions whose poles are contained in \(D \). For \(\mathcal{M} \in \text{Hol}(X) \), we have \(\mathcal{M}(*D), \mathcal{M}(!D) \in \text{Hol}(X) \) given as follows:

\[
\mathcal{M}(*D) := \mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{O}_X(*D),
\quad \mathcal{M}(!D) := \mathcal{D}_X \left(\left(\mathcal{D}_X \mathcal{M} \right)(*D) \right).
\]

We have naturally defined morphism \(\mathcal{M} \rightarrow \mathcal{M}(*D) \). The morphism \(\mathcal{D}_X(\mathcal{M}) \rightarrow \mathcal{D}_X(\mathcal{M}(*D)) \) and the natural transformation \(\mathcal{D}_X \circ \mathcal{D}_X \simeq \text{id}_X \) induce \(\mathcal{M}(!D) \rightarrow \mathcal{M} \).

(See §3.3 and §A3.3 of [22] for \(\mathcal{D}_X \circ \mathcal{D}_X \simeq \text{id}_X \).) They are uniquely characterized that the restrictions to \(X \setminus D \) are the identities. If \(D \) is given as the zero set of a holomorphic function \(f \), they are denoted by \(\mathcal{M}(f) \) and \(\mathcal{M}(!f) \), respectively. If we are given two hypersurfaces \(D_i (i = 1, 2) \), we set \(\mathcal{M}(D_1)(D_2) := (\mathcal{M}(D_1))(D_2) \), where \(\ast_i \in \{\ast, !\} \).

We put \(\mathcal{D}_X(*D) := \mathcal{D}_X \otimes \mathcal{O}_X(*D) \). A \(\mathcal{D}_X(*D) \)-module \(\mathcal{M} \) is called holonomic, if it is holonomic as a \(\mathcal{D}_X \)-module. Let \(\text{Hol}(X, \ast D) \) be the category of holonomic \(\mathcal{D}_X(*D) \)-modules, which is naturally a full subcategory of \(\text{Hol}(X) \). The dual functor on \(\text{Hol}(X, \ast D) \) is denoted by \(\mathcal{D}_X(*D) \), i.e., \(\mathcal{D}_X(*D)(\mathcal{M}) = \mathcal{D}_X(\mathcal{M}(*D)) \).

Let \(j : X \setminus D \rightarrow X \) be the inclusion. We define a functor \(j^\ast : \text{Hol}(X) \rightarrow \text{Hol}(X, \ast D) \) by \(j^\ast(\mathcal{M}) = \mathcal{M}(\ast D) \). The natural inclusion \(\text{Hol}(X, \ast D) \rightarrow \text{Hol}(X) \) is denoted by \(j_\ast \). Another functor \(j_! : \text{Hol}(X, \ast D) \rightarrow \text{Hol}(X) \) is defined by \(j_!(\mathcal{M}) := (j_* \mathcal{M})(!D) \). The functors \(j^\ast, j_\ast \) and \(j_! \) are exact. In this notation, we have \(\mathcal{M}(\ast D) = j_\ast j^\ast \mathcal{M} \) and \(\mathcal{M}(!D) = j j^\ast \mathcal{M} \) for \(\mathcal{M} \in \text{Hol}(X) \).

It is generalized as follows. Let \(H \) be a hypersurface of \(X \). Let \(k : X \setminus H \rightarrow X \) denote the inclusion. For \(\mathcal{M} \in \text{Hol}(X, \ast D) \), we define \(k^\ast \mathcal{M} := \mathcal{M}(\ast H) \). We can naturally regard \(\text{Hol}(X, \ast (D \cup H)) \) as a full subcategory of \(\text{Hol}(X, \ast D) \). The natural inclusion is denoted by \(k_\ast \). We define another functor \(k_1 : \text{Hol}(X, \ast (D \cup H)) \rightarrow \text{Hol}(X, \ast D) \) by \(k_1 \mathcal{M} = j^\ast ((j_\ast k_\ast \mathcal{M})(!((D \cup H))) \).
Later (§6.4), we shall consider a successive composition of the operations.

2.1.3. Pre-K-holonomic \mathcal{D}_X-modules. — Let \mathcal{M} be any holonomic \mathcal{D}_X-module. Let K be any subfield of \mathbb{C}. A pre-K-Betti structure of \mathcal{M} is defined to be a K-perverse sheaf \mathcal{F} with an isomorphism $\lambda : \mathcal{F} \otimes_K \mathbb{C} \simeq \mathrm{DR}_X \mathcal{M}$. Such a tuple $(\mathcal{M}, \mathcal{F}, \lambda)$ is called a pre-K-holonomic \mathcal{D}_X-module. We will often omit to denote λ. A morphism of K-holonomic \mathcal{D}_X-modules $(\mathcal{M}_1, \mathcal{F}_1) \to (\mathcal{M}_2, \mathcal{F}_2)$ is defined to be a pair of a morphism of \mathcal{D}_X-modules $\mathcal{M}_1 \to \mathcal{M}_2$ and a morphism of perverse sheaves $\mathcal{F}_1 \to \mathcal{F}_2$ such that the following induced diagram is commutative:

\[
\begin{array}{ccc}
\mathcal{F}_1 \otimes_K \mathbb{C} & \xrightarrow{\simeq} & \mathrm{DR}_X(\mathcal{M}_1) \\
\downarrow & & \downarrow \\
\mathcal{F}_2 \otimes_K \mathbb{C} & \xrightarrow{\simeq} & \mathrm{DR}_X(\mathcal{M}_2)
\end{array}
\]

The category of pre-K-holonomic \mathcal{D}_X-modules is denoted by $\text{Hol}^{\text{pre}}(X,K)$.

The following lemma is clear.

Lemma 2.1.2. — $\text{Hol}^{\text{pre}}(X,K)$ is abelian. \blacksquare

Let \mathcal{F} be a pre-K-Betti structure of \mathcal{M}. We have induced pre-K-Betti structures $\mathcal{D}\mathcal{F}$ and $\mathcal{F}_i^\dagger \mathcal{M}$ of $\mathcal{D}\mathcal{M}$ and \mathcal{F}_i^\dagger, where $\mathcal{F} : X \to Y$ be a proper morphism. We put $D(\mathcal{M},\mathcal{F}) := (\mathcal{D}\mathcal{M},\mathcal{D}\mathcal{F})$ and $F_i^\dagger(\mathcal{M},\mathcal{F}) := (\mathcal{F}_i^\dagger\mathcal{M},\mathcal{F}_i^\dagger\mathcal{F})$.

Lemma 2.1.3. — The isomorphism $\mathcal{D}\mathcal{F}_i \mathcal{M} \simeq F_i \mathcal{D}\mathcal{M}$ is compatible with the induced pre-K-Betti structures.

Proof Because (7) is commutative, we have the commutativity of the following naturally induced diagram:

\[
\begin{array}{ccc}
\mathrm{DR}\mathcal{D}\mathcal{F}_i \mathcal{M} & \xrightarrow{\simeq} & \mathcal{D}\mathcal{F}_i \mathrm{DR}\mathcal{M} \\
\downarrow & & \downarrow \\
\mathcal{D}\mathcal{F}_i \mathcal{M} & \xrightarrow{\simeq} & \mathcal{F}_i \mathcal{D}\mathcal{M} \\
\end{array}
\]

It means the claim of the lemma. \blacksquare

2.1.4. Formal completion. — Let Y be a real analytic manifold. Let \mathcal{C}_Y^∞ denote the sheaf of C^∞-functions on Y. For any real analytic subset Z, let $\mathcal{C}_Y^{\infty,Z}$ denote the subsheaf of \mathcal{C}_Y^∞ which consists of the sections f such that the Taylor series of f at each point $P \in Z$ is 0. We set $\mathcal{C}_Y^\infty := \mathcal{C}_Y^\infty / \mathcal{C}_Y^{\infty,Z}$. We have other descriptions; (i) It is the sheaf of Whitney functions of class C^∞ on Z, i.e., sections of ∞-jets along Z satisfying the conditions in Theorem I.2.2 of [34]. (ii) Let $\mathcal{I}_{Z,\infty}$ be the ideal sheaf of \mathcal{C}_Y^∞ corresponding to Z. Then, \mathcal{C}_Y^∞ is also isomorphic to $\lim_{\leftarrow} \mathcal{C}^{\infty}_{Y,Z} / \mathcal{I}_{Z,\infty}$. (See the proof of Theorem I.4.1 of [34].) For any \mathcal{C}_Y^∞-module \mathcal{F}, let \mathcal{F}_Z^\dagger denote $\mathcal{F} \otimes_{\mathcal{C}_Y^\infty} \mathcal{C}_Z^\infty$. Let Z_i ($i = 1, 2$) be real analytic subsets in Y. According to Corollary IV.4.4 with Definition
Let \(Z_i \ (i \in \Lambda) \) be real analytic subsets of \(Y \). For any subset \(I \subset \Lambda \), we put \(Z_I := \bigcap_{i \in I} Z_i \) and \(Z(I) := \bigcup_{i \in I} Z_i \). We fix a total order on \(\Lambda \). For \(J \subset K \subset \Lambda \), we have the restriction \(r_{J,K} : C^\infty_{Z_K} \to C^\infty_{Z_J} \). If \(K = J \cup \{i\} \), we put \(\kappa(J,K) := \{k \in J \mid k < i\} \) and \(d_{J,K} := (-1)^{\kappa(J,K)} r_{J,K} \). We set \(J_K := \bigoplus_{|J|=m+1, J \subset I} C^\infty_{Z_J} \). The above morphisms \(d_{J,K} \) induce \(d_m : K^m(C^\infty_{Z(I)}) \to K^{m+1}(C^\infty_{Z(I)}) \). Thus, we obtain a complex \(J_k(C^\infty_{Z(I)}) \). By using the exactness in the previous paragraph, it can be proved that the natural inclusion \(\bigoplus_{I \in \Lambda} C^\infty_{Z(I)} \to K^0(C^\infty_{Z(I)}) \) induces a quasi-isomorphism \(\bigoplus_{I \in \Lambda} C^\infty_{Z(I)} \cong K^0(C^\infty_{Z(I)}) \). (See \(\text{[52]} \), for example.)

Let \(X \) be a complex manifold. For a complex analytic subset \(Z \), we set \(\mathcal{O}_Z := \varprojlim O_X/I_Z \), where \(I_Z \) denote the ideal sheaf of \(Z \). We set \(\Omega^\bullet_Z := \Omega^\bullet X/I_Z \), which is equipped with the differential operators \(\partial \) and \(\overline{\partial} \). If \(Z \) is smooth, it is easy to see that the natural inclusion \(\mathcal{O}_Z \to \Omega^0_Z \) is a quasi-isomorphism.

Let \(D \) be a simple normal crossing hypersurface with the irreducible decomposition \(D = \bigcup_{i \in \Lambda} D_i \). By the above procedures, we obtain the complexes \(\mathcal{K}^\bullet(\mathcal{O}_{D_i}(I)) \). It is known that the natural inclusion \(\mathcal{O}_{D_i(I)} \to \mathcal{K}^0(\mathcal{O}_{D_i(I)}) \) induces a quasi-isomorphism \(\mathcal{O}_{D_i(I)} \cong \mathcal{K}^0(\mathcal{O}_{D_i(I)}) \). (See \(\text{[14]} \) and \(\text{[52]} \).) We also have \(\Omega^0_{D_i(I)} \cong \mathcal{K}^0(\Omega^0_{D_i(I)}) \). Then, we obtain \(\mathcal{O}_{D_i(I)} \cong \Omega^0_{D_i(I)} \).

We recall a useful isomorphism due to Z. Mebkhout (Lemma 2.2.1.3 of \(\text{[43]} \)).

\[\text{Proposition 2.1.4 (Z. Mebkhout).} \quad \text{Let } \mathcal{M} \text{ be any coherent } \mathcal{D}_X \text{-module. Let } Z \text{ be any hypersurface of } X. \text{ Then, } \text{RHom}_{\mathcal{D}_X}(\mathcal{M}(sZ), \mathcal{O}_Z) = 0 \text{ and } \mathcal{M}(|Z|) \otimes_{\mathcal{D}_X} \mathcal{O}_Z = 0. \]

See (3.10) of \(\text{[22]} \) to deduce the second vanishing from the first.

2.2. Beilinson’s construction

Let us recall Beilinson’s beautiful construction of the nearby cycle functor, the vanishing cycle functor and the maximal functor, which is essential for our purpose. It is particularly convenient for the study of functoriality. See \(\text{[4]} \) for more details and precisions. (See also \(\text{[32]} \) and \(\text{[59]} \).)

2.2.1. Preliminary

Let \(k \) be any field of characteristic 0. Let \(A := k((s)) \) and \(A^s := s^k[s] \). For \(a \leq b \), we put \(A^{a,b} := A^a/A^b \). The multiplication of \(s \) induces a nilpotent endomorphism \(N_A \) of \(A^{a,b} \). We put \(G_m := \text{Spec } k[t, t^{-1}] \). We define

\[1. \quad \text{The author thanks the referee who informed this result to him.} \]
\(\mathcal{G}^{a,b} := \mathcal{O}_{G_m} \otimes A^{a,b} \). It is equipped with the connection given by \(\nabla \alpha = N_A(\alpha)(dt/t) \) for \(\alpha \in A^{a,b} \). We have natural morphisms \(\mathcal{G}^{a,b} \to \mathcal{G}^{c,d} \) for \(a \geq c \) and \(b \geq d \), which are compatible with the connections. We have a natural isomorphism \(\mathcal{G}^{a,a+1} \simeq \mathcal{G}^{0,1} = \mathcal{O}_{G_m} \) given by \(s^a \leftrightarrow 1 \).

This construction makes sense also in the analytic situation. The multi-valued flat sections are formally given by \(\alpha \cdot \exp(-s \log t) \) for \(\alpha \in A^{a,b} \).

2.2.2. Nearby cycle functor and maximal functor.

Let \(X \) be any complex manifold with a hypersurface \(D \). Let \(f \) be a meromorphic function on \((X, D)\), i.e., the poles of \(f \) are contained in \(D \). We set \(\mathcal{G}^{a,b}_f := f^*\mathcal{G}^{a,b}(sD) \), which are meromorphic flat bundles on \((X, f^{-1}(0) \cup D)\). Let \(j : X - f^{-1}(0) \to X \). For a holonomic \(\mathcal{D}_{X(D)} \)-module \(M \), we obtain the following holonomic \(\mathcal{D}_{X(D)} \)-modules:

\[
\mathcal{M}^{a,b}_f := M \otimes \mathcal{G}^{a,b}_f = j_* j^* (M \otimes \mathcal{G}^{a,b}_f)
\]

We obtain \(\mathcal{D}_{X(D)} \)-modules \(\Pi^{a,b}_f :\mathcal{M} := j_! j^* \mathcal{M}^{a,b}_f \) and \(\Pi^{a,b}_f :\mathcal{M} := j_* j^* \mathcal{M}^{a,b}_f \). We define

\[
\Pi^{a,b}_{f!*}(M) := \lim_{N \to \infty} \text{Cok}(\Pi^{b,N}_f :\mathcal{M} \to \Pi^{a,N}_f :\mathcal{M})
\]

The following lemma is easy to see.

Lemma 2.2.1. — For any point \(P \in X \), there exists a neighbourhood \(X_P \) and a large integer \(N_0 \) such that the following natural morphisms are isomorphisms on \(X_P \) for any \(N \geq N_0 \):

\[
\text{Cok}(\Pi^{b,N+1}_f :\mathcal{M} \to \Pi^{a,N+1}_f :\mathcal{M}) \to \text{Cok}(\Pi^{b,N}_f :\mathcal{M} \to \Pi^{a,N}_f :\mathcal{M})
\]

Proof See the proof of Lemma 4.1.1 of [50], for example. \(\square \)

Beilinson defined the functors \(\psi^{a}_f := \Pi^{a,a+1}_{f!*} \) and \(\Xi^{a}_f := \Pi^{a,a+1}_{f!*} \). In the case \(a = 0 \), they are denoted by \(\psi_f \) and \(\Xi_f \), respectively. The multiplication of \(s \) naturally induces isomorphisms \(\psi^{a}_f :\mathcal{M} \simeq \psi^{(a+1)}_f :\mathcal{M} \) and \(\Xi^{a}_f :\mathcal{M} \simeq \Xi^{(a+1)}_f :\mathcal{M} \). Note that we have natural isomorphisms \(\Pi^{a+1}_{f!*}(\mathcal{M}) \simeq j_* j^* :\mathcal{M} \) for \(* = * \), induced by the multiplication of a power of \(s \). They will be implicitly identified. We have the exact sequences of holonomic \(\mathcal{D}_{X(D)} \)-modules:

\[
0 \rightarrow \Pi^{a,a+1}_{f!*} :\mathcal{M} \rightarrow \psi^{a}_f :\mathcal{M} \rightarrow \Xi^{a}_f :\mathcal{M} \rightarrow 0
\]

\[
0 \rightarrow \psi^{(a+1)}_f :\mathcal{M} \rightarrow \Xi^{(a+1)}_f :\mathcal{M} \rightarrow \Pi^{a+1}_{f!*} :\mathcal{M} \rightarrow 0
\]

The multiplication of \(s \) and the endomorphism \(\psi^{a}_f \) induce an endomorphism \(N^{a+1} \) of \(\psi^{(a+1)}_f :\mathcal{M} \).

Recall the important observation \(\lim_{\Pi^{a,b}_f :\mathcal{M} \to \Pi^{a,b}_f :\mathcal{M}} \) due to Beilinson. (See [4] for \(\lim_{\Pi^{a,b}_f :\mathcal{M} \to \Pi^{a,b}_f :\mathcal{M}} \). In particular, it implies that \(N^{a+1} \) is locally nilpotent. We also obtain
the following isomorphism:

$$
\Pi_{f_1}^{a,b}(\mathcal{M}) \simeq \lim_{N \to \infty} \Ker(\Pi_{f_1}^{-N,b} \mathcal{M} \to \Pi_{f_1}^{-N,a} \mathcal{M})
$$

As in Lemma 2.2.1, $\Ker(\Pi_{f_1}^{-N,b} \mathcal{M} \to \Pi_{f_1}^{-N,a} \mathcal{M})$ is locally independent of the choice of a large N. See §4.1 of [50] for an elementary argument. In particular, we have the following identifications:

$$
\psi_f^{(a)} \mathcal{M} \simeq \lim_{N \to \infty} \Ker(\Pi_{f_1}^{-N,a} \mathcal{M} \to \Pi_{f_1}^{-N,a} \mathcal{M}),
$$

$$
\Xi_f^{(a)} \mathcal{M} \simeq \lim_{N \to \infty} \Ker(\Pi_{f_1}^{-N,a+1} \mathcal{M} \to \Pi_{f_1}^{-N,a} \mathcal{M}).
$$

Remark 2.2.2. — When we distinguish that we work on the category of $D_X(\ast D)$-modules, we will use the symbols $\psi_f^{(a)} (\mathcal{M}, \ast D)$, $\Xi_f^{(a)} (\mathcal{M}, \ast D)$, etc.

2.2.3. Vanishing cycle functor and gluing.

—— Let f be as above. Let \mathcal{M}_X be any holonomic $D_X(\ast D)$-module. We set $\mathcal{M} := \mathcal{M}_X(\ast f)$. We have the natural identifications $\Pi_{f_1}^{a,b} \mathcal{M}_X = \Pi_{f_1}^{a,b} \mathcal{M}$ for $\ast = \ast, \ast$. We also have $\Pi_{f_1}^{a,b} \mathcal{M}_X = \Pi_{f_1}^{a,b} \mathcal{M}$. In particular, $\psi_f^{(a)} \mathcal{M}_X = \psi_f^{(a)} \mathcal{M}$ and $\Xi_f^{(a)} \mathcal{M}_X = \Xi_f^{(a)} \mathcal{M}$. We set $\mathcal{M}_X^{(a)} := \mathcal{M}_X \otimes \mathbb{A}^{a,a}$. We have the naturally defined morphisms:

$$
\Pi_{f_1}^{a,a+1} \mathcal{M} \xrightarrow{\psi_f^{(a)}} \mathcal{M}_X^{(a)} \xrightarrow{\Xi_f^{(a)}} \Pi_{f_1}^{a,a+1} \mathcal{M}
$$

Beilinson defined the vanishing cycle functor $\phi_f^{(a)} \mathcal{M}_X$ as the H^1-cohomology of the following sequence of holonomic $D_X(\ast D)$-modules:

$$
\Pi_{f_1}^{a,a+1} \mathcal{M} \xrightarrow{\psi_f^{(a)}} \mathcal{M}_X^{(a)} \oplus \mathcal{M}_X^{(a)} \xrightarrow{d_f^{(a)}} \Pi_{f_1}^{a,a+1} \mathcal{M}
$$

The morphisms $d_f^{(a)}$ and $\psi_f^{(a)}$ induce can and var:

$$
\psi_f^{(a+1)} \mathcal{M} \xrightarrow{\can} \phi_f^{(a)} \mathcal{M} \xrightarrow{\var} \psi_f^{(a)} \mathcal{M}
$$

By construction, we have $\var \circ \can = c_f^{(a)} \circ d_1^{(a)}$.

Conversely, let \mathcal{M}_Y be a holonomic $D_X(\ast D)$-module whose support is contained in $Y = f^{-1}(0)$, with morphisms

$$
\psi_f^{(1)} \mathcal{M} \xrightarrow{u} \mathcal{M}_Y \xrightarrow{v} \psi_f^{(0)} \mathcal{M}, \quad v \circ u = c_f^{(0)} \circ d_1^{(0)}.
$$

Then, we obtain a holonomic $D_X(\ast D)$-module $\text{Glue}(\mathcal{M}_Y, u, v)$ as the cohomology of the complex:

$$
\psi_f^{(1)} \mathcal{M} \xrightarrow{d_f^{(0)} \circ u} \Xi_f(\mathcal{M}) \oplus \mathcal{M}_Y \xrightarrow{c_f^{(0)} - v} \psi_f^{(0)} \mathcal{M}
$$

Beilinson made an excellent observation that the above two operations are mutually inverse. See [4] for more details.
2.2.4. Comparison with ordinary definitions. — Let $\tilde{\psi}_{f, -1}$ and $\tilde{\phi}_f$ be the nearby cycle functor and the vanishing cycle functor defined in terms of V-filtrations, i.e., $\tilde{\psi}_{f, -1}(M) = Gr^{-1}_V(\iota_f M)$ and $\tilde{\phi}_f(M_X) := Gr_0^V (\iota_f M_X)$, where $\iota_f : X \to X \times \mathbb{C}$ denotes the graph, and V denotes a V-filtration of $\iota_f M_X$ along t. For simplicity, $\tilde{\psi}_{f, -1}$ is denoted by $\tilde{\psi}_f$ in the following.

Lemma 2.2.3. — We have natural isomorphisms $\psi_f \simeq \tilde{\psi}_f$ and $\phi_f \simeq \tilde{\phi}_f$.

Proof Recall that $\tilde{\phi}_f(M_X)$ and $\tilde{\psi}_f(M_X)$ are naturally equipped with the nilpotent endomorphisms N, which are the nilpotent part of the multiplication of $-\partial_t$. We have natural identifications:

$$\tilde{\phi}_f(\Pi_{f,b}^a M) \simeq \phi_f(\Pi_{f,a}^b M) \simeq \psi_f M \otimes A^{a,b}$$

The natural nilpotent endomorphisms are given by $N \otimes \text{id} - \text{id} \otimes (s \bullet)$, which is denoted by $N - s$. Here, $s \bullet$ denotes the multiplication of s on $A^{a,b}$. In the following, we argue on any compact subset of X.

Let us look at the natural morphism $G^{a,b}: \Pi_{f,b}^a M \to \Pi_{f,a}^b M$. The supports of the kernel and the cokernel are contained in $f^{-1}(0)$. The morphism $\tilde{\phi}_f(G^{a,b}) : \tilde{\phi}_f(\Pi_{f,b}^a M) \to \tilde{\phi}_f(\Pi_{f,a}^b M)$ is naturally identified with $N - s : \psi_f M \otimes A^{a,b} \to \psi_f M \otimes A^{b,a}$. Hence, if b is sufficiently larger than a, $\text{Cok}(G^{a,b})$ is isomorphic to $\psi_f M \otimes A^{b,a+1}$, independently of b. Therefore, we obtain $\psi_f^{(a)} M \simeq \psi_f M \otimes A^{a,a+1}$.

In particular, we naturally have $\psi_f^{(0)} M = \tilde{\psi}_f M$.

It follows that $\text{Cok}(\Pi_{f,b}^{a+1} M \to \Pi_{f,a}^b M)$ are independent of any sufficiently large M, which should be isomorphic to $\Xi_f^{(a)} M$. We obtain $\tilde{\phi}_f(\Xi_f^{(a)} M) \simeq \text{Cok}(N - s : \psi_f M \otimes A^{a+1} \to \psi_f M \otimes A^{b,a})$ for any sufficiently large M. Because $\phi_f^{(a)}(M_X)$ is naturally isomorphic to the cohomology of the complex

$$\tilde{\phi}_f(\Pi_{f}^{0,1} M) \to \tilde{\phi}_f(\Xi_f^{(0)} M) \oplus \tilde{\phi}_f(\psi_f M_X) \to \tilde{\phi}_f(\Pi_{f}^{1,0} M),$$

it is easy to obtain $\phi_f^{(0)}(M) \simeq \tilde{\phi}_f(M)$ by a direct calculation. \qed

2.2.5. Compatibility with ordinary definitions. — In [4], the pairing $A \times A \to k = A^{-1}/A^0$ is given by $\langle f(s), g(s) \rangle = \text{Res}_{s=0} (f(s) g(-s)) ds$. It induces pairings $A^{a,b} \otimes A^{-b,-a} \to A^{-1}/A^0$. Then, we obtain flat pairings $\mathcal{I}^{a,b} \otimes \mathcal{I}^{-b,-a} \to \mathcal{I}^{-1,0}$. We can identify $\mathcal{I}^{a,b}$ with the dual of $\mathcal{I}^{-b,-a}$ by the pairing.

Let D denote the dual functor on the category of holonomic $D_{X(s,D)}$-modules. By using the $D_{X(s,D)}$-version of Lemma 2.1.1, we obtain identifications:

$$D(\Pi_{f}^{a,b} M) \simeq \Pi_{f}^{-b,-a} (D M), \quad D(\Pi_{f}^{b,a} M) \simeq \Pi_{f}^{-b,-a} (D M)$$

By (8) and (9), we obtain the identifications $D_X \psi_f^{(a)}(M) \simeq \psi_f^{(-a)}(D_X M)$ and $D_X \Xi_f^{(a)}(M) \simeq \Xi_f^{(-a-1)}(D_X M)$. We have $D_X(c_1^{(a)}) = d_2^{(-a-1)}$, $D_X(c_2^{(a)}) = d_1^{(-a-1)}$.

2.2. BEILINSON'S CONSTRUCTION

and $D_{X}(\xi^{(a)}_{i}) = d_{2,X}^{(-a-1)}$. Hence, we obtain $D_{X}\phi^{(a)}_{f}(\mathcal{M}_{X}) \simeq \phi^{(-a-1)}_{f}(D_{X}\mathcal{M}_{X})$.

The morphisms $D_{X}\psi^{(a)}_{f}(\mathcal{M}) \xrightarrow{\text{var}} D_{X}\phi^{(a)}_{f}(\mathcal{M}_{X}) \xrightarrow{\text{can}} D_{X}\psi^{(-a-1)}_{f}(\mathcal{M})$ are identified with $\psi^{(-a+1)}_{f}(\mathcal{M}) \xrightarrow{\text{can}} \phi^{(-a)}_{f}(\mathcal{M}_{X}) \xrightarrow{\text{var}} \psi^{(-a)}_{f}(\mathcal{M})$.

The multiplication of s induces an isomorphism $\Phi_{s} : \psi^{(a)}(\mathcal{M}) \simeq \psi^{(a+1)}(\mathcal{M})$, etc.

Under the above identifications, we have $D\Phi_{s} = -\Phi_{s}$.

Remark 2.2.4. In [50], we use the pairing $A \times A \to k$ given by $(f(s), g(s)) = \text{Res}_{s=0}(f(s)g(-s)ds/s)$. It makes an inessential shift of the indexes in the formulas.

2.2.6. Compatibility with push-forward. Let $F : X \to Y$ be any proper morphism. Assume that $D = F^{-1}(D_{Y})$, for simplicity. Let g be any holomorphic function on Y. Let \mathcal{M} be any holonomic $D_{X(\ast D)}$-module. We set $\bar{g} := F^{\ast}g$. Let $j_{Y} : Y - g^{-1}(0) \to Y$ and $j_{X} : X - \bar{g}^{-1}(0) \to X$. We have natural isomorphisms $F_{\ast}^{\dagger}(\mathcal{M} \otimes \delta^{a,b}_{g}) \simeq F_{\ast}^{\dagger}(\mathcal{M}) \otimes \delta^{a,b}_{g}$ of $D_{Y(\ast D_{Y})}$-modules. We naturally have $(j_{Y} \circ j_{X}^{\ast})F_{\ast}^{\dagger} \simeq F_{\ast}^{\dagger} \circ (j_{X} \circ j_{Y}^{\ast})$ for $* = \ast, !$. Hence, it is easy to obtain the following identifications:

$$F_{\ast}^{\dagger}\psi^{(a)}_{g}\mathcal{M} = \psi^{(a)}_{g}F_{\ast}^{\dagger}\mathcal{M}, \quad F_{\ast}^{\dagger}\Xi^{(a)}_{g}\mathcal{M} = \Xi^{(a)}_{g}F_{\ast}^{\dagger}\mathcal{M}, \quad F_{\ast}^{\dagger}\phi^{(a)}_{g}\mathcal{M} = \phi^{(a)}_{g}F_{\ast}^{\dagger}\mathcal{M}.$$

2.2.7. Choice of a function. Let f and h be meromorphic functions on (X, D). We suppose that h is nowhere vanishing on $X \setminus D$. We have natural isomorphisms of \mathcal{O}_{X}-modules $\mathcal{I}_{f}^{a,b} \simeq \mathcal{I}_{h}^{a,b} \simeq A^{a,b} \otimes \mathcal{O}_{X(\ast D)}(\ast f)$. For their flat connections ∇_{f} and ∇_{h}, we have the formulas:

$$\nabla_{f}\alpha = \alpha \cdot s \frac{df}{f}, \quad \nabla_{h}\alpha = \alpha \cdot s \left(\frac{df}{f} + \frac{dh}{h} \right).$$

If we have $\log h$ on X, we have a flat isomorphism $\Phi : \mathcal{I}_{f}^{a,b} \simeq \mathcal{I}_{h}^{a,b}$ given by $\Phi(\alpha) = \exp(-s \log h) \alpha$. It induces isomorphisms:

$$\Xi^{(a)}_{f} \simeq \Xi^{(a)}_{h}, \quad \psi^{(a)}_{f} \simeq \psi^{(a)}_{h}, \quad \phi^{(a)}_{f} \simeq \phi^{(a)}_{h}.$$

They depend on the choice of a branch of $\log h$.

2.2.8. \mathbb{Q}-structure of $\mathcal{I}_{f}^{a,b}$. In the analytic case, the \mathbb{Q}-structure of $A^{a,b}$ is given as follows:

$$\mathbb{C} \cdot s^{j} \supset \mathbb{Q} \cdot (2\pi \sqrt{-1})^{j}s^{j}$$

It gives a \mathbb{Q}-structure of the fiber of $\mathcal{I}_{f}^{a,b}$ over $1 \in \mathbb{C}^{\ast}$. We extend it to a flat \mathbb{Q}-structure of the flat bundle \mathcal{I}_{C}. Let $u := 2\pi \sqrt{-1}t$. The connection of $\mathcal{I}_{a,b}$ is expressed as

$$\nabla(u^{a}, \ldots, u^{b-1}) = (u^{a}, \ldots, u^{b-1}) \cdot N \cdot \frac{1}{2\pi \sqrt{-1}} \frac{dt}{t}.$$

Here, N denotes the constant matrix such that $N_{i,i+1} = 1$ and $N_{i,j} = 0$ otherwise. Since the monodromy is expressed by $\exp(-N)$, the \mathbb{Q}-structure is well defined. More generally, for any subfield $K \subset \mathbb{C}$, we obtain a K-structure of $\mathcal{I}_{a,b}$ in this way. The
pairing \(\langle \cdot, \cdot \rangle : \mathcal{I}^{a,b} \otimes \mathcal{I}^{-b,-a} \to \mathcal{I}^{-1,0} \) is defined over \(\mathbb{Q} \). Under the identification \(\mathcal{I}^{-1,0} \cong \mathcal{I}^{0,1} \) by the multiplication of \(s \), the pairing takes values in \((2\pi \sqrt{-1})^{-1} \mathbb{Q} \).

2.2.9. Comparison with the functors for perverse sheaves. — Let \(\text{Loc}(\mathcal{I}^{a,b})_{\mathbb{Q}} \) denote the \(\mathbb{Q} \)-local system associated to \(\mathcal{I}^{a,b} \). The fiber over 1 is \(u^a \mathbb{Q}[u]/u^b \mathbb{Q}[u] \), and the monodromy along the loop with the clockwise direction is given by the multiplication of \(\exp(u) \). Taking the limit, we have a \(\mathbb{Q} \)-local system \(\text{Loc}(\mathcal{I}^a)_{\mathbb{Q}} \), whose fiber over 1 is \(\mathbb{Q}(\{u\}) \), and the monodromy is given by the multiplication of \(\exp(u) \).

We have subsystems \(\text{Loc}(\mathcal{I}^a)_{\mathbb{Q}} \subset \text{Loc}(\mathcal{I})_{\mathbb{Q}} \) whose fiber over 1 is \(u^a \mathbb{Q}[u] \). We have \(\text{Loc}(\mathcal{I}^{a,b})_{\mathbb{Q}} \cong \text{Loc}(\mathcal{I}^a)_{\mathbb{Q}}/\text{Loc}(\mathcal{I}^b)_{\mathbb{Q}} \). Recall another expression of these local systems as in [4].

Let \(A_P := \mathbb{Q}(\{v\}) \). We set \(t := v + 1 \). The pairing \(A_P \times A_P \to \mathbb{Q}(-1) \) is given as follows:

\[
\langle f(t), g(t) \rangle = \text{Res}_{t=1} \left(f(t) g(t^{-1}) \frac{dt}{t} / 2\pi \sqrt{-1} \right)
\]

We have a \(\mathbb{Q} \)-local system \(\mathcal{I}_P \) on \(\mathbb{C}^* \) such that the fiber over 1 is \(A_P \), and the monodromy along the loop with the clockwise direction is given by the multiplication of \(t = 1 + v \). Let us compare \(\mathcal{I}_P \) and \(\text{Loc}(\mathcal{I})_{\mathbb{Q}} \). We take an algebra homomorphism \(\Phi : \mathbb{Q}(\{u\}) \to \mathbb{Q}(\{v\}) \) determined by \(\Phi(\exp(u)) = 1 + v \). We identify the fibers of \(\text{Loc}(\mathcal{I})_{\mathbb{Q}} \) and \(\mathcal{I}_P \) by \(\Phi \). Because it is compatible with the monodromy, it induces the identification \(\text{Loc}(\mathcal{I})_{\mathbb{Q}} \cong \mathcal{I}_P \). Note that \(\Phi(f(-u)) = \Phi(f(t^{-1}) \) and \(\Phi(du) = dt/t \).

Hence the pairing is preserved.

Remark 2.2.5. — Recall that the functors \(\psi, \Xi \) and \(\phi \) for perverse sheaves are given in terms of \(\mathcal{I}_P \), according to [4]. The above comparison gives the compatibility of the de Rham functor \(\text{DR} \) with \(\phi, \psi \) and \(\Xi \) in the regular singular case. \(\square \)
CHAPTER 3

GOOD HOLONOMIC D-MODULES AND THEIR D\-RHAM COMPLEXES

3.1. Good holonomic D-modules

We shall introduce the notion of good holonomic D-modules on any complex manifold X with a normal crossing hypersurface \(D = \bigcup_{i \in \Lambda} D_i \). They are D-modules locally described as the gluing of meromorphic flat bundles on \(\bigcap_{j \in J} D_j \) (\(J \subset \Lambda \)). In §3.1.1–3.1.3, we study the local case. We explain the global case in §3.1.4. We explain a kind of quiver description of good holonomic D-modules in the local case in §3.1.5.

In the local case, for any good holonomic D-modules, we have various commutativity of functors such as
\[
\phi_i^{(a)} \circ \phi_j^{(b)}(M) \simeq \phi_j^{(b)} \circ \phi_i^{(a)}(M),
\]
for which goodness seems truly used.

3.1.1. I-good meromorphic flat bundles. — Let \(\Delta^n \) denote a multi-disc in \(\mathbb{C}^n \), i.e., \(\Delta^n := \{(z_1, \ldots, z_n) \in \mathbb{C}^n | ||z_i|| < 1\} \). We consider the case \(X := \Delta^n \), \(D_i := \{z_i = 0\} \) and \(D := \bigcup_{i=1}^{\ell} D_i \). We set \(I := \{1, \ldots, \ell\} \). For \(I \subset I \), we set \(D(I) := \bigcup_{i \in I} D_i \) and \(D_I := \bigcap_{i \in I} D_i \). We put \(\partial D_I := D_I \cap D(I^c) \), where \(I^c := \ell - I \). Let \(M(X, D) \) be the set of meromorphic functions on \(X \) whose poles are contained in \(D \). Let \(H(X) \) be the set of holomorphic functions on \(X \). We give a review on good meromorphic flat bundles. See [45], [48] and [49] for more detailed reviews.

3.1.1.1. Good set of irregular values. — Let \(f \in M(X, D) \). Suppose that there exists \(m = (m_i) \in \mathbb{Z}_{\geq 0}^{\ell} \) such that (i) \(z^m f = \prod z_i^{m_i} f \) is holomorphic, (ii) if \(m \neq (0, \ldots, 0) \), we have \((z^m f)(O) \neq 0 \). Then, we set \(\text{ord}(f) := -m \). In general, such \(m \) does not exist. For any holomorphic function \(f \), we have \(\text{ord}(f) = (0, \ldots, 0) \). If \(\text{ord}(g) \) exists for \(g \in \mathcal{O}_X \), then \(\text{ord}(g + f) = \text{ord}(g) \) for any holomorphic function \(f \). So, the notion \(\text{ord} \) is considered for elements in \(M(X, D)/H(X) \).

We use the order \(\leq \) on \(\mathbb{Z}^\ell \) given by \(m \leq n \iff m_i \leq n_i \) for any \(i \). A finite subset \(I \subset M(X, D)/H(X) \) is called good if the following holds:

- For any \(f \in I \), there exists \(\text{ord}(f) \).
For any $f, g \in \mathcal{I}$, there exists $\text{ord}(f - g)$, and the set $\{\text{ord}(f - g) \mid f, g \in \mathcal{I}\}$ is totally ordered.

For any good set of irregular values $\mathcal{I} \subset M(X, D)/H(X)$ and for any subset $I \subset \mathcal{I}$, let $\mathcal{I}(I)$ be the set of the elements $a \in \mathcal{I}$ which are regular along z_i ($i \in I$), and we put $\mathcal{I}(I) := \{a_{|D_I} \mid a \in \mathcal{I}(I)\}$. It is a good set of irregular values on $(D_I, \partial D_I)$.

3.1.1.2. Unramifiedly \mathcal{I}-good meromorphic flat bundle. — Let $\mathcal{I} \subset M(X, D)/H(X)$ be a good set of irregular values. Recall that a meromorphic flat bundle (\mathcal{E}, ∇) on (X, D) is called unramifiedly \mathcal{I}-good if the following holds:

- Let \mathcal{I}_I denote the image of \mathcal{I} to $M(X, D)/M(X, D(\mathcal{I}))$. For any $P \in D_I \setminus \partial D_I$, the formal completion $(\mathcal{E}, \nabla)_{|\hat{P}}$ is decomposed into $\bigoplus_{b \in \mathcal{I}_I} (\mathcal{E}_{P, b}, \hat{\nabla}_{P, b})$ such that

$$\hat{\nabla}_{P, b} - d\hat{b} \text{id}_{\mathcal{E}_{P, b}}$$

are regular singular, where b are any lifts of \mathcal{I} to $M(X, D)$.

In this paper, we say that a meromorphic flat bundle (\mathcal{E}, ∇) on $(D_I, \partial D_I)$ is unramifiedly \mathcal{I}-good if it is unramifiedly $\mathcal{I}(I)$-good.

3.1.1.3. Ramified case. — For a positive integer m, let $X^{(m)} := \Delta^m = \{|\zeta_i| < 1\}$, $D^{(m)} = \{\zeta_i = 0\}$ and $D^{(m)} = \bigcup_{i=1}^{\ell} D^{(m)}_i$. We have a natural ramified covering $\varphi_m : X^{(m)} \to X$ along D given by $\varphi_m(\zeta_1, \ldots, \zeta_n) = (\zeta_1^m, \ldots, \zeta_\ell^m, \zeta_{\ell+1}, \ldots, \zeta_n)$, and the induced ramified coverings $D^{(m)}_i \to D_I$. Let $\mathcal{I} \subset M(X^{(m)}, D^{(m)}/H(X^{(m)})$ be any good set of irregular values which is preserved by the action of the Galois group of the ramified covering $X^{(m)}/X$. In this paper, a meromorphic flat bundle \mathcal{E} on $(D_I, \partial D_I)$ is called \mathcal{I}-good if it is the descent of an unramifiedly \mathcal{I}-good meromorphic flat bundle $\mathcal{E}^{(m)}$ on $(D^{(m)}_I, \partial D^{(m)}_I)$.

3.1.1.4. Some functors along the divisors. — In this subsection, we use the following notation for simplicity of the description.

Notation 3.1.1. — The vanishing cycle functors $\phi^{(a)}_{\zeta_i}$ are denoted by $\phi^{(a)}_i$. For any $I = (i_1, \ldots, i_m) \in \{1, \ldots, \ell\}^m$ and any $a = (a_1, \ldots, a_m) \in \mathbb{Z}^m$, we set $\phi^{(a)}_I = \phi_{i_1}^{(a_1)} \circ \cdots \circ \phi_{i_m}^{(a_m)}$. If $a = (0, \ldots, 0)$, it is often denoted just by ϕ_I. We use the symbols $\psi^{(a)}_I$, Ξ^a_I and Π^a_I with a similar meaning. For any holonomic D_X-module \mathcal{M}, we set $\mathcal{M}(\ast i) := \mathcal{M}(\ast D_i)$ and $\mathcal{M}(\ast I) := \mathcal{M}(\ast D(I))$. If we are given a subset $I \subset \mathcal{I}$, we put $\mathcal{M}(\ast I) := \mathcal{M}(\ast D(I))$ and $\mathcal{M}(\ast I) := \mathcal{M}(\ast D(I))$.

Lemma 3.1.2. — Let (\mathcal{E}, ∇) be any \mathcal{I}-good meromorphic flat bundle on (X, D). For $1 \leq i, j \leq \ell$ with $i \neq j$, the natural morphism $\phi^{(a)}_i(\mathcal{E}) \to \phi^{(a)}_i(\mathcal{E})(\ast j)$ is an isomorphism.

Proof Because the support of $\phi^{(a)}_i(\mathcal{E})$ and $\phi^{(a)}_i(\mathcal{E})(\ast j)$ are contained in D_i, it is enough to prove that the induced morphism for the formal completions $\phi^{(a)}_i(\mathcal{E})_{|\hat{P}} \to \phi^{(a)}_i(\mathcal{E})(\ast j)_{|\hat{P}}$ is an isomorphism for each $P \in D_i$. We have only to consider the case $P = (0, \ldots, 0)$. We use the notation introduced in §3.1.1.3. Take lifts \tilde{a} of $a \in \mathcal{I}$. We
have regular singular meromorphic flat bundles \((R_a, \nabla_a)\) on \((X^{(m)}, D^{(m)})\) for \(a \in \mathcal{I}\), and an action of the Galois group \(G\) of \(\varphi_m\) on \((\mathcal{E}', \nabla') = \bigoplus_{a \in \mathcal{I}} (R_a, \nabla_a + d\tilde{a})\), such that the formal completions of \((\mathcal{E}', \nabla')\) and \(\varphi_m^* (\mathcal{E}, \nabla)\) at \((0, \ldots, 0)\) are isomorphic in a \(G\)-equivariant way. Let \((\mathcal{E}', \nabla')\) be the meromorphic flat bundle on \((X, D)\) obtained as the descent of \((\mathcal{E}', \nabla')\). The formal completions of \((\mathcal{E}'', \nabla'')\) and \((\mathcal{E}, \nabla)\) at \(P\) are isomorphic. Then, by using the standard argument to prove the uniqueness of \(V\)-filtrations, the isomorphism \(\mathcal{E}''_p \cong \mathcal{E}_p\) is compatible with the \(V\)-filtrations along \(z_i\). Therefore, it is enough to prove the claim for \(\mathcal{E}''\).

Let \((R, \nabla)\) be a regular singular meromorphic flat bundle on \((X, D)\). Let \(b \in M(X^{(m)}, D^{(m)})\) such that \(\text{ord}(b)\) exists. We set \(L(b) := \mathcal{O}_{X^{(m)}}(\ast D^{(m)}) e\) with the connection \(\nabla e = e db\). We obtain a meromorphic flat bundle \(\varphi_m^*(L(b))\) on \((X, D)\). By the previous consideration, it is enough to prove the claim for any direct summand of the meromorphic flat bundle \(\mathcal{E}_1 = R \otimes \varphi_m^* L(b)\), which follows from the claim for \(\mathcal{E}_1\). We may assume that \(b = \prod_{j=1}^f \zeta_{j}^{b_j}\) for some \(b_j \leq 0\).

Let \(V(R)\) denote the \(V\)-filtration along \(z_i\). For \(m \in S := \{0, 1, \ldots, m - 1\}\), let \(\zeta^m := \prod_{k=1}^\ell \zeta_k^m\). We have \(\varphi_* L(b) = \bigoplus_{m \in S} \mathcal{O}_X(\ast D) \zeta^m e\). If \(b_i < 0\), the \(V\)-filtration \(V(\mathcal{E}_1)\) of \(\mathcal{E}_1\) is given by \(V_{a}(\mathcal{E}_1) = \mathcal{E}_1\) for any \(a \in \mathbb{C}\). If \(b_i = 0\), we have \(V_{a}(\mathcal{E}_1) = \bigoplus V_{a + m_i/m}(R) \otimes \mathcal{O}_X \zeta^m e\). Hence, the natural morphism \(\phi_i(\mathcal{E}_1) \to \phi_i(\mathcal{E}_1)(\ast D_j)\) \((j \neq i)\) is an isomorphism in the both cases.

Lemma 3.1.3. If \(i \neq j\), the natural morphism \(\mathcal{E}(\ast i) \to \mathcal{E}(\ast i)(\ast j)\) is an isomorphism.

Proof: Let \(N\) denote the nilpotent part of the action of \(-\partial_z z_i\) on \(\phi_i(\mathcal{E})\). We have the following commutative diagram:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \text{Ker } N & \longrightarrow & \mathcal{E}(\ast i) & \longrightarrow & \mathcal{E} & \longrightarrow & \text{Cok } N & \longrightarrow & 0 \\
& & a \downarrow & & b \downarrow = & & c \downarrow & & \\
0 & \longrightarrow & \text{Ker } N(\ast j) & \longrightarrow & \mathcal{E}(\ast i)(\ast j) & \longrightarrow & \mathcal{E} & \longrightarrow & \text{Cok } N(\ast j) & \longrightarrow & 0 \\
\end{array}
\]

By Lemma 3.1.2, we obtain that \(a\) and \(c\) are isomorphisms. Hence, \(b\) is also an isomorphism.

3.1.2. \(\mathcal{I}\)-good holonomic \(\mathcal{D}\)-modules. We continue to use the notation introduced in §3.1.1.

Definition 3.1.4. A holonomic \(\mathcal{D}_X\)-module \(\mathcal{M}\) is called \(\mathcal{I}\)-good on \((X, D)\) if the following holds:

- \(\mathcal{M}(\ast D)\) is an \(\mathcal{I}\)-good meromorphic flat bundle on \((X, D)\).
- For any \(I = (i_1, \ldots, i_m) \in \{1, \ldots, \ell\}^m\), \(\phi_I(\mathcal{M})(\ast I)\) is the push-forward of an \(\mathcal{I}\)-good meromorphic flat bundle on \((D_I, \partial D_I)\) by \(D_I \to X\).

The full subcategory of \(\mathcal{I}\)-good holonomic \(\mathcal{D}\)-modules is abelian, and it is closed under extensions. If \(V\) is a good meromorphic flat bundle, it is a good holonomic
\(D_X\)-module in the above sense. When we do not have to distinguish \(I\), we will omit to denote it. We will implicitly use the following obvious lemma.

Lemma 3.1.5. — Let \(M\) be a holonomic \(D_X\)-module. Suppose that (i) \(M(\ast D)\) is an \(I\)-good meromorphic flat bundle, (ii) \(\phi_i(M)\) are \(I\)-good for any \(i = 1, \ldots, \ell\). Then, \(M\) is \(I\)-good.

Lemma 3.1.6. — Let \(M\) be an \(I\)-good holonomic \(D\)-module on \((X, D)\). Then \(D_X M\) is \(-I\)-good, where \(-I = \{-a | a \in I\}\).

Proof We use an induction on the dimension of the support of \(M\). It is easy to check that \(D_X M(\ast D)\) is a good meromorphic flat bundle. By the inductive assumption, \(\phi_i(a)(D_X M) \cong D_X \phi_i(a - 1)(M)\) are also good. Hence, we obtain that \(M\) is good.

For any good holonomic \(D\)-module \(M\), let \(\rho(M) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{> 0}\) denote the pair of \(\text{dim Supp } M\) and the number of the irreducible components of \(\text{Supp } M\) with the maximal dimension. We use the lexicographic order on \(\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{> 0}\). For any good holonomic \(D\)-module \(M\), there exists \(J \subset I\) with \(\text{dim Supp } M = n - |J|\) such that \(M(\ast J^c) \neq 0\). The kernel \(N_1\) and the cokernel \(N_2\) of the natural morphism \(M \rightarrow M(\ast J^c)\) satisfy \(\rho(N_1) < \rho(M)\) (\(i = 1, 2\)).

Lemma 3.1.7. — Let \(M\) be \(I\)-good on \((X, D)\). Then, \(\psi_i(a)(M)\) are also \(I\)-good for any \(i = 1, \ldots, \ell\).

Proof We use an induction on \(\rho(M)\). Let \(J\) and \(N_j\) \((j = 1, 2)\) be as above. By the assumption of the induction, \(\psi_i(a)(N_j)\) \((j = 1, 2)\) are good. The \(D_X\)-module \(M(\ast J^c)\) is the push-forward of an \(I\)-good meromorphic flat bundle \(E_J\) on \((D_J, \partial D_J)\) by the inclusion \(\iota_J : D_J \rightarrow X\). If \(i \in J\), we have \(\psi_i(a)(M(\ast J^c)) = 0\). If \(i \notin J\), \(\psi_i(a)(M(\ast J^c))\) is isomorphic to \(\iota_J^* \psi_i(a)(E_J)\). By computing the formal completion \(\psi_i(a)(E_J)|_{\bar{P}}\) of \(P \in \partial D_J\) as in the proof of Lemma 3.1.2, we can prove that \(\psi_i(a)(E_J)|_{\bar{P}}\) is \(I\)-good on \((D_J, \partial D_J)\). Hence, we obtain that \(\psi_i(a)(M)\) is also \(I\)-good.

3.1.3. Commutativity of the functors along the coordinate functions.

— Let \(M\) be good on \((X, D)\).

Lemma 3.1.8. — For any \(i \neq j\), we have natural isomorphisms \(\phi_i(M(\ast j)) \cong \phi_i(M(\ast j))\) and \(\phi_i(M(\ast j)) \cong \phi_i(M(\ast j))\).

Proof The second isomorphism is obtained as the dual of the first one. Let us consider the first isomorphism. We have the following naturally defined morphisms:

\[
\phi_i(M(\ast j)) \xrightarrow{a} \phi_i(M(\ast j))(\ast j) \xleftarrow{b} \phi_i(M)(\ast j)
\]

Because the restriction of \(b\) to \(X - D_J\) is an isomorphism, it is easy to see that \(b\) is an isomorphism. Let us prove that \(a\) is an isomorphism by using an induction on \(\rho(M)\).
As in the proof of Lemma 3.1.7, the issue can be reduced to the case where \mathcal{M} is a good meromorphic flat bundle, which is given in Lemma 3.1.2.

Lemma 3.1.9. — $\mathcal{M}(*j)$ and $\mathcal{M}(!j)$ are also good.

Proof Because $\phi_j(\mathcal{M}(*)j) \simeq \psi_j(\mathcal{M})$, we obtain that $\mathcal{M}(*)j$ is good from Lemmas 3.1.5, 3.1.7 and 3.1.8. By using Lemma 3.1.6, we obtain that $\mathcal{M}(!j)$ is also good.

We have the following corollary of Lemma 3.1.9.

Corollary 3.1.10. — Let f be a meromorphic function on (X, D) whose zeros and poles are contained in D. Take $D^{(1)}(1) \subset D$ such that the poles of f are contained in $D^{(1)}$. The holonomic \mathcal{D}_X-module $\Pi_{i, *j}^a(\mathcal{M}, *D^{(1)})$ is good on (X, D). Hence, $\psi_f^a(\mathcal{M}, *D^{(1)})$, $\Xi_f^a(\mathcal{M}, *D^{(1)})$ and $\phi_f^a(\mathcal{M}, *D^{(1)})$ are also good on (X, D).

We have the following naturally defined morphisms:

$$M(*i)(!j) \xrightarrow{a} M(*i)(!j), \quad M(!j)(*i) \xleftarrow{b} M(!j)(*i)$$

It is easy to prove that b is an isomorphism for $i \neq j$.

Lemma 3.1.11. — a is also an isomorphism, by which we can identify $M(*i)(!j)$ and $M(!j)(*i)$.

Proof By using an induction on $\rho(\mathcal{M})$, we can reduce the issue to the case where \mathcal{M} is a good meromorphic flat bundle, which is given in Lemma 3.1.3.

In the following, we will not distinguish $M(*i)(!j)$ and $M(!j)(*i)$ for $i \neq j$, which will be denoted by $M(*i)!j)$. For $I \sqcup J \subset \mathcal{L}$ we have the natural identification $M(!I!J) \simeq M(*III)$, which will be used implicitly.

Lemma 3.1.12. — We have the commutativity $\Xi_i^a \circ \Xi_j^b = \Xi_j^b \circ \Xi_i^a$, $\psi_i^a \circ \psi_j^b = \psi_j^b \circ \psi_i^a$ and $\phi_i^a \circ \phi_j^b = \phi_j^b \circ \phi_i^a$. Moreover, the functors Ξ_i^a, ψ_i^b and ϕ_i^c are mutually commutative, where i, j and k are mutually distinct. In the following, we will not care about the order of these functors for good holonomic \mathcal{D}-modules on (X, D).

Proof We obtain the natural identification $\Pi_i^{a,b} \circ \Pi_j^{c,d} = \Pi_j^{c,d} \circ \Pi_i^{a,b}$ from Lemma 3.1.11. Then, the claim of the lemma is clear.

3.1.4. Globalization.

Let X be a complex manifold with a normal crossing hypersurface D.

Definition 3.1.13. — A holonomic \mathcal{D}_X-module \mathcal{M} is called good on (X, D) if the following holds:
Let P be any point of D. Let (U, z_1, \ldots, z_n) be a coordinate neighbourhood around P such that $D \cap U = \bigcup_{i=1}^{n} \{ z_i = 0 \}$. Then, $\mathcal{M}_{|U}$ is good in the sense of Definition 3.1.4. □

We obtain the following from the results in §3.1.2–§3.1.3.

Lemma 3.1.14. — Let \mathcal{M} be good on (X, D).
- The dual $D_X \mathcal{M}$ is also good on (X, D).
- Let $D^{(1)} \subset D$ be the union of some irreducible components. Then, $\mathcal{M}(\ast D^{(1)})$ and $\mathcal{M}(\ast D^{(2)})$ are also good on (X, D).
- Let $D^{(i)} \subset D (i = 1, 2)$ be the unions of some irreducible components such that $\dim D^{(1)} \cap D^{(2)} < \dim X - 1$. We have a natural isomorphism $\mathcal{M}(\ast D^{(1)})(\ast D^{(2)}) \simeq \mathcal{M}(\ast D^{(2)})(\ast D^{(1)})$.
- Let f be a meromorphic function on (X, D) which is invertible on $X \setminus D$. Take $D^{(1)} \subset D$ such that the poles of f are contained in $D^{(1)}$. Then, $\psi_f^{(a)}(\mathcal{M}, \ast D^{(1)})$, $\Xi_f^{(a)}(\mathcal{M}, \ast D^{(1)})$ and $\phi_f^{(a)}(\mathcal{M}, \ast D^{(1)})$ are also good on (X, D). □

3.1.5. A quiver description in the local case. — We set $X := \Delta^n$, $D_i = \{ z_i = 0 \}$ and $D = \bigcup_{i=1}^{n} D_i$. We use the notation introduced in §3.1.1. Let $\mathcal{I} \subset M(X^{(m)}, D^{(m)})/H(X^{(m)})$ be a good set of irregular values which is preserved by the action of the Galois group of the ramified covering $X^{(m)} \to X$.

We consider tuples of \mathcal{I}-good meromorphic flat bundles V_I on $(D_I, \partial D_I) (I \in \mathcal{I})$, with a tuple of morphisms

$$
\psi_i^{(1)}(V_I) \xrightarrow{g_{I,i}} V_{I_i} \xrightarrow{f_{I,i}} \psi_i^{(0)}(V_I)
$$

for $I \in \mathcal{I}$ and $i \in \mathcal{I} \setminus I$. Here $I i := I \cup \{ i \}$. We impose the following conditions:
- $f_{I,i} \circ g_{I,i}$ is equal to var \circ can : $\psi_i^{(1)}(V_I) \to \psi_i^{(0)}(V_I)$.
- For any $I \cup \{ i \} \subset \mathcal{I}$, we have the commutativity $\psi_{j}^{(0)}(\hat{f}_{I,i}) \circ f_{I,i,j} = \psi_{i}^{(0)}(\hat{f}_{I,i,j}) \circ f_{I,j,i} \circ g_{I,j,i} \circ \psi_{j}^{(1)}(g_{I,j,i}) = g_{I,j,i} \circ \psi_{i}^{(1)}(g_{I,j,i})$ and $f_{I,j,i} \circ g_{I,j,i} = \psi_{i}^{(0)}(g_{I,j,i}) \circ \psi_{j}^{(1)}(f_{I,i,j})$.

For such $\mathcal{C}^{(a)} = \{(V_i^{(a)}, (g_{I,i}^{(a)}, f_{I,i}^{(a)})) \mid (a = 1, 2)\}$, morphisms $\mathcal{C}^{(1)} \to \mathcal{C}^{(2)}$ are defined to be a tuple of morphisms $\varphi_I : V_I^{(1)} \to V_I^{(2)}$ of meromorphic flat bundles such that the following diagram is commutative:

$$
\begin{array}{ccc}
\psi_i^{(1)}(V_I^{(1)}) & \xrightarrow{g_{I,i}^{(1)}} & V_{I_i}^{(1)} \\
\downarrow \varphi_i & \downarrow \psi_i & \downarrow \psi_i^{(0)}(\varphi_i) \\
\psi_i^{(1)}(V_I^{(2)}) & \xrightarrow{g_{I,i}^{(2)}} & V_{I_i}^{(2)} \\
\end{array}
$$

Let $C(X, D)$ denote the category of such objects and morphisms. (We do not fix \mathcal{I}.)
Let M be a good holonomic \mathcal{D}-module on (X, D). Set $V_I := \phi_I^0(M)(*\partial D_I)$ and $V_\emptyset(M) := M(*D)$, which are naturally equipped with morphisms

$$
\psi_i^{(1)}(V_I(M)) \xrightarrow{g_i^{(1)}(M)} V_{Ij}(M) \xrightarrow{f_{i,j}(M)} \psi_i^{(0)}(V_I(M)).
$$

Thus, we obtain an object in $C(X, D)$ denoted by $\Phi(M)$. The construction gives a functor $M : \text{Hol}^{\text{good}}(X, D) \rightarrow C(X, D)$.

Proposition 3.1.15. — Φ is an equivalence of categories.

Proof Let us construct a quasi-inverse functor $\Upsilon : C(X, D) \rightarrow \text{Hol}^{\text{good}}(X, D)$. Let $\iota_I : D_I \rightarrow X$ denote the inclusion. For any $I \subset \mathcal{I}$, we set $M_I^{(0)} := \iota_I V_I$. For $I \subset \mathcal{I}$ with $1 \not\in I$, we define $M_I^{(1)}$ as the gluing of V_I and V_{I1} by f_{I1} and $g_{I,1}$, i.e., $M_I^{(1)}$ is the cohomology of the complex

$$
\iota_{I1} \psi_i^{(1)}(V_I) \xrightarrow{d_i^{(1)} + g_{i,j}} \iota_{I1} \Xi_i^{(1)}(V_I) \oplus \iota_{I1} V_{I1} \xrightarrow{c_2^{(0)} - f_{I1}} \iota_{I1} \psi_i^{(0)}(V_I).
$$

For $I \cup \{i\} \subset \mathcal{I} \setminus \{1\}$, we have naturally induced morphisms

$$
\psi_i^{(1)}(M_I^{(1)}) \xrightarrow{g_i^{(1)}(M)} M_{I1}^{(1)} \xrightarrow{f_{I1}^{(1)}} \psi_i^{(0)}(M_i^{(1)}).
$$

Then, (i) $f_{I1}^{(1)} \circ g_{i,j}^{(1)}$ is equal to the canonical morphism, (ii) for any $I \cup \{i\} \cup \{j\} \subset \mathcal{I} \setminus \{1\}$, we have the commutativity $\psi_j^{(0)}(f_{i,j}^{(1)}) \circ f_{I1}^{(1)} = \psi_j^{(0)}(f_{i,j}^{(1)}) \circ f_{I1}^{(1)} = g_{I,j}^{(1)} \circ \psi_j^{(0)}(g_{I,j}^{(1)})$, and $f_{I1}^{(1)} \circ g_{I,j}^{(1)} = \psi_j^{(0)}(g_{I,j}^{(1)}) \circ \psi_j^{(1)}(f_{I1}^{(1)})$.

Inductively on m, we can introduce good holonomic \mathcal{D}-modules $M_i^{(m)}$ on (X, D) for $I \subset \mathcal{I} \setminus m$, and morphisms for $I \cup \{i\} \subset \mathcal{I} \setminus m$

$$
\psi_i^{(1)}(M_i^{(m)}) \xrightarrow{g_i^{(m)}(M)} M_{I1}^{(m)} \xrightarrow{f_{I1}^{(m)}} \psi_i^{(0)}(M_i^{(m)}),
$$

such that $\psi_j^{(0)}(f_{i,j}^{(m)}) \circ f_{I1}^{(m)} = \psi_j^{(0)}(f_{i,j}^{(m)}) \circ f_{I1}^{(m)} = g_{i,j}^{(m)} \circ \psi_j^{(0)}(g_{i,j}^{(m)})$, and $f_{I1}^{(m)} \circ g_{i,j}^{(m)} = \psi_j^{(0)}(g_{i,j}^{(m)}) \circ \psi_j^{(1)}(f_{I1}^{(m)})$. Indeed, suppose we are given such holonomic \mathcal{D}-modules for $m - 1$, we define $M_i^{(m)}$ for $I \subset \mathcal{I} \setminus m$ as the gluing of $M_i^{(m-1)}$ and $M_{I1}^{(m-1)}$ by $g_{i,j}^{(m-1)}$ and $f_{I1}^{(m-1)}$. By the construction, we have the induced morphisms as in (11) with the desired property. After the procedure, we obtain a good holonomic \mathcal{D}-module $\Upsilon((V_I | I \subset \mathcal{I}), (f_{I1}, g_{i,j} | I \cup \{i\} \subset \mathcal{I})) := \mathcal{M}(\Upsilon)$. Clearly, Υ and Φ are mutually quasi-inverse.

We can describe some functors on $\text{Hol}^{\text{good}}(X, D)$ in terms of $C(X, D)$. Let $\mathcal{C} = ((V_I), (g_{i,j}, f_{I1,i}))$. For i, we define $C(*D_i) = ((V_I'), (g_{i,j}', f_{I1,i}'))$ as follows. We set $V_I := V_{Ij}$ for $i \not\in I$ or $V_I := \psi_i^{(0)}(V_{I \cup \{i\}}(i) \not\in I)$. If $j \not\in i$, $g_{i,j}'$ and $f_{I1,i}'$ are the naturally induced morphisms, and $g_{I,j}'$ and $f_{I1}^{\prime i}$ are given by the canonical morphisms $\psi_i^{(1)}(V_{Ij}) \xrightarrow{\text{can}} \psi_i^{(0)}(V_I) \xrightarrow{\text{id}} \psi_i^{(0)}(V_I)$. We define $C(|D_i)$ as follows. We set $V_I := V_{Ij}$ for $i \not\in I$ or $V_I := \psi_i^{(1)}(V_{I \cup \{i\}}(i) \not\in I)$. If $j \not\in i$, $g_{i,j}'$ and $f_{I1,i}'$ are the naturally induced morphisms, and $g_{I,j}'$ and $f_{I1}^{\prime i}$ are given by the canonical morphisms $\psi_i^{(1)}(V_{Ij}) \xrightarrow{\text{id}}$.
Chapter 3. Good Holonomic \(\mathcal{D} \)-modules and Their de Rham Complexes

\(\psi_{i}^{(1)}(V_{I}) \xrightarrow{\varpi} \psi_{i}^{(0)}(V_{I}) \). We have naturally defined morphisms \(\mathcal{C}(D_{i}) \rightarrow \mathcal{C}(\ast D_{i}) \). It is easy to observe \(\Phi(\mathcal{M}(\ast D_{i})) \simeq \Phi(\mathcal{M}(\ast D_{i})) \).

We define \(\psi_{i}^{(a)}(\mathcal{C}) = ((V_{I}'), (g_{1,i}', f_{1,i}' \circ \partial D_{i})) \) as follows. If \(i \notin I \), we set \(V_{I}' = 0 \). If \(i \in I \), we set \(V_{I}' := \psi_{i}^{(a)}(V_{I,i}) \). The morphisms \(g_{1,i}' \) and \(f_{1,i}' \) are the naturally induced ones. Then, we have a natural isomorphism \(\Phi\psi_{i}^{(a)}(\mathcal{M}) \simeq \psi_{i}^{(a)}(\Phi(\mathcal{M})) \).

We define \(\Phi_{i}^{(a)}(\mathcal{C}) = ((V_{I}'), (g_{1,i}', f_{1,i}' \circ \partial D_{i})) \) as follows. If \(i \notin I \), we set \(V_{I}' = 0 \). If \(i \in I \), we set \(V_{I}' := V_{I}^{a} \). The morphisms \(g_{1,i}' \) and \(f_{1,i}' \) are the naturally induced ones. Then, we have a natural isomorphism \(\Phi g_{i}^{(a)}(\mathcal{M}) \simeq \Phi g_{i}^{(a)}(\Phi(\mathcal{M})) \).

We define \(D(\mathcal{C}) = ((V_{I}'), (g_{1,i}', f_{1,i}' \circ \partial D_{i})) \) as follows. We set \(V_{I}' := D(V_{I}^{a})((\partial D_{i})) \). The morphisms \(g_{1,i}' \) and \(f_{1,i}' \) are the naturally induced ones. Then, we have a natural isomorphism \(\Phi D(\mathcal{M}) \simeq D(\Phi(\mathcal{M})) \).

3.1.6. Appendix. — The category \(\text{Ho}^{\text{good}}(X, D) \) of good holonomic \(\mathcal{D} \)-modules on \((X, D) \) is not abelian. Indeed, a direct sum of good holonomic \(\mathcal{D} \)-modules is not necessarily good. If we would like to work on an abelian category, it would be convenient to restrict ourselves to a smaller category.

We generalize the notion of good system of irregular values in §2.4.1 of [47]. For any point \(P \in D \), we introduce some rings. To define them, we introduce a category \(C_{P} \). Objects in \(C_{P} \) are holomorphic maps \(\varphi : (Z, Q) \rightarrow (X, P) \) of smooth complex manifolds which are coverings with ramification along \(D \). We set \(D_{Z} := \varphi^{-1}(D) \). Morphisms \(F : ((Z, Q), \varphi) \rightarrow ((Z', Q'), \varphi') \) are holomorphic maps \(F : (Z, Q) \rightarrow (Z', Q') \) such that \(\varphi' \circ F = \varphi \). Such morphisms induce the morphisms \(\mathcal{O}_{Z}(\ast D_{Z})_{Q} \rightarrow \mathcal{O}_{Z}(\ast D_{Z})_{Q} \) over \(\mathcal{O}_{X}(\ast D)_{Q} \). Let \(\tilde{O}_{X}(\ast D)_{P} \) denote a colimit of \(\mathcal{O}_{Z}(\ast D_{Z})_{Q} \). Similarly, let \(\tilde{O}_{X,P} \) denote the colimit of \(\mathcal{O}_{Z,Q} \).

We have another more direct description. Let \(\mathbb{C}\{z_{1}, \ldots, z_{n}\} \) denote the ring of convergent power series. Let \(\mathbb{C}\{z_{1}, \ldots, z_{n}\}_{z_{1},\ldots, z_{i}} \) denote its localization with respect to \(z_{1}, \ldots, z_{i} \). For a coordinate system \((z_{1}, \ldots, z_{n}) \) such that \(D = \bigcup_{i=1}^{e} \{z_{i} = 0\} \), we have natural isomorphisms

\[
\tilde{O}_{X,P} \simeq \lim_{\to e} \mathbb{C}\{z_{1}^{1/e}, \ldots, z_{\ell}^{1/e}, z_{\ell+1}, \ldots, z_{n}\},
\]

\[
\tilde{O}_{X}(\ast D)_{P} \simeq \lim_{\to e} \mathbb{C}\{z_{1}^{1/e}, \ldots, z_{\ell}^{1/e}, z_{\ell+1}, \ldots, z_{n}\}_{z_{1}^{1/e}, \ldots, z_{\ell}^{1/e}}.
\]

A finite subset \(\mathcal{I}_{P} \subset \tilde{O}_{X}(\ast D)_{P}/\tilde{O}_{X,P} \) can be regarded as \(\mathcal{I}_{P} \subset \mathcal{O}_{Z}(\ast D_{Z})_{Q}/\mathcal{O}_{Z,Q} \) for some \((Z, Q), \varphi \in C_{P} \). It is called a good set of ramified irregular values if (i) it is a good set of irregular values on \((Z, D_{Z}) \), (ii) it is stable under the action of the Galois group of \(\varphi \). Note that if \(P_{1} \) is close to \(P \), we choose \(Q_{1} \in \varphi^{-1}(P_{1}) \), and we obtain a natural map \(\mathcal{I}_{P} \rightarrow \mathcal{O}_{Z}(\ast D_{Z})_{Q_{1}}/\mathcal{O}_{Z,Q_{1}} \rightarrow \tilde{O}_{X}(\ast D)_{P_{1}}/\tilde{O}_{X,P_{1}} \). The image is well defined.
Definition 3.1.16. — A good system of ramified irregular values on \((X, D)\) is a family of good sets of ramified irregular values \(\mathcal{I} = \{\mathcal{I}_P \mid P \in D\}\) satisfying the following condition.

- If \(P_i\) is sufficiently close to \(P\), we impose that the image of \(\mathcal{I}_P\) in the image of \(\mathcal{I}_{P_i}\) is equal to \(\mathcal{I}_{P_i}\).

Let \(\mathcal{I} = \{\mathcal{I}_P \mid P \in D\}\) be a good system of ramified irregular values on \((X, D)\). A holonomic \(\mathcal{D}_X\)-module \(\mathcal{M}\) is called \(\mathcal{I}\)-good if for any \(P \in D\) there exists a neighborhood \(X_P\) such that \(\mathcal{M}|_{X_P}\) is \(\mathcal{I}_P\)-good. Then, the category of \(\mathcal{I}\)-good holonomic \(\mathcal{D}\)-modules on \((X, D)\) is an abelian full subcategory of \(\text{Hol}(X)\).

3.2. De Rham complexes

3.2.1. De Rham complex with infinite decay

For any complex manifold \(X\), let \(\Omega^\bullet_{X, \mathbb{C}}\) denote the sheaf of \(C^\infty\)-\((p, q)\)-forms on \(X\). We set \(d_X := \text{dim} X\). For any analytic subset \(Z \subset X\), we set \(\Omega^p_{Z, \mathbb{C}} := \Omega^p_{Z, \mathbb{C}} \otimes_{\mathbb{C}} C^\infty_Z\). For any hypersurface \(D \subset X\), we set \(\Omega^p_{D, \mathbb{C}}(\ast D) := \Omega^p_{Z, \mathbb{C}} \otimes_{\mathbb{C}} \mathcal{O}_X(\ast D)\). We say that \(D_1 \cup D_2 = D\) is a decomposition of \(D\) if \(D_i \subset X\) \((i = 1, 2)\) are hypersurfaces such that \(\text{codim}(D_1 \cap D_2) > 1\). In that situation, we say that \(D_2\) is the complement of \(D_1\) in \(D\). In other words, the complement of \(D_1\) in \(D\) is the union of the irreducible components of \(D\) which are not contained in \(D_1\).

When we are given a hypersurface \(D \subset X\) with a decomposition \(D = D_1 \cup D_2\), let \(\Omega^{p, q}_{X, \mathbb{C}}(\ast D_2)^{<D_1}\) denote the kernel of \(\Omega^{p, q}_{X, \mathbb{C}}(\ast D) \twoheadrightarrow \Omega^{p, q}_{X, \mathbb{C}}(\ast D_2)\).

Let \(D_0\) be a normal crossing hypersurface of \(X\) with a decomposition \(D_0 = D_1 \cup D_2\). For any coherent \(\mathcal{D}_X\)-module \(\mathcal{M}\), we define \(\text{DR}^{<D_1 \leq D_2}_{X}(\mathcal{M})\) as

\[
\text{Cone}(\text{DR}_X(\mathcal{M}(\ast D_2)) \to \text{DR}_{D_1}(\mathcal{M}(\ast D_2)))[-1]
\]

in the derived category \(D^b(C_X)\). We have the following natural quasi-isomorphisms:

\[
\text{DR}^{<D_1 \leq D_2}_{X}(\mathcal{M}) \simeq \Omega^{\bullet, <D_1}_{X}(\ast D_2) \otimes_{\mathcal{D}_X} \mathcal{M} \simeq \text{Tot} \Omega^{\bullet, <D_1}_{X}(\ast D_2) \otimes_{\mathcal{O}_X} \mathcal{M}[d_X]
\]

Here, \(\text{Tot}\) means the total complex associated to the double complex. In the following, we shall often omit to denote \(\text{Tot}\). It is easy to observe that the natural morphism \(\text{DR}^{<D_1 \leq D_2}_{X}(\mathcal{M}) \to \text{DR}^{<D_1 \leq D_2}_{X}(\mathcal{M}(\ast D_0))\) is an isomorphism. We also have the following natural isomorphisms in \(D^b(C_X)\):

\[
\text{DR}^{<D_1}_{X}(\mathcal{D}_X(\ast D_0)) \simeq \Omega^{\bullet, <D_1}_{X}(\ast D_2) \otimes_{\mathcal{D}_X} \mathcal{D}_X(\ast D_0)
\]

\[
\simeq \text{RHom}_{\mathcal{D}_X}(\mathcal{M}, \Omega^{0, <D_1}_{X}(\ast D_2)) [d_X]
\]

The following proposition is an immediate consequence of the isomorphism of Mekkhiout recalled in Proposition 2.1.4.

Proposition 3.2.1. — If \((\mathcal{M}(\ast D_2))(\ast D_1) \simeq \mathcal{M}(\ast D_2)\), the natural morphism

\[
\text{DR}^{<D_1 \leq D_2}_{X}(\mathcal{M}) \to \text{DR}^{<D_2}_{X}(\mathcal{M})
\]
is an isomorphism in $D^b_c(C_X)$. \hfill \square

3.2.2. The identification in the case of good holonomic \mathcal{D}-modules. — Let X be a complex manifold with a normal crossing hypersurface D. Let $D_0 \subset D$ be the union of some irreducible components with a decomposition $D_0 = D_1 \cup D_2$. Let \mathcal{M} be a good holonomic \mathcal{D}-module on (X, D). The following proposition is a special case of Proposition 3.2.1.

Proposition 3.2.2. — If $\mathcal{M}(D_1) = \mathcal{M}$, the natural morphism $\text{DR}^<_{D_1 \leq D_2} \mathcal{M} \rightarrow \text{DR}^<_{D_2} \mathcal{M}$ is a quasi-isomorphism. \hfill \square

We obtain the following isomorphisms in $D^b_c(C_X)$:

$$
\begin{align*}
\text{DR}^<_{D_1 \leq D_2} \mathcal{M} & \xleftarrow{\sim} \text{DR}^<_{D_1 \leq D_2} \mathcal{M}(D_1) \xrightarrow{\sim} \text{DR}^<_{D_2} \mathcal{M}(D_1) \\
\text{DR}^<_{D_1 \leq D_2} \mathcal{M} & \xrightarrow{\sim} \text{DR}^<_{D_1 \leq D_2} \mathcal{M}(D_1) \\
\text{DR}^<_{D_1 \leq D_2} \mathcal{M} & \xrightarrow{\sim} \text{DR}^<_{D_1 \leq D_2} \mathcal{M}(D_1)
\end{align*}
$$

We have already seen the right isomorphism. For the left isomorphism, we may use $\Omega^p,q_{X,D_1} \simeq \Omega^p,q_{X,D_1}(\ast D_1)$. We will identify $\text{DR}^<_{D_1 \leq D_2} \mathcal{M}$ and $\text{DR}^<_{D_2} \mathcal{M}(D_1)$ by (12).

Lemma 3.2.3. — If $D_1 \subset D'_1 \subset D$, then the following diagram of the natural morphisms is commutative:

$$
\begin{array}{ccc}
\text{DR}^<_{D'_1} \mathcal{M} & \xrightarrow{\sim} & \text{DR}^<_{D_1} \mathcal{M}(D'_1) \\
\downarrow & & \downarrow \\
\text{DR}^<_{D_1} \mathcal{M} & \xrightarrow{\sim} & \text{DR}^<_{D_1} \mathcal{M}(D_1)
\end{array}
$$

It is also factorized as follows:

$$
\begin{array}{ccc}
\text{DR}^<_{D'_1} \mathcal{M} & \xrightarrow{\sim} & \text{DR}^<_{D_1} \mathcal{M}(D'_1) \\
\downarrow & & \downarrow \\
\text{DR}^<_{D_1} \mathcal{M} & \xrightarrow{\sim} & \text{DR}^<_{D_1} \mathcal{M}(D_1)
\end{array}
$$

Proof We have the following commutative diagram:

$$
\begin{array}{ccc}
\text{DR}^<_{D'_1} \mathcal{M} & \xrightarrow{\sim} & \text{DR}^<_{D'_1} \mathcal{M}(D'_1) \\
\downarrow & & \downarrow \\
\text{DR}^<_{D_1} \mathcal{M} & \xrightarrow{\sim} & \text{DR}^<_{D_1} \mathcal{M}(D_1)
\end{array}
$$

Then, the claim of the lemma is clear. \hfill \square

1. The author thanks the referee for the simplified proof of the proposition.
3.2.3. Duality. — We continue to use the notation in §3.2.2. For simplicity, we assume $D = D_0$. We have a morphism of complexes

(13) \[
\text{Tot}(\text{Tot} \Omega^{\bullet \bullet} < D_2 | d_X | \otimes \text{Tot} \Omega^{\bullet \bullet} < D_1 | d_X |) \longrightarrow \text{Tot} \Omega^{\bullet \bullet} | 2d_X |
\]

by $\xi \otimes \eta \longrightarrow (-1)^{p_{dX}} \xi \wedge \eta$, where ξ and η are local sections of $(\text{Tot} \Omega^{\bullet \bullet} < D_2 | d_X |)^{p_{dX}}$ and $(\text{Tot} \Omega^{\bullet \bullet} < D_1 | d_X |)^{q_{dX}}$ respectively. Let \mathcal{I}_1 be a \mathcal{D}_X-injective resolution of $\text{Tot} \Omega^{\bullet \bullet} < D_1 | d_X |$, and let \mathcal{I}_2 be a \mathcal{C}_X-injective resolution of $\text{Tot} \Omega^{\bullet \bullet} | 2d_X |$. Then, the morphism is extended to a \mathcal{C}_X-homomorphism $\text{DR}^\leq_{D_1 < D_2} (\mathcal{I}_1) \longrightarrow \mathcal{I}_2$.

For any coherent \mathcal{D}_X-module \mathcal{M}, we have the following natural morphism:

(14) \[
\text{DR}^\leq_{D_1 < D_2} (\mathcal{D}_X \mathcal{M}) \longrightarrow \mathcal{D}_X \text{DR}^\leq_{D_2 < D_1} (\mathcal{M}).
\]

Indeed, $\text{DR}^\leq_{D_1 < D_2} \mathcal{D}_X \mathcal{M}$ is represented by $\text{Hom}_{\mathcal{D}_X} (\mathcal{M}, \mathcal{I}_1^\bullet)$. Hence, we have the desired morphism given as follows:

\[
\text{Hom}_{\mathcal{D}_X} (\mathcal{M}, \mathcal{I}_1^\bullet) \longrightarrow \text{Hom}_{\mathcal{C}_X} (\text{DR}^\leq_{D_2 < D_1} \mathcal{M}, \text{DR}^\leq_{D_2 < D_1} \mathcal{I}_1^\bullet) \longrightarrow \text{Hom}_{\mathcal{C}_X} (\text{DR}^\leq_{D_2 < D_1} \mathcal{M}, \mathcal{I}_2^\bullet)
\]

Theorem 3.2.4. — Let V be a good meromorphic flat bundle on (X, D). The following diagram is commutative:

(15) \[
\begin{array}{ccc}
\text{DR}^\leq_{D_1 < D_2} (V^\vee) & \longrightarrow & \mathcal{D}_X \text{DR}^\leq_{D_2 < D_1} (V) \\
\downarrow \simeq & & \downarrow \simeq \\
\text{DR} V^\vee (\!| D_1 !) & \longrightarrow & \mathcal{D}_X \text{DR} (V (\!| D_2 !))
\end{array}
\]

Here, G_1 is induced by (14) and $\text{DR}^\leq_{D_1 < D_2} (\mathcal{D}_X V) \simeq \text{DR}^\leq_{D_1 < D_2} (V^\vee)$. The vertical isomorphisms are given by (12), and G_2 is induced by the natural isomorphism of \mathcal{D}-modules $V^\vee (\!| D_1 !) \simeq \mathcal{D}_X (V (\!| D_2 !))$. (See §3.1.3.) In particular, G_1 is also an isomorphism.

Proof. We have the commutativity of the following natural morphisms:

\[
\begin{array}{cccc}
\text{DR}^\leq_{D_1 < D_2} (V^\vee) & \longrightarrow & \text{DR}^\leq_{D_1 < D_2} (\mathcal{D}_X V) & \longrightarrow & \mathcal{D}_X \text{DR}^\leq_{D_2 < D_1} (V) \\
\uparrow \simeq & & \uparrow \simeq & & \uparrow \simeq \\
\text{DR}^\leq_{D_1 < D_2} (V^\vee (\!| D_1 !)) & \longrightarrow & \text{DR}^\leq_{D_1 < D_2} (\mathcal{D}_X (V (\!| D_2 !))) & \longrightarrow & \mathcal{D}_X \text{DR}^\leq_{D_2 < D_1} (V (\!| D_2 !)) \\
\downarrow & & \downarrow & & \downarrow \\
\text{DR} (V^\vee (\!| D_1 !)) & \longrightarrow & \text{DR} (\mathcal{D}_X (V (\!| D_2 !))) & \longrightarrow & \mathcal{D}_X \text{DR} (V (\!| D_2 !))
\end{array}
\]

Then, the claim of the theorem is clear. \(\square\)
3.2.4. Functoriality for birational morphisms. — Let X be a complex manifold, and let D be a normal crossing hypersurface with a decomposition $D = D_1 \cup D_2$. Let D_3 be a hypersurface of X. Let $\varphi : X' \to X$ be a proper birational morphism such that (i) $D' = \varphi^{-1}(D \cup D_3)$ is normal crossing, (ii) $X' \setminus D' \simeq X \setminus (D \cup D_3)$. We put $D'_1 := \varphi^{-1}(D_1)$. Let D'_2 be the complement of D'_1 in D'.

Let M' be any coherent $D_{X'}$-module having a good filtration in the neighbourhood of fibers of φ. We have the following natural morphism:

$$\text{DR}^{<D_1 \leq D_2}_X \varphi_! M' \to R\varphi_* \text{DR}^{<D'_1 \leq D'_2}_{X'} M'.$$

Indeed, we have the following:

$$\text{DR}^{<D_1 \leq D_2}_X \varphi_! M' \simeq R\varphi_* \left(\Omega_X^{0,0} \otimes \varphi^{-1} \Omega_X \varphi^{-1}(\Omega_X^{0,0} < D_1 (\star) \otimes \Omega_{X'}^{0,0} M')\right) \xrightarrow{\sim} R\varphi_* \left(\Omega_{X'}^{0,0} \otimes \Omega_{X'} \varphi^{-1}(\Omega_X^{0,0} < D'_1 (\star) \otimes \Omega_{X'}^{0,0} M')\right) \simeq R\varphi_* (\text{DR}^{<D'_1 \leq D'_2}_{X'} M').$$

Let V be a good meromorphic flat bundle on (X, D), and we set $V' := \varphi^* V \otimes \mathcal{O}_{X'}(\star D')$. We have a natural isomorphism $(V(\star D'))(\mathcal{O}_1) \simeq \varphi_! (V'(\mathcal{O}_1'))$. Hence, we have a morphism of \mathcal{D}_X-modules $V(\mathcal{O}_1) \to \varphi_! (V'(\mathcal{O}_1'))$. We obtain the following morphism from (16) and $V \to \varphi_! V'$:

$$\text{DR}^{<D_1 \leq D_2}_X (V) \to R\varphi_* \text{DR}^{<D'_1 \leq D'_2}_{X'} (V')$$

It is equal to the one induced by $\varphi^{-1}(\Omega_X^{0,0} < D_1 (\star) \otimes V) \to \Omega_{X'}^{0,0} < D'_1 (\star) \otimes V'$. Note that we have natural isomorphisms

1. $$(\Omega_X^{0,0} < D_1 (\star) \otimes \mathcal{O}_{X'}(\star D'))(\mathcal{O}_1) \simeq (\Omega_{X'}^{0,0} < D'_1 (\star) \otimes \mathcal{O}_{X'}(\star D'))(\mathcal{O}_1) \simeq (\Omega_{X'}^{0,0} < D'_1 (\star) \otimes \mathcal{O}_{X'}(\star D'))(\mathcal{O}_1) \simeq V'.$$

By considering the dual with V^\vee (see Theorem 3.2.4), we also obtain the following morphism:

$$R\varphi_* \text{DR}^{<D'_1 \leq D'_2}_{X'} (V') \to \text{DR}^{<D_1 \leq D_2}_X (V).$$

Theorem 3.2.5. — We have the following commutative diagram:

$$\begin{array}{ccc}
\text{DR}^{<D_1 \leq D_2}_X V & \to & R\varphi_* \text{DR}^{<D'_1 \leq D'_2}_{X'} V' \\
\Rightarrow & & \Rightarrow \\
\text{DR}_X V(\mathcal{O}_1) & \to & R\varphi_* \text{DR}_{X'} V'(\mathcal{O}_1')
\end{array}$$

Here, the vertical isomorphisms are given in (12), the upper horizontal arrow is (18), and the lower horizontal arrow is induced by the morphism of \mathcal{D}_X-modules $V(\mathcal{O}_1) \to \varphi_! (V'(\mathcal{O}_1'))$.
Similarly, we have the following commutative diagram:

\[
\begin{array}{ccc}
R\varphi_* \text{DR}_X^{|D_1^d| \leq D_2^d} V' & \longrightarrow & \text{DR}_X^{|D_1^d| \leq D_2^d} V \\
\cong & \downarrow & \cong \\
R\varphi_* \text{DR}_X V''(!D_2^d) & \longrightarrow & \text{DR}_X V(!D_2^d)
\end{array}
\]

Here, the vertical isomorphisms are given in (12), the upper horizontal arrow is (20), and the lower horizontal arrow is induced by the natural morphism of \(D_X\)-modules \(\varphi_!(V''(!D_2^d)) \rightarrow V(!D_2^d)\).

\textbf{Proof} We have the following commutative diagram:

\[
\begin{array}{ccc}
\text{DR}_X^{|D_1| \leq D_2^d} V & \longrightarrow & \text{DR}_X^{|D_1| \leq D_2^d} (\varphi_! V') \\
\cong & \downarrow & \cong \\
\text{DR}_X^{|D_1| \leq D_2^d} (V(!D_1)) & \longrightarrow & \text{DR}_X^{|D_1| \leq D_2^d} (\varphi_! V''(!D_1')) \\
\downarrow & \downarrow & \downarrow \\
\text{DR}_X V(!D_1) & \longrightarrow & \text{DR}_X \varphi_! V''(!D_1') \\
& & \longrightarrow \ R\varphi_* \text{DR}_X V''(!D_1')
\end{array}
\]

Then, we obtain the commutativity of (21).

Let us consider the commutativity of (22). Recall the commutativity of (7). We have the following commutative diagram for \(N \longrightarrow \varphi_! N', \) where \(N\) (resp. \(N'\)) is a coherent \(D_X\)-module (resp. \(D_X\)-module):

\[
\begin{array}{ccc}
R\varphi_* \text{DR}_X D N'' & \cong & \text{DR} \varphi_! D N'' \\
\downarrow & \downarrow & \downarrow \\
R\varphi_* D \text{DR}_X N'' & \cong & D \text{DR} \varphi_! N''
\end{array}
\]

The vertical arrows are also isomorphisms. Hence, the lower horizontal arrow in (22) is obtained as the dual of \(\text{DR}_X V''(!D_1) \rightarrow R\varphi_* \text{DR}_X V''(!D_1') \) in \(D^b(\mathbb{C}_X)\). Then, the commutativity of (22) follows from the commutativity of (21). Thus, the proof of Theorem 3.2.5 is finished.
4.1. Holomorphic functions

We shall introduce the sheaves of holomorphic functions of various types. We give some statements mainly on flatness. The proof will be given later.

4.1.1. Preliminary. — Let X be an n-dimensional complex manifold with a simply normal crossing hypersurface D with the irreducible decomposition $\bigcup_{i \in \Lambda} D_i$. In this paper, the real blow up $\pi : \tilde{X}(D) \to X$ means the fiber product of $\tilde{X}(D_i)$ over X. For any subset $I \subset \Lambda$, we set $D_I := \bigcap_{i \in I} D_i$ and $D(I) := \bigcup_{i \in I} D_i$. Formally, $D_\emptyset := X$. For $J \subset I^c := \Lambda \setminus I$, we put $D_I(J) := D_I \cap D(J)$. In particular, $\partial D_I := D_I(I^c)$.

4.1.2. Holomorphic functions with moderate growth or rapid decay. — Recall that holomorphic functions on an open subset $U \subset \tilde{X}(D)$ are defined to be C^∞-functions on U whose restriction to $U \setminus \pi^{-1}(D)$ are holomorphic. A holomorphic function f on U is called of rapid decay if the following holds:

Let P be any point of $\pi^{-1}(D) \cap U$. We take a holomorphic coordinate system (z_1, \ldots, z_n) around $\pi(P)$ such that $D = \bigcup_{i=1}^\ell \{ z_i = 0 \}$. Then, we have $f = O\left(\prod_{i=1}^\ell |z_i|^N \right)$ for any N around P.

In this paper, the sheaf of holomorphic functions on $\tilde{X}(D)$ is denoted by $\mathcal{O}_{\tilde{X}(D)}$. The sheaf of holomorphic functions with rapid decay is denoted by $A_{\tilde{X}(D)}^{\text{rapid}}$.

Let U be any open subset in $\tilde{X}(D)$. A holomorphic function f on $U \setminus \pi^{-1}(D)$ is called of moderate growth if the following holds:

Let P be any point of $\pi^{-1}(P) \cap U \neq \emptyset$. We take a holomorphic coordinate system (z_1, \ldots, z_n) around $\pi(P)$ such that $D = \bigcup_{i=1}^\ell \{ z_i = 0 \}$. Then, we have $f = O\left(\prod_{i=1}^\ell |z_i|^{-N} \right)$ for some N around P.

In this paper, the sheaf of holomorphic functions with moderate growth is denoted by $A_{\tilde{X}(D)}^{\text{mod}}$. We shall prove the following (Proposition 4.2.4, Theorem 4.6.1).
Theorem 4.1.1. — The sheaves $\mathcal{O}_{\tilde{X}(D)}$, $A_{\tilde{X}(D)}^{\text{rapid}}$ and $A_{\tilde{X}(D)}^{\text{mod}}$ are flat over $\pi^{-1}(\mathcal{O}_X)$.

4.1.3. Partially rapid decay functions on completions. — Suppose that Z is $\pi^{-1}(D_I(J))$ for some $I \cup J \subset \Lambda$. Let $\mathcal{I}_Z \subset \mathcal{O}_{\tilde{X}(D)}$ be the ideal sheaf of Z, and put $\mathcal{O}_Z := \varinjlim \mathcal{O}_X/\mathcal{I}_Z^n$. For a given $\mathcal{O}_{\tilde{X}(D)}$-module \mathcal{F}, we set $\mathcal{F}_Z := \mathcal{F} \otimes_{\mathcal{O}_{\tilde{X}(D)}} \mathcal{O}_Z$. According to a generalized Borel-Ritt theorem due to Majima and Sabah ([33], Proposition II.1.1.16 of [52]), the natural morphism $\mathcal{O}_{\pi^{-1}(D_I)} \to \mathcal{O}_{\pi^{-1}(D_I(J))}$ is surjective. The kernel is denoted by $\mathcal{O}_{\pi^{-1}(D_I(J))}^{\text{rapid}}$. If $D_I = X$ and $D(J) = D$, it is equal to $A_{\tilde{X}(D)}^{\text{rapid}}$. We shall prove the following theorem. (See Proposition 4.2.4 for a refined claim.)

Proposition 4.1.2. — The sheaves $\mathcal{O}_{\pi^{-1}(D_I(J))}^{<\text{d}(J)}$ and $\mathcal{O}_{\pi^{-1}(D_I(J))}^{\text{mod}}$ are flat over $\pi^{-1}(\mathcal{O}_X)$.

4.1.4. Holomorphic functions of Nilsson type. —

4.1.4.1. Preliminary. — We set $\text{Nil}(z) := \bigoplus_{n \in \mathbb{Z}} z^n \mathbb{C}[[z]]$. For $(\alpha, k) \in \mathbb{C} \times \mathbb{Z}_{>0}$, we put $\varphi_{\alpha,k}(z) := z^\alpha (\log z)^k \in \text{Nil}(z)$. Let T be any finite subset contained in \{\alpha \in \mathbb{C} \mid 0 \leq \text{Re}(\alpha) < 1\}. For simplicity, we assume $0 \in T$. Let N be a non-negative integer. We set

$$\text{Nil}_{T,N}(z) := \left\{ \sum a_{\alpha,j,k} \varphi_{\alpha+j,k}(z) \in \text{Nil}(z) \mid a_{\alpha,j,k} \in \mathbb{C}, \ j \geq -N, \ k \leq N, \ \alpha \in T \right\}.$$

Note that $\text{Nil}_{T,N}(z)$ is a finitely generated free $\mathbb{C}[z]$-module. For $T \subset T'$ and $N \leq N'$, we have a natural inclusion $\text{Nil}_{T,N}(z) \subset \text{Nil}_{T',N'}(z)$. We have $\text{Nil}(z) = \varinjlim \text{Nil}_{T,N}(z)$.

Let $\tilde{\mathbb{C}}_z$ be the real blow up of \mathbb{C}_z along 0. Let ι be the inclusion $\iota : \mathbb{C}_z^* \to \tilde{\mathbb{C}}_z$. We have the subsheaves of $\iota_* \mathcal{O}_{\mathbb{C}_z}$ on $\tilde{\mathbb{C}}_z$ corresponding to $\text{Nil}(z)$ and $\text{Nil}_{T,N}(z)$. The sheaves are also denoted by $\text{Nil}(z)$ and $\text{Nil}_{T,N}(z)$.

For $\ell \geq 1$, put $\text{Nil}(z_1, \ldots, z_\ell) := \text{Nil}(z_1) \otimes_\mathbb{C} \cdots \otimes_\mathbb{C} \text{Nil}(z_\ell)$ and $\text{Nil}_{T,N}(z_1, \ldots, z_\ell) := \text{Nil}_{T,N}(z_1) \otimes_\mathbb{C} \cdots \otimes_\mathbb{C} \text{Nil}_{T,N}(z_\ell)$. We naturally regard $\text{Nil}(z_1, \ldots, z_\ell)$ as a subsheaf of $\iota_* \mathcal{O}_{\mathbb{C}^{n-D}}$ on the real blow up $\tilde{\mathbb{C}}_z$, where $D = \bigcup_{i=1}^\ell \{ z_i = 0 \}$ and $\iota : \mathbb{C}^n - D \to \tilde{\mathbb{C}}_z$. For $(\alpha, k) \in \mathbb{C}^\ell \times \mathbb{Z}_{>0}^\ell$, we put $\varphi_{\alpha,k}(z_1, \ldots, z_n) := \prod_{i=1}^n \varphi_{\alpha_i,k_i}(z_i)$, which are regarded as multi-valued flat sections of $\text{Nil}(z_1, \ldots, z_\ell)$.

4.1.4.2. Holomorphic functions of Nilsson type. — Let X be an n-dimensional complex manifold with a simply normal crossing hypersurface D. Let $D = D^{(1)} \cup D^{(2)}$ be a decomposition. We shall introduce a sheaf $A_{\tilde{X}(D)}^{<\text{d}(1) \leq \text{d}(2)}$ on $\tilde{X}(D)$. First, let us consider the case $X = \Delta^n$, $D = \bigcup_{i=1}^n \{ z_i = 0 \}$. Let $\ell = I_1 \cup I_2$ be determined by $D^{(j)} = \bigcup_{i \in I_j} \{ z_i = 0 \}$ for $j = 1, 2$. Let \bar{j} denote the inclusion $X - D \to \tilde{X}(D)$. Let $A_{\tilde{X}(D)}^{<\text{d}(1) \leq \text{d}(2)}$ be the image of the naturally defined morphisms:

$$\mathcal{O}_{\tilde{X}(D)}^{\leq \text{d}(1)} \otimes \text{Nil}(z_i : i \in I_2) \to \bar{j}_* \mathcal{O}_{X-D}.$$
We can observe that they are independent of the choice of a coordinate system \((z_1, \ldots, z_n)\). Hence, we obtain globally defined sheaf \(\mathcal{A}^{<D^{(1)}\leq D^{(2)}}_{\tilde{X}(D)}\) on \(\tilde{X}(D)\). It is also denoted by \(\mathcal{A}^{nil< D^{(1)}}_{\tilde{X}(D)}\). We shall prove the following. (See Theorem 4.3.1 and Corollary 4.3.3 for refined claims.)

Theorem 4.1.3. — \(\mathcal{A}^{<D^{(1)}\leq D^{(2)}}\) is flat over \(\pi^{-1}\mathcal{O}_X\). We also have \(R\pi_*\mathcal{A}^{nil}_{\tilde{X}(D)} \simeq \mathcal{O}_X(*D)\).

Remark 4.1.4. — This type of sheaves are useful when we study the de Rham complex of \(V(D^{(1)}+D^{(2)})\) for a good meromorphic flat bundle on \((X,D)\). Compared with functions with moderate growth, we may consider functions with rapid decay along some direction and of Nilsson type along another direction.

4.1.5. Real blow up along holomorphic functions.

4.1.5.1. Category of complex manifolds over \(\mathbb{C}^\ell\).

It is convenient to consider the category \(\text{Cat}_\ell\) of complex manifolds over \(\mathbb{C}^\ell\) given as follows. An object of \(\text{Cat}_\ell\) is a morphism \(f : X \rightarrow \mathbb{C}^\ell\) of complex manifolds. Morphisms \(\varphi : (X_1, f_1) \rightarrow (X_2, f_2)\) in \(\text{Cat}_\ell\) are morphisms of complex manifolds \(\varphi : X_1 \rightarrow X_2\) such that \(f_1 = f_2 \circ \varphi\). We say that \(\varphi\) has some property when the underlying \(\varphi\) has the property. For example, we say that \(\varphi : (X_1, f_1) \rightarrow (X_2, f_2)\) is a closed immersion when \(\varphi : X_1 \rightarrow X_2\) is a closed immersion. For a given object \((X, f)\) in \(\text{Cat}_\ell\), we set \(D_0 := f^{-1}(D_0)\), where \(D_0 := \bigcup_{i=1}^{\ell} \{z_i = 0\}\). Let \(\mathbb{C}\) denote the real blow up of \(\mathbb{C}\) along \(z = 0\). We have \(\mathbb{C}^\ell(D_0) = \mathbb{C}^\ell\).

For any object \((X, f)\) in \(\text{Cat}_\ell\), we have the naturally defined map \(\Gamma_f : X \rightarrow X \times \mathbb{C}^\ell\) given by \(\Gamma_f(x) = (x, f(x))\). A morphism \(\varphi : (X_1, f_1) \rightarrow (X_2, f_2)\) induces maps \(X_1 \times \mathbb{C}^\ell \rightarrow X_2 \times \mathbb{C}^\ell\) and \(X_1 \times \tilde{\mathbb{C}}^\ell \rightarrow X_2 \times \tilde{\mathbb{C}}^\ell\), which are denoted by \(\varphi_1\) and \(\tilde{\varphi}_1\), respectively.

4.1.5.2. Real blow up along functions.

Let \((X, f)\) be an object in \(\text{Cat}_\ell\). Let \(j : X \times (\mathbb{C}^*\ell) \rightarrow X \times \tilde{\mathbb{C}}^\ell\) denote the inclusion. Let \(\tilde{X}(f)\) denote the topological space obtained as the closure of \(j(\Gamma_f(X \setminus D_X))\) in \(X \times \tilde{\mathbb{C}}^\ell\), which is called the real blow up of \(X\) along \(f\) [54]. The projection \(\tilde{X}(f) \rightarrow X\) is denoted by \(\pi_f\). The inclusion \(\tilde{X}(f) \rightarrow X \times \tilde{\mathbb{C}}^\ell\) is denoted by \(\tilde{\Gamma}_f\). If there is no risk of confusion, we shall omit to denote the subscript \(f\) to simplify the notation. If \(f\) is submersive, \(\tilde{X}(f)\) is naturally diffeomorphic to \(\tilde{X}(D_X)\). A morphism \(\varphi : (X_1, f_1) \rightarrow (X_2, f_2)\) in \(\text{Cat}_\ell\) naturally induces a continuous map \(\tilde{\varphi} : \tilde{X}_1(f_1) \rightarrow \tilde{X}_2(f_2)\).

4.1.5.3. Moderate growth and rapid decay.

Let \((X, f) \in \text{Cat}_\ell\). Let \(U\) be any open subset of \(\tilde{X}(f)\). A holomorphic function \(s\) on \(U \setminus \pi^{-1}_{\tilde{f}}(D_X)\) is called of moderate growth if we have \(|s| = O\left(\prod |f_i|^{-N}\right)\) for some \(N\) locally around any point of \(U \cap \pi^{-1}(D_X)\). A holomorphic function \(s\) on \(U \setminus \pi^{-1}_{\tilde{f}}(D_X)\) is called of rapid decay if we have \(|s| = O\left(\prod |f_i|^N\right)\) for any \(N\) locally around any point of \(U \cap \pi^{-1}(D_X)\). The sheaf of
holomorphic functions with moderate growth (resp. rapid decay) is denoted by $A_{X(f)}^{\text{mod}}$ (resp. $A_{X(f)}^{\text{rapid}}$). We shall prove the following theorem. (See Theorems 4.5.1, 4.5.3, and Theorems 4.4.3, 4.5.4 for refined claims.)

Theorem 4.4.5. —
- The sheaves $A_{X(f)}^{\text{mod}}$ and $A_{X(f)}^{\text{rapid}}$ are flat over $\pi_f^{-1}(\mathcal{O}_X)$.
- Let $\tilde{\Gamma}_f : \tilde{X}(f) \to X \times \mathbb{C}^\ell$ denote the inclusion. Then, we naturally have
 \[\tilde{\Gamma}_{f*}A_{\tilde{X}(f)}^{\text{rapid}} \cong \pi^{-1}O_{\tilde{X}(f)} \otimes_{\pi^{-1}O_X \otimes \mathbb{C}^\ell} A_{\tilde{X}(f)}^{\text{rapid}}, \]
 \[\tilde{\Gamma}_{f*}A_{\tilde{X}(f)}^{\text{mod}} \cong \pi^{-1}O_{\tilde{X}(f)} \otimes_{\pi^{-1}O_X \otimes \mathbb{C}^\ell} A_{\tilde{X}(f)}^{\text{mod}}. \]
- Let $\rho_0 : \tilde{X}(D_X) \to \tilde{X}(f)$ denote the naturally induced map. Then, we naturally have
 \[R\rho_0 A_{\tilde{X}(D_X)}^{\text{rapid}} \cong A_{\tilde{X}(f)}, \quad R\rho_0 A_{\tilde{X}(D_X)}^{\text{mod}} \cong A_{\tilde{X}(f)}. \]
- Let $\varphi : (Y, g) \to (X, f)$ be a projective morphism in Cat_e. Let M be a coherent \mathcal{O}_Y-module. Then, we have the following natural isomorphism:
 \[A_{\tilde{X}(f)}^{\text{mod}} \otimes_{\pi_f^{-1}O_X} \pi_f^{-1}R\varphi_* M \to R\varphi_*(A_{Y(g)}^{\text{mod}} \otimes_{\pi_g^{-1}O_Y} \pi_g^{-1}M) \]

4.2. C^∞-functions

4.2.1. Preliminary. —
Let X be any n-dimensional complex manifold with a simply normal crossing hypersurface D with the irreducible decomposition $\bigcup_{i \in \Lambda} D_i$. We use the notation in §4.1.1. Let D^o be a (possibly empty) hypersurface of X such that (i) $D' \cup D^o$ is simply normal crossing, (ii) $\text{dim } D \cap D^o < n - 1$. For $J \subset \Lambda$, we set $D(J) := D(J) \cup D^o$. For $I \cup J \subset \Lambda$, we put $D_I(J) := D_I \cap D(J)$. Let $\Omega_{X(D)}^{0,q}$ denote the sheaf of C^∞-logarithmic $(0,q)$-forms on $\tilde{X}(D)$, i.e., a section of $\Omega_{\tilde{X}(D)}^{0,q}$ is locally described as a linear combination of

\[f \cdot dz_{i_1}/z_{i_1} \cdots dz_{i_m}/z_{i_m} \cdot dz_{j_1} \cdots dz_{j_n} \quad (1 \leq i_p \leq \ell, \ell + 1 \leq j_q \leq n, \ f \in C^\infty_{\tilde{X}(D)}) \]

in terms of a local holomorphic coordinate system (z_1, \ldots, z_n) such that D is locally described as $\bigcup_{i \in \Lambda} \{z_i = 0\}$. We have the naturally defined operator $\overline{\mathcal{S}} : \Omega_{\tilde{X}(D)}^{0,q} \to \Omega_{\tilde{X}(D)}^{0,q+1}$. The complex $\Omega_{\tilde{X}(D)}^{\bullet, \bullet}$ is called the Dolbeault complex of $\tilde{X}(D)$. We put $\Omega_{\tilde{X}(D)}^{0,\bullet} := \Omega_{\tilde{X}(D)}^{0,\bullet}|_{\tilde{Z}}$ for any real analytic subset $Z \subset \tilde{X}(D)$.

For a given C^∞-manifold Y and a real analytic subset $W \subset X$, let $C^\infty_{\pi^{-1}(D_I) \times Y}$ denote the sheaf $C^\infty_{\pi^{-1}(W) \times Y}$ on $\tilde{X}(D) \times Y$, for simplicity of the description. We also put $\Omega_{\pi^{-1}(D_I) \times Y}^{0,\bullet} := \Omega_{\pi^{-1}(D_I) \times Y}^{0,\bullet} \otimes_{\mathcal{O}_{\tilde{X}(D)}} C^\infty_{\pi^{-1}(W) \times Y}$ on $\tilde{X}(D) \times Y$.

Let q_I denote the projection $\pi^{-1}(D_I) \to \tilde{D}_I(\partial D_I)$. If we are given a holomorphic coordinate system (z_1, \ldots, z_n) as above, then $\mathcal{O}_{\pi^{-1}(D_I)}^{<D_I/J} := q_I^{-1}\mathcal{O}_{\pi^{-1}(D_I)}^{\{z_i | i \in I\}}$.

By a natural diffeomorphism \(\pi^{-1}(D_I) \simeq \partial D_I \times (S^1)^{|I|} \), we can locally identify \(C^\infty <D(T)_{\pi^{-1}(D_I)} = C^\infty <D_I \times (S^1)^{|I|}, \{ z_i \mid i \in I \} > \).

For \(I \subset J \), put \(T(m, I, J) := \{ K \subset J \mid I \subset K, \{ K \} = \{ I \} + m + 1 \} \) for \(m \geq 0 \). We set \(K_m \left(O_{\pi^{-1}(D_I(J))} \right) := \bigoplus_{K \in T(m, I, J)} O_{\pi^{-1}(D_K)} \). We obtain a complex \(K^0 \left(O_{\pi^{-1}(D_I(J))} \right) \) as in \(\S 2.1.4 \). Similarly, we obtain a complex \(K^0 \left(\Omega^0 <D^\infty \pi^{-1}(D_I(J)) \times Y \right) \). See \S 1.5 of [34] and \S II.1.1 of [52] for the following.

Lemma 4.2.1. — Let \(B \) be \(O_{\pi^{-1}(D_I(J))} \) or \(\Omega^0 <D^\infty \pi^{-1}(D_I(J)) \times Y \). The natural inclusion \(B \to K^0 \left(B \right) \) induces a quasi-isomorphism \(B \to K^0 \left(B \right) \).

4.2.2. Dolbeault resolution. — In this subsection, we suppose \(D^\infty = 0 \).

Proposition 4.2.2 ([33], [52]). — \(\Omega^0 <D^\infty \pi^{-1}(D_I(J)) \) and \(\Omega^0 <D^\infty \pi^{-1}(D_I(J)) \times Y \) are c-soft resolutions of \(O_{\pi^{-1}(D_I(J))} \) and \(O_{\pi^{-1}(D_I(J))} \times Y \) respectively, where \(J \subset I^c \).

Proof We give only an outline. In each case, it is easy to compute the 0-th cohomology of the Dolbeault complexes. It is enough to prove the vanishing of the higher cohomology. We may assume \(X = \Delta^n \), \(D_I = \{ z_i = 0 \} \) and \(D = \bigcup_{i=1}^n D_i \). First, let us look at \(\Omega^0 <D^\infty \Delta^n \). For \(1 \leq j \leq n \), let \(P^0_{<j} \) be the sheaf of \(C^\infty \)-functions on \(\Delta^n \) which are \(\bar{D}_i \)-holomorphic for \(i > j \). We set \(X_j := \Delta^j = \{ (z_1, \ldots, z_j) \} \) and \(D_{j, \ell} := \bigcup_{i=\min(j, \ell)}^j \{ z_i = 0 \} \). Let \(q_{<j} \) be the projection \(\Delta^n \to \Delta^n \). Let \(P^0_{<j} \) be the sheaf of \(C^\infty \)-sections of \(q_{<j}^0 \Omega^0 <X_j(D_{j, \ell}) \), which are \(\bar{D}_i \)-holomorphic for \(i > j \). We set \(P^0_{<j} := \bigwedge^* P^1_{<j} \) over \(P^0_{<j} \). We have the naturally defined operator \(\bar{\partial} : P^0_{<j} \to P^*_{<j} \).

Because \(P^0_{<0} = O_{\bar{X}(D)} \) and \(P^0_{<n} = \Omega^0 <\bar{X}(D) \), it is enough to prove that the natural inclusions \(P^0_{<j} \to P^*_{<j} \) are quasi-isomorphisms for the vanishing of the higher cohomology of \(\Omega^0 <\bar{X}(D) \). Let \(Q_{<j}^0 = \bigwedge^* P^1_{<j} \). Let \(Q^1_{<j} \) be the sheaf of \(q_{<j}^0 \Omega^0 <\bar{X}(D) \), which are \(\bar{D}_i \)-holomorphic for \(i > j + 1 \). We take the exterior product \(Q^1_{<j} := \bigwedge^* Q^1_{<j} \) over \(Q^0_{<j} \). We have the naturally defined operator \(\bar{\partial}_{j+1} : Q^0_{<j} \to Q^0_{<j} \wedge d\bar{z}_{j+1}/\bar{z}_{j+1} \) for \(j + 1 \leq \ell \) or \(\bar{\partial}_{j+1} : Q^0_{<j} \to Q^0_{<j} \wedge d\bar{z}_{j+1}/\bar{z}_{j+1} \) for \(j \leq \ell \). We clearly have \(\ker \bar{\partial}_{j+1} = P^0_{<j} \).

Let us prove \(\text{Cok} \bar{\partial}_{j+1} = 0 \). In the case \(j \geq \ell \), it can be proved by the argument for the standard Dolbeault’s lemma. Let us consider the case \(j < \ell \).

Lemma 4.2.3. — \(\bar{\partial}_{j+1} : Q^0_{<j} \pi^{-1}(D_{j+1}) \to Q^0_{<j} \pi^{-1}(D_{j+1}) \wedge d\bar{z}_{j+1}/\bar{z}_{j+1} \) is an epimorphism.
Proof We use the polar coordinate system \(z_{j+1} = r_{j+1} e^{\sqrt{-1} \theta_{j+1}} \). The action of \(\bar{\partial}_{j+1} \) is expressed as follows:

\[
\bar{\partial}_{j+1} \left(\sum_n f_n(\theta_{j+1}) z_{j+1}^n \right) = \sum_n \left(\frac{\sqrt{-1}}{2} \frac{1}{\theta_{j+1}} \right) f_n(\theta_{j+1}) z_{j+1}^n \cdot d\bar{z}_{j+1}/\bar{\partial}z_{j+1}
\]

Then, it is easy to prove the claim of Lemma 4.2.3.

Put \(D' := \bigcup_{i=1, i \neq j+1} (z_i = 0) \), and let us consider the real blow up \(\pi' : \overline{X}(D') \longrightarrow X \). We have a naturally induced morphism \(q_{\leq j} : \overline{X}(D') \longrightarrow \overline{X}(D_{j+1}) \). Let \(S^1_{\leq j, X} \) be the sheaf of sections of \((q_{\leq j})^{-1} \Omega_{\overline{X}(D_{j+1})}^0 \) on \(\overline{X}(D') \), which are \(\bar{\partial}_j \)-holomorphic for \(i > j+1 \). Let \(S^0_{\leq j, X} \) be the sheaf of \(C^\infty \)-functions on \(\overline{X}(D') \), which are \(\bar{\partial}_j \)-holomorphic for \(i > j+1 \). We set \(S^*_{\leq j} := \wedge^* S^1_{\leq j} \). It is easy to prove the vanishing of the cokernel of \(\bar{\partial}_{j+1} : S^0_{\leq j} \longrightarrow S^*_{\leq j} \wedge d\bar{z}_{j+1} \) by using the argument for standard Dolbeault’s lemma.

Let \(P \in \pi^{-1}(D) \). Let \(U \) be a small neighbourhood around \(P \). We will shrink it in the following argument. According to Lemma 4.2.3, for any section \(\varphi \) of \(\Omega^0_{\leq j} \wedge d\bar{z}_{j+1}/\bar{\partial}z_{j+1} \) on \(U \), we can take a local section \(\psi \) of \(\Omega^*_{\leq j} \) such that

\[
(\varphi - \bar{\partial}_j \psi)_{|_\pi^{-1}(D) \cap U} = 0.
\]

We put \(\lambda := \varphi - \bar{\partial}_j \psi \). We take a cut function \(\rho \) around \(P \), i.e., \(\rho \) is constantly 1 around \(P \) and constantly 0 near the boundary of \(U \). We can regard \(\rho \lambda \) as a section of \(S^0_{\leq j} \wedge d\bar{z}_{j+1} \). Then, we can find a section \(\kappa \) of \(S^*_{\leq j} \) around \(\pi_j(P) \) such that \(\bar{\partial}_{j+1} \kappa = \rho \lambda \), where \(\pi_j \) denotes the natural projection \(X(D) \longrightarrow \overline{X}(D') \). We obtain \(\varphi = \bar{\partial}_j(\psi + \kappa) \) around \(P \). Thus, we obtain the vanishing of the cokernel of \(\bar{\partial}_{j+1} : S^0_{\leq j} \longrightarrow S^*_{\leq j} \wedge d\bar{z}_{j+1}/\bar{\partial}z_{j+1} \), and hence the vanishing of the higher cohomology of \(\Omega^0_{\overline{X}(D)} \).

Because \(\pi^{-1}(D_I) = \overline{D_I}(\partial D_I) \times (S^1)^{|I|} \), we can reduce the vanishing of the higher cohomology of \(\Omega^0_{\pi^{-1}(D_I)} \) to the vanishing of \(\Omega^0_{\overline{D_I}(\partial D_I)} \) by a formal calculation as in Lemma 4.2.3. By using the resolution in Lemma 4.2.1, we obtain the vanishing of the higher cohomology of \(\Omega^0_{\pi^{-1}(D_I)} \). We have the following diagram of exact sequences:

\[
\begin{array}{cccccc}
0 & \longrightarrow & \mathcal{O}_{\overline{X}(D)}^{<D(I)} & \longrightarrow & \mathcal{O}_{\overline{X}(D)} & \longrightarrow & \mathcal{O}_{\pi^{-1}(D(I))} & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & \Omega^0_{\overline{X}(D)}^{<D(I)} & \longrightarrow & \Omega^0_{\overline{X}(D)} & \longrightarrow & \Omega^0_{\pi^{-1}(D(I))} & \longrightarrow & 0
\end{array}
\]

Then, we obtain the vanishing of the higher cohomology of \(\Omega^0_{\overline{X}(D)}^{<D(I)} \). By a formal calculation as in Lemma 4.2.3, we obtain the vanishing of the higher cohomology of \(\Omega^0_{\pi^{-1}(D(I))} \) and \(\Omega^0_{\pi^{-1}(D_I)} \).
4.2.3. Flatness. — In this subsection, D^c is not necessarily empty.

Proposition 4.2.4. Let $I \cup J \subset \Lambda$. The sheaves $C^\infty< D(\overline{\Omega})$, $C^\infty< D^c$, and $\mathcal{O}_{\pi^{-1}(D)}$ are flat over \mathbb{R}. In particular, the sheaves $\mathcal{O}_{\hat{X}(D)}$ and $A^{\text{rapid}}_{\hat{X}(D)}$ are flat over $\pi^{-1}\mathcal{O}_X$.

Proof Let us recall a general result. For a real analytic manifold Y, let \mathcal{O}^R_Y denote the sheaf of real analytic functions on Y. If Y is the product of a complex manifold Y_1 and a real analytic manifold Y_2, let $\mathcal{O}_Y^{1\text{-hol}}$ denote the sheaf of real analytic functions which are holomorphic in the Y_1-direction. The extension $\mathcal{O}_Y^{1\text{-hol}} \subset \mathcal{O}^R_Y$ is faithfully flat.

Lemma 4.2.5. Let $W_1 \subset W_2 \subset Y$ be real analytic subsets. Then, $\mathcal{C}_Y^\infty \subset W_1$ and $\mathcal{C}_Y^\infty \subset W_2$ are flat over \mathcal{O}^R_Y.

Proof The sheaf \mathcal{C}_Y^∞ is faithfully flat over \mathcal{O}^R_Y (Corollary 1.12 of [34]). Theorem VI.1.2 of [34] implies $\mathcal{C}_Y^\infty \subset W_1 \cap \mathcal{C}_Y^\infty \subset W_2 = \mathcal{C}_Y^\infty \subset W_2$ for any real analytic subsets $W_1 \subset W_2 \subset Y$ and for any ideal sheaf \mathfrak{a} of \mathcal{O}_Y^R. By using the argument in the proof of Proposition III.4.7 in [34], we can prove the following:

- Let A be a ring. Let M be an A-flat module. Let N be an A-submodule of M.

 If $\mathfrak{a}M \cap N = \mathfrak{a}N$ for any ideal \mathfrak{a} of A, then N and M/N are also A-flat.

We immediately obtain the claim of Lemma 4.2.5 from these results.

Let Z_0 be a complex manifold with a normal crossing hypersurface D_0. Let Z_1 be a real analytic manifold. We put $Z := Z_0 \times Z_1$ and $D := D_0 \times Z_1$. Let G denote the composite of the maps $Z \rightarrow Z_0 \rightarrow Z_0 \times \mathbb{C}^n$, where the latter is induced by the inclusion $\{(0, \ldots, 0)\} \subset \mathbb{C}^n$. Let (t_1, \ldots, t_n) be the standard holomorphic coordinate system of \mathbb{C}^n.

Lemma 4.2.6. $\mathcal{C}_Z^\infty \subset D[t_1, \ldots, t_n]$ is flat over $G^{-1}\mathcal{O}_{Z_0 \times \mathbb{C}^n}$.

Proof Let t_1 denote the inclusion $Z \rightarrow Z_2 := Z \times \mathbb{R}^n$ induced by $\{(0, \ldots, 0)\} \rightarrow \mathbb{R}^n$. We put $D_2 := D \times \mathbb{R}^n$. We regard that (t_1, \ldots, t_n) is a real coordinate system of $\mathbb{R}^n \subset \mathbb{C}^n$. We have the natural identification $\mathcal{C}_Z^\infty \subset D[t_1, \ldots, t_n] = \mathcal{C}_Z^\infty \subset D_2[t_1, \ldots, t_n]$.

According to Lemma 4.2.5, it is flat over $\pi^{-1}\mathcal{O}_{Z_2}$. Let G_1 be the composite of $Z \rightarrow Z_0 \rightarrow Z_0 \times \mathbb{R}^n$. We have a natural isomorphism $G_1^{-1}\mathcal{O}_{Z_0 \times \mathbb{R}^n} \cong G^{-1}\mathcal{O}_{Z_0 \times \mathbb{C}^n}$. Since the extension $G_1^{-1}\mathcal{O}_{Z_0 \times \mathbb{R}^n} \subset \mathcal{O}_{Z_2}$ is flatly flat, we obtain the claim of Lemma 4.2.6.

Let us return to the proof of Proposition 4.2.4. We may assume that $X = \Delta^n$, $D_1 = \{z_i = 0\}$, $D = \bigcup_{i=1}^n D_i$ and $D^c = \bigcup_{i=1}^n D_i$. For $I \subset \mathbb{I}$, let $\pi_I : \hat{X}(D(I)) \rightarrow X$ be the real blow up. We have the natural identification $\pi_I^{-1}(D(I)) = D_I \times (S^1)^{|I|}$ and
\[\pi^{-1}_I(D_I(\mathcal{T})) = D_I(\mathcal{T}) \times (S^1)^{|I|}. \] From Lemma 4.2.6, we obtain that \(C^\infty_{\pi^{-1}_I(D_I)} \) is flat over \(\pi^{-1}_I \mathcal{O}_X \).

Lemma 4.2.7. — \(C^\infty_{\pi^{-1}_I(D_I)} \) is flat over \(\pi^{-1}_I \mathcal{O}_X \). (Note that \(\pi : \tilde{X}(D) \to X \).)

Proof The claim is clear outside of \(\pi^{-1}(\partial D_I) \). Let \(P \) be any point of \(\partial D_I \). Let \(a \) be any finitely generated ideal of \(\mathcal{O}_{X,P} \). We take a free resolution \(Q \to a \), i.e., \(\cdots \to Q_1 \to Q_0 \to a \). We obtain a \(\pi^{-1}_I \mathcal{O}_X \)-free resolution \(\pi^{-1}_I Q_i \) of \(\pi^{-1}_I a \). We set \(\hat{Q}_j = Q_j \) for \(j \geq 0 \) and \(\hat{Q}_{-1} = a \) for simplicity of the description. It is enough to prove that \(\pi^{-1}_I \hat{Q}_i \otimes C^\infty_{\pi^{-1}_I(D_I)} \) is exact. Let \(\rho : \tilde{X}(D) \to \tilde{X}(D) \) be the naturally induced map. Note

\[
\rho_* (\pi^{-1}_I \hat{Q}_i \otimes C^\infty_{\pi^{-1}_I(D_I)}) = \pi^{-1}_I (\hat{Q}_i) \otimes \rho_* C^\infty_{\pi^{-1}_I(D_I)} = \pi^{-1}_I (\hat{Q}_i) \otimes C^\infty_{\pi^{-1}_I(D_I)}.
\]

The first equality is the projection formula. As for the second one, it is enough to observe that the natural morphism \(C^\infty_{\pi^{-1}_I(D_I)} \to \rho_* C^\infty_{\pi^{-1}_I(D_I)} \) is an isomorphism. It is clearly injective. Let \(f \) be a section of \(\rho_* C^\infty_{\pi^{-1}_I(D_I)} \). The restriction \(g := f|_{\pi^{-1}_I(D_I \backslash \partial D_I)} \) gives a \(C^\infty \)-function on \(\pi^{-1}_I(D_I \backslash \partial D_I) \). For any differential operator \(R \) on \(\pi^{-1}_I(D_I) \), \(R(g)(P) \) goes to 0 when \(P \) goes to any point in \(\pi^{-1}_I(\partial D_I) \). Hence, \(g \) gives a section of \(C^\infty_{\pi^{-1}_I(D_I)} \) which is mapped to \(f \). Let \(Q \in \pi^{-1}_I(P) \). Take any cycle \(\varphi \) of \(\pi^{-1}_I \hat{Q}_i \otimes C^\infty_{\pi^{-1}_I(D_I)} \) at \(Q \). By using a cut function around \(Q \), we can regard it as a global cycle of \(\pi^{-1}_I \hat{Q}_i \otimes C^\infty_{\pi^{-1}_I(D_I)} \) whose support is a small neighbourhood of \(Q \). Then, it can be regarded as a cycle of \(\pi^{-1}_I (\hat{Q}_i) \otimes C^\infty_{\pi^{-1}_I(D_I)} \) around \(\rho(Q) \). Because \(C^\infty_{\pi^{-1}_I(D_I)} \) is flat over \(\pi^{-1}_I \mathcal{O}_X \), we obtain that \(\varphi \) is a boundary in the complex \(\pi^{-1}_I (\hat{Q}_i) \otimes C^\infty_{\pi^{-1}_I(D_I)} \). Then, it is easy to deduce that \(\varphi \) is a boundary in the complex \(\pi^{-1}_I (\hat{Q}_i) \otimes C^\infty_{\pi^{-1}_I(D_I)} \). Thus, the proof of Lemma 4.2.7 is finished. \(\Box \)

Let us prove that \(C^\infty_{\pi^{-1}_I(D_I)} \) is flat over \(\pi^{-1}_I \mathcal{O}_X \), where \(I \sqcup J \subset \mathfrak{U} \). We put

\[
S(I,J,m) := \{ K : \mathfrak{L} - J \to K, |K| = m \}.
\]

Put \(\mathcal{G}_{I,m} := C^\infty_{\pi^{-1}_I(D_I)} \), and descending inductively we set

\[
\mathcal{G}_{I,m} = \text{Ker} \left(\mathcal{G}_{I,m+1} \to \bigoplus_{K \in S(I,J,m)} C^\infty_{\pi^{-1}_I(D_K)} \right).
\]
We have $\mathcal{G}_{1,|1|+1} = C^{\infty}_{\pi^{-1}(D^c)}$, which is flat over $\pi^{-1}\mathcal{O}_X$. By an induction, we obtain that $\mathcal{G}_{1,m}$ are flat over $\pi^{-1}\mathcal{O}_X$. Hence, we obtain that $C^{\infty}_{\pi^{-1}(D^c)}$ is flat over $\pi^{-1}\mathcal{O}_X$.

By using the resolution of $C^{\infty}_{\pi^{-1}(D^c)}$ in Lemma 4.2.1, we obtain that $C^{\infty}_{\pi^{-1}(D^c)}$ is flat over $\pi^{-1}\mathcal{O}_X$. As a result, we obtain that $\Omega^{0,\bullet}_{\pi^{-1}(D^c)}$ and $\Omega^{0,\bullet}_{\pi^{-1}(D^c)}$ are flat over $\pi^{-1}\mathcal{O}_X$, where $J \subset I^c$. In particular, $\Omega^{0,\bullet}_{\pi^{-1}(D^c)}$ and $\Omega^{0,\bullet}_{\pi^{-1}(D^c)}$ are flat over $\pi^{-1}\mathcal{O}_X$. Then, we obtain the $\pi^{-1}\mathcal{O}_X$-flatness of $\mathcal{O}^{\cdot,\bullet}_{\pi^{-1}(D^c)}$ and $\mathcal{O}^{\cdot,\bullet}_{\pi^{-1}(D^c)}$ by using Proposition 4.2.2. Thus, the proof of Proposition 4.2.4 is finished. \[\square\]

4.3. Nilsson type functions

4.3.1. C^{∞}-functions of Nilsson type. —

Let X, D and D^c be as in §4.2.1. We put $D^{(3)} := D^{(1)} \cup D^c$. We shall introduce a sheaf $\mathcal{A}^{\infty}_{\pi^{-1}(D^c)}$ on $\tilde{X}(D)$. First, let us consider the case $X = \Delta^c$, $D = \bigcup_{i=1}^{\ell} \{ z_i = 0 \}$ and $D^c = \bigcup_{i=t+1}^{m} \{ z_i = 0 \}$. Let $\mathcal{L} = I_1 \cup I_2$ be determined by $D^{(j)} = \bigcup_{i \in I_j} \{ z_i = 0 \}$ for $j = 1, 2$. Let \mathcal{L} denote the inclusion $X - D \hookrightarrow \tilde{X}(D)$. Let $\mathcal{C}^{\infty}_{\tilde{X}(D)}$ be the image of the naturally defined morphisms:

$$\mathcal{C}^{\infty}_{\tilde{X}(D)} \otimes \text{Nil}(z_i | i \in I_2) \longrightarrow j_* \mathcal{C}^{\infty}_{\tilde{X}-D^c}.$$

We can observe that they are independent of the choice of a coordinate system (z_1, \ldots, z_n). Hence, we obtain a globally defined sheaf $\mathcal{C}^{\infty}_{\tilde{X}(D)}$ on $\tilde{X}(D)$. It is also denoted by $\mathcal{C}^{\infty}_{\tilde{X}(D)}$. Put $\mathcal{A}^{\infty}_{\tilde{X}(D)} := \mathcal{C}^{\infty}_{\tilde{X}(D)} \otimes \mathcal{C}^{\infty}_{\tilde{X}(D)} \mathcal{C}^{\infty}_{\tilde{X}(D)}<D^{(3)}<D^{(2)}$.

We will prove the following theorem in §4.3.6. (More refined claims will be proved.)

Theorem 4.3.1. —

- $\mathcal{A}^{\infty}_{\tilde{X}(D)}$ is naturally a c-soft resolution of $\mathcal{A}^{\infty}_{\tilde{X}(D)}$ in the case $D^c = \emptyset$.
- The sheaves $\mathcal{A}^{\infty}_{\tilde{X}(D)}$ and $\mathcal{A}^{\infty}_{\tilde{X}(D)}$ are flat over $\pi^{-1}\mathcal{O}_X$.

Let $D^{(i)} = \bigcup_{j \in \Lambda_i} D^{(i)}_j (i = 1, 2)$ be the irreducible decomposition. Fix $k \in \Lambda_1 \cup \Lambda_2$. We put

$$E^{(i)} := \bigcup_{j \in \Lambda_i \setminus \{k\}} D^{(i)}_j \ (i = 1, 2).$$

We put $E := E^{(1)} \cup E^{(2)}$ and $E^{(3)} := D^{(3)}$. We have the naturally defined projection $\rho : \tilde{X}(D) \longrightarrow \tilde{X}(E)$. We will prove the following theorem in §4.3.7.

Theorem 4.3.2. — If $k \in \Lambda_1$, the following naturally defined morphism is an isomorphism:

$$\mathcal{A}^{\infty}_{\tilde{X}(E)} \longrightarrow \rho_* \mathcal{A}^{\infty}_{\tilde{X}(D)}.$$
If \(k \in \Lambda_2 \), the following naturally defined morphism is a quasi-isomorphism:

\[
\Omega^0_{\tilde{X}(E)} \otimes (\rho_k)^{-1} \xrightarrow{\cdot \circ (\rho_k)} \rho_{\Omega^0_{\tilde{X}(E)}}
\]

Corollary 4.3.3. — The natural morphism

\[
\Omega^0_{\tilde{X}(E)} \otimes (\rho_k)^{-1} \xrightarrow{\cdot \circ (\rho_k)} \rho_{\Omega^0_{\tilde{X}(E)}}
\]

is a quasi-isomorphism. In particular, \(R\pi_* A_{\tilde{X}(D)}^{\text{nil}} \cong O_X(D) \).

For the proof of the theorems, we may assume \(X = \Delta^n \) and \(D = \bigcup_{i=1}^m \{ z_i = 0 \} \) and \(D^o = \bigcup_{i=1}^m \{ z_i = 0 \} \), where \(1 \leq \ell \leq m \leq n \). We set \(D_i := \{ z_i = 0 \} \) for \(i = 1, \ldots, m \).

We use the notation in \(\S 4.1.1 \). For a subset \(J \subset \mathcal{J} \), we set \(\mathcal{J} := J \cup (\mathcal{M} \setminus \mathcal{J}) \).

4.3.2. Refinements. —

For any locally closed real analytic subset \(Z \subset \tilde{X}(D) \), we implicitly regard \(O_Z \) as a sheaf on \(\tilde{X}(D) \) in a natural way. For any \(I \cup J \subset \mathcal{J} \), let \(A_{\tilde{X}(D_i)}^{\text{nil}} \) denote the image of the following naturally defined morphism:

\[
O_{\tilde{X}(D_i)}^{\text{nil}} \otimes_{C[z_1, \ldots, z_\ell]} \text{Nil}(z_1, \ldots, z_\ell) \rightarrow O_{\tilde{X}(D_i)}^{\text{nil}} \otimes_{C[z_1, \ldots, z_\ell]} \text{Nil}(z_i | i \in I)
\]

In the case \(I = \emptyset \), it is \(A_{\tilde{X}(D_i)}^{\text{nil}} \). For \(I \cup J \subset \mathcal{J} \), let \(A_{\tilde{X}(D_i)}^{\text{nil}} \) denote the image of the following naturally defined morphism:

\[
O_{\tilde{X}(D_i)}^{\text{nil}} \otimes_{C[z_1, \ldots, z_\ell]} \text{Nil}(z_1, \ldots, z_\ell) \rightarrow \bigoplus_{j \in J} O_{\tilde{X}(D_i)}^{\text{nil}} \otimes_{C[z_1, \ldots, z_\ell]} \text{Nil}(z_i | i \in I)
\]

Here, \(I_j := I \cup \{ j \} \). In particular, \(A_{\tilde{X}(D_j)}^{\text{nil}} \) is the image of the following morphism:

\[
O_{\tilde{X}(D)}^{\text{nil}} \otimes_{C[z_1, \ldots, z_\ell]} \text{Nil}(z_1, \ldots, z_\ell) \rightarrow \bigoplus_{j \in J} O_{\tilde{X}(D_i)}^{\text{nil}} \otimes_{C[z_1, \ldots, z_\ell]} \text{Nil}(z_j)
\]

Let \(A_{\tilde{X}(D_i), T, N}^{\text{nil}} \) and \(A_{\tilde{X}(D_i), T, N}^{\text{nil}} \) be the sheaves obtained from \(\text{Nil}_{T, N}(z_1, \ldots, z_\ell) \) instead of \(\text{Nil}(z_1, \ldots, z_\ell) \). For \(T \subset T' \) and \(N \leq N' \), we have natural inclusions

\[
A_{\tilde{X}(D_i), T, N}^{\text{nil}} \subset A_{\tilde{X}(D_i), T', N'}^{\text{nil}} \subset A_{\tilde{X}(D_i), T', N'}^{\text{nil}}
\]

We have the following natural isomorphisms:

(23) \(A_{\tilde{X}(D_i), T, N}^{\text{nil}} \simeq \lim_{T \rightarrow T'} A_{\tilde{X}(D_i), T, N}^{\text{nil}} \)

Let \(q_{i} : \pi^{-1}(D_i) \rightarrow \tilde{D}_i(\partial D_i) \) denote the projection. Let \(\pi_I : \tilde{D}_i(\partial D_i) \rightarrow D_i \) be the real blow up. Then, we have

(24) \(A_{\tilde{X}(D_i), T, N}^{\text{nil}} = q_{i}^{-1} A_{\tilde{D}_i(\partial D_i), T, N}^{\text{nil}} \otimes_{C[z_1, \ldots, z_\ell]} \text{Nil}_{T, N}(z_i | i \in I) \)

(25) \(A_{\tilde{X}(D_i), T, N}^{\text{nil}} = q_{i}^{-1} A_{\tilde{D}_i(\partial D_i), T, N}^{\text{nil}} \otimes_{C[z_1, \ldots, z_\ell]} \text{Nil}_{T, N}(z_i | i \in I) \)
4.3. Nilsson Type Functions

4.3.3. Specialization. — Let us construct a morphism $A^{\text{nil}}_{\pi^{-1}(D)} \to A^{\text{nil}}_{\pi^{-1}(D)(J)}$ for any $I \sqcup J \subset \mathbb{L}$. First, let us construct $A^{\text{nil}}_{\tilde{X}(D)} \to A^{\text{nil}}_{\pi^{-1}(D)}$ in the case $D = D_1$. Let Φ denote the natural morphism $\Phi : \mathcal{O}_{\tilde{X}(D)} \otimes \text{Nil}(z_1) \to \tilde{j}_* \mathcal{O}_{X-D}$, where $\tilde{j} : X - D \to \tilde{X}(D)$.

Lemma 4.3.4. — Assume that $D = D_1$. Let $\mathcal{S} \subset \mathbb{C}$ be a finite subset such that the induced map $\mathcal{S} \to \mathbb{C}/\mathbb{Z}$ is injective. Assume that we are given $f = \sum_{\alpha \in \mathcal{S}} \sum_{j=0}^M f_{\alpha,j} \otimes \varphi_{\alpha,j}(z_1) \in \mathcal{O}_{\tilde{X}(D)} \otimes \text{Nil}(z_1)$ such that $\Phi(f) \in \mathcal{O}^{\leq D}_{\tilde{X}(D)}$. Then, we have $f_{\alpha,j} \in \mathcal{O}^{\leq D}_{\tilde{X}(D)}$. In particular, we have the well defined map $A^{\text{nil}}_{\tilde{X}(D)} \to A^{\text{nil}}_{\pi^{-1}(D)}$ in the case $D = \{z_1 = 0\}$.

Proof Let us consider the growth order of $f_{\alpha,j} z_1^\ell (\log z_1)^j$. For the polar coordinate system $z_1 = re^{\sqrt{-1}\theta}$, we have $z_1^\ell = \exp(\beta \log r - \gamma \theta + \sqrt{-1}(\gamma \log r + \beta \theta))$, where $\beta = \text{Re} \alpha$ and $\gamma = \text{Im} \alpha$. Let V be the set of $(\alpha, j) \in \mathcal{S} \times \mathbb{Z}_{\geq 0}$ such that $f_{\alpha,j}$ is not contained in $\mathcal{O}^{\leq D}_{\tilde{X}(D)}$. We will derive a contradiction by assuming $V \neq \emptyset$. For each $(\alpha, j) \in V$, there exists a unique integer $m(\alpha, j)$ such that (i) $h_{\alpha,j} := z_1^{-m(\alpha, j)} f_{\alpha,j} \in \mathcal{O}_{\tilde{X}(D)}$, (ii) $h_{\alpha,j|\pi^{-1}(D)}$ is not constantly 0. We set

$$\kappa := \max_{(\alpha, j) \in V} \{\text{Re} \alpha + m(\alpha, j)\}, \quad S := \{(\alpha, j) \in V \mid \text{Re} \alpha + m(\alpha, j) = \kappa\}.$$

For $(\alpha_1, j_1), (\alpha_2, j_2) \in S$, we have $\text{Re} \alpha_1 = \text{Re} \alpha_2$ and $m(\alpha_1, j_1) = m(\alpha_2, j_2)$. We also have $\text{Im} \alpha_1 \neq \text{Im} \alpha_2$ if $\alpha_1 \neq \alpha_2$. We obtain the following estimate for some $\epsilon > 0$:

$$\sum_{(\alpha, j) \in V} h_{\alpha,j|\pi^{-1}(D)} z_1^\alpha (\log z_1)^j = r^\kappa \left(\sum_{(\alpha, j) \in V} h_{\alpha,j|\pi^{-1}(D)} e^{-\text{Im} \alpha \theta + \sqrt{-1}(\text{Im} \alpha \log r + \text{Re} \alpha \theta)} (\log z_1)^j \right) = O(r^{\kappa + \epsilon})$$

Let us deduce that $h_{\alpha,j|\pi^{-1}(D)}$ are constantly 0 from (26). Assume the contrary. Let $Q \in \pi^{-1}(D)$ at which $h_{\alpha,j}(Q) \neq 0$ for one of $(\alpha, j) \in V$. We may assume $\theta(Q) = 0$. We obtain the following from (26):

$$\sum_{(\alpha, j) \in V} h_{\alpha,j}(Q) \cdot e^\sqrt{-1}\text{Im} \alpha \log r (\log r)^j = O(r^\epsilon)$$

But, for any $\delta > 0$, we can take $0 < r < \delta$ such that the amplitudes of the complex numbers

$$(-1)^j h_{\alpha,j}(Q) e^\sqrt{-1}\text{Im} \alpha \log r \quad (\alpha, j) \in V$$

are sufficiently close, which contradicts with (27). Hence, $h_{\alpha,j}(\alpha, j) \in V$ are constantly 0. Thus, we obtain Lemma 4.3.4. \(\square\)

Let us return to the general case. We take $\mathcal{S} \subset \mathbb{C}$ such that the induced map $\mathcal{S} \to \mathbb{C}/\mathbb{Z}$ is bijective. Let $q_i : (\mathcal{S} \times \mathbb{Z})^\ell \to \mathcal{S} \times \mathbb{Z}$ be the projection onto the i-th
component, and \(\pi_i : (S \times \mathbb{Z})^\ell \to (S \times \mathbb{Z})^{\ell-1} \) be the projection forgetting the \(i \)-th component. For a given
\[
\sum_{(\alpha,k) \in S^\ell \times \mathbb{Z}^\ell_0} A_{\alpha,k} \otimes \varphi_{\alpha,k} \in \mathcal{O}_{\tilde{X}(D)} \otimes \text{Nil}(z_1, \ldots, z_\ell),
\]
we set \(iF_{\beta,j} := \sum_{q_\ell(\alpha,k) = (\beta,j)} A_{\alpha,k} \cdot \varphi_{\pi_i(\alpha,k)}(z_j \mid j \neq i) \). Put \(i^c := \ell - \{i\} \). If \(\sum A_{\alpha,k} \cdot \varphi_{\alpha,k} \in \mathcal{O}_{\tilde{X}(D)\setminus \pi^{-1}(D(i))} \), we obtain \(iF_{\beta,j} \pi^{-1}(D_j) = 0 \) by applying Lemma 4.3.4 to \(\sum iF_{\beta,j} \cdot \varphi_{\beta,j}(z_i) \). It implies that the morphism
\[
\mathcal{O}_{\tilde{X}(D)} \otimes \text{Nil}(z_1, \ldots, z_\ell) \to \mathcal{O}_{\pi^{-1}(D_i)} \otimes \text{Nil}(z_1, \ldots, z_\ell) \to A_{\pi^{-1}(D_i)}^\text{nil}
\]
factors through \(A_{\tilde{X}(D)}^\text{nil} \). Hence, we have a well defined morphism \(A_{\tilde{X}(D)}^\text{nil} \to A_{\pi^{-1}(D_i)}^\text{nil} \).

By construction, it is an epimorphism. We also obtain that the following morphism factors through \(A_\pi^\text{nil}(\tilde{X}(D)) \):
\[
\mathcal{O}_{\tilde{X}(D)} \otimes \text{Nil}(z_1, \ldots, z_\ell) \to \mathcal{O}_{\pi^{-1}(D_i)} \otimes \text{Nil}(z_1, \ldots, z_\ell) \to A_{\pi^{-1}(D_i)}^\text{nil}
\]
Hence, we obtain the well defined morphism \(A_{\tilde{X}(D)}^\text{nil} \to A_{\pi^{-1}(D_i)}^\text{nil} \). We also obtain \(A_{\pi^{-1}(D_i),T,N}^\text{nil} \to A_{\pi^{-1}(D_i),T,N}^\text{nil} \). They are surjective by construction. By using (23), (24) and (25), we also obtain epimorphisms \(A_{\pi^{-1}(D_i),T,N}^\text{nil} \to A_{\pi^{-1}(D_i),T,N}^\text{nil} \) and \(A_{\pi^{-1}(D_i),T,N}^\text{nil} \to A_{\pi^{-1}(D_i),T,N}^\text{nil} \).

Lemma 4.3.5. — *We have the following:*
\[
A_{\pi^{-1}(D_i)}^\text{nil} \to A_{\pi^{-1}(D_i),T,N}^\text{nil} = \ker \left(A_{\pi^{-1}(D_i)}^\text{nil} \to A_{\pi^{-1}(D_i),T,N}^\text{nil} \right)
\]
\[
A_{\pi^{-1}(D_i)}^\text{nil} \to A_{\pi^{-1}(D_i),T,N}^\text{nil} = \ker \left(A_{\pi^{-1}(D_i),T,N}^\text{nil} \to A_{\pi^{-1}(D_i),T,N}^\text{nil} \right)
\]

Proof The implication \(\subset \) is clear. Let us prove the converse. First, we consider the case \(I = \emptyset \). Let \(f = \sum A_{\alpha,k} \varphi_{\alpha,k} \) be any section of \(\ker \left(A_{\pi^{-1}(D_i)}^\text{nil} \to A_{\pi^{-1}(D_i),T,N}^\text{nil} \right) \). Let us prove the following equality on \(\pi^{-1}(D_K - \partial D_K) \) for any subset \(K \subset \ell \) such that \(K \cap J \neq \emptyset \):
\[
(28) \quad \sum_{q_\ell(\alpha,k) = (\beta,j)} A_{\alpha,k|\pi^{-1}(D_K)} \prod_{i \not\in K} \varphi_{\alpha_i,k_i}(z_i) = 0
\]
We use an induction on \(|K| \). In the case \(|K| = 1 \), it follows from the assumption. Let \(K = K' \cup \{j\} \). Assume that we have already known (28) for \(K' \). By using Lemma 4.3.4, we obtain the claim for \(K \). As a special case of (28), we have \(A_{\alpha,k|\pi^{-1}(D_K)} = 0 \).

Note that the expression of \(f \) is not unique. We would like to replace \(A_{\alpha,k} \) such that the following holds:
\[
P(m) : A_{\alpha,k|\pi^{-1}(D_K)} = 0 \text{ if } |K| \geq m \text{ and } K \cap J \neq \emptyset.
\]
We use a descending induction on m. In the case $m = \ell$, it holds as was already proved. Assume that $P(m+1)$ holds. Take $K \subset \mathcal{F}$ such that $|K| = m$ and $K \cap J \neq \emptyset$.

We have

$$A_{\alpha,k|\pi^{-1}(D_K)} \prod_{i \in K} \varphi_{\alpha,k_i}(z_i) \in \mathcal{O}_{\pi^{-1}(D_K)}^<.$$

By a generalized Borel-Ritt theorem due to Majima and Sabbah, we can take $G_{\alpha,k} \in \mathcal{O}_{\pi^{-1}(D_K)}$ satisfying $G_{\alpha,k|\pi^{-1}(D_K)} = A_{\alpha,k|\pi^{-1}(D_K)} \prod_{i \in K} \varphi_{\alpha,k_i}(z_i)$. By (28), the following holds:

$$\sum_{q_K(\alpha,k) = (\beta,j)} G_{\alpha,k|\pi^{-1}(D_K)} = 0$$

We have the following equality:

$$f = \sum_{\alpha,k} \left(A_{\alpha,k} - \frac{G_{\alpha,k}}{\prod_{i \in K} \varphi_{\alpha,k_i}(z_i)} \right) \varphi_{\alpha,k}(z_1, \ldots, z_t)$$

$$+ \sum_{\beta,j} \left(\sum_{q_K(\alpha,k) = (\beta,j)} G_{\alpha,k} \right) \varphi_{\beta,j}(z_i | i \in K)$$

Note that $\sum_{q_K(\alpha,k) = (\beta,j)} G_{\alpha,k}$ is 0 on $\pi^{-1}(D_K) \cup \pi^{-1}(D(K^c))$. In particular, it is 0 on $\bigcup_{|K| = m} \pi^{-1}(D_K)$. By construction, $A_{\alpha,k} - G_{\alpha,k} \prod_{i \in K} \varphi_{\alpha,k_i}(z_i)^{-1}$ vanishes on $\pi^{-1}(D_K)$. Moreover, if $A_{\alpha,k|\pi^{-1}(D_L)} = 0$ for some $|L| = m$ with $L \supset J \neq \emptyset$, $A_{\alpha,k} - G_{\alpha,k} \prod_{i \in K} \varphi_{\alpha,k_i}(z_i)^{-1}$ also vanishes on $\pi^{-1}(D_L)$. Hence, by applying the above procedure to each K satisfying $|K| = m$ and $K \cap J \neq \emptyset$, we can arrive at $P(m)$.

The status $P(0)$ means $f = \sum A_{\alpha,k} \varphi_{\alpha,k}$ with $A_{\alpha,k} \in \mathcal{O}_{\pi^{-1}(D)}^<$, which implies that $f \in A_{\pi^{-1}(D)}^\text{nil}$. Thus, we are done in the case $I = \emptyset$. We can reduce the general case to the case $I = \emptyset$ by using (23), (24) and (25). Thus, the proof of Lemma 4.3.5 is finished.

4.3.4. A resolution. — For $I \subset J$, put $T(m, I, J) := \{ K \subset J \mid I \subset K, |K| = |I| + m + 1 \}$ for $m \geq 0$. We set

$$K^m \left(A_{\pi^{-1}(D_I(J))}^\text{nil} \right) := \bigoplus_{K \in T(m, I, J)} A_{\pi^{-1}(D_K)}^\text{nil}.$$

We obtain a complex $K^\bullet \left(A_{\pi^{-1}(D_I(J))}^\text{nil} \right)$ as in §2.1.4.

Lemma 4.3.6. — The 0-th cohomology of $K^\bullet \left(A_{\pi^{-1}(D_I(J))}^\text{nil} \right)$ is $A_{\pi^{-1}(D_I(J))}^\text{nil}$, and the higher cohomology sheaves are 0. A similar claim holds for $A_{\pi^{-1}(D_I(J)), T, N}^\text{nil}$.

Proof It is enough to consider the issue for $K^\bullet \left(A_{\pi^{-1}(D_I(J)), T, N}^\text{nil} \right)$. First, let us consider the case $I = \emptyset$. We use an induction on $|J|$ and the dimension of X. The
cases $|J| = 1$ or $\dim X = 1$ are clear. Let $J = J_0 \cup \{j\}$. Assume that the claim holds for J_0. We set $L_{T,N}^m := \bigoplus_{|K| = m + 1, j \in J} L_{\pi^{-1}(D_K),T,N}^{nil}$. We have the exact sequence:

$$0 \rightarrow L_{T,N}^m \rightarrow \mathcal{K}^\bullet \left(A_{\pi^{-1}(D_j),T,N}^{nil} \right) \rightarrow K^\bullet \left(A_{\pi^{-1}(D_j),T,N}^{nil} \right) \rightarrow 0$$

Let $q_j : \pi^{-1}(D_j) \rightarrow D_j(\partial D_j)$ and $\pi_j : D_j(\partial D_j) \rightarrow D_j$ be the projections. We have a natural isomorphism:

$$L_{T,N}^m \cong \text{Cone} \left(A_{\pi^{-1}(D_j),T,N}^{nil} \rightarrow q_j^{-1} \mathcal{K}^\bullet \left(A_{\pi^{-1}(D_j),T,N}^{nil} \right) \right) \left[z_j \cap C[z_j] \text{Nil}_{T,N}(z_j) \right]^{-1}$$

By the inductive assumption, we obtain the vanishing of the higher cohomology sheaves of $L_{T,N}^m$ and $K^\bullet \left(A_{\pi^{-1}(D_j),T,N}^{nil} \right)$. Hence, we obtain the vanishing of the higher cohomology of $K^\bullet \left(A_{\pi^{-1}(D_j),T,N}^{nil} \right)$. The calculation of the 0-th cohomology is easy. The general case can be easily reduced to the case $I = \emptyset$ by (23), (24) and (25).

4.3.5. The C^∞-version. — Let Y be a C^∞-manifold. For $I \cup J \subset \mathcal{L}$, let $C_{\pi^{-1}(D_J)}^{\infty \text{ nil} < D_J}$ denote the image of the following morphism:

$$C_{\pi^{-1}(D_J)}^{\infty < D_J} \times C[z_i | i \in J^c] \text{Nil}(z_i | i \in J^c) \rightarrow C_{\pi^{-1}(D_J \setminus \partial D_J) \times Y}^{\infty < D_J} \times C[z_i | i \in I] \text{Nil}(z_i | i \in I)$$

Let $C_{\pi^{-1}(D_J)}^{\infty \text{ nil} < D_J}$ be the image of the following morphism:

$$C_{\pi^{-1}(D_J) \times Y}^{\infty < D_J} \times C[z_i | i \in I] \text{Nil}(z_i, \ldots, z_\ell) \rightarrow \bigoplus_{j \in J} C_{\pi^{-1}(D_J \setminus \partial D_J) \times Y}^{\infty < D_J} \times C[z_i | i \in I] \text{Nil}(z_i | i \in I)$$

In particular, $C_{\pi^{-1}(D_J) \times Y}^{\infty \text{ nil} < D_J}$ is the image of the following morphism:

$$C_{\pi^{-1}(D_J) \times Y}^{\infty < D_J} \times C[z_i | i \in I] \text{Nil}(z_i, \ldots, z_\ell) \rightarrow \bigoplus_{j \in J} C_{\pi^{-1}(D_J \setminus \partial D_J) \times Y}^{\infty < D_J} \times C[z_j] \text{Nil}(z_j)$$

Similarly, $C_{\pi^{-1}(D_J) \times Y,T,N}^{\infty \text{ nil} < D_J}$ and $\text{Nil}_{T,N}(z_1, \ldots, z_\ell)$ denote the sheaves obtained from $\text{Nil}_{T,N}(z_1, \ldots, z_\ell)$. We have

$$C_{\pi^{-1}(D_J) \times Y,T,N}^{\infty \text{ nil} < D_J} = C_{\pi^{-1}(D_J) \times Y,T,N}^{\infty < D_J} \left[z_i | i \in I \right] \times C[z_i | i \in I] \text{Nil}_{T,N}(z_i | i \in I)$$

$$C_{\pi^{-1}(D_J) \times Y,T,N}^{\infty \text{ nil} < D_J} = C_{\pi^{-1}(D_J) \times Y,T,N}^{\infty < D_J} \left[z_i | i \in I \right] \times C[z_i | i \in I] \text{Nil}_{T,N}(z_i | i \in I)$$

By the argument in §4.3.3, we obtain the well defined surjective morphisms:

$$C_{\pi^{-1}(D_J) \times Y,T,N}^{\infty \text{ nil} < D_J} \rightarrow C_{\pi^{-1}(D_J) \times Y,T,N}^{\infty \text{ nil} < D_J}$$

$$C_{\pi^{-1}(D_J) \times Y,T,N}^{\infty \text{ nil} < D_J} \rightarrow C_{\pi^{-1}(D_J) \times Y,T,N}^{\infty \text{ nil} < D_J}$$

$$C_{\pi^{-1}(D_J) \times Y,T,N}^{\infty \text{ nil} < D_J} \rightarrow C_{\pi^{-1}(D_J) \times Y,T,N}^{\infty \text{ nil} < D_J}$$
By the argument in the proof of Lemma 4.3.5, we can prove that the kernels of the morphisms in (31) are $C^\infty \text{nil} < D(J)$ and $C^\infty \text{nil} \leq D(J)$, respectively.

We set $K^m \left(C^\infty \text{nil} \leq D^o \right)$ and $C^\infty \text{nil} \leq D^o$. We obtain a complex $K^\bullet \left(C^\infty \text{nil} \leq D^o \pi^{-1}(D(I)) \times Y \right)$. It is easy to see that the 0-th cohomology is $C^\infty \text{nil} \leq D^o \pi^{-1}(D(I)) \times Y$. By using an argument in the proof of Lemma 4.3.6, we can prove the vanishing of the higher cohomology. Similar claims hold for $K^\bullet \left(C^\infty \text{nil} \leq D^o \pi^{-1}(D(I)) \times Y \right)$.

4.3.6. Proof of Theorem 4.3.1. — In this subsection, we do not consider D^o. We put $\Omega^0_{X(D)} \otimes C^\infty_{X(D)} C^\infty \text{nil} < D(J) \pi^{-1}(D(I))$ and $\Omega^0_{X(D)} \otimes C^\infty_{X(D)} C^\infty \text{nil} \leq D(J) \pi^{-1}(D(I))$. We use the symbols $\Omega^0_{X(D)} \otimes C^\infty_{X(D)} C^\infty \text{nil} < D(J) \pi^{-1}(D(I))$ and $\Omega^0_{X(D)} \otimes C^\infty_{X(D)} C^\infty \text{nil} \leq D(J) \pi^{-1}(D(I))$ with a similar meaning. The following proposition implies the first claim of Theorem 4.3.1.

Proposition 4.3.7. — The complexes $\Omega^0_{X(D)} \otimes C^\infty_{X(D)} C^\infty \text{nil} < D(J)$ and $\Omega^0_{X(D)} \otimes C^\infty_{X(D)} C^\infty \text{nil} \leq D(J)$ are c-soft resolutions of the sheaves $A^\text{nil} < D(J) \pi^{-1}(D(I))$ and $A^\text{nil} \leq D(J) \pi^{-1}(D(I))$ respectively. Similar claims hold for $A^\text{nil} < D(J) \pi^{-1}(D(I)), T, N$ and $A^\text{nil} \leq D(J) \pi^{-1}(D(I)), T, N$.

Proof We use an induction on $\dim X$. In the case $\dim X = 0$, the claim is trivial. Let us prove the claim for $\pi^{-1}(D)$. For $I \neq \emptyset$, let $q_I : \pi^{-1}(D) \rightarrow D(I) \times Y$. We put $\text{Nil}_{T,N}(I) := \text{Nil}_{T,N}(z) | z \in I)$. By using the inductive assumption and a formal calculation as in Lemma 4.2.3, we can prove that the following morphisms are quasi-isomorphisms:

\[
q_I^{-1} A^\text{nil} < D(J) \pi^{-1}(D(I)) \times Y, Z \otimes \text{Nil}_{T,N}(I) \rightarrow q_I^{-1} \Omega^0_{X(D)} \otimes C^\infty_{X(D)} C^\infty \text{nil} < D(J) \pi^{-1}(D(I)) \times Y, Z \otimes \text{Nil}_{T,N}(I) \rightarrow \Omega^0_{X(D)} \otimes C^\infty_{X(D)} C^\infty \text{nil} < D(J) \pi^{-1}(D(I)) \times Y, Z \otimes \text{Nil}_{T,N}(I)
\]

It implies the claim for $A^\text{nil} < D(J) \pi^{-1}(D(I)) \times Y, Z$. We obtain the claim for $A^\text{nil} < D(J)$ from (32). For any subset $I \subset \mathcal{I} (I \text{ can be } \emptyset)$, by using the resolutions $K^\bullet \left(A^\text{nil} \pi^{-1}(D(I)) \right)$ and $K^\bullet \left(A^\text{nil} \pi^{-1}(D(K)) \right)$, we can reduce the claim for $A^\text{nil} \pi^{-1}(D(I)) \times Y, Z$ to the claims for $A^\text{nil} \pi^{-1}(D_K)$ ($I \subset K$). The claim for $A^\text{nil} \pi^{-1}(D(I), T, N$ can be obtained in a similar way. By using the exact sequences:

\[
0 \rightarrow \Omega^0_{X(D)} \rightarrow \Omega^0_{X(D)} \rightarrow \Omega^0_{X(D)} \rightarrow 0,
\]

\[
0 \rightarrow \mathcal{O} \rightarrow \mathcal{O} \rightarrow \mathcal{O} \rightarrow 0,
\]

we can prove the claim for $A^\text{nil} < D(J)$.
we obtain the claim for $A_{X(D)}^{\mathrm{nil}}$. By using the exact sequences

\[
0 \to \Omega^0\cdot <D(J)\rangle_{X(D)} \to \Omega^0\cdot \pi^{-1}(D(J))_{X} \to \Omega^0\cdot \pi^{-1}(D(J))_{X} \to 0,
\]

\[
0 \to A_{X(D)}^{\mathrm{nil}} <D(J)\rangle \to A_{X(D)}^{\mathrm{nil}} \pi^{-1}(D(J)) \to A_{X(D)}^{\mathrm{nil}} \pi^{-1}(D(J)) \to 0,
\]

we obtain the claim for $A_{X(D)}^{\mathrm{nil}} <D(J)\rangle$. The claims for $A_{X(D),T,N}^{\mathrm{nil}}$ and $A_{X(D),T,N}^{\mathrm{nil}} <D(J)\rangle$ can be obtained similarly.

The following proposition implies the second claim of Theorem 4.3.1.

Proposition 4.3.8. — $C_{\pi^{-1}(D_1)}^\infty <D(J)\rangle$, $C_{\pi^{-1}(D_1)}^\infty <D^o\rangle$, $A_{\pi^{-1}(D_1)}^{\mathrm{nil}} <D(J)\rangle$ and $A_{\pi^{-1}(D_1)}^{\mathrm{nil}} <D^o\rangle$ are flat over $\pi^{-1}\mathcal{O}_X$. Similar claims hold for $C_{\pi^{-1}(D_1),T,N}^\infty <D(J)\rangle$, $C_{\pi^{-1}(D_1),T,N}^\infty <D^o\rangle$, $A_{\pi^{-1}(D_1),T,N}^{\mathrm{nil}} <D(J)\rangle$, and $A_{\pi^{-1}(D_1),T,N}^{\mathrm{nil}} <D^o\rangle$ are also flat over $\pi^{-1}\mathcal{O}_X$.

Proof We have $C_{\pi^{-1}(D_1)}^\infty <D(J)\rangle = C_{\pi^{-1}(D_1)}^\infty <D^o\rangle \otimes \mathbb{C}_{\{z_i| i \in I\}} \text{Nil}(z_i| i \in I)$, which is flat over $\pi^{-1}\mathcal{O}_X$, according to Lemma 4.2.7. Then, we can prove Proposition 4.3.8 by the arguments in the last part of the proof of Proposition 4.2.4.

4.3.7. Proof of Theorem 4.3.2. — The first claim of Theorem 4.3.2 is obvious. We give a preliminary for the second claim. Put $X' := \mathbb{C} \times X$, $X_0' := \{0\} \times X$ and $D' := (\mathbb{C} \times X) \cup \{(0) \times X\}$. Let $J \subset \mathbb{L}$. Put $D' := \mathbb{C} \times D(J)$. Let $\pi_0 : \bar{X}' \to \bar{X}'$ and $\pi_1 : \mathbb{C} \times \bar{X}(D) \to \mathbb{C} \times X$ be the real blow up. We have a natural diffeomorphism $\pi_0^{-1}(X_0') \simeq S^1 \times \bar{X}(D)$. Let $\rho_0 : \bar{X}' \to \mathbb{C} \times \bar{X}(D)$ be the naturally induced map. We use the coordinate system $z = r e^{\bar{z} \theta}$ of \mathbb{C}. We have a natural inclusion:

\[
\begin{align*}
\tag{33}
C_{\pi^{-1}(X_0')}^\infty <D(J)\rangle \to C_{\pi^{-1}(X_0')}^\infty <D(J)\rangle
\end{align*}
\]

The operator $\bar{\omega}_2$ induces endomorphisms of $C_{\pi^{-1}(X_0')}^\infty <D(J)\rangle$ and $\rho_0^*(C_{\pi^{-1}(X_0')}^\infty <D(J)\rangle)$, which are denoted by F_1 and F_2, respectively.

Lemma 4.3.9. — The cokernel of F_i ($i = 1, 2$) are 0, and (33) induces an isomorphism $\text{Ker} F_1 \simeq \text{Ker} F_2$.

Proof It is easy to obtain the vanishing of $\text{Cok} F_1$ by a formal calculation. Let us prove the other claims. We take $S \subset \mathbb{C}$ such that (i) the induced map $S \to \mathbb{C}/\mathbb{Z}$ is bijective, (ii) $0 \in S$. According to the decomposition $\text{Nil}(z) = \bigoplus_{\alpha \in S} z^\alpha \mathbb{C}[z, z^{-1}] [\log z]$, we have the decomposition $C_{\pi_0^{-1}(X_0')}^\infty <D(J)\rangle = \bigoplus_{\alpha \in S} C_{\pi_0^{-1}(X_0')}^{\text{nil}} <D(J)\rangle$. Let $U \subset X(D) = \mathbb{C}$ be an open subset. Let f be a section of $C_{\pi_0^{-1}(X_0')}^\infty <D(J)\rangle$ on $S^1 \times U \subset \pi_0^{-1}(X_0')$ expressed as follows:

\[
f = \sum_{\beta, k} \sum_{n,j} f_{\beta, k, n, j} \varphi_{\beta, k} e^{-\sqrt{-1} \theta \alpha} z^{\alpha+n} (\log |z|^2)^j \quad (f_{\beta, k, n, j} \in C_{S^1 \times \bar{X}(D)})
\]
We have the following equality:

\[(34) \quad \pi_\partial f = \sum_{\beta,k,n,j} \left(\frac{\sqrt{-1}}{2} \partial_\theta + \frac{\alpha}{2} \right) f_{\beta,k,n,j} \varphi_{\beta,k} e^{-\sqrt{-1} \alpha \theta z^n} (\log |z|^2)^j \]

\[+ \sum_{\beta,k,n,j} f_{\beta,k,n,j} \varphi_{\beta,k} e^{-\sqrt{-1} \alpha \theta z^n} z^{\alpha+n} (\log |z|^2)^{j-1} \]

For any section \(g\) of \(C^\infty_{S^1 \times \tilde{X}(D)}\) on \(S^1 \times U\), we can solve the equation

\[\partial_\theta G - \sqrt{-1} \alpha G = g \quad (\alpha \neq 0)\]

in \(C^\infty_{S^1 \times \tilde{X}(D)}\). We remark \(\int_0^{2\pi} e^{-\sqrt{-1} \alpha \theta} g(\theta) d\theta = 0\). It is easy to obtain \(\text{Cok}(\pi_\partial) = 0\) and \(\text{Ker}(\pi_\partial) = 0\) in the part \(\alpha \neq 0\) by using (34). Let us consider the part \(\alpha = 0\). We use the filtration with respect to the order of \(\log |z|^2\). If we take \(\text{Gr}\) with respect to this filtration, the second term in (34) with \(\alpha = 0\) disappears. We obtain \(\mathcal{H}^0 \text{Gr}_j = \mathcal{H}^1 \text{Gr}_j\) for each \(j\), and they are represented by constants with respect to \(\theta\). Then, the second term in (34) induces \(\mathcal{H}^0 \text{Gr}_j \cong \mathcal{H}^1 \text{Gr}_{j-1}\) for \(j \geq 1\). Hence, we obtain the vanishing of the cokernel of \(\pi_\partial\), and the kernel is \(\mathcal{H}^0 \text{Gr}_0\). Then, the remaining claims of Lemma 4.3.9 are clear.

We have the following morphism of exact sequences:

\[0 \longrightarrow \Omega^0_{\tilde{X}(D)} \longrightarrow \mathcal{O}^0_{\tilde{X}(D)} \longrightarrow \Omega^0_{\tilde{X}(D)} \longrightarrow 0\]

\[\rho_0^* \Omega^0_{\tilde{X}(D)} \longrightarrow \rho_0^* \mathcal{O}^0_{\tilde{X}(D)} \longrightarrow \rho_0^* \mathcal{O}^0_{\tilde{X}(D)} \longrightarrow 0\]

The left vertical arrow is an isomorphism. According to Lemma 4.3.9, the right vertical arrow is a quasi-isomorphism. Thus, the central vertical arrow is also a quasi-isomorphism, which is the second claim of Theorem 4.3.2.

4.4. Push-forward

4.4.1. Preliminary

We shall freely use the notation in §4.1.5.2. Let \((t_1, \ldots, t_\ell)\) denote the standard coordinate system of \(\mathbb{C}^\ell\). We set \(D_0 := \bigcup_{i=1}^\ell \{ t_i = 0 \}\). We have \(\mathcal{C}^\ell(D_0) = \tilde{\mathbb{C}}^\ell\). Let \(X\) be any complex manifold. The projection \(X \times \tilde{\mathbb{C}}^\ell \longrightarrow X \times \mathbb{C}^\ell\) is denoted by \(\pi\). We put \(H_X := X \times \mathbb{C}^\ell\).

For any closed complex submanifold \(Y \subset X\), we have naturally defined morphisms:

\[(35) \quad \pi^{-1} \mathcal{O}_{Y \times \mathbb{C}^\ell} \otimes_{z^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell}} A_{X \times \mathbb{C}^\ell}^\text{mod} \longrightarrow i_* A_{Y \times \tilde{\mathbb{C}}^\ell}^\text{mod}\]

\[(36) \quad \pi^{-1} \mathcal{O}_{Y \times \mathbb{C}^\ell} \otimes_{z^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell}} A_{X \times \mathbb{C}^\ell}^\text{rapid} \longrightarrow i_* A_{Y \times \tilde{\mathbb{C}}^\ell}^\text{rapid}\]

Here, \(i : Y \times \tilde{\mathbb{C}}^\ell \longrightarrow X \times \tilde{\mathbb{C}}^\ell\) denotes the map induced by the inclusion \(Y \subset X\).
Lemma 4.4.1. — The morphisms (35) and (36) are isomorphisms.

Proof. Let us prove the claim for (35). The other case can be proved similarly. It is enough to argue it locally around each point of H_X. It is easy to reduce the case $X = \Delta^n = \{(z_1, \ldots, z_n) \mid |z_i| < 1\}$ and $Y = \{z_1 = 0\}$. Let F be the endomorphism of $A_{X \times \mathbb{C}^\ell}^{\text{mod}}$ given by $F(x) = z_1 x$. The complex $A_{X \times \mathbb{C}^\ell}^{\text{mod}} \xrightarrow{\sim} A_{X \times \mathbb{C}^\ell}^{\text{mod}}$ expresses $\pi^{-1}O_{X \times \mathbb{C}^\ell} \otimes_{\pi^{-1}O_{X \times \mathbb{C}^\ell}} A_{X \times \mathbb{C}^\ell}^{\text{mod}}$. Clearly, F is injective. It is enough to prove that the induced map $\rho : \text{Cok}(F) \rightarrow A_{X \times \mathbb{C}^\ell}^{\text{mod}}$ is an isomorphism. It is clearly surjective. Let f be any section of $A_{X \times \mathbb{C}^\ell}^{\text{mod}}$ on $U \subset X \times \mathbb{C}^\ell$ such that $\rho(f) = 0$. Then, $z_1^{-1}f$ naturally gives a homomorphic function on $U \setminus \pi^{-1}(H_X)$. Let us prove that $z_1^{-1}f$ is of moderate growth. We may assume that U is the product of a multi-sector

$$S_i = \{(t_1, \ldots, t_\ell) \mid \arg(t_i) - \theta_{0i} \leq \delta_{0i}, \quad 0 < |t_i| < r_{0i} \quad (i = 1, \ldots, \ell)\}$$

$(\theta_{0i} \in \mathbb{R}, \quad \delta_{0i} > 0, \quad r_{0i} > 0)$

in $(\mathbb{C}^*)^\ell$, and multi-discs $U_1 = \{|z_1| \leq r_1\}$ and $U = \{(z_2, \ldots, z_n) \mid |z_i| \leq r_2\}$. We put $U_i = \{r_i/2 \leq |z_i| \leq r_1\}$. On $U_1 \times U \times S_i$, we have $|z_1^{-1}f| \leq C \prod_{i=1}^\ell |t_i|^{-N}$. By using the maximum principle, we obtain the estimate of $z_1^{-1}f$ on $U_1 \times U \times S_i$. □

4.4.2. The push-forward of coherent O_X-modules. — For any $\pi^{-1}O_{X \times \mathbb{C}^\ell}$-module \mathcal{M}, we canonically have a standard $\pi^{-1}O_{X \times \mathbb{C}^\ell}$-flat resolution $N_\bullet(\mathcal{M})$ of \mathcal{M} given as follows. For any open subset $U \subset X \times \mathbb{C}^\ell$, let N_U be the free $\pi^{-1}(O_{X \times \mathbb{C}^\ell})|_U$-module generated by $\mathcal{M}(U)$, and let N'_U denote its 0-extension on $X \times \mathbb{C}^\ell$. It is naturally equipped with a morphism $a_U : N'_U \rightarrow \mathcal{M}$. We put $N_0(\mathcal{M}) := \bigoplus_U N_U$, and then $a := \bigoplus_U a_U$ gives a surjection $N_0(\mathcal{M}) \rightarrow \mathcal{M}$. By applying the same procedure to $\ker a$, we obtain a flat $\pi^{-1}O_{X \times \mathbb{C}^\ell}$-module $N_1(\mathcal{M})$ with a surjection $N_1(\mathcal{M}) \rightarrow \ker a$. By the standard inductive procedure, we obtain the flat resolution. In particular, we obtain a canonical flat resolution $N_\bullet(\mathcal{A}_{X \times \mathbb{C}^\ell}^{\text{mod}})$.

Let $\varphi : (Y, g) \rightarrow (X, f)$ be a morphism in Cat_ℓ. We have a canonical morphism $\varphi^{-1}_1 N_\bullet(A_{X \times \mathbb{C}^\ell}^{\text{mod}}) \rightarrow N_\bullet(A_{Y \times \mathbb{C}^\ell}^{\text{mod}})$. Hence, for any O_Y-sheaf \mathcal{M}, we obtain the following morphism:

$$\varphi^{-1}_1 N_\bullet(A_{X \times \mathbb{C}^\ell}^{\text{mod}}) \otimes_{\pi^{-1}O_{X \times \mathbb{C}^\ell}} \pi^{-1}(\Gamma g_*, M) \rightarrow N_\bullet(A_{Y \times \mathbb{C}^\ell}^{\text{mod}}) \otimes_{\pi^{-1}O_{X \times \mathbb{C}^\ell}} \pi^{-1}(\Gamma g_*, M).$$

It induces the following morphism:

$$\text{A}_{X \times \mathbb{C}^\ell}^{\text{mod}} \otimes_{\pi^{-1}O_{X \times \mathbb{C}^\ell}} \pi^{-1}(\Gamma f_*, R\varphi_! M) \rightarrow R\varphi_! (\text{A}_{Y \times \mathbb{C}^\ell}^{\text{mod}} \otimes_{\pi^{-1}O_{X \times \mathbb{C}^\ell}} \pi^{-1}(\Gamma g_*, M))$$

Similarly, we have the following natural morphism:

$$\text{A}_{X \times \mathbb{C}^\ell}^{\text{rapid}} \otimes_{\pi^{-1}O_{X \times \mathbb{C}^\ell}} \pi^{-1}(\Gamma f_*, R\varphi_! M) \rightarrow R\varphi_! (\text{A}_{Y \times \mathbb{C}^\ell}^{\text{rapid}} \otimes_{\pi^{-1}O_{X \times \mathbb{C}^\ell}} \pi^{-1}(\Gamma g_*, M))$$

Remark 4.4.2. — Because $\text{A}_{X \times \mathbb{C}^\ell}^{\text{rapid}}$ is flat over $\pi^{-1}O_{X \times \mathbb{C}^\ell}$ (Proposition 4.2.4), we may replace \otimes^L in (38) with \otimes. Later, we shall prove that $\text{A}_{X \times \mathbb{C}^\ell}^{\text{mod}}$ is also flat over $\pi^{-1}O_{X \times \mathbb{C}^\ell}$ (Theorem 4.6.1). □
Theorem 4.4.3. — Suppose that M is \mathcal{O}_Y-coherent and that φ is projective. Then, the morphisms (37) and (38) are isomorphisms.

Proof We shall give details for (37). Because the other case can be argued in a similar way, we give only an indication in the last. It is enough to consider the cases (i) φ is a closed immersion, (ii) φ is the projection $Y = \mathbb{P}^n \times X \rightarrow X$.

4.4.2.1. The case (i). — The following natural morphisms are isomorphisms:

\begin{equation}
\pi^{-1}(\Gamma_f \varphi_* M) \otimes_{\pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell}} A_{X \times \mathbb{C}^\ell}^{\text{mod}}
\simeq \pi^{-1}(\varphi_1 \Gamma g_* M) \otimes_{\pi^{-1} \varphi_1 \mathcal{O}_{Y \times \mathbb{C}^\ell}} \left(\pi^{-1} \varphi_1 \mathcal{O}_{Y \times \mathbb{C}^\ell} \otimes_{\pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell}} A_{X \times \mathbb{C}^\ell}^{\text{mod}} \right)
\simeq \widetilde{\varphi}_1 \left(\pi^{-1}(\Gamma g_* M) \otimes_{\pi^{-1} \mathcal{O}_{Y \times \mathbb{C}^\ell}} A_{Y \times \mathbb{C}^\ell}^{\text{mod}} \right)
\end{equation}

Here, we have used Lemma 4.4.1. Thus, we are done in the case (i).

4.4.2.2. The case (ii). — Let us consider the case where φ is the projection $Y = \mathbb{P}^n \times X \rightarrow X$. Let L be a line bundle on \mathbb{P}^n. Its pull back to $Y \times \mathbb{C}^\ell = \mathbb{P}^n \times X \times \mathbb{C}^\ell$ is denoted by L_Y.

Lemma 4.4.4. — Let $q > 0$. If $H^q(\mathbb{P}^n, L) = 0$, we have

\[R^q \widetilde{\varphi}_1 \left(\pi^{-1}(\Gamma g_* L_Y) \otimes_{\pi^{-1} \mathcal{O}_{Y \times \mathbb{C}^\ell}} A_{Y \times \mathbb{C}^\ell}^{\text{mod}} \right) = 0. \]

Proof We have the natural decomposition $\mathcal{I}_{Y \times \mathbb{C}^\ell} = \mathcal{I}_{\mathbb{P}^n} + \mathcal{I}_X + \mathcal{I}_{\mathbb{C}^\ell}$ into the differentials of the \mathbb{P}^n-direction, the X-direction and the \mathbb{C}^ℓ-direction. Let $\mathcal{B}_{Y \times \mathbb{C}^\ell}$ be the sheaf of C^∞-functions κ on $Y \times \mathbb{C}^\ell$ satisfying $(\mathcal{I}_X + \mathcal{I}_{\mathbb{C}^\ell}) \kappa = 0$ and the following condition locally:

(Moderate) : For any differential operator \mathcal{R} on \mathbb{P}^n, there exists $N > 0$ such that $\mathcal{R}(\kappa) = O\left(\prod_{i=1}^{\ell} |t_i|^{-N} \right)$.

We naturally have $A_{Y \times \mathbb{C}^\ell}^{\text{mod}} \subset \mathcal{B}_{Y \times \mathbb{C}^\ell}$. We set $\mathcal{B}_{Y \times \mathbb{C}^\ell}^0 := \mathcal{B}_{Y \times \mathbb{C}^\ell} \otimes \pi^{-1}(\Omega_{Y/X}^0 \cdot \mathcal{I}_X)$. The naturally defined morphism $A_{Y \times \mathbb{C}^\ell}^{\text{mod}} \rightarrow \mathcal{B}_{Y \times \mathbb{C}^\ell}^0$ is a quasi isomorphism, which can be proved by a standard argument for Dolbeault's lemma. Hence, we obtain the following $\widetilde{\varphi}_1$-soft resolution of $\pi^{-1}(L_Y) \otimes_{\pi^{-1} \mathcal{O}_{Y \times \mathbb{C}^\ell}} A_{Y \times \mathbb{C}^\ell}^{\text{mod}}$:

\[\pi^{-1}(L_Y) \otimes_{\pi^{-1} \mathcal{O}_{Y \times \mathbb{C}^\ell}} A_{Y \times \mathbb{C}^\ell}^{\text{mod}} \rightarrow \pi^{-1}(L_Y) \otimes_{\pi^{-1} \mathcal{O}_{Y \times \mathbb{C}^\ell}} \mathcal{B}_{Y \times \mathbb{C}^\ell}^0 \]

We take a hermitian metric h_L of L. We fix a Kähler metric $g_{\mathbb{P}^n}$ of \mathbb{P}^n. Let $\overline{\mathcal{D}}_L$ denote the formal adjoint of $\mathcal{D}_L : C^\infty(L \otimes \Omega_{\mathbb{P}^n}^0 \cdot \mathcal{I}_X) \rightarrow C^\infty(L \otimes \Omega_{\mathbb{P}^n}^{0,\bullet+1})$. Let Δ_L^0 denote the Laplacian on $\Gamma(\mathbb{P}^n, L \otimes \Omega_{\mathbb{P}^n}^{0,\bullet})$ associated to h_L and $g_{\mathbb{P}^n}$. Let $G^{0,\bullet}$ be the Green operator. By the assumption $H^q(\mathbb{P}^n, L) = 0$ for $q > 0$, we have $\Delta_L^{0,q} \circ G^{0,q} = G^{0,q} \circ \Delta_L^{0,q} = \text{id}$ if $q > 0$. We have $[G^{0,\bullet}, \mathcal{D}_L] = [G^{0,\bullet}, \overline{\mathcal{D}}_L] = 0$. In particular, if $\overline{\mathcal{D}}_L \tau = 0$ for $\tau \in \Gamma(\mathbb{P}^n, L \otimes \Omega_{\mathbb{P}^n}^{0,q}) (q > 0)$, we have $\overline{\mathcal{D}}_L G(\tau) = \tau$. Recall the following standard results for elliptic operators:
− $G^{0,q}$ are integral operators.
− For any non-negative integer m, there exists $C_m > 0$ such that $\|G^{0,q}(\tau)\|_{L^2_{m+2}} \leq C_m \|\tau\|_{L^2_n}$ for any $\tau \in \Gamma(\mathbb{P}^n, L \otimes \Omega^{0,q})$, where $\|\cdot\|_{L^2_n}$ denotes the Sobolev norm.

Let $P \in \pi^{-1}(H_X)$. Let \mathcal{U}_P be an open neighbourhood of P in $X \times \mathbb{C}^\ell$. Put $U_P^{\mathcal{O}} := \mathcal{U}_P \setminus \mathcal{O}(H_X)$. We have $\bar{\varphi}_1^{-1}(\mathcal{U}_P) = \mathbb{P}^n \times \mathcal{U}_P$. Let $\tau \in \Gamma(\mathbb{P}^n \times \mathcal{U}_P, \pi^{-1}L_Y \otimes_{\pi^{-1}\mathcal{O}_Y} \mathcal{B}^{0,q})$. We obtain a C^∞-function $G(\tau)$ on $\mathbb{P}^n \times \mathcal{U}_P$, and we have $\bar{\partial}_z G(\tau) = 0$ and $\partial_{\bar{z}} G(\tau) = G(\partial_{\bar{z}} \tau)$ for any local coordinate system (z_1, \ldots, z_n) on $X \times \mathbb{C}^\ell$. Then, by the estimate of the Green operator, we obtain that $G(\tau) \in \Gamma(\mathbb{P}^n \times \mathcal{U}_P, \pi^{-1}L_Y \otimes_{\pi^{-1}\mathcal{O}_Y} \mathcal{B}^{0,q})$. Moreover, if $\bar{\partial}_L \tau = 0$ and $q > 0$, we have $\bar{\partial}_L(\bar{\partial}_L G(\tau)) = \tau$. Thus, we obtain Lemma 4.4.5.

Lemma 4.4.5. We have $\bar{\varphi}_1 \ast A_{Y \times \mathbb{C}^\ell}^{\text{mod}} \simeq A_{X \times \mathbb{C}^\ell}^{\text{mod}}$, i.e., the morphism (37) is an isomorphism for \mathcal{O}_Y.

Proof Let $P \in \pi^{-1}(H_X)$. Let \mathcal{U}_P be a small neighbourhood of P in $X \times \mathbb{C}^\ell$. Let $\kappa \in \Gamma(\mathbb{P}^n \times \mathcal{U}_P, A_{Y \times \mathbb{C}^\ell}^{\text{mod}})$. Take any point Q of \mathbb{P}^n. We consider the inclusion $\iota_Q : \mathcal{U}_P \simeq \mathcal{U}_P \times \{Q\} \rightarrow \mathbb{P}^n \times \mathcal{U}_P$. We have $\mu := \iota_Q^{-1}(\kappa) \in \Gamma(\mathcal{U}_P, A_{X \times \mathbb{C}^\ell}^{\text{mod}})$. It is easy to deduce that $\kappa = \bar{\varphi}(\mu)$. Then, we obtain Lemma 4.4.5.

Lemma 4.4.6. Let L be a line bundle on \mathbb{P}^n. Then, (37) is an isomorphism for L_Y.

Proof We use an induction on n. In the case $n = 0$, the claim is trivial. Assume that we have already obtained the claim in the case $n - 1$. Let $L = \mathcal{O}_{\mathbb{P}^n}(m)$. If $m = 0$, the claim follows from Lemma 4.4.5. We fix a hyperplane $\mathbb{P}^n_{\infty} \subset \mathbb{P}^n$. If $m > 0$, we can reduce the claim to the case $m - 1$, by using the exact sequence $0 \rightarrow \mathcal{O}_{\mathbb{P}^n}(m - 1) \rightarrow \mathcal{O}_{\mathbb{P}^n}(m) \rightarrow \mathcal{O}_{\mathbb{P}^n_{\infty}}(m) \rightarrow 0$. If $m < 0$, we can reduce the claim to the case $m + 1$, by using the exact sequence $0 \rightarrow \mathcal{O}_{\mathbb{P}^n}(m) \rightarrow \mathcal{O}_{\mathbb{P}^n}(m + 1) \rightarrow \mathcal{O}_{\mathbb{P}^n_{\infty}}(m + 1) \rightarrow 0$.

Let us finish the proof in the case (ii). It is enough to prove that (37) is an isomorphism around any point of $X \times \mathbb{C}^\ell$, which we shall implicitly use. We may assume to have a resolution
\[
\begin{align*}
\cdots \rightarrow & \mathcal{Q}_p \rightarrow \mathcal{Q}_{p-1} \rightarrow \cdots \rightarrow \mathcal{Q}_1 \rightarrow \mathcal{Q}_0 \rightarrow 0
\end{align*}
\]
such that \mathcal{Q}_p are of the form $\bigoplus_{i=1}^{N_p} (L_{p,i})_Y$, where $L_{p,i}$ are line bundles on \mathbb{P}^n. By Lemma 4.4.6, the morphisms (37) for \mathcal{Q}_p are isomorphisms. Hence, (37) for M is also an isomorphism. Thus, the proof for (37) is finished.

Let us give an indication to prove that (38) is an isomorphism. We can argue the case (i) in the same way. In the case (ii), we replace the condition (Moderate) in the proof of Lemma 4.4.4 with the following:
(Rapid) : Let \(R \) be any differential operators on \(\mathbb{P}^n \). Then, \(R(\kappa) = O\left(\prod |t_i|^N \right) \)
for any \(N \).

Then, we can prove that (38) is an isomorphism in the case (ii). Thus, the proof of Theorem 4.4.3 is finished.

\[\square \]

4.5. Characterization by growth order

4.5.1. Statements. —

Theorem 4.5.1. Let \((X, f)\) be an object in \(\text{Cat}_\ell \).
- \(\text{Tor}_i^{\pi^{-1}} \mathcal{O}_{X \times \mathbb{C}^\ell} \left(\mathcal{A}^\text{mod}_{X \times \mathbb{C}^\ell}, \pi^{-1} \mathcal{O}_{f(X)} \right) = 0 \) for \(i \neq 0 \). Namely,
 \[
 \mathcal{A}^\text{mod}_{X \times \mathbb{C}^\ell} \otimes L^{\pi^{-1}} \mathcal{O}_{X \times \mathbb{C}^\ell} \overset{\approx}{\longrightarrow} \mathcal{A}^\text{mod}_{X \times \mathbb{C}^\ell} \otimes \pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell} \pi^{-1} \mathcal{O}_{f(X)}.
 \]
- Let \(\varphi : (Y, g) \to (X, f) \) be a projective birational morphism such that (i) \(D_Y \) is normal crossing, (ii) \(Y \setminus D_Y \cong X \setminus D_X \). For the naturally induced map \(\rho : Y(D_Y) \to X \times \mathbb{C}^\ell \), we have
 \[
 Rp_* \mathcal{A}^\text{mod}_{Y(D_Y)} \cong \mathcal{A}^\text{mod}_{X \times \mathbb{C}^\ell} \otimes \pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell} \pi^{-1} \mathcal{O}_{f(X)} \tag{40}
 \]
 \[
 Rp_* \mathcal{A}^\text{rapid}_{Y(D_Y)} \cong \mathcal{A}^\text{rapid}_{X \times \mathbb{C}^\ell} \otimes \pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell} \pi^{-1} \mathcal{O}_{f(X)} \tag{41}
 \]
- The support of \(\mathcal{A}^\text{mod}_{X \times \mathbb{C}^\ell} \otimes \pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell} \pi^{-1} \mathcal{O}_{f(X)} \) and \(\mathcal{A}^\text{rapid}_{X \times \mathbb{C}^\ell} \otimes \pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell} \pi^{-1} \mathcal{O}_{f(X)} \)
are \(\tilde{X}(f) \).

Remark 4.5.2. Note that \(\mathcal{A}^\text{rapid}_{X \times \mathbb{C}^\ell} \) is flat over \(\pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell} \), according to Proposition 4.2.4. The first claim of the theorem is a special case of the flatness of \(\mathcal{A}^\text{mod}_{X \times \mathbb{C}^\ell} \) over \(\pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell} \) (Theorem 4.6.1).

Let us state some consequences. We have the sheaves of algebras \(\mathcal{A}^\text{mod}_{X,f} \) and \(\mathcal{A}^\text{rapid}_{X,f} \) on \(\tilde{X}(f) \) determined by the following conditions:

\[
\widehat{\Gamma}_f \mathcal{A}^\text{mod}_{X,f} = \pi^{-1}(\mathcal{O}_{f(X)}) \otimes \pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell} \mathcal{A}^\text{mod}_{X \times \mathbb{C}^\ell}
\]
\[
\widehat{\Gamma}_f \mathcal{A}^\text{rapid}_{X,f} = \pi^{-1}(\mathcal{O}_{f(X)}) \otimes \pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell} \mathcal{A}^\text{rapid}_{X \times \mathbb{C}^\ell}
\]

Theorem 4.5.3. Let \((X, f) \in \text{Cat}_\ell \).
- For the inclusion \(j : X \setminus D_X \to \tilde{X}(f) \), the natural morphism \(\mathcal{A}^\text{mod}_{X,f} \to j_* \mathcal{O}_{X \setminus D_X} \) is a monomorphism. The image is \(\mathcal{A}^\text{mod}_{\tilde{X}(f)} \).
- The natural morphism \(\mathcal{A}^\text{rapid}_{X,f} \to j_* \mathcal{O}_{X \setminus D_X} \) is a monomorphism. The image is \(\mathcal{A}^\text{rapid}_{\tilde{X}(f)} \).
- In particular, if \(f \) is submersive, then we naturally have \(\mathcal{A}^\text{mod}_{X,f} \cong \mathcal{A}^\text{mod}_{\tilde{X}(D_X)} \) and \(\mathcal{A}^\text{rapid}_{X,f} \cong \mathcal{A}^\text{rapid}_{\tilde{X}(D_X)} \).
Proof It follows from the descriptions (40) and (41).

Theorem 4.4.3 can be reformulated in terms of $A^\text{mod}_{X(f)}$ and $A^\text{rapid}_{X(f)}$.

Theorem 4.5.4. — Let $\varphi : (Y, g) \rightarrow (X, f)$ be a projective morphism in Cat_ℓ. Let M be any coherent O_Y-module. Then, the following natural morphisms are isomorphisms:

\begin{align}
A^\text{mod}_{X(f)} \otimes_{\pi^{-1}O_X} \pi^{-1}R\varphi_* M &\simeq R\varphi_* \left(A^\text{mod}_{Y(g)} \otimes_{\pi^{-1}O_Y} \pi^{-1}M \right) \\
A^\text{rapid}_{X(f)} \otimes_{\pi^{-1}O_X} \pi^{-1}R\varphi_* M &\simeq R\varphi_* \left(A^\text{rapid}_{Y(g)} \otimes_{\pi^{-1}O_Y} \pi^{-1}M \right)
\end{align}

After the flatness results in Proposition 4.2.4 and Theorem 4.6.1 below, we may replace \otimes^L with \otimes in (42) and (43).

4.5.2. Proof of Theorem 4.5.1. — Let us begin with the simplest case.

Lemma 4.5.5. — Suppose that f is submersive. For the naturally induced closed immersion $\rho : \tilde{X}(D_X) \rightarrow X \times \mathbb{C}^\ell$, the following natural morphisms are isomorphisms:

\begin{align}
\pi^{-1}O_{\Gamma_f(X)} \otimes_{\pi^{-1}O_{X \times \mathbb{C}^\ell}} A^\text{mod}_{X \times \mathbb{C}^\ell} &\rightarrow \rho_* A^\text{mod}_{\tilde{X}(D_X)} \\
\pi^{-1}O_{\Gamma_f(X)} \otimes_{\pi^{-1}O_{X \times \mathbb{C}^\ell}} A^\text{rapid}_{X \times \mathbb{C}^\ell} &\rightarrow \rho_* A^\text{rapid}_{\tilde{X}(D_X)}
\end{align}

Proof It is enough to argue it locally around any point of H_X. We may assume $X = \{ (z_1, \ldots, z_n) \}$ and $f = (z_1, \ldots, z_\ell)$. Let $G : X \times \mathbb{C}^\ell \rightarrow \mathbb{C}^n \times \mathbb{C}^\ell$ be given by

$$G(z_1, \ldots, z_n, t_1, \ldots, t_\ell) = (z_1 - t_1, z_2 - t_2, \ldots, z_\ell - t_\ell, z_{\ell+1}, \ldots, z_n, t_1, \ldots, t_\ell).$$

Then, $G \circ \Gamma_f(z_1, \ldots, z_n) = (0, 0, z_{\ell+1}, \ldots, z_n, z_1, \ldots, z_\ell)$. By using G, it is easy to prove that the morphisms (44) and (45) are isomorphisms.

Let us consider the case where D_X is normal crossing. We have a naturally defined map $X \setminus D_X \rightarrow X \times (\mathbb{C}^*)^\ell$ as the graph. Let us observe that it is extended to $\rho_1 : \tilde{X}(D_X) \rightarrow X \times \tilde{\mathbb{C}}^\ell$. Let f_i be the composite of $f : X \rightarrow \mathbb{C}^\ell$ and the projection $\mathbb{C}^\ell \rightarrow \mathbb{C}$ onto the i-th component. It induced a map $g_i : X \setminus D_X \rightarrow \mathbb{C}^*$. It is enough to observe that it is extended to a map $\tilde{X}(D_X) \rightarrow \tilde{\mathbb{C}}$. Let P be any point of D_X. Because $f_i^{-1}(0)$ is contained in the normal crossing hypersurface D_X, we can take a holomorphic coordinate neighbourhood $(X_P; z_1, \ldots, z_n)$ around P such that $D_X = \bigcup_{i=1}^\ell \{ z_i = 0 \}$ and $f = \prod_{i=1}^\ell z_i^{m_i}$, where $m_i \geq 0$. Let $z_i = r_i e^{\sqrt{-1} \theta_i}$. Because the map $\tilde{X}(D_X) \rightarrow \mathbb{C}^*$ is described as $(r_1, e^{\sqrt{-1} \theta_1}, \ldots, r_\ell e^{\sqrt{-1} \theta_\ell}, z_{\ell+1}, \ldots, z_n) \mapsto \prod r_i^{m_i} e^{\sqrt{-1} m_i \theta_i}$, we obtain that $g_i|_{X_P \setminus D_X}$ is extended to $\tilde{X}_P(D_X \cap X_P) \rightarrow \tilde{\mathbb{C}}$. Then, the claim follows.
We have the naturally defined morphism:

\[(46) \quad A^{\text{mod}}_{X \times \mathbb{C}^\ell} \otimes \pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell} \rightarrow \rho_{1*} A^{\text{mod}}_{X(D_X)} \]

Proposition 4.5.6. — Suppose that $D_X := f^{-1}(D_0)$ is normal crossing. The morphism (46) is an isomorphism. Moreover, we have the following isomorphisms:

\[R \rho_{1*} A^{\text{mod}}_{X(D_X)} \simeq \rho_{1*} A^{\text{mod}}_{X(D_X)} \]

Proof In the proof, we omit to denote π^{-1}. We have the maps $\tilde{\Gamma}^{(1)}_f : \tilde{X}(D_X) \rightarrow \tilde{X}(D_X) \times \mathbb{C}^\ell$ and $\tilde{\Gamma}^{(2)}_f : \tilde{X}(D_X) \rightarrow \tilde{X}(D_X) \times \mathbb{C}^\ell$ induced by f. We have the projections:

\[
\nu_1 : \tilde{X}(D_X) \times \mathbb{C}^\ell \rightarrow X \times \mathbb{C}^\ell, \quad \nu_2 : \tilde{X}(D_X) \times \mathbb{C}^\ell \rightarrow \tilde{X}(D_X) \times \mathbb{C}^\ell.
\]

We set $D'_X := D_X \times \mathbb{C}^\ell$. According to §II.1.1 of [52], we have the following isomorphisms:

\[
R \nu_{1*} A^{\text{mod}}_{X(D_X) \times \mathbb{C}^\ell} \simeq A^{\text{mod}}_{X \times \mathbb{C}^\ell}(D'_X), \quad R \nu_{2*} A^{\text{mod}}_{X(D_X) \times \mathbb{C}^\ell} \simeq A^{\text{mod}}_{X(D_X) \times \mathbb{C}^\ell}(D'_X)
\]

Hence, we have the following natural isomorphisms:

\[(47) \quad R \nu_{1*} (A^{\text{mod}}_{X(D_X) \times \mathbb{C}^\ell} \otimes \mathcal{O}_{X \times \mathbb{C}^\ell} \mathcal{O}_{f}(X)) \simeq A^{\text{mod}}_{X \times \mathbb{C}^\ell}(D'_X) \otimes \mathcal{O}_{X \times \mathbb{C}^\ell} \mathcal{O}_{f}(X) \]

\[
\simeq A^{\text{mod}}_{X \times \mathbb{C}^\ell}(D'_X) \otimes \mathcal{O}_{X \times \mathbb{C}^\ell} \mathcal{O}_{f}(X) \simeq A^{\text{mod}}_{X \times \mathbb{C}^\ell}(D'_X) \mathcal{O}_{f}(X) \]

We also have the following:

\[(48) \quad R \nu_{2*} (A^{\text{mod}}_{X(D_X) \times \mathbb{C}^\ell} \otimes \mathcal{O}_{X \times \mathbb{C}^\ell} \mathcal{O}_{f}(X)) \simeq A^{\text{mod}}_{X \times \mathbb{C}^\ell}(D'_X) \mathcal{O}_{f}(X) \]

\[
\simeq A^{\text{mod}}_{X(D_X) \times \mathbb{C}^\ell} \mathcal{O}_{f}(X) \]

Lemma 4.5.7. — $\tilde{\Gamma}^{(2)}_f$ is a closed embedding, and that we have

\[(49) \quad A^{\text{mod}}_{X(D_X) \times \mathbb{C}^\ell} \mathcal{O}_{f}(X) \simeq A^{\text{mod}}_{X(D_X) \times \mathbb{C}^\ell} \mathcal{O}_{f}(X) \simeq \tilde{\Gamma}^{(2)}_f A^{\text{mod}}_{X(D_X)}.
\]

Proof For the expression $f = (f_1, \ldots, f_l)$, we define $G' : X \times \mathbb{C}^\ell \rightarrow X \times \mathbb{C}^\ell$ by $G'(P, t_1, \ldots, t_l) := (P, t_1 - f_1(P), \ldots, t_l - f_l(P))$. We have $G' \circ \Gamma_f(P) = (P, 0, \ldots, 0)$. Then, we can prove (49) by an induction on ℓ.

Lemma 4.5.8. — The support of $\text{Tor}^{\pi^{-1} \mathcal{O}_{X \times \mathbb{C}^\ell}}(A^{\text{mod}}_{X(D_X) \times \mathbb{C}^\ell}, \pi^{-1} \mathcal{O}_{f}(X))$ is contained in $\tilde{\Gamma}^{(1)}_f(\tilde{X}(D_X))$.

Proof Let U denote an ℓ-dimensional vector space with a basis e_1, \ldots, e_ℓ. We set $C^{k-\ell} := \bigwedge^k U \otimes \mathcal{O}_{X \times \bar{c}}$. Let $\partial : C^m \to C^{m+1}$ be given by $\partial \alpha = \sum (t_i - f_i) e_i \wedge \alpha$. Then, we obtain a complex of $\mathcal{O}_{X \times \bar{c}}$-modules C^*, and it gives a free resolution of $\mathcal{O}_{X \times \bar{c}}$-module $\mathcal{O}_{\Gamma_f(X)}$. If $Q \in \bar{X}(D_X) \times \bar{c}$ is not contained in $\bar{\Gamma}_f^{(1)}(X)$, then one of $t_i - f_i$ are invertible in $A^{\text{mod}}_{\bar{X}(D_X) \times \bar{c}}$ around Q. Hence, the complex $A^{\text{mod}}_{\bar{X}(D_X) \times \bar{c}} \otimes C^*$ is acyclic around Q. It implies the claim of Lemma 4.5.8.

Note that ν_2 induces a homeomorphism $\bar{\Gamma}_f^{(1)}(X) \simeq \bar{\Gamma}_f^{(2)}(X)$. By Lemma 4.5.8, we obtain that

$$
R^p \nu_2_* \text{Tor}_j \left(\pi^{-1} \mathcal{O}_{X \times c}, \mathcal{O}_{\Gamma_f(X)} \right) = 0
$$

for $p \neq 0$. By applying the argument of the spectral sequence with (49) to (48), we obtain that

$$
\text{Tor}_j \left(\pi^{-1} \mathcal{O}_{X \times c}, \mathcal{O}_{\Gamma_f(X)} \right) = 0
$$

for $j \neq 0$, i.e., $A^{\text{mod}}_{\bar{X}(D_X) \times \bar{c}} \otimes L \mathcal{O}_{X \times c} \simeq A^{\text{mod}}_{\bar{X}(D_X) \times \bar{c}} \otimes \mathcal{O}_{X \times c} \simeq A^{\text{mod}}_{\bar{X}(D_X) \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)}$ on $\bar{X}(D_X) \times \bar{c}$. We also obtain an isomorphism of sheaves on $\bar{X}(D_X) \simeq \bar{\Gamma}_f^{(i)}(X)$:

$$
A^{\text{mod}}_{\bar{X}(D_X) \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)} \simeq A^{\text{mod}}_{\bar{X}(D_X) \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)}
$$

From (47), we obtain

$$
R^p \rho_1_!(A^{\text{mod}}_{\bar{X}(D_X) \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)}) \simeq A^{\text{mod}}_{\bar{X}(D_X) \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)}.
$$

Note $R^p \rho_4_*(A^{\text{mod}}_{\bar{X}(D_X) \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)}) = 0$ unless $p \geq 0$, and the p-th cohomology sheaf of $A^{\text{mod}}_{\bar{X}(D_X) \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)}$ is 0 unless $p \leq 0$. Hence, (50) implies the claims of Proposition 4.5.6.

Proposition 4.5.9. Suppose that D_X is normal crossing. Then, the natural map

$$
A^{\text{rapid}}_{X \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)} \simeq \rho_1_!(A^{\text{rapid}}_{\bar{X}(D_X) \times \bar{c}})
$$

is an isomorphism. Moreover, we have $R^p \rho_1_! A^{\text{rapid}}_{\bar{X}(D_X) \times \bar{c}} \simeq R^p \rho_1_! A^{\text{rapid}}_{\bar{X}(D_X) \times \bar{c}}$.

Proof It is proved by the arguments in the proof of Proposition 4.5.6. We omit to denote π^{-1}. We have the following isomorphisms:

$$
R^p \rho_1_! A^{H_X \leq D_X}_{\bar{X}(D_X) \times \bar{c}} \simeq A^{H_X \leq D_X}_{X \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)} \simeq A^{D_X \leq H_X}_{X \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)}.
$$

Hence, we have the following natural isomorphisms:

$$
R^p \rho_1_! (A^{H_X \leq D_X}_{\bar{X}(D_X) \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)}) \simeq A^{H_X \leq D_X}_{X \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)}
$$

(51)

$$
A^{H_X \leq D_X}_{X \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)} \simeq A^{D_X \leq H_X}_{X \times \bar{c}} \otimes \mathcal{O}_{\Gamma_f(X)}.
$$

(51)
Proposition 4.5.9 follows from (51).

4.5.3. Complement for the sheaf of Nilsson type functions (Appendix). —

Let us finish the proof of Theorem 4.5.1. Let \((X, f)\) be any object in \(\text{Cat}_\ell\). We take any projective birational morphism \(\varphi : (Y, g) \to (X, f)\) such that (i) \(D_Y\) is normal crossing, (ii) \(Y \setminus D_Y \simeq X \setminus D_X\). We set \(D'_Y := D_Y \times \mathbb{C}^\ell\) and \(D'_X := D_X \times \mathbb{C}^\ell\). We have \(R\varphi_* \mathcal{O}_Y(*D_Y) \simeq \mathcal{O}_X(*D_X)\). By using Theorem 4.4.3, we obtain

\[
R\varphi_1 \left(A_{\text{mod}}^\text{\mod} \otimes_{\mathcal{O}_X} \pi^{-1} \Gamma_g(\mathcal{O}_Y) \right) \simeq A_{\text{mod}}^\text{\mod} \otimes_{\mathcal{O}_X} \pi^{-1} \Gamma_g(\mathcal{O}_X) \simeq A_{\text{mod}}^\text{\mod} \otimes_{\mathcal{O}_X} \pi^{-1} \Gamma_g(Y).
\]

We also have

\[
A_{\text{mod}}^{\text{\mod}} \otimes_{\mathcal{O}_X} \pi^{-1} \Gamma_f(\mathcal{O}_X) \simeq A_{\text{mod}}^{\text{\mod}} \otimes_{\mathcal{O}_X} \pi^{-1} \Gamma_f(Y).
\]

We obtain \(R\varphi_1 \left(A_{\text{mod}}^\text{\mod} \otimes_{\mathcal{O}_X} \pi^{-1} \Gamma_f(\mathcal{O}_X) \right) \approx A_{\text{mod}}^\text{\mod} \otimes_{\mathcal{O}_X} \pi^{-1} \Gamma_f(Y)\). It implies that the claims for \(A_{\text{mod}}\) in Theorem 4.5.1. The claims for \(A_{\text{rapid}}\) can be proved similarly.

4.5.3. Complement for the sheaf of Nilsson type functions (Appendix). —

Let us consider an analogue for the sheaves of Nilsson type functions. We restrict ourselves to the case \(\ell = 1\). Let \(A_{\text{nil}}^{\text{\nil}}\) denote the sheaf of holomorphic functions of Nilsson type on \(X \times \mathbb{C}^\ell\).
Lemma 4.5.10. — For any complex manifold \(i : (Y, g) \subset (X, f) \) in \(\text{Cat}_1 \), the naturally defined morphism
\[
A_{X \times \mathbb{C}}^{\text{nil}} \otimes L_{\pi^{-1} \mathcal{O}_{X \times \mathbb{C}}} \pi^{-1} \mathcal{O}_{Y \times \mathbb{C}} \rightarrow i_* A_{Y \times \mathbb{C}}^{\text{nil}}
\]
is an isomorphism.

Proof As in Lemma 4.4.1, we have an isomorphism \(A_{X \times \mathbb{C}}^{\text{rapid}} \otimes L_{\mathcal{O}_{X \times \mathbb{C}}} \mathcal{O}_{Y \times \mathbb{C}} \simeq A_{Y \times \mathbb{C}}^{\text{rapid}} \). We can check \(A_{\pi^{-1}(H_X)}^{\text{nil}} \otimes L_{\mathcal{O}_{H_X}} \mathcal{O}_{H_Y} \simeq A_{\pi^{-1}(H_Y)}^{\text{nil}} \) directly. Then, the claim of the lemma follows.

Let \(\varphi : (Y, g) \rightarrow (X, f) \) be a morphism in \(\text{Cat}_1 \). For any \(\mathcal{O}_Y \)-coherent sheaf \(M \), we have the following naturally defined morphism
\[
(55) \quad A_{X \times \mathbb{C}}^{\text{nil}} \otimes L_{\pi^{-1} \mathcal{O}_{X \times \mathbb{C}}} \pi^{-1}(\Gamma_f R\varphi_* M) \rightarrow R\varphi_1^* \left(A_{Y \times \mathbb{C}}^{\text{nil}} \otimes L_{\pi^{-1} \mathcal{O}_{Y \times \mathbb{C}}} \pi^{-1} \Gamma_g M \right).
\]

Proposition 4.5.11. — Suppose that \(M \) is \(\mathcal{O}_X \)-coherent, and that \(\varphi \) is projective. Then, the morphism (55) is an isomorphism.

Proof By Theorem 4.4.3, we have an isomorphism
\[
A_{X \times \mathbb{C}}^{\text{rapid}} \otimes L_{\pi^{-1} \mathcal{O}_{X \times \mathbb{C}}} \pi^{-1}(\Gamma_f R\varphi_* M) \simeq R\varphi_1^* \left(A_{Y \times \mathbb{C}}^{\text{rapid}} \otimes L_{\pi^{-1} \mathcal{O}_{Y \times \mathbb{C}}} \pi^{-1} \Gamma_g M \right).
\]

We also have the following formal isomorphism:
\[
A_{\pi^{-1}(H_X)}^{\text{nil}} \otimes L_{\pi^{-1} \mathcal{O}_{X \times \mathbb{C}}} \pi^{-1}(\Gamma_f R\varphi_* M) \simeq R\varphi_1^* \left(A_{\pi^{-1}(H_Y)}^{\text{nil}} \otimes L_{\pi^{-1} \mathcal{O}_{Y \times \mathbb{C}}} \pi^{-1} \Gamma_g M \right).
\]

Then, the claim of the proposition follows.

Theorem 4.5.12. — Let \((X, f) \) be an object in \(\text{Cat}_1 \). Let \(\varphi : (Y, g) \rightarrow (X, f) \) be a projective birational morphism such that (i) \(D_Y \) is normal crossing, (ii) \(Y \setminus D_Y \simeq X \setminus D_X \). For the naturally induced map \(\rho : Y(D_Y) \rightarrow X \times \mathbb{C} \), we have
\[
R\rho_* A_{Y(D_Y)}^{\text{nil}} \simeq A_{X \times \mathbb{C}}^{\text{nil}} \otimes L_{\pi^{-1} \mathcal{O}_{X \times \mathbb{C}}} \pi^{-1} \mathcal{O}_{\Gamma_f(X)}.
\]

Proof As in the proof of Theorem 4.5.1, it is enough to consider the case where \(\varphi = \text{id} \). We use the notation in the proof of Proposition 4.5.6. We have the isomorphism \(R\rho_1^* A_{X(D_X) \times \mathbb{C}}^{\text{nil}} \simeq A_{X \times \mathbb{C}}^{\text{nil}}(* D'_X) \). Hence, we have the following natural isomorphism
\[
R\rho_1^* \left(A_{X(D_X) \times \mathbb{C}}^{\text{nil}} \otimes L_{\mathcal{O}_{X \times \mathbb{C}}} \mathcal{O}_{\Gamma_f(X)} \right) \simeq A_{X \times \mathbb{C}}^{\text{nil}} \otimes L_{\mathcal{O}_{X \times \mathbb{C}}} \mathcal{O}_{\Gamma_f(X)}.
\]

We have the naturally defined morphism \(\overline{A}_{X(D_X) \times \mathbb{C}}^{\text{nil}} \otimes L_{\mathcal{O}_{X \times \mathbb{C}}} \mathcal{O}_{\Gamma_f(X)} \rightarrow \overline{\Gamma}_f^1 A_{X(D_X)}^{\text{nil}} \). It is enough to prove that the following induced morphism is an isomorphism:
\[
(56) \quad R\rho_1^* \left(\overline{A}_{X(D_X) \times \mathbb{C}}^{\text{nil}} \otimes L_{\mathcal{O}_{X \times \mathbb{C}}} \mathcal{O}_{\Gamma_f(X)} \right) \rightarrow R\rho_1^* \left(\overline{\Gamma}_f^1 A_{X(D_X)}^{\text{rapid}} \right).
\]

We have already known that the following is an isomorphism, by Proposition 4.5.9:
\[
R\rho_1^* \left(\overline{A}_{X(D_X) \times \mathbb{C}}^{\text{rapid}} \otimes L_{\mathcal{O}_{X \times \mathbb{C}}} \mathcal{O}_{\Gamma_f(X)} \right) \rightarrow R\rho_1^* \left(\overline{\Gamma}_f^1 A_{X(D_X)}^{\text{rapid}} \right).
\]
Let $D_X = \bigcup_{i \in \Lambda} D_i$ be the irreducible decomposition. For any $I \subset \Lambda$, we set $D_{i0} := \bigcap_{i \in I} \{ D_i \times \{0\} \}$. To prove that (56) is an isomorphism, it is enough to prove that the following natural morphisms are isomorphisms:

$$R\mu_{1*} A^{\leq \partial D_{i0}}_{\pi^{-1}(D_{i0})} \otimes_{O_{X \times \mathbb{C}}} O_{\Gamma f(X)} \rightarrow R\nu_{1*} \bar{\Gamma}^{(1)}_{g*} A^{\leq \partial D_{i}}_{\pi^{-1}(D_{i})}$$

It is enough to consider the issue locally around any point of $D_X \times \{0\}$. We may assume that $X = \Delta^n$, $D_X = \bigcup_{i=1}^{\ell} \{ z_i = 0 \}$ and $f = \prod_{i=1}^{\ell} z_i^{m_i}$.

Lemma 4.5.13. — We may assume that $g.c.d.(m_i | i \in I) = 1$.

Proof Let $p := g.c.d.(m_i | i \in I)$. We set $X' := \Delta^n$ and $D' := \bigcup_{i=1}^{\ell} \{ w_i = 0 \}$. We define $D_I' := \bigcap_{i \in I} \{ w_i = 0 \}$. On X', we set $g := \prod_{i \in I} z_i^{m_i} \times \prod_{i \notin I} z_i^{m_i/p}$. We define $\psi : X \rightarrow X'$ by $z_i \mapsto z_i^p (i \in I)$ and $z_i \mapsto z_i (i \notin I)$. We have $f = g \circ \psi$. The map ψ gives $D_I \simeq D_I'$ and $D_I'(\partial D_I) \simeq \partial(D_I')$. Let $\bar{\Gamma}^{(1)}_g : \bar{X}'(D') \rightarrow \bar{X}'(D') \times \mathbb{C}$ and $\nu_g' : \bar{X}'(D') \times \mathbb{C} \rightarrow X' \times \mathbb{C}$ be given similarly to $\bar{\Gamma}^{(1)}$ and ν_I. We have the following natural commutative diagram of the sheaves on $\bar{D}_I(\partial D_I)$:

$$R\nu_{1*} A^{\leq \partial D_{i0}}_{\pi^{-1}(D_{i0})} \otimes_{O_{X \times \mathbb{C}}} O_{\Gamma f(X)} \rightarrow R\nu_{1*} \bar{\Gamma}^{(1)}_{g*} A^{\leq \partial D_{i}}_{\pi^{-1}(D_{i})}$$

$$\simeq$$

$$R\nu_{1*} A^{\leq \partial D_{i0}}_{\pi^{-1}(D_{i0})} \otimes_{O_{X' \times \mathbb{C}}} O_{\Gamma g(X')} \rightarrow R\nu_{1*} \bar{\Gamma}^{(1)}_{g*} A^{\leq \partial D_{i}}_{\pi^{-1}(D_{i})}$$

It is easy to check that the vertical arrows are isomorphisms. Then, we obtain the claim of Lemma 4.5.13. \(\square\)

Let $\pi_1 : \bar{X}(D_X) \rightarrow X$, $\pi_2 : \bar{X}(f) \rightarrow X$ and $\pi : \bar{X}(D_X) \times \mathbb{C} \rightarrow X \times \mathbb{C}$ be the projections. We have

$$\pi_1^{-1}(D_I) \simeq \bar{D}_I(\partial D_I) \times (S^1)^{|I|}, \quad \pi_1^{-1}(D_{i0}) \simeq \bar{D}_I(\partial D_I) \times (S^1)^{|I|+1}, \quad \pi_2^{-1}(D_I) \simeq D_I \times S^1.$$

We decompose the map $\nu_1|_{\pi^{-1}(D_{i0})} : \pi^{-1}(D_{i0}) \rightarrow \pi_2^{-1}(D_I)$ into

$$\bar{D}_I(\partial D_I) \times (S^1)^{|I|+1} \xrightarrow{\mu_1} \bar{D}_I(\partial D_I) \times S^1 \xrightarrow{\mu_2} D_I \times S^1.$$

To prove that (57) are isomorphisms, it is enough to prove that

$$R\mu_{1*} A^{\leq \partial D_{i0}}_{\pi^{-1}(D_{i0})} \otimes_{O_{X \times \mathbb{C}}} O_{\Gamma f} \rightarrow R\mu_{1*} \bar{\Gamma}^{(1)}_{g*} A^{\leq \partial D_{i}}_{\pi^{-1}(D_{i})}$$

is an isomorphism.

We have the following expression:

$$A^{\leq \partial D_{i0}}_{\pi^{-1}(D_{i0})} \simeq \lim_{T,N} \left(A^{\partial D_I}_{D_I(\partial D_I), T, N} [t, z_i | i \in I] \otimes_{\mathbb{C}[t, z_i | i \in I]} \text{Nil}(t, z_i | i \in I) \right)$$
By the argument in Lemma 4.3.9, or by a direct computation of the cohomology of the sheaves on the fiber of \(\mu_1 \), we obtain
\[
R\mu_1_* A^{<\partial D_I}_{\pi^{-1}(D_I)} \simeq \lim_{T,N} \left(A^{<\partial D_I}_{\tilde{D}_I(\partial D_I),T,N} \left[t, z_i | i \in I \right] \otimes \mathbb{C}[t] \right)
\]
Hence, we obtain the following natural isomorphism:
\[
R\mu_1_* A^{<\partial D_I}_{\pi^{-1}(D_I)} \otimes O_{X \times \mathbb{C}} \simeq \lim_{T,N} \left(A^{<\partial D_I}_{\tilde{D}_I(\partial D_I),T,N} \left[z_i | i \in I \right] \otimes \mathbb{C}[t] \right)
\]
Here, \(t \) acts as \(f \) on \(A^{<\partial D_I}_{\tilde{D}_I(\partial D_I),T,N} \left[z_i | i \in I \right] \). We have the following expression:
\[
A^{<\partial D_I}_{\tilde{D}_I(\partial D_I),T,N} \simeq \lim_{T,N} \left(A^{<\partial D_I}_{\tilde{D}_I(\partial D_I),T,N} \left[z_i | i \in I \right] \otimes \mathbb{C}[z_i | i \in I] \right)
\]
We take \(T_0 \subset \mathbb{C} \) such that \(T_0 \rightarrow \mathbb{C}/\mathbb{Z} \) is bijective. We have the decomposition
\[
\text{Nil}(z_i | i \in I) = \bigoplus_{\alpha \in T_0} z^\alpha \mathbb{C}[z_i, \log z_i | i \in I]
\]
We have the corresponding decomposition:
\[
A^{<\partial D_I}_{\tilde{D}_I(\partial D_I),T,N} \left[z_i | i \in I \right] \otimes \mathbb{C}[z_i | i \in I] \text{Nil}(z_i | i \in I) = \bigoplus_{\alpha \in T_0} A^{<\partial D_I}_{\tilde{D}_I(\partial D_I),T,N} \left[z_i | i \in I \right] z^\alpha \otimes \mathbb{C}[\log z_i | i \in I]
\]
Recall \(f = \prod_{i=1}^\ell z_i^{m_i} \) with g.c.d. \((m_i | i \in I) = 1\). Under the assumption, the map \(\mathbb{C}/\mathbb{Z} \rightarrow (\mathbb{C}/\mathbb{Z})^\ell \) given by \(\beta \rightarrow (\beta m_i | i \in I) \) is injective. We have the subsheaf
\[
\bigoplus_{\beta \in T_0} A^{<\partial D_I}_{\tilde{D}_I(\partial D_I),T,N} \left[z_i | i \in I \right] \prod_{i \in I} z_i^{\beta m_i} \otimes \mathbb{C}[\log z_i | i \in I]
\]
Let \(Q \) be the quotient of (60) by (61). Note that the fibers of \(\mu_1 \circ \tilde{\Gamma}_f^{(1)} \) are connected. By a direct computation of the sheaves on the fibers of \(\mu_1 \circ \tilde{\Gamma}_f^{(1)} \), we obtain the push-forward of \(Q \) by \(\mu_1 \circ \tilde{\Gamma}_f^{(1)} \) is 0. Moreover, we obtain that the push-forward of (61) is naturally isomorphic to
\[
\bigoplus_{\beta \in T_0} A^{<\partial D_I}_{\tilde{D}_I(\partial D_I),T,N} \left[z_i | i \in I \right] \prod_{i \in I} z_i^{\beta m_i} \left(\log \left(\prod_{i=1}^\ell z_i^{m_i} \right) \right)
\]
Hence, the push-forward of \(A^{<\partial D_I}_{\pi^{-1}(D_I)} \) by \(\mu_1 \circ \tilde{\Gamma}_f^{(1)} \) is isomorphic to the limit of (62).
Together with (59) we obtain Theorem 4.5.12. \(\square \)

For any object \((X, f)\) in Cat_1, we have the sheaves \(A^{nil}_{X,f} \) on \(\tilde{X}(f) \) determined by the condition \(\tilde{\Gamma}_f, A^{nil}_{X,f} = \pi^{-1} \Omega_{f(X)} \otimes \mathbb{C}[z_i] \). For a morphism \(\varphi : (X_1, f_1) \rightarrow (X_2, f_2) \) in Cat_1, we naturally have \(\tilde{\varphi}^{-1} A^{nil}_{X_2,f_2} \rightarrow A^{nil}_{X_1,f_1} \). We obtain the following propositions as in the case of \(A^{nil} \) and \(A^{mod} \).
Proposition 4.5.14. — For the inclusion \(j : X \setminus D_X \rightarrow \tilde{X}(D_X) \), the natural morphism \(A^{nil}_{X, f} \rightarrow j_*\mathcal{O}_{X \setminus D_X} \) is a monomorphism.

Proposition 4.5.15. — Let \(\varphi : (Y, g) \rightarrow (X, f) \) be a projective morphism in \(\text{Cat}_1 \).
Let \(M \) be any coherent \(\mathcal{O}_Y \)-module. Then, the following natural morphism is an isomorphism:

\[
A^{nil}_{X, f} \otimes_{\pi^{-1} \mathcal{O}_X} \pi^{-1} R\varphi_* M \simeq R\tilde{\varphi}_*(A^{nil}_{Y, g} \otimes_{\pi^{-1} \mathcal{O}_Y} \pi^{-1} M)
\]

4.6. Flatness of the sheaf of holomorphic functions with moderate growth

4.6.1. Statement. — Let \((X, f) \) be any object in \(\text{Cat}_\ell \). Let \(j : X \setminus D_X \rightarrow \tilde{X}(f) \) denote the natural inclusion. For any \(\mathcal{O}_X \)-module \(M \), we set

\[
\pi^* M := A^{mod}_{X, f} \otimes_{\pi^{-1} \mathcal{O}_X} \pi^{-1} M.
\]

It is also denoted by \(\pi^*_f M \), when we would like to emphasize the dependence on \(f \). We shall prove the following theorem.

Theorem 4.6.1. — \(A^{mod}_{\tilde{X}(f)} \) is flat over \(\pi^{-1} \mathcal{O}_X \), i.e., \(\pi^*_f M \simeq A^{mod}_{\tilde{X}(f)} \otimes_{\pi^{-1} \mathcal{O}_X} \pi^{-1} M \) for any coherent \(\mathcal{O}_X \)-module \(M \). Moreover, the natural morphism \(\pi^*_f (M) \rightarrow j_*(M|_{X \setminus D_X}) \) is injective.

Corollary 4.6.2. — \(A^{mod}_{\tilde{X}(f)} \) is faithfully flat over \(\pi^{-1} \mathcal{O}_X(\pi D_X) \).

We define \(\pi^*_{\text{rapid}} M := A^{rapid}_{\tilde{X}(f)} \otimes_{\pi^{-1} \mathcal{O}_X} \pi^{-1} M \). We can prove the following by a similar argument.

Proposition 4.6.3. — The natural morphism \(\pi^*_{\text{rapid}} (M) \rightarrow j_*(M|_{X \setminus D_X}) \) is injective.

By Theorem 4.3.1, \(A^{rapid}_{\tilde{X}(f)} \) is flat over \(\pi^{-1} \mathcal{O}_X \). So, we have the following.

Proposition 4.6.4. — \(A^{rapid}_{\tilde{X}(f)} \) is faithfully flat over \(\pi^{-1} \mathcal{O}_X(\pi D_X) \).

4.6.2. Induction. — We consider the following conditions for any coherent \(\mathcal{O}_X \)-module \(M \):

\begin{align*}
(P1) & : \pi^{-1} M \otimes_{\pi^{-1} \mathcal{O}_X} A^{mod}_{\tilde{X}(f)} \simeq \pi^{-1} M \otimes_{\pi^{-1} \mathcal{O}_X} A^{mod}_{\tilde{X}(f)}, \\
(P2) & : \pi^*_{\text{mod}} (M) \rightarrow j_*(M|_{X \setminus D_X}) \text{ is injective.}
\end{align*}

Let \(\mathcal{P}(X) \) denote the class of coherent \(\mathcal{O}_X \)-modules satisfying the conditions \((P1)\) and \((P2)\). It is our purpose to prove that any coherent \(\mathcal{O}_X \)-modules are members of \(\mathcal{P}(X) \). We shall implicitly use that the conditions are local.

We shall prove the following claim by using an induction on \(k \):
(Q_k): Let (X, f) be any object in Cat$. Let M be any coherent O_X-module such that \(\dim \text{Supp} M \leq k \). Then, M is a member of $P(X)$.

4.6.3. Preliminary

The following lemma is easy to prove.

Lemma 4.6.5. Let \(0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0 \) be an exact sequence of coherent O_X-modules.

- If \(M_2 \) and \(M_3 \) are members of $P(X)$, then \(M_1 \) is also a member of $P(X)$.
- If \(M_1 \) and \(M_3 \) are members of $P(X)$, then \(M_2 \) is also a member of $P(X)$.

The following direct corollary will be used implicitly.

Corollary 4.6.6. Let \(\rho : M_1 \rightarrow M_2 \) be any morphism of coherent O_X-modules such that \(\text{Cok}(\rho), \text{Ker}(\rho) \in P(X) \). If \(M_2 \) is contained in $P(X)$, then \(M_1 \) is also contained in $P(X)$.

Lemma 4.6.7. Let \(Z \) be any complex submanifold of \(X \) with the inclusion \(i_Z : Z \rightarrow X \). Let \(M_Z \) be any locally free O_Z-module. Then, we have \(i_{Z*}M_Z \in P(X) \).

Proof It follows from Theorem 4.5.1 and Theorem 4.5.4.

4.6.4. Functoriality for the push-forward

Let \(\varphi : (X', f') \rightarrow (X, f) \) be a morphism in Cat_ℓ such that \(\varphi : X' \rightarrow X \) is projective and birational. We do not assume that \(X' \setminus D_{X'} \) is isomorphic to \(X \setminus D_X \). Let \(D'' \) be the exceptional divisor of \(\varphi \). Let \(M \) be a coherent $O_{X'}$-module such that \(M \in P(X') \). Assume that \(\dim \text{Supp} M = k \) and \(\dim \varphi(Supp M \cap D'') < k \).

Lemma 4.6.8. Assume that \(Q_{k-1} \) holds. Then, we obtain \(\varphi_*(M') \in P(X) \).

Proof According to Theorem 4.5.4, we have the following isomorphism:

\[
R\varphi_* (A^\text{mod}_{X'(f')}) \otimes L \pi^{-1} \mathcal{O}_{X'} \pi^{-1} M \simeq A^\text{mod}_{X(f)}) \otimes L \pi^{-1} \mathcal{O}_X \pi^{-1} R\varphi_* M
\]

If \(i > 0 \), we have \(R^i \varphi_* M \in P(X) \), because \(\dim \text{Supp} R^i \varphi_* M < k \). By using the degeneration of the spectral sequence, we obtain

\[
H^i (A^\text{mod}_{X(f)}) \otimes L \pi^{-1} \mathcal{O}_X \pi^{-1} R\varphi_* M \simeq \begin{cases} \text{Tor}^{\pi^{-1} \mathcal{O}_X}_{-i} (A^\text{mod}_{X(f)} , \pi^{-1} \varphi_* M) & (i < 0) \\ \pi^*_{\text{mod}} R^i \varphi_* M & (i \geq 0) \end{cases}
\]

By (63) and the isomorphism \(A^\text{mod}_{X'(f')} \otimes L \pi^{-1} \mathcal{O}_{X'} \simeq A^\text{mod}_{X(f)} \otimes L \pi^{-1} \mathcal{O}_X \), \(M \simeq A^\text{mod}_{X'(f')} \otimes \pi^{-1} \mathcal{O}_{X'} \), \(M \), we have \(H^i = 0 \) for \(i < 0 \). Hence, we obtain that \(\varphi_* M \) satisfies (P1). Because \(\pi^*_{\text{mod}} \varphi_* M \simeq \varphi_*(\pi^*_{\text{mod}} M) \), (P2) for $\varphi_* M$ follows from (P2) for M.

We have a direct consequence. Let \((X', f') \rightarrow (X, f) \) be a morphism in Cat_ℓ such that \(\varphi : X' \rightarrow X \) is a projective birational morphism. We do not assume that \(X' \setminus D_{X'} \) is isomorphic to \(X \setminus D_X \). Let \(Z' \subset X' \) be a k-dimensional irreducible complex submanifold. We assume that \(Z' \) is not contained in the exceptional divisor
of φ, in particular, Z' is birational to $\varphi(Z')$. We obtain the following lemma from Lemma 4.6.7 and Lemma 4.6.8.

Corollary 4.6.9. — Let $M_{Z'}$ be any locally free $\mathcal{O}_{Z'}$-module. Suppose Q_{k-1}. Then, we have $\varphi_*(i_{Z'}^*M_{Z'}) \in \mathcal{P}(X)$.

4.6.5. Coherent sheaves on submanifolds. — Let Z be any k-dimensional irreducible submanifold of X with the inclusion $i_Z : Z \to X$.

Lemma 4.6.10. — Let M be any coherent \mathcal{O}_X-module such that $\text{Supp}(M) \subset Z$. Assume that Q_{k-1} holds. Then, we have $M \in \mathcal{P}(X)$.

Proof It is enough to consider locally around each point P of X. We shall shrink X around P without mention.

First, let us consider the case where $M = i_Z^*M_Z$. We may assume that M_Z is a torsion-free \mathcal{O}_Z-module. We can find a projective birational morphism $\varphi : (X', f') \to (X, f)$ in Cat_t such that (i) the strict transform Z' of Z is a complex submanifold of X', (ii) there exists a locally free $\mathcal{O}_{Z'}$-module M' with a morphism $\psi : \varphi^*M \to M'$ such that $\psi|_{X' \setminus D''}$ is an isomorphism. We obtain a morphism $\psi_1 : M \to \varphi_*M'$, which is an isomorphism on $Z \setminus \varphi(D'')$. By Q_{k-1}, Ker ψ_1 and Cok ψ_1 are contained in $\mathcal{P}(X)$. Then, we obtain $i_{Z'}^*M \in \mathcal{P}(X)$.

In the general case, we have a finite increasing filtration $F = \{F_i(M) \mid i = 0, \ldots, N\}$ of M by \mathcal{O}_X-modules such that each $F_i(M)/F_{i-1}(M)$ comes from an $\mathcal{O}_{Z'}$-module. Then, the claim of the lemma is reduced to the result in the previous paragraph.

4.6.6. End of the proof of Theorem 4.6.1. — Let Z be any k-dimensional irreducible reduced analytic subset of X such that $Z \not\subset D_X$.

Lemma 4.6.11. — Let M be any coherent \mathcal{O}_X-module such that $\text{Supp}(M) \subset Z$. Assume that Q_{k-1} holds. Then, we have $M \in \mathcal{P}(X)$.

Proof It is enough to consider the issue locally around any point P of X. Hence, we shall shrink X around P without mention. Let Z_1 denote the union of the singular points of Z and $D_X \cap Z$. There exists a projective birational morphism $\varphi_P : (X', f') \to (X, f)$ in Cat_t with the following property:

- The induced morphism $X \setminus D'' \to X \setminus (Z_1 \cup D)$ is an isomorphism.
- The strict transform Z' of Z is a complex submanifold of X'.

We have $M \to \varphi_*\varphi^*M$, which is an isomorphism outside the singular locus of Z. Hence, we obtain $M \in \mathcal{P}(X)$ by Lemma 4.6.8 and Lemma 4.6.10.

Let M be any coherent \mathcal{O}_X-module such that $\dim \text{Supp}(M) \leq k$. If we have a decomposition $\text{Supp}(M) = Z_1 \cup Z_2$ such that $Z_1 \cap Z_2 \subsetneq Z_1$, then we have an exact sequence $0 \to M_1 \to M \to M_2 \to 0$ of coherent \mathcal{O}_X-modules, such that $\text{Supp}(M_i) \subset Z_i$. Hence, by an easy induction, we obtain $M \in \mathcal{P}(X)$ from Lemma 4.6.9.
Thus, our induction can proceed, and the proof of Theorem 4.6.1 is finished.

4.7. Push-forward of good \(\mathcal{D} \)-modules and real blow up

4.7.1. Rapid decay and moderate growth. — Let \((X, f) \) be any object in \(\text{Cat}_\ell \). We put \(\mathcal{D}^{\text{mod}}_{X(f)} := \pi^{-1}(\mathcal{D}_X) \otimes_{\pi^{-1}\mathcal{O}_X} \mathcal{A}^{\text{mod}}_{X(f)} \). For any \(\mathcal{D}_X \)-module \(\mathcal{M} \), we set

\[
\pi^*_{\text{mod}}(\mathcal{M}) := \pi^{-1}\mathcal{M} \otimes_{\pi^{-1}\mathcal{O}_X} \mathcal{A}^{\text{mod}}_{X(f)} \quad \text{and} \quad \pi^*_{\text{rapid}}(\mathcal{M}) := \pi^{-1}\mathcal{M} \otimes_{\pi^{-1}\mathcal{O}_X} \mathcal{A}^{\text{rapid}}_{X(f)}
\]

They are naturally \(\mathcal{D}^{\text{mod}}_{X(f)} \)-modules.

Let \(\varphi : (X, f) \to (Y, g) \) be any morphism in \(\text{Cat}_\ell \). For any \(\mathcal{D}^{\text{mod}}_{X(f)} \)-module \(\mathcal{M} \), we put

\[
\tilde{\varphi}^!(\mathcal{M}) := R\tilde{\varphi}_!(\pi^{-1}(\mathcal{D}_{Y \leftarrow X}) \otimes_{\pi^{-1}\mathcal{D}_X} \mathcal{M})
\]

Let \(\mathcal{M} \) be any \(\mathcal{D}_X \)-module. We have the following naturally defined morphism:

\[
\varphi^! \mathcal{M} := R\varphi^!(\pi^{-1}(\mathcal{D}_{Y \leftarrow X}) \otimes_{\pi^{-1}\mathcal{D}_X} \mathcal{M})
\]

It induces the following morphism in the derived category of \(\mathcal{D}_{Y,g} \)-modules:

\[
R\varphi^!(\pi^{-1}(\mathcal{D}_{Y \leftarrow X} \otimes_{\mathcal{D}_X} \mathcal{D}_{Y,g} \mathcal{M}) \otimes_{\varphi^{-1}\mathcal{D}_Y} \varphi^{-1}\mathcal{A}^{\text{mod}}_{Y(g)}) \to \tilde{\varphi}^! \pi^*_{\text{mod}}(\mathcal{M})
\]

We also have the following isomorphisms:

\[
R\varphi^!(\pi^{-1}(\mathcal{D}_{Y \leftarrow X} \otimes_{\mathcal{D}_X} \mathcal{D}_{Y,g} \mathcal{M}) \otimes_{\varphi^{-1}\mathcal{D}_Y} \varphi^{-1}\mathcal{A}^{\text{mod}}_{Y(g)}) \simeq
R\varphi^!(\pi^{-1}(\mathcal{D}_{Y \leftarrow X} \otimes_{\mathcal{D}_X} \mathcal{D}_{Y,g} \mathcal{M}) \otimes_{\varphi^{-1}\mathcal{D}_Y} \varphi^{-1}\mathcal{A}^{\text{mod}}_{Y(g)}) \simeq
\pi^{-1}R\varphi^!(\mathcal{D}_{Y \leftarrow X} \otimes_{\mathcal{D}_X} \mathcal{D}_{Y,g} \mathcal{M}) \otimes_{\varphi^{-1}\mathcal{D}_Y} \varphi^{-1}\mathcal{A}^{\text{mod}}_{Y(g)} \simeq \pi^*_{g \text{ mod}} \varphi^! \mathcal{M}
\]

Hence, we obtain the following morphism in the derived category of \(\mathcal{D}_{Y,g} \)-modules:

\[
\pi^*_{g \text{ mod}} \varphi^! \mathcal{M} \to \tilde{\varphi}^! \pi^*_{\text{mod}}(\mathcal{M})
\]

Similarly, we obtain the following morphism:

\[
\pi^*_{g \text{ rapid}} \varphi^! \mathcal{M} \to \tilde{\varphi}^! \pi^*_{\text{rapid}}(\mathcal{M})
\]

Proposition 4.7.1. — Assume that \(\varphi \) is projective, and that \(\mathcal{M} \) has a good filtration in the neighbourhood of fibers of \(\varphi \). Then, the morphisms (65) and (66) are isomorphisms.

Proof By considering a resolution, it is enough to consider the case \(\mathcal{M} = M \otimes_{\mathcal{O}_X} \mathcal{D}_X \otimes \Omega_{X}^{-1} \), and \(M \) is an \(\mathcal{O}_X \)-coherent sheaf. Then, the claim is reduced to Theorem 4.5.4.
Let (X, f) be an object in Cat_f such that D_X is normal crossing. We set $\mathcal{D}_{X(D_X)}^\text{mod} := A_{X(D_X)}^\text{mod} \otimes_{\pi^{-1}O_X} \pi^{-1}D_X$. Let $\pi_1 : \tilde{X}(D_X) \to X$ be the projection. For any \mathcal{D}_X-module \mathcal{M}, we define

$$\pi_{1 \text{mod}}^* \mathcal{M} := A_{X(D_X)}^\text{mod} \otimes_{\pi^{-1}O_X} \mathcal{M}$$

$\pi_{1 \text{rapid}}^* \mathcal{M} := A_{X(D_X)}^\text{rapid} \otimes_{\pi^{-1}O_X} \mathcal{M}$.

We have the naturally defined proper map $\rho : \tilde{X}(D_X) \to \tilde{X}(f)$. We obtain the following proposition from Theorem 4.5.1.

Proposition 4.7.2. — We have the following natural isomorphisms for any coherent \mathcal{D}_X-module \mathcal{M}:

$$R\rho_\dagger \pi_{1 \text{mod}}^* \mathcal{M} \simeq \pi_{f \text{mod}}^* \mathcal{M}$$

$$R\rho_\dagger \pi_{1 \text{rapid}}^* \mathcal{M} \simeq \pi_{f \text{rapid}}^* \mathcal{M}$$.

4.7.2. Compatibility with the de Rham functor. — For any \mathcal{D}_X-module \mathcal{M}, we put

$$\text{DR}_{X,f}^\text{mod} (\mathcal{M}) := \pi^{-1}(\text{DR}_X \mathcal{M}) \otimes_{\pi^{-1}O_X} A_{X(f)}^\text{mod} \simeq \pi^{-1}((\Omega_X) \otimes_{\pi^{-1}D_X} \pi_{f \text{mod}}^* \mathcal{M}),$$

$$\text{DR}_{X,f}^\text{rapid} (\mathcal{M}) := \pi^{-1}(\text{DR}_X \mathcal{M}) \otimes_{\pi^{-1}O_X} A_{X(f)}^\text{rapid} \simeq \pi^{-1}((\Omega_X) \otimes_{\pi^{-1}D_X} \pi_{f \text{rapid}}^* \mathcal{M}).$$

Corollary 4.7.3. — Suppose that \mathcal{M} has a good filtration in the neighbourhood of fibers of φ. Assume that φ is projective. Then, we have natural isomorphisms:

$$R\varphi_\dagger \text{DR}_{X,f}^\text{mod} (\mathcal{M}) \simeq \text{DR}_{Y,g}^\text{mod} \varphi_\dagger (\mathcal{M})$$

$$R\varphi_\dagger \text{DR}_{X,f}^\text{rapid} (\mathcal{M}) \simeq \text{DR}_{Y,g}^\text{rapid} \varphi_\dagger (\mathcal{M})$$.

Proof From $\varphi_\dagger \pi_{\text{mod}}^* \mathcal{M} \simeq \pi_{\text{mod}}^* \varphi_\dagger \mathcal{M}$, we obtain the following isomorphisms:

$$(67) R\varphi_\dagger \text{DR}_{X,f}^\text{mod} \mathcal{M} \simeq R\varphi_\dagger \left(\pi^{-1} \Omega_X \otimes_{\pi^{-1}D_X} \pi_{f \text{mod}}^* \mathcal{M} \right) \simeq \pi^{-1} \Omega_Y \otimes_{\pi^{-1}D_Y} \varphi_\dagger \pi_{f \text{mod}}^* \mathcal{M} \simeq \pi^{-1} \varphi_\dagger (\pi_{g \text{mod}}^* \varphi_\dagger \mathcal{M}) \simeq \text{DR}_{Y,g}^\text{mod} \varphi_\dagger \mathcal{M}$$

Thus, we obtain the first isomorphism. We obtain the second one similarly.

Let (X, f) be an object in Cat_f such that D_X is normal crossing. We consider the real blow up $\pi_1 : \tilde{X}(D_X) \to X$. We define $\text{DR}_{X(D_X)}^\text{mod} (\mathcal{M})$ and $\text{DR}_{X(D_X)}^\text{rapid} (\mathcal{M})$ as follows:

$$\text{DR}_{X(D_X)}^\text{mod} (\mathcal{M}) := \pi^{-1} \Omega \otimes_{\pi^{-1}D_X} \pi_{1 \text{mod}}^* \mathcal{M}$$

$$\text{DR}_{X(D_X)}^\text{rapid} (\mathcal{M}) := \pi^{-1} \Omega \otimes_{\pi^{-1}D_X} \pi_{1 \text{rapid}}^* \mathcal{M}.$$
CHAPTER 4. SOME SHEAVES ON THE REAL BLOW UP

Proposition 4.7.4. — The following natural morphisms are isomorphisms:
\[R\rho_* DR_{X(D_X)}^\text{mod}(M) \simeq DR_{X,f}^\text{mod}(M), \quad R\rho_* DR_{X(D_X)}^\text{rapid}(M) \simeq DR_{X,f}^\text{rapid}(M). \]

Proof It immediately follows from Proposition 4.7.2.

We obtain the following corollary from Corollary 4.7.3 and Proposition 4.7.4.

Corollary 4.7.5. — Let \(\varphi : X \rightarrow Y \) be any projective morphism of complex manifolds. Let \(D_Y \) be a normal crossing hypersurface of \(Y \) such that \(D_X := \varphi^{-1}(D_Y) \) is normal crossing. Let \(\tilde{\varphi} : \tilde{X}(D_X) \rightarrow \tilde{Y}(D_Y) \) be the induced map. Then, for any coherent \(D_X \)-module having a good filtration in the neighbourhood of fibers of \(\varphi \), we have the following natural isomorphisms:
\[
(68) \quad R\tilde{\varphi}! DR_{\tilde{X}(D_X)}^\text{mod}(M) \simeq DR_{\tilde{Y}(D_Y)}^\text{mod}(\varphi^! M),
\]
\[
(69) \quad R\tilde{\varphi}! DR_{\tilde{X}(D_X)}^\text{rapid}(M) \simeq DR_{\tilde{Y}(D_Y)}^\text{rapid}(\varphi^! M).
\]

Remark 4.7.6. — G. Morando informed the author that the isomorphism (68) and its generalizations can be deduced from some results in [24]. While the author hopes that the generalization would make the subject more transparent, he also hopes that our direct method would be also significant for our understanding.

4.7.3. Nilsson type (Appendix). — We have variants in the case of Nilsson type. Let \((X,f)\) be an object in \(\text{Cat}_1 \). We set \(\mathcal{D}^\text{nil}_{\tilde{X}(D_X)} := A^\text{nil}_{\tilde{X}(f)} \otimes_{\pi^{-1}\mathcal{O}_X} \pi^{-1}D_X \). For any \(D_X \)-module \(M \), we set \(\pi^*_\text{nil}(M) := \pi^{-1}M \otimes_{\pi^{-1}O_X} A^\text{nil}_{\tilde{X}(f)}. \) They are naturally \(\mathcal{D}^\text{nil}_{\tilde{X}(f)} \)-modules.

Let \(\varphi : (X,f) \rightarrow (Y,g) \) be a morphism in \(\text{Cat}_1 \). For any \(\mathcal{D}^\text{nil}_{\tilde{X}(f)} \) -module \(\tilde{M} \), we define \(\tilde{\varphi}_!(\tilde{M}) \) by the formula (64). We also define \(DR^\text{nil}_{X,f}(M) := \pi^{-1}\Omega_X \otimes_{\pi^{-1}D_X} \pi^*_\text{nil}M \). We obtain the following from Proposition 4.5.15.

Proposition 4.7.7. — Suppose that \(\varphi \) is projective and that \(M \) has a good filtration in the neighbourhood of fibers of \(\varphi \). Then, the natural morphism
\[
\pi^*_\text{nil} \varphi_! M \rightarrow \tilde{\varphi}_! \pi^*_\text{nil}(M)
\]
is an isomorphism. In particular, a natural morphism \(R\tilde{\varphi}_! DR^\text{nil}_{X,f}(M) \simeq DR^\text{nil}_{Y,g} \varphi_! M \) is an isomorphism.

Let \((X,f)\) be an object in \(\text{Cat}_1 \) such that \(D_X \) is normal crossing. We consider the real blow up \(\pi_1 : \tilde{X}(D_X) \rightarrow X \). We define \(DR^\text{nil}_{\tilde{X}(D_X)}(M) := \pi_1^{-1}\Omega \otimes_{\pi_1^{-1}O_X} \pi^*_1 \text{nil} M \) for any \(D_X \)-module \(M \). We obtain the following proposition from Theorem 4.5.12.
Proposition 4.7.8. — Let $\rho : \bar{X}(D_X) \to \bar{X}(f)$ be the natural map. We have a natural isomorphism

$$R^{\rho \ast} \pi_{\text{nil}}^\ast (M) \simeq \pi_{\text{nil}}^\ast (M).$$

In particular, we obtain an isomorphism $R^{\rho \ast} DR^\text{nil}_{\bar{X}(f)}(M) \simeq DR^\text{nil}_{X,f}(M)$.

Corollary 4.7.9. — Let $\varphi : X \to Y$ be any projective morphism of complex manifolds. Let D_Y be a smooth hypersurface of Y such that $\varphi^{-1}(D_Y)$ is normal crossing. Let $\bar{\varphi} : \bar{X}(D_X) \to \bar{Y}(D_Y)$ be the induced map. Then, for any coherent D_X-module M having a good filtration in the neighbourhood of fibers of φ, we have the natural isomorphism $R^{\bar{\varphi} \ast} DR^\text{nil}_{\bar{X}(D_X)}(M) \simeq DR^\text{nil}_{\bar{Y}(D_Y)}(M)$.

CHAPTER 5

COMPLEXES ON THE REAL BLOW UP ASSOCIATED TO GOOD MEROMORPHIC FLAT BUNDLES

5.1. De Rham complexes

5.1.1. De Rham complex and a description by dual. — Let X be a complex manifold and D be a normal crossing hypersurface with a decomposition $D = D_1 \cup D_2$. (Note that D_i are not necessarily irreducible. See §3.2.1.) We set $d_X := \dim X$. Let $\pi : \tilde{X}(D) \to X$ be the real blow up. Let Ω^\bullet_X denote the sheaf of holomorphic 1-forms on X. We put

$$\Omega^\bullet <D_1 \leq D_2 : \Omega^\bullet \subset \pi^{-1} \mathcal{O}_X \pi^{-1} \Omega^\bullet,$$

$$\Omega^\bullet * <D_1 \leq D_2 : \Omega^\bullet \subset \pi^{-1} \mathcal{O}_X \pi^{-1} \Omega^\bullet.$$

For any holonomic \mathcal{D}-module \mathcal{M} on X, we define

$$\text{DR}_{X(D)}^{<D_1 \leq D_2}(\mathcal{M}) := \mathcal{A}_{X(D)}^{<D_1 \leq D_2} \otimes_{\pi^{-1} \mathcal{O}_X} \pi^{-1} \text{DR}(\mathcal{M})$$

$$\simeq \Omega^\bullet <D_1 \leq D_2 [d_X] \otimes_{\pi^{-1} \mathcal{O}_X} \pi^{-1} \mathcal{M} \simeq \text{Tot}(\Omega^\bullet \subset \pi^{-1} \mathcal{O}_X \pi^{-1} \mathcal{M}) [d_X].$$

Note $\text{DR}_{X(D)}^{<D_1 \leq D_2}(\mathcal{M}) \simeq \text{DR}_{X(D)}^{<D_1 \leq D_2}((\mathcal{M} \ast D))$ because $\Omega^\bullet \subset \pi^{-1} \mathcal{O}_X \pi^{-1} \mathcal{M} \simeq \text{DR}_{X(D)}^{<D_1 \leq D_2}(\mathcal{M}) \simeq \Omega^\bullet \subset \pi^{-1} \mathcal{O}_X \pi^{-1} \mathcal{M}$.

We have a natural isomorphism $R\pi_* \text{DR}_{X(D)}^{<D_1 \leq D_2}(\mathcal{M}) \simeq \text{DR}_{X(D)}^{<D_1 \leq D_2} \mathcal{M}$ induced as follows, by Theorem 4.3.1:

$$(71) \quad R\pi_* \text{Tot}(\Omega^\bullet \subset \pi^{-1} \mathcal{O}_X \pi^{-1} \mathcal{M}) [d_X] \simeq \text{Tot}(R\pi_* \Omega^\bullet \subset \pi^{-1} \mathcal{O}_X \mathcal{M}) [d_X]$$

equals $\text{Tot}(\Omega^\bullet \subset \pi^{-1} \mathcal{O}_X \mathcal{M}) [d_X].$

Lemma 5.1.1. — We have a natural isomorphism

$$R\text{Hom}_{\pi^{-1} \mathcal{O}_X}(\pi^{-1} \mathcal{M}, \mathcal{A}_{X(D)}^{<D_1 \leq D_2}) [d_X] \simeq \text{DR}_{X(D)}^{<D_1 \leq D_2}(\mathcal{M}).$$
Proof Since \(\mathcal{M}\) is \(\mathcal{D}_X\)-coherent, we have the following isomorphisms:

\[
R\text{Hom}_{\pi^{-1}\mathcal{D}_X}(\pi^{-1}\mathcal{M}, A_{\tilde{X}(D)}^{<D_1 \leq D_2})[d_X]
\]

\[
\simeq R\text{Hom}_{\pi^{-1}\mathcal{D}_X}(\pi^{-1}\mathcal{M}, \pi^{-1}\mathcal{D}_X) \otimes_{\pi^{-1}\mathcal{D}_X} A_{\tilde{X}(D)}^{<D_1 \leq D_2}[d_X]
\]

\[
= \pi^{-1}\left(\Omega_X \otimes_{\mathcal{O}_X} D\mathcal{M}\right) \otimes_{\pi^{-1}\mathcal{D}_X} A_{\tilde{X}(D)}^{<D_1 \leq D_2}
\]

\[
\simeq \left(\pi^{-1}\Omega_X \otimes_{\pi^{-1}\mathcal{O}_X} A_{\tilde{X}(D)}^{<D_1 \leq D_2}\right) \otimes_{\pi^{-1}\mathcal{D}_X} \pi^{-1}D\mathcal{M}
\]

Because \(A_{\tilde{X}(D)}^{<D_1 \leq D_2}\) is flat over \(\pi^{-1}\mathcal{O}_X\) (Theorem 4.3.1), \(\pi^{-1}\mathcal{D}_X \otimes_{\pi^{-1}\mathcal{O}_X} A_{\tilde{X}(D)}^{<D_1 \leq D_2}\) is flat over \(\pi^{-1}\mathcal{D}_X\). Therefore,

\[
A_{\tilde{X}(D)}^{<D_1 \leq D_2} \simeq \pi^{-1}\left(\mathcal{D}_X \otimes_{\mathcal{O}_X} \Theta_{\tilde{X}(D)}\right) \otimes_{\pi^{-1}\mathcal{O}_X} A_{\tilde{X}(D)}^{<D_1 \leq D_2}
\]

is a \(\pi^{-1}\mathcal{D}_X\)-flat resolution. Hence, (72) is quasi-isomorphic to the following:

\[
\left(\pi^{-1}\left(\Omega_X^* \otimes \mathcal{D}_X\right) \otimes_{\pi^{-1}\mathcal{O}_X} A_{\tilde{X}(D)}^{<D_1 \leq D_2}\right) \otimes_{\pi^{-1}\mathcal{D}_X} \pi^{-1}D\mathcal{M}[d_X]
\]

\[
\simeq \Omega_{\tilde{X}(D)}^{<D_1 \leq D_2} \otimes_{\pi^{-1}\mathcal{O}_X} \pi^{-1}D\mathcal{M}[d_X]
\]

Thus, we obtain the desired isomorphism.

According to Lemma 5.1.1, we have a natural isomorphism

\[
DR_{\tilde{X}(D)}^{<D_1 \leq D_2}(\mathcal{M}) \simeq R\text{Hom}_{\pi^{-1}\mathcal{D}_X}(\pi^{-1}\mathcal{D}\mathcal{M}, A_{\tilde{X}(D)}^{<D_1 \leq D_2})[d_X]
\]

\[
\simeq R\text{Hom}_{\pi^{-1}\mathcal{D}_X}(\pi^{-1}\mathcal{D}(\mathcal{M}(\ast D)), A_{\tilde{X}(D)}^{<D_1 \leq D_2})[d_X]
\]

We will implicitly identify them in the following argument.

5.1.2. A combinatorial description in the case of good meromorphic flat bundles. — Let \(X\) be a complex manifold with a normal crossing hypersurface \(D\). Let \(\pi : \tilde{X}(D) \rightarrow X\) be the real blow up. Let \(V\) be a good meromorphic flat bundle on \((X, D)\). We have the local system on \(X - D\) associated to \(V\). Its prolongation over \(\tilde{X}(D)\) is denoted by \(\mathcal{L}\). If \(V\) is unramifiedly good, for any \(P \in \pi^{-1}(D)\), we have the Stokes filtration \(\mathcal{F}_P^P\) of the stalk \(\mathcal{L}_P\) indexed by the set of the irregular values \(\text{Irr}(V, \pi(P)) \subset \mathcal{O}_X(\ast D)_{\pi(P)}/\mathcal{O}_X,\pi(P)\) with the order \(\leq_P\). The system of filtrations \(\{\mathcal{F}_P^P \mid P \in \pi^{-1}(D)\}\) satisfies some compatibility condition. See [47], [48] or §3 of [49] for more details.

Let \(D = D_1 \cup D_2\) be a decomposition. Let us describe \(DR_{\tilde{X}(D)}^{<D_1 \leq D_2}(V)\) in terms of the Stokes filtrations. If \(V\) is unramifiedly good, for \(P \in \tilde{X}(D)\), let \(\mathcal{L}_P^{<D_1 \leq D_2}\) be the union of the subspaces \(\mathcal{F}_a^P(\mathcal{L}_P) \subset \mathcal{L}_P\) such that (i) \(a \leq_P 0\), (ii) the poles of \(a\) contain the germ of \(D_1\) at \(\pi(P)\). If \(V\) is not unramifiedly good, we take a ramified covering \(\varphi : (X, D') \rightarrow (X, D)\) such that \(V' = \varphi^* V\) is unramifiedly good. We obtain the local system \(\mathcal{L}'\) and a sheaf \(\mathcal{L}'^{<D_1 \leq D_2}\) on \(\tilde{X}'(D')\) associated to \(V'\) with the Stokes structure. By taking the descent, we obtain a subsheaf \(\mathcal{L}^{<D_1 \leq D_2} \subset \mathcal{L}\).
Lemma 5.1.2. — The family \(\mathcal{L}^{<D_1 \leq D_2}_P \) gives a constructible sheaf \(\mathcal{L}^{<D_1 \leq D_2} \) on \(\bar{X}(D) \).

Proof It is enough to consider the case \(X = \Delta^n \) and \(D = \bigcup_{i=1}^{\ell} \{ z_i = 0 \} \). We may also assume that \(V \) is unramifiedly good. By using a decomposition around \(P \) as in Theorem 4.1 of [49], it is easy to observe that it is enough to consider the case \(V = O_X(\ast D) \) with a flat connection \(\nabla e = e da \), where \(a = \prod_{i=1}^{m} z_i^{-m_i} \) (\(m_i > 0 \)) for some \(1 \leq m \leq \ell \). We have a decomposition \(\mathcal{L} = \mathcal{I}_1 \cup \mathcal{I}_2 \) such that \(\mathcal{I}_1 = \bigcup_{i \in I_1} \{ z_i = 0 \} \).

For \(P \in \bar{X}(D) \), we set \(I_1(P) := \{ i \in I_1 \mid z_i(\pi(P)) = 0 \} \). We set \(F_a := -|a|^{-1} \text{Re}(a) \).

We put \(R_0 := \bigcup_{i=1}^{m} \{ z_i = 0 \} \) and \(R_1 := \bigcup_{i=m+1}^{\ell} \{ z_i = 0 \} \setminus R_0 \).

- For \(P \in X - D \), we have \(\mathcal{L}^{<D_1 \leq D_2}_P \neq 0 \).
- For \(P \in \pi^{-1}(R_1) \), we have \(\mathcal{L}^{<D_1 \leq D_2}_P \neq 0 \) if and only if \(I_1(P) = 0 \).
- For \(P \in \pi^{-1}(R_0) \), we have \(\mathcal{L}^{<D_1 \leq D_2}_P \neq 0 \) if and only if (i) \(F_a(P) < 0 \), (ii) \(I_1(P) \subset \mathcal{S}_a \).

Then, the claim of the lemma is clear. \(\square \)

We recall the following proposition. (See [33] and [52]. See also [16].)

Proposition 5.1.3. — The natural inclusion \(\mathcal{L}^{<D_1 \leq D_2}(dX) \rightarrow \text{DR}^{<D_1 \leq D_2}(V) \) is a quasi-isomorphism.

Proof We give a preparation from elementary analysis on multi-sectors. We set \(Y := \Delta_z \times \Delta^n_w \) and \(D_Y = \{ z = 0 \} \cup \bigcup_{i=1}^{\ell} \{ w_i = 0 \} \). Let \(\pi : \bar{Y}(D_Y) \rightarrow Y \) be the real blow up. For \(m > 0 \) and \(m = (m_1, \ldots, m_k) \in \mathbb{Z}_{>0}^k \), we put \(a = z^{-m} \prod_{i=1}^{\ell} w_i^{-m_i} \). We put \(F_a = -|a|^{-1} \text{Re}(a) \), which naturally gives a \(C^\infty \)-function on \(\bar{Y}(D_Y) \). Take a point \(P \in \pi^{-1}(O) \subset \bar{Y}(D_Y) \). Let \(S = S_z \times S_w \) be a small multi-sector in \(Y - D_Y \) such that \(P \) is contained in the interior part of the closure of \(S \) in \(\bar{Y}(D_Y) \).

- If \(F_a(P) < 0 \) (resp. \(F_a(P) > 0 \)), we assume that \(F_a < 0 \) (resp. \(F_a > 0 \)) on \(\overline{S} \).
- If \(F_a(P) = 0 \), we assume that \(F_a \) is monotonous with respect to \(\theta_z \), where \(z = r e^{\sqrt{-1} \theta_z} \) is the polar coordinate system. Let \(\theta_i \) (\(i = 1, 2 \)) be the arguments of the edges of \(S_z \), i.e., \(S_z = \{ (r, \theta) \mid \theta_1 \leq \theta \leq \theta_2, 0 < r \leq r_0 \} \). Let \(\theta_+ \) be one of \(\theta_i \) such that \(F_a > 0 \) on \(\{ r e^{\sqrt{-1} \theta} \} \times \overline{S}_w \).

Let \(f \) be a holomorphic function on \(S \) of moderate growth with respect to \(z \) and \(w \). We set

\[
\Phi(f)(z, w) := \int_{\gamma(z, w)} \exp(-a(z, w) + a(\zeta, w)) f(\zeta, w) d\zeta.
\]

Here, \(\gamma(z, w) \) is a path contained in \(S_z \times \{ w \} \) taken as follows.

Case \(F_a(P) < 0 \) : We fix a point \(z_0 \in S_z \), and \(\gamma(z, w) \) is a path from \(z_0 \) to \(z \).

Case \(F_a(P) > 0 \) : Let \(\gamma(z, w) \) be the segment from 0 to \(z \).
Case $F_0(P) = 0$: Let θ_+ be as above. For the polar coordinate system $z = re^{\sqrt{-1} \theta}$, let $\gamma(z, w)$ be the union of the ray $\{pe^{\sqrt{-1} \theta_+} \mid 0 \leq \rho \leq r\}$ and the arc connecting $re^{\sqrt{-1} \theta_+}$ and z.

Lemma 5.1.4. For each $N > 0$, there exists $C_N > 0$ such that $|\Phi(f)(z, w)| \leq C_N \cdot C |z|^N \prod_{i=1}^{\ell} |w_i|^{N_i}$ if $|f(z, w)| \leq C |z|^N \prod_{i=1}^{\ell} |w_i|^{N_i}$.

Proof. We give only an outline. Let us consider the case $F_0(P) < 0$. Let $z_0 = r_0 e^{\sqrt{-1} \theta}$ and $z = re^{\sqrt{-1} \theta}$. We may assume that the path γ is the union of (i) the arc γ_1 connecting z_0 and $z_1 = r_0 e^{\sqrt{-1} \theta}$, (ii) the segment γ_2 connecting z_1 and z. The segment γ_2 is divided into $\gamma_{2,1} = \gamma_1 \cap \{|\xi| > 3|z|/2\}$ and $\gamma_{2,2} = \gamma_1 \cap \{|\xi| \leq 3|z|/2\}$. The contributions of γ_1 and $\gamma_{2,1}$ are dominated by $|\exp(-a(z, w))| \prod_{i=k+1}^{\ell} |w_i|^{N_i}$. The function $\text{Re} a$ is monotone on $\gamma_{2,2}$. We also have $|f(\zeta, w)| \leq C'|z|^N \prod_{i=1}^{\ell} |w_i|^{N_i}$ on $\gamma_{2,2}$. Hence, the contribution of $\gamma_{2,2}$ is dominated by $|z|^N \prod_{i=1}^{\ell} |w_i|^{N_i}$. Let us consider the case $F_0(P) \geq 0$. On γ, we have $|f(\zeta, w)| \leq C'|z|^N \prod_{i=1}^{\ell} |w_i|^{N_i}$, and $\text{Re}(a)$ is monotone. Hence, it is easy to obtain the desired estimate.

Let us return to the proof of Proposition 5.1.3. It is enough to consider the case $X = \Delta^n$ and $D = \bigcup_{i=1}^{m} \{z_i = 0\}$. We may assume that V is unramifiedly good. Let $P \in \pi^{-1}(0, \ldots, 0)$. By using the local decomposition around P as in Theorem 4.1 of [49], we can reduce the issue to the case $V = \bigoplus_{i=1}^{M} O_X(\ast D) e_i$ with a flat connection

$$\nabla e = e \left(da + \sum_{i=1}^{\ell} (\alpha_i I_M + N_i) \frac{dz_i}{z_i} \right),$$

where I_M denotes the identity matrix, N_i ($i = 1, \ldots, \ell$) are mutually commuting nilpotent matrices, α_i are complex numbers, and we put $e := (e_1, \ldots, e_n)$ and $a := \prod_{i=1}^{m} z_i^{-m_i}$. Then, it is easy to observe that $\mathcal{L}^{< D_1 \leq D_2}$ is naturally isomorphic to the 0-th cohomology of $\text{DR}^{< D_1 \leq D_2}(V)[-d_X]$. Hence, it is enough to show the vanishing of the higher cohomology of $\text{DR}^{< D_1 \leq D_2}(V)[-d_X]$. It is enough to consider the case $\text{rank} V = 1$, and we put $v = e_1$.

First, let us consider the case $D_1 = D$. For a subset $J \subset \{1, \ldots, n\}$, we set $dz_J = dz_{j_1} \wedge \cdots \wedge dz_{j_k}$. For a section ω of $\Omega_{X(D)}^{< D}$, we have the unique decomposition $\omega = \sum \omega_J dz_J$, where $\omega_J \in \mathcal{A}_{X(D)}^{< D}$. Let $S_i (i = 1, \ldots, \ell)$ be a small sector in Δ^*_i, and let U be a small neighbourhood of $(0, \ldots, 0)$ in $\prod_{i=1}^{\ell} \Delta^*_i$, such that the closure \overline{S} of $S := \prod S_i \times U$ in $\overline{X}(D)$ is a neighbourhood of P. In the following, we will shrink S without mention. It is easy to observe that it is enough to consider the case $\alpha_i = 0$ ($i = 1, \ldots, \ell$).

Take $h = 1, \ldots, n$. Assume $\nabla(\omega v) = 0$ for some section ω of $\Omega_{X(D)}^{< D}$ on S such that $\omega_J = 0$ unless $J \subset \{1, \ldots, h\}$. We have $d(\exp(a) \omega) = 0$. For the expression $\exp(a) \omega =$...
\[\sum_{h \in J} f_j \, dz_h \, dz_J + \sum_{h \notin J} f_j \, dz_J, \] where \(\gamma(z) \) is a path taken as follows:
- If \(m \leq h \), the condition is similar to that for the path in (75).
- If \(m < h \), \(\gamma \) is a path connecting \((z_1, \ldots, z_{h-1}, 0, z_{h+1}, \ldots, z_n) \) and \((z_1, \ldots, z_n) \).

By using Lemma 5.1.4, we obtain that \(\tau \in \Omega^\bullet_{\wedge(D)} \otimes V \). By a formal computation, we can show that \(\omega v - \nabla(\tau v) \) does not contain \(dz_j \) for \(j \geq h \). Hence, we can show the vanishing of the higher cohomology of \(\Omega^\bullet_{\wedge(D)} \otimes V \) by an induction.

We have the decomposition \(I_1 \sqcup I_2 = \emptyset \) such that \(D_j = \bigcup_{i \in I_j} \{ z_i = 0 \} \). Let us consider \(\Omega^\bullet_{\wedge(D)} <D(J) \leq D(J) \otimes V \) for any subset \(J \subset I_2 \), where \(J^c := \emptyset \setminus J \). If \(m \cap J \neq \emptyset \), it is easy to show that \(\Omega^\bullet_{\wedge(D)} <D(J) \leq D(J) \otimes V \) is acyclic by a formal computation. Assume \(\emptyset \cap J = \emptyset \). Let \(V_J = \mathcal{O}_{D_j}(v J) \setminus \mathcal{D}_j \) be equipped with the flat connection \(\nabla v_J = v_J \cdot d a|_{D_j} \) on \(D_j \). Let \(q_j \) be the projection \(\pi^{-1}(D_j) \rightarrow D_j(\partial D_j) \). Then, it is easy to obtain a natural quasi-isomorphism \(q_j^{-1}(\Omega^\bullet_{\wedge(D)} <D(J) \leq D(J) \otimes V) \simeq \Omega^\bullet_{\wedge(D)} <D(J) \leq D(J) \otimes V \) by a formal computation. Hence, we obtain the vanishing of the higher cohomology of \(\Omega^\bullet_{\wedge(D)} <D(J) \leq D(J) \otimes V \).

We put \(h := |I_2| \). Let \(\mathcal{G}^\bullet_{h} \) denote the kernel of the surjection \(\Omega^\bullet_{\wedge(D)} <D_1 \leq D_2 \otimes V \rightarrow \Omega^\bullet_{\wedge(D)} <D_1 \leq D_2 \otimes V \). Inductively, let \(\mathcal{G}^\bullet_{k} \) be the kernel of the following surjection:

\[\mathcal{G}^\bullet_{k+1} \rightarrow \bigoplus_{\substack{J \subset I_2 \\ |J| = k}} \Omega^\bullet_{\wedge(D)} <D(J) \leq D(J) \otimes V \]

Because \(\mathcal{G}^\bullet_{1} = \Omega_{\wedge(D)} <D(\wedge(D)) \otimes V \), we obtain the vanishing of the higher cohomology by an induction on \(k \). Thus, the proof of Proposition 5.1.3 is finished.

Similarly, we also obtain the following. (See also [54].)

Proposition 5.1.5. — The natural inclusion \(\mathcal{L} <D(d_X) \rightarrow \mathcal{D}^\text{mod}_{\wedge(D)}(V) \) is an isomorphism in \(D^b_c(\mathbb{C}, \wedge(D)) \).

5.1.3. Isomorphisms. — Let \(X \) and \(D \) be as in the beginning of §5.1.1. Let \(H \) be hypersurfaces of \(X \) contained in \(D_1 \). We have the naturally defined projection \(\rho : \wedge(D) \rightarrow \wedge(H) \).

Lemma 5.1.6. — For any good meromorphic flat bundle \(V \) on \((X, D)\), the following natural morphisms are isomorphisms.

\[
\begin{align*}
R \rho_* \mathcal{D}^D_{\wedge(D)}(V) &\xrightarrow{\alpha_1} \mathcal{D}^D_{\wedge(H)}(V) \\
&\xrightarrow{\alpha_2} \mathcal{D}^D_{\wedge(H)}(V(|D_1|)) \\
&\xrightarrow{\alpha_3} \mathcal{D}^H_{\wedge(H)}(V(|D_1|))
\end{align*}
\]
Proof The claim for a_1 follows from Theorem 4.3.2. The claim for a_2 is clear. Let us look at a_3. We use an induction on $\dim X$ and the number of the irreducible components of $D_1 \setminus H$. We may assume $X = \Delta^n$ and $D = \bigcup_{i=1}^{n_1} \{ z_i = 0 \}$. We set $L_i := \{ z_i = 0 \}$. We may assume $\partial L_i = \bigcup_{i=1}^{n_1} L_i$, $H = \bigcup_{i=1}^{n_2} L_i$ and $D_2 = \bigcup_{i=1}^{n_1+n_2} L_i$. We set $D_3 := \bigcup_{i=2}^{n_1} \{ z_i = 0 \}$. We set $X' := L_1$ and $D' := \bigcup_{i=2}^{n_1} L_i$. We set $D'_3 := X' \cap D_3$ and $H' := X' \cap \bigcup_{i=2}^{n_1} L_i$. Let $\iota : X' \to X$ denote the inclusion. There exist good meromorphic flat bundles V'_3 and V''_3 with the following exact sequence:

$$0 \to \iota_! V'_3(\iota D'_3) \to V(\iota D_3) \xrightarrow{\epsilon} V(\iota D'_3) \to 0$$

Let K denote the image of a. We have the following:

$$0 \to \text{DR}^{<D_3}_{\hat{X}(H)}(\iota_! V'_3(\iota D'_3)) \to \text{DR}^{<D_3}_{\hat{X}(H)}(\iota_! V(\iota D_3)) \to \text{DR}^{<D_3}_{\hat{X}(H)}(K) \to 0$$

$$0 \to \text{DR}^{<D_3}_{\hat{X}(H)}(\iota_! V''_3(\iota D'_3)) \to \text{DR}^{<D_3}_{\hat{X}(H)}(\iota_! V(\iota D'_3)) \to \text{DR}^{<D_3}_{\hat{X}(H)}(K) \to 0$$

By using the inductive assumption, we obtain that

$$\text{DR}^{<D_3}_{\hat{X}(H)}(V(\iota D'_3)) \to \text{DR}^{<D_3}_{\hat{X}(H)}(V(\iota D_3))$$

is a quasi-isomorphism. Because we have $\text{DR}^{<D_3}_{\hat{X}(H)}(V(\iota D'_3)) \simeq \text{DR}^{<D_3}_{\hat{X}(H)}(V(\iota L_1))$ and $\text{DR}^{<D_3}_{\hat{X}(H)}(V(\iota D_3)) \simeq \text{DR}^{<D_3}_{\hat{X}(H)}(V(\iota L_1))$, it is enough to prove the natural morphism

$$(77) \quad \text{DR}^{<D_3}_{\hat{X}(H)}(V(\iota L_1)) \to \text{DR}^{<D_3}_{\hat{X}(H)}(V(\iota L_1))$$

is a quasi-isomorphism.

Let $I \subset \{ 1, \ldots, \ell \} \vdash: \ell$ be any subset with $1 \in I$. Let $\pi_H : \hat{X}(H) \to X$ denote the projection. We set $L_I := \bigcap_{i \in I} L_i$ and $\partial L_I := L_I \cap \bigcup_{j \in \ell \setminus I} L_j$.

Lemma 5.1.7. $\ldots \to \text{DR}^{<\partial L_I}_{\pi_H^{-1}(L_I)}(V(\iota L_1)) = 0$.

Proof By using the pull back and the push-forward with respect to a ramified covering, we may assume that V is unramified good. Let $I \subset M(X, D)/H(X)$ denote the set of irregular values of V. We set $L(I^c) := \bigcup_{j \in \ell \setminus I} L_j$. Let \hat{I} denote the image of I in $M(X, D)/M(X, L(I^c))$. For each element of $[a] \in \hat{I}$, we fix a representative a in $M(X, D)$. There exist meromorphic $O_{L_i}(*\partial D)$-subbundles \hat{V}_a of $V_{\hat{L}_i}$ stable by the connection and a decomposition $V_{\hat{L}_i} = \bigoplus_{[a] \in \hat{I}_I} \hat{V}_a$ compatible with the connection, such that $\hat{V}_a^{\text{reg}} := \hat{V}_a - da \text{id}_{\hat{V}_a}$ are regular along L_i ($i \in I$), where \hat{V}_a denotes the induced connection on \hat{V}_a.

Let $j \in I$. Suppose $\text{ord}_{L_j} a < 0$. We consider the Deligne-Malgrange filtration \mathcal{P}_a on \hat{V}_a. (See [45] for a survey.) We have $(\partial_j a)^{-1} \hat{V}_a^{\text{reg}} \mathcal{P}_b \hat{V}_a \subset \mathcal{P}_b \hat{V}_a$ for any $b \in \mathbb{R}^\ell$.
Hence we obtain that $\nabla_{a,\partial t}$ is invertible on $C^{\infty,\partial L_1}_{\pi_1^{-1}(L_1)} \otimes \nabla[a]$. Suppose moreover that $j \neq 1$ and that $\text{ord}_z(a) = 0$. Let \leq denote the total order on C defined by the lexicographic order on $(\text{Re}(a), \text{Im}(a)) \in \mathbb{R} \times \mathbb{R}$. We have the V-filtration ∇ of $\nabla[a]$ along z_1 indexed by (C, \leq) such that (i) $z_1 \nabla[a,\partial t]$ preserves the filtration ∇ (ii) the endomorphisms of $\text{Gr}^P_\beta(\nabla[a])$ induced by $-\nabla[a,\partial t] z_1 - \beta$ are nilpotent for any β. The induced morphisms $\nabla[a,\partial t] : \text{Gr}^P_\beta(\nabla[a]) \rightarrow \text{Gr}^P_{\beta+1}(\nabla[a])$ are isomorphisms unless $\beta = -1$. We can observe that the filtration ∇ is preserved by $\nabla[a,\partial t]$ and the multiplication of $\partial_j a$. Hence, $\nabla[a,\partial t]$ is invertible on $C^{\infty,\partial L_1}_{\pi_1^{-1}(L_1)} \otimes \nabla[a]$ and $C^{\infty,\partial L_1}_{\pi_1^{-1}(L_1)} \otimes \text{Gr}^P_\beta(\nabla[a])$.

Suppose $\text{ord}_z a = 0$ for any $j \in I$, i.e., $[a] = [0]$. For the Deligne-Malgrange filtration ∇ of $\nabla[0]$, we have $\nabla[0,\partial t](\nabla_b \nabla[0](\nabla^{\partial L_1})) \subset \nabla_{b+1,0,\ldots,0}(\nabla^{\partial L_1})$. For the V-filtration ∇ along z_1, we obtain that if $\beta < -1$, the morphism $\nabla[0,\partial t] : C^{\infty,\partial L_1}_{\pi_1^{-1}(L_1)} \otimes \nabla[0] \rightarrow C^{\infty,\partial L_1}_{\pi_1^{-1}(L_1)} \otimes \nabla_{b+1}(\nabla[0])$ is an isomorphism.

We have the decomposition $V(\nabla[1]) = \bigoplus_{[a]} V(\nabla[a])$, compatible with the decomposition of $V[1]$. If $\text{ord}_z a < 0$, we have $V(\nabla[1])_{[a]} = V[a]$. The action of $\nabla[a,\partial t]$ on $C^{\infty,\partial L_1}_{\pi_1^{-1}(L_1)} \otimes V(\nabla[1])_{[a]}$ is invertible. If $\text{ord}_z a = 0$, for the V-filtration ∇ along z_1, we have $\nabla[a,\partial t](V(\nabla[1])_{[a]}) = \nabla[b](V[a])$ for $\beta < 0$, and that $\nabla[a,\partial t] : \text{Gr}^P_\beta(V(\nabla[1])_{[a]}) \rightarrow \text{Gr}^P_{\beta+1}(V(\nabla[1])_{[a]})$ are isomorphisms for $\beta \geq -1$. If $[a] \neq [0]$, take $j \in I$ such that $\text{ord}_j a < 0$, and then the action of $\nabla[a,\partial t]$ on $C^{\infty,\partial L_1}_{\pi_1^{-1}(L_1)} \otimes V(\nabla[1])_{[a]}$ is invertible. If $[a] = [0]$, the action of $\nabla[0,\partial t]$ on $C^{\infty,\partial L_1}_{\pi_1^{-1}(L_1)} \otimes V(\nabla[1])_{[a]}$ is invertible. Then, the claim of Lemma 5.1.7 follows.

Then, by an easy inductive argument, we obtain that (77) is a quasi-isomorphism, and the proof of Lemma 5.1.6 is finished.

Suppose that we are given a holomorphic function $G : X \rightarrow \mathbb{C}^n$ such that $G^{-1}(D_0) = H$, where $D_0 = \bigcup_{i=1}^k \{z_i = 0\}$.

Lemma 5.1.8. For the naturally defined map $p_1 : \nabla(D) \rightarrow \nabla(G)$, we obtain the following natural isomorphism:

$$R_{p_1*} \text{DR}^{\leq D_1 \leq D_2} (V) \simeq \text{DR}^{\text{rapid}}_{\nabla, G} (V(\nabla D_1))$$

Proof It follows from Lemma 5.1.6 and Proposition 4.7.4.

Let $\varphi : X' \rightarrow X$ be a projective birational morphism such that (i) $D' := \varphi^{-1}(D)$ is normal crossing, (ii) $X' \setminus D' \simeq X \setminus D$. We put $D'_1 := \varphi^{-1}(D_1)$ and $H'_1 := \varphi^{-1}(H_1)$. Let D'_2 be the complement of D'_1 in D'. We set $G' := G \circ \varphi$. We put $V' := \varphi^* V$. We
have the following natural commutative diagram:

\[
\begin{array}{ccc}
X'(D') & \xrightarrow{\tilde{\varphi}_1} & X(D) \\
\rho'_1 \downarrow & & \rho_1 \downarrow \\
X'(G') & \xrightarrow{\tilde{\varphi}} & X(G)
\end{array}
\]

We set \(\rho_2 := \tilde{\varphi} \circ \rho'_1 \). Correspondingly, we have the following commutative diagram of isomorphisms by the construction:

\[
\begin{array}{ccc}
R\rho_{2*} DR^{<D_1 \leq D_2}_{X(D')} (V') & \cong & R\rho_{1*} DR^{<D_1 \leq D_2}_{X(D)} (V) \\
\downarrow & & \downarrow \\
R\tilde{\varphi}_{*} DR_{X',G'}^{\text{rapid}} (V'(!D_1')) & \cong & DR_{X,G}^{\text{rapid}} (V(!D_1))
\end{array}
\]

The lower horizontal arrow is an isomorphism according to Corollary 4.7.5.

5.2. Duality

5.2.1. Duality morphisms. — Let \(X, D \) and \(\mathcal{M} \) be as in §5.1.1. We have the following natural morphism given in a way parallel to that of (14):

\[
(80) \quad DR^{<D_1 \leq D_2}_{X(D)} (D \mathcal{M}) \rightarrow DR^{<D_1 \leq D_2}_{X(D)} (D \mathcal{M})
\]

Namely, we take a \(\pi^{-1}(D_X) \)-injective resolution \(\mathcal{I}_1^* \) of \(\Omega_{X(D)}^{\bullet, <D_1 \leq D_2} [d_X] \), and a \(\mathbb{C}_X \)-injective resolution \(\mathcal{I}_2^* \) of \(\text{Tot} \Omega_{X(D)}^{\bullet, <D} [2d_X] \) with a morphism \(DR^{<D_1 \leq D_2} X(D) \mathcal{I}_1^* \rightarrow \mathcal{I}_2^* \) extending a natural morphism

\[
DR^{<D_1 \leq D_2}_{X(D)} (\Omega_{X(D)}^{\bullet, <D_1 \leq D_2} [d_X]) \rightarrow \text{Tot} \Omega_{X(D)}^{\bullet, <D} [2d_X].
\]

Then, (80) is given as the composite of the following morphisms:

\[
(81) \quad \mathcal{H}om_{\pi^{-1}(D_X)} (\pi^{-1} \mathcal{M}, \mathcal{I}_1^*) \rightarrow \mathcal{H}om_{\mathcal{C}_{X(D)}} (DR^{<D_1 \leq D_2}_{X(D)} \mathcal{M}, DR^{<D_1 \leq D_2}_{X(D)} \mathcal{I}_1) \rightarrow \mathcal{H}om_{\mathcal{C}_{X(D)}} (DR^{<D_1 \leq D_2}_{X(D)} \mathcal{M}, \mathcal{I}_2)
\]

Proposition 5.2.1. — The following diagram is commutative:

\[
\begin{array}{ccc}
R\pi_* DR^{<D_1 \leq D_2}_{X(D)} (D \mathcal{M}) & \cong & R\pi_* D DR^{<D_1 \leq D_2}_{X(D)} (\mathcal{M}) \\
\downarrow & & \downarrow \\
DR^{<D_1 \leq D_2}_{X(D)} (D \mathcal{M}) & \rightarrow & D DR^{<D_1 \leq D_2}_{X(D)} (\mathcal{M})
\end{array}
\]

Here, the upper horizontal arrow is induced by (80), the lower horizontal arrow is given as in (14), the left vertical arrow is given in (71), and the right vertical arrow is given by \(R\pi_* D DR^{<D_2 \leq D_1}_{X(D)} \mathcal{M} \cong D DR^{<D_2 \leq D_1}_{X(D)} \mathcal{M} \cong D DR^{<D_2 \leq D_1}_{X(D)} (\mathcal{M}) \).
5.2. Duality

Proof We have a morphism \(R\pi_* DR_X^{<D_1 \leq D_2} (D, M) \to DR_X^{<D_1 \leq D_2} (D, M) \) given as follows, by Lemma 5.1.1:

\[
R\pi_* R\text{Hom}_{\mathcal{E}(D)} (\pi^{-1} M, \Omega_{X(D)}^{0, <D_1 \leq D_2}) [d_X] \simeq R\text{Hom}_{\mathcal{E}(D)} (M, R\pi_* \Omega_{X(D)}^{0, <D_1 \leq D_2}) [d_X] \\
\simeq R\text{Hom}_{\mathcal{E}(D)} (M, \Omega_{X(D)}^{0, <D_2 \leq D_1}) [d_X]
\]

It is equal to the morphism obtained as in (71). Then, the claim of the proposition can be checked easily.

5.2.2. The case of good meromorphic flat bundles. — Let us consider the case where \(M \) is a good meromorphic flat bundle \(V \) on \((X, D) \).

Theorem 5.2.2. — The duality morphism \(DR_X^{<D_1 \leq D_2}DV \to DDR_X^{<D_2 \leq D_1}V \) is an isomorphism.

Proof We begin with elementary preparations. Let \(\mathbb{R}^2 = S_0 \cup S_1 \cup S_2 \) be a decomposition given as follows:

\[
S_0 := \{(x, y) \mid y \geq 0\} \quad S_1 := \{(x, y) \mid y \leq 0, x \leq 0\} \quad S_2 := \{(x, y) \mid y \leq 0, x \geq 0\}
\]

We put \(X_1 := (\mathbb{R} \times S_1) \cup (\mathbb{R}_{\geq 0} \times S_0) \) and \(X_2 := (\mathbb{R} \times S_2) \cup (\mathbb{R}_{\leq 0} \times S_0) \). The following lemma is easy to see.

Lemma 5.2.3. — \(X_i \subset \mathbb{R}^3 \) (\(i = 1, 2 \)) are closed \(C^0 \)-submanifolds with boundaries. We have \(X_1 \cup X_2 = \mathbb{R}^3 \) and \(X_1 \cap X_2 = \partial X_i \). \(\square \)

We put \(J :=]-1, 1[\), \(J_+ := [0, 1[\), \(J_- :=]-1, 0] \), and \(I_i := [0, 1[\) \((i = 1, 2, 3)\). We have a homeomorphism \(\partial(I_1 \times I_2 \times I_3) \simeq \mathbb{R}^2 \), and we can identify the decomposition

\[
\partial(I_1 \times I_2 \times I_3) = (\partial I_1 \times I_2 \times I_3) \cup (I_1 \times \partial I_2 \times I_3) \cup (I_1 \times I_2 \times \partial I_3)
\]

with \(\mathbb{R}^2 = S_0 \cup S_1 \cup S_2 \). We put

\[
X'_1 := (J \times I_1 \times \partial I_2 \times I_3) \cup (J_+ \times \partial I_1 \times I_2 \times I_3) \\
X'_2 := (J \times I_1 \times I_2 \times \partial I_3) \cup (J_- \times \partial I_1 \times I_2 \times I_3)
\]

They are closed subsets of \(J \times \partial(I_1 \times I_2 \times I_3) \). We obtain the following lemma from Lemma 5.2.3.

Lemma 5.2.4. — \(X'_i \subset J \times \partial(I_1 \times I_2 \times I_3) \) are \(C^0 \)-submanifolds with boundaries. We have \(X'_1 \cup X'_2 = J \times \partial(I_1 \times I_2 \times I_3) \) and \(X'_1 \cap X'_2 = \partial X'_i \). \(\square \)

We recall some elementary facts on constructible sheaves. Let \(Y \) be an oriented \(\ell \)-dimensional \(C^0 \)-manifold with the boundary \(\partial Y \). For a closed \(C^0 \)-submanifold \(W \subset \partial Y \) with boundary such that \(\dim W = \ell - 1 \), let \(j_W \) denote the inclusion \(Y - W \to Y \). We have the following natural isomorphisms:

\[
R\text{Hom}_{\mathcal{C}_Y} (j_W! C_{Y - W}, K) \simeq Rj_W* R\text{Hom}_{\mathcal{C}_Y} (C_{Y - W}, Rj_W^! K) \simeq Rj_W* j_W^! K
\]
The dualizing complex ω_Y of Y is given by $j_{0Y!}C_{Y-\partial Y}[\ell]$.

Lemma 5.2.5. — Let $Y_i \subset \partial Y$ be closed C^0-submanifolds with boundaries such that $Y_1 \cup Y_2 = Y$ and $Y_1 \cap Y_2 = \partial Y_i$. Then, we have $D_{j_{Y_1!}C_{Y-Y_2}} \cong j_{Y_2!}C_{Y-Y_2}$.

Proof The left hand side is naturally isomorphic to $j_{Y_1*}j_{Y_1}^*\omega_Y \cong j_{Y_2*}j_{Y_2}^*\omega_Y[\ell]$, where j_0 denotes the inclusion $Y-\partial Y \rightarrow Y-Y_1$. Then, we can check the claim directly. \qed

Let us return to the proof of Theorem 5.2.2. It is enough to consider the case $X = \Delta^n$ and $D = \bigcup_{i=1}^r \{ z_i = 0 \}$. As in the proof of Proposition 5.1.3, we can reduce the issue to the case where $V = \mathcal{O}_X(+D)v$ with a meromorphic flat connection $\nabla v = v da$, where $a = \prod_{i=1}^m z_i^{-m_i}$ ($m_i > 0$). We put $F_{a} := -|a|^{-1} \text{Re} a$. We have the decomposition $I_1 \cup I_2 = \mathfrak{I}$ such that $D_j = \bigcup_{i \in I_j} \{ z_i = 0 \} (j = 1, 2)$. We set $I_j(> m) := \{ i \in I_j | i > m \}$. We also put $D(\geq m) := \bigcup_{i=m+1}^\ell \{ z_i = 0 \}$ and $D(\leq m) := \bigcup_{i=1}^m \{ z_i = 0 \}$. We consider the closed subsets $W_i \subset \pi^{-1}(D)$ $(i = 1, 2)$ given as follows:

$$\begin{align*}
W_1 &:= \pi^{-1}(D_1 \cap D(> m)) \cup \left[\pi^{-1}(D(\leq m)) \cap \{ F_{a} \geq 0 \} \right] \\
W_2 &:= \pi^{-1}(D_2 \cap D(> m)) \cup \left[\pi^{-1}(D(\leq m)) \cap \{ F_{a} \leq 0 \} \right]
\end{align*}$$

Lemma 5.2.6. — $W_i \subset \pi^{-1}(D)$ are closed C^0-submanifolds with boundaries, and we have $W_1 \cup W_2 = \pi^{-1}(D)$ and $W_1 \cap W_2 = \partial W_i$.

Proof It is easy to observe that it is enough to consider the case $n = \ell$. We have the natural identification $\tilde{X}(D) \cong (S^1)\ell \times \mathbb{R}_{\geq 0}^\ell$. By the decomposition $\mathfrak{I} = \mathfrak{M} \cup I_1(> m) \cup I_2(> m)$, we identify $\mathbb{R}_{\geq 0}^\ell = \mathbb{R}_{\geq 0}^m \times \mathbb{R}_{\geq 0}^{I_1(> m)} \times \mathbb{R}_{\geq 0}^{I_2(> m)}$. We argue the case $I_j(> m) \neq \emptyset (j = 1, 2)$. The other cases are easier. We fix homeomorphisms

$$\begin{align*}
\mathbb{R}_{\geq 0}^m &\cong \mathcal{I}_1 \times \mathbb{R}^{m-1}, & \mathbb{R}_{\geq 0}^{I_1(> m)} &\cong \mathcal{I}_2 \times \mathbb{R}^{I_1(> m) - 1}, & \mathbb{R}_{\geq 0}^{I_2(> m)} &\cong \mathcal{I}_3 \times \mathbb{R}^{I_2(> m) - 1}.
\end{align*}$$

We put $N := m + |I_1(> m)| + |I_2(> m)| - 3$. Let H_{\pm} be the subsets of $(S^1)\ell$ given as follows:

$$H_{+} := \left\{ \cos \left(\sum m_i \theta_i \right) \geq 0 \right\} \quad H_{-} := \left\{ \cos \left(\sum m_i \theta_i \right) \leq 0 \right\}$$

Then, $\pi^{-1}(D)$ is identified with $(S^1)\ell \times \partial(\mathcal{I}_1 \times \mathcal{I}_2 \times \mathcal{I}_3) \times \mathbb{R}^N$, under which we have

$$\begin{align*}
W_1 &\cong \left(((S^1)\ell \times \mathcal{I}_1 \times \partial \mathcal{I}_2 \times \mathcal{I}_3) \cup (H_{-} \times \partial \mathcal{I}_1 \times \mathcal{I}_2 \times \mathcal{I}_3) \right) \times \mathbb{R}^N \\
W_2 &\cong \left(((S^1)\ell \times \mathcal{I}_1 \times \partial \mathcal{I}_2 \times \partial \mathcal{I}_3) \cup (H_{+} \times \partial \mathcal{I}_1 \times \mathcal{I}_2 \times \mathcal{I}_3) \right) \times \mathbb{R}^N
\end{align*}$$

For a point $Q \in H_{+} \cap H_{-}$, we can take a neighbourhood U_Q such that $U \cong \mathcal{J} \times \mathbb{R}^{\ell-1}$ under which $H_{\pm} \cap U_Q = \mathcal{J}_{\pm} \times \mathbb{R}^{\ell-1}$. Then, we obtain Lemma 5.2.6 from Lemma 5.2.4. \qed
Let \(j_{W_1} \) be the inclusion \(\tilde{X}(D) \setminus W_1 \to \tilde{X}(D) \). Let \(\mathcal{L} \) and \(\mathcal{L}' \) be the local systems on \(\tilde{X}(D) \) associated to \(V \) and \(V' \), respectively. According to the description of \(\mathcal{L}^{< D_1 \leq D_2} \) and \(\mathcal{L}'^{< D_1 \leq D_2} \), we have the following natural isomorphisms:

\[
\mathcal{L}^{< D_1 \leq D_2} \cong j_{W_1!}(\mathcal{L}_{\tilde{X}(D) \setminus W_1}) \quad \mathcal{L}'^{< D_1 \leq D_2} \cong j_{W_2!}(\mathcal{L}'_{\tilde{X}(D) \setminus W_2})
\]

Lemma 5.2.5 gives an isomorphism \(D(\mathcal{L}^{< D_1 \leq D_2}[d_X]) \cong \mathcal{L}'^{< D_1 \leq D_2}[d_X] \). It is uniquely determined by its restriction to \(X - D \). Then, we can deduce that \(DR_{\tilde{X}(D)}^{< D_1 \leq D_2} V \to DDR_{\tilde{X}(D)}^{< D_2 \leq D_1} V \) is an isomorphism. Thus, the proof of Theorem 5.2.2 is finished.

Corollary 5.2.7. — For any good meromorphic flat bundle \(V \) on \((X, D)\), we have the following commutative diagram of the isomorphisms:

\[
\begin{array}{ccc}
R\pi_* DR_{\tilde{X}(D)}^{< D_1 \leq D_2} V & \cong & R\pi_* D DR_{\tilde{X}(D)}^{< D_2 \leq D_1} V \\
\cong & & \cong \\
DR_X V'(!D_1) & \to & D DR_X V'(!D_2)
\end{array}
\]

Proof It follows from Theorem 3.2.4, Proposition 5.2.1 and Theorem 5.2.2.

5.3. Functoriality

Let \(X \) be a complex manifold, and let \(D \) be a normal crossing hypersurface with a decomposition \(D = D_1 \cup D_2 \). Let \(D_3 \) be a hypersurface of \(X \). Let \(\varphi : X' \to X \) be a proper birational morphism such that (i) \(D' := \varphi^{-1}(D \cup D_3) \) is normal crossing, (ii) \(X' \setminus D' \cong X \setminus (D \cup D_3) \). Let \(\tilde{X}(D) \to X \) and \(\tilde{X}'(D') \to X' \) be the real blow up. Both the projections are denoted by \(\pi \). Let \(\tilde{\varphi} : \tilde{X}'(D') \to \tilde{X}(D) \) be the induced map. We put \(D'_1 := \varphi^{-1}(D_1) \). We have \(D'_2 \subset D' \) such that \(D' = D'_1 \cup D'_2 \) is a decomposition. Let \(V \) be a meromorphic flat bundle on \((X, D)\). We set \(V' := \varphi^* V \otimes \mathcal{O}_{X'}(\ast D') \).

Theorem 5.3.1. — We have a morphism \(DR_{\tilde{X}(D)}^{< D_1 \leq D_2} V \to R\tilde{\varphi}_* DR_{\tilde{X}'(D')}^{< D'_1 \leq D'_2} V' \) in \(D^b_c(\mathcal{C}_{\tilde{X}(D)}) \) such that the following diagram of perverse sheaves is commutative:

\[
\begin{array}{ccc}
R\pi_* DR_{\tilde{X}(D)}^{< D_1 \leq D_2} V & \cong & R\pi_* R\tilde{\varphi}_* DR_{\tilde{X}'(D')}^{< D'_1 \leq D'_2} V' \\
\cong \downarrow & & \downarrow \\
DR_X (V(!D_1)) & \to & R\tilde{\varphi}_* DR_{X'} (V'(!D'_1))
\end{array}
\]

Here, the vertical isomorphisms are given by (71) and (12), and the lower horizontal arrow is induced by the morphism of \(\mathcal{D} \)-modules \(V(!D_1) \to \varphi_* V'(!D'_1) \).
Similarly, we have a morphism $R\tilde{\varphi} \ast \text{DR}^{<D'_1 \leq D_1'}(V') \to \text{DR}^{<D_2 \leq D_1}(V)$ such that the following diagram of perverse sheaves is commutative:

$$
\begin{array}{ccc}
R\pi_\ast R\tilde{\varphi} \ast \text{DR}^{<D'_1 \leq D_1'}(V') & \to & R\pi_\ast \text{DR}^{<D_2 \leq D_1}(V) \\
\approx & & \approx \\
R\varphi_\ast \text{DR}_X(V'(lD_2)) & \to & \text{DR}_X(V(lD_2))
\end{array}
$$

Proof We have a naturally induced morphism:

$$
\tilde{\varphi}^{-1}(\Omega^{\bullet,\bullet}_{X(D)} \leq D_2 \otimes \pi^{-1}V) \to \Omega^{\bullet,\bullet}_{X(D')} \leq D'_2 \otimes \pi^{-1}V'.
$$

It induces a morphism of cohomologically constructible complexes:

$$
\text{DR}^{<D_1 \leq D_2}(V) \to \tilde{\varphi}_\ast \text{DR}^{<D'_1 \leq D'_2}(V')
$$

We can directly check the commutativity of the following diagram:

$$
\begin{array}{ccc}
\Omega^{\bullet,\bullet}_{X} \leq D_2 \otimes V & \to & \varphi_\ast \left(\Omega^{\bullet,\bullet}_{X'} \leq D'_2 \otimes V'\right) \\
\downarrow & & \downarrow \\
\pi_\ast \left(\Omega^{\bullet,\bullet}_{X(D)} \leq D_2 \otimes \pi^{-1}V\right) & \to & \pi_\ast \left(\tilde{\varphi}_\ast \Omega^{\bullet,\bullet}_{X(D')} \leq D'_2 \otimes \pi^{-1}V'\right)
\end{array}
$$

It implies the commutativity of the following diagram:

$$
\begin{array}{ccc}
R\pi_\ast \text{DR}^{<D_1 \leq D_2}(V) & \to & R\pi_\ast R\tilde{\varphi}_\ast \text{DR}^{<D'_1 \leq D'_2}(V') \\
\approx & & \approx \\
\text{DR}^{<D_1 \leq D_2}(V) & \to & \varphi_\ast \text{DR}^{<D'_1 \leq D'_2}(V')
\end{array}
$$

Then, we obtain the commutativity of (84) from Theorem 3.2.5.

Considering the dual of (87) with V^\vee (see Theorem 5.2.2), we obtain the following morphism:

$$
\tilde{\varphi}_\ast \text{DR}^{<D'_1 \leq D'_2}(V') \to \text{DR}^{<D_2 \leq D_1}(V)
$$

Let us prove the commutativity of the diagram (85). From (88) for V^\vee, we obtain the following commutative diagram:

$$
\begin{array}{ccc}
\text{DR}_X \ast R\pi_\ast \text{DR}^{<D'_1 \leq D'_2}(V'^\vee) & \to & \text{DR}_X \ast R\pi_\ast \text{DR}^{<D_2 \leq D_1}(V'^\vee) \\
\approx & & \approx \\
\text{DR}_X \ast R\varphi_\ast \text{DR}^{<D'_1 \leq D'_2}(V'^\vee) & \to & \text{DR}_X \ast \text{DR}^{<D_2 \leq D_1}(V'^\vee)
\end{array}
$$
By Proposition 5.2.1 and Theorem 5.2.2, we have the following commutative diagram:

\[
\begin{array}{ccc}
DR\pi_* DR^{<D_1 \leq D_2}(V^\vee) & \cong & R\pi_* DR^{<D_1 \leq D_2}(V) \\
\cong & & \cong \\
DR^{<D_1 \leq D_2}(V^\vee) & \cong & DR^{<D_1 \leq D_2}(V)
\end{array}
\]

We have a similar diagram for \(V' \). Then, we obtain the commutativity of (85) from the constructions of (89) and (20).

5.4. A rigidity property (Appendix)

The author originally used Theorem 5.4.1 below for the functoriality of the Betti structure by projective morphisms. After the improvement, it is now not necessary. But, it seems interesting to the author, so we keep it. The reader can skip this subsection.

5.4.1. Statement. — We set \(X := \Delta^n \) and \(D := \bigcup_{i=1}^\ell \{ z_i = 0 \} \). Let \(V \) be a good meromorphic flat bundle on \((X, D)\). Let \(L \) be the associated local system on \(\tilde{X}(D) \).

Let \(g \) be a holomorphic function on \(X \) such that \(g^{-1}(0) = D \). We have the naturally defined morphisms:

\[
\tilde{X}(D) \xrightarrow{\pi_1} \tilde{X}(g) \xrightarrow{\pi_0} X
\]

We put \(\pi_2 := \pi_0 \circ \pi_1 \). We set \(K := R\pi_{1*}L^{\leq D} \). In this subsection, we will work on the derived category of cohomologically constructible sheaves.

Theorem 5.4.1. — The restriction \(\text{Hom}(K, K) \to \text{Hom}(K|_{\pi_0^{-1}(X-D)}, K|_{\pi_0^{-1}(X-D)}) \) is injective.

We will give a consequence in §5.4.6.

5.4.2. Reduction. — We put \(D^{[m]} := \bigcup_{l \leq m} D_l \). It is easy to see that

\[
\text{Hom}(K|_{\pi_0^{-1}(X-D^{[2^l]}), K|_{\pi_0^{-1}(X-D^{[2^l]})}}) \to \text{Hom}(K|_{\pi_0^{-1}(X-D)}, K|_{\pi_0^{-1}(X-D)})
\]

is injective. Hence, it is enough to show the injectivity of the following morphisms for \(m \geq 2 \):

\[
\text{Hom}(K|_{\pi_0^{-1}(X-D^{[m+1]}), K|_{\pi_0^{-1}(X-D^{[m+1]})}}) \to \text{Hom}(K|_{\pi_0^{-1}(X-D^{[m]}), K|_{\pi_0^{-1}(X-D^{[m]})}})
\]

Then, it is easy to observe that it is enough to consider the case \(\ell = n \) and the following morphism:

\[
\text{Hom}(K, K) \to \text{Hom}(K|_{\pi_0^{-1}(X-O)}, K|_{\pi_0^{-1}(X-O)})
\]

By the adjunction \(\text{Hom}(\pi_1^*K, L^{\leq D}) \simeq \text{Hom}(K, K) \), it is enough to show the injectivity of the following morphism:

\[
\text{Hom}(\pi_1^*K, L^{\leq D}) \to \text{Hom}(\pi_1^*K|_{\pi_2^{-1}(X-O)}, L^{\leq D}|_{\pi_2^{-1}(X-O)})
\]
We have $R^i\pi_*\mathcal{L}^{\leq D} = 0$ unless $0 \leq i \leq n-1$, because the real dimension of the fiber is less than $n-1$. We set

$$K^i := \pi^*_1 R^i \pi_* \mathcal{L}^{\leq D}.$$

Let $j : \pi^{-1}_2(X - O) \to \tilde{X}(D)$ and $i : \pi^{-1}_2(O) \to \tilde{X}(D)$.

Lemma 5.4.2. To prove Theorem 5.4.1, it is enough to prove

$$\text{Ext}^i(i_*j^*K^i, \mathcal{L}^{\leq D}) = 0, \quad (i, j \leq n - 1). \quad (90)$$

Proof From the distinguished triangle $K^i[-i] \to \tau_{\geq i+1} \pi^*_1 \mathcal{K} \to \tau_{\geq i+1} \pi^*_1 \mathcal{K} \to$, we obtain the long exact sequence:

$$\text{Ext}^{i-1}(K^i, \mathcal{L}^{\leq D}) \to \text{Hom}(\tau_{\geq i+1} \pi^*_1 \mathcal{K}, \mathcal{L}^{\leq D}) \to \text{Hom}(\tau_{\geq i} \pi^*_1 \mathcal{K}, \mathcal{L}^{\leq D}) \to \text{Ext}^i(K^i, \mathcal{L}^{\leq D}) \quad (91)$$

We have the corresponding long exact sequences for the restrictions to $\pi^{-1}_2(X - O)$. The injectivity of $\text{Hom}(\tau_{\geq i} \pi^*_1 \mathcal{K}, \mathcal{L}^{\leq D}) \to \text{Hom}(\tau_{\geq i} \pi^*_1 \mathcal{K}|_{\pi^{-1}_2(X - O)}, \mathcal{L}^{\leq D}|_{\pi^{-1}_2(X - O)})$ can follow from the injectivity of

$$\text{Ext}^i(K^i, \mathcal{L}^{\leq D}) \to \text{Ext}^i(K^i|_{\pi^{-1}_2(X - O)}, \mathcal{L}^{\leq D}|_{\pi^{-1}_2(X - O)}), \quad (92)$$

$$\text{Hom}(\tau_{\geq i} \pi^*_1 \mathcal{K}, \mathcal{L}^{\leq D}) \to \text{Hom}(\tau_{\geq i} \pi^*_1 \mathcal{K}|_{\pi^{-1}_2(X - O)}, \mathcal{L}^{\leq D}|_{\pi^{-1}_2(X - O)}), \quad (93)$$

and the surjectivity of

$$\text{Ext}^{i-1}(K^i, \mathcal{L}^{\leq D}) \to \text{Ext}^{i-1}(K^i|_{\pi^{-1}_2(X - O)}, \mathcal{L}^{\leq D}|_{\pi^{-1}_2(X - O)}) \quad (94)$$

By an easy inductive argument, we can reduce Theorem 5.4.1 to the injectivity of (92) and the surjectivity of (94) for any $i \leq n - 1$.

From the exact sequence $0 \to j^*K^i \to K^i \to i_*j^*K^i \to 0$ and the adjunction $\text{Ext}^i(j^*K^i, \mathcal{L}^{\leq D}) \simeq \text{Ext}^i(j^*K^i, i_*j^*\mathcal{L}^{\leq D})$, we obtain the following exact sequence:

$$\text{Ext}^{i-1}(K^i, \mathcal{L}^{\leq D}) \to \text{Ext}^{i-1}(j^*K^i, \mathcal{L}^{\leq D}) \to \text{Ext}^i(i_*j^*K^i, \mathcal{L}^{\leq D}) \to \text{Ext}^i(K^i, \mathcal{L}^{\leq D}) \to \text{Ext}^i(j^*K^i, j^*\mathcal{L}^{\leq D}) \quad (95)$$

Hence, the proof of Theorem 5.4.1 is reduced to the vanishing $\text{Ext}^i(i_*j^*K^i, \mathcal{L}^{\leq D}) = 0$ for any $0 \leq i \leq n - 1$. For that purpose, it is enough to prove (90). Thus, the proof of Lemma 5.4.2 is finished. □

In the following, we will prove $\text{Ext}^i(\pi^{-1}_1(I), \mathcal{L}^{\leq D}) = 0$ $(i = 0, \ldots, n - 1)$ for any constructible sheaf I on $\pi^{-1}_0(O) \simeq S^1$.

5.4.3. Local form of $\pi_1^{-1}(I)$. — Let (z_1, \ldots, z_n) be a coordinate system with $z_i^{-1}(0) = D_i$. It induces a coordinate system $(\theta_1, \ldots, \theta_n)$ of $\pi_1^{-1}(O)$, which is independent of the choice of (z_1, \ldots, z_n) up to parallel transport. We take a coordinate system t of \mathbb{C}, which induces a coordinate system θ of $\pi_0^{-1}(O)$. The induced map $\pi_2^{-1}(O) \to \pi_0^{-1}(O)$ is affine with respect to the coordinate systems $(\theta_1, \ldots, \theta_n)$ and θ.

Let us consider the behaviour of $\pi_1^{-1}(I)$ around $P \in \pi_2^{-1}(O)$, where I is a constructible sheaf on $\pi_0^{-1}(O)$. We may assume $P = (0, \ldots, 0)$. The map $\pi_2^{-1}(O) \to \pi_0^{-1}(O)$ is of the form $(\theta_1, \ldots, \theta_n) \mapsto \sum \alpha_i \theta_i + \beta$, where $\beta = \pi_1(P)$. The sheaf I is the direct sum of sheaves of the following forms:

- The constant sheaf $\mathbb{C}_{\pi_0^{-1}(O)}$.
- $j_! \mathcal{C}_J$ or $j_* \mathcal{C}_J$, where J is an open interval such that one of the end points is β, and j denotes the inclusion $J \to \pi_1^{-1}(O)$.

Hence, $\pi_1^{-1}(I)$ around P is described as the direct sum of sheaves of the following forms:

- The constant sheaf $\mathbb{C}_{\pi_0^{-1}(O)}$.
- $j_! \mathcal{C}_H$ or $j_* \mathcal{C}_H$, where H is an open half space such that $\partial H \ni P$, and $j : H \to \pi_0^{-1}(O)$. They are denoted by $\mathbb{C}_{\pi_0^{-1}(H)}$ and $\mathbb{C}_{\pi_0^{-1}(H)_1}$.

5.4.4. Local form of $\mathcal{L}^{\leq D}$ and $\mathcal{L}/\mathcal{L}^{\leq D}$. — Let $P \in \pi_0^{-1}(O)$. We have a decomposition around P:

$$\mathcal{L} = \bigoplus_{a \in \text{Irr}(\nabla)} \mathcal{L}_a \quad \mathcal{L}^{\leq D} = \bigoplus_{a \in \text{Irr}(\nabla)} \mathcal{L}^{\leq D}_a$$

Let us describe \mathcal{L}_a and $\mathcal{L}/\mathcal{L}^{\leq D}_a$ around P. For an appropriate coordinate system, $a = (m_1, \ldots, m_n)$ for some $m_i \geq 0$. Let $q_a : \Delta^n \to \Delta$ be given by $(z_1, \ldots, z_n) \mapsto \prod z_i^{m_i}$. Let $\pi_\Delta : \tilde{\Delta}(0) \to \Delta$ be the real blow up. We have the induced map:

$$q_a : \tilde{X}(D) \to \tilde{\Delta}(0), \quad (r, \theta) \mapsto \left(\prod_{i=1}^n r_i^{m_i}, \sum m_i \theta_i \right)$$

Let \mathcal{Q} be the local system on $\tilde{\Delta}(0)$ with Stokes structure, corresponding to the meromorphic flat bundle $(\mathcal{O}_\Delta(*0), d + d(1/z))$. Note that $\mathcal{Q}/\mathcal{Q}^{\leq 0}$ is the constructible sheaf $j_* \mathcal{C}_J$ on $\pi_\Delta^{-1}(0)$, where $j : J = (-\pi, \pi) \to \pi_\Delta^{-1}(0)$. Let $r(a)$ be the rank of \mathcal{L}_a. We have isomorphisms:

$$\mathcal{L}_a \simeq q_a^* \mathcal{Q}^{\oplus r(a)} \quad \mathcal{L}^{\leq D}_a \simeq q_a^* \left(\mathcal{Q}^{\leq 0} \right)^{\oplus r(a)} \quad \mathcal{L}_a/\mathcal{L}^{\leq D}_a \simeq q_a^* \left(\mathcal{Q}/\mathcal{Q}^{\leq 0} \right)^{\oplus r(a)}$$

Around P, we have an isomorphism $q_a^* \left(\mathcal{Q}/\mathcal{Q}^{\leq 0} \right) \simeq LU$, where $U := q_a^{-1}(J)$ and $L : Z \to (S^1)^n \times \mathbb{R}_{\geq 0}^n$. Note that Z is of the form $Z_0 \times \partial \mathbb{R}_{\geq 0}^n$, where Z_0 is the inverse image of J via the induced map $(S^1)^n \times \{0\} \to S^1 \times \{0\}$. Hence, $q_a^* \left(\mathcal{Q}/\mathcal{Q}^{\leq 0} \right)$ is isomorphic to one of the following, around P:

- The constant sheaf $\mathbb{C}_{(S^1)^n \times \partial \mathbb{R}_{\geq 0}^n}$.

Lemma 5.4.3. — We reduce the proof of the theorem to the computation of $\mathcal{E}xt^i(\pi_1^{-1}I, q_a^{-1}(Q/Q^{\leq 0}))$ for $i \leq n - 2$, where I is a constructible sheaf on $\pi_0^{-1}(O)$.

Lemma 5.4.3. — We have $\mathcal{E}xt^i(\pi_1^{-1}I, q_a^{-1}Q) = 0$ for any i. In particular, we have isomorphisms:

$$\mathcal{E}xt^i(\pi_1^{-1}I, q_a^{-1}Q^{\leq 0}) \simeq \mathcal{E}xt^{i-1}(\pi_1^{-1}I, q_a^{-1}(Q/Q^{\leq 0})).$$

Proof Let $\iota : (S^1)^n \times \{0\} \to (S^1)^n \times \partial \mathbb{R}^n_{\geq 0}$ denote the inclusion. There exists a constructible sheaf F on $(S^1)^n$ such that $\pi_1^{-1}I \simeq \iota_* F$. We have the adjunction $\mathcal{E}xt^i(\iota_* F, q_a^{-1}Q) = \iota_* \mathcal{E}xt^i(F, i^! q_a^{-1}Q)$. Note $i^! q_a^{-1}Q = D i^{-1} D(q_a^{-1}Q) = 0$, because $D q_a^{-1}Q$ is 0-extension of a constant sheaf on $(S^1)^n \times \mathbb{R}^n_{>0}$ by $(S^1)^n \times \mathbb{R}^n_{>0} \to (S^1)^n \times \mathbb{R}^n_{\geq 0}$. Hence, we obtain $\mathcal{E}xt^i(\iota_* F, q_a^{-1}Q) = 0$, and the proof of Lemma 5.4.3 is finished.

Now, let us prove the following vanishing of the stalks at P:

$$(96) \quad \mathcal{E}xt^i(\pi_1^{-1}I, q_a^{-1}(Q/Q^{\leq 0})) \vert_P = 0, \quad (j \leq n - 2)$$

It can be computed on $(S^1)^n \times \partial \mathbb{R}^n_{\geq 0}$. We have the following cases, divided by the local forms of $\pi_1^{-1}(I)$ and $q_a^{-1}(Q/Q^{\leq 0})$ around P:

(I) : $\pi_1^{-1}I \simeq C_{(S^1)^n}$ and $q_a^{-1}(Q/Q^{\leq 0}) \simeq C_{(S^1)^n \times \partial \mathbb{R}^n_{>0}}$.

(II) : $\pi_1^{-1}I \simeq C_{(S^1)^n}$ and $q_a^{-1}(Q/Q^{\leq 0}) \simeq C_{K \times \partial \mathbb{R}^n_{\geq 0} \ast}$.

(III) : $\pi_1^{-1}I \simeq C_{H \ast}$ and $q_a^{-1}(Q/Q^{\leq 0}) \simeq C_{(S^1)^n \times \partial \mathbb{R}^n_{>0} \ast}$, where $\ast = \ast, !$.

(IV) : $\pi_1^{-1}I \simeq C_{H \ast}$ and $q_a^{-1}(Q/Q^{\leq 0}) \simeq C_{K \times \partial \mathbb{R}^n_{\geq 0} \ast}$, where $\ast = \ast, !$. Moreover, this is divided into three cases (IV-1) ∂H and ∂K are transversal, (IV-2) $H = K$, (IV-3) $H = -K$.

In the following, for a given $i : Y_1 \subset Y_2$ and $\ast = \ast, !$, let $\mathbb{C}_{Y_1 \ast} := \iota_* \mathbb{C}_{Y_1}$ on Y_2. It is also denoted just by \mathbb{C}_{Y_1} if there is no risk of confusion.

5.4.5.1. The case (I). — Instead of $(S^1)^n \times \{0\} \to (S^1)^n \times \partial \mathbb{R}^n_{\geq 0}$, it is enough to consider the inclusion $\{0\} \to \partial \mathbb{R}^n_{\geq 0} \simeq \mathbb{R}^{n-1}$. We obtain (96) from the following standard result:

$$\mathcal{E}xt^i(\mathbb{C}_0, \mathbb{C}_{\mathbb{R}^{n-1}}) \vert_0 \simeq \begin{cases} 0 & (j \leq n - 2) \\ \mathbb{C} & (j = n - 1) \end{cases}$$
5.4.5.2. The case (II). — We have the exact sequence \(0 \to C(S^n)_n \to C(S^n)_* \to C_K \to 0\). Let \(i\) denote the inclusion \(((S^n)^n \setminus K) \times \partial R^n_{\geq 0} \to (S^n)^n \times \partial R^n_{\geq 0}\). Note \(i^* = i^!\), and hence \(i^! C_K \times \partial R^n_{\geq 0} = 0\). We have

\[\mathcal{E}xt^j \left(C(S^n)_n \setminus K \times \{0\}, C_K \times \partial R^n_{\geq 0} \right) \simeq \mathcal{E}xt^j \left(C(S^n)_n \setminus K \times \{0\}, i^! C_K \times \partial R^n_{\geq 0} \right) = 0\]

Hence, we obtain

\[\mathcal{E}xt^j \left(C(S^n)_n, C_K \times \partial R^n_{\geq 0} \right)_p = 0\]

5.4.5.3. The case (III). — Let us consider the case \(\star = \ast\). We have the exact sequence:

\[0 \to C(S^n)_n \times \partial R^n_{\geq 0} \setminus H \times \{0\} \to C(S^n)_n \times \partial R^n_{\geq 0} \to C_H \to 0\]

Let \(k_1\) denote the inclusion \(H \times \{0\} \to (S^n)^n \times \partial R^n_{\geq 0}\), and let \(k_2\) denote the open embedding of the complement. Because \(k_1^* C(S^n)_n \times \partial R^n_{\geq 0} \setminus H \times \{0\} = 0\), we have the following isomorphisms:

\[(97) \quad R\text{Hom}(C(S^n)_n \times \partial R^n_{\geq 0} \setminus H \times \{0\}, C(S^n)_n \times \partial R^n_{\geq 0})_p \simeq R\text{Hom}(C(S^n)_n \times \partial R^n_{\geq 0} \setminus H \times \{0\}, C(S^n)_n \times \partial R^n_{\geq 0} \setminus H \times \{0\})_p \simeq k_2^* (C(S^n)_n \times \partial R^n_{\geq 0} \setminus H \times \{0\})_p \simeq (C(S^n)_n \times \partial R^n_{\geq 0})_p = 0\]

We obtain \(R\text{Hom}(C_H, C(S^n)_n \times \partial R^n_{\geq 0})_p = 0\). In particular, \(\mathcal{E}xt^j(C_H, C(S^n)_n \times \partial R^n_{\geq 0}) = 0\) for any \(j\).

Let us consider the case \(\star = 1\). We have the exact sequence \(0 \to C_H \to C(S^n)_n \to C(S^n)_n \times H \to 0\). Hence, we obtain the following isomorphisms:

\[\mathcal{E}xt^j(C_H, C(S^n)_n \times \partial R^n_{\geq 0})_p = 0, \quad \mathcal{E}xt^j(C(S^n)_n, C(S^n)_n \times \partial R^n_{\geq 0})_p = \left\{ \begin{array}{ll} 0 & (j \leq n - 2) \\ C & (j = n - 1) \end{array} \right.\]

5.4.5.4. The case (IV-1). — Let us consider the case \(\star = \ast\). Let \(N\) be the kernel of \(C_H \to C_K \cap K\).

Lemma 5.4.4. — We have \(R\text{Hom}(N, C_K \times \partial R^n_{\geq 0} \ast)_p = 0\).

Proof. Let \(i\) be the inclusion \(((S^n)^n \setminus K) \times \partial R^n_{\geq 0} \to (S^n)^n \times \partial R^n_{\geq 0}\). Then, \(N\) is of the form \(i_1 N_i\). Then, the claim follows from \(i_1^! C_K \times \partial R^n_{\geq 0} \ast = 0\). □

We have the exact sequence: \(0 \to C_K \times \partial R^n_{\geq 0} \setminus (H \cap K) \times \{0\} \to C_K \times \partial R^n_{\geq 0} \to C_H \setminus (H \cap K) \times \{0\} \to 0\). Let \(k\) denote the inclusion \(K \times \partial R^n_{\geq 0} \setminus (H \cap K) \times \{0\} \to K \times \partial R^n_{\geq 0}\). We have the following isomorphisms:

\[(98) \quad R\text{Hom}(C_K \times \partial R^n_{\geq 0} \setminus (H \cap K) \times \{0\}, C_K \times \partial R^n_{\geq 0})_p \simeq R_k R\text{Hom}(C_K \times \partial R^n_{\geq 0} \setminus (H \cap K) \times \{0\}, C_K \times \partial R^n_{\geq 0} \setminus (H \cap K) \times \{0\})_p \simeq C_K \times \partial R^n_{\geq 0}_p\]
By using the argument in (IV-2), we can show E. Thus, the proof of Theorem 5.4.1 is finished.

Let us consider the case $\star = \star$. We have an exact sequence $0 \to \mathbb{C}_{H!} \to \mathbb{C}_{(S^1)^n} \to \mathbb{C}_{(S^1)^n \setminus H^*} \to 0$ on $(S^1)^n$. By using the previous results, we obtain

$$
\mathcal{E}xt^j(\mathbb{C}_{H!}, \mathbb{C}_{K \times \partial \mathbb{R}_0^+})_p = \begin{cases} 0 & (j \leq n-2) \\ \mathbb{C} & (j = n-1) \end{cases}
$$

5.4.5. The case (IV-2). — Let us consider the case $\star = \star$. By considering $0 \to \partial \mathbb{R}_0^+$, we obtain

$$
\mathcal{E}xt^j(\mathbb{C}_{H*}, \mathbb{C}_{H \times \partial \mathbb{R}_0^+})_p = \begin{cases} 0 & (j \leq n-2) \\ \mathbb{C} & (j = n-1) \end{cases}
$$

Let us consider the case $\star = \star$. We have an exact sequence $0 \to \mathbb{C}_{H!} \to \mathbb{C}_{H*} \to \mathbb{C}_{\partial H^*} \to 0$. Let us look at $\mathcal{E}xt^j(\mathbb{C}_{\partial H^*}, \mathbb{C}_{H \times \partial \mathbb{R}_0^+})_p$. For $0 \to [0,1] \times \mathbb{R}^{n-1}$, we have $\mathcal{E}xt^j(\mathbb{C}_0, \mathbb{C}_{[0,1] \times \mathbb{R}^{n-1}}) = 0$ for any j. Hence, we obtain

$$
\mathcal{E}xt^j(\mathbb{C}_{H!}, \mathbb{C}_{H \times \partial \mathbb{R}_0^+})_p = \begin{cases} 0 & (j \leq n-2) \\ \mathbb{C} & (j = n-1) \end{cases}
$$

5.4.5.6. The case (IV-3). — It is easy to show $\mathcal{E}xt^j(\mathbb{C}_{H!}, \mathbb{C}_{K \times \partial \mathbb{R}_0^+}) = 0$ for any j. By using the argument in (IV-2), we can show $\mathcal{E}xt^j(\mathbb{C}_{H*}, \mathbb{C}_{K \times \partial \mathbb{R}_0^+}) = 0$ for any j. Thus, the proof of Theorem 5.4.1 is finished.

5.4.6. A uniqueness result on the K-structure. — We use the notation in §5.4.1. Let V be a good meromorphic flat bundle on (X, D). Let g be a holomorphic function on X such that $g^{-1}(0) = D$, and let i_g be the graph $X \to X \times \mathbb{C}$. We regard $\text{DR}_{X \times \mathbb{C}}(i_g V)$ as a cohomologically constructible sheaf on $\tilde{X}(g)$.

Let K be a subfield of \mathbb{C}. A K-structure of $\text{DR}_{X \times \mathbb{C}}(i_g V)$ is defined to be a K-cohomologically constructible complex \mathcal{F} on $\tilde{X}(g)$ with an isomorphism $\alpha : \mathcal{F} \otimes \mathbb{C} \simeq \text{DR}_{X \times \mathbb{C}}(i_g V)$ in the derived category. Two K-structures $(\mathcal{F}_i, \alpha_i)$ ($i = 1, 2$) are called equivalent if there exists an isomorphism $\beta : \mathcal{F}_1 \to \mathcal{F}_2$ for which the following diagram is commutative:

$$
\begin{array}{ccc}
\mathcal{F}_1 \otimes \mathbb{C} & \xrightarrow{\beta \otimes \mathbb{C}} & \mathcal{F}_2 \otimes \mathbb{C} \\
\downarrow \alpha_1 & & \downarrow \alpha_2 \\
\text{DR}_{X \times \mathbb{C}}(i_g V) & \xrightarrow{=} & \text{DR}_{X \times \mathbb{C}}(i_g V)
\end{array}
$$

Lemma 5.4.5. — Let $(\mathcal{F}_i, \alpha_i)$ ($i = 1, 2$) be K-structures of $\text{DR}_{X \times \mathbb{C}}(i_g V)$. If their restriction to $\pi_1^{-1}(X - D)$ are equivalent, then they are equivalent on $\tilde{X}(g)$.
Proof We put $F^C := F_i \otimes \mathbb{C}$. We have the following commutative diagram:

$$\begin{array}{ccc}
\text{Hom}(F_1, F_2) \otimes \mathbb{C} & \longrightarrow & \text{Hom}(F_{1|\pi_1^{-1}(X-D)}, F_{2|\pi_1^{-1}(X-D)}) \otimes \mathbb{C} \\
\downarrow \cong & & \downarrow \cong \\
\text{Hom}(F^C_1, F^C_2) & \longrightarrow & \text{Hom}(F^C_{1|\pi_1^{-1}(X-D)}, F^C_{2|\pi_1^{-1}(X-D)})
\end{array}$$

According to Theorem 5.4.1, the horizontal arrows are injective. Hence, we obtain the equality

$$\text{Hom}(F_1, F_2) = \text{Hom}(F_{1|\pi_1^{-1}(X-D)}, F_{2|\pi_1^{-1}(X-D)}) \cap \text{Hom}(F^C_1, F^C_2)$$

in $\text{Hom}(F^C_{1|\pi_1^{-1}(X-D)}, F^C_{2|\pi_1^{-1}(X-D)})$. Then, the element of $\text{Hom}(F^C_1, F^C_2)$ corresponding to the identity of $\text{DR}^\text{nil}_{X \times \tilde{\mathbb{C}}}(i_{\tilde{\phi}}) \circ V$ comes from $\text{Hom}(F_1, F_2)$. \qed
CHAPTER 6

GOOD K-STRUCTURE

6.1. Good meromorphic flat bundles

6.1.1. Good K-structure of good meromorphic flat bundles. — Let $K \subset \mathbb{C}$ be a subfield. Let X be a complex manifold with a normal crossing hypersurface D.

Definition 6.1.1. — Let V be a good meromorphic flat bundle on (X,D).
- A K-structure of V is a pre-K-Betti structure of the flat bundle $V|_{X-D}$.
- A K-structure of V is good if the Stokes structures are defined over K.

Later, we shall extend the definition to the case where V is not necessarily good. (See §6.4.)

Let $D = D_1 \cup D_2$ be a decomposition. Let \mathcal{L} be the local system with the Stokes structure on $\tilde{X}(D)$ associated to V. Recall that the complex $\text{DR}^{<D_1 \leq D_2}(\tilde{X}(D))$ is quasi-isomorphic to $\mathcal{L}^{<D_1 \leq D_2}[\dim X]$. (See §5.1.2.) If V has a good K-structure, it is naturally equipped with a K-structure $\mathcal{L}_K^{<D_1 \leq D_2}[\dim X]$. By the isomorphisms (12) and (71), we obtain a pre-K-Betti structure

$$\mathcal{F}_V^{<D_1 \leq D_2} := R\pi_* \mathcal{L}_K^{<D_1 \leq D_2}[\dim X]$$

of the holonomic \mathcal{D}-module $V(!D_1)$. This pre-K-Betti structure is called canonical. Let $D'_1 \cup D'_2 = D$ be another decomposition such that $D_1 \subset D'_1$. The natural morphism $V(!D'_1) \to V(!D_1)$ is compatible with the pre-K-Betti structures. We use the symbols \mathcal{F}_{V*} and $\mathcal{F}_{V!}$ to denote $\mathcal{F}_V^{<D}$ and $\mathcal{F}_V^{<D}$, respectively. We also use the symbol \mathcal{F}_V to denote \mathcal{F}_{V*} for simplicity.

More generally, let $\iota : Z \subset X$ be a complex submanifold with a normal crossing hypersurface D_Z. Let V_Z be a good meromorphic flat bundle on (Z,D_Z). We say that $\iota_! V_Z$ has a good K-structure if V_Z has a good K-structure in the above sense. The canonical pre-K-Betti structures for $\iota_! V_Z(!D_{Z,1})$ are also defined in a similar way for a decomposition $D_Z = D_{Z,1} \cup D_{Z,2}$.

6.1.2. Some basic property. —

6.1.2.1. Some functoriality. — Let X be any complex manifold with a normal crossing hypersurface D. The following lemma is clear.

Lemma 6.1.2. — Let V_i ($i = 1, 2$) be good meromorphic flat bundles on (X, D) with a good K-structure. If $V_1 ⊕ V_2$ is good, then the induced K-structure is good. Similar claims hold for $V_1 ⊗ V_2$ and $\text{Hom}(V_1, V_2)$.

Let V be a good meromorphic flat bundle on (X, D). Let $φ : X' → X$ be a morphism of complex manifolds such that $D' := φ^{-1}(D)$ is normal crossing. We obtain a good meromorphic flat bundle $V' := φ^*V$ on (X', D'). Suppose that V is equipped with a K-structure, which induces a K-structure of V'.

Lemma 6.1.3. — If the K-structure of V is good, the K-structure of V' is also good. Conversely, suppose that $φ$ is surjective and that the K-structure of V' is good. Then, the K-structure of V is good.

Proof Let P' be any point of D'. Let $P := φ(P')$. We take a small neighbourhood X_P with a coordinate (z_1, \ldots, z_n) around P in X such that $D = \bigcup_{i=1}^\ell \{z_i = 0\}$, and a ramified covering $κ_P : (X_P^{(1)}, D_P^{(1)}) → (X_P, D ∩ X_P)$ such that $V_P^{(1)} := κ_P(V)$ is unramifiedly good. Let e_i ($i = 1, \ldots, \ell$) denote the ramification index of $κ_P$ along $z_i = 0$. We take a small neighbourhood $X_{P'}$ of P'. Because $(z_i ∘ φ)^{-1}(0)$ ($i = 1, \ldots, \ell$) are contained in $D' ∩ X_{P'}$, we take a ramified covering $κ_{P'} : (X_{P'}^{(1)}, D_{P'}^{(1)}) → (X_{P'}, D' ∩ X_{P'})$ such that there exist functions $(z_i ∘ φ ∘ κ_{P'})^{1/e_i}$ ($i = 1, \ldots, \ell$) on $X_{P'}^{(1)}$. Then, we have a morphism $ρ : X_P^{(1)} → X_{P'}^{(1)}$ such that $κ_P ∘ ρ = φ ∘ κ_{P'}$. Then, $V'^{(1)} := (κ_{P'})^*V' = ρ^*κ_P(V)$ is unramifiedly good. Let L be the local system on $X_{P'}^{(1)}(D_{P'}^{(1)})$ associated to $V'^{(1)}$. Let L' be the local system on $X_P^{(1)}(D_P^{(1)})$ associated to $V_P^{(1)}$. Let $ρ : X_P^{(1)}(D_P^{(1)}) → X_{P'}^{(1)}(D_{P'}^{(1)})$ be the map induced by $ρ$. We have $L' = ρ^*L$.

Let $π^{(1)} : X_P^{(1)}(D_P^{(1)}) → X_P^{(1)}$ and $π^{(1)} : X_P^{(1)}(D_P^{(1)}) → X_P^{(1)}$ denote the projections. Let Q'_1 be any point of $(π^{(1)})^{-1}(D_P^{(1)})$. We set $Q_1 := ρ(Q'_1)$. Let $P'_1 := π^{(1)}(Q')$ and $P_1 := π^{(1)}(Q)$. The set of the irregular values of $V'^{(1)}$ at P'_1 is the pull back of the set of the irregular values of $V^{(1)}$ at P_1. The partial order $\leq Q'_1$ on the set is equal to $\leq Q_1$. The Stokes filtration FQ'_1 is obtained as the pull back of FQ_1. Hence, FQ'_1 is defined over K if and only if FQ'_1 is defined over K.

6.1.2.2. Curve test. — Let us consider the case $X = Δ^n$, $D_i := \{z_i = 0\}$ and $D = \bigcup_{i=1}^\ell D_i$. We set $D_i^\circ := D_i \setminus \bigcup_{j \neq i} D_j$. Let $p_i : X → D_i$ denote the projection.

Proposition 6.1.4. — Let V be a good meromorphic flat bundle on (X, D) with a K-structure with the following property.
(C1) : Let \(P \) be any point of \(D_i^\circ \) for \(i = 1, \ldots, \ell \). Then, the induced \(K \)-structure of \(V_{P_i^{-1}(P)} \) is good.

Then, the \(K \)-structure of \(V \) is good.

Proof We may assume that \(V \) is unramifiedly good. Let \(\pi : \tilde{X}(D) \to X \) denote the projection. Let \(\mathcal{L} \) be the local system on \(\tilde{X}(D) \) with the induced \(K \)-structure. Let \(Q \) be any point of \(\pi^{-1}(D) \). It is enough to prove that the Stokes filtration \(\mathcal{F}^Q(\mathcal{L}_Q) \) is defined over \(K \). It is enough to consider the case \(\pi(Q) = (0, \ldots, 0) \). We set \(S := \{(a, b) \in \text{Irr}(V)^2 \mid a \neq b\} \). We have \(i \) such that \(\text{ord}_{\xi_i}(a - b) < 0 \) for any \((a, b) \in S \). For any \((a, b) \in S \), let \(H(a, b) \) be the intersection of \(\pi^{-1}(D_i) \) and the closure of \(\{R \in X \setminus D \mid \text{Re}(a - b)(R) = 0\} \) in \(\tilde{X}(D) \). Let \(U \) be a small neighbourhood of \(Q \) in \(\pi^{-1}(D_i) \). Then, for \((a, b) \in S \), we have \(a < Q \ b \) if and only if we have \(a < Q' \ b \) for any \(Q' \in U' := \pi^{-1}(D_i^\circ) \cap U \setminus \bigcup_{(a, b) \in S} H(a, b) \). We have natural identifications of \(\mathcal{L}_Q \) and \(\mathcal{L}_{Q'} \) for \(Q' \in U \). We have \(\mathcal{F}^Q_a = \bigcap_{Q' \in U} \mathcal{F}^Q_{a} \). Under the assumption (C1), \(\mathcal{F}^Q_{a} \) are defined over \(K \) for any \(Q' \in U \). Hence, we obtain that \(\mathcal{F}^Q_{a} \) are defined over \(K \).

6.1.2.3. **Sub-quotients.**— Let \(X \) be any complex manifold with a normal crossing hypersurface \(D \). Let \(0 \to V_1 \to V \to V_2 \to 0 \) be an exact sequence of good meromorphic flat bundles on \((X, D) \). Suppose that \(V \) and \(V_i \) are equipped with \(K \)-structures which are compatible with the morphisms.

Lemma 6.1.5.— If the \(K \)-structure of \(V \) is good, then the \(K \)-structures of \(V_i \) (\(i = 1, 2 \)) are good.

Proof We may assume that \(V \) is unramifiedly good. We may assume that \(X = \Delta \) and \(D = \{0\} \). Let \(\mathcal{L}_i \) and \(\mathcal{L} \) be the local systems on \(\tilde{X}(D) \) corresponding to \(V_i \) and \(V \), respectively. For any point \(P \in \tilde{X}(D) \), the stalks \(\mathcal{L}_{1P} \) and \(\mathcal{L}_P \) are equipped with the Stokes filtrations \(\mathcal{F}^P \). Note that the Stokes filtrations are characterized by the growth order. Hence, \(\mathcal{L}_{1P} \to \mathcal{L}_P \) is strict with respect to the filtrations, i.e., \(\mathcal{F}^P(\mathcal{L}_{1P}) \) is equal to the filtration obtained as the restriction of \(\mathcal{F}^P(\mathcal{L}_P) \). Then, if \(\mathcal{L}_{1P} \) and \(\mathcal{F}^P(\mathcal{L}_P) \) are defined over \(K \), the filtration \(\mathcal{F}^P(\mathcal{L}_{1P}) \) is also defined over \(K \).

Lemma 6.1.6.— Let \(V_i \) (\(i = 1, 2 \)) be good meromorphic flat bundles on \((X, D) \). Let \(f : V_1 \to V_2 \) be a morphism of meromorphic flat bundles.

- \(\text{Ker}(f) \), \(\text{Im}(f) \) and \(\text{Cok}(f) \) are also good.
- Suppose that \(V_i \) are equipped with good \(K \)-structures, and that \(f \) is compatible with the \(K \)-structures. Then, the induced \(K \)-structures of \(\text{Ker}(f) \), \(\text{Cok}(f) \) and \(\text{Im}(f) \) are good.

Proof It is enough to check the claims locally around any point of \(D \). We may assume that \(V_i \) are unramifiedly good. Let \(P \) be any point of \(D \). Let \(f_i \) denote
the induced morphism $V_{1|\tilde{\rho}} \to V_{2|\tilde{\rho}}$. Because the formal completion is exact, we have $\text{Ker}(f)_{\tilde{\rho}} \simeq \text{Ker}(f_{\tilde{\rho}})$ and similar isomorphisms for Im and Cok. We have the decompositions $V_{i|\tilde{\rho}} = \bigoplus_{a \in \text{Irr}(V_i, P)} V_i, \tilde{\rho}, a$. It is easy to check that $f_{\tilde{\rho}}$ is compatible with the decompositions. Then, the first claim follows. The second claim follows from the first claim and Lemma 6.1.5.

If V_i are unramifiedly good in Lemma 6.1.6, we have $\text{Irr}(\text{Ker} f, P) \subset \text{Irr}(V_1, P)$, $\text{Irr}(\text{Cok} f, P) \subset \text{Irr}(V_2, P)$ and $\text{Irr}(\text{Im} f, P) \subset \text{Irr}(V_1, P) \cap \text{Irr}(V_2, P)$.

6.1.3. Functoriality for projective birational morphisms. — Let D_3 be a hypersurface of X. Let $\varphi : X' \to X$ be a projective birational morphism such that $D' := \varphi^{-1}(D \cup D_3)$ is normal crossing, and that $X' \setminus D' \simeq X \setminus (D_3 \cup D)$. Let V be a good meromorphic flat bundle on (X, D). Suppose that V is equipped with a good K-structure. We put $V' := \varphi^*V \otimes \mathcal{O}_{X'}(*D')$. The induced K-structure of V' is good. Let $D_1 \cup D_2$ be a decomposition of D. We set $D_1' := \varphi^{-1}(D_1)$. We take $D_2' \subset D'$ such that $D_1' \cup D_2'$ is a decomposition of D'.

Proposition 6.1.7. — The natural morphisms

$$V(!D_1) \to \varphi_!V'(!D_1'), \quad \varphi_!V'(!D_2') \to V(!D_2)$$

are compatible with the canonical pre-K-Betti structures.

Proof Let us prove the second claim. We use the notation introduced in §5.3. Let $\tilde{\varphi} : \tilde{X}'(D') \to \tilde{X}(D)$ be the induced map. By construction, it is easy to see that the morphisms $\text{DR}^{<D_1 \leq D_2}(V) \to R\tilde{\varphi}_* \text{DR}^{<D_1' \leq D_2'}(V')$ and $R\tilde{\varphi}_* \text{DR}^{<D_1 \leq D_2}(V) \to \text{DR}^{<D_1 \leq D_2}(V)$ are compatible with the induced K-structures. Then, the second claim follows from Theorem 5.3.1.

6.1.4. A characterization of compatibility with Stokes filtrations. — Let $X = \Delta^n$ and $D = \bigcup_{i=1}^L \{z_i = 0\}$. Let V be an unramifiedly good meromorphic flat bundle on (X, D). Its good set of irregular values is denoted by $\text{Irr}(V)$. For each $a \in \text{Irr}(V)$, put $L(-a) = \mathcal{O}_X(*D) e$ with the meromorphic flat connection $\nabla e = e \theta e(-a)$. We fix a K-structure of $L(-a)$ by the trivialization $\exp(a) e$. We have a constructible sheaf $\text{DR}^{\text{rapid}}_{\tilde{X}(D)}(V \otimes L(-a))$ on $\tilde{X}(D)$. The following lemma will be useful to check that a K-structure is good.

Lemma 6.1.8. — Suppose that V has a K-structure with the following property:

- For each $a \in \text{Irr}(V)$, the induced K-structure of $(V \otimes L(-a))|_{X - D}$ is extended to a K-structure of $\text{DR}^{\text{rapid}}_{\tilde{X}(D)}(V \otimes L(-a))$.

Then, the K-structure of V is good.

Proof Let \mathcal{L} be the local system with the Stokes structure on $\tilde{X}(D)$ associated to $V|_{X \setminus D}$. It is equipped with the Stokes structure i.e., for each $P \in \pi^{-1}(D)$, the
stalk L_P has the Stokes filtration F^P. By the assumption, the local system L has a K-structure. Let $O = (0, \ldots, 0) \in X$. Let π denote the projection $\tilde{X}(D) \rightarrow X$. It is enough to prove that the Stokes filtrations F^P of L_P are defined over K for $P \in \pi^{-1}(O)$.

Let S denote the set of pairs (a, b) in $\text{Irr}(V)$ with $a \neq b$. For any $(a, b) \in S$, let $H(a, b)$ denote the closure of the set $\{\text{Re}(a-b)\}$ in $\tilde{X}(D)$. Take a small neighbourhood U_1 of P in $\pi^{-1}(O)$ such that for any $(a, b) \in S$, we have $H(a, b) \cap U_1 \neq \emptyset$ if and only if $P \in H(a, b)$. Let $U'_1 := U_1 \setminus \bigcup_{(a, b) \in S} H(a, b)$. We have $a <_P b$ if and only if $a <_{P'} b$ for any $P' \in U'_1$. We have natural identifications $L_P \simeq L_{P'}$ for any $P' \in U_1$. Under the identifications, we have $F^P_a = \bigcap_{P' \in U'_1} F^P_{a'}$. So, if $F^P_{a'}$ are defined over K for any $P' \in U'_1$, F^P_a is also defined over K. For the points $P' \in U'_1$, the order \leq_P is totally ordered. So, it is enough to prove that $F^P_{a'}$ are defined over K for any $a \in \text{Irr}(V)$ and for any $P' \in U'_1$. But, it follows from the assumption of the lemma.

6.1.5. The behaviour of the pre-K-Betti structure by the nearby cycle functor and the maximal functor. — We set $X := \Delta^n$ and $D := \bigcup_{i=1}^n \{z_i = 0\}$. Let V be a good meromorphic flat bundle on (X, D) with a good K-structure. For each $I \subset \mathbb{L}$, we set $I_i := I \cup \{i\}$ and $I_{-i} := I \setminus \{i\}$. The D-module

$$
\Pi^{a,b}_{i,*}(V(!D(I))) = \left(V \otimes \mathcal{J}_{z_i}^{2,b}\right)\left(!D(I_i)\right)
$$

has the canonical pre-K-Betti structure, where $* = *!, !$. Hence, $\psi_i^{(a)}(V(!D(I)))$ and $\Xi_i^{(a)}(V(!D(I)))$ have the induced pre-K-Betti structures.

Lemma 6.1.9. — The induced K-structure of $\psi_i^{(a)}(V)$ is good, i.e., it is compatible with the Stokes filtrations. The induced pre-K-Betti structure of $\psi_i^{(a)}(V(!D(I)))$ is canonical for each $I \subset \mathbb{L}$.

Proof It is enough to consider the case $a = 0$ and $i = 1$. We give a preparation. We set $\Pi^{0,*}_{I,*}(V) := \lim_{\longrightarrow} \Pi^{I,N}_{I,*}(V)$. By Lemma 3.2.3, we have the following commutative diagram:

$$
\begin{array}{ccc}
\text{DR}_X \left(\Pi^{0,*}_{I,1}(V(!D(I)))\right) & \longrightarrow & \text{DR}_X \left(\Pi^{0,*}_{I,1}(V(!D(I)))\right) \\
\uparrow \simeq & & \uparrow \simeq \\
\text{DR}_X^{<D(I,1)} \left(\Pi^{0,*}_{I,1}(V)\right) & \longrightarrow & \text{DR}_X^{<D(I,1)} \left(\Pi^{0,*}_{I,1}(V)\right) \\
\uparrow \simeq & & \uparrow \simeq \\
\text{DR}_X^{<D(I,1)} \left(V \otimes \mathcal{J}_{z_1}^{0,*}\right) & \longrightarrow & \text{DR}_X^{<D(I,1)} \left(V \otimes \mathcal{J}_{z_1}^{0,*}\right)
\end{array}
$$

By the upper square, the induced K-structure of $\text{DR}_X \psi^{(0)}_i(V(!D(I)))$ can be identified with the K-structure of the following:

$$
\text{DR}_X^{<D(I,1)} \psi^{(0)}_i(V) \simeq \text{Cone}\left(\text{DR}_X^{<D(I,1)}(\Pi^{0,*}_{I,1}(V)) \longrightarrow \text{DR}_X^{<D(I,1)}(\Pi^{0,*}_{I,1}(V))\right)
$$

(100)
We prepare some commutative diagram in a general setting. For any holonomic \(D_X \)-module \(M \), we put

\[
\text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') := \text{Tot} \Omega^\bullet \otimes \text{DR}^{<D(I_1), \leq D(\xi^{-1})}_{\tilde{X}(D')} \otimes_{\pi_1^{-1} \mathcal{O}_X} \pi_1^{-1} \mathcal{M}[\dim X],
\]

\[
\text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') := \text{Tot} \Omega^\bullet \otimes \text{DR}^{<D(I_1), \leq D(\xi^{-1})}_{\tilde{X}(D')} (*D_1) \otimes_{\pi_1^{-1} \mathcal{O}_X} \pi_1^{-1} \mathcal{M}[\dim X].
\]

We have the following commutative diagram:

\[
\begin{array}{ccc}
\text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') M(\xi D_1) & \longrightarrow & \text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') M(*D_1) \\
\uparrow & & \uparrow \\
\text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') M & \longrightarrow & \text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') M
\end{array}
\]

If \(M \) is a good meromorphic flat bundle, the left vertical arrow is also a quasi-isomorphism, which follows from Lemma 5.1.6.

Let \(\rho : \tilde{X}(D) \longrightarrow \tilde{X}(D') \) be the induced map. We have the following natural commutative diagram, where the vertical arrows are quasi-isomorphisms by Theorem 4.3.2:

\[
\begin{array}{ccc}
\text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') M & \longrightarrow & \text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') M \\
\rho_* \text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') M & \longrightarrow & \rho_* \text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') M
\end{array}
\]

Thus, we obtain the following commutative diagram, in which the vertical arrows are quasi-isomorphisms:

\[
\begin{array}{ccc}
\text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') (\Pi^{-\infty,0}_I V) & \longrightarrow & \text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') (\Pi^{-\infty,0}_I V) \\
\rho_* \text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') (V \otimes \mathfrak{g}^{-\infty,0}) & \longrightarrow & \rho_* \text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') (V \otimes \mathfrak{g}^{-\infty,0})
\end{array}
\]

Because \(\text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') (V \otimes \mathfrak{g}^{-\infty,0}) \) and \(\text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') (V \otimes \mathfrak{g}^{-\infty,0}) \) are equipped with \(K \)-structures compatible with the morphism, we obtain a \(K \)-structure of \(\text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') \psi_1^{(0)}(V) \) from (101) and (102). The lower square in (99) is obtained as the push-forward of (102). Hence, the \(K \)-structure of \(\text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') \psi_1^{(0)}(V) \) is obtained as the push-forward of the \(K \)-structure of \(\text{DR}^{<D(I_1), \leq D(\xi^{-1})}_\tilde{X}(D') \psi_1^{(0)}(V) \).
Let us consider the case $I = \{1, \ldots, \ell\}$. By the above consideration, we obtain that $F_{<\ell}^P$ is compatible with the K-structure, where F_P^P denotes the Stokes filtration of $\psi_1^{(0)}(V)$ at each point $P \in \pi_1^{-1}(\partial D_1)$. By considering the tensor product with meromorphic flat bundles with rank one, we can deduce that F_P^P is defined over K, as in Lemma 6.1.8. Since the pre-K-Betti structure of $\psi_1^{(0)}(V(!D(I)))$ comes from the K-structure of $\text{DR}_{X(D)}^{<D(I, i)} \psi_1^{(0)}(V)$, it is canonical. \hfill \Box

6.2. Good holonomic \mathcal{D}-modules with good K-structure (Local case)

6.2.1. Definition. — Let $X = \Delta^n$ and $D = \bigcup_{i=1}^\ell \{z_i = 0\}$. Set $I := \{1, \ldots, \ell\}$. Let \mathcal{M} be a good holonomic \mathcal{D}-module on (X, D).

Definition 6.2.1. — We say that \mathcal{M} has a good K-structure if (i) for each $I \subset L$, $\phi_I(\mathcal{M})(\ast D(I^c))$ is equipped with a good K-structure (put $\phi_0(\mathcal{M}) := \mathcal{M}$), (ii) for $i \not\in I$, the induced morphisms

\[
(\psi_1^{(1)}(\phi_I(\mathcal{M})(\ast D(I^c))) \to (\psi_1^{(0)}(\phi_I(\mathcal{M})(\ast D(I^c))))
\]

are compatible with the K-structures, where $I_{ii} := I \cup \{i\}$. \hfill \Box

Morphisms of good holonomic \mathcal{D}-modules with a good K-structure $f : \mathcal{M}_1 \to \mathcal{M}_2$ are morphisms of \mathcal{D}-modules such that $\phi_I(f)$ are compatible with K-structures for any $I \subset L$.

Let $\text{Hol}^{\text{good}}(X, D, K)$ denote the category of good holonomic \mathcal{D}_X-modules with a good K-structure on (X, D).

Lemma 6.2.2. — Let $f : \mathcal{M}_1 \to \mathcal{M}_2$ be a morphism in $\text{Hol}^{\text{good}}(X, D, K)$. Then, the \mathcal{D}-modules $\text{Ker}(f)$, $\text{Im}(f)$ and $\text{Cok}(f)$ are naturally objects in $\text{Hol}^{\text{good}}(X, D, K)$.

Proof It follows from Lemma 6.1.6. (See also the reconstruction of a good holonomic \mathcal{D}-module \mathcal{M} from $\phi_I^{(0)}(\mathcal{M})$ in §6.3.) \hfill \Box

6.2.2. Cells. — Let V be any good meromorphic flat bundle on X with a good K-structure. Let us observe that we have natural objects in $\text{Hol}^{\text{good}}(X, D, K)$ associated to V.

Lemma 6.2.3. — Let $D^{(1)}$ be a hypersurface of X contained in D.

- We can naturally regard $V(!D^{(1)})$ as an object in $\text{Hol}^{\text{good}}(X, D, K)$.
- Suppose that we are given an object \mathcal{M} in $\text{Hol}^{\text{good}}(X, D, K)$ such that (i) the underlying \mathcal{D}_X-module is isomorphic to $V(!D^{(1)})$, (ii) the K-structure on $X \setminus D$ is equal to that of $V(!D^{(1)})$ under the isomorphism. Then, \mathcal{M} is isomorphic to $V(!D^{(1)})$ in $\text{Hol}^{\text{good}}(X, D, K)$.
such that D be a decomposition such that $(\psi^{(0)}_I(V(\psi(\psi(I)))) \simeq \psi^{(0)}(\psi(\psi(I))))$ for any $J \subset \ell$, where $\delta_{J\cap I} = (1, \ldots, 1) \in \mathbb{Z}^{J\cap I}$ and $0_{J\cap I} = (0, \ldots, 0) \in \mathbb{Z}^{J\cap I}$. They are equipped with good K-structures, satisfying the compatibility condition (103). Via these K-structures, we regard $V(\psi(\psi(I)))) \in \text{Hol}^{\text{good}}(X, D, K)$. Thus, we obtain the first claim.

Let us prove the second claim. We are given the isomorphism of $D\times$-modules $V(\psi(\psi(I)))) \simeq \mathcal{M}$ under which the K-structures on $X \setminus D$ are equal. Suppose that we have already known that $\phi^{(0)}_I(V(\psi(\psi(I)))) \simeq \phi^{(0)}(\psi(\psi(I))))$ preserves the K-structures. Set $V_1 := V(\psi(\psi(I))))$ and $V_2 := \mathcal{M}$. Because one of $\psi^{(1)}(\phi^{(0)}_I(V_1)) \to \phi^{(0)}(\phi^{(0)}_I(V_1))$ or $\psi^{(1)}(\phi^{(0)}_I(V_1)) \to \phi^{(0)}(\phi^{(0)}_I(V_1))$ is an isomorphism compatible with K-structures. Hence, we obtain that $\phi^{(0)}(\phi^{(0)}_I(V_1)) \to \phi^{(0)}(\phi^{(0)}_I(V_1))$ is also compatible with the K-structures.

More generally, take $J \cup I \subset \ell$. Let V_J be a good meromorphic flat bundle on D_J with a good K-structure. Then, we can naturally regard $\iota_J V_J$ as an object in $\text{Hol}^{\text{good}}(X, D, K)$.

Let g be a meromorphic function on (X, D) such that $g^{-1}(0) \subset D$. Let $D = D_1 \cup D_2$ be a decomposition such that $D_1 \supset g^{-1}(\infty)$ and $D_2 \subset g^{-1}(0)$. (Note that D_i are not necessarily irreducible.) Because $\mathcal{Z}^{(0)}_g(V, *D_1)$ and $\mathcal{Z}^{(0)}_g(V, *D_1)$ are the kernel of $(V \otimes \mathcal{Z}^{-\infty, \psi(\psi(I)))) \to V \otimes \mathcal{Z}^{-\psi(I))))$ for $a = 1, 0$, they are naturally objects in $\text{Hol}^{\text{good}}(X, D, K)$.

6.2.3. Some operations.

Let us observe that some operations on $\text{Hol}(X)$ are naturally lifted on $\text{Hol}^{\text{good}}(X, D, K)$. Let Forget denote the forgetful functor from $\text{Hol}^{\text{good}}(X, D, K)$ to $\text{Hol}(X)$.

Lemma 6.2.4. We have a naturally defined dual functor D on $\text{Hol}^{\text{good}}(X, D, K)$ such that $\text{Forget} = \text{Forget} \circ D$.

Proof Let $\mathcal{M} \in \text{Hol}^{\text{good}}(X, D, K)$. For each $I \subset \{1, \ldots, \ell\}$, $\phi^{(a)}(\mathcal{M})(*D(\psi(I)))) \simeq \mathcal{M}$ has an induced K-structure. For $I_0 := I \cup \{i\}$, the morphisms $\psi^{(1)}_I(\phi^{(0)}(\mathcal{M})(*D(\psi(I_0)))) \to \phi^{(0)}(\phi^{(0)}(\mathcal{M})(*D(\psi(I_0)))) \to \psi^{(0)}(\phi^{(0)}(\mathcal{M})(*D(\psi(I_0))))$ are obtained as the dual of $\psi^{(1)}_I(\phi^{(0)}(\mathcal{M})(*D(\psi(I_0)))) \to \phi^{(0)}(\phi^{(0)}(\mathcal{M})(*D(\psi(I_0)))) \to \psi^{(0)}(\phi^{(0)}(\mathcal{M})(*D(\psi(I_0))))$, they are compatible with the K-structure. Hence, they give a good K-structure on \mathcal{M}. The construction gives a contravariant functor D on $\text{Hol}^{\text{good}}(X, D, K)$.
Lemma 6.2.5. — Let $D^{(1)} \subset D$ be a hypersurface of X. We have a functor $\Phi_{*D^{(1)}} : \text{Hol}^\text{good}(X,D,K) \to \text{Hol}^\text{good}(X,D,K)$ such that

$$\text{Forget} \circ \Phi_{*D^{(1)}}(\mathcal{M}) = \text{Forget}(\mathcal{M})(D^{(1)})$$

for any \mathcal{M} in $\text{Hol}^\text{good}(X,D,K)$. We also have a natural transformation $\mathcal{M} \to \Phi_{*D^{(1)}}(\mathcal{M})$. Such a functor is unique.

Proof First, let us observe the uniqueness. Let $\mathcal{M} \in \text{Hol}^\text{good}(X,D,K)$. We have $I \subset \ell$ such that $D^{(1)} = D(I)$. For any $J \subset \ell$, the following isomorphism is compatible with the K-structure:

$$\phi_{J,I}^0(\mathcal{M})(D(J \setminus I)^c) \xrightarrow{\alpha} \phi_{J,I}^0(\Phi_{*D^{(1)}}(\mathcal{M}))(D(J \setminus I)^c)$$

The following induced isomorphism is compatible with the K-structure:

$$\psi_{J,I}^0(\mathcal{M})(D(J^c)) \xrightarrow{\psi_{J,I}^0(\alpha)} \psi_{J,I}^0(\Phi_{*D^{(1)}}(\mathcal{M}))(D(J^c))$$

Note that the following natural morphism is an isomorphism:

$$\phi_{J,I}^0(\Phi_{*D^{(1)}}(\mathcal{M}))(D(J^c)) \xrightarrow{\psi_{J,I}^0(\alpha)} \psi_{J,I}^0(\Phi_{*D^{(1)}}(\mathcal{M}))(D(J^c))$$

It is compatible with the K-structure by the condition for $\Phi_{*D^{(1)}}\mathcal{M}$. Hence, the good K-structure of

$$\phi_{J,I}^0(\mathcal{M})(D(J \setminus I)^c)$$

uniquely determines the K-structure of $\phi_{J,I}^0(\Phi_{*D^{(1)}}(\mathcal{M}))(D(J^c))$. It means the uniqueness of $\Phi_{*D^{(1)}}$.

As for the existence of $\Phi_{*D^{(1)}}$, it is enough to consider the case $I = \{1\}$. If $i \in J$, we have $\phi_{J}^0(\mathcal{M}(D^{(1)})) \simeq \psi_{J}^0(\phi_{I}^0(\mathcal{M}))$. If $i \not\in J$, we have $\phi_{J}^0(\mathcal{M}(D^{(1)})) \simeq \phi_{J}^0(\mathcal{M})(D^{(1)}).$ The induced K-structures on $\phi_{J}^0(\mathcal{M}(D^{(1)}))(D(J^c))$ give a good K-structure of $\mathcal{M}(D^{(1)})$, for which the natural morphism $\mathcal{M} \to \mathcal{M}(D^{(1)})$ is a morphism in $\text{Hol}^\text{good}(X,D,K)$.

Lemma 6.2.6. —

- For any hypersurface $D^{(1)}$ of X contained in D, we have a unique functor $\Phi_{D^{(1)}} : \text{Hol}^\text{good}(X,D,K) \to \text{Hol}^\text{good}(X,D,K)$ such that

$$\text{Forget} \circ \Phi_{D^{(1)}}(\mathcal{M}) = \text{Forget}(\mathcal{M})(D^{(1)})$$

for any \mathcal{M} in $\text{Hol}^\text{good}(X,D,K)$, with a natural transformation $\Phi_{D^{(1)}} \to \text{id}$.

- We have $\Phi_{D^{(1)}} \circ \Phi_{D^{(2)}} = \Phi_{D^{(1)} \cup D^{(2)}}$.

- If $\dim(D^{(1)} \cap D^{(2)}) < n - 1$, then $\Phi_{D^{(1)}} \circ \Phi_{D^{(2)}} = \Phi_{D^{(2)}} \circ \Phi_{D^{(1)}}$.

Proof The first claim follows from Lemma 6.2.5 as the dual. The second claim follows from the uniqueness. For $\mathcal{M} \in \text{Hol}^\text{good}(X,D,K)$, the underlying \mathcal{D}_X-modules of $\Phi_{D^{(1)}} \circ \Phi_{D^{(2)}}(\mathcal{M})$ and $\Phi_{D^{(2)}} \circ \Phi_{D^{(1)}}(\mathcal{M})$ are $\mathcal{M}(D^{(1)} \cap D^{(2)}) = \mathcal{M}(D^{(2)} \cap D^{(1)})$. We have the natural morphisms $\Phi_{D^{(1)}}(\mathcal{M}) \to \Phi_{D^{(1)}} \circ \Phi_{D^{(2)}}(\mathcal{M})$ and $\Phi_{D^{(1)}}(\mathcal{M}) \to \Phi_{D^{(2)}} \circ \Phi_{D^{(1)}}(\mathcal{M})$.

6.3. Good pre-K-holonomic D-modules

6.3.1. Statements. — Let $X = \Delta^n$ and $D = \bigcup_{i=1}^k \{ z_i = 0 \}$. Let $\text{Hol}^{\text{pre}}(X, K)$ denote the category of pre-K-holonomic D_X-modules.

Proposition 6.3.1. — We have a naturally defined exact fully faithful functor $\Upsilon : \text{Hol}(X, D, K) \rightarrow \text{Hol}^{\text{pre}}(X, K)$ over $\text{Hol}(X)$. We have $\Upsilon \circ D = D \circ \Upsilon$. The essential image of Υ is independent of the choice of a holomorphic coordinate system.

Definition 6.3.2. — Any object in the essential image of Υ is called a good pre-K-holonomic D-module on (X, D). The pre-K-Betti structure is called a good pre-K-Betti structure. (The definition will be globalized in Definition 6.3.4 below.)

Let V be a good meromorphic flat bundle on (X, D) with a good K-structure. Let $D^{(1)} \subset D$ be a hypersurface of X.

Proposition 6.3.3. — The canonical pre-K-Betti structure of $V(\langle D^{(1)} \rangle)$ is associated to the good K-structure of $V(\langle D^{(1)} \rangle)$ by Υ.

We shall construct the functor in §6.3.3–§6.3.5. We shall prove the full faithfulness in §6.3.7. The independence from the coordinate system will be proved in §6.3.8. Proposition 6.3.3 will be proved in §6.3.6.

6.3.2. Some consequences. — Before going to the proof of Proposition 6.3.1, we give some consequences. The full faithfulness and the independence on the coordinate system in Proposition 6.3.1 ensure that we can globalize the notion of good pre-K-holonomic D-modules in Definition 6.3.2.

Definition 6.3.4. — Let Y be any complex manifold with a normal crossing hypersurface D_Y. Let M be a good holonomic D-module on (Y, D_Y) with a pre-K-Betti structure \mathcal{F}. It is called a good pre-K-holonomic D-module if its restriction to any holomorphic coordinate neighbourhood is a good pre-K-holonomic D-module. In that case, \mathcal{F} is called a good pre-K-Betti structure.

The category of good pre-K-holonomic D-modules on (Y, D_Y) is not abelian (see §3.1.6). If we would like to work on abelian categories, for example, the full subcategory of \mathcal{I}-good pre-K-holonomic D-modules is abelian, where \mathcal{I} is any good system of ramified irregular values on (Y, D_Y).
Let Y be any complex manifold with a normal crossing hypersurface D. Let V be a good meromorphic flat bundle on (Y, D) with a good K-structure. Let g be any meromorphic function on (Y, D) such that it is invertible on $Y \setminus D$. We take a hypersurface $D^{(1)} \subset D$ such that $g^{-1}(0) \subset D^{(1)}$. We obtain a good meromorphic flat bundle $V \otimes \mathcal{T}^a,b_g$ with a good K-structure on (Y, D). It induces pre-K-holonomic \mathcal{D}-modules $\Pi^{a,b}_g(V)(*D^{(1)})$, $\Xi^{(a)}_g(V, *D^{(1)})$ and $\psi^{(a)}_g(V, *D^{(1)})$ with the canonical pre-K-Betti structures. We obtain the following proposition from Proposition 6.3.3.

Proposition 6.3.5. — The holonomic \mathcal{D}_Y-modules $\Pi^{a,b}_g(V)(*D^{(1)})$, $\Xi^{(a)}_g(V, *D^{(1)})$, $\psi^{(a)}_g(V, *D^{(1)})$ and $\phi^{(a)}_g(V, *D^{(1)})$ are naturally good pre-K-holonomic \mathcal{D}-modules on (Y, D). □

The claims for $\psi^{(a)}_g(V, *D^{(1)})$ and $\phi^{(a)}_g(V, *D^{(1)})$ will be particularly useful.

6.3.3. Induced pre-K-Betti structures of $\Xi^{(a)}_I \psi^{b}_J(\iota_1 V_I)$. — In the following, we shall prove Proposition 6.3.1 and Proposition 6.3.3.

Let $K \sqcup J \sqcup L = \mathbb{L}$ and V_I be an \mathbb{L}-good meromorphic flat bundle on $(D_I, \partial D_I)$. Let $\iota : D_I \rightarrow X$. For a map $f : K \sqcup J \rightarrow \{0, 1\}$, we set $K_0(f) := f^{-1}(0) \cap K$. We put

$$C_f(J, K, \iota_1 V_I) := \left(\iota_1 V_I \otimes \bigotimes_{k \in K_0(f)} \mathcal{T}^{-\infty,1}_{z_k} \otimes \bigotimes_{k \notin K_0(f)} \mathcal{T}^{-\infty,0}_{z_k}\right) \left(D(f^{-1}(0))\right).$$

Let 0 denote the constant map valued in $\{0\}$. Let δ_i denote the map such that $\delta_i(j) = 0$ ($j \neq i$) and $\delta_i(i) = 1$. We can identify $\Xi^{(0)}_K \psi^{(0)}_J(\iota_1 V_I)$ as the kernel of the following morphism:

$$(104) \quad C_0(J, K, \iota_1 V_I) \rightarrow \bigoplus_{i \in K \sqcup J} C_{\delta_i}(J, K, \iota_1 V_I)$$

If V_I has a good K-structure, we obtain a pre-K-Betti structure of $\Xi^{(0)}_K \psi^{(0)}_J(\iota_1 V_I)$ by (104). By taking the tensor product with $\mathcal{T}^{a,a+1}$ appropriately, we also obtain an induced pre-K-Betti structure of $\Xi^{(a)}_K \psi^{(b)}_J(\iota_1 V_I)$.

Lemma 6.3.6. — The following morphisms are compatible with the pre-K-Betti structures:

$$\Xi^{(a)}_K \psi^{(b)}_J(\iota_1 V_I) \rightarrow \Xi^{(a)}_K \psi^{(b)}_J \Xi^{(0)}_I(\iota_1 V_I) \rightarrow \Xi^{(a)}_K \psi^{(b)}_J \psi^{(0)}_I(\iota_1 V_I)$$

Proof It is clear by construction. □

Recall that we have the naturally induced good K-structure on $\psi^{(0)}_I(\iota_1 V_I)$ for $i \notin I$ (Lemma 6.1.9).

Lemma 6.3.7. — For any $i \notin L$, the natural isomorphism

$$\Xi^{(0)}_K \psi^{(0)}_I(\iota_1 V_I) \simeq \Xi^{(0)}_K \psi^{(0)}_I \left(\psi^{(0)}_I(\iota_1 V_I)\right)$$
is compatible with the induced K-structures.

Proof Both the K-structures are obtained as the kernel of the morphism (104) for (J_i, K). □

6.3.4. ℓ-squares of complexes. — For small categories A_i ($i = 1, \ldots, \ell$), let $\prod_{i=1}^{\ell} A_i$ denote their product, i.e., the category whose objects and morphisms are given by $\text{ob} \left(\prod_{i=1}^{\ell} A_i \right) = \prod_{i=1}^{\ell} \text{ob}(A_i)$ and $\text{Mor}(a, b) = \prod \text{Mor}(a_i, b_i)$. Let Γ be a small category given by the following commutative diagram:

$$
\begin{array}{ccc}
(0, 0) & \xrightarrow{a} & (0, 1) \\
b & & c \\
\downarrow & & \downarrow \\
(1, 0) & \xrightarrow{d} & (1, 1)
\end{array}
$$

$c \circ a = d \circ b$

Let A be an abelian category. Let $C(A)$ be the category of complexes in A. A square in $C(A)$ is a functor $F : \Gamma \rightarrow C(A)$. For a given square F, let $H(F)$ be the total complex of the following double complex:

$$
F(0, 0)[1] \xrightarrow{F(a) + F(b)} F(0, 1) \oplus F(1, 0) \xrightarrow{F(c) - F(d)} F(1, 1)[-1]
$$

An ℓ-square in $C(A)$ is a functor $F : \Gamma^{\ell} \rightarrow C(A)$. Let $\pi_i : \Gamma^{\ell} \rightarrow \Gamma^{\ell-1}$ be the projection forgetting the i-th component. For a given ℓ-square F, we obtain an $(\ell - 1)$-square $\pi_i F$ by $\pi_i F(a) = H(F|_{\pi_i^{-1}(a)})$.

Lemma 6.3.8. — For $i < j$, we have an isomorphism $\pi_{1*} \pi_{j*} F \simeq \pi_{j-1*} \pi_{i*} F$.

Proof It is enough to consider the case $\ell = 2$, $(i, j) = (1, 2)$. The i-th terms of the both complexes are given by

$$
\bigoplus_{a_1 + a_2 + b_1 + b_2 = i-2} F(a_1, a_2, b_1, b_2).
$$

The multiplication of -1 on $F(0, 0, 0, 0) \oplus F(1, 1, 0) \oplus F(0, 0, 1, 0) \oplus F(0, 1, 1, 1)$ interpolates the differentials for $\pi_{i*} \pi_{j*} F$ and $\pi_{j-1*} \pi_{i*} F$. □

More generally, for any subset $I \subset \mathcal{I}$, I-square in $C(A)$ is a functor $\Gamma^{I} \rightarrow C(A)$. For the naturally defined projection $\pi_I : \Gamma^{\ell} \rightarrow \Gamma^{I}$, we take $I = I_0 \subset I_1 \subset \cdots \subset I_m = \mathcal{I}$, which induces the factorization $\pi_I = \pi^{(1)} \circ \cdots \circ \pi^{(m)}$, where $\pi^{(i)} : \Gamma^{I_i} \rightarrow \Gamma^{I_i-1}$. Then, we obtain an I-square $\pi_{I*} F := \pi^{(1)} \circ \cdots \circ \pi^{(m)} F$. It is well defined up to isomorphisms as above.

6.3.5. A construction of the functor Υ. — Let m be any positive integer. Let $\mathcal{I} \subset M(X^{(m)}, D^{(m)})/H(X^{(m)})$ be any good set of ramified irregular values as in §3.1.1. Let \mathcal{M} be any \mathcal{I}-good holonomic D-module on (X, D).
Let $H \subset \mathfrak{L}$. Let us construct an H-square in the category of \mathcal{I}-good holonomic \mathcal{D}-modules on (X, D). For $(i, j) = ((i_k, j_k) \mid k \in H) \in \text{ob} \Gamma^H$, we have the following subsets of H:

$$I(i, j) = \{ k \mid (i_k, j_k) = (0, 1) \}, \quad K(i, j) = \{ k \mid (i_k, j_k) = (1, 0) \},$$

$$J_0(i, j) = \{ k \mid (i_k, j_k) = (0, 0) \}, \quad J_1(i, j) = \{ k \mid (i_k, j_k) = (1, 1) \}.$$

Then, we put $Q^H(\mathcal{M}, i, j) := \Xi^0_{\ell J_0(i, j)} \psi^0_{J_0(i, j)} \phi^0_K \mathcal{M}$. For $k_0 \notin H$, we have the following naturally induced diagram:

$$\begin{array}{ccc}
\psi^{(1)}_{k_0} \Xi^0_I \psi^0_{J_0} \phi^0_K \mathcal{M} & \longrightarrow & \Xi^0_{k_0} \Xi^0_I \psi^0_{J_0} \phi^0_K \mathcal{M} \\
\downarrow & & \downarrow \\
\phi^{(0)}_{k_0} \Xi^0_I \psi^0_{J_0} \phi^0_K \mathcal{M} & \longrightarrow & \psi^{(0)}_{k_0} \Xi^0_I \psi^0_{J_0} \phi^0_K \mathcal{M}
\end{array}$$

(105)

For each decomposition $H = \{ h \} \cup (H - \{ h \})$, we have a similar diagram. Thus, we obtain an H-square $Q^H(\mathcal{M})$ of good holonomic \mathcal{D}-modules. The cohomology of the complex associated to (105) is naturally isomorphic to $\Xi^0_I \psi^0_{J_0} \phi^0_K \mathcal{M}$. Hence, we have a natural quasi-isomorphism $\pi_H \cdot Q^L(\mathcal{M}) \simeq Q^H(\mathcal{M})$. In particular, we have a natural quasi-isomorphism $\pi_L Q^L(\mathcal{M}) \simeq \mathcal{M}$.

If \mathcal{M} has a good K-structure, each $Q^L(\mathcal{M}, i, j)$ is equipped with the pre-K-Betti structure $F^L_\mathcal{M}(i, j)$ given as in §6.3.3.

Lemma 6.3.9. — The morphisms in (105) are compatible with the induced pre-K-Betti structures.

Proof The morphisms

$$\psi^{(1)}_{k_0} \Xi^0_I \psi^0_{J_0} \phi^0_K \mathcal{M} \longrightarrow \Xi^0_{k_0} \Xi^0_I \psi^0_{J_0} \phi^0_K \mathcal{M} \longrightarrow \psi^{(0)}_{k_0} \Xi^0_I \psi^0_{J_0} \phi^0_K \mathcal{M}$$

are compatible with the pre-K-Betti structures by construction, as remarked in Lemma 6.3.6. Let $K' := \mathfrak{L} - (H \cup k_0)$. By definition, the morphisms

$$\psi^{(1)}_{k_0} \phi^0_K \mathcal{M}(sD(K')) \longrightarrow \phi^0_K \mathcal{M}(sD(K'))$$

are compatible with the K-structures. We remark Lemma 6.3.7, and then it follows that the morphisms

$$\psi^{(1)}_{k_0} \Xi^0_I \psi^0_{J_0} \phi^0_K \mathcal{M} \longrightarrow \phi^0_K \mathcal{M}(sD(K'))$$

are compatible with the pre-K-Betti structures. □

Thus, we obtain a pre-K-Betti structure of $\pi_L Q^L(\mathcal{M}) \simeq \mathcal{M}$, which is independent of the choice of a factorization of π_L. It is called the pre-K-Betti structure of \mathcal{M} associated to the good K-structure, and denoted by $\mathcal{F} \mathcal{M}$. We obtain a pre-K-holonomic \mathcal{D}_X-module $\mathcal{Y}(\mathcal{M}) := (\mathcal{M}, \mathcal{F} \mathcal{M})$. Thus, we obtain the desired exact functor $\mathcal{Y} : \text{Hof}^{\text{good}}(X, D, K) \longrightarrow \text{Hof}^{\text{pre}}(X, K)$. It is clearly exact.
6.3.6. Proof of Proposition 6.3.3. — If \(\mathcal{M}(\ast D(H^c)) = \mathcal{M} \), any \(\mathcal{Q}^H(M, i, j) \) are equipped with the pre-\(K \)-Betti structures, which induce a pre-\(K \)-Betti structure of \(\mathcal{M} \).

Lemma 6.3.10. — The associated pre-\(K \)-Betti structures of \(\mathcal{M} \) are the same.

Proof The naturally defined morphisms
\[
\Xi_H^{(0)}\Xi_{K}^{(0)}\psi_{J_0}^{(0)}(M) \rightarrow \Xi_{K}^{(0)}\psi_{J_0}^{(0)}(M)
\]
induce the quasi-isomorphism \(\pi_L\mathcal{Q}^H(M) \rightarrow \pi_H\mathcal{Q}^H(M) \), which is compatible with the pre-\(K \)-Betti structures.

Let us prove Proposition 6.3.3. By the above consideration, the following isomorphisms are compatible with the pre-\(K \)-Betti structures:
\[
V(\ast D(H)) \xrightarrow{\sim} \mathcal{Q}^H(V(\ast D(H))) \xrightarrow{\sim} \mathcal{Q}(V(\ast D(H)))
\]
Thus, we obtain Proposition 6.3.3.

6.3.7. Full faithfulness. — Let us prove that the functor \(\Upsilon \) is fully faithful. We denote \(\Upsilon(M_i) \) by \(M_i \), to simplify the notation. Let \(M_i \in \text{Hol}^{\text{good}}(X, D, K) \) \((i = 1, 2)\). Suppose we are given a morphism \(\varphi : M_1 \rightarrow M_2 \) in \(\text{Hol}^{\text{pre}}(X, K) \). We would like to prove that \(\varphi \) gives a morphism in \(\text{Hol}^{\text{good}}(X, D, K) \).

We use an induction on \(\rho(M_1 \oplus M_2) \). (See \(\S 3.1.2 \) for \(\rho \)) We take a subset \(J \subset \mathfrak{J} \) such that \(|J| = n - \text{dim Supp}(M_1 \oplus M_2) \) and \((M_1 \oplus M_2)(\ast D(J^c)) \neq 0 \). Let \(g \) be a holomorphic function such that \(g^{-1}(0) = D(J^c) \). Then, \(M_i(\ast g) \) and \(M_i \otimes \mathfrak{J}_g^{a, b} \) come from good meromorphic flat bundles with good \(K \)-structures on \((D_J, D_J(J^c)) \). We have the following morphisms in \(\text{Hol}^{\text{good}}(X, D, K) \):
\[
M_i(\ast g) \rightarrow \Xi_g^{(0)}(M_i(\ast g)) \rightarrow M_i(\ast g)
\]
They are compatible with the associated pre-\(K \)-Betti structures. By the localization in Lemma 6.2.5 and Lemma 6.2.6, we obtain the following in \(\text{Hol}^{\text{good}}(X, D, K) \):
\[
M_i(\ast g) \rightarrow M_i \rightarrow M_i(\ast g)
\]
Note the uniqueness of good \(K \)-structure on \(M_i(\ast g) \) in Lemma 6.2.3. We obtain the following diagram of the pre-\(K \)-holonomic \(D \)-modules:
\[
\begin{array}{ccc}
\mathcal{M}_1(\ast g) & \xrightarrow{\Xi_g^{(0)}(\varphi) \oplus} & \mathcal{M}_1(\ast g) \\
\varphi(\ast g) & \downarrow & \varphi(\ast g) \\
\mathcal{M}_2(\ast g) & \xrightarrow{\Xi_g^{(0)}(\varphi) \oplus} & \mathcal{M}_2(\ast g)
\end{array}
\]
We obtain a morphism \(\phi_g^{(0)}(\varphi) : \phi_g^{(0)}(\mathcal{M}_1) \rightarrow \phi_g^{(0)}(\mathcal{M}_2) \) in \(\text{Hol}^{\text{pre}}(X, K) \). By using the inductive assumption, \(\phi_g^{(0)}(\varphi) \) is a morphism in \(\text{Hol}^{\text{good}}(X, D, K) \). Then, \(\varphi \)
is obtained as the cohomology of the following:

\[
\begin{array}{ccc}
\psi_2^{(1)}(\mathcal{M}_1(*g)) & \longrightarrow & \Xi_2^{(0)}(\mathcal{M}_1(*g)) \oplus \phi_g^{(0)}(\mathcal{M}_1) \\
\downarrow \psi_2^{(1)}(\varphi) & & \downarrow \Xi_2^{(0)}(\varphi) \oplus \phi_g^{(0)}(\varphi) \\
\psi_2^{(1)}(\mathcal{M}_2(*g)) & \longrightarrow & \Xi_2^{(0)}(\mathcal{M}_2(*g)) \oplus \phi_g^{(0)}(\mathcal{M}_2) \\
\end{array}
\]

(106)

The morphisms in (106) are morphisms in $\text{Hol}^{\text{good}}(X, D, K)$. Therefore, we obtain that φ is also a morphism in $\text{Hol}^{\text{good}}(X, D, K)$.

6.3.8. Independence from the coordinate system. — Let us prove that the essential image of Υ is independent of the choice of the coordinate system. Let (w_1, \ldots, w_n) be another holomorphic coordinate system such that $w_i^{-1}(0) = z_i^{-1}(0)$. It is enough to prove the following lemma.

Lemma 6.3.11. — If \mathcal{M} has a good K-structure with respect to the coordinate system (z_1, \ldots, z_n), it has an induced good K-structure with respect to (w_1, \ldots, w_n) such that the associated pre-K-Betti structures are the same.

Proof We use symbols $\phi_{z, I}^{(0)}$ and $\phi_{w, I}^{(0)}$ to distinguish the dependence on the coordinate systems. As remarked in §2.2.7, we have the natural isomorphisms (10). They induce isomorphisms $\phi_{z, I}(\mathcal{M}) \simeq \phi_{w, I}(\mathcal{M})$ and $\psi_1^{(a)}(\phi_{z, I}^{(0)}(\mathcal{M})) \simeq \psi_1^{(a)}(\phi_{w, I}^{(0)}(\mathcal{M})$. Hence, we obtain good K-structure of \mathcal{M} with respect to (w_1, \ldots, w_n). Let $\mathcal{Q}_z^L(\mathcal{M})$ and $\mathcal{Q}_w^L(\mathcal{M})$ denote the L-square associated to \mathcal{M} with respect to the coordinate systems (z_1, \ldots, z_n) and (w_1, \ldots, w_n), respectively. It is easy to observe that isomorphisms (10) induce $\pi_z^L \mathcal{Q}_z^L(\mathcal{M}) \simeq \pi_w^L \mathcal{Q}_w^L(\mathcal{M})$ compatible with pre-K-Betti structures, and they induce the identity on \mathcal{M}. Hence, the associated pre-K-Betti structures on \mathcal{M} are the same. Thus, the proof of Lemma 6.3.11 and Proposition 6.3.1 are finished.

6.4. Meromorphic flat connections with good K-structure

6.4.1. Good K-structure of meromorphic flat connections. — Let X be a complex manifold with a hypersurface D. Let V be a meromorphic flat connection on (X, D), i.e., V is a reflexive $\mathcal{O}_X(*D)$-coherent sheaf with a flat connection. We do not assume that V is good.

Definition 6.4.1. — As in the case of good meromorphic flat bundles, a K-structure of V means a pre-K-Betti structure of the flat bundle $\mathcal{V}|_{X \setminus D}$.

Recall that, according to K. Kedlaya ([26], Theorem 8.2.2 of [27]), for any point $P \in X$, there exist a neighbourhood $X_P \subset X$ and a projective birational morphism $\lambda_P : \tilde{X}_P \rightarrow X_P$ such that (i) $\lambda_P : \tilde{X}_P \setminus \lambda_P^{-1}(D) \simeq X_P \setminus D$, (ii) $\tilde{D}_P := \lambda_P^{-1}(D)$ is normal crossing, (iii) λ_P^*V is a good meromorphic flat bundle. (See also [44]
and Theorem 16.2.1 of [47] for the algebraic case.) Such \((X_P, \lambda_P)\) is called a local resolution of \(V\) in this paper. In the situation, we set \(D_P := D \cap X_P\).

Definition 6.4.2. — A K-structure of \(V\) is called good at \(P\) if the following holds:
- For any local resolution \((X_P, \lambda_P)\) around \(P\), the induced pre-K-Betti structure of \(\lambda_P^*(V|_{X_P \setminus D})\) is a good K-structure of \(\lambda_P^* V\).

A K-structure of \(V\) is called good if it is good at any point of \(X\).

If a K-structure of \(V\) is good, the induced K-structure on the dual \(V^\vee\) is also good.

The following lemma is easy to see.

Lemma 6.4.3. — Let \(V_i (i = 1, 2)\) be meromorphic flat bundles on \((X, D)\) with a good K-structure.
- The naturally induced K-structures on \(V_1 \oplus V_2, V_1 \otimes V_2\) and \(\mathcal{H}om(V_1, V_2)\) are good.
- Let \(f : V_1 \rightarrow V_2\) be a flat morphism which is compatible with the K-structures.
 Then, the naturally induced K-structures of \(\ker f, \text{Cok} f\) and \(\text{Im}(f)\) are good.

Let \(\varphi : X' \rightarrow X\) be a morphism of complex manifolds such that \(D' := \varphi^{-1}(D)\) is normal crossing. We have the induced good meromorphic flat bundle \(V' = \varphi^* V\). A K-structure of \(V\) induces a K-structure of \(V'\).

Lemma 6.4.4. — If the K-structure of \(V\) is good, the K-structure of \(V'\) is also good. Conversely, suppose that the K-structure of \(V'\) is good and that \(\varphi\) is surjective. Then, the K-structure of \(V\) is also good.

Proof Let \((X_P, \lambda_P)\) be a local resolution for \(V\) around \(P \in X\). We take a projective birational morphism \(\lambda : \check{X}_P \rightarrow \check{X}_P \times_X X'\) such that (i) \(\check{X}_P\) is smooth, (ii) the induced morphism \(\varphi_P : \check{X}_P \rightarrow X_P\) gives \(\check{X}_P \setminus \check{D}_P \simeq X_P \setminus D_P\), where \(\check{D}_P := \lambda^{-1}(\check{X}_P \times_X D')\). The induced map \(\lambda_P' : \check{X}_P' \rightarrow X'\) gives a local resolution for \(V'\). Then, the claim follows from Lemma 6.1.3.

We obtain the following lemma from Proposition 6.1.4.

Lemma 6.4.5. — Let \(V\) be a meromorphic flat connection on \((X, D)\) with a K-structure. Suppose that, for any morphism \(\Delta : \rightarrow X\) with \(\varphi(\Delta) \cap D = \{\varphi(0)\}\), the induced K-structure of \(\varphi^*(V)\) is good. Then, the K-structure of \(V\) is also good.

We obtain the following lemma from Lemma 6.1.5.

Lemma 6.4.6. — Let \(V\) be a meromorphic flat connection with a good K-structure. Let \(V_1 \subset V\) be a sub-connection such that \(V_1|_{X \setminus D}\) is compatible with the K-structure. Then, the induced K-structure of \(V_1\) is good. A similar claim holds for quotients of \(V\).
6.4.2. Canonical pre-K-Betti structures. — Let V be a meromorphic flat connection on (X, D) with a good K-structure. Let $D = D_1 \cup D_2$ be a decomposition, i.e., D_i are unions of irreducible components of D such that $\text{codim}_X(D_1 \cap D_2) > 1$. Let (X_P, λ_P) be any local resolution of V around $P \in X$. Put $D_{P1} = D_1 \cap X_P$ and $\bar{D}_{P1} := \lambda_{P}^{-1}(D_1)$. We have the decomposition $\bar{D}_P = \bar{D}_{P1} \cup \bar{D}_{P2}$. We set $V_P := V|_{X_P}$ and $\bar{V}_P := \lambda_P V$. The canonical pre-K-Betti structure $V^{\leq \bar{D}_{P1}} \leq \bar{D}_{P2}$ of $\bar{V}_P(!\bar{D}_P)$ induces a pre-K-Betti structure \mathcal{G} of $V_P(!D_{P1})$. Let $(X_P^{(1)}, \lambda_P^{(1)})$ be another local resolution of V around $P \in X$. It induces a pre-K-Betti structure $\mathcal{G}^{(1)}$ of $V|_{X_P^{(1)}}$. We have $\mathcal{G}^{(1)} = \mathcal{G}$ on $X_P \cap X_P^{(1)}$. Indeed, we can find a local resolution $(X_P^{(2)}, \lambda_P^{(2)})$ with morphisms $a : \tilde{X}_P^{(2)} \to \tilde{X}_P^{(1)}$ and $b : \tilde{X}_P^{(2)} \to \tilde{X}_P$ such that $\lambda_P^{(2)} = \lambda_P^{(1)} \circ a = \lambda_P \circ b$. By using $(X_P^{(2)}, \lambda_P^{(2)})$ with Proposition 6.1.7, we can prove that the pre-K-Betti structures are equal. Therefore, by gluing the pre-K-Betti structures around any $P \in X$, we obtain a pre-K-Betti structure of $V(!D_1)$. (See Proposition 10.2.9 of [23].) We denote it by $\mathcal{F}_{V}^{\leq D_1}$. It is called the canonical pre-K-Betti structure of $V(!D_1)$. By taking the dual of $(V')(!D_1)$, we obtain a pre-K-Betti structure of $(V(!D))(\ast D_1)$, denoted by $\mathcal{F}_{V'}^{D \leq D_1}$.

Let D_3 be a hypersurface of X. Let $\varphi : X' \to X$ be a projective birational morphism such that (i) $X' \setminus D' \simeq X \setminus (D \cup D_3)$ where $D' := \varphi^{-1}(D \cup D_3)$, (ii) D' is normal crossing. We set $D_2^i := \varphi^{-1}(D_1)$. We have D_2^i such that $D' = D_2^i \cup D_1$ is a decomposition. We set $V' = \varphi^* V(\ast D')$.

Proposition 6.4.7. The natural morphisms
$$V(!D_1) \to \varphi_1 V'(!D_1^i), \quad \varphi_1(V'(!D')(!D_1^i)) \to V(!D)(\ast D_1)$$
are compatible with the canonical pre-K-Betti structures.

Proof Let (X_P, λ_P) be a local resolution for V around $P \in X$. We take a projective birational morphism $\lambda : \tilde{X}_P \to \tilde{X}_P \times_X X'$ such that (i) \tilde{X}_P is smooth, (ii) the induced morphism $\varphi_P : \tilde{X}_P \to \tilde{X}_P \times_X X'$ such that (i) \tilde{X}_P is smooth, (ii) the induced morphism $\varphi_P : \tilde{X}_P \to \tilde{X}_P \times_X X'$ such that $D'_P := \lambda^{-1}(\tilde{X}_P \times_X D')$. The induced map $\lambda_P' : \tilde{X}_P \to X'$ gives a local resolution for V'. By Proposition 6.1.7, $\lambda_P'(V(!D_{P1})) \to \varphi_P(V'(!D_{P1}))$ is compatible with the pre-K-Betti structures. Then, we obtain that $V(!D_1) \to \varphi_1 V'(!D_1^i)$ is compatible with the pre-K-Betti structures. We obtain the claim for the other as the dual.

6.4.3. Pre-K-Betti structure on the real blow up. — Let X, D and V be as in the beginning of §6.4.2. Let $G : X \to \mathbb{C}$ be a holomorphic function such that $G^{-1}(D_0) \subset D_1$, where $D_0 = \bigcup_{i=1}^n \{ z_i = 0 \}$. We obtain an object (X, G) in Cat_α. Let $\pi : \tilde{X}(G) \to X$ denote the real blow up.

Lemma 6.4.8. The natural morphism $R\pi_! \text{DR}_{X,G}^{\text{rapid}}(V(!D_1)) \to \text{DR}_X(V(!D_1))$ is an isomorphism in $D^b(\mathbb{C}_X)$.

Proof It is enough to check the claim locally around each $P \in X$. Let (X_P, λ_P) be a local resolution of V around P. We set $G_P := G|_{X_P}$ and $\tilde{G}_P := G \circ \lambda_P$. We obtain a morphism $\lambda_P : (X_P, \tilde{G}_P) \to (X_P, G_P)$ in Cat_ℓ. We set $\mathcal{M}_P := V_P(\mathcal{D}_1)$. By Corollary 4.7.3, we have the following isomorphism in $D^b(\mathbb{C}_X(G_P))$:

$$R\lambda_P^* \text{DR}^\text{rapid}_{X_P, \tilde{G}_P}(\mathcal{M}_P) \simeq \text{DR}^\text{rapid}_{X_P, G_P}(\lambda_P^* \mathcal{M}_P) = \text{DR}^\text{rapid}_{X_P, G_P}(V(\mathcal{D}_1))|_{\tilde{X}_P(G_P)}$$

By using $R\pi_{\tilde{G}_P}^* \text{DR}^\text{rapid}_{X_P, G_P}(\mathcal{M}_P) \simeq \text{DR}_{\tilde{X}_P}(\mathcal{M}_P)$, we obtain the claim of the lemma.

In the situation of the proof of Lemma 6.4.8, let $\tilde{X}_P(\mathcal{D}_P)$ be the real blow up along \mathcal{D}_P. We have the natural map $\rho : \tilde{X}_P(\mathcal{D}_P) \to \tilde{X}_P(\tilde{G}_P)$. As in Lemma 5.1.8, we have the following natural isomorphism:

$$R\rho_* \text{DR}^\text{rapid}_{\tilde{X}_P(\mathcal{D}_P)}(\tilde{V}_P) \simeq \text{DR}^\text{rapid}_{\tilde{X}_P, \tilde{G}_P}(\tilde{V}_P(\mathcal{D}_P))$$

In particular, a good K-structure of \tilde{V}_P induces a K-structure of $\text{DR}^\text{rapid}_{\tilde{X}_P, \tilde{G}_P}(\tilde{V}_P(\mathcal{D}_P))$. We would like to glue them.

Lemma 6.4.9. — Suppose that there exists a finite family $\{\langle U_i, \lambda_i \rangle | i \in \Lambda \}$ ($|\Lambda| < \infty$) of local resolutions of V such that $X = \bigcup U_i$. Then, there exists an object \mathcal{K} in $D^b(\mathbb{C}_{\tilde{X}(G)})$ with isomorphisms

$$c_1 : \mathcal{K} \otimes \mathcal{C} \simeq \text{DR}^\text{rapid}_{\tilde{X}, G}(V(\mathcal{D}_1)) \quad \text{in} \quad D^b(\mathbb{C}_{\tilde{X}(G)}),$$

$$c_2 : R\pi_* \mathcal{K} \simeq \mathcal{F}^<_{\mathcal{D}_1} \quad \text{in} \quad D^b(K_X),$$

such that $c_2 \otimes \mathcal{C}$ is equal to $R\pi_* c_1$.

Proof We shall construct a K-complex \mathcal{K} on $\tilde{X}(G)$ as follows. For $I \subset \Lambda$, we set $U_I := \bigcap_{i \in I} U_i$. Let $\iota_I : \tilde{U}_I \to X$ denote the inclusion. We set $G_I := G|_{\tilde{U}_I}$. Take local resolutions $\lambda_I : \tilde{U}_I \to U_I$ of V. We may assume to have $\lambda_{IJ} : \tilde{U}_I \to \tilde{U}_J$ such that $\iota_I \circ \lambda_I \circ \lambda_{IJ} = \iota_I \circ \lambda_J$ for any $I \subset J$. We have $\lambda_{I_1 I_2} \circ \lambda_{I_2 I_3} = \lambda_{I_1 I_3}$. We put $V_I := \lambda_I^{-1}V$.

We set $\mathcal{D}_I := \lambda_I^{-1}(\mathcal{D})$, and $\tilde{\mathcal{D}}_{I_1} := \lambda_I^{-1}(\mathcal{D}_I)$. Let $\tilde{\mathcal{D}}_{I_2}$ denote the complement of \mathcal{D}_{I_1} in $\tilde{\mathcal{D}}_I$. Let $\iota_I : \tilde{U}_I(G_I) \to \tilde{X}(G)$ denote the inclusion.

Let $\mathcal{L}_{K,I}$ denote the K-local system on $\tilde{U}_I(\tilde{\mathcal{D}}_I)$ with the Stokes structure associated to V_I with good K-structure. We have the constructible sheaves $\mathcal{L}^<_{K,I} \leq \mathcal{D}_{I_2}$ on $\tilde{U}_I(\mathcal{D}_I)$, and natural morphisms $\tilde{\lambda}_{I,J}^{-1} \mathcal{L}^<_{K,I} \leq \mathcal{D}_{I_2} \to \mathcal{L}^<_{K,J} \leq \mathcal{D}_{J_2}$. For any sheaf \mathcal{F}, let $\text{Gd}(\mathcal{F})$ denote its Godement resolution. By the construction, we have natural morphisms

$$\tilde{\lambda}_{I,J}^{-1} \text{Gd}(\mathcal{L}^<_{K,I} \leq \mathcal{D}_{I_2}) \to \text{Gd}(\tilde{\lambda}_{I,J}^{-1} \mathcal{L}^<_{K,I} \leq \mathcal{D}_{I_2}) \to \text{Gd}(\mathcal{L}^<_{K,J} \leq \mathcal{D}_{J_2}).$$

$$\tilde{\lambda}_{I,J}^{-1}(\mathcal{L}^<_{K,I} \leq \mathcal{D}_{I_2}) \to \text{Gd}(\tilde{\lambda}_{I,J}^{-1} \mathcal{L}^<_{K,I} \leq \mathcal{D}_{I_2}) \to \text{Gd}(\mathcal{L}^<_{K,J} \leq \mathcal{D}_{J_2}).$$

$$\tilde{\lambda}_{I,J}^{-1}(\mathcal{L}^<_{K,I} \leq \mathcal{D}_{I_2}) \to \text{Gd}(\tilde{\lambda}_{I,J}^{-1} \mathcal{L}^<_{K,I} \leq \mathcal{D}_{I_2}) \to \text{Gd}(\mathcal{L}^<_{K,J} \leq \mathcal{D}_{J_2}).$$
We set $G_{K,I}^\bullet := \tilde{t}_I \tilde{\lambda}_{I,J} \text{Gd}(\mathcal{L}^{<D_{I1} \leq D_{I2}})[d_X]$ on $\widetilde{X}(G)$. The morphisms (107) induce $\lambda_{IJ} : G_{K,I}^\bullet \rightarrow G_{K,J}^\bullet$. They satisfy $\lambda_{I1} \circ \lambda_{I2} = \lambda_{I1}$. We take a K-vector space U_K with a basis $\{e_i | i \in \Lambda\}$. Let $U_{K,I}$ denote the subspace in $\bigwedge U_K$ generated by $e_i \wedge \cdots \wedge e_{i_m}$ where $I = (i_1, \ldots, i_m)$. For $m \in \mathbb{Z}_{\geq 0}$, we set

$$k_{K}^{-m,} := \bigoplus_{|I| = m + 1} G_{I,K}^\bullet \otimes U_{K,I}$$

We have the morphism $k_{K}^{-m,} \rightarrow k_{K}^{-m+1,}$ induced by the morphisms $\lambda_{I,J} \otimes (e_j \wedge \cdot \cdot \cdot)$. They give a double complex $k_{K}^{-m,}$ of $K_{\widetilde{X}(G)}$-modules. The total complex is denoted by k_{K}. We have the \mathbb{C}-local systems \mathcal{L}_I with the Stokes structure on $\widetilde{U}_I(\mathcal{D}_I)$ associated to V. Using \mathcal{L}_I with the same construction, we obtain complexes $G_{\mathcal{C},I}^\bullet$, a double complex $k_{\mathcal{C}}^{-m,}$ and a complex $k_{\mathcal{C}}$. We have naturally defined isomorphisms $\mathcal{L}_{K,I}^{<D_{I1} \leq D_{I2}} \otimes \mathbb{C} \rightarrow \mathcal{L}_{\mathcal{D}_I}^{<D_{I1} \leq D_{I2}}$. The natural morphisms $\text{Gd}(\mathcal{L}_{K,I}^{<D_{I1} \leq D_{I2}}) \otimes \mathbb{C} \rightarrow \text{Gd}(\mathcal{L}_{\mathcal{D}_I}^{<D_{I1} \leq D_{I2}})$ are quasi-isomorphisms. By the projection formula, we have the following natural isomorphisms

$$\tilde{t}_I \tilde{\lambda}_{I,J} \text{Gd}(\mathcal{L}_{K,I}^{<D_{I1} \leq D_{I2}})[d_X] \otimes \mathbb{C} \simeq G_{K,I}^\bullet \otimes \mathbb{C}.$$

It also implies that the complex $(\tilde{t} \circ \tilde{\lambda}_I)_*(\text{Gd}(\mathcal{L}_{K,I}^{<D_{I1} \leq D_{I2}}) \otimes \mathbb{C})$ represents $R(\tilde{t} \circ \tilde{\lambda}_I)_*(\text{Gd}(\mathcal{L}_{K,I}^{<D_{I1} \leq D_{I2}}) \otimes \mathbb{C})$. Hence, the natural morphism $G_{K,I} \otimes \mathbb{C} \rightarrow G_{\mathcal{C},I}$ is a quasi-isomorphism. Then, it is easy to deduce that the natural morphism $k_{K} \otimes \mathbb{C} \rightarrow k_{\mathcal{C}}$ is a quasi-isomorphism.

We have the natural quasi-isomorphism $\mathcal{L}_{\mathcal{D}_I}^{<D_{I1} \leq D_{I2}}[d_X] \rightarrow \text{DR}_{\mathcal{D}_I}^{<D_{I1} \leq D_{I2}}(\tilde{V}_I)$. We have morphisms

$$\tilde{\lambda}_{I}^{-1} \text{DR}_{\mathcal{D}_I}^{<D_{I1} \leq D_{I2}}(\tilde{V}_I) \rightarrow \text{DR}_{\mathcal{D}_I}^{<D_{I1} \leq D_{I2}}(\tilde{V}_I).$$

By applying the above construction to $\text{DR}_{\mathcal{D}_I}^{<D_{I1} \leq D_{I2}}(\tilde{V}_I)$ instead of $\mathcal{L}_{\mathcal{D}_I}^{<D_{I1} \leq D_{I2}}[d_X]$, we obtain double complexes $G_{I,\mathcal{D}}^\bullet$ on $\widetilde{X}(G)$, and a complex $k_{\mathcal{D}}$ on $\widetilde{X}(G)$. The natural morphism $k_{\mathcal{C}} \rightarrow k_{\mathcal{D}}$ is a quasi-isomorphism.

Set $\hat{H}_I := \tilde{G}_I^{-1}(0)$. We have the complexes $\text{DR}_{\mathcal{D}_I}^{<D_{I1} \leq D_{I2}}(\tilde{V}_I)$ and $\text{DR}_{\mathcal{D}_I}^{<\hat{H}_I \leq D_{I2}}(\tilde{V}_I(\mathcal{D}_I))$ on $\tilde{U}_I(\hat{H}_I)$. By applying the above construction to them, we obtain double complexes $G_{I,a}^\bullet (a = 1, 2)$, and complexes $k_{a} (a = 1, 2)$ on $\widetilde{X}(G)$. We have the following natural quasi-isomorphisms of complexes, as in Lemma 5.1.6:

$$G_{I,\mathcal{D}}^\bullet \leftrightarrow G_{I,1}^\bullet \rightarrow G_{I,2}^\bullet$$
Hence, we have the natural quasi-isomorphisms of complexes $K_{DR}^* \rightarrow K_1^* \rightarrow K_2^*$. We set $G_{I,3} := \tilde{\iota}_* \mathrm{Gd}(\gamma_1 \mathrm{DR}_{X,G}(V(D_1)))$. As before, by the Čech construction we obtain a complex K_3^*. We have natural quasi-isomorphism $G_{I,3} \rightarrow G_{I,2}$, which induce $K_3^* \rightarrow K_2^*$. By construction, we have natural quasi-isomorphisms $\mathrm{Gd}(\mathrm{DR}_{X,G}(V(D_1))) \rightarrow K_3^*$. (See Proposition 2.8.4 of [23].) In all, we obtain the following sequence of quasi-isomorphisms:

$$\tag{108} K_K^* \otimes \mathbb{C} \rightarrow K_{DR}^* \leftarrow K_1^* \rightarrow K_2^* \leftarrow \mathrm{Gd} \mathrm{DR}_{X,G}(V(D_1))$$

We define c_1 as the composite of the morphisms.

The projections $\varphi_i : K_{[\tilde{\iota}(G_i)]} \rightarrow G_{\tilde{\iota},[\tilde{\iota}(G_i)]}$ are quasi-isomorphisms. It is easy to see that $\lambda_{[\tilde{\iota}(G_i)]} \circ \varphi_{i[G_i]}$ and $\lambda_{[\tilde{\iota}(G_i)]} \circ \varphi_{i[G_i]}$ are chain homotopic. Hence, π_*K^* is a K-perverse sheaf obtained as the gluing of $\pi_*G_{\tilde{\iota},[\tilde{\iota}(G_i)]}$. We obtain an isomorphism of K-perverse sheaves $\mathcal{F}^c_{D_1} \simeq \pi_*K^*$, which is c_2. We can easily compare $(c_2 \otimes \mathbb{C})_{|G_1}$ and $(R\pi_*(c_1))_{|G_1}$, and we obtain $c_2 \otimes \mathbb{C} = R\pi_*(c_1)$. \hfill \square

6.4.4. Sequence of hypersurface pairs

Let X be a complex manifold. Let $H = (H_1, H_2, \ldots, H_n)$ be an ordered pair of (possibly empty) hypersurfaces of X. Such a pair is called a hypersurface pair in the following sense. We define

$$\Psi_H(M) := (M(\ast H_1))((H_1), \Psi_H(M) := (M((H_1))((H_1)).$$

We set $DH := (H_1, H_1)$. Then, we have natural isomorphisms:

$$D(\Psi_H(M)) \simeq \Psi_{DH}(D\mathcal{M})$$

If we are given a sequence of hypersurface pairs $\delta = (H_1, H_2, \ldots, H_n)$, we set $\Psi_\delta := \Psi_{H_1} \circ \cdots \circ \Psi_{H_n}$ and $\Psi'_\delta := \Psi_{H_1} \circ \cdots \circ \Psi_{H_n}$. Clearly, Ψ_δ can be described as Ψ'_{δ_1} for an appropriate δ_1. We shall use a special case of this operation in §8.5.

6.4.5. Generalization

Let X, D and V be as in the beginning of §6.4.2. Suppose that we are given a sequence of hypersurface pairs $\delta = (H_1, \ldots, H_n)$ contained in D. Let us observe that $\Psi_\delta(V)$ and $\Psi'_\delta(V)$ are naturally equipped with pre-K-Betti structures.

Let P be any point of X. We take a local resolution (X_P, λ_P) of V around P. By taking the pull back, we obtain a sequence of hypersurface pairs $\delta_P := \lambda_P(\delta)$ contained in D_P. For the irreducible decomposition $D_P = \bigcup_{j \in \Lambda_P} D_P$, there uniquely exists a subset $I_P \subset \Lambda_P$ such that $\Psi_{\delta_P}(V_P) \simeq V_P((D_P(I_P)))$, where $D_P(I_P) = \bigcup_{j \in I_P} D_P$. Hence, we have the canonical pre-K-Betti structure $\hat{V}_P((D_P(I_P))) \simeq \Psi_{\delta}(V)|_{X_P}$. We obtain a pre-$K$-Betti structure of $\Psi_{\delta}(V)|_{X_P}$.

Suppose that we are given other local resolutions $(X_P^{(i)}, \lambda_P^{(i)})$ $(i = 1, 2)$ as in §6.4.2. We put $V_P^{(2)} := \lambda_P^{(2)}(V)$. We have the expression $\Psi_{\delta_P^{(2)}}(V_P^{(2)}) \simeq V_P^{(2)}((D_P^{(2)}(I_P^{(2)})))$. For
the morphism \(a : \hat{X}_p^{(2)} \to \hat{X}_p \), we have \(D_p(I_P) = a(\hat{D}_p^{(2)}(I_p^{(2)})) \). We have the natural isomorphisms of holonomic \(\mathcal{D} \)-modules \(a|_{\mathcal{P}_p^{(2)}(\hat{V}_p^{(2)})} \simeq a|_{\hat{V}_p^{(2)}}(la^{-1}(\hat{D}_p(I_p))) \simeq \mathcal{P}_{\hat{D}p}(\hat{V}_p) \) which are compatible with the pre-\(K \)-Betti structures. Therefore, we obtain the pre-\(K \)-Betti structures of \(\mathcal{P}_5(V) \) by gluing the locally given pre-\(K \)-Betti structures. We obtain a pre-\(K \)-Betti structure of \(\mathcal{P}'_5(V) \) in the same way. They are called the canonical pre-\(K \)-Betti structure of \(\mathcal{P}_5(V) \) and \(\mathcal{P}'_5(V) \), denoted by \(\mathcal{F}_{\hat{S},V} \) and \(\mathcal{F}'_{\hat{S},V} \).

Lemma 6.4.10. — Let \(\mathcal{S} = (H_1^0, \ldots, H_l^0) \) be a sequence of hypersurface pairs such that \(H_i^0 \subset H_i^* \) and \(H_i^0 \supset H_i^1 \) for any \(i \). The natural morphisms \(\mathcal{P}_{\mathcal{S}^e}(V) \to \mathcal{P}_{\mathcal{S}}(V) \) and \(\mathcal{P}'_{\mathcal{S}^e}(V) \to \mathcal{P}'_{\mathcal{S}}(V) \) are compatible with the \(K \)-Betti structures.

Proof It is reduced to the case where \(V \) is good. Then, it is easy to check. \(\square \)

Let \(G : X \to \mathbb{C}^\ell \) be a holomorphic function. The following lemma can be shown by the same arguments as those in the proof of Lemma 6.4.8 and Lemma 6.4.9.

Proposition 6.4.11. — Suppose that, for \(H_N = (H_N^1, H_N^*) \), we have \(G^{-1}(D_0) \subset H_N^1 \). Then, the natural morphism

\[
R\pi_* \mathcal{D}X,G^{\text{rapid}}(\mathcal{M}_N) \to \mathcal{DR}_X(\mathcal{M}_N)
\]

is an isomorphism. If we are given a finite family of local resolutions of \(V \) as in Lemma 6.4.9, then there exists an object \(\mathcal{K} \) in \(\mathcal{D}^b(K_X(G)) \) with isomorphisms \(c_1 : \mathcal{K} \otimes \mathbb{C} \simeq \mathcal{D}X,G^{\text{rapid}}(\mathcal{M}_N) \) in \(\mathcal{D}^b(C_X(G)) \), and \(c_2 : R\pi_* \mathcal{K} \simeq \mathcal{F}_{\mathcal{M}_N}^{\text{an}} \) in \(\mathcal{D}^b(K_X) \), such that \(c_2 \otimes \mathbb{C} \) is equal to \(R\pi_* c_1 \).

Let \(D_3, \varphi : X' \to X \) and \(V' \) be as in Proposition 6.4.7. By the pull back, we obtain a sequence of hypersurface pairs \(\mathcal{S}' := \varphi^{-1}\mathcal{S} \).

Proposition 6.4.12. — The natural morphisms \(\varphi|_{\mathcal{P}_{\mathcal{S}'}}(V'(\text{!}D')) \to \mathcal{P}_{\mathcal{S}}(V(\text{!}D)) \) and \(\mathcal{P}_{\mathcal{S}}(V) \to \varphi|_{\mathcal{P}_{\mathcal{S}'}}(V') \) are compatible with the canonical pre-\(K \)-Betti structures. The natural morphisms \(\varphi|_{\mathcal{P}_{\mathcal{S}'}}(V'(\text{!}D')) \to \mathcal{P}'_{\mathcal{S}}(V(\text{!}D)) \) and \(\mathcal{P}'_{\mathcal{S}}(V) \to \varphi|_{\mathcal{P}'_{\mathcal{S}'}}(V') \) are also compatible with the canonical pre-\(K \)-Betti structures.

Proof It is reduced to the case where \(V \) is good. We have \(\mathcal{P}_{\mathcal{S}}(V) = V(\text{!}D^{(1)}) \) and \(\mathcal{P}'_{\mathcal{S}'}(V') = V'(\text{!}D'^{(1)}) \) for some \(D^{(1)} \subset D \) and \(D'^{(1)} \subset D' \). We have \(\varphi(D^{(1)}) = D'^{(1)} \). We set \(L^{(1)} := \varphi^{-1}(D^{(1)}) \). Then, the natural morphisms \(\mathcal{P}_{\mathcal{S}}(V) \simeq \varphi|_{V'}(\text{!}L^{(1)}) \to \varphi|_{\mathcal{P}'_{\mathcal{S}'}}(V') \) are compatible with the pre-\(K \)-Betti structures. Similarly, we obtain that \(\mathcal{P}'_{\mathcal{S}'}(V) \to \varphi|_{\mathcal{P}'_{\mathcal{S}'}}(V') \) is compatible with the pre-\(K \)-Betti structure. We obtain the others by the dual. \(\square \)
6.5. Preliminary for push-forward

Let Y be a complex manifold with a hypersurface D_Y. Let $G : X \longrightarrow Y$ be a projective morphism of complex manifolds. We set $D_{X_0} := G^{-1}(D_Y)$. Let D_X be a hypersurface of X with a decomposition $D_X = D_{X_1} \cup D_{X_2}$ such that $D_{X_0} \subset D_{X_2}$.

Let V be a meromorphic flat connection on (X, D_X) with a good K-structure. Put $\mathcal{M} := V(D_{X_2})$. Let $\mathcal{F}_\mathcal{M}$ be the canonical pre-K-Betti structure. Assume the following:

$G_i^0 \mathcal{M} = 0$ for any $i \neq 0$, and $V_1 := G_i^0(\mathcal{M})(*D_Y)$ is a meromorphic flat connection on (Y, D_Y).

We put $\mathcal{G} := RG_* (\mathcal{F}_\mathcal{M})|_{Y - D_Y}$, which gives a pre-$K$-Betti structure of $G_i^0(\mathcal{M})|_{Y - D_Y}$. The following theorem will be used in the proof of Theorem 8.1.1. (See §8.5.1.)

Theorem 6.5.1. — The K-structure \mathcal{G} of V_1 is good, i.e., it is compatible with the Stokes filtrations. Moreover, $RG_* \mathcal{F}_\mathcal{M}$ is the canonical pre-K-Betti structure of $G_i^0(\mathcal{M})$.

Proof It is enough to consider the issues locally around any point P of Y. Let (Y_P, λ_P) be a local resolution of V_1. We take a projective birational morphism $\lambda : X' \longrightarrow \tilde{Y}_P \times_Y X$ such that (i) X' is smooth, (ii) $D'_X := \tilde{X}_P \times_X D_X$ is normal crossing, (iii) the induced morphism $X' \setminus D'_X \longrightarrow X \setminus D_X$ is an isomorphism. Let $\mu : X' \longrightarrow X$ and $G' : X' \longrightarrow \tilde{Y}_P$ be the induced maps. We obtain a meromorphic flat connection $V' = \mu^* V$ with a good K-structure. We set $D'_{X_2} := \mu^{-1}(D_{X_2})$. We have $\mu_1(V'(D'_{X_2})) = V(D_{X_2})$, $G_1^0(\lambda_P(V'(D'_X)))(*D_P) = \lambda_1^P V_1$ and $\lambda_1^P G_1^0(\lambda_P(V'(D'_X))) \simeq \mathcal{M}|_{Y_P}$. It is enough to prove the claims on \tilde{Y}_P. Hence, we may and will assume that D_Y is normal crossing, and that V_1 is a good meromorphic flat bundle.

It is enough to consider the case where $Y := \Delta^n$ and $D_Y := \bigcup_{i=1}^n \{z_i = 0\}$. We have $G_i^0(\mathcal{M}) = V_1(*D_Y)$. Let $F : Y \longrightarrow \mathbb{C}^\ell$ be given by (z_1, \ldots, z_ℓ). We set $F_X := F \circ G$. We obtain a projective morphism $G : (X, F_X) \longrightarrow (Y, F)$ in Cat_ℓ. We have $\tilde{Y}(F) = \tilde{Y}(D_Y)$. According to Corollary 4.7.5, we have the following isomorphism in $D_i^0(\tilde{Y}(D_Y))$:

$$RG_* DR_{X(F_X)} \simeq DR_{Y(D)}(G_i^0(\mathcal{M}))$$

The good K-structure of V induces a K-structure of $DR_{X(D_{X_2})} \simeq RG_* DR_{X(F_X)}(\mathcal{M})$ on $\tilde{X}(D_{X_2})$ (Lemma 6.4.9). It induces a K-structure of $RG_* DR_{X(F_X)}(\mathcal{M})$, which is compatible with the natural K-structure of $G_i^0(\mathcal{M})|_{Y \setminus D_Y}$.

Let us prove that the K-structure of V_1 is good. First, we consider the case where V_1 is unramifiedly good. Take $a \in \text{Irr}(V_1)$. Let $L(-a)$ be a meromorphic flat bundle with a K-structure as in §6.1.4. Then, $V \otimes G^* L(-a)$ has a good K-structure. By applying the previous argument, we obtain that $DR_{Y(D_Y)}(V_1 \otimes L(-a))$ has a K-structure, whose restriction to $Y \setminus D_Y$ is the same as one induced by the K-structure.
of V_1 and $L(-a)$. Hence, by Lemma 6.1.8, we obtain that the K-structure of V_1 is good if V_1 is unramifiedly good.

Let us consider the case where V_1 is not necessarily unramified. Let $\kappa : Y' \to Y$ be a ramified covering such that κ^*V_1 is unramifiedly good. We put $D'_Y := \kappa^{-1}(D_Y)$. We take a projective birational map $\mu : X' \to X \times_Y Y'$ such that

(i) X' is smooth,
(ii) $X' - \mu^{-1}(X \times_Y D') \simeq X - (X \times_Y D')$.

We set $D'_X := \mu^{-1}(D_X \times_Y Y')$. Let $\mu_1 : X' \to X$ and $G' : X' \to Y'$ be the induced morphisms. We have the decomposition $D'_X = D'_{X1} \cup D'_{X2}$ such that $D'_{X2} := \mu_1^{-1}(D_{X2})$. Let $\mathcal{M}' := \mu_1^*(V)(!D'_{X2})$. Applying the previous argument to $G'^0(\mathcal{M}')$, we obtain that the K-structure of V_1 is good even in the ramified case.

Because the pre-K-Betti structure \mathcal{G} of $G'^0_1(\mathcal{M})$ is induced by the K-structure of $\text{DR}^\text{rapid}_{X(D)}(G'^0_1(\mathcal{M}))$, it is canonical. Thus, the proof of Theorem 6.5.1 is finished.

Corollary 6.5.2. Under the assumption, the induced K-structure of a meromorphic flat connection $G'^0_1(D, \mathcal{M})$ is good, and $RG_*DF_{\mathcal{M}}$ gives the canonical pre-K-Betti structure of $G'^0_1(D, \mathcal{M})$.

We have a variant of Theorem 6.5.1 and Corollary 6.5.2. Let $\mathcal{H} = (H_1, \ldots, H_N)$ be a sequence of hypersurface pairs of X contained in D_X.

Theorem 6.5.3. Suppose either (i) $D_{X0} \subset H_{N1}$; or (ii) $H_{N1} = \emptyset$ and $D_{X0} \subset H_{N*}$. We also assume that $G^i_{1, \mathcal{P}_{\mathcal{H}}}(V) = 0$ unless $i = 0$. Then, the induced K-structure of $G^0_{1, \mathcal{P}_{\mathcal{H}}}(V)(*D_Y)$ is good, and the induced pre-K-Betti structure $RG_*F_{\mathcal{D}, V}$ is the canonical pre-K-Betti structure of $G^0_{1, \mathcal{P}_{\mathcal{H}}}(V)$.

Proof The case (i) can be proved by Proposition 6.4.11 and the argument in the proof of Theorem 6.5.1. The case (ii) can be obtained as the dual.
CHAPTER 7

K-HOLONOMIC \(\mathcal{D} \)-MODULES

7.1. Preliminary

7.1.1. Cells and cell functions. — Let \(X \) be a complex manifold or a smooth complex algebraic variety. In the complex analytic case, we use ordinary topology. In the algebraic case, we consider Zariski topology. In the algebraic setting, \(\mathcal{D} \)-modules are assumed to be algebraic. An open subset \(U \) is called principal if it is the complement of a hypersurface. Let \(P \) be a point of \(X \). For any closed subvariety \(W \) of \(X \), let \(\text{dim}_P W \) denote the dimension of the germ of \(W \) at \(P \). Let \(\mathcal{M} \) be a holonomic \(\mathcal{D} \)-module on \(X \) with \(\text{dim}_P \text{Supp} \mathcal{M} \leq n \). An \(n \)-dimensional cell of \(\mathcal{M} \) at \(P \) is a tuple \(\mathcal{C} = (Z, U, \phi, V) \) as follows:

(Cell 1): \(\phi : Z \to X \) is a morphism of complex manifolds or smooth complex algebraic varieties, such that \(P \in \phi(Z) \) and \(\text{dim} Z = n \). We assume that there exists a neighbourhood of \(X_P \) of \(P \) in \(X \) such that \(\phi : \phi^{-1}(X_P) \to X_P \) is projective. We permit that \(Z \) may be non-connected or empty.

(Cell 2): \(U \subset Z \) is a principal open subset with the complementary hypersurface denoted by \(D_Z \). We assume that the restriction \(\phi|_U \) is an immersion, and that there exists a hypersurface \(H \) of \(X_P \) such that \(\phi^{-1}(H) = D_Z \cap \phi^{-1}(X_P) \).

(Cell 3): \(V \) is a meromorphic flat connection on \((Z, D_Z) \) with morphisms

\[
\phi_1(V_1)_P \to \mathcal{M}_P \to \phi_1(V)_P
\]

such that \(\mathcal{M}_P(\ast H) \simeq \phi_1(V)_P \) for the hypersurface \(H \) in (Cell 2), where the subscript “\(\ast \)” means the restriction to \(X_P \). Note that we have \(\mathcal{M}_P(\ast H) \simeq \phi_1(V_1)_P \), where \(V_1 := V(\ast D_Z) \). The restriction of \(V \) to some connected components of \(Z \) may be 0.

The cell \(C \) is called good if (i) \(D_Z \) is normal crossing, (ii) \(V \) is good on \((Z, D_Z) \). For a given holonomic \(\mathcal{D}_X \)-module \(\mathcal{M} \) and \(P \in \text{Supp} \mathcal{M} \), there always exists a cell for \(\mathcal{M} \) at \(P \). If \(\text{dim}_P \mathcal{M} = 1 \), any cell is good. If \(\text{dim}_P \mathcal{M} = 2 \), there always exists a good
cell for \mathcal{M} at P, due to Kedlaya [26]. (See also [44] for the algebraic case.) In the algebraic case, there always exists a good cell for \mathcal{M} at P (see [27], [44] and [47]).

Remark 7.1.1. Let (Z, U, φ) be a tuple satisfying (Cell 1) and (Cell 2). If we are given a meromorphic flat connection V on (Z, D_Z), the tuple (Z, U, φ, V) is called a cell at P. □

Let g be a holomorphic or algebraic function on X_P. It is called a cell function for \mathcal{C} if $U = \varphi(\text{Supp} \mathcal{M}_P \setminus g^{-1}(0))$. For such g, we obtain a description of \mathcal{M}_P as the cohomology of the complex in the category of analytic or algebraic holonomic \mathcal{D}_{X_P}-modules:

$$
\psi_g^{(1)}(\varphi_1(V)_P) \to \Xi_g^{(0)}(\varphi_1(V)_P) \otimes \phi_g^{(0)}(\mathcal{M}_P) \to \psi_g^{(0)}(\varphi_1(V)_P)
$$

For a given cell, a cell function always exists after we shrink X_P and Z appropriately.

Remark 7.1.2. Let \mathcal{C} be a cell of \mathcal{M} at P. If we have a neighbourhood X_P of P for which (Cell 1–3) are satisfied, they are also satisfied for any neighbourhood $X_P' \subset X_P$. Hence, we do not have to be careful with a choice of X_P. □

7.1.2. Refinement and enhancement.

Let $\mathcal{C}' = (Z', \varphi', U', V')$ and $\mathcal{C} = (Z, \varphi, U, V)$ be n-cells of \mathcal{M} at P. We say that \mathcal{C}' is a refinement of \mathcal{C}, and denote $\mathcal{C}' \prec \mathcal{C}$ if the following holds:

- φ' factors through φ in the sense that there exists $\varphi_1 : Z' \to Z$ such that (i) $\varphi' = \varphi \circ \varphi_1$, (ii) $\varphi_1(U') \subset U$.
- $V' = \varphi^*V \otimes \mathcal{O}_{Z'}(\ast D_{Z'})$, where $D_{Z'} := Z' - U'$.

In that situation, there exist naturally induced morphisms:

$$
\varphi'_1(V'_1)_P \to \varphi_1(V)_P \to \mathcal{M}_P \to \varphi_1(V)_P \to \varphi'_1(V')_P
$$

We say that \mathcal{C}' is a dominant refinement of \mathcal{C} if U' is dense in U.

Let $\mathcal{C} = (Z, U, \varphi, V)$ be an n-cell of \mathcal{M} at P. We take an n-dimensional closed subvariety $Z' \subset X$ such that $\dim(\varphi(Z) \cap Z') < n$. We take a refinement of \mathcal{C} such that $\varphi(U) \cap Z' = \emptyset$. Let Z_1 be a complex manifold with a projective birational morphism $\varphi_1 : Z_1 \to Z'$ and a smooth open subset $U_1 \subset Z_1$ such that (i) $\varphi_1|_{U_1}$ is an immersion, (ii) $Z_1 - U_1$ is normal crossing and the pull back of a hypersurface in X around P. We set $\bar{Z} := Z \cup Z_1$ and $\bar{U} := U \cup U_1$. We have the induced map $\tilde{\varphi} : \bar{Z} \to X$. Let \tilde{V} be a meromorphic flat connection on \bar{Z} such that $\tilde{V}|_{\bar{Z} - V} = V$ and $\tilde{V}|_{\bar{Z}_1} = 0$. Then, it is easy to observe that $\mathcal{C} := (\bar{Z}, \bar{U}, \tilde{\varphi}, \tilde{V})$ is an n-cell of \mathcal{M}, which is called an enhancement of \mathcal{C}.

In the following, for a cell $\mathcal{C} = (Z, U, \varphi, V)$, we implicitly assume $\varphi^{-1}(X_P) = Z$ by taking a refinement of \mathcal{C}. So we omit the subscript “P” in $\varphi_1(V)_P$ and $\varphi'_1(V')_P$.

116 | CHAPTER 7. K-HOLONOMIC \mathcal{D}-MODULES
7.1.3. *K*-cells and the induced pre-*K*-Betti structure on the nearby cycle sheaves. — Let \(\mathcal{F} \) be a pre-*K*-Betti structure of \(\mathcal{M} \). Let \(\mathcal{C} = (Z,U,\varphi,V) \) be an \(n \)-cell of \(\mathcal{M} \) at \(P \).

Definition 7.1.3. — We say that \(\mathcal{F} \) and \(\mathcal{C} \) are compatible if the following holds:
- The induced *K*-structure of \(V|_U \) is good. (We do not assume that \(V \) is a good meromorphic flat bundle. See \(\S 6.4.A \))
- The induced morphisms \(\varphi_!(V_i) \to \mathcal{M}_P \to \varphi_!(V) \) are compatible with the pre-*K*-Betti structures. (See \(\S 6.4.2 \) for the canonical pre-*K*-Betti structures of \(V_i \) and \(V \).)

Such a cell \(\mathcal{C} \) is called a *K*-cell of \((\mathcal{M}, \mathcal{F}) \).

It is not difficult to construct an example of a pre-*K*-holonomic \(\mathcal{D} \)-module, for which there does not exist a *K*-cell at some point.

Lemma 7.1.4. — Let \(\mathcal{C} = (Z,U,\varphi,V) \) be a *K*-cell of \((\mathcal{M}, \mathcal{F}) \) at \(P \). Any refinement \(\mathcal{C}' = (Z',U',\varphi',V') \) of \(\mathcal{C} \) is also a *K*-cell. Moreover, the induced morphisms in (109) are compatible with pre-*K*-Betti structures.

Proof It follows from Proposition 6.4.7.

Let \(g \) be any cell function for a *K*-cell \(\mathcal{C} \). We observe that \(\Xi^{(a)}_g(\varphi_!(V)) \), \(\psi^{(a)}_g(\varphi_!(V)) \) and \(\phi^{(a)}_g(\mathcal{M}_P) \) are equipped with induced pre-*K*-Betti structures. We set \(V^{a,b}_g := \Pi_{a,b}u(V) \) for \(* = *,! \). Note that \(\varphi_!(V^{a,b}_g) \) have the canonical pre-*K*-Betti structures. Since \(\Xi^{(a)}_g(\varphi_!(V)) \) and \(\psi^{(a)}_g(\varphi_!(V)) \) are of the form \(\ker \left(\varphi_!(V^{a,b}_g) \to \varphi_!(V^{a',b'}_g) \right) \), they are equipped with induced pre-*K*-Betti structures, denoted by \(D\Xi^{(a)}_g(\varphi,\mathcal{F}_V) \) and \(D\psi^{(a)}_g(\varphi,\mathcal{F}_V) \). We will use the following obvious lemma implicitly.

Lemma 7.1.5. — The natural isomorphisms
\[
\Xi^{(a)}_g(\varphi_!(V)) \simeq \varphi_!(\Xi^{(a)}_{g\varphi}(V)), \quad \psi^{(a)}_g(\varphi_!(V)) \simeq \varphi_!\psi^{(a)}_{g\varphi}(V)
\]
are compatible with the pre-*K*-Betti structures.

Since \(\phi^{(0)}(\mathcal{M}_P) \) is the cohomology of the complex \(\varphi_!(V) \to \Xi^{(0)}_g(\varphi_!(V)) \to \mathcal{M} \to \varphi_!V \), we obtain a pre-*K*-Betti structure of \(\phi^{(0)}(\mathcal{M}_P) \), denoted by \(D\phi^{(0)}_g(\mathcal{F}) \). The tuples \((\Xi^{(a)}_g(\varphi_!V), D\Xi^{(a)}_g(\varphi,\mathcal{F}_V)), (\psi^{(a)}_g(\varphi_!V), D\psi^{(a)}_g(\varphi,\mathcal{F}_V)) \) and \((\phi^{(a)}_g(\mathcal{M}), D\phi^{(a)}_g(\mathcal{F})) \) are also denoted by \(\Xi^{(a)}_g(\varphi_!V,\mathcal{F}_V), \psi^{(a)}_g(\varphi_!V,\mathcal{F}_V) \) and \(\phi^{(a)}_g(\mathcal{F},\mathcal{F}) \). We will often omit to denote the pre-*K*-Betti structures if there is no risk of confusion.

7.2. *K*-Betti structure

7.2.1. **Definition of *K*-Betti structure.** — Let \(X \) be any complex manifold, and \(P \) be any point of \(X \). Let \((\mathcal{M}, \mathcal{F}) \) be a pre-*K*-holonomic \(\mathcal{D} \)-module on \(X \). Let us
CHAPTER 7. K-HOLONOMIC D-MODULES

118

K-holonomic D-modules define the notion of K-Betti structure of \(\mathcal{M} \) at \(P \), inductively on the dimension of \(\text{Supp} \mathcal{M} \) at \(P \).

Definition 7.2.1. — In the case \(\dim_P \text{Supp} \mathcal{M} = 0 \), a K-Betti structure is defined to be a pre-K-Betti structure.

Let us consider the case \(\dim_P \text{Supp} \mathcal{M} \leq n \). We say that \(\mathcal{F} \) is a K-Betti structure of \(\mathcal{M} \) at \(P \) if there exists an \(n \)-dimensional K-cell \(\mathcal{C}_0 = (Z_0, \varphi_0, U_0, V_0) \) of \((\mathcal{M}, \mathcal{F}) \) at \(P \) with the following property:

- \(\dim_P \left((\text{Supp} \mathcal{M} \cap X_P) \setminus \varphi_0(Z_0)\right) < n \) for some neighbourhood \(X_P \) of \(P \) in \(X \).
- For any dominant refinement \(\mathcal{C} \prec \mathcal{C}_0 \) and any cell function \(g \) for \(\mathcal{C} \), the induced pre-K-Betti structure \(D_{\varphi_0}(\mathcal{F}) \) is a K-Betti structure of \(\varphi_0(\mathcal{M}) \) at \(P \). Note that \(\dim_P \varphi_0(\mathcal{M}) < n \).

Such an \(n \)-cell \(\mathcal{C}_0 \) is called a bounding \(n \)-cell of \(\mathcal{M} \) at \(P \).

Definition 7.2.2. — If \(\mathcal{F} \) is a K-Betti structure of \(\mathcal{M} \) at any point of \(X \), it is called a K-Betti structure of \(\mathcal{M} \). A holonomic D-module with a K-Betti structure is called a K-holonomic D-module.

Morphisms of K-holonomic D-modules \((\mathcal{M}_1, \mathcal{F}_1) \to (\mathcal{M}_2, \mathcal{F}_2) \) are defined to be morphisms of pre-K-holonomic D-modules. The category of K-holonomic D-modules is denoted by \(\text{Hol}(X, K) \). It is a full subcategory of the category of pre-K-holonomic D-modules \(\text{Hol}^{\text{pre}}(X, K) \) by definition.

Remark 7.2.3. — As we will see later in \(\S 8 \), for any K-cell \(\mathcal{C} = (Z, \varphi, V) \) with a cell function \(g \) at \(P \), the pre-K-holonomic D-modules \(\varphi(V), \varphi(V), \varphi(V), \varphi(V), \varphi(V), \varphi(V), \varphi(V) \) on a neighbourhood of \(P \) are K-holonomic. We will see that \(\text{Hol}(X, K) \) is an abelian category in Proposition 7.2.4 below. So, we may replace the condition in the higher dimensional case in Definition 7.2.1 with the following, which is easier to check:

- We say that \(\mathcal{F} \) is a K-Betti structure of \(\mathcal{M} \) at \(P \) if there exists an \(n \)-dimensional K-cell \(\mathcal{C} = (Z, \varphi, V, U) \) with a cell function \(g \) at \(P \) such that the induced pre-K-Betti structure \(D_{\varphi}(\mathcal{F}) \) is a K-Betti structure of \(\varphi(\mathcal{M}) \) at \(P \).

It seems convenient for the author to begin with a stronger condition as in Definition 7.2.1 for the development of the theory.

7.2.2. Abelian category. — It is basic to obtain the following.

Proposition 7.2.4. — \(\text{Hol}(X, K) \) is abelian.
7.2. K-BETTI STRUCTURE

Proposition 7.2.5. — Let \((\mathcal{M}, F)\) be a \(K\)-holonomic \(D_X\)-module. Then, the dual \(D(\mathcal{M}, F) := (D\mathcal{M}, DF)\) is also \(K\)-holonomic.

Proof Let \(P\) be any point of \(\text{Supp} \mathcal{M}\), and let \(\mathcal{C}_0\) be a bounding \(n\)-cell at \(P\). Let \(C = (Z, U, \varphi, V)\) be any refinement of \(\mathcal{C}_0\). Let \(F_V\) and \(F_{V^!}\) be the canonical pre-\(K\)-Betti structures of \(V\) and \(V^!\). Let \(C' := (Z, U, \varphi, V')\). We have the induced \(K\)-structure of \(V'\). By using Proposition 5.2.1 and Theorem 5.2.2, we obtain that \(D\mathcal{F}_{V^!}\) and \(DF_V\) are the canonical pre-\(K\)-Betti structures of \(V'\). Hence, we obtain that \(C'\) and \(DF\) are compatible. We also obtain that \(D\mathcal{F}_{V^!}^{(a)}\varphi_*\mathcal{F}_{V} = \mathcal{F}'\).}

7.2.3. Dual. — Let \(C_{i,0} = (Z_{i,0}, U_{i,0}, \varphi_{i,0}, V_{i,0})\) be any refinement of \(\mathcal{M}_i\) at \(P\). By considering refinement and enhancement, we may assume that \((Z_{1,0}, U_{1,0}, \varphi_{1,0}) = (Z_{2,0}, U_{2,0}, \varphi_{2,0})\), which is denoted by \((Z_0, U_0, \varphi_0)\). We have an induced morphism \(f_{Z_0} : V_{1,0} \to V_{2,0}\). We obtain a cell \(C_0(\text{Ker}) = (Z_0, U_0, \varphi_0, \text{Ker} f_{Z_0})\) of \(f_D\). The \(K\)-structure of \(f_D\) is good by Lemma 6.4.3.

Let \(C(\text{Ker}) = (Z, U, \varphi, K_Z)\) be a dominant refinement of \(C_0(\text{Ker})\). We have refinements \(C_i = (Z, U, \varphi, V_i)\) of \(C_{i,0}\) with the induced morphism \(f_Z : V_1 \to V_2\). We have \(\text{Ker} f_Z \simeq K_Z\). We obtain the following commutative diagram of pre-\(K\)-holonomic \(D\)-modules:

\[
\begin{array}{ccc}
\varphi_1 V_1 & \longrightarrow & M_1 P \\
\downarrow & & \downarrow \\
\varphi_1 V_2 & \longrightarrow & M_2 P \\
\end{array}
\]

Hence, the induced morphisms \(\varphi_1 K_Z \to \text{Ker}(f_D)_P \to \varphi_1 K_Z\) are compatible with the pre-\(K\)-Betti structures. We have the following commutative diagram of pre-\(K\)-holonomic \(D\)-modules:

\[
\begin{array}{ccc}
\varphi_1 (V_{1,a,b}^{(0)}) & \longrightarrow & \varphi_1 (V_{1,a,b}^{(0)}) \\
\downarrow & & \downarrow \\
\varphi_1 (V_{2,a,b}^{(0)}) & \longrightarrow & \varphi_1 (V_{2,a,b}^{(0)}) \\
\end{array}
\]

Hence, the morphisms \(\Xi_\varphi \to \Xi_{\varphi V} \longrightarrow \Xi_\varphi \) and \(\psi_\varphi \to \psi_{\varphi V} \longrightarrow \psi_{\varphi V}\) preserve the pre-\(K\)-Betti structures. Therefore, \(\phi_\varphi \to \phi_{\varphi V}\) preserves the pre-\(K\)-Betti structures, i.e., \(\phi_\varphi (f_D) : \phi_\varphi (F_1) \to \phi_\varphi (F_2)\) is induced. By the assumption of the induction, \(\text{Ker} \phi_\varphi (f_D)\) is a \(K\)-Betti structure. It is easy to obtain that \(\text{Ker} \phi_\varphi (f_D) = \text{Ker} \phi_{\varphi V}\). Then, we can conclude that \((\text{Ker} f_D, \text{Ker} f_P)\) is a \(K\)-holonomic \(D\)-module. The claims for the cokernel and the image can be proved similarly.

Proof Let \(P\) be any point of \(\text{Supp} \mathcal{M}\), and let \(\mathcal{C}_0\) be a bounding \(n\)-cell at \(P\). Let \(C = (Z, U, \varphi, V)\) be any refinement of \(\mathcal{C}_0\). Let \(F_V\) and \(F_{V^!}\) be the canonical pre-\(K\)-Betti structures of \(V\) and \(V^!\). Let \(C' := (Z, U, \varphi, V')\). We have the induced \(K\)-structure of \(V'\). By using Proposition 5.2.1 and Theorem 5.2.2, we obtain that \(D\mathcal{F}_{V^!}\) and \(DF_V\) are the canonical pre-\(K\)-Betti structures of \(V'\). Hence, we obtain that \(C'\) and \(DF\) are compatible. We also obtain that \(D\mathcal{F}_{V^!}^{(a)}\varphi_*\mathcal{F}_{V} = \mathcal{F}'\).
to the canonical pre-K-Betti structure of $\Xi^{(-a-1)}_g V^\vee$. Moreover, the induced K-structure of $\phi_g^{(a)}(D_M)D_M)$ is equal to $D\phi_g^{(-a-1)}F$ under the isomorphism $\phi_g^{(a)}D_M \cong D\phi_g^{(-a-1)}M_P$. By the inductive assumption, it is K-Betti structure. Thus, we obtain that $D(M, \mathcal{F})$ is K-holonomic.

\[\text{Lemma 7.2.7} \]

\[\text{Proof} \]

Let (M, \mathcal{F}) be a K-holonomic \mathcal{D}-module.

\[\text{Proposition 7.2.6} \]

If (M_1, \mathcal{F}_1) is a subobject of (M, \mathcal{F}) in Hol$^\text{pre}(X, K)$, it is also K-holonomic. A similar claim holds for quotients.

\[\text{Proof} \]

Let P be any point of X. We use an induction on the dimension of the support of M. Let $n \geq \dim_P \text{Supp} \ M$. Let $C = (Z, U, \varphi, V)$ be a bounding n-cell of M at P. Let $V_1 \subset V$ denote the sub-connection induced by M_1. Then, $C_1 = (Z, U, \varphi, V_1)$ is an n-cell of M_1 at P. Let us prove that C_1 and \mathcal{F}_1 are compatible. By Lemma 6.4.6, the K-structure of V_1 is good. Let \mathcal{F}_* and \mathcal{F}_1 denote the canonical K-structures of $\varphi \uparrow V$ and $\varphi \uparrow V_1$. Let \mathcal{F}_1 and $\mathcal{F}_1!$ denote the canonical K-structures of $\varphi \uparrow V_1$ and $\varphi \uparrow V_1$. We have the following morphisms:

\[\varphi \uparrow (V_1) \longrightarrow M \longrightarrow \varphi \uparrow (V) \quad \mathcal{F}_1 \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}_* \]

\[\varphi \uparrow (V_1) \longrightarrow M_1 \longrightarrow \varphi \uparrow (V_1) \quad \mathcal{F}_1! \longrightarrow \mathcal{F}_1 \longrightarrow \mathcal{F}_1! \]

Because the morphism $\varphi \uparrow (V_1) \longrightarrow M/M_1$ is 0, the morphism $\mathcal{F}_1! \longrightarrow \mathcal{F}/\mathcal{F}_1$ is also 0, i.e., $\mathcal{F}_1! \longrightarrow \mathcal{F}$ factors through \mathcal{F}_1. Similarly, we obtain that $\mathcal{F}_1 \longrightarrow \mathcal{F}_*$ factors through $\mathcal{F}_1!$. Hence, C_1 is compatible with \mathcal{F}_1.

Let f be a cell function for C. We have $D\Xi^{(a)}_f (\mathcal{F}) \supset D\Xi^{(a)}_f (\mathcal{F}_1)$ and $D\psi^{(a)}_f (\mathcal{F}) \supset D\psi^{(a)}_f (\mathcal{F}_1)$, which are K-Betti structures of $\phi_f^a M$ and $\phi_f^a M_1$. By the assumption of the induction, we obtain that $D\psi^{(a)}_f (\mathcal{F}_1)$ is a K-Betti structure of $\phi_f^a M_1$.

\[\text{Lemma 7.2.7} \]

If (M, \mathcal{F}) is a K-holonomic \mathcal{D}-module on X. Let \mathcal{V} be a flat bundle on X with a K-structure, i.e., we have a K-local system \mathcal{F}_V such that $\mathcal{F}_V \otimes \mathbb{C}^{[\dim X]} \cong \text{DR}_X (\mathcal{V})$. Then, we obtain a pre-$K$-Betti structure $\mathcal{F} \otimes \mathcal{F}_V$ of $M \otimes \mathcal{V}$.

\[\text{Proof} \]

Let P be any point of X. We use an induction on $\dim_P \text{Supp} \ M$. Let $C = (Z, U, \varphi, V)$ be a K-cell of M at P. Then, $C' = (Z, U, \varphi, V \otimes \varphi^* V)$ is a K-cell of $M \otimes \mathcal{V}$ at P. Let g be a cell function of C. Then, we have natural isomorphism of pre-K-holonomic \mathcal{D}_X-modules $\psi^{(a)}_g (\varphi \uparrow (V \otimes \varphi^* V)) \cong \psi^{(a)}_g (\varphi \uparrow (V)) \otimes \mathcal{V}$ and $\Xi^{(a)}_g (\varphi \uparrow (V \otimes \varphi^* V)) \cong \Xi^{(a)}_g (\varphi \uparrow (V)) \otimes \mathcal{V}$. Hence, we obtain an isomorphism of pre-K-holonomic \mathcal{D}-modules $\phi_g^{(a)}(M \otimes \mathcal{V}) \cong \phi_g^{(a)}(M) \otimes \mathcal{V}$. By using the inductive assumption, we obtain
that $\phi^{(a)}_g(M \otimes V)$ is K-holonomic. Hence, we obtain that $M \otimes V$ is K-holonomic at P. \hfill \square

7.2.6. K-cells. —

Proposition 7.2.8. — Let (M, \mathcal{F}) be a K-holonomic D-module. Then, any cell $C = (Z, U, \varphi, V)$ of M is a K-cell.

Proof Let P be any point of $\text{Supp}(M)$. Let $C_P' = (Z_P', U_P', \varphi_P', V_P')$ be a bounding K-cell of M at P, which is a refinement of C. By Lemma 6.4.4, we obtain that the induced K-structure of V is good around $\varphi^{-1}(P)$. By varying P, we obtain that the K-structure of V is good. Moreover, for P and C_P' as above, the induced morphisms $M_P \rightarrow \varphi_P' V_P'$ and $\varphi(V)_P \rightarrow \varphi_P'(V)_P'$ are compatible with pre-K-Betti structures, where $\varphi(V)_P$ denotes the restriction to a small neighbourhood of P. Because $\varphi(V)_P \rightarrow \varphi_P'(V)_P'$ is a monomorphism, we obtain that $M_P \rightarrow \varphi(V)_P$ is also compatible with pre-K-Betti structures. By varying P in X, we obtain that $M_P \rightarrow \varphi(V)$ is also compatible with pre-K-Betti structures. We can prove that $\varphi(V) \rightarrow M$ is also compatible with pre-K-Betti structures with a similar argument. \hfill \square

7.3. $K(\ast D)$-Betti structure

We introduce a variant notion of $K(\ast D)$-Betti structure of holonomic $D_X(\ast D)^{-}$ modules, where D is a hypersurface. It is rather auxiliary. Indeed, as proved in §8, it is equivalent to K-Betti structure for holonomic $D_X(\ast D)^{-}$-modules, although it will be convenient in some arguments.

7.3.1. Cells and cell functions for holonomic $D_X(\ast D)^{-}$-modules. — Let X be any complex manifold or smooth complex algebraic variety, and let D be any hypersurface of X. Let M be any holonomic $D_X(\ast D)^{-}$-module, i.e., M is a holonomic D_X-module such that $M(\ast D) = M$. A cell of a holonomic $D_X(\ast D)^{-}$-module M is defined to be a cell of a holonomic D_X-module M. The notions of refinement and enhancement of a cell of a holonomic $D_X(\ast D)^{-}$-module are defined in the same way. However, we will be interested in the morphisms $\varphi(V) \rightarrow \varphi(V)$.

The notion of cell functions is modified. Let $C = (Z, U, \varphi, V)$ be a cell of a holonomic $D_X(\ast D)^{-}$-module M. A cell function g of C is a meromorphic function on X whose poles are contained in D, such that $U = \text{Supp}M \setminus (g^{-1}(0) \cup D)$.

7.3.2. $K(\ast D)$-cell. — Let M be a holonomic $D_X(\ast D)^{-}$-module. Let \mathcal{F} be a pre-K-Betti structure of M. Let $C = (Z, U, \varphi, V)$ be an n-cell of M at P. We say that \mathcal{F} and C are compatible if (i) the induced K-structure of V is good, (ii) the induced morphisms $\varphi(V)_P \rightarrow \mathcal{M}_P \rightarrow \varphi(V)$ are compatible with the pre-K-Betti structures. Such a cell C is called a $K(\ast D)$-cell of (M, \mathcal{F}). Note that the condition
(i) implies that \(\varphi_1(V_I)(*D) \) and \(\varphi_1(V) \) are equipped with the canonical pre-\(K \)-Betti structure.

Let \(g \) be a cell function for a \(K(*D) \)-cell \(C \). We set \(V_{g^*}(\cdot D) := (V \otimes \mathcal{F}_{g^*}) (*\varphi^{-1}D) \) for \(* = *, ! \). Note that \(\varphi_1(V_{g^*}(\cdot D)) \) have the canonical pre-\(K \)-Betti structures. Since \(\Xi_g(\varphi_1V, *D) \) and \(\psi_g(\varphi_1V, *D) \) are of the form

\[
\ker\left(\varphi_1(V_{g^*}(\cdot D)) \rightarrow \varphi_1(V_{g^*}(\cdot D)) \right)
\]

they are equipped with the induced pre-\(K \)-Betti structures \(\Xi_g(\varphi_1V, *D) \) and \(\psi_g(\varphi_1V, *D) \). The tuples

\[
(\Xi_g(\varphi_1V, *D), \psi_g(\varphi_1V, *D)), \quad (\psi_g(\varphi_1V, *D), \psi_g(\varphi_1V, *D))
\]

are also denoted by \(\Xi_g(\varphi_1V, \mathcal{F}_V, *D) \) and \(\psi_g(\varphi_1V, \mathcal{F}_V, *D) \). We will often omit to denote the pre-\(K \)-Betti structures. We will use the following obvious lemma implicitly.

Lemma 7.3.1. The natural isomorphisms

\[
\Xi_g^a(\varphi_1V, *D) \simeq \varphi_1\Xi_g^a(\varphi_1V, *D), \quad \psi_g^a(\varphi_1V, *D) \simeq \varphi_1\psi_g^a(\varphi_1V, *D)
\]

are compatible with the induced pre-\(K \)-Betti structures.

Since \(\phi_0^g(M_P, *D) \) is the cohomology of the complex in the category of pre-\(K \)-holonomic \(\mathcal{D}_X \)-modules

\[
\varphi_1(V_I)(*D) \rightarrow \Xi_g^0(\varphi_1V, *D) \rightarrow M_P \rightarrow \varphi_1(V)(*D),
\]

we obtain a pre-\(K \)-Betti structure of \(\phi_0^g(M_P, *D) \) denoted by \(\phi_0^g(\mathcal{F}, *D) \). Let \(\phi_0^g(M_P, \mathcal{F}, *D) \) denote the tuple \(\phi_0^g(M_P, *D), \phi_0^g(\mathcal{F}, *D) \). We will often omit to denote the pre-\(K \)-Betti structure.

7.3.3. Definition of \(K(*D) \)-Betti structure. Let us define the notion of \(K(*D) \)-Betti structure at any point of \(D \), inductively on the dimension of the support of \(\mathcal{D}_{X(*D)} \)-modules. Let \((\mathcal{M}, \mathcal{F}) \) be a pre-\(K \)-holonomic \(\mathcal{D}_{X(*D)} \)-module. Note that we have \(M = 0 \) around \(P \in D \) in the case \(\dim_P \text{Supp} \mathcal{M} = 0 \).

Definition 7.3.2. Let \(P \) be any point of \(D \). Suppose \(\dim_P \text{Supp} \mathcal{M} \leq n \). We say that \(\mathcal{F} \) is a \(K(*D) \)-Betti structure of \(\mathcal{M} \) at \(P \) if there exists an \(n \)-dimensional \(K(*D) \)-cell \(C_0 = (Z_0, \varphi_0, U_0, V_0) \) at \(P \) with the following property:

\[
\dim_P \left((\text{Supp} \mathcal{M} \cap X_P) \setminus \varphi_0(Z_0) \right) < n \text{ for some neighbourhood } X_P \text{ of } P \text{ in } X.
\]

For any dominant refinement \(\mathcal{C} \) of \(C_0 \) and any cell function \(g \) for \(\mathcal{C} \) as a \(\mathcal{D}_{X(*D)} \)-module, the induced pre-\(K \)-Betti structure \(\phi_0^g(\mathcal{F}, *D) \) is a \(K(*D) \)-Betti structure at \(P \).

Such an \(n \)-cell \(C_0 \) is called a bounding \(n \)-cell of \(\mathcal{M} \) at \(P \).
Definition 7.3.3. — A pre-K-Betti structure \mathcal{F} of \mathcal{M} is called a $K(D)$-Betti structure if it is K-Betti structure of \mathcal{M} at any points of $X \setminus D$, and if it is $K(D)$-Betti structure of \mathcal{M} at any points of D. A holonomic $D_{X(D)}$-module with a $K(D)$-Betti structure is called a $K(D)$-holonomic $D_{X(D)}$-module.

Let $\text{Hol}(X, *D, K) \subset \text{Hol}^{\text{pre}}(X, K)$ denote the full subcategory of $K(D)$-holonomic $D_{X(D)}$-modules. The following lemma is similar to Proposition 7.2.4.

Lemma 7.3.4. — The category $\text{Hol}(X, *D, K)$ is abelian.

The following lemma is similar to Proposition 7.2.6.

Lemma 7.3.5. — Let $(\mathcal{M}, \mathcal{F})$ be any $K(D)$-holonomic D_X-module. Any subobject of $(\mathcal{M}, \mathcal{F})$ in $\text{Hol}^{\text{pre}}(X, K)$ is also $K(D)$-holonomic. A similar claim holds for quotients.

The following lemma is analogue of Proposition 7.2.8.

Lemma 7.3.6. — Let $(\mathcal{M}, \mathcal{F})$ be a $K(D)$-holonomic $D_{X(D)}$-module. Then, any cell $\mathcal{C} = (Z, U, \varphi, V)$ of \mathcal{M} is a $K(D)$-cell.

7.3.4. Uniqueness. — We have the following uniqueness.

Proposition 7.3.7. — Let \mathcal{M} be a holonomic $D_{X(D)}$-module with $K(D)$-Betti structures \mathcal{F}_i $(i = 1, 2)$. If $\mathcal{F}_1|_{X-D} = \mathcal{F}_2|_{X-D}$, then we have $\mathcal{F}_1 = \mathcal{F}_2$.

Proof It is enough to consider the issue locally around any point $P \in D$. We use an induction on $\dim_P \text{Supp} \mathcal{M}$. In the case $\dim_P \text{Supp} \mathcal{M} = 0$, the claim is clear. Suppose $\dim_P \text{Supp} \mathcal{M} \leq n$. Let C be any bounding cell at P, and let φ be any cell function of C. Let $D^{\alpha_0}_g(F_i, *D)$ be the induced pre-$K(D)$-Betti structures of $\varphi^{\alpha_0}_g(\mathcal{M}, *D)$. By the assumption of the induction, we have $D^{\alpha_0}_g(F_1, *D) = D^{\alpha_0}_g(F_2, *D)$. Because \mathcal{F}_i can be reconstructed from $D^{\alpha_0}_g(F_i, *D)$ and the canonical $K(D)$-Betti structures of $\psi^{(a)}_g(\varphi, *D)$ and $\Xi^{(a)}_g(\varphi, *D)$, we obtain $\mathcal{F}_1 = \mathcal{F}_2$.

7.3.5. Independence from a compactification. — Let $F : X' \to X$ be a projective birational morphism of complex manifolds such that $X' - D' \simeq X - D$, where $D' := F^{-1}(D)$. Recall that $F_!$ denotes the push-forward of pre-K-holonomic D-modules.

Proposition 7.3.8. — The functor $F_!$ induces an equivalence of the categories $\text{Hol}(X, *D, K)$ and $\text{Hol}(X', *D', K')$.

Proof It is enough to check the claims locally around any $P \in D$. We begin with a remark. Let \mathcal{M}' be a holonomic $D_{X'(D'D)}$-module. We set $\mathcal{M} := F_! \mathcal{M}$. Let $C = (Z, U, \varphi, V)$ be a cell of \mathcal{M} at P. By taking a refinement, we may assume that φ factors through F, i.e., $\varphi = F \circ \varphi'$, and that $C' = (Z, U, \varphi', V)$ is a cell of \mathcal{M}'. Let g
be a cell function for \mathcal{C} as a $D_{X,(*)D}$-module. Note that $g' = g \circ F$ is a cell function for \mathcal{C}'. We have a description of \mathcal{M}' as the cohomology of the following complex:

\[(110) \quad \psi^{(1)}_{g'}(\psi_1 V, *D') \rightarrow \Xi_{g}^{(0)}(\psi_1 V, *D') \oplus \phi_0^{(0)}(\mathcal{M}', *D') \rightarrow \psi^{(0)}_{g'}(\psi_1 V, *D')\]

By the push-forward F_1, it induces a description of \mathcal{M} as the cohomology of the following complex:

\[(111) \quad \psi^{(1)}(\varphi_1 V, *D) \rightarrow \Xi_{g}^{(0)}(\varphi_1 V, *D) \oplus \phi_0^{(0)}(\mathcal{M}, *D) \rightarrow \psi^{(0)}_{g}(\varphi_1 V, *D)\]

Suppose that \mathcal{F} is a $K(*D)$-Betti structure of \mathcal{M}'. Let us prove that $F_1 \mathcal{F}$ is a $K(*D)$-Betti structure of \mathcal{M}. By Lemma 7.3.6, \mathcal{C}' is a $K(*D)$-cell of \mathcal{M}'. We obtain that \mathcal{C} is a $K(*D)$-cell of \mathcal{M}. Because the pre-K-holonomic D-module $\phi_0^{(0)}(\mathcal{M}, *D)$ is obtained as $F_1 \phi_0^{(0)}(\mathcal{M}', *D)$, we obtain that $\phi_{g}^{(0)}(\mathcal{M}, *D)$ is $K(*D)$-holonomic by the inductive assumption. Hence, \mathcal{F} is also a $K(*D)$-Betti structure. Thus, F_1 induces a functor $\text{Hol}(X', *D', K) \rightarrow \text{Hol}(X, *D, K)$. It is clearly faithful.

Let us prove that it is full. We use an induction on the dimensions of the supports of the holonomic D-modules. Let $(\mathcal{M}_i, \mathcal{F}_i) (i = 1, 2)$ be objects in $\text{Hol}(X', *D', K)$. Let $f : F_1(\mathcal{M}_1, \mathcal{F}_1) \rightarrow F_1(\mathcal{M}_2, \mathcal{F}_2)$ be a morphism in $\text{Hol}(X, *D, K)$. We have a morphism $f' : \mathcal{M}_1 \rightarrow \mathcal{M}_2$ of holonomic $D_{X,(*)D}$-modules. It is enough to show that it is compatible with the $K(*D)$-Betti structures. For the cohomological descriptions (110) for \mathcal{M}_i, $\psi_i^{(a)}(f')$ and $\Xi_i^{(a)}(f')$ are compatible with the pre-K-Betti structures. Because $\phi_{g}^{(a)}(f)$ is compatible with the $K(*D)$-Betti structures, we obtain that $\phi_{g'}^{(a)}(f')$ is compatible with the $K(*D')$-Betti structures. Thus, we obtain that f' is compatible with the $K(*D')$-Betti structures.

Let us prove the essential surjectivity. We use an induction on the dimension of the support. Let \mathcal{M} and \mathcal{M}' be as above. Let \mathcal{F} be a $K(*D)$-Betti structure of \mathcal{M}. By the inductive assumption, the $K(*D)$-Betti structure of $\psi_{g}^{(a)}(\varphi_1(V), *D)$ and $\phi_{g}^{(a)}(\mathcal{M}, *D)$ induce $K(*D)$-Betti structures of $\psi_{g'}^{(a)}(\varphi_1(V), *D')$ and $\phi_{g'}^{(a)}(\mathcal{M}', *D')$, which are compatible with the natural morphisms. We also have the canonical K-Betti structures of $\psi_{g}^{(a)}(\varphi_1(V), *D')$ and $\Xi_{g}^{(a)}(\varphi_1 V, *D')$. By Proposition 7.3.7, the induced $K(*D)$-Betti structures on $\psi_{g}^{(a)}(\varphi_1(V), *D')$ are the same. Hence, (110) is a complex of $K(*D)$-holonomic $D(*D)$-modules. Hence, we have an induced $K(*D)$-Betti structure of \mathcal{M}'. The functoriality is clear from the above construction. \[\square\]
8.1. Statements

We give several statements.

Theorem 8.1.1. — Let $F : X \to Y$ be any projective morphism of complex manifolds. For any K-holonomic \mathcal{D}_X-module $(\mathcal{M}, \mathcal{F})$, the push-forward $F_!^i(\mathcal{M}, \mathcal{F}) := (F_!^i\mathcal{M}, F_!^i\mathcal{F})$ are also K-holonomic for any i.

Here, $F_!^i\mathcal{F}$ denotes the i-th cohomology of $RF_!^i\mathcal{F}$ with respect to the middle perversity.

Theorem 8.1.2. — Let X be any complex manifold with a normal crossing hypersurface D. Any good pre-K-holonomic \mathcal{D}-module on (X, D) is K-holonomic.

See Definition 6.3.4 for good pre-K-holonomic \mathcal{D}-modules.

Theorem 8.1.3. — Let X be a complex manifold with a hypersurface D. Let \mathfrak{S} be a sequence of hypersurface pairs contained in D. Let V be any meromorphic flat connection on (X, D) with a good K-structure. Then, the pre-K-holonomic \mathcal{D}-module $\mathfrak{P}_\mathfrak{S}(V)$ is K-holonomic.

See §6.4 for hypersurface pairs and $\mathfrak{P}_\mathfrak{S}(V)$.

Theorem 8.1.4. — Let X be any complex manifold with a hypersurface D. We have a unique functor $\text{Hol}(X, K) \to \text{Hol}(X, *D, K)$ with the following properties:

- It is an enhancement of the functor $\text{Hol}(X) \to \text{Hol}(X, *D)$ given by $\mathcal{M} \mapsto \mathcal{M}(\ast D)$.
- For any $(\mathcal{M}, \mathcal{F}) \in \text{Hol}(X, K)$, the natural morphism $\mathcal{M} \to \mathcal{M}(\ast D)$ is compatible with the induced pre-K-Betti structures.
8.1.1. Auxiliary statements. — We will use an induction on the dimension of the supports of \mathcal{D}-modules for the proof. Let $SI(\leq n)$ denote the statement of Theorem 8.1.1 in the case $\dim \text{Supp} M \leq n$. Let $GOOD(\leq n)$ means the following:

- The claim of Theorem 8.1.2 holds if $\dim \text{Supp} M \leq n$.
- The claim of Theorem 8.1.3 holds if $\dim X \leq n$.

For any complex manifold X with a hypersurface D, let $\text{Hol}_{\leq n}(X, K) \subset \text{Hol}(X, K)$ denote the full subcategory of K-holonomic \mathcal{D}_X-modules (M, F) with $\dim \text{Supp} M \leq n$. We use the symbols $\text{Hol}_{\leq n}(X)$, $\text{Hol}_{\leq n}(X, *D)$ and $\text{Hol}_{\leq n}(X, *D, K)$ with a similar meaning. Let $LOC(\leq n)$ means the following:

- The claim of Theorem 8.1.4 holds if we replace $\text{Hol}(X, K)$, $\text{Hol}(X, *D, K)$, etc., by $\text{Hol}_{\leq n}(X, K)$, $\text{Hol}_{\leq n}(X, *D, K)$, etc.

Our induction will proceed as follows:

- $SI(< n) + GOOD(< n) \implies GOOD(\leq n)$ (§8.2.3 and §8.2.4).
- $SI(< n) + GOOD(\leq n) + LOC(< n) \implies LOC(\leq n)$ (§8.3.3).
- $SI(< n) + GOOD(\leq n) + LOC(\leq n) \implies SI(\leq n)$ (§8.5).

Remark 8.1.5. — In the proof, we will observe the equivalence of $K(*D)$-Betti structure and K-Betti structure. (See Lemma 8.3.1.)

8.2. Step 1

8.2.1. K-cell. — Let $\varphi : Z \to X$ be a projective morphism of complex manifolds such that $\dim Z = n$. Let D_Z be a hypersurface of Z. Assume that $\varphi|_{Z-D_Z}$ is an immersion. Let V be a meromorphic flat connection on (Z, D_Z) with a good K-structure. We have the canonical pre-K-Betti structures \mathcal{F}_V and \mathcal{F}_{V1} of V and $V(!D_Z)$, respectively. Moreover, for any sequence of hypersurface pairs \mathcal{H} contained in D_Z, we obtain the canonical pre-K-holonomic \mathcal{D}_Z-modules $\mathfrak{P}_\mathcal{H}(V)$. Note that the natural morphisms $V(!D_Z) \to \mathfrak{P}_\mathcal{H}(V) \to V$ are compatible with the pre-K-Betti structures. Hence, we can regard (Z, U, φ, V) as a K-cell of $\mathfrak{P}_\mathcal{H}(V)$.

Lemma 8.2.1. — Suppose $SI(< n)$ and $GOOD(< n)$. Let g be any cell function for $\mathcal{C}_0 = (Z, U, \varphi, V)$. We set $g_Z := g \circ \varphi$. The pre-K-holonomic $\phi^{(a)}_{g_Z}(\mathfrak{P}_\mathcal{H}(V))$ and $\phi^{(a)}_g(\varphi_!\mathfrak{P}_\mathcal{H}(V))$ are K-holonomic. In particular, $\psi^{(a)}_{g_Z}(V)$ and $\psi^{(a)}_g(\varphi_!V)$ are K-holonomic.

Proof

By $SI(< n)$, it is enough to prove that $\phi^{(0)}_{g_Z}(\mathfrak{P}_\mathcal{H}(V))$ is K-holonomic. It is enough to consider the issue locally around any point $P \in D_Z$. We take a local resolution (Z_P, λ_P) of V. We put $\tilde{g}_P := g_Z \circ \lambda_P$. We set $\hat{\mathcal{H}}_P := \lambda_P^{-1}(\mathcal{H})$ and $\hat{V}_P := \lambda_P^*V$. We have the good pre-$K$-holonomic $\mathcal{D}_{\hat{Z}_P}$-module $\phi^{(0)}_{\tilde{g}_P}(\mathfrak{P}_{\hat{Z}_P}(\hat{V}_P))$ (Proposition 6.3.5). By $GOOD(< n)$, it is K-holonomic. By $SI(< n)$, $\lambda_{P!}\phi^{(0)}_{\tilde{g}_P}(\mathfrak{P}_{\hat{Z}_P}(\hat{V}_P))$ is K-holonomic, which means that $\phi^{(0)}_{g_Z}(\mathfrak{P}_\mathcal{H}(V))$ is K-holonomic at P.

\qed
8.2.3. Good holonomic D-modules: hypersurface and the number of the irreducible components of Supp. We use the lexicographic order on dim Supp. Then, we obtain a K-holonomic D_X-modules. By Lemma 8.2.1, φ_g(ψ^0(ϕ_1 V)) is K-holonomic. Then, we obtain that φ_g(ψ(ϕ_1 V)) is K-holonomic by Proposition 7.2.6.

Corollary 8.2.3. — Assume that SI(< n) and GOOD(< n) hold. Let f be a cell function of C = (Z, U, ϕ, V). Then, Ξ_f(ψ(ϕ_1 V)) with the canonical pre-K-Betti structures are K-holonomic.

Proof Applying the previous results to ϕ_1(Π_{j \neq} V_*) (* =!, !), we obtain that they are K-holonomic. Then, we obtain the corollary.

8.2.2. Gluing. — By Lemma 8.2.1 and Corollary 8.2.3, we have a gluing construction of K-holonomic D-modules. Let X be a complex manifold, C = (Z, U, ϕ, V) be a K-cell as in §8.2.1. Let f be a cell function on C such that f(0) comes. Assume that we are given morphisms of K-holonomic D-modules

\[\psi_f^{(1)}(\varphi_1 V) \to Q \to \psi_f^{(0)}(\varphi_1 V), \]

such that the composite is equal to the canonical map \(\psi_f^{(1)}(\varphi_1 V) \to \psi_f^{(0)}(\varphi_1 V) \).

Then, we obtain a K-holonomic D-module as the cohomology of the following complex:

\[\psi_f^{(1)}(\varphi_1 V) \to \Xi_f^{(0)}(\varphi_1 V) \oplus Q \to \psi_f^{(0)}(\varphi_1 V) \]

8.2.3. Good holonomic D-module with good K-structure. — Suppose SI(< n) and GOOD(< n). Let X be a complex manifold with a simply normal crossing hypersurface D. Let \(M \) be a good pre-K-holonomic D-module on (X, D) such that \(\dim \text{Supp} \ M = n \). Let us prove that \(M \) is K-holonomic. We may assume that X = \(\Delta^N \) and D = \(\bigcup_{i=1}^n \{ z_i = 0 \} \). Let \(\rho(M) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{>0} \) denote the pair of dim Supp \ M and the number of the irreducible components of Supp \ M with the maximal dimension. We use the lexicographic order on \(\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{>0} \). For a good holonomic D-module \(M \) on (X, D), there exists \(J \subset \ell \) with \(n = N - |J| \) such that \(M(*g) \neq 0 \) comes from a meromorphic flat bundle \(V \) on \(D_J \), where \(g := \prod_{j \in J} z_j \). Let \(\iota : D_J \to X \).
denote the inclusion. We have a description of \mathcal{M} as the cohomology of the complex of pre-K-holonomic \mathcal{D}-modules $\psi_g(1)(t \triangledown V) \rightarrow \Xi_g(0)(t \triangledown V) \oplus \phi_g(0)(\mathcal{M}) \rightarrow \psi_g(0)(t \triangledown V)$. They are good pre-$K$-holonomic \mathcal{D}-modules. By Lemma 8.2.1 and Corollary 8.2.3, $\psi_g(1)(V)$ and $\Xi_g(1)(V)$ are K-holonomic. Because $\rho(\phi_g(0)(\mathcal{M})) < \rho(\mathcal{M})$, we obtain that $\phi_g(0)(\mathcal{M})$ is K-holonomic. Hence, we obtain that \mathcal{M} is also K-holonomic.

8.2.4. Generalization. — We use the notation introduced in §8.2.1.

Proposition 8.2.4. — Suppose that $SI(< n)$ and $GOOD(< n)$. Then, the pre-K-holonomic \mathcal{D}_X-module $\varphi_1 \mathfrak{P}_B(V)$ is K-holonomic.

Proof It is enough to consider the issue locally around any point $P \in X$. We will shrink X around P without mention. Let $C' = (Z', U', \varphi', V')$ be a dominant refinement of C with a cell function g for C'. We set $\mathfrak{y}' := (\varphi')^{-1} (\mathfrak{y})$.

Lemma 8.2.5. — Under the assumptions $SI(< n)$ and $GOOD(< n)$, $\varphi_1^{-1} \mathfrak{P}_B(V')$ is K-holonomic.

Proof We have the expression of $\varphi_1^{-1} \mathfrak{P}_B(V')$ as the cohomology of the following complex of pre-K-holonomic \mathcal{D}-modules:

$$\psi_g(1)(\varphi_1^{-1} \mathfrak{P}_B(V')) \rightarrow \phi_g(0)(\mathfrak{P}_B(V')) \oplus \Xi_g(0)(\varphi_1^{-1} \mathfrak{P}_B(V')) \rightarrow \psi_g(0)(\varphi_1^{-1} \mathfrak{P}_B(V'))$$

By Lemma 8.2.1 and Corollary 8.2.3, we obtain that $\psi_g(1)(\varphi_1^{-1} \mathfrak{P}_B(V'))$ and $\Xi_g(1)(\varphi_1^{-1} \mathfrak{P}_B(V'))$ are K-holonomic. By Lemma 8.2.1, $\phi_g(0)(\mathfrak{P}_B(V'))$ is K-holonomic. Hence, we obtain that $\varphi_1^{-1} \mathfrak{P}_B(V')$ is K-holonomic. Thus, we obtain Lemma 8.2.5.

We have a natural monomorphism of pre-K-holonomic \mathcal{D}-modules $\varphi_1^{-1} \mathfrak{P}_B(V') \rightarrow \varphi_1^{-1} \mathfrak{P}_B(V')$, as remarked in Proposition 6.4.12. Then, by Proposition 7.2.6, we obtain that $\varphi_1^{-1} \mathfrak{P}_B(V')$ is K-holonomic.

8.2.5. $K(\ast D)$-cell. — We use the notation introduced in §8.2.1. Let D be a hypersurface of X such that $D_{Z2} := \varphi^{-1}(D) \subset D_Z$. We have the pre-$K$-holonomic \mathcal{D}_Z-module $V(\star D_{Z1})$. We obtain the following proposition as a special case of Proposition 8.2.4.

Proposition 8.2.6. — $\varphi_1(V(\star D_{Z1}))$ is K-holonomic.

8.3. Step 2

8.3.1. Equivalence of $K(\ast D)$-Betti structure and K-Betti structure. — Let X be any complex manifold with a hypersurface D. Let $(\mathcal{M}, \mathcal{F})$ be any pre-K-holonomic $\mathcal{D}_{X(\ast D)}$-module with $\dim \text{Supp} \mathcal{M} \leq n$.

Lemma 8.3.1. —
Assume $SI(<n)$ and $GOOD(<n)$. If F is a $K(D)$-Betti structure, then it is a K-Betti structure.

- Assume $LOC(\leq n)$. If F is a K-Betti structure, then it is a $K(D)$-Betti structure.

Proof Let us prove the first claim. We use an induction on the dimension of the support. Let P be any point of $D \cap \text{Supp} \mathcal{M}$. We take a bounding cell $C = (Z, U, \varphi, V)$ of (\mathcal{M}, F) at P, and a cell function g of C as $D_{X(D)}$-module. We have a description of \mathcal{M} as the cohohomology of the following complex of $K(D)$-holonomic $D_{X(D)}$-modules:

$$
\psi^{(1)}_g(\varphi_1(V), *D) \longrightarrow \Xi^{0}_g(\varphi_1(V), *D) \oplus \phi^{(0)}_g(\mathcal{M}, *D) \longrightarrow \psi^{(0)}_g(\varphi_1(V), *D)
$$

By the inductive assumption, $\phi^{(0)}_g(\mathcal{M}, *D)$ is K-holonomic. By Proposition 8.2.6, $\psi^{(a)}_g(\varphi_1(V), *D)$ and $\Xi^{(a)}_g(\mathcal{M}, *D)$ are K-holonomic. Hence, we obtain that \mathcal{M} is also K-holonomic.

Let us prove the second claim. By the assumption $LOC(\leq n)$, we obtain a $K(D)$-holonomic $D_{X(D)}$-module $(\mathcal{M}(D), F(D))$ with a morphism

$$(\mathcal{M}, F) \longrightarrow (\mathcal{M}(D), F(D))$$

of pre-K-holonomic D-modules. Because $\mathcal{M} = \mathcal{M}(D)$, we obtain $\mathcal{F} = F(D)$, and hence \mathcal{F} is a $K(D)$-Betti structure.

We reformulate the uniqueness (Proposition 7.3.7) as follows.

Corollary 8.3.2. — Let $* = *$ or $!$. Assume $SI(<n)$, $GOOD(<n)$ and $LOC(\leq n)$. Let M be a holonomic D-module on X such that $M(D) = M$. Let F_i $(i = 1, 2)$ be K-Betti structures on M. If $\mathcal{F}_i|_{X-D} = \mathcal{F}_2|_{X-D}$, then $\mathcal{F}_1 = \mathcal{F}_2$.

Proof The claim for $* = *$ follows from Lemma 8.3.1 and Proposition 7.3.7. We obtain the claim for $* = !$ by using the dual with Proposition 7.2.5.

Corollary 8.3.3. — Suppose $SI(<n)$ and $GOOD(<n)$ and $LOC(\leq n)$. Let M be a holonomic D_X-module. Assume that one of the following holds; (i) $\mathcal{M}(D) \longrightarrow M$ is surjective, (ii) $M \longrightarrow M(D)$ is injective. Let F_i $(i = 1, 2)$ be K-Betti structures on M. If $\mathcal{F}_i|_{X-D} = \mathcal{F}_2|_{X-D}$, then $\mathcal{F}_1 = \mathcal{F}_2$.

Proof We reformulate the independence from a compactification (Proposition 7.3.8). Let $F : X' \longrightarrow X$ be a projective birational morphism of complex manifolds. Let D be a hypersurface, and we put $D' := F^{-1}(D)$. Assume $X' - D' \simeq X - D$.

Proposition 8.3.4. — Suppose $SI(<n)$, $GOOD(<n)$ and $LOC(\leq n)$. Let \mathcal{M}' be a holonomic $D_{X'(D')}$-module. We set $\mathcal{M} := F_! \mathcal{M}'$.

- If \mathcal{F}' is a K-Betti structure of \mathcal{M}', then $F_* \mathcal{F}'$ is a K-Betti structure of \mathcal{M}.
- If \mathcal{F} is a K-Betti structure of \mathcal{M}, then \mathcal{M}' is equipped with a K-Betti structure \mathcal{F}' such that $\mathcal{F}'|_{X'-D'} = \mathcal{F}|_{X-D}$ under the isomorphism $\mathcal{M}'|_{X'-D'} \simeq \mathcal{M}|_{X-D}$. It is functorial.
Lemma 7.3.5. They are K compatible with the canonical pre-K-modules V and $V_1\times (D_1)$.

Proposition 8.3.5. Assume that $SI(\leq n)$, $GOOD(\leq n)$ and $LOC(\leq n)$ hold. Then, $\varphi_1V_1\times (D_1)$ and φ_1V are $K(\times(D))-\text{holonomic}$.

Proof Let us prove that $C_0 = (Z, U, \varphi, V)$ is a bounding n-cell at any $P \in D \cap \varphi(Z)$. It is enough to consider the issue locally. We shall shrink X without mention. Let $C' = (Z', U', \varphi', V')$ be a dominant refinement at P with a cell function g as $D_X(\times(D))-\text{modules}$. We will have a factorization $\varphi' = \varphi \circ \varphi_1$, where $\varphi_1 : Z' \rightarrow Z$. We put $g' := g \circ \varphi'$ and $D' := (\varphi')^{-1}D$. We have $V' = \varphi_1^{-1}V \otimes O_{Z'} (g')$. According to Proposition 6.4.7, the morphisms $\varphi_1'(V')\times(D) \rightarrow \varphi_1(V_1\times (D_1)) \rightarrow \varphi_1V \rightarrow \varphi_1V'$ are compatible with the canonical pre-K-Betti structures. We obtain the induced pre-K-Betti structures of $\phi_g'((\varphi_1(V), \times(D))$ and $\phi_g'((\varphi_1(V), \times(D))$.

We obtain pre-K-holonomic D-modules $\phi_g'(V_1', \times(D_1))$ and $\phi_g'(V', \times(D_1))$ on Z'. They are K-holonomic, which can be proved by the argument in the proof of Lemma 8.2.1. We obtain that $\phi_g'(V', \times(D))$ and $\phi_g'(V_1', \times(D_1))$ are K-holonomic by the assumption $SI(\leq n)$. By Lemma 8.3.1 and the assumption $LOC(\leq n)$, $\phi_g'(V', \times(D))$ and $\phi_g'(V_1', \times(D_1))$ are $K(\times(D))-\text{holonomic}$. Because $\phi_g'(V_1', \times(D_1)) \subset \phi_g'(V', \times(D))$ is compatible with the pre-K-Betti structures, $\phi_g'(V_1', \times(D_1))$ is also a $K(\times(D))-\text{holonomic}$ by Lemma 7.3.5. Since the surjection $\phi_g'(V_1', \times(D)) \rightarrow \phi_g'(V_1', \times(D))$ is compatible with the pre-K-Betti structures, $\phi_g'(V_1, \times(D))$ is also $K(\times(D))-\text{holonomic}$ by Lemma 7.3.5.

Corollary 8.3.6. Assume that $SI(\leq n)$, $GOOD(\leq n)$ and $LOC(\leq n)$ hold. Let f be a cell function of an n-dimensional cell $C = (Z, U, \varphi, V)$ as $D_X(\times(D))-\text{module}$. Then, $\psi_f^((\varphi_1V, \times(D))$ and $Z_f^((\varphi_1V, \times(D))$ with the canonical pre-K-Betti structures are $K(\times(D))-\text{holonomic}$.

Proof Applying the previous results to $\Pi^a{_{f^*}}((\varphi_1V, \times(D))$ for $* = *, !$, we obtain that they are $K(\times(D))-\text{holonomic}$. Then, we obtain the corollary.

8.3.3. Localization. Let us prove $LOC(\leq n)$ by assuming $SI(\leq n)$, $GOOD(\leq n)$ and $LOC(\leq n)$. By Proposition 7.3.7, the problem is local. Let \mathcal{M} be a K-holonomic D_X-module with $\dim \text{Supp} \mathcal{M} \leq n$.

Let P be any point of D. Let (Z, U, φ, V) be a bounding cell of \mathcal{M} at P with a cell function g as K-holonomic D-modules. By taking a refinement, we may assume $U \cap D = \emptyset$. We put $g_1 := \varphi^{-1}(g)$ and $D_1 := \varphi^{-1}(D)$. We have the expression of \mathcal{M}...
as the cohomology of the following complex of the K-holonomic D-modules:

$$
\psi_g^{(1)}(\varphi)(V) \longrightarrow \Xi_g^{(0)}(\varphi)(V) \oplus \phi_g^{(0)}(M) \longrightarrow \psi_g^{(0)}(\varphi)(V)
$$

By the assumption of the induction, $\psi_g^{(a)}(\varphi_1 V, *D)$ and $\phi_g^{(a)}(M, *D)$ are equipped with the induced $K(*D)$-Betti structures. We also have the following commutative diagram of pre-K-holonomic D-modules:

$$
\begin{array}{ccc}
\psi_g^{(1)}(\varphi)(V) & \longrightarrow & \phi_g^{(0)}(M) \\
\downarrow & & \downarrow \\
\psi_g^{(1)}(\varphi_1 V, *D) & \longrightarrow & \phi_g^{(0)}(M, *D)
\end{array}
\begin{array}{ccc}
\psi_g^{(0)}(\varphi)(V) & \longrightarrow & \phi_g^{(0)}(\varphi)(V) \\
\downarrow & & \downarrow \\
\psi_g^{(0)}(\varphi)(V, *D) & \longrightarrow & \phi_g^{(0)}(\varphi)(V, *D)
\end{array}
$$

We have the canonical pre-K-Betti structures of $\psi_g^{(a)}(\varphi_1 V, *D_1)$ and $\Xi_g^{(a)}(\varphi_1 V, *D_1)$. According to Corollary 8.3.6, their push-forward $\varphi_1 \psi_g^{(a)}(\varphi_1 V, *D_1)$ and $\varphi_1 \Xi_g^{(a)}(\varphi_1 V, *D_1)$ are $K(*D)$-holonomic. We also have the following commutative diagram of pre-K-holonomic D-modules:

$$
\begin{array}{ccc}
\varphi_1 \psi_g^{(1)}(V) & \longrightarrow & \varphi_1 \Xi_g^{(0)}(V) \\
\downarrow & & \downarrow \\
\varphi_1 \psi_g^{(1)}(V, *D_1) & \longrightarrow & \varphi_1 \Xi_g^{(0)}(V, *D_1)
\end{array}
\begin{array}{ccc}
\varphi_1 \psi_g^{(0)}(V) & \longrightarrow & \varphi_1 \psi_g^{(0)}(V) \\
\downarrow & & \downarrow \\
\varphi_1 \psi_g^{(0)}(V, *D_1) & \longrightarrow & \varphi_1 \psi_g^{(0)}(V, *D_1)
\end{array}
$$

By Proposition 7.3.7, the identification $\varphi_1 \psi_g^{(a)}(\varphi, *D_1) \simeq \psi_g^{(a)}(\varphi_1 V, *D)$ is compatible with the pre-K-Betti structures. Hence, we obtain a $K(*D)$-Betti structure of $M(*D)$ with a morphism of pre-K-holonomic D-modules $M \longrightarrow M(*D)$ whose restriction to $X - D$ is an isomorphism. The functoriality is clear from the above construction.

\[\square\]

8.3.4. Twist. — Let (M, F) be any $K(*D)$-holonomic $D(*D)$-module such that $\dim \text{Supp } M \leq n$. Let V be a meromorphic flat connection on (X, D) with a good K-structure F_V. According to Lemma 7.2.7, $F_{M|X - D} \otimes F_{V|X - D}$ is a K-Betti structure of $(M \otimes V)_{|X - D}$.

Proposition 8.3.7. Assume $SI(< n)$, $GOOD(< n)$ and $LOC(< n)$. There exists a $K(*D)$-Betti structure $F_{M \otimes V}$ of $M \otimes V$ such that $F_{M \otimes V|X - D} \simeq F_{M|X - D} \otimes F_{V|X - D}$. It is functorial with respect to M and V.

Proof Let $P \in D$. It is enough to consider the issue locally around P. We use an induction on $\dim_P \text{Supp } M$. Let $C = (Z, U, \varphi, V)$ be a dominating cell of M at P. Let g be a cell function for C as $D_{X(*D)}$-module. By the inductive assumption, we have the $K(*D)$-Betti structures of $\psi_g^{(a)}(\varphi_1 V, *D) \otimes V$ and $\phi_g^{(a)}(\varphi_1 V, *D) \otimes V$. According to Corollary 8.3.6, we have the $K(*D)$-Betti structures of $\psi_g^{(a)}(\varphi_1 V, *D) \otimes V$ and $\Xi_g^{(a)}(\varphi_1 V, *D) \otimes V$ induced by the isomorphisms $\psi_g^{(a)}(M, *D) \otimes V \simeq \psi_g^{(a)}(M \otimes V, *D)$.
and \(E_\nu^a(M, *D) &\otimes V \simeq E_\nu^a(M &\otimes V, *D) \). By the uniqueness, the induced \(K(*D) \)-Betti structures on \(\psi_g^a(M, *D) &\otimes V \) are equal. Because \(M &\otimes V \) is expressed as the cohomology of the complex

\[
\psi_g^{(1)}(M, *D) &\otimes V \longrightarrow E_\nu^0(M, *D) &\otimes V &\oplus \phi_g^0(M, *D) &\otimes V \longrightarrow \psi_g^0(M, *D) &\otimes V,
\]

we obtain a \(K(*D) \)-Betti structure on \(M &\otimes V \) with the desired property. \(\square \)

8.3.5. Nearby, vanishing and maximal functors. — Suppose that \(SI(< n), GOOD(\leq n) \) and \(LOC(< n) \) hold. Let \((M, F)\) be a \(K \)-holonomic \(D_X \)-module with \(\dim \text{Supp} M \leq n \). Let \(f \) be any holomorphic function on \(X \). As proved in \$8.3.3\), we obtain a morphism of \(K \)-holonomic \(D_X \)-modules \(M \longrightarrow M(*f) \). By considering the dual, we also obtain a morphism of \(K \)-holonomic \(D_X \)-modules \(M(!f) \longrightarrow M \).

By Proposition 8.3.7, for any \(a \leq b \), we have \(K \)-holonomic \(D_X \)-modules \(\Pi^{a,b}_f(M) \) \((* = *, !)\). Hence, we obtain \(K \)-holonomic \(D_X \)-modules \(\Pi^{a,b}_f(M) \). In particular, we obtain \(K \)-holonomic \(D_X \)-modules \(E^{(a)}_f(M) \) and \(\psi^{(a)}_f(M) \) with morphisms \(M(!f) \longrightarrow E^{(0)}_f(M) \longrightarrow M(*f) \) and \(\psi^{(1)}_f(M) \longrightarrow E^{(0)}_f(M) \longrightarrow \psi^{(0)}_f(M) \) in \(\text{Hol}(X, K) \). We obtain a \(K \)-holonomic \(D_X \)-module \(\phi^{(0)}_f(M) \) as the cohomology of the complex \(M(!f) \longrightarrow E^{(0)}_f(M) &\oplus M \longrightarrow M(*f) \) in \(\text{Hol}(X, K) \). We can recover \(M \) as the cohomology of the complex \(\psi^{(1)}_f(M) \longrightarrow E^{(0)}_f(M) &\oplus \phi^{(0)}_f(M) \longrightarrow \psi^{(0)}_f(M) \) in \(\text{Hol}(X, K) \).

8.4. Some resolutions

This subsection is a preliminary for the proof of Theorem 8.1.1.

8.4.1. Non-characteristic condition. — Let \(M \) be a holonomic \(D \)-module on a complex manifold \(X \). There exists a stratification \(\text{Supp}(M) = \bigsqcup_{i \in \Lambda} Z_i \) such that (i) each \(Z_i \) is a smooth locally closed analytic subset of \(X \), (ii) \(\text{Ch}(M) = \bigsqcup_{i \in \Lambda} T^*_Z X \).

Lemma 8.4.1. — A complex submanifold \(W \subset X \) is non-characteristic with respect to \(M \) if and only if \(W \) and \(Z_i \) are transversal for any \(i \in \Lambda \). In that case, for the inclusion \(\iota : W \longrightarrow X \), we have \(\text{Ch}(\iota_* \iota^* M) = \bigsqcup_{i \in \Lambda} T^*_Z \cap_W X \).

Proof For \(P \in W \cap Z_i \), we have subspaces \((T^*_Z X)_P \) and \((T^*_W X)_P \) of \((T^*X)_P \). Then, \(W \) and \(Z_i \) are transversal at \(P \) if and only if \((T^*_W X)_P \cap (T^*_Z X)_P = \{0\} \). Then, the first claim of the lemma is clear. The second claim follows from general formulas of the characteristic varieties for the pull back by a non-characteristic closed immersion and the push-forward by a closed immersion. \(\square \)

Lemma 8.4.2. — Let \(D \) be a smooth hypersurface of \(X \). If \(D \) is non-characteristic with respect to \(M \), the natural morphism \(M(!D) \longrightarrow M \otimes \mathcal{O}(!D) \) is an isomorphism.
8.4. SOME RESOLUTIONS

Proof Let \(i : D \longrightarrow X \) be the closed immersion. Because \(D \) is non-characteristic with respect to \(\mathcal{M} \), we have the exact sequence \(0 \longrightarrow i_*i^*\mathcal{M} \longrightarrow \mathcal{M}(\mathcal{I}D) \longrightarrow \mathcal{M} \longrightarrow 0 \). We have \(0 \longrightarrow i_*i^*\mathcal{O}_X \longrightarrow \mathcal{O}_X(\mathcal{I}D) \longrightarrow \mathcal{O}_X \longrightarrow 0 \). By the non-characteristic condition and the projection formula, we obtain \(0 \longrightarrow i_*i^*\mathcal{M} \longrightarrow \mathcal{M} \otimes \mathcal{O}_X(\mathcal{I}D) \longrightarrow \mathcal{M} \longrightarrow 0 \). Then, we obtain the claim of the lemma.

Lemma 8.4.3. — Let \(D_i \) (\(i = 1, 2 \)) be smooth hypersurfaces of \(X \) such that (i) \(D_1 \) and \(D_2 \) are transversal, (ii) \(D_i \) (\(i = 1, 2 \)) and \(D_1 \cap D_2 \) are non-characteristic with respect to \(\mathcal{M} \). Then, \(D_2 \) is non-characteristic with respect to \(\mathcal{M}(\ast D_1) \), and we have

\[
(M(\ast D_1))(\!\!\!\!\!\! D_2) \simeq (M(\!\!\!\!\!\! D_2))(\ast D_1) \simeq \mathcal{M} \otimes \mathcal{O}(\!\!\!\!\!\! D_2) \otimes \mathcal{O}(\ast D_2).
\]

Proof By the assumption, \(D_i \) (\(i = 1, 2 \)) and \(D_1 \cap D_2 \) are transversal to \(Z_j \) for \(j \in \Lambda \). It is elementary to check that \(D_2 \) is transversal to \(D_1 \cap Z_j \) (\(j \in \Lambda \)). We obtain that \(D_2 \) is non-characteristic with respect to \(\mathcal{M}(\ast D_1) \). We obtain the isomorphisms (113) from Lemma 8.4.2.

8.4.2. Non-characteristic tuple of hyperplane subbundles. — Let \(\mathcal{E} \) be a locally free sheaf on any complex manifold \(Y \). Let \(X \) be its projectivization with the projection \(G : X \longrightarrow Y \). If a section \(s \) of \(\mathcal{O}_{\mathcal{E}/Y}(1) \) gives a nowhere vanishing section of \(G_*\mathcal{O}_{\mathcal{E}/Y}(1) \), the zero set of \(s \) is called a hyperplane subbundle of \(X \). For any hyperplane subbundle \(H \) of \(X \) and \(P \in Y \), let \(H_{i|P} \) denote the fiber over \(P \).

Let \(\mathcal{M} \) be any holonomic \(\mathcal{D}_X \)-module. Let \(\mathcal{H} := (H_1, \ldots, H_N) \) be a tuple of hyperplane subbundles of \(X \) such that, for each \(P \in Y \), the tuple of hyperplanes \((H_{1|P}, H_{2|P}, \ldots, H_{N|P}) \) is of general position. We say that \(\mathcal{H} \) is non-characteristic with respect to \(\mathcal{M} \) if \(H_I := \bigcap_{i \in I} H_i \) are non-characteristic with respect to \(\mathcal{M} \) for any \(I \subset \{1, \ldots, N\} \). We can prove the following lemma by a standard argument of genericity.

Lemma 8.4.4. — Suppose that \((H_1, \ldots, H_N) \) is non-characteristic with respect to \(\mathcal{M} \). Let \(P \) be any point of \(Y \). Then, if we shrink \(Y \) around \(P \), we can take a hyperplane subbundle \(H_{N+1} \) such that \((H_1, \ldots, H_N, H_{N+1}) \) is also non-characteristic with respect to \(\mathcal{M} \).

Recall the following general lemma.

Lemma 8.4.5. — Let \((H_1, H_2) \) be a tuple of hyperplane bundles of \(X \), which is non-characteristic with respect to \(\mathcal{M} \). Then, \(G_i^! (\mathcal{F}(\mathcal{H}_1 \mathcal{H}_2)) = 0 \) for any \(i \neq 0 \).

Proof Let \(\mathcal{M}_i \) (\(i = 1, 2 \)) be holonomic \(\mathcal{D}_X \)-modules, and let \(H_i \) be hypersurfaces which is non-characteristic with respect to \(\mathcal{M}_1 \). Because \(\mathcal{M}_1 \) has a global good filtration according to [39], we have an exhaustive filtration \(\mathcal{G}_a \) (\(a = 1, 2, \ldots \)) by coherent \(\mathcal{O}_X \)-submodules of \(\mathcal{M}_1 \). We have \(R^bG_*\mathcal{G}_a(\ast H_1) \otimes \mathcal{O}_X^{\otimes b} = 0 \) for any \(b > 0 \). Hence, we have \(R^bG_*\mathcal{M}_1(\ast H_1) \otimes \mathcal{O}_X^{\otimes b} = 0 \). Then, we obtain \(G_i^! \mathcal{M}_1(\ast H_1) = 0 \) for any \(i > 0 \).
By using the duality, we obtain that $G^i(M_2(!H_2)) = 0$ for any $i < 0$. Then, the claim follows from Lemma 8.4.3.

8.4.3. Resolutions. — Let X, Y and \mathcal{M} be as in §8.4.2. Let $H = (H_1, \ldots, H_N)$ be a tuple of hyperplane subbundles of X, non-characteristic with respect to \mathcal{M}. Let $\mathfrak{i} := \{1, \ldots, i\}$, and let $\iota_{H^\mathfrak{i}}$ denote the inclusion $H^\mathfrak{i} \subset X$. We put $\mathcal{N}_0 := \mathcal{M}(\ast H_1)$. We also put $\mathcal{C}_i := \iota_{H^\mathfrak{i}}^* \iota_{H^\mathfrak{i}}^* \mathcal{M}$, and $\mathcal{N}_i := \mathcal{C}_i(\ast H_{i+1})$. We have the natural exact sequences:

$$
 0 \rightarrow \mathcal{M} \rightarrow \mathcal{N}_0 \rightarrow \mathcal{C}_1 \rightarrow 0, \quad 0 \rightarrow \mathcal{C}_i \rightarrow \mathcal{N}_i \rightarrow \mathcal{C}_{i+1} \rightarrow 0
$$

Hence, we obtain the following exact sequence:

$$
 0 \rightarrow \mathcal{M} \rightarrow \mathcal{N}_0 \rightarrow \mathcal{N}_1 \rightarrow \cdots \rightarrow \mathcal{N}_n \rightarrow \cdots
$$

Let $H'^i = (H'^i_j | j = 1, \ldots, N')$ be a tuple of hyperplane subbundles of X such that $H \sqcup H'$ is non-characteristic with respect to \mathcal{M}. We set $\mathcal{Q}_{i,0} := \mathcal{N}_i(\ast H'_1)$. We also put $\mathcal{K}_{i,-j} := \iota_{H^\mathfrak{i}}^* \iota_{H^\mathfrak{i}}^* \mathcal{N}_i$ and $\mathcal{Q}_{i,-j} := \mathcal{K}_{i,-j}(\ast H_{j+1})$. We have the natural exact sequences:

$$
 0 \rightarrow \mathcal{K}_{i,-1} \rightarrow \mathcal{Q}_{i,0} \rightarrow \mathcal{N}_i \rightarrow 0, \quad 0 \rightarrow \mathcal{K}_{i,-j-1} \rightarrow \mathcal{Q}_{i,-j} \rightarrow \mathcal{K}_{i,-j} \rightarrow 0
$$

Hence, we obtain the following exact sequences:

$$
 0 \leftarrow \mathcal{N}_i \leftarrow \mathcal{Q}_{i,0} \leftarrow \mathcal{Q}_{i,-1} \leftarrow \mathcal{Q}_{i,-2} \leftarrow \cdots
$$

By construction, we have the naturally defined morphisms $\mathcal{Q}_{i,-j} \rightarrow \mathcal{Q}_{i+1,-j}$ and the commutative diagrams:

$$
 \begin{array}{ccc}
 \mathcal{Q}_{i,-j} & \longrightarrow & \mathcal{Q}_{i+1,-j} \\
 \downarrow & & \downarrow \\
 \mathcal{Q}_{i,-j+1} & \longrightarrow & \mathcal{Q}_{i+1,-j+1}
 \end{array}
$$

Let $\text{Tot}(\mathcal{Q}_{\cdot,\cdot})$ denote the total complex of the double complex $\mathcal{Q}_{\cdot,\cdot}$. We have natural quasi-isomorphisms $\text{Tot}(\mathcal{Q}_{\cdot,\cdot}) \xrightarrow{\sim} \mathcal{N}_\bullet \xleftarrow{\sim} \mathcal{M}$.

By the construction, for each $\mathcal{Q}_{i,-j}$, there exists a holonomic D-module $\mathcal{P}_{i,-j}$ such that (i) (H_{i+1}, H'_{j+1}) is non-characteristic with respect to $\mathcal{P}_{i,-j}$, (ii) $\mathcal{Q}_{i,-j} = \mathcal{P}_{i,-j}(\ast H_{i+1}!H'_{j+1})$.

8.5. Step 3

Let us prove that $SI(< n)$, $GOOD(\leq n)$ and $LOC(\leq n)$ imply $SI(\leq n)$. The following argument is inspired by [3].

8.5.1. Special case I. — Let $G : X \rightarrow Y$ be any projective morphism of complex manifolds with dim $X \leq n$. Let D be a hypersurface of X. Let V be a meromorphic flat connection on (X, D) with a good K-structure. Suppose that we are given a sequence of hypersurface pairs \mathfrak{F} contained in D. We obtain a K-holonomic \mathcal{D}_X-module $\mathcal{M} := \mathcal{P}(V)$ with the canonical K-Betti structure \mathcal{F}.
Proposition 8.5.1. — If $G^i_*M = 0$ for $i \neq 0$, then RG_*F is a K-Betti structure of G_*^0M.

Proof It is enough to argue the issue locally around any points of Y. Let us consider the case $\text{Supp } G^0_*M \subseteq G(X)$. We take a holomorphic function f such that $\text{Supp } G^0_*M \subset f^{-1}(0)$ and $G(X) \not\subset f^{-1}(0)$. We set $f_X := f \circ G$. As remarked in §8.3.5, we have a description of the K-holonomic \mathcal{D}-module $\phi^{(0)}_{f_X}M$ as the cohomology of the following:

$$\mathcal{M}(!f_X) \rightarrow \Xi^{(0)}_{f_X}\mathcal{M}(\ast f_X) \oplus \mathcal{M} \rightarrow \mathcal{M}(\ast f_X)$$

By the assumption, $G_1\mathcal{M}(!f_X) = G_1\mathcal{M}(\ast f_X) = G_1\Xi^{(0)}_{f_X}\mathcal{M}(\ast f_X) = 0$. Hence, we obtain $G_1(\mathcal{M}, \mathcal{F}) \simeq G_1\phi^{(0)}_{f_X}(\mathcal{M}, \mathcal{F})$ as pre-K-holonomic \mathcal{D}-modules. By the assumption $SI(< n)$, we obtain that $RG_*\mathcal{F}$ is a K-Betti structure of G_*^0M.

Let us consider the case $G(X) = \text{Supp } G^0_*M$. Let $P \in \text{Supp } G^0_*M$. Let $C = (Z, U, \varphi, E)$ be a cell of G^0_*M at P with a cell function g. We set $g_Z := \varphi^{-1}g$ and $g_X := G^{-1}g$. We have the K-Betti structures $\mathcal{F}(sg_X)$ of $\mathcal{M}(sg_X)$ by $\text{LOC}(\leq n)$. By considering the dual, we obtain the K-Betti structure $\mathcal{F}(lg_X)$ of $\mathcal{M}(lg_X)$.

Lemma 8.5.2. — The K-structure of E is good, and the natural isomorphisms

$$\varphi_1E(\ast g_z) \simeq G_1(\mathcal{M})(\ast g)$$

are compatible with the pre-K-Betti structures for $\ast = \ast, !$.

Proof We argue the case $\ast = !$. The case $\ast = \ast$ can be argued similarly. We take a projective birational morphism $\kappa : X' \rightarrow X$ such that (i) X' is smooth, (ii) $X' - (g_X \circ \kappa)^{-1}(0) \sim X - g_X^{-1}(0)$, (iii) the induced morphism $X' \rightarrow Y$ factors into $X' \xrightarrow{G^0_Z} Z \xrightarrow{\varphi} Y$.

We set $g_{X'} := g_X \circ \kappa$ and $\delta := \varphi^{-1}(\delta)$. We set $V' := \kappa^*V \otimes \mathcal{O}(g_{X'})$ and $\mathcal{M}' := \mathcal{F}(V')(lg_{X'})$. Note that $\kappa_*\mathcal{M}' \sim \mathcal{M}(lg_X)$ and $G^0_Z\mathcal{M}' = E(lg_Z)$.

We have the canonical pre-K-Betti structure \mathcal{F}' of \mathcal{M}'. We have $R\kappa_*\mathcal{F}' = \mathcal{F}(lg_X)$. By Theorem 6.5.1, we obtain that the K-structure of E is compatible with the Stokes structures, and that $RG^0_Z\mathcal{F}'$ is the canonical K-Betti structure of $G^0_Z\mathcal{M}'$. Hence, we obtain that $RG_*\mathcal{F}(lg_X)$ is the canonical K-Betti structure of $G_1(\mathcal{M})(lg) = \varphi_1E(lg_Z)$. Thus, we obtain Lemma 8.5.2.

Lemma 8.5.3. — The natural isomorphisms $G_1\Xi^{(a)}_{g_X}(\mathcal{M}(sg_X)) \simeq \Xi^{(a)}_{g_Z}((\varphi_1E)$ and $G_1\psi^{(a)}_{g_X}(\mathcal{M}(sg_X)) \simeq \psi^{(a)}_{g_Z}(\varphi_1E)$ are compatible with the induced pre-K-Betti structures.

Proof By Lemma 8.5.2, we obtain that the natural isomorphisms $G_1(\mathcal{M}(sg_X) \otimes \mathcal{J}^{a,b}_{g_X})(sg_X) \simeq \varphi_1E \otimes \mathcal{J}^{a,b}_{g_Z}(sg_Z)$ are compatible with the induced pre-K-Betti structures. Hence, we obtain Lemma 8.5.3.
By Lemma 8.5.2, the morphisms $\varphi^*_tE_t \rightarrow G_t\mathcal{M} \rightarrow \varphi^*_tE$ are compatible with the induced pre-K-Betti structures, i.e., \mathcal{C} is a K-cell. Hence, we have an induced pre-K-Betti structure $D\phi_g(0)(RG_*\mathcal{F})$ of $\phi_g(0)(G_0^1\mathcal{M})$. We also have the induced K-Betti structure $D\phi_g(0)(\mathcal{F})$ of $\phi_g^{(0)}\mathcal{M}$. By using Lemma 8.5.3, we obtain $D\phi_g(0)(RG_*\mathcal{F}) = RG_*D\phi_g(0)(\mathcal{F})$ under the isomorphism $\phi_g(0)(G_0^1\mathcal{M}) \simeq G_0^1\phi_g^{(0)}\mathcal{M}$. By the assumption $SI(< \dim X)$, we obtain that $D\phi_g(0)(RG_*\mathcal{F})$ is a K-Betti structure of $\phi_g(0)(G_1\mathcal{M})$. Thus, we obtain Proposition 8.5.1. □

8.5.2. Special case II. — Let $G : X \rightarrow Y$ be a projective morphism of complex manifolds. Let $\varphi : Z \rightarrow X$ be a projective morphism. Let D_Z be a hypersurface of Z. Assume that $\varphi|_{Z-D_Z}$ is an immersion. Let V be a meromorphic flat connection on (Z, D_Z) with a good K-Betti structure.

Suppose that we are given a sequence of hypersurface pairs \mathcal{H}_Z of Z contained in D_Z. We obtain the K-holonomic D_Z-modules $\mathcal{M} := \varphi^*_t\mathcal{H}_Z(V)$.

Lemma 8.5.4. — Suppose $G_1^i\mathcal{M} = 0$ unless $i = 0$. Then, the pre-K-holonomic D_Y-module $G_0^1\mathcal{M}$ is K-holonomic.

Proof It follows from Proposition 8.5.1. □

8.5.3. Special case III. — Let E be a locally free sheaf on a complex manifold Y. Let X be its projectivization. Let H_i $(i = 0, 1, 2)$ be hyperplane subbundles. Let \mathcal{N} be a K-holonomic \mathcal{D}-module on X such that $\mathcal{N}(*H_0) = \mathcal{N}$. By shrinking Y, we may assume that $X = Y \times \mathbb{P}^n$ for some n.

Lemma 8.5.5. — Let $A \subseteq X$ be any closed complex analytic subset. If we shrink Y appropriately, there exists a meromorphic function g on X such that (i) the poles of g are contained in H_0, (ii) A is contained in $H_0 \cup g^{-1}(0)$.

Proof Let \mathcal{I}_A denote the ideal sheaf of A on X. If m is sufficiently large, we have a non-zero section of $\mathcal{I}_A(mH_0)$ for m.

Lemma 8.5.6. — We can take a meromorphic function g on X such that (i) the poles of g are contained in H_0, (ii) $\mathcal{N}(*g)$ is obtained as $\varphi^*_t\mathcal{V}$ for a cell $\mathcal{C} = (Z, U, \varphi, V)$. (Note that we do not assume that V is a good meromorphic flat bundle on Z.)

Proof We have a decomposition of $\text{Supp}(\mathcal{N})$ into the locally closed complex analytic subsets $\bigsqcup A_i$ such that the characteristic variety of \mathcal{N} is $\bigsqcup T_{A_i}^*X$. Applying the previous lemma to the lower dimensional strata, we find a meromorphic function g on X such that (i) the poles are contained in H_0, (ii) $A_i \subset H_0 \cup g^{-1}(0)$ if $\dim A_i < \dim \text{Supp}(\mathcal{N})$. By using the resolution of singularity to the irreducible components of $\text{Supp}(\mathcal{N})$ with the maximal dimension, we obtain the cell. □
Suppose that $H = (H_1, H_2)$ is non-characteristic with respect to \mathcal{N}, $\mathcal{N}(g)$, $\mathcal{N}(h)(g)\mathcal{N}(h_0)$, $\psi^a(\mathcal{N}, *h_0)$, $\Xi^a(\mathcal{N}, *h_0)$ and $\phi^a(\mathcal{N}, *h_0)$. In this case, H is non-characteristic with respect to $\Pi_{g^a}^b(\mathcal{N}, *h_0)$ and $\Pi_{g^b}^a(\mathcal{N})$ for any a, b.

Lemma 8.5.7. — The induced pre-K-Betti structure of $G^0_{H}N$ is a K-Betti structure.

Proof By LOC($\leq n$), $\mathcal{P}_H(\Pi_{g^a}^b(\mathcal{N}, *h_0))$ and $\mathcal{P}_H(\Pi_{g^b}^a(\mathcal{N})$ are naturally K-holonomic D-modules. By Lemma 8.4.5, we have

$$G^i\mathcal{P}_H(\Pi_{g^a}^b(\mathcal{N}, *h_0)) = 0, \quad G^i\mathcal{P}_H(\Pi_{g^b}^a(\mathcal{N})) = 0$$

unless $i = 0$. According to Lemma 8.5.4, $G^0\mathcal{P}_H(\Pi_{g^a}^b(\mathcal{N}, *h_0))$ and $G^0\mathcal{P}_H(\Pi_{g^b}^a(\mathcal{N})$ are K-holonomic. Hence, we obtain that $G^0\mathcal{P}_H\Xi_{g^a}(\mathcal{N}, *h_0)$ and $G^0\mathcal{P}_H\psi^a(\mathcal{N}, *h_0)$ are K-holonomic. We have the description of $G^0\mathcal{P}_H\mathcal{N}$ as the cohomology of the following complex of pre-K-holonomic D_Y-modules:

$$G^0\mathcal{P}_H\Xi_{g^a}(\mathcal{N}, *h_0) \longrightarrow G^0\mathcal{P}_H\Xi_{g^b}(\mathcal{N}, *h_0) \oplus G^0\mathcal{P}_H\psi^a(\mathcal{N}, *h_0) \longrightarrow G^0\mathcal{P}_H\psi^b(\mathcal{N}, *h_0).$$

By $SI(< n)$, we obtain that $G^0\mathcal{P}_H\phi^a(\mathcal{N}, *h_0)$ is K-holonomic. Then, we obtain Lemma 8.5.7.

8.5.4. Proof of Theorem 8.1.1. — It is enough to consider the case $X = \mathbb{P}(\mathcal{E})$ for some locally free sheaf \mathcal{E} on Y. Let $(\mathcal{M}, \mathcal{F})$ be a K-holonomic D_X-module with $\dim \text{Supp} \mathcal{M} \leq n$. Let us prove that $F^i(\mathcal{M}, \mathcal{F})$ are K-holonomic.

We take a resolution \mathcal{N}_i of \mathcal{M} as in (115) of §8.4.3. Then, by applying the construction $Q_{\bullet, \bullet}$ in §8.4.2 to each \mathcal{N}_i, we take a resolution $\text{Tot}(Q_{\bullet, \bullet})$ of \mathcal{M}. It is naturally equipped with the K-Betti structure $\text{Tot}(F_{\bullet, \bullet})$. Then, $F^i(\mathcal{M}, \mathcal{F})$ is described as the i-th cohomology of $\text{Tot}(F^0_{\bullet, \bullet}(Q_{\bullet, \bullet}) \mathcal{F}_{\bullet, \bullet})$. Hence, it is enough to show that $F^0_{\bullet, \bullet}(Q_{\bullet, \bullet}) \mathcal{F}_{\bullet, \bullet}$ are K-holonomic. By the construction, we have $\dim \text{Supp} Q_{\bullet, \bullet} < \dim \text{Supp} \mathcal{M}$ for $(k, i, j) \neq (0, 0, 0)$, to which we can apply the inductive assumption. Hence, it is enough to show that $F^0_{\bullet, \bullet}(Q_{\bullet, \bullet}) \mathcal{F}_{\bullet, \bullet}$ is K-holonomic, which follows from Lemma 8.5.7.
CHAPTER 9

DERIVED CATEGORY OF ALGEBRAIC K-HOLONOMIC \mathcal{D}-MODULES

We study the standard functors on the derived category of algebraic K-holonomic \mathcal{D}-modules. It is enough to follow very closely the arguments in [3], [4], [5] and [57], [58]. This section is included for a rather expository purpose.

9.1. Standard exact functors

Let X be a smooth complex quasi-projective variety. We take a smooth projective completion $\overline{X} \subset X$ such that $D = \overline{X} - X$ is a hypersurface. We set $\text{Hol}(X, K) := \text{Hol}(\overline{X}, *D, K)$, which is independent of the choice of a completion \overline{X} (Proposition 8.3.4). Let $D^b(\text{Hol}(X, K))$ denote the derived category of $\text{Hol}(X, K)$. We will implicitly use the following obvious lemma. (Later, we will prove a stronger version in Theorem 9.4.1.)

Lemma 9.1.1. — The forgetful functor $\text{Hol}(X, K) \to \text{Hol}(X)$ is faithful.

Proof Let \overline{X}' be another smooth projective compactification of X. Put $D' := \overline{X}' - X$. We may assume to have a projective morphism $\varphi : \overline{X}' \to \overline{X}$ such that $\varphi|_X = \text{id}_X$. We have a K-holonomic $\mathcal{D}_{\overline{X}'(\ast D')}$-module \mathcal{M}' such that $\varphi_! \mathcal{M}' = \mathcal{M}$, which is unique up to canonical isomorphisms. Then, the natural isomorphism $\varphi_! (DM')(\ast D') \simeq D(M)(\ast D)$ preserves the K-Betti structure by the uniqueness (Corollary 8.3.2). It implies the claim of the lemma.

Corollary 9.1.3. — There exists a functor D_X on $\text{Hol}(X, K)$ which is compatible with the standard duality functors on $\text{Hol}(X)$ and the category of K-perverse sheaves.
We also have a functor D_X on $D^b(\text{Hol}(X,K))$, compatible with the standard duality functors on $D^b_{\text{hol}}(X)$ and $D^b_c(K_X)$. They are unique up to natural equivalences.

We use the symbol K^D_X if we would like to emphasize that it is a functor for K-holonomic D-modules.

Lemma 9.1.4. For $M, N \in \text{Hol}(X,K)$, we have a natural isomorphism:

$$\text{Ext}^i_{\text{Hol}(X,K)}(M,N) \simeq \text{Ext}^i_{\text{Hol}(X,K)}(K^D_X N, K^D_X M)$$

Proof It follows from the comparison of Yoneda extensions.

9.1.2. Localization. Let H be a hypersurface of X. As is shown in Theorem 8.1.4 and Proposition 8.3.4, we have the localization:

$$*H : \text{Hol}(X,K) \longrightarrow \text{Hol}(X,K), \quad M \mapsto M(*H)$$

It is an exact functor. By considering the dual, we obtain an exact functor:

$$!H : \text{Hol}(X,K) \longrightarrow \text{Hol}(X,K), \quad M \mapsto M(!H)$$

They induce exact functors $*H$ and $!H$ on $D^b(\text{Hol}(X,K))$.

Lemma 9.1.5. For $M, N \in \text{Hol}(X,K)$, we have the following natural isomorphisms:

$$\text{Ext}^i_{\text{Hol}(X,K)}(M,N(*D)) \simeq \text{Ext}^i_{\text{Hol}(X,K)}(M(*D),N(*D))$$

$$\text{Ext}^i_{\text{Hol}(X,K)}(M(!D),N) \simeq \text{Ext}^i_{\text{Hol}(X,K)}(M(!D),N(!D))$$

Proof It follows from comparisons of Yoneda extensions.

9.1.3. Nearby cycle, vanishing cycle and maximal functors. Let g be an algebraic function on X. By Proposition 8.3.7, we have the exact functors $\Pi^{a,b}_g$ ($* = *, !$) on $\text{Hol}(X,K)$ given by $\Pi^{a,b}_g(M) := (M \otimes \mathcal{I}^{a,b}_g)(*g)$ and $a, b \in \mathbb{Z}$. Hence, we obtain the exact functors $\Xi_g^{(a)}$, $\psi_g^{(a)}$ and $\phi_g^{(a)}$ on $\text{Hol}(X,K)$. They induce the corresponding exact functors on $D^b(\text{Hol}(X,K))$. We use the symbols $K\Xi_g^{(a)}$, $K\psi_g^{(a)}$ and $K\phi_g^{(a)}$, when we would like to emphasize that they are functors for K-holonomic D-modules. We remark that the functors are not compatible with the forgetful functor $D^b(\text{Hol}(X,K)) \longrightarrow D^b_c(K_X)$. The K-Betti structure of $K\psi_g^{(a)}(M, F)$ is denoted by $D\psi_g^{(a)}(F)$ for the distinction, when we would like to emphasize it. Similar notations such as $D\Xi_g^{(a)}$ and $D\phi_g^{(a)}$ are used.
9.2. Push-forward and pull-back

9.2.1. Statements. — Let $f : X \to Y$ be an algebraic morphism of quasi-projective varieties. We take a commutative diagram

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow^{a_1} & & \downarrow^{a_2} \\
\overline{X} & \xrightarrow{\overline{f}} & \overline{Y}
\end{array}
$$

where (i) a_i are open immersions, (ii) \overline{X} and \overline{Y} are smooth projective, (iii) $H_X = \overline{X} - X$ and $H_Y := \overline{Y} - Y$ are hypersurfaces. We have a natural equivalence between $\text{Hol}(\overline{X},*H_X,K)$ and $\text{Hol}(X,K)$. Let $M \in \text{Hol}(\overline{X},*H_X,K)$ correspond to $M \in \text{Hol}(X,K)$. According to Theorem 8.1.1, we obtain the following objects in $\text{Hol}(Y,K)$:

$$
Kf_!^i(M) := f_!^i(\overline{M}) \quad Kf_*^i(M) := f_*^i(\text{Hol}(H_X))(*H_Y).
$$

They are independent of the choice of \overline{X} up to natural isomorphisms. Thus, we obtain cohomological functors $Kf_!^i, Kf_*^i : \text{Hol}(X,K) \to \text{Hol}(Y,K)$ for $i \in \mathbb{Z}$.

Proposition 9.2.1. — For $\star = !, *$, there exists a functor of triangulated categories

$$
Kf_\star : D^b(\text{Hol}(X,K)) \to D^b(\text{Hol}(Y,K))
$$

such that (i) it is compatible with the standard functor $f_\star : D^b_{\text{hol}}(X) \to D^b_{\text{hol}}(Y)$, (ii) the induced functor $H^i(Kf_\star) : \text{Hol}(X,K) \to \text{Hol}(Y,K)$ is isomorphic to Kf_*^i. It is characterized by the property (i) and (ii) up to natural equivalences.

As in §4 of [57], the pull back is defined to be the adjoint of the push-forward.

Proposition 9.2.2. — $Kf_!$ has the right adjoint Kf_*^1, and Kf_*^* has the left adjoint Kf_*^*. Thus, we obtain the following functors:

$$
Kf_*^\star : D^b(\text{Hol}(Y,K)) \to D^b(\text{Hol}(X,K)) \quad (\star = !, *)
$$

They are compatible with the corresponding functors of holonomic \mathcal{D}-modules with respect to the forgetful functor.

Let us consider the case where f is a closed immersion, via which X is regarded as a submanifold of Y. Let $D^b_X(\text{Hol}(Y,K))$ be the full subcategory of $D^b(\text{Hol}(Y,K))$ which consists of the objects \mathcal{M}^\bullet such that the supports of the cohomology $\bigoplus \mathcal{H}^i \mathcal{M}^\bullet$ are contained in X.

Proposition 9.2.3. — The natural functor $Kf_! : D^b_{\text{Hol}}(X,K) \to D^b_X(\text{Hol}(Y,K))$ is an equivalence.

Remark 9.2.4. — (1) It is a deep theorem of Z. Mebkhout that the irregularity sheaf of any holonomic \mathcal{D}-module \mathcal{M} is a perverse sheaf. See [43]. By using the above

1. This remark is due to the referee.
functors, in the algebraic case, we obtain that the irregularity sheaf of a K-holonomic D-module is equipped with an induced K-structure which is clear by the definition of the irregularity sheaf. We may apply the argument even in the analytic case. □

9.2.2. Preliminary. — Let X be a smooth complex projective variety with a hypersurface D. Let $D^b(\text{Hol}(X, * D, K))$ denote the derived category of $\text{Hol}(X, * D, K)$. Similarly, let $D^b(\text{Hol}(X, * D))$ denote the derived category of $\text{Hol}(X, * D)$.

Let $f : X \longrightarrow Y$ be a morphism of smooth projective varieties. Let D_X and D_Y be hypersurfaces of X and Y respectively, such that $D_X \supset f^{-1}(D_Y)$. We have the functor $K^f_\ast : \text{Hol}(X, * D_X, K) \longrightarrow \text{Hol}(Y, * D_Y, K)$, naturally given by f_\ast. We have a decomposition $D_X = D_{X1} \cup D_{X2}$ such that $D_{X2} = f^{-1}(D_Y)$. We set $D_X := (D_{X1}, D_{X2})$. We have the functor $K^f_\ast : \text{Hol}(X, * D_X, K) \longrightarrow \text{Hol}(Y, * D_Y, K)$ given by $K^f_\ast(M, \mathcal{F}) = f_\ast\mathcal{F}|_{D_X}M$.

Lemma 9.2.5. — For $\ast \neq \ast, !$, there exist functors $K^f_\ast : D^b(\text{Hol}(X, * D_X, K)) \longrightarrow D^b(\text{Hol}(Y, * D_Y, K))$ such that (i) they are compatible with the standard functors $f_\ast : D^b(\text{Hol}(X, * D_X)) \longrightarrow D^b(\text{Hol}(Y, * D_Y))$ by the forgetful functors, (ii) the induced functor $H^i(K^f_\ast) : \text{Hol}(X, * D_X, K) \longrightarrow \text{Hol}(Y, * D_Y, K)$ are isomorphic to K^f_\ast. It is characterized by (i) and (ii) up to natural equivalences.

Proof Let us consider the case $\ast = \ast$. Let \mathcal{M} be a K-holonomic $D_X(\ast D_X)$-module. Let $H = (H_1, \ldots, H_M)$ be a tuple of hypersurfaces of X. We put $H := \bigcup_{i \in I} H_i$. We take a K-vector space U with a base (e_1, \ldots, e_M). For $I = (i_1, \ldots, i_m) \subset \{1, \ldots, M\}$, let U_I denote the subspace of $\bigwedge^\ast U$ generated by $e_{i_1} \wedge \cdots \wedge e_{i_m}$. For $m \geq 0$, we set

$$C^m_{\ast H}(\mathcal{M}) := \bigoplus_{|I|=m+1} \mathcal{M}(\ast H_I) \otimes U_I.$$

For $Ii := I \cup \{i\} \subset \{1, \ldots, M\}$, the natural morphism $\mathcal{M}(\ast H_I) \longrightarrow \mathcal{M}(\ast H_{Ii})$ and the multiplication of e_i induce $\mathcal{M}(\ast H_I) \otimes U_I \longrightarrow \mathcal{M}(\ast H_{Ii}) \otimes U_{Ii}$. They give a complex $(C^\ast_{\ast H}(\mathcal{M}), \partial_{\ast H})$. We have a natural morphism of complexes $\mathcal{M} \longrightarrow C^\ast_{\ast H}(\mathcal{M})$. If $\bigcap H_i = \emptyset$, it is a quasi-isomorphism. Suppose we are given a tuple of hypersurfaces $L = (L_1, \ldots, L_N)$. We put $HL = (H_1, \ldots, H_M, L_1, \ldots, L_N)$. The natural projection $C^\ast_{\ast HL}(\mathcal{M}) \longrightarrow C^\ast_{\ast H}(\mathcal{M})$ gives a complex of morphisms.

Let $H' = (H'_1, \ldots, H'_N)$ be a tuple of hypersurfaces on X. We take a K-vector space U' with a base (e'_1, \ldots, e'_N). For $J = (j_1, \ldots, j_n) \subset \{1, \ldots, N\}$, let U'_J be the subspace of $\bigwedge U'$ generated by $e'_{j_1} \wedge \cdots \wedge e'_{j_n}$. For $n \leq 0$, we set

$$C^n_{\ast H}(\mathcal{M}) := \bigoplus_{|J|=-n+1} \mathcal{M}(\ast H'_J) \otimes U'_J.$$

Let e'^\ast_J denote the dual base. For $Jj = J \cup \{j\} \subset \{1, \ldots, N\}$, the natural morphism $\mathcal{M}(H'_J) \longrightarrow \mathcal{M}(H'_j)$ and the inner product of e'^\ast_J induce $\mathcal{M}(H'_J) \otimes U'_J \longrightarrow \mathcal{M}(H'_j) \otimes U'_J$. They give a complex $(C^\ast_{\ast H}(\mathcal{M}), \partial_{\ast H})$. We have a natural morphism of complexes $\mathcal{M} \longrightarrow C^\ast_{\ast H}(\mathcal{M})$. If $\bigcap J = \emptyset$, it is a quasi-isomorphism.
Suppose that we are given a tuple of hypersurfaces $L' = (L'_1, \ldots, L'_M)$. We put $H' = (H'_1, \ldots, H'_M, L'_1, \ldots, L'_M)$. The natural inclusion $C^*_{iH}(\mathcal{M}) \rightarrow C^*_{iL}(\mathcal{M})$ gives a quasi-isomorphism.

Let \mathcal{M}^\bullet be a complex of K-holonomic $\mathcal{D}_X(*_{DX})$-modules. Let H and H' be tuples of hypersurfaces. The total complex of $C^*_{iH}C^*_{iH'}(\mathcal{M}^\bullet)$ is denoted by $C^*_{iH:H'}(\mathcal{M}^\bullet)$. The total complexes of $C^*_{iH}(\mathcal{M}^\bullet)$ and $C^*_{iH'}(\mathcal{M}^\bullet)$ are also denoted by the same notation. We assume $\bigcap H_i = \bigcap H'_i = \emptyset$. We have the following natural quasi-isomorphisms of complexes:

$$C^*_{iH:H'}(\mathcal{M}^\bullet) \rightarrow C^*_{iH}(\mathcal{M}^\bullet) \leftarrow \mathcal{M}^\bullet$$

Let (H_i, H'_i) ($i = 1, 2$) be tuples of hypersurfaces as above. We say that we have a morphism $(H_1, H'_1) \rightarrow (H_2, H'_2)$ if $H_1 \supset H_2$ and $H'_1 \subset H'_2$ are satisfied. Then, we have a naturally defined quasi-isomorphism of complexes:

$$C^*_{iH:H'_1}(\mathcal{M}^\bullet) \rightarrow C^*_{iH:H'_2}(\mathcal{M}^\bullet)$$

For a tuple of ample hypersurfaces (H, H') which is non-characteristic with respect to \mathcal{M}^\bullet (§8.4.2), we have $f^!\mathcal{M}^\bullet(\star H_1!H_2) = 0$ unless $i = 0$. For each \mathcal{M}^\bullet, we choose such $(H(\mathcal{M}^\bullet), H'(\mathcal{M}^\bullet))$. We obtain a complex of K-holonomic $\mathcal{D}_Y(*_{DY})$-modules:

$$K_{f^!}(\mathcal{M}^\bullet) := f^!_0C^*_{iH(\mathcal{M}^\bullet)!H'(\mathcal{M}^\bullet)}(\mathcal{M}^\bullet)$$

Let $\mathcal{M}_1^\bullet \xleftarrow{a} \mathcal{M}_1^\bullet \xrightarrow{b} \mathcal{M}_2^\bullet$ be morphisms, where a is a quasi-isomorphism. We take a tuple of ample hypersurfaces (H, H') such that (i) the tuple (H, H') is non-characteristic with respect to \mathcal{M}_1^\bullet and \mathcal{M}_2^\bullet, (ii) the tuple $(H, H(\mathcal{M}_1^\bullet), H', H'(\mathcal{M}_1^\bullet))$ is non-characteristic with respect to \mathcal{M}_1^\bullet. We have the following morphism of complexes

$$C^*_{iH:H'}(\mathcal{M}_1^\bullet) \xleftarrow{a_0} C^*_{iH:H'}(\mathcal{M}_1^\bullet) \xrightarrow{a_1} C^*_{iH:H'}(\mathcal{M}_1^\bullet) \leftarrow C^*_{iH:H'}(\mathcal{M}_2^\bullet)$$

Here, a_0 is a quasi-isomorphism. We set $H_i = H(\mathcal{M}_1^\bullet)$ and $H'_i = H'(\mathcal{M}_1^\bullet)$. We have the following quasi-isomorphisms:

$$C^*_{iH:H'}(\mathcal{M}_1^\bullet) \xrightarrow{a_{11}} C^*_{iH:H'}(\mathcal{M}_1^\bullet) \xleftarrow{a_{12}} C^*_{iH:H'}(\mathcal{M}_1^\bullet)$$

Note that $C^*_{iH:H'}(\mathcal{M}_1^\bullet)$ and $C^*_{iH:H'}(\mathcal{M}_1^\bullet)$ are naturally isomorphic. We also have the following quasi-isomorphisms:

$$C^*_{iH:H'}(\mathcal{M}_1^\bullet) \xrightarrow{a_{13}} C^*_{iH:H'}(\mathcal{M}_1^\bullet) \xleftarrow{a_{14}} C^*_{iH:H'}(\mathcal{M}_1^\bullet)$$

Note that $f^!(a_0)$ and $f^!(a_{ij})$ are quasi-isomorphisms. They induce a morphism in $D^b(\text{Hol}(Y, *_{DY}, K))$:

$$Kf^!(\mathcal{M}_1^\bullet) \rightarrow Kf^!(\mathcal{M}_2^\bullet)$$

If we are given morphisms $\mathcal{M}_1^\bullet \xleftarrow{a} \mathcal{M}_1^\bullet \xrightarrow{b} \mathcal{M}_2^\bullet$ such that a' and b' are chain homotopic to a and b respectively, it is easy to check that the induced morphisms (116) in $D^b(\text{Hol}(Y, *_{DY}, K))$ are the same.
Let us check that (116) is independent from the choice of \((H, H')\). Let \((L, L')\) be other choice. Take a sequence of sufficiently generic ample hypersurfaces \((H^{(j)}, H'^{(j)}) \) \((j = 1, \ldots, 2L)\) satisfying the above conditions, such that (i) \((H^{(1)}, H'^{(1)}) = (H, H')\) and \((H'^{(2L)}, H'^{(2L)}) = (L, L')\), (ii) we have morphisms

\[
(H^{(2m-1)}, H'^{(2m-1)}) \leftarrow (H^{(2m)}, H'^{(2m)}) \rightarrow (H^{(2m+1)}, H'^{(2m+1)}).
\]

Then, it is easy to check that \((H, H')\) and \((L, L')\) induce the same morphism (116) in \(D^b(\text{Hol}(\mathcal{X}, \mathcal{D}_X, K))\). Hence, the morphism (116) depends only on the morphism in \(D^b(\text{Hol}(\mathcal{X}, \mathcal{D}_X, K))\) determined by \((a, b)\), i.e., we obtain a morphism

\[
\text{Hom}_{D^b(\text{Hol}(\mathcal{X}, K))}(M^1_\bullet, M^2_\bullet) \rightarrow \text{Hom}_{D^b(\text{Hol}(\mathcal{Y}, K))}(K_{f*}M^1_\bullet, K_{f*}M^2_\bullet).
\]

Thus, we obtain a functor \(D^b(\text{Hol}(\mathcal{X}, K)) \rightarrow D^b(\text{Hol}(\mathcal{Y}, K))\). We set \(K_{f*} := K_{D_Y} \circ K_{f*} \circ K_{D_X}\). By the construction, they satisfy the conditions (i) and (ii). The uniqueness follows from the existence of a resolution by \(K\)-holonomic \(D\)-modules \(N\) such that \(f_i^! N = 0\) unless \(i = 0\).

9.2.3. Proof of Proposition 9.2.1. — We take projective completions \(X \subset \overline{X}\) and \(Y \subset \overline{Y}\) with the following commutative diagram:

\[
\begin{array}{ccc}
X & \rightarrow & \overline{X} \\
\downarrow f & & \downarrow \overline{f} \\
Y & \rightarrow & \overline{Y}
\end{array}
\]

(117)

Set \(D_X := \overline{X} - X\) and \(D_Y := \overline{Y} - Y\). The functor \(K_{f*} : D^b(\text{Hol}(\overline{X}, \mathcal{D}_X, K)) \rightarrow D^b(\text{Hol}(\overline{Y}, \mathcal{D}_Y, K))\) induces \(K_{f*} : D^b(\text{Hol}(X, K)) \rightarrow D^b(\text{Hol}(Y, K))\).

Let \(X \subset \overline{X}\) and \(Y \subset \overline{Y}\) be other projective completions with a commutative diagram as in (117). We set \(D'_X := \overline{X} - X\) and \(D'_Y := \overline{Y} - Y\). Let us prove that the induced morphisms \(K_{f*} : D^b(\text{Hol}(X, K)) \rightarrow D^b(\text{Hol}(Y, K))\) are equal up to natural equivalences. It is enough to consider the case where we have the following commutative diagram:

\[
\begin{array}{ccc}
\overline{X'} & \rightarrow & \overline{Y'} \\
\downarrow \varphi_X & & \downarrow \varphi_Y \\
\overline{X} & \rightarrow & \overline{Y}
\end{array}
\]

Here, \(\varphi_X\) and \(\varphi_Y\) are projective and birational such that \(\varphi_X^{-1}(D_X) = D'_X\) and \(\varphi_Y^{-1}(D_Y) = D'_Y\). We have the following diagrams which are commutative up to
equivalences:

\[
\begin{align*}
D^b(\text{Hol}(\mathcal{X}, \ast D_X, K)) & \xrightarrow{\kappa_f} D^b(\text{Hol}(\mathcal{Y}, \ast D_Y, K)) \\
\xrightarrow{\kappa_{\mathcal{X}}^*} & \quad \xrightarrow{\kappa_{\mathcal{Y}}^*} \\
D^b(\text{Hol}(\mathcal{X}, \ast D_X, K)) & \xrightarrow{\kappa_f} D^b(\text{Hol}(\mathcal{Y}, \ast D_Y, K))
\end{align*}
\]

It implies that \(\kappa_{\mathcal{X}}^* \circ \kappa_f \circ \kappa_{\mathcal{X}}^* \) and \(\kappa_{\mathcal{Y}}^* \circ \kappa_f \circ \kappa_{\mathcal{Y}}^* \) are independent of the choice of projective completions up to equivalences. Thus, the proof of Proposition 9.2.1 is finished.

\[\square\]

9.2.4. Proof of Proposition 9.2.3. — Let \(\mathcal{M}, \mathcal{N} \in \text{Hol}(X, K)\). According to Proposition 3.1.16 of \([5]\), it is enough to check the following effaceability:

- For any \(f \in \text{Ext}^1_{\text{Hol}(Y,K)}(\mathcal{M}, \mathcal{N})\), there exists a monomorphism \(\mathcal{N} \to \mathcal{N}'\) in \(\text{Hol}(X, K)\) such that the image of \(f\) in \(\text{Ext}^1_{\text{Hol}(Y,K)}(\mathcal{M}, \mathcal{N}')\) is 0.

We can prove it by using the arguments in \(\S 2.2.1\) and \(\S 2.2.2\) in \([3]\).

\[\square\]

9.2.5. Proof of Proposition 9.2.2. — It is enough to consider the cases (i) \(f\) is a closed immersion, (ii) \(f\) is a projection \(X \times Y \to Y\). We closely follow the arguments in \(\S 2.19\) and \(\S 4.4\) of \([57]\).

9.2.5.1. Closed immersion. — Let \(f : X \to Y\) be a closed immersion. Let \(\mathcal{M}^*\) be a complex of \(K\)-holonomic \(\mathcal{D}_Y\)-modules. Let \(H_i (i = 1, \ldots, N)\) be sufficiently general ample hypersurfaces of \(Y\) such that (i) \(H_i \supset X\), (ii) \(\mathcal{M}^* \to \mathcal{M}^*(\ast H_i)\) are monomorphisms, (iii) \(\bigcap_{i=1}^N H_i = X\). For any subset \(I = (i_1, \ldots, i_m) \subset \{1, \ldots, N\}\), let \(C_I\) be the subspace of \(\bigwedge^m C^N\) generated by \(e_{i_1} \wedge \cdots \wedge e_{i_m}\), where \(e_i \in C^N\) denotes an element whose \(k\)-th entry is 1 \((k = i)\) or 0 \((k \neq i)\). For \(I = I_0 \cup \{i\}\), we set \(H_I = \bigcup_{i \in I} H_i\). The inclusion \(\mathcal{D}^p(*H_{I_0}) \to \mathcal{M}^p(*H_I)\) and the multiplication of \(e_i\) induces \(\mathcal{D}^p(*H_{I_0}) \otimes C_{i_0} \to \mathcal{M}^p(*H_I) \otimes C_I\). For \(m \geq 0\), we put \(C^m(\mathcal{M}^p, *H) := \bigoplus_{|I| = m} \mathcal{M}^p(*H_I) \otimes C_I\), and we obtain the double complex \(C^*(\mathcal{M}^p, *H)\). The total complex is denoted by \(\text{Tot} C^*(\mathcal{M}^p, *H)\). It is easy to observe that the support of the cohomology of \(\text{Tot} C^*(\mathcal{M}^p, *H)\) is contained in \(X\). According to Proposition 9.2.3, we obtain \(K f^! \mathcal{M}^* := \text{Tot} C^*(\mathcal{M}^p, *H)\) in \(D^b(\text{Hol}(X, K))\). We obtain a functor \(K f^! : D^b(\text{Hol}(Y, K)) \to D^b(\text{Hol}(X, K))\) as in Lemma 9.2.5. Note that the underlying \(\mathcal{D}_Y\)-complex is naturally quasi-isomorphic to \(f^! \mathcal{M}^*\), where \(f^!\) is the left adjoint of \(f_! : D^b_{\text{hol}}(X) \to D^b_{\text{hol}}(Y)\).

We have the naturally defined morphism \(\alpha : \text{Tot} C^*(\mathcal{M}^p, *H) \to \mathcal{M}^\ast\). We put \(\mathcal{K}^\ast := \text{Cone}(\alpha)\). We have another description. For \(m \geq 0\), we put \(\bar{C}^m(\mathcal{M}^p, *H) := \bigoplus_{|I| = m+1} \mathcal{M}^p(*H_{I_0}) \otimes C_{I_0}\), and we obtain the double complex \(\bar{C}^*(\mathcal{M}^p, *H)\). We have a natural quasi-isomorphism \(\mathcal{K}^\ast \simeq \text{Tot} \bar{C}^*(\mathcal{M}^p, *H)\). By using the second description and Lemma 9.1.5, we obtain the following vanishing for any \(\mathcal{N}^\ast \in D^b(\text{Hol}(X, K))\):

\[
\text{Hom}_{D^b(\text{Hol}(Y,K))}(K f^! \mathcal{N}^\ast, \mathcal{K}^\ast) = 0
\]
It is enough to check that the composite of the morphisms is an isomorphism for the
of \mathcal{F}. — Let $f : Z \times Y \to Y$ be the natural projection. Let $(\mathcal{M}, \mathcal{F})$ be
a K-holonomic \mathcal{D}_Y-module. We put $K^f(\mathcal{M}, \mathcal{F}) := (\mathcal{O}_Z \boxtimes \mathcal{M}[\dim Z], K_Z \boxtimes \mathcal{F})$. It is
easy to check that $K^f(\mathcal{M}, \mathcal{F})$ is K-holonomic. Thus, we obtain the exact functor
$K^f : \mathcal{D}(\mathcal{O}(Y, K)) \to \mathcal{D}(\mathcal{O}(Z \times Y, K))$. Let us prove that K^f is the left
adjoint of Kf_*. It is enough to repeat the argument in §4.4 of [57], which we include
for the convenience of readers. It is enough to construct natural transformations
$\alpha : \text{id} \to Kf_*K^f$ and $\beta : K^fKf_* \to \text{id}$ such that
$$\beta \circ K^f_*\alpha : Kf_*\mathcal{M} \to K^fKf_*K^f\mathcal{M} \to K^f\mathcal{M},$$
$$Kf_*\beta \circ \alpha : Kf_*\mathcal{M} \to Kf_*K^f\mathcal{M} \to Kf_*\mathcal{M}$$
are the identities. We define α as the external tensor product with the natural map
$(\mathcal{C}, K) \to (H^0_{\mathcal{D}R}(Z), H^0(Z, K))$. For the construction of β, the following diagram is
used:
$$
\begin{array}{ccc}
Z \times Y & \xrightarrow{i} & Z \times Z \times Y \\
q_2 \downarrow & & q_1 \downarrow \\
Z \times Y & \xrightarrow{p_1} & Y \\
q_1 \downarrow & & p_2 \downarrow \\
Z \times Y & \xrightarrow{p_2} & Y \\
\end{array}
$$
Here, i is induced by the diagonal $Z \to Z \times Z$, q_j are induced by the projection
$Z \times Z \to Z$ onto the j-th component, and p_j are the projections. We have the
following morphisms of K-holonomic \mathcal{D}-complexes:
$$K^fKf_*\mathcal{M} = Kp_2^*Kp_1\mathcal{M} \to Kq_2^*Kq_1\mathcal{M} \to K^fKf_*\mathcal{M} \to Kq_1^*Kq_2\mathcal{M} \to K^f\mathcal{M}.$$
We define β as the composite of (119) with the isomorphism in Lemma 9.2.6. Let us look at $Kf_\ast \beta \circ \alpha$, which is the composite of the following morphisms:
\begin{align}
(120) \quad Kf_\ast \mathcal{M}^\ast &= Kp_{2\ast}Kp_{1\ast} \mathcal{M}^\ast \\
&\xrightarrow{Kp_{2\ast}Kp_{1\ast}} Kp_{2\ast}Kq_{1\ast}Kq_{2\ast}Kp_{1\ast}\mathcal{M}^\ast \\
&\xrightarrow{Kp_{2\ast}Kq_{1\ast}Kp_{2\ast}Kq_{2\ast}Kp_{1\ast}\mathcal{M}^\ast} Kf_\ast Kq_{1\ast}Kq_{2\ast}Kp_{1\ast}\mathcal{M}^\ast \cong Kf_\ast \mathcal{M}^\ast
\end{align}
We have a natural identification $p_{2\ast}q_{2\ast}q_{1\ast} \simeq p_{1\ast}q_{1\ast}q_{2\ast}$, and $p_{1\ast} \to p_{2\ast}q_{2\ast}q_{1\ast}$ in (120) is induced by α for q_{1} under the identification. Then, it is easy to see that the composite is the identity by the construction. As for $\beta \circ Kf_\ast \alpha$, it is expressed as follows:
\begin{align}
(121) \quad Kf_\ast \mathcal{N}^\ast &= Kp_{2\ast}Kp_{1\ast} \mathcal{N}^\ast \\
&\xrightarrow{Kp_{2\ast}Kp_{1\ast}} Kp_{2\ast}Kq_{1\ast}Kp_{1\ast}\mathcal{N}^\ast \\
&\xrightarrow{Kp_{2\ast}Kq_{1\ast}Kp_{2\ast}Kq_{2\ast}Kp_{1\ast}\mathcal{N}^\ast} Kf_\ast Kq_{1\ast}Kq_{2\ast}Kp_{1\ast}\mathcal{N}^\ast \cong Kf_\ast \mathcal{N}^\ast
\end{align}
We have a natural identification $p_{2\ast}q_{2\ast}p_{1\ast} \simeq q_{2\ast}q_{1\ast}p_{2\ast}$, and $p_{1\ast} \to p_{2\ast}q_{2\ast}p_{1\ast}$ in (121) is induced by α for q_{2}. Then, it is easy to observe that the composite is the identity. Thus, the proof of Proposition 9.2.2 is finished.

9.3. Tensor product and inner homomorphism

9.3.1. Statement. — Let $(\mathcal{M}_{i}, \mathcal{F}_{i})$ $(i = 1, 2)$ be K-holonomic \mathcal{D}-modules on X_{i}.

Proposition 9.3.1. — $\mathcal{F}_{1} \boxtimes \mathcal{F}_{2}$ is a K-Betti structure of $\mathcal{M}_{1} \boxtimes \mathcal{M}_{2}$. As a result, we obtain a natural functor $\boxtimes : \text{Hol}(X_{1}, K) \times \text{Hol}(X_{2}, K) \to \text{Hol}(X_{1} \times X_{2}, K)$, compatible with the standard external products $\boxtimes : \text{Hol}(X_{1}) \times \text{Hol}(X_{2}) \to \text{Hol}(X_{1} \times X_{2})$ and $D^{b}(K_{X_{1}}) \times D^{b}(K_{X_{2}}) \to D^{b}(K_{X_{1} \times X_{2}})$.

Before going into the proof of Proposition 9.3.1, we give a standard consequence. Let X be an algebraic variety. Let $\delta_{X} : X \to X \times X$ be the diagonal morphism. We obtain the functors \otimes and $R\text{Hom}$ on $D^{b}(\text{Hol}(X, K))$ in standard ways:

$\mathcal{M} \otimes \mathcal{N} := \delta_{X}^{\ast}(\mathcal{M} \boxtimes \mathcal{N}), \quad R\text{Hom}(\mathcal{M}, \mathcal{N}) := \mathcal{K} \delta_{X}^{\ast}(\mathcal{D}_{X} \mathcal{M} \boxtimes \mathcal{N})$

They are compatible with the corresponding functors on $D^{b}_{\text{hol}}(X)$.

9.3.2. Preliminary. — Let $(\mathcal{M}, \mathcal{F}_{\mathcal{M}})$ be a K-holonomic \mathcal{D}_{X}-module. Let \mathcal{V} be a meromorphic flat connection on (Y, \mathcal{D}_{Y}) with a good K-structure. Let $\mathcal{F}_{\mathcal{V}}$ and $\mathcal{F}_{\mathcal{V}!}$ denote the canonical K-Betti structures of \mathcal{V} and $\mathcal{V}_{!}$, respectively.

Lemma 9.3.2. — $\mathcal{F}_{\mathcal{V}} \boxtimes \mathcal{F}_{\mathcal{M}}$ and $\mathcal{F}_{\mathcal{V}!} \boxtimes \mathcal{F}_{\mathcal{M}}$ are K-Betti structures of $\mathcal{V} \boxtimes \mathcal{M}$ and $\mathcal{V}_{!} \boxtimes \mathcal{M}$, respectively.

Proof We use an induction on the dimension of the support of \mathcal{M}. Let P be any point of X. It is enough to consider locally around $Y \times \{P\}$. Let $\mathcal{C} = (Z, U, \varphi, V)$ be a K-cell of \mathcal{M} at P with a cell function g. The pre-K-holonomic \mathcal{D}-module $\mathcal{V} \otimes \mathcal{M}$ is expressed as the cohomology of the following complex of pre-K-holonomic \mathcal{D}-modules:

$\mathcal{V} \otimes \psi_{g}(\varphi_{!}V) \to \mathcal{V} \otimes \Xi_{g}(\varphi_{!}V) \oplus \mathcal{V} \otimes \phi_{g}(\mathcal{M}) \to \mathcal{V} \otimes \psi_{g}(\varphi_{!}V)$
By the inductive assumption, $F_V \otimes D_{\psi g}(\varphi, F_V)$ and $F_V \otimes D_{\psi}(\varphi, F_V)$ are K-Betti structures of $V \otimes \psi_g(\varphi_1 V)$ and $V \otimes \phi_g(\varphi_1 V)$, respectively. We put $g_Z := \varphi^*g$. By using Theorem 8.1.2, we obtain that $F_V \otimes D_{\psi g_Z}(F_V)$ and $F_V \otimes D_{\psi g_Z}(F_V)$ are K-Betti structures of $V \otimes \Xi_{g_Z}(V)$ and $V \otimes \psi_{g_Z}(V)$, respectively. By construction, the isomorphism $V \otimes \varphi_1(\psi_{g_Z}(V)) \simeq V \otimes \psi_g(\varphi_1 V)$ preserves K-Betti structures. Hence, we obtain that $F_{\mathcal{M}} \otimes F_V$ is a K-Betti structure. Thus, we obtain the first claim. By considering the dual, we obtain the second claim.

Let g be a holomorphic function on Y such that $g^{-1}(0) = D_V$. We obtain the following corollary from Lemma 9.3.2.

Corollary 9.3.3. — $D_{\psi g}(F_V) \otimes F_{\mathcal{M}}$ and $D_{\Xi_{g}}(F_V) \otimes F_{\mathcal{M}}$ are K-Betti structures of $\psi_g(V) \otimes \mathcal{M}$ and $\Xi_g(V) \otimes \mathcal{M}$, respectively.

9.3.3. Proof of Proposition 9.3.1. — Let P be any point of X_1. It is enough to consider locally around $\{P\} \times X_2$. We use an induction on $\dim_{\mathbb{R}}\text{Supp}M_1$. Let $C = (Z, U, \varphi, V)$ be a K-cell of \mathcal{M}_1. The pre-K-holonomic \mathcal{D}-module $M_1 \boxtimes M_2$ is expressed as the cohomology of the following complex:

$$
\psi_g(\varphi_1 V) \boxtimes M_2 \longrightarrow \Xi_g(\varphi_1 V) \boxtimes M_2 \oplus \phi_g(M_1) \boxtimes M_2 \longrightarrow \psi_g(\varphi_1 V) \boxtimes M_2
$$

By the inductive assumption, $\psi_g(\varphi_1 V) \boxtimes M_2$ and $\phi_g(\varphi_1 V) \boxtimes M_2$ are K-holonomic. According to Theorem 8.1.1 and Corollary 9.3.3, $\Xi_g(\varphi_1 V) \boxtimes M_2$ is K-holonomic. Hence, we obtain that $M_1 \boxtimes M_2$ is also K-holonomic. Thus, we obtain Proposition 9.3.1.

9.4. K-structure of the space of morphisms

9.4.1. Statements. —

Theorem 9.4.1. — For $M^\bullet, N^\bullet \in D^b(\text{Hol}(X, K))$, the induced morphism

$$(122) \quad \text{Hom}_{D^b(\text{Hol}(X, K))}(M^\bullet, N^\bullet) \otimes \mathbb{C} \longrightarrow \text{Hom}_{D^b_{\text{hol}}(X)}(M^\bullet, N^\bullet)$$

is an isomorphism. In other words, the forgetful functor $D^b(\text{Hol}(X, K)) \otimes \mathbb{C} \longrightarrow D^b_{\text{hol}}(X)$ is fully faithful.

We closely follow Beilinson’s argument in [3] for the proof.

Theorem 9.4.2. — We have the following natural isomorphism

$$\text{Hom}_{D^b_{\text{hol}}(X, K)}(M^\bullet, N^\bullet) \simeq \text{Hom}_{D^b(\text{Hol}(X, K))}(\mathcal{O}_X, R\text{Hom}(M^\bullet, N^\bullet)[d_X]).$$

We essentially use a commutative diagram due to Saito in [58].
9.4.2. Homomorphisms and extensions for meromorphic flat connections with a good K-structure. — Let X be a smooth complex projective variety with a hypersurface D.

Lemma 9.4.3. — Let V be a meromorphic flat connection on (X, D) with a good K-structure. Let \mathcal{F}_V be the canonical K-Betti structure of V. We have the following natural isomorphisms for $i = 0, 1$:

$$\text{Ext}^i_{\text{hol}(X,K)}(\mathcal{O}_X(*D), V) \simeq H^i(X, \mathcal{F}_V[-d_X])$$

Proof By taking a global resolution of turning points in the algebraic situation ([27], [47]), we may assume that V is a good meromorphic flat bundle. Let $\mathcal{L}(V)$ be the associated local system with the Stokes structure on $\tilde{X}(D)$. It is naturally equipped with a K-structure $\mathcal{L}_K(V)$. If we are given an extension $0 \rightarrow V \rightarrow P \rightarrow \mathcal{O}_X(*D) \rightarrow 0$ as K-holonomic \mathcal{D}_X-modules, P is also a good meromorphic flat bundle with a good K-structure, and it induces an extension $0 \rightarrow \mathcal{L}_K(V) \rightarrow \mathcal{L}_K(P) \rightarrow \mathcal{K}_{\tilde{X}(D)} \rightarrow 0$ of K-constructible sheaves. Conversely, assume that we are given an extension of K-constructible sheaves $0 \rightarrow \mathcal{L}_K(V) \rightarrow \mathcal{G}_K \rightarrow \mathcal{K}_{\tilde{X}(D)} \rightarrow 0$. We obtain a K-local system $\mathcal{G}_K := \tau_* \mathcal{G}_{|X\setminus D}$, where $\tau: X \setminus D \rightarrow X$. The \mathbb{C}-local system $\mathcal{G}_K \otimes \mathbb{C}$ is naturally equipped with a Stokes structure compatible with the K-structure. Hence, we obtain an extension of K-holonomic \mathcal{D}_X-modules $0 \rightarrow V \rightarrow P \rightarrow \mathcal{O}_X(*D) \rightarrow 0$. The above procedures are mutually inverse. Thus, we obtain a bijection $\text{Ext}^i_{\text{hol}(X,K)}(\mathcal{O}_X(*D), V) \simeq \text{Ext}^i_{\mathcal{K}_{\tilde{X}(D)}}(\mathcal{K}_{\tilde{X}(D)}$, $\mathcal{L}_K(V) \rightarrow \mathcal{H}^1(X, \mathcal{F}_V[-d_X]).$ Similarly, we have a natural isomorphism $\text{Ext}^0_{\text{hol}(X,K)}(\mathcal{O}_X(*D), V) \simeq H^0(X, \mathcal{F}_V[-d_X]).$ \hfill \ensuremath{\square}

Let V, W be meromorphic flat connections on (X, D) with good K-structures. We have a natural bijection $\text{Ext}^i_{\text{hol}(X,K)}(W, V) \simeq \text{Ext}^i_{\text{hol}(X,K)}(\mathcal{O}_X(*D), W \otimes W \otimes V)$ for any i. We obtain the natural isomorphisms $\text{Ext}^i_{\text{hol}(X,K)}(W, V) \simeq H^i(X, \mathcal{F}_{W \otimes V}[-d_X])$ for $i = 0, 1$. Because

$$H^i(X, \mathcal{F}_{W \otimes W \otimes V}[-d_X]) \otimes \mathcal{C} \simeq H^i(X, \mathcal{D}_X(W \otimes V)[-d_X]): \text{H}^i_{\text{DR}}(X, W \otimes V),$$

the vector spaces $H^i_{\text{DR}}(X, W \otimes V)$ have the natural K-structure. We say that an element $f \in H^i_{\text{DR}}(X, W \otimes V)$ is compatible with K-structure if it comes from $H^i(X, \mathcal{F}_{W \otimes V}[-d_X])$. An element $f \in H^i_{\text{DR}}(X, W \otimes V)$ induces an extension $0 \rightarrow V \rightarrow P \rightarrow W \rightarrow 0$ in $\text{hol}(X,K)$ as observed above.

9.4.3. Some extensions. — Let X be a smooth complex quasi-projective variety. Let V_i ($i = 1, 2$) be algebraic flat bundles on X with a good K-structure, i.e., there exists a projective variety $\overline{X} \supset X$ such that (i) $D := \overline{X} - X$ is normal crossing, (ii) V_i are good meromorphic flat bundles on (\overline{X}, D) with a good K-structure. According to [3], we have $\text{Ext}^i_{\text{hol}(X)}(V_1, V_2) \simeq H^i_{\text{DR}}(X, V_1 \otimes V_2).$
Lemma 9.4.4. — There exist a Zariski open subset $U \subset X$ and an extension $V_3 \supset V_{2|U}$ on U of algebraic flat bundles with a good K-structure, such that the induced morphisms $\text{Ext}^i_{\text{Hol}(X)}(V_1, V_2) \to \text{Ext}^i_{\text{Hol}(U)}(V_{1|U}, V_3)$ are 0 for $i > 0$.

Proof We use an induction on $\dim X$. In the case $\dim X = 0$, the claim is trivial. Let us consider the case $\dim X > 0$. We take a Zariski open subset $X_1 \subset X$ with a smooth affine fibration $\rho : X_1 \to Z_1$ such that the relative dimension is 1. For any algebraic flat bundle V on X_1, we put $\rho(V) := R^q\rho_*(V \otimes \Omega^1_{X_1/Z_1})$. For a Zariski open subset $Z_1' \subset Z_1$, the induced morphism $\rho^{-1}(Z_1') \to Z_1'$ is also denoted by ρ.

We may assume that $L_q := \rho(V_1 \otimes V_2)$ are algebraic flat bundles on Z_1, which is equipped with the induced good K-structure. We have $L_q = 0$ unless $q = 0, 1$. By the argument in §2.1 of [3], we can reduce Lemma 9.4.4 to Lemma 9.4.5 below which is Lemma 2.1.2 of [3] with a minor enhancement.

Lemma 9.4.5. —

(a) : There exist a Zariski open subset $Z_2 \subset Z_1$ and an extension $P \supset V_{2|X_2}$ of algebraic flat bundles with good K-structure on $X_2 := \rho^{-1}(Z_2)$, such that the induced morphism $\rho(V_1 \otimes V_{2|X_2}) \to \rho(V_1 \otimes P)$ is 0.

(b) : There exists a Zariski open subset $Z_3 \subset Z_1$ and an extension $Q \supset V_{2|X_3}$ of algebraic flat bundles with good K-structure on $X_3 := \rho^{-1}(Z_3)$, such that the induced maps

\[H^p_{\text{DR}}(Z_3, \rho^0(V_1 \otimes V_{2|X_3})) \to H^p_{\text{DR}}(Z_3, \rho^0(V_1 \otimes Q)) \]

are 0 for any $p > 0$.

Proof It is enough to use the argument in the proof of Lemma 2.1.2 of [3]. We give only an indication. Let $\alpha \in H^0_{\text{DR}}(Z_1, L_1^\gamma \otimes L_1) = H^0_{\text{DR}}(Z_1, \rho^1((\rho^* L_1 \otimes V_1)^\gamma \otimes V_2))$ be the element corresponding to the identity of L_1, which is compatible with K-structure. We have the following exact sequence compatible with K-structures:

\[H^1_{\text{DR}}(X_1, (\rho^* L_1 \otimes V_1)^\gamma \otimes V_2) \to H^0_{\text{DR}}(Z_1, \rho_1^1((\rho^* L_1 \otimes V_1)^\gamma \otimes V_2)) \]

\[\begin{array}{c}
\varphi \partial
\hline
\end{array}
\]

\[H^2_{\text{DR}}(Z_1, \rho_1^0((\rho^* L_1 \otimes V_1)^\gamma \otimes V_2)) = H^2_{\text{DR}}(Z_1, L_1^\gamma \otimes L_0) \]

Applying the inductive assumption to L_0^γ and L_1^γ, we have a Zariski open subset $Z_2 \subset Z_1$ and an extension $\varphi : L_1^\gamma \subset R$ of algebraic flat bundles with a good K-structures on Z_2, such that the induced morphism $H^2(Z, L_1^\gamma \otimes L_0) \to H^2(Z_1, R \otimes L_0)$ is 0. In particular, $\varphi(\partial\alpha) = 0$. We obtain the element

\[\varphi(\alpha) \in H^0_{\text{DR}}(Z_1, R \otimes L_1) = H^0_{\text{DR}}(Z_1, \rho^1((\rho^* R^\gamma \otimes V_1)^\gamma \otimes V_2)) \]

which is compatible with K-structure. By construction, we have a lift

\[\tilde{\varphi}(\alpha) \in H^1_{\text{DR}}(X, (\rho^* R^\gamma \otimes V_1)^\gamma \otimes V_2) \]
compatible with K-structure. It induces an extension $0 \to V_{2|X_2} \to P \to \rho^* R^i \otimes V_{1|X_2} \to 0$ of algebraic flat bundles with good K-structure on X_2. (See §9.4.2.) It is easy to observe that P is the desired one. Thus, we obtain the claim (a). The claim (b) can also be proved by the argument in [3].

9.4.4. Vanishing and lifting. —
Let X be a smooth quasi-projective variety. We put $C_1(X) := \text{Hol}(X)$ and $C_2(X) := \text{Hol}(X, K) \otimes \mathbb{C}$. Let V_i $(i = 1, 2)$ be algebraic flat bundles on X with good K-structure. Let us consider the natural morphism:

$$g_X : \text{Ext}^i_{C_2(X)}(V_1, V_2) \to \text{Ext}^i_{C_1(X)}(V_1, V_2)$$

They are isomorphisms in the cases $i = 0, 1$ (§9.4.2).

Lemma 9.4.6. — Let $i > 0$.
- Let $a \in \text{Ext}^i_{C_2(X)}(V_1, V_2)$ such that $g_X(a) = 0$. There exists $U \subset X$ such that $a = 0$ in $\text{Ext}^i_{C_2(U)}(V_{1|U}, V_{2|U})$.
- Let $a \in \text{Ext}^i_{C_1(X)}(V_1, V_2)$. There exist $U \subset X$ and $b \in \text{Ext}^i_{C_2(U)}(V_{1|U}, V_{2|U})$ such that $a|_U = g_U(b)$.

Proof We give only an outline. We use an induction on i. We have already known the case $i = 1$. Let $a \in \text{Ext}^1_{C_2(X)}(V_1, V_2)$ such that $g_X(a) = 0$. We have an extension $V_2 \subset V_3$ of a meromorphic flat bundle with a good K-structure such that the image of a is mapped to 0 via $\text{Ext}^1_{C_2(X)}(V_1, V_2) \to \text{Ext}^1_{C_2(X)}(V_1, V_3)$. Let $K := V_3/V_2$. We have $c \in \text{Ext}^{i-1}_{C_2(X)}(V_1, K)$ which is mapped to a via $\text{Ext}^{i-1}_{C_2(X)}(V_1, K) \to \text{Ext}^i_{C_2(X)}(V_1, V_2)$. We have $d \in \text{Ext}^{i-1}_{C_2(X)}(V_1, V_3)$ which is mapped to $g_X(c)$ via $\text{Ext}^{i-1}_{C_2(X)}(V_1, V_3) \to \text{Ext}^i_{C_2(X)}(V_1, K)$. By using the inductive assumption, we can find $U \subset X$ and $e \in \text{Ext}^{i-1}_{C_2(U)}(V_{1|U}, V_{3|U})$ such that $g_U(e) = d|_U$. By using the inductive assumption, and by shrinking U, we may assume that e is mapped to $c|_U$ via $\text{Ext}^{i-1}_{C_2(U)}(V_1, V_3) \to \text{Ext}^{i-1}_{C_2(U)}(V_1, K)$. Hence, we obtain $a|_U = 0$.

Let $a \in \text{Ext}^i_{C_2(X)}(V_1, V_2)$. According to Lemma 9.4.4, we can find $U \subset X$ and an extension $V_{2|U} \subset V_3$ of meromorphic flat bundles with good K-structures such that the induced map $\text{Ext}^{i}_{C_2(U)}(V_{1|U}, V_{2|U}) \to \text{Ext}^{i}_{C_2(U)}(V_{1|U}, V_{3|U})$ is 0 for any $j > 0$. We put $K := V_3/V_{2|U}$. We can find $c \in \text{Ext}^{i-1}_{C_2(U)}(V_{1|U}, K)$ which is mapped to a via $\text{Ext}^{i-1}_{C_2(U)}(V_{1|U}, K) \to \text{Ext}^i_{C_2(U)}(V_{1|U}, V_{2|U})$. By using the inductive assumption and by shrinking U, we can find $d \in \text{Ext}^{i-1}_{C_2(U)}(V_{1|U}, K)$ such that $g_U(d) = c$. Let b be the image of d via $\text{Ext}^{i-1}_{C_2(U)}(V_{1|U}, K) \to \text{Ext}^i_{C_2(U)}(V_{1|U}, V_{2|U})$. Then, it has the desired property.

9.4.5. Support. — Let X be a smooth quasi-projective variety. For any subvariety $Z \subset X$, let $D^j_{Z, X}(X) (j = 1, 2)$ denote the derived category of bounded complexes M^* in $C_j(X)$ such that the supports of $H^\bullet(M^*)$ are contained in Z. For any M^*, N^* in
For $D_1 \subset D_2$, we have the following commutative diagram:

\[
\begin{array}{ccc}
M(!D_1) & \longrightarrow & M \\
\uparrow & = & \uparrow \\
N & \longrightarrow & N(*D_1)
\end{array}
\]

For $D_1 \subset D_2$, we have the following commutative diagram:

\[
\begin{array}{ccc}
M(!D_2) & \longrightarrow & M \\
\uparrow & = & \uparrow \\
N & \longrightarrow & N(*D_2)
\end{array}
\]
Let $i_a : D_a \to X$ denote the inclusions. We set $U_a := Z \setminus \varphi^{-1}(D_a)$. Hence, we have the following commutative diagram:

\[
\begin{array}{ccc}
\Hom_{j,D_1}(i_{1*}i_1^*M, i_{1*}i_1^*N) & \to & \Ext_{c_j(X)}^i(M, N) \\
\downarrow & & \downarrow = \\
\Hom_{j,D_2}(i_{2*}i_2^*M, i_{2*}i_2^*N) & \to & \Ext_{c_j(X)}^i(M, N) \\
\end{array}
\]

Then, it is easy to prove that $\Ext_{c_j(U_1)}^i(V_M, V_N)$ is compatible with $\Hom_{\mathcal{D}_2}(M, N)$ for $M, N \in \mathcal{D}_2(D_X)$. We have similar isomorphisms for $\Hom_{\mathcal{D}_1}(M, N)$.

9.4.7. Proof of Theorem 9.4.2. — Recall a commutative diagram in Proposition 4.6 of [58]. For $\mathcal{M}, \mathcal{N} \in \mathcal{D}(D_X)$, we have the following commutative diagram:

(124)

\[
\begin{array}{ccc}
\Hom_{\mathcal{D}(D_X)}(\mathcal{M}, \mathcal{N}) & \to & \Hom_{\mathcal{D}(D_X \times X)}(\mathcal{M} \boxtimes \mathcal{N}, \delta \mathcal{O}_X[d_X]) \\
\downarrow & & \downarrow \\
\Hom_{\mathcal{D}(\mathcal{X})}(\mathcal{D} \mathcal{R}_X \mathcal{M}, \mathcal{D} \mathcal{R}_X \mathcal{N}) & \to & \Hom_{\mathcal{D}(\mathcal{X})}(\mathcal{D} \mathcal{R}_X \mathcal{M} \boxtimes \mathcal{D} \mathcal{R}_X \mathcal{N}, \delta \mathcal{C}_X[2d_X])
\end{array}
\]

Let \mathcal{M} be a holonomic \mathcal{D}_X-module with a K-Betti structure \mathcal{F}. We have

\[
\Hom_{\mathcal{D}(\mathcal{X})}(\mathcal{M}, \mathcal{M}) \simeq \Hom_{\mathcal{H}ol(\mathcal{X})}(\mathcal{M}, \mathcal{M}) \simeq \Hom_{\mathcal{H}ol(X,K)}(\mathcal{M}, \mathcal{M}) \otimes \mathbb{C}
\]

We have similar isomorphisms for $\Hom_{\mathcal{D}(\mathcal{X})}(\mathcal{M} \boxtimes \mathcal{D} \mathcal{M}, \delta \mathcal{O}_X[d_X])$. Hence, we obtain the following diagram from (124):

\[
\begin{array}{ccc}
\Hom_{\mathcal{H}ol(X,K)}(\mathcal{M}, \mathcal{M}) \otimes \mathbb{C} & \to & \Hom_{\mathcal{H}ol(\mathcal{X} \times \mathcal{X}, K)}(\mathcal{M} \boxtimes \mathcal{D} \mathcal{M}, \delta \mathcal{C}_X[2d_X]) \otimes \mathbb{C} \\
\downarrow & & \downarrow \cong \\
\Hom_{\mathcal{D}(\mathcal{X})}(\mathcal{D} \mathcal{R}_X \mathcal{M}, \mathcal{D} \mathcal{R}_X \mathcal{M}) & \to & \Hom_{\mathcal{D}(\mathcal{X})}(\mathcal{D} \mathcal{R}_X \mathcal{M} \boxtimes \mathcal{D} \mathcal{R}_X \mathcal{M}, \delta \mathcal{C}_X[2d_X])
\end{array}
\]

Note that a is injective. Hence, b is also injective. Since a and b are compatible with K-structures, c is also compatible with K-structures. Let $C : \mathcal{M} \boxtimes \mathcal{D} \mathcal{M} \to \delta \mathcal{C}_X[2d_X]$ correspond to $1 : \mathcal{M} \to \mathcal{M}$. It is compatible with K-Betti structures.

For $\mathcal{M} \in \mathcal{D}(\mathcal{H}ol(X,K))$, let $C : \mathcal{M} \boxtimes \mathcal{D} \mathcal{M} \to \delta \mathcal{O}_X[d_X]$ correspond to $1 : \mathcal{M} \to \mathcal{M}$. We obtain that C is compatible with K-Betti structures. Then, we obtain that the isomorphism

\[
\Hom_{\mathcal{D}(\mathcal{D}_X)}(\mathcal{M}, \mathcal{N}) \to \Hom_{\mathcal{D}(\mathcal{D}_X \times X)}(\mathcal{M} \boxtimes \mathcal{D} \mathcal{N}, \delta \mathcal{O}_X[d_X])
\]

is compatible with K-Betti structures for any $\mathcal{M}, \mathcal{N} \in \mathcal{D}(\mathcal{H}ol(X,K))$. By taking the dual, we obtain Theorem 9.4.2.
[1] Y. André, Structure des connexions méromorphes formelles de plusieurs variables et semi-continuité de l’irrégularité, Invent. Math. 170 (2007), no. 1, 147–198.

[2] C. Banica, *Le complété formel d’un espace analytique le long d’un sous-espace: Un théoréme de comparaison*, Manuscripta Math. 6, (1972), 207–244.

[3] A. Beilinson, *On the derived category of perverse sheaves*. In *K-theory, arithmetic and geometry (Moscow, 1984–1986)*, Lecture Notes in Math., 1289, Springer, Berlin, (1987), 27–41.

[4] A. Beilinson, *How to glue perverse sheaves*, In *K-theory, arithmetic and geometry (Moscow, 1984–1986)*, Lecture Notes in Math., 1289, Springer, Berlin, (1987), 42–51.

[5] A. Beilinson, J. Bernstein, P. Deligne, *Faisceaux pervers*, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, 100, (1982), 5–171.

[6] A. Beilinson, S. Bloch, P. Deligne, H. Esnault, *Periods for irregular connections on curves*, preprint

[7] J. Bingener, *Über Formale Komplexe Räume*, Manuscripta Math. 24, (1978), 253–293.

[8] S. Bloch, H. Esnault, *Homology for irregular connections*, J. Théor. Nombres Bordeaux 16 (2004), 357–371.

[9] A. Borel, P. O. Grivel, B. Kaup, A. Haefliger, B. Malgrange, F. Ehlers, *Algebraic \mathcal{D}-modules*, Perspectives in Mathematics, 2. Academic Press, Inc., Boston, MA, 1987

[10] A. D’Agnolo, M. Kashiwara, *On a reconstruction theorem for holonomic systems*, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), 178–183
[11] A. D’Agnolo, M. Kashiwara, Riemann-Hilbert correspondence for holonomic D-modules, arXiv:1311.2374

[12] P. Deligne, Équation différentielles à points singuliers réguliers, Lectures Notes in Math., vol. 163, Springer, 1970.

[13] P. Deligne, B. Malgrange, J-P. Ramis, Singularités Iffériées, Documents Mathématiques 5, Société Mathématique de France, 2007.

[14] R. Hartshorne, On the De Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 5–99.

[15] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, (1977).

[16] M. Hien, Periods for flat algebraic connections, Invent. Math. 178, (2009), 1–22.

[17] R. Hotta, K. Takeuchi and T. Tanisaki, D-modules, perverse sheaves, and representation theory, Progress in Mathematics, 236. Birkhäuser Boston, Inc., Boston, MA, 2008.

[18] B. Iversen, Cohomology of sheaves, Springer-Verlag, Berlin, 1986.

[19] M. Kashiwara, On the maximally overdetermined system of linear differential equations. I, Publ. Res. Inst. Math. Sci. 10 (1974/75), 563–579.

[20] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), 319–365.

[21] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, IN: Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., 1016, Springer, Berlin, (1983). 134–142.

[22] M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs, 217. Iwanami Series in Modern Mathematics. American Mathematical Society, 2003

[23] M. Kashiwara and P. Schapira, Sheaves on manifolds, Springer-Verlag, Berlin, 1990

[24] M. Kashiwara, P. Schapira, Ind-sheaves, Astérisque 271 (2001).

[25] L. Katzarkov, M. Kontsevich and T. Pantev, Hodge theoretic aspects of mirror symmetry, in From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, (2008), 87–174, math:0806.0107

[26] K. Kedlaya, Good formal structures for flat meromorphic connections, I; Surfaces, Duke Math. J. 154 (2010), 343–418, arXiv:0811.0190
[27] K. Kedlaya. *Good formal structures for flat meromorphic connections, II: Excellent schemes*, J. Amer. Math. Soc. **24** (2011), 183–229, arXiv:1001.0544

[28] M. Kontsevich, *Holonomic D-modules and positive characteristic*, Jpn. J. Math. **4** (2009), 1–25.

[29] B. A. Krasnov, *Formal Modifications. Existence Theorems for modifications of complex manifolds*, Math. USSR. Izvestija **7**, (1973), 847–881.

[30] G. Laumon, *Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil*. Inst. Hautes Études Sci. Publ. Math. **65**, (1987), 131–210.

[31] A. Levelt, *Jordan decomposition for a class of singular differential operators*, Ark. Mat. **13**, (1975), 1–27

[32] R. MacPherson, K. Vilonen, *Elementary construction of perverse sheaves*, Invent. Math. **84** (1986), 403–435.

[33] H. Majima, *Asymptotic analysis for integrable connections with irregular singular points*, Lecture Notes in Mathematics, **1075**, Springer-Verlag, Berlin, 1984.

[34] B. Malgrange, *Ideals of differentiable functions*, Tata Institute of Fundamental Research Studies in Mathematics **3**, Tata Institute of Fundamental Research, Bombay, Oxford University Press, London, 1967.

[35] B. Malgrange, *La classification des connexions irrégulières à une variable*, In *Mathematics and physics (Paris, 1979/1982)*, Progr. Math., 37, Birkhäuser Boston, Boston, MA, (1983), 381–399.

[36] B. Malgrange, *Polynômes de Bernstein-Sato et cohomologie évanescente*, IN: *Analysis and topology on singular spaces, II, III (Luminy, 1981)*, Astérisque, **101-102**, (1983), 243–267.

[37] B. Malgrange, *Équations différentielles à coefficients polynomiaux*, Progress in Mathematics, **96**, Birkhäuser, Boston, 1991.

[38] B. Malgrange, *Connexions méromorphies 2, Le réseau canonique*, Invent. Math. **124** (1996), 367–387.

[39] B. Malgrange, *On irregular holonomic D-modules*, Éléments de la théorie des systèmes différentiels géométriques, 391–410, Sémin. Congr., 8, Soc. Math. France, Paris, 2004.

[40] Z. Mebkhout, *Une équivalence de catégories*. Compositio Math. **51** (1984), 51–62.

[41] Z. Mebkhout, *Une autre équivalence de catégories*, Compositio Math. **51** (1984), 63–88.
[42] Z. Mebkhout, *Le formalisme des six opérations de Grothendieck pour les \(\mathcal{D}_X \)-modules cohérents*, Hermann, Paris, 1989.

[43] Z. Mebkhout, *Le théorème de positivité de l’irrégularité pour les \(\mathcal{D}_X \)-modules*, The Grothendieck Festschrift, Vol. III, 83–132, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990.

[44] T. Mochizuki, *Good formal structure for meromorphic flat connections on smooth projective surfaces*, In *Algebraic Analysis and Around*, Advanced Studies in Pure Mathematics 54, (2009), 223–253. math:0803.1346

[45] T. Mochizuki, *On Deligne-Malgrange lattices, resolution of turning points and harmonic bundles*, Ann. Inst. Fourier (Grenoble) 59 (2009), 2819–2837.

[46] T. Mochizuki, *Note on the Stokes structure of Fourier transform*, Acta Math. Vietnam. 35 (2010), 107–158

[47] T. Mochizuki, *Wild harmonic bundles and wild pure twistor \(\mathcal{D} \)-modules*, Astérisque 340, (2011), math:0803.1344

[48] T. Mochizuki, *Asymptotic behaviour of variation of pure polarized TERP structures*, Publ. Res. Inst. Math. Sci. 47 (2011), 419–534, math:0811.1384

[49] T. Mochizuki, *The Stokes structure of good meromorphic flat bundle*, J. Inst. Math. Jussieu 10 (2011), 675–712.

[50] T. Mochizuki, *Mixed twistor \(\mathcal{D} \)-modules*, arXiv:1104.3366

[51] G. Morando, *An existence theorem for tempered solutions of \(\mathcal{D} \)-modules on complex curves*, Publ. Res. Inst. Math. Sci. 43 (2007), 625–659.

[52] C. Sabbah, *Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2*, Astérisque, 263, Société Mathématique de France, Paris, 2000.

[53] C. Sabbah, *Polarizable twistor \(\mathcal{D} \)-modules*, Astérisque, 300, Société Mathématique de France, Paris, (2005).

[54] C. Sabbah, *Introduction to Stokes structures*, Lecture Notes in Mathematics, 2060 Springer, Heidelberg, 2013, arXiv:0912.2762

[55] M. Saito, *Modules de Hodge polarisables*, Publ. RIMS., 24 (1988), 849–995.

[56] M. Saito, *Duality for vanishing cycle functors*, Publ. Res. Inst. Math. Sci. 25 (1989), 889–921.

[57] M. Saito, *Mixed Hodge modules*, Publ. RIMS., 26, (1990), 221-333.
[58] M. Saito, *Induced D-modules and differential complexes*, Bull. Soc. Math. France **117** (1989), 361–387.

[59] J-L. Verdier, *Extension of a perverse sheaf over a closed subspace*. IN: *Differential systems and singularities (Luminy, 1983)*. Astérisque **130** (1985), 210–217.