From spin–Peierls to superconductivity: \((\text{TMTTF})_2\text{PF}_6\) under high pressure

D. Jaccard and H. Wilhelm

DPMC, Université de Genève, Quai E.-Ansermet 24, 1211 Geneva 4, Switzerland

D. Jérome and J. Moser

Laboratoire de Physique des Solides (associé au CNRS), Université Paris–Sud, 91405 Orsay, France

C. Carcel and J. M. Fabre

Laboratoire Hétérochimie et Matériaux Organiques ENSCM/ESA–5076, 34296 Montpellier Cedex 5, France

(March 21, 2022)

The nature of the attractive electron–electron interaction, leading to the formation of Cooper–pairs in unconventional superconductors has still to be fully understood and is subject to intensive research. Here we show that the sequence spin–Peierls, antiferromagnetism, superconductivity observed in \((\text{TMTTF})_2\text{PF}_6\) under pressure makes the \((\text{TM})_2\text{X}\) phase diagram universal. We argue that the suppression of the spin–Peierls transition under pressure, the close vicinity of antiferromagnetic superconductors has still to be fully understood and is subject to intensive research. Here we show that the sequence spin–antiferromagnetic phases at high pressure as well as the existence of critical antiferromagnetic fluctuations above \(T_c\), strongly support the intriguing possibility that the interchain exchange of antiferromagnetic fluctuations provides the pairing mechanism required for bound charge carriers.

The existence of a common border between the superconducting (SC) ground state and the insulating phase of spin density wave (SDW) nature, was recognized as a remarkable property of the phase diagram of the Bechgaard salt \((\text{TMTSF})_2\text{PF}_6\). It belongs to a broad family of isostructural compounds \((\text{TM})_2\text{X}\), where the flat organic molecule TM is either tetramethyltetraselenafulvalene (TMTSF) or tetramethyltetraathiafulvalene (TMTTF). Here \(X\) denotes a monovalent anion such as \text{PF}_6, \text{AsF}_6, \text{ClO}_4 or \text{Br}_4. In the crystal, these molecules form stacks separated by chains of anions \(X\). The overlap between the electron clouds of neighboring TM molecules along the stacking direction (\(\|\) the \(a\)-axis) is about 10 (500) times larger than that between the stacks in the transverse \(b-\langle c\rangle\)-direction. Provided that the longitudinal overlap is large compared to the on–site Coulomb repulsion, these organic materials become conducting with a pronounced one dimensional (1–D) character.

The 1–D character of the Fermi surface of \((\text{TMTSF})_2\text{PF}_6\), the presence of a spin–Peierls (SP) transition instead of the usual Peierls instability, as well as the existence of enhanced antiferromagnetic (AF) fluctuations at low temperature, evidenced by NMR relaxation experiments, raised several questions about the mechanism responsible for superconductivity in organic conductors. Since 1–D physics is a relevant concept in these low dimensional systems, SDW and electron–electron pairing can develop simultaneously at low temperature in the interacting electron gas. A cross–over from SDW to SC correlations could possibly be achieved through a small variation of the coupling constants either by applying pressure or changing \(X\). Furthermore, the nuclear spin–lattice relaxation rate data of \((\text{TMTSF})_2\text{PF}_6\) suggest that SDW correlations prevail at low temperature even under pressure when superconductivity is stabilized.

In the generic phase diagram proposed for the \((\text{TM})_2\text{X}\) family, the sequence of ground states (SP, AF/SDW and SC) can be observed for different members of the series if they are placed according to their ambient pressure properties. Even parts of the sequence can be found for a given member of the series if pressure is applied. For instance, the SDW ground state of \((\text{TMTTF})_2\text{Br}\) can be suppressed and at a pressure \(P=2.6\ \text{GPa}\) a SC phase appears. However, starting from a SP ground state, which is observed only for \((\text{TMTTF})_2\text{X}\) with \(X=\text{PF}_6\) or \text{AsF}_6, no superconductivity had been observed.

In this context \((\text{TMTTF})_2\text{PF}_6\) is of particular interest because the existence of the pressure–dependent SP ordering can be used for a quantitative estimate of the pressure dependence of the pairing force, mediated by acoustical phonons. The coupling between electrons and the lattice manifests itself by a divergence of the \(2k_F\) lattice susceptibility below 100 K and by opening a pseudo–gap in the uniform spin susceptibility at \(T_{\text{SP}}^0\approx 40\ \text{K}\). The latter evolves towards a true SP gap at \(T_{\text{SP}}^0\approx 19\ \text{K}\). When 1–D \(2k_F\) phonon softening occurs in the presence of fully developed 1–D AF correlations in the Mott localized phase at \(T<T_p\) (where \(T_p\) represents the temperature below which the 1–D Mott localization produces an insulating behavior of the electrical resistivity) bond charge correlations couple to \(2k_F\) acoustic phonons and a SP instability sets in at low temperature. The SP ordering is suppressed under pressure and a Neél state is stabilized above \(P=0.9\ \text{GPa}\). As the SP instability involves the electron–phonon interaction it can be inferred from the experimentally determined pressure dependence of \(T_{\text{SP}}\) in the low pressure regime that the bare electron–acoustic phonon interaction should be severely depressed at higher pressure. A small value of the electron–phonon coupling in addition to the weakness of the \(2k_F\) lattice susceptibility in \((\text{TM})_2\text{X}\) compounds whenever a SP order is not the ground state would
The influence of pressure on the longitudinal electrical resistivity \(\rho_a \) of (TMTTF)\(_2\)PF\(_6\) single crystals grown by electrocrystallization\(^\text{[1]}\) was studied with a piston–cylinder clamped cell capable to reach pressures of \(P_{\text{max}} \approx 4 \) GPa and a Bridgman anvil cell for higher pressures \((P_{\text{max}} \approx 10 \) GPa) designed for temperatures as low as \(T = 25 \) mK\(^\text{[2]}\). The sample chamber of the latter apparatus is shown in Fig. 1.\(^\text{[3]}\)

The pressure effect on \(\rho_a \) at room temperature is quite strong: \(\rho_a \) decreases from 400 m\(\Omega \)cm at ambient pressure to \(\rho_a = 11 \) m\(\Omega \)cm for \(P = 4.05 \) GPa. At this pressure, temperature has a strong similar strong influence on \(\rho_a(T) \): it decreases by a factor of 40 upon cooling to temperatures of the order of 10 K. Here, \(\rho_a(T) \) passes through a minimum at \(T_{\text{min}} \) and the upturn in \(\rho_a(T) \) is related to a transition into an insulating state, attributed to the onset of itinerant antiferromagnetism (SDW)\(^\text{[4]}\). Beyond \(P = 4 \) GPa the strong increase of \(\rho(T) \) at low temperature is disrupted by the onset of a sharp drop in resistivity at \(T_c = 1.8 \) K (see curve at \(P = 4.35 \) GPa in Fig. 2). At \(P = 4.73 \) GPa \(\rho(T) \) already starts to decline at \(T_c = 2.2 \) K and has decreased by one order of magnitude at 1 K. The temperature \(T_c \) as well as the magnitude of the drop in resistivity decrease as pressure increases further. The residual resistivity \(\rho_{\text{res}} \), measured at the lowest temperature reached in each run, amounts to 1–2 m\(\Omega \)cm. Beyond 7 GPa no evidence of a drop in resistivity is found above 50 mK.

The influence of an external magnetic field along the \(c \)–axis is shown in Fig. 3.\(^\text{[5]}\) The drop in resistivity is completely suppressed in a field of \(\mu_0 H = 0.8 \) T. This is taken as a strong argument to identify \(T_c \) as a SC transition temperature despite the finite value of the residual resistivity which can be attributed (above 4.7 GPa) to microcracks related to the extreme sample brittleness and possible non–hydrostatic components in the Bridgman anvil cell. The value of the critical field \(H_{c2} \), determined by the recovery of the normal state resistivity, increases together with \(T_c \) as pressure decreases. Within the framework of clean type II superconductors which is justified in most (TMTSF)\(_2\)X salts since the electron mean free path is of the order of \(10^4 \times a \), with \(a \) the lattice parameter, \(dH_{c2}/dT \approx \frac{\Delta}{\mu_0 c_0 T_c} \) for \(T \rightarrow T_c \), where \(\Delta \) is a constant independent of the field orientation and pressure\(^\text{[3]}\).

The variation of \(dH_{c2}/dT dT \) between 4.45 and 6.14 GPa leads to a pressure dependence of 2.0%/kbar for \((t_a t_b)^{1/2} \) which is in fair agreement with the optical measurements of the bare band parameters of organic conductors under pressure\(^\text{[3]}\).

Our data provide the missing information enabling the \((T,P)\) phase diagram of (TMTTF)\(_2\)PF\(_6\) shown in Fig. 1 to be constructed and establish its truly universal character. After the suppression of the SP phase, the AF (Néel and SDW) ground states are stable up to about 4 GPa\(^\text{[6]}\). The SC region extends from slightly above 4 GPa to almost 7 GPa with a SC transition temperature as high as \(T_c = 2.2 \) K at \(P = 4.73 \) GPa. It is worth noting that close to this pressure three phase lines meet. The green region in Fig. 4 indicates the presence of AF spin fluctuations. This region has an upper bound in temperature defined by \(T_{\text{min}} \) and a lower limit given by either \(T_{\text{BDW}} \) or \(T_c \). In this temperature interval \(\rho(T) \) shows an upturn. The width in temperature of this interval increases with decreasing pressure and is largest where \(T_c(P) \) reaches its optimum value. Thus, \(T_{\text{min}} \) appears to be closely linked to the critical temperature \(T_c \). Critical AF fluctuations seem to be enhanced when the SDW ground state is approached from high pressure, i. e., where the system is close to the border between the SDW and SC phases. At slightly lower pressure the decrease of \(T_c \) is clearly related to the occurrence of the SDW phase at a higher temperature. Similar behavior is encountered in the competition between charge density wave and SC instabilities\(^\text{[3]}\). The correlation between the fall of \(T_{\text{BDW}} \) and the rise in \(T_c \) reflects the suppression of the SDW with pressure. This restores areas of the Fermi surface lost by the creation of magnetic gaps, thereby increasing the density of states at the Fermi level and hence \(T_c \).

FIG. 1. The sample chamber of the high pressure device before pressurization. In the cylindrical gasket (pyrophyllite) the (TMTTF)\(_2\)PF\(_6\) single crystal (black bar) is placed on a disk of a soft pressure medium (steatite, \(\phi = 2 \)mm). Thin Au–wires (\(\phi = 5 \)μm) on the sample and the pressure gauge (Pb–foil) are attached to thicker Au–wires (\(\phi = 50 \)μm) which establish the electrical contact across the gasket. The cell is closed with a second disk of steatite on top of this arrangement and then pressurized between the two Bridgman anvils.

FIG. 2. Electrical resistivity \(\rho(T) \) of (TMTTF)\(_2\)PF\(_6\) at various pressures and low temperature.

FIG. 3. Magnetic field dependence of \(\rho(T) \) at \(P = 4.73 \) GPa for a field direction along the crystallographic \(c \)–axis. In zero field the critical temperature is as high as \(T_c = 2.2 \) K. The inset shows \(dH_{c2}/dT; dT \) vs pressure.

The reentrant superconductivity below the SDW ordering appears to be a general behavior among (TM)\(_2\)X superconductors. It has also been identified with a finite value of the electrical resistivity in the “superconducting” state in (TMTSF)\(_2\)AsF\(_6\)\(^\text{[3]}\), although less clear due to a larger compressibility. The enhanced \(\rho_{\text{res}} \)–values reported here cannot be attributed to pressure inhomogeneity. They support furthermore the picture of an inhomogeneous SC ground state between 4.2 and 4.5 GPa.
where SC islands are dispersed in a SDW insulating background. In such a scenario the non-percolating SC domains could contribute to a finite resistivity below T_c.

FIG. 4. (T, P) phase diagram of $(TMTTF)_2PF_6$. The spin Peierls (SP), an antiferromagnetic (AF), and the spin density wave state (SDW) are suppressed by pressure and a superconducting (SC) phase emerges above 4 GPa. Over a wide pressure range AF spin fluctuations (green region) are present. At high temperature a Mott–Hubbard insulating (M–H I) and a metallic (M) state are observed. Open symbols represent data taken from Ref. [18].

Given the inability for the traditional electron–phonon mechanism to promote SC in $(TMTTF)_2PF_6$ under very high pressure in the range of 2 K other approaches such as magnetically mediated pairing can be considered. The correlation between the T_c–value and the (insulating) spin fluctuation regime is taken as a strong experimental argument in favor of a pairing mechanism involving AF fluctuations. Such a scenario was also considered for Ce– and U–based strongly correlated electron multiband systems where deviations from the canonical quadratic temperature dependence of the Fermi liquid model are observed at the border between superconductivity and antiferromagnetism.

The use of SDW fluctuations to form bound states of charge carriers is another possibility considered by Emery and worked out in the context of nearly AF itinerant fermion systems. As far as 1–D organic conductors are concerned, it was shown that the exchange of SDW fluctuations between carriers belonging to the same stack does not lead to attractive pairing and thus the development of a 1–D attractive pairing appears to be hopeless. In addition, in 1–D systems the electron–phonon coupling is opposed to the Coulomb repulsion of carriers moving in a restricted phase space.

A conventional approach using the spin fluctuation exchange model in quasi–1–D organic superconductors has predicted d–wave pairing in the vicinity of the SDW phase. However, this theory does not take fully into account the entire temperature regime and in particular the non–Fermi liquid features observed in DC transport and optical conductivity at high temperature, which persist down to low temperature. An attractive interstack pairing can be the outcome of the exchange of AF spin fluctuations between electrons located on neighboring stacks. Such a mechanism would lead to an anisotropic SC gap. In this picture, the attractive interaction is accounted for by the growth of electron–hole pair tunneling generated in the 1–D regime at temperatures larger than the 1–D to 2–D dimensionality crossover.

To summarize, we have reported pressure–induced superconductivity in $(TMTTF)_2PF_6$ in spite of its SP ground state at ambient pressure. This important result establishes the universality of the $(TM)_2X$ phase diagram. Furthermore, the suppression of the SP ground state makes the traditional phonon–mediated Cooper–pair formation unlikely to explain the existence of superconductivity at temperatures as high as $T_c = 2.2$ K at $P = 4.7$ GPa. The manifestation of critical AF spin fluctuations above the onset of superconductivity and the close connection between their amplitude and the value of T_c speaks strongly in favor of an interstack pairing mechanism mediated by the exchange of these fluctuations between neighboring stacks. Thus, our findings supply an important input for theoretical models of magnetic coupling in quasi 1–D conductors and may even shed light on superconductivity in strongly correlated electron systems including high–temperature superconductors.

Useful discussions with C. Bourbonnais, C. Pasquier, and P. Auban–Senzier as well as the technical help of M. Nardone are acknowledged. The work carried out in Geneva was supported by the Swiss National Science Foundation. We thank R. Cartoni and A. Holmes for technical assistance.

1. D. Jérôme, H. J. Schulz, Adv. Phys. 31, 299 (1982).
2. T. Ishiguro, K. Yamaji and G. Saito, Organic Superconductors, Springer (1998).
3. J. P. Pouget et al., Mol. Cryst. Liq. Cryst. 79, 129 (1982).
4. M. Ribault, J. P. Pouget, D. Jérôme, K. Bechgaard, J. Phys. Lett. 41, L–607 (1980).
5. F. Creuzet, C. Bourbonnais, L. G. Caron, D. Jérôme, A. Moradpour, Synth. Metals 19, 277 (1987).
6. V. J. Emery, J. Phys. (France) 44, C3, 977 (1983).
7. D. Jérôme, Science 252, 1509 (1991).
8. L. Balicas et al., J. Phys. I (France) 4, 1539 (1994).
9. G. Brun et al., C. R. Acad. Sci. (France) 284, 211 (1977).
10. C. Coulon et al., J. Phys. (France) 43, 1059 (1982).
11. C. Bourbonnais, in Strongly interacting fermions and high T_c superconductivity, B. Douçot, J. Zinn–Justin, Eds, (Elsevier, Amsterdam, 1995) pp. 307–367.
12. F. Creuzet, C. Bourbonnais, L. G. Caron, D. Jérôme, K. Bechgaard, Synth. Metals 19, 289 (1987).
13. D. S. Chow et al., Phys. Rev. Lett. 81, 3984 (1998).
14. J. P. Pouget and S. Ravy, Synth. Metals 85, 1523 (1997).
15. H. Mora, J. M. Fabre, L. Giral, C. Montginoul, Bull. Soc. Chim. Belg. 101, 137 (1992).
16. D. Jaccard, E. Vargoz, K. Alami–Yadri, H. Wilhelm, Rev. High Pressure Sci. Technol. 7, 412 (1998).
17. The pressure dependent SC transition temperature of Pb yields the pressure. The upper limit for the inevitable, but small pressure gradient is estimated from the width of the Pb transition to be about 0.1 GPa.
18. J. Moser et al., Eur. Phys. J. B 1, 39 (1998).
19. L. P. Gorkov, D. Jérôme, J. Phys. Lett. 46, L–643 (1985).
20. J. Friedel, J. Phys. Lett. 37, L–279 (1975).
21. L. J. Azevedo, J. E. Schirber, J. M. Williams, M. A. Beno, D. R. Stephens, Phys. Rev. B 30, 1570 (1984).
22 S. R. Julian et al., J. Phys. Cond. Matter 8, 9675 (1996).
23 N. D. Mathur et al. Nature 394, 39 (1998).
24 M. T. Béal–Monod, C. Bourbonnais, V. J. Emery, Phys. Rev. B 34, 7716 (1986).
25 H. Kino and H. Kontani, J. Phys. Soc. Jpn. 68, 1481 (1999).
26 G. M. Danner and P. M. Chaikin, Phys. Rev. Lett. 75, 4690 (1995).
27 V. Vescoli et al., Science 281, 1181 (1998).
28 C. Bourbonnais, L. G. Caron, Europhys. Lett. 5, 209 (1988).
29 During preparation of this manuscript a confirmation of the pressure–induced superconductivity in (TMTTF)$_2$PF$_6$ was reported by T. Adachi et al., J. Am. Chem. Soc. 122, 3238 (2000).
This figure "eprintfig1.jpeg" is available in "jpeg" format from:

http://arxiv.org/ps/cond-mat/0005378v1
\((\text{TMTTF})_2 \text{PF}_6 \)
\((\text{TMTTF})_2\text{PF}_6\)

\[P = 4.73 \text{ GPa} \]
This figure "eprintfig4.png" is available in "png" format from:

http://arxiv.org/ps/cond-mat/0005378v1