Density of sets of natural numbers and the Lévy group

Melvyn B. Nathanson a,b,* , Rohit Parikh b,c

a Lehman College (CUNY), Bronx, NY 10468, USA
b CUNY Graduate Center, New York, NY 10016, USA
c Brooklyn College (CUNY), Brooklyn, NY 11210, USA

Received 20 March 2006
Available online 16 November 2006
Communicated by Carl Pomerance

Abstract

Let \(\mathbb{N}\) denote the set of positive integers. The asymptotic density of the set \(A \subseteq \mathbb{N}\) is \(d(A) = \lim_{n \to \infty} |A \cap [1,n]|/n\), if this limit exists. Let \(\mathcal{AD}\) denote the set of all sets of positive integers that have asymptotic density, and let \(\mathcal{S}_\mathbb{N}\) denote the set of all permutations of the positive integers \(\mathbb{N}\). The group \(\mathcal{L}^\sharp\) consists of all permutations \(f \in \mathcal{S}_\mathbb{N}\) such that \(A \in \mathcal{AD}\) if and only if \(f(A) \in \mathcal{AD}\), and the group \(\mathcal{L}^*\) consists of all permutations \(f \in \mathcal{L}^\sharp\) such that \(d(f(A)) = d(A)\) for all \(A \in \mathcal{AD}\). Let \(f: \mathbb{N} \to \mathbb{N}\) be a one-to-one function such that \(d(f(\mathbb{N})) = 1\) and, if \(A \in \mathcal{AD}\), then \(f(A) \in \mathcal{AD}\). It is proved that \(f\) must also preserve density, that is, \(d(f(A)) = d(A)\) for all \(A \in \mathcal{AD}\). Thus, the groups \(\mathcal{L}^\sharp\) and \(\mathcal{L}^*\) coincide.

© 2006 Elsevier Inc. All rights reserved.

MSC: 11B05; 11B13; 11B75

Keywords: Asymptotic density; Lévy group; Infinite permutations

* The work of M.B.N. was supported in part by grants from the NSA Mathematical Sciences Program and the PSC-CUNY Research Award Program. The work of R.P. was supported in part by a grant from the PSC-CUNY Research Award Program.

* Corresponding author.

E-mail addresses: melvyn.nathanson@lehman.cuny.edu (M.B. Nathanson), rparikh@gc.cuny.edu (R. Parikh).

0022-314X/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2006.09.001
1. Asymptotic density and permutations

Let A be a set of positive integers, and let

$$A(n) = \sum_{a \in A} 1 \text{ for } 1 \leq a \leq n$$

denote the counting function of the set A. The lower asymptotic density of A is

$$d_L(A) = \lim \inf_{n \to \infty} \frac{A(n)}{n}.$$

The upper asymptotic density of A is

$$d_U(A) = \lim \sup_{n \to \infty} \frac{A(n)}{n}.$$

The set A has asymptotic density $d(A)$ if the limit

$$d(A) = \lim_{n \to \infty} \frac{A(n)}{n}$$

exists. The set A has an asymptotic density if and only if $d_L(A) = d_U(A)$. We denote by \mathcal{AD} the set of all sets of positive integers that have asymptotic density, that is,

$$\mathcal{AD} = \{ A \subseteq \mathbb{N} : d_L(A) = d_U(A) \}.$$

Let S_N denote the group of all permutations of the positive integers \mathbb{N}. For any set $A \subseteq \mathbb{N}$ and permutation $g \in S_N$, we let

$$g(A) = \{ g(a) : a \in A \}.$$

Let L^* be the set of all permutations that preserve density, that is, L^* consists of all permutations $g \in S_N$ such that

(i) $A \in \mathcal{AD}$ if and only if $g(A) \in \mathcal{AD}$, and
(ii) $d(A) = d(g(A))$ for all $A \in \mathcal{AD}$.

The set L^* is a subgroup of the infinite permutation group S_N, and originated in work of Paul Lévy [3] in functional analysis. This group and other related groups of permutations that preserve asymptotic density have been investigated by Obata [4,5] and Blümlinger and Obata [1].

The Lévy group L^* is contained in the group L^2 that consists of all permutations $g \in S_N$ such that $A \in \mathcal{AD}$ if and only if $g(A) \in \mathcal{AD}$, but that do not necessarily preserve the asymptotic density of every set $A \in \mathcal{AD}$. The object of this note is to prove that $L^* = L^2$. Indeed, we prove the stronger result that if $f : \mathbb{N} \to \mathbb{N}$ is any one-to-one function, not necessarily a permutation, such that $A \in \mathcal{AD}$ implies that $f(A) \in \mathcal{AD}$, then also $d(f(A)) = \lambda d(A)$ for all $A \in \mathcal{AD}$, where $\lambda = d(f(\mathbb{N}))$. In particular, if f is a permutation, then $d(f(\mathbb{N})) = d(\mathbb{N}) = 1$ and $d(f(A)) = d(A)$ for all $A \in \mathcal{AD}$.
2. Permutations preserving density

We begin with the following “intertwining lemma.”

Lemma 1. Let \(A\) and \(B\) be sets of integers such that \(d(A) = d(B) = \gamma > 0\). Let \(\{\varepsilon_k\}_{k=1}^{\infty}\) be a decreasing sequence of numbers such that \(0 < \varepsilon_k < 1\) for all \(k \geq 1\) and \(\lim_{k \to \infty} \varepsilon_k = 0\). Let \(\{M_k\}_{k=1}^{\infty}\) be a sequence of positive integers such that

\[
\left| \frac{A(n)}{n} - \gamma \right| < \varepsilon_k \quad \text{and} \quad \left| \frac{B(n)}{n} - \gamma \right| < \varepsilon_k
\]

for all \(n \geq M_k\). If \(\{N_k\}_{k=1}^{\infty}\) is any sequence of integers satisfying

\[
M_{k-1} \leq N_{k-1} \leq \varepsilon_{k-1} N_k
\]

for all \(k \geq 2\) and if

\[
C = \bigcup_{k=1}^{\infty} (A \cap [N_{2k-1} + 1, N_{2k+1}]) \cup \bigcup_{k=1}^{\infty} (B \cap [N_{2k} + 1, N_{2k+1}])
\]

then

\[
d(C) = \gamma.
\]

Proof. If \(N_k \leq m < n\), then

\[
(\gamma - \varepsilon_k)m < A(m) < (\gamma + \varepsilon_k)m,
\]

\[
(\gamma - \varepsilon_k)n < A(n) < (\gamma + \varepsilon_k)n
\]

and so

\[
\gamma(n - m) - 2\varepsilon_k n < A(n) - A(m) < \gamma(n - m) + 2\varepsilon_k n.
\]

Similarly,

\[
\gamma(n - m) - 2\varepsilon_k n < B(n) - B(m) < \gamma(n - m) + 2\varepsilon_k n.
\]

Let \(k \geq 2\) and \(N_k < n \leq N_{k+1}\). If \(k\) is odd, then

\[
C \cap [1, n] = (A \cap [N_{k+1} + 1, n]) \cup (B \cap [N_{k-1} + 1, N_k]) \cup (C \cap [1, N_{k-1}])
\]

and so

\[
C(n) = A(n) - A(N_k) + B(N_k) - B(N_{k-1}) + C(N_{k-1}).
\]

If \(k\) is even, then

\[
C \cap [1, n] = (B \cap [N_{k+1} + 1, n]) \cup (A \cap [N_{k-1} + 1, N_k]) \cup (C \cap [1, N_{k-1}])
\]
and

\[C(n) = B(n) - B(N_k) + A(N_k) - A(N_{k-1}) + C(N_{k-1}). \]

In both cases, since \(N_k - 1 \leq \varepsilon_{k-1}N_k \), it follows that

\[C(n) < \gamma(n - N_k) + 2\varepsilon_k n + \gamma(N_k - N_{k-1}) + 2\varepsilon_{k-1}N_k + N_{k-1} \]
\[< \gamma n + 5\varepsilon_{k-1}n \]

and

\[C(n) > \gamma(n - N_k) - 2\varepsilon_k n + \gamma(N_k - N_{k-1}) - 2\varepsilon_{k-1}N_k \]
\[> \gamma n - \gamma N_{k-1} - 4\varepsilon_{k-1}n \]
\[> \gamma n - 5\varepsilon_{k-1}n. \]

Therefore,

\[\left| \frac{C(n)}{n} - \gamma \right| < 5\varepsilon_{k-1} \]

for all \(n > N_k \), and so \(d(C) = \gamma \). □

Theorem 1. Let \(f : \mathbb{N} \to \mathbb{N} \) be a one-to-one function such that if \(A \in \mathcal{AD} \), then \(f(A) \in \mathcal{AD} \), that is, if the set \(A \) of positive integers has asymptotic density, then the set \(f(A) \) also has asymptotic density. Let \(\lambda = d(f(\mathbb{N})) \). If \(\lambda = 0 \), then \(d(f(A)) = 0 \) for all \(A \subseteq \mathbb{N} \). If \(\lambda > 0 \), then there is a unique increasing function \(\hat{f} : [0, 1] \to [0, 1] \) such that \(\hat{f}(0) = 0 \), \(\hat{f}(1) = 1 \), and

\[d\left(f(A) \right) = \lambda \hat{f}(d(A)) \]

for all \(A \in \mathcal{AD} \).

Proof. We shall prove that, for every set \(A \in \mathcal{AD} \), the asymptotic density of \(f(A) \) depends only on the asymptotic density of \(A \). Equivalently, we shall prove that if \(A, B \in \mathcal{AD} \) and \(d(A) = d(B) \), then \(d(f(A)) = d(f(B)) \).

For \(\gamma \in [0, 1] \), let \(A \) and \(B \) be sets in \(\mathcal{AD} \) such that \(d(A) = d(B) = \gamma \). Suppose that

\[0 \leq d\left(f(A) \right) = \alpha < \beta = d\left(f(B) \right) \leq 1. \]

Let \(\{\varepsilon_k\}_{k=1}^\infty \) be a decreasing sequence of numbers such that \(0 < \varepsilon_k < 1 \) for all \(k \geq 1 \) and \(\lim_{k \to \infty} \varepsilon_k = 0 \). For every \(k \geq 1 \) there is a positive integer \(M_k \) such that

\[\left| \frac{A(n)}{n} - \gamma \right| < \varepsilon_k, \quad \left| \frac{B(n)}{n} - \gamma \right| < \varepsilon_k, \]
\[\left| \frac{f(A)(n)}{n} - \alpha \right| < \varepsilon_k, \quad \left| \frac{f(B)(n)}{n} - \beta \right| < \varepsilon_k. \]
for all \(n \geq M_k \). By Lemma 1, if \(\{N_k\}_{k=1}^{\infty} \) is any sequence of integers satisfying

\[
M_{k-1} \leq N_{k-1} \leq \varepsilon_{k-1} N_k
\]

(1)

for all \(k \geq 2 \) and if

\[
C = \bigcup_{k=1}^{\infty} \left(A \cap [N_{2k-1} + 1, N_{2k}] \right) \cup \bigcup_{k=1}^{\infty} \left(B \cap [N_{2k} + 1, N_{2k+1}] \right)
\]

(2)

then \(d(C) = \gamma \).

We shall construct a sequence \(\{N_k\}_{k=1}^{\infty} \) satisfying (1) such that the associated set \(C \) satisfies \(d(C) = \gamma \), but \(d_L(f(C)) \leq \alpha \) and \(d_U(f(C)) \geq \beta \). This implies that the set \(f(C) \) does not have asymptotic density, which is impossible since the function \(f \) maps \(AD \) into \(AD \).

The sequence \(\{N_k\}_{k=1}^{\infty} \) and a related sequence \(\{L_k\}_{k=1}^{\infty} \) will be constructed inductively. We remark that since the function \(f \) is one-to-one, it follows that for every positive integer \(L \), there is an integer \(N' \) such that \(f(n) \leq L \) only if \(n \leq N' \). This implies that for every \(N \geq N' \) we have

\[
f(C) \cap [1, L] = f(C \cap [1, N]) \cap [1, L].
\]

Let \(N_1 = L_1 = M_1 \). Let \(k \geq 2 \) and suppose that we have constructed sequences \(N_1 < \cdots < N_{k-1} \) and \(L_1 < \cdots < L_{k-1} \). Choose an integer

\[
L_k > \max(L_{k-1}, M_k)
\]

such that \(\varepsilon_{k-1} L_k > N_{k-1} \). By the remark, there exists an integer \(N_k > L_k \) such that \(f(n) \leq L_k \) only if \(n \leq N_k \). Then

\[
\varepsilon_{k-1} N_k > \varepsilon_{k-1} L_k > N_{k-1}.
\]

We use the sequence \(\{N_k\}_{k=1}^{\infty} \) to construct the set \(C \) according to formula (2).

For \(k \geq 1 \) we have

\[
f(C) \cap [1, L_{2k}] = f(C \cap [1, N_{2k}]) \cap [1, L_{2k}]
\]

\[
= \left(\left(f(C \cap [1, N_{2k-1}]) \cap [1, L_{2k}] \right) \cup \left(f(A \cap [N_{2k-1} + 1, N_{2k}]) \cap [1, L_{2k}] \right) \right)
\]

\[
\subseteq f([1, N_{2k-1}]) \cup (f(A) \cap [1, L_{2k}])
\]

and so

\[
f(C)(L_{2k}) \leq f(A)(L_{2k}) + N_{2k-1}.
\]

It follows that

\[
\frac{f(C)(L_{2k})}{L_{2k}} \leq \frac{f(A)(L_{2k}) + N_{2k-1}}{L_{2k}} < \alpha + 2 \varepsilon_{2k-1}.
\]
Therefore,

\[d_L(f(C)) = \liminf_{n \to \infty} \frac{f(C)(n)}{n} \leq \liminf_{k \to \infty} \frac{f(C)(L_{2k})}{L_{2k}} \leq \alpha. \]

Similarly,

\[f(C) \cap [1, L_{2k+1}] \supseteq f(B \cap [N_{2k} + 1, N_{2k+1}]) \cap [1, L_{2k+1}] \]
\[= (f(B \cap [1, N_{2k+1}]) \cap [1, L_{2k+1}]) \setminus (f(B \cap [1, N_{2k}]) \cap [1, L_{2k+1}]) \]
\[\supseteq (f(B) \cap [1, L_{2k+1}]) \setminus f([1, N_{2k}]) \]

and so

\[f(C)(L_{2k+1}) \geq f(B)(L_{2k+1}) - N_{2k}. \]

It follows that

\[\frac{f(C)(L_{2k+1})}{L_{2k+1}} \geq \frac{f(B)(L_{2k+1}) - N_{2k}}{L_{2k+1}} > \beta - \epsilon \]

and so

\[d_U(f(C)) = \limsup_{n \to \infty} \frac{f(C)(n)}{n} \geq \limsup_{k \to \infty} \frac{f(C)(L_{2k+1})}{L_{2k+1}} \geq \beta. \]

The inequality

\[d_L(f(C)) \leq \alpha < \beta \leq d_U(f(C)) \]

contradicts the fact that \(f(C) \) has asymptotic density, and so \(d(f(A)) = d(f(B)) \).

If \(\lambda = d(f(N)) = 0 \), then \(d(f(A)) = 0 \) for every set \(A \subseteq N \). Suppose that \(\lambda > 0 \). Define the function \(\hat{f} \) by

\[\hat{f}(\alpha) = \frac{d(f(A))}{\lambda} \]

where \(A \subseteq N \) and \(d(A) = \alpha \). This is well-defined, since \(d(f(A)) = d(f(A')) \) if \(d(A) = d(A') \).

Let \(0 \leq \alpha \leq \beta \leq 1 \). There exist sets \(A \subseteq B \subseteq N \) such that \(d(A) = \alpha \) and \(d(B) = \beta \). Since \(f(A) \subseteq f(B) \subseteq f(N) \), it follows that

\[0 \leq d(f(A)) \leq d(f(B)) \leq d(f(N)) = \lambda \]

and so

\[0 \leq \hat{f}(\alpha) \leq \hat{f}(\beta) \leq 1. \]

Thus, \(\hat{f} : [0, 1] \to [0, 1] \) is an increasing function with \(\hat{f}(0) = d(f(\emptyset)) = 0 \) and \(\hat{f}(1) = d(f(N))/\lambda = 1 \). This completes the proof. \(\square \)
Theorem 2. Let \(f : \mathbb{N} \to \mathbb{N} \) be a one-to-one function such that if the set \(A \) of positive integers has asymptotic density, then the set \(f(A) \) also has asymptotic density. Let \(\lambda = d(f(\mathbb{N})) \). Then

\[
d(f(A)) = \lambda d(A)
\]

for all \(A \in \mathcal{AD} \).

Proof. If \(\lambda = 0 \), then \(d(f(A)) = 0 \) for all \(A \in \mathcal{AD} \) and the theorem is true.

Suppose that \(\lambda > 0 \). By Theorem 1, there is an increasing function \(\hat{f} : [0, 1] \to [0, 1] \) such that \(d(f(A)) = \lambda \hat{f}(d(A)) \) for all \(A \in \mathcal{AD} \). We shall prove that \(\hat{f}(\alpha) = \alpha \) for all positive rational numbers \(\alpha \in [0, 1] \).

Let \(\alpha = r/s \), where \(1 \leq r \leq s \). For \(i = 1, \ldots, s \), let \(A_i = \{ a \in \mathbb{N} : a \equiv i \pmod{s} \} \). Let \(A = \bigcup_{i=1}^s A_i \). Then \(d(A_i) = 1/s \) for \(i = 1, \ldots, s \) and \(d(A) = r/s \). Since the function \(f \) is one-to-one, the set \(f(A) \) is the disjoint union of the \(r \) sets \(f(A_1), \ldots, f(A_r) \). Similarly, \(f(\mathbb{N}) \) is the disjoint union of the \(s \) sets \(f(A_1), \ldots, f(A_s) \). Since \(A, A_1, \ldots, A_s \in \mathcal{AD} \), it follows that \(f(A), f(A_1), \ldots, f(A_s) \in \mathcal{AD} \), and

\[
\lambda = d(f(\mathbb{N})) = \sum_{i=1}^s d(f(A_i)) = \lambda s \hat{f}(1/s).
\]

Then

\[
\hat{f}(1/s) = \frac{1}{s}
\]

and

\[
\hat{f}(\alpha) = \frac{d(f(A))}{\lambda} = \frac{1}{\lambda} \sum_{i=1}^r d(f(A_i)) = \sum_{i=1}^r \hat{f}(d(A_i)) = r \hat{f}(1/s) = \frac{r}{s} = \alpha.
\]

This completes the proof. \(\square \)

Remark. The Lévy group \(\mathcal{L}^2 \) consists of all permutations \(f \in S_\mathbb{N} \) such that \(A \in \mathcal{AD} \) if and only if \(f(A) \in \mathcal{AD} \). We can also consider the semigroup \(S^2 \) consisting of all permutations \(f \in S_\mathbb{N} \) such that \(A \in \mathcal{AD} \) implies \(f(A) \in \mathcal{AD} \). Coquet [2] proved that the group \(\mathcal{L}^2 \) is a proper subsemigroup of \(S^2 \).

Acknowledgments

The authors thank Roman Kuznets, Brooke Orosz, and Samer Salame for many useful discussions.

References

[1] M. Blümlinger, N. Obata, Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences, Ann. Inst. Fourier (Grenoble) 41 (3) (1991) 665–678.
[2] J. Coquet, Permutations des entiers et répartition des suites, in: Analytic and Elementary Number Theory, Marseille, 1983, Publ. Math. Orsay 86 (1986) 25–39.
[3] P. Lévy, Problèmes concrets d’analyse fonctionnelle. Avec un complément sur les fonctionnelles analytiques par F. Pellegrino, second ed., Gauthier–Villars, Paris, 1951.
[4] N. Obata, Density of natural numbers and the Lévy group, J. Number Theory 30 (3) (1988) 288–297.
[5] N. Obata, A note on certain permutation groups in the infinite-dimensional rotation group, Nagoya Math. J. 109 (1988) 91–107.