An Algorithm for Strategic Continuation or Restriction of Asthma Medication Prior to Exercise Challenge Testing in Childhood Exercise Induced Bronchoconstriction

Vera. S. Hengeveld¹*, Pascal B. Keijzer¹†, Zuzana Diamant²,³,⁴,⁵ and Boony J. Thio¹

¹ Department of Paediatrics, Medisch Spectrum Twente, Enschede, Netherlands, ² Department of Microbiology, Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium, ³ Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden, ⁴ Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia, ⁵ Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands

Exercise induced bronchial (EIB) constriction is a common and highly specific feature of pediatric asthma and should be diagnosed with an exercise challenge test (ECT). The impact of EIB in asthmatic children’s daily lives is immense, considering the effects on both physical and psychosocial development. Monitoring childhood asthma by ECT’s can provide insight into daily life disease burden and the control of asthma. Current guidelines for bronchoprovocation tests restrict both the use of reliever and maintenance asthma medication before an exercise challenge to prevent false-negative testing, as both have significant acute bronchoprotective properties. However, restricting maintenance medication before an ECT may be less appropriate to evaluate EIB symptoms in daily life when a diagnosis of asthma is well established. Rigorous maintenance medication before an ECT according to guidelines may lead to overestimation of the real, daily life asthma burden and lead to an inappropriate step-up in therapy. The protection against EIB offered by the combined acute and chronic bronchoprotective effects of maintenance medication can be properly assessed whilst maintaining them. This may aid in achieving the goal of unrestricted participation of children in daily play and sports activities with their peers without escalation of therapy. When considering a step down in medication, a strategic wash-out of maintenance medication before an ECT aids in providing objective support of potential discontinuation of maintenance medication.

Keywords: asthma, ECT, ICS, medication, algorithm, EIB, precision medicine, pediatrics
KEY MESSAGES

1. In addition to chronic effects, maintenance asthma medications also have acute bronchoprotective effects against exercise induced bronchoconstriction (EIB).
2. An Exercise Challenge Test (ECT) with continuation of daily maintenance medications represents real-life disease burden and protection against EIB and thus can support personalized decision making.
3. A strategic wash-out of maintenance medication before an ECT can support a safe step-down in maintenance medication in children with exercise-induced bronchoconstriction.

INTRODUCTION

Asthma is the most common chronic inflammatory disease in childhood, affecting up to 10% of all children and impairing quality of life (1, 2). Exercise-induced bronchoconstriction (EIB) is a common and a highly specific symptom of childhood asthma which frequently persists despite maintenance treatment with maintenance medications. It is a sign of bronchial hyperresponsiveness (BHR) due to airway inflammation, indicative of poor asthma control (3–6). In children with EIB, exercise-induced hyperpnea triggers the release of mediators from inflammatory cells residing in the airway lining. This results in airway smooth muscle contraction, congestion of the airway lining and increased mucus production, all contributing to narrowing of the airway (7–10).

Although EIB commonly presents with the classic symptoms of childhood asthma, i.e. coughing, wheezing and dyspnea during or after exercise, symptoms can be subtle or less specific and can overlap with other common causes of exertional dyspnea. EIB restricts activity while playing and during sports due to exercise limitation (11, 12). Considering the impact of activity on both physical and psychological development of children, early identification and treatment of childhood EIB is essential (13–16).

Prior studies have shown that questionnaires cannot accurately predict the presence and severity of EIB in children (17–22). The diagnosis of EIB should thus always be accompanied by documentation of changes in lung function in response to an exercise (or a surrogate) challenge test (23–25). In this context, we advocate the use of an exercise challenge test (ECT), as it simulates the real-life situation in which relevant symptoms usually occur as well as the fact that other challenge tests may be negative even in the presence of EIB (26–28). An ECT also allows diagnosing other disorders that can mimic EIB, e.g., dysfunctional breathing or exercise induced laryngeal obstruction (EILO) (29, 30). A fall in forced expiratory volume in one second (FEV₁) of more than 13% after exercise provocation is generally considered diagnostic for EIB (5, 23, 24, 31).

Here we discuss implications of (dis)continuation of EIB therapy before an ECT in patients based on the mechanism of action of the medications and real-life experience. Additionally, we propose an algorithm to (dis)continuation of anti-EIB medications to enable correct and practical interpretation of ECT outcomes in the individual patient.

ASTHMA MEDICATION AND EIB

Pharmacological treatment of significant childhood EIB consists of reliever [e.g., short-acting β2-adrenoreceptor agonists (SABA)] and maintenance medication [e.g., inhaled corticosteroids (ICS) or leukotriene receptor antagonists (LTRA)] (32). Sometimes add-on maintenance therapies such as long-acting β2-adrenoreceptor agonists (LABA), LTRA, long-acting muscarinic antagonists (LAMA) and/or antihistamines are necessary to achieve the goals of EIB management, i.e., symptom control, exercise tolerance and participation in play and sports (23, 32).

The occurrence and severity of EIB as reported by patients or measured during an ECT is strongly influenced by acute and chronic effects of prescribed reliever and maintenance medications, respectively. Table 1 shows medication withholding times before an ECT as advised in the current ERS technical standard on bronchial challenge testing (25). For correct interpretation of ECT results, it is important to be aware of the magnitude and duration of protection against EIB of the different types of asthma medications. We will shortly summarize the anticipated effects of commonly prescribed asthma medications on EIB, before elaborating on strategic continuation or restriction of specific medication before an ECT to aid clinical decision making in individual patients.

Medication	Recommended withholding time before challenge test
SABA (salbutamol)	8 h
LABA (salmeterol, formoterol)	36 h
LABA + ICS (salmeterol/fluticasone propionate, formoterol/budesonide)	36 h
Ultra-LABA + ICS (vilanterol/fluticasonefuroate)	48 h
ICS (budesonide, fluticasone propionate, beclometasone)	6 h
Long-acting ICS (fluticasone furoate, ciclesonide)	24 h
LTRAs (montelukast)	4 d
Antihistamines (loratadine, cetirizine)	72 h
LAMA (tiotropium bromide)	72 h

Examples of specific medications within the class are provided in parenthesis. SABA, short-acting β2-adrenoreceptor agonists; LABA, long-acting β2-adrenoreceptor agonists; ICS, inhaled corticosteroids; LTRA, leukotriene receptor antagonists; LAMA, long-acting muscarinic antagonists.

*As advised by the ERS technical standard on bronchial challenge testing (23, 25).
prevent EIB. Additionally, β2-adrenoreceptors are also expressed on inflammatory cells including mast cells, macrophages and eosinophils as well as on structural cells: i.e., submucosal glands, vascular endothelium and vascular smooth muscle cells. These locations further facilitate the bronchoprotective effects of SABA's (33).

SABA's have a rapid onset of action with a duration lasting for 4 to 6 h (34). SABA's nearly blunt EIB when administered pre-exercise, reducing the fall in FEV1 by 70–80% in most patients (35, 36). Guidelines advise a withholding time of 8 h prior to an ECT (Table 1). In contrast to their acute bronchodilating and bronchoprotective effects, prolonged and/or frequent use of SABA's induces tolerance due to receptor desensitization (33). This tolerance manifests as a reduced duration of protection (2 h), a more rapid onset of EIB and a slow and incomplete response to rescue treatment with SABA's (36, 37).

Maintenance Medication
ICS are the cornerstone of maintenance treatment for asthma and EIB in children (aged 6 to 11), although the updated GINA document recommends combination therapy (ICS + LABA) as step 1 maintenance treatment in adolescents (aged 12 and above) (32). Corticosteroids possess anti-inflammatory properties which account for their effectiveness in suppressing the underlying airway inflammatory process and controlling EIB properties which account for their effectiveness in suppressing symptoms. ICS provide 50–60% protection against EIB (SABA's (32)). These locations further facilitate the bronchoprotective effects of eosinophils as well as on structural cells: i.e., submucosal receptors on the airway smooth muscle cells, causing airway hyperresponsiveness (56, 57). Inhibition of these muscarinic receptors may also play a role in reducing mucus secretion, inflammation and airway remodeling, thereby leading to reduced airway hyperresponsiveness (56, 58). Tiotropium has shown to improve lung function as add-on therapy for both children (aged 6–11 years) and adolescents with moderate-to-severe symptomatic asthma despite ICS (and 1 or more controller medications) (59–62). Blais et al. furthermore demonstrated a significant bronchoprotective effect of inhalation of a single dose tiotropium or glycopyrronium in adults (measured by metacholine provocation), that for tiotropium lasted up until 7 days after administration of the single dose. There is no literature on the effect of LAMA's on bronchoprovocation by indirect challenge tests such as an ECT (63). Guidelines currently advise to withhold LAMA's for at least 72 h prior to an ECT (Table 1) (25).

CONTINUATION OR RESTRICTION OF MEDICATION BEFORE AN ECT – THAT’S THE QUESTION

The technical standard on indirect provocation tests states that all medication should be withheld to prevent false-negative tests and ensure proper diagnosis (23, 25). However, advice regarding withholding times of medication may become impractical, as medication regimes often contain multiple types of anti-EIB medication with different withholding times as listed in Table 1. This easily leads to incorrect restriction of medication by patients in real-life settings. Since asthma medication has both acute and chronic bronchoprotective and/or bronchodilator effects, continuation or restriction of medication significantly affects EIB occurrence and severity as assessed by an ECT. Figure 1 shows a suggested algorithm regarding strategic continuation or restriction of asthma medication before an ECT. The goal of this algorithm is to support personalized medicine by preventing under- or overtreatment of EIB in individual patients. Future studies could validate the efficacy of this algorithm in preventing
inappropriate escalation of therapy and managing controlled step-down in medication.

Establishing Asthma Diagnosis
When a diagnosis of asthma is uncertain while maintenance medication has been started, a ‘blank’ diagnostic test after a full wash-out of maintenance medication can be useful. Previous studies suggest that a wash-out of at least 2 weeks is appropriate to diminish chronic bronchoprotective effects of maintenance medications (64). A negative ECT after a full wash-out of maintenance medication indicates absence of EIB. In case medication is only restricted for a shorter period of time according to the guidelines, a negative EIB test could be compatible with either a good EIB control, as well as absence of EIB, as the example in Box 1 describes. Establishing a proper diagnosis before treatment prevents overtreatment and allows clinicians to objectively follow-up on therapy effects.

BOX 1 “Is this EIB?”
A high-performing 17 years old female soccer player was referred to our pediatric clinic with a history of exercise-induced symptoms and wheezing for which she received ICS for 2 years, as prescribed by her general practitioner. No other asthma symptoms or signs were apparent. She was referred for an ECT because of persisting exercise-induced symptoms. An ECT was performed after a 2 weeks wash-out of her ICS. The ECT showed no EIB but was suggestive of a mild exercise-induced laryngeal obstruction (EIO), for which she was referred to a speech therapist.

Persisting Exercise-Induced Respiratory Symptoms
An objective follow-up of EIB control is especially useful as it is not uncommon for (a step-up of) maintenance medication to reduce but not completely suppress EIB. An ECT has a high degree of within subject repeatability and can therefore
be used to evaluate asthma therapy effectiveness (21, 22). In case of persistent exercise-induced respiratory symptoms despite adequate (ly taken) maintenance therapy, there are two diagnostic possibilities. Firstly, symptoms could be due to inadequate asthma control under current medication, usually requiring a step-up in medication. Secondly, the persisting symptoms could be of a non-asthmatic origin. Other disorders such as EILo, dysfunctional breathing or a poor cardiopulmonary condition often coexist with EIB and can mimic EIB symptoms (30, 65, 66). When persisting respiratory symptoms are not caused by EIB, a step-up in medication would be both ineffective and detrimental as this would delay appropriate therapy, as described by the example in Box 2.

An ECT under continuation of daily life medication regime can be helpful to evaluate causes of daily life symptoms, disease burden and bronchoprotection, supporting personalized decision making in individual patients.

CONCLUSION

EIB is a highly specific and persistent symptom of childhood asthma indicating poor disease control and negatively affecting patients’ quality of life. The occurrence and severity of EIB as measured during an ECT is strongly influenced by both the acute and chronic bronchoprotective- and dilating effects of reliever and maintenance medication. Guidelines regarding restriction of asthma medications before an ECT are difficult to implement in real life and do not always support the clinician to adjust EIB treatment in individual patients. Here we suggest a practical algorithm for strategic continuation or restriction of maintenance medications before an ECT to support personalized decision making in individual patients.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

PK and VH contributed equally to this work. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Brunkreft B, Smit J, de Jongste J, Neijens H, Gerritsen J, Postma D, et al. The prevention and incidence of asthma and mite allergy (PIAMA) birth cohort study: design and first results. Pediatr allergy Immunol. (2002) 13:55–60. doi: 10.1034/j.1399-3038.13.s.15.1.x
2. Wijga AH, Kerkhof M, Gehring U, de Jongste JC, Postma DS, Aalberse RC, et al. Cohort profile: the prevention and incidence of asthma and mite allergy (PIAMA) birth cohort. Int J Epidemiol. (2014) 43:527–35. doi: 10.1093/ije/dys231
3. Godfrey S, Springer C, Noviski N, Maayan C, Avital A. Exercise but not methacholine differentiates asthma from chronic lung disease in children. Thorax. (1991) 46:488–92. doi: 10.1136/thx.46.7.488
4. Karjalainen EM, Laitinen A, Sue-Chu M, Altiraja A, Bjerner L, Laitinen LA. Evidence of airway inflammation and remodeling in ski athletes with and without bronchial hyperresponsiveness to methacholine. Am J Respir Crit Care Med. (2000) 161:2086–91. doi: 10.1164/ajrccm.161.6.9907025
5. Gotshall RW. Exercise-induced bronchoconstriction. Drugs. (2002) 62:1725–39. doi: 10.2165/00003495-200262120-00003
6. Panditi S, Silverman M. Perception of exercise induced asthma by children and their parents. Arch Dis Child. (2003) 88:807–11. doi: 10.1136/adc.88.9.807
7. Awadh N, Muller NL, Park CS, Abboud RT, FitzGerald JM. Airway wall thickness in patients with near fatal asthma and control groups: assessment with high resolution computed tomographic scanning. Thorax. (1998) 53:248–53. doi: 10.1136/thx.53.4.248
8. Nakano Y, Van Tho N, Yamada H, Osawa M, Nagao T. Radiological approach to asthma and COPD—the role of computed tomography. Allergol Int. (2009) 58:323–31. doi: 10.2332/allergolint.09-RAI-0124
9. Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res. (2010) 690:24–39. doi: 10.1016/j.mrfmmm.2009.09.005
22. Hofstra WB, Sont JK, Sterk PJ, Neijens HJ, Kuethe MC, Duiverman EJ. J Allergy Clin Immunol Pract. (2018) 6:814–22. doi: 10.1016/j.jaip.2017.09.022

21. Anderson SD, Pearlman DS, Rundell KW, Perry CP, Boushey HA, Sorkness CA. J Allergy Clin Immunol. (2002) 52:491–7. doi: 10.1067/mii.2002.1227784

20. Inci D, Guggenheim R, Altintas DU, Wildhaber JH, Moeller A. J Allergy Clin Immunol Pract. (2018) 6:814–22. doi: 10.1016/j.jaip.2017.09.022

19. Rapino D, Consilvio N, Pietro Scaparrotta A, Cingolani A, Attanasi M, Di Mauro R. J Allergy Clin Immunol Pract. (2020) 8:1–10. doi: 10.1016/j.jaipr.2020.03.079

18. Voorend-van Bergen S, Vaessen-Verberne AA, de Jongste JC, Roelse JE. Eur Respir J. (2011) 38:827–32. doi: 10.1183/09031991.2010.002302

17. Nathan RA, Sorkness CA, Kosinski M, Schatz M, Li JT, Marcus P, et al. J Allergy Clin Immunol. (2010) 110:374–80. doi: 10.1016/j.jaci.2009.10.097

16. Biddle SJ, Asare M. Physical activity and mental health in children and adolescents: a review of reviews. Br J Sports Med. (2011) 45:886–9. doi: 10.1136/bjsports-2011-090183

15. Strong WB, Malina RM, Blimkie CJR, Daniels SR, Dishman RK, Gutin B, et al. Med Sci Sports Exerc. (2000) 32:415–23. doi: 10.1097/00005768-200006000-00007

14. Carson V, Hunter S, Kuzik N, Wiebe SA, Friedman A, et al. J Allergy Clin Immunol. (2001) 108:1153–6. doi: 10.1067/mii.2001.119313

13. Scheutt TP, Nemet D, Stoppani J, Maresh CM, Newcomb R, Cooper DM. J Sci Med Sport. (2016) 19:573–8. doi: 10.1016/j.jsams.2015.09.008

12. Schindel CS, Schiwe D, Heinzmann-Filho JP, Gheller MF, Campos NE, Petrez PM, et al. Determinants of exercise capacity in children and adolescents with severe therapy-resistant asthma. J Asthma. (2020) 132:497–503. doi: 10.1378/chest.07-0052

11. Anderson SD. The prevention of exercise-induced bronchoconstriction: what are the options? Expert Rev Respir Med. (2012) 6:355–7. doi: 10.1586/ers.12.33

10. Anderson SD, Kippelen P. Exercise-induced bronchoconstriction: pathogenesis. Curr Allergy Asthma Rep. (2005) 5:116–22. doi: 10.1007/s11882-005-0084-y

9. Anderson SD. Exercise-induced asthma in children: a marker of airway inflammation. Med J Aust. (2002) 177(Suppl 6):S61–3. doi: 10.5694/j.1326-5377.2002.tb04821.x

8. Hofstra WB, Neijens HJ, Duiverman EJ, Kouwenberg JM, Mulder PGH, Kuehle MC, et al. Dose-responses over time to inhaled fluticasone propionate treatment of exercise- and methacholine-induced bronchoconstriction in children with asthma. Pediatr Pulmonol. (2000) 29:415–23. doi: 10.1002/(sici)1099-0496(200006)29:6<415::aid-ppul1>3.0.co;2-7

7. Visser R, Wind M, de Graaf B, de Jongh FHC, van der Palen J, Thio BJ. Protective effect of a low single dose inhaled steroid against exercise induced bronchoconstriction. Pediatr Pulmonol. (2015) 50:1178–83. doi: 10.1002/ppul.23144

6. Kippelen P, Larsson J, Anderson SD, Brandan JD, Delin I, Dahlen B, et al. Acute effects of beclomethasone on hyperpnea-induced bronchoconstriction. Med Sci Sports Exerc. (2010) 42:273–80. doi: 10.1249/MSS.0b013e3181b541b1

5. Driessen JMM, Nieland H, Van Der Palen JAM, Van Aalderen WMC, Thiø BJ. Effects of single-dose fluticasone on exercise-induced asthma in asthmatic children: a pilot study. Pediatr Pulmonol. (2001) 32:115–21. doi: 10.1002/ppul.1097

4. Thio BJ, Singerland GLM, Nagelkerke AF, Roord JJ, Mulder PGH, Dankert-Roelse JE. Effects of single-dose fluticasone on exercise-induced asthma. Pediatr Pulmonol. (2000) 31:203–11. doi: 10.1002/ppul.1097

3. Hofstra WB, Neijens HJ, Duiverman EJ, Kouwenberg JM, Mulder PGH, Kuehle MC, et al. Time to onset of effect of fluticasone propionate in patients with asthma. J Allergy Clin Immunol. (1999) 103:780–8. doi: 10.1016/S0091-6749(99)70420-3

2. Hofstra WB, Neijens HJ, Duiverman EJ, Kouwenberg JM, Mulder PGH, Kuehle MC, et al. Dose-responses over time to inhaled fluticasone propionate treatment of exercise- and methacholine-induced bronchoconstriction in children with asthma. Pediatr Pulmonol. (2000) 29:415–23. doi: 10.1002/(sici)1099-0496(200006)29:6<415::aid-ppul1>3.0.co;2-7

1. Thio BJ, Singerland GLM, Nagelkerke AF, Roord JJ, Mulder PGH, Dankert-Roelse JE. Effects of single-dose fluticasone on exercise-induced asthma. J Allergy Clin Immunol. (2002) 110:120. doi: 10.1016/S1091-6749(02)00004-X

Frontiers in Pediatrics | www.frontiersin.org 6 February 2022 | Volume 10 | Article 800193 6

Asthma: Medication and the ECT
50. Ringdal N, Derom E, Wåhlin-Boll E, Pauwels R. Onset and duration of action of single doses of formoterol inhaled via Turbuhaler. *Respir Med.* (1998) 92:1017–21. doi: 10.1016/S0954-6119(98)90348-1
51. Hallstrand TS, Henderson WRJ. Role of leukotrienes in exercise-induced bronchoconstriction. *Curr Allergy Asthma Rep.* (2009) 9:18–25. doi: 10.1007/s11882-009-0003-8
52. Kersten ETG, Akkerman-Nijland AM, Driessen JMM, Diamant Z, Thio BJ. Can a single dose response predict the effect of montelukast on exercise-induced bronchoconstriction? *Pediatr Pulmonol.* (2016) 51:470–7. doi: 10.1002/ppul.23324
53. Grzelewski T, Stelmach I. Exercise-Induced bronchoconstriction in asthmatic children. *Drugs.* (2009) 69:1533–53. doi: 10.2165/11316720-000000000-00000
54. Kim JH, Lee SY, Kim H, Bin, Kim BS, Shim JY, Hong TJ, et al. Prolonged effect of montelukast in asthmatic children with exercise-induced bronchoconstriction. *Pediatr Pulmonol.* (2005) 39:162–6. doi: 10.1002/ppul.20156
55. Pearlman DS, van Adelsberg J, Philip G, Tilles SA, Busse W, Hendeles L, et al. Onset and duration of protection against exercise-induced broncoconstriction by a single oral dose of montelukast. *Ann allergy, asthma Immunol.* (2006) 97:98–104. doi: 10.1016/S1081-1206(10)61377-4
56. Papi A, Fabbri LM, Kerstjens HAM, Rogliani P, Watz H, Singh D. Inhaled long-acting muscarinic antagonists in asthma - a narrative review. *Eur J Intern Med.* (2021) 85:14–22. doi: 10.1016/j.ejim.2021.01.027
57. Buhl R, Hamelmann E. Future perspectives of anticholinergics for the treatment of asthma in adults and children. *Ther Clin Risk Manag.* (2019) 15:473–85. doi: 10.2147/TCRM.S180890
58. Hamelmann E. Managing severe asthma: a role for the long-acting muscarinic antagonist tiotropium. *Biomed Res Int.* (2018) 2018:743690. doi: 10.1155/2018/743690
59. Szefler SJ, Murphy K, Harper T 3rd, Boner A, Laki I, Engel M, et al. A phase III randomized controlled trial of tiotropium add-on therapy in children with severe symptomatic asthma. *J Allergy Clin Immunol.* (2017) 140:1277–87. doi: 10.1016/j.jaci.2017.01.014
60. Rodrigo GJ, Castro-Rodriguez JA. Tiotropium for the treatment of adolescents with moderate to severe symptomatic asthma: a systematic review with meta-analysis. *Ann allergy, asthma Immunol.* (2015) 115:211–6. doi: 10.1016/j.anai.2015.06.029
61. Rodrigo GJ, Neffen H. Efficacy and safety of tiotropium in school-age children with moderate-to-severe symptomatic asthma: a systematic review. *Pediatr allergy Immunol.* (2017) 28:573–8. doi: 10.1111/pai.12759
62. Vogelberg C, Engel M, Moroni-Zentgraf P, Leonavicute-Klimantaviciene M, Sigmund R, Downie J, et al. Tiotropium in asthmatic adolescents symptomatic despite inhaled corticosteroids: a randomised dose-ranging study. *Respir Med.* (2014) 108:1268–76. doi: 10.1016/j.rmed.2014.06.011
63. Blais CM, Davis BE, Cockcroft DW. Duration of bronchoprotection of the long-acting muscarinic antagonists tiotropium & glycopyrronium against methacholine-induced bronchoconstriction in mild asthmatics. *Respir Med.* (2016) 118:96–101. doi: 10.1016/j.rmed.2016.07.017
64. Sovijärvi ARA, Haahlteila T, Ekoos HJ, Lindeqvist A, Saarinen A, Poussa T, et al. Sustained reduction in bronchial hyperresponsiveness with inhaled fluticasone propionate within three days in mild asthma: Time course after onset and cessation of treatment. *Thorax.* (2003) 58:500–4. doi: 10.1136/thorax.58.6.500
65. Abu-Hasan M, Tannous B, Weinberger M. Exercise-induced dyspnea in children and adolescents: If not asthma then what? *Ann Allergy, Asthma Immunol.* (2005) 94:366–71. doi: 10.1016/S1081-1206(10)60898-1
66. Bhutia R, Abu-Hasan M, Weinberger M. Exercise-induced dyspnea in children and adolescents: differential diagnosis. *Pediatr Ann.* (2019) 48:e121–e127. doi: 10.3928/19382359-20190221-02

Author Disclaimer: All views expressed within this manuscript are original and based upon findings of the authors. None of the views discussed represents standard practice at the above listed institutions.

Conflict of Interest: In the past 3 years, ZD acted as Research Director at QPS-NL, an institution which received research support from several bio-pharmaceutical companies, esp within respiratory: HAL Allergy, Foresee Pharmaceuticals, Patara Pharma (now RespiVant), Novartis. Furthermore, ZD received honoraria or speaker fees serving on advisory boards or as a consultant from: ALK, Antabio, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, HAL Allergy, Merck Sharp & Dohme, Sanofi-Genzyme-Regeneron, all outside the submitted work. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Hengeveld, Keijzer, Diamant and Thio. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.