Functional Identification of 9-cis-epoxycarotenoid Dioxygenase Genes in Double Dormant Plant-herbaceous Peony

Riwen Fei
Shenyang Agricultural University

Siyang Duan
Shenyang Agricultural University

Jiayuan Ge
Shenyang Agricultural University

Tianyi Sun
Shenyang Agricultural University

Xiaomei Sun (✉ sxm7280@syau.edu.cn)
Shenyang Agricultural University https://orcid.org/0000-0002-1782-7341

Research Article

Keywords: herbaceous peony, seed dormancy, abscisic acid metabolism, 9-cis-epoxycarotenoid dioxygenase, subcellular localization, function analysis

Posted Date: December 21st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1176350/v1

License: ☇ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Seed dormancy and germination is a complex process, which is affected by external environmental conditions and internal factors independently or mutually. Phytohormones play an important regulatory role in this process. ABA was the main phytohormone affecting herbaceous peony seed dormancy release. However, the mechanism of ABA in the dormancy release of herbaceous peony needs to be further explored. Here, transcriptome data was screened from the perspective of ABA metabolism, and significantly differentially expressed \textit{PINCED1} and \textit{PINCED2} were obtained. We found that their expression trends were positively correlated with ABA content. Among them, \textit{PINCED2} had a stronger regulatory effect on ABA content and was more sensitive to exogenous ABA. Overexpression and silencing of \textit{PINCEDs} in callus could affect the expression of \textit{POLYPHOSPHATASE7As} and the content of endogenous ABA. Through the observation of seed germination of \textit{Arabidopsis thaliana} (\textit{A. thaliana}), we found \textit{PINCED1} and \textit{PINCED2} promoted seed dormancy, and the promotion effect of \textit{PINCED2} was more obvious. In general, \textit{PINCED1} and \textit{PINCED2} participated in the dormancy release of herbaceous peony seeds by regulating the accumulation of endogenous ABA. Our work can reveal the molecular mechanism and related theories of ABA involved in herbaceous peony seed dormancy release.

Key Message

\textit{PINCED1} and \textit{PINCED2} played a critical role in seed dormancy by regulating the capacity of the Abscisic acid (ABA) metabolism enzyme in herbaceous peony.

1. Introduction

Seed is the basic guarantee for the continuation of plant species (Bewley, et al. 2013). Seed dormancy is an ecophysiological characteristic of plants that adapt to the environment during long-term growth and development. From a biological perspective, seed dormancy can ensure the survival of species in harsh environments, reduce the competition between individuals in the same species, and prevent seed germination in unsuitable seasons (Bewley 1997). It plays a positive role in plant individuals, survival, evolution, and the protection of plant germplasm resources (Willis, et al. 2014). But in terms of the production of cultivated species, seeds often need to germinate quickly, neatly and grow quickly to obtain high economic yield (Lafta and Mou 2013; Mutlu, et al. 2020). At the same time, an early sprouting phenomenon caused by the lack of seed dormancy has a negative impact on the production of cereal crops (Finkelstein, et al. 2008). Therefore, based on the characteristics of seed dormancy and the actual needs of agricultural and forestry production, scholars have discussed this issue from different scientific perspectives. Seed dormancy release is accompanied by a series of physiological and biochemical reactions, including the repair of metabolic changes, decomposition and utilization of storage substances and energy metabolism (Li and Min 2020; Liu, et al. 2020; Vigliocco, et al. 2020). Seed dormancy is coordinately regulated by external stimulation (such as light, temperature and humidity, etc.) and endogenous factors (such as phytohormones, sugars and nitrogen compounds, etc.) (Chen, et al. 2020a; Chen, et al. 2021; Klupczynska and Pawlowski 2021; Malavert, et al. 2020; Sano and Marion-Poll 2021;
Phytohormones are important growth regulators in this process. Ethylene (ETH) can negatively regulate seed dormancy by inhibiting ABA synthesis and signal transduction, or affect seed germination and early seedling growth by interacting with sugar signals (Naing, et al. 2021; Xia, et al. 2018). Brassinosteroid (BR) can reduce the sensitivity of seeds to ABA, thereby stimulating seed germination (Ha, et al. 2018; Kim, et al. 2019). Cytokinin (CTK) promotes seed germination by indirectly antagonizing with ABA (Shen, et al. 2020). Auxin also cannot independently regulate seed dormancy and germination, but positively regulate ABA signal by enhancing the sensitivity of seeds to ABA, thereby affecting seed dormancy and germination (Liu, et al. 2013; Munguia-Rodriguez, et al. 2020).

ABA content was positively correlated with seed dormancy (Tognacca and Botto 2021). The final concentration of endogenous ABA in plants depends on the dynamic balance of ABA synthesis and catabolism (Eggels, et al. 2018; Yan, et al. 2022). ABA biosynthesis pathway mainly includes C15 direct pathway and C40 indirect pathway. In higher plants, ABA is mainly synthesized through an indirect pathway. In the indirect pathway, zeaxanthin is used as the starting point to form violaxanthin catalyzed by zeaxanthin epoxidase (ZEP), and the violaxanthin is converted into 9'-cis-Neoxanthin and 9'-cis-Violaxanthin. Then these two by-products are oxidized to xanthoxin under the action of 9-cis-epoxycarotenoid dioxygenase. Subsequently, xanthoaldehydes leave the plastid and enter the cytoplasm, which is catalyzed by short-chain dehydrogenase/reductase (SDR) to form ABA aldehyde, and finally oxidized by aldehyde oxidase (AAO) to form ABA (Taylor, et al. 2005). The biological decomposition pathways of ABA mainly include: oxidative binding inactivation and oxidative inactivation. In higher plants, ABA is mainly decomposed through oxidative inactivation. The oxidative inactivation pathway of ABA is divided into 7'-hydroxylation, 8'-hydroxylation and 9'-hydroxylation according to the methyl site, which generate 7'-hydroxy-ABA, 8'-hydroxy-ABA and 9'-hydroxy-ABA, respectively, and causing oxidative inactivation of ABA. Among the three oxidative inactivation modes, 8'-hydroxylation reaction is proved to be the most important metabolic pathway of ABA in higher plants. ABA is catalyzed by 8'-hydroxylase to form 8'-hydroxy-ABA, and its spontaneous isomerization generates phaseic acid (PA). PA eventually generates diammine phaseic acid under the action of PA reductase (PAR) (Okamoto, et al. 2006; Saito, et al. 2004; Weng, et al. 2016). Studies have shown that ABA-deficient mutants of A. thaliana, tomato and maize show early dormancy breaking and turning into germination stage, whereas ABA-overexpressing plants show delayed dormancy (Jia, et al. 2021; Martin-Rodriguez, et al. 2016; Qin and Zeevaart 2002; Wu, et al. 2014). It can be verified that the change of endogenous hormone ABA content is significantly positively correlated with the degree of seed dormancy (Wang, et al. 2015).

NCED and CYP707A encode key enzymes in ABA synthesis and decomposition pathways, respectively. Different members of family genes have different regulatory roles in plant seed dormancy. How they affect seed dormancy and their regulatory mechanism have been thoroughly studied in model plant - A. thaliana. AtNCED family members have different expression sites in seeds. AtNCED6 is only expressed in endosperm, while AtNCED9 is expressed in both embryo and endosperm (Lefebvre, et al. 2006). They can not only regulate ABA content in A. thaliana embryo, but also promote and maintain embryo dormancy. AtNCED5 is up-regulated at the late stage of seed maturation in A. thaliana, and cooperates with AtNCED6 and AtNCED9 to enhance seed dormancy (Frey, et al. 2012; Lefebvre, et al. 2006). AtCYP707A1 mainly
express in seed coat and endosperm at the middle stage of seed maturation, and the seed dormancy of cyp707a1 mutant is significantly enhanced (Okamoto, et al. 2006; Wu, et al. 2022). AtCYP707A2 is mainly expressed in the seed coat, embryo and endosperm of A. thaliana at the late stage of seed imbibition and maturation (Ikeya, et al. 2020). The ABA content of A. thaliana cyp707a2 mutant seeds is five times that of wild-type A. thaliana seeds, and the seeds show deep dormancy (Chen, et al. 2020b; Saito, et al. 2004).

The effects of NCED and CYP707A on seed dormancy were also verified in other plants. During the imbibition process of Zoysia japonica seeds, CYP707A plays a leading role in the decrease of ABA content (Dong, et al. 2021). Overexpression of Oryza sativa OsNCED3 in wild-type A. thaliana can increase ABA content and promote seed dormancy (Liao, et al. 2021). The expression of PvNCED in Phaseolus vulgaris can increase the seed dormancy (Enomoto, et al. 2017). Overexpression of LeNCED1 in Lycopersicon esculentum delays seed germination (Thompson, et al. 2000). AhNCED2 plays a positive role in maintaining seed dormancy in Arachis hypogaea (Bo, et al. 2010).

Herbaceous peony (Paeonia lactiflora Pall.) is the herbaceous perennial flower of Paeoniaceae. In the long-term systematic evolution process, the seeds of herbaceous peony form a unique double dormancy characteristic of upper and lower hypocotyls. In the breeding process, the dormancy is often not released or incompletely released, which greatly reduces the germination rate and seriously affects the actual cultivation and production, especially the breeding of new varieties and the process of hybrid breeding (Li 1999). At present, the research on the dormancy release technology of herbaceous peony seeds mainly focuses on mechanical breaking, low temperature and hormone treatment, endogenous inhibitor determination and so on (Ren 2016; Sun, et al. 2012; Zhang 2015). However, there are few studies on the molecular mechanism of genes related to seed dormancy release. The previous study of our laboratory found that the endogenous ABA content in herbaceous peony seeds was significantly negatively correlated with seed germination (Li, et al. 2020). Herbaceous peony seeds endogenous ABA content is mainly regulated by ABA synthesis key gene PINCEDs and metabolism key gene PICYP707As (Li, et al. 2020). In this study, PINCED1 and PINCED2 were significantly differentially expressed in the process of seed dormancy release. In order to further identify the role of PINCED1 and PINCED2 in seed dormancy release, we first cloned the full-length cDNA of PINCED1 and PINCED2 from herbaceous peony seeds, and determined the specific action sites of its encoded protein in plant cells. Finally, the role of PINCED1 and PINCED2 in ABA metabolism and seed germination was clarified through homologous and heterologous genetic transformation. The results of this study can enrich the related theory of herbaceous peony seed dormancy and provide a scientific basis for finding effective seed dormancy breaking methods of herbaceous peony in the future.

2. Materials And Methods

2.1 Plant material and growth condition
Herbaceous peony hybrid seeds (‘Fen Yunu’ × ‘Fen Yulou’) were harvested in the Shenyang Agricultural University germplasm resources nursery (Shenyang, Liaoning, China) in August 2019. The filled hybrid seeds were used in variable temperature wet sand storage. According to the anatomical structure observation during the herbaceous peony seeds dormancy release process (Fei, et al. 2017), seeds of the six key dormancy release stages were collected (Figure 1) and quick freezing in liquid nitrogen, stored at -80°C as the plant materials for cloning and analyzing gene expression experiments. Using cotyledons obtained from conventional embryo induction methods as explants to induce callus of herbaceous peony (Liu, et al. 2020). Callus induction and proliferation culture medium was MS + 0.5 mg/L 2,4-D + 0.5 mg/L NAA + 0.5 mg/L TDZ + 1 g/L PVP + 30 g/L agar, the culture condition was 25°C, 2000 lx, 14 h/d, with the medium replaced every 30 d. Wild type (WT) A. thaliana (Col-0) and mutant seeds were grown following previously reported methods (Fei 2018). The nced5-2 (GK_328D05), nced9-1 (SALK_033388), aba2-1 (CS156) and aba3-1 (CS157) mutant were obtained from the Arabidopsis Biological Resource Center (ABRC, http://abrc.osu.edu). A. thaliana seeds and herbaceous peony callus were used for the function analysis experiment.

2.2 Exogenous hormone treatment

Based on the optimal concentrations of ABA and fluridone (FLU) that had significant effects on the herbaceous peony seed germination screened by our research group (Supplemental Table 1) (Song 2020), 30 mg/L ABA and 150 mg/L FLU were used to soak seeds in the dark for 24 h, and then carried out on variable temperature wet sand storage treatment. Six critical stages of herbaceous peony seeds were sampled for detected the key enzyme genes expression in the ABA synthesis pathway.

2.3 RNA extraction, cDNA synthesis and qRT-PCR

Total RNAs (S1-S6) were extracted by RNAprep pure Plant Kit (TianGen, China). The cDNAs were synthesized by PrimeScript™ RT Master Mix kit (Perfect Real Time) (Takara, China). PINCEDs expression levels were analyzed by qRT-PCR. The qRT-PCR primers were designed with the Primer Premier 5 software based on the full-length coding sequence (CDS) of PINCEDs in transcriptome. PlACTIN (GenBank accession no. JN105299.1) was used as the endogenous reference gene (Li, et al. 2020). The primers used for qRT-PCR are listed in Supplemental Table 2. qRT-PCR was performed with StepOne™ 7500 Real Time PCR using the TB Green® Premix Ex Taq™ II (Tli RNaseH Plus) (Takara, China). The reactions were accomplished according the three-step method, holding stage: 95°C for 30 s; cycling stage: 40 cycles of 95°C for 5 s, 60°C for 30 s; and melt curve stage: 95°C for 15 s, 60°C for 1 min, 95°C for 15 s. Each experiment was performed with three biological and technical replicates. The results were analyzed according to the 2−ΔΔCt methods, and exhibited by GraphPad Prism 8.

2.4 Cloning and sequences analysis

We obtained the CDS of PINCEDs through transcriptome database. The amino acid sequences of PINCEDs were deduced using ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/). Multiple sequence alignments were performed using MEME software and constructed the phylogenetic tree by MEGA 7.0 software with the neighbor-joining method and bootstrap evaluation was setted 1000 replications, and iTOL v6 (https://itol.embl.de/) was used to optimize the trees. The conserved domains were predicted.
online at (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). The physicochemical properties of PINCEDs protein were analyzed using Expasy ProtParam tool (http://web.expasy.org/protparam/).

Using total RNA as template, 1st Strand cDNA was synthesized using 3’ RACE Adaptor primers. According to the CDS of PINCEDs, we designed the gene specific outer and inner primers (Supplemental Table 2) to amplify the 3’ untranslated region (UTR) sequences of PINCEDs using 3'-Full RACE Core Set with PrimeScript™ RTase kit (Takara, China). The miRNA binding sites of 3’ UTR sequences were predicted by MiRanda software.

Genomic DNA was extracted by Plant Genome DNA Rapid Extraction Kit (Aidlab, China). According to the verified known intronless sequence, three specific primers were designed, namely, SP1, SP2 and SP3 (Supplemental Table 2) to amplify the 5’ end sequence of PINCEDs containing 5’ UTR and promoter regions through Genome Walking Kit (Takara, China). cis-acting elements of promoter were analysed by PlantCARE.

2.5 Subcellular localization analysis

A. thaliana leaf protoplasts were extracted by *Arabidopsis* Protoplast Preparation and Transformation Kit (Coolaber, China) for subcellular localization. The CDS of PINCEDs were cloned into 16318-hGFP to construct the 16318-hGFP-PINCEDs recombinant vectors. The 16318-hGFP empty vector was used for a blank contrast. After 16 h of incubation in darkness, the green fluorescence protein (GFP) expression was captured by ultra-high-resolution laser scanning confocal microscope (Leica TCS SP8 STED).

2.6 Vector construction and plant transformation

The CDS of PINCEDs were recombined into pCAMBIA1300-35S-flag to construct pCAMBIA1300-PINCEDs-35S-flag for the constitutive overexpression of PINCEDs. The obtained recombinant vectors were transformed into *Agrobacterium* strain EHA105, and then infected WT *A. thaliana* and the solid mutant (*nced5-2* and *nced9-1*) inflorescences by the floral-dip method (lough and Bent 1998), and herbaceous peony callus by the method reported previously of our laboratory (Li 2020).

To silence PINCEDs expression in herbaceous peony callus, the fragment of PINCEDs (*PINCED1*: 565 bp; *PINCED2*: 387 bp) were amplified by primers with XbaI and BamHI restriction sites and recombined into the linearized pTRV2 empty vector. The positive pTRV2-PINCEDs vectors were transformed into EHA105 competent cells. The infection solution containing pTRV1 *Agrobacterium* was mixed with the infection solution containing pTRV2 and pTRV1-PINCEDs *Agrobacterium* at a volume ratio of 1:1 for callus infection with the method mentioned above.

The seeds germination rate assay was performed in WT *A. thaliana*, solid mutant, functional complementation mutants and transgenic lines (*T₃* generation stable genetic lines), which grown at the same time under the equal conditions. Gene expression tendencies were analysed by qRT-PCR (The primer sequences are listed in Supplemental Table 2).

3. Results
3.1 Expression of PINCEDs were closely related to the process of seed dormancy release

We detected the dynamic changes of ABA by ultra-high performance liquid chromatography-tandem mass spectrometry. Except for a slight increase in S3-S4 period, ABA content showed a downward trend in the process of dormancy release (Supplement Figure 1).

The expression level and trend of PINCED1 and PINCED2 were not the same during seed dormancy release (Figure 2). During S1 to S2 period, the expression level of PINCED1 increased sharply. During the dormancy release of hypocotyls from S2 to S3 period, the expression level decreased significantly, which was almost the same as that in S1 period. Subsequently, with the dormancy release of hypocotyls, the expression level increased gradually. The expression trend of PINCED2 and PINCED1 in S1 to S3 period were the same, but the expression level was significantly improved. PINCED2 showed a decreasing trend from S2 to S6 period, which was similar to the change trend of endogenous ABA content, indicating that PINCED2 had a greater impact on endogenous ABA synthesis.

3.2 Effects of exogenous ABA and FLU on key enzymes of endogenous ABA synthesis in herbaceous peony

Our previous studies showed that 30 mg/L ABA had a significant inhibitory effect on seed germination of herbaceous peony, which delayed 10 days germination compared with the control group (clean water treatment) and 150 mg/L FLU had an obvious promoting effect on seed germination of herbaceous peony, which germinated 5 days earlier than the control group (clean water treatment). Based on this phenomenon, we measured the expression of PINCED1 and PINCED2 in herbaceous peony seeds treated with exogenous hormones at effective concentrations.

Figure 3 showed that the expression trends of PINCED1 and PINCED2 had no remarkable change compared with the control group. However, during S1-S2, exogenous ABA and FLU increased and decreased the expression of key enzyme genes of ABA biosynthesis, and the expression increasing range of PINCED2 improved significantly compared with the control group. These results indicated that PINCED2 was sensitive to exogenous ABA and FLU treatment, and the resulting changes in endogenous ABA content are still dominated by PINCED2.

3.3 PINCEDs pertained to the ABA synthesizes rate-limiting enzymes

Sequence analysis showed that the gene PINCED1 and PINCED2 corresponded to a full-length cDNA (Figure 4) with an open reading frame of 1515 and 1323 bp that encoded a protein consisting of 505 and 441 amino acids, with a calculated molecular weight of 56.03 and 49.01 kDa and a theoretical pI of 6.0 and 5.7, respectively. On the basis of above mentioned CDS sequence, PINCED1 and PINCED2 obtained 142 and 300 bp 3’ UTR, 732 and 1855 bp 5’ end sequence (containing 5’ UTR and promoter regions),
respectively. The sequence of this fragment was presented in GenBank (GenBank accession number PINCED1: OL744236; PINCED2: OL744237).

The CD-search section of NCBI website was used to analyze the conserved domain types of PINCED1 and PINCED2 proteins, and it was found that PINCED1 and PINCED2 proteins all had the typical RPE65 conserved domain of NCED family (Supplement Figure 2), which was related to the degradation of carotenoids in plants. NCED proteins from different plants were shown in (Supplement Figure 3). The PINCED1 and PINCED2 protein had the highest identity to the PoNCED protein (74.70%) and the JrNCED (62.43%), respectively (Table 1). This similarity demonstrated that PINCEDs are relatively conserved with respect to diverse plants. According to the low consistency with high similarity sequences used in the multi-sequence alignment of PINCED1 and PINCED2, the genetic relationships between PINCED1 and PINCED2 were analyzed, respectively. The genetic relationship analysis results indicated that PINCED1 and PINCED2 had closest relationship with the homologues from Paeonia ostii and Vitis vinifera, respectively (Figure 5).

3.4 The PINCEDs capacitied as a structural gene located in the nucleus or cytoplasm

To determine the subcellular localization pattern of PINCEDs, GFP fluorescence signals were detected by confocal fluorescence microscope in A. thaliana protoplasts. In the positive control, GFP signal intensity was distributed in the protoplast cell membrane, nucleus and cytoplasm (Figure 6), the 16318-hGFP-PINCED1/2 fusion proteins were only observed in nucleus and cytoplasm, respectively (Figure 6).

3.5 Effect of PINCEDs on expression of ABA metabolism genes in herbaceous peony

The overexpression vector and silencing vector of PINCED1 and PINCED2 were transferred into the callus of herbaceous peony by Agrobacterium-mediated method to verify whether PINCED1 and PINCED2 had effects on ABA metabolism-related genes of herbaceous peony. The results showed that, compared with the control, the expression of PINCED1 and PINCED2 in transgenic herbaceous peony callus were significantly changed. The expression levels of PINCED1 and PINCED2 in over-expressed callus were about 14 times that in normal callus, and the expression levels in silent callus were about 0.4 times that in normal callus, indicating that transgenic callus of PINCED1 and PINCED2 were successfully obtained (Figure 7).

As shown in figure 8, compared with the control group, the expression level of PINCED2 in the over-expressed PINCED1 callus increased by about 5 times, and the expression level of PINCED1 in the over-expressed PINCED2 callus increased by about 6 times. In addition, the expression level of PICYP707A gene encoding ABA decomposition enzyme of herbaceous peony was detected, and it was found that the three members of the gene family increased in varying degrees compared with the control group. By detecting the expression levels of related genes in the silenced herbaceous peony callus, it was found
that with the silencing of PINCED1 gene, PINCED2 increased slightly compared with the control group. After silencing PINCED2, PINCED1 was almost unchanged compared with the control group. Subsequently, the expression levels of PICYP707A family members in silenced callus was detected, and it was found that the three members of the gene family also increased to varying degrees compared with the control group, but the CYP707A members with the most increased expression level in silent callus were not consistent with those in the over-expression callus.

3.6 PINCEDs inhibited seed dormancy release

In order to further identify the function of PINCEDs in seed dormancy release process, the seed germination time of wild type A. thaliana, ABA-deletion and NCED-deletion A. thaliana mutants, overexpression lines of PINCED1 and PINCED2 and functional complementation A. thaliana constructed by our laboratory were observed in this experiment.

Figure 9A showed that the seeds of mutants and wild type germinated at 48 h, but the seeds of overexpression lines did not germinate. At 68 h, the seeds of PINCED1 overexpression line began to germinate, while the seeds of PINCED2 overexpression line began to germinate at 78 h. Figure 9B and figure 9C revealed that the seed germination of PINCED1 complementation line was earlier than PINCED2 complementation line, whether at Atnced9-1 or Atnced5-2 was used in the functional complementation tests.

4. Discussion

Herbaceous peony seeds have double dormancy characteristics, and the whole process of dormancy release is complex (Li 1999). The process is affected by external environment, seed coat, endogenous inhibitors and endogenous hormones, among which phytohormones are important growth regulators (Yang, et al. 2012). ABA is a key factor affecting seed dormancy and germination. Previous studies have been confirmed in many plants (Eggels, et al. 2018; Pan, et al. 2018; Shen, et al. 2018). After exogenous application of ABA inhibitors, the germination rate of A. thaliana seeds was significantly increased, and the ABA-deficient mutant seeds had no dormancy characteristics (Léon-Kloosterziel, et al. 1996; Lopez-Molina, et al. 2001). Endogenous ABA is a key factor affecting the herbaceous peony seeds dormancy release, and its content generally decreases with the dormancy release of herbaceous peony seeds (Li, et al. 2020). Endogenous ABA content in herbaceous peony is mainly regulated by the key ABA synthesis gene PINCEDs and the key ABA catabolism gene PICYP707As. In this study, from the perspective of ABA synthesis, ten family members of PINCED were found from transcriptome data. Finally, c53147_g1 (PINCED1) and c69372_g1 (PINCED2) with significant differential expression were selected as research objects. This study found that the expression patterns of PINCED1 and PINCED2 were different in the process of dormancy release, and there was no functional redundancy. Moreover, PINCED2 had more obvious inhibitory effect on dormancy. This study not only understand the specific functions of ABA metabolism genes and dormancy germination of herbaceous peony seeds, but also provide scientific
basis for obtaining effective dormancy breaking methods of herbaceous peony seeds by molecular means in the future.

4.1 Relationship between endogenous ABA content and ABA metabolic genes

It was found that the change trend of PINCED2 expression level was consistent with the dynamic change trend of endogenous ABA content in the process of dormancy release of herbaceous peony seeds (Figure 2 and Supplemental Figure 1). In the callus with overexpression of PINCED2, the expression level of PICYP707As increased accordingly, and the increase of PICYP707A3 expression level was the highest. In the callus with silenced PINCED2, the expression level of PICYP707As also increased, and the increase of PICYP707A2 expression level was the most. Through previous studies on the relationship between PICYP707As and endogenous ABA content (Supplemental Figure 4), it was found that the effect of PICYP707A family members on endogenous ABA content was not the same (Li 2020). PICYP707A2 and PICYP707A3 had the greatest impact on endogenous ABA content. When the expression level of PICYP707A2 increased, the endogenous ABA content showed a downward trend, while when the expression level of PICYP707A3 increased, the endogenous ABA content showed an upward trend. Based on the above results, we speculated that PINCED2 positively regulated endogenous ABA content.

4.2 There is no functional redundancy between PINCED1 and PINCED2

PINCED1 and PINCED2 have different effects on ABA content and dormancy release in herbaceous peony. When the radical break seed coat, the content of PINCED1 was consumed a lot. With the continuous release of seed dormancy, the expression level of PINCED1 showed a rising trend. However, since the content was always lower than that in the S2 period, the content of PINCED1 was still declining as a whole. After germination rate test, we found that PINCED1 indeed promoted seed dormancy (Figure 9). Different from PINCED1, the expression of PINCED2 had been positively correlated with endogenous ABA content, and was more sensitive to ABA. Compared with PINCED1, PINCED2 may have a stronger function of inhibiting seed germination. Therefore, we infer that although both of them have a promoting effect on seed dormancy, there is no functional redundancy between PINCED1 and PINCED2 due to the differences in the intensity and mechanism involved in the function of genes.

4.3 Functional verification by autogenic and allogenic transformation

At present, some achievements have been made in the establishment of stable genetic transformation system of herbaceous peony. But due to the difficulty of inducing adventitious buds through indirect pathway and the proliferation is slow. The number of adventitious buds induced by the direct pathway is small and the adventitious buds regenerate difficultly (Shen, et al. 2015). These problems hinder the establishment of efficient and stable regeneration system. The callus of herbaceous peony is relatively
easy to obtain, and it is also a suitable genetic transformation receptor material. Therefore, we analyze the function of PINCED in endogenous ABA metabolism of herbaceous peony by using transgenic callus. A. thaliana is a typical model plant for gene research, which is widely used in gene transformation experiments. Since there is no genetic transformation system for herbaceous peony, stable genetic transgenic offspring cannot be obtained. Meanwhile, it takes four to five years for herbaceous peony from sowing to flowering, and the observation period is long. Therefore, in this study, the genetic transformation system of A. thaliana was used to explore the role of PINCED in dormancy release.

4.4 Action sites of PINCEDs in cells

At present, most NCED protein are located in chloroplasts (Jia, et al. 2018; Lee, et al. 2018), but the result of this paper is that PINCED1 is located in the nucleus, while PINCED2 is located in the cytoplasm. Since DAPI was not used for co-localization test of nucleus or chloroplast in this experiment, we used Plant-PLoc online software to predict the localization of PINCED2 protein (Supplemental Figure 5B). We found that PINCED2 was expressed in chloroplast, which not only verified the fact that PINCED2 was localized in cytoplasm, but also further predicted that PINCED2 was localized in chloroplast that is contained in cytoplasm. After analyzing the nuclear localization signal of PINCED1 by PredictNLS software (Supplemental Figure 5A), it was found that PINCED1 protein was localized in the nucleus, which was consistent with the results of this experiment.

4.5 PINCEDs may be regulated by factors at different levels

Through online software prediction, it was found that the 3'UTR regions of PINCED1 and PINCED2 were regulated by different miRNAs (Supplemental Table 3). These miRNAs have their own functions, such as mdm-miR319c regulating seed development, osa-miR169f.2 affecting seed root growth, osa-miR5149 regulating heat shock modules under high temperature stress, osa-miR2863a responding to Rhizoctonia solani, zma-miR160c-3p mitigating drought stress and ptc-miR7817a regulating cold response genes (Chopperla, et al. 2020; Gelaw and Sanan-Mishra 2021; Kushawaha, et al. 2021; Ma, et al. 2013; Parreira, et al. 2021; Zhou, et al. 2019). Therefore, we predicted that PINCED1 and PINCED2 may play a certain role in seed development, biological and abiotic stresses, which is consistent with the role of ABA in plant growth.

In addition, the promoter core elements and cis-acting elements of PINCED1 and PINCED2 genes were analyzed (Supplemental Table 4). It was found that in addition to the promoter core elements TATA-box and CAAT-box, there were also response elements (TCA-element, ABRE, AuxRR-core, TGA-box, TGACG-motif and CGTCA-motif) involved in jasmonic acid, abscisic acid, auxin and jasmonic acid. It is predicted that PINCED1 and PINCED2 may be regulated by transcription factors in different phytohormones pathways. Continued excavation of this regulatory pathway, different pathways between ABA and other phytohormones may be elucidated, and provide new ideas for exploring seed dormancy.

Declarations

Funding
This research was funded by the National Natural Science Foundation of China [grant number 32071814]; China Agriculture Research System of MOF and MARA [grant number CARS-23].

Author contribution statement

Author Contributions Xiaomei Sun and Riwen Fei conceived and designed research. Riwen Fei, Jiayuan Ge and Tianyi Sun conducted the experiments. Riwen Fei, Siyang Duan analyzed the data. Riwen Fei wrote the manuscript. Xiaomei Sun revised the manuscript. All authors read and approved the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We express our gratitude to the reviewers and academic editor for their helpful suggestions and comments for improving our manuscript.

References

Bewley JD (1997) Seed germination and dormancy. The Plant Cell 9:1055-1066

Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy. Seed Science Research 23:289-289

Bo H, Xiao rong W, Xiao hui L, Dong liang G, Ling L (2010) Abscisic acid (ABA)-mediated inhibition of seed germination involves a positive feedback regulation of ABA biosynthesis in Arachis hypogaea L. African Journal of Biotechnology 9:1578-1586

Chen DL, Luo XP, Yuan Z, Bai MJ, Hu XW (2020a) Seed dormancy release of Halenia elliptica in response to stratification temperature, duration and soil moisture content. BMC Plant Biology 20:352

Chen H, Tong J, Fu W, Liang Z, Ruan J, Yu Y, Song X, Yuan L, Xiao L, Liu J, Cui Y, Huang S, Li C (2020b) The H3K27me3 demethylase RELATIVE OF EARLY FLOWERING6 suppresses seed dormancy by inducing abscisic acid catabolism. Plant Physiology 184:1969-1978

Chen Y, Su K, Li C, White JF (2021) Interactive effects of Epichloe endophyte, dormancy-breaking treatments and geographic origin on seed germination of Achnatherum inebrians. Microorganisms 9:2183
Chopperla R, Mangrauthia SK, Bhaskar Rao T, Balakrishnan M, Balachandran SM, Prakasam V, Channappa G (2020) A comprehensive analysis of MicroRNAs expressed in susceptible and resistant rice cultivars during *Rhizoctonia solani* AG1-IA infection causing sheath blight disease. International Journal of Molecular Sciences 21:7974

Dong D, Wang M, Li Y, Liu Z, Li S, Chao Y, Han L (2021) Melatonin influences the early growth stage in *Zoysia japonica* Steud. by regulating plant oxidation and genes of hormones. Scientific Reports 11:12381

Eggels S, Avramova V, Schon CC, Poppenberger B, Rozhon W (2018) Assay for abscisic acid 8'-hydroxylase activity of cloned plant cytochrome P450 oxidases in *Saccharomyces cerevisiae*. Analytical Biochemistry 553:24-27

Enomoto H, Sensu T, Sato K, Sato F, Paxton T, Yumoto E, Miyamoto K, Asahina M, Yokota T, Yamane H (2017) Visualisation of abscisic acid and 12-oxo-phytodienoic acid in immature *Phaseolus vulgaris* L. seeds using desorption electrospray ionisation-imaging mass spectrometry. Scientific Reports 7:42977

Fei RW (2018) Cloning of the PISaur Genes from *Paeonia lactiflora* Pall. and Transformation of *Arabidopsis thaliana*. Shenyang Agricultural University

Fei RW, Sun XM, Yang PP, Chen ZJ, Ma YL (2017) Anatomical observation of *Paeonia lactiflora* seeds during stratification process. Journal of Shenyang Agricultural University 48:354-359

Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. The Annual Review of Plant Biology 59:387–415

Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, Berger A, Sechet J, To A, North HM, Marion-Poll A (2012) Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. The plant Journal 70:501-512

Gelaw TA, Sanan-Mishra N (2021) Non-coding RNAs in response to drought stress. International Journal of Molecular Sciences 22:12519

Ha YM, Shang Y, Yang D, Nam KH (2018) Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochemical and Biophysical Research Communications 504:143-148

Ikeya S, Aoyanagi T, Ishizuka I, Takeuchi A, Kozaki A (2020) Nitrate promotes germination under inhibition by NaCl or high concentration of glucose. Plants 9:707

Jia KP, Mi J, Ali S, Ohyanagi H, Moreno JC, Ablazov A, Balakrishna A, Berqdar L, Fiore A, Diretto G, Martinez C, de Lera AR, Gojobori T, Al-Babili S (2021) An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. Molecular Plant 14:1-6
Jia Y, Liu J, Bai Z, Ding K, Li H, Liang Z (2018) Cloning and functional characterization of the SmNCED3 in Salvia miltiorrhiza. Acta Physiologiae Plantarum 40:133

Kim SY, Warpeha KM, Huber SC (2019) The brassinosteroid receptor kinase, BRI1, plays a role in seed germination and the release of dormancy by cold stratification. Journal of Plant Physiology 241:153031

Klupczynska EA, Pawlowski TA (2021) Regulation of seed dormancy and germination mechanisms in a changing environment. International Journal of Molecular Sciences 22:1357

Kushman WA, Khan A, Sopory SK, Sanan-Mishra N (2021) Priming by high temperature stress induces MicroRNA regulated heat shock modules indicating their involvement in thermopriming response in rice. Life 11:291

Léon-Kloosterziel K, Gil M, Ruijs G, Jacobsen S, Olszewski N, Schwartz S, Zeevaart J, Koornneef M (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. The Plant Journal 10:655-661

Lafta A, Mou B (2013) Evaluation of blettuce genotypes for seed thermotolerance. Hortscience 48:708-714

Lee YI, Chen MC, Lin L, Chung MC, Leu WM (2018) Increased expression of 9-Cis-Epoxycarotenoid dioxygenase, PtNCED1, associated with inhibited seed germination in a terrestrial orchid, Phaius tankervilliae. Frontiers in Plant Science 9:1043

Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. The Plant Journal 45:309-319

Li JY (1999) Chinese tree peony and herbaceous peony. China Forestry Publishing House, Beijing

Li TH, Min XH (2020) Dormancy characteristics and germination requirements of Phoebe bournei seed. Scientia Horticulturae 260:108903

Li XT (2020) Functional analysis of PICYP707As related to dormancy release in Paeonia lactiflora seed based on transcriptome analysis. Shenyang Agricultural University

Li XT, Fei RW, Chen ZJ, Fan CZ, Sun XM (2020) Plant hormonal changes and differential expression profiling reveal seed dormancy removal process in double dormant plant-herbaceous peony. PloS one 15:e0231117

Liao J, Luo L, Zuo J, Chen Y (2021) Levels and expression patterns of endogenous hormones during seed germination of Dongxiang wild rice. Polish Journal of Environmental Studies 30:1707-1714
Liu X, Huang X, Kong XX, Zhang J, Wang JZ, Yang ML, Wang CL (2020) Sucrose synthase is involved in the carbohydrate metabolism-based regulation of seed dormancy release in *Pyrus calleryana* Decne. The Journal of Horticultural Science and Biotechnology 95:590-599

Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, Luan S, Li J, He ZH (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in *Arabidopsis*. Proceedings of the National Academy of Sciences of the United States of America 110:15485-15490

Liu XT, Sun XM, Li Y, Li H, Li XT, Song LL (2020) Study on initiation culture of *Paeonia lactiflora* embryo and induction of multiple shoots. Journal of Shenyang Agricultural University 51:312-320

Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in *Arabidopsis*. Proceedings of the National Academy of Sciences of the United States of America 98:4782-4787

Lough SJ, Bent AF (1998) Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. The plant journal 16:735-743

Ma X, Shao C, Wang H, Jin Y, Meng Y (2013) Construction of small RNA-mediated gene regulatory networks in the roots of rice (*Oryza sativa*). BMC Genomics 14:510

Malavert C, Batlla D, Benech-Arnold RL (2020) Light sensitivity changes during dormancy induction in *Polygonum aviculare* L. seeds: development of a predictive model of annual changes in seed-bank light sensitivity in relation to soil temperature. Weed Research 61:115-125

Martin-Rodriguez JA, Huertas R, Ho-Plagaro T, Ocampo JA, Tureckova V, Tarkowska D, Ludwig-Muller J, Garcia-Garrido JM (2016) Gibberellin-abscisic acid balances during arbuscular mycorrhiza formation in tomato. Frontiers in Plant Science 7:1273

Munguia-Rodriguez AG, Lopez-Bucio JS, Ruiz-Herrera LF, Ortiz-Castro R, Guevara-Garcia AA, Marsch-Martinez N, Carreon-Abud Y, Lopez-Bucio J, Martinez-Trujillo M (2020) *YUCCA4* overexpression modulates auxin biosynthesis and transport and influences plant growth and development via crosstalk with abscisic acid in *Arabidopsis thaliana*. Genetics and Molecular Biology 43:e20190221

Mutlu C, Ciftçi V, Yeken MZ, Mamay M (2020) The influence of different intensities of chalky spot damage on seed germination, grain yield and economic returns of red lentil. Phytoparasitica 48:191-202

Naing AH, Xu J, Kim CK (2021) Editing of *1-aminocyclopropane-1-carboxylate oxidase* genes negatively affects petunia seed germination. Plant Cell Reports

Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) *CYP707A1* and *CYP707A2*, which encode abscisic acid 8'-hydroxylases, are indispensable for proper control of seed dormancy and germination in *Arabidopsis*. Plant Physiology 141:97-107
Pan J, Wang H, Hu Y, Yu D (2018) *Arabidopsis* VQ18 and VQ26 proteins interact with ABI5 transcription factor to negatively modulate ABA response during seed germination. The Plant Journal 95:529-544

Parreira JR, Cappuccio M, Balestrazzi A, Fevereiro P, Araujo SS (2021) MicroRNAs expression dynamics reveal post-transcriptional mechanisms regulating seed development in *Phaseolus vulgaris* L. Horticulture Research 8:18

Qin X, Zeevaart JA (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in *Nicotiana plumbaginifolia* increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiology 128:544-551

Ren XX (2016) Mechanism of low temperature regulating *Paeonia ostii* 'Fengdan' seed hypocotyl germination. Chinese Academy of Agricultural Sciences

Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) *Arabidopsis CYP707As* encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiology 134:1439-1449

Sano N, Marion-Poll A (2021) ABA metabolism and homeostasis in seed dormancy and germination. International Journal of Molecular Sciences 22:5069

Shen M, Tang Z, da Silva J, Yu X (2015) Induction and proliferation of axillary shoots from in vitro culture of *Paeonia lactiflora* Pall. mature zygotic embryos. New Zealand Journal of Crop and Horticultural Science 43:42-52

Shen Q, Zhang S, Liu S, Chen J, Ma H, Cui Z, Zhang X, Ge C, Liu R, Li Y, Zhao X, Yang G, Song M, Pang C (2020) Comparative transcriptome analysis provides insights into the seed germination in cotton in response to chilling stress. International Journal of Molecular Sciences 21:2067

Shen W, Yao X, Ye T, Ma S, Liu X, Yin X, Wu Y (2018) *Arabidopsis* aspartic protease ASPG1 affects seed dormancy, seed longevity and seed germination. Plant Cell Physiology 59:1415-1431

Song LL (2020) The study of tissue culture of *Paeonia lactiflora* seed and effect of growth regulators treatment on seed germination. Shenyang Agricultural University

Sun XM, Zhang MM, Gao HD, Yang HG (2012) Study on seed coat characteristics of *Paeonia lactiflora*. Northern Horticulture 55-57

Taylor IB, Sonneveld T, Bugg TDH, Thompson AJ (2005) Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. Journal of Plant Growth Regulation 24:253-273

Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A, Taylor IB (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production
of abscisic acid. The Plant Journal 23:363-374

Tognacca RS, Botto JF (2021) Post-transcriptional regulation of seed dormancy and germination: current understanding and future directions. Plant Communications 2:100169

Vigliocco A, Del Bel Z, Perez-Chaca MV, Molina A, Zirulnik F, Andrade AM, Alemano S (2020) Spatiotemporal variations in salicylic acid and hydrogen peroxide in sunflower seeds during transition from dormancy to germination. Physiologia Plantarum 169:27-39

Wala M, Kolodziej J, Patykowski J (2021) Nitrogen signals and their ecological significance for seed germination of ten psammophilous plant species from European dry acidic grasslands. PloS one 16:e0244737

Wang D, Gao Z, Du P, Xiao W, Tan Q, Chen X, Li L, Gao D (2015) Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of Peach (Prunus persica). Frontiers in Plant Science 6:1248

Weng JK, Ye M, Li B, Noel JP (2016) Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166:881-893

Willis CG, Baskin CC, Baskin JM, Auld JR, Venable DL, Cavender-Bares J, Donohue K, Rubio de Casas R, Group NEGW (2014) The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytologist 203:300-309

Wu X, Gong F, Yang L, Hu X, Tai F, Wang W (2014) Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize. Frontiers in Plant Science 5:801

Wu X, Wu C, Bian Z, Ye Z, Meng L, Xia L, Bao E, Cao K (2022) Abscisic acid and reactive oxygen species were involved in slightly acidic electrolyzed water-promoted seed germination in watermelon. Scientia Horticulturae 291:110581

Xia Q, Saux M, Ponnaiah M, Gilard F, Perreau F, Huguet S, Balzergue S, Langlade N, Bailly C, Meimoun P, Corbineau F, El-Maarouf-Bouteau H (2018) One way to achieve germination: common molecular mechanism induced by ethylene and after-ripening in sunflower seeds. International Journal of Molecular Sciences 19:2464

Yan M, Yao Y, Mou K, Dan Y, Li W, Wang C, Liao W (2022) The involvement of abscisic acid in hydrogen gas-enhanced drought resistance in tomato seedlings. Scientia Horticulturae 292:110631

Yang RC, Zhang HJ, Wang Q, Guo YD (2012) Research progress in the regulation mechanism of plant hormones on seed dormancy and germination. Acta agrestia sinica 20:1-9
Zhang SQ (2015) Bioassay and analytical appraisal of the seed germination inhibitors of *Paeonia lactiflora*. Anhui Forestry Science and Technology 41:17-20

Zhou B, Kang Y, Leng J, Xu Q (2019) Genome-wide analysis of the miRNA-mRNAs network involved in cold tolerance in *Populus simonii* × *P. nigra*. Genes 10:430

Tables

Due to technical limitations, table 1 is only available as a download in the Supplemental Files section.

Figures

![Figure 1](image)

Figure 1

Dormancy release process of herbaceous peony seeds. S1: dry seed; S2: imbibition seed; S3: the radical break seed coat; S4: the length of seed root is 3-4 cm; S5: the basal part of seed root turns red; S6: the seed germ breakout.
Figure 2

Relative expression level of PINCEDs during seed dormancy release process.
Figure 3

Relative expression level of PINCEDs under ABA and FLU treatments.
Figure 4

Full-length cDNA sequence of PINCEDs.
Figure 5

Neighbor-joining phylogenetic tree analysis. A neighbor-joining tree was constructed on the basis of the analysis of about 30 NCED family protein sequences by using MEGA 7.0 software. The bootstrap values of the branches were obtained by testing the tree 1000 times. iTOL was used to mark the tree, and the different colors represent different groups. PINCED1 and PINCED2 are indicated with red dots.
Figure 6

Subcellular localization of PINCEDs in *A. thaliana* protoplast. Scale bars: 10 μm.
Figure 7

PINCEDs expression level in different transgenic herbaceous peony callus. WT, normal callus; 35S::flag, empty overexpressed vector; pTRV2, empty silent vector; 35S::PINCED1-flag, *PINCED1* was overexpressed; pTRV2-PINCED1, *PINCED1* was silented; 35S::PINCED2-flag, *PINCED2* was overexpressed; pTRV2-PINCED2, *PINCED2* was silented.
Figure 8

Relative expression level of PINCEDs and PICYP707As expression under different transgenic treatment. (A) PINCED1 was overexpressed. (B) PINCED2 was overexpressed. (C) PINCED1 was silenced. (D) PINCED2 was silenced.

Figure 9
Detection of seed germination rate of different transgenic *A. thaliana*. (A) WT, Col-0; mutant (*aba2-1, aba3-1, nced9-1, nced5-2*); 35S::PINCED1, *PINCED1* was overexpressed under Col-0 background; 35S::PINCED2, *PINCED2* was overexpressed under Col-0 background. (B) 35S::PINCED1/*nced9-1*, *PINCED1* was overexpressed under *nced9-1* background; 35S::PINCED2/*nced9-1*, *PINCED2* was overexpressed under *nced9-1* background; (C) 35S::PINCED1/*nced5-2*, *PINCED1* was overexpressed under *nced5-2* background; 35S::PINCED2/*nced5-2*, *PINCED2* was overexpressed under *nced5-2* background.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementalFig.15.doc
- SupplementalTable1.xls
- SupplementalTable2.xls
- SupplementalTable3.xls
- SupplementalTable4.xls
- Table1.xls