Relevance of quantum fluctuations in the Anderson–Kondo model

R Peters and T Pruschke
Institute for Theoretical Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
E-mail: pruschke@theorie.physik.uni-goettingen.de

New Journal of Physics 8 (2006) 127
Received 29 June 2006
Published 3 August 2006
Online at http://www.njp.org/
doi:10.1088/1367-2630/8/8/127

Abstract. We study a localized spin coupled to an Anderson impurity to model the situation found in higher transition metal or rare earth compounds like e.g. LaMnO$_3$ or Gd monopnictides. We find that, even for large quantum numbers of the localized spin, quantum fluctuations play an essential role for the case of ferromagnetic coupling between the spin and the impurity levels. For antiferromagnetic coupling, a description in terms of a classical spin is appropriate.

Contents

1. Introduction 2
2. The model 3
3. Results 4
 3.1. Classical limit 4
 3.2. Quantum spins: $S = 1/2$ 5
 3.3. Quantum spins: general S 6
4. Summary and conclusion 8
Acknowledgments 9
References 9
1. Introduction

Transition metal oxides show a fascinating complex behaviour in their electronic properties [1]. This complexity stems from the interplay between the formation of narrow 3d-bands leading to a delocalization of these states on the one hand and the local part of the Coulomb interaction between the 3d-electrons tending to localize them [1]. While compounds of the early 3d elements like e.g. LaTiO$_3$, which typically accommodate one 3d electron, can at least qualitatively be described in terms of a one-band Hubbard model [2]–[4], materials involving higher transition metal elements like LaMnO$_3$ or TlSr$_2$CoO$_5$ require the use of a model including the full 3d shell. In particular, to understand the magnetic properties and the frequently occurring metal-insulator transitions [1] one has to take into account the interplay between density- (‘Hubbard U’) and exchange-type (‘Hund’s J’) contributions to the local Coulomb interaction. Note that similar features can also be found in compounds involving higher rare earth elements, for example the rare earth pnictides.

A particularly interesting example is La$_{1-x}$Ca$_x$MnO$_3$ [5, 6]. Besides is complicated phase diagram comprising a large variety of paramagnetic and magnetically ordered metallic and insulating phases one finds a colossal magneto-resistance (CMR) [7]. In this cubic perovskite the five-fold degenerate 3d level is split by crystal field into three-fold degenerate t_{2g}, which have the lower energy, and two-fold degenerate e_g states. These states have to be filled with $4 - x$ electrons, nominally yielding a metal even for $x = 0$. However, taking into account the local Coulomb interaction, three of these electrons will occupy the t_{2g}-states forming an $S = 3/2$ high-spin state due to Hund’s coupling, which interacts ferromagnetically with the electron occupying the e_g states. Ignoring the Coulomb repulsion among the electrons in the e_g subsystem, one encounters the well-known double-exchange model [8], which has been extensively studied as suitable model for manganites (see e.g. references in [9]). In most of these investigations, however, the t_{2g}-spin was approximated by a classical moment to allow the use of standard techniques like e.g. quantum Monte Carlo (QMC) [10]–[16]. A particular drawback of such an approximation is that the results are independent of the sign of the exchange coupling to the localized spin [9]. However, without such a replacement, one is typically restricted to low-order diagrammatic techniques ([17] and references therein).

A more realistic treatment should of course also include the local Coulomb interaction within the e_g subsystem. Such a model has been proposed recently [9] and studied in the framework of the dynamical mean-field theory (DMFT) [18]. Again, the t_{2g}-spin had to be replaced by a classical moment to allow the solution of the DMFT equations with QMC.

In this paper, we want to study the validity of approximating the quantum spin by a classical object. To this end, we investigate the simplest possible model, namely a quantum impurity model consisting of a local orbital with interacting charge degrees of freedom coupled to a non-interacting host and a spin.

While such a model surely cannot access every aspect of the physics of the corresponding lattice model, it is the basic ingredient in a DMFT calculation and thus understanding its fundamental properties is of importance to properly interpret results obtained in a DMFT calculation. Moreover, although such a calculation will focus on local dynamics only, one can obtain at least qualitative results about possible ordered phases, too [18]. To this end it is viable to obtain a feeling of how the additional spin will modify local charge and spin properties.
We employ Wilson’s numerical renormalization group (NRG) \([19, 20]\) to solve this model. This technique allows us to treat the model in the whole parameter regime and in particular identify small energy scales if present.

The paper is organized as follows. In the next section we present the model and briefly review its properties for a classical spin in the limit of vanishing Coulomb interaction. The presentation of our results follows in section 3. The paper closes with a summary and discussion.

2. The model

The simplest model that allows us to obtain an idea how the coupling to an additional local spin-degree of freedom influences the properties of correlated electrons is

\[
H = \sum_{k\sigma} \epsilon_k c_{k\sigma}^\dagger c_{k\sigma} + \sum_{\sigma} \left(\epsilon_d + \frac{U}{2} d_{-\sigma}^\dagger d_{-\sigma} \right) d_{\sigma}^\dagger d_{\sigma} + \frac{V}{\sqrt{N}} \sum_{k\sigma} (c_{k\sigma}^\dagger d_{k\sigma} + \text{h.c.}) - J_K \sum_{\alpha, \beta} \vec{S} \cdot \vec{s}_d. \tag{1}
\]

The first three terms represent a conventional single-impurity Anderson model (SIAM) \([21, 22]\), while the last contribution introduces an additional spin degree of freedom which couples to the local states via an exchange interaction. Similar models have been studied with various techniques in connection with double quantum dots \([23]–[28]\). However, in these cases the additional impurity was represented by a correlated charge degree of freedom coupled via a hopping. In the limit of half-filling and weak interimpurity hopping, this system maps to our model with \(S = 1/2\) and vanishing antiferromagnetic \(J_K\). This limit shows interesting physics on its own \([27, 29]\), for example two-stage Kondo screening or quantum phase transitions. However, these models neither allow for ferromagnetic \(J_K\), large and possibly anisotropic \(J_K\) nor spins \(S > 1/2\), which are the particular cases we are interested in here.

Of course our model (1) does not fully represent the situation found in e.g. LaMnO\(_3\) since it lacks the orbital degrees of freedom. On the other hand, NRG calculations for multi-orbital models are extremely expensive \([30]\) and we believe that as far as the qualitative aspects are concerned this simplification will not substantially modify the validity of our observations for the more complicated model.

For a classical spin \(\vec{S}\), the model (1) can be solved exactly for \(U = 0\) \([31, 32]\). The result for the single-particle Green function of the \(d\) states is

\[
G_d(z) = \frac{1}{2} \left(\frac{1}{z - \epsilon_d + i\Delta_0 + J_K} + \frac{1}{z - \epsilon_d + i\Delta_0 - J_K} \right), \tag{2}
\]

where \(\Delta_0 = \pi N_F V^2\) and we assumed \(|\vec{S}|^2 = 1\) and a flat conduction density of states (DOS) of infinite width and value \(N_F\). The resultant DOS \(\rho_d(\omega) = -\frac{1}{\pi} \text{Im} G_d(\omega + i\delta)\) shows two peaks of width \(\Delta_0\) centred at \(\epsilon_d \pm J_K\). Note that one can view this result as spin-averaged DOS of the SIAM at \(U = 0\) in an external magnetic field of strength \(J_K\) and that the result is independent of the sign of \(J_K\).
3. Results

3.1. Classical limit

Neither for a quantum spin nor for a classical spin and $U > 0$ an exact solution exists. However, it is tempting to extend the above interpretation for a classical spin in the following way: solve a standard SIAM in an external magnetic field of strength J_K and average over the resulting spectra for spin up and down. Note that this procedure again leads to results that do not depend on the sign of J_K.

Since the additional spin enters only on the local level, we use the standard NRG algorithm [20, 33, 34] to solve the impurity problem and calculate physical quantities. To obtain reliable spectra in a magnetic field, we furthermore employ the technique proposed by Hofstetter [35]. Since a discretization of the energy axis introduced in the NRG leads to discrete spectra, a broadening must be introduced to obtain smooth results for dynamical quantities. Again, we follow the standard procedure here [33].

As example we present in figure 1 calculations for the SIAM in a magnetic field, averaged over the spin direction, together with results for the SIAM with additional Ising spin and large quantum spin $S = 10$ (‘classical spin’). The parameters for the SIAM are $U/\pi \Delta_0 = 5.3$ and $\epsilon_d = -U/2$. The NRG discretization parameter was $\Lambda = 2.5$ and we kept 1000...4000 states per iteration depending on the size of the local spin. The NRG-spectra finally were broadened with a Gaussian of width $b = 0.6$ [33, 36].

The black curve in figure 1 was obtained from a calculation with a magnetic field $B = 8 \times 10^{-3} \Delta_0$, the red curve with a local Ising spin $S = 1/2$ and coupling $J_K = 4B$, the blue and magenta curves with local spin $S = 10$ and couplings $J_K = \pm 2B/10$ to simulate the classical limit $S \rightarrow \infty$. The values of J_K were scaled such that $B = J_K s_d S$. The inset shows...
Figure 2. Entropy and effective squared impurity moment for local spin $S = 1/2$ and different values of J_K as function of $T/T_K(0)$, where $T_K(0)$ is the Kondo temperature of the model with $S = 0$. Full (dashed) lines denote antiferromagnetic (ferromagnetic) coupling. The other impurity parameters are $U/\Delta_0 = 6.4\pi$ and $\epsilon_d = -U/2$.

In the region around $\omega = 0$ the calculation with Ising spin and magnetic field coincide perfectly, yielding a splitting of the original Kondo resonance at $B = J_K = 0$, as expected. However, the ‘classical limit’ with $S = 10$ differs considerably. Depending on the sign of J_K, either a Kondo resonance (ferromagnetic coupling) or a gap (antiferromagnetic case) emerges at $\omega = 0$ in addition to the splitting of the original Kondo peak. Apparently, even for such a large value of S the effect of quantum fluctuations is still prominent. However, the corresponding energy scales are considerably reduced compared to $J_K = 0$ and we expect the results to converge to the anticipated one as $S \to \infty$.

3.2. Quantum spins: $S = 1/2$

Let us now turn to the discussion of the effects of a local quantum spin on the low-energy properties. In figure 2 the impurity contribution to the entropy (upper panel) and the effective impurity moment $\mu_{\text{eff}}^2 := T \cdot \chi_{\text{imp}}$ (lower panel) for different values of J_K for a local spin $S = 1/2$ are shown as function of $T/T_K(0)$, where $T_K(0)$ denotes the Kondo scale for the system with $S = 0$. The SIAM parameters were $U = 6.4\pi\Delta_0$ and $\epsilon_d = -U/2$. The NRG discretization, number
of states kept, etc were chosen as for figure 1. The full lines in figure 2 represent results for antiferromagnetic coupling J_K, the dashed lines those for ferromagnetic coupling.

Decreasing J_K from $J_K = 0$ to some antiferromagnetic $|J_K| < T_K^{(0)}$ results in the scenario depicted by the full red curves in figure 2. Around the temperature $T_K^{(0)}$ screening occurs as in the normal Kondo effect, resulting in a situation with effective moment $\mu_{\text{eff}}^{(0)} = 1/4$ and entropy $\ln 2$ that resembles a free spin $S = 1/2$ again. For a much lower $T_K^{(1)}$, a second screening takes place to the ground state with $S = 0$. This second screening can be interpreted in the following way. At $T < T_K^{(0)}$ the Kondo screening of the local level of the SIAM by the conduction states leads to the formation of a local Fermi liquid [22]. This local Fermi liquid is characterized by an effective mass $m^* \propto \rho_{QP}(0) \propto 1/T_K^{(0)}$ [22], where $\rho_{QP}(0)$ denotes the quasi-particle DOS at the Fermi level of the local Fermi liquid. Thus, for temperatures $T \ll T_K^{(0)}$ we are left with an effective Kondo model, with antiferromagnetic exchange coupling J_K. The Kondo scale of this effective low-temperature model is then given by $T_K^{(1)} \propto \exp(-1/(2\rho_{QP}(0)|J_K|)) \propto \exp(-\alpha T_K^{(0)}/|J_K|)$. This effect has been observed before by several authors [27]–[29] and baptized two-stage Kondo screening. When J_K becomes of the order of $T_K^{(0)}$, the Kondo screening is replaced by the formation of a local singlet with an energy scale $\approx |J_K|$.

For ferromagnetic coupling $J_K > 0$, on the other hand, the proper fixed point is—as in the conventional Kondo model—the local-moment one with residual entropy $\ln 2$ and effective moment $1/2$. Again, from the dashed curves in figure 2 one can distinguish two regimes. For $J_K < T_K^{(0)}$ we observe screening on the scale of $T_K^{(0)}$, the additional local spin effectively behaving like a free spin all the way down to $T = 0$. However, for $J_K \gg T_K^{(0)}$ the impurity first forms a local spin triplet (entropy $\ln 3$ and moment 2/3). This moment is then partially screened at a reduced Kondo scale $T_K \ll T_K^{(0)}$; energy scales and physical properties will behave as in the conventional underscreened Kondo model [37, 38].

The behaviour discussed previously is reflected in the local DOS depicted in figure 3. As already noted in the classical limit, the coupling to the additional spin leads to a corresponding shift of the upper Hubbard band, which however is for larger $|J_K|$ more pronounced for antiferromagnetic exchange. In this case one also clearly sees the two-stage screening at $|J_K| < T_K^{(1)}$ and the formation of the local singlet at $|J_K| > T_K^{(0)}$ (inset to upper panel of figure 3), suppressing the Kondo screening. Here, one always finds a gap in the DOS at $\omega = 0$, which size is set by T_K. For ferromagnetic coupling, on the other hand, the inset in the lower panel of figure 3 proves that the screening resonance remains intact, but shows a width decreasing with increasing J_K.

3.3. Quantum spins: general S

How does the behaviour discussed in the previous section change with increasing spin quantum number S or more precisely, do we recover a ‘classical’ result for large enough S? Let us start with a discussion of the weak-coupling results shown in figure 4. The calculations were done in the weak-coupling regime $U/\Delta_0 = 1$ for fixed value $S(S+1)/\Delta_0 = 1/3$ to achieve the same classical energy scale for all S. We did calculations up to $S = 10$, which, according to our results in subsection 3.1, we expect to be already very close to the classical limit. Indeed, for $S = 10$ (green curves in figure 4) we do find almost identical behaviour for $J_K < 0$ and $J_K > 0$ except for extremely low temperatures. Note however, that even for this large value for S the DOS for $\omega/\Delta_0 < 0.1$ for $J_K < 0$ does not reach the full unitary limit due to quantum fluctuations.
Figure 3. Local DOS for an impurity spin $S = 1/2$ and different values of J_K as a function of ω/Δ_0. Impurity parameters as in figure 2. The upper panel collects the results for antiferromagnetic coupling, the lower for ferromagnetic. The insets show the spectra for $\omega > 0$ in a semi-logarithmic plot. For antiferromagnetic J_K one here clearly sees the two-stage Kondo effect for $|J_K| < T_K^{(0)}$, i.e. a formation of an Abrikosov–Suhl resonance at $T_K^{(0)}$ and the formation of a singlet at $T_K^{(1)}$ (cf also discussion of figure 2).

Figure 4. Local DOS for fixed $\sqrt{S(S+1)}|J_K|/\Delta_0 = 1/3$ as a function of ω/Δ_0 in the weak-coupling regime $U/\Delta_0 = 1$ for different values of local spin S. The upper panel collects the results for antiferromagnetic coupling, the lower panel those for ferromagnetic. Note that for $J_K > 0$ the influence of the local spin is very small, i.e. the curves are nearly indistinguishable. The insets show the spectra for $\omega > 0$ in a semi-logarithmic plot.
The differences are more dramatic for small values of S. As expected, for $J_K < 0$ there occurs a Kondo screening with an energy scale $T_K(S)$ decreasing exponentially with increasing S. Note that even for comparatively large $S = 3/2$ the influence of quantum fluctuations is still pronounced and appears in an energy regime that may still be of experimental relevance.

The differences become even more pronounced if we increase the local Coulomb repulsion to $U/\Delta_0 = 10$, which lies in the intermediate-coupling regime with a Kondo scale $T_K/S_0 \approx 0.07$. Since thus $J_K > T_K/S_0$ we do not expect two-stage screening here. The results for otherwise same model parameters are collected in figure 5. Note that due to the choice of J_K the Hubbard bands do not move with increasing S. Furthermore, as can best be seen from the insets to figure 5, in all cases $S > 0$ we observe additional shoulders, respectively peaks, in the DOS at $\omega \approx \pm \sqrt{S(S+1)}|J_K|$. The low-energy behaviour, however, is markedly different for $J_K < 0$ (upper panel in figure 5) and $J_K > 0$ (lower panel in figure 5). Below $\omega/\Delta_0 < 0.07 \approx T_K^{(0)}$, the former case always develops a (pseudo-) gap due to the formation of a singlet between the local degrees of freedom, while the latter tends to recover a Kondo-resonance for the total spin, again with exponentially decreasing $T_K(S)$. Owing to the universal behaviour of the conventional Anderson model for $U/\pi \Delta_0 > 1$ (‘Kondo regime’) we actually expect the behaviour observed here to be generic in this parameter regime. Quite obviously, while in the weak coupling regime the ‘classical limit’ is reached already for moderate values of S, one has to be very careful when dealing with the strongly correlated regime.

4. Summary and conclusion

In this paper we presented calculations for an extended Anderson impurity model, where the local charge degrees of freedom in addition couple to a localized spin. The motivation to study such a
model is based on the observation that in a variety of transition metal or rare earth compounds, the complex local orbital structure can be split into a localized spin, which can take large values $S \gg 1/2$, coupled via Hund’s exchange to a more delocalized set of possibly also correlated states. A particular example surely is the famous LaMnO$_3$.

The solution of this model for different regimes of model parameters was accomplished by using Wilson’s NRG, which provides accurate and reliable results for thermodynamics and dynamics and is able to resolve arbitrarily small energy-scales that may appear in the problem. The findings can be summarized as follows: even for comparatively large localized spin $S = 10$, we still observe the influence of quantum fluctuations on the properties of the impurity charge degrees of freedom. These effects become more pronounced when these charge degrees of freedom are correlated themselves as to be expected for example in LaMnO$_3$. Note, however, that the temperature scales related to these quantum effects will be small compared to e.g. the typical ordering temperatures in LaMnO$_3$, but can possibly be more relevant in rare earth compounds. Depending on the ratio $|J_K|/T_K^{(0)}$, where $T_K^{(0)}$ is the Kondo temperature for the model without additional spin, different regimes can be identified, which in contrast to the classical prediction do markedly depend on the sign of J_K.

Thus, for the solution of correlated lattice models with such an additional spin degree of freedom within DMFT one has to be likely careful when using the approximation of a classical spin, even when S is comparatively large. Moreover, the expected physics can be read off our results right away, at least for half-filling. Due to the reduced Kondo scale for Hund’s type or ferrromagnetic coupling, we expect a corresponding reduction of a critical U for a Mott–Hubbard transition. On the other hand, for antiferromagnetic exchange coupling the corresponding $U_c = 0$ at $T = 0$, because the forming of a local singlet immediately leads to an insulating state.

Quite interesting are also the magnetic properties of the system. Again, we may anticipate from the impurity calculations that antiferromagnetism is still the prevailing magnetic order, but in the vicinity of certain commensurate band fillings we can also expect ferromagnetic order from a corresponding RKKY exchange. These investigations are currently in progress.

Acknowledgments

We acknowledge useful conversations with M Vojta, A Lichtenstein, R Bulla, F Anders and D Vollhardt. This work was supported by the DFG through the collaborative research center SFB 602. Computer support was provided through the Gesellschaft für wissenschaftliche Datenverarbeitung in Göttingen and the Norddeutsche Verbund für Hoch- und Höchstleistungsrechnen.

References

[1] Imada M, Fujimori A and Tokura Y 1998 Metal-insulator transitions Rev. Mod. Phys. 70 1039
[2] Hubbard J 1963 Electron correlations in narrow energy bands Proc. R. Soc. Lond. A 276 238
[3] Gutzwiller M C 1963 Effect of correlation on the ferromagnetism of transition metals Phys. Rev. Lett. 10 159
[4] Kanamori J 1963 Electron correlation and ferromagnetism of transition metals Prog. Theor. Phys 30 275
[5] Salamon M B and Jaime M 2001 The physics of manganites: structure and transport Rev. Mod. Phys. 73 583–628
[6] Hotta T 2006 Orbital ordering phenomena in d- and f-electron systems. Rep. Prog. Phys. 69 2061–2155
[7] Ramirez A P 1997 Colossal magnetoresistance J. Phys.: Condens. Matter 9 8171

New Journal of Physics 8 (2006) 127 (http://www.njp.org/)
[8] Zener C 1951 Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure Phys. Rev. 82 403
[9] Held K and Vollhardt D 2000 Electronic correlations in manganites Phys. Rev. Lett. 84 5168
[10] Yunoki S, Hu J, Malvezzi A L, Moreo A, Furukawa N and Dagotto E 1998 Phase separation in electronic models for manganites Phys. Rev. Lett. 80 845–8
[11] Yunoki S, Moreo A and Dagotto E 1998 Phase separation induced by orbital degrees of freedom in models for manganites with Jahn–Teller phonons Phys. Rev. Lett. 81 5612
[12] Calderón M J and Brey L 1998 Monte Carlo simulations for the magnetic phase diagram of the double-exchange hamiltonian Phys. Rev. B 58 3286
[13] Arovas D P and Guinea F 1998 Some aspects of the phase diagram of double-exchange systems Phys. Rev. B 58 9150
[14] Müller-Hartmann E and Dagotto E 1996 Electronic hamiltonian for transition-metal oxide compounds Phys. Rev. 54 6819
[15] Motome Y and Furukawa N 2003 Monte Carlo study of doping change and disorder effect on double-exchange ferromagnetism Phys. Rev. B 68 144432
[16] Motome Y, Furukawa N and Nagaosa N 2003 Competing orders and disorder-induced insulator to metal transition in manganites Phys. Rev. Lett. 91 167204
[17] Hickel T and Nolting W 2004 Proper weak-coupling approach to the periodic s-d(f) exchange model Phys. Rev. B 69 085110
[18] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions Rev. Mod. Phys. 68 13
[19] Wilson K G 1975 The renormalization group: critical phenomena and the Kondo problem Rev. Mod. Phys. 47 773
[20] Krishnamurthy H R, Wilkins J W and Wilson K G 1980 Renormalization-group approach to the anderson model of dilute magnetic alloys i Static properties for the symmetric case Phys. Rev. B 21 1003
[21] Anderson P W 1961 Localized magnetic states in metals Phys. Rev. 124 41
[22] Hewson A C 1993 The Kondo problem to heavy fermions Cambridge Studies in Magnetism (Cambridge: Cambridge University Press)
[23] Kim T-S and Hershfield S 2001 Suppression of current in transport through parallel double quantum dots Phys. Rev. B 63 245326
[24] Kang K, Cho S Y, Kim J-J and Shin S-C 2001 Anti-Kondo resonance in transport through a quantum wire with a side-coupled quantum dot Phys. Rev. B 63 113304
[25] Apel V, Davidovich M, Anda E, Chiappe G and Busser C 2004 Effect of topology on the transport properties of two interacting dots Eur. Phys. J. B 40 365
[26] Lara G A, Ormella P A, Yanez J and Anda E V 2004 Kondo effect in side coupled double quantum-dot molecule Preprint cond-mat/0411661
[27] Cornaglia P S and Grempel D R 2005 Strongly correlated regimes in a double quantum dot device Phys. Rev. B 71 075305
[28] Žitko R and Bonča J 2005 Enhanced conductance through side-coupled double quantum dots Preprint cond-mat/050536
[29] Vojta M, Bulla R and Hofstetter W 2002 Quantum phase transitions in models of coupled magnetic impurities Phys. Rev. B 65 140405(R)
[30] Pruschke Th and Bulla R 2005 Hund’s coupling and the metal-insulator transition in the two-band hubbard model Eur. Phys. J. B 44 217
[31] Furukawa N 1994 Transport properties of the Kondo lattice model in the limit $s = \infty$ and $d = \infty$ J. Phys. Soc. Japan 63 3214
[32] Furukawa N 1999 Thermodynamics of the double exchange systems Physics of Manganites ed T A Kaplan and S D Mahanti (New York: Plenum)
[33] Sakai O, Shimizu Y and Kasuya T 1989 Single-particle and magnetic excitation spectra of degenerate anderson model with finite f–f coulomb interaction J. Phys. Soc. Japan 58 3666
[34] Bulla R, Hewson A C and Pruschke Th 1998 Numerical renormalization group calculations for the self-energy of the impurity anderson model J. Phys.: Condens. Matter 10 8365
[35] Hofstetter W 2000 Generalized numerical renormalization group for dynamical quantities Phys. Rev. Lett. 85 1508
[36] Costi T, Hewson A C and Zlatic V 1994 Transport coefficients of the anderson model via the numerical renormalization group J. Phys.: Condens. Matter 6 2519
[37] Noziéres P and Blandin A 1980 Kondo effect in real metals J. Phys. (Paris) 41 193
[38] Parcollet O and Georges A 1997 Transition from overscreening to underscreening in the multichannel Kondo model: exact solution at large n Phys. Rev. Lett. 79 4665