A Comparison of Orthometric Heights Calculated from (GPS/Leveling) and (EGM08) Methods Based –GIS

Nawal Khalaf Ghazal¹ and Neran Saleh leaby Saray²
¹Remote Sensing and GIS, College of Science, Baghdad University, Iraq.
²Department of Physics, College of Science, Baghdad University, Iraq

E-mail: nearansaleh82@gmail.com

Abstract. Interest in the study of global gravitational models has increased recently all over the world because it is necessary for height datum transformations. Today the International Center for Global Earth Models (ICGEM) provides the largest collection in the world produced through gravitational data from the gravitational satellite’s missions CHAMP, GRACE, and GOCE ... Etc. To allow easy access through the internet with its more intelligent technologies, it is one of the International Gravity Organization's services. While the Global Positioning System (GPS) has become one of the most preferred technologies in engineering surveying, a major dilemma in GPS survey lies in oval-based elevations. At the same time, orthometric heights are commonly used in the engineering field. Therefore, it is necessary to convert the measured heights by satellites assigned to the elliptical surface into orthometric heights and supported to the geoid surface (mean sea level) through an accurate geodetic model. The differences between orthometric measurement heights from DGPS/leveling data (obtained from 57 points in the study area) are increasingly used by professionals geographical information systems(GIS). However, the local determination of Geoid is necessary for better accuracy of the orthometric height from DGPS. This paper aims to introduce a modern technique for determining elevation, avoiding cumbersome and time-consuming spirit leveling operations. Fast vertical positioning can be obtained using DGPS with geoid models. The Root Mean Square Error (RMSE) is ± 0.19 m with high precision of DGPS derived with EGM08; thus, the more it describes the Earth's gravitational field in more detail.

Keywords: GIS, leveling, orthometric height, EGM08, Heights, Root Mean Square Error.

1. Introduction

The determination of the Earth's surface and its external gravitational field, and the normal Earth ellipsoid is the biggest issue currently confronting geodesists worldwide. The Earth's surface is uneven and, as a result, impossible to be described by a mathematical surface. Instead, Geoid, the gravitational field's equipotential surface will strongly approximate the mean sea level (M.S.L.). The Geoid is important for every country to achieve accurate vertical positioning. All geodetic measurements are directly related to gravity's real field when taken on Earth's physical surface. This anomaly area is the fundamental parameter for the transition of geodetic measurements from the physical space of observation (Geoid) to the computation's geometric space, ellipsoid [1].

To convert ellipsoid height into a more useful orthometric height, we need to know the relation between Geoid which representing the actual equipotential figure of the Earth's surface. The
ellipsoidal height represents Earth's mathematical figure. The Geoid is one of the most important parts of a geodetic infrastructure. It is well known that globally, mean sea level best fits in the least square sense, Geoid, representing the equipotential surface of the Earth's gravity field and used as a reference for physical height system like orthometric heights. This means that by combining ellipsoidal heights from GPS and geoid heights, the orthometric height can be determined [2].

2. Study Area
The chosen study area is the campus of the University of Baghdad in the heart of the capital, Baghdad, located between Latitude (33º 16' 55.6") to (33º 16' 4.5") N, Longitude (44º 22' 11.8") to (44º 23' 20.4") E., which covers an area of (2.9km2). It is shown in figure (1).

![Figure 1. The study area of the campus of the University of Baghdad.](image)

3. The Theoretical Background

3.1. The Orthometric and Ellipsoid Heights
The (H) refers to an isotope reference surface. The orthometric height of a distance from the point on the surface of the Earth to the distance that points to the Geoid (the equipotential surface that coincides with the mean sea level) is measured along the normal vertical line to the Geoid, which is measured by using the level [3]. The ellipsoidal height measured using DGPS represents the height from the surface of any reference ellipsoid to the point on the ground. The separation between the ellipsoid and the Geoid surface is called Geoid height or Geoid Undulation (N), as shown in figure (2). The determination of the Geoid Undulation at each point can be calculated using a well-known formula[4]:

$$N = h - H$$ \hspace{1cm} (1)

h is ellipsoidal height, H is orthometric height, and N is geoid undulation.
3.2. Leveling

Leveling is the general term applied to any of the various processes by which height is determined. It is a vital process in producing the data needed for mapping, engineering design, and construction. Leveling results are used for designing highways, railways, canals, sewage, water supply systems, and other facilities with a grade line that best aligns with the current terrain [6]. The type of level device used in this paper is Topcon (ABN 26).

3.3. Differential Global Positioning System (DGPS)

The GPS heavenly body was initially planned as 24 satellites put in three orbital planes. Each slanted at 63 degrees as the equator chose height was (~20 ~200 km, offering to ascend to an orbital time of 12 sidereal hours. This is 50% of the Earth's turn time frame, offering to ascend to rehashing ground tracks' operational advantage. These satellites were disseminated consistently in the orbital planes, with each plane having eight satellites [7].

3.4. Earth Gravitational Model of 2008 (EGM2008)

The EGM2008 is a gravitational model of the Earth created by a least-squares mix of the ITG-GRACE03S gravitational model (with its related blunder covariance lattice) and a 5'x5' matrix of free-air gravity irregularities. EGM2008 is created to degree/request 2159 with some extra terms up to degree/request 2190 [8].

EGM2008 depends on the GRACE (Gravity Recovery and Climate Experiment) just gravity field model ITG-GRACE03S which gives a profoundly exact depiction of the long-and medium-frequency gravity field range up to degree and the order 180. The ITG-GRACE03S model joins right around six years of GRACE gravity field perceptions and different wellsprings of gravity information, especially point gravity estimations. Consequently, the EGM2008 circular consonant coefficients should be extended to degree 2190 instead of 2159 or 2160 when utilized in pragmatic applications [9].

3.5. Data Sets

The orthometric heights for the 57 points were obtained from the leveling for these heights in the middle of Iraq (FAW). The datum was called MSL FAW, and this data is shown in Table 2. The differential global position system (DGPS) type Topcon Hiper-II GNSS has used a static method to observed 57 points, each point is observed 3 hours. The data points were then submitted to the AUSPOS online GPS Processing Service (HTTP: www.ga.gov.au). To calculate Geoid undulation using EGM2008, a zip file can be downloaded that contains an ESRI GRID raster data set of 2.5-minute. The American Surveying Authority worked on making Raster networks that cover all parts of the world. Each network is about 45×45 of Latitude and longitude that gives the values of N within the ready-made Raster network, and that can be called to the ARC GIS program. The network files cover lines from the length is 2 to 90, and the width from 5 to 60 covers approximately the eastern Arab world, including the Iraqi lands. The Raster can be downloaded from the link below: https://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_gis.html.
As shown in table (3) and Fig. (3), by cutting the province of Baghdad and noting that the value of T
the Geoid Heights N varies from the highest [0.690 m] to the lowest [-2.910 m].

Figure 3. The Geoid Heights EGM08 raster within the capital Baghdad.

3.6. Calculate the root mean square error (RMSE)
Modeling heights of the calendar using a geometric method of calculating model accuracy with a
root mean square error indicator (RMSE) to calculate model accuracy requires orthometric point
heights from the model (\(H_{\text{GGMs}}\)), i.e., orthometric heights of points obtained from the differences
between typical geodetic heights and elliptical point heights with the corresponding altitudes in
addition to the orthometric heights (\(H_{\text{obs}}\)) to obtain (orthometric residuals remains). The orthometric
residuals and the total number of points specified for the RMSE are used along with the model
accuracy. The RMSE index is provided in the formula to calculate model accuracy [8].

\[
\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\delta H_{\text{Residual}})^2}
\]

\[
\delta H_{\text{Residual}} = H_{\text{obs}} - H_{\text{GGMs}}
\]

\(H_{\text{obs}}\): Known Orthometric Height
\(H_{\text{GGMs}}\): Model Orthometric Height
\(n\): the number of points.

GGMs are the smallest RMSE values. Since then, the better it represents the Earth’s gravitational field
in more detail, and vice versa. The greater the value of it, the greater the representation of gravity with
less detail.

4. Results and Discussion
Accuracy assessment of GPS observations processed by (EGM2008 RASTER)
The level is the most accurate way to calculate orthometric heights for scanning points above the
giode. But this method has become obsolete no longer to keep pace with the rapid development in the
modern world. So, it is no longer feasible for several reasons, including it takes a long time and great
effort and high cost, thus, an easier, faster, and less expensive is required.

Unfortunately, GPS delivered only height relative to the Earth’s mathematical ellipse, known as
ellipsoidal height, rather than the orthometric height related to the MSL with its physical meaning,
thus, parallel to the development of GPS and methodology.

To convert the Ellipsoid heights obtained from DGPS for the observed points into orthometric heights
calculated by applying equation (1) converting the heights inside the program is required.
Table 1. The Comparison of leveling data with GPS processed data.

METHOD	Maximum (m)	Minimum (m)	Mean (m)	Standard deviation (m)
Leveling measurement height H(m)	38.264	35.930	36.653	0.586
GPS processed data	38.128	35.762	36.541	0.625
Difference	0.399	-0.401	0.111	0.152

The difference in leveling data with GPS processed data (HEGM08) is clearly shown that the accuracy of the results of GPS data is within the Standard deviation ±0.152m as illustrated in the table (1). The RMSE The EGM2008 model equal to [± 0.187973m] as shown in figure (4), applied the equal (3). The height data performed herein offers useful insight for a range of applications relating to height. The production and updating of large-scale topographical maps in various engineering and construction applications, particularly for water resource management. The topographic map of the Study Area is shown in figure (5).

Table 2. Ellipsoidal and Orthometric heights(2020).

Figure 4. The Accuracy of DGPS data after processing.

Figure 5. Representing the topographic map of the Study Area.
Point No.	Northing(m)	Easting(m)	Ellipsoidal height h (m)	Orthometric height Hobs (M.S.L) (m)
BU01	3681622.477	442158.483	34.5552	36.271
BU02	3681641.119	441821.245	35.1578	36.906
BU03	3681646.752	442271.423	34.5022	36.369
BU04	3681717.383	441480.99	36.3873	38.242
BU05	3681756.014	441869.274	35.7915	37.345
BU06	3681848.047	442032.804	34.1972	35.934
BU07	3681828.833	442052.868	35.4727	37.025
BU08	3681905.955	441876.638	35.2064	37.173
BU09	3681912.62	441946.785	34.2758	36.153
BU10	3681911.887	442069.661	35.3165	36.867
BU11	3681949.221	442265.198	35.1257	37.07
BU12	3682018.665	442240.00	35.3347	36.95
BU13	3681583.049	442107.802	34.548	36.319
BU14	3681594.571	441776.986	34.4333	36.075
BU15	3681625.908	441584.439	36.2443	37.621
BU16	3681625.188	441755.697	35.5055	37.17
BU17	3681645.93	441789.195	35.3775	36.937
BU18	3681655.103	441697.41	36.2296	37.427
BU19	3681659.146	441896.635	34.5345	36.278
BU20	3681668.477	441829.946	35.5159	37.191
BU21	3681695.023	442026.201	34.4483	36.251
BU22	3681695.209	442201.861	34.5521	36.261
BU23	3681712.222	442293.025	34.1764	35.93
BU24	3681734.101	442394.825	34.4988	36.361
BU25	3681742.759	441923.005	35.5912	37.19
BU26	3681764.947	441920.809	34.4304	36.085
BU27	3681763.181	442217.27	35.3766	37.033
BU28	3681774.058	441942.077	34.1916	36.051
BU29	3681790.089	441784.883	35.2071	37.18
BU30	3681794.279	442322.228	35.0626	36.55
Table 3. Geoid heights at points using (h-H) method and undulation height by EGM08 raster (2020).

Point Nu.	Northing(m)	Easting(m)	Nr(EGM08)(m)	Hr(EGM08)(m)																								
BU01	3681622.477	442158.483	-1.6129	36.1681																								
BU02	3681641.119	441821.245	-1.6025	36.7603																								
---	---	---	---	---																								
BU03	3681646.752	442271.423	-1.6158	36.118																								
BU04	3681717.383	441480.99	-1.5907	37.978																								
BU05	3681756.014	441869.274	-1.6015	37.393																								
BU06	3681848.047	442032.804	-1.6067	35.8039																								
BU07	3681828.833	442052.868	-1.6055	37.0782																								
BU08	3681905.955	441876.638	-1.5987	36.8051																								
BU09	3681912.62	441946.785	-1.6006	35.8764																								
BU10	3681911.887	442069.661	-1.6043	36.9208																								
BU11	3681949.221	442265.198	-1.6093	36.735																								
BU12	3682018.665	442240.00	-1.6072	36.9419																								
BU13	3681583.049	442107.802	-1.6122	36.1602																								
BU14	3681594.571	441776.986	-1.6021	36.0354																								
BU15	3681625.908	441584.439	-1.5957	37.8400																								
BU16	3681625.188	441755.697	-1.6008	37.1063																								
BU17	3681645.93	441789.195	-1.6014	36.9789																								
BU18	3681655.103	441697.41	-1.5985	37.8281																								
BU19	3681659.146	441896.635	-1.6043	36.1388																								
BU20	3681668.477	441829.946	-1.6022	37.1181																								
BU21	3681695.023	442026.201	-1.6075	36.0558																								
BU22	3681695.209	442201.861	-1.6127	36.1648																								
BU23	3681712.222	442293.025	-1.615	35.7914																								
BU24	3681734.101	442394.825	-1.6176	36.1164																								
BU25	3681742.759	441923.005	-1.6034	37.1946																								
BU26	3681764.947	441920.809	-1.6029	36.0333																								
BU27	3681763.181	442217.27	-1.6117	36.9883																								
BU28	3681774.058	441942.077	-1.6033	35.7949																								
BU29	3681790.089	441784.883	-1.5983	36.8054																								
BU30	3681794.279	442322.228	-1.6142	36.6768																								
	BU31	BU32	BU33	BU34	BU35	BU36	BU37	BU38	BU39	BU40	BU41	BU42	BU43	BU44	BU45	BU46	BU47	BU48	BU49	BU50	BU51	BU52	BU53	BU54	BU55	BU56	BU57	
---	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------
BU31	3681816.006	441828.500	-1.5991	36.9286																								
BU32	3681815.803	442068.830	-1.6063	36.0285																								
BU33	3681829.915	442181.706	-1.6093	37.0610																								
BU34	3681848.047	442032.804	-1.6045	36.6358																								
BU35	3681856.927	441783.731	-1.5969	36.8991																								
BU36	3681897.294	442192.973	-1.6083	36.9576																								
BU37	3681907.554	441815.337	-1.5968	36.8975																								
BU38	3681904.639	442304.514	-1.6114	36.2736																								
BU39	3681953.127	441508.537	-1.5867	38.1284																								
BU40	3681950.55	441990.214	-1.6012	36.7407																								
BU41	3681961.748	442386.084	-1.6126	36.1429																								
BU42	3681967.438	442361.283	-1.6118	36.2206																								
BU43	3681978.494	442107.310	-1.6041	36.8795																								
BU44	3681999.104	441545.031	-1.5869	37.6213																								
BU45	3682045.226	441711.390	-1.5909	35.7953																								
BU46	3682043.878	442091.660	-1.6023	36.6071																								
BU47	3682065.388	442359.017	-1.6097	35.8174																								
BU48	3682114.854	442016.286	-1.5986	35.8943																								
BU49	3682127.942	442249.186	-1.6052	36.1382																								
BU50	3682195.436	442397.040	-1.6081	36.1525																								
BU51	3682228.475	442434.745	-1.6086	35.8645																								
BU52	3682315.141	442517.779	-1.6092	35.9953																								
BU53	3682331.657	442485.023	-1.6079	35.8087																								
BU54	3682344.097	442464.661	-1.607	35.9833																								
BU55	3682393.138	442556.525	-1.6087	36.0747																								
BU56	3682402.161	442697.561	-1.6124	36.1722																								
BU57	3682442.613	442679.433	-1.611	35.7626																								
5. Conclusions

By comparing the data of the orthometric heights (H) values, (H) practically measured by the level with the data obtained from the after processing by the EGM2008 model, which is obtained by Raster. This study indicates small and very close differences as the accuracy reached the standard deviation (SD) equal to $[\pm 0.152 \text{ m}]$. This means that the level still one of the most accurate devices in this field and in various projects.

The RMSE is used to describe the long wavelength of Earth's gravitational field. The EGM2008 model produces the smallest differences in terms of the Root Mean Square Error (RMSE), which is equal to $[\pm 0.187973 \text{ m}]$, and the method of the calculation by Raster is within the arc GIS program.

The orthometric Heights from DGPS Data can thus be considered a modern tool for converting the height.

References

[1] El-Ashquer M A Zahran K H El-Fiky G S and Salama I M 2010 Accuracy Assessment of GPS leveling Applications North West Lake Nasser Aswan Egypt.

[2] Lowrie W 2007 Fundamental of geophysics 2nd Edition (Cambridge- University Press) USA.

[3] Heister H Lang M Merry C L and Ruther H 1999 South Africa, TS 20, B1-B10.

[4] Rabah M and Kaloop M 2013 Arabian Journal of Geosciences 6 (4) 1263.

[5] Yeboah F 2007 Integrating GPS Data into the National Coordinate System: A Case Study in Ashanti Region Ph.D. thesis University of Science and Technology Kumasi.

[6] Tan Liat Choon 2014 INTRODUCTION TO ENGINEERING SURVEYING (CE 1305) Leveling-Theory)UEL University of East London. 2.

[7] Alessia T 2011 The development of integrated high-resolution geophysical, photogrammetric and GPS surveying applied to landslides in the South Wales Coalfield Cardiff University 105.

[8] Pavlis N K Holmes S A Kenyon S C Factor J K 2012 The development and evaluation of the Earth Gravitational Model 2008 (EGM2008).

[9] Merry C 2009 EGM2008 Evaluation for Africa Newton’s Bulletin.

[10] http://icgem.gfz-potsdam.de/tom_longtime.