Inhibition Properties of Arylsulfatase and β-Glucuronidase by Hydrogen Peroxide, Hypochlorite, and Peracetic Acid

Shu-shu Zhong, Jun Zhang, Ze-hua Liu,* Zhi Dang, and Yu Liu

ABSTRACT: Arylsulfatase and β-glucuronidase are two important enzymes in humans, which play an important role in the dynamic equilibrium of steroidal estrogens. This work probably for the first time reported that hydrogen peroxide (H2O2), hypochlorite, and peracetic acid (PAA) could effectively inhibit the activities of arylsulfatase and/or β-glucuronidase. The 50% of inhibitions (IC50) of H2O2, hypochlorite, and PAA on arylsulfatase were found to be 142.90 ± 9.00, 91.83 ± 10.01, and 43.46 ± 2.92 μM, respectively. The corresponding IC50 values of hypochlorite and PAA on β-glucuronidase were 704.90 ± 41.40 and 23.26 ± 0.82 μM, whereas H2O2 showed no inhibition on β-glucuronidase. The inhibitions of arylsulfatase and/or β-glucuronidase by these three chemicals were pH-dependent. It was further revealed that the inhibitions of hypochlorite on both arylsulfatase and β-glucuronidase were irreversible. On the contrary, the inhibitions by H2O2 and PAA were reversible. In addition, the inhibition by H2O2 was competitive and that by PAA was noncompetitive. In general, H2O2 and hypochlorite can be endogenously produced in humans, which suggested that the two compounds are potential endocrine disruption compounds (EDCs) as they can cause endocrine disruption via the inhibition of arylsulfatase and β-glucuronidase. This work further indicated that any agent that can induce the production of H2O2 or hypochlorite in humans is a potential EDC, which explains why some EDCs with very weak or no estrogenic potency can cause endocrine disruption, which is confirmed in epidemiological studies.

INTRODUCTION

Arylsulfatase and β-glucuronidase have been widely present in many organisms including humans, which are able to catalyze the hydrolysis of sulfates/glucuronides.1−4 The important physiological functions of the two enzymes are to maintain the dynamic equilibrium of natural estrogens in human body. Normally, only about 2−3% of natural estrogens are free estrogens in human, whereas the rest are in sulfate or glucuronide form.5,6 The free natural estrogens play important roles in stimulating growth, blood flow, water retention in sexual organs, neuro- and vasoprotection, and reduction of bone loss, whereas the conjugated estrogens act as reservoirs.5,7 Natural free estrogens in humans are accurately regulated, and once the equilibrium is disrupted, it may trigger a severe outcome. For example, humans with a significantly higher urinary arylsulfatase/β-glucuronidase activity have higher free estrogens in their body, which have been thought to be the main reason for the development of many cancers, including breast cancer, stomach cancer, ovarian cancer, colonic cancer, and so forth.8−11 Therefore, the inhibition of arylsulfatase/β-glucuronidase has been explored as one of the effective strategies for such cancer treatment, among which STX64 has been applied in clinical trials.7,12

Arylsulfatase and β-glucuronidase have been reported to be two extreme enzymes, which can endure high concentrations of mercury dichloride, sodium azide, ethanol, and ethylenediaminetetraacetic acid.13 H2O2, hypochlorite, and peracetic acid (PAA) have been commonly used as sanitizers for various medical and nonmedical applications.14−17 Among these, H2O2 and hypochlorite are also important compounds which can be endogenously produced by cellular enzymatic reactions in humans and are important signal biomarkers in humans.18−21 This work is the first to report that H2O2, hypochlorite, and PAA can effectively inhibit arylsulfatase and/or β-glucuronidase, which may indicate important physiological functions.

MATERIALS AND METHODS

Enzymes and Chemicals. Potassium 4-nitrophenyl sulfate (pNPS, purity > 98%), 4-nitrophenyl-β-D-glucuronide (pNPG,
purity > 98%), p-nitrophenol (pNP, spectrophotometric grade), arylsulfatase (≥10,000 units/g solid) from Helix pomatia (type H-1, catalog number: S9626), and β-glucuronidase (≥100,000 units/g solid) from H. pomatia (type H-1, catalog number: G0751) were purchased from Sigma-Aldrich (Shanghai, China). H2O2 (30%) was purchased from Guangzhou Chemical Reagent Factory (Guangzhou, China). NaClO (available chlorine, 8.0%, w/w) was purchased from ANPEL (Shanghai, China). The NaClO concentration was calibrated with the standard method of GB/T 19104.23 The other reagents not listed were purchased from Aladdin (Shanghai, China).

Stock solutions of arylsulfatase and β-glucuronidase were prepared at the concentration of 10 U/mL by dissolving the enzyme powder into 0.5 M Tris-HCl buffer (pH 7.0). The pNPG stock solution was prepared with 0.5 M acetate buffer (pH 5.8), whereas the pNPNG stock solution was prepared with 0.5 M phosphate buffer (pH 7.0), both of which were at concentrations of 5 mM. All solutions were prepared with reagent-grade chemicals and ultrapure water (18.2 MΩ·cm).

Enzyme Activity. The activity of arylsulfatase/β-glucuronidase was measured according to Zhang et al. The arylsulfatase/β-glucuronidase enzyme activity (U) was defined as the absorbance equivalent of 1 μmol pNP produced per hour per milliliter of enzyme solution at 37 °C. For the convenience of comparison, relative activity is used, and the maximal enzyme activity is arbitrarily set to 100%. The limit of detection (LOD) of the spectrophotometric method was calculated according to three times of the standard deviation, which was obtained from nine repeated determinations of the lowest pNP concentration used for the standard calibration curve.24 The LOD of this method for pNP was 0.22 μM, which is equal to 0.22 U/L for arylsulfatase and β-glucuronidase.

The Michaelis–Menten constant (Km) and maximal reaction rate (Vmax) of the two enzymes, arylsulfatase and β-glucuronidase, were obtained by fixing the enzyme concentration in the reaction and then analyzing the initial speed at several different substrate concentrations. The concentrations of the substrate in the reaction mixture were 0.02, 0.04, 0.08, 0.1, 0.2, 0.4, 0.8, 1.0, and 1.2 mM, respectively. The rest of the steps were the same as those for measuring the enzyme activity.

Km and Vmax were expressed by the Michaelis equation,26 that is

\[
\frac{V}{V_0} = \frac{V_{\text{max}} \times [s]}{K_m + [s]}
\]

(1)

Km and Vmax are calculated by the Lineweaver–Burk equation,26 that is

\[
\frac{1}{V} = \frac{K_m}{V_{\text{max}}} \frac{1}{[s]} + \frac{1}{V_{\text{max}}}
\]

(2)

where \(V_0\) is the production rate of the substrate, \(K_m\) is called the Michaelis constant, \(V_{\text{max}}\) is the reaction rate when the enzyme is saturated with the substrate, and \([s]\) is the concentration of the substrate.

Inhibitory Assays. Inhibition experiments on arylsulfatase or β-glucuronidase by different inhibitors were performed with different concentrations, and the inhibitor solution was freshly prepared before use. For the arylsulfatase inhibition experiment, the reaction mixture solution (3.5 mL) contained 2 mL of 0.1 M acetate buffer (pH 5.8), 0.5 mL of dilute arylsulfatase enzyme, 0.5 mL of 5 mM pNPG, and 0.5 mL of water as the control or 0.5 mL of the inhibitor (H2O2, NaClO, or PAA) with different concentrations. The addition concentrations of H2O2 and NaClO in the reaction mixture were 1, 5, 10, 50, 100, 500, 1000, and 10,000 μM, respectively, whereas the concentrations of PAA were 1, 5, 10, 50, 100, 500, and 1000 μM, respectively.

The reaction mixture solution was mixed and incubated for 1 h at 37 °C. pNP deconjugated from pNPG was measured at a wavelength of 400 nm after the reaction was stopped by adding 1.5 μL of 0.5 M NaOH. Each experiment was performed in triplicate.

For β-glucuronidase inhibition experiment, the reaction mixture solution (1.2 mL) contained 0.6 mL of 0.1 M phosphate buffer (pH 7.0), 0.2 mL of dilute β-glucuronidase enzyme, 0.2 mL of 5 mM pNPNG, and 0.2 mL of water as the control or 0.2 mL of H2O2, NaClO, or PAA. The addition concentrations of H2O2 in the reaction mixture were 1, 5, 10, 50, 100, 500, 1000, and 10,000 μM, respectively, whereas the concentrations of NaClO and PAA were the same with 1, 5, 10, 50, 100, 500, and 1000 μM, respectively. The reaction mixture solution was mixed and incubated for 1 h at 37 °C. pNP deconjugated from pNPNG was measured at a wavelength of 400 nm after the reaction was stopped by adding 0.8 mL of 0.5 M NaOH. Each experiment was performed in triplicate.

To check the inhibition differences at different pH conditions, different buffer solutions were used as listed: 0.1 M acetate buffer (pH 5.0–5.8), 0.1 M citric acid/0.1 M sodium citrate (pH 5.0–6.0), 0.5 M Tris-HCl (pH 7.0–8.0), and 0.1 M phosphate buffer (pH 6.0–8.0).

In order to explore the types of enzyme inhibition by different inhibitors, we used four different concentrations of inhibitors to perform inhibition experiments at different enzyme concentrations. The enzyme activities in the reaction solution were 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06 U/mL, respectively. For arylsulfatase, the reaction concentrations of H2O2 were 0, 50, 150, and 500 μM, and the reaction concentrations of NaClO were 0, 50, 100, and 200 μM, whereas the reaction concentrations of PAA were 0, 10, 50, and 100 μM. For β-glucuronidase, the reaction concentrations of NaClO were 0, 500, 1000, and 2000 μM, whereas the reaction concentrations of PAA were 0, 50, 100, and 500 μM. The other conditions were consistent with the enzyme inhibition experiments.

Inhibition percentage was calculated as shown in eq 3

\[
I(\%) = 100 - 100 \times \frac{(A/C)}{(A/C)_{50}}
\]

(3)

where \(I\) is the inhibition percentage of enzyme activity by an inhibitor, A is the measured enzyme activity with an inhibitor at different concentrations, and C is the measured activity without the addition of an inhibitor. Inhibition dose–response curves were plotted with GraphPad Prism 8 software, and IC50 was simultaneously obtained, which means the half inhibition concentration of an inhibitor.

RESULTS AND DISCUSSION.

Inhibition Dose–Response Curves. Figures 1 and 2 show the inhibition dose–response curves of H2O2, hypochlorite, and PAA on arylsulfatase and β-glucuronidase. It is evident that hypochlorite and PAA could effectively inhibit both arylsulfatase and β-glucuronidase, whereas H2O2 was only effective for inhibiting arylsulfatase. The respective IC50 values of H2O2,
hypochlorite, and PAA on arylsulfatase were determined to be 142.90 ± 9.00, 91.83 ± 10.01, and 43.46 ± 2.92 μM, whereas they were 704.90 ± 41.40 and 23.26 ± 0.82 μM for the inhibition of β-glucuronidase for hypochlorite and PAA. These clearly suggested that PAA had the strongest inhibitory effect on arylsulfatase, followed by hypochlorite, with H2O2 being the least. Meanwhile, the inhibitory effect of PAA on β-glucuronidase was much stronger than that of hypochlorite. These seemed to suggest that the acidic condition was making hypochlorite exhibit more inhibitory potential toward arylsulfatase and β-glucuronidase. The inhibitory effects of PAA on arylsulfatase at different pH are shown in Figure 5. It seemed that inhibition tended to decrease with increasing pH (Figure 5B), for example, nearly no inhibition was observed at pH 8 with a PAA concentration below 1 mM (data are not shown). Similar to arylsulfatase, the inhibitory effect of PAA on β-glucuronidase was insignificant at pH 5 and 6 (Figure 5B).

Inhibition Mechanisms. To explore the possible inhibition mechanisms of arylsulfatase and β-glucuronidase by H2O2, hypochlorite, and PAA, the relationship between enzyme activity and individual inhibitor concentration is presented in Figure 6. It was found that the inhibitions of H2O2 and PAA on arylsulfatase was reversible, whereas the inhibition of hypochlorite on arylsulfatase was irreversible. Similar to β-glucuronidase, the inhibition of PAA on β-glucuronidase was reversible, whereas the inhibition of hypochlorite was irreversible. The Km values of arylsulfatase and β-glucuronidase were 0.217 and 0.736 mM, respectively. To further determine the inhibition kinetics, the Lineweaver–Burk plot was plotted in Figure 7. In Figure 7A, compared with the control group, the experimental group Km increased and Vmax did not change, whereas in Figure 7B,C, Km did not change but Vmax decreased, showing that the inhibition on arylsulfatase by H2O2 was competitive, whereas the inhibitions of PAA on arylsulfatase and β-glucuronidase were noncompetitive.

Significance of This Work. Endocrine-disrupting compounds (EDCs) are, by definition, natural or synthetic agents...
that can mimic, enhance, or inhibit the action of endogenous hormones that are responsible for maintaining homeostasis and controlling normal development.27,28,59 The most commonly investigated EDCs are those that can mimic the effects of steroid hormones, which often show different estrogenic potencies that can be determined with different bioassays.29−31 With the definition of estrogenic potency, it is convenient to identify which are strong EDCs and which are weak. The potential adverse effect of each EDC depends on both its estrogenic potency and concentration; thus, the concept of estrogen equivalence has been widely adopted.32−34,60 This above criterion well describes the potential adverse effect of one individual EDC at any given concentration. However, many EDCs cannot be well explained with the above conception. For example, di-2-(ethyl hexyl) phthalate, well known as DEHP, the estrogenic potency of which is as low as \(10^{-7}\), is suggested as an extremely weak EDC.32 Considering its possible human exposure level to normal population, DEHP as an EDC unlikely poses potential adverse effects to humans. Nevertheless, epidemiological studies have shown that DEHP can pose different adverse effects on humans, including reproductive, developmental, and cardiovascular systems.35−38 Another example is cadmium, which possesses no estrogenic potency at all, but it is a well-known EDC.39−41

Many studies have shown that both DEHP and cadmium could induce the production of \(\text{H}_2\text{O}_2\) in humans,42−46 whereas the existence of \(\text{H}_2\text{O}_2\) can further induce hypochlorite.47 Based on the fact that \(\text{H}_2\text{O}_2\) and hypochlorite can effectively inhibit arylsulfatase and/or \(\beta\)-glucuronidase, this may suggest that DEHP and cadmium can disturb the human endocrine system via the production of \(\text{H}_2\text{O}_2\) and hypochlorite. This may well explain why DEHP and cadmium, with very weak or no estrogenic potency can act as two EDCs that can pose adverse effects on humans. Not limited to DEHP and cadmium, any agent that can induce the production of \(\text{H}_2\text{O}_2\) and hypochlorite in humans or animals is a potential EDC.

Considering the importance of \(\text{H}_2\text{O}_2\) and hypochlorite in human body, studies relating their human blood concentration were summarized. As shown in Table 1, the reported concentrations of \(\text{H}_2\text{O}_2\) in human blood samples varied greatly, which ranged from 0.1 to 6050 \(\mu\text{M}\). Among these, some exceeded the IC\(_{50}\) value that is reported in this work for arylsulfatase and \(\beta\)-glucuronidase, which clearly suggests that \(\text{H}_2\text{O}_2\) could act as an EDC via inhibition of arylsulfatase. Compared to \(\text{H}_2\text{O}_2\), hypochlorite showed a much stronger inhibition to arylsulfatase, simultaneously showing inhibition to \(\beta\)-glucuronidase, which are all pH-dependent. As hypochlorite can also be endogenously produced through peroxidation of chloride ion by the catalysis of the enzyme myeloperoxidase in leukocytes including macrophages, monocytes, and neutrophils, the adverse effect of any potential EDC, via induction of \(\text{H}_2\text{O}_2\) and hypochlorite, is likely enhanced when the production of hypochlorite is at a more favorable condition. It should be noted that because of the instability of \(\text{H}_2\text{O}_2\) in human blood as well as the matrix interferences, not all the concentration data summarized in Table 1 are correct.49 However, it is still believable that \(\text{H}_2\text{O}_2\) and hypochlorite in humans can act as two special EDCs via the inhibition of arylsulfatase and/or \(\beta\)-glucuronidase, which further suggests that any agent that can induce the production of \(\text{H}_2\text{O}_2\) or

Figure 4. Dose–response curves of NaClO on arylsulfatase (A) and \(\beta\)-glucuronidase (B) under different pH conditions.

Figure 5. Dose–response curves of PAA on arylsulfatase (A) and \(\beta\)-glucuronidase (B) under different pH conditions.
Figure 6. Inhibitions of H$_2$O$_2$, NaClO, and PAA with different concentrations on arylsulfatase and/or β-glucuronidase.
hypochlorite is a potential EDC. To the best of our knowledge, this is the first report that demonstrates that H$_2$O$_2$, hypochlorite, and PAA can effectively inhibit arylsulfatase and/or β-glucuronidase, which further suggests that some EDCs may act as endocrine disruptors via the induction of H$_2$O$_2$ and hypochlorite.

CONCLUSIONS

It was demonstrated for the first time that H$_2$O$_2$, hypochlorite, and PAA could effectively inhibit arylsulfatase and/or β-glucuronidase. The following conclusions can be drawn.

1. Hypochlorite and PAA at the concentration level of μM could significantly inhibit both arylsulfatase and β-glucuronidase, whereas H$_2$O$_2$ was only effective for inhibiting arylsulfatase.

2. The inhibition of H$_2$O$_2$ and PAA to arylsulfatase and β-glucuronidase was found to be reversible, whereas the inhibition was found to be irreversible for hypochlorite.

3. H$_2$O$_2$, hypochlorite, and PAA may behave as special endocrine disruptors through the inhibition of arylsulfatase and/or β-glucuronidase. This indeed led to an extended family of known endocrine disruptors.

Figure 7. Lineweaver–Burk plots of the inhibition reaction of arylsulfatase in the presence of H$_2$O$_2$ (A) and PAA (B). Lineweaver–Burk plots of the inhibition reaction of β-glucuronidase in the presence of PAA (C).

Table 1. Hydrogen Peroxide in Humans Reported by Different Studies

number	objective	sample type	sample size	concentration (μM)	reference
1	man	plasma	1	4.825	48
2	man	plasma	1	5.5	49
3	men	plasma	17	5.85–7.15	50
4	men	plasma	50	2.14–3.15	51
5	men and women	plasma	236	0.61–6.79	52
6	children	plasma	1	1.4–2	53
7	men and women	plasma	60	2.5–6.2	54
8	men and women	plasma	30	21–113	55
9	men and women	plasma	53	30.5–50.3	56
10	pregnant women	plasma	31	50.1–66.9	57
11	men	blood	6	114–577 (288)	58
12	men	plasma	6	13–57 (34)	58
AUTHOR INFORMATION

Corresponding Author

Ze-hua Liu — School of Environment and Energy and Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou S10006, Guangdong, China; Key Laboratory Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou S10006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou S10006, Guangdong, China; orcid.org/0000-0003-3293-5356; Phone: +86-20-39380508; Email: zehualiu@scut.edu.cn

Authors

Shu-shu Zhong — School of Environment and Energy, South China University of Technology, Guangzhou S10006, Guangdong, China

Jun Zhang — School of Environment and Energy, South China University of Technology, Guangzhou S10006, Guangdong, China

Zhi Dang — School of Environment and Energy, South China University of Technology, Guangzhou S10006, Guangdong, China

Yu Liu — Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute and School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 637141, Singapore

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c06060

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the Program for National Natural Science Foundation of China (nos. 21577040; 21107025); Science and Technology Program of Guangzhou, China (nos. 201904010100 and 20151001068); and Special funds for public welfare research and capacity building in Guangdong Province (no. 2015A020215003) as well as the Guangdong Science and Technology Program (2020B121201003).

REFERENCES

(1) Dzialoszynski, L. M.; Frohlich, A.; Kuczynski, J.; Pydzik, T. The activity of arylsulfatase in some tumors of the genital organs in women. Arch. Immunol. Ther. Exp. 1967, 15, 97–99.

(2) Posey, L. E.; Roy Morgan, L. Urine enzyme activities in patients with transitional cell carcinoma of the bladder. Clin. Chim. Acta 1977, 74, 7–10.

(3) Taha, M.; Almandil, N. B.; Rashid, U.; Ali, M.; Ibrahim, M.; Gollapalli, M.; Mosaddik, A.; Khan, K. M. 2,5-disubstituted thiadiazoles as potent β-glucuronidase inhibitors; Synthesis, in vitro and in silico studies. Bioorg. Chem. 2019, 91, 103126.

(4) Parenti, G.; Meroni, G.; Ballabio, A. The sulfatase gene family. Curr. Opin. Genet. Dev. 1997, 7, 386–391.

(5) Gruber, C. J.; Tschugguel, W.; Schneeberger, C.; Huber, J. C. Production and actions of estrogens. N. Engl. J. Med. 2002, 346, 340–352.

(6) Zhao, Y.; Boyd, J. M.; Sawyer, M. B.; Li, X.-F. Liquid chromatography tandem mass spectrometry determination of free and conjugated estrogens in breast cancer patients before and after exemestane treatment. Anal. Chim. Acta 2014, 806, 172–179.

(7) Reed, M. J.; Purohit, A.; Woo, L. W. L.; Newman, S. P.; Potter, B. V. L. Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr. Rev. 2005, 26, 171–202.

(8) Almandil, N. B.; Taha, M.; Gollapalli, M.; Rahim, F.; Ibrahim, M.; Mosaddik, A.; Anouar, E. Indole bearing thiadiazole analogs: synthesis, β-glucuronidase inhibition and molecular docking study. BMC Chem. 2019, 13, 14.

(9) Chapman, E.; Ding, S.; Schultz, P. G.; Wong, C.-H. A potent and highly selective sulfotransferase inhibitor. J. Am. Chem. Soc. 2002, 124, 14524–14525.

(10) Rath, V. L.; Verdugo, D.; Hemmerich, S. Sulfotransferase structural biology and inhibitor discovery. Drug Discovery Today 2004, 9, 1003–1011.

(11) Taha, M.; Imran, S.; Alomari, M.; Rahim, F.; Woadood, A.; Mosaddik, A.; Uddin, N.; Gollapalli, M.; Aliqhtani, M. A.; Bamarouf, Y. A. Synthesis of oxadiazole-coupled-thiadiazole derivatives as a potent β-glucuronidase inhibitors and their molecular docking study. Bioorg. Med. Chem. 2019b, 27, 3145–3155.

(12) Walaszek, Z. Potential use of D-glucaric acid derivatives in cancer prevention. Cancer Lett. 1990, 54, 1–8.

(13) Zhang, J.; Liu, Z.-h.; Zhong, S.-s.; Wang, H.; Caidan, B.; Yin, H.; Dang, Z. Strategy for effective inhibition of arylsulfatase/β-glucuronidase to prevent deconjugation of sulfate and glucuronide conjugates in wastewater during sample collection and storage. Sci. Total Environ. 2020, 703, 135536.

(14) Hidalgo, E.; Bartolome, R.; Dominguez, C. Cytotoxicity mechanisms of sodium hypochlorite in cultured human dermal fibroblasts and its bactericidal effectiveness. Chem.-Biol. Interact. 2002, 139, 265–282.

(15) Huang, Q.; Dawson, R. A.; Pegg, D. E.; Kearney, J. N.; Macneil, S. Use of peracetic acid to sterilize human donor skin for production of acellular dermal matrices for clinical use. Wound Repair Regen. 2004, 12, 276–287.

(16) Hugo, W. B. A brief history of heat, chemical and radiation preservation and disinfection. Int. Biodeterior. Biodegrad. 1995, 36, 197–217.

(17) Loo, A. E. K.; Halliwell, B. Effects of hydrogen peroxide in a keratinocyte-fibroblast co-culture model of wound healing. Biochem. Biophys. Res. Commun. 2012, 423, 253–258.

(18) Bekeschus, S.; Kolata, J.; Winterbourn, C.; Kramer, A.; Turner, R.; Weltmann, K. D.; Bröker, B.; Masur, K. Hydrogen peroxide: A central player in plasma-induced oxidative stress in human blood cells. Free Radical Res. 2014, 48, 542–549.

(19) Forman, H. J.; Bernardo, A.; Davies, K. J. A. What is the concentration of hydrogen peroxide in blood and plasma? Arch. Biochem. Biophys. 2016, 603, 48–53.

(20) Koide, Y.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T. Development of an Si-Rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. J. Am. Chem. Soc. 2011, 133, 5680–5682.

(21) Sato, Y.; Ogino, K.; Sakano, N.; Wang, D. H.; Yoshida, J.; Akazawa, Y.; Kanbara, S.; Inoue, K.; Kubo, M.; Takahashi, H. Evaluation of urinary hydrogen peroxide as an oxidative stress biomarker in a healthy Japanese population. Free Radical Res. 2013, 47, 181–191.

(22) GB/T 19106. Solution of Sodium Hypochlorite, 2013.

(23) GB/T 19104. Peracetic Acid Solution, 2008.

(24) Yuan, S.-f.; Liu, Z.-h.; Lian, H.-X.; Yang, C.; Lin, Q.; Yin, H.; Dang, Z. Simultaneous determination of estrogenic odorant alklyphenols, chlorophenols, and their derivatives in water using online headspace solid phase microextraction coupled with gas chromatography-mass spectrometry. Environ. Sci. Pollut. Res. 2016, 23, 19116–19125.

(25) Yuan, S.-f.; Liu, Z.-h.; Lian, H.-X.; Yang, C.-t.; Lin, Q.; Yin, H.; Dang, Z. Simultaneous determination of eleven estrogenic and odorous chloro- and bromo-phenolic compounds in surface water through an automated online headspace SPME followed by on-fiber derivatization coupled with GC-MS. Anal. Methods 2017, 9, 4819–4827.
(26) Johnson, K. A.; Goody, R. S. The Original Michaelis-Menten Constant: Translation of the 1913 Michaelis-Menten Paper. Biochemistry 2011, 50, 8264–8269.

(27) Melnick, R. Introduction–workshop on characterizing the effects of endocrine disruptors on human health at environmental exposure levels. Environ. Health Perspect. 1999, 107, 603–604.

(28) U.S. EPA. Special Report on Environmental Endocrine Disruption: An Effect as Assessment and Analysis. EPA/630/r-96/012, 1997.

(29) Bovee, T. F. H.; Helsdingen, R. J. R.; Rietjens, I. M. C. M.; Keijer, J.; Hoogenboom, R. L. A. P. Rapid yeast bioassays stably expressing human estrogen receptors α and β and green fluorescent protein: A comparison of different compounds with both receptor types. J. Steroid Biochem. Mol. Biol. 2004, 91, 99–109.

(30) Liu, Z.-h.; Kanjo, Y.; Mizutani, S. Urinary excretion rates of natural estrogens and androgens from humans, and their occurrence and fate in the environment: a review. Sci. Total Environ. 2009, 407, 4975–4985.

(31) Liu, Z.-h.; Kanjo, Y.; Mizutani, S. A review of phytoestrogens: their occurrence and fate in the environment. Water Res. 2010, 44, 567–577.

(32) Luo, Q.; Liu, Z.-h.; Yin, H.; Dang, Z.; Wu, P.-x.; Zhu, N.-w.; Lin, Z.; Liu, Y. Migration and potential risk of trace phthalates in bottled water: A global situation. Water Res. 2018, 147, 362–372.

(33) Luo, Q.; Liu, Z.-h.; Yin, H.; Dang, Z.; Wu, P.-x.; Zhu, N.-w.; Lin, Z.; Liu, Y. Global review of phthalates in edible oil: An emerging and nonnegligible exposure source to human. Sci. Total Environ. 2020, 704, 135369.

(34) Wang, H.; Liu, Z.-h.; Tang, Z.; Zhang, J.; Yin, H.; Dang, Z.; Wu, P.-x.; Liu, Y. Bisphenol analogues in Chinese bottled water: Quantification and potential risk analysis. Sci. Total Environ. 2020, 713, 136583.

(35) Benjamin, S.; Masai, E.; Kamimura, N.; Takahashi, K.; Anderson, R. C.; Faisal, P. A. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J. Hazard. Mater. 2017, 340, 360–383.

(36) Kay, V. R.; Chambers, C.; Foster, W. G. Reproductive and developmental effects of phthalate diesters in females. Crit. Rev. Toxicol. 2013, 43, 200–219.

(37) Mariana, M.; Feiteiro, J.; Verde, I.; Cairrao, E. The effects of phthalates in the cardiovascular and reproductive systems: A review. Environ. Int. 2016, 94, 758–776.

(38) Mathieu-Denoncourt, J.; Wallace, S. J.; de Solla, S. R.; Langlois, V. S. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen. Comp. Endocrinol. 2015, 219, 74–88.

(39) Luo, J.; Hendryx, M. Relationship between blood cadmium, lead, and serum thyroid measures in US adults—the National Health and Nutrition Examination Survey (NHANES) 2007–2010. Int. J. Environ. Health Res. 2014, 24, 125–136.

(40) Paschoulini, A. L.; Savassi, L. A.; Arantes, F. P.; Rizzo, E.; Bazzoli, N. Heavy metals accumulation and endocrine disruption in Prochilodus argenteus from a polluted neotropical river. Ecototoxicol. Environ. Saf. 2019, 169, 539–550.

(41) Stasenko, S.; Bradford, E. M.; Plasek, M.; Henson, M. C.; Varma, V. M.; Jurasovic, J.; Kucˇ s, V. Metals in human placenta: focus on the effects of cadmium on steroid hormones and leptin. J. Appl. Toxicol. 2010, 30, 242–253.

(42) Ghosh, J.; Das, J.; Manna, P.; Sill, P. C. Hepatotoxicity of di-(2-ethylhexyl)phthalate is attributed to calcium aggravation, ROS-mediated mitochondrial depolarization, and ERK/NF-κB pathway activation. Free Radical Biol. Med. 2010, 49, 1779–1791.

(43) Matés, J. M.; Segura, J. A.; Alonso, F. J.; Márquez, J. Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radical Biol. Med. 2010, 49, 1328–1341.

(44) Matovíc, V.; Buha, A.; Dukić-Ćosić, D.; Bulat, Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem. Toxicol. 2015, 78, 130–140.

(45) Shen, C.; Wang, Y.; Shen, Q.; Wang, L.; Lu, Y.; Li, X.; Wei, J. Dihydroxy (2-ethylhexyl) phthalate induced the growth inhibition and oxidative damage in the microalgae Chlorella vulgaris. IOP Conf. Ser. Earth Environ. Sci. 2019, 227, 052054.

(46) Szymańska-Chabowska, A.; Beck, A.; Porga, R.; Andrezejak, R.; Antonowicz-Juchniewicz, J. Evaluation of DNA damage in people occupationally exposed to arsenic and some heavy metals. Pol. J. Environ. Stud. 2009, 18, 1131–1139.

(47) Yap, Y. W.; Whiteman, M.; Cheung, N. S. Chlorinative stress: An under appreciated mediator of neurodegeneration? Cell. Signalling 2007, 19, 219–228.

(48) Yamamoto, Y.; Brodsky, M. H.; Baker, J. C.; Ames, B. N. Detection and characterization of lipid hydroperoxides at picomole levels by high-performance liquid chromatography. Anal. Biochem. 1987, 160, 7–13.

(49) Yamamoto, Y.; Ames, B. N. Detection of lipid hydroperoxides and hydrogen peroxide at picomole levels by an HPLC and isoluminol chemiluminescence assay. Free Radical Biol. Med. 1987, 3, 359–361.

(50) Deskur, E.; Przywarska, L.; Dylewicz, P.; Szczepniak, L.; Rychlewski, T.; Wilk, M.; Wysocki, H. Exercise-induced increase in hydrogen peroxide plasma levels is diminished by endurance training after myocardial infarction. Int. J. Cardiol. 1998, 67, 219–224.

(51) Lacy, F.; O’Connor, D. T.; Schmid-Schönbein, G. W. Plasma hydrogen peroxide production in hypertensive and normotensive subjects at genetic risk of hypertension. J. Hypertens. 1998, 16, 291–303.

(52) Lacy, F.; Kailasam, M. T.; O’Connor, D. T.; Schmid-Schönbein, G. W.; Parmer, R. J. Plasma hydrogen peroxide production in human essential hypertension. Role of heredity, gender, and ethnicity. Hypertension 2000, 36, 878–884.

(53) Li, D.; Sun, W. P.; Zhou, Y. M.; Liu, Q. G.; Zhou, S. S.; Luo, N.; Bian, F. N.; Zhao, Z. G.; Guo, M. Chronic nicin overload may be involved in the increased prevalence of obesity in US children. World J. Gastroenterol. 2010, 16, 2378–2387.

(54) Banerjee, D.; Madhusoodanan, U. K.; Nayak, S.; Jacob, J. Urinary hydrogen peroxide: a probable marker of oxidative stress in malignancy. Clin. Chim. Acta 2003, 334, 205–209.

(55) Wierusz-Wysocka, B.; Wysocki, H.; Byks, H.; Zozułańska, D.; Wykrtowicz, A.; Kazmierczak, M. Metabolic control quality and free radical activity in diabetic patients. Diabetes Res. Clin. Prat. 1995, 27, 193–197.

(56) Kazmierczak, M.; Wysocki, H.; Wykrtowicz, A.; Minczykowski, A. Estimation of hydrogen peroxide plasma levels in patients evaluated for coronary heart disease using dipyrindamide infusion followed by SPECT. Coron. Artery Dis. 1995, 6, 65–70.

(57) Tsukimori, K.; Yoshitomi, T.; Morokuma, S.; Fukushima, K.; Wake, N. Serum uric acid levels correlate with plasma hydrogen peroxide and protein carbonyl levels in preeclampsia. Am. J. Hypertens. 2008, 21, 1343–1346.

(58) Varma, S. D.; Devmanoharan, P. S. Hydrogen peroxide in human blood. Free Radical Res. Commun. 1991, 14, 125–131.

(59) Liu, Z.-h.; Dang, Z.; Yin, H.; Liu, Y. Making waves: Improving removal performance of conventional wastewater treatment plants on endocrine disrupting compounds (EDCs): their conjugates matter. Water Res. 2021, 188, 116469.

(60) Tang, Z.; Liu, Z.-h.; Wang, H.; Dang, Z.; Yin, H.; Zhou, Y.; Liu, Y. Trace determination of eleven natural estrogens and insights from their occurrence in a municipal wastewater treatment plant and river water. Water Res. 2020, 182, 115976.