Title	固体CaOの毛細管現象を利用した溶鉄の脱硫反応の試み
Author(s)	田中, 敏宏；小木曾, 由美；上田, 満 他
Citation	鉄と鋼. 2009, 95(3), p. 275-281
Version Type	VoR
URL	https://hdl.handle.net/11094/26368
rights	©日本鉄鋼協会

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
Synopsis: In order to carry out the de-sulfurization of liquid Fe, solid CaO is usually used as a flux, but some of solid CaO particles are not melted into molten slag, and all CaO are not always used for the refining. We have investigated how to use the solid CaO directly and efficiently for the above refining processes. Solid CaO particles have small capillary tubes from their surface to inside. When a molten slag is wetted with solid CaO, the molten slag containing some impurities such as CaS and P2O5 is expected to penetrate into those capillary tubes. Although chemical reactions in solid phase are generally believed to be very slow due to slow diffusion in solid phase, those impurities are absorbed in solid CaO rapidly by capillary force and they are removed from molten steels. We named this refining process as Capillary Refining. In the present paper, we have tried to apply capillary refining to de-sulfurization of liquid Fe and carbon-saturated liquid Fe by using molten CaO-Al2O3 and CaO–SiO2–MgO–Al2O3 slags.

Key words: refining; desulphurization; capillary; molten slag.

1. 結言

現在、鉄鋼プロセスにおいて大量に排出されるスラグの利材化が大きな課題となっている。排出されたスラグの大半は路盤材やコンクリート等の材料として再利用されているが、スラグは製鉄プロセスの副生物であり、根本に排出量を削減することが極めて重要である1,2)。特に、スラグの発生量の多すぎる場合におけるスラグ量削減のための対策が求められている3)。そのために、例えば溶鉄の脱硫、脱硫工程において精錬剤として用いられるCaOの反応効率の向上が不可欠である。一般に固体—液体間の反応は固体表面から内部へ至る反応生成物の固体内拡散に律速される反応となるために反応は非常に遅い。溶鉄脱硫・脱硫においてもCaOを固体のまま用いると固体CaOの反応効率が悪いために、CaOを溶融フラックスの成分として扱う液—液反応が用いられた。脱硫・脱硫反応を促進するためにには塩基度を高くすることが有効であるが、そのためにCaOを大量に添加すると固体CaOが溶けずに残るためにスラグ量増加の一因となり、結果的にCaOの反応効率の低下を招くことがになる。さらに、これまでCaO系のフラックスの塩基度を変化させることなく流動性を向上させる溶剤として大量に用いられてきた珪石CaF2が環境問題への対応のためにほとんど使用できなくなっている3)。した生じる場合には液体から不純物を除去し、固体中の細孔内に不純物を固定することが期待できる。固体CaOは石灰石CaCO3を焼成して作製されるが、その焼成過程においてCO2ガスが発生することによって微細孔が生じる。そのため、固体CaOには多くの微細孔が存在する。そこで微細管現象によって微細孔中に酸や硫黄を含んだ液体を浸透させることができれば、固体のCaOを用いても効率の良い脱硫・脱硫反応が達成可能である。特に、浸透現象は液体が低粘度、高表面張力の場合には高速で生じ、固相内の拡散に律速されない反応プロセスが可能となる。

Capillary Refiningの概念図をFig. 1に示す。Capillary Refiningは微細管現象による浸透を利用するために固体CaOと液体が濡れることが条件となるがCaOと溶鉄、特に炭素飽和溶鉄とは濡れないために、単純には微細管現象は生じない。そこで固体CaOと溶鉄の間に溶融酸化物を介在させる必要がある。CaOと溶融酸化物は濡れるので、この溶融酸化物が脱硫能・脱硫能を持てば、酸や硫黄を含んだ溶融酸化物が固体CaOの微細孔内に浸透して酸や硫黄は固体CaO微細孔壁に固定され、脱硫・脱硫反応が生じると考えられる。また、固体CaOが溶融スラグと常に共存することによって、溶融スラグ中のCaOの活量は常に一定値を保ち、脱硫能を高め維持できること5)を本手法の
3. 実験方法

3.1 固体CaOの作製

キャピラー精錬は毛細管現象による浸透を利用するために、固体CaOの持つ細孔の違いが大きく影響すると考えられる。そこで本研究では、軟焼3)のCaO、硬焼5)のCaO、およびこれらの中間の焼成条件によって得られるCaOの3種類の試料を実験に用いた。軟焼のCaOはCaCO₃からCaOガスの解離が起こった直後の細かき孔が保たれているCaOである。硬焼のCaOは軟焼の状態からさらに高温で長時間焼成することによって焼き結まり、細孔の融合・消減が進んだ比較的細かい孔を持つCaOである。現在の鉄鋼プロセスでは軟焼のCaOに近いものが用いられている。上述のCaOを得るために、本研究ではそれぞれCaCO₃を次の条件で焼成した。すなわち、CaCO₃を1) 950°Cで3時間の焼成（軟焼）、2) 1250°Cで5時間の焼成（硬焼）、および3) 硬焼時間中において1200°Cで1時間の焼成を行った。これらの条件で作製したCaOの微細組織をSEMによって観察した。

3.2 溶融カルシウムアルミネートを利用した溶鉄の脱硫実験

先ず最初に、固体CaO基板上に溶融カルシウムアルミネート層を生成させ、その上に置いた炭素線和溶鉄の液滴に対して脱硫実験を行なった。実験に用いた高周波誘導炉をFig. 2に示す。炉内中央に発熱体として黒鉄るつぼを設置した。脱硫実験に先立ち、CaO表面にカルシウムアルミネートを次のように生成させた。すなわちCaOるつぼ内の固体CaO（寸法：約10mm×10mm×10mm）の上にアルミナ粉末を塗布し、約100minで1500°Cまで昇温し、90min間保持した。このようにして表面にカルシウムアルミネートが生成したCaO試料の上に炭素線和Fe-0.2mass%Sを約1~2g置き、1500°Cで30分間保持して脱硫反応を行わせた。脱硫をArガス雰囲気で行った、実験後試料を取り出しSEMによる断面観察およびEDXによる各元素の分析を行った。また、脱硫実験後の鉄試料は燃焼－赤外線吸収法によりS濃度を分析し、脱硫量を測った。次に、カルシウムアルミネートの生成と脱硫反応が同時にある方法を用いてCapillary Refiningの実験を試みた。実験にはFig. 2の高周波誘導炉を用い、3.2節の実験で発熱体として用いた黒鉄るつぼおよびCaOるつぼの代わりに、炉内中央に設置したアルミナるつぼ内で溶鉄を融解させ、1450°C、Arガス雰囲気下で脱硫反応を行った。鉄試料は炭素線和鉄にFeSをS濃度が0.2mass%程度になるように混合して予め溶製した。アルミナるつぼの中に約100gの鉄試料とアルミナ粉末を入れて加熱し溶製させた。Fig. 3に示すように内径の模式図を示す。アルミナ粉末を溶鉄試料の上部に浮かした状態で上部に通じていたCaO棒（寸法：約5mm×10mm×50mm）を徐々に下ろし、溶鉄試料中に浸漬させた。アルミナ粉末は鉄試料とCaO棒の間にできるメニスカス部分に集まり、このメニスカス部分でカルシウムアルミネートを生成させ、同時に脱硫反応を生じさせた。固体CaO試料は鉄試料中にゆっくりと浸漬させて5分間保持後に引き上げた。実験後の固体CaO試料は切断・研磨後、SEMによる断面観察およびEDXによる各元素の分析を行った。

3.3 固体CaOと平衡するSiO₂–CaO–MgO–Al₂O₃ 4元系溶融酸化物を利用した溶鉄の脱硫実験

固体CaOと平衡する溶融酸化物として岩瀬ら5)はSiO₂–CaO–MgO–Al₂O₃ 4元系スラグを報告している。Fig. 4にAl₂O₃を35mass%に固定した觀3元系の状態図の一部を示す。この状態図中の丸印の組成のスラグは1400~1450°C付近で固体CaOと平衡する。またこのスラグはサルファイドキャパシティが高く5)、粘度も低いことが報告されており、Capillary Refiningに適していると考えられる。最初に、固体CaOと平衡する上記の溶融酸化物の固体CaO内部への浸透現象を確認するための実験を行った。実験に用いたスラグの組成をTable 1に示す。Table 1の組成にな
4. 実験結果・考察

4・1 3種類の固体CaOの性状
実験に用いた3種類のCaOの破面をSEMで観察した結果をFig. 5～Fig. 7に示す。CaOを950℃で3時間焼成して得られたCaOはFig. 5に示すように、CaO結晶粒度にあり2～3μm程度の細孔と結晶粒内に0.1μm以下のかさの細孔を有していた。次にCaCO₃を1250℃で5時間焼成して得られたCaOの微細組織をFig. 6に示す。同図の倍率は上述のFig. 5とは異なっているが、焼成が進む粒子内の細孔がほぼ消失しているためにCaO粒子間に5～10μm程度の細孔のみを有しており、硬質状であることがわかった。また、Fig. 7に示すように、CaCO₃を黒鉱塩塗布中において1200℃で1時間焼成して得られたCaOは局所的に1μm程度の細孔が絡み合ったような構造を持っていることがわかった。CaOの微細孔制御とその機構解明についてはさらに検討を進める必要がある。

4・2 溶融カルシウムアルミニートを利用した溶鉄の脱硫実験

CaOの表面にアルミナ粉末を塗布して昇温し、溶融カルシウムアルミニートを生成させて脱硫を行うと、鉄試料の脱硫率は70～90%の高い数値が得られた。実験後の固体CaO近傍の断面観察結果の一例をFig. 8に示す。Fig. 8から、この試料のCaOと鉄試料の界面部分に50μmから100μmの厚さのAIとSの溶解層が存在することがわかった。またこの溶解層の部分を組成分析した結果をTable 2に示す。Table 2より、この溶解層ではカルシウムアルミニートが存在するが、Sが45at%程度存在してはほぼCaSに近い組成であることがわかった。また、CaO内部のAlが網目構造の
ように存在している部分も同様に組成分析を行った。その結果をTable 3に示す。Table 3よりCaO内部の網目構造部分ではSはほとんど存在せず、Alに比べてCaの存在割合が高いことがわかった。Fig.9に示すCaO-Al₂O₃の二元系状態図より、1500℃近傍の温度において液相と共存するカルシウムアルミニートは低融点のCa:Al=1:1近傍の組成で生成すると考えられる。したがって、この溶融カルシウムアルミニートはCaO内部への浸透過程において供給にCaOの割合が高い組成へと変化することをわかった。溶融カルシウムアルミニート中のCaOの割合が高くなると、高融点の化合物である3CaO·Al₂O₃が析出したと考えられる。この3CaO·Al₂O₃の融点は1540℃であるため、脱硫反応の際にはCaO内部のカルシウムアルミニートは固体として凝縮あるいは固液共存状態となり、溶融スラグの浸透を妨げため、SがCaOの内部に浸透しなかったと考えられる。特に本実験では、脱硫実験を行なう前に、カルシウムアルミニートを固体CaO表面上に生成させており、その際、溶融カルシウムアルミニートが固体CaO中に浸透している可能性が高い。したがって、Capillary Refiningによって脱硫を行い、SをCaO内部へ浸透させるためには溶融カルシウムアルミニートの浸透と脱硫反応が同時に生じることが望ましいことがわかった。

次に、1500℃においてカルシウムアルミニートの生成と脱硫が同時に起こる方法で実験を行った結果について述べる。一例として軟焼のCaO試料の実験後の外観および断面写真をFig.10に示す。図10に示す試料外観では、鉄試料に浸漬したもの塩上で領域が黒く変色していることが確認できた。また断面写真では、CaOと鉄試料の界面部分からCaO内部に1mm程度の黒い変色部分が確認できた。この試料断面をSEMおよびEDXで観察した結果をFig.11aに示す。Fig.11のそれぞれの図において右端がCaOと鉄試料の界面部分に相当する。界面部分で20～50μm程度の厚さのAlとSの濃化層が確認できる。この濃化部で組成分析を行った結果をTable 4に示す。Table 4よりSが40%程度存在し、この濃化部がほぼCaSの層であることがわかった。また、Alが5.2%程度であり、溶融カルシウムアルミニートの生成量は多くないことがわかった。このように、本実
4.3 固体CaOと平衡するSiO₂-CaO-MgO-Al₂O₃ 4元系
溶融酸化物を利用した溶鉄の脱硫実験

前述のFig. 9から、1500℃以上では溶融カルシウムアルミネートは固体CaOと平衡共存できることがわかる。本研究では1500℃以下の温度域においてCaO-Al₂O₃系に代替してキャリラリリフィニングを適用できるような溶融スラグの探索を行い、岩瀬ら5,6の提案しているSiO₂-CaO-MgO-Al₂O₃ 4元系溶融酸化物に着目し、この溶融酸化物を用いた実験を試みた。

固体CaOと平衡共存するSiO₂-CaO-MgO-Al₂O₃ 4元系溶融スラグを用いた浸透実験後の試料外観写真をFig.12に示す。

(a) 軟焼のCaO (b) 硬焼のCaO (c) 中間焼成条件によるCaOに対する各図において、矢印はCaO試料がスラグに浸透した際の液体表面の位置を示している。この外観写真より、各々のCaO試料において、液体表面の位置よりも上部にまで溶融スラグが浸透していることがわかる。また、溶融スラグは60秒で5mm以上浸透し、浸透速度は十分に速いことがわかった。さらに試料断面をSEMで観察した結果をFig.13に示す。

Fig. 9. Phase diagram in CaO–Al₂O₃ binary system.

Fig. 10. External appearance (a) and cross section (b) of soft burned CaO after an experiment of desulfurization using molten calciumaluminate.

Fig. 11. SEM image and EDX mapping at the interface between CaO and liquid Fe in soft burned CaO after an experiment of desulfurization using molten calciumaluminate.

Table 4. EDX analysis of the chemical composition at an interface layer between CaO and liquid Fe in Fig.11.

	Ca	Al	S	Fe
at%	47.6	5.2	39.7	7.5

Fig. 12. SEM image and EDX mapping at the interface between CaO and liquid Fe in soft burned CaO after an experiment of desulfurization using molten calciumaluminate.
Capillary Refiningでは細孔内表面をできるだけ多く利用する必要があるが、硬焼のCaO試料では細孔内表面が少なかったためにCapillary Refiningには適していないことがわかった。

SiO₂–CaO–MgO–Al₂O₃ 4元系溶融カタログを用いた溶硫実験ではスラグが溶けた直後から、次第に緻密化して生じると考えられる脱硫反応に伴うCOガスの発生が確認された。

\[\text{CaS} + \text{CO} = \text{CaO} + \text{CO}_2 \] (1)

上式において、\(\text{CaS} \)はそれぞれ溶渣中の硫黄と炭素、\(\text{CaO} \)と\(\text{CaS} \)はそれぞれ溶融スラグ中の\(\text{CaO} \)と\(\text{CaS} \)、および\(\text{CO}_2 \)はCOガスを表している。

COガススラグが溶解してから5〜10分程度で徐々に発生量が減少し、ほぼ一定の割合になった。

Fig. 12. External appearance of solid CaO after immersion test with molten SiO₂–CaO–MgO–35 mass% Al₂O₃ slag.

Fig. 13. SEM images of cross section of solid CaO after immersion test with molten SiO₂–CaO–MgO–35 mass% Al₂O₃ slag.

Fig. 14. External appearance (a) and cross section (b) of soft burned CaO after desulfurization using molten SiO₂–CaO–MgO–Al₂O₃ molten slag.

さらにSもブラックの存在領域と同じ部分に存在し、溶融スラグの浸透先端部にまで到達していることがわかった。この結果はSが融解スラグ中に含まれてCaO内の細孔領域中で浸透してきたことを示している。以上のように、図14の実験結果から、固体CaOと平衡するSiO₂–CaO–MgO–Al₂O₃ 4元系溶融スラグを用いれば、1500°C以下でもCapillary Refining
酸化物が直接平衡共存する条件下にある溶融スラグを利用する必要があることが明らかとなった。

（2）1450℃において固体CaOを平衡するSiO₂－CaO－MgO－35mass%Al₂O₃ 4元系スラグは固体CaO内部に高速で浸透した。

（3）固体CaOと平衡するSiO₂－CaO－MgO－35mass%Al₂O₃ 4元系溶融スラグを用いた脱硫実験では、1450℃においてSを含んだ溶融スラグが固体CaO内部に浸透し、脱硫反応に対しても固体CaOを用いたCapillary Refiningが可能であることがわかった。

文 献
1）藤原 稔：ふじらむ．8 (2003), 883.
2）藤原 稔：鉄鋼スラグの特性と新たな活用—地球環境保全に挑戦する鉄鋼スラグの利用を見つける—, 第44, 45回白石記念講座, 日本鉄鋼協会, (2001), 1.
3）製鋼スラグ極少量化に向けての開発動向と課題, 日本鉄鋼協会, 製鋼部会・製鋼スラグ極少量化研究会, (1999).
4）T.Tanaka, S.Hara, R.Oguni, K.Ueda and K.Marukawa: ISIJ Int., 41 (2001), 70.
5）石灰ハンドブック, 日本石灰協会, (1992).
6）H.Hayakawa, M.Hasegawa, K.Oh-nuki, T.Sawai and M.Iwase: Steel Research International, 77 (2006), 14.
7）M.Nakamoto, T.Tanaka, J.Lee and T.Usui: ISIJ Int., 44 (2004), 2115.

による脱硫が可能であることがわかった。

5. 結言

本研究では固体CaOによる溶鉄ならびに溶融炭素飽和鉄の脱硫反応に対するCapillary Refiningの可能性を検討するための基礎的な実験を行い、以下の結果が得られた。

（1）溶融酸化物としてカルシウムアルミネートを利用する場合、高融点のカルシウムアルミネート化合物が生成する条件下では、固体CaO中の細孔内でカルシウムアルミネートが固化し、固体CaO内への溶融スラグの浸透が十分に生じないことがわかった。これより、溶融酸化物が固体CaO内にSと共に浸透するためには、固体CaOと溶融