Towards the physical point hadronic vacuum polarisation from Möbius DWF

Marina Marinković
UNIVERSITY OF
Southampton

with: P. A. Boyle, A. Jüttner, A. Portelli, ...
UKQCD
Rudy Arthur (Odense)
Peter Boyle (Edinburgh)
Luigi Del Debbio (Edinburgh)
Shane Drury (Southampton)
Jonathan Flynn (Southampton)
Julien Frison (Edinburgh)
Nicolas Garron (Dublin)
Jamie Hudspith (Toronto)
Tadeusz Janowski (Southampton)
Andreas Juetttner (Southampton)
Ava Kamseh (Edinburgh)
Richard Kenway (Edinburgh)
Andrew Lytle (TIFR)
Marina Marinkovic (Southampton)
Brian Pendleton (Edinburgh)
Antonin Portelli (Southampton)
Thomas Rae (Mainz)
Chris Sachrajda (Southampton)
Francesco Sanfilippo (Southampton)
Matthew Spraggs (Southampton)
Tobias Tsang (Southampton)

RBC
Ziyuan Bai (Columbia)
Thomas Blum (UConn/RBRC)
Norman Christ (Columbia)
Xu Feng (Columbia)
Tomomi Ishikawa (RBRC)
Taku Izubuchi (RBRC/BNL)
Luchang Jin (Columbia)
Chulwoo Jung (BNL)
Taichi Kawanai (RBRC)
Chris Kelly (RBRC)
Hyung-Jin Kim (BNL)
Christoph Lehner (BNL)
Jasper Lin (Columbia)
Meifeng Lin (BNL)
Robert Mawhinney (Columbia)
Greg McGlynn (Columbia)
David Murphy (Columbia)
Shigemi Ohta (KEK)
Eigo Shintani (Mainz)
Amarjit Soni (BNL)
Sergey Syritsyn (RBRC)
Oliver Witzel (BU)
Hantao Yin (Columbia)
Jianglei Yu (Columbia)
Daiqian Zhang (Columbia)
Hadronic vacuum polarisation

Can be computed in Euclidean space-time [Blum ’02]

\[\Pi_{\mu\nu} = a^4 \sum_x e^{iQx} \langle J_{\mu}^{em}(x)J_{\nu}^{em}(0) \rangle \]

- \(\Pi_{\mu\nu}(Q) = (Q^2 \delta_{\mu\nu} - Q_{\mu}Q_{\nu})\Pi(Q^2) \)
- \(\hat{\Pi}(Q^2) = \Pi(Q^2) - \Pi(0) \)
- \(a_{HLO}^{\mu} = (\frac{\alpha}{\pi})^2 \int_0^\infty dQ^2 f(Q^2) \times \hat{\Pi}(Q^2) \)

Systematic uncertainties to be controlled - general

1. Simulations at physical \(m_\pi \)
2. Controlled continuum limit, FV effects
3.Disconnected diagrams [V. Gülpers, Mon, 14.55] [Della Morte et al. ’10]
4. Obtaining a real world result: charm quark, isospin effects . . .
Systematic uncertainties to be controlled - HVP related

- Conventional simulations do not allow access to sufficiently low Fourier momenta
- Integral is dominated in the region where relative errors are enhanced
- Structure of HVP tensor is such that $\Pi(0)$ is not directly accessible
- Systematic uncertainty introduced by extrapolation

Conventional procedure

- $\Pi(Q^2) = \frac{\Pi_{\mu\nu}(Q^2)}{Q_\mu Q_\nu - \delta_{\mu\nu} Q^2}$
- Transverse projection: $Q_\mu = 0$
- Take only diagonal components $\Pi_{\mu\mu}$
- $a^{HLO}_\mu = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dQ^2 f(Q^2) \times \hat{\Pi}(Q^2)$
Improving the systematics of connected HVP

Several new methods on the market

- R123 procedure ($\Pi(Q^2 = 0)$, utilising twisted BC formalism) [de Divitiis et al. '12]
- Padé approximants [Aubin et al. '12]
- Dispersive model study [Golterman et al. '13]
- Hybrid strategy [Golterman et al. '14] [Mon, 14.15, Sess 1D]
- HPQCD time moments [Chakraborty et al. '14] [Mon, 15.15, Sess 1D]
- ...

Challenge: Apply the optimal procedure to physical point data

This work: Fitting Padé approximants on the fresh DWF physical point data

inspired by [Aubin et al. '13]
Several new methods on the market

- **R123 procedure** \((\Pi(Q^2 = 0), \text{utilising twisted BC formalism}) \) [de Divitiis et al ’12]
- **Padé approximants** [Aubin et al ’12]
- **Dispersive model study** [Golterman et al ’13]
- **Hybrid strategy** [Golterman et al ’14] [Mon, 14.15, Sess 1D]
- **HPQCD time moments** [Chakraborty et al ’14] [Mon, 15.15, Sess 1D]
- ...

Challenge: Apply the optimal procedure to physical point data

This work: Fitting Padé approximants on the fresh DWF physical point data

inspired by [Aubin et al. ’13]
Non physical m_π, $a^{-1} \approx 1.3, 1.7, 2.3$ GeV

- Local current at source, conserved at sink
- DWF (Möbius scale=1.0), Iwasaki/DSDR gauge action
- Fitting Q^2- dependence of $\Pi(Q^2)$ up to $Q^2_C \approx 2.5 - 9$ GeV2

- Strong m_π dependence
- Eliminate the systematics of chiral extrapolation: computing HVP at m^phys_π
$N_f = 2 + 1$ Domain Wall ensembles

Boyle et al. '11

m_{π}^{phys}

$a^2 [\text{fm}^2]$ vs $m_{\pi} [\text{MeV}]$

- a^μ_{HLO} from DWF for non-physical m_{π} [Boyle et al '11]
- physical point HVP (●) recently measured → preliminary results!
a_{μ}^{HLO} from DWF at physical pion mass

Physical point lattice parameters:

- Möbius DWF, Iwasaki gauge action
 - $48^3 \times 96 \times 24$, $a^{-1} = 1.73$ GeV - measurements underway
 - $64^3 \times 128 \times 12$, $a^{-1} = 2.31$ GeV

HVP with Möbius DWF

- Möbius scale $= 2.0$
- Möbius conserved current [see talk by P. Boyle, Mon 6.10 p.m., 2.B]
- Local current at source, conserved at sink
- Point source, 12 source positions
Point vs. stochastic source

- Point source, 12 source positions
- $Z(2)$ wall source, 48 source positions
- (one-end trick) [McNeile et al. '06]

\[\Pi(Q^2) \]

$Q^2 [\text{GeV}^2]$
Point vs. stochastic source

- Point source, 12 source positions
- Z(2) wall source, 48 source positions
- (one-end trick) [McNeile et al. ’06]
- Comparison (12 src. positions each, log scale on y-axis)
- Point src. better in low-Q^2 region ($Q^2 \lesssim 0.2$ GeV2)
Physical point HVP from $N_f = 2 + 1$ DWF

Physical point data:

- $L/a = 48^3 \times 94 \times 24, \quad a^{-1} = 1.73\,\text{GeV}$
- $\Pi(Q^2)$ convergent sequence of PAs\[^{\text{[Aubin et al,'13]}}\]
 - VMD is unreliable
- Padé approximants $[N,D]$

\[
\Pi_{[N,D]}(Q^2) = \frac{\sum_{n=0}^{N-1} a_n Q^{2n}}{1 + \sum_{m=1}^{D} b_m Q^{2m}}
\]
L/a = 48, a−1 = 1.73 GeV, mπ = 138 MeV

Q^2_C = 1.5 GeV^2
Physical point HVP from $N_f = 2 + 1$ DWF

$L/a = 48$, $a^{-1} = 1.73$ GeV, $m_{\pi} = 138$ MeV

$Q^2_C = 1.5$ GeV2
Left: Physical point data (Möbius DWF)

Right: Dispersive model study [Golterman et al. ’13]

Same qualitative behaviour - Padé [2,2] looks acceptable

Nevertheless, even for Padé [2,2]

- Removing correlations
- Results for different choice of Q_C^2 not compatible

Quoting the value for a_{μ}^{HLO} would be premature
Physical point HVP from $N_f = 2 + 1$ DWF

Light and strange contributions separated

![Graph showing light and strange contributions]

Limited statistics (28 meas. config.) with physical m_π already gives:

- $\frac{\delta a_\mu^{stat.}}{a_\mu}$ for light contribution is $O(10)$ larger than for strange HVP
Summary

- Current status with DWF:
 - physical point data with $\sim 10\%$ stat. errors, measurements underway
 - in addition to the previous non-phys. point computation

- Significant increase signal/noise ratio near $Q^2 = 0$ coming from the light sector

- Large systematics with conventional procedure anticipated

Outlook

- Add another lattice spacing with m^{phys}_π

- Hybrid method [See talks: K. Maltman (Mon, 14.15, 1D)]

- HPQCD time-moment approach [See talks: B. Chakraborty (Mon, 15.15, 1D)] and possible improvements:
 - Discrete moments [See talks: K. Maltman (Mon, 14.15, 1D)]
 - Large volume limit [See talks: C. Lehner (Fri, 15.35, 8D)]

- Ultimate goal: a^{HLO}_μ with full control over syst. and stat. uncertainties ($< 1\%$)
Acknowledgements

- RBC-UKQCD collab. members
- T. Blum, L. Del Debbio, R. J. Hudspith, T. Izubuchi, C. Lehner, R. Lewis, K. Maltman, for useful discussions

- The research leading to these results has received funding from the European Research Council under the European Communitys Seventh Framework Programme (FP7/2007-2013) ERC grant agreement No 279757

- The calculations reported here have been done on DIRAC Bluegene/Q computer at the University of Edinburgh’s Advanced Computing Facility
[2, 2] Padé fits for different Q_C^2

Take correlations into account

Reference $a_{\mu}^{HLO}(Q_C^2_{\text{ref}})$ subtracted under bootstrap [$Q_C^2_{\text{ref}} = 1.5\text{GeV}^2$]

Results for different choice of Q_C^2 not combatible \rightarrow uncontrolled systematics