Surface roughness prediction and parametric optimization of shot blasting of Al7068 using RSM

D Pritima1*, V Dhinakaran2, B Stalin3, M Ravichandran4, M Balasubramanian5, C Anand Chairman4

1Department of Mechatronics Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India.
2Centre for Applied Research, Department of Mechanical Engineering, Chennai Institute of Technology, Kundrathur, Chennai-600 069, Tamil Nadu, India.
3Department of Mechanical Engineering, Anna University, Regional Campus Madurai, Madurai - 625 019, Tamil Nadu, India.
4Department of Mechanical Engineering, K.Ramakrishnan College of Engineering, Tiruchirappalli - 621112, Tamil Nadu, India.
5Department of Mechanical Engineering, University College of Engineering, Ramanathapuram Campus, Anna University, Ramanathapuram -623 513, Tamil Nadu, India.

* Corresponding author: pritimid@skcet.ac.in

Abstract. The mechanical based shot blasting was used to remove the oxides and scales from the surface of the materials. It was used to enhance the surface properties. In this work, aluminium 7068 alloy was involved in the shot blasting process. The particle velocity, standoff distance (SOD) and impact angles were included as input factors. These factors were mainly affects the Surface Roughness (SR). The round steel balls with diameter with 2 mm diameter were used for the shot blasting process. In addition to that, the elliptic and square shape of glass beads particles were used to enhance the surface finish. The parametric effect and surface roughness optimization was achieved through Response Surface Methodology (RSM). The role of factors has been analyzed through the variance test.

1. Introduction
Shot blasting process was used in aerospace, automotive, foundry and railways. The surface of the material was cleaned without any defects and strengthened through the process. No chemicals and acids were used to clean the work piece. The shot blasting experimentation was conducted on a solar heater absorber plate and its plate surface was improved [1]. The developed surface through water and steel shots were compared [2]. Shot peening experimental investigation was made on hardened gear steel and its hardness was determined [3]. The fatigue behavior was found in aluminium, magnesium during the shot blasting process [4]. The coated and non coated cutting tools were strengthened though shot blasting process [5]. The surface roughness of aluminum alloy were investigated through a sand blasting process [6]. The aircraft components were polished through the air blasting process and its appearance was better [7]. The fatigue behavior and surface finish were discussed in forged steel [8]. The cutting tool and tips was improved through micro blasting process [9]. The alumina grit blasting
behavior was studied in mild steel [10]. Many studies are based on the RSM, Taguchi approach and the variance analysis to predict the optimum performance of the mechanical, wear, corrosion behaviour of composites and the structural analysis of mechanical system components in the automotive, aerospace industry [11-43].

The present work deals with Surface roughness prediction and parametric optimization of shot blasting of Al7068. The shot blasting factors were optimized through response surface methodology.

2. Experimental method
The gun type of shot blasting machine was used. The combination of steel balls and glass beads were forced to the workpiece through compressed air. The inner part of the gun has mixing chamber. Steel balls and glass beads were continuously fed into the chamber and it was the impact to the work piece with the help of compressed air (1MPa). The surface roughness was depends on the impact of abrasives and steel balls. The aluminium 7068 alloy was cut into required size (30x20x5mm). The Mitutoyo portable tester was used to measure the surface roughness. The experimental arrangement was shown in Fig.1. The experimental outcomes for shot blasting process were shown in Table 1.

![Figure 1. Experimental set up for shot blasting process](image)

Table 1. Experimental outcomes for shot blasting process

Run	A: Particle velocity (m/s)	B: SOD (mm)	C: Impact angle (°)	Surface roughness (μm)
1	20	40	60	3.2
2	20	30	60	3.1
3	10	40	90	2.4
4	20	30	60	3.6
5	30	40	90	4.1
6	20	30	60	3.3
7	10	40	30	2.1
8	30	20	30	2.6
9	30	30	60	4.7
10	20	30	60	4.8
11	20	30	60	3.8
12	10	30	60	1.4
13	20	20	60	2.8
14	20	30	30	3.4
15	20	30	30	4.2
16	30	40	30	4.5
17	10	20	30	2.9
18	10	20	90	4.3
19	30	20	90	5.2
20	20	30	60	1.9

3. Response Surface Methodology
The response surface methodology was used to optimize the shot blasting parameters. The design of expert 12 version was used to analyze the factors. The sequential model was attained based on the
experimental results and it was shown in Table 2. The linear model was suggested which provides the F and P values were 3.14 and 0.0543 respectively. From the table, quadratic and cubic model was also intercepted. The linear and mean has provided the influential effect on the sequential model. It was concluded that based on the F value as 3.14.

Table 2. Sequential model based on experiments

Resource	SS	DF	MS	F-value	P-value	Suggested
Mean and Total	233.24	1	233.24			
Linear and Mean	7.62	3	2.54	3.14	0.0543	
2FI and Linear	3.66	3	1.22	3.14	0.0543	
Quadratic and 2FI	1.88	3	0.6283	0.8500	0.4977	
Cubic and Quadratic	2.56	4	0.6409	0.7965	0.5686	
Residual	4.83	6	0.8047			
Total	253.81	20	12.69			

The variance test was exposed in Table 3. From the table, the developed model was significant because of the obtained P value was smaller than 0.05. Hence, the developed model was fit to the experimental investigations. The surface roughness was depends on many factors, including abrasive particle size, velocity of the abrasives, standoff distance between the nozzle and work piece, impact angle and coverage of area of the workpiece. However, the particle velocity was produced the maximum effect on surface roughness for this experiment work.

Table 3. Variance test for surface roughness

Source	SS	DF	MS	F-value	P-value	Significant
Model	7.62	3	2.54	3.14	0.0443	Significant
A-Particle velocity	6.40	1	6.40	7.91	0.0125	
B-SOD	0.2250	1	0.2250	0.2782	0.0651	
C-Impact angle	0.9997	1	0.9997	1.24	0.2827	
Residual	12.94	16	0.8088			
Lack of Fit	8.11	10	0.8112	1.01	0.0404	
Pure Error	4.83	6	0.8047			
Cor. Total	20.57	19				

![Figure 2. Actual and predicted values for SR](image)
The deviation between actual and predicted values was shown in Fig. 2. The graph was drawn between residuals and normal percentage of probability. All the values were lies in a straight line. Only few values were slightly deviated from the straight line. The linear model and predicted values were confirmed through lack of fit and it was illustrated in Table 4. The desirability of result was indicated the optimal solutions and is shown in Table 5. The optimal surface roughness of 3.4 μm was attained at a velocity of 20 m/s, standoff distance of 30mm and impact angle of 60°.

Table 4. Investigation of lack of fit for linear developed model

Resource	SS	DF	MS	F-value	P-value
Linear	8.11	10	0.8112	1.01	0.5204
2FI	4.45	7	0.6355	0.7898	0.6216
Quadratic	2.56	4	0.6409	0.7965	0.5686
Pure Error	4.83	6	0.8047		

Table 5. Optimal solutions for shot blasting process

S.No	A: Particle velocity (m/s)	B: SOD (mm)	C: Impact angle (º)	Surface roughness (μm)
1	20	30	60	3.4

4. **Three-dimensional surface plot analysis**

The 3D surface plot was used to analyze the parametric causes and interactions. It was shown in Fig.3 (a-c). The Fig.3 (a) shown that the surface roughness was constantly up to particle velocity of 10 m/s. After that it has been gradually increased. Fig. 3 (b) shown that the impact angle and velocity has produced the correct fluctuations on surface roughness. Fig. 3 (c) shown that the surface roughness has been increased when the standoff distance between 20– 30 mm. After that it has been decreased. The wave form fluctuations have been produced by the impact angle on SR.

![Figure 3](image-url)
5. Conclusions
The following conclusions are drawn from the above experimental study:

- The SR was predicted on Al 7068 through the shot blasting process.
- The steel balls and glass beads were used as the abrasives in the present experimental work.
- The scales and oxides were removed from the material surface.
- The surface roughness was measured for each experiment.
- The RSM was used to optimize the SR factors. The optimal surface roughness of 3.4 μm was attained at a velocity of 20 m/s, standoff distance of 30mm and impact angle of 60º.
- The particle velocity has occupied the maximum role on SR. It was validated through the variance test.

6. References
[1] Ganesh Kumar, Poongsanam, Karthik Panchabikesan, Anto Joseph Deeyoko Leo and Velraj Ramalingam, 2018 Renew. Energy 127 213 DOI: 10.1016/j.renene.2018.04.056
[2] Beth Rosenberg, Lu Yuan and Scott Fulmer 2006 Appl. Ergon. 37 659 DOI: 10.1016/j.apergo.2005.05.014
[3] Nordin E and Alfredsson B 2017 Exp. Tech. 41 433 https://doi.org/10.1007/s40799-017-0183-4
[4] Naidu NKR and Raman SGS 2005 Int. J. Fatigue 27 323 DOI: 10.1016/j.ijfatigue.2004.07.007
[5] Kennedy DM, Vahey J and Hanney D 2005 Mater. Des. 26 203
[6] Laurentiu slatineanu, Stefan potârniche and Margareta coteata 2011 Proceedings in Manufacturing Systems, 6(2) 70
[7] Heaton R 2009 Met. Finish. 107(9) 34
[8] McKelvey SA and Fatemi A 2012 Int. J. Fatigue 36(1) 130 https://doi.org/10.1016/j.ijfatigue.2011.08.008
[9] Pathak C and Dodkar P 2020 Trans. Indian. Inst. Met. 73 571 https://doi.org/10.1007/s12666-020-01866-3
[10] Harris AF, Beevers A 1999 Int.J.Adhes. Adhes. 19(6)445 https://doi.org/10.1016/S0143-7469(98)00061-X
[11] Sudha G T, Stalin B and Ravichandran M 2019 Mater. Res. Express 6 096520 https://doi.org/10.1016/2053-1591/ab2ceef
[12] Stalin B, Sudha G T and Ravichandran M 2020 Mater. Today.: Proc. 22 2622 https://doi.org/10.1016/2053-1591/ab2ceef
[13] Stalin B, Ravichandran M, Mohanavel V, Praveen Raj L 2020 J. Min. Metall. Sect. B. 56(1) 99 https://doi.org/10.2298/JMMB19031507S
[14] Vairamuthu J, Senthil Kumar A, Stalin B and Ravichandran M 2020 Optimization of powder metallurgy parameters of TiC and B₄C reinforced aluminium composites by Taguchi method Trans. Can. Soc. Mech. Eng. https://doi.org/10.1139/tcsme-2020-0091
[15] Stalin B, Vidhya V S, Ravichandran M, Naresh Kumar A and Sudha G T 2020 Metallofiz. Novoishie Tekhnol. 42(4) 497 https://doi.org/10.15407/mfint.42.04.0497
[16] Arravind R, Sankar V, Marichamy S and Stalin B 2020 Abrasive water jet experimentation on zirconium boride and boron carbide reinforced molybdenum metal matrix Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.07.667
[17] Malini T, Sudha R, Anantha Christu Raj P and Stalin B 2020 The role of RTD and liquid sensors in electric arc furnace for melting of aluminium Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.371
[18] Rajaparthiban J, Saravananvel S, Ravichandran M, Vijayakumar K and Stalin B 2020 Mater. Today.: Proc. 24 1282 https://doi.org/10.1016/j.matpr.2020.04.443
[19] Alagarsamy S V, Ravichandran M, Raveendran P and Stalin B 2019 J. Balk. Tribol. Assoc. 25(3) 730
[20] Stalin B, Ramesh Kumar P, Ravichandran M, Siva Kumar M and Meignanamoorthy M 2019 Mater. Res. Express 6 106590 https://doi.org/10.1088/2053-1591/ab3d90
[21] Athijayamani A, Stalin B, Sidhardhan S and Boopathi C 2016 J. Compos. Mater. 50(4) 481
[22] Stalin B, Ravichandran M, Vadivel K and Vairamuthu J 2020 Mater. Today.: Proc. 21 237
https://doi.org/10.1016/j.matpr.2019.04.226

[23] Saravanan S, Ravichandran M, Stalin B, Saravananvel S, Sukumar S, Optimization of Process Parameters of Electrochemical Machining of TiC-Reinforced AA6063 Composites, In: S. Hirenmath, N. Shanmugam, B. Bapu (eds) Advances in Manufacturing Technology, Lecture Notes in Mechanical Engineering, Springer, Singapore, 2019, pp.281-287.
https://doi.org/10.1007/978-981-13-6374-0_33

[24] Stalin B, Sudha G T and Ravichandran M 2018 Silicon 10 (6) 2663
https://doi.org/10.1007/s12633-018-9803-6

[25] Marichamy S, Stalin B, Ravichandran M and Sudha G T 2020 Mater. Today.: Proc. 24 1400
https://doi.org/10.1016/j.matpr.2020.04.458

[26] Stalin B and Athijayamani A 2016 Int. J. Mater. Eng. Innov. 7(1) 15
https://doi.org/10.1504/IJMATEI.2016.077312

[27] Pritima D, Vairamuthu J, Gopi Krishnan P, Marichamy S, Stalin B and Sheeba Rani S 2020 Response analysis on synthesized aluminium-scandium metal matrix composite using unconventional machining processes Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.07.672

[28] Stalin B, Ramesh Kumar P, Ravichandran M and Saravanan S 2018 Mater. Res. Express 5(10) 106502 https://doi.org/10.1088/2053-1591/aad99c

[29] Marichamy S, Saravanan M, Ravichandran M and Stalin B 2017 Int. J. Mech. Mech. Eng. 21(1) 57

[30] Stalin B, Sudha G T, Kailasanathan C and Ravichandran M 2020 Mater. Today Commun. 25 101655 https://doi.org/10.1016/j.mtcomm.2020.101655

[31] Balasubramanian M, Stalin B, Marichamy S, Anandan K and Ram Subbiah 2020 Assessment of weld joint strengths on dissimilar alloys of Inconel 625 and aluminium 7068 using FSW process Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.315

[32] Dhinakaran V, Stalin B, Swapna Sai M, Vairamuthu J, Marichamy S 2020 Recent developments of graphene composites for energy storage devices Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.631

[33] Martin Sahayaraj J, Arravind R, Subramanian P, Marichamy S, Stalin B 2020 Artificial neural network based prediction of responses on eglin steel using electrical discharge machining process Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.07.664

[34] Anix Joel Singh J, Vishnu Vardhan T, Vairamuthu J, Stalin B, Ram Subbiah 2020 Analyses of particle size and abrasive water jet drilling of synthesized chromel metal matrix Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.441

[35] Bagavathy S, Ramesh Kumar P, Anantha Christu Raj P, Stalin B 2020 Frequency measurement through electric network analyzer for ultrasonic machining of steel Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.629

[36] Stalin B., Dhinakaran V., Ravichandran M., Sathiya Moorthi K., Vairamuthu J. (2021) Buckling Analysis of C-Stringer and Hat Stringer on the Load Carrying Vehicle. In: Arockiarajan A., Duraiselvam M., Raju R. (eds) Advances in Industrial Automation and Smart Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Singapore, pp. 177-183. https://doi.org/10.1007/978-981-15-4739-3_15

[37] J.Vairamuthu, B.Stalin, G.D.Sivakumar, B.Mohmed Fazil, R.Balaji, V.Ananda Natarajan (2020), The effect of process parameters for synthesized copper metal matrix using stir casting process, Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.09.262

[38] R.Senthil Kumar, V.Elango, K.Giridharan, V.M.Jothiprakash, B.Stalin (2020), Optimization and enhancement of friction stir welding strength on high yield strength deformed steel, Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.09.149

[39] Vishnu Vardhan T., Marichamy S., Stalin B., Vairamuthu J., Dhinakaran V. (2021) Tribological Behaviour and Electric Discharge Drilling of Duplex Silicon Metal Matrix. In: Arockiarajan A., Duraiselvam M., Raju R. (eds) Advances in Industrial Automation
Acknowledgments
The authors thank the Department of Mechanical Engineering and his working colleges for their continuous encouragement to carry out this research work.