Vanadium(v) phenolate complexes for ring opening homo- and co-polymersisation of ε-caprolactone, L-lactide and rac-lactide†

Feijie Ge,a Yi Dan,b Yahya Al-Khafaji,b Timothy J. Prior,b Long Jiang,*a Mark R. J. Elsegoodc and Carl Redshaw*b

The vanadyl complexes [VO(OR)L] (1) and [VO(OiPr)L₂(μ-p-L₂)] (2) ([VO(OR)]L₂(μ-p-L₂)) (R = iPr 3, tBu 4) have been prepared from [VO(OR)] (R = nPr, iPr or tBu) and the respective phenol, namely 2,2'-ethylidenedibis(4,6-di-tert-butylphenol) (L₁H₂) or 2,2',2'-tert-butyl-2-hydroxyphenyl-p-tert-butylphenol (L₂H₄). For comparative studies, the known complexes [VO(m-ONPr)L₃] (II), [VO(3)L₅] (III), [VO(1)L₆] (IV) and [VO(2)L₆] (V) were prepared. An imido complex [VOCl(Np-toly)[(NCMe)]₂(μ-p-L₂)] (6) has been prepared following work-up from [VNi-toly][Cl₂], L₃H₄ and Et₃N. The molecular structures of complexes 1–5 are reported. Complexes 1–5 and I and II have been screened for their ability to ring open polymerise ε-caprolactone, l-lactide or rac-lactide with and without solvent present. The co-polymerisation of ε-caprolactone with l-lactide or rac-lactide afforded co-polymers with low lactide content; the reverse addition was ineffective.

Introduction

As a biodegradable polyester that has the potential for replacing traditional polymers, polylactide (PLA) has attracted much attention in recent years.1 ε-Caprolactone too is attracting interest as a precursor to biodegradable polycaprolactone (PCL) polymers.2 Both types of polymer are readily formed via ring opening polymerisation (ROP) of the respective monomer catalyzed by metal complexes, which can be a living process thereby allowing for good control. Given the bio-applications of PLA and PCL type polymers, there is a drive to develop syntheses using new catalysts that offer advantages over the established stannous octoate,3 yet which possess low toxicity. Furthermore, the properties associated with PLA and PCL can be quite different, as typified by their differences in elasticity, and so there is a drive to produce ε-Cl/LA co-polymers of varying composition (and properties).

One metal attracting attention in polymerisation catalysis is vanadium.4 Given the toxicity associated with this metal is relatively low,5 we have embarked upon a program to screen various vanadium systems for their ability to deliver, via ROP, biodegradable polymers with desirable properties. We note that reports on the use of group 5 complexes for the ROP of cyclic esters are scant.6 Herein, we investigate the potential of vanadyl complexes with ligands derived from di-(L₁H₂) or tetra-phenols to catalyze metal complexes, which can be a living process thereby allowing for good control. Given the bio-applications of PLA and PCL type polymers, there is a drive to develop syntheses using new catalysts that offer advantages over the established stannous octoate,3 yet which possess low toxicity. Furthermore, the properties associated with PLA and PCL can be quite different, as typified by their differences in elasticity, and so there is a drive to produce ε-Cl/LA co-polymers of varying composition (and properties).

One metal attracting attention in polymerisation catalysis is vanadium.4 Given the toxicity associated with this metal is relatively low,5 we have embarked upon a program to screen various vanadium systems for their ability to deliver, via ROP, biodegradable polymers with desirable properties. We note that reports on the use of group 5 complexes for the ROP of cyclic esters are scant.6 Herein, we investigate the potential of vanadyl complexes with ligands derived from di-(L₁H₂) or tetra-phenols (L₂₃H₄) and for comparative studies the tri-phenol (L₃H₃) [see Scheme 1] for the ROP of both l-lactide and ε-caprolactone and the co-polymerisation thereof, and report the effects of the structures of the complexes on the properties of the final polymeric products. Such chelating phenoxide ligation has proved useful in olefin polymerisation,4 but their use in the ROP of lactides and lactones, particularly that of the tri- and tetra-phenolic ligand sets, is rather limited.6,7,8 Use of a tetra-phenolic ligand set, both meta and para forms, also allowed us to probe for possible cooperative effects, viz. 1 versus 2–4. With this in mind, the crystal structures of the monomeric vanadyl complex [VO(OrBu)L] (1) and the dinuclear vanadyl complexes {VO(OiPr)₂(μ-p-L₂)} (2), {VO(OR)₂(μ-p-L₂)} (R = iPr 3, tBu 4) are also presented; the molecular structures of I and II have been reported elsewhere.9

Results and discussion

Vanadyl phenolate complexes

Interaction of [VO(OrBu)₃] with the ethylidene-bridged di-phenol 2,2'-ethylidenedibis(4,6-di-tert-butylphenol), 2,2'-CH₄CH[4,6-(tBu)₂C₆H₄OH]₂ (L₃H₃) in refluxing toluene afforded, after workup, the monomeric complex [VO(OrBu)L] (1) in good isolated yield (ca. 76%). Complex 1 is presumed to form via

*a State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, Sichuan, China. E-mail: jianglong@scu.edu.cn; Fax: +86-28-85402465; Tel: +86-28-85407286
b Department of Chemistry, University of Hull, Hull, HU6 7RX, UK. E-mail: C. Redshaw@Hull.ac.uk; Fax: +44 (0)1482 466510; Tel: +44 (0)1482 465319

† Electronic supplementary information (ESI) available: ORTEPs and X-ray crystallographic files CIF for the structure determinations of compounds 1, 2, 3–CH₂Cl₂, 4–CH₂Cl₂, 5–CH₂Cl₂ and 6–CH₂CN. CCDC 1040815, 1404533, 1404524–1404526 and 1404529. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ra24816g

RSC Adv., 2016, 6, 4792–4802

This journal is © The Royal Society of Chemistry 2016
displacement of two molecules of tert-butanol in a similar fashion reported for related n-propoxide complexes. In the IR of 1, there is a strong stretch at 1003 cm\(^{-1}\) assigned to the \(v(\text{VO})\) group. Crystals of 1 suitable for X-ray diffraction were readily grown from a saturated acetonitrile solution at 0 °C. The structure of 1 is shown in Fig. 1 (for ORTEP, see Fig. S1†), with selected bond lengths and angles given in the caption; crystal structure data are given in Table S2.† The vanadium centre adopts a distorted tetrahedral environment with angles varying from ideal in the range 107.7(2) to 112.1(2)°. The chelating ligand forms an eight membered metallocycle adopting a flattened chair conformation, with a bite angle of 110.1(2)°, which is somewhat larger than that found in the monomeric vanadyl complex \(\{\text{VOCl}_2(4\text{-Me},6\text{-tBuC}_6\text{H}_4\text{O})_2\}\] [106.9(2)°] and the dimeric complex \([\text{VO(OnPr)}\text{L}_2]\] \({[94.49(10)°]}\). The V–O bond lengths to the bisphenolate ligand [1.789(5) and 1.783(5) Å] are typical of those previously observed for vanadium aryloxides,\(^{9,10}\) whilst the V–O alkoxide distance [1.739(5) Å] is shorter than those typically observed in alkoxy vanadium complexes, but similar to that reported in the monomeric imido vanadyl complex \([\text{V(NAr)(OCl)}\text{L}] [1.738(2)\text{ Å}] (\text{Ar} = p\text{-ClC}_6\text{H}_4)\).\(^{11}\) The alkoxide ligand is best described as bent with a V(1)–O(4)–C(40) angle of 145.9(5)°, which is slightly smaller than the analogous angle in the imido complexes \([\text{V(NAr)(OCl)}\text{L}] [146.77(12)–151.9(2)°] (\text{Ar} = p\text{-ClC}_6\text{H}_4, p\text{-toly})\).\(^{11}\)

Extension of this synthetic methodology to the tetra-phenol \(\alpha,\alpha',\alpha''\)-tetra-(3,5-di-tert-butyl-2-hydroxyphenyl-p-xyleno)para-tetra-phenol (L\(^{39}\text{H}_4\)) afforded the dinuclear complex \([\text{VO(OnPr)}\text{L}_2]\] \((\mu-p\text{-L}_{39})\] (2) in good yield.

Crystals of 2 suitable for X-ray diffraction were readily grown from a saturated dichloromethane solution at 0 °C. The structure of 2 is shown in Fig. 2 (for ORTEP, see Fig. S2†), with selected bond lengths and angles given in the caption; crystal structure data are given in Table 5. The tetra-phenolate ligand is centrosymmetric with one vanadyl cation bound above the plane of the central aromatic ring and one beneath. The separation of these two identical metal centres is 11.756 Å. Each vanadium centre can be described as adopting a pseudo tetrahedral geometry. The bite angle formed by the tetra-phenolate at each vanadium is 109.4(2)°, which is slightly smaller than that observed for 1 (110.1(2)°) and for the recently reported

Table 1

Bond lengths (Å)/angles (°)	3	4·2CH\(_2\)Cl\(_2\)	4·3CH\(_2\)Cl\(_2\)
V1–O(phenolate)	1.798(2)	1.790(15)	1.790(6)
V1–O(phenolate)	1.798(2)	1.796(15)	1.806(5)
V1–O(alkoxide)	1.581(3)	1.589(16)	1.577(6)
V2–O(phenolate)	1.791(2)	1.789(16)	1.792(6)
V2–O(alkoxide)	1.793(2)	1.790(15)	1.796(5)
O1–V1–O2	106.9(2)	112.9(5)	112.9(3)
O5–V1–O6	112.9(5)	126.9(13)	126.9(13)
V1–O1–C1	126.9(13)	143.6(15)	143.6(15)
V1–O16–C65			

Table 2

Compound	δ (ppm)	\(\delta_{13}\text{C}\) (Hz)
1	-482.4	63
2	-498.5	184
3	-494.9	190
4	-468.9	652
5	-218.9	1074
alkoxide complexes $\{[\text{VO} \equiv \text{O}][\mu-\text{p-L}^2\text{Pr}]\}$ [R = nPr, 111.73(7)$^\circ$; tBu, 112.0(2)$^\circ$]; and the metallocycle adopts a flattened boat conformation. The iso-propoxide ligand can be described as bent with a V2 boat conformation. The iso-propoxide bond lengths are similar to those observed elsewhere. Similar use of the meta tetra-phenol $\alpha, \alpha', \alpha''$-tetra(3,5-di-tert-butyl-2-hydroxyphenyl-m]-xyylene-meta-tetra-phenol $[\text{L}^{2\text{th}}\text{H}_4]$ with $[\text{VO} \equiv \text{O}]_2[\mu-\text{m-L}^2\text{Pr}]$ (R = tBu 3, tBu 4) in good yield. Crystals of 3 and of 4 suitable for an X-ray diffraction study were obtained on cooling (to -20°C) their respective saturated dichloromethane solutions. The molecular structure of 3·2CH2Cl2 is shown in Fig. 3 (for ORTEP, see Fig. S3†), with selected bond lengths (Å) and angles ($^\circ$) given in Table 1 where they are compared with those of 4·2CH2Cl2 and 4·3CH2Cl2.

In 3, the vanadion centres can be described as adopting a pseudo tetrahedral geometry. The bite angle formed by the tetraphenolate at each vanadium is 110.55(11)$^\circ$, which is slightly larger than that observed for 1; again the metallocycle adopts a chair-boat conformation. The iso-propoxide ligand can be described as bent with a V2–O8–C68 angle of 140.5(3)$^\circ$; the V–O iso-propoxide bond lengths are similar to those observed elsewhere.12

For 4·2CH2Cl2, there is one molecule of the complex and two molecules of CH2Cl2 (modelled by the Platon SQUEEZE procedure) in the asymmetric unit.13 Each vanadium center adopts a pseudo-tetrahedral geometry (see Fig. 4; for ORTEP, see Fig. S4†), with bond angles in the range 106.92(8)$^\circ$–112.95(8)$^\circ$; the bite angle of the chelate is 111.31(7)$^\circ$. The tert-butoxide ligand is somewhat bent [V1–O6–C65 = 143.63(15)$^\circ$], with a slightly larger angle than that observed in the iso-propoxide 3 and presumably reflects the greater steric bulk of the tert-butoxide. The molecules pack in layers, however there is no significant interaction between the layers.

From a repeated synthesis of 4, a different solvate was obtained, namely 4·3CH2Cl2. In the molecular structure of 4·3CH2Cl2, determined using synchrotron radiation,14 there is one well-defined dichloromethane which is involved in intramolecular interactions (see Fig. 5, for ORTEP, see Fig. S5†). In particular, there is a C–H···O H-bond to the oxo group O7 (see Table S1 in ESI† for geometry) and a C–H···π interaction with the aromatic ring C51 > C36 (H(73B)···ring centroid = 2.56(2) Å).

The known vanadyl complexes $[\text{VO}[\mu-\text{OnPr}]\text{L}_2\} \{\text{I}, \text{VO}^{2+}\}$, (II) were prepared as described previously $[\text{L}^1\text{H}_2 = 2.6$-bis(3, 5-di-tert-butyl-2-hydroxybenzyl)-4-tert-butoxynaphthalene] via the reaction of $[\text{VO}[\mu\text{OnPr}]\text{]}$ and the respective chelating phenol.9

Vanadium imido phenolate complex

Given the oxo group is isoelectronic with the imido group, we extended the studies to the reaction of $[\text{V}[\text{Np-MeC}_6\text{H}_4\text{Cl}]_3]^{15}$ with p-L3H4 in the presence of Et3N. Following work-up (extraction into MeCN), the red/brown imido complex $[\text{V}[\text{Np-MeC}_6\text{H}_4][\text{NCMe}\text{Cl}]_2[\mu-p-L^3\text{Pr}]]\cdot2\text{MeCN}$ (5·2MeCN) was isolated in good yield. Single crystals of 5, obtained on prolonged standing at ambient temperature, were subjected to an X-ray diffraction study. The structure of 5 is shown in Fig. 6 (for ORTEP, see Fig. S6†), with selected bond lengths and angles given in the caption. The geometry at each vanadium is best described as trigonal bipyramidal with the imido and MeCN groups occupying axial positions [N1–V1–N2 178.74(14)$^\circ$]. Bond angles are in the range 111.59(11)–122.47(9)$^\circ$, with the largest equatorial deviation associated with the angle subtended at the metal by the phenolic oxygen centres. The imido ligand has the
geometrical parameters associated with a linear imido function \([V(N\text{Ar})(\text{THF})\text{Cl}]_2(\mu-p\text{-L}^{2p}) \) \((\text{Ar} = p-\text{MeC}_6\text{H}_{4}, p-\text{CF}_3\text{C}_6\text{H}_{4}) \), in which THF occupies one of the axial positions at the metal as opposed to MeCN in 5.47

\(^{15}V \text{NMR data for 1–5 and I and II are presented in Table 2, and all vanadyl complexes appear in the range δ –410 to –498 ppm, with the 5-coordinate VO}_4 \text{ centre in II slightly upfield of the other 4-coordinate VO}_3 \text{ containing species. The imido complex 5 appears somewhat downfield, a position which also reflects the presence of the chloride ligand; line widths are also increased in the presence of imido groups.}^{25}

Ring opening polymerisation (ROP) studies

\(\varepsilon \)-\text{Caprolactone} \((\varepsilon\text{-CL}) \). Given its ease of preparation on a multi-gramme scale, complex 4 was used to determine the optimum conditions (temperature, time and concentration) needed for the ROP of \(\varepsilon \)-caprolactone. It was observed that the ratio 200 : 1 for [CL] : [cat] was best both in the presence or absence of BnOH, over a period of 24 h at 80 °C. For all catalyst systems, runs conducted at temperatures of \(\pm 45\) °C or for \(\pm 12\) h led to either no polymer or low yields (see Table 3). All systems were relatively well behaved with only one run (run 3) affording a PDI of over 1.80, whilst the majority of runs were below 1.40. The presence of BnOH was also examined for 4 (runs 25–27), and under the optimized conditions, the conversion was about 10% lower whilst the observed \(M_n \) was about 30% lower. For 5, bearing a terminal chloride ligand, the use of BnOH was beneficial in terms of % conversion, and the observed molecular weights (\(M_n \)) were also higher. In terms of pro-catalyst structure, there appeared to be no advantage in having two metals present given % conversion for 1 = I and II under optimized conditions (runs 3, 6 and 9). In the case of the tetraphenolate systems, it appears that use of systems (3 and 4) derived from the *meta*-pro-ligand set \(m\text{-L}^{2p}\text{H}_4 \) are more effective than those (2) derived from the *para* pro-ligand \(p\text{-L}^{2p}\text{H}_4 \) (runs 13–15 and 16–26 versus 10–12) Table 3. This suggests in 3 and 4

Run	Cat	Temp/°C	Time/h	[CL]_0 : [Cat]_0 : [BnOH]_0	Conv. (%)	\(M_m\)GPC	\(M_m\)cal	PDI
1	1	45	24	200 : 1 : 0	84	2440	19400	1.11
2	1	60	24	200 : 1 : 0	99	4450	22600	1.43
3	1	80	24	200 : 1 : 0	99	5430	22600	2.01
4	1	45	24	200 : 1 : 0	98	4600	22370	1.15
5	1	60	24	200 : 1 : 0	98	5760	22600	1.80
6	1	80	24	200 : 1 : 0	97	5110	25600	1.66
7	II	45	24	200 : 1 : 0	98	2860	22370	1.20
8	II	60	24	200 : 1 : 0	98	3040	22370	1.14
9	II	80	24	200 : 1 : 0	98	5950	22600	1.32
10	2	45	24	200 : 1 : 0	55	1620	12560	1.17
11	2	60	24	200 : 1 : 0	95	2850	21830	1.20
12	2	80	24	200 : 1 : 0	99	4110	22600	1.14
13	3	45	24	200 : 1 : 0	49	1610	11410	1.15
14	3	60	24	200 : 1 : 0	99	2880	22600	1.35
15	3	80	24	200 : 1 : 0	99	2880	22600	1.35
16	4	80	1	200 : 1 : 0		—	—	—
17	4	80	6	200 : 1 : 0	49	1120	11410	1.12
18	4	80	12	200 : 1 : 0	89	2500	20320	1.23
19	4	45	24	200 : 1 : 0		—	—	—
20	4	60	24	200 : 1 : 0		—	—	—
21	4	80	24	200 : 1 : 0	50	1620	11560	1.12
22	4	80	24	200 : 1 : 0	89	2140	10270	1.16
23	4	80	24	200 : 1 : 0	99	3520	22740	1.33
24	4	80	24	400 : 1 : 0	99	4920	45200	1.42
25	4	80	24	600 : 1 : 0	99	5720	67800	1.47
26	4	45	24	200 : 2 : 1	10	800	22800	1.13
27	4	60	24	200 : 2 : 1	97	1200	22250	1.29
28	4	80	24	200 : 2 : 1	99	2510	22710	1.30
29	5	45	24	200 : 1 : 0		—	—	—
30	5	60	24	200 : 1 : 0	97	2170	22370	1.16
31	5	45	24	200 : 2 : 1		440	—	1.16
32	5	60	24	200 : 2 : 1	99	3260	22710	1.14
33	5	80	24	200 : 2 : 1	99	5780	22710	1.43

a All reactions were carried out in toluene under nitrogen. b Determined by \(^1\text{H NMR}. c M_m \text{ values were determined by GPC in THF vs. PS standards and were corrected with a Mark–Houwink factor of 0.56. d Calculated by (F.W. monomer × [monomer]/[cat]) × conversion + F.W. BnOH. e } (M_m/M_n) \text{ were determined by GPC.}
that there is a favourable $V\cdots V$ separation, which may favour the coordination of a single monomer to both catalytic centres of the same complex. One centre can then be used as a Lewis acid and the other using its V-OR functionality to attack the carbonyl group. The chloride complex 5, in the presence of BnOH, afforded the highest yield (85%).

In the 1H NMR spectra of the resulting PCL (e.g. see ESI, Fig. S7†), for runs involving pro-catalysts with a V-OR moiety

Run	Cat	Temp/°C	Time/h	$[\text{LA}]_0 : [\text{Cat}]_0 : [\text{BnOH}]_0$	Conv. (%)	M_n GPC	M_n recal	PDI	Conv. (%)
1	I	45	31	$200 : 1 : 0$	—	—	—	—	—
2	I	60	24	$200 : 1 : 0$	10	1480	2880	1.57	99
3	I	80	6	$200 : 1 : 0$	—	—	—	—	—
4	I	80	24	$200 : 1 : 0$	54	2310	15 570	1.24	97
5	II	80	33	$200 : 1 : 0$	50	2100	14 410	1.26	97
6	I	45	34	$200 : 1 : 0$	—	—	—	—	—
7	I	60	34	$200 : 1 : 0$	—	—	—	—	—
8	II	80	6	$200 : 1 : 0$	—	—	—	—	—
9	I	80	24	$200 : 1 : 0$	54	2930	15 850	1.73	97
10	I	80	31	$200 : 1 : 0$	54	2640	15 850	1.16	97
11	II	60	34	$200 : 1 : 0$	—	—	—	—	—
12	II	80	6	$200 : 1 : 0$	—	—	—	—	—
13	II	80	24	$200 : 1 : 0$	58	3010	16 720	1.46	97
14	II	80	34	$200 : 1 : 0$	60	3440	17 300	1.31	97
15	II	60	31	$200 : 1 : 0$	—	—	—	—	—
16	II	80	6	$200 : 1 : 0$	—	—	—	—	—
17	II	80	24	$200 : 1 : 0$	50	2120	14 410	1.34	97
18	II	80	36	$200 : 1 : 0$	58	2190	16 720	1.30	97
19	III	45	33	$200 : 1 : 0$	—	—	—	—	—
20	III	60	33	$200 : 1 : 0$	—	—	—	—	—
21	III	80	6	$200 : 1 : 0$	—	—	—	—	—
22	III	80	24	$200 : 1 : 0$	15	1340	4320	1.11	97
23	III	80	36	$100 : 1 : 0$	52	2150	7490	1.11	97
24	III	80	36	$200 : 1 : 0$	52	2530	14 990	1.09	97
25	III	80	36	$400 : 1 : 0$	60	34 590	34 590	1.26	97
26	III	80	36	$600 : 1 : 0$	62	3760	53 620	1.29	97
27	III	80	31	$200 : 1 : 0$	51	2010	14 700	1.26	97
28	III	60	30	$200 : 1 : 0$	9	870	2590	1.23	97
29	III	80	6	$200 : 1 : 0$	—	—	—	—	—
30	III	80	24	$200 : 1 : 0$	20	1930	5760	1.01	97
31	III	80	31	$200 : 1 : 0$	45	2460	12 970	1.10	97
32	III	80	31	$200 : 1 : 0$	—	—	—	—	—
33	III	80	6	$200 : 1 : 1$	—	—	—	—	—
34	III	80	24	$200 : 1 : 1$	53	3400	15 380	1.29	97
35	III	110	31	$200 : 1 : 1$	55	3640	15 960	1.35	97

Table 5 Ring-opening polymerisation of ε-lactide catalysed by vanadyl phenolate complexes 1–4, imido complex 5 and known complexes I and II

a All reactions were carried out in toluene under nitrogen. b Determined by 1H NMR. c M_n values were determined by GPC in THF vs. PS standards and were corrected with a Mark-Houwink factor of 0.58. d (F.W. monomer × [monomer]/[cat]) × conversion + F.W. BnOH. e M_n/M_a were determined by GPC.
Fig. 5 Molecular structure of complex 4·3CH2Cl2, indicating the atom numbering scheme. Hydrogen atoms except those on the CH2Cl2 have been removed for clarity.

Fig. 6 Molecular structure of complex 5·2MeCN, indicating the atom numbering scheme. Hydrogen atoms and solvent molecules of crystallisation have been removed for clarity. Selected bond lengths (Å) and angles (°): V1–N1 1.670(3), V1–O1 1.818(3), V1–O2 1.831(2), V1–Cl1 2.2609(11), O1–V1–N1 94.74(11), V1–O1–O2 111.59(11), C1–V1–N1 94.74(11), V1–O1–C1 124.4(2), V1–O2–C19 121.4(2), V1–N1–C50 170.5(3). Symmetry operation used to generate equivalent atoms: i = −x, −y, −z.

Fig. 7 M_n [●] and $M_n/M_n(\Delta)$ vs. monomer conversion in the ROP of ε-CL.

present, signals were assignable to a hydroxyl end group (CH2OH) and an alkyl ester (e.g., isopropyl ester for 3). This indicated that the polymerization procedure involved rupture of the monomer acyl–oxygen bond and insertion in the alkoxide–vanadium bond. For runs conducted in the presence of BnOH, 1H NMR spectra were more complicated in terms of end group, with both OBn and OR (e.g. t-Bu for 4) present (see ESI, Fig. S8†).

Interestingly, in the absence of solvent, these systems performed far better at 80 °C, with conversions ≥ 95%, polydispersities ≤ 1.62 (see Table 4) and in general afforded higher observed molecular weight (M_n) polymers (see Table 4). The monomeric tert-butoxide complex 1 was found to afford the best yield (90%) and highest molecular weight (M_n) PCL (∼16 300). By contrast, III afforded lowest conversion and highest PDI, which we assume is due to the lack of a readily accessible alkoxide bond (a phenoxy linkage of the tri-phenolate would need to be broken). Interestingly, the isopropoxides 2 and 3 gave very similar results, whilst the tert-butoxide 4 afforded a polymer of much lower molecular weight (M_n). For complex 5, it was necessary to add an equivalent of BnOH to achieve ROP activity (run 7 vs. 8, Table 4), and the resulting polymer was of higher molecular weight (M_n) ∼14 000 g mol$^{-1}$.

In general for the CL runs, despite the narrow polydispersity, the polymer molecular weights (M_n) were much lower than expected, indicating in all cases that significant trans-esterification reactions were occurring. Further evidence was provided by the MALDI-ToF mass spectra where, as well as the major population of peaks, there was evidence of a second, albeit minor, population (see ESI, Fig. S9–S12† in toluene; Fig. S13 and S14,† no solvent).

For 6, a plot of average molecular weight (M_n) versus conversion (Fig. 7, runs 21–24 Table 3) exhibited a linear relationship. Given the plot also shows that the PDI remained narrow, it suggests that under these conditions the ROP by 6 is proceeding in a living manner.

The production of only low molecular weight polymers using alkoxy vanadium systems has been noted previously. Herein, there was little correlation of 51V NMR signal (Table 2) versus catalytic activity (see ESI, Fig. S15†).

ε-Lactide (L-LA). Complexes 1 to 5 and II and III have been screened for their potential to act as catalysts for the ROP of ε-lactide. In this case, complex 3 was chosen to establish the optimized conditions for the ROP of ε-lactide (L-LA). Using a ratio of 200 : 1 for L-LA to pro-catalyst, it was found that at temperatures below 80 °C, there was no catalytic activity even after 35 h. At 80 °C, there was no activity after 6 h, and polymer was only isolated at 24 h acquiring a yield of 20%. Prolonging the reaction time increased the yield to 50%. Further increasing the temperature to 110 °C afforded only a slight improvement in yield, with a slight increase in PDI. Varying the ratio of ε-LA to pro-catalyst led to a slight improvement in the yield (55%), together with an increase in the molecular weight (M_n) and a slight broadening of the PDI. Given these results, the other complexes were screened using a ratio of 200 : 1 for ε-LA to pro-catalyst, and in the case of 5, screening was conducted both in the absence and presence of BnOH (see Table 5).
In the case of 4, differing from 3 only in the nature of the alkoxide (tert-butoxide versus isopropoxide) there was some activity at 60 °C over 30 h, though the yield was low (10%). Reactions conducted at 80 °C afforded yields slightly lower than observed for 3; molecular weights (M_n) were similar. In the case of complex 2, which differs from 3 in the nature of the tetraphenolate employed (i.e. para versus meta), activity was observed at 80 °C on prolonging the reaction time. Yields using 2 after 24 h were typically higher than for 3, but then after 36 h, the yields were approximately the same (slightly higher using 3); molecular weights (M_n) followed the same trend. PDIs for runs employing 2 were higher than those for 3. However, these results, unlike those for ε-caprolactone, did not suggest that use of the meta ligand had any beneficial effect in terms of the distance between the two vanadium centres and the resultant ROP activity. In the case of the imido complex 5 (a chloride complex), it proved necessary here to add BnOH to afford an active system. We note however that chlorides have previously been shown to be capable of the ROP of lactide. At 80 °C, activity was observed after 24 h, with yields similar to the vanadyl complex 2, but with higher molecular weight (M_n) polymers formed.

Comparing results for 1 versus 1 suggests that there is no benefit in having two vanadyl centers present rather than one. Indeed, results for 1 suggest the opposite given that 1 can oper at 60 °C and also affords superior yields at 80 °C. Results for 3 are similar to those of 2.

In all cases, observed molecular weights (M_n) are far lower than calculated values. In contrast to the ε-caprolactone screening, conducting the ε-LA ROP runs in the absence of any solvent did not afford improved results and actually afforded little or no polymer.

As for PCL, the observed molecular weights (M_n) for the PLA were lower than the calculated values, and in the MALDI-ToF spectra (see ESI, Fig. S16–S18†) there was evidence of a second population consistent with some transesterification processes occurring.

For 3, a plot (Fig. 8, runs 23–26, Table 5) of the average molecular weight (M_n) of the poly(ε-LA) as a function of the monomer conversion was linear, and with consistently low PDI values suggestive of a living process.

rac-Lactide (rac-LA). Complexes 1–5 and 1 and 2 were also screened for their ability to ROP rac-lactide and the results are given in Table 6. Temperatures of at least 80 °C were found necessary to achieve activity and yields found to be at best

![Figure 8: M_n (Δ) and M_w/M_n (●) vs. monomer conversion in the ROP of ε-LA.](image)

Table 6: Ring-opening polymerization of rac-lactide catalyzed by vanadyl phenolate complexes 1–4, imido complex 5, and known complexes 1 and 2

Run	Cat	Temp/°C	Time/h	[LA]₀ : [Cat]₀ : [BnOH]₀	Conv. (%)	M_n,GPC	M_n,cal	PDI	Pr
1	I	80	24	200 : 1 : 0	80	6050	23 060	1.30	0.61
2	I	60	24	200 : 1 : 0	—	—	—	—	—
3	I	80	24	200 : 1 : 0	70	3650	20 180	1.15	0.60
4	II	60	24	200 : 1 : 0	—	—	—	—	—
5	II	80	24	200 : 1 : 0	78	3860	22 480	1.09	0.63
6	2	60	24	200 : 1 : 0	—	—	—	—	—
7	2	80	24	100 : 1 : 0	65	1460	9370	1.13	—
8	2	80	24	200 : 1 : 0	80	2720	23 060	1.19	0.58
9	2	80	24	400 : 1 : 0	75	3450	43 240	1.24	0.58
10	2	80	24	600 : 1 : 0	75	3570	64 860	1.23	0.58
11	2	110	24	200 : 1 : 0	75	2440	21 620	1.21	0.58
12	3	60	24	200 : 1 : 0	—	—	—	—	—
13	3	80	24	200 : 1 : 0	44	790	12 970	1.17	—
14	3	80	24	200 : 1 : 0	83	2860	25 940	1.18	0.58
15	3	110	24	200 : 1 : 0	75	2480	21 620	1.27	0.61
16	4	80	24	200 : 1 : 0	79	2120	23 060	1.25	0.61
17	4	110	24	200 : 1 : 0	75	4120	21 620	1.23	0.61
18	5	80	24	200 : 1 : 1	—	—	—	—	—
19	5	110	24	200 : 1 : 1	78	2210	22 590	1.10	0.58
20	5	130	24	200 : 1 : 0	—	—	—	—	—

*All reactions were carried out in toluene under nitrogen. ** Determined by 1H NMR. † M_n values were determined by GPC in THF vs. PS standards and were corrected with a Mark–Houwink factor of 0.58. ‡ Calculated from $[F.W.\text{monomer}]×[\text{monomer}]×[\text{cat}]×\text{conversion}+\text{F.W. BnOH}$. § M_n/M_w were determined by GPC. † Determined by analysis of the tetrad signal in the 1H NMR spectrum.
moderate ≈50% as found for l-lactide. The ROP appeared to be well controlled in terms of PDI with values in the range 1.09–1.30 observed (Fig. 9). There was no obvious advantage in the use of meta vs. para ligation in 2 and 3 at either 80 or 110 °C. Looking at 3 vs. 4 (O/Pr vs. O/Bu), at 80 °C, the isopropoxide 3 afforded higher molecular polymer (Mₙ) in higher yield, whereas at 110 °C the trend was reversed.

Observed molecular weights (Mₙ) were again lower than calculated values, and MALDI-ToF spectra (e.g. Fig. S19, ESI) also revealed a number of minor populations.

As for l-lactide, use of no solvent afforded little or no observed catalytic activity.

To assign the stereochemistry of the PLA polymers we employed 2D J-resolved ¹H NMR spectroscopy and assigned the peaks by reference to the literature. Representative spectra for runs 1, 5 and 17 are given in the ESI [Fig. S20–S22†], with the assignments given on the respective figures. These systems gave moderately isotactic PLA with a Pr value in the range 0.58–0.63.

Runs conducted in different solvents, namely THF and CH₂Cl₂ resulted in little or no polymer.

The presence of cyclic PLA was ruled out by comparison with literature MALDI-ToF and ¹H NMR spectra.¹⁸

Table 7 Synthesis of diblock copolymers from cyclic ester monomers (LA = l-lactide)

Run	Complex	CL : LA	Yield%	Mₙ	Mₚ/M₀
1	1	390 : 10	83	15 740	1.87
2	1	383 : 17	77	38 400	1.24
3	II	379 : 21	68	36 000	1.16
4	2	385 : 15	73	48 900	1.54
5	3	383 : 17	71	45 600	1.66
6	4	380 : 20	66	57 900	1.43
7	5	364 : 46	65	34 000	1.26

All reactions were carried out in toluene under nitrogen under optimum condition 24 h CL/24 h l-LA (80 °C). ² Ratio of LA to CL observed in the co-polymer by ¹H NMR. ¹ Mₚ values were determined by GPC in THF vs. PS standards and were corrected with a Mark–Houwink factor (Mₚ,GPC × 0.56 × % PCL + Mₚ,GPC × 0.58 × % PLLA). ³ PDI were determined by GPC.

Table 8 Synthesis of diblock copolymers from cyclic ester monomers (LA = rac-lactide)

Run	Complex	CL : LA	Yield%	Mₚ	Mₚ/M₀
1	1	382 : 18	88	58 500	1.42
2	I	375 : 25	73	32 100	1.92
3	II	363 : 73	70	39 100	1.21
4	2	360 : 40	75	32 600	1.71
5	3	375 : 25	68	38 400	1.60
6	4	367 : 33	60	32 700	1.46
7	5	343 : 57	70	17 700	1.18

All reactions were carried out in toluene under nitrogen under optimum condition 24 h CL/24 h rac-LA (80 °C). ² Ratio of LA to CL observed in the co-polymer by ¹H NMR spectroscopy. ³ Mₚ values were determined by GPC in THF vs. PS standards and were corrected with a Mark–Houwink factor (Mₚ,GPC × 0.56 × % PCL + Mₚ,GPC × 0.58 × % PLLA). ⁴ PDI were determined by GPC.

l-lactide under the optimized conditions found for the homo-polymerisations in toluene, i.e. 80 °C, 200 : 200 : 1 for CL : LA : pro-cat over 24 h (×2). In all cases (Table 7), good yields (65–83%) of co-polymer were formed, but with low lactide content (2.5–9.0%) as observed from ¹H NMR spectra (ESI, Fig. S23†); the highest % incorporation of LA (9%) was found for 7 in the presence of BnOH. In the ¹H NMR, the end groups for alkoxide and hydroxyl were also evident. Observed molecular weights were in general higher than those observed for the homo-polymerisations conducted in toluene. Thermal analysis of the co-polymer by DSC revealed two melting points at 55.1 °C (PCL) and 170.5 °C (PLA), see ESI Fig. S24.† If the addition of the monomers was reversed, i.e. l-LA added first, no co-polymer was isolated after work-up. This suggested that a PLA chain end was not capable of PCL chain growth.

Co-polymerisation of ε-caprolactone and rac-lactide. Co-polymerisations involving CL and rac-LA gave similar results to the co-polymerisation with l-LA – see Table 8. Yields were in the range 60–88% and the incorporation of rac-lactide was 4.5–14.3%, and again the highest incorporation was noted for 5. In the ¹H NMR spectrum, the end groups for alkoxide and hydroxyl were also evident, see ESI Fig. S25.† We also recorded the DSC (see Fig. S26, ESI†) which, as for the co-polymerisation of CL and l-LA revealed two peaks: a large peak at 55.09 and a much smaller peak at 170.49.

Given the low molecular weight products isolated during these studies, the presence of impurities (e.g. lactic acid from non-recrystallized rac-lactide) acting as chain transfer agents (or co-initiator) cannot be ruled out. However, we note that there is interest in low molecular weight poly(lactide/caprolactone) polymers as bio adhesives.¹⁹

Conclusions

In conclusion, we have examined the ROP behaviour of a series of vanadyl complexes bearing chelating di-, tri- and tetra-phenolate ligands towards ε-caprolactone, l-lactide or rac-lactide with and without solvent present, and the co-polymerisation of ε-CL with lactide. For the homo-polymerisation of ε-CL, under
the optimized conditions in toluene, yields were typically of the order of 70%. It was observed that there was no advantage in having two metals present (cf. to one), whilst for the tetra-phenolates use of the meta ligand set appeared beneficial (cf. the para ligand set), which perhaps reflects the closer proximity of the metal centres in the former. Conducting the runs in the absence of solvent led to higher conversions, typically >95%. For the para phenolates use of the absence of solvent led to higher conversions, typically >95%. For a number of the metal centres in the former. Conducting the runs in the absence of solvent afforded no improvement. Results for rac-lactide were similar to l-lactide; 2D J-resolved 1H NMR spectroscopy indicated the formation of moderately isotoatic PLA. Co-polymerisation of CL with L-lactide afforded good yields (65–83%) of co-polymer, but with low lactide content (2.5–9.0%); reversing the order of monomer addition resulted in no product. Similar results were observed for co-polymerisation of CL with rac-lactide.

Experimental

General

All manipulations were carried out under an atmosphere of dry nitrogen using conventional Schlenk and cannula techniques or in a nitrogen-filled glove box. Diethyl ether and tetrahydrofuran were refluxed over sodium and benzophenone. Toluene was refluxed over sodium. Dichloromethane and acetonitrile were dried over sodium. Dichloromethane and acetonitrile were used as the ionizing agent. Samples were prepared by mixing 20 \(\mu \)l of a solution of ionizing agent. Samples were prepared by mixing 20 \(\mu \)l of a solution of ionizing agent. Samples were prepared by mixing 20 \(\mu \)l of a solution of ionizing agent.

Synthesis of \([\text{VO(OBu)}]_2\) \(2\)CH$_2$Cl$_2$a as 2 was prepared as reported in the literature.1

Synthesis of \([\text{VO(OBu)}]_2\) \(2\)CH$_2$Cl$_2$a as 2 was prepared as reported in the literature.1

Synthesis of \([\text{L}^\text{III}[\text{VO(OBu)}]_2\) \(2\)CH$_2$Cl$_2$a as 2 was prepared as reported in the literature.1

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Synthesis of [(V(NCMe)(Np-MeC6H4)Cl)2μ-p-L3]μ-2MeCN.
p-L3H4 (1.00 g, 1.08 mmol) and [(V(Np-MeC6H4)Cl)3]μ-2MeCN (0.60 g, 2.29 mmol) were stirred in THF (30 ml) for five min, then Et2N (0.63 ml, 4.55 mmol) was added and the mixture was left to stir for 12 h. Following removal of volatiles in vacuo, the residue was extracted in MeCN (30 ml) and on prolonged standing (1-2 days) at ambient temperature, small prisms of 5 formed. Yield: 1.09 g, 69%. C79H100N2Cl2V2O4 (sample dried in vacuo for 12 h, −2MeCN) requires C, 71.92, H, 7.74, N, 2.15%. Found C 71.34, H 8.23, N 1.71%; despite repeated attempts, these were the best values we could obtain. MS (solid, APCI): 1302 [M − 2MeCN]+, 1266 [M − 2MeCN − Cl]+. IR: 2336w, 2309w, 2277w, 2251w, 1627w, 1586w, 1526w, 1504m, 1320m, 1289m, 1260s, 1244m, 1166w, 1106s, 1018s, 909w, 873w, 835m, 806s, 793m, 750w, 723w, 703w, 665m, 643w, 625w, 591m, 571w, 553w, 510w, 490s, 473w, 464w, 415m. 1H NMR (CDCl3): d = 7.40-7.01 (5 × m, 20H, aryl), 7.22 (s, 6H, CH3CN), 2.16 (s, 6H, CH3C6H4), 1.59 (s, 36H, C(CH3)3), 1.29 (s, 36H, C(CH3)3); 31V NMR (CDCl3) δ = −218.9 (w1/2 = 1074 Hz).

Ring opening polymerisation procedure

Polymerrisation reactions were performed in a Schlenk tube equipped with a magnetic stirrer. For solution polymerisation, a mixture of monomer (14 mmol of ε-caprolactone, γ-lactide or rac-lactide), vanadyl complexes 1-5 or 11 (0.14 mmol) and BnOH (0.14 mmol, if needed) were added into a Schlenk tube at room temperature under nitrogen protection. A rac-lactide), vanadyl complexes 1-5 or 11 (0.14 mmol) and BnOH (0.14 mmol, if needed) were added into a Schlenk tube at room temperature under nitrogen protection. A

Precipitates were taken out with a syringe and precipitated into cold methanol with magnetic stirring to eliminate residual catalyst. Precipitates were collected and dried in vacuo for 12 h.

Crystallography

Single crystal diffraction data were collected by the UK National Crystallography Service using a Rigaku FR-E+ diffractometer. This operates with a SuperBright rotating anode X-ray generator and high flux optics. This is designed to deal with the most challenging samples sent to the service. Despite the high flux, the crystal of 1 examined was found to scatter X-rays only very poorly and little appreciable diffraction was observed beyond ~1.1 Å. It was possible to solve the structure using this data and routine refinements of a structural model were possible. It was possible to use anisotropic displacement parameters for all non-hydrogen atoms and the refinement was stable with no unusual features. Although the crystal examined was weakly scattering the solution is sound and it gives extremely useful chemical information.

The data for 2, although weak, are more routine and standard procedures were applied in structure solution.

Structures were solved using Direct Methods implemented within SHELX-2013 and refined within SHELXL-2014.

Acknowledgements

LJ thanks the National Natural Science Foundation of China (No. 5087067 and No. 51403140) and Research Fund for the Doctoral Program of Higher Education of China (No. 2011011110032 and International Scientific and Technological Cooperation Projects (No. 2010DFAF4460) of China) for financial support. CR thanks the EPSRC for the award of a travel grant and Astatech Ltd (Chengdu) for loan of [VO(OnPr)3] and di-phenol.

Notes and references

1. For recent reviews see: (a) A. Correa, S. Iborra and A. Velty, Chem. Rev., 2007, 107, 2411; (b) C. K. Williams and M. A. Hillmyer, Polym. Rev., 2008, 48, 1; (c) E. S. Place, J. H. George, C. K. Williams and M. H. Stevens, Coord. Chem. Rev., 2009, 38, 1139.

2. (a) M. Labet and W. Thielemans, Chem. Soc. Rev., 2009, 38, 3484; (b) A. Arbaoui and C. Redshaw, Polym. Chem., 2010, 1, 801; (c) X. Rong and C. Chunxia, Progr. Chem., 2012, 24, 1519.

3. R. Mazzaro, I. Gracia, J. F. Rodriguez, G. Storti and M. Morbidelli, Polym. Int., 2012, 61, 265.

4. (a) C. Redshaw, Dalton Trans., 2010, 39, 5595; (b) K. Nomura and W. Zhang, Chem. Rev., 2011, 111, 2342; (c) J.-Q. Wu and Y.-S. Li, Coord. Chem. Rev., 2011, 255, 2303; (d) C. Redshaw, M. J. Walton, M. R. J. Elsegood, T. J. Prior and K. Michiue, RSC Adv., 2015, 5, 89783.

5. C. Redshaw, M. R. J. Elsegood, J. A. Wright, H. Baille-Johnson, T. Yamato, S. de Giovanni and A. Mueller, Chem. Commun., 2012, 48, 1129.

6. (a) Y. Kim, P. N. Kapoor and J. G. Verkade, Inorg. Chem., 2002, 41, 4834; (b) C. Alonso-Moreno, A. Antiñolo, J. C. Garcia-Martínez, S. García-Yuste, I. López-Solera, A. Otero, J. C. Perez-Flores and M. T. Tercero-Morales, Eur. J. Inorg. Chem., 2012, 1139; (c) T. K. Saha, M. Mandel, M. Thunga, D. Chakraborty and V. Ramkumar, Dalton Trans., 2012, 42, 10304; (d) Y. Al-Khafaji, X. Sun, T. J. Prior, M. R. J. Elsegood and C. Redshaw, Dalton Trans., 2015, 44, 12349.

7. Use of di-phenols: (a) B.-T. Ko and C.-C. Lin, Macromolecules, 1999, 32, 8296; (b) I. Taden, H.-C. Kang, W. Massa, T. P. Spaniol and J. Okuda, Eur. J. Inorg. Chem., 2000, 441; (c) H.-L. Chen, B.-T. Ko, B.-H. Huang and C.-C. Lin,
8 Use of tetra-phenols: J. Zhang, C. Jian, Y. Gao, L. Wang, N. Tang and J. Wu, *Inorg. Chem.*, 2012, **51**, 13380.

9 (a) C. Redshaw, L. Warford, S. H. Dale and M. R. J. Elsegodd, *Chem. Commun.*, 2004, **1954**; (b) D. Homden, C. Redshaw, L. Warford, D. L. Hughes, J. A. Wright, S. H. Dale and M. R. J. Elsegodd, *Dalton Trans.*, 2009, **8900**.

10 P. J. Toscano, E. J. Schermernhorn, C. Dettelbacher, D. Macherone and J. Zubieta, *J. Chem. Soc., Chem. Commun.*, 1991, **933**.

11 A. Arbaoui, D. Homden, C. Redshaw, J. A. Wright, S. H. Dale and M. R. J. Elsegodd, *Dalton Trans.*, 2009, **8911**.

12 T. Moriuchi, M. Nishina and T. Hirao, *Angew. Chem., Int. Ed.*, 2010, **49**, 83.

13 (a) A. L. Spek, *Acta Crystallogr.*, 1990, **A46**, **C34**; (b) P. V. D. Sluis and A. L. Spek, *Acta Crystallogr.*, 1990, **A46**, 194.

14 (a) W. Clegg, M. R. J. Elsegodd, S. J. Teat, C. Redshaw and V. C. Gibson, *J. Chem. Soc., Dalton Trans.*, 1998, **3037**; (b) W. Clegg, *J. Chem. Soc., Dalton Trans.*, 2000, **3223**.

15 (a) E. A. Maatta, *Inorg. Chem.*, 1984, **23**, 2561–2562; (b) D. D. Devore, J. D. Lichtenhan, F. Takusagawa and E. A. Maatta, *J. Am. Chem. Soc.*, 1987, **109**, 7408.

16 See for example (a) Y. Takashima, Y. Nakayama, K. Watanabe, T. Itono, N. Ueyama, A. Nakamura, H. Yasuda, A. Harada and J. Okuda, *Macromolecules*, 2002, **35**, 7358; (b) Y. Kim, G. K. Jnaneshwara and J. G. Verkade, *Inorg. Chem.*, 2003, **42**, 1437.