Network Mendelian randomization study: exploring the causal pathway from insomnia to type 2 diabetes

Wen Xiuyun,1,2 Lin Jiating,3,4 Xie Minjun,4 Li Weidong,1,2 Wu Qian,4 Liao Lizhen1,2

ABSTRACT

Introduction Insomnia is a novel pathogen for type 2 diabetes mellitus (T2DM). However, mechanisms linking insomnia and T2DM are poorly understood. In this study, we apply a network Mendelian randomization (MR) framework to determine the causal association between insomnia and T2DM and identify the potential mediators, including overweight (body mass index (BMI), waist-to-hip ratio, and body fat percentage) and glycometabolism (HbA1c, fasting blood glucose, and fasting blood insulin).

Research design and methods We use the MR framework to detect effect estimates of the insomnia–T2DM, insomnia–mediator, and mediator–T2DM associations. A mediator between insomnia and T2DM is established if MR studies in all 3 steps prove causal associations.

Results In the Inverse variance weighted method, the results show that insomnia will increase the T2DM risk (OR 1.142; 95% CI 1.072 to 1.216; p=0.000), without heterogeneity nor horizontal pleiotropy, strongly suggesting that genetically predicted insomnia has a causal association with T2DM. Besides, our MR analysis provides strong evidence that insomnia is causally associated with BMI and body fat percentage. There is also suggestive evidence of an association between insomnia and the waist-to-hip ratio. At the same time, our results indicate that insomnia is not causally associated with glycometabolism. Higher BMI, waist-to-hip ratio, and body fat percentage levels are strongly associated with increased risk of T2DM.

Conclusions Genetically predicted insomnia has a causal association with T2DM. Being overweight (especially BMI and body fat percentage) mediates the causal pathway from insomnia to T2DM.

INTRODUCTION

Insomnia is a significant public health problem affecting 10%–30% of the general population.1 It can be a symptom of many medical, neurological, and mental disorders. As a disorder, it incurs substantial healthcare and occupational costs.2 3 Type 2 diabetes mellitus (T2DM) is a chronic condition that describes a group of metabolic disorders characterized by insulin resistance.4 Nowadays, half a billion people are living with diabetes worldwide, and the number is projected to increase by 25% in 2030 and 51% in 2045.5 Evidence from observational studies indicates that patients with insomnia have a higher risk of T2DM.6 7 More importantly, recently, two specific Mendelian randomization (MR) studies support findings for an adverse effect of genetically predicted insomnia on T2DM risk,8 9 indicating that insomnia is a novel pathogen for T2DM. However, mechanisms linking insomnia and T2DM are poorly understood. The causality between insomnia and T2DM are unclear, and the underlying mechanism values further investigation.

MR uses genetic variants as instrumental variables (IVs) to infer whether a risk factor causally affects a clinical outcome.10 11 The MR technique diminishes confounding by environmental factors because alleles are randomly allocated when passed from parents to offspring at conception. It avoids reverse causation bias because the disease can not
Cardiovascular and metabolic risk

The causality between insomnia and T2DM and the potential pathway have not been thoroughly investigated. In this study, the causality between insomnia and T2DM is identified by a network MR framework. Besides, we also explore the potential mediators, including overweight (body mass index (BMI), waist-to-hip ratio, and body fat percentage) and glycometabolism (HbA1c, fasting blood glucose, and fasting blood insulin).

RESEARCH DESIGN AND METHODS

Summary of GWAS data
We apply the UK Biobank + 23andMe consortium for insomnia analysis. In UK Biobank, insomnia is defined by self-reported information collected via a questionnaire on a touchscreen device and while in 23andMe, an online questionnaire survey defines insomnia. They include 1,331,010 individuals (all European ancestry, 386,533 (109,402 patients and 277,131 non-patients) from UK Biobank and 944,477 (288,557 patients and 655,920 non-patients) from 23andMe). Besides, data from Xue A are used for T2DM, MRC-IEU consortium data are used for BMI, GIANT consortium data are used for waist-to-hip ratio, Neale consortium data are used for body fat percentage, data from Pan-UKB team are used for glycated hemoglobin (HbA1c), and data from Wojcik GL are used for fasting blood glucose and fasting blood insulin. More details of studies and datasets used for analysis are presented in table 1.

Data extraction
As we describe, we extract the following data for each single-nucleotide polymorphisms (SNPs) from GWAS of the following outcomes: the effect allele (EA), effect allele frequency (EAF), Beta value, SE, SNP, and p value. We select SNPs which are shown to be associated with the insomnia trait at the genome-wide significance (p<5×10⁻⁸). We also request the following metrics of SNP genotype quality from disease and risk factor studies: strong evidence of between-study heterogeneity in the SNP–trait association (p<0.001), Hardy-Weinberg disequilibrium (p<0.001), or imputation quality metric (info or r²)≤0.90. Characteristics of the SNPs associated with insomnia and their associations with T2DM are shown in online supplemental table 1.

Two-sample MR and causality analysis
MR can be used to assess the causal effect of an exposure on an outcome using genetic variants as IVs. We explore the associations in the following scenarios.

1. Causality: The conventional MR approach (Inverse variance weighted, IVW) method, MR Egger method, Weighted median method, Simple mode method, and Weighted mode are used. 1.1 Causality between genetically determined insomnia and T2DM. 1.2 Causality between genetically determined insomnia and potential mediators including overweight (BMI, waist-to-hip ratio, and body fat percentage) and glycometabolism (HbA1c, fasting blood glucose, and fasting blood insulin). 1.3 Causality between genetically determined mediators and T2DM. (2) Heterogeneity: To solve the heterogeneity problem, we follow the previous protocol to determine the final tally of SNPs for inclusion in genetic instruments. (3) Horizontal pleiotropy: We assess it by MR-Egger intercept. (4) Leave-one-out analysis: It is applied to conduct the sensitivity. (5) Funnel plots: A tool

Table 1 Details of studies and datasets used for analysis

Exposure/Outcomes	Participants	Sample size	PubMed ID/ MR base ID	First author	Consortium	Year	Units
Insomnia	651,923 European ancestry males, 679,087 European ancestry females	1,331,010	30,804,565	Jansen PR	UK Biobank+23andMe	2019	NA
T2DM European	62,892	30,054,458	Xue A	NA	2018	log OR	
BMI European	454,884	ukb-b-2303	Ben Elsworth	MRC-IEU	2018	SD (kg/m²)	
Waist-to-hip ratio	Mixed	124,591	25,673,412	Shungin D	GIANT	2015	SD (%)
Body fat percentage	European, males and females	331,117	ukb-a-264	Neale	Neale Lab	2017	SD (%)
HbA1c	African American or Afro-Caribbean, males and females	5290	ukb-e-30750_AFR	Pan-UKB team	NA	2020	%
Fasting blood glucose	Hispanic or Latin American	13,556	31,217,584	Wojcik GL	NA	2019	NA
Fasting blood insulin	Hispanic or Latin American	12,687	31,217,584	Wojcik GL	NA	2019	NA

Details of studies and datasets used for analysis. BMI, body mass index; NA, not available; T2DM, type 2 diabetes mellitus.
Cardiovascular and metabolic risk

used in meta-analysis is the funnel plot in which the estimate for a particular SNP is plotted against its precision.21 Asymmetry in the funnel plot may be indicative of violations of the assumption through horizontal pleiotropy.

The ‘causal’ relationship is considered established if the observed association passes the IVW method without horizontal pleiotropy.

Network MR analysis for ‘insomnia–mediator–T2DM’

We apply the MR framework with two-sample MR and network MR design to detect the causality of insomnia–T2DM, insomnia–mediator, and mediator–T2DM.22 23 There are three two-sample MR tests in a network MR analysis: (1) the causality between genetically determined insomnia and T2DM; (2) the causality between genetically determined insomnia and the potential mediators; (3) the causality between the possible mediators on T2DM.

A mediator between insomnia and T2DM is established if MR studies in all three steps prove causal associations.

Statistical analysis

All analyses were performed using the Two Sample MR platform19 (http://app.mrbase.org). The F-statistic is estimated to examine the strength of the genetic instrument for each exposure, and an F-statistic above 10 is considered a sufficiently strong instrument. All the F-statistic in this MR study is above 10. We follow previous researchers’ statistical analysis way.24 The p value<0.007 (where α=0.05/7 outcomes) is considered strong causal association evidence. Also, p value between 0.05 and 0.007 is regarded as suggestive evidence of association.

RESULTS

Causality between genetically determined insomnia and T2DM

We use the UK Biobank+23 and Me consortia for insomnia to explore the causal associations between genetically determined insomnia and T2DM. In the IVW method, the causal estimate using 127 SNPs as IVs shows that insomnia will increase the risk of T2DM (OR 1.142; 95% CI 1.072 to 1.216; p=0.000) (table 2 and figure 1A). Results are consistent in weighted median method (OR 1.187; 95% CI 1.122 to 1.256; p=0.000), simple mode method (OR 1.244; 95% CI 1.044 to 1.482; p=0.016), and weighted mode method (OR 1.221; 95% CI 1.049 to 1.422; p=0.011) (table 2). The intercept of MR-Egger regression for these 127 SNPs is not statistically significant (p=0.859), suggesting no directional pleiotropy. The leave-one-out analysis (figure 1C) and funnel plot (figure 1D) indicate no SNPs exhibit horizontal pleiotropy.

Trait	Method	nSNP	OR	95% CI	P value	MR-Egger intercept P
Insomnia–T2DM	MR Egger	127	1.155	0.852 to 1.459	0.429	0.859
Insomnia–T2DM	Weighted median	127	1.187	1.122 to 1.256	0.000	
Insomnia–T2DM	**Inverse variance weighted**	127	1.142	1.072 to 1.216	**0.000**	
Insomnia–T2DM	Simple mode	127	1.244	1.044 to 1.482	0.016	
Insomnia–T2DM	Weighted mode	127	1.221	1.049 to 1.422	0.011	

The genetically predicted insomnia has a causal association with T2DM (in bold).

MR, Mendelian randomization; SNP, single-nucleotide polymorphism; T2DM, type 2 diabetes mellitus.
Cardiovascular and metabolic risk

To sum up, our MR analysis provides strong evidence that genetically predicted insomnia has a causal association with T2DM.

Causality between genetically determined insomnia and potential mediators

Table 3 show the causal estimates between genetically determined insomnia and potential mediators, including overweight (BMI, waist-to-hip ratio, and body fat percentage) and glycometabolism (HbA1c, fasting blood glucose, and fasting blood insulin). The MR analysis provides strong evidence that insomnia is causally associated with BMI (Beta, 0.075; SE, 0.014; p=0.000) and body fat percentage (Beta, 0.064; SE, 0.011; p=0.000). There is also suggestive evidence of an association between insomnia and waist-to-hip ratio (Beta, 0.031; SE, 0.012; p=0.011). At the same time, our results indicate that insomnia is not causally associated with glycometabolism (HbA1c, fasting blood glucose, and fasting blood insulin, all p>0.05).

To sum up, being overweight (especially BMI and body fat percentage) but not glycometabolism may mediate the causal pathway from insomnia to T2DM.

Causality between genetically determined mediators and T2DM

We further evaluate whether overweight (BMI, waist-to-hip ratio, and body fat percentage) is associated with T2DM using MR analysis. We use the IVs of 332 SNPs, 20 SNPs, and 195 SNPs associated with BMI, waist-to-hip ratio, and body fat percentage. As we expected, higher BMI, waist-to-hip ratio, and body fat percentage levels are

Trait	Method	nSNP	Beta	SE	P value	MR-Egger intercept P
BMI	MR Egger	150	0.030	0.053	0.570	0.379
	Weighted median	150	0.061	0.008	0.000	
	Inverse variance weighted	150	**0.075**	**0.014**	**0.000**	
	Simple mode	150	0.067	0.022	0.002	
	Weighted mode	150	0.057	0.016	0.001	
Waist-to-hip ratio	MR Egger	120	−0.026	0.053	0.618	0.270
	Weighted median	120	0.038	0.017	0.026	
	Inverse variance weighted	120	**0.031**	**0.012**	**0.011**	
	Simple mode	120	0.080	0.047	0.090	
	Weighted mode	120	0.056	0.045	0.215	
Body fat percentage	MR Egger	149	0.006	0.039	0.880	0.123
	Weighted median	149	0.055	0.008	0.000	
	Inverse variance weighted	149	**0.064**	**0.011**	**0.000**	
	Simple mode	149	0.070	0.021	0.001	
	Weighted mode	149	0.061	0.019	0.002	
HbA1c	MR Egger	117	0.036	0.263	0.893	0.949
	Weighted median	117	0.048	0.088	0.585	
	Inverse variance weighted	117	**0.019**	**0.061**	**0.751**	
	Simple mode	117	−0.186	0.246	0.450	
	Weighted mode	117	−0.039	0.188	0.836	
Fasting blood glucose	MR Egger	139	−0.070	0.082	0.394	0.476
	Weighted median	139	−0.014	0.030	0.638	
	Inverse variance weighted	139	**0.014**	**0.021**	**0.513**	
	Simple mode	139	−0.009	0.086	0.912	
	Weighted mode	139	0.005	0.082	0.951	
Fasting blood insulin	MR Egger	139	−0.109	0.098	0.268	0.239
	Weighted median	139	−0.013	0.035	0.702	
	Inverse variance weighted	139	**0.003**	**0.025**	**0.908**	
	Simple mode	139	−0.096	0.110	0.385	
	Weighted mode	139	−0.066	0.097	0.495	

Insomnia is causally associated with BMI and body fat percentage (in bold).
BMI, body mass index; MR, Mendelian randomization; SNP, single-nucleotide polymorphism.
Cardiovascular and metabolic risk strongly associated with increased risk of T2DM (BMI: OR 2.932, 95% CI 2.706 to 3.176, p=0.000; waist-to-hip ratio: OR 2.271, 95% CI 1.651 to 3.123, p=0.000; body fat percentage: OR 2.515, 95% CI 2.026 to 3.121, p=0.000). The intercept of MR-Egger regression for these SNPs is not statistically significant (BMI: p=0.451; waist-to-hip ratio: p=0.066; body fat percentage: p=0.722), suggesting no directional pleiotropy (table 4).

To sum up, overweight serves as a mediator in the causal pathway from insomnia to T2DM. A network MR diagram of a summary from insomnia to T2DM is shown in figure 2.

DISCUSSION

In this study, we investigate the causality between genetically determined insomnia and T2DM. Mechanically, we further explore the potential pathways mediating effects from insomnia to T2DM, emphasizing overweight (BMI, waist-to-hip ratio, and body fat percentage) and glycometabolism (HbA1c, fasting blood glucose, and fasting blood insulin). Our MR analysis provides strong evidence that genetically predicted insomnia has a causal association with T2DM. Being overweight (especially BMI and body fat percentage) mediates the causal pathway from insomnia to T2DM. As we know, we are the first to address possible biological mechanisms in the causal pathway from insomnia to T2DM by a network MR study.

Epidemiological evidence of the link between insomnia and T2DM

Much previous epidemiological evidence has indicated the link between insomnia and T2DM. Both poor sleep habits and sleep disorders are highly prevalent among adults with T2DM. In observational studies, short sleep duration, obstructive sleep apnea, shift work, and insomnia are associated with a higher risk of incident T2DM and may predict worse outcomes in those with existing diabetes. A cohort study consists of 81,233 persons with pre-diabetes, 24,146 (29.7%) of whom have insomnia at some point during the 4.3-year average observation period. After adjusting for traditional risk factors, patients with insomnia were 28% more likely to develop T2DM than those without insomnia. As in northern China, insomnia is associated with T2DM independently. The aforementioned evidence suggests that insomnia may act as a novel risk factor for T2DM.

Comparison with previous MR studies

MR analysis provides a robust and cost-efficient approach to demonstrate temporal relationships and causal pathways between sleep and obesity through genetics. MR exploits the fact that genes are randomly assigned from parents to offspring, which are unlikely to be affected by confounding factors, and that genotypes are fixed at zygote formation and cannot be changed. Recently, a wide-angled MR study (34 exposures (19 risk factors and

Trait	Method	nSNP	OR	95% CI	P value	MR-Egger intercept P
BMI–T2DM	MR Egger	332	3.171	2.546 to 3.948	0.000	0.451
	Weighted median	332	2.932	2.652 to 3.241	0.000	
	Inverse variance weighted	332	2.932	2.706 to 3.176	0.000	
	Simple mode	332	2.996	2.213 to 4.055	0.000	
	Weighted mode	332	2.996	2.303 to 3.896	0.000	
Waist-to-hip ratio–T2DM	MR Egger	20	5.062	0.948 to 27.029	0.074	0.066
	Weighted median	20	2.106	1.693 to 2.619	0.000	
	Inverse variance weighted	20	2.271	1.651 to 3.123	0.000	
	Simple mode	20	2.343	1.466 to 3.746	0.002	
	Weighted mode	20	2.384	1.581 to 3.595	0.001	
Body fat percentage–T2DM	MR Egger	195	2.899	1.287 to 6.531	0.011	0.722
	Weighted median	195	3.200	2.758 to 3.713	0.000	
	Inverse variance weighted	195	2.515	2.026 to 3.121	0.000	
	Simple mode	195	3.398	2.132 to 5.415	0.000	
	Weighted mode	195	3.398	2.128 to 5.424	0.000	

Higher BMI, waist-to-hip ratio and body fat percentage levels are causally associated with increased risk of T2DM (in bold).

BMI, body mass index; MR, Mendelian randomization; SNP, single-nucleotide polymorphism; T2DM, type 2 diabetes mellitus.
Potential mediators from insomnia to T2DM

There is no comprehensive description of the underlying mechanisms from insomnia to T2DM. As for the possible mediators from insomnia to T2DM, overweight (BMI, waist-to-hip ratio, and body fat percentage) and glycometabolism (HbA1c, fasting blood glucose, and fasting blood insulin) are chosen for our MR analysis. A previous study has demonstrated potential causal associations of genetic liability to insulin with increased risk of a broad range of cardiovascular diseases, including atrial fibrillation, heart failure, coronary artery disease, and so on.12 24 Most of the aforementioned cardiovascular diseases are also well-established risk factors for T2MD. In addition, there is burgeoning evidence of a causal association between obesity (including BMI, waist-to-hip ratio, body fat distribution, and abdominal adiposity) and increased risk of T2DM.29–32 Previous MR studies suggest robust causal effects of obesity (including BMI, waist-to-hip ratio, and body fat percentage) on higher BMI,33 and insomnia on a higher waist-to-hip ratio.5 Our analysis also provides strong evidence that insomnia is causally associated with BMI and body fat percentage. There is also suggestive evidence of an association between insomnia and the waist-to-hip ratio. So, our findings (weaker estimates) are directionally similar to the previous MR studies. We analyze the inconsistent increase in the T2DM risk ratio due to the different consortia we have chosen for analysis. Since insomnia is proved to be a modifiable risk factor for T2DM, management against insomnia among the population is recommended to prevent T2DM.

LIMITATION

First, in the insomnia dataset, only European descent participants are included. This population confinement may limit the generalizability of our findings to other populations in the whole world. Second, the ascertainment of insomnia is far from perfect. In UK Biobank, insomnia is defined by self-reported information collected via a questionnaire on a touchscreen device and while in 23andMe, an online questionnaire survey defines insomnia. As a result, the ascertainment of insomnia is entirely subjective. Last but not least, besides insomnia, the insomnia-related SNPs may affect T2DM through other causal pathways, such as daytime sleepiness, too long/too short sleep duration, and depression.

CONCLUSIONS

Genetically predicted insomnia has a causal association with T2DM. Being overweight mediates the causal pathway from insomnia to T2DM.

For patients with insomnia, to prevent overweight problems and the following T2DM, sleep intervention should be carried out in advance to improve sleep quality. Moreover, strong weight control management and routine screening for T2DM are also recommended for those who have insomnia. Strategies to reduce insomnia, especially for the overweight population, are cornerstones in preventing T2DM in public. The complex relationship between insomnia, obesity, and diabetes should be further explored in clinical studies in the future.
REFERENCES

1. Jansen PR, Watanabe K, Stringer S, et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat Genet 2019;51:394–403.

2. Riemann D, Nissen C, Palagini L, et al. Insomnia, sleep latency, and treatment of chronic insomnia. Lancet Neurol 2012;11:247–55.

3. Emamian F, Orav EJ, Orav JS, et al. Association of body mass index with type 2 diabetes mellitus. JAMA Cardiol 2019;4:565–72.

4. Ogilvie RP, Patel SR. The epidemiology of sleep and diabetes. Curr Diab Rep 2018;18:78.

5. Otaka H, Murakami H, Nakayama H, et al. Association between insomnia and personality traits among Japanese patients with type 2 diabetes mellitus. J Diabetes Investig 2019;10:84–90.

6. Zhang Y, Lin Y, Zhang J, et al. Genetic associations between type 2 diabetes mellitus in Han Chinese individuals in Shandong Province, China. Sleep Breath 2019;23:349–54.

7. LeBlanc ES, Smith NX, Nichols GA, et al. Risk of type 2 diabetes in patients with insomnia: a population-based historical cohort study. Diabetes Metab Res Rev 2018;34:dmr2930.

8. Yuan S, Larsson SC. An atlas on risk factors for type 2 diabetes: a wide-angled Mendelian randomisation study. Diabetologia 2020;63:2359–71.

9. Gao X, Sun H, Zhang Y, et al. Investigating causal relations between sleep-related traits and risk of type 2 diabetes mellitus: a Mendelian randomisation study. Sleep Med 2020;75:101785.

10. Bowden J, Holmes MV. Meta-Analysis and Mendelian randomization: a review. Res Synth Methods 2019;10:486–96.

11. Burgess S, Foley CN, Allara E, et al. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat Commun 2020;11:376.

12. Larsson SC, Markus HS. Genetic liability to insomnia and cardiovascular disease risk. Circulation 2019;140:796–80.

13. Xue A, Wu Y, Zhu Z, et al. Genome-wide association studies identify 114 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun 2018;9:2941.

14. Shungin D, Winkler TW, Croteau-Chonka DC, et al. New genetic loci link adipose and insulin body weight distribution. Nature 2015;518:187–96.

15. Wojcik GL, Grall M, Nishimura KK, et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 2019;570:514–8.

16. Liao L-Z, Li W-D, Liu Y, et al. Exploring the causal pathway from omega-6 levels to coronary heart disease: a network Mendelian randomization study. Nutr Metab Cardiovasc Dis 2020;30:233–40.

17. Zheng J, Baird D, Borges M-C, et al. Recent developments in Mendelian randomization studies. Curr Epidemiol Rep 2017;4:330–45.

18. Haycock PC, Burgess S, Wade KH, et al. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr 2016;103:965–78.

19. Hernani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenotype. Elife 2018;7:e34408.

20. White J, Sverdlov DI, Preiss D, et al. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol 2016;1:692–9.

21. Sterne JAC, Sutton AJ, Ioannidis JPA, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011;343:d4002.

22. Morgan RG. Network Mendelian randomization study design to assess factors mediating the causal link between telomere length and heart disease. Circ Res 2017;121:200–2.

23. Burgess S, Daniel RM, Butterworth AS, et al. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol 2015;44:484–95.

24. Yuan S, Mason AM, Burgess S, et al. Genetic liability to insomnia in relation to cardiovascular diseases: a Mendelian randomisation study. Eur J Epidemiol 2021;36:393–400.

25. Zgolijke RP, Patel SR. The epidemiology of sleep and diabetes. Curr Diab Rep 2018;18:82.

26. Otaka H, Murakami H, Nakayama H, et al. Association between insomnia and personality traits among Japanese patients with type 2 diabetes mellitus. J Diabetes Investig 2019;10:84–90.

27. Zhang Y, Lin Y, Zhang J, et al. Association between insomnia and type 2 diabetes mellitus in Han Chinese individuals in Shandong Province, China. Sleep Breath 2019;23:349–54.

28. Grover S, Del Greco M F, König IR. Evaluating the current state of Mendelian randomization studies: a protocol for a systematic review on methodological and clinical aspects using neurodegenerative disorders as outcome. Syst Rev 2018;7:145.

29. Li Y, Leonard B, Colorado ES, et al. Summary statistics for meta-analysis of Mendelian randomization studies. JAMA Netw Open 2018;1:e2002982.

30. Anandia A, Ovalle L, Mano J, et al. Impact of body mass index on association of body mass index with type 2 diabetes across the UK Biobank: a Mendelian randomization study. PLoS Med 2019;16:e1002982.

31. Riaz H, Khan MS, Siddiqi TJ, et al. Association between obesity and cardiovascular outcomes: a systematic review and meta-analysis of Mendelian randomization studies. JAMA Netw Open 2018;1:e183788.
Cardiovascular and metabolic risk

34 Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. *Nature* 2015;518:197–206.

35 Brouwer A, van Raalte DH, Rutters F, et al. Sleep and HbA1c in patients with type 2 diabetes: which sleep characteristics matter most? *Diabetes Care* 2020;43:235–43.

36 Reutrakul S, Van Cauter E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. *Metabolism* 2018;84:56–66.

37 Kothari V, Cardona Z, Chirakalwasan N, et al. Sleep interventions and glucose metabolism: systematic review and meta-analysis. *Sleep Med* 2021;78:24–35.