Application of Multivariate Techniques for Characterizing Composition of Starches and Sugars in Six High Yielding CMD Resistant Cassava (Manihot esculenta Crantz) Varieties

Emmanuel Ohene Afoakwa1,*, Agnes Simpson Budu2, Clement Asiedu1, Linley Chiwona-Karltun3 and Drinah B Nyirenda3

1Department of Nutrition & Food Science University of Ghana, P. O. Box LG 134 Legon-Accra, Ghana
2Swedish University of Agricultural Sciences (SLU), Department of Urban & Rural Development, Box 7012, 750 07 Uppsala, Sweden
3Department of Animal Science University of Zambia, Lusaka, Zambia

Abstract

High yielding and cassava mosaic disease (CMD) resistant cassava varieties have been developed by the Crop Research Institute of Ghana with varying compositions and concentrations of starches and sugars. This study characterized four of these improved cassava varieties (Ampong, Broni bankye, Sika and Otuhia) together with two traditional varieties (Amakuma and Bankye flita) for their composition of starches and sugars using principal component and cluster analyses. The concentration of total sugars, reducing and non-reducing sugars, sucrose, starches, amylose and amylopectin were determined using standard analytical methods. Results obtained were total sugar (4.04-18.47%), non-reducing sugar (2.08-16.21%), sucrose (1.98-15.40%), starch (15.39-31.07%) and amylose (30.57-40.33%) and these were significantly different (p < 0.05) amongst the studied cassava varieties. The improved varieties (Ampong, Broni bankye, Sika and Otuhia) had high total sugar levels ranging from 7.19 to 18.47%. With the exception of Broni bankye (improved variety) all the improved and traditional varieties were high starch and amylose containing varieties. These differences in the biochemical composition of the traditional and improved cassava varieties could be used in their selection for specific food and industrial processing applications.

Keywords: Cassava; Starches; Sugars; Multivariate techniques; Principal component analysis; Cluster analysis

Introduction

Cassava (Manihot esculenta, Crantz) is a major staple root crop in many tropical and subtropical developing countries, especially in West Africa. Grown in more than 90 countries, it ranks as the 6th most important source of energy in human diets on a worldwide basis and as the third staple food after rice and corn/maize [1-4]. Cassava root is an energy-dense food. In this regard, cassava shows very efficient carbohydrate production per hectare. It produces about 250,000 calories/hectare/day, which ranks it before maize, rice, sorghum, and wheat [5]. The root is a physiological energy reserve with high carbohydrate content, which ranges from 32% to 35% on a fresh weight (FW) basis, and from 80% to 90% on a dry matter (DM) basis. Eighty percent of the carbohydrates produced is starch [6] 83% is in the form of amylopectin and 17% is amylose [7,8]. Roots contain small quantities of sucrose, glucose, fructose, and maltose [9]. Cassava has both sweet and bitter varieties. The root of the sweet cassava varieties is made up of about 17% sucrose with small amounts of dextrose and fructose [3-5,10,11].

Starch is the major caloric source in a variety of diets of people worldwide. Thus, starches from various plant species have received very extensive attention in food research. Starch has a unique chemical and physical characteristics and nutritional quality, which set it apart from all other carbohydrates. It occurs naturally as discrete particles called granules, which are composed of a mixture of two polymers - amylose and amylopectin [1,2]. Aryee [12] reported that the starch content of fresh cassava tuber is between 25% and 34% while that of cassava flour ranges from 67.92% to 88.11%. Starch plays an important role in developing food products, either as a raw material or as a food additive such as a thickener, gelling agent, stabilizer, or texture enhancer. Corn, potato, and cassava are the most common sources of starch for such industries [4,13,14].

Amylose is an essentially linear polymer of (1→4)-linked α-D-glucopyranosyl residues and has molecular weight of about 106 [15]. Several workers have previously reported wide variations in amylose content in different cassava varieties and products. Rickard and his colleagues [16] in their work on cassava starch from fresh roots reported an amylose range of 13.6–23.8% while Moorthy and Matthew [1] reported amylose content ranging from 22.6% to 26.2%. Barimah [17] in his work on starch from dry cassava chips also reported amylose levels of 23.3–24.6% while Aryee [12] reported high amylose content of 44.3% on cassava flour. Amylose content determines the stability of a viscous solution formed when heat is applied. Dakubu and Bruce-Smith [18] established that starches from fully matured cassava varieties had normal amylose content which varied from the range of 13.6 – 19.1%. Amylopectin is a very large, highly branched molecule consisting of much shorter chains of (1→4)-α-D-glucose residues connected by (1→6)-α-D-glucosidic linkages [15]. Starches that contain amylopectin molecules with a large proportion of long-branched chains display higher gelatinisation temperature and enthalpy changes [2,13,19,21].

Aryee and his colleagues [12] reported that cassava varieties with high starch content could be used as thickeners, for starch

*Corresponding author: Emmanuel Ohene Afoakwa, Department of Nutrition & Food Science, University of Ghana, P. O. Box LG 134 Legon-Accra, Ghana, Tel: +233 (0) 244 685893; E-mail: eoafoakwa@gmail.com / eoafoakwa@ug.edu.gh

Received October 04, 2011; Accepted November 18, 2011; Published November 20, 2011

Citation: Afoakwa EO, Budu AS, Asiedu C, Chiwona-Karltun L, Nyirenda DB (2011) Application of Multivariate Techniques for Characterizing Composition of Starches and Sugars in Six High Yielding CMD Resistant Cassava (Manihot esculenta Crantz) Varieties. J Nutr Food Sci 1:111. doi:10.4172/2155-9600.1000111

Copyright: © 2011 Afoakwa EO, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
production and for many other food products that require starch or flour. Invariably, the starch content largely influences the functional and physico-chemical properties of food systems, and these properties provides information on how a food ingredient will behave in a food system. These properties include swelling power, swelling, volume, solubility, water binding capacity and pasting properties. Tester and Morrison [13] noted that root and tuber starches are characterised by low lipid content (<1%), which does not have a pronounced effect on the functional properties compared to those from cereal starch. Proteins and ashes that are in low quantities in starches also do not have pronounced influence on their functional properties [22].

Mégnanou and others [23] reported that cassava varieties with high moisture and reducing sugar contents would be suitable for fermentation, and could be successfully used as raw material in ethanol, organic acids, lactic bacteria and biofuel industries. In addition, starch is used to improve the moisture retention, to control the water mobility, and also to maintain the quality of food products during storage [24]. Since most foods are aqueous systems, the quality of final food products depends strongly on interactions between water and other ingredients as well as the contribution from individual ingredients [25]. Many polysaccharides have strong capabilities of associating with water and thus can perform as effective agents to control the behaviour of water in complex food systems [26].

As variations in starch and sugar concentrations in different cassava varieties would influence to varying levels their organoleptic properties, functionality and physico-chemical properties during their applications in food and industrial processing, characterization of the new and improved varieties for their starch and sugars content would be beneficial in selecting cassava varieties for specific food processing and industrial applications. Thus, the objective of this work was to apply multivariate techniques to characterize the concentrations of starches and sugars in some traditional and improved high yielding and cassava mosaic disease (CMD) resistant cassava varieties grown in Ghana.

Materials and Methods

Materials

Six varieties of cassava comprising four improved varieties and two traditional varieties obtained from the experimental fields of the Crop Research Institute of the Council for Scientific and Industrial Research (CSIR) situated at Pokuase in the Greater Accra region of Ghana were used in the study. Table 1 gives the description of these traditional and improved varieties.

Sample preparation

Cassava samples were harvested from the fields of Crop Research Institute, Pokuase in the Greater Accra Region of Ghana and transported immediately to the laboratory. At the laboratory, the samples were cleaned, peeled and washed with potable water. Samples from the distal, middle and apical sections of peeled tubers were cut into cube and oven dried at 60°C for 48 h. The oven dried samples were ground in a Hammer mill (Christy and Norris Ltd., Chelmsford, Surrey, UK) into flour to pass through a 250-mm sieve. The flour samples obtained were then packaged into polypropylene bags and kept at room temperature (25°C) for analyses.

Analytical methods

Starch determination: The starch was extracted from the six varieties by sedimentation method [27]. The tubers were sorted out and washed with clean water. The tubers were peeled, washed, with clean water to remove all the dirt and grated into chunks of about 0.5 - 1 mm thick. The 400 g of the samples were weighed and milled with 800 ml of water using Waring Blender (Philips 8010G, Springfield, MA, USA). The slurry sample was filtered through a clean cheese cloth. The solids retained by the cloth were washed with 4000 ml of water and filtered through cheese cloth until there was little or no starch in the residue. The filtrate was allowed to sediment overnight and the liquid decanted and discarded. The starch was dried under room temperature until completely dry. The dried starch was weighed and expressed as a percentage of fresh weight.

Determination of amylose and amylopectin content: The amylose content of the samples was determined by standard methods [28]. One gram iodine and 10 g KI was dissolved in water and made up to 500 ml. About 100 mg amylose was dissolved in 10 ml 1N NaOH and made up to 100 ml with water. One (1) ml of distilled ethanol and 10 ml of 1N NaOH was added to 100 mg of the flour sample which was heated in a water bath for 10 minutes. The extract was diluted to 100 ml and 2.5 ml of it was added to 20 ml distilled water with three drops of phenolphthalein. 0.1 N HCl was added drop by drop until the pink colour just disappeared. 1 ml of iodine reagent was added and made up to the volume 50 ml. The absorbance was read at 590 nm. A serial dilution of 0.2, 0.4, 0.6, 0.8 and 1 ml of the standard amylose solution was done with the development of colour as in case of the sample. The amount of amylose present in the sample was calculated using the standard curve. For the blank 1ml of iodine reagent diluted to 50 ml with distilled water. The amount of amylopectin was obtained by subtracting the amylose content from that of starch.

Determination of total sugars: Total sugars were determined by methods described by AOAC [27]. Ten grams of the sample was dissolved in 100 ml of distilled water. 10 ml of concentrated HCl was added to the solution and heated in a water bath for 10 minutes. The solution was then neutralized with a base preferably NaOH. The solution was made up to 200 or 300 ml with distilled water and filtered. 10 or 25 ml of mixed Fehling’s solution was pipetted into a conical flask followed by the addition of 15 ml of the solution from the burette. The solution was heated and on boiling three drops of methylene blue was added. Further quantities of the solution were added from the burette (1 ml at a time) at 10 – 15 seconds interval to the boiling liquid until the indicator is completely decolourised. The titre values obtained correspond to mg of invert sugar per 100 ml.

Determination of reducing sugars, non-reducing sugars and sucrose: Reducing sugars were determined by methods described by AOAC [27]. About 50 g of the sample was dissolved in 150 ml of distilled water. The solution was made up to 200 ml with distilled water and filtered. About 25 ml of mixed Fehling solution was pipetted into a conical flask followed by the addition of 15 ml of the solution from the burette. The solution was heated and on boiling three drops of methylene blue was added. Further quantities of the solution were added from the burette (1 ml at a time) at 10 – 15 seconds interval to the boiling liquid until the indicator is completely decolourised. The titre values obtained correspond to mg of invert sugar per 100 ml. The amount of non-reducing sugars was obtained by subtracting the reducing sugars from that of the total sugars. The amount of sucrose in the sample was also obtained by multiplying the amount of non-reducing sugars by the factor 0.95.

Citation: Afoakwa EO, Budu AS, Asiedu C, Chivona-Karlton L, Nyirenda DB (2011) Application of Multivariate Techniques for Characterizing Composition of Starches and Sugars in Six High Yielding CMD Resistant Cassava (Manihot esculenta Crantz) Varieties. J Nutr Food Sci 1:111. doi:10.4172/2155-9600.1000111
Statistical analysis

Statistical analysis and graphical presentation were done with Minitab version 14 and Microsoft Excel version 2007. Analysis of variance for the cassava varieties was conducted at a level of significance of p<0.05. Cluster Analysis (cluster observation) was carried out to group cassava varieties with similar characteristics. Principal component analysis (PCA) was used to ascertain patterns and explore the relationships between the various parameters and the cassava samples.

Results and Discussion

Concentrations of sugars of the cassava varieties

Table 2 shows the sugar content of the cassava varieties studied. Wide variations were observed in the total sugar content of the cassava varieties which ranged between 4.04 % (Bankye fitaa) to 18.47 % (Otuhia). The traditional varieties (Amakuma and Bankye fitaa) had low sugar contents as compared to the improved varieties (Ampong, Broni Bankye, Sika and Otuhia). Padonou and his colleagues [29] and Aryee and his colleagues [12] reported values from 1.57% to 7.50% for study on cassava genotypes. The total sugars for Amakuma and Bankye fitaa were within the range reported while the improved varieties Ampong, Broni bankye, Sika and Otuhia were relatively higher signifying higher sweetness levels. It was observed that the reducing sugar content of the cassava varieties varied with ranges from 1.55% (Ampong) to 2.42% (Broni Bankye). The traditional varieties had appreciable reducing sugar contents at 1.82% and 1.95% for Amakuma and Bankye fitaa respectively. Except for Ampong (1.55%), all the other varieties had their reducing sugar content above value of 1.67 g/100g by Mégannou et al. [23].

Non-reducing sugars formed the major component of the total sugars of the cassava varieties with the improved varieties having high values. Non-reducing sugars varied with ranges from 2.08% to 16.21% with Bankye fitaa being the highest and Otuhia the lowest. There were variations amongst the varieties for sucrose which ranged from 1.98% (Bankye fitaa) to 15.40% (Amakuma). Okigbo [5] and Charles et al. [10] reported that 17% of the cassava root is made up of sucrose with small amounts of dextrose and fructose. One way analysis of variance of the total sugars, reducing sugar, non-reducing sugar and sucrose data showed that there were significant differences (p<0.05) amongst the cassava varieties (improved and traditional) except for reducing sugar content.

Certain varieties of cassava have traditionally been designated as sweet or bitter, purportedly in relation to their sugar content. The sweet varieties are supposedly much lower in hydrogen cyanogen (HCN) content than the bitter varieties [10]. Both the improved and local varieties showed high values for total sugar but had low hydrogen cyanogen content this was contrary to what Padonou et al. [29] observed in his studies on the quality of boiled cassava roots. He observed that bitter cultivars had higher total sugar and protein contents but lower fibre content. Instead the improved varieties having high levels of total sugars had high protein and crude fibre whilst the traditional varieties were vice versa.

Starch content of the cassava varieties

There were variations in the starch content of the cassava varieties which ranged from 15.39% to 31.07% (Table 3). Broni Bankye (improved variety) had the lowest while Amakuma (traditional variety) had the highest starch content. Previous studies reported starch values ranging between 25% and 35% [3,4]. Mégannou et al. [23] also reported values between 3.32% and 23.24% when studying improved cassava varieties in Cote d’Ivoire. The starch content of both the improved and traditional cassava varieties were within the reported range from literature. The local varieties had considerable high starch content than the improved varieties but low content for free sugars. Statistical analysis conducted on the data showed significant difference (p<0.05) amongst the cassava varieties.

Amlose content of the cassava varieties varied significantly (p<0.05) giving a range of 30.57% to 40.33% (Table 3). Amakuma (traditional variety) had the highest value with Broni Bankye (improved variety) having the lowest. The variation in amlose content may be attributed to varietal effect. Amlose content determines to a large extent the nutritional value and storage stability of the roots.

Table 1: Variety, Type, Age and Source of Samples.

Sample	Type	Age at harvest (months)	Source
Ampong-CSIR	Improved	12	Crops Research Institute, Fumesua, Ghana
Broni bankye-CSIR	Improved	12	Crops Research Institute, Fumesua, Ghana
Sika-CSIR	Improved	12	Crops Research Institute, Fumesua, Ghana
Otuhia-CSIR	Improved	12	Crops Research Institute, Fumesua, Ghana
Amakuma	Traditional	12	Crops Research Institute, Fumesua, Ghana
Bankye fitaa	Traditional	12	Crops Research Institute, Fumesua, Ghana

Table 2: Sugars concentrations in the traditional and improved cassava varieties.

Variety	Total Sugars (%)	Reducing Sugars (%)	Non-Reducing Sugars (%)	Sucrose (%)
Ampong 1	7.19±3.66 a	1.55±0.59	5.64±3.22	5.36±0.05
Broni Bankye 2	13.81±1.95 a	2.42±0.62	11.39±2.18	10.82±2.07
Sika 1	6.27±1.40 c,d	1.96±0.31	4.33±1.65	13.61±1.57
Otuhia 1	18.47±0.81 b	2.26±0.40	16.21±0.52	15.40±0.49
Amakuma 2	4.51±2.50 c,d	1.82±0.16	2.68±2.52	2.55±2.40
Bankye fitaa 2	4.04±1.03 c,d	1.95±0.91	2.08±0.39	1.98±0.37

In each column means followed by different letters (a, b, c, etc.) are significantly different at p < 0.05.

Table 3: Starch content of traditional and improved cassava varieties.

Variety	Starch (%)	Amylose (% starch)	Amylopectin (% starch)
Ampong 1	21.40±2.50 a	31.25±4.56	68.75±4.56
Broni Bankye 2	15.39±1.87 a	30.57±4.98	69.43±4.98
Sika 1	23.76±1.02 a	32.80±1.42	67.20±1.42
Otuhia 1	24.07±2.44 a	36.73±3.96	63.30±3.92
Amakuma 2	31.07±1.91 a	40.33±3.09	59.70±3.08
Bankye fitaa 2	25.27±1.05 a	35.53±3.75	64.47±3.75

In each column means followed by different letters (a, b, c, etc.) are significantly different at p < 0.05.

1 improved variety and 2 traditional variety.
Cluster and principal component analysis for sugars and starches concentrations of cassava varieties

Cluster and principal component analysis was applied to the biochemical characteristics of the cassava samples. This was done to group cassava varieties with similar characteristics and to display pattern and interrelationship between samples and their biochemical characteristics. Figure 1 shows the cluster observations dendrogram for biochemical characteristics of the cassava varieties. This partitioned the samples into two clusters based on similarity of characteristics. One improved variety (Ampong) formed the first cluster with traditional varieties Amakuma and Bankye fitaa, whilst the other improved varieties Broni bankye, Sika and Otuhia formed the third cluster. In this case similarity between varieties was not divided along improved and traditional lines. Among the new varieties Ampong was similar to the local varieties Amakuma and Bankye fitaa leaving the other improved varieties Broni bankye, Sika and Otuhia formed the third cluster. In this case similarity between varieties was not divided along improved and traditional lines. Among the new varieties Ampong was similar to the local varieties Amakuma and Bankye fitaa leaving the other improved varieties in the second cluster. The principal component analysis applied to the biochemical characteristics of the cassava varieties shows that two components explained a total of 61.9% of the total variability in the data. PC1 accounted for 61.9% of the variation in the biochemical characteristics while PC2 explained 28.8% (Figures 2 and 3).

The sample score plot (Figure 2) confirms the portioning observed in the cluster analysis. All the improved varieties were found on the negative side of the PC1 except Ampong which was found loaded on the positive side with the traditional varieties. The improved varieties plot (Figure 3) showed a loading of free sugars and amylopectin to the negative side of the x-axis (PC 1) which is related to the loadings of the new varieties on the sample score plot. The positive side of the x-axis (PC 1) of the variable weights plot shows the loading of starch and amylose content which is related to the loadings of traditional varieties on the sample score plot. This suggests that Ampong and the traditional varieties are different from the improved varieties – on the biochemical level – based predominantly on starch and free sugars. Ampong having low total sugar content was characteristic of the traditional varieties. Broni bankye on the other hand had lower starch content than Sika and Otuhia, but they were related in terms of similarity by their high content of free sugars. The high content of free sugars in the improved varieties may be due to the increased activities of plant enzyme, amylases which break down or hydrolyze starch into the constituent sugars.

There were significant differences at p<0.05 among the cassava varieties. The improved varieties had high content of free sugars except Ampong. The traditional varieties (Amakuma and Bankye fitaa) had high starch and amylose content. The improved varieties because of their higher free sugars contents would be suitable for fermentation, and could be successfully used as raw material for industrial production.
of ethanol, organic acids and lactic bacteria. The traditional varieties because of their high starch content could be used as thickeners, for starch production which can be used to improve the moisture retention, control the water mobility, and also maintain the quality of food products during storage. The traditional varieties with their high amylose contents could also be used for industrial production of ethanol, as well as glucose and high fructose syrups.

Conclusion

The improved and traditional cassava varieties studied had appreciable quantities of sugars and starches with total sugar (4.04-18.47%), non-reducing sugar (2.08-16.21%), sucrose (1.98-15.40%), starch (15.39-31.07%) and amylose (30.57-40.33%) and these values were significantly different amongst the traditional and improved cassava varieties. The improved varieties (Ampong, Broni bankye, Sika and Oтуhua) had higher sugar levels as compared to the traditional varieties (Amakuma and Bankye fitaa) which had relatively lower sugar concentrations. With the exception of Broni bankye (improved variety) all the improved and traditional varieties were high starch and amylose containing varieties. The improved varieties because of their higher free sugars contents would be suitable for fermentation, and could be successfully used as raw material for industrial production of ethanol, organic acids and lactic bacteria. On the other hand, the traditional varieties because of their high starch content could be used as thickeners, and for starch production. These products can be used to improve the moisture retention, control the water mobility, and also maintain the quality of food products during storage. The traditional varieties with their high amylose contents could also be used for industrial production of ethanol, as well as glucose and high fructose syrups.

References

1. Moorthy SN, Mathew G (1998) Cassava fermentation and associated changes in physico-chemical and functional properties. Crit Rev Food Sci Nutr 38: 73–121.
2. Belewa A, Butarelo SS, Silva RSF (2006) Modeling of starch gelatinization during cooking of cassava (Manihot esculenta Crantz). LWT – Food Science and Technology 39: 400–404.
3. Montagnac JA, Davis CR, Tanumihardjo SA (2009) Nutritional value of cassava use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf 8: 181-194.
4. Sornyotha S, Kyu KL, Ratanathanakochai K (2010) An efficient treatment for detoxification process of cassava starch by plant cell wall-degrading enzymes. J Biosci Bioeng 109: 9-14.
5. Okiogbo BN (1980) Nutritional implications of projects giving high priority to the production of staples of low nutritive quality: The case for cassava (Manihot esculenta, Crantz) in the humid tropics of West Africa. Food Nutr Bull 2: 1–17.
6. Bradbury JH, Denton IC (2011) Mild methods of processing cassava leaves to remove cyanogens and conserve key nutrients. Food Chemistry 127: 1755-1759.
7. Rawel HM, Kroll J (2003) Die Bedeutung von Cassava (Manihot esculenta, Crantz) als Hauptnahrungsmittel in tropischen Ländern. Deutsche Lebensmittel-Rundschau 99: 102–111.
8. Oluwole OSA, Onabolu AO, Mtunda K, Mlingi N (2007) Characterization of cassava (Manihot esculenta Crantz) varieties in Nigeria and Tanzania, and farmers’ perception of toxicity of cassava. J Food Compost Anal 20: 559-567.
9. Tewe OO, Lutaladio N (2004) Cassava for livestock feed in sub-Saharan Africa. Rome, Italy: FAO.
10. Charles AL, Siroith K, Huang TC (2005) Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chemistry 92: 615–620.
11. Nambisan B (2011) Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety. Food Chem Toxicol 49:690-693.
12. Aryee FNA, Oduo I, Ellis WO, Afoakwa JJ (2006) The physicochemical properties of flour samples from the roots of 31 varieties of cassava. Food Control 17: 916–922.
13. Tester RF, Morrison WR (1990) Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry 67: 551–557.
14. Nyirenda DB, Chiwona-Kartlun L, Chitundu M, Haggblade S, Brimer SL (2011) Chemical safety of cassava products in regions adopting cassava production and processing – Experience from Southern Africa. Food Chem Toxicol 49: 607-612.
15. Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectins and its significance. Carbohydrate Research 147: 342–347.
16. Shittu T.A, Samni LO, Awonorin SO, Mazlya-Dixon B, Dixon A (2007) Use of multivariate techniques in studying the flour making properties of some CMD resistant cassava clones. Food Chemistry 101: 1656–1616.
17. Barimah J, Ellis WO, Oldham JH, Safot-Kantanka O, Pawar GD (1999) The effects of drying and varietal differences on the physicochemical properties of cassava starch. Journal of Ghana Science Association 3: 53-59.
18. Jisha S, Padmaja G, Moorthy SN, Rajeshkumar K (2008) Pre-treatment effect on the nutritional and functional properties of selected cassavas-based composite flours. IFSET 9:587-592.
19. Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, et al. (1999) Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry 76: 629-637.
20. Afoakwa EO, Kongor JE, Amor GA, Adjou X (2010) Acidification and starch behaviour during co-fermentation of cassava (Manihot esculenta Crantz) and soybean (Glycin max Merr) into gari, an African fermented food. Int J Food Science Nutr 61: 449 – 462.
21. Jisha S, Padmaja G, Sajeev MS (2011) Nutritional and textural studies on dietary fiber-enriched muffins and biscuits from cassava-based composite flours. J Food Qual 33: 79–99.
22. Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers 45: 253–267.
23. Megnanou RM, Kouassi SK, Akpa EE, Djedji C, Bony N, Lamine SN (2009) Physico-chemical and biochemical characteristics of improved cassava varieties in Cote d’Ivoire. Journal of Animal and Plant Science 5: 507-514.
24. Bahnassey YA, Breene WM (1994) Rapid visco-analyzer (RVA) pasting profiles of wheat, corn, waxy corn, cassava and amaranth starches (A. hypochondriacus and A. cruentus) in the presence of konjac flour, gelan, guar, xanthan and locust bean gums. Starch/Stärke 46:134-41.
25. Pongsawatmanit R, Miyawaki O (1993) Measurement of temperature-dependent ice fraction in frozen foods. Biosciences, Biotechnology and Biochemistry 57: 1650-1654.
26. Pongsawatmanita R, Thanasukarana P, Ikeda S (2002) Effect of Sucrose on RVA Viscosity Parameters, Water Activity and Freezeable Water Fraction of Cassava Starch Suspensions. Science Asia 28: 129-134.
27. AOAC (2005) Official Methods of Analysis. 18th Edition, Association of Official Analytical Chemists. Washington D.C, USA.
28. Arguedas P, Cooke RD (1982) Residual cyanide concentrations during the extraction of cassava starch. Int J Food Sci Technol 17: 251–262.
29. Padonou W, Mestres C, Nago MC (2005) The quality of boiled cassava roots: instrumental characterization and relationship with physicochemical properties and sensorial properties. Food Chemistry 89: 261–270.
30. Padonou SW, Nielsen DS, Akissoe NH, Hounhouigan JD, Nago MC, et al. (2010) Development of starter culture for improved processing of Lafun, an African fermented cassava food product. J Appl Microbiol 109: 1402–1410.