Inhomogeneous elastic response of silica glass

F. Léonforte, 1 A. Tanguy, 1 J.P. Wittmer, 2 and J.-L. Barrat 1

1 Université Lyon I Laboratoire de Physique de la Matière Condensée et des Nanostructures; CNRS, UMR 5586, 43 Bvd. du 11 Nov. 1918, 69622 Villeurbanne Cedex, France
2 Institut Charles Sadron, CNRS, 6, Rue Boussingault, 67083 Strasbourg, France

(Dated: March 23, 2022)

Using large scale molecular dynamics simulations we investigate the properties of the non-affine displacement field induced by macroscopic uniaxial deformation of amorphous silica, a strong glass according to Angell’s classification. We demonstrate the existence of a length scale ξ characterizing the correlations of this field (corresponding to a volume of about 1000 atoms), and compare its structure to the one observed in a standard fragile model glass. The “Boson-peak” anomaly of the density of states can be traced back in both cases to elastic inhomogeneities on wavelengths smaller than ξ where classical continuum elasticity becomes simply unapplicable.

PACS numbers: 46.25.-y, 61.43.Fs, 62.20.Dc, 63.50.+x, 72.80.Ng

The vibrational dynamics of glasses and in particular the vibrational anomaly known as the “Boson Peak”, i.e. an excess of the low-energy density of state in glasses relative to the Debye model, have attracted considerable attention in condensed matter physics 1 2 3. This anomaly is observed in Raman and Brillouin spectroscopy 4 and inelastic neutron scattering 5 experiments in many different systems (polymer glasses 6, silica 7, metallic glasses 8) and the corresponding excitations are often associated with heat capacity or heat conductivity low temperature anomalies. Many interpretations of these vibrational anomalies have been put forward, and generally involve some kind of disorder generated inhomogeneous behavior 9 whose exact nature, however, is the subject of a lively debate 2 9 10.

In this work, we argue that the natural origin of these anomalies in “fragile” as well as “strong” glasses lies in the inhomogeneities of the elastic response at small scales, which can be characterized by the correlation length ξ of the inhomogeneous or “non-affine” part of the displacement field generated in response to an elastic deformation imposed at the macroscopic scale. The existence of such a length has been suggested in a series of previous numerical studies 11 12 13 on two and three dimensional Lennard-Jones (LJ) systems, and is experimentally demonstrated in macroscopic amorphous solids (foams 14, emulsions 15, granulars 16, ...). At a more microscopic level, evidence has been provided recently by UV Brillouin scattering experiments on amorphous silica 17. Being a natural consequence of the disorder of microscopic interactions 11 the non-affine displacement field is responsible in particular for the breakdown of Born-Huang’s formulation 17 for the prediction of elastic moduli 10 11 18, and has recently been studied theoretically by Lemaitre et al. 12 and DiDonna et al. 20.

In practice, however, it appears that the only practical way to quantify this effect for a given material consists in direct molecular simulations 10 11. The present contribution extends, for the first time, the numerical analysis to a realistic model of an amorphous silica melt — a “strong” glass according to Angell’s classification 21. Our results are compared to a previously studied “fragile” reference glass formed by weakly polydisperse LJ particles in 3D 12. Strong and fragile systems have very different molecular organisation and bonding. Although the intensity of vibrational anomalies is less important in fragile systems, it is well documented in experiments on polymer glasses or in simulations of Lennard-Jones systems 16. The observation of common features points to a universal framework for the description of low frequency vibrations in glassy systems. One recent finding of particular interest is the fact that, in these LJ systems, the Boson Peak anomaly appears to be located at the edge of the non-affine displacement regime, its position given by the pulsation associated with ξ 11. This begs the question whether this is a generic result applying also to other glasses, specifically to strong glass forming materials such as amorphous silica, which is characterized by an intricate local packing 22 — believed widely to be the specific origin of the vibrational anomaly 2.

As in our earlier contributions, we will focus on the analysis of the non-affine displacement field obtained in the linear elastic strain regime and the eigenmode density of states for systems at zero temperature or well below the glass transition.

The amorphous silica is modelled using the force field proposed by van Beest et al. 23. (For details about this “BKS” potential, see Refs. 23.) We performed classical NVT Molecular Dynamics simulations of systems containing N = 8016, 24048 and 42000 atoms with density ρ = 2.37 g/cm³, in fully periodic cubic cells with sizes L = 48.3 Å, 69.6 Å and 83.8 Å, respectively. The short ranged part of the BKS potential was truncated and shifted at a distance of 5.5 Å. For the Coulomb part we use the Ewald method with a real-space sum truncated and shifted at 9 Å 23. To obtain the silica glass, we first equilibrate all systems at T = 5000 K during
particles (L) was studied for each system size \([27]\). Next, we perform stress differences \(\Delta \sigma\) from Hooke’s law \([10]\), i.e. from the applied deformation direction is shown. A 2D projection of the inhomogeneous part \(δu(r)\) of the displacement field \(u(x)\) for the imposed macroscopic uniaxial strain in elongation \(ε_{xx} = 5 \times 10^{-3}\) for a silica glass containing \(N = 42000\) particles \((L = 83.8\ \text{Å})\). Projection of the field is done on the \((x−z)\)-plane for all particles with position \(r\) close to the plane, the arrow length being proportional to \(δu(r)\). The field resides in the linear elastic regime, i.e. has a magnitude varying linearly and reversibly with the applied deformation. As visual inspection shows, it is strongly spatially correlated and involves a substantial fraction of all atoms.

0.8 ns. An ensemble of three independent configurations was studied for each system size \([27]\). Next, we perform a quench from \(T = 5000\ \text{K}\) to \(T = 0\ \text{K}\) by decreasing linearly the temperature of the external heat bath with a quench rate of 1.8 K/ps \([24]\). Finally, a Conjugate Gradient algorithm was used to minimize the potential energy of the systems yielding \(T = 0\ \text{K}\) configurations with hydrostatic pressure \(⟨P⟩\approx 0.4\ \text{GPa}\). The static properties were checked against published results obtained with the same amorphous silica model \([24]\).

We now describe briefly the protocol used in order to investigate the elastic behavior at zero temperature of the model glasses under uniaxial deformation (for more details, see Refs. \([11, 11]\)). The procedure consists in applying a global deformation of strain \(|ε_{xx}|\ll 1\) to the sample by rescaling all coordinates in an affine manner. Starting from this affinely deformed configuration, the system is relaxed to the nearest energy minimum, keeping the shape of the simulation box constant. The relaxation step releases about half of the elastic energy of the initial affine deformation and results in the displacement \(δu(r)\) of the atoms relative to the affinely deformed state, defining the non-affine displacement field. A typical field for a silica glass is presented in Fig. 1 where a 2D projection of \(δu(r)\) in the plane containing the applied deformation direction is shown.

This procedure allows us to measure directly the elastic coefficients from Hooke’s law \([11]\), i.e. from the stress differences \(\Delta σ_{αβ} = σ^{end}_{αβ} − σ^{ref}_{αβ}\), \(σ^{ref}_{αβ}\) being the total stress tensor of the reference state configuration (quenched stresses), and \(σ^{end}_{αβ}\) the one measured in the deformed configuration after relaxation. From the resulting values of the Lamé coefficients \(λ = Δσ_{yy}/ε_{xx}\) and \(μ = (Δσ_{xx} − Δσ_{yy})/2ε_{xx}\) one obtains the associated transverse and longitudinal sound wave velocities, \(C_T = \sqrt{μ/ρ}, C_L = \sqrt{(λ + 2μ)/ρ}\). In the case of the silica glass \((λ \approx 34.4\ \text{GPa}, μ \approx 37.2\ \text{GPa}, C_T \approx 3961.4\ \text{m/s}, C_L \approx 6774.5\ \text{m/s})\), these quantities are in good agreement with data from Horbach et al. \([21, 24]\) and Zha et al. \([24]\) (for silica under a density of 2.2 g/cm\(^3\), taking into account the scaling factor \((2.37/2.2)^{1/2}\) inherent to the choice of a higher density).

The linearity of the strain dependence of both the displacement field and the stress difference \(Δσ_{αα}\) have been verified explicitly following Ref. \([11]\). The elastic (reversible) character of the applied deformation is checked by computing the remaining residual displacement field after removing the external strain \([11]\). An alternative quantification of the plastic deformation is obtained by considering the participation ratio \(Pr = N^{-1}\sum_i δu(r)^2/\sum_i δu(r)^2\) of the noise \(δu(r)\) \([11]\). As long as \(Pr ≈ 1\), all atoms are involved in the non-affine field, while irreversible plastic rearrangements are marked by \(Pr → 0\), with only a few particles involved. A choice of \(ε_{xx} = 10^{-7}\) for the LJ glass with \(L = 56\ σ\) and of \(ε_{xx} = 5.10^{-3}\) for the silica glass was found to ensure reversible and linear behavior, with 20% < \(Pr < 30\%\) and 25% < \(Pr < 40\%\), respectively \([22]\).

Visual inspection of the snapshot suggests that the field is strongly correlated over large distances, with the presence of rotational structures previously observed in Ref. \([11]\) for LJ systems \([28]\). In order to characterize this kind of structure, we normalize the field by its second moment, i.e. \(δu(r) → δu(r)/⟨δu(r)^2⟩^{1/2}\). In this way, in the linear elastic regime, it becomes independent of the applied strain and the system size \([21]\).

Next, we study the Fourier power spectrum of the fluctuations of this normalized field. This spectrum can be described by two structure factors, \(S_L(k) = \langle ||\sum_{j=1}^{N} k \cdot δu(r_j)\exp(ik \cdot r_j) ||^2⟩/N\) relative to the longitudinal and \(S_T(k) = \langle ||\sum_{j=1}^{N} k \cdot δu(r_j)\exp(ik \cdot r_j) ||^2⟩/N\) relative to the transverse field component \([11]\). These quantities are plotted in Fig. 2 as function of the wavelength λ = 2π/k, where \(k = k = (2π/L)(l, m, n)\) with \(k\) being the normalized wavevector. Brackets \(⟨\cdot⟩\) denote an average over the degeneracy set associated with \(λ\), and over an ensemble of configurations. As expected from our study of LJ glasses \([11]\), the longitudinal power spectrum of silica is always smaller than the transverse one. The main difference between the two materials resides in the hierarchical progression of the decoupling between transverse and longitudinal contributions at short wavelengths that appears in the case of the silica glass (the spectra of LJ systems being only weakly wavelength de-
dependent). This can be traced back to the local structure of silica which is represented by arrows giving the positions of the n first neighbor shells \(r^{(n)}_{\alpha-\beta}\), where \(n \in [1, 4]\) and \((\alpha, \beta) \in \{Si, O\}\). Structural effects disappear at distances greater than 4-5 tetrahedral units \(SiO_4\), i.e. \(r^{(4-5)}_{\alpha-\alpha}\) with \(\alpha \in \{Si, O\}\), and the longitudinal contribution to the non-affine displacement field becomes then about 10 times smaller than the transverse one — similar to our finding for LJ systems [11, 30]. We conclude that the non-affine displacement field is of predominantly rotational nature in both “fragile” and “strong” glasses, and proceed to extract a characteristic length representative of this rotational structure. Considering the coarse-grained field \(u_j(b) \equiv N_j^{-1} \sum_{i} \delta u_i(x_j)\) of all \(N_j\) particles contained within a cubic volume element \(V_j\) of linear size \(b\), we compute the coarse-graining function \(B(b) \equiv \langle u_j(b)^2 \rangle_j^{1/2}\). As shown by Fig. 3 we find for both glasses an exponential decay, well fitted by the characteristic scales \(\xi \approx 23\sigma\) for the “fragile” glass, and \(\xi \approx 33\) Å, i.e. near \(23 \times r^{(4)}_{Si-O}\) for the “strong” glass. The latter length scale has also been indicated in Fig. 2. The exponential behavior becomes more pronounced with increasing system size (not shown) which reduces the regime of the cut-off observed at large \(b/L \approx 1\) which is expected from the symmetry of the total non-affine field. \((B(b) \rightarrow 1\) for \(b \rightarrow 0\) due to the normalization of the field.)

The existence of such a characteristic length scale has already been underlined in Ref. [11] for the LJ system, and has been related to the position of the Boson Peak in the density of vibrational states. In order to test this assumption in the case of the silica glass, we computed the vibrational density of states (VDOS) \(g(\nu)\) using the Fourier transform of the velocity autocorrelation function [24], calculated during 1.6 ns at \(T=300\) K (followed after a run of 8 ns to assure equipartition of the kinetic energy at this temperature). The VDOS is shown in the inset of the Fig. 4 and is in good agreement with results from [24]. In the main part of Fig. 4 reduced units \(x=\nu/\xi/C_T\) are used in order to plot the excess of vibrational states according to Debye’s continuum prediction, i.e. \(g(x)/g_{Debye}(x)\), with \(\xi\) the previous characteristic length scales and \(C_T\) the sound velocities for transverse waves, for LJ and silica glasses. (The Debye prediction must obviously become correct for small eigenfrequencies. To access this frequency range even larger simulation boxes are needed.) This plot confirms the fact that the Boson Peak position can be well approximated by the frequency associated with the correlation length \(\xi\) of elastic heterogeneities in both LJ and silica glasses.

In summary, we have demonstrated the existence of inhomogeneous and mainly rotational rearrangements in the elastic response to a macroscopic deformation of amorphous silica. Our results are similar to the ones obtained previously for LJ glasses. The characterization of the non-affine displacement field demonstrates the existence of correlated displacements of about 1000 particles corresponding to elastic heterogeneities of characteristic
size ξ of 20 interatomic distances. The estimate of the frequency associated with this length is in good agreement with the Boson Peak position. The existence of such a characteristic length in glasses should encourage to view the Boson Peak as a length — rather than a frequency — marking the crossover between a regime where vibrations in glasses with wavelengths larger than ξ can be well described by a classical continuum theory of elasticity, and a small wavelength regime where vibrations are strongly affected by elastic heterogeneities.

In a nutshell, the vibrational anomaly is therefore simply due to physics on scales where classical continuum elastic theories (such as the Debye model) must necessarily break down. This leaves unanswered the important question what additional excitations are probed that produce the peak but suggests a similar description for different glass formers. Interestingly, the existence of a length scale of comparable magnitude accompanying the glass transition of solids has been demonstrated very recently [23]. This (dynamical) length characterizes the number of atoms which have to move simultaneously to allow flow just as our (static) length ξ describes the correlated particle displacements. Since the glass structure is essentially frozen at the glass transition both correlations may be closely related, possibly such that the non-affine displacements might be shown in future work to be reminiscent of the dynamical correlations at the glass transition.

Computer time was provided by IDRIS, CINES and FLCHP.

1. See the reference lists of: V.L. Gurevich et al., Phys. Rev. B 67, 094203 (2003); J. Horbach et al., Eur. Phys. J. B 19, 531 (2001).
2. M. Foret et al., Phys. Rev. B 66, 24204 (2002); B. Ruffé et al., Phys. Rev. Lett. 90, 095502 (2003); E. Courtens et al., J. Phys.: Condens. Matter 15, 1279 (2003).
3. G. Ruocco et al., J. Phys.: Condens. Matter 13, 9141 (2001); O. Pilla et al., Phys. Rev. Lett. 85, 2136 (2000); P. Benassi et al., Phys. Rev. Lett. 78, 4670 (1997).
4. R.S. Krishnan, Proc. Indian Acad. Sci. A 37, 377 (1953); M. Yamaguchi, T. Nakayama, T. Yagi, Physica B 263, 258-260 (1999); B. Helen et al., Phys. Rev. Lett. 84, 5355 (2000); B. Ruffé et al., Phys. Rev. Lett. 96, 045502 (2006).
5. U. Buchenau et al., Phys. Rev. Lett. 53, 2316 (1984); M.T. Dove et al., Phys. Rev. Lett. 78, 1070 (1997); E. Duval et al., J. Non-Cryst. Solids 235, 203 (1997).
6. E. Duval, et al., Europhys. Lett. 63, 778 (2003).
7. E. Duval, et al., Phil. Mag. 84, 1433 (2004).
8. M. Arai, et al., Phil. Mag. B 79, 1733 (1999).
9. L. Berthier, et al., Science 16, 1797 (2005).
10. J.P. Wittmer et al., Europhys. Lett. 57, 423 (2002); A. Tanguy et al., Phys. Rev. B 66, 174205 (2002).
11. F. Léonforte et al., Phys. Rev. B, 72, 224206 (2005).
12. A LJ pair potential $U_{ij}(r) = 4\epsilon ((\sigma_{ij}/r)^{12} - (\sigma_{ij}/r)^{6})$ for slightly polydisperse beads is used with σ_{ij} uniformly distributed between 0.8σ and 1.2σ. All LJ data presented in this paper refer to at a fixed density $\rho\sigma^3 = 0.98$ corresponding to a hydrostatic pressure $\langle P \rangle \approx 0.2$ at zero temperature. See Ref. [11] for details concerning the simulation protocol.
13. G. Debrégeas, H. Tabuteau and J.-M. diMeglio, Phys. Rev. Lett. 87, 178305 (2001).
14. M. Falk, J. Langer, Phys. Rev. E 57, 7192 (1998).
15. C. Goldenberg et al., preprint [cond-mat/0511610]
16. G. Masciovecchio et al., “Evidence for a new nano-scale stress correlation in silica”, preprint 2005.
17. K. Huang, Proc. Roy. Soc. London A 203, 178 (1950); M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954).
18. J.F. Lutsko, J. Appl. Phys. 65, 2991 (1989).
19. A. Lemaître and C. Maloney, cond-mat/0410592
20. B.A. DiDonna and T.C. Lubensky, Phys. Rev. E 72, 066619, (2005).
21. C.A. Angell, Science 267, 1924 (1995).
22. W. Kob, K. Binder, Glassy materials and disordered solids (World Scientific Publishing, 2005).
23. B.W.H. van Beest, G.J. Kramer, and R.A. van Santen, Phys. Rev. Lett. 64, 1955 (1990).
24. K. Vollmayr, W. Kob, and K. Binder, Phys. Rev. B 54, 15808 (1996); J. Horbach, W. Kob, and K. Binder, J. Phys. Chem. B 103, 4104 (1999).
25. We use the implementation in the LAMMPS code described in S.J. Plimpton, J. Comp. Phys. 117, 1 (1995).
26. C.-S. Zha et al., Phys. Rev. B 50, 13105 (1994).
27. The sample to sample variations of all properties discussed in this study were found to be small. This is expected since all quantities are self-averaging and $\xi \approx 33 \AA \ll L$.
28. The affine part of the displacement field, $\epsilon \cdot \nabla$, depends trivially on the bead position within the simulation box.
As may be seen from Fig. 1, the non-affine part does not.

[29] The linear elastic regime for amorphous silica is much broader (higher plasticity threshold).

[30] For both model glasses the Fourier spectra become constant for large wavelengths. This is similar to the structure factor associated with the density fluctuations and reflects the thermal fluctuations which are frozen in at T_g. The long wavelength limit should be of order $\rho \xi^3$ where ρ is the number density and ξ the correlation length of the field. This explains the difference in magnitude between the two systems.