Characterizing S-flat modules and S-von Neumann regular rings by uniformity

Xiaolei Zhanga
E-mail: zxlrghj@163.com

Abstract

Let R be a ring and S a multiplicative subset of R. An R-module T is called u-S-torsion (u- always abbreviates uniformly) provided that $sT = 0$ for some $s \in S$. The notion of u-S-exact sequences is also introduced from the viewpoint of uniformity. An R-module F is called u-S-flat provided that the induced sequence $0 \to A \otimes_R F \to B \otimes_R F \to C \otimes_R F \to 0$ is u-S-exact for any u-S-exact sequence $0 \to A \to B \to C \to 0$. A ring R is called u-S-von Neumann regular provided there exists an element $s \in S$ satisfying that for any $a \in R$ there exists $r \in R$ such that $sa = ra^2$. We obtain that a ring R is a u-S-von Neumann regular ring if and only if any R-module is u-S-flat. Several properties of u-S-flat modules and u-S-von Neumann regular rings are obtained.

Key Words: u-S-torsion module, u-S-exact sequence, u-S-flat module, u-S-von Neumann regular ring.

2010 Mathematics Subject Classification: 13C12, 16D40, 16E50.

1. Introduction

Throughout this article, R is always a commutative ring with identity and S is always a multiplicative subset of R, that is, $1 \in S$ and $s_1 s_2 \in S$ for any $s_1 \in S, s_2 \in S$. Let S be a multiplicative subset of R. Recall from [12, Definition 1.6.10] that an R-module M is called an S-torsion module if for any $m \in M$, there is an $s \in S$ such that $sm = 0$. S-torsion-free modules can be defined as the right part of the hereditary torsion theory τ_S generated by S-torsion modules (see [11]). Early in 1965, Năstăsescu et al. [10] defined τ_S-Noetherian rings as rings R satisfying that for any ideal I of R there is a finitely generated sub-ideal J of I such that I/J is S-torsion. However, to tie together some Noetherian properties of commutative rings and their polynomial rings or formal power series rings, Anderson and Dumitrescu [11] defined S-Noetherian rings R, that is, any ideal of R is S-finite in 2002. Recall from [11] that an R-module M is called S-finite provided that $sM \subseteq F$ for some $s \in S$ and some finitely generated submodule F of M. One can see that there is
some uniformity is hidden in the definition of S-finite modules. In fact, an R-module M is S-finite if and only if $s(M/F) = 0$ for some $s \in S$ and some finitely generated submodule F of M. In this article, we introduce the notion of u-S-torsion modules T for which there exists $s \in S$ such that $sT = 0$. The notion of u-S-torsion modules is different from that of S-torsion modules (see Example 2.2). In the past few years, the notions of S-analogues of Noetherian rings, coherent rings, almost perfect rings and strong Mori domains are introduced and studied extensively in [1, 2, 3, 8, 9, 7].

In this article, we introduce the notions of u-S-monomorphisms, u-S-epimorphisms, u-S-isomorphisms and u-S-exact sequences according to the idea of uniformity (see Definition 2.7). Some properties of u-S-torsion modules and S-finite modules with respect to u-S-exact sequences are given in Proposition 2.8 and Proposition 2.9. We say an R-module F is u-S-flat provided that the induced sequence $0 \to A \otimes_R F \to B \otimes_R F \to C \otimes_R F \to 0$ is u-S-exact for any u-S-exact sequence $0 \to A \to B \to C \to 0$ (see Definition 3.1). Some basic characterizations of u-S-flat modules are given (see Theorem 3.2). It is well known that an R-module F is flat if and only if $\text{Tor}_1^R(R/I, F) = 0$ for any ideal I of R. However, the S-analogue of this result is not true (see Example 3.3). It is also worth remarking that the class of u-S-flat modules is not closed under direct limits and direct sums (see Remark 3.5). If an R-module F is u-S-flat, then F_S is flat over R_S (see Corollary 3.6). However, the converse does not hold (see Remark 3.7). A new local characterization of flat modules is given in Proposition 3.9. A ring R is called a u-S-von Neumann regular ring if there exists an element $s \in S$ satisfies that for any $a \in R$ there exists $r \in R$ such that $sa = ra^2$ (see Definition 3.12). A ring R is u-S-von Neumann regular if and only if any R-module is u-S-flat (see Theorem 3.13). Every u-S-von Neumann regular ring is locally von Neumann regular at S (see Corollary 3.14). However, the converse is also not true in general (see Example 3.15). We also give a non-trivial example of u-S-von Neumann regular which is not von Neumann regular (see Example 3.18). Finally, we give a new local characterization of von Neumann regular rings in Proposition 3.19.

2. u-S-TORSION MODULES

Recall from [12, Definition 1.6.10] that an R-module T is said to be an S-torsion module if for any $t \in T$ there is an element $s \in S$ such that $st = 0$. Note that the choice of s is decided by the element t. In this article, we care more about the uniformity of s on T.

2
Definition 2.1. Let R be a ring and S a multiplicative subset of R. An R-module T is called a u-S-torsion (abbreviates uniformly S-torsion) module provided that there exists an element $s \in S$ such that $sT = 0$.

Obviously, the submodules and quotients of u-S-torsion modules are also u-S-torsion. Note that finitely generated S-torsion modules are u-S-torsion and any u-S-torsion modules are S-torsion. However, S-torsion modules are not necessary u-S-torsion. We also note that every R-module does not have a maximal u-S-torsion submodule.

Example 2.2. Let \mathbb{Z} be the ring of integers, p a prime in \mathbb{Z} and $S = \{ p^n \mid n \geq 0 \}$. Let $M = \mathbb{Z}_{(p)}/\mathbb{Z}$ be a \mathbb{Z}-module where $\mathbb{Z}_{(p)}$ is the localization of \mathbb{Z} at S. Then

1. M is S-torsion but not u-S-torsion.
2. M has no maximal u-S-torsion submodule.

Proof. (1) Obviously, M is an S-torsion module. Suppose there is an p^n such that $p^nM = 0$. However, $p^n(\frac{1}{p^n} + \mathbb{Z}) = \frac{1}{p} + \mathbb{Z} \neq 0 + \mathbb{Z}$ in M. Thus M is not u-S-torsion.

(2) Suppose N is a maximal u-S-torsion submodule of M. Then there is an element $p^n \in S$ such that $p^nN = 0$. Note N is a submodule of $M_n := \{ \frac{a}{p^n} + \mathbb{Z} \in M \mid a \in \mathbb{Z} \}$. Since $M_{n+1} := \{ \frac{a}{p^n} + \mathbb{Z} \in M \mid a \in \mathbb{Z} \}$ is a u-S-torsion submodule of M and N is a proper submodule of M_{n+1}. It is a contradiction. \hfill \square

Proposition 2.3. Let R be a ring and M an R-module. Let S be a multiplicative subset of R consisting of finite elements. Then M is S-torsion if and only if M is u-S-torsion.

Proof. If M is u-S-torsion, then M is trivially S-torsion. Let $S = \{ s_1, ..., s_n \}$ and $s = s_1...s_n$. Suppose M is an S-torsion module. Then for any $m \in M$, there is an element $s_i \in S$ such that $s_i m = 0$. Thus $sm = 0$ for any $m \in M$. So $sM = 0$. \hfill \square

Proposition 2.4. Let R be a ring and S a multiplicative subset of R. If an R-module M has a maximal u-S-torsion submodule, then M has only one maximal u-S-torsion submodule.

Proof. Let M_1 and M_2 be maximal u-S-torsion submodules of M such that $s_1M_1 = 0$ and $s_2M_2 = 0$ for some $s_1, s_2 \in S$. We claim that $M_1 = M_2$. Indeed, otherwise we may assume there is an $m \in M_2 - M_1$. Let M_3 be a submodule of M generated by M_1 and m. Then $s_1s_2M_3 = 0$. Thus M_3 is a u-S-torsion submodule properly containing M_1, which is a contradiction. \hfill \square

Recall from [12, Definition 1.6.10] that an R-module M is said to be an S-torsion-free module if $sm = 0$ for some $s \in S$ and $m \in M$ implies that $m = 0$. The classes of
S-torsion modules and S-torsion-free modules constitute a hereditary torsion theory (see [11]). From this result it follows immediately the next result (see [12, Theorem 6.1.6]). However we give direct proof for completeness.

Proposition 2.5. Let R be a ring and S a multiplicative subset of R. Then an R-module F is S-torsion-free if and only if $\text{Hom}_R(T, F) = 0$ for any u-S-torsion module T.

Proof. Assume that F is an S-torsion-free module and let T be a u-S-torsion module and $f \in \text{Hom}_R(T, F)$. Then there exists $s \in S$ such that $st = 0$. Thus for any $t \in T$, $sf(t) = f(st) = 0 \in F$. Thus $f(t) = 0$ for any $t \in T$. Conversely suppose that $sm = 0$ for some $s \in S$ and $m \in F$. Set $F_s = \{x \in F \mid sx = 0\}$. Then F_s is a u-S-torsion submodule of F. Thus $\text{Hom}_R(F_s, F) = 0$. It follows that $F_s = 0$ and thus $m=0$. So F is S-torsion-free.

Corollary 2.6. Let R be a ring, S a multiplicative subset of R and T a u-S-torsion module. Then $\text{Tor}^R_n(M, T)$ is u-S-torsion for any R-module M and $n \geq 0$.

Proof. Let T be a u-S-torsion module with $sT = 0$. If $n = 0$, then for any $\sum a \otimes b \in M \otimes_R T$, we have $s \sum a \otimes b = \sum a \otimes sb = 0$. Thus $s(M \otimes_R T) = 0$. Let $0 \to \Omega(M) \to P \to M \to 0$ be a short exact sequence with P projective. Then $\text{Tor}^R_1(M, T)$ is a submodule of $\Omega(M) \otimes_R T$ which is u-S-torsion. Thus $\text{Tor}^R_1(M, T)$ is u-S-torsion. For $n \geq 2$, we have an isomorphism $\text{Tor}^R_n(M, T) \cong \text{Tor}^R_1(\Omega^{n-1}(M), T)$ where $\Omega^{n-1}(M)$ is the $(n-1)$-th syzygy of M. Since $\text{Tor}^R_1(\Omega^{n-1}(M), T)$ is u-S-torsion by induction, $\text{Tor}^R_n(M, T)$ is u-S-torsion.

Definition 2.7. Let R be a ring and S a multiplicative subset of R. Let M, N and L be R-modules.

1. An R-homomorphism $f : M \to N$ is called a u-S-monomorphism (resp., u-S-epimorphism) provided that $\text{Ker}(f)$ (resp., $\text{Coker}(f)$) is a u-S-torsion module.
2. An R-homomorphism $f : M \to N$ is called a u-S-isomorphism provided that f is both a u-S-monomorphism and a u-S-epimorphism.
3. An R-sequence $M \xrightarrow{f} N \xrightarrow{g} L$ is called u-S-exact provided that there is an element $s \in S$ such that $s\text{Ker}(g) \subseteq \text{Im}(f)$ and $s\text{Im}(f) \subseteq \text{Ker}(g)$.

It is easy to verify that $f : M \to N$ is a u-S-monomorphism (resp., u-S-epimorphism) if and only if $0 \to M \xrightarrow{f} N$ (resp., $M \xrightarrow{f} N \to 0$) is u-$S$-exact.

Proposition 2.8. Let R be a ring, S a multiplicative subset of R and M an R-module. Then the following assertions hold.
Proposition 2.9. Let \(S \subseteq sM \) be finitely generated submodules of \(M \). Then the following assertions hold.

(1) Suppose \(M \) is \(u\)-\(S \)-torsion and \(f : L \to M \) is a \(u\)-\(S \)-monomorphism. Then \(L \) is \(u\)-\(S \)-torsion.

(2) Suppose \(M \) is \(u\)-\(S \)-torsion and \(g : M \to N \) is a \(u\)-\(S \)-epimorphism. Then \(N \) is \(u\)-\(S \)-torsion.

(3) Let \(f : M \to N \) be a \(u\)-\(S \)-isomorphism. If one of \(M \) and \(N \) is \(u\)-\(S \)-torsion, so is the other.

(4) Let \(0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0 \) be a \(u\)-\(S \)-exact sequence. Then \(M \) is \(u\)-\(S \)-torsion if and only if \(L \) and \(N \) are \(u\)-\(S \)-torsion.

Proof. We only prove (4) since (1), (2) and (3) are the consequences of (4).

Suppose \(M \) is \(u\)-\(S \)-torsion with \(sM = 0 \). Since \(\text{Ker}(f) \) (resp., \(\text{Coker}(g) \)) is \(u\)-\(S \)-torsion with \(s_1\text{Ker}(f) = 0 \) (resp., \(s_2\text{Coker}(g) = 0 \)) for some \(s_1 \in S \) (resp., \(s_2 \in S \)), it follows that \(ss_1L = 0 \) (resp., \(ss_2N = 0 \)). Consequently, \(L \) (resp., \(N \)) is \(u\)-\(S \)-torsion. Now suppose \(L \) and \(N \) are \(u\)-\(S \)-torsion with \(s_1L = s_2N = 0 \) for some \(s_1, s_2 \in S \). Since the \(u\)-\(S \)-exact sequence is exact at \(M \), there exists \(s \in S \) such that \(s\text{Ker}(g) \subseteq \text{Im}(f) \) and \(s\text{Im}(f) \subseteq \text{Ker}(g) \). Let \(m \in M \). Then \(s_2g(m) = g(s_2m) = 0 \). Thus there exists \(l \in L \) such that \(ss_2m = f(l) \). So \(s_1ss_2m = s_1f(l) = f(s_1l) = 0 \). So \(M \) is \(u\)-\(S \)-torsion.

Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). Recall from [1] that an \(R \)-module \(M \) is called \(S \)-finite provided that there exists \(s \in S \) such that \(sM \subseteq N \subseteq M \), where \(N \) is a finitely generated \(R \)-module. Let \(M \) be an \(R \)-module, \(\{m_i\}_{i \in \Lambda} \subseteq M \) and \(N = \langle m_i \rangle_{i \in \Lambda} \). We say an \(R \)-module \(M \) is \(S \)-generated by \(\{m_i\}_{i \in \Lambda} \) provided that \(sM \subseteq N \) for some \(s \in S \). Thus an \(R \)-module \(M \) is \(S \)-finite provided that \(M \) can be \(S \)-generated by finite elements.

Proposition 2.9. Let \(R \) be a ring, \(S \) a multiplicative subset of \(R \) and \(M \) an \(R \)-module. Then the following assertions hold.

(1) Let \(M \) be an \(S \)-finite \(R \)-module and \(f : M \to N \) a \(u\)-\(S \)-epimorphism. Then \(N \) is \(S \)-finite.

(2) Let \(0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0 \) be a \(u\)-\(S \)-exact sequence. If \(L \) and \(N \) are \(S \)-finite, so is \(M \).

(3) Let \(f : M \to N \) be a \(u\)-\(S \)-isomorphism. If one of \(M \) and \(N \) is \(S \)-finite, so is the other.

Proof. (1) Consider the exact sequence \(M \xrightarrow{f} N \to T \to 0 \) with \(sT = 0 \) for some \(s \in S \). Let \(F \) be a finitely generated submodule of \(M \) such that \(s'\)\(M \subseteq F \) for some \(s' \in S \). Then \(f(F) \) is a finitely generated submodule of \(N \) such that \(ss'N \subseteq f(F) \).

(2) Suppose \(0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0 \) is a \(u\)-\(S \)-exact sequence. Let \(L_1 \) and \(N_1 \) be finitely generated submodules of \(L \) and \(N \) such that \(s_1L \subseteq L_1 \) and \(s_1N \subseteq N_1 \)...
for some $s_L, s_N \in S$ respectively. Let M_1 be a finitely generated submodule of M generated by the finite images of generators of L_1 and the finite pre-images of finite generators of N_1. Then for any $m \in M$, $s_N g(m) \in N_1$. Thus there exists $m_1 \in M_1$ such that $s_N g(m) = g(m_1)$. We have $s_N m - m_1 \in \text{Ker}(g)$. Since there exists $s \in S$ such that $s \text{Ker}(g) \subseteq \text{Im}(f)$. So there exists $l \in L$ such that $s(s_N m - m_1) = f(l)$. Then there exists $l_1 \in L_1$ such that $s_L l = l_1$. Thus $s_L s(s_N m - m_1) = s_L f(l) = f(s_L l) = f(l_1)$. Consequently, $s_L s s_N m = s_L s m_1 + s f(l_1) \in M_1$. So $s_L s s_N M \subseteq M_1$. Since M_1 is finitely generated, we have M is S-finite.

(3) It is a consequence of (2).

□

3. u-S-FLAT MODULES AND u-S-VON NEUMANN REGULAR RINGS

Recall from [12] that an R-module F is called flat provided that for any short exact sequence $0 \to A \to B \to C \to 0$, the induced sequence $0 \to A \otimes_R F \to B \otimes_R F \to C \otimes_R F \to 0$ is exact. Now, we give an S-analogue of flat modules.

Definition 3.1. Let R be a ring, S a multiplicative subset of R. An R-module F is called u-S-flat (abbreviates uniformly S-flat) provided that for any u-S-exact sequence $0 \to A \to B \to C \to 0$, the induced sequence $0 \to A \otimes_R F \to B \otimes_R F \to C \otimes_R F \to 0$ is u-S-exact.

Recall from [12] that an R-module F is flat if and only if $\text{Tor}_1^R(M, F) = 0$ for any R-module M, if and only if $\text{Tor}_n^R(M, F) = 0$ for any R-module M and $n \geq 1$. We give an S-analogue of this result.

Theorem 3.2. Let R be a ring, S a multiplicative subset of R and F an R-module. The following statements are equivalent:

1. F is u-S-flat;
2. for any short exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$, the induced sequence $0 \to A \otimes_R F \xrightarrow{f \otimes_R F} B \otimes_R F \xrightarrow{g \otimes_R F} C \otimes_R F \to 0$ is u-S-exact;
3. $\text{Tor}_1^R(M, F)$ is u-S-torsion for any R-module M;
4. $\text{Tor}_n^R(M, F)$ is u-S-torsion for any R-module M and $n \geq 1$.

Proof. (1) \Rightarrow (2), (3) \Rightarrow (2) and (4) \Rightarrow (3): Trivial.

(2) \Rightarrow (3): Let $0 \to L \to P \to M \to 0$ be a short exact sequence with P projective. Then there exists a long exact sequence

$$0 \to \text{Tor}_1^R(M, F) \to F \otimes L \to P \otimes F \to M \otimes F \to 0.$$

Thus $\text{Tor}_1^R(M, F)$ is u-S-torsion by (2).
(3) ⇒ (4): Let M be an R-module. Denote by $\Omega^{n-1}(M)$ the $(n-1)$-th syzygy of M. Then $\text{Tor}_n^n(M, F) \cong \text{Tor}_1^1(\Omega^{n-1}(M), F)$ is u-S-torsion by (3).

(2) ⇒ (1): Let F be an R-module satisfies (2). Suppose $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is a u-S-exact sequence. Then there is an exact sequence $B \xrightarrow{g} C \to T \to 0$ where $T = \text{Coker}(g)$ is u-S-torsion. Tensoring F over R, we have an exact sequence

$$B \otimes_R F \xrightarrow{g \otimes_R F} C \otimes_R F \to T \otimes_R F \to 0.$$

Then $T \otimes_R F$ is u-S-torsion by Corollary 2.6. Thus $0 \to A \otimes_R F \xrightarrow{f \otimes_R F} B \otimes_R F \xrightarrow{g \otimes_R F} C \otimes_R F \to 0$ is u-S-exact at $C \otimes_R F$.

There are naturally two short exact sequences: $0 \to \text{Ker}(f) \to A \to \text{Im}(f) \to 0$, $0 \to \text{Im}(f) \to B \to \text{Coker}(f) \to 0$, where $\text{Ker}(f)$ is u-S-torsion. Consider the induced exact sequence

$$0 \to \text{Ker}(f) \otimes_R F \xrightarrow{i_{\text{Ker}(f)} \otimes_R F} A \otimes_R F \to \text{Im}(f) \otimes_R F \to 0,$$

$$0 \to \text{Im}(f) \otimes_R F \xrightarrow{i_{\text{im}(f)} \otimes_R F} B \otimes_R F \to \text{Coker}(f) \otimes_R F \to 0,$$

where $\text{Ker}(i_{\text{im}(f)} \otimes_R F)$ and $\text{Ker}(i_{\text{Ker}(f)} \otimes_R F)$ are u-S-torsion. We have the following pull-back diagram:

\[
\begin{array}{ccccccc}
0 & \to & 0 \\
\downarrow & & \downarrow \\
\text{Im}(i_{\text{Ker}(f)} \otimes_R F) & \to & \text{Im}(i_{\text{Ker}(f)} \otimes_R F) \\
\downarrow & & \downarrow \\
Y & \to & A \otimes_R F & \to & \text{Im}(i_{\text{im}(f)} \otimes_R F) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & \text{Ker}(i_{\text{im}(f)} \otimes_R F) & \to & \text{Im}(f) \otimes_R F & \to & \text{Im}(i_{\text{im}(f)} \otimes_R F) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & 0 \\
\end{array}
\]

Since $\text{Ker}(f)$ is u-S-torsion, so is $\text{Ker}(f) \otimes_R F$ by Corollary 2.6. Hence $\text{Im}(i_{\text{Ker}(f)} \otimes_R F)$ is u-S-torsion, and thus Y is also u-S-torsion by Proposition 2.8. So the composition $f \otimes_R F : A \otimes_R F \to \text{Im}(i_{\text{im}(f)} \otimes_R F) \to B \otimes_R F$ is a u-S-monomorphism.

Thus $0 \to A \otimes_R F \xrightarrow{f \otimes_R F} B \otimes_R F \xrightarrow{g \otimes_R F} C \otimes_R F \to 0$ is u-S-exact at $A \otimes_R F$.

Since the sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is u-S-exact at B, there exists $s_1 \in S$ such that $s_1 \text{Ker}(g) \subseteq \text{Im}(f)$ and $s_1 \text{Im}(f) \subseteq \text{Ker}(g)$. By (2), there are two exact sequences $0 \to T_1 \to s_1 \text{Ker}(g) \otimes_R F \to \text{Im}(f) \otimes_R F$ with $s_2 T_1 = 0$ for some $s_2 \in S$, and $0 \to T_2 \to s_1 \text{Im}(f) \otimes_R F \to \text{Ker}(g) \otimes_R F$ with $s_3 T_2 = 0$ for some $s_3 \in S$. Consider
the induced sequence $0 \to T \to \text{Ker}(g) \otimes_R F \to B \otimes_R F \to \text{Coker}(g) \otimes_R F \to 0$ with $s_4 T = 0$ for some $s_4 \in S$. Set $s = s_1 s_2 s_3 s_4$, we will show $s \text{Ker}(g \otimes_R F) \subseteq \text{Im}(f \otimes_R F)$ and $s \text{Im}(f \otimes_R F) \subseteq \text{Ker}(g \otimes_R F)$. Consider the following exact sequence

$$0 \to T \to \text{Ker}(g) \otimes_R F \xrightarrow{i_{\text{Ker}(g) \otimes_R F}} B \otimes_R F \xrightarrow{g \otimes_R F} C \otimes_R F.$$

Then $\text{Im}(i_{\text{Ker}(g) \otimes_R F}) = \text{Ker}(g \otimes_R F)$. Thus $s \text{Ker}(g \otimes_R F) = s_1 s_2 s_3 s_4 \text{Ker}(g \otimes_R F) = s_1 s_2 s_3 s_4 i_{\text{Ker}(g) \otimes_R F} \subseteq s_1 s_2 s_3 \text{Ker}(g) \otimes_R F \subseteq s_3 \text{Im}(f) \otimes_R F = s_3 \text{Im}(f \otimes_R F) \subseteq \text{Im}(f \otimes_R F)$, and $s \text{Im}(f \otimes_R F) = s_1 s_2 s_3 s_4 \text{Im}(f) \otimes_R F \subseteq s_2 s_4 \text{Ker}(g) \otimes_R F \subseteq s_2 \text{Im}(i_{\text{Ker}(g) \otimes_R F}) = s_2 \text{Ker}(g \otimes_R F) \subseteq \text{Ker}(g \otimes_R F)$. Thus $0 \to A \otimes_R F \to B \otimes_R F \to C \otimes_R F \to 0$ is u-S-exact at $B \otimes_R F$.

By Corollary 2.6 and Theorem 3.2, flat modules and u-S-torsion modules are u-S-flat. And u-S-flat modules are flat provided that any element in S is a unit. Moreover, if any element in S is regular and all u-S-flat modules are flat, then any element in S is a unit. Indeed, for any $s \in S$, we have $R/\langle s \rangle$ is u-S-flat and thus flat. So $\langle s \rangle$ is a pure ideal of R. By [2] Theorem 1.2.15], there exists $r \in R$ such that $s(1 - rs) = 0$. Since s is regular, s is a unit.

The following example shows that the condition “$\text{Tor}^R_1(M, F)$ is u-S-torsion for any R-module M” in Theorem 3.2 can not be replaced by “$\text{Tor}^R_1(R/I, F)$ is u-S-torsion for any ideal I of R”.

Example 3.3. Let \mathbb{Z} be the ring of integers, p a prime in \mathbb{Z} and $S = \{p^n \mid n \geq 0\}$ as in Example 2.2. Let $M = \mathbb{Z}(p)/\mathbb{Z}$. Then $\text{Tor}^R_1(R/I, M)$ is u-S-torsion for any ideal I of R. However, M is not u-S-flat.

Proof. Let $\langle n \rangle$ be an ideal of \mathbb{Z}. It follows from [1] Chapter I, Lemma 6.2(a)] that $\text{Tor}^\mathbb{Z}_1(\mathbb{Z}/\langle n \rangle, M) \cong \{m \in M \mid nm = 0\} = \{\frac{a}{p^b} + \mathbb{Z} \in \mathbb{Z}(p)/\mathbb{Z} \mid a, b \text{ satisfies } p^b|nb\}$. Write $n = p^k m$ where $(p, m) = 1$. If $k = 0$, then $\text{Tor}^\mathbb{Z}_1(\mathbb{Z}/\langle n \rangle, M) = 0$. If $k \geq 1$, then $\text{Tor}^\mathbb{Z}_1(\mathbb{Z}/\langle n \rangle, M) = \{\frac{b}{p^k} + \mathbb{Z} \in \mathbb{Z}(p)/\mathbb{Z} \mid a, b \in \mathbb{Z}\}$. Thus $p^k \cdot \text{Tor}^\mathbb{Z}_1(\mathbb{Z}/\langle n \rangle, M) = 0$. So $\text{Tor}^\mathbb{Z}_1(\mathbb{Z}/\langle n \rangle, M)$ is u-S-torsion for any ideal $\langle n \rangle$ of \mathbb{Z}. However, $\text{Tor}^\mathbb{Z}_1(\mathbb{Q}/\mathbb{Z}, \mathbb{Z}(p)/\mathbb{Z}) \cong t(\mathbb{Z}(p)/\mathbb{Z}) = \mathbb{Z}(p)/\mathbb{Z}$ by [1] Chapter I, Lemma 6.2(b)]. Since $\mathbb{Z}(p)/\mathbb{Z}$ is not u-S-torsion by Example 2.2, $M = \mathbb{Z}(p)/\mathbb{Z}$ is not u-S-flat.

Proposition 3.4. Let R be a ring and S a multiplicative subset of R. Then the following statements hold.

1. Any pure quotient of u-S-flat modules is u-S-flat.
2. Any finite direct sum of u-S-flat modules is u-S-flat.
3. Let $0 \to A \xrightarrow{i} B \xrightarrow{f} C \to 0$ be a u-S-exact sequence. If A and C are u-S-flat modules, so is B.

8
(4) Let $A \to B$ be a u-S-isomorphism. If one of A and B is u-S-flat, so is the other.

(5) Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a u-S-exact sequence. If B and C are u-S-flat, then A is u-S-flat.

Proof. (1) Let $0 \to A \to B \to C \to 0$ be a pure exact sequence with B u-S-flat. Let M be an R-module. Then there is an exact sequence $\text{Tor}_1^R(M, B) \to \text{Tor}_1^R(M, C) \to 0$. Since $\text{Tor}_1^R(M, B)$ is u-S-torsion, $\text{Tor}_1^R(M, C)$ also is u-S-torsion. Thus C is u-S-flat.

(2) Let F_1, \ldots, F_n be u-S-flat modules. Let M be an R-module. Then there exists $s_i \in S$ such that $s_i \text{Tor}_1^R(M, F_i) = 0$. Set $s = s_1 \ldots s_n$. Then $s \text{Tor}_1^R(M, \bigoplus_{i=1}^n F_i) \cong \bigoplus_{i=1}^n s \text{Tor}_1^R(M, F_i) = 0$. Thus $\bigoplus_{i=1}^n F_i$ is u-S-flat.

(3) Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a u-S-exact sequence. Then there are three short exact sequences: $0 \to \text{Ker}(f) \to A \to \text{Im}(f) \to 0$, $0 \to \text{Ker}(g) \to B \to \text{Im}(g) \to 0$ and $0 \to \text{Im}(g) \to C \to \text{Coker}(g) \to 0$. Then Ker($f$) and Coker($g$) are all u-S-torsion and $s\text{Ker}(g) \subseteq \text{Im}(f)$ and $s\text{Im}(f) \subseteq \text{Ker}(g)$ for some $s \in S$. Let M be an R-module. Suppose A and C are u-S-flat. Then

$$\text{Tor}_1^R(M, A) \to \text{Tor}_1^R(M, \text{Im}(f)) \to M \otimes_R \text{Ker}(f)$$

is exact. Since $\text{Ker}(f)$ is u-S-torsion and A is u-S-flat, it follows that $\text{Tor}_1^R(M, \text{Im}(f))$ is u-S-torsion. Note

$$\text{Tor}_2^R(M, \text{Coker}(g)) \to \text{Tor}_1^R(M, \text{Im}(g)) \to \text{Tor}_1^R(M, C)$$

is exact. Since $\text{Coker}(g)$ is u-S-torsion, then $\text{Tor}_2^R(M, \text{Coker}(g))$ is u-S-torsion by Corollary 2.6. Thus $\text{Tor}_1^R(M, \text{Im}(g))$ is u-S-torsion as $\text{Tor}_1^R(M, C)$ is u-S-torsion. We also note that

$$\text{Tor}_1^R(M, \text{Ker}(g)) \to \text{Tor}_1^R(M, B) \to \text{Tor}_1^R(M, \text{Im}(g))$$

is exact. Thus to verify $\text{Tor}_1^R(M, B)$ is u-S-torsion, we just need to show $\text{Tor}_1^R(M, \text{Ker}(g))$ is u-S-torsion. Set $N = \text{Ker}(g) + \text{Im}(f)$. Consider the following two exact sequences

$$0 \to \text{Ker}(g) \to N \to N/\text{Ker}(g) \to 0 \text{ and } 0 \to \text{Im}(f) \to N \to N/\text{Im}(f) \to 0.$$

Then it is easy to verify $N/\text{Ker}(g)$ and $N/\text{Im}(f)$ are all u-S-torsion. Consider the following induced two exact sequences

$$\text{Tor}_2^R(M, N/\text{Im}(f)) \to \text{Tor}_1^R(M, \text{Ker}(g)) \to \text{Tor}_1^R(M, N) \to \text{Tor}_1^R(M, N/\text{Im}(f)),$$

$$\text{Tor}_2^R(M, N/\text{Ker}(g)) \to \text{Tor}_1^R(M, \text{Im}(f)) \to \text{Tor}_1^R(M, N) \to \text{Tor}_1^R(M, N/\text{Ker}(g)).$$
Thus $\text{Tor}_R^1(M, \text{Ker}(g))$ is u-S-torsion if and only if $\text{Tor}_R^1(M, \text{Im}(f))$ is u-S-torsion. Consequently, B is u-S-flat since $\text{Tor}_R^1(M, \text{Im}(f))$ is proved to be u-S-torsion as above.

(4) It can be certainly deduced from (3).

(5) Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a u-S-exact sequence. Then, as in the proof of (3), there are three short exact sequences: $0 \to \text{Ker}(f) \to A \to \text{Im}(f) \to 0$, $0 \to \text{Ker}(g) \to B \to \text{Im}(g) \to 0$ and $0 \to \text{Im}(g) \to C \to \text{Coker}(g) \to 0$. Then $\text{Ker}(f)$ and $\text{Coker}(g)$ are all u-S-torsion and $s\text{Ker}(g) \subseteq \text{Im}(f)$ and $s\text{Im}(f) \subseteq \text{Ker}(g)$ for some $s \in S$. Let M be an R-module. Note that

$$\text{Tor}_R^1(M, \text{Ker}(f)) \to \text{Tor}_R^1(M, A) \to \text{Tor}_R^1(M, \text{Im}(f)) \to M \otimes_R \text{Ker}(f)$$

is exact. Since $\text{Ker}(f)$ is u-S-torsion, then $\text{Tor}_R^1(M, \text{Ker}(f))$ and $M \otimes_R \text{Ker}(f)$ are u-S-torsion by Corollary [2.6]. It just need to verify $\text{Tor}_R^1(M, \text{Im}(f))$ is u-S-torsion. By the proof of (3), we just need to show $\text{Tor}_R^1(M, \text{Ker}(g))$ is u-S-torsion. Since

$$\text{Tor}_R^2(M, \text{Im}(g)) \to \text{Tor}_R^1(M, \text{Ker}(g)) \to \text{Tor}_R^1(M, B)$$

is exact and $\text{Tor}_R^1(M, B)$ is u-S-torsion, we just need to show $\text{Tor}_R^2(M, \text{Im}(g))$ is u-S-torsion. Note that

$$\text{Tor}_R^3(M, \text{Coker}(g)) \to \text{Tor}_R^2(M, \text{Im}(g)) \to \text{Tor}_R^2(M, C)$$

is exact. Since $\text{Coker}(g)$ is u-S-torsion and C is u-S-flat, we have $\text{Tor}_R^3(M, \text{Coker}(g))$ and $\text{Tor}_R^2(M, C)$ are u-S-torsion. So $\text{Tor}_R^2(M, \text{Im}(g))$ is u-S-torsion. \hfill \Box

Remark 3.5. It is well known that any direct limit of flat modules is flat. However, every direct limit of u-S-flat modules is not u-S-flat. Let Z be the ring of integers, p a prime in Z and $S = \{p^n \mid n \geq 0\}$ as in Example [3.3]. Let $F_n = Z/\langle p^n \rangle$ be a Z-module. Then F_n is u-S-torsion, and thus u-S-flat. Note that each F_n is isomorphic to $M_n = \{\frac{a}{p^n} + Z \in \mathbb{Z}_{(p)}/\mathbb{Z} \mid a \in \mathbb{Z}\}$. It is easy to verify $\mathbb{Z}_{(p)}/\mathbb{Z} = \bigcup_{i=1}^{\infty} M_n \cong \lim_{\longrightarrow} F_n$.

However, $\mathbb{Z}_{(p)}/\mathbb{Z}$ is not u-S-flat (see Example 3.3).

It is also worth noting infinite direct sums of u-S-flat modules need not be u-S-flat. Let $M_n = \{\frac{a}{p^n} + Z \in \mathbb{Z}_{(p)}/\mathbb{Z} \mid a \in \mathbb{Z}\}$ as above. Then M_n is u-S-flat. Set $N = \bigoplus_{n=1}^{\infty} M_n$. Then N is a torsion module. Thus $\text{Tor}_R^1(\mathbb{Q}/\mathbb{Z}, N) = N$ by [4, Chapter I, Lemma 6.2(b)]. It can similarly be deduced from the proof of Example 2.2 that N is not u-S-torsion. Thus N is not u-S-flat.

Corollary 3.6. Let R be a ring and S a multiplicative subset of R. If F is u-S-flat over a ring R, then F_S is flat over R_S.

10
Proof. Let \(I_S \) be a finitely generated ideal of \(R_S \), where \(I \) is a finitely generated ideal of \(R \). Then there exists \(s \in S \) such that \(s\text{Tor}^R_1(R/I, F) = 0 \). Thus \(0 = \text{Tor}^R_1(R/I, F)_S \cong \text{Tor}^{R_S}_1(R_S/I_S, F_S) \). So \(F_S \) is flat over \(R_S \). \qed

Remark 3.7. Note that the converse of Corollary 3.6 does not hold. Consider \(\mathbb{Z} \)-module \(M = \mathbb{Z}_{(p)}/\mathbb{Z} \) in Example 2.2. Let \(S = \{p^n \mid n \geq 0\} \). Then \(M_S = 0 \) and thus is flat over \(\mathbb{Z}_S \). However, \(M \) is not u-S-flat over \(\mathbb{Z} \) (see Example 3.3).

Proposition 3.8. Let \(R \) be a ring and \(F \) an \(R \)-module. Let \(S \) be a multiplicative subset of \(R \) consisting of finite elements. Then \(F \) is u-S-flat over a ring \(R \) if and only if \(F_S \) is flat over \(R_S \).

Proof. We just need to show that if \(F_S \) is flat over \(R_S \), then \(F \) is u-S-flat over a ring \(R \). Let \(0 \to A \xrightarrow{f} B \to C \to 0 \) be a short exact sequence over \(R \). By tensoring \(F \), we have an exact sequence \(0 \to T \to A \otimes_R F \xrightarrow{f \otimes R F} B \otimes_R F \to C \otimes_R F \to 0 \) where \(T \) is the kernel of \(f \otimes R F \). By tensoring \(R_S \), we have an exact sequence \(0 \to T_S \to A_S \otimes_{R_S} F_S \to B_S \otimes_{R_S} F_S \to C_S \otimes_{R_S} F_S \to 0 \) over \(R_S \). Since \(F_S \) is flat over \(R_S \), \(T_S = 0 \). Thus \(T \) is \(S \)-torsion. By Proposition 2.3, \(T \) is u-S-torsion. So \(F \) is u-S-flat over a ring \(R \). \qed

Let \(p \) be a prime ideal of \(R \). We say an \(R \)-module \(F \) is \(u-p \)-flat shortly provided that \(F \) is u-(\(R \setminus p \))-flat.

Proposition 3.9. Let \(R \) be a ring and \(F \) an \(R \)-module. Then the following statements are equivalent:

1. \(F \) is flat;
2. \(F \) is u-p-flat for any \(p \in \text{Spec}(R) \);
3. \(F \) is u-m-flat for any \(m \in \text{Max}(R) \).

Proof. (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) : Trivial.

(3) \(\Rightarrow \) (1) : Let \(M \) be an \(R \)-module. Then \(\text{Tor}^R_1(M, F) \) is (\(R \setminus m \))-torsion. Thus for any \(m \in \text{Max}(R) \), there exists \(s_m \in S \) such that \(s_m \text{Tor}^R_1(M, F) = 0 \). Since the ideal generated by all \(s_m \) is \(R \), \(\text{Tor}^R_1(M, F) = 0 \). So \(F \) is flat. \qed

Recall that a ring \(R \) is called von Neumann regular provided that for any \(a \in R \), there exists \(r \in R \) such that \(a = ra^2 \). One of the main topics is the \(S \)-analogue of von Neumann regular rings. In order to study further, we will characterize when a ring \(R_S \) is von Neumann regular in the next result.

Proposition 3.10. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). The following statements are equivalent:

1. \(R_S \) is a von Neumann regular ring;
(2) any principal ideal of \(R \) is \(S \)-generated by an idempotent;
(3) any \(S \)-finite ideal of \(R \) is \(S \)-generated by an idempotent;
(4) for any \(a \in R \), there exist \(s \in S \) and \(r \in R \) such that \(sa = ra^2 \);
(5) any \(R_S \)-module is flat over \(R_S \).

Proof. (1) \(\Leftrightarrow \) (5) : It is well known. (3) \(\Rightarrow \) (2) : Trivial.

(1) \(\Rightarrow \) (4) : Let \(a \in R \). Then there exists \(\frac{a}{s} \in R_S \) such that \(\frac{a}{s} = \frac{r}{s_1} \frac{a^2}{1} \). Thus there exists \(s_2 \in S \) such that \(s_1 s_2 a = s_2 r_1 a^2 \). Set \(s = s_1 s_2 \) and \(r = s_2 r_1 \), (4) holds naturally.

(4) \(\Rightarrow \) (1) : Let \(\frac{a}{s} \) be an element in \(R_S \). Then there are \(s' \in S \) and \(x \in R \) such that \(s'a = xa^2 \). Thus \(\frac{a}{s} = \frac{x}{s_1} \frac{a^2}{1} \). So \(R_S \) is a von Neumann regular ring.

(4) \(\Rightarrow \) (2) : Let \(\langle a \rangle \) be a principal ideal of \(R \). Then there exists \(s \in S \) such that \(sa = ra^2 \) for some \(r \in R \). Set \(e = ra \). Then \(se = e^2 \) and \(e \in \langle a \rangle \). Since \(sa = ea \in \langle e \rangle \), we have \(s \langle a \rangle \subseteq \langle e \rangle \subseteq \langle a \rangle \).

(2) \(\Rightarrow \) (3) : Let \(K \) be an \(S \)-finite ideal and \(I = Ra_1 + \cdots + Ra_n \) be a finitely generated sub-ideal of \(I \) such that \(s'K \subseteq I \) for some \(s' \in S \). By (2), for each \(i \) there is an idempotent \(e_i \in Ra_i \) such that \(s_i \langle a_i \rangle \subseteq \langle e_i \rangle \) for some \(s_i \in S \) \((i = 1, \cdots, n)\). Set \(s = s_1 s_2 \cdots s_n \). Then \(s \langle a_i \rangle \subseteq \langle e_i \rangle \). Set \(J = Re_1 + \cdots + Re_n \). Then \(J \) is a sub-ideal of \(I \) (thus of \(K \)) such that \(sK \subseteq s_1 \cdots s_n I \subseteq J \). Claim that \(J \) is generated by an idempotent. Indeed, for any \(x \in J \), we have \(x = r_1 e_1 + \cdots + r_n e_n = r_1 e_1^2 + \cdots + r_n e_n^2 \in J^2 \). Thus \(J^2 = J \). Since \(J \) is finitely generated, \(J = \langle e \rangle \) for some idempotent \(e \in I \) by [12, Theorem 1.8.22].

(2) \(\Rightarrow \) (4) : Let \(a \in R \). Then there is an idempotent \(e \) such that \(s \langle a \rangle \subseteq \langle e \rangle \subseteq \langle a \rangle \). If \(e = ba \) for some \(b \in R \), then \(e = e^2 = b^2 a^2 \). Thus \(sa = ce = cb^2 a^2 \) for some \(cb^2 \in R \). So (4) holds. \(\square \)

Recall from [3] that a ring \(R \) is called \(c \)-\(S \)-coherent if any \(S \)-finite ideal \(I \) is \(c \)-\(S \) finitely presented, that is, there exists a finitely presented sub-ideal \(J \) of \(I \) such that \(sI \subseteq J \subseteq I \). By Proposition 3.10, the following result holds since any ideal generated by an idempotent is projective, and thus is finitely presented.

Corollary 3.11. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). If \(R_S \) is a von Neumann regular ring, then \(R \) is \(c \)-\(S \)-coherent.

It is certain that for a ring \(R \) such that \(R_S \) is von Neumann regular, the element \(s \in S \) such that \(sa = ra^2 \) for some \(r \in R \) depends on \(a \in R \) by Proposition 3.10. Now we give the definition of \(u \)-\(S \)-von Neumann regular ring for which the element \(s \in S \) is uniform on any element \(a \in R \).

Definition 3.12. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). \(R \) is called a \(u \)-\(S \)-von Neumann regular ring (abbreviates uniformly \(S \)-von Neumann regular ring)
provided there exists an element \(s \in S \) satisfying that for any \(a \in R \) there exists \(r \in R \) such that \(sa = ra^2 \).

Let \(\{M_j\}_{j \in \Gamma} \) be a family of \(R \)-modules. Let \(\{m_{i,j}\}_{i \in \Lambda_j} \subseteq M_j \) for each \(j \in \Gamma \) and \(N_j = \langle m_{i,j}\rangle_{i \in \Lambda_j} \). We say a family of \(R \)-modules \(\{M_j\}_{j \in \Gamma} \) is \(u \)-\(S \)-generated by \(\{\{m_{i,j}\}_{i \in \Lambda_j}\}_{j \in \Gamma} \) provided that there exists an element \(s \in S \) such that \(sM_j \subseteq N_j \) for each \(j \in \Gamma \). It is well known that a ring \(R \) is a von Neumann regular ring if and only if every \(R \)-module is flat, if and only if any principal (finitely generated) ideal is generated by an idempotent (see [12, Theorem 3.6.3]). Now we give an \(S \)-analogue of this result.

Theorem 3.13. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). The following statements are equivalent:

1. \(R \) is a \(u \)-\(S \)-von Neumann regular ring;
2. for any \(R \)-module \(M \) and \(N \), there exists \(s \in S \) such that \(s\text{Tor}_1^R(M, N) = 0 \);
3. there exists \(s \in S \) such that \(s\text{Tor}_1^R(R/I, R/J) = 0 \) for any ideals \(I \) and \(J \) of \(R \);
4. there exists \(s \in S \) such that \(s\text{Tor}_1^R(R/I, R/J) = 0 \) for any \(S \)-finite ideals \(I \) and \(J \) of \(R \);
5. there exists \(s \in S \) such that \(s\text{Tor}_1^R(R/\langle a \rangle, R/\langle a \rangle) = 0 \) for any element \(a \in R \);
6. any \(R \)-module is \(u \)-\(S \)-flat;
7. the class of all principal ideals of \(R \) is \(u \)-\(S \)-generated by idempotents;
8. the class of all finitely generated ideals of \(R \) is \(u \)-\(S \)-generated by idempotents.

Proof. (1) \(\iff \) (5): It follows from the equivalences: \(s\text{Tor}_1^R(R/\langle a \rangle, R/\langle a \rangle) = 0 \) if and only if \(\frac{s(a)}{[s]} = 0 \), if and only if there exists \(r \in R \) such that \(sa = ra^2 \).

(2) \(\iff \) (6), (8) \(\Rightarrow \) (7) and (3) \(\Rightarrow \) (4) \(\Rightarrow \) (5): Trivial.

(2) \(\Rightarrow \) (3): Set \(M = N = \bigoplus_{I \in R} R/I \). Then (3) holds naturally.

(3) \(\Rightarrow \) (2): Suppose \(M \) is generated by \(\{m_i \mid i \in \Gamma \} \) and \(N \) is generated by \(\{n_i \mid i \in \Lambda \} \). Well-order \(\Gamma \) and \(\Lambda \). Set \(M_0 = 0 \) and \(M_{\alpha} = \langle m_i \mid i < \alpha \rangle \) for each \(\alpha \leq \Gamma \). Then \(M \) has a continuous filtration \(\{M_\alpha \mid \alpha \leq \Gamma \} \) with \(M_{\alpha+1}/M_{\alpha} \cong R/I_{\alpha+1} \) and \(I_\alpha = \text{Ann}_R(m_\alpha + M_\alpha \cap Rm_\alpha) \). Similarly \(N \) has a continuous filtration \(\{N_\beta \mid \beta \leq \Lambda \} \) with \(N_{\beta+1}/N_\beta \cong R/J_{\beta+1} \) and \(J_\beta = \text{Ann}_R(n_\beta + N_\beta \cap Rn_\beta) \). Since \(s\text{Tor}_1^R(R/I_\alpha, R/J_\beta) = 0 \) for each \(\alpha \leq \Gamma \) and \(\beta \leq \Lambda \), it is easy to verify \(s\text{Tor}_1^R(M, N) = 0 \) by transfinite induction on both positions of \(M \) and \(N \).

(5) \(\Rightarrow \) (3): By [12, Exercise 3.20], we have \(s\text{Tor}_1^R(R/I, R/J) = \frac{s(I \cap J)}{[s]} \) for any ideals \(I \) and \(J \) of \(R \). So we just need to show \(s(I \cap J) \subseteq IJ \). Let \(a \in I \cap J \). Since \(s\text{Tor}_1^R(R/\langle a \rangle, R/\langle a \rangle) = \frac{s(a)}{[s]} = 0 \), it follows that \(sa \in s\langle a \rangle \subseteq \langle a^2 \rangle \subseteq IJ \). Thus \(s\text{Tor}_1^R(R/I, R/J) = 0 \).
Claim that generated, \(x = \{ s \text{ generated ideals of } R \} \) for any \(s \in S \) such that \(sa = e^2 \) and \(e \in \langle a \rangle \). Since \(sa = ea \in \langle e \rangle \), we have \(s\langle a \rangle \subseteq \langle e \rangle \subseteq \langle a \rangle \) for any \(a \in R \).

(7) \(\Rightarrow \) (8) : Let \(\{ I_j = Ra_{i,j} + \cdots + Ra_{n,j} \mid j \in \Gamma \} \) be the family of all finitely generated ideals of \(R \). By (3), there exists an element \(s \in S \) such that for each \(j \in \Gamma \) and \(i = 1,\ldots,n \), there is an idempotent \(e_{i,j} \in Ra_{i,j} \) such that \(s\langle a_{i,j} \rangle \subseteq \langle e_{i,j} \rangle \). Set \(J_j = Re_{1,j} + \cdots + Re_{n,j} \). Then \(J_j \) is a sub-ideal of \(I_j \) such that \(sJ_j \subseteq I_j \subseteq J_j \). Claim that \(J_j \) is generated by an idempotent. Indeed, for any \(x \in J_j \), we have \(x = r_1e_1 + \cdots + r_ne_n = r_1e_1^2 + \cdots + r_ne_n^2 \in J_j^2 \). Thus \(J_j^2 = J_j \). Since \(J_j \) is finitely generated, \(J_j = \langle e_j \rangle \) for some idempotent \(e_j \in I_j \) by [12, Theorem 1.8.22]. So \(\{ I_j \mid j \in \Gamma \} \) is \(u\)-\(S \)-generated by \(\{ \langle e_j \rangle \mid j \in \Gamma \} \).

(7) \(\Rightarrow \) (1) : There are an element \(s \in S \) and a family of idempotents \(\{ e_a \mid a \in R \} \) such that \(s\langle a \rangle \subseteq \langle e_a \rangle \subseteq \langle a \rangle \) for any \(a \in R \). Write \(e_a = ba \) for some \(b \in R \). Then \(e_a = e_a^2 = b^2a^2 \). Thus \(sa = ce_a = cb^2a^2 \) for some \(cb^2 \in R \). So \(R \) is \(u\)-\(S \)-von Neumann regular.

\[\square\]

Corollary 3.14. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). If \(R \) is a \(u\)-\(S \)-von Neumann regular ring, then \(R_S \) is a von Neumann regular ring. Consequently, any \(u\)-\(S \)-von Neumann regular ring is \(c\)-\(S \)-coherent.

Proof. It follows from Proposition 3.10, Corollary 3.11 and Theorem 3.13. \[\square\]

Note that a ring \(R \) such that \(R_S \) is von Neumann regular is not necessarily \(u\)-\(S \)-von Neumann regular.

Example 3.15. Let \(\mathbb{Z} \) be the ring of all integers, \(S = \mathbb{Z} \setminus \{0\} \). Then \(\mathbb{Z}_S = \mathbb{Q} \) is a von Neumann regular ring. Let \(p \) be a prime in \(\mathbb{Z} \) and \(M = \mathbb{Z}_{(p)}/\mathbb{Z} \). Then \(\text{Tor}_1(\mathbb{Q}/\mathbb{Z}, \mathbb{Z}_{(p)}/\mathbb{Z}) \cong \mathbb{Z}_{(p)}/\mathbb{Z} \) by [4, Chapter I, Lemma 6.2(b)]. It is easy to verify that \(n\mathbb{Z}_{(p)}/\mathbb{Z} \neq 0 \) for any \(n \in S \). Thus \(M \) is not \(u\)-\(S \)-torsion, and so \(\mathbb{Z} \) is not a \(u\)-\(S \)-von Neumann regular ring.

Corollary 3.16. Let \(R \) be a ring. Let \(S \) be a multiplicative subset of \(R \) consisting of finite elements. Then \(R \) is a \(u\)-\(S \)-von Neumann regular ring if and only if \(R_S \) is a von Neumann regular ring.

Proof. We just need to show that if \(R_S \) is a von Neumann regular ring then \(R \) is a \(u\)-\(S \)-von Neumann regular ring. Let \(S = \{ s_1, \cdots, s_n \} \). Set \(s = s_1 \cdots s_n \). By Proposition 3.10 for any \(a \in R \), there exists \(s_i \in S \) and \(r_a \in R \) such that \(s_i a = r_a a^2 \). Thus \(sa = ra^2 \) for any \(a \in R \) and some \(r \in R \).

\[\square\]

Since every flat module is \(u\)-\(S \)-flat, von Neumann regular rings are \(u\)-\(S \)-von Neumann regular. The following result shows \(u\)-\(S \)-von Neumann regular rings are always...
von Neumann regular provided S is a regular multiplicative set, i.e., the multiplicative set S is composed of non-zero-divisors.

Proposition 3.17. Let R be a ring and S a regular multiplicative subset of R. Then R is u-S-von Neumann regular if and only if R is von Neumann regular.

Proof. We just need to show if R is u-S-von Neumann regular, then R is von Neumann regular. Suppose R is a u-S-von Neumann regular ring. Then there exists $s \in S$ such that for any $a \in R$ there exists $r \in R$ satisfying $sa = ra^2$. Taking $a = s^2$, we have $s^3 = rs^4$. Since s is a non-zero-divisor of R, we have $1 = sr$. Thus s is a unit. So for any $a \in R$ there exists $r \in R$ such that $a = (s^{-1}r)a^2$. It follows that R is a von Neumann regular ring. \(\square \)

However, the condition that “any element in S is a non-zero-divisor” in Proposition 3.17 cannot be removed. Let R be any ring and S a multiplicative subset of R containing a nilpotent element. Then R is a u-S-von Neumann regular ring. Indeed, let s be a nilpotent element in R with nilpotent index n. Then $0 = s^n \in S$. Thus for any $a \in R$, we have $0 = 0a = 0a^2 = 0$. So R is u-S-von Neumann regular. If the multiplicative subset S of R does not contain 0, the condition that “any element in S is a non-zero-divisor” in Corollary 3.17 also cannot be removed.

Example 3.18. Let $T = \mathbb{Z}_2 \times \mathbb{Z}_2$ be a semi-simple ring and $s = (1, 0) \in T$. Then any element $a \in T$ satisfies $a^2 = a$ and $2a = 0$. Let $R = T[x]/(sx, x^2)$ with x the indeterminate and $S = \{1, s\}$ be a multiplicative subset of R. Then R is a u-S-von Neumann regular ring, but R is not von Neumann regular. Indeed, let $r = a + b\overline{x}$ be any element in R, where \overline{x} is the residual element of x in R and $a, b \in T$. Then $sr = s(a + b\overline{x}) = sa = sa^2 = s(a^2 + 2ab\overline{x} + b^2\overline{x}^2) = s(a + b\overline{x})^2 = sr^2$. Thus R is u-S-von Neumann regular. However, since R is not reduced, R is not von Neumann regular by [12, Theorem 3.6.16(2), Exercise 3.48].

Let \mathfrak{p} be a prime ideal of R. We say a ring R is a u-\mathfrak{p}-von Neumann regular ring shortly provided R is an u-$(R \setminus \mathfrak{p})$-von Neumann regular ring. The final result gives a new local characterization of von Neumann regular rings.

Proposition 3.19. Let R be a ring. Then the following statements are equivalent:

1. R is a von Neumann regular ring;
2. R is a u-\mathfrak{p}-von Neumann regular ring for any $\mathfrak{p} \in \text{Spec}(R)$;
3. R is a u-\mathfrak{m}-von Neumann regular ring for any $\mathfrak{m} \in \text{Max}(R)$.

Proof. (1) \Rightarrow (2) : Let F be an R-module and $\mathfrak{m} \in \text{Max}(R)$. Then F is flat, and thus u-\mathfrak{m}-flat. So R is an u-\mathfrak{m}-von Neumann regular ring.
(2) ⇒ (3) : Trivial.
(3) ⇒ (1) : Let M be an R-module. Then M is m-flat for any $m \in \text{Max}(R)$. Thus M is flat by Proposition 3.9. So R is a von Neumann regular ring. □

Acknowledgement.
The author was supported by the National Natural Science Foundation of China (No. 12061001).

References

[1] D. D. Anderson, T. Dumitrescu, S-Noetherian rings, Commun. Algebra 30 (2002), 4407-4416.
[2] S. Bazzoni, L. Positselski, S-almost perfect commutative rings, J. Algebra 532 (2019), 323-356.
[3] D. Bennis, M. El Hajoui, On S-coherence, J. Korean Math. Soc. 55 (2018), no. 6, 1499-1512.
[4] L. Fuchs, L. Salce, Modules over Non-Noetherian Domains, Providence, AMS, 2001.
[5] S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, vol. 1371, Springer-Verlag, Berlin, 1989.
[6] J. S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics Series, Vol. 29, New York, Longman Scientific and Technical, 1986.
[7] H. Kim, M. O. Kim, J. W. Lim, On S-strong Mori domains, J. Algebra 416, (2014): 314-332.
[8] J. W. Lim, A note on S-Noetherian domains, Kyungpook Math. J. 55, (2015), 507-514.
[9] J. W. Lim, D. Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra 218, (2014), 2099-2123.
[10] C. Năstăsescu, C. Nita, Objects noethériens par rapport à une sous-catégorie épaisse d’un catégorie abélienne, Rev. Roum. Math. Pures et Appl. 9, (1965), 1459-1468.
[11] B. Stenström, Rings of Quotients, Die Grundlehren Der Mathematischen Wissenschaften, Berlin: Springer-verlag, 1975.
[12] F. G. Wang, H. Kim, Foundations of Commutative Rings and Their Modules, Singapore, Springer, 2016.