Potenciais evocados auditivos corticais no transtorno do espectro do autismo: revisão sistemática

Cortical auditory evoked potentials in autism spectrum disorder: a systematic review

RESUMO

Objetivo: Identificar e analisar quais são os achados característicos dos Potenciais Evocados Auditivos Corticais (PEAC) em crianças e/ou adolescentes com Transtorno do Espectro do Autismo (TEA) em comparação do desenvolvimento típico, por meio de uma revisão sistemática da literatura. Estratégia de pesquisa: Após formulação da pergunta de pesquisa, foi realizada uma revisão da literatura em sete bases de dados (Web of Science, Pubmed, Cochrane Library, Lilacs, Scielo, Science Direct, e Google acadêmico), com os seguintes descritores: transtorno do espectro autista (autism spectrum disorder), transtorno autístico (autistic disorder), potenciais evocados auditivos (evoked potentials, auditory), potencial evocado P300 (event related potentials, P300) e criança (child). A presente revisão foi cadastrada no Próspero, sob número 118751. Critérios de seleção: Foram selecionados estudos publicados na integra, sem limitação de idioma, entre 2007 e 2019. Análise dos dados: Foram analisadas as características de latência e amplitude dos componentes P1, N1, P2, N2 e P3 presentes nos PEAC. Resultados: Foram localizados 193 estudos; contudo 15 estudos contemplaram os critérios de exclusão. Embora não tenha sido possível identificar um padrão de resposta para os componentes P1, N1, P2, N2 e P3, os resultados da maioria dos estudos demonstraram que indivíduos com TEA podem apresentar diminuição de amplitude e aumento de latência do componente P3. Conclusão: Indivíduos com TEA podem apresentar respostas diversas para os componentes dos PEAC, sendo que a diminuição de amplitude e aumento de latência do componente P3 foram as características mais comuns.

ABSTRACT

Purpose: To identify and analyze what are the characteristic findings of Cortical Auditory Evoked Potentials (CAEP) in children and / or adolescents with Autism Spectrum Disorder (ASD) compared to typical development, through a systematic literature review. Research strategies: Based on the formulation of a research question, a bibliographic survey was carried out in seven databases (Web of Science, Pubmed, Cochrane Library, Lilacs, Scielo, Science Direct, and Google Sholar), with the following descriptors: autism spectrum disorder (transtorno do espectro autista), autistic disorder (transtorno autístico), evoked potentials, auditory (potenciais evocados auditivos), event related potentials, P300 (potencial evocado P300) and child (criança). This review was registered in Prospero, under number 118751. Selection criteria: Were selected articles published, without language limitation, between 2007 and 2019. Data analysis: The characteristics of the latency and amplitude aspects of the P1, N1, P2, N2 and P3 components present in the CAEP. Results: 193 studies were located; however, 15 original articles were included the inclusion criteria for this study. Although it has not been possible to identify any pattern of response for the P1, N1, P2 and N2 components, the results of the selected studies have demonstrated that individuals with ASD may present a decrease in amplitude and increase in latency of the P3 component. Conclusion: Individuals with ASD may present different responses to the components of the CAEP, and the decrease of the amplitude and increase of the latency of the P3 component were the most common characteristics.
INTRODUÇÃO

O Transtorno do Espectro do Autismo (TEA) é um transtorno do desenvolvimento que compromete a capacidade de comunicação e interação social dos indivíduos. Crianças e adultos acometidos de tal transtorno apresentam comportamentos padronizados, fala e movimentos motores estereotipados, rotinas repetitivas com interesses restritos, e alterações perceptuais de atenção e memória[12].

Considerando a importância da audição para o estabelecimento efetivo da comunicação oral, e que indivíduos com TEA podem ser confundidos com deficientes auditivos, uma avaliação auditiva completa, tanto do sistema periférico quanto central, se torna importante para esta população buscando avaliar a integridade de todas as estruturas do sistema auditivo desde a orelha externa até o córtex auditivo[3,4].

Diversos estudos têm observado, por meio de métodos comportamentais, limiares auditivos normais em indivíduos com TEA[5-7]. Apesar disto, há descrito na literatura que crianças com TEA podem apresentar tanto incômodo a sons de média intensidade quanto comportamentos indiferentes para sons de forte intensidade ou ruídos, pois podem ser hiper ou hipossensíveis aos estímulos sensoriais[8].

Uma maneira de verificar objetivamente a integridade e a funcionalidade auditiva é por meio da avaliação dos Potenciais Evocados Auditivos (PEA), que são traçados gerados pela atividade bioelétrica das vias auditivas tálamo-corticais após estimulação acústica[6,10]. Por ser um método objetivo, traz como grande benefício a possibilidade de complementar a avaliação comportamental de indivíduos difíceis de serem avaliados, tais como crianças com TEA[12].

Avaliação por meio dos Potenciais Evocados Auditivos Corticiais (PEAC) é capaz de refletir a funcionalidade do processamento auditivo central a sons verbais ou não-verbais, por meio da análise de picos positivos e negativos denominados P1, N1, P2 e P3[9,11,13].

Os componentes P1, N1, P2 e N2 são considerados potenciais exógenos, ou seja, não depende da resposta ativa do indivíduo, e são capazes de fornecer informações sobre a integridade da via auditiva, codificação neural, e percepção e detecção do estímulo acústico[9,14]. Por outro lado, o componente P3 é considerado um potencial endógeno, pois requer uma resposta ativa do indivíduo em realizar determinadas tarefas, e reflete processos auditivos mais centrais tais como discriminação auditiva e processamento temporal[9,15].

Diversos estudos têm demonstrado alterações nos Potenciais Evocados Auditivos de Tronco Encefálico (PEATE) em indivíduos com TEA; também, uma revisão de literatura publicada anteriormente descreveu que anormalidades no processamento da informação sonora podem ser observadas em indivíduos com TEA, sendo que a alteração mais comumente observada é o aumento da latência da onda V e, consequentemente, aumento dos interpicos I-V ou III-V[10].

No que tange à avaliação cortical, pouco se sabe sobre os possíveis resultados dos PEAC em indivíduos com TEA. Este potencial é capaz de verificar a funcionalidade do processamento auditivo de forma objetiva, sendo assim é um recurso clínico a ser considerado na avaliação destes pacientes tendo em vista a dificuldade de aplicar testes comportamentais nesta população. Além disso, esta avaliação tem sido destacada como eficaz para monitorar as modificações ocorridas no Sistema Nervoso Auditivo Central após intervenção terapêutica[17-20].

Sendo assim, um levantamento dos resultados descritos na literatura no que tange aos achados dos PEAC em crianças e/ou adolescentes com TEA, destacando as diferenças em comparação ao desenvolvimento típico, é de grande interesse a fim de verificar se há características específicas nas respostas obtidas nesta população.

OBJETIVO

O objetivo do presente estudo foi identificar e analisar quais são os achados característicos dos PEAC em crianças e/ou adolescentes com TEA em comparação com o desenvolvimento típico, por meio de uma revisão sistemática da literatura.

ESTRATÉGIA DE PESQUISA

O início da presente revisão se deu a partir da seguinte pergunta de pesquisa: “Quais são diferenças nos resultados dos Potenciais Evocados Auditivos Corticiais em crianças com Transtorno do Espectro Autista em comparação ao desenvolvimento típico?”

A revisão sistemática, foi cadastrada no sistema Próspéro, sob número 118751, e as recomendações do Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) foram seguidas. Dentro da estratégia do PICO (Population, Intervention/Comparison/control, Outcome) foi estabelecido:

- **Paciente (P):** crianças ou adolescentes com TEA;
- **Intervenção (I):** indivíduos com TEA que tenham realizado a avaliação do PEAC;
- **Comparações (C):** foram considerados artigos incluindo grupo controle composto por sujeitos com desenvolvimento típico;
- **Outcomes/Desfecho (O):** apresentar ou não alteração nos componentes dos PEAC.

Com a finalidade de responder à questão do estudo, foi realizada uma pesquisa no sistema DeCS (Descritores em Ciências da Saúde) e no MeSH (Medical Subject Headings) para definir os descritores a serem utilizados para levantamento bibliográfico; tais descritores foram cruzados por meio do operador booleano “AND”. A partir de então, foram selecionados os seguintes descritores: transtorno do espectro autista; transtorno autístico; potenciais evocados auditivos; potencial evocado P300 e criança, com os seus correspondentes para a língua inglesa autism spectrum disorder; autistic disorder; evoked potentials, auditory; event related potentials, P300 and child.

Entre os meses de abril e maio de 2019, foi realizado o levantamento bibliográfico utilizando-se sete bases de dados, sendo elas: Web of Science, Pubmed, Cochrane Library, Lilacs, Scielo, Science Direct, e Google acadêmico. Além disso, as referências utilizadas nos artigos selecionados também foram analisadas, a fim de identificar um maior número de estudos potencialmente pertinentes.

Critérios de seleção

No que diz respeito aos critérios de inclusão dos estudos, a presente revisão contemplou, artigos originais e completos...
revisados por pares, e dissertações e teses que contemplaram a análise dos PEAC em crianças e adolescentes com TEA com inclusão de um grupo controle para comparação. No caso de dissertações e teses, foi realizada uma busca a fim de localizar o artigo completo originado da mesma; nos casos e que o mesmo foi encontrado a dissertação ou tese foi substituída pelo artigo.

Foram selecionados estudos, publicados entre os anos 2007 e 2019, sem limitação de idioma, que respondiam à pergunta da pesquisa, avaliando presença e ausência, bem como, os valores de latência e/ou amplitude dos componentes P1, N1, P2, N2 e P3 dos PEAC em crianças e adolescentes com TEA, em comparação com o desenvolvimento típico.

Foram excluídos artigos que avaliaram outros potenciais que não o PEAC, que não utilizaram o estímulo auditivo, sem metodologia clara, sem grupo de comparação ou que não apresentavam os resultados o desfecho de interesse da presente pesquisa.

Análise dos dados

Após finalizar a busca, foram excluídos os títulos repetidos. O resultado da busca foi analisado cegamente por dois revisores que leram os títulos e os resumos de cada artigo, verificando quais contemplavam os critérios de inclusão. Se o estudo foi considerado para leitura do título pelo menos um revisor, este foi mantido e lido o texto na íntegra.

Após finalizar esta etapa, os trabalhos selecionados foram lidos na íntegra por dois revisores independentes; as divergências foram resolvidas por meio de discussão e, quando necessário, um terceiro revisor foi consultado.

Os artigos foram analisados quanto ao objetivo da pesquisa, a metodologia utilizada (tipo de estudo, casuística, procedimentos, análise dos dados), os resultados obtidos (valores de latência e amplitude dos componentes P1, N1, P2, N2 e P3 do PEAC) e a conclusão de cada estudo.

A qualidade dos estudos incluídos na revisão foi analisada de acordo com o Índice Metodológico para Estudos Não-randomizados (Methodological Index for Non-randomized Studies - MINORS), que é um protocolo composto por 8 itens (1 ao 8) para avaliar estudos não comparativos e 12 itens (1 ao 12) para avaliar estudos comparativos, sendo que cada item recebe uma pontuação entre zero e dois (0= não relatado; 1= relatado, mas inadequado; 2= relatado e adequado)[22]. As divergências encontradas na análise dos estudos foram resolvidas por meio de discussão entre os revisores.

RESULTADOS

Resultados nas bases eletrônicas de dados

Após realizar a busca, foram encontrados 189 estudos distribuídos nas bases de dados pesquisadas, sendo que a base de dados da Pubmed foi a que apresentou o maior número de resultados. Além desses, quatro estudos foram localizados a partir da lista de referência bibliográfica de outros artigos. Ao final, apenas 15 estudos contemplaram todos os critérios e foram considerados na presente revisão. As etapas seguidas para a seleção dos artigos estão detalhadas na Figura 1.

Análise dos estudos selecionados

Após a leitura íntegra de cada estudo, foi realizada uma análise detalhada de cada artigo considerando os principais objetivos, os aspectos metodológicos e os principais resultados (Quadro 1).

Em relação aos riscos de viés (Tabela 1), todos os estudos incluídos apresentaram pontuação semelhantes (entre 14 e 18 pontos dentre os 24 possíveis, considerando que todos os estudos foram comparativos), demonstrando perfis análogos no que tange aos critérios de qualidade.

Quanto aos aspectos metodológicos, no que tange ao número de participantes dos estudos, observou-se o mínimo de 10[20,30] e o máximo de 30[30] indivíduos com TEA, sendo que as idades variaram de 4[25,31,34] a 20[9] anos; sendo assim, pôde-se observar que alguns estudos avaliaram uma ampla faixa etária (crianças e adolescentes). Quanto ao perfil da população que compôs os grupos de indivíduos com TEA encontrado nos estudos, observou-se que todos os estudos tiveram a maioria dos integrantes do sexo masculino.

Sabe-se que a maturação do sistema nervoso auditivo central, e consequentemente, dos PEAC ocorre ao longo da infância até a adolescência[37]. Assim, a idade é uma variável que pode interferir de maneira significativa nos achados dos PEAC e podem ocasionar um viés na análise entre os estudos. No entanto, todos os estudos aqui analisados contemplaram a inclusão de um grupo controle com indivíduos com Desenvolvimento Típico (DT), a fim de obter uma comparação equivalente no que diz respeito à idade. Sendo assim, acredita-se que a idade não foi uma variável que pode ter influenciado nos resultados dos estudos aqui selecionados.

Quanto à distribuição por sexo, observou-se maior número de indivíduos do sexo masculino nos estudos; esse dado pode ser decorrente da prevalência do TEA em indivíduos do sexo masculino ser quatre vezes mais frequentes do que em indivíduos do sexo feminino[23].

Ainda no que tange aos aspectos metodológicos, observou-se que a maioria dos estudos foi realizado com estímulo não-verbal[4,24,25,27-33]. Um estudo analisado na presente revisão utilizado apenas o estímulo verbal[34], três estudos utilizaram ambos os estimulos[23,34,35] e ainda um estudo utilizou estímulos de sons biológicos (estalo de dedo e sucção de boca)[30] (Quadro 2).

Kamita et al. CoDAS 2021;33(2):e20190207 DOI: 10.1590/2317-1782/20202019207
Autor	Tipo de estudo	Casuística GE	Casuística GC	Critério diagnóstico do TEA	Estímulo do PEAC	Principais resultados	Limitações
Whitehouse e Bishop (23)	Prospectivo Transversal	15 meninos. Faixa etária de 7 a 14 anos	15 (11 meninos) Faixa etária de 7 a 14 anos	DSM-IV	Verbal e não verbal. Paradigma Oddball	Para o estímulo não verbal não houve diferença entre os grupos, mas houve diferença para o estímulo verbal, sendo que o GE apresentou amplitude reduzida para os componentes P1, N2 e P3.	Análise somente da amplitude; só apresenta os valores numéricos do estímulo verbal; só analisa os componentes P1, N2 e P3.
Matas et al. (24)	Prospectivo Transversal	10 (9 meninos) Faixa etária de 8 a 19 anos	20 (3 meninos) Faixa etária de 8 a 19 anos	DSM-IV	Não-verbal (tone burst). Paradigma Oddball	As respostas do P3 foram alteradas em 15% no GC (atraso de latência) e 40% no GE (50% apresentou atraso na latência e 50% apresentou ausência de resposta).	Não apresenta os resultados de forma numérica; número amostral pequeno para o GE; avaliou apenas o componente P3; analisou apenas a variável latência.
Orekhova et al. (25)	Prospectivo Transversal	21 (17 meninos) Faixa etária de 4 a 8 anos	21 (18 meninos) Faixa etária de 4 a 8 anos	DSM-IV e ICD-10 e confirmado pelo DISCO-10	Sons não verbais apresentados com diferentes intervalos. Paradigma Oddball	O GE demonstrou redução da amplitude de N1 e N2.	Não apresenta os resultados de forma numérica; avaliou apenas os componentes N1 e N2; avaliou apenas a variável amplitude.
Russo et al. (26)	Prospectivo Transversal	16 (14 meninos) Faixa etária de 7-13 anos	11 (7 meninos) Faixa etária de 7-13 anos	ADOS e ADI-R	Verbal com e sem ruído. Sem uso do paradigma Oddball	O GE apresentou aumento de latências e diminuição das amplitudes dos componentes P1 e N1.	Avaliou apenas os componentes P1 e N1; número amostral pequeno para o GC.
Magliaro et al. (27)	Prospectivo Transversal	16 (15 meninos) Média de 11,94 anos	25 (9 meninos) Média de 12,16 anos	DSM-IV	Não-verbal (tone burst). Paradigma Oddball	A ausência de resposta (60,0% dos casos) foi o tipo de alteração predominante no GE em comparação ao GC (0% de ausência).	Não apresenta os resultados de forma numérica; avaliou apenas o componente P3.
Gomot et al. (28)	Prospectivo Transversal	27 (21 meninos) Faixa etária de 5 a 11 anos	27 (21 meninos) Faixa etária de 5 a 11 anos	DSM-IV-R	Não-verbal (tone burst). Paradigma Oddball, não atencional	O GE apresentou diminuição das latências e aumento da amplitude do componente P3.	Avaliou apenas o componente P3.
Andersson et al. (29)	Prospectivo Transversal	11 meninos. Média de 16 anos	12 meninos. Média de 15,3 anos	DISCO	Não-verbal (tone burst). Paradigma Oddball,	Não houve diferença entre os grupos para os componentes analisados (N1, P2, P3a e P3b).	Número amostral pequeno.

Legenda: GE: Grupo Estudo; GC: Grupo Controle; PEAC: Potenciais Evocados Audiítivos Corticais; HD: Hemisfério Direito; HE: Hemisfério Esquerdo; DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, Quarta edição; DISCO: Diagnostic Interview for Social and Communication Disorders; ADOS: Autism Diagnostic Observation Schedule; ADI-R - Autism Diagnostic Interview-Revised; ADOS-2: Autism Diagnostic Observation Schedules-2; DSM-5: Diagnostic and Statistical Manual of Mental Disorders, Quinta edição; ADOS-G: Autism Diagnostic Observation Schedule–Generic
Quadro 1. Continuação...

Autor	Tipo de estudo	Casuística GE	Casuística GC	Critério de diagnóstico do TEA	Estímulo do PEAC	Principais resultados	Limitações
Stroganova et al.	Prospectivo	Prospective	Transversal	10 meninos. Média de 75,3 meses	DSM-IV-TR e ICD-10	Não-verbal. Sem uso do paradigma Oddball	Alteração no PEAC à nível de processamento temporal no GE. Houve uma assimetria nas respostas dos hemisférios corticais, sendo as do HD atenuadas em comparação ao HE. O GE apresentou menor valor de amplitude do componente P1 quando comparado ao GC. Não apresenta os resultados de forma numérica; número amostral pequeno para o GE, com diferença significativa de número amostral entre os grupos; avaliou apenas o componente P1.
Azouz et al.	Prospectivo	Prospective	Transversal	30 (23 meninos) Média de 5,5 anos	DSM-IV-TR e ADI-R	Não especificado Paradigma não especificado	Maior latência e menor amplitude de N1 em ambas as orelhas no GE em comparação ao GC, sendo a amplitude maior para a orelha esquerda. Não apresenta os resultados de forma numérica; diferença significativa de número amostral entre os grupos; avaliou apenas o componente N1; não descreveu o protocolo de coleta e análise dos PEAC.
Donkers et al.	Prospectivo	Prospective	Transversal	28 (22 meninos) Faixa etária de 4 a 12 anos	ADI-R e ADOS-2	Não-verbal. Paradigma Oddball	O GE apresentou amplitude reduzida do componente P3a. Menores valores de latência para P1 e N2 no GE. Os demais componentes não apresentaram diferença estatisticamente significativa. Avaliou apenas os componentes P1, N2 e P3.
Gonzalez-Gadea et al.	Prospectivo	Prospective	Transversal	24 (23 meninos) Faixa etária de 8 e 15 anos	DSM-5	Não-verbal realizado em 3 diferentes apresentações: Frequente, raro-esperado e raro-inesperado.	P3 raro-esperado para o GE: a ativação do lado esquerdo foi maior. P3 raro-inesperado: diminuição da amplitude de P3 com maior ativação do lado direito. Quando comparados estes resultados com os achados do estímulo frequente o único grupo que não apresentou respostas melhores foi o GE. Não apresenta os resultados de forma numérica; avaliou apenas o componente P3.

Legenda: GE: Grupo Estudo; GC: Grupo Controle; PEAC: Potenciais Evocados Auditivos Corticais; HD: Hemisfério Direito; HE: Hemisfério Esquerdo; DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, Quarta edição; DISCO: Diagnostic Interview for Social and Communication Disorders; ADOS: Autism Diagnostic Observation Schedule; ADI-R - Autism Diagnostic Interview-Revised; ADOS-2: Autism Diagnostic Observation Schedules-2; DSM-5: Diagnostic and Statistical Manual of Mental Disorders, Quinta edição; ADOS-G: Autism Diagnostic Observation Schedule–Generic.
Quadro 1. Continuação...

Autor	Tipo de estudo	Casuística GE	Casuística GC	Critério de diagnóstico do TEA	Estímulo do PEAC	Principais resultados	Limitações
Sokhadze et al. [13]	Prospectivo Longitudinal	18 (15 meninos) Média de 11 anos	16 (12 meninos) Média de 12 anos	DSM-IV-TR e ADI-R	Não-verbal; Paradigma Oddball	Pré-Treinamento: aumento na latência de N1, P3a e P3b no GE. Pós-Treinamento: a latência diminuiu no GE, mas ainda assim continuou aumentada em comparação ao GC. A amplitude do P3a diminuiu no GE não apresentando mais diferença do grupo com GC.	Não apresenta os resultados de forma numérica; avaliou apenas os componentes N1, P3a e P3b.
Galilee et al. [14]	Prospectivo Transversal	14 (12 meninos) Faixa etária de 4 a 6 anos	14 (12 meninos) Faixa etária de 4 a 6 anos	ADOS-G	Verbal e não-verbal, com um novo paradigma de pares de repetição. Paradigma Oddball	O GE detectou e discriminou estímulo verbal e não-verbal semelhante ao GC (N330 e P350), entretanto, o GE utilizou unicamente o HE para este processamento ao contrário do GC que utilizou os dois hemisférios.	Não apresenta os resultados de forma numérica; número amostral pequeno; avaliou apenas os componentes N330 e P350.
Kamita [20]	Prospectivo Transversal	15 (13 meninos) Faixa etária de 7 a 12 anos	15 (13 meninos) Faixa etária de 7 a 12 anos	Não especificado	Verbal e não-verbal; Paradigma Oddball	Não foi encontrada diferença estatisticamente significante entre os grupos.	Não apresenta critério de diagnóstico do TEA.
Lortie et al. [26]	Prospectivo Transversal	10 (9 meninos) Média de idade de 6 anos	12 (8 meninos) Média de idade de 6 anos	DSM-IV-TR	Sons biológicos e estímulos controle com análise do componente P3 com orientação atencional involuntária. Paradigma Oddball	O GE apresentou maior latência para sons biológicos do que o GC, no entanto apresentou menor latência para os estímulos controles quando comparados ao GC.	Não apresenta os resultados de forma numérica; número amostral pequeno; avaliou apenas componente P3; avaliou apenas a latência.

Legenda: GE: Grupo Estudo; GC: Grupo Controle; PEAC: Potenciais Evocados Auditivos Corticais; HD: Hemisfério Direito; HE: Hemisfério Esquerdo; DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, Quarta edição; DISCO: Diagnostic Interview for Social and Communication Disorders; ADOS: Autism Diagnostic Observation Schedule; ADI-R - Autism Diagnostic Interview-Revised; ADOS-2: Autism Diagnostic Observation Schedules-2; DSM-5: Diagnostic and Statistical Manual of Mental Disorders, Quinta edição; ADOS-G: Autism Diagnostic Observation Schedule–Generic

Quadro 2. Resumo dos protocolos de coleta dos PEAC

Autor	Estímulo do PEAC	Características do Estímulo e eletrodos utilizados	Instrução
Whitehouse e Bishop [22]	Verbal e não verbal. Paradigma Oddball	Para o estímulo verbal, os estímulos padrão e desviante foram os sons das vogais (padrão: /a/; desviante: /i/), e o novo som foi um tom (tom complexo de 800 Hz). Para o estímulo não-verbal, os estímulos padrão e desviante eram tons complexos (padrão: tom complexo de 500 Hz; desviante: tom complexo de 800 Hz) e o novo som era uma vogal (/i/). Cada bloco continha 750 estímulos (padrões = 600 = 80%; desvios = 75 = 10%; novo = 75 = 10%). Os estímulos foram apresentados binauralmente através de fones de ouvido a 55 dB. Foram utilizados 11 canais de eletrodos, no entanto para fins de comparação, foram utilizadas as respostas do eletrodo Cz.	Na condição ativa, as crianças foram orientadas a clicar no mouse do computador sempre que ouviam o estímulo raro. Na condição passiva, as crianças assistiram um vídeo silencioso de sua escolha em cabine acusticamente tratada.
Autor	Estímulo do PEAC	Características do Estímulo e eletrodos utilizados	Instrução
-------	------------------	--	-----------
Matas et al.²⁴	Não-verbal (tone burst). Paradigma Oddball	Utilizou-se um total de 300 estímulos do tipo "tone burst" a 75 dB nHL, nas frequências de 1000 Hz (estímulo frequente – 80 a 85%) e 1500 Hz (estímulo raro – 15 a 20%), apresentados de forma aleatória, com janela de análise de 512ms, filtros passa-alto de 30.00 Hz e passa-baixo de 1.00 Hz, e ganho de 15000. O eletrodo de referência foi o Cz.	Cada indivíduo foi orientado a identificá-lo, contando mentalmente ou levantando a mão toda vez que este aparecesse.
Orekhova et al.²⁵	Sons não verbais apresentados com diferentes intervalos. Paradigma Oddball	Foram apresentados 100 pares de cliques (ruído branco; 90 dB NPS) binauralmente através de fones de ouvido sem fio com a ajuda do software. Os intervalos entre pares (S2 – S1) variaram de 7 a 9 s, enquanto o intervalo intra-par (S1 – S2) foi fixado em 500 ms. Os estímulos foram organizados em duas sessões iguais com um intervalo de 40s.	Durante a sessão experimental, a criança estava assistindo desenhos animados silenciosos em um computador. O comportamento foi gravado em vídeo e os dados do vídeo foram armazenados sincronizados com os registros eletrofisiológicos. Os registros de vídeo foram analisados para revelar diferenças entre os grupos.
Russo et al.²⁶	Verbal com e sem ruído. Sem uso do paradigma Oddball	Foi realizado com a sílaba /da/ apresentados com polaridade alternada. As respostas evocadas foram coletadas em duas condições diferentes, uma em um nível de fala no silêncio (a 80 dB SPL) e com ruído de fundo (a 75 dB NPS), com um intervalo inter-estímulo de 631 ms e filtro de 0,5–100 Hz (12 dB / oitava), com um filtro de entalhe a 60 Hz, para isolar as frequências que são codificados de maneira mais robusta no nível do córtex.	As crianças assistiram a um filme de sua escolha.
Magliaro et al.²⁷	Não-verbal (tone burst). Paradigma Oddball	O estímulo foi tone-burst e apresentado monauralmente a 75 dB nHL a uma taxa de apresentação de 1,1 estímulos por segundo (total de 300 estímulos) foi usado para o P300. O estímulo frequente (80%) foi apresentado em 1000 Hz e o raro (20%) a 1500 Hz.	O participante foi instruído a estar atento ao estímulo raro que apareceram aleatoriamente em uma série de estímulos, e convidados a contar em voz alta o estímulo raro. Um breve treinamento foi realizado antes do exame para garantir compreensão dos procedimentos de teste. Instruções relativas aos testes audiológicos foram fornecidos e reforçados a todos os participantes durante os procedimentos.
Gomot et al.²⁸	Não-verbal (tone burst). Paradigma Oddball, não atencional	As sequências de estímulos auditivos consistiram em tons padrão de 1.000 Hz e tons desviantes de 1.100 Hz (probabilidade de ocorrência: p=0,15) apresentados aleatoriamente, na intensidade de 70 dB NPS e duração de 50 ms. Os estímulos foram apresentados monauralmente através de fones de ouvido com intervalo inter-estímulo de 700 ms. Foram utilizados 7 canais de eletrodos, no entanto para fins de comparação, foram utilizadas as respostas do eletrodo Cz.	Os participantes assistiram a um filme mudo na tela da TV durante a sessão de gravação que durou 25 minutos.
Andersson et al.²⁹	Não-verbal (tone burst). Paradigma Oddball	Foi realizado com o paradigma do oddball de três estímulos consistindo em 360 estímulos (72% frequente 14% estímulo raro e 14% estímulo raro distrator). Os estímulos rares diferiam dos padrões em relação à frequência (1500 Hz). O terceiro tipo de estímulo, o som distrator, foi um ruído filtrado espectralmente de 95 dB com duração de 100 ms. Foram utilizados 14 canais de eletrodos, no entanto para fins de comparação, foram utilizadas as respostas do eletrodo Cz.	Os indivíduos foram instruídos a responder aos tons rares pressionando uma tecla de resposta.
Stroganova et al.³⁰	Não-verbal. Sem uso do paradigma Oddball	Pares de cliques (ruído branco; 90 dB NPS, 4 msseg de duração) foram apresentados monauralmente através de fones de ouvido, com intervalos interessíntico que variaram aleatoriamente de 7 a 9 segundos, enquanto o intervalo entre pares foi fixado em 1000 ms. Foi utilizado filtro passa-alta de 1 Hz. Foram utilizados 32 canais de eletrodos, no entanto para fins de comparação, foram utilizadas as respostas do eletrodo Cz.	A criança permanecia sentada em uma poltrona assistindo desenhos animados silenciosos.
Autor	Estímulo do PEAC	Características do Estímulo e eletrodos utilizados	Instrução
----------------------	--	--	--
Azouz et al.[30]	Não especificado; Paradigma não especificado	Os estímulos incluíam tons padrão (200 ms de duração, 1000 Hz, 88%), tons desviantes (200 ms de duração, 1100 Hz, 4%), tons desviantes de duração (190 ms de duração, 1000 Hz, 4%) e novos sons (200 ms, sons ambientais únicos, como latidos de cães, 4%). Foram utilizados 12 canais de eletrodos, no entanto para fins de comparação, foram utilizadas as respostas do eletrodo Cz.	As crianças sentaram no colo dos pais dentro de uma cabine acústica pouco iluminada e foram orientadas a assistir a um vídeo com som baixo (<60 dB) e permanecerem o mais imóvel possível.
Donkers et al.[31]	Não-verbal; Paradigma Oddball	Os estímulos consistiram em sequências de cinco sons complexos com duração de 50 ms com intervalo inter-estímulo a 150 ms. Cada som complexo era composto de três tons sinusoidais, do tipo A (500, 1.000 e 2.000 Hz) ou tipo B (350, 700 e 1.400 Hz). Foram utilizados diversos eletrodos para captação da resposta, mas a fim de comparação com os achados dos outros estudos foi utilizado os resultados obtidos com o eletrodo Cz como referência.	Os participantes foram convidados a contar as sequências de estímulos raros apresentados na mesma orelha das sequências dos estímulos frequentes. No final de cada bloco, foi solicitado que o indivíduo relatasse o valor final da contagem.
Gonzalez-Gadea et al.[32]	Não-verbal realizado em 3 diferentes apresentações: Frequente, raro-esperado e raro-inesperado.	Os estímulos consistiram em sequências de cinco sons complexos com duração de 50 ms com intervalo inter-estímulo a 150 ms. Cada som complexo era composto de três tons sinusoidais, do tipo A (500, 1.000 e 2.000 Hz) ou tipo B (350, 700 e 1.400 Hz). Foram utilizados diversos eletrodos para captação da resposta, mas a fim de comparação com os achados dos outros estudos foi utilizado os resultados obtidos com o eletrodo Cz como referência.	Durante as sessões de gravação, a atenção do indivíduo foi direcionada para uma tela de computador mostrando instruções para ficar parado.
Sokhadze et al.[33]	Não-verbal; Paradigma Oddball	Dois tipos de estímulos foram apresentados, os estímulos frequentes foram tons sinusoidais de 1000 Hz de 100 ms de duração e representou 80% dos estímulos em cada sequência; Os estímulos raros foram tons sinusoidais de 1300 Hz de duração de 100 ms e representou 20% dos estímulos em cada sequência, e foram apresentados aleatoriamente entre os estímulos padrão. Foram utilizados diversos eletrodos para captação da resposta, mas a fim de comparação com os achados dos outros estudos foi utilizado os resultados obtidos com o eletrodo Cz como referência.	As crianças assistiram a um vídeo silencioso durante o exame.
Galilee et al.[34]	Verbal e não-verbal; com um novo paradigma de pares de repetição. Paradigma Oddball	Foram utilizadas três sílabas consoante-vogal, / ba /, / da / e / ga/. Para os estímulos não-verbal foram criadas a partir de cinco tons sinusoidais. Foram utilizados diversos eletrodos para captação da resposta, mas a fim de comparação com os achados dos outros estudos foi utilizado os resultados obtidos com o eletrodo Cz como referência.	O paciente deveria levantar a mão quando escutasse o estímulo raro.
Kamita[35]	Verbal e não-verbal; Paradigma Oddball	O PEALL com estímulo tone burst foi realizado a 75dBnNA de forma monaural, sendo o estímulo apresentado em uma velocidade de 1,1 estímulos por segundo, totalizando 300 estímulos. O estímulo frequente foi apresentado a 1000 Hz e o raro a 2000 Hz. O PEALL com estímulo de fala foi realizado com as sílabas /ba/ (frequente) e /da/ (raro), sendo apresentadas monauralmente a 75 dBnNA, em uma velocidade de apresentação de 1,1 estímulos por segundo, totalizando 300 estímulos. Foi utilizado o eletrodo Cz como referência.	Os participantes foram instruídos a ignorar os estímulos auditivos e a assistir a um filme sem som.
Lortie et al.[36]	Sons biológicos e estímulos controle com análise do componente P3 com orientação atencional involuntária. Paradigma Oddball	Os estímulos consistiram em dois sons biológicos, representando um estalo de dedo (1981Hz) e uma succção de boca (5857Hz) e dois sons de controle correspondentes. Os estímulos de controle correspondentes replicando fielmente as propriedades de sons naturais na duração, frequência de pico, envelope, latências de início e picos também foram criadas. Além desses quatro sons, dois estímulos com propriedades acústicas intermediárias e um envelope diferente foi criado; um foi usado como o estímulo padrão enquanto o outro foi utilizado como desviante, semelhante ao protocolo original. Foram utilizados diversos eletrodos para captação da resposta, mas a fim de comparação com os achados dos outros estudos foi utilizado os resultados obtidos com o eletrodo Cz como referência.	

Quadro 2. Continuação...
A variabilidade dos estímulos utilizados para coleta dos PEAC é capaz de gerar respostas corticais distintas. Sabe-se que o estímulo verbal apresenta-se mais complexo em relação ao estímulo não verbal, pois a sua captação ocorre se houver uma percepção sensível aos sinais que possuem mudanças rápidas em seu espectro e com rápidas taxas de estimulação. Além disso, o estímulo verbal possui um tempo de duração maior comparado ao não verbal, apresentando também uma maior complexidade acústica; assim, necessita de um tempo maior para ser codificado e processado no córtex auditivo.

Embora este aspecto prejudicou a comparação entre os estudos, em cada um deles, foi utilizado o mesmo estímulo para avaliar ambos os grupos (com TEA e com DT) e em nenhum foi relatado um padrão diferenciado de resposta para um determinado tipo de estímulo (verbal ou não verbal) em indivíduos com TEA.

Observou-se que os estudos apresentaram os resultados de diferentes formas, sendo que alguns descreveram os resultados quantitativamente, por meio dos valores de latência e amplitude, e outros descreveram qualitativamente, analisando a presença / ausência ou resultados normais / alterados dos componentes. Os artigos também foram diversificados quanto à escolha dos componentes analisados, sendo que a maioria deu maior destaque à análise do componente P3.

Dentre os 11 estudos que consideraram a análise do componente P3, foram observados cinco estudos que realizaram o registro dos PEAC na condição passiva, sendo que em todos eles os participantes assistiam a um vídeo durante o procedimento; outros cinco estudos realizaram o exame na condição ativa, ou seja, a criança era orientada a prestar atenção no estímulo auditivo e realizar algumas tarefas pré-determinadas, tais como contar os estímulos raros pressionar um botão ou ainda levantar a mão ao identificar o estímulo raro. Além desses, um estudo ainda realizou a coleta dos PEAC nas duas condições (ativa e passiva).

No que tange aos componentes exógenos, com relação às características dos valores de latência, observou-se valores de latência maiores entre os indivíduos com TEA para os componentes P1 e N1. Por outro lado, em outros estudos os valores de latência os componentes P1 e N1 para as crianças com TEA foram menores ou iguais entre indivíduos com TEA e com DT.

Da mesma forma, no que tange aos resultados de amplitude, também se observou resultados diferentes, sendo que alguns estudos observaram valores de amplitude de P1-N1 menores ou iguais entre indivíduos com TEA para os componentes P1 e N1. Outros estudos não observaram diferenças para as amplitudes de P1, N1, P2 e N2 entre os grupos com TEA e DT.

No entanto, cabe ressaltar que estes foram resultados pontuais de alguns estudos. Assim, estes achados não devem ainda ser generalizados, sendo que mais estudos são necessários a fim de confirmar estes achados, e fortalecer estas hipóteses.

Com relação ao componente P3 não atencional, obtido na condição passiva, observou-se um estudo que não observou diferença nos valores de latência, mas observou diminuição da
amplitude para os indivíduos com TEA em comparação ao DT\(^{31}\), um estudo que observou valores de latência menores e aumento nos valores de amplitude para os indivíduos com TEA\(^{27}\), e dois estudos observaram atraso na latência do componente P3 na população com TEA em comparação ao DT\(^{34,36}\).

No que tange ao componente P3 atencional, ou seja, obtido na condição ativa, um estudo não observou diferença nos valores de latência, mas observou diminuição de amplitude para o grupo com TEA em comparação ao DT\(^{29}\), dois estudos observaram atraso na latência do componente P3 na população com TEA em comparação ao DT\(^{12,24}\), dois estudos observaram diminuição de amplitude para o grupo com TEA\(^{23,32}\), e ainda um estudo observou ausência de resposta\(^{24}\).

Para este componente (P3), tanto atencional quanto não atencional, observou-se maior concordância no que tange aos valores de latência e amplitude; uma vez que este foi analisado em mais estudos, houve maior empoderamento na comparação. Embora estudos não tenham observado diferença entre os valores de latência entre os grupos com TEA\(^{28,31}\), um estudo observou valores de latência menores para os indivíduos com TEA em comparação ao grupo com DT; os autores justificaram este achado em razão de crianças com TEA terem uma tendência para ter maior atenção à novos estímulos\(^{27}\).

Por outro lado, a maioria dos estudos observaram atraso na latência do componente P3\(^{4,24,34,36}\) ou até ausência de resposta\(^{24}\). Estes resultados sugeriram um comprometimento ou imaturidade da via auditiva em regiões corticais, déficits no processamento da atenção e discriminação auditiva ou na memória\(^{35}\). Ainda, estes achados podem estar relacionados com a percepção e o processamento verbal, sendo que a via eferente parece estar mais prejudicada em relação à via aferente, bem como com os processos relacionados à atenção\(^{21}\).

Da mesma forma, no que se refere aos resultados da amplitude do componente P3, embora um estudo tenha observado valores maiores para o grupo com TEA\(^{27}\), pôde-se observar que a maioria dos estudos observou uma tendência à diminuição de amplitude\(^{23,28,31,32}\). Estes achados novamente demonstraram alteração do processamento sensorial da audição a nível cortical\(^{31}\), bem como uma hiporreatividade, e podem estar relacionados ao esteriotipo de interesses restrito a novos estímulos comumente observado em indivíduos com TEA\(^{32}\). Também, há autores que acreditam que a diminuição da atenção possa influenciar neste processo\(^{23}\).

Além disso, alguns estudos correlacionaram a avaliação eletrofisiológica dos PEAC com a avaliação comportamental, sendo que todos estes estudos observaram correlação entre essas medidas\(^{25,27,29-31}\). Ainda, foi encontrado um estudo que avaliou os PEAC antes e após treinamento auditivo em indivíduos com TEA, sendo que houve evolução nos resultados do PEAC após intervenção\(^{35}\). Estes resultados demonstraram que o PEAC pode ser útil para predizer ou complementar os resultados de avaliações comportamentais na população com TEA, ou até mesmo, para monitorar a plasticidade das vias auditivas centrais e as mudanças no processamento auditivo da informação após intervenção terapêutica.

Também, quatro estudos analisaram a atividade hemisférica para o processamento dos sons verbais e não verbais e pode-se observar uma unanimidade nos achados, que observaram uma predominância do hemisfério esquerdo para o processamento da informação acústica nos indivíduos com TEA\(^{25,29,34}\). Por outro lado, um estudo observou um resultado oposto, no qual o predominio do processamento acústico foi para as respostas do hemisfério direito (orelha esquerda)\(^{36}\).

Salienta-se que poucos foram os artigos que apresentaram os achados de latência e amplitude por meio de valores numéricos, uma vez que a maioria descreveu os achados de forma qualitativa ou em forma de gráfico, que, embora facilite a visualização, impossibilita obter com precisão os valores de latência e amplitude.

Tal perfil acabou limitando maiores comparações entre os estudos e impossibilitou a realização de metaanálise, bem como, de apresentarmos de forma mais sólida a magnitude dos efeitos observados. Desta forma, os dados do presente estudo foram analisados apenas qualitativamente. Esse aspecto prejudicou determinar os padrões esperados no que tange aos valores de latência e amplitude de cada componente dos PEAC.

Uma limitação do presente estudo foi restringir o ano de publicação dos artigos; no entanto a proposta foi apresentar uma abordagem mais atual quanto aos resultados dos PEAC na população com TEA.

Sendo assim, mais estudos nesta área, com um número amostral maior e que avaliem os valores de latência e amplitude de todos os componentes, se fazem necessários a fim de investigar se há um padrão de resposta para os componentes P1, N1, P2, N2 e P3 presentes nos PEAC, e assim, permitir uma melhor compreensão de como ocorre o processamento dos sons na população com TEA.

CONCLUSÃO

Os resultados dos estudos selecionados demonstraram que a população com TEA podem apresentar respostas diversas para os componentes dos PEAC em comparação ao desenvolvimento típico, sendo que a diminuição de amplitude e aumento de latência do componente P3 foram as características mais comumente encontradas na literatura estudada.

REFERÊNCIAS

1. World Health Organization. The ICD-10 classification of mental and behavioral disorders: diagnostic criteria for research. 10th ed. Geneva: WHO; 1993 [citado em 2017 Mar 3]. Disponível em: http://www.who.int/classifications/icd/en/GRNB0OK.pdf
2. American Psychiatric Association. Manual diagnostico e estatístico de transtornos mentais: DSM-5. 5. ed. Porto Alegre: Artmed; 2014.
3. Sousa EC, Lima FT, Tamanaha AC, Perissinoto J, Azevedo MF, Chiari BM. A associação entre a suspeita inicial de perda auditiva e a ausência de comunicação verbal em crianças com transtornos do espectro autístico. Rev Soc Bras Fonoaudiol. 2009;14:487-90.
4. Magliaro FC, Scheuer CI, Assumpção-Júnior FB, Matas CG. Study of auditory evoked potentials in autism. Pro Fono. 2010;22:31-6.
5. Rosenblum SM, Arick JR, Krug DA, Stubbs EG, Young NB, Pelson RO. Auditory brainstem evoked responses in autistic children. J Autism Dev Disord. 1980;10:215-25.
6. Russo NM, Hornickel J, Nicol T, Zecker S, Kraus N. Biological changes in auditory function following training in children with autism spectrum disorders. Behav Brain Funct. 2010;6:1-8.

7. Romero ACL, Gução ACB, Delecrode CB, Cardoso ACV, Misquati ARN, Frizzo ACF. Avaliação audiológica comportamental e eletrofisiológica no transtorno do espectro do autismo. Rev CEFAC. 2014;16:707-14.

8. Klim A. Autismo e síndrome de Asperger: uma visão geral. Rev Bras Psiquiatr. 2006;1:3-11.

9. Martin BA, Tremblay KL, Stapels DR. Principles and applications of cortical auditory evoked potentials. In: Burkdorf RF, Don M, Eggermont JJ, editors. Auditory evoked potentials: basic principles and clinical application. Baltimore: Lippincott Williams and Wilkins; 2007. p. 482-507.

10. Ponton CW, Eggermont JJ. Electrophysiological measures of human auditory system maturation. In: Burkdorf RF, Don M, Eggermont JJ, editors. Auditory evoked potentials: basic principles and clinical application. Baltimore: Lippincott Williams and Wilkins; 2007. p. 385-402.

11. Tremblay KL, Burkdorf RF. The aging auditory system. In: Burkdorf RF, Don M, Eggermont JJ, editors. Auditory evoked potentials: basic principles and clinical application. Baltimore: Lippincott Williams and Wilkins; 2007. p. 403-25.

12. Matas CG, Magliaro FCL. Introdução aos potenciais evocados auditivos e potencial evocado de tronco encefálico. In: Bevilacqua MC, Martinez MAN, Balen AS, Pupo AC, Reis ACMB, Frota S, editors. Tratado de audiológica. São Paulo: Santos; 2013. p. 181-95.

13. Garcia M, Silveira A, Didoné D. Long latency auditory evoked potential in term and premature infants. Int Arch Otorhinolaryngol. 2013;18:16-20.

14. Martin BA, Tremblay KL, Korczak P. Speech evoked potentials: from the laboratory to the clinic. Ear Hear. 2008;29:285-313.

15. Hall JW. P300 response. In: Hall JW, editor. New handbook of auditory evoked responses. 2nd ed. Florida: Allyn & Bacon; 2006. p. 518-47.

16. O’Hearn K. Brainstem Auditory Evoked Responses in Autism (BAERs). In: Volkmar FR, editor. Encyclopedia of autism spectrum disorders. New York: Springer; 2012. p. 1-6.

17. Sharma A, Nash AA, Dorman MF. Cortical development, plasticity and re-organization in children with cochlear implants. J Commun Disord. 2009;42:272-9.

18. Datta H, Shafer VL, Morr ML, Kurtzberg D, Schwartz RG. Electrophysiological indices of discrimination of long-duration, phonetically similar vowels in children with typical and atypical language development. J Speech Lang Hear Res. 2010;53:757-77.

19. Tremblay K, Kraus N, Mcgee T, Ponton C, Brian O. Central auditory plasticity: changes in the n1-p2 complex after speech-sound training. Ear Hear. 2001;22:79-100.

20. Silva LA, Couto MI, Magliaro FC, Tsuji RK, Bento RF, Carvalho AC, et al. Cortical maturation in children with cochlear implants: correlation between electrophysiological and behavioral measurement. PLoS One. 2017;2:e0171177.

21. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Ann Intern Med. 2009;141(5):264-9.

22. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73:712-6.

23. Whitehouse AJ, Bishop DV. Do children with autism ‘switch off’ to speech sounds? An investigation using event-related potentials. Dev Sci. 2008;11:516-24.

24. Matas CG, Gonçalves IC, Magliaro FC. Audiologic and electrophysiologic evaluation in children with psychiatric disorders. Rev Bras Otorrinolaringol. 2009;75:130-8.

25. Orehkova EV, Strogonava TA, Prokofiev AO, Nygren G, Gillberg C, Elam M. The right hemisphere fails to respond to temporal novelty in autism: evidence from an ERP study. Clin Neurophysiol. 2009;120:520-9.

26. Russo NM, Zecker S, Trometer B, Chen J, Kraus N. Effects of background noise on cortical encoding of speech in autism spectrum disorders. J Autism Dev Disord. 2009;39:1185-96.

27. Gomot M, Blanc R, Clery H, Roux S, Barthelemy C, Bruneau N. Candidate electrophysiological endophenotypes of hyper-reactivity to change in autism. J Autism Dev Disord. 2011;41:705-14.

28. Andersson S, Posserud M, Lundervold AJ. Early and late auditory event-related potentials in cognitively high functioning male adolescents with autism spectrum disorder. Res Autism Spec Disord. 2013;7:815-23.

29. Strogonava TA, Kozunov VV, Posikera IN, Galuta IA, Gratchev VV, Orehkova EV. Abnormal pre-attentive arousal in young children with autism spectrum disorder contributes to their atypical auditory behavior: an ERP study. PLoS One. 2013;8:e69100.

30. Azouz HG, Kozou H, Khalil M, Abdou RM, Sakr M. The correlation between central auditory processing in autistic children and their language processing abilities. Int J Pediatr Otorhinolaryngol. 2014;78:2297-30.

31. Donkers FC, Schipul SE, Baranek GT, Cleary KM, Willoughby MT, Evans AM, et al. Attenuated auditory event-related potentials and associations with atypical sensory response patterns in children with autism. J Autism Dev Disord. 2015;45:506-23.

32. Gonzalez-Gadea ML, Chennu S, Bekinschtein TA, Rattazzi A, Beraudi A, Tripicchio P, et al. Predictive coding in autism spectrum disorder and attention deficit hyperactivity disorder. J Neurophysiol. 2015;114:2625-36.

33. Sokhadze AN, Casanova MF, Tasman A, Brockett S. Electrophysiological and behavioral outcomes of berard Auditory Integration Training (AIT) in children with autism spectrum disorder. Appl Psychophysiol Biofeedback. 2016;41:405-20.

34. Galilee A, Stefanidou C, McClery JP. Atypical speech versus non-speech detection and discrimination in 4- to 6 yr old children with autism spectrum disorder: an ERP study. PLoS One. 2017;12:e0181354.

35. Kamita MK. Brainstem evoked response auditory and long-latency auditory evoked potential in children with autism spectrum disorder [dissertation]. São Paulo: Faculdade de Medicina, Universidade de São Paulo; 2017.

36. Lortie M, Proulx-Bégin I, Saint-Amour D, Cousineau D, Théoret H, Lepage JF. Brief report: biological sound processing in children with autism spectrum disorder. J Autism Dev Disord. 2017;47:1904-9.

37. Silva LA, Magliaro FC, Carvalho AC, Matas CG. Maturation of long latency auditory evoked potentials in hearing children: systematic review. CoDAS. 2017;29:e20160107.

Contribuição dos autores

MKK: foi responsável pela coleta, tabulação e análise dos dados, bem como, elaboração do manuscrito; LAFS: foi responsável pela análise dos dados, bem como, elaboração do manuscrito; CGM: responsável pelo delineamento do estudo e orientação geral das etapas de execução e elaboração do manuscrito.