Optimal Control in Disordered Quantum Systems

Luuk Coopmans,1,2,3,* Steve Campbell,4,5 Gabriele De Chiara,6 and Anthony Kiely4,5

1Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Rd, Dublin, Ireland
2School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
3Quantinuum, Partnership House, Carlisle Place, London SW1P 1BX, United Kingdom
4School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
5Centre for Quantum Engineering, Science, and Technology, University College Dublin, Belfield, Dublin 4, Ireland
6Centre for Quantum Materials and Technology, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom

(Dated: November 30, 2022)

We investigate several control strategies for the transport of an excitation along a spin chain. We demonstrate that fast, high fidelity transport can be achieved using protocols designed with differentiable programming. Building on this, we then show how this approach can be effectively adapted to control a disordered quantum system. We consider two settings: optimal control for a known unwanted disorder pattern, i.e., a specific disorder realisation, and optimal control where only the statistical properties of disorder are known, i.e., optimizing for high average fidelities. In the former, disorder effects can be effectively mitigated for an appropriately chosen control protocol. However, in the latter setting the average fidelity can only be marginally improved, suggesting the presence of a fundamental lower bound.

I. INTRODUCTION

Robust, implementable control protocols are a necessary ingredient for many quantum devices. A particularly relevant task is the routing of quantum states and information over large distances [1, 2] and/or across a network of connected quantum registers [3, 4]. The use of spin chains with short range Heisenberg interactions to transmit quantum information presents a viable framework to accomplish this goal [5], applicable to a wide range of experimental platforms [6–10]. This task can be achieved via the use of an external magnetic field with a parabolic spatial profile which is adiabatically swept across the chain [11] alleviating the need for precise control over individual couplings [12]. However, a notable drawback is that such adiabatic protocols are inherently slow and hence susceptible to noise from the environment. This observation precipitated the development of non-adiabatic protocols such as analytically derived shortcuts to adiabaticity (STA) [13] and quantum optimal control methods [14–27].

While these approaches have been successfully applied in several settings, there remain drawbacks, for instance shortcut-to-adiabaticity approaches, such as the one employed in Ref. [13], often rely on simple model descriptions and/or approximations. In this work we augment traditional control techniques with differentiable programming (∂P) [28, 29] and critically examine their efficacy. Differentiable programming is an approach which is widely used in the context of deep learning [30] and has been recently applied in various quantum control setups, such as the transport of Majorana zero modes [31], the control of thermal machines [32], numerical renormalisation group [33], and interacting qubits [34]. The main advantage of ∂P is that it allows to efficiently obtain the required gradients [35], making gradient based optimization of complex quantum many-body problems computationally tractable.

We use ∂P with several different ansatzes drawn from other traditional quantum control methods, specifically the shortcut-to-adiabaticity protocol [13] and a finite Fourier basis inspired by the chopped random basis (CRAB) protocol [17]. A common difficulty which must be overcome is the inevitability of noise or imperfections in experimentally realised systems in form of spatial heterogeneities, i.e., disorder. For sufficiently large disorder, the system’s state tends to exponentially localize [36] and thus hinders transport of the state across the system. We establish that the presence of disorder is, in and of itself, not a limiting factor in achieving high fidelity control in the system, with ∂P strategies able to find a suitable control pulse efficiently. The drawback, however, is that the ∂P gradients implicitly depend on the exact disorder pattern, which therefore must be known. In the absence of this information, for a disordered-averaged gradient, we find that even with a high degree of optimization, there is little advantage gained over applying the best disorder-free protocols.

The remainder of the paper is organised as follows. In the subsequent section we outline the model and the state transfer goal. Then in Sec. III we introduce the various approaches used to design the dynamical control field. Following this, we demonstrate and compare the effectiveness of these methods for a clean (i.e., disorder-free) system in Sec. IV. These methods are then adapted in Sec. V to a disordered system. Finally, in Sec. VI we summarize our work and provide some outlook on future directions.

II. MODEL AND CONTROL SETUP

We consider a one-dimensional Heisenberg model of N interacting spin-$\frac{1}{2}$ particles. The Hamiltonian ($\hbar = 1$) is

$$
\mathcal{H} = -\frac{J}{2} \sum_{i=1}^{N-1} \mathbf{\sigma}_i \cdot \mathbf{\sigma}_{i+1} + \sum_{i=1}^{N} B_i \sigma_i^z, \quad (1)
$$

* luuk.coopmans@cambridgequantum.com
where $\sigma_i \equiv (\sigma_i^x, \sigma_i^y, \sigma_i^z)$ are the Pauli matrices for the spin at site i. The constant isotropic nearest-neighbour coupling J describes exchange interactions between the neighbouring spins and open boundary conditions are considered.

For a single excitation transport problem we do not need access to the full many-body Hilbert space as this Hamiltonian preserves the total spin excitation number, i.e. $S_z = \sum_{i=1}^N \sigma_i^z$, since $[H, S_z] = 0$. We can divide the Hilbert space into separate disconnected sectors, each with a fixed total number of spin excitations $S = \langle S_z \rangle$. In what follows we focus on the single spin-excitation sector where one spin is up, denoted by $|\uparrow\rangle$, while all the other spins are down $|\downarrow\rangle$. In total we have N such single-spin excitation states, which we label by $|n\rangle = |\uparrow\rangle \otimes \cdots \otimes |\uparrow\rangle \otimes \cdots |\downarrow\rangle$, where only the n-th spin is up.

The Hamiltonian Eq. (1) projected into this subspace becomes

$$H = \sum_{n=1}^N \left[B_n - 2J \right] |n\rangle \langle n| + J \sum_{n=1}^{N-1} |n\rangle \langle n+1| + |n+1\rangle \langle n|,$$

which is an exponential reduction in dimension compared to the full many-body Hamiltonian.

Notice that there is a simple correspondence (up to some edge effects) between this single excitation Hamiltonian Eq. (2) and a discretized version of a single particle in a potential trap, whose continuum limit has the Hamiltonian

$$H_c = \frac{k^2}{2m} + V(x).$$

A. Magnons and the Optimization Objective

For our optimization problem we aim to transport magnons, single spin excitations, from one position in the chain to another, see Fig. 1. Freely propagating magnons, i.e. without a confining magnetic field B_n, disperse over time throughout the chain. Therefore, an initially localized wave packet will delocalize across the chain as a direct result of the non-linear dispersion relation [37]. To counteract this spreading it is necessary to guide the magnon transport [11, 38] by imposing the external magnetic field $B_n(t)$. Various kinds of magnetic traps with different spatial profiles can be used for this, such as, the Pöschl-Teller [39] potential, a square well [37], or a harmonic trap [11].

Motivated by the correspondence with the single-particle Hamiltonian in Eq. (2) we focus on the parabolic profile

$$B_n(t) = -\frac{\omega^2}{4J} \left[n - X_0(t) \right] \frac{\Delta x}{2} |n\rangle \langle n|.$$ \hspace{1cm} (4)

$X_0(t)$ is the position of the minimum of the trap, which will serve as our control parameter. This influences the position of the magnon. This functional form allows us to exploit known analytic optimal control pulses derived with STA methods [13, 40]. Note that we fix the lattice spacing as $\Delta x = 1$ hereafter.

For our magnon transport problem we initialize the parameters such that we have a Gaussian wave packet

$$|\psi_A\rangle = \frac{1}{\sqrt{\sum_n c_n(x_A)\Delta n}} \sum_n c_n(x_A) |n\rangle$$ \hspace{1cm} (5)

centred at a position x_A in the chain, with $c_n(x) = \exp\left[-(n-x)^2/2\sigma^2\right]$. We vary $X_0(t)$ in such a way that we reach the target state

$$|\psi_B\rangle = \frac{1}{\sqrt{\sum_n c_n(x_B)\Delta n}} \sum_n c_n(x_B) |n\rangle$$ \hspace{1cm} (6)

after a total time τ. This target state is the same magnon but now localized at a position $x_B = x_A + d$ with transport distance d. Note that x_A, x_B are chosen sufficiently far from the boundaries to avoid any finite size effects.

The efficacy of our magnon transport protocol, parameterized by $X_0(t)$, can be quantified by the infidelity

$$I_\tau = 1 - \langle |\psi_B \rangle U(\tau) |\psi_A\rangle \rangle^2.$$ \hspace{1cm} (7)

Here, $U(\tau) = \mathcal{T} \exp\left[-i \int_0^\tau H(t)dt\right]$ is the unitary operator that solves the time-dependent Schrödinger equation with the single spin excitation Hamiltonian $H(t)$ and \mathcal{T} is the Dyson time-ordering operator. This infidelity, I_τ, forms the objective function which we minimize with respect to $X_0(t)$ to obtain the optimal transport control pulses. We remark that this objective function must be slightly adapted for the case of a disordered system as explained in Sec. V.

III. CONTROL PROTOCOLS

To search for the optimal magnon transport protocols that minimize the infidelity, I_τ, we compare and contrast several different optimization approaches and ansatzes. Specifically, we examine the performance of pulse profiles obtained with two “hybrid” ∂P control approaches, where other methods are
augmented with ∂P, with those obtained with a standard ∂P
time-bin optimization. For reference we will also consider a
simple linear benchmark protocol
\begin{equation}
X_0(t) = x_A + \frac{x_B - x_A}{\tau} t, \tag{8}
\end{equation}
as considered in [11]. While Eq. (8) is comparatively easy
to implement experimentally, achieving high final target state
fidelities with this protocol typically requires long (adiabatic)
transport times τ.

A. STA Protocol

Here, we briefly recapitulate the main idea of Ref. [13]
which forms the basis for the STA protocol ansatz we will
employ. We derive optimal control protocols for a particle in
a harmonic trap Eq. (3) with the inverse engineering method
based on Lewis-Riesenfeld (LR) invariants. As demonstrated
a harmonic trap Eq. (3) with the inverse engineering method
employ. We derive optimal control protocols for a particle in
which forms the basis for the STA protocol ansatz we will
consider in [11]. While Eq. (8) is comparatively easy
to implement experimentally, achieving high final target state
fidelities with this protocol typically requires long (adiabatic)
transport times τ.

Note that this formalism can be extended to include a
time-dependent frequency.

B. Differentiable Programming (∂P)

To optimize the transport of the wave packet in the clean
system, i.e. in the absence of disorder, we minimize the
fidelity with gradient based optimization algorithms. For this
we obtain the gradient of the fidelity with respect to the con-
trol parameters $\frac{dI}{dX_{\alpha}(t)}$ with differentiable programming [30].
This is achieved by writing the code for the fidelity I, in the
python library JAX [42] and exploiting its automatic differen-
tiation feature. Due to the use of back-propagation (widely
used in deep learning [43]), the gradient can be obtained very
efficiently, with similar computational complexity as forward
evaluation of the infidelity [44, 45]. This allows us to use
different control parameters and also to have flexibility
in the design of the cost functional, for example allowing for
the addition of penalty terms and the use of neural networks
[31, 34].

The gradient can be used in specific optimization algo-
rithms, which we will also refer to as update schemes. The
simplest is traditional gradient descent (GD) where the control
parameters are updated according to $X_{\alpha}(t) = X_{\alpha}(t) - \mu \nabla_{X_{\alpha}} I(t)$, for each iteration i of the learning algorithm. The hyperparameter
μ is known as the learning rate and must be set manually be-
fore optimization. It is common practise to use specific decay
schedules for μ. We empirically determine an approximation
to the optimal learning rate by scanning over a range of values
from 10^{-4} to 10^1 and choose the value of μ corresponding to
the lower value of infidelity. Another, more elaborate, update
scheme we employ is known under the acronym ADAM [46]
and makes, amongst other things, use of an adaptive momen-
tum of the learning rate. We find that this generally leads to
faster convergence to the optimal protocols.

We will first consider the setting where no additional in-
formation or knowledge about the problem is used to con-
strain the control protocols; it starts from a random or linear
protocol, and we refer to this as “∂P-free”. This approach
is useful for finding new unexpected protocols, for exam-
ple the jump-move-jump protocol in [31], since the learning
is not influenced by potential human biases, see also [47].
A clear drawback is that it can be computationally expen-
sive to find an optimal protocol in the large unconstrained,
and possibly non-convex, optimization landscape. Specifi-
cally, we discretize the control into M individual time bins
$x_0(t) \mapsto \{x_0(t_1), x_0(t_2) \ldots x_0(t_M)\}$ of time width $\Delta t = \tau/M$
and we define $t_n = n\Delta t$ [48]. The optimization task now reduces to
finding the values for each $X_0(t_n)$ that minimize I_{τ}.

Following from the demonstrations that hybrid control ap-
proaches can be highly effective [13, 49, 50], we consider the
performance of protocols which combine ∂P and other control
methods to constrain the size of the search space. In particu-
lar, we consider a “∂P-STA” approach where we use the an-
alytical control pulses provided by the mapping between the
single excitation spin chain and the single particle as seeds for
the optimization. With GD we then search over the restricted
class of STA protocols which generally allows for a very fast
optimization, however, as we will see, due to the restricted
search space this approach may fail where others are still ef-
efective.
For this hybrid-approach, in what follows, we define two control parameters \(C_1 = X_0(\tau/4) \) and \(C_2 = X_0(3\tau/4) \), which correspond to the positions of the trap at times \(\tau/4 \) and \(3\tau/4 \), and obtain their derivatives, \(\frac{\partial C_1}{\partial \tau} \) and \(\frac{\partial C_2}{\partial \tau} \), with \(\partial P \). We remark that this can be generalized to an arbitrary number of control parameters without any significant additional computational cost for \(\partial P \). \(C_1 \) and \(C_2 \) can be used as control parameters by imposing them as additional constraints when solving the polynomial for \(a(t) \) in Eq. (11). The advantages are that imposing the STA protocol constraints need only be done once and the resulting fixed polynomial of \(C_1 \) and \(C_2 \) can be implemented as a differentiable function for \(\partial P \).

We consider the minimal polynomial \(a(t) = \sum_{n=1}^{N} b_n t^n \) that satisfies the boundary conditions Eq. (12) and fixes the values \(C_1 \) and \(C_2 \). This gives a whole family of STA protocols for \(X_0(t) \) in which each member corresponds to a specific configuration of the expansion coefficients, \(b_n \).

The final ansatz for the optimal protocols that we use we term “\(\partial P \)-Fourier”, where we aim to combine differentiable programming with optimal control based on a truncated Fourier basis and inspired by the CRAB ansatz [17, 51–53]. Specifically, to fulfill the boundary conditions \(X_0(0) = x_A \) and \(X_0(\tau) = x_B \), we define the Fourier ansatz to be the family of protocols parameterized as

\[
X_0(t) = x_A + (x_B - x_A) \frac{t}{\tau} + \sum_{n=1}^{N} A_n \sin \omega_n t. \tag{13}
\]

The control parameters we wish to optimize are now the Fourier coefficients \(A_n \) while we fix the frequencies \(\omega_n = \frac{\pi}{\tau} \) to be the first \(n \leq N \) harmonics. This cutoff on the maximum frequency of the protocol reflects constraints in the experimental implementation. Although often randomised frequency components are chosen to improve convergence, we remark that we do not find this necessary for our purposes.

To then find the optimal protocols in this restricted family we use \(\partial P \) to compute the derivatives \(\frac{\partial X_0}{\partial t} \) and employ them in standard gradient based optimization algorithms such as the GD algorithm defined before. The Fourier coefficients are updated from their initial values using a gradient descent update scheme with an adaptive step size. This can be done for a large number of coefficients since the gradient is calculated via differential programming. This involves the use of reverse mode automatic differentiation (back propagation) where the gradient is calculated using the chain rule in a reverse order. Due to back-propagation, we can scale to thousands of Fourier coefficients without significantly increasing the computational cost.

In what follows we will examine the efficacy of these ansatzes where throughout: \(\partial P \)-free refers to the case where no constraints on the functional form of the control pulse are enforced, \(\partial P \)-STA corresponds to optimising over the shortcut-to-adiabaticity protocols constrained by Eqs. (11) and (12), and finally \(\partial P \)-Fourier denotes the use of Eq. (13).

![FIG. 2. Disorder-free optimization results obtained with \(\partial P \). The three different ansatzes are free optimization i.e. no constraints (blue), Fourier series with \(N_f = \tau/2 \) (orange) and the STA protocol parameterized by \(C_1 \) and \(C_2 \) (green). The results are shown relative to the linear protocol for two operation durations. Fidelities and other operations times are reported in Table. I. The system parameters are chosen as \(N = 251, d = 50, \omega_0 = 0.5, \) and \(J = 1 \).](image)

IV. OPTIMAL TRANSPORT IN A DISORDER-FREE CHAIN

We begin by exploring the effectiveness of these control protocols applied to transport in the “clean” chain, which has been extensively considered in the literature [14–27, 52–56]. This will allow us to first test the performance in an idealized setting, providing benchmark and reference protocols for when disorder is introduced in Sec. V. Furthermore, we establish that while the STA protocols have an effective speed limit [13], the \(\partial P \) method can achieve transport velocities close to the maximum magnon group velocity of \(v_g = 2J \).

Our aim is to minimize the infidelity of the magnon transport \(J_{\tau} \) in Eq. (7) and find the optimal control protocols for the trapping center \(X_0(t) \). For this task we apply \(\partial P \) in combination with the protocols described in the last section. To define the external constraints of the control problem we fix the total transport distance \(d = 50 \) and choose four different total transport times \(\tau = \{40, 60, 80, 100\}J^{-1} \). To obtain the optimal protocols we minimize with the gradient descent algorithm for a maximum of 200 update steps with an empirically determined learning rate. The minimization is stopped when an infidelity lower than \(O(10^{-3}) \) is reached.

The results for two operation times are shown in Fig. 2 and the corresponding infidelity values are reported in Table I. Notice that above the STA speed limit, which is \(\tau = 50 \) for these parameters [13], we are able to obtain protocols that achieve infidelities on the order of \(O(10^{-3}) \) for all three optimization methods, while the linear reference protocol has significantly larger infidelity values (we remark the reasonably good performance of the linear ramp for \(\tau = 80 \) is due to a special resonance effect [13]). In the continuum case, these spe-
specific operation times of high fidelity can be expressed analytically in terms of the Fourier transform of the velocity profile of the trapping potential [57]). For faster protocols, $\tau = 40$, the ∂P-Free and Fourier approaches are still able to achieve low infidelities, $O(10^{-2})$, whereas ∂P-STA breaks down due to the fact that we have a restricted search space, although we remark it is still significantly more effective than the simple linear ramp.

Naturally, the shape of the optimal protocols $X_0(t)$ themselves depends strongly on the method employed, cf. Fig. 2. The STA protocols are drastically different taking the form of a ramp up then down protocol for the velocity where they slowly accelerate to a finite velocity and then symmetrically decelerate again to zero. In contrast, the ∂P Free and Fourier protocols start and end with a small quench in position and in the middle oscillate with a constant average velocity. The size of the position quenches grows with decreasing transport time while the oscillations tend to become smoother with increasing time.

In order to analyse the frequencies, ω_p, of these oscillations in Fig. 3(a) we show velocity protocols $X_0(t)$ for several trapping frequencies ω_0. In the main panel we observe that the protocol frequency ω_p tends to increase with increasing ω_0. From the inset we can then see that the relationship is linear with a coefficient very close to one, i.e. $\omega_p \approx \omega_0$. While such an oscillatory behavior is common in Fourier based optimal control approaches, and often these oscillations can be excluded or suppressed without affecting the effectiveness of the protocol [58], here we find that these oscillations are crucial to the performance of the protocol, in their absence the infidelities rise significantly. Indeed, that the unconstrained ∂P-Free approach also converges to protocols with these characteristic oscillations indicate their importance in the protocol.

A. Approaching the group velocity speed limit with ∂P

We can recover the speed limit for the STA protocols $\tau^* \approx d/J$ that was heuristically determined based on the original (unparameterized) STA protocol for magnon transport in [13]. This protocol is given by

$$X_0(t) - x_A = d \left[6s^3 - 15s^2 + 10s + \frac{s}{\omega_0^2} (1 - 3s + 2s^2) \right],$$ \hspace{1cm} (14)$$

where $s = t/\tau$. This protocol is a function of the total transport time τ, the trapping frequency ω_0 and the initial and target positions x_A and x_B. In Fig. 4(a) we show the target state fidelity $F_\tau = 1 - I_\tau$ of this protocol for a specific range of values of τ and ω_0. We observe a clear lightcone-like surface with a velocity of $v_g \approx d/J$. Below this velocity, a fidelity of at least $F_\tau > 0.5$ can be obtained whereas for faster protocols the fidelity drops quickly to zero. We see that this speed limit is still far away from the lightcones obtained by the group velocity $v_g = 2J$ and even further from the Lieb-Robinson velocity [59] $v_L = 6J$, which bounds the timescales on which quantum correlations can develop between different subsystems of a larger quantum system.

In order to demonstrate that we can improve on this speed limit with ∂P we focus on one specific distance slice $d = 50$ and minimize I_τ for a range of different total times τ near the STA speed limit time $\tau^* = 50$. We use the Fourier ansatz with $N_\tau = 50$ frequency components and, to push the limits of our optimization methodology, we run 500 update steps with the ADAM update scheme. We stop the optimization when an infidelity of $O(10^{-5})$ is reached.

The resulting fidelity values as function of τ compared to the original STA protocol are shown in Fig. 4(b). Compellingly, we see that we can push the maximum velocity very close to the group velocity time $\tau_g = d/v_g$. Taking $F_\tau > 0.5$ to measure the speed limit we find $\tau_{50} \approx 29$ which corresponds to $v_{50} \approx 1.72J$, which is very close to the group velocity v_g. Below τ_g the fidelity quickly drops to zero with no noticeable improvement arising from further optimization. This is in accordance with the group velocity being the maximum speed of the magnons [38] and also with the speed limit found in [60] with the numerical Krotov [61] optimization method for the same system but with a different form of spin excitation.

τ	∂P-Free	∂P-STA	∂P-Fourier	Linear
40	0.03832	0.3614	0.0176	0.9845
60	0.0015	0.00013	0.0052	0.6780
80	0.0009	0.00023	0.0003	0.0791
100	0.0024	0.0002	0.0017	0.4414

TABLE I. Infidelity I_τ results for the clean system with $N = 251$, $J = 1$, ω_0 and $d = 50$. The corresponding control protocols are shown in Fig. 2.

FIG. 3. Main panel: velocities of the magnon transport protocols $X_0(t)$ obtained with the ∂P Free approach for 4 different trapping frequencies ω_0. Inset: the characteristic frequency ω_p of the protocols in the main panel versus ω_0. A linear relationship $\omega_p \approx \omega_0$ is observed. Other parameters: $\tau = 100$, $N = 251$, $J = 1$ and $d = 50$. The parameters for these simulations are the same as in Fig. 2.
V. MAGNON TRANSPORT IN THE PRESENCE OF DISORDER

We now consider the effects of disorder in the spin chain [11, 13, 37, 62, 63], which could arise either from inhomogeneities in applied fields or defects in fabrication processes, and generally leads to localization, significantly hindering the system’s controllability. We consider a site disorder corresponding to an inhomogeneous magnetic trapping field $B_n(t) \rightarrow B_n(t) + \epsilon_n$. Note that while the trapping field is time dependent for the control of the position of the magnon, the disorder itself is static and ϵ_n is uniformly distributed on the interval $[-\Delta, \Delta]$ with noise strength Δ.

The main effect of the disordered magnetic field is a localization of the single spin excitation wave functions with the localization length scaling with the magnitude of the disorder, as shown in Fig. 5 for the lowest energy eigenstate of the disordered Hamiltonian H for several disorder strengths. We observe that the localization length ξ decreases approximately as $\xi \sim 1/\sqrt{\Delta}$. The wave function localization means that the transport fidelity is expected to increase when the magnon is moved a distance of at least a few disorder length scales ξ. From Fig. 5(b) we see that already for $\Delta \sim 0.05$ we have $\xi \sim 40$, thus even for this small disorder the transport distance ($d = 50$) is already greater than the localization length.

Based on the results from the previous section, we focus on ∂P in combination with the Fourier ansatz in Eq. (13) and aim to find the optimal protocol(s) in two distinct and physically relevant scenarios. In the first, we focus on one specific fixed disorder realization and determine whether effective control can still be achieved. In the second, we optimize over an ensemble of different disorder realizations, to search for an optimal control strategy that on average works the best in all disordered cases with fixed magnitude.

A. Fixed disorder patterns

We consider a particular disorder realization $\epsilon^p = (\epsilon_1^p, ..., \epsilon_N^p)$ which we label by p. Notice that this is simply an N-dimensional random vector from the uniform distribution $[-\Delta, \Delta]$. For this pattern p we then aim to minimize the fidelity I_τ^p. This fidelity measure is the same as the standard target state infidelity I_τ used before but computed with the fixed disorder pattern p added to the magnetic field $B_n(t) + \epsilon_n^p$ in the Hamiltonian. For the minimization we use I_τ^p as the cost functional and we compute its derivatives with respect to the control parameters with ∂P. These derivatives are then used in combination with ADAM to update the controls A_n of the Fourier ansatz. We repeat the complete optimization process for several different disorder patterns p and finally average the result $\langle I_\tau \rangle_s = \frac{1}{N_{\text{test}}} \sum_p I_\tau^p$, where the subscript ‘$s$’ indicates that the infidelity was optimized, individually, for each disorder pattern.

In Fig. 6(a) we show the results for these optimizations as a function of the disorder strength Δ. We also show benchmark results of the optimal protocols obtained with the ∂P-STA and ∂P-Fourier methods in the clean system. We observe that the disorder ∂P optimization method (green line) is able to keep the infidelity $\langle I_\tau \rangle_s$ close to zero (on the order of 10^{-3} and smaller). The infidelity $\langle I_\tau \rangle_s$ of the benchmark protocols (blue and orange lines) for the same fixed disorder patterns is found to be increasing approximately quadratically with disorder strength. This shows that our ∂P optimization method is still able to obtain high fidelity control protocols in the presence of a specific disorder pattern.

This means that disorder in the setup itself is not immediately an issue as long as a suitable control protocol, designed for the specific disorder realization, is used. Note, however,
that to find these protocols the learning algorithms have used information about the exact disorder patterns, since the computed infidelity and the gradients implicitly depend on the disorder. As such, our ∂P ‘model-based’ approach only works when the exact form of the pattern is known or can be derived from experimental measurements. That said, the fact that suitable control protocols exist directly motivates the use of other gradient-free optimization approaches. We refer to the conclusion for a further discussion on this.

To try to understand how the optimization method is able to achieve these low infidelity values despite the presence of disorder, we show in Fig. 6(b) the optimal velocity protocols $X_0(t)$ for three specific disorder patterns. The obtained optimal protocols $X_0(t)$ are different for each different disorder pattern. This implies that during the optimization process the machine indeed learns about the specific disorder realization and finds a way to correct for it. This is likely due to the fact that the information of a fixed pattern p is directly encoded in the derivatives $\partial \mathcal{L} / \partial X_t$ that the optimizer gets. The strategies being different, however, also means that there is likely no universal strategy that obtains a low infidelity value for any disorder realization, which we elucidate in the following subsection.

B. Ensemble average disorder

In the second scenario we consider ∂P optimization when we do not know the exact disorder realizations and only have access to the magnitude of the noise. For this we take the disorder averaged infidelity $\langle I_\tau \rangle_s$ as the figure of merit to minimize with ∂P via batch gradient descent. We first fix a set of 200 different disorder realizations, divided up into 20 individual batches of 10 realizations. For each batch we compute the disorder averaged gradients $\partial \mathcal{L} / \partial X_t$ and use them to update the control protocol with ADAM. We do this cyclically which means we start from the first batch do an update and then move on to the second batch. When all batches have had one update we have completed one learning ‘episode’ and repeat the cycle. During this process $\langle I_\tau \rangle_s$ averaged over all the 200 disorder patterns goes gradually down until convergence is reached.

In Fig. 7(a) we show the resulting averaged infidelity $\langle I_\tau \rangle_s$ values for the optimal protocols obtained with batch gradient descent for 49.5 episodes. Note that we first optimized for 24.5 episodes on one fixed set of 200 disorder realizations and then 25 episodes on a different set of 200 disorder realizations. Here 0.5 episode means that we stopped after 100 out of the 200 disorder realizations. For these $\langle I_\tau \rangle_s$ values we have used a new set of disorder realizations which were not used during the optimization process. This gets rid of any optimization bias to particular disorder realizations and we can fairly evaluate the performance. We see that now the optimization method is not able to keep the infidelity close to zero for increasing disorder strength Δ. Instead it increases quadratically similarly to the benchmark protocols, with the batch optimization method providing a negligible increase in performance compared to the other protocols. We remark this behavior is qualitatively consistent with previous studies focusing the effect of parameter fluctuations [56, 64].

As a final remark we note that although the batch optimization method does not give a significant improvement in infidelity compared to the STA protocols, the form of the pulses are different between the approaches. We show in Fig. 7(b) the optimal velocity protocol obtained at a disorder strength of $\Delta = 0.16$ compared to the optimal clean Fourier and STA protocols. We observe that the batch optimization protocol has much more rapid changes in the velocity and also obtains higher speeds, but nevertheless performs comparably to these protocols.
FIG. 7. (a) Disorder averaged infidelity $\langle I \rangle$ versus disorder strength Δ for protocols obtained with the ∂P batch optimization method (green dashed line) compared to the optimal clean protocols. Results are averaged over 500 disorder realizations and all the model parameters are the same as in Fig. 5. The external constraints are set to $(\tau, d) = (100, 50)$. All the protocols increase approximately quadratically with disorder strength and the batch optimization slightly outperforms the benchmark protocols. (b) The optimal velocity protocol $X(t)$ (green line) obtained with the batch optimization method at $\Delta = 0.16$. We have also shown the optimal protocols for the disorder free system. The batch optimization protocol has much more drastic and rapid changes in velocity compared to the optimal clean protocols.

VI. CONCLUSION AND OUTLOOK

We have examined schemes to achieve high-fidelity transport of magnons in clean and disordered Heisenberg spin chains. For this optimization task we have exploited a hybrid numerical-analytical approach employing different types of analytical ansatz for the protocols, optimized with differentiable programming (∂P). In the absence of disorder, effective control can be achieved with all techniques, however, certain limiting factors relating to the maximum speed emerge, with the ∂P-Fourier able to approach the maximum group velocity. The relevance of external physical parameters, in particular the frequency of the trapping potential used, was shown to manifest in the optimized protocols.

Introducing disorder, we showed that it is still possible to achieve near perfect optimal magnon transport for a fixed on-site disorder pattern, thus demonstrating that the presence of disorder is, in and of itself, not a limiting factor in using quantum systems for communication. However, we also established that even with optimization one cannot achieve a “one size fits all” protocol if only the disorder strength, and not the precise pattern, is known. We focussed explicitly on the common assumption of Gaussian initial states. While this is useful for the approximate STA protocol, it is not critical for the implementation of the other protocols. We expect that other initial states will not qualitatively change our results. These results naturally lead to the question if the same protocols (or protocols with same performance) can be found with non-gradient based optimization approaches, such as reinforcement learning [19, 65–68] or natural evolution strategies [31, 69]. This will be particularly intriguing for the fixed disorder pattern results, as this potentially eliminates the need to know the exact disorder pattern.

From an optimization perspective, several additional interesting avenues could be investigated. For example how the control landscape properties (smoothness, convexity, etc.) [70] for the different protocol ansatze changes with the presence of disorder. It is also relevant to explore potential relationships between the complexity of the pulse, e.g. in terms of its spectral bandwidth, and the disorder. However, to explore these kind of questions about the effects of disorder often many computationally expensive numerical simulations must be performed. To resolve this, and bring the computational complexity down, a final interesting question would be to see if one can train a neural network to predict the value of the cost function as was explored for a different problem in [71].

ACKNOWLEDGEMENTS

We thank G. Kells for helpful discussion regarding this project. L.C. acknowledges Science Foundation Ireland for financial support through Career Development Award 15/CDA/3240. G.D.C. acknowledges support by the UK EPSRC EP/S02994X/1. A.K. and S.C. acknowledge support from the Science Foundation Ireland Starting Investigator Research Grant “SpeedDemon” No. 18/SIRG/5508.

[1] P Zoller et al., “Quantum information processing and communication,” Eur. Phys. J. D 36, 203–228 (2005).
[2] H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[3] J. Majer and et al, “Coupling superconducting qubits via a cavity bus,” Nature 449, 443–447 (2007).
[4] B. Çakmak, Steve Campbell, Bassano Vacchini, Özgür E. Mustețcăploș, and Mauro Paternostro, “Robust multipartite entanglement generation via a collision model,” Phys. Rev. A 99, 012319 (2019).
[5] S. Bose, “Quantum communication through an unmodulated spin chain,” Phys. Rev. Lett. 91, 207901 (2003).
[6] L.-M. Duan, E. Demler, and M. D. Lukin, “Controlling spin exchange interactions of ultracold atoms in optical lattices,” Phys. Rev. Lett. 91, 090402 (2003).
[7] A. Romito, R. Fazio, and C. Bruder, “Solid-state quantum communication with josephson arrays,” Phys. Rev. B 71, 100501(R) (2005).
[8] P. Cappellaro, C. Ramanathan, and D. G. Cory, “Dynamics and control of a quasi-one-dimensional spin system,” Phys. Rev. A 76, 032317 (2007).
[9] S. Hild, T. Fukuhara, P. Schauß, J. Zeiher, M. Knap, E. Demler, I. Bloch, and C. Gross, “Far-from-equilibrium spin transport in heisenberg quantum magnets,” Phys. Rev. Lett. 113, 147205 (2014).
Xiong-Peng Zhang, Bin Shao, Shuai Hu, Jian Zou, and Lian-D.S. Acosta Coden, S.S. Gómez, A. Ferrón, and O. Osenda, Vladimir I. Gurman, Irina S. Guseva, and Oles V. Fesko, “Optimal quantum transport in an inhomogeneous spin chain,” Journal of Physics B: Atomic, Molecular and Optical Physics, 2016.

C. P. Koch et al., “Quantum optimal control in quantum technologies: strategic report on current status, visions and goals for research in europe,” EPJ Quantum Technology 9, 19 (2022).

M. M. Müller, R. S. Said, F. Jelezko, T. Calarco, and S. Montangero, “One decade of quantum optimal control in the chopped random basis,” Rep. Prog. Phys. 85, 076001 (2022).

M. J. M. Power and G. De Chiara, “Dynamical symmetry breaking with optimal control: Reducing the number of pieces,” Phys. Rev. B 88, 214106 (2013).

M. Bukov, A. G. R. Day, D. Sels, P. Weinstein, A. Polkovnikov, and P. Mehta, “Reinforcement learning in different phases of quantum control,” Phys. Rev. X 8, 031086 (2018).

T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and G. E. Santoro, “Optimal control at the quantum speed limit,” Phys. Rev. Lett. 103, 240501 (2009).

Xiaoting Wang, Abolfazl Bayat, S. G. Schirmer, and Sougato Bose, “Robust entanglement in antiferromagnetic heisenberg chains by single-spin optimal control,” Phys. Rev. A 81, 032312 (2010).

Tommaso Caneva, Tommaso Calarco, and Simone Montangero, “Chopped random-basis quantum optimization,” Phys. Rev. A 84, 022326 (2011).

P. M. Poggi and D. A. Wisniacki, “Optimal control of many-body quantum dynamics: Chaos and complexity,” Phys. Rev. A 94, 033406 (2016).

Vladimir I. Gurman, Irina S. Guseva, and Oles V. Fesko, “Optimization of excitation transfer in a spin chain,” in AIP Conference Proceedings (Author(s), 2016).

Xiong-Peng Zhang, Bin Shao, Shuai Hu, Jian Zou, and Lian-Ao Wu, “Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains,” Annals of Physics 375, 435–443 (2016).

D.S. Acosta Coden, S.S. Gómez, A. Ferrón, and O. Osenda, “Controlled quantum state transfer in XX spin chains at the quantum speed limit,” Physics Letters A 387, 127009 (2021).

M Iversen, R E Barfknecht, A Foerster, and N T Zinner, “State transfer in an inhomogeneous spin chain,” Journal of Physics B: Atomic, Molecular and Optical Physics 53, 155301 (2020).

R. E. Wengert, “A simple automatic derivative evaluation program,” Commun. ACM 7, 463–464 (1964).

H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, “Differentiable programming tensor networks,” Phys. Rev. X 9, 031041 (2019).

Atılım Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind, “Automatic differentiation in machine learning: A survey,” J. Mach. Learn. Res. 18, 1 (2018).

L. Coopmans, D. Luo, G. Kells, B. K. Clark, and J. Carraquilla, “Protocol discovery for the quantum control of many-joranas by differentiable programming and natural evolution strategies,” PRX Quantum 2, 020332 (2021).

B. Rigo and Andrew K. Mitchell, “Optimal controllability of quantum thermal machines using machine learning,” Phys. Rev. Research 4, 012029 (2022).

J. Werschnik and E. K. U. Gross, “Quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).

V. Balachandran and J. Gong, “Adiabatic quantum transport in XX spin chains at the quantum speed limit,” Phys. Rev. A 77, 012303 (2008).

K. Eckert, O. Romero-Isart, and A. Sanpera, “Efficient quantum state transfer in spin chains via adiabatic passage,” New J. Phys. 9, 155–155 (2007).

A. Kiely and S. Campbell, “Fast and robust magnon transport in a spin chain,” New J. Phys. 23, 033033 (2021).

J. Werschnik and E. K. U. Gross, “Quantum optimal control theory,” J. Phys. B 40, R175 (2007).

S. J. Glaser et al., “Training schrödinger’s cat: quantum optimal control,” Eur. Phys. J. D 69, 279 (2015).

M. Ahmed, “Confined magnon transport in low dimensional ferromagnetic structures,” Ph.D Thesis, RMIT University, Melbourne, Australia (2017).

M. H. Ahmed and A. D. Greentree, “Guided magnon transport in spin chains: Transport speed and correcting for disorder,” Phys. Rev. A 91, 022306 (2015).

M. I. Makin, J. H. Cole, C. D. Hill, and A. D. Greentree, “Spin guides and spin splitters: Waveguide analogies in one-dimensional spin chains,” Phys. Rev. Lett. 108, 017207 (2012).

E. Torrontegui, S. Ibáñez, Xi Chen, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, “Fast atomic transport without vibrational heating,” Phys. Rev. A 83, 013415 (2011).

H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458–1473 (1969).

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, and Skye Wanderman-Milne, “JAX: composable transformations of Python+NumPy programs,” (2018).

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 323, 533–536 (1986).

Walter Baur and Volker Strassen, “The complexity of partial derivatives,” Theoretical Computer Science 22, 317–330 (1983).

A Griewank, “On automatic differentiation,” Mathematical Programming: Recent Developments and Applications 6, 83 (1989).

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015).

R. Porotti, D. Tamascelli, M. Restelli, and E. Prati, “Coherent transport of quantum states by deep reinforcement learning,” Commun. Phys. 2, 61 (2019).

In our simulations we take $\Delta t=0.1$ which is sufficient to ensure good convergence.

S. Campbell, G. De Chiara, M. Paternostro, G. M. Palma, and R. Fazio, “Shortcut to adiabaticity in the lipkin-meshkov-glick model,” Phys. Rev. Lett. 114, 177206 (2015).

H. Saberi, T. Opatrný, K. Mølmer, and A. del Campo, “Adiabatic tracking of quantum many-body dynamics,” Phys. Rev. A 90, 060301(R) (2014).

Björn Bartels and Florian Mintert, “Smooth optimal control with Floquet theory,” Phys. Rev. A 88, 052315 (2013).
[52] Selina Meister, Jürgen T. Stockburger, Rebecca Schmidt, and Joachim Ankerhold, “Optimal control theory with arbitrary superpositions of waveforms,” Journal of Physics A: Mathematical and Theoretical 47, 495002 (2014).

[53] Thomas E. Skinner and Naum I. Gershenson, “Optimal control design of pulse shapes as analytic functions,” Journal of Magnetic Resonance 204, 248–255 (2010).

[54] Xiaoting Wang, Daniel Burgarth, and S. Schirmer, “Subspace controllability of spin-$\frac{1}{2}$ chains with symmetries,” Phys. Rev. A 94, 052319 (2016).

[55] Juneseo Lee, Christian Arenz, Herschel Rabitz, and Benjamin Russell, “Dependence of the quantum speed limit on system size and control complexity,” New Journal of Physics 20, 063002 (2018).

[56] Michael H. Goerz, Eli J. Halperin, Jon M. Aytac, Christiane P. Koch, and K. Birgitta Whaley, “Robustness of high-fidelity rydberg gates with single-site addressability,” Phys. Rev. A 90, 032329 (2014).

[57] A. Couvert, T. Kawalec, G. Reinaudi, and D. Guéry-Odelin, “Optimal transport of ultracold atoms in the non-adiabatic regime,” EPL (Europhysics Letters) 83, 13001 (2008).

[58] A. Larrouy, S. Patsch, R. Richaud, J.-M. Raimond, M. Brune, C. F. Koch, and S. Gleyzes, “Fast navigation in a large hilbert space using quantum optimal control,” Phys. Rev. X 10, 021058 (2020).

[59] Jeffrey M. Epstein and K. Birgitta Whaley, “Quantum speed limits for quantum-information-processing tasks,” Phys. Rev. A 95, 042314 (2017).

[60] M. Murphy, S. Montangero, V. Giovannetti, and T. Calarco, “Communication at the quantum speed limit along a spin chain,” Phys. Rev. A 82, 022318 (2010).

[61] V. F. Krotov, “Global Methods in Optimal Control Theory,” in Advances in Nonlinear Dynamics and Control: A Report from Russia, Progress in Systems and Control Theory, edited by Alexander B. Kurzhanski (Birkhäuser, Boston, MA, 1993) pp. 74–121.

[62] D. Burgarth and S. Bose, “Perfect quantum state transfer with randomly coupled quantum chains,” New J. Phys. 7, 135–135 (2005).

[63] G. De Chiara, D. Rossini, S. Montangero, and R. Fazio, “From perfect to fractal transmission in spin chains,” Phys. Rev. A 72, 012323 (2005).

[64] Sattwik Deb Mishra, Rahul Trivedi, Amir H. Safavi-Naeini, and Jelena Vučković, “Control design for inhomogeneous-broadening compensation in single-photon transducers,” Phys. Rev. Applied 16, 044025 (2021).

[65] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction (A Bradford Book, Cambridge, MA, USA, 2018).

[66] Xiao-Ming Zhang, Zezhu Wei, Raza Asad, Xu-Chen Yang, and Xin Wang, “When does reinforcement learning stand out in quantum control? A comparative study on state preparation,” npj Quantum Information 5, 1–7 (2019).

[67] Paolo A. Erdman and Frank Noé, “Identifying optimal cycles in quantum thermal machines with reinforcement-learning,” npj Quantum Information 8, 1 (2022).

[68] Paolo Andrea Erdman and Frank Noé, “Driving black-box quantum thermal machines with optimal power/efficiency trade-offs using reinforcement learning,” (2022).

[69] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber, “Natural evolution strategies,” Journal of Machine Learning Research 15, 949–980 (2014).

[70] Alexandre G. R. Day, Marin Bukov, Phillip Weinberg, Pankaj Mehta, and Dries Sels, “Glassy phase of optimal quantum control,” Phys. Rev. Lett. 122, 020601 (2019).

[71] Mogens Dulgaard, Felix Motzoi, and Jacob Sherson, “Predicting quantum dynamical cost landscapes with deep learning,” Phys. Rev. A 105, 012402 (2022).