Comparative analysis of the Immunoglobulin G antibodies (IgG and IgG subclass) responses in children (≤15 years) with severe and uncomplicated malaria in Buea, South West region, Cameroon

Tebit Emmanuel Kwenti,1 Kukwah Anthony Tufon,2 Babila Raymond Nyasa,2 Fru Georgia Mbah-Mbole,3 Faham Khamesipour,4 Longdoh Anna Njunda1

1Department of Medical Laboratory Sciences; 2Department of Microbiology and Parasitology; 3Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon; 4Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

Abstract

Studies assessing the immunoglobulin G (IgG) antibody responses in severe malaria are not readily available. This study was designed to compare the IgG and IgG1-4 antibody responses in severe malaria and its major clinical presentations (cerebral malaria, severe malarial anemia and respiratory distress) in children (≤15 years) in Buea, Cameroon. In a hospital-based cross-sectional comparative study, children presenting for consultation at the outpatient department/Emergency unit of the Buea Regional Hospital were enrolled and assigned into one of three groups: severe malaria, uncomplicated malaria and negative controls. Baseline characteristics were determined; blood glucose level was measured by glucometer, complete blood count was performed using an automated heamatology analyser and participants were screened for malaria parasites by light microscopy and severe malaria was categorized based on WHO criteria. Total IgG and IgG1-4 antibodies were measured using standard ELISA with Plasmodium falciparum 19-KDa C-terminal region of merozoite surface protein 1 (P.fMSP-19) antigen as capture antigen. A total of 236 participants were enrolled comprising: 66 severe malaria, 70 uncomplicated malaria and 100 negative controls. The participants in the different groups were similar with regards to their ages (p=0.06) and gender (p=0.900). Children with severe malaria had significantly higher levels of anti-P.fMSP-19 IgG4 (p<0.0001) antibodies and significantly lower levels of anti-P.fMSP-19 IgG1 (p<0.0001) and IgG3 (p<0.0001) antibodies. There was no significant variation in the IgG antibody responses between the major clinical forms of severe malaria. The study finding of significantly higher levels of the non-cytophilic antibody IgG4 is suggestive of the role the antibody plays in the pathogenesis of severe malaria. Larger studies investigating how these immune effector cells vary in the major phenotypes of severe malaria are recommended.

Introduction

Malaria, arguably one of the most important infectious disease today, still constitutes a major public health challenge in the tropical and subtropical parts of the world. According to the World Health Organisation (WHO), there were 228 million cases and 405,000 deaths attributed to malaria globally in 2018.1 A disproportionate 93% and 94% of malaria cases and death respectively, occurred in the WHO African region.1 Five species of Plasmodium are known to cause malaria namely: Plasmodium falciparum, P. malariae, P. ovale, P. vivax and P. knowlesi. Plasmodium falciparum is the most virulent species and is the dominant species in the WHO African region, accounting for 99.7% of all malaria deaths globally.1 This may explain why the morbidity and case fatality rate attributed to malaria is highest in the WHO African region. Children age 5 years and below are most vulnerable group; in 2018, they accounted for 67% of all malaria deaths globally.1 Progression of P. falciparum malaria may lead to complications associated with severe malaria. The rate of severe malaria in malaria endemic areas varies considerably from 6.4% to 74.7%.2 The clinical spectrum of malaria in children usually ranges from asymptomatic infection with parasites to a febrile disease that may
evolve into a severe, life-threatening illness. The main clinical phenotypes of severe malaria include cerebral malaria, severe anaemia and respiratory distress (also referred to as acidotic breathing). Other less life-threatening presentations commonly observed at enrollment include: hyperparasitaemia, multiple or prolonged convulsions, hyperlactaeamia, circulatory collapse, hypoglycaemia, prostration, jaundice, persistent vomiting and intravascular haemolysis.

In Cameroon, malaria is still a major cause of morbidity and mortality especially in children. The disease accounts for 48% of all hospital admissions, 30% of all morbidity and 67% of childhood mortality per year. The entire Cameroonian population of over 22 million is at risk of malaria. Plasmodium falciparum is the predominant species causing malaria in Cameroon. Additionally, severe malaria cases (including cerebral malaria, severe anaemia and respiratory distress) are frequent in Cameroon.

Immunoglobulin G (IgG) antibodies are generally known to play vital roles in malaria immunity. The cytophilic antibodies (IgG1 and IgG3) are considered the most important IgG subclasses in conferring malaria immunity as they are capable of mediating the activation of leukocytes via binding to FcγRI and FcγRIII. Studies in malaria endemic areas have shown the predominance of IgG1 and IgG3 is associated with lower risks of malaria-related complications. Contrarily, the non-cytophilic antibodies especially IgG4 are known to be pathogenic and their presence correlates with the severity of malaria. A balance between cytophilic and non-cytophilic antibodies is therefore required for the development of effective immunity against malaria.

The current study uses the Plasmodium falciparum 19-KDa C-terminal region of merozoite surface protein 1 (P.fMSP-19) antigen as capture antigen in ELISA to measure the total IgG and IgG subclass responses in the target population. The merozoite surface proteins are involved in the initial attachment of the merozoite to the erythrocyte surface. P.fMSP-19 was selected over the other MSP-1 molecules because of the fine specificity of anti-MSP-19 specific antibodies, as well as its role in the protection against clinical malaria. Furthermore, a study demonstrated that MSP-19 specific antibodies are potent inducers of neutrophil antibody-dependent respiratory burst (ADR), which correlates with acquired clinical protection. In addition, studies have highlighted the role of the cytophilic antibodies (IgG1 and IgG3) in ADR. Understanding the role of the different IgG subclass antibodies in the pathogenesis of severe malaria is necessary to depict a clearer picture of the overall immunologic responses to malaria and in vaccine development. However, studies on the variation of IgG antibody responses in the different clinical phenotypes of severe malaria are not forthcoming. With this in mind, we designed this study to compare the IgG subclass antibodies responses in the different clinical presentations of severe malaria.

Materials and Methods

Study area

This study was performed at the Buea Regional hospital, located in Buea, Southwest region of Cameroon. The study area has been described in great details elsewhere. The prevalence of malaria and severe malaria in Buea has been reported as 33.0% and 13.8% respectively. In this area, over 95% of malaria has been reported to be caused by Plasmodium falciparum.

Study design an duration

This was a hospital-based cross-sectional comparative study conducted between March and June 2018.

Sample size estimation

The sample size was estimated using an effect size of 0.33 calculated from data obtained by Kwenti et al. The power of study 0.9 considering alpha 0.05, three groups and the ANOVA function in G*Power, obtained a total sample size of 120 (i.e. 40 per group).

Participants and sampling

Children (≤15 years) of both sexes, presenting for consultation at the Outpatient Department/Emergency Unit were consecutively enrolled upon provision of signed consent by their parents/guardians. Their vital signs were collected and they were examined by the consulting physician. Based on the laboratory confirmation of their malaria status, consented participants were enrolled and assigned into one of the following study groups: Severe malaria, uncomplicated malaria and negative controls. Excluded from the study were children who were already on treatment with an antimalarial drug and those for which there was evidence of other infectious causes of fever other than malaria.

Laboratory analysis

Specimen collection

Following aseptic techniques, about 4 ml of blood was collected from consented participants into EDTA and dry (non-anticoagulated) test tubes. Blood specimen in the EDTA tubes were used for the performance of the complete blood count and preparation of thick and thin blood films for malaria screening. Aliquots of the serum from the dry test tubes were transferred into Eppendorf tubes and stored at − 40 °C for the performance of ELISA.

Performance of complete blood count

Complete blood count (CBC) was performed using the Mindray® Auto haematology analyzer (BC-2800, Shenzhen Mindray Bio-Medical Electronics Co. Ltd, China). The white blood cell counts (WBC) were obtained from the CBC results and used in the estimation of the malaria parasite density.

Measurement of blood glucose level

Blood glucose level was measured with a glucometer (On Call® Plus Blood Glucose Meter, ACON Laboratories, Inc., USA) by a finger prick.

Detection of malaria parasites

The prepared blood films were air-dried and stained with 10% Giemsa (1 in 20 dilution) for 25–30 minutes and examined by light microscopy. Detection and quantification of malaria parasite was performed as previously described.

Measurement of IgG responses in the study population

The anti-Pf-MSP-19 IgG and IgG1-4 antibody responses were measured using a standard ELISA technique as earlier described. Briefly, ninety-six (96) well microtiter plates (Nunc MaxisorbTM, Denmark) were coated overnight at 4°C with 100µl MSP-19 antigen (expressed in Escherichia coli and purified to 95%) solution (1xPBS) at final concentration of 1µg/mL. The unbound antigens were removed by washing 3 times with 0.1% Tween/PBS washing buffer. After washing, 150µL/well of 3% skimmed milk powder in Tween/PBS was used to block the antigens for 8h at 4°C followed by plate washing as described above. After the second wash, sera samples (diluted 1 in 100) were added in duplicate, along with positive control serum (a pool of sera from...
eight adults in Muyuka with lifelong exposure to malaria) and 10 negative control sera from non-exposed German adults (kindly donated by Andreas Latz). The plates were then incubated at 37°C for 1 hour before washing as described above. Peroxidase conjugated goat anti-human IgG (Caltag Laboratories, US) for IgG (1/40) and mouse antihuman IgG1, IgG2, IgG3 and IgG4 (Arigo Biolaboratories Corp., Taiwan) for IgG1 (1/6000), IgG2 (1/4000), IgG3 (1/6000) and IgG4 (1/5000) were added (100µL/well) and incubated for 30 minutes at room temperature (RT). Afterward, 100µL/well TMB substrate was added and incubated for 15 minutes in the dark. The reaction was then stopped by adding 100µl/well of 0.2M sulphuric acid and absorbance was read at 450nm with an ELISA plate reader (BioTek® ELx800TM, BioTek Instruments, Inc., USA). Antibody responses were converted to Arbitrary Units (AU) with the aid of a standard curve derived from serial dilution (1:200, 1:400, 1:800, 1:1600, and 1:3200) of positive control sera for all test plates, with the absorbance of the lowest dilution corresponding to 100 AU.

Categorization of malaria into uncomplicated and severe forms

Malaria was categorized into uncomplicated malaria and the different clinical presentations of severe malaria according to the WHO scheme as described elsewhere.²,⁶

Statistical analysis

Data collected were entered into an Excel spreadsheet and analysed using the Stata® version 12.1 software (StataCorp LP, Texas, USA) and IBM® SPSS® Statistics version 20. Data were log-transformed prior to statistical analysis. The statistical tests performed included the Pearson’s Chi-square test for comparison of group proportions, the student’s T-test for the comparison of group means and the analysis of covariance (ANCOVA) for the comparison of mean antibodies titers adjusting for age. However, Kruskal-Wallis test was used to compare mean antibody titres between the major clinical phenotypes of severe malaria as they were not normally distributed. Statistical significance was set at p<0.05.

Results

Demographic and clinical characteristics of the study participants

In all, 236 participants were enrolled and comprised of 66, 70 and 100 severe malaria, uncomplicated malaria and negative controls respectively. The three groups did not differ in terms of participants ages (p=0.06) and gender (p=0.900) (Table 1).

The mean body temperature was highest in the severe malaria group (p<0.0001) meanwhile the mean haemoglobin concentration and blood glucose levels was lowest in the severe malaria group (Table 1).

Distribution of severe malaria phenotypes in the study population

The common features of severe malaria observed in decreasing order were: hyperpyrexia 44 (66.6%), severe malarial anaemia 42 (63.6%), impaired consciousness 37 (56.0%), respiratory distress 25 (37.9%), hypoglycaemia 19 (28.7%), hyperparasitaemia 17 (25.8%), multiple convulsion 17 (25.8%), circulatory collapse 15 (22.7%), cerebral malaria 13 (19.7%), frequent vomiting 13 (19.7%), coma 13 (19.7%), jaundice 12 (18.1%) and prostration 11 (16.7%). Among the three main clinical features of malaria (cerebral malaria, respiratory distress and severe malaria anaemia), overlap was most frequent between severe malaria anaemia and respiratory distress 18 (27.3%) (Figure 1).

Table 1. Summary of the demographic and clinical characteristics of the participants.

Parameters	Severe malaria (n=66)	Uncomplicated malaria (n=70)	Negative controls (n=100)	p
Age category (in years)				
< 5	37	26	56	0.060
5 - 9	13	27	24	
≥ 10	16	17	20	
Gender				
Male	34	34	52	0.900
Female	32	36	48	
Mean temperature, °C (±SD)	38.4 (0.91)	37.7 (0.85)	36.8 (0.84)	<0.0001
Mean haemoglobin concentration, g/dl (±SD)	7.4 (0.6)	9.6 (1.3)	11.4 (1.2)	<0.0001
Mean blood glucose, mmol/L (±SD)	5.9 (0.6)	6.3 (0.5)	6.5 (0.5)	<0.0001

Figure 1. Venn diagram showing the overlap (proportions) of the major clinical subgroups of malaria in the study population. Proportions were obtained by dividing the cases by the total number of severe malaria (66). SMA: severe malarial anaemia; CM: cerebral malaria; RD: respiratory distress; UM: uncomplicated malaria.
Comparison of the IgG levels between uncomplicated malaria, severe malaria and controls groups

Comparison of the levels of anti-Pf-MSP-1_19 IgG and IgG1-4 antibody responses between children with uncomplicated, severe malaria and negative controls adjusting for age and gender, revealed that children with severe malaria had significantly lower levels of anti-Pf-MSP-1_19 IgG, IgG1 and IgG3 meanwhile IgG4 was significantly higher in children with severe malaria (Table 2).

Comparison of the anti-Pf-MSP-1_19 IgG and IgG1-4 antibody responses between the major phenotypes of severe malaria

Comparison of the anti-Pf-MSP-1_19 IgG and IgG1-4 antibody responses levels between the three major phenotypes of severe malaria (i.e. cerebral malaria, severe malarial anaemia and respiratory distress) revealed no significant differences adjusting for age and gender (Figure 2).

Table 2. Comparison of the anti-PfMSP-119 IgG and IgG1-4 antibodies between uncomplicated malaria, severe malaria and control groups.

Antibodies	Type of malaria	n	Mean ± SD	p
IgG	Controls	100	2.27±0.368	<0.0001
	Uncomplicated	70	1.95±0.477	
	Severe	66	1.64±0.485	
	Controls	100	2.27±0.375	<0.0001
	Uncomplicated	70	1.90±0.526	
	Severe	66	1.36±0.485	
	Controls	100	1.27±0.366	
	Uncomplicated	70	1.47±0.501	0.4914
	Severe	66	1.42±0.498	
	Controls	100	2.26±0.392	<0.0001
	Uncomplicated	70	1.86±0.517	
	Severe	66	1.32±0.469	
	Controls	100	1.23±0.433	<0.0001
	Uncomplicated	70	1.50±0.513	
	Severe	66	1.94±0.485	

Figure 2. Variation in the levels of anti-Pf-MSP-119 IgG and IgG1-4 antibody responses between the three major phenotypes of severe malaria (Cerebral malaria [CM], severe malarial anaemia [SMA] and respiratory distress [RD]). There were no significant differences in the levels of the different IgG subclasses between the major phenotypes of severe malaria.
Discussion

Several studies have demonstrated the role of IgG antibodies in protection against malaria and the severe disease.18-21 However, an extensive literature search revealed only one study by Lorrorati \textit{et al.}24 that had assessed the role of the different IgG subclass antibodies in the protection against the three major phenotypes of severe malaria, \textit{i.e.} cerebral malaria, respiratory distress and severe anaemia malaria, in the same study. This places a void in our understanding of the immunological responses in severe malaria. This study was therefore designed to bridge this knowledge gap.

The current study revealed that severe malaria patients had significantly higher levels of anti-P.f.MSP-1\(_{19}\) IgG4 and lower levels of the anti-P.f.MSP-1\(_{19}\) IgG, IgG1 and IgG3 antibodies compared to uncomplicated malaria and negative controls. The non-cytophilic antibodies especially IgG4 are known to be pathogenic and their presence correlates largely with the severity of malaria.18,22,23 In addition, the finding of higher levels of anti-P.f.MSP-1\(_{19}\) IgG1 and IgG3 in participants with uncomplicated malaria and negative controls compared to those with severe malaria further attest to their protective role against severe malaria. These findings are in line with that of a similar study performed in Brazil.24

To the best of our knowledge, this is one of the first study assessing the IgG antibody responses in severe malaria in children residing in a high transmission setting. Malaria transmission in the study area could be described as hyperendemic to holo-endemic, and children and pregnant women are most vulnerable.38,40 Comparative analysis of the IgG antibodies titers in the three major clinical presentations of severe malaria (\textit{i.e.} cerebral malaria, respiratory distress and severe anaemia malaria) revealed no significant differences. This could be due to the fact that in reality, there is hardly a situation where you have only one of the phenotypes presenting at any one time. It is therefore not uncommon to have malaria patients presenting with cerebral malaria and severe anaemia and/or respiratory distress or combinations of any of the other clinical phenotypes as seen in the current study. The fewer number of severe malaria cases in the current study may also have influenced the outcome of our analysis. This constitutes a major limitation to our study. Larger studies are therefore required to provide a clearer picture.

Conclusions

This study revealed significantly higher levels of anti-P.f.MSP-1\(_{19}\), IgG4 antibody and lower levels of the total IgG and cytotoxic IgG1 and IgG3 antibodies in severe malaria patients, suggestive of the role of the IgG4 in the pathogenesis of severe malaria. However, the study did not demonstrate any significant differences in the total IgG and IgG1-4 responses in the major phenotypes of severe malaria (cerebral malaria, respiratory distress and severe malaria anaemia). This observation may have been influenced by the small sample of severe malaria in the current study. Larger studies investigating how these immune effector cells vary in the major clinical presentations of severe malaria are recommended.

References

1. World Health Organisation. World malaria report 2019. Geneva, Switzerland, WHO, 2019. Available from: https://www.who.int/publications/i/item/9789241565721

2. Kwenti TE, Kwenti TDB, Latz A, et al. Epidemiological and clinical profile of paediatric malaria: a cross sectional study performed on febrile children in five epidemiological strata of malaria in Cameroon. BMC Infect Dis 2017;17:499.

3. Langhorne J, Ndungu FM, Sponsaa A-M, Marsh K. Immunity to malaria: more questions than answers. Nat Immunol 2008;9:725–32.

4. Oduro AR, Koram KA, Rogers W, et al. Severe falciparum malaria in young children of the Kassena-Nankana district of northern Ghana. Malar J 2007;6:96.

5. World Health Organisation. Severe malaria. Trop Med Int Health 2014;19:7–131.

6. Kwenti TE, Nkume FA, Tanjeko AT, Kwenti TDB. The Effect of Intestinal Parasitic Infection on the Clinical Outcome of Malaria in Coinfected Children in Cameroon. PLoS Negl Trop Dis 2016;10:e0004673.

7. Antonio-Nkondjio C, Demanou M, Etang J, Bouchite B. Impact of cyfluthrin (Solfac EW050) impregnated bed nets on malaria transmission in the city of Mbandjock: lessons for the nationwide distribution of long-lasting insecticidal nets (LLINs) in Cameroon. Parasit Vectors 2013;6.

8. World Health Organisation. Cameroon: WHO statistical profile. Geneva, Switzerland, WHO, 2015. Available from: http://www.who.int/gho/countries/

9. Kwenti TE, Kwenti TDB, Njunda LA, et al. Identification of the Plasmodium species in clinical samples from children residing in five epidemiological strata of malaria in Cameroon. Trop Med Health 2017;45:14.

10. Forlack EA, Abena OMT, Beyeme OM, et al. Outcome of severe malaria in two district hospitals in Cameroon. Clin Mother Child Health 2005;2:247–52.

11. Dongho DFF, Ngonro NRA, Gouado I, et al. Predictors of childhood severe malaria in a densely populated area: Douala. Cameroon Afr J Biotechnol 2011;10:6319–24.

12. Achidi EA, Apinjo TO, Anchang-Kimbi JK, et al. Severe and uncomplicated falciparum malaria in children from three regions and three ethnic groups in Cameroon: prospective study. Malar J 2012;11:215.

13. Mbah-Mbole FG, Tufon KA, Meriki DH, et al. Malaria and human immunodeficiency virus coinfection in febrile patients attending the Regional Hospital of Buea, Southwest region, Cameroon. Int J Adv Med Health Res 2019;6:46-51.

14. Nebie I, Diarra A, Ouedraogo A, et al. Humoral responses to Plasmodium falciparum blood stage antigens and association with incidence of clinical malaria in children living in an area of seasonal malaria transmission in Burkina Faso, West Africa. Infect Immun 2008;76:759–66.

15. Medeiros MM, Fotoran WL, dalla Martha RC, et al. Natural antibody response to Plasmodium falciparum merozoite antigens MSP5, MSP9 and EBA 175 is associated to clinical protection in the Brazilian Amazon. BMC Infect Dis 2013;13:608.

16. Teo A, Feng G, Brown GV, et al. Functional antibodies and protection against blood-stage malaria. Trends Parasitol 2016;32:887–98.

17. Folegatti PM, Siqueira AM, Monteiro WM, et al. A systematic review on malaria sero-epidemiology studies in the Brazilian Amazon: insights into immunological markers for exposure and protection. Malar J 2017;16:107.

18. Stanisic DI, Richards JS, McCallum FJ, et al. Immunoglobulin G subclass-specific responses against Plasmodium falciparum merozoite antigens are associated with control of parasitemia and protection from symptomatic illness. Infect Immun 2009;77:1165–74.
19. Ketema T, Bacha K, Alemayehu E, Ambellu A. Incidence of severe malaria syndromes and status of immune responses among khat chewer malaria patients in Ethiopia. PLoS ONE 2015;10:e0131212.

20. Weaver R, Reiling L, Feng G, et al. The association between naturally acquired IgG subclass specific antibodies to the PRH5 invasion complex and protection from Plasmodium falciparum malaria. Sci Rep 2016;6:33094.

21. Changrob S, Han JH, Ha KS, et al. Immunogenicity of glycophasphatidylinositol anchored micronemal antigen in natural Plasmodium vivax exposure. Malar J 2017;16:348.

22. Aucan C, Traore Y, Tall F, et al. High immunoglobulin G2 (IgG2) and low IgG levels are associated with human resistance to Plasmodium falciparum malaria. Infect Immun 2000;68:1252–8.

23. Roussilhon C, Oeuvray C, Muller-Graf C, et al. Immunogenicity of glycophasphatidylinositol anchored micronemal antigen in natural Plasmodium vivax exposure. Malar J 2007;6:320.

24. Leoratti FMS, Durlacher RR, Lacerda MVG, et al. Pattern of humoral immune response to Plasmodium falciparum blood stages in individuals presenting different clinical expressions of malaria. Malar J 2008;7:186.

25. Olesen CH, Brahimi K, Vandahl B, et al. Distinct patterns of blood stage parasite antigens detected by plasma IgG subclasses from individuals with different level of exposure to Plasmodium falciparum infections. Malar J 2010;9:296.

26. Noland GS, Jansen P, Vulule JM, et al. Effect of transmission intensity and age on subclass antibody responses to Plasmodium falciparum pre-erythrocytic and blood stage antigens. Acta Trop 2015;142:47–56.

27. Cowman AF, Crabb BS. Invasion of red blood cells by malaria parasites. Cell 2006;124:755–66.

28. Corran PH, O’Donnell RA, Todd J, et al. The fine specificity, but not the invasion-inhibitory activity, of 19-kilo-dalton merozoite surface protein 1-specific antibodies is associated with resistance to malarial parasitaemia in a cross-sectional survey in The Gambia. Infect Immun 2004;72:6185–9.

29. Okech BA, Corran PH, Todd J, et al. Fine specificity of serum antibodies to Plasmodium falciparum merozoite surface protein, PMSP-1(19), predicts protection from Plasmodium falciparum infection and high-density parasitemia. Infect Immun 2004;72:1557–67.

30. Joos C, Varela ML, Mbengue B, et al. Antibodies to Plasmodium falciparum merozoite surface protein-1p19 malaria vaccine candidate induce antibody-dependent respiratory burst in human neutrophils. Malar J 2015;14:409.

31. Pless RJ, Ogun SA, McGuinness DH, et al. Novel antimalarial antibodies highlight the importance of the antibody Fe region in mediating protection. Blood 2003;102:4424–30.

32. Shi J, McIntosh RS, Adame-Gallegos J, et al. The generation and evaluation of recombinant human IgA specific for Plasmodium falciparum merozoite surface protein 1–19 (PFMSP1 19). BMC Biotechnol 2011;11:77.

33. Kwenti ET, Njunda LA, Tsamul B, et al. Comparative evaluation of a rapid diagnostic test, an antibody ELISA and a PLDH ELISA in detecting asymptomatic malaria parasitaemia in blood donors in Buea, Cameroon. Infect Dis Poverty 2017;6:103.

34. Bigoga JD, Manga L, Titanji VP, et al. Malaria vectors and transmission dynamics in coastal south-western Cameroon. Malar J 2007;6:5-10.

35. Kwenti TE, Kukwah TA, Kwenti TDB, et al. Comparative analysis of IgG and IgG subclasses against Plasmodium falciparum MSP-119 in children from five contrasting bioecological zones of Cameroon. Malar J 2019;18:16.

36. Njunda AL, Assob NJ-C, Nsagha SD, et al. Comparison of capillary and venous blood using blood film microscopy in the detection of malaria parasites: a hospital based study. Sci J Microbiol 2013;2:89–94.

37. Kwenti TE, Moyo AE, Wiyanyu AB, et al. Variation in the immune responses against Plasmodium falciparum merozoite surface protein-1 and apical membrane antigen-1 in children residing in the different epidemiological strata of malaria in Cameroon. Malar J 2017;16:453.

38. Njunda AL, Assob NJ-C, Nsagha SD, et al. Comparison of capillary and venous blood using blood film microscopy in the detection of malaria parasites: a hospital based study. Sci J Microbiol 2013;2:89–94.

39. Kwenti ET, Moye AL, Wiyanyu AB, et al. Variation in the immune responses against Plasmodium falciparum merozoite surface protein-1 and apical membrane antigen-1 in children residing in the different epidemiological strata of malaria in Cameroon. Malar J 2017;16:453.

40. Kwenti ET, Njilah SN, Assob NJ-C. Hematological Profile of Pregnant Women CoInfected with Malaria and HIV in Buea, South West Region of Cameroon. SCIOL Biomed 2018;2:128-135.

41. Kwenti ET. Malaria and HIV coinfection in sub-Saharan Africa: prevalence, impact, and treatment strategies. Res Rep Trop Med 2018; 9: 123–136.