Research

Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium *Spirulina platensis*

Apiradee Hongsthong*1, Matura Sirijuntarut3, Rayakorn Yutthanasirikul3, Jittisak Senachak1, Pavinee Kuridrid1, Supapon Cheevadhanarak2 and Morakot Tanticharoen1

Address: 1BEC Unit, National Center for Genetic Engineering and Biotechnology, 83 Moo8, Thakham, Bangkhuntnien, Bangkok 10150, Thailand, 2School of Bioresources and Technology; King Mongkut’s University of Technology Thonburi, 83 Moo8, Thakham, Bangkhuntnien, Bangkok 10150, Thailand and 3Pilot Plant Development and Training Institute; King Mongkut’s University of Technology Thonburi, 83 Moo8, Thakham, Bangkhuntnien, Bangkok 10150, Thailand

Email: Apiradee Hongsthong* - apiradee@biotec.or.th; Matura Sirijuntarut - matura@pdti.kmutt.ac.th; Rayakorn Yutthanasirikul - rayakorn@pdti.kmutt.ac.th; Jittisak Senachak - jittisak@pdti.kmutt.ac.th; Pavinee Kuridrid - pavinee@pdti.kmutt.ac.th; Supapon Cheevadhanarak - supaponche@yahoo.com; Morakot Tanticharoen - morakot@biotec.or.th

* Corresponding author

Abstract

The present study examined the changes in protein expression in *Spirulina platensis* upon exposure to high temperature, with the changes in expression analyzed at the subcellular level. In addition, the transcriptional expression level of some differentially expressed proteins, the expression pattern clustering, and the protein-protein interaction network were analyzed. The results obtained from differential expression analysis revealed up-regulation of proteins involved in two-component response systems, DNA damage and repair systems, molecular chaperones, known stress-related proteins, and proteins involved in other biological processes, such as capsule formation and unsaturated fatty acid biosynthesis. The clustering of all differentially expressed proteins in the three cellular compartments showed: (i) the majority of the proteins in all fractions were sustained tolerance proteins, suggesting the roles of these proteins in the tolerance to high temperature stress, (ii) the level of resistance proteins in the photosynthetic membrane was 2-fold higher than the level in two other fractions, correlating with the rapid inactivation of the photosynthetic system in response to high temperature. Subcellular communication among the three cellular compartments via protein-protein interactions was clearly shown by the PPI network analysis. Furthermore, this analysis also showed a connection between temperature stress and nitrogen and ammonia assimilation.

Introduction

High temperature stresses are well known to cause protein aggregation and denaturation, and in order to cope with these stress, a cellular response occurs. Proteomics research regarding cellular responses to high temperature stresses was carried out in bacteria. The majority of the differentially expressed proteins belong to the group of proteins including heat shock responsive chaperones and...
proteases, of which many are also induced in response to gamma irradiation and/or desiccation [1,2]. In addition to these proteins, some central metabolic proteins were also found by Fourier transform ion cyclotron resonance (FTIR) mass spectrometric proteomics analysis [2]. Thus, it was hypothesized that elevated temperature may induce a general stress response, and could lead to cross-protection against related stresses [2].

In cyanobacteria, gene regulation mediated by high temperature stresses has been studied less extensively than regulatory responses to low temperature stresses. In some cyanobacteria, such as Synechocystis, Synechococcus and Nostoc, heat shock responses have been investigated [3-5]. An alternative sigma factor (SigH) and heat-shock protein (HSP) were both significantly induced immediately following exposure to heat stress [6,7].

Since Spirulina cells are grown in outdoor ponds for mass cultivation, they are exposed to various stress conditions, including high temperature stress. During daylight hours in tropical countries, the cells are exposed to high temperatures of around 40 °C. The temperature fluctuation in outdoor mass cultivation has a serious effect on biomass yield and the biochemical content of the cells. Some components of Spirulina cells have pharmaceutical benefits, such as unsaturated fatty acids. The level of unsaturated fatty acids in membrane lipids has been shown to play a critical role in response to temperature change in various organisms. Substantial evidence points to an association between fatty acid desaturation and temperature stress [8]. Due to this relationship, the molecular responses to high temperature stress of genes involved in the desaturation process have been well studied in Spirulina. Upon temperature increase from 35 °C to 40 °C, the level of the polyunsaturated fatty acid γ-linolenic acid (GLA) in Spirulina plantensis decreases approximately 30%, compared to the level found in cells grown at an optimal temperature (35°C) [9]. This highlights the regulation of Spirulina-Δ6 desaturase, which carries out the last step of the Spirulina desaturation process. Thus, the transcriptional levels of the three Spirulina-desaturase genes, desC, desA and desD, were examined [9].

Despite the heat shock response studies in other cyanobacteria, transcriptomic and proteomic analyses of responses to high temperature stress have not been performed in Spirulina. The lack of a complete Spirulina genome sequence hinders this relevant research. Therefore, the present study focused on the S. platensis response to a temperature upshift at the subcellular level. This analysis was performed by proteomic and transcriptomic analyses, protein clustering (based on protein expression patterns), and protein-protein interaction analysis.

Materials and methods
Orniments and culture conditions
S. platensis strain C1 cultures were grown at 35°C under illumination by a 100 μEm-2s-1 fluorescent light with continuous stirring in 2 L of Zarrouk’s medium [10]. The culture was grown until the optical density at 560 nm reached 0.4 (mid-log phase), and subsequently a cell sample was harvested by filtration before shifting the growth temperature (t = 0 min). The growth temperature was then immediately shifted from 35°C to 40°C and the culture was incubated for 45, 90, or 180 min before cell harvesting.

Sample preparation
The harvested cells were washed and lysed as described previously [11]. The three subcellular fractions of Spirulina were separated according to the methods described by Murata and Omata, and Hongsthong et al. [11,12]. It should be noted that the soluble fraction contained cytoplasmic and periplasmic proteins. The purity of thylakoid (TM) and plasma membrane (PM) fractions were tested by scanning absorption spectra and western blot analysis as described previously [11]. The membrane pellet was resuspended in 500 μl of dissolving buffer, containing 2 M thiourea, 8 M urea, 20 mM Tris, 30 mM DTT, 1% (v/v) IPG buffer, 0.05% (w/v) β-dodecyl maltoside, and 4% (w/v) CHAPS, prior to protein precipitation using a 2D-clean up kit (GE Healthcare Biosciences, USA). The protein pellets were then dissolved in dissolving buffer without DTT before determining protein concentrations using a 2D-Quant kit protein assay (GE Healthcare Biosciences).

Protein separation by two-dimensional differential gel electrophoresis (2D-DIGE) and protein profile analyses
The pH of the protein samples was adjusted to 8.5 and 10 μg of each sample, prepared as described above, was labeled with fluorescent dyes, according to the manufacturer’s instructions (GE Healthcare Biosciences). The proteins were separated by 2D-DIGE and statistically analyzed for differential expression as described previously [13]. Protein spot picking and in-gel digestion of the proteins of interest were carried out as described [13].

To study phosphorylated proteins, 2D-PAGE using 7 cm non-linear IPG strips, pH 3-10 and 4-7 (GE Healthcare Biosciences), in the first dimension were performed. Subsequently, the second dimension was conducted as described above, followed by western blot analysis. Three independent experiments were performed.

Protein identification using MALDI-TOF mass spectrometry
After protein digestion with trypsin, peptide samples were analyzed by MALDI-TOF mass spectrometry. For protein
identification, the resulting peptide mass fingerprints (PMFs) were analyzed with our in-house software tool, using the unpublished \textit{S. platensis} C1 database, which was generated from \textit{in silico} digestion of the \textit{S. platensis} C1 completed genome sequence. The search parameters and data filtering were carried out as described in detail previously [13]. PMF identification results of a protein spot were required to be reproducible in order to consider the spot as an identified protein.

\textbf{Western blot analysis}

Following 2D-PAGE, detection of phosphorylated proteins was performed by western blot analysis [14]. Phosphorylations on serine, threonine, and tyrosine residues were detected separately using monoclonal antibodies raised against the designated phosphorylated amino acid residues (Santa Cruz, USA, and Assay Designs, USA). Phosvidin and trypsin inhibitor were used as positive and negative controls, respectively. An equal amount of each protein sample was separated by 2D-PAGE, as described previously, and transferred onto a nitrocellulose membrane using a semi-dry electroblotter at a constant voltage of 20 V for 30 min at room temperature. A chemiluminescent western blot detection kit, with an HRP-based system and chemiluminescent molecular weight markers, was used (Pierce, USA) according to the manufacturer's instructions.

The resulting phosphoproteome spot-maps were then matched with the 2D-DIGE spot-maps over the same pH range. Finally, the analysis of differentially expressed proteins containing phosphorylated amino acid residues was performed.

\textbf{Transcriptional analysis by RT-PCR}

The details of \textit{Spirulina} RNA isolation were described previously [13]. The transcriptional expression levels of the genes of interest were analyzed by RT-PCR using an AccessQuick™ RT-PCR System (Promega, USA). The RT-PCR analysis was carried out according to the manufacturer's instructions. Details on primers are shown [see Additional file 1]. The densities of the RT-PCR product bands were quantified using the Image Quant TL program (GE Healthcare Biosciences). Normalization of the RT-PCR product levels was performed by comparing the density of the designated band to the density of the 16S rRNA band.

\textbf{Protein clustering based on expression patterns}

The protein expression dataset was validated for the input well-form of protein ratio values. The null values and those ratios that were extremely high or low, relative to the threshold value of 1e+10, were filtered out. K-mean clustering was applied to obtain 23 profiles of the protein expression patterns. A good k-profile number was chosen by simulation, as described by Martin et al. [15].

\textbf{Potential protein-protein interaction network}

A protein-protein interaction (PPI) network in \textit{Spirulina} was constructed on the prototype PPI database of \textit{Synechocystis} from CyanoBase [16]. Prototype construction is based on a graph in which nodes and edges represent proteins and interactions, respectively. Each interaction was experimentally identified by the yeast two-hybrid system. Source nodes represent the bait proteins, and prey proteins are represented by the target nodes. Next, homologous proteins, identified by BLAST similarity searches with significant values less than 1e-10, were mapped to their best-hit \textit{Synechocystis} protein nodes. Finally, differentially expressed proteins in \textit{Spirulina} were mapped to their corresponding nodes. The size of each node represents the level of differential expression.

\textbf{Results and Discussion}

In the present study, 2D-DIGE [see fig S1, S2 and S3; Additional file 2] and mass spectrometry were employed to identify differentially expressed proteins at the subcellular level of \textit{Spirulina}, in response to a temperature increase from 35°C to 40°C.

\textbf{Differentially expressed proteins}

\textit{Up-regulated proteins}

Expression profile analysis identified 38, 50 and 26 up-regulated proteins in the PM, soluble, and TM fractions, respectively. Of these, 2, 6 and 2 proteins were phosphorylated in the three respective fractions (Tables 1, 2 and 3). Further analysis showed that several of the up-regulated proteins are involved in two-component signal transduction: histidine kinase, Ser/Thr protein kinase and response regulator, including GGDEF (Gly-Gly-Asp-Glu-Phe) domains. It should be noted that a large number of these proteins were detected in the soluble fraction, suggesting the dissociation of these domains from the membrane-bound domains of the two-component systems during sample preparation. Moreover, our study showed phosphorylation of the GGDEF domain in the soluble fraction, consistent with the report by Ryjenkov et al. [17]. Phosphorylation of this domain is required for its activity. Thus, the GGDEF domains represent the output of complex bacterial signal transduction networks, which convert different signals into the production of a secondary messenger, cyclic diguanylic acid [17,18]. In addition, it has been reported that the GGDEF domain plays a critical role in heterocyst formation [19].

Three molecular chaperones were found to be up-regulated in two subcellular fractions, GroEL (Hsp60) and ClpB in the soluble fraction and DnaK (Hsp70) in the thy-
Table 1: Significantly up-regulated proteins identified in the plasma membrane fraction after the immediate temperature upshift.

spot#	orf	protein name	%cov	pl	MW (kDa)	t-test	cluster		
357	AP07650006	Two-component hybrid sensor and regulator	6.47	4.97	146.95	1.43	0.044	5	
518	AP07580004	Two-component sensor histidine kinase	8.57	5.26	133.55	1.78	0.0059	23	
793	AP06360005	Two component hybrid sensor and regulator	6.9	5.41	159.88	2.47	0.013	14	
808	AP07880008	Two-component hybrid sensor and regulator	2.86	4.97	200.24	3.15	0.025	15	
872	AP07580004	Two-component sensor histidine kinase	5.94	5.26	133.55	1.89	0.027	23	
1097	AP06990006	Hybrid sensor and regulator	7.34	5.5	104.01	1.43	0.047	23	
1102	AP07670017	Two-component sensor histidine kinase	6.57	4.88	124.16	1.96	0.034	23	
1147	AP07670017	Two-component sensor histidine kinase	8.51	4.88	124.16	1.77	0.041	23	
1241	AP07670017	Two-component sensor histidine kinase	5.92	4.88	124.16	3.49	0.019	15	
1564	AP07970028	Two-component system sensory histidine kinase	6.22	4.8	108.09	90.03	0.016	23	
1592	AP04840005	Serine/threonine kinase with TPR repeat	7.45	8.37	82.39	86.42	0.043	23	
2406	AP07830002	Sensory box/GGDEF family protein	8.15	5.38	53.01	39.31	0.016	9	
508	AP06620005	Glycosyl transferase, family 2:Glycosyl transferase, group I	4.14	6.57	128.59	239.78	0.025	23	
526	AP06740013	Ferredoxin-glutamate synthase	5.87	5.6	169.95	238.56	2.2	0.042	14
532	AP05380002	DEAD/DEAH box helicase domain protein (membrane-helicase)	5.29	6.09	239.75	236.73	2.24	0.014	14
821	AP05300003	ATPase of the ABC class	9.74	5.46	66.65	184.25	2.18	0.0093	23
874p	AP05380002	DEAD/DEAH box helicase domain protein (membrane-helicase)	4.81	6.09	239.75	175.06	1.95	0.013	23
995	AP07470001	RNA polymerase sigma-70 factor	19.07	9.81	30.04	154.44	1.76	0.024	23
1028	AP06740013	Ferredoxin-glutamate synthase	6.89	5.6	169.95	151.31	2.09	0.011	23
1029	AP08060123	Putative transcriptional regulator, LysR family	4.49	6.61	34.76	148.63	2.11	0.035	23
1277	AP05380002	DEAD/DEAH box helicase domain protein (membrane-helicase)	3.9	6.09	239.75	116.27	1.99	0.026	23
1284	AP06510003	Putative membrane carboxypeptidase	5.77	8.68	84.38	115.68	1.65	0.039	23
1388	AP06740013	Ferredoxin-glutamate synthase	4.47	5.6	169.95	105.50	2	0.023	18
2187	AP04600003	S-adenosyl-L-homocysteine hydrolase	10.27	5.63	48.77	48.24	1.57	0.037	9
1479	AP07790020	Type II site-specific deoxyribonuclease	5.03	6.85	35.22	97.71	3.88	0.021	15
1547	AP02010002	Restriction endonuclease	11.57	5.26	53.91	91.66	1.69	0.031	14

Up regulated proteins (separated by pH range 3-10 in the first dimension)

Two component systems

Stress related proteins

DNA damage/DNA repairing system
The major molecular chaperones, such as DnaK/DnaJ, GroES/GroEL and ClpB, are involved in de novo protein folding of newly synthesized polypeptides and solubilising aggregated proteins under high temperature stress conditions [20]. Although the chaperone proteins have been generally reported to be soluble proteins, membrane-bound chaperones have been identified in many eukaryotes and prokaryotes, including cyanobacteria. This type of chaperone has been proposed to play a role in protein translocation, translational machinery associated with the surface of the thylakoid membrane, and enhancement of membrane fluidity through association with membrane lipids in response to heat stress [21].

In the case of stress related proteins, glycosyl transferase and ABC transporter were detected in all subcellular fractions, while membrane helicase, LysR and ferredoxin-glutamate synthase were found in the membrane fractions (TM and PM). Glycosyl transferase has been reported to be involved in osmo- and thermoadaptation [22].

Proteins containing conserved motifs	611 AP06080002	Putative enzyme of poly-gamma-glutamate biosynthesis, capsule formation	5.68	5.59	72.57	5.83	221.50	1.9	0.031	14

Table 1: Significantly up-regulated proteins identified in the plasma membrane fraction after the immediate temperature upshift. (Continued)

Up regulated proteins	(separated by pH range 4-7 in the first dimension)								
Two component system									
2386 AP01720004	Putative two-component sensor histidine kinase	6.34	5.25	57.98	5.08	53.46	2.21	0.038	18
Stress related proteins									
1569 AP05860006	Putative glycosyl transferase	9.08	5.62	132.60	4.84	96.48	1.89	0.031	23
2179 AP07990044	Putative ABC transporter	6.92	8.57	88.65	5.74	62.93	2.4	0.011	14
Translation machinery									
1477 AP07620038	50S ribosomal protein L4	13.81	10.04	23.34	5.08	103.76	2.81	0.02	14

* Fold represents fold change value which is volume ratio of after the temperature upshift (180 min)/before the temperature upshift. Volume ratio refers to the ratio of the normalized volumes of a pair of spots (the same spot of before and after the temperature upshift), for example, a value of 2.0 represents a two-fold increase while -2.0 represents a two-fold decrease.

† These protein spots are phosphorylated at Ser, Thr and Tyr residues, detected by western blot analysis before the temperature upshift (0 min) and after the temperature upshift (45, 90, 180 min).

Cluster types: (i) cluster 5, 14, 15, 18 and 23 are sustained tolerance proteins (ii) cluster 22 is adaptation proteins and (iii) cluster 9 and 14 are undetermined-pattern proteins.
Table 2: Significantly up-regulated proteins identified in the soluble fraction after the immediate temperature upshift.

spot#	orf	protein name	%cov	theoretical pl	MW (kDa)	experimental pl	MW (kDa)	fold*	t-test	cluster
	Up regulated proteins									
	(separated by pH range 3-10 in the first dimension)									
Two component systems										
1282	AP07350018	Hybrid sensor and regulator	4.51	5.16	157.04	9.24	125.42	5.21	0.047	22
1399	AP08000025	Two-component sensor histidine kinase	8.04	5.09	80.65	8.67	116.52	3.42	0.022	4
2377	AP07580004	Two-component sensor histidine kinase	7.38	5.26	133.55	7.69	51.45	1.51	0.012	16
2765	AP07580004	Two-component sensor histidine kinase	4.07	5.26	133.55	8.13	34.68	4.05	0.0035	4
Stress related proteins										
2693	AP04260002	NADPH-dependent FMN reductase	7.48	6.53	24.75	3.37	37.83	2.98	0.039	5
Translation machinery										
23	AP07220011	30S ribosomal protein S1	14.32	4.48	42.60	4.88	308.16	1.55	0.037	16
Hypothetical proteins										
410	AP07020011	Conserved hypothetical protein	2.74	5.46	249.83	3.61	228.97	2.86	0.026	1
Proteins containing conserved motif										
1736	AP06120011	TPR repeat-containing protein-O-linked GlcNAc transferase	5.79	4.88	72.71	3.76	91.01	1.54	0.05	16
	Up regulated proteins									
	(separated by pH range 4-7 in the first dimension)									
Two component systems										
599p	AP03710004	Sensory box/GGDEF family protein	11.55	4.95	65.15	5.16	226.88	4.41	0.034	4
665	AP06710002	Multi-sensor signal transduction histidine kinase	5.45	5.25	116.20	5.03	220.07	1.75	0.047	6
727	AP07310007	Hybrid sensory kinase	2.82	5.34	100.91	5.13	209.99	1.87	0.039	19
735	AP06460007	Multi-sensor Hybrid Histidine Kinase	6.58	4.93	200.70	5.21	210.48	1.73	0.039	1
737	AP02950002	Putative response regulator receiver signal transduction histidine kinase	13.19	4.91	42.67	5.27	209.99	2.04	0.0073	10
788	AP08040014	Ethylene response sensor protein	6.1	4.92	120.25	5.32	203.21	5.64	0.0035	2
1072	AP04840005	Serine/threonine kinase with TPR repeat	7.03	8.37	82.39	5.92	172.45	1.57	0.026	6
1153	AP07580004	Two-component sensor histidine kinase	5.85	5.26	133.55	5.75	159.61	1.54	0.025	6
1343	AP07350018	Hybrid sensor and regulator	2.25	5.16	157.04	5.73	142.96	1.34	0.02	6
1357	AP07580004	Two-component sensor histidine kinase	2.37	5.26	133.55	4.9	139.65	3.73	0.0091	4
1377	AP07580004	Two-component sensor histidine kinase	5.51	5.26	133.55	5.21	137.37	3.29	0.022	5
1482	AP07670017	Two-component sensor histidine kinase	4.07	4.88	124.16	5.59	127.74	1.7	0.021	6
1787	AP07430015	Sensory box histidine kinase/response regulator	1.21	5.41	138.91	4.56	102.00	2.01	0.0012	19
1883p	AP06710002	Multi-sensor signal transduction histidine kinase	5.74	5.25	116.20	5.94	94.40	1.48	0.021	6
Table 2: Significantly up-regulated proteins identified in the soluble fraction after the immediate temperature upshift. (Continued)

	Accession No.	Description	Fold Change	p-Value	q-Value	IRT				
2635	AP04840005	Serine/threonine kinase with TPR repeat	5.79	8.37	82.39	5.31	50.01	1.36	0.016	6
2940	AP08000025	Two-component sensor histidine kinase	4.23	5.09	80.65	5.2	38.73	1.42	0.035	6
Stress related proteins										
460	AP07250004	Glycosyl transferase, family 2	1.19	5.45	236.54	5.34	248.02	2.16	0.0088	8
512p	AP07620006	ABC transporter-like protein	8.96	5.5	64.24	5.3	238.33	3.11	0.01	4
613	AP07180022	Putative aldehyde dehydrogenase	12.21	6.38	29.30	5.36	226.35	4.15	0.021	4
799	AP06960005	Fe-S oxidoreductase	4.58	5.83	60.23	5.2	202.26	4.87	0.017	4
1328	AP07510011	Ribitol type dehydrogenase protein	5.1	5.33	47.30	5.96	143.97	2.11	0.013	1
1753	AP06510003	Putative membrane carboxypeptidase	3.15	8.68	84.38	5.46	105.40	2.65	0.029	1
1835	AP07620006	ABC transporter-like protein	8.96	5.5	64.24	4.76	99.17	2.22	0.00083	10
1901p	AP05290001	Putative transposase	12.64	9.92	40.43	6.11	92.87	1.43	0.0093	6
Chaperones										
1053	AP08040017	Chaperonin GroEL (HSP60 family)	5.73	4.89	58.72	5.61	173.26	1.5	0.0059	6
1451	AP04730007	Chaperone clpB 2	7.22	5.4	98.73	5.17	131.08	1.98	0.008	10
DNA damage/DNA repairing system										
608p	AP06420003	RNA-directed DNA polymerase	7.92	10.27	50.25	5.27	225.29	4.45	0.028	4
1278	AP05970008	DNA gyrase subunit A	5.69	5.16	61.11	4.97	148.42	2.47	0.0019	10
1209	AP02770002	Putative chromosome segregation ATPases	9.45	5.2	38.26	5.31	155.55	1.47	0.033	6
1789	AP06960003	Putative exonuclease SbcC	3.05	4.89	76.57	5.79	103.20	1.33	0.00039	6
1969	AP06870011	Type I restriction system endonuclease	4.07	6.4	119.09	4.8	88.20	1.7	0.038	19
3100	AP07900024	Restriction endonuclease	9.39	5.89	24.50	5.76	34.05	2.49	0.043	10
Translation machinery										
1368	AP04960025	3OS ribosomal protein S2	6.25	4.77	32.18	4.95	138.99	5.46	0.016	4
Channeling systems										
1488	AP07910035	Outer membrane efflux protein	6.03	4.89	76.57	5.71	127.74	1.62	0.017	6
Hypothetical protein										
520	AP07020011	Conserved hypothetical protein	1.48	5.46	249.83	4.8	235.55	1.44	0.026	6
1726	AP07780003	Conserved hypothetical protein	7.03	4.82	68.18	5.01	107.15	2.26	0.015	10
Proteins containing conserved motifs										
537p	AP06120011	TPR repeat-containing protein-O-linked GlcNAc transferase	5.01	4.88	72.71	5.42	234.45	1.49	0.032	19
1205	AP06120011	TPR repeat-containing protein-O-linked GlcNAc transferase	5.95	4.88	72.71	4.94	154.46	2.29	0.023	10
1212	AP06930009	TPR repeat-containing protein-O-linked GlcNAc transferase	6.66	5.94	71.42	5.38	155.55	1.5	0.0052	22
1358	AP06390003	WD-40 repeat protein-transcriptional regulator, XRE family	2.9	6.2	160.34	5.01	139.97	4.79	0.018	4
Others										
840	AP06080002	Putative enzyme of poly-gamma-glutamate biosynthesis, capsule formation	8.29	5.59	72.57	5.3	199.90	3.31	0.019	4

1 Cluster types; (i) cluster 1, 2, 6, 16 and 19 are sustained tolerance proteins and (ii) cluster 4, 5, 8, 10 and 22 are undetermined-pattern proteins.
Table 3: Significantly up-regulated proteins identified in the thylakoid membrane fraction after the immediate temperature upshift.

spot#	orf	protein name	%cov	theoretical MW (kDa)	experimental MW (kDa)	fold*	t-test	cluster			
	Up regulated proteins (separated by pH range 3-10 in the first dimension)										
	Two component systems	Multi-sensor signal transduction histidine kinase	5.69	5.23	135.61	6.19	161.10	2.1	0.048	13	
571	AP07830017	Hybrid sensor and regulator	3.42	5.16	157.04	4.92	150.14	0.17	0.047	8	
	1011	AP06710002	Multi-sensor signal transduction histidine kinase	7.52	5.25	116.20	5.02	81.51	1.78	0.0043	22
	Chaperones	Molecular chaperone DnaK	7.38	4.78	68.30	3.52	168.46	1.91	0.0078	23	
571	AP07830017	Polysphosphate kinase ABC transporter-like protein	4.16	5.47	82.79	4.4	219.16	1.6	0.042	23	
1078	AP06720006	DEAD/DEAH box helicase domain protein (membrane-helicase)	2.67	6.09	239.75	4.14	111.67	1.88	0.011	23	
	Stress related proteins	Transcriptional regulator, LysR family	9.86	7.11	31.25	8.37	6.19	2.66	0.012	23	
684	AP04930005	N-6 DNA methylase Type I site-specific restriction-modification with related helicase system	8.7	5.24	59.46	3.32	206.66	2.23	0.039	23	
1399p	AP05780004	Preprotein translocase SecA subunit	10.55	5.97	127.07	7.33	107.30	1.59	0.022	8	
1513p	AP06990006	Phytochrome-like protein	7.12	5.5	104.01	5.78	101.22	1.72	0.0076	23	
1954	AP07670017	Two-component sensor histidine kinase	4.35	4.88	124.16	5.07	63.09	1.85	0.051	ud	
1513p	AP06710002	Putative transcriptional activator, Baf	15.77	6.59	28.74	5.73	232.21	2.37	0.04	21	
	DNA repairing system	N-6 DNA methylase Type I site-specific restriction-modification with related helicase system	8.7	5.24	59.46	3.32	206.66	2.23	0.039	23	
	Translation machinery	30S ribosomal protein S18	28.17	10.58	8.36	4.95	87.88	1.62	0.037	8	
	Channeling system	Preprotein translocase SecA subunit	6.67	5.14	105.74	5.8	98.14	1.88	0.023	22	
	Hypothetical proteins	Hypothetical protein	12.75	7.9	211.37	4.3	221.75	1.6	0.048	22	
564	AP07810017	Hypothetical protein WD-40 repeat protein-	4.37	5.26	183.10	4.13	122.68	1.68	0.019	23	
1242	AP06700002	Peptidase C14, caspase catalytic subunit p20	10.82	6.2	160.34	5.43	121.53	1.64	0.0057	8	
1258	Ap06390003	Pentapeptide repeat-transcriptional regulator, XRE family	15.77	6.59	28.74	5.73	232.21	2.37	0.04	21	
	Others	Putative transcriptional activator, Baf	15.77	6.59	28.74	5.73	232.21	2.37	0.04	21	
	Up regulated proteins (separated by pH range 4-7 in the first dimension)										
	Two component systems	Phytochrome-like protein	7.12	5.5	104.01	5.78	101.22	1.72	0.0076	23	
1954	AP07670017	Two-component sensor histidine kinase	4.35	4.88	124.16	5.07	63.09	1.85	0.051	ud	
502	AP07700024	Putative transcriptional activator, Baf	15.77	6.59	28.74	5.73	232.21	2.37	0.04	21	
One up-regulated membrane protein, DEAD/DEAH box helicase, is involved in RNA maturation, proof-reading and enhancement of DNA-unwinding [23]. Interestingly, the helicase present in the PM of *Spirulina* was phosphor-ylated. Phosphorylation of RNA helicase is rare, and mostly found in plants. This modification is believed to be a direct link between helicase and environmental sensing-signal transduction phosphorylation cascades [23]. To the best of our knowledge, this is the first evidence of helicase phosphorylation in cyanobacteria.

A few of the proteins involved in DNA damage, repair and modification (endonucleases and methylases) were dra-matically induced in the membrane fractions upon tem-perature upshift. Under stress conditions where DNA damage may occur, induction of SbcC is expected. This exonuclease removes unusual DNA structures, such as hairpins, that are generated upon DNA damage [24].

In contrast to cold stress conditions in *Spirulina*, the signif-icant induction of DNA gyrase upon induction of heat stress could lead to elevated function of the DNA repair system [25]. Another up-regulated protein that plays a vital role in DNA replication, repair and chromosome sta-bility is chromosome segregation ATPase [26,27]. These results demonstrate the requirement for DNA replication, modification and repair for cell survival under heat stress conditions in this cyanobacterium.

Down-regulated proteins

Two down-regulated proteins were identified in the PM and soluble fractions, while thirteen down-regulated pro-teins were identified in the TM fraction (Table 4).

Finally, the level of Δ⁹-desaturase was decreased upon high temperature stress in the photosynthetic membrane of *Spirulina*. This enzyme catalyses the first step of the fatty acid desaturation process in the TM and PM of this cyano-bacterium. We observed that the mRNA stability of this gene decreased dramatically in response to high tempera-ture stress [see fig S4; Additional file 2]. Therefore, the reduction in the level of enzyme is likely caused by the decrease in mRNA stability.

Transcriptional analysis of some differentially expressed proteins

RT-PCR was used to analyze the transcriptional expression levels of some differentially expressed proteins (Fig. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) [see fig S5; Additional file 2]. The transcriptional expression patterns of DNA gyrase and chromosome segregation ATPase from the soluble fraction, and ABC transporter, S-adenosyl-L-homocysteine hydrolase and Δ⁹ desaturase from the thylakoid mem-brane were well correlated with the protein expression patterns. This correlation suggests that these proteins are likely regulated at the transcriptional level. Interestingly, the Δ⁹ desaturase gene, the first gene in the fatty acid desat-a...
Table 4: Significantly down-regulated proteins identified in the three subcellular fractions after the immediate temperature upshift.

spot#	frac/pH range	orf	protein name	%cov	theoretical	experimental	fold*	t-test	cluster		
			(MW (kDa)) pl	MW (kDa) pl	(MW (kDa)) pl						
Plasma membrane fraction											
2410	PM/4-7	AP07850026	Two-component hybrid sensor and regulator	6.97	5.13	143.09	4.81	52.64	-2.0	0.024	4
2459	PM/4-7	AP04660005	TPR repeat-hypothetical protein	7.89	6.2	33.86	4.74	51.95	-2.18	0.024	4
Soluble fraction											
1396	SOL/4-7	AP07820015	Putative WD-40 repeat protein	3.6	9.2	120.78	4.34	134.50	-1.55	0.01	18
2466	SOL/4-7	AP07540009	Two-component hybrid sensor and regulator	3.37	5.33	156.25	4.48	58.11	-1.8	0.019	8
Thylakoid membrane fraction											
1193	TM/4-7	AP06440002	Twin-arginine translocation pathway signal	7.82	7.84	44.13	5.1	136.65	-2.12	0.051	ud
1781	TM/4-7	AP07540011	Two component response regulator	7.06	6.90	74.15	5.78	77.65	-1.54	0.028	14
2019	TM/4-7	AP06580007	Two-component hybrid sensor and regulator	6.94	4.36	127.39	5.64	58.10	-3.22	0.0092	17
Stress related proteins											
1393	TM/4-7	AP07870030	Molybdopterin oxidoreductase	11.14	8.29	82.17	5.07	112.15	-2.76	0.027	10
1539	TM/4-7	AP05060006	Putative site-specific DNA-methyltransferase (cytosine-specific)	9.86	5.18	87.57	6.84	100.21	-1.79	0.00015	10
DNA damage/DNA repairing system											
1512	TM/3-10	AP07840004	Ribonuclease II	10.27	4.93	76.91	4.54	97.91	-1.3	0.049	14
1316	TM/4-7	AP07740021	Chromosome segregation ATPases	6.79	4.97	83.23	5.26	123.95	-1.41	0.047	1
1457	TM/4-7	AP07790019	Putative site-specific DNA-methyltransferase	11.11	8.39	55.18	5.07	106.41	-4.43	0.0054	12
2943	TM/3-10	AP07750017	UvrD/REP helicase	4.39	5.47	121.28	7.49	18.08	-2.01	0.003	10
Proteins containing conserved motif											
2219	TM/4-7	AP07230009	TPR repeat containing protein-hypothetical protein	16.61	4.72	31.94	6.44	47.21	-2.7	0.035	10
Others											
1301	TM/4-7	AP06400004	Srs0554 protein.	7.41	8.54	108.70	7.11	124.89	-6.45	0.02	17
2577	TM/3-10	AP06920007	Aldehyde-alcohol dehydrogenase	13.21	5.85	54.75	7.58	30.60	-1.83	0.046	10
3572	TM/4-7	AP07900036	Delta-9 desaturase	7.78	7.27	31.41	4.71	10.69	-2.43	0.032	9

* Fold represents fold change value which is volume ratio of after the temperature upshift (180 min)/before the temperature upshift. Volume ratio refers to the ratio of the normalized volumes of a pair of spots (the same spot of before and after the temperature upshift), for example, a value of 2.0 represents a two-fold increase while -2.0 represents a two-fold decrease.

* These protein spots are phosphorylated at Ser, Thr and Tyr residues, detected by western blot analysis before the temperature upshift (0 min) and after the temperature upshift (45, 90, 180 min).

Frac/pH range and % cov represent fraction and pH range where proteins were separated in the first dimension, and %coverage, respectively. Some of the down regulated proteins cannot be clearly visualized on the spot map shown in Additional figures. ud means the protein expression pattern(s) cannot be clustered.

Cluster types: (i) in PM fraction, cluster 4 is undetermined-pattern proteins, (ii) in SOL fraction, cluster 18 is sustained tolerance proteins and cluster 8 is undetermined-pattern proteins and (iii) in TM fraction, cluster 12 is resistance proteins, cluster 1, 10, and 17 are adaptation proteins, and cluster 9 and 14 are sustained tolerance proteins.
uration process of *Spirulina*, was previously reported to be temperature-independent [9]. However, an earlier study by our group using Northern blot analysis [see fig S4; Additional file 2] demonstrates that this gene is indeed temperature-dependent, in agreement with the results obtained in the present study.

The transcriptional patterns of sensory box/GGDEF and RNA-directed DNA polymerase, both from the soluble fraction, were different than their protein expression patterns. The transcripts of these genes increased throughout the experimental time period (3 hours), while their protein levels initially increased, followed by reduction to steady state protein levels. Importantly, phosphorylation was detected on both of these proteins. This suggests that the post-translational modification might play a role in the function of these proteins in response to the high temperature stress.

In the thylakoid membrane fraction, the transcription patterns of DnaK and N-6 DNA methylase (adenine specific) were not well correlated with their protein expression patterns, and phosphorylation was not detected for these proteins. These results suggest that these proteins might be regulated at either the post-transcriptional level or the post-translational level (except phosphorylation), although further investigation will be required to confirm this hypothesis. There are some interesting facts related to these three proteins in the photosynthetic membrane of *Spirulina*. It has been reported that the N-6 DNA methylase uses S-adenosyl-methionine as a methyl-donor for its DNA-methylation reaction in plants [30]. It should be noted that the S-adenosyl-L-homocysteine hydrolase, the enzyme responsible for regeneration of S-adenosyl-methionine [31,32], was also up-regulated in the same fraction.

In *Synechococcus* sp. PCC7942, photosystem II (PSII) is drastically deactivated at 40°C [33]. The chaperone DnaK (Hsp70) is present in plant-chloroplast as a component of multi-chaperone complex [34] and plays a critical role in
photoprotection and repair of PSII during and after photoinhibition [35,36]. Thus, it is expected that this chaperone was up-regulated in response to the high temperature stress in Spirulina, although its regulation should be further investigated.

Adenylate cyclase, which is known to localize in the thylakoid membrane of cyanobacteria, plays a key role in cAMP biosynthesis [37]. The level of cAMP is regulated by red/far red light and thus adenylate cyclase works in association with phytochrome [37], an up-regulated protein found in Spirulina-TM. These proteins are part of the cAMP-dependent light signaling cascade. Adenylate cyclase has also been reported to be regulated at the post-translational level by ligand binding, protein binding and phosphorylation [37]. Together, our results demonstrate the association between high temperature response and the light signaling cascade.

Figure 5
RT-PCR analysis of the transcriptional level of a differentially expressed protein, AP07830020 - Molecular chaperone DnaK (spot no. 912_TM). (Note: Some of the standard deviation values are too small to be seen as error bars.)

Figure 6
RT-PCR analysis of the transcriptional level of a differentially expressed protein, AP07620006 - ABC transporter (spot no. 1078_TM). (Note: Some of the standard deviation values are too small to be seen as error bars.)

Figure 7
RT-PCR analysis of the transcriptional level of a differentially expressed protein, AP04930005 - N-6 DNA methylase (spot no. 684_TM). (Note: Some of the standard deviation values are too small to be seen as error bars.)

Clustering of protein expression patterns
The proteins with significantly differential expression in each subcellular fraction were clustered, based on their expression patterns [see fig S6; Additional file 2]. According to Lacerda et al., the expression patterns in response to stress can be classified into three major groups: resistance, adaptation and sustained tolerance [38]. The results shown in Fig. 11, 12 and 13 demonstrate that the majority of proteins in every subcellular fraction belong to the sustained tolerance expression pattern. If all differentially expressed proteins are set as 100%, the percentages of the resistance, adaptation and sustained tolerance groups are: (i) 7%, 3% and 46% in the PM fraction, (ii) 9%, 10%, 46% in the soluble fraction and (iii) 18%, 12% and 58% in the TM fraction, respectively. It should be noted that some patterns do not fit into any categories, and these patterns were mostly found in the PM fraction. Moreover, the plasma membrane, where the environmental changes are first encountered, is the only site where the resistance pro-
Site-specific DNA methyltransferase (cytosine-specific) is the only resistance protein that was identified in this study. The level of this protein initially increased and subsequently decreased in the TM fraction (Table 4). DNA methylase is involved in the DNA repair system, and it shows the same expression pattern in response to cadmium stress, which is known to induce DNA-damage [38]. Most of the two component signal transduction systems, stress-related proteins and proteins involved in DNA-damage and DNA-repair are classified in the sustained tolerance group (Fig. 11). This suggests the critical role of these proteins in the tolerance to high temperature stress in Spirulina. It is noteworthy that the resistance proteins (short-term only response) were present at a significantly higher level (2-fold) in the thylakoid membrane than in the other two fractions (Fig. 13). Additionally, adaptation proteins (long-term only response) were found at a higher level in the soluble and the thylakoid
membrane fractions (Fig. 12 and 13) than the plasma membrane fraction (Fig. 11).

Potential protein-protein interactions

Several differentially expressed proteins identified in this study can be mapped onto the PPI network available on Cyanobase (Fig. 14, 15 and 16). The potential PPIs shown in the three subcellular fractions represent interesting linkages or cross-talks among the three cellular compartments. For example, in the PM fraction, two component system sensory histidine kinase (spot#1564), ABC transporter (spot#2179), ferredoxin-glutamate synthase (spot#1388) and carboxypeptidase (spot#1284) show interactions with the photosynthetic system. In the soluble fraction, the phosphorylated form of multi-sensor signal transduction histidine kinase (spot#1883) interacts with several periplasmic proteins. However, in the TM fraction, the same protein was found in the non-phosphorylated form. The interactions found in the thylakoid membrane also show communication with the other two fractions.

Additionally, PPI networks clearly demonstrate the linkage between high temperature stress and nitrogen and ammonia assimilation in Spirulina. It is well established that photosynthesis and nitrate reduction are closely related in cyanobacteria and plants, via the nitrate reductase requirement of photoreduced ferredoxin [39,40]. In response to heat stress, inhibition of photosynthesis and nitrate reductase was observed. Moreover, it was reported by Rajaram and Apte [40] that a Hsp60 family protein, Cpn60, which is induced by heat stress and stabilized by nitrogen supplementation, either from nitrate or ammonia, is essential for the thermal stability of these vital metabolic processes.

Conclusion

The differentially expressed proteins identified in the subcellular fractions of Spirulina in response to high temperature stress can be functionally classified into 5 major groups: two component systems, stress-related proteins, DNA damage/DNA repair system, translational machinery and proteins with conserved motifs. The transcriptional expression levels of several proteins were studied by RT-PCR. Several of the differentially expressed proteins, such as DNA gyrase and ABC transporter, were regulated at the transcriptional level. Some proteins, such as sensory box/GGDEF domain and RNA-directed DNA polymerase, were found to be regulated at the post-translational level. Finally, other proteins, such as DnaK and adenylate cyclase, were found to be regulated at the post-transcriptional level.

All the differentially expressed proteins were subjected to protein clustering, based on their expression pattern in the three cellular compartments. The clustering data assists in grouping the up- or down-regulated proteins into three major trends: resistance proteins, adaptation proteins and sustained tolerance proteins. The majority of the differentially expressed proteins from all subcellular fractions were found to be sustained tolerance proteins, suggesting the critical role of these proteins in the tolerance of Spirulina to high temperature stress. A group of resistance proteins (short-term only expression) in the photosynthetic membrane was present at 2-fold higher levels than in either of the other two fractions. This is well correlated with the report [33] that photosynthetic systems are rapidly affected by high temperature (40°C) in the present of light.

According to the data obtained from the PPI network construction, the cross-talk and linkages between the three cellular compartments, via protein-protein interactions, were substantial. The data give clear evidence that the nitrogen and ammonia assimilation processes are affected by exposure to heat stress.

In terms of applications, the present proteomic analysis and PPI network construction are part of an attempt to control and manipulate conditions to maximize polyun-
saturated fatty acid (PUFA) biosynthesis in this cyanobacterium. Taken together with the data obtained in our cold-shock response study of *S. platensis* [11,13], several proteins involved in fatty acid biosynthesis, such as histidine kinases, (3R)-hydroxymyristoyl-[acyl-carrier-protein]-dehydratase or FabZ, acyl carrier protein (ACP) and Δ⁹-desaturase, were revealed to be differentially expressed. The knowledge obtained can be applied at the industrial level, for manipulation of PUFA production, as well as in future studies of various aspects of *Spirulina*. In addition to valuable product biosynthesis in *Spirulina*, the results from the PPI network are beneficial to the functional annotation of some *Spirulina platensis*-ORFs. For example, AP07850026 (spot#2410), annotated as a two component system, could possibly be functionally annotated to a two component system in the Nar family, due to its interaction with a protein involved with nitrogen assimilation. Finally, future proteomic analysis of *Spirulina* will...
Predicted protein-protein interaction network based on differentially expressed proteins identified in this work, constructed by using the available data from Cyanobase and the *Spirulina* genome database. The networks show protein-protein interaction partners in the soluble fraction. The symbols, and its reversion, represent the up- and down-regulated proteins identified in this study, respectively. The letters A and B after spot numbers in the nodes represent the pH ranges of 3-10 and 4-7 in the first dimension of the 2D-DIGE, respectively.
Predicted protein-protein interaction network based on differentially expressed proteins identified in this work, constructed by using the available data from Cyanobase and the *Spirulina* genome database. The networks show protein-protein interaction partners in the thylakoid membrane fraction. The symbols, and its reversion, represent the up- and down-regulated proteins identified in this study, respectively. The letters A and B after spot numbers in the nodes represent the pH ranges of 3-10 and 4-7 in the first dimension of the 2D-DIGE, respectively.
involve analyzing the complete proteome of *Spirulina* by combining the techniques of 2D-PAGE and liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
AH carried out the proteome analysis and the protein-protein interaction construction and others statistical analysis. PK carried out the molecular genetic studies. SC participated in the study. MT participated in its design and coordination. MS participated in the proteome analysis. RY participated in the proteome analysis. All authors read and approved the final manuscript.

Additional material

Additional file 1
Details on primers conditions used in RT-PCR experiments. The table provides details on primers conditions used in RT-PCR experiments. Click here for file.http://www.biomedcentral.com/content-supplementary/1477-5956-7-33-S1.doc

Additional file 2
Additional figures 1-6. The data provided represent spot map of 2D-DIGE of all protein fractions, quantitative analysis of protein, of which mRNAs were analyzed by RT-PCR, and protein clustering based on their expression level. Click here for file.http://www.biomedcentral.com/content-supplementary/1477-5956-7-33-S2.doc

Acknowledgements
This research was funded by a grant from the National Center for Genetic Engineering and Biotechnology (BIOTEC), Bangkok, Thailand.

References

1. Holtmann G, Brigulla M, Steil L, Schutz A, Barnekow K, Volker U, Bremer E: RsβV-independent induction of the SigB-dependent general stress regulon of *Bacillus subtilis* during growth at high temperature. *J Bacteriol* 2004, 186:6105-6118.

2. Schmid AK, Lipton MS, Mostz H, Monroe ME, Smith RD, Lidsrom ME: Global whole-cell FTIR mass spectrometric proteomics analysis of the heat shock response in the radioresistant bacterium *Deinococcus radiodurans*. *J Proteome Res* 2005, 4:709-718.

3. Fang F, barnum SR: Expression of the heat shock gene hsp16.6 and promoter analysis in the cyanobacterium, *Synechocystis* sp. *PCC 6803*. *Curr Microbiol* 2004, 49:192-199.

4. Ehling-Schulz M, Schulz S, Wait R, Angelika G, Scherer S: The UV-B stimulus of the terrestrial cyanobacterium *Nostoc* commune comprises early shock proteins and late acclimation proteins. *Mol Microbiol* 2002, 46:827-843.

5. Kojima K, Nakamoto H: Post-transcriptional control of the cyanobacterial hspA heat-shock induction. *Biochem Biophys Res Commun* 2005, 331:583-588.

6. Huckauf J, Nomura C, Forchhammer K, Hagemann M: Stress responses of *Synechocystis* sp. strain PCC 6803 mutants impaired in genes encoding putative alternative sigma factors. *Microbiol* 2000, 146:2877-2889.

7. Kojima K, Nakamoto H: Specific binding of a protein to a novel DNA element in the cyanobacterial small heat-shock protein gene. *Biochem Biophys Res Commun* 2002, 297:616-624.

8. Wada H, Murata N: Temperature-induced changes in the fatty acid composition of the cyanobacterium, *Synechocystis* sp. *PCC 6803*. *Plant Physiol* 1990, 92:1062-1069.

9. Deshijum K, Painthoon K, Suphatrakul A, Meesapyodsuk D, Tantitaro M, Cheevedhanaruk S: Temperature-dependent and -dependent expression of desaturase genes in filamentous cyanobacterium *Synechocystis* platinus strain C1 (*Arthrospira* sp. *PCC 99438). *FEMS Microbiol Lett* 2000, 184:207-213.

10. Richmond A: Microalgae of economic potential. In *CRC Handbook of Microalgal Cultures* Edited by: Richmond A. Boca Raton, FL.: CRC Press; 1986:199-244.

11. Hongstong A, Sirijuntarut M, Prommeenate P, Lertladulak K, Porkaw K, Cheevedhanaruk S, Tantitaro M: *Proteome analysis* on the subcellular level of the cyanobacterium *Synechocystis* platinus in response to low-temperature stress conditions. *FEMS Microbiol Lett* 2000, 208:92-100.

12. Murata N, Ohmura T: *Isolation of cyanobacterial plasma membranes*. Methods in Enzymology 1988, 167:245-251.

13. Jeamton W, Mungpakdees K, Sirijuntarut M, Prommeenate P, Cheevedhanaruk S, Tantitaro M, Hongstong A: A combined stress response analysis of *Synechocystis* platinus in terms of global differentially expressed proteins, and mRNA levels and stability of fatty acid biosynthesis genes. *FEMS Microbiol Lett* 2008, 281:121-131.

14. Gravel P, Golaz O: Protein blotting by the semidry method. In *The proteins protocols handbook* Edited by: Walker JM. New Jersey: Humana Press; 1996:249-260.

15. Martin S, Zhang Z, Martino A, Faulon JL: *Boolean dynamics of genetic regulatory networks inferred from microarray time series data*. Bioinformatics 2007, 23:866-874.

16. Sato S, Shimoda Y, Muaki A, Kohara M, Nakamura Y, Tabata S: A large-scale protein-protein interaction analysis in *Synechocystis* sp. *PCC 6803*. *DNA Res* 2007, 14:207-216.

17. Ryjenko DA, Tarutina M, Maskovin OV, Gomelsky M: *Cyclic di-guanylate is a ubiquitous signalling molecule in bacteria: insights into biochemistry of the GGDEF protein domain*. *J Bacteriol* 2005, 187:1792-1798.

18. Ashby MK, Houmard J: *Cyanobacteria two-component proteins: Structure, Diversity, Distribution, and Evolution*. Microbiol Mol Biol Rev 2006, 70:472-509.

19. Neunuebel MR, Golden JW: *The Anaabaena sp. strain PCC 7120 gene all2874 encodes a diguanylate cyclase and is required for normal heterocyst development under high-light growth conditions*. *J Bacteriol* 2008, 200:6829-6836.

20. Ullers RS, Ang D, Schwager F, Georgopoulos C, Geneveaux P: *Trigger factor can antagonize both SecB and DnaKJ chaperone functions in Escherichia coli*. *Proc Natl Acad Sci USA* 2007, 104:3101-3106.

21. Katano Y, Nimura-Matsune K, Yoshikawa H: *Involvement of DnaK3, one of the three DnaK proteins of cyanobacterium Synechococcus sp. PCC in translational process on the surface of the thylakoid membrane*. *Biosci Biotechnol Biochem* 79/2, 70, 1592-1598.

22. Borges N, Marugg JD, Empadinhas N, da Costa MS, Santos H: *Specialized roles of the two pathways for the synthesis of monoglycercate in osmoadaptation and thermoadaptation of Rhodobacter marinus*. *J Biol Chem* 2004, 279:9892-9899.

23. Owstastrum GW: *Survey and Summary: RNA helicases and accessory stress*. *Nucleic Acids Res* 2006, 34:3220-3230.

24. Darmon E, Lopez-Vernaza MA, Helness AC, Borking A, Wilson E, Thacker Z, Wardrope L, Leach DRF: *Edited by: Walker JM*. New Jersey: Humana Press; 1996:249-260.

25. Dwyer DJ, Kohanski MA, Hayete B, Collins JJ: *Cyclic diguanylate is a ubiquitous signalling molecule in bacteria: insights into biochemistry of the GGDEF protein domain*. *J Bacteriol* 2005, 187:1792-1798.

26. Carrasco B, Cozar MC, Luze R, Alonso JC, Ayora S: *Genetic recombination in Bacillus subtilis 168*: contribution of Holliday junction processing functions in chromosome segregation. *J Bacteriol* 2004, 186:5557-5566.
27. Nojima H: Protein kinases that regulate chromosome stability and their downstream targets. *Genome Dyn* 2006, 1:131-148.

28. Kang J, Blaser MJ: UvrD helicase suppresses recombination and DNA damage-induced deletions. *J Bacteriol* 2006, 188:5450-5459.

29. Crowdy DJ, Hanawalt PC: The SOS-dependent upregulation of uvrD is not required for efficient nucleotide excision repair of ultraviolet light induced DNA photoproducts in *Escherichia coli*. *Mutat Res* 2001, 485:319-329.

30. Larisa IF, Boris FV: N6-Adenine DNA-methyltransferase in wheat seedlings. *FEBS Letters* 2002, 514:305-308.

31. Pillai MA, Akiyama T: Differential expression of an S-adenosyl-L-methionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes. *Mol Genet Genomics* 2004, 271:141-149.

32. Sun J, Daniel R, Wagner-Dobler I, Zeng AP: Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. *BMC Evol Biol* 2004, 4:1-11.

33. Allakhverdiev SI, Los DA, Mohanty P, Nishiya Y, Murata N: Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. *Biochim Biophys Acta* 2007, 1767:1363-1371.

34. Willmund F, Dorn KV, Schulz-Raffelt M, Schroda M: The chloroplast DnaJ homolog CDJ1 of *Chlamydomonas reinhardtii* is part of a multichaperone complex containing HSP70B, CGE1, and HSP90C1[OA]. *Plant Physiol* 2008, 148:2070-2082.

35. Drzymalla C, Schroda M, Beck CF: Light-inducible gene HSP70B encodes a chloroplast-localized heat shock protein in *Chlamydomonas reinhardtii*. *Plant Mol Biol* 1996, 31:1185-1194.

36. Schroda M, Vallon O, Wollman F, Beck CF: A Chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. *The Plant Cell* 1999, 11:1165-1178.

37. Ohmori M, Okamoto S: Photoresponsive cAMP signal transduction in cyanobacteria. *Photochem Photobiol Sci* 2004, 3:503-511.

38. Lacerda CMR, Choe LH, Reardon KF: Metaproteomics analysis of a bacterial community response to cadmium exposure. * Proteome Res* 2007, 6:1145-1152.

39. Lillo C: Signaling cascades integrating light-enhanced nitrate metabolism. *Biochem J* 2008, 415:1-19.

40. Rajaram H, Apte SK: Nitrogen status and heat-stress-dependent differential expression of the cpn60 chaperonin gene influences thermotolerance in the cyanobacterium *Anaebaena*. *Microbial* 2008, 154:317-325.