Smična čvrstoća ortodontskih bravica vezanih na cirkonij-oksidne krunice

Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns

Sve veći estetski zahtjevi rezultirali su povećanom korištenjem potpuno keramičkih dentalnih nadomjestaka, primjerice onih od cirkonijeva oksida. Time se pojavljuje izazov osiguravanja vezne čvrstoće ortodontskih bravica na različite keramičke materijale. Na snagu veze može utjecati vrsta bravica, odnosno materijal od kojega je izrađena i površinska nježina baze ili način retencije.

Svrha rada: Željela se provesti komparativna analiza posmične čvrstoće metalnih i keramičkih ortodontskih bravica zalijepljenih na cirkonij-oksidnu keramičku površinu kakva se nalazi na protečnim nadomjestcima, te procijeniti način loma tih dviju vrsta ortodontskih bravica.

Materijali i metode: Pripremljeno je 20 uzoraka/polukrunica od keramike na koje su zalijepljenje ortodontske bravica – 10 metalnih i 10 keramičkih. Posmični test obavljen je u univerzalnoj kidalici s opterećenjem uzrokovanim klijom osmog vrha koji se kretao pri fiksnoj brzini od 1 mm/min do loma. Sila potrebna za odjepljivanje bravica bijeljezna je u Newtonima, nakon čega je posmična čvrstoća izračunata u MP-ima. Osim toga, uzorci su analizirani pod digitalnim mikroskopom kako bi se ustanovio indeks ostatka ljepila (ARI). Statistički podaci obrađeni su t-testom, a razina značajnosti postavljena je na α = 0,05.

Rezultati: Pokazali su da je vezna čvrstoća metalnih bravica vezanih na cirkonij-oksidne krunice veća u usporedbi s keramičkim bravicama sa statistički značajnom razlikom. Tijekom istraživanja nisu bile keramičke bravice poštećene. Zaključak: Čini se da metalne bravice u usporedbi s keramičkim stvaraju jaču vezu s cirkonij-oksidnim površinama zbog boljeg načina retencije. Keramičke bravice su i krhkije tijekom uklanjanja.

Uvod

Sve češća potražnja za estetskim restauracijama rezultirala je povećanom korištenjem potpuno keramičkih dentalnih nadomjestaka, primjerice onih od cirkonijeva oksida. Time se pojavljuje izazov osiguravanja vezne čvrstoće ortodontskih bravica na različite keramičke materijale. Na snagu veze može utjecati vrsta bravica, odnosno materijal od kojega je izrađena i površinska nježina baze ili način retencije.

Svrha rada: Željela se provesti komparativna analiza posmične čvrstoće metalnih i keramičkih ortodontskih bravica zalijepljenih na cirkonij-oksidnu keramičku površinu kakva se nalazi na protečnim nadomjestcima, te procijeniti način loma tih dviju vrsta ortodontskih bravica.

Materijali i metode: Pripremljeno je 20 uzoraka/polukrunica od keramike na koje su zalijepljenje ortodontske bravica – 10 metalnih i 10 keramičkih. Posmični test obavljen je u univerzalnoj kidalici s opterećenjem uzrokovanim klijom osmog vrha koji se kretao pri fiksnoj brzini od 1 mm/min do loma. Sila potrebna za odjepljivanje bravica bijeljezna je u Newtonima, nakon čega je posmična čvrstoća izračunata u MP-ima. Osim toga, uzorci su analizirani pod digitalnim mikroskopom kako bi se ustanovio indeks ostatka ljepila (ARI). Statistički podaci obrađeni su t-testom, a razina značajnosti postavljena je na α = 0,05.

Rezultati: Pokazali su da je vezna čvrstoća metalnih bravica vezanih na cirkonij-oksidne krunice veća u usporedbi s keramičkim bravicama sa statistički značajnom razlikom. Tijekom istraživanja nisu bile keramičke bravice poštećene. Zaključak: Čini se da metalne bravice u usporedbi s keramičkim stvaraju jaču vezu s cirkonij-oksidnim površinama zbog boljeg načina retencije. Keramičke bravice su i krhkije tijekom uklanjanja.

Introduction

The demand for esthetic restorations has resulted in an increased use of all-ceramic restorations. Today, various types of all-ceramic crowns are in use such as zirconium crowns.(1) As the number of adults seeking orthodontic treatment is increasing, clinicians often have to bond orthodontic brackets to teeth that have different types of porcelain restorations. As a result, there is a higher degree of failure compared to bonding to enamel, and different challenges in adult orthodontics.(2, 3) Bond strength is mostly affected by the porcelain type, surface conditioning, bracket material and retention mode, properties of the bonding adhesive, the light-curing source, as well as the skill of the clinician.(3, 4)

After the huge development of the CAD/CAM technology, zirconium has become one of the most interesting materials to be examined and used in almost entire dental field.(5,
Materijali i metode

Za istraživanje je pripremljeno 20 uzoraka/keramičkih polukrunica (Copran Zr-i Monolith, White Peaks Dental Solutions GmbH & Co.KG, Wesel, Essen, Njemačka) na koje su zalijepljene ortodontske bravice -10 metalnih (Mini 2000 Ormco Corp., Glendora, Kalifornija, SAD) i 10 keramičkih (Glam Forestadent, Bernhard Forster GmbH, Pforzheim, Njemačka).

Kako se ne bi utjecalo na učinkovitost površinsku strukturu ili osnovne površinsku strukturu ili način retencije. Prema različitim istraživanjima čini se da je vezna čvrstoća keramičkih bravica veća u usporedbi s metalnim bravicama zbog bolje adhezije. Drugi razlog za veću veznu čvrstoću keramičkih bravica može biti njihova propusnost svjetlosti, što omogućuje bolju foto-polimerizaciju i smanjenje naprezanja na sučelju ljepila i bravice (12, 15-19). Dakle, postavlja se pitanje koje se bravice bolje vezuju za obložnu keramiku češće komplikacija na stražnjim zubi- ma, ortodontske bravice lijepe se izravno na cirkonij-oksidnu površinu (11).

Različite vrste keramike, uz jetkanje cakline, zahtijevaju različite mehaničke ili kemijske metode pripreme za adhezijsku vezu kako se izbjegle poteskoće u liječenju odrašlih osoba fiksnim ortodontskim aparatima. Preporučuju se metode koje osiguravaju adekvatnu snagu veze bez uzrokovanja prekomjerne hrapavosti kako se izbjegle mikropukotine keramičkih površina (11 – 15). Također treba uzeti u obzir veliku opasnost pri rukovanju fluorovodičnom kiselinom jer može znatno oštetiti gingivu i druga mekana tkiva te može brzo oštetiti rožnicu oka (15, 16).

Drugi čimbenik koji utječe na veznu čvrstoću može biti materijal od kojega je izrađena bravica i njezina osnovna površinska struktura ili način retencije. Prema različitim istraživanjima čini se da je vezna čvrstoća keramičkih bravica veća u usporedbi s metalnim bravicama zbog bolje adhezije. Drugi razlog za veću veznu čvrstoću keramičkih bravica može biti njihova propusnost svjetlosti, što omogućuje bolju foto-polimerizaciju i smanjenje naprezanja na sučelju ljepila i bravice (12, 15 – 19). Dakle, postavlja se pitanje koje se bravice bolje vežu za površinu cirkonij-okсидne keramike, s obzirom na to da se vje- lo malo istraživanja bavilo tom problematikom uzimajući u obzir vrstu materijala i način njihove retencije.

Cilj ovog istraživanja bila je komparativna analiza posmjećene čvrstoće metalnih i keramičkih ortodontskih bravica vezanih na cirkonij-oksidne keramike kakve se na- laze na protečkim nadomjestcima, kako bi se ispitali učinci materijala od kojeg su bravice izrađene i način njihove reten- cije ili strukture površine. Dodatni je cilj bio procijeniti način fraktura ovih dviju vrsta ortodontskih bravica.

Material and methods

Za istraživanje je pripremljeno 20 uzoraka/keramičkih polukrunica (Copran Zr-i Monolith, White Peaks Dental Solutions GmbH & Co.KG, Wesel, Essen, Njemačka) na koje su zalijepljene ortodontske bravice -10 metalnih (Mini 2000 Ormco Corp., Glendora, Kalifornija, SAD) i 10 keramičkih (Glam Forestadent, Bernhard Forster GmbH, Pforzheim, Njemačka).

Kako se ne bi utjecalo na učinkovitost površinsku strukturu ili osnovne retencije ortodontskih bravica (slika 1.), adhezivni protokol je jednostavno. Nije primijenjeno naka- kvo mehaničko hrapavljenje ili jetkanje fluorovodičnom kiselinom, niti je primijenjen silan ili drugi primeri. Prije li-
jepljenja samo je obavljeno jetkanje ortofosfornom kiselinom i to 120 sekundi. Sve bravice lijepio je isti istraživač koristeći se dvokomponentnim (primer i adheziv) cementnim sustavom na bazi kompozitne smole (Tranbond XT, 3M/Unitek, Monrovia, CA, SAD). Ljepilo je osvijetljeno 40 sekundi LED lampom (Ledition, Ivoclar Vivadent AG, Schaan, Lichtenstein). Nakon polimerizacije uzorci su stavljeni 24 sata u vodenu kupelj.

Kao što je prikazano na slici 2., test posmične čvrstoće obavljen je u univerzalnoj kidalici (Erichsen 0-2000 N, ISO 7500-1:1, AM Erichsen GmbH & Co.KG, Hemer-Sundwig, Njemačka) s opterećenjem primijenjenim paralelno s bukalnom plohom krunice s pomoću klipa oštrog vrha koji se kreću stalnom brzinom od 1 mm/min do loma. Sila potrebna za odjepljivanje bravice zabilježena je u Newtontima, a zatim je posmična čvrstoća izračunata u MP-ima.

In order to evaluate the type of bond failure at the bracket-adhesive interface in each test group, the samples were analyzed using a Digital Microscope (Dino-Lite, ANMO Electronics Corp., Taipei City, Taiwan) to determine Adhesive Remnant Index (ARI) (19, 20). The measurements were conducted, using scores from 1 to 5:

1 - All adhesive remaining on the ceramic crown surface with the impression of the bracket base;
2 - More than 90% of the adhesive remaining on the ceramic crown surface;
3 - Less than 90%, but more than 10% of the adhesive remaining on the surface;
4 - Less than 10% of the adhesive remaining on the ceramic crown surface;
5 - No adhesive remaining on the ceramic crown surface.

This research was conducted as a pilot study at the School of Dental Medicine and at the Faculty of Mechanical Engineering and Naval Architecture, Laboratory for testing mechanical properties, University of Zagreb, Croatia.
Statistička analiza

Provjera normalnosti distribucije vrijednosti posmićne čvrstoće provedena je Kolmogorov-Smirnovljevim testom. Hipoteza jednakosti prosječne posmićne čvrstoće prema vrsti bravice ispitan je t-testom za neovisne uzorke. Zbog malog uzorka Kolmogorov-Smirnovljev test ima tendenciju prihvatiti hipotezu normalnosti, pa je ispitivanje hipoteze jednakosti prosječnih vrijednosti posmićne čvrstoće prema vrsti bravica provedeno i Mann-Whitneyjevim testom za neovisne uzorke. Razina značenja postavljena je na $\alpha = 0.05$. Statistička obrada obavljena je u softveru Statistica 10.

Rezultati

Rezultati pokazuju da su brojčane vrijednosti slične potreben za odjeljivljanje metalnih bravica (zbroj 10 testiranja = 707,97N) s cirkonij-oksidnih krunica veće u usporedbi s keramičkim bravicama (zbroj 10 testova = 597,70N), sa statistički značajnom razlikom.

Procjene parametara posmićne čvrstoće prema vrsti bravica navedene su u tablici 1. i prikazane na slikama 3. i 4. Za metalne bravice vrijednosti posmićne čvrstoće kretale su se u rasponu od 3,26 do 13,90, s prosjekom od 7,35 i standardnom devijacijom od 3,41 MPa. Za keramičke bravice te vrijednosti bile su od 2,34 do 7,5, 4,66 i 1,78 MPa.

Tablica 1. Deskriptivna statistika posmićne čvrstoće prema vrsti bravice (MPa)

Vrsta bravice • Type of bracket	N	Prosječna vrijednost • Mean	Standardna devijacija • Standard Deviation	Min	Max
Metalna • Metalic	10	7,35	3,41	3,26	13,90
Keramička • Ceramic	10	4,66	1,78	2,34	7,15

Prema Kolmogorov-Smirnovljevu testu, vrijednosti posmićne čvrstoće normalno su distribuirane ($Z = 0,898, p = 0,395$). Leveneov test jednakosti varijance ($F = 1,73, p = 0,205$) potvrdio je homogenost vrijednosti posmićne čvrstoće za metalne i keramičke bravice, što je preduvjet za ispitivanje hipoteze o jednakosti posmićne čvrstoće prema vrsti bravica. Rezultat t-testa za neovisne uzorke omogućuje prihvaćanje alternativne hipoteze ($t = 2,22, df = 18, p = 0,040$), što potvrđuje statistički značajnu razliku u usporedbi s keramičkim bravicama. S obzirom na mali broj uzoraka, normalnost distribucije vrijednosti posmićne čvrstoće prema Kolmogorov-Smirnovljevu testu može se dovesti u pitanje. Testiranje hipoteze jednakosti prosječnih vrijednosti posmićne čvrstoće prema vrsti bravica potvrđeno je i neparametrijskim Mann-Whitneyjevim testom, a rezultati ($U = 25,00, p = 0,059$) također potvrđuju rezultate t-testa, ali za 0,9 posto više od potrošne pogreške od 5 posto. Gootovo bezznačajno odstupanje od navedene pogreške omogućuje tvrđenju da je posmićna čvrstoća metalnih bravica znatno veća u usporedbi s keramičkim bravicama.

Distribucija ARI-ja prema vrsti bravice prikazana je na slici 5. – uočava se da je distribucija gotovo identična: razlika je samo u četvrtoj kategoriji i za jedan slučaj u petoj.

Statistical analysis

The Kolmogorov-Smirnov test was applied to ascertain that the data had a normal distribution of SBS. The hypothesis of equality of the average of SBS by the type of braces was tested by t-test for independent samples (Independent Samples Test). Because of the small sample, the Kolmogorov-Smirnov test tends to accept the hypothesis of normality, test of the hypothesis of equality of the average of SBS by the type of braces has also been processed by applying the Mann-Whitney test for independent samples (Mann-Whitney test). The level of significance was set at $\alpha = 0.05$. Data processing was carried out using the software package Statistica 10.

Results

The results of the study showed that numerical values of the force necessary to debond metallic brackets (sum of 10 tests = 707,97N) of the zirconium crowns were higher than those of ceramic brackets (sum of 10 tests = 597,70N), with a significant difference.

The estimates of parameters of SBS by type brackets are listed in Table 1 and shown in Figure 3 and 4. For metal brackets, SBS is in the range from 3.26 to 13.90, with a mean of 7.35 and standard deviation of 3.41 MPa. For ceramic brackets, these values are respectively 2.34 to 7.15, 4.66 and 1.78 MPa.

According to Kolmogorov-Smirnov test, the shear bond strength (SBS) is in normal distribution (Kolmogorov-Smirnov $Z = 0.898, p = 0.395$). The Levene's test for equality of variances ($F = 1.73, p = 0.205$) confirmed the homogeneity of variances for the SBS of metallic and ceramic brackets, which is a prerequisite to test the hypothesis for equality of means for the SBS according to type of bracket. The result of t-test for independent samples (t-test for equality of means) allows acceptance of the alternative hypothesis ($t = 2.22, df = 18, p = 0.040$), which in turn confirms the significantly higher value for the SBS of metallic brackets than of ceramic brackets. The acceptance of the normality of distribution for the SBS according to the Kolmogorov-Smirnov test can be queried. Testing of the hypothesis for equality of means for the SBS according to the type of brackets, was confirmed with the nonparametric Mann-Whitney test and the results ($U = 25.00, p = 0.059$) also confirmed the results of t-test, but with 0.9% higher than the required error of 5%. In addition, practically insignificant deviation from the stated mistake, it is possible to argue that SBS of metallic brackets is significantly higher than that of ceramic polycrystalline brackets.

ARI distribution by type of brackets is shown in Figure 5, as it is evident that distributions are almost identical: the
Tijekom testa dvije su keramičke bravice djelomično ili potpuno oštećene.

Rasprava

Prema mnogobrojnim studijama vezna čvrstoća keramičkih bravica čini se većom u odnosu na metalne zbog bolje adhezije na keramiku i propuštanja svjetlosti, što rezultira većim stupnjem polimerizacije i smanjenjem naprezanja na spoju ljepila i bravice (12, 17). No naše istraživanje pokazuje da to nije slučaj kod ortodontskih bravica vezanih za cirkonij-oksidne krunice. Čini se da je mehanička veza jača od kemijanske kada se bravice lijepe na cirkonijev oksid, a površina baze ili način retencije ortodontskih bravica važni su u postizanju čvrstoće veze.

U ovom istraživanju vrijednosti ARI-ja pokazuju da je u objema skupinama postojala kombinirana učestalost loših rezultata u Adheziv Remnant Index 1, 2, 3, 4, te 5 kategorijama, ali je u 4. kategoriji i za jednu bravicu u 5. kategoriji.

During the test, two of the ceramic brackets were partially or totally damaged.

Discussion

According to numerous studies, the bond strength of ceramic brackets seems to be higher compared to the strength of metallic brackets due to a stronger adhesion to ceramics and light transmission, which leads to a higher degree of polymerization and stress reduction on the adhesive-bracket joint.(12, 17) However, our study shows that this is not the case for orthodontic brackets bonded to zirconium ceramic crowns. It seems that mechanical coupling is greater than chemical coupling of the brackets with zircon ceramic surface, and the base surface design or retention mode of orthodontic brackets plays a determinant role in their bond strength.

In this research, ARI scores indicated that, in both groups, there was a combined frequency of bond failure at the brack-
et-adhesive interface and at the adhesive-ceramic interface. These results are similar to other reported findings (12, 15).

The evaluation of the fracture mode of the two types of orthodontic brackets is in accordance with other studies, which confirmed the fact that ceramic brackets show higher fragility during debonding.

In addition, it should be considered that there are limitations of in vitro studies, and that there can be differences among in vivo and in vitro results due to the complexity of the oral cavity. Further research using different combinations of influencing factors is needed.

Conclusion

According to the results obtained from this research, we conclude that metallic brackets compared with ceramic polycrystalline brackets, seem to create stronger adhesion with all-zirconium surfaces due to their better base surface design or retention mode. Also, ceramic brackets show higher fragility during debonding.

Acknowledgment

The authors thank Professor Lajoš Sziroveczi for his advice on statistical analysis.

Conflict of Interest

There are no conflicts of interest to declare.

References

1. Denry I, Holloway JA. Ceramics for dental applications: a review. Materials. 2010;3(1):351-68.
2. Al-Hity R, Gustin M-P, Bridel N, Morgon L, Grosgoeiat B. In vitro orthodontic bracket bonding to porcelain. Eur J Orthod. 2012 Aug;34(4):505-11.
3. Greweal Bach GK, Torrealla Y, Lagravère MO. Orthodontic bonding to porcelain: a systematic review. Angle Orthod. 2014 May;84(3):555-60.
4. Bishara SE, VonWald L, Olsen ME, Laffoon JF. Effect of time on the shear bond strength of glass ionomer and composite orthodontic adhesives. Am J Orthod Dentofacial Orthop. 1999 Dec;116(4):616-20.
5. Komine F, Blatz MB, Matsumura H. Current status of zirconia-based fixed restorations. J Oral Sci. 2010 Dec;52(4):531-9.
6. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent. 2009 Summer;4(2):130-51.
7. Örtorp A, Kihl ML, Carlsson GE. A 3-year retrospective and clinical follow-up study of zirconia single crowns performed in a private practice. J Dent. 2009 Sep;37(9):731-6.
8. Raigrodski AJ, Chiche GJ, Potiket N, Hochstedler J, Mohamed SE, Billiot S, et al. The efficacy of posterior three-unit zirconium-oxide-based ceramic fixed partial dental prostheses: A prospective clinical pilot study. J Prosthet Dent. 2006 Oct;96(4):237-44.
9. Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont. 2010 Sep-Oct;23(5):434-42.
10. Zhang Y, Chai H, Lee J-W, Lawn B. Chipping resistance of graded zirconia ceramics for dental crowns. J Dent Res. 2012 Mar;91(3):311-5.
11. Lee J-Y, Kim J-S, Hwang C-J. Comparison of shear bond strength of orthodontic brackets using various zirconia primers. Korean J Orthod. 2015 Jul;45(4):164-70.
12. Zachrisson YØ, Zachrisson BU, Büyükyılmaz T. Surface preparation for orthodontic bonding to porcelain. Am J Orthod Dentofacial Orthop. 1996 Apr;109(4):420-30.
13. Blakey R, Mah J. Effects of surface conditioning on the shear bond strength of orthodontic brackets bonded to temporary polycarbonate crowns. Am J Orthod Dentofacial Orthop. 2010 Jul;138(1):72-8.
14. Faltermeier A, Reicheneder C. Bonding Orthodontic Ceramic Brackets to Ceramic Restorations: Evaluation of Different Surface Conditioning Methods. Mat Sci App. 2013;7B(4):10-14.
15. Bourke BM, Rock WP. Factors affecting the shear bond strength of orthodontic brackets to porcelain. Br J Orthod. 1999 Dec;26(4):285-90.
16. Samruajbenjakul B, Kukiattrakoon B. Shear bond strength of ceramic brackets with different base designs to feldspathic porcelains. Angle Orthod. 2009 May;79(3):571-6.
17. Alhaija ESA, AlReesh IAA, AlWahadni AM. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces. Eur J Orthod. 2010 Jun;32(3):274-80.
18. Girish P, Dinesh U, Bhat C, Shetty PC. Comparison of shear bond strength of metal brackets bonded to porcelain surface using different surface conditioning methods: an in vitro study. J Contemp Dent Pract. 2012 Jul 1;13(6):487-93.
19. Bishara SE, Olsen ME, VonWald L, Jakobsen JR. Comparison of the debonding characteristics of two innovative ceramic bracket designs. Am J Orthod Dentofacial Orthop. 1999 Jul;116(1):86-92.
20. Damon PL, Bishara SE, Olsen ME, Jakobsen JR. Bond strength following the application of chlorhexidine on etched enamel. Angle Orthod. 1997;67(3):169-72.