BCl₃-Induced Annulative Oxo- and Thioboration for the Formation of C3-Borylated Benzofurans and Benzothiophenes

Andrew J. Warner, Anna Churn, John S. McGough, and Michael J. Ingleson*

Abstract: BCl₃-induced borylative cyclization of aryl-alkynes possessing ortho-EMe (E=S, O) groups represents a simple, metal-free method for the formation of C₃-borylated benzothiophenes and benzofurans. The dichloro(heteroaryl)borane primary products can be protected to form synthetically ubiquitous pinacol boronate esters or used in situ in Suzuki-Miyaura cross couplings to generate 2,3-disubstituted heteroarenes from simple alkyne precursors in one pot. In a number of cases alkyne trans-haloboration occurs alongside, or instead of, borylative cyclization and the factors controlling the reaction outcome are determined.

Benzofurans and benzothiophenes are important structures found in pharmaceutical targets (e.g., desketoraloxifene) and organic materials. The boronic acid derivatives of these heteroaromatics are desirable as they are bench-stable, have low toxicity and are effective in many functional group transformations, including the ubiquitous Suzuki-Miyaura cross coupling reaction. Typically, the formation of these borylated compounds is achieved via the C–H or C–X borylation of the pre-formed heteroaromatic. An alternative more efficient approach is to form the heteroaromatic scaffold and the C–B bond in one pot via the borylative cyclization of alkynes. This can be mediated by transition metal catalysts or in the absence of a metal catalyst by using strong boron electrophiles. The latter approach was pioneered using B(C₆F₅)₃ which on addition to appropriately functionalized alkynes led to a range of borylated heterocycles, including products derived from aminoboration and oxoboration (Scheme 1). Other catalyst-free cyclitative elements have been reported, albeit to a lesser extent, with reports of cyclative thioboration particularly rare.

Whilst B(C₆F₅)₃ was crucial in developing metal-free alkyne borylative cyclization it leads to zwitterionic products such as A (Scheme 1). The use of these species in subsequent functional group transformations is not established, currently limiting their synthetic utility. Using alternative boron Lewis acids such as BCl₃ to effect borylative cyclization enables the formation of organo-boronic acid derivatives on work-up and consequently access to the myriad of already proven transformations. However, this is an underdeveloped approach with demonstrated, modular protocols scarce. Two notable exceptions are 1) the BCl₃-induced alkyne borylative cyclization where a (hetero)aromatic moiety is the nucleophile attacking the BCl₃-activated alkyne (Scheme 2, top left) and 2) the use of B-chlorocatecholborane to produce borylated lactones via cyclative alkyne oxoboration (Scheme 2, bottom left). Both protocols generate desirable boronic acid derivatives on (trans)esterification, and are complementary to electrophilic iodinative cyclization (which generates organic electrophiles).

From these studies key requirements enabling borylative cyclization without metal catalysts can be identified, including that the boron electrophile must: a) bind reversibly to the heteroaromatic moiety, and b) induce borylative cyclization preferentially to dealkylation reactions (e.g., cyclization occurs prior to O–R cleavage). Guided by these herein we report our studies into the reaction of BCl₃ with 2-alkynylamines, anisoles and thioanisoles, which led to the development of a simple new route to important boronic acid derivatives of benzothiophenes and benzofurans. This route (Scheme 1, bottom right) is catalyst-free and thus distinct to a recent cyclative alkyne oxo-boration report which required Au catalysts (Scheme 1, top right).

Our studies commenced by combining equimolar BCl₃ and N,N-dimethyl-2-(phenylethynyl)aniline (I) for compar-
ison with B(CF$_3$)$_3$ which formed zwitterion A. [7] In contrast to B(CF$_3$)$_3$, addition of BCl$_3$ did not lead to a borylated indole with X-ray diffraction studies revealing it had instead formed 2 (Figure 1), the product from alkyne trans-haloboration. The reactivity disparity between BCl$_3$ and B(CF$_3$)$_3$ is attributed to stronger N-B coordination with BCl$_3$ due to the lower steric crowding around boron. Notably, 2 is not the expected product from the direct haloboration of an alkyne with BCl$_3$, which would proceed by syn-addition of Br-B-Cl,[16] suggesting 2 is formed by a different mechanism. Precedence for alkyne trans-haloboration is extremely limited, with compound C (Figure 1), the trans-haloboration/demethylation product from the addition of BBr$_3$ to o-alkynyl-anisole B a notable exception.[17] With direct haloboration precluded it is possible that the reaction proceeds from the (N,N-Me$_2$-aniline)-BCl$_3$ adduct by chloride transfer from boron to carbon, related to that calculated for intramolecular alkyne trans-hydroboration.[18]

With the formation of C3-borylated indoles disfavored under these conditions due to trans-haloboration the propensity of o-alkynyl anisoles to undergo borylation was explored. The rapid formation of C from B clearly indicates that trans-haloboration also is viable with o-alkynyl-anisoles, however, this reaction was proposed to proceed via initial ether demethylation then haloboration.[17] While ether cleavage of anisoles with BBr$_3$ is well documented, detailed studies into the mechanism are rare,[19] but one recent report calculated that PhO-Me cleavage is a bimolecular process involving two Me(Ph)O-BBr$_3$ moieties.[19a] Thus B may be prearranged to undergo rapid ether cleavage and other o-alkynyl anisoles may be less prone to ether cleavage, particularly with BCl$_3$ instead of BBr$_3$. Consistent with this the combination of equimolar anisole and BCl$_3$ in DCM at 20°C resulted in the formation of a single 11B resonance at 32 ppm with minimal ether cleavage observed even after 30 h at 20°C (only ca. 2.5% CH$_2$Cl was formed by 1H NMR spectroscopy). The 32 ppm 11B chemical shift is consistent with an equilibrium between the Lewis adduct and free BCl$_3$ and anisole. Thus anisole binding to BCl$_3$ is reversible and ether cleavage is not significant at 20°C, suggesting that alkyne borylative cyclization using BCl$_3$ is viable.

1-Methoxy-2-(phenylethynyl)benzene (3a) was cycled in DCM using BCl$_3$ (Scheme 3). The reaction was rapid (<5 min at 20°C), as indicated by the consumption of 3a along with the generation of CH$_2$Cl (δ_{11B} 3.02 ppm) and a new major resonance centered at 51 ppm in the 11B NMR spectrum, consistent with a heteroaryl-BCl$_3$ species. A minor broad resonance at 14.2 ppm in the 11B NMR spectrum was also observed. Esterification with pinacol/NEt$_3$ enabled the isolation of 4a in 56% yield without column chromatography. No intermediates are observed so detailed discussion of the mechanism is not warranted, although alkyne activation by BCl$_3$ and cyclization presumably occurs prior to demethylation based on the slow ether cleavage observed on combining anisole and BCl$_3$. It is noteworthy that a non-linked analogue of B, 1,2-bis(2-methoxyphenyl)ethyne, undergoes rapid trans-haloboration and demethylation with both BCl$_3$ and BBr$_3$, thus the reactivity disparity between 3a and B is not due to the use of different boron trihalides.

Exploration of the substrate scope revealed that electron-donating and -withdrawing groups on the anisole ring are compatible in certain positions (4b-e). Furthermore, borylative cyclization is not limited to diarylalkynes with benzyl- and methyl-substituted alkynes converted to the benzofurans 4f and 4g in good yield, with the structure of 4g confirmed by X-ray crystallography. 4g was also accessible on a gram scale and using non-purified solvents under ambient conditions in good yield. Whilst a phenyl group substituted with an electron-withdrawing group para to the alkyne led to the borylated benzofuran in moderate isolated yield (4h), when ester and nitro groups were incorporated into the anisole ring para to the alkyne this led to low conversions to the benzofuran-BCl$_3$ species (the δ_{11B} 51 ppm is the minor component). Instead a δ_{11B} 15 ppm resonance was the major product with 3i (Scheme 4), whilst for 3j (Scheme 4), where a naphthyl group has been incorporated resulting in an increase in the steric environment around the alkyne, the major δ_{11B} resonance is centered at 14 ppm. With both these substrates after the addition of BCl$_3$ the 1H NMR spectra

Figure 1. Trans-haloboration of 1 with BCl$_3$. Top right, solid state structure of 2, thermal ellipsoids at 50% probability and hydrogens omitted for clarity. Bottom, a previously reported alkyne trans-haloboration.

Scheme 3. BCl$_3$-induced borylative cyclization of 2-alkynyl-anisoles. Bottom right, solid state structure of 4g, thermal ellipsoids at 50% probability and hydrogens omitted for clarity. [a] 12 h. [b] 6 mmol scale to produce 1.16 g of 4g. [c] Using non-purified solvents under ambient atmosphere.
revealed that minimal CH₂Cl had formed (consistent with δ_{11B} 51 ppm being a minor resonance). Instead a singlet was observed at 4.56 and 4.49 ppm, respectively from $\mathbf{3i}$ and $\mathbf{3j}$, more consistent with an intact ArylOMe unit coordinated to a Lewis acid. Attempts to isolate the product derived from $\mathbf{3i}$ after esterification with Et₂N/pinacol led to isolation of the starting alkyne, presumably due to E2 elimination. The naphthyl derivative $\mathbf{5}$ was formed as the major product post esterification, with 1H, $^{13}C[^1H]$, ^{11}B NMR spectroscopy fully consistent with haloboration, a formulation supported by mass spectroscopy. Therefore to form borylated benzofurans in acceptable isolated yields by BCl$_3$-induced borylative cyclization significant bulk around the alkyne and strong EWG in the para position (to the alkyne) of the anisole moiety have to be avoided.

With the substituent effects probed the functional group tolerance of BCl$_3$-induced borylative cyclization was further explored using the “robustness screen” methodology, specifically, monitoring the cyclization of $\mathbf{3b}$ in the presence of various additives. This revealed that borylative cyclization was not affected by additives containing nitro, vinyl or CF$_3$ groups (in each case > 80% of the borylated benzofuran was formed with the additive not consumed). However, benzaldehyde and acetone were not compatible, with the addition of BCl$_3$ to separate reactions containing these additives and $\mathbf{3b}$ leading to additive consumption and significantly reduced benzofuran formation. Other Lewis basic groups were compatible with borylative cyclization provided that > 2 equivalents of BCl$_3$ was used, with the first equivalent of BCl$_3$ coordinating to the Lewis basic group (in each case > 70% conversion to the borylated benzofuran was observed in the presence of a tertiary amine, a tertiary amide, a pyridine and a nitrile). Established routes to 3-borylated-2-organo-benzofurans generally proceed from 3-halo-2-organo-benzofurans by metallation/quenching with B(OR)$_3$ or by Pd-catalyzed Miyaura borylation. Notably these routes are not compatible with some of the functional groups tolerated by BCl$_3$-induced borylative cyclization (e.g., amide/nitrile groups are generally incompatible with metallation). Furthermore, this methodology is complementary to iridium-catalyzed C–H borylation which provides C2- or C7-borylated benzofurans. Finally, it worth emphasizing that $\mathbf{4a}$–\mathbf{h} are formed at ambient temperature without a catalyst using inexpensive BCl$_3$, in contrast the previous borylative cyclization route to C3-borylated benzofurans required pre-installation of the borane (using NaH/CatBCl), Au catalysis, raised temperatures and ≥ 20 h.

Multiple borylative cyclizations also proceed with appropriately substituted diynes, with $\mathbf{6}$ converted to $\mathbf{7}$, a diborylated diaryl-benzof[1,2-b:4,5-b]difuran, in excellent yield using BCl$_3$ (Scheme 5). $\mathbf{7}$ represents a versatile precursor to 2,3,6,7-tetraarylbenezof[1,2-b:4,5-b]difurans which are of interest as hole transport materials. To the best of our knowledge 3,7-diborylated benzodifurans have not been previously reported.

While the purified borylated benzofurans reported herein are effective in Suzuki–Miyaura cross couplings (e.g., $\mathbf{4g}$ with 4-bromo-toluene) to enhance the utility of this methodology a one-pot borylative cyclization/Suzuki–Miyaura cross coupling procedure was developed (Scheme 6). This does not require isolation of the borylated benzofuran, instead the benzofuran-BCl$_3$ product is hydrolyzed in situ to the boronic acid and then subjected to conventional Suzuki–Miyaura cross coupling conditions. This one-pot procedure is a simple and rapid way to generate 2,3-disubstituted benzofurans from simple alkyln precursors in good yield (72% isolated yield of $\mathbf{8}$).

α-Alkynyl-thioanisoles and BCl$_3$ were explored next to assess if BCl$_3$ induced borylative cyclization was possible via alkyno thio-boration. Firstly, equimolar thioanisole and BCl$_3$ were combined which led to a species with δ_{11B} 7.9 ppm, indicating significant adduct formation, but importantly no S–Me cleavage was observed. Furthermore, previous work has shown that thioanisole-(BH$_3$Cl$_2$)$_x$ (x = 1 or 2) compounds are effective hydroborylating agents at 20°C indicating that an electrophilic borane is accessible from these Lewis adducts. Therefore BCl$_3$ was added to methyl(2-(phenylethynyl)-phenyl)sulfane ($\mathbf{9a}$) in DCM with in situ 1B NMR spectroscopy revealing one major product had formed with a broad resonance centered at 4 ppm, which does not correspond to a 3-BCl$_3$-benzothiophene species (expected δ_{11B} ca. 52 ppm). This is consistent with no chloromethane being observed in the 1H NMR spectrum. Methylsulfonium cations are significantly weaker methylating agents (less prone to Me$^+$ transfer to nucleophiles) than methylloxonium cations, therefore we surmised that the major compound is the zwitterion $\mathbf{10a}$ analogous to A (Scheme 7). In our hands crystalline material of $\mathbf{10}$ could not be isolated therefore support for this assignment was provided by combining $\mathbf{9a}$ with BCl$_3$, (to form $\mathbf{10a}$) and then adding Et₂N as a stronger nucleophile to induce demethylation. This led to formation of $\mathbf{3a}$ (Scheme 4).
[Et\text{NMe}]^+ \text{ (by }^1\text{H NMR spectroscopy) and a new major broad }^{13}\text{B resonance at 6.3 ppm attributed to the product from demethylation of 10a by Et}_3\text{N. On addition of one equivalent of AlCl}_3\text{ this compound was then converted to a new major species displaying a broad }^{13}\text{B resonance at 52.9 ppm fully consistent with a benzothiophene-BCl}_3\text{ compound.}\text{[22]}\text{. The same boron species is formed by initial addition of AlCl}_3\text{ to 10a followed by Et}_3\text{N. Esterification of the }\delta_{11B}\text{ 52.9 ppm species with excess pinacol/ Et}_3\text{N led to the desired product 11a in good isolated yield (68%), unequivocally confirming that borylative cyclization has taken place. This reaction is notable as a rare example of cyclitive alkyne thioboration.}\text{[9b]}\text{. It should be noted that attempts to directly esterify the zwitterion 10a led to significantly lower isolated yields of 11a (38%). This is attributed to 10a having a greater propensity to undergo protodeboronation due to the more nucleophilic anionic benzothienyl-BCl}_3\text{ moiety (relative to benzothienyl-BCl}_3\text{).}

With the functional group tolerance already assessed in benzofuran formation other thioanisole substrates were selected to assess if alkyne haloboration was a competitive pathway. As there was no evidence (in situ or post work-up) for haloboration with 9a bulkier substituents, naphthyl and mesityl, 9b and 9c, respectively, were incorporated into the alkyne. Addition of BCl}_3\text{ to these alkyne resulted in similar outcomes to that observed with 9a with no evidence for haloboration in either case, suggesting it is not a competitive reaction with thioanisoles. Again, the isolated yield of the benzothiophene pinacol boronate ester is higher on addition of Et}_3\text{N/AlCl}_3\text{ prior to esterification (e.g., for producing 11b yield – 48% direct from the zwitterion 10b whereas it is 73% on esterification after addition of Et}_3\text{N/AlCl}_3\text{.}. To demonstrate further that this methodology allows access to otherwise challenging to synthesize boronic acid derivatives 11d was produced in 55% isolated yield. Compound 11d is not readily accessible by established borylation routes commencing from 2-(thiophen-3-yl)benzo[b]thiophene (e.g., Ir-catalyzed borylation and halogenation/lithiation approaches would all proceed at the thienyl alpha position).}\text{[3b,4]}\text{.}

In conclusion, two distinct reaction pathways operate on addition of BCl}_3\text{ to arylalkynes possessing ortho E=Me (E = NMe, O or S) moieties, specifically borylative cyclization and trans-haloboration. The latter occurs with N,N-dimethyl-2-(phenylethynyl)aniline whilst all the o-alkynyl-thioanisoles studied react selectively by borylative cyclization. For o-alkynyl-anisoles both pathways are observed, with borylative cyclization dominating provided strong electron-withdrawing groups on the anisole moiety para to the alkyne, or significant steric bulk are absent. This methodology is a simple, scalable and metal-free route to useful benzofuran and benzothiophene boronic acid derivatives, many of which would be challenging to access by other established borylation methodologies.

Acknowledgements

We acknowledge the ERC under framework 7 (Grant number 205868), and the Royal Society (M.J.L.) for financial support. We also acknowledge the EPSRC (grant number EP/ K039547/1) for financial support. Additional research data supporting this publication are available as Supporting Information accompanying this publication.

Conflict of interest

The authors declare no conflict of interest.

Keywords

annulation · borylation · cross coupling · electrophilic cyclization · organoboranes

How to cite

Angew. Chem. Int. Ed. 2017, 56, 354–358

Angew. Chem. 2017, 129, 360–364

[1] 2.3-substituted benzofurans and benzothiophenes are privileged structures e.g., in desketoroloxifene: a) A. Radadiya, A. Shah, Eur. J. Med. Chem. 2015, 97, 356; b) C.-H. Cho, D.-I. Jung, B. Neuenwander, R. C. Larock, ACS Comb. Sci. 2011, 13, 501.

[2] For an example of a materials application see: H. Tsuji, C. Mitsui, L. Ilies, Y. Sato, E. Nakamura, J. Am. Chem. Soc. 2007, 129, 11902.

[3] a) N. Miyaura, A. Suzuki, Chem. Res. 1995, 95, 2457; b) Boronic Acids: Preparation and Applications (Ed.: D. Hall), Wiley-VCH, Weinheim, 2011; c) N. Schneider, D. M. Lowe, R. A. Sayle, M. A. Tarselli, G. A. Landrum, J. Med. Chem. 2016, 59, 4385.

[4] I. A. I. Mikhailid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890.

[5] For a review see: a) E. Buñuel, D. J. Cárdenas, Eur. J. Org. Chem. 2016, 10.1002/ejoc.201600697; For a particularly relevant recent example see: b) J. Huang, S. J. F. Macdonald, J. P. A. Harrity, Chem. Commun. 2010, 46, 8770.

[6] R. L. Melen, Chem. Commun. 2014, 50, 1161.

[7] For a key early publication see: T. Voss, C. Chen, G. Kehr, E. Nauha, G. Erker, D. W. Stephan, Chem. Eur. J. 2010, 16, 3005.

[8] For a key initial publication see: a) R. L. Melen, M. M. Hansmann, A. J. Lough, A. S. K. Hashmi, D. W. Stephan, Chem. Eur. J. 2013, 19, 11928; For more recent work see (and references therein): b) L. C. Wilkins, J. R. Lawson, P. Wieneke, F. Römering, A. S. K. Hashmi, M. M. Hansmann, R. L. Melen, Chem. Eur. J. 2016, 22, 14618.

[9] For rare examples of metal-free alkyne cyclitropic thioboration: a) C. A. Tanur, D. W. Stephan, Organometallics 2011, 30, 3652; b) C. Eiller, G. Kehr, C. G. Daniluc, R. Fröhlich, G. Erker, Organometallics 2013, 32, 384; During the reviewing of this manuscript the following alkane cyclitropic thioboration process was reported: c) D. J. Fazi, A. J. Davis, F. B. Meany, S. A. Blum, Angew. Chem. Int. Ed. 2016, 55, 14286.

[10] To our knowledge [ArylB(C,F)₃]⁺ species have not been utilised in Suzuki–Miyaura cross coupling, although ArylB(C,F)₃ species have been, for a recent example see: C. Eiller, G. Kehr,
C. G. Daniliuc, D. W. Stephan, G. Erker, Chem. Commun. 2015, 51, 7226.

[11] For a recent example see: C.-H. Yang, Y.-S. Zhang, W.-W. Fan, G.-Q. Liu, Y.-M. Li, Angew. Chem. Int. Ed. 2015, 54, 12636; Angew. Chem. 2015, 127, 12827.

[12] A. J. Warner, J. R. Lawson, V. Fasano, M. J. Ingleson, Angew. Chem. Int. Ed. 2015, 54, 11245; Angew. Chem. 2015, 127, 11397.

[13] D. J. Faizi, A. Issaian, A. J. Davis, S. A. Blum, J. Am. Chem. Soc. 2016, 138, 2126.

[14] For cyclization using Group 16 and 17 electrophiles see (and references therein): S. Mehta, J. P. Waldo, R. C. Larock, J. Org. Chem. 2009, 74, 1141.

[15] J. J. Hirner, D. J. Faizi, S. A. Blum, J. Am. Chem. Soc. 2014, 136, 4740.

[16] Excluding acetylene cis-haloboration dominates on combining alkynes and BX3: M. Lappert, B. Prokai, J. Organomet. Chem. 1964, 1, 384.

[17] Y. Uchikawa, K. Tazoe, S. Tanaka, X. Feng, T. Matsumoto, J. Tanaka, T. Yamato, Can. J. Chem. 2012, 90, 441.

[18] K. Yuan, N. Suzuki, S. K. Mellerup, X. Wang, S. Yamaguchi, S. Wang, Org. Lett. 2016, 18, 720.

[19] a) C. Sousa, P. J. Silva, Eur. J. Org. Chem. 2013, 5195; b) T. M. Kosak, H. A. Conrad, A. L. Korich, R. L. Lord, Eur. J. Org. Chem. 2015, 7460.

[20] K. D. Collins, F. Glorius, Nat. Chem. 2013, 5, 597.

[21] M. Zaidlewicz, J. V. B. Kanth, H. C. Brown, J. Org. Chem. 2000, 65, 6697.

[22] V. Bagutski, A. Del Grosso, J. Ayuso Carrillo, I. A. Cade, M. D. Helm, J. R. Lawson, P. J. Singleton, S. A. Solomon, T. Marcelli, M. J. Ingleson, J. Am. Chem. Soc. 2013, 135, 474.

[23] I. M. Downie, H. Heaney, G. Kemp, D. King, M. Wosley, Tetrahedron 1992, 48, 4005.

Manuscript received: October 13, 2016

Final Article published: November 29, 2016