Supplementary Figure 1

Tandem HIPS 1

InsC - ChgA	InsC - Amylin	InsC - IAPP2	InsC - IAPP1	
GDLQTL	GDLQTLWSRM	GDLQTLKCNTA	GDLQTLNAARD	GDLQTLTPVRS
DLQTLA	DLQTLAWSRM	DLQTLAKCNTA	DLQTLNAARD	DLQTLTPVRS
LQTLAL	LQTLALWSRM	LQTLALKCNTA	LQTLALNAARD	LQTLALTPVRS
QTLALE	QTLALEWSRM	QTLALEKCNTA	QTLALENAARD	QTLALETPVRS
TLALEV	TLALEVWSRM	TLALEVKCNTA	TLALEVNAARD	TLALEVTPVRS
HLVEAL	HLVEALWSRM	HLVEALKCNTA	HLVEALNAARD	HLVEALTPVRS
LVEALY	LVEALYWSRM	LVEALYKCNTA	LVEALYNAARD	LVEALYTPVRS
VEALYL	VEALYLSRM	VEALYLKCNTA	VEALYNAARD	VEALYTPVRS

Tandem HIPS 2

InsB / C/A-IAPP1	InsB / C/A-Amylin	InsB / C/A-IAPP2	2.5mi
Ins B-chain	Ins C-pep	Ins A-chain	
	QLELGGS	QLELGGS	
	GDLQT	SICSLY	
	HLVEAL	TSICSL	
	LVEALY	SICSLYTPVRS	
	LVEALYL	SICSLYPVRS	
	QLELGGS	QLELGGS	
	GDLQT	SICSLYPVRS	
	HLVEAL	TSICSL	
	LVEALY	SICSLYPVRS	
	LVEALYL	SICSLYPVRS	

Tandem HIPS 3

InsB / C/A-NPY	InsB / C/A-Sg1	InsB / C/A-Sg2	2.5mi
Ins B-chain	Ins C-pep	Ins A-chain	
	QLELGGS	QLELGGS	
	GDLQT	SICSL	
	HLVEAL	TSICSL	
	LVEALY	SICSL	
	LVEALYL	SICSL	
	QLELGGS	QLELGGS	
	GDLQT	SICSL	
	HLVEAL	TSICSL	
	LVEALY	SICSL	
	LVEALYL	SICSL	
Supplementary Figure 1. Expression vectors encoding for tandem sequences of HIPs. The sequence encoding for Ii1-80 was C-terminal fused with a tandem sequence HIPs plus the sequence of the 2.5mi epitope and cloned in a pCMV expression vector. Following this approach, we generated 3 constructs (Tandem HIPs 1, 2 and 3) that were used to determine 4.1-TCR reactivity. Notice that the Tandem-HIPs 1 does not include the C-terminal 2.5mi sequence, as the BDC2.5-TCR natural agonistic HIP sequence (encoding for LQTLALWSRMD) which is the result of combining left InsC peptide (LQTLAL) with the right ChrA peptide (WSRMD) is included in the pool of tandem peptides.
Supplementary Table 1. Peptides eluted from I-A^{g7} molecules from NIT-1 cells that were tested for 4.1-TCR activation.

I-A^{g7} eluted peptide from NIT-1	Sequence
Synaptotagmin 11 (174-191)	VTIQEAHGLPVMDQTQ
teneurin transmembrane protein 1 (835-849)	LQTPSQQAASKFYDR
Neuromodulin (184-201)	QPPTETAESSQAEKDA
Synapse associated protein (262-279)	TPPVVIKSQLKSEQEDEEE
NCAM (189-204)	SAPKVAPLVDLSDT
Secretogranin III (229-244)	IPEKVTVPVAVQDGF
Axonal Transporter of synaptic vesicles (885-898)	VAVQAIADDEEAPD
Beta-siete APP-Cleaving Enzyme (109-127)	SSNFAVAGAPHSYIDTYFD
Synaptic cell adhesion molecule (203-218)	TVTSQMLKLKHEDDCG
Secretogranin II (234-248)	DVYKTNNIAYEDV
Secretogranin II (420-434)	APGRGMVEALPDGLS
Chromogranin A (407-423)	RPSSREDVESRDFE
NMDA 2A (36-46)	IAVLLGHSHDV
Gamma-aminobutyric acid receptor-associated protein (29-45)	VPVIVEKAPKARIAGLD
Carboxipeptidase H (348-363)	KFPPEETLKSYEDKNK
Lisch 7 (491-509)	SGRPRARSVDALDDINRP
Amyloid beta A4 (237-249)	KSEFPTEADLDF
Amyloid beta A4 (475-489)	NVPAAEEIQDEVDE
Amyloid beta A4 (524-539)	ETKTTVELPPVNGES
Solute carrier family 12 member 7 (776-18)	TVVPVEARADGAG
Reticulon 4 receptor-like 1 (366-380)	RNQISKVSSGKELTE
Supplementary Table 2. Proteolytic products contributing to the generation of HIP sequences sharing the 4.1-TCR activation motif.

HIP ID	Left side donor	Left fragment HIP	Location	HIP sequence	Right fragment HIP	Right side donor	Location
HIP 15	Ins1C (57–79)	Ins1C (57–79)	Islet as Ins2C(61-81) (MHCII peptidome), pLN (MHCII peptidome), spleen (MHCII peptidome), DCGs, secretome, crinosomes (23), beta cell extracts (5)	LOTLAE–LEGEDDP	ChgA(374–381)	ChgA(374–402)	DCGs, secretome, crinosomes (23)
HIP 18	Ins1C (57–82)	Ins1C (57–82)	Secretome, crinosomes (23)	LOTLAE–EEEGS	ChgA(426–430)	ChgA(426–460)	crinosomes (23)
HIP 30	Ins1C (57–80)	Ins1C (57–80)	Islet (MHCII peptidome), pLN (MHCII peptidome), spleen (MHCII peptidome), DCGs, secretome, crinosomes (23), beta cell extracts (5), peptide forming HIP (24)	LQTLAL–EVEDPQV	Ins(57–63)	Partial fragments from Ins1C (57–85) Ins2C (57–87)	beta cell extracts (5), peptide forming HIP (24)
HIP 30	Q15E	Ins1C (57–80)	Secretome, crinosomes (23)	LQTLALE–EVEDPEV	Ins(57–63)	Partial right part post-translational modified [PqVEQ -> PeVEQ] found in pLN (MHCII peptidome) (23)	
HIP 32	Ins1C (57–81)	Ins1C (57–81)	DCGs, secretome, crinosomes (23)	LOTLAE–AEDQEL	ChgA(435–440)	ChgA(435–460)	DCGs, crinosomes (23)
HIP 32	Q15E	Ins1C (57–81)	DCGs, secretome, crinosomes (23)	LOTLAE–AEDQEL	ChgA(435–440)	ChgA(435–460)	Partial right part post-translational modified [AEDqEL -> AEdqEL] in crinosomes (23)
HIP 39	Ins1C (57–82)	Ins1C (57–82)	Secretome, crinosomes (23)	LOTLAE–EVEDPQRSM	ChgA(377–384)	ChgA(377–388)	crinosomes (23)
HIP 40	Ins1C (57–82)	Ins1C (57–82)	Secretome, crinosomes (23)	LOTLAE–AEDQEL	ChgA(435–440)	ChgA(435–460)	DCGs, crinosomes (23)
HIP 43	InsC (57–69)	InsC (57–69)	pLN (MHC II peptidome), DCGs, secretome, crinosomes (23), beta cell extracts (5)	QLELGA–LEGEDDP	ChgA(374–384)	ChgA(374–402)	DCGs, secretome, crinosomes (23)
HPS55	InsC (57–70)	InsC (57–70)	pLN (MHCII peptide) as Ins1C (61-70) and Ins2C (61-70), DCGs, secretome, crinosomes (23)	QLELGO–EVEDPQRSM	Ins(57–63)	Partial fragments from Ins1C (57–85) Ins2C (57–87)	beta cell extracts (5), peptide forming HIP (24)
HIP D1	Ins1C (57–83)	Ins1C (57–83)	Islet (MHCII peptidome), DCGs, secretome, crinosomes (23), beta cell extracts (5)	LOTLAE–EEEGS	ChgA(426–430)	ChgA(426–460)	crinosomes (23)
HIP D2	Ins2C (57–70)	Ins2C (57–70)	pLN (MHCII peptide) as Ins1C (61-70) and Ins2C (61-70), DCGs, Secretome, Crinosomes (23)	VAQLELGO–LEGEDDP	ChgA(374–380)	ChgA(374–402)	DCGs, secretome, crinosomes (23)

Orange: Insulin C Blue: Chromogranin A