The role of infiltrating immune cells in dysfunctional adipose tissue

Tomasz J. Guzik¹,²*, Dominik S. Skiba¹,², Rhian M. Touyz¹, and David G. Harrison¹,³

¹British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK; ²Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland; and ³Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA

Abstract

Adipose tissue (AT) dysfunction, characterized by loss of its homeostatic functions, is a hallmark of non-communicable diseases. It is characterized by chronic low-grade inflammation and is observed in obesity, metabolic disorders such as insulin resistance and diabetes. While classically it has been identified by increased cytokine or chemokine expression, such as increased MCP-1, RANTES, IL-6, interferon (IFN) gamma or TNFα, mechanistically, immune cell infiltration is a prominent feature of the dysfunctional AT. These immune cells include M1 and M2 macrophages, effector and memory T cells, IL-10 producing FoxP3+ T regulatory cells, natural killer and NKT cells and granulocytes. Immune composition varies, depending on the stage and the type of pathology. Infiltrating immune cells not only produce cytokines but also metalloproteinases, reactive oxygen species, and chemokines that participate in tissue remodelling, cell signalling, and regulation of immunity. The presence of inflammatory cells in AT affects adjacent tissues and organs. In blood vessels, perivascular AT inflammation leads to vascular remodelling, superoxide production, endothelial dysfunction with loss of nitric oxide (NO) bioavailability, contributing to vascular disease, atherosclerosis, and plaque instability. Dysfunctional AT also releases adipokines such as leptin, resistin, and visfatin that promote metabolic dysfunction, alter systemic homeostasis, sympathetic outflow, glucose handling, and insulin sensitivity. Anti-inflammatory and protective adiponectin is reduced. AT may also serve as an important reservoir and possible site of activation in autoimmune-mediated and inflammatory diseases. Thus, reciprocal regulation between immune cell infiltration and AT dysfunction is a promising future therapeutic target.

Keywords

Inflammation • Hypertension • Adipose tissue • Atherosclerosis • Diabetes

This article is part of the Spotlight Issue on Dysfunctional Adipocyte and Cardiovascular Disease.

Introduction

Physiologically, adipose tissue (AT) stores energy to support metabolic requirements in the times of need. From an evolutionary point of view, this is beneficial, but with increased nutrient intake and reduced energy expenditure in our modern world, AT function becomes altered leading to obesity.¹ Such alteration is a result of complex interactions of metabolic and immune factors. Understanding of the importance of immunity in metabolic regulation, and the role of metabolism in immune regulation, underlies the rapidly developing biological field of immunometabolism. For example, T cell or M1 macrophage activation is typically associated with a switch from oxidative phosphorylation to anaerobic glycolysis.² This has been reviewed in depth elsewhere,³,⁴ and, in the present paper, we will focus on the role of interactions of immune cells with dysfunctional AT.

AT can be typically classified as white, brown, or beige based on its metabolic activity, number of mitochondria, and uncoupling protein 1 (UCP-1) content, all of which affect adipocyte size and function. Brown AT plays a key role in thermogenesis, while white AT serves primarily for lipid storage. Brown AT is sparse in adult humans, in contrast to its periaortic location in rodents.⁵ These compartments differ in their functional importance for metabolic health and in their immunometabolic properties. VAT is metabolically more active than SAT and it harbours significantly more immune cells in both health and pathology.⁶ This is closely linked with increased glucose uptake and fatty acid generation in VAT and greater adrenergic innervation, all of which are important in the regulation of insulin sensitivity.⁷

* Corresponding author: Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Avenue, Glasgow G12 8QQ, UK. E-mail: tomasz.guzik@glasgow.ac.uk
© The Author. Published on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
SAT in turn absorbs circulating free fatty acids and triglycerides. Numerous studies have shown that the retroperitoneal content of VAT is linked to cardiovascular risk. This is mediated by chronic low-grade inflammation, characterized by an excessive immune cell infiltration, overproduction of detrimental adipokines and cytokines (TNF-α, IL-6) that can be detected systemically as biomarkers of inflammation. Mechanistically such low-grade inflammation alters metabolic functions of AT, leading not only to insulin resistance and diabetes but also to cardiovascular pathology. More recently, attention has been focused on a very specific compartment of VAT, the perivascular AT (pVAT), due to its close proximity to blood vessels and its unique embryonic origin from vascular smooth muscle cell SM22+ precursors. Dynamic interplay between white and beige/brown adipocytes within pVAT results in unique metabolic and pro-inflammatory properties that make pVAT an important regulator of vascular function and plaque stability. Human perivascular coronary adipocytes exhibit reduced differentiation, more irregular shape, and smaller size than in the SAT or typical peri-renal VAT. This translates into smaller lipid droplet accumulation and increased synthetic capacity. pVAT provides a microenvironment for recruitment and activation of immune cells which in concert with adipokines affect vascular tone and other aspects of vascular homeostasis.

In summary, all compartments of AT: SAT, VAT as well as pVAT serve physiological functions in vascular and metabolic homeostasis. When these protective functions are disturbed, dysfunctional AT promotes the development of metabolic and vascular disease (Figure 1).

Physiological roles of immune cells in AT

In health, AT contains numerous cell types, including not only adipocytes but also endothelial cells, fibroblasts, pre-adipocytes, stem cells, and regulatory/naive immune cells. Immune cells including M2 macrophages and T regulatory cells (Treg) release anti-inflammatory cytokines such as interleukin (IL)-10 and transforming growth factor beta (TGF-β), which increase insulin sensitivity and inhibit AT inflammation and

Figure 1 Triple functions of adipose tissue (VAT/pVAT) in health, obesity and in cardiovascular (CV) disease without obesity. AT compartments differ in characteristics of infiltrating immune cells, characteristics of adipocytes and adipokine profile. In health, protective adipokines and cytokines are important in maintaining vascular homeostasis. In obesity, enlarged adipocytes produce leptin and do not release adiponectin and enhance M1 macrophage accumulation in crown-like structures as well as T effector cells. In CVD without obesity macrophages are atypical, adipocytes are synthetic and create microenvironment for development of TLOs and immune cell activation.
Immune cells and dysfunctional adipose tissue

Defining dysfunctional AT

Functional changes within the AT associated with altered paracrine and endocrine properties contribute to the development of cardiovascular disease and cancer. AT dysfunction is thus characterized by decreased release of homeostatic protective factors such as adiponectin, nitric oxide, or protective prostaglandins and increased activation of stress-related pathways leading to pathological adipokine release (resistin, visfatin, leptin) and development of low-grade inflammation (Figure 1). While this phenomenon is particularly obvious in pVAT, it has also been well defined in other VAT depots in obesity. Adipocyte–immune cell interactions are therefore bi-directional and depend on nutritional mechanisms, neuro-hormonal pathways, and locally secreted humoral factors. In pathological conditions, adipocytes produce inflammatory cytokines and extracellular matrix proteins, supporting infiltration and activation of immune cells, therefore, creating an optimal microenvironment for inflammation. At the same time, activated immune cells secrete cytokines that influence adipocyte function, and differentiation and adipokine secretion. Links between adipokines and immune cell infiltration in the AT have been discussed elsewhere and are summarized in Table 1. The characteristics of AT inflammatory responses differ between classical inflammatory disease such as Crohn’s disease and cancer or cardiovascular disease. Common feature is, however, that dysfunctional, inflamed AT provides a microenvironment permissive for the development of pathology. These effects can be localized, for example linking pVAT to adjacent vessel dysfunction in hypertension or atherosclerosis or systemic, such as the effects of VAT dysfunction on the development of diabetes, cancer, autoimmune diseases, or signalling within the CNS.

Immune cells in AT dysfunction

Immune cells that infiltrate dysfunctional AT are the key drivers of AT inflammation (Figure 2 and Table 2). The cellular players of such responses differ depending on the anatomical location as well as on the type and the stage of pathology.

Macrophages were the first immune cells identified in AT. They are also the most abundant cell type in typical visceral and subcutaneous AT, representing more than 50% of all leukocytes. Their content in SAT is several folds lower than in typical VAT in both health and disease, suggesting their metabolic role. Resident AT macrophages (ATMs) play immune and scavenger functions. They present antigens to lymphocytes, phagocytose foreign organisms, release antimicrobial peptides, and attract other immune cells to areas of inflammation. In lean animals and humans, ATMs characterized by the surface markers F4/80 or CD68 constitute less than 5% of all AT cells. A dramatic increase (up to 40% of all AT cells) is observed in metabolic stress. Such an increase is also associated with qualitative changes of ATMs. In lean AT, M2-like producing IL-10 macrophages are dispersed, while in dysfunctional AT, M1 macrophages predominate and form crown-like aggregates, surrounding necrotic adipocytes/lipid droplets. In pathological conditions, these classically activated, M1 polarized, CD11c+ macrophages increases, producing pro-inflammatory TNF-α and IL-6 and IL-1β. Such simple dichotomous division of ATMs into protective M2 and damaging M1 cells appears to be an oversimplification, especially when it concerns human pathology. Several studies point to the role of M2 cells in dysfunctional AT and insulin resistance or vascular remodelling and fibrosis, indicating the need for further phenotipic characterization of ATMs that may include Ly6C+CD163+CCR2- and CX3CR1+ macrophages. Other types of innate immune cells in VAT and pVAT include neutrophils, representing about 2% of visceral stromal, non-adipocyte, cell fraction. In contrast to resident macrophages and dendritic cells (DCs), their presence may be transient, but they may still contribute to insulin resistance (Table 2). Especially, in lean conditions, AT harbours eosinophils and mast cells, cells that are typically involved in allergic reactions. Eosinophils secrete IL-4 and IL-13 and contribute to the anti-inflammatory, insulin-sensitive AT phenotype that supports the expansion of M2 ATMs. Their content in pathology is decreased. Mast cells in turn increase in dysfunctional AT and have been linked to atherosclerosis and metabolic dysfunction by promoting monocyte recruitment.

While the role of macrophages in AT dysfunction is predominantly linked to their innate functions, these cells also serve as antigen-presenting cells leading to the activation of the adaptive immune system in AT. This is particularly evident in pVAT, where tertiary lymphoid structures have been identified. Dendritic cells, which are the most efficient antigen presenting cells, have also been identified both in typical VAT and in pVAT. Thus, dysfunctional AT, creates a microenvironment permissive for T and B lymphocyte activation, and lymphocytes constitute the second most abundant immune cell population in VAT. In some diseases, their content in the AT exceeds the number of...
and TNF, and IL-17 producing Th17 cells (Table 1) to initiate an inflammatory cascade that may precede ATM infiltration. 46

In healthy human omentum, up to 10% of T cells are iNKT cells and their number is reduced in patients with obesity and cancer.104 Their exact role is not fully recognized but link to immune activation by lipids makes them a critical candidates for important immuno-metabolic cells.105 Recently, gamma-delta (γ/δ TcR) T cells have been demonstrated to represent substantial proportion of T cells in the AT and their number increases in metabolic and vascular pathologies.61–63. 106 Importantly, these cells are an important source of strongly pro-inflammatory IL-17 and may further regulate immune responses. T cell presence and activation in dysfunctional AT is also closely linked to inflammasome activation.107 Nlrp3 in regulates IL-18 and IFN-γ in the AT and promotes effector T cell accumulation in AT.107 Finally, there is a small number of B cells in the VAT of lean animals, where they provide immunity against infections, including bacteria from peritoneal space.108 B-cell content increases in dysfunctional AT is also closely linked to inflammasome activation.107

The mechanisms of immune cell recruitment and the metabolic and functional consequences of their presence in AT vary in different pathological conditions which are briefly summarized below.

Immune cells in the AT and metabolic diseases

Obesity
Increased adipocyte size triggers a stress response and release of chemotaxtrict proteins, such as MCP-1, M-CSF-1, or RANTES,109 leading

Table 1 Summary of the effects of adipokines on immune responses. Expertly reviewed and discussed elsewhere.30,31–37

Adipokine	Immune cell recruitment	Immune cell activation	Summary
Leptin	↑ CCL3, CCL4 and CCL5 from Mf	Similar to IL-2	Pro-inflammatory
	Directly stimulates Mo/Mf chemotaxis through canonical pathways	↑ IL-6/TNF in Mo/Mf	
		↑ T cell activation (CD69+/CD25+) and proliferation	
		↑ Th1 (IL-2/IFNγ)	
		↑ Th17 and ↑ Treg	
		↑ Th2 (IL-4)	
		↑ NK cell cytotoxicity	
Adiponectin	↑ Eo chemotaxis	↑ IL-17 production from γ/δ T cells	Anti – inflammatory
	↑ ICAM-1 in EC	↑ IL-8 in synovial fibroblasts	via AdipoR1 receptor;
	↑ CXC chemokine ligands (e.g. IP-10) and T cell recruitment	↑ Antitumour DC immunity	
		↑ Mf activation resembling M1 (but with M2 elements; mannos receptor)	
		↑ CD4 T cell activation	
Resistin	↑ MIP-1β, GRO-α and CCL1 in Mf	Expressed in Mf and T cells	Pro-inflammatory
	↑ CX3CL1 and CX3CR1	Induced by IL-1/IL-6/TNF	
	direct chemotaxis of human CD4+	↑ IL-6, IL-27, IL-23 and IL-5 in Mf	
		↑ (↑) Th17 and Th1	
Visfatin (PBEF-1)	↑ ICAM-1; VCAM-1 on EC and VSMC	↑ B-cell maturation	Pro-inflammatory
		↑ Leukocyte activation	
		↑ TNF/IL-6/IL-1b	
		↑ NfkB	
Chemerin (RARRES2 or TIG2)	Direct chemotaxis through CMKL1R1; chemR23 especially on DCs; NK; Mf	↑ TNF/IL-6/	Pro-inflammatory and anti-inflammatory
		↑ NfkB	
		↑ Adiponectin	
		↑ TGFβ	
RBP4	?	Activates APCs in AT inflammation and T cell activation	Pro-inflammatory
		Inhibited by TNF	

Eo, eosinophil; Mf, macrophage; Mo, monocyte; NK, natural killer cells; EC, endothelial cells; Th, T helper; CD, cluster of differentiation; IL, interleukin; TNF, tumour necrosis factor alpha; CCL, CC chemokine ligand; CXCL1, fraktalkine; PBEF-1, pre-B-cell colony-enhancing factor – visfatin; TIG2, tazarotene-induced gene 2; RARRES2, retinoic acid receptor responder protein 2; CMKL1R1, chemokine like receptor 1.
to monocyte recruitment and macrophage accumulation. As discussed above, adipokines also induce chemokine expression and have key chemotactic properties themselves. There is a correlation between the accumulation of AT macrophages and adipocyte size. Local lipid fluxes are also regulators of ATM recruitment. High levels of free fatty acids (FFA) elevate chemokine secretion from adipocytes inducing macrophage chemotaxis to VAT. FFAs activate TLR4 signalling in adipose cells. In TLR4 knockout mice, AT inflammation is prevented, and these animals are protected against obesity-induced insulin resistance. Finally, hypoxia and oxidative stress in the VAT is characteristic for obesity and can promote chronic inflammation through metabolic and classical chemokine-dependent mechanisms. Apart from chemotaxis, increased macrophage proliferation and differentiation from preadipocytes can enhance the content of macrophages. Obesity and insulin resistance are characterized for obesity and can promote chronic inflammation through metabolic and classical chemokine-dependent mechanisms. Obesity and insulin resistance are characterized by the predominance of M1 macrophages in the VAT. Mechanisms of M1 macrophage polarization in obesity are not entirely clear. Non-esterified fatty acids (NEFA) are produced in AT and increased systemically in obese subjects. NEFA induce the expression of IL-6, while reducing IL-10 (Figure 2). In contrast, PPARγ skews macrophages toward an alternative M2 phenotype by regulating fatty acid storage and, in doing so, reduces obesity and improves insulin resistance (Figure 2).

While the metabolic state plays a role in macrophage recruitment and polarization, ATMs in turn have important effects on AT metabolism (Figure 2). Depletion of macrophages in AT increases the expression of adipose triglyceride lipase (ATGL) and genes regulated by FFAs. Blockade of monocyte recruitment to VAT genetically or pharmacologically, through CCR2 antagonism protects from diet-induced obesity, improves insulin sensitivity, and lowers AT genes expression related to inflammation and AT dysfunction. Similarly, selective depletion of M1 macrophages decreases pro-inflammatory genes expression and reduction in crown-like structures in obese AT, and consequently improves insulin sensitivity. Weight loss decreases macrophage content leading to improved insulin sensitivity. Both fasting and bariatric surgery decrease MCP-1, CSF-3, and genes related to hypoxia (HIF1-α) in AT and consequently reduce the number of ATM cells.

While macrophages are quantitatively the most abundant immune cells in obesity, T cells also play a critical regulatory role. They increase significantly in the AT in obesity and tend to localize around enlarged adipocytes. T cells can interact with ATMs regulating inflammatory responses and metabolic dysfunction. Of importance are the cytotoxic CD8+ T cells that secrete TNF-α, IL-2, IFN-γ, and chemokine RANTES and CD4+ Th1 cells that secrete TNF-α, IL-12, and INF-γ. These cytokines directly affect adipocyte function and promote M1...
macrophage polarization.125 T cell recruitment in obesity is partially mediated by the RANTES–CCR5 axis.99,123 T cell infiltration of AT may precede macrophage-dependent inflammation as it is present after 4–5 weeks of high-fat feeding while macrophage influx was observed after 10 weeks.126 AT T cell infiltration is strongly associated with early reduction of insulin sensitivity and impaired glucose tolerance.126 In line with this, CD8+ mice are protected from M1 macrophage AT infiltration and subsequent AT dysfunction in obesity.46 Indeed, T cell cytokines are essential for macrophage polarization in the setting of classical inflammation.127 A specific subset of pro-inflammatory T cells (CD153+PD-1+CD44hiCD4+) are remarkably increased in the VAT of HFD-fed mice. These osteopontin-producing CD4+ T cells show functional and genetic features of senescent T cells.128,129 T cells in obese AT are regulated by NLRP3 inflammasome, which senses obesity-associated danger

Table 2: Key cell types infiltrating adipose tissue in health and disease – selected metabolic and cardiovascular (CV) effects.

Cell type	Preferential localisation	Metabolic effects	Role in CV pathology
Macrophages	VAT>pVAT38	Insulin resistance (M1)	Polarising M1 phenotype in atherosclerosis and hypertension
	VAT>SAT40	Higher AT ROS production41	Role in hypoxia
		Increased lactate production41	Promote vascular Th17 response44
		Regulate differentiation of adipocytes via GM-CSF signalling42	M2 Mf in vascular fibrosis40
		ATMs can inhibit adipogenesis43	initiate inflammatory cascades46
		Insulin resistance46	role in macrophages differentiation, activation and migration46
		Cause steatohepatitis47	impair vascular function39
		Regulate glucose tolerance via perforin48	impair vascular function39;

T.J. Guzik et al.

\(T.J.\) Guzik et al. Downloaded from https://academic.oup.com/cardiovascres/article-abstract/113/9/1009/3952694 by guest on 30 March 2020
signals and contributes to obesity-induced inflammation and insulin resistance. These mechanisms also link macrophage activation to T cell role in obesity.

Other immune cells are also increased in AT in obesity. B cell AT infiltration is associated with increased IgG production in the AT. Concentrations of pro-inflammatory IgG2c in serum and VAT are elevated in obese mice. Most importantly, B cells from obese mice transferred into B cell-deficient lean mice induce insulin resistance. Apart from antibody-mediated mechanisms, B cells from obese mice secrete pro-inflammatory cytokines (IL-6 and INF-γ) and can directly regulate T cells and macrophages.

Eosinophils also play an important role in the immune regulation of obesity. Mice lacking eosinophils exhibit weight gain, insulin resistance, and increased proinflammatory M1 macrophages in the AT. At the same time, mice with eosinophilia (overexpressing IL-5) demonstrate decreased adiposity and improved insulin sensitivity when fed a high-fat diet. Apart from antibody-mediated mechanisms, B cells from obese mice secrete pro-inflammatory cytokines (IL-6 and INF-γ) and can directly regulate T cells and macrophages.

Figure 3 Perivascular AT inflammation as a mechanism of endothelial dysfunction.

Diabetes and insulin resistance

Immune cell infiltration into AT provides an important link among obesity, insulin resistance, and diabetes. The number of macrophages...
infiltrating AT in obese patients with insulin resistance is higher than in patients with insulin-sensitive obesity, independent of the fat mass. Insulin levels affect AT inflammation during high-fat diet. Progressive macrophage infiltration in VAT preceded increase of insulin in serum, suggesting that AT inflammation is a cause rather than the consequence of insulin resistance. Increasing evidence supports the role of adaptive immunity in insulin resistance and diabetes, through inducing pro-inflammatory cytokines in metabolic organs, such as the AT, liver, muscle, and pancreas. CCR5 knockout mice are protected from insulin resistance induced by high-fat diet and this effect is mediated by reduced effector T cell accumulation with subsequent reduction of ATMs and M2 polarization of persisting macrophages. Clinical studies confirmed that Th1 cells are up-regulated in the AT and peripheral blood from patients with prediabetes or T2DM. Moreover, high fat diet and insulin resistance are associated with accumulation of Th1, Th17, and effector CD8+ lymphocytes in the AT, while anti-inflammatory Th2 and Treg cells are decreased. Combined anti-CD3 and glucocorticoid treatment induces IL-10 and TGF-β, reducing VAT inflammation in obese mice, and improving fasting glucose levels.

Immune cell activation, involving the co-stimulatory molecule CD40 and its ligand CD40L, is particularly important in linking AT inflammation to diabetes. CD40–CD40L interactions promote pancreatic, AT, and vascular inflammation (Figure 3), increasing the expression of pro-inflammatory cytokines and chemokines (e.g. TNF-α, IL-6, MCP-1), leukotriene B4 at the same time enhancing lipid droplet accumulation and adipogenesis. These effects are mediated by reduced expression of insulin receptor substrate (IRS-1) and glucose transporter type-4 (GLUT-4). CD40L expressed on T cells may induce AT inflammation and impair insulin sensitivity (Figure 2).

AT immune cells in vascular disease—hypertension and atherosclerosis

Hypertension

Hypertension represents an important example of immuno-metabolic vascular disease. It is associated with obesity and BMI is one of the strongest predictors of increased blood pressure. Many hypertensive subjects are not obese, but present features of metabolic dysregulation. In hypertension with or without obesity, pVAT inflammation is a prominent feature, and is involved in the pathogenesis of vascular dysfunction. This leads to the loss of protective properties of pVAT and promotes loss of endothelium-dependent vasodilation and enhanced vasoconstriction. These functional changes are linked with morphological alterations, as pVAT becomes synthetic, pro-inflammatory, often de-differentiated, and highly metabolically active (Figure 3). This profile is characterized by changes in adipokines (increased resistin and visfatin and decreased adiponectin and leptin) and increased production of chemokines such as RANTES or IP-10 (CXCL10) that are key for recruitment of activated monocytes/macrophages and CD8+ T cells. Apart from AT-specific factors activating immune system in the pVAT, central nervous system is also involved, which is important in the context of high perivascular sympathetic innervation and its role in hypertension.

In health, the immune cell infiltrate in the pVAT constitutes only about 2% of the stromal vascular fraction (SVF) cells. In vascular pathologies, such as Ang II-induced hypertension, leukocytes in pVAT increase to 7–10% of SVF cells, and, in atherosclerosis, their content reaches up to 10–20%. Hypertension is linked with a significant increase of T cell and antigen presenting cell pVAT infiltration, which mediates endothelial dysfunction and provides a link between hypertension and subsequent atherosclerosis. Dysfunctional endothelium promotes inflammation through a number of NFκB dependent, Notch/jagged1-regulated integrin, and adhesion molecule expression. Both CD4+ and CD8+ T cell subpopulations are increased in the pVAT in hypertension and express higher levels of proinflammatory cytokines (TNF-α, INF-γ) and CCR5. T cell activation and vascular and renal recruitment is essential for the development of AngII-induced hypertension. This is partially mediated by RANTES, similar to obesity and insulin resistance, through which Th1, Tc1, and gamma-delta (γ/δ) T cells, lymphocytes are recruited to the vascular wall. Th17 cells, essential for blood pressure increase, are in turn recruited in a RANTES-independent CCR6, -dependent manner. Th17 cells not only participate in blood pressure increase but also contribute to vascular stiffening observed in hypertension. In contrast, adoptive transfer of suppressive, Tregs prevent AngII-induced hypertension and vascular inflammation and improves vascular function. B cells in pVAT are almost equal in percentage of SVF cells to T cells and their number is increased during hypertension. They may act as antigen-presenting cells, modulating T cell responses, and produce IgG2b and IgG3. Depletion of B cells protects from hypertension. Finally, macrophage infiltration is also significantly increased in hypertensive pVAT. Elevated blood pressure is correlated with pVAT expression of macrophage chemokine receptors CCR2 and its ligands CCL2, CCL7, CCL8, and CCL12. Moreover, the CCR2 antagonist INCB3344 reduces CCR2 expression and reverses macrophage accumulation in pVAT of mice with hypertension. Macrophages in pVAT in healthy conditions appear to be predominantly unpolarized or skewed towards M2. However, when blood pressure is elevated, the level of both M1 and M2 subpopulations is increased. Macrophage infiltration to the pVAT during hypertension is regulated by T cell-dependent mechanisms as lymphocyte adaptor protein (LNK) deficiency, leading to hyperactivated T cells increased number of macrophages in the aorta and pVAT.

Classical antigen-presenting cells such as DCs are regulators of adaptive immune response may play an important role in initiation of inflammation by interactions with T cells. They occur in small numbers in pVAT in the healthy state and their number increases during hypertension. Elevated oxidative stress leads to endogenous peptide modification by isoketal (isolevuglandin) adduct formation. This occurs in AT, vessels, and kidneys and promotes antigen presentation by dendritic cells precipitating the role of the T cells in hypertension and further development of pVAT inflammation. Blocking the co-stimulation molecules between T cells and dendritic cells prevents pVAT inflammation and decreases blood pressure. Moreover, DCs secrete cytokines such as IL-1β, IL-6, IL-23 which promote polarization of T lymphocytes to Th17 cells, which plays particular role in hypertension development. Thus, hypertension and associated vascular dysfunction result from complex interactions between several cell types involved in inflammatory responses in hypertension. All types of cells discussed above coexist together in pVAT and they can interact with each other initiating inflammation and causing development of vascular dysfunction and disease.

The effector mechanisms linking infiltrating immune cells to AT dysfunction in hypertension are related to the release of effector cytokines such as IL-17A, IFN-γ, TNF-α, and IL-6. These cytokines also impair endothelium-dependent relaxation as demonstrated in ex vivo studies, as well as in vivo using INF-γ knockout mice. IL-6 is also necessary for Th17 cell differentiation. IL-17, a key pro-hypertensive cytokine, is
a potent activator of the endothelial cells promoting the expression of adhesion molecules. IL-17A activates RhoA/Rho-kinase and increases inhibitory eNOS Thr495 phosphorylation in endothelial cells leading to decreased NO production. Inflammatory cytokines modulate smooth muscle cell constriction, proliferation, and migration. They also affect adipokines release from AT. For example, TNFα, IL-6, and IL-17A can all inhibit expression and release of adiponectin. One of the key adipokines, leptin, has a structure similar to IL-6, IL-12, IL-15 and can affect leukocyte activation and chemotaxis, release of oxygen radicals, VSMC proliferation, and expression of adhesion molecules on endothelial and vascular smooth muscle cells. IL-17A and TNF increase leptin and resistin production in AT which upregulate the expression of VCAM1 and ICAM and/or induction of CCL2 as well as endothelin-1 from endothelial cells and can induce vascular dysfunction and oxidative stress. All these mechanisms, besides promoting PVAT dysfunction, provide a link between hypertension and atherosclerosis, in part independently of blood pressure.

Atherosclerosis
PVAT is dysfunctional at all stages of atherogenesis. Increased levels of chemerin, visfatin, leptin, and vaspin are correlated with atherosclerosis development. At early stages of atherosclerosis macrophages, T cells and dendritic cells are recruited into perivascular adventitia and AT surrounding vasculature. This precedes development of endothelial dysfunction and oxidative stress and can be modified by interventions targeting numerous metabolic functions such as Ang(1-7). Such perivascular inflammation of AT continues to be observed at later stages of the disease, with further increase of macrophage and B cell content.

Leukocytes infiltrating to AT are the main source of cytokines and reactive oxygen species that promote cell death and contribute to lesion progression. At the same time, through the release of adipokines and chemokines, it attracts immune cells and dysfunctional adipose tissue immune cells in immune and inflammatory disorders
Autoimmune and inflammatory diseases are typically associated with metabolic dysregulation. This is particularly evident in psoriasis, ankylosing spondylitis and rheumatoid arthritis and is linked with development of metabolic syndrome. Psoriasis is associated with significant perivascular, global arterial, and SAT inflammation. Similarly, AT in rheumatoid arthritis is highly infiltrated with macrophages which form crown-like structures. These macrophages are activated and express mixed characteristics with high levels of TNF, IL-1beta, but also IL-10. These macrophages secrete chemokines (CCL2 and RANTES) as well as IL-6, IL-8, MMP-3. These factors further promote macrophage infiltration and can mediate T cell recruitment and activation. T regulatory cells resident in AT may serve an important role in maintaining self-tolerance, and their impairment may promote development of autoimmunity. This mechanism may link epidemiological suggestions of links between obesity and autoimmune diseases. A key unanswered question is whether adipose tissue in autoimmune disease can create a microenvironment for T cell activation and participate in the pathogenesis of autoimmune disease, or if it is a mere manifestation of systemic inflammation.

Ectopic fat depots and chronic inflammation
Ectopic AT is the visceral fat surrounding intraabdominal organs and located in the liver, heart, pancreas, and muscles. Its presence is linked to low-grade inflammation and cardiac-metabolic complications commonly experienced in type 2 diabetes. In particular, non-alcoholic fatty liver disease constitutes an important risk determinant for cardiometabolic risk. Myocardial triglyceride, epicardial, and pericardial fat deposits accumulate with increasing amount of liver fat and VAT. Thus, the association of LV diastolic function with hepatic ectopic fat may be an indicator of systemic inflammation. Ectopic fat accumulation in the liver is linked to the infiltration of the γ/δ T cells, granulocytes, and CD11b+ cells in mice. It appears that IL-6 regulates recruitment of these cells and IL-17 production in the liver that promotes ectopic fat. This is in part regulated by decreased microRNAs (miR) such as miR26a, providing a link to cardiac injury. Similar regulatory properties have been attributed to other miRs expressed in the AT and cardiovascular system. The inflammatory nature of epicardial AT has been known for years, and is supported by numerous molecular mechanisms. Recently, however, have we started appreciating the heterogeneity of epicardial AT which is particularly linked to its pro-inflammatory properties. It may also underlie a link between subclinical atherosclerosis and epicardial fat thickness and hepatic steatosis. Thus, ectopic fat accumulation in and around the heart, kidneys, muscles, and liver is a marker of increased cardiovascular risk likely linked to chronic inflammation. At the same time, through the release of adipokines and chemokines, it attracts pro-inflammatory cells like IL-17 producing γ/δ T cells, which contribute to the pathology.
Translational evidence

While most of data regarding immune cell infiltration of AT originate from animal models, the role of immune cells has been clearly demonstrated in humans. Similar to animal models, macrophages constitute about 4% of the total AT stromal vascular fraction and it increases up to 15% in obesity.203 There are, however, some key differences in the characteristics of immune cells infiltrating human AT. In contrast to animal studies, an 'M2-type' macrophage with remodeling capacity (e.g. through TGF-β and IL-10 release), but also to secrete proinflammatory cytokines, has been identified in obese AT in humans.204 These mixed-type macrophages have CD11c+CD206+ characteristics but are pro-inflammatory and linked with insulin resistance in human obesity.92 T cell infiltration in human AT is much less characterized.99 AT T cells correlate with BMI, their recruitment is dependent on RANTES chemokine and functionally affects adipocyte and pro-adipocyte differentiation and function.99 Detailed characteristics, activation mechanisms, and effector functions of effector T cells present in human AT are still poorly defined. Adipokines have been shown to regulate human immune cell activation, for example inhibit IL-17 production from T cells and CD8+ effector cell accumulation (summarized in Table 2).

Interestingly, several studies have recently shown that vascular dysfunction, may regulate AT dysfunction, with immune cell infiltration as a key intermediate step. For example, p22phox overexpression in VSMCs leads to increased diet induced obesity that is mediated by AT T cell infiltration.134 The same has been shown in humans where oxidative stress derived such as 5-HNE regulate adiponectin release from AT.50,205,206 Significant weight loss, in obese individuals, demonstrates clear links to reduced immune cell infiltration in the AT with concomitant improvement of insulin sensitivity and vascular function.122 Several clinical studies using immune targeted therapies in patients with type 2 diabetes confirmed experimental suggestions of the causal role of inflammation in insulin resistance and hyperglycaemia. Indeed, in patients with type 2 diabetes treated with IL-1 receptor blocker (Anakinra),207 IL-1β antagonist (gevokizumab,208 canakinumab,209 LY2189102210), TNF antagonist (CDP571,211 Ro 45-208,212 etanercept213) or IκBα-NF-κB inhibitor124 all have been shown to improve metabolic profile providing an important translational evidence.

Conclusions

Over the years, it has become apparent that vascular and metabolic dysfunction occur in a wide range of vascular pathologies and are closely regulated by coincident immune dysregulation. Immune cells infiltrating AT both sense and can induce metabolic disturbances, contributing to a vicious circle of AT dysfunction. Immune infiltration of AT is critical in T2D, obesity or insulin resistance it is also a primary feature of hypertension or atherosclerosis, making immune-metabolic interventions a valuable therapeutic approach in a wide range of cardiovascular pathologies. While in animal models of metabolic disease, we have now identified the key immune cell subpopulations and their immunometabolic profiles, relatively little is known about human AT infiltration. One challenge is to identify specific immune cell populations within human AT that could be targeted and differences in their characteristics depending on anatomical location. Finally, we need to understand dynamic changes of the role of immune cells at different time points of metabolic and vascular pathology.

While specific therapeutic interventions limiting AT inflammation may be designed based on this,15,211 we already know that commonly used agents, including methotrexate, anti-TNF therapies and leflunomide limit macrophage infiltration in AT.217 Similarly, several vasoactive therapies such as ACE-inhibitors or angiotensin II receptor blockers have potential to limit inflammation in pVAT. While these approaches lead to systemic immunosuppression, more specific small molecule immune targeted therapies might prove helpful to improve the metabolic profile of AT and prevent AT dysfunction.

Acknowledgements

The paper is supported by Wellcome Trust Senior Biomedical Fellowship (to T.J.G.), National Science Centre of Poland (No. 2011/03/B/NZ4/02454) and BiH Centre of Research Excellence (RE/13/5/30177) and ‘Mobihvac Plus’ (1300/MOB/B/2015/0) to D.S.

Conflict of interest: none declared.

References

1. Stevens GA, Singh GM, Lu Y, Dansaei G, Lin JK, Finucane MM, Bahalim AN, McNiort RK, Gutierrez HR, Cowan M, Paciorek CJ, Farzadfar F, Riley L, Ezzati M, Factors GBMR. National, regional, and global trends in adult overweight and obesity prevalences. PLoS Publ Health 2012;10:22.
2. Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells. Nat Immunol 2016;17:618–623.
3. Norata GD, Caligiuri G, Chavakis T, Matarese G, Netea MG, Nicoletti A, O’neill LA, Marelli-Berg FM. The cellular and molecular basis of translational immunometabolism. Immunity 2015;43:421–434.
4. Guzik Tj, Cosentino f. Epigenetics and immunometabolism in diabetes and aging. Antioxid Redox Signal 2017, in revision.
5. Ronti T, Lupattelli G, Manzur M. The endocrine function of adipose tissue: a new update. Clin Endocrinol (Oxf) 2006;64:355–365.
6. Vertanen KA, Liddle ME, Oraja J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P. Functional brown adipose tissue in healthy adults. N Engl J Med 2009;360:1518–1525.
7. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 2010;11:11–18.
8. Nosalski R, Guzik Tj. Pervascular adipose tissue infiltration in vascular disease. Br J Pharmacol 2017; doi: 10.1111/bph.13705.
9. Lim S, Meigs JB. Ectopic fat and cardiometabolic and vascular risk. Int J Cardiol 2013;169:166–176.
10. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity and 'adipocytokines': friends or foes? Nat Rev Endocrinol 2011;7:389–399.
11. Xu HY, Barnes GT, Yang Q, Tan Q, Yang DS, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1796–1808.
12. Haimovitz-Friedman J, Chen H. Adipose inflammation: a prime target for therapy. Nat Rev Endocrinol 2015;11:453–459.
Immune cells and dysfunctional adipose tissue

19. Hong EG, Ko HJ, Cho YR, Kim HJ, Ma Z, Yu TY, Friedline RH, Kurt-Jones E, Finberg R, Fischer MA, Granger EL, Norbury CC, Hauschild SA, Philbrick WM, Lee CG, Etzkorn JA, Kim S. Interleukin-10 directs-induced insulin resistance by increasing macrophage and cytokine response in skeletal muscle. Diabetes 2009; 58:2523–2525.

20. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117:175–184.

21. Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun 2003; 293:630–635.

25. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Walcher D, Hess K, Berger R, Aleksic M, Heinz P, Bach H, Durst R, Hausauer A, Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, Sagan A, Sun K, Tordjman J, Clement K, Scherer PE. Fibrosis and Adipose Tissue. 2015; 2015:1429–1435.

30. Guzik TJ, Mangalat D, Korbut R. Adipocytokines – novel link between inflammation and dysfunctional adipose tissue. J Physiol Pharmacol 2012; 63:435–443.

31. Naylor C, Petri WA. Jr. Leptin regulation of immune responses. J Physiol Pharmacol 2012; 63:351–360.

35. Walcher D, Hess K, Berger R, Aleksic M, Heinz P, Bach H, Durst R, Hausauer A, Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, Sagan A, Sun K, Tordjman J, Clement K, Scherer PE. Fibrosis and Adipose Tissue. 2015; 2015:1429–1435.

39. Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, Sagan A, Wu J, Vini A, Marjan P, Guzik B, Podolec J, Drummond G, Lob H, Harrison DT, Guzik T. Role of chemokine RANTES in the regulation of perivascular inflammation of the heart. J Mol Cell Cardiol 2015; 88–98.

41. Duan B, Callewaert Y, Beckers T, Bao Y, Schmitz F, Charng M, Granger EL, Philbrick WM, Lee CG, Etzkorn JA, Kim S. Interleukin-10 decreases adipose tissue macrophage infiltration and improves insulin sensitivity in high-fat diet-fed mice. Diabetes 2007; 56:305–528.

42. Pamir N, Liu NC, Irwin A, Becker L, Peng YF, Ronsein GE, Bornfeldt KE, Duffield JS, Heinecke JW. Granulocyte/macrophage colony-stimulating factor-dependent dendritic cells restrain adaptive T-cell expansion. J Biol Chem 2015; 290:1466–1467.

43. Bilwiski R, Schulte DM, Oberhauser F, Mauer J, Hampel B, Gutschow C, Krone W, Laudes M. Adipose tissue macrophages inhibit adipogenesis of mesenchymal precursor cells via Wnt-5a in humans. Int J Obes Relat Metab Disord 2011; 35:1450–1454.
68. Winer DA, Winer S, Shen L, Wada PP, Tantha J, Palter S, Gsui H, Wu P, Davidson MG, Alonso MM, Leong HK, Glassford A, Caimol M, Kenkel JA, Tedder TF, McElhinny T, Miklos DB, Doech HM, Engleman EG. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 2011;17:610–1334.

69. Wensween FM, Jelencic V, Valentin S, Senat M, Wensween TT, Theunis S, Glaser A, Mendaia D, Stima D, Wunderlich FT, Brininger J, Mandelboim O, Polic B. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol 2011;12:159–168.

70. Wuu J, Grassia G, Cambrook H, Laienki A, MacRitchie N, Carberry J, Wadowski RM, Lawrence C, Kennedy S, Maffia P. Perivascular mast cells regulate vein graft neointimal formation and remodeling. Prog 2015;e1192.

71. Bot I, de Jager SC, Zerecki A, Lindstedt KA, van Berkel TJ, Weber C, Biessen E. Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. J Clin Invest 2011;115:2551–2565.

72. Layne K, Di Giosa P, Ferro A, Passaquathe G. Anti-platelet drugs attenuate the expansion of circulating CD14HighCD16+ monocytes under pro-inflammatory conditions. Cardiovasc Res 2016;111:26–33.

73. Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res 2015;107:321–330.

74. Wu D, Mohanta SK, Yin C, Peng L, Ma Z, Srikalupula P, Grassia G, MacRitchie N, Dever G, Gordon P, Burton FL, Laienki A, Sabr SR, Mclnies JB, Brewer JM, Gasdie P, Weber C, Lehmann T, Teusps D, Habinicht L, Beer M, Grabner B, Maffia P, Weih F, Habinicht AJ. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotactin beta receptors. Immunity 2015;42:1100–1115.

75. Alshawaree K, Wanger M, Sleissner KA, Korsoglu G, Katus HA, Erbel C. Adipose tissue inflammation and its interaction with intimal atherosclerotic lesions. Front Physiol 2014;5:296.

76. Bertola A, Ciucchi T, Rousseau D, Bourrier V, Duffaut C, Bonafous S, Blin-Wakkach C, Anty R, Iannellli A, Gugnenheim J, Tran A, Bouloumie A, Guall P, Wakkach A. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin resistance and inducing Th17 responses in mice and patients. Diabetes 2012;61:2238–2247.

77. Wu H, Ghothis S, Perrand XD, Feng L, Garcia GE, Perrand JL, Sweener JF, Peterson LE, Chan L, Smith CW, Ballaytune CM. T-cell accumulation and regulated on activation, normal T cells expressed and secreted in obesity. J Clin Invest 2008;117:2194–2208.

78. de Vries M, Wurte C, Fabius HT, Zegers P, Verheughen T, Jansen M. Fatty acid-induced vascular dysfunction depends on inter-perforin-gamma-driven immune cell recruitment and mutual activation of monocytes and NKL-cells. Arterioscler Thromb Vasc Biol 2013;33:1313–1319.

79. Wu L, Paresch VV, Gabriel CL, Brady DP, Marks-Shulman PA, Tamboli RA, Kim S, Mendez-Fernandez YV, Besra GS, Lompeck JN, Williams B, Wasserman DH, Van Kael L. Activation of invariant natural killer T cells in lipid by lipid promotes tissue inflammation, insulin resistance, and hepatic steatoysis in obese mice. P Natl Acad Sci USA 2012;109:E1143–E1152.

80. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Joohu HA, Bando JK, Chawla A, Locksley RM. Eosinophils sustain adipose tissue inflammation and insulin resistance through modulation of T cells and production of pathogenic IgG antibod-

81. Vieth JA, Das J, Ranaivoson FM, Comoletti D, Denzin LK, Sant’angelo DB. Anti-platelet drugs attenuate the expansion of circulating CD14HighCD16+ monocytes under pro-inflammatory conditions. Cardiovasc Res 2015;107:386–395.

82. Borinste SR, Abu-Asab M, Glawow A, Path G, Hauner H, Tsokas M, Chourous GA, Scherbaum WA. Immunohistochemical and ultrastructural localization of leptin and receptor in human white adipose tissue and differentiating human adipose cells in primary culture. Diabetes 2000;49:532–538.

83. Gordon S. The role of the macrophage in immune regulation. Res Immunol 1998;149:685–688.

84. Weisberg SP, Hunter D, Huber R, Lemoiux J, Slaymaker S, Vaddi K, Charo I, Lebel RL, Ferrante AW, Jr. CCR2 mediates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006;116:115–124.

85. Wentworth JM, Narselli G, Brown WA, Doyle L, Phipps B, Smyth GK, Wabitsch M, O’Leary WH, Haseloff LC. Pro-inflammatory CD11c+-CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 2010;59:1648–1656.

86. Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS. Dynamic, M2-like remodel-

87. Weber C, Sharanitsa E, Hristov M, Calguri G, Guzik T, Heine GH, Hofer HE, Monaco C, Peter K, Range R, Siegahn A, Steffen S, Wojta J, Lip GY. Role and analysis of monocyte subsets in cardiovascular disease. Joint consensus document of the European Society of Cardiology (ESC), Working Groups “Atherosclerosis & Primary Prevention” and “Thrombosis and Inflammation” Res Cardiovasc Dis 2016;17:197–219.

88. Eerenberg ES, Teunissen PF, van den Born BJ, Meijers JC, Hollander MR, Jansen M, Eerenberg ES, Teunissen PF, van den Born BJ, Meijers JC, Hollander MR, Jansen M. Interferon-gamma-driven immune cell recruitment and mutual activation of monocytes and NKL-cells. Arterioscler Thromb Vasc Biol 2013;33:1313–1319.

89. Exley MA, Hand L, O’shea D, Lynch L. Interplay between the immune system and perivascular adipose tissue in obesity. Cardiovasc Res 2013;99:1939–1949.

90. Lynch L, O’shea D, Winter DC, Bourrier V, Duffaut C, Bonafous S, Blin-Wakkach C, Anty R, Iannellli A, Gugnenheim J, Tran A, Bouloumie A, Guall P, Wakkach A. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin resistance and inducing Th17 responses in mice and patients. Diabetes 2012;61:2238–2247.

91. Han JM, Wu D, Denriceu HC, Yeo V, Verchere CB, Levens MK. IL-33 reverses an obesity-induced deficit in visceral adipose tissue ST2+ regulatory cells and amelio-

92. Tanaka K, Takahashi T, Tsubo M, Yamaki J, Sasahira H, Kato H, Horiuchi H, Satomi T. Eosinophils are key regulators of perivascular adipose tissue and vascular func-

93. Siegmund R, Cossen MT, Falsetti P, Balbinas J, Charnier DC, O’Sullivan P, van der Peet J, Wuyts H, Van Den Wijngaard R, Berger P, Bellet D, Juillière T, Smit J, Verbeuren T, Del Maschio A, Cauvin F, Smit J, Verbeuren T, Del Maschio A, Cauvin F, Smit J, Verbeuren T, Del Maschio A, Cauvin F, Smit J, Verbeuren T, Del Maschio A, Cauvin F, Smit J, Verbeuren T, Del Maschio A, Cauvin F.
inflammatory cytokone secretion in human adi pose tissue stromavascular cells. Diabetes 2010;59:1480–1490.

115. Amano SJ, Cohen JL, Vangala P, Tencereva M, Nicoloro SM, Yawke JC, Shen YF, Czech MP. Aoudai M. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab 2014;19:162–171.

116. Zheng C, Yang Q, Cao J, Xie N, Liu K, Shou P, Qian F, Wang Y, Shi Y. Local proliferation initiates macrophage accumulation in adipose tissue during obesity. Cell Death Dis 2017 18;6:1.

117. Charniere G, Cousin B, Amaud A, Andre M, Baczou F, Penicaud L, Castella L. Preadipocyte conversion to macrophage – evidence of plasticity. J Biol Chem 2003; 278: 9850–9855.

118. Nguyen MTA, Faveluy S, Nguyen AK, Reichart D, Scott PA; Jenn A, Liu-Bryan R, Glass CK, Neels JG, Olsfsey JM. A subpopulation of macrophages infiltrates hyperplastic adipose tissue and is activated by free fatty acids via toll-like receptors 2 and 4. Endocrinology 2007; 148: 5729–5732.

119. Oedegaard JJ, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Eagle AR, Vats D, Brombacher F, Ferrante AW, Chawla A. Macrophage-specific PPAR gamma controls alternative activation and improves insulin resistance. Nature 2007; 477: 1116–1121.

120. Ito A, Suganami T, Yamauchi A, Degawa-Yamauchi M, Tanaka M, Kouyama R, Komatsu M, Boyle JJ, Zhou B, Ruiz-Lozano P, Mercola M. Developmental origin of T-cell function and an inflammatory cytokine profile. J Nat Med 2013; 67: 1526–1532.

121. Mousavi A, Wolf D, Pannier J, Erwin S, Walter C, Rudolph P, Zirlik N, Kostin N, Willecke FK, Munkel C, Schonbeck U, Libby P, Bode C, Varo N, Zirlik A. CD40 induces inflammation and adipogenesis in adipose cells – a potential link between metabolic and cardiovascular disease. Thromb Haemost 2010; 103: 788–796.

122. de Hoog VC, Bovens SP, de Jager SC, van Middelaar BJ, van Duijvenvoorde A, Deenstra PA, Pasterkamp G, de Kleijn DP, Timmers L. BLT1 antagonist CSA729 reduces infant size in a mouse model of myocardial ischaemia-reperfusion injury. Cardiovasc Res 2015; 108: 367–376.

123. Harrison DG, Guzik TJ, Dob HE, Madhur MS, Marvar PJ, Thabt SJ, Vrin A, Weyand CM. Inflammation, immunity, and hypertension. Hypertension 2011; 57: 132–140.

124. Itani HA, McMaster WG, Jr., Saleh MA, Nazarewicz RR, Miljakovaj TP, Kasza AM, Konior A, Prejsis AS, Januszewicz A, Norlander AE, Chen W, Bonami RH, Marshall AF, Pollenberger G, Weyand CM, Madhur MS, Moore DJ, Harrison DG, Guzik TJ. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 2016; 68: 123–132.

125. Guzik TJ, Miljakovaj T. In search of the T cell involved in hypertension and target organ damage. Hypertension 2014; 64:224–226.

126. Rausch ME, Weisberg S, Bolognese MA, de Jager SC, van Duijvenvoorde A, Deenstra PA, Pasterkamp G, de Kleijn DP, Timmers L. BLT1 antagonist CSA729 reduces infant size in a mouse model of myocardial ischaemia-reperfusion injury. Cardiovasc Res 2015; 108: 367–376.

127. Harrison DG, Guzik TJ, Dob HE, Madhur MS, Marvar PJ, Thabt SJ, Vrin A, Weyand CM. Inflammation, immunity, and hypertension. Hypertension 2011; 57: 132–140.

128. Itani HA, McMaster WG, Jr., Saleh MA, Nazarewicz RR, Miljakovaj TP, Kasza AM, Konior A, Prejsis AS, Januszewicz A, Norlander AE, Chen W, Bonami RH, Marshall AF, Pollenberger G, Weyand CM, Madhur MS, Moore DJ, Harrison DG, Guzik TJ. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 2016; 68: 123–132.

129. Guzik TJ, Miljakovaj T. In search of the T cell involved in hypertension and target organ damage. Hypertension 2014; 64:224–226.

130. Rausch ME, Weisberg S, Bolognese MA, de Jager SC, van Duijvenvoorde A, Deenstra PA, Pasterkamp G, de Kleijn DP, Timmers L. BLT1 antagonist CSA729 reduces infant size in a mouse model of myocardial ischaemia-reperfusion injury. Cardiovasc Res 2015; 108: 367–376.

131. DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, Youn JY, Siu KL, Lob HE, Itani H, Harrison DG, Cai H. Role of vascular oxidative stress in obesity and metabolic syndrome. Diabetes 2014; 63:2434–2435.

132. Gross M, Panki A, Khezri A, Diegelmann L, Galloway DM, Wrabetz A, Ramanujam N, Abe K, Schiller M, Ehrlich M, Van Dyken SJ. Local cholesterol esterification limits macrophage infiltration and inflammation in adipose tissue. J Biol Chem 2012; 287: 27555–27562.

133. Nus M, Martinez-Poveda B, MacGrogan D, Chevre R, Amato G, Sbroggio M, Nogami T, Satoh K, Nogi M, Kudo S, Miyata S, Tanaka S, Shimokawa H. Statins up-regulate in vivo TNF-α expression in macrophages. Circulation 2013; 127: 2634–2643.

134. Mousavi A, Wolf D, Moxter J, Erwin S, Walter C, Rudolph P, Zirlik N, Kostin N, Willecke FK, Munkel C, Schonbeck U, Libby P, Bode C, Varo N, Zirlik A. CD40 induces inflammation and adipogenesis in adipose cells – a potential link between metabolic and cardiovascular disease. Thromb Haemost 2010; 103: 788–796.

135. de Hoog VC, Bovens SP, de Jager SC, van Middelaar BJ, van Duijvenvoorde A, Deenstra PA, Pasterkamp G, de Kleijn DP, Timmers L. BLT1 antagonist CSA729 reduces infant size in a mouse model of myocardial ischaemia-reperfusion injury. Cardiovasc Res 2015; 108: 367–376.

136. Harrison DG, Guzik TJ, Dob HE, Madhur MS, Marvar PJ, Thabt SJ, Vrin A, Weyand CM. Inflammation, immunity, and hypertension. Hypertension 2011; 57: 132–140.

137. Itani HA, McMaster WG, Jr., Saleh MA, Nazarewicz RR, Miljakovaj TP, Kasza AM, Konior A, Prejsis AS, Januszewicz A, Norlander AE, Chen W, Bonami RH, Marshall AF, Pollenberger G, Weyand CM, Madhur MS, Moore DJ, Harrison DG, Guzik TJ. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 2016; 68: 123–132.

138. Guzik TJ, Miljakovaj T. In search of the T cell involved in hypertension and target organ damage. Hypertension 2014; 64:224–226.

139. Seijkens T, Kusters P, Engel D, Lutgens E. CD40-CD40L: linking pancreatic, adipose tissue and vascular inflammation in type 2 diabetes and its complications. Diabetes Res Clin Pract 2008; 79:1116–U1112.

140. West NEJ, Qian HS, Guzik TJ, Black E, Cai S, George SE, Channon KM. Nitric oxide synthase (nNOS) gene transfer modifies venous bypass graft remodeling: effects on intima and media hypertensive humans. Circulation 2010; 121:263–270.
control coronary arterial endothelial dysfunction in hypertensive mice. Am J Pathol 2011;178:434–441.

158. Banchereau J, Kassel DA, Li MW, Shabt L, Laurant P, Neves MF, Paradis P, Schiffer EL. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension 2011;57:469–476.

159. Chan CT, Sobey CG, Liu M, Ferens D, Kett MM, Diep H, Krishnan SM, Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM, Diep H, Kim HA, Krishnan SM, Spiroglou SG, Kostopoulos CG, Varakis JN, Papadaki HH. Adipokines in periaortic and epicardial adipose tissue: differential expression and relation to atherosclerosis and coronary artery disease. J Clin Endocrinol Metab 2015;100:1268–1278.

160. Chen W, Itani HA, Michell D, Huan TX, Zhang YH, Takaki S, Titze J, Levy D, Harrison DG, Madur MS. Lymphocyte adaptor protein: N-linked deficiency exacerbates hypertension and end-organ inflammation. J Clin Invest 2015;125:1189–1202.

161. Kimura A, Fontana V, de Faria APC, Loperena R, Galindo CL, Wu J, Bikeyneva AT, Dikalov S, Xiao L, Chen W, Saleh MA, Trott DW, Itani HA, Virili A, Amarnath V, Amarnath K, Guzik TJ, Bernstein KE, Shen XZ, Shyr Y, Chen SC, Mernaugh RL, Laffer CL, Elizifov F, Davies SS, Moreno LH, Madur MS, Roberts J, Harrison DG. DC isoketal-modified proteins activate T cells and promote cell death. J Clin Invest 2014;124:4642–4656.

162. Vihna A, Chen W, Binder Y, Weiss D, Taylor WR, Goronzy JJ, Weyand CM, Harrison DG, Guzik TJ. Inhibition and genetic ablation of the B7/CD28 T-cells costimulation axis prevents experimental hypertension. Circulation 2010;122:2329–2337.

163. Lumeng CN, Chupp KE, Saleh MA, Abate SR. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab 2007;292:E166–E174.

164. Pietrokovski E, Bender B, Huppertz J, Riehse L, Kuhmann CR. Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NADPH-oxidase derived reactive oxygen species. J Vasc Res 2011;48:523–38.

165. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235–238.

166. Roussel L, Houle F, Chan C, Yao Y, Berube J, Olivenstein R, Martin CG, Huet, Hamid Q, Ferri L, Rousseau SL 15–17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation. J Immunol 2010;184:4531–4537.

167. Nguyen H, Chassson VL, Chatterjee P, Kopriva SE, Young KJ, Mitchell B. Coronary arteriolar endothelial dysfunction in hypertensive mice. Hypertension 2012;60:1189–1202.

168. Nosalski R, McGinnigle E, Siedlinski M, Guzik TJ. Novel immune mechanisms in hypertension and cardiovascular risk. Curr Cardiovasc Risk Rep 2017;11:12.

169. Maeda N, Shimomura I, Kishida K, Nishiizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arta Y, Komori O, Uchida S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. J Clin Endocrinol Metab 2003;88:1045–1050.

170. Nossov RI, McEwan GI, Siedlinski M, Guzik TJ. Novel immune mechanisms in hypertension and cardiovascular risk. Curr Cardiovasc Risk Rep 2017;11:12.

171. Schenkel B, Falck A, Papirer E, Neumann P, Wolf J, Pellegrini F, Sabba C, Palacios G, D’orazio M, Bot I, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235–238.

172. Traboulsi I, Bluher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E, Shai I, Harman-Boehm I, Motzko J, Bluher M, Godowski PJ, Ryan GJ, Bork PM. Immune-mediated mechanisms of atherosclerosis and implications for therapy. J Exp Med 2016;213:1217–1237.

173. Nus M, Mallat Z. Immune-mediated mechanisms of atherosclerosis and implications for therapy. J Exp Med 2016;213:1217–1237.

174. Melis MA, Salihevic H, Huber-Molina NC, Cilisovic Aj Piaoriosis and metabolic syndrome. Mediators Inflamm. 2015;2015:659–87.

175. Tj. Guzik et al. Hypertension 2012;60:1189–1202.

176. Chan CT, Moore JP, Budzyn K, Guida E, Diep H, Vinh A, Jones ES, Widdop RE, Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM, Diep H, Kim HA, Krishnan SM, Spiroglou SG, Kostopoulos CG, Varakis JN, Papadaki HH. Adipokines in periaortic and epicardial adipose tissue: differential expression and relation to atherosclerosis and coronary artery disease. J Clin Endocrinol Metab 2015;100:1268–1278.

177. Harman-Boehm I, Bluher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E, Shai I, Harman-Boehm I, Motzko J, Bluher M, Godowski PJ, Ryan GJ, Bork PM. Immune-mediated mechanisms of atherosclerosis and implications for therapy. J Exp Med 2016;213:1217–1237.

178. Vacca M, Di Eusanio M, Cariello M, Graziano G, D’amore S, Petridis FD, D’orazio M, Bot I, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235–238.

179. Duygu B, Da Costa Martins PA. miR-21: a star player in cardiac hypertrophy. Cardiovasc Res 2014;107:911–918.

180. Amarnath K, Guzik TJ, Bernstein KE, Shen XZ, Shyr Y, Chen SC, Mernaugh RL, Laffer CL, Elizifov F, Davies SS, Moreno LH, Madur MS, Roberts J, Harrison DG. DC isoketal-modified proteins activate T cells and promote cell death. J Clin Invest 2014;124:4642–4656.

181. Lohmann C, Schafer N, von Lukowicz T, Stein M, Funnuk SJ, Wahli W, Zeller T, Klauda JB. Is the weight of leptin in immunity. Nat Rev Immunol 2010;10:2022.

182. Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM, Diep H, Kim HA, Krishnan SM, Spiroglou SG, Kostopoulos CG, Varakis JN, Papadaki HH. Adipokines in periaortic and epicardial adipose tissue: differential expression and relation to atherosclerosis and coronary artery disease. J Clin Endocrinol Metab 2015;100:1268–1278.

183. Moos MPW, John N, Grabner R, Nossmann S, Gunther B, Vollandt D, Funk CD, Kaiser B, Habenicht AJR. The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2005;25:1386–2391.

184. Lohmann C, Schafer N, von Lukowicz T, Stein M, Funnuk SJ, Wahli W, Zeller T, Klauda JB. Is the weight of leptin in immunity. Nat Rev Immunol 2010;10:2022.
204. Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, Gyori G, Zlabinger GJ, Stueng TM. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes Relat Metab Disord 2007;31:1420–1428.

205. Antonopoulos AS, Margaritis M, Coutinho P, Shirodaria C, Psarros C, Herdman L, Sanna F, De Silva R, Petrou M, Sayeed R, Krasopoulou G, Lee R, Digby J, Reilly S, Bakogiannis C, Tousoulis D, Kessler B, Casadei B, Channon KM, Antoniades C. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. J Diabetes 2015;64:2207–2219.

206. Antonopoulos AS, Margaritis M, Verheule S, Recalde A, Sanna F, Herdman L, Psarros C, Nasrallah H, Coutinho P, Akounianakis I, Brewer AC, Sayeed R, Krasopoulou G, Petrou M, Tarun A, Tousoulis D, Shah AM, Casadei B, Channon KM, Antoniades C. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-gamma/adiponectin signalling. Circ Res 2016;118:842–855.

207. Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 2009;32:1663–1668.

208. Cavelti-Weder C, Babiano-Brunner A, Keller C, Stahel MA, Kurz-Levin M, Zayed H, Solinger AM, Mandrup-Poulsen T, Dinarello CA, Donath MY. Effects of gevokizumab on glycaemia and inflammatory markers in type 2 diabetes. Diabetes Care 2012;35:1654–1662.

209. Hensen J, Howard CP, Walter V, Thuren T. Impact of interleukin-1 beta antibody (canakinumab) on glycemic endpoints in patients with type 2 diabetes mellitus: results of secondary endpoints from a randomized, placebo-controlled trial. Diabetes Metab 2013;39:524–531.

210. Sloan-Lancaster J, Abu-Raddad E, Polzer J, Miller JW, Scherer JC, De Gaetano A, Berg JK, Landschulz WH. Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1 beta antibody, in patients with type 2 diabetes. Diabetes Care 2013;36:2239–2246.

211. Ofili F, Hurel S, Newkirk J, Sopwith M, Taylor R. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 1996;45:881–885.

212. Paquet N, Castillo MJ, Lefebvre PJ, Scheen AJ. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumour necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J Clin Endocrinol Metab 2000;85:1316–1319.

213. Dominguez H, Storgaard H, Rask-Madsen C, Hermann TS, Ihlemann N, Nielsen DB, Spohr C, Kobe R, Vaag A, Torp-Pedersen C. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res 2005;42:517–525.

214. Goldfine AB, Forseta V, Jablonski KA, Chen YD, Piotto L, Stamen MA, Shoelson SE, Salsalate (Salsalate) in patients with type 2 diabetes. Ann Intern Med 2013;159:1.

215. Passacquale G, Di Giosia P, Ferro A. The role of inflammatory biomarkers in developing targeted cardiovascular therapies: lessons from the cardiovascular inflammation reduction trials. Cardiovasc Res 2016;109:9–23.

216. Lewis DR, Petersen LK, York AW, Ahuja S, Chae H, Joseph LB, Rahimi S, Uhrich KE, Haser PB, Moghe PV. Nanotherapeutics for inhibition of atherogenesis and modulation of inflammation in atherosclerotic plaques. Cardiovasc Res 2016;109:283–293.

217. Giles JT, Ferrante AW, Broderick R, Zartoshti A, Rose J, Downer K, Zhang HZ, Winchester RJ. Adipose tissue macrophages in rheumatoid arthritis: prevalence, disease related indicators, and associations with cardiometabolic risk factors. Arthritis Care Res (Hoboken) 2017; doi: 10.1002acr.23253.