Wastewater treatment using natural zeolite materials

1 Myrzalieva S.K., 2 Pratama G.N.I.P., 3* Khamidulla A.G.

1 "National Center for Complex Processing of Mineral Raw Materials of the Republic of Kazakhstan", Almaty, Kazakhstan
2 Yogyakarta State University, Indonesia
3 Al-Farabi Kazakh National University, Almaty, Kazakhstan

* Corresponding author email: aikahami98@gmail.com

ABSTRACT

Today, there is an urgent need in our country to develop and implement new energy - and resource-saving technologies for wastewater treatment and water treatment. The need for such a system is determined by the urgency of the tasks of protecting the health of the population, agricultural products and other biological objects. Wastewater is contaminated with radioactive substances, heavy metal ions, toxic substances and pathogenic microbes. During the work, wastewater contaminated with heavy metal ions Cd$^{2+}$, Pb$^{2+}$ was treated with a natural zeolite material. The mechanism of water purification from metal ions is based on the porous structure and adsorption capacity of zeolite. Heavy metal ions diffuse into the pores of the zeolite material, displacing sodium ions, which are structural modifiers. The zeolite treatment process was carried out by measuring the permeability of wastewater using a conductometer and comparing its results with the value of the permeability of distilled water. According to the results obtained, this method can be used to completely purify wastewater from heavy metal ions.

Keywords: Waste water, purification, sorbents, ions, zeolite.

Introduction

The source of water released in human life and industrial activities is called wastewater [1].

Prerequisites for this project are the treatment of wastewater from oil and oil products, organic compounds in the framework of previous research [2].

Today in our country there is an urgent need to develop and implement new energy and resource-saving technologies for wastewater treatment and water treatment. The need for such a system is determined by the urgency of the problems of protection of public health, agricultural products and other biological objects. Wastewater after industrial use contains a lot of pollutants: heavy metal ions, acids, alkalis, salts, large amounts of organic matter, etc.

Zeolites are microporous, natural or synthetic aluminosilicate materials with a specific structure. Their structure consists of a tetrahedral crystal lattice consisting of SiO$_4$4 and AlO$_4$5- ions. Due to
their unique porous properties, zeolites are used in various fields. Chemical formula of natural zeolite used for wastewater treatment: $(\text{Na}, \text{K}, \text{Ca})_2_3\text{Al}_3\text{Si}_13\text{O}_{36} \cdot 12\text{H}_2\text{O}$ [3, 4].

The peculiarity of the work is the use of a comprehensive approach to the treatment of wastewater, which includes a combination of physicochemical and effective natural sorbents. In addition, for the first time domestic sorbents based on zeolite materials were used in the implementation of the work [4]. Integrated wastewater treatment methods are currently recognized as the most promising and economical, as they reduce energy and reagent consumption several times, and increase the speed and depth of treatment [5, 6, 7].

Experimental part

The study studied the effects of sorbent concentration and temperature on the sorption process of heavy metals. Natural zeolite from the Taizhuzgen deposit was used as an adsorbent. Chemicals and materials: 30 g of natural zeolite; aqueous solution of heavy metal salts (Cd^{2+}, Pb^{2+}) with a concentration of 0.0025 mol\cdotdm$^{-3}$ for each ion 200 cm3; conductivity meter; pH meter; filter paper; clips, 3 glass filters; 2 glass jars and 4 measuring cups.

The permeability of wastewater contaminated with Cd^{2+}, Pb^{2+} ions was determined using a conductometer. The cascade wastewater filter consists of a vertically placed metal support on which glass funnels and tanks are attached with clamps and rings. The filter paper is mounted on a glass filter. Each filter, which forms a three-layer cascade, is filled with 2 g of natural zeolite. Water permeability and pH are measured after each purification to form a clear idea of the heavy metal purification process.

The effect of temperature. 2 g of sorbent was placed in a beaker, containing a solution of Cd^{2+}, Pb^{2+} ions, concentration 0.0025 mole/dm3, 200 cm3 and kept at a temperature of 289, 298, 308 K. The temperature was set and adjusted by means of a thermostat.

Results and Discussion

Heavy metal ions are removed from water by ion exchange and adsorption processes. During adsorption in the microporous structure of zeolite, Na$^+$ ions are easily displaced from water by Cd^{2+}, Pb^{2+} ions. The mechanism of ion exchange is based on the high value of electrical negativity of heavy metals, which allows low-negative sodium ions to leave the zeolite structure and form a strong ionic chemical bond with anions in wastewater.

The mechanism of ion exchange follows the chemical equation (1):

$$\text{Me}^{n+}(\text{water}) + n\text{Na}(\text{zeolite}) = \text{M}(\text{zeolite}) + n\text{Na}^+(\text{water})$$

(1)

where [M] represents the oxidation number of heavy metal ions (Cd^{2+}, Pb^{2+}), and [n] the number of oxidation of metal ions.

Experimental results in the determination of electrical conductivity showed that the water permeability and pH value increase after each treatment (after the ion exchange reaction between heavy metal ions and zeolite), as shown in Table 1. This is because the permeability of sodium ions displaced from zeolite is higher than that of heavy metal ions.

Table 1 - Electrical conductivity and pH values after filtration of wastewater with zeolite

Water	Electrical conductivity (g)	pH indicators
1. Contaminated water:	50.0 Cm	3.8
2. After the first filtration:	68.5 Cm	6.6
3. After the second filtration:	86.0 Cm	7.1
4. After the third filtration:	91.0 Cm	7.6

Figures 1 and 2 show graphs of the degree of extraction of lead and cadmium ions from natural zeolite to the sorption time.
Figure 1 - Dependence of the degree of purification of Pb^{2+} ions on the sorption time

The results of the studies shown in Figures 1 and 2 show that with increasing duration of contact with the aqueous phase containing metal ions in the zeolite, the degree of purification in their initial stage increases and then becomes stable. As can be seen from the proposed graphs, the sorption equilibrium during the purification of lead and cadmium ions is within 30 minutes.

Conclusions

Experimental results show that natural zeolite is based on ion exchange capacity, microporous structure and adsorption capacity, this method of wastewater treatment is very effective and allows almost complete removal of heavy metal ions. Based on the results obtained, the optimal conditions for the sorption of Cd^{2+}, Pb^{2+} ions by natural zeolite were determined: the mass of the sorbent per 200 cm^3 of solution is 2 g, T = 298 K. This method can be used for wastewater treatment, mainly in the metallurgical industry, as well as for water softening.

Conflicts of interest. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Acknowledgements. RSE "National Center for Integrated Processing of Mineral Raw Materials of the Republic of Kazakhstan" is thanked for the provision of experimental assistance.
Очистка сточных вод с применением природных цеолитных материалов

1 Мырзалиева С.К., 2 Г.Н.И.П. Пратама, 3* Хамидулла А.Г.

1 «Национальный центр комплексной переработки минерального сырья Республики Казахстан», Алматы, Казахстан
2 Джокьякартский государственный университет, Индонезия
3 Казахский Национальный Университет им. аль-Фараби, Алматы, Казахстан

* Электронная почта автора: aikahami98@gmail.com

Авторы трудах академии:
Мырзалиева С.К.
Галех Нур Индриатно Путра Пратама
Хамидулла А.Г.

Аннотация

Сегодня в нашей стране существует острые необходимость в разработке и внедрении новых энерго- и ресурсосберегающих технологий очистки сточных вод и водоподготовки. Необходимость такой системы определяется актуальностью задач защиты здоровья населения, сельскохозяйственных продуктов и других биологических объектов. Сточные воды загрязнены радиоактивными веществами, ионами тяжелых металлов, ядовитыми веществами и патогенными микробами. Вейхер работ сточные воды, загрязненные ионами тяжелых металлов Cd²⁺, Pb²⁺, обрабатывались природным цеолитным материалом. Механизм очистки воды от ионов металлов основан на пористой структуре и адсорбционной способности цеолита. Ионы тяжелых металлов диффундируют в поры цеолитного материала, вытесняя ионы натрия, которые являются модификаторами структуры. Процесс обработки цеолита проводился путем измерения проницаемости дистиллированной воды. Согласно полученным результатам, с помощью этого метода можно полностью очистить сточные воды от ионов тяжелых металлов.

Ключевые слова: Сточные воды, очистка, сорбенты, ионы, цеолит.

Информация об авторах:
Мырзалиева С.К.
Галех Нур Индриатно Путра Пратама
Хамидулла А.Г.

Литература

[1] Мырзалиева С.К. (2019). Эффективная очистка сточных вод, загрязненных нефтью и нефтепродуктами с использованием карбонизированных растительных отходов // Труды X Международного Беремжановского съезда по химии и химической технологии, «ҚазНУ им. аль-Фараби, 2019, 229.

[2] Алекссеев А.И., Алекссеев А.А. Химия воды // Химиздат, 2007. – 1 книга – 424, 2 книга – 456.

[3] Тарасевич Ю.И. Природные цеолиты в процессах очистки воды // Химия и технология воды. 1988. Т.10. №3, 210-
18.
[4] Abdikerim B.E., Kenzhaliyev B.K., Surkova T.Yu., Didik N., Berkimbayeva A.N., Dosymbayeva Z.D., Umirbekova N.S. Uranium extraction with modified sorbents. Kompleksnoe Ispol'zovanie Mineral'nogo Syr'ya = Complex Use of Mineral Resources = Mineraldik Shikisattardy Keshendi Paidalanu. 2020. № 3 (314), pp. 84-90. https://doi.org/10.31643/2020/6445.30

[5] Smykov V.V., Smykov Y.V., Torikov A.I. O проблеме утилизации нефтесодержащих отходов // Нефтяное хозяйство. 2015, №3, 30-33.

[6] Aliev S. B., Omarbekov Ye.U. Technological improvement of the scheme unit reception and distribution of solution under conditions of high-pressure nature of groundwater. Kompleksnoe Ispol'zovanie Mineral'nogo Syr'ya = Complex Use of Mineral Resources = Mineraldik Shikisattardy Keshendi Paidalanu. 2021. №1(316), pp. 40-45. https://doi.org/10.31643/2021/6445.05

[7] Narivskiy A. E., Subbotin S. A., Belikov S. B. AISI304 bolatıñ ximïyalïq quramı men onïñ qurïlylmïdïñ heterogendïñ turaqtïlïñænæ aseri // Kompleksnoe Ispol'zovanie Mineral'nogo Syr'ya. – 2019. – №2. – С. 24-33. https://doi.org/10.31643/2019/6445.13

Reference
[1] Myrzaliyeva S.K. Effektivnaya ochistka stochnykh vod. zagryaznennykh neftyu i nefteproduktami s ispolzovaniem karbonizirovannykh rastitelnykh otkhodov [Efficient treatment of wastewater contaminated with oil and petroleum products using carbonized plant waste]. Trudy X Mezhdunarodnogo Beremzhanovskogo syezda po khimi i khimicheskoy tekhnologii. «KazNU im. al-Farabi. 2019, 229. (In Russian).
[2] Alekseyev A.I., Alekseyev A.A. Khimiya vody [Water Chemistry]. Khimizdat. 2007. – 1 kniga = 424 s.. 2 kniga = 456 s. (In Russian).
[3] Tarasevich Yu.I. Prirodnyye tseolity v protsessakh ochistki vody [Natural zeolites in water treatment processes]. Khimiya i tekhnologiya vody. 1988. T.10. №3, 210-218. (In Russian).
[4] Abdikerim B.E., Kenzhaliyev B.K., Surkova T.Yu., Didik N., Berkimbayeva A.N., Dosymbayeva Z.D., Umirbekova N.S. Uranium extraction with modified sorbents. Kompleksnoe Ispol'zovanie Mineral'nogo Syr'ya = Complex Use of Mineral Resources = Mineraldik Shikisattardy Keshendi Paidalanu. 2020. № 3 (314), pp. 84-90. (In Eng.). https://doi.org/10.31643/2020/6445.30
[5] Smykov V.V., Smykov Yu.V., Torikov A.I. O probleme utilizatsii nefteoderzhashchikh otkhodov [On the problem of oil-containing waste disposal]. Neftyanoye khozyaystvo. 2015. №3. 30-33. (In Russian).
[6] Aliev S. B., Omarbekov Ye.U. Technological improvement of the scheme unit reception and distribution of solution under conditions of high-pressure nature of groundwater. Kompleksnoe Ispol'zovanie Mineral'nogo Syr'ya = Complex Use of Mineral Resources = Mineraldik Shikisattardy Keshendi Paidalanu. 2021. №1(316), pp. 40-45. (In Eng.). https://doi.org/10.31643/2021/6445.05
[7] Narivskiy A. E., Subbotin S. A., Belikov S. B. AISI304 bolatıñ ximïyalïq quramı men onïñ qurïlylmïdïñ heterogendïñ turaqtïlïñænæ aseri [Influence of circulating waters’ parameters, chemical composition and structural heterogeneity of aisi304 steel on its pitting resistance] // Komleksnoye Ispolzovaniye Mineralnogo Syria. №2.2019. 24-33. (In Kazakh). https://doi.org/10.31643/2019/6445.13