Gastric remnants are an inevitable consequence of partial gastrectomy following resection for gastric cancer. The presence of gastric stumps is itself a risk factor for redevelopment of gastric cancer. *Helicobacter pylori* (*H. pylori*) infection is also a well-known characteristic of gastric carcinogenesis. *H. pylori* colonization in the remnant stomach therefore draws special interest from clinicians in terms of stomach cancer development and pathogenesis; however, the *H. pylori*-infected gastric remnant is quite different from the intact organ in several aspects and researchers have expressed conflicting opinions with respect to its role in pathogenesis. For instance, *H. pylori* infection of the gastric stump produced controversial results in several recent studies. The prevalence of *H. pylori* infection in the gastric stump has varied among recent reports. Gastritis developing in the remnant stomach presents with a unique pattern of inflammation that is different from the pattern seen in ordinary gastritis of the intact organ. Bile refluxate also has a significant influence on the colonization of the stomach stump, with several studies reporting mixed results as well. In contrast, the elimination of *H. pylori* from the gastric stump has shown a dramatic impact on eradication rate. *H. pylori* elimination is recognized to be important for cancer prevention and considerable agreement of opinion is seen among researchers. To overcome the current discrepancies in the literature regarding the role of *H. pylori* in the gastric stump, further research is required.
for the prevention of gastric cancer in populations at high risk\cite{1}.

The reported rates of \textit{H. pylori} infection in the remnant stomach after distal gastrectomy fall within a broad range (19\%–78\%)\cite{5-9}. Data from one group of researchers concluded that \textit{H. pylori} prevalence is relatively low in patients who have undergone distal gastrectomy\cite{10,11}. Another study from Israel supports this data with demonstrated infection rates as low as 18\%\cite{12}. This low prevalence of \textit{H. pylori} after distal gastrectomy is explained by the decreased survivability of the microorganism in patients with an absent antrum. The antrum serves as the main colonizing location for \textit{H. pylori}, as well as the source of bile reflux that produces an increase in intragastric pH\cite{13,14}. Some researchers have suggested that the elevation in pH in the stomach leads to a reduction or disappearance of \textit{H. pylori} in the gastric stump; furthermore, the organism is detected more commonly in the gastric corpus than near the anastomotic rim\cite{15,16}. Biliary reflux from the small intestine to the stomach after the removal of the pyloric sphincter is suspected to further inhibit \textit{H. pylori} proliferation\cite{17-19}. Some studies have suggested that bile inhibits \textit{H. pylori} growth \textit{in vitro} and may play a role in eradicating \textit{H. pylori} \textit{in vivo}\cite{14,19}. The type of anastomosis utilized during surgical resection is also known to influence the rate of \textit{H. pylori} infection (Table 1). Several investigations have suggested that bile reflux in conjunction with the type of anastomosis used for the procedure inhibits \textit{H. pylori} colonization\cite{20,21}.

\textbf{H. pylori mediated gastritis of the gastric stump}

\textit{H. pylori} infection in the gastric remnant after gastrectomy is known to be associated with a pattern of gastritis that is characterized by active and chronic inflammatory cell infiltration into the lamina propria\cite{22,23}. Data has suggested that the presence of \textit{H. pylori} infection mediates the severity of inflammatory change seen in the remnant stomach\cite{20,24}. In a study utilizing a fiberoptic detector of bilirubin, refluxate from gastrectomy subjects and endoscopic biopsy specimens were analyzed. The results suggest that mucosal erythema was induced by bile refluxate and the active chronic inflammatory cell infiltration was caused by \textit{H. pylori} infection\cite{24}.

The presentation of inflammation is dependent on the surgical type of gastric excision. One recent single-site investigation revealed that neutrophilic infiltration predominated in the gastric remnant of distal gastrectomy subjects but not in the remnants of proximal gastrectomy patients (Table 1, 60.5\% vs 12.9\%, \textit{P} < 0.001)\cite{25}. The authors explained this finding by suggesting that the gastric stump remaining after proximal gastrectomy was prone to intestinal metaplasia with continuing inflammation, creating a difficult environment for \textit{H. pylori} colonization.

There are several factors that may influence the infection rate of \textit{H. pylori} in the gastric stump. Early research failed to yield sufficient data comparing different types of surgery, such as the Billroth versus Roux-en-Y procedures. More recent investigations, however, have revealed

\textbf{Table 1 Differences in the characteristics and manifestations of different gastric resections recently presented}

Table 1 Differences in the characteristics and manifestations of different gastric resections recently presented
Manifestations
Bile reflux
Polymorphonuclear infiltration \textit{(i.e., rate of inflammation)}
\textit{H. pylori} infection rate
Chronic and active inflammation
Intestinal metaplasia

It is suggested that the presence of a gastric stump after proximal gastrectomy promotes the progression of intestinal metaplasia and hampers the colonization of \textit{Helicobacter pylori} (\textit{H. pylori}). However, this notion is contrary to results from previous studies showing a relatively low \textit{H. pylori} prevalence in the gastric stump.

a gastric stump, creating the possibility of metachronous tumors arising from the remnant organ. A number of post-surgical management strategies have been adopted to lessen the risk of gastric malignancy recurrence, such as adjuvant chemotherapy and regular endoscopic surveillance. Based on the strong and well-established association between \textit{Helicobacter pylori} (\textit{H. pylori}) and carcinogenesis in intact stomach, identifying and eradicating the presence of this bacterial carcinogen has been suggested as another approach for decreasing cancer recurrence in the gastric stump\cite{1,2}. However, some researchers have refuted the evidentiary importance of this strategy, since the carcinogenic role of \textit{H. pylori} has yet to be definitively established in remnant stomach\cite{3}.

Following surgical resection, remnant tissue provides a unique environment for the propagation of \textit{H. pylori} as compared to the intact stomach. The natural course of \textit{H. pylori} infection is typified by atrophic changes that result from microorganisms that migrate to the proximal stomach. The role of \textit{H. pylori} infection in subjects who undergo distal gastrectomy for gastric cancer has been unclear due to mixed results from recent studies. In this article, we will review the research on the interaction between \textit{H. pylori} and its anatomically altered habitat. We will further explore the role of bile refluxate on \textit{H. pylori} infection, and the effect of \textit{H. pylori} eradication on the progression of gastric carcinogenesis.

\textbf{OBSERVATIONS OF \textit{H. PYLORI}}

\textbf{INFECTION IN THE REMNANT STOMACH}

\textbf{Prevalence of \textit{H. pylori} infection after partial gastric resection}

Several clinical conditions confer a high risk for gastric cancer. These conditions include pan-gastritis, prior gastric neoplasia, and corpus-dominant gastritis. Among clinical considerations, previous gastric procedures are considered to be an indication for aggressive \textit{H. pylori} eradication\cite{11,22}. According to guidelines from the Maastricht IV/Florence Consensus Report, eradication of \textit{H. pylori} is strongly recommended as an essential treatment

\textbf{WJG} | www.wjgnet.com 2766
March 21, 2014 | Volume 20 | Issue 11
that the type of gastrectomy may influence the rate of infection; that is, the *H. pylori* infection rate differed according to the type of surgery conducted. A systematic review of 36 studies that assessed *H. pylori* infection after several types of surgery for peptic ulceration showed a mean infection rate of about 50% (ranging from 19% to 73%) in patients who underwent partial gastrectomy and a relatively higher infection rate (about 83%) in subjects who underwent vagotomy procedures. Another study addressed the difference in *H. pylori* infection rates in different types of anastomoses after distal gastrectomy (Billroth I or II). The Billroth type I anastomoses had an infection rate of 70.8%, significantly higher than that of the type II anastomoses (45.9%). Similarly, Billroth type II anastomoses showed significantly higher bile reflux compared with other surgical procedures such as pylorus-preserving gastrectomy or Roux-en-Y methods.

Infection rates also differed between proximal and distal gastrectomy procedures. It was postulated that the remnant stomach after proximal gastrectomy was prone to intestinal metaplasia, an irreversible change that made it difficult for *H. pylori* to thrive. In the case of distal gastrectomy, which is currently a more common procedure among gastric cancer patients, bile reflux is known to influence the biologic surroundings of *H. pylori* in the stomach (Table 2).

Beyond the surgical approach employed, several additional factors have been studied with regard to the infection rate of *H. pylori*. One investigation found that the prevalence of *H. pylori* in the gastric stump was significantly decreased with the patients’ age, time post-gastrectomy, and presence of severe reflux gastritis. Bait et al. presented an analogous report showing that spontaneous *H. pylori* clearance was related to the type of surgery and time of post-operative resection.

Influence of bile reflux: Friend or foe?

There has been a debate regarding the exact role of bile reflux on *H. pylori* colonization in the remnant stomach after partial gastrectomy. One study demonstrated that bile reflux induces glandular atrophy and chronic inflammation but does not increase polymorphonuclear cell activity. Investigations utilizing a precise bile reflux measurement described no apparent inverse relationship between the quantity of bile refluxate and *H. pylori* infection. According to a study by Onoda et al., the prevalence of *H. pylori* infection was lower in Billroth- II reconstruction patients with severe bile reflux and subsequent stomal gastritis, suggesting a spontaneous eradication of *H. pylori* by the reflux of bile contents.

In contrast, some investigators have questioned the theory of biliary obliteration of *H. pylori* in the gastric stump. One study showed that Roux-en-Y reconstruction after distal gastrectomy produces smaller amounts of bile reflux and as a result had a lower rate of *H. pylori* infection. This study also observed a lower fasting enterogastric reflux in the patients who received the Roux-en-Y method (5.3%) compared with those who received Billroth II reconstruction (62.1%), as measured by biliary scintigraphy. Nakagawara et al. reported that bile refluxate facilitated the survival of *H. pylori*, speculating that *H. pylori* was perhaps inhibited by other bacteria in the gut. Pylorus-preserving gastrectomy for gastric cancer also resulted in significantly lower *H. pylori* prevalence after surgery.

To date, the rate of *H. pylori* infection in the gastric remnant seems to be smaller than the rates in the anatomically intact organ. These results, however, lack a

Table 2 Some issues disputed among researchers regarding *Helicobacter pylori* infection in the gastric remnant after partial gastrectomy

Issues	Prospective	Consequence
H. pylori infection decreases after partial gastrectomy, depending upon surgery and anastomosis type	Distal gastrectomy leads to bile reflux and resultant elevated intra-gastric pH, hampering *H. pylori* inhabitation; this was also shown in an in vitro study.	Subjects with proximal gastrectomy are prone to intestinal metaplasia, which is a difficult environment for *H. pylori* survival.
	Billroth type II anastomosis has higher bile reflux compared with Billroth type I or vagotomy, with concordant lower *H. pylori* infection prevalence.	Duodenogastric reflex “facilitates” the survival of *H. pylori*.
Bile reflux inhibits *H. pylori* inhabitation in the gastric stump	Spontaneous eradication by the reflux of bile contents is suggested.	There was no apparent inverse relationship between the quantity of bile refluxate and *H. pylori* infection.
H. pylori is a risk factor of carcinogenesis in the gastric stump	Some academic gastroenterological societies recognize *H. pylori* as a risk factor equivalent to the intact organ.	Eradication therapy improved intestinal metaplasia, preventing premalignant changes.
H. pylori eradication is required	*H. pylori*-positive subjects with a remnant stomach after gastrectomy for cancer showed a higher prevalence for premalignant lesions compared to *H. pylori*-negative subjects	Some academic gastroenterological societies do not advocate *H. pylori* eradication in the gastric stump.

H. pylori: *Helicobacter pylori.*
thorough explanation of the precise mechanism providing for low H. pylori prevalence in the stump, and thus further investigation is required.

Requirement for H. pylori eradication therapy

H. pylori infection in the remnant stomach after partial gastrectomy is a causative factor in gastric cancer in the residual organ. Remnant stomachs that are infected with H. pylori after partial gastrectomy for gastric cancer are prone to develop premalignant lesions and subsequent gastric cancer. Giuliani et al. studied the manifestations of gastric cancer precursor lesions, such as chronic atrophic gastritis, intestinal metaplasia and dysplasia, among H. pylori-positive subjects. These patients had gastric remnants after gastrectomy for peptic ulcer disease or gastric cancer. H. pylori-positive subjects with a remnant stomach after gastrectomy showed a higher prevalence of premalignant lesions compared with H. pylori-negative subjects (OR = 4.20, 95% CI: 1.10-15.96). These results indicate a significant role of H. pylori infection in the pathogenesis of disease. The authors concluded that H. pylori eradication might prevent metachronous gastric cancer in subjects with higher risk after gastrectomy.

There have been mixed results regarding the efficacy of H. pylori eradication on the prevention of premalignant changes in the gastric mucosa such as intestinal metaplasia. In one study, standard proton pump inhibitor-based eradication therapy resulted in significant atrophic glandular improvement. However, some investigators have presented the opposite result, where atrophic glands and intestinal metaplasia were not improved even after successful H. pylori eradication. After studying the prevalence of several histological characteristics and H. pylori infection in subjects with gastric stumps, some researchers have concluded that H. pylori eradication might prevent cancer development in the remnant organ. In particular, one investigation described the spontaneous eradication of the organism in 78.8% of partial gastrectomy subjects.

Methods for diagnosing the infection of remnant stomach by H. pylori have been another matter of discussion. In contrast to the case of an intact organ, the nature of the gastric stump after partial gastrectomy appears to affect the reliability of testing for H. pylori colonization. Several reports showed that urease breath test (UBT) provides lower diagnostic accuracy when using histology as a reference. From a study performed by Adamopoulos et al., a relatively poor agreement was shown by UBT (κ = 0.41) in contrast to rapid urease test (RUT) (κ = 0.97). When UBT was compared with RUT retrospectively in another recent study, however, UBT was comparable to RUT in terms of accuracy (UBT 87% vs RUT 72%).

Attempts to eradicate H. pylori in the gastric stump show a strong success rate of around 90% across several studies. Examining data from a study by Matsukura et al., H. pylori eradication in gastric remnants had a success rate of 70%, comparable to non-surgery patients. In another study from Korea, the eradication rate of H. pylori-infected gastric stumps was 82.7%.[30] In general, with appropriate treatment, the rate of H. pylori eradication in the gastric stump appears to be comparable to that of intact organs.

The temporal timing of H. pylori eradication is an important issue to consider and has been studied by several investigators. For example, surgery can be delayed for one or two weeks in order to complete H. pylori eradication. In addition to time considerations, bile reflux after surgery, change in gastric emptying time, type of surgery performed, perioperative antibiotic administration, and changes in intragastric pH are other factors for consideration. One randomized controlled trial concluded that pre- or post-operative H. pylori eradication treatment did not affect the clinical outcome in terms of eradication rate. Additionally, that study found no difference among the methods for post partial gastrectomy in preventing the advance of gastric cancer. As the ordinary antibiotic selections for gastrectomy patients are generally insufficient for effective elimination, it is possible to assume that prophylactic antibiotics will not seriously affect intragastric colonization of H. pylori.

Relationship between H. pylori and distal esophageal cancer

With respect to cancers on the distal esophagus, H. pylori infection is generally known to have an inhibitory role against carcinogenesis. In contrast, squamous cell carcinoma in the upper or middle esophagus and adenocarcinoma adjacent to the gastro-esophageal junction is inversely related to H. pylori infection of stomach. Presumably, H. pylori colonizing the gastric stump after partial gastrectomy will influence the development of distal esophageal adenocarcinoma in some way. There is a scarcity in the literature regarding the relationship between distal esophageal cancer and the gastric remnant infected with H. pylori. Further investigations are needed to clarify this concern.

CONCLUSION

H. pylori is a well-known etiologic factor for gastric cancer. Likewise, a remnant stomach after partial gastrectomy for gastric cancer is also an important etiological factor for gastric carcinogenesis. According to a number of studies, H. pylori infection in the remnant stomach seems to play a role in gastric cancer development, albeit with contrary views from various research groups. A number of questions remain, including the factors influencing the infection state, the specific eradication rate and its role in cancer development, and the exact effect of refluxed biliary contents on H. pylori. The prevalence of H. pylori in the gastric stump seems to be lower than in the intact organ, with a significant rate of elimination when therapeutically targeted for eradication. We suggest that H. pylori infection still needs to be eliminated from the gastric tissue to reduce the risk of stump cancer. Some researchers...
propose that bile reflux facilitates the proliferation of *H. pylori*, but most investigators advocate the inhibitory effect of bile. Overall, the presence of *H. pylori* infection in the gastric stump requires further investigation to clarify the function and role of the organism in cancer reappearance.

REFERENCES

1. Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon AT, Bazzoli F, Gensini GF, Gisbert JP, Graham DY, Rokkas T, El-Omar EM, Kuiipers EJ. Management of Helicobacter pylori infection—the Maastricht IV/ Florence Consensus Report. Gut 2012; 61: 646-664 [PMID: 22491499 DOI: 10.1136/gutjnl-2012-302084]

2. Lam SK, Talley NJ. Report of the 1997 Asia Pacific Consensus Conference on the management of Helicobacter pylori infection. *J Gastroenterol Hepatol* 1998; 13: 1-12 [PMID: 9737564]

3. Sinning C, Schaefer N, Standop J, Hirner A, Wolff M. Gastrectomy stump carcinoma - epidemiology and current concepts in pathogenesis and treatment. *Eur J Surg Oncol* 2007; 33: 133-139 [PMID: 17071041 DOI: 10.1016/j.ejso.2006.09.006]

4. Stalnikowicz R, Benbassat J. Risk of gastric cancer after gastrectomy for benign disorders. *Arch Intern Med* 1990; 150: 2222-2226 [PMID: 2222087]

5. Leivonen M, Nordin S, Haglund C. The course of Helicobacter pylori infection after partial gastrectomy for peptic ulcer disease. *Hepatogastroenterology* 1998; 45: 587-591 [PMID: 9638457]

6. Tomitchong P, Onda M, Matsukura N, Tokunaga A, Kato S, Matsushita T, Yamada N, Hayashi A. Helicobacter pylori infection in the remnant stomach after gastrectomy: with special reference to the difference between Billroth I and II anastomoses. *J Clin Gastroenterol* 1998; 27 Suppl 1: S154-S158 [PMID: 9872514 DOI: 10.1097/00004836-199800010-00025]

7. Schilling D, Jakobs R, Peitz U, Sulliga M, Stolte M, Riemann J, Labenz J. Diagnostic accuracy of (13)C-urea breath test in the diagnosis of Helicobacter pylori infection in patients with partial gastric resection due to peptic ulcer disease: a prospective multicenter study. *Digestion* 2001; 63: 8-13 [PMID: 11173894]

8. Danesh J, Appleby P, Peto R. How often does surgery for peptic ulcer eradication Helicobacter pylori? Systematic review of 36 studies. *BMJ* 1998; 316: 746-747 [PMID: 9529411]

9. Kim ES, Park DK, Hong SH, Chung MG, Kwon OS, Kim SS, Koo YS, Kim YK, Kang DH, Choi DJ, Park HC, Lee WG, Kim S101200100033 [PMID: 89722146]

10. Sobala GM, O’Connor HJ. Dewar EP, King RF, Axon AT, Dixon MF. Bile reflux and intestinal metaplasia in gastric mucosa. *J Clin Pathol* 1993; 46: 235-240 [PMID: 8463417]

11. Lee Y, Tokunaga A, Tajiri T, Masuda G, Okuda T, Fujita J, Kiyama T, Yoshiyuki T, Kato S, Matsuura N, Yamada N. Inflammation of the gastric remnant after gastrectomy: mucosal erythema is associated with bile reflux and inflammatory cellular infiltration is associated with Helicobacter pylori infection. *J Gastroenterol Hepatol* 2004; 39: 520-526 [PMID: 15258868 DOI: 10.1111/j.1440-1746.2004.03672.x]

12. Ward J, Shalev T, Shevah O, Boaz M, Avni Y, Shirin H. A rapid continuous-real-time 13C-urea breath test for the detection of Helicobacter pylori in patients after partial gastrectomy. *J Clin Gastroenterol* 2012; 46: 293-296 [PMID: 22395063 DOI: 10.1097/MCG.0b013e318232ef09]

13. Kuiipers EJ, Thijs JC, Festen HP. The prevalence of Helicobacter pylori in peptic ulcer disease. *Aliment Pharmacol Ther* 1995; 9 Suppl 2: 59-69 [PMID: 8547530]
M, Spada S, Angelico F. Gastric cancer precursor lesions and Helicobacter pylori infection in patients with partial gastrectomy for peptic ulcer. *World J Surg* 2005; 29: 1127-1130 [PMID: 16096865 DOI: 10.1007/s00268-005-7713-4]

Onoda N, Katsuragi K, Sawada T, Maeda K, Mino A, Ohira M, Ishikawa T, Wakasa K, Hirakawa K. Efficacy of Helicobacter pylori eradication on the chronic mucosal inflammation of the remnant stomach after distal gastrectomy for early gastric cancer. *J Exp Clin Cancer Res* 2005; 24: 515-521 [PMID: 16471313]

Matsukura N, Tajiri T, Kato S, Togashi A, Masuda G, Fujita I, Tokunaga A, Yamada N. Helicobacter pylori eradication therapy for the remnant stomach after gastrectomy. *Gastric Cancer* 2003; 6: 100-107 [PMID: 12861401 DOI: 10.1007/s10120-003-0234-7]

Adamopoulos AB, Stergiou GS, Sakizlis GN, Tiniakos DG, Nasothimiou EG, Sioutis DK, Achimastos AD. Diagnostic value of rapid urease test and urea breath test for Helicobacter pylori detection in patients with Billroth II gastrectomy: a prospective controlled trial. *Dig Liver Dis* 2009; 41: 4-8 [PMID: 18606579 DOI: 10.1016/j.dld.2008.05.010]

Kim JK, Paik WH, Lee JK, Chung GE, Kim YJ, Lee CH, Honds KS, Lee SH, Park Y-S, Hwang J-H, Kim J-W, Jung SH, Kim N, Lee DH, Jung HC, Song JS, Kim HH, Lee HS. The Eradication Rate of Helicobacter pylori on the Remnant Stomach after Curative Resection for Gastric Cancer and the Influence of Eradication. *Kor J Gastrointest Endosc* 2007; 35: 216-220

Kim CG, Song HJ, Kook MC, Hong EK, Park S, Lee JY, Lee JH, Ryu KW, Kim YW, Bae JM, Choi JJ. Preoperative versus postoperative Helicobacter pylori eradication therapy in gastric cancer patients: a randomized trial. *Am J Gastroenterol* 2008; 103: 48-54 [PMID: 17714557]

Whiteman DC, Parmar P, Fahey P, Moore SP, Stark M, Zhao ZZ, Montgomery GW, Green AC, Hayward NK, Webb PM. Association of Helicobacter pylori infection with reduced risk for esophageal cancer is independent of environmental and genetic modifiers. *Gastroenterology* 2010; 139: 73-83; quiz e11-e12 [PMID: 20399210]
