Supplemental document accompanying submission to *Optica*

Title: Coherence effects on estimating two-point separation

Authors: Kevin Liang, Sultan Abdul Wadood, Nickolas Vamivakas

Submitted: 7/23/2020 2:41:57 PM
Coherence effects on estimating two-point separation: supplementary material

KEVIN LIANG1,2, S. A. WADOOD1,2, AND A. N. VAMIVAKAS1,2,3,4*

1 The Institute of Optics, University of Rochester, Rochester NY 14627, USA
2 Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
3 Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
4 Materials Science, University of Rochester, Rochester, NY 14627, USA

* Corresponding author: kevinqcliang@gmail.com
* Corresponding author: nick.vamivakas@rochester.edu

Compiled January 20, 2021

This document provides supplementary material to "Coherence effects on estimating two-point separation," https://doi.org/10.1364/OPTICA.403497. A derivation for the density matrix representing the two-point separation problem is provided. This is followed by the process of obtaining a set of spanning orthonormal kets required for the calculation of the quantum Fisher information matrix.

1. DENSITY MATRIX FOR TWO POINT SOURCES

The derivation of the density matrix $\hat{\rho}$ follows that of Tsang’s work (see Appendix B of Ref. 1). To summarize, one begins with the coherent state (Sudarshan-Glauber) representation of the density operator

$$\hat{\rho} = \int \Phi(v)|v\rangle\langle v| \, d^2Mv,$$ \hspace{1cm} (S1)

where the integral is over the entire complex phase space in which the coherent state is defined and $v = [v_1, \ldots, v_M]T$ is a column vector of complex field (coherent) amplitudes for M optical space modes on the image plane. That is, $|v\rangle$ is a multimode coherent state with (vector) amplitude v. The probability of having j total photons, p_j, is then given by $p_j = \text{Tr}(\hat{\rho}|j\rangle\langle j|)$, where $|j\rangle$ is the j photon multimode state.

Several reasonable assumptions are now considered. The average number of photons arriving at the image plane during the coherence time of the source, ϵ, is considered to be much smaller than 1. That is,

$$\epsilon \triangleq \langle \hat{n} \rangle = \sum_{m=0}^{M} \text{Tr}(\hat{\rho}\hat{n}_m) \ll 1,$$ \hspace{1cm} (S2)

where \hat{n} is the multimode photon number operator, \hat{n}_m is the photon number operator for the m-th mode and $\langle \cdot \rangle$ denotes an expectation value with respect to the representation in Eq. (S1). One can rewrite ϵ, using $\hat{n} = \hat{a}^\dagger \hat{a}$ as

$$\epsilon = \langle \hat{a}^\dagger \hat{a} \rangle = \langle |v|^2 \rangle = \int \Phi(v)|v|^2 \, d^2Mv \ll 1,$$ \hspace{1cm} (S3)

where \hat{a}^\dagger and \hat{a} are the multimode creation and annihilation operators. In the last step of Eq. (S3), the operators are replaced with their corresponding eigenvalues since Eq. (S1) is a coherent state representation.

The condition in Eq. (S3) implies several more useful simplifications. In particular, note that p_j is given by

$$p_j = \int \Phi(v)|v|\langle j\rangle|v\rangle\langle j\rangle \, d^2Mv = \frac{1}{j!} \left| \langle j| \right|^2 \left(\exp(-|v|^2) \right),$$ \hspace{1cm} (S4)

which, upon Taylor expansion of the exponential, gives

$$p_j = \frac{1}{j!} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \left| \langle j| \right|^2 \left(|v|^2(1+i\epsilon) \right)^k = \frac{1}{j!} \left[\langle |v|^2 \rangle - \langle |v|^2(1+i\epsilon) \right] + O(e^{j+2}).$$ \hspace{1cm} (S5)

Since $\epsilon \ll 1$, only terms up to linear order in ϵ are significant. This can only happen for $j = 0$ and $j = 1$. That is, we arrive at

$$p_0 = \langle 1 \rangle - \langle |v|^2 \rangle + O(e^2) = 1 - \epsilon + O(e^2),$$ \hspace{1cm} (S6)

$$p_1 = \langle |v|^2 \rangle - \langle |v|^4 \rangle + O(e^3) = \epsilon + O(e^2),$$ \hspace{1cm} (S7)

$$p_{j\geq 2} = O(e^2).$$ \hspace{1cm} (S8)

Note that we used the fact that $\langle 1 \rangle = 1$, which results from $\text{Tr}(\hat{\rho}) = 1$. Equations (S6) - (S8) indicate that only that multi-photon events are insignificant when compared to the zero-photon and one-photon events. Moreover, since the zero-photon event (vacuum state) provides no information regarding measurements, it is actually only the one-photon event, corresponding to p_1, that should be examined.
This particular event corresponds to an element of $\hat{\rho}$ in its Fock (number) state representation. That is, one can consider

$$\hat{\rho} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \langle m | \hat{\rho} | n \rangle \langle m | \langle n \rangle, \quad (S9)$$

where the elements $\langle m | \hat{\rho} | n \rangle$ can be found through Eq. (S1). Note that $\hat{\rho}$ is not necessarily diagonal when represented in the multi-mode Fock basis; nevertheless the preceding discussion regarding the sole significance of the one-photon event allows us to approximate, using $p_1 \approx \epsilon$

$$\hat{\rho} \approx \left(\frac{1}{\epsilon} \right) \langle 1 | \langle 1 \rangle = \epsilon \hat{p}_1, \quad (S10)$$

where \hat{p}_1 is the one-photon multi-mode Fock state. Note that, in order for $\hat{\rho}$ to maintain unit trace, an additional ϵ^{-1} factor had to be introduced to the definition of \hat{p}_1 in relation to $|1\rangle \langle 1\rangle$.

At this point, through the choice of only considering one-photon events, we shift our focus from the entire $\hat{\rho}$ to just \hat{p}_1. That is, the density matrix we are after is $\hat{p}_1 = \hat{\rho} / \epsilon$. Although subtle, this choice is important due to the normalization of density matrices, which is detailed later. Note that \hat{p}_1 can be decomposed into a sum of single-mode one-photon states by considering the one-photon basis kets $|1_m\rangle$, where $m = 1, \ldots, M$. That is,

$$\hat{p}_1 \approx \frac{1}{\epsilon} \sum_{j=1}^{M} \sum_{k=1}^{M} \langle 1_j | \hat{p}_1 | 1_k \rangle \langle 1_j | \langle 1_k \rangle, \quad (S11)$$

where

$$\langle 1_j | \hat{p}_1 | 1_k \rangle = \int \Phi(v) \langle 1_j | v \rangle \langle v | 1_k \rangle d^2M_v \approx \frac{1}{\epsilon} \int \Phi(v) \exp\left(-\frac{|v|^2}{2}\right) |v|^2 \rho_k^2 d^2M_v,$$

and in the final line, only the zeroth order Taylor series term for the exponential was retained [in accordance to terms of $O(\epsilon^2)$ being insignificant]. Note then, that Eq. (S12) is, by definition, the (j,k)-th element of the image-plane mutual coherence matrix \hat{C}. With this identification,

$$\hat{p}_1 \approx \frac{1}{\epsilon} \sum_{j=1}^{M} \sum_{k=1}^{M} \hat{C}_{jk} | 1_j \rangle \langle 1_k \rangle, \quad (S13)$$

and now it remains to determine \hat{C}. For an imaging system, the image-plane mutual coherence matrix is related to the object-plane mutual coherence, \hat{C}_0, through

$$\hat{C} = \hat{S} \hat{C}_0 \hat{S}^†, \quad (S14)$$

where \hat{S} is the system’s field scattering matrix [often not unitary and closely related to the well-known point spread function (PSF) in classical optics]. Assuming that the imaging system operates under paraxial conditions, it is possible to use localized wave-packet modes as a basis. In other words, the modes $| 1_j \rangle$ can be replaced with $| x_j \rangle = | 1_j \rangle / \sqrt{d\chi}$, with $d\chi$ the spacing in the position space. These are discrete position kets whose position eigenvalues are given by $x_j = x_0 + jdx$, where x_0 is an arbitrary origin. At this point, we specialize to the case where the object plane consists of two point sources located at w_+ and w_-. The object-plane mutual coherence is given by

$$\hat{C}_0 = \epsilon_0 \left[\delta_{w_+, w_-} + A \delta_{w_+, \Gamma} + \delta_{w_-, \Gamma} \right], \quad (S15)$$

where A is the (relative to w_+) intensity of the point source at w_-, Γ is the unnormalized coherence parameter between the two point sources, and δ_{vw} is the Kronecker delta symbol. Using Eq. (S14), we find that

$$\hat{C}_{jk} = \epsilon_0 \left(S_{jw_+} S_{kw_+}^† + A S_{jw_+} S_{kw_-}^† + \Gamma S_{jw_-} S_{kw_-}^† + \Gamma S_{jw_-} S_{kw_+}^† \right). \quad (S16)$$

We return now to ϵ, the average number of photons within a coherence time. It is related to the the scattering matrix elements and the coherence parameter Γ through

$$\epsilon = \text{Tr} \left(\sum_{j=1}^{M} \sum_{k=1}^{M} \hat{C}_{jk} | 1_j \rangle \langle 1_k \rangle \right) \epsilon_0 \eta_s, \quad (S17)$$

where $\eta_s = \sum_{s} | S_{js} |^2$, with $s \in \{+, -\}$, is the quantum efficiency (assumed to be equal for both point sources). Note that this value of ϵ ensures that $\text{Tr}(\hat{p}_1) = 1$ and explicitly demonstrates that the number of photons arriving at the image plane, for a fixed object plane photon number, depends on the possibly unknown parameters of $\{ A, \eta_s \}$. In order to express \hat{p} in the familiar basis of two shifted PSFs, we consider the following relations:

$$| \psi_s \rangle = \sum_{j=1}^{M} \sum_{k=1}^{M} S_{js} | x_j \rangle \sqrt{d\chi} \quad \text{and} \quad \psi_s(x_j) = S_{js} / \sqrt{d\chi}, \quad (S18)$$

one can then take the continuous-space limit of $d\chi \to 0$ (and hence $M \to \infty$) to arrive at

$$\hat{p}_1 = \frac{1}{(1 + A)(1 + d^2(s) + 4d\epsilon_s \text{Re}(\Gamma))} \left[\begin{array}{c} 1 \\ \Gamma \\ A \end{array} \right] \text{no}, \quad (S19)$$

which is in the not-orthogonal basis of $\{ | \psi_+ \rangle, | \psi_- \rangle \}$, as desired. Note that in the main body, for simplicity, this \hat{p}_1 is labeled as just $\hat{\rho}$.

2. OBTAINING AN ORTHONORMAL BASIS

The explicit process for obtaining a set of orthonormal vectors that spans the space of $\hat{\rho}$, given by (in the orthogonal $\{ | \psi_+ \rangle, | \psi_- \rangle \}$ basis)

$$\hat{\rho} = \left[\begin{array}{c} 1 + Ad^2 + 2d\cos(\phi) \\ 1 - d^2 (Ad + re^{i\phi}) \end{array} \right] \times \left[\begin{array}{c} 1 \\ A(1 - d^2) \\ [1 + A + 2d\cos(\phi)]^{-1} \end{array} \right], \quad (S20)$$

and $\delta_{j\rho}$ where $j \in P = \{ A, r, \phi, s \}$, is shown here. First, it is straightforward to diagonalize $\hat{\rho}$ in order to obtain two (normalized) eigenvectors $| e_1 \rangle$ and $| e_2 \rangle$, which automatically span $\hat{\rho}$. Of course, once diagonalized, $\hat{\rho}$ can be expressed simply as

$$\hat{\rho} = \sum_{i=1}^{2} \lambda_i | e_i \rangle \langle e_i |, \quad (S21)$$

where λ_i are the eigenvalues that correspond to $| e_i \rangle$ for $i = 1, 2$.

The next step is to find the eigenvectors to $\partial_j \hat{\rho}$, where
\[
\partial_j \hat{\rho} = \sum_{i=1}^{2} \left[\partial_j \lambda_i |e_i\rangle \langle e_i| + \lambda_i \left(|f_i\rangle \langle e_i| + |e_i\rangle \langle f_i| \right) \right],
\] (S22)
where
\[
|f_i\rangle \triangleq \partial_j |e_i\rangle.
\] (S23)

First, the case of $j \neq s$, which turns out to be the simpler case, is analyzed. Given Eq. (S22), it is desirable to rewrite the expression of $\partial_j \hat{\rho}$ in terms of the $\hat{\rho}$-spanning eigenvectors $|e_i\rangle$. In order to do this, we first note that these eigenvectors can be expressed in terms of the non-orthogonal basis kets $|\psi_{\pm}\rangle$ through
\[
|e_i\rangle = F_{ik} |\psi_k\rangle,
\] (S24)
where $k = 1$ and $k = 2$ correspond to $+$ and $-$, respectively. The transformation matrix elements F_{ik} can be easily obtained in the diagonalization process of $\hat{\rho}$ and relating the kets $\{|\psi_{+}\rangle, |\psi_{-}\rangle\}$ back to $\{|\psi_{+}\rangle, |\psi_{-}\rangle\}$. Using Eqs. (S23) and (S24), we find that the second term in Eq. (S22) can be expressed as
\[
\lambda_i |f_i\rangle \langle e_i| + \text{H.C.} = \lambda_i |f_i\rangle \langle e_i| + \text{H.C.},
\] (S25)
where $B_{jl}^i \triangleq (\partial_j F_{ik} (F^{-1})_{kl})$. It turns out that, for $j \neq s$, the diagonal terms B_{j1}^i and B_{j2}^i are purely imaginary and therefore do not contribute further. Using this fact, the matrix $\partial_j \hat{\rho}$, for $j \neq s$, can be written in the set of $\{|e_i\rangle, |e_j\rangle\}$ basis (indicated by a subscript e) as
\[
\partial_j \hat{\rho} = \left[\begin{array}{cc}
\lambda_1 B_{11}^1 + \lambda_2 B_{12}^1 & \lambda_1 B_{12}^1 \langle e_i| \langle e_i| + \lambda_2 B_{21}^1 \\
\lambda_1 B_{12}^1 + \lambda_2 B_{21}^1 & \lambda_2 B_{21}^1 \langle e_j| \langle e_j| + \lambda_1 B_{11}^1 \end{array} \right],
\] (S26)
where the Hermiticity of $\partial_j \hat{\rho}$ is readily apparent (recall that λ_1 and λ_2 are real). Note that the $\partial_j \hat{\rho}$ remains spanned by $\{|e_i\rangle, |e_j\rangle\}$ for $j \neq s$. This was expected because the original basis states $\{|\psi_{+}\rangle, |\psi_{-}\rangle\}$ do not depend on $j \neq s$.

We now look at the remaining case of $j = s$, which, as noted in the discussion after Eq. (S26), is complicated by the fact that the original basis states themselves depend on s through the point spread function ψ:
\[
|\psi_{\pm}\rangle \triangleq \int_{-\infty}^{\infty} dx \psi \left(x \pm \frac{z}{2} \right) |x\rangle.
\] (S27)
Because of this, $\partial_j \hat{\rho}$ is insufficiently spanned by $\{|e_i\rangle, |e_j\rangle\}$ and additional kets. Evidently, these additional kets are $\{|f_i\rangle, |f_j\rangle\}$. For the case of $s = \Psi$, both of these additional kets are automatically through the definition in Eq. (S23) orthogonal to $\{|e_i\rangle, |e_j\rangle\}$ and the construction of an orthonormal basis that spans $\hat{\rho}$ and $\partial_j \hat{\rho}$ is completed through the normalization of $\{|f_i\rangle, |f_j\rangle\}$. However, in the more general setting explored in this work, this simplifying fact is not true. Nevertheless, it is still relatively straightforward (through the Gram-Schmidt process) to compute the additional basis kets $|e_3\rangle$ and $|e_4\rangle$, needed to span $\partial_j \hat{\rho}$. That is, we take
\[
|e_3\rangle \triangleq N_3 \left(|f_i\rangle - \sum_{p=1}^{2} \langle e_p| f_i\rangle |e_p\rangle \right),
\] (S28)
\[
|e_4\rangle \triangleq N_4 \left(|f_j\rangle - \sum_{p=1}^{3} \langle e_p| f_j\rangle |e_p\rangle \right),
\] (S29)

3. COMPARISON TO DIRECT INTENSITY MEASUREMENTS

For a real PSF, ψ, the photon probability density at the image plane from two partially coherent, equal intensity, point sources is given by
\[
P_{\text{DI}}(x) = \frac{\psi_2^2(x) + \psi_2^2(x) + 2\text{Re}(\Gamma) \psi_+(x) \psi_-(x)}{2[1 + \text{Re}(\Gamma) d(x)]},
\] (S30)
where x is the image plane coordinate, $\Gamma = \text{Re}^{(i)}$ is the degree of coherence, and $d(s)$ is the overlap between $\psi_+(x)$ and $\psi_-(x)$. In order to calculate the classical Fisher information (FI) with respect to the separation s, one must construct a classical FI matrix, whose elements are given by
\[
F_{ij}(P_u) = \int_{-\infty}^{\infty} \frac{1}{P_{\text{DI}}(x)} |\partial_i P_{\text{DI}}(x)| |\partial_j P_{\text{DI}}(x)| dx,
\] (S31)
where $i, j \in P_u$, the set of unknown parameters. The classical FI for the parameter s is then given by
\[
F_{ss} = \{ F(P_u)^{-1} \}_{ss}^{-1}
\] (S32)
and F_{ss} reduces to
\[
F_{ss} = \int_{-\infty}^{\infty} \frac{1}{P_{\text{DI}}(x)} |\partial_i P_{\text{DI}}(x)|^2 dx.
\] (S33)
A plot of F_{ss} is shown in Fig. S1. Note that $F_{ss} = 0$ over the $s = 0$ transverse disk, which indicates the traditional Rayleigh’s curse of direct intensity measurements.

One can also consider scenarios where there are additional unknown parameters. For instance, consider $P_u = \{ r, s \}$, which corresponds to the case when the magnitude of the coherence parameter is unknown in addition to the separation. The classical FI
Fig. S2. The classical FI, F_{ss}, for direct intensity measurement is shown as a function of s and complex Γ. Here, the set of unknown parameters is $P_u = \{r, s\}$.

F_{ss} for this case is shown in Fig. S2. Evidently, the inclusion of an additional unknown parameter drastically lowers the classical FI for direct intensity measurements. In particular, we note that F_{ss} is smaller than the quantum FI for the case of $P_u = \{r, \phi, s\}$, which is shown in Fig. 7 of the primary manuscript. This indicates that, even though both situations have vanishing FI over the $s = 0$ transverse disk, the quantum FI calculations still suggest a possible advantage in terms of how the information scales with s.

REFERENCES

1. M. Tsang, R. Nair, and X.-M. Lu, “Quantum theory of super-resolution for two incoherent optical point sources,” Phys. Rev. X 6, 031033 (2016).