Superadditivity in trade-off capacities of quantum channels

Elton Yechao Zhu, Quntao Zhuang, Min-Hsiu Hsieh, Senior Member, IEEE, and Peter W. Shor

Abstract—In this article, we investigate the additivity phenomenon in the dynamic capacity of a quantum channel for trading classical communication, quantum communication and entanglement. Understanding such additivity property is important if we want to optimally use a quantum channel for general communication purpose. However, in a lot of cases, the channel one will be using only has an additive single or double resource capacity, and it is largely unknown if this could lead to an superadditive double or triple resource capacity. For example, if a channel has an additive classical and quantum capacity, can the classical-quantum capacity be superadditive? In this work, we answer such questions affirmatively.

We give proof-of-principle requirements for these channels to exist. In most cases, we can provide an explicit construction of these quantum channels. The existence of these superadditive phenomena is surprising in contrast to the result that the additivity of both classical-entanglement and classical-quantum capacity regions imply the additivity of the triple capacity region.

Index Terms—Additivity; Quantum Channel Capacity; Trade-off Capacity Regions; Quantum Shannon theory.

I. INTRODUCTION

In studying classical communication, Shannon developed powerful probabilistic tools that connect the theoretic throughput of a channel to an entropic quantity defined on a single use of the channel [1]. Shannon’s noiseless channel coding theorem involves a random coding strategy to prove achievability and entropic inequalities that show optimality, i.e., the converse. This methodology has now become standard in proving finite or asymptotic optimal resource conversions in information theory.

Quantum Shannon information starts by mimicking classical information theory: typical sets can be generalized to typical subspaces to prove achievability while various entropic inequalities, such as the quantum data processing inequality, can be used to prove the converse. However, the differences between quantum and classical Shannon information are also significant. On one hand, additional resources available in the quantum domain diversify the allowable capacities, resulting in trade-off regions for the resources that are consumed or generated [2]–[4]. The most common, and useful, quantum resource in communication settings is quantum entanglement. Unlike classical shared randomness, which does not increase a classical channel’s capability to send more messages, preshared quantum entanglement will generally increase the throughput of a quantum channel for sending classical messages or quantum messages or both [2], [5]–[9]. It thus makes sense to consider the trade-off capacity regions among these three useful resources: entanglement, classical communication, and quantum communication, and this was done in Ref. [4]. The result in Ref. [4] further shows that a coding strategy that exploits the channel coding of these three resources as a whole performs better than strategies that do not take advantage of channel coding.

On the other hand, single-lettered channel capacity formulas in the classical regime generally become intractable regularized capacity formulas in the quantum regime [10]–[14]. In other words, evaluation of these capacity quantities requires optimizing channel inputs over an arbitrary finite number of uses of a given channel. This largely blocks our understanding of how quantum channels behave. An extreme example shows the existence of two quantum channels that cannot be used to send a quantum message individually but will have a positive channel capacity when both are used simultaneously [15]. However, there are also several examples showing that when additional resources are used to assist, the corresponding assisted capacity will also become additive. The classical capacity over quantum channels is generally superadditive; however, when assisted by a sufficient amount of entanglement, the entanglement-assisted capacity becomes additive [6], [16]. The quantum capacity also exhibits similar properties. When assisted by either entanglement [2], [3] or an unbounded symmetric side channel [17], its assisted quantum capacity becomes additive.

This superadditive property of quantum channel capacities has accordingly attracted significant attention. Hastings [18] proved that the classical capacity over quantum channels is not additive, a result built upon earlier developments by Hayden-Winter [19] and Shor [20]. Recently, three of us showed a rather perplexing result [21]: when assisted by an insufficient amount of entanglement, a channel’s classical capacity could be superadditive regardless of whether the unassisted classical capacity is additive or not. Further, the additive property of the entanglement-assisted classical capacity shows a form of phase transition. Even if the channel is additive when assisted by a sufficient amount of entanglement or no entanglement at all, it can still be superadditive when assisted with an insuf-
ficient amount of entanglement. This phenomenon indicates that quantum channels behave fundamentally differently from classical channels, and our understanding of it is still quite limited.

This paper is inspired by, and aims to extend Ref. [21]. Will additivity of single or double resource capacities always lead to additivity of a general resource trade-off region? We will study superadditivity in a general framework that considers the three most common resources of: entanglement, noiseless classical communication and quantum communication. Our results show that (i) additivity of single resource capacities of a quantum channel does not generally imply additivity of double resource capacities, except for the known result [2] that an additive quantum capacity yields an additive entanglement-assisted quantum capacity region (see Table I); and (ii) additive double resource capacities does not generally imply an additive triple resource capacity, except for the known case [8] that additive classical-entanglement and classical-quantum capacity regions yield an additive triple dynamic capacity (see Table II). These results again demonstrate how complex a quantum channel can be, and further investigation is required.

The paper is structured as follows. Section II introduces the various definitions, notations and previous results on the triple resource capacities. Section III establishes the switch channel that we use for all our constructions, and how this reduces the triple resource trade-off formula. Section V gives a detailed description of all the possible superadditivity phenomena.

II. PRELIMINARIES

In this section, we give definitions of basic entropic quantities used in the paper. We also describe the dynamic capacity theorem. Special cases of this include the various single and double resource capacities. Finally, we define the elementary entanglement used in our constructions.

A bipartite quantum state σ_{AB} is a positive semi-definite matrix in Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ with trace one. We define the von Neumann entropy, coherent information and quantum mutual information of σ_{AB}, respectively, as follows:

$$S(AB),_\sigma = -\text{Tr} [\sigma_{AB} \log \sigma_{AB}],$$
$$I(A)B),_\sigma = S(B),_\sigma - S(AB),_\sigma,$$
$$I(A; B),_\sigma = S(A),_\sigma + I(A; B),_\sigma,$$

where $S(A),_\sigma$ is the von Neumann entropy of the reduced state $\sigma_A = \text{Tr}_B[\sigma_{AB}]$.

For an ensemble $\{p(x), \sigma_{AB}^x\} \in \mathcal{X}$, let

$$\sigma_{XAB} = \sum_{x \in \mathcal{X}} p(x) |x\rangle \langle x| \otimes \sigma_{AB}^x,$$

where $\{|x\rangle\}$ forms a fixed orthonormal (computational) basis in Hilbert space \mathcal{H}_X. We need the following information quantities as well:

$$I(A)BX),_\sigma = \sum_{x} p(x) I(A; B),_\sigma,$$
$$I(A; B|X),_\sigma = \sum_{x} p(x) I(A; B),_\sigma,$$
$$I(AX; B),_\sigma = I(X; B),_\sigma + I(A; B|X),_\sigma,$$

where $I(A)BX),_\sigma$ and $I(A; B|X)$ in Eqs. (1) and (2) are the conditional coherent information and the conditional mutual information, respectively. $I(X; B),_\sigma$ in Eq. (3) is the Holevo information of $\sigma_{XB} = \text{Tr}_A[\sigma_{XAB}]$.

A quantum channel \mathcal{N} is a completely positive and trace-preserving map. With it, we can transmit either classical or quantum information or both with possible entanglement assistance between the sender and the receiver [8]. More generally, the authors in Ref. [4] proved the following capacity theorem that involves a noisy quantum channel \mathcal{N} and the three resources mentioned above; namely, classical communication (C), quantum communication (Q) and quantum entanglement (E).

Theorem 1 (CQE trade-off [4]): The dynamic capacity region $C_{CQE}(\mathcal{N})$ of a quantum channel \mathcal{N} is equal to the following expression:

$$C_{CQE}(\mathcal{N}) = \bigcup_{\sigma} C_{CQE,\sigma}(\mathcal{N}),$$

where the overbar indicates the closure of a set. The region $C_{CQE}(\mathcal{N})$ is equal to the union of the state-dependent regions $C_{CQE,\sigma}(\mathcal{N})$:

$$C_{CQE,\sigma}(\mathcal{N}) = \bigcup_{\sigma} C_{CQE,\sigma}(\mathcal{N}).$$

The state-dependent region $C_{CQE,\sigma}(\mathcal{N})$ is the set of all rates C, Q and E, such that

$$C + 2Q \leq I(AX; B),_\sigma,$$
$$Q + E \leq I(A)BX),_\sigma,$$
$$C + Q + E \leq I(X; B),_\sigma + I(A)BX),_\sigma.$$
achieved by a time-sharing strategy, i.e., using the channel for a fraction of uses to achieve one point, and using it for the other fraction to achieve the second point.

Below we will briefly describe a few channels which we will repeatedly use.

Definition 2: A Hadamard channel is a quantum channel whose complementary channel is entanglement breaking. Suppose \(\Psi_{A \rightarrow B} \) is a Hadamard channel, with the complementary channel \(\Psi_{A' \rightarrow E}^{c} \). Then there is a degrading map \(\mathcal{D}_{B \rightarrow E} \) such that

\[
\Psi_{A' \rightarrow E}^{c} = \mathcal{D}_{B \rightarrow E} \circ \Psi_{A' \rightarrow B}.
\]

Moreover, \(\mathcal{D} \) can be decomposed as

\[
\mathcal{D}_{B \rightarrow E} = \mathcal{D}_{Y \rightarrow E}^{1} \circ \mathcal{D}_{B \rightarrow Y},
\]

where \(Y \) is a classical variable.

A Hadamard channel has an additive quantum dynamic capacity region, when tensored with an arbitrary quantum channel [23]. Examples of Hadamard channels include the qubit dephasing channel, \(1 \rightarrow N \) cloning channels, and the Unruh channel. We’ll define the qubit dephasing channel below, but refrain from giving definitions of other Hadamard channels, since their exact forms are not needed for understanding this work. We refer the interested readers to Ref. [23] for more details and properties of these channels.

Definition 3: The qubit dephasing channel \(\Psi_{\eta}^{dph} \), with dephasing probability \(\eta \), is defined as

\[
\Psi_{\eta}^{dph}(\rho) = (1 - \eta)\rho + \eta Z\rho Z.
\]

Definition 4: The qubit depolarizing channel \(\Psi_{p}^{dpo} \), with depolarizing probability \(p \), is defined as

\[
\Psi_{p}^{dpo}(\rho) = (1 - p)\rho + p I/2.
\]

The qubit depolarizing channel is known to have an additive classical capacity [24], but a superadditive quantum capacity [25].

Definition 5: A random orthogonal channel \(\Psi^{ro} \) is defined as

\[
\Psi^{ro}(\rho) = \sum_{i=1}^{D} P_i O_i \rho O_i^{\dagger},
\]

where \(O_i \) are chosen from the orthogonal group and the probabilities \(P_i \) are roughly equal. For \(1 \ll D \ll N \), with \(N \) the input dimension, such a channel will have a subadditive minimum output entropy with high probability [18].

Definition 6: Consider an arbitrary channel \(\Psi_{C \rightarrow B} \). Append a register \(R \) to the input, with a set of orthonormal bases \(\{|j\rangle\} \) and \(|R| = |B|^{2} \). We define its unital extension channel [20], [26] \(\Phi_{R \rightarrow C \rightarrow B} \) as

\[
\Phi_{R \rightarrow C \rightarrow B}(\rho_{RC}) = \sum_{j} X(j) \Psi_{C \rightarrow B}((|j\rangle \rho_{RC} |j\rangle_{R}) X(j)^{\dagger},
\]

where \(\{X(j) : j \in \{1, \ldots, |R|\}\} \) are the Heisenberg-Weyl operators.

The unital extension of a random orthogonal channel will have a superadditive classical capacity with high probability [20].

III. Summary of Results

We summarize all of our results here. We will denote the single capacity region by a single letter, e.g. \(C \) for \(C_{C}(N) \). We will also use short notation for double and triple trade-off regions, e.g. \(CE \) for \(C_{CE}(N) \) and \(QE \) for \(C_{QE}(N) \). We will use the arrow notation, with “\(\rightarrow \)” meaning additivity of the left-hand side capacity implies additivity of the right-hand side capacity, and “\(\not\rightarrow \)” meaning additivity of the left-hand side capacity does not imply additivity of the right-hand side capacity.

A. Double resources (see table I)

1) \(CE \):

a) \(C \not\rightarrow CE \) [21]: There exists a quantum channel \(N \), such that its classical capacity is additive, but its CE trade-off capacity region is superadditive. We will give a simplified construction in Sec V-A.

b) \(C, Q \not\rightarrow CE \): There exists a quantum channel \(N \), such that its classical and quantum capacities are both additive, but its CE trade-off capacity region is superadditive, i.e., \(\exists \) a quantum channel \(N \) s.t.

\[
C_{C}(N) = C_{C}^{(1)}(N)
\]

and

\[
C_{Q}(N) = C_{Q}^{(1)}(N)
\]

but

\[
C_{CE}(N) \not\geq C_{CE}^{(1)}(N).
\]

An explicit construction of \(N \) is given in Sec V-B.

2) \(Q \rightarrow QE \) [3]: For all quantum channels \(N \), if its quantum capacity is additive, then its QE trade-off capacity region is always additive.
3) CQ:
 a) C → CQ [25]: There exists a quantum channel \(\mathcal{N} \), such that its classical capacity is additive, but its CQ trade-off capacity region is superadditive. The depolarizing channel has a superadditive quantum capacity and hence a superadditive CQ trade-off capacity, while its classical capacity is additive.

 b) Q → CQ: There exists a quantum channel \(\mathcal{N} \), such that its quantum capacity is additive, but its CQ trade-off capacity region is superadditive, i.e., \(\exists \) a quantum channel \(\mathcal{N} \) s.t.
 \[
 C_Q (N) = C_Q^{(1)} (N)
 \]
 but
 \[
 C_{CQ} (N) \geq C_{CQ}^{(1)} (N).
 \]
 A construction of this example quantum channel is given in Sec V-C.

 c) C, Q → CQ: Moreover, there exists a quantum channel \(\mathcal{N} \), such that its classical and quantum capacities are additive, but its CQ trade-off capacity region is superadditive, i.e., \(\exists \) a quantum channel \(\mathcal{N} \) s.t.
 \[
 C_C (N) = C_C^{(1)} (N)
 \]
 and
 \[
 C_Q (N) = C_Q^{(1)} (N),
 \]
 but
 \[
 C_{CQ} (N) \geq C_{CQ}^{(1)} (N).
 \]
 A construction of this example quantum channel is given in Sec V-D.

B. Triple resources (see table II)

1) CE → CQE: There exists a quantum channel \(\mathcal{N} \) such that its CE trade-off capacity region is additive, but its quantum capacity region is superadditive, i.e., \(\exists \) a quantum channel \(\mathcal{N} \) s.t.
 \[
 C_{CE} (N) = C_{CE}^{(1)} (N)
 \]
 and
 \[
 C_Q (N) = C_Q^{(1)} (N),
 \]
 but
 \[
 C_{CQE} (N) \geq C_{CQE}^{(1)} (N).
 \]
 An example is constructed in Sec V-E.

2) C, E → CQE: There exists a quantum channel \(\mathcal{N} \) such that its quantum capacity and its CE trade-off capacity region are additive, but its dynamic capacity region is superadditive, i.e., \(\exists \) a quantum channel \(\mathcal{N} \) s.t.
 \[
 C_Q (N) = C_Q^{(1)} (N)
 \]
 and
 \[
 C_{CE} (N) = C_{CE}^{(1)} (N),
 \]
 but
 \[
 C_{CQE} (N) \geq C_{CQE}^{(1)} (N).
 \]
 An example is constructed in Sec V-F.

3) CQ → CQE: There exists a quantum channel \(\mathcal{N} \) such that its CQ trade-off capacity region is additive, but its dynamic capacity region is superadditive, i.e., \(\exists \) a quantum channel \(\mathcal{N} \) s.t.
 \[
 C_{CQ} (N) = C_{CQ}^{(1)} (N)
 \]
 but
 \[
 C_{CQE} (N) \geq C_{CQE}^{(1)} (N).
 \]
 An example is given in Sec V-G.

4) CE, CQ → CQE [8]: If a quantum channel \(\mathcal{N} \) has additive CE and CQ trade-off capacity regions, then its dynamic capacity region is also additive. This statement is first observed in Ref. [8], and an explicit argument can be found in Ref. [23].

IV. FRAMEWORK

This section presents technical tools that we require for demonstration of superadditivity in trade-off capacities. We first define the concept of switch channels.

Definition 7: A switch channel \(\mathcal{N}_{MC} \rightarrow B \) between \(\mathcal{N}_{C} \rightarrow B \) and \(\mathcal{N}_{C} \rightarrow B' \) with \(M \) being a 1-bit switch register is defined as
\[
\mathcal{N}_{MC} \rightarrow B (\rho_{MC}) = \mathcal{N}_{C} \rightarrow B ((|0\rangle \rho_{MC} |0\rangle_M) + \mathcal{N}_{C} \rightarrow B' ((|1\rangle \rho_{MC} |1\rangle_M)).
\]

In quantum information theory, switch channels were first used in Ref. [7] to demonstrate the existence of quantum channels such that the quantum capacity is nonzero, but for which pre-shared entanglement does not improve the classical capacity. Subsequently, they are used in Ref. [27] to show the superadditivity of private information, with an alternative definition. Recently, they are also used in Ref. [21] to show the superadditivity of the classical capacity with limited entanglement assistance.

One immediate difficulty is that, even if \(\mathcal{N}^0 \) and \(\mathcal{N}^1 \) are well-studied, the dynamic capacity region of \(\mathcal{N} \) may not always have a simple expression in terms of those of \(\mathcal{N}^0 \) and \(\mathcal{N}^1 \). This is due to the fact that the switch register \(M \) can be in a superposition state. However, if \(\mathcal{N}^0 \) and \(\mathcal{N}^1 \) are unitally extended channels, then the dynamic capacity region of \(\mathcal{N} \) does have a simple expression.

Lemma 8: Consider a switch channel \(\mathcal{N}_{A'} \rightarrow B \) between \(\mathcal{N}^{0}_{A'} \rightarrow B \) and \(\mathcal{N}^{1}_{A'} \rightarrow B \), with input partition \(A' = MRC \) and \(M \) being a switch register. Here \(\mathcal{N}^{0}_{A'} \rightarrow B \) and \(\mathcal{N}^{1}_{A'} \rightarrow B \) are unital extensions of \(\Psi^{0}_{C} \rightarrow B \) and \(\Psi^{1}_{C} \rightarrow B \) respectively. Then
\[
C_{CQE}^{(1)} (N) = \text{Conv} \left(C_{CQE}^{(1)} (N^0), C_{CQE}^{(1)} (N^1) \right),
\]
where Conv denotes the convex hull of points from the two sets.

If the quantum dynamic capacity region for \(\mathcal{N}^0 \otimes \Psi \) is additive for any \(\Psi \), then we also have
\[
C_{CQE} (N) = \text{Conv} \left(C_{CQE} (N^0), C_{CQE} (N^1) \right).
\]

The rest of this section is devoted to the proof of this lemma.

Firstly, we note that switch channels and unitally extended channels fall under a broader class of channels that we call partial classical-quantum channels (partial cq channels).
Definition 9: A channel $\Psi_{RC \rightarrow B}$ is a partial cq channel if there exists a noiseless classical channel $\Pi_{R \rightarrow R}$ with orthonormal basis $\{|j\}_R$, such that
\[
\Psi_{RC \rightarrow B} = \Psi_{RC \rightarrow B} \circ \Pi_{R \rightarrow R}.
\] (10)

If there is no register C, then such channels are classical-quantum channels (cq channels).

For partial cq channels, one can always assume inputs are cq states with respect to the input partition R and C for the purpose of evaluating capacities, as we show in Lemma 10 below.

Lemma 10: If $\Psi_{A \rightarrow B}$ is a partial cq channel with partition $A' = RC$, then the optimal trade-off surface of the 1-shot dynamic capacity region $C^{(1)}_{QE}(\Psi)$ can be achieved with respect to cq states $\sigma_{XAB} = \Psi_{A' \rightarrow B}(\rho_{XAA'})$, where $\rho_{XAA'}$ is of the form
\[
\rho_{XAA'} = \sum_{x,j} p(x,j) |x, j\rangle \langle x,j| \otimes |j\rangle_R \otimes \phi^{xj}_{AC}.
\] (11)

Proof. We will show that, for any input state
\[
\rho_{XAA'} = \sum_{x} p(x) |x\rangle \langle x|_X \otimes \phi^{x}_{AA'},
\] (12)
with its output state
\[
\zeta_{XAB} \equiv \Psi_{A' \rightarrow B}(\rho_{XAA'}) = \sum_{x,j} p(x) |x\rangle \langle x|_X \otimes \zeta^{x}_{AB},
\]
where $\zeta^x_{AB} = \Psi_{A' \rightarrow B}(\phi^x_{AC})$, there exists a corresponding state $\rho_{XAA'}$, in the form of Eq. (11), which can achieve the same rate, if not better.

In fact, the state $\rho_{XAA'}$ can be obtained by applying $\Pi_{R \rightarrow R}$ on $\rho_{XAA'}$ and expanding its classical register X. This can be achieved by the following quantum instrument $\mathcal{T} : R \rightarrow RX_R$, where
\[
\mathcal{T}(\psi_R) := \sum_{j} \langle j| \psi_R |j\rangle |j\rangle_R \otimes |j\rangle |j\rangle_{X_R}
\]
so that
\[
\rho_{XAA'} = \mathcal{T}(\rho_{XAA'}) = \sum_{x,j} p(x,j) |x, j\rangle \langle x,j| \otimes |j\rangle_R \otimes \phi^{xj}_{AC}.
\] (13)

where we abuse the notation X to denote XXR in Eq. (13), $p(x,j) \equiv p(x)p(j|x)$, and $p(j|x) = \text{Tr}[\{|j\rangle \langle j| \phi^x_{AC}\}]$.

Let $\sigma_{XAB} = \Psi_{A' \rightarrow B}(\rho_{XAA'})$. Then
\[
\sigma_{XAB} = \sum_{x,j} p(x,j) |x, j\rangle \langle x,j| \otimes \sigma^{xj}_{AB}
\]
where
\[
\sigma^{xj}_{AB} = \Psi_{A' \rightarrow B}(\phi^{xj}_{AC}).
\]
It follows that
\[
\zeta^x_{AB} = \sum_{j} p(j|x) \sigma^{xj}_{AB}.
\] (14)

1) First consider $I(A'BX)_{\sigma_B}$.
\[
I(A'BX)_{\sigma_B} = \sum_{x,j} p(x,j) I(A|B)_{\sigma_B} = \sum_{x,j} p(x)p(j|x) I(A|B)_{\sigma_B} \\
\geq \sum_{j} p(j) I(A|B)_{\sigma_B} = I(A|B)^x_{\sigma_B},
\] (15)
where the inequality is due to Eq. (14) and the convexity of coherent information with respect to inputs.

2) Now consider $I(X; B)_{\sigma_B}$. Similarly,
\[
I(X; B)_{\sigma_B} = I(\sigma_B) = I(S(B)_{\sigma} + I(AX)B)_{\sigma_B} \\
\geq I(S(B)_{\sigma} + I(AX)B)_{\sigma_B} = I(X; B)_{\sigma_B},
\]
where the inequality is due to $\sigma_B = \zeta^x_{AB}$ and Eq. (15).

3) Finally consider $I(X; B)$, writing $|x, j\rangle$ as $|x\rangle |j\rangle$, it can be shown
\[
I(X; B)_{\sigma_B} \geq I(X; B)_{\sigma_B},
\]
using the data processing inequality when we apply the partial trace map $|x\rangle \langle x| \otimes |j\rangle \langle j| \rightarrow |x\rangle \langle x|$ to σ_{XAB}.

Lemma 11: The optimal trade-off surface of the 1-shot quantum dynamic capacity region of a unitarily extended channel can always be achieved with σ_{XAB} such that $S(B)_{\sigma} = \log(|B|)$.

This extends similarly to higher shots.

Proof. Suppose $\Phi_{RC \rightarrow B}$ is unitarily extended from $\Psi_{C \rightarrow B}$. Since a unitarily extended channel $\Phi_{RC \rightarrow B}$ is a partial cq channel, by Lemma 10, we can consider states of the form
\[
\rho_{XAA'} = \sum_{x,j} p(x,j) |x, j\rangle \langle x,j| \otimes |j\rangle_R \otimes \phi^{xj}_{AC}.
\]
Let $\zeta_{XAB} = \Phi_{RC \rightarrow B}(\rho_{XAA'})$ with $A' = RC$. Then
\[
\zeta_{XAB} = \sum_{x,j} p(x,j) |x, j\rangle \langle x,j| \otimes \zeta^{x}_{AB},
\]
where $\zeta^x_{AB} = X(k)\zeta^x_{AB} X(k)^\dagger$ and $\zeta^x_{AB} = \Phi_{C \rightarrow B}(\phi^x_{AC})$.

We can construct another state of the form in Eq. (11):
\[
\rho_{X'AA'} = \sum_{x,j,k} p(x, j, k) |x, j, k\rangle \langle x, j, k|_X \otimes |k\rangle_R \otimes \phi^{xj}_{AC}
\] (16)

where $p(x, j, k) = p(x, j)/|R|$, and $\sigma'_{X'AB} = \Phi_{RC \rightarrow B}(\rho_{X'AA'})$:
\[
\sigma'_{X'AB} = \sum_{x,j,k} p(x, j, k) |x, j, k\rangle \langle x, j, k|_X \otimes \sigma^{xj}_{AB}
\]
where $\sigma^{xj}_{AB} = X(k)\sigma^{xj}_{AB} X(k)^\dagger$ and $\sigma^{xj}_{AB} = \Phi_{C \rightarrow B}(\phi^x_{AC})$. The state $\sigma'_{X'AB}$ satisfies
\[
S(B)_{\sigma} \geq \sum_{x,j,k} p(x, j, k) S\left(\frac{1}{|R|} \sum_k \sigma^{xj}_{AB}\right) = \log(|B|),
\]
where we’ve used the qudit twirl formula \[28\]
\[
\frac{1}{|R|} \sum_k \sigma^{xjk} = \frac{1}{|R|} \sum_k X(k) \sigma^x_B X(k) \dagger = \frac{1}{|B|} I_B.
\] (17)

One can verify that the dynamic capacity region with \(\sigma^{XAB}\) is larger than that with \(\varsigma_{XAB}\) as follows:

\[
I(A) B X'_{cr} = \sum_{x, j, k} p(x, j, k) I(A) B_{x, j, k}^{r + s}
\]
\[
= \sum_{x, j} p(x, j) I(A) B_{x, j}^{r + s} = I(A) B X_{\varsigma}.
\] (18)

\[
I(X'; B)_{cr} = S(B)_{cr} + \sum_{x, j, k} p(x, j, k) I(B)_{A, x, j, k}^{r + s}
\]
\[
= \log(|B|) + \sum_{x, j} p(x, j) I(B)_{x, j}^{r + s} \geq I(X'; B)_{\varsigma}.
\] (19)

\[
I(X'; B)_{cr} = S(B)_{cr} - \sum_{x, j, k} p(x, j, k) S(B)_{x, j, k}^{r + s}
\]
\[
= \log(|B|) - \sum_{x, j} p(x, j) S(B)_{x, j}^{r + s} \geq I(X'; B)_{\varsigma}.
\] (20)

The key property used in the above equations is, for any Heisenberg-Weyl operator \(X(k)\),

\[S(\sigma_B) = S(X(k) \sigma_B X(k) \dagger). \]

Proof of lemma 2. Following from Lemma 11 and Eq. (16), we only need to consider states of the form

\[
\rho_{XAB} = \sum_{m=0}^{2^N} p_m |m\rangle \langle m|_M \otimes \rho^n_{XARC}
\] (21)

where \(p_m = \sum_{x,k} p(x, m, k)\) and

\[
\rho^n_{XARC} = \sum_{x,k} p(x, m, k) |x, m, k\rangle \langle x, m, k|_X \otimes |k\rangle \otimes \phi^{xmk}_{AC},
\]

with \(p(x, m, k) = p(x, m, k')\) for all \(k, k'\) and \(m \in \{0, 1\}\).

The corresponding channel output is

\[
\sigma_{XAB} = \sum_{m=0}^{2^N} p_m \sigma_{XAB}^m
\] (22)

where

\[
\sigma_{XAB}^m = \sum_{x, k} p(x, m, k) |x, m, k\rangle \langle x, m, k|_X \otimes \sigma^{xmk}_{AB}
\] (23)

and

\[
\sigma^{xmk}_{AB} = X(k) \phi^{xmk}_{C-B} \phi^{xmk}_{AC} X(k) \dagger.
\]

Then all three of the entropic quantities evaluated on \(\sigma_{XAB}\) in Eq. (22) can be decomposed to the corresponding ones evaluated on \(\sigma_{XAB}^m\) given in Eq. (23):

\[
I(A) B X_{cr} = \sum_{m=0}^{2^N} \sum_{x, k} p(x, m, k) I(A) B_{x, k}^{r + s}
\]
\[
= \sum_{m=0}^{2^N} p_m I(A) B X_{\sigma}.
\]

Likewise,

\[
I(A; B)_{cr} = \log(|B|) + \sum_{m=0}^{2^N} \sum_{x, k} p(x, m, k) I(A) B_{x, k}^{r + s}
\]
\[
= \sum_{m=0}^{2^N} p_m I(A; B)_{\sigma}.
\]

and

\[
I(X; B)_{cr} = \sum_{m=0}^{2^N} p_m I(X; B)_{\sigma}.
\]

This means if we consider inputs of the form (21), the triple rate for using \(N\) can always be expressed as a linear combination of the triple rates of \(N^0\) and \(N^1\). It is also clear that any linear combination is achievable by the time-sharing principle. Since using states of the form (21) is optimal, we have

\[
C^{(1)}_{CQE} (N^0 \otimes N^1) = \text{Conv} \left(C^{(1)}_{CQE} (N^0), C^{(1)}_{CQE} (N^1) \right).
\]

Here, addition means Minkowski sum. Similarly, we have

\[
C^{(1)}_{CQE} (N^0 \otimes N^0) = \text{Conv} \left(C^{(1)}_{CQE} (N^0), C^{(1)}_{CQE} (N^1) \right).
\]

If the quantum dynamic capacity region is additive for \(N^0 \otimes \Psi\), for any \(\Psi\), then

\[
C^{(1)}_{CQE} (N^0 \otimes N^1) = C^{(1)}_{CQE} (N^0) + C^{(1)}_{CQE} (N^1).
\] (24)

In this case the 1-shot quantum dynamic capacity region for \(N \otimes N\) can be greatly simplified to

\[
C^{(1)}_{CQE} (N \otimes N) = \text{Conv} \left(C^{(1)}_{CQE} (N^0), C^{(1)}_{CQE} (N^1) \right).
\]

Similarly,

\[
C^{(1)}_{CQE} (N^0 \otimes k) = \text{Conv} \left(C^{(1)}_{CQE} (N^0 \otimes k), C^{(1)}_{CQE} (N^1 \otimes k) \right).
\]

Each term \(C^{(1)}_{CQE} (N^0 \otimes k, N^1 \otimes k)\), \(0 \leq m \leq k\), can be upper bounded as

\[
C^{(1)}_{CQE} (N^0 \otimes k, N^1 \otimes k) \leq mC_{CQE} (N^0) + (k - m)C_{CQE} (N^1).
\]

\[\text{For two sets of position vectors } A \text{ and } B \text{ in Euclidean space, their Minkowski sum } A + B \text{ is obtained by adding each vector in } A \text{ to each vector in } B, \text{ i.e., } A + B = \{a + b | a \in A, b \in B\} \] [29].
Here the second line follows from the additivity of the dynamic capacity region of N^0. The third line follows from the definition of C_{CE}. The fourth line follows from the definition of convex hull. Thus $C_{CE}^{(1)}(N^{0k})$ can also be upper bounded as
\[
C_{CE}^{(1)}(N^{0k}) \leq k\text{Conv}(C_{CE}(N^0), C_{CE}(N^1))
\]
and
\[
C_{CE}(N) = \bigcup_{k=1}^{\infty} \frac{1}{k} C_{CE}^{(1)}(N^{0k}) \subseteq \text{Conv}(C_{CE}(N^0), C_{CE}(N^1)) = \text{Conv}(C_{CE}(N^0), C_{CE}(N^1)).
\]
The last equality follows because of the topology of the dynamic capacity region, as we show in Appendix D.

By a time-sharing protocol, it is obvious that
\[
C_{CE}(N) \supseteq \text{Conv}(C_{CE}(N^0), C_{CE}(N^1))
\]
Hence
\[
C_{CE}(N) = \text{Conv}(C_{CE}(N^0), C_{CE}(N^1)).
\]

Note that unital extensions are not unique, and we only used the unitarity of Heisenberg-Weyl operators and the twirl formulation Eq. (17) in proving the above lemmas. Hence, as long as we have K unitaries $\{U_k\} \in U(d)$ that satisfy the twirl formula
\[
\frac{1}{K} \sum_{k=1}^{K} U_k A U_k^\dagger = \text{Tr}(A) I/d
\]
for any $d \times d$ matrix A, one has a valid unital extension, and lemmas 8 and 11 will hold. ③

Moreover, unital extensions are preserved under tensor product of channels: if Φ^1 is a unital extension of Ψ^1, and Φ^2 is a unital extension of Ψ^2, then $\Phi^1 \otimes \Phi^2$ is also a unital extension of $\Psi^1 \otimes \Psi^2$. This follows from the fact that if $\{U_j\} \in U(d_1)$ and $\{V_k\} \in U(d_2)$ both satisfy Eq. (25), then $\{U_j \otimes V_k\} \in U(d_1 d_2)$ also satisfies Eq. (25).

V. EXPLICIT CONSTRUCTION OF VARIOUS SUPERADDITIVITY PHENOMENA

With the tools developed in Sec IV, we can now explicitly construct channels that satisfy the superadditivity properties stated in Sec III. All our constructions utilize the switch channel idea. We always assume that N is a switch channel of two unital extended channels N^0 and N^1. Further, we assume that

(U) N^0 has an additive dynamic capacity region, when tensored with another arbitrary channel.

In this setting, we can use Lemma 8 and its reduction to various single-resource and two-resource capacities.

③Note that we do not even require N^0 and N^1 to have the same unit extension. However, to ensure the input dimensions of N^0 and N^1 are the same, their unital extensions must involve the same number of unitaries. For this reason, we stick with the Heisenberg-Weyl operators most of the time.

In each construction, we first state the properties that N^0 and N^1 need to satisfy, in addition to Property (U). We then show how the desired superadditivity of the switch channel N follows from these properties. In the end, we explicitly construct channels that satisfy the properties we required.

Before we start, we first propose two families of unital extended channels that satisfy (U). Many of our explicit constructions of N^0 will be chosen from these candidates. The first family comes from unital extensions of Hadamard channels. The following lemma shows that the dynamic capacity of the unitaly extended Hadamard channels is also additive.

Lemma 12: The dynamic capacity region is additive for Φ^0 and any other channel Ψ^1, if Φ^0 is a unital extension of a Hadamard channel Ψ^0.

The second family is unital extensions of classical channels. Lemma 13: If Ψ^0 is a classical channel, then the dynamic capacity region is additive for $\Psi^0 \otimes \Psi^1$, for arbitrary Ψ^1. The same holds for a unital extension of a classical channel.

The proofs of the above lemmas are left to the Appendices, as they are not essential in understanding the construction.

A. Additive C, Superadditive CE

Here we review the original argument in [21] and recast it in the current framework.

We use $C_P(N)$ when we view $C(N)$ as a function of the amount of entanglement assistance P, where $(C(N), P)$ are points on the CE trade-off curve of N. When $P = 0$, we return to the classical capacity $C_C(N)$. When P is maximal, we arrive at the classical capacity with unlimited entanglement assistance $C_E(N)$. $C_P^{(1)}(N)$ denotes the 1-shot case.

We require N^0 and N^1 to have the following properties:

(A1) $C_C(N^0) = C_C(N^1)$.

(A2) N^1 has a superadditive CE trade-off capacity region, i.e.,
\[
C_{CE}(N^1) \supseteq C_{CE}^{(1)}(N^1),
\]
and $C_{CE}(N^1)$ is strictly concave and superadditive at a boundary point of the trade-off region with entanglement consumption \bar{P}.

(A3) $C_{CE}(N^0) \subseteq C_{CE}(N^1)$ in the sense the CE trade-off capacity region of N^0 is strictly smaller than that of N^1 when entanglement consumption is at \bar{P}.

In the C_P notation, property (A2) means that $P = \bar{P}$,
\[
C_P(N^1) > C_P^{(1)}(N^1),
\]
and $C_P(N^1)$ is strictly concave in P at $P = \bar{P}$. Property (A3) implies that $C_P(N^0) < C_P(N^1)$ at $P = \bar{P}$.

Note that these properties are weaker than the ones required in Ref. [21].

These three properties (A1)-(A3), together with (U), will guarantee that (i) the classical capacity of N is additive; and (ii) the CE trade-off capacity region of N is superadditive at entanglement consumption rate \bar{P}.

③Here by saying a function f is strictly concave at y, we mean $f(y) > (1-p)f(v) + pf(w)$ for all $v < y < w$ satisfying $(1-p)v + pw = y$, with $p \in (0, 1)$.
Combining property (A1) with (U) yields statement (i):
\[C_C(N) = \max \left\{ C_C(N^0), C_C(N^1) \right\} = C_C(N^0) \]
\[= \max \left\{ C_C^{(1)}(N^0), C_C^{(1)}(N^1) \right\} = C_C^{(1)}(N), \]
where Lemma 8 is used in the first equality.

Property (A3) ensures that
\[C_{CE}(N) = \text{Conv} \left(C_{CE}(N^0), C_{CE}(N^1) \right) \]
\[= C_{CE}(N^1), \quad (26) \]

Since
\[C_C^{(1)}(N) = \text{Conv} \left(C_{CE}(N^0), C_{CE}^{(1)}(N^1) \right), \]
there exists \(P_0, P_1 \geq 0 \) and \(p \in [0, 1] \) such that \(pP_0 + (1-p)P_1 = \bar{P} \) and
\[C_{P^1}(N) = pC_{P_0}(N^0) + (1-p)C_{P_1}(N^1). \]
Statement (ii) follows after considering three different cases.
1) \(p = 0 \).
\[C_{P^1}(N) = C^{(1)}_{P^1}(N^1) < C_{\bar{P}}(N^1) = C_{\bar{P}}(N), \]
where the inequality follows from the superadditivity of property (A2). The second equality follows from Eq. (26).
2) \(0 < p < 1 \).
\[C_{P^1}(N) = pC_{P_0}(N^0) + (1-p)C_{P_1}(N^1) \leq pC_{P_0}(N^1) + (1-p)C_{P_1}(N^1) < C_{\bar{P}}(N^1) = C_{\bar{P}}(N) \]
where the first inequality follows from Property (A3). The second inequality follows from the strict concavity part of property (A2). The last equality follows from Eq. (26).
3) \(p = 1 \). Then
\[C_{P^1}(N) = C_{P^1}(N^0) < C_{\bar{P}}(N^1) = C_{\bar{P}}(N). \]

Here the first equality follows from additivity of the CE trade-off capacity region for \(N^0 \). The inequality follows from property (A3). The last equality follows from Eq. (26).

Explicit Construction of \(N \): We quote the following property about concave functions [30]: A concave function \(u(y) \) is continuous, differentiable from the left and from the right. The derivative is decreasing, i.e., for \(x < y \) we have \(u'(x-) \geq u'(x+) \geq u'(y-) \geq u'(y+) \). We use \(\pm \) to denote the right and left derivatives when needed.

We first construct \(N^1 \). Choose \(\Psi^{\eta}_\Phi \) to be a random orthogonal channel with a subadditive minimum output entropy, and \(\Psi^{\eta}_\Phi \) has input dimension \(N \). This is unitally extended to \(\Phi^{\eta}_\Psi \).

Due to Lemma 10, the useful entanglement assistance is at most \(\log(N) \). Thus we restrict to \(0 \leq P \leq \log(N) \). Let
\[\epsilon = C_C(\Phi^{\eta}_\Psi) - C^{(1)}_C(\Phi^{\eta}_\Psi) > 0. \quad (27) \]

Since
\[C^{(1)}_P(\Phi^{\eta}_\Psi) \leq C^{(1)}_C(\Phi^{\eta}_\Psi) + P, \]
\[C_E(\Phi^{\eta}_\Psi) \leq C_C(\Phi^{\eta}_\Psi) + \log(N) - \epsilon. \]
This implies \(dC_P(\Phi^{\eta}_\Psi)/dP \) cannot always be 1. Thus there exists \(\bar{P} \in [0, \log(N)] \) such that
\[dC_P(\Phi^{\eta}_\Psi)/dP = 1, \ \forall \ 0 \leq P \leq \bar{P} \]
and
\[dC_P(\Phi^{\eta}_\Psi)/dP < 1, \ \forall P > \bar{P}. \]

Next we discuss different cases of \(\bar{P} \).
1) \(\bar{P} > 0 \). Then \(C_P(\Phi^{\eta}_\Psi) \) is strictly concave at \(\bar{P} \). Furthermore, \(C_P(\Phi^{\eta}_\Psi) - C^{(1)}_{\bar{P}}(\Phi^{\eta}_\Psi) \geq \epsilon \) since \(C_P(\Phi^{\eta}_\Psi) = C_C(\Phi^{\eta}_\Psi) + \bar{P} \) but \(C^{(1)}_{\bar{P}}(\Phi^{\eta}_\Psi) \leq C^{(1)}_C(\Phi^{\eta}_\Psi) + \bar{P} \). Thus \(N^1 = \Phi^{\eta}_\Psi \) satisfies (A2).
2) \(\bar{P} = 0 \). Let \(N^1 = \Phi^{\eta}_\Psi \otimes \Phi^{\eta}_\Psi \), where \(\Phi^{\eta}_\Psi \) is the unital extension of the qubit dephasing channel.

Since \(dC_P(\Phi^{\eta}_\Psi)/dP \leq 0 \), choose \(\eta > 0 \) such that \(dC_P(\Phi^{\eta}_\Psi) = dC_P(\Phi^{\eta}_\Psi + \Delta) \) and Eq. (27) is possible, as \(C_P(\Phi^{\eta}_\Psi) \leq C_P(\Phi^{\eta}_\Psi + \Delta) \) and \(dC_P(\Phi^{\eta}_\Psi) \leq dC_P(\Phi^{\eta}_\Psi + \Delta) \). This ensures that when \(0 < P \leq 1 \),
\[C_P(N^1) = C_C(\Phi^{\eta}_\Psi) + C_P(\Phi^{\eta}_\Psi), \quad (29) \]
where we’ve also used Lemma 12.

For \(\Phi^{\eta}_\Psi \), it can be shown that \(C_P(\Phi^{\eta}_\Psi) \) is strictly concave in \(P \) when \(\eta < 1/2 \) (see Appendix C). Hence \(C_P(N^1) \) is also strictly concave with respect to \(P \), for \(0 < P \leq 1 \). Also, when \(P < \epsilon \),
\[C_P(N^1) > C_C(\Phi^{\eta}_\Psi) + C_P(\Phi^{\eta}_\Psi) \geq C_C^{(1)}(\Phi^{\eta}_\Psi) = C_C(N^1). \]

Here the first inequality comes from Eq. (29) and \(C_P(\Phi^{\eta}_\Psi) > C_C(\Phi^{\eta}_\Psi) \) when \(P > 0 \). The second inequality comes from our assumption \(P < \epsilon \) and Eq. (27). The last inequality comes from Eq. (28).

This ensures that \(C_P(N^1) \) is superadditive. Thus when \(0 < \bar{P} < \min\{1, \epsilon\} \), \(C_P(N^1) \) is strictly concave and superadditive.

For \(N^0 \), as long as it is a unital extension of a classical channel with \(C_C(N^0) = C_C(N^1) \), it will automatically satisfy property (A3).

B. Additive C and Q, Superadditive CE

In Section V-A, we constructed a channel \(N \) with an additive classical capacity, but a superadditive CE trade-off capacity region. It’s unclear if our construction \(N \) has an additive quantum capacity. To extend the argument, we need to make some modifications to the original construction.

In addition to properties (A1)-(A3), the channels \(N^0 \) and \(N^1 \) need to satisfy
\[(B1) \quad C_Q(N^0) \geq C_Q(N^1). \]
This ensures that the quantum capacity of \(\mathcal{N} \) is also additive:

\[
C_Q(\mathcal{N}) = \max \left\{ C_Q(\mathcal{N}^0), C_Q(\mathcal{N}^1) \right\} = C_Q(\mathcal{N}^0) = \max \left\{ C_Q^{(1)}(\mathcal{N}^0), C_Q^{(1)}(\mathcal{N}^1) \right\} = C_Q(\mathcal{N}) .
\]

Explicit Construction of \(\mathcal{N} \): We take the channels \(\mathcal{N}^0 \) and \(\mathcal{N}^1 \) that were constructed in Sec V-A, and compare their quantum capacities. Since \(C_Q(\mathcal{N}^0) = 0 \), we can only have \(C_Q(\mathcal{N}^0) \leq C_Q(\mathcal{N}^1) \). If

\[
C_Q(\mathcal{N}^0) = C_Q(\mathcal{N}^1) ,
\]

then (B1) is automatically satisfied. Hence we will focus on the case where

\[
C_Q(\mathcal{N}^0) < C_Q(\mathcal{N}^1) .
\]

In this case, we call these two channels \(\Phi^0 \) and \(\Phi^1 \) respectively. We will construct two new channels \(\mathcal{N}^0 \) and \(\mathcal{N}^1 \) that satisfy properties (A1)-(A3) and (B1).

We will use the qubit depolarizing channel and 1 \(\rightarrow \) \(N \) cloning channel. To make the argument work, we will modify them in the following manner.

For the 1 \(\rightarrow \) \(N \) cloning channel \(\Psi^{1 \rightarrow N} \), we always tensor an appropriate classical channel, such that the resulting channel has its classical capacity equal to 1, and the output dimension is the same as the input dimension. We denote the resulting channel \(\Psi^N \).

For the dephasing channel, we will tensor a complete depolarizing channel, so that its input and output dimensions match those of \(\Psi^N \). Since tensoring a complete depolarizing channel does not modify the dynamic capacity region of the qubit dephasing channel, we will continue using \(\Psi^\eta_{dph} \) to denote it.

Based on results in Ref. [23], we can obtain the trade-off capacities of the qubit dephasing channel \(\Psi^\eta_{dph} \) and modified 1 \(\rightarrow \) \(N \) cloning channel \(\Psi^N \). We observe that for \(\eta = 0.2 \) and \(N = 15 \), their trade-off capacities satisfy the following properties (see Fig. 1)

\[
C_Q\left(\Psi^\eta_{dph}\right) > C_Q\left(\Psi^N\right) .
\]

and

\[
C_{CE}\left(\Psi^\eta_{dph}\right) \leq C_{CE}\left(\Psi^N\right) ,
\]

in the sense that \(\Psi^N \) achieves a strictly better classical communication rate than \(\Psi^\eta_{dph} \), if we have any non-zero amount of entanglement assistance. In the \(C_P \) notation, it means \(C_P\left(\Psi^\eta_{dph}\right) < C_P\left(\Psi^N\right) \) for all \(P > 0 \).

Since unital extensions do not change the CE and CQ trade-off capacity regions of these two channels (see Appendix C), the above properties hold if we replace \(\Psi^\eta_{dph} \) and \(\Psi^N \) by their unital extensions \(\Phi^\eta_{dph} \) and \(\Phi^N \) respectively.

Since

\[
C_Q\left(\Phi^\eta_{dph}\right) > C_Q\left(\Phi^N\right) ,
\]

let \(n \) be large enough so that

\[
nC_Q\left(\Phi^\eta_{dph}\right) + C_Q\left(\Phi^0\right) \geq nC_Q\left(\Phi^N\right) + C_Q\left(\Phi^1\right) .
\]

Define

\[
\Psi^{0} = \left(\Phi^\eta_{dph}\right)^\otimes n \otimes \Phi^0 \quad \text{and} \quad \Psi^{1} = \left(\Phi^N\right)^\otimes n \otimes \Phi^1 .
\]

Our choice of \(n \) ensures that

\[
C_Q\left(\mathcal{N}^0\right) \geq C_Q\left(\mathcal{N}^1\right) .
\]

We also need to ensure our newly constructed \(\mathcal{N}^0 \) and \(\mathcal{N}^1 \) still satisfy properties (A1)-(A3). As

\[
C_C\left(\Phi^\eta_{dph}\right) = C_C\left(\Phi^N\right) = 1
\]

and

\[
C_C\left(\Phi^0\right) = C_C\left(\Phi^1\right) ,
\]

we immediately have

\[
C_C\left(\mathcal{N}^0\right) = C_C\left(\mathcal{N}^1\right)
\]

and property (A1) is satisfied.

The CE trade-off curve of \(\Psi^{1 \rightarrow N} \) is strictly concave for \(N \neq 1 \) [23], hence property (A2) is also satisfied for \(\mathcal{N}^1 \). Property (A3) is satisfied due to Eq. (30).

C. Additive Q, Superadditive CQ

We require \(\mathcal{N}^0 \) and \(\mathcal{N}^1 \) to have the following properties:

\begin{align*}
\text{(C1)} & \quad C_Q(\mathcal{N}^0) \geq C_Q(\mathcal{N}^1) . \\
\text{(C2)} & \quad C_C(\mathcal{N}^1) > C_C^{(1)}(\mathcal{N}^1) . \\
\text{(C3)} & \quad C_C(\mathcal{N}^0) < C_C(\mathcal{N}^1) .
\end{align*}

These properties (C1)-(C3) will allow us to show that (i) \(C_Q(\mathcal{N}) = C_Q^{(1)}(\mathcal{N}) \); and (ii) \(C_C(\mathcal{N}) \geq C_C^{(1)}(\mathcal{N}) \).

Statement (i) follows from property (C1) and (U) that \(\mathcal{N}^0 \) has an additive quantum capacity:

\[
C_Q(\mathcal{N}) = \max \left\{ C_Q(\mathcal{N}^0), C_Q(\mathcal{N}^1) \right\} = C_Q(\mathcal{N}^0) = \max \left\{ C_Q^{(1)}(\mathcal{N}^0), C_Q^{(1)}(\mathcal{N}^1) \right\} = C_Q^{(1)}(\mathcal{N}) .
\]

Properties (C2) and (C3) together ensure

\[
C_C(\mathcal{N}) = \max \left\{ C_C(\mathcal{N}^0), C_C(\mathcal{N}^1) \right\} = C_C(\mathcal{N}^1) > \max \left\{ C_C^{(1)}(\mathcal{N}^0), C_C^{(1)}(\mathcal{N}^1) \right\} = C_C^{(1)}(\mathcal{N}) ,
\]
i.e., the classical capacity of \(N \) is superadditive; hence statement (ii) follows.

Explicit Construction of \(N \): Next we construct \(N^0 \) and \(N^1 \) that satisfy the above properties.

Let \(\Psi_{\eta}^{\text{ph}} \) be a random orthogonal channel, such that its unital extension has a superadditive classical capacity. For convenience, we also assume \(\Psi_{\eta}^{\text{ph}} \) has the input dimension \(N = 2^r \). Choose \(\eta \) for the qubit dephasing channel \(\Psi_{\eta}^{\text{ph}} \) such that \(C_{Q} (\Psi_{\eta}^{\text{ph}}) + C_{Q} (\Psi_{\eta}^{\text{ph}}) = m \) for some integer \(m \).

Define

\[
N^1 = \Phi^{\text{ph}} \otimes \Phi_{\eta}^{\text{ph}},
\]

where \(\Phi^{\text{ph}} \) is a unital extension of the noiseless qubit channel, and \(\Phi_{\eta}^{\text{ph}} \) is a unital extension of the complete qubit depolarizing channel.

It’s clear that \(N^0 \) has its classical and quantum capacity as \(C_{C} (N^0) = C_{Q} (N^0) = m \), thus fulfilling the properties (C1) and (C3) above.

D. Additive \(C \) and \(Q \), Superadditive \(CQ \)

We require \(N^0 \) and \(N^1 \) to satisfy the following properties:

1. \(C_{C} (N^0) \leq C_{C} (N^1) = C_{C}^{(1)} (N^1) \) and \(C_{Q} (N^0) = C_{Q} (N^1) \).
2. \(N^1 \) has a superadditive \(CQ \) trade-off capacity region, meaning

\[
C_{Q} (N^1) \geq C_{Q}^{(1)} (N^1).
\]

\(C_{Q} (N^1) \) is strictly concave and superadditive at a boundary point with classical communication rate \(\bar{C} \).

3. \(C_{Q} (N^0) \) is strictly smaller than that of \(N^1 \) when classical communication rate is at \(\bar{C} \).

With these properties, we can show that (i) \(C_{C} (N) = C_{C}^{(1)} (N) \); (ii) \(C_{Q} (N) = C_{Q}^{(1)} (N) \); and (iii) \(C_{CQ} (N) \geq C_{CQ}^{(1)} (N) \).

We’ll focus on the \(CQ \) trade-off curve. Same as in Section V-A, we use a simplified notation \(Q_{C} (N) \) when we view \(Q (N) \) as a function of \(C (N) \). In the 1-shot scenario, it is denoted by \(Q_{C}^{(1)} (N) \). We’ll show there exists \(\bar{C} \neq 0 \) such that \(Q_{C} (N) > Q_{C}^{(1)} (N) \).

In the \(Q_{C} \) notation, property (D2) means at \(C = \bar{C} \), \(Q_{C} (N^1) > Q_{C}^{(1)} (N^1) \) and \(Q_{C} (N^1) \) is strictly concave in \(C \) at \(C = \bar{C} \). Property (D3) implies that \(Q_{C} (N^0) < Q_{C} (N^1) \) at \(C = \bar{C} \).

Property (D1) and (U) that \(N^0 \) has an additive quantum capacity ensure that

\[
C_{C} (N) = \max \left\{ C_{C} (N^0), C_{C} (N^1) \right\} = C_{C} (N^1)
\]

and

\[
C_{Q} (N) = \max \left\{ C_{Q} (N^0), C_{Q} (N^1) \right\} = C_{Q} (N^1).
\]

\(i.e., \) \(N \) has an additive classical and quantum capacity. By property (D3), we have

\[
C_{CQ} (N) = \text{Conv} \left(C_{CQ} (N^0), C_{CQ} (N^1) \right) = C_{CQ} (N^1).
\]

Since

\[
C_{CQ}^{(1)} (N) = \text{Conv} \left(C_{CQ} (N^0), C_{CQ}^{(1)} (N^1) \right),
\]

there exists \(C_{b}, C_{1} \) and \(p \in \left[0, 1 \right] \) such that \(pC_{b} + (1-p)C_{1} = \bar{C} \) and

\[
Q_{C}^{(1)} (N) = pQ_{C_{b}} (N^0) + (1-p)Q_{C_{1}}^{(1)} (N^1).
\]

Now consider three different cases.

1) \(p = 0 \).

\[
Q_{C}^{(1)} (N) = Q_{C_{b}} (N^0) < Q_{C} (N^1) = Q_{C} (N),
\]

where the inequality follows from property (D2). The second equality follows from Eq. (31).

2) \(0 < p < 1 \).

\[
Q_{C}^{(1)} (N) = pQ_{C_{b}} (N^0) + (1-p)Q_{C_{1}}^{(1)} (N^1) \leq pQ_{C_{b}} (N^0) + (1-p)Q_{C_{1}} (N^1) < Q_{C} (N^1) = Q_{C} (N).
\]

Here the first inequality follows from the definition of \(Q_{C} \) and property (D3). The second inequality follows from the strict concavity property of \(Q_{C_b} \). The last equality follows from Eq. (31).

3) \(p = 1 \). Then

\[
Q_{C}^{(1)} (N) = Q_{C} (N^0) < Q_{C} (N^1) = Q_{C} (N).
\]

Here the inequality follows from property (D3). The last equality follows from Eq. (31).

Hence statement (iii) follows.

Explicit Construction: Now we explicitly construct \(N^0 \) and \(N^1 \).

Choose \(p \) such that the qubit depolarizing channel \(\Psi_{p}^{\text{ph}} \) is known to have a superadditive quantum capacity. Consider its unital extension \(\Phi_{p}^{\text{ph}} \). Note that the gradient \(dQ_{C} (\Phi_{p}^{\text{ph}}) / dC \) of the \(CQ \) trade-off curve cannot always stay at 0 for the choice of \(\Psi_{p}^{\text{ph}} \) with a positive quantum capacity. It means there exists

\[
0 \leq \bar{C} < C_{C} (\Phi_{p}^{\text{ph}})
\]

such that

\[
dQ_{C} (\Phi_{p}^{\text{ph}}) / dC = 0, \forall 0 \leq C \leq \bar{C}.
\]

and

\[
dQ_{C} (\Phi_{p}^{\text{ph}}) / dC < 0, \forall C_{+} \leq C \leq C_{C} (\Phi_{p}^{\text{ph}}).
\]
1) $\tilde{C} > 0$. In this case, we know $Q_C(\Phi_p^{dpo})$ is strictly concave at \tilde{C}. Also
\[
Q_C(\Phi_p^{dpo}) = Q_0(\Phi_p^{dpo}) > Q_C^{(1)}(\Phi_p^{dpo}) \geq Q_C^{(1)}(\Phi_p^{dpo}).
\]
Here the equality follows from Eq. (32). The first inequality follows because Ψ_p^{dpo} has a superadditive quantum capacity, as both C_Q and $C_Q^{(1)}$ remain unchanged after a unital extension, and Q_C reduces to the quantum capacity at $C = 0$. The second inequality follows as the rate of quantum communication along the CQ trade-off curve must not exceed the quantum capacity. Choose the noise parameter η for the qubit dephasing channel Ψ_{η}^{dph} appropriately such that
\[
C_Q(\Psi_{\eta}^{dph}) = 1 - C_Q(\Psi_p^{dpo}).
\]
Define
\[
N^1 = \Phi_p^{dpo} \otimes \Phi_{\eta}^{dph}.
\]
It’s clear that N^1 is a unital extension of $\Psi_p^{dpo} \otimes \Psi_{\eta}^{dph}$ and has $C_Q(N^1) = C_Q(\Psi_p^{dpo} \otimes \Psi_{\eta}^{dph}) = 1$. The CQ trade-off curve is strictly concave and superadditive at \tilde{C}. The corresponding Ψ is
\[
\Psi^0 = I \otimes \Psi_1^{dpo},
\]
\textit{i.e.,} a noiseless channel tensor a complete qubit depolarizing channel. N^0 is a unital extension of Ψ^0.

2) $\tilde{C} = 0$. Choose η_1 close to $1/2$ such that
\[
\left. \frac{dQ_C(\Phi_{\eta_1}^{dph})}{dC} \right|_{C(C_{\Psi_{\eta_1}^{dph}})} < \left. \frac{dQ_C(\Phi_p^{dpo})}{dC} \right|_{0.}
\]
Let
\[
N^1 = \Phi_{\eta_1}^{dph} \otimes \Phi_p^{dpo} \otimes \Phi_{\eta_2}^{dph},
\]
where η_2 is chosen such that
\[
C_Q(N^1) = C_Q(\Psi_{\eta_1}^{dph} \otimes \Psi_p^{dph} \otimes \Psi_{\eta_2}^{dph}) = C_Q(\Psi_p^{dph}) + C_Q(\Psi_{\eta_1}^{dph}) + C_Q(\Psi_{\eta_2}^{dph}) = 1.
\]
By our choice of η_1, $Q_C(\Phi_{\eta_1}^{dph} \otimes \Phi_p^{dpo})$ is strictly concave in C for $0 < C < 1$. $Q_C(\Phi_{\eta_1}^{dph})$ is also strictly concave in C. Thus $Q_C(N^1)$ is strictly concave in C, for $0 < C < 1$. In this case, the corresponding Ψ is
\[
\Psi^0 = I \otimes \left(\Psi_1^{dpo}\right)^{\otimes 2},
\]
\textit{i.e.,} a noiseless channel tensor two copies of the complete qubit depolarizing channel. N^0 is a unital extension of Ψ^0.

$E. \ Additive \ CE, \ Superadditive \ Q \ and \ CQE$

Here we construct a channel that has an additive CE trade-off region, but a superadditive quantum capacity, hence a superadditive quantum dynamic capacity region. Let Ψ^0 be a classical channel and Ψ^1 be the depolarizing channel $\Psi_p^{dpo} \cdot p$ is chosen such that Ψ_p^{dpo} has a superadditive quantum capacity. Also, we require
\[
C_C(\Psi^0) > C_E(\Psi^1).
\]
Now consider the switch channel N, consisting of N^0 and N^1, which are unital extensions of Ψ^0 and Ψ^1. It can be easily shown that unital extension does not change the classical capacity with unlimited entanglement assistance of the qubit depolarizing channel. Thus Eq. (33) implies
\[
C_{CE}(N^0) \supseteq C_{CE}(N^1) \supseteq C_{CE}^{(1)}(N^1).
\]
Hence
\[
C_{CE}(N) = \text{Conv}(C_{CE}(N^0), C_{CE}(N^1)) = C_{CE}(N^0) \supseteq C_{CE}(N^1) = C_{CE}^{(1)}(N),
\]
\textit{i.e.,} its CE trade-off capacity region is additive.
Since $C_{CE}(N^0) = 0$, it is clear that the quantum capacity of N is the same as that of N^1, which is superadditive.
Note that N is a unitaly extended channel. This fact will be implicitly used in Section V-F.

$F. \ Additive \ CE \ and \ Q, \ Superadditive \ CQE$

Previously in Section V-D, we give an example of a channel with an additive classical and quantum capacity, but whose CQ trade-off curve is superadditive. It is unclear if the channel has an additive CE trade-off capacity region, because the CE trade-off capacity region of the depolarizing channel has not been shown to be additive. This is itself an interesting question but we’ll not explore it here.

We replace Ψ_p^{dpo} in the original argument of Section V-D by the channel constructed in Section V-E. It’s clear that the rest of the argument is not changed and N still has a superadditive CQ trade-off capacity region.
Now both N^0 and N^1 have an additive CE trade-off capacity region. It’s clear that
\[
C_{CE}(N) = \text{Conv}(C_{CE}(N^0), C_{CE}(N^1)) \supseteq C_{CE}^{(1)}(N),
\]
\textit{i.e.,} the CE trade-off capacity region of N is additive.

$G. \ Additive \ CQ, \ Superadditive \ CQE$

Our construction in Section V-A has a superadditive CE trade-off capacity region. But most likely its CQ trade-off capacity region is also superadditive. This is because in Section V-A, N^0 is the unital extension of a classical channel, and its CQ trade-off capacity region is trivial. Hence the CQ trade-off capacity region of N is given by that of N^1, which is most likely superadditive as well.
To achieve an additive CQ trade-off capacity region, we have to substitute N^0 with a channel that has a non-trivial CQ trade-off capacity region.

Recall that our construction in Section V-A requires N_0 and N_1 to have properties (A1)-(A3). These three properties ensure that N will have a superadditive CE trade-off capacity region, while its classical capacity is still additive.

In extending to a channel with an additive CQ trade-off capacity region, the additional properties we need are (G1) $C_{CQ}(N^0) \supseteq C_{CQ}(N^1)$.

Property (G1) and (U) ensure the CQ trade-off capacity region of N is additive, as

$$C_{CQ}(N) = \text{Conv} \left(C_{CQ}(N^0), C_{CQ}(N^1) \right) = C_{CQ}(N^0)$$

$$= C_{CQ}^{(1)}(N^0) = \text{Conv} \left(C_{CQ}^{(1)}(N^0), C_{CQ}^{(1)}(N^1) \right)$$

$$= C_{CQ}^{(1)}(N).$$

Unfortunately, we cannot find quantum channels N_0 and N_1 that satisfy all the properties. Hence we do not have an explicit construction in this case. This is because there are very few channels that we understand their dynamic capacity regions. This leaves us with a limited choice of candidates for N^0. However, in principle there is no obstacle and the construction will be readily available once we have a better understanding of quantum channels.

VI. CONCLUSION

Unlike previous studies on additivity of single resource channel capacity, our work aimed to understand how additivity of single or double resource capacity regions will effect additivity of a general resource trade-off capacity. In contrast to the two known results in the literature; namely, (i) additivity of the quantum capacity implies additivity of the entanglement-assisted quantum capacity region and (ii) additivity of classical-quantum and classical-entanglement capacity regions implies additivity of the three resource capacity region, the additivity of all the remaining situations does not hold. In this work, we identified all possible occurrences where superadditivity could occur in the trade-off quantum dynamic capacity. Furthermore, we provided an explicit construction of quantum channels for most instances. Our main technical tool combines properties of switch channels and unital extension of known quantum channels.

An obvious open question is an explicit construction of a quantum channel whose classical-quantum capacity region is additive, but its triple trade-off capacity is superadditive. Moreover, there are other triple resource trade-off capacity regions [4], [31]. Could similar statements made in this work hold in these scenarios as well?

ACKNOWLEDGMENT

EYZ and PWS are supported by the National Science Foundation under grant Contract Number CCF-1525130. QZ is supported by the Claude E. Shannon Research Assistantship. MH is supported by an ARC Future Fellowship under Grant FT140100574. PWS is supported by the NSF through the STC for Science of Information under grant number CCF-0939370.

APPENDIX A

PROOF OF LEMMA 12

Proof. Consider $\Phi^0_{R \rightarrow B^0}$ and $\Psi^1_{A^1 \rightarrow B^1}$, where Φ^0 is a unital extension of a Hadamard channel $\Psi^0_{C \rightarrow B^0}$, and Ψ^1 is an arbitrary channel.

The result follows if both the CQ and CE trade-off capacity regions of Φ^0 are additive [4]. To show that the CQ trade-off capacity region is additive for Φ^0, it was shown in Ref. [23] it suffices to prove that

$$f_\lambda \left(\Phi^0 \otimes \Psi^1 \right) = f_\lambda \left(\Phi^0 \right) + f_\lambda \left(\Psi^1 \right)$$

for any channel Ψ^1, where

$$f_\lambda (N) = \max_{\rho} I(X; B)_{\rho} + \lambda I(A)_{\rho} B X)_{\sigma}. \quad (36)$$

The state σ is the channel output state with ρ being the input state (see, e.g., Theorem 1). In the following, we will only show that $f_\lambda \left(\Phi^0 \otimes \Psi^1 \right) \leq f_\lambda \left(\Phi^0 \right) + f_\lambda \left(\Psi^1 \right)$ because the other direction is trivial from its definition.

Since $\Phi^0 \otimes \Psi^1 : CRA^1 \rightarrow B^0 B^1$ is a partial cq channel, then by the same argument as in that Lemma 10, $f_\lambda \left(\Phi^0 \otimes \Psi^1 \right)$ can be achieved with input states of the following form

$$\rho_{XRAA^1} = \sum_{x,j} \frac{p(x)}{|R|} | x, j \rangle \langle x, j |_{X} \otimes | j \rangle \otimes \Phi^x_{ACA^1}$$

with output states

$$\sigma^x_{xj} \otimes \Phi^x_{ACA^1}$$

where

$$\sigma^x_{xj} \otimes \Phi^x_{ACA^1} = \Phi^0 \otimes \Psi^1 \left(| j \rangle \langle j |_{R} \otimes \Phi^x_{ACA^1} \right).$$

Let $U^0_0 : C \rightarrow B^0 E_0$ and $U^1_1 : A^1 \rightarrow B^1 E^1$ be the isometric extensions of Ψ^0 and Ψ^1, and let

$$\omega_{XACA^1} = \sum_x \frac{p(x)}{|X|} | x \rangle \otimes \phi^x_{ACA^1}$$

$$\omega_{XAA^1B^0E_0} = \left(U^0 \otimes I \right) \omega_{XACA^1} \left(U^0 \otimes I \right)^\dagger$$

$$\omega_{XBB^0E_0} = \left(U^0 \otimes U^1 \right) \omega_{XACA^1} \left(U^0 \otimes U^1 \right)^\dagger.$$
where the last equality follows from the same argument used in Eqs. (18) and (20). Then subadditivity of the von Neumann entropy and chain rule yield

$$\begin{align*}
\leq & S(B^0)_{\xi} + (\lambda - 1)S(B^0|X)_{\xi} - \lambda S(E^0|X)_{\xi} \\
+ & S(B^1)_{\xi} + (\lambda - 1)S(B^1B^0|X)_{\xi} - \lambda S(E^1|E^0|X)_{\xi} \\
\leq & S(B^0)_{\xi} + (\lambda - 1)S(B^0|X)_{\xi} - \lambda S(E^0|X)_{\xi} \\
+ & S(B^1)_{\theta} + (\lambda - 1)S(B^1XY|\theta)_{\theta} - \lambda S(E^1XY|\theta)_{\theta}
\end{align*}$$

where the last inequality uses the fact that $S(B^1B^0|X)_{\xi} \leq S(B^1|XY)_{\theta}$ due to the existence of D^1 and $S(E^1|E^0|X)_{\xi} \geq S(E^1|Y)_{\theta}$ due to the existence of D^2. Finally,

$$\begin{align*}
= f_{\lambda}(\Phi^0) + f_{\lambda}(\Psi^1)
\end{align*}$$

because $S(E^0|X)_{\xi} = S(AA^1B^0|X)_{\omega}$ and $S(E^1|Y)_{\theta} = S(AB^1E^0|XY)_{\theta}$.

To prove that the CE trade-off capacity region of the channel Φ^0 is additive, it is equivalent to showing that [23]:

$$g_{\lambda}(\Phi^0 \otimes \Psi^1) = g_{\lambda}(\Phi^0) + g_{\lambda}(\Psi^1),$$

(38)

where $0 \leq \lambda < 1$.

$$g_{\lambda}(N) = \max_{\sigma} I(AX;B)_{\sigma} - \lambda S(A|X)_{\sigma}$$

(39)

and σ is of the form given in Eq. (7).

However this proof proceeds similarly; hence, we will omit it. ■

APPENDIX B

PROOF OF LEMMA 13

Lemma 6: If Ψ^0 is a classical channel, then the dynamic capacity region is additive for $\Psi^0 \otimes \Psi^1$, for arbitrary Ψ^1. Moreover, the dynamic capacity region of Ψ^0 is described by the following relation

$$\begin{align*}
C + 2Q & \leq C_C(\Psi^0), \\
Q + E & \leq 0, \\
C + Q + E & \leq C_C(\Psi^0),
\end{align*}$$

where $C_C(\Psi^0)$ is the classical capacity of Ψ^0.

The same holds for a unital extension of a classical channel.

Proof. Consider the 1-shot dynamic capacity region of $\Psi^0_{A^0'\rightarrow B^0}$. By Lemma 10, $C_{CQE}^{(1)}(\Psi^0)$ can be achieved with respect to cq states $\sigma_{XA^0B^0} = \Psi^0_{A^0'\rightarrow B^0}(\rho_{XA^0A^0'}), \rho_{XA^0A^0'}$ is of the form

$$\rho_{XA^0A^0'} = \sum_{x,j} p(x,j)|x,j\rangle\langle x,j|_{A^0'} \otimes \phi_{A^0'}^{xj}.$$

Thus

$$\sigma_{XA^0B^0} = \sum_{x,j} p(x,j)|x,j\rangle\langle x,j|_{A^0'} \otimes \sigma_{A^0B^0}^{xj},$$

where

$$\sigma_{A^0B^0}^{xj} = \Psi^0_{A^0'\rightarrow B^0}(|j\rangle\langle j|_{A^0'} \otimes \phi_{A^0'}^{xj}).$$

is now a product state with respect to A^0 and B^0.

The three entropic quantities of interest can be simplified when evaluated with respect to $\sigma_{XA^0B^0}$, as

$$I(A^0X;B^0)_{\sigma} = S(B^0)_{\sigma} - \sum_{x,j} p(x,j)S(B^0)_{\sigma} \leq C_C(\Psi^0),$$

$$I(A^0B^0X)_{\sigma} = -\sum_{x,j} p(x,j)S(A^0)_{\sigma} \leq 0,$$

$$I(X;B^0)_{\sigma} \leq C_C(\Psi^0).$$

It’s also clear that those inequalities can be achieved. Thus $C_{CQE}^{(1)}(\Psi^0)$ is described by

$$\begin{align*}
C + 2Q & \leq C_C(\Psi^0), \\
Q + E & \leq 0, \\
C + Q + E & \leq C_C(\Psi^0).
\end{align*}$$

Since the classical capacity of a classical channel is additive, the dynamic capacity region of Ψ^0 is additive and is described by the same set of inequalities.

Next we show that the dynamic capacity region is additive for Ψ^0 and Ψ^1, with Ψ^1 arbitrary.

Since $\Psi^0_{A^0'\rightarrow B^0} \otimes \Psi^1_{A^0'\rightarrow B^1}$ is a partial cq channel, its 1-shot dynamic capacity region $C_{CQE}^{(1)}(\Psi^0 \otimes \Psi^1)$ can be achieved with respect to cq states $\sigma_{XAB^0B^1} = \Psi^0_{A^0'\rightarrow B^0} \otimes \Psi^1_{A^0'\rightarrow B^1}(\rho_{XAA^0A^1})$, where $\rho_{XAA^0A^1}$ is of the form

$$\rho_{XAA^0A^1} = \sum_{x,j} p(x,j)|x,j\rangle\langle x,j|_{X} \otimes |j\rangle_{A^0'} \otimes \phi_{A^0'}^{xj}.$$
Since the other direction of inclusion is obvious, we have
\[C_{CQE}([\Psi_0 \otimes \Psi_1]) = C_{CQE}([\Psi_0]) + C_{CQE}([\Psi_1]). \]

For unital extensions of a classical channel, we observe that, if the Heisenberg-Weyl operators are defined on the standard basis for the output of the channel, then the resulting channel is also a classical channel. Hence the above result applies.

APPENDIX C
UNITAL EXTENSION OF THE QUBIT DEPHASING CHANNEL AND 1 → N CLONING CHANNEL

Lemma 14: The CE and CQ trade-off curve of the qubit dephasing channel and 1 → N cloning channel are unchanged after a unital extension.

Proof. Consider the qubit dephasing channel \(\Psi^{\text{dph}}_\eta \) and a 1 → N cloning channel \(\Psi^{\rightarrow N}_\eta \), and their unital extensions \(\Phi^{\text{dph}}_\eta \) and \(\Phi^{\rightarrow N}_\eta \). The statement of this lemma is equivalent to showing that

\[
\begin{align*}
\forall \lambda \geq 1, & \quad f_A(\Phi) = f_A(\Sigma) \\
\forall 0 \leq \lambda < 1, & \quad g_A(\Phi) = g_A(\Sigma)
\end{align*}
\]

for

\[
(\Psi, \Phi) = \left(\Psi^{\text{dph}}_\eta, \Phi^{\text{dph}}_\eta \right), \left(\Psi^{\rightarrow N}_\eta, \Phi^{\rightarrow N}_\eta \right).
\]

In Lemma 11, we have argued that the 1-shot dynamic capacity region of a unitarily extended channel can be achieved with input of the form in Eq. (16). Evaluating \(f_A(\Phi) \) on such states, one obtains

\[
\begin{align*}
f_A(\Phi) &= \log(|B|) + (\lambda - 1)S(B|X')_{\sigma} - \lambda S(AB|X')_{\sigma} \\
&= \log(|B|) + \sum_{x,j,k} p(x,j,k) \left[(\lambda - 1)S(B|_{\sigma,xy,k} \rho - \lambda S(AB|_{\sigma,xy,k}) \right] \\
&= \log(|B|) + \sum_{x,j} p(x,j) \left[(\lambda - 1)S(B|_{\sigma,xy} \rho - \lambda S(AB|_{\sigma,xy}) \right] \\
&\leq \log(|B|) + \max_{\sigma} \left[(\lambda - 1)S(B|_{\sigma} \rho - \lambda S(AB|_{\sigma}) \right], \quad (40)
\end{align*}
\]

where

\[
\sigma_{AB} = \Psi_{C \rightarrow B}(\phi_{AC}). \quad (41)
\]

For such a \(\sigma_{AB} = \Psi_{C \rightarrow B}(\phi_{AC}) \) that achieves Eq. (40), one can construct

\[
\rho_{XAA'} = \frac{1}{|B|} |k\rangle \langle k|_X \otimes |k\rangle_1 \otimes |k\rangle_2 \otimes \phi_{AC}. \quad (42)
\]

This state will saturate the above inequality.

For \(\Psi^{\text{dph}}_\eta \) and \(\Psi^{\rightarrow N}_\eta \), it can be verified [23] that their \(f_A \) have the same form, i.e.,

\[
f_A(\Psi) = \log(|B|) + \max_{\sigma} \left[(\lambda - 1)S(B|_{\sigma} \rho - \lambda S(AB|_{\sigma}) \right], \quad (43)
\]

with \(\sigma \) of the form given in Eq. (41).

The same argument also applies to \(g_A \).

APPENDIX D
CONVEX HULL

Here we show that\(^4\)

\[
\begin{align*}
\text{Conv}(C_{CQE}(N^0), C_{CQE}(N^1)) \\
= \text{Conv}(C_{CQE}(N^0), C_{CQE}(N^1)).
\end{align*}
\]

We quote a few properties about convex hull and Minkowski addition that we will use [29]: (i) For two closed sets \(A \) and \(B \) in \(\mathbb{R}^k \), if \(A \) is bounded, then \(A + B \) is closed. (ii) For two sets \(A \) and \(B \) in \(\mathbb{R}^k \), \((A + B) = (A) + (B) \). (iii) The convex hull of a bounded set in \(\mathbb{R}^k \) is also bounded.

First, we note that, by Ref. [4], all points in the 1-shot dynamic capacity region can be achieved by the classically enhanced father protocol, combined with unit protocols, i.e.,

\[
C^{(1)}_{CQE}(N) = \bigcup_{\sigma} C^{(1)}_{CQE,CQ}(N)_{\sigma} + C^{(1)}_{CQE,unit},
\]

where

\[
C^{(1)}_{CQE,CQ}(N) = \{ I(X;B)_{\sigma}, \frac{1}{2} I(A;B|X)_{\sigma}, -\frac{1}{2} I(A;E|X)_{\sigma} \}
\]

is the rate achieved using the classically enhanced father protocol, and \(\sigma \) is of the form in Eq. (7). \(C^{(1)}_{CQE,unit} \) is all the rates achieved by the unit protocols. Clearly \(C^{(1)}_{CQE,unit} \) is convex and closed. Define

\[
C^{(1)}_{CQE,CQ}(N) = \bigcup_{\sigma} C^{(1)}_{CQE,CQ}(N)_{\sigma}.
\]

Clearly \(C^{(1)}_{CQE,CQ}(N) \) is bounded by the input and output dimensions of \(N \).

Then

\[
C_{CQE}(N) = \bigcup_{k=1}^{\frac{1}{k}} C^{(1)}_{CQE,CQ}(N^0) + C_{CQE,unit}.
\]

Denote

\[
A = \bigcup_{k=1}^{\frac{1}{k}} C^{(1)}_{CQE,CQ}(N^0),
\]

\[
B = C_{CQE,unit}.
\]

Since \(A \) is bounded, \(B \) is closed, by (i) and (iii), \(A + B \) is also closed.

Since \(A + B \subseteq \overline{A} + B \), and \(\overline{A} + B \) is closed, we have

\[
\overline{A + B} \subseteq \overline{A} + \overline{B}.
\]

It is also obvious that

\[
\overline{A + B} \geq \overline{A} + \overline{B}.
\]

Denote

\[
C^{(1)}_{CQE,CQ}(N) = \bigcup_{k=1}^{\frac{1}{k}} C^{(1)}_{CQE,CQ}(N^0).
\]

\(^4\) \(N^0 \) and \(N^1 \) are assumed to be finite-dimensional.
Then by the above arguments,

$$C_{CQE}(\mathcal{N}) = C_{CQE,CEF}(\mathcal{N}) + C_{CQE,unit}.$$

Now we apply the above result to \mathcal{N}^0 and \mathcal{N}^1.

$$\text{Conv} \left(C_{CQE}(\mathcal{N}^0), C_{CQE}(\mathcal{N}^1) \right)$$

$$= \text{Conv} \left(C_{CQE}(\mathcal{N}^0) \cup C_{CQE}(\mathcal{N}^1) \right)$$

$$= \text{Conv} \left(C_{CQE,CEF}(\mathcal{N}^0) \cup C_{CQE,CEF}(\mathcal{N}^1) \right) + C_{CQE,unit}$$

$$= \text{Conv} \left(C_{CQE,CEF}(\mathcal{N}^0) \cup C_{CQE,CEF}(\mathcal{N}^1) \right) + C_{CQE,unit}.$$

In the last line, we used (ii).

Since $C_{CQE,CEF}(\mathcal{N})$ is closed and bounded for any finite dimensional quantum channel \mathcal{N}, the same must be true for $C_{CQE,CEF}(\mathcal{N}^0) \cup C_{CQE,CEF}(\mathcal{N}^1)$. Hence $\text{Conv} \left(C_{CQE,CEF}(\mathcal{N}^0) \cup C_{CQE,CEF}(\mathcal{N}^1) \right)$ is closed and bounded. Thus $\text{Conv} \left(C_{CQE,CEF}(\mathcal{N}^0) \cup C_{CQE,CEF}(\mathcal{N}^1) \right) + C_{CQE,unit}$ is also closed.

References

[1] C. E. Shannon, “A mathematical theory of communication,” *The Bell System Technical Journal*, vol. 27, no. 3, pp. 379–423, July 1948.

[2] I. Devetak, A. W. Harrow, and A. Winter, “A family of quantum protocols,” *Phys. Rev. Lett.*, vol. 93, p. 230504, Dec 2004.

[3] I. Devetak, A. W. Harrow, and A. J. Winter, “A resource framework for quantum shannon theory,” *IEEE Transactions on Information Theory*, vol. 54, no. 10, pp. 4587–4618, Oct 2008.

[4] M.-H. Hsieh and M. M. Wilde, “Trading classical communication, quantum communication, and entanglement in quantum shannon theory,” *IEEE Transactions on Information Theory*, vol. 56, no. 9, pp. 4705–4730, Sept 2010.

[5] C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” *Phys. Rev. Lett.*, vol. 69, pp. 2881–2884, Nov 1992.

[6] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-assisted classical capacity of noisy quantum channels,” *Phys. Rev. Lett.*, vol. 83, pp. 3081–3084, Oct 1999.

[7] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-assisted capacity of a quantum channel and the reverse shannon theorem,” *IEEE Transactions on Information Theory*, vol. 48, no. 10, pp. 2637–2655, Oct 2002.

[8] M.-H. Hsieh and M. M. Wilde, “Entanglement-assisted communication of classical and quantum information,” *IEEE Transactions on Information Theory*, vol. 56, no. 9, pp. 4682–4704, Sept 2010.

[9] N. Datta and M. H. Hsieh, “One-shot entanglement-assisted quantum and classical communication,” *IEEE Transactions on Information Theory*, vol. 59, no. 3, pp. 1929–1939, March 2013.

[10] A. S. Holevo, “The capacity of the quantum channel with general signal states,” *IEEE Transactions on Information Theory*, vol. 44, no. 1, pp. 269–273, Jan 1998.

[11] B. Schumacher and M. D. Westmoreland, “Sending classical information via noisy quantum channels,” *Phys. Rev. A*, vol. 56, pp. 131–138, Jul 1997.

[12] S. Lloyd, “Capacity of the noisy quantum channel,” *Phys. Rev. A*, vol. 55, pp. 1613–1622, Mar 1997.

[13] P. W. Shor, “The quantum channel capacity and coherent information,” *MSRI Workshop on Quantum Computation*, 2002.

[14] I. Devetak, “The private classical capacity and quantum capacity of a quantum channel,” *IEEE Transactions on Information Theory*, vol. 51, no. 1, pp. 44–55, Jan 2005.

[15] G. Smith and J. Yard, “Quantum communication with zero-capacity channels,” *Science*, vol. 321, no. 5897, pp. 1812–1815, 2008.

[16] P. W. Shor, “The classical capacity achievable by a quantum channel assisted by a limited entanglement,” *Quantum Information and Computation*, vol. 4, no. 6, pp. 537 – 545, 2004.

[17] G. Smith, J. A. Smolin, and A. Winter, “The quantum capacity with symmetric side channels,” *IEEE Transactions on Information Theory*, vol. 54, no. 9, pp. 4208–4217, Sept 2008.