Kidney cell DNA damage caused by combined exposure to volatile anaesthetics and 1 Gy or 2 Gy radiotherapy dose in vivo

Vesna Benković1, Nada Oršolić1, Anica Horvat Knežević1, Nikola Borojević2, Gordana Brozović3,4, and Mirta Milić5

1 University of Zagreb Faculty of Science, Department of Biology, Zagreb, Croatia
2 Warrington and Halton Teaching Hospitals NHS Foundation Trust, Warrington, United Kingdom
3 University Hospital Centre Sestre Milosrdnice, University Hospital for Tumours, Department of Anaesthesiology, Reanimatology, and ICU, Zagreb, Croatia
4 University of Osijek Faculty of Dental Medicine and Health, Osijek, Croatia
5 Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia

[Received in October 2021; Similarity Check in October 2021; Accepted in March 2022]
especially during radiotherapy procedures, and the fact that there are no studies about their combined effects on the level of DNA damage motivated us to explore if such synergistic effect should exist. This study was designed to test this hypothesis and see how combined exposure to VA and ionising radiation affect DNA repair in the kidney of Swiss albino mice.

MATERIALS AND METHODS

Ethical approval

The study was designed in accordance with the Animal Protection Act (17), Ordinance on the Protection of Animals Used for Scientific Purposes (18), EU Directive (19), and OECD guidelines (14) and approved by the Ethics Committee of the University of Zagreb Faculty of Science, Zagreb, Croatia (approval No. 251-58-508-11-9).

Animals

The 60±5 days old Swiss albino mice with body weight of 22.4±0.3 g were taken from the breeding unit of the Department of Biology, University of Zagreb Faculty of Science. Due to sex differences in DNA damage induced by ionising radiation (female mice suffer higher DNA damage due to hormonal influence and can lose the X chromosome much more easily) (20, 21), we chose only male mice.

The housing conditions of the animals were 22±1 °C, 50–70 % humidity, 12/12 h light/dark cycle, and free access to water and standard laboratory diet (4RF 21, Mucedola, Settimo Milanese, Italy).

Study design

The animals were divided into 48 subgroups with five animals each as illustrated in Table 1. Time points were based on our previous experiments (7, 9).

Chemicals

If not specified otherwise, chemicals, reagents, and other materials were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). The inhalation anaesthetic sevoflurane (Sevorane®), isoflurane (Forane®), and halothane (Halothane®) were provided by Abbott Laboratories Ltd. (Queenborough, UK).

Anaesthesia

Anaesthetic dosing was similar as in earlier studies (9, 22, 23), as it was shown to ensure deep and constant anaesthesia over two hours. Concentrations of each anaesthetic used in animals corresponded to the concentrations used in humans to maintain deep anaesthesia during a single radiotherapy treatment. The doses in this study followed the Guedel’s guide to laboratory animal anaesthesia (24), in which the anaesthetic concentrations corresponding to human dosages are adjusted to animal species, age, weight, and type (inhalation or injection) and duration of anaesthesia (7, 22–27).

Each anaesthetic – sevoflurane (2.4 % v/v), isoflurane (1.7 % v/v), or halothane (2.4 % v/v) – was added to a 50:50 mixture of oxygen and air (3 L/min) using a specially designed induction chamber connected to an anaesthetic machine (Sulla 800, Sulla, Dräger, Velbert, Germany). This machine for semi-closed rebreathing system was equipped with a Ventilog for automatic ventilation, a Barlolog A ventilation pressure meter, an Oxydig for O₂ measurement, and a compatible evaporator. Mouse anaesthesia with either of the three anaesthetics was maintained at a continuous gas flow for 2 h. A satisfactory anaesthesia depth was considered to have been achieved when the mice were sleeping calmly, breathing spontaneously, and not wiggling their tail.

Irradiation

Immediately (about 10 min) after the two-hour anaesthesia, the mice assigned for irradiation (and those that were not anaesthetised) were irradiated with 1 Gy or 2 Gy (⁶⁰Co source, Theratron Phoenix teletherapy unit, Atomic Energy Ltd., Ontario, Canada), at Sveti Duh Clinical Hospital (Zagreb, Croatia) at a dose rate of 1.88 Gy/min. These radiation doses are common in diverse radiotherapy procedures (brachytherapy, intraoperative, fractionated, and hypofractionated radiotherapy) (16).

Sacrifice and sampling

Immediately or 2, 4, 6, or 24 hours after anaesthetic and/or radiation exposure was completed, the animals were sacrificed by cervical dislocation according to laboratory animal legislation (18). Resected mouse kidney cortex samples of each animal were taken
from a similar position and placed into a chilled homogenisation buffer (0.075 mol/L NaCl and 0.024 mol/L Na₂EDTA) at a ratio of 1 g of tissue to 1 mL of buffer. Samples were immediately homogenised at 4 °C by mincing and passing through a stainless-steel mash to obtain a single-cell suspension at 4 °C and immediately take 10 µL to mix with the agarose gel for the alkaline comet assay.

Alkaline comet assay

The comet assay was carried out according to a standard procedure described in our previous papers (24, 25). Reporting of the results was in line with the Minimum Information for Reporting on the Comet Assay (MIRCA) and new technical recommendations (26).

Microscopic slides (Vitrognost, Biognost, Zagreb, Croatia) for the comet assay were precoated on the same day with 1 % normal melting point (NMP) agarose and then with a layer of 0.6 % low melting point (LMP) agarose. After solidification, slides were kept at 4 °C in humidified conditions to avoid gel drying. When the kidney cortex single cell suspensions were prepared, a mixture of cell suspension with 100 µL of 0.5 % LMP agarose was immediately layered on the top, and after solidification, a new layer of only 0.5 % LMP agarose was added. When this upper layer turned solid (after 10 min at 4 °C), slides were vertically immersed in Coping jars (Sigma-Aldrich) filled with freshly prepared ice-cold lysis solution (2.5 mol/L NaCl, 100 mmol/L Na₂EDTA, 10 mmol/L Tris-HCl, 1 % sodium sarcosinate, pH 10) with 1 % Triton X-100, and 10 % dimethyl sulphoxide (Kemika, Zagreb, Croatia) and kept there protected from light at 4 °C for 2 h. Slides were then washed with distilled water (Yasenka, Vukovar, Croatia) and immersed into a freshly cold denaturation solution (300 mmol/L NaOH and 1 mmol/L Na₂EDTA, pH 13) and kept protected from light at 4 °C for 20 min. Under a dim light slides were randomly placed in a new cold electrophoretic solution (the same as the denaturation one) in a horizontal gel-electrophoresis unit facing the anode, and electrophoresis was carried out at 25 V (300 mA, 0.8 V/cm). After 20 min, followed neutralisation of the slides with 0.4 mol/L Tris- HCl buffer (pH 7.5) in the dark, repeated three times at five-minute intervals. All slides were immediately dehydrated by immersion into absolute ethanol (99.6 %, Kemika) for at least 5 min, allowed to air-dry, and then stored at room temperature protected from humidity. Before analysis, slides were rehydrated with distilled water for 10 min, stained with ethidium bromide (20 µg/mL) for another 10 min, and examined under an epifluorescence microscope at 200× magnification (BX40, Olympus, Tokyo, Japan) connected with a camera with a charge-coupled device sending images to a computer-based image analysis system (Comet Assay IV software, Instem, London, UK). For each sample (animal) we analysed the images of 40 randomly selected cells, 200 comets in total for each time point as described earlier (29, 30).

DNA damage was determined as tail length (TL, distance between migrated DNA breaks and the nucleus expressed in μm) and tail intensity (TI, % of DNA in comet tail) using the same software.

Cellular DNA repair index

Cellular DNA repair efficiency can be quantified by determining cellular DNA repair index (CRI), which is defined as decrease in initial value of the parameter due to repair, expressed in percentage. We calculated the CRI for TL and TI according to the formula by Nair and Nair (31) as follows:

\[
\text{CRI} = \left(1 - \frac{\text{Comet parameter at time } t}{\text{Comet parameter at initial time } t_0}\right) \times 100
\]

Statistical analysis

Data were analysed with Statistica 14.0.0.15 (TIBCO Software Inc., Palo Alto, CA, USA). Descriptive statistics (mean, median, and standard deviation) was calculated for TL and TI. The data were

Figure 1 Tail length and tail intensity in kidney cells of control (C) Swiss albino mice and mice subjected to two-hour anaesthesia with halothane (H), sevoflurane (S), or isoflurane (I) at 0, 2, 6, and 24 h after anaesthesia (based on the total score of 200 comets per group (40 comets per animal).
statistically compared using the Mann Whitney U-test, with statistical significance set at p<0.05.

RESULTS

Figure 1 shows TL and TI findings in non-irradiated mice, Figure 2 in mice exposed to 1 Gy alone or in combination with VA, and Figure 3 in mice exposed to 2 Gy alone or in combination with VA. CRI of TL and TI are presented in Table 2. Significant differences compared to control values are given in Table 3.

Treatment with anaesthetic alone

Tail intensities for all three anaesthetics at all time points were significantly higher than control, except for isoflurane at 2 and 6 h. Tail lengths for halothane were significantly higher than control at 2 and 6 h and lower at 24 h. With sevoflurane TL values were significantly higher than control at 0 and 2 h and significantly lower at 6 and 24 h. With isoflurane damage was lower than control at 0, 2, and 6 h. Halothane caused the highest DNA damage at all time points, significantly higher than sevoflurane and isoflurane, while the two did not differ significantly, except at 2 h (Figure 1, Table 3).

Combined VA and 1 Gy treatment

Both TL and TI in 1 Gy irradiated mice and mice exposed to combined treatments were significantly higher than in non-irradiated controls. The highest TL in 1 Gy irradiated mice was observed 24 h after irradiation. The lowest TL was observed 6 h from exposure. At this time point, TI values were the highest (Figure 2). Halothane combined with 1 Gy significantly increased both parameters compared to irradiated-only counterparts. Sevoflurane yielded TL values similar to irradiated-only groups at all time points, except for 24 h, in which significantly lower value was observed. TI values, in turn, were significantly lower after 6 h compared to samples from the irradiated-only mice. Isoflurane significantly lowered both TL and TI after 24 h compared to irradiated-only groups at the same time points (Table 3). Halothane again had significantly higher TI than sevoflurane and isoflurane at corresponding time points. The latter two VAs differed significantly in TI, except at 2 h.

Combined VA and 2 Gy treatment

The highest TL in mice irradiated with 2 Gy was observed 2 h after irradiation, while TI was the highest at 6 h after irradiation. Halothane again had the most damaging effect, that was significantly higher for both parameters than in their irradiated-only counterparts at corresponding time points. Sevoflurane also increased both parameters, which were significantly higher at the first three time points, while TI decreased at 24 h and was even lower than in the irradiated-only group. At 2 h, isoflurane had significantly lower TL and TI than irradiated-only counterparts, which significantly rose at 6 h and 24 h and were almost higher than those in the halothane groups at 0 h (Figure 3 and Table 3). Halothane TI values were significantly higher than sevoflurane at 0 h and 24 h and isoflurane at 0 h and 2 h. Sevoflurane and isoflurane differed significantly only at 2 h.

Cellular DNA repair index

As we observed DNA repair in the 1 Gy and 2 Gy combined treatment with sevoflurane and isoflurane, we compared CRI for TL and TI as shown in Table 2.

	Tail length	Tail intensity				
	2 h	6 h	24 h	2 h	6 h	24 h
Non-irradiated						
Halothane	-17.86	-12.11	3.56	10.32	28.42	-6.44
Sevoflurane	-2.56	16.14	12.39	-15.71	-0.65	-10.11
Isoflurane	-10.71	-3.42	-15.28	26.77	28.12	-15.62
Irradiated with 1 Gy						
1 Gy	3.76	12.01	-18.10	24.20	-58.95	-25.08
Halothane + 1Gy	-9.78	-1.46	-7.86	15.28	2.54	-7.38
Sevoflurane + 1Gy	16.06	-2.07	3.09	-20.68	-7.65	24.16
Isoflurane + 1Gy	14.92	15.91	7.34	43.96	4.92	36.08
Irradiated with 2 Gy						
2 Gy	-28.19	-17.81	-11.22	-29.75	-90.54	-40.43
Halothane + 2Gy	-16.54	-19.53	5.97	25.87	18.70	27.56
Sevoflurane + 2Gy	1.44	1.59	3.09	-20.68	-7.65	24.16
Isoflurane + 2Gy	15.54	2.52	-5.55	39.13	-77.69	-87.18

Table 2 Cellular DNA repair index (percentage of repair) of tail length and tail intensity in non-irradiated mice and mice exposed to halothane (H), sevoflurane (S), or isoflurane (I) and/or 1 Gy or 2 Gy, 2, 6, and 24 h from irradiation
In mice irradiated with 1 Gy, all three VAs in general demonstrated higher repair rate than the corresponding control, with the highest level of repair triggered by isoflurane.

In mice irradiated with 2 Gy, CRI visibly dropped in all groups, but improved by hour 24. Only isoflurane had higher repair level than control 2 h from exposure, and then the repair rate dropped.

DISCUSSION

We demonstrated that combined exposure to VAs and ionising irradiation (with both 1 and 2 Gy radiotherapeutic doses) did not have a synergistic damaging effect on DNA in kidney cells of male Swiss albino mice. We also demonstrated that anaesthesia could have had some beneficiary effect, considering the level of DNA damage repair.

Functionally, with its very low cell division rates, the kidney should be less sensitive to irradiation than other organs, yet research has shown it to be the most radiosensitive organ of the abdominal system (32–37). Some other studies (38–40) also demonstrated higher DNA damage in other tissues of male mice of similar weight irradiated with the same dose as in our experiment.

Our study confirmed the ability of volatile anaesthetics to induce DNA damage and singled out halothane as the most damaging. These findings are in line with earlier reports showing that halothane metabolites are more present in the body (15–20 %) than those of sevoflurane (2–5 %) and isoflurane (0.2–2 %) (41–43). This also explains similar sevoflurane and isoflurane effects, as do reports of no difference between sevoflurane and isoflurane effects in prolonged exposure of rat proximal tubular cells (25, 44, 49).

Damage induced by combined exposure to anaesthetics and 1 Gy irradiation (representing a small radiation dose) remained at
Table 3 Statistical differences (Mann–Whitney U test; p<0.05), in tail length (TL, µm) and tail intensity (TI, % of DNA in comet tail) in kidney cells of Swiss albino mice treated with halothane, sevoflurane, or isoflurane alone or in combination with 1 or 2 Gy gamma-irradiation (60Co) compared to corresponding controls at the same time point

Exposure	Non-irradiated TL	Non-irradiated TI	Irradiated 1 Gy TL	Irradiated 1 Gy TI	Irradiated 2 Gy TL	Irradiated 2 Gy TI
	Halothane	Sevoflurane	Isoflurane	Halothane + 1 Gy	Sevoflurane + 1 Gy	Isoflurane + 1 Gy
Time points	TL	TI	TL	TI	TL	TI
0 h	NS	<0.001	<0.001	NS	<0.001	NS
2 h	<0.001	<0.001	<0.025	<0.001	<0.001	NS
6 h	<0.001	<0.001	0.01	0.021	NS	NS
24 h	<0.001	<0.001	NS	<0.001	NS	<0.001
	Halothane + 1 Gy	Sevoflurane + 1 Gy	Isoflurane + 1 Gy	Halothane + 2 Gy	Sevoflurane + 2 Gy	Isoflurane + 2 Gy
Time points	TL	TI	TL	TI	TL	TI
0 h	<0.001	<0.001	NS	<0.001	NS	0.014
2 h	<0.001	<0.001	<0.001	NS	<0.001	NS
6 h	<0.001	NS	<0.001	0.006	NS	NS
24 h	<0.001	0.004	0.001	NS	<0.001	0.003
	Halothane + 2 Gy	Sevoflurane + 2 Gy	Isoflurane + 2 Gy	Halothane + 2 Gy	Sevoflurane + 2 Gy	Isoflurane + 2 Gy
Time points	TL	TI	TL	TI	TL	TI
0 h	<0.001	<0.001	<0.001	<0.001	<0.001	NS
2 h	<0.001	0.002	NS	<0.001	<0.001	0.002
6 h	<0.001	NS	<0.001	NS	0.02	NS
24 h	<0.001	<0.001	<0.001	NS	<0.001	<0.001

NS – difference is not statistically significant

levels caused by irradiation alone or even underwent repair. Halothane again was more damaging than the other two anaesthetics and isoflurane induced the highest DNA repair at all time points.

DNA damage in the combined treatment with 2 Gy irradiation did not generally differ much from its 1 Gy counterpart, but the repair rate was lower. Low irradiation doses seem to stimulate various protective functions such as autoimmune and anti-oxidative response to ROS, DNA repair, and apoptosis, and immune response triggered by DNA damage induced directly by radiation or through ROS production (40, 44–47). Irradiation with higher 2 Gy, can, in addition, activate autophagic pathways arresting the cell cycle, inhibiting cell proliferation, and impairing DNA repair (48).

We have previously demonstrated that DNA damage peaks six hours after VA exposure and that most of the damage is repaired within 24 h after exposure (22, 23, 25). Our current findings also suggest that each VA has different mechanisms of action and that repair mechanisms were more efficient at 1 Gy than 2 Gy irradiation dose. Future studies should investigate those differences further.

CONCLUSION

This study has confirmed that volatile anaesthetics are capable of damaging DNA in kidney cells of adult male Swiss albino mice but do not act in synergy with 1 Gy or 2 Gy irradiation. It has also pointed to different mechanisms of action and 24-hour repair between single agent and combined exposure. Future studies should shed more light on these mechanisms of action and follow-up damage and repair over longer time. This would be helpful in tailoring radiotherapy and to use only specific, less toxic volatile anaesthetics when it is necessary to immobilise a patient.

Conflict of interests

None to declare.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

REFERENCES

1. Mazze RI, Cousins MJ, Barr GA. Renal effects and metabolism of isoflurane in man. Anesthesiology 1974;40:536–42. doi: 10.1097/00000542-197406000-00006
2. Mazze RI, Calverley RK, Smith NT. Inorganic fluoride nephrotoxicity: prolonged enfurane and halothane anesthesia in volunteers.
Motayagheni N, Phan S, Eshraghi C, Nozari A, Atala A. A review of anesthetic effects on renal function: potential organ protection. Am J Nephrol 2017;46:380–9. doi: 10.1159/000482014

Fukazawa K, Lee HT. Volatile anesthetics and AKI: risks, mechanisms, and a potential therapeutic window. J Am Soc Nephrol 2014;25:884–92. doi: 10.1681/ASN.2013111215

Dural O, Kanbak H, Cilig V, Aypar U, Ercen K. Comparison of halothane, enfurane and isoflurane kidney effects through alanine aminopeptidase/urine creatinine values. Anaesth Intensive Care 1995;23:162–4. doi: 10.1177/0310057X9502300206

Neri M, Milazzo D, Ugolini D, Milić M, Campolongo A, Pasqualetti P, Bonassi S. Worldwide interest in the comet assay: a bibliometric study. Mutagenesis 2015;30:155–63. doi: 10.1039/mu4061

Milić M, Ceppi M, Bruzzone M, Azqueta A, Brunborg G, Godskalch R, Koppen G, Lange S, Moller P, Teixeira JP, Alia J, Anderson D, Andrade V, Andreoli C, Askling J, Bangkoglu EE, Barančoková M, Basaran N, Bouet-Robinet E, Buschini A, Cavallio D, Costa Pereira C, Costa C, Costa S, Da Silva J, Del Bo C, Dimitrijević Srećković V, Dječić N, Dobrzyńska M, Duračkožić V, Dvořáková M, Gajski G, Galati S, García L, Giovannelli O, Goroshinskaya IA, Grindel A, Gurtzow KB, Hernandez A, Hernández C, Holven KB, Iber-Barahain I, Ottestad I, Kadioglu E, Kažimirová A, Kuznetsova E, Ladeira C, Laffon B, Lamonaca P, Lebailly P, Louro H, Mandina Baraibar I, Ottestad I, Pravilnikov, et al. Kidney cell DNA damage caused by combined exposure to volatile anaesthetics and 1 Gy or 2 Gy radiotherapy dose in vivo, evaluated in Swiss albino mice. J Appl Genet 2011;52:355–61. doi: 0.1007/s13353-011-0046-0

Collins A, Milic M, Bonassi S, Dusinska M. The comet assay in human biomonitoring: Technical and epidemiological perspectives. Mut Res Genet Toxicol Environ Mutagen 2019;843:1–2. doi: 10.1016/j.mrrev.2021.108371

Collins A, Milic M, Bonassi S, Dusinska M. The comet assay in human biomonitoring: Technical and epidemiological perspectives. Mutat Res Genet Toxicol Environ Mutagen 2019;843:1–2. doi: 10.1016/j.mrrev.2021.108371

Brzovic G, Orsolic N, Rozgaj R, Kasuba V, Knezevic F, Knezevic AH, Benkovic V, Lisicic D, Borovejic N, Dikic D. DNA damage and repair after exposure to sevoflurane in vivo, evaluated in Swiss albino mice by the alkaline comet assay and micronucleus test. J Appl Genet 2010;51:79–86. doi: 10.1007/BF03195714

Milić M, Rozgaj R, Kasuba V, Jazbec AM, Hrelia P, Angelini S. Chapter 19: The influence of individual genome sensitivity in DNA damage repair assessment in chronic professional exposure to low doses of ionizing radiation. In: Chen C, editor. Selected topics in DNA repair, 2011 [displayed 28 February 2022]. Available at https://www.intechopen.com/chapters/22725

Moller P, Knudsen LE, Loft S, Wallin H. The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev 2000;9:1005–15. PMID: 11045781

Xiao C, He N, Liu Y, Wang Y, Liu Q. Research progress on biodosimeters of ionizing radiation damage. Rad Med Pract 2020;1:127–32. doi: 10.1016/j.radmp.2020.06.002

Yilmaz Ş, Çalışbeyram NC. Exposure to anesthetic gases among operating room personnel and risk of genotoxicity: A systematic review of the human biomonitoring studies. J Clin Anesth 2016;35:326–31. doi: 10.1016/j.jclinane.2016.08.029

OECD Guidelines: Genetic toxicology Guidance Document Aug 31, 2015 [displayed 28 February 2022]. Available at https://www.oecd.org/chemicalsafety/testing/Genetic%20Toxicology%20Guidance%20Document%20Aug%2031%202015.pdf

IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Chemical Agents and Related Occupations. No. 100F. A review of human carcinogens. Lyon: IARC; 2012.

The Royal College of Radiologists. Radiology Dose Fractionation. 3rd ed. London: The Royal College of Radiologist; 2019.

Zakon o zaštiti životinja [Animal Protection Act, in Croatian]. Narodne novine 102/2017.

Pravilnik o zaštiti životinja koje se koriste u znanstvene svrhe [Ordnance on the protection of animals used for scientific purposes, in Croatian]. Narodne novine 55/2013; 39/2017.

Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes [displayed 28 February 2022]. Available at https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF

Kesimci E, Čoşkun E, Uğur G, Målsäter T, İadeş S, Karahalil, B. Can sevoflurane induce micronuclei formation in nasal epithelial cells of adult patients? Turk J Anaesthesiol Reanim 2017;45:264–9. doi: 10.5152/TJAR.2017.09475

Narendran N, Luzhna L, Kovalchuk O. Sex difference of radiation response in occupational and accidental exposure. Front Genet 2019;10:260. doi: 10.3389/fgen.2019.00260

Brozovic G, Orsolic N, Knezevic F, Horvat Knezevíc A, Benkovic V, Vidoljak DV, Saric A. Evaluation of DNA damage in vivo induced by combined application of cisplatin and sevoflurane, Eur J Anaesthesiol 2008;25:642–7. doi: 10.1017/S0265021508004171

Brozovic G, Orsolic N, Knezevic F, Horvat Knezevic A, Benkovic V, Sakic K, Borovejic N, Dikic D. The in vivo genotoxicity of cisplatin, isoflurane and halothane evaluated by alkaline comet assay in Swiss albino mice. J Appl Genet 2011;52:355–61. doi: 10.1007/s13353-011-0046-0

Guedel AE. Inhalation Anesthesia: A Fundamental Guide. 2nd ed. New York: Macmillan; 1951.

Brozovic G, Oršolić N, Rozgaj R, Kasuba V, Knezević F, Knezević AH, Milić M, Krsnik D, Benkovic V. Sevoflurane and isoflurane genotoxicity in kidney cells of mice. Arh Hig Rada Toksikol 2017;68:228–35. doi: 10.1515/ahr-2017-68-2941

Fish RE, Brown MJ, Danneman PJ, Karas AZ. Anesthesia and Analgesia in Laboratory Animals. 2nd ed. London: Academic Press; 2008. p. 240–61.

Siddiqui BA, Kim PY. Anesthesia Stages. [Updated 7 March 2021]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [displayed 28 February 2022]. Available at https://www.ncbi.nlm.nih.gov/books/NBK557596/

Moller P, Azqueta A, Bouet-Robinet E, Koppen G, Bonassi S, Milić M, Gajski G, Costa S, Teixeira JP, Costa Pereira C, Dusinska M,
Godschalk R, Brunborg G, Gutzkow KB, Giovannelli L, Cooke MS, Richling E, Laffon B, Valdiglesias V, Basaran N, Del Bo’ C, Zegura B, Novak M, Stopper H, Vodenkova S, de Andrade VM, Sramkova M, Gabelova A, Collins A, Langie SAS. Minimum Information for Reporting on the Comet Assay (MIRCA): recommendations for describing comet assay procedures and results. Nat Protoc 2020;15:3817–26. doi: 10.1038/s41596-020-0398-1

29. Benković V, Marčina N, Horvat Knežević A, Rajevac V, Milić M, Kopjar N. Potential radioprotective properties of arbutin against ionising radiation on human leukocytes in vitro. Mutat Res Genet Toxicol Environ Mutagen 2021;872:503413. doi: 10.1016/j.mrgentox.2021.503413

30. Jurica K, Benković V, Sikirić S, Brčić Karačonji I, Kopjar N. The effects of strawberry tree (Arbutus unedo L.) water leaf extract and arbutin upon kidney function and primary DNA damage in renal cells of rats. Nat Prod Res 2020;34:2354–7. doi: 10.1080/14786419.2018.1534106

31. Nair GG, Nair CK. Protection of cellular DNA and membrane from γ-radiation-induced damages and enhancement in DNA repair by sesamol. Cancer Biother Radiopharm 2010;25:629–35. doi: 10.1089/cbr.2010.0803

32. Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, Pan C, Ten Haken RK, Schultheiss TE. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys 2010;76(3 Suppl):S108–15. doi: 10.1016/j.ijrobp.2009.02.089

33. Purohit RK, Chakravati A, Bhartiya KM. Radiation and cadmium induced biochemical alterations in mouse kidney. Int J Radiat Res 2007;5:125–30.

34. Canyilmaz E, Uslu GH, Bahat Z, Kandaz M, Mungan S, Haciislamoglu E, Mentese A, Yoney A. Comparison of the effects of melatonin and genistein on radiation-induced nephrotoxicity: Results of an experimental study. Biomed Rep 2010;2:39–43.doi: 10.1016/j.brep.2010.02.048

35. Hanafi N, El Aaser A, Gabry M, Tohamy A, Ebrahim M. Effect of increase in antioxidants supplementation on kidney tissue of mice subjected to fractionated dose of γ-irradiation. EJHLM 2007;25:222–28. doi: 10.1016/j.ejhl.2007.02.011

36. Ji K, Wang Y, Du L, Xu C, Liu Y, He N, Wang J, Liu Q. Research progress on the biological effects of low-dose radiation in China. Dose Response 2019;17:1559325819833488. doi: 10.1177/1559325819833488

37. Mohamed HA, Nada AS, Hanafi N, Zaki HF, Kenawy SA. The renoprotective effect of gum arabic in gamma-irradiated and cisplatin treated rats. IJSRP 2015;5:1–11.

38. Schupp N, Stopper H, Heidland A. DNA damage in chronic kidney disease: evaluation of clinical biomarkers. Oxid Med Cell Longev 2016;2016:3592042. doi: 10.1155/2016/3592042

39. Bala S, Chugh NA, Bansal SC, Garg ML, Koul A. Radiomodulatory effects of Aloe vera on hepatic and renal tissues of X-ray irradiated mice. Mutat Res 2018;811:1–15. doi: 10.1016/j.mrfmm.2018.07.001

40. Nair GG, Nair CK. Amelioration of γ-radiation induced genomic insult and oxidative stress in whole body irradiated Swiss albino mice by sesamol. Int J Low Radiat 2011;8:20–34. doi: 10.1504/IJLR.2011.040646

41. Davis PJ, Bosenberg A, Davidson A, Jimenez N, Kharasch E, Lynn AM, Tofovic SP, Woelfel S. Chapter 7: Pharmacology of pediatric anesthesia. In: Davis PJ, Cladis FP, Motoyama EK, editors. Smith’s anesthesia for infants and children. 6th ed. Philadelphia (PA): Elsevier Mosby; 2011. p. 179–261.

42. Martin Jr JL, Njoku DB. Metabolism and toxicity of modern inhaled anaesthetics. In: Miller RD, editor. Miller’s anesthesia. 6th ed. Philadelphia (PA): Elsevier; 2005. p. 231–72.

43. Lee HT, Ota-Setlik A, Fu Y, Nasr SH, Emala CW. Differential protective effects of volatile anesthetics against renal ischemia–reperfusion injury in vivo. Anesthesiology 2004;101:1313–24. doi: 10.1097/00000542-200412000-00011

44. Lochhead KM, Kharasch ED, Zager RA. Spectrum and subcellular determinants of fluorinated anesthetic-mediated proximal tubular injury. Am J Pathol 1997;140:2209–22. PMCID: PMC1858334

45. Hanafi N, El Aaser A, Gabry M, Tohamy A, Ebrahim M. Effect of increase in antioxidants supplementation on kidney tissue of mice subjected to fractionated dose of γ-irradiation. EJHLM 2007;26:22–30. doi: 10.1281/ejhl.2007.1777

46. Ji K, Wang Y, Du L, Xu C, Liu Y, He N, Wang J, Liu Q. Research progress on the biological effects of low-dose radiation in China. Dose Response 2019;17:1559325819833488. doi: 10.1177/1559325819833488

47. Nogami M, Huang JT, James SJ, Lubinski JM, Nakamura IJ. Mice chronically exposed to low dose ionizing radiation possess splenocytes with elevated levels of HSP70 mRNA, HSC70 and HSP72 and with an increased capacity to proliferate. Int J Radiat Biol 1994;63:775–83. doi: 10.1080/01440399409550318
Oštećenje DNA stanica bubrega in vivo prouzročeno kombiniranim izlaganjem hlapljivim anesteticima i radioterapijskim dozama od 1 Gy ili 2 Gy

Imobilizacija bolesnika hlapljivim anesteticima (HA) tijekom radioterapije ponekad je neizbježna. Iako je poznato da i HA i ionizirajuće zračenje mogu imati nefrotoksične učinke, ne postoje istraživanja o njihovu kombiniranom učinku na oštećenje DNA bubrežnih stanica. Cilj ovog istraživanja in vivo na miševima soja Swiss albino bio je utvrditi oštećenje DNA stanica bubrega (alkalni komet-test) nakon anestezije izofluranom, sevofluranom ili halotanom i izlaganja ionizirajućem zračenju u dozama od 1 Gy ili 2 Gy. Uzorke bubrežnoga korteksa uzeli smo nakon 0, 2, 6 i 24 sata od izlaganja i izmjerili parametre komet-testa: duljinu repa i njegov intenzitet. Kako bismo kvantificirali učinkovitost staničnog popravka, izračunali smo indeks popravka stanične DNA. Izloženost bilo kojem od testiranih anestetika povećalo je oštećenje DNA u odnosu na kontrolu, slično kod sevoflurana i izoflurana, a najveće kod halotana. U kombiniranom izlaganju HA-u i zračenju od 1 Gy, oštećenje DNA ostalo je na sličnim razinama u svim vremenskim točkama, ili je bilo čak niže od oštećenja prouzročenih samim zračenjem. Halotan je ponovno izazvao najveća oštećenja. U kombiniranom izlaganju sa zračenjem od 2 Gy sevofluran je značajno povećao intenzitet repa tijekom prvih triju vremenskih točaka, koji se smanjivao te je nakon 24 sata čak bio niži nego u uzorcima koji su bili izloženi samo zračenju. Potrebna su daljnja istraživanja mehanizma djelovanja kako bi se utvrdilo u kojoj mjeri oštećenja ostaju u bubrežnim stanicama nakon duljeg razdoblja, kao i koliko se učinkovito stanične mogu oporaviti nakon jednokratnog ili višekratnog izlaganja HA-u i zračenju.

KLJUČNE RIJEČI: dužina repa; halotan; indeks popravka DNA; intenzitet repa; izofluran; komet-test; sevofluran