minima coincide on the summer solstice day. A similar coincidence happens on the winter solstice day at the Tropic of Capricorn.

Figure 9 shows a more realistic representation in polar coordinates, including additional azimuthal data for places from the equator to 60° lat., exhibiting interesting shape change of the Asr curve.

The Moti Masjid sundial, though a fine piece of art, has been useless for centuries and in wrong orientation. Because of its simple, single Asr curve, the dial is also significantly different from the one at Srirangapatna. Srirangapatna, being situated in the tropics, witnesses the Sun’s zenithal passage twice a year. The size of the lower part of the Asr curve beyond the cusp signifies how close the place is to the tropical lines. Since the Sun never reaches the zenith beyond the tropics, the lower part of the Asr curve disappears.

The Asr prayer time in Agra practically extends up to sunset. It is time for the fourth prayer-Maghrib at sunset. We could successfully determine the appropriate length 5.625 inches of the missing original gnomon of the sundial in Agra by carrying out computer simulations, followed by on-site observations to resolve a long-standing puzzle.

ACKNOWLEDGEMENTS. We thank the Archeological Survey of India, New Delhi for permission to visit the site. We also thank the staff and attendants at the Red Fort, Agra, for assistance.

Received 2 June 2019; revised accepted 4 January 2021

doi: 10.18520/cs/v120/i5/942-945

Traditional knowledge of medicinal plants among the Thangal–Naga ethnic group of Manipur, India

Babina Pampuinath and Maibam Dhanaraj Meitei*
Department of Forestry and Environmental Science, Manipur University, Canchipur 795 003, India

With a population of 4475 individuals, the Thangal–Naga of Manipur is one of the vulnerable schedule tribes in India. During the study, oral traditional knowledge for the treatment of ailments using wild medicinal plants by the ethnic group was documented. Forty-one ethnomedicinal plants from 40 genera and 28 families were reported during the semi-structured interviews of 70 locals. In total, 29 different ailments were treated using medicinal plants. Further, phytochemical analysis of 11 common medicinal plants revealed the presence of alkaloids, flavonoids, saponins, tannins, phenols, steroids, anthraquinones, coumarins, glycosides and terpenoids.

Keywords: Ethnomedicinal plants, ethnic groups, phytochemical analysis, Thangal–Naga, traditional knowledge.

THANGAL–Naga, also known as Koirao, is one of the endangered, small, tribal ethnic groups in India with a population of 4475 individuals, and represents 0.38% of Manipur’s tribal population. Today, there are only 11 villages in Senapati district of Manipur, viz. Angkailongdi,

1. Pandya, A., Tej Bahadur and Bhattacharya, S., Astronomical significance of sun-dials in Srirangapatna. *Curr. Sci.*, 2018, 116(5), 811–816.
2. Pandya, A., Tej Bahadur and Bhattacharya, S., Sun-dial for time-keeping in Jaisalmer Fort. *Indian J. Hist. Sci.*, 2017, 52(2), 137–146; http://insa.nic.in/UI/Journalarticle.aspx?jid=Mw==&VID=MzMw-&isNm=SXXNaWUgMg==
3. Sarma, S. R., *A Descriptive Catalogue of Indian Astronomical Instruments*, 2017, pp. 3602–3604 and references therein; http://www.srsarma.in/catalogue.php
4. Ibid; pp. 3603–3604.
5. King, David A., Astronomy and Islamic society: Qibla, gnomonics and timekeeping. In *Encyclopedia of the History of Arabic Science* (ed. Roshdi), 1996, vol. 1, pp. 128–184, 166–167.
6. Karim, A. S. M., *A Guide to PRAYER in Islam*, The Co-operative Office for Call and Foreigners’ Guidance at Sultanah, Riyadh, 1997, pp. 16–17; http://www.islamicbook.ws/english/english-020.pdf
7. http://praytime.org/calculation
8. http://astronomyaardra.org/Astronomy%20Resources/sun-ra-dec.f
Table 1. Plants used in traditional medicine among the Thangal–Naga ethnic group

Scientific name, family and voucher number	Vernacular name (Thangal)	Habit	Parts used	Ailment treated and other uses	Preparation/ formulation	Routes of administration	Edible use
Acanthaceae							
Phlogacanthus thyrsiformis Nees BP-2019/22	Tamphanggan Shrub Lf		Lf	Cold	Boiled Juice	Oral/ inhalation/bath	Fw as kanghou; Lf as chutney
Anacardiaceae							
Rhus semialata Murray BP-2019/07	Khama Tree Fr		Fr	Gastric problem	Decoction	Oral	Fr as raw
Apiaceae							
Centella asiatica (L.) Urb. BP-2019/30	Jopikonggan Herb Wp		Wp	Stomach problems, blood purifier, enhanced eyesight	Decoction	Oral	Wp as kangsu and chamfut
Eryngium foetidum L. BP-2019/14	Majangnikkhom Herb Lf		Lf	Epilepsy, paralysis and high blood pressure	Paste/decoction/ fresh	Topical/oral	Lf as spice
Apocynaceae							
Ruellia serpentina (L.) Benth. ex Kurz BP-2019/12	Parisaikoi Herb St		St	Skin infection	Paste	Topical/ massage	–
Asteraceae							
Eupatorium adenophorum Spreng. BP-2019/37	Japan phana Herb Ts, Lf		Ts, Lf	Cuts and wounds	Paste	Topical	–
Ageratum conyzoides (L.) L. BP-2019/08	Majangmi phana Herb Lf		Lf	Cuts and wounds	Paste	Topical/oral	–
Artemisia nilagirica (C.B. Clarke) Pamp. BP-2019/01	Tampitangou Herb Lf, Ts		Lf, Ts	Dysentery	Fresh/juice	Topical/oral	–
Gynura cusimbua (D.Don) Moore. BP-2019/35	Leishak phana Herb Lf		Lf	Gastric problem and cleansing of stomach	Decoction	Oral	Fr as chutney
Spilanthes acmella (L.) L. BP-2019/06	Shagitla Herb Fw		Fw	Toothache and gastric problems	Fresh	Oral	–
Oroxylum indicum (L.) Kurz. BP-2019/41	Chakko Tree Br, Fr		Br, Fr	Piles and cancer	Juice	Oral	Fr as fresh
Caricaceae							
Carica papaya L. BP-2019/26	Koigithei Tree Lf		Lf	Headache, gastric and stomach problems	Decoction	Oral	Fr as fresh
Cucurbitaceae							
Momordica charantia L. BP-2019/17	Khalaganei Climber Lf		Lf	Flu and cold	Decoction	Oral	Fr as chutney or boiled; Lf as fresh
Echinocystis lobata (Michx) Torr. & A. Gray BP-2019/18	Ram githei phana Climber Wp		Wp	Jaundice	Decoction	Oral	–
Cyperaceae							
Fairena umbellata Rottb. BP-2019/33	Ngi Herb Rt		Rt	Fever, swelling of arms, legs and stomach problem	Decoction	Oral	–
Lamiaceae							
Mentha spicata L. BP-2019/23	Nungsit pari Herb Lf, Ts		Lf, Ts	Stomach problems	Decoction	Oral	Ts as flavouring agent
Ocimum canum Sims. BP-2019/09	Hopae Herb Lf, Ts		Lf, Ts	Headache	Decoction	Oral	Ts as flavouring agent
Lauraceae							
Cinnamomum verum J. Presl BP-2019/02	Sangleikoi Tree Br		Br	Cough, pain/ itching	Juice/fresh	Oral/topical	Br as spice
Liliaceae							
Allium hookeri Thwaites BP-2019/32	Sanamnamchenga Herb Lf		Lf	Deworming	Paste	Topical/ massage	Wp as chamfut and as chutney
Allium sativum L. BP-2019/15	Sanamriba Herb Lf		Lf	High blood pressure, cough and cold	Juice	Oral	Bl as spice

(Contd)
Table 1. (Contd)

Scientific name, family and voucher number	Vernacular name (Thangal)	Habit	Parts used	Ailment treated and other uses	Preparation/formulation	Routes of administration	Edible use
Lythraceae Punicia granatum L. BP-2019/20	Pulangtheikoi Tree Rt Dysentery Juice Oral	Fr as fresh					
Meliaceae Azadirachta indica A. Juss. BP-2019/04	Neemkoi Tree Lf Fever and cough Decoction Oral	–					
Mimosaceae Mimosa pudica L. BP-2019/40	Kajakpi phana Herb Wp Piles and stone problems Decoction Oral	Fr as singju and iromba; Fw as singju					
Parkia javanica Merr. BP-2019/34	Kajongtakkoi Tree Fr Diarrhoea and dysentery Boiled juice Oral						
Musaceae Musa paradisiaca L. BP-2019/39	Poitheikoi Tree Fr Diarrhoea Fresh Oral	Fw as fried item; St as iromba; Fr as fresh					
Myristicaceae Myristica lanifolia Roxb. BP-2019/25	Ripkoi Tree Lf Cuts and wounds Paste Topical/massage	–					
Oxalidaceae Oxalis corniculata L. BP-2019/29	Pit Herb Lf Indigestion and gastric problem Decoction Oral	Lf as kangsoi					
Plantaginaceae Plantago major L. BP-2019/38	Kapatnougan Herb Lf Blood clot and boils Paste Topical/massage	Lf in iromba					
Poaceae Cynodon dactylon L. BP-2019/05	Phlim Herb Wp Fever and typhoid Juice Oral	–					
Rosaceae Rubus ellipticus Sm. BP-2019/03	Machikthei Shrub Rt Diarrhoea Juice Oral	Fr as fresh					
Rubiaceae Meyna laxiflora Robyns BP-2019/36	Habitheikoi Tree Lf Swelling of the body Decoction Oral	Lf as fresh in singju; Fr as dried					
Paederia foetida L. BP-2019/19	Beireng Climber Lf Bone fracture Paste Massage/topical	–					
Rutaceae Citrus limon (Linn.) Burm. f. BP-2019/10	Champra Shrub Fr Fever Fresh Massage	Fr as fresh					
Zanthoxylum acanthopodium DC BP-2019/27	Ngangtheikoi Tree Fr Toothache Fresh Oral	Fr in chutney; Lf as spice					
Sapindaceae Sapindus mukorossi Gaertn. BP-2019/13	Talumthei Tree Fr Fever and deworming Juice Topical/massage	–					
Sauururaceae Houttuynia cordata Thunb. BP-2019/31	Dana Herb Wp, Rz Muscle cramp, eye and skin irritation, measles, stomach ulcers Decoction/ juice Oral	Lf as fresh spice					
Solanaceae Solanum torvum Sw. BP-2019/11	Khukthei Shrub Fr Fever and typhoid Juice Oral	Fr as chutney					
Verbenaceae Clerodendrum colebrookianum Walp. BP-2019/24	Pokdomna Tree Lf Blood pressure Decoction Oral	Lf as curry					
Zingiberaceae Alpinia galangal (L.) Willd. BP-2019/21	Jaikhaba Herb Rz Cough and diarrhoea Paste/deworming Paste	Topical/oral Rz as spice					
Curcuma longa L. BP-2019/28	Marenggai Herb Rz Swelling of the body Sore throat Fresh	Topical/massage Rz as spice					
Zingiber officinalis Roscoe BP-2019/16	Saraikaga Herb Rz						

Br, Bark; Fr, Fruits; Fw, Flowers; Lf, Leaves; St, Stem; Ts, Tender shoots; Rt, Roots; Rz, Rhizomes; Wp, Whole plants.
Katomei Makeng, Makeng Cheijinba, Ngaihang, Mapao Thangal, Mayangkhang, Ningthouham, Thangal Surung, Tumnoupokpi, Yaikongpao and Takaimei where Thangal habitations are found. Traditionally, Thangals are agriculturists and horticulturists with experience in jhum cultivation. The womenfolk are mostly skilled weavers making indigenous hand-woven clothes. They have lived with the sustainable use of forest and plant resources, such as wild edible plants, timber, fruits, medicinal herbs, flowers, orchids, etc. and depend on them directly or indirectly for their livelihood.

Like the major ethnic groups of Manipur, Thangals have acquired the traditional knowledge of using plants for healing different ailments since generations. They have maintained their own ethnic identity, customs, beliefs, faith and tradition. However, the indigenous traditional ways are disappearing from the society under the influence of modernization and industrialization. Today, lack of proper documentation has resulted in the disappearance of important ethnomedicinal knowledge from different indigenous ethnic groups, where the age-old traditions are being replaced by modern allelopathic practices. Therefore, there is an urgent need to update the traditional knowledge of these ethnic groups.

In this study, the ethnomedicinal knowledge was collected from 11 Thangal-inhabiting villages of Senapati district during 2018–19. Information on ethnomedicinal plants such as local name, ailments treated, plant parts used, preparation methods and administration routes was collected using semi-structured interviews. Voucher specimens collected were identified with the help of experts and the available literatures. The scientific name and family were cross-checked using the PlantList (www.theplantlist.org) of the Royal Botanic Garden, Kew, UK. Voucher specimens (BP-2019/01 to BP-2019/41) were then deposited in the Department of Forestry and Environmental Science, Manipur University. Eleven common medicinal plants (Cynodon dactylon and Centella asiatica whole plant, Oroxylum indicum and Cinnamomum verum bark, Eupatorium adenophorum and Ageratum conyzoides leaves, Musa paradisiaca and Solanum torvum fruits, Alpinia galanga and Curcuma longa rhizomes and Spilanthes acmella flowers) were collected and qualitative analysis of the phytochemicals was performed (water extract).

Among the 70 locals included in the ethnobotanical survey, 80% were men and 20% were women. A great disparity was noticed in the distribution of the traditional
Table 2. Phytochemical screening of common medicinal plants

Phytochemicals	Cynodon dactylon	Centella asiatica	Oroxylum indicum	Cinnamomum verum	Eupatorium adenophorum	Ageratum conyzoides	Musa paradisiaca	Solanum torvum	Curcuma longa	Alpinia galangal	Spilanthes acmella
Flavonoids	+	-	-	-	-	-	-	-	-	-	-
Tannins	-	+	-	-	-	-	-	-	-	-	-
Phenols	-	-	+	-	-	-	-	-	-	-	-
Terpenoids	-	-	-	+	-	-	-	-	-	-	-
Steroids	-	-	-	-	+	-	-	-	-	-	-
Saponins	+	-	-	-	-	-	-	-	-	-	-
Anthraquinones	-	-	-	-	-	+	-	-	-	-	-
Coumarins	-	-	-	-	-	-	-	-	-	-	-
Glycosides	-	-	-	-	-	-	-	-	-	-	-
Alkaloids	-	-	-	-	-	-	-	-	-	-	-

Figure 3. Photographs of common medicinal plants. a, Mentha spicata; b, Carica papaya; c, Ageratum conyzoides; d, Centella asiatica; e, Gymnura cusimba; f, Eupatorium adenophorum; g, Momordica charantia; h, Mimosa pudica; i, Eryngium foetidum.

knowledge between the sexes, where the tradition is a male-inherited system. Moreover, the healers mostly belonged to the aged population of the community with the younger generation favouring modern methods of treatment. During knowledge transmission, elders usually pass on the information and treatment processes to their near ones orally, thus restricting the number of individuals with the said knowledge. This is a common tradition observed in different indigenous groups. In total, 41 species from 40 genera and 28 families were documented (Table 1). A. conyzoides, E. adenophorum, C. asiatica, C. dactylon, O. canum, P. thyrsiformis, P. major, S. torvum and Z. officinale were commonly recommended by the healers. The maximum use reports were found for treating ailments such as gastric and stomach problems, fever, diarrhoea and dermatological problems due to their greater prevalence in the region. The common preferred species belonged to families Asteraceae, Zingiberaceae, Lamiales, Rubiaceae, Apiaceae, Liliaceae and Cucurbitaceae. Moreover, herbs were the major ethnomedicinal source, which explains the rich herbaceous species wealth of the region. The traditional healers generally used nine different plant parts during the preparation of crude drugs (Figure 2a). The maximum use was reported for leaves (19 species), as the collection was easier and resources were available in large volumes compared to other parts. Moreover, the harvest of the leaves can cause minimum damage compared to other parts from the conservation point of view. Likewise, the parts were prepared under five categories and the crude drugs administered via five routes (Figure 2b and c). The healers were well aware of the preparation methods and routes for administration, so that maximum efficiency could be achieved for the drug. Further, it was observed that most of the drugs were administered orally as it was the most effective means, which is similar to numerous findings. Moreover, 27 species from 26 genera and 21 families were consumed in the local households in traditional cuisines (Table 1 and Figure 3). Phytochemical analysis of the 11 ethnomedicinal plants showed the presence of flavonoids, tannins, phenols, terpenoids, saponins, coumarins, anthocyanin, anthraquinones, glycosides, alkaloids and steroids (Table 2). The analysis supports the selection of a particular species by the healers for traditional medicine. Thus,
the present study highlights the rich, disappearing, traditional ethnomedicinal knowledge which is scattered in oral form within the Thangal–Naga ethnic group of Manipur. Such knowledge needs proper documentation for use, preservation and protection.

Conflict of interest. Authors declare no conflict of interest.

1. Census of India, Census data. Office of the Registrar General and Census Commissioner, Ministry of Home Affairs, Government of India (GoI), 2011; https://censusindia.gov.in/2011-common/censusdata2011.html (assessed on 14 June 2020).
2. Maibam, M., Maibam, A. and Akoijam, B., Myths of Thangal origin from an anthropological perspective. *Int. J. Hum. Soc. Sci.*, 2017, 11(8), 2043–2046.
3. Forest Survey of India, State of Forest Report. Ministry of Environment and Forests and Climate Change, GoI, 2011; https://www.fsi.nic.in/forest-report-2011 (assessed on 4 July 2020).
4. Kanjilal, U. N., Kanjilal, P. C., De, R. N., Das, A. and Bor, N. L., *Flora of Assam*, Government of Assam, Shillong, 1934–1940, vols 1–5.
5. Deb, D. B., Dicotyledonous plants of Manipur territory. *Bull. Bot. Surv. India*, 1961, 3(3), 253–350.
6. Brummitt, R. K. and Powell, C. E., Authors of plant names: a list of authors of scientific names of plants, with recommended standard forms of their names, including abbreviations. Royal Botanic Gardens, Kew, UK, 1992.
7. Jaradat, N. A., Hussen, F. M. and Ali, A. A., Preliminary phytochemical screening, quantitative estimation of total flavonoids, total phenols and antioxidant activity of *Ephedra alata* Decne. *J. Mater. Environ. Sci.*, 2015, 6(6), 1771–1778.
8. Ajuru, M. G., Williams, L. F. and Ajuru, G., Qualitative and quantitative phytochemical screening of some plants used in ethnomedicine in the Niger delta region of Nigeria. *Int. J. Food Chem.*, 2017, 1, 7–14.
9. Meitei, M. D. and Prasad, M. N. V., Phoomdi – a unique plant biosystem of Loktak lake, Manipur, North-East India: traditional and ecological knowledge. *Plant Biodivers.*, 2015, 149(4), 777–787.
10. Sodipo, O. A. and Wannang, N. N., Ethno pharmacological survey of plants used by trado-medical practitioners (TMPs) in the treatment of typhoid fever in Gomari Airport Ward, Jere local government area, Borno State, Nigeria. *Am. J. Ethnomed.*, 2015, 2, 185–218.
11. Namsa, N. D., Mandal, M., Tangjang, S. and Mandal, S. C., Ethnobotany of the Monpa ethnic group at Arunachal Pradesh, India. *J. Ethnobiol. Ethnomed.*, 2011, 7, 31.
12. Salam, S. and Jamir, N. S., Common spices plant used as medicine by the Tangkhul tribe of Ukhrul district, Manipur, India. *Int. J. Sci. Res. Publ.*, 2016, 6(7), 2250–3153.

ACKNOWLEDGEMENT. We thank the locals of 11 villages in Senapati district, Manipur for help during the field visit.

Received 1 October 2020; revised accepted 18 January 2021

doi: 10.18520/cs/v120/i5/945-950