A NOTE ON THE UPPER RADICALS OF SEMINEARRINGS

MUHAMMAD ZULFIQAR
GOVT. COLLEGE UNIVERSITY LAHORE, PAKISTAN
Received : June 2009. Accepted : December 2009

Abstract

In this paper we work in the class of seminearrings. Hereditary properties inherited by the lower radical generated by a class M have been considered in [2, 5, 6, 7, 9, 10, 12]. Here we consider the dual problem, namely strong properties which are inherited by the upper radical generated by a class M.
1. Introduction and Preliminaries

V. G. Van Hoorn and B. Van Rootselaar [11] discussed general theory of seminearrings. The theory was further enriched by many authors (see [1, 3, 4, 13, 14]). The upper radicals were investigated by (see [2, 9, 12]) for radical classes of rings. Here we are interested in generalizing several results from [2, 5, 6, 7, 9, 10, 12] in the framework of seminearring, which is quite different from the ring theoretical approach discussed in [2, 5, 6, 7, 9, 10, 12]. Throughout this paper N will denote an seminearrings and ω be the universal class of all seminearrings. An semi-ideal I of N is denoted by $I \leq N$. In the following we shall be working within the class of all seminearrings.

Consider non-associative seminearrings as general algebras $(N, +, .)$, where $(N, +)$ is a semigroup, $(N, .)$ is a groupoid, and only the one-side distributive law holds.

Lower radical classes for seminearrings can be constructed similar to the construction of lower radicals for rings (see [2, 5, 6, 7, 8, 9, 10, 12, 15, 16]). First we include necessary preliminary, let ω be the universal class of all seminearrings and M be a sub-class of ω and let M_0 be the homomorphic closure of M in ω. For each $N \in \omega$, let $D_1(N)$ be the set of all semi-ideals of N. Inductively we define

$$D_{n+1}(N) = \{ I : I \text{ is an semi-ideal of some seminearring in } D_n(N) \}$$

Let $D(N) = \bigcup_{n \in N} D_n(N)$, $n = 1, 2, 3, \ldots$. By using rings theoretical approach discussed in [12], we have

$$\mathcal{L}M = \{ N \in \omega : D(N/I) \cap M_0 \neq 0, \text{for each proper semi-ideal } I \text{ of } N \},$$

is the Lee construction for lower radical determined by M, and $M \subseteq \mathcal{L}M$ (see also [8, 15, 16]).

First we give a construction for the upper radical, dual to the construction of [10] for the lower radical. From this the theorem on the inheritance of the left strong property is deduced.

We define the following classes from a given class M of seminearrings:

$$IM = \{ N : N \text{ is a subsemi-ideal of some seminearring of } M \};$$
$TM = \{ N : N \text{ contains a semi-ideal } B \text{ such that } B \in M \text{ and } N/B \in M \}$;

$SM = \{ N : N \text{ contains a descending chain of semi-ideals } B_i \text{ such that } B_i = 0 \text{ and } N/B_i \in M \}$.

It is clear that M is contained in IM and SM and that M is contained in TM if 0 belongs to M. The class M is semi-ideally closed if and only if $M = IM$. If M is semi-ideally closed then it follows easily that TM and SM are also semi-ideally closed. For undefined terms of seminearrings we may refer (see [1, 3, 4, 9, 11, 12, 13, 14, 16]).

2. Upper Radicals

We extend the results of [2, 5, 6, 7, 9, 10, 12] by using the above construction of upper radical for seminearring which is indeed provides an excellent and different approach to handle the many results of [2, 5, 6, 7, 9, 10, 12] in the framework of seminearring.

Definition 2.1. If ρ is a radical class of seminearring then it admits a semisimple class:

$$S\rho = \{ N\in \omega : \rho(N) = 0 \}.$$

The following theorems were proved by N. J. Divinsky [2] for rings. Here we generalize it for seminearring which can be obtained on the line of rings theoretical approach discussed in [2].

Theorem 2.2. For any radical property N, every semi-ideal of an N-semisimple is itself N-semisimple.

Proof. The proof of our Theorem 2.2 is very similar to the proof of [2].

Theorem 2.3. The class M is the class of all S-semisimple seminearrings with respect to some radical property S if and only if M satisfies the following conditions:

1. Every non-zero semi-ideal of a seminearring of M can be mapped homomorphically on to some non-zero seminearring of M.
2. If every non-zero semi-ideal of a seminearring N can be mapped homomorphically onto some non-zero seminearring of M, then the seminearring
N must be in M.

Proof. The proof of our Theorem 2.3 is very similar to the proof of [2].

Theorem 2.4. A non-empty class of seminearrings M is the semisimple class with respect to some radical if and only if $M = IM = TM = SM$.

Proof. By Theorem 2.2 a semisimple class is semi-ideally closed. Also if B and N/B are semisimple and $\rho(N)$ is the radical of N, $(\rho(N) + B)/B$ is semisimple, being an semi-ideal of N/B and is also radical being isomorphic to $\rho(N)/(\rho(N) \cap B^*)$, (where B^* is a k-semi-ideal generated by B (see [8, 15, 16]). Hence $\rho(N) \subseteq B$. As B is semisimple we have $\rho(N) = 0$. Therefore N is semisimple. If B_i is a family of semi-ideals of N such that N/B_i is semisimple and $\cap B_i = 0$, then as above, $\rho(N) \subseteq B_i$ and so $\rho(N) \subseteq \cap B_i$. Therefore N is semisimple. It follows that a semisimple class M satisfies $M = IM = TM = SM$.

Conversely let M be a class of seminearrings such that $M = IM = TM = SM$. We show that M is a semisimple class by verifying the conditions (1) and (2) of Theorem 2.3. Since $M = IM$ condition (1) of Theorem 2.3 is clear. Now let N be a seminearring such that every non-zero semi-ideal of N can be mapped onto some non-zero seminearring of M. To complete the proof we must show that N is in M. Consider the family of proper semi-ideals G of N such that $N/G \in M$ and using Zorn’s Lemma we see that there is a semi-ideal B minimal in this family. If $B = 0$, we are finished. If not there is a semi-ideal B minimal in the family of proper semi-ideals of B whose quotients belong to M. J is not a semi-ideal of N. Since $M = TM$ would then imply $N/J \in M$, contradicting the minimality of B. Hence either NJ or JN. We may assume without loss of generality that there exists $n \in N$ with nJ. Consider $(nJ + J)/J$. We have $nJB \subseteq nJ$ and $BnJ \subseteq BJ \subseteq J$. Hence $(nJ + J)/J$ in an semi-ideal of B/J. Since $B/J \in M$ and $IM = M$ we have $(nJ + J)/J \in M$. Consider the mapping from J to $(nJ + J)/J$ given by $\eta(x) = nx + J$, $\eta(xy) = nxy + J \subseteq NJJ + J \subseteq BJ + J \subseteq J$; $\eta(x)\eta(y) = nxy + J \subseteq NJNJ + J \subseteq BJ + J \subseteq J$. Therefore η is an epimorphism. Let K be the kernel of η, i.e. $K = \{x \in J : nx \in J\}$. Let $x \in K$, $b \in B$; then $nxb \subseteq BJ \subseteq J$. Hence K is an semi-ideal of B. However we have $B/J \in M$ and

$$J/K \cong (nJ + J)/J \in M$$
Since $TM = M$ it follows that $B/K \varepsilon M$. This contradicts the minimality of J. Therefore $N \varepsilon M$ and M is a semisimple class.

Now we can give the upper radical construction. Let M be a non-empty class of seminearrings. Let $M_1 = IM$. We define M_α inductively on ordinals $\alpha > 1$ as follows. If α is not a limit ordinal $M_\alpha = TM_{\alpha - 1}$. If α is a limit ordinal $M_\alpha = S(\bigcup_{\beta < \alpha} M_\beta)$. Finally we set $\bar{M} = \bigcup M_\alpha$.

Theorem 2.5. For any non-empty class M of seminearrings, \bar{M} is the smallest semisimple class containing M.

Proof. It is clear that if M is contained in semisimple class so also are IM, TM, and SM. Therefore \bar{M} is contained in every semisimple class containing M. It remains to show that \bar{M} is a semisimple class. It is clear that $IM_\alpha = M_\alpha$ for all α and hence that $IM = \bar{M}$. Let $N \varepsilon TM$. Then N contains an semi-ideal B with B and N/B in \bar{M}. Therefore there exists an ordinal α with both B and $N/B \varepsilon M_\alpha$. Hence $N \varepsilon TM_\alpha = M_{\alpha + 1}$. Therefore $M = TM$. Let $N \varepsilon SM$. Let B_i be the descending chain of semi-ideals of N with $\cap B_i = 0$ and $N/B_i \varepsilon \bar{M}$. Then $N/B_i \varepsilon M_{\alpha_i}$, for some α_i. Since the indices I form a set there exists a limit ordinal α with α_i for all i. Then $N/B_i \varepsilon \bigcup M_\beta$ and so $N \varepsilon S(\bigcup M_\beta) = M_\alpha$. Therefore $A \varepsilon \bar{M}$ and $\bar{M} = SM$. It follows from Theorem 2.4 that \bar{M} is a semisimple class of seminearrings.

Definition 2.6. A radical ρ is said to be left strong, if every radical left semi-ideal of a seminearring N is contained in the radical of N. Equivalently semisimple seminearrings contain no non-zero radical left semi-ideal of every seminearring in M has a non-zero image in IM. Clearly a radical is strong if and only if its semisimple class is left strong.

Theorem 2.7. If a non-empty class M of seminearrings is left strong then the upper radical generated by M is left strong.

Proof. Let ρ denote the upper radical generated by M. By Theorem 2.5 the semisimple class of the radical ρ is \bar{M}. We need to show that if K is a non-zero left semi-ideal of a seminearring N in \bar{M} then K has a non-zero image in \bar{M}. Let $N \varepsilon M_\alpha$. The proof is by transfinite induction on α. First suppose that $N \varepsilon M_1 = IM$. Then N is a subsemi-ideal of a seminearring in \bar{M}. Let $N = N_1 \subseteq N_2 \subseteq \ldots \subseteq N_n$, where $N_n \varepsilon M$ and N_i is an semi-ideal of N_{i+1}. We prove this case by induction on n. If $n = 1$ the required result
holds. \(K + N_2 K \) is a left semi-ideal of \(N_2 \). By the inductive assumption
\(K + N_2 K \) has a non-zero image \((K + N_2 K)/J \) in \(\bar{M} \). If \(K \subseteq J \) then
\[
K/(K \cap J^*) \cong (K + J)/J
\]
(\(J^* \) is a k-semi-ideal generated by \(J \) (see [8, 15, 16])) is a non-zero
semi-ideal of \((K + N_2 K)/J \) and so is in \(\bar{M} \). If \(K \subseteq J \) then there exist \(b \in N_2 \)
with \(bK \); then \((J + bK)/J \) is an semi-ideal of \((K + N_2 K)/J \) and so is in \(\bar{M} \).
As before, the mapping \(\eta \) from \(K \) to \((J + bK)/J \) given by \(\eta(x) = bx + J \) is
an epimorphism and so \(K \) has a non-zero image in \(M \) as required. Now let
\(N \in M_\alpha \) and assume that the result has been proved for ordinals less then \(\alpha \). If \(\alpha \) in not a limit ordinal then \(N \) contains an semi-ideal \(B \) and \(N/B \) in
\(M_\alpha \). If \(K \subseteq B \) the required result holds. Otherwise
\[
K/(K \cap B^*) \cong (K + B)/B,
\]
(\(B^* \) is a k-semi-ideal generated by \(B \) (see [8, 15, 16])) which is a non-zero left semi-ideal of \(N/B \). Again the required result follows. If \(\alpha \) is
a limit ordinal then \(N \) contains a descending chain of semi-ideals \(B_i \) with
\(\cap B_i = 0 \) and \(N/B_i \in M_\alpha \), \(\alpha_i < \alpha \). For some \(i \), \(KB_i \). Then \((K + B_i)/B_i \) is a
non-zero left semi-ideal of \(N/B_i \). Thus in all cases \(K \) has a non-zero image
in \(M \). Therefore the upper radical generated by \(M \) is left strong.

Acknowledgement. The author thank the referee for his useful comments and suggestions for the improvement of the paper.

References

[1] Birkenmeier, G. F., "SEMINEARRINGS AND NEARRINGS" induced by the circle operation, preprint, (1989).

[2] Divinsky, N. J., "RINGS AND RADICALS", Toronto, (1965).

[3] Golan, J. S., "THE THEORY OF SEMIRINGS WITH APPLICATIONS IN MATHEMATICS AND THEORETICAL COMPUTER SCIENCE", Pitman Monographs and Surveys in Pure and Applied Maths. 54, New-York, (1986).
A note on the upper radicals of seminearrings

[4] Hebisch, U. and Weinert, H. J., "SEMIRINGS ALGEBRAIC THEORY AND APPLICATIONS IN COMPUTER SCIENCE", Vol. 5 (Singapore 1998).

[5] Hoffman, A. E. and Leavitt, W. G., "Properties inherited by the Lower Radical", Port. Math. 27, pp. 63-66, (1968).

[6] Krempa, N. J. and Sulinski, A., "Strong radical properties of alternative and associative rings", J. Algebra 17, pp. 369-388, (1971).

[7] Leavitt, W. G., "Lower Radical Constructions", Rings, Modules and Radicals, Budapest, pp. 319-323, (1973).

[8] Olson, D. M. and Jenksins, T. L., "Radical Theory for Hemirings", Jour. of Nat. Sciences and Math., Vol. 23, pp. 23-32, (1983).

[9] Szasz, F. A., "RADICALS OF RINGS", Mathematical Institute Hungarian Academy of Sciences, (1981).

[10] Tangeman, R. L. and Kreiling, D., "Lower radicals in non-associative rings", J. Australian Math. Soc. 14, pp. 419-423, (1972).

[11] Hoorn, V. G. and Rootsselaar, B., "Fundamental notions in the theory of seminearings", Compositio Math. 18, pp. 65-78, (1966).

[12] Wiegandt, R., "RADICAL AND SEMISIMPLE CLASSES OF RINGS", Queens University, Ontarto, Canada, (1974).

[13] Weinert, H. J., "Seminearrings, seminearfield and their semigroup-theoretical background.", Semigroup Forum 24, pp. 231-254, (1982).

[14] Weinert, H. J., "Extensions of seminearrings by semigroups of right quotients", Lect. Notes Math. 998, pp. 412-486, (1983).

[15] Yusuf, S. M. and Shabir, M., "Radical classes and semisimple classes for hemiring", Studia Sci. Math. Hungarica 23, pp. 231-235, (1988).

[16] Zulfiqar, M., "The sum of two radical classes of hemirings", Kyungsook Math. J. Vol. 43, pp. 371-374, (2003).
Permanent address:
Department of Mathematics
Govt. College University Lahore
Pakistan
e-mail: mzulfiqarshafi@hotmail.com