Regulation of Sialic Acid 9-O-Acetylation during the Growth and Differentiation of Murine Erythroleukemia Cells*

(Received for publication, September 3, 1996)

Wei-Xing Shi, Roger Chammas‡, and Ajit Varki§

From the Glycobiology Program, UCSD Cancer Center, the Division of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093

Sialic acids are typically found at the terminal position on vertebrate oligosaccharides. They are sometimes modified by an O-acetyl ester at the 9-position, potentially altering recognition of sialic acid by antibodies, lectins, and viruses. 9-O-Acetylation is known to be selectively expressed on gangliosides in melanoma cells and on N-linked chains in hepatocytes. Using a recently developed probe, we show here that in murine erythroleukemia cells, this modification is selectively expressed on another class of oligosaccharides, O-linked chains carried on cell surface sialomucins. These cells also express 9-O-acetylation on the ganglioside G_{3,4} but this modification appears to be undetectable on the cell surface. Increasing cell density in culture is associated with a decrease in cell surface 9-O-acetylation of sialomucins. This change correlates with the spontaneous differentiation toward a mature erythroid phenotype. This down-regulation upon differentiation and entry into the G_{1}/G_{0} stage of the cell cycle is confirmed by differentiation-inducing agents. In contrast, cells arrested in G_{2}/M by the microtubule depolymerizing agent nocodazole show increased expression of cell surface 9-O-acetylated sialomucins (but not the 9-O-acetylated ganglioside). However, the microtubule stabilizer taxol does not induce this increase, showing that the nocodazole effect is independent of cell cycle stage. Indeed, direct analysis showed no correlation of 9-O-acetylation with cell cycle stage in rapidly growing cells, and shorter treatments with nocodazole also increased expression. Western blots of cell extracts confirmed that changes caused by differentiation and nocodazole are not due to redistribution of molecules from the cell surface. Indeed, following selective removal of 9-O-acetyl groups from the cell surface by a specific esterase, the recovery of expression is mediated by new synthesis rather than by redistribution from an internal pool. Thus, 9-O-acetylation on these sialomucins appears to be primarily regulated by the rate of synthesis, and the increase with nocodazole treatment is likely due to the inhibition of turnover of cell surface molecules. These data show that 9-O-acetylation of sialic acids in murine erythroleukemia cells is a highly regulated modification, being selectively expressed in a cell type-specific manner on certain classes of oligosaccharides and differentially regulated with regard to subcellular localization and to the state of cellular differentiation.

*This research was supported by Grants RO1-GM32373 (to A. V.) and P01-CA5689 (to M. G. Farquhar). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡Supported by Postdoctoral Fellowship 200015/94-0 from the Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil.

§To whom correspondence should be addressed. Tel.: 619-534-3296; Fax: 619-534-5611.

The sialic acids (Sias) are a family of 9-carbon monosaccharides usually found as the terminal units of animal oligosaccharides (1). The most common modifications of Sias are O-acetyl substitutions at the C-7 or C-9 positions (2, 3). Since O-acetyl esters at C-7 position spontaneously migrate to the C-9 position at physiological extracellular pH (4, 5), 9-O-acetylated Sias predominate on cell surface glycoconjugates. Several observations show that these modifications can affect the physicochemical and biological properties of the parent molecule (2, 3), affecting the activity of microbial sialidases (6), the specificity of sialyloligosaccharide recognition by antibodies (7, 8), recognition by mammalian lectins and monoclonal antibodies (9, 10), and potentially altering activation of the alternative complement pathway (11, 12). These modifications also show remarkable tissue-specific, molecule-specific, and developmentally regulated expression in a variety of systems. For example, structural studies of different O-acetylated gangliosides from melanoma cells have shown that the 9-O-acetyl group is invariably located on a particular terminal a2,8-linked Sia originating from the b1,4-linked galactose of lactosylceramide (13, 14); in the same cell type, Sias on glycoproteins do not appear to be O-acetylated (15). In contrast, rat hepatocytes express 9-O-acetylation selectively on the Sia residues of N-linked sugar chains (16). Since the O-acetylation of Sias takes place after transfer of Sias to glycoconjugates (2, 3), these findings suggest that this reaction may be regulated in a molecule- and tissue-specific fashion.

Other studies have shown O-acetylated Sias as distinct markers for human lymphocyte subsets (10, 17–21), and variable expression has been reported in human leukemic cells (22). Murine erythroleukemia (MEL) cells are virus-transformed erythroid precursors that rapidly proliferate in culture (23). These cell lines have served as classic models for in vitro differentiation along the erythrocyte pathway (23), which can be initiated by a number of agents and results in decreased cell size, restricted proliferative capacity, expression of mature erythrocyte antigens, and terminal differentiation (24–26). Because of these characteristics, MEL cells are useful to investigate the mechanisms by which proliferating transformed precursor cells in a differentiation lineage withdraw from the cell division cycle and express the genes characteristic of the nor-

1 The abbreviations used are: Sia, sialic acid, type unspecified; mAb, monoclonal antibody; HPTLC, high performance thin layer chromatography; PBS, phosphate-buffered saline; CHE-Fc, chimeric protein made of influenza C hemagglutinin-esterase with the fusion peptide eliminated by mutation) and the Fc portion of human IgG1; CHE-FcD, DFP-treated CHE-Fc (esterase activity irreversibly inactivated); HMBA, hexamethylene-bisacetamide; Me2SO, dimethyl sulfoxide; MEL, murine erythroleukemia cells; DFP, diisopropylfluorophosphate; BSA, bovine serum albumin; OSGPase, O-sialylglycoprotease; PAGE, polyacrylamide gel electrophoresis; ELISA, enzyme-linked immunosorbent assay; FITC, fluorescein isothiocyanate; PNGase, peptide-N-glycosidase F; BKG, background.
mal differentiated phenotype. Sia O-acytelylation has also been reported on murine erythrocytes (11, 27, 28) and on MEL cells (29). However, the class of sugar chains (gangliosides, N-linked or O-linked) to which these O-acytelylated groups were attached was not known. Recently, murine erythrocytes have been shown to bear ligands for sialoadhesin, a macrophage-specific I-type lectin known to selectively recognize the Siaα2–3Galβ1–3GalNAc terminal structure that can occur on either O-linked chains or gangliosides (30). In this case, de-O-acytelyation increased binding (31), suggesting that at least a portion of the target structures might be masked by O-acytelylated groups.

With the exception of certain ganglioside antigens recognized by specific monoclonal antibodies (32–35), it was previously not possible to detect 9-O-acytelylated sialic acids on cell surfaces without resorting to biochemical analyses. We and others (20, 36, 37) have suggested the use of the whole influenza C virus as a probe for this purpose. This virus expresses a membrane-bound hemagglutinin-esterase (CHE), which can both detect and cleave 9-O-acytelylated residues on sialic acids, regardless of the underlying oligosaccharide structure to which they are attached. However, the intact influenza C virus is unstable, are subject to steric hindrance in binding, and are impractical for many applications. To address this deficiency, we created a recombinant soluble chimera of the influenza C hemagglutinin-esterase fused to the hinge and Fc regions of human IgG (38). The purified molecule (CHE-Fc) retains the specific 9-O-acytelylated esterase activity of the parent viral glycoprotein (38). In vitro irreversible inactivation of the enzyme activity with DFP gives the derivative CHE-FcD, which serves as a specific probe for detection of 9-O-acytelylated Sias. Using these probes, we demonstrated the widespread but selective expression of 9-O-acytelylation in various rat tissues (39) and occurrence of 9-O-acytelylated Sias in normal differentiated phenotype. Sia O-acytelylated esters can be specifically released 9-O-acytelylated esters from Sias, whereas CHE-FcD specifically recognizes and binds to 9-O-acytelylated Sias (38).

Extraction of Gangliosides from Cultured Cells—Washed cell pellets were resuspended in 3 volumes of ice-cold deionized water, homogenized at 4°C, and the homogenate was added dropwise to 10.6 volumes of methanol at room temperature under constant stirring. Chloroform (5.3 volumes) was then added to the suspension. After centrifugation, the supernatant was collected and adjusted to a final chloroform/methanol/volcano ratio of 4.5:5.6:6 (v/v). After phase separation, gangliosides were enriched in the hydrophilic upper phase, which was dried down, resuspended in methanol, and kept at −20°C until use.

Extraction of Proteins from Cultured Cells—Washed cell pellets were resuspended into a buffer containing 50 mM Tris (pH 7.5), 150 mM NaCl, 1% Triton X-100, and protease inhibitors (1 mM EDTA, 50 μg/ml leupeptin, and 4 μg/ml pepstatin) and incubated 10 min at room temperature with occasional mixing. After centrifugation, the supernatant was saved for analysis.

O-Sialoglycoprotease Treatments—Proteins (40-μg aliquots) from MEL cells were incubated with 2.5 milliliters of enzyme in 100 mM HEPEs (pH 7.4), in the presence of BSA (stabilizer) for 2 h at 37°C. For treatment of cell surface molecules, MEL cells (100 μl, 200,000 cells/ml) in Ham's F12 balanced saline solution were incubated with 0.5 mM Neu5Ac2en for 2 h at 37°C in the presence or absence of 5 milliliters of O-sialoglycoprotease. The cells were then washed with Hank's balanced saline solution, 1% fetal calf serum, 0.1% NaN3 prior to immunostaining.

Trypsin Treatment—Cells were washed three times with ice-cold PBS and finally resuspended in 0.5 ml of PBS containing 0.1% NaCl and 1% trypsin and incubated at 37°C for 1 h. The trypsin was inactivated by adding an excess of medium containing fetal calf serum. The cells were washed with staining buffer prior to immunostaining.

PNGase F Treatment—Protein samples were denatured as described (42) and treated with 1 milliliters of PNGase F and incubated overnight at 37°C. The enzyme was thereafter heat-inactivated for 3 min at 100°C.

Removal of 9-O-Acetyl Esters from Cell Surface Sias—2 × 107 MEL cells were resuspended in 100 μl of PBS, containing 0.02% NaN3 (control cells) or 100 μl of PBS, containing 0.02% NaN3 with 10 μg of CHE-Fc. After incubation at 37°C for 60 min, the cells were washed 3 × in ice-cold PBS and then stained for flow cytometry analysis as described below. For studies requiring pulse-chase analysis, the incubations were done in Hank's balanced saline solution, and the cells were placed back in full culture medium for varying chase periods.

SDS-PAGE and Western Blot Analysis—Proteins were separated by SDS-PAGE in 7.5% polyacrylamide gels, transferred to Immobilon-P membranes (Millipore), and the blots incubated overnight at 4°C with CHED-10 (100 μg/ml in PBS). Glycoproteins reacting with the chimeras were covalently linked to a goat anti-human IgG antibody conjugated with alkaline phosphatase.

ELISA Plate Assays for 9-O-Acetyl Gangliosides—Total ganglioside extracts prepared as above were studied by lipid ELISA as described previously (15, 41). Horseradish peroxidase-conjugated goat anti-mouse IgG 1:2000 (27A) was reacted with the plate for 1 h at 4°C. The plates were plasticized and overlaid with antibodies as described previously (15, 41). Lipid extracts were applied to the plate in 45% methanol, air-dried, and incubated with the primary antibody conjugated with alkaline phosphatase.

HPTLC Immuno-Overlay of Gangliosides—Gangliosides were separared on aluminum-backed Silica Gel-60 HPTLC plates; the plates were plasticized and overlaid with antibodies as described previously (15, 41). Horseradish peroxidase-conjugated goat anti-mouse IgG 1:2000 (27A) was reacted with the plate for 1 h at 4°C. After washing, the reaction was developed as described. Background levels determined with the secondary antibody alone were subtracted in all cases.

Cell Lines and Monoclonal Antibodies—Murine erythroleukemia (MEL) cells were obtained from Dr. George Palade, UCSD (24, 40), and cultured in RPMI 1640 with 10% heat-inactivated fetal calf serum. Human melanoma cells (Melur) were from David Cheresh, Scripps Research Institute, and were propagated in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum. Human melanoma cells (Melur) were from David Cheresh, Scripps Research Institute, and were propagated in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum. Human melanoma cells (Melur) were from David Cheresh, Scripps Research Institute, and were propagated in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum. Human melanoma cells (Melur) were from David Cheresh, Scripps Research Institute, and were propagated in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum.}

HPTLC Immuno-Overlay of Gangliosides—Gangliosides were separated on aluminum-backed Silica Gel-60 HPTLC plates; the plates were plasticized and overlaid with antibodies as described previously (15, 41). Horseradish peroxidase-conjugated goat anti-mouse IgG recognizing mouse IgG 1:2000 (27A) was reacted with the plate for 1 h at 4°C. After washing, the reaction was developed with diaminobenzidine.

Treatment of MEL Cells with Biological Modulators—MEL cells were routinely grown to ~90% confluence before splitting for passage. Cells were used during asynchronous near-confluent growth or were arrested at the G2/M stages of the cell cycle using nocodazole (1 μg/ml, 100 μg/ml, 24 h). The synchronized cells at the G2/M boundary was carried out by incubating near-confluent MEL cells with thymidine (5 μg/ml, 24 h). The
cells were then chased with normal medium for 8 h and then incubated with nocodazole for 10 h.

Growth and Differentiation of MEL Cells—A culture of cells at various densities (2.5 × 10^5/ml to 4 × 10^5/ml) in complete medium was studied by measuring the extent of spontaneous differentiation, using the benzidine assay to measure hemoglobin accumulation, and DNA content to determine cell cycle phase status. Differentiation was induced by growing MEL cells (starting inoculum of 5 × 10^5 cells/ml) in the presence of 2% Me2SO in complete medium for 3 days.

Staining of MEL cells for Flow Cytometry Analysis— MEL cells were washed three times with 1% BSA in PBS, and incubated with a mixture of fluorescein isothiocyanate-conjugated goat anti-human IgG and anti-human IgM for 2 h at 4 °C. Control cells were incubated with a similar amount of fluorescein isothiocyanate-conjugated goat anti-human IgG and washed three times with 1% BSA in PBS, and incubated with a mixture of fluorescein isothiocyanate-conjugated goat anti-human IgG and anti-human IgM for 2 h at 4 °C. Control cells were incubated with similar amounts of human IgG, in 1% BSA in PBS. Cells were washed once in PBS, fixed in 2% formaldehyde in PBS, and analyzed by flow cytometry using a Becton Dickinson FACScan instrument. Intact cells were gated based on their forward and side scattering characteristics.

Propidium Iodide Staining of MEL Cells and Flow Cytometry Analysis of Cell Cycle Status— Cells were washed and stained with CHE-FcD as described above. After fixing with 2% formaldehyde in PBS, the cells were treated with 0.05% saponin at 37 °C for 15 min and stained with propidium iodide (20 μg/ml) in PBS containing RNase A (40 μg/ml) and deoxyribonuclease (Boehringer Mannheim) at 37 °C for 30 min. The DNA content was measured using FACScan (Lysozym program, Becton Dickinson).

Staining of Sialic Acids and Glycoproteins Using CHE-FcD— Control and base-treated glycoproteins were incubated with freshly prepared 2 mM sodium periodate in phosphate-buffered saline (pH 6.5) at 4 °C for 30 min in the dark. The resulting aldehydes were reacted with an excess of biotin-labeled hydrazide at room temperature for 1 h. The labeled sialoglycoproteins were dialyzed against PBS (pH 7.0) overnight at 4 °C, separated by SDS-PAGE, transferred onto nitrocellulose, and analyzed using streptavidin-alkaline phosphatase development system.

RESULTS

9-O-Acetylation of Sias on MEL Cells Is Predominantly Expressed on Cell Surface Mucin-type Glycoproteins— In earlier studies, we reported detection of 9-O-acetylated Sias in murine erythroleukemia (MEL) cells but did not identify the type of oligosaccharides carrying these modifications (29). To pursue this question, membrane proteins from cultured MEL cells were studied by Western blotting using two different approaches. In the first, membrane Sias were labeled via selective oxidation of their side chains with mild periodate oxidation, followed by covalent coupling with biotin hydrazide. The biotin residues could then be detected on the blot using a streptavidin/horseradish peroxidase probe (see Fig. 1A). Under the conditions used, mild periodate will not react with 9-O-acetylated Sias (29), which would hence be protected from biotinylation. De-O-acetylation of these molecules with base treatment exposes them to subsequent periodate oxidation and biotinylation. As shown in Fig. 1A, base treatment increased overall staining of many proteins, especially two bands with approximate molecular mass of 110 and 87 kDa (some of the increased diffusiveness of staining could be due to occasional cleavage of peptide bonds by the base treatment). These data suggested that several cell surface glycoproteins might carry the O-acetylated Sias. To confirm this, we probed other untreated blots with the CHE-FcD probe which is specific for binding to 9-O-acetylated Sias. As shown in Fig. 1B, major bands from MEL cells with apparent masses of 140, 110, and 90 kDa carry 9-O-acetylated Sias. The staining of these bands by the CHE-FcD probe is unaffected by prior PNGase F treatment (see Fig. 1B), indicating that the 9-O-acetyl groups are not carried on the Sias of N-linked oligosaccharides. On the other hand, their staining is markedly reduced by prior treatment of the membrane extract with 0-sialoglycoprotease (OSGPase), an enzyme known to selectively proteolyze only mucin-type glycoproteins known to carry clustered O-linked oligosaccharides (42, 43). To confirm that the protein bands found by SDS-PAGE represent cell surface 9-O-acetylation, intact MEL cells were studied by flow cytometry for staining with the CHE-FcD probe, with and without prior treatment with OSGPase. As shown in Fig. 2, this probe detects 9-O-acetylation on the cell surface, and OSGPase treatment markedly reduces staining. These data indicate that in contrast to melanoma cells and hepatocytes, most of the cell surface Sia 9-O-acetylated Sias in murine erythroleukemia cells is selectively expressed on O-linked oligosaccharides of mucin-type glycoproteins.

9-O-Acetylation of Sias on MEL Cells Is Also Found on Gangliosides, but These Are Not Detectable at the Cell Surface— Our prior studies showed that in human melanoma cells, 9-O-acetylation of Sias is selectively expressed on gangliosides and not on glycoproteins (15). The most common of these gangliosides 9-O-acetyl-GD3 can be selectively detected in melanoma cells by cell surface reaction with the specific mAbs Jones or 27A. However, the CHE-FcD probe (which should recognize all 9-O-acetylated Sias regardless of the underlying glycoconjugate) does not as easily detect this type of 9-O-acetylation at the intact cell surface. When Melur melanoma cells that express 9-O-acetyl-GD3 are studied with the CHE-FcD probe, staining was not fully revealed unless the cells were pretreated with trypsin, to remove cell surface glycoproteins that mask the epitope (Fig. 3A). This is interpreted to mean that this probe (unlike the mAbs) is unable to approach close enough to the ganglioside, which is a small molecule embedded in the outer membrane bilayer. Thus, 9-O-acetylated gangliosides could
alsobepresentintheMELcellsandbemaskedfromdetectionbytheCHE-FcDbyendogenousglycoproteins. Toexplorethis,

we re-examinedstainingfollowingtrypsin treatment. In contrast to the melanoma cells, FcD staining was completely lost from the MEL cells after this treatment (Fig. 3B), indicating the absence of accessible 9-O-acetylated gangliosides on the cell surface. In keeping with this, there was no staining with mAb 27A on flow cytometry analysis, even after trypsin treatment (Fig. 4, upper panels). However, upon permeabilization with saponin, some reactivity with 27A was detected (Fig. 4, lower panels). In keeping with this, MEL cells (like melanoma cells) were found to contain the precursor \(\text{GD3} \) as one of the major gangliosides (detected by TLC with resorcinol spray and by reactivity with mAb R24, data not shown). The presence of 9-O-acetyl-GD3 was confirmed in ganglioside extracts by lipid ELISA (Fig. 5), as well by overlay with CHE-FcD or 27A on HPTLC plates (data not shown). Thus, unlike the case with melanoma cells, 9-O-acetylation of Sias in murine erythroleukemia cells is found both on the glycolipid and the \(O \)-linked glycoprotein fraction. However, in contrast to the \(O \)-acetylated sialomucin glycoproteins, 9-O-acetyl-GD3 is present in low amounts and is either confined to an internal compartment or is inaccessible to the antibodies and CHE-FcD, even after trypsinization.

The Expression of Cell Surface 9-O-Acetylated Sialomucins Varies with Cell Density—In the course of these studies, we noticed some variations in the extent of MEL cell surface O-acetylation (detected by CHE-FcD) in batches of cells collected on different days. The explanation was found in the fact that cells grown at higher cell densities have marked reduction in 9-O-acetylation (see Table I). When MEL cells are grown at higher densities, they spontaneously differentiate toward a mature erythroid phenotype. Indeed, as shown in Table I, the loss of \(O \)-acetylation with increasing density seems to parallel the appearance of hemoglobin expression, a known marker of MEL cell differentiation. This change is also paralleled by an increase in the proportion of cells in the \(G_0/G_1 \) phases of the cell cycle (see Table I).

Induced Differentiation of MEL Cells Results in Loss of Surface 9-O-Acetylation—The above data suggested that differentiation and/or cell cycle status may be associated with a decrease in 9-O-acetylation of MEL cells. To check this, cultures were treated with 2% MeSO\(_4\), a well-known differentiating agent for these cells (23). Indeed, as shown in Fig. 6A, fully differentiated cells undergo a marked reduction in cell surface..
O-acetylation, to a nearly undetectable level. To rule out an effect of Me2SO unrelated to the differentiation process, cultures were subjected to serum starvation, which also causes cells to differentiate (as shown by hemoglobin accumulation). This was also accompanied by a significant loss of O-acetylation, although not the extent seen with Me2SO (Fig. 6B). Similar effects were seen with hexamethylene-bisacetamide (HMBA), another inducer of differentiation (data not shown). Notably, none of these treatments was associated with a major change in total cell surface sialylation (detected by flow cytometry using wheat germ agglutinin-FITC, data not shown).

Effects of Cell Cycle Stage upon the Expression of 9-O-Acetylation—Since all treatments that induce differentiation (high cell density, Me2SO, serum starvation, or HMBA) also arrest cells in G2/M of the cell cycle, the relationship of 9-o-acetylation in the M phase) still caused an increase in cell surface 9-O-acetylation (analyzed by flow cytometry, data not shown).

The effects of cell cycle, nocodazole, and taxol on the cellular content of 9-O-acetylated GD3 was also investigated. None of these appeared to have any effect on the content or the internal localization of this form of 9-O-acetylated molecules (staining with mAb 27A, with and without saponin pretreatment and analyzed by flow cytometry, data not shown). Thus, depolymerizing microtubules affect the expression and localization of 9-O-acetylated sialoglycans but not of 9-O-acetylated GD3.

Changes in Cell Surface 9-O-Acetylated Sialomucins after Induced Differentiation or Nocodazole Treatment Are Not Due to Redistribution—As indicated above, the changes in O-acetylation seen with induced differentiation (decrease) or nocodazole treatment (increase) are not due to arrest in the G2/M phase. Alternatively, that could be due to a redistribution of the O-acetylated sialomucins rather than changes in actual cellular content. To rule out this possibility, a Western blot of total cell glycoproteins from each situation was probed with CHE-FcD. As shown in Fig. 9, this approach confirmed a substantial decrease of protein-associated 9-O-acetylation upon Me2SO-induced differentiation and a significant increase with nocodazole treatment, particularly in some high molecular weight sialoglycoproteins.

Increase in 9-O-Acetylation Following Nocodazole Treatment Requires New Synthesis and Is Due to Accumulation on the Cell Surface—In the past, it was not possible to selectively remove 9-O-acetyl groups from cell surface molecules and to follow the subsequent fate of the Sias. Using the recombinant soluble influenza C 9-O-acetyl esterase (CHE-Fc), we have explored conditions for complete removal of cell surface 9-O-acetyl groups from MEL cells. As shown in Fig. 10, complete removal is possible, and the cells can be returned to culture for a chase period. As shown in the examples in Fig. 10A, 9-O-acetylation gradually returned to the cell surface over a period of 2–3 h. However, simultaneous treatment with nocodazole had no effect upon the rate of recovery (Fig. 10B), indicating that this compound may not affect the rate of new synthesis of 9-O-acetylated Sias.

To confirm that the restoration of cell surface 9-O-acetylation after selective removal was due to new protein synthesis, we studied the effects of cycloheximide, a protein synthesis inhibitor. As shown in Fig. 11, this treatment markedly blunted the restoration of expression of 9-O-acetylation. Taken together, the data indicate that the mucin molecules that were de-O-acetylated at the cell surface did not undergo re-O-acetylation and re-expression. Thus, the effects of nocodazole are most likely explained by the accumulation of newly synthesized molecules on the cell surface, i.e. a decreased rate of internalization and turnover.

DISCUSSION

Friend murine erythroleukemia cells (MEL cells) were one of the first cellular models where "normal" differentiation could be induced and recapitulated in vitro (23), as determined by the expression of molecules such as the globins. Erythroid differentiation normally takes place in a defined microenvironment in the bone marrow, where erythroblasts interact via cell surface glycophorins with stromal cells (fibroblasts and macrophages) and with extracellular matrix components (44). Thus, besides the coordinated expression of globin genes, controlled expression of cell surface sialoglycocojugates may characterize the differentiated phenotype of erythrocytes. Murine erythrocytes also present O-acetylated sialoglycoconjugates on their cell surface (11, 27, 28). Although the precise function of this modification is still an open question, O-acetylation of Sias may alter the binding of some viruses and is predicted to affect the activation of the alternative complement pathway.
Here we have identified the nature of O-acetylated sialoglyconjugates in MEL cells and studied the control of their expression upon differentiation. Both glycoproteins and glycolipids of MEL cells were found O-acetylated. Among glycoproteins, several high molecular weight polypeptides were the major O-acetylated species. These glycoconjugates were sensitive to O-sialoglycoprotease but not to PNGase F, thus identifying them as mucin-like molecules carrying clusters of O-linked chains. The identity of the polypeptides that carry this modification need to be investigated. Among glycolipids, MEL cells contain both GD3 and its 9-O-acetylated form, but the latter is a minor species that is present either in an internal compartment or it is not readily accessible on the cell surface, as discussed for other cellular models (45). This is in contrast to human melanoma cell lines, which express both Gd3 and 9-O-acetylated Gd3 on the cell surface, but not 9-O-acetylated sialoglycoproteins. Also, unlike the MEL cells, 9-O-acetylated Gd3 was readily identified on the cell surface of Melur cells using specific mAbs and becomes unmasked for CHE-FcD detection after cell surface trypsinization. On the other hand, MEL cells do not express any trypsin-resistant sialoglycoconjugate, and 9-O-acetylated GD3 could be observed only after treatment of cells with saponin (which permeabilizes cells by extracting cholesterol from the plasma membrane). In separate work, we have shown that 9-O-acetylation is found primarily on N-linked glycoproteins of hepatocytes (16). Thus, 9-O-acetylation appears to be differentially regulated in different cell types in a molecule-specific and location-specific manner.

We next analyzed the expression of 9-O-acetylated sialomucins on the cell surface of MEL cells during their growth and differentiation. At cell densities of >4 × 10^6/ml, we observed an arrest of cells in G0/G1, accompanied by spontaneous production of hemoglobin, and a marked reduction of 9-O-acetylation. Induced differentiation with serum starvation, Me2SO, or HMBA caused a more marked increase in hemoglobin accumulation and arrest in G0/G1 phases and was accompanied by a more marked loss of cell surface expression of 9-O-acetylation, without any accompanying major changes in the level of cell surface sialylation. Since all of these treatments arrested cells in the G0/G1 phase, we evaluated a possible cell cycle dependency of this Sia modification. Cells in G2/M displayed a small (~2-fold) increase of CHE-FcD reactivity over those in G0/G1. However, if one assumes that the cells in G2 phase would double their volume before division, an actual increase of about 60% in cell surface area is expected. To explore this, we induced

Cell density	G0/G1 (%)	G2/M (%)	Hemoglobin-positive (%)	Relative cell surface O-acetylation
2.5 × 10^5	62	38	0	93
5 × 10^5	61	39	0	94
1 × 10^6	63	38	0	93
2 × 10^6	64	37	0	92
4 × 10^6	93	7	50	17

a Cells were stained with propidium iodide, and DNA content was analyzed by flow cytometry as described under “Experimental Procedures.”

b Cells were stained for hemoglobin expression with benzidine as described under “Experimental Procedures.”

c Cells were stained with CHE-FcD and studied by flow cytometry as described under “Experimental Procedures.” The mean fluorescence intensity is presented, relative to control cells stained with secondary antibody alone.

Fig. 6. Effect of differentiation state on the expression of cell surface 9-O-acetylated sialomucins in MEL cells. MEL cells were grown in the presence of 2% MeSO (DMSO) or serum-free media for 3 days, and washed cells were stained with CHE-FcD and analyzed by flow cytometry as described under “Experimental Procedures” (BKG, secondary antibody alone).
the arrest of MEL cells in G₀/M phase, using drugs that altered microtubule dynamics such as nocodazole, colchicine, and taxol (46). While nocodazole and colchicine block microtubule polymerization, taxol acts as a stabilizer of microtubules. We found that nocodazole and colchicine, but not taxol, induced accumulation of 9-O-acetylated sialomucins on the surface of MEL cells. Taken together, these results indicate that (i) there is no significant cell cycle-dependent change on cell surface O-acetylation of MEL cells; (ii) the loss of 9-O-acetylation upon MEL cell differentiation is part of the differentiation program of this particular cell line; and (iii) nocodazole and colchicine induce accumulation of cell surface O-acetylated sialomucins via a mechanism independent of their effects on cell cycle.

To explore the last matter further, we needed to selectively remove 9-O-acetylation from the cell surface and to then monitor its recovery. This has not been possible in the past. However, we show here for the first time such a removal and recovery experiment, using the recombinant soluble form of the influenza C HE protein as a soluble 9-O-acetylation esterase. The results show that there is no recycling with re-O-acetylation in this system and that new protein synthesis is required for recovery. We could not address the same question regarding the 9-O-acetylation of G₁₃₁ since this molecule was not acces-

FIG. 8. Effects of drugs altering microtubule dynamics upon the expression of 9-O-acetylated sialomucins in MEL cells. MEL cells grown to confluence were incubated with indicated drugs. After 15 h, the cells were harvested and stained with CHE-FcD as described under “Experimental Procedures” (BKG, secondary antibody alone).

FIG. 9. Changes in cell surface O-acetylation upon differentiation and nocodazole treatment are not due to redistribution. MEL cells grown to confluence were incubated with no additions, with 2% Me₂SO (DMSO), or with nocodazole (Nz). The cells were harvested, total proteins extracted, 20 μg/lane separated by 7.5% SDS-PAGE, and Western blotted with CHE-FcD and goat anti-human IgG-conjugated alkaline phosphatase (developed with nitro blue tetrazolium and bromochloroindolyl phosphate substrate). 1st to 3rd lanes, Coomassie staining; 4th to 6th lanes, Western blot.

FIG. 10. Recovery of cell surface 9-O-acetylation following selective de-O-acetylation, lack of effect of nocodazole. MEL cells (4 × 10⁶) grown to confluence were incubated with CHE-Fc at 37 °C for 1 h to remove 9-O-acetyl groups, followed by washing and incubation in culture medium for the indicated time points. The cells were harvested and incubated with CHE-FcD as described under “Experimental Procedures.” A, flow cytometry to assay O-acetylation recovery. Solid line, CHE-FcD-stained cells; dashed line, secondary antibody alone. B, effect of nocodazole on O-acetylation recovery, assessed by flow cytometry.
Analysis of the 9-O-acetylated Sias described so far in nature indicates that there may be separate O-acetyltransferase activities directed toward α2,6-linked Sias (e.g. for N-linked sialylglycoproteins from hepatocytes) and toward α2,8-linked Sias (e.g. for Ga3 in human melanoma cells). It is still not known if α2,3-linked Sias can be 9-O-acetylated. Since MEL cells clearly expressed 9-O-acetyl-αιΔ3, they must be expressing an O-acetyltransferase activity toward α2,8-linked Sias. The nature of the Sia linkage on the 9-O-acetylated sialomucins remains to be determined. Regardless, it is evident that the O-acetyltransferase(s) present in these cells show some specificity, since they do not modify the Sias on the N-linked oligosaccharides of cell surface sialglycoproteins.

Acknowledgments—We thank Marilyn Furquhar, George Palade, Leland D. Powell, Steffen Thiell, and Sandra Diaz for helpful discussions and for their comments on the manuscript.

REFERENCES

1. Schauer, R. (ed) (1982) Sialic Acids: Chemistry, Metabolism and Function, Cell Biology Monographs, Vol. 10, Springer-Verlag Inc., New York
2. Schauer, R. (1991) Glycobiology 1, 449–452
3. Varki, A. (1992) Glycobiology 2, 25–40
4. Varki, A., and Diaz, S. (1984) Anal. Biochem. 137, 236–247
5. Kamelring, J. P., Schauer, R., Shukla, A. K., Stoll, S., van Halbeek, H., and Vliegenthart, J. F. G. (1987) Eur. J. Biochem. 162, 601–607
6. Corfield, A. F., Sander-Wewer, M., Veh, R. W., Wember, M., and Schauer, R. (1986) Biochim. Biophys. Acta 867, 433–439
7. Rogers, G. N., Herrler, G., Paulson, J. C., and Klenk, H. D. (1986) J. Biol. Chem. 261, 5947–5951
8. Vlasak, R., Myslik, M., Nacht, M., and Palese, P. (1987) Virology 160, 419–425
9. Cheresh, D. A., Varki, A., Varki, N. M., Stallcup, W. B., Levine, J., and Reifeld, R. A. (1984) J. Biol. Chem. 259, 7453–7458
10. Sjoberg, E. R., Powell, L. D., Klein, A., and Varki, A. (1994) J. Cell Biol. 126, 549–562
11. Varki, A., and Kornfeld, S. (1980) J. Exp. Med. 152, 532–544
12. Shi, W.-X., Chammas, R., Varki, N. M., Powell, L., and Varki, A. H. (1996) J. Biol. Chem. 271, 31526–31532
13. Cheresh, D. A., Reifeld, R. A., and Varki, A. (1984) Science 225, 844–846
14. Thorun, J., Herlyn, M., Hindsgaul, O., Stromberg, N., Karlsson, K.-A., Elder, D., Stoppelwies, Z., and Koprowski, H. (1985) J. Biol. Chem. 260, 14555–14563
15. Manzi, A. E., Sjoberg, E. R., Diaz, S., and Varki, A. (1990) J. Biol. Chem. 265, 13091–13103
16. Butor, C., Diaz, S., and Varki, A. (1995) J. Biol. Chem. 269, 10197–10206
17. Kamelring, J. P., Makovitsky, J., Schauer, R., Vliegenthart, J. F. G., and Wember, M. (1982) Biochim. Biophys. Acta 714, 351–355
18. Kniep, B., Peter-Katalinic, J., Flegel, W., Northoff, H., and Rieber, P. E. (1992) Biochem. Biophys. Res. Commun. 187, 1334–1349
19. Kniep, B., Flegel, W. A., Northoff, H., and Rieber, E. P. (1993) Blood 82, 1756–1766
20. Zimmer, G., Suguri, T., Reuter, G., Yu, R. K., Schauer, R., and Herrler, G. (1994) Glycobiology 4, 343–350
21. Kneip, B., Claas, C., Peter-Katalinic, J., Monner, D. A., Dippold, W., and Nintz, M. (1995) J. Biol. Chem. 270, 30173–30180
22. Sen, G., Chowdhury, M., and Mandal, C. (1994) Mol. Cell. Biochem. 136, 65–70
23. Marks, P. A., and Rifkind, R. A. (1978) Annu. Rev. Biochem. 47, 419–448
24. Delci, E. D., and Palade, G. E. (1989) J. Cell Biol. 108, 191–197
25. Misawa, Y., and Shibuya, M. (1992) Oncogene 7, 919–926
26. Okayama, O., Oguri, K., Yoshida, K., and Ohkita, T. (1991) J. Biol. Chem. 266, 3608–3615
27. Sarris, A. H., and Palade, G. E. (1979) J. Biol. Chem. 254, 6724–6731
28. Buter, G., Vliegenthart, J. F. G., Wember, M., Schauer, R., and Howard, R. J. (1986) Biochem. Biophys. Res. Commun. 145, 567–572
29. Diaz, S., and Varki, A. (1985) Anal. Biochem. 156, 32–46
30. Fraser, I. P., and Gordon, S. (1984) Eur. J. Cell Biol. 44, 217–221
31. Kelm, S., Schauer, R., Manuguerra, J.-C., Gross, H.-J., and Crocker, P. R. (1984) Glycoconj. J. 11, 576–585
32. Levine, J., Beasley, L., and Stallcup, W. B. (1984) J. Neurosci. 4, 820–831
33. Constantine-Paton, M., Blum, A. S., Mendez Otero, R., and Barnstable, C. J. (1986) Nature 324, 459–462
34. Blum, A. S., and Barnstable, C. J. (1988) Proc. Natl. Acad. Sci. U. S. A. 84, 8716–8720
35. Drazba, J., Pierce, M., and Lemmon, V. (1991) Deo. Biol. 145, 154–163
36. Paffenhofer, E., and Varki, A. (1987) Science 236, 1293–1295
37. Zimmer, G., Reuter, G., and Schauer, R. (1992) Eur. J. Biochem. 210, 209–215
38. Klein, A., Krishna, M., Varki, N. M., and Varki, A. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 7762–7766
39. Wallick, S. C., Kabat, E. A., and Morrison, S. L. (1988) J. Exp. Med. 168, 1099–1109
40. Ulmer, J. B., and Palade, G. E. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 6992–6996
41. Sjoberg, E. R., Chammas, R., Ozawa, H., Kawashima, I., Xiao, K.-H., Mansfield, H. R., Dill, A., Tai, T., and Varki, A. (1985) J. Biol. Chem. 260, 2921–2930
42. Norgard, K. E., Moore, K. L., Diaz, S., Stults, N. L., Shishitaya, M., McEvoy, R.,
P., Cummings, R. D., and Varki, A. (1993) J. Biol. Chem. 268, 12764–12774
43. Mellors, A., and Lo, R. Y. C. (1995) Methods Enzymol. 248, 728–740
44. Morrison, S. J., Uchida, N., and Weissman, I. L. (1995) Annu. Rev. Cell Biol. 11, 35–71
45. Lloyd, K. O., Gordon, C. M., Thampoe, I. J., and DiBenedetto, C. (1992) Cancer Res. 52, 4948–4953
46. Kreis, T. E. (1990) Cell Motil. Cytoskeleton 15, 67–70
47. Touze, J., and Hollinshead, M. (1991) J. Cell Biol. 115, 635–653
48. Takeuchi, Y., Yanagisaka, M., and Haseall, V. C. (1992) J. Biol. Chem. 267, 14685–14690
49. Goltz, J. S., Wolkoff, A. W., Novikoff, P. M., Stockert, R. J., and Satir, P. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 7026–7030
50. Jin, M., and Snider, M. D. (1993) J. Biol. Chem. 268, 18380–18387
51. Elkjær, M. L., Birn, H., Agre, P., Christensen, E. I., and Nielsen, S. (1995) Eur. J. Cell Biol. 67, 57–72
52. Guimarães, M. J., Bazan, J. F., Castagnola, J., Diaz, S., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Varki, A., and Zlotnik, A. (1996) J. Biol. Chem. 271, 13697–13705