CRITICAL VALUES AND LEVEL SETS OF DISTANCE FUNCTIONS IN RIEMANNIAN, ALEXANDROV AND MINKOWSKI SPACES

JAN RATAJ AND LUDĚK ZAJÍČEK

Abstract. Let $F \subset \mathbb{R}^n$ be a closed set and $n = 2$ or $n = 3$. S. Ferry (1975) proved that then, for almost all $r > 0$, the level set (distance sphere, r-boundary) $S_r(F) := \{x \in \mathbb{R}^n : \text{dist}(x, F) = r\}$ is a topological $(n-1)$-dimensional manifold. This result was improved by J.H.G. Fu (1985). We show that Ferry’s result is an easy consequence of the only fact that the distance function $d(x) = \text{dist}(x, F)$ is locally DC and has no stationary point in $\mathbb{R}^n \setminus F$. Using this observation, we show that Ferry’s (and even Fu’s) result extends to sufficiently smooth normed linear spaces X with $\dim X \in \{2, 3\}$ (e.g., to ℓ^p_n, $n = 2, 3$, $p \geq 2$), which improves and generalizes a result of R. Gariepy and W.D. Pepe (1972). By the same method we also generalize Fu’s result to Riemannian manifolds and improve a result of K. Shiohama and M. Tanaka (1996) on distance spheres in Alexandrov spaces.

1. Introduction

Let X be a metric space and $F \subset X$ a closed set. We will study level sets of the distance function $S_r(F) := \{x \in \mathbb{R}^n : \text{dist}(x, F) = r\}$, $r > 0$. We will call these sets (following [31]) distance spheres; they are sometimes called also r-boundaries of F (see [10]). There is a number of articles that investigate properties of distance spheres. R. Gariepy and W.D. Pepe [14] studied distance spheres in a Minkowski space (= finite dimensional Banach space) X. S. Ferry [10] proved that if $X = \mathbb{R}^2$ or $X = \mathbb{R}^3$, then, for almost all $r > 0$, the distance sphere (r-boundary) $S_r(F)$ is a topological $(n-1)$-dimensional manifold. This result was improved by J.H.G. Fu [11], who proved that these topological manifolds are very nice: they are semiconcave surfaces. Moreover, he proved that, for $n = 2$, the above property of $S_r(F)$ is valid for all $r > 0$ except a relatively closed set $N \subset (0, \infty)$ with $\mathcal{H}^{1/2}(N) = 0$.

1991 Mathematics Subject Classification. 26B25, 52A21, 53C23.

Key words and phrases. distance function, critical point, distance sphere, finite dimensional Banach space, Minkowski space, Riemannian manifold, Alexandrov space, DC manifold, positive reach.

The research was supported by the grant MSM 0021620839 from the Czech Ministry of Education. The second author was also supported by the grant GAČR 201/09/0067.
We observe that Ferry’s result is an easy consequence (see Theorem 3.4) of the only fact that the distance function \(d(x) = \text{dist}(x, F) \) is locally DC (i.e., a difference of two convex functions) and has no stationary point in \(\mathbb{R}^n \setminus F \). Using this observation, we show that Ferry’s (and even Fu’s) result extends to sufficiently smooth normed linear spaces \(X \) with \(\dim X \in \{2, 3\} \) (e.g., to \(\ell^p_n, n = 2, 3, \ p \geq 2 \)), which improves and generalizes a result of R. Gariepy and W.D. Pepe [14].

If \(X \) is a Riemannian manifold, then it is well-known (see [13, p. 34] or [22]) that \(d(x) = \text{dist}(x, F) \) is locally semiconcave (and therefore also locally DC) in arbitrary local coordinates. So, we can apply Theorem 3.4 and obtain Ferry’s (and even Fu’s) results.

K. Shiohama and M. Tanaka [31] studied distance spheres of compact subsets \(F \) of a connected two-dimensional complete Alexandrov space without boundary \(X \). They proved that then, for almost all \(r > 0 \), the distance sphere \(S_r(F) \) is rectifiable and consists of a disjoint union of finitely many simply closed curves. Using our method and Perelman’s DC structure on Alexandrov spaces, we obtain a result, which improves that of [31]. Namely, we show that \(S_r(F) \) is a one-dimensional Lipschitz manifold for all \(r > 0 \) except a closed set \(N \subset [0, \infty) \) with \(\mathcal{H}^{1/2}(N) = 0 \).

If \(X \) is a three-dimensional complete Alexandrov space (possibly with boundary points), then our method gives only that, for almost every \(r > 0 \), the set \(S_r(F) \cap X^* \) is a two-dimensional Lipschitz manifold, where \(X^* \) is the set of all “Perelman regular” points (note that \(X^* \) is an open dense convex subset of \(X \), cf. Section 6). Consequently, if \(\mathcal{H}^1(X \setminus X^*) = 0 \), then Ferry’s result extends to \(X \).

In all types of spaces considered above, we obtain also weaker results on distance spheres in \(n \)-dimensional spaces with arbitrary \(n \). Namely, we prove that, except a countable set of radii \(r \), there exists an \((n-1)\)-dimensional Lipschitz manifold \(A_r \subset S_r(F) \) such that \(A_r \) is open and dense in \(S_r(F) \) and \(\mathcal{H}^{n-1}(S_r(F) \setminus A_r) = 0 \). (For the density of \(A_r \) in \(S_r(F) \) in Alexandrov spaces we need that \(X = X^* \).)

2. Preliminaries

The symbol \(B(x, r) \) will denote the open ball with center \(x \) and radius \(r \).

Definition 2.1. Let \(X \) be a metric space. Given a nonempty subset \(A \subset X \) and \(p \in A \), the reach of \(A \) at \(p \), \(\text{reach}(A, p) \), is defined as the supremum of all \(\varepsilon > 0 \) such that any point \(q \in X \) with \(\text{dist}(p, q) < \varepsilon \) has its unique nearest point in \(A \). We set \(\text{reach} A := \inf_{p \in A} \text{reach}(A, p) \) and say that \(A \) has positive reach if \(\text{reach} A > 0 \). The set \(A \) is said to have locally positive reach if \(\text{reach}(A, p) > 0 \) for all \(p \in A \).
Remark 2.2. Sets with positive reach were introduced by Federer [9] in the Euclidean space and by Kleinjohann [17] in Riemannian manifolds. Note that if \(A \) is compact then \(\text{reach} \ A > 0 \) whenever \(A \) has locally positive reach. It follows from the obvious fact that \(\text{reach} \ (A, p) \) depends continuously on \(p \in A \).

Definition 2.3. (cf. [12], p. 622) We say that a metric space \(X \) is an \(m \)-dimensional Lipschitz manifold if for every \(a \in X \) there exists an open neighbourhood \(U \) of \(a \) and a bilipschitz homeomorphism \(\varphi \) of \(U \) onto an open subset of \(\mathbb{R}^m \).

Let \(X \) be a normed linear space and let \(f \) be a real function defined on an open set \(G \subset X \).

The directional derivative and the one-sided directional derivative of \(f \) at \(a \in G \) in the direction \(v \in X \) are defined by

\[
\begin{align*}
\frac{d^f(a,v)}{t} & := \lim_{t \to 0} \frac{f(a + tv) - f(a)}{t} \quad \text{and} \quad \frac{d^+f(a,v)}{t} := \lim_{t \to 0^+} \frac{f(a + tv) - f(a)}{t}.
\end{align*}
\]

Now suppose that \(f \) is locally Lipschitz on \(G \). Then

\[
\frac{d_0^f(a,v)}{t} := \limsup_{z \to a, t \to 0^+} \frac{f(z + tv) - f(z)}{t}
\]

is the Clarke derivative of \(f \) at \(a \in G \) in the direction \(v \in X \) and

\[
\partial^C f(a) := \{ x^* \in X^* : \langle x^*, v \rangle \leq f_0^0(a,v) \text{ for all } v \in X \}
\]

is the Clarke subdifferential of \(f \) at \(a \). We shall use the following terminology (see [11]).

Definition 2.4. Let \(f \) be a locally Lipschitz function on an open subset \(G \) of a normed linear space. Then we say that \(a \) is a regular point of \(f \) if \(0 \notin \partial^C f(a) \). If \(0 \in \partial^C f(a) \), we say that \(a \) is a critical point of \(f \). The set of all critical points of \(f \) will be denoted by \(\text{Crit}(f) \). By the set of critical values of \(f \) we mean the set \(\text{cv}(f) := f(\text{Crit}(f)) \).

We will need the following easy lemma. Because of a lack of a reference we supply the obvious proof.

Lemma 2.5. Let \(f \) be a locally Lipschitz function on an open set \(G \subset \mathbb{R}^n \) and \(a \in G \). Then the following conditions are equivalent.

(i) \(a \notin \text{Crit}(f) \).

(ii) There exist \(\delta > 0 \), \(\varepsilon > 0 \), and \(v \in \mathbb{R}^n \) such that

\[
\frac{f(x + tv) - d(x)}{t} < -\varepsilon, \quad \text{whenever} \quad t > 0, x \in U_\delta(a), x + tv \in U_\delta(a).
\]

Proof. The condition (i) (i.e., \(0 \notin \partial^C f(a) \)) holds if and only if there exists \(v \in \mathbb{R}^n \) such that \(f_0^0(a,v) = \limsup_{z \to a, t \to 0^+} \frac{f(z + tv) - f(z)}{t} < 0 \). It is easy to see that the last condition is equivalent to (ii). \(\square \)
Lemma 2.5 immediately implies the well-known fact that
(1) \(\text{Crit}(f) \) is closed in \(G \).

If \(f \) is a real function on a normed linear space \(X \), then the symbol \(f'(a) \) stands for the (Fréchet) derivative of \(f \) at \(a \in X \). If \(f'(a) \) exists and
\[
\lim_{x,y \to a, x \neq y} \frac{f(y) - f(x) - f'(a)(y - x)}{\|y - x\|} = 0,
\]
then we say that \(f \) is strictly differentiable at \(a \) (cf. [21, p. 19]).

Lemma 2.5 easily implies the well-known fact (see, e.g., [7, Proposition 2.2.4], where a weaker notion of strict differentiability is used) that
(2) If \(f'(a) \neq 0 \) and \(f \) is strictly differentiable at \(a \), then \(a \notin \text{Crit}(f) \).

Definition 2.6. Let \(C \) be a nonempty convex set in a real normed linear space \(X \). A function \(f : C \to \mathbb{R} \) is called DC (or d.c., or “delta-convex”) if it can be represented as a difference of two continuous convex functions on \(C \).

If \(Y \) is a finite-dimensional normed linear space, then a mapping \(F : C \to Y \) is called DC, if \(y^* \circ F \) is a DC function on \(C \) for each linear functional \(y^* \in Y^* \).

Remark 2.7.
(i) To prove that \(F \) is DC, it is clearly sufficient to show that \(y^* \circ F \) is DC for each \(y^* \) from a basis of \(Y^* \).

(ii) Each DC mapping is clearly locally Lipschitz.

We will need the following properties of DC functions and mappings.

Lemma 2.8. Let \(X, Y, Z \) be finite-dimensional normed linear spaces, let \(C \subset X \) be a nonempty convex set, and \(U \subset X \) and \(V \subset Y \) open sets.

(a) If the derivative of a function \(f \) on \(C \) is Lipschitz, then \(f \) is DC. In particular, each affine mapping is DC.

(b) Let a mapping \(F : U \to Y \) be locally DC, \(F(U) \subset V \), and let \(G : V \to Z \) be locally DC. Then \(G \circ F \) is locally DC on \(U \).

(c) If mappings \(F : U \to Y \) and \(G : U \to Y \) are locally DC, then \(F + G \) is also locally DC.

(d) Let \(n \in \{1, 2\} \), \(\dim X = n \), and let \(f \) be a locally DC function on \(U \). Let \(S := \{x \in U : f'(x) = 0\} \) be the set of all stationary points of \(f \). Then \(\mathcal{H}^{n/2}(f(S)) = 0 \).

The proofs of (a)–(c) can be found in [32]. Let us note that (a) was at first proved in [1], and (b) in [16].

The Morse-Sard theorem (d) was for \(n = 2 \) published by Landis [19] with a sketch of the proof. A detailed proof based on the modern theory of BV functions can be found in [24, Corollary 4.5]. The easier case \(n = 1 \) is proved in [23].

An important subclass of the class of DC functions is formed by semiconcave functions (cf. [6]).
Definition 2.9. Let H be a unitary space. A real function u on an open convex set $C \subset H$ is called \textit{semiconcave} (with a semiconcavity constant c) if the function
$$ g(x) := u(x) - \left(\frac{c}{2}\right)\|x\|^2 $$

is concave on C.

A function u on an open set $G \subset H$ is called \textit{locally semiconcave} if, for each $x \in G$, there exists $\delta > 0$ such that u is semiconcave on $B(x, \delta)$. A function g on G is called \textit{locally semiconvex} if $-g$ is locally semiconcave.

Remark 2.10. (i) g is locally semiconvex on G if and only if, for each $x \in G$, there exists $\delta > 0$ and a C^∞ smooth function s on $B(x, \delta)$ such that the function $g + s$ is convex on $B(x, \delta)$. It follows, e.g., from [6, Proposition 1.1.3] applied to $u := -g$.

(ii) If g is locally semiconvex on G, $a \in G$ and $v \in H$, then $g^0(a, v) = g_+(a, v)$. It follows, e.g., from [6, Theorem 3.2.1] applied to $u := -g$.

Definition 2.11. Let H be an n-dimensional unitary space and $1 \leq k < n$.

(i) We say that a set $\emptyset \neq M \subset H$ is a \textit{k-dimensional Lipschitz surface} (resp. a \textit{k-dimensional DC surface}) in H, if for each $x \in M$ there exists a k-dimensional linear space $Q \subset H$, an open neighbourhood W of x, a set $G \subset Q$ open in Q and a Lipschitz (resp. locally DC) mapping $h : G \to Q^\perp$ such that
$$ M \cap W = \{u + h(u) : u \in G\}. $$

(ii) We say that a set $\emptyset \neq M \subset H$ is an \textit{$(n-1)$-dimensional semiconcave surface} in H, if for each $x \in M$ there exists an $(n-1)$-dimensional linear space $Q \subset H$, an open neighbourhood W of x, a set $G \subset Q$ open in Q, a vector $0 \neq v \in Q^\perp$, and a locally semiconcave function $s : G \to \mathbb{R}$ such that
$$ M \cap W = \{u + s(u)v : u \in G\}. $$

By a 0-dimensional Lipschitz (resp. DC, resp. semiconcave) surface we mean a singleton.

Remark 2.12. Obviously, each k-dimensional DC surface in H is a k-dimensional Lipschitz surface in H, and each $(n-1)$-dimensional semiconcave surface in H is an $(n-1)$-dimensional DC surface in H.

Using the preceding definition, we can formulate some versions of known implicit function theorems for Lipschitz, DC and semiconcave functions in a concise form.

Proposition 2.13. Let f be a locally Lipschitz function on an open set $G \subset \mathbb{R}^n$, and let $a \in G \setminus \text{Crit}(f)$. Denote $M := \{x \in G : f(x) = f(a)\}$. Then there exists $\delta > 0$ such that:
(i) $M \cap B(a, \delta)$ is an $(n-1)$-dimensional Lipschitz surface in \mathbb{R}^n.

(ii) If f is locally DC, then $M \cap B(a, \delta)$ is an $(n-1)$-dimensional DC surface in \mathbb{R}^n.

(iii) If f is locally semiconcave, then $M \cap B(a, \delta)$ is an $(n-1)$-dimensional semiconcave surface in \mathbb{R}^n. Moreover, $\text{reach}(\{x \in G : f(x) \geq f(a)\}, a) > 0$.

Proof. The statement (i) is an obvious reformulation of [11, Theorem 3.1], which is an easy consequence of Clarke’s implicit function theorem.

We will show that the statement (ii) is an easy consequence of [32, Proposition 5.9]. To this end, choose $\delta > 0$, $\varepsilon > 0$ and $v \in \mathbb{R}^n$ as in Lemma 2.5(ii).

Let Y be the linear span of $\{v\}$ and $X := Y^\perp$. Identifying by the standard way \mathbb{R}^n with $X \times Y$ and, by linear isometries, X with \mathbb{R}^{n-1} and Y with \mathbb{R}, we can apply [32, Proposition 5.9] (with $G := f$) and obtain the assertion of (ii). Indeed, the fact that $\partial_2^2 f(a)$ contains surjective linear mappings $\mathbb{R} \to \mathbb{R}$ only is an easy consequence of the choice of v (see Lemma 2.5(ii)). Note also that Lemma 2.5(ii) immediately implies the local validity of the inequality $\|G(x, y) - G(x, \mathbf{0})\| \geq c\|y - \mathbf{0}\|$ (with $c := \varepsilon$) which is claimed without a proof in the proof of [32, Proposition 5.9].

The first part of the assertion (iii) follows immediately from [11, Theorem 3.3]. The second part follows easily from the proof of [11, Corollary 3.4] or from [3, Theorem].

Lemma 2.14. Let X, Y be finite-dimensional unitary spaces with $\dim X = n > 0$ and $\dim Y = m > 0$. Let $G \subset X$ be an open set, and $f : G \to Y$ a locally DC mapping. Then there exists a sequence (T_i) of $(n-1)$-dimensional DC surfaces in X such that f is strictly differentiable at each point of $G \setminus \bigcup_{i=1}^\infty T_i$.

Proof. We can suppose that $X = \mathbb{R}^n$ and $Y = \mathbb{R}^m$. First suppose $n > 1$. Using separability of X, we can clearly suppose that G is convex and f is DC on G. Let $f = (\alpha_1 - \beta_1, \ldots, \alpha_m - \beta_m)$, where all α_j and β_j are convex functions. By [33], for each j we can find a sequence $T^j_k, k \in \mathbb{N}$, of $(n-1)$-dimensional DC surfaces in G such that both α_j and β_j are differentiable at each point of $D_j := G \setminus \bigcup_{k=1}^\infty T^j_k$. Since each convex function is strictly differentiable at each point at which it is (Fréchet) differentiable (see, e.g., [32, Proposition 3.8] for a proof of this well-known fact), we conclude that each $f_j := \alpha_j - \beta_j$ is strictly differentiable at each point of D_j. Since strict differentiability of f clearly follows from strict differentiability of all f_j's, the proof is finished after ordering all the sets $T^j_k, k \in \mathbb{N}, j = 1, \ldots, m$, to a sequence (T_i).

If $n = 1$, we proceed quite similarly, using the well-known fact that a convex function on an open interval is differentiable except a countable set.
3. Critical values and level sets of DC functions

Lemma 3.1. Let \(f, g \) be convex functions on an open convex set \(C \subset \mathbb{R}^n \), and let \(d := f - g \). Assume that the directional derivatives \(f'(x, v), g'(x, v) \) exist for some \(x \in C \) and \(v \in \mathbb{R}^n \), and that \(f'(x, v) \neq g'(x, v) \). Then \(x \notin \text{Crit}(d) \).

Proof. We can suppose that \(f'(x, v) < g'(x, v) \) (otherwise consider \(-v \) instead of \(v \)). Since \(f \) is convex, we have (cf. Remark 2.10(ii))

\[
f'(x, v) = f^0(x, v) = \limsup_{y \rightarrow x, t \rightarrow 0^+} \frac{f(y + tv) - f(y)}{t}
\]

and

\[
-f'(x, v) = f'(x, -v) = f^0(x, -v) = \limsup_{y \rightarrow x, t \rightarrow 0^+} \frac{f(y - tv) - f(y)}{t}
\]

\[
= - \liminf_{y \rightarrow x, t \rightarrow 0^+} \frac{f(y) - f(y - tv)}{t} = - \liminf_{z \rightarrow x, t \rightarrow 0^+} \frac{f(z + tv) - f(z)}{t}.
\]

Consequently

\[
f'(x, v) = \lim_{y \rightarrow x, t \rightarrow 0^+} \frac{f(y + tv) - f(y)}{t}.
\]

Using this also for the convex function \(g \), we obtain

\[
\lim_{y \rightarrow x, t \rightarrow 0^+} \frac{d(y + tv) - d(y)}{t} = f'(x, v) - g'(x, v) < 0.
\]

Thus there exist \(\varepsilon > 0 \) and \(\delta > 0 \) as in (ii) of Lemma 2.5 \(\square \)

Lemma 3.2. Let \(X \) be an \(n \)-dimensional unitary space and let \(k \in \{1, 2\} \) with \(k < n \). Let \(C \subset X \) be an open convex set, and let \(d \) be a DC function on \(C \). Let \(P \subset X \) be a \(k \)-dimensional DC surface. Then

\[
\mathcal{H}^{k/2}(d(P \cap \text{Crit}(d))) = 0.
\]

Proof. Let \(d = f - g \), where \(f, g \) are convex functions on \(C \).

(i) First suppose \(k = 1 \). Using separability of \(X \), we can clearly suppose that \(P = \{t + h(t) : t \in G\} \), where \(G \) is a relatively open subset of a one-dimensional linear space \(V \subset X \), and \(h : G \rightarrow V^\perp \) is a locally DC mapping. Set \(\varphi(t) := t + h(t), t \in G \). Then \(\varphi \) is locally DC on \(G \) (Lemma 2.8(a),(c)), and so also \(f \circ \varphi, g \circ \varphi \) and \(d \circ \varphi \) are locally DC on \(G \) (Lemma 2.8(b)). So, by Lemma 2.14 there exists a countable set (countable union of 0-dimensional DC surfaces) \(A \subset G \) such that \(\varphi'(t), (f \circ \varphi)'(t) \) and \((g \circ \varphi)'(t) \) exist for each \(t \notin A \). Set \(B := \{x \in G \setminus A : (f \circ \varphi)'(t) = (g \circ \varphi)'(t)\} \). For each \(t \in B \), we have \((d \circ \varphi)'(t) = 0 \), and consequently \(\mathcal{H}^{1/2}(d \circ \varphi(B)) = 0 \) by Lemma 2.8(d). Set

\[
N := (d \circ \varphi)(A) \cup (d \circ \varphi)(B) = d(\varphi(A) \cup \varphi(B)).
\]
Since clearly $\mathcal{H}^{1/2}(N) = 0$, it is sufficient to prove
\[P \cap \text{Crit}(d) \subset \varphi(A) \cup \varphi(B). \]
To this end, suppose that $x \in P \setminus (\varphi(A) \cup \varphi(B))$. Then $x = \varphi(t)$ for some $t \in G \setminus (A \cup B)$. So, $\varphi'(t)$ exists and $(f \circ \varphi)'(t) \neq (g \circ \varphi)'(t)$. So we can choose $u \in V$ such that $(f \circ \varphi)'(t, u) \neq (g \circ \varphi)'(t, u)$. Set $v := \varphi'(t)(u)$. Since $f_+(x, v), f'_+(x, -v)$ exist and f is locally Lipschitz, we conclude (see, e.g. Proposition 3.6(i)) that $f'_+(x, v) = (f \circ \varphi)'(t, u)$ and similarly
\[f'_+(x, -v) = (f \circ \varphi)'(t, -u) = -(f \circ \varphi)'(t, u) = -f'_+(x, v). \]
Consequently $f'(x, v)$ exists. Similarly we obtain that $g'(x, v)$ exists. Thus $f'(x, v) = (f \circ \varphi)'(t, u) \neq (g \circ \varphi)'(t, u) = g'(x, v)$, and consequently $x \notin \text{Crit}(d)$ by Lemma 3.1. So (3) holds.

(ii) Let now $k = 2$. Using separability of X, we can clearly suppose that $P = \{t + h(t) : t \in G\}$, where G is a relatively open subset of a two-dimensional linear space $V \subset X$, and $h : G \to V^\perp$ is a locally DC mapping. Set $\varphi(t) := t + h(t), t \in G$. Then φ is locally DC on G, and so also $f \circ \varphi, g \circ \varphi$ and $d \circ \varphi$ are locally DC on G. So, by Lemma 2.14 there exists a sequence $(P_i)_{i=1}^\infty$ of one-dimensional DC surfaces in V such that $\varphi'(t), (f \circ \varphi)'(t)$ and $(g \circ \varphi)'(t)$ exist for each $t \in G \setminus A$, where $A := \bigcup_{i=1}^\infty P_i$. Using separability of V, we can suppose that each P_i is of the form $P_i = \{s + g_i(s) : s \in H_i\}$, where H_i is a relatively open subset of a one-dimensional linear space $W_i \subset V$ and $g_i : H_i \to (W_i^\perp \cap V)$ is a locally DC mapping. Put $Q_i := \varphi(P_i) = \{s + g_i(s) + h(s + g_i(s)) : s \in H_i\}$. Since $\psi(s) := g_i(s) + h(s + g_i(s)), s \in H_i$, is a locally DC mapping $\psi : H_i \to W_i^\perp$ (Lemma 2.3(b),(c)), we obtain that each Q_i is a one-dimensional DC surface in X.

Set $N_i := d (\bigcup_{i=1}^\infty Q_i \cap \text{Crit}(d))$. By part (i) of the proof, $\mathcal{H}^{1/2}(N_i) = 0$. Set $B := \{t \in G \setminus \bigcup_{i=1}^\infty P_i : (f \circ \varphi)'(t) = (g \circ \varphi)'(t)\}$. For each $t \in B$, we have $(d \circ \varphi)'(t) = 0$, and consequently $\mathcal{H}^1(d \circ \varphi(B)) = 0$ by the Morse-Sard theorem for DC functions (Lemma 2.8(d)) on \mathbb{R}^2. Set
\[N := N_1 \cup (d \circ \varphi)(B) = d ((\varphi(A) \cap \text{Crit}(d)) \cup \varphi(B)). \]
Since clearly $\mathcal{H}^1(N) = 0$, it is sufficient to prove
\[P \cap \text{Crit}(d) \subset \varphi(A) \cup \varphi(B). \]
The proof of (4) can be done literally as the proof of (3). \hfill \Box

Proposition 3.3. Let $n \in \{2, 3\}$ and let d be a locally DC function on an open set $G \subset \mathbb{R}^n$. Suppose that d has no stationary point. Let $\text{cv}(d) = d(\text{Crit}(d))$ be the set of critical values of d. Then $\mathcal{H}^{(n-1)/2}(\text{cv}(d)) = 0$.

Proof. We can and will assume that G is convex. By Lemma 2.14 there exists a sequence $(P_i)_{i=1}^\infty$ of $(n-1)$-dimensional DC surfaces in \mathbb{R}^n such that d is strictly differentiable (and $d'(x) \neq 0$ by the assumptions) at each $x \in G \setminus \bigcup_{i=1}^\infty P_i$.
So, using (2), we obtain \(\text{Crit}(d) \subset \bigcup_{i=1}^{\infty} P_i \). Applying Lemma 3.2 for each \(i \in \mathbb{N} \), we obtain that \(\mathcal{H}^{(n-1)/2}(\text{Crit}(d) \cap P_i) = 0 \) for each \(i \), and therefore \(\mathcal{H}^{(n-1)/2}(\text{cv}(d)) = 0 \).

Theorem 3.4. Let \(n \in \{2,3\} \) and let \(d \) be a locally DC function on an open set \(G \subset \mathbb{R}^n \). Suppose that \(d \) has no stationary point. Then there exists a set \(N \subset \mathbb{R} \) with \(\mathcal{H}^{(n-1)/2}(N) = 0 \) such that, for every \(r \in d(G) \setminus N \), the set \(d^{-1}(r) \) is an \((n-1)\)-dimensional DC surface. If \(d \) is even locally semiconcave, we can also assert that \(d^{-1}(r) \) is an \((n-1)\)-dimensional semiconcave surface and the set \(\{ x \in G : d(x) \geq r \} \) has locally positive reach.

Moreover, \(N \) can be chosen so that \(N = d(C) \), where \(C \) is a closed set in \(G \). Namely, we can put \(N := \text{cv}(d) = d(\text{Crit}(d)) \).

Proof. Set \(C := \text{Crit}(d) \) and \(N := d(C) \). Then \(C \) is closed in \(G \) by \((\text{i}) \). Proposition 3.3 yields \(\mathcal{H}^{(n-1)/2}(N) = 0 \). Let \(r \in d(G) \setminus N \). Applying Proposition 2.13 (with \(f := d \)) to each point \(a \in d^{-1}(r) \), we easily obtain that the sets \(d^{-1}(r) \) and \(\{ x \in G : d(x) \geq r \} \) have the desired properties.

The following weaker result holds for all dimensions \(n \).

Theorem 3.5. Let \(d \) be a locally DC (resp. locally semiconcave) function on an open set \(G \subset \mathbb{R}^n \) and assume that \(d \) has no stationary point. Then, for all \(r \in d(G) \), except a countable set, the set \(A_r := d^{-1}(r) \setminus \text{Crit}(d) \) is an \((n-1)\)-dimensional DC surface (resp. semiconcave surface) which is open and dense in \(d^{-1}(r) \) and \(\mathcal{H}^{n-1}(d^{-1}(r) \setminus A_r) = 0 \).

Proof. If \(r \in \mathbb{R} \) and \(A_r := d^{-1}(r) \setminus \text{Crit}(d) \) is nonempty, then it is an \((n-1)\)-dimensional DC surface (resp. semiconcave surface) by Proposition 2.13. Set

\[
N_1 := \{ r \in \mathbb{R} : \mathcal{H}^{n-1}(d^{-1}(r) \cap \text{Crit}(d)) > 0 \},
\]

\[
N_2 := \{ r \in \mathbb{R} : d \text{ has a local extreme at a point of } d^{-1}(r) \}
\]

and \(N := N_1 \cup N_2 \). By Lemma 2.14 and (2), \(\text{Crit}(d) \) can be covered by countably many \((n-1)\)-dimensional DC surfaces and therefore \(\mathcal{H}^{n-1} \) is \(\sigma \)-finite on \(\text{Crit}(d) \). Thus \(N_1 \) is countable. It is well-known (and easy to prove) that the set of (possibly non-strict) extremal values of a real function on a separable metric space \(Y \) is countable. (The proof for \(Y = \mathbb{R} \) [28, p. 43] easily generalizes to general \(Y \).) Thus \(N_2 \), and so also \(N \), is countable. Note that \(A_r \) is open in \(d^{-1}(r) \) by \((\text{i}) \). To conclude the proof, it is sufficient to prove that \(A_r = d^{-1}(r) \setminus \text{Crit}(f) \) is dense in \(d^{-1}(r) \) for each \(r \in (0, \infty) \setminus N \).

To this end, suppose on the contrary that there exist \(r \in \mathbb{R} \setminus N \) and a point \(a \in d^{-1}(r) \setminus A_r \). Choose a convex open neighborhood \(U \subset G \) of \(a \) such that \(U \cap A_r = \emptyset \). Since \(r \notin N_2 \), we can choose points \(b, c \in U \) such that \(d(b) > r \) and \(d(c) < r \). Set \(W := (c-b)^\perp \) and \(B_\delta := \{ w \in W : ||w|| < \delta \} \).

Choose \(\delta > 0 \) so small that \(d(x) > r \) for each \(x \in b + B_\delta \) and \(d(y) < r \) for
Remark 4.1. Fu did not consider distance spheres is not essential, since the set \(\{ b + w : t \in [0, 1] \} \) with \(d(z_w) = r \). Denote \(Z := \{ z_w : w \in B_\delta \} \). Since the mapping \(z_w \mapsto w \) is Lipschitz with constant 1 on \(Z \) and \(H^{n-1}(B_\delta) > 0 \), we obtain \(H^{n-1}(U \cap d^{-1}(r)) \geq H^{n-1}(Z) > 0 \). Since \(U \cap d^{-1}(r) \subset \text{Crit}(d) \), we obtain a contradiction with \(r \notin N_1 \). \(\square \)

4. MINKOWSKI SPACES

Let \(X \) be a Minkowski space (= finite dimensional Banach space). R. Gariepy and W.D. Pepe [14] proved the following results.

(GP1) If \(\dim X = n \), the norm of \(X \) is strictly convex or differentiable and \(F \subset X \) is a closed set, then, for almost every \(r > 0 \), the distance sphere \(S_r(F) \) is either empty, or there there exists an \((n-1) \)-dimensional Lipschitz manifold \(A_r \subset S_r(F) \) such that \(A_r \) is open in \(S_r(F) \) and \(H^{n-1}(S_r(F) \setminus A_r) = 0 \).

(GP2) If \(\dim X = 2 \), the norm of \(X \) is twice differentiable with bounded second derivative on the unit sphere and \(F \subset X \) is a closed set, then, for almost every \(r > 0 \), the distance sphere \(S_r(F) \) is either empty, or a one-dimensional Lipschitz manifold.

S. Ferry [10] proved that if \(X = \mathbb{R}^n \) with \(n \in \{2, 3\} \) then, for almost all \(r > 0 \), the distance sphere \(S_r(F) \) is either empty or a topological \((n-1) \)-dimensional manifold. He also showed that this result does not hold in \(\mathbb{R}^n \) for \(n \geq 4 \).

J.H.G. Fu [11] essentially (cf. Remark 4.1) proved the following stronger result.

(Fu) Let \(X = \mathbb{R}^n \), \(n \in \{2, 3\} \), and \(F \subset X \) be a nonempty compact set. Then there exists a compact set \(N \subset [0, \infty) \) with \(H^{(n-1)/2}(N) = 0 \) such that, for every \(r \in (0, \infty) \setminus N \), the distance sphere \(S_r(F) \) is an \((n-1) \)-dimensional semiconcave surface and \(\{ x : \text{dist}(x, F) > r \} \) has positive reach.

Remark 4.1. Fu did not consider distance spheres \(S_r(F) \) but the sets \(S^*_r(F) := \partial B_r(F) \), where \(B_r(F) := \{ x \in X : \text{dist}(x, F) \leq r \} \). However, this difference is not essential, since the set \(\{ r > 0 : S_r(F) \neq S^*_r(F) \} \) is countable (even for any \(n \in \mathbb{N} \) and any nonempty closed \(F \subset \mathbb{R}^n \)).

Fu formulated his result in a formally different way: he asserted that, for every \(r \in (0, \infty) \setminus N \), \(S^*_r(F) \) is a Lipschitz \((n-1) \)-dimensional manifold and \(X \setminus B_r \) is a set of positive reach. However, the proofs of [11] give that, for every \(r \in (0, \infty) \setminus N \), the set \(S^*_r(F) \) is an \((n-1) \)-dimensional semiconcave surface and \(S^*_r(F) = S_r(F) \).

Our first result generalizes in a sense (Fu) to sufficiently smooth normed linear spaces and generalizes and improves (GP2).
Theorem 4.2. Let $n \in \{2,3\}$ and let $(X, \| \cdot \|)$ be an n-dimensional normed linear space such that the derivative of the norm $\| \cdot \|$ is Lipschitz on the unit sphere (e.g., $X = \ell^n_2$, $p \geq 2$). Let $F \subset X$ be a nonempty closed set and denote $S_r(F) := \{ x \in X : \text{dist}_{\| \cdot \|}(x, F) = r \}$, $F_{\geq r} := \{ x \in X : \text{dist}_{\| \cdot \|}(x, F) \geq r \}$.

Then there exists a set $N \subset (0, \infty)$ with $\mathcal{H}^{(n-1)/2}(N) = 0$ such that, for every $r \in (0, \infty) \setminus N$:

(i) The distance sphere $S_r(F)$ is either empty or an $(n-1)$-dimensional Lipschitz manifold in $(X, \| \cdot \|)$.

(ii) If $\| \cdot \|_H$ is an arbitrary (equivalent) Hilbert norm on X, then $S_r(F)$ is either empty or an $(n-1)$-dimensional semiconcave surface in $(X, \| \cdot \|_H)$ and $F_{\geq r}$ has locally positive reach in $(X, \| \cdot \|_H)$.

(iii) If F is compact then N is closed in $(0, \infty)$ and $F_{\geq r}$ has positive reach in $(X, \| \cdot \|_H)$.

Proof. First observe that the norm of $X = \ell^n_2$ ($p \geq 2$) has the assumed property; see e.g. [8, proof of Corollary 1.2, p. 187]. Further observe that (ii) immediately implies (i).

To prove (ii), we will need that the distance function $g(x) := \text{dist}_{\| \cdot \|}(x, F)$ is semiconcave on $G := X \setminus F \subset (X, \| \cdot \|_H)$. It follows from the proof of [34, Theorem 5], where it is shown that, for each $x_0 \in G$, the function g is semiconcave (in $(X, \| \cdot \|_H)$) on the ball $\{ x \in X : \|x-x_0\| < g(x_0)/2 \}$ (although [34, Theorem 5] only asserts that g is locally DC). Further, no point $x_0 \in G$ is a stationary point of g. Indeed, let $y \in F$ be a point with $\|y-x_0\| = g(x_0)$. Since clearly $g(x_0 + t(y-x_0)) - g(x_0) = -t\|y-x_0\|$ if $0 < t < 1$, we see that x_0 is not a stationary point of g. Now choose an arbitrary linear isometry $L : (X, \| \cdot \|_H) \rightarrow \mathbb{R}^p$. Applying Theorem [34] to the function $d := g \circ L^{-1}$, we obtain a set $N \subset (0, \infty)$ with the desired properties.

Now suppose that F is compact. Then we will use the fact that, by Theorem [34], N can be chosen so that $N = g(C)$, where C is a closed set in G. For each $0 < a < b < \infty$, we have that $N \cap [a,b] = g(C \cap \{ x \in X : \text{dist}_{\| \cdot \|}(x, F) \in [a,b] \})$ is compact, since $\{ x \in X : \text{dist}_{\| \cdot \|}(x, F) \in [a,b] \} \subset G$ is compact and g is continuous. Therefore N is closed in $(0, \infty)$. Finally, choose $\rho > 0$ such that $\|x\|_H \leq \rho$ for each $x \in X \setminus F_{\geq r}$, and observe that

$$\text{reach } F_{\geq r} = \min \left\{ \inf_{p \in F_{\geq r}, \|p\|_H \leq \rho + 1} \text{reach } (F_{\geq r}, p), \inf_{\|p\|_H > \rho + 1} \text{reach } (F_{\geq r}, p) \right\}. $$

The first infimum is positive since reach $(F_{\geq r}, \cdot)$ is continuous and positive, and $\{ p \in F_{\geq r} : \|p\|_H \leq \rho + 1 \}$ is compact. The second infimum is clearly greater or equal to 1. Thus, reach $F_{\geq r} > 0$ and the proof of (iii) is over. \qed

Remark 4.3. The property (ii) immediately implies that, if $r \in (0, \infty) \setminus N$, then $S_r(F)$ is either empty or an $(n-1)$-dimensional DC surface in $(X, \| \cdot \|)$, if we define this notion in normed spaces in a natural way (as in [35]).
The following result considerably improves (GP1) (since the exceptional set is countable and A_r is dense in $S_r(F)$), but only in sufficiently smooth normed linear spaces. It seems to be new also in Euclidean spaces.

Theorem 4.4. Let X be an n-dimensional normed linear space ($n \geq 2$) such that the derivative of the norm is Lipschitz on the unit sphere (e.g., $X = \ell^p_n$, $p \geq 2$). Consider on $(X, \| \cdot \|)$ an arbitrary equivalent Hilbert norm $\| \cdot \|_H$. Let $F \subset X$ be a nonempty closed set. Then, for all $r > 0$, except a countable set, the distance sphere $S_r(F)$ (considered in $(X, \| \cdot \|)$) is either empty, or there exists an $(n-1)$-dimensional semiconcave surface A_r in $(X, \| \cdot \|_H)$ such that $A_r \subset S_r(F)$, A_r is open and dense in $S_r(F)$ and $H^{n-1}(S_r(F) \setminus A_r) = 0$.

Proof. It was shown in the proof of Theorem 4.2 that $g(x) := \text{dist} \| \cdot \|(x,F)$ is locally semiconcave on $G := X \setminus F \subset (X, \| \cdot \|_H)$ and has no stationary points in G. (Indeed, the proof worked for arbitrary $n \in \mathbb{N}$.) Thus it is sufficient to apply Theorem 3.5. □

Remark 4.5. Obviously, A_r is an $(n-1)$-dimensional Lipschitz manifold in $(X, \| \cdot \|)$.

5. Riemannian manifolds

Let M be a smooth, complete and connected Riemannian manifold. By dist we denote the induced inner distance on M. Let F be a nonempty closed subset of M, and denote by $d_F := \text{dist}(\cdot,F)$ the distance function from F. An F-segment is a unit speed geodesic path $\gamma : [0, a] \to M$ such that $\gamma(a) \in F$ and $a - t = d_F(\gamma(t))$, $t \in [0, a]$. Notice that if $p \in M \setminus F$ then there always exists at least one F-segment emanating from p. The following definition is commonly used in Riemannian geometry, see e.g. [26, §11.1] or [15]:

Definition 5.1. A point $p \in M \setminus F$ is a critical point of d_F if for any tangent vector $v \in T_pM$ there exists an F-segment γ emanating from p and such that the angle formed by v and $\dot{\gamma}(0)$ is not greater than $\frac{\pi}{2}$. Let $\text{Crit}(d_F)$ denote the set of all critical points of d_F in M. A point $p \in M \setminus F$ is a regular point of d_F if $p \notin \text{Crit}(d_F)$.

Remark 5.2. Other definitions of critical and regular points of distance functions on Riemannian manifolds appear in the literature (see, e.g., [13, p. 34] or [3, p. 55]); fortunately, they are all known to be equivalent. This will be shown for completeness in Lemma 5.5 and follows essentially from the following observation: For a point $p \in M \setminus F$, $p \notin \text{Crit}(d_F)$ if and only if there exists a tangent vector $v \in T_pM$ and $\varepsilon > 0$ such that

$$d_F(c_v(t)) \geq d_F(p) + \varepsilon t$$

for all sufficiently small $t > 0$, where c_v is the geodesic curve defined on a neighbourhood of 0 such that $c_v(0) = p$ and $\dot{c}_v(0) = v$, see [15, p. 360].
Theorem 3.4 yields the following extension of Fu’s result to Riemannian manifolds.

Theorem 5.3. Let \(n \in \{2, 3\} \) and let \(F \) be a nonempty closed subset of a connected complete smooth \(n \)-dimensional Riemannian manifold \(M \). Then, setting \(N := d_F(\text{Crit}(d_F)) \subset (0, \infty) \), we have \(\mathcal{H}^{(n-1)/2}(N) = 0 \) and for all \(r \in d_F(M \setminus F) \setminus N \),

(i) \(S_r(F) \) is an \((n - 1)\)-dimensional Lipschitz manifold,
(ii) \(\{ p \in M : d_F(p) \geq r \} \) has locally positive reach.

If, moreover, \(F \) is compact then \(N \) is relatively closed in \((0, \infty)\), and \(\{ p \in M : d_F(r) \geq r \} \) has positive reach for all \(r \in d_F(M \setminus F) \setminus N \).

Definition 5.4. A function \(f \) on \(M \) is said to be **locally semiconvex** (resp. **locally semiconcave**) on an open subset \(G \subset M \) if for any chart \((U, \varphi)\) with \(U \subset G \), \(f \circ \varphi^{-1} \) is locally semiconvex (resp. locally semiconcave).

It is well known that the distance function \(d_F \) to a closed subset \(F \subset M \) is locally semiconcave on \(M \setminus F \), see [22] (cf. also [13, p. 34]).

Bangert [2, 3] studied a system \(F(M) \) of functions on \(M \) which turns out to be just the system of locally semiconvex functions (by Remark 2.10(ii) and the proofs in [22]). He showed [2] that the directional derivative \(\partial_p f(v) \) of \(f \in F(M) \) at \(p \in M \) exists in any direction \(v \in T_p M \), and defined [3] regular points of \(f \) as those points \(p \in M \) for which

\[
\exists v \in T_p M : \quad \partial_p f(v) < 0.
\]

This definition (which has in [3] a formally different, but clearly equivalent form) can be, of course, extended to functions that are locally semiconvex on an open subset of \(M \) only.

The following lemma shows that Bangert’s terminology is consistent with Definitions 2.4 and 5.1.

Lemma 5.5. Let \(f \) be a locally semiconvex function on an open set \(G \subset M \), \(p \in G \), and let \(\varphi : U \to \mathbb{R}^n \) be a chart about \(p \) with \(U \subset G \). Then

(i) **Condition** (5) holds if and only if \(p \notin \text{Crit}(f \circ \varphi^{-1}) \).
(ii) The set of points \(p \in G \) with property (5) (regular points of \(f \) in the sense of Bangert) is open.
(iii) If, in particular, \(f = -d_F \) for some closed subset \(F \subset M \), then a point \(p \in M \setminus F \) satisfies (5) if and only if \(p \notin \text{Crit}(d_F) \). Moreover, \(\text{Crit}(d_F) \) is a closed subset of \(M \setminus F \).

Proof. From the proof of [2] (3.1)Satz], it follows that

\[
\partial_p f = (f \circ \varphi^{-1})'_+(\varphi(p), \cdot) \circ (d\varphi(p)).
\]
Since $f \circ \varphi^{-1}$ is locally semiconvex, we have
\[(f \circ \varphi^{-1})'_+(\varphi(p), \cdot) = (f \circ \varphi^{-1})^0(\varphi(p), \cdot)\]
by Remark 2.10 (ii), hence,
\[\partial_p f = (f \circ \varphi^{-1})^0(\varphi(p), \cdot) \circ (d\varphi(p)).\]
Assertion (i) follows then directly from the definitions. Statement (ii) follows from the fact that $\varphi(U) \setminus \text{Crit}(f \circ \varphi^{-1})$ is open for any chart φ, and each φ is a homeomorphism. Statement (iii) follows from Remark 5.2 and (ii).

In the proof of Theorem 5.3 we use the following result due to Bangert ([3, Theorem]).

(Ban) Let f be locally semiconvex on M and $r \in \mathbb{R}$ be such that every point $p \in f^{-1}(r)$ is a regular point of f. Then \(\{ p \in M : f(p) \leq r \} \) has locally positive reach.

(In fact, Bangert showed a stronger result in [3], namely that a weaker regularity condition is equivalent to the property of locally positive reach.)

We shall also use the fact that each chart $\varphi : U \rightarrow \mathbb{R}^n$ of a smooth Riemannian manifold is locally bilipschitz (with respect to the induced inner metric on M). (See, e.g., the proof of [26, Theorem 3.4].)

Proof of Theorem 5.3. Recall that dF is locally semiconcave on $M \setminus F$. Take a countable atlas (U_i, φ_i) of $M \setminus F$ and notice that $N = \bigcup_i N_i$ with
\[N_i := \text{cv}(dF \circ \varphi_i^{-1}) = dF \circ \varphi_i^{-1}(\text{Crit}(dF \circ \varphi_i^{-1})), \quad i \in \mathbb{N},\]
by Lemma 5.5 (i) and (iii). Further, $dF \circ \varphi_i^{-1}$ has no stationary point. Indeed, for any $p \in U_i$ there exists a unit direction $v \in T_pM$ with directional derivative $\partial_p dF(v) = -1$ (take $v = \dot{\gamma}(0)$ for an F-segment γ emanating from p), and notice that $(dF \circ \varphi_i^{-1})'(\varphi_i(p), d\varphi_i(p)v) = -1$, hence, $\varphi_i(p)$ cannot be a stationary point of $dF \circ \varphi_i^{-1}$. Hence, $\mathcal{H}^{(n-1)/2}(N) = 0$ by Proposition 3.3. Since M is complete, it is boundedly compact by the Hopf-Rinow theorem [26, Theorem 7.1] and, hence, if F is compact then, by the continuity of dF and Lemma 5.5 (iii), $\text{Crit}(dF) \cap (dF)^{-1}[a, b]$ is compact for any $0 < a < b < \infty$. Hence, using the continuity of dF again,
\[N \cap [a, b] = dF(\text{Crit}(dF) \cap (dF)^{-1}[a, b])\]
is compact for any $0 < a < b < \infty$. Thus, N is closed in $(0, \infty)$.

We shall verify now (i) and (ii) for $r \in dF(M \setminus F) \setminus N$. By Theorem 3.3, for $r \in dF(M \setminus F) \setminus N$ and for each i,
\[\varphi_i(S_r(F) \cap U_i) = (dF \circ \varphi_i^{-1})^{-1}(r)\]
is either empty or an $(n - 1)$-dimensional semiconcave manifold. As φ_i is locally bilipschitz, (i) follows.
To show (ii), note that if \(r \in d_F(M \setminus F) \setminus N \) then all points of \(S_r(F) \) are regular points of \(-d_F\) (in the sense of Bangert). Consider any connected component \(M' \) of \(M \setminus F \) and let \(f \) be the restriction of \(-d_F\) to \(M' \). As \(f \) is locally semiconvex, Bangert’s result (Ban) cited above implies that \(\{ p \in M' : f(p) \leq r \} = \{ p \in M' : d_F(p) \geq r \} \) has locally positive reach in \(M' \). It follows easily that \(\{ p \in M : d_F(p) \geq r \} \) has locally positive reach in \(M \) as well.

Let \(F \subset M \) be compact. Denoting \(F_{\geq r} := \{ p \in M : d_F(p) \geq r \} \) for brevity, we have

\[
\text{reach } F_{\geq r} = \min \left\{ \inf_{r \leq d_F(p) \leq 2r} \text{reach}(F_{\geq r}, p), \inf_{d_F(p) > 2r} \text{reach}(F_{\geq r}, p) \right\}.
\]

The first infimum is positive since \(\text{reach}(F_{\geq r}, \cdot) \) is continuous and positive, and \(\{ p : r \leq d_F(p) \leq 2r \} \) is compact. The second infimum is clearly greater or equal to \(r \). Thus, \(\text{reach } F_{\geq r} > 0 \).

Remark 5.6. The sets \(S_r(F) \), for \(r \in d_F(M \setminus F) \setminus N \), are rather regular Lipschitz manifolds. Indeed, our proof gives that they are “semiconcave surfaces” in the sense that, for each chart \((U, \varphi)\) on \(M \), the image of \(S_r(F) \cap U \) under \(\varphi \) is either empty, or a semiconcave surface in \(\mathbb{R}^n \).

Finally, we apply Theorem 3.5 to Riemannian manifolds (of arbitrary dimension).

Theorem 5.7. Let \(F \) be a nonempty closed subset of a connected complete smooth \(n \)-dimensional Riemannian manifold \(M \) with \(n \geq 2 \). Then, for all \(r \in d_F(M \setminus F) \), up to a countable set, the set \(A_r := S_r(F) \setminus \text{Crit}(d_F) \) is an \((n - 1)\)-dimensional Lipschitz manifold which is open and dense in \(S_r(F) \) and \(\mathcal{H}^{n-1}(S_r(F) \setminus A_r) = 0 \).

Proof. Let \((U, \varphi)\) be any chart in \(M \setminus F \). Applying Theorem 3.5 to the locally semiconcave function \(d_F \circ \varphi^{-1} \), we obtain a countable set \(N^\varphi \subset d_F(U) \) such that whenever \(r \in d_F(U) \setminus N^\varphi \), then

\[
B_r^\varphi := (d_F \circ \varphi^{-1})^{-1}(r) \setminus \text{Crit}(d_F \circ \varphi^{-1})
\]

is an \((n - 1)\)-dimensional semiconcave surface which is open dense in \((d_F \circ \varphi^{-1})^{-1}(r) = \varphi(S_r(F) \cap U) \) and fulfills \(\mathcal{H}^{n-1}(\varphi(S_r(F) \cap U) \setminus B_r^\varphi) = 0 \). Since \(\varphi \) is locally bilipschitz, \(A_r^\varphi := \varphi^{-1}(B_r^\varphi) = A_r \cap U \) is an \((n - 1)\)-dimensional Lipschitz manifold, it is open dense in \(S_r(F) \cap U \) and \(\mathcal{H}^{n-1}(S_r(F) \cap U \setminus A_r^\varphi) = 0 \). Considering a countable atlas of \(M \setminus F \), the proof is finished in a standard way. \(\square\)

6. **Alexandrov spaces**

Let \(M \) be an \(n \)-dimensional Alexandrov space \((n \geq 2)\) with lower curvature bound (i.e., \(M \) is a complete, locally compact length space with lower curvature
bound in the sense of Alexandrov, and with finite Hausdorff dimension n, see [4, Chapter 10]).

A point $p \in M$ is called regular if the space of directions at p, $\Sigma_p(M)$, is isometric to the unit sphere S^{n-1}. Otherwise, $p \in M$ is called singular; we denote by S_M the set of all singular points of M. The set of singular points has Hausdorff dimension at most $n-1$ and if X has no boundary, then $\dim_H S_M \leq n-2$ (see [5, §10.6]). If $n = 2$ and M has no boundary then S_M is even countable (see [20, Lemma 1.3]).

Perelman [25] introduced the set $M^* \subset M$ of all points $p \in M$ such that there exist $\xi_1, \ldots, \xi_{n+1} \in \Sigma_p(M)$ with $\angle(\xi_i, \xi_j) > \pi/2$ for any $1 \leq i < j \leq n+1$. We shall call the points of M^* “Perelman regular”, and the remaining points in M “Perelman singular”. It is well-known (and easy to see) that any regular point is Perelman regular as well. Thus, $M \setminus M^*$ is countable if $n = 2$ and M has no boundary. Further, M^* is a dense, open and convex subset of M (see [25, the end of §3]). Perelman introduced and applied a “DC structure” on M^*. We will need only the following fact about it (see [25, p. 3, l. 14-15, and Proposition (C)]).

(Per) For any $p \in M^*$ there exists an open neighbourhood U of p in M and a bilipschitz mapping $\varphi : U \to \mathbb{R}^n$ such that $\varphi(U)$ is open and, if f is a function on U that is semiconcave in the intrinsic sense, then $f \circ \varphi^{-1}$ is locally DC on $\varphi(U)$.

Following [18, §2.7], we shall call the pair (U, φ) from (Per) a DC local chart. Note that semiconcavity in the intrinsic sense is defined by means of semiconcavity along geodesic paths, see [27, Definition 124] for a precise definition.

The proof of (Per) is contained only in the unpublished preprint [25], but its validity is adopted and used by experts in the theory of Alexandrov spaces (cf., e.g., [18]).

As in the previous chapters, we shall use the notation d_F for the distance function from a closed set $F \subset M$.

Theorem 6.1. Let $n \in \{2, 3\}$ and let M be an n-dimensional Alexandrov space with lower curvature bound and F a closed subset of M. Then, the following hold.

(i) There exists a set $N \subset (0, \infty)$ with $\mathcal{H}^{(n-1)/2}(N) = 0$ such that for all $r \in d_F(M^* \setminus F) \setminus N$, $S_r(F) \cap M^*$ is an $(n-1)$-dimensional Lipschitz manifold.

(ii) If, moreover, $\mathcal{H}^{(n-1)/2}(M \setminus M^*) = 0$ then there exists a set $N' \subset (0, \infty)$ with $\mathcal{H}^{(n-1)/2}(N') = 0$ such that for all $r \in d_F(M \setminus F) \setminus N'$, $S_r(F)$ is an $(n-1)$-dimensional Lipschitz manifold. If, in addition, F is compact then N' can be chosen to be relatively closed in $(0, \infty)$.
Corollary 6.2. Let M be a two-dimensional Alexandrov space with lower curvature bound and without boundary, and let F be a compact subset of M. Then there exists a relatively closed subset N of $(0, \infty)$ with $\mathcal{H}^{1/2}(N) = 0$ such that for all $r \in d_F(M \setminus F) \setminus N$, $S_r(F)$ is a one-dimensional Lipschitz manifold.

Remark 6.3. Corollary 6.2 improves partially Shiohama’s and Tanaka’s result [31, Theorem B], where the exceptional set is of one-dimensional measure zero and need not be closed.

Proof. (i) Let (U, φ) be a DC local chart in M^*. Since the distance function d_F is semiconcave on $M \setminus F$ in the intrinsic sense (see [27, Proposition 125]), the composed mapping $d_F \circ \varphi^{-1}$ is locally DC on $\varphi(U) \subset \mathbb{R}^n$ by (Per).

We shall show that $d_F \circ \varphi^{-1}$ has no stationary point. Take a point $p \in U$ and notice that, since M is complete and boundedly compact, there exists at least one F-segment emanating from p, i.e., a unit-speed geodesic path $\gamma : [0, a] \to M$ such that $\gamma(0) = p, \gamma(a) \in F$ and $a - t = d_F(\gamma(t)), t \in [0, a]$. Then, denoting $x_t := \varphi(\gamma(t))$, we have

$$-t = d_F(\gamma(t)) - a = d_F \circ \varphi^{-1}(x_t) - d_F \circ \varphi^{-1}(x_0).$$

Since $|x_t - x_0| \leq ct$, where $c > 0$ is the Lipschitz constant of φ, we get

$$|d_F \circ \varphi^{-1}(x_t) - d_F \circ \varphi^{-1}(x_0)| \geq c^{-1}|x_t - x_0|,$$

which shows that x_0 cannot be a stationary point of $d_F \circ \varphi^{-1}$, as $x_t \to x_0$ ($t \to 0+$).

Thus, we can apply Theorem 3.4 and find a set $N \subset (0, \infty)$ with $\mathcal{H}^{(n-1)/2}(N) = 0$ and such that for all $r \in d_F(U) \setminus N, \varphi(d_F^{-1}(r))$ is an $(n-1)$-dimensional DC surface. Since φ is bilipschitz, $S_r(F) \cap U = \varphi^{-1}(\varphi(d_F^{-1}(r)))$ is an $(n-1)$-dimensional Lipschitz manifold. Using the separability of M^*, we can find a countable family (U_i, φ_i) of DC local charts such that $\bigcup_i U_i = M^* \setminus F$, apply the above procedure to each of these charts and find a common exceptional set $N \subset (0, \infty)$ with $\mathcal{H}^{(n-1)/2}(N) = 0$ and such that for all $r \in d_F(M^* \setminus F) \setminus N$, $S_r(F) \cap M^*$ is an $(n-1)$-dimensional Lipschitz manifold.

(ii) If $\mathcal{H}^{(n-1)/2}(M \setminus M^*) = 0$ then, since d_F is Lipschitz, we have

$$\mathcal{H}^{(n-1)/2}(d_F(M \setminus M^*)) = 0$$

as well. Hence, enlarging the exceptional set N to $N' := N \cup d_F(M \setminus M^*)$, we obtain that $\mathcal{H}^{(n-1)/2}(N') = 0$ and the level set $S_r(F)$ itself is an $(n-1)$-dimensional Lipschitz manifold for $r \in d_F(M \setminus F) \setminus N'$.

Let now F be compact, in addition, and let (U_i, φ_i) be the countable atlas of DC local charts covering $M^* \setminus F$, as above. It follows from Theorem 3.4 that we can take for the exceptional set $N' := d_F(Q)$, where

$$Q = (M \setminus M^*) \cup \{p \in M^* \setminus F : \forall i, p \in U_i \implies \varphi_i(p) \in \text{Crit}(d_F \circ \varphi_i^{-1})\}.$$
Using that M^* is open, each $\text{Crit}(d_F \circ \phi_i^{-1})$ is closed in $\phi_i(U_i)$ and ϕ_i are homeomorphisms, we get that the set Q is closed in $M \setminus F$. If $0 < a < b < \infty$, the set $d_F^{-1}[a,b]$ is compact (since d_F is continuous and M is boundedly compact, see [4, §10.8]) and, hence,

$$N' \cap [a,b] = d_F(Q \cap d_F^{-1}[a,b])$$

is compact as well. Consequently, N' is closed in $(0, \infty)$. □

Remark 6.4. It is easy to see that in a general (possibly with boundary) three-dimensional (and even two-dimensional) Alexandrov space M with lower curvature bound, Ferry’s result (almost all distance spheres are topological manifolds) does not hold (for M we can take a closed ball in \mathbb{R}^2 or \mathbb{R}^3). However, we do not know whether Ferry’s result holds in each three-dimensional Alexandrov space with lower curvature bound and without boundary. In this case our method cannot be used since there exists a three-dimensional convex surface X in \mathbb{R}^4 for which $\mathcal{H}^4(X \setminus X^*) > 0$ (see Example 6.5).

However, Ferry’s result holds in every three-dimensional complete convex surface X in \mathbb{R}^4; it is proved in [29] without using Perelman’s DC structure.

Example 6.5. We shall demonstrate on a particular example that all points on one-dimensional “sufficiently sharp” edges of three-dimensional convex surfaces are Perelman singular. Let $A = \{(x, y, z) \in \mathbb{R}^3 : \alpha^2(x^2 + y^2) = z^2, z \geq 0\}$ with $\alpha \geq \sqrt{2\pi^2 - 1}$ and consider the convex cone $C = A \times \mathbb{R}$ in \mathbb{R}^4. Then, for the convex surface $X = \partial C$, any point of the edge $\{(0, 0, 0)\} \times \mathbb{R}$ is Perelman singular. Of course, it suffices to show that the origin 0 is Perelman singular. There even do not exist three directions of X at 0 forming obtuse angles each with other. To see this, let ξ_1, ξ_2, ξ_3 be three non-zero vectors from X determining three directions of X at 0. Multiplying by positive factors, we can suppose that these vectors can be written as

$$\xi_i = (r \cos \vartheta_i, r \sin \vartheta_i, \alpha r, s_i), \quad i = 1, 2, 3,$$

where $r \geq 0$, $\vartheta_i \in [0, 2\pi)$ and $s_i \in \mathbb{R}$, $i = 1, 2, 3$. At least two of the three numbers s_i must have nonnegative product, so assume without loss of generality that $s_1, s_2 \geq 0$. We shall show that the angle formed by the directions of ξ_1 and ξ_2 on X is not obtuse. Since C is a cone, the angle can be obtained as

$$\angle(\xi_1, \xi_2) = \arccos \frac{||\xi_1||^2 + ||\xi_2||^2 - \text{dist}^2(\xi_1, \xi_2)}{2||\xi_1||||\xi_2||},$$

cf. [4, §3.6.5] (dist is the intrinsic distance in X). The points ξ_1 and ξ_2 can be connected by the following path on X

$$\gamma : t \mapsto \left(r \cos(\vartheta_1 + t(\vartheta_2 - \vartheta_1)), r \sin(\vartheta_1 + t(\vartheta_2 - \vartheta_1)), \alpha r, s_1 + t(s_2 - s_1) \right), \quad t \in [0, 1]$$
of length
\[\text{length} \gamma = \int_0^1 \| \gamma'(t) \| \, dt = \sqrt{(\vartheta_2 - \vartheta_1)^2 r^2 + (s_2 - s_1)^2}. \]

Hence,
\[\text{dist}^2(\xi_1, \xi_2) \leq (\text{length} \gamma)^2 \leq 4\pi^2 r^2 + s_1^2 + s_2^2 \]
which is less or equal to
\[\| \xi_1 \|^2 + \| \xi_2 \|^2 = 2(1 + \alpha^2)r^2 + s_1^2 + s_2^2 \]
since \(\alpha^2 \geq 2\pi^2 - 1 \). Hence, the angle formed by \(\xi_1 \) and \(\xi_2 \) is not obtuse.

We finish this section by an application of Theorem 3.5 to Alexandrov spaces of any dimension.

Theorem 6.6. Let \(M \) be an \(n \)-dimensional \((n \geq 2)\) Alexandrov space with lower curvature bound and without boundary, and let \(F \subset M \) be closed. Then, for all \(r \in d_F(M \setminus F) \) except a countable set, either \(\mathcal{H}^{n-1}(S_r(F)) = 0 \), or there exists an \((n-1)\)-dimensional Lipschitz manifold \(A_r \subset S_r(F) \) which is open in \(S_r(F) \) and \(\mathcal{H}^{n-1}(S_r(F) \setminus A_r) = 0 \) holds.

Remark 6.7. If, in addition, \(M = M^* \) then the manifolds \(A_r \) in Theorem 6.6 can be found so that there are moreover dense in \(S_r(F) \).

Proof. Let \((U_i, \varphi_i)\) be a countable atlas of DC local charts covering \(M^* \setminus F \), as in the proof of Theorem 6.1. Applying Theorem 3.5 to \(d_F \circ \varphi_i^{-1} \) (the validity of assumptions was shown in the proof of Theorem 6.1) and the bilipschitz property of \(\varphi_i \), we obtain countable sets \(N_i \subset d_F(U_i) \) such that for all \(i \) and all \(r \in d_F(U_i) \setminus N_i \),
\[P_i := (S_r(F) \cap U_i) \setminus \varphi_i^{-1}(\text{Crit}(d_F \circ \varphi_i^{-1})) \]
is an \((n-1)\)-dimensional Lipschitz manifold with \(\mathcal{H}^{n-1}((S_r(F) \cap U_i) \setminus P_i) = 0 \). Set \(N := \bigcup_i N_i \) and for \(r \in d_F(M^* \setminus F) \setminus N \),
\[A_r := \{ p \in S_r(F) \cap M^* : \exists \delta > 0, S_r(F) \cap B(p, \delta) \text{ is an } (n-1)\text{-dimensional Lipschitz manifold} \}. \]

Clearly, \(A_r \) is an \((n-1)\)-dimensional Lipschitz manifold open in \(S_r(F) \). Note that \(\bigcup_i P_i \subset A_r \) and recall that \(\dim_H(M \setminus M^*) \leq \dim_H(S_M) \leq n - 2 \). Hence,
\[\mathcal{H}^{n-1}(S_r(F) \setminus A_r) \leq \mathcal{H}^{n-1}(M \setminus M^*) + \mathcal{H}^{n-1}((S_r(F) \cap M^*) \setminus \bigcup_i P_i) = 0 \]
for all \(r \in d_F(M^* \setminus F) \setminus N \), as required. If \(r \in d_F(M \setminus F) \setminus d_F(M^* \setminus F) \) then \(\mathcal{H}^{n-1}(S_r(F)) \leq \mathcal{H}^{n-1}(M \setminus M^*) = 0. \) \(\square \)
References

[1] A. D. Alexandrov, *On surfaces represented as the difference of convex functions*, Izv. Akad. Nauk. Kaz. SSR 60, Ser. Math. Mekh. 3 (1949), 3–20 (in Russian).

[2] V. Bangert, *Analytische Eigenschaften konvexer Funktionen auf Riemannschen Mannigfaltigkeiten*, J. Reine Angew. Math. 307/308 (1979), 309–324.

[3] V. Bangert, *Sets with positive reach*, Arch. Math. 38 (1982), 54–57.

[4] D. Burago, Y. Burago, S. Ivanov, *A course in metric geometry*, Graduate Studies in Mathematics, Volume 33, Amer. Math. Soc., Providence, 2001.

[5] D. Burago, M. Gromov and G. Perelman, *A. D. Alexandrov’s space with curvature bounded from below. I*, rev., Uspehi Mat. Nauk 47 (1992) 3–51.

[6] P. Cannarsa, C. Sinestrari, *Semiconcave functions, Hamilton-Jacobi equations, and optimal control*, Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston, Inc., Boston, MA, 2004.

[7] F.H. Clarke, *Optimization and nonsmooth analysis*, 2nd edition, Classics in Applied Mathematics 5, SIAM, Philadelphia, 1999.

[8] R. Deville, G. Godefroy, V. Zizler, *Smoothness and renormings in Banach spaces*, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman, 1993.

[9] H. Federer, *Curvature measures*, Trans. Amer. Math. Soc. 93 (1959), 418–491.

[10] S. Ferry, *When ε-boundaries are manifolds*, Fund. Math. 90 (1976), 199–210.

[11] J.H.G. Fu, *Tubular neighborhoods in Euclidean spaces*, Duke Math. J. 52 (1985), 1025–1046.

[12] J.H.G. Fu, *Curvature measures and generalized Morse theory*, J. Differential Geom. 30 (1989), 619–642.

[13] J.H.G. Fu, *Stably embedded surfaces of bounded integral curvature*, Adv. Math. 152 (2000), 28–71.

[14] R. Gariepy, W.D. Pepe, *On the level sets of a distance function in a Minkowski space*, Proc. Amer. Math. Soc. 31 (1972), 255–259.

[15] K. Grove, *Critical point theory for distance functions*, In: Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 3, Amer. Math. Soc., Providence, RI, 1993, pp. 357–385.

[16] P. Hartman, *On functions representable as a difference of convex functions*, Pacific J. Math. 9 (1959), 707–713.

[17] N. Kleinjohann, *Convexity and the unique footpoint property in Riemannian geometry*, Arch. Math. 35 (1980), 574–582.

[18] K. Kuwae, Y. Machigashira, T. Shioya, *Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces*, Math. Z. 238 (2001), 269–316.

[19] E.M. Landis, *On functions representable as the difference of two convex functions*, Doklady Akad. Nauk SSSR (N.S.) 80 (1951), 9–11.

[20] Y. Machigashira, *The Gaussian curvature of Alexandrov surfaces*, J. Math. Soc. Japan 50 (1998), 859–878.

[21] B.S. Mordukhovich, *Variational analysis and generalized differentiation I., Basic theory*, Grundlehren der Mathematischen Wissenschaften 330, Springer-Verlag, Berlin, 2006.

[22] C. Mantegazza, A.C. Mennucci, *Hamilton-Jacobi equations and distance functions on Riemannian manifolds*, Appl. Math. Optim. 47 (2003), 1–25.

[23] D. Pavlica, *Morse-Sard theorem for delta-convex curves*, Math. Bohem. 133 (2008), 337–340.
[24] D. Pavlica, L. Zajíček, Morse-Sard theorem for d.c. functions and mappings on \(\mathbb{R}^2 \), Indiana Univ. Math. J. 55 (2006), 1195–1207.

[25] G. Perelman, DC structure on Alexandrov space, an unpublished preprint (1995), available at http://www.math.psu.edu/petrunin/papers/papers.html.

[26] P. Petersen, Riemannian geometry, Graduate Texts in Mathematics 171, Springer, New York, 1998.

[27] C. Plaut, Metric spaces of curvature \(\geq k \), Handbook of geometric topology, 819–898, North-Holland, Amsterdam, 2002.

[28] A.C.M. van Rooij, W.H. Schikhof, A second course on real functions, Cambrigde University Press, Cambrigde, 1982.

[29] J. Rataj, L. Zajíček, Properties of distance functions on convex surfaces and applications, arXiv:0902.1414v3.

[30] A. Shapiro, On concepts of directional differentiability, J. Optim. Theory Appl. 66 (1990), 477–487.

[31] K. Shiohama, M. Tanaka, Cut loci and distance spheres on Alexandrov surfaces, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), 531–559, Sémin. Congr., 1, Soc. Math. France, Paris, 1996.

[32] L. Veselý, L. Zajíček, Delta-convex mappings between Banach spaces and applications, Dissertationes Math. (Rozprawy Mat.) 289 (1989), 52 pp.

[33] L. Zajíček, On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J. 29 (1979), 292–308.

[34] L. Zajíček, Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space, Czechoslovak Math. J. 33 (1983), 340–348.

[35] L. Zajíček, On Lipschitz and d.c. surfaces of finite codimension in a Banach space, Czechoslovak Math. J. 58 (2008), 849–864.

Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8, Czech Republic

E-mail address: rataj@karlin.mff.cuni.cz
E-mail address: zajicek@karlin.mff.cuni.cz