Epidemiological Profile and Clinicopathological Correlates of Triple Negative Breast Cancer Patients at Regional Cancer Centre

Richa Verma, Shankar Lal Jakhar, Neeti Sharma, H. S. Kumar, Surender Beniwal
Institution, Acharya Tulsi Regional Cancer Treatment and Research Institute, Bikaner, Rajasthan, India.

Abstract

Background: Breast Cancer is the most common cancer among women worldwide. In India breast cancer remains the leading cause of both incidence and mortality. Triple negative breast cancer is more difficult to treat as it does not respond to hormone therapy medicines or medicines that target receptor proteins (like HER 2 Neu). It is crucial for the physician to know the status of the disease as the patient can be subjected to a whole new avenue of treatment. The present study was done to assess the epidemiological profile and clinicopathological correlates of patients of triple negative breast cancer. **Material and Methods:** This retrospective study was carried out in Acharya Tulsi Cancer and Research Institute located in the state of Rajasthan, Bikaner, India, among Ca Breast patients presenting to Medical Oncology, Radiation Oncology and Surgical Oncology outdoor & indoor from April 2016 to March 2017. Out of the total 1017 patients of carcinoma breast 957 were included in this Study. Exclusion criteria was non availability of ER, PR, HER2 neu status reports because of various reasons like affordability. Out of the total 957 patients 249 were found to be triple negative. Statistical analysis was done using IBM SPSS version 21. **Results:** Mean age of the patients was 46±11.23 years. Out of total 249 patients of triple negative breast carcinoma, 91 (%) were found to have had clinical staging I and II (Early stage) and 158 (%) patients were found to have clinical staging III & IV (Late Stage). Mean size of the tumor was 3.6±1.94cm. 151 (60.6%) were pre-menopausal, 103 (41.4%) and 12 (4.8%) patients had positive family history. All of patients diagnosed to have Ductal type of carcinoma. Lympho-vascular invasion was seen in 51 (20.5%) patients and high grade Histological Grading was seen in High Grade 169 (67.9%) patients. 172 (69.1%) undergone MRM (Modified Radical Mastectomy) and BCS was done in 74 (29.7%) patients. After comparison of triple Negative Breast Cancer with non-triple Negative Breast Cancer, lower age, later stages (III and IV), pre-menopausal status and high grade (on histology) were significantly more in negative type of Ca breast. Occurrence of early Menarche (< 13 Years) and history of OC pills used was almost equal in both the groups. **Conclusion:** Triple Negative Breast Cancer was found to present at an earlier age and more in pre – menopausal women. Such patients presented with a higher histological grade of tumor and late stage of presentation. There was no statistically significant association between TNBC and age of menarche, use of OC pill, previous exposure to radiotherapy and positive family history in first degree relative.

Keywords: Epidemiological profile- Triple negative breast cancer- clinico-pathological characteristics

Introduction

Breast Cancer is the most common cancer among woman worldwide and second most common cancer overall [1]. In India breast cancer remains the leading cause of both incidence and mortality. Breast cancer, accounting for 25% of all cancers [2]. It is by far the most common cancer in women, both in more and less economically developed regions with slightly more cases in less developed than in more developed regions [3]. The higher incidence of breast cancer is possibly associated with higher median population age, robust early detection programs, better control of other causes of early life mortality and recent increase in obesity. The rising
breast cancers incidence in women of developing nations has also been attributed to "westernized" lifestyle changes including dietary changes, decreased exercise and reproductive changes such as delayed childbearing, lower parity and reduced breast feeding [4].

Triple negative breast cancer (TNBC) refers to any breast cancer which does not show expression of estrogen receptor (ER), progesterone receptor (PR) and HER2 neu. About 10 – 20 percent of the breast cancer cases are triple negative. Triple negative breast cancer is more difficult to treat as it does not respond to hormone therapy medicines or medicines that target receptor proteins (like HER 2 Neu) [5]. Triple-negative breast cancer is considered to be more aggressive and have a poorer prognosis than other types of breast cancer. It tends to be of higher grade than other types of breast cancer. TNBC represents a heterogenous subtype of breast cancer that is beginning to be refined by its molecular characteristics and clinical response to a targeted therapeutic approach. Until recently the backbone of therapy against TNBC has been cytotoxic chemotherapy [6]. However, the breast oncology community is now seeing encouraging clinical activity from molecularly targeted approaches to TNBC. This makes it crucial for the physician to know the status of the disease as the patient can be subjected to a whole new avenue of treatment [7]. The present study was done to assess the epidemiological and clinicopathological profile of patients of triple negative breast cancer and its association.

Materials and Methods

This retrospective study was carried out in Acharya Tulsi Cancer and Research Institute located in the state of Rajasthan, Bikaner, India. Study was done on Ca Breast patients presenting to Medical Oncology, Radiation Oncology and Surgical Oncology outdoor & indoor. Duration of the study was from April 2016 to March 2017. After taking clearance from Ethical Committee and consent from the eligible participants, data was collecting with the help of pre-tested case record pro-forma. All patients who were diagnosed with Carcinoma Breast and Triple negative were included in the study. Exclusion criteria was non availability of ER, PR, HER2 neu status reports because of various reasons like affordability.

Method of Diagnosis

Patients were diagnosed by FNAC and confirmed by core needle biopsy. Under local anaesthesia a core biopsy needle was used to sample breast tissue at clinically palpable site changes felt or sometimes where required done under an ultrasound guidance. ER, PR Her2 status was determined by immunohistochemistry.

Statistical analysis

Data was entered into Microsoft excel data sheet and was analyzed using IBM SPSS 22 version software. Categorical data was represented in the form of Frequencies and proportions. Chi square test, Fisher Exact tests were used as test of significance for qualitative data continuous data was represented as mean and standard deviation. p value (Probability that the result is true) of 0.05 was considered as statistically significant after assuming all the rules of statistical tests.

Out of the total 957 patients of carcinoma breast, 249 were triple negative Ca breast patients and remaining 708 were non-triple negative Ca breast patients, were taken for comparison of clinicopathological characteristics.

Results

In the present study, mean age of the patients was 46±11.23 years. Out of total 249 patients of triple negative breast carcinoma, 91 (36.5%) were found to have had clinical staging I and II (Early stage) and 158 (63.5%) patients were found to have clinical staging III & IV (Late Stage). Mean size of the tumor was 3.6±1.94 cm. 151 (60.6%) were pre-menopausal, 103 (41.4%) and 12 (4.8%) patients had positive family history. All of or patients diagnosed to have Ductal typeq of carcinoma. Lympho-vascular invasion was seen in 51 (20.5%) patients and High grade Histological Grading was seen in High Grade 169 (67.9%) patients. 172 (69.1%) undergone MRM (Modified Radical Mastectomy) and BCS was done

Table 1. Epidemiological Profile of Triple Negative Breast Cancer Patients

Epidemiological Profile	Values/ Frequencies
Mean Age (Years)	46±11.23
Mean Size of the Tumor (cm)	3.6±1.94
Clinical Staging:	
a. Early Stage (I, II)	91 (36.5%)
b. Late Stage (III, IV)	158 (63.5%)
Menstrual history:	
a. Pre-Menopausal	151 (60.6%)
b. Post Menopausal	98 (39.4%)
Menarche:	
a. < 13 Years	103 (41.4%)
b. ≥ 13 years	146 (58.6%)
Family History:	
c. Positive	12 (4.8%)
d. Negative	237 (95.2%)
Tumor subtype:	
a. Ductal carcinoma	249 (100%)
Lympho-vascular invasion	
a. Absent	198 (79.5%)
b. Present	51 (20.5%)
Histological Grading:	
a. Low Grade	80 (32.1%)
b. High Grade	169 (67.9%)
Surgery	
a. MRM	172 (69.1%)
b. BCS	74 (29.7%)
c. Not Done	3 (1.2%)
Total	249 (100%)
Table 2. Association between Clinicopathological Characteristics and Triple Negative Breast Cancer (Comparison between Triple Negative and non-Triple Negative Breast Cancer)

Clinicopathological characteristics	Triple Negatives (%)	Non-Triple Negatives (%)	P Value
Age <40	107 (43)	183 (26)	<0.001
Late Stage (III, IV)	158 (63.5)	233 (32.9)	<0.001
Menarche< 13 Years	103 (41.4)	297 (41.9)	0.872
Pre-Menopausal Status	151 (60.6)	340 (48.0)	<0.001
OC Pill used	95 (38.2)	250 (35.3)	0.421
Positive Family History in First Degree Relative	12 (4.8)	38 (5.4)	0.733
High Grade	169 (67.9)	257 (36.3)	<0.001
Total	249 (100)	708	

As compared to our findings show low grade in 32.1% and high grade in 67.9% patients with TNBC, Atika Dogra et al [15] revealed that a large proportion of patients with poorly differentiated high grade tumors (70%). Comparative findings were seen in a study by Ishitha G. et al [12] shows 46% cases had Grade II and 54% had Grade III tumors on histology as.

Regarding surgical interventions, in comparison to our study (MRM in 69.1% and BCS in 29.7% cases), MRM was performed in lesser number of cases in comparison with the study by Atika Dogra et al [15] (MRM in 80.6% and BCS 16.4% cases).

Discussion

Epidemiological Profile

On TNBC, fewer Indian studies have been published. TNBC contributes a large proportion of breast cancer deaths despite its small proportion among all breast cancers. In the present study, mean age of the patients was 46±11.23 years which showed similarity to (Thike et al., 2010; Rao et al., 2013) [8, 9] and variation from other studies (Dent et al., 2007; Suresh et al., 2013) [10, 11]. Our population was slightly younger than the ones described in western data [10] (median age 53 years). As compared to mean size of tumor in our study (3.6±1.94cm), Ishitha G. et al [12] found average size tumor was 4.3±2.56 cm. Higher number of patients had Positive family in study by Ishitha G. et al [12] (12%) as compared to our study (4.8%).

The most common histological subtype in our study was that of infiltrating ductal carcinoma (NOS), similar to other studies [13, 14]. Infiltrating duct carcinoma (91%) was primary histology morphology in a study by Atika Dogra et a [15]. In our study, 79.5% cases had shown lymphocytic infiltrate. Literature has shown that most TNBC cases with a dense lymphocytic infiltrate either intra-tumoral or within the vicinity of the tumor [16, 17]. In a study by Atika Dogra et al [15], presence of lymph-vascular invasion was found in 40% cases.

Present study shows out of total 249 patients of triple negative breast carcinoma, 91 (36.5%) had clinical staging I and II (Early stage) and 158 (63.5%) had clinical staging III & IV (Late Stage). Similar to our study, clinically stage IV was very common at presentation in accordance to the previous findings (Rao et al., 2013; Suresh et al., 2013; Niwińska et al., 2010) [9, 11, 18] followed by III and I. Occurrence of early Menarche (< 13 Years) and history of OC pills used was almost equal in both the groups.

As compared to our findings show low grade in 32.1% and high grade in 67.9% patients with TNBC, Atika Dogra et al [15] revealed that a large proportion of patients with poorly differentiated high grade tumors (70%). Comparative findings were seen in a study by Ishitha G. et al [12] shows 46% cases had Grade II and 54% had Grade III tumors on histology as.

Regarding surgical interventions, in comparison to our study (MRM in 69.1% and BCS in 29.7% cases), MRM was performed in lesser number of cases in comparison with the study by Atika Dogra et al [15] (MRM in 80.6% and BCS 16.4% cases).

In conclusion, triple Negative Breast Cancer was found to present at an earlier age and more in pre -- menopausal women. Such patients presented with a higher histological grade of tumor and late stage of presentation. There was no statistically significant association between TNBC and age of menarche, use of OC pill, previous exposure to radiotherapy and positive family history in first degree
relative.

Risk Involved
Nil

References

1. Sharma GN, Dave R, Sanadja Y, Sharma P, Sharma KK. Various types and management of breast cancer: an overview. J Adv Pharm Technol Res. 2010 Apr;1(2):109-26.

2. Smith RD, Mallath MK. History of the Growing Burden of Cancer in India: From Antiquity to the 21st Century. Journal of Global Oncology. 2019 Dec;(5):1-15. https://doi.org/10.1200/jgo.19.000048

3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians. 2021 02 04;71(3):209-249. https://doi.org/10.3322/caac.21660

4. https://www.who.int/news-room/fact-sheets/detail/breast-cancer.

5. Yin L, Duan J, Bian X, Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Research. 2020 06 09;22(1). https://doi.org/10.1186/s13058-020-01296-5

6. https://www.can.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/types-of-breast-cancer/triple-negative.html.

7. Lyons TG. Targeted Therapies for Triple-Negative Breast Cancer. Current Treatment Options in Oncology. 2019 Nov;20(11). https://doi.org/10.1007/s11865-019-0682-x

8. Thike AA, Cheok PY, Jara-Lazaro AR, Tan B, Tan P, Tan PH. Triple-negative breast cancer: clinicopathological characteristics and relationship with basal-like breast cancer. Modern Pathology. 2009 Oct 23;23(1):123-133. https://doi.org/10.1038/modpathol.2009.145

9. Rao C. Immunohistochemical Profile and Morphology in Triple – Negative Breast Cancers. Journal of Clinical and Diagnostic Research. 2013;. https://doi.org/10.7860/jcdr/2013/5823.3129

10. Dent R, Trudeau M, Pritchard KL, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA. Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clinical Cancer Research. 2007 08 01;13(15):4429-4434. https://doi.org/10.1158/1078-0432. ccr-06-3045

11. Suresh P, Batra U, Doval D. Epidemiological and clinical profile of triple negative breast cancer at a cancer hospital in North India. Indian Journal of Medical and Paediatric Oncology. 2013 04;34(02):89-95. https://doi.org/10.4103/0971-5851.116185

12. Ishitha G. Clinicopathological Study of Triple Negative Breast Cancers. J Clin Diagn Res. 2016;. https://doi.org/10.7860/jcdr/2016/20475.8539

13. Rakha EA, Ellis IO. Triple-negative/basal-like breast cancer: review. Pathology. 2009 01;41(1):40-47. https://doi.org/10.1080/00313020802563510

14. Reis-Filho JS, Tutt AN. Triple-negative tumours: a critical review. Histopathology. 2007 Dec 13;52(1):108-118. https://doi.org/10.1111/j.1365-2559.2007.02885.x

15. Dogra A, Doval DC, Sardana M, Chedi SK, Mehta A. Clinicopathological Characteristics of Triple Negative Breast Cancer at a Tertiary Care Hospital in India. Asian Pacific Journal of Cancer Prevention. 2015 01 22;15(24):10577-10583. https://doi.org/10.7314/apjcp.2015.24.10.5777

16. Fulford LG, Easton DF, Reis-Filho JS, Sofonis A, Gillett CE, Lakhani SR, Hanby A. Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology. 2006 06 27;49(1):22-34. https://doi.org/10.1111/j.1365-2559.2006.02453.x

17. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, Palacios J, Rakha EA, Richardson AL, Schmitt FC, Tan P, Tse GM, Weigt B, Ellis IO, Reis-Filho JS. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Modern Pathology. 2010 Nov 12;24(2):157-167. https://doi.org/10.1038/modpathol.2010.200

18. Niwińska A, Murawska M, Pogoda K. Breast cancer brain metastases: differences in survival depending on biological subtype, RPA RTOG prognostic class and systemic treatment after whole-brain radiotherapy (WBRT). Annals of Oncology. 2010 05;21(5):942-948. https://doi.org/10.1093/annonc/mdp407

19. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MCU, Nielsen TO, Moorman PG, Earp HS, Millikan RC. Race, Breast Cancer Subtypes, and Survival in the Carolina Breast Cancer Study. JAMA. 2006 06 27;295(21):2492. https://doi.org/10.1001/jama.295.21.2492

20. L. A. Newman, J. S. Reis-Filho, M. Morrow, L. A. Carey, T. A. King. “The 2014 Society of Surgical Oncology Susan G. Komen for the Cure Symposium: Triple-Negative Breast Cancer,”. Annals of Surgical Oncology. 2015;22(3):874-82.

21. Aksoy S, Dizdar O, Harputluoglu H, Altundag K. Demographic, clinical, and pathological characteristics of Turkish triple-negative breast cancer patients: single center experience. Annals of Oncology. 2007 Nov;18(11):1904-1906. https://doi.org/10.1093/annonc/mdm487

22. Ghosn M, Haji C, Kattan J, Farhat F, El Karak F, Nasr F, Abadjiq G, Chahine G. Triple-Negative Breast Cancer in Lebanon: A Case Series. The Oncologist. 2011 Oct 21;16(11):1552-1556. https://doi.org/10.1634/theoncologist.2011-0088

23. Kwan ML, Kushi LH, Weltzien E, Maring B, Kutner SE, Fulton RS, Lee MM, Ambrosone CB, Caan BJ. Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors. Breast Cancer Research. 2009 05 22;11(3). https://doi.org/10.1186/bc2261

24. Phipps AI, Chlebowski RT, Prentice R, McTiernan A, Stefanick ML, Wactawski-Wende J, Kuller LH, Adams-Steering Committee, Lin J. Body Size, Physical Activity, and Risk of Triple-Negative and Estrogen Receptor–Positive Breast Cancer. JAMA. 2006 06 07;295(21):2492. https://doi.org/10.1001/jama.295.21.2492

25. Urru SAM, Gallus S, Bosetti C, Motti T, Medda R, Sollai E, Murgia A, Wactawski-Wende J, Kuller LH, Adams-Steering Committee, Lin J. Body Size, Physical Activity, and Risk of Triple-Negative and Estrogen Receptor–Positive Breast Cancer. JAMA. 2006 06 07;295(21):2492. https://doi.org/10.1001/jama.295.21.2492

26. S., Deming SL, Geradts J, Cheang MCU, Nielsen TO, Moorman PG, Earp HS, Millikan RC. Race, Breast Cancer Subtypes, and Survival in the Carolina Breast Cancer Study. JAMA. 2006 06 27;295(21):2492. https://doi.org/10.1001/jama.295.21.2492

27. This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.