On Flattenability of Graphs

Joel Willoughby

University of Florida

July 12, 2015
Flattenability

A graph G is d-flattenable if for every linkage (bar-lengths in a given norm) that has a realization in some dimension also has a realization in R^d.\(^1\)

Clearly d-flattenable is a minor closed property. So it has a forbidden minor characterization.

Under the l_2 norm, the only forbidden minor for 2-flattenability is K_4.

Warm Up Question

What are the forbidden minors for 2-flattenability under l_1?

\(^1\)M. Belk and R. Connelly, “Realizability of graphs,” *Discrete Comput. Geom.*, vol. 37, no. 2, pp. 125–137, Feb. 2007.
l_1 2-flattenability

K_4 is 2-flattenable under l_1^2

For 5 vertex graphs, we have shown the following:

- K_5 is not 2-flattenable (Known)
- Banana is not 2-flattenable
- 4-Wheel is unknown (OPEN)
- All others are 2-flattenable

If 4-wheel is not 2-flattenable, it is the only forbidden minor

2H. Witsenhausen, “Minimum dimension embedding of finite metric spaces,” *Journal of Combinatorial Theory, Series A*, vol. 42, no. 2, pp. 184–199, 1986.
This was shown in Sitharam-Gao3 for the l_2 norm:

Theorem

For any l_p norm, a graph G is d-flattenable iff the set of attainable edge-length vectors for G in d-dimensions is convex 4.

Useful in many science or engineering applications.

Proof makes extensive use of the cone of pairwise distance vectors.

3 M. Sitharam and H. Gao, “Characterizing graphs with convex and connected cayley configuration spaces,” *Discrete & Computational Geometry*, vol. 43, no. 3, pp. 594–625, 2010.

4 Also called d-dimensional Cayley configuration space on G.
Some Definitions

The cone \(5\) of all pairwise \(l^p\)-distance vectors on \(n\)-point configurations: \(\Phi_{n,l^p}\)

The \(d\)-dimensional stratum: pairwise distance vectors of \(d\)-dimensional point configurations: \(\Phi_{n,l^p}^d\)

The projection or shadow of this cone on an edge set \(G\): \(\Phi_{G,l^p}\)

Theorem (Restatement)

\(G\) is \(d\)-flattenable iff \(\Phi_{G,l^p}^d\) is convex

\(^5\)K. Ball, “Isometric embedding in \(l^p\)-spaces,” European Journal of Combinatorics, vol. 11, no. 4, pp. 305–311, 1990
Connections to Rigidity

Using the structure of Φ_{n,l_p}, we get a connection among:

- Flattenability
- Dimension of certain projections/strata of Φ_{n,l_p}
- Rigidity and Independence

For norms other than l_2, we can use the formulation of the rigidity matroid of Kitson6.

Theorem

For general l_p norms, there exists a generic d-flattenable framework of G if and only if G is independent in the d-dimensional generic rigidity matroid.

6D. Kitson, *Finite and infinitesimal rigidity with polyhedral norms*, 2014. eprint: arXiv:1401.1336.
Conjecture

G is d-independent iff the projection of every face of Φ_{n,l_p}^d has dimension $|E|$.

Proof of another theorem raised another problem:

Question

1. Is d-flattening a continuous map over linkages
2. Is there a continuous path from high dimensional realization to d-dimensional realization for a d-flattenable linkage?
Can studying the Cayley configuration space of a certain class of graphs (partial 2-trees) lead to an extension of the Walker conjecture to partial 2-trees?

We may be able to better understand the entire structure of Φ_{n,l_2}^2 by building it up from these partial 2-trees.
Our Paper: M. Sitharam and J. Willoughby, “On flattenability of graphs,” in *Post-proceedings of ADG*, ser. LNAI, Springer, 2014
M. Belk and R. Connelly, “Realizability of graphs,” *Discrete Comput. Geom.*, vol. 37, no. 2, pp. 125–137, Feb. 2007.

H. Witsenhausen, “Minimum dimension embedding of finite metric spaces,” *Journal of Combinatorial Theory, Series A*, vol. 42, no. 2, pp. 184–199, 1986.

M. Sitharam and H. Gao, “Characterizing graphs with convex and connected cayley configuration spaces,” *Discrete & Computational Geometry*, vol. 43, no. 3, pp. 594–625, 2010.

K. Ball, “Isometric embedding in lp-spaces,” *European Journal of Combinatorics*, vol. 11, no. 4, pp. 305–311, 1990.

D. Kitson, *Finite and infinitesimal rigidity with polyhedral norms*, 2014. eprint: arXiv:1401.1336.

M. Sitharam and J. Willoughby, “On flattenability of graphs,” in *Post-proceedings of ADG*, ser. LNAI, Springer, 2014.