Development of chloroplast microsatellite markers for *Glyptostrobus pensilis* (Cupressaceae)

Ya-Dan Yan¹, Xin-Yu Li¹, James R. P. Worth², Xue-Ying Lin¹, Markus Ruhsam¹, Lu Chen¹, Xing-Tong Wu¹, Min-qiu Wang¹, Philip I. Thomas¹ ² and Ya-Feng Wen¹ ⁴

PREMISE: *Glyptostrobus pensilis* (Cupressaceae) is a critically endangered conifer native to China, Laos, and Vietnam, with only a few populations remaining in the wild.

METHODS AND RESULTS: Using a complete chloroplast genome sequence, we designed 70 cpSSR loci and tested them for amplification success and polymorphism in 16 samples. Ten loci were found to be polymorphic and their genetic diversity was characterized using a total of 83 individuals from three populations in China. A total of 43 haplotypes were present, the effective number of alleles per locus ranged from one to eight, and the effective number of alleles ranged from 8.04 to 16.00. Gene diversity ranged from 0.81 to 0.97 (average 0.89). The number of alleles per locus and population ranged from one to eight, and the effective number of alleles ranged from 1.00 to 3.90. All polymorphic loci were successfully amplified in the related species *Cryptomeria japonica* var. sinensis, *Taxodium distichum*, *T. ascendens*, and *Cunninghamia lanceolata*.

CONCLUSIONS: These newly developed chloroplast microsatellites will be useful for population genetic and phylogeographic analyses of *G. pensilis* and related species.

KEYWORDS: chloroplast microsatellite (cpSSR); Cupressaceae; *Glyptostrobus pensilis*; haplotypes.

Glyptostrobus pensilis (Staunton ex D. Don) K. Koch, the only extant species in the genus *Glyptostrobus* Endl., is a relict conifer in the family Cupressaceae (Hao et al., 2016). In China, it is mainly distributed in the Pearl River delta region of Guangdong Province, the central region of Fujian Province, the lower reaches of the Minjiang River, and northeastern Jiangxi Province (Li and Xia, 2004). A few wild populations have recently been found in Laos and Vietnam, extending its latitudinal distribution from 28°N to 13°N (Averyanov et al., 2009; Thomas and LePage, 2011). The species preferred habitat of riverbanks and flood plains have been severely degraded by human activities (e.g., agriculture and rice cultivation) in many locations, which has led to a rapid decline of most *G. pensilis* populations (Li and Xia, 2004, 2005; Nguyen et al., 2013). Currently, the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species has evaluated *G. pensilis* as Critically Endangered (CR) (Thomas et al., 2011).

Chloroplast microsatellites have been widely used to investigate the population genetic structure and phylogeographic history of a range of tree species (Ruhsam et al., 2016; Gryta et al., 2017). Previous molecular studies of *G. pensilis* have only used nuclear markers such as intersimple sequence repeats (Li and Xia, 2005; Wu, 2011), and recently Wang et al. (2019) developed 10 polymorphic nuclear microsatellite markers for this species. Compared with nuclear simple sequence repeats (SSRs), chloroplast SSRS (cpSSRs) are more likely to detect historical bottlenecks or genetic drift due to their uniparental inheritance, slower mutation rate, and lack of recombination (Ennos et al., 1999; Pleines et al., 2009; Li and Liu, 2012). Nguyen et al. (2013) analyzed *G. pensilis* populations from Vietnam using six cpSSRs; however, these loci were developed from *Pinus thunbergii* Parl. and designed for use in Pinaceae species (Vendramin et al., 1996). In this study, we developed new species-specific chloroplast microsatellite loci using the complete chloroplast genome of *G. pensilis* (Hao et al., 2016). Additionally, we tested the transferability of these loci in four related species: *Cryptomeria japonica* (Thunb. ex L. f.) D. Don var. *sinensis* Miq., *Taxodium distichum* (L.) Rich., *T. ascendens* Brongn., and *Cunninghamia lanceolata* (Lamb.) Hook.

METHODS AND RESULTS

We searched the complete chloroplast genome of *G. pensilis* (Hao et al., 2016; GenBank accession number KU_302768) for...
microsatellite loci exhibiting a minimum of eight repeats as these loci are likely to exhibit a higher level of polymorphism (Ueno et al., 2012). For loci with a minimum of eight repeats, primers were designed using the online software Primer3Plus (Untergasser et al., 2007) using default parameters. In total, 70 cpSSR loci were selected and evaluated for their amplification efficiency and level of polymorphism using 16 *G. pensilis* DNA samples from different populations (Appendix 1). DNA was extracted from *G. pensilis* leaves using a modification of the cetyltrimethylammonium bromide (CTAB) method (Tsumura et al., 1995).

PCR amplification was carried out in volumes of 15 μL using the following protocol: 7.5 μL of 2× Taq PCR Master Mix (Tiangen, Beijing, China), 0.75 μL of forward primer (10 μM), 0.75 μL of reverse primer (10 μM), 3 μL of 20–50 ng/μL DNA template, and 3 μL of ddH2O. The mixture was then cycled using the following profile: 94°C for 4 min; 34 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 30 s; and 7 min for extension. The software GenAlEx6.5 (Peakall and Smouse, 2012) was used to calculate the following parameters: number of alleles (*N*), effective number of alleles (*N*_e), Shannon’s information index (*I*), and diversity (*H*)

A total of 43 haplotypes were detected in the three assayed populations. The number of haplotypes per population ranged from 11 to 18, the number of private haplotypes ranged from nine to 16, the effective number of haplotypes ranged from 4.55 to 13.36, the haplotypic richness ranged from 8.04 to 16.00, and the gene diversity ranged from 0.81 to 0.97 (Table 2). The number of alleles per locus ranged from one to eight per population, the effective number of alleles ranged from 1.00 to 3.90, Shannon’s information index ranged from 0.00 to 1.52, and the diversity ranged from 0.00 to 0.74 (Table 3). The 10 polymorphic loci could also be successfully amplified in five individuals in each of the following four related species: *Cryptomeria japonica* var. *sinensis*, *Taxodium distichum*, *T. ascendens*, and *Cunninghamia lanceolata* (Table 4, Appendix 1).

CONCLUSIONS

In this study, we developed 10 polymorphic cpSSRs (as well as 55 pairs of monomorphic primers) that can be used to assess the

TABLE 1. Characterization of 10 polymorphic chloroplast microsatellite loci developed in *Glyptostrobus pensilis.*

Locus	Primer sequences (5′–3′)	Location	Repeat motif	Allele size range (bp)	GenBank accession no.	
Gp_{cp}_1	F: (ROX) TGACACACCAGGTCTGTATCA R: GCTTGTGTGCTGCTGTGTGGTT	ycf4 to psa1	(AT)₁₀	261–271	MK386658	
Gp_{cp}_1	 Gp_{cp}_2	F: (FAM) GCCTGGCCCTTGAGCTCATAT	trnl to trnF	(AT)₁₁	195–203	MK386659
Gp_{cp}_1	 Gp_{cp}_2	F: (HEX) ACCTGCTACAATCGACTTCCC R: CCTCCTCTCCAGACGAGAACA	ycf3 to psaA	(T)₁₁	149–167	MK386660
Gp_{cp}_2	 Gp_{cp}_8	F: (HEX) TGACCGATGATCTTACGCTT R: AAATGATCCGCTTGGCTCC	psb to trnE	(TA)₉	267–279	MK386661
Gp_{cp}_11	F: (TAMRA) ACCTCTGAAAGTCACTGAGTTAG R: GCTAGACCTATCTCCTGAATAGAATAG	chIB to rps16	(AT)₂₅	363–414	MK386662	
Gp_{cp}_12	F: (TAMRA) TTAAATGCGAGATGCTGATG R: TGCCCATAGGATGCCAAGTG	accD to clpP	(T)₁₁	379–437	MK386663	
Gp_{cp}_13	F: (TAMRA) TGGGGAATCAAAAATACAGCTA R: GCTTACAAAGTGAATGAAAATACGA	rbcL to accD	(AT)₁₁	208–334	MK386664	
Gp_{cp}_14	F: (FAM) TCCCCGCAAGCATTACTGTTT R: AGGAAAGATGTGATACTTGGCT	ccsA to petA	(T)₁₂	208–214	MK386665	
Gp_{cp}_17	F: (FAM) AATCCTGAAAGTCACTGAGTTAG R: AGAATGCGGTGTGTCCTCTTC R: AATCCTGAAAGTCACTGAGTTAG	trnD to psbM	(T)₁₂	116–119	MK386666	
Gp_{cp}_35	F: (HEX) TTTTCTCTCTACCGCAGACC R: AATCCTGAAAGTCACTGAGTTAG	psaI to rpl33	(A)₉	115–117	MK386667	

^aOptimal annealing temperature was 55°C for all loci.
TABLE 3. Characteristics of 10 polymorphic chloroplast microsatellite markers in 83 individuals of three Chinese Glyptostrobus pensilis populations.a

Locus	DM (N = 33)	GZHN (N = 21)	PNSL (N = 29)									
	N_a	N_e	I	H	N_a	N_e	I	H	N_a	N_e	I	H
Gp_cp_1	3	1.824	0.765	0.452	2	1.960	0.683	0.490	2	1.890	0.664	0.471
Gp_cp_6	2	1.198	0.305	0.165	3	2.194	0.852	0.544	3	1.324	0.479	0.245
Gp_cp_7	3	2.139	0.883	0.533	3	2.945	1.071	0.649	3	1.979	0.779	0.495
Gp_cp_8	5	1.280	0.437	0.219	5	2.110	0.832	0.526	1	1.000	0.000	0.000
Gp_cp_11	116–117	114–117	115–116	116–117	116–117	114–117	115–116	116–117	116–117	114–117	115–116	116–117
Gp_cp_12	378	378	384	432	378	378	384	432	378	378	384	432
Mean	3,400	1,594	0.632	0.331	3,200	2,448	0.939	0.571	1,800	1,250	0.247	0.147

Note: N = number of individuals sampled; N_a = number of alleles; N_e = effective number of alleles; I = Shannon’s information index; H = diversity.

A = number of alleles; N_e = effective number of alleles; I = Shannon’s information index; H = diversity.

*Locality and voucher information are provided in Appendix 1.

TABLE 4. Results of cross-amplification of 10 polymorphic chloroplast microsatellite markers developed for Glyptostrobus pensilis in four closely related species.a,b

Locus	Taxodium distichum (N = 5)	Taxodium ascendens (N = 5)	Cryptomeria japonica var. sinensis (N = 5)	Cunninghamia lanceolata (N = 5)
	254–256	250–254	258–262	254–265
	179	179	197	171
	149	149	177	177
	276	276	284	286
	378–383	381–383	375	371
	303–305	303	384	432
	205	205	211	213
	117	117	117	117
	116–117	114–117	115–116	115–116

Note: N = number of individuals sampled.

*Locality and voucher information are provided in Appendix 1.

Numbers shown represent the size in base pairs of the amplified fragments.

population genetic and phylogeographic structure of G. pensilis populations. The high number of private haplotypes in the three assayed populations suggests geographically isolated populations. Additionally, the 10 loci can be successfully amplified in four related species of G. pensilis.

ACKNOWLEDGMENTS

This project is supported by the Forestry Industry Standard Project (2014-LY-213) of China. The Royal Botanic Garden Edinburgh is supported by the Scottish Government’s Rural and Environment Science and Analytical Services Division.

DATA ACCESSIBILITY

All polymorphic primer sequences were uploaded to the National Center for Biotechnology Information (accession number: MK386658–MK386667; Table 1).

LITERATURE CITED

Averyanov, L. V., K. L. Phan, T. H. Nguyen, S. K. Nguyen, T. V. Nguyen, and T. D. Pham. 2009. Preliminary observation of native Glyptostrobus pensilis (Taxodiaceae) stands in Vietnam. Twainania 54: 191–212.

Eliades, N. G., and D. G. Eliades. 2009. haplotype Analysis: Software for analysis of haplotypes data. Forest Genetics and Forest Tree Breeding, Georg-August University, Goettingen, Germany.

Ennos, R. A., W. T. Sinclair, X. S. Hu, and A. Langdon. 1999. Using organelle markers to elucidate the history, ecology and evolution of plant populations. In P. M. Hollingsworth, R. M. Bateman, and R. J. Gornall [eds.], Molecular systematics and plant evolution. Taylor & Francis, London, United Kingdom.

Gryta, H., C. Van de Paer, S. Manzi, H. Holota, M. Roy, and G. Beurnard. 2017. Genome skimming and plastid microsatellite profiling of alder trees (Alnus spp., Betulaceae): Phylogenetic and phylogeographical prospects. Tree Genetics and Genomes 13: 118.

Hao, Z. D., T. L. Cheng, R. H. Zheng, H. B. Xu, Y. W. Zhou, M. P. Li, F. J. Liu, et al. 2016. The complete chloroplast genome sequence of a relict conifer Glyptostrobus pensilis: Comparative analysis and insights into dynamics of chloroplast genome rearrangement in Cupressophytes and Pinaceae. PLoS ONE 11: e0161809.

Hulce, D., X. Li, T. Snyder-Leiby, and C. S. J. Liu. 2011. GeneMarker genotyping software: Tools to increase the statistical power of DNA fragment analysis. Journal of Biomolecular Techniques 22(Suppl): S35–S36.

Li, B., and H. X. Liu. 2012. Research advances in chloroplast simple sequence repeat (cpSSR). Journal of Anhui Agricultural Sciences 40: 7638–7639, 7649.

Li, F. G., and N. H. Xia. 2004. The geographical distribution and cause of threat to Glyptostrobus pensilis: Comparative analysis and insights into dynamics of chloroplast genome rearrangement in Cupressophytes and Pinaceae. Applications in Plant Sciences 2019 7(7): e11277 Yan et al.—Glyptostrobus pensilis cpSSRs · 3 of 6

Gryta, H., C. Van de Paer, S. Manzi, H. Holota, M. Roy, and G. Beurnard. 2017. Genome skimming and plastid microsatellite profiling of alder trees (Alnus spp., Betulaceae): Phylogenetic and phylogeographical prospects. Tree Genetics and Genomes 13: 118.

Hao, Z. D., T. L. Cheng, R. H. Zheng, H. B. Xu, Y. W. Zhou, M. P. Li, F. J. Liu, et al. 2016. The complete chloroplast genome sequence of a relict conifer Glyptostrobus pensilis: Comparative analysis and insights into dynamics of chloroplast genome rearrangement in Cupressophytes and Pinaceae. PLoS ONE 11: e0161809.

Hulce, D., X. Li, T. Snyder-Leiby, and C. S. J. Liu. 2011. GeneMarker genotyping software: Tools to increase the statistical power of DNA fragment analysis. Journal of Biomolecular Techniques 22(Suppl): S35–S36.

Li, B., and H. X. Liu. 2012. Research advances in chloroplast simple sequence repeat (cpSSR). Journal of Anhui Agricultural Sciences 40: 7638–7639, 7649.

Li, F. G., and N. H. Xia. 2004. The geographical distribution and cause of threat to Glyptostrobus pensilis (Taxodiaceae). Journal of Tropical and Subtropical Botany 12: 13–20.

Li, F. G., and N. H. Xia. 2005. Population structure and genetic diversity of an endangered species, Glyptostrobus pensilis (Cupressaceae). Botanical Bulletin of Academia Sinica 46: 155–162.

Nguyen, M. T., D. D. Vu, T. T. X. Bui, and M. D. Nguyen. 2013. Genetic variation and population structure in Chinese water pine (Glyptostrobus pensilis): A threatened species. Indian Journal of Biotechnology 12: 499–503.

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2019 Yan et al.
APPENDIX 1. Sampling information for species in this study. All voucher specimens are deposited at the herbarium of Central South University of Forestry and Technology, Changsha, Hunan, China.

Species	Population code	Voucher no.	Collection locality	Geographic coordinates	Elevation (m)	N
Glyptostrobus pensilis (Staunton ex D. Don) K. Koch	PNSL	Lin170804	Pingnan, Fujian, China	27°0’27.87"N, 118°5’1’59.75"E	1260	29
	GZHN	Lin170411	Guangzhou, Guangdong, China	23°11’24.6"N, 113°21’23.18"E	40	21
	DM	Lin170729	Doumen, Guangdong, China	22°23’42.5"N, 113°15’14.65"E	20	33
Taxodium distichum (L.) Rich.	Li180522	Changsha, Hunan, China	28°8’16.48"N, 112°59’28.36"E	90	5	
Taxodium ascendens Brongn.	Li180522	Changsha, Hunan, China	28°8’16.48"N, 112°59’28.36"E	90	5	
Cryptomeria japonica (Thunb. ex D. Don var. sinensis Miq.	Wang180720	Jujiang, Jiangxi, China	29°32’59.77"N, 115°58’03.32"E	911	5	
Cunninghamia lanceolata (Lamb.) Hook.	Li180522	Changsha, Hunan, China	28°8’16.48"N, 112°59’28.36"E	90	5	

Note: N = number of individuals sampled.

APPENDIX 2. Characteristics of 55 monomorphic chloroplast microsatellite primers developed in *Glyptostrobus pensilis*.

Locus	Primer sequences (5’–3’)	Repeat motif	Product size (bp)
Gp_cp_2	F: ACAATTGATTTCTAAAAAGAGGAGGTCA	(A)₁₁	211
Gp_cp_3	R: TCAGTCGAGAATTGTTGCTGA	(T)₁₃	369
Gp_cp_4	F: ATAGATTCGGAGCGGCTTG	(T)₁₈	292
Gp_cp_5	R: ACCGCTGAGTTATATCCCTTCC	(T)₂₀	230
Gp_cp_6	F: ATTTCTGCGGAAAGGTTCGCA	(T)₂₀	332
Gp_cp_7	R: CGAGGCAAGTCCATCTTCTTAC	(T)₁₀	280
Gp_cp_8	F: CGAACCCTCACCTGATGTC	(A)₁₅	280
Gp_cp_9	R: GTTTGTTCACCTGAAATAAAGAGGA	(A)₁₂	257
Gp_cp_10	F: TCAAGGAAAGTGAGATGTGAG	(A)₁₂	201
Gp_cp_11	R: TCTCAACCTTCCATTGGGAG	(A)₁₂	145
Gp_cp_12	F: TCAGATTCGGAGCGGCTTG	(T)₁₂	201
Gp_cp_13	R: TGGGACACAAAGGAAAGTTAAGTGCT	(A)₁₁	260
Gp_cp_14	F: GCAAAAAGCTGCGGAAACAT	(A)₁₁	190
Gp_cp_15	R: GCCCTTCTCTCCTCCGACAT	(A)₁₁	190

(Continues)
APPENDIX 2. (Continued)

Locus	Primer sequences (5′–3′)	Repeat motif	Product size (bp)
Gp_cp_22	F: AGGGGCAGAGAACTCAGGGTT	(A)11	194
	R: CGGGTCATTTTCCACGTTGAC		
Gp_cp_23	F: ATCCGGCTTGTATCCTCGTTT	(A)11	263
	R: ACAGGCAGCTTGGAAAGAT		
Gp_cp_24	F: TCTTCTTGGCTATCCCTCCC	(T)11	231
	R: AAGAATTAGTTTCCGAATGGGT		
Gp_cp_25	F: TCTTCGGGATTAATCTTATCTCT	(T)11	264
	R: AATCCGTAGACGCTAAAACC		
Gp_cp_26	F: TTGTAGCCTACGTGGCAC	(AT)13	263
	R: AGCATAAAAACAAAACAGGCT		
Gp_cp_27	F: CGGGGGAATGATACCTGTCG	(T)10	138
	R: ACGGAGACCTTATATGAGCTC		
Gp_cp_28	F: TCCTGAATTCTTTCCACAG	(TA)10	213
	R: TCCACTCTACCTCAGCTCCT		
Gp_cp_29	F: GAGCTTACCTGGGATCTGAGC	(A)10	126
	R: CATTCCGTCTCGAGCTAAGTG		
Gp_cp_30	F: TGAATTTTCCCTCTATATGTGT	(A)10	201
	R: TAAATTTCTCTTATAGTTGAGGTGT		
Gp_cp_31	F: CGGGGAAGAACTTGAGATGCTC	(A)10	233
	R: GCATATGCTGAGATGAGCTC		
Gp_cp_32	F: CCGGACGACGCTCAAGAGGA	(A)10	157
	R: GGGATGTACTGTGGGATTGGC		
Gp_cp_33	F: ATTAGCGGGGATATTCCACCC	(A)10	226
	R: CCGACCTGTGATTTCTGAGCT		
Gp_cp_34	F: ACGGGCGCTACAATTGGATA	(A)10	143
	R: CCTACAGACGGGTAGATCTCGC		
Gp_cp_36	F: TCATTATTTTCCACGGAATGAAACAT	(A)10	156
	R: GATGGCTCTATTTATCTCAGATTG		
Gp_cp_37	F: ACCCAAAAAAGGAGGAACAGG	(A)10	165
	R: GAATGACCTCTGGGATGGGAG		
Gp_cp_38	F: ACTGGGAGAATCTCCCATTGGA	(AT)6	221
	R: CAGGGGAGTATGCTAGTGTG		
Gp_cp_39	F: TCTTATGTTCTCTAGTAACAGCCTT	(A)6	125
	R: TGGAGTGGAGAAACATCCGT		
Gp_cp_40	F: ATGCTCTGTATCCGGGACC	(A)10	248
	R: TGACCTGTGTCCATCACCCGACC		
Gp_cp_41	F: CTGCACATCTCCTCCCTCTGT	(T)10	162
	R: TGCTTTGCTACCTCCGGCAAT		
Gp_cp_42	F: TCGCATGTAAGGAAATCCA	(A)10	211
	R: TTTCCCTTGAGCCATTTGGG		
Gp_cp_43	F: GGTGATGCGCTCGTCTGTTGA	(A)10	186
	R: TGTAACCTCTTGTGCTCGGTG		
Gp_cp_44	F: CCATTGCAATCTCCTCAGGTGC	(T)10	224
	R: CATCAACACCATCGGCAACTCT		
Gp_cp_45	F: AGTAGGATGATTACGCCTAATCT	(A)10	222
	R: AGGCCAGTGTCTTATTTTGAAATATT		
Gp_cp_46	F: CGGCTCGAAGCGCAAGTACA	(A)10	132
	R: AATTTTTGCTGTTTCTGACTCATC		
Gp_cp_47	F: GAAGCAGAGCCAATCTCTCA	(T)6	190
	R: TGTCGCGGAGGAAAGGTGTT		
Gp_cp_48	F: TCTCTTCACATCTCTCGGAAAAAGGA	(T)6	228
	R: TGCTCGCTCTGTCCCAACTAT		
Gp_cp_49	F: AGCGAAGAAACTCCCTCTCGT	(A)10	171
	R: ATCTGGGCGCCCCTCCCTAAT		
Gp_cp_50	F: CAGATACGCTCCGGGCTAGA	(A)10	140
	R: CGTCCAGCCTCTCCTCCTAAG		
Gp_cp_51	F: CCGCAATCTTGGAGATGGGAG	(T)10	233
	R: TGTGGCGGCTATAGTTCTTAGG		
Gp_cp_52	F: CCGCCTTATAGTGGCATAGTG	(A)10	298
	R: TGACTTAAATACCCGGCACTC		
Gp_cp_53	F: GCXACGAGACTTGGAGATCAG	(A)10	164
	R: ATTGATTCATCGACCGCGGG		

(Continues)
APPENDIX 2. (Continued)

Locus	Primer sequences (5′–3′)	Repeat motif	Product size (bp)
Gp_cp_54	F: TGCATAAGAATGAGCCAACCTTGGA	(T)$_9$	187
	R: TCATAACGCTTTAACAAGAACAC		
Gp_cp_55	F: CAGGCATTTACTTTTTTTTGGAGT	(T)$_9$	134
	R: TTTGGGATGGAATGGGATTG		
Gp_cp_56	F: ATATTTCGCAAGAAATTTTTGGTT	(T)$_9$	202
	R: TGATTTGCTCAAACCTTTATCGAGA		
Gp_cp_57	F: GCACGGCTTCATTAAGTAT	(T)$_9$	257
	R: ACCCTAAAGATGACATCGC		
Gp_cp_58	F: TGTTATTTGCTTTTGGAAAGA	(T)$_9$	176
	R: TGCTTTGTGGCTCAATTTTTG		
Gp_cp_59	F: TATTGGACCAGCGGTAGTAGG	(T)$_9$	144
	R: ATAAGCAGTCAGAGGGAGC		
Gp_cp_60	F: ACAGATTATTCAGATGAGGCCTCCGA	(T)$_9$	201
	R: CCCCATTTACCTGATCATATAC		
Gp_cp_61	F: GTTCAGCCAAATAGGGGAGG	(T)$_9$	159
	R: TAAAGCCAGCCAGCTCCGCA		
Gp_cp_62	F: TGCTACTGATGCAAAAACCTCTTTTC	(T)$_9$	209
	R: ACCACGTCATCTCATGTCAC		
Gp_cp_63	F: CCACCTATGCCCATAAGGGTC	(T)$_9$	127
	R: TCGATGGACCTGAGGACCCTT		
Gp_cp_64	F: GGGATACGGGGTTCTATAGGAT	(A)$_9$	149
	R: TCGATCTATGCGCTCTACT		
Gp_cp_70	F: TCGAGGAGATAGAAGATAAATACCT	(G)$_{11}$	137
	R: GCCTTTCCCTGCGCTCTGAG		

Optimal annealing temperature was 55°C for all loci.