Physicochemical Properties of Gelugur Powder (*Garcinia atroviridis*)

Terip Karo-Karo¹, Elisa Julianti¹², Mimi Nurminah¹²*

¹Department of Food Science and Technology, Faculty of Agriculture, Universitas Sumatera Utara, Medan, Indonesia

²Centre for Tubers and Roots Crop Study, Faculty of Agriculture, Universitas Sumatera Utara, Medan, Indonesia

*Email: miminurminah@usu.ac.id or mimisinaga@yahoo.co.id

Abstract. *Garcinia* fruits (local name *asam gelugur*) are one of endemic species in North Sumatera, Indonesia. In Indonesia, *asam gelugur* have been used for seasoning cook and tea. This study used two factors, the maturity level (T) and drying temperature (S). The result showed that the level of maturity had a very significant effect on water content, total soluble solid, and total acid; had a significant effect on ash content. Drying temperature had a very significant effect on water content, ash content, vitamin C content, total soluble solid, and color score; had a significant effect on total acid. The interaction between the two factors had a very significant effect on total soluble solid. The raw gelugur and drying temperature 50 °C produced the best and more acceptable quality of gelugur powder.

1. **Introduction**

Garcinia fruits (local name *asam gelugur*), is an endemic species in North of Sumatera Indonesia. In Indonesia, *asam gelugur* have in used for seasoning cook, for tea [1]. The plants have been used as food for centuries [2]. Pharmacological and botanical reports have described the preservative and medicinal properties of *Garcinia* fruits, like strong antimicrobial, antitumour-promoting activities and antioxidant [3–7]. *Garcinia* fruit contain 10-30 % hydroxycitric acid (HCA) [8]. In this research, *Garcinia atroviridis* were used to make gelugur powder. This paper deals with the characteristics of physicochemical of *G. atroviridis* powder (gelugur powder).

2. **Methods**

The research was conducted at Analisa Kimia Bahan Pangan Laboratory, University of North Sumatera. The *Garcinia atroviridis* local varietis were purchased from farmer at Limapuluh, Batubara, Indonesia. Fresh *garcinia* fruits were cut in to flat of slabs 0.2-0.3 mm in thickness. The slabs were oven-dried using cabinet dryer at a temperature of 50°C about 30 hours. The powder was obtained by crushing the dried fruit using steam roller into powder and sieved using a 40 mesh sieve. The powder of *garcinia* was packed in polyethylene plastics, sealed and stored at 28°C.

Analysis consists of water content analysis using oven method [9], ash content analysis using dry ashing method [10], TSS [11], acid content [11] and vitamin C [12]. The best treatment of the test was then compared with the control treatment using T-test. De Garmo was used in determining the best treatment method.
3. Results and Discussion

3.1. Water Content
Ripe gelugur had the highest water content than the raw and halp ripe gelugur. It indicated that every level of maturity had different water content. The transformation from raw to ripe on the fruits, like organic content, sugar and carbohydrate can make the higher water content [13]. The higher drying temperature and water vapour [14], the lower of water content of gelugur powder. Drier air temperature will cause material to release water from surface [15].

3.2. Ash Content
The ripe gelugur had the most ash content than the raw and halp ripe gelugur. When the time of maturity process happened, the tissue of material would be damaged and some mineral can be shrunk [16]. The higher of drying temperature, the more water content came out, the higher of percentage carbohydrate, protein and mineral, so the ash content would increase [17].

3.3. Soluble Solid Total (°Brix)
Soluble Solid Total was influenced by the level of maturity of gelugur, more mature of gelugur more soluble solid total, it indicated that the organic acids change into sugar. Total of the sugar was a dominant component on soluble solid total. The higher drying temperature, the higher soluble solid total will be in gelugur powder. The increase on soluble solid total was caused evaporation water [18]. The more of maturity of gelugur, the higher water content will be. Water content in the fruit can be higher, that was caused remodelling of protopectin to pectin. Pectin is degraded to polygalacturonic acid and water [19].

3.4. Acid Content
Acid content was influenced by the level of maturity of gelugur. The more maturity of gelugur, the lower acid content will be. It showed that organic acid are converted to glucose and fructose [20]. The higher of drying temperature the lower acid content of gelugur powder, that’s caused by many damaged organic acids. It indicated some of the volatile compounds evaporated [21].

3.5. Vitamin C
The higher of drying temperature the value of vitamin C decrease, Vitamin C is easily oxidized. Vitamin C oxidation is accelerated by high drying temperature [22]. The process of oxidized is accelerated by heat [23].

3.6. L Value
The higher drying temperature, the lower of L value will be. High temperature and long drying time will cause discoloration and deterioration in quality. When drying time, there has been a Maillard reaction which caused browning [24].

Table 1. Effect of level of maturity on the physicochemical properties of gelugur powder

Parameter	T₁ (Raw)	T₂ (Half ripe)	T₃ (Ripe)
Water content	5.4302	5.8781	6.1908
Ash content	1.8305	1.8264	1.8164
Total soluble solid (°Brix)	57.2778	58.7222	63.0556
Total acid (%)	14.8739	13.1910	11.9257
Vitamin C (mg/100 g bahan)	47.1668	46.7700	45.9193
L Value	77.3624	77.3720	77.7980
Table 2. Effect of drying temperature on the physicochemical properties of gelugur powder

Parameter	S1 (50°C)	S2 (60°C)	S3 (70°C)
Water content	7.0646	5.7316	4.7029
Ash content	1.8100	1.8162	1.8472
Total soluble solid (°Brix)	58.0556	59.5556	61.4444
Total acid (%)	14.1758	13.0456	12.7691
Vitamin C (mg/100 g bahan)	47.5778	46.9984	45.8242
L Value	77.1213	77.6347	77.7765

Conclusion
The raw gelugur and drying temperature 50 °C produced the best and more acceptable quality of gelugur powder.

Acknowledgment
We wish to thank to Lembaga Penelitian Universitas Sumatera Utara for funding this research according to the research contract TALENTA Universitas Sumatera Utara, Basic Research Scheme 2018.

References
[1] Mansyah, E (2015) Garci-Tea (Teh asam Gelugur). Balitbu Litbang Pertanian. Sumatera Barat.
[2] W Rittirut and C Siripatana (2006) Drying characteristics of Garnia atroviridis. Walailak J. Sci. & Tech. 3, 13-32.
[3] Mackeen M. M., Ali A. M., El-Sharkawy S. H., Salleh K. M., Lajis N. H. And Kawazu K., (1997), Antimicrobial and cytotoxic properties of some Malaysian traditional vegetables (ulam). Int. J. Pharmacogn. 35, 174-178.
[4] Mackeen M. M., Ali A. M., Salleh K. M., Lajis N. H. And Kawazu K., Hassan Z, Mohammed H., Mohidin A., Lim Y. M. And Mariam S. (2000), Antimicrobial, antioxidant. Antitumour-promoting and cytotoxic activities of different plant part extracts of Garcinia atroviridis Griff ex T. Anders. J. Ethnopharmacol. 72, 395-402.
[5] Burkill I. H. (1966), A Dictionary of the Economic Products of the Malay Peninsula. Crown Agent, London.
[6] Fui L.H. (1992), Knowledge and use of forest produce as traditional medicine: the case of the forest-dwelling communities. In:Proceedings of the Conference on Medicinal Products from Tropical Rain Forest (K. Shaari, A.A. Kadir & A.R.M. Ali, eds.). Forest Research Institute of Malaysia. Kuala Lumpur. Pp.385-400.
[7] Grosvenor P. W., Gothard P. K., McWilliam N. C., Supriono A. And Gray D. O. (1995), Medicinal plants from Riau province, Sumatra, Indonesia. Part 1: uses. J. Ethnopharmacol. 45, 75-95.
[8] D Clouatre and ME Rosenbaum (1994) The Diet and Health Benefits of HCA (hydroxycitric acid). New Canaan, CT: Keats Publishing. p. 1-48.
[9] AOAC. 1995. Official Methods of Analysis. Eleventh Edition. Association of Official Analytical Chemists Inc, Washington D. C.
[10] Sudarmadji, S., B. Haryono, and Suhardi. 1997. Analisa Bahan Makanan dan Pertanian. Libery, Yogyakarta.
[11] Ranganna, S. 1978. Manual of Analysis for Fruits and Vegetable Product. Mc-Graw Hill Publishing Company Limited, New Delhi.
[12] Apriyanto, A., D. Fardiaz, N. L. Puspitasari, Serdanawati, and S. Budiyanto. 1989. Analisa Pangan. PAU Pangan dan Gizi, Bogor.
[13] Kader A.A. (2002). Postharvest Biology and Technology: an overview. In: Kader A.A. (ed) Postharvest Biology and Horticultura Crops. 3rd ed. Pub.No.3311. Oakland. University of California.

[14] Desrosier, N. W. 2008. Teknologi Pengawetan Pangan. Edisi Ketiga. Penerjemah: Muchji muljohardjo. UI-Press, Jakarta.

[15] Wiyono, R. 2006. Studi Pembuatan Serbuk Effervescent Temulawak (Curcuma xanthorizza roxt) Kajian Suhu Pengerling, Konsentrasii Dekstrin, Konsentrasii Asam Sitrat dan Na. bikarbonat. Skripsi. Universitas Andalas, Padang.

[16] Baiyeri K.P. Aba S.C. Otituju G.T. and Mbah O.B. (2011) The Effect of ripening and cooking method on mineral and proximate composition of plantain (Musa sp. AAB cv. ‘Agbaba) fruit pulp. African Journal of Biotechnology. 10 (36):6979-6984.

[17] Muchtadi, T. R. 1997. Teknologi Proses Pengolahan Pangan. IPB-Press, Bogor.

[18] Destriyani, L., Tamrin., dan M. Z. Kadir. 2014. Pengaruh umur simpan air tebu terhadap tingkat kemanisan tebu (Saccharum officinarum). J. Teknik Pertanian Lampung. 3(2):119-126.

[19] Usman DSB (2011) Karakteristik dan antioksidan bunga rosella kering (Hibiscus sabdariffa L.). Skripsi. Teknologi pangan. Universitas Pembangunan Nasional “Veteran” surabaya. Jawa Timur.

[20] Mahmood, T., Anwar, F., Abbas, M., Boyce, M.C., Saari, N. 2012. Compositional Variation In Sugars and Organic Acids At Different Maturity Stages In Selected Small Fruits From Pakistan. Int. J. Mol. Sci. 13 (2), 1380–1392.

[21] Setyoko B, Senen, Darmanto (2008) Pengeringan ikan teri dengan sitem vakum dan paksa. Majalah Info Edisi XI No. 1.

[22] Matto, A.K., T. Murata, E.R.B. Pantastico, K. Chanchin, K. Ogata dan C. Phan. (1975). Perubahan-perubahan Kimiawi selama Pematangan dan Penuaan. Penerjemah kamariani, Yogyakarta: UGM press.

[23] Winarno FG dan M Aman (1981) Fisiologi Lepas Panen. Penerbit Sastra Hudaya. Jakarta. Indonesia.

[24] Winarno FG (1992). Kimia Pangan dan Gizi. Gramedia Pustaka Utama, Jakarta.