Influenza Vaccination and Risk of Stroke in Women With Chronic Obstructive Pulmonary Disease: A Nationwide, Population-Based, Propensity-Matched Cohort Study

Chun-Chao Chen¹,²,³, Cheng-Hsin Lin²,⁴,⁵, Chun-Chih Chiu¹,², Tsung Yeh Yang¹,², Min-Huei Hsu⁶,⁷, Yuan-Hung Wang⁸, Meng-Huan Lei⁹, Hsien Tang Yeh¹⁰, Yu-Ann Fang¹,², Wen-Rui Hao¹,²,³,¹¹* and Ju-Chi Liu¹,²,³,¹¹*

¹ Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ² Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan, ³ Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ⁴ Division of Cardiovascular Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ⁵ Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ⁶ Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan, ⁷ Department of Neurosurgery, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan, ⁸ Department of Medical Research Executive Secretary, Center of Human Research Protection, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ⁹ Cardiovascular Center, Lo-Hsu Medical Foundation Lotung Poh-Ai Hospital, Luodong, Taiwan, ¹⁰ Department of Surgery, Lotung Poh-Ai Hospital, Luodong, Taiwan, ¹¹ Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

Backgrounds: The risk of stroke is higher among patients with chronic obstructive pulmonary disease (COPD) than among the healthy population. Moreover, women generally have worse long-term stroke outcomes than men.

Methods: The data of 6681 women with COPD (aged ≥ 65 years) registered in Taiwan's National Health Insurance Research Database were retrospectively analyzed from January 1, 2001 to December 31, 2011. After 1:1 propensity score matching, the patients were divided into vaccinated and unvaccinated groups.

Results: In total, 5102 women were enrolled. The vaccinated group had a significantly lower risk of total, hemorrhagic, and ischemic stroke than the unvaccinated group (adjusted hazard ratio [aHR]: 0.60, 95% confidence interval [CI]: 0.54–0.67; aHR: 0.59, 95% CI: 0.43–0.83; and aHR: 0.59, 95% CI: 0.52–0.68, respectively). A lower risk of stroke was observed among the women aged 65–74 and ≥75 years, and the association was dose-dependent in all types of stroke (aHR: 1.08, 95% CI: 0.92–1.26; aHR: 0.70, 95% CI: 0.60–0.82; and aHR: 0.32, 95% CI: 0.26–0.38 for those vaccinated 1, 2 to 3, and ≥4 times, respectively, during the follow-up period). Women with a CHA²DS²-VASc score (conditions and characteristics included congestive heart failure, hypertension, diabetes, stroke, vascular disease, age, and sex) of 2–3 and ≥4 had a significantly lower risk of ischemic stroke while receiving more vaccinations. A smaller significant lower risk of hemorrhagic stroke after more than 4 times of vaccination.
INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is the third leading global cause of death (1). Although COPD is primarily considered a complex respiratory tract disease characterized by irreversible airway pathological changes, it is also strongly associated with cardiovascular disease (2, 3). Common comorbidities of cardiovascular disease include heart failure, ischemic heart disease, obesity, hypertension, hyperlipidemia, and diabetes (4). Furthermore, factors contributing to the development of cardiovascular disease include systemic inflammation, hypoxemia, oxidative stress, and arterial stiffness (5).

Cardiovascular disease risk and stroke prevalence and incidence are all significantly higher in patients with COPD than in the healthy population (6). Stroke is one of the leading causes of functional disability that results in reduced quality of life in patients with COPD and increases caregiver burden. Notably, long-term stroke outcomes are less favorable in women than in men (7).

Studies have identified associations between seasonal influenza infection and an increased risk of cardiovascular mortality (8, 9). A study on influenza vaccination and reduction in hospitalization for cardiac and stroke events among older adults observed that influenza vaccination had a cardioprotective effect on patients with COPD (10). Therefore, high-risk patients should receive annual influenza vaccination (10–12). Although influenza vaccination may reduce the risk of stroke in patients at high risk for thrombogenicity (13, 14), the effect of influenza vaccination on women with COPD remains unclear. Thus, the present study explored the potential cerebroprotective association between influenza vaccination and the risk of stroke among women with COPD.

MATERIALS AND METHODS

Taiwan’s National Health Insurance (NHI) program, launched in 1995, covers 98% of the population of Taiwan, which exceeds 23 million people. The NHI Research Database (NHIRD), which is maintained by the Health and Welfare Data Science Center, has been extensively analyzed and validated (13–16). In Taiwan, influenza vaccination is provided free of charge to adults aged older than 65 years with high-risk comorbidities (i.e., diabetes, chronic liver disease, cirrhosis, cardiovascular disease, and chronic pulmonary disease). All researchers using the NHIRD was noted in the women with a CHA₂DS₂-VASc score of ≥4. Both interrupted and non-interrupted vaccination was associated with lower risk of stroke occurrence.

Conclusion: Influenza vaccination is associated with a lower risk of total, hemorrhagic, and ischemic stroke among women with COPD, and the association is dose-dependent. However, the findings may be limited by unmeasurable confounders. Further investigations on this subject are warranted.

Keywords: women, COPD, influenza vaccination, ischemic stroke, hemorrhagic stroke

Study Cohort

The patients enrolled in the present study were women recorded as having COPD between January 1, 2001 and December 31, 2011, with all diagnoses corresponding to the codes of the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). The patients must have been ≥65 years of age (N = 6681) and have had at least two COPD diagnoses as inpatients or outpatients (17). The positive predictive value of the ICD-9-CM codes in COPD diagnosis was previously validated (16). Vaccination status was identified by code V048 and/or the use of vaccine (confirmed by drug codes).

Data Selection Process

There were 3768 COPD patients who had vaccination and 2913 COPD patients who did not have vaccination. Propensity score matching (1:1) was performed and the patients were divided into vaccinated (n = 2551) and unvaccinated (n = 2551) groups (Figure 1A and Table 1).

Index Date Definition

To avoid immortal time bias (18), the vaccination date of the patients in the vaccinated group was defined as the index or cohort entry date. In the matched pairs, the participants who did and did not receive vaccination were assigned the same index date (i.e., the vaccination date) for follow-up (Figure 1B).

Definition of Interrupted and Non-interrupted Vaccination

Patients who received more than two vaccinations were divided into interrupted and non-interrupted groups. Interrupted vaccination was defined as receiving more than two vaccinations with any interruption during the follow-up period. Non-interrupted vaccination was defined as receiving more than two yearly vaccinations without any interruption during the follow-up period.

Study Endpoint

The study endpoint was the initial diagnosis of hemorrhagic stroke (ICD-9-CM codes 430, 431, or 432), ischemic stroke (ICD-9-CM codes 433 or 434), or undefined stroke (ICD-9-CM code 436). All patients were followed until stroke diagnosis,
FIGURE 1 | (A) Data selection process. (B) Definition of index date and duration between diagnosis date and vaccination date.
*These variables were not adjusted for in the propensity score matching.

The standardized difference is the difference in the mean or proportions divided by the standard error. Imbalance between groups was defined as an absolute value greater than 0.10 (corresponding to a small effect size).

COPD, chronic obstructive pulmonary disease; HF, heart failure; AMI, acute myocardial infarction; AF, atrial fibrillation; SABA, short-acting beta agonists; SAMA, short-acting muscarinic antagonists; LABA, long-acting beta agonists; ICS, inhaled corticosteroids; RAASi, renin–angiotensin–aldosterone system inhibitors.

COPD-related inpatient visits

Medication	Before matching	After matching
Statin	658 22.59 1279 33.94 0.254	522 20.46 740 29.01 0.199
Aspirin	962 33.02 1829 48.54 0.320	795 31.16 1014 39.75 0.180

Comorbidities

Condition	Before matching	After matching
Asthma	1274 43.73 1953 51.83 0.163	1187 46.53 1289 50.53 0.080
HF	545 18.71 514 13.64 0.138	393 15.41 394 15.44 0.001
AMI	62 2.13 61 1.62 0.038	40 1.57 47 1.84 0.021
AF	419 14.38 506 13.43 0.028	382 14.97 342 13.41 0.045
Ischemic heart disease	1239 42.53 1383 36.70 0.119	946 37.08 968 37.95 0.018
Angina	417 14.32 470 12.47 0.054	290 11.37 329 12.90 0.047
Peripheral vascular disease	357 12.26 367 9.74 0.081	250 9.80 257 10.07 0.056
Hypertension	2053 70.48 2477 65.74 0.102	1645 64.48 1723 67.54 0.065
Diabetes	929 31.89 1106 29.35 0.055	753 29.72 760 29.79 0.006
Depression	148 5.08 135 3.58 0.074	103 4.04 102 4.00 0.002
Renal failure	467 16.03 448 11.89 0.120	358 14.03 335 13.13 0.026
Chronic liver disease	752 25.82 863 22.90 0.068	621 24.34 601 23.66 0.018
Dementia	227 7.79 193 5.12 0.109	135 5.29 169 6.62 0.056
Urbanization level	1844 63.30 2236 59.34 0.081	1593 62.45 1485 58.21 0.087
Suburban	665 22.83 910 24.15 0.031	609 23.87 654 25.64 0.041
Rural	404 13.87 622 16.51 0.074	349 13.68 412 16.15 0.069
Monthly income (NT$)		
0	670 23.00 778 20.65 0.057	650 25.48 561 21.99 0.082
1–33 300	2060 70.72 2765 73.38 0.059	1795 70.36 1859 72.87 0.056
≥33 301	183 6.28 225 5.97 0.013	106 4.16 131 5.14 0.047
COPD medications		
SABA	488 16.75 833 22.11 0.136	486 19.05 549 21.52 0.061
SABA + SAMA	375 12.87 523 13.88 0.030	321 12.58 350 13.72 0.034
LABA (ultra-LABA)	34 1.17 46 1.22 0.005	20 0.78 22 0.86 0.009
LAMA	50 1.72 92 2.44 0.050	47 1.84 57 2.23 0.028
ICS	200 6.87 367 9.74 0.104	188 7.37 237 9.29 0.070
ICS + LABA	264 9.06 467 12.39 0.108	247 9.68 308 12.07 0.077
Total COPD medications		
0	2042 70.10 2420 64.23 0.125	1765 69.19 1646 64.52 0.099
1	539 18.50 757 20.09 0.040	457 17.91 523 20.50 0.066
≥2	332 11.40 591 15.88 0.125	329 12.90 382 14.97 0.060

Medication use

Medication	Before matching	After matching
Aspirin	962 33.02 1829 48.54 0.320	795 31.16 1014 39.75 0.180
Statin	658 22.59 1279 33.94 0.254	522 20.46 740 29.01 0.038
RAASi	1508 51.77 2478 65.76 0.287	1223 47.94 1498 58.72 0.217
Metformin	541 18.59 906 24.04 0.134	464 18.19 545 21.36 0.080

The standardized difference is the difference in the mean or proportions divided by the standard error. Imbalance between groups was defined as an absolute value greater than 0.10 (corresponding to a small effect size).

In propensity score matching, adjustments were made for COPD-related inpatient visits, COPD medications, total COPD medications, age, CHA2DS2-VASc score, asthma, HF, AMI, AF, ischemic heart disease, angina, peripheral vascular disease, hypertension, diabetes, depression, renal failure, chronic liver disease, dementia, urbanization level, and monthly income.

*These variables were not adjusted for in the propensity score matching.
withdrawal from NHI, loss to follow-up, death, or December 31, 2012. Except for those patients diagnosed with stroke, the other data were censored.

Potential Confounders

The potential confounders of the cohort were based on sociodemographic characteristics (age, urbanization level, and monthly income), comorbidities [asthma, heart failure [HF], acute myocardial infarction [AMI], atrial fibrillation [AF], ischemic heart disease, angina, peripheral vascular disease, hypertension, diabetes, depression, renal failure, chronic liver disease, dementia, and CHA²DS²-VASc score (19)], COPD severity and treatment (COPD-related inpatient visits, COPD medications, total number of COPD medications) and medication use (aspirin, statins, renin–angiotensin–aldosterone system inhibitors [RAASi], and metformin). These confounders have been implicated as possible risk factors in stroke (19–21).

Matching Factors

Propensity score matching, which involves assigning levels of 0 and 1 to a treatment variable, given a set of known variables, is used to adjust for potential selection bias, confounding, and differences between treatment groups in observational studies (22). In the present study, the propensity score of each vaccinated patient was estimated by logistic regression with the following 25 potential confounders associated with vaccine introduction: sociodemographic characteristics (age, urbanization level, and monthly income), comorbidities [asthma, HF, AMI, AF, ischemic heart disease, angina, peripheral vascular disease, hypertension, diabetes, depression, renal failure, chronic liver disease, dementia, and CHA²DS²-VASc score (19)], and COPD severity and treatment (COPD-related inpatient visits, COPD medications, and total number of COPD medications). The vaccinated and unvaccinated patients were then matched using propensity scores and a 1:1 nearest neighbor algorithm. As previously suggested (23), the caliper width was set as 0.03 of the pooled standard deviation of the logit of the propensity scores. Finally, the patients were divided into vaccinated (n = 2551) and unvaccinated (n = 2551) groups.

Statistical Analysis

In the present study, categorical data are expressed as numbers and percentages, whereas quantitative data are presented as the means ± standard deviations. The balance of characteristics was assessed by estimating the standardized differences (StDiffs) between the vaccinated and unvaccinated groups. Empirically, an absolute value of StDiffs that exceeds 0.1 (10%) represents a meaningful imbalance in a given variable between two groups. A Cox proportional hazards model was used to calculate the hazard ratios (HRs) to determine the differences in the risk of stroke between the groups. The adjusted HRs (aHRs) were HRs that were adjusted according to the confounder propensity score. In addition to the previously mentioned confounders, the duration between the COPD diagnosis date and index date was also included in the Cox proportional hazard model for aHR analysis. Fine and Gray’s (F&G) survival and regression analyses were used to determine the risk of stroke while competing with death. In this way the F&G method models the subdistribution hazards. The effect estimated using the F&G model shows the current and real differences between the treatment groups in terms of subdistribution hazards ratios. The assumption of proportionality of hazards is still a requirement, but of course it refers to the subdistribution hazards. The F&G model can accommodate time dependent coefficients to model the non-proportionality of hazards. This model can be applied to both the event of interest (stroke) or the competing risk (death). Sensitivity analysis can improve the understanding of the effects of drugs and biologics in epidemiologic database studies (24). Thus, in the present sensitivity analysis, the patients were stratified to estimate the association of age, CHA²DS²-VASc score, COPD-related inpatient visits, asthma, HF, AF, ischemic heart disease, angina, peripheral vascular disease, hypertension, diabetes, renal failure, and chronic liver disease with the incidence of stroke in different models. The cumulative incidence of stroke in the vaccinated and unvaccinated patients with COPD was calculated using the cumulative incidence function. All analyses were performed using SAS, version 9.4 (SAS Institute Inc., Cary, NC, United States). A two-tailed P-value of <0.05 was considered significant.

RESULTS

The baseline characteristics of both groups of patients after propensity score matching are presented in Table 1. As mentioned, 6681 patients were enrolled, and after 1:1 propensity score matching, we divided the patients into vaccinated and unvaccinated groups (each group, n = 2551).

The Association Between Influenza Vaccination and Stroke Occurrence in Different Age Groups and Patients With Varying CHA²DS²-VASc Scores

Table 2 shows the association between influenza vaccination and the risk of stroke in the present cohort, stratified by age and CHA²DS²-VASc score. Ischemic stroke was higher in incidence than hemorrhagic stroke during the follow-up period. Overall, the occurrence of all strokes, hemorrhagic, ischemic, and undefined were significantly lower in the vaccinated group (aHR: 0.60, 95% confidence interval [CI]: 0.54–0.67; aHR: 0.59, 95% CI: 0.43–0.83; aHR: 0.59, 95% CI: 0.52–0.68; and aHR: 0.64, 95% CI: 0.50–0.81, respectively) than in the unvaccinated group (Figures 2A–D). In the Fine and Gray competing risk model, the risk of all strokes remained significantly lower in the vaccinated group while competing with death (Table 2). Influenza vaccination was also associated with a lower risk of hemorrhagic, ischemic, and undefined stroke in patients aged 65 to 74 years. Vaccinated patients aged ≥75 years had a lower risk of all strokes and ischemic stroke than their unvaccinated counterparts.

The occurrence of hemorrhagic, ischemic, and undefined stroke was considerably lower in women with COPD and a CHA²DS²-VASc score of 2–3 after they were vaccinated. Compared with that of women with a CHA²DS²-VASc score of 2–3, the risk of ischemic stroke was significantly lower in
vaccinated women with COPD who had higher CHA₂DS₂-VASc scores.

Association Between the Total Number of Influenza Vaccinations and Stroke Risk

In the main model, a higher number of influenza vaccinations over the follow-up period was associated with a lower risk of stroke occurrence in women with COPD overall (aHR: 1.08, 95% CI: 0.92–1.26; aHR: 0.70, 95% CI: 0.60–0.82; and aHR: 0.32, 95% CI: 0.26–0.38 for patients vaccinated 1, 2 to 3, and ≥4 times, respectively; Table 3 and Figure 3A). Patients with a history of asthma, HF, AF, ischemic heart disease, angina, hypertension, diabetes, renal failure, and chronic liver disease had a reduced risk of developing all types of stroke after they received more vaccinations. Notably, a considerably lower risk of all types of stroke was detected in patients without such history after they received more vaccinations. In patients with a CHA₂DS₂-VASc score 2–3, significantly lower risk of stroke occurred after receiving more than four times of vaccination was observed. In patients with a CHA₂DS₂-VASc score ≥4, a substantially lower risk of all types of stroke was observed after more than two vaccinations, and further reductions in risk were noted in subsequent vaccinations, with a significant trend (Table 3). The patients with no COPD-related inpatient visits had a substantially lower risk of all types of strokes after receiving more than two vaccinations. The same results were noted in the patients with one COPD-related inpatient visit. Among patients with two or more COPD-related inpatient visits, the risk of all types of strokes only decreased after they received four or more vaccinations (Table 3). In patients who did not have influenza during the follow-up period, a substantially lower risk of all types of stroke was observed after vaccination. In patients who had influenza infection during the follow-up period, a significant trend of lower risk of all types of stroke was observed after vaccination (Table 3).

Supplementary Tables 1–3 present the sensitivity analysis results of the total number of vaccinations in patients with hemorrhagic, ischemic, and undefined stroke, respectively. The main model analysis revealed that patients who received 2 to 3 and ≥4 vaccinations had a lower risk of developing these types of strokes (Supplementary Tables 1–3 and Figures 3B–D). Among patients with no COPD-related inpatient visits, the risk of hemorrhagic stroke decreased after they received more than 4 vaccinations. Following multiple vaccinations, patients without HF, ischemic heart disease, angina, peripheral vascular disease, diabetes, renal failure, or chronic liver disease were less likely to develop hemorrhagic stroke. After receiving more than four vaccinations, patients with hypertension had a reduced risk of hemorrhagic stroke. All the patients had a reduced risk or developed ischemic stroke after receiving a higher number of vaccinations, regardless of the presence of those comorbidities, except patients with angina. Among women with a CHA₂DS₂-VASc score ≥4, the risk of hemorrhagic stroke decreased following more than 4 times of vaccinations, but the risk of ischemic stroke decreased after receiving more than two times of vaccinations. Among patients with a CHA₂DS₂-VASc score 2–3, the risk of hemorrhagic stroke did not decrease despite receiving more than four times of vaccination. A lower risk of ischemic stroke and undefined stroke occurrence was observed in patients with a CHA₂DS₂-VASc score of 2 to 3, or ≥4 after they received 4 or more vaccinations.

Analysis revealed that both interrupted and non-interrupted influenza vaccinations (Supplementary Tables 4–6) were associated with a lower risk of all strokes. In the sensitivity analysis, the risk of stroke was significantly lower after receiving more vaccination regardless of influenza infection (Table 3 and Supplementary Tables 1–3). In mediator analysis of present study, there were no significant decreasing influenza infection after influenza vaccination (β = −0.129) nor significant occurrence of stroke after influenza infection (β = 0.127). However, there was a significant stroke risk reduction after influenza vaccination (β = −0.567**, p < 0.001). The results of mediator analysis suggested that influenza infection was not a mediator effect in the present study (Supplementary Figure).

DISCUSSION

Main Findings

The main findings of the present nationwide population-based propensity-matched cohort study are as follows: (1) Overall, women with COPD had a potentially lower risk of developing any of the types of stroke after receiving influenza vaccination. A similar association between a lower risk of stroke and influenza vaccination was found in elderly (≥65 years-old) and late elderly (≥75 years-old) women (2). The association between influenza vaccination and a lower risk of stroke in women with COPD...
TABLE 2 | Risk of stroke in the unvaccinated and vaccinated groups.

Study Cohort (N = 5102)	Unvaccinated (total follow-up duration: 10028.9 person-years)	Vaccinated (total follow-up duration: 12858.0 person-years)	HR (95% CI)	aHR† (95% CI)	Subdistribution HR‡ (95% CI)		
Death Before Event	**Number of Events**	**Incidence Rate (per 10^5 person-years)**					
Entire cohort							
Stroke	596	770	7677.8 (7135.5, 8220.1)	525	537	4176.4 (3823.1, 4529.6)	
Hemorrhagic stroke	909	897.4 (712.0, 1082.8)	705	61	474.4 (355.4, 593.5)	0.57 (0.45, 0.76)***	
Ischemic stroke	716	5145.1 (4701.2, 5589.1)	606	357	2776.5 (2488.5, 3064.5)	0.58 (0.49, 0.64)***	
Undefined stroke	874	1635.3 (1385.0, 1885.6)	688	119	925.5 (759.2, 1091.8)	0.60 (0.47, 0.76)***	
Death Before Event							
Age, 65–74 years							
Stroke	237	395	6468.6 (5830.7, 7106.5)	178	283	3569.2 (3153.4, 3985.1)	
Hemorrhagic stroke	340	501.8 (3918.3, 1045.8)	241	31	391.0 (253.3, 528.6)	0.50 (0.32, 0.78)***	
Ischemic stroke	287	241.8 (2617.3, 4636.3)	208	193	2434.1 (2090.7, 2777.6)	0.61 (0.50, 0.73)***	
Undefined stroke	320	93	1523.0 (1213.5, 1832.5)	233	59	744.2 (554.2, 934.0)	0.51 (0.37, 0.71)***
Age, ≥75 years							
Stroke	358	375	9560.2 (8592.6, 10527.9)	347	254	5153.1 (4153.9, 5786.8)	0.57 (0.48, 0.67)***
Hemorrhagic stroke	569	40	1019.8 (703.7, 1335.8)	464	30	608.6 (390.8, 826.4)	0.62 (0.38, 0.99)***
Ischemic stroke	429	264	6730.4 (5918.5, 7542.3)	398	164	3327.2 (2818.0, 3836.4)	0.52 (0.43, 0.63)***
Undefined stroke	554	71	1810.1 (1389.0, 2231.1)	453	60	1217.3 (909.3, 1525.3)	0.71 (0.51, 1.01)
CHA2DS2-VASc = 2–3							
Stroke	224	262	5560.2 (4886.9, 6233.4)	154	159	2861.4 (2416.6, 3306.2)	0.53 (0.43, 0.64)***
Hemorrhagic stroke	287	40	848.9 (588.5, 1111.9)	187	21	377.9 (216.3, 539.6)	0.45 (0.27, 0.77)***
Ischemic stroke	255	168	3565.3 (3028.2, 4104.4)	168	106	1907.6 (1544.5, 2270.8)	0.55 (0.43, 0.70)***
Undefined stroke	294	54	1146.0 (840.3, 1451.6)	185	32	575.9 (376.3, 775.4)	0.52 (0.33, 0.80)***
CHA2DS2-VASc ≥ 4							
Stroke	371	508	9554.6 (8723.7, 10385.5)	371	378	5177.2 (4655.2, 5699.1)	0.57 (0.50, 0.65)***
Hemorrhagic stroke	622	50	940.4 (679.7, 1201.1)	518	40	547.8 (378.1, 717.6)	0.61 (0.40, 0.93)***
Ischemic stroke	461	348	6545.3 (5887.6, 7233.0)	438	251	3437.7 (2012.4, 3863.0)	0.55 (0.47, 0.65)***
Undefined stroke	580	110	2068.9 (1682.3, 2455.5)	501	87	1191.6 (941.2, 1442.0)	0.61 (0.46, 0.82)***

†Adjusted for COPD-related inpatient visits, COPD medications, total COPD medications, age, CHA2DS2-VASc score, asthma, HF, AMI, AF, ischemic heart disease, angina, peripheral vascular disease, hypertension, diabetes, depression, renal failure, chronic liver disease, dementia, level of urbanization, monthly income, and the use of aspirin, statins, RAASi, and metformin, duration between the COPD diagnosis date and index date.

‡Subdistribution hazard model was used as a sensitivity analysis to account for death as a competing risk.

*P < 0.05; **P < 0.01; ***P < 0.001.

CI, confidence interval; HR, hazard ratio; aHR, adjusted HR; HF, heart failure; AMI, acute myocardial infarction; AF, atrial fibrillation; RAASi, renin–angiotensin–aldosterone system inhibitors.
Table 3: Sensitivity analysis of the adjusted hazard ratios of vaccination in stroke risk reduction.

Subgroup effects	Unvaccinated	Vaccinated	P for Trend		
	aHR (95% CI)				
	1	2–3	≥4		
Unadjusted	1.00	1.06 (0.90, 1.24)	0.68 (0.59, 0.79)***	0.29 (0.24, 0.35)***	<0.001
Main model	1.00	1.08 (0.92, 1.26)	0.70 (0.60, 0.82)***	0.32 (0.26, 0.38)***	<0.001
Competing Risk model	1.00	0.94 (0.80, 1.12)	0.73 (0.63, 0.85)***	0.39 (0.33, 0.46)***	<0.001

Subgroup effects

Asthma	No	Yes	0.97 (0.81, 1.17)	0.76 (0.65, 0.90)***	0.32 (0.25, 0.42)***	<0.001
Peripheral vascular disease	No	Yes	0.93 (0.75, 1.16)	0.75 (0.62, 0.91)**	0.38 (0.31, 0.47)**	<0.001
Hypertension	No	Yes	0.89 (0.74, 1.06)	0.75 (0.62, 0.87)***	0.37 (0.31, 0.45)***	<0.001
Diabetes	No	Yes	0.95 (0.80, 1.15)	0.72 (0.62, 0.84)***	0.37 (0.31, 0.44)***	<0.001
Renal failure	No	Yes	1.49 (0.96, 2.30)	0.65 (0.41, 1.04)	0.53 (0.32, 0.88)*	0.005
Chronic liver disease	No	Yes	1.00 (0.48, 1.38)	0.84 (0.53, 1.34)	0.68 (0.39, 1.18)	0.153
Influenza infection	No	Yes	1.00 (0.80, 1.15)	0.72 (0.62, 0.84)***	0.37 (0.31, 0.44)***	<0.001

P < 0.05; **P < 0.01; *P < 0.001.

COPD: chronic obstructive pulmonary disease; CI, confidence interval; aHR, adjusted hazard ratio; HF, heart failure; AMI, acute myocardial infarction; AF, atrial fibrillation; RAASi, renin–angiotensin–aldosterone system inhibitors.

The main model was adjusted for COPD-related inpatient visits, COPD medications, total COPD medications, age, CHA2DS2-VASc score, asthma, HF, AMI, AF, ischemic heart disease, angina, peripheral vascular disease, hypertension, diabetes, depression, renal failure, chronic liver disease, dementia, urbanization level, monthly income, and the use of aspirin, statins, RAASi, and metformin, duration between the COPD diagnosis date and index date.

A subdistribution hazard model was used as a sensitivity analysis to account for death as a competing risk.
not have influenza. An association was observed in both patients who did and did not have influenza after receiving vaccination. In addition, a potential protective effect remained significantly lower among older adults aged ≥75 years after receiving vaccination. Women with COPD and CHA2DS2-VASc scores of ≥4 all had a significantly lower risk of stroke after receiving more than two influenza vaccinations.

Association Between Influenza Vaccination and Stroke in Women With Chronic Obstructive Pulmonary Disease

Influenza vaccination is strongly associated with a reduced risk of ischemic and hemorrhagic stroke (10, 13, 14, 25). In a recent nationwide observational study from Spain (26), a significantly higher risk of in-hospital mortality and mechanical ventilation usage was noted among women with COPD who were admitted because of ischemic stroke. Therefore, decreasing the risk of stroke in women with COPD is important. However, few studies have addressed the benefits of influenza vaccination in women with COPD.

The literature indicates the existence of sex differences in stroke. In general, women who have had a stroke are older and have more disabilities (7). Experimental studies have demonstrated the potential cardioprotective effect of estrogen (27). Therefore, postmenopausal women have a higher risk of stroke than premenopausal women (28). In Taiwan, influenza vaccination is provided free of charge to patients aged ≥65 years with high-risk comorbidities, which explains why the majority of the patients in the present study were postmenopausal. After adjustment for comorbidities, medications, urbanization level, monthly income, COPD-related inpatient visits, duration between COPD diagnosis date and vaccination date and age, influenza vaccination remained associated with a lower risk of all types of stroke. Furthermore, the risk of stroke remained significantly lower among older adults aged ≥75 years after receiving vaccination. In addition, a potential protective association was observed in both patients who did and did not have influenza.

Possible explanations are as follows: First, viral infection may trigger the thrombogenic process and induce coagulopathy (29). Influenza vaccination prevents postviral infection thrombus and hemorrhage. In addition, influenza infection may contribute to carotid atherosclerotic plaque inflammation and the eventual development of acute vascular events (30). Furthermore, lowering the risk of influenza infection prevents relevant consequences such as elevated sympathetic tone, hypoxemia, and endothelial dysfunction (31). Second, in a study on apoE knockout mice, influenza vaccination promoted the formation of smaller and more stable atherosclerotic plaques through an immunoresponse (32). Moreover, decreasing levels of interferon gamma, interleukin 2, and tumor necrosis factor alpha, as well as the activation of the bradykinin 2 receptor signaling pathway, constitute potential mechanisms underlying the stabilization of atherosclerotic plaques by influenza vaccination (32, 33).

As mentioned, the association between vaccination and a lower risk of stroke observed in the present study appeared to be dose-dependent and did not differ depending on whether multiple vaccinations were administered consecutively or were interrupted. A higher number of vaccinations was significantly associated with a reduction in all types of stroke, a result in line with that of another study (34). A systematic review and meta-analysis indicated that the protective effects of the influenza vaccine against different types of viruses may be less notable following repeated vaccinations (35). However, annual vaccination is still recommended for the prevention and control of influenza infections (36). The fact that vaccine effectiveness in the United States during the 2017–2018 influenza season was only 38% (37) suggests that receiving vaccination only once may not be sufficient to prevent contracting the virus. With more than one vaccination, the risk of influenza infection may also decrease, as may the risk of further cardiovascular complications, including stroke.

We further investigated the effect of the CHA2DS2-VASc score in women with COPD. Higher CHA2DS2-VASc scores were associated with a higher risk of ischemic stroke in patients with COPD, even those without AF (19). Notably, although the sensitivity analysis yielded significant results for both ischemic and hemorrhagic stroke, vaccination had a stronger risk reduction effect on ischemic stroke in the patients with CHA2DS2-VASc scores of ≥2. Because most hemorrhagic strokes are caused by ruptured cerebral vessels resulting from uncontrolled hypertension and abnormal cerebrovascular
structure, the protective effect of influenza vaccination with plaque stabilization (32, 33) may be diminished in patients with these conditions. However, among female COPD patients with hypertension, the potentially risk reduction of hemorrhagic stroke was observed in the present study. Prospective studies are warranted to confirm these suppositions.

In addition, a significantly lower risk of stroke was observed in the patients with more inpatient visits because of the acute deterioration of their condition after they received four vaccinations, which is a greater number of vaccinations than that required for a protective effect against stroke in the patients with fewer inpatient visits. Thus, acute exacerbation in patients with COPD must be prevented to reduce complications.

In Taiwan, annual influenza vaccination constitutes a preventive strategy against an influenza epidemic. Previous nationwide studies conducted in Taiwan have indicated that influenza vaccination has benefits on cardiovascular and neurological outcomes (10, 14, 38). Overall, the present findings serve as a reference for policy-making with regard to annual influenza vaccination, especially in individuals with high-risk comorbidities.

Limitations
This study has several limitations. First, its retrospective nature limits the generalizability of the findings; prospective randomized controlled trials are required to confirm the present results. Second, the NHIRD does not contain definite information on the severity classification of COPD as indicated by physical activity, smoking status, alcohol intake, body mass index, spirometry test results, and other laboratory data. We performed propensity matching to minimize the impact of this limitation (22). Third, healthy user bias may have been present (39). Therefore, we adjusted for sociodemographic characteristics, such as urbanization and monthly income, as potential confounders. In addition, because influenza vaccination in Taiwan was provided free of charge to the members of our cohort, vaccination refusal caused by the inability to pay for the procedure seems unlikely; as mentioned, the influenza vaccine coverage rate among older adults in Taiwan has reached 49% in recent years (40). Fourth, the data of the present study were collected until the end of 2011, and future studies enrolled more recent data to validate the results of the present study. Moreover, although we controlled for and minimized the bias by propensity score matching and sensitivity analysis, the bias from the residual unmeasured confounders and healthy user bias could still present. Fifth, the patients enrolled in the present study were based on the ICD-9 diagnosis. Although the positive predictive rate and accuracy had been validated before (16, 17), the potential bias from patient selection process remained exist, which could influence the result of the present study.

In conclusion, influenza vaccination was associated with a considerably lower risk of ischemic, hemorrhagic, and undefined stroke in women with COPD, and the association appeared to be dose-dependent. Among women with a CHA2DS2-VASc score of ≥2, the association between vaccination and hemorrhagic stroke risk was not as substantial as ischemic stroke. Further investigations are required to determine the potential mechanism of influenza vaccination against stroke in this patient population.

DATA AVAILABILITY STATEMENT
The data supporting the findings of this research were sourced from NHIRD in Taiwan. Owing to the legal restrictions imposed by the Government of Taiwan related to the Personal Information Protection Act, the database cannot be made publicly available.

ETHICS STATEMENT
The present study protocol was approved by the NHIRD research committee and the Taipei Medical University Joint Institutional Review Board (TMU-JIRB No. N201804043).

AUTHOR CONTRIBUTIONS
W-RH and J-CL are the guarantors of the content of the manuscript and including the data and analysis. C-CCChen conceived and designed the study and drafted the manuscript. Y-AF was responsible for data collection. Y-AF, C-HL, W-RH, C-CChiu, T-YY, M-HH, M-HL, H-TY, and Y-HW analyzed and interpreted the data. All authors reviewed the manuscript and approved its submission.

FUNDING
This work was financially supported of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan, and granted by the Taiwan Ministry of Health and Welfare (MOHW109-TDU-B-212-114007 and MOHW110-TDU-B-212-124007), and 109FRP-07 from the Taipei Medical University- Shuang Ho Hospital, Ministry of Health and Welfare.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2022.811021/full#supplementary-material

REFERENCES
1. López-Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology. (2016) 21:14–23. doi: 10.1111/resp.12660
2. Rabe KF, Hurst JR, Suissa S. Cardiovascular disease and COPD: dangerous liaisons? Eur Respir Rev. (2018) 27:180057. doi: 10.1183/16000617.0057-2018
3. Donaldson GC, Hurst JR, Smith CJ, Hubbard RB, Wedzicha JA. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest. (2010) 137:1091–7. doi: 10.1378/chest.09-2029
4. Smith MC, Wrobel JP. Epidemiology and clinical impact of major comorbidities in patients with COPD. Int J Chron Obstruct Pulmon Dis. (2014) 9:871–88. doi: 10.2147/copd.s49621

Chen et al. Stroke and Women With COPD
25. Grau AJ, Fischer B, Barth C, Ling P, Lichy C, Buggle F. Influenza vaccination is associated with a reduced risk of stroke. Stroke. (2005) 36:1501–6. doi: 10.1161/01.str.0000017067.45136.80

26. de Miguel-Diez J, López-de-Andrés A, Jiménez-Garcia R, Hernández-Barrera V, Jiménez-Trujillo I, J Z, et al. Sex differences in the incidence and outcomes of COPD patients hospitalized with ischemic stroke in Spain: a population-based observational study. Int J Chron Obstruct Pulmon Dis. (2021) 16:1851–62. doi: 10.2147/copd.s311826

27. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med. (1999) 340:1801–11. doi: 10.1056/nejm199906103402306

28. Bogossianlky J, Pierre P. Ischemic stroke in patients under age 45. Neurol Clin. (2019) 10.1136/eurheartj-2015-307691

29. Goejenbier M, van Wissen M, van der Weg M, Jong E, Gerdes VE, Meijers JC, et al. Review: Viral infections and mechanisms of thrombosis and bleeding. J Med Virol. (2012) 84:1680–96. doi: 10.1002/jmv.23554

30. Keller TT, van der Meij J, Teeling R van der Slujs K, Idu MM, Rimmelzaan GF, et al. Selective expansion of influenza A virus-specific T cells in symptomatic human carotid artery atherosclerotic plaques. Stroke. (2008) 39:174–9. doi: 10.1161/strokeaha.107.491282

31. Vardeny O, Solomon SD. Influenza vaccination: a one-shot deal to reduce cardiovascular events. Eur Heart J. (2016) 38:334–7. doi: 10.1093/eurheartj/ehw560

32. Bermúdez-Fajardo A, Oviedo-Orta E. Influenza vaccination promotes stable atherosclerotic plaques in apoE knockout mice. Atherosclerosis. (2011) 217:97–105. doi: 10.1016/j.atherosclerosis.2011.03.019

33. Veljkovic V, Glišić S, Veljković N, Bojić T, Dietrich U, Perovic VR, et al. Influenza vaccine as prevention for cardiovascular diseases: possible molecular mechanism. Vaccine. (2014) 32:6569–75. doi: 10.1016/j.vaccine.2014.07.007

34. Ahmed AE, Nicholson KG, Nguyen-Van-Tam JS. Reduction in mortality associated with influenza vaccine during 1989–90 epidemic. Lancet. (1995) 346:591–5. doi: 10.1016/s0016-6736(95)91434-3

35. Ramsay LC, Buchan SA, Stirling RG, Cowling BJ, Fung S, Kwong JC, et al. The impact of repeated vaccination on influenza vaccine effectiveness: a systematic review and meta-analysis. BMC Med. (2019) 17:9. doi: 10.1186/s12916-018-1239-8

36. Groshkopf LA, Alyanek A, Broder KR, Blanton LH, Fry AM, Jernigan DB, et al. Prevention and Control of seasonal influenza with vaccines: recommendations of the advisory committee on immunization practices – United States, 2020–21 influenza season. MMWR Recomm Rep. (2020) 69:1–24. doi: 10.15585/mmwr.rr6908a1

37. Rolfe MA, Flannery B, Chung R, O’Halloran A, Garg S, Belongia EA, et al. Effects of influenza vaccination in the United States during the 2017–2018 influenza season. Clin Infect Dis. (2019) 69:1845–53. doi: 10.1093/cid/ciz075

38. Liu JC, Hsu YP, Kao PF, Hao WR, Lin CF, et al. Influenza vaccination reduces hemorrhagic stroke risk in patients with atrial fibrillation: a population-based cohort study. Stroke. (2019) 50:2258–63. doi: 10.1161/strokeaha.119.021480

39. Brugnoli S, Serrano E, del Cerro J, Rodriguez-Artalejo F, Wannamethee G, et al. Effect of influenza vaccination on the risk of stroke and stroke subtypes in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. (2018) 13:3055–63. doi: 10.2147/copd.s174265

40. Kortenhoff J, Jäger P, Voigt P, Okonko OI, Linker RA, et al. Effect of influenza vaccination on acute myocardial infarction and mortality from acute myocardial infarction. J Intern Med. (2015) 383:198–206. doi: 10.1111/joimedi.12345

41. Vorstman J, van Heckeren B, Leeden RJ, van der Steen J, Bax J, et al. Association of influenza vaccination with acute ischemic stroke in patients with chronic obstructive pulmonary disease. Crit Care. (2012) 16:R35. doi: 10.1186/cc10653

42. Schneeberger S, Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol Drug Saf. (2006) 15:291–303. doi: 10.1002/pds.1200

43. Grau AJ, Fisher B, Barth C, Ling P, Lichy C, Buggle F. Influenza vaccination is associated with a reduced risk of stroke. Stroke. (2005) 36:1501–6. doi: 10.1161/01.str.0000170674.45136.80