Anomalous diffusion in disordered media and random quantum spin chains

Ferenc Iglói1,2 and Heiko Rieger3,4

1 Research Institute for Solid State Physics, H-1525 Budapest, P.O.Box 49, Hungary2 Institute for Theoretical Physics, Szeged University, H-6720 Szeged, Hungary3 Institut für Theoretische Physik, Universität zu Köln, 50923 Köln, Germany4 HLRZ, Forschungszentrum Jülich, 52425 Jülich, Germany

(February 27, 1998)

Using exact expressions for the persistence probability and for the leading eigenvalue of the Focker-Planck operator of a random walk in a random environment we establish a fundamental relation between the statistical properties of anomalous diffusion and the critical and off-critical behavior of random quantum spin chains. Many new exact results are obtained from this correspondence including the space and time correlations of surviving random walks and the distribution of the gaps of the corresponding Focker-Planck operator. In turn we derive analytically the dynamical exponent of the random transverse-field Ising chain in the Griffiths-McCoy region.

05.50.+q, 64.60.Ak, 68.35.Rh

Ultraslow dynamics is a common feature of low-dimensional systems with quenched disorder in particular in the vicinity of a critical point. One of the well known examples in this respect is the one-dimensional diffusion process in a random media, when - in the absence of an average drift δ_{RW} - the mean-square displacement grows very slowly like

$$\langle [X^2(t)] \rangle_{av} \sim \ln^4 t \quad (1)$$

in contrast to the normal diffusive behavior $\langle X^2(t) \rangle \sim t$ in the homogeneous case. The diffusion process remains anomalous for sufficiently small average drifts $0 < \delta_{RW} < \delta_{RW}^*$, when the average displacement has an algebraic time dependence:

$$\langle [X(t)] \rangle_{av} \sim t^\mu , \quad (2)$$

where the exponent $0 < \mu = \mu(\delta_{RW}) \leq 1$ is a continuous function of the drift δ_{RW}.

Another class of systems with ultraslow dynamical properties is represented by random quantum spin chains at very low temperatures. For example the asymptotic decay of the zero-temperature (imaginary time) autocorrelation function $G(t) = \langle [\sigma_i^x(t)\sigma_i^x(1)] \rangle_{av}$ at the quantum critical point ($\delta = 0$) is given by

$$G(t, \delta = 0) \sim [\ln t]^{-2x_m} , \quad (3)$$

where x_m is the anomalous dimension of the average magnetization. Away from the critical point, in the Griffiths-McCoy region with $0 < \delta \leq \delta_0$ the decay of the autocorrelations is of a power-low form

$$G(t, \delta) \sim t^{-1/z} , \quad (4)$$

where the dynamical exponent $z(\delta) \geq 1$ is a continuous function of the quantum control-parameter δ.

Comparing the basic dynamical properties of random walks in disordered environments and of random quantum spin chains one can easily notice close similarities, which hold both in the critical and off-critical situations. A connection between the critical properties of directed walks and quantum spin chains is known for quite some time $\cite{3}$. It was also demonstrated recently that many surprising properties of the one-dimensional random transverse-field Ising model (RTIM), a prototype of random quantum spin chains, can be obtained very simply through random walk arguments $\cite{4}$.

In this Letter we go further and show that behind the similarities observed before there is a deep connection between the statistical properties of anomalous diffusion and the critical and off-critical behavior of the RTIM. We demonstrate this relation by comparing exact expressions for the random walk (RW) and that of the RTIM. In particular we show that the persistence probability of the RW and the surface magnetization of the RTIM have analogous forms and that the expressions for the leading eigenvalue of the Focker-Planck (FP) operator of the RW and the gap of the Hamiltonian of the RTIM are closely related to each other. We use then this correspondence to obtain new exact relations for the two systems, among others we present analytical results about the dynamical exponent $z(\delta)$ in $\cite{4}$.

We start by considering the one-dimensional random walk with nearest neighbor hopping, which is characterized by the transition probabilities $w_{i,i\pm 1} = w(i \rightarrow i \pm 1)$ for a random walker to jump from site i to site $i \pm 1$. Here we are particularly interested in the general case, in which the transition probabilities are not necessarily symmetric, i.e. $w_{i,i+1} \neq w_{i+1,i}$. Moreover, the random walker is confined to a finite number of sites $i = 1, \ldots, L$. At the two ends of this interval, i.e. at $i = 0$ and $i = L + 1$, we put absorbing walls, which is simply modelled by setting $w_{0,1} = w_{L+1,L} = 0$ (i.e. the walker cannot jump back into the system once landed on 0 or $L + 1$). The time evolution of the probability distribution of the walk $P_{i,j}(t)$, which is the probability for the walker to be at time t on site j once started at time 0 on site i, is fully determined by the Master-equation
\[\frac{d}{dt} P_{r}(t) = M \cdot P_{r}(t). \]

Here \(P_{r}(t) = (P_{r0}(t), P_{r1}(t), \ldots, P_{rL}(t), P_{r,L+1}(t))^T \) and the transition matrix or the Focker-Planck operator is \((M)_{i,j} = \omega_{i,j} \) for \(i \neq j \) and \((M)_{i,i} = -\sum_{j} \omega_{i,j} \) while the initial condition is \(P_{r,j}(0) = \delta_{i,j} \). The eigenvalue problem of the FP operator in (3) is defined by

\[M u_k = \lambda_k u_k, \quad u_k^T M = u_k^T \lambda_k, \]

and all physical properties of the model can be expressed in terms of the left and right eigenvectors \(u_k \) and \(\bar{u}_k \), respectively, and the eigenvalues \(\lambda_k \). For instance the probabilities \(P_{r,j}(t) \) are given by

\[P_{r,j}(t) = \sum_{k} u_k(i)v_k(j) \exp(\lambda_k t). \]

With adsorbing boundaries the two leading eigenvalues are zero and the corresponding eigenvectors are \(v_1(i) = \delta_{L+i+1,i}, \)

\[u_1(0) = 0 \]

\[u_1(i) = u_1(1) \left[1 + \sum_{j=1}^{i-1} \prod_{l=1}^{j} \frac{\omega_{l+1,i}}{\omega_{l+1,j}} \right], \quad i = 2, 3, \ldots, L + 1, \]

while for the other zero mode \(v_2(i) = v_1(L + 1 - i) \) and similarly \(u_2(i) = u_1(L + 1 - i) \). The value of \(u_1(1) \) in (8) is fixed by the normalization condition \(u_1(L + 1) = 1 \).

We consider first a quantity that gained considerable interest recently in related models for anomalous diffusion (11): The persistence probability \(p_{pr}(L,t) \), which is the probability that a walker starting at site \(i \) does not cross its starting point until time \(t \). Working with adsorbing sites at \(i = 0 \) and \(i = L + 1 \) we have \(p_{pr}(L,t) = P_{r,L+1}(t) \) and its long time limit \(p_{pr}(L) = \lim_{t \to \infty} p_{pr}(L,t) \) is simply given, via (3),

\[p_{pr}(L) = u_1(1)v_1(L + 1), \]

where we used the fact that there is no contribution from the second zero mode, since \(v_2(L + 1) = 0 \). Now with eq(8) we have the simple exact relation:

\[p_{pr}(L) = \left(1 + \sum_{i=1}^{L} \prod_{j=1}^{i} \frac{\omega_{j+1,i}}{\omega_{j+1,j}} \right)^{-1}. \]

Note that \(p_{pr}(L) \) is the total fraction of walkers adsorbed by the right wall \((i = L + 1)\) without ever having crossed the starting point.

In a homogeneous medium with \(\omega_{i,i+1} = \omega_{i+1,i} = \text{const} \) we have \(p_{pr}^{\text{hom}} = (L + 1)^{-1} \), whereas in an inhomogeneous environment with symmetric transition probabilities \(\omega_{i,i+1} = \omega_{i+1,i} \),

\[p_{pr}^{\text{sym}}(L) = \left[1 + \sum_{i=1}^{L} \frac{\omega_{1,0}}{\omega_{i+1,i}} \right]^{-1} \propto \frac{D}{L}, \]

where \(D = \left[L \sum_{i=1}^{L} \omega_{i,i+1}^{-1} \right]^{-1} \) is the diffusion constant \([1]\). Thus the average persistence probability in the random symmetric case scales as \([p_{pr}^{\text{sym}}]_{av} \propto [D]_{av} / L \), similarly to the homogeneous case. From here on we use \([\cdots]_{av} \) to denote average over quenched disorder.

In the general case, with non-symmetric transition probabilities we define the control parameter:

\[\delta_{\text{RW}} = \frac{[\ln w_{\to}]_{av} - [\ln w_{\leftarrow}]_{av}}{\text{var}[\ln w_{\to}] + \text{var}[\ln w_{\leftarrow}]}, \]

where \(w_{\to} \) (\(w_{\leftarrow} \)) stands for transition probabilities to the right (left), i.e. \(w_{i,i+1} (w_{i+1,i}) \). For \(\delta_{\text{RW}} < 0 \) there is an average drift of the walk towards the adsorbing site at \(i = L + 1 \), therefore the persistence will have a finite value in the large system limit: \(\lim_{L \to \infty} [p_{pr}(L,\delta_{\text{RW}})]_{av} > 0 \), whereas it goes to zero for \(\delta_{\text{RW}} \geq 0 \).

Before we proceed with the analysis of the persistence probability (3) we derive a similar formula for the largest non-zero eigenvalue of the FP-operator, the absolute value of which we denote by \(\lambda_{\text{min}} \). According to the relation in (3) the time-scale \(t_{\text{c}} \) of the diffusion process is set by \(t_{\text{c}} \sim \lambda_{\text{min}}^{-1} \). It is technically easier to estimate \(\lambda_{\text{min}} \) using mixed boundary conditions, which will, however, not change the scaling behavior of \(\lambda_{\text{min}} \): at \(i = 0 \) we assume an adsorbing wall as before, whereas at \(i = L \) we impose a reflecting boundary by setting formally \(w_{L,L+1} = 0 \). Now, due to different symmetry of the problem there is only one zero mode of the FP-operator, and the second smallest eigenvalue in modulus will be \(\lambda_{\text{min}} \). To determine \(\lambda_{\text{min}} \) we use a perturbational method. First, we express the eigenvalue problem in eq(3) as

\[-\tilde{u}(i)w_{i,i-1} + \tilde{u}(i+1)w_{i+1,i} = -u(i)\lambda_{\text{min}}, \]

where \(w_{L,L+1} = 0 \) and \(\tilde{u}(i) = u(i) - u(i-1), i = 1, 2, \ldots, L \) in terms of the components of the left eigenvector \(u \equiv u_{\text{min}} \) and \(u(0) = 0 \). Then, keeping in mind that we are interesting in situations when \(\lambda_{\text{min}}(L) \) is a rapidly vanishing function of \(L \) we neglect r.h.s. of eq(12) and derive an approximate expression for the left eigenvector from the first \(L - 1 \) equations of (12). Using this result we obtain an estimate for \(\lambda_{\text{min}} \) from the last equation of (12):

\[\lambda_{\text{min}} \approx \frac{\tilde{u}(L)}{u(L)} w_{L,L-1} = \frac{u(1)}{u(L)} w_{L,L-1} \cdot \prod_{j=1}^{L-1} w_{j+1,j+1}. \]

which can be transformed into the final form by noticing that \(u(1)/u(L) = p_{pr}(L) \) in eq(3):

\[\lambda_{\text{min}} \sim p_{pr}(L) w_{L,L-1} \cdot \prod_{j=1}^{L-1} w_{j+1,j+1}. \]

The scaling properties of \(\lambda_{\text{min}} \) in (3) as well as the persistence probability \(p_{pr}(L) \) in (4) now can easily be
derived by establishing a correspondence of these quantities with the energy gap and surface magnetization, respectively, of the random transverse-field Ising model in one dimension defined by the Hamiltonian:

$$H = - \sum_{i=1}^{L-1} J_i \sigma_i^x \sigma_{i+1}^x - \sum_{i=1}^L h_i \sigma_i^z.$$

(15)

Here the σ_i^x, σ_i^z are Pauli matrices at site i and the J_i exchange couplings and the h_i transverse fields are random variables. The RTIM in (15) has received much attention recently and as was shown in there are simple expressions for the gap of the Hamiltonian $\Delta(L)$ of the RTIM in terms of the couplings and fields. Comparing those with our results in eqs(1) and (4) we can set up the following correspondencies

$$u_{i+1} \rightarrow J_i^2, \quad u_{i-1} \rightarrow h_i^2, \quad \delta_{\text{RW}} \rightarrow \delta, \quad \rho_{\text{pr}}(L) \rightarrow m_\rho^2(L), \quad \lambda_{\text{min}}(L) \rightarrow \Delta(L), \quad \mu(\delta_{\text{RW}}) \rightarrow 1/\xi(\delta).$$

(16)

Consequently similar relations hold for the average quantities, when the transition probabilities (or equivalently the fields and the couplings) follow the same random modulation. In the following we use the correspondencies in (16) to derive new results.

i) At the critical point with $\delta_{\text{RW}} = 0$, which corresponds to the Sinai’s walk [1], the distribution of the leading eigenvalues of the FP-operator is very broad, $\lambda_{\text{min}}(L)$ scales according to

$$\lambda_{\text{min}}(L) \sim \exp(-\text{const} \cdot L^{1/2}), \quad \delta_{\text{RW}} = 0,$$

(17)

similarly to the analogous result for the energy gap of the RTIM [2]. Note that this scaling relation (17), which is consistent with the known relation between relevant time- and length-scales [2], $L \sim (\log t)^2$, can be most easily demonstrated by considering the probability distribution $P_L(\ln \lambda_{\text{min}})$, which is then expected to scale like

$$P_L(\ln \lambda_{\text{min}}) \sim L^{-1/2} \bar{p}(\ln \lambda_{\text{min}}/L^{1/2}),$$

(18)

as we confirmed numerically.

ii) The scaling behavior of the persistence probability (for zero drift $\delta_{\text{RW}} = 0$) in (4) follows also directly from the analogous result for the surface magnetization $[m_\rho(L)]_{\text{av}}$ of the RTIM [2]. Here we just have to mention that $m_\rho(L)$ at the critical point is not self-averaging, its average value is dominated by the rare events, which are of order $O(1)$. From this follows that the same rare events determine the average of $m_\rho^2(L)$, thus the scaling behavior of $[m_\rho(L)]_{\text{av}}$ and $[m_\rho^2(L)]_{\text{av}}$ are identical. Then, using the correspondence in (16) we have the exact result:

$$[\rho_{\text{pr}}(L)]_{\text{av}} \propto L^{-\theta}, \quad \theta = 1/2 \quad \delta_{\text{RW}} = 0.$$

(19)

iii) In the non-critical situation with $\delta_{\text{RW}} \neq 0$ there is an average drift of the walk towards the site $i = L+1$ ($i = 0$) for $\delta_{\text{RW}} < 0$ ($\delta_{\text{RW}} > 0$). In the latter case, analogously to the surface magnetization of the RTIM [2], the average persistence probability vanishes exponentially for large system sizes

$$[\rho_{\text{pr}}(L)]_{\text{av}} \sim \exp(-L/\xi), \quad \xi \sim \delta_{\text{RW}}^{-2} \quad \delta_{\text{RW}} > 0.$$

(20)

If the average drift of the walk is towards the adsorbing site at $i = L + 1$, thus $\delta_{\text{RW}} < 0$, there is a non-vanishing infinite system size limit of the persistence probability (similarly to the existence of a finite average surface magnetization of the RTIM [2]):

$$\lim_{L \to \infty} [\rho_{\text{pr}}(L)]_{\text{av}} \sim (-\delta_{\text{RW}})^{\beta_{\text{pr}}}, \quad \delta_{\text{RW}} < 0$$

(21)

with $\beta_{\text{pr}} = 1$, which is approached via an exponential size dependence. The corresponding correlation length is again given by $\xi \sim (-\delta_{\text{RW}})^{-2}$, similar to the case $\delta_{\text{RW}} > 0$ in eq(20). Thus we can conclude that correlations defined on persistent walks are characterized by the average critical exponents

$$\theta = 1/2, \quad \nu = 2, \quad \beta_{\text{pr}} = 1,$$

(22)

which satisfy the scaling relation $\beta_{\text{pr}} = \theta \nu$.

iv) The time-dependent persistence probability $P_{\text{pr}}(L, t)$ introduced above is simply given by $P_{\text{pr}}(L, t) = P_{1,L+1}(t) = \sum_k u_k(1)u_k(1 + t) \exp(\lambda_k t)$. In the random, asymmetric case one expects the scaling relation

$$[P_{\text{pr}}(L, \ln t)]_{\text{av}} = b^{-\theta} \left[P_{\text{pr}}(L/b, \ln t/b^{1/2}) \right]_{\text{av}},$$

(23)

when lengths are rescaled by a factor $b > 1$ and the relation in (1) or (3) between time- and length-scales are used. Now taking $b = L$ in the limit $t \to \infty$ we recover the exact result in (1), on the other hand with $b = (\ln t)^2$ we have in the large system limit an ultraslow decay $\lim_{L \to \infty} [P_{\text{pr}}(L, t)]_{\text{av}} \sim (\ln t)^{-1}$.

![FIG. 1. Scaling plot of the time-dependent survival probability $P_{\text{pr}}(L, t)$ according to (23) for the asymmetric hopping model with a uniform distribution of hopping rates (averaged over 10^5 samples). The inset shows the corresponding scaling plot for the homogeneous case.](image)
In the intermediate situation with \(\ln t \sim L^{1/2} \) we have (with \(b = L \)) the finite size scaling form \(P_{pr}(L, t)_{av} \sim L^{-1/2} \mathcal{P}(\ln t/L^{1/2}) \) with \(\lim_{y \to \infty} \mathcal{P}(y) = \text{const} \) — in contrast to \(P_{pr}^{hom}(L, t) \sim L^{-1/2} \mathcal{P}(t/L^2) \) in the homogeneous case. In Fig. 1 we show corresponding scaling plot for numerically generated results for finite systems that confirm this scaling picture.

v) **Away from the critical point** we reach the region of anomalous diffusion, which is equivalent to the Griffiths-McCoy phase of the RTIM. The relevant energy scale \(\lambda_{\text{min}}(L) \) (\(\Delta(L) \) for the RTIM) has a power law scaling behavior:

\[
\lambda_{\text{min}}(L) \sim L^{-\mu(\delta_{\text{hom}})}, \quad \Delta \sim L^{-1/\mu(\delta)}
\]

and according to eq(14), the two exponents, \(\mu \) and \(1/\mu(\delta) \) correspond to each other. At this point we use the result that the value of \(\mu \) is known exactly from the time dependence of the average displacement of the walk in eq(2) in the form:

\[
\left[\left(\frac{w_{\rightarrow}}{w_{\leftarrow}} \right)^{\mu} \right]_{av} = 1.
\]

Essentially this follows from the observation that for any independent identically distributed random variables \(x \) the distribution \(P(\lambda) \) of \(\lambda = x_1 x_2 x_3 \cdots \) which is reminiscent of eq(14), has an algebraic singularity at \(\lambda = 0 \) \(P(\lambda) \sim \lambda^{-1+\mu} \) with \(\mu \) given by \([x^{\mu}]_{av} = 1 \), see [4].

Consequently we obtain for the dynamical exponent \(\eta \) of the RTIM in the Griffiths-McCoy phase the implicit equation

\[
\left(\frac{J}{h} \right)^{1/\eta} \sim \Theta(1/\sqrt{J} - \Theta(J); \rho(h) = h_0^{-1} \Theta(h_0 - h) \Theta(h),
\]

de the dynamical exponent is given by the solution of the equation

\[
z \log(1 - z^{-2}) = - \ln h_0 \quad (= -2\delta),
\]

The relation (27) is indeed satisfied by the numerical estimates for \(z \) reported in [3,4,5,6].

To summarize in this letter we have revealed a fundamental relation between the anomalous diffusion of random walks in disordered environments and the slow dynamics, at criticality and in the Griffiths-McCoy region of the random transverse Ising chain. With this analogy at hand we were able to derive a number of new exact results for both systems. Many new applications of the above mentioned analogy are obvious: there is an enormous number of exact results for various quantities of random walks in random one-dimensional environments, and most probably many of them can be directly transferred to corresponding quantities of random quantum spin chains near the quantum critical point. It remains a subject of future research to study in how far these relations carry over to higher dimensions.

ACKNOWLEDGMENTS

This work has been supported by the Hungarian National Research Fund under grants OTKA T023642 and OTKA T025139 and by the Ministry of Education under grant No FKFP 0765/1997. F. I. thanks the HLRZ in KFA Jülich, where part of this work has been completed, for kind hospitality. H. R.’s work was supported by the Deutsche Forschungsgemeinschaft (DFG).

[1] Ya. G. Sinai, Theor. Probab. Appl. 27, 247 (1982); For a review on random walks in disordered media see: J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990)
[2] B. Derrida and Y. Pomeau, Phys. Rev. Lett. 48, 627 (1982)
[3] H. Rieger and F. Iglói, Europhys. Lett. 39, 135 (1997).
[4] R.B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).
[5] B. McCoy, Phys. Rev. Lett. 23, 383 (1969).
[6] F. Iglói and L. Turban, Phys. Rev. Lett. 77, 1206 (1996).
[7] F. Iglói and H. Rieger, Phys. Rev. B (in press).
[8] Here we do not restrict ourselves to the so-called random force model with correlated transition probabilities parametrized as \(w_{i, i \pm 1} = A \exp(\pm \phi_i) \). For this model the FP-operator in (1) can be transformed into a symmetric form. This model has been studied recently by D.S. Fisher, P. Le Doussal and C. Monthus, cond-mat/9710270.
[9] B. Derrida, A.J. Bray and C. Godrèche, J. Phys. A 27, L357 (1994); B. Derrida, V. Hakim and V. Pasquier, Phys. Rev. Lett. 75, 751 (1995).
[10] S. N. Majumdar and C. Sire, Phys. Rev. Lett. 77, 1420 (1996); S. N. Majumdar, C. Sire, A. J. Bray and S. J. Cornell, Phys. Rev. Lett. 77, 2867 (1996); S. N. Majumdar, A. J. Bray, S. J. Cornell, and C. Sire, Phys. Rev. Lett. 77, 3704 (1996); K. Oerding, S. J. Cornell, and A. Bray, Phys. Rev. E 56, R25 (1997); J. Krug, H. Kallabis, S. N. Majumdar, S. J. Cornell, A. J. Bray, and C. Sire, Phys. Rev. E 56, 2702 (1997).
[11] R. Zwaenzig, J. Stat. Phys. 28, 127 (1982)
[12] D.S. Fisher, Phys. Rev. Lett. 69, 534 (1992); Phys. Rev. B 51, 6411 (1995).
[13] A.P. Young and H. Rieger, Phys. Rev. B 53, 8486 (1996).
[14] F. Iglói and H. Rieger, Phys. Rev. Lett. 78, 2473 (1997).
[15] A.P. Young, Phys. Rev. B 56, 11691 (1997).
[16] H. Kesten, Acta Math. 131, 208 (1973); B. Derrida and H. Hilhorst, J. Phys. A 16, 2641 (1983); C. de Calan, J. M. Luck, T. M. Nieuwenhuizen and D. Petritis, J. Phys. A 18, 501 (1985).