Carcinoma Associated Fibroblast: a Paradoxical Role in Pancreatic Cancer Microenvironment and a Promising Target for Therapy

Yang J1, Bai T2 and Liang T1,2,3*
1Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
2Key Laboratory of Cancer Prevention and Intervention, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
3Collaborative Innovation Centre for Cancer Medicine, Zhejiang University, Hangzhou, PR China

Corresponding author: Tingbo Liang, Collaborative Innovation Centre for Cancer Medicine, Zhejiang University, Hangzhou, PR China, Tel: +8613666676128; E-mail: liangtingbo@zju.edu.cn

Received date: June 07, 2016; Accepted date: July 13, 2016; Published date: July 15, 2016

Abstract

Pancreatic cancer is a grave malignancy showing an upward trend in morbidity and mortality during the recent decades. For reasons of late diagnosis, chemoresistance, low potential respectable rate and high post-operative recurrence rate, it has been the 6th most common cause of cancer death in China. As one of the most aggressive malignancies and the most common type of pancreatic cancer, pancreatic adenocarcinoma (PDAC) represents a significant therapeutic challenge. Conventional chemotherapeutic cytotoxic agents are proved to be with a poor survival benefit. Though the current first-line therapy FOLFIROX increased the median survival time compared with gemcitabine, it has been still unsatisfactory. Another direction enlightened by the treatment experience in other tumors is targeting certain molecules that participate in specific signaling pathways mediating cancer cell proliferating, angiogenesis, chemo-resistance or metastasis. Unfortunately, none of the established “targeted” therapy agents that have been approved to be effective in some other tumors has a similar effect on PDAC, suggesting that there are some unique and decisive elements in the microenvironment of PDAC to facilitate its extensive drug-resistance.

Thus, the spotlight has been turned on immunotherapy, which is theoretically curative regardless of the complex molecular and cellular heterogeneity while the concrete strategies on PDAC are still in the dark. Revisiting the complex biology of PDAC, three prime characteristics will never be missed: almost 90% of patients with oncogene mutation of KRAS, as well as loss of tumor suppressor genes TP53 and SMAD4; mostly hypovascular; and tumor desmoplasia by persistent activation of fibroblasts/pancreatic stellate cells (PSC). The last one, which is the defining feature of PDAC, as the target of therapy is the focus of this review.

Keywords: Pancreatic cancer; Pancreatic ductal adenocarcinoma; Drug-resistance; Malignancy

Introduction

Pancreatic cancer is a grave malignancy showing an upward trend in morbidity and mortality during the recent decades. For reasons of late diagnosis, chemoresistance, low potential resectable rate and high post-operative recurrence rate, it has been the 6th most common cause of cancer death in China [1].

As one of the most aggressive malignancies and the most common type of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC) represents a significant therapeutic challenge. Conventional chemotherapeutic cytotoxic agents are proved to be with a poor survival benefit. Though the current first-line therapy FOLFIROX increased the median survival time compared with gemcitabine, it has been still unsatisfactory [2]. Another direction enlightened by the treatment experience in other tumors is targeting certain molecules that participate in specific signalling pathways mediating cancer cell proliferating, angiogenesis, chemoresistance or metastasis. Unfortunately, none of the established “targeted” therapy agents that have been approved to be effective in some other tumors has a similar effect on PDAC, suggesting that there are some unique and decisive elements in the microenvironment of PDAC to facilitate its extensive drug-resistance. Thus, the spotlight has been turned on immunotherapy, which is theoretically curative regardless of the complex molecular and cellular heterogeneity while the concrete strategies on PDAC are still in the dark. Revisiting the complex biology of PDAC, three prime characteristics will never be missed: almost 90% of patients with oncogene mutation of KRAS, as well as loss of tumour suppressor genes TP53 and SMAD4; mostly hypovascular; and tumor desmoplasia by persistent activation of fibroblasts/pancreatic stellate cells (PSC). The last one, which is the defining feature of PDAC, as the target of therapy is the focus of this review.

Rationale of Carcinoma-Associated Fibroblast in PDAC

Fibroblasts are the most common cell type in stromal component. In the 1990s, cancer biologists found that neoplasia represented a phenotype of myofibroblasts termed “carcinoma-associated fibroblasts” (CAFs) that documented with aberrant expression of smooth muscle actin (SMA), inappropriate secretion of proteolytic enzymes, and the production of extracellular matrix proteins [3-7]. CAFs are confirmed as the most common cells in a series of tumour stroma that account for the majority of the tumour tissue volume and of important patho-biological functions [8]. CAFs in PDAC are...
thought to be derived mainly from PSCs which is a special stromal fibroblast type termed for its stellate shape in healthy exocrine pancreas. They are present mainly in the periacinar, perivascular and periductal regions and play a key role in the pathological process of pancreatic diseases including chronic pancreatitis and pancreatic cancer [9-12]. Once the pancreas is undergoing a disease such as PDAC, PSCs will turn their quiescent state into a myofibroblastic state characterized by loss of fat droplets and highly expression of α-SMA. Moreover they become proliferating and contribute to a collagen-rich, desmoplastic reaction [13]. Thus it makes pancreatic ductal adenocarcinoma a pyknotic and stiff solid tumour. In order to determine the function of PSCs in an in vitro model, immortalized PSC cell lines from human, rat and mouse have been established [14-17]. These cell lines all spontaneously retain an activated phenotype and can be induced quiescent with matrigel, N-acetylcysteine (NAC) or all-trans-retinoic acid (ATRA) [14-18]. These allowed the dissection of intercellular cross-talking between CAFs and PDAC cells or other stromal cells.

Besides activation of quiescent fibroblasts into α-SMA positive myofibroblasts, epithelial to mesenchymal transition (EMT) and bone marrow recruitment are also possible mechanisms for the generation of a heterogeneous population of CAFs [19]. Zeisberg et al. [20] found that about 11% of α-SMA + cells express endothelial cell marker CD31 in a Rip1Tag2 multistage carcinoma model. Further research use Tie2-cre; R26Rosa-lox-Stop-lox-LacZ transgenic mice whose endothelial cells are irreversibly tagged with LacZ that is reactive to β-galactosidase, labelling of β-gal were also observed in α-SMA + and fibroblast specific protein 1 (FSP1+) cells respectively, indicating EMT as a mechanism for the source of CAFs [20]. It may be not likely to be discriminated exactly whether it is EMT or mesenchymal to epithelial transition (MET) that makes these cells double-labelling. However, it demonstrated heterogeneity of CAFs that added to the complexity of tumour microenvironment.

CAFs Activation in the Battlefield of Pancreatic TME

PDAC tumour microenvironment (TME) is now a popular research orientation that cancer biologists think it the key role in process of carcinogenesis and metastasis [21]. The mechanisms of CAFs activation in PDAC TME are multiplex. Firstly, it is similar to inflammation in many ways, for instance the initial event of injury, the mediators of necrosis/apoptosis derived cytokines/growth factors etc., [22-24]. Whereas there are still some specific patterns in which peri-tumoral fibroblasts are stimulated and activated by pancreatic tumour cells. Tumour cell-derived factors such as platelet-derived growth factor (PDGF), transforming growth factor β (TGF-β) and sonic hedgehog (SHH) are elaborated [11-26]. Besides, microRNAs in PDAC tissues have been reported to be independent prognostic factors [27]. Further study proved that pancreatic cancer-secreted miR-155 turns normal fibroblasts into CAFs through an intercellular communication mediator of micro vesicles [28]. KRAS driven expression of IL-1α by PDAC is also an important mediator to activation of CAFs which in turn produce massive amount of inflammatory and immune regulatory factors to maintain an inflammatory microenvironment [29]. Another PDAC-derived mediator is a secreted protein of tissue transglutaminase which moulds the stroma thus leads to activation and proliferation of fibroblasts [30]. The PDAC-activated myo-fibroblasts are of a location-dependent fashion that CAFs immediately adjacent to tumour have a more pronounced expression of fibroblast activation protein (FAP) than those in surroundings [31], supporting that CAFs activation depends on tumour cells. These findings suggest that by changing the fibroblast-activating secretome of PDAC cells, we can protect the naive fibroblasts from pro-tumoral education thereby to normalize the tumour microenvironment to a tumour-maladapted one.

Pancreatic CAFs and Desmoplasia: Soil of Tumorigenesis or Warden of the Cancer?

Tumours were described as wounds that do not heal, so there is one conjecture that desmoplasia in the tumour microenvironment, similar to wound healing and tissue regeneration, is a host defensive process [32,33]. On the other side, desmoplasia associated with tumorigenesis constitutes an immune suppressive response such that is thought tumour promoting [34].

Tumour-educated CAFs are of great expression of fibroblast activation protein (FAP) which was reported to associate with a bad prognosis in PDAC [31-36]. FAP+ CAFs induce desmoplastic reaction through modulating the ECM proteins such as collagen I, fibronectin and cellular α-SMA, thus promote enhanced invasion behaviour of pancreatic cancer cells after co-culturing [37]. FAP inhibitor PT-100 could significantly reduce the accumulation of CAFs and enhance the efficacy of chemotherapeutics to suppress tumour growth and increase survival in xenograft tumour mice [38]. An experiment directly assessed the function of CAFs in primary pancreatic cancer was carried out in the autotumourous LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) model, which faithfully replicates human PDAC in genotype, a PanIN-to-PDAC tumorigenic process, invasive, metastatic feature and resistance to chemo and immunotherapy [39,40]. Feig et al. introduced into the KPC line the bacterial artificial chromosome (BAC) transgene containing a modified Fap gene that drives the expression of the human diphtheria toxin receptor (DTR) selectively in cells that are FAP+. Administration of diphtheria toxin (DTx) leads to conditioned apoptosis of FAP+ cells. The BAC/DTR transgenic model was observed a slowed tumour growth in a CD4+ and CD8+ dependent manner [39]. This is consistent with the former study they have done in the orthotopic models [34]. In addition, and interestingly, FAP+ CAF-derived chemokine CXCL12 was confirmed to attenuate the local IFN-γ secreting T cells infiltration, while administration of AMD3100, a CXCL12 receptor CXCR4 inhibitor, induced accumulation of T cells among cancer cells and had a synergistic effect with anti-PD-L1 therapy [39]. These findings implicated that FAP+ CAFs play a role in the exclusion of T cells from the TME by production of CXCL12 interacted with CXCR4. This newly found mechanism of immune suppression in the PDAC microenvironment has a potential to clinical translation. α-SMA is a selected and classic marker of CAFs. There is evidence supporting that low intra-tumoral α-SMA is correlated with poor micro vessel integrity, early recurrence and decreased survival [41–43]. Ozdemir et al. generated transgenic mice of Ptf1acre/++; LSL-KrasG12D/+; Tgfbr2lox/lox; Pdx-1-Cre; Trp53R172H/+; Pdx-1-Cre (KPC) model, which is similar to the KPC/BAC/DTR line mentioned above [41]. The α-SMA+ proliferating CAFs were depleted by daily injection of GCV and subsequent decreased survival and undifferentiated tumours were observed. Depletion of CAFs also displays, interestingly, suppression of angiogenesis, enhanced tumour hypoxia, EMT program, and cancer stem cell-like phenotype [41]. These findings are consistent with the other studies indicating that tumour vessel denormalization-induced hypoxia leads to more malignant tumour behaviour [44-46]. Notably, depletion of α-SMA+ myofibre oblasts starting at the pancreatic
intraepithelial neoplasia (PanIN) stage leads to a significant reduction of immune cells infiltration except for the FoxP3+ regulator T cells that are account for the immune suppression in the TME, while such immune phenotype cannot be observed in established PDAC with α-SMA + CAFs depletion [41].

A recent study also demonstrated that targeting FAP+ stromal cells by injection of FAP-CAR T cells could immune-independently inhibit stromagenesis, angiogenesis and restrict tumour growth in KPC models [47]. Taken together, these findings justify conclusions that CAF is a mixed concept that distinct subpopulations may have opposing effects on tumour progression; Inhibition of angiogenesis was observed consistently in different tumour Stroma-depletion strategies indicating a positive correlation ship between CAFs, irrespective of which subset, and tumor angiogenesis; Targeting intratumoral FAP should be a potential effective measure to improve survival alone or synergetically enhance the efficacy of chemotherapies and some immune checkpoint antagonists such as α-PD-1, α-PD-L1 and a-CTLA-4. Remarkably, FAP+ cells reside in most tissues like bone marrow, skeletal muscle [48]. Likewise, α-SMA overlaps with a fraction of macrophages, myofibroblasts, pericytes and vascular smooth muscle cells [34-50]. Hence, rough depletion of FAP+ or α-SMA+ stromal cells will lead to a complex change in the microenvironment, because of which, the definite functions of CAFs are not accurately reflected. Depletion of FAP-expressing stromal cells even results in severe systemic alterations such as cachexia and anaemia [48]. Therefore, the functional contribution of CAFs in the progression of PDAC needs further study by improved strategy that targets CAFs more precisely.

Strategies Targeting CAFs in PDAC Therapy

Hedgehog signalling blockade therapy

Considering the heterogeneity of CAFs and overlapping of FAP and α-SMA in PDAC microenvironment, single marker-dependent depletion of CAFs will not be an ideal strategy due to its uncertainty. An earlier study has demonstrated that blockade of hedgehog (Hh) signalling pathway with hedgehog receptor smoothened (SMO) inhibition reduces proliferation of α-SMA+ myofibroblasts, alters the vascular network and thereby facilitates delivery of chemotherapeutic agents [51]. SMO was confirmed up regulated in CAFs [52] while pancreatic cancer cells showed overexpression of Sonic hedgehog (Shh) ligands [53]. The Hh/SMO interaction activates the downstream transcription factor Gli1 expression and subsequently leads to desmoplasia [54]. SMO inhibition demonstrated an inspiring benefit in the preclinical KPC models. However, clinical trials of Hh blockade showed disappointing outcomes that even accelerated disease progression [55]. To investigate the totally paradoxical results between preclinical models and clinical trials, Rhim et al. [56] generated Shhfl/fl, Pdx1-Cre, KrasLSL-G12D/+; p53fl/+; Rosa26LSL-YFP (ShhPKCY) model whose Shh gene is conditionally deleted in the pancreatic epithelial cells. Result, however, showed that Shh is dispensable for tumorigenesis and loss of Shh even results in a shortened survival and poorly differentiated to undifferentiated histology. Likewise, KPC mice administrated with IPI-926 at an early stage of PanIn and ADM (acinar to ductal metaplasia, another precursor of PDAC) exhibited similar properties, and the efficacy of gemcitabine is limited. It may be reasoned that chronic exposure to Hh blockade leads to more aggressive biology which overweighs transient improvement of drug delivery [56]. Interestingly, however, Hh signalling blockade resulted in depletion of CAFs and indirectly increased angiogenesis through stromal cells signals, depending on the existing VEGF rather than de novo VEGF expression.

The anti-angiogenic effect of CAFs here in the context of Shh deletion is at odds with that in other studies depleting CAFs by CAR-T cells or TK/GCV strategy based on markers of FAP or α-SMA [41-47]. The precise mechanism for the different roles of CAF remains unknown. Nevertheless, poorly differentiated tumours with increased vascularity resulted from Hh pathway inhibition are more sensitive to VEGFR2 inhibition [56]. Mathew et al. demonstrated another explanation that the inhibition of CAF-expressed Hh co-receptors to the regulation of pancreatic tumour growth and angiogenesis is dosage dependent [57]. Deletion of all the three Hh co-receptors of GAS1, BOCC and CDON almost completely abrogates Hh signalling and results in suppression of tumorgenesis and angiogenesis, while depletion of two co-receptors GAS1 and BOCC would reversely promote great tumour growth in vivo [57]. These findings may partially explain the clinical failure of Hh pathway blockade in another perspective.

Quiescent CAFs may make differences

To speak of, the SMO inhibition-induced decrease in proliferation of α-SMA+ cells was accompanied with an increase in proliferation of α-SMA negative cells [51], suggesting a general quiescence of CAFs. This stroma-disrupting strategy leads to restored blood vessels which is VEGF independent, indicating a particular mechanism of vasculature dysfunction related to α-SMA+ stromal cells. Associated with the recent study that focused on the pro-angiogenesis strategy of combining cilengitide, verapamil and gemcitabine [58], given that cilengitide can have both pro- and anti-angiogenic effect depending on its concentration, which is hard to assess in the clinic, alternative approaches to promote angiogenesis in a controlled manner should be considered [46]. Therefore, inducing quiescent of CAFs may be an effective approach to remodel the vascular network thereby enhances the efficacy of chemotherapies or immune therapies. It was confirmed recently by Carapuca et al. [59] that chemotherapy along with stromal ATRA co-targeting approach resulted in enhanced tumour necrosis, increased vascularity and diminished hypoxia [59]. Moreover, pancreatic CAFs are identified as activated PSCs, which sequester anti-tumour CD8+ T-cell migratory and adhesive function preventing the access to the tumoral cells [60]. Inducing CAFs quiescent by administration of ATRA can increase number of CD8+ T cells in tumour sites, as well as create a physical barrier that prevents tumor cells invasion [18]. Another preclinical study successfully demonstrated that activation of vitamin D receptor (VDR), by administering vitamin D analogue calcipotriol, renders CAFs a quiescent-like status and thereby inhibits the tumor-supporting cancer-stroma crosstalk [61]. In vivo study also evidenced that VDR ligand modulates PSCs into quiescence, and, as expected, enhances drug delivery thus synergizes the efficacy of Gemcitabine in KPC mice [61]. In addition, Given that CAFs are proliferating cells, it is rational to speculate that the proliferating cancer cell-targeting chemotherapeutics like gemcitabine may also target proliferating CAFs. So the proliferating CAFs may help reduce the cytotoxicity of chemotherapeutics to cancer cells [41]. Such compromise function of CAFs may likewise be reversed by calcipotriol, ATRA or other quiescent-inducing agents.

Targeting CAFs to limit PDAC from invasion and metastasis

As is known that metastasis is the major cause of cancer death, thus to prevent the primary tumor from invasion and metastasis should be
Pancreatic Cancer and metastasis. Palladin has been reported highly expressed in both primary and metastatic pancreatic CAFs [62,63]. Earlier study also introduced a close relationship between palladin mutation and familial occurrence of pancreatic cancer [64]. Accumulating evidence demonstrated that overexpressed palladin is an indication of poor clinical outcomes in different tumours [62-66]. Chin et al. [67,68] found that the expression of palladin is regulated by signalling of both Akt1 and Akt2 isoforms for distinct properties in breast cancer migration. Later study found that extracellular signal-regulated kinase (ERK) is involved in the phosphorylation of palladin which exhibits an anti-migratory function [69]. In vitro introduction of exogenous 90 kDa palladin activates human dermal fibroblasts into myofibroblasts that are phenotypically and morphologically similar with CAFs [70]. Moreover, CAFs expressing palladin are of elevated motility and enhanced invadopodia formation which, in turn, remodels the extracellular matrix to promote invasion of pancreatic cancer [70,71]. A recent study demonstrated that CAFs induced invasion of target cells through enhanced invadopodia formation which, in turn, remodels the extracellular matrix to promote invasion of pancreatic cancer [70,71]. Akt2 expression is regulated by signalling from both Akt1 and Akt2 isoforms. Akt2 activation activates SHH/Gli1, IL-6/STAT3, VDR and so on. It is also worth noting that different subsets of CAFs may play different roles in tumour microenvironment. Palladin has been reported highly expressed in both primary and metastatic pancreatic cancer [62,63]. Earlier study also introduced a close relationship between palladin mutation and familial occurrence of pancreatic cancer [64]. Accumulating evidence demonstrated that overexpressed palladin is an indication of poor clinical outcomes in different tumours [62-66]. Chin et al. [67,68] found that the expression of palladin is regulated by signalling of both Akt1 and Akt2 isoforms for distinct properties in breast cancer migration. Later study found that extracellular signal-regulated kinase (ERK) is involved in the phosphorylation of palladin which exhibits an anti-migratory function [69]. In vitro introduction of exogenous 90 kDa palladin activates human dermal fibroblasts into myofibroblasts that are phenotypically and morphologically similar with CAFs [70]. Moreover, CAFs expressing palladin are of elevated motility and enhanced invadopodia formation which, in turn, remodels the extracellular matrix to promote invasion of pancreatic cancer [70,71]. A recent study demonstrated that CAFs induced invasion of target cells through enhanced invadopodia formation which, in turn, remodels the extracellular matrix to promote invasion of pancreatic cancer [70,71]. Akt2 expression is regulated by signalling from both Akt1 and Akt2 isoforms. Akt2 activation activates SHH/Gli1, IL-6/STAT3, VDR and so on. It is also worth noting that different subsets of CAFs may play different roles in tumour microenvironment. Palladin has been reported highly expressed in both primary and metastatic pancreatic cancer [62,63]. Earlier study also introduced a close relationship between palladin mutation and familial occurrence of pancreatic cancer [64]. Accumulating evidence demonstrated that overexpressed palladin is an indication of poor clinical outcomes in different tumours [62-66]. Chin et al. [67,68] found that the expression of palladin is regulated by signalling of both Akt1 and Akt2 isoforms for distinct properties in breast cancer migration. Later study found that extracellular signal-regulated kinase (ERK) is involved in the phosphorylation of palladin which exhibits an anti-migratory function [69]. In vitro introduction of exogenous 90 kDa palladin activates human dermal fibroblasts into myofibroblasts that are phenotypically and morphologically similar with CAFs [70]. Moreover, CAFs expressing palladin are of elevated motility and enhanced invadopodia formation which, in turn, remodels the extracellular matrix to promote invasion of pancreatic cancer [70,71]. A recent study demonstrated that CAFs induced invasion of target cells through enhanced invadopodia formation which, in turn, remodels the extracellular matrix to promote invasion of pancreatic cancer [70,71]. Akt2 expression is regulated by signalling from both Akt1 and Akt2 isoforms. Akt2 activation activates SHH/Gli1, IL-6/STAT3, VDR and so on. It is also worth noting that different subsets of CAFs may play different roles in tumour microenvironment. Palladin has been reported highly expressed in both primary and metastatic pancreatic cancer [62,63]. Earlier study also introduced a close relationship between palladin mutation and familial occurrence of pancreatic cancer [64]. Accumulating evidence demonstrated that overexpressed palladin is an indication of poor clinical outcomes in different tumours [62-66]. Chin et al. [67,68] found that the expression of palladin is regulated by signalling of both Akt1 and Akt2 isoforms for distinct properties in breast cancer migration. Later study found that extracellular signal-regulated kinase (ERK) is involved in the phosphorylation of palladin which exhibits an anti-migratory function [69]. In vitro introduction of exogenous 90 kDa palladin activates human dermal fibroblasts into myofibroblasts that are phenotypically and morphologically similar with CAFs [70]. Moreover, CAFs expressing palladin are of elevated motility and enhanced invadopodia formation which, in turn, remodels the extracellular matrix to promote invasion of pancreatic cancer [70,71]. A recent study demonstrated that CAFs induced invasion of target cells through enhanced invadopodia formation which, in turn, remodels the extracellular matrix to promote invasion of pancreatic cancer [70,71]. Akt2 expression is regulated by signalling from both Akt1 and Akt2 isoforms. Akt2 activation activates SHH/Gli1, IL-6/STAT3, VDR and so on. It is also worth noting that different subsets of CAFs may play different roles in tumour microenvironment. Palladin has been reported highly expressed in both primary and metastatic pancreatic cancer [62,63]. Earlier study also introduced a close relationship between palladin mutation and familial occurrence of pancreatic cancer [64]. Accumulating evidence demonstrated that overexpressed palladin is an indication of poor clinical outcomes in different tumours [62-66]. Chin et al. [67,68] found that the expression of palladin is regulated by signalling of both Akt1 and Akt2 isoforms for distinct properties in breast cancer migration. Later study found that extracellular signal-regulated kinase (ERK) is involved in the phosphorylation of palladin which exhibits an anti-migratory function [69]. In vitro introduction of exogenous 90 kDa palladin activates human dermal fibroblasts into myofibroblasts that are phenotypically and morphologically similar with CAFs [70]. Moreover, CAFs expressing palladin are of elevated motility and enhanced invadopodia formation which, in turn, remodels the extracellular matrix to promote invasion of pancreatic cancer [70,71]. A recent study demonstrated that CAFs induced invasion of target cells through enhanced invadopodia formation which, in turn, remodels the extracellular matrix to promote invasion of pancreatic cancer [70,71]. Akt2 expression is regulated by signalling from both Akt1 and Akt2 isoforms. Akt2 activation activates SHH/Gli1, IL-6/STAT3, VDR and so on. It is also worth noting that different subsets of CAFs may play different roles in tumour microenvironment. Palladin has been reported highly expressed in both primary and metastatic pancreatic cancer [62,63]. Earlier study also introduced a close relationship between palladin mutation and familial occurrence of pancreatic cancer [64]. Accumulating evidence demonstrated that overexpressed palladin is an indication of poor clinical outcomes in different tumours [62-66]. Chin et al. [67,68] found that the expression of palladin is regulated by signalling of both Akt1 and Akt2 isoforms for distinct properties in breast cancer migration. Later study found that extracellular signal-regulated kinase (ERK) is involved in the phosphorylation of palladin which exhibits an anti-migratory function [69]. In vitro introduction of exogenous 90 kDa palladin activates human dermal fibroblasts into myofibroblasts that are phenotypically and morphologically similar with CAFs [70]. Moreover, CAFs expressing palladin are of elevated motility and enhanced invadopodia formation which, in turn, remodels the extracellular matrix to promote invasion of pancreatic cancer [70,71]. A recent study demonstrated that CAFs induced invasion of target cells through enhanced invadopodia formation which, in turn, remodels the extracellular matrix to promote invasion of pancreatic cancer [70,71]. Akt2 expression is regulated by signalling from both Akt1 and Akt2 isoforms. Akt2 activation activates SHH/Gli1, IL-6/STAT3, VDR and so on. It is also worth noting that different subsets of CAFs may play different roles in tumour microenvironment.
stomatal micro RNAs during colorectal cancer progression. Cell Death Dis 4:e684.

6. Knudson CB, Knudson W (1993) Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J 7: 1233-1241.

7. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, et al. (1999) Carcinoma - associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59: 3002-3011.

8. Feig C, Copinathan A, Neesse A, Chan DS, Cook N, et al. (2012) The pancreas cancer microenvironment. Clin Cancer Res 18: 4266-4276.

9. Watari N, Hotta Y, Mabuchi Y (1982) Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration. Okajimas Folia Anat Jpn 58: 837-858.

10. Ikejiri N (1990) The vitamin A-storing cells in the human and rat pancreas. Kurume Med J 37: 67-81.

11. Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, et al. (1998) Peroxidase stained cell shaped in rat pancreas: identification, isolation, and culture. Gut 43: 128-133.

12. Bacchem MG, Schneider E, Gross H, Weidenhach H, Schmid RM, et al. (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115: 421-432.

13. Oma ry MB, Lugea A, Lowe AW, Pa ndol SJ (2007) The pancreases tellate cell: a star on the rise in pancreatic c diseases. J Clin Invest 117: 50-59.

14. Jesnowski R, Furst D, Ringel J, Chen Y, Schrodel A, et al. (2005) Immortalization of pancreatic stellate cells as an in vitro model of pancreatic fibrosis: deactivation is induced by matrix gel and N-acetylcysteine. Lab Invest 85: 1276-1291.

15. Masamune A, Satoh M, Kikuta K, Suzuki N, Shimosegawa T (2003) Establishment and characterization of a rat pancreatic stellate cell line by spontaneous immortalization. World J Gastroenterol 9: 2751-2758.

16. Satoh M, Masamune A, Sakai Y, Kikuta K, Hamada H, et al. (2002) Establishment and characterization of a simian virus 40 -immortalized rat pancreatic stellate cell line. Tohoku J Exp Med 198: 55-69.

17. Sparmann G, Hohenadl C, Tornoe J, Jaster R, Fitzner B, et al. (2004) Generation and characterization of immortalized rat pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 287: G211-G219.

18. Froeling FE, Feig C, Cholala C, Dobson R, Mein CE, et al. (2011) Retinoic acid -induced pancreatic stellate cell quiescence reduces paracrine Wnt-beta -catenin signaling to slow tumor progression. Gastroenterology 141: 1486-1497.

19. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6: 392-401.

20. Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R (2005) Discovery of endothelial to mesenchymal transition as a source for carcinoma - associated fibroblasts. Cancer Res 65: 10123-10128.

21. Neesse A, Michi P, Frese KK, Feig C, Cook N, et al. (2011) Stromal biology and therapy in pancreatic cancer. Gut 60: 861-868.

22. Andoh A, Takaya H, Saotome T, Shimada M, Hata K, et al. (2000) Cytokine regulation of chemokine (IL-8, MCP-1, and RANTES) gene expression in human pancreatic periacinar myofibroblasts. Gastroenterology 119: 211-219.

23. Luttenberger T, Schmid-Kotsas A, Menke A, Siech M, Beger H, et al. (2000) Platelet-derived growth factors stimulate proliferation and extracellular matrix synthesis of pancreatic stellate cells : implications in pathogenesis of pancreatic fibrosis. Lab Invest 80: 47-55.

24. Sauer L, Reber P, Scha fner T, Buchler MW, Buri C, et al. (2000) Differential expression of chemokines in normal pancreas and in chronic pancreatitis. Gastroenterology 118: 356-367.

25. Apte MV, Haber PS, Darby SJ, Rodgers SC, McCaughan GW, et al. (1999) Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut 44: 534-541.

26. Shek FW, Benyon RC, Walker FM, McCrudden PR, Pender SL, et al. (2002) Expression of transforming growth factor -beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol 160: 1787-1798.
Rivera LB, Bergers G (2015) CANCER. Tumor angiogenesis, from foe to friend. Science 349: 694-695.

Lo A, Wang LC, Schol ler J, Monslow J, Avery D, et al. (2015) Tumor-Promoting Desmosplasias Disrupted by Depleting FAP-Expressing Stromal Cells. Cancer Res 75: 2800-2810.

Roberts EW, Deenarine A, Jones JO, Denton AE, Feig C, et al. (2013) Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J Exp Med 210: 1137-1151.

Arnold JN, Magiera L, Kraman M, Fearon DT (2014) Tumoral immune suppression by macrophages expressing fibroblast activation protein-alpha and heme oxygenase-1. Cancer Immunology Research 2: 121-126.

Sugimoto H, Mündel TM, Kieran MW, Kalluri R (2006) Identification of fibroblast heterogeneity in the tumor micro environment. Cancer Biol Ther 5: 1640-1646.

Olive KP, Jacobetz MA, Davids on CJ, Gopinathan A, McIntyre D, et al. (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324: 1457-1461.

Walter K, Omura N, Hong SM, Griffith M, Vincent A, et al. (2010) Over expression of smoothended activates the sonic hedgehog signaling pathway in pancreatic cancer-associated fibroblasts. Clin Cancer Res 16: 1781-1789.

Hwang RF, Moore TT, Hattersley MM, Scarpitti M, Yang B, et al. (2012) Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer. Mol Cancer Res 10: 1147-1157.

Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, et al. (2008) Sonic Hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res 14: 5995-6004.

Amakye D, Jagani Z, Dorsch M (2013) Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nature medicine 19: 1410-1422.

Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, et al. (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25: 735-747.

Mathew E, Zhang Y, Holtz AM, Kane KT, Song JY, et al. (2014) Dosage-dependent regulation of pancreatic cancer growth and angiogenesis by hedgehog signaling. Cell Rep 9: 484-494.

Wong PP, Demircioğlu F, Ghazaly E, Alrawashdeh W, Stratford MR, et al. (2015) Dual -action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cell Cancer 27: 123-137.

Carapuca EF, Gemenetzidis E, Feig C, Bapito TE, Williams MD, et al. (2016) Anti-stromal treatment together with chemotherapy targets multiple signalling pathways in pancreatic adenocarcinoma. J Pathol 239: 286-296.

Ene-Obong A, Clear AJ, Watt J, Wang J, Fatah R, et al. (2013) Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology 145: 1121-1132.

Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, et al. (2014) Vitamin D receptor -mediated stromal reprogramming suppresses pancreatic ductal and enhances pancreatic cancer therapy. Cell 159: 80-93.

Góicoechea SM, Bednarski B, Stack C, Cowan DW, Volmar K, et al. (2010) Isoform-specific upregulation of paladin in human and murine pancreas tumors. PLoS One 5: e10347.

Salaria SN, Ileii P, Sharma R, Walter KM, Klein AP, et al. (2007) Paladin is overexpressed in the non-neoplastic c stroma of infiltrating ductal adenocarcinomas of the pancreas , but is only rarely overexpressed in neoplastic cells. Cancer Biol Ther 6: 324-328.

Pogue-Geile KL, Chen R, Bronner MP, Crnogorac -Jurcevic T, Moyes KW, et al. (2006) Paladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS medicine 3: e156.

Gupta V, Bassi DE, Simons JD, Devarajan K, Al-Saleem T, et al. (2011) Elevated expression of stromal paladin predicts poor clinical outcome in renal cell carcinoma. PLoS One 6: e21494.

Henderson-Jackson EB, Helm J, Strosberg J, Nasir NA, Yeatman TJ, et al. (2011) Palladin is a marker of liver meta stasis in primary pancreatic endocrine carcinomas. Anticancer Res 31: 2957-2962.

Chin YR, Toker A (2010) The actin-bundling protein paladin an Akt1-specific substrate that regulates breast cancer cell migration. Mol Cell 38: 333-344.

Chi n YR, Toker A (2010) Akt1 regulates expression of the actin-bundling protein paladin. FEBS Lett 584: 4769-4774.

Asano E, Maeda M, Hasegawa H, Ito S, Hyodo T, et al. (2011) Role of paladin phosphorylation by extracellular signal-regulated kinase in cell migration. PLoS One 6: e29338.

Brentnall TA, Lai LA, Coleman J, Bronner MP, Pan S, et al. (2012) Arousal of cancer-associated stroma: overexpression of paladin activates fibroblasts to promote tumor invasion. PLoS One 7: e30219.

Góicoechea SM, García-Mata R, Staub J, Valdívia A, Sarek L, et al. (2014) Paladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts. Oncogene 33: 1265-1273.

Mansour MA, Asano E, Hyodo T, Akter KA, Takahashi M, et al. (2015) Special AT-rich sequence-binding protein 2 suppresses invadopodia formation in HCT116 cell s via paladin inhibition. Exp Cell Res 332: 78-88.

García -Palmero I, Torres S, Bartolome RA, Pelaz-Garcia A, Larribi MJ, et al. (2016) Twist1- induced activation of human fibroblasts promotes matrix stiffness by upregulating paladin and collagen alpha 1(V1). Oncogene.

Alvarez R, Mustea n M, García-Garcia E, Lopez-Casas PP, Megías D, et al. (2013) Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br J Cancer 109: 926-933.

Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60: 876-885.

Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, et al. (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 29: 4548-4554.

Neesse A, Frese KK, Chan DS, Rapiro TE, Howat WJ, et al. (2014) SPARC independent drug delivery and anti-tumour effects of nab-paclitaxel in genetically engineered mice. Gut 63: 974-983.

Kim H, Samuel S, Lopez-Casas P, Grizzle W, Hidalgo M, et al. (2016) SPARC-Independent Delivery of Nab-Paclitaxel without Depleting Tumor Stroma in Patient-Derived Pancreatic Cancer Xenografts. Mol Cancer Ther 15: 680-688.

Mace TA, Ameen Z, Collins A, Wojcik S, Mir M, et al. (2013) Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor or cells in a STAT3-dependent manner. Cancer Res 73: 3007-3018.

Togo S, Polanska UM, Horimoto Y, Orimo A (2013) Carcinoma-associated fibroblasts are a promising therapeutic target. Cancers 5: 149-169.