Starch/chitosan/glycerol films produced from low-value biomass: effect of starch source and weight ratio on film properties

Y M Navarro1, K Soukup2, V Jandová2, M M Gómez3, J L Solís3, J F Cruz1, R Siche5, O Šolcová2, G J F Cruz1*

1Laboratory of Environmental Analysis, Universidad Nacional de Tumbes, Av. Universitaria s/n, Campus Universitario – Pampa Grande, Tumbes, Peru
2Institute of Chemical Process Fundamentals of the CAS, v. v. i. Czech Republic.
3Faculty of Sciences, Universidad Nacional de Ingeniería, Av. Tupac Amaru 210, Lima 25, Peru
4Departament of Chemistry, Universidad Nacional de Piura, Urb. Miraflores s/n – Campus Universitario, Piura, Peru
5Faculty of Agricultural Sciences, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Ciudad Universitaria, Trujillo, Peru

*E-mail: gcruz@untumbes.edu.pe

Abstract. Films based on chitosan from giant squid (Dosidicus gigas) residual endoskeleton, starch from different low-value agroindustrial byproducts and glycerol were successfully obtained. Four starch sources and three different weight ratios (1/1, 2/1 and 5/1 of starch/chitosan) were used. Applying a statistical design of completely randomized blocks, the effect of starch source and weight ratio on the film properties were evaluated. The starch source did not affect any of the tested properties. However, film properties such as thickness, water solubility, water vapor permeability, elongation, and tensile strength revealed significant differences (p<0.01) related to the starch weight ratio in the films. A higher starch weight ratio led to lower water solubility; nevertheless, the higher starch weight ratio led to films with higher thickness, water vapor permeability and tensile strength.

1. Introduction

In modern society, synthetic plastics have become a serious environmental concern. Due to their low biodegradability, these materials can remain in the environment for a long time and cause problems such as saturation of landfills and greenhouse gas production [1]. In most cases, these materials can even reach terrestrial and aquatic ecosystems, affecting living organisms [2].

Finding new renewable packaging materials is still an important challenge [3-6]. Biocompatible materials such as chitosan, starch, gelatin, and proteins have been used to obtain new generations of biodegradable packages [7-9]. Starch and chitosan are two of the most commonly used biopolymers to produce biodegradable packages with specific advantages and disadvantages. Starch has such properties as being homogeneous, odorless, and colorless and having very low oxygen permeability [10]. However, it is highly hydrophobic, highly water soluble, and brittle [11] and shows poor mechanical and barrier...
properties [12]. On the other hand, chitosan is able to form films with a lack of water resistance and poor mechanical properties [13].

Chitosan is usually prepared from low-value abundant wastes; however, the most popular production method (chemical) still negatively affects the environment [14]. In contrast, starch raw materials and production process are low cost and cause less pollution compared to chitosan production.

Adding a plasticizer into films prepared with biopolymers improves film properties [15]. Versino, Lopez, Garcia and Zaritzky [16] observed that plasticized starch films showed lower water vapor permeability compared to unplasticized ones. Additionally, the presence of the plasticizer induces structural modifications of the starch network, leading to a less ordered but compact structure [17]. It is very important to maintain moisture content in some edible products and maintain their quality. In addition, Zhong and Xia [18] concluded that the presence of glycerin increases the flexibility of the final films because of the reduction of the intramolecular bonds between polymeric chains.

According to Versino, Lopez, Garcia and Zaritzky [16], the starch source is critical for film optical properties, which strongly influence consumer acceptability of the packaging material. Additionally, it has been well known that the origin of starch (variety and part of the plant) influences starch composition. Different authors [19-21] have considered that the amount of amylose in starch has an influence on the properties of chitosan/starch films. Properties such as water vapor permeability and tensile strength are inversely proportional to amylose content, while elongation at break is directly proportional to the amylose content in starch.

From the above studies, it appears that combining both chitosan and starch may be useful for the production of packaging films with improved properties. Many authors have studied the combination of both materials with or without the addition of plasticizer agents [11, 20, 22-25]. However, the combination of biopolymers made of low-cost and abundant sources, such as residual biomasses, is still an attractive topic to investigate. Moreover, reports on the influence of characteristics such as effective diffusivities on the overall properties of food packaging materials have been limited or omitted in the literature so far.

Within agroindustrial production, there is a portion of raw material with low quality that is not considered for elaborating the final product. These surplus materials are usually sold in the local markets as animal feed for very low prices. However, some of those materials are rich in starch, giving low-cost materials an aggregate value. Some of those raw materials are broken rice grain (“ñelen”) produced in the process of rice peeling, hard yellow corn surplus, banana surplus from exportation activity (variety Cavendish) (BS) and low-quality cassava. In the case of chitosan production, there are unconventional residual biomasses with a high content of chitin that could be used as raw material. Giant squid (Dosidicus gigas) is a widely distributed species in the South Pacific Ocean (coast of Peru and Chile). The residual material of giant squid processing is used to produce animal feed or is disposed of in illegal dumps, causing environmental problems.

In this framework, the present study aimed to produce starch/chitosan/glycerol films using chitosan derived from residual biomass of giant squid (Dosidicus gigas) endoskeleton and four sources of starch from low-value agroindustrial products in different weight ratios and to evaluate the effect of the source and weight ratio of starch on film properties.

2. Materials and Methods

2.1. Chitosan and starch samples

Chitosan (molecular weight of 1000 kDa, deacetylation degree of 85.5%) produced via a chemical method from giant squid (Dosidicus gigas) endoskeleton [26] was used for the experiments. Various starch samples were obtained using low-value raw materials, such as broken rice grains (RS) (“ñelen”), hard yellow corn surplus (CS), banana surplus from exportation activity (variety Cavendish) (BS) and low-quality cassava (CaS). Starch isolation was carried out by mixing dried and ground raw materials with a solution of sodium metabisulfite (5%). The mixture was filtered and then decanted at 5 °C for 24 h. Afterwards, the obtained starch was washed repeatedly with distilled water and ethanol.
Finally, the starch samples were dried at 55 °C for 48 h and were subsequently crushed and sieved. The yield (wt.%) was calculated by dividing the weight of starch by the total weight of used raw materials multiplied by 100.

The starch samples were characterized to determine moisture, ash, lipid and amylose contents (wt.%) using classical methods [27-29].

2.2 Film preparation
Chitosan/glycerol/starch films were obtained by a casting method. A solution of chitosan 1% (w/v) in 1% (v/v) acetic acid was prepared. Aqueous solutions of different starch weight ratios (1/1, 2/1 and 5/1 starch/chitosan) were produced by agitation at 30 °C for 30 min and then at 90 °C for 60 min to ensure that the total gelatinization of starches occurred. The solutions were filtered through a cellulose filter (pore size 0.10 mm) to remove insoluble particles. The chitosan solution and the solutions with different starch weight ratios were mixed to prepare the samples, as summarized in table 1. The mixture was stirred for 30 min, and a glycerol solution (1.5% w/w) was added in a volumetric ratio corresponding to 2:1 with respect to the starch solution. The mixture was stirred for an additional 30 min and then placed into an ultrasonic bath (frequency 40 kHz) for 20 min. Finally, the mixture was dispersed over acrylic molds. The samples were dried at 60 °C for 23 h and subsequently, the produced films were stored between plasticized papers inside plastic bags.

Table 1. Composition of the prepared films (taken as base 100 ml of solution before drying).

Samples	Chitosan (g)	Glycerol (g)	Starch Source	Starch (g)	Starch/Chitosan Ratio
Ch-G-RS1	0.4	0.3	Rice	0.4	1/1
Ch-G-RS2	0.4	0.3	Rice	0.8	2/1
Ch-G-RS5	0.4	0.3	Rice	2.0	5/1
Ch-G-CS1	0.4	0.3	Hard yellow corn	0.4	1/1
Ch-G-CS2	0.4	0.3	Hard yellow corn	0.8	2/1
Ch-G-CS5	0.4	0.3	Hard yellow corn	2.0	5/1
Ch-G-BS1	0.4	0.3	Banana	0.4	1/1
Ch-G-BS2	0.4	0.3	Banana	0.8	2/1
Ch-G-BS5	0.4	0.3	Banana	2.0	5/1
Ch-G-CaS1	0.4	0.3	Cassava	0.4	1/1
Ch-G-CaS2	0.4	0.3	Cassava	0.8	2/1
Ch-G-CaS5	0.4	0.3	Cassava	2.0	5/1

2.3 Film characterization
To take SEM images, a triangular section (0.5 cm each side) of the film samples was cut, placed on a carbon support and covered with a gold coating. The conditioned sample was placed into the vacuum chamber of an SEM (Vega3 Tescan, Czech Republic). SEM images were taken at two magnifications to obtain view fields of 5 and 20 μm and with a 15 kV acceleration voltage for only the samples with a starch/chitosan ratio of 2/1.

The thickness of the films was measured using a digital micrometer (Mitutoyo IP 65 Coolant Proof, Japan) with 0.001 mm accuracy. Ten different points were taken across the films to measure the thickness. The average value was calculated and reported.

For water solubility, 2 cm × 3 cm sections of the film samples were cut and weighed using an analytical balance (Sartorius Quintix, USA). Every section was placed into a 100 mL flask, and 80 mL of distilled water was added. The samples were stirred for 1 h at room temperature, taking care that the
film fraction was still submerged in the water. The remaining pieces of the samples after soaking were recovered and dried at 60 °C until a constant weight was reached [30]. Water solubility was calculated according to the following equation:

$$\text{Solubility (\%) = \frac{[\text{Initial dry weight} - \text{Final dry weight}]}{\text{Initial dry weight}}} \times 100$$

(1)

To determine the luminosity factor of the films (%), a colorimeter (Konica Minolta CR400, Japan) was used with white color as the reference.

The water vapor permeability of the films was determined by a desiccant method according to standard test method ASTM E96M/E96-05. A section of the films (3.5×3.5 cm) was placed into probe tubes (130 × 15 mm) with 2 g of silica gel. Every tube was covered with a double layer composed of aluminum paper and paraffin and was closed hermetically. The closed tubes were weighed and then placed into a desiccator with 65% relative humidity at room temperature (30 °C). At the beginning, the sample was weighed every hour for the first two days; then, it was weighed every 2 h for one week; finally, it was weighed every day until the final sample weight exceeded 4% of the initial weight. Weight vs. time was graphed, and the slope was calculated. A linear dependence is observed, and the slope represents the amount of water vapor transmitted per unit time. To determine the water vapor permeability, equation 2 was used:

$$WVP = \frac{\text{WVTR} \times e}{p_w \times (HR_1 - HR_2)}$$

(2)

where WVP is the water vapor permeability (g·Pa⁻¹·m⁻¹·s⁻¹), WVTR is the ratio of the slope of the curve to the exposed area of the films (g·m⁻²·s⁻¹), e is the thickness (m), p_w is the water vapor pressure at the temperature of the experiments (Pa), HR_2 is the relative humidity inside the chamber and HR_1 is the relative humidity inside the tube.

The tensile strength (MPa) and elongation at break (%) were calculated using a standard test method according to ASTM D882-01 (ASTM, 2001b). The measurements were performed with a universal texturometer (Brookfield CT3, Canada) with an activation charge of 0.05 N. Samples of 10 × 2.5 cm (length x width) were cut off and loaded in the fixing accessory of the texturometer. The crosshead speed was set at 0.5 mm·s⁻¹ until break.

Tensile strength was calculated by dividing the maximum force on the film during fracture by the cross-sectional area (width × thickness). Elongation at break was calculated by dividing the maximum extension of the film by the length of the samples.

Binary countercurrent gas diffusion measurements were performed in a Graham’s diffusion cell [31]. Samples with a circular shape (20 mm diameter) were prepared from the parent film sheet using a die-cutting tool. All gas transport measurements were performed very carefully owing to the soft and easily deformable structure of the films, following the procedure described by Soukup, Hejtmánek, Petráš and Šolcová [32]. Two gas pairs involving Ar/He and He/H₂ (99.99% grade, Linde Gas, Czech Republic) were used for the diffusion tests. All diffusion tests in the Graham’s cell were performed under room temperature and pressure.

Figure 1. Graham’s diffusion cell setup. (1) -- diffusion cell, (2) -- tested sample, (3) -- 4-way valve, (4) -- digital bubble flowmeter. A -- argon or helium, B -- helium or hydrogen.
2.4 Statistical design
A randomized complete block design was used to statistically evaluate the influence of the starch source and/or the starch/chitosan weight ratio (blocks) on the qualitative parameters of the produced films. In the case of a significant difference ($p<0.01$), Tukey’s test [33] was applied to establish the difference between levels of treatment or blocks.

3. Results and discussion

3.1 Starch samples
The calculated yields of different starch isolates ranged from 4.06 to 23.47% (table 2). The botanical source of the raw material affects the starch yield; thus, banana, which is a fruit, presents the lowest yield level compared with cereals (rice and corn) and tuberous root (cassava). In the case of bananas, the yield of starch is directly related to the stage of ripening; thus, ripe bananas give significantly less starch yield than unripe bananas. This phenomenon is caused by the decomposition of starch to simple carbohydrates during the ripening process. In this study, physiologically mature bananas (still green and unripe) were used.

Table 2. Properties of starches prepared for this study.

Sample	Yield (wt.%)	Moisture (wt.%)	Ash content (wt.%)	Lipids (wt.%)	Amylose (wt.%)
Rice starch (RS)	23.47 ± 0.01	5.81 ± 0.45	5.96 ± 0.37	0.31 ± 0.01	19.85 ± 0.07
Hard yellow corn starch (CS)	8.83 ± 0.02	5.21 ± 0.05	5.69 ± 0.28	6.40 ± 0.49	20.40 ± 0.05
Banana starch (BS)	4.06 ± 0.02	4.74 ± 0.26	4.95 ± 0.22	0.20 ± 0.11	28.96 ± 1.32
Cassava starch (CaS)	17.58 ± 0.02	3.37 ± 0.11	3.44 ± 0.12	0.11 ± 0.01	23.17 ± 0.49

The moisture, ash and lipid contents were between 3.37 – 5.81, 3.44 – 5.96 and 0.11 – 6.40 wt.%, respectively (table 2). Because the amylose content in the starch is a key parameter that is correlated with different properties of starch [21], this parameter was thoroughly studied. The concentration of amylose in the starch samples was significantly variable. In the literature, different levels of amylose can be found that are not necessarily similar to the levels obtained in this study. In the case of vegetal biomass, factors such as variety, agronomic conditions, climatic conditions [34], soil type, geographical location and extraction method might influence the amylose content in starches. Ashwar, Shah, Gani, Shah, Gani, Wani, Wani and Masoodi [21] observed that the amylose content in rice starch was 24.55%, while López and García [35] obtained 23.9% amylose with regular corn starch. Zhang, Whistler, BeMiller and Hamaker [36] collected data from other authors related to the amylose content in various cultivars of bananas, which varied between 9.1 and 12%. However, other authors observed 19.5% for the Cavendish variety of banana and 40.7% for the Valery variety of banana [37]. López and García [35], Pelissari, Yamashita, Garcia, Martino, Zaritzky and Grossmann [38], and Zaritzky and Grossmann [18] obtained an amylose content between 15.5 and 16.8% in cassava starch.

3.2 Film characterization
The size, shape and distribution of starch granules in the films with a starch/chitosan ratio of 2/1 are depicted in figure 2. All samples revealed two phases: the first is a compact structure that consists of chitosan/glycerin and a soluble fraction of starch. The second is composed of granules of starch distributed in the first phase. The granules of rice starch revealed irregular shapes and elliptical forms.
and were distributed throughout the entire surface of the film. The granules of corn starch were round, more regular and homogeneously distributed in the film. The granules of cassava starch were oval and round with edges and were distributed rather anisotropically. López and García [35] observed that materials based on corn starch present more homogeneity and compactness than films produced from tuberous starches such as cassava starch, in agreement with this study. Additionally, the granules of banana starch are faintly recognizable with irregular round shapes and irregular distributions.

The size of starch granules decreased in the order of Ch-G-RS>Ch-G-RS>Ch-G-CaS>Ch-G-BS. Additionally, it can be seen from the SEM images that all starch granules are higher than the films except for banana starch. The thickness of the films varied significantly \((p<0.01)\) as a function of starch weight ratio (figure 3a and table 3). The higher the amount of starch in the films was, the higher the amount of solids (the higher the amount of dry matter) in the film; thus, the amount of water was lower. Therefore, the higher the ratio of starch/chitosan was, the higher the thickness of the films. Santacruz, Rivadeneira and Castro [20] observed that an increase in starch weight ratio led to an increase in film thickness due to the larger starch granule size at high swelling power. From a statistical point of view, thickness did not vary significantly \((p>0.01)\) with respect to starch source.

Water solubility and water vapor permeability depended significantly \((p<0.01)\) on the starch weight ratio in the film (table 3, figures 3b and 3c) but not on the starch source. The higher starch weight ratio increases the water solubility and WVP of the films. The higher starch weight ratio also increases the amount of free hydroxyl groups in the films that are able to form hydrogen bonds with water molecules and thus increased solubility. During the preparation of the films at the aforementioned experimental conditions, gelatinization as well as retrogradation take place. The amino groups of the chitosan were protonated to \(\text{NH}_3^+\) in the acid solution, whereas the ordered crystalline structures of the starch molecules were destroyed by gelatinization during solubilization, exposing the OH groups to readily form hydrogen bonds with \(\text{NH}_3^+\) of chitosan [22]. Related to WVP, Santacruz, Rivadeneira and Castro [20] mentioned that the explanation for the observed tendency is that the high starch weight ratio may promote retrogradation and that this phenomenon leads to a higher WVP. Statistically, there was no significant difference in WVP between the samples prepared with starch/chitosan ratios of 1/1 and 2/1. However, the sample containing a 5/1 ratio of starch/chitosan had significantly higher WVP than the other samples. According to Liu, Qin, He and Song [10], when the starch weight ratio is increased, numerous microcracks are formed due to the incompatibility between different polymers, which favors water penetration.

According to the statistical analysis (table 3), the luminosity factor does not depend on either the weight ratio or the type of starch \((p<0.01)\). However, films made of corn starch are slightly yellow, possibly due to the oxidation of the high amount of lipids that content this type of starch.

Tensile strength (TS) and elongation at break (E) varied significantly \((p<0.01)\) as a function of the starch weight ratio in the films (table 3). However, both parameters are independent of the starch source. TS increases with the increasing starch weight ratio (figure 4b) due to the formation of the intermolecular hydrogen bonds between \(\text{NH}_3^+\) cations of the chitosan backbone and \(\text{OH}^-\) anions of the starch [11]. Statistically the films containing 1/1 and 2/1 ratios of starch/chitosan were similar, while the films prepared with the ratios of 5/1 presented lower elongation at break. It appears that films containing chitosan/starch/glycerol revealed a limit starch weight ratio that changes the flexibility of the films. This finding is fully in agreement with Xu, Kim, Hanna and Nag [11], who observed that increasing the starch weight ratio (brittle agent) in the film reduces its flexibility.
Figure 2. SEM images of the produced films: Ch-G-RS2 (a-e), Ch-G-CS2 (b-f), Ch-G-BS2 (c-g), and Ch-G-CaS2 (d-h).
Table 3. Statistical analysis of the results according to the randomized complete block design and Tukey’s test.

Starch weight ratio	Parameter	Thickness (mm)	Water solubility (%)	Water vapor permeability ($\times 10^{12}$) (gPa$^{-1}$ m$^{-1}$ s$^{-1}$)	Elongation (%)	Tensile strength (MPa)	Luminosity factor (%)	Net diffusion molar flux density (Ar/He) (μmol cm$^{-2}$s$^{-1}$)	Net diffusion molar flux density (He/H$_2$) (μmol cm$^{-2}$s$^{-1}$)
Ch-G-S1	Ch-G-S2	0.070c	46.27c	1.09b	10.99a	3.75a	92.27a	0.09a	0.07a
Ch-G-S5	Ch-G-S2	0.088b	61.49b	1.38b	11.90a	9.23b	90.83a	0.09a	0.06a
Ch-G-S5	Ch-G-S2	0.134a	75.52a	2.38a	2.95b	21.79a	87.09a	0.09a	0.07a

Statistical analysis with respect to starch source

Parameter	Films with different starch source	Ch-G-RS	Ch-G-CS	Ch-G-BS	Ch-G-CaS
Thickness (mm)		0.106**	0.092a	0.085a	0.106a
Water solubility (%)		57.67a	64.13a	62.95a	59.61a
Water vapor permeability ($\times 10^{12}$) (gPa$^{-1}$ m$^{-1}$ s$^{-1}$)		1.56a	1.65a	1.71a	1.56a
Elongation (%)		7.59a	7.68a	9.13a	10.05a
Tensile strength (MPa)		8.98a	9.32a	12.85a	15.22a
Luminosity factor (%)		91.24a	89.33a	85.80a	93.89a
Net diffusion molar flux density (Ar/He) (μmol cm$^{-2}$s$^{-1}$)		0.11a	0.11a	0.06a	0.07a
Net diffusion molar flux density (He/H$_2$) (μmol cm$^{-2}$s$^{-1}$)		0.06a	0.09a	0.05a	0.05a

a-c levels of Tukey’s test

*Values are the averages of the different starch sources.

**Values are the averages of the three starch/chitosan ratios.
Figure 3. Thickness (a), water solubility (b), water vapor permeability (c) and luminosity (d) of the films.

Figure 4. Mechanical properties of the films: (a) elongation at break and (b) tensile strength.
Gas diffusion measurements were conducted with inert gas pairs (Ar/He and He/H₂) based on the fact that these gases are neither able to react with the components of the films nor able to be adsorbed on the surface. Every experimental point was replicated three times, and the corresponding mean values for both the volumetric diffusion fluxes and the net diffusion molar flux densities are summarized in table 4. Statistically, neither the weight ratio nor the type of starch affected the net diffusion molar flux density of the produced films.

Sample	Gas pair	t (°C)	P (Torr)	d (cm)	Vd (cm³/min)	Nd (µmol cm⁻²s⁻¹)
Ch-G-RS1	Ar/He	25.0	739.6	2.0	0.42	0.09*
Ch-G-RS1	He/H₂	25.0	739.6	2.0	0.32	0.07
Ch-G-RS2	Ar/He	25.2	734.0	2.0	0.60	0.13
Ch-G-RS5	He/H₂	25.2	734.0	2.0	0.33	0.07
Ch-G-CS1	Ar/He	23.8	737.9	2.0	0.58	0.12
Ch-G-CS1	He/H₂	23.6	737.9	2.0	0.40	0.08
Ch-G-CS2	Ar/He	23.8	740.0	2.0	0.49	0.10
Ch-G-CS2	He/H₂	23.8	740.0	2.0	0.46	0.10
Ch-G-RS5	Ar/He	25.6	733.9	2.0	0.55	0.11
Ch-G-RS5	He/H₂	25.2	733.9	2.0	0.47	0.10
Ch-G-BS1	Ar/He	24.6	739.7	2.0	0.35	0.07
Ch-G-BS1	He/H₂	24.6	739.7	2.0	0.29	0.06
Ch-G-BS2	Ar/He	24.4	739.7	2.0	0.18	0.04
Ch-G-BS2	He/H₂	24.4	739.7	2.0	0.16	0.03
Ch-G-BS5	Ar/He	24.4	739.7	2.0	0.36	0.08
Ch-G-BS5	He/H₂	24.6	739.7	2.0	0.29	0.06
Ch-G-CaS1	Ar/He	24.6	740.0	2.0	0.31	0.07
Ch-G-CaS1	He/H₂	24.6	740.0	2.0	0.26	0.05
Ch-G-CaS2	Ar/He	25.2	739.6	2.0	0.32	0.07
Ch-G-CaS2	He/H₂	24.8	739.6	2.0	0.24	0.05
Ch-G-CaS5	Ar/He	24.2	739.3	2.0	0.31	0.07
Ch-G-CaS5	He/H₂	24.0	739.3	2.0	0.24	0.05

*Values are the average of three measurements.

List of symbols:
- t: temperature during measurement
- p: atmospheric pressure during measurement
- d: diameter of the sample fixed into an impermeable disc of the diffusion cell
- Vd: volumetric diffusion flux directly measured by a digital bubble flowmeter
- Nd: net diffusion molar flux density calculated from Vd

4. Conclusions
Films based on chitosan from giant squid (Dosidicus gigas) residual endoskeleton mixed with glycerin and four sources of low-value raw materials were successfully obtained.

In terms of the effect of starch weight ratio on chitosan/glycerin/starch film properties, it was observed that a higher starch weight ratio led to the production of starch/chitosan/glycerol films with lower water solubility and elongation and higher thickness, water vapor permeability and tensile strength.

The type of starch did not affect any of the evaluated properties of the chitosan/glycerin/starch films.
Acknowledgments
The INNOVATE Perú program (Contrato N° 356-PNICP-PIAP-2014) and the National University of Tumbes provided important financial support.

References
[1] ChidambarampadmaVathy K, Karthikeyan O P and Heimann K 2017 Sustainable bio-plastic production through landfill methane recycling Renewable and Sustainable Energy Reviews 71 555-62
[2] Moore C J 2008 Synthetic polymers in the marine environment: A rapidly increasing, long-term threat Environmental Research 108 131-9
[3] Emadian S M, Onay T T and Demirel B 2017 Biodegradation of bioplastics in natural environments Waste Manag 59 526-36
[4] Ginting M H S, Lubis M, Sidabutar T and Sirait T P 2018 The effect of increasing chitosan on the characteristics of bioplastic from starch talas (Colocasia esculenta) using plasticizer sorbitol IOP Conference Series: Earth and Environmental Science 126 012147
[5] Thakur R, Saberi B, Pristijono P, Stathopoulos C E, Golding J B, Scarlett C J, Bowyer M and Vuong Q V 2017 Use of response surface methodology (RSM) to optimize pea starch-chitosan novel edible film formulation J Food Sci Technol 54 2270-8
[6] Homez-Jara A, Daza L D, Aguirre D M, Munoz J A, Solanilla J F and Vaquiro H A 2018 Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures Int J Biol Macromol 113 1233-40
[7] Kong M, Chen X G, Xing K and Park H J 2010 Antimicrobial properties of chitosan and mode of action: a state of the art review Int J Food Microbiol 144 51-63
[8] Kumar N, Kaur P and Bhatia S 2017 Advances in bio-nanocomposite materials for food packaging: a review Nutrition & Food Science 47 591-606
[9] Romani V P, Prentice-Hernández C and Martins V G 2017 Active and sustainable materials from rice starch, fish protein and oregano essential oil for food packaging Industrial Crops and Products 97 268-74
[10] Liu F, Qin B, He L and Song R 2009 Novel starch/chitosan blending membrane: Antibacterial, permeable and mechanical properties Carbohydrate Polymers 78 146-50
[11] Xu Y X, Kim K M, Hanna M A and Nag D 2005 Chitosan–starch composite film: preparation and characterization Industrial Crops and Products 21 185-92
[12] Fitch-Vargas P R, Aguilar-Palazuelos E, de Jesus Zazueta-Morales J, Vega-Garcia M O, Valdez-Morales J E, Martinez-Bustos F and Jacobo-Valenzuela N 2016 Physicochemical and Microstructural Characterization of Corn Starch Edible Films Obtained by a Combination of Extrusion Technology and Casting Technique J Food Sci 81 E2224-32
[13] Elsabee M Z and Abdou E S 2013 Chitosan based edible films and coatings: a review Mater Sci Eng C Mater Biol Appl 33 1819-41
[14] Leceta I, Guerrero P, Cabezudo S and Caba K d l 2013 Environmental assessment of chitosan-based films Journal of Cleaner Production 41 312-8
[15] Edhiebj A, Sapuan S M, Jawaid M and Zahari N T 2017 Effect of various plasticizers and concentration on the physical, thermal, mechanical, and structural properties of cassava-starch-based films Starch - Stärke 69
[16] Versino F, Lopez O V, Garcia M A and Zaritzky N E 2016 Starch-based films and food coatings: An overview Starch - Stärke 68 1026-37
[17] Farahnak A, Saberi B and Majzoobi M 2013 Effect of Glycerol on Physical and Mechanical Properties of Wheat Starch Edible Films Journal of Texture Studies 44 176-86
[18] Zhong Q P and Xia W S 2008 Physicochemical properties of edible and preservative films from chitosan/cassava starch/gelatin blend plasticized with glycerol Food Tech. Biotech. 46 262-9
[19] Basiak E, Lenart A and Debeaufort F 2017 Effect of starch type on the physico-chemical properties of edible films Int J Biol Macromol 98 348-56
[20] Santacruz S, Rivadeneira C and Castro M 2015 Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant's hydrophilic tail and mechanical treatment Food Hydrocolloids 49 89-94
[21] Ashwar B A, Shah A, Gani A, Shah U, Gani A, Wani I A, Wani S M and Masoodi F A 2015 Development of potato starch based active packaging films loaded with antioxidants and its effect on shelf life of beef Journal of Food Science and Technology 52 7245-53
[22] Bourtoom T and Chinman M S 2008 Preparation and properties of rice starch–chitosan blend biodegradable film LWT - Food Science and Technology 41 1633-41
[23] Chillo S, Flores S, Mastromatteo M, Conte A, Gerschenson L and Del Nobile M A 2008 Influence of glycerol and chitosan on tapioca starch-based edible film properties Journal of Food Engineering 88 159-68
[24] Garcia M A, Pinotti A and Zaritzky N E 2006 Physicochemical, Water Vapor Barrier and Mechanical Properties of Corn Starch and Chitosan Composite Films Starch - Stärke 58 453-63
[25] Ji N, Qin Y, Xi T, Xiong L and Sun Q 2017 Effect of chitosan on the antibacterial and physical properties of corn starch nanocomposite films Starch - Stärke 69 1600114
[26] Moreno E, Alfaró R, Guzmán V S, Rimaycuna J and Cruz G J 2017 Efecto de la reducción del peso molecular de quitosano obtenido de plumas de pota (Dosidicus gigas) utilizando dos métodos de despolimerización sobre su capacidad antimicrobiana Manglar 13 25-33
[27] AACC 1995 Methods of the American Association of Cereal Chemists (9th ed.). (St. Paul, Minnesota, USA: AACC, American Association of Cereal Chemist.)
[28] Maniñgat C C and Juliano B O 1980 Starch Lipids and Their Effect on Rice Starch Properties Starch - Stärke 32 76-82
[29] Williams P C, Kuzina F D and Hlynka I 1970 A rapid calorimetric procedure for estimating the amylose content of starches and flours Cereal Chemistry Journal 47 411-20
[30] Romero-Bastida C A, Bello-Pérez L A, García M A, Martino M N, Solorza-Feria J and Zaritzky N E 2005 Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches Carbohydrate Polymers 60 235-44
[31] Soukup K, Schneider P and Šolcová O 2008 Comparison of Wicke–Kallenbach and Graham's diffusion cells for obtaining transport characteristics of porous solids Chemical Engineering Science 63 1003-11
[32] Soukup K, Hejtmánek V, Petráš D and Šolcová O 2013 Determination of texture and transport characteristics of electrospun nanofibrous mats Colloids and Surfaces A: Physicochemical and Engineering Aspects 437 133-40
[33] Tukey J W 1949 Comparing individual means in the analysis of variance Biometrics 5 99-114
[34] Alcázar-Alay S C and Meireles M A A 2015 Physicochemical properties, modifications and applications of starches from different botanical sources Food Science and Technology (Campinas) 35 215-36
[35] López O V and García M A 2012 Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization Materials Science and Engineering: C 32 1931-40
[36] Zhang P, Whistler R L, BeMiller J N and Hamaker B R 2005 Banana starch: production, physicochemical properties, and digestibility—a review Carbohydrate Polymers 59 443-58
[37] Waliszewski K N, Aparicio M A, Bello L s A and Monroy J A 2003 Changes of banana starch by chemical and physical modification Carbohydrate Polymers 52 237-42
[38] Pelissari F M, Yamashita F, Garcia M A, Martino M N, Zaritzky N E and Grossmann M V E 2012 Constrained mixture design applied to the development of cassava starch–chitosan blown films Journal of Food Engineering 108 262-7