Trends in taxonomy of Triatomini (Hemiptera, Reduviidae, Triatominae): reproductive compatibility reinforces the synonymization of Meccus Stål, 1859 with Triatoma Laporte, 1832

Natália Regina Cesaretto1†, Jader de Oliveira2,3†, Amanda Ravazi1, Fernanda Fernandez Madeira4, Yago Visinho dos Reis1, Ana Beatriz Bortolozo de Oliveira4, Roberto Dezan Vicente1, Daniel Cesaretto Cristal3, Cleber Galvão5*, Maria Tercília Vilela de Azeredo-Oliveira4, João Aristeu da Rosa3 and Kaio Cesar Chaboli Alevi1,3

Abstract

Background: Meccus' taxonomy has been quite complex since the first species of this genus was described by Burmeister in 1835 as Conorninus phyllosoma. In 1859 the species was transferred to the genus Meccus and in 1930 to Triatoma. However, in the twentieth century, the Meccus genus was revalidated (alteration corroborated by molecular studies) and, in the twenty-first century, through a comprehensive study including more sophisticated phylogenetic reconstruction methods, Meccus was again synonymous with Triatoma. Events of natural hybridization with production of fertile offspring have already been reported among sympatric species of the T. phyllosoma subcomplex, and experimental crosses demonstrated reproductive viability among practically all species of the T. phyllosoma subcomplex that were considered as belonging to the genus Meccus, as well as between these species and species of Triatoma. Based on the above, we carried out experimental crosses between T. longipennis (considered M. longipennis in some literature) and T. mopan (always considered as belonging to Triatoma) to evaluate the reproductive compatibility between species of the T. phyllosoma complex. In addition, we have grouped our results with information from the literature regarding crosses between species that were grouped in the genus Meccus with Triatoma, in order to discuss the importance of experimental crosses to confirm the generic reorganization of species.

Results: The crosses between T. mopan female and T. longipennis male resulted in viable offspring. The hatching of hybrids, even if only in one direction and/or at low frequency, demonstrates reproductive compatibility and homeology between the genomes of the parents.
Conclusion: Considering that intergeneric crosses usually do not result in viable offspring in Triatominae, the reproductive compatibility observed between the *T. phyllosoma* subcomplex species considered in the *Meccus* genus with species of the *Triatoma* genus shows that there is “intergeneric” genomic compatibility, which corroborates the generic reorganization of *Meccus* in *Triatoma*.

Keywords: Chagas disease vector, Triatomines, *T. longipennis*, *T. mowan*, Experimental crosses

Background
Triatomines are hematophagous insects of great importance for public health, since they are considered the main form of transmission of the protozoan *Trypanosoma cruzi* (Chagas, 1909) (Kinetoplastida, Trypanosomatidae), the etiological agent of Chagas disease [1]. Currently, there are 8 million infected people worldwide and around 25 million living in an area at risk of infection [1], the control of vector populations being the main measure for the reduction of new chagasic patients [1].

Triatomines are part of the Hemiptera order, Heteroptera suborder, Reduviidae family and Triatominae subfamily [2]. There are 156 species in this subfamily, distributed in 18 genera and five tribes [3–6]. The Triatomini tribe is composed of nine genera, namely, Dipetalogaster Usinger, 1939, *Eratyrsus* Stål, 1859, *Hermanlentia* Jurberg & Galvão, 1997, *Linchocestus* Distant, 1904, *Mepatra* Mazza, Gajardo & Jörg, 1940, *Nesotriatoma* Usinger, 1944, *Panstrongylus* Berg, 1879, *Paratriatoma* Barber, 1938, and *Triatoma* Laporte, 1832 [3, 4]. However, during the taxonomic history within this tribe, several genera have already been considered valid: *Eutriatoma* Pinto, 1926, *Conorhinus* Laporte, 1833, *Callootriatoma* Usinger, 1939, *Cenaeus* Pinto, 1925, *Neotriatoma* Pinto, 1931, *Lanus* Stål, 1859, *Mestor* Kirkaldy, 1904, *Triatomaperta* Neiva & Lent, 1940, and *Meccus* Stål, 1859 [7, 8]. *Eutriatoma*, *Conorhinus*, *Neotriatoma* and *Meccus* were the genera synonymous with *Triatoma* [7, 8].

Meccus’ taxonomy has been quite complex, since the first species of this genus was described by Burmeister [9] as *Conorhinus phyllosoma* Burmeister, 1835; in 1859 the species was transferred to the genus *Meccus* [10] and in 1930 to *Triatoma* [11]. However, in the twentieth century, Carcavallo et al. [12] proposed the revalidation of the *Meccus* genus based on morphological data (alteration corroborated by Hypsa et al. [13] through molecular studies). Finally, in the twenty-first century, Justi et al. [8], through a comprehensive study including more sophisticated phylogenetic reconstruction methods, again synonymized *Meccus* with *Triatoma*.

The six species initially considered as *Meccus* [T. *bassolciae* Aguilar, Torres, Jiménez, Jurberg, Galvão & Carcavallo, 1999, *T. longipennis* Usinger, 1939, *T. mazottii* Usinger, 1941, *T. pallidipennis* Stål, 1872, *T. phyllosomus* (Burmeister, 1835), and *T. picturatus* Usinger, 1939], together with *T. bolivari* Carcavallo, Martínez & Pelaez, 1987, *T. mexicana* (Herrich-Schaeffer, 1848) and *T. ryckmani* Zeledón & Ponce, 1972, form the *T. phyllosoma* subcomplex [3]. This subcomplex, together with the *T. dimidiata* subcomplex *T. dimidiata* (Lateille, 1811), *T. heugneri* Mazzotti, 1940, *T. huehuetenanguensis* Lima-Cordón et al., 2019, *T. mowan* Dorn et al., 2018, *T. brailovskyi* Martínez, Carcavallo & Pelaez, 1984, and *T. gomezmani* Martínez, Carcavallo & Jurberg, 1994, form the *T. phyllosoma* complex [3, 14, 15].

Events of natural hybridization with production of fertile offspring have already been reported among sympatric species of the *T. phyllosoma* subcomplex [16]. Experimental crosses demonstrated reproductive viability among practically all species of the *T. phyllosoma* subcomplex that were considered as belonging to genus *Meccus* in some literature [17, 18]. In addition, experimental crosses between these species and species of *Triatoma* from the *T. phyllosoma* subcomplex (*T. mexicana*) and the *T. lecticularia* complex (*T. recurva* (Stål, 1868)) also resulted in the production of hybrids [19, 20].

The study of reproductive barriers by experimental crossings was used in taxonomy (with emphasis on description, revalidation, and synonymization of species [5, 21, 22]) and systematics (with emphasis on the evolutionary relationship between species [23]) of Triatominae. Based on the above, we carried out experimental crosses between *Triatoma* species of the *T. phyllosoma* (*T. longipennis*) and *T. dimidiata* (*T. mowan*) subcomplexes, to evaluate the reproductive compatibility between species of the *T. phyllosoma* complex. In addition, we have grouped our results with information from the literature regarding crosses between species that were initially grouped in the genus *Meccus* with *Triatoma*, in order to discuss the importance of experimental crosses to confirm the generic reorganization of species.

Methods
Reciprocal experimental crosses were conducted between *T. longipennis* and *T. mowan*. These two species were chosen because both belong to the *T. phyllosoma* complex [3, 14, 15], and *T. mowan* has never been considered as belonging to *Meccus*, unlike *T. longipennis*. The insects used in the experiment came from colonies kept in the Triatominae insectary of the School...
of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil. The experimental crosses were conducted in the Triatominae insectary, according to the experiments of Correia et al. [24] and Mendonça et al. [25]: the insects were sexed as fifth instar nymphs, and males and females were kept separately until they reached the adult stage to guarantee the virginity of the insects used in the crosses. For the experimental crosses, three couples from each set were placed in plastic jars (diameter 5 cm × height 10 cm) and kept at room temperature.

Results and discussion
As observed for the crosses between T. recurva and T. phyllosoma (as M. phyllosomus) [20] and between T. mexicana and T. longipennis [19], only the direction between T. mopa female and T. longipennis male resulted in viable offspring (Table 1). The hatching of hybrids, even if only in one direction and/or at low frequency (Table 1), demonstrates reproductive compatibility and homeology between the genomes of the parents.

Intergeneric crosses usually do not result in viable offspring in Triatominae (possibly due to pre-zygotic barriers, such as genomic incompatibility), as noted for the crossings between Panstrongylus and Triatoma, Panstrongylus and Nesiotriatoma, Rhodnius Stål, 1859 and Psammolestes Bergroth, 1911 (KCCA, personal communication) and Rhodnius and Triatoma [26]. The reproductive compatibility observed between the T. phyllosoma subcomplex species considered in the Meccus genus with species of the Triatoma genus (Table 1) shows that there is “intergeneric” genomic compatibility, which corroborates the regrouping of species in the same genus carried out by Justi et al. [8].

The genus Triatoma is a paraphyletic group comprising 82 species [3, 5, 8]. There are species of Triatoma related phylogenetically to the genera Panstrongylus, Paratriatoma, Linhcosteus and Hermanlentia [8], which justifies the paraphyly of the genus. The inclusion of the species of the genus Meccus in Triatoma rescues a discussion about the application of the morphological characteristics used for a long time as diagnoses for the genera of the subfamily Triatominae (as recently highlighted by Monteiro et al. [27]).

Taxonomy is a fundamental science for the entomology of Chagas disease, because correctly classifying triatomines can assist in the activity of vector control programs [28]. Even though since 2014 the generic status of the species grouped in Meccus has been changed to Triatoma, several authors continued publishing articles using the Meccus nomenclature as valid [20, 29–46] and, quite mistakenly, as Triatoma (Meccus) pallidipennis [47–49]—since Meccus after the genus Triatoma (between parentheses) represents a subgenus and, so far, there are no valid subgenera in the subfamily Triatominae.

Table 1 Experimental crosses performed between Triatoma spp. and Meccus spp.

Crossing experiments	Number of eggs	Egg fertility
♀ T. mopa x T. longipennis ♂	161	98 (61%)
♀ T. mazzottii x T. mexicana ♂	18a	12a (67%)
♀ T. mexicana x T. mazzottii ♂	14a	09a (64%)
♀ T. picturatus x T. mexicana ♂	25a	19a (76%)
♀ T. mexicana x T. picturatus ♂	32a	23a (72%)
♀ T. mexicana x T. longipennis ♂	14a	9a (64%)
♀ T. phyllosomus x T. mexicana ♂	208a	156a (75%)
♀ T. mexicana x T. phyllosomus ♂	392a	295 (75%)
♀ T. recurva x T. longipennis ♂	71.0 ± 78.3b	6.0 ± 0.0b (8.4%)
♀ T. longipennis x T. recurva ♂	74.8 ± 44.6b	6.0 ± 0.0b (8%)
♀ T. recurva x T. picturatus ♂	94.8 ± 39.6b	5.7 ± 6.4b (6%)
♀ T. picturatus x T. recurva ♂	136.0 ± 68.9b	12.3 ± 15.4b (8.8%)
♀ T. recurva x T. pallidipennis ♂	91.2 ± 77.3b	5.0 ± 0.0b (5.5%)
♀ T. pallidipennis x T. recurva ♂	54.0 ± 59.9b	14.5 ± 13.4b (26.8%)
♀ T. recurva x T. mazzottii ♂	92.7 ± 56.5b	3.0 ± 1.3b (2.3%)
♀ T. mazzottii x T. recurva ♂	119.8 ± 38.3b	5.3 ± 0.6b (4.4%)
♀ T. recurva x T. phyllosomus ♂	127.8 ± 88.1b	26.0 ± 26.7b (20%)

* Martinez-Ibarra et al. [19]; ** Martinez-Ibarra et al. [20]
Conclusion

Thus, through reproductive compatibility, we confirm the generic reorganization of Meccus in Triatoma proposed by Justi et al. [8]. In addition, we highlight the importance of the correct classification of the species of the *T. phyllosoma* subcomplex into this genus to avoid future misunderstandings by the scientific community and vector control programs.

Acknowledgements

We appreciate the à Pesquisa do Estado de São Paulo (FAPESP, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) – Finance Code 001, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for financial support.

Authors’ contributions

NRC: conceptualization, methodology, investigation, writing—original draft preparation and writing—review & editing. JO: conceptualization, methodology, investigation, writing, and data curation. VLR: methodology, investigation, writing, and data curation. FFM: methodology, investigation, writing—original draft preparation and writing—review & editing. JAR: conceptualization, methodology, investigation, writing, and data curation. BTT: conceptualization, methodology, investigation, writing—review & editing. JAR: conceptualization, methodology, investigation, writing, and funding acquisition. All authors read and approved the final manuscript.

Funding

The study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) – Finance Code 001, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil). JAR: CNPq, PQ-2, Nível Superior (CAPES, Brazil) – Finance Code 001, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil). JAR: CNPq, PQ-2, process 307 398/2018-8.

Availability of data and materials

The data supporting the conclusions of this article are included within the article.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Instituto de Biociências, Rua Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Júnior, Botucatu, SP 18618-689, Brazil. 2 Laboratório de Entomologia em Saúde Pública, Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo 715, São Paulo, SP, Brazil. 3 Laboratório de Parasitologia, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Faculdade de Ciências Farmacêuticas, Rodovia Araraquara-Jauí km 1, Araraquara, SP 14801-902, Brazil. 4 Laboratório de Biologia Celular, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Instituto de Biociências, Letras e Ciências Exatas, Rua Cristóvão Colombo 2265, São José Do Rio Preto, SP 15054-000, Brazil. 5 Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Pavilhão Rocha Lima, sala 505, Rio de Janeiro, RJ 21040-360, Brazil.

Received: 22 April 2021 Accepted: 11 June 2021

Published online: 26 June 2021

References

1. World Health Organization. Chagas disease (American trypanosomiasis). http://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis). Accessed 12 Mar 2021.
2. Galvão C. Vetores da doença de Chagas no Brasil. 1º ed Curitiba: Sociedade Brasileira de Zoologia, 2014.
3. Justi SA, Galvão C. The evolutionary origin of diversity in Chagas disease vectors. Trends Parasitol. 2017;33:42–52.
4. Galvão C. Taxonomia dos Vetores da Doença de Chagas da Forma à Molecília, quase três séculos de história. In: Oliveira J, Alevi GCC, Camargo LMA, Meneguetti DUO, editores. Atualidades em Medicina Tropical no Brasil: Vetores. São Paulo: Strictu Sensu Editora; 2020. p. 9–37.
5. Alevi GCC, Oliveira J, Garcia ACC, Cristal DC, Delgado LMG, Bittinelli IF, et al. Triatoma rosai sp. nov. (Hemiptera, Triatominae): a new species of argentinian chagas disease vector described based on integrative taxonomy. Insects. 2020;11:830.
6. Zhao Y, Galvão C, Cai W. Rhodinus micky, a new species of Triatominae (Hemiptera, Reduviidae) from Bolivia. Zookeys. 2021;1012:71–93.
7. Galvão C, Carcavallo R, Rocha DS, Jurberg J. A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa. 2003;202:1–36.
8. Justi SA, Russo CAM, dos Mallet JR, Obara MT, Galvão C. Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae). Parasit Vect. 2014;7:149.
9. Burmeister H. Handbuch der Entomologie. Berlin: Enslin; 1835.
10. Stål C. Monographie derGattung Gonorrhous und Verwandten. Berlin: Entomol Zeits. 1859;9:99–117.
11. Del Ponte E. Catálogo descriptivo de los géneros Triatoma Lap., Rhodinus Stål, e Eratyrus Stål. Rev. Instituto Bacteriol. Dep. Nac. Hig. 1930: 5: 855–937.
12. Carcavallo R, Jurberg J, Rent H, Noireau F, Galvão C. Phylogeny of the Triatominae (Hemiptera, Reduviidae). Proposals for taxonomic arrangements Entom Vect. 2000:71–99.
13. Hypsa V, Tietz D, Zrzavy J, Rego RO, Galvão C, Jurberg J. Phylogeny and biogeography of Triatominae (Hemiptera, Reduviidae): molecular evidence of a New World origin of the Asatic clade. Mol Phylog Evol. 2012;23:447–57.
14. Dorn PL, Justi AS, Dale C, Stevens L, Galvão C, Cordon RL, Monroy C. Description of Triatoma mopaon sp. n. (Hemiptera, Reduviidae, Triatominae) from a cave in Belize. Zookeys. 2018;755:69–95.
15. Lima-Cordón RA, Monroy MC, Stevens L, Rosas A, Rosas GA, Dorn PL, Justi A. Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). Zookeys. 2019;820:51–70.
16. Martínez-Hernandez F, Martínez-Ibarra JA, Catalá S, Villalobos G, de la Torre P, Laclette J, Alejandro-Aguilar R, Espinoza B. Natural crossbreeding between sympatric species of the *Phyllosoma* complex (Insecta: Hemiptera: Reduviidae) indicate the existence of only one species with morphologic and genetic variations. Am J trop Med Hyg. 2010;82:74–82.
17. Martínez-Ibarra JA, Ventura-Rodriguez LV, Meillón-Íñas K, Barajas-Martínez HM, Alejandro-Aguilar P, Ulpicio-Coronel R, Rocha-Chávez G, Nogueda-Torres B. Biological and genetic aspects of crosses between species of the *Phyllosoma* complex (Insecta: Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz. 2008;103:236–43.
18. Martínez-Ibarra JA, Grant-Guillén Y, Ventura-Rodriguez LV, Meillón-Íñas K, Barajas-Martínez HM, Alejandro-Aguilar P, Ulpicio-Coronel R, Espinoza B. Biological and genetic aspects of the *Phyllosoma* complex (Insecta: Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz. 2011;106:293–300.
19. Martínez-Ibarra JA, Grant-Guillén Y, Delgadillo-Aceves IN, Zumaya-Estrada FA, Rocha-Chávez G, SalazarScettino PM, Alejandro-Aguilar R, Villalobos G, Nogueda-Torres B. Biological and genetic aspects of crosses between phylogenetically close species of Mexican Triatomines (Hemiptera: Reduviidae). J Med Entomol. 2011;48:705–7.
20. Martínez-Ibarra JA, Nogueda-Torres B, Lizcón-Trillo A, Alejandro-Aguilar R, Salazar-Schettino PM, Vences-Blanco MO. Biological aspects of crosses between Triatoma recurva (Stål, 1868) (Hemiptera: Reduviidae: Triatominae) and other members of the Phyllosoma complex. J Vector Ecol. 2015;40:117–22.

21. Mendonça VJ, Alvei KCC, Pinotti H, Gurgel-Gonçalves R, Pita S, Guerra AL, Panzer A, Araújo RF, Azeredo-Oliveira MTV, Rosa JA. Revalidation of Triatoma bahiensis Sherlock & Serafim, 1967 (Hemiptera: Reduviidae: Triatominae) and phylogenetics of the T. brasiliensis species complex. Zootaxa. 2016;4107:239–54.

22. Nascimento JD, Ravazi A, Pardo-Diaz C, Salgado-Roa FC, da Rosa JA, de Azeredo Oliveira MTV, de Oliveira J, Hernández C, Salazar C, Ramírez JD. Taxonomic overlapping in the Rhodnius prolulus (Insecta: Hemiptera: Reduviidae) clad: are R. taquarussensis (da Rosa et al., 2017) and R. neglectus (Lent, 1954) the same species? PLoS ONE. 2019;14:e0211285.

23. Neves SJM, Souza PS, Oliveira J, Ravazi A, Madeira FF, Reis Yu, et al. Prezygotic isolation confirms the exclusion of Triatoma melanosphapha, T. viticeps and T. tibiamaculata of the T. brasiliensis subcomplex (Hemiptera, Triatominae). Insect Genet Evol. 2020;79:104149.

24. Correia N, Almeida CE, Lima-Neiva V, Gurniel M, Lima MM, Medeiros LWO, Mendonça VJ, Rosa JA, Costa J. Crossing experiments confirm Triatoma sherlocki as a member of the Triatoma brasiliensis species complex. Acta Trop. 2013;128:162–7.

25. Mendonça VJ, Alvei KCC, Medeiros LM, Nascimento JD, Azeredo-Oliveira MTV, Rosa JA. Cytogenetic and morphologic approaches of hybrids from experimental crosses between Triatoma lentii Sherlock & Serafim, 1967 and T. sherlocki Papa et al. 2002 (Hemiptera: Reduviidae). Insect Genet Evol. 2014;26:123–31.

26. Perlowagora-Szmulewics A, Correia MV. Induction of male sterility manipulation of genetic mechanisms present in vector species of Chagas disease (remarson integrating sterile male release with insecticidal control measures against vectors of Chagas disease). Rev Inst Med Trop São Paulo. 1992;34:360–71.

27. Monteiro FA, Weirauch C, Felix F, Lazoski C, Abad-Branch F. Evolution, Systematics, and Biogeography of the Triatominae Vectors of Chagas Disease. Adv Parasitol. 2018;99:263–344.

28. Dujardin JP, Costa J, Bustamante D, Jaramillo N, Catala S. Deciphering morphology in Triatominae: the evolutionary signals. Acta Trop. 2009;110:101–11.

29. Martínez-Ibarra JA, Nogueda-Torres B, Vargas-Llamas V, García-Benavides G, Bustos-Saldarfa R, Villagrán ME, de Diego-Cabrera JA, Tapia-González JM. Biological characteristics of geographically isolated populations of Meccus mazzottii (Hemiptera: Reduviidae) in southern Mexico. J Ins Sci. 2014;14:1–5.

30. Martínez-Ibarra JA, Nogueda-Torres B, la Cruz MA, Villagrán ME, Diego-Cabrera JA, Bustos-Saldarfa R. Biological parameters of interbreeding subspecies of Meccus phyllosomus (Hemiptera: Reduviidae: Triatominae) in western Mexico. Bull Entomol Res. 2015;105:763–70.

31. Martínez-Ibarra JA, Nogueda-Torres B, del Toro-González AK, Ventura-Canete LA, Montaño-Valdez O. Geographic variation on biological parameters of Meccus picturatus (Usinger), 1939 (Hemiptera: Reduviidae: Triatominae) under laboratory conditions. J Vector Ecol. 2015;40:66–70.

32. Martínez-Ibarra JA, Nogueda-Torres B, Salazar-Schettino PM, Cabrera-Bravo M, Vences-Blanco MO, Rocha-Chávez G. Transmission Capacity and a fungal pathogen increases survival of Chagas bugs' advice against a fungal control strategy. B Entomol Res. 2020;110:363–9.

33. Madeira FF, Lima ACC, Rosa JA, Azeredo-Oliveira MTV, Alvei KCC. Nuclear lar persistence phenomenon during spermatogenesis in the vector Meccus pallidipennis (Hemiptera, Triatominae). Genet Mol Biol. 2016:15017427.

34. Madeira FF, Borsatto KC, Lima ACC, Ravazi A, Oliveira J, Rosa JA, Azeredo-Oliveira MTV, Alvei KCC. Nuclear persistence: peculiar characteristic of spermatogenesis of the vector of chagas disease (Hemiptera, Triatominae). Am J Trop Med Hyg. 2016;95:1178–20.

35. de Alvei KCC, Oliveira J, Rosa JA, Azeredo-Oliveira MTV. Coloration of the testicular peritoneal sheath as a synapomorphy of triatomines (Hemiptera, Reduviidae). Biota Neotrop. 2014;14:1–3.

36. Diaz-Garrido P, Sepulveda-Robles O, Martinez-Martinez I, Espinoza B. Variability of defense genes from a Mexican endemic Triatominae: Triatoma (Meccus pallidipennis) (Hemiptera: Reduviidae). Biosci Rep. 2018;38:11–11.

37. Gutiérrez-Cabrera AE, Alejandro-Aguilar R, Hernández-Martínez S, Espinoza B. Development and glycoprotein composition of the perimicrovillar membrane in Triatoma (Meccus pallidipennis) (Hemiptera: Reduviidae). Arthropod Struct Dev. 2014;43:571–8.

38. Gutiérrez-Cabrera AE, Zandberg WF, Zenteno E, Rodríguez MH, Espinoza B, Lowenberger C. Glycosylation on proteins of the intestine and perimicrovillar membrane of Triatoma (Meccus pallidipennis), under different feeding conditions. Insect Sci. 2019;26:796–808.