Half-Sandwich Arene Ruthenium(II) and Osmium(II) Thiosemicarbazone Complexes:

Gatti, Anna; Habtemariam, Abraha; Romero-Canelón, Isolda; Song, Ji-Inn; Heer, Bindy; Clarkson, Guy J.; Rogolino, Dominga; Sadler, Peter J.; Carcelli, Mauro

DOI:
10.1021/acs.organomet.7b00875

License:
Creative Commons: Attribution (CC BY)

Citation for published version (Harvard):
Gatti, A, Habtemariam, A, Romero-Canelón, I, Song, J-I, Heer, B, Clarkson, GJ, Rogolino, D, Sadler, PJ & Carcelli, M 2018, 'Half-Sandwich Arene Ruthenium(II) and Osmium(II) Thiosemicarbazone Complexes: Solution Behavior and Antiproliferative Activity', Organometallics, vol. 37, no. 6, pp. 891-899.
https://doi.org/10.1021/acs.organomet.7b00875

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Published in Organometallics on 20/02/2018
DOI: 10.1021/acs.organomet.7b00875

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Half-Sandwich Arene Ruthenium(II) and Osmium(II) Thiosemicarbazone Complexes: Solution Behavior and Antiproliferative Activity

Anna Gatti†,‡, Abraha Habtemariam,‡ Isolda Romero-Canelón,‡§ Ji-Inn Song,‡ Bindy Heer,‡ Guy J. Clarkson,‡ Dominiga Rogolino,§ Peter J. Sadler,*,†,§ and Mauro Carcelli†,‡

INTRODUCTION

The discovery of highly efficient anticancer drugs with increased selectivity and less toxic side effects is an area of intense research in bioinorganic chemistry.†,‡ Thiosemicarbazones (TSCs) and their metal complexes display a wide spectrum of biological activities,‡§ in particular they possess anticancer, antibacterial, and antiviral properties.‡§ A variety of cellular mechanisms of action appears to be involved in the activity of this class of ligands,§ including the inhibition of cellular iron uptake by transferrin,10 the mobilization of iron from cells,6–8 the inhibition of ribonucleotide reductase activity,13–15 the up-regulation of the metastasis suppressor protein, N-myc downstream regulated gene 1,16,17 and the formation of redox active metal complexes that produce reactive oxygen species.11,18–20 Moreover, various studies have demonstrated that the biological properties of TSC ligands can be modified and improved upon binding to transition metal ions.6,22 Metal coordination presents an opportunity to improve synergistically the efficacy of a biologically active organic scaffold, such as lipophilicity, which influences cell permeability.24 Diversity arises from not only the choice of the metal itself and its oxidation state but also from the type and number of coordinated ligands, as well as the coordination geometry of the complex.23

Metal complexes of TSCs are playing a promising role in anticancer research, as is evident from the number of recent publications.8,25–27 Platinum drugs are still widely used to treat cancer,28 but their therapeutic use can be limited by intrinsic or acquired resistance and by the occurrence of numerous deleterious side effects.29,30 It is imperative, therefore, to develop new and more effective drugs. Ruthenium, a second row transition metal, continues to attract much attention,31,32 as its complexes have long been known to be well-suited for biological applications.33,34 Organometallic Ru(II) complexes with half-sandwich structure have demonstrated antiproliferative potential,35 and there are numerous possibilities to modulate their biological and pharmacological properties by the appropriate choice of the ligands.11,36 In particular, the presence of a chelating ligand offers structural stability and the opportunity to tune the electronic and steric features of the complex.37 Additional features to be considered include water solubility and air stability.37,38 The biological activity of osmium compounds has been much less explored, perhaps because of the reputation of osmium (as osmium tetroxide) as being highly toxic.39 Nevertheless, several half-sandwich piano-stool...
osmium(II) complexes have exhibited promising in vitro activity and no cisplatin cross-resistance.40–42 Investigations of osmium complexes as alternatives to ruthenium-based anticancer agents have resulted in structurally diverse libraries of osmium complexes with different oxidation states and nuclearity.53–56 Organometallic chemistry offers a potentially rich field for biological and medicinal applications;47 however, lack of understanding of the aqueous chemistry of the organometallic complexes has emerged as a major obstacle for further developments. This is particularly true for osmium(II) arene complexes.48 Third row transition metals are more inert than those of the first and second row. For example, aquation of Pt(II) chlorido complexes often occurs up to 10^4 times more slowly compared to the lighter congener Pd(II), and similarly, organo-Os(II) complexes react typically $10^3–10^4$ times more slowly than Ru(II).49–51 However, reports on ruthenium arene complexes have shown interesting cytotoxic properties52,53 and could offer the advantage of solution stability on their metal complexes; moreover they have the potential for the development of new anticancer agents. Ligands, which could in principle be tridentate, can confer synergic anticancer activity. Different substituents were considered for ligands L1 and L2 on both the phenyl ring and at the N(3) nitrogen, since this can modulate lipophilicity and/or complex–substrate interactions. The solution behavior of complexes 1–4 was studied both in a protic solvents such as methanol or water/DMSO mixture and in coordinating aprotic solvents like acetonitrile, DMSO and DMF. The antiproliferative activity of 1–4 was evaluated for A2780 human ovarian carcinoma and its cisplatin resistant variant A2780cis, A549 lung, HCT116 colon, and PC3 prostate tumor cell lines.

RESULTS AND DISCUSSION

Synthesis and Characterization of the Complexes.

Ligands N-(2-hydroxy)-3-methoxybenzylidenethiosemicarbazide (L1) and N-(2,3-dihydroxybenzylidene)-3-phenylthiosemicarbazide (L2) were synthesized according to previously reported procedures.54,55 The reactions between \(\left[\eta^6-p\text{-cym}\right]\text{MC}_2\text{Cl}_2\) \((M = \text{Os and Ru})\) and the corresponding thiosemicarbazone ligands were carried out in a mixture of dry CH\(_3\)OH and CH\(_3\)Cl at ambient temperature and led to the isolation of pseudo-octahedral complexes 1–4 of general formula \(\left[\eta^6-p\text{-cym}\right]M(L)\text{Cl}_2\) in good yields. The identity of the complexes was verified by \(^1H\) NMR spectroscopy and ESI-MS spectrometry, and their structures were confirmed by single crystal X-ray crystallography. In all cases, the metal coordinates to a chloride ion, a \(\eta^6\)-pyrene ring and a \(\eta^2\)-pyrene chelating ligand. One chloride is present as the counterion (Figure 1).

X-ray Crystallographic Studies.

Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of saturated solutions in methanol for compounds 1 and 3 and in acetone for compounds 2 and 4. The crystal structures and atomic numbering schemes for \([\left[\eta^6-p\text{-cym}\right]\text{Os}(L)\text{Cl}_2\text{Cl} (\text{1})\), \([\left[\eta^6-p\text{-cym}\right]\text{Os}(L)\text{Cl}_2(\text{CH}_3)_2\text{CO} (\text{2}(\text{CH}_3)_2\text{CO}), \([\left[\eta^6-p\text{-cym}\right]\text{Ru}(L)\text{Cl}_2\text{Cl} (\text{3})\), and \([\left[\eta^6-p\text{-cym}\right]\text{Ru}(L)\text{Cl}_2(\text{CH}_3)_2\text{CO} (\text{4}(\text{CH}_3)_2\text{CO})\) are shown in Figure 2. Selected bond lengths and angles are listed in Table 1, other crystallographic data are reported in Table S1. Complexes 1 and 3 crystallize in the orthorhombic system with the chiral space group \(P2_12_12_1\), while complexes 2 and 4 crystallize in triclinic system with centrosymmetric space group \(P\bar{1}\). Both 2 and 4 crystallize with an acetonol solvent molecule. The complexes adopt the expected half-sandwich pseudo-octahedral “three-legged piano-stool” geometry with \(\eta^6\)-pyrene as the seat and the neutral N,S-chelating TSC ligand and a terminal chloride as the three legs. The positive charge of the complex is balanced by a chloride counterion. It is notable that in all the complexes, the ligand is present as the \(\bar{E}\) isomer.

In 1 and 3, the uncoordinated chloride anion forms a NH--Cl hydrogen bond of 3.034(4) Å and 175.1° for 1, and 3.031(3) and 176.7° for 3. In 2 and 4, a similar H-bond occurs between the uncoordinated chloride and the 3-OH group of the aromatic ring with a bond distance OH--Cl of 3.0651(16) Å and 169.0° for 2, and 3.0605(9) Å and 168.7° for 4. The thiosemicarbazone ligands bind to the metal center through the imine nitrogen and the thione sulfur forming a chelate ring with an angle of 82° for N--Ru--S, indicating a distortion from a regular octahedron, in analogy with similar Ru--arene thiosemicarbazone complexes.56 The length of the S--C bond (~1.69 Å) is in accord with a double bond nature; in the free ligands, it is ~1.69–1.70 Å.57–59

It is worth noting that in some osmium(II) and ruthenium(II) arene complexes the potentially NNO tridentate hydrazone ligands behave as NN bidentate ligands. It has been highlighted that the ligands are not flexible enough to occupy a facial arrangement in the complex and are therefore bidentate.60 An analogous situation could occur with L1 and L2 that can span the three facial coordination sites of the metal only with difficulty. Interestingly, these hydrazone ligands were found in both E and Z configuration upon complexation with Ru(II) and Os(II). The dihedral angles between the aromatic ring plane and the thiosemicarbazones are around 70° in complexes 1 and 3 and about 78° in 2 and 4. Usually, this type of ligand adopts a flat conformation.61–63 In our structures, the lack of coplanarity is related to metal coordination. In the crystal structures of 1–4, the same T-shaped edge-to-face stacking \(\pi\) interactions, between one of the hydrogens of the \(p\)-pyrene ring and the \(\pi\) electron density of the aromatic ring of the

![Figure 1. Schematic representation of ligands L1 and L2 and corresponding osmium(II) and ruthenium(II) complexes 1–4.](image-url)
thiosemicarbazone ligands, are observed (distances from 2.50 to 2.86 Å, Figure 2).

Solution Studies. 1H NMR studies were used to investigate the stability of the four complexes in various solvents. 1H NMR spectra of 1−4 were first recorded in MeOD-d_4 due to their low solubility in chlorinated solvents such as chloroform or dichloromethane. For all the metal complexes, the spectra displayed just one set of signals, corresponding to the E isomer of the bidentate ligand coordinated to the metal center, the isomer in the crystallized complexes. The aromatic protons of the thiosemicarbazone ligands displayed peaks between 6.5 and 8.2 ppm, and the iminic protons displayed peaks between 8.7 and 8.9 ppm, as expected for the ligand in the E form. The complexes contain chiral metal centers and in the 1H NMR spectra recorded at 298 K a doublet is present for each p-cymene proton in the range 4.90−5.90 ppm; the isopropyl methyl groups appear as two doublets at 1.1 and 1.2 ppm. The resonance of one proton of the p-cymene ring displays a marked high-field shift in comparison with the other p-cymene protons, in particular up to 4.90 ppm for osmium compounds 1 and 2 and 4.87 for ruthenium 3 and 4 (Figure 3). This is likely due to edge-to-face π-interaction between the C−H hydrogen

![Figure 2. X-ray crystal structures of complexes 1−4 with thermal ellipsoids drawn at 50% probability. Hydrogens are drawn as fixed-size spheres of 0.11 Å radius and solvent molecules have been omitted for clarity. The edge-to-face stacking between one of the hydrogens of the p-cymene ring and an aromatic ring of the thiosemicarbazone ligands is indicated.](image)

Table 1. Selected Bond Lengths (Å) and Angles (deg) for Complexes 1−4
bond distance (Å)
Os1−Cl1
Os1−S1
Os1−N4
S1−C2
Os1−Cl1
Os1−S8
Os1−N10
S8−C8
Ru1−Cl1
Ru1−S1
Ru1−N4
S1−C2
Ru1−Cl1
Ru1−S8
Ru1−N10
S8−C8
and the aromatic ring of the TSC ligand in the E form, as observed previously in analogous systems.21,63

![Figure 3. Aromatic region of the time-dependent \(^1\)H NMR spectrum of 1 in MeOD-d\(_4\) at \(T = 298\) K followed over 30 days. E and Z isomers are labeled as \(a\) and \(b\) sets, respectively. The percentage of the Z isomer \((b\) set\) increases with time.](image)

The time dependence of the \(^1\)H NMR spectra of \(1-4\) \((5\) mM\) in MeOD-d\(_4\) was monitored over 30 days at 298 K, and is illustrated for complex 1 in Figure 3. As shown in Figure 3, a second set of peaks started to appear after 24 h (set \(b\)) and increased in intensity until a 1:1 ratio for the two species was reached over a period of 21 days. Variable-temperature \(^1\)H NMR spectra were recorded from 298 to 323 K over a period of 2 h. The 1:1 ratio of the \(a/b\) peak areas for the two species recorded at \(t = 30\) days did not change over this temperature range (data not shown). NOESY experiments carried out for 1 at \(t = 30\) days, gave evidence that in the \(b\) set of peaks there is an interaction between the iminic hydrogen of the ligand and one of the aromatic protons of the \(p\)-cymene (Figure S1); this interaction is absent in the \(a\) set. A possible explanation for the presence, in solution, of two species (corresponding to set \(a\) and set \(b\)) is the establishment of an \(E/Z\) equilibrium for coordinated ligand L1 (Figure 4). The presence of both the E and the Z isomers of the ligand coordinated to the metal center would explain the interaction of the iminic proton with the \(p\)-cymene moiety, observed for set \(b\) in the NOESY experiment. This interaction is possible only for a Z conformation of the ligand and not with the E conformation. TSCs are known to undergo \(E/Z\) interconversion not only as free ligands but also upon coordination (for a mechanistic insight see ref 64 and references therein).

The increase in the percentage of Z isomer suggests that the presence of a protic solvent could lead to the formation of a negative charge on the iminic nitrogen and to the rotation around the single bond, resulting in the isomerization and the formation of the Z isomer, as proposed in Scheme 1. This mechanism is supported by the \(^1\)H NMR spectrum of the crystals of the complexes in methanol. In the X-ray crystal structures of 1 and 3, obtained from a methanol solution, the ligand is in the E conformation, but the \(^1\)H NMR spectra of the same crystals recorded in MeOD-d\(_4\) showed the presence of both isomers of the ligands after 24 h, suggesting that the solvent plays a crucial role in the isomerization process. Recently, examples of pentamethylcyclopentadienyl iridium-(III) complexes with TSCs ligands that crystallize with the coordinated ligand either with \(E\) or \(Z\) conformation have been reported, confirming the possibility of having both isomers in organometallic complexes.65

Analysis of the data provides evidence that the interconversion is slightly faster for the ruthenium compound: at 298 K the Z isomer takes 2 weeks to reach the equilibrium with the \(E\) isomer \((1:1\) ratio\), whereas 3 weeks are required for the osmium complex. The situation is slightly different for complexes 2 and 4. For these complexes a second set of signals arises over time \((1:1\) ratio at \(t = 7\) days and 298 K, Figure S2\)). However, the \(^1\)H NMR spectra of these complexes show broad signals in the aromatic region for the Z isomer (Figure S2\)). For complex 4, for example, at \(t = 7\) days only very broad overlapping signals can be seen (Figure S3\)). The presence of two hydroxyl groups on the aromatic ring of the coordinated ligand perhaps gives rise to exchange processes or paramagnetic species which broaden signals in the \(^1\)H NMR spectra.

Due to the long-time scale of the NMR experiments and the catecholic nature of ligand L2, complexes 2 and 4 can be subjected to oxidation. UV–visible spectroscopy was performed in order to verify whether the catechol moiety of 2 is involved in oxidation processes in methanol solution. The development of a stable and strong absorption band of a methanol solution of 2 around 337 nm, related to \(\pi-\pi^*\) transition of the catechol aromatic ring, was followed over 3 days in air (Figure S4\)). No changes in the UV–vis spectra were detected, indicating that the catechol moiety is not involved in redox processes. \(^1\)H NMR spectra of complexes 1–4 were also recorded in an aprotic solvent, acetone. In this case, two different sets of signals were observed immediately after dissolution in acetone-d\(_4\) at 298 K for all the complexes (Figure 5\)). Comparison with the \(^1\)H NMR obtained in MeOD at \(t = 0\) indicates that one set
The presence of free ligand was excluded by comparison with the 1H NMR spectrum of L_2 recorded in acetone-d_6. It is notable that the 1H NMR spectra change with time at 298 K. As shown in Figure 5, both a shift and a modification of the pattern of the signals is observed over 2 days. After this time the two sets of signals did not change their ratio (ca. 1:1.2). Probably, the second set of signals is due to a species containing a coordinated solvent molecule (Figure 5).

Figure 5. Aromatic region of the 1H NMR spectrum of 2 recorded in acetone-d_6 at 298 K and followed over 7 days. Red circles indicate proton resonances related to the species with a coordinated solvent molecule.

Figure 6. Comparison of the aromatic region of the 1H NMR of complex 1 (upper spectrum) and that of the corresponding free ligand L_1 (lower spectrum) in DMSO-d_6 at $t = 0$ and 298 K.
solutions prepared by dissolution of the compound in DMSO followed by dilution with water (final concentration of DMSO 0.5%). The hydrolysis processes are of interest as indicators of the stability of the pro-drug under such biological testing conditions; therefore, the solution behavior of 1–4 was investigated also in DMSO-d$_6$. In the 1H NMR spectra of 1 and 3 in DMSO-d$_6$ recorded at 298 K, three different sets of signals were observed. A comparison with the 1H NMR spectrum of L1 obtained in the same solvent confirmed the presence of free ligand in a 1:1 ratio versus the metal complex (Figure 6). The two doublets observed at 6.08 and 6.00 ppm in DMSO-d$_6$ can be assigned to a complex of the type $[\text{Os}(\eta^6\text{-cym})(\text{DMSO)}_2\text{Cl}]\text{Cl}$ in a 1:1 ratio with parent organometallic complex 1 and free ligand L1. As recently pointed out in the literature, such a pattern of signals frequently arises after displacement of the organic ligand in $[\text{Ru}(\eta^6\text{-cym})(\text{L})\text{Cl}]_2$ complexes. Ligand dissociation was apparent visually; the solutions of 1$^-$L1 ligands set of signals, stable over 7 days at 298 K (Figure S6). 66

Both thiosemicarbazones L1 and L2 are highly potent toward ovarian cell lines A2780 and A2780Cis. L1 in particular exhibits IC$_{50}$ values of 0.85 and 0.12 μM, respectively. Ligand L2 shows submicromolar activity in A2780 cells (0.27 μM) and low micromolar potency in A2780Cis (1.23 μM). Although the metal complexes are less active than their corresponding ligands, they show IC$_{50}$ values of the same order of magnitude as that of CDDP in the parental cell line and improved resistant factors. Resistance factors, calculated as the ratio between the IC$_{50}$ values of 0.85 and 0.12 μM in A2780 and A2780Cis, respectively, were determined as duplicates of triplicates in two independent sets of experiments and are reported in Table 2. Importantly, all experiments designed to determine the antiproliferative activity of the complexes included three set of controls (negative, vehicle, and positive). The cell survival in the negative controls and the vehicle controls were compared, and in all cases, the differences were not statistically significant to 99%. This indicates that the CDDP in the sample solutions of complexes 1–4 is not toxic and does not interfere with the measurements. Hence, the effects on cell survival observed arise only from the activity of the ligands or the metal-based complexes.

Table 2. IC$_{50}$ Values (μM) for L1 and L2 and Related Metal Complexes 1–4 towards Human Ovarian (A2780), Cisplatin-Resistant Ovarian (A2780Cis), Lung (A549), Colon (HCT116), and Prostate (PC3) Cancer Cell Linesa

compound	A2780	A2780Cis	A549	HCT116	PC3	resistance factors
L1	0.85 ± 0.03	0.12 ± 0.02	42 ± 2	30.6 ± 0.5	6.1 ± 0.1	0.14
L2	0.27 ± 0.02	1.23 ± 0.08	23 ± 1	33 ± 5	4.6 ± 0.2	4.55
1	1.60 ± 0.02	6.6 ± 0.9	2.4 ± 0.2	24 ± 2	21 ± 1	4.12
2	0.75 ± 0.08	7.2 ± 0.1	17 ± 1	2.7 ± 0.2	1.60 ± 0.08	9.60
3	4.2 ± 0.3	5.6 ± 0.8	10.5 ± 0.3	19 ± 1	1.33	
4	0.36 ± 0.03	1.25 ± 0.06	1.64 ± 0.08	1.38 ± 0.04	3.47	
CDDP	1.2 ± 0.2	13.5 ± 0.3	3.1 ± 0.2	5.2 ± 0.1	9.8 ± 0.4	11.25

aClinical drug cisplatin (CDDP) is used as positive control.

The antiproliferative activity of ligands L1 and L2 and of the related osmium and ruthenium complexes 1–4 toward A549 lung, A2780 ovarian, HCT116 colon, and PC3 prostate human cancer cells lines was investigated. All experiments included untreated negative controls and cells treated with the clinical drug cisplatin (CDDP) as positive control. The anticancer activity of the organometallic complexes was investigated by performing dose–response studies in the various cell lines (Figure S7). A stock solution of each compound was prepared in cell culture medium with DMF to aid solubilization. IC$_{50}$ values (concentrations which caused 50% of cell growth inhibition) were determined as duplicates of triplicates in two independent sets of experiments and are reported in Table 2.
organometallics

Article

ruthe

Two osmium(II) and two ruthenium(II) half-sandwich complexes ([(η⁶-p-cym)M(L)Cl]Cl containing a thiosemicarbazone ligand (L) were synthesized and characterized by 1H NMR, ESI-MS spectrometry and single crystal X-ray crystallography. Complexes 1–4 are structurally very similar and characterized by a distorted octahedral geometry. In the crystal structures, the E conformation of the thiosemicarbazide ligand was evident.

In a protic solvent, such as methanol, an interconversion takes place and peaks for both E and Z isomers of the ligand appear in the 1H NMR spectrum. The conformational change in the ligand is probably promoted by the interaction of the solvent with the acidic proton of the aromatic ring. When the complexes were dissolved in the nonprotic, coordinating acetone or in DMSO, solvation reactions prevailed. On the contrary, in DMF solution, the complexes remained stable. Hence, DMF (5%) and not DMSO was used to aid solubility for cancer cell screening. Promising results were obtained, particularly toward HCT116 colon cancer cells, in which the metal complexes are up to 20-fold more potent than corresponding free ligand L2. Ruthenium complex 3 shows promising anticancer activity, and the possibility to overcome CDDP resistance as demonstrated by the data for A2780 CDDP-resistant variant A2780Cis. In fact all complexes showed lower resistance factors compared to untreated cells and exposed to medium with vehicle only (in this case DMF, at the highest concentration used for the complexes), and (c) positive controls, in which cells were exposed to different concentrations of the anticancer drug cisplatin.

Syntheses. General Procedure for the Synthesis of Thiosemicarbazone Ligands (L1 and L2). The synthesis of ligands L1 and L2 was performed using the following adapted literature procedure.4,6 The appropriate aldehyde (1 mol equiv) was dissolved in a hot toluene solution (20 mL) containing few drops of glacial acetic acid. An equimolar amount of the corresponding thiosemicarbazide (1 mol equiv) was added to the solution, and the reaction mixture was heated under reflux for 8 h. The solution was cooled to ambient temperature, and the TSC ligands were obtained as precipitate. After filtration the solid was washed several times with toluene and ether and dried under vacuum.

N-(2-Hydroxy)-3-methoxybenzylidenethiosemicarbazide (L1). Orange powder, yield: 81%. 1H NMR (DMSO-d6): δ 11.39 (s, 1H, NH), 9.17 (s, 1H, OH), 8.40 (s, 1H, CH=N), 8.10–7.88 (2H, 1H +1H, NH2), 7.52 (d, 1H, J = 7.5 Hz, CHAr), 6.95 (d, 1H, J = 7.5 Hz, CHAr), 6.75 (t, 1H, J = 7.5 Hz, CH2), 3.81 (s, 3H, OCH3), ESI-MS (C19H25Cl2N3O2S): m/z = 225 [M + H]+.

N-(2,3-Dihydroxybenzylidene)-3-penthylenethiosemicarbazide (L2). Orange powder, yield: 81%. 1H NMR (DMSO-d6): δ 11.76 (s, 1H, NH), 10.01–9.54 (2H, 1H+1H, OH), 9.01 (s, 1H, NH), 8.49 (s, 1H, CH=N), 7.56 (d, 2H, J = 7.5 Hz, CHAr), 7.49 (d, 2H, J = 8 Hz, CHAr), 7.34 (t, 2H, J = 7.5 Hz, CH2), 7.17 (t, 1H, J = 7.5 Hz, CHAr), 6.85 (d, 1H, J = 8 Hz, CHAr), 6.64 (s, 1H, CH2), 6.54 (s, J = 8 Hz, CHAr), ESI-MS (C24H31Cl2N3O2S): m/z = 287 [M + H]+.

General Procedure for the Metal Complexes Synthesis (1–4). The TSC ligand (2 mol equiv) was dissolved in dry methanol (20 mL), and the solution was acidified with the addition of 1 drop of HCl 37%. [(η⁶-p-cym)MCl]2 (1 mol equiv) was dissolved in 10 mL of dry dichloromethane, and the solution was added to the previous one. The reaction mixture was maintained under stirring at ambient temperature under nitrogen for 24 h. The volume was then reduced to half on the rotary evaporator, and diethyl ether was added until the precipitation of a solid occurred. The product was then collected by filtration and dried under vacuum.

{[Osη⁶-p-cymCl]Cl(L1)Cl (1). Orange powder, yield: 98%. Anal. Calcld for C29H20Cl2N5O4S: C, 36.77; H, 4.06; N, 6.70. 1H NMR (MeOD): δ 8.78 (s, 1H, CH=N), 7.86 (d, 1H, J = 8 Hz, CHAr), 7.25 (d, 1H, J = 8 Hz, CHAr), 7.01 (t, 1H, J = 8 Hz, CHAr), 5.87 (d, 1H, J = 5.5 Hz, CH-prop), 5.44 (d, 1H, J = 5.5 Hz, CH-prop), 5.31 (d, 1H, J = 5.5 Hz, CH-prop), 4.90 (d, 1H, J = 5.5 Hz, CH-prop), 3.99 (s, 3H, OCH3), 2.54 (m, 1H, J = 7 Hz, CH-prop), 2.16 (s, 3H, CH3), 1.20–1.11 (2d, 3H, 3H, J = 7 Hz, CHprop), ESI-MS (positive ion, MeOH): m/z = 585 [M + Cl]+. Crystals suitable for X-ray analysis were obtained by vapor diffusion of ether into a saturated methanol solution of the compound.

{[Osη⁶-p-cymCl]Cl(L2)Cl (2). Orange powder, yield: 72%. Anal. Calcld for C33H28Cl2N5O4S: C, 41.14; H, 4.17; N, 6.00. Found: C,
Spectra were recorded from 200 to 600 nm. Data were processed with a Cary 300 spectrometer using quartz cuvettes of 1 cm path-length.

\[\text{Organometallics} \]

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organomet.7b00875.

X-ray crystallographic data, \(^{1}\)H–H 2D NMR NOESY and \(^{1}\)H NMR spectra, UV–vis spectra, dose–response curves (PDF)

Accession Codes

CCDC 1584383–1584386 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

E-mail: P.J.Sadler@warwick.ac.uk. Phone: (+44) 024 7652 3818.

E-mail: mauro.carcelli@unipr.it. Phone (+33) 0521 905427.

ORCID

Domina Rogolino: 0000-0003-2295-5783

Peter J. Sadler: 0000-0001-9160-1941

Mauro Carcelli: 0000-0001-5888-4556

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank The Wellcome Trust (107691/Z/15/Z), EPSRC (EP/F034210/1) and the University of Warwick Development Trust for their support for this work. “Centro Interdipartimentale Misure Giuseppe Casnati” of the University of Parma is thanked for facilities.

REFERENCES

(1) Alagesan, M.; Sathyadevi, P.; Krishnamoorthy, P.; Bhuvanesh, N.; Dharmaraj, N. Dalton Trans. 2014, 43, 15829–15840.

(2) Yildirim, H.; Guler, E.; Yavuz, M.; Oztuek, N.; Yaman, P. K.; Subasi, E.; Sahin, E.; Timur, S. Mater. Sci. Eng., C 2014, 44, 1–8.

(3) Lobana, T. S.; Kumari, P.; Castineiras, A.; Butcher, R. J. Polym. Degradation and Stability 2009, 870, 2968.

(4) Rodríguez-Argüelles, M. C.; Mosquera-Vázquez, S.; Sanmartín-Matobalos, J.; García-Deibe, A. M.; Felizzi, C.; Zani, F. Polyhedron 2010, 29, 864–870.

(5) Adams, M.; de Kock, C.; Smith, P. J.; Land, K. M.; Liu, N.; Hopper, M.; Hsiao, A.; Burgoyne, A. R.; Stringer, T.; Meyer, M.; Wiesner, L.; Chibale, K.; Smith, G. S. Dalton Trans. 2015, 44, 2456–2468.

(6) Beckford, F. A.; Leblanc, G.; Thessing, J.; Shaloski, M.; Frost, B. J.; Li, L.; Seeram, N. P. Inorg. Chem. Commun. 2009, 12, 1094–1098.

(7) Su, W.; Zhou, Q.; Huang, Y.; Huang, Q.; Huo, L.; Xiao, Q.; Huang, S.; Huang, C.; Chen, R.; Qian, Q.; Liu, L. J. Appl. Organomet. Chem. 2013, 27, 307–312.

(8) Chellan, P.; Land, K. M.; Shokar, A.; Au, A.; An, S. H.; Clavel, C. M.; Dyson, P. J.; de Kock, C.; Smith, P. J.; Chibale, K.; Smith, G. S. Organometallics 2012, 31, 5791–5799.

(9) Serda, M.; Kalinowski, D. S.; Rasko, N.; Potučková, E.; Mrozek-Wilczkiewicz, A.; Musiol, R.; Malecki, J. G.; Sajewicz, M.; Ratuszna, A.; Muchowicz, A.; Golab, J.; Šimůnek, T.; Richardson, D. R.; Polanski, J. PLoS One 2014, 9, e110291.

SUPPORTING INFORMATION

This Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organomet.7b00875.

ACCESS CODES

CCDC 1584383–1584386 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

E-mail: P.J.Sadler@warwick.ac.uk. Phone: (+44) 024 7652 3818.

E-mail: mauro.carcelli@unipr.it. Phone (+33) 0521 905427.

ORCID

Domina Rogolino: 0000-0003-2295-5783

Peter J. Sadler: 0000-0001-9160-1941

Mauro Carcelli: 0000-0001-5888-4556

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank The Wellcome Trust (107691/Z/15/Z), EPSRC (EP/F034210/1) and the University of Warwick Development Trust for their support for this work. “Centro Interdipartimentale Misure Giuseppe Casnati” of the University of Parma is thanked for facilities.

REFERENCES

(1) Alagesan, M.; Sathyadevi, P.; Krishnamoorthy, P.; Bhuvanesh, N.; Dharmaraj, N. Dalton Trans. 2014, 43, 15829–15840.

(2) Yildirim, H.; Guler, E.; Yavuz, M.; Oztuek, N.; Yaman, P. K.; Subasi, E.; Sahin, E.; Timur, S. Mater. Sci. Eng., C 2014, 44, 1–8.

(3) Lobana, T. S.; Kumari, P.; Castineiras, A.; Butcher, R. J. Polym. Degradation and Stability 2009, 870, 2968.

(4) Rodríguez-Argüelles, M. C.; Mosquera-Vázquez, S.; Sanmartín-Matobalos, J.; García-Deibe, A. M.; Felizzi, C.; Zani, F. Polyhedron 2010, 29, 864–870.

(5) Adams, M.; de Kock, C.; Smith, P. J.; Land, K. M.; Liu, N.; Hopper, M.; Hsiao, A.; Burgoyne, A. R.; Stringer, T.; Meyer, M.; Wiesner, L.; Chibale, K.; Smith, G. S. Dalton Trans. 2015, 44, 2456–2468.

(6) Beckford, F. A.; Leblanc, G.; Thessing, J.; Shaloski, M.; Frost, B. J.; Li, L.; Seeram, N. P. Inorg. Chem. Commun. 2009, 12, 1094–1098.

(7) Su, W.; Zhou, Q.; Huang, Y.; Huang, Q.; Huo, L.; Xiao, Q.; Huang, S.; Huang, C.; Chen, R.; Qian, Q.; Liu, L. J. Appl. Organomet. Chem. 2013, 27, 307–312.

(8) Chellan, P.; Land, K. M.; Shokar, A.; Au, A.; An, S. H.; Clavel, C. M.; Dyson, P. J.; de Kock, C.; Smith, P. J.; Chibale, K.; Smith, G. S. Organometallics 2012, 31, 5791–5799.

(9) Serda, M.; Kalinowski, D. S.; Rasko, N.; Potučková, E.; Mrozek-Wilczkiewicz, A.; Musiol, R.; Malecki, J. G.; Sajewicz, M.; Ratuszna, A.; Muchowicz, A.; Golab, J.; Šimůnek, T.; Richardson, D. R.; Polanski, J. PLoS One 2014, 9, e110291.

SUPPORTING INFORMATION

This Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organomet.7b00875.
