EDITORIAL

Using carbapenems for carbapenem-resistant *Klebsiella pneumoniae*-Are we flogging a dead (work)horse antibiotic?

Russell E. Lewis

Department of Medical Sciences and Surgery, Infectious Diseases, U.O. Infectious Diseases, S. Orsola, Malpighi Hospital, University of Bologna, Bologna, Italy

ARTICLE HISTORY Received 29 August 2016; Accepted 30 August 2016

KEYWORDS combination therapy; KPC carbapenemase; meropenem; synergy

KPC-carbapenemase producing *Klebsiella pneumoniae* (KPC-Kp) have spread worldwide and are endemic in Southern Europe where more than one-third of isolates in Italy and two-thirds of isolates in Greece are resistant to carbapenems.1 The high mortality rate reported in patients with KPC-Kp bloodstream infection (25–70%) is attributed, in part, to the limited effectiveness of remaining treatments- colistin, tigecycline, gentamicin, or fosfomycin.2 These “last-line antibiotics” are prone to the rapid emergence of resistance when used as monotherapy, are often more toxic, or have significant pharmacokinetic limitations for treating KPC-Kp infections in the urine, bloodstream, or lung.3

To overcome these weaknesses, many physicians have adopted a strategy of treating KPC-Kp infections using a combination of these last-line antibiotics with high-dose, extended infusions of meropenem. The hope is that synergy between meropenem and these other antibiotics will achieve a bactericidal effect and overcome pharmacokinetic limitations of the single agents.3-5 Other investigators have proposed treating KPC-Kp with a dual carbapenem regimen, based on a hypothesis that a less-enzymatically stable carbapenem such as ertapenem can spare the hydrolysis of a second, more stable agent such as doripenem or meropenem.5,6

Although it seems counterintuitive, several case-control studies have in fact found that patients with KPC-Kp bloodstream infections are more likely to survive if they received a carbapenem as part of a combination treatment regimen.7,8,9,10 However, the benefits of including a carbapenem were only evident for strains with a meropenem MIC ≤ 8 mg/L.7,8 With many circulating KPC-Kp strains now harboring higher levels of carbapenem resistance and cross-resistance to colistin, tigecycline, and gentamicin, the question of which combination to use, and whether to continue including a carbapenem, is even less certain.

In this issue of Virulence, Del Bono and colleagues11 explored the pharmacokinetic/pharmacodynamic impact of including meropenem as part of a combination regimen for KPC-Kp bloodstream infection in 19 critically-ill patients. They first examined serum concentration profiles of meropenem in their patients to determine if any subject achieved the minimal carbapenem PK/PD dosing target (40% time above MIC). The answer was predictably “no” given the high MICs of the isolates recovered from patients (256–1024 mg/L). However, meropenem exposures would have been sufficient in nearly all of their patients at an MIC of 8 mg/L, and in more than half of their patients at a MIC of 16 mg/L.

Next, the authors used time kill-curve studies to explore whether the meropenem concentrations achieved in their patients would exhibit synergistic interactions with a single, clinically-relevant concentration of colistin, tigecycline, or gentamicin against the patient’s infecting isolate. In the end, they did not find any evidence of synergy with any antibiotic combination, even though some 2-drug combinations (colistin plus tigecycline, meropenem plus gentamicin) showed trends of greater colony forming unit reduction.

On the surface, it seems Del Bono and colleagues have made a strong case for the futility of continuing to use carbapenems for KPC-Kp strains with high meropenem MICs. Nevertheless, several factors may have limited their ability to detect synergy with meropenem. First, only single concentration (ratio) of each drug was tested in the time-kill studies. Therefore, the authors could not assess how the dose-effect curve of each antibiotic was changed when...
tested in combination—an important requirement for pharmacodynamic analysis of combination therapy.\(^{12,13}\) Put another way; we do not know if the results from testing a single concentration by time-kill studies are representative of the interactions that occur across the entire range of the dose-response curve in vitro or in vivo. A second limitation acknowledged by the investigators is that they did not measure tigecycline, colistin or serum gentamicin concentrations in their patients. We are unsure if the concentrations tested in vitro were really representative of exposures in vivo. Finally, the high rates of colistin resistance (68%) in their isolates raises questions of whether synergy would be more prevalent at lower colistin resistance rates.

Finally, while the analysis if Del Bono and colleagues provide a clear picture of possible PK/PD target attainment for a single antibiotic, understanding the probability of PK/PD target attainment for a combination of antibiotics will require much more complex semi-mechanistic PK/PD models. Ideally, these models would consider MIC distributions, population pharmacokinetics in critically ill patients, and robust data on pharmacodynamic interactions drawn from in vivo studies.

Despite these limitations, Del Bono and colleagues’ work provides useful insight into the limits of meropenem treatment for KPC-Kp infection. A looming question is whether meropenem could still have clinically-useful synergy with newer antibiotics that inhibit carbapenemases (cefazidime-avibactam) or other new drugs on the horizon (ceftaroline-avibactam, plazomicin, eravacycline, meropenem-vaborbactam). The authors’ work also highlights the critical need for better scientific guidance and application of PK/PD principles in the treatment of multidrug resistant Gram negative pathogens with combination therapy. Without better knowledge of how combination therapy optimally works, we risk shortening the lifespan of not only current, but also future workhorse antibiotics against Enterobacteriaceae.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

References

[1] European Antimicrobial Resistance Surveillance Network (EARS-Net). http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database/Pages/database.aspx. Accessed, August 25, 2016.

[2] Pitout JDD, Nordmann P, Poirel L. Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrob Agents Chemother 2015; 59:5873-84; PMID:26169401; http://dx.doi.org/10.1128/AAC.01019-15

[3] Petrosillo N, Giannella M, Lewis R, Viale P. Treatment of carbapenem-resistant Klebsiella pneumoniae: the state of the art. Expert Rev Anti Infect Ther 2013; 11:159-77; PMID:23409822; http://dx.doi.org/10.1586/eri.12.162

[4] De Rosa FG, Corcione S, Cavallo R, Di Perri G, Bassetti M. Critical issues for Klebsiella pneumoniae KPC-carbapenemase producing K. pneumoniae infections: a critical agenda. Future Microbiol 2015; 10:283-94; PMID:25689539; http://dx.doi.org/10.2217/fmb.14.121

[5] Rafailidis PI, Falagas ME. Options for treating carbapenem-resistant Enterobacteriaceae. Curr Opin Infect Dis 2014; 27:479-83; PMID:25259809; http://dx.doi.org/10.1097/QCO.0000000000000109

[6] Wiskirchen DE, Crandon JL, Nicolau DP. Impact of various conditions on the efficacy of dual carbapenem therapy against KPC-producing Klebsiella pneumoniae. Int J Antimicrob Agents 2013; 41:582-5; PMID:23611306; http://dx.doi.org/10.1016/j.ijantimicag.2013.02.015

[7] Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: when might we still consider treating with carbapenems? Clin Microbiol Infect 2011; 17:1135-41; PMID:21635663; http://dx.doi.org/10.1111/j.1469-0691.2011.03553.x

[8] Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, Losito AR, Bartoletti M, Del Bono V, Corcione S, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother 2015; 70:2133-43; PMID:25900159; http://dx.doi.org/10.1093/jac/dkv200

[9] Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, Spanu T, Ambretti S, Ginocchio F, Cristini F, et al. Predictors of Mortality in Bloodstream Infections Caused by Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae: Importance of Combination Therapy. Clin Infect Dis 2012; 55:943-50; PMID:22752516; http://dx.doi.org/10.1093/cid/cis588

[10] Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sadowsky G, Sordillo E, Polsky B, Adams-Haduch JM, Doi Y. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother 2012; 56:2108-13; PMID:22252816; http://dx.doi.org/10.1128/AAC.06268-11

[11] Del Bono V, Giacobbe DR, Marchese A, Parisini A, Fucile C, Coppo E, Marina ML, Arena A, Molin A, Martelli A, et al. Meropenem for treating KPC-producing Klebsiella pneumoniae bloodstream infection: should we get to the root of the PK/PD paradox? Virulence 2017; 8(1):66-73; http://dx.doi.org/10.1080/21505594.2016

[12] Drusano GL. Antimicrobial pharmacodynamics: critical interactions of bug and drug. Nat Rev Microbiol 2004; 2(4):289-300; PMID:15031728

[13] Chou T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58:621-81; PMID:16968952; http://dx.doi.org/10.1124/pr.58.3.10