Interleukin-1β promotes hypoxia-induced apoptosis of glioblastoma cells by inhibiting hypoxia-inducible factor-1 mediated adrenomedullin production

W Sun*1, R Depping1,2 and W Jelkmann1,2

Glioblastoma is the most common brain tumor in adults. Advanced glioblastomas normally contain hypoxic areas. The primary cellular responses to hypoxia are generally mediated by the transcription factor hypoxia-inducible factor 1 (HIF-1). Interleukin-1β (IL-1β) is a cytokine that is often present in the glioblastoma microenvironment and is known to be a modulator of glioblastoma progression. However, the role of IL-1β in regulating glioblastoma progression is still controversial. In this study, we found that in the human glioblastoma cell lines U87MG and U138MG, IL-1β inhibits the transactivation activity of HIF-1 by promoting the ubiquitin-independent proteasomal degradation of the oxygen-labile α-subunit of HIF-1 and downregulates the expression of the HIF-1 target gene adrenomedullin (AM). Apoptosis and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assays showed that AM protects glioblastoma cells against hypoxia-induced apoptosis in a dose-dependent manner. Thus, in the presence of IL-1β more glioblastoma cells undergo hypoxia-induced cell death. Our findings suggest that when estimating the influence of IL-1β on the prognosis of glioblastoma patients, factors such as the degree of hypoxia, the expression levels of HIF-1 and AM should be taken into consideration. For the AM-producing glioblastoma cells, IL-1β represents a potent apoptosis inducer.

Cell Death and Disease (2014) 5, e1020; doi:10.1038/cddis.2013.562; published online 23 January 2014

Subject Category: Cancer

Glioblastoma (glioblastoma multiforme, GBM) is the most common and most aggressive primary brain tumor in adults. The median survival time of patients with glioblastomas is <2 years even after optimal treatment.1 Because of the rapid cell proliferation and inadequate vascularization, glioblastomas mostly contain areas with insufficient oxygen supply.2 The primary cellular responses to oxygen deprivation (hypoxia) are mainly mediated by the transcription factor hypoxia-inducible factor 1 (HIF-1). HIF-1 is a heterodimeric protein consisting of an oxygen-labile α-subunit (HIF-1α) and a stable β-subunit (ARNT). Both subunits are part of the basic Helix-Loop-Helix PER-ARNT-SIM (bHLH-PAS) family of transcription factors. In the presence of oxygen, HIF-1α is hydroxylated at certain proline residues by prolyl hydroxylases (PHDs), which labels HIF-1α for rapid ubiquitination and proteasomal degradation. In hypoxia, the activity of PHDs is decreased through various mechanisms. As a result, HIF-1α is stabilized, dimerizes with ARNT and transactivates a variety of genes involved in the cellular adaptation to hypoxia by binding to the hypoxia-response elements (HREs).3-5

Adrenomedullin (AM) is a 52-amino acid peptide originally isolated from pheochromocytoma and mediates a multifunctional response in cell culture and animal systems.6,7 Besides pheochromocytoma, AM is expressed in a number of human tissues including glioblastoma.8 Hypoxia upregulates the expression of AM in glioblastoma cells.9 The analysis of the AM gene identified at least eight putative HREs. Genomic knockout of HIF-1α abolishes the hypoxic induction of AM.10 RNA interference and drug inhibition of HIF-1α cause a marked decrease in AM expression, indicating that AM is a target gene of HIF-1α.10,11 In vivo neutralization of AM leads to enhanced glioblastoma cell apoptosis and suppressed xenograft tumor growth.12 Therefore, AM is supposed to be an auto-/paracrine anti-apoptotic factor in glioblastoma.

The microenvironments of glioblastomas contain various growth factors and cytokines.13 Interleukin-1β (IL-1β) is one of the cytokines that are commonly present in glioblastoma. The main source of IL-1β is supposed to be the glioblastoma cells.13 However, the M1 tumor-associated macrophages and the non-neoplastic brain cells are also able to produce IL-1β.15,16 In situ hybridization of human glioblastoma tissue sections revealed expression of IL-1β and interleukin-1 receptor types I and II in the majority of cases.17 There is growing evidence that IL-1β modulates the glioblastoma progression by interacting directly with the tumor cells. However, previous findings showed that IL-1β activates diverse intracellular pathways with distinct impacts on the glioblastoma progression. It has been controversial whether IL-1β promotes or suppresses glioblastoma progression.17-22

1Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Luebeck, Luebeck, Germany
*Corresponding author: W Sun, Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany. Tel: +49 451 5004712; Fax: +49 451 5004174; E-mail: wenwen.sun@medizin.uni-luebeck.de
†These authors contributed equally to this work.

Keywords: apoptosis; glioblastoma; HIF-1; interleukin-1β

Abbreviations: AM, adrenomedullin; GBM, glioblastoma multiforme; HIF-1, hypoxia-inducible factor 1; IL-1β, interleukin-1β; PI3K, phosphoinositide 3-kinase

Received 11.10.13; revised 01.12.13; accepted 02.12.13. Edited by A Stephanou

1Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Luebeck, Luebeck, Germany
*Corresponding author: W Sun, Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany. Tel: +49 451 5004712; Fax: +49 451 5004174; E-mail: wenwen.sun@medizin.uni-luebeck.de
†These authors contributed equally to this work.
To provide more insights into the interaction between IL-1β and glioblastoma cells, we studied the influence of IL-1β on the adaptation of glioblastoma cells to hypoxia with focus on the HIF-1/AM axis. The human glioblastoma cell lines U87MG and U138MG were used as models because they produce AM in an oxygen-dependent manner and react to human recombinant IL-1β. We found that AM protects glioblastoma cells against hypoxia-induced apoptosis in a dose-dependent manner. IL-1β inhibits HIF-1 mediated AM production by promoting the proteasomal degradation of HIF-1α and consequently promotes the apoptosis of glioblastoma cells in hypoxia. Our findings show that IL-1β represents an effective apoptosis inducer for the AM-producing glioblastoma cells. To estimate the influence of IL-1β on glioblastoma progression, it is necessary to take factors such as the degree of hypoxia and the expression levels of HIF-1 and AM into consideration.

Results

HIF-1/AM axis protects glioblastoma cells against hypoxia-induced apoptosis. Glioblastoma cells were transfected with HIF-1α siRNA. The knockdown efficiency was confirmed by immunoblotting (Figure 1a). Cell apoptosis was estimated using DNA fragmentation ELISA. As shown in Figure 1b, HIF-1α knockdown led to increased apoptosis in hypoxia.

Since the anti-apoptotic effect of AM in glioblastoma was only observed in vivo, we studied the anti-apoptotic potential of AM in cell culture. Glioblastoma cells were incubated in normoxia (20% O2) or hypoxia (1% O2) with or without AM for 24 h. Hypoxia caused a significant increase in cell apoptosis, which was in turn suppressed by AM. In normoxia, AM had no influence on the apoptosis of glioblastoma cells (Figure 2a). In addition, AM caused a slight suppression of hypoxia-induced cell death. The viability of normoxic glioblastoma cells was not affected by AM (Figure 2b). The apoptosis suppression by AM in hypoxic glioblastoma cells was dose-dependent (Figure 2c).

IL-1β inhibits the HIF-1 pathway and downregulates the expression of AM in hypoxic glioblastoma cells. To study the influence of IL-1β on the HIF-1/AM axis, glioblastoma cells were incubated in hypoxia (1% O2) with or without IL-1β for 2 or 4 h. The steady-state level of the oxygen-labile HIF-1α was detected by immunoblotting. The protein content of HIF-1α in hypoxic glioblastoma cells was reduced by IL-1β within 2 h (Figure 3a). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and trypan blue staining did not show any decrease in cell viability at this time (data not shown). To study whether IL-1β consequently inhibits the transactivation activity of HIF-1, reporter gene assays were performed using a luciferase reporter gene construct containing six copies of HIF-1 binding sites. IL-1β caused a decrease in luciferase activity by about 50% in hypoxic glioblastoma cells (Figure 3b).

Since the reduction in HIF-1α protein content was already observed after 2-h treatment, we studied the effect of IL-1β on the AM expression after incubating the cells for 6 h in hypoxia with or without IL-1β. As shown in Figure 3c, IL-1β significantly downregulated the expression of AM in hypoxic glioblastoma cells.

HIF-1α was nearly undetectable in normoxic glioblastoma cells (data not shown). In reporter gene assays, IL-1β did not cause any change in HIF-1 transactivation activity in normoxic glioblastoma cells (Figure 3d).

We then studied whether the AM secretion by hypoxic glioblastoma cells was inhibited by IL-1β. Glioblastoma cells were incubated in normoxia or hypoxia with or without IL-1β for 8–24 h. As shown in Figure 4, hypoxia significantly induced the secretion of AM by glioblastoma cells, which was in turn suppressed by IL-1β.

IL-1β promotes the apoptosis of hypoxic glioblastoma cells. Since AM protects the glioblastoma cells against hypoxia-induced apoptosis, we suggested that the inhibition of the HIF-1/AM axis by IL-1β would lead to an increase in cell apoptosis in hypoxia. Glioblastoma cells were incubated for 24 h in hypoxia with or without IL-1β. The fragmented DNA was fluorescent labeled instead of ELISA detection, since fluorescence detection is visible and more sensitive. Glioblastoma cells incubated with IL-1β in hypoxia showed more fluorescent-labeled fragmented DNA (Figure 5a). The fluorescence intensity of single cells was further quantified using the ImageJ software (National Institutes of Health, Bethesda, MD, USA). For each experiment, 150–200 cells were analyzed.
were analyzed (Figure 5b). The fluorescence intensity of IL-1β treated group was significantly stronger than the control group (Figure 5c).

To determine whether the increase in cell apoptosis was caused by suppressed AM secretion, we treated the hypoxic glioblastoma cells with exogenous AM in addition to IL-1β. As shown in Figure 5d, exogenous AM protected hypoxic glioblastoma cells against IL-1β induced apoptosis in a dose-dependent manner.

Proteasome inhibitor MG132 attenuates the inhibitory effect of IL-1β on the HIF-1/AM axis. We attempted to understand the mechanisms by which IL-1β inhibits the HIF-1/AM axis. Since IL-1β reduces the HIF-1α protein content in a short time period, we suggested that IL-1β promotes the proteasomal degradation of HIF-1α. The proteasome inhibitor MG132 is a well-characterized inhibitor of the proteasomal degradation of HIF-1α. MG132 inhibits the interaction between HIF-1α and the proteasome in a dose-dependent manner and markedly increases the half-life of HIF-1α.23–26 In our work, treatment with MG132 led to an accumulation of HIF-1α in normoxic glioblastoma cells within 30 min, indicating that the proteasomal degradation of HIF-1α was efficiently inhibited (data not shown). In the presence of MG132, IL-1β had no influence on the protein content of HIF-1α (Figure 6a). IL-1β also failed to downregulate the AM expression in the presence of MG132 (Figure 6b).

The proteasomal degradation of HIF-1α is mainly mediated by the ubiquitin system.27 The influence of IL-1β on the ubiquitination of endogenous HIF-1α was studied by immunoprecipitation. MG132 was added to protect ubiquitinated HIF-1α from proteasomal degradation. As shown in Figure 6c, the ubiquitination of HIF-1α was not affected by IL-1β.

IL-1β does not inhibit the synthesis of HIF-1α. We then studied whether IL-1β inhibits the synthesis of HIF-1α. The mRNA content of HIF-1α in hypoxic glioblastoma cells was not affected by IL-1β after 1–2 h treatment, whereas the protein content of HIF-1α was markedly reduced after 2 h treatment (Figures 3a and 7a). Since there is no specific inhibitor for HIF-1α translation, we determined the effect of IL-1β on HIF-1α translation by studying the influence of IL-1β on the global regulator of eukaryotic translation phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway, which also regulates the translation of HIF-1α.27–29 The protein content of AKT and the phosphorylation status of AKT were used as indicators of the activity of PI3K/AKT/mTOR pathway. As shown in Figure 7b, neither the protein content of AKT nor the phosphorylation of AKT was affected by IL-1β in hypoxic glioblastoma cells.

IL-1β and LY29004 reduce the steady-state level of HIF-1α synergistically. The translation of HIF-1α could be suppressed by the PI3K inhibitor LY29004. However,
LY29004 was not able to reduce the steady-state level of HIF-1α in hypoxic glioblastoma cells after being added 10 min in advance to hypoxic incubation (Figure 8), although the phosphorylation of AKT was efficiently inhibited (data not shown). In the presence of IL-1β, the HIF-1α steady-state level was markedly decreased by LY29004 (Figure 8).

Discussion

IL-1β was initially considered to be an inhibitor of glioblastoma growth. Elevated expression of IL-1β in glioblastomas was reported to be associated with better clinical outcomes. Antagonization of tumor cell-derived IL-1β promotes the colony formation of glioblastoma cells. Sharma et al. reported that chronic treatment with IL-1β induces the oxidative DNA damage in glioma stem-like cells. Castigli et al. reported that IL-1β induces the apoptosis of glioblastoma cell line GL15 by causing an imbalance between MAPK and SAPK pathway. However, IL-1β was also reported to upregulate the expression of MMP-9 and enhance the invasiveness of a glioblastoma cell line with invasive growth pattern in 3D CL matrix. Yeung et al. showed that IL-1β stimulates the production of interleukin-6 and interleukin-8 by the glioblastoma cell line U251, which may in turn lead to unfavorable prognosis because of the potential tumor-promoting effects of interleukin-6 and interleukin-8.

These findings indicate that the influence of IL-1β on the glioblastoma progression is complex and might involve a variety of intracellular pathways.

In this study, we show that IL-1β inhibits HIF-1 mediated AM production and promotes hypoxia-induced apoptosis of the AM-producing glioblastoma cells. Our findings reveal the fact that the influence of IL-1β on glioblastoma growth is probably dependent on factors such as the degree of hypoxia and the...
show that AM suppresses the apoptosis of glioblastoma cells in hypoxia. Interestingly, AM has no influence on glioblastoma cell apoptosis in normoxia, indicating that AM specifically suppresses hypoxia-induced apoptosis. In several other tissues, AM was also reported to suppress cell apoptosis under stressful conditions like inflammation and ischemia specifically. Different intracellular signaling molecules and pathways such as cAMP, CGRP1, MEK-ERK pathway and AKT-GSK pathway were discussed to be involved.34–37

Besides the anti-apoptotic effect, AM was also discussed to promote the proliferation of glioblastoma cells through the CRLR/RAMP2 complex.12 It would be worthwhile to study whether IL-1β also inhibits the proliferation of AM-producing glioblastoma cells.

The inhibition of the HIF-1/AM axis is dependent on the proteasome system. However, the ubiquitination status of HIF-1α is not changed by IL-1β. Kong et al.23 reported that HIF-1α could be degraded by 20S proteasome independent of the ubiquitin system. A direct interaction between HIF-1α and a subunit of the 20S proteasome was also observed.25 Therefore, we assume that IL-1β promotes the ubiquitin-independent proteasomal degradation of HIF-1α. Since the mechanisms involved in the ubiquitin-independent degradation of HIF-1α are still not understood, more studies need to be performed to determine whether overexpression of 20S proteasome could be considered as a new therapeutic option for glioblastoma.

The translation of HIF-1α was determined on the basis of the PI3K/AKT/mTOR pathway activity. Although the activity of PI3K/AKT/mTOR pathway seemed not to be influence by...
IL-1β, we cannot exclude the possibility that IL-1β might inhibit the translation of HIF-1α in a proteasome-dependent manner.

Besides AM, HIF-1α activates a number of genes involved in the adaptation of tumor cells to hypoxia such as glucose transporters and angiogenic factors.38,39 The PI3K inhibitor LY29004 is supposed to be an attractive potential anti-tumor agent because of its inhibitory effect on HIF-1α translation.29 However, without a long-term treatment in advance to hypoxic incubation, the inhibition of HIF-1α translation by LY29004 seems to be negligible in glioblastoma cells. IL-1β enhances
IL-1β promotes apoptosis of GBM cells

W Sun et al

Materials and Methods

Reagents. Recombinant human IL-1β was purchased from PeproTech (Hamburg, Germany). Human adrenomedullin 52 was purchased from Sigma-Aldrich (Seelze, Germany). MG132 and LY29004 were purchased from Calbiochem (Darmstadt, Germany). AM concentrations were normalized to total cellular protein concentration.

Cell culture. The human glioblastoma cell lines U87MG and U138MG were obtained from the American Type Culture Collection. Cells were cultured in DMEM (Gibco, Darmstadt, Germany) supplemented with 10% FCS (Gibco), 100 U/ml penicillin and 100 μg/ml streptomycin (PAA Laboratories, Coelbe, Germany) in a humidified atmosphere with 5% CO₂. For hypoxic treatments, cells were incubated in the hypoxia workstation (Ruskinn invivo 2400) in the presence of 1% O₂, 5% CO₂ and 94% N₂ at 37°C.

MTT assay. The cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, Sigma-Aldrich) assay. Cells were incubated with MTT solution (5 g/l) for 2 h and then lysed with MTT lysis buffer (10% SDS, 1% HCl, 0.46% isopropanol). The optical density was measured with a microplate reader (Thermo Scientific). AM concentrations were normalized to total cellular protein concentration.

Detection of DNA fragmentation. Intraacellular DNA fragmentation was detected using the Cell Death Detection ELISA Kit (Roche) or the DNA Fragmentation Imaging Kit (Roche) following the manufacturer’s instructions. The ELISA reactions were incubated for 5–20 min. In the ELISA experiments, the optical density was measured at 450 nm with a microplate reader (Thermo Scientific). Fluorescent-labeled fragmented DNA was analyzed under a fluorescence microscope (Zeiss, Axioplan, Jena, Germany). The fluorescence intensity of single cells was quantified with the software ImageJ.

Reported gene assay. U87MG and U138MG cells were cultured to 60–70% confluence in 24-well plates and co-transfected with a hypoxia responsive firefly luciferase plasmid containing six copies of HIF-1 binding sites from the transferrin 3’ enhancer and a Renilla luciferase plasmid as a transfection efficiency control using GeneJuice (Merck, Darmstadt, Germany) according to the manufacturer’s instructions. The transfection complex was removed 4 h after transfection. Twenty-four hours after transfection, the medium was changed and the cells were incubated in normoxia or hypoxia for another 16 or 24 h with or without IL-1β (10 ng/ml). After incubation, cells were washed with ice-cold PBS and lysed with passive lysis buffer (Promega, Mannheim, Germany). Luminescence was measured with a luminometer (LB940, Berthold Technologies, Bad Wildbad, Germany). Firefly luciferase activities were normalized to Renilla luciferase activities.

Immunoblot analysis. For immunoblot analysis, 60 μg protein was subjected to 7.5% SDS-PAGE and transferred onto nitrocellulose membranes (Amersham Hybond-ECL; GE Healthcare, Freiburg, Germany). Membranes were blocked at room temperature for 1 h in 3% non-fat dry milk in PBS and then incubated with primary antibodies overnight at 4°C. Mouse monoclonal antibody against HIF-1α (1:1000; BD Biosciences, Heidelberg, Germany) and β-actin (1:2000; Applied Biological Materials, Richmond, BC, Canada), rabbit polyclonal antibodies against AKT (1:1000; GeneTex, Irvine, CA, USA) and phospho-AKT (1:1000; GeneTex) were used. After being washed with PBS-T, membranes were incubated with horseradish peroxidase-conjugated anti-mouse or anti-rabbit immunoglobulin G (IgG) antibodies (1:2000; Dako, Hamburg, Germany). Immunoreactive proteins were detected using ECL detection reagents (Amersham ECL Western Blotting Detection Reagents; GE Healthcare) and X-ray films (Amersham Hyperfilm MP, GE Healthcare).

RNA isolation and quantitative RT-PCR. Total RNA was extracted using the AllPrep RNA fastPrep Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. In all, 150 ng total RNA was reverse transcribed with the ThermoScript RT-PCR System for First-Strand cDNA Synthesis (Invitrogen, Darmstadt, Germany), SuperScript III Reverse Transcriptase (Invitrogen) or Transcriptor High Fidelity cDNA Synthesis Kit (Roche Applied Science, Mannheim, Germany) according to the manufacturer’s instructions. Quantitative RT-PCR was performed in ABI Prism 7000 Sequence Detection System (Applied Biosystems) using the SensiMix SYBR Kit (Bioline, Luckenwalde, Germany) or Taqman Gene Expression Assay (Invitrogen). The mRNA levels were normalized to human L28 mRNA. Following primers and assays were used for quantitative RT-PCR: human AM forward, 5’-GGA TAG CAC GAT AGG AGG AG-3’; human AM reverse, 3’-GAC ACC AGA GTC CGA CCC GG-5’; human αM enhancer and a Renilla luciferase plasmid as a transfection efficiency control (Thermo Scientific). Fluorescent-labeled fragmented DNA was analyzed under a fluorescence microscope (Zeiss, Axioplan, Jena, Germany). The fluorescence intensity of single cells was quantified with the software ImageJ.

Enzyme immunoassay. The concentration of AM in cell culture supernatants was measured by enzyme immunoassay (EIA) using the Adrenomedullin EIA Kit (Phoenix Europe GmbH, Karlsruhe, Germany) following the manufacturer’s instructions. The optical density was measured at 450 nm with a microplate reader (Thermo Scientific). AM concentrations were normalized to total cellular protein concentrations.

Figure 8 Interleukin-1β and LY29004 reduce the steady-state level of HIF-1α synergistically. U87MG cells were incubated for 2 h in hypoxia (1% O₂) with or without interleukin-1β and LY29004 (25 μM). LY29004 was added 10 min in advance. HIF-1α was detected by immunoblotting. β-Actin was used as a loading control. The results are representative for three independent experiments.
RNA interference. U87MG cells were cultured to 60–70% confluence in 6-well plates or 24-well plates and transfected with 30 nM siRNA against HIF-1α (Invitrogen) or BLOCK-iT Fluorescent Oligo (Invitrogen) as a negative control using Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer’s instruction. Forty-eight hours after transfection, the medium was changed and cells were incubated in hypoxia for 2 or 24 h.

Statistical analysis. Data are shown as means ± S.E.M. of at least three independent experiments. Statistical analysis between two groups was performed by Student’s t-test. Differences were considered as significant when P < 0.05 (*P < 0.05; **P < 0.01; ***P < 0.001). All statistics were calculated using GraphPad Prism 5 (GraphPad Software, Wiltenhausen, Germany).

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements. We thank G Huck for excellent technical support and D Rehner for the help in determining the biological activity of exogenous adrenomedullin. The project was supported by University of Luebeck (PO4-2012).

1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008; 359: 492–507.
2. Evans SM, Judy KD, Durphy J, Jenkins WT, Hwang WT, Nelson PT et al. Hypoxia is important in the biology and aggression of human glioblastoma brain tumors. Clin Cancer Res 2004; 10: 8177–8184.
3. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 2009; 24: 97–106.
4. Greer SN, Metcalf JL, Wang Y, Ohm M. The updated biology of hypoxia-inducible factor. Endocrine 2010; 34: 1066–1076.
5. Garayoa M, Martinez A, Lee S, Pio R, An WG, Neckers L et al. Adrenomedullin inhibits the growth of human glioblastoma cell lines in vivo tumor xenograft growth: a possible promotion mechanism of carcinogenesis. J Neurooncol 1994; 21: 1066–1076.
6. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H et al. Adrenomedullin: a novel hypotensive peptide isolated from pheochromocytoma. Biochem Biophys Res Commun 1993; 192: 553–560.
7. Zudaire E, Martinez A, Cuttitta F. Adrenomedullin and cancer. Regul Pept 2003; 112: 175–183.
8. Satoh F, Takahashi K, Murakami O, Totsune K, Sone M, Ohneda M et al. Adrenomedullin in human brain, adrenal glands and tumor tissues of pheochromocytoma, ganglioneuroblastoma and neuroblastoma. J Clin Endocrinol Metab 1995; 80: 1750–1752.
9. Kitamura T, Takahashi K, Nakayama M, Murakami O, Hida W, Shirato K et al. Induction of adrenomedullin during hypoxia in cultured human glioblastoma cells. J Neurochem 2000; 75: 1826–1833.
10. Garvey M, Martinez A, Lee S, Pio R, An WG, Necker's L et al. Hypoxia-inducible factor-1 (HIF-1)-up-regulates expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol Endocrinol 2010; 14: 848–862.
11. Frede S, Freitag P, Otto T, Heilmaier C, Fandrey J. The proinflammatory cytokine interleukin-1beta and hypoxia cooperatively induce the expression of adrenomedullin during hypoxia in cultured human glioblastoma cells. J Neurochem 2004; 90: 2870–2879.
12. Yeung YT, Bryce NS, Adams S, Braidy N, Konayagi M, McDonald KL et al. p38 MAPK inhibitors attenuate pro-inflammatory cytokine production and the invasiveness of human U251 glioblastoma cells. J Neurooncol 2012; 109: 34–41.
13. Zudaire E, Martinez A, Cuttitta F. Adrenomedullin and cancer. Regul Pept 2003; 112: 175–183.
14. Greer SN, Metcalf JL, Wang Y, Ohm M. The updated biology of hypoxia-inducible factor. Endocrine 2010; 34: 1066–1076.
15. Garayoa M, Martinez A, Lee S, Pio R, An WG, Neckers L et al. Adrenomedullin inhibits the growth of human glioblastoma cell lines in vivo tumor xenograft growth: a possible promotion mechanism of carcinogenesis. J Neurooncol 1994; 21: 1066–1076.
16. Elmann E, Kraemer A, Serve H, Beull B, Oberberg D, Parth S et al. Autocrine interleukin-1 receptor antagonist can support malignant growth of glioblastoma by blocking growth-inhibiting autocrine loop of interleukin-1. Int J Cancer 1997; 71: 1066–1076.
17. Curry E, Loiseau H, Penichet G, Elle A, Araout J, Vital A et al. Association of elevated glial expression of interleukin-1beta with improved survival in patients with glioblastomas multiforme. J Neurosurg 2002; 96: 294–301.