TEARING UP THE DISK: HOW BLACK HOLES ACCRETES

Chris Nixon, Andrew King, Daniel Price, and Juhan Frank

1 Department of Physics & Astronomy, University of Leicester, Leicester LE1 7RH, UK; chris.nixon@leicester.ac.uk
2 Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Victoria 3800, Australia
3 Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA

Received 2012 July 5; accepted 2012 August 17; published 2012 September 11

ABSTRACT

We show that in realistic cases of accretion in active galactic nuclei or stellar-mass X-ray binaries, the Lense–Thirring effect breaks the central regions of tilted accretion disks around spinning black holes into a set of distinct planes with only tenuous flows connecting them. If the original misalignment of the outer disk to the spin axis of the hole is $45^\circ \lesssim \theta \lesssim 135^\circ$, as in $\sim 70\%$ of randomly oriented accretion events, the continued precession of these disks sets up partially counterrotating gas flows. This drives rapid infall as angular momentum is canceled and gas attempts to circularize at smaller radii. Disk breaking close to the black hole leads to direct dynamical accretion, while breaking further out can drive gas down to scales where it can accrete rapidly. For smaller tilt angles breaking can still occur and may lead to other observable phenomena such as quasi-periodic oscillations. For such effects not to appear, the black hole spin must in practice be negligibly small, or be almost precisely aligned with the disk. Qualitatively similar results hold for any accretion disk subject to a forced differential precession, such as an external disk around a misaligned black hole binary.

Key words: accretion, accretion disks – black hole physics – galaxies: active – hydrodynamics – stars: neutron

1. INTRODUCTION

Accretion disks are common in astrophysics on all scales from protostars to active galactic nuclei (AGNs; see, e.g., Pringle 1981; Frank et al. 2002). Many treatments assume that the disk is aligned with the symmetry axis of the central object, although there is often no a priori reason for this. The first widely studied case relaxing this restriction was the evolution of tilted disks around spinning black holes. Until recently the standard picture of tilted disk evolution was that, in the regime where viscosity acts diffusively (technically, $\alpha > H/R$), the inner disk would align or counteralign rapidly with the hole’s spin, with a smooth warp to the still misaligned outer parts. This is often called the Bardeen–Petterson effect (Bardeen & Petterson 1975, but note that their equations do not conserve angular momentum; see Papaloizou & Pringle 1983, Pringle 1992, Ogilvie 1999 and for detailed discussions of the correct equations; King et al. 2005, for the possibility of counteralignment).

In a recent paper, Nixon & King (2012) showed that this evolution can be very different for large inclinations of the disk and spin, and/or low values of the dimensionless viscosity coefficient α (Shakura & Sunyaev 1973). Enforcing the connections imposed by conservation laws between the various components (“radial” and “vertical”) of viscosity (Ogilvie 1999), Nixon & King (2012) showed that the viscous torques in the disk may be unable to communicate the Lense–Thirring precession efficiently enough to produce a smooth warp. Instead one expects a sharp break in the disk plane between the aligned inner parts and the misaligned outer parts, connected only by tenuous rings of gas with inclinations changing rapidly across the break. We shall see from our Equation (7) below that even if the viscosity coefficients remained constant with warp amplitude, the disk would still break for realistic parameters. Lodato & Price (2010) show that an assumed break of this type remains stable in three-dimensional simulations of such disks. Nixon et al. (2012) show that inclined, partially counterrotating gas orbits within an accretion disk lead to cancellation of angular momentum and thus subsequent accretion. The mass flow rate through the disk can, for a time, be increased by large factors up to $\sim 10^4$ times that of the corresponding disk with zero inclination.

These results suggest that sufficiently inclined disks might break, and that if the precession rate of the inner and outer disks differs enough, disks rotating in opposed senses might interact and produce dynamical mass infall. We consider these questions in this Letter. We ask the following.

1. For realistic parameters, can the Lense–Thirring torques exceed the local viscous torques in the disk?
2. If they can, can we arrange the broken disk such that disk orbits counterrotate?

2. WHERE DOES THE DISK BREAK?

Here we estimate analytically the radius at which the disk is likely to break. This will give us an idea of the parameters which lead to breaking, and whether it is a common event. To break the disk, the torque resulting from the Lense–Thirring effect must overcome the local viscous torques, or equivalently, the orbits in the disk must precess faster than the viscosity can communicate the precession. To illustrate this point, let us imagine the two extremes. If the viscosity is dominant, the precession is communicated throughout the disk instantaneously, and the whole disk precesses rigidly. At the other extreme where viscosity is negligible, orbits at different radii precess at different rates and the disk must break into many distinct rings. The nonlinear connection between effective viscosity coefficients, enforced by conservation laws (Ogilvie 1999), tell us that once a disk starts to break in this way, the viscosity evolves so as to reinforce the tendency to break (Nixon & King 2012).

To calculate the breaking radius for a given viscosity we can assume that the disk has no initial warp. Then we can consider the usual viscous torque, and to a good approximation neglect the more complicated physics of a warped disk. The azimuthal
viscous force per unit area in the disk is proportional to the rate of shear $Rd\Omega/dR$ (where R is the radial coordinate and Ω is the disk angular velocity) and so can be written as

$$f_v = \mu R d\Omega \over dR, \tag{1}$$

where μ is the dynamical viscosity. The area of an interface in the disk is $2\pi RH$, where H is the disk vertical thickness. So the viscous force acting in the azimuthal direction is given by

$$F_v = 2\pi RH \mu R d\Omega \over dR = 2\pi R \nu \Sigma R d\Omega \over dR, \tag{2}$$

where we have substituted the dynamic viscosity for the kinematic viscosity ($\mu = \rho \nu$), and used $\Sigma = \rho H$. The magnitude of the viscous torque G_v is given by

$$G_v = | R \times F_v | = 2\pi R \nu \Sigma R^2 (- \Omega'), \tag{3}$$

where the prime denotes the radial derivative. This is the usual viscous torque at the interface of two annuli in an accretion disk (see Lynden-Bell & Pringle 1974; Frank et al. 2002). For near-Keplerian rotation ($\Omega' \approx GM/R^3$), it becomes

$$G_v = 3\pi \nu \Sigma (GM/R)^{1/2}. \tag{4}$$

The Lense–Thirring precession induces a torque with magnitude

$$G_{LT} = 2\pi RH | \Omega_p \times L | = 2\pi RH \Omega_p \Sigma R^2 \Omega | \sin \theta |, \tag{5}$$

where the Lense–Thirring frequency $\Omega_p = 2G J_0 / c^2 R^3$, the disk angular momentum density $| L | = \Sigma R^2 \Omega$, and θ is the angle between the angular momentum of the black hole and the disk. We assume the disk breaks when the Lense–Thirring torque tears gas off the disk faster than viscosity can make it spiral inward, which requires

$$G_{LT} \lesssim G_v. \tag{6}$$

Making the standard assumption of a thin Keplerian α-disk (Shakura & Sunyaev 1973) and using $J_0 = aGM^2/c$, the radius at which we expect the disk to break is given by

$$R_{break} \lesssim \left(\frac{4}{3} | \sin \theta | \frac{a R}{a H} \right)^{2/3} R_g, \tag{7}$$

where $R_g = GM/c^2$ is the gravitational radius of the black hole.

Equation (7) looks plausible; it makes sense that at large viscosity, low spin, or small inclination angles the disk cannot be broken, i.e., $R_{break} < R_g$. Conversely, for low viscosity, high spin, and/or large inclinations we expect the disk to break into distinct rings at some radius $R_{break} > R_g$.

The typical radius at which the disk breaks is given by

$$R_{break} \lesssim 350 R_g | \sin \theta |^{2/3} \left(\frac{a}{0.5} \right)^{2/3} \left(\frac{\alpha}{0.1} \right)^{-2/3} \left(\frac{H/R}{10^{-3}} \right)^{-2/3}, \tag{8}$$

where we have parameterized using quantities typical for AGN disks. This radius falls within typical disks, suggesting that inclined disks near spinning black holes are quite susceptible to breaking. We caution that at extreme parameters this simple argument may not suffice to predict the behavior of the system, although we expect the general behavior to hold. In the next section we confirm the breaking of the disk with numerical simulations. These simulations are a preliminary investigation into this problem and we intend to follow up in more detail in future publications.

3. COUNTERROTATION

Let us consider an inclined disk that breaks under the action of a strong differential precession. Its inner and outer regions precess almost independently at different rates. The precession timescale is much shorter than the alignment timescale, which must wait for precession to induce dissipation. So both the inner and outer disks retain their inclinations to the black hole spin. The outer disk remains almost unmoved, while the inner disk (typically a ring of radial width $\approx H$) precesses rapidly about the spin axis. If the angle θ between the outer disk and the hole spin lies between $\approx 45^\circ$–135$^\circ$, the inner ring must form an angle $20^\circ > 90^\circ$ with respect to the outer disk after half a precession period. The rotational velocities are now partially opposed.

This configuration is similar to those adopted in the counterrotating disk simulations in Nixon et al. (2012) and so must result in rapid accretion. We note that the probability that a randomly oriented accretion event lies in the critical range of inclinations is given by the fractional solid angle as $\cos(\pi/4)$ i.e., $\approx 70\%$. In other words, disk breaking and dynamical infall from counterrotating accretion flows must be common in AGNs. It is also common in stellar-mass X-ray binaries if the spin of the black hole (or neutron star) accretor is sufficiently misaligned with the binary plane.

We report two simulations of an inclined disk around a spinning black hole using the smoothed particle hydrodynamics (SPH) code PHANTOM (see, e.g., Price & Federrath 2010; Lodato & Price 2010; Nixon et al. 2012; Nixon 2012). PHANTOM performs well in modeling warped disks (Lodato & Price 2010) finding excellent agreement with the analytical treatment of Ogilvie (1999). This is to be expected as both treatments solve the Navier Stokes equations with an isotropic viscosity. The connections between the viscosity coefficients derived by Ogilvie (1999) therefore naturally hold in our numerical treatment. In the simulations reported here we implemented the Lense–Thirring effect, following Nelson & Papaloizou (2000). The simulations use a disk viscosity with Shakura & Sunyaev $\alpha \approx 0.1$ (see Lodato & Price 2010), a disk angular semi-thickness of $H/R \approx 0.01$, and the black hole has a spin $a = 1$. Initially the disk has no warp and extends from an inner radius of $50 R_g$ to an outer radius of $250 R_g$, with a surface density profile $\Sigma = \Sigma_0(R/R_0)^{-p}$ and locally isothermal sound speed profile $c_s = c_s(0)(R/R_0)^{-q}$ where we have chosen $p = 3/2$ and $q = 3/4$ to achieve a uniformly resolved disk (Lodato & Pringle 2007). The disk is initially composed of 2 million particles, which for this setup gives $(h)/H \approx 0.8$ (see Lodato & Price 2010). The two simulations differ only by the relative inclination angle to the black hole.

The simulation shown in Figure 1 has an initial inclination of 10°, and thus $R_{break} \approx 40 R_g$, i.e., at a radius inside the disk’s inner boundary, and so we do not expect the disk to break. This agrees with the simulation, which shows the usual (Bardeen–Petterson) evolution with a smooth warp. In contrast, the simulation shown in Figure 2 has an inclination of 60° and therefore $R_{break} = 110 R_g$, i.e., we expect the disk to break. The simulated disk does indeed break, producing multiple distinct rings of gas with large relative inclinations. This leads to phases of strong accretion when the rings are highly inclined, and quieter phases when they are not.\footnote{Movies of the simulations in this paper are available at http://www.astro.le.ac.uk/users/cjnj2/tearing.shtml.} The accretion rates for the two cases are shown in Figure 3.

We note that this evolution is more extreme than the one-dimensional simulations reported in Nixon & King (2012).
However, the numerical method used there assumed that the gas always remained on circular orbits, evolving purely by viscous diffusion. This was appropriate for the problem studied there, namely, whether such a relatively orderly disk could break all, given the nonlinear evolution of the viscosity predicted by Ogilvie (1999). This Letter studies a dynamical problem, where the inclination of disk orbits can change so rapidly that viscous diffusion of gas in circular rings is no longer an adequate
4. DISCUSSION

We first discuss the possible arguments against this picture. The main unknown in this work is the nature of the viscosity controlling angular momentum transport in the disk. In this Letter, we have assumed that this can be modeled as an isotropic Shakura & Sunyaev α viscosity. There is a strong basis for assuming that the radial transport of angular momentum (governed by the azimuthal viscosity) is limited to $\alpha \sim 0.1$ (King et al. 2007) and we expect disks around black holes to be very thin away from the immediate vicinity of the strongly accreting hole (e.g., King & Pringle 2007, and references therein). However, the nature of the viscosity is unknown. In reality, the local viscosity is likely to result from MHD effects (Balbus & Hawley 1991), and may well be anisotropic. The azimuthal shear is likely to be secular, with gas parcels continually moving away from each other, whereas the vertical shear is probably oscillatory (Pringle 1992). This is suggestive of a favorable anisotropy where the vertical viscosity does not strongly oppose breaking, but the result is simply not known. The consistency requirements worked out by Ogilvie (1999) for a locally isotropic viscosity show that in a strong warp, the viscosity trying to hold the disk together is likely to weaken. There appears no reason to suggest that this differs for an anisotropic viscosity.

Another possible complication is the thermal evolution of the gas. As the disk orbits do not all lie in the equatorial plane, they must shock and heat up. In the simulations above we have assumed an isothermal equation of state, so this extra heat is assumed to be radiated away instantly. This is reasonable, as the densities in black hole disks are high and cooling is likely to be efficient. However, if the disk cannot cool on the local precession timescale, it may heat up significantly so that Equation (7) is no longer satisfied. In this case the disk may rapidly thicken, perhaps even becoming thermally unstable, and switch to a different mode of both accretion and warp propagation. On the other hand, Nixon et al. (2012) found, in counterrotating disk simulations using an adiabatic equation of state, that although the gas dynamics can be strongly modified by gas heating, the net result in terms of rapid accretion is similar.

Otherwise there appears to be no obvious reason why this behavior should be suppressed. We therefore expect this to be generic to most cases of accretion onto black holes (or neutron stars, since the Lense–Thirring effect applies here too), and more generally for the evolution of gas disks in the presence of a strong precession.

5. CONCLUSIONS

We have shown that for realistic parameters a randomly oriented accretion event onto a spinning black hole is likely to form a disk which is susceptible to breaking at a radius close to the hole. If the angle between the disk and the hole lies between $\sim45^\circ$–135°, the interaction of partially opposed gas motions is likely and leads to cancellation of angular momentum and rapid infall.

This quasi-dynamical form of accretion, which appears to be a generic consequence of randomly oriented accretion onto a black hole, significantly alters the standard picture of slow viscous accretion. There is nothing to prevent a succession of events where rings break off the inner disk edge and then precess independently of those inside or further out (see Figure 2). It is reasonable to think of this process as tearing up the disk in a chaotic way.

We shall consider possible consequences of this picture in subsequent papers, but note several points here.

1. Tearing the disk can lead to rapid gas infall, but the long-term rate of central accretion is ultimately controlled by the outer disk.
2. In a stellar-mass binary system this means that tearing modulates a quasi-steady mass transfer rate. The modulation might have large amplitude if the disk/spin inclination is high. Even if the inclination is modest, there are likely to be observable effects which could include quasi-periodic behavior such as quasi-periodic oscillations (QPOs). Still more effects can occur if the infalling rings shadow the central X-ray source.
3. By contrast, in AGNs, the viscous timescale of the outer disk may easily exceed a Hubble time, and no steady state is ever set up. Thus, tearing of a significantly inclined AGN disk may promote significant accretion when the central black hole would otherwise not gain mass at all.
4. The torques we have considered here are all internal to the disk–black-hole system. They cannot affect any conclusions concerning the global conservation of angular momentum or mass of this system. In particular, considerations of the long-term evolution of black hole spin through accretion remain unchanged, whether the accretion is assumed to be coherent (e.g., Volonteri & Rees 2005; Berti & Volonteri 2008) or chaotic (King & Pringle 2006, 2007; King et al. 2008).
5. We can expect qualitatively (and sometimes quantitatively) similar effects for other cases where an accretion disk is subject to a forced external differential precession. Most obviously, Nixon et al. (2011b) have shown that the effective potential experienced by a disk accreting onto a misaligned binary, as is thought to occur when supermassive black holes are close to coalescence, is extremely similar to that caused by the Lense–Thirring effect. For initial inclinations near to co- or counterrotation...
the disk respectively coaligns or counteraligns (for the subsequent evolution of prograde circumbinary disks see Cuadra et al. 2009; Lodato et al. 2009, and for retrograde circumbinary disks see Nixon et al. 2011a). However, disk tearing changes this picture and may well bring gas into the close vicinity of the holes on near-dynamical timescales, and thus help with the last parsec problem (Begelman et al. 1980) as well as feeding problems.

6. In general any black hole has some spin, and in general any accretion disk plane may be inclined to this spin. To prevent any of the effects we have discussed here from appearing, the misalignment must satisfy

\[|\sin \theta| \lesssim \frac{3\alpha}{4a} \frac{H}{R}, \tag{9} \]

which is extremely small for realistic parameters. For example, a moderately thick disk with $H/R = 0.1$, $\alpha = 0.1$, and a low spin $a = 0.1$ must be inclined by less than 4° to avoid this process. We suggest that disk tearing, particularly in the inner disk, probably occurs in many if not most cases of black hole or non-magnetic neutron star accretion.

We thank Jim Pringle and Yuri Levin for useful discussions and the referee for a very helpful report. We used splash (Price 2007) for the visualization. Research in theoretical astrophysics at Leicester is supported by an STFC Rolling Grant. C.J.N. was supported by an STFC research studentship during part of this work. This research used the ALICE High Performance Computing Facility at the University of Leicester. Some resources on ALICE form part of the DiRAC Facility jointly funded by STFC and the Large Facilities Capital Fund of BIS.

REFERENCES

Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214
Bardeen, J. M., & Petterson, J. A. 1975, ApJ, 195, L65
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307
Berti, E., & Volonteri, M. 2008, ApJ, 684, 822
Cuadra, J., Armitage, P. J., Alexander, R. D., & Begelman, M. C. 2009, MNRAS, 393, 1423
Frank, J., King, A., & Raine, D. J. (ed.) 2002, Accretion Power in Astrophysics (3rd ed.; Cambridge: Cambridge Univ. Press), 398
King, A. R., Lubow, S. H., Ogilvie, G. I., & Pringle, J. E. 2005, MNRAS, 363, 49
King, A. R., & Pringle, J. E. 2006, MNRAS, 373, L90
King, A. R., & Pringle, J. E. 2007, MNRAS, 377, L25
King, A. R., Pringle, J. E., & Hofmann, J. A. 2008, MNRAS, 385, 1621
King, A. R., Pringle, J. E., & Livio, M. 2007, MNRAS, 376, 1740
Lodato, G., Nayakshin, S., King, A. R., & Pringle, J. E. 2009, MNRAS, 398, 1392
Lodato, G., & Price, D. J. 2010, MNRAS, 405, 1212
Lodato, G., & Pringle, J. E. 2007, MNRAS, 381, 1287
Lynden-Bell, D., & Pringle, J. E. 1974, MNRAS, 168, 603
Nelson, R. P., & Papaloizou, J. C. B. 2000, MNRAS, 315, 570
Nixon, C. J. 2012, MNRAS, 423, 2597
Nixon, C. J., Cossins, P. J., King, A. R., & Pringle, J. E. 2011a, MNRAS, 412, 1591
Nixon, C. J., & King, A. R. 2012, MNRAS, 421, 1201
Nixon, C. J., King, A. R., & Price, D. J. 2012, MNRAS, 422, 2547
Nixon, C. J., King, A. R., & Pringle, J. E. 2011b, MNRAS, 417, L66
Ogilvie, G. I. 1999, MNRAS, 304, 557
Papaloizou, J. C. B., & Pringle, J. E. 1983, MNRAS, 202, 1181
Price, D. J. 2007, PASA, 24, 159
Price, D. J., & Federrath, C. 2010, MNRAS, 406, 1659
Pringle, J. E. 1981, ARA&A, 19, 137
Pringle, J. E. 1992, MNRAS, 258, 811
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Volonteri, M., & Rees, M. J. 2005, ApJ, 633, 624