Mini Review

Pesticide Persistence in Agriculture and its hazardous effects on Environmental Components

Ronika Thapa1*, Anjal Nainabasti1, Ashish Lamsal1, Santoshi Malla1, Bronika Thapa2, Yushika Subedi3, Shirish Ghimire1

1Institute of Agriculture and Animal Science (IAAS), Gokuleshwor College, Baitadi, Nepal
2Institute of Agriculture and Animal Science (IAAS), Gauradaha Campus, Jhapa, Nepal
3Institute of Agriculture and Animal Science (IAAS), Lamjung Campus, Nepal

Abstract

Pesticides are applied to protect crops from insects, weeds, and bacterial or fungal diseases during the growth. There would be a 78 percent loss of fruit output, a 54 percent loss of vegetable production, and a 32 percent loss of cereal production if pesticides were not used. When pesticides are applied to a target plant, they have the potential to enter the environment where they can affect non-target organisms. Concerns have also been raised about pesticide currently uses and its impact on the environment with the possibility for hazardous or carcinogenic residues. This review paper provides basic information about the general types of pesticide in use and the role of pesticides in agriculture with its impact in environmental components.

Keywords: Agrochemical, Biopesticide, Degradation, Environmental hazards, Human health, Pesticide, Residual effect, Soil

Introduction

Pesticides are chemicals or biological agents that are used to keep pests away. They are applied in agriculture field for attracting, seducing, destroying, or mitigating any pests to protect any crops from its damages (Classification and Impact n.d.). Mainly, pesticides are applied to protect crops from insects, weeds, and bacterial or fungal disease during the growth. Their use is not only restricted to agricultural fields but also used for protecting stored agricultural products from rat, mice, insects or diverse biological contaminants (MoAFF, 2022). Thus, pesticides include herbicides, insecticides, nematicides, bactericides, molluscicides, avicides, repellants, and fungicides (Bernardes et al. 2015). Pesticide’s applicators must be aware of the danger and risks of pesticides they apply. The
toxicity of pesticides varies widely. Toxicity is described as the quality of being poisonous or damaging to animals or plants, and it is determined by a substance’s chemical or physical properties (MoAFF, 2022).

Pesticides are vital in agricultural growth because they may minimize agricultural product losses and increase affordable production and food quality (Aktar et al. 2009; Fenik et al., 2011; Strassemeyer et al., 2017). Without a parallel growth in food supply, the world’s population would have surged in the twenty-first century. There would be a 78 percent loss of fruit output, a 54 percent loss of vegetable production, and a 32 percent loss of cereal production if pesticides were not used (Tudi et al., 2021). During World War II, pesticide development accelerated (1939-1945). Furthermore, beginning in the 1940s, the expanded use of synthetic crop protection agents allowed for even more food production (Bernardes et al. 2015). Furthermore, pesticides are used all over the planet from 0.2 million tons in the 1950s to more than 5 million tons in 2000, output climbed at an annual pace of roughly 11% (Carvalho, 2017). Every year, three billion kilos of pesticides are used throughout the world (Hayes and Hansen 2017), although only 1% of all pesticides are successful in controlling insect pests on target plants (Bernardes et al., 2015). The remaining pesticides penetrate or reach non-target plants and environmental media in considerable quantities. Pesticide pollution has subsequently damaged the environment and harmed human health (Bernardes et al., 2015; Hernández et al., 2013).

This literature review provides basic information about the general types of pesticide in use and the role of pesticides in agriculture. The focus then shifts to pesticide behavior in the environment, climate change-related aspects in pesticide usage, and the negative consequences of pesticide use on the ecosystem.

Types of Pesticide Used

Pesticides are classed based on a variety of factors, including chemical classes, functional groups, modes of action, and toxicity (Garcia et al., 2012). To begin, pesticides are divided into categories based on their pest targets, such as fungicides, insecticides, herbicides, and rodenticides. Fungicides, for example, are used to kill fungus, insecticides to kill insects, and herbicides to destroy weeds (Amaral, 2014; Mnif et al., 2011). Pesticides are divided into organic and inorganic compounds in terms of chemical classifications. Copper sulfate, ferrous sulfate, copper, lime, and sulfur are examples of inorganic insecticides. Organic insecticides include more sophisticated components (Kim et al., 2017). Organic pesticides can be classified according to their chemical structure, such as chlorohydrocarbon insecticides, organophosphorus insecticides, carbamate insecticides, synthetic pyrethroid insecticides, metabolite and hormone analog herbicides, synthetic urea herbicides, triazine herbicides, benizimidazole nematicides, metaldehyde molluscicides, metal phosphate rodenticides, and D group vitamin-based rodenticides (Tudi et al. 2021).

Historical Account of Pesticide Use

The green revolution is linked to a huge rise in agricultural yields, which was made possible by the discovery and application of pest control agrochemicals (Dayan et al., 2009). The development and use of pesticides for pest control are attributed with the success of modern agricultural methods (Dayan et al. 2009). Table 1 shows chronological description of pesticides used worldwide.

The green revolution is linked to a huge rise in agricultural yields, which was made possible by the discovery and application of pest control agrochemicals (Dayan et al., 2009). The development and use of pesticides for pest control are attributed with the success of modern agricultural methods (Dayan et al., 2009).

Table 1: Important events for pesticides production and uses.

Year	Events
1867	Paris Green (form of copper arsenite) was used to control Colorado potato beetle Outbreak
1885	Introduction of a copper mixture by Professor Mallardite to control mildew
1892	Potassium dinitro-2-cresylate was produced in Germany
1939	DDT discovered by Swiss chemist Paul Muller; organophosphate insecticides and phenoxy acetic herbicides were discovered
1950s	Fungicides captan and glyodin and insecticide malathion was discovered
1961–1971	Agent Orange was introduced
1972	DDT officially banned
2001	Stockholm Convention

Source: Singh (2011)
Role of Fertilizer and Pesticide in Agriculture

Pesticides has been inseparable part of our lives. The yield from crop production relies heavily on the application of pesticides (Isman, 2015). Nearly 67,000 species of organisms affect agricultural crops, and without preventive protection using agrochemicals, 70% of agricultural production could be lost (Kumar & Singh, 2014). The huge burden of diseases that are caused by the vectors has been substantially reduced (Amara,l 2014).

Around the time of World War-II modern era of chemical pest control began as the synthetic organic chemical industry began to develop. First synthetic organic pesticides developed were organochlorines, such as dichlorodiphenyltrichloroethane (DDT) in Switzerland in 1939 (Bajwa and Sandhu 2014). The DDT and other organochlorine insecticides (cyclodiene organochlorines, aldrin and dieldrin, endrin, endosulfan and isobenzan) were widely used as these insecticides control insects by blocking their nervous system, causing malfunction, tremors, and death (Walia et al., 2017).

The increase in food production to sustain growing population today is achieved due to fertilizers (Carvalho 2017). The growth of human population and world production of phosphates has increased significantly and are positively correlated (Roser et al., 2013). Agricultural productivity also rises by the use of proper pesticides and significantly increases income of farming families (Miller, 1982).

Pesticides Used in Nepal

In the 1950s, pesticides were introduced to Nepal. However, its primary goal was to eradicate malaria. Pesticides are quickly gaining favor among Nepalese farmers. Pesticide usage has become something of an agricultural fad. The enormous health risks posed by pesticides gradually aroused concerns about their usage. In 1991, the Pesticide Act was created to govern pesticide distribution. Thirteen pesticides were first prohibited in Nepal in 2001, in response to rising health concerns and environmental deterioration. Then, between 2007 and 2015, three more pesticides were prohibited. From 2015 forward, eight more pesticides were outlawed. In Nepal, a total of 24 pesticides have been prohibited so far. The Table 2 represents the pesticide name and banned year.

Environmental Contamination by Pesticide

When pesticides are applied to a target plant, they have the potential to enter the environment where they can undergo processes such as transfer and degradation. This pesticide degradation in the environment produces new chemicals (Marie et al. 2017). Surveys conducted worldwide have showed the contamination and residues in soil, terrestrial and aquatic ecosystems which also include coastal marine systems (Carvalho 2017). Agrochemical residues spread in the environment causes contamination of terrestrial ecosystems and also aids in poisoning human foods. This contamination is a unique toxicological concern as pesticides are inherently biologically active substances which are introduced into the environment and they spread unintentionally (Fan and Jackson 1989). This may also result in undesirable residues on various media such as food, drinking water, and air.

Table 2: Banned pesticides names and banned year.

S.N.	Name of pesticide	Banned since
1	Aldrin	2001 AD
2	BHC	2001
3	Chlordane	2001
4	Dieldrin	2001
5	DDT	2001
6	Endrin	2001
7	Heptachlor	2001
8	Lindane	2001
9	Organo mercury compounds	2001
10	Mirex	2001
11	Phosphamidon	2001
12	Toxaphene	2001
13	Methyl parathion	2001
14	Monocrotophosph	2007
15	Endosulfan	2012
16	Phorate	2015
17	Benomyl	Dec,2020
18	Carbofuran	Dec,2020
19	Triazophosph	Dec,2020
20	Dichlorvus	Dec,2020
21	Carbaryl	Dec,2020
22	Carbosulfan	Aug 2021
23	Dicofol	Aug 2021
24	Aluminium phosphate (56%)-3gm tablet	Aug 2021

Recently banned additional pesticides

S.N.	Name of pesticide	Banned since
25	Phorate	Dec,2020
26	Benomyl	Dec,2020
27	Carbosulfan	Dec,2020
28	Dicofol	Dec,2020
29	Aluminium phosphate (56%)-3gm tablet	Dec,2020

The organochlorine (OC) pesticides of first generation were environmentally persistent, remaining long time in soils and accumulating in nonhuman organisms with devastating toxic effects at population level (Köhler and Triebskorn, 2013). Pesticide residues are found everywhere in the environment even on marine fauna (Taylor et al., 2002). Development of pathogen and insect populations resistant to synthetic pesticides is another major problem (McCaffery and Nauen 2006).

Pesticide Behavior in The Environment

Pesticides have the potential to enter the environment, when pesticides are applied to a target plant or disposed of. On entering the environment, they undergo processes such as transfer (or movement) and degradation (Marie et al. 2017; Scholtz and Bidleman 2007). Pesticide degradation in the environment produces new chemicals (Marie et al. 2017). Pesticides relocate from the target site to other environmental media or non-target plants by transfer processes including adsorption, leaching, volatilization,
spray drift, and runoff (Robinson et al., 1999). The different types of chemicals indicate their differences in environmental behavior. For example, organochlorine compounds such as DDT have low acute toxicity but show a significant ability to accumulate in tissues and persist in causing long-term damage. They have been banned from sale in most countries, but their residues remain in the environment for a long time because of their nature. While organophosphate pesticides are of low persistence, they have appreciable acute toxicity in mammals (Damalas and Eleftherohorinos 2011; Kim et al. 2017).

Agrochemicals in Soil

In agriculture soil degradation is now considered as one of the greatest environmental challenges (Squire et al., 2015). Agrochemicals applied in the soil for seed treatment, weed control, as well as by spraying on the aerial parts of plants, the falling of treated foliage, and by the movement of contaminated water on the surface and within the soil profile reaches to the soil (Chaplain et al., 2011). Once accumulated in the soil, these chemicals are transported by leaching and surface runoff. They can undergo chemical processes such as hydrolysis, photolysis, and chemical degradation or interact with the living fraction of the soil and be biodegraded (Kookana et al., 1998; Shaheen et al., 2019). Intensive use of agrochemicals increases their persistence in the soil and negatively affects the soil microbes (Campos et al. 2019). Pesticides leads to qualitative and quantitative changes in the soil microbiota (Hartmann et al., 2015), causing alterations of soil fertility and, eventually, plant growth (Malik et al. 2017).

Adsorption is interaction between soil and pesticides. The extent of adsorption depends on the physical properties of soil and the compound, which include size, shape, configuration, molecular structure, chemical functions, solubility, polarity, polarizability and charge distribution of interacting species, and the acid- base nature of the pesticide molecule (Gevao et al., 2000).

Persistent and bio accumulative chemical compounds, such as DDT, HCH, toxaphene, aldrin, and dieldrin, that were banned by the Stockholm Convention, in 2002, and are now replaced by environmentally friendly chemicals. However, due to massive application of OCS in the past, they are still present in soils, in sediments, and in the biosphere and are toxic (Carvalho, 2006).

Sustainable agriculture should be able to recover soil quality by implementation of strategies as use of biopesticides and biofertilizers, crop diversity, crop rotation (Verma et al., 2015). Botanical pesticides offer a good alternative to traditional chemicals for use in crop protection systems (Bissinger and Roe, 2010).

Agrochemicals in Food

When a pesticide is present in or on food for which the application or use of the substance has not been approved, or when the residue in food is higher than that permitted for human consumption, the pesticide becomes an environmental hazard (Fan and Jackson 1989). Pesticide behavior in the environment, such as volatilization from the treated region to the air, soil, and non-target plants, and residual pesticides conveyed from soil and water to crops, vegetables, and fruits, all contribute to food contamination (Tudi et al. 2021). Pesticides of various types are commonly employed in fruit and vegetable growing to boost agricultural output. Which, as a result has lead to multiple incidents of pesticide poisoning that are frequently reported (Bernsten et al., 2009).

Concerns have also been raised about pesticide currently uses and its impact on the environment with the possibility for hazardous or carcinogenic residues to linger in the food chain (Mahindru 2009). Pesticides are an unavoidable element of agriculture, yet their widespread usage can result in major health consequences. To reduce pesticide residues below the risk level, several processing techniques are used on fruit and vegetable crops to reduce pesticide residues below the risk level. Furthermore, it was shown that treating vegetables with acidic and alkaline solutions might significantly reduce pesticide residues (Bajwa and Sandhu 2014).

Agrochemicals to Human Health

Unintentional poisonings kill an estimated 355,000 individuals worldwide each year, according to reports, and these poisonings are closely linked to excessive exposure and inappropriate usage of harmful substance (Kumar and Singh, 2014).

The use of various synthetic pesticides on a regular basis can result in a number of issues (Naqqash et al., 2016). This usage has been linked to a variety of human illnesses and problems, including malignancies, respiratory disorders, diabetes, Parkinson's disease, Leukemia, mental disorders, and neurological disorders, to name a few (Kim et al. 2017). Unintentional and frequent exposure can cause a variety of illnesses, including asthma, thyroid disease, diabetes mellitus, birth defects and reproductive dysfunction, autism and learning disabilities, neurological disorders such as Parkinson's and Alzheimer's disease, and cancers of the brain, breast, prostate, leukemia, lymphoma, and soft tissue sarcoma, among others (Islam et al. 2021).

Agrochemicals on Water Sources

Pesticides drain from treated fields, mixing and washing sites, and waste disposal places, pollutes groundwater (Salem et al., 2016). Surface water systems, such as rivers, lakes, streams, reservoirs, and estuaries, are also prone to pesticide and other chemical buildup (Ansara-Ross et al. 2012). This is quite concerning since the
extensive presence of chemical residues jeopardizes natural resources such as drinking water, groundwater, and water used in aquaculture (Carvalho 2006).

Pesticides that have lately been introduced and are more degradable, such as chlorpyrifos, parathion, isoproturon, and mecoprop, have been found in river waters (Moreno-González and León 2017). Barceló and Petrovic, 2008 (Gros et al., 2008) found that urban wastewater discharges are a common source of pollution in both urban and coastal locations. Residues of persistent organic pollutants were discovered in deep sea biota, which is still regarded as a pristine habitat (Jamieson et al. 2017).

Pesticide Degradation

After pesticides are applied to the target organism, they are degraded by microbes, chemical reactions, or light (Abián, Durand, and Barceló 2002). It may take from hours to days or even years (Tcaiuc et al., 2018), depending on the environmental conditions and the pesticide’s chemical characteristics (Wu et al., 2018). Pesticide degradation processes control pesticide persistence in soils and yield different metabolites (Tarig and Nisar 2018). There are three types of pesticide degradation (Luo et al., 2018; Su et al. 2016). Microbial degradation is the degradation of pesticides by microorganisms such as fungi and bacteria (Han et al. 2012). For example, biodegradation is the main path of niclosamide degradation in natural environments, as aerobic and anaerobic naturalized microorganisms have a high capability to degrade niclosamide (Luo et al. 2018). Factors including oxygen, temperature, soil moisture, soil pH, and soil porous structure influence pesticide microbial degradation (Qian et al., 2017; Su et al., 2016; Yue et al., 2017). Pesticides can be degraded by chemical reactions in the soil. This process is called chemical degradation (Bansal 2011). Moreover, the chemical reaction of sunlight radiation plays an important role in the degradation of molecules on soil surfaces because it is always active (Geng et al. 2017). The rate and type of chemical degradation are influenced by soil temperature, pH levels, moisture, and the binding of insecticides to the soil (Singh, 2011). Photodegradation is the degradation of pesticides by sunlight (Geng et al. 2017). All insecticides are capable of photodegradation to some extent, and the rate of degradation depends on the intensity of light, length of exposure, and the properties of the insecticide (Singh, 2011). For example, niclosamide could hydrolyze to generate 5-chlorosalicylic acid and 2-chloro-4-nitroaniline under the effect of light (Luo et al. 2018).

Pesticide Migration

Sorption

When pesticides are used, only a small amount of the applied pesticides displays a protective role to fight against plant diseases. In contrast, a large amount of pesticides reaches the soil, resulting in severe soil pollution (Qin et al. 2014; Su et al., 2017). The sorption process is a phenomenon that binds pesticides to soil particles due to the attraction between chemical and soil particles (Alvarez et al., 2021; Qin et al., 2014; Su et al., 2016).

Leaching

There are many pesticides that are registered and used worldwide, some of which are likely to leach to the groundwater and cause water pollution (Singh, 2011). Soil permeability and soil solubility is crucial factor influencing pesticide leaching (Fontana et al. 2010). Furthermore, the level of leaching also depends on how persistent the insecticide is in the environment. An insecticide low in persistence is less likely to leach as it may remain in the soil for a short time only (Geng et al. 2017).

Volatilization

Once pesticides have been volatilized, they can be carried on air currents away from the treated surface (Singh 2011). Vapor pressure, temperature, humidity, air movement (Zhuh et al., 2017), and soil conditions such as texture, organic matter content, and moisture (Alamdar et al. 2014) determine the volatilization level of pesticides (Connell et al. 2005).

Surface Runoff

Runoff is the movement of pesticides in water over a sloping surface (Das et al. 2020). Runoff is caused when the speed of water added to a field is so fast that it cannot be absorbed by the soil (Singh, 2011). Pesticide runoff results in pesticide pollution in streams, ponds, lakes, and wells, and pesticide contamination could negatively impact plants, animals, and humans (Aktar et al. 2009).

Agrochemicals on Climate Change Related Factors

Since World War II (1939–1945), the use of synthetic pesticides has risen fast to avoid, moderate, or eliminate pests, decrease agricultural output losses, and enhance economical yields and food quality (Damalas and Eleftherohorinos 2011). Many factors impact pesticide application, including socioeconomic considerations, environmental factors such as soil quality, crop development, and the presence of insect pests, weeds, and diseases, and pesticide behavior in the environment. Climate change has a significant impact on these variables (Tudi et al. 2021).

Influence on Crop Growth

Climate change causes quick changes in soil characteristics, which leads to changes in pesticide treatments (Bernardes et al. 2015). Greater average temperature causes a decrease in soil organic matter, resulting in higher potential for soil erosion due to increased rates of water, organic, and inorganic chemical transport (Bloomfield et al., 2006). Climate change has a direct impact on pesticide application, but it also has an impact on the distribution and growth of crops, insect pests, weeds, and diseases, which in turn has an impact on pesticide usage (Tudi et al., 2021).
Weather variations, such as unpredictable or low rainfall with poor distribution, can have a detrimental influence on agricultural performance and yields (Marvin et al., 2013).

Influence on Pests, Weeds, and Diseases

Climate change may cause phenology and regional distribution changes in a variety of habitats (Scherm, 2004). Climate change has an impact on the distribution and characteristics of pests, hosts, and bio-control agents that have a link with agricultural productivity (Meynard et al., 2017). Climate change is altering pest insects, weeds, and illnesses via increasing temperatures, changing precipitation, and increasing carbon dioxide levels (Alamdar et al., 2014; Fontana et al., 2010; Lesk et al., 2017).

Harmful Effects of Pesticide Use

Farmers throughout the world continue to use chemical pesticides as their first option (Su et al., 2016). Pesticide misuse has exposed humanity to a variety of health risks across the world (Islam et al., 2021). Pest and weed resistance have spread fast over the world since the advent of insecticides. Pesticide resistance has been documented in 954 pest species worldwide, including 546 arthropods, 218 weeds, and 190 plant diseases (Tabashnik et al., 2014). Pest control costs might rise by approximately $40 million per year as a result of Laxminarayan and Simpson (2002).

Control of Hazardous Impact of Pesticide Use

To protect the public from additional exposure to these chemicals through widespread environmental pollution, residues from both legacy and present agricultural, industrial, and domestic uses must be closely monitored in the environment and in foods (EFSA, 2017).

For the minimization of risk of different pesticides on health, different processing operations are applied on fruit and vegetable crops that reduce the pesticide residues below the risk level vegetable treatment with acidic and alkaline solutions can be effective (Smith et al., 2021).

Eco-friendly Pesticide: Biopesticide

Botanical pesticides are most suited for use in organic food production in developed nations, but they can play a far larger role in food production and post-harvest protection in impoverished countries (Walia et al., 2017). Biopesticides are thought to be less hazardous, ecologically friendly, and safe for people and other species (Paudel, 2016).

Botanical insecticides, such as nicotine and pyrethrum, once dominated crop protection and domestic pest control before the discovery of the insecticidal properties of DDT and methyl parathion in the late 1930s (Morgan, 2004). However, with the discovery of additional inexpensive and highly efficacious synthetic insecticides (organochlorines, organophosphates, and carbamates) in the 1970s and onward, botanicals were quickly disregarded in pest control (Isman 2006).

With encouraging results, a growing variety of plant essential oils (EOs) have been tested against a diverse spectrum of arthropod pests (Pavela, 2007). Pyrethrum and neem are herbicides made from plant essential oils that are still relatively new on the market. The most frequently used botanical pesticide, pyrethrum, is derived from the blooming of Tanacetum cinerariifolium (pyrethrum) (Anon n.d.). The active ingredients in piper are well-known irritants.

Azadirachtin is a molecule with a lot of potential, both in terms of its chemical structure and its biological capabilities as a feeding deterrent and a growth disruptor for most insects (Morgan, 2004). Every year, several research are published demonstrating that EOs have significant potential as active components in the development of botanical pesticides. Despite this, just a few commercial goods based on EOs have been released, and the number of new items is still small. EOs have a significant effect on insects even on sublethal doses (Pavela 2007).

Authors’ Contribution

All authors contributed equally at all stages of work. Final form of manuscript was approved by all authors.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgement

Authors express immense gratitude towards everyone who helped us to complete this paper. They did not receive any funding for the completion of this paper writing.

References

Abian J, Durand G and Barcelo D (1993) Analysis of chlorotriazines and their degradation products in environmental samples by selecting various operating modes in thermospray HPLC/MS/MS. *Journal of Agricultural and Food Chemistry* 41(8):1264-1273. DOI: 10.1021/jf00032a020

Aktar M, Paramasivam M, Sengupta D, Purskait S, Ganguly M, Banerjee S (2009) Impact assessment of pesticide residues in fish of Ganga-river around Kolkata in West Bengal. *Environmental monitoring and assessment* 157(1): 97-104. DOI: 10.1007/s10661-008-0518-9

Alamdar A, Syed JH, Malik RN, Katsoyiannis A, Liu J, Li J, Zhang G and Jones KC (2014) Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air–soil exchange. *Science of the total environment* 470: 733-741. DOI: 10.1016/j.scitotenv.2013.09.053

Alvarez DO, Mendes KF, Tosi M, de Souza LF, Cedano JC, de Souza Falcao NP, Dunfield K, Tsai SM and Tornisielo VL (2021) Sorption-desorption and biodegradation of sulfometuron-methyl and its effects on the bacterial communities in Amazonian soils amended with aged biochar. *Ecotoxicology and Environmental Safety* 207: 111222. DOI: 10.1016/j.ecoenv.2020.111222

This paper can be downloaded online at http://ijasbt.org & http://nepjol.info/index.php/IJASBT
Amaral AF (2014) Pesticides and asthma: challenges for epidemiology. *Frontiers in public health* 2: 6. DOI: 10.3389/fpubh.2014.00006

Anon. n.d. Banned Pesticide List in Nepal | Plant Protection Society - Nepal.

Anon. n.d. Getting Rid of Harmful Chemical Pesticides.

Ansara-Ross TM, Wepener V, Van den Brink PJ and Ross MJ (2012) Pesticides in South African fresh waters. *African Journal of Aquatic Science* 37(1): 1-6. DOI: 10.2989/16085914.2012.666336

Bajwa U, Sandhu KS (2014) Effect of Handling and Processing on Pesticide Residues in Food. *A Review. Journal of Food Science and Technology* 51(2): 201–220. DOI: 10.1007/s13197-011-0499-5

Bansal OP (2011) Fates of Pesticides in the Environment. *Indian Chem Soc* 88: 1525–1532.

Bernardes MFF, Pazin M, Pereira LC and Dorta DJ (2015) Impact of pesticides on environmental and human health. *Toxicology studies-cells, drugs and environment* 8: 195-233. DOI: 10.5772/59710

Bernsten RH, Donovan C, Kiala D, Mazuze F and Rosas JC (2009) Expanding pulse supply and demand in Africa and Latin America: Identifying constraints and new strategies. *Dry Grain Pulses Collaborative Research Support Program (CRSP)* 31-36.

Bissinger BW and Roe RM. (2010) Tick repellents: past, present, and future. *Pesticide biochemistry and physiology* 96(2): 63-79. DOI: 10.1016/j.pestbp.2009.09.010

Bloomfield JP, Williams RJ, Goody DC, Cape JN and Guha PM (2006) Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. *Science of the total environment* 369(1-3): 163-177. DOI: 10.1016/scitotenv.2006.05.019

Campos EV, Proença PL, Oliveira JL, Bakshi M, Abhilash PC and Fraceto LF (2019) Use of botanical insecticides for sustainable pest control: Future perspectives. *Ecological Indicators* 105: 483-495. DOI: 10.1016/j.ecolind.2018.04.038

Carvalho FP (2006) Agriculture, Pesticides, Food Security and Food Safety. *Environmental Science and Policy* 9(7–8): 685–692. DOI: 10.1016/j.envsci.2006.08.002

Carvalho FP (2017) Pesticides, Environment, and Food Safety. *Food and Energy Security* 6(2): 48–60. DOI: 10.1002/FEES.108

Chaplain V, Mamy L, Vieublé L, Mougin C, Benoït P, Barriuso E, Nélieu S. (2011) Fate of pesticides in soils: Toward an integrated approach of influential factors. DOI: 10.5772/17035

Classification, Pesticides, and Its Impact. n.d. Human and Environment. 6: 140–158.

Connell DW, Connell DW, Vowles PD, Warne MS and Hawker DW (2005) Basic concepts of environmental chemistry. CRC/Taylor & Francis. DOI: 10.1201/b12378

Damalas CA and Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. *International journal of environmental research and public health* 8(5):1402-1419. DOI: 10.3390/ijerph8051402

Das S, Hageman KJ, Taylor M, Michelsen-Heath S and Stewart I (2020) Fate of the organophosphate insecticide, chlorpyrifos, in leaves, soil, and air following application. *Chemosphere* 243: 125194. DOI: 10.1016/j.chemosphere.2019.125194

Dayan FE, Cantrell CL and Duke SO (2009) Natural products in crop protection. *Bioorganic & medicinal chemistry. 17(12): 4022-4034. DOI: 10.1016/j.bmc.2009.01.046

EFSA (European Food Safety Authority) (2017) The 2015 European Union report on pesticide residues in food. *EFSA Journal* 15(4): 4791, 134 pp. DOI: 10.2903/j.efsa.2017.4791.

Fan AM and Jackson RJ (1989) Pesticides and food safety. *Regulatory toxicology and pharmacology* 9(2): 158-174. DOI: 10.1016/0273-2300(89)90033-0

Fenik J, Tankiewicz M and Biziuk M (2011) Properties and determination of pesticides in fruits and vegetables. *TrAC Trends in Analytical Chemistry* 30(6): 814-826. DOI: 10.1016/J.TRAC.2011.02.008

Fontana AR, Lana NB, Martinez LD and Altamirano JC (2010) Ultrasound-assisted leaching-dispersive solid-phase extraction followed by liquid–liquid microextraction for the determination of polybrominated diphenyl ethers in sediment samples by gas chromatography–tandem mass spectrometry. *Talanta* 82(1): 359-366. DOI: 10.1016/J.TALANTA.2010.04.050

Geng Y, Ma J, Zhou R, Jia R, Li C and Ma X (2017) Assessment of insecticide risk to human health in groundwater in Northern China by using the China-PEARL model. *Pest management science* 73(10): 2063-2070. DOI: 10.1002/PS.4572

Gevao B, Semple KT and Jones KC (2000) Bound pesticide residues in soils: a review. *Environmental pollution* 108(1): 3-14. DOI: 10.1016/S0269-7491(99)00197-9

Gros M, Petrovic M and Barceló D (2008) Analysis of emerging contaminants of municipal and industrial origin. *Emerging Contaminants from Industrial and Municipal Waste* 37-104. DOI: 10.1007/978_5_102

Han DM, Tong XX, Jin MG, Hepburn E, Tong CS, Song XF (2013) Evaluation of organic contamination in urban groundwater surrounding a municipal landfill, Zhoukou, China. *Environmental monitoring and assessment* 185(4): 3413-3444. DOI: 10.1007/S10661-012-2801-Z

Hartmann M, Frey B, Mayer J, Mäder P and Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. *The ISME journal* 9(5): 1177-1194. DOI: 10.1038/sisemj.2014.210

Hayes TB and Hansen M (2017) From Silent Spring to Silent Night: Agrochemicals and the Anthropocene. *Elementa* 5. DOI: 10.1525/ELEMENTA.246/112452

This paper can be downloaded online at http://iiasbt.org & http://nepjol.info/index.php/IJASBT
Hernández AF, Gil F, Lacasaña M, Rodríguez-Barranco M, Tsatsakis AM, Requena M, Parrón T and Alarcón R (2013) Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage. Food and chemical toxicology 61: 144-151. DOI: 10.1016/J.FCT.2013.05.012

Islam MS, Azim F, Saju H, Zargaran A, Shirzad M, Kamal M, Fatema K, Rehman S and Azad MM (2021) Ebrahimi-Borough S. Pesticides and Parkinson’s disease: Current and future perspective. Journal of Chemical Neuroanatomy 115: 101966. DOI: 10.1016/j.chemneuro.2021.101966

Isman MB (2006) Botanical Insecticides, Deterrents, and Repellents in Modern Agriculture and an Increasingly Regulated World. Annu Rev Entomol 51: 45–66. DOI: 10.1146/annurev.ento.51.110104.151146

Isman MB (2015) A Renaissance for Botanical Insecticides? Pest Management Science 71(12):1587–1590. DOI: 10.1002/ps.4088

Jamieson AJ, Malkocs T, Pierhtny SB, Fujii T and Zhang Z (2017) Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nature ecology & evolution 1(3): 1-4. DOI: 10.1038/s41559-016-0051

Kim KH, Kabir E and Jahan SA (2017) Exposure to pesticides and the associated human health effects. Science of the total environment. 575: 525-535. DOI: 10.1016/J.SCITOTENV.2016.09.009

Köhler HR and Triebkorn R (2013) Wildlife Ecotoxicology of Pesticides: Can We Track Effects to the Population Level and Beyond? Science 341(6147): 759–765. DOI: 10.1126/science.1237591

Kookana RS, Baskaran SN and Naidu R (1998) Pesticide fate and behaviour in Australian soils in relation to contamination and management of soil and water: a review. Soil Research 36(5): 715-764. DOI: 10.1071/SR97109

Kumar S and Singh A (2014) Biopesticides for integrated crop management: environmental and regulatory aspects. J Biofertil Biopestici 5: e121.

Laxminarayan R and Simpson RD (2002) Refugee Strategies for Managing Pest Resistance in Transgenic Agriculture. Environmental and Resource Economics 22(4): 521–536. DOI: 10.1023/A:1019836910018

Lesk C, Coffel E, D’Amato AW, Dodds K and Horton R (2017) Threats to North American forests from southern pine beetle with warming winters. Nature Climate Change 7(10): 713-717. DOI: 10.1038/nclimate3375

Luo C, Huang Y, Huang D, Liu M, Xiong W, Guo Q and Yang T (2018) Migration and Transformation Characteristics of Niclosamide in a Soil–Plant System. ACS omega 3(2): 2312-2321. DOI: 10.1021/acsomega.8b00071

Mahindru SN (2009) Food Contaminants-Origin, Propagation & Analysis. APH Publishing.

Malik Z, Ahmad M, Abassi GH, Dawood M, Hussain A, Jamil M. Agrochemicals and soil microbes: interaction for soil health. InXenobiotics in the Soil Environment 2017 (pp. 139-152). Springer, Cham. DOI: 10.1007/978-3-319-47744-2_11

Marie L, Sylvain P, Benoit G, Maurice M and Gwenaël I (2017) Degradation and transport of the chiral herbicide s-metolachlor at the catchment scale: Combining observation scales and analytical approaches. Environmental Science & Technology 51(22): 13231–13240. DOI: 10.1021/acs.est.7b02297

Marvin HJ, Kletter GA, Noordam MY, Franz E, Willems DJ and Boxall A (2013) Proactive systems for early warning of potential impacts of natural disasters on food safety: Climate-change-induced extreme events as case in point. Food Control. 34(2): 444-456. DOI: 10.1016/J.FOODCONT.2013.04.037

McCaffrey A and Nauen R (2006) The Insecticide Resistance Action Committee (IRAC): Public Responsibility and Enlightened Industrial Self-Interest. Outlooks on Pest Management 17(1): 11–14.

Meynard CN, Gay PE, Lecoq M, Foucart A, Piot C and Chapuis MP (2017) Climate-driven geographic distribution of the desert locust during recession periods: Subspecies’ niche differentiation and relative risks under scenarios of climate change. Global Change Biology 23(11): 4739-4749. DOI: 10.1111/GCB.13739

Miller SF (1982) The Effects of Weed Control Technological Change on Rural Communities. Outlook on Agriculture 11(4): 172–178. DOI: 10.1177/003072780210100405

Mnif W, Hassine AI, Bouaziz A, Bartegi A, Thomas O and Roig B (2011) Effect of endocrine disruptor pesticides: a review. International journal of environmental research and public health 8(6): 2265-303. DOI: 10.3390/IJERPH8062265

MoAFF (2022) Pesticide Toxicity and Hazard. (February):1-5. Retrieved from: https://www2.gov.bc.ca/assets/gov/farming/industry/agriculture/pesticide-toxicity-and-hazard.pdf

Moreno-González R and León VM (2017) Presence and Distribution of Current-Use Pesticides in Surface Marine Sediments from a Mediterranean Coastal Lagoon (SE Spain). Environmental Science and Pollution Research 24(9): 8033–8048.

Morgan ED (2004) The place of neem among modern natural pesticides. In: Neem: today and in the new millennium 2004 (pp. 21-32). Springer, Dordrecht. DOI: 10.1007/1-4020-2596-3_2

Naqqash MN, Gökcen A, Bakhsh A and Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitology research 115(4): 1363–1373. DOI: 10.1007/s00436-015-4898-9

Paudel MN (2016) Prospects and Limitations of Agriculture Industrialization in Nepal. Agronomy Journal of Nepal 4: 38–63. DOI: 10.3126/ajn.v4i10.15515

Pavela R (2007) Lethal and Sublethal Effects of Thyme Oil (Thymus vulgaris L.) on the House Fly (Musca domestica

This paper can be downloaded online at http://ijasbt.org & http://nepjol.info/index.php/IJASBT
Robinson DE, Mansingh A and Dasgupta TP (1999) Fate and transport of ethoprophos in the Jamaican environment. Science of the total environment. 237: 373-378. DOI: 10.1016/S0048-9697(99)00150-3

Roser M, Ritchie H and Ortiz-Ospina E (2013) World population growth. Our world in data. May 9.

Salem FB, Said OB, Aissa P, Mahmoudi E, Monperrus M, Grunberger O and Duran R (2016) Pesticides in Ichkeul Lake–Bizerta Lagoon Watershed in Tunisia: use, occurrence, and effects on bacteria and free-living marine nematodes. Environmental Science and Pollution Research 23(1): 36-48. DOI: 10.1007/s11356-015-4991-8

Scherm H (2004) Climate change: can we predict the impacts on plant pathology and pest management? Canadian Journal of Plant Pathology 26(3): 267-273. DOI: 10.1080/07060660409507143

Scholtz MT and Bidleman TF (2007) Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues. Science of the total environment 377(1): 61-80. DOI: 10.1016/j.scitotenv.2007.01.084

Singh DK (2011) Pesticides and Environment. Pestic Chem Toxicol 1: 114–122.

Smith HH, Idris OA and Maboeta MS (2021) Global trends of green pesticide research from 1994 to 2019: A bibliometric analysis. Journal of toxicology 2021. DOI: 10.1155/2021/6637516

Squire GR, Hawes C, Valentine TA and Young MW (2015) Degradation rate of soil function varies with trajectory of agricultural intensification. Agriculture, Ecosystems & Environment 202: 160-167. DOI: 10.1016/j.agee.2014.12.004

Strassemeyer J, Daehmlow D, Dominic AR, Lorenz S and Golla B (2017) SYNOPSWEB, an online tool for environmental risk assessment to evaluate pesticide strategies on field level. Crop protection 97: 28-44. DOI: 10.1016/J.CROPRO.2016.11.036

Su W, Hao H, Wu R, Xu H, Xue F and Lu C (2017) Degradation of mesotrione affected by environmental conditions. Bulletin of environmental contamination and toxicology 98(2): 212-217. DOI: 10.1007/s00128-016-1970-9

Tabashnik BE, Mota-Sanchez D, Whalon ME, Hollingworth RM and Carrière Y (2014) Defining terms for proactive management of resistance to Bt crops and pesticides. Journal of economic entomology 107(2): 496-507. DOI: 10.1603/EC13458

Tariq SR and Nisar L (2018) Reductive transformation of profenofos with nanoscale Fe/Ni particles. Environmental monitoring and assessment 190(3): 1-10. DOI: 10.1007/s10661-018-6500-2

Taylor MD, Klaine SJ, Carvalho FP, Barcelo D and Everaarts J (2002) Pesticide residues in coastal tropical ecosystems: distribution, fate and effects. CRC Press. DOI: 10.1201/9780203165584

Tcaciuc AP, Borrelli R, Zaninetta LM and Gschwend PM (2018) Passive sampling of DDT, DDE and DDD in sediments: accounting for degradation processes with reaction–diffusion modeling. Environmental Science: Processes & Impacts 20(1): 220-231. DOI: 10.1039/C7EM00501F

Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C and Phung DT (2021) Agriculture development, pesticide application and its impact on the environment. International journal of environmental research and public health. 18(3): 1112. DOI: 10.3390/ijerph18031112

Verma JP, Jaiswal DK, Meena VS, Kumar A and Meena RS (2015) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. DOI: 10.1016/j.iclepro.2015.04.130

Walia S, Saha S, Tripathi V and Sharma KK (2017) Phytochemical biopesticides: some recent developments. Phytochemistry reviews 16(5): 989-1007. DOI: 10.1007/s11101-017-9512-6

Wu L, Chlădková B, Lechtenfeld OJ, Lian S, Schindelka J, Herrmann H, Richnow HH. (2018) Characterizing chemical transformation of organophosphorus compounds by 13C and 2H stable isotope analysis. Science of the Total Environment 615: 20-28. DOI: 10.1016/j.scitotenv.2017.09.233

Yue L, Ge C, Feng D, Yu H, Deng H and Fu B (2017) Adsorption–desorption behavior of atrazine on agricultural soils in China. Journal of Environmental Sciences 57: 180-189. DOI: 10.1016/j.jes.2016.11.002

Zhu S, Niu L, Aamir M, Zhou Y, Xu C and Liu W (2017) Spatial and seasonal variations in air-soil exchange, enantiomeric signatures and associated health risks of hexachlorocyclohexanes (HCHs) in a megacity Hangzhou in the Yangtze River Delta region, China. Science of the Total Environment 599: 264-272. DOI: 10.1016/J.SCITOTENV.2017.04.181