Insights into the quality of recombinant proteins
produced by two different Bombyx mori expression systems

Supplementary Information

Hiroyuki Kajiura1,2,†, Ken-ichiro Tatematsu3,†, Tsuyoshi Nomura4,†, Mitsuhiro Miyazawa5, Akihiro Usami4, Toshiki Tamura6, Hideki Sezutsu3, Kazuhito Fujiyama1,2,7*

1International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka, 565-0871, Japan
2Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
3Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
4Sysmex Corporation, 1548 Ooaza Shimookudomi, Sayama, Saitama 350-1332, Japan
5Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
6Silk Science and Technology Research Institute, 1053, Iikura, Ami-machi, Ibaraki, 300-0324, Japan
7Osaka University Cooperative Research Station in Southeast Asia (OU:CRS), Faculty of Science, Mahidol University, Bangkok, Thailand
†: These authors equally contributed to this work.

*Correspondence should be addressed to K.F. (fujiyama@icb.osaka-u.ac.jp)
Supplementary Figure S1
N-Glycopeptide analysis of Asn106 in bIFN-γ and tIFN-γ

All signals of m/z corresponding to *N*-glycopeptide and the *N*-glycan structures detected in nanoLC-MS/MS analysis are shown.
Supplementary Figure S2 C-terminal analysis of tIFN-γ

(a) Sequence coverage map of Lys-C-digested tIFN-γ shown as band X in Fig. 5(a). Red, black, shaded in gray, and bold letters are as described in Fig. 3. The calculated m/z of Arg154-Gly164, 1359.76, is shown.

(b) MS/MS analysis of the precursor of m/z 1359.72. y-type ions are assigned to the signals detected in MS/MS analysis of the precursor of m/z 1359.72.
Table S1 Site-specific N-glycan structures of bIFN-γ and tIFN-γ and their relative ratios

Structure	N-Glycosylation site	Expression system	Ratio (%)	bIFN-γ	tIFN-γ												
		Band	A	B	C	D	a	b	c	d							
Peptide			Aasn39	Aasn106	Aasn39	Aasn106	Aasn39	Aasn106	Aasn39	Aasn106							
EIEILKEYF^N39ASP DVAK			-	-	1.2	-	8.4	-	56.8	-							
FLY^N106SEK			-	-	4.1	-	60.1	-	96.5	-							
	HexNAc2		-	-	1.7	5.4	0.9	5.5	2.1	5.9	-	3.5	27.9	29.1	96.2	67.8	
	HexNAc2		-	8.1	-	7.0	0.7	-	-	-	-	-	-	-	-	-	
	HexNAc2		-	2.9	-	1.5	2.6	-	-	-	-	-	-	-	-	-	
	HexNAc2		-	8.1	-	7.0	0.7	-	-	-	-	-	-	-	-	-	
	HexNAc2		-	2.9	-	1.5	2.6	-	-	-	-	-	-	-	-	-	
Mannose type			-	-	-	-	-	6.6	-	-	1.8	-	-	-	-	-	
N-glycan	Hex,HexNAc2	M1	2.5	5.8	2.5	5.1	2.6	-	6.6	-	-	1.8	-	-	-	-	-
	Hex,HexNAc2	M2	14.4	41.9	15.2	46.5	12.5	26.4	12.8	-	1.7	11.7	1.5	5.9	-	-	-
	Hex,HexNAc2	M3	-	4.2	2.1	2.4	2.6	-	-	-	9.8	31.6	7.7	19.5	-	-	-
	Hex,HexNAc2	M4	-	2.4	-	-	-	-	-	-	1.4	-	-	-	-	-	-
	Hex,HexNAc2	M5	-	2.1	-	-	-	-	-	-	4.8	2.3	2.4	3.1	-	-	-
	Hex,DeoxyHex,HexNAc2	MF	5.9	3.0	6.3	2.9	5.8	-	6.8	-	-	-	-	-	-	-	-
	Hex,DeoxyHex,HexNAc2	M2F	68.1	21.9	69.2	25.0	59.5	7.6	17.1	-	1.2	-	-	-	-	-	-
	Hex,DeoxyHex,HexNAc2	M2FF	1.4	-	0.9	-	0.7	-	-	7.2	-	5.7	-	-	-	-	-
	Hex,DeoxyHex,HexNAc2	M3F	6.1	2.5	1.9	2.4	-	-	0.0	-	-	-	-	-	-	-	-
Fucosylated N-glycan			-	6.1	2.5	1.9	2.4	-	0.0	-	-	-	-	-	-	-	-
Terminal GlcNAc N-glycan			-	-	-	-	-	-	38.6	40.2	24.8	16.6	-	-	-	-	
	Hex,HexNAc2	GNM3	-	-	-	-	-	-	-	38.6	40.2	24.8	16.6	-	-	-	
	Hex,HexNAc2	GNM4	-	-	-	-	-	-	4.6	-	-	24.8	-	-	-	-	
	Hex,HexNAc2	GNM5	-	-	-	-	-	-	2.4	-	-	-	-	-	-	-	
	Hex,DeoxyHex,HexNAc2	GNM3F	-	-	-	-	-	-	-	16.0	-	10.8	-	-	-	-	
	Hex,DeoxyHex,HexNAc2	GN2M3	-	-	-	-	-	-	13.8	4.0	8.7	-	-	-	-	-	
	Hex,DeoxyHex,HexNAc2	GN2M3F	-	-	-	-	-	-	6.1	-	3.5	-	-	-	-	-	
Total	Mannose-type N-glycan		16.8	56.2	19.7	53.9	17.7	26.4	19.3	-	16.2	48.8	11.7	28.5	-	-	
	Fucosylated N-glycan		81.5	27.4	78.2	27.9	68.5	7.6	23.9	-	31.3	20.1	-	-	-	-	
	Terminal GlcNAc N-glycan		-	-	-	-	-	-	75.4	51.2	47.8	16.6	-	-	-	-	

N-Glycan ratios were calculated on the basis of the intensities of signals.
M: Mannose; GN: N-Acetylglucosamine; F: Fucose