LETTER TO THE EDITOR

Resolving Stellar Populations outside the Local Group: MAD observations of UKS 2323-326*

M. Gullieuszik¹, L. Greggio¹, E. V. Held¹, A. Moretti¹, C. Arcidiacono¹, P. Bagnara¹, A. Baruffolo¹, E. Diolaiti², R. Falomo¹, J. Farinato¹, M. Lombini², R. Ragazzoni¹, R. Brasi³, R. Donaldson³, J. Kolb³, E. Marchetti³, and S. Tordo³

¹ Osservatorio Astronomico di Padova, INAF, vicolo dell’Osservatorio 5, 35122 Padova, Italy
² Osservatorio Astronomico di Bologna, INAF, via Ranzani 1, 40127 Bologna, Italy
³ European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany

Received ... ; accepted ...

ABSTRACT

Aims. We present a study aimed at deriving constraints on star formation at intermediate ages from the evolved stellar populations in the dwarf irregular galaxy UKS 2323-326. These observations were also intended to demonstrate the scientific capabilities of the multi-conjugated adaptive optics demonstrator (MAD) implemented at the ESO Very Large Telescope as a test-bench of adaptive optics (AO) techniques.

Methods. We perform accurate, deep photometry of the field using J and K_s band AO images of the central region of the galaxy.

Results. The near-infrared (IR) colour-magnitude diagrams clearly show the sequences of asymptotic giant branch (AGB) stars, red supergiants, and red giant branch (RGB) stars down to ~1 mag below the RGB tip. Optical–near-IR diagrams, obtained by combining our data with Hubble Space Telescope observations, provide the best separation of stars in the various evolutionary stages. The counts of AGB stars brighter than the RGB tip allow us to estimate the star formation at intermediate ages. Assuming a Salpeter initial mass function, we find that the star formation episode at intermediate ages produced $\sim 6 \times 10^7 M_\odot$ of stars in the observed region.

Key words. galaxies: individual (ugca438, UKS2323-326) – galaxies: stellar content – stars: AGB and post-AGB – stars: carbon – Instrumentation: adaptive optics

1. Introduction

The study of the resolved stellar populations in external galaxies has developed greatly in the last decade to become arguably the most accurate tool to investigate star formation history in stellar systems. However, with standard instrumentation at ground-based telescopes this study is limited to the nearest galaxies, due to the severe crowding of stars. High-precision photometry for the most distant galaxies in the Local Group (LG) and beyond can be obtained only with the Hubble Space Telescope (HST).

New opportunities in this field are foreseen with the realisation of imagers equipped with adaptive optics (AO), on the largest aperture telescopes. The use of AO systems is mandatory for the future larger (> 10m) telescopes, but it can also significantly improve the performances of telescopes already in operation. A relevant example is given by the multi-conjugated adaptive optics demonstrator (MAD) recently developed by ESO (see next section) that allows us to test AO capabilities for stellar photometry on the sky.

In this context, as part of a Guaranteed Time Observations program, we obtained MAD near-infrared (IR) images of the dwarf irregular galaxy UKS 2323-326 (UGCA 438). We chose this galaxy from a list of targets selected according to various criteria: favourable position on the sky with respect to the availability of stars to perform the AO correction; low Galactic latitude ($b = -70^\circ.9$), to minimise the contamination by foreground Galactic stars; location slightly beyond the boundary of the LG, so as to maximise the physical area sampled within the 1’ field-of-view (FoV) while still detecting stars at the tip of the red giant branch (TRGB) with an adequate S/N; existence of images of the same field in HST and/or ESO archives; and the presence of a relatively strong intermediate age component.

Currently, AO imagers operate only at near-IR wavelengths, which are best suited to studying evolved stellar populations, in particular, cool stars on the asymptotic giant branch (AGB). This evolutionary stage of low and intermediate mass stars is difficult to model because of its sensitivity to uncertain input physics, like mass loss and convection. However, AGB stars provide a major contribution to the integrated light of galaxies with intermediate-age stellar populations (Renzini & Buzzoni 1986). Therefore, it is very important to derive information on the productivity of these stars. This can be done by analysing the stellar content of galaxies with a strong intermediate age component, which is the motivation for our near-IR study of LG galaxies (Held et al. 2007, Gullieuszik et al. 2007a,b).

Ground-based optical photometry of UKS 2323-326 was first presented by Lee & Byun (1999). The colour-magnitude diagram (CMD) exhibits a well-defined RGB, and a number of AGB stars. From the TRGB magnitude and from the colour of these stars, Lee & Byun (1999) derive the distance modulus and average metallicity of the galaxy as $(m - M)_0 = 26.59 \pm 0.12$ and $[\text{Fe/H}] = -1.98$. More recently, from photometry obtained with the WFPC2 on board of the HST, Karachentsev et al. (2002) measured $I_{\text{TRGB}} = 22.72 \pm 0.12$, from which they obtain $(m -
$M_0 = 26.74 \pm 0.15$, corresponding to 2.23\pm0.15 Mpc. Thus, this galaxy is likely a member of the Sculptor Group. Since the HST photometry is more accurate and since the distance determination by Karachentsev et al. (2002) is based on a more modern calibration, in this paper, we will adopt the Karachentsev et al. (2002) value. This implies that the absolute magnitude of the galaxy is $M_V = -13.24$. Although UKS 2323-326 contains a young stellar component, there is no evidence of significant HII emission (Millar 1996; Kaisin et al. 2007), which suggests a very low rate of on-going star formation. No mid-infrared emission from hot dust nor polycyclic aromatic hydrocarbon is detected at 8 μm (Jackson et al. 2006) but it is embedded in a neutral hydrogen cloud that asymmetricaly covers the whole galaxy (e.g., Buyle et al. 2006). The HII mass is $\sim 6 \times 10^4 M_\odot$, while for CO emission only an upper limit on the molecular gas mass of $1.4 \times 10^3 M_\odot$ is available (Buyle et al. 2004, ans refs. therein).

2. The data

2.1. MAD observations

MAD is a project (Marchetti et al. 2007) mainly developed by ESO to test the multi-conjugated adaptive optics (MCAO) capabilities on the sky in the framework of the design of the European Extremely Large Telescope (ELT). MAD was mounted on the UT-3 of the Very Large Telescope (VLT) to re-consider the spatial resolution of MAD images, as well as take advantage of a wide colour baseline to study the stellar population. Figure 1 compares the 3 images from SOFI, MAD, and WFC2 for the same region in UKS 2323-326. The improvement in resolution between MAD and SOFI image is clearly apparent. This implies a significantly better photometry of faint objects and, in particular, the possibility of obtaining accurate photometry for faint stars that are embedded in the halo of brighter stars.

In order to evaluate the completeness and photometric errors of our catalogue, we performed an extensive set of 160 artificial star experiments using \sim1000 stars for each run. Input magnitudes were randomly generated to reproduce an uniform distribution over the colour and magnitude range of real stars in our image ($0 < J - K_s < 2$ and $15 < K_s < 22.5$). We found that our photometry is complete at the 50% level down to $K_s \approx 20.7$. At this magnitude level, the photometric error is ~ 0.1 mag in the K_s band, and a factor of 2 lower in the J band. These results are illustrated in Fig. 2.

3. The evolved stellar populations of UKS 2323-326

The CMD (horizontal branch and red giant branch) of UKS 2323-326 obtained from MAD images is shown in Fig. 2 and compared to that obtained from SOFI data in the same FoV. The MAD CMD is about 1 magnitude deeper; more importantly, the photometric accuracy is higher, leading to a much better definition of the sequences on the CMD. This is mostly due to the higher spatial resolution of MAD, which allows us to resolve stars that are blended on SOFI images.

The red tail of bright stars in the MAD CMD, extending up to $J - K_s \approx 1.8$ and $K_s \approx 18.5$, is consistent with the locus of carbon-rich AGB stars (c.f. other near-IR studies, e.g., Gullieuszik et al. 2007a; Menzies et al. 2008). It is tempting to locate the TRGB at $K_s \approx 20.5$, where a discontinuity is apparent in the stellar magnitude distribution. However, a formal measurement of the TRGB from the luminosity function cannot be derived because of the incompleteness of our photometry.
at these magnitudes. Since the distance modulus is known from optical observations, we can estimate the expected level of the TRGB: according to Valenti et al. (2004) calibration, the absolute K_s magnitude of the TRGB depends on metallicity, being -5.82, -6.11, and -6.40 for $[\text{Fe/H}] = -2$, -1.5, and -1, respectively. Assuming a reddening $E_{B-V} = 0.015$ (Schlegel et al. 1998), we get $K_s \approx 20.93$, 20.64, and 20.35, as the metallicity increases. These three values are indicated with arrows in Fig. 1 for the metallicity determined by Lee & Byun (1999) ($[\text{Fe/H}] \approx -2$), the TRGB should be close to the limit of our photometry. The Lee & Byun (1999) determination is based on a relatively shallow CMD. Comparing the deeper (V, I) HST CMD by Holtzman et al. (2006) to the fiducial lines of Galactic globular clusters by Da Costa & Armandroff (1990), we obtain a mean metallicity $[\text{Fe/H}] \approx -1.7$ for the RGB stars in this galaxy. This has to be regarded as a lower limit, since the bulk of UKS 2323-326 stellar population is younger than Galactic globular clusters. As an example, Saviane et al. (2000) estimated that for a ~ 5 Gyr stellar population, the age correction to be applied to the metallicity obtained with our method is $+0.4$ dex. The location of the TRGB would then come close to the discontinuity of the star’s distribution mentioned above. In the following, we adopt $[\text{Fe/H}] = -1.5$, which yields a TRGB magnitude of $K_s = 20.65$; we verified that this metallicity is compatible with the mean $V - K_s$ colour of the RGB in UKS 2323-326.

Figure 1 shows the $V - K_s$ vs K_s CMD obtained by combining the HST and MAD photometry. This colour combination is particularly well suited to distinguish the different evolutionary sequences. The contamination by foreground stars in our fields is negligible. In fact, using simulations of the Milky Way population performed with the TRILEGAL code (Girardi et al. 2005), we expect only three foreground stars in the magnitude and colour range of our CMD. Guided by the optical CMD, on this figure we draw the lines bordering the areas occupied by blue supergiants, red supergiants, AGB, and RGB stars. The blue and red supergiants are core helium burning stars with masses down to $\sim 5 M_\odot$, resulting from the star formation activity occurred over the last ~ 100 Myr. The main-sequence progenitors of this young population are sampled in the optical CMD by Holtzman et al. (2006), in which the blue plume contains stars with ages from ~ 80 to ~ 10 Myr old. A quantitative interpretation of this component needs detailed simulations that take into account photometric errors and completeness of the HST data. Here we concentrate on the intermediate age component for which the near-IR CMD offers a better diagnostic than the optical diagram. The bright portion of the red sequence, extending from $K_s \approx 20.1$ up to $K_s = 18.5$ and with very red colours (up to $V - K_s = 6.5$) hosts bright AGB, mostly carbon (C) stars, while below the TRGB (at $K_s = 20.65$) we sample the oldest stars. The stars in the intermediate region (open squares, $20.65 > K_s > 20.1$) are probably AGB stars, but some of them could actually be high-metallicity RGB stars. The uncertainty stems from the dependence of the TRGB K_s-magnitude on the metallicity discussed above, and on these stars being located (on the optical CMD) just below the TRGB in the I band.

Our observations can be used to derive a rough estimate of the star formation that occurred in UKS 2323-326 at intermediate ages by considering the number of AGB stars brighter than the TRGB, which is proportional to the gas mass converted into stars between ~ 0.1 and a few Gyr (e.g., Greggio 2002). The specific production of bright AGB stars (i.e., $\delta n_{\text{AGB},b}$, the number of stars per unit mass of the parent stellar population that fall in this region of the CMD) depends on age and metallicity.
IR AO images at 8m class telescopes it is possible to investigate giants and AGB stars in UKS 2323-326, a dwarf irregular. A precise census of the bright evolved stellar population (red supergiants and AGB stars) in UKS 2323-326, a dwarf irregular galaxy at a distance of 2.23 Mpc. We have shown that with near-IR AO images at 8m class telescopes it is possible to investigate the SFH in galaxies well beyond the LG. Considering the technical limitation of the demonstrator, we believe that these results forecast very promising opportunities for this kind of studies with advanced AO at ELT.

We have determined δn_{AGB} as a function of age, for a sample of globular clusters in the Large Magellanic Cloud for which near-IR CMDs, ages, and total luminosities are known from the literature. From these, we found that it reaches a maximum ($\sim 2 \times 10^{-4} M_\odot$) at ages ~ 1 Gyr, to drop significantly at older ages, down to $\sim 3 \times 10^{-5} M_\odot$ at ~ 3 Gyr (close to the limit of our calibration). The stellar distribution in our CMD is suggestive of an extended episode of star formation; by averaging our empirical calibration, we obtain a specific production of 0.15 M_\odot per 106 yr. The solid line is the main locus of C-star in nearby dwarf galaxies defined by Totten et al. (2000). These results confirm that the SFH in galaxies well beyond the LG. Considering the technical limitation of the demonstrator, we believe that these results forecast very promising opportunities for this kind of studies with advanced AO at ELT.

Fig. 3. Combined optical–near-IR MAD CMD of UKS 2323-326. We used this CMD to select blue supergiants (starred symbols), red supergiants (triangles), RGB (squares), and AGB stars (filled circles). Open squares are the stars with an uncertain classification, but likely E-AGB stars (see text for details). The three stars marked by open circles have peculiar colours and are possibly photometric blends.

Fig. 4. The near-IR CMD of UKS 2323-326. The different symbols refer to the selection presented in Fig. 3. The solid line is the main locus of C-star in nearby dwarf galaxies defined by Totten et al. (2000) shifted to the adopted distance of UKS 2323-326.

References

Bouy, H., Kolb, J., Marchetti, E., et al. 2008, A&A, 477, 681
Buyle, P., Michielsen, D., de Rijcke, S., Ott, J., & Dejonghe, H. 2006, MNRAS, 373, 793
Chabrier, G. 2005, in ASSL, Vol. 327, The Initial Mass Function 50 Years Later, ed. E. Corbelli, F. Palla, & H. Zinnecker, 41
Da Costa, G. & Armandroff, T. 1990, AJ, 100, 162
Girardi, L., Groenewegen, M. A. T., Hatziminaoglou, E., & da Costa, L. 2005, A&A, 436, 895
Greggio, L. 2002, in ASP Conf. Ser., Vol. 274, Observed HR Diagrams and Stellar Evolution, ed. T. Lejeune & J. Fernandes, 444
Gullieuszik, M., Held, E. V., Rizzi, L., et al. 2007a, A&A, 475, 467
Gullieuszik, M., Rejkuba, M., Cioni, M. R., Habing, H. J., & Held, E. V. 2007b, A&A, 475, 467
Held, E. V., Gullieuszik, M., Rizzi, L., et al. 2007, in ASPC Series, Vol. 374, From Stars to Galaxies: Building the Pieces to Build Up the Universe, ed. A. Vallenari, R. Tantalo, L. Portinari, & A. Moretti, 261
Holtzman, J. A., Afonso, C., & Dolphin, A. 2006, ApJS, 166, 534
Jackson, D. C., Cannon, J. M., Skillman, E. D., et al. 2006, ApJ, 646, 192
Kaisin, S. S., Kasparova, A. V., Knyazev, A. Y., & Karachentsev, I. D. 2007, Astronomy Letters, 33, 283
Karachentsev, I. D., Sharina, M. E., Makarov, D. I., et al. 2002, A&A, 389, 812
Lee, M. G. & Byun, Y.-I. 1999, AJ, 118, 817
Marchetti, E., Brast, R., Delabre, B., et al. 2007, The Messenger, 129, 8
Menzies, J., Feast, M., Whitelock, P., et al. 2008, MNRAS, 385, 1045
Miller, B. W. 1996, AJ, 112, 991
Monet et al. 1998, VizieR Online Data Catalog, I/252
Ragazzoni, R. 1996, Journal of Modern Optics, 43, 289
Ragazzoni, R. & Farinato, J. 1999, A&A, 350, L23
Ragazzoni, R., Farinato, J., & Marchetti, E. 2000, in Proc. SPIE, Vol. 4007, Adaptive Optical Systems Technology, ed. P. L. Wizinowich, 1076
Renzini, A. & Buzzoni, A. 1986, in ASSL Vol. 122: Spectral Evolution of Galaxies, ed. C. Chiosi & A. Renzini, 195
Saviane, I., Held, E. V., & Bertelli, G. 2000, A&A, 355, 56
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 252
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Stetson, P. B. 1987, PASP, 99, 191
Totten, E. J., Irwin, M. J., & Whitelock, P. A. 2000, MNRAS, 314, 630
Valenti, E., Ferraro, F. R., & Origlia, L. 2004, MNRAS, 354, 815
Vernet-Viard, E., Arcidiacono, C., Bagnara, P., et al. 2005, Optical Engineering, 44, 6601