Proper connection number and 2-proper connection number of a graph

Fei Huang, Xueliang Li, Shujing Wang
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
Email: huangfei06@126.com; lxl@nankai.edu.cn; wang06021@126.com

Abstract

A path in an edge-colored graph is called a proper path if no two adjacent edges of the path are colored with one same color. An edge-colored graph is called \(k\)-proper connected if any two vertices of the graph are connected by \(k\) internally pairwise vertex-disjoint proper paths in the graph. The \(k\)-proper connection number of a \(k\)-connected graph \(G\), denoted by \(pc_k(G)\), is defined as the smallest number of colors that are needed in order to make \(G\) \(k\)-proper connected. For \(k = 1\), we write \(pc(G)\) other than \(pc_1(G)\), and call it the proper connection number of \(G\). In this paper, we present an upper bound for the proper connection number of a graph \(G\) in terms of the minimum degree of \(G\), and give some sufficient conditions for a graph to have 2-proper connection number two. Also, we investigate the proper connection numbers of dense graphs.

Keywords: proper path, proper connection number, 2-proper connection number, dense graph

AMS subject classification 2010: 05C15, 05C35, 05C38, 05C40.

1 Introduction

In this paper we are concerned with simple connected finite graphs. We follow the terminology and the notation of Bondy and Murty [3]. For a graph \(G = (V, E)\) and two

*Supported by NSFC No.11371205 and PCSIRT.
disjoint subsets X and Y of V, denote by $B_G[X,Y]$ the bipartite subgraph of G with vertex set $X \cup Y$ and edge set $E(X,Y)$, where $E(X,Y)$ is the set of edges of G that have one end in X and the other in Y. A graph is called pancyclic if it contains cycles of all lengths r for $3 \leq r \leq n$. The join $G_1 \vee G_2$ of two edge-disjoint graphs G_1 and G_2 is obtained by adding edges from each vertex in G_1 to every vertex in G_2.

An edge-coloring of a graph G is an assignment c of colors to the edges of G, one color to each edge of G. If adjacent edges of G are assigned different colors by c, then c is a proper (edge-)coloring. For a graph G, the minimum number of colors needed in a proper coloring of G is referred to as the chromatic index of edge-chromatic number of G and denoted by $\chi'(G)$. A path in an edge-colored graph with no two edges sharing the same color is called a rainbow path. An edge-colored graph G is said to be rainbow connected if every pair of distinct vertices of G is connected by at least one rainbow path in G. Such a coloring is called a rainbow coloring of the graph. For a connected graph G, the minimum number of colors needed in a rainbow coloring of G is referred to as the rainbow connection number of G and denoted by $rc(G)$. The concept of rainbow coloring was first introduced by Chartrand et al. in [6]. In recent years, the rainbow coloring has been extensively studied and a variety of nice results have been obtained, see [5, 7, 10, 11, 13] for examples. For more details we refer to a survey paper [14] and a book [15].

Inspired by the rainbow coloring and proper coloring of graphs, Andrews et al. [1] introduced the concept of proper-path coloring. Let G be an edge-colored graph, where adjacent edges may be colored with the same color. A path in G is called a proper path if no two adjacent edges of the path are colored with a same color. An edge-coloring c is a proper-path coloring of a connected graph G if every pair of distinct vertices u, v of G is connected by a proper $u-v$ path in G. A graph with a proper-path coloring is said to be proper connected. If k colors are used, then c is referred to as a proper-path k-coloring. An edge-colored graph G is k-proper connected if any two vertices are connected by k internally pairwise vertex-disjoint proper paths. For a k-connected graph G, the k-proper connection number of G, denoted by $pc_k(G)$, is defined as the smallest number of colors that are needed in order to make G k-proper connected. Clearly, if a graph is k-proper connected, then it is also k-connected. Conversely, any k-connected graph has an edge-coloring that makes it k-proper connected; the number of colors is easily bounded by the edge-chromatic number which is well known to be at most $\Delta(G)$ or $\Delta(G) + 1$ by Vizing's Theorem [16] (where $\Delta(G)$, or simply Δ, is the maximum degree of G). Thus $pc_k(G) \leq \Delta(G) + 1$ for any k-connected graph G. For $k = 1$, we write $pc(G)$ other than $pc_1(G)$, and call it the proper connection number of G.

Let G be a nontrivial connected graph of order n and size m. Then the proper
connection number of \(G \) has the following apparent bounds:

\[
1 \leq pc(G) \leq \min\{\chi'(G), rc(G)\} \leq m.
\]

Furthermore, \(pc(G) = 1 \) if and only if \(G = K_n \) and \(pc(G) = m \) if and only if \(G = K_{1,m} \) is a star of size \(m \).

The paper is organized as follows: In Section 2, we give the basic definitions and some useful lemmas. In Section 3, we study the proper connection number of bridgeless graphs, and present a tight upper bound for the proper connection number of a graph by using this result. In Section 4, we give some sufficient conditions for graphs to have 2-proper connection number two. In Section 5, we investigate the proper connection number of dense graphs.

2 Preliminaries

At the beginning of this section, we list some fundamental results on proper-path coloring.

Lemma 2.1. [1] If \(G \) is a nontrivial connected graph and \(H \) is a connected spanning subgraph of \(G \), then \(pc(G) \leq pc(H) \). In particular, \(pc(G) \leq pc(T) \) for every spanning tree \(T \) of \(G \).

Lemma 2.2. [1] If \(T \) is a nontrivial tree, then \(pc(T) = \chi'(T) = \Delta(T) \).

Given a colored path \(P = v_1v_2 \ldots v_sv_s \) between any two vertices \(v_1 \) and \(v_s \), we denote by \(start(P) \) the color of the first edge in the path, i.e., \(c(v_1v_2) \), and by \(end(P) \) the last color, i.e., \(c(v_{s-1}v_s) \). If \(P \) is just the edge \(v_1v_s \), then \(start(P) = end(P) = c(v_1v_s) \).

Definition 2.1. Let \(c \) be an edge-coloring of \(G \) that makes \(G \) proper connected. We say that \(G \) has the strong property under \(c \) if for any pair of vertices \(u, v \in V(G) \), there exist two proper paths \(P_1, P_2 \) between them (not necessarily disjoint) such that \(start(P_1) \neq start(P_2) \) and \(end(P_1) \neq end(P_2) \).

In [4], the authors studied the proper-connection numbers in 2-connected graphs. Also, they presented a result which improves the upper bound \(\Delta(G) + 1 \) of \(pc(G) \) to the best possible whenever the graph \(G \) is bipartite and 2-connected.

Lemma 2.3. [4] Let \(G \) be a graph. If \(G \) is bipartite and 2-connected, then \(pc(G) = 2 \) and there exists a 2-edge-coloring \(c \) of \(G \) such that \(G \) has the strong property under \(c \).
Lemma 2.4. Let G be a graph. If G is 2-connected, then $pc(G) \leq 3$ and there exists a 3-edge-coloring c of G such that G has the strong property under c.

Lemma 2.5. Let $H = G \cup \{v_1\} \cup \{v_2\}$. If there is a proper-path k-coloring c of G such that G has the strong property under c. Then $pc(H) \leq k$ as long as v_1, v_2 are not isolated vertices of H.

As a result of Lemma 2.5, we obtain the following corollary.

Corollary 2.6. Let H be the graph that is obtained by identifying u_i of G to v_i of a path P_i for $i = 1, 2$, where $d_{P_i}(v_i) = 1$. If there is a proper-path k-coloring c of G such that G has the strong property under c, then $pc(H) \leq k$.

Lemma 2.7. Let $C_n = v_1v_2\ldots v_nv_1$ be an n-vertex cycle and $G = C_n + v_{n-1}v_1$. One has that $pc_2(G) = 2$.

Proof. If n is an even integer, it is obvious that $pc_2(G) \leq pc_2(C_n) = 2$. So we only need to consider the case that n is odd. Let $C' = v_1v_2v_3\ldots v_{n-1}v_1$. Then we have that C' is an even cycle. We color the edges $v_{2i-1}v_{2i}$ by color 1 for $i = 1, 2, \ldots, \frac{n-1}{2}$ and color the other edges by color 2. Now we show that for any v_i, v_j, there are two disjoint proper paths connecting them. If $i, j \neq n$, we can see that $P_1 = v_i v_{i+1} \ldots v_j$ and $P_2 = v_i v_{i-1} \ldots v_1 v_{n-1} \ldots v_j$ are two disjoint proper paths connecting v_i and v_j. If $i = n$, we also have that $Q_1 = v_nv_1v_2\ldots v_{j-1}$ and $Q_2 = v_nv_{n-1}v_{n-2}\ldots v_j$ are two disjoint proper paths connecting v_n and v_j. The proof is thus complete.

3 Upper bounds of proper connection number

In [4], the authors studied the proper connection number for 2-(edge)-connected graphs by (closed) ear-decomposition. Here, we reproof the result for 2-edge-connected graphs by using another method.

Theorem 3.1. If G is a connected bridgeless graph with n vertices, then $pc(G) \leq 3$. Furthermore, there exists a 3-edge-coloring c of G such that G has the strong property under c.

Proof. We prove the result for connected bridgeless graphs by induction on the number of blocks in G. First, the result clearly holds when G is 2-connected by Lemma 2.4. Suppose that G has at least two blocks. Let X be the set of vertices of an end-block of G, that is, X contains only one cut vertex, say x. From Lemma 2.4, we know that
Assume that G with the number of blocks one less than G. By the induction hypothesis, we have that $pc(H) \leq 3$ and H has a 3-edge-coloring c_2 such that H has the strong property under c_2. Let c be the edge-coloring of G such that $c(e) = c_1(e)$ for any $e \in E(G[X])$ and $c(e) = c_2(e)$ otherwise. We now show that G has the strong property under the coloring c. It suffices to consider the pairs u, v such that $u \in X \setminus \{x\}$ and $v \in V(G) \setminus X$. Let P_1, P_2 be two proper paths in $G[X]$ between u and x such that $start(P_1) \neq start(P_2)$ and $end(P_1) \neq end(P_2)$, and let Q_1, Q_2 be the two proper paths in H between v and x such that $start(Q_1) \neq start(Q_2)$ and $end(Q_1) \neq end(Q_2)$. It is obvious that either $P = P_1 \cup Q_1, Q = P_2 \cup Q_2$ or $P = P_1 \cup Q_2, Q = P_2 \cup Q_1$ are two proper paths between u and v with the property that $start(P) \neq start(Q)$ and $end(P) \neq end(Q)$. This completes the proof.

With a similar analysis and by Lemma 2.3, we have the following theorem.

Theorem 3.2. If G is a bipartite connected bridgeless graph with n vertices, then $pc(G) \leq 2$. Furthermore, there exists a 2-edge-coloring c of G such that G has the strong property under c.

An Eulerian graph is clearly bridgeless. As a result of Theorem 3.1 we have the following corollary.

Corollary 3.3. For any Eulerian graph G, one has that $pc(G) \leq 3$. Furthermore, if G is Eulerian and bipartite, one has that $pc(G) = 2$.

Lemma 3.4. Let G be a graph and $H = G − PV(G)$, where $PV(G)$ is the set of the pendant vertices of G. Suppose that $pc(H) \leq 3$ and there is a proper-path 3-coloring c of H such that H has the strong property under c. Then one has that $pc(G) \leq \max\{3, |PV(G)|\}$.

Proof. Assume that $PV(G) = \{v_1, v_2, \ldots, v_k\}$. If $k \leq 2$, we have that $pc(G) \leq 3$ by Lemma 2.3. So we consider the case that $k \geq 3$. Let u_i be the neighbor of v_i in G for $i = 1, 2, \ldots, k$, and let $\{1, 2, 3\}$ be the color-set of c. We first assign color j to $u_j v_j$ for $j = 4, \ldots, k$. Then we color the remaining edges $u_1 v_1, u_2 v_2, u_3 v_3$ by colors $1, 2, 3$.

If $u_1 = u_2 = u_3$, we assign color i to $u_i v_i$ for $i = 1, 2, 3$. If $u_1 = u_2 \neq u_3$, let P be a proper path of G connecting u_1 and u_3. Then there are two different colors in $\{1, 2, 3\} \setminus \{start(P)\}$. We assign these two colors to $u_1 v_1$ and $u_2 v_2$, respectively, and choose a color that is distinct from $end(P)$ in $\{1, 2, 3\}$ for $u_3 v_3$. If $u_i \neq u_j$ for $1 \leq i \neq j \leq 3$, suppose that P_{ij} is a proper path of G between u_i and u_j. We choose a
color that is distinct from $\text{start}(P_{12})$ and $\text{start}(P_{13})$ in $\{1,2,3\}$ for u_1v_1. Similarly, we color u_2v_2 by a color in $\{1,2,3\} \setminus \{\text{end}(P_{12}),\text{start}(P_{23})\}$, and color u_3v_3 by a color in $\{1,2,3\} \setminus \{\text{end}(P_{13}),\text{end}(P_{23})\}$.

One can see that in all these cases, v_i and v_j are proper connected for $1 \leq i \neq j \leq k$. Moreover, as H has the strong property under edge-coloring c, it is obvious that v_i and u are proper connected for $1 \leq i \leq k$ and $u \in V(H)$. Therefore, we have that $pc(H) \leq k = |PV(G)|$. Hence, we obtain that $pc(G) \leq \max \{3, |PV(G)|\}$.

Lemma 3.5. Let G be a graph with a cut-edge v_1v_2, and G_i be the connected graph obtained from G by contacting the connected component containing v_i of $G - v_1v_2$ to a vertex v_i, where $i = 1, 2$. Then $pc(G) = \max \{pc(G_1), pc(G_2)\}$

Proof. First, it is obvious that $pc(G) \geq \max \{pc(G_1), pc(G_2)\}$. Let $pc(G_1) = k_1$ and $pc(G_2) = k_2$. Without loss of generality, suppose $k_1 \geq k_2$. Let c_1 be a k_1-proper coloring of G_1 and c_2 be a k_2-proper coloring of G_2 such that $c_1(v_1v_2) = c_2(v_1v_2)$ and $\{c_2(e) : e \in E(G_2)\} \subseteq \{c_1(e) : e \in E(G_1)\}$. Let c be the edge-coloring of G such that $c(e) = c_1(e)$ for any $e \in E(G_1)$ and $c(e) = c_2(e)$ otherwise. Then c is an edge-coloring of G using k_1 colors. We will show that c is a proper-path coloring of G. For any pair of vertices $u, v \in V(G)$, we can easily find a proper path between them if $u, v \in V(G_1)$ or $u, v \in V(G_2)$. Hence we only need to consider that $u \in V(G_1) \setminus \{v_1, v_1\}$ and $v \in V(G_2) \setminus \{v_1, v_2\}$. Since c_1 is a k_1-proper coloring of G_1, there is a proper path P_1 in G_1 connecting u and v_1. Since c_2 is a k_2-proper coloring of G_2, there is a proper path P_2 in G_2 connecting v and v_2. As $c_1(v_1v_2) = c_2(v_1v_2)$, then we know that $P = uP_1v_2v_1P_2v$ is a proper path connecting u and v in G. Therefore, we have that $pc(G) \leq k_1$, and the proof is thus complete.

Let $B \subseteq E$ be the set of cut-edges of a graph G. Let C denote the set of connected components of $G' = (V; E \setminus B)$. There are two types of elements in C, singletons and connected bridgeless subgraphs of G. Let $S \subseteq C$ denote the singletons and let $D = C \setminus S$. Each element of S is, therefore, a vertex, and each element of D is a connected bridgeless subgraph of G. Contracting each element of D to a vertex, we obtain a new graph G^*. It is easy to see that G^* is a tree, and the edge set of G^* is B. According to the above notations, we have the following theorem.

Theorem 3.6. If G is a connected graph, then $pc(G) \leq \max \{3, \Delta(G^*)\}$.

Proof. For an arbitrary element A of C, A is either a singleton or a connected bridgeless subgraph of G. Let $C(A)$ be the set of cut-edges in G that has an end-vertex in A. It is obvious that $|C(A)| \leq \Delta(G^*)$. We use A_0 to denote the subgraph of G obtained from A
by adding all the edges of \(C(A) \) to \(A \). If \(A \) is a singleton, we have that \(pc(A_0) = |C(A)| \leq \max\{3, \Delta(G^*)\} \). Otherwise, from Theorem 3.1 we know that \(pc(A) \leq 3 \) and there is a coloring \(c \) of \(A \) such that \(A \) has the strong property under \(c \). Then by Lemma 3.4 we have that \(pc(A) \leq 3 \) and there is a coloring \(c \) of \(A \) such that \(A \) has the strong property under \(c \). Then by Lemma 3.4, we have that

\[
pc(A_0) = \max\{pc(A) \leq 3, |C(A)| \leq \max\{3, \Delta(G^*)\}\}.
\]

Hence, by Lemma 3.5, we can obtain that

\[
pc(G) = \max_{A \in C} pc(A_0) \leq \max\{3, \Delta(G^*)\}.
\]

Let \(rK_t \) be the disjoint union of \(r \) copies of the complete graph \(K_t \). We use \(S^t_r \) to denote the graph obtained from \(rK_t \) by adding an extra vertex \(v \) and joining \(v \) to one vertex of each \(K_t \).

Corollary 3.7. If \(G \) is a connected graph with \(n \) vertices and minimum degree \(\delta \geq 2 \), then

\[
pc(G) \leq \max\{3, \frac{n-1}{\delta+1}\}.
\]

Moreover, if \(\frac{n-1}{\delta+1} > 3 \), and \(n \geq \delta(\delta + 1) + 1 \), we have that

\[
pc(G) = \frac{n-1}{\delta+1}
\]

If and only if \(G \cong S^t_r \), where \(t = 1 = \delta \) and \(rt + 1 = n \).

Proof. Since the minimum degree of \(G \) is \(\delta \geq 2 \), we know that each leaf of \(G^* \) is obtained by contracting an element with at least \(\delta + 1 \) vertices of \(D \). Therefore, \(D \) has at most \(\frac{n-1}{\delta+1} \) such elements, and so, one can see that \(\Delta(G^*) \leq \frac{n-1}{\delta+1} \). From Theorem 3.3, we know that

\[
pc(G) \leq \max\{3, \frac{n-1}{\delta+1}\}.
\]

If \(\frac{n-1}{\delta+1} > 3 \) and \(pc(G) = \frac{n-1}{\delta+1} \), one can see that \(G^* \) is a star with \(\Delta(G^*) = \frac{n-1}{\delta+1} \), and each leaf of \(G^* \) is obtained by contracting an element with \(\delta + 1 \) vertices of \(D \), that is, \(G \cong S^t_r \), where \(t = \delta \) and \(rt + 1 = n \). On the other hand, if \(G \cong S^t_r \), where \(t = \delta \) and \(rt + 1 = n \), we can easily check that \(pc(G) = r = \frac{n-1}{\delta+1} \).

4 Graphs with 2-proper connection number two

At the beginning of this section, we list an apparent sufficient condition for graphs to have proper connection number two.

Proposition 4.1. Let \(G \) be a simple noncomplete graph on at least three vertices in which the minimum degree is at least \(n/2 \), then \(pc(G) = 2 \).

We should mention that the condition \(\delta(G) \geq n/2 \) is quite rough. In [4], the authors gave a much better result for graphs with appreciable quantity of vertices to have proper connection number two. They proved that if \(G \) is connected noncomplete graph with \(n \geq 68 \) vertices, and \(\delta \geq n/4 \), then \(pc(G) = 2 \).

It is easy to find that the 2-proper connection number of any simple 2-connected graph is at least 2, and every complete graph on at least 4 vertices evidently has the property that \(pc_2(K_n) = 2 \). But suppose that our graph has considerably fewer edges. In
particular, we may ask how large the minimum degree of G must be in order to guarantee the property that $pc_2(G) = 2$. Motivated by Proposition 4.4, we consider the condition $\delta \geq n/2$ and get the following theorem.

Theorem 4.2. Let G be a connected graph with n vertices and minimum degree δ. If $\delta \geq n/2$ and $n \geq 4$, then $pc_2(G) = 2$.

Proof. Since $\delta \geq n/2$, we know that there exists a Hamiltonian cycle $C = v_1v_2\ldots v_n$ in G. If n is even, one has that $pc_2(G) \leq pc_2(C_n) = 2$. Hence, we only need to consider the case that $n = 2k + 1$. Let $H = G - v_n$, one has that $d_H(v_1) \geq d_G(v_i) - 1 \geq k = |V(H)|/2$.

Hence, there exists a Hamiltonian cycle $C' = v'_1v'_2\ldots v'_{2k}$ in H. As $d_G(v_n) \geq k + 1$, one can see that there is an edge, say $v'_1v'_2$, such that $v_nv'_1, v_nv'_2 \in E(G)$. Hence, there is a spanning subgraph G' of G with $E(G') = E(C') \cup \{v_nv'_1, v_nv'_2\}$. By Lemma 2.7, we have that $pc_2(G) \leq pc_2(G') = 2$, and so the proof is complete. \qed

Remark: The condition $\delta \geq n/2$ is best possible. In fact, we can find graphs with minimum degree less than $n/2$ which is not 2-connected, and so we cannot calculate the 2-proper connection number. For example, let $G = K_1 \vee (2K_k)$. We know that $\delta(G) = k < |V(G)|/2$, whereas $pc_2(G)$ does not exists.

Though the condition on the minimum degree can not be improved, we may consider some weaker conditions. We need an important conclusion which can be found in [2]. We use $cir(G)$ to denote the circumference (length of a longest cycle) of G.

Lemma 4.3. [2] If $G = G(n, m)$ and $m \geq n^2/4$, then G contains a cycle C_r of length r for each $3 \leq r \leq cir(G)$.

Theorem 4.4. Let G be a simple graph on at least four vertices in which the degree sum of any two nonadjacent vertices is at least n. Then $pc_2(G) = 2$.

Proof. Since the degree sum of any two nonadjacent vertices of G is at least n, we know that G is Hamiltonian. Suppose that a Hamiltonian cycle of G is $C = v_1v_2\ldots v_n$. If n is even or $n = 5$, it is obvious that $pc_2(G) \leq 2$.

If $\delta \leq 3$, suppose, without loss of generality, that v_n is the vertex which has minimum degree. There exists a $2 < j < n - 2, j \neq i$ such that v_j and v_n are not adjacent. We have that $d(v_j) \geq n - d(v_n) \geq n - 3$, and so we know that $\{v_{j-2}, v_{j+2}\} \cap N(v_j) \neq \emptyset$, where the subscripts are modulus n. Hence, we can see that $pc_2(G) \leq 2$ by Lemma 2.7. In what follows of the proof, we only consider the case that n is an odd number which is larger than 7 and $\delta \geq 4$. To continue our proof, we need the following claim.

Claim: G is pancyclic.
Proof of the Claim: Let \overline{E} be the edge set of \overline{G}. One can see that for any $uv \in \overline{E}$, $d_G(u) + d_G(v) \geq n$. It is obvious that
\[
\sum_{uv \in \overline{E}} (d_G(u) + d_G(v)) = (n - 1) \sum_{v \in V(G)} d_G(v) = 2(n - 1)m. \tag{1}
\]

One the other hand,
\[
\sum_{uv \in E} (d_G(u) + d_G(v)) = \sum_{u \in V(G)} d_G(u)^2 \geq n(\sum_{u \in V(G)} d_G(u)/n)^2 = 4m^2/n, \tag{2}
\]
and
\[
\sum_{uv \in E} (d_G(u) + d_G(v)) \geq \binom{n}{2} - mn, \tag{3}
\]
where the equality holds in (2) if and only if G is a regular graph and the equality holds in (3) if and only if $d_G(u) + d_G(v) = n$ for each pair of nonadjacent vertices u and v.

Thus we have
\[2(n - 1)m \geq 4m^2/n + \binom{n}{2} - mn,\]
i.e.,
\[(m - n^2/4)(m - \binom{n}{2}) \leq 0.\]

Hence, we have that $m \geq n^2/4$, with equality holds if and only if G is a regular graph with degree $n/2$. We know that G is pancyclic from Lemma 4.3.

Assume that $C' = u_1u_2 \ldots u_{n-1}$ is a cycle of G with $n - 1$ vertices and $v \notin V(C')$. Without loss of generality, assume that $\{u_i, u_i, u_j, u_k\} \subseteq N(v)$ such that $1 < i < j < k \leq n - 1$. Let $c(u_{2i-1}u_{2i}) = 1$ and $c(u_{2i+1}u_{2i}) = 2$ for $i = 1, 2, \ldots, \frac{n-1}{2}$, and let $c(vu_1) = c(u_{n-1}u_1), c(vu_i) = c(u_iu_{i+1}), c(vu_j) = c(u_{j-1}u_j), c(vu_k) = c(u_ku_{k+1})$. Now we prove that for any $x, y \in V(G)$, there are two disjoint proper paths connecting them. We only need to consider the case that $x = v, y = u_l \in V(C')$. If $1 \leq l \leq k$, then $P_1 = vu_1u_2 \ldots u_l$ and $P_2 = vu_ku_{k-1} \ldots u_l$ are two disjoint proper paths connecting them. If $k < l \leq n - 1$, then $P_1 = vu_1u_{i-1} \ldots u_{i}u_{n-1} \ldots u_l$ and $P_2 = vu_ju_{j+1} \ldots u_l$ are two disjoint proper paths connecting them. Hence, we have that $pc_2(G) \leq 2$. \hfill \qed

Remark: The condition that “the degree sum of any two nonadjacent vertices of G is at least n” cannot be improved. For example, C_5 and $K_1 \vee (2K_2)$ have the property that the degree sum of any two nonadjacent vertices of is one less than their number of vertices, whereas $pc_2(C_5) = 3$ and $pc_2(K_1 \vee (2K_2)$ does not exist.
5 Proper connection number of dense graphs

In this section, we consider the following problem:

Problem 1. For every k with $1 \leq k \leq n - 1$, compute and minimize the function $f(n, k)$ with the following property: for any connected graph G with n vertices, if $|E(G)| \geq f(n, k)$, then $pc(G) \leq k$.

In [9], this kind of question was suggested for rainbow connection number $rc(G)$, and in [12], the authors considered the case $k = 3$ and $k = 4$ for rainbow connection number $rc(G)$. We first show a lower bound for $f(n, k)$.

Proposition 5.1. $f(n, k) \geq \binom{n - k - 1}{2} + k + 2$.

Proof. We construct a graph G_k as follows: Take a $K_{n - k - 1}$ and a star S_{k+2}. Identify the center-vertex of S_{k+2} with an arbitrary vertex of $K_{n - k - 1}$. The resulting graph G_k has order n and size $E(G_k) = \binom{n - k - 1}{2} + k + 1$. It can be easily checked that $pc(G_k) = k + 1$. Hence, $f(n, k) \geq \binom{n - k - 1}{2} + k + 2$. □

Lemma 5.2. Let G be a graph with n ($n \geq 6$) vertices and at least $\binom{n - 1}{2} + 3$ edges. Then for any $u, v \in V(G)$, there is a 2-connected bipartite spanning subgraph of G with u, v in the same part.

Proof. Let \overline{G} be the complement of G. Then we have that $|E(\overline{G})| \leq n - 4$. Let $S = N(u) \cap N(v)$, we have that $|S| \geq 2$. Since otherwise, $|S| \leq 1$, then one has that for any $w \in V(G) \setminus (S \cup \{u, v\})$, either $uw \in E(\overline{G})$ or $vw \in E(\overline{G})$, and thus $|E(\overline{G})| \geq n - 3$, which contradicts the fact that $|E(\overline{G})| \leq n - 4$. Therefore, we know that $B_G[S, \{u, v\}]$ is a 2-connected bipartite subgraph of G with u, v in the same part.

Suppose that $H = B_G[X, Y]$ is a 2-connected bipartite subgraph of G with u, v in the same part and H has as many vertices as possible. Then, if $V(G) \setminus V(H) \neq \emptyset$, one has that there exists a vertex $w \in V(G) \setminus V(H)$, such that $|N(w) \cap X| \geq 2$ or $|N(w) \cap Y| \geq 2$. Since otherwise,

$$|E(\overline{G})| \geq (n - |V(H_1)|)(|V(H_1)| - 2) \geq n - 3,$$

which contradicts the fact that $|E(\overline{G})| \leq n - 4$. Then w can be added to X if $|N(w) \cap X| \geq 2$ or added to Y otherwise, which contradicts the maximality of H. So, we know that H is a 2-connected bipartite spanning subgraph of G with u, v in the same part, which completes the proof. □

Lemma 5.3. Every 2-connected graph on n ($n \geq 12$) vertices with at least $\binom{n - 1}{2} - 5$ edges contains a 2-connected bipartite spanning subgraph.
Proof. The result is trivial if G is complete. We will prove our result by induction on n for noncomplete graphs. First, if $|V(G)| = 12$ and $|E(G)| \geq 50$, one can find a 2-connected bipartite spanning subgraph of G. So we suppose that the result holds for all 2-connected graphs on n_0 ($13 < n_0 < n$) vertices with at least $(n_0 - 1) - 5$ edges. For a 2-connected graph G on n vertices with $|E(G)| \geq (\binom{n}{2} - 5)$, let v be a vertex with minimum degree of G, and let $H = G - v$. If $d(v) = 2$, then $|E(H)| \geq (\binom{n}{2}) - 7$. Let $N_G(v) = \{v_1, v_2\}$. We know that H contains a 2-connected bipartite spanning subgraph with v_1, v_2 in the same part by Lemma 5.2. Clearly, G contains a 2-connected bipartite spanning subgraph. Otherwise, $3 \leq d(v) \leq n - 2$, then $|E(H)| \geq (\binom{n - 1}{2}) - 5 - (n - 2) = (\binom{n - 1}{2} - 5)$ and $\delta(H) \geq 2$. If H has a cut-vertex u, then each connected component of $H - u$ contains at least 2 vertices.

We have that $|E(H)| \leq (\binom{n - 3}{2} + 3 < (\binom{n - 2}{2}) - 5$, a contradiction. Hence, H is 2-connected. By the induction hypothesis, we know that H contains a 2-connected bipartite spanning subgraph $B_H[X, Y]$. Since $d(v) \geq 3$, at least one of X and Y contains at least 2 neighbors of v. Hence, G contains a 2-connected bipartite spanning subgraph.

Theorem 5.4. Let G be a connected graph of order $n \geq 14$. If $(\binom{n - 3}{2}) + 4 \leq |E(G)| \leq \binom{n}{2} - 1$, then $pc(G) = 2$.

Proof. The result clearly holds if G is 3-connected. We only consider of the graphs with connectivity at most 2.

Claim 1: $\delta(G) \leq 5$.

Proof of Claim 1: Suppose to the contrary that $\delta(G) \geq 6$. If G has a cut-vertex, say x, then each connected component of $G - x$ has at least 6 vertices. Hence, we have that $|E(G)| \leq (\binom{n - 6}{2}) + \binom{6}{2}$, which is less than $(\binom{n - 3}{2}) + 4$ when $n \geq 14$, a contradiction. If G is 2-connected with a 2-vertex cut $\{x, y\}$, then each connected component of $G - x - y$ has at least 5 vertices. We have that $|E(G)| \leq (\binom{n - 5}{2}) + \binom{7}{2} - 1$, which is less than $(\binom{n - 3}{2}) + 4$ when $n \geq 14$. We can also get a contradiction. Hence, we get our conclusion $\delta(G) \leq 5$.

Let v be a vertex with the minimum degree in G, and let $H = G - v$. Then $|V(H)| = n - 1$ and $|E(H)| \geq (\binom{n - 3}{2}) + 4 - 5 = (\binom{n - 3}{2}) - 1$.

Note that if H is 3-connected, one can get that $pc(H) \leq 2$. Then by Lemma 25, one has that $pc(G) \leq 2$. So, we only consider the case that the connectivity of H is at most 2.

Claim 2: $\delta(H) \leq 4$.

Proof of Claim 2: We use the same method as in the proof of Claim 1. Suppose that $\delta(H) \geq 5$. If H has a cut-vertex, say x, then each connected component of $H - x$ has at least 5 vertices. Hence, we have that $|E(H)| \leq (\binom{n - 6}{2}) + \binom{6}{2}$, which is less than $(\binom{n - 3}{2} - 1$ when $n \geq 14$, a contradiction. If H is 2-connected with a 2-vertex cut $\{x, y\}$, then
each connected component of $H - x - y$ has at least 4 vertices. Hence, we have that $|E(H)| \leq \binom{n-5}{2} + \binom{6}{2} - 1$, which is less than $\binom{n-3}{2} - 1$ when $n \geq 14$. Hence we get our conclusion that $\delta(H) \leq 4$.

Let u be a vertex with the minimum degree in H, and let $F = H - u = G - v - u$. Then $|V(F)| = n - 2$ and $|E(F)| \geq \binom{n-3}{2} - 5 = \binom{n-2}{2} - 5$. If F is 2-connected, we know that F contains a bipartite 2-connected spanning subgraph by Lemma 5.3 and hence $pc(H) \leq 2$. By Lemma 2.5 we have that $pc(G) \leq 2$. So, we only need to consider the case that F has cut-vertices. As in the proof of Lemma 5.3, we know that F has a pendent vertex w, and so $\delta(G) \leq d_G(w) \leq 3$. Let $F' = F - w = G - u - v - w$, then $|E(F')| \geq \binom{n-3}{2} - 6$. From Lemma 5.2 we know that F' contains a 2-connected bipartite spanning subgraph, and so $pc(F') \leq 2$. If $d_G(w) = 1$, then u and v are also pendent vertices in G. We have that $|E(G)| \leq \binom{n-3}{2} + 3$, which contradicts the fact that $|E(G)| \geq \binom{n-3}{2} + 4$. Thus, $d(w) \geq 2$. If $uv \in E(G)$, one can see that $pc(G) = 2$ by Corollary 2.6. If $uv \notin E(G)$, we have that u has a neighbor in F'. Since otherwise, $d(u) = 1$ and $d(v) = 1$, $|E(G)| \leq \binom{n-3}{2} + 3$, a contradiction. So, we know that either v has a neighbor in F' or $uv \in E(G)$. By Corollary 2.6 we have that $pc(G) = 2$. The proof is thus complete.

\[\textbf{Theorem 5.5.} \text{ Let } G \text{ be a connected graph of order } n \geq 15. \text{ If } |E(G)| \geq \binom{n-4}{2} + 5, \text{ then } pc(G) \leq 3.\]

\[\textbf{Proof.} \text{ If } G \text{ is 2-edge connected, then } pc(G) \leq 3 \text{ clearly holds from Lemma 5.1. If } \delta(G) = 1, \text{ let } H = G - v, \text{ where } v \text{ is a pendent vertex. Then, } H \text{ has } n - 1 \text{ vertices and } |E(H)| \geq \binom{n-1-3}{2} + 4. \text{ From Theorem 5.4 we know that } pc(H) = 2, \text{ and so } pc(G) \leq 3. \text{ In the following, we only consider the graphs with cut-edges and without pendent vertices. Let } e \text{ be a cut-edge of } G, \text{ and let } G_1, G_2 \text{ be the two connected components of } G - e \text{ with } |V(G_1)| \leq |V(G_2)|. \text{ If } |V(G_1)| \geq 5, \text{ we know that } E(G) \leq \binom{n-5}{2} + 11 < \binom{n-4}{2} + 5, \text{ a contradiction. So, we know that } |V(G_1)| \leq 4. \text{ Since } G \text{ has no pendent vertices, we know that } |V(G_1)| \geq 3. \text{ Hence, } G_1 \text{ has three or four vertices with at most one pendent vertex in } G_1. \text{ It can be easily checked that } pc(G_1) \leq 2. \text{ We claim that } pc(G_2) \leq 2. \text{ In fact, if } |V(G_1)| = 3, \text{ then } G_2 \text{ has } n - 3 \text{ vertices and } |E(G_2)| \geq \binom{n-4}{2} + 5 - 4 = \binom{n-3-1}{2} + 1. \text{ If } |V(G_1)| = 4, \text{ then } G_2 \text{ has } n - 4 \text{ vertices and } |E(G_2)| \geq \binom{n-4}{2} + 5 - 7 = \binom{n-4}{2} - 2. \text{ In both cases, we know that } pc(G_2) \leq 2. \text{ Consequently, we can easily get that } pc(G) \leq 3. \text{ }\Box\]
References

[1] E. Andrews, E. Laforge, C. Lumduanhom, P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput, to appear.

[2] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.

[3] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.

[4] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Monteroa, Z. Tuza, Proper connection of graphs, Discrete Math. 312 (17) (2012), 2550-2560.

[5] L. Chandran, A. Das, D.RajendraPrasad, N. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012), 206-218.

[6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (1) (2008), 5-98.

[7] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54 (2) (2009), 75-81.

[8] F. Huang, X. Li, S. Wang, Proper connection numbers of complementary graphs, arXiv:1504.02414v2 [math.CO].

[9] A. Kemnitz, I. Schiermeyer, Graphs with rainbow connection number two, Discus. Math. Graph Theory 31(2011), 313-320.

[10] M. Kriveleich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 71 (2012), 206-218.

[11] H. Li, X. Li, S. Liu, Rainbow connection of graphs with diameter 2, Discrete Math. 312 (2012), 1453-1457.

[12] X. Li, M. Liu, I. Schiermeyer, Rainbow connection number of dense graphs, Discus. Math. Graph Theory 33 (2013), 603-611.

[13] X. Li, Y. Shi, Rainbow connection in 3-connected graphs, Graphs & Combin. 29 (5) (2013), 1471-1475.

[14] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs & Combin. 29 (2013), 1-38.
[15] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.

[16] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Anal. (3) (1964), 25-30.