Nevoid Basal Cell Carcinoma Syndrome: A Case Report and Review of Korean Cases

Eun-Joo Jung, Hyokeun Shin, Jin-A Baek, Dae-Ho Leem, Seung-O Ko

Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonbuk National University, Research Institute of Clinical Medicine, Chonbuk National University

Abstract

Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal genetic disease caused by a PTCH mutation. The disease is characterized by multiple basal cell carcinomas of the skin, multiple keratocystic odontogenic tumors (KCOTs) in the jaw, palmar and/or plantar pits, bifid ribs, ectopic calcification of the falx cerebri, and skeletal abnormalities. Early diagnosis is difficult in many cases because there may be a number of systemic symptoms. The purpose of this study is to report the case of a 12-year-old girl who was hospitalized with multiple KCOTs that occurred in the upper and lower jaws. Through characteristic clinical symptoms and radiologic findings, she was finally diagnosed as having NBCCS. This study also aims to organize the symptoms often observed in Korea using previously published case reports to provide useful information for the early diagnosis of NBCCS.

Key words: Basal cell nevus syndrome, Nevoid basal cell carcinoma syndrome, Nevoid basal cell carcinoma syndrome, Odontogenic cyst

Introduction

In 1960, Gorlin and Goltz[1] defined nevoid basal cell carcinoma syndrome (NBCCS), or Gorlin-Goltz syndrome, as a disease characterized by multiple basal cell carcinomas (BCCs), multiple keratocystic odontogenic tumors (KCOTs) in the jaw, and skeletal anomalies. NBCCS is an autosomal genetic disease showing high penetrance and variable expressivity. It is currently accepted that NBCCS is caused by a mutation of the tumor suppressor gene PTCH, but there are claims that it may be caused by new mutations because about 60% occur without a family history[2,3].

This multisystem disease is often difficult to diagnose early because it may show numerous systemic clinical symptoms that can occur inconsistently[4]. However, early diagnosis is important because it can predict possible disease and provide patients with the opportunity to receive conservative treatment and prevent exacerbations through frequent examination. In Korea, 48 cases of NBCCS were reported from 1981 to 2013 by the Journal of Korean Association of Maxillofacial Plastic and Reconstructive Surgeons, the Journal of Korean Association of Oral and Maxillofacial Surgeons, the Korean Journal of Oral and Maxillofacial Radiology, the Korean Journal of Otorhinolaryngology, the...
Korean Journal of Dermatology, and the Annals of Dermatology, among others (Table 1)[4-18]. We experienced a NBCCS case in a 12-year-old female patient admitted with multiple recurring KCOTs. In this study, we examine the symptoms expressed in Korean NBCCS patients by analyzing the above 49 Korean cases.

Case Report

A 12-year-old female patient had a unicystic KCOT surgery of the mandibular anterior region at Chonbuk National University Dental Hospital, two years prior. She then visited the hospital for regular exams. There were no clinical findings such as extraoral swelling, redness, or heat generation. Teeth #17, 27, 37, and 47 were unerupted and primary molars #75, 85 remained in the oral examination. A panoramic view showed that the previous surgical site had healed well, but that five different sizes of radiolucent lesions with clear boundaries were observed around #17, 35, 37, 45, and 47 impacted teeth (Fig. 1). The lesion surrounding the crown, while displacing #17 upward and laterally in the cone beam computed tomography (CT) and the CT of the facial bone, filled the right maxillary sinus. In addition, radiolucent lesions surrounding the crowns of #35, 37, 45, and 47 resulted in cortical thinning and expansion. The initial impression of these lesions were dentigeroius cysts or KCOTs. Under general anesthesia, extraction of #17, 75, and 85 and surgical enucleation were carried out, and Carnoy solution was applied to prevent recurrence. Upon biopsy, they were all diagnosed as KCOTs.

NBCCS was suspected, so the patient’s clinical findings, family history, medical history, and radiographic examinations were reviewed. Six to seven cutaneous nevi on the face and many pits on the palms and plantar were observed. There was no family history of NBCCS or KCOTs. Bifid ribs in the left and right were discovered through

Table 1. Journals reporting nevoid basal cell carcinoma syndrome cases in Korea

Departments	Reported cases (n)
Oral and maxillofacial surgery	35
Dermatology	9
Otorhinolaryngology	2
Pathology	1
Oral and maxillofacial radiology	1
Pediatric Neurosurgery	1

Fig. 1. Preoperative panoramic view.

Fig. 2. Chest x-ray view showing bifid ribs in the posterior aspect of both 3rd rib.

Fig. 3. Facial computed tomography view showing calcification of falx cerebri.
Eun-Joo Jung: Nevoid Basal Cell Carcinoma Syndrome

Maxillofac Plast Reconstr Surg

Fig. 4. Postoperative 13 months panoramic view.

Table 2. Relative frequencies of associated complications compared with other countries

Year	Evans et al.[22]	Shanley et al.[26]	Kimonis et al.[19]	Lo Muzio et al.[27]	Pruvost-Balland et al.[28]	Ahn et al.[5]	Shimada et al.[25]	This study
Nationality	1993	1994	1997	1999	2006	2004	2013	2014
Diagnostic criteria	UK	Australia	USA	Italy	France	Korea	Japan	Korea
No. of cases	84	118	105	37	22	33	25	21.6
Mean age (yr)	35	34.5	31.4	44.9	21.2	23.8	21.6	
BCC (%)	47	76	80	30	100	15	28	22
KCOT (%)	66	75	74	92	62	91	100	86
Palmar or plantar pits (%)	71	80	87	35	45	67	76	53
Rib anomaly (%)	45	42	32	-	36	44	44	39
Calcification of the falx cerebri (%)	-	92	65	70	66	21	28	37

BCC, basal cell carcinomas; KCOT, keratocystic odontogenic tumor.
occurred in 11 cases (22.5%) out of 49 in Korea, and a lower rate was also reported in Japan, at 28.0% (Table 2)[25]. Ahn et al.[15] suggested that such a difference may be attributed to genetic and geographic differences. According to the results of this study, 35 out of 49 NBCCS cases were reported in oral and maxillofacial surgery, nine cases in dermatology, and five cases in other areas. NBCCS accompanied by BCCs accounted for 11 cases and eight of these cases were reported in dermatology (Table 1). The most NBCCS cases were published in oral and maxillofacial surgery and the main symptoms in Korea were KOCOTs. Therefore, clinical findings of BCCs may have been missed. Because low BCC incidence was also reported in Italy, the low frequency of BCCs in Korea and Japan is difficult to consider an Asian feature, as epidemiological investigations in other Asian countries are needed for further study. Nevi on the skin begin to turn into intrusive and aggressive moles after puberty, so periodic examination and careful observation are required. In addition, individuals should not be exposed to ionizing radiation or ultraviolet light, both of which are risk factors for BCCs.

Table 3. Frequency of findings in 49 Korean patients with nevoid basal cell carcinoma syndrome

Reporting frequency	Value
>50%	
Keratoctytic odontogenic tumor	42 (85.71)
Palmar and plantar pits	31 (63.27)
Hypertelorism	25 (51.02)
30%–50%	
Frontal, parietal, and temporal bossing	19 (38.78)
Rib anomaly	19 (38.78)
Calcification of the falx cerebri	18 (36.73)
Family history	17 (34.69)
Multiple nevi	16 (32.65)
10%–30%	
Basal cell carcinomas	11 (22.45)
Scoliosis	8 (16.33)
Mental retardation	8 (16.33)
Mandibular prognathism	5 (10.20)
Visual disturbance and blindness	5 (10.20)
<10%	
Scoliosis	8 (16.33)
Cleft lip and/or palate	4 (8.16)
Congenital hydrocephalus	4 (8.16)
Ovarian cyst, tumor	4 (8.16)
Dental agenesis	2 (4.08)
Medulloblastoma	2 (4.08)
Hypogonadism, megaloureter	2 (4.08)

Values are presented as number (%).

Table 4. Nevoid basal cell carcinoma syndrome cases reported between the years 1981 to 2013 in Korea

Year	Ahn et al.[5]	Tak et al.[18]	Lee et al.[6]	Lee et al.[7]	Roh et al.[8]	Park et al.[9]	Park et al.[10]	Heo et al.[11]	Kim et al.[12]	Park et al.[13]	Rye et al.[14]	Gang et al.[15]	Lee et al.[16]	Go et al.[17]	This study	Total
No. of cases																
Mean age (yr)	21.2	66	19	31	14	13	32	10	17	15	9	20	60	12		21.6
Sex ratio (M:F)	1:1.1	0.1	1.0	0.1	0.1	1.0	1.0	0.1	1.0	1.1	1.0	1.0	0.1	0.1		1.04:1
Basal cell	5	1	1	1	1	1	2	1	2	1	1	1	1	2		42
involvements (n)																
Keratoctytic	30	1	0	1	1	1	1	2	1	2	1	1	1	1		42
odontogenic	tumor (n)	22	1	1	1	1	1	1	1	1	1	1	1	1		31
Palmar or plantar pits (n)	12	1	1	1	1	1	1	1	1	1	1	1	1	1		19
Rib anomaly (n)	12	1	1	1	1	1	1	1	1	1	1	1	1	1		18
Calcification of the falx cerebri (n)	7	1	1	1	1	1	1	1	1	1	1	1	1	1		11
Department																
OMFS																
DT																
OMFR																
ENT																
DT																
OMFS																
PD																
OMFR																
OMFS																
DT																
OMFS																
OMFS																
OMFS																

M, male; F, female; OMFS, oral and maxillofacial surgery; DT, dermatology; OMFR, oral and maxillofacial radiology; ENT, otolaryngology; PD, pediatric dentistry.
Korea, KCOTs were present in 42 cases out of 49 NBCS cases (85.7%). Surgical enucleation, enucleation after marsupialization, or bone resection was conducted for treatment, and Carnoy solution was used to prevent recurrence. Choi et al.[30] reported that when treating KCOT patients, Carnoy solution was applied for 3~5 minutes after surgical enucleation and most patients obtained good results without recurrence. KCOT that occurs with NBCSS occurs at an early age compared to general KCOT and shows a 60% higher recurrence rate. In addition, it may occur both in the upper and lower jaws and usually appears in multiples[31,32]. Therefore, when faced with a case of multiple or recurrent KCOTs in the jaw, oral and maxillofacial surgeons should conduct further investigations to exclude NBCSS[33]. Long-term surveillance for KCOTs is required because of the high recurrence rate.

While reporting the high rate (65%~92%) in Australia, the USA, and Italy, ectopic calcification of the falx cerebri is uncommon, seen 18 cases (36.7%) in Korea, Rib anomalies, including bifid ribs, were observed in 19 cases (38.8%), similar proportion to other countries (Table 3)[19,26,27].

Additional symptoms may include abnormalities of the dental and skeletal system such as cleft lip/palate, mandible prognathism, scoliosis and frontal bossing, and abnormalities of the ocular system including visual problems and hypertelorism, nervous system abnormalities such as mild mental retardation, medulloblastoma and congenital hydrocephalus, and abnormalities of the genitourinary system including cysts or tumor of the ovaries[19].

The low frequency of BCCs and ectopic calcification of the falx cerebri were two major differences of this study compared with studies in other countries, Hypertelorism (25 cases, 51.0%) and frontal bossing (19 cases, 38.8%) occurred frequently in Korea. These symptoms can be useful for diagnosing patients with early-stage NBCSS in Korea. In addition, since 34.7% of cases have a family history, genetic tests may be useful for patients and their families for more accurate diagnoses and disease prevention.

References
1. Gorlin RJ, Goetz RW, Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib, A syndrome, N Engl J Med 1960; 262:908-12,
2. Gorlin RJ, Nevoid basal cell carcinoma (Gorlin) syndrome: unanswered issues, J Lab Clin Med 1999;134:551-2,
3. Tanioka M, Takahashi K, Kawabata T, et al, Germline mutations of the PTCH gene in Japanese patients with nevoid basal cell carcinoma syndrome, Arch Dermatol Res 2005; 296:303-8,
4. Son YJ, Jo HG, Kim YO, Woo YJ, A case of basal cell nevus syndrome, J Korean Child Neurol Soc 2010;18:147-52,
5. Ahn SG, Lim YS, Kim DK, Kim SG, Lee SH, Yoon JH, Nevoid basal cell carcinoma syndrome: a retrospective analysis of 33 affected Korean individuals, Int J Oral Maxillofac Surg 2004;33:458-62,
6. Lee BD, Kim JH, Choi DH, Koh KS, Lee SR, Recurrent odontogenic keratocysts in basal cell nevus syndrome: Report of a case, Korean J Oral Maxillofac Radiol 2004;34:203-7,
7. Lee BK, Lee JS, Chang DS, Park KY, Nevoid basal cell carcinoma syndrome: a case report and literature review, Korean J Otolaryngol-Head Neck Surg 2005;48:819-22,
8. Roh BH, Park SJ, Lee SY, Lee JS, Whang KU, A case of nevoid basal cell carcinoma syndrome with meningioma and sclerosing stromal tumor of the ovary, Korean J Dermatol 2006;44:1030-3,
9. Park SH, Kim HY, Kim JH, Hong SD, A case of basal cell nevus syndrome with odontogenic keratocyst, Korean J Otolaryngol-Head Neck Surg 2007;50:552-5,
10. Park CM, Kim HK, Kim SG, Lee KJ, Treatment of basal cell nevus syndrome with enucleation following marsupialization: A case report, J Korean Assoc Oral Maxillofac Surg 2008;34:485-9,
11. Heo SK, Choi NK, Kim SM, Yang KH, Nevoid basal cell carcinoma syndrome: a report of case, J Korean Acad Pediatr Dent 2008;35:725-30,
12. Kim JD, Seo YS, Kim JS, Basal cell nevus syndrome: 2 case reports, Korean J Maxillofac Radiol 2008;38:109-15,
13. Park JH, Yoon KH, Park KS, Cheong JK, Shin JM, Choi MK, Case report of multiple odontogenic keratocysts with basal cell nevus syndrome, J Korean Assoc Maxillofac Plast Reconstr Surg 2008;30:172-7,
14. Ryu DJ, Kwon YS, Roh MR, Lee MG, Two cases of nevoid basal cell carcinoma syndrome in one family, Ann Dermatol 2008;20:221-5,
15. Gang TI, Park YJ, Nam JH, et al, Case report of treatment of multiple odontogenic keratocysts with basal cell nevus syndrome using preoperative marsupialization and orthodontic extrusion, J Korean Assoc Maxillofac Plast Reconstr Surg 2009; 31:429-34,
16. Lee EY, Kim KW, Long term follow-up of multiple odontogenic keratocysts associated with basal cell nevus syndrome: a case report, J Korean Assoc Maxillofac Plast Reconstr Surg 2010;32:81-5,
17. Go JW, Kim SH, Yi SY, Cho HK, Basal cell nevus syndrome showing several histologic types of basal cell carcinoma, Ann Dermatol 2011;23 Suppl 1:836-40,
18. Tak WJ, Shin BJ, Kim MN, Ro BI, A case of nevoid basal cell carcinoma syndrome with multiple, symmetrically distributed basal cell carcinomas, Korean J Dermatol 2002; 40:682-5,
19. Kimonis VE, Goldstein AM, Pastakia B, et al, Clinical mani-
festations in 105 persons with nevoid basal cell carcinoma syndrome, Am J Med Genet 1997;69:299-308.
20. Kiran NK, Tilak Raj TN, Mukunda KS, Rajashekar Reddy V. Nevoid basal cell carcinoma syndrome (Gorlin-Goltz syndrome), Contemp Clin Dent 2012;3:514-8.
21. Manfredi M, Vescovi P, Bonanini M, Porter S. Nevoid basal cell carcinoma syndrome: a review of the literature, Int J Oral Maxillofac Surg 2004;33:117-24.
22. Evans DG, Ladusans EJ, Rimmer S, Burnell LD, Thakker N, Farndon PA. Complications of the naevoid basal cell carcinoma syndrome: results of a population based study, J Med Genet 1993;30:460-4.
23. Lee SC, Lai YL. Endothelin-1 in citric acid aerosol inhalation-induced airway constriction of guinea pigs, Chin J Physiol 2002;45:25-31.
24. Goldstein AM, Pastakia B, DiGiovanna JJ, et al. Clinical findings in two African-American families with the nevoid basal cell carcinoma syndrome (NBCC), Am J Med Genet 1994;50:272-81.
25. Shimada Y, Morita K, Kabasawa Y, Taguchi T, Omura K. Clinical manifestations and treatment for keratocystic odontogenic tumors associated with nevoid basal cell carcinoma syndrome: a study in 25 Japanese patients, J Oral Pathol Med 2013;42:275-80.
26. Shanley S, Ratcliffe J, Hockey A, et al. Nevoid basal cell carcinoma syndrome: review of 118 affected individuals, Am J Med Genet 1994;50:282-90.
27. Lo Muzio L, Nocini PF, Savoia A, et al. Nevoid basal cell carcinoma syndrome, Clinical findings in 37 Italian affected individuals, Clin Genet 1999;55:34-40.
28. Pruvost-Balland C, Gorry P, Boutet N, et al. Clinical and genetic study in 22 patients with basal cell nevus syndrome, Ann Dermatol Venereol 2006;133:117-23.
29. Gutierrez MM, Mora RG, Nevoid basal cell carcinoma syndrome, J Am Acad Dermatol 1986;15:1023-30.
30. Choi ST, Kim TK, Leem DH, Baek JA, Shin HK, Ko SO. Carnoy’s solution application for patient preliminarily diagnosed with keratocystic odontogenic tumor: case report, J Korean Assoc Maxillofac Plast Reconstr Surg 2012;34:498-504.
31. Donatsky O, Hjarting-Hansen E. Recurrence of the odontogenic keratocyst in 13 patients with the nevoid basal cell carcinoma syndrome, A 6-year follow-up, Int J Oral Surg 1980;9:173-9.
32. Lo Muzio L, Nocini P, Bucci P, Pannone G, Consolo U, Procaccini M. Early diagnosis of nevoid basal cell carcinoma syndrome, J Am Dent Assoc 1999;130:669-74.
33. Bitar GJ, Herman CK, Dalman MI, Hoard MA. Basal cell nevus syndrome: guidelines for early detection, Am Fam Physician 2002;65:2501-4.