On the maximal dimension of a completely entangled subspace for finite level quantum systems

by

K.R. Parthasarathy
Indian Statistical Institute, Delhi Centre
7, S.J.S. Sansanwal Marg
New Delhi 110 016, India

e-mail : krp@isid.ac.in

Summary: Let \mathcal{H}_i be a finite dimensional complex Hilbert space of dimension d_i associated with a finite level quantum system A_i for $i = 1, 2, \ldots, k$. A subspace $S \subset \mathcal{H} = \mathcal{H}_{A_1A_2\ldots A_k} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \ldots \otimes \mathcal{H}_k$ is said to be completely entangled if it has no nonzero product vector of the form $u_1 \otimes u_2 \otimes \ldots \otimes u_k$ with u_i in \mathcal{H}_i for each i. Using the methods of elementary linear algebra and the intersection theorem for projective varieties in basic algebraic geometry we prove that

$$\max_{S \in \mathcal{E}} \dim S = d_1d_2\ldots d_k - (d_1 + \cdots + d_k) + k - 1$$

where \mathcal{E} is the collection of all completely entangled subspaces.

When $\mathcal{H}_1 = \mathcal{H}_2$ and $k = 2$ an explicit orthonormal basis of a maximal completely entangled subspace of $\mathcal{H}_1 \otimes \mathcal{H}_2$ is given.

We also introduce a more delicate notion of a perfectly entangled subspace for a multipartite quantum system, construct an example using the theory of stabilizer quantum codes and pose a problem.

Key Words: finite level quantum systems, separable states, entangled states, completely entangled subspaces, perfectly entangled subspace, stabilizer quan-
tum code.

MSC index: 81P68, 94B99

1 Completely Entangled Subspaces

Let H_i be a complex finite dimensional Hilbert space of dimension d_i associated with a finite level quantum system A_i for each $i = 1, 2, \ldots, k$. A state ρ of the combined system $A_1A_2\ldots A_k$ in the Hilbert space

$$\mathcal{H} = \mathcal{H} \otimes \mathcal{H}_2 \otimes \ldots \otimes \mathcal{H}_k$$

(1.1)

is said to be *separable* if it can be expressed as

$$\rho = \sum_{i=1}^{m} p_i \rho_{i1} \otimes \rho_{i2} \otimes \ldots \otimes \rho_{ik}$$

(1.2)

where ρ_{ij} is a state of A_j for each j, $p_i > 0$ for each i and $\sum_{i=1}^{m} p_i = 1$ for some finite m. A state which is not separable is said to be *entangled*. Entangled states play an important role in quantum teleportation and communication [3]. The following theorem due to Horodecki et al [2] suggests a method of constructing entangled states.

Theorem 1.1 (Horodecki et al) Let ρ be a separable state in \mathcal{H}. Then the range of ρ is spanned by a set of product vectors.

For the sake of readers’ convenience and completeness we furnish a quick proof.

Proof: Let ρ be of the form (1.2). By spectrally resolving each ρ_{ij} into one
dimensional projections we can rewrite (1.2) as

$$\rho = \sum_{i=1}^{n} q_i |u_{i1} \otimes u_{i2} \otimes \ldots \otimes u_{ik}\rangle \langle u_{i1} \otimes u_{i2} \otimes \ldots \otimes u_{ik}|$$ \hspace{1cm} (1.3)

where u_{ij} is a unit vector in H_j for each i, j and $q_i > 0$ for each i with $\sum_{i=1}^{n} q_i = 1$. We shall prove the theorem by showing that each of the product vectors $u_{i1} \otimes u_{i2} \otimes \ldots \otimes u_{ik}$ is, indeed, in the range of ρ. Without loss of generality, consider the case $i = 1$. Write (1.3) as

$$\rho = q_1 |u_{11} \otimes u_{12} \otimes \ldots \otimes u_{1k}\rangle \langle u_{11} \otimes u_{12} \otimes \ldots \otimes u_{1k}| + T$$ \hspace{1cm} (1.4)

where $q_1 > 0$ and T is a nonnegative operator. Suppose $\psi \neq 0$ is a vector in H such that $T|\psi\rangle = 0$ and $\langle u_{11} \otimes u_{12} \otimes \ldots \otimes u_{1k}|\psi\rangle \neq 0$. Then $\rho|\psi\rangle$ is a nonzero multiple of the product vector $u_{11} \otimes u_{12} \otimes \ldots \otimes u_{1k}$ and $u_{11} \otimes u_{12} \otimes \ldots \otimes u_{1k} \in R(\rho)$, the range of ρ. Now suppose that the null space $N(T)$ of T is contained in $\{u_{11} \otimes u_{12} \otimes \ldots \otimes u_{1k}\}^\perp$. Then $R(T) \supset \{u_{11} \otimes u_{12} \otimes \ldots \otimes u_{1k}\}$ and therefore there exists a vector $\psi \neq 0$ such that

$$T|\psi\rangle = |u_{11} \otimes u_{12} \otimes \ldots \otimes u_{1k}\rangle.$$

Note that $\rho|\psi\rangle \neq 0$, for otherwise, the positivity of ρ, T and q_1 in (1.4) would imply $T|\psi\rangle = 0$. Thus (1.4) implies

$$\rho|\psi\rangle = (q_1 \langle u_{11} \otimes u_{12} \otimes \ldots \otimes u_{1k}|\psi\rangle + 1) |u_{11} \otimes u_{12} \otimes \ldots \otimes u_{1k}\rangle.$$

\textbf{Corollary} If a subspace $S \subset \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \ldots \otimes \mathcal{H}_k$ does not contain any nonzero product vector of the form $u_1 \otimes u_2 \otimes \ldots \otimes u_k$ where $u_i \in \mathcal{H}_i$ for each i, then any state with support in S is entangled.

\textbf{Proof :} Immediate.
Definition 1.2 A nonzero subspace $S \subset \mathcal{H}$ is said to be completely entangled if S contains no nonzero product vector of the form $u_1 \otimes u_2 \otimes \ldots \otimes u_k$ with $u_i \in \mathcal{H}_i$ for each i.

Denote by \mathcal{E} the collection of all completely entangled subspaces of \mathcal{H}. Our goal is to determine $\max_{S \in \mathcal{E}} \dim S$.

Proposition 1.3 There exists $S \in \mathcal{E}$ satisfying

$$\dim S = d_1 d_2 \ldots d_k - (d_1 + d_2 + \ldots + d_k) + k - 1.$$ (1.6)

Proof: Let $N = d_1 + d_2 + \cdots + d_k - k + 1$. Without loss of generality, assume that $\mathcal{H}_i = \mathbb{C}^{d_i}$ for each i, with the standard scalar product. Choose and fix a set $\{\lambda_1, \lambda_2, \ldots, \lambda_N\} \subset \mathbb{C}$ of cardinality N. Define the column vectors

$$u_{ij} = \begin{bmatrix} 1 \\ \lambda_i \\ \lambda_i^2 \\ \vdots \\ \lambda_i^{d_j-1} \end{bmatrix}, \ 1 \leq i \leq N, \ 1 \leq j \leq k \quad (1.5)$$

and consider the subspace

$$S = \{u_{i1} \otimes u_{i2} \otimes \ldots \otimes u_{ik}, \ 1 \leq i \leq N\}^\perp \subset \mathcal{H}. \quad (1.6)$$

We claim that S has no nonzero product vector. Indeed, let

$$0 \neq v_1 \otimes v_2 \otimes \ldots \otimes v_k \in S, \ v_i \in \mathcal{H}_i.$$ (1.7)
If
\[E_j = \{ i \mid \langle v_j | u_{ij} \rangle = 0 \} \subset \{1, 2, \ldots, N\} \] (1.8)
then (1.7) implies that
\[\{1, 2, \ldots, N\} = \bigcup_{j=1}^{k} E_j \]
and therefore
\[N \leq \sum_{j=1}^{k} \#E_j. \]

By the definition of \(N \) it follows that for some \(j \), \(\#E_j \geq d_j \). Suppose \(\#E_{j_0} \geq d_{j_0} \). From (1.8) we have
\[\langle v_{j_0} | u_{i_{j_0}} \rangle = 0 \text{ for } i = i_1, i_2, \ldots, i_{d_{j_0}} \]
where \(i_1 < i_2 < \cdots < i_{d_{j_0}} \). From (1.5) and the property of van der Monde determinants it follows that \(v_{j_0} = 0 \), a contradiction. Clearly, \(\dim S \geq d_1d_2\cdots d_k - (d_1 + \cdots + d_k) + k - 1. \) \(\blacksquare \)

Proposition 1.4 Let \(S \subset \mathcal{H} \) be a subspace of dimension \(d_1d_2\cdots d_k - (d_1 + \cdots + d_k) + k \). Then \(S \) contains a nonzero product vector.

Proof: Identify \(\mathcal{H}_j \) with \(\mathbb{C}^{d_j} \) for each \(j = 1, 2, \ldots, k \). For any nonzero element \(v \) in a complex vector space \(\mathcal{V} \) denote by \([v]\) the equivalence class of \(v \) in the projective space \(\mathbb{P}(\mathcal{V}) \). Consider the map
\[T : \mathbb{P}(\mathbb{C}^{d_1}) \times \mathbb{P}(\mathbb{C}^{d_2}) \times \cdots \times \mathbb{P}(\mathbb{C}^{d_k}) \to \mathbb{P}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \cdots \otimes \mathbb{C}^{d_k}) \]
given by
\[T([u_1], [u_2], \ldots, [u_k]) = [u_1 \otimes \cdots \otimes u_k]. \]
The map \(T \) is algebraic and hence its range \(\mathbb{P}(T) \) is a complex projective variety of dimension \(\sum_{i=1}^{k} (d_i - 1) \). By hypothesis \(\mathbb{P}(S) \) is a projective variety of
dimension $d_1d_2 \ldots d_k - (d_1 + \ldots + d_k) + k - 1$. Thus

$$\dim IP(S) + \dim R(T) = d_1d_2 \ldots d_k - 1$$

$$= \dim IP(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \ldots \otimes \mathbb{C}^{d_k}).$$

Hence by Theorem 6, page 76 in [4] we have

$$IP(S) \cap R(T) \neq \emptyset.$$

In other words S contains a product vector.

Theorem 1.5 Let \mathcal{E} be the collection of all completely entangled subspaces of $\mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \ldots \otimes \mathcal{H}_k$. Then

$$\max_{S \in \mathcal{E}} \dim S = d_1d_2 \ldots d_k - (d_1 + d_2 + \cdots + d_k) + k - 1.$$

Proof : Immediate from Proposition 1.3 and Proposition 1.4.

2 An Explicit Orthonormal Basis for a Completely Entangled Subspace of Maximal Dimension in $\mathbb{C}^n \otimes \mathbb{C}^n$

Let $\{|x\}, x = 0, 1, 2, \ldots, n - 1\}$ be a labelled orthonormal basis in the Hilbert space \mathbb{C}^n. Choose and fix a set

$$E = \{\lambda_1, \lambda_2, \ldots, \lambda_{2n-1}\} \subset \mathbb{C}$$

of cardinality $2n - 1$ and consider the subspace

$$S = \{u_{\lambda_i} \otimes u_{\lambda_i}, 1 \leq i \leq 2n - 1\}^\perp$$
where

\[u_{\lambda} = \sum_{x=0}^{n-1} \lambda^x |x\rangle, \lambda \in \mathbb{C}. \]

By the proof of Proposition 1.3 and Theorem 1.5 it follows that \(S \) is a maximal completely entangled subspace of dimension \(n^2 - 2n + 1 \). We shall now present an explicit orthonormal basis for \(S \).

First, observe that \(S \) is orthogonal to a set of symmetric vectors and therefore \(S \) contains the antisymmetric tensor product space \(\mathbb{C}^n \wedge \mathbb{C}^n \) which has the orthonormal basis

\[B_0 = \left\{ \frac{|xy\rangle - |yx\rangle}{\sqrt{2}}, 0 \leq x < y \leq n - 1 \right\}. \quad (2.1) \]

Thus, in order to construct an orthonormal basis of \(S \), it is sufficient to search for symmetric tensors lying in \(S \) and constituting an orthonormal set. Any symmetric tensor in \(S \) can be expressed as

\[\sum_{0 \leq x \leq n-1} \sum_{0 \leq y \leq n-1} f(x,y) |xy\rangle \quad (2.2) \]

where \(f(x,y) = f(y,x) \) and

\[\sum_{0 \leq x \leq n-1} \sum_{0 \leq y \leq n-1} f(x,y) \lambda_x^{x+y} = 0, \quad 1 \leq i \leq 2n - 1, \]

which reduces to

\[\sum_{0 \leq x \leq n-1} \sum_{0 \leq j-x \leq n-1} f(x,j-x) = 0 \forall 0 \leq j \leq 2n - 2. \quad (2.3) \]

Define \(\mathcal{K}_j \) to be the subspace of all symmetric tensors of the form (2.2) where the coefficient function \(f \) is symmetric, has its support in the set \(\{(x, j-x), 0 \leq x \leq n - 1, 0 \leq j - x \leq n - 1\} \) and satisfies (2.3). Simple algebra shows that \(\mathcal{K}_0 = \mathcal{K}_1 = \mathcal{K}_{2n-3} = \mathcal{K}_{2n-2} = 0 \) and

\[S = \mathcal{H} \wedge \mathcal{H} \oplus \bigoplus_{j=2}^{2n-4} \mathcal{K}_j. \]
We shall now present an orthonormal basis B_j for \mathcal{K}_j, $2 \leq j \leq 2n - 4$. This falls into four cases.

Case 1 : $2 \leq j \leq n - 1$, j even

$$B_j = \left\{ \frac{1}{\sqrt{j(j+1)}} \left[\sum_{m=0}^{\frac{j}{2}-1} (|m, j - m\rangle + |j - m, m\rangle) - j \frac{j}{2} \frac{j}{2} \right] \right\} \cup \left\{ \frac{1}{\sqrt{j}} \sum_{m=0}^{\frac{j}{2}-1} e^{\frac{4\pi i m p}{j}} (|m, j - m\rangle + |j - m, m\rangle), \quad 1 \leq p \leq \frac{j}{2} - 1 \right\}.$$

Case 2 : $2 \leq j \leq n - 1$, j odd

$$B_j = \left\{ \frac{1}{\sqrt{j+1}} \sum_{m=0}^{\frac{j}{2}-1} e^{\frac{4\pi i m p}{j+1}} (|m, j - m\rangle + |j - m, m\rangle), \quad 1 \leq p \leq \frac{j-1}{2} \right\}.$$

Case 3 : $n \leq j \leq 2n - 4$, j even

$$B_j = \left\{ \frac{1}{\sqrt{(2n-2-j)(2n-1-j)}} \left[\sum_{m=0}^{\frac{2n-2-j}{2}-1} (|j - n + m + 1, n - m - 1\rangle + |n - m - 1, j - n + m + 1\rangle) - (2n - 2 - j) \frac{j}{2} \frac{j}{2} \right] \right\} \cup \left\{ \frac{1}{\sqrt{2n-2-j}} \sum_{m=0}^{\frac{2n-2-j}{2}-1} e^{\frac{4\pi i m p}{2n-2-j}} (|j - n + m + 1, n - m - 1\rangle + |n - m - 1, j - n + m + 1\rangle), \quad 1 \leq p \leq \frac{2n-2-j}{2} - 1 \right\}.$$

Case 4 : $n \leq j \leq 2n - 4$, j odd

$$B_j = \left\{ \frac{1}{\sqrt{2n-1-j}} \sum_{m=0}^{\frac{2n-1-j}{2}-1} e^{\frac{4\pi i m p}{2n-1-j}} (|j - n + m + 1, n - m - 1\rangle \right\}.$$
\[+ \left| n - m - 1 \right. \left. j - n + m + 1 \right) \), 1 \leq p \leq \frac{2n - 1 - j}{2} - 1 \right\}

The set \(B_0 \cup \bigcup_{j=2}^{2n-4} B_j \), where \(B_0 \) is given by (2.1) and the remaining \(B_j \)'s are given by the four cases above constitute an orthonormal basis for the maximal completely entangled subspace \(S \).

3 Perfectly Entangled Subspaces

As in Section 1, let \(\mathcal{H}_i \) be a complex Hilbert space of dimension \(d_i \) associated with a finite level quantum system \(A_i \) for each \(i = 1, 2, \ldots, k \). For any subset \(E \subset \{1, 2, \ldots, k\} \) let

\[\mathcal{H}(E) = \otimes_{i \in E} \mathcal{H}_i \]

\[d(E) = \prod_{i \in E} d_i \]

so that the Hilbert space \(\mathcal{H} = \mathcal{H}(\{1, 2, \ldots, k\}) \) of the joint system \(A_1 A_2 \ldots A_k \) can be viewed as \(\mathcal{H}(E) \otimes \mathcal{H}(E'), E' \) being the complement of \(E \). For any operator \(X \) on \(\mathcal{H} \) we write

\[X(E) = Tr_{\mathcal{H}(E')} X \]

where the right hand side denotes the relative trace of \(X \) taken over \(\mathcal{H}(E') \). Then \(X(E) \) is an operator in \(\mathcal{H}(E) \). If \(\rho \) is a state of the system \(A_1 A_2 \ldots A_k \) then \(\rho(E) \) describes the marginal state of the subsystem \(A_{i_1} A_{i_2} \ldots A_{i_r} \) where \(E = \{i_1, i_2, \ldots, i_r\} \).

Definition 3.1 A nonzero subspace \(S \subset \mathcal{H} \) is said to be perfectly entangled if for any \(E \subset \{1, 2, \ldots, k\} \) such that \(d(E) \leq d(E') \) and any unit vector \(\psi \in S \)
one has
\[
(\langle \psi | \psi \rangle) (E) = \frac{I_E}{d(E)}
\]
where \(I_E \) denotes the identity operator in \(\mathcal{H}(E) \).

For any state \(\rho \), denote by \(S(\rho) \) the von Neumann entropy of \(\rho \). If \(\psi \) is a pure state in \(\mathcal{H} \) then \(S((|\psi \rangle \langle \psi|) (E')) = S((|\psi \rangle \langle \psi|) (E')) \). Thus perfect entanglement of a subspace \(S \) is equivalent to the property that for every unit vector \(\psi \) in \(S \), the pure state \(|\psi \rangle \langle \psi| \) is maximally entangled in every decomposition \(\mathcal{H}(E) \otimes \mathcal{H}(E') \), i.e.,
\[
S((|\psi \rangle \langle \psi|)(E)) = S((|\psi \rangle \langle \psi|)(E')) = \log_2 d(E)
\]
whenever \(d(E) \leq d(E') \). In other words, the marginal states of \(|\psi \rangle \langle \psi| \) in \(\mathcal{H}(E) \) and \(\mathcal{H}(E') \) have the maximum possible von Neumann entropy.

Denote by \(\mathcal{P} \) the class of all perfectly entangled subspaces of \(\mathcal{H} \). It is an interesting problem to construct examples of perfectly entangled subspaces and also compute \(\max_{S \in \mathcal{P}} \dim S \).

Note that a perfectly entangled subspace \(S \) is also completely entangled. Indeed, if \(S \) has a unit product vector \(\psi = u_1 \otimes u_2 \otimes \cdots \otimes u_k \) where each \(u_i \) is a unit vector in \(\mathcal{H}_i \) then \((|\psi \rangle \langle \psi|)(E) \) is also a pure product state with von Neumann entropy zero. Perfect entanglement of \(S \) implies the stronger property that every unit vector \(\psi \) in \(S \) is indecomposable, i.e., \(\psi \) cannot be factorized as \(\psi_1 \otimes \psi_2 \) where \(\psi_1 \in \mathcal{H}(E), \psi_2 \in \mathcal{H}(E') \) for any proper subset \(E \subset \{1,2,\ldots,k\} \).

Proposition 3.2 Let \(S \subset \mathcal{H} \) be a subspace and let \(P \) denote the orthogonal projection on \(S \). Then \(S \) is perfectly entangled if and only if, for any proper
subset $E \subset \{1,2,\ldots,k\}$ with $d(E) \leq d(E')$

$$(PXP)(E) = \frac{Tr \ P X}{d(E)} I_E$$

for all operators X on \mathcal{H}.

Proof: Sufficiency is immediate. To prove necessity, assume that S is perfectly entangled. Let X be any hermitian operator on \mathcal{H}. Then by spectral theorem and Definition 3.2 it follows that $(PXP)(E) = \alpha(X)I_E$ where $\alpha(X)$ is a scalar. Equating the traces of both sides we see that $\alpha(X) = d(E)^{-1}TrPX$. If X is arbitrary, then X can be expressed as $X_1 + iX_2$ where X_1 and X_2 are hermitian and the required result is immediate.

Using the method of constructing single error correcting 5 qudit stabilizer quantum codes in the sense of Gottesman [1], [3] we shall now describe an example of a perfectly entangled d-dimensional subspace in $h^\otimes 5$ where h is a d-dimensional Hilbert space. To this end we identify h with $L^2(A)$ where A is an abelian group of cardinality d with group operation $+$ and null element 0. Then $h^\otimes 5$ is identified with $L^2(A^5)$. For any $x = (x_0, x_1, x_2, x_3, x_4)$ in A^5 denote by $|x\rangle$ the indicator function of the singleton subset $\{x\}$ in A^5. Then $\{|x\rangle, x \in A^5\}$ is an orthonormal basis for $h^\otimes 5$. Choose and fix a nondegenerate symmetric bicharacter $\langle , , \rangle$ for the group A satisfying the following:

$$|\langle a, b \rangle| = 1, \langle a, b \rangle = \langle b, a \rangle, \langle a, b + c \rangle = \langle a, b \rangle \langle a, c \rangle \forall a, b, c \in A$$

and $a = 0$ if and only if $\langle a, x \rangle = 1$ for all $x \in A$. Define

$$\langle x, y \rangle = \prod_{i=0}^{4} \langle x_i, y_i \rangle, \ x, y \in A^5.$$

(Note that $\langle x, y \rangle$ denotes the bicharacter evaluated at x, y whereas $\langle x|y \rangle$ denotes the scalar product in $\mathcal{H} = L^2(A^5)$.) With these notations we introduce
the unitary Weyl operators U_a, V_b in \mathcal{H} satisfying

$$U_a|x\rangle = |a + x\rangle, \ V_b|x\rangle = \langle b, x | x\rangle, \ x \in A^5.$$

Then we have the Weyl commutation relations:

$$U_a U_b = U_{a+b}, \ V_a V_b = V_{a+b}, V_b U_a = \langle a, b \rangle U_a V_b$$

for all $a, b \in A^5$. The family $\{d^{-\frac{1}{2}}U_a V_b, a, b \in A^5\}$ is an orthonormal basis for the Hilbert space of all operators X, Y with the scalar product $\langle X|Y \rangle = Tr X^\dagger Y$

Introduce the cyclic permutation σ in A^5 defined by

$$\sigma((x_0, x_1, x_2, x_3, x_4)) = (x_4, x_0, x_1, x_2, x_3). \hspace{1cm} (3.1)$$

Then σ is an automorphism of the product group A^5 and

$$\sigma^{-1}((x_0, x_1, x_2, x_3, x_4)) = (x_1, x_2, x_3, x_4, x_0).$$

Define

$$\tau(x) = \sigma^2(x) + \sigma^{-2}(x). \hspace{1cm} (3.2)$$

Let $C \subset A^5$ be the subgroup defined by

$$C = \{x|x_0 + x_1 + x_2 + x_3 + x_4 = 0\}.$$

Define

$$W_x = \langle x, \sigma^2(x) \rangle U_x V_{\tau(x)}, \ x \in A^5. \hspace{1cm} (3.3)$$

Then the correspondence $x \rightarrow W_x$ is a unitary representation of the subgroup C in \mathcal{H}. Define the operator P_C by

$$P_C = d^{-4} \sum_{x \in C} W_x. \hspace{1cm} (3.4)$$
Then P_C is a projection satisfying $Tr P_C = d$. The range of P_C is an example of a stabilizer quantum code in the sense of Gottesman. From the methods of [1] it is also known that P_C is a single error correcting quantum code. The range $R(P_C)$ of C is given by

$$R(P_C) = \{ |\psi\rangle W_\mathbf{x}|\psi\rangle = |\psi\rangle \text{ for all } \mathbf{x} \in C\}.$$

Our goal is to establish that $R(P_C)$ is perfectly entangled in $L^2(A)^{\otimes 5}$. To this end we prove a couple of lemmas.

Lemma 3.3 For any $a, b \in A^5$ the following holds:

$$\langle a | P_C | b \rangle = \begin{cases} 0 & \text{if } \sum_{i=0}^4 (a_i - b_i) \neq 0, \\ d^{-4} \langle a, \sigma^2(a) \rangle \overline{\langle b, \sigma^2(b) \rangle} & \text{otherwise.} \end{cases}$$

Proof: We have from (3.1) - (3.4)

$$\langle a | P_C | b \rangle = d^{-4} \sum_{x_0 + x_1 + x_2 + x_3 + x_4 = 0} \langle x, \sigma^2(x) \rangle \langle \tau(x), b \rangle \langle a | x + b \rangle$$

which vanishes if $\sum_{i=0}^4 (a_i - b_i) \neq 0$. Now assume that $\sum_{i=0}^4 (a_i - b_i) = 0$. Then

$$\langle a | P_C | b \rangle = d^{-4} \langle a - b, \sigma^2(a - b) \rangle \overline{\langle b, \sigma^2(b) \rangle}$$

$$= d^{-4} \langle a, \sigma^2(a) \rangle \overline{\langle b, \sigma^2(b) \rangle}.$$

Lemma 3.4 Consider the tensor product Hilbert space

$$L^2(A)^{\otimes 5} = \mathcal{H}_0 \otimes \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3 \otimes \mathcal{H}_4$$

where \mathcal{H}_i is the i-th copy of $L^2(A)$. Then for any $\{i, j\} \subset \{0, 1, 2, 3, 4\}$ and $a, b \in A^5$ the operator $(P_C|a\rangle\langle b|P_C)$ ($\{i, j\}$) is a scalar multiple of the identity in $\mathcal{H}_i \otimes \mathcal{H}_j$.

13
Proof : By Lemma 3.2 and the definition of relative trace we have, for any \(x_0, x_1, y_0, y_1 \in A\),

\[
\langle x_0, x_1 | (P_C | a \rangle \langle b | P_C) (\{0, 1\}) | y_0, y_1 \rangle \\
= \sum_{x_2, x_3, x_4 \in A} \langle x_0, x_1, x_2, x_3, x_4 | P_C | a \rangle \langle b | P_C | y_0, y_1, x_2, x_3, x_4 \rangle \\
= d^{-8} \sum_{x_2 + x_3 + x_4 = \sum a_i - x_0 - x_1} \sum_{x_2 + x_3 + x_4 = \sum b_i - y_0 - y_1} \langle x, \sigma^2(x) \rangle \langle a, \sigma^2(a) \rangle \langle b, \sigma^2(b) \rangle \\
\times \langle y_0, y_1, x_2, x_3, x_4, \sigma^2(y_0, y_1, x_2, x_3, x_4) \rangle
\]

The right hand side vanishes if \(\sum (a_i - b_i) \neq x_0 + x_1 - y_0 - y_1\). Now suppose that \(\sum (a_i - b_i) = x_0 + x_1 - y_0 - y_1\). Then the right hand side is equal to

\[
d^{-8} \langle a, \sigma^2(a) \rangle \langle b, \sigma^2(b) \rangle \langle \sum a_i - x_0 - x_1, x_0 + x_1 - y_0 - y_1 \rangle \times \sum_{x_2, x_1 \in A} \langle x_2, y_1 - x_1 \rangle \langle x_4, y_0 - x_0 \rangle \\
= \begin{cases}
0 & \text{if } x_0 \neq y_0 \text{ or } x_1 \neq y_1, \\
d^{-6} \langle a, \sigma^2(a) \rangle \langle b, \sigma^2(b) \rangle & \text{otherwise.}
\end{cases}
\]

This proves the lemma when \(i = 0, j = 1\). A similar (but tedious) algebra shows that the lemma holds when \(i = 0, j = 2\).

The cyclic permutation \(\sigma\) of the basis \(\{ |x\rangle, x \in A^5 \}\) induces a unitary operator \(U_\sigma\) in \(A^5\). Since \(\sigma\) leaves \(C\) invariant it follows that \(U_\sigma P_C = P_C U_\sigma\) and therefore

\[
U_\sigma P_C | a \rangle \langle b | P_C U_\sigma^{-1} = P_C | \sigma(a) \rangle \langle \sigma(b) | P_C,
\]

which, in turn, imples that

\[
\langle x_1, x_2 | (P_C | a \rangle \langle b | P_C) (\{1, 2\}) | y_1, y_2 \rangle \\
= \langle x_1, x_2 | P_C | \sigma^{-1}(a) \rangle \langle \sigma^{-1}(b) | P_C \rangle (\{0, 1\}) | y_1, y_2 \rangle.
\]

By what has been already proved the lemma follows for \(i = 1, j = 2\). A similar covariance argument proves the lemma for all pairs \(\{i, j\}\).
Theorem 3.4 The range of P_C is a perfectly entangled subspace of $L^2(A^{\otimes 5})$ and $\dim P_C = \#A$.

Proof : Immediate from Lemma 3.3 and the fact that every operator in $L^2(A^{\otimes 5})$ is a linear combination of operators of the form $|a\rangle\langle b|$ as a, b vary in A^5.

Acknowledgement : I thank A.J. Parameswaran and B. Pati for their help in explaining to me the role of basic algebraic geometry in the proof of Proposition 1.4.

REFERENCES

1. V. Arvind and K.R. Parthasarathy : A family of quantum stabilizer codes based on the Weyl commutation relations over a finite filed, in A Tribute to C.S. Seshadri, Perspectives in Geometry and Representation Theory, Edited by V. Lakshmibai et al, Hindustan Book Agency (India) 2003, pp 133 - 153.

2. M. Horodecki and R. Horodecki, Separability of mixed states : necessary and sufficient conditions, Phys. Lett. A 223 (1-2) pp 1-8, 1996.

3. M.A. Nielsen and I.L. Chuang : Quantum Computation and Quantum Information, Cambridge University Press, Cambridge 1999.

4. I.R. Shafarevich, Basic Algebraic Geometry I, Second edition, Springer Verlag, Berlin. (Translated from Russian) 1994.