Selenium Levels based on Various Menopause Complaints Assessed by Menopause-specific Quality of Life Questionnaire before and after Selenium Intervention

Muhammad Ramadhan Hisworo*, Muhammad Fidel Ganis Siregar, Hotma Partogi Pasaribu, Johny Marpaung, Muhammad Rusda, Sarah Dina, Edy Ardiansyah

Department of Obstetric and Gynecology, Faculty of Medicine, Universitas Sumatera Utara, RSUP H. Adam Malik, Medan, Indonesia

Introduction

Based on the WHO reported, in 2007, there were 55% women aged over 60 years worldwide and increased to 58% women aged over 70 years. By 2050, it is estimated that 84% of population over were aged over 60 will live in poor and developing countries [1].

Menopause is menstruation cessation that reflects ovulation cessation due to loss of ovarian follicles, which results in decreased ovarian production of estradiol, most biologically active form of estrogen, as well as increased circulating concentrations of follicle stimulating hormone (FSH) and decreased concentrations of inhibin, which inhibits FSH release [2].

Antioxidant status and lipid metabolism both worsen with decreased estrogen levels which amplify risk of oxidative stress-related diseases in menopause. The capacity of estrogens to prevent free radical scavenging, neutralize effects of increased reactive oxygen species (ROS) and production of antioxidant molecules decreases at menopause [3].

Selenium in the form of selenoprotein functions as an antioxidant to protect ROS and reactive nitrogen species. Selenium functions as cofactor for glutathione peroxidase and helps minimize oxidative damage through cellular metabolism [4]. Selenium deficiency can lead to increased ROS levels, whereas plasma selenium is positively related to bone mineral density in healthy and euthyroid postmenopausal women [5]. Selenium affects thyroid gland function. Changes in thyroid function can result in mood worsening, as well as impaired behavior and cognitive function [6].

Menopause-specific quality of life questionnaire (MENQOL) addresses occurrence and extent of distressing physical and psychological problems that affects women during menopausal transition [7]. MENQOL questionnaire can be used as a tool to predict occurrence of various disorders in menopausal women both physical and psychological aspects [8].
According to Wimmer et al., normal levels of selenium serum were 120–160 μg/l [9]. According Jenary I. research, mean selenium levels in 35 samples of postmenopausal women in Medan on 2021 was 107.69 ug/L. Regarding correlation between selenium levels and menopausal complaints, it was found that there was a negative correlation between selenium levels and psychosocial disorders aspects (p > 0.05), a negative correlation between selenium levels and vasomotor disorders aspects (p > 0.05), and weak negative correlation between selenium levels and sexual disorders aspects (p > 0.05). In this study, there was a weak negative correlation between selenium levels and physical disorders aspects with a correlation coefficient of (–0.386), there was no significant correlation between selenium levels and sexual disorders aspects (p > 0.05), and weak negative correlation between selenium levels and MENQOL total score (–0.375) [10].

Examination of selenium levels is cheaper and easier than examination of glutathione peroxidase for early detection of menopausal complaints and selenium supplementation has potential as an additional nutrient in postmenopausal women to maintain menopausal women quality of life. Based on above background, researcher is interested to prove effect of selenium supplementation on selenium levels based on menopausal complaints assessed by MENQOL.

Materials and Methods

This research is an analytical study with quasi-experimental pre-test and post-test one group only design which was carried out at Prodia S. Parman Clinical Laboratory, Medan in May 2022 until sample was met. The research sample was menopausal women in Medan who were aged >51 years old who met inclusion and exclusion criteria and had signed consent form. To facilitate the analysis, a minimum of 25 patients will be recruited.

The inclusion criteria were willing to participate in this research and take blood samples, fill out questionnaires, and have filled out an informed consent form. In addition, exclusion criteria in this research were: Patients who had undergone surgical removal of uterus or ovaries, chemotherapy, radiotherapy in pelvic area, receiving hormone replacement treatment, patients with malignancy (thyroid and breast), and chronic and uncontrolled metabolic diseases (diabetes mellitus and hypertension).

The collected blood samples then examined for selenium levels. This examination was carried out before and after administration of selenium supplementation. Selenium tablets at dose of 100 mcg/day were given to research subjects for 1 week. To analyze differences of selenium levels, an inferential analysis will be carried out. Normality test will be done by Saphiro–Wilk test. If data were normally distributed, dependent T test will be used, while if data were not normally distributed, Wilcoxon test will be used. The analysis results were stated to be significant with p < 0.05.

Table 1: Research subject characteristics data

Characteristics	n (%)
Age (year old)	
51–60	19 (76)
>60	6 (24)
Education	
Low (Elementary school-junior high school)	14 (56)
Middle (Senior high school)	9 (36)
High (University)	2 (8)
BMI	
Underweight	0
Normal	9 (36)
Overweight	14 (56)
Obese	2 (8)
Menopause duration (years)	
<2	2 (8)
2–5	10 (40)
>5	13 (52)

BMI: Body mass index.

Results

In this research, research subjects were menopausal women in Medan who were aged more than or equal to 51 years who met the inclusion criteria as many as 25 people. Research subjects characteristics were presented in Table 1.

Based on Table 2, the respondents response results about menopausal symptoms as measured by MENQOL with score of 1 stated as no complaints and score of 2–8 stated as with complaints. The indicator vasomotor disorders aspect found that most complained was easy sweating (40%) which this indicator decreased compared to pre-treatment (44%). Results of comparison test showed that all indicators on vasomotor aspect did not differ significantly between before and after selenium administration (p > 0.05). The indicator of psychosocial disorders aspects found that experiencing memory loss is most complained before pretreatment (60%) but increased to 68% in post-treatment. The comparison test results showed that all indicators on psychosocial aspects were not significantly different between before and after selenium administration (p > 0.05).

The comparison test results showed that all indicators on physical aspect did not differ significantly between before and after selenium administration (p > 0.05), except for muscle and joint pain which had a significant difference between before and after selenium administration (p < 0.05). On sexual disorders aspect, most complained after treatment was sexual desire decrease (36%) which decreased compared to pretreatment (48%). The comparison test results showed that all indicators on sexual aspect did not differ significantly between before and after selenium administration (p > 0.05).

Selenium levels and menopausal complaints based on MENQOL were compared based on mean
values before (pre-treatment) and after (post-treatment) selenium administration using mean test of two paired samples.

Based on Table 3, mean serum selenium level before selenium administration was 93.20 ± 17.253 μg/L which then increased to 132.12 ± 19.866 μg/L after selenium administration. The comparison test results between before and after administration of selenium obtained p = 0.000 (p < 0.05), which means there was a significant difference in serum selenium levels before and after selenium administration described on Table 4. The comparison test results between before and after selenium administration showed that there was no significant scores difference in aspects of vasomotor disorders (p = 1.000 [p > 0.05]), psychosocial disorders (p = 0.090 [p > 0.05]), physical disorders (p = 0.323 [p > 0.05]), and sexual disorders (p = 0.959 [p > 0.05]) between before and after selenium administration.

The results based on Table 5 showed a negative correlation between selenium levels and total MENQOL score, aspects of vasomotor disorders, aspects of psychosocial disorders, and aspects of sexual disorders after selenium administration. However, correlation between four indications was not statistically significant (p > 0.05). In correlation test between selenium levels and aspects of physical disorders after selenium administration found positive correlation, but correlation test between selenium levels and aspects of physical disorders after selenium administration was not statistically significant (p > 0.05).

Discussion

Low selenium levels in this research were not associated with menopausal complaints based on MENQOL score. These results are in line with the previous studies that in overweight and obese postmenopausal women, serum selenium levels were not associated with quality of life based on physical, sexual, and menopausal health aspects [11]. However, these results are not in line with Placido et al. research which showed decrease in quality of life according to decrease in selenium levels, menopausal symptoms will increase and be severe in postmenopausal women [12]. Basically, selenium in the form of selenocysteine is a catalyst for enzyme glutathione peroxidase in mammals, including humans. Glutathione peroxidase is an antioxidant enzyme that can be used as a marker of menopausal complaints severity [13]. However, in this research, there was no relationship between selenium levels and menopausal complaints.
Llaneta et al. explained that there was no effect of selenium administration on menopausal women's quality of life because menopausal women were obese and overweight. The food consumed tends to be high in saturated fat but low in total fat, fruit, vegetables, and fiber which causes low intake of antioxidants [11].

Table 3: Comparison of selenium levels and menopausal complaints before and after selenium administration

Variable	n	Range	Mean ± SD	p
Selenium levels (pre) (μg/L)	25	70.00–141.00	93.20 ± 17.253	< 0.001
Selenium levels (post) (μg/L)	25	91.00–179.00	132.12 ± 19.866	
MENQOL total score (pre)	25	35–147	76.20 ± 28.34	0.809
MENQOL total score (post)	25	41–155	75.12 ± 29.55	
Aspects of vasomotor disorders (pre)	25	3–24	6.84 ± 5.15	1.000
Aspects of psychosocial disorders (pre)	25	7–36	15.32 ± 8.49	0.098
Aspects of physiologic disorders (pre)	25	7–37	17.08 ± 8.13	
Aspects of physiologic disorders (post)	25	22–84	46.80 ± 16.35	0.323
Aspects of psychosocial disorders (post)	25	23–79	44.36 ± 15.88	
Aspects of sexual disorders (pre)	25	3–20	7.44 ± 4.93	0.959
Aspects of sexual disorders (post)	25	3–24	7.52–6.00	

*Correlation p = 0.05 = Significant. Pre: Before selenium administration. Post: After selenium administration. SD: Standard deviation. MENQOL: Menopause-specific Quality of Life Questionnaire.

In this research results, selenium supplementation was able to increase serum selenium levels to 132.12 ± 19.866 μg/L where normal range of selenium levels was 120–160 g/L. Research by Ha Eun Jeung on healthy American postmenopausal women showed that maintaining selenium levels by consuming foods containing selenium above RDA (average intake of 90 mcg/day) for approximately 1 week was able to increase action of enzyme glutathione peroxidase [14]. The comparison test results between before and after selenium administration obtained p = 0.000 (p < 0.05), which means there was a significant serum selenium levels differences between before and after selenium administration. These results are in line with studies in sheep that supplementation with Selenium 0.15 mg/kg increased serum Se levels linearly with increasing duration of experimental feeding for 30; 60; and 90 days. Similar results were reported that 12 weeks of supplementation with 400 mg Q10 and 200 g selenium per day in women aged 58 years significantly increased serum Q10 and selenium levels compared with placebo [15].

Table 4: Correlation between selenium levels and menopausal complaints based on Menopause-specific Quality of Life Questionnaire before selenium administration

Variable	n	Range	Pearson correlation test, p < 0.05 = Significant. Pre: Before selenium administration. Post: After selenium administration. SD: Standard deviation. MENQOL: Menopause-specific Quality of Life Questionnaire.
Selenium level-MENQOL total score	25	-0.176	0.400
Selenium levels-aspects of vasomotor disorders	25	-0.146	0.498
Selenium levels-aspects of psychosocial disorders	25	-0.146	0.498
Selenium levels-aspects of physical disorders	25	-0.184	0.378

Table 5: Correlation between selenium levels and menopausal complaints based on menopause-specific quality of life questionnaire after selenium administration

Correlation post treatment	n	R	p
Selenium level-MENQOL total score	25	-0.022	0.915
Selenium levels-aspects of vasomotor disorders	25	-0.109	0.694
Selenium levels-aspects of psychosocial disorders	25	-0.055	0.793
Selenium levels-aspects of physical disorders	25	0.032	0.878
Selenium levels-aspects of sexual disorders	25	-0.040	0.849

In this research, selenium supplementation could significantly increase serum selenium levels, there was no significant change in clinical aspects, namely, changes in menopausal complaints. One of reasons is limited strong evidence regarding correlation between selenium levels and menopausal complaints, especially MENQOL scores, and this research results also reported that there was no significant relationship between menopausal levels and menopausal complaints based on MENQOL scores both before and after selenium treatment. Muharram et al. also reported similar results related to absence of a significant change in clinical aspect of MENQOL complaints after supplementation of 120 mg daidzein for 8 weeks [16].
In addition, it was also reported that several disorders in elderly due to low serum selenium levels include cardiovascular disease, poor cognitive function, and reduced muscle strength. However, results relating selenium supplementation in muscle also suggest that supplementation of 200 g/day for 26 weeks did not affect bone turnover (as assessed by NTX/Cr) and did not benefit musculoskeletal health in postmenopausal women [20].

Conclusion

Total MENQOL scores and complaints based on aspects of vasomotor, psychosocial, physical, and sexual disturbances did not show statistically significant changes after administration selenium tablets 100 mcg/day for 7 days.

Acknowledgment

Research needs to be done to find other parameters besides selenium which is likely to be closely correlated with menopausal symptoms so that people with menopausal symptoms can later be given adequate food intake more precisely contains these parameters. Further research is needed regarding the correlation of selenium levels with menopausal complaints based on normal and abnormal grouping of selenium levels.

Ethical Approval

Health Research Ethical Committee, Universitas Sumatera Utara, Medan, Indonesia, approved this study.

References

1. Mafobelu D. Women and Health: Today’s Evidence Tomorrow Agenda. Geneva: World Health Organization; 2009.
2. Berek, Jonathan, Berek D. Reproductive Endocrinology. In: Berek and Novak’s Gynecology. 15th ed. New York, NY: Lippincott Williams and Wilkins; 2012.
3. Chandankhede M, Gupta M, Pakhmode S. Assessment of psychological status and oxidative stress in postmenopausal women: A cross-sectional study. J Menopausal Med. 2021;27(3):155-61. https://doi.org/10.6118/jmm.20035
4. Nessel TA, Gupta V. Selenium. Treasure Island, FL: StatPearls; 2022. Available from: https://www.pubmed.ncbi.nlm.nih.gov/32491483 [Last accessed on 2022 Sep 28].
5. Wang Y, Xie D, Li J, Long H, Wu J, Wu Z, et al. Association between dietary selenium intake and the prevalence of osteoporosis: A cross-sectional study. BMC Musculoskeletal Disord. 2019;20(1):585. https://doi.org/10.1186/s12891-019-2958-5
6. Kieliszek M. Selenium-fascinating microelement, properties and sources in food. Molecules. 2019;24(7):1298. https://doi.org/10.3390/molecules24071298
7. Gazibara T, Kovacevic N, Nurkovic S, Kurtagic I, Radovanovic S, Rancic B, et al. Menopause-specific quality of life questionnaire: Factor and Rasch analytic approach. Climacteric. 2019;22(1):90-6. https://doi.org/10.1080/13697137.2018.1535585
8. Hilditch JR, Lewis J, Peter A, van Maris B, Ross A, Franssen E, et al. A menopause-specific quality of life questionnaire: Development and psychometric properties. Maturitas. 1996;24(6):161-75. https://doi.org/10.1016/s0378-5122(96)82006-8
9. Wimmer I, Hartmann T, Brustbauer R, Minear G, Dam K. Selenium levels in patients with autoimmune thyroiditis and controls in lower Austria. Horm Metab Res. 2014;46(10):707-9. https://doi.org/10.1055/s-0034-1377029
10. Immanuel J. Hubungan Kadar Selenium Dengan Berbagai Keluhan Menopause Yang Dinilai Dengan Menggunakan Menopause-Specific Quality Of Life Questionaire (MENQOL). Thesis; 2021.
11. Llaneza P, Gonzales C, Fernandez-Inarrea J, Alonso A, Arnott I, Ferrer-barriendos J. Selenium and health-related quality of life in menopausal women. Menopause Int. 2009;15(4):144-9. https://doi.org/10.1258/mi.2009.009036
12. Pavadyan LA, Manukyan ZH, Harutyunyan LH, Musayelyan MV, Sahakyan AD, Tonikyan HG. Antioxidant properties of selenophene, thiophene and their aminocarbonitrile derivatives. Antioxidants (Basel). 2017;6(2):22. https://doi.org/10.3390/antiox6020022
13. Ha EJ, Smith AM. Selenium-dependent glutathione peroxidase activity is increased in healthy post-menopausal women. Biol Trace Elem Res. 2009;131(1):90-5. https://doi.org/10.1007/s12011-009-8346-5
14. Borsrud MP, Langslet G, Ose L, Arnesen KE, Sm stuen MC, Malt UF, et al. No effect of combined coenzyme Q10 and selenium supplementation on atorvastatin-induced myopathy. Scand Cardiovasc J. 2013;47(2):80-7. https://doi.org/10.3109/1 4017431.2012.756119
15. Muharam R, Budiman B, Rachman IA, Nirmalasari RA. Effect of daidzein 120 mg supplementation to menopausal symptoms and quality of life in non equal producer women. Asian J Pharm Clin Res. 2016;9(3):37-40. https://doi.org/10.22159/ajpcr.2016. v9s3.14023.
16. Gardner B, Lally P, Wardle J. Making health habitual: The psychology of habit formation and general practice. Br J Gen Pract. 2012;62(605):664-6. https://doi.org/10.3399/bjgp12X605466
17. Li TL, Tao ZS, Wu XJ, Yang M, Xu HG. Selenium-modified calcium phosphate cement can accelerate bone regeneration of bone turnover. J Membrane Biol. 2012;250(5):403-10. https://doi.org/10.1007/s00232-012-9746-1
18. Gazibara T, Kovacevic N, Nurkovic S, Kurtagic I, Radovanovic S, Rancic B, et al. Menopause-specific quality of life questionnaire: Factor and Rasch analytic approach. Climacteric. 2019;22(1):90-6. https://doi.org/10.1080/13697137.2018.1535585
19. Hilditch JR, Lewis J, Peter A, van Maris B, Ross A, Franssen E, et al. A menopause-specific quality of life questionnaire: Development and psychometric properties. Maturitas. 1996;24(6):161-75. https://doi.org/10.1016/s0378-5122(96)82006-8
20. Wimmer I, Hartmann T, Brustbauer R, Minear G, Dam K. Selenium levels in patients with autoimmune thyroiditis and controls in lower Austria. Horm Metab Res. 2014;46(10):707-9. https://doi.org/10.1055/s-0034-1377029
21. Immanuel J. Hubungan Kadar Selenium Dengan Berbagai Keluhan Menopause Yang Dinilai Dengan Menggunakan Menopause-Specific Quality Of Life Questionaire (MENQOL). Thesis; 2021.
22. Llaneza P, Gonzales C, Fernandez-Inarrea J, Alonso A, Arnott I, Ferrer-barriendos J. Selenium and health-related quality of life in menopausal women. Menopause Int. 2009;15(4):144-9. https://doi.org/10.1258/mi.2009.009036
23. Pavadyan LA, Manukyan ZH, Harutyunyan LH, Musayelyan MV, Sahakyan AD, Tonikyan HG. Antioxidant properties of selenophene, thiophene and their aminocarbonitrile derivatives. Antioxidants (Basel). 2017;6(2):22. https://doi.org/10.3390/antiox6020022
24. Ha EJ, Smith AM. Selenium-dependent glutathione peroxidase activity is increased in healthy post-menopausal women. Biol Trace Elem Res. 2009;131(1):90-5. https://doi.org/10.1007/s12011-009-8346-5
25. Borsrud MP, Langslet G, Ose L, Arnesen KE, Sm stuen MC, Malt UF, et al. No effect of combined coenzyme Q10 and selenium supplementation on atorvastatin-induced myopathy. Scand Cardiovasc J. 2013;47(2):80-7. https://doi.org/10.3109/1 4017431.2012.756119
26. Gardner B, Lally P, Wardle J. Making health habitual: The psychology of habit formation and general practice. Br J Gen Pract. 2012;62(605):664-6. https://doi.org/10.3399/bjgp12X605466
27. Li TL, Tao ZS, Wu XJ, Yang M, Xu HG. Selenium-modified calcium phosphate cement can accelerate bone regeneration of bone turnover. J Membrane Biol. 2012;250(5):403-10. https://doi.org/10.1007/s00232-012-9746-1
18. Yang T, Lee SY, Park KC, Park SH, Chung J, Lee S. The effects of selenium on bone health: From element to therapeutics. Molecules. 2022;27(2):392. https://doi.org/10.3390/molecules27020392
PMid:35056706

19. Walsh JS, Jacques RM, Schomburg L, Hill TR, Mathers JC, Williams GR, et al. Effect of selenium supplementation on musculoskeletal health in older women: A randomised, double-blind, placebo-controlled trial. Lancet Healthy Longev. 2021;2(4):e212-21. https://doi.org/10.1016/S2666-7568(21)00051-9
PMid:33842907

20. Kumar N, Garg AK, Dass RS, Chaturvedi VK, Mudgal V, Varshney VP. Selenium supplementation influences growth performance, antioxidant status and immune response in lambs. Anim Feed Sci Technol. 2009;153(1-2):77-87. https://doi.org/10.1016/j.anifeedsci.2009.06.007