CASE REPORT

Acute Pulmonary Graft-Versus-Host Disease in a Patient with Adult T-cell Leukemia-Lymphoma Diagnosed by a Cryobiopsy

Hiroshi Kobe¹, Machiko Arita¹, Takeshi Maeda², Osamu Nagata², Takashi Niwa³, Fumiaki Tokioka¹ and Tadashi Ishida¹

Abstract:
A 51-year-old woman with adult T-cell leukemia-lymphoma was hospitalized in order to undergo allogeneic hematopoietic stem cell transplantation. On day 29 after transplantation, she began to experience hypoxia upon exertion. Chest computed tomography revealed centrilobular granular shadows, and pulmonary function tests revealed a remarkable obstructive ventilatory impairment compared to before transplantation. A histopathological analysis following a transbronchial lung cryobiopsy revealed acute graft-versus-host disease (GVHD). We herein report a rare case of histopathologically diagnosed acute pulmonary GVHD with spontaneous remission.

Key words: adult T-cell leukemia-lymphoma, transbronchial lung cryobiopsy, acute graft-versus-host disease, spontaneous remission

(Intern Med Advance Publication)
(DOI: 10.2169/internalmedicine.6358-20)

Introduction

Allogeneic hematopoietic stem-cell transplantation (allo-HSCT) is a life-prolonging or curative treatment option for patients with hematologic malignancies (1). However, graft-versus-host disease (GVHD), an adverse immunological reaction, remains the leading cause of death following allo-HSCT. The skin, gastrointestinal tract, and liver are well described target organs of GVHD (2). In contrast, pulmonary GVHD is discussed less often in this setting (3). Moreover, post-transplantation patients often have a poor general condition, and performing a sufficient lung biopsy for an accurate diagnosis is difficult. We encountered the present pulmonary GVHD case after allo-HSCT for adult T-cell leukemia-lymphoma (ATLL). A histological diagnosis allowed us to observe the progress and not perform any unnecessary treatment.

Case Report

A 51-year-old woman was referred to the Department of Hematology with abnormal lymphocyte levels 4 years previously. Human T-cell leukemia virus type-1 was positive. Laboratory tests and computed tomography (CT) led to a diagnosis of smoldering-type ATLL, and she underwent a follow-up examination. This time, abnormal lymphocytes were increased (about 74% of white blood cells), and we concluded that the smoldering type of ATLL had transitioned to the chronic type. Chemotherapy was scheduled.

She started treatment with the CHOP regimen (C: Cyclophosphamide, H: Hydroxydaunorubicin, O: Oncovin, P: Prednisone). Mogamulizumab (MOG) was added because of an inadequate response to two courses of CHOP treatment. She finally received four courses of CHOP and a single dose of MOG (1 mg/kg), resulting in a partial remission. She was also administered triple IT (methotrexate, cyta-

¹Department of Respiratory Medicine, Ohara Healthcare Foundation, Kurashiki Central Hospital, Japan, ²Department of Hematology/Oncology, Ohara Healthcare Foundation, Kurashiki Central Hospital, Japan and ³Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Japan
Received: September 24, 2020; Accepted: December 22, 2020; Advance Publication by J-STAGE: February 15, 2021
Correspondence to Dr. Hiroshi Kobe, hk16554@kchner.or.jp
rabine, prednisolone) 5 times for prophylaxis of central nervous system involvement. She subsequently underwent allo-HSCT from a human leukocyte antigen (HLA)-matched unrelated female bone marrow donor after fludarabine and melphanal as the conditioning regimen.

GVHD prevention consisted of tacrolimus and methotrexate. Bone marrow engraftment was achieved on day 16 after allo-HSCT. On day 29, she began to experience hypoxia upon exertion. During exertion, she needed 3.0 L/min of nasal cannula oxygen. On day 36, pulmonary function tests (PFTs) revealed a remarkable obstructive ventilatory disorder compared to her condition before undergoing allo-HSCT (Table 1). On day 110, she was discharged, and her respiratory condition has since remained stable. On day 189, the diffuse thickening of the bronchial walls and the centrilobular granular shadow disappeared on chest CT scans (Fig. 4).

Table 1. Pulmonary Function Tests.

	before remission induction therapy	On the Day 36	On the Day 97
VC (L)	2.97	1.76	2.32
%VC (%)	101	60.7	79.7
FEV1 (L)	2.21	0.86	1.46
%FEV1 (%)	94.4	37.2	63.2
FEV1% (%)	74.4	48.9	62.9
%DLCO (%)	85.4	46.3	46.8
RV/TLC (%)	99.2	160.8	113.6

DLCO: diffusing capacity for carbon monoxide, VC: vital capacity, FEV1: forced expiratory volume in 1 second, TLC: total lung capacity, RV: residual volume

Discussion

Acute pulmonary GVHD in the first 120 days after allo-HSCT has been reported in from 3-15% of all patients (5). The clinical symptoms include fever, cough, dyspnea, and hypoxemia. Radiographic findings include bilateral interstitial infiltrate. PFTs show obstructive findings. Mortality rates range from 60% to 80% overall, while they are greater than 95% for patients requiring mechanical ventilation.

The patient in our case had a cough, dyspnea, and hypoxemia. According to PFTs and chest CT, remarkable obstructive findings, diffuse thickening of the bronchial walls, and a worsening of the centrilobular granular shadow compared to that before Allo-HSCT were all observed. Pulmonary GVHD was suspected and then positively diagnosed following a cryobiopsy. Because her oxygen demand had improved to normal, the day after the cryobiopsy, we chose to carefully follow her and to not use steroids.

Lauren Xu et al. reported the histological findings in lung biopsies in 17 biopsies from 14 patients with suspected pulmonary GVHD (6). The histopathological features are increased intraepithelial bronchiolar T cells, reactive bronchiolar cells showing atypia, and apoptotic bodies in the bronchiolar mucosa. In our case, T cells infiltrated the intraepithelial bronchiolar tissue, and apoptosis was seen.

![Figure 1](image1.png)
Figure 1. On chest CT scans, diffuse thickening of the bronchial walls and a worsening of the centrilobular granular shadow and air trapping were seen. The respiratory phase (A). The exhalation phase (B).
Table 2. Laboratory Data before Remission Induction Therapy and in Bronchoalveolar Lavage Fluid.

Parameter	Value	Value	
WBC(μL)	18,100	CRP(mg/dL)	0.05
Neutro(%)	8	AMY(U/L)	48
Eos(%)	1	CPK(U/L)	48
Lymph(%)	13	CH50(U/mL)	48
Mono(%)	4	BNP(pg/mL)	<5.8
Abnormal cell(%)	74	ANA	<40
Hb(g/dL)	14.4	IgG(mg/dL)	1,551
PLT(μL)	27.1×10⁴	βD-Glucan(pg/mL)	7.2
Alb(g/dL)	4.4	HTLV-1 DNA	positive
AST(U/L)	17		
ALT(U/L)	14	Urinary protein	negative
LDH(U/L)	211	Urinary occult blood	negative
BUN(mg/dL)	19	Urinary sugar	negative
CRE(mg/dL)	0.71		
eGFR(mL/min/1.73m²)	67.9		
Na(mmol/L)	140		
K(mmol/L)	4.4		
Ca(mg/dL)	10.2		

WBC: white blood cell, Neutro: neutrophil, Eos: eosinophil, Mono: monocyte, Hb: hemoglobin, PLT: platelet, Alb: Albumin, AST: aspartate aminotransferase, ALT: alanine aminotransferase, LDH: lactate dehydrogenase, BUN: blood urea nitrogen, CRE: Creatinine, eGFR: estimated glomerular filtration rate, Na: sodium, K: potassium, Ca: calcium, CRP: C-reactive protein, AMY: amylase, CPK: creatine phosphokinase, CH50: complement activities, BNP: brain natriuretic peptide, ANA: antinuclear antibody, IgG: Immunoglobulin G, HTLV-1 DNA: human T-cell leukemia virus type 1 deoxyribonucleic acid, PCR: polymerase chain reaction

Figure 2. Photomicrograph of a histopathological pulmonary specimen obtained by a cryobiopsy. Hematoxylin and Eosin staining (A), (B). Lymphocytic infiltration into the bronchial walls and proliferation of the bronchial epithelium (A). Erosions in the bronchiolar epithelium (B). Immunohistochemistry for CD8 shows T-cell infiltration (C) and agglomeration of histiocytes on the erosive surface (D). Immunohistochemistry for cytokeratin shows erosions in the bronchiolar epithelium (E).

Usually, almost all patients had a pathological or clinical diagnosis of extrapulmonary GVHD when pulmonary GVHD was diagnosed. Generally, gastrointestinal and skin GVHD also progress when pulmonary GVHD progresses, but in this case, pulmonary GVHD preceded the gastrointestinal and skin GVHD, and thus, a histological diagnosis was very important in this case.

Systemic steroid therapy is the standard first-line treatment for acute GVHD (7). However, in 35-50% of patients, acute GVHD becomes refractory to systemic steroid therapy. These patients need alternative therapies including extracorporeal photopheresis, anti-tumor necrosis factor-α antibod-
The clinic all courses of our patient.

Figure 3. The clinical course of our patient.

Figure 4. Chest CT scans on day 189 showed the disappearance of the diffuse thickening of the bronchial walls and the absence of the centrilobular granular shadow.

Pulmonary GVHD is a rare disease compared to gastrointestinal, liver, and skin GVHD, but it can be fatal and requires careful identification to avoid problems such as pulmonary infection diseases. The benefits of avoiding steroids, which increase the risk of infection in post-transplant patients, are enormous.

In our case, we established an accurate treatment plan for pulmonary GVHD following a cryobiopsy. A cryobiopsy is an appropriate technique for post-transplant patients with a poor general condition, and further knowledge of this technique in these types of patients is needed in the future.

The authors state that they have no Conflict of Interest (COI).

Acknowledgement

The authors have nothing to disclose.

References

1. Tanya M Wildes, Derek L Stirewalt, Bruno Medeiros, Arti Hurria. Hematopoietic Stem Cell Transplantation for Hematologic Malignancies in Older Adults: Geriatric Principles in the Transplant Clinic. J Natl Compr Canc Netw 12: 128-136, 2014.

2. Robert Zeiser, Bruce R Blazer. Acute Graft-versus-Host Disease - Biologic Process, Prevention, and Therapy. N Engl J Med 377: 2167-2179, 2017.

3. Yousem SA. The Histological Spectrum of Pulmonary Graft-Versus-Host Disease in BoneMarrow Transplant Recipients. Hum Pathol 26: 668-675, 1995.
4. Claudia Ravaglia, Athol U Wells, Sara Tomassetti, et al. Diagnostic Yield and risk/benefit Analysis of Trans-Bronchial Lung Cryobiopsy in Diffuse Parenchymal Lung Diseases: A Large Cohort of 699 Patients. BMC Pulm Med 19: 16, 2019.
5. Cooke KR, Yanik G. Acute Lung Injury After Allogeneic Stem Cell Transplantation: Is the Lung a Target of Acute Graft-Versus-Host Disease? Bone Marrow Transplant 34: 753-765, 2004.
6. Lauren Xu, Cinthia Drachenberg, Fabio Tavora, Allen Burke. Hum Pathol. Histologic Findings in Lung Biopsies in Patients With Suspected Graft-Versus-Host Disease 44: 1233-1240, 2013.
7. Florent Malard, Xiao-Jun Huang, Joycelyn PY Sim. Treatment and Unmet Needs in Steroid-Refractory Acute Graft-Versus-Host Disease. Leukemia 34: 1229-1240, 2020.
8. Fiona L Dignan, Andrew Clark, Persis Amrolia, et al. Diagnosis and Management of Acute Graft-Versus-Host Disease. Br J Haematol 158: 30-45, 2012.
9. Shigeo Fuji, Yoshitaka Inoue, Atae Utsunomiya, et al. Pretransplantation Anti-CCR4 Antibody Mogamulizumab Against Adult T-Cell Leukemia/Lymphoma Is Associated With Significantly Increased Risks of Severe and Corticosteroid-Refractory Graft-Versus-Host Disease, Nonrelapse Mortality, and Overall Mortality. J Clin Oncol 34: 3426-3433, 2016.
10. Takeshi Sugio, Koji Kato, Takatoshi Aoki, et al. Mogamulizumab Treatment Prior to Allogeneic Hematopoietic Stem Cell Transplantation Induces Severe Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 22: 1608-1614, 2016.
11. Virginia Pajero’s, Carmen Puzo, Diego Castillo, et al. Diagnostic Yield of Transbronchial Cryobiopsy in Interstitial Lung Disease: A Randomized Trial. Respirology 19: 900-6, 2014.
12. Lauren K Troy, Christopher Grainge, Tamera J Corte, et al. Diagnostic Accuracy of Transbronchial Lung Cryobiopsy for Interstitial Lung Disease Diagnosis (COLDICE): A Prospective, Comparative Study. Lancet Respir Med 8: 171-181, 2020.
13. Julia Walscher, Benjamin GroB, Ralf Eberhardt, et al. Transbronchial Cryobiopsies for Diagnosing Interstitial Lung Disease: Real-Life Experience From a Tertiary Referral Center for Interstitial Lung Disease. Respiration 97: 348-354, 2019.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).