de Cassia da Silva, Cleliani; Porto Zambon, Mariana; Vasques, Ana Carolina J.; Rodrigues, Ana Maria de B.; Fernandes Camilo, Daniella; Antonio, Maria Ângela R. de G. M.; Soares L. Cassani, Roberta; Geloneze, Bruno

Circunferência do pescoço como um novo indicador antropométrico para predição de resistência à insulina e componentes da síndrome metabólica em adolescentes: Brazilian Metabolic Syndrome Study

Revista Paulista de Pediatria, vol. 32, núm. 2, junio, 2014, pp. 221-229

Sociedade de Pediatria de São Paulo
São Paulo, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=406034050012

Revista Paulista de Pediatria,
ISSN (Versão impressa): 0103-0582
rpp@spsp.org.br
Sociedade de Pediatria de São Paulo
Brasil

Como citar este artigo | Número completo | Mais informações do artigo | Site da revista

www.redalyc.org
Projeto acadêmico não lucrativo, desenvolvido pela iniciativa Acesso Aberto
Circunferência do pescoço como um novo indicador antropométrico para predição de resistência à insulina e componentes da síndrome metabólica em adolescentes: Brazilian Metabolic Syndrome Study

Neck circumference as a new anthropometric indicator for prediction of insulin resistance and components of metabolic syndrome in adolescents: Brazilian Metabolic Syndrome Study

Cleliani de Cassia da Silva¹, Mariana Porto Zambon¹, Ana Carolina J. Vasques¹, Ana Maria de B. Rodrigues¹, Daniella Fernandes Camilo¹, Maria Ângela R. de G. M. Antonio¹, Roberta Soares L. Cassani¹, Bruno Geloneze¹

RESUMO

Objetivo: Avaliar a correlação da circunferência do pescoço com resistência à insulina e com os componentes da síndrome metabólica em adolescentes com diferentes níveis de adiposidade e estadios puberais, bem como determinar a utilidade da circunferência do pescoço como um parâmetro na predição de resistência à insulina em adolescentes.

Métodos: Estudo transversal no qual se avaliaram 388 adolescentes de ambos os sexos, de dez a 19 anos. Os adolescentes foram submetidos à avaliação antropométrica e de composição corporal, incluindo circunferências do pescoço e da cintura, e a avaliação bioquímica. O estadio puberal foi obtido por meio de autoavaliação e a pressão arterial, pelo método auscultatório. Analisou-se a resistência à insulina pelo Homeostasis Model Assessment-Insulin Resistance. A correlação entre duas variáveis foi verificada com o coeficiente de correlação parcial ajustado para o percentual de gordura corporal e o estadio puberal. O desempenho da circunferência do pescoço para identificar resistência à insulina foi testado pela Receiver Operating Characteristic Curve.

Resultados: Após ajuste para o percentual de gordura corporal e estadio puberal, a circunferência do pescoço correlacionou-se com circunferência da cintura, pressão arterial, triglicérides e marcadores de resistência à insulina em ambos os sexos.

Conclusões: Os resultados demonstraram que a circunferência do pescoço é um instrumento útil para detectar a resistência à insulina e a alteração nos indicadores de síndrome metabólica em adolescentes. A facilidade de aplicação e o baixo custo podem viabilizar sua utilização em serviços de Saúde Pública.

Palavra-chave: resistência à insulina; síndrome x metabólica; adolescente; adiposidade.

ABSTRACT

Objective: To evaluate the correlation between neck circumference and insulin resistance and components of metabolic syndrome in adolescents with different adiposity levels and pubertal stages, as well as to determine the usefulness of neck circumference to predict insulin resistance in adolescents.

Methods: Cross-sectional study with 388 adolescents of both genders from ten to 19 years old. The adolescents underwent anthropometric and body composition assessment, including neck and waist circumferences, and bio-

Instituição: Universidade Estadual de Campinas (Unicamp) e Laboratório de Investigação em Metabolismo e Diabetes (Limed) – Gatrocentro-Unicamp, Campinas, SP, Brasil

¹Faculdade de Ciências Médicas da Unicamp: Laboratório de Investigação em Metabolismo e Diabetes (Limed) – Gatrocentro-Unicamp, Campinas, SP, Brasil

Endereço para correspondência:
Cleliani de Cassia da Silva
Rua Carlos Chagas, 420 – Cidade Universitária
CEP 13083-878 – Campinas/SP
E-mail: ccsnutri@yahoo.com.br

Fonte financeira: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), processo nº 563664/2010-0, e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes)

Conflito de interesse: nada a declarar

Recebido em: 24/7/2013
Aprovado em: 28/10/2013

Rev Paul Pediatr 2014;32(2):221-9.
Circunferência do pescoço como um novo indicador antropométrico para predição de resistência à insulina e componentes da síndrome metabólica em adolescentes: Brazilian Metabolic Syndrome Study

Introdução

A composição corporal e a distribuição da gordura corporal relacionam-se a complicações como resistência à insulina (RI), dislipidemia, diabetes melito tipo 2 e doenças cardiovasculares (DCV), tanto em adultos quanto em crianças e adolescentes(1,2). Os exames de imagem — tomografia computadorizada, ressonância magnética e absorvometria radiológica de dupla energia (DEXA) — são considerados padrão-ouro, porém sua realização é limitada e de alto custo. Em estudos epidemiológicos e na prática clínica, valorizam-se medidas antropométricas — índice de massa corpórea (IMC), circunferência da cintura (CC) e do pescoço (CP) — por serem medidas mais acessíveis, rápidas, não invasivas, com menor custo e, portanto, com maior facilidade de aplicação(3).

Atualmente, com referenciais internacionais padronizados, o IMC é a medida mais utilizada para o diagnóstico de sobrepeso e obesidade em crianças e adolescentes, porém nem sempre é capaz de avaliar o risco de complicações endócrinas e metabólicas em nível individual, pois não permite avaliar a distribuição de gordura corporal(2). A medida da CC tem sido utilizada no diagnóstico de síndrome metabólica (SM), para predizer a RI e na avaliação de fatores de risco para DCV em adolescentes(4), porém existem limitações nessa faixa etária, como ausência de metodologia padrão para aferição(5-7), falta de padrão internacional devido à variação étnica, ausência de ponto de corte para risco cardiovascular e metabólico, dificuldades práticas de aferição, especialmente no inverno, devido à necessidade de remoção de roupas, com ênfase psicológica nesse grupo etário(8).

Como alternativa à CC, estudos em adultos têm sugerido a utilização da CP como indicador antropométrico mais simples, prático, não influenciado pela distensão abdominal pós-prandial ou por movimentos respiratórios e que fornece resultados consistentes para indicar o acúmulo de gordura subcutânea na parte superior do corpo(9-10). O aumento da CP associa-se a riscos cardiometabólicos, tanto quanto a gordura visceral abdominal(10). Também em adultos, demonstrou-se correlação positiva da CP com a RI, com os componentes da SM e com os fatores de riscos cardiovasculares(9-10). Em adolescentes, os estudos que avaliam a CP são escassos.

Portanto, considerando-se a facilidade de obtenção da CP em estudos epidemiológicos e na prática clínica e a identificação precoce de alterações metabólicas que contribui para prevenir doenças, o objetivo do estudo foi: 1) avaliar a correlação entre a CP com a RI e com os componentes da SM em adolescentes com diferentes níveis de adiposidade e estádios puberais e 2) identificar se a CP pode ser um preditor de RI nessa faixa etária.

Método

Estudo transversal, parte de uma investigação de maior abrangência intitulada Brazilian Metabolic Syndrome Study (Brams), que avalia aspectos clínicos, antropométricos, metabólicos e hormonais da síndrome de resistência à insulina em crianças e adolescentes.

Avaliaram-se 388 adolescentes de ambos os sexos, de dez a 19 anos. Seleccionou-se a amostra por conveniência, sendo constituída por adolescentes dos ambulatórios de obesidade na criança e no adolescente do Hospital de Clínicas da Universidade Estadual de Campinas (Unicamp), das Unidades Básicas de Saúde, de escolas públicas e de instituições que oferecem programas socioeducativos para adolescentes. Incluíram-se no estudo adolescentes eutróficos, com sobre-peso e obesidade, segundo os critérios do Centers for Disease Control and Prevention (CDC)(11). Consideraram-se critérios de exclusão: presença de massas cervicais ou deformidades no pescoço, bócio, atrito no desenvolvimento neuropsicomotor, síndromes genéticas, hepatopatia, nefropatia,
distúrbios metabólicos (como diabetes tipo 1, hipotiroidismo e hipertiroïdismo) e uso de corticoides sistêmico.

Avaliaram-se o peso corporal e a estatura segundo as técnicas propostas por Gordon et al.\(^1\)\(^2\) e, a partir dessas medidas, determinou-se o escore Z do índice de massa corpórea (zIMC) para idade. Aferiu-se a CC com fita métrica no ponto médio entre a crista ilíaca e a última costela\(^1\)^\(^9\). A CP foi aferida na altura média do pescoço\(^9\). Avaliou-se o percentual de gordura corporal (%GC) pelo método de bioimpedância tetrapololar\(^1\)^\(^4\)\(^,\)\(^5\), com o equipamento Bioimpedance Analyzer modelo BIA 310\(^\circ\), segundo as orientações propostas pelo protocolo de Lukaski et al.\(^1\)^\(^4\). Avaliou-se a pressão arterial pela técnica auscultatória com esfigmomanômetro de coluna de mercúrio, de acordo com os procedimentos preconizados pela Sociedade Brasileira de Cardiologia\(^1\)^\(^6\). A maturação sexual foi definida por autoavaliação, segundo os critérios propostos por Tanner\(^1\)^\(^7\). Para a classificação em pré-púberes (1-2) e púberes (3-5), consideraram-se as mamas no sexo feminino e a genitália externa no masculino.

Para avaliação bioquímica, coletaram-se amostras de sangue venoso após jejum noturno de 12 horas. As determinações plasmáticas de glicose, colesterol total (CT), HDL-colesterol (HDL), triglicéridos (TG) e gama glutamil transferase (GGT) foram realizadas pelo método colorimétrico enzimático e a fração LDL-colesterol (LDL) foi calculada segundo a equação de Friedewald et al.\(^1\)^\(^8\). Mediu-se o ácido úrico plasmático (URAC) pelo método uricase, a hemoglobina glicada (HbA1C) por cromotografia líquida de alta performance (HPLC), as concentrações séricas de aspartato-aminotransferase (AST) e alanina-aminotransferase (ALT) pelo método cinético UV e a insulina plasmática por quimioluminescência. Avaliou-se a RI pelo índice Homeostasis Model Assessment-Insulin Resistance (HOMA1-IR), calculado a partir da equação HOMA1-IR = insulina de jejun (mU/L) x glicemia de jejun (mmol/L)/22,5\(^1\)^\(^9\). O ponto de corte utilizado do índice HOMA1-IR foi o percentil 75 da amostra avaliada, estratificado para sexo e estadio pубeral. Definiu-se a intensidade qualitativa da correlação como: 0–0,3 – fraca; 0,3–0,6 – regular; 0,6–0,9 – forte e 0,9–1 – muito forte. Construíram-se curvas ROC (Receiver Operating Characteristic Curve) e calcularam-se as áreas abaixo das curvas (AUC), com intervalo de confiança (IC) de 95%. A sensibilidade e a especificidade da CP e seus valores preditivos positivos e negativos foram calculados para cada ponto de corte na amostra.

O estudo foi aprovado pelo Comitê de Ética em Pesquisa da Unicamp e os pais ou responsáveis assinaram o termo de consentimento livre e esclarecido.

Resultados

Do total de 388 adolescentes, 56,4% (n=219) eram do sexo feminino. Quanto ao estado nutricional, das 50 meninas pré-púberes avaliadas, 51,9% eram eutróficas, 3,7% apresentaram sobrepeso e 44,4%, obesidade, enquanto que, das 169 meninas púberes avaliadas, 49,4% eram eutróficas, 22,1% estavam com sobrepeso e 28,5%, com obesidade. Quanto ao sexo masculino, dos 59 meninos pré-púberes avaliados, 41,5% eram eutróficos, 13,8% estavam com sobrepeso e 44,6% com obesidade, enquanto que, dos 110 púberes avaliados, 46,6% eram eutróficos, 19,5% estavam com sobrepeso e 33,9%, com obesidade.

As características dos adolescentes segundo idade, antropometria, composição corporal, pressão arterial e bioquímica estão apresentadas na Tabela 1. No sexo feminino, as médias de CP e as medianas da pressão arterial sistólica (PAS) diferiram significativamente entre pré-púberes e púberes, sendo mais elevadas nas púberes. As médias de HbA1C e as medianas de AST e ALT também diferiram entre as pré-púberes e púberes, sendo mais elevada nas pré-púberes. As demais variáveis não diferiram entre as meninas pré-púberes e púberes. No sexo masculino, as médias de CP e de URAC, bem como as medianas de PAS e de pressão arterial diastólica (PAD) diferiram entre pré-púberes e púberes, sendo mais elevadas nos púberes, ao passo que as médias de %GC, glicemia, CT, LDL e as medianas de HbA1C e AST foram mais elevadas nos pré-púberes, com diferença estatisticamente significante.
As demais variáveis não diferiram entre meninos pré-púberes e púberes.

As correlações entre a CP, a RI e os componentes da síndrome metabólica (SM) são apresentadas na Tabela 2. A CP apresentou correlação com os marcadores de obesidade, zIMC e CC em ambos os sexos, em pré-púberes e púberes. Entre os marcadores da SM, no sexo feminino, a CP mostrou correlação positiva com PAS, PAD, TG, URAC, GGT e ALT, sendo a correlação negativa com HDL-colesterol nas púberes. No sexo masculino,houve correlação linear positiva entre CP, PAS, PAD, URAC e GGT nos pré-púberes, ao passo que, nos púberes, a CP apresentou correlação linear positiva com PAS, PAD, LDL, TG, URAC e GGT e correlação negativa com HDL. Quanto aos marcadores de RI no sexo feminino, a CP apresentou correlação positiva com insulina e HOMA1-IR nas pré-púberes e púberes; já no sexo masculino, houve correlação positiva apenas nos púberes. Após ajuste para o %GC e estadio puberal, a CP correlacionou-se de forma positiva com zIMC, CC, PAS, PAD, insulina, HOMA1-IR, TG, URAC e GGT e de forma negativa, com HDL, em ambos os sexos. No sexo masculino, a CP correlacionou-se negativamente com HbA1C. No sexo feminino, a CP correlacionou-se com ALT.

As áreas sob a curva ROC para CP como preditora de RI em adolescentes do sexo feminino e masculino, pré-púberes e púberes, podem ser observadas nas Figuras 1 e 2, respectivamente. As AUC foram estatisticamente significantes ($p<0,05$). No sexo feminino, a CP apresentou maior AUC para a RI nas pré-púberes (Figura 1A) em relação às púberes (Figura 1B). Já no sexo masculino, a CP apresentou maior AUC para a RI nos púberes (Figura 2B) em relação aos pré-púberes (Figura 2A). Os diferentes pontos de corte da CP e as respectivas sensibilidades e especificidades e seus valores predictivos positivos e negativos estão apresentados na Tabela 3. Encontraram-se os seguintes pontos de corte da CP para identificar a RI no sexo

Tabela 1 - Caracterização dos adolescentes segundo idade, antropometria, composição corporal, pressão arterial e bioquímica

Variáveis	Feminino	Masculino		
	Pré-púbere (n=50)	Púbere (n=169)		
	Púbere (n=59)	Púbere (n=110)		
Idade (anos)	11,0 (0,5)	15,0 (1,3)2a	11,0 (1,0)	15,0 (1,5)2a
Antropometria				
Escore Z do IMC	0,9±1,4	0,8±1,11b	1,5 (1,0)	1,1 (0,9)2a
Circunferência da cintura (cm)	77,5±15,9	82,3±15,41b	82,1±17,2	85,4±17,31b
Circunferência do pescoço (cm)	30,6±4,0	32,6±2,91b	32,8±3,8	35,4±3,71b
Composição corporal				
%GC	28,1±8,9	30,6±7,41b	27,1±9,4	22,4±8,61b
Pressão arterial sistólica (mmHg)	100,0 (6,5)	110,0 (9,0)2a**	100,0 (10,5)	110,0 (10,0)2a
Pressão arterial diastólica (mmHg)	70,0 (10,0)	70,0 (7,5)2a***	65,0 (5,0)	70,0 (10,0)2a
Bioquímica				
Glicemia de jejum (mg/dL)	78±9,1	77,5±9,71b	84,0±7,9	80,9±10,92a***
Insulina de jejum (mU/L)	13,3 (6,3)	14,1 (5,2)2a	10,7 (5,6)	10,8 (5,6)2a
Hemoglobina glicada (%)	5,5±0,4	5,2±0,52b	5,7 (0,3)	5,4 (0,3)2a
HOMA1-IR	2,6 (1,1)	2,1 (1,2)2a	2,1 (1,3)	2,3 (1,2)2a
Colesterol total (mg/dL)	160±35,1	160,5±30,21b	165,5±33,5	154,9±29,51b
LDL-colesterol (mg/dL)	96,3±33,6	95,4±26,81b	99,8±29,5	90,6±26,91b
HDL-colesterol (mg/dL)	46,2±10,7	48,8±11,71b	45,8±11,3	46,7±11,71b
Triglicérides (mg/dL)	78,0 (26,5)	73,0 (19,5)2a	81,0 (35,5)	69,5 (24,0)2a
Ácido úrico (mg/dL)	4,4±1,1	4,3±1,22b	4,4±1,5	5,6±1,42b
Gamaglutamil transferase (U/L)	15,0 (4,0)	16,0 (4,5)2a	19,0 (5,0)	19,0 (5,0)2a
Aspartato aminotransferase (U/L)	21,5 (3,5)	18,0 (2,5)2a	24,0 (3,0)	21,5 (3,3)2a
Alanina aminotransferase (U/L)	16,0 (4,0)	14,0 (3,5)2a***	16,0 (4,0)	17,5 (5,0)2a

1Média±desvio padrão; 2mediana (semiambplitude interquartílica); 3teste de Mann-Whitney; 4teste t de Student; $^{*}p<0,001$; $^{**}p<0,01$; $^{***}p<0,05$;
%GC: percentual de gordura corporal
Antropometria

	Feminino	Masculino				
	Pré-Púbere	Púber	Total**	Pré-Púbere	Púber	Total**
	(n=50)	(n=169)	(n=219)	(n=59)	(n=110)	(n=169)
Escore Z do IMC	0,39***	0,53****	0,48****	0,57****	0,58****	0,58****
Circunferência da cintura (cm)	0,51****	0,71****	0,64****	0,82****	0,78****	0,79****
Pressão arterial sistólica (mmHg)	0,32	0,27****	0,28****	0,49****	0,45****	0,47****
Pressão arterial diastólica (mmHg)	0,22	0,16*****	0,18***	0,43****	0,34****	0,37****
Bioquímica						
Glicemia de jejum (mg/dL)	0,26	-0,01	0,08	0,04	-0,13	-0,08
Insulina de jejum (mU/L)	0,30*****	0,49****	0,43****	0,25	0,31***	0,29****
Hemoglobina glicada (%)	-0,03	0,12	0,085	-0,18	-0,17	-0,17****
HOMA1-IR	0,31*****	0,46****	0,41****	0,25	0,30***	0,29****
Colesterol total (mg/dL)	0,001	0,06	0,04	-0,02	0,14	0,08
LDL-colesterol (mg/dL)	0,04	0,11	0,09	-0,03	0,25***	0,14
HDL-colesterol (mg/dL)	-0,20	-0,26***	-0,24****	-0,22	-0,40****	-0,34****
Triglicérides (mg/dL)	0,13	0,30****	0,25****	0,19	0,26****	0,23****
Ácido úrico (mg/dL)	0,19	0,43****	0,35****	0,54****	0,50****	0,52****
Gama glutamiltransferase (U/L)	-0,03	0,27****	0,20***	0,31****	0,36****	0,34****
Aspartato aminotransferase (U/L)	-0,05	0,11	0,07	0,10	-0,07	-0,04
Alanina aminotransferase (U/L)	0,14	0,19*****	0,17***	0,16	0,13	0,14

Correlação parcial ajustada para o percentual de gordura corporal; *correlação parcial ajustada para o percentual de gordura corporal e estadio puberal; *p<0,01; ****p<0,001; *****p<0,05; HOMA1-IR: Homeostasis Model Assessment-Insulin Resistance**
feminino pré-púbere e púber: >32,0 cm e >34,1 cm, respectivamente. Para o sexo masculino, os valores foram >30,3 cm para os pré-púberes e >34,8 cm para os púberes.

Discussão

A CP pode ser acrescida na avaliação nutricional, sendo proposta como marcador substituto de obesidade em crianças e adolescentes em vários estudos\(^{(20-22)}\). O presente trabalho demonstrou correlação significante entre a CP e os marcadores de obesidade (zIMC e CC) nos adolescentes pré-púberes e púberes de ambos os sexos. Os resultados permaneceram significativos após ajuste para o %GC e estádio puberal, indicando que a CP também é um bom indicador de acúmulo de gordura corporal em adolescentes brasileiros. Guo et al\(^{(23)}\) e Kurtoglu et al\(^{(24)}\) observaram correlação entre CP e indicadores antropométricos de obesidade. Guo et al\(^{(23)}\)

![Figura 2 - Curva ROC para a circunferência do pescoço na avaliação da resistência à insulina em adolescentes do sexo masculino pré-púberes (A) e púberes (B)](\image)

Pontos de corte	S (IC95%)	E (IC95%)	VPP (%)	VPN (%)	
Feminino					
Pré-púberes	>32,0	76,92 (46,2–94,7)	77,50 (61,5–89,1)	47,6	90,6
Púberes	>34,1	56,41 (39,6–72,2)	84,75 (77,0–90,7)	53,6	85,3
Masculino					
Pré-púberes	>30,3	100,00 (78,0–100,0)	42,55 (28,3–57,8)	35,7	100,0
Púberes	>34,8	92,00 (73,9–98,8)	57,33 (45,4–68,7)	41,8	95,5

CP: circunferência do pescoço; IC95%: intervalo de confiança de 95%; S: sensibilidade; E: especificidade; VPP: valor preditivo positivo; VPN: valor preditivo negativo

Tabela 3 - Pontos de corte, sensibilidades, especificidades e valores preditivos positivos e negativos da circunferência do pescoço para rastreamento de resistência à insulina em adolescentes
avaliaram 6.802 crianças e adolescentes chineses de cinco a 18 anos divididos por categoria de IMC e observaram correlação significante entre CP e CC. Apesar da redução dos coeficientes de correlação após ajuste para idade, sexo e IMC, a CP manteve correlação positiva com CC. Os autores também observaram associação entre CP e IMC em todas as três categorias de IMC, mas não observaram significância no grupo de obesos após ajuste para idade, sexo e CC. No estudo de Kurtoglu et al.\(^{(24)}\) com 581 crianças e adolescentes turcos de cinco a 18 anos, também houve correlação significante entre CP, CC e IMC em adolescentes pré-púberes e púberes de ambos os sexos.

Vários estudos com adultos documentaram que a CP é uma ferramenta simples de triagem para identificar indivíduos com alterações cardiometabólicas\(^{(8-10)}\). Poucos estudos pediátricos exploraram a CP como indicador de RI e de alterações nos componentes da SM\(^{(23-25)}\). Comparando nossos resultados com os de Kurtoglu et al.\(^{(24)}\), que avaliaram a correlação da CP com marcadores da SM conforme sexo e estadio puberal, verificou-se que, no estudo anterior, nas pré-púberes do sexo feminino, houve correlação positiva entre CP, PAS, PAD, glicemia e CT e correlação negativa com HDL, o que não se observou neste estudo, possivelmente pelo fato de nossas análises usarem o coeficiente de correlação parcial ajustado para \%GC. Ainda quanto ao sexo feminino, o presente trabalho demonstra que a CP correlacionou-se positivamente com a PAS, PAD e TG e negativamente com HDL-colesterol nas púberes, semelhantemente ao estudo anterior. No sexo masculino, no estudo de Kurtoglu et al.\(^{(24)}\), a CP correlacionou-se positivamente com PAS, PAD, glicemia, CT e TG nos pré-púberes. Neste estudo, houve correlação linear positiva apenas com PAS e PAD. Quanto aos púberes, em nosso estudo, assim como no anterior, a CP apresentou correlação linear positiva com PAS, PAD, TG e LDL e correlação linear negativa com HDL.

Androutsos et al.\(^{(25)}\) avaliaram 324 crianças e adolescentes gregos de nove a 13 anos, tendo encontrado correlação positiva entre CP e PAS e negativa com HDL, em ambos os sexos. Nesse mesmo estudo, a CP apresentou correlação positiva com PAD e TG no sexo feminino. Na análise de regressão multivariada após ajuste para idade, sexo, estadio de Tanner, atividade física, ingestão dietética de proteínas, carbohidratos e gordura, a CP correlacionou-se significativamente com HDL, TG, PAS e PAD. Os autores também identificaram que as associações entre a CP e os fatores de risco para DCV eram comparáveis às notadas para zIMC, CC, circunferência do quadril, relação cintura-quadril e relação cintura-altura em crianças e adolescentes. Em nosso estudo, após ajuste para o \%GC e estadio puberal, a CP correlacionou-se de forma positiva com PAS, PAD e TG e de forma negativa com HDL, em ambos os sexos.

A pesquisa de crianças e adolescentes chineses avaliou a correlação entre CP e pressão arterial em diferentes grupos de IMC. Nos participantes com peso normal, a CP mais elevada associou-se a maior risco de pré-hipertensão (OR 1,64, IC95% 1,29–2,08), após ajustes para idade e sexo. Esse resultado permaneceu significativo após ajustes para idade, sexo, IMC e CC (OR 1,44; IC95% 1,12–1,85). Nas categorias de sobrepeso e obesidade, não se observaram razões de chance significativas. No grupo de peso normal, houve associação entre CP, PAS (β=0,58mmHg) e PAD (β=0,24mmHg)\(^{(23)}\).

Quanto aos marcadores de RI, no estudo de Kurtoglu et al.\(^{(24)}\), a CP correlacionou-se positivamente com insulina e HOMA1-IR em ambos os sexos, em pré-púberes e púberes. Já no presente estudo, houve correlação no sexo feminino nas pré-púberes e púberes, enquanto, no masculino, apenas nos púberes. No estudo de Androutsos et al.\(^{(25)}\), a CP apresentou correlação positiva com a insulina e o HOMA-IR em ambos os sexos. Os resultados permaneceram significativos após ajustes para idade, sexo, estadio de Tanner, atividade física, ingestão dietética de proteínas, carbohidratos e gordura. No nosso estudo, após ajuste para \%GC e estadio puberal, a CP correlacionou-se com insulina e HOMA1-IR em ambos os sexos.

O presente trabalho também avaliou a associação entre CP, URAC, GGT, ALT e ALT em adolescentes, o que havia sido pesquisado anteriormente apenas em adultos. Em estudo do nosso grupo realizado com adultos, a CP apresentou associação com URAC e GGT apenas nas mulheres\(^{(26)}\). Na investigação atual, a CP correlacionou-se com URAC, GGT e ALT nas meninas púberes, enquanto que, no sexo masculino, a CP correlacionou-se com URAC e GGT nos pré-púberes e com URAC e GGT nos púberes. Após ajuste para \%GC e estadio puberal, a CP correlacionou-se com URAC e GGT em ambos os sexos e com ALT no sexo feminino.

Nosso estudo é pioneiro em determinar a utilidade da CP como parâmetro na predição de RI em adolescentes por meio de curvas ROC. Os resultados mostraram que a CP é um bom preditor de RI em adolescentes. Ainda não se definiram os mecanismos envolvidos para justificar a associação entre a CP e os fatores de risco cardiometabólicos. Dados de literatura indicam que a gordura subcutânea da parte superior do corpo relaciona-se aos riscos cardiometabólicos, tanto quanto a gordura visceral abdominal\(^{(10)}\), possivelmente pelo fato de a gordura visceral não ser a principal fonte de concentrações...
circulantes de ácidos graxos livres (AGL)\(^{26}\). Além disso, a gordura subcutânea da parte superior do corpo é responsável por uma maior liberação sistêmica de AGL do que a gordura visceral, particularmente em indivíduos obesos\(^{27}\). Da mesma forma, elevadas concentrações de AGL têm sido associadas à RI e ao aumento do risco cardiovascular\(^{28,29}\). Como essa gordura subcutânea da parte superior do corpo é facilmente avaliada pela CP, esta pode ser um importante preditor de RI e de risco cardiometabólico, além de contribuir para uma melhor compreensão dos efeitos da distribuição de gordura corporal em adolescentes. Estudos longitudinais são necessários para examinar a relação entre CP, RI e alterações nos componentes da SM em adolescentes.

Nossos resultados mostram que a CP tem boa sensibilidade para identificar a RI, podendo ser inclusive utilizada como método de triagem. Comparando tais resultados com os obtidos em adultos, que também demonstraram ser a CP útil para predição de RI, verificou-se que o ponto de corte em adolescentes é menor\(^8\).

Comparada à medida da CC, a aferição da CP apresenta algumas vantagens: boa confiabilidade inter e intraobservador; não requer múltiplas medições de precisão e confiabilidade\(^{30}\), não é influenciada pelo horário de avaliação (período pré-prandial e pós-prandial); é aferida em superfície do corpo mais estável; apresenta maior facilidade tanto para o examinador quanto para o examinando, especialmente no inverno e em locais movimentados; é mais aceitável socialmente e conveniente, principalmente para adolescentes com sobrepeso e obesidade. No entanto, ainda não apresenta valores internacionais de referência.

O presente estudo apresenta limitações: 1) os resultados são baseados em estudo transversal, o que não permite inferir causalidade; 2) selecionou-se a amostra por conveniência, com maior proporção de obesos; 3) não foram realizadas correlações com exames de imagem que quantificam diretamente o depósito de gordura. Apesar das limitações, de forma consistente com os estudos citados, os resultados desta investigação mostraram que a CP pode ser um importante indicador da saúde de adolescentes, por ser um instrumento de rastreamento capaz de identificar a RI e as alterações nos componentes da SM em adolescentes brasileiros. A facilidade de aplicação e o baixo custo podem viabilizar sua utilização em serviços de Saúde Pública e em estudos epidemiológicos.

Investigadores do Brams (Brazilian Metabolic Syndrome Study):

Ana Carolina Junqueira Vasques, Ana Maria De Bernardi Rodrigues, André Luiz Gonçalves de Freitas, Bruno Geloneze, Cleliani de Cassia da Silva, Daniella Fernandes Camilo, Fabiana Lopes Nogueira, Francieli Barreiro, José Carlos Pareja, Maria Ângela Reis de Góes Monteiro Antonio, Mariana Pontes Ferrari, Mariana Porto Zambom, Patrícia Brito Rodrigues, Roberta Soares Lara Cassani.

Referências bibliográficas

1. Després JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 1990;10:497-511.
2. Daniels SR, Morrison JA, Sprecher DL, Khoury P, Kimball TR. Association of body fat distribution and cardiovascular risk factors in children and adolescents. Circulation 1999;99:541-5.
3. Comier MA, Després JP, Davis N, Grossniklaus DA, Klein S, Lamarche B et al. Assessing adiposity: a scientific statement from the American Heart Association. Circulation 2011;124:1996-2019.
4. Hirschler V, Aranda C, Calcagno M de L, Maccalini G, Jadzinsky M. Can waist circumference identify children with the metabolic syndrome? Arch Pediatr Adolesc Med 2005;159:740-4.
5. Taylor RW, Jones IE, Williams SM, Goulding A. Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry; in children aged 3–19 y. Eur J Clin Nutr 2000;72:490-5.
6. McCarthy HD, Jarrett KV, Crawley HF. The development of waist circumference percentiles in British children aged 5.0-16.9 y. Eur J Clin Nutr 2001;55:902-7.
7. Asayama K, Dobashi K, Hayashibe H, Koderia K, Uchida N, Nakane T et al. Threshold values of visceral fat measures and their anthropometric alternatives for metabolic derangement in Japanese obese boys. Int J Obes Relat Metab Disord 2002;26:208-13.
8. Stabe C, Vasques AC, Lima MM, Tambascia MA, Pareja JC, Yamanaka A et al. Neck circumference as a simple tool for identifying the metabolic syndrome and insulin resistance: results from the Brazilian Metabolic Syndrome Study (Brams). Clin Endocrinol (Oxf) 2013;78:874-81.
9. Ben-Noun L, Laor A. Relationship of neck circumference to cardiovascular risk factors. Obes Res 2003;11:226-31.
10. Preis SR, Massaro JM, Hoffmann U, D’Agostino RB Sr, Levy D, Robins SJ et al. Neck circumference as a novel measure of cardiometabolic risk: the Framingham Heart Study. J Clin Endocrinol Metab 2010;95:3701-10.
11. Kuczynski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z et al. 2000 CDC Growth Charts for the United States: methods and development. Vital Health Stat 11 2002;1-190.
12. Gordon CC, Chumlea WC, Roche AF. Stature, recumbent length, and weight. In: Lohman TG, Roche AF, Martorell R, editors. Anthropometric standardization: reference manual. Champaign: Human Kinetics; 1988. p. 3-8.
13. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation. World Health Organ Tech Rep Ser 2000;894:1-253.

14. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol 1986;60:1327-32.

15. Houtkooper LB, Going SB, Lohman TG, Roche AF, Loan MV. Bioelectrical impedance estimation of fat-free body mass in children and youth: a cross-validation study. J Appl Physiol 1992;72:366-73.

16. Sociedade Brasileira de Cardiologia; Sociedade Brasileira de Hipertensão; Sociedade Brasileira de Nefrologia. VI Diretrizes Brasileiras de Hipertensão. Arq Bras Cardiol 2010;95 (Suppl 1):1-51.

17. Tanner JM. Growth at adolescence. 2nd ed. Oxford: Blackwell Scientific Publications; 1962.

18. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18:499-502.

19. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9.

20. Hatipoglu N, Mazicioglu MM, Kondolot M. Neck circumference: an additional tool of screening overweight and obesity in childhood. Eur J Pediatr 2010;169:733-9.

21. Nafiu OO, Burke C, Lee J, Voepel-Lewis T, Malviya S, Tremper KK. Neck circumference as a screening measure for identifying children with high body mass index. Pediatrics 2010;126:e306-10.

22. Lou DH, Yin FZ, Wang R, Ma CM, Liu XL, Lu Q. Neck circumference is an accurate and simple index for evaluating overweight and obesity in Han children. Ann Hum Biol 2012;39:161-5.

23. Guo X, Li Y, Sun G, Yang Y, Zheng L, Zhang X et al. Prehypertension in children and adolescents: association with body weight and neck circumference. Intern Med 2012;51:23-7.

24. Kurtoglu S, Hatipoglu N, Mazicioglu MM, Kondolot M. Neck circumference as a novel parameter to determine metabolic risk factors in obese children. Eur J Clin Invest 2012;42:623-30.

25. Androutsos O, Grammatikaki E, Moschonis G, Roma-Giannikou E, Chrousos GP, Manios Y et al. Neck circumference: a useful screening tool of cardiovascular risk in children. Pediatr Obes 2012;7:187-95.

26. Guo Z, Hensrud DD, Johnson CM, Jensen MD. Regional postprandial fatty acid metabolism in different obesity phenotypes. Diabetes 1999;48:1586-92.

27. Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD. Splanchnic lipolysis in human obesity. J Clin Invest 2004;113:1582-8.

28. Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002;32 (Suppl 3):14-23.

29. Mathew M, Tay E, Cusi K. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects. Cardiovasc Diabetol 2010;9:1-9.

30. LaBerge RC, Vaccani JP, Gow RM, Gaboury I, Hoey L, Katz SL. Inter- and intra-rater reliability of neck circumference measurements in children. Pediatr Pulmonol 2009;44:64-9.