Bounds for spherical codes

Peter Keevash ∗ Benny Sudakov †

Abstract

A set C of unit vectors in \mathbb{R}^d is called an L-spherical code if $x \cdot y \in L$ for any distinct x, y in C. Spherical codes have been extensively studied since their introduction in the 1970’s by Delsarte, Goethals and Seidel. In this note we prove a conjecture of Bukh on the maximum size of spherical codes. In particular, we show that for any set of k fixed angles, one can choose at most $O(d^k)$ lines in \mathbb{R}^d such that any pair of them forms one of these angles.

1 Introduction

A set of lines in \mathbb{R}^d is called equiangular if the angles between any two of them are the same. The problem of estimating the size of the maximum family of equiangular lines has had a long history since being posed by van Lint and Seidel [9] in 1966. Soon after that, Delsarte, Goethals and Seidel [5] showed that for any set of k angles, one can choose at most $O(d^{2k})$ lines in \mathbb{R}^d such that every pair of them forms one of these angles. By choosing a unit direction vector on every line, the problem of lines with few angles has the following equivalent formulation. Given a set $L = \{a_1, \ldots, a_k\} \subseteq [-1,1]$, find the largest set C of unit vectors in \mathbb{R}^d such that $x \cdot y \in L$ for any distinct $x, y \in C$. (Here $x \cdot y = \sum_i x_i y_i$ is the standard inner product.) Hence the problem of lines with few angles is a special case of a more general question which we will discuss next.

Suppose C is a set of unit vectors in \mathbb{R}^d and $L \subseteq [-1,1]$. We say C is an L-spherical code if $x \cdot y \in L$ for any distinct x, y in C. We will prove the following theorem on the maximum size of certain spherical codes, which was conjectured by Bukh [1, Conjecture 9].

Theorem 1.1. For any $k \geq 0$ there is a function $f_k : (0,1) \to \mathbb{R}$ such that if $0 < \beta < 1$, $A \subseteq \mathbb{R}$ with $|A| = k$ and C is an L-spherical code in \mathbb{R}^d with $L = [-1,-\beta] \cup A$ then $|C| \leq f_k(\beta)d^k$.

In particular, for any set of k fixed angles, one can choose at most $O(d^k)$ lines in \mathbb{R}^d such that any pair of them forms one of these angles. This substantially improves the above-mentioned bound of Delsarte, Goethals and Seidel [5], in the case when the angles are fixed, i.e. do not depend on the dimension d. The case $k = 1$ was proved by Bukh [11] Theorem 1], who gave the first linear bound for the equiangular lines problem. One should note that the assumption that the angles are fixed is important. Otherwise, for example when $k = 1$, the linear upper bound is no longer valid, as there are constructions of quadratically many equiangular lines in \mathbb{R}^d (see [4,7,8]).

∗Mathematical Institute, University of Oxford, Oxford, UK. keevash@maths.ox.ac.uk. Research supported in part by ERC Consolidator Grant 647678.
†Department of Mathematics, ETH, 8092 Zurich, Switzerland. benjamin.sudakov@math.ethz.ch. Research supported in part by SNSF grant 200021-149111.
2 Lemmas

In this section we present several lemmas which we will use in the proof of our main theorem. We start by recalling some well-known results. First we need the following bound on L-spherical codes, first proved in slightly stronger form by Delsarte, Goethals and Seidel [6]. At around the same time, Koornwinder [10] gave a short elegant proof using linear algebra (see also [2] Lemma 10).

Lemma 2.1. If $L \subseteq \mathbb{R}$ with $|L| = k$ and C is an L-spherical code in \mathbb{R}^d then $|C| \leq \binom{d+k}{k}$.

Next we need a well-known variant of Ramsey’s theorem, whose short proof we include for the convenience of the reader. Let K_n denote the complete graph on n vertices. Given an edge-colouring of K_n, we call an ordered pair (X, Y) of disjoint subsets of vertices monochromatic if all edges in $X \cup Y$ incident to a vertex in X have the same colour.

Lemma 2.2. Let k, t, m, n be non-negative integers satisfying $n > k^{kt}m$ and let $f : E(K_n) \to [k]$ be an edge k-colouring of K_n. Then there is a monochromatic pair (X, Y) such that $|X| = t$ and $|Y| = m$.

Proof. Consider a family of kt vertices v_1, \ldots, v_{kt} and sets Y_1, \ldots, Y_{kt} constructed as follows. Fix v_1 arbitrarily and let $c(1) \in [k]$ be a majority colour among the edges (v_1, u). Set $Y_1 = \{u : f(v_1, u) = c(1)\}$. By the pigeonhole principle, $|Y_1| \geq \lceil (n-1)/k \rceil \geq k^{kt-1}m$. In general, we fix any v_{i+1} in Y_i, let $c(i + 1) \in [k]$ be a majority colour among the edges (v_{j+1}, u) with $u \in Y_i$, and let $Y_{i+1} = \{u \in Y_i : f(v_{i+1}, u) = c(i + 1)\}$. Then $|Y_{i+1}| \geq \lceil |Y_i| / k \rceil \geq k^{kt-i-1}m$, and for every $1 \leq j \leq i$ the edges from v_j to all vertices in Y_{i+1} have colour $c(j)$. Since we have only k colours, there is a colour $c \in [k]$ and $S \subseteq [kt]$ with $|S| = t$ so that $c(j) = c$ for all $j \in S$. Then $X = \{v_j : j \in S\}$ and $Y = Y_{kt}$ form a monochromatic pair of colour c, satisfying the assertion of the lemma. □

The following lemma is also well-known.

Lemma 2.3. If $L = [-1, -\beta]$ and C is a L-spherical code then $|C| \leq \beta^{-1} + 1$.

Proof. Let $v = \sum_{x \in C} x$. Then, by definition of L-spherical code,

$$0 \leq \|v\|^2 = \sum_{x \in C} \|x\|^2 + \sum_{x \neq x' \in C} x \cdot x' \leq |C| - |C| (|C| - 1) \beta = |C| (1 - (|C| - 1) \beta).$$

Therefore $1 - (|C| - 1) \beta \geq 0$, implying $|C| \leq \beta^{-1} + 1$. □

We will also need the following simple corollary of Turán’s theorem, which can be obtained by greedily deleting vertices together with their neighbourhoods.

Lemma 2.4. Every graph on n vertices with maximum degree Δ contains an independent set of size at least $\frac{n}{\Delta+1}$.

In the remainder of this section we will introduce our new tools for bounding spherical codes. Suppose $x \in \mathbb{R}^d$ and U is a subspace of \mathbb{R}^d. We write x_U for the projection of x on U. Let U^\perp be the orthogonal complement of U. Note that $x = x_U + x_{U^\perp}$. If $x_{U^\perp} \neq 0$ we write $p_U(x) = \|x_{U^\perp}\|^{-1} x_{U^\perp}$ for the normalized projection of x on U^\perp. So $\|p_U(x)\| = 1$. If $U = \langle Y \rangle$ is spanned by the set of vectors Y we also use $p_Y(x)$ to denote $p_U(x)$.
Lemma 2.5. Suppose \(\|x_1\| = \|x_2\| = \|y\| = 1 \) and each \(x_i \cdot y = c_i \) with \(|c_i| < 1 \). Then each \(p_y(x_i) = \frac{y - c_i y_i}{\sqrt{1 - c^2_i}} \) and \(p_y(x_1) \cdot p_y(x_2) = \frac{x_1 - x_2 - c_1 c_2}{\sqrt{(1 - c_1^2)(1 - c_2^2)}} \).

Proof. The projection of \(x_i \) on \(y \) is \(c_i y \), so the projection of \(x_i \) on \(y \) is \(x_i - c_i y \). As \((x_i - c_i y) \cdot (x_i - c_i y) = 1 - c_i^2 \) and \((x_1 - c_1 y) \cdot (x_2 - c_2 y) = x_1 \cdot x_2 - c_1 c_2 \) the lemma follows.

Given a subspace \(U \) we can calculate \(p_U(x) \) using the following version of the Gram-Schmidt algorithm. Suppose that \(\{y_1, \ldots, y_k\} \) is a basis for \(U \). Write \(y_{k+1} = x \). Define vectors \(y_j^i \) by \(y_j^0 = y_j \) for \(j \in [k + 1] \) and \(y_j^i = p_{y_{i-1}}(y_j^{i-1}) \) for \(1 \leq i < j \leq k + 1 \). It is easy to check by induction that for every \(j \) the vectors \(y_1^0, y_1^1, \ldots, y_j^{j-1} \) are orthogonal. Also \(y_j^{j-1} \) is a unit vector for \(j > 1 \). Therefore \(p_U(x) = y_{k+1}^k \).

Lemma 2.6. Suppose \(X \cup Y \) is a set of unit vectors in \(\mathbb{R}^d \) such that \(x \cdot y = y \cdot y' = c \) with \(|c| < 1 \) for all \(x \in X \) and distinct \(y, y' \) in \(Y \). Let \(U = \langle Y \rangle \) and \(k = |Y| \). Then for any \(x, x' \) in \(X \) we have \(p_U(x) \cdot p_U(x') = g_k(x \cdot x') \), where

\[
g_k(a) := 1 - (1-c)^{-1}(1-(c^{-1}+k)^{-1})(1-a) = (1-c)^{-1}[a-c+(c^{-1}+k)^{-1}(1-a)].
\]

Remark. Note that \(g_0(a) = a \), \(g_k(c) = (c^{-1}+k)^{-1} \) and \(g_k(a) \) is decreasing in \(k \). Also \(g_k \to \frac{c^2}{1-c} \) when \(k \) tends to infinity.

Proof. We write \(Y = \{y_1, \ldots, y_k\} \), \(y_{k+1} = x \), \(y_{k+2} = x' \) and calculate \(p_U(x) = y_{k+1}^k \) and \(p_U(x') = y_{k+2}^k \) using the algorithm and notation introduced before the lemma. It is easy to see that vectors in \(Y \) are linearly independent, since the matrix of pairwise inner products of these vectors has full rank. Let \(c_i^{-1} = i + c^{-1} \). We show by induction for \(0 \leq i \leq k \) that \(y_{j}^i \cdot y_{j'}^i = c_i \) for all distinct \(j, j' > i \), with the possible exception of \(\{j, j'\} = \{k + 1, k + 2\} \). Indeed, this holds by hypothesis when \(i = 0 \). When \(0 < i \leq k \), by induction \(y_{i-1}^i \cdot y_{i-1}^i = y_{i-1}^i \cdot y_{i-1}^i = c_{i-1} \). Therefore by Lemma 2.5

\[
y_{j}^i \cdot y_{j'}^i = p_{y_{i-1}}((y_{j}^{i-1} \cdot y_{j'}^{i-1}) \cdot p_{y_{i-1}}(y_{j}^{i-1})) = (1-c_{i-1}^2)^{-1}(y_{j}^{i-1} \cdot y_{j'}^{i-1} - c_{i-1}^2) \quad (1)
\]

If \(\{j, j'\} \neq \{k + 1, k + 2\} \), then \(y_{j}^i \cdot y_{j'}^i = c_{i-1} \) as well. The induction step follows, as

\[
(y_{j}^{i-1} \cdot y_{j'}^{i-1})^{-1} = (1-c_{i-1}^2)(c_{i-1} - c_{i-1}^2)^{-1} = 1 + c_{i-1}^{-1} = i + c^{-1} = c_{i}^{-1}.
\]

Writing \(r_i = y_{k+1}^i \cdot y_{k+2}^i - 1 \) we have \(r_{i+1} = (1-c_i^2)^{-1}r_i \) by (1), so

\[
p_U(x) \cdot p_U(x') = 1 + r_k = 1 - \lambda(1-x \cdot x'),
\]

where \(\lambda = \prod_{i=0}^{k-1}(1-c_i^2)^{-1} \). To compute \(\lambda \) consider the case \(x \cdot x' = c \). Then by the above discussion \(1 - \lambda(1-c) = p_U(x) \cdot p_U(x') = c_k = (c^{-1}+k)^{-1} \), so \(\lambda = (1-c)^{-1}(1-(c^{-1}+k)^{-1}) \). □
3 Proof of the main result

In this section we prove Theorem 1.1. We argue by induction on \(k\). The base case is \(k = 0\), when \(L = [-1, -\beta]\), and we can take \(f_0(\beta) = \beta^{-1} + 1\) by Lemma 2.3. Henceforth we suppose \(k > 0\). We can assume \(d \geq d_0 = (2k)^{2k\beta^{-1}}\). Indeed, if we can prove the theorem under this assumption, then for \(d < d_0\) we can use the upper bound for \(\mathbb{R}^{d_0}\) (since it contains \(\mathbb{R}^d\)). Then we can deduce the bound for the general case by multiplying \(f_k(\beta)\) (obtained for the case \(d \geq d_0\)) by a factor \(d_0^2 = (2k)^{2k\beta^{-1}}\).

Suppose \(C = \{x_1, \ldots, x_n\}\) is an \(L\)-spherical code in \(\mathbb{R}^d\), where \(L = [-1, -\beta] \cup \{a_1, \ldots, a_k\}\), with \(a_1 < \cdots < a_k\). We define graphs \(G_0, \ldots, G_k\) on \([n]\) where \((i, j) \in G_\ell \iff x_i \cdot x_j = a_\ell\) for \(\ell \in [k]\) and \((i, j) \in G_0 \iff x_i \cdot x_j \in [-1, -\beta]\).

Consider the case \(a_k < \beta^2/2\). We claim that \(G_0\) has maximum degree \(\Delta \leq 2\beta^{-2} + 1\). Indeed, consider \(y \in [n]\) and \(J \subseteq [n]\) such that \((y, j) \in G_0\) for all \(j \in J\). For any \(j, j'\) in \(J\) we have \(x_y \cdot x_j, x_y \cdot x_{j'} \leq -\beta\). Hence, by Lemma 2.3 we have

\[
p_{x_y}(x_j) \cdot p_{x_y}(x_{j'}) = \frac{x_j \cdot x_{j'} - (x_y \cdot x_j)(x_y \cdot x_{j'})}{1 - (x_y \cdot x_j)^2} \leq \frac{a_k - \beta^2}{1 - (x_y \cdot x_{j'})^2} < -\beta^2/2.
\]

Thus \(|J| \leq 2\beta^{-2} + 1\) by Lemma 2.3 as claimed. By Lemma 2.4 \(G_0\) has an independent set \(S\) of size \(n/(2\beta^{-2} + 2)\). Then \(\{x_j : j \in S\}\) is an \(\{a_1, \ldots, a_k\}\)-spherical code, so \(|S| \leq d_k + 1 \leq 2d_k\) by Lemma 2.1. Choosing \(f_k(\beta) > 4\beta^{-2} + 4\), we see that the theorem holds in this case. Henceforth we suppose \(a_k \geq \beta^2/2\).

Next consider the case that there is \(\ell \geq 2\) such that \(a_{\ell-1} < a_{\ell}^2/2\). Choosing the maximum such \(\ell\) we have

\[
a_{\ell-1}^2/2 = 2(a_{\ell-1}/2)^2 \geq 2(a_{\ell}/2)^2 \geq \ldots \geq 2(a_k/2)^{2k-\ell+1} \geq \beta' := (\beta/2)^{2k}.
\]

Note that by induction \(\cup_{i=0}^{\ell-1} G_i\) contains no clique of order \(f_{\ell-1}(\beta)d^{\ell-1}\), so by Lemma 2.4 its complement has maximum degree at least \(n' = n/(2f_{\ell-1}(\beta)d^{\ell-1})\). Consider \(y \in [n]\) and \(J \subseteq [n]\) with \(|J| = n'\) such that \((y, j) \notin \cup_{i=0}^{\ell-1} G_i\) for all \(j \in J\). By the pigeonhole principle, there is a subset \(J' \subseteq J\) and an index \(\ell \leq s \leq k\) such that \((y, j) \in G_s\) for all \(j \in J'\).

For any \((j, j') \in \cup_{i=0}^{s-1} G_i [J']\), by Lemma 2.3 we have

\[
p_{x_y}(x_j) \cdot p_{x_y}(x_{j'}) = \frac{x_j \cdot x_{j'} - a_s^2}{1 - a_s^2} \leq a_s^2/2 - a_s^2 < -a_s^2/2 \leq -\beta'.
\]

Now \(\{x_y(x_j) : j \in J'\}\) is an \(L'\)-spherical code, where \(L' = [-1, -\beta'] \cup \{a_\ell', \ldots, a_k'\}\), with \(a_i' = a_i - a_s^2\) for \(i \geq \ell\). By induction hypothesis, we have \(|J'| \leq f_{k-\ell+1}(\beta')d^{k-\ell+1}\), so choosing \(f_k(\beta) > 2k f_{\ell-1}(\beta) f_{k-\ell+1}(\beta')\) the theorem holds in this case.

Now suppose that there is no \(\ell > 1\) such that \(a_{\ell-1} < a_{\ell}^2/2\). We must have \(a_1 > 0\). Let \(t = 1/\beta'\). We apply Lemma 2.2 to find an index \(r\) and a disjoint pair of sets \((T, M)\) with \(|T| = t\) and \(|M| = m \geq (k + 1)^{-(k+1)t}n\), such that all vertices in \(T\) are adjacent to each other and to all vertices in \(M\) by edges of \(G_r\). Note that \(r > 0\), as \(G_0\) has no clique of size \(t\) by Lemma 2.3. For \(j \in M\) we write \(x_j' = x_j \cdot y\). By Lemma 2.6 for any \((j, j') \in G_i [M]\) with \(i \geq 1\) we have \(x_j' \cdot x_{j'} = a_i' := g_i^{ar}(a_i)\). Also, if \((j, j') \in G_0 [N]\) we have \(x_j' \cdot x_{j'} = g_i^{ar}(x_j \cdot x_{j'}) \leq g_i^{ar}(-\beta) \leq -\beta\). Thus \(\{x_j' : j \in M\}\) is an \(L'\)-spherical code in \(\mathbb{R}^{d-t}\), where \(L' = [-1, -\beta] \cup \{a_1', \ldots, a_k'\}\).
We can assume $a'_k \geq \beta^2/2$, otherwise choosing $f_k(\beta) > (k+1)^{(k+1)t}(4\beta^{-2} + 4)$ we are done by the first case considered above. Since $a'_r = (a_{r-1} + t)^{-1} < \beta'$, the computation in (2) implies that there is $\ell > 1$ such that $a_{\ell-1} < a_{\ell}/2$. Choosing $f_k(\beta) > (k+1)^{(k+1)t}2k f_{\ell-1}(\beta) f_{k-\ell+1}(\beta')$ we are done by the second case considered above. □

4 Concluding remarks

One can use our proof to derive an explicit bound for $f_k(\beta)$. Indeed, it can be easily shown that it is enough to take $f_k(\beta)$ to be $2^{\beta-o(k^2)}$. We omit the details, as we believe that this bound is very far from optimal. Moreover, one cannot expect a bound better than exponential in β^{-1} using our methods or those of Bukh [1]. On the other hand, we do not know any example ruling out the possibility that $f_k(\beta)$ could be independent of β if $k > 0$ and A is fixed (Bukh [1] also makes this remark for $k = 1$). One place to look for an improvement is in the application of Ramsey’s theorem, as one would expect much better bounds for Ramsey-type questions for graphs defined by geometric constraints (see [3] and its references for examples of this phenomenon).

References

[1] B. Bukh, Bounds on equiangular lines and on related spherical codes, preprint, arXiv:1508.00136.
[2] B. Bukh, Ranks of matrices with few distinct entries, preprint, arXiv:1508.00145.
[3] D. Conlon, J. Fox, J. Pach, B. Sudakov and A. Suk, Ramsey-type results for semi-algebraic relations, *Transactions Amer. Math. Soc.* 366 (2014), 5043–5065.
[4] D. de Caen, Large equiangular sets of lines in Euclidean space, *Electronic J. Combin.* 7 (2000), Paper 55.
[5] P. Delsarte, J. Goethals and J. Seidel, Bounds for systems of lines, and Jacobi polynomials, *Philips Research Reports* 30 (1975), 91–105.
[6] P. Delsarte, J. Goethals and J. Seidel, Spherical codes and designs, *Geometriae Dedicata* 6 (1977), 363–388.
[7] G. Greaves, J. Koolen, A. Munemasa and F. Szöllősi, Equiangular lines in Euclidean spaces, preprint, arXiv:1403.2155.
[8] J. Jedwab and A. Wiebe, Large sets of complex and real equiangular lines, *J. Combin. Theory A* 134 (2015), 98–102.
[9] J. H. van Lint and J. J. Seidel, Equilateral point sets in elliptic geometry, *Nederl. Akad. Wetensch. Proc. Ser. A* 69=Indag. Math. 28 (1966), 335–348.
[10] T. Koornwinder, A note on the absolute bound for systems of lines, *Nederl. Akad. Wetensch. Proc. Ser. A* 79=Indag. Math. 38 (1976), 152–153.