Bathing Frequency and Onset of Functional Disability Among Japanese Older Adults: A Prospective 3-Year Cohort Study From the JAGES

Akio Yagi1,2, Shinya Hayasaka3,4, Toshiyuki Ojima4, Yuri Sasaki5, Taishi Tsuji6, Yasuhiro Miyaguni7, Yuiko Nagamine1,6, Takao Namiki2, and Katsunori Kondo6,7,8

1Graduate School of Medicine, Chiba University, Chiba, Japan
2Department of Japanese Oriental “Kampo” Medicine, Chiba University, Chiba, Japan
3Faculty of Human Life Sciences, Tokyo City University, Tokyo, Japan
4Department of Community Health and Preventive Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
5Department of International Health and Collaboration, National Institute of Public Health, Saitama, Japan
6Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
7Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Aichi, Japan
8Center for Well-being and Society, Nihon Fukushi University, Aichi, Japan

Received June 18, 2018; accepted October 1, 2018; released online October 27, 2018

ABSTRACT

Background: While bathing styles vary among countries, most Japanese people prefer tub bathing to showers and saunas. However, few studies have examined the relationship between tub bathing and health outcomes. Accordingly, in this prospective cohort study, we investigated the association between tub bathing frequency and the onset of functional disability among older people in Japan.

Methods: We used data from the Japan Gerontological Evaluation Study (JAGES). The baseline survey was conducted from August 2010 through January 2012 and enrolled 13,786 community-dwelling older people (6,482 men and 7,304 women) independent in activities of daily living. During a 3-year observation period, the onset of functional disability, identified by new certification for need of Long-Term Care Insurance, was recorded. Tub bathing frequencies in summer and winter at baseline were divided into three groups: low frequency (0–2 times/week), moderate frequency (3–6 times/week), and high frequency (≥7 times/week). We estimated the risks of functional disability in each group using a multivariate Cox proportional hazards model.

Results: Functional disability was observed in a total of 1,203 cases (8.7%). Compared with the low-frequency group and after adjustment for 14 potential confounders, the hazard ratios of the moderate- and high-frequency groups were 0.91 (95% confidence interval [CI], 0.75–1.10) and 0.72 (95% CI, 0.60–0.85) for summer and 0.90 (95% CI, 0.76–1.07) and 0.71 (95% CI, 0.60–0.84) for winter.

Conclusion: High tub bathing frequency is associated with lower onset of functional disability. Therefore, tub bathing might be beneficial for older people’s health.

Key words: tub bathing; functional decline; care; older people; prevention

INTRODUCTION

Population aging is a critical issue in most developed and developing countries.1,2 With a proportion of individuals 65 years or older of 27.8% (in August 2017), Japan has the most aged population in the world.3 This proportion is expected to increase rapidly in the near future.4 A growing number of older people have functional disability requiring care in daily life, and there are increasingly fewer young people to support them. Therefore, prevention of functional disability is an important issue for public health in Japan and other countries.

Although the Japanese have one of the longest life expectancies in the world,4 the reasons for their longevity are not well understood. The Japanese diet5 and social cohesion6,7 appear to play some part. Some other aspects of the Japanese lifestyle might also have a protective effect on health.

The Japanese prefer to take baths, especially in a bathtub, rather than shower or sauna bath, not only for cleanliness, but also to feel warm and refreshed and to aid sleep.8,9 The relationship between bathing and health outcomes has been reported in several studies. In cross-sectional studies, tub bathing frequency was reported to be associated with good sleep quality, low perceived...
stress, and good self-rated health. Only one longitudinal study in Japan, with a 5-year observational period, has examined this issue, finding that tub bathing frequency was inversely associated with the onset of functional disability. However, that study was limited in generalizability because it specifically enrolled outpatients and had a relatively small sample size \((n = 610) \). In a large cohort study in Finland, Laukkkanen et al identified a strong negative association between sauna bathing frequency and cardiovascular and all-cause mortality, although sauna bathing is clearly distinct from tub bathing.

Here, we conducted a large prospective cohort study targeting the general population to evaluate the association between tub bathing frequency and the onset of functional disability among Japanese older adults.

METHODS

Study population and setting

We used data from the Japan Gerontological Evaluation Study (JAGES). The baseline survey was performed from August 2010 through January 2012. The target population was community-dwelling older adults, aged 65 or older, not certified to need care under Long-Term Care Insurance (LTCI), and living in 18 municipalities in eight prefectures in Japan. A total of 110,447 randomly selected people were mailed self-report questionnaires asking about their health status, habits, and lifestyle; 72,760 completed questionnaires were returned (response rate, 65.9%). For 69,408 of them (95.4%), we were able to refer to the LTCI database, which contains the information necessary for follow-up. In a randomly selected one-fourth or one-fifth of the questionnaires (the rate varied depending on municipality), participants were asked about bathing habits \((n = 16,416) \). We excluded individuals who were not independent in activities of daily living (ADL) \((n = 896) \) or missing information on bathing frequency in summer or winter \((n = 1,734) \). This left 13,786 individuals (6,482 men and 7,304 women) for analysis; their mean age was 73.4 (standard deviation, 6.0) years.

We observed the participants for 3 years from the baseline survey and recorded the onset of functional disability (defined in the next section), movement out of the municipality, and death. This information was obtained from the LTCI database after the end of the observational period; this database is maintained by the local authority of each municipality.

This study was approved by the human research ethics committee of Nihon Fukushi University (No. 10-05). All individuals enrolled in the baseline survey were informed that their participation in the study was voluntary and that completion and return of the questionnaire indicated their consent to participate.

Outcome

We defined functional disability as being dependent in ADL by physical or cognitive difficulty, which was identified by certification of need for LTCI (including the “need support” level). The Japanese LTCI was established to improve older people’s welfare by promoting public care. LTCI is a compulsory coverage insurance, and its benefits are obtained by older people when they apply and are certified to need care. The certification is standardized and based on information on the applicant’s ADL gathered by a qualified investigator and on comments from the family physician.

Exposure

In the questionnaire, participants were asked, “How many times a week do you take a bath in a bathtub in summer and in winter?” The original question is shown in [Figure 1](#). We divided tub bathing frequencies into three groups: low frequency (0–2 times/week), moderate frequency (3–6 times/week), and high frequency (≥7 times/week) for both summer and winter.

In the Japanese style of bathing, the water temperature is usually 39–42°C. Bathers tend to spend 5–15 minutes in the bathtub, soaking deeply up to the shoulder level. Bathing is usually performed in the late evening. Because changes in the seasons are clear in Japan (hot and wet in summer and cold and dry in winter), the associations between bathing and health outcomes were expected to differ among seasons. Therefore, we measured tub bathing frequency separately in summer and winter.

Covariates

In the baseline survey, we recorded participants’ demographic factors (age, sex, and marital status) and asked about socioeconomic status (employment, equivalized income, and years of education), health-related behaviors (smoking status, alcohol consumption, and body mass index), and self-reported health status (treatment for any disease, physical strength, cognitive function, depression, and instrumental ADL).

These variables were divided into the following categories: age (65–69, 70–74, 75–79, 80–84, or ≥85 years old), sex (male or female), marital status (married or single), employment status (not employed or employed), equivalized income \((≤1,99, 2.00–3.99, \text{ or } ≥4.00 \text{ million yen/year}) \), years of education \((0–9, 10–12, \text{ or } ≥13 \text{ years}) \), smoking status (never smoker, former smoker, or current smoker), alcohol consumption (nondrinker or drinker), body mass index \((≤18.4, 18.5–24.9, \text{ or } ≥25.0 \text{ kg/m}^2) \), treatment for any disease (without any disease or with any disease), physical strength (normal or low), cognitive function (normal or a decline), depression (not depressed or depressed), and instrumental ADL (independent or dependent). Physical strength and cognitive function were assessed based on the Kihon Checklist, which was developed to identify older people who are at risk of functional disability. Depression was assessed by the shorter version of the Geriatric Depression Scale, which includes 15 questions, with a cutoff point of ≥5 indicating “depressed”. Instrumental ADL was evaluated using the Tokyo Metropolitan Institute of Gerontology Index of Competence, which consists of five questions; participants who missed ≥1 point were regarded as being “dependent”.

Statistical analysis

After describing the baseline characteristics of the study participants, we used a multivariate Cox proportional hazards model to estimate the risks of functional disability according to tub bathing frequency. In the multivariate-adjusted model, we adjusted for 14 covariates: age, sex, marital status, employment, equivalized income, years of education, smoking status, alcohol consumption, body mass index, treatment for any disease, physical strength, cognitive function, depression, and instrumental ADL. All of these covariates were assumed to be potential confounders. If the information on a covariate was missing, we classified the participant into a “missing” category when performing the analysis. Participants who moved out or died without functional disability were censored.
Next, we performed sensitivity analysis in the multivariate-adjusted model, excluding participants whose follow-up period was less than 1 year in order to take account of non-observable risk factors. Subgroup analysis was then performed with stratification by sex, age (65–74 years or ≥75 years old), and baseline health status, such as treatment for any disease, physical strength, cognitive function, depression, and instrumental ADL. When performing this analysis, we used the variables in the multivariate-adjusted model except for the variable used for the stratification.

The proportional hazards assumption was graphically verified by plotting the log–log transformation of the cumulative survival curve of each exposure group.25

We used SPSS Statistics version 24.0 (IBM Inc., Armonk, NY, USA) for all analyses. A P-value less than 0.05 was considered significant.

RESULTS

Baseline characteristics of the study participants are described in Table 1. The numbers of individuals in each bathing frequency group (low, moderate, and high) were 1,448, 2,777, and 9,561 for summer and 1,347, 4,021, and 8,418 for winter, respectively. Compared with the other groups, the people classed in the high-frequency group were younger and more likely to be married, not depressed, and independent in instrumental ADL and have a moderate-to-high equivalized income, normal physical strength, and normal cognitive function. This tendency was clearer in winter than in summer.

The total observation time was 36,619 person-years (average, 2.7 years/participant). Of the 13,786 participants, 1,203 cases (8.7%) of functional disability, 90 cases (0.7%) of movement out of the municipality, and 335 cases (2.4%) of death were recorded. The main results of our research are shown in Table 2, with a description of the hazard ratios of each bathing frequency group, analyzed by both crude and multivariate-adjusted models. In the multivariate-adjusted model, compared with the low-frequency group, the hazard ratios of the moderate- and high-frequency groups were 0.91 (95% confidence interval [CI], 0.75–1.10) and 0.72 (95% CI, 0.60–0.85) in summer and 0.90 (95% CI, 0.76–1.07) and 0.71 (95% CI, 0.60–0.84) in winter. Significant risk reduction was seen in the high-frequency group in both summer and winter. The hazard ratios were almost the same in summer and winter.

The results from the sensitivity analysis are shown in Table 3. After the exclusion of individuals whose follow-up period was less than 1 year, the inverse association between bathing frequency and functional disability onset remained consistent. Subgroup analysis results are presented in eTable 1, eTable 2, eTable 3, eTable 4, eTable 5, eTable 6, and eTable 7. The results were mostly consistent among subgroups.

DISCUSSION

Our main finding is that individuals who frequently took baths in a bathtub were less likely to be functionally disabled after adjustment for potential confounders. A seasonal difference in the association was not seen in the multivariate-adjusted model. The results from the sensitivity analysis weaken the possibility of a reverse-causation bias because potentially vulnerable individuals might be functionally disabled earlier. In addition, the results from the subgroup analysis imply that the association between exposure and outcome is consistent regardless of sex, age, or baseline health status.

Two pathways may explain the association between bathing and older people’s health status. First, tub bathing promotes good sleep36,27 and decreases sympathetic nerve activity.28 These changes may be beneficial for the mental status of older people and may prevent depression or cognitive function decline. Second, tub bathing raises the body temperature,29 which leads to increased expression of heat shock proteins (HSPs).30 HSPs have cytoprotective, anti-apoptotic, and anti-inflammatory effects.31 Additionally, HSPs are believed to play therapeutic roles in type 2 diabetes mellitus32 and Alzheimer’s disease.33 Thus, HSPs may improve or maintain the health conditions of older people. In Japan, the direct causes of older people’s functional disability are mainly dementia, cerebrovascular disease, arthritis, fracture, and malignancy.34 The relationship between tub bathing and these diseases should be researched in a future study.

Our study results are consistent with those obtained in the aforementioned Finnish study,14 which indicated a robust negative association between sauna bathing frequency and cardiovascular and all-cause mortality, as well as several Japanese cross-sectional studies10–12 reporting a positive association between tub bathing frequency and self-rated health, which is a good predictor of functional disability in older people.35,36 Our results are also consistent with the only Japanese longitudinal study to examine this issue,13 which found a negative association between tub bathing and functional disability onset, although that study had a smaller sample size than ours and specifically targeted outpatients.

Strengths of our work include a large sample size, the enrollment of a general population in different regions in Japan, and the use of appropriate statistical methodology to adequately control for confounders. There are also several limitations. First, the certification of need for care did not always reflect functional disability. However, because this misclassification was expected to occur equally in each exposure group, we might actually have underestimated the association between exposure and outcome.37 Second, because we surveyed only tub bathing frequency, other types of bathing (ie, sauna or shower) were not taken into account, which limits the generalizability of our study when our findings are applied to people living in cultures without tub bathing. These issues should be investigated in a future study. Third, we could not examine the safety or risks of tub bathing in this study design. Sudden death or accidents during bathing are often reported in Japanese society.38,39 Therefore, safety issues related to tub bathing are important and should be studied appropriately. The relationship between bathing habit and mortality should be researched in a subsequent study, to take account of the risk of bathing-related death. Additionally, if our results are applied to clinical practice or recommended as an intervention, careful attention should be paid to safety. Considerations include advice for people with fever or excessive hypertension to avoid bathing39 and a reminder that the bathroom and dressing room should be warm.40 Lastly, we could not completely eliminate the reverse-causation bias, even after controlling for confounders and performing sensitivity analysis, because healthier people might bath more frequently. However, this limitation is inevitable in an observational study.

In conclusion, our study indicates that a high frequency of tub bathing is associated with lower onset of functional disability...
Table 1. Baseline characteristics of study participants according to the frequency of tub bathing in summer and in winter.

Variables	Summer Frequency of tub bathing, times/week	Winter Frequency of tub bathing, times/week
n (%)	n (%)	n (%)
≥7 N (%)	≥7 N (%)	≥7 N (%)
Participants	1,448	1,347
Age, years		
65–69	469	285
70–74	394	345
75–79	305	331
80–84	194	256
≥85	86	130
Sex		
Male	732	699
Female	716	648
Marital status		
Married	911	812
Single	452	452
Missing	85	83
Employment		
Not employed	969	921
Employed	297	212
Equivalized income, million yen/year		
Low (≤1.99)	598	619
Middle (2.00–3.99)	428	336
High (≥4.00)	112	70
Missing	310	322
Years of education		
0–9	675	720
10–12	453	330
≥13	235	209
Missing	85	86
Smoking status		
Never smoker	742	669
Former smoker	402	346
Current smoker	167	167
Missing	137	135
Alcohol consumption		
Non-drinker	823	851
Drinker	547	418
Missing	78	78
Body mass index, kg/m²		
≤18.4	105	123
18.5–24.9	953	833
≥25.0	296	294
Missing	94	97
Treatment for any disease		
Without any disease	365	295
With any disease	957	922
Missing	126	140
Physical strengtha		
Normal	972	808
Low	301	344
Missing	175	195
Cognitive functionb		
Normal	836	727
Decline	519	525
Missing	93	95
Geriatric depression scale		
0–4 (not depressed)	798	686
5–15 (depressed)	392	420
Missing	258	241
Instrumental ADLc		
Independent	1,051	893
Dependent	294	350
Missing	103	104

ADL. activities of daily living.

*Consists of 5 questions on participants’ self-reported physical strength. Participants who missed ≥3 points were regarded as being “low”.

*bConsists of 3 questions on participants’ self-reported cognitive function. Participants who missed ≥1 point were regarded as showing a “decline”.

*Consists of 5 questions on participants’ self-reported instrumental ADL, such as use of public transport and management of money. Participants who missed ≥1 point were regarded as being “dependent”.

J Epidemiol 2019
Table 2. Hazard ratios of functional disability onset according to the frequency of tub bathing in summer and in winter

Frequency of tub bathing, times/week	Crude model	Multivariate-adjusted model*				
	HR	95% CIs	P-value	HR	95% CIs	P-value
Summer						
0–2	reference	(0.83–1.21)	0.995	reference	(0.75–1.10)	0.323
3–6	1.00			0.72		
≥7	0.64	(0.54–0.75)	<0.001	(0.60–0.85)	<0.001	
Winter						
0–2	reference			reference	(0.76–1.07)	0.246
3–6	0.66	(0.56–0.78)	<0.001	0.90		
≥7	0.41	(0.35–0.48)	<0.001	0.71	(0.60–0.84)	<0.001

ADL: activities of daily living; HR: hazard ratio; CIs: confidence intervals.
*Adjusted for age, sex, marital status, employment, equivalized income, years of education, smoking status, alcohol consumption, body mass index, treatment for any disease, physical strength, cognitive function, depression, and instrumental ADL.

Table 3. Sensitivity analysis: hazard ratios of functional disability onset, after the exclusion of participants whose follow-up period was <1 year

Frequency of tub bathing, times/week	Multivariate-adjusted model*		
	HR	95% CIs	P-value
Summer			
0–2	reference		
3–6	0.93	(0.73–1.17)	0.517
≥7	0.75	(0.61–0.93)	0.007
Winter			
0–2	reference		
3–6	0.94	(0.76–1.17)	0.592
≥7	0.72	(0.59–0.89)	0.002

ADL: activities of daily living; HR: hazard ratio; CIs: confidence intervals.
*Adjusted for age, sex, marital status, employment, equivalized income, years of education, smoking status, alcohol consumption, body mass index, treatment for any disease, physical strength, cognitive function, depression, and instrumental ADL.

among Japanese older adults. Further studies investigating the mechanisms linking tub bathing and older people’s health are warranted.

ACKNOWLEDGEMENTS

Funding: This study used data from JAGES, which was supported by MEXT (Ministry of Education, Culture, Sports, Science and Technology-Japan) – Supported Program for the Strategic Research Foundation at Private Universities (2009–2013); JSPS (Japan Society for the Promotion of Science) KAKENHI Grant Numbers (JP18390200, JP22330172, JP22390400, JP233243070, JP23590786, JP23790710, JP24390469, JP24530698, JP24683018, JP25253052, JP25870573, JP25870881, JP26285138, JP26882010, JP15H01972); Health Labour Sciences Research Grants (H22-Chouju-Shitei-008, H24-Junkanki [Seishu]-Ippan-007, H24-Chiyukubiko-Ippan-009, H24-Chouju-Wakate-009, H25-Kenki-Wakate-015, H25-Chouju-Ippan-003, H26-Irryo-Shitei-003 [Fukkou], H26-Chouju-Ippan-006, H27-Ninchisyou-Ippan-001, H28-chouju-Ippan-002); AMED (Japan Agency for Medical Research and Development), the Research Funding for Longevity Sciences from National Institute for Geriatrics and Gerontology (24-17, 24-23, 29-42); and World Health Organization Centre for Health Development (WHO Kobe Centre) (WHO APW 2017/713981). The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the respective funding organizations.

Conflicts of interest: None declared.

Author contributions: AY analyzed and interpreted the data and drafted the article. SH, TO, and KK designed the study, interpreted the data, and revised the article. YS, TT, YM, YN, and TN interpreted the data and revised the article.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data related to this article can be found at https://doi.org/10.2188/jea.JE20180123.

REFERENCES

1. Christensen K, Dobhlhammer G, Rau R, Vaupel JW. Ageing populations: the challenges ahead. *Lancet*. 2009;374:1196–1208.
2. Shetty P. Grey matter: ageing in developing countries. *Lancet*. 2012; 379:1285–1287.
3. Statistics Bureau, Ministry of Internal Affairs and Communications, Japan. Result of the Population Estimates, Monthly Report. http://www.stat.go.jp/english/data/jinsui/tsuki/index.html; 2018 Accessed 18.05.08.
4. UN Population Division. World Population Prospects: the 2017 revision population database. https://esa.un.org/unpd/wpp/; 2018 Accessed 18.05.08.
5. Shimazu T, Kuriyama S, Hozawa A, et al. Dietary patterns and cardiovascular disease mortality in Japan: a prospective cohort study. *Int J Epidemiol*. 2007;36:600–609.
6. Marmot MG, Syme SL. Acculturulation and coronary heart disease in Japanese-Americans. *Am J Epidemiol*. 1976;104:225–247.
7. Saito M, Kondo N, Kondo K, Ojima T, Hirai H. Gender differences on the impacts of social exclusion on mortality among older Japanese: AGES cohort study. *Soc Sci Med*. 2012;75:940–945.
8. Takehara H, Yanase T, Nishikawa K, Murakami K. The Survey on Bathroom Environm and Residential Consciousness (Part 2): On the Residential Consciousness and Interest in Bathing. *J Home Economics Jpn*. 2001;52:1005–1013 (in Japanese).
9. Yano T, Hiro M, Imanishi J, et al. Comparison of the habit of bathing between Japanese living in Kyoto and Japanese Americans living in Los Angeles. *J Balneol Climatol Phys Med*. 1976;104:225–247.
10. Hayasaka S, Shibata Y, Goto Y, Noda T, Ojima T. Bathing in a bathtub and health status: a cross-sectional study. *Complement Ther Clin Pract*. 2010;16:219–221.
11. Goto Y, Hayasaka S, Nakamura Y. Health effects of seasonal bathing in hot water, seasonal utilization of hot spring facilities, and high green tea consumption. *J Balneol Climatol Phys Med*. 2014;77:171–182.
12. Goto Y, Hayasaka S, Nakamura Y. Bathing in hot water, bathing in Japanese style hot spring and drinking green tea may contribute to the good health status of Japanese. *J Balneol Climatol Phys Med*. 2012;75:256–267.
13. Organization of Balneotherapist in Japanese Association of Balneology Climatology and Physical Medicine. Prospective 5yr cohort study on the correlation between bathing habit and need for long term care insurance of aged subjects. *J Balneol Climatol Phys Med*. 2011;74:200–206 (in Japanese).

14. Laukkanen T, Khan H, Zaccardi F, Laukkanen JA. Association between sauna bathing and fatal cardiovascular and all-cause mortality events. *JAMA Intern Med*. 2015;175:542–548.

15. Kondo K. Progress in aging epidemiology in Japan: The JAGES Project. *J Epidemiol*. 2016;26:331–336.

16. Aida J, Kondo K, Kawachi I, et al. Does social capital affect the incidence of functional disability in older people? A prospective population-based cohort study. *J Epidemiol Community Health*. 2013;67:42–47.

17. Saito E, Ueki S, Yasuda N, Yamazaki S, Yasumura S. Risk factors of functional disability among community-dwelling elderly people by household in Japan: a prospective cohort study. *BMC Geriatr*. 2014;14:93.

18. Tsutsui T, Muramatsu N. Care-needs certification in the long-term care insurance system of Japan. *J Am Geriatr Soc*. 2005;53:522–527.

19. Ishizawa T, Watanabe S, Yano S, et al. Relationship between bathing habits and physical and psychological state. *J Balneol Climatol Phys Med*. 2012;75:227–237.

20. Ogura Y. *Weather in Japan: Its Diversity and Mechanism*. Tokyo: University of Tokyo Press; 2015:37–54 (in Japanese).

21. Shinkai S, Watanabe N, Yoshida H, et al. Research on screening for frailty: development of “the Kigo-Yobo Checklist”. *Nihon Kosho Eisei Zasshi*. 2010;57:345–354 (in Japanese).

22. Fukutomi E, Okumiya K, Wada T, et al. Relationships between each category of 25-item frailty risk assessment (Kihon Checklist) and newly certified older adults under Long-Term Care Insurance: a 24-month follow-up study in a rural community in Japan. *Geriatr Gerontol Int*. 2015;15:864–871.

23. Yesavage JA, Sheikh JI. Geriatric Depression Scale (GDS): recent evidence and development of a shorter version. *Clin Gerontol*. 1986;5:165–173.

24. Koyano W, Shibata H, Haga H, Suyama Y, Nakazato K. Measurement of competence in the elderly living at home: development of an index of competence. *Nihon Kosho Eisei Zasshi*. 1987;34:109–114 (in Japanese).

25. Hess KR. Graphical methods for assessing violations of the proportional hazards assumption in Cox regression. *Stat Med*. 1995;14:1707–1723.

26. Liao WC. Effects of passive body heating on body temperature and sleep regulation in the elderly: a systematic review. *Int J Nurs Stud*. 2002;39:803–810.

27. Yasuda T, Kubo T, Masamitsu Y, et al. Behavior change from the shower bathing to bath bathing affects sleep and working efficiency. *J Balneol Climatol Phys Med*. 2015;78:341–352 (in Japanese).

28. Yamamoto K, Nagata S. Physiological and psychological evaluation of the wrapped warm footbath as a complementary nursing therapy to induce relaxation in hospitalized patients with incurable cancer: a pilot study. *Cancer Nurs*. 2011;34:185–192.

29. Dorsey CM, Teicher MH, Cohen-Zion M, et al. Core body temperature and sleep of older female insomniacs before and after passive body heating. *Sleep*. 1999;22:891–898.

30. Minowada G, Welch WJ. Clinical implications of the stress response. *J Clin Invest*. 1995;95:3–12.

31. Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. *Adv Drug Deliv Rev*. 2009;61:310–318.

32. Krause M, Ludwig MS, Heck TG, Takahashi HK. Heat shock proteins and heat therapy for type 2 diabetes: pros and cons. *Curr Opin Clin Nutr Metab Care*. 2015;18:374–380.

33. Hoshino T, Suzuki K, Matsushima T, Yamakawa N, Suzuki T, Mizushima T. Suppression of Alzheimer’s disease-related phenotypes by geranylgeranylacetone in mice. *PLoS One*. 2013;8:e76306.

34. Ministry of Health, Labour and Welfare, Japan. Comprehensive Survey of Living Condition, 2016. https://www.mhlw.go.jp/ toukei/saikin/hw/k-tyosa16/index.html; 2017. Accessed 18.08.26 (in Japanese).

35. Stuck AE, Walthert JM, Nikolaus T, Büla CJ, Hohmann C, Beck JC. Risk factors for functional status decline in community-living elderly people: a systematic literature review. *Soc Sci Med*. 1999;48:445–469.

36. Hirai H, Kondo T, Ojima T, Murata C. Examination of risk factors for onset of certification of long-term care insurance in community-dwelling older people: AGES project 3-year follow-up study. *Nihon Kosho Eisei Zasshi*. 2009;56:501–512 (in Japanese).

37. Wacholder S, Hargreaves AR, Lubin JH, Cote AM, Hsieh CC. Risk factors for onset of long-term care in community-dwelling older people: a systematic literature review. *Environ Health Perspect*. 2001;109:1081–1088.

38. Suzuki M, Shimbo T, Ikeda M, Irie S. Sudden death phenomenon related illness or incident with blood pressure and body temperature: a case-control study. *J Balneol Climatol Phys Med*. 2016;79:112–118 (in Japanese).

39. Takasaki Y, Nagai Y, Inoue K, Nakamura T, Toshihara Y. Bating habits of the elderly in winter and factors affecting regional differences in bathing death rates. *J Human Living Environment*. 2011;18:99–106 (in Japanese).