“Real-time” Assessment of Surgical Margins During Radical Prostatectomy: State-of-the-Art

Ahmed Eissa,1,2 Ahmed Zoieir,1,2 Maria Chiara Sighinolfi,1 Stefano Puliatti,1 Luigi Bevilacqua,1 Chiara Del Prete,1 Laura Bertoni,3 Paola Azzoni,3 Luca Reggiani Bonetti,3 Salvatore Micalli,1 Giampaolo Bianchi,1 Bernardo Rocco1

Abstract

Histopathologic examination of the pathologic specimens using hematoxylin & eosin stains represents the backbone of the modern pathology. It is time-consuming; thus, “real-time” assessment of prostatic and periprostatic tissue has gained special interest in the diagnosis and management of prostate cancer. The current study focuses on the review of the different available techniques for “real-time” evaluation of surgical margins during radical prostatectomy (RP). We performed a comprehensive search of the Medline database to identify all the articles discussing “real-time” or intraoperative assessment of surgical margins during RP. Several filters were applied to the search to include only English articles performed on human subjects and published between January 2000 and March 2019. The search revealed several options for pathologic assessment of surgical margins including intraoperative frozen sections, confocal laser endomicroscopy, optical spectroscopy, photodynamic diagnosis, optical coherence tomography, multiphoton microscopy, structured illumination microscopy, 3D augmented reality, and ex vivo fluorescence confocal microscope. Frozen section represents the gold standard technique for real-time pathologic examinations of surgical margins during RP; however, several other options showed promising results in the initial clinical trials, and considering the rapid development in the field of molecular and cellular imaging, some of these options may serve as an alternative to frozen section.

Introduction

Prostate cancer (PCa) is among the most commonly diagnosed cancers in the male population worldwide (13.5% of all male cancers), especially in northern and western Europe.1 Several adverse events in the pathologic report may affect the outcomes and prognosis after radical prostatectomy (RP), including extracapsular extension (ECE) and positive surgical margins (PSMs).2,3 PSM is defined as the presence of cancer cells in contact with the inked surface of the RP specimen. It may occur as a result of the migration of the tumor cells beyond the confines of the prostate (a phenomena known as ECE), or the intraprostatic surgical dissection (usually known as capsular incision).4 PSM is associated with an increased risk of biochemical recurrence (BCR);5 however, its effect on the metastatic-free survival and cancer-specific mortality is still debatable.6 This controversy about the actual clinical impact of PSMs may be attributable to multiple factors. The high inter-observer variability in the assessment of surgical margins (SMs) between pathologists during RP (k = 0.45) is among the main factors causing this controversy.7,8 Furthermore, the PSM rate is greatly affected by the experience of the surgeons and pathologists, which in turn, can result in highly variable rates of PSMs between different studies.9 Thus, the International Society of Urological Pathology (ISUP) published their recommendation about SM assessment to standardize the pathologic reporting of SM status.10 Moreover, the surgical approach may affect the rates of PSMs and BCR. In their systematic review and meta-analysis, Srougi et al11 reported that robotic RP was associated with a statistically significant lower risk of PSMs and BCR when compared with open RP. In addition, different surgical techniques were introduced to reduce the risk of PSMs, like the collar technique, which significantly decreased the risk of apical PSMs (odds ratio, 0.05; P = .009).12 Several other
Surgical Margins Assessment During RP

Pathologic patterns and characteristics may affect the clinical impact of PSMs, like the extent and location of positive margins (extensive apical or bilateral PSMs may be associated with increased risk of BCR). On the other hand, PSMs may be associated with the subsequent need for further treatment and thus increase the cost of management. The main treatment options in this case are either adjuvant radiotherapy to the prostatic bed immediately after surgery or salvage radiotherapy offered only to men with BCR. The choice between these treatment options still relies on the surgeon’s preference as there is no strong evidence supporting one strategy over the other. Despite the ongoing debate about the oncologic impact of PSMs, surgeons should try to achieve maximum surgical radicality, without compromising the functional outcomes, as PSMs stimulate anxiety and require additional therapy that may have a subsequent effect on the patients’ quality of life. In these settings, several options have been proposed for prediction of ECE to provide the balance between oncologic radicality and functional outcomes without increasing the risk of PSMs, like the statistical tools based mainly on the clinical stage, prostate-specific antigen, and biopsy Gleason score; however, the predictive performance of such tools is still questionable. Recently, a systematic review and external validation of the statistical tools used for ECE prediction showed that their predictive performance during external validation was not reliable. Thus, “real-time” assessment of surgical margins has evolved as an urgent need to reduce the subsequent risk of BCR and avoid overtreatment.

Histopathologic examination of the pathologic specimens using hematoxylin & eosin (H&E) stains represents the backbone of modern pathology; however, it was introduced in the late 1800s. Moreover, this technique is time consuming, with a minimum turnaround time for surgical pathology reports of 2 days for the highest quality pathology laboratories. In the current era of precise medicine and patient-tailored surgeries, this time-consuming approach does not fulfill the need for optimized surgical planning and improved surgical precision.

Thus, “real-time” assessment of prostatic and periprostatic tissue has gained special interest in the diagnosis and management of PCa. The current study focuses on the review of the different available techniques for “real-time” evaluation of surgical margins during RP.

Methodology

A comprehensive search of the PubMed database was done for all the articles discussing “real-time” or intraoperative assessment of surgical margins during RP. The search was done using a combination of the following keywords: prostatic neoplasms; prostate cancer; prostate carcinoma; prostatic carcinoma; prostate adenocarcinoma; prostatic adenocarcinoma; real time; real-time; intra-operative; intra-operative; pathological examination; frozen sections; NeuroSAFE; cryoultramicroscopy; frozen section; light reflectance spectroscopy; spectroscopy; Cellvizio; confocal laser endomicroscopy; gigapixel; structured illumination microscopy; confocal microscopy; optical coherence tomography; augmented reality; 3D reconstruction; MRI; and magnetic resonance imaging. Several filters were applied to the search to include only English articles performed on human subjects and published between January 2000 and March 2019. Furthermore, a manual search in the references of the included articles was performed to identify all the possible technologies reported in the literature. The search was performed by 3 of our authors (A.E., A.Z., and S.P.).

Our search identified different options for assessment of surgical margins during RP that will be discussed in the current review including frozen section (FS), multiparametric magnetic resonance imaging (mpMRI), confocal laser endomicroscopy (CLE), optical spectroscopy, photodynamic diagnosis (PDD), optical coherence tomography (OCT), multiphoton microscope, video rate-structured illumination microscopy (VR-SIM), ex vivo fluorescence confocal microscope (FCM), 3D augmented reality (AR), photoacoustic imaging (PAI), and histoscanning (HS).

Clinically Available Methods

FS

FS is a relatively old technique that dates back to the late 1800s. William Welch was the first to introduce the concept of FS in the surgical field, when he examined a specimen taken from breast tissues during surgery; however, Thomas Cullen was the first to publish the description of intraoperative FS technique in 1895.

FS is based on the concept of rapid freezing of tissue samples using a cryostat machine (−16°C to −20°C for prostatic tissue specimens); thus, the water component of the specimen is converted to ice, allowing the tissue to be cut into multiple sections. The tissue can then be stained using H&E for microscopic examination of the specimen.

FS is the most commonly used technique for assessment of surgical margins during RP, Table 1 shows a summary of the studies published between January 2000 and March 2019 discussing the use of FS for assessment of surgical margins during RP.

The prostate is surrounded by a fibromuscular fascial layer known as the prostatic capsule; however, this capsule is deficient at some parts of the prostate, including the apex of the prostate, thus rendering the dissection of the prostate at this part challenging owing to the proximity of the urethral sphincter, which must be preserved. The urethral stump (the apex of the prostate) is one of the most common sites of PSMs. Several authors studied the value of FS analysis of apical margins during RP, showing sensitivity and specificity ranging from 57% to 67% and 99% to 100%, respectively. Interestingly, Ye et al evaluated the oncologic value of FS analysis and apical margin re-excision by comparing the BCR-free survival at 60 months in patients with negative apical margins after tissue re-excision versus patients who had positive apical margins at the final pathology (93.75% vs. 80%, respectively). Reporting a limited value for routine apical FS analysis.

The second most common site for PSMs is the posterolateral margins of the prostate (neurovascular bundle [NVB]). Walsh introduced the NVB-sparing RP in 1983, and it has become the standard care for appropriately selected patients with PCa to improve the postoperative functional outcomes. A recent systematic review and meta-analysis showed that nerve sparing (either unilateral or bilateral) was not associated with a significant increase in the risk of PSMs in patients with pT2 or pT3 disease; however, this is still debatable. In these settings, several authors assessed the value of FS analysis of the posterolateral margins of the prostate.
Site	Author	No.	Procedure	FS Time, min	PSM FS, %	False Negative, %	False Positive, %	PSM Conversion, %	Sensitivity, %	Specificity, %	Accuracy, %	PSM at Pathology, %	PSM Reduction, %	NS Increase
Apical	Shah et al, 200151	95	RRP	NA	4.2	3.2	0	50	57	100	NA	- Apical (16.8)	- Overall (26)	NA
	Ye et al, 201152	1669	NA	NA	6.7	2.8	0.2	45.5	59.1	99.8	NA	- Apical (6.5)	- Overall (15)	NA
	Wambi et al, 201553	329	RARP	30	2.7	0.9	0.9	NA	67	99	98	- Overall (11)	NA	NA
Neurovascular bundle	Gharderakhtsh et al, 200240	101	NA	20	14.9	5	4	80	69	95	91	14.9	11.8	NA
(main site)	Fromont et al, 200337	100	LRP	10-15	24	1	NA	NA	96	100	NA	12	21	NA
	Eichelberg et al, 200636	83	RRP	NA	42.2	6	NA	85.7	NA	NA	NA	15.7	4.9	52
	Heinrich et al, 201055	130	RRP	NA	6.9	0.8	NA	100	NA	NA	90	3.1	NA	NA
	Lavery et al, 201055	177	RARP	NA	6	0.6	0.6	54.5	NA	NA	98	7	11	NA
	Schlomm et al, 201253	5392	(2567)	RRP, LRP, RARP	35	27.2	2.5	63.5	93.5	98.8	97.3	15	7	16
	Beyer et al, 201420	1040	RARP	35	29.6	0.2	NA	NA	NA	NA	NA	- NeuroSAFE	region (0.2)	7.8
												- Unifocal (10.97)	- Multifocal (4.93)	16
	Petralia et al, 201436	134	RARP	30	13.4	3.7	NA	72.2	NA	NA	NA	7.5	11.2	NA
	Vasdev et al, 201538	40	RARP	31	25	NA	10	60	75	75	NA	7.8	16.9	42.2
	Hatzichristodoulou et al, 2015	471	RRP	30	29.1	3.3	NA	92.7	NA	NA	NA	4.9	19.6	37.2
	Bianchi et al, 201635	264	RARP	35	29.1	9.8	NA	79.9	NA	NA	NA	15.75	NA	NA
	Mirmilstein et al, 201736	120	RARP	NA	NA	1.5	NA	82.4	NA	91	NA	9.2	8.6	6.1
	Preisser et al, 201937	156	RARP	NA	NA	NA	NA	NA	NA	NA	NA	15.4	14.1	40.2

Table 1 Summary of the Studies Published Between January 2000 and March 2019 Discussing the Use of FS for Assessment of Surgical Margins During RP

NS = Not Specified
Site	Author	No.	Procedure	FS Time, min	PSM FS, %	False Negative, %	False Positive, %	PSM Conversion, %	Sensitivity, %	Specificity, %	Accuracy, %	PSM at Pathology, %	PSM Reduction, %	NS Increase
Bladder neck	Nakamura et al, 2007	51	NA	NA	6	NA	NA	100	NA	NA	NA	- Overall (20)	NA	NA
Apical and/or bladder neck and/or nerve bundle	Lepor et al, 2003	500	RRP	NA	6.9	NA	NA	57.7	98.2	96	NA	3.6 (apical)	NA	NA
Apical and/or bladder neck and/or nerve bundle	Dillenburg et al, 2005	198	LRP	7.5	13	NA	NA	Apical (70)	Apical (97)	Apical (96)	NA	- Apical (6)	- NVB (1)	NA
Apical and/or bladder neck and/or nerve bundle	Tsuoi et al, 2005	259	NA	NA	8.9	13.6	NA	73.9	42	100	NA	17.4	NA	NA
Apical and/or bladder neck and/or nerve bundle	Gillitzer et al, 2010	178	RRP	NA	10.7	NA	NA	- NVB (11.5)	- Apex (29.3)	BN (18.2)	NA	- Overall (27.5)	NA	NA
Apical and/or bladder neck and/or nerve bundle	Fasolis et al, 2006	259	RRP	NA	24.3	11.9	NA	NA	NA	NA	NA	12.4	NA	NA
Apical and/or bladder neck and/or nerve bundle	Emiliozzi et al, 2010	270	LRP	NA	24.8	NA	NA	NA	NA	50.7	12.6	12.2	NA	NA
Apical and/or bladder neck and/or nerve bundle	Kakuchi et al, 2012	1128	RARP	NA	5.3	1.7	5	63.3	NA	97.3	89.7	9.7	NA	NA
Apical and/or bladder neck and/or nerve bundle	Akin et al, 2013	66	RARP	NA	34.8	34.8	NA	4.3	NA	NA	37.9	NA	NA	NA
Apical and/or bladder neck and/or nerve bundle	Almeida et al, 2013	128	RARP	NA	18.7	8	NA	58.3	NA	NA	16.4	10.9	NA	NA
Apical and/or bladder neck and/or nerve bundle	Von Bodman et al, 2013	236	RRP, RARP	35	22	1.6	NA	92.3	NA	NA	3	19	NA	NA
Apical and/or bladder neck and/or nerve bundle	Nunez et al, 2016	71	LRP, RARP	NA	15.5	NA	NA	85	100	99	NA	NA	NA	NA
Apical and/or bladder neck and/or nerve bundle	Obek et al, 2018	170	RARP	57	33	1.8	NA	85	NA	NA	7.6	14.9	4.9	NA
Apical and/or bladder neck and/or nerve bundle	Pak et al, 2018	2013	NA	15	10.6	2.7	NA	65	78.1	97.8	24.9	NA	NA	NA

Abbreviations: BN = bladder neck; FS = frozen section; LRP = laparoscopic radical prostatectomy; min = minutes; NA = not available; NS = nerve sparing; No. = number; PSM = positive surgical margins; RP = radical prostatectomy; RRP = open retropubic radical prostatectomy; RARP = robotic-assisted laparoscopic radical prostatectomy.

*Propensity score matched sample.

*Difference between frozen section group and non-frozen section group.
ported that mpMRI-directed FS was able to reduce the risk of PSM.

Posterolateral margins of the prostate, the BCR-free survival was not significantly different compared with the non-NeuroSAFE group. Mirmilstein et al further assessed the NeuroSAFE technique, reporting on the feasibility and applicability of this approach with a reduced PSM (from 24% to 16% and 17.8% to 9.2%, respectively) and increased NVB sparing (from 81% to 97% and 69% to 75.1%, respectively). Interestingly, Bianchi et al and Petralia et al reported that mpMRI-directed FS was able to reduce the risk of PSM and predict the risk of upgrading and upstaging in patients undergoing RP.

Regarding the oncologic value of FS conversion to negative in the posterolateral margins of the prostate, the BCR-free survival was not significantly affected by the FS conversion to negative.

On the other hand, PSMs at the base of the prostate (bladder neck) are infrequent. Nakamura et al demonstrated that FS analysis of the bladder neck was able to reduce the PSMs at this location to 0%.

Considering the limitations of the NeuroSAFE technique represented in the FS evaluation of only NVB-adjacent tissues that may result in missing PSMs in other locations, Öbek et al introduced the intrasurgical total and reconstructible pathologic prostate examination for safer margins and nerve preservation (Istanbul preserve) approach. This approach includes the examination of the entire prostate for margins (including the apex and bladder neck) with easier reconstruction, reducing the tissue loss. Istanbul preserve demonstrated a 14.9% reduction in the PSM with a 4.9% increase in the NVB-sparing approach; however, it was associated with a longer time of FS (57 minutes) owing to the assessment of the urethral margins that delay the initiation of the anastomosis.

Furthermore, Almeida et al tried to overcome the time consumed in the undocking of the robot during robotic-assisted laparoscopic prostatectomy by using the ALEXIS trocar, reporting easy and fast retrieval of the prostate with good cosmetic outcomes and low complications.

Overall, FS analysis is considered the gold standard diagnostic approach for intraoperative pathologic evaluation of surgical margins during RP, which is associated with a 3.6% to 21% reduction of the PSMs and a 4.9% to 52% increase in the nerve-sparing rates; however, its value is still debatable. Some authors argue against its value because there is a growing interest in the use of MRI for local staging of prostate cancer, and it may be used in combination with other technologies to facilitate the “real-time” assessment of surgical margins.

Several authors studied the clinical value of preoperative MRI on surgical planning and PSM rates showing that it may influence the surgical decision in 26% to 59% of patients. Recently, Kozikowski et al reported, in their systematic review and meta-analysis, that MRI modified the NVB dissection on 1 or both sides in 35% of patients, of which 63% performed a more aggressive resection of the bundle and 37% had more preservation of the bundle. Furthermore, they showed that the appropriateness of the surgical decision modification based on the MRI findings was 77%. Similarly, Druskin et al showed that the use of preoperative MRI in patients undergoing RP resulted in a 5.6% decrease in the PSM rate.

Overall, MRI plays an important role in the diagnosis and management of PCa. Moreover, it may be used to enhance the predictive performance of statistical tools and nomograms used for ECE prediction.

Experimental Technologies

CLE

The CLE is a fiber-optic system that uses a blue laser (488-nm) together with fluorescein to provide a high-resolution cellular image of the examined tissue similar to histopathology. The CLE has been used in urology for the in vivo grading of upper tract urothelial carcinomas and bladder tumors.

The commercially available CLE used in urology is the probe-based system known as Cellvizio (ManuAKea Technologies, Paris, France). This device has different imaging probes ranging from 0.85 to 2.6 nm. The 0.85-nm probe is a small probe that is compatible with nearly all the available endoscopes used in urology, whereas the 2.6-nm probe requires larger working ports. The spatial resolution, penetration depth, and field of view of the CLE are 1 μm and 3.5 μm, 60 μm and 50 μm, and 240 μm and 320 μm for the 2.6- and 0.85-nm probes, respectively. Lopez et al demonstrated the feasibility of intraoperative application of CLE during robot-assisted RP (RARP) and its ability to identify important anatomical and structural landmarks, which may render it a potential alternative for intraoperative pathologic examination of prostatic and periprostatic tissues.

Furthermore, Panarello et al created an atlas of CLE in prostate, thus forming the base for identification and interpretation of different prostatic pathologic characters during RARP, which may enhance the use of this technology in achieving cancer-free surgical margins during RP.

Optical Spectroscopy

Optical spectroscopy is the technique of molecular analysis of tissues based on the interpretation of specific interactions between...
light and tissues. These techniques can be used to produce distinct scattering spectral signatures that reflect structural changes in tissue architecture, cellular morphology, and biochemical distribution, allowing them to differentiate between benign and neoplastic tissues based on the different biological and molecular characteristics between them. Different types of spectroscopies have been used in the field of PCa (Table 2), including fluorescence spectroscopy, elastic scattering spectroscopies, and inelastic scattering spectroscopy. Most of the tissues’ light scattering is elastic, where there is no exchange of energy between the photons and the molecules (Rayleigh scattering); however, only very few photons show inelastic light scattering with energy exchange.

Raman spectroscopy (RS) is a molecular tissue characterization technique that depends on inelastic scattering of light after excitation of tissues with monochromatic light. Crow et al showed that fiber-optic near-infrared RS was able to differentiate between benign and malignant bladder samples and prostate samples with an overall accuracy of 84% and 86%, respectively; however, this study was performed in vitro on snap frozen samples of bladder and prostate, and they were unable to determine accurately the biochemical constitutes that allowed this differentiation. Most of the bimolecular data obtained from the RS is contained in the fingerprint (FP) spectral region; nonetheless, the high wave number region (HWN) includes data that can be used for differentiation between benign and malignant tissues; thus it can be used for identification of PSM on ex vivo RP specimens. Aubertini et al demonstrated that combining the information from both regions (FP and HWN) improves PCA detection with an area under the curve (AUC) of 0.91 compared with 0.89 and 0.86 for the FP alone and HWN alone, respectively. In a trial to study the potential therapeutic and diagnostic application of the in vivo fiber-optic RS, Aubertini et al acquired 947 Raman spectra that were correlated with the corresponding histopathologic examinations of the interrogated tissues. They reported 82% sensitivity, 83% specificity, 83% accuracy, and an AUC of 0.9 for distinguishing prostatic from extraprostatic tissues. Furthermore, they examined the ability of RS to differentiate benign from neoplastic tissues with 87% sensitivity, 86% specificity, 86% accuracy, and 0.93 AUC. Moreover, Pinto et al presented a dual excitation RS (680- and 785-nm excitation) that can be used in vivo during RARP. They performed an ex vivo analysis of 20 whole prostate specimens, which were analyzed showing 90.5% sensitivity, 96% specificity, 91% accuracy, and 0.96 AUC. Later, they performed in vivo analysis in 4 patients reporting similar FP spectra between in vivo and ex vivo analysis; however, the HWN showed lower intensities compared with the ex vivo analysis. Furthermore, Fourier transform infrared spectroscopic imaging can be used for identifying PCa cells in tissues with a resolution of 6.25 µm × 6.25 µm on FSs.

Table 2 Summary of the Performance of Optical Spectroscopy in Differentiation Between Benign and Malignant Prostate Tissues and PSMs

Study	Cross Validation	Spectroscopy	Sensitivity, %	Specificity, %	Accuracy, %	AUC
Crow et al, 2005	LOOCV	Raman spectroscopy	NA	NA	85	NA
Salomon et al, 2008	LOOCV	Triple spectroscopy	75	87.3	NA	NA
Baykara et al, 2014	LOOCV	Elastic scattering spectroscopy	86	97	NA	0.87
Morgan et al, 2015	RCV	Elastic scattering spectroscopy	86	85	86	0.95
Lay et al, 2016	RCV	Elastic scattering spectroscopy	65.5	88.1	83.3	0.86
Aubertini et al, 2018	LOOCV	Raman spectroscopy (FP + HWN)	85	89	88	0.91
Aubertini et al, 2018	LOPOCV	Raman spectroscopy	81	90	88	0.91
Pinto et al, 2019	NA	Raman spectroscopy	90.5	96	91	0.96

Abbreviations: AUC — area under the curve; FP — fingerprint region; FTIR — fourier transform infrared spectroscopic imaging; HWN — high wave number; LOOCV — leave one out cross validation; LOPOCV — leave one patient out cross validation; PSM — positive surgical margin; RCV — random cross validation.

PDD

5-Aminolevulinic acid (ALA) is the precursor of porphyrin in the biosynthesis of heme. Administration of 5-ALA results in the accumulation of protoporphyrin (Pp) XI, which is a potent photosensitizer in the mitochondria. PpIX accumulation is increased in neoplastic tissues; thus it can be used for identification.
of malignant tissues during surgery. PDD using 5-ALA is a known concept in oncologic surgery that is used for “real-time” identification of malignant tissues; it has been used in urology in the diagnosis of bladder urothelial carcinoma using violet light. Zaak et al were the first to demonstrate, in their ex vivo clinical study, the feasibility of 5-ALA PDD in the detection of PSMs using the RP specimens of 16 patients with PCa. Several other authors demonstrated the feasibility and safety of 5-ALA PDD in the assessment of surgical margins during open RP and endoscopic RP.48,49 However, Fukuhara et al reported in their study that heat degeneration by electrical device and the length of positive margins are among the limitations of 5-ALA PDD in assessing surgical margins during RP. Heat degeneration may result in the damage of the accumulated PpIX; thus the fluorescence light is unable to detect it. Furthermore, PSMs < 3 mm in length could not be detected by 5-ALA PDD. Table 3 summarize the results of the studies that reported the use of 5-ALA PDD in detecting PSMs during RP.

OCT

OCT is a tissue-imaging technique that is capable of providing real-time high resolution images of tissue microstructures. It is similar to B-mode ultrasonography, but it depends on the difference in infrared waves (1300 nm) scattering from different tissue structures instead of acoustic waves. D’Amico et al demonstrated the ability of OCT to differentiate between benign and malignant prostatic tissues using tissue samples obtained from RP specimens of 7 men with clinically localized PCa. In 2006, Aron et al examined the feasibility of in vivo OCT for identification of NVBs during laparoscopic and robotic RP in 24 patients with PCa. OCT was capable of differentiation between different prostatic and periprostatic structures, including nerves, prostatic capsule, adipose tissue, lymphatics, and NVBs. These studies suggested that OCT could be used for ensuring cancer-free surgical margins during RP.

In these settings, Dangle et al used RP specimens from 100 patients with PCa undergoing robotic RP to assess the value of OCT in the evaluation of surgical margins, ECE, and seminal vesical invasion. With regard to PSMs, OCT showed a sensitivity of 70%, a specificity of 84%, a positive predictive value (PPV) of 33%, and a negative predictive value (NPV) of 96%. Similarly, it showed a sensitivity of 46% and 33%, a specificity of 84% and 97%, a PPV of 50% and 33%, and an NPV of 92% and 97%, for prediction of ECE and seminal vesicles invasion, respectively. Furthermore, several authors confirmed the feasibility of needle-based OCT for differentiation between benign and malignant prostatic tissues.

Multiphoton Microscopy

Multiphoton microscopy mainly depends on the non-linear excitation resulting from the simultaneous absorption of 2 (or more) near-infrared photons (700-800 nm range), thus producing intrinsic optical sectioning similar to the conventional confocal microscopy. It is capable of providing cellular information about the tissues without any tissue preparation or processing, and without the need for any exogenous contrast agent. Furthermore, it is characterized by a deep penetration depth up to 0.5 mm. Despite showing promising results on ex vivo tissue samples obtained from RP specimens, this technology is still under development, and it has never been applied in vivo in real surgical settings for the assessment of surgical margins during RP.

VR-SIM

VR-SIM combines a fast, ferroelectric spatial light modulator for pattern production with a 4.2-megapixel, high-speed scientific complementary metal-oxide semiconductor camera to produce high-resolution cellular images of fluorescently stained tissues. Wang et al applied this technology for the examination of 34 unprepared PCa core biopsies, showing an AUC of 0.82 to 0.88, a sensitivity of 62.5% to 87.5%, a specificity of 77.8% to 83.3%, and an accuracy of 76.5% to 82.4% for the diagnosis of PCa. In another study, VR-SIM was used for the ex vivo assessment of the entire margins of 19 RP specimens instantaneously after resection of the prostate; this study reported that VR-SIM was able to detect 3/4 patients with PSMs, and the only missed patient had a circumferential PSM of < 500 μm. However, the main disadvantage of this technique is the time as the process took nearly 1 hour.

Ex Vivo FCM

Ex vivo FCM (VivaScope 2500M-G4; Mavig GmbH, Munich, Germany; Caliber I.D, Rochester, NY) combines 2 types of lasers to allow pathologic examination of freshly excised fixed specimens with reflectance (785 nm) and fluorescence (488 nm) modes. This technology is characterized by a vertical resolution of 4 μm, penetration depth of 200 μm, and magnification of 550×. Furthermore, it is capable of providing fast H&E-like digital images that can be sent electronically to distant pathologists for interpretation. It has been applied in the examination of different visceral organs, showing promising results. FCM has been used for “real-time” pathologic examination of prostatic tissues, with a 91% diagnostic accuracy compared with histopathologic examination and 83,33% sensitivity and 93,53% specificity. FCM has been applied for the first time in the assessment of the surgical margins during robotic RP in the European Section of Uro-Technology (ESUT) - Italian

Study	No. Patients	Surgery	Sensitivity, %	Specificity, %	False Negative, %
Adam et al, 2009	15	Open RP	75	100	50
Ganzer et al, 2009	24	Endoscopic RP	38	88.2	25
Fukuhara et al, 2011	24	Endoscopic RP	75	88.2	8.3
Fukuhara et al, 2015	16	Open RP Endoscopic RP	81.8	68.8	31.2
	52	Open RP Endoscopic RP	75	87.3	3.8

Abbreviations: 5-ALA PDD = 5-aminoeluvelnic acid photodynamic diagnosis; PSMs = positive surgical margins; RP = radical prostatectomy.
Surgical Margins Assessment During RP

Endourological Association (IEA) meeting held in Modena, Italy, in May 2018.102 However, further studies are required to prove the feasibility of this technology in patients with PCa.

3D AR

3D reconstruction and AR are new technologies that have been applied in different medical fields.103-105 In the field of PCa, Ukimura et al105 used 5 anatomic aspects of the prostate (prostate surface, trans-rectal ultrasound or MRI-detectable biopsy-proven index lesion, NVBs, urethra, and color-coded biopsy paths) to create a 3D model that can be displayed during robotic RP using the TilePro function of the DaVinci surgical system. This 3D model was used to facilitate intraoperative navigation and dissection in 10 patients; however, it was not superimposed over the prostate. This initial experience showed negative surgical margins in 9 patients, whereas PSMs were detected in only 1 patient with extensive ECE.105 Recently, with the increased interest in AR technology in the medical field, several studies used a combination of Hyper-Accuracy 3D reconstruction of mpMRI data and AR to allow more precise surgical dissection.106-108 Porpiglia et al108 used the AR-superimposed 3D-reconstructed model in 30 patients undergoing robotic RP to assess the accuracy of the AR-reconstructed model compared with the final histopathology, showing that the index lesion was successfully localized using this technology in 100% of patients. Moreover, there was 79% concordance between the AR model-suspected ECE and the final histopathology with a mismatch between the AR model and whole mount specimen of less than 3 mm in 85% of the gland. Interestingly, Pulitati et al108 reported the use of the same technology, but instead of only using the mpMRI data in the 3D image reconstruction, they used a combination of mpMRI results and a statistical tool that is used for prediction of ECE109 in a live surgery during the ESUT congress on May 2018. A further step forward in the use of this technology was reported by Porpiglia et al,110 where they successfully demonstrated the use of an elastic 3D virtual reality model superimposed over the prostate during robotic RP. The elasticity of the model allowed its bending and stretching based on the traction applied to the prostate during the procedure. This new elastic AR 3D showed a sensitivity and PPV of 100% for identification of capsular invasion.110

Others

Several other options has been used in the literature for the identification of the NVBs and assessment of the surgical margins during RP. PAI is among these technologies. PAI is a novel technology that utilizes optical and ultrasonic waves for real-time identification of vascular structures, while using hemoglobin as an endogenous contrast agent. It has shown promising results in the in vivo identification of the NVBs during RP; however, it was not used for the detection of PSMs.111

Moreover, HS is another non-invasive technology that has been applied in the assessment of surgical margins during RP. This technology depends on processing the backscattered ultrasonic waves to detect neoplastic feci. HS has shown promising results in the detection of PCa foci (≥ 0.5 mL) with a sensitivity and specificity of 100% and 82%, respectively.112,113 Salomon et al114 evaluated the accuracy of HS in the preoperative preparation of NVB-sparing RP showing that the AUC for PSM prediction is 0.76.

Conclusion

PSMs represent one of the surgically controlled limitations of RP. FS still represents the gold-standard technique for the assessment of surgical margins during PCa surgery; however, it was introduced in the late 1800s, and its results are debatable. Several other options showed promising results in the initial clinical trials, and considering the rapid development in the field of molecular and cellular imaging, further options with better outcomes may help in overcoming this problem; however, most of these technologies are still experimental and are not yet routinely used in clinical practice.

Disclosure

A. Eissa has a temporary contract of consultation with MAVIG GmbH. The remaining authors have stated that they have no conflicts of interest.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68:394-424.
2. Bryant RJ, Schmitt AJ, Roberts IS, et al. Variation between specialist uropathologists in reporting extraprostatic extension after radical prostatectomy. J Clin Pathol 2015; 68:465-72.
3. Purkay SP, Feldman AS, Rodin D, Ohnmi AF, Wu CL, McDonagh WS. Men with organ-confined prostate cancer and positive surgical margins develop biochemical failure at a similar rate to men with extracapsular extension. Urology 2011; 78:121-5.
4. Yosepowitch O, Briganti A, Eastham JA, et al. Positive surgical margins after radical prostatectomy: a systematic review and contemporary update. Eur Urol 2014; 65:303-13.
5. Zhang L, Wu B, Zha Z, Zhao H, Jiang Y, Yuan J. Positive surgical margin is associated with biochemical recurrence risk following radical prostatectomy: a meta-analysis from high-quality retrospective cohort studies. World J Surg Oncol 2018; 16:124.
6. Sooarkumaran P, Dev HS, Skareddy D, Ahlering T. The importance of surgical margins in prostate cancer. J Surg Oncol 2016; 113:510-5.
7. van der Kwast TH, Collene L, Van Poppel H, et al. European Organisation for Research and Treatment of Cancer Radiotherapy and Genito-Urinary Cancer Groups. Impact of pathology review of stage and margin status of radical prostatectomy specimens (EORTC trial 22911). Virchows Arch 2006; 449:428-54.
8. Beng GW, Ritenour CW, Osunkoya AO, Smith MT, Keane TE. Evaluation of modern pathological criteria for positive margins in radical prostatectomy specimens and their use for predicting biochemical recurrence. BJU Int 2009; 103:327-31.
9. Tallman JE, Pucksum VT, Wroblewski KE, Paner GP, Eggener SE. Influence of pathologist experience on positive surgical margins following radical prostatectomy. Urol Oncol 2017; 35:e461.e1-6.
10. Tan PH, Cheng L, Sigley JR, et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working Group 5: surgical margins. Mod Pathol 2011; 24:48-57.
11. Srougi V, Besu J Jr, Baghdadi M, et al. Surgical method influences specimen margins and biochemical recurrence during radical prostatectomy for high-risk prostate cancer: a systematic review and meta-analysis. World J Urol 2017; 35:1481-b.
12. Bianchi L, Turri FM, Larcher A, et al. A novel approach for apical dissection during robot-assisted radical prostatectomy: the "collar" technique. Eur Urol Focus 2018; 4:677-85.
13. Marcon G, Michele A, Hannink G, et al. Risk of biochemical recurrence based on extent and location of positive surgical margins after robot-assisted laparoscopic radical prostatectomy. BMC Cancer 2018; 18:1291.
14. Bianchi L, Schiavino R, Boghesi M, et al. Patterns of positive surgical margins after open radical prostatectomy and their association with clinical recurrence [e-pub ahead of print]. Minerva Urol Nefrol. https://doi.org/10.23736/S0393-2249.19.03620-7.
15. Chapin BF, Nguyen JN, Achim MF, et al. Positive margin length and highest Gleason grade of tumor at the margin predict for biochemical recurrence after radical prostatectomy in patients with organ-confined prostate cancer. Prostate Cancer Prostatic Dis 2018; 21:221-7.
16. Dev HS, Wijdendijk F, Patel V, et al. Surgical margin length and location affect recurrence rates after robotic prostatectomy. Urol Oncol 2015; 33:109.67-13.
17. Yosepowitch O, Bjartell A, Eastham JA, et al. Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences. Eur Urol 2009; 55:87-99.
18. Rocco B, Sighinolfi MC, Sandri M, et al. Is extraprostatic extension of cancer predictable? A review of predictive tools and an external validation based on
alarge and a single center cohort of prostate cancer patients. Urolgy 2019; 129:9-20.

19. Eissa A, Eshelnin A, Zeeot A, et al. Reliability of the different versions of Partin tables in predicting pathological extension of prostate cancer: a systematic review and meta-analysis [e-pub ahead of print]. Minerva Urol Nefrol. https://doi.org/10.23765/50393-2249.19.30365-4.

20. Beyer B, Scholmin T, Tensnede P, et al. A feasible and time-efficient adaptation of NeuroSAFE for da Vinci robot-assisted radical prostatectomy. Eur Urol 2014; 61:1556-62.

21. Kakuchi Y, Choy B, Goedersy J, et al. Role of frozen section analysis of surgical margins during robot-assisted laparoscopic radical prostatectomy: a 260-case experience. J Urol 2013; 189:765-71.

22. Lopez A, Zazuñ D, Mek E, et al. Intraoperative optical biopsy during robotic assisted radical prostatectomy using confocal endomicroscopy. J Urol 2016; 195:1110-7.

23. Fakihara H, Issie K, Katsuyoshi A, Fujibara M, Shin M. Performance of 5-amino-levulinic-acid-based photodynamic diagnosis for radical prostatectomy. BMC Urol 2015; 15:78.

24. Aubertin K, Desnoeche J, Jermyn M, et al. Combining high wavenumber and fingerprint Raman spectroscopy for the detection of prostate cancer during radical prostatectomy. Bioimaging Opt Exp 2018; 4:392-605.

25. Gibbs SL, Genea E, Salem J, et al. Near-infrared fluorescent digital pathology for the automation of disease diagnosis and biomarker assessment. Mol Imaging 2015; 14:151-61.

26. Alshieban S, Al-Surimi K. Reducing turnaround time of surgical pathology reports in large and a single center cohort of prostate cancer patients. J Pathol Inform 2015; 6:7.

27. Dey P. Intraoperative frozen section analysis during robotic assisted radical prostatectomy: a feasibility study. Eur J Med Pharm Sci 2013; 17:2523-9.

28. Vasdev N, Agarwal S, Rai BP, et al. Intraoperative frozen section of the prostate during robotic means of surgical anatomy related to optimization of cancer control and preservation of continence and erection in candidates for radical prostatectomy. Eur Urol 2010; 57:179-92.

29. Nguyen LN, Head L, Witrik K, et al. The risks and benefits of cavernous neurovascular bundle sparing during radical prostatectomy: a systematic review and meta-analysis. Urol 2016: 70:15-50.

30. Roder MA, Thomsen FB, Christensen JF, et al. Risk factors associated with positive surgical margins following radical prostatectomy for clinically localized prostate cancer: can nerve-sparing surgery increase the risk? Scand J Urol 2014; 48:15:20.

31. de Rooij M, Hamsen EH, Wijns JA, Barentsz JO, Roovers MM. Accuracy of magnetic resonance imaging in the decision of whether to preserve or resect neurovascular bundle during radical retropubic prostatectomy. Eur Urol 2016; 70:233-45.

32. Bai K, Sun Y, Li W, Zhang L. Apparent diffusion coefficient in extraprostatic extension of prostate cancer: a systematic review and diagnostic meta-analysis. J Magn Reson Imaging 2019; 11:3125-37.

33. Frick H, Wang L, Wei DC, et al. The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer 2004; 100:2055-63.

34. Dey P. Intraoperative frozen section analysis during robotic assisted radical prostatectomy: feasibility study. J Urol 2006; 170:1843-6.

35. Gillner R, Thürreff C, Pande T, et al. Intraoperative peripheral frozen section do not significantly affect prognosis after nerve-sparing radical prostatectomy for prostate cancer. BJU Int 2011; 107:755-9.

36. Görderdahshaz RZ, Szudolovsky D, Carroll LA, Grossfeld GD, Mam R, Carroll PR. Utility of intraoperative frozen section analysis of surgical margins in region of neurovascular bundles at radical prostatectomy. Urology 2002; 59: 709-14.

37. Hazhizhiztoudoulou G, Wagenfipel S, Weirich G, et al. Intraoperative frozen section monitoring during nerve-sparing radical prostatectomy: evaluation of partial secondary resection of neurovascular bundles and its effect on oncologic and functional outcome. World J Urol 2016; 34:229-36.

38. Heinrich E, Schlenk E, Schiefelbein F, Michel MS, Trensen L. Clinical impact of intraoperative frozen sections during nerve-sparing radical prostatectomy. World J Urol 2010; 28:709-13.

39. Lavery HJ, Xiao GQ, Nabida-Pace F, Mikulakosvich M, Unger P, Samadi DB. "Mobs surgery of the prostate": the utility of in situ frozen section analysis during robotic prostatectomy. BJU Int 2011; 107:975-9.

40. Lepor H, Kaci L. Role of intraoperative biopsies during radical retropubic prostatectomy. Eur Urol 2004; 43:495-502.

41. Bianchi R, Cozzi G, Petralia G, et al. Multimetric magnetic resonance imaging and frozen-section analysis efficiently predict upgrading, upstaging, and extraprostatic extension in patients undergoing nerve-sparing robotic-assisted radical prostatectomy. Medci (Baltimore) 2016; 95:e4519.

42. Hatzichristodoulou G, Wagenpfeil S, Weirich G, et al. Intraoperative frozen-section examination [NeuroSAFE] and meta-analysis [e-pub ahead of print]. Minerva Urol Nefrol. https://doi.org/10.23765/50393-2249.19.30365-4.

43. Schlomm T, Tensnede P, Huxhold C, et al. Neurovascular structure-adjacent frozen section examination (NeuroSAFE) increases nerve-sparing frequency and reduces positive surgical margins in open and robot-assisted laparoscopic radical prostatectomy: experience after 11,069 consecutive patients. Eur Urol 2012; 62:333-40.

44. Ye H, Kong X, He TW, et al. Intraoperative frozen section analysis of urethral radical margin biopsies during radical prostatectomy. Urology 2011; 78:399-404.

45. Parmal G, Musi G, Padhini AR, et al. Robotic-assisted radical prostatectomy: Multimetric MR imaging-directed intraoperative frozen-section analysis to reduce the rate of positive surgical margins. Radiology 2015; 274:434-44.

46. Scholmin T, Tensnede P, Huxhold C, et al. Neurovascular structure-adjacent frozen section examination (NeuroSAFE) increases nerve-sparing frequency and reduces positive surgical margins in open and robot-assisted laparoscopic radical prostatectomy: experience after 11,069 consecutive patients. Eur Urol 2012; 62:333-40.

47. Hatzichristodoulou G, Wagenpfeil S, Weirich G, et al. Intraoperative frozen-section examination [NeuroSAFE] and meta-analysis [e-pub ahead of print]. Minerva Urol Nefrol. https://doi.org/10.23765/50393-2249.19.30365-4.

48. Millemulo P, Amini M, Pansadoro A, Martininni M, Pansadoro V. Intraoperative frozen section in laparoscopic radical prostatectomy: impact on cancer control. Arch Ital Androl Urol 2016; 80:620-5.

49. Preisser F, Thiessen L, Wild P, et al. Implementation of intraoperative frozen section during radical prostatectomy: short-term results from a German tertiary-care center [e-pub ahead of print]. Eur Urol. https://doi.org/10.1016/j.euf. 2019.03.007.

50. Wall E, Biermea AL, Costella A, et al. A critical analysis of the current knowledge of surgical anatomy related to optimization of cancer control and preservation of continence and erection in candidates for radical prostatectomy. Eur Urol 2010; 57:179-92.

51. Frick H, Wang L, Wei DC, et al. The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer 2004; 100:2055-63.

52. Park BH, Jeon HG, Jeong BC, et al. Influence of magnetic resonance imaging in the decision to preserve or resect neurovascular bundles at robotic assisted laparoscopic radical prostatectomy. J Urol 2014; 192:82-8.

53. Lahmarini AP, Zougler V, Tuesta A, et al. The role of conventional and functional endorectal magnetic resonance imaging in the decision of whether to preserve or resect the neurovascular bundles during radical retropubic prostatectomy. Scand J Urol Nephrol 2009; 43:25-31.

54. Tabakci HH, Aytaç Ö, Balcı H, Atuğ F. The efficacy and utilisation of preoperative multiparametric magnetic resonance imaging in robot-assisted radical prostatectomy: does it change the surgical dissection plan? Turk J Urol 2017; 43:470-5.

55. Ried E, Baco E, Klotz D, et al. Does preoperative magnetic resonance imaging reduce the rate of positive surgical margins at radical prostatectomy in a randomised clinical trial? Eur Urol 2015; 68:497-96.

56. Drukn S, Liu JY, Young A, et al. Prostate MRI prior to radical prostatectomy: effects on nerve sparing and pathological margin status. BJU Int 2017; 9:55-65.

57. Kozikowski M, Maleski W, Michalak W, Dobruch J. Clinical utility of MRI in the decision-making process before radical prostatectomy: systematic review and meta-analysis. PLoS One 2015; 14:e0211914.
Surgical Margins Assessment During RP

72. Martini A, Gupta A, Lewis SC, et al. Development and internal validation of a side-specific, multiparametric magnetic resonance imaging-based nomogram for the prediction of extracapsular extension of prostate cancer. BJU Int 2018; 122:1025-33.
73. Panarello D, Comperat E, Seyde O, Colais A, Terrone C, Guilloisne B. Atlas of ex vivo prostate tissue and cancer images using confocal laser endomicroscopy: a project for intraoperative positive surgical margin detection during radical prostatectomy [e-pub ahead of print]. Eur Urol Focus. https://doi.org/10.1016/j.euf.2018.07.004.
74. Chen SP, Liao JC. Confocal laser endomicroscopy of bladder and upper tract urothelial carcinoma: a new era of optical diagnosis? Curr Urol Rep 2014; 15: 437.
75. Crow P, Molockvsky A, Stone N, Uff J, Wilson B. WongKeSong LM. Assessment of birefringent near-infrared raman spectroscopy for diagnosis of bladder and prostate cancer. Urology 2005; 65:1126-30.
76. Baykara M, Denkceken T, Bassoorgun I, Akin Y, Yucel S, Cunpolat M. Detecting positive surgical margins using single optical fiber probe during radical prostatectomy: a pilot study. Urology 2014; 83:1348-42.
77. Salomon G, Hess T, Erbersdobler A, et al. The feasibility of prostate cancer detection by triple spectroscopy. Eur Urol 2009; 55:376-83.
78. Morgan MS, Lay AH, Wang X, et al. Light reflectance spectroscopy to detect positive surgical margins on prostate cancer specimens. J Urol 2016; 195: 479-83.
79. Lay AH, Wang X, Morgan MS, et al. Detecting positive surgical margins: utilization of light-reflectance spectroscopy on ex vivo prostate specimens. BJU Int 2016; 118:885-9.
80. Aubertin K, Trinh VQ, Jermyn M, et al. Mesoscopic characterization of prostate cancer using Raman spectroscopy: potential for diagnostics and therapeutics. BJU Int 2018; 122:326-36.
81. Pinto M, Zorn KC, Tremblay JP, et al. Integration of a Raman spectroscopy system to a robotic-assisted surgical system for real-time tissue characterization during radical prosectomy procedures. J Biomed Opt 2019; 24:1-10.
82. Jermyn M, Desroches J, Aubertin K, et al. A Review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology. Phys Med Biol 2016; 61:R370-400.
83. Pezzè C, Pallua JD, Schaefer G, et al. Characterization of normal and malignant prostate tissue by Fourier transform infrared microspectroscopy. Mol Biostat 2010; 4:2287-95.
84. Banerjee S, Zare RN, Tibshirani RJ, et al. Diagnosis of prostate cancer by hyper-spectral imaging. J Biophotonics 2007; 21:814-8.
85. Porpiglia F, Checucci E, Amparore D, et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HARRY) technology: a radiological and pathological study. BJU Int 2019; 23:834-45.
86. Ulkimoara O, Aron M, Nakamoto M, et al. Three-dimensional surgical navigation model with TilePro display during robot-assisted radical prostatectomy. J Endourol 2014; 28:625-30.
87. Porpiglia F, Bertolo R, Amparore D, et al; ESUT. Augmented reality during robot-assisted radical proctectomy: expert robotic surgeons’ on-the-spot insights after live surgery. Minerva Urol Nefrol 2018; 70:226-9.
88. Porpiglia F, Foiti C, Checucci E, Amparore D, Bertolo R. Augmented reality robot-assisted radical prostatectomy: preliminary experience. Urology 2018; 115:184.
89. Pulitelli S, Sighinolfi MC, Rocco B, et al. First live case of augmented reality robot-assisted radical prostatectomy: expert robotic surgeons’ on-the-spot insights after live surgery. Minerva Urol Nefrol 2018; 70:226-9.
90. Porpiglia F, Bertolo R, Amparore D, et al; ESUT. Augmented reality during robot-assisted radical prostatectomy: expert robotic surgeons’ on-the-spot insights after live surgery. Minerva Urol Nefrol 2018; 70:226-9.
91. Porpiglia F, Checucci E, Amparore D, et al. Three-dimensional elastic augmentation robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement [e-pub ahead of print]. Eur Urol. https://doi.org/10.1016/j.euro.2019.03.037.
92. Hirriguchi A, Tsumita K, Iriyama K, et al. A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy. Prostate 2016; 76:307-15.
93. Brackenb J, Auerk P, Garber C, et al. Computer-aided ultrasonography (HistoScanning): a novel technology for locating and characterizing prostate cancer. BJU Int 2008; 101:293-8.
94. Brackenb J, Auerk P, Soviany C, et al. The accuracy of transrectal ultrasonography supplemented with computer-aided ultrasonography for detecting small prostate cancers. BJU Int 2008; 102:1560-5.
95. Relson G, Sprengel J, Beckmann A, et al. Accuracy of HistoScanning for the prediction of a negative surgical margin in patients undergoing radical prostatectomy. BJU Int 2013; 111:60-6.