Homogeneity and Trend Analysis of Temperature Series in Hirfanlı Dam Basin

Utku ZEYBEKOĞLU¹, Gaye AKTÜRK²
¹ Sinop University, Boyabat Vocational School of Higher Education, Construction Department, Boyabat, Sinop, Turkey
² Kirikkale University, Faculty of Engineering and Architecture, Department of Civil Engineering, Kirikkale, Turkey

Abstract: Climates are constantly changing on a temporal and spatial scale, so they are not static. In recent years, global warming and changes in climate have shown more and more effects on the hydrological cycle and water resources, and their effects have become so noticeable that they hinder sustainable life. For this reason, the studies on the investigation of the main causes of the observed changes in the climate, the evaluation of climate change as a process and the determination of the effects that will emerge, have increased over time. In the present study, the homogeneity of annual and seasonal temperature series in Hirfanlı Dam basin were examined by using the Pettitt Test (PT), Mann Kendall (MK) test, and Spearman’s Rho (SR) test. Significant trends to increase were also detected in all stations except for the Zara in terms of annual temperatures. Trend maps were prepared for the basin by using the results obtained here and the Geographical Information Systems. It was reported that the tendency to increase in annual temperature series was because of the increase in summer temperatures at intense levels throughout the basin.

Keywords
- Trend analysis
- Homogeneity analysis
- Spearman’s Rho Test
- Mann Kendall Test
- Hirfanlı Dam basin

Abstract: Climates are constantly changing on a temporal and spatial scale, so they are not static. In recent years, global warming and changes in climate have shown more and more effects on the hydrological cycle and water resources, and their effects have become so noticeable that they hinder sustainable life. For this reason, the studies on the investigation of the main causes of the observed changes in the climate, the evaluation of climate change as a process and the determination of the effects that will emerge, have increased over time. In the present study, the homogeneity of annual and seasonal temperature series in Hirfanlı Dam basin were examined by using the Pettitt Test (PT), Mann Kendall (MK) test, and Spearman’s Rho (SR) test. Significant trends to increase were also detected in all stations except for the Zara in terms of annual temperatures. Trend maps were prepared for the basin by using the results obtained here and the Geographical Information Systems. It was reported that the tendency to increase in annual temperature series was because of the increase in summer temperatures at intense levels throughout the basin.

Hirfanlı Baraj Havzasında Sıcaklık Serilerinin Homojenlik ve Eğilim Analizleri

Öz: İklimler durağan olmamakla beraber zamanlı ve mekânsal ölçekte sürekli değişim halindedir. Son yıllarda küresel ısınma ve iklimde gözlenen değişimler, hidrolojik çevrim ve su kaynakları üzerinde gün geçtikçe daha fazla etkisini göstererek, günümüzde sürdürülebilir yaşamı engelleyecek ve byoultarda hissedilebilir hale gelmiştir. Bu sebeple, iklimde gözlenen değişimlerin temel sebeplerinin araştırılması, iklim değişikliğinin süreç olarak değerlendirilmesi ve ortaya çıkacak etkilerin belirlenmesine yönelik yapılan çalışmaların sayısı zamanla artmaktadır. Çalışmada, Hirfanlı baraj havzasındaki yıllık ve mevsimlik sıcaklık serilerinin homojenlikleri Pettitt Testi (PT), Mann Kendall (MK) testleri kullanılarak araştırılmıştır. Yılların kurak iklim bölgelerinde yıllık ve mevsimlik sıcaklık serilerin homojenlikleri Pettitt Testi (PT), Mann Kendall (MK) testleri kullanılarak araştırılmıştır. Yılların kurak iklim bölgelerinde yıllık ve mevsimlik sıcaklık serilerinin homojenlikleri Pettitt Testi (PT), Mann Kendall (MK) testleri kullanılarak araştırılmıştır. Yılların kurak iklim bölgelerinde yıllık ve mevsimlik sıcaklık serilerinin homojenlikleri Pettitt Testi (PT), Mann Kendall (MK) testleri kullanılarak araştırılmıştır. Yılların kurak iklim bölgelerinde yıllık ve mevsimlik sıcaklık serilerinin homojenlikleri Pettitt Testi (PT), Mann Kendall (MK) testleri kullanılarak araştırılmıştır. Yılların kurak iklim bölgelerinde yıllık ve mevsimlik sıcaklık serilerinin homojenlikleri Pettitt Testi (PT), Mann Kendall (MK) testleri kullanılarak araştırılmıştır.
1. INTRODUCTION

Different climatic conditions occurred in Turkey due to global warming, as it is the case in other countries in the world. Due to being surrounded by seas on three sides, has a fragmented topography and orographic features, the effects of global climate change occur differently in various regions of our country [1]. Climate parameters need to be analyzed in order to determine the effects of climate change and to take necessary measures [2, 3]. Hydro-meteorological parameters were investigated during the observation periods in order to investigate the effects of global climate change on our country [4-20]. Partal and Kahya [21] examined the trends of precipitation from 1929 to 1993 of 96 stations. Uçgun [22] conducted trend analysis of precipitation, temperature, evaporation and flow data obtained from stations in the Kızıllırmak basin. Yerdelen [23] investigated the trends of Susurluk basin flows using the Sequential MK. It is stated that there is a downward trend in river flows in the basin. Simsek et al. [24] investigated the seasonal and annual trends of temperature, humidity, wind speed and precipitation data of Hatay. In Antakya, they determined an increase in temperature, a decrease in wind speed, an increase in temperature and precipitation and a decrease in humidity values for the Iskenderun. Zeybekoglu and Karahan [25] investigated the trends of annual maximum rainfall intensity series for 206 stations using the MK, SR and Innovative Trend Analysis.

Southeast, Central Anatolia, Aegean and Mediterranean Regions, which have the characteristics of arid and semi-arid climates under the threat of desertification and which are expressed as semi-humid regions due to their lack of sufficient water resources, are expected to be affected more by the increase in temperature [26, 27]. From the past to the present, research has been carried out for seven geographical regions using temperature data, which is the subject of this study also. Toros [28] evaluated low and high temperature data and precipitation data of 18 stations. When daytime and nighttime temperatures are compared, they determined that there are significant increases in night temperature. Kadioğlu [29] used temperature data measured at 18 stations between 1929 and 1990 and investigated local and regional trend analysis with the MK. Altin et al. [30] conducted trend analysis using rainfall and temperature series of 33 stations in the Central Anatolia region between 1975 and 2007 using the MK test in the analysis, and observed that the precipitation decreases in the winter and spring months and tends to increase in the summer and autumn months. Kızıllırmak et al. [31] determined that there were significant increases in the maximum and minimum temperature trends for the central Anatolia region, and that there were increases in the values of the mean temperatures at all stations, except the Ürgüp. Dogan et al. [32] reported in their study that the trends achieved a milestone in the 1950-2006 period based on the analysis of trends in temperature series in Turkey. Uıke and Ozkoca [33] investigated the changes in temperature series of Sinop Ordu and Samsun provinces located in the central Black Sea Region over time using the MK Test and Sen's Trend Slope Test. As a result of their findings, they stated that the temperatures in the region are in an increasing trend. Guııus [34] investigated precipitation and temperatures in the Seyhan-Ceyhan river basin. As a result of annual and seasonal scale evaluations, it has been determined that temperatures tend to increase throughout the basin.

In this study, Hirfanlı Dam basin, which is located in the semi-arid climate region where climate change can be seen due to its location, was chosen as the study area. Seasonal and annual temperature series analyzes were made by using PT, SR and MK Tests.

2. MATERIALS AND METHHOD

2.1. Study Area

The Hirfanlı Dam basin, which is a sub-basin of the Kızıllırmak River basin, is about 27,092 km² in areal size (Fig.1.) and located between 33.3-38.7°E longitudes and 38.3-40.1°N latitudes. The Hirfanlı Dam, which was built on the Kızıllırmak River in 1959 for flood control and hydropower purposes, has a surface area of 263 km² and reservoir volume of 5,980 hm³ at normal water surface level. The Hirfanlı Dam basin has a high and mountainous plateau with the altitude varying between 799-3880 m. The east part of the basin is the hilliest region of the basin, which consists of high peaks and is bordered by mountainous areas. Plateaus, wide plains, and meadows are more common in the west part of the basin. Agriculture is a major economic sector in the study area where wheat, barley, potato and sugar beet are the main agricultural products [35, 36].
Figure 1. Hirfanli Dam basin

Annual and seasonal mean temperature data between 1965 and 2017 were obtained from the Turkish State Meteorological Service. Table 1 gives the geographical details of the six meteorological stations used in the study. Statistical characteristics of annual and seasonal mean temperature (minimum, maximum and mean) are shown in Table 2.

Table 1. Geographical information of the meteorological stations in the Hirfanli Dam basin

Station Name	Station ID	Latitude (N)	Longitude (E)	Elevation (m)
Gemerek	17162	39.11	36.04	1173
Kayseri	17196	38.44	35.29	1093
Kirsehir	17160	39.09	34.10	1007
Nevsehir	17193	38.35	34.40	1260
Sivas	17090	39.45	37.01	1285
Zara	17716	39.54	37.45	1348

Table 2. Statistical information of temperature series in the Hirfanli Dam basin (°C)

Station Name	Min.	Max.	Mean	Min.	Max.	Mean	Min.	Max.	Mean
Annual	6.94	11.77	9.63	-7.63	2.47	-1.66	6.80	11.63	9.20
Winter	8.41	13.23	10.52	-6.87	4.13	-0.46	8.17	13.07	10.23
Spring	9.43	13.78	11.46	-3.80	4.70	0.93	7.70	12.73	10.52
Summer	8.49	13.64	10.69	-4.73	5.40	0.71	7.13	12.40	9.83
Autumn	6.64	11.99	9.17	-7.93	2.87	-1.89	6.37	11.10	8.67
	5.94	11.27	12.61	-9.03	2.60	-2.30	5.23	10.83	9.40

The basin is dominated by convective and frontal precipitation in general. The mean temperature is around 10.02°C and also the annual temperature decreases from the upstream to the downstream due to the increase in altitude. In the basin the hottest months are July and August, and the coldest months are January and February, and the difference between the highest temperature value and the lowest temperature value is over 10°C. While the temperature is around 21~22°C in July and August, the temperature drops to around -2~1°C in January and February. As can be seen, the mean temperature drops below 0°C in winter months. According to Table 2, the maximum temperature is during the summer at 20.26°C; the minimum temperature is seen in the winter at -0.78°C. In addition, the mean temperature values of basin in autumn and spring were 11.18°C and 9.40°C, respectively. The spatial distribution of seasonal and annual temperature in the basin was given in Figure 2.
2.2. Pettitt Test (PT)

This non-parametric method developed by Pettitt [37] to determine the change point in a time series can find the change point on a monthly or annual scale [37]. The null hypothesis (H₀) states that the series has an independent and random distribution, the alternative hypothesis states that there is a sudden change. The test statistic is associated with the Mann-Whitney statistic [38]. The critical values of this test are given in Table 3 [37].

Table 3. Critical values of X₀

%95	%99
57	71
107	133
167	208
235	293
393	488
677	841

Observation values Y₁, ..., Yₙ values are listed as r₁, ..., rₙ.

\[
X_0 = 2 \sum_{i=1}^{k} r_i - k(n + 1); \; k = 1, \ldots, n
\]

(1)

X₀ values are plotted graphically by means of Equation 1. In Equation 2, the absolute maximum value of X₀ determines the change point.

\[
X_E = \max_{1 \leq k \leq n} |X_k|
\]

(2)

If the result of the homogeneity test is smaller than the value determined as the critical value, that data set is called homogeneous. The confidence level was chosen as 95% in the study. The critical value at this level of confidence was calculated as 256.

2.3. Spearman’s Rho (SR) Trend Test

SR method is a simple and fast method used to investigate whether a linear trend exists. The purpose of the SR test is to investigate the existence of a linear relationship between the two observation series [39, 40]. Using Equation 3, the rₛ value for the SR test statistic is calculated [41, 42].

\[
r_s = 1 - \frac{6 \sum_{i=1}^{n} (R(x_i) - 0.5)^2}{n^3 - n}
\]

(3)
If the observation period (n) exceeds 30 years, the Z value is calculated using Equation 4.

\[Z = r_s \sqrt{n - 1} \]

(4)

If the Z value at a selected \(\alpha \) significance level is greater than the \(Z_\alpha \) value determined from the standard normal distribution table, the \(H_0 \) (No trend) hypothesis based on the fact that the observation values do not change over time is rejected and it is concluded that there is a certain trend.

2.4. Mann Kendall (MK) Trend Test

The MK test is independent of the distribution of variables [43, 44]. Whether there is a tendency in the time series is tested by the null hypothesis \((H_0): \) no trend [21, 45, 46]. The pairs \(x_i, x_j \) in the series \(x_1, x_2, \ldots, x_n \) are divided into two groups. The test statistic (S) is expressed by Equation 5, where for \(i < j \) the number of pairs with \(x_i < x_j \) is \(P \) and the number of pairs with \(x_i > x_j \) is \(M \). Kendall correlation coefficient with Equation 5; variance is calculated by Equation 7. If there are equal values in observations in the series, the variance is calculated using Equation 8.

\[S = P - M \]

(5)

\[Z = \frac{S}{\sqrt{n(n-1)/2}} \]

(6)

\[\sigma_s = \sqrt{\frac{n(n-1)(2n+5)}{18}} \]

(7)

\[\frac{(S - 1)}{\sigma_s}; \quad S > 0 \]

\[0; \quad S = 0 \]

\[\frac{(S + 1)}{\sigma_s}; \quad S < 0 \]

(9)

Standardized MK test statistics are calculated by Equation 9.

According to Table 4, it was determined that the annual, spring and summer temperatures of Gemerek were not homogeneous. The years when the break occurred were determined as 1994, 1994 and 1985, respectively. For Kayseri, annual, spring, summer and autumn temperature values are not homogeneous and the breaking years are 1998, 1999, 1995 and 1988, respectively. In the Kirsehir temperature data, non-homogeneous values belong to the annual, summer and autumn temperature results. While the deterioration in the annual temperature values started in 1992, the deteriorations in the mean temperature values of summer and autumn began in 1993 and 1991. It was seen that the annual, spring, summer and autumn temperature values for Nevsehir were not homogeneous and the breaking years were 1996, 1993, 1989 and 2000, respectively. In the Sivas mean temperature data, non-homogeneous values belong to the annual, spring, summer and autumn mean temperature results. While the deterioration in the annual temperature values started in 1993, the deteriorations in the mean temperature values of spring, summer and autumn began in 1998, 1991 and 1986. It is concluded that the annual and summer temperatures of Zara are not homogeneous. Breakings in the annual and summer temperature values occurred in 1994.

3. RESULTS AND DISCUSSION

The homogeneity of annual and seasonal temperature series was tested by the PT at the significance level of 0.05 across the Hirfanli Dam basin. Six meteorological stations for the period 1965-2017 were analyzed, with the test results and break years given in Table 4.
According to Table 5, significant increasing trends in annual, spring, summer and autumn temperatures were determined at Kayseri, Nevsehir and Sivas. Statistically significant trends of increase in annual, spring and summer temperatures in the Gemerek temperature series. On the other hand the MK result of the Spring for Gemerek, a significant trend could not be determined.

Significant positive trends were found in the annual, summer and autumn temperature series in the results of Kirsehir. In Zara, a significant increasing trend was identified for just summer temperatures.

![Figure 3. Annual and seasonal trend maps for SR Results.](image-url)
Figure 4. Annual and seasonal trend maps for MK Results.

The increasing trend in spring and summer temperatures determined in Gemerek will cause an increase in the annual temperatures. The increasing trend in annual temperatures in Kirsehir is due to the increasing trend in summer and autumn. In addition, the reason for the increase in annual temperatures of Kayseri, Nevsehir and Sivas is due to the significant increases in spring, summer and autumn temperatures.

In the studies carried out for Turkey, an increasing trend was reported in the temperature series [48-51]. The existence of an increasing trend in annual and seasonal temperature series has been revealed by various trend analysis methods in the Central Anatolia region and the Kizilirmak River basin [31, 52-55]. The findings of this study, obtained by SR and MK methods for the Hirfanli dam basin, show parallelism with the studies carried out for the Kizilirmak River basin, of which it is a sub-basin, and the Central Anatolian region. In addition, annual and seasonal trend maps of the basin were prepared using geographic information systems and Z scores of SR and MK (Figs. 3-4).

4. CONCLUSION

In this study, the annual and seasonal temperature series of the Hirfanli Dam basin in the period 1965-2017 were investigated using the PT, SR and MK. According to the homogeneity test results, deterioration was detected in the annual and summer mean temperatures of all stations in the basin. All stations in the basin showed homogeneous characteristics in the winter temperature series. In the trend analysis results, the significant increase trend in the annual temperature series, except for Zara, is remarkable in the basin. Another remarkable point is that significant increase trends were detected in all stations in summer temperatures throughout the basin. Also, significant increases were determined in the spring and autumn temperature series at the several stations in the basin. There is no significant trend in winter temperature series for all stations. In addition, the results of trend analysis methods (SR and MK) are generally compatible with each other.
Homogeneity analysis and trend analysis results support each other at all stations, other than the Zara. In other words, the reason for the deterioration of homogeneity may be the increasing trend. However, it is thought that this situation determined at the Zara is due to its highest altitude in the basin and being under the influence of the climate of the Eastern Anatolian region.

In the Hırfanlı Dam basin, which has a semi-arid feature, it is possible that severe drought events will be seen as a result of the temperature increase caused by global climate change. For this reason, it is of great importance to evaluate the basin in terms of climatic parameters, drought and water resources.

REFERENCES

[1] Turkes M. İklimsel Değişebilirlik Açısından Türkiye’de Çölleşme Etkisiyle Eğilmiş Alanlar. II. Hidrometeoroloji Sempozyumu, T.C. Başbakanlık Devlet Meteoroloji İşleri Genel Müdürlüğü, Ankara; 1998.
[2] Buken ME. Adana İlinde İklim Değişikliği Etkileri Değerlendirmesi [Yüksek Lisans Tezi]. Adana: Çukurova Üniversitesi; 2016.
[3] Yıkla A. Parametrik Olmayan ve sendo. Tr. Doğa ve Fen Dergi.Ş. 2011, Sayı 1, Sayfa 49-58. 37-44.
[4] Yıkla A. Parametrik Olmayan ve sendo. Tr. Doğa ve Fen Dergi.Ş. 2011, Sayı 1, Sayfa 49-58. 37-44.
[5] Buken ME. Adana İlinde İklim Değişikliği Etkileri Değerlendirmesi [Yüksek Lisans Tezi]. Adana: Çukurova Üniversitesi; 2016.
[6] Yıkla A. Parametrik Olmayan ve sendo. Tr. Doğa ve Fen Dergi.Ş. 2011, Sayı 1, Sayfa 49-58. 37-44.
[7] Yıkla A. Parametrik Olmayan ve sendo. Tr. Doğa ve Fen Dergi.Ş. 2011, Sayı 1, Sayfa 49-58. 37-44.
[8] Yıkla A. Parametrik Olmayan ve sendo. Tr. Doğa ve Fen Dergi.Ş. 2011, Sayı 1, Sayfa 49-58. 37-44.
[9] Yıkla A. Parametrik Olmayan ve sendo. Tr. Doğa ve Fen Dergi.Ş. 2011, Sayı 1, Sayfa 49-58. 37-44.
[10] Yıkla A. Parametrik Olmayan ve sendo. Tr. Doğa ve Fen Dergi.Ş. 2011, Sayı 1, Sayfa 49-58. 37-44.
Turkey. International Journal of Climatology. 2008; 29(8): 1056-1074. https://doi.org/10.1002/joc.1768.

[27] Turkes M, Erlat E. Influence of the Arctic Oscillation on Variability of Winter Mean Temperatures in Turkey. Theoretical and Applied Climatology. 2008; 92(1-2): 75-85. https://doi.org/10.1007/s00704-007-0310-8.

[28] Toros H. Klimatojojik Serilerden Türkiye İkliminde Trend Analizi [Yüksek Lisans Tezi]. İstanbul: İstanbul Teknik Üniversitesi; 1993.

[29] Kadioğlu M. Trends In Surface Air Temperature Data Over Turkey. International Journal of Climatology. 1997; 17(5): 511-520. https://doi.org/10.1002/(SICI)1097-0088(199704)17:5<511::AID-JOC130>3.0.CO;2-0.

[30] Altin TB, Barak B, Altın BN. Change in Precipitation and Temperature Amounts over Three Decades in Central Anatolia Turkey. Atmospheric and Climate Sciences. 2012; 2(1), 107–125. https://doi.org/10.4236/aacs.2012.21013.

[31] Kızılelma Y, Celik MA, Karabulut M. İç Anadolu Bölgesinde sıcaklık ve yağışların trend analizi. Türk Coğrafya Dergisi. 2015; 64: 1-10. https://doi.org/10.17211/tcd.90494.

[32] Doğan M, Ułke A, Czigizoglu, HK. Trend direction changes of Turkish temperature series in the first half of 1990s. Theor. Appl. Clim. 2015; 121(1-2): 23-39. https://doi.org/10.1007/s00704-014-1209-9.

[33] Ułke A, Ozkoça T, Sinop, Ordu and Samsun illerinin Sıcaklık Verilerinde Trend Analizi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018; 8(2): 455-463. https://doi.org/10.17714/gumusfenbil.351294.

[34] Gümüş V. Spatio-temporal precipitation and temperature trend analysis of the Seyhan-Ceyhan River Basins, Turkey. Meteorological Applications. 2020; 26(3): 369-384. https://doi.org/10.1002/met.1768.

[35] Yıldız O. Assessing Temporal and Spatial Characteristics of Droughts in the Hirfanlı Dam Basin Turkey. Scientific Research and Essays. 2009; 4(4): 249-255. https://doi.org/10.5897/SRE.9000212.

[36] Yıldız O. Spatiotemporal Analysis of Historical Droughts in the Central Anatolia, Turkey. Gazi University Journal of Science. 2014; 27(4): 1177-1184.

[37] Pettitt AN. A Non-Parametric Approach to the Change-Point Detection. Applied Statistic. 1979; 28(2): 26-135. https://doi.org/10.2307/2346729.

[38] Wijngaard JB, Tank AMGK, Könen GP. Homogeneity of 20th Century European Daily Temperature and Precipitation Series. International Journal of Climatology. 2003; 23(6): 679-692. https://doi.org/10.1002/joc.906.

[39] Yue S, Pilorn P, Cavadias G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology. 2002; 259(1–4): 254–271. https://doi.org/10.1016/S0022-1694(01)00594-7.

[40] Yenignon K, Gümus V, Bulut H. Trends in Streamflow of Euphrates Basin Turkey. ICE Water Management. 2008; 161(4): 189–198. https://doi.org/10.1680/wama.2008.161.4.189.

[41] Sneyers R. On the Statistical Analysis of Series of Observations. World Meteorological Organization, Geneva, Switzerland, Technical Note no. 143, WMO-no. 415; 1990.

[42] Kalayci S, Kahya E. Susurluk havzasınehirlerinde su kalitesi trendlerinin belirlenmesi. Turkish Journal of Engineering and Environmental Sciences. 1998; 22(6): 503-514.

[43] Mann HB. Non-parametric test against trend. Econometrika. 1945; 13: 245-259. https://doi.org/10.2307/1907187.

[44] Kendall, MG. Rank Correlation Method. London: Charles Griffin; 1975.

[45] Bayazit, M. İnsanın Mühendisliğinde Olasılık Yöntemleri. İstanbul: İTÜ İnsan Fakültesi Matbaası; 1996.

[46] Onoz B, Bayazit M. The power of statistical tests for trend detection. Turkish J. Eng. Env. Sci. 2003; 27(4): 247-251.

[47] Yu S, Zou S, Whittemore D. Non-parametric trend analysis of water quality data of Rivers in Kansas. Journal of Hydrology. 1993; 150(1): 61-80. https://doi.org/10.1016/0022-1694(93)90156-4.

[48] Acar-Deniz Z, Gonencgil B. Variations in Temperature Extremes in Turkey. Journal of Geography. 2017; 35:41-54.

[49] Kuyucu H, Demir V, Geyikli MS, Citakoglu H. Trend Analysis of Turkey Temperatures. 1st International Symposium on Multidisciplinary Studies and Innovative Technologies Proceedings, Tokat; 2017, p.157-159.

[50] Hadi SJ, Tombul M. Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteorological Applications. 2018; 25(3): 445-455. https://doi.org/10.1002/met.1712.

[51] Celebioglu T, Tayanc M, Oruc HN. Determination of Temperature Variabilities and Trends in Turkey. Bursa Uludağ University Journal of The Faculty of Engineering. 2021; 26(3): 1003-1020. https://doi.org/10.17482/umuufd.881416.

[52] Altin TB. Observed Changes in Annual and Seasonal Temperatures in Nevşehir (Central Anatolia, Turkey) for Period 1960-2016. Eurasian Journal of Agricultural Research. 2017; 1(2): 4-12.

[53] Erçan B, Yuce MI. Trend Analysis of Hydro-Meteorological Variables of Kızılırmak Basin. Nevşehir Bilim ve Teknoloji Dergisi. 2017; 6: 333-340. https://doi.org/10.17100/nevbiltok.323640.

[54] Terzi O, İker A. Trend Analysis of Temperature Values in Kızılırmak Basin. Süleyman Demirel University Journal of Natural and Applied Sciences. 2020; 24(3): 626-634. https://doi.org/10.19113/sdufenbed.686484.

[55] Köyceğiz C, Buyukyildiz M. Determination of Change Points and Trend Analysis of Annual Temperature Data in Konya Closed Basin (Turkey).
Nigde Omer Halisdemir University Journal of Engineering Sciences. 2020; 9(1): 393-404.
https://doi.org/10.28948/ngumuh.598289.