Primary bone tumors and tumor like lesions of the ulna

Osman Emre Aycan a, *, Sami Sökücü b, Devrim Özer b, Engin Çetinkaya b, Yavuz Arıkan b, Yavuz Selim Kabukçuoglu b

a Department of Orthopaedic Surgery, Siverek State Hospital, Turkey
b Department of Orthopaedic Surgery, Baltalimani Bone Diseases Training and Research Hospital, Turkey

Objective: The aim of this study was to discuss the diagnosis and surgical management and their results according to stage of primary bone tumors at ulna and to share our experience on this exceptional location for bone tumors.

Methods: We have retrospectively reviewed our clinics database and identified 23 cases (14 males and 9 females, mean age was 28.9 (range 4–77)) with primary bone tumors and tumor like lesion involvement of ulna. The patients were evaluated according to complaints, type and grade of tumor, treatment, recurrence and functional status.

Results: The most common first referral complaint was constrictive pain in 52.1% of the cases, benign tumors and tumor like lesions of the bone constituted 73.9% whereas malignant bone tumors were 26.1%, 39.1% of the lesions were located in distal end of ulna and the mean follow up was 33.8 months (range 8–172 months). Local recurrence has unexpectedly occurred in 3 benign lesions (13.1%).

Conclusion: Benign bone lesions tend to involve distal and proximal ends, malign bone lesions involve diaphysis mostly. Both benign and malignant diaphyseal lesions of the ulna have better postoperative results regarding the lesions at both ends of ulna. One should also take care of recurrences even after a decade from the primary surgery.

Level of evidence: Level IV, Therapeutic study

© 2018 Turkish Association of Orthopaedics and Traumatology. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Lesions in postoperative long-term follow-up. Musculoskeletal Tumor Society Scoring for upper extremity (6th months and annually in malignant lesions. Working abilities of annual controls after 2 years postoperatively. X-rays are evaluated followed as; 2 weeks, 6 weeks, once in 3 months for 2 years and annual controls for 5 years postoperatively. Malignant tumors were followed by a standard follow-up protocol of tumors. Patients were monitored regarding severity of the tumors. Revealed diagnosis and Enneking grading of bone and soft tissue performed by interpretation of radiology, histopathologically classified was applied for upper extremity lesions in postoperative long-term follow-up.

Results

There were 14 male and 9 female patients with the mean age of 28.9 (range 4–77) at admittance. Lesions were located on the right side in 13 cases (56.5%) and on the left side in 10 cases (43.5%). 17 of 23 patients had lesions on dominant side. The most common first referral complaint was constructive pain in 12 of 23 cases (52.1%) in both benign and malignant lesions followed by swelling (21.7%) and deformity (17.3%). Lesions were also encountered incidentally (8.9%). In malignant lesions of our cases pain was the leading complaint. 39.1% of the lesions were located in distal end of ulna whereas, remaining lesions were evenly located in both proximal and diaphyseal regions. Most of the swelling complaints were related with distal involvement however diaphyseal lesions referred with pain mostly. Mean follow up was 33.8 months (range 8–172 months). Patients were called for a final follow-up and evaluation. 2 of the 23 cases were deceased because of grade IIB and III osteosarcoma at 9th and 12th months respectively.

Benign tumors and tumor like lesions of the bone constituted 73.9% whereas malignant bone tumors were 26.1%. Regarding tumor like lesions of bone; 5 cases were aneurysmal bone cyst (ABC) (21.7%), 2 were unicameral bone cysts (8.6%) and a case was intraosseous ganglion cyst (4.3%). For benign bone tumors, 5 patients had osteochondroma (21.7%), 2 had enchondroma (8.6%) and 2 had giant cell tumor (GCT) of bone (8.6%). Considering malignant involvement; 3 cases had chondrosarcoma (13%), 2 cases had osteosarcoma (8.6%) and a case had Ewing sarcoma (4.3%).

According to radiologic and histopathologic assessment, Enneking classification of bone and soft tissue tumors is applied for each lesion. 2 cases were stage 1, 9 lesions were stage 2, 6 lesions were stage 3, 2 lesions were stage IA, a lesion was IB, 2 lesions were IIB and a lesion was stage III. In our series, benign lesions were seen to have slight tendency to affect distal (47.1%) and proximal (26.1%) regions rather than diaphyseal (17.8%) involvement. Except for 2 deceased patients, who had a proximal and a distal involvement of osteosarcoma respectively, all malignant lesions (3 chondrosarcomas and a Ewing sarcoma) were diaphyseally located.

Intralesional excision was the most common treatment method performed in 10 patients (43.4%) of our study, followed by marginal resections in 8 patients (34.8%), wide excision in 3 patients (13.1%) and amputation in 2 patients (8.7%). ABC was the most common indication for intralesional excision constituting 5 of 12 cases (41.7%). Marginal resection was performed for osteochondroma mostly (62.5%). The only malignant tumor that performed marginal excision was grade IB chondrosarcoma. Wide resection was performed for 2 chondrosarcomas and a Ewing sarcoma (Fig. 1). Amputations were performed exceptionally for 2 grade IIB and III osteosarcomas.

When working and household abilities are asked to the patients, they have declared the result as whether satisfactory or limited in their last follow up. Mean MSTS score was 21.5 ± 5.9. The best

Table 1

Demographical data of the patients in this study. Abbreviations used to indicate tumor types; ABC: Aneurysmal bone cyst, GCT: Giant cell tumor of bone, UBC: Unicameral bone cyst, CS: Chondrosarcoma, OC: Osteochondroma, IOGC: Intraosseous ganglion cyst, EWS: Ewing sarcoma, EC: Enchondroma, OS: Osteosarcoma.

Patient No.	Age	Gender	Complaint	Location	Tumor type	Enneking Stage	Treatment	Follow-up time (mo)	MSTS score	Recurrence	Management of recurrence
1	11	Male	Swelling	Proximal	ABC	3	Curettage, Grafting	14	8	N/A	N/A
2	27	Female	Swelling	Distal	GCT of Bone	3	Curettage, Grafting	172	9	14th year	Resection
3	4	Female	Swelling	Distal	ABC	2	Curettage, Grafting	52	11	N/A	N/A
4	28	Male	Pain	Proximal	UBC	2	Curettage, Grafting	19	12	N/A	N/A
5	64	Male	Pain	Mid-diaphysis	CS	IB	Curettage, Grafting	50	16	N/A	N/A
6	16	Male	Deformity	Distal	OC	3	Resection	30	17	N/A	N/A
7	40	Female	Pain	Mid-diaphysis	CS	IA	Curettage, Grafting	31	18	N/A	N/A
8	6	Male	Deformity	Distal	OC	3	Resection, Vascularized Fibula	125	19	10th year	Resection
9	56	Female	Pain	Distal	ABC	2	Curettage, Grafting	16	22	N/A	N/A
10	4	Male	Pain	Proximal	ABC	3	Curettage, Grafting	36	23	N/A	N/A
11	24	Male	Swelling	Distal	GCT of Bone	2	Curettage, Grafting	12	24	N/A	N/A
12	30	Male	Pain	Mid-diaphysis	CS	IA	Curettage, Grafting	32	25	N/A	N/A
13	42	Male	Incidental	Distal	IOGC	1	Curettage	10	26	N/A	N/A
14	77	Female	Incidental	Proximal	UBC	1	Curettage, Grafting	8	26	N/A	N/A
15	53	Female	Deformity	Proximal	OC	2	Resection	16	26	N/A	N/A
16	13	Male	Deformity	Mid-diaphysis	OC	2	Resection	16	27	N/A	N/A
17	22	Male	Deformity	Mid-diaphysis	EWS	IIB	Resection, Vascularized Fibula	15	27	N/A	N/A
18	13	Male	Pain	Proximal	ABC	3	Curettage, Grafting	23	27	15th month	Curettage, Grafting
19	18	Female	Swelling	Distal	OC	2	Resection	48	29	N/A	N/A
20	13	Male	Pain	Mid-diaphysis	EC	Curettage, Grafting	20	30	N/A	N/A	
21	26	Female	Pain	Mid-diaphysis	EC	2	Curettage, Grafting	13	30	N/A	N/A
22	57	Male	Pain	Distal	OS	III	Amputation	9	NA	N/A	N/A
23	21	Female	Pain	Proximal	OS	III	Amputation	12	NA	N/A	N/A
Fig. 1. A 24-year-old case vignette from our series, who admitted with constricting pain in right forearm. A) Anteroposterior and lateral views of the case was not specifically diagnostic. B) Magnetic resonance images of the case demonstrated a diaphyseal lesion with soft tissue involvement showing low signal intensity on T1 sequences and high signal intensity on T2 sequences. C) Following standard Ewing sarcoma chemotherapy protocol, the patient was applied resection and reconstructed by vascularized fibula.
primary ulna bone malignancies indicate that most of the lesions originate from either proximal or distal ends.1,5,13 The malignant bone tumors of the ulna in our series were commonly originated from the diaphysis (4 in 6 cases, 66.7\%) unlikely.

In the recent literature aggressive benign and malignant lesions are reported mostly.5–13 Our series indicated 9 of 17 benign lesions as Enneking 2 lesions. And malignancies were mostly low grade (3 of 6 lesions were Enneking IA or IB). Curettage and allograft packing was the most common treatment method in benign tumors and tumor like lesions of ulna in accordance with the literature. However in malignancies; en-bloc resection and vascularized fibular autograft technique was the choice of treatment commonly (3 of 6 lesions). Amputation was performed in 2 high grade, late stage osteosarcoma patients who we consequently lost during follow up period because of lung metastases.

Recurrence rates depend mostly on histopathological type, grade and treatment method of lesions. The local recurrence rates of ABC were reported to be 17–37\%.10 The risk of local recurrence is relatively higher in giant cell tumors of distal ulna.10 Poor prognostic results for recurrent giant cell tumors are associated with pathologic fractures, subchondral lesions and malignant transformation.14 Higher recurrence rates are reported with curettage, cauterization and grafting or cementation when compared to resections in GCT of bone.20 Our case recurred at 14th year after the primary treatment. The local recurrence of solitary osteochondroma is most commonly associated with inadequate resection of perichondrial ring in skeletal immature patients.21

In conclusion, primary benign or malignant bone tumors of ulna are extremely rare. Due to its close relation with major neurovascular vascular structures intraoperative care should be taken. One should also take care of recurrences even after a decade from the primary surgery. Except giant cell tumors of bone, benign aggressive tumors of the ulna can be managed by curettage and allograft packing, whereas malignant tumors require wide or en bloc resections and reconstructions or amputations regarding histopathologic grade and stage. Benign bone lesions tend to involve distal and proximal ends, whereas malignant bone lesions involve diaphysis mostly. Both benign and malignant diaphyseal lesions of the ulna have better postoperative results when compared to the lesions at both ends of ulna.

Conflict of interest

The authors of this study do confirm no conflict of interest.

References

1. Picci P, Manfrini M, Fabbrini N, et al. Atlas of Musculoskeletal Tumors and Tumorslike Lesions: The Rizzoli Case Archive. Springer Science & Business Media; 2014:5–8.
2. Exner GU, von Hochstetter AR, Honegger H, et al. Osseous lesions of the distal ulna: atypical location—unusual diagnosis. Arch Orthop Trauma Surg. 2000;120(3–4):219–223.
3. Erschbamer M, Rode B, Buck FM, et al. A rare periosteal diaphyseal lesion of the ulna. Open Orthop J. 2012;6:8–10.
4. Stein A, Mogan J. Intraosseous ganglion of the distal ulna. J Hand Surg. 1987;12(6):1101–1103.
5. Cooney WP, Damron TA, Sim FH, et al. En bloc resection of tumors of the distal end of the ulna. J Bone Joint Surg Am. 1997;79(3):406–412.
6. Thurfathi RC, Vuletic JC, Wadwa R, et al. Desmoplastic fibroma of the ulna. A case report. Clin Orthop Relat Res. 1983;179:231–239.
7. Park YK, Ryu KN, Han CS, et al. Multifocal, metachronous giant-cell tumor of the ulna. A case report. Arch Orthop Trauma Surg. 2006;126(11):535–538.
8. Maccauro G, Tulli A, Prezioso V, et al. Parosteal osteosarcoma of the ulna. A rare unusual diagnosis. Arch Orthop Trauma Surg. 1997;117(4):223–225.
9. Gianoutsos MP, Marsden FW, McCarthy SW, et al. Ulnar adamantinoma: en bloc excision and fibular osteoseptocutaneous free flap reconstruction. J Hand Surg. 1994;19(3):495–499.
10. Ozger H, Akgul T, Yildiz F, et al. Unusual localization of an aneurysmal bone cyst in ulnar coronoid process. *Acta Orthop Traumatol Turc*. 2012;46(2):144–147.

11. Cooper RR. Juxtacortical Chondrosarcoma: a case report. *J Bone Jt Surg Case Connect*. 1965;47(3):524–528.

12. Schajowicz F. Juxtacortical chondrosarcoma. *J Bone Jt Surg*. 1977;59(4):473–480.

13. Wolfe SW, Mih AD, Hotchkiss RN, et al. Wide excision of the distal ulna: a multicenter case study. *J Hand Surg*. 1998;23(2):222–228.

14. Sung HW, Kuo DP, Shu WP, et al. Giant-cell tumor of bone: analysis of two hundred and eight cases in Chinese patients. *J Bone Joint Surg Am*. 1982;64(5):755–761.

15. Enneking WF, Dunham W, Gebhardt MC, et al. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. *Clin Orthop Relat Res*. 1993;(286):241–246.

16. Thompson JC. *Netter's Concise Orthopaedic Anatomy*. Elsevier Health Sciences; 2009:89.

17. Shapiro F, Simon S, Glimcher MJ. Hereditary multiple exostoses. Anthropometric, roentgenographic, and clinical aspects. *J Bone Joint Surg*. 1979;61(6):815–824.

18. Bock GW, Reed MH. Forearm deformities in multiple cartilaginous exostoses. *Skeletal Radiol*. 1991;20(7):483–486.

19. Cho HS, Park IH, Han I, et al. Giant cell tumor of the femoral head and neck: result of intralesional curettage. *Arch Orthop Trauma Surg*. 2010;130(11):1329–1333.

20. Kleneke FM, Wenger DE, Inwards CY. Giant cell tumor of bone: risk factors for recurrence. *Clin Orthop Relat Res*. 2011;469(2):591–599.

21. Schwartz HS, ed. *OKU, Orthopaedic Knowledge Update: Musculoskeletal Tumors*. 2. American Academy Of Orthopaedic Surgeons; 2007:107.