The Non-Bayesian Restless Multi-Armed Bandit: A Case of Near-Logarithmic Strict Regret

Wenhan Dai†, Yi Gai‡, Bhaskar Krishnamachari‡ and Qing Zhao§
† Department of Aeronautics and Astronautics
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
‡ Ming Hsieh Department of Electrical Engineering
University of Southern California, Los Angeles, CA 90089, USA
§ Department of Electrical and Computer Engineering
University of California, Davis, CA 95616, USA
Email: whdai@mit.edu; {ygai,bkrishna}@usc.edu; qzhao@ucdavis.edu

Abstract—In the classic Bayesian restless multi-armed bandit (RMAB) problem, there are \(N \) arms, with rewards on all arms evolving at each time as Markov chains with known parameters. A player seeks to activate \(K \geq 1 \) arms at each time in order to maximize the expected total reward obtained over multiple plays. RMAB is a challenging problem that is known to be PSPACE-hard in general. We consider in this work the even harder non-Bayesian RMAB, in which the parameters of the Markov chain are assumed to be unknown \textit{a priori}. We develop an original approach to this problem that is applicable when the corresponding Bayesian problem has the structure that, depending on the known parameter values, the optimal solution is one of a prescribed finite set of policies. In such settings, we propose to learn the optimal policy for the non-Bayesian RMAB by employing a suitable meta-policy which treats each policy from this finite set as an arm in a different non-Bayesian multi-armed bandit problem for which a single-arm selection policy is optimal. We demonstrate this approach by developing a novel sensing policy for opportunistic spectrum access over unknown dynamic channels. We prove that our policy achieves near-logarithmic regret (the difference in expected reward compared to a model-aware genie), which leads to the same average reward that can be achieved by the optimal policy under a known model. This is the first such result in the literature for a non-Bayesian RMAB. For our proof, we also develop a novel generalization of the Chernoff-Hoeffding bound.

Index Terms—restless bandit, regret, opportunistic spectrum access, learning, non-Bayesian

I. INTRODUCTION

MULTI-ARMED bandit (MAB) problems are fundamental tools for optimal decision making in dynamic, uncertain environments. In a multi-armed bandit problem, there are \(N \) independent arms each generating stochastic rewards, and a player seeks a policy to activate \(K \geq 1 \) arms at each time in order to maximize the expected total reward obtained over multiple plays. A particularly challenging variant of these problems is the restless multi-armed bandit problem (RMAB) [2], in which the rewards on all arms (whether or not they are played) evolve at each time as Markov chains.

MAB problems can be broadly classified as Bayesian or non-Bayesian. In a Bayesian MAB, there is a prior distribution on the arm rewards that is updated based on observations at each step and a known-parameter model for the evolution of the rewards. In a non-Bayesian MAB, a probabilistic belief update is not possible because there is no prior distribution and/or the parameters of the underlying probabilistic model are unknown. In the case of non-Bayesian MAB problems, the objective is to design an arm selection policy that minimizes regret, defined as the gap between the expected reward that can be achieved by a genie that knows the parameters, and that obtained by the given policy. It is desirable to have a regret that grows as slowly as possible over time. In particular, if the regret is sub-linear, the average regret per slot tends to zero over time, and the policy achieves the maximum average reward that can be achieved under a known model.

Even in the Bayesian case, where the parameters of the Markov chains are known, the restless multi-armed bandit problem is difficult to solve, and has been proved to be PSPACE hard in general [3]. One approach to this problem has been Whittle’s index, which is asymptotically optimal under certain regimes [4]; however it does not always exist, and even when it does, it is not easy to compute. It is only in very recent work that non-trivial tractable classes of RMAB where Whittle’s index exists and is computable have been identified [5] [6].

We consider in this work the even harder non-Bayesian RMAB, in which the parameters of the Markov chain are assumed to be unknown \textit{a priori}. Our main contribution in this work is a novel approach to this problem that is applicable when the corresponding Bayesian RMAB problem has the structure that the parameter space can be partitioned into a finite number of sets, for each of which there is a single optimal policy. For RMABs satisfying this finite partition property, our approach is to develop a meta-policy that treats these policies as arms in a different non-Bayesian multi-armed bandit problem for which a single arm selection policy is optimal for the genie, and learn from reward observations
which policy from this finite set gives the best performance. We demonstrate our approach on a practical problem pertaining to dynamic spectrum sensing. In this problem, we consider a scenario where a secondary user must select one of \(N \) channels to sense at each time to maximize its expected reward from transmission opportunities. If the primary user occupancy on each channel is modeled as an identical but independent Markov chain with unknown parameters, we obtain a non-Bayesian RMAB with the requisite structure. We develop an efficient new multi-channel cognitive sensing policy for unknown dynamic channels based on the above approach. We prove for \(N = 2, 3 \) that this policy achieves regret (the gap between the expected optimal reward obtained by a model-aware genie and that obtained by the given policy) that is bounded uniformly over time \(n \) by a function that grows as \(O(G(n) \cdot \log n) \), where \(G(n) \) can be any arbitrarily slowly diverging non-decreasing sequence. For the general case, this policy achieves the average reward of the myopic policy which is conjectured, based on extensive numerical studies, to be optimal for the corresponding problem with known parameters. This is the first non-Bayesian RMAB policy that achieves the maximum average reward defined by the optimal policy under a known model.

II. RELATED WORK

A. Bayesian MAB

The Bayesian MAB takes a probabilistic viewpoint toward the system unknown parameters. By treating the player’s \textit{a posteriori} probabilistic knowledge (updated from the \textit{a priori} distribution using past observations) on the unknown parameters as the system state, Bellman in 1956 abstracted and generalized the Bayesian MAB to a special class of Markov decision processes (MDP) \cite{7}. Specifically, there are \(N \) independent arms with fully observable states. One arm is activated at each time, and only the activated arm changes state as per a known Markov process and offers a state-dependent reward. This general MDP formulation of the problem naturally leads to a stochastic dynamic programming solution based on backward induction. However, such an approach incurs exponential complexity with respect to the number of arms. The problem of finding a simpler approach remained open till 1972 when Gittins and Jones \cite{8} presented a forward-induction approach in which an index is calculated for each arm depending only on the process of that arm, and the arm with the highest index at its current state is selected at each time. This result shows that arms can be decoupled when seeking the optimal activation rule, consequently reducing the complexity from exponential to linear in terms of the number of arms. Several researchers have since developed alternative proofs of the optimality of this approach, which has come to be known as the Gittins-index \cite{9,10,16}. Several variants of the basic classical Bayesian MAB have been proposed and investigated, including arm-acquiring bandits \cite{17}, superprocess bandits \cite{9,18}, bandits with switching penalties \cite{19,20}, and multiple simultaneous plays \cite{21,22}.

A particularly important variant of the classic MAB is the restless bandit problem posed by Whittle in 1988 \cite{23}, in which the passive arms also change state (to model system dynamics that cannot be directly controlled). The structure of the optimal solution for this problem in general remains unknown, and has been shown to be PSPACE-hard by Papadimitriou and Tsitsiklis \cite{24}. Whittle proposed an index policy for this problem that is optimal under a relaxed constraint of an average number of arms played as well as asymptotically under certain conditions \cite{25}; for many problems, this Whittle-index policy has numerically been found to offer near-optimal performance. However, Whittle index is not guaranteed to exist. Its existence (the so-called indexability) is difficult to check, and the index can be computationally expensive to calculate when it does exist. General analytical results on the optimality of Whittle index in the finite regime have also eluded the research community up to today. There are numerical approaches for testing indexability and calculating Whittle index (see, for example, \cite{26,27}). Constant-factor approximation algorithms for restless bandits have also been explored in the literature \cite{28,29}.

Among the recent work that contributes to the fundamental understanding of the basic structure of the optimal policies for a class of restless bandits with known models, myopic policy \cite{30,31,32} has a simple semi-universal round-robin structure. It has been shown that the myopic policy is optimal for \(N = 2, 3 \), and for any \(N \) in the case of positively correlated channels. The optimality of the myopic policy for \(N > 3 \) negatively correlated channels is conjectured for the infinite-horizon case. Our work provides the first efficient solution to the non-Bayesian version of this class of problems, making use of the semi-universal structure identified in \cite{30}.

B. Non-Bayesian MAB

In the non-Bayesian formulation of MAB, the unknown parameters in the system dynamics are treated as deterministic quantities; no \textit{a priori} probabilistic knowledge about the unknowns is required. The basic form of the problem is the optimal sequential activation of \(N \) independent arms, each associated with an i.i.d. reward process with an unknown mean. The performance of an arm activation policy is measured by regret (also known as the cost of learning) defined as the difference between the total expected reward that could be obtained by an omniscient player that knows the parameters of the reward model and the policy in question (which has to learn these parameters through statistical observations). Notice that with the reward model known, the omniscient player will always activate the arm with the highest reward mean. The essence of the problem is thus to identify the best arm without exploring the bad arms too often in order to minimize the regret. In particular, it is desirable to have a sub-linear regret function with respect to time, as under this condition the time-averaged regret goes to zero, and the slower the regret growth rate, the faster the system converges to the same maximum average reward achievable under the known-model case.

Lai and Robbins \cite{33} proved in 1985 that the lower bound of regret is logarithmic in time, and proposed the first policy that achieved the optimal logarithmic regret for non-Bayesian MABs in which the rewards are i.i.d over time and
obtained from a distribution that can be characterized by a single-parameter. Anantharam et al. extended this result to multiple simultaneous arm plays, as well as single-parameter Markovian rested rewards [43, 45]. Other policies achieving logarithmic regret under different assumptions about the i.i.d. reward model have been developed by Agrawal [36] and Auer et al. [37]. In particular, Auer et al.’s UCB1 policy applies to i.i.d. reward distributions with finite support, and achieves logarithmic regret with a known leading constant uniformly bounded over time.

The focus of this paper is on the non-Bayesian RMAB. There are two parallel investigations on non-Bayesian RMAB problems given in [38, 39], where a more general RMAB model is considered but under a much weaker definition of regret. Specifically, in [38, 39], regret is defined with respect to the maximum reward that can be offered by a single arm/channel. Note that for RMAB with a known model, staying with the best arm is suboptimal in general. Thus, a sublinear regret under this definition does not imply the maximum average reward, and the deviation from the maximum average reward can be arbitrarily large. In contrast to these works, this paper shows sublinear regret with respect to the maximum reward that can be obtained by the optimal policy played by a genie that knows the underlying transition matrix.

III. A NEW APPROACH FOR NON-BAYESIAN RMAB

In multi-arm bandit problem, there are multiple arms and each of them yields a stochastic reward when played. The player sequentially picks one arm at each time, aiming to maximize the total expected reward collected over time. If the rewards on all arms are modeled as Markov chains and all arms always keep activated whether they are selected, it is classified as restless multi-armed bandit problem (RMAB). In Bayesian RMAB, the parameters of the Markov chain are known and in non-Bayesian RMAB, the model for the reward process is a priori unknown to the user.

We first describe a structured class of finite-option Bayesian RMAB problems that we will refer to as Ψ_m. Let $B(P)$ be a Bayesian RMAB problem with the Markovian evolution of arms described by the transition matrix P. We say that $B(P) \in \Psi_m$ if and only if there exists a partition of the parameter values P into a finite number of m sets $\{S_1, S_2, \ldots, S_m\}$ and a set of policies π_i $(\forall i = 1 \ldots m)$ with π_i being optimal whenever $P \in S_i$. Despite the general hardness of the RMAB problem, problems with such structure do exist, as has been shown in [5, 30, 31].

We propose a solution to the non-Bayesian version of the problem that leverages the finite solution option structure of the corresponding Bayesian version ($B(P) \in \Psi_m$). In this case, although the player does not know the exact parameter P, it must be true that one of the m policies π_i will yield the highest expected reward (corresponding to the set S_i) that contains the true, unknown P. These policies can thus be treated as arms in a different non-Bayesian multi-armed bandit problem for which a single-arm selection policy is optimal for the genie. Then, a suitable meta-policy that sequentially operates these policies while trying to minimize regret can be adopted. This can be done with an algorithm based on the well-known schemes proposed by Lai and Robbins [33], and Auer et al. [37].

One subtle issue that must be handled in adopting such an algorithm as a meta-policy is how long to play each policy. An ideal constant length of play could be determined only with knowledge of the underlying unknown parameters P. To circumvent this difficulty, our approach is to have the duration for which each policy is operated slowly increase over time.

In the following, we demonstrate this novel meta-policy approach using the dynamic spectrum access problem discussed in [30, 31] where the Bayesian version of the RMAB has been shown to belong to the class Ψ_2. For this problem, we show that our approach yields a policy with provably near-logarithmic regret, thus achieving the same average reward offered by the optimal RMAB policy under a known model.

IV. DYNAMIC SPECTRUM ACCESS UNDER UNKNOWN MODELS

We consider a slotted system where a secondary user is trying to access N independent channels, with the availability of each channel evolving as a two-state Markov chain with identical transition matrix P that is a priori unknown to the user. The user can only see the state of the sensed channel. If the user selects channel i at time t, and upon sensing finds the state of the channel $S_i(t)$ to be 1, it receives a unit reward for transmitting. If it instead finds the channel to be busy, i.e., $S_i(t) = 0$, it gets no reward at that time. The user aims to maximize its expected total reward (throughput) over some time horizon by choosing judiciously a sensing policy that governs the channel selection in each slot. We are interested in designing policies that perform well with respect to regret, which is defined as the difference between the expected reward that could be obtained using the omniscient policy π^* that knows the transition matrix P, and that obtained by the given policy π. The regret at time n can be expressed as:

$$R(P, \Omega(1), n) = E^\pi [\sum_{t=1}^{n} Y^\pi(P, \Omega(1), t)]$$

$$- E^\pi [\sum_{t=1}^{n} Y^\pi(P, \Omega(1), t)],$$

where $\omega_i(1)$ is the initial probability that $S_i(1) = 1$, P is the transition matrix of each channel, $Y^\pi(P, \Omega(1), t)$ is the reward obtained in time t with the optimal policy, $Y^\pi(P, \Omega(1), t)$ is the reward obtained in time t with the given policy. We denote $\Omega(t) \triangleq [\omega_1(t), \ldots, \omega_N(t)]$ as the belief vector where $\omega_i(t)$ is the conditional probability that $S_i(t) = 1$ (and let $\Omega(1) = [\omega_1(1), \ldots, \omega_N(1)]$ denote the initial belief vector used in the myopic sensing algorithm [30]).

V. POLICY CONSTRUCTION

As has been shown in [30], the myopic policy has a simple structure for switching between channels that depends only on the correlation sign of the transition matrix P, i.e. whether $p_{11} \geq p_{01}$ (positively correlated) or $p_{11} < p_{01}$ (negatively correlated).

In particular, if the channel is positively correlated, then the myopic policy corresponds to
• **Policy** π_1: stay on a channel whenever it shows a “1” and switch on a “0” to the channel visited the longest ago.

If the channel is negatively correlated, then it corresponds to

• **Policy** π_2: staying on a channel when it shows a “0”, and switching as soon as “1” is observed, either the channel most recently visited among those visited an even number of steps before, or if there are no such channels, to the one visited the longest ago.

To be more specific, we give the structure of myopic sensing. In myopic sensing, the concept of circular order is very important. A circular order $\kappa = (n_1, n_2, \cdots, n_N)$ is equivalent to $(n_i, n_{i+1}, \cdots, n_N, n_1, n_2, \cdots, n_{i-1})$ for any $1 \leq i \leq N$. For a circular order κ, denote $-\kappa$ as its reverse circular order. For a channel i, denote $i^+\kappa$ as its next channel in the circular order κ. With these notations, we present the structure of the myopic sensing.

Let $\Omega(1) = [\omega_1(1), \cdots, \omega_N(1)]$ denote the initial belief vector. The circular order $\kappa(1)$ in time slot 1 depends on the order of $\Omega(1)$: $\kappa(1) = (n_1, n_2, \cdots, n_N)$ implies that $\omega_1(1) \leq \omega_2(1) \leq \cdots \leq \omega_N(1)$. Let $\hat{a}(t)$ denote myopic action in time t. We have $\hat{a}(1) = \arg \max_{i=1,2,\cdots,N} \omega_i(1)$ and for $t > 1$, the myopic action $\hat{a}(t)$ is given as follows.

- **Policy** $\pi_1(p_{11} > p_{01})$:
 \[
 \hat{a}(t) = \begin{cases}
 \hat{a}(t-1), i f S_{\hat{a}(t-1)}(t-1) = 1 \\
 \hat{a}(t-1)^{\kappa(t)}, i f S_{\hat{a}(t-1)}(t-1) = 0
 \end{cases}
 \]
 where $\kappa(t) \equiv \kappa(1)$.

- **Policy** $\pi_2(p_{11} < p_{01})$:
 \[
 \hat{a}(t) = \begin{cases}
 \hat{a}(t-1), i f S_{\hat{a}(t-1)}(t-1) = 0 \\
 \hat{a}(t-1)^{\kappa(t)}, i f S_{\hat{a}(t-1)}(t-1) = 1
 \end{cases}
 \]
 where $\kappa(t) = \kappa(1)$ when t is odd and $\kappa(t) = -\kappa(1)$ when t is even.

Furthermore, as mentioned in section II, it has been shown in [20], [21] that the myopic policy is optimal for $N = 2, 3$. As a consequence, this special class of RMAB has the required finite dependence on its model as described in section IV, specifically, it belongs to Ψ_2. We can thus apply the general approach described in section IV. Specifically, the algorithm treats these two policies as arms in a classic non-Bayesian multi-armed bandit problem, with the goal of learning which one gives the higher reward.

A key question is how long to operate each arm at each step. The analysis we present in the next section shows that it is desirable to slowly increase the duration of each step using any (arbitrarily slowly) divergent non-decreasing sequence of positive integers $\{K_n\}_{n=1}^{\infty}$.

The channel sensing policy we thus construct is shown in Algorithm 1 in which we use the UCB1 policy proposed by Auer et al. in [22] as the meta-policy.

VI. REGRET ANALYSIS

We first define the discrete function $G(n)$ which represents the value of K_n at the n^{th} time step in Algorithm 1

$$G(n) = \min_i K_i \text{ s.t. } \sum_{i=1}^{l} K_i \geq n$$

Algorithm 1 Sensing Policy for Unknown Dynamic Channels

1: // Initialization
2: Let $\{K_n\}_{n=1}^{\infty}$ be any arbitrarily slowly divergent non-decreasing sequence of positive integers.
3: Play policy π_1 for K_1 times, denote A_1 as the sample mean of these K_1 rewards
4: Play policy π_2 for K_2 times, denote A_2 as the sample mean of these K_2 rewards
5: $\hat{X}_1 = A_1$, $\hat{X}_2 = A_2$
6: $n = K_1 + K_2$
7: $i = 3$, $i_1 = 1$, $i_2 = 1$
8: // MAIN LOOP
9: while 1 do
10: Find $j \in \{1, 2\}$ such that $j = \arg \max \{\hat{X}_1 + \sqrt{\frac{2\ln n}{t_j}}\}$ (L can be any constant larger than 2)
11: $i_j = i_j + 1$
12: Play policy π_j for K_i times, let $\hat{A}(ij)$ record the sample mean of these K_i rewards
13: $X_j = \hat{X}_j + \hat{A}(ij)$
14: $i = i + 1$
15: $n = n + K_i$;
16: end while

Note that since K_i can be any arbitrarily slow non-decreasing diverging sequence, $G(n)$ can also grow arbitrarily slowly.

The following theorem states that the regret of our policy grows close to logarithmically with time.

Theorem 1: For the dynamic spectrum access problem with $N = 2, 3$ i.i.d. channels with unknown transition matrix P, the expected regret with Algorithm 1 after n time steps is at most $Z_1G(n)\ln(n)+Z_2\ln(n)+Z_3G(n)+Z_4$, where Z_1, Z_2, Z_3, Z_4 are constants only related to P.

The proof of Theorem 1 uses one fact and two lemmas.

Fact 1: (Chernoff-Hoeffding bound [40]) Let X_1, \cdots, X_n be random variables with common range $[0,1]$ such that $E[X_i] = \mu = \mu + \cdots + \mu = \mu$. Let $\bar{S}_n = X_1 + \cdots + X_n$. Then for all $a \geq 0$

$$P\{S_n \geq n\mu + a\} \leq e^{-2\sigma^2/n}; P\{S_n \leq n\mu - a\} \leq e^{-2\sigma^2/n} \tag{3}$$

Our first lemma is a non-trivial generalization of the Chernoff-Hoeffding bound, that allows for bounded differences between the conditional expectations of a sequence of random variables that are revealed sequentially:

Lemma 1: Let X_1, \cdots, X_n be random variables with range $[0,b]$ and such that $E[X_i] = \mu = \mu + \cdots + \mu = \mu$. Let $S_n = X_1 + \cdots + X_n$. Then for all $a \geq 0$

$$P\{S_n \geq n(\mu + C) + a\} \leq e^{-2(\frac{a(n-C)}{b\gamma})^2/n} \tag{4}$$

and

$$P\{S_n \leq n(\mu - C) - a\} \leq e^{-2(a/b)^2/n} \tag{5}$$

Proof:

We first prove (4). We generate random variables X_1, \cdots, X_n as follows:

$$\hat{X}_1 = (\mu + C) \frac{X_1}{\mathbb{E}[X_1]},$$
\[
\hat{X}_2 = (\mu + C)\frac{X_1}{\mathbb{E}[X_2|X_1]},
\]
\[
\ldots
\]
\[
\hat{X}_t = (\mu + C)\frac{X_{t-1}}{\mathbb{E}[X_t|X_1, \ldots, X_{t-1}]}.
\]

Note that \(|\mathbb{E}[X_t|X_1, \ldots, X_{t-1}] - \mu| \leq C \). Therefore \(|\mathbb{E}[X_t|X_1, \ldots, X_{t-1}] - \mu| \) also stands. Hence \(\frac{X_t}{\mu + C} \) is at least 1, at most \(\frac{\mu + C}{\mu} \). Therefore \(\hat{X}_1, \hat{X}_2, \ldots, \hat{X}_N \) have finite support (they are in the range \([0, b]\)). Besides, \(\mathbb{E}[X_1, \ldots, X_{t-1}] = \mu + C, \forall t \).

Let \(S_n = \hat{X}_1 + \hat{X}_2 + \cdots + \hat{X}_n \), then for all \(a \geq 0 \),

\[
\Pr\{S_n \geq n(\mu + C) + a\} \leq \mathbb{P}\{\hat{S}_n \geq n(\mu + C) + a\}
\leq e^{-2(\frac{(a-C)}{\mu} \mathcal{N})^2/n}.
\]

The first inequality stands because \(\hat{X}_t \leq 1, \forall t \). The second inequality stands because of Fact 1.

The proof of (3) is similar. We generate random variables \(\hat{X}_1', \hat{X}_2', \ldots, \hat{X}_N' \) as follows:

\[
\hat{X}_1' = (\mu - C)\frac{X_1}{\mathbb{E}[X_1|X_1]},
\]
\[
\ldots
\]
\[
\hat{X}_t' = (\mu - C)\frac{X_{t-1}}{\mathbb{E}[X_t|X_1, \ldots, X_{t-1}]}.
\]

Note that \(|\mathbb{E}[X_t|X_1, \ldots, X_{t-1}] - \mu| \leq C \), \(|\mathbb{E}[X_t'|X_1, \ldots, X_{t-1}] - \mu| \leq C \) also stands. So \(\hat{X}_t' \) is at most 1, at most \(\frac{\mu - C}{\mu} \). Therefore, \(\hat{X}_1', \hat{X}_2', \ldots, \hat{X}_N' \) have finite support (they are in the range \([0, b]\)). Besides, \(\mathbb{E}[\hat{X}_1', \ldots, \hat{X}_{t-1}] = \mu - C, \forall t \).

Let \(S_n' = \hat{X}_1' + \hat{X}_2' + \cdots + \hat{X}_n' \), then for all \(a \geq 0 \),

\[
\Pr\{S_n' \leq n(\mu - C) - a\} \leq \mathbb{P}\{\hat{S}_n' \leq n(\mu - C) - a\}
\leq e^{-2(a/b)^2/n}.
\]

The first inequality stands because \(\frac{S_n'}{\mu} \leq 1, \forall t \). The second inequality stands because of Fact 1.

The second lemma states that the expected loss of reward for either policy due to starting with an arbitrary initial belief vector compared to the reward \(U_i(P) \) that would obtained by playing the policy at steady state is bounded by a constant \(C_i(P) \) that depends only on the policy used and the transition matrix.

Specifically, denote

\[
U_i(P, \Omega(1)) \triangleq \lim_{T \to \infty} \mathbb{E}^{\pi_i}[\sum_{t=1}^{T} Y^{\pi_i}(P, \Omega(1), t)].
\]

From the previous work in [1], we know that the limit above exists and the steady-state throughput \(U_i(P, \Omega(1)) \) is independent of the initial belief value \(\Omega(1) \). So, we can rewrite \(U_i(P, \Omega(1)) \) as \(U_i(P) \), to denote the average expected reward with transition matrix \(P \) using policy \(\pi_i \) \((i = 1, 2)\).

Lemma 2: For any initial belief vector \(\Omega(1) \) and any positive integer \(M \), if we use policy \(\pi_i \) \((i = 1, 2)\) for \(M \) times, and the summed expectation of the rewards for these \(M \) steps is denoted as \(\mathbb{E}^{\pi_i}[\sum_{t=1}^{M} Y^{\pi_i}(P, \Omega(1), t)] \), then

\[
|\mathbb{E}^{\pi_i}[\sum_{t=1}^{M} Y^{\pi_i}(P, \Omega(1), t)] - M \cdot U_i(P)| < C_i(P).
\]

Proof:

As described in section [4], let \(\kappa(t) = (n_1, n_2, \ldots, n_N) \)

\((n_i \in \{1, 2, \ldots, N\}, \forall i)\) be the circular order of channels in slot \(t \), we then have an ordered channel states \(S^{(1)}(t), S^{(2)}(t), \ldots, S^{(n)}(t) \). In fact, after sensing at time \(t-1 \), channel sequence \(\{n_1, n_2, \ldots, n_N\} \) has a non-decreasing probability of being in state \(i \), i.e., \(\omega_{n_1}(t) \geq \omega_{n_2}(t) \geq \cdots \geq \omega_{n_N}(t) \).

The status \(S^{(i)}(t) \) form a \(2^N \)-state Markov chain with transition probabilities \(\{Q^{(i,j)}\} \) shown as follows:

for policy \(\pi_1 \),

\[
Q^{(i,j)} = \begin{cases}
\prod_{k=1}^{N} p_{ik,jk}, & \text{if } i_1 = 1 \\
\prod_{k=2}^{N} p_{ik,jk-1}, & \text{if } i_1 = 0
\end{cases}
\]

and for policy \(\pi_2 \),

\[
Q^{(i,j)} = \begin{cases}
\prod_{k=1}^{N} p_{ik,N-k+1}, & \text{if } i_1 = 1 \\
\prod_{k=2}^{N} p_{ik,N-k+2}, & \text{if } i_1 = 0
\end{cases}
\]

where \(i = [i_1, \ldots, i_N], j = [j_1, j_2, \ldots, j_N] \), they are two ordered channel state vectors with entries equal to 0 or 1.

Denote the probability vector of Markov chain formed by \(S(t) \) as \(\vec{V}(t) = [v_1(t), v_2(t), \ldots, v_{2N}(t)] \). Then we have

\[
\vec{V}(t) = \vec{V}(1) \cdot (Q)^{t-1}
\]

In the \(t_{th} \) step, the myopic policy selects the channel of the first component in \(S(t) \), therefore we only have to calculate the probability of states whose first component is 1. There are \(2^{N-1} \) such states and denote them as \(i_1, i_2, \ldots, i_{2N-1} \), we have

\[
\mathbb{E}[Y^{\pi_1}(P, \Omega(1), t)] = \sum_{i=1}^{2^{N-1}} v_{i_1}(t)
\]

We can diagonalize \(Q \) as below:

\[
Q = H^{-1} \text{diag}(\lambda_1, \cdots, \lambda_{2N}) H
\]

From Perron Frobenius theorem [11], we know that \(|\lambda_1| \leq 1, \forall i \) and at least one eigenvalue is 1. Without loss of generality, we assume \(1 = \lambda_1 = \cdots = \lambda_\alpha > |\lambda_{\alpha+1}| \geq \cdots \geq |\lambda_{2N}| \), with \(\{13\} \), we can rewrite \(\mathbb{E}[Y^{\pi_1}(P, \Omega(1), t)] \) as

\[
\mathbb{E}[Y^{\pi_1}(P, \Omega(1), t)] = \sum_{j=1}^{2^{N-1}} h_j \lambda_j^{\sum_{j=1}^{\alpha} j} \sum_{j=1}^{\alpha} h_j + \sum_{j=\alpha+1}^{2^{N-1}} h_j \lambda_j^t
\]

where \(h_j \) is the corresponding coefficient which is only related to \(P \).

The steady average throughput \(U_i(P)(i = 1, 2) \) is \(\sum_{i=1}^{n} h_j \). As for different policies, the transition matrix \(Q \) is different, thus \(\lambda \) vector and coefficient \(h_j \) have different expressions. We denote them as \(U_i(P) \) and \(U_{2i}(P) \) respectively.

Based on the same reason, for different policies, we have different expressions for \(\sum_{j=\alpha+1}^{2^{N-1}} |h_j| \frac{1}{1-|\lambda_j|} \), each denoted as \(C_1(P) \) and \(C_2(P) \) respectively.
Besides, we have:

\[
\left| \sum_{t=1}^{M} \sum_{j=0+1}^{N-1} h_j \lambda_j^t \right| \leq \sum_{t=1}^{M} \sum_{j=0+1}^{N-1} |h_j| |\lambda_j|^t \\
= \sum_{j=0+1}^{2N-1} |h_j| \sum_{t=1}^{N} |\lambda_j|^t \leq \sum_{j=0+1}^{2N-1} |h_j| \sum_{t=1}^{\infty} |\lambda_j|^t \\
\leq \sum_{j=0+1}^{2N-1} |h_j| \frac{|\lambda_j|}{1 - |\lambda_j|}
\]

(16)

So \(|E^n[D_{t-1}Y_{t,t+1}^*(P, \Omega(1), t)] - M \cdot U_i(P)| < C_i(P), i = 1, 2.

Proof of Theorem 7

We derive a bound on the regret for the case when \(p_{01} < p_{11}\). In this case, policy \(\pi_1\) would be the optimal. Based on Lemma 2, the difference of \(E^n[D_{t-1}Y_{t,t+1}^*(P, \Omega(1), t)] - M \cdot U_i(P)\) and \(nU_1\) is no more than \(C_1\), therefore we only need to prove:

\[
R'(P, \omega_1, \omega_2, n) \leq nU_1 - E^n[D_{t-1}Y_{t,t+1}^*(P, \omega_1, \omega_2, t)]
\]

\[
\leq Z_1G(n) ln(n) + Z_2 ln(n) + Z_3G(n) + Z_4 - C_1
\]

where \(Z_1, Z_2, Z_3, Z_4\) are constants only related to \(P\).

The regret comes from two parts: the regret when using policy \(\pi_2\); the regret between \(U_1\) and \(Y_{t,t+1}^*(P, \omega_1, \omega_2, t)\) when using policy \(\pi_1\). From Lemma 2, we know that each time when we switch from policy \(\pi_1\) to policy \(\pi_2\), at most we lose a constant-level value from the second part. So if the times of policy \(\pi_2\) being used is bounded by \(O(G(n) ln(n))\), both parts of the rewards can be bounded by \(O(G(n) ln(n))\).

For case of exposition, we discuss the slots \(n\) such that \(G\|n\), where \(G\|n\) denotes that time \(n\) is the end of successive \(G(n)\) plays.

We define \(q\) as the smallest index such that

\[
K_q \geq \max\left\{ \left\lfloor \frac{C_1 + C_2}{U_1 - U_2}\right\rfloor, C_2/U_2, C_1/U_1 \right\}
\]

(17)

Let \(c_{t,s} = \sqrt{(L \ln t)/s}\), \(w_1 = q(U_1 - \frac{C_1}{K_q})\) and

\[
w_2 = q(U_2 - C_2/K_q)\left(U_2 + \frac{C_2}{2K_q} - 1\right)
\]

Next we will show that it is possible to define \(\alpha(U_1, C_1, P)\) such that if policy \(\pi_1\) is played \(s > \alpha\) times,

\[
\exp(-2(w_1 - sc_{t,s})^2/(s - q)) \leq t^{-4}
\]

In fact, we have

\[
\sqrt{L}s - w_1 \geq \sqrt{2(s - q)}
\]

when \(s > \max\{q, [w_1/(\sqrt{L} - \sqrt{2})]^2\}\)

Consider

\[
f(t) = \sqrt{L}\ln t - w_1 - \sqrt{2(s - q)}\ln t \forall t \geq e
\]

It is quite obvious that \(f(t)\) is an increasing function. Since \(f(e) \geq 0\), we have \(f(t) \geq 0, \forall t \geq e\), i.e.

\[
\sqrt{L}\ln t - w_1 - \sqrt{2(s - q)}\ln t
\]

which equals to

\[
\exp(-2(w_1 - sc_{t,s})^2/(s - q)) \leq t^{-4}
\]

Thus at least we can set

\[
\alpha(U_1, C_1, P) = \max\{q, [w_1/(\sqrt{L} - \sqrt{2})]^2\}
\]

For the similar reason, we could define

\[
\beta(U_2, C_2, P) = \max\{q, [w_2/(\sqrt{L} - \sqrt{2})]^2\}
\]

such that if policy \(\pi_2\) is played \(s > \beta\) times,

\[
\exp(-2(w_2 + sc_{t,s})^2)/(s - q) \leq t^{-4}
\]

(19)

Moreover, we will show that there exists

\[
\gamma = \max\{5\alpha + 1, e^{4\alpha/L} + \alpha, 5\beta + 1, e^{4\beta/L} + \beta\}
\]

such that when \(G(n) > K\gamma\), policy \(\pi_1\) is played at least \(\alpha\) times and policy \(\pi_2\) is played at least \(\beta\) times.

In fact, if policy \(\pi_1\) has been played less than \(\alpha\) times, then policy \(\pi_2\) has been played at least \((4\alpha + 2)\) times. Consider the last time selecting policy \(\pi_2\), there must be

\[
\frac{\hat{X}_{1,i_1}}{i_1} + c_{t,i_1} \leq \frac{\hat{X}_{2,i_2}}{i_2} + c_{t,i_2}
\]

(20)

Noting that \(\hat{X}_{1,i_1}/i_1 \geq 0, \hat{X}_{2,i_2}/i_2 \leq 1, i_1 \leq \alpha - 1, i_2 \geq 4\alpha + 1\), we have

\[
0 + \sqrt{\frac{L\ln t}{\alpha - 1}} \leq 1 + \sqrt{\frac{L\ln t}{4\alpha + 1}}
\]

Consider

\[
g(t) = 1 + \sqrt{\frac{L\ln t}{4\alpha + 1}} - \sqrt{\frac{L\ln t}{\alpha - 1}}
\]

Since \(g(t)\) is a decreasing function and \(t \geq \gamma - \alpha \geq e^{4\alpha/L}\), we have

\[
g(t) \leq g(e^{4\alpha/L}) = 1 + \sqrt{\frac{4\alpha}{4\alpha + 1}} - \sqrt{\frac{4\alpha}{\alpha - 1}} < 0
\]

which contradicts the conclusion above. So policy \(\pi_1\) has been played at least \(\alpha\) times. For the similar reason, policy \(\pi_2\) is played at least \(\beta\) times.

Denote \(T(n)\) as the number of times we select policy \(\pi_2\) up to time \(n\). Then, for any positive integer \(l\), we have

\[
T(n) = 1 + \sum_{t=K_1+K_2,G\|t}^{n} \mathbb{I}\{\hat{X}_{1}(t)/i_1(t) + c_{t,i_1(t)} \leq \frac{\hat{X}_{2}(t)}{i_2(t)} + c_{t,i_2(t)}\}
\]

\[
\leq l + \gamma + \sum_{t=K_1+K_2,G\|t}^{n} \mathbb{I}\{\hat{X}_{1}(t)/i_1(t) + c_{t,i_1(t)} \leq \frac{\hat{X}_{2}(t)}{i_2(t)} + c_{t,i_2(t)}\}
\]

\[
\sum_{t=K_1+K_2,G\|t}^{n} \mathbb{I}\{\hat{X}_{1}(s_1)/s_1 + c_{t,s_1} \leq \frac{\hat{X}_{2}(s_2)}{s_2} + c_{t,s_2}\}
\]

\[
(21)
\]

where \(\mathbb{I}\{x\}\) is the index function defined to be 1 when the predicate \(x\) is true, and 0 when it is false predicate; \(i_j(t)\) is the number of times we select policy \(\pi_j\) when up to time \(t\), \(\forall j = 1, 2\); \(\hat{X}_j(t)\) is the sum of every sample mean for \(K_i\) plays up to time \(t\); \(\hat{X}_{1,i_1}/s_1\) is the sum of every sample mean for \(K_{s_1}\) times using policy \(\pi_i\).

The condition \(\hat{X}_{1,s_1}/s_1 + c_{t,s_1} \leq \frac{\hat{X}_{2,s_2}}{s_2} + c_{t,s_2}\) implies that at least one of the following must hold:

\[
\hat{X}_{1,s_1}/s_1 \leq U_1 - C_1/K_q - c_{t,s_1}
\]

(22)
\[
\frac{\hat{X}_{2,s_2}}{s_2} \geq U_2 + \frac{C_2}{K_q} + \frac{U_2 + C_2/K_q}{U_2 - C_2/K_q} c_{t,s_2}
\]
\[U_1 - \frac{C_1}{K_q} < U_2 + \frac{C_2}{K_q} + (1 + \frac{U_2 + C_2/K_q}{U_2 - C_2/K_q}) c_{t,s_2}
\]
(23)
(24)

Note that
\[\hat{X}_{1,s_1} = \hat{A}_{1,1} + \hat{A}_{1,2} + \cdots + \hat{A}_{1,s_1}
\]
where \(\hat{A}_{1,i}\) is sample average reward for the \(i\)th time selecting policy \(\pi_i\).

Due to the definition of \(\alpha\) and \(K_q\), we have
\[U_1 - \frac{C_1}{K_q} \leq E[\hat{A}_{1,i}] \leq U_1 + \frac{C_1}{K_q} \quad \forall i \geq q
\]
(26)

Then applying Lemma [1] and the results in [18] and [19],
\[P\left(\frac{\hat{X}_{1,s_1}}{s_1} \leq U_1 - \frac{C_1}{K_q} - c_{t,s_1}\right)
\]
\[= P\left(\frac{\hat{A}_{1,1} + \hat{A}_{1,2} + \cdots + \hat{A}_{1,s_1}}{s_1} \leq U_1 - \frac{C_1}{K_q} - c_{t,s_1}\right)
\]
\[\leq P\left(\frac{0 + \cdots + 0 + \hat{A}_{1,q+1} + \hat{A}_{1,2} + \cdots + \hat{A}_{1,s_1}}{s_1} \leq U_1 - \frac{C_1}{K_q} - c_{t,s_1}\right)
\]
\[\leq \exp(-2(w_1 - s_1c_{t,s_1})^2/(s_1 - q)) \leq t^{-4}
\]
(27)

Similarly,
\[P\left(\frac{\hat{X}_{2,s_2}}{s_2} \geq U_2 + \frac{C_2}{K_q} + \frac{U_2 + C_2/K_q}{U_2 - C_2/K_q} c_{t,s_2}\right)
\]
\[= P\left(\frac{\hat{A}_{2,1} + \hat{A}_{2,2} + \cdots + \hat{A}_{2,s_2}}{s_2} \geq U_2 + \frac{C_2}{K_q} + \frac{U_2 + C_2/K_q}{U_2 - C_2/K_q} c_{t,s_2}\right)
\]
\[\leq P\left(\frac{1 + \cdots + 1 + \hat{A}_{2,q+1} + \cdots + \hat{A}_{2,s_2}}{s_2} \geq U_2 + \frac{C_2}{K_q} + \frac{U_2 + C_2/K_q}{U_2 - C_2/K_q} c_{t,s_2}\right)
\]
\[\leq \exp(-2(w_2 + s_2c_{t,s_2})^2/(s_2 - q)) \leq t^{-4}
\]

(28)

Denote \(\lambda(n)\) as
\[\lambda(n) = \left[(L(1 + \frac{U_2 + C_2/K_q}{U_2 - C_2/K_q})^2 \ln n)/(U_1 - U_2 - \frac{C_1 + C_2}{K_q})\right]
\]
(29)

For \(l \geq \lambda(n),\) (24) is false. So we get:
\[E(T(n)) \leq \lambda(n) + \gamma + \sum_{t=1}^{\infty} \sum_{s_1=1}^{\tilde{S}_1} \sum_{s_2=1}^{\tilde{S}_2} 2t^{-4}
\]
\[\leq \lambda(n) + \gamma + \frac{\pi^2}{3}
\]
(30)

Therefore, we have:
\[R'(P, \Omega(1), n) \leq G(n) + ((U_1 - U_2)G(n) + C_1 + C_2 + C_1)(\lambda(n) + \gamma + \frac{\pi^2}{3})
\]
(31)

This concludes the bound in case \(p_{11} > p_{01}\). The derivation of the bound is similar for the case when \(p_{11} \leq p_{01}\) with the key difference of \(\gamma'\) instead of \(\gamma\), and the \(C_1, U_1\) terms being replaced by \(C_2, U_2\) and vice versa. Then we have that the regret in either case has the following bound:
\[R(P, \Omega(1), n) \leq G(n) + ((U_2 - U_1)G(n) + C_1 + C_2 + \max\{C_1, C_2\})(\lambda(n) + \gamma + \frac{\pi^2}{3}) + \max\{C_1, C_2\}
\]
(32)

Remark 1: Theorem 1 has been stated for the cases \(N = 2, 3\), which are the cases when the Myopic policy has been proved to be optimal for the known-parameter case for all values of \(P\). However, our proof shows something stronger: Algorithm [1] yields the claimed near-logarithmic regret with respect to the myopic policy for any \(N\). The Myopic policy is known to be always optimal for \(N = 2, 3\), and for any \(N\) so long as the Markov chain is positively correlated. For negatively correlated channels, it is an open question whether it is optimal for an infinite horizon case (extensive numerical examples suggest an affirmative answer to this conjecture). If this conjecture is true, the policy we have presented would also offer near-logarithmic regret for any \(N\).

Remark 2: Theorem 1 also holds if the initial belief vector is unknown. This is because once every channel is sensed once, initial belief is forgotten by the myopic policy, which must happen within finite time on average.

VII. EXAMPLES AND SIMULATION RESULTS

We consider a system that consists of \(N = 2\) independent channels. Each channel evolves as a two-state Markov chain with transition probability matrix \(P\). The parameter \(L\) is set to be \(3\). We consider several situations with different sequence \(\{K_n\}_{n=1}^{\infty}\) and different correlations.

First we show the simulation results when the channel is positively correlated. The transition probabilities are as follows: \(p_{01} = 0.3, p_{11} = 0.7, p_{00} = 0.3, p_{00} = 0.7\). The sequences are set to be \(K_1 = [100 + \ln(n + 2)], K_2 = [100 + \ln(n + 2)]\) and \(K_3 = [100 + \ln(n + 2)]\).
Figure 2 to Figure 3 show the simulation result (normalized with respect to $G(t) \log t$) It is quite clear that the regrets all converge to a limit that is below our bound. In our simulations, $\lceil C_1 + C_2 \rceil$ is 6 and K_1 is already greater than it. In this way, the regret can converge more quickly. Practically, it may happen that $K_1 < \lceil C_1 + C_2 \rceil$. Then, we have to wait for some time so K_n can be sufficiently great. Since K_n goes to the infinity, it will exceed $\lceil C_1 + C_2 \rceil$ at certain time. The speed of convergence depends on how fast K_n grows. If K_n grows too slowly, it may take longer time to converge; however, if it grows too fast, though the regret converges quickly, the upper bound of regret also increases. So there is trade-off here between convergence speed and the upper bound of regret. Generally K_n should be a sub-linear sequence.

Next, we show the simulation results when the channel is negatively correlated. The transition probabilities are as follows: $p_{01} = 0.7$, $p_{11} = 0.3$, $p_{10} = 0.7$, $p_{00} = 0.3$. We use again the sequence K_n^1, K_n^2 and K_n^3.

Figure 4 to Figure 6 show the simulation of the result (normalized with respect to the product of $G(t)$ and the logarithm of time). The regrets also converge to a limitation and are bounded. The basic conclusion also stands here.

VIII. CONCLUSION

In this study, we have considered the non-Bayesian RMAB problem, in which the parameters of Markov chain are unknown a priori. We have developed a novel approach to solves special cases of this problem that applies whenever the corresponding known-parameter Bayesian problem has the structure that the optimal solution is one of the prescribed finite set of policies depending on the known parameters. For such problems, we propose to learn the optimal policy by using a meta-policy which treats each policy from that finite set as an arm. We have demonstrated our approach by developing an original policy for opportunistic spectrum access over unknown dynamic channels. We have proved that our policy achieves near-logarithmic regret in this case, which
policy that has this structure, our approach could be used to finite option structure, and derive similar results for them. Note
Bayesian RMAB problem.

While we have demonstrated this meta-policy approach for a particular RMAB with two states and identical arms, an open question is to identify other RMAB problems that fill into the finite option structure, and derive similar results for them. Note that even for the problem where the optimal solution does not have a finite option structure, but there exists a near-optimal policy that has this structure, our approach could be used to prove sub-linear regret with respect to the near-optimal policy.

APPENDIX A
CALCULATION OF $C_1(P)$ AND $U_1(P)$ FOR LEMMA 2 WHEN $N = 2$

When $N = 2$, we explicitly calculate $C_1(P)$, $C_2(P)$, $U_1(P)$, $U_2(P)$ as follows:

$$U_1(P) = \frac{p^2 \|_{1}}{(1 - p_{11} + p_{01})^2} + \frac{(1 - p_{01} + p_{11})p_{01}(1 - p_{11})}{(1 - p_{11} + p_{01})^2}$$

(33)

$$C_1(P) = 2 \max \{ p_{01}, 1 - p_{11} \} \|_{p_{11} - p_{01}} \|_{1 - p_{11}} (1 - p_{11} + p_{01})^3$$

+ \max \{ p^2 \|_{01}, (1 - p_{11})^2 \|_{p_{11} - p_{01}} \|_{1 - p_{11} + p_{01}}^2$$

+ \max \{ p^3 \|_{01}, (1 - p_{11})^3 \|_{p_{11} - p_{01}} \|_{1 - p_{11} + p_{01}}^3$$

(35)

$$C_2(P) = 2 \max \{ p_{01}, 1 - p_{11} \} \|_{p_{11} - p_{01}} \|_{p_{01}} (1 - p_{11} + p_{01})^3$$

+ \max \{ p^2 \|_{01}, (1 - p_{11})^2 \|_{p_{11} - p_{01}} \|_{p_{01}}^3$$

(36)

Also, note that a similar but more tedious calculation can be done for $N = 3$.

REFERENCES

[1] W. Dai, Y. Gai, B. Krishnamachari and Q. Zhao, “The non-bayesian restless multi-armed bandit: a case of near-logarithmic regret,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May, 2011.

[2] P. Whittle, “Restless bandits: activity allocation in a changing world,” Journal of Applied Probability, vol. 25, pp. 287-298, 1988.

[3] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of optimal queuing network control,” Mathematics of Operations Research, vol. 24, pp. 293-305, 1994.

[4] R. R. Weber and G. Weiss, “On an index policy for restless bandits,” Journal of Applied Probability, vol. 27, no. 3, pp. 637-648, 1990.

[5] K. Liu and Q. Zhao, “Indexability of restless bandit problems and optimality of Whittle index for dynamic multichannel access”, IEEE Transactions on Information Theory, vol. 56, no. 11, 2010.

[6] J. L. Ny, M. Dahleh, and E. Feron, “Multi-UAV dynamic routing with partial observations using restless bandit allocation indices,” American Control Conference, June, 2008.

[7] R. Bellman, “A problem in the sequential design of experiments”, Sankhyā: The Indian Journal of Statistics, vol. 16, pp. 221-229, 1956.

[8] J. C. Gittins and D. M. Jones, “A dynamic allocation index for sequential design of experiments,” Progress in Statistics, vol. 1, pp. 241-266, 1972.

[9] P. Whittle, “Multi-armed bandits and the Gittins index,” Journal of Royal Statistical Society, Series B (Methodological), vol. 42, pp. 143-149, 1980.

[10] P. P. Varaiya, J. C. Walrand, and C. Buyukkuvak, “Extensions of the multiarmed bandit problem: The discounted case,” IEEE Transactions on Automatic Control, vol. 30, pp. 426-439, 1985.

[11] D. A. Berry and B. Fristedt, “Bandit problems: sequential allocation of experiments,” Chapman and Hall, 1985.

[12] D. A. Berry and B. Fristedt, “Bandit problems: sequential allocation of experiments,” Chapman and Hall, 1985.

[13] J. N. Tsitsiklis, “A lemma on the multiarmed bandit problem,” IEEE Transactions on Automatic Control, vol. 31, pp. 576-577, 1986.

[14] A. Mandelbaum, “Discrete multiarmed bandits and multiparameter processes. Probability Theory and Related Fields,” vol. 71, pp. 129-147, 1986.

[15] T. Ishikida and P. Varaiya, “Multi-armed bandit problem revisited,” Journal of Optimization Theory and Applications, vol. 83, pp. 113-154, 1994.

[16] H. Kaspi and A. Mandelbaum, “Multi-armed bandits in discrete and continuous time,” Annals of Applied Probability, vol. 8, pp. 1270-1290, 1998.

[17] P. Whittle, “Arm-acquiring bandits. Annals of Probability”, Annals of Applied Probability, vol. 9, pp. 284-292, 1981.

[18] P. Nash, “Optimal allocation of resources between research projects,” PhD thesis, Cambridge University, 1973.

[19] J. Banks and R. Sundaram, “Switching costs and the Gittins index,” Econometrica, vol. 62, pp. 687-694, 1994.

[20] M. Azawa and D. Tenekeetzis, “Multi-armed bandits with switching penalties.” IEEE Transactions on Automatic Control, vol. 41, pp. 328-348, 1996.
[21] R. Agrawal, M. V. Hegde, and D. Teneketzis, “Multi-armed bandits with multiple plays and switching cost,” *Stochastics and Stochastic Reports*, vol. 29, pp. 437-459, 1990.

[22] D. G. Pandelis and D. Teneketzis, “On the optimality of the Gittins index rule in multi-armed bandits with multiple plays,” *Mathematical Methods of Operations Research*, vol. 50, pp. 449-461, 1999.

[23] P. Whittle, “Restless bandits: activity allocation in a changing world,” *Journal of Applied Probability*, vol. 25A, pp. 287-298, 1988.

[24] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of optimal queuing network control,” *Mathematics of Operations Research*, vol. 24, no. 2, 1999.

[25] R. R. Weber and G. Weiss, “On an index policy for restless bandits,” *Journal of Applied Probability*, vol. 27, no. 3, pp. 637-648, 1990.

[26] J. Niño-Mora, “Restless bandits, partial conservation laws and indexability,” *Advances in Applied Probability*, vol. 33, pp. 76-98, 2001.

[27] J. Niño-Mora, “Dynamic priority allocation via restless bandit marginal productivity indices,” *TOP*, vol. 15, pp. 161-198, 2007.

[28] S. Guha and K. Munagala, “Approximation algorithms for partial-information based stochastic control with markovian rewards,” *IEEE Symposium on Foundations of Computer Science (FOCS)*, October, 2007.

[29] S. Guha, K. Munagala, and P. Shi, “Approximation algorithms for restless bandit problems,” in *The Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, January, 2009.

[30] Q. Zhao, B. Krishnamachari, and K. Liu, “On myopic sensing for multi-channel opportunistic access: structure, optimality, and performance,” *IEEE Transactions on Wireless Communications*, vol. 7, no. 12, pp. 5431-5440, 2008.

[31] S. Ahmad, M. Liu, T. Javidi, Q. Zhao, and B. Krishnamachari, “Optimality of myopic sensing in multi-channel opportunistic access”, *IEEE Transactions on Information Theory*, vol. 55, no. 9, pp. 4040-4050, 2009.

[32] T. Javidi, B. Krishnamachari, Q. Zhao, and M. Liu, “Optimality of Myopic Sensing in Multi-Channel Opportunistic Access”, *IEEE International Conference on Communications (ICC)*, May, 2008.

[33] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation rules,” *Advances in Applied Mathematics*, vol. 6, no. 1, pp. 4-22, 1985.

[34] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays - part I: LIDD rewards”, *IEEE Transactions on Automatic Control*, vol. 32, pp. 968-976, 1987.

[35] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays - part II: markovian rewards”, *IEEE Transactions on Automatic Control*, vol. 32, pp. 977-982, 1987.

[36] R. Agrawal, “Sample mean based index policies with $O(\log n)$ regret for the multi-armed bandit problem”, *Advances in Applied Probability*, vol. 27, pp. 1054-1078, 1995.

[37] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,” *Machine Learning*, vol. 47, no. 2, pp. 235-256, 2002.

[38] C. Tekin and M. Liu, “Online learning in opportunistic spectrum access: a restless bandit approach,” *IEEE International Conference on Computer Communications (INFOCOM)*, April, 2011.

[39] H. Liu, K. Liu and Q. Zhao, “Logarithmic weak regret of non-bayesian restless multi-armed bandit,” *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, May, 2011.

[40] D. Pollard, *Convergence of Stochastic Processes*. Berlin: Springer, 1984.

[41] C. Meyer, *Matrix Analysis and Applied Linear Algebra*, SIAM, Philadelphia, 2000.