Collagen stable isotope data from East and Northeast Asia, c. 7000 BC–1000 AD

Christina Cheung

Article history:
Received 26 April 2021
Revised 23 May 2021
Accepted 27 May 2021
Available online 10 June 2021

Keywords:
Stable isotope analysis
Collagen
Carbon
Nitrogen
Sulfur
Palaeodiet
Subsistence economy

Abstract
Stable isotope analysis is routinely used in archaeology to answer questions related to past diets. As the technique matures, data from archaeological sites have been generated at an exponential rate over the past several decades, thus provided an invaluable opportunity to examine past dietary practices and subsistence economies in much larger geographical and temporal settings. In Asia, a significant proportion of isotopic data is published in non-English journals or in grey literature, therefore remains largely inaccessible to general researchers. In order to provide easier access to these data, and to encourage future large-scale meta-data analyses in Asia, this collection presents the most comprehensive set of collagen stable isotope data of carbon, nitrogen, and sulfur from East and Northeast Asia (29–51°N, 96–136°E) to date, including sites located within the modern territories of the People’s Republic of China, Mongolia, the Russian Federation, and the Republic of Korea. Using academic search engines such as Google Scholar, the Chinese National Knowledge Infrastructure (CNKI), and ScienceON, a total of 3,304 previously published archaeological human and faunal stable isotope data from 136 archaeological sites in East and Northeast Asia, spanning over a period of 8,000 years (c. 7000 BC to AD 1000) are collected. The collated data are deposited

* Corresponding author.
E-mail address: christina.t.t.cheung@gmail.com
Social media:

https://doi.org/10.1016/j.dib.2021.107214
2352-3409/© 2021 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
on the open-access platform IsoArch (https://isoarch.eu/) for any interested parties to use.

© 2021 Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specifications Table
Subject
Specific subject area
Carbon
Nitrogen
Sulfur
Type of data
How data were acquired
Data format
Parameters for data collection
Description of data collection
Data source location
Data accessibility

Value of the Data

- Numerous studies have shown that meta-analyses of stable isotopic data can help connect between past human subsistence patterns and larger social issues such as long-distance trading networks, socio-political transitions, and climatic/environmental changes [6–10]. These patterns are usually hidden in smaller scale studies, and are only revealed when sample sizes are large enough.
- Stable isotope analysis has been increasingly applied in archaeological research in Asia, however, many data are being published in non-English journals or grey literature. In order to help make these data more accessible, this collection brings together stable isotopic data from 136 archaeological sites across East and Northeast Asia.
- The area in concern is chosen specifically to help better understand the spread and effect of agriculture in Northeast Asia. All sites concerned are dated from the early Neolithic to later
historical periods (c. 7000 BC–1000 AD), covering key dates concerning major changes in subsistence economies in the region, including the origin of agriculture, and the subsequent spread of millet (westward), rice (northward), and wheat (eastward) across the continent.

- Sometimes, subsets of stable isotope data from the same site are published in separate reports. This is especially common in larger sites, such as Yinxu. However, smaller data subsets can be overlooked in larger studies of the site/region. Here, effort has been made to ensure data from the same sites are organized together so that all associated data can be located easily.
- This collection is consisting of data coming from sites located within the modern territories of four countries, none of which’s official language is English. Therefore, site names and bibliographic information are provided in both the local language as well as English, whenever possible/necessary. This shall allow users to locate these sites/original references easier, should the need arise.
- The data are curated carefully. All δ¹³C and δ¹⁵N values that are not published with conventional quality control (QC) criteria, or have failed these criteria, are excluded. This is to ensure that the data are reliable and directly comparable. As the QC for δ³⁴S is less well established, all S isotope measurements are included as reported.

1. Data Description

This collection is consisted of a total of 3,304 entries of stable carbon and nitrogen isotope data, of which 3,224 (2,343 human, 881 fauna) come from unique individuals, with additional 249 entries of stable sulfur isotope data from 241 (190 human, 51 fauna) unique individuals. Multi-tissue measurements are available from 80 individuals. All stable carbon and nitrogen isotope data come from 136 archaeological sites, where 15 sites also have corroborating stable sulfur isotope data (Fig. 1). An interactive map showing the locations of all sites is also available on IsoArch (https://database.isoarch.eu/map.php). The dataset is deposited in IsoArch [5] under the following DOI: https://doi.org/10.48530/isoarch.2021.001. Table 1 provides a summary of all the sites involved, describing the locations, archaeological cultures and time periods, and numbers of human and/or faunal samples from each respective site. All stable carbon and nitrogen isotope data included in this collection have passed all accompanied collagen QC criteria. For most sites, the excluded data only constituted a small portion of the total data reported. However, data from a number of sites are entirely excluded, please see Table 2 for more information. As the QC for δ³⁴S is less well established, all S isotope measurements are included as reported.

2. Experimental Design, Materials and Methods

The area in concern is designed to collect isotopic data that can capture the development and spread of agriculture in Northeast Asia. The earliest evidence of crop domestication in Northeast Asia is found at an early Neolithic site Nanzhuangtou 南莊頭, (c. 9,550–9,050 cal. BC) [124], located about 100km southwest of the modern city of Beijing, PRC (see Fig. 1) – unfortunately, no isotopic data is available from this site. Treating this site as the tentative “ground zero” of the Northeast Asian agricultural revolution, a circle with a radius of roughly 1,500 km is drawn around the site, where isotopic data are collected from within.

In terms of time period, all sites involved are dated between c. 7000 BC to AD 1000. Note that as a majority of the publications describe the chronological periods of archaeological sites using the BC/AD (or BCE/CE) framework, all periods described in BP will be converted to BC/AD. All reported time periods are gathered from the studies reporting the stable isotope data, more refined chronology of the sites may be available in other associated reports.

Geographically, this area is consisted of several distinctive geological features, including plains, mountains, steppes, plateaus, deserts, and islands. A general description of the geographic
Table 1

Site ID, names, references, cultural phases and time periods, coordinates (latitudes and longitudes), elevations, general description of geographic zones, and numbers of δ¹³C and δ¹⁵N data from all sites included in the database. Bracketed numbers are the number of samples with corroborating δ³⁴S values. Site ID corresponds to the numbers shown on Fig. 1. * indicates that the faunal assemblage is not contemporaneous with the human assemblage.

Site ID	Site	Local name	Location (modern reference)	Time period/culture	Latitude	Longitude	Altitude (m.a.s.l.)	Geographic zones	Total number of data	Human	Faunal
1	Zongri [11]	拉日	Qinghai, PRC	2200-1800 BC/Zongri Culture	33.552134	96.380682	4242	Tibetan Plateau	24		
2	Huoshagou [7]	火烧沟	Gansu, PRC	1900 - 1300 BC/Siba Culture	39.960279	97.655051	1761	Hexi Corridor	30		
3	Ganguya [7]	乾骨崖	Gansu, PRC	1350-950 BC/Siba Culture	39.382711	98.856553	1827	Hexi Corridor	30	12*	
4	Huoshiliang [12]	火石梁	Gansu, PRC	2135-1682 BC/Siba Culture	40.26	99.305	1195	Hexi Corridor	2	18	
5	Wuba [7]	五端	Gansu, PRC	2490-1950 BC/Banshan – Machang Cultures	39.380785	99.890372	1360	Hexi Corridor	55		
6	Xichengyi [13]	西城驿	Gansu, PRC	4100-3600 BC/Machang – Siba Culture	39.014436	100.365415	1460	Hexi Corridor	4	4	
7	Hupo [14]	襄坡	Gansu, PRC	2234-2094BC/Banshan – Machang Cultures	36.4	102	2512	Hexi Corridor	6		
8	Sanbeiyi [14]	三合乙	Gansu, PRC	1961-1881 BC/Qijia Culture	36.4	102	2512	Hexi Corridor	5		
9	Wenhoku [15]	文卜扣	Qinghai, PRC	ca. 2000 BC/Majiayao Culture	36	102	2000	Hexi Corridor	1		
10	Lajigai [14]	拉吉盖	Gansu, PRC	1328-1082 BC/Kayue Culture	36	102.3	2382	Hexi Corridor	5		
11	Lajia [16]	楼家	Qinghai, PRC	2300-1600 BC/Qijia Culture	35.8543	102.8278	1760	Lixin Basin	4		
12	Xiahaishi [17,18]	下海石	Gansu, PRC	1920-1800 BC/Machang Culture	36.344608	102.856376	1771	Hexi Corridor	14	9	
13	Mozuizi [7,15]	磨嘴子	Gansu, PRC	2350-2000 BC/Machang Culture	37.801425	102.86876	1599	Hexi Corridor	16		
14	Lianhuatai [18]	联花台	Gansu, PRC	1470-1080 BC/Xindian Culture	35.769601	103.165769	1757	Hexi Corridor	6		
15	Mogou [7,14]	磨沟	Gansu, PRC	1750-1100 BC/Qijia – Siwa Cultures	34.977773	103.780975	2348	Wei River valley	85		
16	Zhanqi [7,18]	赞奇	Gansu, PRC	1100-950 BC/Siwa Culture	34.714335	103.844992	2263	Wei River valley	45	2	
17	Qiijiap [19]	齐家坪	Gansu, PRC	1515-1264 BC/Qijia Culture	35.887345	104.062574	2037	Hexi Corridor	42	19	
18	Buzhipang [17]	堡子坪	Gansu, PRC	2126-1744 BC/Qijia Culture	35.4	104.5	2298	Hexi Corridor	1	7	
19	Buzishan [17]	堡子山	Gansu, PRC	2126-1744 BC/Qijia Culture	35.4	104.5	2298	Hexi Corridor	1	5	
20	Maojiapi [20]	毛家坪	Gansu, PRC	1046-221 BC/Western and Eastern Zhou	34.756619	105.099274	1380	Hexi Corridor	51		
21	Bayanbulag [21]	Байбичулаг	Umnugovi, Mongolia	365 - 107 BC/Pre-Han	42.6	105.175	1246	Steppe	15		
22	Lixian [22]	璧縣	Gansu, PRC	2832-2470 BC/ Longshan Culture; 803-543 BC/Zhou; AD 1027-1201 Song Dynasty	34.189345	105.17864	1414	Wei River Valley	3		

(continued on next page)
Site ID	Site	Local name	Location (modern reference)	Time period/culture	Latitude	Longitude	Altitude (m.a.s.l.)	Geographic zones	Total number of data	Human	Faunal
23	Xishan [23]	西山	Gansu, PRC	475-221 BC/Western Zhou to Warring States	34.192296	105.183033	1414	Hexi Corridor	19		
24	Dadiwan [24]	大地湾	Gansu, PRC	4500-2900 BC/ Yangshao Culture	35.01948	105.92631	1585	Wei River Valley	5		
25	Baga Gazaryn Chuluu [25]	Бага Газарын Чулдуу	Dundgovi, Mongolia	2000-500 BC/Bronze Age; 1000-400 BC/Iron Age; 300 BC-AD 200/Xiongnu; AD 600-800/Turkic; AD 1200-1400/Mongol	46.2034	106.0299	1584	Desert	38	14*	
26	Jianhe [23]	建河	Shaanxi, PRC	480-221 BC/Warring States period	34.515439	106.364578	964	Wei River valley	14		
27	Fenggeling [22]	負闕嶺	Shaanxi, PRC	533-361 BC/Bronze/Early Zhou	34.529939	106.44783	903	Wei River Valley	4		
28	Nalin Taohai [26]	鈕林套海	Inner Mongolia, PRC	202 BC- 8 AD/Western Han	40.487159	106.6411	1042	Desert	6		
29	Shigushan [18]	石鼓山	Shaanxi, PRC	1200-1000 BC/Predynastic Zhou to early Western Zhou	34.43362	107.190987	607	Wei River valley	7		
30	Sunjianantou [27]	孫家南頭	Shaanxi, PRC	770-221 BC/Western Zhou	34.472717	107.24411	686	Wei River valley	25		
31	Zhouyuan [18,23]	周原	Shaanxi, PRC	1200-1000 BC/Predynastic Zhou to early Western Zhou	34.486595	107.602417	774	Wei River valley	20		
32	Zhanguo [22]	周頭	Shaanxi, PRC	511-376 BC/Bronze/Early Zhou	34.396124	107.96717	541	Wei River Valley	1		
33	Xunyi [22]	旬邑	Shaanxi, PRC	2447-2034 BC/Longshan Culture	35.107672	108.332886	976	Wei River Valley	3		
34	Jichang [28]	機場	Shaanxi, PRC	AD 25-220/Eastern Han	34.429958	108.738685	488	Wei River valley	30	7	(1)
35	Guanzhong Prison [29]	閏中監獄	Shaanxi, PRC	475-221 BC/Warring States	34.360057	108.752309	378	Wei River valley	25		
36	Yuhuazhai [22]	魚化寨	Shaanxi, PRC	3779-3347 BC/Yangshao Culture	34.233445	108.860317	406	Wei River Valley	2		
37	Guandao [28]	官道	Shaanxi, PRC	141 BC-AD 220/Mid-Western Han to Eastern Han	34.752401	108.90653	629	Wei River valley	5	1	(1)
38	Guangming [28]	光明	Shaanxi, PRC	141 BC-AD 24/Western Han	34.440213	108.976327	405	Wei River valley	7	2	(2)
39	Dongying [30]	東營	Shaanxi, PRC	2600-2000 BC/Kexingzhuang II	34.44333	109.0153	374	Wei River valley	5		
40	Banpo [31]	半坡	Shaanxi, PRC	4800-4300 BC/Banpo Culture	34.2729	109.053402	421	Wei River valley	1		
41	Lintong [22]	靈鷲	Shaanxi, PRC	391-4 BC/Eastern Zhou to Western Han; AD 426-585 Six Dynasties	34.3673	109.21376	471	Wei River Valley	3		
42	Jiangzhai [31,32]	姜寨	Shaanxi, PRC	4900-4000BC/Banpo and Shijia Cultures	34.377858	109.218143	446	Wei River valley	20		

(continued on next page)
Site ID	Site	Location (modern reference)	Time period/culture	Latitude	Longitude	Altitude (m.a.s.l.)	Geographic zones	Total number of data	
43	Shijia [31]	Shaanxi, PRC	4300-4000 BC/Shijia Culture	34.725018	109.357346	384	Wei River valley	9	
44	Baijia [33]	Shaanxi, PRC	5709-5389 BC^C/	Laoguantai Culture	34.55209	109.4107	350	Wei River valley	1
45	Beiliu [34]	Shaanxi, PRC	6000-5000 BC/Laoguantai and 4000-3500 BC/Miaodigou cultures	34.374866	109.555338	583	Wei River valley	9	
46	Shengedaliang [35]	Shaanxi, PRC	1825-1615 BC/Yongxingdian-Dakou II culture	38.63355	109.93335	1220	Ordos Plateau	28	
47	Muzhuzhuliang [36]	Shaanxi, PRC	1950-1780 BC/ Late Longshan Culture	38.639179	110.43702	1164	Ordos Plateau	8	
48	Xinhua [22]	Shaanxi, PRC	2014-1770 BC/Longshan Culture	38.734138	110.099833	1156	Ordos Plateau	1	
49	Zhukaigou [22]	Inner Mongolia, PRC	2195-1696 BC/ Longshan Culture	39.644967	110.43219	1338	Ordos Plateau	2	
50	Shimao [22]	Shaanxi, PRC	2107-1746 BC/ Shimao Culture	39.064226	110.50283	366	Wei River valley	30	
51	Liangdaicun [23,37]	Shaanxi, PRC	1200-1000 BC/Western Zhou to Spring-Autumn	39.064226	110.50283	366	Wei River valley	30	
52	Neiyangyuan [38]	Shaanxi, PRC	770-476 BC/Xia and Spring-Autumn	35.989888	110.785445	1079	Lúliang Mountains	23	
53	Xipo [39]	Henan, PRC	3300-3000 BC/Yangshao Culture	34.35444	110.846353	871	Wei River valley	30\(3^*\)	
54	Qinglongquan [40-42]	Hubei, PRC	3500-3000 BC/Yangshao, 3000-2600 BC/Qijialing and 2600-2200 BC/Shijiähe Cultures, 770-221 BC/Eastern Zhou	32.83979	110.851701	189	North China Plain	36(26)	
55	Qiangliang Temple [43]	Shaanxi, PRC	3300-3000 BC/Miaodigou and 2300-1800BC/Longshan cultures	34.76158	110.894048	532	Yellow River valley	27	
56	Dakou [22]	Inner Mongolia, PRC	2339-2041 BC/Longshan Culture	39.403118	111.136222	852	Ordos Plateau	2	
57	Xiazhai [44]	Henan, PRC	2600-2000 BC/Longshan Culture	33.01115	111.273355	171	North China Plain	22	
58	Shenmingpu [45]	Henan, PRC	480-221 BC/Warring States and 220 BC-220 AD/the Han Dynasties	33.002771	111.303279	166	North China Plain	32	
59	Gouwan [46]	Henan, PRC	5000-3500 BC/Yangshao and 3000-2600 BC/Qijialing Cultures	33.078699	111.47917	176	North China Plain	41	

(continued on next page)
Site ID	Site	Local name	Location (modern reference)	Time period/culture	Latitude	Longitude	Altitude (m.a.s.l.)	Geographic zones	Total number of data	Human	Faunal
60	Tuchengzi [47]	土城子	Inner Mongolia, PRC	475–221 BC/Warring States	40.441392	111.800105	1150	Loess Plateau	17		
61	Xindianzi [48]	新店子	Inner Mongolia, PRC	770–221 BC/Eastern Zhou	40.241491	112.07507	1190	Loess Plateau	20		
62	Dabaoshan [49]	大堡山	Inner Mongolia, PRC	410–180 BC/Late Warring States	40.228893	112.157243	1228	Loess Plateau	41		
63	Xinhuacon [22]	杏花村	Shanxi, PRC	2337–2050 BC/Longshan Culture	37.808167	112.311249	1661	Lüliang Mountains	2		
64	Zhonggou [50]	中溝	Henan, PRC	3010–2921 BC/Late Yangshao Culture	34.7	112.4	167	Luoyang Basin	26	5	
65	Wanggedang [50]	王圪垯	Henan, PRC	2500–1750 BC/Late Longshan to early Erlitou Culture	34.63333	112.46676	140	Luoyang Basin	14	17	
66	Xiaonanzhuang [51]	小南莊	Shanxi, PRC	770–221 BC/Eastern Zhou	37.7515	112.72531	828	Jinzhou Basin	16		
67	Neidan [52]	瓜店	Shanxi, PRC	2070–1600 BC/Xia Dynasty	37.751272	112.741538	855	Taihang Mountains	60		
68	Meishan [44]	煤山	Henan, PRC	2600–2000 BC/Longshan Culture	34.175594	112.832212	219	North China Plain	4		
69	Tunliu Yuwu [53]	屯留余吾	Shanxi, PRC	480–221 BC/Warring States and 220 BC–AD the Han Dynasties	36.376475	112.843458	964	Datong Basin	21		
70	Sandaowan [54]	三道灣	Inner Mongolia, PRC	AD 120–386/Eastern Han	41.710605	113.102828	1485	Ulanqab grassland/ Hill/Plateau	2		
71	Huhewusu [55]	呼和烏素	Inner Mongolia, PRC	206 BC – AD 9/Western Han	40.737092	113.134797	1361	North China Plain	5		
72	Chenjiagou [56]	陳家溝	Henan, PRC	770–221 BC/Eastern Zhou	34.939501	113.149566	103	North China Plain	39		
73	Xuecun [56]	薛村	Henan, PRC	141 BC–220 AD/Western and Eastern Han	34.865228	113.238266	141	Datong Basin	53		
74	Huayu Square [57]	華宇廣場	Shanxi, PRC	-AD 534/Late Northern Wei	40.06092	113.292698	1052	Datong Basin	16		
75	Dongxin Square [57]	東信廣場	Shanxi, PRC	-AD 398/Early Northern Wei	40.055731	113.299989	1053	Datong Basin	26		
76	Nanjiao [58]	南郊	Shanxi, PRC	AD 386-534/ Northern Wei	40.050959	113.304452	1053	Datong Basin	42	29	

(continued on next page)
Site ID	Site	Local name	Location (modern reference)	Time period/culture	Latitude	Longitude	Altitude (m.a.s.l.)	Geographic zones	Total number of data
77	Yuchang Jiayuan [57]	御昌佳園	Shanxi, PRC	~AD 439/Middle Northern Wei	40.077464	113.347343	1047	Datong Basin	21
78	Miaozigou [59]	麦子溝	Inner Mongolia, PRC	~3500 BC/Miaozigou Culture	40.766093	113.347685	422	Hill/Plateau	9
79	Guanzhuang [60]	官莊	Henan, PRC	1045-476 BC/ Late Western Zhou to Mid Spring Autumn Period	34.854892	113.37718	127	North China Plain	21
80	Wadian [61]	瓦店	Henan, PRC	2200-1900 BC/Longshan Culture	34.18744	113.4049	130	North China Plain	12
81	Yangdi [56]	阳翟	Henan, PRC	770-221 BC/Eastern Zhou	33.866937	113.446075	85	North China Plain	5
82	Jiahu [62]	贼溝	Henan, PRC	7000-6200 BC/Jiahu Culture	33.612622	113.667383	70	North China Plain	9
83	Tianli [9,63]	天利	Henan, PRC	770-256 BC/ Eastern Zhou	34.368713	113.736025	114	North China Plain	13
84	Xinzheng City [56]	新鄭市	Henan, PRC	1046-221 BC/Western and Eastern Zhou	34.396609	113.753075	107	North China Plain	75
85	Laodaojing [64]	老道井	Henan, PRC	476-221 BC/Warring States	35.4065	113.913412	1576	North China Plain	24
86	Bagou [54]	巴溝	Inner Mongolia, PRC	AD 120-386/Eastern Han	40.951547	113.937875	5	Ulanqab grassland	5
87	Haojiatai [44]	貁家台	Henan, PRC	2600-2000 BC/Longshan Culture	33.592542	114.031276	64	North China Plain	11
88	Liuzhuang [65]	劉莊	Henan, PRC	1750-1600 BC/Proto-Shang	35.605103	114.132122	98	North China Plain	21
89	Songzhuang [63]	宋莊	Henan, PRC	770-220 BC/Eastern Zhou	35.562036	114.244393	69	North China Plain	48
90	Jiangjialiang [66]	姜家梁	Hebei, PRC	3300-3000 VC/Xiaoyehyan Culture	40.2	114.283333	1347	Yongding River Basin	25
91	Yinxu [18,67-70]	殷墟	Henan, PRC	1250 - 1046 BC/Late Shang Dynasty	36.13944	114.3031	82	North China Plain	142
92	Gu'an [71]	固安	Henan, PRC	AD 534-550/Eastern Wei to AD 550-577/ Northern Qi	36.229459	114.311262	91	North China Plain	4
93	Nancheng [72]	南城	Hebei, PRC	2000-1600 BC/Proto-Shang	36.50347	114.375754	81	North China Plain	75

(continued on next page)
Site ID	Site	Local name	Location (modern reference)	Time period/culture	Latitude	Longitude	Altitude (m.a.s.l.)	Geographic zones	Human	Faunal
95	Pingliangtai	平糧台	Henan, PRC	2600-2000 BC/Longshan Culture	33.683665	114.907931	44	North China Plain	8	
96	Liujiazhuang	劉家莊	Shandong, PRC	1086-919 BC/Shang Dynasty	36.421557	116.838755	142	North China Plain	20	
97	Xiaojingshan	小荊山	Shandong, PRC	6060-5750 BC/Houli Culture	36.496515	116.844681	67	North China Plain	10	
98	Oupan kiln	歐盤窯	Anhui, PRC	AD 534-644/Sui-Tang Dynasty	34.137875	117.054959	36	North China Plain	1	
99	Dawenkou	大汶口	Shandong, PRC	3700-2450 BC/Dawenkou Culture	35.939856	117.09958	97	North China Plain	26	24
100	Xigongqiao	西公橋	Shandong, PRC	3000-2500 BC/Dawenkou Culture	34.937363	117.23151	53	North China Plain	3	
101	Houjiachai	候家寨	Anhui, PRC	5350-3250 BC/Houjiachai Culture	32.517778	117.272222	33	Jianghuai Plain	52	
102	Zhalainuoer	扎萊諾爾	Inner Mongolia, PRC	220 BC-150 AD/Eastern Han	49.451343	117.75078	543	Steppe	1	1
103	Liangwangcheng	梁王城	Jiangsu, PRC	3000-2500BC/Dawenkou Culture	34.505537	117.79311	26	North China Plain	27	12
104	Jinggouzi	井溝子	Inner Mongolia, PRC	650-350 BC/Jinggouzi Culture	43.382352	118.25009	1030	Inner Mongolian Plateau	10	
105	Boyangcheng	薄陽城	Anhui, PRC	1122-771 BC/Western Zhou	32.200878	118.29586	39	Yangtze River Delta	39	29
106	Dashanqian	大山前	Inner Mongolia, PRC	800-300 BC/Upper Xiaijadian	42.203063	118.8178	694	Yan Mountains	9	
107	Junzhuang	軍莊	Jiangsu, PRC	206 BC-25 AD/Western Han	32.947137	118.886298	23	Jianghuai Plain	9	
108	Sanxingcun	三星村	Jiangsu, PRC	4500-3500 BC/Sanxingcun Culture	31.681159	119.493831	5	Yangtze River Delta	18	
109	Dongwuzhuer	東烏珠爾	Inner Mongolia, PRC	222 BC-150 AD/Eastern Han	49.23139	119.70473	627	Steppe	4	1
110	Tuanjie	圍結	Inner Mongolia, PRC	221 BC-150 AD/Eastern Han	49.228	119.80145	641	Steppe	4	1
111	Beiqian	北遷	Shandong, PRC	4100-3500 BC/Dawenkou Culture and 1046-256 BC/Zhou Dynasty	36.600228	120.740882	33	North China Plain	42	32

(continued on next page)
Table 1 (continued)

Site ID	Site	Local name	Location (modern reference)	Time period/culture	Latitude	Longitude	Altitude (m.a.s.l.)	Geographic zones	Total number of data	Human	Faunal
112	Lamadong [88]	喇撝洞	Liaoning, PRC	300-450 AD/Sanyan Culture	41.800152	120.770245	220	Highland	20		
113	Tianluoshan [89]	田螺山	Zhejiang, PRC	5050-3050 BC/Hemudu Culture	30.036505	121.400808	49	Yangtze River Delta	9		
114	Tashan [90]	塔山	Zhejiang, PRC	3950-2250 BC/Liangzhu Culture	29.478818	121.883383	5	Yangtze River Delta	1	6	
115	Tianrui Cement Plant [91]	天瑞水泥廠	Liaoning, PRC	220 BC-220 AD/the Han Dynasties	40.275651	122.197996	20	Coastal	12	6	
116	Xiaozhushan [92]	小珠山	Inner Mongolia, PRC	4750-2150 BC/Xiaozhushan Culture	39.187535	122.359547	27	Island	81		
117	Tuerji Mountain Tomb [93]	吐爾基山陵墓	Liaoning, PRC	AD 916-1125/ Liao Dynasty	43.652	122.8376	166	Sanhe Plain	1		
118	Shuangta [94]	雙塔	Jilin, PRC	4500-4000 BC/Huangjia Weizi Culture	45.3946	122.95867	153	Horqin Grassland	5		
119	Daejuk-ri [95]	대죽리	Chungcheongnam-do, Republic of Korea	2500-1900 BC/Late Chulmun	37.003235	126.401251	12	Coastal	1		
120	Gonam-ri [96]	高南里	Chungcheongnam-do, Republic of Korea	2100-1100 BC/Late Chulmun	36.416	126.41	6	Coastal	1		
121	Yeongdong-ri [97]	영동리	Jeollanam-do, Republic of Korea	AD 300-600/Baekje Period	35.003	126.64	7	Naju Plain	9		
122	Pungnap Toseong Fotress [98]	풍납 토성	Gyeonggi-do, Republic of Korea	18 BC-AD 475/Baekje Period	37.538214	127.122025	20	Han River Plain	17		
123	Ando [95]	안도	Jeollanam-do, Republic of Korea	6000-5000 BC/Incipient Chulmun	34.488231	127.810068	70	Island	5	8	
124	Troitskiy Cemetery [99]	Трёбное кладбище	Amur Oblast, Russian Federation	AD 698-926/Balhae	50.740585	127.933789	138	Amur-Zeya Plain	4		
125	Neukdo [100]	녹도	Gyeongsanam-do, Republic of Korea	550-300 BC/Late Mumun to 300 BC-AD 1 /early Iron Age	34.924232	128.034867	18	Island	48	45	

(continued on next page)
Table 1 (continued)

Site ID	Site	Local name	Location (modern reference)	Time period/culture	Latitude	Longitude	Altitude (m.a.s.l.)	Geographic zones	Total number of data
126	Sunheung Mural Tomb	Sunheung 벽화 고분	Gyeongsangbuk-do, Republic of Korea	AD 300-688/ Three Kingdoms Period	36.912756	128.565621	233	Jungnyeong Mountain	7 (7)
127	Janghang	장항	Gyeongsangbuk-do, Republic of Korea	Early Neolithic	35.057563	128.80703	6	Island	10
128	Yean-ri	예안리	Gyeongsangnam-do, Republic of Korea	AD 300-688/ Gaya Culture	35.259	128.955	181	Hill	109
129	Daepo	대포	Gyeongsangnam-do, Republic of Korea	5000-4400 BP/Early Chulmun	35.259	128.955	181	Island	5
130	Dongsam-dong	동삼동	Gyeongsangnam-do, Republic of Korea	3500-2000 BC/Middle Chulmun	35.07113	129.0795	5	Island	1 20
131	Dongnae Paechong	동래 패총	Gyeongsangnam-do, Republic of Korea	AD 21-337	35.205	129.082	10	Coastal	1 16
132	Gyeongju	경주	Gyeongsangbuk-do, Republic of Korea	57 BC-AD 935/ Silla Kingdom	35.82748	129.21327	39	Gyeongju Basin	1
133	Donggung palace and	동궁과 월지 3호	Gyeongsangbuk-do, Republic of Korea	AD 856-1025/	35.834747	129.226382	56	Gyeongju Basin	4
	Wolji pond								
134	Boisman 2	Бойсмана-2	Primorye, Russian Federation	4500-2700 BC/Boisman Culture	42.783333	131.28333	0	Coastal	10
135	Cherepakha 13	Черепаха-13	Primorye, Russian Federation	1410-930 BC/Yankovsky Culture	43.28333	132.3	0	Coastal	11
136	Chertovy Vorota	Чертовые ворота	Primorye, Russian Federation	4800-3900 BC	44.483333	135.5	371	Khanka Lowlands	2
Table 2
Summary of sites that are entirely excluded, listed in chronologically order.

Site	Local name	Location (modern reference)	Period/Culture	Excluded reason	Note
Xinglongwa [111]	喜隆溝	Inner Mongolia, PRC	c. 6200-5400 BC/Xinlongwa Culture; 4700-2900BC/Hongsan Culture; 2200-1600 BC/Lower Xiajiadian Culture	Collagen QC not provided	
Beishouling [112]	青首溝	Shaanxi, PRC	c. 5100-3790 BC/ Yangshao Culture	Collagen QC not provided	
Xiaowu [113]	晟垢	Henen, PRC	c. 5000-3000 BC/ Yangshao Culture	Collagen QC not provided	
Xipo [114]	西坡	Shaanxi, PRC	c. 5000-3000 BC/ Yangshao Culture	Collagen QC not provided	
Xishan [114]	西山	Henan, PRC	c. 5000-3000 BC/ Yangshao Culture	Collagen QC not provided	
Yuhuazhai [114]	鱼化寨	Henan, PRC	c. 5000-3000 BC/ Yangshao Culture	Collagen QC not provided	
Banpo [112]	半坡	Shaanxi, PRC	c. 4800-3300 BC/Banpo Culture	Collagen QC not provided	
Guanjia [115]	関家	Henan, PRC	c. 4000-3500 BC/ Middle Yangshao	Raw data not provided in report	Raw data provided in Liu et al., [116].
Songze [111]	崇澤	Shanghai, PRC	c. 4000-3300 BC/Songze Culture	Collagen QC not provided	
Changdao Beizhuang	長島北莊	Shandong, PRC	c. 4000-1900 BC/Dawenkou Culture	Collagen QC not provided	
Lingyanghe [112]	凌陽河	Shandong, PRC	c. 4000-1900 BC/Dawenkou Culture	Collagen QC not provided	
Qixia Guzhen [111]	桂霞古鎮	Shanxi, PRC	c. 4000-1900 BC/Dawenkou Culture	Collagen QC not provided	
Baishicun [112]	白石村	Shandong, PRC	c. 3900-3400 BC/ Baishicun Culture	Collagen QC not provided	
Guchengzhai [114]	古城寨	Henen, PRC	c. 3000-1900 BC/Longshan Culture	Collagen QC not provided	
Hemudu [111]	河姆渡	Zhejiang, PRC	c. 3000-1900 BC/Hemudu Culture	Collagen QC not provided	
Wadian [114]	瓦店	Henen, PRC	c. 3000-1900 BC/Longshan Culture	Collagen QC not provided	
Xinzhai [117]	新砦	Henen, PRC	c. 3000-1900 BC/Longshan Culture; 1870-1720 BC/Xinzhai Culture; 1750-1530 BC/Erlitou Culture	All C/N ratios fall outside of acceptable threshold.	
Huxizhuang [112]	湘子莊	Shaanxi, PRC	c. 2700-2400 BC/ Miaodigou Culture	Collagen QC not provided	
Taosi [112,118]	陶寺	Shanxi, PRC	c. 2300-1900 BC/Taosi Culture	Collagen QC not provided	
Guojiashan [119]	郭家山	Gansu, PRC	2463-1525 BC/Machang Culture	Elemental concentrations too high	
Qipanshan [119]	棋盤山	Gansu, PRC	2194-2034 BC/Machang Culture	Elemental concentrations too high	
Shuikou [119]	水口	Gansu, PRC	2192-1982 BC/Machang Culture	Elemental concentrations too high	
Xihuishan [119]	西灰山	Gansu, PRC	1915-1531 BC/SiFa Culture	Elemental concentrations too high	

(continued on next page)
Site	Local name	Location (modern reference)	Period/Culture	Excluded reason	Note
Yichuan Nanzhai [111]	伊川南寨	Henan, PRC	c. 1900-1500 BC/Erlitou Culture	Collagen QC not provided	Sacrificial victims from M54 Context not specified
Lijiageleng [119]	李家戈楞	Gansu, PRC	1860-1638 BC/Qijia Culture	Elemental concentrations too high	
Erlitou [118,120]	二里头	Henan, PRC	c. 1750-1500 BC/ Erlitou Culture	Collagen QC not provided	
Yanshi Shangcheng [111]	健师商城	Henan, PRC	c. 1600-1400 BC/ Early Shang	Collagen QC not provided	
Dadunwan [119]	大墩灣	Gansu, PRC	1495-1268 BC/Siba Culture	Elemental concentrations too high	
Tuba [119]	土墩	Gansu, PRC	1218-1056 BC/Dongjiaji Culture	Elemental concentrations too high	
Yinxu [121]	谷堆	Henan, PRC	c. 1250-1046 BC/ Late Shang	Collagen QC not provided	
Yinxu [111]	谷堆	Shandong, PRC	c. 1200-800 BC/Late Shang to early Zhou	Collagen QC not provided	
Liulie [111]	琉璃河	Beijing, PRC	c. 1045-771 BC/Western Zhou	Collagen QC not provided	
Xujianian [112]	徐家碾	Gansu, PRC	c. 1000-700 BC/Siwa Culture	Collagen QC not provided	
Shangsunjia [111]	上孫家	Qinghai, PRC	c. 900-600 BC/Kayue Culture; 202 BC - AD 220/Han Dynasty	Collagen QC not provided	
Zhaojiashuimo [119]	趙家水磨	Gansu, PRC	820-415 BC/Shanma Culture	Elemental concentrations too high	
Gudongtan [119]	古董溝	Gansu, PRC	794-431 BC/Shanma Culture	Elemental concentrations too high	
Minqin Sanjiaocheng [119]	(民勤)三角城	Gansu, PRC	775-539 BC/Shajing Culture	Elemental concentrations too high	
Shichengshan [119]	石城山	Gansu, PRC	770-220 BC/Eastern Zhou	Elemental concentrations too high	
Changxinyuan [115]	楚馨園	Henan, PRC	770-220 BC/Eastern Zhou	Raw data not provided in report	
Linxi Daqing	林西大井	Inner Mongolia, PRC	770-220 BC/Eastern Zhou	Cannot locate reference	
Xiyasi [115]	西亞斯	Henan, PRC	770-220 BC/Eastern Zhou	Raw data not provided in report	
Puge Xian [112]	普格縣	Sichuan, PRC	475 BC – AD 220/Warring States to Han	Collagen QC not provided	
Qiangshan [123]	七郎山	Inner Mongolia, PRC	220 BC-150 AD/Eastern Han (early Xianbei)	Raw data not provided in report	
Yangtun [112]	楊屯	Liaoning, PRC	698-926 AD /Balhae Kingdom	Collagen QC not provided	
Fig. 1. Map showing all sites included in this collection. A key to site IDs is provided in Table 1. The black star indicates the location of Nanzhuangtou, the site with the earliest evidence of domesticated crop in Northeast Asia (no isotope data is available from this site). Modern geopolitical borders included for reference.

zones, altitude, and cultural affiliations are included in Table 1. Few coordinates are exact. For a vast majority of the sites, coordinates are extrapolated from textual descriptions, therefore only represent the approximated locations of the sites. Elevations are obtained from mapcoordinates.net (https://www.mapcoordinates.net/en) using the approximated coordinates described above. Distances to the coast (online database only, not shown in Table 1) are estimated using the "measure distance" function on Google Maps. Note that the "coast" refers to the modern coastline as shown on the satellite view on Google maps. Therefore, all these measurements should only be treated as a general reference.

Meta-datasets from archaeological contexts should not be constrained by modern geopolitical borders, therefore, the area chosen for data collection is not limited by such. The data included in this dataset come from archaeological sites traversing several modern countries. Therefore, wherever possible, bibliographic information (i.e. author names, article/book/thesis titles), and site names are provided in both the original published language as well as English. This is an important point, as Romanization of site names can be inconsistent across publications: e.g. 乾坤崖 can be spelled as Ganguya [18,119] or Ganguai [7]; and 수흥 백화 고분 was spelled as Sunhung Mural Tomb in one study [101], and as Sunheung Mural Tomb in others [125,126]. By providing bibliographic information and site names in its original language, users of this dataset should be able to locate the original publication(s) regarding particular site(s), or to pursue more information on particular site(s) beyond the references provided here. Note that the original site names cannot be recovered for two of the sites, Xinhua (Shaanxi, PRC) and
Zhanguo (Shaanxi, PRC), due to the lack of precise information provided in the original report [22]. Three other site names from the same report: Lintong, Lixian, and Xunyi are county names and therefore offer little information about the sites. Hence, the coordinates of these five sites are only estimated from the figure provided in the original report.

Data are systemically collected using academic search engines Google Scholar (https://scholar.google.com/), the China National Knowledge Infrastructure (https://www.cnki.net/), and ScienceON (https://scienceon.kisti.re.kr/main/mainForm.do), with keywords such as “archaeology”, “stable isotope analysis”, “collagen”, “carbon isotope”, “nitrogen isotope”, “palaeodiet”, in English, Chinese, and Korean. Search results included publications in peer-reviewed journals, research dissertations/theses, and book chapters. Focusing on reports published before December 2019, only collagen (bone and dentine) stable isotope data are collected. In some instances, the same dataset is published in multiple languages. In that case, only one publication is cited. This collection is by no means an exhaustive list of all stable isotopic data from within the described geographical and temporal zones. It is hoped that this effort can serve to initiate more active research sharing and collaborations among Asian archaeologists, and more importantly, to encourage more scholars to contribute their research data from the region to help filling in the temporal and geographical gaps in the current dataset.

Descriptions of the collagen extraction protocol are provided in all reports, mostly following the standard procedure after the Longin method [127], with various minor modifications. Not all studies report conventional QC criteria for collagen. In this collection, only studies that include at least the atomic C/N ratios are included. All data in this dataset has atomic C/N ratios between 2.9 and 3.6, and has passed all other QC criteria, whenever included [1–4]. While there are certain advantages to also include data that is not reported with, or did not pass the QC criteria, the key priority of this database is to allow users to obtain data that is immediately comparable. Therefore, users interested in those excluded data are recommended to seek out the original reports. For stable sulfur isotope data, even though most studies follow the QC outlined in Nehlich & Richards’ report [128], the efficacy of using %S to determine whether diagenetic changes have taken place is debated [129]. Therefore, before a universally accepted QC for stable sulfur isotope measurements in collagen is established, all previously published δ34S values are included in this dataset, along with information of their elemental compositions (%S, C/S, N/S). Users are encouraged to check the elemental compositions associated with all S isotope data in this dataset carefully before selecting the data for analysis.

Most studies report isotopic measurements to 1 significant figure. However, some report up to 3 significant figures. To ensure consistency, all isotope measurements are round up to 1 significant figure. Regarding precision, accuracy, and overall uncertainty of measurements, unfortunately, very few studies reported detailed information regarding check standards and calibration methods. Furthermore, it has been noticed that non-matrix matched materials (i.e., non-collagen) were used as internal standards in some instances. Unfortunately, there is little that can be done post-hoc, therefore users are warned that a level of assumption has to be made concerning the comparability and compatibility of the data. Future studies are thus urged to report carefully and fully on their calibration methods, as detailed in Szpak et al.’s study [130].

Last but not the least, high elemental concentrations (e.g. averages of %C and %N higher than 45% and 15%, respectively) have been observed in several studies [21,22,35,54,119]. As the collagen yields, atomic C/N ratios, and isotopic measurements appear to be admissible for most samples, it is speculated that the unusually high elemental concentration was a result of calibration error, which could be rectified if the elemental concentrations of the standards were provided. Another possibility is that the higher than usual elemental concentrations may be a result of contamination. At current stage, it is not possible to draw any conclusion without detailed measurements from the standards used in these analytical sessions. Herein, data from all but one report [119] are still included in this collection, provided the samples still meet the conventional QC criteria. Data from Yang et al. [119] are excluded for now, as the elemental concentrations (%C and %N) for more than half of the samples analysed are higher than those of the conventional acceptable thresholds [3]. It is hoped that these data can be added to the collection in the future if the problem proves to be a calibration issue.
Ethics Statement

This study does not involve any modern human or animal subject.

CRediT Author Statement

Christina Cheung: Conceptualization, Methodology, Data curation, Writing.

Declaration of Competing Interest

The author declares that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

Acknowledgments

The author is grateful to Dr. Kevin Salesse for his technical support. Thanks go to Joe C Hepburn for making the map, and to Drs. Christine Lee and Michael B.C. Rivera for help with site names translation. The author is supported by the Agence Nationale de la Recherche (Project-ANR-17-CE27-0023 704 “NEOGENRE”).

References

[1] S.H. Ambrose, Preparation and characterization of bone and tooth collagen for isotopic analysis, J. Archaeol. Sci. 17 (4) (1990) 431–451.

[2] M.J. DeNiro, Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction, Nature 317 (1985) 806–809, doi:10.1038/317806a0.

[3] M. Harbeck, G. Grue, Experimental chemical degradation compared to natural diagenetic alteration of collagen: Implications for collagen quality indicators for stable isotope analysis, Archaeol. Anthropol. Sci. 1 (1) (2009) 43–57.

[4] G.J. van Klinken, Bone collagen quality indicators for palaeodietary and radiocarbon measurements, J. Archaeol. Sci. 26 (6) (1999) 687–695.

[5] K. Salesse, R. Fernandes, X. de Rochefort, J. Brůžek, D. Castex, E. Dufour, Isoarch.Eu: an open-access and collaborative isotope database for bioarchaeological samples from the Graeco–Roman world and its margins, J. Archaeol. Sci. (2017), doi:10.1016/j.jasrep.2017.07.030.

[6] E. Lightfoot, X.Y. Liu, M.K. Jones, Why move starchy cereals? A review of the isotopic evidence for prehistoric millet consumption across Eurasia, World Archaeol. 45 (4) (2013) 574–623, doi:10.1080/00438243.2013.852070.

[7] X.Y. Liu, E. Lightfoot, T.C. O’Connell, H. Wang, S.C. Li, L.P. Zhou, Y.W. Hu, G. Motuzaite-Matuzeviciute, M.K. Jones, From necessity to choice: dietary revolutions in west China in the second millennium BC, World Archaeol. 46 (5) (2014) 651–680.

[8] C. Cheung, H. Zhang, J.C. Hepburn, D.Y. Yang, M.P. Richards, Stable isotope and dental caries data reveal rapid adoption of wheat in ancient China, PLoS One 14 (7) (2019) e0218943, doi:10.1371/journal.pone.0218943.

[9] L.G. Zhou, S.J. Garvie-Lok, W.Q. Fan, X.L. Chu, Human diets during the social transition from territorial states to empire: Stable isotope analysis of human and animal remains from 770 BCE to 220 CE on the central plains of China, J. Archaeol. Sci. 11 (2017) 211–223.

[10] G. Müldner, M.P. Richards, Stable isotope evidence for 1500 years of human diet at the city of York, UK, Am. J. Phys. Anthropol. 133 (1) (2007) 682–697.

[11] Y.P. (崔亞平) Cui, Y.W. (胡慧麗) Hu, H.H. (陳洪海) Chen, Y. (董豫) Dong, L. (管理) Guan, Y. (翁屹) Weng, C.S. (王昌林) Wang, 這宗遺址人骨的穩定同位素分析 Stable isotopic analysis on human bones from Zongri site, 第四紀研究 Q. Sci. 26 (4) (2006) 604–611.

[12] P. Atahan, J. Dodson, X.Q. Li, X.Y. Zhou, S.M. Hu, F. Bertuch, N. Sun, Subsistence and the isotopic signature of herding in the Bronze Age Hexi corridor, NW Gansu, China, J. Archaeol. Sci. 38 (7) (2011) 1747–1753.

[13] X.L. (張玉連) Zhang, L. (李科) Zhang, Z.P. (李志偉) Li, L.R. (桑良新) Zhang, G.K. (陳曙光) Chen, P. (王鵬) Wang, H. (王輝) Wang, 我國張掖市西城障遺址先民食物狀況的初步分析 (Palaeodietary reconstruction of the Siba-Machang population from Xichengxi site, Gansu), 考古 (Kaogu) 7 (2015) 110–120.

[14] M.M. Ma, G.H. Dong, X. Jia, H. Wang, Y.F. Cui, F.H. Chen, Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: evidence from stable isotopes, Quat. Sci. Rev. 145 (2016) 57–70, doi:10.1016/j.quascirev.2016.05.041.

[15] M.M. (馬敏娥) Ma, 公元前兩千紀河湟及其毗鄰地區的食請變化與農業發展 – 穩定同位素證據 Human Dietary Changes and Agriculture Developments in the Hehuang And Contiguous Regions In The Second Millennium BC – Stable Isotopic Evidence Lanzhou, Lanzhou University, 2013.
[16] X.L. (祟雪) Zhang, M.L. (葉茂林) Ye, S.H. (仇士華) Chou, 喇家遺址先民食物的初步探討 - 喇家遺址災難現場出土人骨的碳氮穩定同位素分析 Preliminary discussion on the food of ancestors in Lajia site - the stable isotope analysis on their carbon and nitrogen of human bone unearthed the disaster scene in Lajia site, Cult. Relics Southern China 南方文物 4 (2016) 197–202.

[17] M.M. Ma, G.H. Dong, E. Lightfoot, H. Wang, X.Y. Liu, X. Jia, K.R. Zhang, F.H. Cheng, Stable isotope analysis of human and faunal remains in the western loess plateau, approximately 2000 cal BC, Archaeometry 56 (Suppl. 1) (2014) 237–255, doi: 10.1111/arch.12071.

[18] C. Cheung, Z.C. Jing, J.G. Tang, M.P. Richards, Social dynamics in early Bronze Age China: a multi-isotope approach, J. Archaeol. Sci. 16 (2017) 90–101, doi: 10.1016/j.jasrep.2017.09.022.

[19] M. Ma, G. Dong, X. Liu, E. Lightfoot, F. Chen, H. Wang, H. Li, M.K. Jones, Stable isotope analysis of human and animal remains at the Jiaping site in middle Gansu, China, Int. J. Osteoarchaeol. 25 (6) (2015) 923–934, doi: 10.1002/oaa.2379.

[20] Y.S. (王善舒) Wang, X. (凌雪) Ling, Y. (梁雲) Liang, H.W. (候宏偉) Hou, X.Y. (洪秀媛) Hong, L. (陳龍) Chang, 甘谷毛家坪遺址泰人骨的碳氮同位素研究 Study on the Qin ancestors’ bones in Maojiaipi site at Gangu country by carbon and nitrogen isotope analysis, 西北大學學報 (J. Northwest University) 49 (5) (2019) 729–735.

[21] L. Zhou, E. Mijiddorj, Stories behind the fortress: Stable isotope analysis and 14C dating of soldiers’ remains from the Bayanbulag site, Mongolia, Archaeometry 62 (4) (2020) 863–874, doi: 10.1111/arm.12556.

[22] P. Atahan, J. Dodson, X.Q. Li, X.Y. Zhou, L. Cheng, L. Barry, F. Bertuch, Temporal trends in millet consumption in northern China, J. Archaeol. Sci. 50 (2014) 171–177, doi: 10.1016/j.jas.2014.07.012.

[23] X. (凌雪) Ling, 喇人食物研究 (Dietary Reconstruction of the Qin People), Northwest University, Xian, 2010.

[24] L. Barton, S.D. Newsome, F.H. Chen, H. Wang, T.P. Guilderson, R.L. Bettinger, Agricultural origins and the isotopic identity of domestication in northern China, PNAS 106 (14) (2009) 5523–5528.

[25] M.L. Machick, Reconstructing Diet, Health and Activity Patterns in Early Nomadic Pastoralist Communities of Inner Asia, University of Sheffield, Sheffield, 2012.

[26] Q.C. (秦全超) Zhang, Y.C. (姚延生) Hu, J. (魏巍) Wei, H. (朱潤) Zhu, 內蒙古巴彥淖爾市納林套海漢墓出土人骨的穩定同位素分析 Stable isotope analysis of the bones from Nanlitaohai cemetery, Baiyanaobei, Inner Mongolia, 人類學學報 Acta Anthropologica Sinica 31 (4) (2012) 407–414.

[27] X. (凌雪) Ling, L. (陳龍) Chen, Y.Q. (田亞敏) Tian, Y. (李進) Li, C.C. (蔡春) Zhao, Y.W. (周媒體) Hu, 陝西臨潼區衙南頭墓出土人骨的碳氮同位素分析 Carbon and nitrogen stable isotopic analysis on human bones from the Qin tomb of Sunjianantou site, Fengxiang, Shaanxi province, 人類學學報 Acta Anthropologica Sinica 29 (1) (2010) 54–61.

[28] G.W. (張國文) Zhang, Y.W. (張朝武) Hu, O. Nehlich, W.Z. (楊樹常) Yang, D.Y. (楊學義) Liu, G.D. (宋國文) Song, C.S. (王剛) Wang, M.P. Richards, 興中兩漢先民養生模式及與北方遊牧民族間差異的穩定同位素分析 Stable isotope evidence of differences in subsistence strategies between the Hans and the northern nomads, 華夏考古 (Huaxia Archaeol.) 3 (2013) 131–141.

[29] X. (凌雪) Ling, Y.S. (王傾舒) Wang, Q. (岳起) Yue, G.W. (謝高文) Xie, L. (陳龍) Chang, D. (蘭蘭) Lan, 陝西臨潼縣監獄冢秦國出土人骨的碳氮同位素分析 Stable carbon and nitrogen isotope analysis of human bones from burial of the Qin state in the Warring-states period excavated at Guangzhonggong site in Shaanxi, 文博 (Relics Museol.) 3 (2019) 69–73.

[30] X.L. Chen, S.M. Hu, Y.W. Hu, W.L. Wang, Y.Y. Ma, P. Lü, C.S. Wang, Raising practices of Neolithic livestock evidenced by stable isotope analysis in the Wei River Valley, north China, Int. J. Osteoarchaeol. 26 (1) (2016) 42–52, doi: 10.1002/oaa.2393.

[31] E.A. Pechenikhina, S.H. Ambrose, X.L. Ma, R.A. Benfer Jr., Reconstructing northern Chinese Neolithic subsistence practices by isotopic analysis, J. Archaeol. Sci. 32 (8) (2005) 1176–1189.

[32] Y. (郭怡) Guo, Y.W. (郭朝武) Hu, Q. (高強) Gao, C.S. (王剛) Wang, M.P. Richards, 喇塞遺址先民食物分配 Stable carbon and nitrogen isotope evidence in human diets based on evidence from the Jiangzhai site, China, 人類學學報 Acta Anthropologica Sinica 30 (2) (2011) 149–157, 10.16356/j.cnki.cn-11-1963/q.2011.02.004.

[33] P. Atahan, J. Dodson, X.Q. Li, X.Y. Zhou, S.M. Hu, L. Chen, F. Bertuch, K. Grice, Early Neolithic diets at Bajiai, Wei River Valley, China: Stable carbon and nitrogen isotope analysis of human and faunal remains, J. Archaeol. Sci. 38 (10) (2011) 2811–2817, doi: 10.1016/j.jas.2011.06.032.

[34] Y. (郭怡) Guo, Y. (夏陽) Xia, Y.F. (童懷芳) Dong, B.Y. (俞博華) Yu, Y.L. (范志露) Fan, F.Y. (簡光興) Wen, Q. (高強) Gao, 北剖遺址人骨的穩定同位素分析 Stable isotope analysis of human remains from the Beiliu site), 考古文物 (Kaogu yu Wenwu) 5 (2016) 115–120.

[35] X.L. Chen, X.N. Guo, W.L. Wang, S.M. Hu, M.M. Yang, Y. Wu, Y.W. Hu, The subsistence patterns of the Shengedaliang site (~4,000 yr bp) revealed by stable carbon and nitrogen isotopes in northern Shaanxi, China, Sci. China 60 (2) (2017) 268–276, doi: 10.1007/s11430-016-5123-8.

[36] X.L. (陳向軍) Chen, X.N. (郭小寧) Guo, Y.W. (胡朝武) Hu, W.L. (王巖) Wang, C.S. (王剛) Wang, 陝西彬縣木桿梁農村遺址先民的食物分析 Palaeoecidary study of the Neolithic population at Muzhuzhuliang, Shenmu county, Shaanxi, 考古與文物 (Kaogu yu Wenwu) 5 (2015) 112–117.

[37] X. (陳曦) Chen, 梁帶村西周墓地出土西周時期人骨的骨化學特徵研究 (A Study of the Bone Chemical Composition of the Human Remains from Liangdai Village of the Western Zhou Period), Northwest University, 2012.

[38] D.M. (裴德明) Pei, Y.W. (胡朝武) Hu, Y.M. (楊益民) Yang, Q.C. (秦全超) Zhang, G.W. (張國文) Zhang, J.W. (田建文) Tian, C.S. (王剛) Wang, 山西新緬漢墓遺址先民食物結構分析 Palaeoecidary analysis of humans from the Neiyangyuan site of Xiangang, Shanxi province, 人類學學報 Acta Anthropologica Sinica 27 (4) (2008) 379–384.

[39] Q.C. (張全超) Zhang, M. (周俊) Zhou, J.Y. (周俊) Zhu, 北京靑龍窩遺址東周時期墓葬出土人骨的穩定同位素分析 Stable isotopic analysis on human bones excavated from Eastern Zhou tombs in Qinglongquan site of Hubei, 江漢考古 (Jianghan Kaogu) 123 (1) (2012) 93–97.
[41] Y. Guo, Y. Fan, Y. Hu, J. Zhu, M.P. Richards, Diet transition or human migration in the Chinese Neolithic? Dietary and migration evidence from the stable isotope analysis of humans and animals from the Qinglongquan site, China, Int. J. Osteoarchaeol. 28 (2) (2018) 85–94, doi: 10.1002/oa.2465.

[42] Y. (陳黔) Guo, Y.W. (胡巍武) Hu, J.Y. (周魯民) Zhu, M. (馬瑞) Zou, C.S. (王侗) Wang, M.P. Richards, 青龍泉遺址人和動物的碳氮同位素分析 Stable C and N isotope analysis of human and pig bones from Qinglongquan, 中國科學: 地球科學 Sciencia Sinica Terra 41 (1) (2011) 52–60.

[43] X. (凌雪) Ling, L. (陳愷) Chen, X.M. (薛新明) Xue, C.C. (趙連書) Zhao, 西安南市縣梁家塔地出土人的碳氮同位素分析 Stable isotopic analysis of human remains from the Qiangliang temple graveyard, Ruicheng county, Shanxi province, 第四國際考古學研究 proceedings, 2011, 415–426.

[44] L.G. (周立剛) Zhou, 碳氮同位素研究下的西安南市縣梁家塔社會 A study of the tombs and society of the Han Longshan culture, by means of stable carbon and nitrogen isotope analysis, 華夏考古 (Huaxia Archaeol.) 3 (2017) 145–152.

[45] L.L. (徐亮) Hou, N. (王寧) Wang, P. (呂鵬) Lü, Y.W. (胡巍武) Hu, G.D. (宋國定) Song, C.S. (王侗) Wang, 農業遺址的研究: 碳氮同位素在農業遺址研究中的應用 Transition of human diets and agricultural economy in Shenmingpu village, Hanren, from the Warring States to Han dynasties, 中國科學: 地球科學 Sci. China. 55 (2012) 978–982, doi: 10.1007/s11430-012-4409-0.

[46] Q.M. (付紹古) Fu, S.A. (新松安) Jin, Y.W. (胡薇武) Hu, Z. (馬到) Ma, J.C. (潘才建) Pan, C.S. (王侗) Wang, 河南淅川西灣遺址農業發展方式和先民食物結構變化 Agricultural development and palaeoecological study of Waimen site, Sichuan, Henan, Chin. Sci. Bull. 55 (2010) 614–630.

[47] Y.C. (顧玉才) Gu, 內蒙古和林格爾縣土城子遺址戰國時期人類研究 A Research on the Skeletons of Warring-States Period from Tuchengzi Site, Helingr'er County, Inner Mongolian Province, Jinlin University, 2007.

[48] Q.C. (張全超) Zhang, H. (朱泓) Zhu, Y.W. (胡巍武) Hu, Y.Z. (李玉中) Li, J.E. (曹建恩) Cao, 內蒙古和林格爾縣新石器時代居民的食物習慣及遷移 Paleoarchaeological study of human remains from Xindianzi cemetery, Helingr'er xian, Inner Mongolia, 文物 (Wenwu) 1 (2006) 87–91.

[49] X.Y. Zhang, X. Zhang, M.J. Suo, D. Wei, Y.W. Hu, The influence of agriculture in the process of population integration and cultural interaction during the Eastern Zhou period in central-south, Inner Mongolia: Carbon and nitrogen stable isotope analysis of human remains from the Dabaoshan cemetery, Helingr'er county, Sci. China Earth Sci. 61 (2) (2016) 205–218.

[50] X.L. (陳祖輝) Chen, Y.H. (樊慶梅) Wu, Z.P. (李慶鵬) Li, 從稻米與西漢墓地看公元前二千紀後期洛陽盆地的社會經濟參數 Subsistence around 3rd millennium BC in Luoyang Basin evidenced by human diets at Zhouguogou and Wanggedang sites, 第四國際考古學研究 proceedings, 39 (1) (2011) 197–208.

[51] M. (唐夢) Tang, X.Y. (王曉鴻) Wang, K. (候鵬) Hou, L.L. (徐亮) Hou, 燕山以南中小農業化遺址的碳氮同位素解析 C and N isotope analysis in the southern part of the Shang-Chou region Carbon and nitrogen stable isotope of the human bones from the Xiaoanxianzhuang cemetery, Jinzhong, Shanxi: A preliminary study on the expansion of wheat in ancient Shanxi, China, 鄉村動物學報 Acta Anthropologica Sinica 38 (2011) 338–340.

[52] Y. (汪洋) Wang, P.H. (南史傑) Nan, X.Y. (王曉鴻) Wang, D. (魏東) Wei, Y.W. (胡巍武) Hu, C.S. (王侗) Wang, 相近社會等級先民的食物結構差異 - 以燕山地區遺址為例 Dietary differences in humans with similar social hierarchies: Example from the Nedian site, Shanxi, Acta Anthropologica Sinica 人類學學報 33 (1) (2014) 82–89.

[53] P.J. (張憲超) Zhang, X. (楊雪) Xue, 屯留余井戰國晚期的人類食物同位素分析 C, N Stable Isotope Analysis of the Tumuliuyuwu Site from the Warring States to Han Dynasty, Shanxi University, Taiyuan, 2015.

[54] C.W. Zhang, Y.W. Hu, L.M. Wang, C.M. Cao, X.S. Li, X.N. Wu, Z.D. Sun, F.S. Chen, J.S. Bai, P.Lv, G.D. Song, C.S. Wang, M.P. Richards, Stable isotope diet and subsistence strategy investigation of the Iron Age Tuocha Xianbei site by stable isotope analysis: A preliminary study of the role of agriculture played in pastoral nomadic societies in Northern China, J. Archaeol. Sci. 2015, 50 (2015) 1062–1067, doi: 10.1016/j.jas.2014.12.003.

[55] Q.C. (張全超) Zhang, L. (郭林) Guo, H. (朱泓) Zhu, 內蒙古察右前旗縣呼和烏素漢代北地出土人的穩定同位素分析 Stable isotope analysis of human remains from Huweihuwu cemetery, Chayouqianqi, Inner Mongoliat, 草原文物 (Caoyu Wenwu) 2 (2012) 99–101.

L.G. Zhou, From state to Empire: Human Dietary Change on the Central Plains Of China from 770 BC to 220 AD, University of Alberta, 2016.

L.L. (徐亮) Hou, S.F. (顧玉才) Gu, 大同地區北魏時期不同地區食物結構的轉變 Transition of human diets in Datong area, Shanxi, during Northern Wei Dynast, 遼史古研究所 (Bianjiang Kaogu Yanjiu) 23 (2018) 297–313.

G.W. (張雲飛) Zhang, Y.W. (胡巍武) Hu, D.M. (宋國定) Pei, G.D. (宋國定) Song, C.S. (王侗) Wang, 大同南郊北魏墓葬的人類同位素分析 (Stable isotope analysis of human bones from the Northern Wei cemetery at Datong, Shanxi) 人大的社科 (People's Social Sciences) 1 (2010) 127–131.

Q.C. (張全超) Zhang, L. (郭林) Guo, H. (朱泓) Zhu, 內蒙古察右前旗縣呼和烏素漢代北地出土人的穩定同位素分析 Stable isotope analysis of human remains from the Miaozigu site, Qatar Yiqui Qianqi, Inner Mongolia, 人類學學報 Acta Anthropologica Sinica 29 (3) (2010) 270–275.

D.W. (陶廣南) Tao, G.W. (張雲飛) Zhang, Y.W. (周亞明) Zhou, Y.M. (陳雲龍) Chen, G.H. (陳國龍) Han, 境外年輕人和兩千年間人口結構Ⅱ-社會人口與社會 Woman and population in Guanzhuan settlement during Zhou Dynasty based on bioarchaeological perspective, 人類學學報 Acta Anthropologica Sinica 38 (2019) 699–706.

X.L. Chen, Y.M. Fang, Y.W. Hu, Y.F. Hou, P. Lü, J. Yuan, G.D. Song, B.T. Fuller, M.P. Richards, Isotopic reconstruction of the late Longshan period (ca. 4200–3900 BP) dietary complexity before the onset of state-level societies at the Wadian site in the Ying river valley, Central China, Int. J. Osteoarchaeol. 26 (2016) 808–807. 10.1002/oa.2482.

Y.W. Hu, S.H. Ambrose, C.S. Wang, Stable isotopic analysis of human bones from Jiuhu site, Henan, China: Implications for the transition to agriculture, J. Archaeol. Sci. 33 (9) (2006) 1319–1330, doi: 10.1016/j.jas.2006.01.007.

L Zhou, Y. Hou, J. Wang, Z. Han, S.J. Garvie-Lok, Animal husbandry strategies in Eastern Zhou China: An isotopic study on faunal remains from the Central Plains, Int. J. Osteoarchaeol. 28 (3) (2018) 354–363, doi: 10.1002/oa.2680.

D.W. (陶廣南) Tao, G.W. (張雲飛) Zhang, Y.W. (周亞明) Zhou, H.Z. Zhao, Investigating wheat consumption, consumption and diet composition on multiple evidences: Stable isotopic analysis on human bone and starch grain analysis on dental calculus of humans from the Laodaoping cemetery, central plains, China, Int. J. Osteoarchaeol. 30 (5) (2020) 594–606, doi: 10.1002/oa.2884.
Xuyi, China, during the proto-Shang culture (-2000–1600 BC) by stable isotope analysis, J. Archaeol. Sci. 40 (5) (2013) 2344–2351.

X.D. Liu, T.T. Wang, D. Wei, Y.W. Wei. (胡耀武) Hu. 小河沿文化生活阶段: 以河北省家家梁遗址为例 Preliminary exploration on human lifestyles during Xiaoheyan culture period: a case study of the Jiangjieliang site, 人类学学报 Acta Anthropologica Sinica 36 (2) (2017) 280–288.

Y.Y. Si 2500BC–1000BC 中原地区家畜饲养策略与先民肉食资源消费 Feeding Practices of Domestic Animals and Meat Consumption of Ancients in the Central Plain of China: 2500BC–1000BC, University of Chinese Academy of Sciences, 2013.

C. Cheung, Z.C. Jing, J.G. Tang, D. Weston, M.P. Richards, Diets, social roles, and geographical origins of victims at the royal cemetery at Yinuixu, Shang China: new evidence from stable carbon, nitrogen, and sulfur isotope analysis, J. Archaeol. Sci. 48 (2017) 28–45, doi:10.1016/j.jas.2017.05.006.

L.T. (閔憲章) Van. 稳定同位素示踪陸生動物消化系統研究中的應用 The Stable Isotopes Analysis of Bimineral Tissues from Terrestrial Animal, University of Chinese Academy of Sciences, 2010.

C. Cheung, Z.C. Jing, J.G. Tang, Z.W. Yue, M.P. Richards, Examining social and cultural differentiation in early Bronze Age China using stable isotope analysis and mortuary patterning of human remains at Xin’anzhuan, Yinuixu, Archaeol. Anthropol. Sci. 9 (5) (2017) 799–816, doi: 10.1007/s12520-015-0302-z.

J.C. (潘建才) Pan, Y.W. (胡耀武) Hu, W.B. (潘偉成) Pan, T. (裴 acompan). T. (潘偉) Pan, W. C. (王嫦) Wang, C.S. (王嫦) Wang. 河南安阳殷墟甲骨文的A/N稳定同位素分析 Stable isotopes of the analysis of C, N stabilized isotopes of teeth found in Anyang Gu’an burial site, Henan, 河南安阳古墳地的C、N同位素分析 4 (2009) 114–120.

Y. Ma, B.T. Fuller, D. Wei, L. Shi, X.Z. Zhang, Y.W. Hu, M.P. Richards, Isotopic perspectives (d13C, d15N, d34S) of diet, social complexity, and animal husbandry during the proto-Shang period (ca.2000–1600 BC) of China, Am. J. Phys. Anthropol. 160 (3) (2016) 433–445, doi:10.1002/ajpa.22980.

W. (宮堃) Gong, 濟南大辛庄, 姜家莊商化先民食性結構研究 研究植物大遺存與氮,磷穩定同位素結果 Research of Human Diet in Shang Period of the Daxinzhuang Site and Liujiachuang Site - Results from the Plant Remains and the Stable Carbon And Nitrogen, Shandong University, Jinan, 2016.

Y.W. Hu, S.G. Wang, F.S. Luan, C.S. Wang, M.P. Richards, Stable isotope analysis of humans from Xiaojingshan site: Implications for understanding the origin of millet agriculture in China, J. Archaeol. Sci. 35 (11) (2008) 2960–2965, doi:10.1016/j.jas.2008.06.002.

B. Yi, J.L. Zhang, B.T. Cai, Z.Y. Zhang, Y.W. Hu, M.P. Richards, Morphological and stable isotope evidence of seventh-century potter at the Oupan kiln, China by osteological and multi-isotope approach, Sci. Rep. 9 (1) (2019) 12475, doi:10.1038/s41598-019-48936-1.

S.T. Chen, Q.W. Yu, M.K. Gao, M. Miller, G.Y. Jin, Y. Dong. Dietary evidence of incipient social stratification at the Dawenkou type site, China, Quat. Int. 521 (2019) 44–53, doi: 10.1016/j.quaint.2019.05.024.

Y.W. (胡耀武) Hu, D.L. (何德光) He, Y. (董豫) Dong, C.S. (王嫦) Wang, M.K. (高明奎) Gao, Y.F. (蕆鈺) Lan, 臺東縣西濃社墓地人骨的穩定同位素分析 Stable isotopic analysis on human bones from the Xingtougao site, Tengzhou, 第四紀研究 Q. Sci. 25 (5) (2005) 561–567.

L.L. Dai, X.H. Kan, X.Y. Zhang. An investigation into the strategy of pig husbandry combining zoookeeperological and stable isotope approaches at Neolithic Houjiazhi, China, Int. J. Osteoarchaeol. 29 (5) (2019) 772–785, doi: 10.1002/oa.2788.

G.W. (郭鳳) Zhang, F.S. (陳敏山) Chen, Z.D. (孫祖祥) Sun, M. Richards, 早期鮮卑人和動物骨骼的穩定同位素分析 Stable isotopic analysis of early Xianbei human and faunal bones, 人類學學報 Acta Anthropologica Sinica 36 (1) (2017) 110–117.

Y. Dong, L.G. Lin, X.Y. Zhu, F.S. Luan, A.P. Underhill. Mortuary ritual and social identities during the late Dawenkou period in China, Antiquity 93 (386) (2019) 378–392, doi: 10.15184/aqy.2019.34.

Q.C. (張全超) Zhang, J.T. Eng, L.X. (王立新) Wang, L. (塔拉) Ta, 内蒙古林西縣溫度諾西墓地人的骨骼同位素分析 Palaeodiet studies using stable carbon isotopes from human bone: Example from Jinggouzi cemetery, Inner Mongolia, 鄰近考古研究 (Bianjiang Kaogu Yanjiu) 7 (2008) 322–327.

Y. Xia, J.L. Zhang, F. Hu, Y. Zhang, T.T. Wang, Y.W. Hu, B.T. Fuller. Breastfeeding, weaning, and dietary practices during the Western Zhou dynasty (1122–771 BC) at Boyangcheng, Anhui province, China, Am. J. Phys. Anthropol. 165 (2) (2018) 343–352, doi:10.1002/ajpa.23358.

Q.C. (張全超) Zhang, Q. (秦村) Zhang, S.G. (彭春燕) Peng, L.X. (王立新) Wang, Y.P. (朱延平) Zhu, Z.Z. (郭治中) Guo, 内蒙古赤峰市大山前遗址夏家店上層文化“祭祀坑”出土人骨穩定同位素分析 (Stable isotopic analysis of human remains from a “sacificial pit” at the Dashanqian site, Chifeng town, Inner Mongolia), 考古與文物 (Kaogu yu Wenwu) 4 (2015) 107–110.

Y. (郭治中) Guo, S.S. (周柏林) Zhou, G. (陈亮) Chen, Z.B. (李科) Li, 江蘇盱眙新河陽馬莊漢墓出土人骨的穩定同位素分析 Stable isotopic analysis of human bones unearthed from the Han tomb at the Junzhuang site located in Dongyang, Xuyi, Jiangsu province, 南方文物 Cult. Relics Southern China 6 (2016) 56–63.

Y.W. (胡耀武) Hu, G.F. (王立新) Wang, Y.P. (張亞平) Cui, Y. (董豫) Dong, L. (管理) Guan, C.S. (王嫦) Wang, 江蘇金壇三星村遗址先民的食谱研究 Palaeodietary study of the jiantan Sanxingcun site, Jiangsu, 科學通報 (Kexue Tongbao) 52 (1) (2015) 85–88.

F. (李友) Wang, Y.B. (宋彥玲) Song, B.S. (李霆) Li, R. (樊蓉) Fan, G.Y. (郭桂芸) Jin, S.L. (盛世) Wan, 北遺址人和動物的C、N穩定同位素分析 C and N stable isotopic analysis of human and animal bones at the Beiyan site, 中國科學: 地球科學 Sciencia Sinica Terraes 43 (2013) 2029–2036.
F. Wang, R. Fan, H.T. Kang, G.Y. Jin, F.S. Lu, H. Fang, Y.H. Lin, S.L. Yuan, Reconstructing the food structure of ancient coastal inhabitants from Beijiyan village: Stable isotopic analysis of fossil human bone, Chin. Sci. Bull. 57 (17) (2012) 2148–2154, doi:10.1007/s11434-012-5029-y.

Y. (董显) Dong, Y.W. (董顯) Hu, Q.C. (張全銘) Zhang, Y.P. (崔亞平) Cui, L. (管理) Guan, C.S. (王昌銀) Wang, X. (萬欣) Wan, 遼寧省馬關縣出土人骨穩定同位素分析 Stable isotopic analysis on human bones of the Lamadong site, Beipiao, Liaoning province, 萊氏人類學學報 Acta Anthropologica Sinica 26 (1) (2007) 77–84.

M. (南川雅南) Minagawa, A. (松本真) Nakamura Matsui, S. (中村慎)., G.P. (孫國平) Sun, 由別山遺址出土的人類與動物骨質氮素同位素組成推測漢唐渡文化的食物資源與家畜利用 (Examining the dietary and animal husbandry practices during the Hemudu period, through stable isotopic analysis of human and animal bones from Tianluoshan), in: 別山遺址自然遺存綜合研究 (Studies of Eco-remains from Tianluoshan Site), Wenwu Publisher 文物出版社, Beijing, 2011, pp. 262–269. editors. (Eds.).

G.W. (孫國平) Zhang, L.P. (呂鵬) Jiang, Y.W. (董顯) Hu, Y. (司庭) Si, P. (呂鵬) Liu, G.D. (宋國定) Song, C.S. (王昌銀) Wang, M.P. Richards, Y. (郭怡) Guo, 浙江省山區人類與動物骨的C和氮素同位素分析 (Stable carbon and nitrogen isotopic analysis of human and animal bones from the Tashan site, Zhejiang), 稠考古考 (Huaxia Archaeol.) 2 (2015) 138–146.

Q.C. (張全銘) Zhang, T. (韓悌) Han, Q. (張群) Zhang, Z.C. (孫國平) Sun, 遼寧省營口縣楊洪代大墓出土人骨的穩定同位素分析 Stable isotopic analysis of human bones from shell tombs of Han dynasty in Bayuquan, Yingkou, Liaoning, 遼考古考研究 (Bianjiang Kaogu Yanjiu) 24 (2018) 341–347.

X.L. (陳祖龍) Chen, P. (呂鵬) Liu, Y.X. (金英熙) Jia, X.B. (買笑冰) Gu, X. (趙欣) Zhao, J. (袁靖) Yuan, 從漁獵採集到食物生產：大蘭廣區小珠山遺址動物骨骼的穩定同位素記錄 From hunting and gathering to food production - record of stable isotope about the animal domestication in Xuzhaoshan site, Guanlu island, Dalian city, 南方人文誌 Cult. Relics Southern China, 1 (2017) 142–149.

Q.C. (張全銘) Zhang, 吐魯番山區墓主人骨的穩定同位素分析 (Stable isotopic analysis of the human remains from the Liaoyang tomb at Tuerji mountain), 内蒙古文物考叡 (Inner Mongolia Wenwu Kaoguo) 1 (2006) 106–108.

Q.C. (張全銘) Zhang, Z.W. (張明) Tang, L.X. (王立新) Wang, T.J. (段天琦) Yuan, M. (張長) Zhang, 吉林白城雙鵲遺址一期動物骨的穩定同位素分析 Stable isotopic analysis on animal bones from period I of Shuangtang site, Baicheng, Jilin province, 遼考古考研究 (Bianjiang Kaogu Yanjiu) 11 (2012) 355–360.

K.C. K. Loy, D.G. An, M.P. Richards, Stable isotopic analysis of human and faunal remains from the incipient Chulunm (Neoolithic) shell midden site of Ando island, Korea., J. Archaeol. Sci. 39 (7) (2012) 2091–2097, doi:10.1016/j.jas.2012.03.005.

D.L. (丁然) An, 遺址信息分析：不同遺址的對比研究—三星直陶溝考古遺址を中心に Dietary reconstruction by stable isotopic analysis: the Konam-ri shell midden in Korea, J. Korean Ancient Hist. Soc. 韓國考古學報 54 (2006) 5–20.

H.G. (崔賢姬) Cheo, J.Y. (金容姬) Shin, 빠다라간의 타소와 질소 안정동위원소에 기록된 6세기 근대 유동적 고분명 피장자 집단의 식생활 양상 Palaeodietary reconstruction of 6th century Naju Yeongdong-ri people recorded in stable carbon and nitrogen isotopic analysis of human bone collagen, J. Conserv. Sci. 33 (6) (2017) 533–539, doi:10.12654/JCS.2017.33.6.11.

H.G. (崔賢姬) Cheo, J.Y. (金容姬) Shin, J.S. (한강) Han, 농토성 출토 동물뼈 타소와 질소 안정동위원소 분석을 통해 본 백제시대의 기술적 특성 Inferring animal husbandry practice in the Baekje period using stable isotopic analysis of animal bones from the Pungnaposeong fortress, J. Conserv. Sci. 32 (2) (2016) 179–188, doi:10.12654/JCS.2016.32.2.07.

Q.C. (張全銘) Zhang, E.X. (高思思) Feng, H. (朱浩) Zhu, 俄羅斯遠東地區特羅伊茨克基地出土的人骨同位素分析 Palaeodiets using stable carbon and nitrogen isotopes from human bones: an example from the Troitsky cemetery of Moho, Far Eastern area of Russia, 人類學學報 Acta Anthropologica Sinica 28 (3) (2009) 300–305.

K.C. Koy, M.P. Richards, Stable isotopic evidence of human diet at the Nukdo shell midden site, South Korea, J. Archaeol. Sci. 36 (7) (2009) 3132–3138, doi:10.1016/j.jas.2009.01.004.

K.C. Koy, S. Jung, O. Nehlich, M.P. Richards, Stable isotopic analysis of human skeletons from the Sunhun mural tomb, Yeongju, Korea: Implication for human diet in the Three Kingdoms period, Int. J. Osteoarchaeol. 25 (3) (2015) 313–321, doi:10.1002/oa.2303.

J.Y. (신연정) Shin, D.Y. (강명일) Kang, S.H. (김삼현) Kim, E.D. (정희도) Jung, 부산 기덕도 장항 유적 출토 인물의 안정동위원소분석을 통해 본 신석기시대의 식생활 양상 Isotopic dietary history of Neolithic people from Janghang site at Gadeok island, Busan, Anal. Sci. Technol. 26 (6) (2013) 387–394.

K.C. Koy, O-R Jeon, B.T. Fuller, M.P. Richards, Isotopic evidence of dietary variation in the Gaya cemetery at Yeanyi, South Korea, Am. J. Phys. Anthropol. 142 (1) (2010) 74–84, doi:10.1002/ajpa.21202.

H.S. (김진식) Kim, 대포유출층 출토 인물의 연대와 식습관에 관해서 The age and dietary concern about human remains of Deapo shell midden, 韓國新石器時代 J. Korean Neolith. Soc. 20 (2010) 89–111.

K.C. Koy, M.P. Richards, Isotopic evidence for diet in the middle Chulum period: a case study from the Tongsandong shell midden, Korea, Archael. Sci. 2 (1) (2010) 1–10, doi:10.1016/j.sisc.2009.11.006.

H.S. (김진식) Kim, 석실유 출토 인물의 안정동위원소 분석을 통해 본 신석기시대 식생활 양상 The diet and breeding system of Dongnpea people by isotopic analysis at Korea, 고고과학 16 (2014) 33–49.

J.W. Lee, E.J. Woo, C.S. Oh, J.A. Yoo, Y-S Kim, J.H. Hong, A.Y. Yoon, C.M. Wilkinson, J.O. Ju, S.J. Choi, S.D. Lee, D.H. Shin, Bio-anthropolitical studies on human skeletons from the 6th century tomb of ancient Silla Kingdom in South Korea, PLos One 11 (6) (2016) e0156632, doi:10.1371/journal.pone.0156632.

H.G. (崔賢姬) Cheo, J.Y. (金容姬) Shin, 경성 동궁과 월지 3호 무덤 출토 동서방해의 동원소기간이기록된 고대시대 식생활 양상 Isotopic palaeodiet studies of human bones from Gyeongju Donggung palace and Wolji pond site (pond no.3), Goryeo period, Anal. Sci. Technol. 32 (6) (2019) 262–270, doi:10.5880/AST.2019.32.6.262.

Y.V. Kuzmin, M.P. Richards, M. Yoneda, Palaeodietary patterning and radiocarbon dating of Neolithic populations in the Primorye province, Russian Far East, Ancient Biome. 4 (2) (2002) 53–58, doi:10.1080/135866202100010695.
[110] Y.V. Kuzmin, V.S. Panov, V.V. Gasilin, S.V. Batarseh, Paleodietary patterns of the Cherepakha 13 site population (early Iron Age) in Primorye (maritime) province, Russian Far East, based on stable isotope analysis, Radiocarbon 60 (5) (2018) 1611–1620, doi:10.1017/RDC.2018.84.

[111] X.L. (苏景梅) Zhang, J.X. (王金霞) Wang, Z.Q. (孟自强) Xian, S.H. (仇士华) Qiu, 古人類食物結構研究 (Dietary study of the ancient humans), 考古 (Kaogu) 2 (2003) 62–75.

[112] L.Z. (蔡述珍) Cai, S.H. (仇士华) Chou, 碳十三測定和古代食譜研究 (Carbon 13 analysis and palaeodietary research), 考古 (Kaogu) 10 (1984) 949–955.

[113] T. (舒誥) Shu, X.T. (魏興興) Wei, X.H. (吳小紅) Wu, 周口遺址人骨的碳氮穩定同位素分析 (Stable carbon and nitrogen isotope analysis of human bones from the Zhoukoudian site), 中國考古 (Huaxia Archaeol.) 1 (2016) 48–55.

[114] X.L. (張雪龍) Zhang, S.H. (仇士華) Qiu, J. (鍾維) Zhong, X.P. (趙新方) Zhao, F.X. (孫福春) Sun, L.Q. (程林泉) Cheng, Y.Q. (郭永和) Guo, X.W. (李新偉) Li, X.L. (馬著林) Ma, 中國地區幾處仰韶文化時期考古遺址的人類食物狀況研究 (Studies on diet of the ancient people of the Yangshao cultural sites in the Central Plains, 人類學學報 Acta Anthropologica Sinica 29 (2) (2010) 197–207.

[115] Y. Dong, C. Morgan, Y. Chinenov, L.G. Zhou, W.Q. Fan, X.L. Ma, Shifting diets and the rise of male-biased inequality on the central plains of China during Eastern Zhou, PNAS 114 (5) (2017) 932–937, doi: 10.1073/pnas.1617421114.

[116] R.L. Liu, M. Pollard, R. Schulting, J. Rawson, C. Liu, Synthesis of stable isotopic data for human bone collagen: a study of the broad dietary patterns across ancient China, Holocene 31 (2) (2021) 302–312, doi:10.1177/0959683620941168.

[117] X.H. (吳小紅) Wu, H.D. (肖復德) Xiao, C.Y. (魏彩雲) Wei, Y. (潘岩) Pan, Y.P. (黃錫平) Huang, C.Q. (趙春平) Zhao, X.M. (徐曉梅) Xu, N. Ogrinc, 河南新密遺址人類食物結論與農業形態和家畜飼養的穩定同位素證據 (Implications for agriculture subsistence and pig husbandry from stable isotope evidence of human and pig diets in Xinzhai, Henan province), in: 科技考古 Science for Archaeology, 2, Science Press, Beijing, 2007, pp. 49–58.

[118] X.L. (張雪龍) Zhang, S.H. (仇士華) Qiu, G.C. (傅立成) Bo, J.X. (王金霞) Wang, J. (鍾維) Zhong, 二里頭遺址, 考古 (Kaogu) 10 (2020) 83–96.

[119] Y. Yang, L. Ren, G. Dong, Y. Cui, R. Liu, G. Chen, H. Wang, S. Wilkin, F. Chen, Economic change in the prehistoric Hexi corridor (4800–2200 BP), north-west China, Archaeometry 61 (4) (2019) 957–976, doi:10.1111/arc.12464.

[120] (中國社會科學考古研究所) IA CASS: 二里頭 1999–2006 Erlitou: 1999–2006, Wenwu Publisher, Beijing, 2014.

[121] X.L. (張雪龍) Zhang, G.D. (徐曉梅) Xu, Y.L. (何錫圖) He, S.H. (仇士華) Chou, 陝西乾縣出土人骨的碳氮穩定同位素分析 (Stable carbon and nitrogen isotope analyses of human bones unearthed from the burial M54 at Xianju site, 考古 (Kaogu) 3 (2017) 100–109.

[122] X.L. (張雪龍) Zhang, S.H. (仇士華) Qiu, J. (鍾維) Chung, C.H. (梁志合) Liang, 山東滕州市前掌大墓地出土人骨的碳氮穩定同位素分析 (Stable carbon and nitrogen isotope analysis of human bones from the Erlitou cemetery in Tengzou city, Shandong), 考古 (Kaogu) 9 (2012) 83–96.

[123] Q.C. (張全超) Zhang, H. (朱弘) Zhu, 內蒙古察右中旗七郎山墓地人骨的穩定同位素分析 (Stable isotopic analysis on human bones from Qilangshan, Chayouzhongqi, Inner Mongolia), 草原文物 (Caoyuan Wenwu) 1 (2012) 87–89, doi:10.16327/j.cnki.cn15-1361/k.2011.01.002.

[124] X.Y. Yang, Z.W. Wan, L. Perry, H.Y. Lu, Q. Wang, C.H. Zhao, J. Li, F. Xie, J.C. Yu, T.X. Cui, T. Wang, M.Q. Li, Q.S. Ge, Early millet use in northern China, PNAS 109 (10) (2012) 3726–3730.

[125] H.S. Lee, Y.G. Yu, K.S. Han, Mortar characteristics for reinforcement of ancient tomb murals using oyster shells, J. Conserv. Sci. 34 (4) (2018) 295–303.

[126] N. Kobori, Cultural diffusion into Japan interpreted on the decorated tombs on the world heritage, Geogra. Rep. Tokyo Metropolitan Univ. 50 (2015) 65–72.

[127] R. Longin, New method of collagen extraction for radiocarbon dating, Nature 230 (1971) 241–242.

[128] O. Nehlich, M.P. Richards, Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen, Archaeol. Anthropol. Sci. 1 (1) (2009) 59–75, doi:10.1007/s12520-009-0003-6.

[129] H. Bocherens, D.G. Drucker, H. Taubald, Preservation of bone collagen sulphur isotopic compositions in an early Holocene river-bank archaeological site, Palaeoecol. Palaeoecol. 310 (1–2) (2011) 32–38, doi: 10.1016/j.palaeo.2011.05.016.

[130] P. Szpak, J.Z. Metcalfe, R.A. Macdonald, Best practices for calibrating and reporting stable isotope measurements in archaeology, J. Archaeol. Sci. 13 (2017) 609–616, doi:10.1016/j.jasrep.2017.05.007.