Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Commentary

Are people with uncontrolled diabetes mellitus at high risk of reinfections with COVID-19?

Rimesh Pal a, *, Mainak Banerjee b

a Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
b Department of Endocrinology, Institute of Post Graduate Medical Education and Research, Kolkata, 700007, India

A R T I C L E   I N F O

Article history:
Received 15 June 2020
Received in revised form 2 August 2020
Accepted 4 August 2020
Available online 7 August 2020

Keywords:
COVID-19
Diabetes mellitus
Reinfections

A B S T R A C T

Several cases of positive real-time polymerase chain reaction (RT-PCR) results (called “re-positives”) after recovery from COVID-19 have emerged worldwide. These cases could represent patients experiencing a “turn positive” of nucleic acid detection attributed to the high false-negative rate of RT-PCR. On the contrary, in symptomatic patients, the possibility of reactivation or true reinfection remains. We hypothesize that people with uncontrolled diabetes mellitus might be at a high risk of reinfections with COVID-19 attributed to the impaired adaptive immune response. In fact, multiple cases of re-positives/re-infections in people with diabetes mellitus have hitherto been reported.

© 2020 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

The novel coronavirus disease (COVID-19) has affected over 17 million people, inflicting more than 668,000 casualties in over 200 nations worldwide [1]. Moreover, the World Health Organization has raised serious concerns about the possibility of a second infection with COVID-19 [2]. Reinfections have been reported with other human coronaviruses, namely, 229E, NL63, OC43, all of which generally cause milder respiratory illness. Hitherto, multiple cases of clinical recurrence of COVID-19 and/or positive real-time polymerase chain reaction (RT-PCR) results after recovery have been reported [3–8]. Among 576 patients with COVID-19 discharged from hospital in Chongqing, China, 61 patients (10.6%) had positive RT-PCR test results [6]. These cases could represent patients experiencing a “turn positive” or “re-positive” of nucleic acid detection by RT-PCR after two consecutive negative results, attributed to prolonged persistence of the virus following initial infection that remained undetected due to the high false-negative rate of RT-PCR [9,10]. In fact, persistence of traces of viral RNA can be detected in respiratory samples up to 6 weeks after the onset of symptoms in clinically-cured patients [11]. However, in clinically symptomatic patients, the possibility of reactivation or true reinfection should be entertained [3–5].

Primary infection with a pathogen leads to the proliferation of antigen-specific T and B-lymphocytes to control the pathogen. Eventually, a memory pool of antigen-specific adaptive immune cells is left behind that establishes long-term protection for secondary encounters [12]. Re-challenge with the same/antigenically similar pathogen leads to rapid memory activation of the humoral and cellular arms of the adaptive immune system. It has also been demonstrated that in an immunocompetent host, reinfection with the same strain of the influenza virus is prevented by antibody-mediated neutralization of viral particles (sterilizing immunity) [13].

Acquired immunity after primary COVID-19 infection has been studied in rhesus monkeys. Four Chinese rhesus macaques were infected with SARS-CoV-2 and two out of the four were re-infected at 28 days post initial infection (dpi) with the same viral dose after confirming recovery. Viral loads in the swabs tested negative after reinfection. In addition, the necropsy from a reinfected monkey showed no viral replication as well as no pathognomonic histological changes. Furthermore, sera from three monkeys at 21 and 28 dpi exhibited neutralizing activity against SARS-CoV-2 in vitro, suggesting the production of protective neutralizing antibodies [14].

Similarly, COVID-19 infection in humans leads to the production of neutralizing antibodies, directed against the nucleocapsid and spike proteins of SARS-CoV-2. IgM antibodies appear as early as within 5 days after symptom onset and IgG within 5–7 days. Maximum seroconversion occurs at 2–3 weeks for IgM and 3–6 weeks for IgG [15–17]. The durability of the neutralizing antibody (especially IgG) is questionable; persistence up to 40 days from symptom onset has been described. Besides, not all patients develop neutralizing antibodies and studies have shown that 10–20% of COVID-19 patients have little or no detectable antibody [18]; the reason being unknown. Thus, humoral immunity, memory B-lymphocytes,
and circulating neutralizing antibodies seem crucial for preventing reinfections in COVID-19.

Diabetes mellitus (DM) is a known risk factor for severe disease and mortality in COVID-19. It is partly attributed to the dysfunctional immune system seen in patients with uncontrolled DM [19]. Both innate and adaptive arms of the immune system are compromised in DM. Hyperglycemia affects innate immunity by impeding the production of type I interferon that has antiviral properties. Hyperglycemia also impairs neutrophil chemotaxis, phagocytosis, degranulation, and oxidative burst. Defects in the adaptive immune system involve impaired T-lymphocyte function in people with uncontrolled DM [20,21]. Deficits in adaptive humoral immune response in DM are controversial; plasma immunoglobulin levels have been reported to be normal in some studies while reduced levels of IgG and IgM have been reported in others [22,23]. In addition, glycation of circulating immunoglobulins has been reported in people with DM [24]. The binding ability of glycated antibodies to their respective antigens is impaired, thereby compromising the immune response [25]. Besides, an animal model has shown that IgM producing B-1 lymphocyte function is impaired in the presence of hyperglycemia [26].

Humoral immune response and production of antigen-specific antibodies are orchestrated by B-lymphocytes. Although naïve B-lymphocytes can act as antigen-presenting cells, they require accessory signals from helper T-lymphocytes for activation into antibody-producing plasma cells [27]. Such signals include interleukins produced by helper T-lymphocytes (IL-4, IL-5, IL-6) as well as interaction between CD40L (CD40 ligand) on T-cell and CD40 on B-cell membrane (Fig. 1). Any abnormality in T-lymphocyte number and/or function is likely to impair B-cell activation and subsequent development of neutralizing antibodies as well. Diminished pathogen-specific memory CD4+ T-cell response had been demonstrated in people with type 2 diabetes mellitus (T2DM) in response to Streptococcus pneumoniae stimulation. The memory CD4+ T-cell response was inversely associated with fasting blood glucose and glycated hemoglobin, implying that the higher the glycemic burden, the greater is the T-cell dysfunction [21]. Impaired host defense against viral diseases due to depletion of memory CD4+ T-cells and the defective natural killer activity has also been demonstrated in type 1 diabetes mellitus (T1DM) [28].

Table 1

| 1. Diminished pathogen-specific memory CD4+ T-cell response [21,28] |
| 2. Impaired B-cell function as B-cells require T-cells for activation into antibody-producing plasma cells [27] |
| 3. Reduced levels of circulating IgG and IgM [22,23] |
| 4. Elevated plasma levels of sCD40L [29] |
| 5. Glycation of circulating immunoglobulins [24,25] |
| 6. Low levels of circulating complements [28] |

In addition, plasma levels of sCD40L are elevated in hyperglycemic patients with T2DM that can bind to CD40 on B-cell membrane and prevent interaction between B- and T-cells [29]. Besides, hypocomplementemia seen in people with DM can further impair B-cell function and antibody generation. Genetic deficiency of C4 has been reported in 25% of patients with T1DM [28]. The possible mechanisms leading to impaired adaptive immune response in people with DM have been summarized in Table 1. Prior studies have shown impaired antibody response in people with uncontrolled DM following influenza and hepatitis B vaccination [30–32]. Immunity to varicella-zoster virus is reduced in people with DM that may explain the DM-associated increased risk for developing herpes zoster [33]. However, clinicians must also be wary of the fact that SARS-CoV-2 viral clearance is delayed in people with DM and hence the chances of testing “re-positive” are expected to be higher in this subset of patients [34,35].

Zhou et al. has reported that COVID-19 patients who “relapse” after discharge are usually elderly, have poor immune function, and have more comorbidities [36]. Accordingly, multiple cases of clinical recurrences of COVID-19 and/or re-positives of SARS-CoV-2 RT-PCR have been reported in patients with DM [3–8]. Amongst 61 patients who had turned re-positive after being discharged from the hospital, 5 had DM [6]. In a series of 11 patients with clinical recurrences of COVID-19 after recovery, 2 had DM, one of who did not have anti-SARS-CoV-2 antibody response even 53 days after the onset of the first episode [5]. Two preliminary studies have shown no difference in the prevalence of DM in re-positives vs. non-re-positives. However, the number of re-positives included in these two studies was only 17 and 20, respectively, hence, validated con-
The Authors declare that there is no conflict of interest.

Acknowledgement

None.

References

[1] Coronavirus disease (COVID-19) Situation Report – 193. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-covid-19-sitrep-193.pdf?sfvrsn=62c22164_4.

[2] “Immunity passports” in the context of COVID-19 [Internet]. [cited 2020 May 24]. Available from: https://www.who.int/news-room/commentaries/detail/immunity-passports-in-the-context-of-covid-19.

[3] L. D. Liu, T. Celarier, I. Goethals, B. Pozzetto, G. Sylvain, E. Ojardias, et al., Recurrence or relapse of COVID-19 in older patients: a description of three cases, J. Am. Geriatr. Soc. [cited 2020 Aug 1]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/jgs.17628.

[4] S. Ravilli, H. Ochsner, C. Lindner, Reactivation of COVID-19 pneumonia: a report of two cases, J. Infect. 81 (2020) e72–3.

[5] D. Batisse, N. Benech, E. Botelho-Nevers, K. Roulleau, F. Collarino, A. Conrad, et al., Clinical recurrences of COVID-19 symptoms after recovery: viral relapse, re-infection or inflammatory rebound? J. Infect. [cited 2020 Aug 1]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0195670120304540.

[6] W. Deng, T. Guang, M. Yang, J. Li, D. Jiang, C. Li, et al., Positive results for patients with COVID-19 discharged form hospital in Chongqing, China, BMC Infect. Dis. [cited 2020 Aug 1]; Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-020-05151-y.

[7] C. Dou, X. Xie, Z. Peng, H. Tang, Z. Jiang, Z. Zhong, et al., A case presentation for positive SARS-CoV-2 RNA recurrence in a patient with a history of type 2 diabetes that had recovered from severe COVID-19, Diabetes Res. Clin. Pract. 166 (2020), 108300.

[8] H. Zhu, L. Pu, Y. Jin, J. Shao, S. Zhang, N. Zheng, et al., Clinical features of COVID-19 convalescent patients with re-positive nucleic acid detection, J. Clin. Lab. Anal. [cited 2020 Aug 1]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/jcla.12392.

[9] A. T. Xiao, Y. X. Tong, S. Zhang, False-negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: rather than recurrence, J. Med. Virol. [cited 2020 May 26]; Available from: http://doi.org/10.1002/jmv.25855.

[10] H. Kang, Y. Wang, Z. Tong, X. Liu, Retest positive for SARS-CoV-2 RNA of “recovered” patients with COVID-19: persistence, sampling issues, or re-infections? J. Med. Virol. [cited 2020 Aug 1]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.26114.

[11] A.T. Xiao, Y.X. Tong, S. Zhang. Profile of RT-PCR for SARS-CoV-2: a preliminary study from 56 COVID-19 patients, Clin. Infect. Dis. [cited 2020 Aug 1]; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa640/5822175.