Limited robustness of edge magnetism in zigzag graphene nanoribbons with electrodes

S Krompiewski

Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60179 Poznań, Poland

Received 17 July 2014, revised 6 September 2014
Accepted for publication 23 September 2014
Published 30 October 2014

Abstract
It is shown that apart from well-known factors, like temperature, substrate, and edge reconstruction effects, also the presence of external contacts is destructive for the formation of magnetic moments at the edges of graphene nanoribbons (GNRs). The edge magnetism gradually decreases when graphene/electrode interfaces become more and more transparent for electrons. In addition to the graphene/electrode coupling strength, the aspect ratio parameter, i.e. a width/length ratio of the GNR, is also crucial for the suppression of edge magnetism. The present theory uses a tight-binding method, based on the mean-field Hubbard Hamiltonian for π electrons, and the Green’s function technique within the Landauer–Büttiker approach.

Keywords: 81.05.ue, 75.47.De, 73.23.Ad

1. Introduction

The problem of edge states in carbon nanoribbons is an important issue which has been intensively studied for almost 20 years, i.e. since the edge states were first theoretically predicted [1]. Experimental confirmations of this concept came a few years later with [2] and [3]. Since then, a lot of theoretical papers have been devoted to the edge state problem. Magnetic edge states were examined, e.g. in [4–7], where fundamentals for spintronics phenomena—such as spin transport, giant magnetoresistance and Coulomb blockade effects—were studied. Recently the problem has been given an additional impetus due to the new challenges related with a rich class of graphene-like materials. Some of them, in contrast to graphene, possess a significant spin–orbit coupling and are of interest as potential quantum spin Hall systems and/or topological insulators [8–10].

The edge states become of particular importance in nanostructures because then a great fraction of atoms lies at the edges, which strongly influences electronic—and thereby chemical, electrical and probably magnetic—properties. The latter will be focused on in this study. It is well-known that at zigzag type fragments of graphene’s edges the electronic states are of a localized nature, with the exponentially decaying amplitude as the interior is approached. These states have very flat energy spectra in the vicinity of the charge neutrality point (CNP), hence their density of states may be high enough to satisfy the so-called Stoner criterion for the appearance of magnetism. The problem is still open, and there is a lively debate on it. On the one hand there are sceptical opinions, stressing that a number of factors can destroy the edge state magnetism, including the temperature, reconstruction (or closure) of edge atoms, as well as passivation thereof [11]. On the other hand however there are already experimental results obtained by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) methods which provide results supporting the view that spin-degeneracy of edge states may be lifted [12]. The complexity of the problem has recently been convincingly presented in [13], where it is pointed out that whether or not edge magnetic moments can exist depends also on the substrate material they are in contact with.

In this study, it is shown that π-electron edge states can even be affected if the edge atoms are relatively far away (up to a few tens of angstroms) from the non-local disturbance due to contacts. This is in contrast to the hitherto known situations corresponding to the edge reconstruction [14], edge atom closure and hydrogenation [11], as well as the...
temperature and substrate effects [13]. Indeed, it results from the present findings that carbon edge atoms distant from the external electrodes may lose their magnetic moments, unless the graphene nanoribbon (GNR) is weakly coupled to the contacts. This means that the promising concept to use GNRs as spintronic devices (see [15–17]), might be realized provided that electrodes are properly selected. In particular contacts ensuring the formation of high resistive interfaces with the graphene nanoribbons (GNRs)—possibly tunneling junctions—should be applied.

2. Methodology and modeling

The present approach is based on the tight-binding Hubbard model in the mean-field approximation

\[H = - \sum_{ij,\sigma} t_{ij} \sigma_i \sigma_j + \frac{1}{2} \sum_{i,\sigma} \Delta_{i,\sigma} \left[n_i^{\downarrow} - n_i^{\uparrow} \right] \],

where \(t_{ij} \) is the intra-atomic hopping parameter, \(U \) is the Coulomb repulsion, and \(n_i^{\sigma} \) is the \(\sigma \)-spin occupation number at the lattice site \(i \). Well established values of the hopping parameter for graphene \((t_G) \) range between 2.7 eV and 3 eV. As concerns the \(U \) parameter, it is still under debate (see \(U = 0.5 \) eV in [18] and \(U = 1.2 t_G \) in [17]). In this paper a moderate value of \(U/t_G = 0.6 \) is used.

On the one hand the occupation number in the case of non-contacted (free standing) GNRs can be determined, after having diagonalized the Hamiltonian (1), as

\[n_i^{\sigma} = \frac{1}{2} \left[1 + \text{sgn} \left(\text{Im} G_{i,i} (E) \right) \right] \],

where the self-energies are defined as products of the electrode/GNR hopping parameter matrices \(\{t_c\} \) and corresponding surface Green’s functions \(\{g\} \) of the electrodes. The contacts are modeled by surface Green’s functions of a close packed semi-infinite face centered cubic lattice, fcc (111), which for the single-band model used here are known analytically (see [19–21] for details). No periodic boundary conditions have been employed.

Now it is possible to compute the following physical properties of interest here, i.e. local magnetic moments \((m) \),...
conductance \(G\), transmission \(T\) and shot noise Fano factor:

\[
m = n_{1,1} - n_{1,2},
\]

\[
G = \frac{e^2}{h} \text{Tr} \left(T \right), \quad T = \Gamma_1 G \Gamma_1^\dagger,
\]

\[
\Gamma_{1,2} = i \left(\Sigma_{1,2} - \Sigma_{1,2}^\dagger \right), \quad
\]

\[
F = 1 - \text{Tr} \left(T^2 \right) / \text{Tr} \left(T \right).
\]

A representative setup considered here is presented in figure 1. The GNRs are characterized by two numbers \((N_a, N_z)\) related with the number of unit cells in the armchair and zigzag directions, respectively. Thus, the number of carbon atoms along the edge (interface) boundary is equal to \(N_z-1\) (2 \(N_z\)). The undercoordinated edge atoms are assumed to be passivated by hydrogen, so there are no \(\sigma\)-type dangling bonds.

3. Results

The most important question we focus on is the influence of the contacts on the edge magnetism, i.e. magnetic moments of the carbon atoms along the outermost zigzag lines. In order to elucidate this point a number of GNRs has been studied. It turns out that apart from the obvious relevance of the interface coupling, modeled by a hopping integral strength between GNR/contact atoms \(t_c\), also the aspect ratio of the GNR defined as \(A = \text{width/length}\) is of importance. So in the following, edge atom magnetic profiles are presented both for non-contacted \((t_c = 0)\) as well as contacted GNRs of various \(A\) parameters.

A typical energy spectrum around the CNP for a GNR is presented in figure 2.

It is consistent with the next figure (figure 3) representing the conductance spectrum, with contacts relatively weakly coupled to the GNR \((t_c/t_G = 0.15)\).

The presence of the contacts results in a slight shift of the Fermi energy with respect to the unperturbed case of \(E_F = 0\). In order to gain a deeper insight into the doping problem, the magnetic profiles along the zigzag edges have been first determined for the Fermi energy \(E_F = 0\) (as for the free standing GNR with \(t_c = 0\)), figure 4, and next for \(E_F\) corresponding to the CNP.

![Figure 4](image-url). Edge magnetization profiles for three different aspect ratio GNRs, indicated \(t_c\) parameters, and \(E_F = 0\). Magnetic moments at the other zigzag edge are oppositely oriented.

![Figure 5](image-url). The profiles of the number of electrons in the \((11, 27)\) GNR with \(t_c/t_G = 0.15\). Region I corresponds to the interface carbon atom line (nearest to the contact), whereas the region II is the next nearest line of atoms. \(N_{\text{up}}(N_{\text{down}})\) stands for the number of spin up (down) electrons. Charge depletion in the region I is readily seen.

![Figure 6](image-url). The profiles of the number of electrons in the \((11, 27)\) GNR with \(t_c/t_G = 0.15\). Region I corresponds to the interface carbon atom line (nearest to the contact), whereas the region II is the next nearest line of atoms. \(N_{\text{up}}(N_{\text{down}})\) stands for the number of spin up (down) electrons. Charge depletion in the region I is readily seen.

![Figure 7](image-url). The profiles of the number of electrons in the \((11, 27)\) GNR with \(t_c/t_G = 0.15\). Region I corresponds to the interface carbon atom line (nearest to the contact), whereas the region II is the next nearest line of atoms. \(N_{\text{up}}(N_{\text{down}})\) stands for the number of spin up (down) electrons. Charge depletion in the region I is readily seen.
Although, in general, unintentional doping coming from electrodes depends on the difference in the respective work functions (WFs) of the electrodes and the GNR, it turns out that the p-type doping is expected in the case of high-WF metals that couple weakly to GNR (e.g. Au [13, 22]). As shown in figure 5 the present model fits qualitatively to this scenario.

In figure 6, in turn, the E_F correspond to the actual CNPs. It is readily seen that both in figures 4 and 6 the increasing strength of the t_e coupling suppresses edge magnetic moments. The effect is the most pronounced when the setups are wide and short (big A). However, in the case of $E_F = CNP$ it is possible to quench completely all the magnetic moments even for the (11, 27) GNR (with the aspect ratio clearly less than one), provided that $t_e \sim 0.7t_G$.

The present findings agree qualitatively with [13], where edge states and edge magnetism in GNRs were studied by means of an ab initio method. Although those studies concerned the substrate effects instead of the contact ones, they led to conclusions which bear some resemblance to the present ones. First of all, the edge magnetism was shown there to disappear in the case of closed-packed surfaces of the substrates with a strong graphene/substrate coupling (Cu and Ag), in contrast to the Au substrate of weaker coupling. These metallic substrate effects may be related to the present results in terms of our t_e parameter, which for the Cu and Ag substrates is clearly higher than for the Au one, due to differences in the respective carbon/substrate-atom distances. Remarkably, typical edge magnetic moments (of roughly 0.2–0.3 μ_B per C atom) found here do also agree with those reported in [13]. So, despite the fact that the present approach is qualitative rather than quantitative, it provides some indirect insight into the chemical nature of the contacts. Indeed the phenomenological parameters t_e, which in fact depend on orbital hybridization and a bond length at the interface, can be related to material specific ab initio results.

4. Conclusions

Summarizing, in accordance with common knowledge it has been confirmed here that non-contacted (free standing) GNRs reveal edge magnetism in the zigzag outermost carbon atoms. Remarkably, the magnitude of the edge magnetic moments is sensitive to the GNR/contact coupling strength and the separation of the given edge atom from the interface. In the case of high aspect ratio GNRs the zigzag edge magnetic moments may be severely reduced or even completely quenched. The present findings concerning the conductance and the Fano factor indicate that magnetic moments can also be suppressed by applying a gate voltage that brings the system to the state far enough away from the CNP.

Acknowledgments

This project was supported by the Polish National Science Centre from funds awarded through the decision No. DEC-2013/10/M/ST3/00488.

References

[1] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[2] Klusek Z, Waqar Z, Denisov E, Kompanets T, Makarenko I, Titkov A and Bhatti A 2000 Appl. Surf. Sci. 161 508
[3] Kobayashi Y, Fukui K-I, Enoki T, Kusakabe K and Kaburagi Y 2005 Phys. Rev. B 71 193406
[4] Wimmer M, Adagideli I, Berber S, Tomancak D and Richter K 2008 Phys. Rev. Lett. 100 177207
[5] Munoz-Rojas F, Fernandez-Rossier J and Palacios J J 2009 Phys. Rev. Lett. 102 136810
[6] Weymann I, Barnaś J and Krompiewski S 2012 Phys. Rev. B 85 205306
[7] Gosalbez-Martinez D, Soriano D, Palacios J J and Fernandez-Rossier J 2012 Solid State Commun. 152 1469
[8] Xu C, Luo G, Liu Q, Zheng J, Zhang Z, Nagase S, Gao Z and Lu J 2012 Nanoscale 4 3111
[9] Zberek K, Wierzbicki M M, Barnaś J and Swirkowicz R 2013 Phys. Rev. B 88 115404
[10] Rachel S and Ezawa M 2014 Phys. Rev. B 89 195303
[11] Kunstmann J, Özdoğan C, Quandt A and Fehske H 2011 Phys. Rev. B 83 045414
[12] Tao C et al 2011 Nat. Phys. 7 616
[13] Li Y, Zhang W, Morgenstern M and Mazzarello R 2013 Phys. Rev. Lett. 110 216804
[14] Koskinen P, Malola S and Häkkinen H 2009 Phys. Rev. B 80 073401
[15] Son Y-W, Cohen M L and Louie S G 2006 Nature (London) 444 347
[16] Kim W Y and Kim K S 2008 Nat. Nanotechnology 3 408
[17] Yazyev O V 2010 Rep. Prog. Phys. 73 056501
[18] Nair R R, Tsai I-L, Sepioni M, Lehtinen O, Keinonen J, Krasheninnikov A V, Castro Neto A H, Katsnelson M I, Geim A K and Grigorieva I V 2013 Nat. Commun. 4 2010
[19] Todorov T N, Briggs G A D G and Sutton A P 1993 J. Phys.: Condens. Matter 5 2389
[20] Krompiewski S 2009 Phys. Rev. B 80 075433
[21] Krompiewski S 2012 Nanotechnology 23 135203
[22] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803