Metric Characterisation of Unitaries in JB*-Algebras

María Cueto-Avellaneda and Antonio M. Peralta

Abstract. Let \(M \) be a unital JB*-algebra whose closed unit ball is denoted by \(B_M \). Let \(\partial_e(B_M) \) denote the set of all extreme points of \(B_M \). We prove that an element \(u \in \partial_e(B_M) \) is a unitary if and only if the set
\[
\mathcal{M}_u = \{ e \in \partial_e(B_M) : \| u \pm e \| \leq \sqrt{2} \}
\]
contains an isolated point. This is a new geometric characterisation of unitaries in \(M \) in terms of the set of extreme points of \(B_M \).

Mathematics Subject Classification. Primary 46L05, 46H70, 46L70, Secondary 46B20, 46K70, 46L70, 17C65, 47C15.

Keywords. Unitaries, Geometric unitaries, Vertex, Extreme points, C*-algebra, JB*-algebra, JB*-triple.

1. Introduction

We know from a celebrated result of R.V. Kadison that the extreme points of the closed unit ball of a C*-algebra \(A \) are precisely the maximal partial isometries in \(A \), that is, the elements \(u \) in \(A \) such that \((1 - uu^*)(1 - u^*u) = \{0\} \) (see [14]). Every unitary in \(A \) is an extreme point of its closed unit ball, but the reciprocal implication is not always true. In 2002, C.A. Akemann and N. Weaver searched for a characterisation of partial isometries, unitaries, and invertible elements in a unital C*-algebra \(A \) in terms of the Banach space structure of certain subsets of \(A \), the dual space, \(A^* \), or the predual, \(A_* \), when \(A \) is a von Neumann algebra (cf. [1]). The resulting characterisations are called geometric because only the Banach space structure of \(A \) is employed. It should be noted that the geometric characterisation of partial isometries in a C*-algebra was subsequently extended to a geometric characterisation of tripotents in a general JB*-triple (see, [6,7]). The geometric characterisation of unitaries actually relies on a good knowledge on the set of states of a Banach space \(X \) relative to an element \(x \) in its unit sphere, \(S(X) \), defined by
\[
S_x := \{ \varphi \in X^* : \varphi(x) = \| \varphi \| = 1 \}.
\]
The element x is called a vertex of the closed unit ball of X (respectively, a geometric unitary of X) if S_x separates the points of X (respectively, spans X^*).

Akmann and Weaver proved that a norm-one element x in a C*-algebra A is (an algebraic) unitary (i.e. $xx^* = x^*x = 1$) if and only if S_x spans A^*. In a von Neumann algebra W an analogous characterisation holds when one uses the predual, W_*, in lieu of the dual space and the set of normal states relative to x, $S^x = \{ \varphi \in W_* : \varphi(x) = ||\varphi|| = 1 \}$, in place of S_x (cf. [1, Theorem 3]).

Appropriate versions of the just commented result in the setting of JB*-algebras and JB*-triples were established by A. Rodríguez Palacios in [23] (see Sect. 2 for the missing notions). We recall that a complex (respectively, real) Jordan algebra M is a (not-necessarily associative) algebra over the complex (respectively, real) field whose product is abelian and satisfies $(a \circ b) \circ c = a \circ (b \circ c^2) \circ a^2$ ($a, b \in M$). A normed Jordan algebra is a Jordan algebra M equipped with a norm, $||.||$, satisfying $||a \circ b|| \leq ||a|| \cdot ||b||$. A Jordan Banach algebra is a normed Jordan algebra whose norm is complete. Every real or complex associative Banach algebra is a real Jordan Banach algebra with respect to the product $a \circ b := \frac{1}{2}(ab + ba)$.

An element a in a unital Jordan Banach algebra J is called invertible whenever there exists $b \in J$ satisfying $a \circ b = 1$ and $a^2 \circ b = a$. The element b is unique and it will be denoted by a^{-1} (cf. [10, 3.2.9]).

A JB*-algebra is a complex Jordan Banach algebra M equipped with an algebra involution * satisfying $||\{a, a, a\}|| = ||a||^3$, $a \in M$ (we recall that $\{a, a, a\} = 2(a \circ a^*) \circ a - a^2 \circ a^*$). A JB-algebra is a real Jordan Banach algebra J in which the norm satisfies the following two axioms for all $a, b \in J$

(i) $||a^2|| = ||a||^2$;
(ii) $||a^2|| \leq ||a^2 + b^2||$.

The hermitian part, M_{sa}, of a JB*-algebra, M, is always a JB-algebra. A celebrated theorem due to J.D.M. Wright asserts that, conversely, the complexification of every JB-algebra is a JB*-algebra (see [25]). We refer to the monographs [10] and [5] for the basic notions and results in the theory of JB- and JB*-algebras.

Every C*-algebra A is a JB*-algebra when equipped with its natural Jordan product $a \circ b = \frac{1}{2}(ab + ba)$ and the original norm and involution. Norm-closed Jordan *-subalgebras of C*-algebras are called JC*-algebras.

Given an element a in a JB*-algebra M, the symbol U_a will stand for the linear operator defined by $U_a(x) = 2(a \circ x) \circ a - a^2 \circ x$ ($x \in M$). Let us observe that if a C*-algebra A is regarded as a JB*-algebra, we have $U_a(x) = axa$ for all $x \in A$.

Two elements a, b in a Jordan algebra M are said to operator commute if

$$(a \circ c) \circ b = a \circ (c \circ b),$$

for all $c \in M$. By the centre of M we mean the set of all elements of M which operator commute with any other element in M.

We recall that an element \(u \) in a unital JB*-algebra \(M \) is a unitary if it is invertible and its inverse coincides with \(u^* \). An element \(s \) in a unital JB-algebra \(J \) is called a symmetry if \(s^2 = 1 \). The set of all symmetries in \(J \) will be denoted by \(\text{Symm}(J) \). If \(M \) is a JB*-algebra, we shall write \(\text{Symm}(M) \) for \(\text{Symm}(M_{sa}) \).

The geometric characterisation of unitaries in JB*-algebras reads as follows: For a norm-one element \(u \) in a JB*-algebra \(M \), the following conditions are equivalent:

1. \(u \) is a unitary in \(M \);
2. \(u \) is a geometric unitary in \(M \);
3. \(u \) is a vertex of the closed unit ball of \(M \),

(see [23, Theorem 3.1] and [5, Theorem 4.2.24], where the result is proved in the more general setting of JB*-triples).

Surprisingly, as shown by C.-W. Leung, C.-K. Ng, N.-C. Wong in [18], the case of JB-algebras differs slightly from the result stated for JB*-algebras. Suppose \(x \) is a norm-one element in a JB-algebra \(J \), then the following statements are equivalent:

(a) \(x \) is a geometric unitary in \(J \);
(b) \(x \) is a vertex of the closed unit ball of \(J \);
(c) \(x \) is an isolated point of \(\text{Symm}(J) \) (endowed with the norm topology);
(d) \(x \) is a central unitary in \(J \);
(e) The multiplication operator \(M_x : z \mapsto x \circ z \) satisfies \(M_x^2 = \text{id}_J \),

(see [18, Theorem 2.6] or [5, Proposition 3.1.15]).

Except perhaps statements (c), (d) and (e) above, the previous characterisations rely on the set of states \(S_x \) of the underlying Banach space at an element \(x \) in the unit sphere, that is, they are geometric characterisations in which the structure of the whole dual space plays an important role.

From a completely independent setting, the different attempts to solve the problem of extending a surjective isometry between the unit spheres of two Banach spaces to a surjective real linear isometry between the spaces (known as Tingley’s problem) have produced a substantial collection of new ideas and devices which are, in most of cases, interesting by themselves (cf., for example, [2, 4, 20–22]). Let us borrow some words from [4] “...it is really impressive the development of machinery and technics that this problem (Tingley’s problem) has led to.”. We shall place our focus on the next result, included by M. Mori in [20], which provides a new characterisation of unitaries in a unital C*-algebra.

From now on, the closed unit ball of a Banach space \(X \) will be denoted by \(\mathcal{B}_X \). The set of all extreme points of a convex set \(C \) will be denoted by \(\partial_e(C) \).

Theorem 1.1 [20, Lemma 3.1]. Let \(A \) be a unital C*-algebra, and let \(u \in \partial_e(\mathcal{B}_A) \). Then the following statements are equivalent:

(a) \(u \) is a unitary (i.e., \(uu^* = u^*u = 1 \));
(b) The set \(\mathcal{A}_u = \{ e \in \partial_e(\mathcal{B}_A) : \|u \pm e\| = \sqrt{2} \} \) contains an isolated point.
The advantage of the previous result is that it characterises unitaries among extreme points of the closed unit ball of a unital C*-algebra \(A \) in terms of the subset of all points in \(\partial_e(\mathcal{B}_A) \) at distance \(\sqrt{2} \) from the element under study. We do not need to deal with the dual of \(A \).

The purpose of this note is to explore the validity of this characterisation in the setting of JB*-algebras. In a first result we prove that for each tripotent \(u \) in a JB*-triple \(E \) the equality

\[
\{ e \in \text{Trip}(E_2(u)) : \| u + e \| \leq \sqrt{2} \} = \{ i(p - q) : p, q \in \mathcal{P}(E_2(u)) \text{ with } p \perp q \}
\]

holds true, where given a JB*-triple \(E \), the symbol \(\text{Trip}(E) \) stands for the set of all tripotents in \(E \). Furthermore, if \(u \) is unitary in \(E \), then

\[
\mathcal{E}_u = \left\{ e \in \partial_e(\mathcal{B}_E) : \| u + e \| \leq \sqrt{2} \right\} = i\text{Symm}(E_2(u))
\]

and the elements \(\pm iu \) are isolated in \(\mathcal{E}_u \) (Corollary 3.3).

After some technical results inspired from recent achievements by J. Hamhalter, O. F. K. Kalenda, H. Pfitzner, and the second author of this note in [9], we arrive to our main result in Theorem 3.8, where we prove the following: Let \(u \) be an extreme point of the closed unit ball of a unital JB*-algebra \(M \). Then the following statements are equivalent:

(a) \(u \) is a unitary tripotent;
(b) The set \(\mathcal{M}_u = \{ e \in \partial_e(\mathcal{B}_M) : \| u + e \| \leq \sqrt{2} \} \) contains an isolated point.

2. Background on JB*-Algebras and JB*-Triples

Suppose \(A \) is a unital C*-algebra whose set of projections (i.e. symmetric idempotents) will be denoted by \(\mathcal{P}(A) \). It is known that the distance from 1 to any projection in \(\mathcal{P}(A) \setminus \{ 1 \} \) is 1, that is, \(\| 1 - q \| \in [0, 1] \) for all \(q \in \mathcal{P}(A) \). Suppose \(p \) is a central projection in \(A \). In this case, \(A \) writes as the orthogonal sum of \(pAp \) and \((1 - p)A(1 - p) \), and every projection \(q \) in \(A \) is of the form \(q = q_1 + q_2 \), where \(q_1 \leq p \) and \(q_2 \leq 1 - p \). Then it easily follows that \(\| p - q \| = \max\{ \| p - q_1 \|, \| q_2 \| \} \in [0, 1] \) for each \(q \in \mathcal{P}(A) \), which shows that \(p \) is isolated (in the norm topology) in \(\mathcal{P}(A) \). An easy example of a non-isolated projection can be given with 2 by 2 matrices. It is known that every rank one projection in \(M_2(\mathbb{C}) \) can be written in the form

\[
p = \left(\begin{array}{cc} t & \gamma \sqrt{t(1 - t)} \\ \gamma \sqrt{t(1 - t)} & 1 - t \end{array} \right), \quad \gamma \in \mathbb{C} \text{ with } |\gamma| = 1 \text{ and } t \in [0, 1].
\]

The mapping \(q : [0, 1] \to \mathcal{P}(M_2(\mathbb{C})) \), \(q(s) = \left(\begin{array}{cc} s & \gamma \sqrt{s(1 - s)} \\ \gamma \sqrt{s(1 - s)} & 1 - s \end{array} \right) \) is continuous and shows that \(p \) is non-isolated in \(\mathcal{P}(M_2(\mathbb{C})) \). The natural question is whether \(p \) being isolated in \(\mathcal{P}(A) \) implies that \(p \) is central in \(A \). This question has been explicitly treated by M. Mori in [20, Proof of Lemma 3.1]. The argument is as follows, suppose \(p \) is isolated in \(\mathcal{P}(A) \), for each \(a = a^* \) in \(A \), we consider the mapping \(\omega : \mathbb{R} \to \mathcal{P}(A) \), \(\omega(t) := e^{ita}pe^{-ita} \), which is differentiable with \(\omega(0) = p \). We deduce from the assumption on \(p \) that \(\omega \) must be constant, and thus taking derivative at \(t = 0 \) we get \(iap - ipa = 0 \),
which implies that \(p \) commutes with every hermitian element in \(A \). That is every isolated projection in \(\mathcal{P}(A) \) is central in \(A \). We gather this information in the next result.

Proposition 2.1. Let \(p \) be a projection in a unital \(C^* \)-algebra \(A \). Then the following statements are equivalent:

(a) \(p \) is (norm) isolated in \(\mathcal{P}(A) \);
(b) \(p \) is a central projection in \(A \);
(c) \(1-2p \) is (norm) isolated in \(\text{Symm}(A) \).

Proof. The implication \((a) \Rightarrow (b)\) is proved in [20, Proof of Lemma 3.1], while \((b) \Rightarrow (a)\) has been commented before. Finally it is easy to see that a sequence \((q_n) \subseteq \mathcal{P}(A)\{p\}\) converges in norm to \(p \) if and only if the sequence \((1-2q_n) \subseteq \text{Symm}(A)\{1-2p\}\) converges in norm to \(1-2p \). \(\square \)

Let us observe that in case that \(A \) is a von Neumann algebra, the equivalence of \((a)\) and \((b)\) in the above Proposition was proved by Y. Kato in [15].

A Jordan version of Proposition 2.1 was considered by J.D.M. Wright and M.A. Youngson in [26]. Before going into details, let us note that the lacking of associativity for the product of a JB*-algebra makes invalid the arguments presented above, and specially the use of products of the form \(e^{ita}pe^{-ita} \) is not always possible in the Jordan analogue of \((a) \Rightarrow (b)\).

In our approach to the Jordan setting, JB*-algebras and JB-algebras
will be regarded as JB*-triples and real JB*-triples, respectively. According to the original definition, introduced by W. Kaup in [16], a JB*-triple is a complex Banach space \(E \) equipped with a continuous triple product \(\{.,.,.\} : E \times E \times E \to E \), \((a,b,c) \mapsto \{a,b,c\}\), which is bilinear and symmetric in \((a,c)\) and conjugate linear in \(b \), and satisfies the following axioms for all \(a,b,x,y \in E \):

(a) \(L(a,b)L(x,y) = L(x,y)L(a,b) + L(L(a,b)x,y) - L(x,L(b,a)y) \), where \(L(a,b) : E \to E \) is the operator defined by \(L(a,b)x = \{a,b,x\} \);
(b) \(L(a,a) \) is a hermitian operator with non-negative spectrum;
(c) \(\|\{a,a,a\}\| = \|a\|^3 \).

Examples of JB*-triples include all \(C^* \)-algebras and JB*-algebras with triple products of the form

\[\{x,y,z\} = \frac{1}{2}(xy^*z + zy^*x), \tag{1} \]

and

\[\{x,y,z\} = (x \circ y^*) \circ z + (z \circ y^*) \circ x - (x \circ z) \circ y^*, \tag{2} \]

respectively.

Given an element \(x \) in a JB*-triple \(E \), we shall write \(x^{[1]} := x \), \(x^{[3]} := \{x,x,x\} \), and \(x^{[2n+1]} := \{x,x,x^{[2n-1]}\} \), \((n \in \mathbb{N})\).

Like real \(C^* \)-algebras are defined as real norm closed Hermitian subalgebras of \(C^* \)-algebras (cf. [19]), a real closed subtriple of a JB*-triple is called a real JB*-triple (see [11]). Every JB*-triple is a real JB*-triple when
it is regarded as a real Banach space. In particular every JB-algebra is a real JB*-triple with the triple product defined in (2) (see [11]).

An element \(e \) in a real or complex JB*-triple \(E \) is said to be a tripotent if \(\{e, e, e\} = e \). Each tripotent \(e \in E \), determines a decomposition of \(X \), known as the Peirce decomposition associated with \(e \), in the form

\[
E = E_2(e) \oplus E_1(e) \oplus E_0(e),
\]

where \(E_j(e) = \{x \in E : \{e, e, x\} = \frac{j}{2} x\} \) for each \(j = 0, 1, 2 \).

Triple products among elements in the Peirce subspaces satisfy the following Peirce arithmetic: \(\{E_i(e), E_j(e), E_k(e)\} \subseteq E_{i-j+k}(e) \) if \(i-j+k \in \{0, 1, 2\} \), and \(\{E_i(e), E_j(e), E_k(e)\} = \{0\} \) otherwise, and

\[
\{E_2(e), E_0(e), E\} = \{E_0(e), E_2(e), E\} = 0.
\]

Consequently, each Peirce subspace \(E_j(e) \) is a real or complex JB*-subtriple of \(E \).

The projection \(P_k(e) \) of \(E \) onto \(E_k(e) \) is called the Peirce \(k \)-projection. It is known that Peirce projections are contractive (cf. [8, Corollary 1.2]) and determined by the following identities \(P_2(e) = Q(e)^2 \), \(P_1(e) = 2(L(e, e) - Q(e)^2) \), and \(P_0(e) = \text{Id}_E - 2L(e, e) + Q(e)^2 \), where \(Q(e) : E \to E \) is the conjugate or real linear map defined by \(Q(e)(x) = \{e, x, e\} \). A tripotent \(e \in E \) is called unitary (respectively, complete or maximal) if \(E_2(e) = E \) (respectively, \(E_0(e) = \{0\} \)). This definition produces no contradiction because unitary elements in a unital JB*-algebra \(M \) are precisely the unitary tripotents in \(M \) when the latter is regarded as a JB*-triple (cf. [3, Proposition 4.3]). A tripotent \(e \) in \(E \) is called minimal if \(E_2(e) = \mathbb{C} e \neq \{0\} \). The set of all tripotents (respectively, of all complete tripotents) in a JB*-triple \(E \) will be denoted by Trip\((E) \) (respectively, Trip\(\text{max} (E) \)).

It is worth remarking that if \(E \) is a complex JB*-triple, the Peirce 2-subspace \(E_2(e) \) is a unital JB*-algebra with unit \(e \), product \(x \circ_e y := \{x, e, y\} \) and involution \(x^* := \{e, x, e\} \), respectively.

Let us recall that a couple of elements \(a, b \) in a real or complex JB*-triple \(E \) are called orthogonal (written \(a \perp b \)) if \(L(a, b) = 0 \). It is known that \(a \perp b \Longleftrightarrow \{a, a, b\} = 0 \Longleftrightarrow \{b, b, a\} = 0 \Longleftrightarrow b \perp a \). If \(e \) is a tripotent in \(E \), it follows from Peirce rules that \(a \perp b \) for every \(a \in E_2(e) \) and every \(b \in E_0(e) \). Two projections \(p, q \) in a JB*-algebra are orthogonal if and only if \(p \circ q = 0 \). An additional geometric property of orthogonal elements shows that \(||a \pm b|| = \max\{||a||, ||b||\} \) whenever \(a \) and \(b \) are orthogonal elements in a real or complex JB*-triple (cf. [8, Lemma 1.3]).

Henceforth the set, Trip\((E) \), of all tripotents in a JB*-triple \(E \), will be equipped with the natural partial order defined by \(u \leq e \) in Trip\((E) \) if \(e - u \) is a tripotent in \(E \) with \(e - u \perp u \), equivalently, if \(u \) is a projection in the JB*-algebra \(E_2(e) \).

One of the useful geometric properties of a real or complex JB*-triple, \(E \), asserts that the extreme points of its closed unit ball, \(\mathcal{B}_E \), are precisely the complete tripotents in \(E \), that is,

\[
\partial_e(\mathcal{B}_E) = \text{Trip}_{\text{max}}(E)
\]
Let a be a hermitian element in a JB*-algebra M, the spectral theorem [10, Theorem 3.2.4] assures that the JB*-subalgebra of M generated by a is isometrically JB*-isomorphic to a commutative C^*-algebra. In particular, we can write a as the difference of two orthogonal positive elements in M_{sa}. By applying this result it can be seen that every tripotent in M_{sa} is the difference of two orthogonal projections in M, and furthermore, when M is unital we obtain

$$\partial_e(\mathcal{B}_{M_{sa}}) = \text{Symm}(M) = \{ s \in M_{sa} : s^2 = 1 \}$$

(cf. [26] or [5, Proposition 3.1.9]). As in the associative case, the symbol $\mathcal{P}(M)$ will stand for the set of all projections (i.e., self-adjoint idempotents) in a JB*-algebra M.

The next result, which is a Jordan version of Proposition 2.1, was originally established in [12, Proposition 1.3], and a new proof can be consulted in [5, Proposition 3.1.24 and Remark 3.1.25]. An alternative proof, based on the structure of real JB*-triples, is included here for the sake of completeness.

Proposition 2.2 [12, Proposition 1.3], [5, Proposition 3.1.24]. Let p be a projection in a unital JB*-algebra M. Then the following statements are equivalent:

(a) p is (norm) isolated in $\mathcal{P}(M)$;
(b) p is a central projection;
(c) $1 - 2p$ is (norm) isolated in $\text{Symm}(M)$.

Proof. The equivalence $(c) \iff (a)$ follows by the same arguments employed in the case of C^*-algebras.

$(c) \Rightarrow (b)$ Suppose $1 - 2p$ is (norm) isolated in $\text{Symm}(M)$. We consider M_{sa} as a real JB*-triple. Given $a, b \in M_{sa}$, by the axioms in the definition of JB*-triples, the mapping

$$\Phi_{t}^{a,b} = \exp(t(L(a,b) - L(b,a))) = \sum_{n=0}^{\infty} \frac{t^n}{n!} (L(a,b) - L(b,a))^n : M \to M$$

is a surjective linear isometry for all $t \in \mathbb{R}$, and clearly maps M_{sa} into itself. Since $1 - 2p$ is an extreme point of the closed unit ball of M_{sa}, we deduce that $\Phi_{t}^{a,b}(1 - 2p)$ must be an extreme point of the closed unit ball of M_{sa}, and hence a complete tripotent in M_{sa}, or equivalently, a symmetry in M. Therefore the mapping $\omega : \mathbb{R} \to \text{Symm}(M), t \mapsto \omega(t) = \Phi_{t}^{a,b}(1 - 2p)$ is differentiable with $\omega(0) = 1 - 2p$. Since $1 - 2p$ is isolated in $\text{Symm}(M)$, the mapping $\omega(t)$ must be constant in a neighborhood of 0, and thus, by taking derivative at $t = 0$ we get

$$0 = (L(a,b) - L(b,a))(1 - 2p) = \{ a,b,1 - 2p \} - \{ b,a,1 - 2p \},$$

equivalently,

$$((1 - 2p) \circ a) \circ b = ((1 - 2p) \circ b) \circ a,$$

for all $a, b \in M_{sa}$ (and for all $a, b \in M$). This shows that $1 - 2p$ (and hence p) lies in the centre of M as desired.
(b) ⇒ (a) If p is a central projection in M, we know from [10, Lemma 2.5.5] that $M = U_p(M) \oplus U_{1-p}(M)$, where for each $z \in M$, $U_z(x) = \{z, x^*, z\}$ ($\forall x \in M$). We further know that every element in $U_p(M)$ is orthogonal to every element in $U_{1-p}(M)$. Arguing as in the associative case (see Proposition 2.1 above), we prove that for each projection q in M we have $\|p-q\| \in \{0,1\}$, which concludes the proof.

3. Metric Characterisation of Unitaries

Let us revisit some of the arguments in the proof of [20, Lemma 3.1] under the point of view of Jordan algebras.

Proposition 3.1. Let e be a maximal partial isometry in a unital C^*-algebra A, and let $l = ee^*$ and $r = e^*e$ denote the left and right projections of e. Suppose we can find two orthogonal projections $p, q \in A$ such that $l = p + q$. Then the element $y = i(p-q)e$ lies in $A_e = \{y \in \mathcal{B}_e(A) : \|e \pm y\| = \sqrt{2}\}$, and for each $\theta \in \mathbb{R}$ the element

$$y_\theta := P_2(e^*)(y) + \cos(\theta)P_1(e^*)(y) + \sin(\theta)P_1(e^*)(1)$$

is a maximal partial isometry in A.

If we further assume that p and q are central projections in lAl, the following statements hold:

(a) The elements $p' = epe^*$ and $q' = ege^*$ are two orthogonal central projections in rAr, with $r = p' + q'$;

(b) Suppose that e is not unitary in A, and take $y = i(p-q)e$. Then y lies in A_e, and for each $\theta \in \mathbb{R}$ the element $y_\theta := P_2(e^*)(y) + \cos(\theta)P_1(e^*)(y) + \sin(\theta)P_1(e^*)(1)$ is a maximal partial isometry in A with $\|e \pm y_\theta\| = \sqrt{2}$, i.e. y_θ lies in A_e (actually, $\frac{e \mp y_\theta}{\sqrt{2}}$ is a maximal partial isometry in A), and $y_\theta \neq y$ for all θ in $\mathbb{R}\backslash \{2\pi\mathbb{Z} \cup \pi \frac{1+4\mathbb{Z}}{2}\}$. Furthermore, $\|y - P_2(y)(y_\theta)\| \leq 1 - \cos(\theta)$, and hence $P_2(y)(y_\theta)$ is invertible in $A_2(y)$ for θ close to zero.

Proof. Let us prove the first statement. Clearly, $y = i(p-q)e$ lies in A_e. By [9, Lemma 6.1] there exist a complex Hilbert space H and an isometric unital Jordan *-monomorphism $\Psi : A \to B(H)$ such that $\Psi(e)^*\Psi(e) = 1$. Let us denote $v = \Psi(e)$, $z = \Psi(y)$, and $z_\theta = \Psi(y_\theta)$. We observe that

$$z_\theta = P_2(v^*)(z) + \cos(\theta)P_1(v^*)(z) + \sin(\theta)P_1(v^*)(1),$$

because Ψ is a unital Jordan *-monomorphism, and hence it preserves triple products and involution. Clearly, $v = \Psi(e)$ is a maximal partial isometry (actually, an isometry $v^*v = 1$) in $B(H)$. We shall write B for $B(H)$. Having the above properties in mind we can rewrite z_θ in the form

$$z_\theta = v^*vzv + \cos(\theta)((1-v^*v)zv + v^*vz(1-vv^*)) + \sin(\theta)((1-v^*v)1v + v^*v(1-vv^*)) = zv^* + \cos(\theta)z(1-vv^*) + \sin(\theta)(1-vv^*).$$

Let us observe that the latter expression already appears in the proof of [20, Lemma 3.1].
The elements $y_1 = ipe$ and $y_2 = iqe$ are two orthogonal partial isometries in A with $y = y_1 - y_2$ and $e = (-i)(y_1 + y_2)$. Therefore $z_1 = \Psi(y_1)$ and $z_2 = \Psi(y_2)$ are two orthogonal partial isometries in $B(H)$ with $z = z_1 - z_2$ and $v = -i(z_1 + z_2)$. We can easily conclude that

$$z^*z = (z_1^* - z_2^*)(z_1 - z_2) = z_1^* z_1 + z_2^* z_2 = v^* v = 1,$$

and similarly, $z^* z = vv^*$. \hfill (5)

Let us examine the element $z_θ$ more closely. Having in mind (5) and the equality $z = (z^* z) z = (vv^*)z$, it follows from the properties commented above that

$$z_θ^* z_θ = vv^* z^* z v v^* + \cos(\theta) v v^* z^* z (1 - vv^*) + \sin(\theta) v v^* z^* z (1 - vv^*)$$

$$+ \cos(\theta)(1 - vv^*) z^* z v v^* + \cos^2(\theta)(1 - vv^*) z^* z (1 - vv^*)$$

$$+ \cos(\theta) \sin(\theta)(1 - vv^*) z^* z (1 - vv^*) + \sin(\theta)(1 - vv^*) z v v^*$$

$$+ \sin(\theta) \cos(\theta)(1 - vv^*) z (1 - vv^*) + \sin^2(\theta)(1 - vv^*)$$

$$= vv^* + \cos^2(\theta)(1 - vv^*) + \sin^2(\theta)(1 - vv^*) = 1,$$

witnessing that $z_θ$ is an isometry in B. It then follows from the properties of Ψ that $y_θ = \Psi^{-1}(\Psi(y_θ)) \in \partial_1(B_A)$ is a complete tripotent in A.

Concerning the second statement, let us analyze the element $w = e ± y_θ$. As before, up to an application of [9, Lemma 6.1], we can suppose that $r = e^* e = 1$. We set $l = ee^*$. Assuming that e is not unitary, the projection $1 - l = 1 - ee^*$ is not zero. We therefore have

$$w = e ± y_θ = (e ± y) l + (e ± \cos(\theta) y)(1 - l) + \sin(\theta)(1 - l),$$

and we shall compute $w^* w$.

(a) Let us make some observations. The mappings $Φ_1 : l A l → r A r$, $x → e^* x e$ and $Φ_2 : r A r → l A l$, $y → e y e$ are well defined, linear, and contractive. It is easy to see that $x = l x l = e(e^* x e)e^* = Φ_2 Φ_1(x)$ and $y = e(e^* y e)e = Φ_1 Φ_2(y)$, for all $x ∈ l A l$ and $y ∈ r A r$. Therefore $Φ_2$ and $Φ_1$ are linear bijections and inverses each other. Furthermore, for all $x, z ∈ l A l$, we have $Φ_1(x) Φ_1(z) = (e^* x e)(e^* z e^*) = e(xz)e^* = Φ_1(xz)$, and $Φ_1(x)^* = (e^* x e)^* = e^* x^* e = Φ_1(x^*)$, for all $x ∈ l A l$, which shows that the first mapping is a unital *-isomorphism. Then the elements $p' = Φ_1(p)$ and $q' = Φ_1(q)$ are two orthogonal central projections in $r A r = A$ with $1 = r = p' + q'$.

(b) We derive from the above conclusions that $pe = e p'$, and $qe = e q'$. Consequently,

$$y = i(p - q)e = i e(p' - q'), \quad e ± y = e(\mu ± p' + \overline{\mu} ± q'),$$

and $e ± \cos(\theta) y = e(\lambda ± p' + \overline{\lambda} ± q')$.

where \(\mu_{\pm} = 1 \pm i \), and \(\lambda_{\pm} = 1 \pm i \cos(\theta) \). We study next all summands involved in the product \(w^*w \):

\[
((e \pm y)l)^*((e \pm y)l) = l(e \pm y)^*(e \pm y)l = l(\mu_{\pm}p' + \mu_{\pm}q')^{e*(\mu_{\pm}p' + \mu_{\pm}q')}
\]

\[
= 2l(p' + q')l = 2l;
\]

\[
\sin(\theta)((e \pm y)l)^*(1 - l) = \sin(\theta)l(\mu_{\pm}p' + \mu_{\pm}q')e^*(1 - l) = 0;
\]

\[
((e \pm y)l)^*(e \pm \cos(\theta)y)(1 - l) = l(\mu_{\pm}p' + \mu_{\pm}q')e^*e((\lambda_{\pm}p' + \lambda_{\pm}q'))(1 - l)
\]

\[
= l(\lambda_{\pm}\mu_{\pm}p' + \lambda_{\pm}\mu_{\pm}q')(1 - l);
\]

\[
(1 - l)(e \pm \cos(\theta)y)^*(e \pm \cos(\theta)y)(1 - l)
\]

\[
= (1 - l)\left(\overline{\lambda_{\pm}p'} + \lambda_{\pm}q'\right)e^*e(\mu_{\pm}p' + \overline{\mu_{\pm}q'})l
\]

\[
= (1 - l)(\overline{\lambda_{\pm}\mu_{\pm}p'} + \lambda_{\pm}\overline{\mu_{\pm}q'})l;
\]

\[
(1 - l)(e \pm \cos(\theta)y)^*(e \pm \cos(\theta)y)(1 - l)
\]

\[
= (1 - l)(\overline{\lambda_{\pm}p'} + \lambda_{\pm}q')e^*e\left(\lambda_{\pm}p' + \overline{\lambda_{\pm}q'}\right)(1 - l)
\]

\[
= (1 - l)(\overline{\lambda_{\pm}p'} + \lambda_{\pm}q')\left(\lambda_{\pm}p' + \overline{\lambda_{\pm}q'}\right)(1 - l)
\]

\[
= |\lambda_{\pm}|^2(1 - l)(p' + q')(1 - l)
\]

\[
= (1 + \cos^2(\theta))(1 - l);
\]

\[
((e \pm \cos(\theta)y)(1 - l))^*(\sin(\theta)(1 - l))
\]

\[
= \sin(\theta)(1 - l)(\overline{\lambda_{\pm}p'} + \lambda_{\pm}q')^{e^*(1 - l)} = 0;
\]

\[
(\sin(\theta)(1 - l))^*(x \pm y)l = \sin(\theta)(1 - l)e(\mu_{\pm}p' + \overline{\mu_{\pm}q'})l = 0;
\]

\[
(\sin(\theta)(1 - l))^*(e \pm \cos(\theta)y)(1 - l) = \sin(\theta)(1 - l)e\left(\lambda_{\pm}p' + \overline{\lambda_{\pm}q'}\right)(1 - l) = 0;
\]

\[
(\sin(\theta)(1 - l))^*(\sin(\theta)(1 - l)) = \sin^2(\theta)(1 - l).
\]

By adding the previous nine identities, and having in mind that \(p' \) and \(q' \) are central projections, we get

\[
\frac{w^*w}{2} = l + \frac{1}{2}(1 + \cos^2(\theta))(1 - l) + \frac{1}{2}\sin^2(\theta)(1 - l)
\]

\[
+ \frac{1}{2}l(\alpha p' + \overline{\alpha}q')(1 - l) + \frac{1}{2}(1 - l)(\alpha q' + \alpha q')l = 1,
\]

which proves that \(\frac{w}{\sqrt{2}} = \frac{e \pm y_\theta}{\sqrt{2}} \) is an isometry, and consequently, \(\|e \pm y_\theta\| = \sqrt{2} \).

Let us now check that \(y_\theta \neq y \) for all \(\theta \) in \(\mathbb{R} \setminus (2\pi \mathbb{Z} \cup \pi \mathbb{Z} + \frac{\pi + 2\pi}{2}) \). Note that \(l \neq 1 \). Since

\[
(y - y_\theta)^*(y - y_\theta) = (1 - \cos(\theta))^2(1 - l)y^*y(1 - l) + \sin^2(\theta)(1 - l)
\]

\[
- (1 - \cos(\theta))\sin(\theta)(1 - l)(y + y^*)(1 - l)
\]

\[
= 2(1 - \cos(\theta))(1 - l) - 2(1 - \cos(\theta))\sin(\theta)a
\]

\[
= 2(1 - \cos(\theta))(1 - l) - \sin(\theta)a \neq 0,
\]

where \(a = (1 - l)\frac{y + y^*}{2}(1 - l) \) is a hermitian element in the closed unit ball of \((1 - l)A(1 - l) \), and hence \(\|\sin(\theta)a\| \leq |\sin(\theta)| < 1 \).

Finally, the identity

\[
P_2(y)(y_\theta) = lylr + \cos(\theta)ly(1 - l)r + \sin(\theta)(l(1 - l)r = lyl + \cos(\theta)ly(1 - l)
\]
allows us to conclude that $\|y - P_2(y)(y_\theta)\| = \|(1 - \cos(\theta))l y(1 - l)\| \leq 1 - \cos(\theta)$, which finishes the proof. \hfill \Box

Our goal in this section is to establish a similar characterisation of unitaries to that given in Theorem 1.1 in the setting of JB*-algebras and JB*-triples. It should be noted that the characterisation of unitaries in the case of JB*-algebras is far from being a consequence of the result in the associative case. We begin by describing the set of partial isometries at distance smaller than or equal to $\sqrt{2}$ from the unit of a JB*-algebra. As observed by Mori in [20], in the easiest case $A = \mathbb{C}$, for $u \in \partial_e(B_A) = \{ z \in \mathbb{C} : |z| = 1 \}$, we have $A_u = \{ e \in \partial_e(B_C) : \| u \pm e \| = \sqrt{2} \} = \{ iu, -iu \}$. But we can also add that $A_u = \{ e \in \partial_e(B_C) : \| u \pm e \| \leq \sqrt{2} \}$.

Let us recall a property valid for every C*-algebra A:

$U_p(a) = pap = 0$ with $a \geq 0$ and p a projection in A implies $ap = pa = 0$. \hfill (6)

Indeed, let us write $a = yy^*$, for some $y \in A$. By hypothesis $0 = pap = pyy^*p = (py)(py)^*$, and thus the Gelfand-Naimark axiom gives $py = y^*p = 0$, and consequently $pa = pyy^* = 0 = yy^*p = ap$, as desired.

Lemma 3.2. Let M be a unital JB*-algebra. Let e be a tripotent in M satisfying $\|1 \pm e\| \leq \sqrt{2}$. Then there exist two orthogonal projections p, q in M such that $e = i(p - q)$. Consequently, \begin{equation} \{ e \in \text{Trip}(M) : \|1 \pm e\| \leq \sqrt{2} \} = \{ i(p - q) : p, q \in \mathcal{P}(M) \text{ with } p \perp q \}. \end{equation} \hfill (7)

Proof. Let N denote the JB*-subalgebra of M generated by $1, e$ and e^*. It follows from the Shirshov-Cohn theorem [10, Theorems 2.4.14 and 7.2.5], combined with Wright’s theorem [25, Corollary 2.2 and subsequent comments], that N is special, that is, there exists a unital C*-algebra A containing N as unital JB*-subalgebra. The C*-algebra A contains 1 and the partial isometry e, and we have $\|1 \pm e\| \leq \sqrt{2}$. Let us write $l = ee^*$ and $r = e^*e$ for the left and right projections of e in A. Then, it follows that

$$0 \leq \frac{1}{2}(1 + l \pm (e + e^*)) = \frac{1}{2}(1 \pm e)(1 \pm e^*) \leq \frac{1}{2}\|(1 \pm e)(1 \pm e^*)\|1 = \frac{1}{2}\|1 \pm e\|^2 \leq 1. \hfill (7)$$

By evaluating the positive map $2U_l : x \mapsto 2lxl$ at the elements in the above list of inequalities we get

$2l \pm U_l(e + e^*) \leq 2l.$

Therefore $U_l(e + e^*) = 0$. We shall next show that $e + e^* = 0$. Namely, since $U_l(1 - l) = 0$, it is clear that $U_l(1 - l \pm (e + e^*)) = 0$. Moreover, it follows from the definition of l that $U_{1-l}(e) = U_{1-l}(e^*) = 0$, and consequently,

$$e + e^* = (l + (1 - l))(e + e^*)(l + (1 - l)) = U_l(e + e^*) + U_{1-l}(e + e^*)(1 - l) + (1 - l)(e + e^*) = e(1 - l) + (1 - l)e^*.$$

Back to (7) we get

$2l + (1 - l) \pm e(1 - l) \pm (1 - l)e^* = 1 + l \pm (e + e^*) \leq 2 1 = 2l + 2(1 - l),$
and thus
\[\pm(e(1 - l) + (1 - l)e^*) \leq 1 - l. \]
Clearly, \(a = 1 - l + (e(1 - l) + (1 - l)e^*) \geq 0 \) with \(U_l(a) = 0 \). It follows from (6) that
\[e(1 - l) = le(1 - l) = la = 0 = al = (1 - l)e^*l = (1 - l)e^*. \]
We observe that, trivially, \((1 - l)e = e^*(1 - l) = 0\). Summarizing, we have shown that
\[e + e^* = U_l(e + e^*) + (1 - l)(e + e^*)l + l(e + e^*)(1 - l) + U_{1-l}(e + e^*) = 0,\]
that is \(e = -e^* \) is a skew symmetric partial isometry in \(A \), and thus there exist two orthogonal projections \(p, q \) in \(A \) such that \(e = i(p - q) \). Since
\(e = i(p - q) \in M \), it follows that \(e^2 = -p - q \) and \(p - q \) both belong to \(M \), and consequently, \(p, q \in M \), which concludes the proof. \(\square \)

Given a tripotent \(u \) in a JB*-triple \(E \), the Peirce 2-subspace \(E_2(u) \) is a unital JB*-algebra with unit \(u \) (see page 5). So, the first statement in the next corollary is a straight consequence of our previous lemma.

Corollary 3.3. Let \(u \) be a tripotent in a JB*-triple \(E \). Then
\[\{e \in \text{Trip}(E_2(u)) : \|u e\| \leq \sqrt{2}\} = \{i(p - q) : p, q \in \mathcal{P}(E_2(u)) \text{ with } p \perp q\}. \]
Furthermore, if \(u \) is unitary in \(E \), then
\[\mathcal{E}_u = \{e \in \partial_e(B_E) : \|u e\| \leq \sqrt{2}\} = i\text{Symm}(E_2(u)) \]
\[= \{i(p - q) : p, q \in \text{Trip}(E), p, q \leq u, p \perp q, p + q = u\} \tag{8} \]
and the elements \(\pm i u \) are isolated in \(\mathcal{E}_u \).

Proof. The first statement is a consequence of Lemma 3.2. If \(u \) is unitary the equality \(E = E_2(u) \) holds. Having in mind that \(\partial_e(B_E) = \text{Trip}_{\max}(E) \), we deduce from the first statement that
\[\mathcal{E}_u \subseteq \{i(p - q) : p, q \in \text{Trip}(E), p, q \leq u, p \perp q\}. \]
But every \(e = i(p - q) \in \mathcal{E}_u \) must be also a complete tripotent in \(E \), which forces \(p + q = u \), otherwise \(r = u - p - q \) would be a non-zero element in \(E_0(e) \), which is impossible, so (8) is clear. It is obvious that \(\pm i u \in \mathcal{E}_u \) and for any \(i(p - q) \in \mathcal{E}_u \backslash \{\pm i u\} \) we have
\[\|i u \pm i(p - q)\| = \|i(1 \pm 1) p + i(1 \mp 1) q\| = \max\{\|i(1 \pm 1) p\|, \|i(1 \mp 1) q\|\} = 2. \]
This proves that \(\pm i u \) are isolated in \(\mathcal{E}_u \). \(\square \)

The Jordan version of Theorem 1.1(a) \(\Rightarrow \) (b) has been established in Corollary 3.3 even in the setting of JB*-triples. For the reciprocal implication we shall first prove a technical result which also holds for JB*-triples.

Proposition 3.4. Let \(u \) be a tripotent in a JB*-triple \(E \), and let
\[\mathcal{E}_u = \{e \in \partial_e(B_E) : \|u e\| \leq \sqrt{2}\}. \]
Then every element \(y \in \mathcal{E}_u \) with \(P_1(u)(y) \neq 0 \) or \(P_0(u)(y) \neq 0 \) is non-isolated in \(\mathcal{E}_u \). Consequently, every isolated element \(y \in \mathcal{E}_u \) belongs to \(i\text{Symm}(E_2(u)) \).
Proof. Let us take \(y \in \mathcal{E}_u \) with \(P_1(u)(y) \neq 0 \) or \(P_0(u)(y) \neq 0 \). By [8, Lemma 1.1] for each \(\lambda \in \mathbb{C} \) with \(|\lambda| = 1 \) the mapping \(S_{\lambda}(u) = \lambda^2 P_2(u) + \lambda P_1(u) + P_0(u) = \lambda^2 P_2(u) + \lambda P_1(u) + P_0(u) \) is an isometric triple isomorphism on \(E \). Therefore the mapping \(R_{\lambda}(u) = \lambda^2 S_{\lambda}(u) = P_2(u) + \lambda P_1(u) + \lambda^2 P_0(u) \) is an isometric triple isomorphism on \(E \) for all \(\lambda \) in the unit sphere of \(\mathbb{C} \). Let us observe that

\[
y - R_{\lambda}(u)(y) = (1 - \lambda)P_1(u)(y) + (1 - \lambda^2)P_0(u)(y).
\]

Since Peirce projections are contractive, we get

\[
|\lambda - 1||P_1(u)(y)| = |(1 - \lambda)P_1(u)(y)| = |P_1(u)(y - R_{\lambda}(u)(y))| \\
\leq |y - R_{\lambda}(u)(y)|,
\]

and thus

\[
|\lambda - 1||P_1(u)(y)| = |(1 - \lambda^2)P_0(u)(y)| = |P_0(u)(y - R_{\lambda}(u)(y))| \\
\leq |y - R_{\lambda}(u)(y)|,
\]

and thus

\[
|\lambda - 1||P_1(u)(y)| = |(1 - \lambda^2)P_0(u)(y)| = |P_0(u)(y - R_{\lambda}(u)(y))| \\
\leq |y - R_{\lambda}(u)(y)|,
\]

and thus

\[
|\lambda - 1||P_1(u)(y)| = |(1 - \lambda^2)P_0(u)(y)| = |P_0(u)(y - R_{\lambda}(u)(y))| \\
\leq |y - R_{\lambda}(u)(y)|,
\]

for all \(\lambda \in \mathbb{T} \setminus \{\pm 1\} \). Clearly, \(R_{\lambda}(u)(y) = \lambda \frac{y - 1}{|\lambda|} y \) in norm.

On the other hand, \(R_{\lambda}(u)(u) = u \) for all \(|\lambda| = 1 \). Since \(R_{\lambda}(u) \) is an isometric triple automorphism on \(E \) and \(y \in \partial E \) we deduce that \(R_{\lambda}(u)(y) \in \partial E \), and

\[
||u \pm R_{\lambda}(u)(y)|| = ||R_{\lambda}(u)(u) \pm R_{\lambda}(u)(y)|| = ||R_{\lambda}(u)(u \pm y)|| = ||u \pm y|| \leq \sqrt{2},
\]

for all \(|\lambda| = 1 \). Therefore \(y \) is non-isolated in \(\mathcal{E}_u \), which concludes the proof of the first statement.

For the last statement, let us assume that \(y \in \mathcal{E}_u \) is an isolated point.

It follows from the first statement that \(P_1(u)(0) = P_0(u)(0) \). That is, \(y \in \partial E \cap E_2(u) \) with \(|u \pm y|| \leq \sqrt{2} \). We conclude from Corollary 3.3 that \(y \in i\text{Symm}(E_2(u)) \). \(\square \)

Remark 3.5. The arguments given in the proof of Proposition 3.4 are valid to establish the following: Let \(u \) be a tripotent in a JB*-triple \(E \), and let

\[
\tilde{\mathcal{E}}_u = \{ e \in \text{Trip}(E) : |u \pm e| \leq \sqrt{2} \}.
\]

Then every element \(y \in \tilde{\mathcal{E}}_u \) with \(P_1(u)(y) \neq 0 \) or \(P_0(u)(y) \neq 0 \) is non-isolated in \(\tilde{\mathcal{E}}_u \).

We continue gathering the tools and results needed in our characterisation of unitaries in JB*-algebras. One of the most successful tools in the theory of Jordan algebras is the Shirshov-Cohn theorem, which affirms that the JB*-subalgebra of a JB*-algebra generated by two symmetric elements (and possibly the unit element) is a JC*-algebra, that is, a JB*-subalgebra of some \(B(H) \) (cf. [10, Theorem 7.2.5] and [25, Corollary 2.2]). The next lemma is an appropriate version of the Shirshov-Cohn theorem.

Lemma 3.6. Let \(u_1 \) and \(u_2 \) be two orthogonal tripotents in a unital JB*-algebra \(M \). Then the JB*-subalgebra \(N \) of \(M \) generated by \(u_1, u_2 \) and the unit element is a JC*-algebra, that is, there exists a complex Hilbert space \(H \)
satisfying that \(N \) is a JB*-subalgebra of \(B(H) \), we can further assume that the unit of \(N \) coincides with the identity on \(H \).

Proof. Let us fix \(t \in (0, 1) \). We consider the element \(e = u_1 + tu_2 \). Let \(N_0 \) denote the JB*-subalgebra of \(M \) generated by \(e, e^* \) and the unit element. It follows from the Shirshov-Cohn theorem that \(N_0 \) is a JC*-algebra. We observe that \(N_0 \) is a JB*-subtriple of \(M \), therefore the element \(e^{[2n-1]} \) belongs to \(N_0 \) for all natural \(n \). Now, applying that \(u_1 \) and \(u_2 \) are two orthogonal tripotents, we can deduce that

\[
e^{[2n-1]} = u_1 + t^{(2n-1)}u_2.
\]

The sequence \((e^{[2n-1]})_n = (u_1 + t^{(2n-1)}u_2)_n\) converges in norm to \(u_1 \), and thus \(u_1 \) lies in \(N_0 \). Consequently, \(u_1 \) and \(u_2 \) both belong to \(N_0 \).

Similarly, \(u_1^* \) and \(u_2^* \) belong \(N_0 \), hence \(N = N_0 \) is a JC*-algebra.

The final statement can be obtained as in the proof of [9, Lemma 6.2].

\(\square \)

The next result is inspired by [9, Lemmata 6.2 and 6.3].

Proposition 3.7. Let \(u_1 \) and \(u_2 \) be two orthogonal tripotents in a unital JB*-algebra \(M \) satisfying the following properties:

(a) \(u = u_1 + u_2 \) is a complete tripotent in \(M \);
(b) \(u_1, u_2 \) are central projections in the JB*-algebra \(M_2(u) \).

Let \(N \) denote the JB*-subalgebra of \(M \) generated by \(u_1, u_2 \) and the unit element. Then \(N \) is a JC*-subalgebra of some \(C^* \)-algebra \(B \), and \(u \) is a complete tripotent in the \(C^* \)-subalgebra \(A \) of \(B \) generated by \(N \). Moreover, the elements \(u_1, u_2 \) are central projections in the JB*-algebra \(A_2(u) \).

Proof. Lemma 3.6 guarantees that \(N \) is a JB*-subalgebra of a unital \(C^* \)-algebra \(B \), and we can also assume that \(N \) contains the unit of \(B \). Clearly, \(u, u_1 \) and \(u_2 \) are partial isometries in \(A \). Let \(l_i = u_iu_i^* \) and \(r_i = u_i^*u_i \) denote the left and right projections of \(u_i \) in \(A \) (\(i = 1, 2 \)). We shall also write \(l = uu^* = l_1 + l_2 \) and \(r = u^*u = r_1 + r_2 \), for the left and right projections of \(u \) in \(A \), respectively. Let us note that \(l_1 \perp l_2 \) and \(r_1 \perp r_2 \).

By hypothesis, \(u_1, u_2 \) are central projections in the JB*-algebra \(M_2(u) \), and hence in \(N_2(u) \). It then follows that the identity

\[
lnr = n_2(u) = n_2(u_1) \oplus \infty n_2(u_2) = l_1nr_1 \oplus \infty l_2nr_2
\]

holds. Having in mind that \(1 \in N \), we deduce that \(lr = l_1r_1 + l_2r_2, l_1r_2 + l_2r_1 = 0 \), and so \(l_1r = l_1r_1 \) which proves that \(l_1r_2 = 0 \), and hence \(l_2r_1 = 0 \).

Recall that \(A \) is the \(C^* \)-subalgebra of \(B \) generated by \(N \). We shall next show that \(u \) is a complete tripotent in \(A \). We know that \(u \) is a complete tripotent in \(M \), and hence in \(N \). Clearly \(u \) is a tripotent in \(A \). The Peirce 0-projection on \(A \) is given by \(P_0(u)(x) = (1-l)x(1-r) \ (x \in A) \). We therefore know that \((1-l)x(1-r) = 0 \), for all \(x \in N \). We shall prove that \((1-l)x(1-r) = 0 \) for all \(x \in A \). For this purpose we shall adapt some techniques from the proof of [9, Lemma 6.2].

Finally, if \(x \) with the JB MJOM Unitaries in JB∗-Algebras

\[l_1(u_1^*)^n(1 - r) = l(u_1^*)^n(1 - r) = (u_1^*)^n(1 - r) \]
\[l_2(u_2^*)^n(1 - r) = l(u_2^*)^n(1 - r) = (u_2^*)^n(1 - r), \]

where in the first two equalities we applied that \(l_1r_2 = l_2r_1 = 0 \).

Fix \(t \in (0, 1) \). We have shown in the proof of Lemma 3.6 that \(N \) coincides with the JB∗-subalgebra of \(M \) generated by \(e = u_1 + tu_2 \) and 1. Let \(A_0 \) denote the set of all finite products of \(e, e^* \) and 1. Since \(A \) is the closed linear span of \(A_0 \) we only need to prove that \((1 - l)x(1 - r) = 0 \), for all \(x \in A_0 \).

We say that an element \(x \in A \) satisfies property (\(\diamond \)) if

\[x(1 - r) = 0, \text{ or } x(1 - r) = (1 - r), \text{ or } x(1 - r) = (u_1^*)^n(1 - r) + t^m(u_2^*)^n(1 - r), \]

for some \(n, m \in \mathbb{N} \).

Let us fix an element \(x \in A \) satisfying property (\(\diamond \)). If \(x(1 - r) = 0 \), we have \(e^*x(1 - r) = 0 \), and \(ex(1 - r) = 0 \). If \(x(1 - r) = (1 - r) \), it follows that

\[e^*x(1 - r) = e^*(1 - r) = u_1^*(1 - r) + te_2^*(1 - r), \text{ and } ex(1 - r) = e(1 - r) = 0. \]

If \(x(1 - r) = (u_1^*)^n(1 - r) + t^m(u_2^*)^n(1 - r) \), for some \(n, m \in \mathbb{N} \), it can be seen that

\[e^*x(1 - r) = e^*(u_1^*)^n(1 - r) + t^m e^*(u_2^*)^n(1 - r) = (u_1^*)^{n+1}(1 - r) + t^{m+1}(u_2^*)^{n+1}(1 - r), \]

where we applied that \(u_1 \perp u_2, l_1r_2 = 0 \), and \(l_2r_1 = 0 \). This shows that \(e^*x \) satisfies property (\(\diamond \)).

In the latter case, by applying \(u_1 \perp u_2, l_1r_2 = 0 \), and \(l_2r_1 = 0 \), we also have

\[ex(1 - r) = e(u_1^*)^n(1 - r) + t^me(u_2^*)^n(1 - r) = u_1((u_1^*)^n(1 - r) + t^{m+1}u_2(u_2^*)^n(1 - r) = (u_1u_2^*)(u_2^*)^{n-1}(1 - r) + t^{m+1}(u_2u_2^*)(u_2^*)^{n-1}(1 - r) = l_1(u_1^*)^{n-1}(1 - r) + t^{m+1}l_2(u_2^*)^{n-1}(1 - r) = (by (9)) = (u_1^*)^{n-1}(1 - r) + t^{m+1}(u_2^*)^{n-1}(1 - r), \]

witnessing that \(ex \) satisfies property (\(\diamond \)).

We have proved that if \(x \) satisfies property (\(\diamond \)), then \(ex \) and \(e^*x \) both satisfy property (\(\diamond \)). It is not hard to check that \(1, e, \text{ and } e^* \) satisfy property (\(\diamond \)). We can thus conclude that every element in \(A_0 \) satisfies property (\(\diamond \)). So, for each \(x \in A_0 \) we have \((1 - l)x(1 - r) = 0 \) if \(x(1 - r) = 0 \). If \(x(1 - r) = (1 - r) \), it follows from the fact that \(1 \in N \) and \(u \) is complete in \(N \), that

\[(1 - l)x(1 - r) = (1 - l)(1 - r) = (1 - l)1(1 - r) = 0. \]

Finally, if \(x(1 - r) = (u_1^*)^n(1 - r) + t^m(u_2^*)^n(1 - r) \), for some \(n, m \in \mathbb{N} \), we easily check that

\[(1 - l)x(1 - r) = (1 - l)(u_1^*)^n(1 - r) + t^m(1 - l)(u_2^*)^n(1 - r) = 0, \]
where in the last equality we applied that \((u_1^*)^n, (u_2^*)^n \in N\) and \(u\) is a complete tripotent in \(N\). This proves that \((1 - l)A_0(1 - r) = \{0\}\), and hence \(u\) is complete in \(A\).

It remains to prove that \(u_1\) and \(u_2\) are central projections in \(A_2(u)\). We claim that

\[
l_1 Ar_2 = l_2 Ar_1 = \{0\}.
\]

Indeed, it is enough to prove that

\[
l_1(x_1 \cdots x_m) r_2 = l_2(x_1 \cdots x_m) r_1 = 0,
\]

for all natural \(m\) and \(x_1, \ldots, x_m \in \{e, e^*\}\) because \(N\) is the JB*-subalgebra of \(M\) generated by \(e, e^*\) and the unit. We shall prove (11) by induction on \(m\). We know from the hypotheses that \(l_1 Nr_2 = l_2 Nr_1 = \{0\}\), so the case, \(m = 1\) is clear.

The case \(m = 2\) is worth to be treated independently. The products of two elements are the following: \(e^2, (e^*)^2, ee^*\) and \(e^*e\). The elements \(e^2\) and \((e^*)^2\) belong to \(N\), and thus \(l_1 e^2 r_2 = l_2 e^2 r_1 = l_1 (e^*)^2 r_2 = l_2 (e^*)^2 r_1 = 0\). By the properties seen in the above paragraphs we have

\[
l_1 ee^* r_2 = er_1 e^* r_2 = ee^* l_1 r_2 = 0.
\]

Since \(e \circ e^* \in N\), it follows that \(l_1 (ee^* + e^*e) r_2 = 0\). The last two equalities together give

\[
l_1 ee^* r_2 = l_1 e^* er_2 = 0.
\]

Similar arguments show that

\[
l_2 ee^* r_1 = l_2 e^* er_1 = 0.
\]

Suppose, by the induction hypothesis, that (11) holds for all natural numbers \(2 \leq m \leq m_0\). Let us make an observation, for any natural \(k \leq m_0 - 1\) it follows from the induction hypothesis that

\[
l_1(x_1 \cdots x_k) l_2e = l_1 x_1 \cdots x_k er_2 = 0;
\]

therefore

\[
0 = (l_1(x_1 \cdots x_k) l_2e)(l_1(x_1 \cdots x_k) l_2e)^* = l_1(x_1 \cdots x_k) l_2ee^* l_2(x_k^* \cdots x_1^*) l_1
\]

\[
= l_1(x_1 \cdots x_k) l_2 l_2(x_k^* \cdots x_1^*) l_1 = (l_1(x_1 \cdots x_k) l_2)(l_1(x_1 \cdots x_k) l_2)^*;
\]

witnessing that

\[
l_1(x_1 \cdots x_k) l_2 = 0, \text{ for all natural } k \leq m_0 - 1.
\]

We deal next with the case \(m_0 + 1\). We pick \(x_1, \ldots, x_{m_0}\), \(x_{m_0 + 1} \in \{e, e^*\}\). Since \(e^{m+1}, (e^*)^{m+1} \in N\), the desired conclusion is clear for \(x_1 = \ldots = x_{m+1} = e\) and \(x_1 = \ldots = x_{m+1} = e^*\). We can therefore assume the existence of \(j \in \{1, \ldots, m_0\}\) such that \(x_j x_{j+1} = e^*e = 1\) or \(x_j x_{j+1} = ee^*\). In the first case

\[
l_1 x_1 \cdots x_{m_0 + 1} r_2 = l_1 x_1 \cdots x_{j-1} x_{j+1} \cdots x_{m_0 + 1} r_2 = 0,
\]
by the induction hypothesis. In the second case we have

\[l_1 x_1 \cdots x_{m_0+1} r_2 = l_1 x_1 \cdots x_{j-1} l x_{j+1} \cdots x_{m_0+1} r_2 \]

\[= l_1 x_1 \cdots x_{j-1} l x_{j+1} \cdots x_{m_0+1} r_2 + l x_1 \cdots x_{j-1} l x_{j+1} \cdots x_{m_0+1} r_2 = 0, \]

where in the last equality we applied (12) and the induction hypothesis.

Similar ideas to those we gave above are also valid to establish

\[l_2 x_1 \cdots x_m r_1 = 0, \]

for all \(m \in \mathbb{N}, x_1 \cdots x_m \in \{e, e^*\}. \)

This finishes the induction argument and the proof of the claim in (10). It follows from (10) that \(u_1 \) and \(u_2 \) are central projections in \(A_2(u) \). \(\square \)

The desired characterisation of unitaries in a unital JB*-algebra is now established in our main result.

Theorem 3.8. Let \(u \) be an extreme point of the closed unit ball of a unital JB*-algebra \(M \). Then the following statements are equivalent:

(a) \(u \) is a unitary tripotent;

(b) The set \(\mathcal{M}_u = \{e \in \partial_e(B_M) : \|u \pm e\| \leq \sqrt{2}\} \) contains an isolated point.

Proof. Corollary 3.3 gives (a) \(\Rightarrow \) (b).

(b) \(\Rightarrow \) (a) We shall show that if \(u \) is not a unitary tripotent then every point \(y \in \mathcal{M}_u \) is non-isolated. We therefore assume that \(u \) is not a unitary tripotent. Let us fix \(y \in \mathcal{M}_u \). If \(P_1(u)(y) \neq 0 \), Proposition 3.4 implies that \(y \) is non-isolated in \(\mathcal{M}_u \). We can therefore assume that \(P_1(u)(y) = 0 \), and hence \(y = P_2(u)(y) \). So, \(y \) and \(u \) lie in the JB*-algebra \(M_2(u) \) (we observe that the latter need not be a JB*-subalgebra of \(M \)). Since \(y \) also is an extreme point of the closed unit ball of \(M_2(u) \) and \(\|u \pm y\| \leq \sqrt{2} \), Corollary 3.3 implies that \(y \) lies in \(i \text{Symm}(M_2(u)) \), therefore, there exist orthogonal tripotents \(u_1, u_2 \in M \) with \(u_1, u_2 \leq u, u_1 + u_2 = u \) and \(y = i(u_1 - u_2) \).

If \(u_2 \) is non-isolated in \(\mathcal{P}(M_2(u)) \), then there exists a sequence \((q_n)_n \subseteq \mathcal{P}(M_2(u)) \) with \(q_n \neq u_2 \), for all \(n \), converging to \(u_2 \) in norm. In this case the sequence \((i(u_2 - 2q_n))_n \) is contained in \(\mathcal{M}_u \setminus \{y = i(u_1 - u_2)\} \) (let us observe that \(u - 2q_n \) is a symmetry in \(M_2(u) \) and since \(u \in \partial_e(B_M) \), [24, Lemma 4] implies that \(i(u_2 - 2q_n) \in \partial_e(B_M) \) for all \(n \in \mathbb{N} \), and clearly \(\|u \pm i(u_2 - 2q_n)\| = \sqrt{2} \) and converges to \(y \) in norm. We have therefore shown that \(y \) is non-isolated in \(\mathcal{M}_u \).

We finally assume that \(u_2 \) is isolated in \(\mathcal{P}(M_2(u)) \). In this case Proposition 2.2 proves that \(u_2 \) (and hence \(u_1 \)) is a central projection in \(M_2(u) \). We are in position to apply Proposition 3.7 to the tripotents \(u_1, u_2 \) and \(u = u_1 + u_2 \) in \(M \). Let \(N \) denote the JB*-subalgebra of \(M \) generated by \(u_1, u_2 \) and the unit element. By the just quoted proposition, \(N \) is a JC*-subalgebra of some C*-algebra \(B, u \) is a complete tripotent in the C*-subalgebra \(A \) of \(B \) generated by \(N \), and the elements \(u_1, u_2 \) are central projections in the JB*-algebra \(A_2(u) \). Let us observe that \(u \) and \(y \) both belong to \(N \) (and to \(A \)). Proposition 3.1, applied to \(A, u, p = u_1u_1^*, q = u_2u_2^*, \) and \(y \), implies that for each \(\theta \in \mathbb{R} \) the element

\[y_\theta := P_2(u^*)(y) + \cos(\theta)P_1(u^*)(y) + \sin(\theta)P_1(u^*)(1) \]
is a maximal partial isometry in A with $\|u + y_\theta\| = \sqrt{2}$, and $y_\theta \neq y$ for all θ in $\mathbb{R} \setminus (2\pi\mathbb{Z} \cup \pi \mathbb{Z})$ because u is not unitary in N nor in A. We further know from the just quoted proposition that $\|y - P_2(y)(y_\theta)\| \leq 1 - \cos(\theta)$, and hence $P_2(y)(y_\theta)$ is invertible in $N_2(y)$ for θ close to zero. Since $y \in \partial_c(B_M)$, it follows from [13, Lemma 2.2] that y_θ is Brown-Pedersen quasi-invertible in the terminology of [13], which combined with the fact that y_θ is a tripotent in N (and hence in M), trivially implies that $y_\theta \in \partial_c(B_M)$. Therefore, for θ close to zero, $y_\theta \in M_u \setminus \{y\}$ and $y_\theta \to y$ in norm when $\theta \to 0$, witnessing that y is non-isolated in M_u. \hfill \Box

Let us conclude this note with some afterthoughts on JB*-triples. Let E be a JB*-triple with dimension at least 2. Suppose u is a complete tripotent in E which is not unitary. In view of Corollary 3.3 and Theorem 3.8, a natural topic remains to be studied: Does the set $E_u = \{ e \in \partial_c(B_E) : \|u \pm e\| \leq \sqrt{2}\}$ contains no isolated points?

Every JB*-triple E admitting a unitary element is a unital JB*-algebra with Jordan product and involution given in (2). Actually, there is a one-to-one (geometric) correspondence between the class of unital JB*-algebras and the class of JB*-triples admitting a unitary element. The next corollary is thus a rewording of our Theorem 3.8.

Corollary 3.9. Let E be a JB*-triple admitting a unitary element. Suppose u is an extreme point of the closed unit ball of E. Then the following statements are equivalent:

(a) u is a unitary tripotent;
(b) The set $E_u = \{ e \in \partial_c(B_E) : \|u \pm e\| \leq \sqrt{2}\}$ contains an isolated point.

A typical example of a JB*-triple admitting no unitary tripotents is a rectangular Cartan factor of type 1 of the form $C = B(H,K)$, of all bounded linear operators between two complex Hilbert spaces H and K, with dim(H) $>$ dim(K).

In the simplest case $K = \mathbb{C}$, and hence $C = H$ is a Hilbert space with triple product $\{a,b,c\} = \frac{1}{2}(\langle a|b\rangle c + \langle c|b\rangle a)$ ($a, b, c \in H$). Every norm-one element in C is an extreme point of its closed unit ball, that is, $\partial_c(B_C) = S(C)$. Let us fix $u \in S(C)$. By assuming dim(C) ≥ 2 it is not hard to see that

$$C_u = \{ e \in \partial_c(B_C) : \|u \pm e\| \leq \sqrt{2}\} = \{ i t u + x : t \in \mathbb{R}, x \in C, \langle e, x \rangle = 0, t^2 + \|x\|^2 = 1\},$$

is pathwise-connected.

In the case in which dim(K) ≥ 2, every complete tripotent in C must be a partial isometry u satisfying $uu^* = id_K$ (and clearly, $u^*u \neq id_H$). Let us take $y \in C_u = \{ e \in \partial_c(B_C) : \|u \pm e\| \leq \sqrt{2}\}$. We shall see that y is non-isolated in C_u. By Corollary 3.3 and Proposition 3.4 we can assume that $y \in \mathbb{S}(C_2(u))$, that is, there exist two orthogonal tripotents u_1, u_2 with $u_1, u_2 \leq u$, $u_1 + u_2 = u$, and $y = i(u_1 - u_2)$. We may assume that $u_2 \neq 0$. Let us take a minimal tripotent e such that $e \leq u_2$, that is, $u_2 = (u_2 - e) + e$ with $(u_2 - e) \perp e$. In this case $e = \xi \otimes \eta : \zeta \mapsto \langle \zeta, \eta \rangle \xi$ with $\eta \in S(H)$, $\xi \in S(K)$.
Since $u^*u \neq \text{id}_H$, we can pick $\tilde{\eta} \in S(H)$ with $\langle \tilde{\eta}, u^*u(H) \rangle = \{0\}$. The element $\tilde{e} = \xi \otimes \tilde{\eta}$ is a minimal tripotent in C with $\tilde{e} \perp u_1, u_2 - e$. It is not hard to check that, for each real θ, the element $y_\theta := i(u_1 - (u_2 - e) - \cos(\theta)e + \sin(\theta)\tilde{e})$ is a complete tripotent in C, by orthogonality and from the fact that $\|\alpha e + \beta \tilde{e}\|^2 = |\alpha|^2 + |\beta|^2$ for all $\alpha, \beta \in \mathbb{C}$, we can deduce that

$$\|u \pm y_\theta\| = \max\{\|(1 \pm i)u_1\|, \|(1 \mp i)(u_2 - e)\|, \|(1 \pm i \cos(\theta))e \pm \sin(\theta)\tilde{e}\|\} = \sqrt{2}.$$

Since $y \neq y_0 \to y$ for $\theta \to 0$, we conclude that y is non-isolated in C_u as claimed.

Acknowledgements

Authors partially supported by the Spanish Ministry of Science, Innovation and Universities (MICINN) and European Regional Development Fund Project no. PGC2018-093332-B-I00, Programa Operativo FEDER 2014-2020 and Consejería de Economía y Conocimiento de la Junta de Andalucía Grant number A-FQM-242-UGR18, and Junta de Andalucía grant FQM375. First author also supported by Universidad de Granada, Junta de Andalucía and Fondo Social Europeo de la Unión Europea (Iniciativa de Empleo Juvenil), grant number 6087.

The authors thank the anonymous peer reviewers for their valuable comments.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Akemann, C.A., Weaver, N.: Geometric characterizations of some classes of operators in C*-algebras and von Neumann algebras. Proc. Am. Math. Soc. 130(10), 3033–3037 (2002)

[2] J. Becerra Guerrero, M. Cueto-Avellaneda, F.J. Fernández-Polo, A.M. Peralta, On the extension of isometries between the unit spheres of a JBW*-triple and a Banach space. J. Inst. Math. Jussieu. https://doi.org/10.1017/S1474748019000173

[3] Braun, R., Kaup, W., Upmeier, H.: A holomorphic characterisation of Jordan-C*-algebras. Math. Z. 161, 277–290 (1978)

[4] Cabello-Sánchez, J.: A reflection on Tingley’s problem and some applications. J. Math. Anal. Appl. 476(2), 319–336 (2019)

[5] M. Cabrera García, A. Rodríguez Palacios, Non-associative normed algebras. In: Vol. 1, vol. 154 of Encyclopedia of Mathematics and its Applications. The Vidav–Palmer and Gelfand–Naimark theorems. Cambridge University Press, Cambridge (2014)

[6] Fernández-Polo, F.J., Martínez, J., Peralta, A.M.: Geometric characterization of tripotents in real and complex JB*-triples. J. Math. Anal. Appl. 295, 435–443 (2004)
[7] Fernández-Polo, F.J., Peralta, A.M.: Partial isometries: a survey. Adv. Oper. Theory 3(1), 75–116 (2018)
[8] Friedman, Y., Russo, B.: Structure of the predual of a JBW *-triple. J. Reine Angew. Math. 356, 67–89 (1985)
[9] Hamhalter, J., Kalenda, O.F.K., Peralta, A.M., Pfitzner, H.: Measures of weak non-compactness in preduals of von Neumann algebras and JBW*-triples. J. Funct. Anal. 278(1), 108300 (2020)
[10] Hanche-Olsen, H., Størmer, E.: Jordan Operator Algebras. Pitman, London (1984)
[11] Isidro, J.M., Kaup, W., Rodríguez-Palacios, A.: On real forms of JB*-triples. Manuscripta Math. 8(6), 311–335 (1995)
[12] Isidro, J.M., Rodríguez-Palacios, A.: Isometries of JB-algebras. Manuscripta Math. 86, 337–348 (1995)
[13] Jamjoom, F.B., Siddiqui, A.A., Tahliawi, H.M., Peralta, A.M.: Approximation and convex decomposition by extremals and the \(\lambda \)-function in JBW*-triples. Q. J. Math. (Oxford) 66, 583–603 (2015)
[14] Kadison, R.V.: Isometries of operator algebras. Ann. Math. 54, 325–338 (1951)
[15] Kato, Y.: Some theorems on projections of von Neumann algebras. Math. Japon. 21(4), 367–370 (1976)
[16] Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183, 503–529 (1983)
[17] Kaup, W., Upmeier, H.: Jordan algebras and symmetric Siegel domains in Banach spaces. Math. Z. 157, 179–200 (1977)
[18] Leung, C.-W., Ng, C.-K., Wong, N.-C.: Geometric unitaries in JB-algebras. J. Math. Anal. Appl. 360, 491–494 (2009)
[19] Li, B.: Real operator algebras. World Scientific Publishing Co. Inc, River Edge (2003)
[20] Mori, M.: Tingley’s problem through the facial structure of operator algebras. J. Math. Anal. Appl. 466(2), 1281–1298 (2018)
[21] Mori, M., Ozawa, N.: Mankiewicz’s theorem and the Mazur-Ulam property for C*-algebras. Studia Math. 250(3), 265–281 (2020)
[22] Peralta, A.M.: A survey on Tingley’s problem for operator algebras. Acta Sci. Math. (Szeged) 84, 81–123 (2018)
[23] A. Rodríguez Palacios, Banach space characterizations of unitaries: a survey, J. Math. Anal. Appl. 369(1), 168–178 (2010)
[24] Siddiqui, A.A.: Average of two extreme points in JBW*-triples. Proc. Jpn. Acad. 83, 176–178 (2007)
[25] Wright, J.D.M.: Jordan C*-algebras. Michigan Math. J. 24, 291–302 (1977)
[26] Wright, J.D.M., Youngson, M.A.: On isometries of Jordan algebras. J. London Math. Soc. 17, 339–44 (1978)

María Cueto-Avellaneda and Antonio M. Peralta
Departamento de Análisis Matemático, Facultad de Ciencias
Universidad de Granada
18071 Granada
Spain
e-mail: aperalta@ugr.es
María Cueto-Avellaneda
e-mail: mcueto@ugr.es

Received: July 10, 2019.
Revised: February 11, 2020.
Accepted: June 6, 2020.