Parameter Choice Matters: Validating Probe Parameters for Use in Mixed-Solvent Simulations

Katrina W. Lexa†, Garrett B. Goh‡, Heather A. Carlson†,‡

†Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, 428 Church St, Ann Arbor, MI 48109-1065
‡Department of Chemistry, University of Michigan, Ann Arbor, 930 N. University Ave., Ann Arbor, MI 48109-1055

Supporting Information

SI Table S1. Non-bonded parameters for MixMD probes.

Atom Name	Amber Atom Type	IPASeco	IPAPLS	
C1,C2	c3	q	σ*	ε*
C1,C3	CT	-0.176	1.908	0.1094
C2	CT	0.309	1.908	0.1094
O2	OH	-0.612	1.721	0.2104
HO2	HO	0.373	0	0.418
H11,H12,H13, H131,H32,H33	HC	0.049	1.487	0.0157
H2	H1	-0.012	1.387	0.0157

* Note that the change in the typical capital letters for Atom Types was used to uniquely identify the solvent probes from the atom types used for protein atoms.

Molecule	Atom	Atom Type*	q (e)	σ (Å)	ε (kcal/mol)
Acetone (ACE)	C1,C2	c3	-0.180	1.9640	0.0660
	H1-H6	hc	0.060	1.4031	0.0300
	O	o	-0.500	1.6612	0.2100
	C	c	0.500	2.1050	0.1050
N- Methylacetamide (NMA)	C1	c3	-0.180	1.9643	0.0660
	H1-H6	h	0.060	1.4031	0.0300
	C	c	0.500	2.1046	0.1050
	O	o	-0.500	1.6612	0.2100
	N	n	-0.500	1.8240	0.1700
	HN	hn	0.300	0.0000	0.0000
	C2	c3	0.020	1.9643	0.0660
SI Table S1. Continued

Molecule	Atom	Atom Type*	q (e)	σ (Å)	ε (kcal/mol)
Imidazole (IMI)	N1	nA/nB	-0.257	1.8240	0.1700
	N2	nA/nB	-0.563	1.8240	0.1700
	C1	cW	-0.286	1.9923	0.0700
	C2	cR	0.275	1.9923	0.0700
	C3	cV	0.185	1.9923	0.0700
	H1	h	0.306	0.0000	0.0000
	H2	hA	0.187	1.3581	0.0300
	H3	hA	0.078	1.3581	0.0300
	H4	hA	0.075	1.3581	0.0300
Pyridine (PYR)	N1	nC	-0.678	1.8240	0.1700
	C4-C5	cA	0.473	1.9923	0.0700
	H4-H5	hA	0.012	1.3581	0.0300
	C2-C3	cA	-0.447	1.9923	0.0700
	H2-H3	hA	0.155	1.3581	0.0300
	C1	cA	0.227	1.9923	0.0700
	H1	hA	0.065	1.3581	0.0300
Pyridazine (1P2)	N1-N2	nC	-0.331	1.8240	0.1700
	C3-C4	cA	0.378	1.9923	0.0700
	H3-H4	hA	-0.009	1.3581	0.0300
	C1-C2	cA	-0.160	1.9923	0.0700
	H1-H2	hA	0.122	1.3581	0.0300
Pyrimidine (1P3)	N1-N2	nC	-0.839	1.8240	0.1700
	C4	cQ	0.874	1.9923	0.0700
	H4	hA	-0.032	1.3581	0.0300
	C2-C3	cA	0.653	1.9923	0.0700
	H2-H3	hA	0.011	1.3581	0.0300
	C1	cA	-0.689	1.9923	0.0700
	H1	hA	0.197	1.3581	0.0300
Pyrazine (1P4)	N1-N2	nC	-0.468	1.8240	0.1700
	C1-C4	cA	0.192	1.9923	0.0700
	H1-H4	hA	0.0420	1.3581	0.0300
Benzene (BNZ)	C1-C6	cA	-0.115	1.9923	0.0700
	H1-H6	hA	0.115	1.3581	0.0300
Phenol (IPH)	O1	oH	-0.585	1.7729	0.1700
	H6	hO	0.435	0.0000	0.0000
	C1	cA	0.150	1.9923	0.0700
	C2-C6	cA	-0.115	1.9923	0.0700
	H1-H5	hA	0.115	1.3581	0.0300

* Note that the change in the typical capital letters for Atom Types was used to uniquely identify the solvent probes from the atom types used for protein atoms.
SI Figure S1: Two-dimensional representation of probe molecules.

Isopropanol (IPA)

Acetone (ACE)

Acetonitrile (ACN)

N-Methylacetamide (NMA)

Imidazole (IMI)
Pure-Solvent Simulations

Agreement of our probe parameters with experimental results (MSDS and CRC) was assessed by comparing the computational and experimental densities. The computational density was obtained from the simulation output for the average density over the 5-ns production run as generated by *sander*. All of the pure liquid simulations correctly reproduced the experimental density values within an accuracy of approximately 4% for all solvents except ACN, IMI, and 1P3 (SI SI Table S1). An error of 5.2% for ACN was expected since Grabuleda *et al.* obtained a calculated density of 0.736 g/mL (error of 5.2%) in their parameter development. The error of 7.3% for imidazole is misleading since the experimental density was obtained at a temperature of 374K, however the value is relevant as an illustration of the adequate reproduction of the fundamental behavior of the solvent. The computational densities for the same probe (ACE, IPA, or NMA) simulated from different parameters (AMBER or OPLS) demonstrated that the AMBER parameters reproduced experimental densities for pure solvent more closely. However, as we found with our studies of IPA+H2O, replication of the correct density in a pure solvent simulation was not an adequate justification for the use of a parameter set. As a result, RDF calculations of the distribution of probe density became the key metric for appropriate behavior of a solvent probe within a mixed-solvent setting.
SI Table S1. Comparison of density from MD simulation to experimental results.

Probe	Calculated Density (g/mL)	Experimental Densitya (g/mL) (CRC)	Error (%)
Isopropanol (IPAOPLS)	0.8001±0.0051	0.7809	2.5
Isopropanol (IPASeco)	0.7809±0.0536	0.7809	0
Acetonitrile (ACN)	0.7359±0.0060	0.777b	5.3
Acetone (ACE)*	0.8137±0.0041	0.7845	3.7
Acetone (ACE)†	0.7795±0.0246	0.7845	0.64
N-Methylacetamide (NMA)*	0.9517±0.0043	0.9371	1.6
N-Methylacetamide (NMA)†	0.9366±0.0068	0.9371	0.053
Imidazole (IMI)*	1.1053±0.0056	1.0303374K	7.3
Pyridine (PYR)*	0.9647±0.0061	0.9819293K	1.8
Pyridazine (1P2)*	1.0589±0.0040	1.1035295K	4.0
Pyrimidine (1P3)*	1.0928±0.0059	1.0160	7.6
Pyrazine (1P4)*	1.0447±0.0046	1.0311334K	1.3
Benzene (BNZ)*	0.8625±0.0066	0.8765293K	1.6
Phenol (IPH)*	1.0368±0.0058	1.0545318K	1.7

a at 298K unless otherwise noted in superscript
b compared to density used by Grabuleda et al.
*OPLS parameters. †AMBER parameters.

SI Table S3. Composition of mixed-solvent boxes to achieve 50% w/w probe concentration.

Solvent Box	No. of Probe Molecules	No. of Water Molecules
IPA/H$_2$O	828	2779
ACE/H$_2$O	960	3061
NMA/H$_2$O	640	2567
IMI/H$_2$O	727	2743
PYR/H$_2$O	641	2804
1P2/H$_2$O	620	2726
1P3/H$_2$O	626	2797
1P4/H$_2$O	633	2827
BNZ/H$_2$O	602	2688
IPH/H$_2$O	506	2655
SI Figure S2. (A) N-N radial distribution function for ACN probe and (B) O-O radial distribution function for water in a mixed-solvent environment, both of which show that appropriate convergence to unity was observed for ACN+H₂O.

SI Figure S3. (A) O-O radial distribution function for ACE probe, (B) N-N radial distribution function for ACN probe, and (C) O-O radial distribution function for water in a mixed-solvent environment composed of ACE+ACN+H₂O. Convergence to unity was seen for all three solvent probe types.