Supplementary Material

Enhancement on electromagnetic interference shielding from synergism between Cu@Ni nanorods and carbon materials in flexible composite films

Ruosong Li 1 *, Shuai Wang 2, Peiwei Bai 2, Bingbing Fan 3, Biao Zhao 2,3 *, Rui Zhang 2,3

1 School of Chemical Engineering, Northwest University, Xi’an, Shaanxi, 710069, China;
2 Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Mechatronics Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan, 450046, PR China
3 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China

* Corresponding Authors

Dr. Ruosong Li,
E-mail: ruosongli@nwu.edu.cn

Dr. Biao Zhao
E-mail: biao_zhao@zua.edu.cn
Cu@Ni content in composite film (wt%)	0.6	1.2	2	4	6	8
PVDF (g)	8.54	8.48	8.60	8.20	8.00	7.80
Cu@Ni (g)	0.06	0.12	0.20	0.40	0.60	0.80
Fig. S1. (a) XRD patterns (b-c) and SEM images of the Cu@Ni rods.
Fig. S2. S_{EA} (solid) and S_{ER} (hollow) of the composite films at the frequency from 18 GHz to 26 GHz;
Table S2. EMI Shielding Performance of Polymer Composites

Filler type	Filler	Matrix	Filler	SE (dB)	t (mm)	Ref.
CNT/graphene/Cu@Ni	rGO/δ-Fe₂O₃	PVDF	6 w/\% CNT/8 w/\% graphene/8 w/\% Cu@Ni	47.6	0.3	This work
CNT	rGO/CF/γ-Fe₂O₃	Resin	50 w/\%	41.8	0.4	[2]
CNT	rGO/Fe₃O₄	PVA	35 w/\%	15	0.36	[3]
CNT	Ag/carbon filler	Epoxy	4.5 w/\%	38	2.5	[4]
CNT	CNT	PVDF	5 w/\%	35.4	0.4	[5]
CNT	MWCNT	PMMA	40 w/\%	27	0.165	[6]
CNT	SWCNT	EDOT	15 w/\%	58	2.8	[7]
CNT	CNT	WPU	76.2 w/\%	50	2	[8]
CNT	Cellulose/MXCNT	Cellulose	15 w/\%	35	0.15	[9]
CNT	CNT	PP	7.5 w/\%	22.3	0.34	[10]
Graphene	Graphene	PI	16 w/\% graphene	21	0.8	[11]
Graphene/CNT	Graphene/CNT	PVDF	5 w/\% CNT	36.5	0.25	[5]
Graphite	Graphite	SEBS	15 w/\%	20	5	[12]
Graphite	Graphite	PA66	25 w/\%	12	3.2	[13]
Graphite	Graphite	Epoxy	2 w/\%	11	2	[14]
Graphite	Graphite	PE	18.7 w/\%	33	3	[15]
Metals	Ag Nanowires	PS	2.5 w/\%	33	0.8	[16]
Metals	Cu Nanowires	PS	2.1 w/\%	35	0.2	[17]
Metals	Ni-Co Fiber	WAX	30 w/\%	41.2	2.5	[18]
Metals	Ni	PVDF	40 w/\%	23	1.95	[19]
Table S3. SE/t values of various PVDF-based shielding materials

Polymer matrix	Conductive filler	t (mm)	SE (dB)	SE/t (dB·mm⁻¹)	Ref.
PVDF	6 wt% CNT/8 wt% graphene/8 wt% Cu@Ni	0.3	47.6	158.8	This study
	5 wt% Fe₂O₄/8 wt% graphene	1.1	35.6	32.4	[20]
	10 wt% Ni chain	2	21	10.5	[21]
	1 wt% CNT/6 wt% Ni chain	0.6	57.3	95.5	[22]
	5 wt% graphene nanoplatelets/8 wt% Ni chain	0.6	55.8	93	[22]
	5 wt% Fe₂O₄/ wt% 8 CNT	1.1	32.7	29.7	[23]
	6 wt% CNT/6 wt% Co chain	0.3	35.3	117.6	[24]
	3 wt% CNT/2.2 vol % Co nanowires	1	35	35	[25]
	50 wt% bulk Ti₃C₂Tx	1	34.4	34.49	[26]
	10 wt% MWCNT/12 wt% Ni@CNT	0.5	46.6	93.2	[27]
	50 vol% carbonyl iron powder	1.2	20	16.7	[28]
	2.7 vol. % MWCNT/22 vol.% ethylene-a-octene block copolymer	2.0	34	17	[29]
	1 wt% IL-MWCNT + 2 vol% BT–GO	5.0	26	5.2	[30]
	5 wt % CF/15 wt% CB	4.0	30	7.5	[30]
	9.5 wt% Graphene/silicon carbide nanowires (2:1),	1.2	32.5	27.1	[32]
PU	6.7 wt% MWCNT	3	60	20	[33]
PLLA	10 wt% MWCNT	2.5	23	9.2	[34]
UHMWPE	10 wt% MWCNT	1	50	50	[35]
Epoxy	0.66 wt% 3D CNT	2	33	15.5	[36]
PMMA	20 wt% SWCNT	4.5	30	6.7	[37]
PDMS	0.8 wt% graphene	1	21	21	[38]
PU foam	10 wt% graphene	60	57.7	0.96	[39]
PS	10 wt% functionalized graphene	2.8	18	6.4	[40]
Porous PS	30 wt% graphene	2.5	29	11.6	[41]

References
[1] B. Yuan, et al., Carbon 75 (2014) 178-189.
[2] A.P. Singh, et al., Carbon 50 (10) (2012) 3868-3875.
[3] B.V.B. Rao, P. Yadav, R. Aepuru, H.S. Panda, S. Ogale, S.N. Kale, Phys. Chem. Chem. Phys. 17 (28) (2015) 18353-18363.
[4] J. Li, S. Qi, M. Zhang, Z. Wang, J. Appl. Polym. Sci. 132 (33) (2015).
[5] B. Zhao, C. Zhao, R. Li, S.M. Hamidinejad, C.B. Park, ACS Appl. Mater. Inter. 9 (24) (2017) 20873-20884.
[6] H. Kim, et al., Appl. Phys. Lett. 84 (4) (2004) 589-591.
[7] M. Farukh, A.P. Singh, S.K. Dhawan, Compos. Sci. Technol. 114 (114) (2015) 94-102.
