Hepatitis B virus genetic mutations and evolution in liver diseases

Tao Shen, Xin-Min Yan

Hepatitis B virus (HBV) belongs to the genus Orthohepadnavirus of the Hepadnaviridae family and is approximately 3.2 kb in length. Owing to a lack of proofreading capacity during reverse transcription and a high replication rate, HBV exhibits as quasispecies. To detect the genetic mutations of HBV, many methods with different sensitivities and throughputs were developed. According to documentary records, HBV mutation and evolution were important via parameters in predicting disease progression and therapeutic outcome. In this review, we separately discussed the correlation between HBV genomic mutations in four open reading frames and liver disease progression. Since some of the results were controversial from different laboratories, it remains to be seen whether functional analyses will confirm their role in modifying the course of infection.

© 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: Hepatitis B virus; Mutation; Genotype; Liver disease; Risk markers

Core tip: Understanding the characteristics of hepatitis B virus (HBV) is crucial for early diagnosis and optimized treatment. In this review, we reviewed the technologies being used in the evolutionary and mutational analysis of HBV and introduced a high throughput method of deep sequencing for HBV (ultra-highthroughput next generation sequencing technology). And then, we separately discussed the correlation between HBV genomic mutations in four open reading frames and liver disease progression. Since some of the results were controversial from different laboratories, it remains to be seen whether functional analyses will confirm their role in modifying the course of infection.

INTRODUCTION

Hepatitis B virus (HBV) belongs to the genus Orthohepadnavirus of the Hepadnaviridae family and is approximately 3.2 kb in length with four overlapping open reading frames.
frames (ORFs) encoding the polymerase (P), core (C), surface antigen (S), and X protein. Based on ≥ 8% intergenotype divergences in the entire genome, HBV has been classified into at least ten different genotypes, named A-J[7]. In addition, subgroups have been reported in different genotypes of HBV[8,9]. As documented in many studies, HBV exhibits a mutation rate more than 10-fold higher than that of other DNA viruses and exists as quasispecies, owing to a lack of proofreading capacity during reverse transcription and a high replication rate.

METHODS FOR DETECTION HBV GENETIC MUTATIONS

HBV DNA was almost simultaneously cloned and sequenced in 1978 by three pioneers[7-10]. From then on, several methods have been developed to determine the HBV genome and its genetic mutations[11-13], including polymerase chain reaction (PCR) amplification and direct Sanger sequencing[14,15], restriction fragment length polymorphism[16], line probe assay[17,18], enzyme-linked immunoassay[19], clone-based sequencing (CBS)[20,21], real-time PCR (RT-PCR) assay, fluorescence resonance energy transfer (FRET)-based RT-PCR assay[22], and hybridization-fluorescence polarization assay[23]. Among these methods, direct PCR sequencing detects mutations present in ≥ 20% of the circulating virus population (on average). Clone-based sequencing has a higher sensitivity for detecting low-prevalence HBV mutations and has been commonly used for detecting HBV heterogeneity. However, its throughput limitation and time-consuming nature can not be satisfied with the growing need for HBV complexity and diversity analysis. In recent years, ultra-high-throughput next generation sequencing (NGS) technology is used in the HBV heterogeneity analysis[24,25]. It is more sensitive and efficient in terms of low abundant variation detection (< 20% minority variants) than that by CBS method[26], and can simultaneously detect mutations in different HBV gene regions[27], thus sheds light on the future clinical application of NGS in HBV quasispecies studies.

HBV GENOTYPING IN LIVER DISEASES

HBV genotype is an important viral parameter in predicting disease progression and therapeutic outcome[28-33]. Many population-based or community-based long-term cohort studies showed that genotype is one of the high risk factors for liver disease progression. More than a decade followed-up studies revealed that persons in the inactive phase of hepatitis B with genotype B were at a high risk of reactivation[34], and HIV-infected patients with HBV genotype B were more likely to experience acute exacerbations of hepatitis and liver disease-related death than those with genotype C coinfection[35]. Other cohort studies revealed that compared with genotypes A and B cases, HBV genotypes C and D infection is associated with higher prevalence of basal core promoter mutation and a higher risk of hepatocellular carcinoma (HCC)[36-38]. These observations suggest pathogenic differences between HBV genotypes[39].

Several studies of standard interferon therapy showed that genotypes A and B were associated with better response to Peg-IFN-α-2a therapy and higher rates of HBeAg seroconversion compared to genotypes C and D[39,40,41], and HBV genotype B was an independent factor for HBeAg clearance[42]. Interestingly, other studies of pegIFN-α reported that genotypes A and D but not genotype B were associated with a higher rate of HBeAg seroconversion[43,44]. These discrepant results may be due to several intrinsic features and weaknesses in the majority of clinical trials conducted, such as different ethnicities and different patient enrollment criteria. Thus, guidelines from three regional bodies-AASLD, APASL and EASL-all stop short of recommending genotyping as part of the management of chronic hepatitis B[45,46]. Still, additional multicenter data on the relation between HBV genotypes and treatment response are needed before testing for HBV genotypes in clinical practice is recommended.

HBV GENETIC MUTATIONS AND EVOLUTION IN LIVER DISEASES

Many investigations demonstrated that during the progression of liver diseases, genetic mutations and evolution were observed in the HBV gene-coding regions, and some of them could be risk markers for liver injury (Table 1).

PreS1/S2/S ORF

The HBV S-ORF is composed of three forms of HBV surface genes: pre-S1, preS2, and S domain. The pre-S domain is the essential binding site for hepatocyte receptors and contains several epitopes for T or B cells. Mutations at this region may directly influence HBV infection and liver disease progression. Pre-S deletion was observed in chronic hepatitis B infection, fulminant hepatitis B, acute hepatitis B and HCC[47-49]. Several cross-sectional studies have shown an association between pre-S mutation and HCC[50,51]. Longitudinal observations demonstrated a gradual combination of pre-S deletion during the development of HCC, and patients with pre-S mutations had significantly higher 5-year cumulative incidences of HCC than those without (26.5% vs 5.7%, P < 0.001)[52]. Variation and deletion in the 3’ terminus of pre-S are also associated with occult HBV infection[53]. Besides deletion variation, a novel preS1 mutation, W4P/R was observed with the progression of liver diseases and male predominance from a Korean chronic cohort through a molecular epidemiologic study. These W4P/R mutants were significantly related to severe liver diseases [HCC and liver cirrhosis (12.4%, 19/153 patients) vs chronic hepatitis and carrier (1.1%, 1/94 patients), P < 0.001]. Interestingly, all of the W4P/R mutants were found only in the male gender, not in the female gender, which may in part provide the likely explanation for the relatively high ratio of male to female incidence in HCC.
Table 1 Possible risk markers for liver injury

ORF	Major Mutations	Clinical status	Ref.	
PreS1/S2/S				
preS deletion	CHB [49-51]			
FHB			[52,53]	
AHB			[54,55]	
HCC			[56-61,78]	
W4P/R			[62]	
male predominance	HCC and LC		[23]	
S				
T207A	LC	[63]		
T770C	HCC	GenBank no.AY206393		
C695	Occult infection	HCC and LC	[64]	
T207A	HBsAg(-)	[65-67]		
X				
A1762T/G1764A	LG, HCC	mild liver histology	[68,69,71,75-79]	
C1653T	LG, HCC	[75,77-79]	[72]	
T1735V	LG, HCC	[75,77-80]		
G1386M	LG, HCC	[75,77-80]		
B1499	LG, HCC	[75]		
G1613A	LG, HCC	[77,79]		
A1727G	LG, HCC	[76,77]		
G1757A	LG, HCC	[76,77]		
C1766T	LG, HCC	[76-78]		
T1758A	LG, HCC	[75-76]		
A1727G	HCC	[76]		
C1773T	HCC	[76]		
preC/C				
A1986T	FHB, HCC	[37,80]		
G1389A	HCC	[37]		
C193A or C1914T	HCC	[37]		
A2149C/T	HCC	[37]		
A2188T/C	HCC	[37]		
C2198A	HCC	[37]		
C2444A/T	HCC	[37]		
core antigen	CHB	[82,83]		
internal deletions	HCC	[84]		
immune-suppressed patients	[85]			
P				
G741H	HCC	[89,93]		
CHB	[90-93]			

ORF: Opening reading frame; HCC: Hepatocellular carcinoma; CHB: Chronic hepatitis B; FHB: Fulminant hepatitis B; AHB: Acute hepatitis B; LC: Liver cirrhosis.

X ORF

HBV-X protein is associated with the pathogenesis of HBV related diseases, especially hepatocellular carcinoma in chronic patients. Genetic variability of the X gene includes genotypic specific variations and mutations emerging during chronic infection. The double mutation of nucleotide A1762T/G1764A in basal core promoter (BCP) is frequently observed in HBV sequences isolated from patients with chronic HBV infection, fulminant hepatitis, HCC, and in reactivation of HBV with a fulminant course\(^{66,69}\), which results in mutations at two codons in the carboxyl functional region of X protein (K130M and V131I). At present, there are conflicting opinions regarding 1762T/1764A hotspot mutations. Some studies suggest that these mutations decrease HBeAg expression and slightly increase viral DNA replication, and are mostly found in patients who seroconvert to anti-HBe and develop HCC\(^{70-72}\). By contrast, other studies indicate that these mutations are not associated with HBeAg/anti-HBe status or HBV DNA or HCC\(^{73,74}\). Other mutations including M1386, T1485, B1499, A1613, T1653, G1727, A1757/T1764/G1766, T1773, G or C1753, and T1766/A1768 mutations have been reported to be associated with the development of HCC\(^{75-79}\), which are alone and/or in combination to be the predictive markers for hepatocarcinogenesis.

PreCore/core ORF

HBV precore/core ORF encoding proteins, hepatitis B e antigen (HBeAg) and core antigen (HBcAg), are two indicators of active viral replication. Mutations in the C region were mainly distributed in MHC restricted region. In particular, mutations in the MHC class II restricted region (in M2RR) were found to be significantly related to HCC. Six (preC-W28*, C-P5H/L/T, C-E83D, C-197F/L, C-L100I and C-Q182K/*) and seven types (preC-W28*, preC-G29D, C-D32N/H, C-E43K, C-I97F/L, C-L100I and C-Q182K/*) of mutations in the preC/C region were found to be related to HCC and to affect the HBeAg serostatus, respectively\(^{17,80}\). However, children with HBV infection in the immune-tolerance phase had not have pre-w28* mutation, suggests that this mutation may be the result of life-long chronic HBV infection\(^{80}\). Also, a heterogeneous population of core antigen internal deletions (CID) has been found to be highly prevalent in chronic HBV carriers\(^{81,82,83}\), HCC patients\(^{84}\) and immunosuppressed patients\(^{8,83}\), suggesting that the host immune pressure against T cells is the major driving force of preC/C mutation\(^{86-88}\).

Polymerase ORF

Mutations in the reverse transcriptase domain and different HBV genotypes may result in changes in amino acid sequence and protein configuration of HBV polymerase. Prior research has suggested that lamivudine is the major cause of YMDD mutations in HBV P-ORF.
and lamivudine-related YMDD mutation is an independent risk factor for HCC.[98] However, the mechanism remains unclear. Further research has revealed that strains with YMDD mutations also exist in patients with chronic HBV infection not previously treated with lamivudine.[99-101] A recent research showed that spontaneous YMDD mutations were detected in LC and HCC patients, and genotype C strains in HCC patients had a significantly higher spontaneous YMDD mutation rate than in LC patients, and was associated with a 7.775-fold higher risk for the development of HBV-related HCC than patients infected by other type HBV strains (P = 0.013, 95% CI: 1.540-39.264). This may have been caused by different genotype strains having different biological properties, pathogenicity and carcinogenicity.[102]

In all, understanding the characteristics of hepatitis B virus is crucial for early diagnosis and optimized treatment. There is great need to develop methodologies that take into account both factors from the host and the pathogen. Many of candidate mutations seem unexpected given our current knowledge of the molecular genetics of HBV. Thus, it remains to be seen whether functional analyses will confirm their role in modifying the course of HBV. Thus, it remains to be seen whether functional analyses will confirm their role in modifying the course of HBV. It remains uncertain whether functional analyses will confirm their role in modifying the course of HBV.

REFERENCES

1. Okamoto H, Tsuda F, Sakugawa H, Sastrosoewignjo RL, Imai M, Miyakawa Y, Mayumi M. Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. J Gen Virol 1988; 69 (Pt 10): 2575-2583 [PMID: 3171552]

2. Schaefer S. Hepatitis B virus taxonomy and hepatitis B virus genotypes. World J Gastroenterol 2007; 13: 14-21 [PMID: 17206751]

3. Shi W, Zhang Z, Ling C, Zheng W, Zhu C, Carr MJ, Higgin DG. Hepatitis B virus subgenotyping: history, effects of recombinators, misclassifications, and corrections. Infect Genet Evol 2013; 16: 355-361 [PMID: 23538336 DOI: 10.1016/j.meegid.2013.03.021]

4. Liu WC, Phiet PH, Chiang TY, Sun KT, Hung KH, Young YC, Wu IC, Cheng PN, Chang TT. Five subgenotypes of hepatitis B virus genotype B with distinct geographic and virological characteristics. Virus Res 2007; 129: 212-223 [PMID: 17825452]

5. Norder H, Couroucé AM, Coursgat P, Echevarría JM, Lee SD, Mushawar IK, Robertson BH, Locarnini S, Magnus LO. Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes, and HBsAg subtypes. Interntovirology 2004; 47: 289-309 [PMID: 15564741]

6. Shi W, Zhu C, Zheng W, Zheng W, Ling C, Carr MJ, Higgin DG, Zhang Z. Subgenotyping of genotype C hepatitis B virus: correcting misclassifications and identifying a novel subgenotype. PLoS One 2012; 7: e47271 [PMID: 23077582 DOI: 10.1371/journal.pone.0047271]

7. Gerlich WH. Medical virology of hepatitis B: how it began and where we are now. Virol J 2013; 10: 239 [PMID: 23870415 DOI: 10.1186/1743-422X-10-239]

8. Charnay P, Pourcel C, Louise A, Fritsch A, Tiollais P. Cloning in Escherichia coli and physical structure of hepatitis B virus DNA. Proc Natl Acad Sci USA 1979; 76: 2222-2226 [PMID: 372794]

9. Valenzuela P, Gray P, Quiroga M, Zaldívar J, Goodman HM, Rutter WJ. Nucleotide sequence of the gene coding for the major protein of hepatitis B virus surface antigen. Nature 1979; 280: 815-819 [PMID: 471053]

10. Pasek M, Goto T, Gilbert W, Zink B, Schaller H, MacKay P, Leadbetter G, Murray K. Hepatitis B virus genes and their expression in E. coli. Nature 1979; 282: 575-579 [PMID: 399329]

11. Obha K, Mizokami M, Ohtsu T, Suzuki K, Orito E, Lau JY, Ina Y, Ikeo K, Gojobori T. Relationships between serotypes and genotypes of hepatitis B virus: genetic classification of HBV by use of surface genes. Virus Res 1995; 39: 25-34 [PMID: 8067280]

12. Nagasaki F, Niitsuma H, Cervantes JG, Chiba M, Hong S, Ojima T, Ueno Y, Bondoc E, Kobayashi K, Ishii M, Shimosogawa T. Analysis of the entire nucleotide sequence of hepatitis B virus genotype B in the Philippines reveals a new subgenotype of genotype B. J Gen Virol 2006; 87: 1175-1180 [PMID: 16603518]

13. Zumbika E, Ruan B, Xu CH, Ni Q, Hou W, Chen Z, Liu KZ. HBV genotype characterization and distribution in patients with HBV-related liver diseases in Zhejiang Province, P.R. China: possible association of co-infection with disease prevalence and severity. Hepatitis B: International Symposium 2005; 3: 553-554 [PMID: 16286258]

14. Werle B, Cinquín K, Marcellin P, Pol S, Maynard M, Trépo C, Zoulim F. Evolution of hepatitis B virus viral load and viral genome sequence during adefovir dipivoxil therapy. J Viral Hepat 2004; 11: 74-83 [PMID: 14738561]

15. Singla B, Chakraborti A, Sharma BK, Kapil S, Chawla YK, Arora SK, Das A, Dhiman RK, Duseja A. Hepatitis B virus reverse transcriptase mutations in treatment naïve chronic hepatitis B patients. J Med Virol 2013; 85: 1155-1162 [PMID: 23918533 DOI: 10.1002/jmv.23608]

16. Lindström A, Odeberg J, Albert J. Pyrosequencing for detection of lamivudine-resistant hepatitis B virus. J Clin Microbiol 2004; 42: 4788-4795 [PMID: 15472342 DOI: 10.1128/JCM.42.10.4788-4795,2004]

17. Mizokami M, Nakano T, Orito E, Tanaka Y, Sakugawa H, Mukaide M, Robertson BH. Hepatitis B virus genotype assignment using restriction fragment length polymorphism patterns. FEMS Lett 1999; 160: 67-71 [PMID: 10350099]

18. Ghahremani H, Shariﬁ Z, Hosseini SM, Mahmodian Shoostari M. Correlation between viral load of HBV in chronic hepatitis B patients and precore and Basal core promoter mutations. Hepat Mon 2013; 13: e7415 [PMID: 23599717 DOI: 10.5812/hepatmon.7415]

19. van Bommel F, Trojan J, Deterding K, Wedemeyer H, Wasmuth HE, Hüppe D, Möller B, Bock FJ, Feucht HH, Berg T. Evolution of adefovir-resistant HBV polymerase gene variants after switching to tenofovir disoproxil fumarate monotherapy. Antivir Ther 2012; 17: 1049-1058 [PMID: 22892542 DOI: 10.3851/IMP2307]

20. Usuda S, Okamoto H, Iwanari H, Baba K, Tsuda F, Miyakawa Y, Mayumi M. Serological detection of hepatitis B virus genotypes by ELISA with monoclonal antibodies to type-specific epitopes in the preS2-region product. J Virol Methods 1999; 80: 97-112 [PMID: 10460861]

21. Suzuki F, Hosaka T, Suzuki Y, Akuta N, Sezaki H, Hara T, Kawamura Y, Kobayashi M, Saitoh S, Arase Y, Ikeda K, Kobayashi M, Watahiki S, Mineta R, Kumada H. Long-term efficacy and emergence of multidrug resistance in patients with lamivudine-refractory chronic hepatitis B treated by combination therapy with adefovir plus lamivudine. J Gastroenterol 2013 Aug 9; Epub ahead of print [PMID: 2392069]

22. Chen L, Zheng CX, Lin MH, Huang ZX, Chen RH, Li QQ, Li Q, Chen P. Distinct quasispecies characteristics and positive selection within precore/core gene in hepatitis B virus by use of surface genes. Virology 2013; 442: 239-246 [PMID: 23972864 DOI: 10.1016/j.virol.2013.02.003]
the risk of progression of liver diseases in chronic patients. J Clin Microbiol 2013; 51: 3928-3936 [PMID: 24025913]

24 Li D, Cheng H, Gong W, Jiang Y, Liang P, Zhang J. Detection of primary YMDD mutations in HBV-related hepatocellular carcinoma using hybridization-fluorescence polarization. J Viral Methods 2013; 187: 259-263 [PMID: 23178585 DOI: 10.1016/j.virmet.2012.11.017]

25 Lin KT, Shann YJ, Chau GY, HSu CN, Huang CY. Identification of latent biomarkers in hepatocellular carcinoma by ultra-deep whole-transcriptome sequencing. Oncogene 2013 Oct 21; Epub ahead of print [PMID: 24141781 DOI: 10.1038/onc.2013.424]

26 Gong L, Han Y, Chen L, Liu F, Hao P, Sheng J, Li RX, Yu DM, Gong QM, Tian F, Guo XK, Zhang XG. Comparison of next-generation sequencing and clone-based sequencing in analysis of hepatitis B virus reverse transcriptase quasispecies heterogeneity. J Clin Microbiol 2013; 51: 4087-4094 [PMID: 24088859]

27 Sede M, Ojeda D, Cassino L, Westergaard G, Vazquez M, Wu NH, Chen PJ, Lai MY, Chen DS. Hepatitis B virus genotype B in patients with chronic hepatitis B infection. J Hepatol 2002; 36: 54-58 [PMID: 23838671 DOI: 10.1016/j.jhep.2013.06.017]

28 Wai CT, Chu CJ, Hussain M, Lok AS. HBV genotype B is associated with better response to interferon therapy in HBeAg (+) chronic hepatitis than genotype C. Hepatology 2002; 36: 1425-1430 [PMID: 12447868]

29 Erhardt A, Blondin D, Hauck K, Sagir A, Kohlhe P, Heintges T, Haussinger D. Response to interferon alfa is hepatitis B virus genotype dependent: genotype A is more sensitive to interferon than genotype D. Gut 2005; 54: 1009-1013 [PMID: 15951551]

30 Janssen HL, van Zonneveld M, Senturk H, Zeeuwen S, Aka- car US, Kakaoglu Y, Simon C, So TM, Gerken G, de Man RA, Niesters HG, Zondervan P, Hansen B, Schalm SW; HBV 99-01 Study Group; Rotterdam Foundation for Liver Research. Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial. Lancet 2005; 365: 123-129 [PMID: 15639293]

31 Fan HB, Guo YB, Zhu YF, Chen AS, Zhou MX, Li Z, Xu LT, Ma XJ, Yan FM. Hepatitis B Virus Genotype B and High Expression of Interferon Alpha Receptor β Subunit are Associated With Better Response to Pegylated Interferon Alpha 2a in Chinese Patients With Chronic Hepatitis B Infection. Hepat Mon 2012; 12: 333-338 [PMID: 22783345 DOI: 10.5812/hepatomon.6173]

32 Chen CH, Lee CM, Hung CH, Hu TH, Wang JH, Wang JC, Lu SN, Changchien CS. Clinical significance and evolution of core promoter and precore mutations in HBeAg-positive patients with hepatitis B genotype B and C: a longitudinal study. Liver Int 2007; 27: 806-815 [PMID: 17617124]

33 Lau GK, Piratvisut T, Luo KK, Marcellin P, Thongsawat S, Cooksley G, Gane E, Fried MW, Chow WC, Paik SW, Chang WY, Berg T, Flisiak R, McCloud P, Pluck N. Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N Engl J Med 2005: 352: 2682-2695 [PMID: 15987917]

34 Boxall E, Sira J, Kaskar S, Workman J, Kelly D. Does genotype predict response to treatment in children infected with hepatitis B perinatally? J Med Virol 2012; 84: 1355-1360 [PMID: 22930499 DOI: 10.1002/jmv.23038]

35 Cooksley WG. Do we need to determine viral genotype in treating chronic hepatitis B? J Viral Hepat 2010; 17: 601-610 [PMID: 20529201 DOI: 10.1111/j.1365-2893.2010.01326.x]

36 Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology 2007; 45: 507-539 [PMID: 17256718]

37 European Association For The Study Of The Liver. EASL. Clinical Practice Guidelines: management of chronic hepatitis B. J Hepatol 2009; 50: 227-242 [PMID: 19054588 DOI: 10.1016/j.jhep.2008.10.001]

38 Liaw YF, Leung N, Kao JH, Piratvisut T, Gane E, Han KH, Guan R, Lau GK, Locarnini S. Chronic Hepatitis B Guideline: Working Party of the Asian-Pacific Association for the Study of the Liver. Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2008 update. Hepatol Int 2008; 2: 263-283 [PMID: 19669525 DOI: 10.1007/s12072-008-0908-3]

39 Shen T, Yang X, Zhang JP, Wang JL, Zuo RX, Li L, Wang LP. Evolution of Hepatitis B Virus in a Chronic HBV-Infected Patient over 2 Years. Hepat Res Treat 2011; 2011: 939148 [PMID: 21757212 DOI: 10.1155/2011/939148]

40 Shen T, Yan XM, Zou YL, Gao JM, Dong H. Virucologic characteristics of hepatitis B virus in patients infected via maternal-fetal transmission. World J Gastroenterol 2008; 14: 5674-5682 [PMID: 18837083]

41 Garfein RS, Bowler WA, Loney CM, Hutin YJ, Xia GL, Jawa- nnda J, Groom AV, Nainan OV, Murphy JS, Bell BP. Factors associated with fulminant liver failure during an outbreak among injection drug users with acute hepatitis B. Hepatol-
Anti-hepatitis B core antigen testing with detection and characterization of occult hepatitis B virus by an in-house nucleic acid testing among blood donors in Behrampur, Ganjam, Orissa in southeastern India: implications for transfusion. Virol J 2011; 8: 204 [PMID: 20799931 DOI: 10.1186/1743-422X-8-204]

Yuen MF, Tanaka Y, Fong DY, Fung J, Wong DK, Yuen JC, But DY, Chan AO, Wong BC, Mizokami M, Lai C. Independent risk factors and predictive score for the development of hepaticcellular carcinoma in chronic hepatitis B. J Hepatol 2009; 50: 80-88 [PMID: 18977053 DOI: 10.1016/j.jhep.2008.07.023]

Yu H, Zhu R, Zhu YZ, Chen Q, Zhu HG. Effects of mutations in the X gene of hepatitis B virus on the virus replication. Acta Virol 2012; 56: 101-110 [PMID: 22726999]

Ochowoto M, Chauhan R, Gopalakrishnan D, Chen CY, Ng’ang’a Z, Okoth F, Kioko H, Kimotho J, Kaiguri P, Kramvis A. Genotyping and molecular characterization of hepatitis B virus in liver disease patients in Kenya. Infect Genet Evol 2013; 20: 103-110 [PMID: 23978387 DOI: 10.1016/j.meegid.2013.08.013]

Barbini I, Tadei L, Fernandez S, Bouzas B, Campos R. Molecular characterization of hepatitis B virus X gene in chronic hepatitis B patients. Viral J 2012; 9: 131 [PMID: 22769058 DOI: 10.1016/j.ijvirology.2012.09.022]

Sayed SK, Kobeisy MA. The relationship between core promoter mutation of hepatitis B virus, viral load and hepatitis B e antigen status in chronic hepatitis B patients. Cell Immunol 2012; 276: 35-41 [PMID: 22551558 DOI: 10.1016/j.cellimm.2012.03.003]

Chui SH, Chen JH, Szeto YT, Yam WC. Prevalence of hepatitis B genotype and viral basic core promoter and precore mutations among teenagers in Macao: relationship with hepaticcellular carcinoma development. Br J Biomed Sci 2011; 68: 143-146 [PMID: 21950207]

Choi CS, Cho EY, Park R, Kim SJ, Cho JH, Kim HC. X gene mutations in hepatitis B patients with cirrhosis, with and without hepaticcellular carcinoma. J Med Virol 2009; 81: 1721-1725 [PMID: 19697408 DOI: 10.1002/jmv.21591]

Khan A, Al Balwi MA, Tanaka Y, Hajeer A, Sanai FM, Al Abdulkarim I, Al Ayyar L, Badri M, Saudan O, Tamimi W, Mizokami M, Al Knawy B. Novel point mutations and mutational complexes in the enhancer II, core promoter and precore regions of hepatitis B virus genotype D1 associated with hepaticcellular carcinoma in Saudi Arabia. Int J Cancer 2013; 133: 2864-2871 [PMID: 23740667 DOI: 10.1002/ijc.28307]

Kilab B, Essaid El Feydi A, Alifi R, Trepo C, Benazzouz M, Essamri W, Zoulm F, Chemin I, Ali HS, Ezzikouri S, Benjeloun S. Variability in the prevalent and core promoter regions of HBV strains in Morocco: characterization and impact on liver disease progression. PLoS One 2012; 7: e42891 [PMID: 22905181 DOI: 10.1371/journal.pone.0042891]

Qu LS, Liu TT, Jin F, Guo YM, Chen TY, Ni ZP, Shen XZ. Combined pre-S deletion and core promoter mutations related to hepaticcellular carcinoma: A nested case-control study in China. Hepatol Res 2011; 41: 54-63 [PMID: 20973885 DOI: 10.1111/j.1877-0424.2010.00732.x]

Park YM, Jang JW, Yoo SH, Kim SH, Oh IM, Park SJ, Jang YS, Lee SJ. Combinations of eight key mutations in the X/preC region and genomic activity of hepatitis B virus are associated with hepaticcellular carcinoma. J Viral Hepat 2014; 21: 171-177 [PMID: 23444773 DOI: 10.1111/jvhe.12134]

Malik A, Singhal DK, Albanay A, Husain SA, Kar P. Hepatitis B virus gene mutations in liver diseases: a report from...
New Delhi. *PLoS One* 2012; 7: e39028 [PMID: 22720023 DOI: 10.1371/journal.pone.0039028]

81 Kang HS, Kang KS, Song BC. Precore and core promoter mutations of the hepatitis B virus gene in chronic genotype C-infected children. *J Korean Med Sci* 2011; 26: 546-550 [PMID: 21468262 DOI: 10.3346/jkms.2011.26.4.546]

82 Okamoto H, Tsuda F, Mayumi M. Defective mutants of hepatitis B virus in the circulation of symptom-free carriers. *Jpn J Exp Med* 1987; 57: 217-221 [PMID: 3430799]

83 Melegari M, Scaglioni PP, Wands JR. The small envelope protein is required for secretion of a naturally occurring hepatitis B virus mutant with pre-S1 deleted. *J Virol* 1997; 71: 5449-5454 [PMID: 9188617]

84 Hosono S, Tai PC, Wang W, Ambrose M, Hwang DG, Yuan TT, Peng BH, Yang CS, Lee CS, Shih C. Core antigen mutations of human hepatitis B virus in hepatomas accumulate in MHC class II-restricted T cell epitopes. *Virology* 1995; 212: 151-162 [PMID: 7545853]

85 Günther S, Li BC, Miska S, Krüger DH, Meisel H, Will H. A novel method for efficient amplification of whole hepatitis B virus genomes permits rapid functional analysis and reveals deletion mutants in immunosuppressed patients. *J Virol* 1995; 69: 5437-5444 [PMID: 7636898]

86 Thimme R, Chang KM, Pemberton J, Sette A, Chisari FV. Degenerate immunogenicity of an HLA-A2-restricted hepatitis B virus nucleocapsid cytotoxic T-lymphocyte epitope that is also presented by HLA-B51. *J Virol* 2001; 75: 3984-3987 [PMID: 11264388]

87 Ferrari C, Penna A, Giuberti T, Tong MJ, Ribera E, Fiaccadori F, Chisari FV. Intrahepatic, nucleocapsid antigen-specific T cells in chronic active hepatitis B. *J Immunol* 1987; 130: 2050-2058 [PMID: 2957446]

88 Milich DR, McLachlan A. The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen. *Science* 1986; 234: 1398-1401 [PMID: 3409125]

89 Hosaka T, Suzuki F, Kobayashi M, Hirakawa M, Kawamura Y, Yastuki H, Sezaki H, Akuta N, Suzuki Y, Saitoh S, Arase Y, Ikeda K, Miyakawa Y, Kumada H. Development of HCC in patients receiving adefovir dipivoxil for lamivudine-resistant hepatitis B virus mutants. *Hepatol Res* 2010; 40: 145-152 [PMID: 19789684 DOI: 10.1111/j.1872-034X.2009.00582.xHEP582]

90 Matsuda M, Suzuki F, Suzuki Y, Tsutoba A, Akuta N, Hosaka T, Someya T, Kobayashi M, Saitoh S, Arase Y, Satoh J, Takagi K, Kobayashi M, Ikeda K, Kumada H. Low rate of YMDD motif mutations in polymerase gene of hepatitis B virus in chronically infected patients not treated with lamivudine. *J Gastroenterol* 2004; 39: 34-40 [PMID: 14767732 DOI: 10.1007/s00535-003-1242]

91 Li D, Gu HX, Zhang SY, Zhong ZH, Zhuang M, Hattori T. YMDD mutations and genotypes of hepatitis B virus in northern China. *Jpn J Infect Dis* 2006; 59: 42-45 [PMID: 16495633]

92 Ou Z, Zhang Y, Zhang R, He Y, He X. Relationship between Mutation of HBV YMDD Motif and Pathogenesis of Hepatocellular Carcinoma. *Redai Yiye Zashi* 2008; 6: 525-528 [DOI: 10.3969/j.issn.1672-3619.2008.06.002]

93 Yang JH, Zhang H, Chen XB, Chen G, Wang X. Relationship between hepatocellular carcinoma and hepatitis B virus genotype with spontaneous YMDD mutations. *World J Gastroenterol* 2013; 19: 3861-3865 [PMID: 23840126 DOI: 10.3748/wjg.v19.i12.3861]

94 Yang HC, Chen CL, Shen YC, Peng CY, Liu CJ, Tseng TC, Su TH, Chuang WL, Yu ML, Dai CY, Liu CH, Chen P, Chen DS, Kao JH. Distinct evolution and predictive value of hepatitis B virus precore and basal core promoter mutations in interferon-induced hepatitis B e antigen seroconversion. *Hepatology* 2013; 57: 934-943 [PMID: 23112104 DOI: 10.1002/hep.26211]

95 Szmaragd C, Foster GR, Manica A, Bartholomeusz A, Nichols RA, Balloux F. Genome-wide characterisation of hepatitis B mutations involved in clinical outcome. *Hereditery (Edinb)* 2006; 97: 389-397 [PMID: 16896341]

P- Reviewers: Chun YH, Watanabe M S- Editor: Qi Y L- Editor: Wang TQ E- Editor: Ma S
