Sub-Manifolds of a Riemannian Manifold

Mehmet Atçeken, Ümit Yıldırım and Süleyman Dirik

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65948

Abstract

In this chapter, we introduce the theory of sub-manifolds of a Riemannian manifold. The fundamental notations are given. The theory of sub-manifolds of an almost Riemannian product manifold is one of the most interesting topics in differential geometry. According to the behaviour of the tangent bundle of a sub-manifold, with respect to the action of almost Riemannian product structure of the ambient manifolds, we have three typical classes of sub-manifolds such as invariant sub-manifolds, anti-invariant sub-manifolds and semi-invariant sub-manifolds. In addition, slant, semi-slant and pseudo-slant sub-manifolds are introduced by many geometers.

Keywords: Riemannian product manifold, Riemannian product structure, integral manifold, a distribution on a manifold, real product space forms, a slant distribution

1. Introduction

Let \(i : M \rightarrow \tilde{M} \) be an immersion of an \(n \)-dimensional manifold \(M \) into an \(m \)-dimensional Riemannian manifold \((\tilde{M}, \tilde{g})\). Denote by \(g = i^* \tilde{g} \) the induced Riemannian metric on \(M \). Thus, \(i \) becomes an isometric immersion and \(M \) is also a Riemannian manifold with the Riemannian metric \(g(X, Y) = \tilde{g}(X, Y) \) for any vector fields \(X, Y \) in \(M \). The Riemannian metric \(g \) on \(M \) is called the induced metric on \(M \). In local components, \(\tilde{g}_{ij} = g_{AB} B_i^B B_j^A \) with \(g = g_{\mu} dx^\mu dx^\nu \) and \(\tilde{g} = \tilde{g}_{BA} dU^B dU^A \).

If a vector field \(\xi_p \) of \(\tilde{M} \) at a point \(p \in M \) satisfies
\[
\tilde{g}(X_p, \xi_p) = 0
\]
for any vector \(X_p \) of \(M \) at \(p \), then \(\xi_p \) is called a normal vector of \(M \) in \(\tilde{M} \) at \(p \). A unit normal vector field of \(M \) in \(\tilde{M} \) is called a normal section on \(M \) [3].
By $T^\perp M$, we denote the vector bundle of all normal vectors of M in \tilde{M}. Then, the tangent bundle of \tilde{M} is the direct sum of the tangent bundle TM of M and the normal bundle $T^\perp M$ of M in \tilde{M}, i.e.,

$$T\tilde{M} = TM \oplus T^\perp M.$$ \hfill (2)

We note that if the sub-manifold M is of codimension one in \tilde{M} and they are both orientable, we can always choose a normal section ξ on M, i.e.,

$$g(X, \xi) = 0, \quad g(\xi, \xi) = 1,$$ \hfill (3)

where X is any arbitrary vector field on M.

By $\tilde{\nabla}$, denote the Riemannian connection on \tilde{M} and we put

$$\tilde{\nabla}_XY = \nabla_XY + h(X, Y)$$ \hfill (4)

for any vector fields X, Y tangent to M, where ∇_XY and $h(X, Y)$ are tangential and the normal components of $\tilde{\nabla}_XY$, respectively. Formula (4) is called the Gauss formula for the sub-manifold M of a Riemannian manifold (\tilde{M}, \tilde{g}).

Proposition 1.1. ∇ is the Riemannian connection of the induced metric $g = i^*\tilde{g}$ on M and $h(X, Y)$ is a normal vector field over M, which is symmetric and bilinear in X and Y.

Proof: Let α and β be differentiable functions on M. Then, we have

$$\tilde{\nabla}_{aX}(\beta Y) = \nabla_{aX}(\beta Y) + \beta \nabla_{aX}Y$$

$$= a\{X(\beta)Y + \beta \nabla_XY + \beta h(X, Y)\}$$

$$\nabla_{aX}\beta Y + h(aX, \beta Y) = a\beta \nabla_XY + aX(\beta)Y + a\beta h(X, Y)$$ \hfill (5)

This implies that

$$\nabla_{aX}(\beta Y) = aX(\beta)Y + a\beta \nabla_XY$$ \hfill (6)

and

$$h(aX, \beta Y) = a\beta h(X, Y).$$ \hfill (7)

Eq. (6) shows that ∇ defines an affine connection on M and Eq. (4) shows that h is bilinear in X and Y since additivity is trivial [1].

Since the Riemannian connection $\tilde{\nabla}$ has no torsion, we have

$$0 = \tilde{\nabla}_X Y - \tilde{\nabla}_Y X - [X, Y] = \nabla_X Y + h(X, Y) - \nabla_Y X - h(Y, X) - [X, Y].$$ \hfill (8)

By comparing the tangential and normal parts of the last equality, we obtain
\[\nabla_X Y - \nabla_Y X = [X, Y] \]
(9)

and

\[h(X, Y) = h(Y, X). \]
(10)

These equations show that \(\nabla \) has no torsion and \(h \) is a symmetric bilinear map. Since the metric \(\tilde{g} \) is parallel, we can easily see that

\[
(\nabla_X g)(Y, Z) = (\tilde{\nabla}_X \tilde{g})(Y, Z) \\
= \tilde{g}(\tilde{\nabla}_X Y + h(X, Y), Z) + \tilde{g}(Y, \tilde{\nabla}_X Z + h(X, Z)) \\
= \tilde{g}(\nabla_X Y, Z) + \tilde{g}(Y, \nabla_X Z) \\
= g(\nabla_X Y, Z) + g(Y, \nabla_X Z)
\]
(11)

for any vector fields \(X, Y, Z \) tangent to \(M \), that is, \(\nabla \) is also the Riemannian connection of the induced metric \(g \) on \(M \).

We recall \(h \) the second fundamental form of the sub-manifold \(M \) (or immersion \(i \)), which is defined by

\[h : \Gamma(TM) \times \Gamma(TM) \to \Gamma(T^1M). \]
(12)

If \(h = 0 \) identically, then sub-manifold \(M \) is said to be totally geodesic, where \(\Gamma(T^1M) \) is the set of the differentiable vector fields on normal bundle of \(M \).

Totally geodesic sub-manifolds are simplest sub-manifolds.

Definition 1.1. Let \(M \) be an \(n \)-dimensional sub-manifold of an \(m \)-dimensional Riemannian manifold \((\tilde{M}, \tilde{g}) \). By \(h \), we denote the second fundamental form of \(M \) in \(\tilde{M} \).

\[H = \frac{1}{n} \text{trace}(h) \] is called the mean curvature vector of \(M \) in \(\tilde{M} \). If \(H = 0 \), the sub-manifold is called minimal.

On the other hand, \(M \) is called pseudo-umbilical if there exists a function \(\lambda \) on \(M \), such that

\[\tilde{g}\left(h(X, Y), H\right) = \lambda g(X, Y) \]
(13)

for any vector fields \(X, Y \) on \(M \) and \(M \) is called totally umbilical sub-manifold if

\[h(X, Y) = g(X, Y)H. \]
(14)

It is clear that every minimal sub-manifold is pseudo-umbilical with \(\lambda = 0 \). On the other hand, by a direct calculation, we can find \(\lambda = \tilde{g}(H, H) \) for a pseudo-umbilical sub-manifold. So, every
totally umbilical sub-manifold is a pseudo-umbilical and a totally umbilical sub-manifold is totally geodesic if and only if it is minimal [2].

Now, let \(M \) be a sub-manifold of a Riemannian manifold \((\tilde{M}, \tilde{g}) \) and \(V \) be a normal vector field on \(M \), \(X \) be a vector field on \(M \). Then, we decompose

\[
\tilde{\nabla}_X V = -A_V X + \nabla^\perp_X V, \tag{15}
\]

where \(A_V X \) and \(\nabla^\perp_X V \) denote the tangential and the normal components of \(\nabla^\perp_X V \), respectively.

We can easily see that \(A_V X \) and \(\nabla^\perp_X V \) are both differentiable vector fields on \(M \) and normal bundle of \(M \), respectively. Moreover, Eq. (15) is also called Weingarten formula.

Proposition 1.2. Let \(M \) be a sub-manifold of a Riemannian manifold \((\tilde{M}, \tilde{g}) \). Then

(a) \(A_V X \) is bilinear in vector fields \(V \) and \(X \). Hence, \(A_V X \) at point \(p \in M \) depends only on vector fields \(V_p \) and \(X_p \).

(b) For any normal vector field \(V \) on \(M \), we have

\[
g(A_V X, Y) = g\left(h(X, Y), V\right). \tag{16}
\]

Proof: Let \(\alpha \) and \(\beta \) be any two functions on \(M \). Then, we have

\[
\tilde{\nabla}_{aX} (\beta V) = a \tilde{\nabla}_X (\beta V)
\]

\[
= a \{ X(\beta) V + \beta \tilde{\nabla}_X V \}
\]

\[
- A_{\beta V} aX + \nabla^\perp_{aX} \beta V = aX(\beta) V - a\beta A_V X + a\beta \nabla^\perp_X V. \tag{17}
\]

This implies that

\[
A_{\beta V} aX = a\beta A_V X \tag{18}
\]

and

\[
\nabla^\perp_{aX} \beta V = aX(\beta) V + a\beta \nabla^\perp_X V. \tag{19}
\]

Thus, \(A_V X \) is bilinear in \(V \) and \(X \). Additivity is trivial. On the other hand, since \(g \) is a Riemannian metric,

\[
X_{\tilde{g}}(Y, V) = 0, \tag{20}
\]

for any \(X, Y \in \Gamma(TM) \) and \(V \in \Gamma(T^\perp M) \).

Eq. (12) implies that

\[
\tilde{g}(\tilde{\nabla}_X Y, V) + \tilde{g}(Y, \tilde{\nabla}_X V) = 0. \tag{21}
\]

By means of Eqs. (4) and (15), we obtain
\[\tilde{g}\left(h(X, Y), V\right) - g(A_V X, Y) = 0. \] (22)

The proof is completed [3].

Let \(M \) be a sub-manifold of a Riemannian manifold \((\tilde{M}, \tilde{g}) \), and \(h \) and \(A_V \) denote the second fundamental form and shape operator of \(M \), respectively.

The covariant derivative of \(h \) and \(A_V \) is, respectively, defined by

\[(\tilde{\nabla}_X h)(Y, Z) = \nabla^\perp_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z) \] (23)

and

\[(\nabla_X A)_V Y = \nabla_X (A_V Y) - A_{\nabla^\perp_X V} Y - A_V \nabla_X Y \] (24)

for any vector fields \(X, Y \) tangent to \(M \) and any vector field \(V \) normal to \(M \). If \(\nabla_X h = 0 \) for all \(X \), then the second fundamental form of \(M \) is said to be parallel, which is equivalent to \(\nabla_X A = 0 \). By direct calculations, we get the relation

\[g\left((\nabla_X h)(Y, Z), V\right) = g\left((\nabla_X A)_V Y, Z\right). \] (25)

Example 1.1. We consider the isometric immersion

\[\phi : \mathbb{R}^2 \to \mathbb{R}^4, \]

\[\phi(x_1, x_2) = (x_1, \sqrt{x_1^2-1}, x_2, \sqrt{x_2^2-1}) \] (27)

we note that \(M = \phi(\mathbb{R}^2) \subset \mathbb{R}^4 \) is a two-dimensional sub-manifold of \(\mathbb{R}^4 \) and the tangent bundle is spanned by the vectors

\[TM = sp\left\{ e_1 = \left(\sqrt{x_1^2-1}, x_1, 0, 0\right), e_2 = \left(0, 0, \sqrt{x_2^2-1}, x_2\right) \right\} \]

and the normal vector fields

\[T^1M = sp\left\{ w_1 = \left(-x_1, \sqrt{x_1^2-1}, 0, 0\right), w_2 = (0, 0, -x_1, \sqrt{x_2^2-1}) \right\}. \] (28)

By \(\tilde{\nabla} \), we denote the Levi-Civita connection of \(\mathbb{R}^4 \), the coefficients of connection, are given by

\[\tilde{\nabla}_{e_1} e_1 = \frac{2x_1 \sqrt{x_1^2-1}}{2x_1^2-1} e_1 - \frac{1}{2x_1^2-1} w_1, \]

\[\tilde{\nabla}_{e_2} e_2 = \frac{2x_2 \sqrt{x_2^2-1}}{2x_2^2-1} e_2 - \frac{1}{2x_2^2-1} w_2 \] (29)
and

$$\nabla_{e_2} e_1 = 0.$$ \hfill (31)

Thus, we have $h(e_1, e_1) = -\frac{1}{2x_1^2 - 1} w_1$, $h(e_2, e_2) = -\frac{1}{2x_2^2 - 1} w_2$ and $h(e_2, e_1) = 0$. The mean curvature vector of $M = \phi(\mathbb{R}^2)$ is given by

$$H = -\frac{1}{2} (w_1 + w_2).$$ \hfill (32)

Furthermore, by using Eq. (16), we obtain

$$g(A_{w_1} e_1, e_1) = g(h(e_1, e_1), w_1) = -\frac{1}{2x_1^2 - 1} (x_1^2 + x_1^2 - 1) = -1,$$

$$g(A_{w_2} e_2, e_2) = g(h(e_2, e_2), w_1) = -\frac{1}{2x_2^2 - 1} g(w_1, w_2) = 0,$$

$$g(A_{w_1} e_1, e_2) = 0,$$

and

$$g(A_{w_2} e_1, e_1) = g(h(e_1, e_1), w_2) = 0,$$

$$g(A_{w_2} e_1, e_2) = 0, g(A_{w_2} e_2, e_2) = 1.$$ \hfill (34)

Thus, we have

$$A_{w_1} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad A_{w_2} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}. \hfill (35)$$

Now, let M be a sub-manifold of a Riemannian manifold (\tilde{M}, \tilde{g}), \tilde{R} and R be the Riemannian curvature tensors of \tilde{M} and M, respectively. From then the Gauss and Weingarten formulas, we have

$$\tilde{R}(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z$$

$$\begin{aligned}
&= \nabla_X \left(\nabla_Y Z + h(Y, Z) \right) - \nabla_Y \left(\nabla_X Z + h(X, Z) \right) - \nabla_{[X, Y]} Z - h([X, Y], Z) \\
&= \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_X h(Y, Z) - \nabla_Y h(X, Z) - \nabla_{[X, Y]} Z - h(X, Z) + h(Y, Z) \\
&\quad - A_{h(Y, Z)} X - A_{h(X, Z)} Y - \nabla_{h(X, Z)} Y - h(Y, Z) - h(X, Z) \\
&= R(X, Y) Z + (\nabla_X h)(Y, Z) - (\nabla_Y h)(X, Z) + A_{h(X, Z)} Y - A_{h(Y, Z)} X
\end{aligned} \hfill (36)$$
Next, we will define the curvature tensor \(\tilde{R}(X, Y)Z = R(X, Y)Z + A_{h(X,Z)}Y - A_{h(Y,Z)}X + (\nabla_X h)(Y, Z) - (\nabla_Y h)(X, Z) \) \((37) \)
for any vector fields \(X, Y \) and \(Z \) tangent to \(M \). For any vector field \(W \) tangent to \(M \), Eq. (37) gives the Gauss equation
\[
g(\tilde{R}(X, Y)Z, W) = g(R(X, Y)Z, W) + g(h(Y, W), h(X, Z)) - g(h(Y, Z), h(X, W)). \quad (38)
\]
On the other hand, the normal component of Eq. (37) is called equation of Codazzi, which is given by
\[
\left(\tilde{R}(X, Y) \right)^\bot = (\nabla_X h)(Y, Z) - (\nabla_Y h)(X, Z). \quad (39)
\]
If the Codazzi equation vanishes identically, then sub-manifold \(M \) is said to be curvature-invariant sub-manifold [4].

In particular, if \(\tilde{M} \) is of constant curvature, \(\tilde{R}(X, Y)Z \) is tangent to \(M \), that is, sub-manifold is curvature-invariant. Whereas, in Kenmotsu space forms, and Sasakian space forms, this is not true.

Next, we will define the curvature tensor \(R^\bot \) of the normal bundle of the sub-manifold \(M \) by
\[
R^\bot(X, Y)V = \nabla^\bot_X \nabla^\bot_Y V - \nabla^\bot_Y \nabla^\bot_X V - \nabla^\bot_{[X,Y]} V \quad (40)
\]
for any vector fields \(X, Y \) tangent to sub-manifold \(M \), and any vector field \(V \) normal to \(M \). From the Gauss and Weingarten formulas, we have
\[
\tilde{R}(X, Y)V = \tilde{\nabla}_X \tilde{\nabla}_Y V - \tilde{\nabla}_Y \tilde{\nabla}_X V - \tilde{\nabla}_{[X,Y]} V
\]
\[
= \tilde{\nabla}_X (-A_V Y + \nabla^\bot_X V) - \tilde{\nabla}_Y (-A_V X + \nabla^\bot_Y V) + A_V [X, Y] - \nabla^\bot_{[X,Y]} V
\]
\[
= -\nabla_X A_V Y + \tilde{\nabla}_Y A_V X + \tilde{\nabla}_X \nabla^\bot_Y V - \tilde{\nabla}_Y \nabla^\bot_X V + A_V [X, Y] - \nabla^\bot_{[X,Y]} V
\]
\[
= -\nabla_X A_V Y + \nabla_Y A_V X + h(Y, A_V X)
\]
\[
+ \nabla^\bot_X \nabla^\bot_Y V - \nabla^\bot_Y \nabla^\bot_X V - A_{V^\bot} V X + A_{V^\bot} Y + A_V [X, Y] - \nabla^\bot_{[X,Y]} V
\]
\[
= \nabla^\bot_X \nabla^\bot_Y V - \nabla^\bot_Y \nabla^\bot_X V - \nabla^\bot_{[X,Y]} V - A_{V^\bot} V X + A_{V^\bot} Y + A_V [X, Y]
\]
\[
- \nabla_X A_V Y + \nabla_Y A_V X + h(Y, A_V X)
\]
\[
= R^\bot(X, Y)V + h(A_V Y, X) - h(X, A_V Y) - (\nabla_X A)_V Y + (\nabla_Y A)_V X. \quad (41)
\]
For any normal vector \(U \) to \(M \), we obtain
\[
g\left(\tilde{R}(X, Y)V, U\right) = g\left(R^\perp(X, Y)V, U\right) + g\left(h(A_U X, Y), U\right) - g\left(h(X, A_V Y), U\right)
\]
\[
= g\left(R^\perp(X, Y)V, U\right) + g(A_U Y, A_V X) - g(A_V Y, A_U X)
\]
\[
= g\left(R^\perp(X, Y)V, U\right) + g(A_V A_U Y, X) - g(A_U A_V Y, X)
\]
(42)

Since \([A_U, A_V] = A_U A_V - A_V A_U\), Eq. (42) implies
\[
g\left(\tilde{R}(X, Y)V, U\right) = g\left(R^\perp(X, Y)V, U\right) + g([A_U, A_V]Y, X).
\]
(43)

Eq. (43) is also called the Ricci equation.

If \(R^\perp = 0\), then the normal connection of \(M\) is said to be flat [2].

When \(\left(\tilde{R}(X, Y)V\right)^\perp = 0\), the normal connection of the sub-manifold \(M\) is flat if and only if the second fundamental form \(M\) is commutative, i.e. \([A_U, A_V] = 0\) for all \(U, V\). If the ambient space \(\tilde{M}\) is real space form, then \(\left(\tilde{R}(X, Y)V\right)^\perp = 0\) and hence the normal connection of \(M\) is flat if and only if the second fundamental form is commutative. If \(\tilde{R}(X, Y)Z\) tangent to \(M\), then equation of codazzi Eq. (37) reduces to
\[
(\nabla_X h)(Y, Z) = (\nabla_Y h)(X, Z)
\]
(44)

which is equivalent to
\[
(\nabla_X A)Y = (\nabla_Y A)X.
\]
(45)

On the other hand, if the ambient space \(\tilde{M}\) is a space of constant curvature \(c\), then we have
\[
\tilde{R}(X, Y)Z = c\{g(Y, Z)X - g(X, Z)Y\}
\]
(46)

for any vector fields \(X, Y\) and \(Z\) on \(\tilde{M}\).

Since \(\tilde{R}(X, Y)Z\) is tangent to \(M\), the equation of Gauss and the equation of Ricci reduce to
\[
g\left(R(X, Y)Z, W\right) = c\{g(Y, Z)g(X, W) - g(X, Z)g(Y, W)\}
\]
\[
+ g\left(h(Y, Z), h(X, W)\right) - g\left(h(Y, W), h(X, Z)\right)
\]
(47)

and
\[
g\left(R^\perp(X, Y)V, U\right) = g([A_U, A_V]X, Y),
\]
(48)

respectively.
Proposition 1.3. A totally umbilical sub-manifold M in a real space form \tilde{M} of constant curvature c is also of constant curvature.

Proof: Since M is a totally umbilical sub-manifold of \tilde{M} of constant curvature c, by using Eqs. (14) and (46), we have

$$g(R(X, Y)Z, W) = c\{g(Y, Z)g(X, W) - g(X, Z)g(Y, W)\}$$

$$+ g(H, H)\{g(Y, Z)g(X, W) - g(X, Z)g(Y, W)\}$$

$$= \{c + g(H, H)\} \{g(Y, Z)g(X, W) - g(X, Z)g(Y, W)\}. \quad (49)$$

This shows that the sub-manifold M is of constant curvature $c + \|H\|^2$ for $n > 2$. If $n = 2$, $\|H\| = \text{constant}$ follows from the equation of Codazzi [3].

This proves the proposition.

On the other hand, for any orthonormal basis $\{e_a\}$ of normal space, we have

$$g(Y, Z)g(X, W) - g(X, Z)g(Y, W) = \sum_a \left[g(h(Y, Z), e_a) g(h(X, W), e_a) \right]$$

$$- g(h(X, Z), e_a) g(h(Y, W), e_a)$$

$$= \sum_a [g(A_{e_a} Y, Z)g(A_{e_a} X, W) - g(A_{e_a} X, Z)g(A_{e_a} Y, W)] \quad (50)$$

Thus, Eq. (45) can be rewritten as

$$g(R(X, Y)Z, W) = c\{g(Y, Z)g(X, W) - g(X, Z)g(Y, W)\}$$

$$+ \sum_a [g(A_{e_a} Y, Z)g(A_{e_a} X, W) - g(A_{e_a} X, Z)g(A_{e_a} Y, W)] \quad (51)$$

By using A_{e_a}, we can construct a similar equation to Eq. (47) for Eq. (23).

Now, let S be the Ricci tensor of M. Then, Eq. (47) gives us

$$S(X, Y) = c\{ng(X, Y) - g(e_i, X)g(e_i, Y)\}$$

$$+ \sum_{e_a} [g(A_{e_a} e_a, X)g(A_{e_a} Y) - g(A_{e_a} Y, X)g(A_{e_a} e_a, X)]$$

$$= c(n-1)g(X, Y) + \sum_{e_a} [Tr(A_{e_a})g(A_{e_a} X, Y) - g(A_{e_a} X, A_{e_a} Y)], \quad (52)$$

where $\{e_1, e_2, \ldots, e_n\}$ are orthonormal basis of M.

Therefore, the scalar curvature r of sub-manifold M is given by
\[r = cn(n-1) \sum_{n} Tr^2(A_{e_n}) - \sum_{n} Tr(A_{e_n})^2 \quad (54) \]

\[\sum_{n} Tr(A_{e_n})^2 \] is the square of the length of the second fundamental form of \(M \), which is denoted by \(|A_{e_n}|^2 \). Thus, we also have

\[\| h^2 \| = \sum_{i,j=1}^{n} g \left(h(e_i, e_j), h(e_i, e_j) \right) = \| A^2 \|. \quad (55) \]

2. Distribution on a manifold

An \(m \)-dimensional distribution on a manifold \(\tilde{M} \) is a mapping \(D \) defined on \(\tilde{M} \), which assigns to each point \(p \) of \(\tilde{M} \) an \(m \)-dimensional linear subspace \(D_p \) of \(T_{\tilde{M}}(p) \). A vector field \(X \) on \(\tilde{M} \) belongs to \(D \) if we have \(X_p \in D_p \) for each \(p \in \tilde{M} \). When this happens, we write \(X \in \Gamma(D) \). The distribution \(D \) is said to be differentiable if for any \(p \in \tilde{M} \), there exist \(m \)-differentiable linearly independent vector fields \(X_j \in \Gamma(D) \) in a neighborhood of \(p \).

The distribution \(D \) is said to be involutive if for all vector fields \(X, Y \in \Gamma(D) \) we have \([X, Y] \in \Gamma(D)\). A sub-manifold \(M \) of \(\tilde{M} \) is said to be an integral manifold of \(D \) if for every point \(p \in M \), \(D_p \) coincides with the tangent space to \(M \) at \(p \). If there exists no integral manifold of \(D \) which contains \(M \), then \(M \) is called a maximal integral manifold or a leaf of \(D \). The distribution \(D \) is said to be integrable if for every \(p \in \tilde{M} \), there exists an integral manifold of \(D \) containing \(p \) [2].

Let \(\tilde{\nabla} \) and distribution be a linear connection on \(\tilde{M} \), respectively. The distribution \(D \) is said to be parallel with respect to \(\tilde{M} \), if we have

\[\tilde{\nabla}_X Y \in \Gamma(D) \] for all \(X \in \Gamma(T\tilde{M}) \) and \(Y \in \Gamma(D) \) \((56) \)

Now, let \((\tilde{M}, \tilde{g})\) be Riemannian manifold and \(D \) be a distribution on \(\tilde{M} \). We suppose \(\tilde{M} \) is endowed with two complementary distribution \(D \) and \(D^\perp \), i.e., we have \(T\tilde{M} = D \oplus D^\perp \). Denoted by \(P \) and \(Q \) the projections of \(T\tilde{M} \) to \(D \) and \(D^\perp \), respectively.

Theorem 2.1. All the linear connections with respect to which both distributions \(D \) and \(D^\perp \) are parallel, are given by

\[\nabla_X Y = PV_XPY + QV_XQY + PS(X, PY) + QS(X, QY) \quad (57) \]

for any \(X, Y \in \Gamma(T\tilde{M}) \), where \(V \) and \(S \) are, respectively, an arbitrary linear connection and arbitrary tensor field of type \((1, 2) \) on \(\tilde{M} \).

Proof: Suppose \(\tilde{V} \) is an arbitrary linear connection on \(\tilde{M} \). Then, any linear connection \(V \) on \(\tilde{M} \) is given by
\[\nabla_X Y = \nabla_X' Y + S(X, Y) \quad (58) \]

for any \(X, Y \in \Gamma(T \tilde{M}) \). We can put
\[X = PX + QX \quad (59) \]

for any \(X \in \Gamma(T \tilde{M}) \). Then, we have
\[
\nabla_X Y = \nabla_X (PY + QY) = \nabla_X PY + \nabla_X QY = \nabla'_X PY + S(X, PY) \\
+ \nabla'_X QY + S(X, QY) = PV'_X PY + QV'_X PY + PS(X, PY) + QS(X, PY) \\
+ PV'_X QY + QV'_X QY + PD(X, QY) + QS(X, QY) \quad (60)
\]

for any \(X, Y \in \Gamma(T \tilde{M}) \).

The distributions \(D \) and \(D^\perp \) are both parallel with respect to \(\nabla \) if and only if we have
\[\phi(\nabla_X PY) = 0 \text{ and } P(\nabla_X QY) = 0. \quad (61) \]

From Eqs. (58) and (61), it follows that \(D \) and \(D^\perp \) are parallel with respect to \(\nabla \) if and only if
\[QV'_X PY + QS(X, PY) = 0 \text{ and } PV'_X QY + PD(X, QY) = 0. \quad (62) \]

Thus, Eqs. (58) and (62) give us Eq. (57).

Next, by means of the projections \(P \) and \(Q \), we define a tensor field \(F \) of type \((1,1)\) on \(\tilde{M} \) by
\[FX = PX - QX \quad (63) \]

for any \(X \in \Gamma(T \tilde{M}) \). By a direct calculation, it follows that \(F^2 = I \). Thus, we say that \(F \) defines an almost product structure on \(\tilde{M} \). The covariant derivative of \(F \) is defined by
\[(\nabla_X F)Y = \nabla_X FY - F\nabla_X Y \quad (64) \]

for all \(X, Y \in \Gamma(T \tilde{M}) \). We say that the almost product structure \(F \) is parallel with respect to the connection \(\nabla \), if we have \(\nabla_X F = 0 \). In this case, \(F \) is called the Riemannian product structure [2].

Theorem 2.2. Let \((\tilde{M}, \tilde{g})\) be a Riemannian manifold and \(D, D^\perp \) be orthogonal distributions on \(\tilde{M} \) such that \(T \tilde{M} = D \oplus D^\perp \). Both distributions \(D \) and \(D^\perp \) are parallel with respect to \(\nabla \) if and only if \(F \) is a Riemannian product structure.

Proof: For any \(X, Y \in \Gamma(T \tilde{M}) \), we can write
\[
\tilde{\nabla}_Y PX = \tilde{\nabla}_{PY} PX + \tilde{\nabla}_{QY} PX \quad (65)
\]

and

Sub-Manifolds of a Riemannian Manifold

http://dx.doi.org/10.5772/65948
\[\nabla Y X = \nabla_{PY} PX + \nabla_{PY} QX + \nabla_{QY} PX + \nabla_{QY} QX, \]
(66)

from which

\[g(\nabla_{QY} PX, QZ) = QY g(PX, QZ) - g(\nabla_{QY} QZ, PX) = 0 - g(\nabla_{QY} QZ, PX) = 0, \]
(67)

that is, \(V_{QY} PX \in \Gamma(\mathcal{D}) \) and so \(P\nabla_{QY} PX = \nabla_{QY} PX, \)

\[Q\nabla_{QY} PX = 0. \]
(68)

In the same way, we obtain

\[g(\nabla_{PY} QX, PZ) = PY g(QX, PZ) - g(QX, \nabla_{PY} PZ) = 0, \]
(69)

which implies that

\[P\nabla_{PY} QX = 0 \quad \text{and} \quad Q\nabla_{PY} QX = \nabla_{PY} QX. \]
(70)

From Eqs. (66), (68) and (70), it follows that

\[P\nabla_{Y} X = \nabla_{PY} PX + \nabla_{QY} PX. \]
(71)

By using Eqs. (64) and (71), we obtain

\[(\nabla_{Y} P)X = \nabla_{Y} PX - P\nabla_{Y} X = \nabla_{PY} PX + \nabla_{QY} PX - \nabla_{PY} PX - \nabla_{QY} PX = 0. \]
(72)

In the same way, we can find \(\nabla Q = 0. \) Thus, we obtain

\[\nabla F = \nabla (P - Q) = 0. \]
(73)

This proves our assertion [2].

Theorem 2.3. Both distributions \(\mathcal{D} \) and \(\mathcal{D}^\perp \) are parallel with respect to Levi-Civita connection \(\nabla \) if and only if they are integrable and their leaves are totally geodesic in \(\tilde{M} \).

Proof: Let us assume both distributions \(\mathcal{D} \) and \(\mathcal{D}^\perp \) are parallel. Since \(\nabla \) is a torsion free linear connection, we have

\[[X, Y] = \nabla_X Y - \nabla_Y X \in \Gamma(\mathcal{D}), \text{ for any } X, Y \in \Gamma(\mathcal{D}) \]
(74)

and

\[[U, V] = \nabla_U V - \nabla_V U \in \Gamma(\mathcal{D}^\perp), \text{ for any } U, V \in \Gamma(\mathcal{D}^\perp) \]
(75)

Thus, \(\mathcal{D} \) and \(\mathcal{D}^\perp \) are integrable distributions. Now, let \(M \) be a leaf of \(\mathcal{D} \) and denote by \(h \) the second fundamental form of the immersion of \(M \) in \(\tilde{M} \). Then by the Gauss formula, we have
for any \(X, Y \in \Gamma(D) \), where \(\nabla' \) denote the Levi-Civita connection on \(M \). Since \(D \) is parallel from Eq. (76) we conclude \(h = 0 \), that is, \(M \) is totally in \(\tilde{M} \). In the same way, it follows that each leaf of \(D^\perp \) is totally geodesic in \(\tilde{M} \).

Conversely, suppose \(D \) and \(D^\perp \) be integrable and their leaves are totally geodesic in \(\tilde{M} \). Then by using Eq. (4), we have

\[
\nabla_X Y \in \Gamma(D) \quad \text{for any} \quad X, Y \in \Gamma(D) \tag{77}
\]

and

\[
\nabla_U V \in \Gamma(D^\perp) \quad \text{for any} \quad U, V \in \Gamma(D^\perp). \tag{78}
\]

Since \(g \) is a Riemannian metric tensor, we obtain

\[
g(\nabla_Y Y, V) = -g(Y, \nabla_V V) = 0 \tag{79}
\]

and

\[
g(\nabla_Y V, Y) = -g(V, \nabla_Y Y) = 0 \tag{80}
\]

for any \(X, Y \in \Gamma(D) \) and \(U, V \in \Gamma(D^\perp) \). Thus, both distributions \(D \) and \(D^\perp \) are parallel on \(\tilde{M} \).

3. Locally decomposable Riemannian manifolds

Let \((\tilde{M}, \tilde{g})\) be \(n \)-dimensional Riemannian manifold and \(F \) be a tensor \((1,1)\)-type on \(\tilde{M} \) such that \(F^2 = I, F \neq \pm I \).

If the Riemannian metric tensor \(\tilde{g} \) satisfying

\[
\tilde{g}(X, Y) = \tilde{g}(FX, FY) \tag{81}
\]

for any \(X, Y \in \Gamma(T\tilde{M}) \) then \(\tilde{M} \) is called almost Riemannian product manifold and \(F \) is said to be almost Riemannian product structure. If \(F \) is parallel, that is, \((\nabla_X F)Y = 0 \), then \(\tilde{M} \) is said to be locally decomposable Riemannian manifold.

Now, let \(\tilde{M} \) be an almost Riemannian product manifold. We put

\[
P = \frac{1}{2} (I + F), \quad Q = \frac{1}{2} (I-F). \tag{82}
\]

Then, we have
\[P + Q = I, \quad P^2 = P, \quad Q^2 = Q, \quad PQ = QP = 0 \quad \text{and} \quad F = P - Q. \quad (83) \]

Thus, \(P \) and \(Q \) define two complementary distributions \(P \) and \(Q \) globally. Since \(F^2 = I \), we easily see that the eigenvalues of \(F \) are 1 and \(-1\). An eigenvector corresponding to the eigenvalue 1 is in \(P \) and an eigenvector corresponding to \(-1\) is in \(Q \). If \(F \) has eigenvalue 1 of multiplicity \(p \) and eigenvalue \(-1\) of multiplicity \(q \), then the dimension of \(P \) is \(p \) and that of \(Q \) is \(q \). Conversely, if there exist in \(\tilde{M} \) two globally complementary distributions \(P \) and \(Q \) of dimension \(p \) and \(q \), respectively. Then, we can define an almost Riemannian product structure \(F \) on \(\tilde{M} \) by \(\tilde{M} \) by \(F = P - Q \) [7].

Let \((\tilde{M}, \tilde{g}, F)\) be a locally decomposable Riemannian manifold and we denote the integral manifolds of the distributions \(P \) and \(Q \) by \(M^p \) and \(M^q \), respectively. Then we can write \(\tilde{M} = M^p \times M^q \), \((p, q > 2)\). Also, we denote the components of the Riemannian curvature \(R \) of \(\tilde{M} \) by \(R_{dcb} \) if \(1 \leq a, b, c, d \leq n = p + q \).

Now, we suppose that the two components are both of constant curvature \(\lambda \) and \(\mu \). Then, we have

\[R_{dcb} = \lambda \{ g_{da} S_{cb} - g_{ca} S_{db} \} \quad (84) \]

and

\[R_{zxyw} = \mu \{ g_{zv} S_{yx} - g_{yz} S_{vx} \}. \quad (85) \]

Then, the above equations may also be written in the form

\[R_{kij} = \frac{1}{4} (\lambda + \mu) \{ (g_{kh} S_{ji} - g_{jh} S_{ki}) + (F_{kh} F_{ji} - F_{jh} F_{ki}) \} \]

\[+ \frac{1}{4} (\lambda - \mu) \{ (F_{kh} S_{ji} - F_{jh} S_{ki}) + (g_{kh} F_{ji} - g_{jh} F_{ki}) \}. \quad (86) \]

Conversely, suppose that the curvature tensor of a locally decomposable Riemannian manifold has the form

\[R_{kij} = a \{ (g_{kh} S_{ji} - g_{jh} S_{ki}) + (F_{kh} F_{ji} - F_{jh} F_{ki}) \} \]

\[+ b \{ (F_{kh} S_{ji} - F_{jh} S_{ki}) + (g_{kh} F_{ji} - g_{jh} F_{ki}) \}. \quad (87) \]

Then, we have

\[R_{dcb} = 2(a + b) \{ g_{da} S_{cb} - g_{ca} S_{db} \} \quad (88) \]

and

\[R_{zxyw} = 2(a - b) \{ g_{zv} S_{yx} - g_{yz} S_{vx} \}. \quad (89) \]

Let \(\tilde{M} \) be an \(m \)-dimensional almost Riemannian product manifold with the Riemannian structure \((F, \tilde{g})\) and \(M \) be an \(n \)-dimensional sub-manifold of \(\tilde{M} \). For any vector field \(X \) tangent to \(M \), we put
where fX and wX denote the tangential and normal components of FX, with respect to M, respectively. In the same way, for $V \in \Gamma(T^\perp M)$, we also put

$$FV = BV + CV,$$

where BV and CV denote the tangential and normal components of FV, respectively.

Then, we have

$$f^2 + Bw = I, Cw + wf = 0 \quad (92)$$

and

$$fB + BC = 0, wB + C^2 = I. \quad (93)$$

On the other hand, we can easily see that

$$g(X, fY) = g(fX, Y) \quad (94)$$

and

$$g(X, Y) = g(fX, fY) + g(wX, wY) \quad (95)$$

for any $X, Y \in \Gamma(TM)$ [6].

If $wX = 0$ for all $X \in \Gamma(TM)$, then M is said to be invariant sub-manifold in \tilde{M}, i.e., $F(T_M(p)) \subset T_M(p)$ for each $p \in M$. In this case, $f^2 = I$ and $g(fX, fY) = g(X, Y)$. Thus, (f, g) defines an almost product Riemannian on M.

Conversely, (f, g) is an almost product Riemannian structure on M, the $w = 0$ and hence M is an invariant sub-manifold in \tilde{M}.

Consequently, we can give the following theorem [7].

Theorem 3.1. Let M be a sub-manifold of an almost Riemannian product manifold \tilde{M} with almost Riemannian product structure (F, \tilde{g}). The induced structure (f, g) on M is an almost Riemannian product structure if and only if M is an invariant sub-manifold of \tilde{M}.

Definition 3.1. Let M be a sub-manifold of an almost Riemannian product \tilde{M} with almost product Riemannian structure (F, \tilde{g}). For each non-zero vector $X_p \in T_M(p)$ at $p \in M$, we denote the slant angle between FX_p and $T_M(p)$ by $\theta(p)$. Then M said to be slant sub-manifold if the angle $\theta(p)$ is constant, i.e., it is independent of the choice of $p \in M$ and $X_p \in T_M(p)$ [5].

Thus, invariant and anti-invariant immersions are slant immersions with slant angle $\theta = 0$ and $\theta = \frac{\pi}{2}$, respectively. A proper slant immersion is neither invariant nor anti-invariant.
Theorem 3.2. Let M be a sub-manifold of an almost Riemannian product manifold \tilde{M} with almost product Riemannian structure (F, \tilde{g}). M is a slant sub-manifold if and only if there exists a constant $\lambda \in (0, 1)$, such that

$$f^2 = \lambda I.$$ \hspace{1cm} (96)

Furthermore, if the slant angle is θ, then it satisfies $\lambda = \cos^2 \theta$ [9].

Definition 3.2. Let M be a sub-manifold of an almost Riemannian product manifold \tilde{M} with almost Riemannian product structure (F, \tilde{g}). M is said to be semi-slant sub-manifold if there exist distributions D^θ and D^T on M such that

(i) TM has the orthogonal direct decomposition $TM = D \oplus D^T$.

(ii) The distribution D^θ is a slant distribution with slant angle θ.

(iii) The distribution D^T is an invariant distribution, i.e., $F(D^T) \subseteq D^T$.

In a semi-slant sub-manifold, if $\theta = \frac{\pi}{2}$, then semi-slant sub-manifold is called semi-invariant sub-manifold [8].

Example 3.1. Now, let us consider an immersed sub-manifold M in \mathbb{R}^7 given by the equations

$$x_1^2 + x_2^2 = x_5^2 + x_6^2, x_3 + x_4 = 0.$$ \hspace{1cm} (97)

By direct calculations, it is easy to check that the tangent bundle of M is spanned by the vectors

$$z_1 = \cos \theta \frac{\partial}{\partial x_1} + \sin \theta \frac{\partial}{\partial x_2} + \cos \beta \frac{\partial}{\partial x_3} + \sin \beta \frac{\partial}{\partial x_6},$$

$$z_2 = -u \sin \theta \frac{\partial}{\partial x_1} + u \cos \theta \frac{\partial}{\partial x_2}, z_3 = \frac{\partial}{\partial x_3},$$

$$z_4 = -u \sin \beta \frac{\partial}{\partial x_5} + u \cos \beta \frac{\partial}{\partial x_6}, z_5 = \frac{\partial}{\partial x_7},$$ \hspace{1cm} (98)

where θ, β and u denote arbitrary parameters.

For the coordinate system of $\mathbb{R}^7 = \{(x_1, x_2, x_3, x_4, x_5, x_6, x_7) | x_i \in \mathbb{R}, 1 \leq i \leq 7\}$, we define the almost product Riemannian structure F as follows:

$$F\left(\frac{\partial}{\partial x_i}\right) = \frac{\partial}{\partial x_i}, F\left(\frac{\partial}{\partial x_j}\right) = \frac{\partial}{\partial x_j}, 1 \leq i \leq 3 \text{ and } 4 \leq j \leq 7.$$ \hspace{1cm} (99)

Since Fz_1 and Fz_3 are orthogonal to M and Fz_2, Fz_4, Fz_5 are tangent to M, we can choose a $\mathcal{D} = S_p\{z_2, z_4, z_5\}$ and $\mathcal{D}^\perp = S_p\{z_1, z_3\}$. Thus, M is a 5-dimensional semi-invariant sub-manifold of \mathbb{R}^7 with usual almost Riemannian product structure $(F, < , >)$.

Example 3.2. Let M be sub-manifold of \mathbb{R}^8 by given

$$(u + v, u-v, u \cos \alpha, u \sin \alpha, u + v, u-v, u \cos \beta, u \sin \beta)$$ \hspace{1cm} (100)
where \(u, v\) and \(\beta\) are the arbitrary parameters. By direct calculations, we can easily see that the tangent bundle of \(M\) is spanned by
\[
e_1 = \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \cos \alpha \frac{\partial}{\partial x_3} + \sin \alpha \frac{\partial}{\partial x_4} + \frac{\partial}{\partial x_5} - \frac{\partial}{\partial x_6} + \cos \beta \frac{\partial}{\partial x_7} + \sin \beta \frac{\partial}{\partial x_8}
\]
\[
e_2 = -\frac{\partial}{\partial x_1} - \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_5} + \frac{\partial}{\partial x_6} - \frac{\partial}{\partial x_7} + \frac{\partial}{\partial x_8},
\]
\[
e_3 = -u \sin \beta \frac{\partial}{\partial x_7} + u \cos \beta \frac{\partial}{\partial x_8},
\]
\[
e_4 = -u \sin \beta \frac{\partial}{\partial x_7} + u \cos \beta \frac{\partial}{\partial x_8}.
\]

For the almost Riemannian product structure \(F\) of \(\mathbb{R}^4 \times \mathbb{R}^4\), \(F(TM)\) is spanned by vectors
\[
Fe_1 = \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \cos \alpha \frac{\partial}{\partial x_3} + \sin \alpha \frac{\partial}{\partial x_4} + \frac{\partial}{\partial x_5} - \frac{\partial}{\partial x_6} - \cos \beta \frac{\partial}{\partial x_7} - \sin \beta \frac{\partial}{\partial x_8},
\]
\[
Fe_2 = -\frac{\partial}{\partial x_1} - \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_5} - \frac{\partial}{\partial x_6} + \frac{\partial}{\partial x_7} + \frac{\partial}{\partial x_8},
\]
\[
Fe_3 = e_3 \quad \text{and} \quad Fe_4 = -e_4.
\]

Since \(Fe_1\) and \(Fe_2\) are orthogonal to \(M\) and \(Fe_3\) and \(Fe_4\) are tangent to \(M\), we can choose \(D^T = \text{Sp}\{e_3, e_4\}\) and \(D^\perp = \text{Sp}\{e_1, e_2\}\). Thus, \(M\) is a four-dimensional semi-invariant sub-manifold of \(\mathbb{R}^8 = \mathbb{R}^4 \times \mathbb{R}^4\) with usual Riemannian product structure \(F\).

Definition 3.3. Let \(M\) be a sub-manifold of an almost Riemannian product manifold \(\tilde{M}\) with almost Riemannian product structure \((F, \tilde{g})\). \(M\) is said to be pseudo-slant sub-manifold if there exist distributions \(D_0\) and \(D^\perp\) on \(M\) such that

i. The tangent bundle \(TM = D_0 \oplus D^\perp\).

ii. The distribution \(D_0\) is a slant distribution with slant angle \(\theta\).

iii. The distribution \(D^\perp\) is an anti-invariant distribution, i.e., \(F(D^\perp) \subseteq T^\perp M\).

As a special case, if \(\theta = 0\) and \(\theta = \frac{\pi}{2}\), then pseudo-slant sub-manifold becomes semi-invariant and anti-invariant sub-manifolds, respectively.

Example 3.3. Let \(M\) be a sub-manifold of \(\mathbb{R}^6\) by the given equation
\[
(\sqrt{3}u, v \sin \theta, v \cos \theta, s \cos t, -s \cos t)
\]
where \(u, v, s\) and \(t\) arbitrary parameters and \(\theta\) is a constant.

We can check that the tangent bundle of \(M\) is spanned by the tangent vectors
\[
e_1 = \sqrt{3} \frac{\partial}{\partial x_1}, \quad e_2 = \frac{\partial}{\partial y_1} + \sin \theta \frac{\partial}{\partial x_2} + \cos \theta \frac{\partial}{\partial y_2},
\]
\[
e_3 = \cos t \frac{\partial}{\partial x_3} - \cos t \frac{\partial}{\partial y_3}, \quad e_4 = -s \sin t \frac{\partial}{\partial x_3} + s \sin t \frac{\partial}{\partial y_3}.
\]

For the almost product Riemannian structure \(F\) of \(\mathbb{R}^6\) whose coordinate systems \((x_1, y_1, x_2, y_2, x_3, y_3)\) choosing
\[F\left(\frac{\partial}{\partial x_i}\right) = \frac{\partial}{\partial y_i}, \quad 1 \leq i \leq 3, \]
\[F\left(\frac{\partial}{\partial y_j}\right) = \frac{\partial}{\partial x_j}, \quad 1 \leq j \leq 3, \]
(105)

Then, we have
\[F e_1 = \sqrt{3} \frac{\partial}{\partial y_1}, \quad F e_2 = -\frac{\partial}{\partial x_1} + \sin \theta \frac{\partial}{\partial y_2} - \cos \theta \frac{\partial}{\partial x_2}, \]
\[F e_3 = \cos \frac{\partial}{\partial y_3} + \cos \frac{\partial}{\partial x_3}, \quad F e_4 = -\sin t \frac{\partial}{\partial y_3} - \sin t \frac{\partial}{\partial x_3}. \]
(106)

Thus, \(D_\theta = S_p\{e_1, e_2\} \) is a slant distribution with slant angle \(\alpha = \frac{\pi}{4} \). Since \(F e_3 \) and \(F e_4 \) are orthogonal to \(M \), \(D^\perp = S_p\{e_3, e_4\} \) is an anti-invariant distribution, that is, \(M \) is a 4-dimensional proper pseudo-slant sub-manifold of \(\mathbb{R}^6 \) with its almost Riemannian product structure \((F, <, >) \).

Author details

Mehmet Atçeken\(^{*}\), Ümit Yıldırım\(^{1}\) and Süleyman Dirik\(^{2}\)

*Address all correspondence to: mehmet.atceken382@gmail.com

\(^1\) Department of Mathematics, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkey

\(^2\) Department of Statistic, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey

References

[1] Katsuei Kenmotsu, editor. Differential Geometry of Submaifolds. Berlin: Springer-Verlag; 1984. 134 p.

[2] Aurel Bejancu. Geometry of CR-Submanifolds. Dordrecht: D. Reidel Publishing Company; 1986. 172 p. DOI: QA649.B44

[3] Bang-Yen Chen. Geometry of Submanifolds. New York: Marcel Dekker, Inc.; 1973. 298 p.

[4] Kentaro Yano and Masahiro Kon. Structures on Manifolds. Singapore: World Scientific Publishing Co. Pte. Ltd.; 1984. 508 p. DOI: QA649.Y327

[5] Meraj Ali Khan. Geometry of Bi-slant submanifolds "Some geometric aspects on submanifolds Theory". Saarbrücken, Germany: Lambert Academic Publishing; 2006. 112 p.
[6] Mehmet Atçeken. Warped product semi-invariant submanifolds in almost paracontact Riemannian manifolds. Mathematical Problems in Engineering. 2009;2009:621625. DOI: doi:10.1155/2009/621625

[7] Tyuzi Adati. Submanifolds of an almost product Riemannian manifold. Kodai Mathematical Journal. 1981;4(2):327–343.

[8] Mehmet Atçeken. A condition for warped product semi-invariant submanifolds to be Riemannian product semi-invariant Sub-manifolds in locally Riemannian product manifolds. Turkish Journal of Mathematics. 2008;33:349–362.

[9] Mehmet Atçeken. Slant submanifolds of a Riemannian product manifold. Acta Mathematica Scientia. 2010;30(1):215–224. DOI: doi:10.1016/S0252-9602(10)60039-2
