Aspects concerning the cavitation erosion and dry sliding wear behaviour of the YSn83 antifriction alloy and EN-GJS-400-15 spheroidal cast iron

M D Nedeloni¹,², L Nedeloni¹,², L Cîndea¹, V Iancu¹, A V Petrica¹, A-M Budai¹ and I L Conciatu¹

¹Eftimie Murgu University of Reșița, Faculty of Engineering and Management, Traian Vuia Square, No. 1-4, 320085, Resita, Romania
²Westphalian University of Applied Sciences, Department of Materials Science and Testing, Gelsenkirchen, Germany

E-mail: l.nedeloni@uem.ro

Abstract. In this paper, the cavitation erosion respectively the dry sliding wear behaviour of the YSn83 antifriction alloy and EN-GJS-400-15 spheroidal cast iron was studied. As cavitation erosion aspects, the authors show some preview results of the YSn83 antifriction alloy behaviour and continue to study and to compare also the cavitation erosion behaviour of the EN-GJS-400-15 spheroidal cast iron. In this regard, the cavitation erosion tests were made using a cavitation stand and the experimental results were presented through mass loss and cavitation erosion rate vs time curves. As dry sliding wear aspects, the tests for the two investigated materials were done with a tribometer through the pin-on-disk method where the authors varied the parameters especially the linear speed and the distance. The obtained results were presented as coefficient of friction evolutions and as wear rates. From all the tests, compared with the YSn83 antifriction alloy, the EN-GJS-400-15 spheroidal cast iron showed a superior cavitation erosion and dry sliding wear behaviour.

1. Introduction

Cavitation erosion and sliding wear are present in various industrial applications such as in the energy, shipping, machine building or automotive industry [1-6]. The cavitation erosion occurs due to the cavitation phenomenon, where the wear mechanism is through erosion and the sliding wear occurs due to the dynamic interaction of the mating components where the abrasive wear is more common [7-13].

Depends on the resistance of the used materials, the operating conditions and the environment, the wear can be more or less [14-19].

The YSn83 antifriction alloy (studied in this paper) is a nonferrous alloy. Such as alloys can be used for ingots, revolution parts (like bearings) or for coatings. Also, the YSn83 antifriction alloy (with a good shock resistance) can be used for sliding bearings manufacturing [20].

Studies regarding these nonferrous alloys and anti-friction materials were made especially concerning their casting and solidification respectively their use in the military technique and aeronautical constructions [21-23].
The other studied material in the present paper (EN-GJS-400-15 spheroidal cast iron) is part of the gray cast iron category and can be used for impact and shock-resistant parts, housings, valve bodies, pipe, cylinders or gear boxes [3], [13], [17].

Due to the good mechanical properties of the cast irons, many studies regarding especially the spheroidal cast irons wear resistance have been achieved [4], [11] and [24-28].

Also, the cavitation erosion respectively dry sliding wear process regarding the resistance / behaviour of some materials (where their mechanical properties were improved through surface and ultrasound treatments or even by nitrogen ion implanted) and coatings like Stellite 6, self-fluxing remelted coatings or through HVOF spraying have been investigated [29-45].

In this regard, the present paper is highlights the cavitation erosion and dry sliding wear behaviour of the YSn83 antifriction alloy respectively EN-GJS-400-15 spheroidal cast iron and try to make reproducibility (regarding similar results and used apparatus) with their own preview work [46-48] and similar studies mentioned above.

To compare the two investigated materials, the experimental results will be presented through micrographs respectively mass loss and cavitation erosion rate vs time curves (concerning the cavitation erosion behaviour) and as friction coefficient evolution and as wear rates (concerning the dry sliding wear behaviour).

2. Materials and methods
The materials used in this research are the YSn83 antifriction alloy and the EN-GJS-400-15 spheroidal cast iron, where the chemical composition of them is reported in Table 1 and Table 2.

Table 1. YSn83 antifriction alloy chemical composition (wt.%)

Cu	Sb	Pb	Fe	Sn
3.53	10.9	0.55	0.06	84.96

Table 2. EN-GJS-400-15 spheroidal cast iron chemical composition (wt.%)

C	Si	Mn	P	Cu	Cr	Mg	Ni	S	Fe
3.5	2.06	0.22	0.050	0.04	0.04	0.038	0.03	0.015	93.99

From these materials, two cubic samples with the edges of 16 mm were made and tested on the cavitation stand respectively on tribometer.

The cavitation stand is composed of: ultrasonic generator, electro-acoustic piezo converter, acoustic transformer, ultrasonic horn and respectively of the water container, the sample support and the tested sample.

The stationary specimen method was used and the tests were realized according to G32-10 standard [49] with the following main parameters from Table 3.

Table 3. Parameters for cavitation stand / cavitation erosion tests

Frequency (kHz)	Amplitude (µm)	Water temperature (°C)	Horn and sample distance (mm)
20 ±0.5	50	25 ±2	0.6

For these tests the total cumulated time was 150 minutes, divided into one period of 5 and 10 minutes respectively in nine periods of 15 minutes. After each period the mass loss of the samples was weighed with the help of a digital balance.
The tribometer arrangement was a pin holder with a 100Cr6 steel ball (6 mm in diameter) respectively the tested samples. For these sliding wear tests the authors varied the samples radius, linear speed, working speed respectively the distance.

The pin-on-disk method (POD) was used according to G99 standard [50] with the following main dry sliding parameters from Table 4 and Table 5.

Table 4. YSn83 antifriction alloy dry sliding wear parameters

Faces	Load (N)	Radius (mm)	Linear speed (mm s⁻¹)	Working speed (rpm)	Distance (m)	Distance (laps)
Face 2 (1)	5	1.5	46.2	300	10	1090
Face 2 (2)	5	3	85.7	275	10	536
Face 2 (3)	5	4.5	117.5	250	10	355
Face 2 (4)	5	6	141.5	225	10	267
Face 1 (1)	7	1.5	30.8	200	7.5	815
Face 1 (2)	7	3	61.8	200	10	541
Face 1 (3)	7	4.5	93.6	200	12.5	446
Face 1 (4)	7	6	123.7	200	15	406

Table 5. EN-GJS-400-15 spheroidal cast iron dry sliding wear parameters

Faces	Load (N)	Radius (mm)	Linear speed (mm s⁻¹)	Working speed (rpm)	Distance (m)	Distance (laps)
Face 1 (1)	7	1.5	85.1	550	100	10800
Face 1 (2)	7	3	163.9	525	100	5340
Face 1 (3)	7	4.5	234.4	500	100	3560
Face 1 (4)	7	6	297.9	475	100	2660
Face 2 (1)	10	1.5	58.7	400	75	8080
Face 2 (2)	10	3	121.1	400	100	5510
Face 2 (3)	10	4.5	186.7	400	125	4470
Face 2 (4)	10	6	249.5	400	150	4020

By using the tribometer software, the friction coefficient was monitored and the wear rate was calculated with equation 1 [50]:

$$K = \frac{2\pi \cdot h (3h^2 + 4s^2)}{6 \cdot L \cdot d \cdot s}$$ \hspace{1cm} (1)

where: K is the wear rate; h – the wear track depth; s – the wear track width; L – the load and d is the distance (in meters).

Based on some preview tests, for this research the testing time for YSn83 antifriction alloy was only between 1 - 4 minutes respectively 5 - 20 minutes for the EN-GJS-400-15 spheroidal cast iron.

For the two types of tests (cavitation erosion and dry sliding wear), the samples were polished with abrasive paper in order to have a roughness around 0.8 μm and were cleaned with acetone.
3. Results and discussions

3.1. Cavitation erosion behaviour

Regarding the cavitation erosion YSn83 antifriction alloy behaviour, based on the reference [20], the authors present some preview results and compare them with experimental results regarding the cavitation erosion behaviour of the EN-GJS-400-15 spheroidal cast iron.

Comparatively, the main results are shown in Table 6 and in detail in Table 7 for EN-GJS-400-15 spheroidal cast iron, where the mass loss was much less than for YSn83 antifriction alloy.

Table 6. Comparison between the cavitation erosion results

Samples	Sample mass (mg) Before	Max. mass loss (mg)	Max. cavitation rate (mg·h⁻¹)
	m (mg)	Δm (mg)	Cumulative m (mg)
YSn83	31230.37	30592.87	127.21
EN-GJS-400-15	28314.86	28301.53	1.4

Table 7. Cavitation erosion results for the EN-GJS-400-15 spheroidal cast iron

Cumulated time	Period (min)	Sample mass	Eroded mass loss	Cavitation rate
t (min)	Δt (min)	m (mg)	Δm (mg)	Vec (mg·h⁻¹)
0	0	28314.86	0	0.000
5	5	28313.7	1.16	11.800
15	10	28312.44	1.26	6.328
30	15	28311.32	1.12	4.620
45	15	28310.13	1.19	4.800
60	15	28308.92	1.21	4.560
75	15	28307.85	1.07	4.740
90	15	28306.55	1.3	5.080
105	15	28305.31	1.24	4.740
120	15	28304.18	1.13	4.760
135	15	28302.93	1.25	5.300
150	15	28301.53	1.4	5.920

Also, only for the EN-GJS-400-15 spheroidal cast iron sample, the cumulative mass loss and cavitation erosion rate vs time curves are presented in Figure 1 and 2. From these two types of curves, it can observed that the mass loss process is linearly and the cavitation erosion rate cross the characteristic stages (incubation, acceleration, maximum rate and deceleration [49]) for the first 30 minutes and then it is maintain between the range of 4 - 6 mg·h⁻¹.

For a better comparison, in Figure 3 the eroded samples surfaces are presented through images acquired with a digital microscope (Keyence VHX-600).

From this Figure, in the case of YSn83 antifriction alloy, visible caverns (with a depth until 300 µm) can be observed and in the case of EN-GJS-400-15 spheroidal cast iron, pits (with a depth until 100 µm) take place.
From others results of the authors, this cast iron has a better cavitation erosion resistance than some Al alloys [51-53] but a poor once than the C45 carbon steel, some bronzes and stainless steels [54-56].
3.2. YSn83 antifriction alloy dry sliding wear behaviour

For the YSn83 antifriction alloy the main results (coefficient of friction evolutions, wear tracks profiles and the wear rate values) are presented in Figures 5 ÷ 10 and in Table 8.

![Figure 5](image_url). Coefficient of friction evolutions for the YSn83 antifriction alloy at 5N load

![Figure 6](image_url). Coefficient of friction evolutions for the YSn83 antifriction alloy at 7N load
Figure 7. Wear tracks profiles for the YSn83 antifriction alloy at 5N load

Figure 8. Wear tracks profiles for the YSn83 antifriction alloy at 7N load
Figure 9. 3D wear track details for Face 1(4) of the YSn83 antifriction alloy

![3D wear track details for Face 1(4) of the YSn83 antifriction alloy](image)

Figure 10. Comparison between the wear rates for the YSn83 antifriction alloy

![Comparison between the wear rates for the YSn83 antifriction alloy](image)

Table 8. Wear rate values for the YSn83 antifriction alloy

Faces	Wear track depth, h (µm)	Wear track width, s (µm)	Cross section area, A (µm2)	Volume loss, V (mm3)	Wear rate, K (mm3N$^{-1}$m$^{-1}$)
Face 2 (1)	11.887	626.825	4968.72	0.0468	9.37·10$^{-4}$
Face 2 (2)	19.831	872.150	11534.88	0.2174	4.35·10$^{-3}$
Face 2 (3)	16.297	792.796	8616.19	0.2436	4.87·10$^{-3}$
Face 2 (4)	12.780	590.187	5030.16	0.1896	3.79·10$^{-3}$
Face 1 (1)	16.328	655.473	7138.36	0.0673	1.28·10$^{-3}$
Face 1 (2)	16.632	731.329	8112.12	0.1529	2.18·10$^{-3}$
Face 1 (3)	11.734	792.858	6203.28	0.1754	2·10$^{-3}$
Face 1 (4)	19.149	892.882	11402.46	0.4299	4.09·10$^{-3}$

It can be seen that almost all the coefficient of friction evolutions has reached the steady state stage, except one (Figure 5 d). In all these curves, the coefficient of friction mean values was between 0.179 and 0.553. The Figures 7 and 8 show that only for small distances (between 7.5 and 15 m), the YSn83 antifriction alloy presented a severe abrasion wear. Regarding the wear rates values, these tend to increase with increasing the radius and linear speed as it can be seen from Figure 10 and from the volume loss values. At small radius and linear speeds values, the wear rate is the lowest.
3.3. EN-GJS-400-15 spheroidal cast iron dry sliding wear behaviour
For the EN-GJS-400-15 cast iron the main results (coefficient of friction evolutions, wear tracks profiles and the wear rate values) are presented in Figures 11 ÷ 16 and in Table 9.

![Figure 11. Coefficient of friction evolutions for the EN-GJS-400-15 cast iron at a load of 7N](image1)

![Figure 12. Coefficient of friction evolutions for the EN-GJS-400-15 cast iron at a load of 10N](image2)
Figure 13. Wear tracks profiles for the EN-GJS-400-15 cast iron at a load of 7N

Figure 14. Wear tracks profiles for the EN-GJS-400-15 cast iron at a load of 10N
It can be seen that all the coefficient of friction evolutions are quite similar with small values (between 0.085 and 0.130).

Figures 13 and 14 show that the EN-GJS-400-15 spheroidal cast iron presented a slightly abrasion wear. The wear rates values increase with increasing the radius and linear speed as it can be seen from Figure 16 and especially from the volume loss values (Table 9). The lowest wear rate took places at a working speed of 400 rpm for the small radius, linear speed respectively distance.

Table 9. Wear rate values for the EN-GJS-400-15 cast iron

Faces	Wear track depth, h (µm)	Wear track width, s (µm)	Cross section area, A (µm²)	Volume loss, V (mm³)	Wear rate, K (mm³N⁻¹m⁻¹)
Face 1 (1)	2.001	169.824	226.61	0.0021	3.05·10⁻⁶
Face 1 (2)	1.844	192.839	237.08	0.0045	6.38·10⁻⁶
Face 1 (3)	1.977	178.636	235.42	0.0067	9.51·10⁻⁶
Face 1 (4)	2.488	176.057	292.03	0.0110	1.57·10⁻⁵
Face 2 (1)	1.261	182.048	153.05	0.0014	1.92·10⁻⁶
Face 2 (2)	1.777	203.103	240.58	0.0045	4.53·10⁻⁶
Face 2 (3)	1.477	191.565	188.64	0.0053	4.27·10⁻⁶
Face 2 (4)	1.724	177.810	204.38	0.0077	5.14·10⁻⁶
4. Conclusions
The paper presented a comparison between the YSn83 antifriction alloy and EN-GJS-400-15 spheroidal cast iron regarding their cavitation erosion respectively dry sliding wear behavior.

After the cavitation erosion tests, YSn83 antifriction alloy has lost 637.5 mg material loss and show visible caverns until 300 µm depth. The EN-GJS-400-15 spheroidal cast iron lost only 13.33 mg material loss and show small pits until 100 µm.

For the dry sliding wear tests, in the case of the EN-GJS-400-15 spheroidal cast iron, the distance was 10 times more than that in the case of the YSn83 antifriction alloy. After these tests, for the two tested materials the coefficient of friction was obtained respectively the wear rate was calculated. The YSn83 antifriction alloy show a severe abrasion wear and the EN-GJS-400-15 spheroidal cast iron show slightly abrasion wear. Regarding the tribometer parameters, by increasing the linear speed, the materials will lose more volume loss of material and the wear rate values will increase. At small linear speeds values, the wear rate is lowest.

From all the tests, the EN-GJS-400-15 spheroidal cast iron showed a superior cavitation erosion and dry sliding wear behaviour.

References
[1] Singh R, Tiwari S K and Mishra S K 2012 Cavitation Erosion in Hydraulic Turbine Components and Mitigation by Coatings: Current Status and Future Needs, J Mater Eng Perform 21 1539-1551
[2] Frunzaverde D, Cămpian V, Nedelcu D, Gillich G R and Mărginean G 2010 Metallographic and numerical methods investigations about failure of a kaplan turbine runner blade, WSEAS Transactions on Fluid Mechanics 5(3) 122-131
[3] Orłowicz A W, Mróz M, Tupaj M and Trytek A 2015 Materials Used in the Automotive Industry, Archives of Mechanical Technology and Materials 15(2) 75-78
[4] Gelfi M, Gorini D, Pola A and La Vecchia G M 2016 Effect of Titanium on the Mechanical Properties and Microstructure of Gray Cast Iron for Automotive Applications, J Mater Eng Perform 25(9) 3896-3903
[5] Nová I and Machuta J 2016 Monitoring of the diffusion processes during carburizing automotive steel parts, Manufacturing Technology 16(1) 225-232
[6] Nedeloni M D et al. 2013 Research regarding the cavitation erosion resistance of the stainless steel with the 13% Cr and 4% Ni used to manufacture the components of Kaplan, Francis and Pelton hydraulic turbines, Constanta Maritime University Annals 19 129-132
[7] Haţiegan C et al 2017 Vibration analysis of a hydro generator for different operating regimes, IOP Conf. Ser.: Mater. Sci. Eng. 163 012030
[8] Frunzaverde D, Ciubotariu C R, Secosan E R, Campian C V and Fanica C 2016 Study on the Use of Elastomeric Coatings for Protection of Hydraulic Turbine Components Against Cavitation Erosion, Mater Plast. 53(3) 557-560
[9] Digulescu A et al 2016 Cavitating vortex characterization based on acoustic signal detection, IOP Conf. Ser.: Earth Environ. Sci. 49 082009
[10] Pola A, Gelfi M, Eleonora Depero L and Roberti R 2008 Study of annealing temperature effect on stress-corrosion cracking of aluminum brass heat-exchangers tubes by microdiffraction experiments, Engineering Failure Analysis 15(1-2) 54-61
[11] Martinez J, Pereira A, Pérez J A and Mathia T 2015 Influence of machining of EN-GJL-250 and EN-GJS-400 cast irons on tribological behavior, Archives of Mechanical Technology and Materials 35 12-22
[12] Palásti-Kovács B, Néder Z, Czifra A and Váradi K 2004 Microtopography Changes in Wear Process, Acta Polytech Hung 1(1) 108-119
[13] Bąkowski H 2018 Wear mechanism of spheroidal cast iron piston ring-aluminum matrix composite cylinder liner contact, Arch Metall Mater 63 481-490
[14] Nedeloni L, Korka Z I, Nedeloni M D and Pauliuc D 2017 Wear Resistance Assessment of
Fluoropolymer Coated Gears, *Annals of "Eftimie Murgu" University* 24(1) 225-234

[15] Soiniński M S and Derda A 2008 The influence of selected elements upon mechanical properties of ductile iron EN-GJS-500-7, *Arch of Mechanical Technology and Materials* 8(3) 149-152

[16] Cindea L et al 2016 The influence of thermal field in the electric arc welding of X60 carbon steel components in the CO2 environment, *Appl Therm Eng* 103 1164-1175

[17] Foglio E, Lusuardi D, Pola A, La Vecchia G M and Gelfi M 2016 Fatigue design of heavy section ductile irons: Influence of chunky graphite, *Materials and Design* 111 353-361

[18] Girelli L, Pola A, Gelfi M, Masotti M N and La Vecchia G M 2017 Performance optimization of high resistant white cast iron for severe working applications, *Metall Ital* 6 5-10

[19] Janicki D 2018 Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying, *Materials* 11(75) 1-17

[20] Potoceanu N, Nedeloni M D, Chirus D and Florea D 2014 Cavitation erosion behavior of the antifriction alloy YSn83, *Materials Science Forum* 782 257-262

[21] Lupinca C I and Marta C 2015 The Solidification Study of the Antifriction Sn-Sb Alloy, *Annals of "Eftimie Murgu" University of Resita* 22(1) 277-284

[22] Dinescu I and Valentin I M 2013 Experimental research regarding the anti friction materials, *Review of the Air Force Academy* 1(23) 41-44

[23] Dinescu I, Moldovan G and Mosoiu O 2014 Experimental research regarding the manufacturing of the anti friction materials used in aeronautic constructions, International Conference of Scientific Paper, Romania, May 22-24, pp 1-5

[24] Dojčinović M, Erić O, Rajnović D, Sidjanin L and Baloš S 2012 The morphology of ductile cast iron surface damaged by cavitation, *Metall Mater Eng* 18(3) 165-176

[25] Chawla K, Saini N and Dhiman R 2013 Investigation of Tribological Behavior of Stainless Steel 304 and Grey Cast Iron Rotating Against EN32 Steel Using Pin on Disc Apparatus, *IOSR JMCE* 9(4) 18-22

[26] Lupinca C I, Nedeloni M D and Nedelcu D 2014 Gray Cast Iron Behavior in Cavitation Erosion, *Materials Science Forum* 782 269-174

[27] Mitelea I, Bordeaşu I, Pelle M and Crăciunescu C J 2015 Ultrasonic cavitation erosion of nodular cast iron with ferrite–pearlite microstructure, *Ultrason Sonochem* 23 385-390

[28] Mitelea I, Bena T, Bordeașu I and Craciunescu C M 2018 Relationships Between Microstructure, Roughness Parameters and Ultrasonic Cavitation Erosion Behaviour of Nodular Cast Iron, EN-GJS-400-15, *Rev Chim* 69(3) 611-617

[29] Ciubotariu C R, Frunzaverde D, Secosan E, Marginean G and Campian V 2016 Experimental Study Regarding the Cavitation and Corrosion Resistance of Stellite 6 and Self-Fluxing Remelted Coatings, *Strov Vestn-J Mech E* 62(3) 154-162

[30] Verma S, Dubey P, Selokar A W, Dwivedi D K and Chandra R 2017 Cavitation Erosion Behavior of Nitrogen Ion Implanted 13Cr4Ni Steel, *Trans Indian Inst Met* 70(4) 957-965

[31] Gottardi G, Tocci M, Montesano L and Pola A 2018 Cavitation erosion behaviour of an innovative aluminium alloy for Hybrid Aluminium Forging, *Wear* 394-395 1-10

[32] Kekes D, Psysllaki P and Vardavoulas M 2014 Wear Micro-Mechanisms of Composite WC-Co/Cr - NiCrFeBSiC Coatings. Part I: Dry Sliding, *Tribology in Industry* 36(4) 361-374

[33] Kekes D, Psysllaki P, Vardavoulas M and Vekinis G 2014 Wear Micro-Mechanisms of Composite WC-Co/Cr - NiCrFeBSiC Coatings. Part II: Cavitation Erosion, *Tribology in Industry* 36(4) 375-383

[34] Bordeaşu I et al 2017 A new concept for stainless steels ranking upon the resistance to cavitation erosion, *IOP Conf. Ser.: Mater. Sci. Eng.* 163 012002

[35] Pola A, Montesano L, Gelfi M and La Vecchia G M 2016 Comparison of the sliding wear of a novel Zn alloy with that of two commercial Zn alloys against bearing steel and leaded brass, *Wear* 368-369 445-452

[36] Pola A, Montesano L, Tocci M and La Vecchia G M 2017 Influence of Ultrasound Treatment
on Cavitation Erosion Resistance of AlSi7 Alloy, Materials 10(3) 1-13

[37] Petrogalli C, Montesano L, Pola A, Gelfi M, Ghidini A and LaVecchia G M 2015 Improvement of Fatigue Resistance of a Tool Steel by Surface Treatments, Procedia Engineer 109 154-61

[38] Nedelcu D, Nedeloni M D and Lupinca C I 2014 Cavitation erosion research on the X3CrNi13-4 stainless steel, Materials Science Forum 782 263-268

[39] Hong S, Wu Y, Zhang J, Zheng Y, Zheng Y and Lin J 2016 Synergistic effect of ultrasonic cavitation erosion and corrosion of WC–CoCr and FeCrSiBMn coatings prepared by HVOF spraying, Ultrason Sonochem 31 563-569

[40] Cao M, Zhao L, Wu L and Wang W 2018 Tribological Properties of New Cu-Al/MoS2 Solid Lubricant Coatings Using Magnetron Sputter Deposition, Coatings 8(134) 1-16

[41] Kumar N and Kumar P 2016 Influence of machining parameters on surface roughness and dry friction, Engineering Solid Mechanics 4 109-116

[42] Stepanova N, Zimogliadova T, Ognev A, Krivizhenko D, Maliutina Y and Zimogliadova O 2018 Effect of copper on the structure and antifriction properties of cast hypoeutectoid steel, OP Conf. Ser.: Mater. Sci. Eng. 286 012024

[43] Paulin C, Chicet D, Paleu V, Benchea M, Lupescu Ş and Munteanu C 2017 Dry friction aspects of Ni-based self-fluxing flame sprayed coatings, IOP Conf. Ser.: Mater. Sci. Eng. 227 012091

[44] Kazamer N et al. 2016 Aspects concerning the wear and corrosion behavior of WC-CoCr coatings and respectively DLC/WC-CoCr systems, NANOCON pp 383-389

[45] Cozza R C 2013 A study on friction coefficient and wear coefficient of coated systems submitted to micro-scale abrasion tests, Surf Coat Tech 215 224-233

[46] Nedelcu D, Cojocaru V, Nedeloni M, Peris-Bendu F and Ghican A 2015 Failure analysis of a Ti-6Al-4V ultrasonic horn used in cavitation erosion tests, Mechanika 4 272-276

[47] Cojocaru V, Campian C V and Frunzaverde D 2015 A comparative analysis of the methods used for testing the cavitation erosion resistance on the vibratory devices, U.P.B. Sci. Bull., Series D 74(4) 257-262

[48] Nedeloni M D, Hatiegan C, Vasile O, Hamat C O, Fanica C and Gillich N 2015 Numerical Study Regarding the Influence of Material Components for a Booster - Ultrasonic Horn Assembly on the Natural Frequency, RAIJ 12(2) 155-160

[49] *** 2010 Standard Test Method for Cavitation Erosion Using Vibratory Apparatus ASTM G32-10

[50] *** 2000 Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus ASTM G99

[51] Nedeloni M D and Nedelcu D 2012 Research through Direct and Indirect Cavitation Method for a Aluminum Specimen, Annals of "Eftimie Murgu" University 19(1) 207-214

[52] Chirius D and Nedeloni M D 2013 Cavitation Erosion Research for AlSi12 Alloy Tested at Different Time Periods, Annals of "Eftimie Murgu" University of Resita 20(1) 55-64

[53] Lupinca C I and Nedeloni M D 2014 Comparative study regarding the cavitation erosion behavior of Cu and Al alloys, International Journal of Latest Research in Science and Technology 3(2) 95-99

[54] Hamat C O, Nedeloni M D, Hatiegan C, Ciubotariu R C and Pădureanu I 2015 Cavitation erosion research on C45 carbon steel. Part I: multiple tests of 180 minutes, Annals of ,,Constantin Brâncuşi" University of Târgu Jiu 3 127-132

[55] Lupinca C I and Nedeloni M D 2014 The Study of Bronze Behaviour During Cavitation Erosion, Indian Journal of Applied Research 4(5) 596-600

[56] Nedeloni M D, Cojocaru V, Ciubotariu R and Nedelcu D 2012 Cavitation Erosion Tests Performed by Indirect Vibratory Method on Stainless Steel Welded Samples with Hardened Surface, Annals of "Eftimie Murgu" University of Resita 19(1) 215-226