The Gromov-Lawson codimension 2 obstruction to positive scalar curvature and the C^*-index

Yosuke Kubota *

iTHEMS Research Program
RIKEN
Japan

Thomas Schick†

Mathematisches Institut
Georg-August-Universität Göttingen
Germany

September 23, 2019

Abstract

Gromov and Lawson developed a codimension 2 index obstruction to positive scalar curvature for a closed spin manifold M, later refined by Hanke, Pape and Schick. Kubota has shown that also this obstruction can be obtained from the Rosenberg index of the ambient manifold M which takes values in the K-theory of the maximal C^*-algebra of the fundamental group of M, using relative index constructions.

In this note, we give a slightly simplified account of Kubota’s work and remark that it also applies to the signature operator, thus recovering the homotopy invariance of higher signatures of codimension 2 submanifolds of Higson, Schick, Xie.

1 Introduction

Let M be a closed spin manifold and $N \subset M$ a submanifold of codimension 2 with trivial normal bundle. Much current research is devoted to the question when such a manifold M does admit a Riemannian metric of positive scalar curvature. The submanifold N can provide an obstruction to this, as was first explored in rather special situations by Gromov and Lawson [2]. The core of the argument lead to the following version [3]:

1.1 Theorem. Let M be a closed manifold, $N \subset M$ a connected submanifold codimension 2 with trivial normal bundle. Assume that the induced map $\pi_1(N) \to \pi_1(M)$ is injective and $\pi_2(N) \to \pi_2(M)$ is surjective.

\[\text{e-mail: yosuke.kubota@riken.jp} \]
\[\text{www: http://ithems-members.riken.jp/kubota} \]

\[\text{e-mail: thomas.schick@math.uni-goettingen.de} \]
\[\text{www: http://www.uni-math.gwdg.de/schick} \]
If M is spin and the Rosenberg index of N doesn’t vanish, $0 \neq \alpha(N) \in K_*(C_{\text{max}}^*\pi_1(N))$, then M does not admit a Riemannian metric with positive scalar curvature.

The proof uses index theory of the Dirac operator, but not on M itself. It is a common theme that $\alpha(M)$ should be the most powerful index theoretic obstruction to positive scalar curvature on M, formulated as a conjecture in [9]. However, for the codimension 2 obstruction this remained elusive. Some partial results in this direction have been carried out in [1] and [7], but they were of topological nature and required the validity of the strong Novikov conjecture for $\pi_1(M)$ to answer the question.

Higson, Schick, and Xie proved in [5] a companion result: the unexpected homotopy invariance of higher signatures of submanifolds of codimension 2 in the situation of Theorem 1.1, with the spin condition replaced by orientability.

Recently, in [6, Section 3.3] the first author proved the desired result about the Rosenberg index of M:

1.2 Theorem. In the situation of Theorem 1.1, the Rosenberg index of M itself is non-zero: $0 \neq \alpha(M) \in K_*(C_{\text{max}}^*\pi_1(M))$.

More precisely, the situation determines a homomorphism (induced from a KK-element)

$$\rho_{\;M,N} : K_*(C_{\text{max}}^*\pi_1(M)) \to K_{*-2}(C_{\text{max}}^*\pi_1(N)),$$

mapping the Rosenberg index of M to the one of N.

The proof uses a relative higher index setup, using more or less the interplay of $\pi_1(N \times S^1) \subset \pi_1(W)$ for the manifold $W := M \setminus U(N)$ with boundary constructed from M by removing a tubular neighborhood $U(N) \cong N \times D^2$ of N.

In this note, we give an account of the proof in [6], together with a slight simplification avoiding relative higher index theory. Moreover, we observe that this method also gives a simpler proof of the main result of [5], even of the following strengthening. Here we write $\text{Sgn}(M; V_M)$ for the C^*-algebraic higher signatures, i.e. the Mishchenko-Fomenko index of the signature operator twisted with the Hilbert C^*-module bundle $V_M := \tilde{M} \times_{\pi_1(M)} C_{\text{max}}^*\pi_1(N)$.

1.3 Theorem. Let M with submanifold N be as in Theorem 1.1. If M is oriented then the homomorphism $\rho_{\;M,N}$ of Theorem 1.2 maps the C^*-algebraic higher signature of M to twice the one of N. More generally, let $f : M_1 \to M$ be a map between closed oriented manifolds of degree 1. Assume N is transversal to f and set $N_1 := f^{-1}(N) \subset M_1$. Then

$$\rho_{\;M,N}(\text{Sgn}(M_1; f^*V_M)) = 2\text{Sgn}(N_1; f^*V_N) \in K_*(C_{\text{max}}^*\pi_1(N)).$$

(1.4)

In particular, if f is a homotopy equivalence then $f^*V_M = V_{M_1}$ and by homotopy invariance of the C^*-algebraic signature $\text{Sgn}(M_1; V_{M_1}) = \text{Sgn}(M; V_M)$ we also get

$$2(\text{Sgn}(N_1; f^*V_N) - \text{Sgn}(N; V_N)) = 0,$$

recovering the main theorem of [5].
2 Proof of the theorem

We set \(\pi := \pi_1(N) \), \(\Gamma := \pi_1(M) \), and \(\Pi := \pi \times \mathbb{Z} \). Moreover, we set \(m := \dim(M) \). Note that \(n := \dim(N) \equiv m \pmod{2} \). Until the last section, all group \(C^* \)-algebras are maximal group \(C^* \)-algebras and we simply write e.g. \(C^* \pi \) for the maximal group \(C^* \)-algebra of \(\pi \).

The first step in the proof of the main theorem, used in all approaches, is a well known product formula for the Mishchenko index of the Dirac, as well as the signature operator of \(N \times S^1 \):

2.1 Proposition. Let \(N \) be a closed manifold with fundamental group \(\pi \) and identify \(\pi_1(N \times S^1) \) with \(\Pi \). The Künneth formula provides canonical homomorphisms

\[
K_* (C^* \pi) \to K_{*-1} (C^* \Pi) \xrightarrow{\beta} K_* (C^* \pi)
\]

(Indeed induced by KK-elements) with composition the identity. If \(N \) is spin these homomorphisms map the Mishchenko-Fomenko index of \(N \) and of \(N \times S^1 \) to each other.

If \(N \) is oriented and \(W \) is a bundle of finitely generated projective \(C^* \pi \)-modules on \(N \), \(\beta \) maps the analytic higher signature class \(\text{Sgn}(N \times S^1; W \boxtimes V_{S^1}) \) (where \(W \boxtimes V_{S^1} \) denotes the exterior tensor product bundle) to \(2^\epsilon \text{Sgn}(N; W) \) with

\[
\epsilon = \begin{cases}
0; & m \equiv 0 \pmod{2}, \\
1; & m \equiv 1 \pmod{2}.
\end{cases}
\]

This is well known and follows from the principle “boundary of Dirac is Dirac” (compare e.g. [8]) and “boundary of signature is \(2^\epsilon \) times signature”, this factor of 2 for the signature operator is explained e.g. in [5, 2.13].

It therefore suffices to relate the Mishchenko-Fomenko index of Dirac and signature operator on \(N \times S^1 \), considered as the boundary of the tubular neighborhood of \(N \) in \(M \) to the one of \(M \).

For this, we make the following well known observations.

(1) As a purely topological fact, we have a Mayer-Vietoris sequence in generalized homology for the decomposition \(M = W \cup_{N \times S^1} N \times D^2 \) where we identify a closed tubular neighborhood of \(N \) in \(M \) with \(N \times D^2 \) and let \(W \) be the complement of its interior.

We apply this to K-homology and get the boundary map

\[
\partial_{MV}: K_*(M) \to K_{*-1}(N \times S^1).
\]

A spin structure on \(M \) defines a fundamental K-homology class \([M] \in K_{m}(M)\), and

\[
\partial_{MV}([M]) = [N \times S^1] \in K_{m-1}(N \times S^1)
\]

is the fundamental class of \(N \times S^1 \), another implementation of “boundary of Dirac is Dirac”. For the signature operator of an orientation of \(M \), we similarly get

\[
\partial_{MV}(f_*[M]_{\text{Sgn}}) = 2^{\epsilon+1} f_*[N \times S^1]_{\text{Sgn}} \in K_{m-1}(N \times S^1).
\]
Here $[M]_{S^m}$ is the K-homology class of the signature operator and as before $\epsilon = \begin{cases} 0; & m \equiv 0 \pmod{2} \\ 1; & m \equiv 1 \pmod{2} \end{cases}$.

(2) The Mishchenko bundle

$\mathcal{V}_{N \times S^1} = \widetilde{N} \times S^1 \times \pi_{x \pi} C^*\Pi$

of $N \times S^1$ defines a class in K-theory with coefficients in $C^*\Pi$, namely

$[\mathcal{V}_{N \times S^1}] \in K^0(N \times S^1; C^*\Pi) := K_0(C(N \times S^1) \otimes C^*\Pi)$. Moreover, the Mishchenko-Fomenko index of the Dirac operator is simply obtained as the pairing of the fundamental K-homology class of $N \times S^1$ with this K-theory class of $N \times S^1$ as

$\alpha(N \times S^1) = ([N \times S^1], [\mathcal{V}_{N \times S^1}] \in K_{m-1}(C^*(\pi \times \mathbb{Z}))$. The corresponding statement holds for the signature and for M, in particular $\alpha(M) = ([M], [\mathcal{V}_M]) \in K_m(C^*\Gamma)$.

(3) The pairing between K-homology and K-theory is compatible with the Mayer-Vietoris boundary map:

$\langle [N \times S^1], [\mathcal{V}_{N \times S^1}] \rangle \in K_m(C^*\Pi) = \langle \partial_{MV}([M]), [\mathcal{V}_{N \times S^1}] \rangle_{K_*C^*\Pi}$

in $K_m(C^*\Pi)$. Here $\delta_{MV} : K^0(N \times S^1; C^*\Pi) \to K^1(M; C^*\Pi)$ is the boundary map of the Mayer-Vietoris sequence in K-theory for the above decomposition of M, where we use fixed coefficients in $C^*\Pi$.

All of this is standard and relatively easy to derive. For the proof of the main theorem it therefore remains “only” to relate $([M], [\mathcal{V}_M]) \in K_m(C^*\Gamma)$ to $([M], \delta_{MV}[\mathcal{V}_{N \times S^1}]) \in K_m(C^*\Pi)$, and for this the obvious strategy is to relate $[\mathcal{V}_M] \in K^0(M; C^*\Gamma)$ to $\delta_{MV}[\mathcal{V}_{N \times S^1}] \in K^1(M; C^*\Pi)$. This latter task, however, is not obvious at all and is achieved in [6, Section 3.3], stated in different terms there.

We retrace these steps here, using our slightly simpler setup. First, construct the standard Hilbert $C^*\Pi$-module $\mathcal{H}_{C^*\Pi} := \ell^2N \otimes C^*\Pi$ with its C^*-algebras of compact and bounded adjointable operators $\mathcal{K}_{C^*\Pi} := \mathcal{K}_{C^*\Pi}(\mathcal{H}_{C^*\Pi})$ and $\mathcal{B}_{C^*\Pi} := \mathcal{B}_{C^*\Pi}(\mathcal{H}_{C^*\Pi})$, giving rise to the short exact sequence of C^*-algebras

$0 \to \mathcal{K}_{C^*\Pi} \to \mathcal{B}_{C^*\Pi} \to Q_{C^*\Pi} := \mathcal{B}_{C^*\Pi}/\mathcal{K}_{C^*\Pi} \to 0$.

The associated long exact sequence in K-theory yields the boundary isomorphism (induced by a KK-element)

$\delta_Q : K_*(Q_{C^*\Pi}) \to K_{*+1}(C^*\Pi)$ (2.3)

because $K_* (\mathcal{B}_{C^*\Pi}) = 0$ and by stability of K-theory we have the canonical isomorphism $K_*(C^*\Pi) \cong K_*(\mathcal{K}_{C^*\Pi})$.

The standard construction of the boundary homomorphism as in (2.3) allows us here to explicitly find a representative of the class in $K_1(Q_{C^*\Pi})$ corresponding to $[\mathcal{V}_{N \times S^1}]$:...
2.4 Lemma. Consider the stabilized bundle $V_{N \times S^1} \oplus H_{C^*\Pi}$ of Hilbert C^*-modules. Its structure group, the unitary group $U(H_{C^*\Pi}(C^*\Pi \oplus H_{C^*\Pi}))$ with the norm topology, is contractible by the appropriate version of Kuiper’s theorem. Therefore we have a trivialization (unique up to homotopy) $H_{C^*\Pi} \rightarrow V_{N \times S^1} \oplus H_{C^*\Pi}$. Composed with the obvious projection $V_{N \times S^1} \oplus H_{C^*\Pi} \rightarrow H_{C^*\Pi}$ we obtain a norm continuous map $\Psi: N \times S^1 \rightarrow B_{C^*\Pi}$ with values epimorphisms with finitely generated projective kernel. Therefore, composed with the projection to the Calkin algebra $Q_{C^*\Pi}$ the map takes values in unitaries and gives $p \circ \Psi: N \times S^1 \rightarrow U(Q_{C^*\Pi})$, thus representing a class

$$[p \circ \Psi] \in K^1(N \times S^1; Q_{C^*\Pi}).$$

Its image under the map induced by δ_Q of (2.3) is precisely $[V_{N \times S^1}] \in K^0(N \times S^1; C^*\Pi)$.

Proof. There is a standard way to compute the boundary map: Lift $p \circ \Psi: N \times S^1 \rightarrow U(Q_{C^*\Pi})$ to Ψ. The kernel is obviously isomorphic to the continuous section space $C(N \times S^1; V_{N \times S^1})$ and the cokernel is trivial. Then the kernel represents the image under the boundary map, which corresponds to the class of the bundle $[V_{N \times S^1}]$ in $K^0(N \times S^1; C^*\Pi)$ in the bundle description of K^0. \square

Next, there is a standard description of the Mayer-Vietoris boundary map

$$\delta_{MV}: K^1(N \times S^1; Q_{C^*\Pi}) \rightarrow K^0(M; Q_{C^*\Pi}).$$

2.6 Lemma. The class $\delta_{MV}([p \circ \Psi]) \in K^0(M; Q_{C^*\Pi})$ is represented by the Hilbert $Q_{C^*\Pi}$-module bundle V obtained by gluing the trivial free $Q_{C^*\Pi}$-module bundles of rank one over W and over $N \times D^2$ along their common boundary using the isomorphism $[p \circ \Psi]: N \times S^1 \rightarrow U(Q_{C^*\Pi})$. Here, we glue via left multiplication whereas the right module structure of the fibers is given by right multiplication.

Finally, taking the Mayer-Vietoris sequence is compatible with the K-theory sequence induced from an extension of coefficient C^*-algebras, meaning

$$\delta_{Q^{-1}}(\delta_{MV}[V_{N \times S^1}]) = \delta_{MV}(\delta_{Q^{-1}}[V_{N \times S^1}]) = \delta_{MV}([p \circ \Psi]) = [V].$$

Again, these are standard constructions. The main point now is the following crucial theorem, which in a different form is the main idea of [6, Section 3.3].

2.8 Theorem. There is a unitary representation $\rho: \Gamma \rightarrow U(Q_{C^*\Pi})$ where we consider $Q_{C^*\Pi}$ as the $Q_{C^*\Pi}$-endomorphisms of the free $Q_{C^*\Pi}$-module of rank one such that the associated Hilbert $Q_{C^*\Pi}$-bundle U (which is flat) is isomorphic to the bundle V of Lemma 2.6.

With the other preparations, this is the heart of the proof of the main theorems:

2.9 Corollary. The class $\delta_{Q^{-1}}(\alpha(N \times S^1)) \in K_m(Q_{C^*\Pi})$ is the image under $\rho_*: K_m(C^*\Gamma) \rightarrow K_m(Q_{C^*\Pi})$ of $\alpha(M)$ where $\rho_*: C^*\Gamma \rightarrow Q_{C^*\Pi}$ is the homomorphism induced by the representation ρ of Theorem 2.8 via the universal property of $C^*\Gamma$.
Consequently, \(\alpha(N) \) is the image of \(\alpha(M) \) under the composition

\[
\rho_{M,N} := \beta \circ \delta_Q \circ \rho_* : K_* (C^* \Gamma) \to K_{*-2}(C^* \pi)
\]

(with the Künneth map \(\beta \) of Proposition 2.7).

In the Situation of Theorem 1.3, for the \(C^* \)-algebraic signature we get

\[
\rho_{M,N}(\text{Sgn}(M_1; f^* V_M)) = 2 \text{Sgn}(N_1; f^* V_N).
\]

Proof. For any \(\xi \in K_0(M) \) we have

\[
\langle \xi, [U] \rangle = \langle \xi, [V] \rangle = \langle \xi, \delta_{MV} \delta_{Q}^{-1}([V_\times S^1]) \rangle = \delta_{Q}^{-1}(\langle \partial_{MV} \xi, [V_\times S^1] \rangle).
\]

Applying \(\beta \circ \delta_Q \) to both sides, we get

\[
\beta \circ \delta_Q(\langle \xi, [U] \rangle) = \beta(\langle \partial_{MV} \xi, [V_\times S^1] \rangle) = (2.10)
\]

In the case that \(\xi \) is the Dirac fundamental class \([M]\), (2.10) implies

\[
\rho_{M,N}(\alpha(M)) = \beta(\alpha(N \times S^1)) = \alpha(N)
\]

since \(\rho_*(\alpha(M)) = \langle [M], [U] \rangle \in K_m(S_{[\cdot]} \Gamma) \) by [1] Lemma 3.1. Similarly, applying (2.10) to the pushed signature class \(\xi = f_* \rho_1[M_1] \text{Sgn} \) we get

\[
\rho_{M,N} \text{Sgn}(M_1; f^* V_M) = (\beta \circ \delta_Q)(\langle f_* \rho_1[M_1] \text{Sgn}, [U] \rangle)
\]

\[
= 2 \beta(\langle \partial_{MV} f_* \rho_1[M_1] \text{Sgn}, [V_\times S^1] \rangle)
\]

\[
= 2 \beta(\langle f_* [N_1 \times S^1] \text{Sgn}, [V_\times S^1] \rangle)
\]

\[
= 2 \text{Sgn}(N_1 \times S^1, f^* V_{N_1}^*)
\]

where \(\epsilon \) is as in Theorem 1.3. For the last equality, we remark that there is an isomorphism \(f^* V_{N_1} \cong f^* V_{N_1} \boxtimes S^1 \). This is because \(f|_{N \times S^1} \) is identified with \(f|_{N} \times 1 \) under the trivialization of the normal bundle of \(N_1 \) pulled back from that of the normal bundle of \(N \).

It remains to prove Theorem 2.8. For this, following [6] Section 3.3 we construct the flat Hilbert \(QC_{\pi} \)-module bundle \(U \) ad hoc, corresponding automatically to a representation \(\rho \), and then check by hand that \(U \) and \(V \) are isomorphic Hilbert \(QC_{\pi} \)-module bundles.

For this, first we choose a basepoint \(* \) in \(N \times S^1 \subset M \) and identify the fundamental groups as \(\Gamma = \pi_1(M,*) \), \(\pi = \pi_1(N \times D^2,*) \) and \(\Pi = \pi_1(N \times S^1,*) \). Let \(q: (M_{\pi},*) \to (M,*) \) be the covering projection with \(\pi_1(M_{\pi},*) = \pi \subset \Gamma \) and let \(N \times D^2 \subset M_\pi \) be the corresponding lift of the embedded \(N \times D^2 \subset M \), namely the connected component of \(q^{-1}(N \times D^2) \) containing the basepoint. Define \(W_\infty := M_{\pi} \backslash (N \times D^2) \). It is a crucial consequence of the conditions on \(\pi_2 \) derived in [3] Theorem 4.3, that the inclusion of the boundary \(N \times S^1 \to W_\infty \) induces a split injection \(\Pi = \pi \times \mathbb{Z} \to \pi_1(W_\infty,*) \). Let \(W := q^{-1}(W) \to W \) be the restriction of the covering \(M_{\pi} \to W \), a subset of \(W_\infty \). Set \(G := \pi_1(W,*) \) and
$H := \pi_1(W_\pi, \ast)$. The covering and inclusion maps give a commutative diagram of spaces, inducing the one of fundamental groups

$$
\begin{array}{ccc}
N \times S^1 & \xrightarrow{C} & N \times D^2 \\
\cap & & \cap \\
W_\pi & \xrightarrow{C} & W_\infty \\
\cap & & \cap \\
W & \xrightarrow{C} & M
\end{array}
\quad
\begin{array}{ccc}
\Pi = \pi \times \mathbb{Z} & \xrightarrow{\pi} & \pi \\
\downarrow & & \downarrow \\
H & \xrightarrow{\pi_1(W_\infty, \ast)} & G
\end{array}
$$

(2.11)

The horizontal maps of groups are surjective, the vertical ones injective. The inclusion of $H \rightarrow \pi \times \mathbb{Z}$ induces $\pi \times \mathbb{Z} \rightarrow H \rightarrow G$ (the first a split of $H \rightarrow \pi \times \mathbb{Z}$ of (2.11)) and by the van Kampen theorem the normal subgroup $\Lambda := \langle \langle \mathbb{Z} \rangle \rangle$ generated by \mathbb{Z} is the kernel of both epimorphisms $H \rightarrow \pi$ and $G \rightarrow \Gamma$. Through the epimorphism $H \rightarrow \Pi$ we get an induced map $H \rightarrow U(\mathbb{B}_{C^*\Pi}(C^*\Pi))$ (acting by left multiplication). The associated Hilbert $C^*\Pi$-module bundle on W_π is the restriction of the Mishchenko bundle of W_∞ to W_π (associated to the canonical map $\Pi \rightarrow \mathbb{B}_{C^*\Pi}(C^*\Pi)$).

Inducing the representation $H \rightarrow \Pi \rightarrow U(C^*\Pi)$ up from H to G we obtain the unitary representation of G on the space of square-summable sections of the induced $C^*\Pi$-bundle

$$X := G \times_H C^*\Pi \cong \Pi_{g \in G/H} C^*\Pi$$
on the discrete space $G/H \cong \Gamma/\Pi$, where the action is by left multiplication. We denote it by

$$\rho_G : G \rightarrow U(\mathbb{B}_{C^*\Pi}(\ell^2(G/H, X))).$$

The above isomorphism $X \cong \Pi_{g \in G/H} C^*\Pi$ means that $\ell^2(G/H, X)$ is the completion of an (infinite) algebraic direct sum of free Hilbert $C^*\Pi$-modules of rank one, on which G acts via a combination of permutations and left Π-multiplication. The corresponding flat Hilbert $C^*\Pi$-module bundle

$$\mathcal{H}_W := W \times_G \ell^2(G/H, X)$$
on W is the pushdown of the bundle $W \times_H C^*\Pi$ on W_π: the fiber over $x \in W$ is the completed direct sum of all the fibers in the inverse image of x in W_π.

2.12 Lemma. Restricted to $\pi \times \mathbb{Z} = \Pi$, the representation $\rho_\Pi := \rho_G|_\Pi$ decomposes as a direct sum

$$\rho_\Pi = \lambda_\Pi \oplus \rho_{\text{rest}} : \Pi \rightarrow U(\mathbb{B}_{C^*\Pi}(C^*\Pi) \oplus \mathbb{B}_{C^*\Pi}(\ell^2((G \setminus H)/H, X)))$$

(2.13)

where the map λ_Π to the first summand comes from left multiplication. Moreover, the map ρ_{rest} to the second summand factors through the projection $pr_\pi : \Pi = \pi \times \mathbb{Z} \rightarrow \pi$, i.e. is written as $\rho_{\pi} \circ pr_\pi$ with

$$\rho_{\pi} := \rho_G|_\pi : \pi \rightarrow U(\mathbb{B}_{C^*\Pi}(\ell^2((G \setminus H)/H, X))).$$

Correspondingly, the restriction of \mathcal{H}_W to $N \times S^1$ is the direct sum of flat bundles $\mathcal{V}_{N \times S^1}$ and

$$\mathcal{H}_{\text{rest}} := N \times S^1 \times_H \ell^2((G \setminus H)/H, X),$$

where $\mathcal{H}_{\text{rest}}$ extends to a flat bundle over $N \times D^2$.
Define the left multiplication by ρH on the summand $H \times_H C^*\Pi = C^*\Pi$ is given by left multiplication.

We write t for the generator of $\mathbb{Z} \subseteq H \subset G$. Then $\rho H(t)$ preserves each rank one direct summand $gH \subseteq (G \setminus H)/H$, since $t \cdot gH = g \cdot g^{-1}tgH$ and $g^{-1}tg \in H$. This observation also shows that $\rho H(t)$ stabilizes any $gH \subseteq (G \setminus H)/H$. We show that it is contractible in W_{∞} of the inverse image of $\mathcal{Q}(C^*\Pi)$ and hence also $\rho(g^{-1}tg) = e$ for any $g \in G \setminus H$, which concludes that $\rho H(t)$ acts on H_{rest} trivially.

The element $g^{-1}tg \in H = \pi_1(W_\pi)$ is represented by the concatenation of the lift of the loop g to a (non-closed, as $g \notin H$) path γ in W_π from the base point $*$, the corresponding lift of the loop $t \in S^1$ and the inverse of the path γ. We have to show that it is contractible in W_{∞}. However, γ ends in a different component of the inverse image of $N \times S^1$ under the covering projection $W_\pi \rightarrow W \subset W_{\infty}$. In W_{∞}, this component is the boundary of a covering of $N \times D^2$ and therefore the lift of t is contractible in W_{∞} and hence also $\rho(g^{-1}tg) = e = \pi_1(W_{\infty}) = \Pi$.

2.14 Definition. Define $\rho \colon \Gamma = G/\langle \langle \mathbb{Z} \rangle \rangle \rightarrow \mathcal{U}(\mathcal{Q}(C^*\Pi))$ of Theorem 2.8 as induced by the composition

$$
\bar{\rho}_G \colon G \xrightarrow{\rho_G} \mathbb{B}_{C^*\Pi}(\ell^2(G/H,\mathcal{X})) \rightarrow \mathcal{Q}(C^*\Pi)(\ell^2(G/H,\mathcal{X})) \cong \mathcal{Q}(C^*\Pi),
$$

using that the kernel Λ of $G \rightarrow \Gamma$, normally generated by \mathbb{Z}, acts by Lemma 2.12 as the identity on $\ell^2((G \setminus H)/H,\mathcal{X})$ and therefore as the identity in $\mathcal{Q}(C^*\Pi)$.

2.16 Remark. For the proof of Theorem 2.8 we remark a relation between $\mathcal{H}_{C^*\Pi}$-bundles and $\mathbb{B}_{C^*\Pi}$-bundles. Let \mathcal{H} be a locally trivial bundle of Hilbert C^*-modules whose typical fiber is $\mathcal{H}_{C^*\Pi}$ and with structure group $\mathcal{U}(\mathcal{H}_{C^*\Pi})$ with norm topology. We write $\mathcal{U}(\mathcal{H})$ for corresponding right principal $\mathcal{U}(\mathcal{H}_{C^*\Pi})$-bundle, with $\mathcal{U}(\mathcal{H})_x = \mathcal{U}(\mathcal{H}_{C^*\Pi},\mathcal{H}_x)$ for $x \in X$ (note that, in the usual convention of the product of endomorphisms, the products $(a, x) \mapsto ax$ and $(x, b) \mapsto xb$ induce a left $\mathbb{B}_{C^*\Pi}(\mathcal{H})$-action and a right $\mathbb{B}_{C^*\Pi}(\mathcal{H})$-action on $\mathbb{B}_{C^*\Pi}(\mathcal{H})$). We have the associated bundles $B(\mathcal{H}) := \mathcal{U}(\mathcal{H}) \times_{\mathcal{U}(\mathcal{H}_{C^*\Pi})} \mathbb{B}_{C^*\Pi}$ and $\mathcal{Q}(\mathcal{H}) := \mathcal{U}(\mathcal{H}) \times_{\mathcal{U}(\mathcal{H}_{C^*\Pi})} \mathcal{Q}(C^*\Pi)$. Then the following are easily verified:

1. For the group $G = \pi_1(X)$ and its unitary representation $\rho \colon G \rightarrow \mathbb{B}_{C^*\Pi}$, the associated bundle $X \times_G \mathbb{B}_{C^*\Pi}$ is isomorphic to $B(X \times G) \mathcal{H}_{C^*\Pi})$.

2. The fiber of the bundle $B(\mathcal{H})$ at $x \in X$ is $\mathbb{B}_{C^*\Pi}(\mathcal{H}_{C^*\Pi},\mathcal{H}_x)$. Hence, a bounded bundle map $T \colon \mathcal{H} \rightarrow \mathcal{K}$ induces $B(\mathcal{H}) \rightarrow B(\mathcal{K})$, fiberwise given by postcomposition. Similarly, T also induces $\mathcal{Q}(\mathcal{H}) \rightarrow \mathcal{Q}(\mathcal{K})$.

3. If \mathcal{H} and \mathcal{K} are trivial, $T \colon X \times \mathcal{H}_{C^*\Pi} \rightarrow X \times \mathcal{K}_{C^*\Pi}$ is identified with a continuous function $X \rightarrow \mathbb{B}_{C^*\Pi}$. The bundle map on $B(X \times \mathcal{H}_{C^*\Pi}) \cong X \times \mathbb{B}_{C^*\Pi}$ (or $\mathcal{Q}(X \times \mathcal{H}_{C^*\Pi}) \cong X \times \mathcal{Q}(C^*\Pi)$, respectively) induced from T is the multiplication of T from the left.

Proof of Theorem 2.8 We now prove that V is isomorphic to U by showing that the restrictions of U to W and to $N \times D^2$ both can be trivialized, and that the change of trivialization over $N \times S^1$ is precisely the gluing map which produces V.

For this, note that the restriction of U to W is the flat bundle associated to the representation ρG of (2.13). As such, it is identified with $\mathcal{Q}(\mathcal{H}_W)$ by
Remark 2.16 (1). We consider the flat bundle $Q(\mathcal{H}_{\text{rest}}) \cong N \times D^2 \times \mathcal{H}_{\text{rest}} \otimes \mathcal{C}^*\Pi$ over $N \times D^2$ and glue them by the bundle map $Q(\mathcal{H}_W)|_{N \times S^1} \to Q(\mathcal{H}_{\text{rest}})|_{N \times S^1}$ induced from the second projection

$$w: \mathcal{H}_W|_{N \times S^1} \cong V_{N \times S^1} \oplus \mathcal{H}_{\text{rest}} \to \mathcal{H}_{\text{rest}}$$

as is discussed in Remark 2.16 (2), to get the bundle U'. Since w is a lift of the Π-invariant projection $\ell^2(G/H, \mathcal{X}) \to \ell^2((G \setminus H)/\mathcal{X})$ to the associated bundles, the flat connection on $U|_W$ extends to U' and its monodromy representation coincides with ρ_G. This means that $U \cong U'$.

By Kuiper’s theorem, there are trivializations $v_W: W \times \mathcal{H}_{C^*\Pi} \to \mathcal{H}_W$ and $v_{N \times D^2}: N \times D^2 \times \mathcal{H}_{C^*\Pi} \to \mathcal{H}_{\text{rest}}$. Then U' is obtained by gluing two trivial $\mathcal{C}^*\Pi$-bundles along $N \times S^1$ by the bundle map induced from

$$v_{N \times D^2}^*wv_W: N \times S^1 \times \mathcal{H}_{C^*\Pi} \to N \times S^1 \times \mathcal{H}_{C^*\Pi}.$$

This is a bundle map whose kernel bundle is precisely $V_{N \times S^1}$ and with trivial cokernels. By Remark 2.16 (3), this is precisely the gluing map for V, consequently $U \cong U' \cong V$ as Hilbert $\mathcal{C}^*\Pi$-module bundles. This finishes the proof of Theorem 2.8 and therefore, in view of Corollary 2.9 also our two main results, Theorem 1.2 and Theorem 1.3.

2.17 Remark. The Mayer-Vietoris boundary map $\delta_M: K^1(N \times S^1; \mathcal{C}^*\Pi) \to K^0(M; \mathcal{C}^*\Pi)$ of (2.5) is not injective. In particular, $[V] = \delta_M([\mathcal{V}_{N \times S^1} - [\mathcal{C}^*\Pi]])$ is also associated to of the Mishchenko bundle over $N \times S^1$ and the trivial rank 1 Hilbert $\mathcal{C}^*\Pi$-module bundle over $N \times S^1$. The latter is used in some calculations of [6, Section 3.3].

2.18 Proposition. We have the following strengthening of Theorem 1.2. In the situation of Theorem 1.2, the Rosenberg index $\alpha(M)$ is not contained in the image of the map $K_*(C_{\text{max}}\pi_1(N)) \to K_*(C_{\text{max}}\pi_1(M))$. This follows from Theorem 2.8. Indeed, the composition $\rho: C^*\pi \to C^*\Gamma \to \mathcal{C}^*\Pi$ induces the zero map in K-theory since the diagram

$$\begin{array}{ccc}
C^*\pi & \longrightarrow & B_{C^*\Pi} \\
\downarrow & & \downarrow \\
C^*\Gamma & \longrightarrow & \mathcal{C}^*\Pi
\end{array}$$

commutes and $K_*(B_{C^*\Pi}) = 0$. Note that this strengthening is also a consequence of [6, Theorem 3.7].

References

[1] Alexander Engel, Wrong way maps in uniformly finite homology and homology of groups, J. Homotopy Relat. Struct. 13 (2018), no. 2, 423–441, DOI 10.1007/s40062-017-0187-x. MR3802801

[2] Mikhael Gromov and H. Blaine Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83–196 (1984). MR720933 (85g:58082)

[3] Bernhard Hanke, Daniel Pape, and Thomas Schick, Codimension two index obstructions to positive scalar curvature, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 6, 2681–2710 (English, with English and French summaries). MR3449594
[4] Bernhard Hanke and Thomas Schick, *Enlargeability and index theory*, J. Differential Geom. **74** (2006), no. 2, 293–320. MR2259056 (2007g:58024)

[5] Nigel Higson, Thomas Schick, and Zhizhang Xie, *C*-algebraic higher signatures and an invariance theorem in codimension two*, Geom. Topol. **22** (2018), no. 6, 3671–3699, DOI 10.2140/gt.2018.22.3671. MR3858772

[6] Yosuke Kubota, *The relative Mishchenko–Fomenko higher index and almost flat bundles II*, 2019. arXiv:1908.10733.

[7] Martin Nitsche, Thomas Schick, and Rudolf Zeidler, *Transfer maps in generalized group homology via submanifolds*, 2019. arXiv:1906.01190.

[8] Jonathan Rosenberg, *C*-algebras, positive scalar curvature, and the Novikov conjecture*, Inst. Hautes Études Sci. Publ. Math. **58** (1983), 197–212 (1984). MR720934 (85g:58083)

[9] Thomas Schick, *The topology of positive scalar curvature*, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 1285–1307. MR3728662