Both carbogen and nicotinamide caused significant increases in the nucleoside triphosphate/inorganic phosphate (NTP/Pi) ratio, implying oxygenation but no detectable change in perfusion/flow. Carbogen combined with nicotinamide was no more effective than carbogen alone.

Spectroscopy (MRS) methods have been used to give information on the effects of nicotinamide alone and in combination with host carbogen suppressing the transient closure of small blood vessels that cause intermittent tumour hypoxia, induced a small increase in blood oxygenation but no detectable change in perfusion/flow. Carbogen combined with nicotinamide was no more effective than carbogen alone. Both carbogen and nicotinamide caused significant increases in the nucleoside triphosphate/inorganic phosphate (NTP/Pi) ratio, implying that the tumour cells normally receive sub-optimal substrate supply, and is consistent with either increased glycolysis and/or a switch to more oxidative metabolism. The most striking observation was the marked increase in blood glucose (twofold) induced by both nicotinamide and carbogen. Whether this may play a role in tumour radiosensitivity has yet to be determined.

Summary Both host carbogen (95% oxygen/5% carbon dioxide) breathing and nicotinamide administration enhance tumour radiotherapeutic response and are being re-evaluated in the clinic. Non-invasive magnetic resonance imaging (MRI) and 31P magnetic resonance spectroscopy (MRS) methods have been used to give information on the effects of nicotinamide alone and in combination with host carbogen breathing on transplanted rat GH3 prolactinomas. Gradient recalled echo (GRE) MRI, sensitive to blood oxygenation changes, and spin echo (SE) MRI, sensitive to perfusion/flow, showed large signal intensity increases with carbogen breathing. Nicotinamide, thought to act by suppressing the transient closure of small blood vessels that cause intermittent tumour hypoxia, induced a small increase in blood oxygenation but no detectable change in perfusion/flow. Carbogen combined with nicotinamide was no more effective than carbogen alone. Both carbogen and nicotinamide caused significant increases in the nucleoside triphosphate/inorganic phosphate (NTP/Pi) ratio, implying that the tumour cells normally receive sub-optimal substrate supply, and is consistent with either increased glycolysis and/or a switch to more oxidative metabolism. The most striking observation was the marked increase in blood glucose (twofold) induced by both nicotinamide and carbogen. Whether this may play a role in tumour radiosensitivity has yet to be determined. © 2000 Cancer Research Campaign

Keywords: carbogen; nicotinamide; hydralazine; oxygenation; blood flow; MRI

Tumour oxygenation and blood flow are of fundamental importance to many forms of cancer therapy. Poorly-perfused regions of tumours are likely to be hypoxic and thus resistant to radiotherapy (Gray et al, 1956). At present it is believed that in addition to the chronic, diffusion-limited hypoxia described by Thomlinson and Gray (1955), there is a second mechanism – transient, acute hypoxia in small (50 μm diameter) tumour volumes (Chaplin et al, 1987; Braun et al, 1999). Both nicotinamide and carbogen (95% oxygen/5% carbon dioxide) have been shown to increase tumour response to radiotherapy (Horsman et al, 1987; Chaplin et al, 1991; Kjellen et al, 1991), and it is generally considered that they target these two different hypoxia mechanisms. Breathing carbogen increases the amount of dissolved oxygen in the plasma at the capillary level and this, assisted by hypercapnic-induced vasodilation, may allow diffusion of oxygen into chronically hypoxic regions of tumours, resulting in an increase in tumour oxygenation. Nicotinamide is thought to reduce the occurrence of acute hypoxia (Chaplin et al, 1990) and hence increase tumour blood flow (Horsman et al, 1988; Hirst et al, 1993), although its precise mechanism of action is still unclear. The combination of carbogen breathing and nicotinamide is currently being re-evaluated in the clinic as a strategy to overcome hypoxic cell radioresistance (Hoskin et al, 1997; Kaanders et al, 1998; Bernier et al, 1999).

The response of tumours to host carbogen breathing has been successfully monitored by 1H MRI methods with high temporal and spatial resolution, and which are sensitive to the deoxyhaemoglobin concentration. Deoxyhaemoglobin is paramagnetic and its presence creates inhomogeneities in the magnetic field. This reduces the T2* magnetic resonance (MR) relaxation time of the tissue surrounding blood vessels containing deoxygenated blood. Gradient-recalled echo (GRE) images are sensitive to T2* and, thus a change in GRE image intensity reflects a change in blood deoxy-xygenation due to either a change in blood saturation or blood flow. Deoxyhaemoglobin therefore acts as an endogenous, blood oxygenation level dependent (BOLD) contrast agent (Ogawa et al, 1990). GRE MR images are also sensitive to the so-called ‘in-flow effect’ whereby the water in fresh blood flowing into the selected imaging slice is not saturated from the previous radiofrequency pulse, thus giving a stronger signal than that from static water in tissue (Duyan et al, 1994). Several studies have demonstrated large carbogen-induced increases in T2* in both rodent (Robinson et al, 1995; Dunn and Swartz, 1997; Oikawa et al, 1997; Robinson et al, 1997, 1999) and human (Griffiths et al, 1997) tumours. This is a consequence of an improvement in both tumour blood flow and oxygenation (Howe et al, 1996; Al-Hallaq et al, 1998), a method subsequently termed FLOOD (Flow and Oxygen Dependent) imaging (Howe et al, 1999).

In preclinical in vivo studies, sensitization is only seen when nicotinamide is administered prior to radiotherapy (Horsman, 1995), with an apparent maximum observed when given ca. 1 hour prior to treatment (Horsman et al, 1987). To try and elucidate the mechanisms behind nicotinamide-induced tumour radiosensitization, the temporal response of rat GH3 prolactinomas to...
nicotinamide, alone and in combination with carbogen, was monitored by three MR methods. GRE MR imaging was used to monitor blood oxygenation via T₂*; spin echo (SE) MR imaging to monitor flow via the changes in the T₁* relaxation time (Howe et al, 1999); and 31P MRS to detect changes in tumour bioenergetics (e.g. βNTTP:P_i ratio) (Tozer and Griffiths, 1992). The combination of these MR methods was firstly validated in a pilot study following the response of GH3 prolactinomas to hydralazine, a vasodilator whose tumour vascular steal-effects are well documented (Jirtle, 1988; Robinson et al, 1998). Subsequently the tumour response to nicotinamide and carbogen was studied in vivo using MR and other complementary methods to elucidate the underlying mechanisms of action.

MATERIALS AND METHODS

Animals and tumours

GH3 prolactinomas were grown in the flanks of female Wistar Furth rats. Tumour cells from a serial passage of a cell suspension (Prysor-Jones and Jenkins, 1981) were injected subcutaneously into 180–200 g rats and tumours grown to 1.5–2 cm diameter.

Anaesthesia was induced with a 4 ml kg^{−1} intraperitoneal injection of fentanyl citrate (0.315 mg ml^{−1}) plus fluanisone (10 mg ml^{−1}) (‘Hypnorm’, Janssen Pharmaceutical Ltd), midazolam (5 mg ml^{−1}) (‘Hypnovel’, Roche) and water (1:1:2). This combination has a minimal effect on tumour blood flow (Menke and Vaupel, 1988) and 31P MRS characteristics (Sansom and Wood, 1994). The tail vein was cannulated prior to MR, to allow administration of hydralazine (Sigma, UK) or nicotinamide (Sigma, UK) whilst the animal remained in the magnet bore. The animals were placed on a flask containing circulating warm water to maintain the core temperature at 37°C and positioned so the tumour hung vertically into a radiofrequency coil. Carbogen (BOC, UK Ltd) was administered via a nose-piece, equipped with a scavenger to prevent the leakage of paramagnetic oxygen into the magnet bore, which could potentially change the magnetic susceptibility around the coil and produce image artefacts (Bates et al, 1995).

MRI and MRS

1H MRI and 31P MRS was performed with a 4.7 T, 33 cm SISCO (Spectroscopy Imaging Systems Corporation) instrument fitted with a 10 G cm^{−1}, 12-cm bore high-performance auxiliary gradient insert, using a two-turn 3-cm coil tuneable to both 1H and 31P resonant frequencies. Prior to data acquisition, field homogeneity was optimized by shimming on the water signal for each tumour to a baseline hump in the spectra. The data were fitted assuming contributions from phosphomonoesters (PME), inorganic phosphate (P_i), phosphodiesters (PDE), phosphocreatine (PCr) and the three nucleoside triphosphates (NTP) resonances, and peak lineshape was assumed to be Lorentzian. Peak area ratios of βNTTP:P_i and P_E/EP were then determined. Intracellular tumour pH_i was determined using the VARPRO-derived chemical shifts for the P_E and α-NTP resonances (Ojugo et al, 1999).

Blood pressure monitoring

Mean arterial blood pressure (MABP) was measured over the same time course as for the MR protocols on separate cohorts of rats (n = 5), using a rat tail blood pressure monitor (Harvard Apparatus Ltd, Edenbridge, UK).

Blood plasma glucose

Arterial blood samples were taken from the iliac artery of a separate cohort of tumour-bearing rats before and (1) 40 min post-administration of 1000 mg kg^{−1} nicotinamide intravenously or (2) after 10 min of carbogen breathing (n = 10 samples per treatment group). The blood samples were centrifuged to remove the red cells, an aliquot of the plasma supernatant was deproteinized with perchloric acid and subsequently neutralized. Glucose was determined on the neutralized extracts according to Bergmeyer (1974).

Statistical analysis

The reproducibility of the MRI and 31P MRS acquisitions was assessed from the two sets of pre-challenge measurements made in each protocol. For the normalized GRE and SE image intensities, βNTTP:P_i and P_E/EP, the coefficient of variation (CV) was measured in each of the 18 animals and the r.m.s. value determined. For pH_i, the standard deviation was measured and the r.m.s. determined. Results are presented as mean ± standard error, and significant changes identified using Student’s two-tailed t-test at a 5% confidence level.
RESULTS

In all the studies the blood-oxygenation-sensitive GRE images showed a heterogeneous pattern of intensities whereas the flow-sensitive SE images showed a fairly homogeneous pattern. In the GRE images during air breathing, the regions of high signal intensity are thought to delineate well-oxygenated/perfused areas of the tumour, whilst dark areas are thought to indicate poorly perfused/necrotic regions. The small hyperintense spots in both SE and GRE images are probably attributable to signal from large blood vessels (Howe et al., 1999). In the 31P MR spectra, typical resonances were identified for PME, P, PDE, PCr and γ, α, and β-NTP. Non-localized 31P MRS was utilized to maintain adequate temporal resolution and can result in spectral contamination. However, in all the acquired spectra the PCr peak, when present, was always less than that of NTP.

In the pilot study, hydralazine produced the expected significant decreases in both GRE and SE image intensity and in βNTP/P, after 5 min. After 20 min the changes were maximal and stable for the further 20 min of measurements. Within some of the GRE and SE images, bright structures were observed which decreased in number and intensity post-hydralazine (Figure 1).

Figure 2 shows representative GRE and SE MR images and 31P spectra from a GH3 prolactinoma where the changes following nicotinamide challenge had reached a maximum. Figure 3 shows the time course of changes in MR image intensity and 31P MRS parameters following administration of nicotinamide. A significant increase in βNTP/P was observed 10 min after administration of nicotinamide; the maximal increase was reached after 40 min and it was then stable for a further 30 min. Concurrent with this was a significant decrease in P/PE and a small but statistically non-significant increase in tumour pH. Changes in the oxygenation-sensitive average GRE MR image intensity over the tumour were much less but there was a small significant signal increase after 40 min. The SE MR images, which are sensitive to blood flow, showed no change in average image intensity.

These results formed the basis of the protocol designed to assess the combination of carbogen and nicotinamide; carbogen breathing was started 40 min post-nicotinamide when the maximum response to nicotinamide occurred. The response to carbogen breathing alone was much greater and faster than that with nicotinamide alone. Significant increases in both GRE and SE image intensity and in βNTP/P were observed after 5 min of carbogen breathing with maximum increases after 10 min. Figure 4 shows representative GRE and SE MR images of the maximum response to host carbogen breathing. On return to air-breathing these changes were reversed within 5 min. When carbogen was given 40 min after administration of nicotinamide, the 1H MRI and 31P MRS changes were no different to those caused by carbogen breathing alone. Hyperintensities in both GRE and SE images increased in number and intensity with carbogen breathing, irrespective of whether nicotinamide had been administered (Figure 4).

Table 1 summarises the data for each vascular challenge when MRI and MRS changes were maximal and stable, i.e. 40 min after hydralazine administration, 40 min after nicotinamide administration and after 10 min of carbogen breathing. The data during air breathing represent the average of data from all three of the previously described protocols, but prior to the vascular challenge. From the two successive MRI and 31P MRS measurements in all 18 animals prior to treatment, the precision of the measurements was determined: these were 3% for GRE MRI intensity, 2% for SE MRI intensity, 23% for βNTP/P, 19% for P/PE (all r.m.s. CV) and 0.1 units for pH (r.m.s. std. dev.).

Mean arterial blood pressure was unchanged by nicotinamide and carbogen but significantly reduced by hydralazine (Table 1).

Circulating blood glucose levels were determined prior to and either 40 min post-administration of nicotinamide or after 10 min of carbogen breathing, these time points selected on the basis of the maximum observed improvement in tumour energetics. Both nicotinamide (11.4 ± 0.7 μmol ml$^{-1}$) and carbogen breathing (15.6 ± 0.6 μmol ml$^{-1}$) induced significant increases in plasma glucose levels (Table 1). The control plasma glucose levels (6.6 ± 0.3 μmol ml$^{-1}$) and the enhanced levels after carbogen breathing were similar to those previously reported (Stubbs et al., 1998).

DISCUSSION

The observed MRI and MRS responses of GH3 prolactinomas to hydralazine were as expected, and this pilot study validated our interpretation of the changes seen with nicotinamide and carbogen. Hydralazine acts directly on vascular smooth muscle in vessels of normal tissues, causing vasodilation and an overall decrease in MAP. Tumour blood vessels, which may lack smooth muscle, do not dilate in response to hydralazine, resulting in a redistribution of blood away from the tumour, described as vascular steal (Jirtle, 1988), and hence a reduction in tumour blood flow. This reduction in tumour perfusion results in nutrient and oxygen deprivation, and hence reduced bioenergetic status as observed in the 31P MRS spectrum (an increase in P, relative to NTP). This has also been observed for hydralazine in other tumour models (Okunieff et al., 1988; Dunn et al., 1989; Bhujwalla et al., 1990; Robinson et al., 1998). SE MR images (Figure 1 C.D) are sensitive to flow, and hydralazine causes a decrease in overall signal intensity due to reduced perfusion. The hyperintense spots are from the water in blood vessels and are thus identified as large blood vessels in cross-section. This is confirmed by their reduction in number in response to hydralazine, the reduced perfusion resulting in less of an ‘in-flow’ effect. The overall reduction in GRE image signal intensity reflects the increase in capillary blood deoxyhaemoglobin as the reduced perfusion means a larger oxygen fraction is extracted. A similar GRE MRI response to hydralazine has been observed in RIF-1 fibrosarcomas (Bhujwalla et al., 1994; Williams et al., 1996).

Despite the plethora of data demonstrating the ability of nicotinamide to radiosensitize (Chaplin et al., 1991; Kjellen et al., 1991; Horsman 1995 and references therein), there appears to be no consensus on its precise mechanism of action. The main aim of this study was to investigate tumour response to nicotinamide administration and carbogen inhalation, which were given separately and in combination. Carbogen caused marked and widespread increases (39 ± 2%) in GRE MR image intensity, whereas those caused by nicotinamide were much smaller (8 ± 3%), though still statistically significant (Table 1). The results with carbogen were qualitatively similar to those seen in our previous studies on this tumour model which we interpreted as largely due to decreased deoxyhaemoglobin in the tumour blood vessels (Robinson et al., 1995, 1997, 1999; Howe et al., 1996, 1999). It should be noted that the GRE MR images with short TRs are also susceptible to in-flow effects, and hence an increase in blood flow.
Figure 1 Response of a GH3 prolactinoma to 5 mg kg\(^{-1}\) hydralazine i.v., monitored by interleaved \(^1\)H MRI & \(^31\)P MRS: (A and B) are GRE MR images prior to and 32 min post-hydralazine; (C and D) are SE MR images prior to and 35 min post-hydralazine; (E and F) are non-localized \(^31\)P MR spectra prior to and 38 min post-hydralazine

Figure 2 Response of a GH3 prolactinoma to 1000 mg kg\(^{-1}\) nicotinamide administered i.v., monitored by interleaved \(^1\)H MRI & \(^31\)P MRS: (A and B) are GRE MR images prior to and 42 min post-nicotinamide; (C and D) are SE MR images prior to and 45 min post-nicotinamide; (E and F) are non-localized \(^31\)P MR spectra prior to and 48 min post-nicotinamide
The increased [^3]P/[^1]P ratio in response to carbogen in these GH3 tumours is unsurprising (although not all tumour models show such rises after carbogen challenge), if we assume that the tumour’s oxygen supply is sub-optimal when the host is breathing air. If there are substantial, chronically hypoxic volumes of tissue then the improved blood flow and blood oxygen content caused by carbogen inhalation would be expected to enhance tumour energetics. In contrast, if the action of nicotinamide is confined to a small fraction of the cells in the tumour one would not expect to see such marked changes in the [^3]P/[^1]P ratio. A similar response has been previously reported in both SCCVII and KHT murine tumours (Wood et al, 1991). However, there is another factor to be taken into account: surprisingly, both these very different treatments caused marked and statistically significant hyperglycaemia.

We can explain the improved bioenergetic parameters in GH3 tumour in response to carbogen if we assume that the tumour cells normally receive sub-optimal substrate supply. Many studies with perfused tumours have shown that glucose consumption varies directly with glucose supply (Sauer et al, 1982; Vaupel et al, 1989).
Since carbogen and nicotinamide cause approximately doubled blood glucose concentrations, it is not, therefore, surprising that they both enhance the tumour NTP/P_i ratio. It is not possible to deduce whether the glucose substrate in the present experiments was metabolized oxidatively or glycolytically, and there are reports of both types of metabolism in the literature. Dewhirst et al (1999) showed that combined hyperglycaemia and hyperoxia improved tumour pO$_2$ more than hyperoxia alone, suggesting that the R3230Ac tumour line they studied switched from an oxidative to a more glycolytic metabolism when challenged with glucose, thus sparing oxygen – a Crabtree effect. However, in 13C MRS dynamic studies in the RIF-1 tumour, Nielsen et al (1999) have shown that carbogen breathing significantly decreases the ‘apparent’ glycolytic (i.e. 13C glucose to 13C lactate) rate, suggesting a more oxidative metabolism. Similarly Stubbs et al (1998) showed carbogen-induced hyperglycaemia accompanied by a decrease in [lactate] (in Morris hepatoma 9618a), also consistent with a switch to a more oxidative metabolism. Despite these differing observations of the metabolic fate of glucose, they are all consistent with enhanced energetic status in response to an increased substrate supply.

In summary, the MRI results can be accounted for on the basis of the accepted mechanisms of action of carbogen and nicotinamide, whereas the 31P MRS changes can be explained by the raised (~twofold) blood glucose induced by these two agents. Systemic effects of raised blood glucose induced by nicotinamide and carbogen do not appear to have been considered in the literature with respect to tumour radiosensitization, although attempts to increase tumour pO$_2$ by decreasing the consumption of oxygen, and hence radioresponse, have been (Biaglow et al, 1998). It has been known for many years that metabolism of nicotinamide results in glycogen breakdown and a consequent increase in blood glucose (Ammon and Estler, 1967; Moreno et al, 1985). However, we have not found any previous reports (other than our own work, Stubbs et al, 1998) of carbogen-induced hyperglycaemia and the mechanism of this effect must be speculative. Carbogen breathing

Table 1

	Air	Hydralazine	Nicotinamide	Carbogen	Nicotinamide and carbogen
GRE SI	100	85 ± 2a	108 ± 3b	139 ± 2a	146 ± 5a
SE SI	100	90 ± 2a	100 ± 4	115 ± 2a	117 ± 3a
NTP/P_i	1.06 ± 0.02	0.66 ± 0.06a	1.81 ± 0.21a	1.58 ± 0.1a	1.62 ± 0.14a
P_i/S	0.13 ± 0.01	0.017 ± 0.01a	0.08 ± 0.01a	0.09 ± 0.01a	0.09 ± 0.01a
pH	7.22 ± 0.01	6.92 ± 0.04a	7.32 ± 0.04	7.23 ± 0.02	7.26 ± 0.02
MABP (mmHg)	103 ± 6	46 ± 2a	92 ± 7	112 ± 5	95 ± 4
Glucose (mmol l^{-1})	6.6 ± 0.3	$-$	11.4 ± 0.7a	15.6 ± 0.6a	$-$

$^aP < 0.01$ compared to air. $^bP < 0.05$ compared to air. Summary of the data for each vascular challenge when MRI and MRS changes were maximal and stable. The data during air breathing are the average of data from all three protocols prior to the vascular challenge.
induces hypercapnia which is known to cause an excitatory response of the sympathetic nervous system and epinephrine release. Epinephrine induces glycogenolysis as well as stimulation of cardiac output and metabolic rate via the adrenal medulla (Guyton and Hall, 1996). The impact of these systemic effects on tumour physiology and metabolism is clearly complex and may well influence how a tumour responds to radiotherapy in the presence of clinical radiosensitizers. High levels of hyperglycaemia induced by glucose infusion (fourfold higher than normal blood glucose) have been shown to decrease tumour blood flow and pH and used as an adjuvant for hyperthermia (Song, 1998 and therein) but these effects probably do not play a role in this study in which the degree of hyperglycaemia was much less severe. However, in view of the current clinical radiotherapy trials of combined nicotinamide and carbogen administration to patients, it would be prudent to check for hyperglycaemia in human subjects.

ACKNOWLEDGEMENTS

This work was supported by the Cancer Research Campaign, UK, [CRC] grant SP 1971/0402 and SP 1971/0502. The authors would like to thank Loreta Rodrigues for technical assistance, and Chris Brown and his staff for care of the animals.

REFERENCES

Al-Hallaq HA, River JN, Zamora M, Oikawa H and Karzczmar GS (1998) Correlation of magnetic resonance and oxygen microelectrode measurements of carbogen-induced changes in tumour oxygenation. Int J Radiat Oncol Biol Phys 41: 151–159

Ammon HPT and Estler CJ (1967) The effect of nicotinic acid on glycolytic carbohydrate breakdown in the liver. Life Sci 6: 641–647

Bates S, Yetkin Z, Jesmanowicz A, Hyde JS, Bandettini PA, Estkowski I, and Haughton VM (1995) Artifacts in functional magnetic resonance imaging from gaseous oxygen. J Magn Reson Imaging 5: 443–445

Bergmeyer HU (1974) Methods of Enzymatic Analysis. Verlag Chemie: Weinheim

Bernier J, Denekamp J, Rojas A, Trovo M, Horiot JC, Hamers H, Antognoni P, Dahl O, Richard P, Kaanders J, van Glabbeke M and Pierart M (1999) ARCON: accelerated radiotherapy with carbogen and nicotinamide in non small cell lung cancer: a phase I/II study by the EORTC. Radiother Oncol 52: 149–156

Bhuiwalla ZM, Tozer GM, Field SB, Maxwell RJ and Griffiths JR (1990) The energy metabolism of RIF-1 tumors following hydralazine. Radiother Oncol 19: 281–291

Bhuiwalla ZM, Shungu DC, He Q, Wehrle JP and Glickson JD (1994) MR studies of nicotinamide and carbogen in vivo: a greater enhancement of tumor damage compared to that of normal tissues. Radiat Res 109: 479–489

Bhuiwalla ZM, Tozer GM, Field SB, Maxwell RJ and Griffiths JR (1990) The metabolism of RIF-1 tumors following hydralazine. Radiother Oncol 19: 281–291

Bhuiwalla ZM, Shungu DC, He Q, Wehrle JP and Glickson JD (1994) MR studies of tumors: relationship between blood flow, metabolism and physiology. In: NMR in Physiology and Biomedicine, Gillies JR (ed), pp. 311–328. Academic Press: San Diego

Biaglow JE, Manevich Y, Leeper D, Chance B, Dewhirst MW, Jenkins WT, Tuttle SD, Wrobleski K, Glickson JD, Evans SM (1998) MBG inhibits respiration: potential for radio- and hyperthermic sensitization. Int J Radiat Oncol Biol Phys 42: 871–876

Braun RD, Lansen JL and Dewhirst MW (1999) Fourier analysis of fluctuations of oxygen tension and blood flow in R3320A3 tumors and muscle in rats. Am J Physiol 275: H551–H568

Brown SL, Ewing JR, Kolozsvary A, Butt S, Cao Y and Kim JH (1999) Magnetic resonance imaging of perfusion in rat cerebral 9L tumor after nicotinamide administration. Int J Radiat Oncol Biol Phys 43: 627–633

 Chaplin DJ, Olive PL, and Durand RE (1987) Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 47: 597–601

 Chaplin DJ, Horsman MR and Trotter MJ (1990) Effect of nicotinamide on the microregional heterogeneity of oxygen delivery within a murine tumor. J Natl Cancer Inst 82: 672–676

 Chaplin DJ, Horsman MR and Aoki DS (1991) Nicotinamide, Fluosol DA and carbogen: a strategy to reoxygenate acutely and chronically hypoxic cells in vivo. Br J Cancer 63: 109–113

 Dewhirst MW, Vinuya RZ, Ong ET, Kiltzeman B, Rosner G, Secomb TW and Gross JP (1992) Effects of bradykinin on the hemodynamics of tumor and granulating normal tissue microvasculature. Radiat Res 130: 345–354

 Dewhirst MW, Snyder S, Lansen J, Braun RD, Secomb TW and Biaglow J (1999) Hyperglycaemia plus hyperoxia improves tumor oxygenation more efficiently than hyperoxia alone. Proc Int Soc Oxygen Transport Tiss 36

 Dunn JF and Frostick S, Adams GE, Stratford IJ, Howells N, Hogan G and Radda GK (1989) Induction of tumour hypoxia by a vasodilatory agent. A combined NMR and radiobiological study. FEBS Lett 249: 343–347

 Dunn JF and Swartz HM (1997) Blood oxygenation: heterogeneity of hypoxic tissues monitored using BOLD MR imaging. In: Oxygen Transport in Tissue XXIX, Harrison and Delpy (eds), pp. 645–650. Plenum Press: New York

 Duyn JH, Moonen CTW, van Yperen GE, de Boer RW and Layten PR (1994) Inflow versus deoxygenation effects in ‘BOLD’ functional MRI using gradient echoes at 1.5T. NMR Biomed 7: 83–88

 Eddy HA and Cassarette GW (1973) Development of the vascular system in the hamster malignant neurilemoma. Microvasc Res 6: 63–82

 Gray LH, Conger AD, Ebert M, Horsney S and Scott OCA (1956) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26: 638–648

 Griffiths JR, Taylor N, Howe FA, Saunders MJ, Robinson SP, Hoskin PJ, Powell MEB, Thoumine M, Caine LA and Babdelle H (1997) The response of human tumors to carbogen breathing, monitored by gradient-elicited echo magnetic resonance imaging. Int J Radiat Oncol Biol Phys 39: 697–701

 Guyton AC and Hall JE (1996) Textbook of Medical Physiology WB Saunders: Philadelphia

 Hirst DG, Jooser B and Hirst VK (1993) Blood flow modification by nicotinamide and metoloxalim in mouse tumours growing in different sites. Br J Cancer 67: 1–6

 Horsman MR (1995) Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours. Acta Oncol 34: 571–587

 Horsman MR, Chaplin DJ and Brown JM (1987) Radiosensitization by nicotinamide in vivo: a greater enhancement of tumor damage compared to that of normal tissues. Radiat Res 109: 479–489

 Horsman MR, Brown JM, Hirst VK, Lemmon MJ, Wood PJ, Dunphy EP and Overgaard J (1988) Mechanism of action of the selective tumor radiosensitiser nicotinamide. Int J Radiat Oncol Biol Phys 15: 665–690

 Hoskin PJ, Saunders MJ, Phillips H, Chlad H, Powell MEB, Goodchild K, Stratford MRL and Rojas A (1997) Carbogen and nicotinamide in the treatment of bladder cancer with radical radiotherapy. Br J Cancer 76: 260–263

 Howe FA, Robinson SP and Griffiths JR (1996) Modification of tumour perfusion and oxygenation monitored by gradient recalled echo MRI and 13P MRS. NMR Biomed 9: 208–216

 Howe FA, Robinson SP, Rodrigues LM and Griffiths JR (1999) Flow and oxygenation dependent (FLOOD) contrast MRI imaging to monitor the response of rat tumours to carbogen breathing. Magn Reson Imaging 17: 1307–1318

 Jirtle R (1988) Chemical modification of tumor blood flow. Int J Hyperthermia 4: 355–371

 Kaanders JHAM, Pop LAM, Marres HAM, Liefers J, van den Hogen FJA, van Daal WAJ and van der Kogel AJ (1998) Accelerated radiotherapy with carbogen and nicotinamide (ARCON) for laryngeal cancer. Radiother Oncol 48: 115–122

 Kimura H, Braun RD, Ong ET, Hsu R, Secomb TW, Papahadjopoulos D, Hong K and Dewhirst MW (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56: 5522–5528

 Kjellén E, Jooser MC, Collier JM, Johns H and Rojas A (1991) A therapeutic benefit from combining normobaric carbogen or oxygen with nicotinamide in fractionated X-ray treatments. Radiother Oncol 22: 81–91

 Menke H and Vaupel P (1988) Effect of injectable or inhalational anesthetics and of neuroleptic, neuroleptanalgesic, and sedative agents on tumor blood flow. Radiat Res 114: 64–76

 Moreno FL, Sanchez-Urrutia L, Medina JM, Sanchez-Medina F and Mayor F (1985) Stimulation of phospholipidresistant cytochrome oxidase (cytochrome trisphosphate) activity by low concentrations of circulating glucose in perfused rat liver. Biochem J 150: 51–58

 Nielsen FU, Horsman MR, Daugaard P, Stokkilde-Jorgensen H and Maxwell RJ (1999) Tumor selective in vivo 13C-CP NMR assessment of glycolytic rate under various oxygenation states. Proc Int Soc Magn Reson Med 2: 361

 Ogawa S, Lee T-M, Nayak AS and Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14: 68–78

 © 2000 Cancer Research Campaign

 British Journal of Cancer (2000) 82(12), 2007–2014

 Tumour response to nicotinamide and carbogen 2013
Oikawa H, Al-Hallaq HA, Lewis MZ, River JN, Kovar DA and Karczmar GS (1997) Spectroscopic imaging of the water resonance with short repetition time to study tumor response to hyperoxia. Magn Reson Med 38: 27–32

Ojugo ASE, McSheehy PMJ, McIntyre DJO, McCoy CL, Stubbs M, Leach MO, Judson IR and Griffiths JR (1999) Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous 31P and 19F probes. NMR Biomed 12: 495–504

Okunieff P, Kallinowski F, Vaupel P and Neuringer LJ (1988) Effects of hydralazine-induced vasodilation on the energy metabolism of murine tumors studied by in vivo 31P-nuclear magnetic resonance spectroscopy. J Natl Cancer Inst 80: 745–750

Prysor-Jones RA and Jenkins JS (1981) Effect of bromocriptine on DNA synthesis, growth and hormone secretion of spontaneous pituitary tumours in the rat. J Endocrinol 88: 463–469

Robinson SP, Howe FA and Griffiths JR (1995) Noninvasive monitoring of carbogen-induced changes in tumor blood flow and oxygenation by functional magnetic resonance imaging. Int J Radiat Oncol Biol Phys 33: 855–859

Robinson SP, Rodrigues LM, Ojugo ASE, McSheehy PMJ, Howe FA and Griffiths JR (1997) The response to carbogen breathing in experimental tumour models monitored by gradient- recalled magnetic resonance imaging. Br J Cancer 75: 1000–1006

Robinson SP, van den Boogaart A, Maxwell RJ, Griffiths JR, Hamilton E and Waterton JC (1998) 31P magnetic resonance spectroscopy and 31H magnetic resonance imaging studies of a panel of early-generation transplanted murine tumour models. Br J Cancer 77: 1752–1760

Robinson SP, Collingridge DR, Howe FA, Rodrigues LM, Chaplin DJ and Griffiths JR (1999) Tumour response to hypercapnia and hyperoxia monitored by FLOOD magnetic resonance imaging. NMR Biomed 12: 98–106

Sansom JM and Wood PJ (1994) 31P MRS of tumour metabolism in anaesthetized vs conscious mice. NMR Biomed T: 167–171

Sauer LA, Stayman JW and Dauchy RT (1982) Amino acid, glucose and lactic acid utilization in vivo by rat tumors. Cancer Res 42: 4090–4097

Song CW (1998) Modification of blood flow. In: Blood Perfusion and Microenvironment of Human Tumors, Molls M and Vaupel P (eds), pp. 193–207. Springer-Verlag: Berlin, Heidelberg

Stubbs M, Robinson SP, Rodrigues LM, Parkins CS, Collingridge DR and Griffiths JR (1998) The effects of host carbogen (95% O2,5% CO2) breathing on metabolic characteristics of Morris hepatoma 9618a. Br J Cancer 78: 1449–1456

Thomlinson RH and Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9: 539–549

Tozer GM and Griffiths JR (1992) The contribution made by cell death and oxygenation to 31P MRS observations of tumour energy metabolism. NMR Biomed 5: 279–289

van den Boogaart A, Howe FA, Rodrigues LM, Stubbs M and Griffiths JR (1995) In vivo 31P MRS: absolute concentrations, signal-to-noise and prior knowledge. NMR Biomed 8: 87–93

Vaupel P, Kallinowski F and Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49: 6449–6465

Williams SNO, Rajagopolan B, Adams GE, Hayes D and Brindle KM (1996) A comparative study of tumor vascularization and blood flow in spontaneous and transplanted tumors. Proc Intl Soc Magn Reson Med 2: 1109

Wood PJ, Counsell CJR, Bremer JCM, Horsman MR and Adams GE (1991) The measurement of radiosensitizer-induced changes in mouse tumor metabolism by 31P magnetic resonance spectroscopy. Int J Radiat Oncol Biol Phys 20: 291–294

Yamamura H and Matsuzawa T (1979) Tumor regrowth after irradiation. An experimental approach. Int J Radiat Biol 35: 201–219