ON THE HÖRMANDER MULTIPLIER THEOREM AND MODULATION SPACES

NAOHITO TOMITA

Abstract. It is known that the Sobolev space L^2_s with $s > n/2$ appeared in the Hörmander multiplier theorem can be replaced by the Besov space $B^2_{n/2}$. On the other hand, the Besov space $B^2_{n/2}$ is continuously embedded in the modulation space M^2_0. In this paper, we consider the problem whether we can replace $B^2_{n/2}$ by M^2_0.

1. Introduction

Sjöstrand [18] proved the L^2-boundedness of pseudo-differential operators with symbols in the modulation space $M^\infty_1(\mathbb{R}^n)$ which contains the Hörmander class $S^{0,0}_0$. Since then, modulation spaces have been recognized as a useful tool for pseudo-differential operators. See Benyi-Gröchenig-Okoudjou-Rogers [3], Cordero-Nicola-Rodino [5], Gröchenig-Heil [10] and Toft [23] for further developments. The purpose of this paper is to apply modulation spaces to (singular) Fourier multipliers.

We recall some known results on the boundedness of Fourier multipliers on $L^p(\mathbb{R}^n)$. The Mihlin multiplier theorem says that if $m \in C^{[n/2] + 1}(\mathbb{R}^n \setminus \{0\})$ satisfies

\begin{equation}
|\partial^\alpha m(\xi)| \leq C_{\alpha} |\xi|^{-|\alpha|} \quad \text{for all } |\alpha| \leq [n/2] + 1
\end{equation}

then $m(D)$ is bounded on $L^p(\mathbb{R}^n)$ for all $1 < p < \infty$ (see [6, Corollary 8.11]), where $[n/2]$ stands for the largest integer $\leq n/2$. Let $\psi \in \mathcal{S}(\mathbb{R}^n)$ be such that $\psi \geq c > 0$ on $\{2^{1/2} \leq |\xi| \leq 2^{1/2}\}$ and supp $\psi \subset \{2^{-1} \leq |\xi| \leq 2\}$. For $m \in \mathcal{S}'(\mathbb{R}^n)$, we set

\begin{equation}
m_j(\xi) = \psi(\xi) m(2^j \xi).
\end{equation}

The Hörmander multiplier theorem [11] states that if $m \in \mathcal{S}'(\mathbb{R}^n)$ satisfies

\begin{equation}
\sup_{j \in \mathbb{Z}} \|m_j\|_{L^2_s} < \infty \quad \text{with } s > n/2
\end{equation}

then $m(D)$ is bounded on $L^p(\mathbb{R}^n)$ for all $1 < p < \infty$ (see also [6, Theorem 8.10]), where $L^2_s(\mathbb{R}^n)$ is the Sobolev space. We note that (1.3) is weaker than (1.1). By using the Besov space $B^{2,1}_{n/2}(\mathbb{R}^n)$ instead of the Sobolev space $L^2_s(\mathbb{R}^n)$ in (1.3), Seeger [17] proved that if $m \in \mathcal{S}'(\mathbb{R}^n)$ satisfies

\begin{equation}
\sup_{j \in \mathbb{Z}} \|m_j\|_{B^{2,1}_{n/2}} < \infty
\end{equation}

then $m(D)$ is bounded from the Hardy space $H^1(\mathbb{R}^n)$ to the Lorentz space $L^{1,2}(\mathbb{R}^n)$ (see [16, 17] for the definition of $L^{1,2}$). Then, by interpolation and duality, (1.4) implies the boundedness of $m(D)$ on $L^p(\mathbb{R}^n)$ for all $1 < p < \infty$. It should be
pointed out that the L^p-boundedness of $m(D)$ satisfying (1.4) follows from a slight modification of Stein’s approach in [19, Chapter 4, Section 3]. Since
\[L^2(R^n) = B^{2,2}_s(R^n) \hookrightarrow B^{2,1}_{n/2}(R^n) \quad \text{if } s > n/2, \]
we see that (1.4) is weaker than (1.3).

It is known that the Besov space $B^{2,1}_{n/2}(R^n)$ is continuously embedded in the modulation space $M^{2,1}_{s}(R^n)$, and this embedding yields the problem
\[\text{“Can we replace } B^{2,1}_{n/2}(R^n) \text{ in (1.4) by } M^{2,1}_{0}(R^n)?” \]

At least, we have

Theorem 1.1. Let $s > 0$. If $m \in S'(R^n)$ satisfies
\[(1.5) \quad \sup_{j \in Z} \| m_j \|_{M^{2,1}} < \infty, \]
then $m(D)$ is bounded on the Hardy space $H^1(R^n)$, where m_j is defined by (1.2).

We note that, if m satisfies (1.5) with $s \geq 0$, then $m(D)$ is bounded on $L^2(R^n)$ (see the proof of Theorem 1.1). Then, by interpolation and duality, (1.5) with $s > 0$ implies the boundedness of $m(D)$ on $L^p(R^n)$ for all $1 < p < \infty$. Hence, Theorem 1.1 covers the Hörmander multiplier theorem, since
\[L^2(R^n) = M^{2,2}_{s}(R^n) \hookrightarrow M^{2,1}_{s'}(R^n) \quad \text{if } s' < s - n/2. \]

Let us compare (1.4) and (1.5). Toft [23, Theorem 3.1] proved the embeddings
\[B^{2,1}_{n/2}(R^n) \hookrightarrow M^{2,1}_{s}(R^n) \hookrightarrow B^{2,1}_0(R^n), \]
and the optimality was proved by Sugimoto-Tomita [22, Theorem 1.2] (see also [26]). More precisely, if $B^{2,1}_{s}(R^n) \hookrightarrow M^{2,1}_{s}(R^n)$ then $s \geq n/2$, and if $M^{2,1}_{s}(R^n) \hookrightarrow B^{2,1}_{s'}(R^n)$ then $s' \leq 0$. Then, since $\|f\|_{B^{2,1}} \asymp \| (I - \Delta)^{s/2} f \|_{B^{2,1}_{0}}$ and $\|f\|_{M^{2,1}} \asymp \| (I - \Delta)^{s/2} f \|_{M^{2,1}_{s}}$, we see that $B^{2,1}_{n/2}(R^n) \hookrightarrow M^{2,1}_{s}(R^n)$ if and only if $s \leq 0$, and $M^{2,1}_{s}(R^n) \hookrightarrow B^{2,1}_{n/2}(R^n)$ if and only if $s \geq n/2$. Therefore, $B^{2,1}_{n/2}(R^n)$ and $M^{2,1}_{s}(R^n)$ have no inclusion relation with each others if $0 < s < n/2$:

We also mention the relation between Theorem 1.1 and Baernstain-Sawyer [1] (see also Carbery [4] and Seeger [15] for some related results). Since
\[(1.6) \quad C^{-1} \| \widehat{m_j} \|_{K^{1,1}_s} \leq \| m_j \|_{M^{2,1}_s} \leq C \| \widehat{m_j} \|_{K^{1,1}_s} \]
(see Section 8), where $K^{1,1}_s$ is the Herz space, we have by Theorem 1.1

Corollary 1.2. Let $s > 0$. If $m \in S'(R^n)$ satisfies
\[\sup_{j \in Z} \| \widehat{m_j} \|_{K^{1,1}_s} < \infty, \]
then $m(D)$ is bounded on the Hardy space $H^1(R^n)$, where m_j is defined by (1.2).
We remark that Corollary 1.2 is a special case of [11, Theorem 3]. As another corollary of Theorem 1.4 we have by the norm equivalence
\[
C_p^{-1} \| m_j \|_{M_p^{-1}} \leq \| m_j \|_{M_p^{2,1}} \leq C_p \| m_j \|_{M_p^{-1}}.
\]
Corollary 1.3. Let \(1 \leq p \leq \infty \) and \(s > 0 \). If \(m \in \mathcal{S}'(\mathbb{R}^n) \) satisfies
\[
\sup_{j \in \mathbb{Z}} \| m_j \|_{M_p^{2,1}} < \infty,
\]
then \(m(D) \) is bounded on the Hardy space \(H^1(\mathbb{R}^n) \), where \(m_j \) is defined by (1.2).

However, in the critical case \(s = 0 \), we have the following negative answer:

Proposition 1.4. Let \(1 < p < \infty \) and \(p \neq 2 \). Then there exists a Fourier multiplier \(m \in \mathcal{S}'(\mathbb{R}^n) \) such that \(\sup_{j \in \mathbb{Z}} \| m_j \|_{M_p^{2,1}} < \infty \), but \(m(D) \) is not bounded on \(L^p(\mathbb{R}^n) \).

The proofs of Theorem 1.1, (1.6), (1.7) and Proposition 1.4 will be given in Section 3.

2. Preliminaries

Let \(\mathcal{S}(\mathbb{R}^n) \) and \(\mathcal{S}'(\mathbb{R}^n) \) be the Schwartz spaces of all rapidly decreasing smooth functions and tempered distributions, respectively. We define the Fourier transform \(\mathcal{F} \) and the inverse Fourier transform \(\mathcal{F}^{-1} \) of \(f \in \mathcal{S}(\mathbb{R}^n) \) by
\[
\mathcal{F}f(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\xi \cdot x} f(x) \, dx \quad \text{and} \quad \mathcal{F}^{-1}f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i\xi \cdot x} f(\xi) \, d\xi.
\]
For \(m \in \mathcal{S}'(\mathbb{R}^n) \), the Fourier multiplier operator \(m(D) \) is defined by \(m(D)f = \mathcal{F}^{-1}[m \hat{f}] \) for \(f \in \mathcal{S}(\mathbb{R}^n) \). The notation \(A \asymp B \) stands for \(C^{-1}A \leq B \leq CA \) for some positive constant \(C \) independent of \(A \) and \(B \).

We introduce Besov and modulation spaces, and suppose that \(1 \leq p, q \leq \infty \) and \(s \in \mathbb{R} \). Let \(\psi \in \mathcal{S}(\mathbb{R}^n) \) be such that \(\psi \geq c > 0 \) on \(\{ 2^{-1/2} \leq |\xi| \leq 2^{1/2} \} \),
\[
\text{supp } \psi \subset \{ 1/2 \leq |\xi| \leq 2 \} \quad \text{and} \quad \sum_{j \in \mathbb{Z}} \psi(2^{-j}\xi) = 1 \quad \text{for all } \xi \neq 0.
\]
We set
\[
\psi_0(\xi) = 1 - \sum_{j=1}^{\infty} \psi(2^{-j}\xi) \quad \text{and} \quad \psi_j(\xi) = \psi(2^{-j}\xi) \quad \text{if } j \geq 1.
\]
Then the Besov space \(B_{p,q}^s(\mathbb{R}^n) \) consists of all \(f \in \mathcal{S}'(\mathbb{R}^n) \) such that
\[
\| f \|_{B_{p,q}^s} = \left(\sum_{j=0}^{\infty} 2^{jsq} \| \psi_j(D)f \|_{L^p}^q \right)^{1/q} < \infty
\]
(with obvious modification in the case \(q = \infty \)). We refer to Triebel [25] and the references therein for more details on Besov spaces. Let \(\varphi \in \mathcal{S}(\mathbb{R}^n) \) be such that
\[
\text{supp } \varphi \subset [-1,1]^n \quad \text{and} \quad \sum_{k \in \mathbb{Z}^n} \varphi(\xi - k) = 1 \quad \text{for all } \xi \in \mathbb{R}^n.
\]
Then the modulation space \(M_{p,q}^s(\mathbb{R}^n) \) consists of all \(f \in \mathcal{S}'(\mathbb{R}^n) \) such that
\[
\| f \|_{M_{p,q}^s} = \left(\sum_{k \in \mathbb{Z}^n} (1 + |k|)^s \| \varphi(D-k)f \|_{L^p}^q \right)^{1/q} < \infty
\]
(with obvious modification in the case \(q = \infty \)). We remark that

\[
(2.4) \quad \| f \|_{M^{p,q}_r} \coloneqq \left\{ \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |V_g f(x, \xi)|^p dx \right)^{q/p} (1 + |\xi|^2)^{sq/2} d\xi \right\}^{1/q},
\]

where \(V_g f \) is the short-time Fourier transform of \(f \in \mathcal{S}'(\mathbb{R}^n) \) with respect to \(g \in \mathcal{S}(\mathbb{R}^n) \backslash \{0\} \) defined by

\[
V_g f(x, \xi) = \int_{\mathbb{R}^n} f(t) \overline{g(t-x)} e^{-ix\cdot t} \, dt \quad \text{for } x, \xi \in \mathbb{R}^n
\]

(see, for example, \([23]\)). The definition of \(M^{p,q}_r(\mathbb{R}^n) \) is independent of the choice of the window function \(g \in \mathcal{S}(\mathbb{R}^n) \backslash \{0\} \), that is, different window functions yield equivalent norms ([9, Proposition 11.3.2]). It is also well known that \(M^{2,2}_r(\mathbb{R}^n) \) is independent of the choice of the window function \(g \in \mathcal{S}(\mathbb{R}^n) \backslash \{0\} \), that is, different window functions yield equivalent norms ([9, Proposition 11.3.1]), where \(L^2(\mathbb{R}^n) \) is the Sobolev space defined by the norm \(\| f \|_{L^2} = \| (I - \Delta)^{s/2} f \|_{L^2} \) and \((I - \Delta)^{s/2} f = \mathcal{F}^{-1}[(1 + |\xi|^2)^{s/2} \hat{f}] \). We refer to Feichtinger [7] and Gröchenig [9] for more details on modulation spaces (see also Bényi-Grafakos-Gröchenig-Okoudjou [2], Feichtinger-Narimani [8] for Fourier multipliers on modulation spaces).

We next introduce the Hardy and Herz spaces. Let \(\eta \in \mathcal{S}(\mathbb{R}^n) \) be such that \(\int_{\mathbb{R}^n} \eta(x) \, dx = 1 \). Then the Hardy space \(H^1(\mathbb{R}^n) \) consists of all \(f \in L^1(\mathbb{R}^n) \) such that

\[
\| f \|_{H^1} = \int_{\mathbb{R}^n} \sup_{t>0} |\eta_t \ast f(x)| \, dx < \infty,
\]

where \(\eta_t(x) = t^{-n} \eta(t^{-1}x) \). It is well known that

\[
(2.5) \quad \| f \|_{H^1} \simeq \| f \|_{L^1} + \sum_{j=1}^n \| R_j f \|_{L^1},
\]

where \(R_j \) is the Riesz transform defined by

\[
R_j f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot \xi} \left(-i \frac{\xi_j}{|\xi|} \right) \hat{f}(\xi) \, d\xi.
\]

The Herz space \(K^{p,q}_r(\mathbb{R}^n) \) consists of all \(f \in L^1_{loc}(\mathbb{R}^n) \) such that

\[
\| f \|_{K^{p,q}_r} = \left(\sum_{j=0}^\infty 2^{jq} \| \psi_j f \|_{L^p}^q \right)^{1/q} < \infty,
\]

where \(\{ \psi_j \}_{j=0}^\infty \) is as in \((2.2)\). See Baernstein-Sawyer [1] and Stein [20] for more details on Hardy and Herz spaces.

3. Proof

Before proving Theorem 1.1 we note that \(M^{2,1}_0 \hookrightarrow \mathcal{F}L^1 \). In fact, by Schwarz’s inequality and Plancherel’s theorem,

\[
\| \hat{f} \|_{L^1} \leq \sum_{k \in \mathbb{Z}^n} \| \varphi(\cdot - k) \hat{f} \|_{L^1} \leq C \sum_{k \in \mathbb{Z}^n} \| \varphi(\cdot - k) \hat{f} \|_{L^2} \leq C \sum_{k \in \mathbb{Z}^n} \| \varphi(D - k) f \|_{L^2} = C \| f \|_{M^{2,1}_0},
\]

(3.1) where \(\{ \varphi(\cdot - k) \}_{k \in \mathbb{Z}^n} \) is as in \((2.3)\).
Proof of Theorem 1.1. Let \(\psi \) be as in (2.1) and \(\sup_{j \in \mathbb{Z}} \|m_j\|_{M^{2,1}_s} < \infty \), where \(s > 0 \) and \(m_j(\xi) = \psi(\xi) m(2^j \xi) \). Since
\[
\|m_j\|_{L^\infty} \leq C \|\hat{m}_j\|_{L^1} \leq C \|m_j\|_{M^{2,1}_0} \leq C \|m_j\|_{M^{2,1}_s},
\]
and \(\psi(\xi) \geq c > 0 \) on \(\{2^{-1/2} \leq |\xi| \leq 2^{1/2}\} \), we see that \(m \in L^\infty \). This implies that \(m(D) \) is bounded on \(L^2 \). Then, by the Calderón-Zygmund theory (see, for example, [6 Corollary 6.3], [20 Chapter 3, Theorem 3]), if \(K = F^{-1} m \in L^1_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) \) and
\[
(3.3) \quad \sup_{y \neq 0} \int_{|x| > 2|y|} |K(x-y) - K(x)| \, dx < \infty,
\]
then \(m(D) \) is bounded from \(H^1 \) to \(L^1 \).

We only consider (3.3) (see Remark 3.1 for the proof of \(K \in L^1_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) \)). By (2.1), we have
\[
m(\xi) = \sum_{j \in \mathbb{Z}} \psi(2^{-j} \xi) m(\xi) = \sum_{j \in \mathbb{Z}} m_j(2^{-j} \xi),
\]
and consequently \(K(x) = \sum_{j \in \mathbb{Z}} 2^{in} K_j(2^j x) \), where \(K_j = F^{-1} m_j \). Then,
\[
\int_{|x| > 2|y|} |K(x-y) - K(x)| \, dx \leq \sum_{j \in \mathbb{Z}} \int_{|x| > 2|y|} |2^{jn} K_j(2^j(x-y)) - 2^{jn} K_j(2^j x)| \, dx.
\]
Note that \(\text{supp } m_j \subset \{-2 \leq |\xi| \leq 2\} \) for all \(j \in \mathbb{Z} \). Since
\[
(3.4) \quad \|K_j\|_{L^1} \leq C \|m_j\|_{M^{2,1}_s} \quad \text{and} \quad \|\nabla K_j\|_{L^1} \leq C \|K_j\|_{L^1} \leq C \|m_j\|_{M^{2,1}_0},
\]
(see (2.3) for the left hand inequality, and [25 Theorem 1.4.1 (ii)] for the right hand one), we have by Taylor's formula
\[
(3.5) \quad \int_{|x| > 2|y|} |2^{2jn} K_j(2^j(x-y)) - 2^{jn} K_j(2^j x)| \, dx
\]
\[
= \int_{|x| > 2|y|} \left| 2^{jn} \sum_{\ell=1}^n (-2^j y_\ell) \int_0^1 (\partial_\ell K_j)(2^j(x - ty)) \, dt \right| \, dx
\]
\[
\leq C 2^j |y| \|\nabla K_j\|_{L^1} \leq C 2^j |y| \|m_j\|_{M^{2,1}_s},
\]
where \(y = (y_1, \ldots, y_n) \). On the other hand,
\[
(3.6) \quad \int_{|x| > R} |K_j(x)| \, dx \leq CR^{-s} \|m_j\|_{M^{2,1}_s} \quad \text{for all } j \in \mathbb{Z} \text{ and } R > 0.
\]
In fact, since \(\text{supp } \varphi(-k) \subset k + [-1, 1]^n \subset \{|x-k| \leq \sqrt{n}\} \) (see (2.30)), we have
\[
\int_{|x| > R} |K_j(x)| \, dx \leq \sum_{k \in \mathbb{Z}^n} \int_{|x| > R} |\varphi(-x-k) K_j(x)| \, dx
\]
\[
\leq \sum_{|k| > R/2} \int_{\mathbb{R}^n} |\varphi(-x-k) F^{-1} m_j(x)| \, dx \leq \sum_{|k| > R/2} \left(\int_{\mathbb{R}^n} |\varphi(x-k) \hat{m}_j(x)|^2 \, dx \right)^{1/2}
\]
\[
= (2\pi)^{n/2} \sum_{|k| > R/2} (1 + |k|)^{-s} (1 + |k|)^s \|\varphi(D-k)m_j\|_{L^2} \leq CR^{-s} \|m_j\|_{M^{2,1}_s},
\]
for all \(R > 2\sqrt{n} \), and
\[
\int_{|x| > R} |K_j(x)| \, dx \leq (1 + R)^{-s} (1 + R)^s \|K_j\|_{L^1} \leq CR^{-s} \|m_j\|_{M^{2,1}_s}
\]
for all $0 < R \leq 2\sqrt{n}$, where we have used (3.4). Then, (3.6) gives
\begin{equation}
\int_{|x| > 2|y|} |2^{jn} K_j(2^j (x - y)) - 2^{jn} K_j(2^j x)| \, dx
\end{equation}
for all $y \neq 0$. Hence, it follows from (3.5) and (3.7) that
\begin{equation}
\sum_{j \in \mathbb{Z}} \int_{|x| > 2|y|} |2^{jn} K_j(2^j (x - y)) - 2^{jn} K_j(2^j x)| \, dx
\end{equation}
for all $y \neq 0$. Therefore, $m(D)$ is bounded from H^1 to L^1. This implies the boundedness of $m(D)$ on H^1. In fact, by (2.5),
\begin{equation}
\|m(D)f\|_{H^1} \leq C \left(\|m(D)f\|_{L^1} + \sum_{j=1}^{n} \|R_j(m(D)f)\|_{L^1} \right)
\end{equation}
where we have used the fact that R_j is bounded on H^1. The proof is complete. □

Remark 3.1. It is not difficult to prove that, if m satisfies (1.3) with $s > 0$, then $K = F^{-1}m \in L^1_{loc}(\mathbb{R}^n \setminus \{0\})$. Let m_j and K_j be as in the proof of Theorem 1.1 and recall that $K(x) = \sum_{j \in \mathbb{Z}} 2^{jn} K_j(2^j x)$. Since $sup \, m_j \subset \{1/2 \leq |x| \leq 2\}$ for all $j \in \mathbb{Z}$, it follows from (2.2) that $|K_j|_{L^\infty} = \|F^{-1}m_j|_{L^\infty} \leq C \|m_j\|_{L^\infty} \leq C \|m_j\|_{M^{2,1}_s}$ for all $j \in \mathbb{Z}$. Hence, for any $0 < R_1 < R_2 < \infty$,
\begin{equation}
\sum_{j=-\infty}^{0} \int_{R_1 \leq |x| \leq R_2} |2^{jn} K_j(2^j x)| \, dx \leq C_{R_1, R_2} \sum_{j=-\infty}^{0} 2^{jn} \|K_j\|_{L^\infty}
\end{equation}
\begin{equation}
\leq C_{R_1, R_2} \sum_{j=-\infty}^{0} 2^{jn} \|m_j\|_{M^{2,1}_s} \leq C_{R_1, R_2} \sup_{j \leq 0} \|m_j\|_{M^{2,1}_s}.
\end{equation}
On the other hand, by (3.3),
\begin{equation}
\sum_{j=1}^{\infty} \int_{R_1 \leq |x| \leq R_2} |2^{jn} K_j(2^j x)| \, dx \leq \sum_{j=1}^{\infty} \int_{|x| \geq 2^j R_1} |K_j(x)| \, dx
\end{equation}
\begin{equation}
\leq \sum_{j=1}^{\infty} C(2^j R_1)^{-s} \|m_j\|_{M^{2,1}_s} \leq C_{R_1} \sup_{j \geq 1} \|m_j\|_{M^{2,1}_s}.\end{equation}
Therefore, we see that
\begin{equation}
\int_{R_1 \leq |x| \leq R_2} |K(x)| \, dx \leq \sum_{j \in \mathbb{Z}} \int_{R_1 \leq |x| \leq R_2} |2^{jn} K(2^j x)| \, dx \leq C_{R_1, R_2} \sup_{j \in \mathbb{Z}} \|m_j\|_{M^{2,1}_s},
\end{equation}
that is, \(K \in L^1_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) \).

To prove (1.6) and (1.7), we use the following fact [14, Remark 4.2] (see also [13, Lemma 1] for the case \(s = 0 \)), and give the proof for reader’s convenience.

Proposition 3.2. Let \(1 \leq p, q \leq \infty \), \(s \in \mathbb{R} \), and let \(\Omega \) be a compact subset of \(\mathbb{R}^n \). Then there exists a constant \(C_\Omega > 0 \) such that

\[
C_\Omega^{-1} \|(I - \Delta)^{s/2} f\|_{\mathcal{F}L^q} \leq \|f\|_{M^p,q} \leq C_\Omega \|(I - \Delta)^{s/2} f\|_{\mathcal{F}L^q}
\]

for all \(f \in \mathcal{S}'(\mathbb{R}^n) \) with \(\text{supp} f \subset \Omega \), where \(\|f\|_{\mathcal{F}L^q} = \|\hat{f}\|_{L^q} \).

Proof. Our proof is based on one of [13, Lemma 1]. Let \(\Omega \subset \{|x| \leq R\} \), and let \(f \in \mathcal{S}'(\mathbb{R}^n) \) and \(g \in \mathcal{S}(\mathbb{R}^n) \setminus \{0\} \) be such that \(\text{supp} f \subset \{|x| \leq R\} \), \(\text{supp} g \subset \{|x| \leq 4R\} \) and \(g = 1 \) on \(\{|x| \leq 2R\} \). Then \(\text{supp} V_g f(\cdot, \xi) \subset \{x : |x| \leq 5R\} \) for all \(\xi \in \mathbb{R}^n \). By Plancherel’s theorem,

\[
|V_g f(x, \xi)| = \frac{1}{(2\pi)^n} \left| \int_{\mathbb{R}^n} \hat{f}(t) \overline{\hat{g}(t - \xi)} e^{ix\cdot t} dt \right| \leq \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \left| \hat{f}(t) \overline{\hat{g}(t - \xi)} \right| dt
\]

for all \(x \in \mathbb{R}^n \). Hence, by (2.4),

\[
\|f\|_{M^p,q} \leq C \left[\int_{\mathbb{R}^n} \left(\int_{|t| \leq 5R} \left| \hat{f}(t) \overline{\hat{g}(t - \xi)} \right| dt \right)^p dx \right]^{1/p} \left(1 + |\xi|^2 s^{q/2} \right)^{1/q} \leq CR^{n/p} \left[\int_{\mathbb{R}^n} \left(\int_{|t| \leq 5R} (1 + |t|^2 s^{q/2}) \left| \hat{f}(t) \right| (1 + |t - \xi|^2)^{q/2} \left| \hat{g}(t - \xi) \right| dt \right)^q dx \right]^{1/q} \leq C_R \|(I - \Delta)^{s/2} g\|_{\mathcal{F}L^q} \|(I - \Delta)^{s/2} f\|_{\mathcal{F}L^q},
\]

where \(C > 0 \) is independent of \(f \).

On the other hand, since \(g = 1 \) on \(\{|x| \leq 2R\} \), we see that

\[
\hat{f}(\xi) = \int_{\mathbb{R}^n} f(t) e^{-ix\cdot t} dt = \int_{|t| \leq R} f(t) \overline{\hat{g}(t - x)} e^{-ix\cdot t} dt = V_g f(x, \xi)
\]

for all \(|x| \leq R \). This gives

\[
\left| \hat{f}(\xi) \right| \leq CR^{-n/p} \left(\int_{|x| \leq R} \left| V_g f(x, \xi) \right|^p dx \right)^{1/p} \leq CR^{-n/p} \|V_g f(\cdot, \xi)\|_{L^p}
\]

for all \(\xi \in \mathbb{R}^n \). Therefore,

\[
\|(I - \Delta)^{s/2} f\|_{\mathcal{F}L^q} = \left(\int_{\mathbb{R}^n} \left| (1 + |\xi|^2)^{s/2} \hat{f}(\xi) \right|^q d\xi \right)^{1/q} \leq C_R \left\{ \int_{\mathbb{R}^n} \left((1 + |\xi|^2)^{s/2} |V_g f(\cdot, \xi)| \right)^q d\xi \right\}^{1/q} \leq C_R\|f\|_{M^p,q},
\]

where \(C > 0 \) is independent of \(f \). The proof is complete. \(\square\)

We are now ready to prove (1.6), (1.7) and Proposition 1.3.

Proofs of (1.6) and (1.7). Let \(m_j \) be defined by (1.2). Note that \(\text{supp} m_j \subset \{2^{-1} \leq |\xi| \leq 2\} \) for all \(j \in \mathbb{Z} \). Then, by Proposition 3.2

\[
(3.8) \quad C^{-1} \|(I - \Delta)^{s/2} m_j\|_{\mathcal{F}L^1} \leq \|m_j\|_{M^2,1} \leq C \|(I - \Delta)^{s/2} m_j\|_{\mathcal{F}L^1},
\]

as required.
for all $j \in \mathbb{Z}$. On the other hand, since $(1 + |x|^2)^{1/2} \leq 2^j$ on $\text{supp} \psi_\ell$ for all $\ell \geq 0$ (see (2.1) and (2.2)), we have

$$
\|(I - \Delta)^{s/2} m_j\|_{B^s_{p,1} L^1} \leq \sum_{\ell=0}^{\infty} \int_{\mathbb{R}^n} |\psi_\ell(x) (1 + |x|^2)^{s/2} \widehat{m_j}(x)| \, dx
$$

(3.9)

Hence, combining (3.8) and (3.9), we have (1.7).

Let $\mathbf{1} \leq p \leq \infty$. Then, by Proposition 3.2

$$
C_p^{-1} \|(I - \Delta)^{s/2} m_j\|_{B^s_{p,1} L^1} \leq \|m_j\|_{M^{s,1}_p} \leq C_p \|(I - \Delta)^{s/2} m_j\|_{B^s_{p,1} L^1}
$$

(3.10)

for all $j \in \mathbb{Z}$. Therefore, combining (3.8) and (3.10), we have (1.7). \hfill \Box

Proof of Proposition 1.4 The following counterexample (Triebel [25, Proposition 2.6.4]) is known:

$$
\begin{cases}
\text{m}(D) & \text{is bounded on } B^{s,q}_p(\mathbb{R}^n) \text{ for all } 1 \leq p, q \leq \infty \text{ and } s \in \mathbb{R} \\
\text{m}(D) & \text{is not bounded on } L^p(\mathbb{R}^n) \text{ for any } p \neq 2
\end{cases}
$$

(see also Littman-McCarthy-Riviere [12] and Stein-Zygmund [21]). Let m be as in (3.11), and we prove that m satisfies $\sup_{j \in \mathbb{Z}} \|m_j\|_{M^{s,1}_p} < \infty$, where m_j is defined by (1.2). We remark that $\text{m}(D)$ is bounded on $B^{1,q}_s(\mathbb{R}^n)$ for some $1 \leq q \leq \infty$ and $s \in R$ if and only if $\mathcal{F}^{-1} m \in B^{1,\infty}_0(\mathbb{R}^n)$ (see [25, Theorem 2.6.3]). Then, the boundedness of $\text{m}(D)$ on $B^{1,q}_s$ implies $\mathcal{F}^{-1} m \in B^{1,\infty}_0$. Hence, since $B^{1,\infty}_0 \hookrightarrow B^{1,\infty}_0$, we see that

$$
\begin{align*}
\sup_{j \in \mathbb{Z}} \|\mathcal{F}^{-1} m_j\|_{L^1} &= \sup_{j \in \mathbb{Z}} \|2^{-jn} \mathcal{F}^{-1}[\psi(2^{-j}) \cdot m](2^{-j})\|_{L^1} \\
&= \sup_{j \in \mathbb{Z}} \|\mathcal{F}^{-1}[\psi(2^{-j}) \cdot m]\|_{L^1} = \sup_{j \in \mathbb{Z}} \|\psi(2^{-j} D)(\mathcal{F}^{-1} m)\|_{L^1} \\
&= \|\mathcal{F}^{-1} m\|_{B^{1,\infty}_0} \leq C \|\mathcal{F}^{-1} m\|_{B^{1,\infty}_0} < \infty.
\end{align*}
$$

(3.12)

On the other hand, since $\text{supp} m_j \subset \{2^{-1} \leq |\xi| \leq 2\}$ for all $j \in \mathbb{Z}$, we have by Proposition 3.2

$$
C^{-1} \|\mathcal{F}^{-1} m_j\|_{L^1} \leq \|m_j\|_{M^{s,1}_p} \leq C \|\mathcal{F}^{-1} m_j\|_{L^1} \text{ for all } j \in \mathbb{Z}.
$$

(3.13)

Therefore, combining (3.12) and (3.13), we see that $\sup_{j \in \mathbb{Z}} \|m_j\|_{M^{s,1}_p} < \infty$, but $\text{m}(D)$ is not bounded on $L^p(\mathbb{R}^n)$ for any $p \neq 2$. The proof is complete. \hfill \Box

Acknowledgement

The author gratefully acknowledges helpful discussions with Professors Akihiko Miyachi, Michael Ruzhansky, Mitsuuru Sugimoto and Joachim Toft. He also would like to thank the referees for their valuable comments and remarks.

References

[1] A. Baernstein and E.T. Sawyer, Embedding and multiplier theorems for $H^p(\mathbb{R}^n)$, Mem. Amer. Math. Soc. 318 (1985).

[2] A. Bényi, L. Grafakos, K. Gröchenig and K.A. Okoudjou, A class of Fourier multipliers for modulation spaces, Appl. Comput. Harmon. Anal. 19 (2005), 131-139.
Á. Bényi, K. Gröchenig, K.A. Okoudjou and L.G. Rogers, Unimodular Fourier multipliers for modulation spaces, J. Funct. Anal. 246 (2007), 366-384.

A. Carbery, Variants of the Calderón-Zygmund theory for L^p spaces, Rev. Mat. Iberoamericana 2 (1986), 381-396.

E. Cordero, F. Nicola and L. Rodino, Time-Frequency Analysis of Fourier Integral Operators, arXiv:0710.3652.

J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics 29, Amer. Math. Soc., Providence, RI, 2001.

H.G. Feichtinger, Modulation spaces: Looking back and ahead, Sampl. Theory Signal Image Process. 5 (2006), 109-140.

H.G. Feichtinger and G. Narimani, Fourier multipliers of classical modulation spaces, Appl. Comput. Harmon. Anal. 21 (2006), 349-359.

K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.

K. Gröchenig and C. Heil, Modulation spaces and pseudodifferential operators, Integral Equations Operator Theory 34 (1999), 439-457.

L. Hörmander, Estimates for translation invariant operators in L^p spaces, Acta Math. 104 (1960), 93-140.

W. Littman, C. McCarthy and N. Rivière, L^p-multiplier theorems, Studia Math. 30 (1968), 193-217.

K.A. Okoudjou, A Beuring-Helson type theorem for modulation spaces, arXiv:0801.1338.

M. Ruzhansky, M. Sugimoto, J. Toft and N. Tomita, Changes of variables in modulation and Wiener amalgam spaces, arXiv:0803.3485.

A. Seeger, Some inequalities for singular convolution operators in L^p-spaces, Trans. Amer. Math. Soc. 308 (1988), 259-272.

A. Seeger, A limit case of the Hörmander multiplier theorem, Monats. Math. 105 (1988), 151-160.

A. Seeger, Estimates near L^1 for Fourier multipliers and maximal functions, Arch. Math. (Basel) 53 (1989), 188-193.

J. Sjöstrand, An algebra of pseudodifferential operators, Math. Res. Lett. 1 (1994), 185-192.

E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.

E.M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993.

E.M. Stein and A. Zygmund, Boundedness of translation invariant operators on Hölder spaces and L^p-spaces, Ann. of Math. 85 (1967), 337-349.

M. Sugimoto and N. Tomita, The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal. 248 (2007), 79-106.

J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus, 1, J. Funct. Anal. 207 (2004), 399-429.

H. Triebel, Modulation spaces on the Euclidean n-space, Z. Anal. Anwendungen 2 (1983), 443-457.

H. Triebel, Theory of Function Spaces, Birkhäuser, Basel-Boston-Stuttgart, 1983.

B. Wang and C. Huang, Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Differential Equations 239 (2007), 213-250.

Naohito Tomita, Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: tomita@math.sci.osaka-u.ac.jp