Supplementary Information

Effect of Ta addition on the structural, thermodynamic and mechanical properties of CoCrFeNi high entropy alloys

Zhenyu Du a, Jie Zuo b,*, Nanyun Bao a, Mingli Yang c, Gang Jiang a and Li Zhang a,*

a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China

b College of Computer Science, Sichuan University, Chengdu 610065, China

c Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610065, China

* Corresponding authors: jiezuO@scu.edu.cn (J. Z.) and lizhang@scu.edu.cn (L. Z.)
Table S1 SQSs of CoCrFeNiTa_x (<i>x</i> = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) structures containing 20/21/22/23/24/25 atoms, respectively. Lattice vectors and atomic positions are given in Cartesian coordinates in Å. Atomic positions represents the ideal, unrelaxed sites.

	CoCrFeNi	CoCrFeNiTa_{0.2}		
	bcc	fcc	bcc	fcc
Lattice vectors				
(1.5, 1.5, -0.5)	(1.5, 0.5, 0.0)	(1.5, -0.5, -0.5)	(-2.0, 1.5, -0.5)	
(1.0, -2.0, 0.0)	(-0.5, 1.5, 0.0)	(0.0, -2.0, 1.0)	(1.5, -2.0, -0.5)	
(-1.0, 0.0, -2.0)	(0.0, 0.0, 2.0)	(-0.5, -1.5, -2.5)	(-1.0, -1.0, 1.0)	
Atomic positions				
(0.0, -1.0, -2.0) Ni	(1.0, 2.0, 1.0) Ni	(0.5, -3.5, -1.5) Cr	(-2.0, 0.0, -0.0) Ni	
(1.0, 1.0, -2.0) Cr	(0.0, 0.5, 1.5) Ni	(0.0, -3.0, -1.0) Co	(-1.5, -0.5, 0.0) Ni	
(0.5, -1.5, -1.5) Co	(1.0, 2.0, 2.0) Co	(0.0, -2.0, -2.0) Ni	(-1.0, -1.0, 0.0) Fe	
(1.5, 0.5, -1.5) Ni	(0.0, 0.5, 0.5) Cr	(1.0, -3.0, -2.0) Fe	(-1.0, -0.5, 0.5) Fe	
(2.0, 0.0, -1.0) Fe	(0.0, 1.0, 1.0) Cr	(0.5, -2.5, -1.5) Co	(-0.5, -1.5, 0.0) Ni	
(0.0, 0.0, -2.0) Fe	(0.0, 1.5, 1.5) Co	(0.0, -2.0, -1.0) Ta	(-0.5, -1.0, 0.5) Ta	
(1.0, -1.0, -2.0) Cr	(0.5, 0.5, 1.0) Fe	(1.0, -3.0, -1.0) Fe	(0.0, -2.0, 0.0) Fe	
(0.5, -0.5, -1.5) Ni	(0.5, 1.0, 1.5) Ni	(0.5, -2.5, -0.5) Cr	(-1.5, 0.5, 0.0) Co	
(0.0, 0.0, -1.0) Co	(1.0, 0.5, 1.5) Fe	(0.0, -2.0, -0.0) Ni	(-1.0, -0.5, -0.5) Ni	
(1.0, -1.0, -1.0) Cr	(0.0, 1.0, 2.0) Cr	(1.0, -2.0, -2.0) Ni	(-1.0, 0.0, 0.0) Cr	
(0.5, -0.5, -0.5) Fe	(0.0, 1.5, 0.5) Fe	(0.5, -1.5, -1.5) Ni	(-0.5, -1.0, -0.5) Cr	
(1.5, -0.5, -2.5) Cr	(0.5, 0.5, 2.0) Cr	(0.0, -1.0, -1.0) Co	(-0.5, -0.5, 0.0) Co	
(1.0, 0.0, -2.0) Ni	(0.5, 1.0, 0.5) Co	(1.0, -2.0, -1.0) Ni	(0.0, -1.0, 0.0) Fe	
(0.5, 0.5, -1.5) Fe	(0.5, 1.5, 1.0) Fe	(0.5, -1.5, -0.5) Cr	(0.5, -1.5, 0.0) Co	
(1.5, -0.5, -1.5) Ni	(1.0, 0.5, 0.5) Co	(0.0, -1.0, -0.0) Cr	(-2.5, 0.0, 0.5) Cr	
Lattice vectors	bcc	fcc	bcc	fcc
----------------	-----------	-----------	-----------	-----------
(-1.5, -1.5, 0.5)	(0.5, 0.0, -1.5)	(-1.5, 0.5, -1.5)	(-0.5, 1.5, 0.0)	
(1.5, -0.5, 1.5)	(-1.0, 1.0, -1.0)	(0.0, -2.0, -1.0)	(0.0, 0.5, -1.5)	
(-1.0, 2.0, 1.0)	(1.0, 2.0, 0.0)	(-2.0, -1.0, 1.0)	(-2.5, 0.0, -0.5)	

Atomic positions	bcc	fcc	bcc	fcc
(-1.0, -1.0, 1.0) Ni	(0.5, 3.0, -2.5) Cr	(-3.0, -2.0, -1.0) Fe	(-2.5, 0.5, -1.0) Co	
(-1.5, -0.5, 1.5) Co	(0.0, 0.5, -0.5) Co	(-2.5, -2.5, -0.5) Co	(-2.5, 1.0, -0.5) Co	
(-0.5, -1.5, 1.5) Ni	(-0.5, 1.0, -1.5) Cr	(-2.5, -1.5, -1.5) Ni	(-2.0, 0.5, -0.5) Fe	
(-0.5, -0.5, 0.5) Cr	(-0.5, 1.5, -1.0) Co	(-3.0, -1.0, -1.0) Ta	(-2.5, 1.0, -1.5) Fe	
(-1.0, 0.0, 1.0) Cr	(0.0, 0.5, -1.5) Cr	(-2.0, -2.0, -1.0) Ni	(-2.5, 1.5, -1.0) Co	
(-1.5, 0.5, 1.5) Cr	(0.0, 1.0, -1.0) Ni	(-2.5, -1.5, -0.5) Ni	(-2.0, 0.5, -1.5) Ni	
(-1.0, 1.0, 2.0) Fe	(0.5, 1.5, -2.0) Cr	(-1.5, -2.5, -0.5) Co	(-2.0, 1.0, -1.0) Fe	
(-0.5, -0.5, 1.5) Fe	(0.5, 0.5, -1.0) Co	(-2.0, -2.0, -0.0) Fe	(-2.0, 1.5, -0.5) Cr	
(-1.0, 0.0, 2.0) Fe	(0.5, 1.0, -0.5) Ni	(-1.5, -1.5, -1.5) Ta	(-1.5, 0.5, -1.0) Ta	
(0.0, -1.0, 2.0) Ta	(0.0, 1.0, -2.0) Fe	(-2.0, -1.0, -1.0) Co	(-1.5, 1.0, -0.5) Ni	
(-0.5, -0.5, 2.5) Ni	(0.0, 1.5, -1.5) Ni	(-2.5, -0.5, -0.5) Cr	(-1.0, 0.5, -0.5) Ta	
Lattice vectors	CoCrFeNiTa_{0.8}	CoCrFeNiTa_{1.0}	CoCrFeNiTa_{0.8}	CoCrFeNiTa_{1.0}
----------------	------------------------	------------------------	------------------------	------------------------
(-1.0, 0.0, 3.0) Cr	(0.0, 2.0, -1.0) Fe	(-1.0, -2.0, -1.0) Ni	(-3.0, 2.0, -2.0) Cr	
(-0.5, 0.5, 0.5) Ni	(0.5, 1.0, -1.5) Ta	(-1.5, 1.5, -0.5) Fe	(-2.0, 1.5, -1.5) Fe	
(-1.0, 1.0, 1.0) Co	(0.5, 1.5, -1.0) Fe	(-2.0, -1.0, -0.0) Co	(-1.5, 1.0, -1.5) Fe	
(0.0, 0.0, 1.0) Ni	(0.5, 2.0, -0.5) Cr	(-1.5, -0.5, -1.5) Fe	(-1.5, 1.5, -1.0) Cr	
(-0.5, 0.5, 1.5) Co	(0.0, 2.0, -2.0) Fe	(-2.0, 0.0, -1.0) Cr	(-1.0, 0.5, -1.5) Ni	
(0.5, -0.5, 1.5) Fe	(0.0, 2.5, -1.5) Fe	(-1.0, -1.0, -1.0) Cr	(-1.0, 1.0, -1.0) Cr	
(0.0, 0.0, 2.0) Fe	(0.5, 2.0, -1.5) Co	(-1.5, -0.5, -0.5) Co	(-1.0, 1.5, -0.5) Ni	
(-0.5, 0.5, 2.5) Co	(0.5, 2.5, -1.0) Ta	(-0.5, -1.5, -0.5) Ta	(-0.5, 0.5, -1.0) Ni	
(-0.5, 1.5, 1.5) Ta	(1.0, 1.5, -1.5) Ni	(-1.0, -1.0, -0.0) Fe	(-0.5, 1.0, -0.5) Co	
(0.5, 0.5, 1.5) Cr	(1.0, 2.0, -1.0) Co	(-1.0, 0.0, -1.0) Ta	(-1.0, 1.5, -1.5) Co	
(0.0, 1.0, 2.0) Co	(0.5, 2.5, -2) Ni	(-0.5, -0.5, -0.5) Ni	(-0.5, 1.0, -1.5) Cr	
	(-3.5, -2.5, -1.5)	(-0.5, 1.5, -1.0) Ta		

Atomic positions	CoCrFeNiTa_{0.8}	CoCrFeNiTa_{1.0}	CoCrFeNiTa_{0.8}	CoCrFeNiTa_{1.0}
(-0.5, -0.5, -1.5) Co	(0.0, -1.0, 0.0) Fe	(-1.5, -0.5, 1.5) Cr	(1.5, -2.5, 1.0) Ta	
(1.0, 1.0, -2.0) Ta	(0.0, -1.0, -1.0) Ni	(-2.0, 0.0, 2.0) Ta	(0.0, -1.5, 0.5) Co	
(0.0, 0.0, -2.0) Co	(0.0, -0.5, -0.5) Fe	(-1.0, -1.0, 2.0) Ni	(0.5, -2.5, 0.0) Cr	
(-0.5, 0.5, -1.50) Ni	(1.5, -1.5, -2.0) Fe	(-1.0, 0.0, 1.0) Fe	(0.5, -2.0, 0.5) Co	
(-1.0, 1.0, -1.0) Cr	(0.5, -1.0, -0.5) Co	(-1.5, 0.5, 1.5) Cr	(1.0, -3.0, 0.0) Co	
-----------------	-----------------	-----------------	-----------------	
(0.0, 0.0, -1.0) Fe	(0.5, -0.5, -0.0) Cr	(-2.0, 1.0, 2.0) Ta	(1.0, -2.5, 0.5) Ta	
(-0.5, 0.5, -0.5) Fe	(1.0, -1.0, -0.0) Ni	(-0.5, -0.5, 1.5) Ta	(1.0, -2.0, 1.0) Cr	
(1.0, 2.0, -1.0) Fe	(0.5, -1.0, -1.5) Ta	(-1.0, 0.0, 2.0) Ni	(1.5, -3.0, 0.5) Cr	
(0.0, 2.0, -2.0) Co	(0.5, -0.5, -1.0) Co	(-1.5, 0.5, 2.5) Co	(1.5, -1.5, 1.0) Co	
(0.5, 0.5, -2.5) Ni	(0.0, -1.5, -0.5) Ta	(0.0, -1.0, 2.0) Co	(2.0, -2.5, 0.5) Fe	
(0.0, 1.0, -2.0) Co	(1.0, -1.0, -1.0) Cr	(-0.5, -0.5, 2.5) Fe	(0.5, -1.5, 0.0) Cr	
(-0.5, 1.5, -1.5) Ta	(0.5, -0.5, -2.0) Ni	(-1.0, 0.0, 3.0) Cr	(0.5, -1.0, 0.5) Ni	
(0.5, 0.5, -1.5) Ni	(0.0, -1.5, -1.5) Ni	(-1.5, 0.5, 3.5) Ni	(1.0, -2.0, 0.0) Fe	
(-0.0, 1.0, -1.0) Fe	(1.0, -1.0, -2.0) Co	(-0.5, 0.5, 0.5) Fe	(1.0, -1.5, 0.5) Ni	
(-0.5, 1.5, -0.5) Cr	(1.0, -0.5, -1.5) Ta	(-1.0, 1.0, 1.0) Ni	(1.5, -2.5, 0.0) Fe	
(0.5, 0.5, -0.5) Co	(0.5, -1.5, -1.0) Fe	(-1.5, 1.5, 1.5) Ni	(1.5, -2.0, 0.5) Ni	
(0.0, 1.0, 0.0) Ni	(1.5, -1.0, -1.5) Co	(0.0, 0.0, 1.0) Fe	(2.0, -3.5, 0.5) Cr	
(-0.5, 1.5, 0.5) Cr	(1.0, -0.5, -1.5) Ta	(-0.5, 0.5, 1.5) Ta	(2.0, -1.5, 0.5) Ta	
(0.5, 1.5, -1.5) Ta	(0.5, -1.5, -1.0) Fe	(-1.0, 1.0, 2.0) Co	(0.5, -0.5, 0.0) Fe	
(0.0, 2.0, -1.0) Ni	(1.5, -0.5, -1.0) Co	(0.5, -0.5, 1.5 Co	(1.0, -1.5, 0.0) Co	
(1.0, 1.0, -1.0) Fe	(1.0, -1.5, -0.5) Fe	(0.0, 0.0, 2.0) Ta	(1.0, -1.0, 0.0) Fe	
(0.5, 1.5, -0.5) Ta	(0.5, -1.5, -2.0) Cr	(-0.5, 0.5, 2.5) Cr	(1.0, -0.5, 0.5) Ni	
(0.0, 2.0, 0.0) Cr	(1.5, -0.5, -2.0) Ni	(-0.5, 1.5, 1.5) Cr	(1.5, -1.5, 0.0) Ni	
(0.5, 2.5, -0.5) Cr	(1.0, -1.5, -1.5) Cr	(0.5, 0.5, 1.5 Co	(1.5, -1.0, 0.5) Ta	
Fig. S1 Partial pair distribution function of fcc CoCrFeNi alloy.
Fig. S2 Partial pair distribution function of bcc CoCrFeNi alloy.
Fig. S3 Partial pair distribution function of fcc CoCrFeNiTa₀.₂ alloy.
Fig. S4 Partial pair distribution function of bcc CoCrFeNiTa_{0.2} alloy.
Fig. S5 Partial pair distribution function of fcc CoCrFeNiTa$_{0.4}$ alloy.
Fig. S6 Partial pair distribution function of bcc CoCrFeNiTa_{0.4} alloy.
Fig. S7 Partial pair distribution function of fcc CoCrFeNiTa_{0.6} alloy.
Fig. S8 Partial pair distribution function of \(bcc \) CoCrFeNiTa\(_{0.6}\) alloy.
Fig. S9 Partial pair distribution function of fcc CoCrFeNiTa$_{0.8}$ alloy.
Fig. S10 Partial pair distribution function of \(bce\) CoCrFeNiTa\(_{0.8}\) alloy.
Fig. S11 Partial pair distribution function of fcc CoCrFeNiTa$_{1.0}$ alloy.
Fig. S12 Partial pair distribution function of bcc CoCrFeNiTa$_{1.0}$ alloy.
Fig. S13 Phonon density of states for *fcc* (left) and *bcc* (right) structures. x represents the Ta content in CoCrFeNiTa$_x$ alloys.
Fig. S14 Band structures of fcc CoCrFeNiTa$_x$.
Fig. S15 Band structures of bcc CoCrFeNiTa.
Fig. S16 Density of states of fcc and bcc CoCrFeNiTa.
Appendix:

According to Boltzmann's hypothesis,1,2 the configurational entropy of an n-element regular solution is as follows:

\[\Delta S_{\text{con}} = -R \sum_{i=1}^{n} (C_i \ln C_i) \]

(1)

where \(C_i \) is mole percent of element \(i \), \(i = 1 \) to \(n \), and \(R \) is the ideal gas constant.

1 R.A. Swalin, \textit{Wiley}, New York, 1972, 35-41.

2 X. Yang and Y. Zhang, \textit{Mater. Chem. Phys.}, 2012, 132, 233-238.