Linum aksehirense (sect. Dasylinum, Linaceae), a new species from Central Anatolia (Turkey)

Osman Tugay¹, Deniz Ulukuş²

¹ Selçuk University, Department of Pharmaceutical Botany, Faculty of Pharmacy, Selçuklu, Konya, Turkey
² Selçuk University, Department of Biotechnology, Faculty of Sciences, Selçuklu, Konya, Turkey

Corresponding author: Deniz Ulukuş (dulukus@selcuk.edu.tr)

Abstract

Linum aksehirense (Linaceae) is described as a new species known from the slopes of the Sultan Mountains in the Akşehir district of Konya in Central Anatolia (Turkey). It is most similar to L. pubescens Banks & Sol. and L. anisocalyx P.H.Davis, from which it is easily distinguished by its stem leaf shape, sepal shape and petal colour. Seed and pollen surface ornamentations were photographed under SEM microscopy to explore micromorphological characters distinguishing the new species from close relatives. In addition, photographs of living material, a distribution map, ecological details, and an identification key are provided.

Keywords

Endemic, Konya, Linaceae, Linum, taxonomy

Introduction

The genus Linum Linnaeus (Linaceae) is comprised of about 200 species in the Linaceae family. Linum is distributed mainly in North America, the Balkan Peninsula, Anatolia, as well as in Eurasia and Africa (Robertson 1971), but it is also represented in South America and Australasia.

Linum was first described by Linnaeus (1753). The first comprehensive study on the genus was made by Planchon (1847, 1848). The most recent worldwide treatment of Linum was done by Winkler (1931). According to Winkler (1931) and Planchon (1847, 1848), Linum is divided into five sections. The genus has been the subject of several taxonomic studies and regional revisions, such as those focusing on American
and South African Linum species (Rogers 1963, 1981; Mildner and Rogers 1978), as well as Flora Europaea (Ockendon and Walters 1968), Flora of the U.S.S.R. (Yuzepchuk 1974), and Flora of Turkey and the Aegean Islands (Davis 1967). The genus plays an important role in the economic and social development of humans. For example, the seeds of L. usitatissimum are used nutritionally and medicinally. Linseed oil is also a significant source of inks, varnishes, and lubricants (McDill et al. 2009).

Linum is represented by four sections in Turkey: sect. Syllinum Grisebach (1843: 115), sect. Linastum Planchon (1847: 597), sect. Dasylinum Planchon (1847: 598), and sect. Linum Planchon (1847: 598). With 54 taxa (Yılmaz 2018), Turkey is one of the most important centres of genetic diversity for the genus Linum. The new species described in this paper brings the number to 55 taxa in Turkey, 26 (47%) of which are endemic.

Linum sect. Dasylinum is characterised by having perennial or annual life cycles and distinct morphological characteristics. Leaves are alternate, often hairy. Petals usually have coherent claws and are blue, pink or white. Capsules are hairy or glabrous (Davis 1967). There have been numerous studies on the morphology of Linum in Turkey by several authors (Davis 1967; Yılmaz and Kaynak 2008, 2010; Yılmaz 2010). There have also been investigations on a worldwide scale concerning the palynology (Erdtman 1969; Rogers and Xavier 1971; Saad 1961, 1962; Xavier et al. 1980; Rogers 1985; Talebi et al. 2012), karyology (Ray 1944; Harris 1968; Rogers et al. 1972) and anatomy (Winkler 1931; Metcalfe and Chalk 1950) of the genus. There has been just one study on Linum seeds, which covers several species of the genus (Özcan and Zorlu 2009).

From a biogeographical and evolutionary point of view, McDill et al. (2009) reported that section Linum and Dasylinum were not monophyletic and that Linum appears to have arisen in Eurasia, from which it spread to Africa, North America, South America and Australasia.

We collected samples of what we suspected could be a new species of Linum while conducting field work around the Sultan Mountains between 2011 and 2017. The specimens were checked against the Flora of Turkey and the East Aegean Islands, as well as neighbouring floras (Flora Iranica, Flora Iraq, Flora of the U.S.S.R. and Flora Europaea). We subsequently decided that it was a species new to science.

The aim of this study was to describe the new species, named Linum aksehirense, occurring in the Sultan Mountains (Akşehir, Konya), in terms of its morphology, palynology and seed micromorphology.

Material and methods

Field collections were carried out in the Sultan Mountains from 2011 to 2017. Collected specimens were dried using traditional procedures and were deposited in the KNYA Herbarium. They were identified using the Flora of Turkey and the East Aegean Islands using stereo microscopy and checking them against other Linum accounts found in relevant literature. The taxonomical description of the species was made according to Davis (1967).
For palynological investigations, pollen slides were prepared according to Wodehouse's (1935) technique. The pollen micromorphology of *L. aksehirense* was scrutinized by scanning electron microscopy (SEM) techniques. For SEM, pollen grains were directly placed on double-sided carbon tape affixed to aluminium stubs, covered with gold with a Hummle VII sputter coater and photographed at magnifications of 2000× to 7000× with a JEOL-5600. SEM micrographs were used to determine exine sculpturing of the pollen. Pollen terminology was based on Punt et al. (2007). For seed investigations, SEM micrographs were used to determine seed coat sculpturing. The terminology of Stearn (1983) and Özcan and Zorlu (2009) was adopted to describe the SEM aspects of the seed coat.

Taxonomy

Linum aksehirense Tugay & Ulukuş, sp. nov.
urn:lsid:ipni.org:names:77203431-1
Figures 1–6

Diagnosis. *Linum aksehirense* belongs to *Linum* sect. *Dasylinum*. The new species is similar to *L. pubescens* but is distinguished by its spathulate lower stem leaves that are not evanescent (*vs.* oblong-spathulate evanescent), subequal lanceolate sepal shape (*vs.* subequal linear), petals 27–33 mm (*vs.* 18–27 mm) and petals that are blue-violet with a yellowish limb base (*vs.* pink with a bluish limb base).

![Figure 1](image_url). Distribution map of *Linum aksehirense* (triangle), and closely related *Linum pubescens* (circle) and *Linum anisocalyx* (square) in Turkey.
Figure 2. Holotype specimen of *Linum aksehirense* Tugay & Ulukuş.
Figure 3. General view of habit and flower A–C Linum aksehirense.
Figure 4. Scanning electron micrographs of seeds *Linum aksehirense* species A general view and B surface sculpturing pattern.

Figure 5. SEM micrographs of the pollen grains of *L. aksehirense* A–C polar, equatorial view and ornamentation (O.Tugay 14.542 & D.Ulukuş).

Type. Turkey. B3 Konya; Akşehir, Sultan Mountains, slopes in *Pinus nigra* forest, 1150 m alt., 38°19.230′N, 31°23.181′E, 01 August 2017, O.Tugay 14.542 & D.Ulukuş (holotype KNYA, isotypes KNYA 28.229).

Description. The plant is a green annual. Flowering stems villous, erect, 22–33 cm; sterile shoots few. Lower stem leaves spatulate, not evanescent, 10–13 × 2–4 mm; median stem leaves lanceolate-elliptic, acute, 16–19 × 2–3.5 mm, 1–3 nerved.
Bract (similar to median stem leaves) stipitate glandular margined, lanceolate, 14–15 × 3–3.5 mm. Cymes divaricate, lax, few-flowered; flowers 3–7 per stem; pedicels 1–2 mm, not elongated in fruit. Sepals subequal, lanceolate, 12–14 × 2–3 mm, bearing long hairs and stipitate glandular margined. Petals blue-violet (blue when dry) with a yellowish base to the limb, 27–33 mm. Capsule 5 × 5 mm diam. with 1–1.5 mm beak. Seeds elliptic-oblong, 2–2.5 × 1–1.5 mm, brown, glossy. Sculpturing of seed coat is reticulate-rugolose-ruminate (Fig. 4A–B).

Paratypes. **Turkey.** B3 Konya; Akşehir, slopes, 1170 m alt., 38°20’N, 31°24’E, 31 August 2011, O.Tugay 7.182 (KNYA); Akşehir, Hıdırlik, slopes, 1100 m alt., 38°19’N, 31°23’E, 01 August 2017, O.Tugay 14.520 & D.Ulukuş (KNYA).

Ecology. *Linum aksehirense*, which is endemic to Turkey, grows between 1100 and 1170 m elevation on slopes with *Pinus nigra* forest. The vegetation of this habitat is composed mainly of herbaceous and suffruticose plants including: *Agrimonia eupatoria* L. subsp. *asiatica*, *Campanula lyrata* Lam. subsp. *lyrata*, *Centaurea virgata* Lam., *Cistus laurifolius* L., *Cota tinctoria* (L.) J.Gay ex Guss. var. *tinctoria*, *Digitalis ferruginea* L. subsp. *ferruginea*, *Dianthus crinitus* Sm. var. *crinitus*, *Hedysarum varium* Willd. subsp. *varium*, *Phlomis armeniaca* Willd., *Pinus nigra* J.F.Arnold subsp. *nigra*, *Prunus divaricata* Ledeb. var. *divaricata*, *Scabiosa rotata* M.Bieb., *Securigera varia* (L.) Lassen, *Teucrium chamaedrys* L. subsp. *chamaedrys* and *Teucrium polium* L.
Phenology. The new species was observed flowering in July and collected fruiting from July to August.

Etymology. The species epithet comes from ‘Akşehir’, where the new species is found.

Proposed Turkish name for the new species. Akşehir keteni.

Distribution and conservation status. *Linum aksehirense* is known from three localities in Konya province, in the Irano-Turanian phytogeographic region (Fig. 1). Its area of occupancy is estimated to be less than 500 km2. The number of mature individual plants is estimated to be less than 250. Being an annual gives this new species a crucial advantage for survival against potential threats, which include the destruction of brush by locals, road construction and deterioration of habitat. Thus, according to criterion B and D, it can be included in the EN (Endangered) category (IUCN 2001; 2016).

Key to the species of Linum sect. Dasylinum in Turkey

1 Annuals...2
 – Perennials...5

2 Petals c. 8 mm, free; sepals not or slightly longer than capsule...........*L. seljukorum*
 – Petals 18 mm or more; coherent; sepals much longer than capsule.........................3

3 Petals 27–33 mm, blue-violet with a yellowish base to the limb*L. aksehirense*
 – Petals 18–27 mm, pink with a bluish base to the limb ..4

4 Sepals subequal ..*L. pubescens*
 – Sepals very unequal, the outer two hiding the much shorter inner sepals.............
 ...*L. anisocalyx*

5 Median cauline leaves margined by stalked glands..............................6
 – Median cauline leaves not margined by glands...8

6 Inflorescence compact; petal claw 1/4 as long as limb......................*L. densiflorum*
 – Inflorescence widely spreading, or rarely 1–3 flowered ..7

7 Petal claw c. ½ as long as limb; median stem leaves not attenuate below
 ...*L. birsutum*
 – Petal claw c. 1–1½ as long as limb; median stem leaves attenuate at both ends ...
 ...*L. unquiculatum*

8 Plants very twiggy at base, with many sterile shoots; 1–7 flowers....*L. olympicum*
 – Plant herbaceous, with few or no sterile shoots; usually > 7 flowers.................9

9 Cymes usually spreading, lax; leaves 1–3 nerved, oblong, linear or subspathulate;
 petal claw c. ½ as long as limb ...*L. birsutum*
 – Cymes compact; leaves 3–7 nerved, broadly lanceolate; petal claw ¼–1/3 as long
 as limb ...*L. hypericifolium*

Pollen morphology

The pollen shape of the new species was subprolate (P/E: 1.13) with a polar axis of 53.85 ± 1.75 µm (mean ± standard deviation) µm and an equatorial axis of
Linum aksehirense, a new species from Central Anatolia (Turkey)

47.70 ± 4.70 µm. The aperture was tricolpate. The colpus was long-acute ended with a colpus length of 34.82 ± 3.26 µm and width of 12.91 ± 2.23 µm. Exine thickness was 0.5 µm and intine thickness was 0.4 µm. Exine ornamentation was densely gemmate (Fig. 5 A–C).

Discussion

Linum aksehirense is similar to L. pubescens, L. anisocalyx and L. viscosum in morphology. However, it differs from these similar species in several vegetative and reproductive characters (Table 1).

According to Davis (1967), L. anisocalyx is closely related to L. pubescens, differing from L. pubescens primarily by its strongly dimorphic sepals (not dimorphic), which are rhomboid-lanceolate and glandular-margined.

Linum aksehirense differs from L. pubescens by its spatulate, not evanescent lower stem leaves (vs. oblong-spathulate evanescent), lanceolate-elliptic, acute median stem leaves, 16–19 × 3–4 mm (vs. oblong, subacute 12–23 × 2–5 mm), subequal lanceolate sepals (vs. subequal linear), sepal size of 12–14 × 2–3 mm (vs. 9–12 × 1–2 mm) and its petal colour, which is blue-violet with a yellowish limb base (vs. pink with a bluish limb base) (Table 1).

Linum aksehirense is similar to L. anisocalyx, differing in its lanceolate-elliptic, acute median stem leaves, 16–19 × 3–4 mm (vs. oblong, oblong, subacute 12–23 × 2–5 mm), subequal lanceolate sepals (vs. very unequal elliptic-lanceolate), sepal size of 12–14 × 2–3 mm (vs. outer sepals 11–12 × 3–3.5 mm, inner sepals 6–8 × 2.5–3 mm), petal colour, which blue-violet with a yellowish limb base (vs. pink with a bluish limb base) and in its petal size, which is 27–33 mm (vs. 18–26 mm) (Table 1).

Linum aksehirense can be distinguished from L. viscosum, by its spatulate not evanescent (vs. lanceolate, ovate-lanceolate, evanescent), sepal size of 12–14 × 2–3 mm (vs. 6–9 × 1–1.5 mm), petal colour, which is blue-violet with a yellowish limb base (vs. pink), and in its petal size, which is 27–33 mm (vs. 18–21 mm).

Xavier et al. (1980) described the basic pollen grain in Linum as subspheroidal, about 50 µm in diameter, isopolar, radially symmetric, tricolpate, colpi with pointed ends. However, in our study L. aksehirense had subprolate pollen shape. According to Talebi et al. (2012)’s palynologic study on four section of the Linaceae, including 15 taxa of Linum, in all examined taxa the pollen shape in polar view was circular (except in L. densifolorum where it was concave-triangular) and also the exine sculpturing pattern showed a clavate, pilate and gemmate to baculate form. Talebi et al. (2012) reported that pollen features of L. densifolorum consisted of an oblate-spheroidal pollen shape and small and large gemmate exine ornamentation. Our findings showed that L. aksehirense had subprolate pollen shape and the exine ornamentation was densely gemmate (Fig. 5 A–C). In terms of pollen micromorphology, palynological results demonstrated that there are no clear differences among species of the same section. However, pollen shape can be used to distinguish species.

Özcan and Zorlu (2009) studied seed surface patterns Linum genus and found reticulate-ruminate patterns in sect. Dasylinum. Özcan and Zorlu (2009) showed that seed patterns provide characters to distinguish taxa at specific and infraspecific levels.
In this study, the micromorphological study of the seeds showed that there were clear differences among the studied species. According to our findings, *Linum aksehirense* had reticulate-rugulose-ruminate sculpturing while *L. pubescens* exhibited reticulate-rugulose-granulate and *L. anisocalyx* showed reticulate-rugulose (Fig. 6 A–C).

Conclusion

With the discovery of this new species, the number of species of *Linum* in Turkey has risen to 55. This study provides material and data to aid further research on this significant genus of the Linaceae.

Acknowledgements

The authors are grateful to the curators of AEF, ANK, E, G, GAZI, HUB, ISTE, ISTF, K, KNYA and LE who allowed us to study their *Linum* specimens. We would also like to thank Selçuk University, BAP (Project no: 09201154) for financial support. We wish to thank two anonymous reviewers for their careful reading of our manuscript and their many constructive comments and suggestions.

Reference

Davis PH (1967) Flora of Turkey and the East Aegean Islands. University press, Edinburgh, 425–450.

Erdtman G (1969) Handbook of Palynology. New York.

Grisebach AHR (1843) Spicilegium Florae Rumelicae et Bithynicae Exhibens Synopsin Plantarum quas in aest (Vol. 1). Vieweg & Son, Brunsvigae, 407 pp.
Linum aksehirense, a new species from Central Anatolia (Turkey)

Harris BD (1968) Chromosome Numbers and Evolution in North American Species of Linum. American Journal of Botany 55(10): 1197–1204. https://doi.org/10.1002/j.1537-2197.1968.tb07485.x

IUCN (2001) IUCN Red List Categories: Version 3.1. Prepared by the IUCN Species Survival Commission. IUCN, Gland and Cambridge.

IUCN (2016) Standards and Petitions Subcommittee. Guidelines for Using the IUCN Red List Categories and Criteria. Version 12. Prepared by the Standards and Petitions Subcommittee. http://www.iucnredlist.org/documents/RedListGuidelines.pdf

Linnaeus C (1753) Species Plantarum. Laurentius Salvius, Stockholm, 1200 pp.

McDill J, Repplinger M, Simpson BB, Kadereit JW (2009) The phylogeny of Linum and Linaceae subfamily Linoideae, with implications for their systematics, biogeography, and evolution of heterostyly. Systematic Botany 34(2): 386–405. https://doi.org/10.1600/036364409788606244

Metcalfe CR, Chalk L (1950) Anatomy of the Dicotyledons. At The Clarendon Press, Oxford, 268–273.

Mildner RA, Rogers CM (1978) Revision of the native South American species of Linum (Linaceae). Phytologia 39: 343–390.

Ockendon DJ, Walters SM (1968) Linum L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (Eds) Flora of Europea (Vol. 2). Cambridge University Press, 206–211.

Özcan T, Zorlu E (2009) A contribution to taxonomy of Turkish Linum based on seed surface patterns. Biologia 64(4): 723–730. https://doi.org/10.2478/s11756-009-0123-6

Planchon JE (1847) Sur la Famille des Linées. The London Journal of Botany 6: 588–603.

Planchon JE (1848) Sur la Famille des Linées. The London Journal of Botany 7: 165–186.

Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143(1–2): 1–81. https://doi.org/10.1016/j.revpalbo.2006.06.008

Ray C (1944) Cytological Studies on The Flax Genus, Linum. American Journal of Botany 31(4): 241–248. https://doi.org/10.1002/j.1537-2197.1944.tb08027.x

Robertson KR (1971) The Linaceae in The Southeastern United States. Journal of the Arnold Arboretum 52: 649–665. https://doi.org/10.5962/bhl.part.9119

Rogers CM (1963) Yellow flowered species of Linum in eastern North America. Brittonia 15(2): 97–122. https://doi.org/10.2307/2805396

Rogers CM, Xavier KS (1971) Pollen Morphology as an Aid in Determining Relationships Among Some Widely Separated Old World Species of Linum. Grana 11(1): 55–57. https://doi.org/10.1080/00173137109427412

Rogers CM, Mildner R, Harris BD (1972) Some Additional Chromosome Numbers in the Linaceae. Brittonia 24(3): 313–316. https://doi.org/10.2307/2805668

Rogers CM (1981) A revision of the genus Linum in southern Africa. Nordic Journal of Botany 1(6): 711–722. https://doi.org/10.1111/j.1756-1051.1981.tb01157.x

Rogers CM (1985) Pollen Morphology of The Monotypic Genus Cliococca (Linaceae). Grana 24(2): 121–123. https://doi.org/10.1080/00173138509429923
Saad SI (1961) Pollen Morphology and Sporoderm Stratification in *Linum*. Grana Palynology 3: 109–129.

Saad SI (1962) Palynological studies in the Linaceae. Pollen et Spores 4: 65–82.

Stearn WT (1983) Botanical Latin. David & Charles. London, 566 pp.

Talebi SM, Sheidai M, Atri M, Sharifnia F, Noormohammadi Z (2012) Palynological study of the genus Linum in Iran (a taxonomic review). Phytologia Balcanica 18(3): 293–303.

Winkler H (1931) Linaceae, Trib I. 3. Linoideae-Eulinae. In: Engler A, Prantl K (Eds) Die Natürlichen Pflanzenfamilien Nebst Ihren Gattungen und Wichtigeren Arten, Insbesondere den Nutzpflanzen (2nd edn.) (Vol. 19a.). W. Engelmann, Leipzig, 111–120.

Wodehouse RR (1935) Pollen grains. McGraw-Hill, New York, 574 pp.

Xavier KS, Mildner RA, Rogers CM (1980) Pollen morphology of *Linum*, sect. *Linastrum* (Linaceae). Grana 19(3): 183–188. https://doi.org/10.1080/00173138009425002

Yılmaz Ö, Kaynak G (2008) A New Species of *Linum* (Linaceae) From West Anatolia, Turkey. Botanical Journal of the Linnean Society 156(3): 459–462. https://doi.org/10.1111/j.1095-8339.2007.00763.x

Yılmaz Ö (2010) *Linum kaynakiae* Sp. Nov. (Sect. *Syllinum*, Linaceae) From Turkey. Nordic Journal of Botany 28(5): 605–612. https://doi.org/10.1111/j.1756-1051.2010.00756.x

Yılmaz Ö, Kaynak G (2010) A New Taxon of *Linum* (Linaceae) From Southwest Anatolia, Turkey. Novon 20(4): 507–511. https://doi.org/10.3417/2009003

Yılmaz Ö (2018) *Linum ayliniae* (Linaceae), a New Species from West Anatolia, Turkey. Novon 26(2): 174–179. https://doi.org/10.3417/2018078

Yuzepchuk SV (1974) *Linum* L. In: Shishkin BK (Ed.) Flora of U.S.S.R., 14: 67–112. Acad. Sci. USSR (Vol 14). Translation from Russian by Israel Programme of Scientific Translation, Jerulasem, 67–112.

Appendix I

Additional examined specimens

Linum pubescens; C5/6 Turkey, Hatay: near sea level, rocky limestone slopes, 07 May 1965, *Coode* 620 & *Jones* (E!); C5/6 Syria/Turkey, Hatay: nr. Aleppo, or between there and Iskenderun, *Russell* (BM photo!); C6 Gaziantep: 30 km. S of Aintab, *Dinsmore* 8.935!; Urfa: Rum Kala’a, *Sint.* 1888: 268!; C8 Mardin: 11 km. W of Idil, 800 m, 05 May 1966, *Davis* 42.427 (E!).

Linum anisocalyx; C5 Içel: plaine de Mersina, May 1855, *Balansa* (holo. K!); Içel: Mersin, 1896, *Siehe* 199 (E!); Içel: Mersin to Kuzucubelen, 18 June 1950, 500 m, *Hub.-Mor.* 10.567!

Linum viscosum; Spain, Gerona: Roadside near Ripoll, 13 July 1979, *Rogers* 13.567 (B photo!), Huesca, near Jaca, 8 July 1979, *Rogers* 13.558 (B photo!); Austria: Ebersberg en Autriche. In campis aridis Sabulosus, 1812 (GDC photo!); Italy: Gênes, 08 July 1808, Candolle, (GDC photo!).