Phylogenetic analyses and morphological characters reveal two new species of Ganoderma from Yunnan province, China

Jun He¹, Zong-Long Luo¹, Song-Ming Tang²³⁴, Yong-Jun Li², Shu-Hong Li², Hong-Yan Su¹

¹ College of Agriculture and Biological Sciences, Dali University, Dali 671003, Yunnan, China ² Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650223, China ³ Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand ⁴ School of science, Mae Fah Luang University, Chiang Rai 57100, Thailand

Corresponding authors: Shu-Hong Li (shuhongfungi@126.com), Hong-Yan Su (suhongyan16@163.com)

Abstract
Ganoderma dianzhongense sp. nov. and G. esculentum sp. nov. are proposed as two new species based on both phenotypic and genotypic evidences. Ganoderma dianzhongense is characterized by the stipitate basidiomata, laccate and oxblood red pileus, gray white pore surface, duplex context and broadly ellipsoid basidiospores (9.0–12.5 × 6.5–9.0 μm) with coarse interwall pillars. Ganoderma esculentum is characterized by its basidiomata with slender stipe, white pore surface, homogeneous pileus context, and slightly truncate, narrow basidiospores (8.0–12.5 × 5.0–8.0 μm). Phylogenetic analyses were carried out based on the internal transcribed spacer (ITS), translation elongation factor 1-α (TEF1-α) and the second subunit of RNA polymerase II (RPB2) sequence data. The illustrations and descriptions for the new taxa are provided.

Keywords
Ganodermataceae, novel species, phylogeny, taxonomy
Introduction

Ganodermataceae was introduced by Donk (1948) which belongs to Polyporales and the latest studies indicated that it is a monophyletic group (Costa-Rezende et al. 2020). Currently, eleven genera viz. *Amauroderma* Murril, *Amaurodermellus* Costa-Rezende, *Cristataspora* Costa-Rezende, *Foraminispora* Robledo, *Costa-Rezende & Drechsler-Santos*, *Furtadoa* Costa-Rezende, *Haddowia* Steyaert, *Humphreya* Steyaert, *Magoderma* (Murrill) Steyaert, *Sanguinoderma* Y.F. Sun, D.H. Costa & B.K. Cui and *Tomophagus* Murrill are accepted in Ganodermataceae and supported by morphology and phylogeny (Steyaert 1972; Furtado 1981; Corner 1983; Zhao et al. 2000; Ryvarden 2004; Thametal 2012; Costa-Rezende et al. 2017; Costa-Rezende et al. 2020; Sun et al. 2020).

Ganoderma P. Karst (Ganodermataceae, Polyporales) was introduced to accommodate a laccate and stipitate fungus, *Ganoderma lucidum* (Curtis) P. Karst (Karsten 1881). *Ganoderma* is characterized by double-walled basidiospores with inter-wall protuberances (Karsten 1881; Moncalvo and Ryvarden 1997). There are 462 records in the Index Fungorum (http://www.Indexfungorum.org/; accessed date: 7 October 2021) and 506 records in MycoBank (http://www.mycobank.org/; accessed date: 7 October 2021). *Ganoderma* is one of the most taxonomically scrutinized genera among the Ganodermataceae and even in Polyporales (Richter et al. 2015; Costa-Rezende et al. 2020). Most *Ganoderma* species are wood decomposers, found in all temperate and tropical regions (Pilotti et al. 2004; Cao et al. 2012; Zhou et al. 2015).

Ganoderma has long been regarded as one of the most important medicinal fungi in the world (Paterson 2006); they have been used as medicine for over two millennia in China (Dai et al. 2009). Several *Ganoderma* species are known to be prolific sources of highly active bioactive compounds, especially polysaccharides, protein, sterols, and triterpenoids (Ahmadi and Riazipour 2007; Chan et al. 2007). These compounds are known to possess extensive therapeutic properties, such as antioxidant, antitumor, and antiviral agents, and improve sleep function (De Silva et al. 2013).

Species diversity of *Ganoderma* is abundant in China and more than 30 species have been described (Zhao et al. 2000; Wang et al. 2009; Cao et al. 2012; Li et al. 2015; Xing et al. 2016; Hapuarachchi et al. 2018; Liu et al. 2019; He et al. 2019; Wu et al. 2020). Yunnan province is considered as one of the hot-spots for studying biodiversity of polypores, and some new *Ganoderma* species have been described (Zhao 1989; Wang et al. 2010; Cao and Yuan 2013).

During our investigation into the diversity of *Ganoderma* in Yunnan province, several specimens of *Ganoderma* were collected from central and southern Yunnan. Phylogenetic analysis showed that the seven collections formed two distinct lineages and can be recognized as new species, hence two new species, namely *G. dianzhongense* and *G. esculentum* are introduced based on morphology and phylogeny.
Two new species of *Ganoderma*

Materials and methods

Sample collection

Seven *Ganoderma* specimens were collected during the rainy season from July 2016 to August 2019 in Yunnan Province of China. The samples were then photographed and transported back to the laboratory where their fresh macroscopic details were described. The specimens were deposited in the herbarium of Kunming Institute of Botany Academia Sinica (KUN-HKAS).

Morphological studies

Macro-morphological characters were described based on fresh material field notes, and the photographs provided here. Color codes are from Kornerup and Wanscher (1978). Micro-morphological data were obtained from the dried specimens and observed by using a microscope following Li et al. (2015). Sections were studied at magnification of up to 1000× using a NiKon E400 microscope and phase contrast illumination. Microscopic features and measurements were made from slide preparations stained with 5% potassium hydroxide (KOH) and 2% Melzer’s reagent. Basidiospore features, hyphal system, color, sizes and shapes were recorded and photographed. Measurements were made using the Image Frame work v.0.9.7 to represent variation in the size of basidiospores, 5% of measurements were excluded from each end of the range and extreme values are given in parentheses.

The following abbreviations are used: IKI = Melzer’s reagent, IKI– = neither amyloid nor dextrinoid, KOH = 5% potassium hydroxide, CB = Cotton Blue, CB+ = Cyanophilous (Xing et al. 2018). The abbreviation for basidiospores measurements (n/m/p) denote “n” basidiospores measured from “m” basidiomata of “p” specimens. Basidiospore dimensions (and “Q” values) are given as (a) b–av–c (d), where “a” represents the minimum, “d” the biggest, “av” the average “b” and “c” covers a minimum of 90% of the values. “Q”, the length/width ratio of a spore in side view, and “Q_m” for the average of all basidiospores ± standard deviation (Wang et al. 2015).

DNA extraction, PCR amplification, and sequencing

Total genomic DNA was extracted from dried pieces of pileus with tubes with modified CTAB protocol Doyle (1987). The genes ITS, TEF1-α and RPB2 were amplified by polymerase chain reaction (PCR) technique. The primers ITS1F / ITS4, TEF1-983 / TEF1-1567, and RPB2-6f / fRPB2-7cR were used to amplify the ITS, TEF1-α, RPB2 region, respectively (White et al. 1990; Liu et al. 1999; Matheny et al. 2007). PCR reactions (25 μL) contained mixture: 2.5 μL PCR reaction buffer, 2.5 μL 0.2% BSA, 2 μL dNTP (2.5 mm), 0.5 μL each of primer, 0.2 μL 5 U/μL Taq DNA polymerase, 1–1.5 μL DNA solution and 16 μL sterilized distilled H₂O. The PCR cycling for ITS was as follows: initial denaturation at 94 °C for 5 min, followed by 35 cycles at
94 °C for 30 sec, 53 °C for 30 sec and 72 °C for 50 sec and a final extension of 72 °C for 10 min. The PCR cycling for TEF1-α was as follows: initial denaturation at 94 °C for 5 min, followed by 35 cycles at 94 °C for 30 sec, 55 °C for 30 sec and 72 °C for 50 sec and a final extension of 72 °C for 10 min. The PCR cycling for RPB2 was as follows: initial denaturation at 94 °C for 5 min, followed by 35 cycles at 94 °C for 30 sec, 50 °C for 30 sec and 72 °C for 50 sec and a final extension of 72 °C for 10 min. The PCR products were visualized via UV light after electrophoresis on 1% agarose gels stained with ethidium bromide. Successful PCR products were sent to Sangon Biotech Limited Company (Shanghai, China), using forward PCR primers. When sequences have heterozygous INDELS or ambiguous sites, samples were sequenced bidirectionally to make contigs of the amplified regions or verify the ambiguous sites (Wang et al. 2015). Raw DNA sequences were assembled and edited in Sequencher 4.1.4 and the assembled DNA sequences were deposited in GenBank (Table 1).

Sequencing and sequence alignment

Sequence data of three partial loci Internal transcribed spacer region (ITS), RNA polymerase II subunit 2 (RPB2), and translation elongation factor 1-alpha (TEF1-α) were used in the phylogenetic analyses. Besides the sequences generated from this study, other reference sequences were selected from GenBank for phylogenetic analyses (Table 1). Sequences were aligned using the online version of MAFFT v.7 (http://mafft.cbrc.jp/alignment/server/) (Katoh and Standley 2013) and adjusted using BioEdit v.7.0.9 by hand (Hall 1999) to allow maximum alignment and minimize gaps. Ambiguous regions were excluded from the analyses and gaps were treated as missing data. The phylogeny website tool “ALTER” (Glez-Peña et al. 2010) was used to convert the alignment fasta file to Phylip format for RAxML analysis and AliView and PAUP 4.0b 10 were used to convert the alignment fasta file to a Nexus file for Bayesian analysis (Swofford 2003). Phylogenetic analyses were obtained from Maximum Likelihood (ML) and Bayesian analysis (BI).

Molecular phylogenetic analyses

The maximum likelihood (ML) and Bayesian inference (BI) methods were used to analyze the combined dataset of ITS, TEF1-α and RPB2 sequences. Maximum likelihood analysis was conducted with RAxML-HPC2 on the CIPRES Science Gateway (Miller et al. 2010), involved 100 ML searches; all model parameters were estimated by the program. The ML bootstrap values (ML-BS) were obtained with 1000 rapid bootstrapping replicates. Maximum likelihood bootstrap values (ML) equal to or greater than 70% are given above each node (Figure 1).

Bayesian analysis was performed with MrBayes v3.2 (Ronquist et al. 2012), with the best-fit model of sequence evolution estimated with MrModeltest 2.3 (Nylander et al. 2008) to evaluate posterior probabilities (PP) (Rannala and Yang 1996; Zhaxybayeva and Gogarten 2002) by Markov Chain Monte Carlo (MCMC) sampling. Six simultaneous Markov chains were run for 10,000,000 generations, trees were sampled every 500th generation, and 2,000 trees were obtained. The first 5000 trees, represent-
Table 1. Species, specimens, geographic origin and GenBank accession numbers of sequences used in this study.

Species	Voucher/strain	Origin	GenBank accession numbers	Reference
G. aridicola	Dai 12588 (Type)	South Africa	ITS: KU572491, TEF1-α: KU572502	Xing et al. 2016
G. adspersum	GACP15061220	Thailand	ITS: MK345425, TEF1-α: MK371431, RPB2: MK371437	Hapuarachchi et al. 2019
	MFLU 19-2178	Thailand	ITS: MN396653, TEF1-α: MN423149, RPB2: MN423114	Luangharn et al. 2021
G. angustiporum	Cui 13817 (Type)	Fujian, China	ITS: MG279170, TEF1-α: MG367563, RPB2: MG367507	Xing et al. 2018
	Cui 14578	Guangdong, China	ITS: MG279171, TEF1-α: MG367564	Xing et al. 2018
G. austral	CMW 47785	South Africa	ITS: MH571686, TEF1-α: MH576276	Tchoumi et al. 2018
	CMW 48146	South Africa	ITS: MH571685, TEF1-α: MH576278	Tchoumi et al. 2018
G. austroafricanum	CBS138724 (Type)	South Africa	ITS: KM507324	Coetzee et al. 2015
G. aff. austroafricanum	CMW25884	South Africa	ITS: MH571673, TEF1-α: MH576296	Tchoumi et al. 2019
G. bambusicola	Wu 1207-151 (Type)	Taiwan, China	ITS: MN957781, TEF1-α: LC517941, RPB2: LC517944	Wu et al. 2020
	Wu 1207-152	Taiwan, China	ITS: MN957782, TEF1-α: LC517942, RPB2: LC517945	Wu et al. 2020
G. boninense	WD 2028	Japan	ITS: KJ143905, TEF1-α: KJ143924	Zhou et al. 2015
	WD 2085	Japan	ITS: KJ143906, TEF1-α: KJ143925	Zhou et al. 2015
G. calidophilum	MFLU 19-2174	Yunnan, China	ITS: MN398337	Luangharn et al. 2021
	H36	Yunnan, China	ITS: MW750241'	this study
G. carnosum	MJ 21/08	Czech Republic	ITS: KU572492	Xing et al. 2016
	JV 8709/8	Czech Republic	ITS: KU572493	Xing et al. 2016
G. carocalcareus	DMC 322 (Type)	Cameroon	ITS: EU089969	Douanla and Langer 2009
	DMC 513	Cameroon	ITS: EU089970	Douanla and Langer 2009
G. casuarinicola	Dai 16336 (Type)	Guangdong, China	ITS: MG279173, TEF1-α: MG367563, RPB2: MG367508	Xing et al. 2018
	Dai 16339	Guangdong, China	ITS: MG279176, TEF1-α: MG367568	Xing et al. 2018
G. curtii	CBS 100131	NC, USA	ITS: JQ781848, TEF1-α: JQ781849	Zhou et al. 2015
	CBS 100132	NC, USA	ITS: JQ781849, TEF1-α: JQ781850	Zhou et al. 2015
G. destructans	CBS 139793 (Type)	South Africa	ITS: NR132919	Tchoumi et al. 2018
	Dai 16431	South Africa	ITS: MG279177, TEF1-α: MG367560	Xing et al. 2018
G. donum	CMW 42157 (Type)	South Africa	ITS: MG020249, TEF1-α: MG020228	Tchoumi et al. 2019
	CMW 42150	South Africa	ITS: MG020249, TEF1-α: MG020228	Tchoumi et al. 2019
G. eucadoriense	ASL799 (Type)	Ecuador	ITS: KU128524	Crous et al. 2016
	PMC126	Ecuador	ITS: KU128525	Crous et al. 2016
G. eickeri	CMW 49692 (Type)	South Africa	ITS: MH571690, TEF1-α: MH576287	Tchoumi et al. 2019
	CMW 50325	South Africa	ITS: MH571689, TEF1-α: MH576290	Tchoumi et al. 2019
G. ellipsoideum	GACP1408966 (Type)	Hainan, China	ITS: MH106867	Hapuarachchi et al. 2018
	GACP14081215	Hainan, China	ITS: MH106886	Hapuarachchi et al. 2018
G. enigmaticum	Dai 15970	Africa	ITS: KU572486, TEF1-α: KU572496	Xing et al. 2016
	Dai 15971	Africa	ITS: KU572487, TEF1-α: KU572497	Xing et al. 2016
G. esculentum	L4935 (Type)	Yunnan, China	ITS: MW750242, TEF1-α: MW838998	this study
	L4946	Yunnan, China	ITS: MW750243	this study
G. flexipes	Wei 5494	Hainan, China	ITS: JN383979	Cao and Yuan 2013
	MFLU 19-2198	Yunnan, China	ITS: MN398340	Luangharn et al. 2021
G. gibsonum	MFLU 19-2176	Thailand	ITS: MN396311	Luangharn et al. 2021
	MFLU 19-2190	Laos	ITS: MN396310	Luangharn et al. 2021
G. heohnelianum	Dai 11995	Yunnan, China	ITS: KU199988, TEF1-α: MG367550	Song et al. 2016
	Cui 13982	Guangxi, China	ITS: MG279178, TEF1-α: MG367570	Xing et al. 2018
G. hochiminhense	MFLU 19-2224 (Type)	Vietnam	ITS: MN398324, TEF1-α: MN423176	Luangharn et al. 2021
	MFLU 19-2225	Vietnam	ITS: MN396622, TEF1-α: MN423177	Luangharn et al. 2021
G. knysnamense	CMW 47755 (Type)	South Africa	ITS: MH571681, TEF1-α: MH576261	Tchoumi et al. 2019
	CMW 47756	South Africa	ITS: MH571684, TEF1-α: MH576274	Tchoumi et al. 2019
G. leucocontextum	GDGM 44303	Xizang, China	ITS: KJ027607	Li et al. 2015
	GDGM 44305	Xizang, China	ITS: KJ027609	Li et al. 2015
G. longzhi	Cui 9166	China	ITS: KJ143907, TEF1-α: JX029974	Cao et al. 2012
	Dai 12574	Liaoning, China	ITS: KJ143908, TEF1-α: JX029977	Cao et al. 2012
G. lobatum	JV 1008/31	USA	ITS: KF605671, TEF1-α: MG376553	Xing et al. 2018
	JV 1008/32	USA	ITS: KF605670, TEF1-α: MG376554	Xing et al. 2018
G. lucidum K 175217 UK KJ143911 KJ143929 KJ143971 Zhou et al. 2015
MT 26/10 Czech Republic KJ143912 KJ143930 – Zhou et al. 2015

G. martinicense 231NC NC, USA MG654182 MG754736 – Loyd et al.2018
246TX TX, USA MG654185 MG754737 MG754858 Loyd et al.2018

G. mbrekobenum UMN7-3 GHA (Type) Ghana KX000896 – – Crous et al. 2016
UMN7-4 GHA Ghana KX000898 – – Crous et al. 2016

G. mexicanum MUCL 49453 SW17 Martinique MK31811 MK31825 MK31836 Cabarroi-Hernández et al. 2019
MUCL 55832 Martinique MK31815 MK31839 – Cabarroi-Hernández et al. 2019

G. mizoramense UMN-MZ4 (Type) India KY643750 – – Crous et al. 2017
UMN-MZ5 India KY643751 – – Crous et al. 2017

G. multiplex CWN 04670 Taiwan, China KJ143913 KJ143931 KJ143972 Zhou et al. 2015
Dai 9447 Hainan, China KJ143914 – KJ143973 Zhou et al. 2015

G. multiplex SP9 Brazil KU569553 – – Bolatios et al. 2016
URM 83346 Brazil JX310823 – – Bolatios et al. 2016

G. mutabile CLZhao 982 Yunnan, China MG231527 – – GenBank
Yuan 2289(Type) Yunnan, China JN383977 – – GenBank

G. myanmarense MFLU 19-2167 (Type) Myanmar MN396329 – – Luangharn et al. 2021
MFLU 19-2169 Myanmar MN396330 – – Luangharn et al. 2021

G. nasale GACP17060211 (Type) Laos MK345441 – – Hapuarachchi et al. 2019
GACP17060212 Laos MK345442 – – Hapuarachchi et al. 2019

G. neojaponicum FFPR1 WD-1285 Tokyo, Japan MN957784 – – Wu et al. 2020
FFPR1 WD-1532 Chiba, Japan MN957785 – – Wu et al. 2020

G. orbiforme Cui 13918 Hainan, China MG279186 MG367576 MG367522 Xing et al. 2018
Cui 13880 Hainan, China MG279187 MG367577 MG367523 Xing et al. 2018

G. parvulum MUCL 47096 Cuba MK554783 MK554721 MK554742 Cabarroi-Hernández et al. 2019
MUCL 52655 French Guiana MK554770 MK554717 MK554755 Cabarroi-Hernández et al. 2019

G. phillipi Cui 14443 Hainan, China MG279188 MG367578 MG367524 Xing et al. 2018
Cui 14444 Hainan, China MG279189 MG367579 MG367525 Xing et al. 2018

G. resinaceum Rivoire 4150 France, Europe KJ143915 – – Zhou et al. 2015
CBS 19476 Netherlands, Europe KJ143916 KJ143934 – Zhou et al. 2015

G. ryvardenii HKAS 58053 (Type) South Africa HM138670 – – Kinge et al. 2011
HKAS 58054 South Africa HM138671 – – Kinge et al. 2011

G. sessile 111TX TX, USA MG654306 MG754747 MG754866 Loyd et al.2018
113FL FL, USA MG654307 MG754748 MG754867 Loyd et al.2018

G. sianense BJTC FM432(Type) Shansi, China MK764268 MK783937 MK783940 Liu et al. 2019
HSA 539 Shansi, China MK764269 – MK789861 Liu et al. 2019

G. sichuanense HMAS42798 (Type) Sichuan, China JQ781877 – – Cao et al. 2012
Cui 7691 Guangdong, China JQ781878 – – Cao et al. 2012

G. sinense Wei 5327 Hainan, China KF494998 KF494976 MG367529 Xing et al. 2018
Cui 13835 Hainan, China MG279193 MG367583 MG367530 Xing et al. 2018

G. steytaertanum MEL:2382783 Australia KP012964 – – GenBank
6 WN 20B Indonesia KJ654462 – – Glen et al. 2014

G. thaiandicum HKAS 104640 (Type) Thailand MK384868 MK875829 MK875831 Luangharn et al. 2019
HKAS 104641 Thailand MK384862 MK875830 MK875832 Luangharn et al. 2019

G. tropicum He 1232 Guangxi, China KF495000 KF494975 MG367531 Xing et al. 2016
HKAS 97486 Thailand MH823539 – MH883621 Luangharn et al. 2021

G. trognet UMMN:120 MI, USA MG654324 MG754764 – Loyd et al.2018
UMMN:130 MI, USA MG654326 MH025362 MG754871 Loyd et al.2018

G. tuberculatum GVL-21 Veracruz, Mexico MT232639 – – Espinosa-García et al. 2021
GVL-40 Veracruz, Mexico MT232634 – – Espinosa-García et al. 2021

G. weberianum CBS 128581 Taiwan, China MK603805 MK636693 MK611971 Cabarroi-Hernández et al. 2019
CBS 219,36 Philippines MK603804 MK611974 MK611972 Cabarroi-Hernández et al. 2019
Two new species of *Ganoderma*

Results

Phylogenetic analyses

The dataset composed of ITS, TEF1-α and RPB2 genes, comprising a total of 2092 characters including gaps, ITS (1–656 bp), TEF1-α (657–1192 bp) and RPB2 (1193–2092 bp), including 57 taxa with *Tomophagus colossus* (Fr.) C.F. Baker as the out-group taxon (Wang et al. 2009; Cao et al. 2012). Best model for the combined 3-gene dataset estimated and applied in the Bayesian analysis was GTR+I+G, lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1). The phylogenetic analysis of ML and BI produce similar topology. The combined dataset analysis of RAxML generates a best-scoring tree (Figure 1), with the final ML optimization likelihood value of -13861.891117. The aligned matrix had 993 distinct alignment patterns, with 38.83% completely undetermined characters or gaps. The base frequency and rate are as follows: A = 0.215319, C = 0.266028, G = 0.260220, T = 0.258433; rate AC = 0.885915, AG = 5.586021, AT = 0.936363, CG = 1.205084, CT = 6.595971, GT = 1.000000; gamma distribution shape: α = 0.246210. Bootstrap support values with a maximum likelihood (ML) greater than 70%, and Bayesian posterior probabilities (BPP) greater than 0.95 are given above the nodes (Figure 1).

Phylogenetic analysis showed that five collections clustered together with high bootstrap support, forming a clade sister to *G. shanxiense* with strong bootstrap support (ML-BS = 96%, BPP = 1.00, Figure 1). Two other collections clustered with *G. aridicola*, *G. bambusicola*, *G. casuarinicola*, *G. calidohilum*, *G. enigmaticum* and *G. thailandicum* (ML-BS = 100%, BPP = 1.00), but forming as a distinct lineage.
Figure 1. Phylogeny of the new *Ganoderma* species and related taxa based on ITS, TEF1-α and RPB2 sequence data. Branches are labeled with bootstrap values (ML) higher than 70%, and posterior probabilities (BPP) higher than 0.95. The new species are shown in bold red.
Two new species of *Ganoderma*

Ganoderma dianzhongense J. He, H.Y. Su & S.H. Li, sp. nov.
Index Fungorum number: 558822
MycoBank No: 841408
Figure 2

Diagnosis. *Ganoderma dianzhongense* is characterized by its mesopodal basidiomata, oxblood red to violet brown pileus surface, melon seed kernel-shaped and broadly ellipsoid basidiospores.

Holotype. CHINA. Yunnan Province, Kunming City, Luquan County, on the rotten broad-leaved trees, alt. 2480 m, Shu-Hong Li, 8 Sept. 2016, L4331 (HKAS 110005).

Etymology. The epithet ‘dianzhong’ refers to central Yunnan province in Chinese, where the holotype was collected.

Description. Basidiomata annual, stipitate, sub-mesopodal to mesopodal or with the back sides fused, coriaceous to woody. Pileus single, suborbicular to reniform, up to 4.8–13.1 cm diam., 1.1 cm thick, weakly to strongly laccate, glossy and shiny, oxblood red (9E7) to violet brown (11F8), smooth, and covered by a thin hard crust, concentrically zonate or azonate. Margin distinct, slightly obtuse. Stipe 9.0–17.7 × 1.1–1.9 cm, central, cylindrical, strongly laccate, dark red brown (11C8) to purplish (14A8) or almost blackish red-brown (10F4), fibrous to woody. Context up to 0.4 cm thick, duplex; lower layer dark brown (8F8), fibrous, composed of coarse loose fibrils; upper layer putty (4B2); corky to woody, bearing distinct concentric growth zones, without black melanoid band. Tubes woody hard, grayish brown, up to 0.9 cm long, unstrati-fied. Pore 4–6 per mm, round to angular, dissepiments slightly thick, entire; pore surface grey white to lead gray (2D2), turning light buff when dust (5D1).

Hyphal system trimitic. Generative hyphae 2.0–3.5 μm in diameter, colorless, thin-walled, clamp connections present; skeletal hyphae 3.0–6.0 μm in diameter, subthick-walled to solid, non-septate, arboriform with few branches, yellowish to golden-yellow; binding hyphae 1–2.5 μm in diameter, thick-walled, frequently branched, interwoven, hyaline to yellowish, scarce; all the hyphae IKI–, CB+; tissues darkening in KOH.

Pileipellis a crustohymeniderm, cells 20–45 × 5.5–7.5 μm, clavate to cylindrical, entire or rarely with one lateral protuberance, thick-walled, without granulations in the apex, golden-yellow to yellowish-brown, thick-walled, moderately amyloid at maturity.

Basidiospores (80/6/3) (9.0) 10–11.0–12.0 (12.5) × (6.5) 7.0–7.9–8.5 (9.0) μm, Q = (1.12) 1.25–1.55 (1.63), Qm = 1.40±0.09 (including myxosporium); holotype: (40/2/1) 10.0–10.9–12 × 7.0–7.9–8.5 (9.0) μm, Q = (1.20) 1.25–1.52, Qm = 1.39±0.08 (including myxosporium). mostly melon seed-shaped at maturity to broadly ellipsoid, usually with one end tapering and obtuse at maturity, with apical germ pore, yellowish to medium brown, IKI–, CB+, inamyloid; perisporium wrinkled, double-walled, with coarse interwall pillars. **Basidia** widely clavate to utriform, hyaline, with a clamp connection and four sterigmata, 11–19 ×10–13μm; basidioles pear-shaped to fusiform, 10–15 × 8–12 μm.
Figure 2. *Ganoderma dianzhongense* (HKAS 110005, holotype) A basidiomata B upper surface C cut side of pileus D pore surface E sections of pileipellis (LM) F skeletal hyphae from context (LM) G bing- ing hyphae from tubes (LM) H generative hyphae from tubes (LM) I-J basidia and basidioles (LM) K-L basidiospores (LM) M-N basidiospores (SEM) O-P culture after incubation at 28 °C for 8 days. Scale bars: 20 mm (O, P); 10 μm (E-L); 5 μm (M, N). Photographs Jun He.
Two new species of *Ganoderma*

Habit. Scattered, during fall, decaying wood of broad-leaved trees including *Quercus* sp. Currently, only known from central Yunnan province, China.

Additional specimens examined. **CHINA** Yunnan province, Shilin County, alt. 2109m, Jun He, 28 Aug., 2019, L4969 (HKAS 112719); Songming County, alt. 2204m, Shu-Hong Li, 8 Jul., 2016, L4230 (HKAS 112716); Wuding County, alt. 2295m, Shu-Hong Li, 24 Jul., 2019, L4737 (HKAS 112717); ibid, alt. 2432m, Jun He, 26 Jul., 2019, L4759 (HKAS 112718).

Ganoderma esculentum J. He & S.H. Li, sp. nov.
Index Fungorum number: 558823
MycoBank No: 841409
Figure 3

Diagnosis. *Ganoderma esculentum* is characterized by its strongly laccate chocolate brown pileus surface, slender stipe and narrow ellipsoid basidiospores.

Holotype. **CHINA.** Yunnan Province, Honghe City, Mengzi County, on a decaying wood log, alt. 1370 m, Jun He, 26 Aug., 2019, L4935 (HKAS 110006).

Etymology. The epithet ‘esculentum’ refers to this species named after a food.

Description. *Basidiomata* annual, stipitate, pleuropodal, laccate, woody-corky.

Pileus single, sub-orbicular to reniform to spatulate, up to 2.8–8.0 × 2.0–4.5 cm diam, 0.75 cm thick at the base, slightly convex to planate; surface glabrous, rugose to radially rugose, strongly laccate, not cracking, with a hard crust, difficult to penetrate with the fingernail; surface brownish-black (6C8) to chocolate brown (6F4), almost homogeneous in the adult. **Margin** grayish orange(6B5) to concolorous, entire, acute to obtuse, smooth to sulcate. **Stipe** 10.0–17.5 × 0.5–1.0 cm, dorsally lateral to nearly dorsal, sub-cylindrical, solid, surface smooth, very shiny, dark brown (8F8) almost black, darker than pileus, fibrous to woody. **Context** up to 0.2 cm thick, composed of coarse loose fibrils, dark brown (8F8), with black melanoid band. **Tubes** 0.2–0.5 cm long, dark brown, woody hard, unstratified. **Pore** 5–8 per mm, circular or sub-circular, woody; pore surface white when fresh, darkening to soot brown(5F5) when aging and drying.

Hyphal system trimitic. Generative hyphae 1.5–3.0 μm in diameter, colorless, thin-walled, clamp connections present; skeletal hyphae 3.5–5.5 μm in diameter, thick-walled to solid, non-septate, arboriform or not, non-branched or with a few branches in the distal end, golden brown; binding hyphae 1.0–3.0 μm in diameter, thick-walled, much-branched, arboriform, hyaline to yellowish, scarce; all the hyphae IKI–, CB+; tissues darkening in KOH.

Pileipellis a crustohymeniderm, cells 20–55 × 10–15 μm, narrowly clavate to tubular, generally smooth, slightly thick-walled to thick-walled with a wide lumen, occasionally expanded at the apex, without granulations, entire, yellowish to leather brown, weakly to strongly amyloid.

Basidiospores (40/3/2) (8.0) 9.0–**10.6**–12.5 × (5.0) 5.5–**6.6**–7.5 (8.0) μm, Q = (1.15) 1.34–**1.62**–2.01 (2.06), Q_m = 1.62±0.19 (including myxosporium); holo-
Figure 3. *Ganoderma esculentum* holotype (HKAS 110006) A basidiomata B upper surface C lower surface D cut side of pileus E pore surface F sections of pileipellis (LM) G, H skeletal hyphae from context (LM) I binging hyphae from tubes (LM) J generative hyphae from tubes (LM) K–M basidiospores (LM) N, O basidiospores (SEM). Scale bars: 20 μm (H); 10 μm (F, G, I–M); 5 μm (N, O). Photographs Jun He.
Two new species of *Ganoderma*

Discussion

Ganodermataceae is a large family of polypores, and has received great attention from mycologists for over many decades. However, species identification and circumscriptions have been unclear and taxonomic segregation of the genera has been controversial because of different viewpoints among mycologists (Moncalvo et al. 1995; Moncalvo and Ryvarden 1997; Costa-Rezende et al. 2020). Ganodermataceae was treated as a synonym of Polyporaceae and classify the genus *Ganoderma* into Polyporaceae by Justo et al. (2017). Later, Cui et al. (2019) excluded *Ganoderma* from Polyporaceae, due to *Ganoderma* having unique double-walled basidiospores. In addition, recent studies have clarified some uncertainties of generic delimitation and classification of polypores with ganodermatoid basidiospores, and proved that Ganodermataceae is a monophyletic group (Costa-Rezende et al. 2020). More collections of this family are needed in order to estimate the attributes of this taxon better.

In the phylogenetic inferences, *Ganoderma dianzhongense* is sister to *G. shanxiense*, which is known from the northern Shanxi province in China (Figure 1). Morphologically, both species share similar characters of the mesopodal basidiomata, suborbicular to reniform pileus, and broadly ellipsoid basidiospores (Table 2). However, *G. shanxiense* differs from *G. dianzhongense* in having a red to reddish-brown pileus surface, wider basidiospores (11.0–13.0 × 8.0–9.5 μm), and narrower skeletal hyphae (2.5–5.0 μm, Liu et al. 2019).

Ganoderma dianzhongense resembles *G. sinense* and *G. orbiforme* in having suborbicular pileus (Table 2). However, *G. sinense* is characterized by wider basidiospores (9.5–13.4 × 7.0–10.2 μm) and slightly longitudinally crested basidiospores (Wang and Wu 2007) and a uniformly brown to dark brown context. *Ganoderma orbiforme* has a purplish black to light brown pileus, a variably brown context, irregularly digitated pileipellis cells, and ellipsoid to ovoid basidiospores (6.9–10.6 × 3.6–5.7 μm) with fine and short echinulae, and a subtropical to tropical distribution (Wang et al. 2014). *Ganoderma orbiforme* is also phylogenetically unrelated (Figure 1).

In our multi-locus phylogeny analysis (Figure 1), *G. aridicola*, *G. bambusicola*, *G. casuarinicola*, *G. calidohilum*, *G. enigmaticum*, *G.mbrekobenum*, *G.thailandicum* and *G. esculentum* formed a distinct lineage, and was clearly separated from other *Ganoderma* species. It is easy to distinguish them from the morphological characteristics. *Gano-
derma bambusicola has a longer pileipellis (35–65 × 8–16 μm) and wider basidiospores than those of *G. esculentum* (10.0–13.0 × 6.5–8.0 μm, Wu et al. 2020). *Ganoderma aridicola* can be easily distinguished from *G. esculentum* by the sessile basidiomata and a fuscous to black pileus surface (Xing et al. 2016). *Ganoderma casuarinicolana* differs from
Two new species of *Ganoderma* by the latter has smaller basidiospores (8.3–11.5 × 4.5–7.0 μm, Xing et al. 2018), grayish brown longer pores and sectorial to shell-shaped pileus. *Ganoderma enigmaticum* mainly differs from *G. esculentum* by its golden yellow pileus surface, narrower basidiospores (8.0–11.0 × 3.5–6.0 μm, Coetzee et al. 2015) and causes root and butt rot of living and dead trees. *Ganoderma thailandicum* can be distinguished from *G. esculentum*, by its brownish-red pileus surface without radially rugose, narrowly clavate pileipellis cells with tuberculate and smaller basidiospores (6.8–10.2 × 5.8–7.7 μm, Luangharn et al. 2019). *Ganoderma mbrekobenum* can be differentiated from *G. esculentum* by its woody to corky texture when dried, with ovoid basidiospores (25.0–57.0 × 6.0–12.0 μm, Crous et al. 2016). *Ganoderma calidophilum* has a larger diameter binding hypha (2.4–5.2 μm) than *G. esculentum* (1.0–3.0 μm) and *G. calidophilum* has larger basidiospores (7.3–14.6 × 5.3–9.6 μm, Zhao et al. 1979; Luangharn et al. 2021) than *G. esculentum* (including myxosporium).

Morphologically, *G. esculentum* resemble *G. kunmingense* by radially rugose, the pileus and slender stipe (Table 2). However, *G. kunmingense* has narrower hyphae, tissues not darkening in KOH, and broadly ellipsoid to sub-globose basidiospores (7.5–10.5 × 6.0–9.0 μm, Zhao et al. 1989). In addition, *G. esculentum* shares also similarities with *G. neojaponicum* but the latter has a double-layered context with the paler layer near the pileus surface and wider basidiospores than those of *G. esculentum* (9.1–13.5 × 5.7–8.9 μm, Imazeki et al. 1939; Hapuarachchi et al. 2019).

Acknowledgements

The authors thank Kunming Institute of Botany for providing the experimental platform. Dr Xiang-Hua Wang helped to analyze the molecular data and molecular lab work. We also thank Dr. Dan-Feng Bao and Hong-Wei Shen for their valuable suggestions on this study.

The research was financed by the National Natural Science Foundation of China (Project No. 31970021, 32060006), Yunnan Financial Special Project [YCJ (2020)323, 202102AE090036–05], Yunnan Science Technology Department and Technology Talents and Platform Program “Yunnan Province Technology Innovation Talents Training Objects” (Project ID 2017HB084) and Science and technology innovation and R&D promotion project of Qamdo City.

References

Ahmadi K, Riazipour M (2007) Effect of *Ganoderma lucidum* on Cytokine Release by Peritoneal Macrophages. Iranian Journal of Immunology 4: 220–226.

Bolaños AC, Bononi VLR, de Mello Gugliotta A (2016) New records of *Ganoderma multiplicatum* (Mont.) Pat. (Polyporales, Basidiomycota) from Colombia and its geographic distribution in South America. Check List 12: 1–7. https://doi.org/10.15560/12.4.1948
Cabarroi-Hernández M, Villalobos-Arámbula AR, Torres-Torres MG, Decock C, Guzmán-Dávalos L (2019) The *Ganoderma weberianum-resinaceum* lineage: multilocus phylogenetic analysis and morphology confirm *G. mexicanum* and *G. parvulum* in the Neotropics. *MycoKeys* 59: 95–131. https://doi.org/10.3897/mycokeys.59.33182

Cao Y, Wu SH, Dai YC (2012) Species clarification of the prize medicinal *Ganoderma* mushroom “Lingzhi”. *Fungal Diversity* 56: 49–62. https://doi.org/10.1007/s13225-012-0178-5

Cao Y, Yuan HS (2013) *Ganoderma mutabile* sp. nov. from southwestern China based on morphological and molecular data. *Mycological Progress* 12: 121–126. https://doi.org/10.1007/s11557-012-0819-9

Chan WK, Law HK, Lin ZB, Lau YL, Chan GC (2007) Response of human dendritic cells to different immunomodulatory polysaccharides derived from mushroom and barley. *International Immunopharmacology* 19: 891–899. https://doi.org/10.1093/intimm/dxm061

Coetzee MP, Marincowitz S, Muthelo VG, Wingfield MJ (2015) *Ganoderma* species, including new taxa associated with root rot of the iconic *Jacaranda mimosifolia* in Pretoria, South Africa. *IMA Fungus* 6: 249–256. http://doi.org/10.5598/imafugus.2015.06.01.16

Corner EJH (1983) Ad Polyporaceas I. *Amauroderma* and *Ganoderma*. Beihefte zur Nova Hedwigia, Weinheim.

Costa-Rezende DH, Robledo GL, Goes-Neto A, Reck MA, Crespo E, Drechsler-Santos ER (2017) Morphological reassessment and molecular phylogenetic analyses of *Amauroderma* s.lat. r-raised new perspectives in the generic classification of the Ganodermataceae family. *Persoonia* 39: 254–269. https://doi.org/10.3767/persoonia.2017.39.10

Costa-Rezende DH, Robledo GL, Drechsler-Santos ER, Glen M, Gates G, de Madrignac BR, Popoff OF, Crespo E, Góes-Neto A (2020) Taxonomy and phylogeny of polypores with ganodermatoid basidiospores (Ganodermataceae). *Mycological Progress* 19: 725–741. https://doi.org/10.1007/s11557-020-01589-1

Crous PW, Wingfield MJ, Le Roux JJ, Richardson DM, Strasberg D, Shivis RG, Alvarado P, Edwards J, Moreno G, Sharma R, Sonawane MS, Tan Y-P, Altés A, Barasubiye T, Barnes CW, Blanchette RA, Boerlmann D, Bogo A, Carlavilla JR, Cheewangkoon R, Daniel R, de Beer ZW, de Jesús Yáñez-Morales M, Duong TA, Fernández-Vicente J, Geering ADW, Guest DI, Held BW, Heykoop M, Hubka V, Ismail AM, Kajale SC, Khemmuk W, Kolařík M, Kurlí R, Lebeuf R, Lévesque CA, Lombard L, Magista D, Manjón JL, Marincowitz S, Mohedano JM, Nováková A, Oberlies NH, Otto EC, Pagues IG, Pérez-Butrón JL, Perrone G, Rahi P, Raja HA, Rintoul T, Sanhueza RMV, Scarlett K, Shouche YS, Shuttleworth LA, Taylor PWJ, Thorn RG, Vawdrey LL, Vidal RS, Voitk A, Wong PTW, Wood AR, Zamora JC, Groenewald JZ (2015) Fungal Planet Description Sheets: 371–399. *Persoonia* 35: 264–327. https://doi.org/10.3767/003158515X690269

Crous PW, Wingfield MJ, Richardson DM, Le Roux JJ, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PWJ, Heykoop M, Martín MP, Moreno G, Sutton DA, Wiederhold NP, Barnes CW, Carlavilla JR, Gené J, Giraldo A, Guarnaccia V, Guarrero J, Hernández-Restrepo M, Kolařík M, Manjón JL, Pascoe IG, Popov ES, Sandoval-Denis M, Woudenberg JHC, Acharya K, Alexandrova AV, Alvarado P, Barbosa RN, Baseia IG, Blanchette RA, Boekhout T, Burgess TI, Cano-Lira JF, Čmoková A, Dimitrov RA, Dyakov MYu, Dueñas M, Dutta
Two new species of *Ganoderma* 157

AK, Esteve-Raventós F, Fedosova AG, Fournier J, Gamboa P, Goulimova DE, Grebenc T, Groenewald1 M, Hanse B, Hardy GESTJ, Held BW, Jurjević Ž, Kaewgrajang T, Latha KPD, Lombard L, Luangsarard JJ, Lyková P, Mallátová N, Manimohan P, Miller AN, Mirabolfathy M, Morozova OV, Obodai M, Oliveira NT, Ordoñez ME, Otto EC, Paloi S, Peterson SW, Phosri C, Roux J, Salazar WA, Sánchez A, Sarria GA, Shin H-D, Silva BDB, Silva GA, Smith MTh, Souza-Motta CM, Stchige AM, Stoiíova-Disheva MM, Sulzbacher MA, Telleria MT, Toapanta C, Traba JM, Valenzuela-Lopez N, Wätling R, Groenewald JZ (2016) Fungal planet description sheets: 400–468. Persoonia 36: 316–458. https://doi.org/10.3767/003158516X692185

Crous PW, Wingfield MJ, Burgess TI, Hardy GESTJ, Barber PA, Alvarado P, Barnes CW, Buchanan PK, Heykoop M, Moreno G, Thangavel R, van der Spuy S, Barili A, Barrett S, Cacciola SO, Cano-Lira JF, Crane C, Decock C, Gibertoni TB, Guarro J, Guevara-Suarez M, Hubka V, Kolarič M, Lira CRS, Ordoñez ME, Padamsee M, Ryvarden L, Soares AM, Stchigel AM, Sutton DA, Vizzini A, Weir BS, Acharya K, Alois F, Baseia IG, Blanchette RA, Bordallo JJ, Bratek Z, Butler T, Cano-Canals J, Carlavilla JR, Chander J, Cheewangkoon R, Cruz RHFS, da Silva M, Dutta AK, Ercole E, Escobio V, Esteve-Raventós F, Flores JA, Gené J, Góis JS, Haines L, Held BW, Jung MH, Hosaka K, Jung T, Jurjević Ž, Kautman V, Kautmanova I, Kiyashko AA, Kozanek M, Kubátová A, Lafourcade M, La Spada F, Latha KPD, Madrid H, Malysheva EF, Manimohan P, Manjón JL, Martín MP, Mata M, Merényi Z, Morta A, Nagy I, Normand AC, Paloi S, Pattison N, Pawlowska J, Pereira OL, Petterson ME, Picillo B, Raj KNA, Roberts A, Rodríguez A, Rodríguez-Campo FJ, Romański M, Ruszkiewicz-Michalska M, Scanu B, Schena L, Semelbauer M, Sharma R, Shouche YS, Silva V, Staniaszek-Kik M, Stielow JB, Tapia C, Taylor PWJ, Toome-Heller M, Vazquez-Kokhet JMC, van Diepeningen AD, Van Hoa N, Van Tri M, Wiederhold NP, Wrzosek M, Zothanzama J, Groenewald JZ (2017) Fungal Planet description sheets: 558–624. Persoonia 38: 240–384. https://doi.org/10.3767/003158517X698941

Cui BK, Li HJ, Ji X, Zhou JL, Song J, Ji Y, Yang ZL, Dai YC (2019) Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97: 137–392. https://doi.org/10.1007/s13225-019-00427-4

De Silva DD, Rapior S, Sudarman E, Stadler M, Xu J, Alias SA, Hyde KD (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Diversity 62: 1–40. https://doi.org/10.1007/s13225-012-0187-4

Donk MA (1948) Notes on Malesian fungi I. Bulletin du Jardin Botanique de Buitenzorg Série 317: 473–482.

Douanala-Meli C, Langer E (2009) *Ganoderma carocalcareum* sp. nov., with crumbly-friable context parasite to saprobe on *Anthocleista nobilis* and its phylogenetic relationship in *G. resinaceum* group. Mycological Progress 8: 145–155. https://doi.org/10.1007/s11557-009-0586-4

Dai YC, Yang ZL, Cui BK, Yu CJ, Zhou LW (2009) Species diversity and utilization of medicinal mushrooms and fungi in China. International Journal of Medicinal Mushrooms 11: 287–302. https://doi.org/10.1615/IntJMedMushr.v11.i3.80

Doyle JJ, Doyle JL (1987) A rapid isolate procedure from small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
Espinosa-García V, Mendoza G, Shnyreva VA, Padrón JM, Trigos Á (2021) Biological Activities of Different Strains of the Genus *Ganoderma* spp. (Agaricomycetes) from Mexico. International Journal of Medicinal Mushrooms 23:67–77. https://doi.org/10.1615/IntJMedMushrooms.2021037451

Furtado JS (1981) Taxonomy of *Amauroderma* (Basidiomycetes, Polyporaceae). Mem N Y Bot Gard 34: 1–109.

Glen M, Yuskianti V, Puspitasari D, Francis A, Agustini L, Rimbawanto A, Indrayadi H, Gafur A, Mohammed CL (2014) Identification of basidiomycete fungi in Indonesian hardwood plantations by DNA barcoding. Forest Pathology 44: 496–508. https://doi.org/10.1111/efp.12146

Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada D (2010) ALTER: program-oriented conversion of DNA and protein alignments. Nucleic Acids Research 38: 14–18. https://doi.org/10.1093/nar/gkq321

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic Acids Symposium Series 41: 95–98.

Hapuarachchi KK, Karunarathna SC, Phengsintham P, Yang HD, Kakumyan P, Hyde KD, Wen TC (2019) Ganodermataceae (Polyporales): Diversity in Greater Mekong Subregion countries (China, Laos, Myanmar, Thailand and Vietnam). Mycosphere 10: 221–309. https://doi.org/10.5943/mycosphere/10/1/6

Hapuarachchi KK, Karunarathna SC, Raspé O, De Silva KHWL, Thawthong A, Wu XL, Kakumyan P, Hyde KD, Wen TC (2018) High diversity of *Ganoderma* and *Amauroderma* (Ganodermataceae, Polyporales) in Hainan Island, China. Mycosphere 9: 931–982. https://doi.org/10.5943/mycosphere/9/5/1

He MQ, Zhao RL, Hyde KD, Begerow D, Klemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, Crop ED, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghabod-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli JN, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeke A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM (2019) Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99: 105–367. https://doi.org/10.1007/s13225-019-00435-4

Imazeki R (1939) Studies on *Ganoderma* of Nippon. Bulletin of the Tokyo Science Museum 1: 29–52.

Justo A, Miettinen O, Floudas D, Ortiz-Santana B, Sjökvist E, Lindner DL, Nakasone K, Niemelä T, Larsson KH, Ryvarden L, Hibbett DS (2017) A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biology 121: 798–824. https://doi.org/10.1016/j.funbio.2017.05.010

Karsten PA (1881) Enumeratio boletinearumet et polyproearum fennicarum, systemate novo dispositarum. Revue de Mycologie 3: 16–19.
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software Version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/msr010

Kinge TR, Mih AM (2011) Ganoderma rywardense sp. nov. associated with basal stem rot (BSR) disease of oil palm in Cameroon. Mycosphere 2: 179–188.

Kornerup A, Wanscher JH (1978) Methuen handbook of colour (3rd edn.) Methuen. London, England. https://doi.org/10.1097/9780851998268.0000

Li TH, Hu HP, Deng WQ, Wu SH, Wang DM, Tsering T (2015) Ganoderma leucocontextum, a new member of the G. lucidum complex from southwestern China. Mycoscience 56: 81–85. https://doi.org/10.1016/j.myc.2014.03.005

Liu H, Guo LJ, Li SL, Fan L (2019) Ganoderma shanxiense, a new species from northern China based on morphological and molecular evidence. Phytotaxa 406: 129–136. https://doi.org/10.11646/phytotaxa.406.2

Liu Yj, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092

Loyd AL, Held BW, Barnes CW, Schink MJ, Smith ME, Smith JA, Blanchette RA (2018) Elucidating ‘lucidum’: distinguishing the diverse laccate Ganoderma species of the United States. PLoS ONE 13: e0199738. https://doi.org/10.1371/journal.pone.0199738

Luangharn T, Karunarathna SC, Dutta AK, Paloi S, Lian CK, Huyen LT, Pham HND, Hyde KD, Xu JC, Mortimer PE (2021) Ganoderma (Ganodermataceae, Basidiomycota) species from the Greater Mekong Subregion. Journal of Fungi 7: 1–83. https://doi.org/10.3390/jof7100819

Luangharn T, Karunarathna SC, Khan S, Xu JC, Mortimer PE, Hyde KD (2017) Antibacterial activity, optimal culture conditions and cultivation of the medicinal Ganoderma austral, new to Thailand. Mycosphere 8: 1108–1123. https://doi.org/10.5943/myco-sphere/8/8/11

Luangharn T, Karunarathna SC, Mortimer PE, Kevin DH, Xu JC (2019) Additions to the knowledge of Ganoderma in Thailand: Ganoderma casuarinicola, a new record; and Ganoderma thailandicum sp. nov. MycoKeys 59: 47–65. https://doi.org/10.3897/mycokeys.59.36823

Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, Hughes KW, Petersen RH, Hofstetter V, Ammirati JF, Schoch C, Langer GE, McLaughlin DJ, Wilson AW, Crane PE, Frøslev T, Ge ZW, Kerrigan RW, Slot JC, Vellinga EC, Liang ZL, Aime MC, Baroni TJ, Fischer M, Hosaka K, Matsuura K, Seidl MT, Vaura J, Hibbett DS (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Molecular Phylogenetics and Evolution 43: 430–451. https://doi.org/10.1016/j.ympev.2006.08.024

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, 8 pp. https://doi.org/10.1109/GCE.2010.5676129

Moncalvo JM, Ryvarden L (1997) A nomenclatural study of the Ganodermataceae Donk. Synopsis Fungorum 11: 1–114.

Moncalvo JM, Wang HF, Hseu RS (1995) Gene phylogeny of the Ganoderma lucidum complex based on ribosomal DNA sequences. Comparison with traditional taxonomic characters. Mycological Research 99: 1489–1499. https://doi.org/10.1016/S0953-7562(09)80798-3
Murrill, WA (1902) The Polyporaceae of North America: I. The genus Ganoderma. Bull Torrey Bot Club 29: 599–608. https://doi.org/10.2307/2478682

Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581–583. https://doi.org/10.1093/bioinformatics/btm388

Paterson RR (2006) Ganoderma– a therapeutic fungal biofactory. Phytochemistry 67: 1985–2001. https://doi.org/10.1016/j.phytochem.2006.07.004

Patouillard N (1889) Le genre Ganoderma. Bulletin de la Société Mycologique de France 5: p64.

Pilotti CA, Sanderson FR, Aitken AB, Armstrong W (2004) Morphological variation and host range of two Ganoderma species from Papua New Guinea. Mycopathologia 158: 251–265. https://doi.org/10.1023/B:MYCO.0000041833.41085.6f

Rambaut A (2012) FigTree version 1.4.0. http://tree.bio.ed.ac.uk/software/figtree/

Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of molecular evolution 43: 304–311. https://doi.org/10.1007/BF02338839

Richter C, Wittstein K, Kirk PM, Stadler M (2015) An assessment of the taxonomy and chemotaxonomy of Ganoderma. Fungal Diversity 71: 1–15. https://doi.org/10.1007/s13225-014-0313-6

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Ryvarden L (2000) Studies in neotropical polypores 2: a preliminary key to neotropical species of Ganoderma with a laccate pileus. Mycologia 92: 180–191. https://doi.org/10.2307/3761462

Ryvarden L (2004) Neotropical polypores part 1. Synop Fung 19: 1–227.

Ryvarden L, Gilbertson RL (1993) European polypores. Part 1. Abortiporus Lindtneria. Synopsis Fungorum 6: 1–387.

Song J, Xing JH, Decock C, He XL, Cui BK (2016) Molecular phylogeny and morphology reveal a new species of Amauroderma (Basidiomycota) from China. Phytotaxa 260: 47–56. https://doi.org/10.11646/phytotaxa.260.1.5

Steyaert RL (1972) Species of Ganoderma and related genera mainly of the Bogor and Leiden Herbaria. Persoonia 7: 55–118.

Sun YF, Costa-Rezende DH, Xing JH, Zhou JL, Zhang B, Gibertoni TB, Gates G, Glen M, Dai YC, Cui BK (2020) Multi-gene phylogeny and taxonomy of Amauroderma s. lat. (Ganodermales). Persoonia 44: 206–239. https://doi.org/10.3767/persoonia.2020.44.08

Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts. http://ci.nii.ac.jp/naid/110002665463/

Tchoumi JMT, Coetzee MPA, Rajchenberg M, Roux J (2019) Taxonomy and species diversity of Ganoderma species in the Garden Route National Park of South Africa inferred from morphology and multilocus phylogenies. Mycologia 111: 730–747. https://doi.org/10.1080/00275514.2019.1635387

Tchoumi JMT, Coetzee MPA, Rajchenberg M, Wingfield MJ, Roux J (2018) Three Ganoderma species, including Ganoderma dunense sp. nov., associated with dying Acacia cyclops
Two new species of *Ganoderma*

Trees in South Africa. Australasian Plant Pathology 47: 431–447. https://doi.org/10.1007/s13313-018-0575-7

Tham LX, Hung NLQ, Duong PN, Hop DV, Dentinger BTM, Moncalvo J (2012) *Tomophagus cattienensis* sp. nov., an ew Ganodermataceae species from Vietnam: evidence from morphology and ITS DNA barcodes. Mycological Progress 11: 775–780. https://doi.org/10.1007/s11557-011-0789-3

Wang DM, Wu SH (2007) Two species of *Ganoderma* new to Taiwan. Mycotaxon 102: 373–378.

Wang DM, Wu SH, Su CH, Peng JT Shih YH, Chen LC (2009) *Ganoderma multipileum*, the correct name for “*G. lucidum*” in tropical Asia. Botanical Studies 50: 451–458.

Wang DM, Wu SH, Yao YJ (2014) Clarification of the concept of *Ganoderma orbiforme* with high morphological plasticity. PLoS ONE 9: e98733. https://doi.org/10.1371/journal.pone.0098733

Wang DW, Wu SH (2010) *Ganoderma hoehnelianum* has priority over *G. shangsiense*, and *G. williamsianum* over *G. meijiangense*. Mycotaxon 113: 343–349. https://doi:10.5248/113.343

Wang XH, Buyck B, Verbeken A, Hansen K (2015) Revisiting the morphology and phylogeny of *Lactifluus* with three new lineages from southern China. Mycologia 107: 941–958. https://doi.org/10.3852/13-393

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications. Academic, San Diego, New York, pp 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wu SH, Chern CL, Wei CL, Chen YP, Akiba M, Hattori T (2020) *Ganoderma bambusicola* sp. nov. (Polyporales, Basidiomycota) from southern Asia. Phytotaxa 451: 75–85. https://doi.org/10.11646/phytotaxa.456.1.5

Xing JH, Song J, Decock C, Cui BK (2016) Morphological characters and phylogenetic analysis reveal a new species within the *Ganoderma lucidum* complex from South Africa. Phytotaxa 266: 115–124. https://doi.org/10.11646/phytotaxa.266.2.5

Xing JH, Sun YF, Han YL, Cui BK, Dai YC (2018) Morphological and molecular identification of two new *Ganoderma* species on *Casuarina equisetifolia* from China. MycoKeys 34: 93–108. https://doi.org/10.3897/mycokeys.34.22593

Zhao JD (1989) Studies on the Taxonomy of Ganodermataceae in China XI. Acta Mycologica Sinica 8: 25–34. [In Chinese]

Zhao JD, Hsu LW, Zhang XQ (1979) Taxonomic studies on the subfamily Ganodermoideae of China. Acta Mycologica Sinica 19: 265–279. [In Chinese]

Zhao JD, Zhang XQ (2000) Flora Fungorum Sinicorum 18. Ganodermataceae. Science Press, Beijing. [In Chinese]

Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3: e4. https://doi.org/10.1186/1471-2164-3-4

Zhou LW, Cao Y, Wu SH, Vlasík J, Li DW, Li MJ, Dai YC (2015) Global diversity of the *Ganoderma lucidum* complex (Ganodermataceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochemistry 114: 7–15. https://doi.org/10.1016/j.phytochem.2014.09.023
Supplementary material 1

Phylogenetic sequence dataset

Authors: Jun He

Data type: phylogenetic data

Explanation note: Sequence data of three partial loci internal transcribed spaces region (ITS), RNA polymerase II subunit 2 (RPB2), and translation elongation factor 1-alpha (TEF1-α) were used in the phylogenetic analyses.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.84.69449.suppl1