Using Simulation to Estimate Reliability Function for Transmuted Kumaraswamy Distribution

Makki A. Mohammed Salih¹,², Jafer Hmood Eidi²
¹²Department of Mathematics, College of Education, Almustansiriyah University-Baghdad-Iraq
¹E-mail: dr_makki@yahoo.com,²drjaffarmath@gmail.com

Abstract
In this study, some estimation methods (moments, modification moments, least square, weighted least square, maximum likelihood) were used to compare with each other the estimation of the parameters and reliability function of Transmuted Kumaraswamy (TK) distribution by using the simulation through four experiments (E1, E2, E3, E4) including the real values of the distribution parameters and by taking different sample sizes (n = 10, 25, 50, 100). The comparison was done using the mean square error (MSE) criterion, and the results were set in special tables included research.

Keywords: Transmuted Kumaraswamy Distribution, some estimation methods and mean square error.

1. Introduction
Poondi Kumaraswamy (1980) have been suggested Kumaraswamy Distribution as the probability distribution function is defined on the closed interval [0,1], where as, each of its cumulative (cdf) and probability (pdf) functions is expressed in the following, respectively [3]

\[G_{Kw}(x; \alpha, \beta) = 1 - (1 - x^{\alpha})^{\beta} \]

\[g_{Kw}(x; \alpha, \beta) = \alpha \beta x^{\alpha - 1}(1 - x^{\alpha})^{\beta - 1} \]

Where \(\alpha, \beta > 0 \) are the shape parameters and, X is a random variable that follows a (Kw) distribution, such that \(0 \leq x \leq 1 \).

Muhammad, Robert and Irene (2016) was proposed a generalization of the Kumaraswamy distribution referred to as the Transmuted Kumaraswamy (TKW) distribution which has (cdf) and (pdf) as following, respectively [2]

\[F_{TKw}(x; \alpha, \beta, \lambda) = \left(1 - (1 - x^{\alpha})^{\beta} \right) \left(1 + \lambda (1 - x^{\alpha})^{\beta} \right) \]

\[f_{TKw}(x; \alpha, \beta, \lambda) = \alpha \beta x^{\alpha - 1}(1 - x^{\alpha})^{\beta - 1}(1 - \lambda + 2\lambda(1 - x^{\alpha})^{\beta}) \]

Where \(|\lambda| \leq 1 \) is transmuted parameter \(x \in (0,1) \).

And from Eq.(1) the quantial \(X_{q} \) of the (TKw) is

\[X_{q} = \left(1 - \frac{(1+\lambda)^{-\frac{1}{\beta}} - \sqrt{(1+\lambda)^{2 - 4\lambda F}}}{2\lambda} \right)^{\frac{1}{\alpha}}, 0 < F < 1 \]

The reliability function is given by
\[R(x) = 1 - \left(\left(1 - (1 - x^\alpha)^\beta \right) \left(1 + \lambda (1 - x^\alpha)^\beta \right) \right) \]

2. Estimation Methods
In this section we introduce some estimation method as follows

1.2 Estimate initial value for estimators
The idea of this proposed method is based on the use of the median for distribution and the sample generated for distribution [6]. From median of (TKw)
Since
\[x_{med} = \left(\frac{1 - \left(1 + \lambda \right)^{\frac{1}{\alpha}}}{2\lambda} \right)^{\frac{1}{\beta}} \]...
(4)

Let \(k = 1 - \frac{(1+\lambda)^{\frac{1}{\alpha}}}{2\lambda} \)

Eq.(4) became
\[\ln(x_{med}) = \frac{1}{\alpha} \ln \left(1 - k^{\frac{1}{\beta}} \right) \]...
(5)

\[\hat{\alpha}_{MED} = \frac{\ln \left(1 - k^{\frac{1}{\beta}} \right)}{\ln(x_{med})} \]...
(6)

From Eq.(5)
\[x_{med}^\alpha = 1 - k^{\frac{1}{\beta}} \]
\[\frac{1}{\beta} \ln(k) = \ln(1 - x_{med}^\alpha) \]

\[\hat{\beta}_{MED} = \frac{\ln(k)}{\ln(1 - x_{med}^\alpha)} \]...
(7)

Where \((\alpha, \beta)\) are the real values taken to generate the samples, and we can use \(\hat{\alpha}_{MED}\) and \(\hat{\beta}_{MED}\) in Eq.(6) and Eq.(7) are Initial value \((\alpha_0, \beta_0)\) to another parameter estimator formula, and \(x_{med}\) can be obtained it from the generating sample.

2.2 Moments Method (MOM)
The idea of this method is to equate moments of population with the moments of the sample and to extract the parameter estimates from it. [4]

The first moment for (TKw) is
\[E(x) = (1 - \lambda)\beta \frac{\Gamma \left(\frac{1}{\alpha} + 1 \right) \Gamma(\beta)}{\Gamma \left(\frac{1}{\alpha} + 1 + \beta \right)} + 2\lambda\beta \frac{\Gamma \left(\frac{1}{\alpha} + 1 \right) \Gamma(2\beta)}{\Gamma \left(\frac{1}{\alpha} + 1 + 2\beta \right)} = \frac{\sum_{i=1}^{n} x_i}{n} \]...
(8)
The second moment for \(TKw \) is

\[
E(x^2) = (1 - \lambda) \frac{\Gamma \left(\frac{2}{\alpha} + 1 \right) \Gamma(\beta) + 2\lambda \beta \frac{\Gamma \left(\frac{2}{\alpha_0} + 1 \right) \Gamma(2\beta_0)}{\Gamma \left(\frac{2}{\alpha_0} + 1 + \beta_0 \right)} - \sum_{i=1}^{n} x_i^2}{n} \tag{10}
\]

Then approximate reliability estimation is given by

\[
\hat{R}_{MOM}(t) = 1 - \left(\left(1 - (1 - x_{MOM})^{\hat{\beta}_{MOM}} \right) \left(1 + \lambda \left(1 - x_{MOM}^{\hat{\beta}_{MOM}} \right) \right) \right) \tag{12}
\]

3.2 Modification Moments Method (MM)

This method is based on equating the expected approximate value of the function, at the first value of the observation, with a formula for the distribution function [7], as follows:

\[
E \left(\bar{F}(x_{(1)}) \right) = \frac{1}{n + 1} \tag{13}
\]

Replacing \(\bar{F}(x_{(1)}) \) by unbiased estimator, the plotting position formula

\[
P_i = \frac{i}{n + 1}, \quad i = 1, 2, ..., n \tag{14}
\]

We get:

\[
E \left(\bar{F}(x_{(1)}) \right) = E \left(\frac{1}{n + 1} \right) = \frac{1}{n + 1} \tag{15}
\]

From the equations (1) and (16) we get:

\[
\left(1 - (1 - x_{(1)})^{\beta} \right) \left(1 + \lambda \left(1 - x_{(1)}^{\beta} \right) \right) = \frac{1}{n + 1}
\]
\[x_{(1)} = \left(1 - \left(1 - \left(1 + \lambda - \frac{(1 + \lambda)^2 - \frac{4\lambda}{n + 1}}{2\lambda} \right)^{\frac{1}{\beta}} \right)^{\frac{1}{\alpha}} \right) \]

... (16)

Let

\[h = 1 - \frac{(1 + \lambda) - \sqrt{(1 + \lambda)^2 - \frac{4\lambda}{n + 1}}}{2\lambda} \]

Eq.(16) became

\[x_{(1)} = \left(1 - h^\frac{1}{\beta} \right)^{\frac{1}{\alpha}} \]

... (17)

By taking natural logarithm for Eq.(17) we get

\[\hat{\alpha}_{MM} = \frac{\ln \left(1 - h^{\frac{1}{\beta_0}} \right)}{\ln(x_{(1)})} \]

... (18)

Since

\[\text{Var} = E(x^2) - (E(x))^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1} \]

... (19)

By substituting Eq.(8) and Eq. (10) in Eq.(19), we get

\[\beta \left(1 - \lambda \right) \frac{\Gamma \left(\frac{2}{\alpha} + 1 \right) \Gamma(\beta)}{\Gamma \left(\frac{2}{\alpha} + 1 + \beta \right)} + 2\lambda \frac{\Gamma \left(\frac{2}{\alpha} + 1 \right) \Gamma(2\beta)}{\Gamma \left(\frac{2}{\alpha} + 1 + 2\beta \right)} \]

\[= \sum_{i=1}^{n} (x_i - \bar{x})^2 \left(1 - \lambda \right) \beta \frac{\Gamma \left(\frac{1}{\alpha_0} + 1 \right) \Gamma(\beta_0)}{\Gamma \left(\frac{1}{\alpha_0} + 1 + \beta_0 \right)} + 2\lambda \beta_0 \frac{\Gamma \left(\frac{1}{\alpha_0} + 1 \right) \Gamma(2\beta_0)}{\Gamma \left(\frac{1}{\alpha_0} + 1 + 2\beta_0 \right)} \]

\[\hat{\beta}_{MM} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{n} (x_i - \bar{x}) \frac{\Gamma \left(\frac{1}{\alpha_0} + 1 \right) \Gamma(\beta_0)}{\Gamma \left(\frac{1}{\alpha_0} + 1 + \beta_0 \right)} + 2\lambda \beta_0 \frac{\Gamma \left(\frac{1}{\alpha_0} + 1 \right) \Gamma(2\beta_0)}{\Gamma \left(\frac{1}{\alpha_0} + 1 + 2\beta_0 \right)}}{\left(1 - \lambda \right) \frac{\Gamma \left(\frac{2}{\alpha_0} + 1 \right) \Gamma(\beta_0)}{\Gamma \left(\frac{2}{\alpha_0} + 1 + \beta_0 \right)} + 2\lambda \frac{\Gamma \left(\frac{2}{\alpha_0} + 1 \right) \Gamma(2\beta_0)}{\Gamma \left(\frac{2}{\alpha_0} + 1 + 2\beta_0 \right)}} \]

... (20)

Then approximate reliability estimation is given by
\[R_M(t) = 1 - \left(\left(1 - \left(1 - x_{AM} \right)^{\beta_{MM}} \right) \left(1 + \lambda \left(1 - x_{AM} \right)^{\beta_{MM}} \right) \right) \] \hspace{2cm} \text{(21)}

4.2 Least square Method (LS)

The basic idea of this method is to minimize the value of the quantial function after matching it with the linear regression equation, \([1]\) as follows

From Eq.(3) and substitute \((F)\) by \((P_i)\) in Eq.(14), we get

\[x(i) = \left(1 - m_i^{1/\alpha} \right)^{1/\alpha}, \quad i = 1, 2, ..., n \] \hspace{2cm} \text{(22)}

Where

\[m_i = 1 - \frac{(1 + \lambda) - \sqrt{(1 + \lambda)^2 - 4 \lambda \frac{i}{n + 1}}}{2 \lambda} \]

\[\ln(x(i)) = \frac{1}{\alpha} \ln \left(1 - m_i^{1/\alpha} \right) \]

\[\ln \left(-\ln(x(i)) \right) = -\ln(x(i)) + \ln \left(-\ln \left(1 - m_i^{1/\alpha} \right) \right) \] \hspace{2cm} \text{(23)}

Compare the Eq. (23) with the following linear regression equation

\[Y_i = a + b \sigma_i + \epsilon \] \hspace{2cm} \text{(24)}

We get

\[Y_i = \ln \left(-\ln(x(i)) \right), \quad b = 1 \]

\[a = -\ln(x(i)) \Rightarrow a = \exp(-a) \] \hspace{2cm} \text{(25)}

\[\sigma_i = \ln \left(-\ln \left(1 - m_i^{1/\alpha} \right) \right) \] \hspace{2cm} \text{(26)}

From Eq. (24), we get

\[\epsilon = Y_i - a - b \sigma_i \] \hspace{2cm} \text{(27)}

\[\sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (Y_i - a - b \sigma_i)^2 \] \hspace{2cm} \text{(28)}

By taking the partial derivative for Eq. (28) with respect to \((a)\) and equating it with zero, we get

\[- \sum_{i=1}^{n} Y_i + na + \sum_{i=1}^{n} \sigma_i = 0 \]

\[\hat{a}_{LS} = \frac{\sum_{i=1}^{n} Y_i - \sum_{i=1}^{n} \sigma_i}{n} \] \hspace{2cm} \text{(29)}

By substituting values of \((a)\) from Eq.(29) into Eq.(25), we get

\[\hat{a}_{LS} = \exp(-\hat{a}_{LS}) \] \hspace{2cm} \text{(30)}

From Eq. (24), we get

\[\hat{a}_{(LS)} = Y_i - \hat{a}_{LS} \] \hspace{2cm} \text{(31)}
From Eq.(26) and Eq.(31), we get
\[
1 - m_i = \exp \left(- \exp \left(\hat{\alpha}_{i(LS)} \right) \right)
\]
\[
\hat{\beta}_{LS} = \frac{\sum_{i=1}^{n} \ln(m_i)}{n} \left(\frac{1}{n} \sum_{i=1}^{n} \ln \left(1 - \exp \left(- \exp \left(\hat{\alpha}_{i(LS)} \right) \right) \right) \right)
\]
\[\cdots (32)\]

Then approximate reliability estimation is given by
\[
\hat{R}_{LS}(t) = 1 - \left(1 - (1 - x \hat{a}_{LS})^{\hat{\beta}_{LS}} \right) \left(1 + \lambda(1 - x^{\hat{a}_{LS}})^{\hat{\beta}_{LS}} \right)
\]
\[\cdots (33)\]

5.2 Weighted Least square method (WLS)

This method is based on Eq.(27) by divided it on \(\ell_i \) so we get the following:[5]
\[
\sum_{i=1}^{n} \left(\frac{\epsilon_i}{Y_i} \right)^2 = \sum_{i=1}^{n} \left(1 - a \frac{1}{Y_i} - b \frac{\overline{Y_i}}{Y_i} \right)^2
\]
\[\cdots (34)\]

Let
\[
\xi_i = \frac{1}{Y_i}, Y_i = \frac{\overline{Y_i}}{Y_i}
\]

Equation (28) becomes as follows
\[
\delta = \sum_{i=1}^{n} \left(\frac{\epsilon_i}{Y_i} \right)^2 = \sum_{i=1}^{n} \left(1 - a \xi_i - b Y_i \right)^2
\]
\[\cdots (35)\]

By taking the partial derivative for Eq.(35) with respect to \(a \) and equating it with zero, we get
\[
\frac{\partial \delta}{\partial a} = \sum_{i=1}^{n} \left(\xi_i - a \xi_i^2 - b Y_i \xi_i \right) = 0
\]
\[\cdots (36)\]
\[
\hat{a}_{WLS} = \frac{\sum_{i=1}^{n} \xi_i - b \sum_{i=1}^{n} Y_i \xi_i}{\sum_{i=1}^{n} \xi_i^2}
\]
\[\cdots (37)\]

Where, \(b = 1 \) and from Eq.(25) and Eq.(37) we get
\[
\hat{a}_{WLS} = \exp(-\hat{a}_{WLS})
\]
\[\cdots (38)\]

From Eq.(24), we get
\[
\hat{\alpha}_{i(WLS)} = Y_i - \hat{a}_{WLS}
\]
\[\cdots (39)\]

From Eq.(26) and Eq.(39), we get
\[
1 - m_i = \exp \left(- \exp \left(\hat{\alpha}_{i(WLS)} \right) \right)
\]
\[
\hat{\beta}_{LS} = \frac{\sum_{i=1}^{n} \ln(m_i)}{n} \left(\frac{1}{n} \sum_{i=1}^{n} \ln \left(1 - \exp \left(- \exp \left(\hat{\alpha}_{i(WLS)} \right) \right) \right) \right)
\]
\[\cdots (40)\]

Then approximate reliability estimation is given by
\[R_{WLS}(t) = 1 - \left(1 - (1 - x^{\alpha_{WLS}})^{\beta_{WLS}} \right) \left(1 + \lambda (1 - x^{\alpha_{WLS}})^{\beta_{WLS}} \right) \] ... (41)

6.2 Maximum likelihood method (MLE)

Let \[x_1, x_2, x_3, ..., x_n \] be a r.v. of size n drawn from pdf of (TKw) distribution. The likelihood function for equation (2) is given by [2]:
\[L = \alpha^n \beta^n \prod_{i=1}^{n} x_i^{\alpha - 1} \prod_{i=1}^{n} (1 - x_i^{\alpha})^{\beta - 1} \prod_{i=1}^{n} (1 - \lambda + 2\lambda(1 - x_i^{\alpha})^{\beta}) \] ... (42)

The log likelihood function for Eq.(42) is
\[LL = n\ln(\alpha) + n\ln(\beta) + (\alpha - 1) \sum_{i=1}^{n} \ln(x_i) + (\beta - 1) \sum_{i=1}^{n} \ln(1 - x_i^{\alpha}) + \sum_{i=1}^{n} \ln(1 - \lambda + 2\lambda(1 - x_i^{\alpha})^{\beta}) \] ... (43)

By taking partial derivative w.r.t. (\(\alpha\)) and equating to zero for Eq. (45), we get:
\[\frac{\partial LL}{\partial \alpha} = \frac{n}{\alpha} + \sum_{i=1}^{n} \ln(x_i) - (\beta - 1) \sum_{i=1}^{n} x_i^{\alpha} \ln(x_i) - 2\lambda \beta \sum_{i=1}^{n} x_i^{\alpha} \ln(x_i)(1 - x_i^{\alpha})^{\beta - 1} = 0 \]

\[\hat{\alpha}_{MLE} = \frac{n}{\beta_0 - 1} \sum_{i=1}^{n} x_i^{\alpha_0} \ln(x_i) + 2\lambda_0 \beta_0 \sum_{i=1}^{n} x_i^{\alpha_0} \ln(x_i)(1 - x_i^{\alpha})^{\beta - 1} - \sum_{i=1}^{n} \ln(x_i) \] ... (44)

By taking partial derivative w.r.t. (\(\beta\)) and equating to zero for Eq. (44), we get:
\[\frac{\partial LL}{\partial \beta} = \frac{n}{\beta} + \sum_{i=1}^{n} \ln(1 - x_i^{\alpha}) + 2\lambda \sum_{i=1}^{n} \ln(1 - x_i^{\alpha})(1 - x_i^{\alpha})^{\beta} = 0 \]

\[\hat{\beta}_{MLE} = \frac{-n}{\sum_{i=1}^{n} \ln(1 - x_i^{\alpha_0}) + 2\lambda \sum_{i=1}^{n} \ln(1 - x_i^{\alpha_0})(1 - x_i^{\alpha_0})^{\beta_0} - \sum_{i=1}^{n} \ln(x_i) \] \]

... (45)

Now, by taking partial derivative w.r.t. (\(\beta\)) and equating to zero for Eq. (44), we get:
\[\frac{\partial LL}{\partial \beta} = \frac{n}{\beta} + \sum_{i=1}^{n} \ln(1 - x_i^{\alpha}) + 2\lambda \sum_{i=1}^{n} \ln(1 - x_i^{\alpha})(1 - x_i^{\alpha})^{\beta} = 0 \]

\[\hat{\beta}_{MLE} = \frac{-n}{\sum_{i=1}^{n} \ln(1 - x_i^{\alpha_0}) + 2\lambda \sum_{i=1}^{n} \ln(1 - x_i^{\alpha_0})(1 - x_i^{\alpha_0})^{\beta_0} - \sum_{i=1}^{n} \ln(x_i) \] \]

Then reliability estimation is given by
\[R_{MLE}(t) = 1 - \left(1 - (1 - x^{\hat{\alpha}_{MLE}})^{\hat{\beta}_{MLE}} \right) \left(1 + \lambda (1 - x^{\hat{\alpha}_{MLE}})^{\hat{\beta}_{MLE}} \right) \] ... (46)

3. Experiments and Results:

In this item, we will review simulation steps in terms of selecting sample sizes, real values of parameters and life time values that were used to estimate reliability:
1. The sample size n: (n=10, 25, 50, and 100).
2. Several values of the scale, transmuted parameters (\(\theta, \lambda\)) as shown in table (1) below:
3. Choose life time for estimating reliability
In all cases, \(E_1, E_2, E_3, E_4 \), we chosen \(0 < t < 1 \).
Such that, \(t(i) = 0.1, 0.3, 0.5, 0.7, 0.9 \), \(i = 1, 2, 3, 4, 5 \).
Choose the number of sample replicated (N): \(N = 1000 \).

4. At this stage, random data is generated by \(TKw \) distribution by Eq.(3) and using MATLAB language version R2015a.

5. At this stage finding the value of parameter and reliability estimated according to the equations (9), (11), (12), (18), (20), (21), (30), (32), (33), (38), (40), (41), (44), (45) and (46).

6. Finally comparison between the estimators is done by
\[
MSE(\hat{\theta}) = \frac{\sum_{i=1}^{N}(\hat{\theta}_i - \theta)^2}{N}
\]
Where \(\hat{\theta} \) is an estimator for parameter(\(\theta \)).

Table (1)
The default value for parameters

Parameters	\(\alpha \)	\(\beta \)	\(\lambda \)
\(E_1 \)	0.5	1	2
\(E_2 \)	2	3	0.5
\(E_3 \)	-0.9	-0.5	0.5
\(E_4 \)	2	3	2

Table (2)
Estimated values for \(R \) and \((\alpha, \beta) \) using \(E_1; R = 0.25080 \)

Methods	\(n \)	Mean Estimated Values	MSE				
		\(\hat{\alpha} \)	\(\hat{\beta} \)	\(\hat{R} \)	\(\alpha \)	\(\beta \)	\(R \)
MOM	10	0.63118	2.14383	0.38410	0.10787	3.54980	0.10877
MM	25	0.20645	2.14171	0.11530	0.09541	1.37975	0.05714
LS		0.50303	1.87716	0.28013	0.00617	0.18477	0.00707
WLS		0.50324	1.89008	0.28119	0.00988	0.29027	0.00633
MLE		0.72517	2.77621	0.26565	0.70836	4.82968	0.05361
MOM	50	0.55152	2.35558	0.31087	0.05374	2.90540	0.07586
MM		0.23357	2.20964	0.10880	0.07699	0.90492	0.05340
LS		0.50466	1.96559	0.26345	0.00368	0.11023	0.00294
WLS		0.50436	1.96818	0.26424	0.00786	0.17651	0.00304
MLE		0.68302	2.29869	0.28128	0.50493	1.31493	0.03931
MOM	100	0.52404	2.25484	0.28231	0.02711	1.62295	0.04792
MM		0.25803	2.14183	0.11556	0.06365	0.46770	0.04439
LS		0.50425	1.98422	0.25790	0.00203	0.06446	0.00145
WLS		0.50490	1.98971	0.25823	0.00483	0.10741	0.00153
MLE		0.58578	2.1317	0.27108	0.12568	0.26289	0.02182
MOM	100	0.51063	2.13859	0.26283	0.01398	0.66226	0.02944
MM		0.28504	2.07455	0.12614	0.05077	0.18106	0.03537
LS		0.50323	1.99307	0.25507	0.00106	0.03440	0.00070
WLS		0.50321	1.99424	0.25542	0.00256	0.05446	0.00076
MLE		0.53565	2.05592	0.26195	0.02166	0.09843	0.01035
Table (3): Estimated values for \((R)\) and \((\alpha, \beta)\) using \((E_2; R = 0.0.30095)\)

Methods	n	Mean Estimated Values	MSE				
		\(\hat{\alpha}\)	\(\hat{\beta}\)	\(R\)	\(\hat{\alpha}\)	\(\hat{\beta}\)	\(R\)
MOM	10	1.23019	2.94090	0.40234	0.30001	4.46806	0.08414
MM	10	0.33589	2.95973	0.09408	0.46468	1.52964	0.10390
LS	25	0.98506	2.72019	0.32665	0.01516	0.53846	0.00596
WLS	25	0.99391	2.75112	0.32688	0.01470	0.61003	0.00584
MLE	25	1.32726	3.68928	0.30739	1.42454	2.31805	0.04239
MOM	50	1.09103	3.27263	0.33738	0.13699	3.55548	0.05706
MM	50	0.41594	3.11172	0.10301	0.35817	0.95639	0.08738
LS	50	0.99798	2.88591	0.31384	0.00945	0.29164	0.00241
WLS	50	1.00173	2.90324	0.31400	0.01116	0.35701	0.00239
MLE	50	1.30950	3.26441	0.32989	1.07377	0.60901	0.03616
MOM	100	1.02897	3.32140	0.30893	0.06894	2.48274	0.03663
MM	100	0.47856	3.14085	0.11696	0.28681	0.62751	0.07238
LS	100	1.00441	2.96347	0.30727	0.00505	0.17803	0.00124
WLS	100	1.00504	2.96985	0.30748	0.00677	0.20210	0.00123
MLE	100	1.22052	3.10155	0.32963	0.61792	0.23368	0.02397

Table (4): Estimated values for \((R)\) and \((\alpha, \beta)\) using \((E_2; R = 0.73149)\)

Methods	n	Mean Estimated Values	MSE				
		\(\hat{\alpha}\)	\(\hat{\beta}\)	\(R\)	\(\hat{\alpha}\)	\(\hat{\beta}\)	\(R\)
MOM	10	2.62987	0.66063	0.67238	5.89628	0.26587	0.06930
MM	10	3.31018	0.53422	0.77663	5.30981	0.04547	0.02425
LS	25	2.45003	0.49485	0.75675	1.83556	0.03089	0.00995
WLS	25	1.87413	0.46399	0.73642	0.30722	0.03651	0.00616
MLE	25	2.55338	0.52733	0.75693	1.15971	0.01000	0.00627
MOM	50	2.25816	0.59613	0.69046	1.50773	0.13352	0.04175
MM	50	2.76333	0.52035	0.76646	1.66519	0.02249	0.01244
LS	50	2.25635	0.49833	0.74647	0.77186	0.01675	0.00486
WLS	50	1.97727	0.47999	0.73586	0.20498	0.01641	0.00298
MLE	50	2.24353	0.51340	0.74325	0.33524	0.00431	0.00259
MOM	100	2.10191	0.45495	0.70790	0.54840	0.04206	0.02035
MM	100	2.57964	0.51158	0.76442	0.90279	0.00958	0.00750
LS	100	2.15505	0.49943	0.74262	0.31291	0.00825	0.00234
WLS	100	1.99287	0.48676	0.73545	0.13036	0.00818	0.00157
MLE	100	2.09402	0.50656	0.73678	0.06835	0.00198	0.00107

Methods	n	Mean Estimated Values	MSE				
		\(\hat{\alpha}\)	\(\hat{\beta}\)	\(R\)	\(\hat{\alpha}\)	\(\hat{\beta}\)	\(R\)
MOM	10	2.06161	0.52007	0.72096	0.26492	0.01724	0.00991
MM	10	2.48295	0.50419	0.76201	0.59423	0.04057	0.00507
LS	100	2.07674	0.49848	0.73688	0.14135	0.00431	0.00116
WLS	100	2.00344	0.49273	0.73391	0.06941	0.00423	0.00082
MLE	100	2.04900	0.50413	0.73387	0.02741	0.00100	0.00054
Table (5): Estimated values for \((R)\) and \((\alpha, \beta)\) using \((E_2; R = 0.19053)\)

Methods	n	Mean Estimated Values	MSE				
		\(\bar{\alpha}\)	\(\bar{\beta}\)	\(\bar{R}\)	\(\hat{\alpha}\)	\(\hat{\beta}\)	\(\hat{R}\)
MOM	10	4.73002	0.95482	0.74549	3.24217	0.17228	0.02373
MM		4.12219	0.93907	0.71244	2.98860	0.08737	0.02207
LS		4.04383	0.88065	0.74145	0.63512	0.07686	0.00510
WLS		3.52027	0.79813	0.72952	0.78301	0.11397	0.00447
MLE		4.58162	1.08379	0.72851	2.38505	0.05141	0.00857
MOM	25	4.28839	1.01591	0.7856	1.21304	0.12701	0.01572
MM		3.82445	0.98963	0.70230	1.22734	0.05339	0.01219
LS		4.04705	0.94553	0.73262	0.33747	0.04177	0.00230
WLS		3.71543	0.88628	0.72474	0.40309	0.06000	0.00199
MLE		4.45369	1.03858	0.72715	1.94843	0.02008	0.00631
MOM	50	4.08675	1.04230	0.71635	0.57857	0.08662	0.00995
MM		3.79434	1.01178	0.69943	0.88562	0.03429	0.00835
LS		4.07646	0.97483	0.72889	0.18801	0.02540	0.00115
WLS		3.89447	0.94671	0.72457	0.26834	0.03698	0.00107
MLE		4.39109	1.01492	0.73137	1.36028	0.00876	0.00420
MOM	100	4.02671	1.03467	0.71125	0.32466	0.05304	0.00616
MM		3.75491	1.01342	0.69869	0.65732	0.02062	0.00595
LS		4.04844	0.99349	0.72517	0.09920	0.01524	0.00054
WLS		3.96302	0.97768	0.72265	0.18886	0.02237	0.00057
MLE		4.22904	1.00952	0.72817	0.62121	0.00434	0.00241

4. Conclusion

From the results in Tables 2, 3, 4 and 5, we note the following:

- In the first case \((E_1)\), \((LS)\) is the best in estimating \((\alpha, \beta)\) and the reliability function of the distribution, except in the case of \((n = 10)\) \((WLS)\) is the best in estimating the reliability.
- In the second case \((E_2)\), we note that \((LS)\) is the best in estimating \((\alpha, \beta)\) in all cases, except for \((n = 10)(WLS)\) is the best in estimating the \((\alpha)\), but in the reliability estimate, \((WLS)\) is the best except for \(\alpha = 10\) \((WLS)\) is the best.
- In the third case \((E_3)\), in the estimation of \((\alpha)\), \((WLS)\) is best when \((n = 10,25)\), but in \((n = 10,25)\) \((MLE)\) is the best, while in \((\beta)\) estimation, the \((MLE)\) is the best in all cases of \((n)\). In estimating reliability \((MLE)\) is best, except when in the case of \((n = 10)\), \((WLS)\) is the best.
- In the fourth case \((E_4)\), \((LS)\) is the best in estimating \((\alpha)\), whereas in \((\beta)\) estimation, the \((MLE)\) is the best, and in the reliability estimation, \((LS)\) is best when \((n = 10,100)\), but when \((n = 25,50)\), \((WLS)\) is the best.
References

[1] Kantar YM 2016 Estimating Variances in Weighted Least Square Estimation of Distributional Parameters Mathematical and Computational Applications Vol.21, pp.1-13.

[2] Khan M S, King A and Hudson I L 2016 Transmuted Kumaraswamy Distribution Statistics in Transition new series Vol.17 2 pp.183-210.

[3] Kumaraswamy P 1980 A generalized probability density function for double-bounded random processes Journal of Hydrolog Vol.46 pp.79-88.

[4] Kirimi E, Onko A and Kipkoech CW 2014 Modified Moment Estimation for Two Parameter Gamma Distribution IOSR journal of Mathematic Vol.10 pp.(42-50).

[5] Mutiv S O 2015 Application of Weighed Least Squares Regression in Forecasting International Journal of Recent Research in Interdisciplinary Science Vol.2 pp(45-54).

[6] Salih M A M and Eidi J A 2019 Using Simulation to Estimate Reliability for Transmuted Inverse Exponential Distribution First International Conference of Computer and Applied Sciences (CAS2019), Baghdad, Iraq
https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=makki%20a,%20mohammed%20salih

[7] Salih M A M and Kamees A J 2017 Reliability Estimation for Two Parameters Log-Logistic Distribution Magistra No.101, pp.97-109.