Mining Locally Trending High Utility Itemsets

Philippe Fournier-Viger¹, Yanjun Yang¹, Jerry Chun-Wei Lin², Jaroslav Frenda³

¹Harbin Institute of Technology (Shenzhen), China
²Western Norway University of Applied Sciences (HVL), Norway
³University of Zilina, Slovakia

PAKDD 2020
Outline

• Introduction
• Definition
• LTHUI-Miner
• Experiment
• Conclusion
High Utility Itemset Mining

Input:
A transaction database

TID	Items
T_1	b(2),c(2),e(1)
T_2	b(4),c(3),d(2),e(1)
T_3	b(5),c(1),e(1)
T_4	a(2),b(10),c(2)
T_5	a(2),c(6),e(2)
T_6	b(4),c(3)
T_7	b(16),c(2)
T_8	a(2),c(6),e(2)
T_9	b(5),c(2),e(1)

A unit profit table

Item	Unit profit
a	5$
b	2$
c	1$
d	2$
e	3$

Output:
High-utility itemsets (with utility \geq minutil)

if $\text{minutil} = 40\$, the $HUIs$ are:

Item set	Utility
$\{a, c, e\}$	44$
$\{a, c\}$	44$
$\{b, e\}$	44$
$\{b, c, e\}$	52$
$\{c, e\}$	44$
$\{b\}$	92$
$\{b, c\}$	107$
Trending High Utility Itemset Mining

- Time is considered

Ackman et al. (2018) proposed to discover **trending high utility itemsets**, i.e. itemsets that yield a high profit that follows an increasing or decreasing trend in the whole database.

A Transaction Database with **Time**

TID	Items	Time
T_1	b(2),c(2),e(1)	d1
T_2	b(4),c(3),d(2),e(1)	d3
T_3	b(5),c(1),e(1)	d4
T_4	a(2),b(10),c(2)	d5
T_5	a(2),c(6),e(2)	d6
T_6	b(4),c(3)	d7
T_7	b(16),c(2)	d9
T_8	a(2),c(6),e(2)	d10
T_9	b(5),c(2),e(1)	d12

- Transactions $T_1, T_2 \ldots T_9$ have **timestamps** $d_1, d_3 \ldots d_{12}$.
- Transactions can be simultaneous.
Limitation

- Trending High Utility Itemset Mining
 - This problem only focuses on discovering itemsets that have trends spanning over the whole database.
 - Rely on the unrealistic assumption that trends must be stable over the whole database.

- We propose a new type of pattern: locally trending high utility itemsets (LTHUI)
 - eg. \{schoolbag, pen, notebook\} yields a high profit and have an upward trend during the back-to-school shopping season rather than the whole year.
Binned Database

A Transaction Database With **Time**

TID	Items	Time
T_1	b(2),c(2),e(1)	d1
T_2	b(4),c(3),d(2),e(1)	d3
T_3	b(5),c(1),e(1)	d4
T_4	a(2),b(10),c(2)	d5
T_5	a(2),c(6),e(2)	d6
T_6	b(4),c(3)	d7
T_7	b(16),c(2)	d9
T_8	a(2),c(6),e(2)	d10
T_9	b(5),c(2),e(1)	d12

A **bin** denoted as $B_{i,j}$ is the set of transactions from time i to j, i.e. $B_{i,j} = \{ T | i \leq t(T) \leq j \}$

A **binned database** denoted as BS is the sequence of consecutive non-overlapping bins of length $binlen$ in the database, eg, $BS = \langle B_{1,3}, B_{4,6}, B_{7,9}, B_{10,12} \rangle$
Window

TID	Items	Time
T_1	b(2),c(2),e(1)	d1
T_2	b(4),c(3),d(2),e(1)	d3
T_3	b(5),c(1),e(1)	d4
T_4	a(2),b(10),c(2)	d5
T_5	a(2),c(6),e(2)	d6
T_6	b(4),c(3)	d7
T_7	b(16),c(2)	d9
T_8	a(2),c(6),e(2)	d10
T_9	b(5),c(2),e(1)	d12

A **window** denoted as $W_{[i,j]}$ is the set of bins from i-th bin to the j-th bin of the sequence BS, i.e. $W_{[i,j]} = \{BS[k] | i \leq k \leq j\}$.

$$W_{[1,2]} = \{B_{1,3}, B_{4,6}\}$$

\[B_{1,3}, B_{4,6}, B_{7,9}, B_{10,12} \]
Slope

- Let $BN_{i,j}$ be the sequence of bins that are contained in $W_{i,j}$.
- Let $AN(X)_{i,j}$ denotes the sequence of average utilities of an itemset X for the bins of $BN_{i,j}$.
- Let $AT_{i,j}$ denotes the sequence of average timestamps corresponding to bins in $BN_{i,j}$.
- The slope of an itemset X in a sliding window W is denoted as $Slope(X, W)$, i.e. $slope(X, W) = \frac{\sum_{k=1\ldots|BN|}(AU(X)[k] - \text{avg}(AU(X))) \times (AT[k] - \text{avg}(AT))}{\sum_{t \in AT}(t - \text{avg}(AT))^2}$ iff the itemset X appears in each bin of the sliding window W, i.e., $AU(X)[k] \neq 0$.
Problem Definition

An itemset X is a **locally trending high utility itemset (LTHUI)** if there exists a window $W_{[i,j]}$ such that $\text{length}(W_{[i,j]}) = \text{winlen}$, $u_{[i,j]}(X) \geq \text{minutil}$ and $\text{slope}(X, W_{[i,j]}) \geq \text{minslope}$.

TID	Items	Time
T_1	b(2),c(2),e(1)	d1
T_2	b(4),c(3),d(2),e(1)	d3
T_3	b(5),c(1),e(1)	d4
T_4	a(2),b(10),c(2)	d5
T_5	a(2),c(6),e(2)	d6

$\text{slope}\{b,c\}, W_{[1,2]} = \frac{(5.67 - 8.33) \times (2 - 3.5) + (11 - 8.33) \times (5 - 3.5)}{(2 - 3.5)^2 + (5 - 3.5)^2} = 1.78 > 0.15$

e.g. for binlen = 3, winlen = 6, minutil = 20 and minslope = 0.15, then $\{b,c\}$ is a LTHUI.
Problem Definition

For an itemset X, a window $W_{i,j}$ is a **trending high utility period (THUP)** if for each window $W_{k,l} \subseteq W_{i,j}$ where $\text{length}(W_{k,l}) = \text{winlen}$, $u(X, W_{k,l}) \geq \text{minutil}$ and $\text{slope}(X, W_{k,l}) \geq \text{minslope}$.

TID	Items	Time
T_1	b(2),c(2),e(1)	d1
T_2	b(4),c(3),d(2),e(1)	d3
T_3	b(5),c(1),e(1)	d4
T_4	a(2),b(10),c(2)	d5
T_5	a(2),c(6),e(2)	d6
T_6	b(4),c(3)	d7
T_7	b(16),c(2)	d9

\[u_{[1,2]}(\{b, c\}) = 50 \geq 20\]
\[\text{slope}(\{b, c\}, W_{[1,2]}) = 1.78 \geq 0.15\]
\[u_{[2,3]}(\{b, c\}) = 78 \geq 20\]
\[\text{slope}(\{b, c\}, W_{[2,3]}) = 1.33 \geq 0.15\]

e.g. for $\text{binlen} = 3$, $\text{winlen} = 6$, $\text{minutil} = 20$ and $\text{minslope} = 0.15$, $W_{[1,3]}$ is a THUP of $\{b, c\}$
Problem Definition

The problem of **Locally Trending High Utility Itemset Mining (LTHUIM)** is to find all **Locally Trending High Utility Itemsets (LTHUIs)**, and their maximum **Trending High Utility Periods (THUPs)** given parameters $binlen$, $winlen$, $minutil$, and $minslope$.

◆ **For example**, given the database as mentioned before, and set the **parameters** $binlen=3$, $winlen=6$, $minutil=20$ and $minslope=0.15$

3 LTHUIs can be found
$\{b\}: [d_1, d_9]$
$\{b, c\}: [d_1, d_9]$
$\{c, e\}: [d_1, d_9]$
LTHUI-Miner
The LTHUI-Miner Algorithm

- Based on HUI-Miner, find larger itemsets with **depth-first search**.
- Create a vertical structure named **TU-List** for each itemset.

TU-List of \{b\}

tid	iutil	rutil
T₁	4	2
T₂	8	3
T₃	10	1
T₄	20	2
T₆	8	3
T₇	32	2
T₉	10	2

maximum trending high utility periods

bin	binUtils	binRutils
B₁,₃	12	5
B₄,₆	30	3
B₇,₉	40	5
B₁₀,₁₂	10	2

promising LTHUI periods
Construction of TU-List

- The Utility-list of a **single item** can be constructed by scanning the database, and others can be obtained by joining their child itemset’s Utility-lists.

Utility-list \{b\}	Utility-list \{c\}	Utility-list \{b, c\}						
tid	**iutil**	**rutil**	**tid**	**iutil**	**rutil**	**tid**	**iutil**	**rutil**
T_1	4	2	T_1	2	0	T_1	6	0
T_2	8	3	T_2	3	0	T_2	11	0
T_3	10	1	T_3	1	0	T_3	11	0
T_4	20	2	T_4	2	0	T_4	22	0
T_6	8	3	T_5	6	0	T_6	11	0
T_7	32	2	T_6	3	0	T_7	34	0
T_9	10	2	T_7	2	0	T_9	12	0
Construction of TU-List

The *binUtils* and *binRutils* can be constructed by scanning the Utility-list.

tid	iutil	rutil
T_1	4	2
T_2	8	3
T_3	10	1
T_4	20	2
T_6	8	3
T_7	32	2
T_9	10	2

T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9
d_1	d_3	d_4	d_5	d_6	d_7	d_9	d_{10}	d_{12}

binUtils	binRutils
$B_{1,3}$	12
	5
$B_{4,6}$	30
	3
$B_{7,9}$	40
	5
$B_{10,12}$	10
	2
Construction of TU-List

- Consider that $a < e < b < c$, $binlen = 3$, $winlen = 6$, $minutil = 20$ and $minslope = 0.15$, using sliding window to get periods information.

	$binUtils$	$binRutils$
$B_{1,3}$	12	5
$B_{4,6}$	30	3
$B_{7,9}$	40	5
$B_{10,12}$	10	2

- $sumIUtils = 42$
- $sumRUtils = 8$
- upperbound is 50
- slope = 0.67

- $sumIUtils = 70$
- $sumRUtils = 8$
- upperbound is 78
- slope = 0.37

- $sumIUtils = 50$
- $sumRUtils = 7$
- upperbound is 57
- slope = -1.11
Optimizations

- **Pruning a low-TWU item in a database**
 - Remove an item i, if for any window $W_{i,j}$ of winlen, $TWU(i) < \text{minutil}$.

- **Pruning an unpromising itemset using its remaining utility in a database**
 - Remove an itemset X and its transitive extensions, if $u(X) + \text{reu}(X) < \text{minutil}$.

- **Pruning an unpromising itemset using its remaining utility in a sliding window**
 - Remove an itemset X and its transitive extensions in a sliding window W, if $u(X, W) + \text{reu}(X, W) < \text{minutil}$
Experiment
Experimental Evaluation

Dataset	Trans count	Item count	Average length
retail	88,162	16,470	10.30
foodmart	4141	1559	4.40

- We compared the execution time of the algorithm with and without the optimizations.
- Experiments were done by varying the `minutil` and `minslope` parameters to see their influence on runtime and pattern count.
- Java, Windows 10, 64 GB RAM, Intel Xeon E3-1270 v5
Experimental Evaluation

- In some cases, the optimized algorithm is over 150 times faster than the non-optimized algorithm.

- It is observed that as minutil is decreased, runtime increases.

- It is observed that as minslope increases, the number of patterns decreases.

- Some patterns having a strong trend were found. E.g., on retail and foodmart dataset, 179 and 13 patterns have slope values greater than 1.1 and 0.6 respectively.
Conclusion
Conclusion

- A new type of patterns named **Locally Trending High Utility Itemset**;
- A new algorithm with three optimizations;
- Results:
 - the optimizations can reduce running time over 150 times in some cases;
 - some patterns having a strong trend were found.

Open source Java data mining software, 150 algorithms
http://www.phillippe-fournier-viger.com/spmf/
Q & A