Biomarkers of HIV-associated Cancer

Brian Thabile Flepisi¹, Patrick Bouic², Gerhard Sissolak³ and Bernd Rosenkranz⁴

¹Division of Clinical Pharmacology, Department of Medicine, Stellenbosch University, Cape Town, South Africa. ²Department of Medical Microbiology, Stellenbosch University, Cape Town, South Africa. ³Division of Clinical Haematology, Department of Medicine, Stellenbosch University, Cape Town, South Africa. ⁴Clinical Pharmacology Division, Department of Medicine, Stellenbosch University, Cape Town, South Africa.

ABSTRACT: Cancer biomarkers have provided great opportunities for improving the management of cancer patients by enhancing the efficiency of early detection, diagnosis, and efficacy of treatment. Every cell type has a unique molecular signature, referred to as biomarkers, which are identifiable characteristics such as levels or activities of a myriad of genes, proteins, or other molecular features. Biomarkers can facilitate the molecular definition of cancer, provide information about the course of cancer, and predict response to chemotherapy. They offer the hope of early detection as well as tracking disease progression and recurrence. Current progress in the characterization of molecular genetics of HIV-associated cancers may form the basis for improved patient stratification and future targeted or individualized therapies. Biomarker use for cancer staging and personalization of therapy at the time of diagnosis could improve patient care. This review focuses on the relevance of biomarkers in the most common HIV-associated malignancies, namely, Kaposi sarcoma, non-Hodgkin’s lymphoma, and invasive cervical cancer.

KEYWORDS: biomarkers, cancer, HIV, non-Hodgkin’s lymphoma, Kaposi sarcoma, cervical cancer

Introduction

Cancer is a genetically and clinically diverse disease, whose pathogenesis, aggressiveness, metastatic potential, and response to treatment can be different among individual patients.¹ Great variations exist, even between individuals with the same type of cancer, suggesting the role of genetic factors in cancer pathogenesis. The risk of developing cancer is greatly increased in human immunodeficiency virus (HIV) setting, and it is increasingly recognized as a complication of HIV infection.²,³ Cancers with an increased incidence in HIV patients include the AIDS-defining malignancies [Kaposi’s sarcoma, non-Hodgkin’s lymphoma (NHL), and invasive cervical cancer] and other non-AIDS-defining cancers (Hodgkin’s lymphoma, hepatocellular carcinoma, and lung cancer).⁴ Due to the complexity and diversity of cancer, the application of personalized medicine in the management of cancer patients has been suggested and encouraged.

Personalized medicine hinges on biomarkers, which are highly sensitive and specific in revealing information that is relevant for diagnosis, prognosis, and therapy.⁵,⁶ Thus, biomarker discovery and development are one of the cores of personalized medicine for cancer. Cancer biomarkers may be discovered using molecular, cellular, and imaging methodologies focused on drug and disease mechanisms, thus providing critical feedback about the interaction of novel therapies with their intended target and about the disease itself.⁷ Biomarkers play a role in cancer screening, early diagnosis, prognosis, cancer stratification, prediction of treatment efficacy, and adverse
Biomarkers in Cancer Biomarker Classification and Utility

It has been well established that a variety of biomarkers are used in risk assessment, early detection, diagnosis, treatment, and management of cancer.13,14 Molecular analyses at the protein, DNA, RNA, or miRNA levels can contribute to the identification of novel tumor subclasses, each with a unique prognostic outcome or response to treatment.15 Biomarkers enable the characterization of patient populations and quantitation of the extent to which drugs reach intended targets, alter proposed pathophysiological mechanisms, and achieve clinical outcomes.16 The most valuable biomarkers are highly sensitive, specific, reproducible, and predictable, and the majority of US Food and Drug Administration (FDA) approved that cancer biomarkers are serum-derived single proteins.17,18

Biomarkers can be classified based on different parameters such as characteristics and function. Biomarkers that are classified according to their functions include type 0 biomarkers, which measure the natural history of a disease and they should correlate over time with known clinical indicators; type I biomarkers are associated with the effectiveness of pharmacologic agents; and type II biomarkers, also known as surrogate endpoint biomarkers, are intended to substitute for clinical endpoints.19 Current cancer biomarkers may be grouped into a variety of categories including proteins, glycoproteins, oncofetal antigens, hormones, receptors, genetic markers, and RNA molecules.11

Cancer biomarkers are also classified into prediction, detection, diagnostic, prognostic, and pharmacodynamics biomarkers.20 Prognostic biomarkers are based on the distinguishing features between benign and malignant tumors. Predictive biomarkers (also known as response markers) are used exclusively in assessing the effect of administering a specific drug, thus, allowing clinicians to select a set of chemotherapeutic agents, which will work best for an individual patient. Pharmacodynamic biomarkers are cancer markers utilized in selecting doses of chemotherapeutic agents in a given set of tumor-patient conditions. Diagnostic markers may be present in any stage during cancer development.

HIV-associated Kaposi Sarcoma and its Problems in Diagnosis

Kaposi sarcoma (KS) is an endothelial neoplasia that is found typically in cutaneous lesions, whose development stages entail macules, plaques, and nodules.21 KS is the most common malignancy in HIV patients. HIV-associated Kaposi sarcoma (HIV-KS) is a low-grade vascular tumor associated with human herpesvirus 8 (HHV8)/KS-associated herpes virus infection and is the most aggressive and frequent type of KS.22,23 KS primarily involves the skin but can also involve the viscera.24 Multiple mucocutaneous lesions typically evolve from flat macule (early or patch stage) into plaques (plaque stage) and then nodules (tumor or nodular stage) containing spindle-shaped tumor cells. KS has a variable clinical course, ranging from minimal disease presenting as an incidental finding to a rapidly progressing neoplasm that can result in significant morbidity and mortality, depending on the specific site of involvement.

It poses problems in histologic diagnosis due to its broad morphologic spectrum and mimicry of many benign vascular proliferative lesions and tumors with a prominent spindle component.25 Distinguishing KS from other benign or malignant vascular tumors, as well as other nonvascular spindle cell soft tissue neoplasms, can be challenging.26 Early-stage KS represents a reactive lesion that can either regress or progress. Progression is related to the long-lasting expression of HHV8 latency genes in KS lesions, including latent nuclear antigen-1 (LANA-1),21 cyclin-D1,27,28 and bcl-2.29 HHV8-related induction of the receptor tyrosine kinase c-kit was shown by gene expression profiling in cultured endothelial cells to play a key role in KS tumorigenesis.30,31

Biomarkers Used in HIV-KS Diagnosis/Prognosis

The differential diagnosis of KS may include cutaneous angiosarcoma, spindle cell hemangioma, dermatofibrosarcoma protuberans, vascular transformation of lymph nodes, pilar leiomyoma, stasis dermatitis, pyogenic granuloma, and spindle melanoma among others (Table 1).26 Histologically, all epidemiologic forms of KS are characterized by the progressive proliferation of spindle-shaped cells and are associated with KSHV/HHV8.32 Thus, immunohistochemical detection
Table 1. Summary of current biomarkers in HIV-KS.

BIOMARKER	CHANGES SEEN IN HIV-KS	REFERENCES
HHV8/LANA-1	Elevated	21,22,25,26,29,32
Cyclin D1	Elevated	22,27,28
bcl2	Elevated	29,33,35,51
c-kit	Elevated	30,31
K12	Elevated	33,34
K13/vFLIP	Elevated	33,46,47
vCyclin	Elevated	35,43,45
P53	Suppressed	36,37
pRb	Suppressed	27,33
D2–40	Elevated	24,38,40
CD31	Elevated	22,24,38,41
CD34	Elevated	22,24,38,41
FLI1	Elevated	38
vIL-6	Elevated	33,44,52
Tat	Elevated	49
bFGF	Elevated	42
TNF-α	Elevated	42,52
IL-1	Elevated	42,51,52
Oncostatin M	Elevated	42,53,54

Abbreviations: HHV8, human herpesvirus 8; LANA-1, latent nuclear antigen-1; bcl2, B-cell lymphoma 2; K13/vFLIP, K13/viral FADD-like interferon converting enzyme inhibitory protein; vCyclin, viral cyclin; pRb, retinoblastoma protein; FLI1, Friend leukemia integration-1 transcription factor; vIL-6, viral interleukin-6; TNF-α, tumour necrosis factor-α.

of HHV8 in fixed tissues would be diagnostically useful, enabling one to differentiate KS from other entities. In latency, HHV8 genes produce numerous proteins that induce or maintain KS lesions, including K12, K13/viral FADD-like interferon converting enzyme inhibitory protein (vFLIP), vCyclin, and the LANA-1 that modulates cellular transcription.33–35

HHV8 LANA-1 is a protein encoded by open reading frame-73 (ORF73) of the virus’ genome. The protein is expressed predominantly during viral latency and appears to play a role in viral integration into the host genome. It has also been shown to interfere in apoptosis via interactions with p53.36 LANA-1 protein may cause dysfunction of cell cycle regulatory checkpoints by degrading p53 and inactivating pRb.37 It has been previously shown that positive immunostaining for HHV8 LANA-1 exhibits high sensitivity and specificity, and it is a reliable and cost-effective method for the diagnosis of KS and is also useful for distinguishing it from the mimickers.21,25,29

Recently, it has been reported that immunohistochemical staining with D2–40, CD31 (a platelet/endothelial cell adhesion molecule, PECAM1), CD34 (a hematopoietic progenitor cell surface protein), and FLI1 (Friend leukemia virus integration 1) is useful for distinguishing cutaneous KS from other diseases.24,38 D2–40 is a novel monoclonal antibody, directed against Mr 40000 O-linked sialoglycoprotein, which reacts with a fixation resistant epitope on the lymphatic endothelium.39 It is considered to be a selective marker of lymphatic endothelium.40 Monoclonal antibodies directed against CD31 and CD34 are sensitive and specific markers of endothelial differentiation that are expressed by the majority of vascular tumors. It has been previously demonstrated that immunostaining for CD31 and CD34 can be used as an aid in KS diagnosis in routinely processed tissues.41 In a study by Rosado and colleagues, it was reported that CD31, CD34, D2–40, and FLI1 markers demonstrated high sensitivity in both AIDS-related and non-AIDS-related KS as well as in stages of tumor progression.38

A number of inflammatory cytokines, peptide growth factors, HIV encoded Tat protein, and KSHV/HHV8 gene products contribute to KS cell growth and development.42 HHV8 antigens target cell signaling pathways and deregulate apoptosis and immune response through vCyclin, vFLIP, bcl-2 oncogene, viral interferon regulating factor, and vIL-6.33,43–47 The alterations of immune cells (lymphocytes, monocytes, histiocytes, and dendritic cells) have been suggested to play a role in the neoplastic process.48 Immune activation can cooperate with some growth factors and HIV-1 Tat protein in the development and progression of KS.49 HIV-KS cells have been shown to produce angiogenic growth factors and cytokines such as fibroblast growth factors (FGFs), tumor necrosis factor-α (TNF-α), interleukin 1 (IL-1), IL-6, Tat, and oncostatin M, and express high affinity receptors for several cytokines.50,51 Elevated levels of IL-1, IL-6, and TNF-α have been reported in patients with HIV-KS.52

Oncostatin M, a cytokine produced by microphages and activated T-lymphocytes, has been shown to be a mitogen for HIV-KS derived spindle cells.53 Oncostatin M appears to be a major cytokine responsible for maintaining the long-term growth of HIV-KS in cell cultures.54 In addition, inflammatory cytokines induce the production of a potent autocrine growth factor for spindle cells known as basic fibroblast growth factor (bFGF). The autologous production of bFGF is an important stage in KS tumorigenesis since antisense bFGF or anti bFGF antibodies interfere in KS cell growth in tissue culture.42 It has been shown that oncostatin M, IL-1, and TNF-α induce KS cell growth by inducing the expression of various bFGF isoforms.

HIV-associated NHL and its Problems in Diagnosis

NHL refers to a heterogeneous group of hematopoietic malignancies originating in the lymphocytes.55–57 The majority of NHL cases (85–90%) arises from B-cell progenitors and develops into the various entities largely grouped into low, intermediate, and high-grade NHL based on the treated natural history and survival patterns.58 NHL comprises many subtypes, each with distinct epidemiology, etiology, and features (ie, morphology, immunophenotype, and clinical manifestations).59,60 Epstein–Barr virus (EBV) has been implicated...
in the development of many NHL subtypes in HIV-infected individuals.45 NHL is the second most common malignancy in HIV-infected patients, with diffuse large B-cell lymphoma (DLBCL) as the most common subtype of HIV-associated NHL (HIV-NHL) followed by Burkitt’s lymphoma (BL).46

DLBCLs are heterogeneous diseases that differ in nature of the genetic abnormalities, morphologic appearance, clinical features, and patients respond differently to treatment and vary in prognosis.53,64 Most DLBCLs are thought to arise from normal antigen exposed B-cells that have migrated to or through germinal centers.65 Gene expression profiling has identified two broad subgroups: those of germinal center origin, known as germinal centre B-cell like (GCB) lymphomas (typically CD10+ and BCL6+); and those arising from cells resembling activated B-cells (non-GCB) (typically IRF4/MUM-1+ and CD13+).56,66 It has been shown that patients with GCB DLBCL have a better progression free and overall survival than those with non-GCB DLBCL, irrespective of the international prognostic index (IPI) score.67–71 Therefore, the subclassifications of DLBCL into GCB and non-GCB may serve as important predictive prognostic factors.

BL is an aggressive form of NHL derived from germinal center B-cells.72 HIV-associated BL is characterized by cMYC translocations and overexpression;73 however, EBV infection is not necessarily a precursor to transformation.74 NHL is a very complex malignancy consisting of several types that are also divided into subclasses that differ in treatment response and prognosis. This may pose problems in the initial diagnosis of NHL. Biomarkers are necessary in the initial evaluation of the patients with newly diagnosed NHL, which must establish the precise histologic subtype, the extent, and site of disease (localized or advanced, nodal or extranodal). This is important in the determination of treatment approach and predicting the response to chemotherapy.

Biomarkers Used in HIV-NHL Diagnosis/Prognosis

The first step in the diagnosis of NHL is to obtain good quality and adequate sample of tissue by excisional biopsy of an affected lymph node or other mass lesion for assessment of cellular morphology and nodal architecture (Table 2).75–77 After the initial tissue biopsy provides a diagnosis of NHL, the following laboratory tests are performed: complete blood count, white blood cell differential, platelet count, and examination of the peripheral smear for the presence of atypical cells, suggesting peripheral blood and bone marrow involvement; biochemical tests including blood urea nitrogen (BUN), creatinine, alkaline phosphatase, aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and albumin; serum calcium, electrolytes, and uric acid; serum protein electrophoresis; HIV, hepatitis B, and C serology; and beta-2 microglobulin levels (in patients with indolent lymphomas).78

Table 2. Summary of current biomarkers in HIV-NHL.

BIOMARKER	CHANGES SEEN IN HIV-NHL	REFERENCES
LDH	Elevated	101,105,106
Ki-67/MIB-1	Elevated	61,79,80
CD19, CD20, CD22	Elevated	63,89,90
CD79a	Elevated	63,90
PAX-5	Elevated	63,81,81
CD10	Elevated	61,62
bcl6	Elevated	61,62,65,87
MUM-1	Elevated	61,62,65
cMYC	Translocation and Elevated	73,86,87
IL-6	Elevated	97,99
IL-10	Elevated	95,97,99
TNF-α	Elevated	97,98
CRP	Elevated	99,101
sCD23, sCD27, sCD30, sCD44	Elevated	48,92,99
B2M	Elevated	105,106
CXCL13	Elevated	48,92
EBV DNA	Elevated	108
FLC	Elevated	97,100
FOXP1	Elevated	83,85

Abbreviations: LDH, lactate dehydrogenase; MIB-1, E3 ubiquitin-protein ligase MIB1; PAX-5, paired box protein 5; bcl6, B-cell lymphoma 6; MUM-1, multiple myeloma oncogene 1; IL-6, interleukin 6; IL-10, interleukin 10; TNF-α, tumor necrosis factor-α; CRP, C-reactive protein; sCD23, soluble CD23; sCD44, soluble CD44; B2M, beta-2 microglobulin; CXCL13, C-X-C motif chemokine 13; EBV DNA, Epstein–Barr virus deoxyribonucleic acid; FLC, free immunoglobulin light chains; FOXP1, forkhead box protein 1.
This is followed by pathological evaluations, which include flow cytometry or immunohistochemical staining for immunophenotype. For aggressive lymphomas, this includes evaluation of proliferative fraction using Ki-67 or MIB-1 staining as a more aggressive regimen may be indicated for high growth fraction tumors. The expression of Ki-67 has been associated with poor outcome and survival in DLBCL patients. Immunophenotypic expression patterns of DLBCL include positivity for various pan B-cell markers such as CD19, CD20, CD22, CD79a, PAX-5, and demonstration of immunoglobulin surface light chain restriction by flow cytometry in the majority of cases. The presence of positive PAX-5 immunostaining has been strongly associated with B-cell differentiation as PAX-5 is a B-cell restricted transcription factor.

Staining for CD10, bcl-6, and MUM-1 are usually routinely performed in order to distinguish GCB from non-GCB DLBCL. Fork box protein P1 (FOXP1), an essential transcription regulator of B-cell development, has been shown to be overexpressed in non-GCB DLBCL as compared with GCB DLBCL. FOXP1 has also been associated with poor survival and prognosis. It is now recognized that FOXP1 may serve as an additional biomarker for distinguishing non-GCB from GCB DLBCL and should be included in the diagnosis/prognosis of DLBCL. In addition, fluorescence in situ hybridization (FISH) analysis for cMYC is performed as translocations involving the cMYC occurs in 10–15% of DLBCL lymphomas and is associated with a worse outcome. MYC translocations confers a worse prognosis in patients treated with cyclophosphamide, hydroxydaunorubicin, oncovin, and prednisone (CHOP), and CHOP plus rituximab (R-CHOP) regimens. BL expresses a germinal center B-cell phenotype and the immunophenotypic expression include B-cell antigens CD19, CD20, CD22, CD79a, and PAX-5 along with CD10, bcl-6, CD77, Ki-67 or MIB-1 and monotypic surface light chains such as IgM. BL also expresses CD43, TCL1, and CD38 but is negative for CD5, CD23, CD44, CD138, and TdT.

Altered immune mechanisms play a critical role in the pathogenesis of NHL, as evidenced by increased rates of NHL among HIV-positive patients, transplant recipients, and autoimmune disease patients. A marked increase in B-cell activation is commonly seen in HIV infection, which is driven by the overproduction of B-cell stimulatory cytokines, such as IL-6 and IL-10, as well as by stimulation of B-cells by HIV and other microbial antigens. In addition, HIV induces the production of inflammatory cytokines that cause B-cell stimulation, proliferation, and activation, and the cell lines derived from HIV-NHL have been found to express cytokines including interleukin 6, 10, and tumor necrosis factor-α. B-cell activation is characterized by lymphocyte proliferation, class switch recombination (CSR), and somatic hypermutation, all of which are prone to resultant errors in DNA that may lead to lymphomagenesis. B-cell activation leads to the expression of activation induced cytidine deaminase (AICDA), a DNA modifying enzyme that mediates immunoglobulin gene CSR and somatic hypermutation.

Various factors associated with B-cell activation, including B-cell stimulatory cytokines, as well as soluble serum molecules that are associated with B-cell activation, including serum immunoglobulins (Ig) and Ig components such as free light chains, have been seen to be elevated preceding the appearance of HIV-NHL. In a nested case–control study by Breen and colleagues, it was shown that serum levels of molecules associated with B-cell activation including IL-6, IL-10, C-reactive protein (CRP), sCD23, sCD27, and sCD30 are elevated for several years preceding the diagnosis of systemic HIV-NHL. Furthermore, this was confirmed by Hussain and colleagues, in a nested case–control study of 3768 women, where it was shown that elevated levels of sCD27, sCD30, sCD23, and CXCL13 were associated with subsequent diagnosis of HIV-NHL.

Factors associated with poor clinical outcome and shorter survival in patients with HIV-NHL include CD4 cell count <100 mm³, advanced stage disease (III or IV), age over 35 years, history of injection drug use, elevated serum LDH (above normal), Eastern Co-operative Oncology Group performance status (ECOG PS) of more than 2, and the involvement of more than 2 extranodal sites. Matthews and colleagues, in a cohort of 7840 HIV-positive patients, showed that age, nadir CD4 cell count, and no prior cART are significantly associated with the development of systemic NHL. In addition, Tedeschi and colleagues showed that low CD4 and CD8 cell count and detectable EBV viremia are three independent prognostic biomarkers that might help in the management of HIV-NHL patients. Furthermore, higher HIV viral load accompanied by lower CD4 count have been associated with the development of HIV-NHL. In addition, De Roos and colleagues, in a case–control study within Women’s Health Initiative study cohort of 491 cases and 491 controls, showed that women with high serum levels of soluble sCD23, sCD27, sCD30, sCD44, and CXCL13 biomarkers were at 2.8- to 5.5-fold increased risk of B-NHL. Furthermore, HIV viral load accompanied by lower CD4 cell count and detectable EBV viremia are three independent prognostic biomarkers that might help in the management of HIV-NHL patients.

HIV-associated Cervical Cancer and its Problems in Diagnosis

Human papillomavirus (HPV) infection is the most important cause of cervical cancer; however, only 2% of cervical HPV will develop into cervical cancer. Cervical cancer is caused by a persistent infection with high-risk human papillomavirus (hrHPV) types, which lead to premalignant precursor lesions known as cervical intraepithelial neoplasia (CIN). The most common histologic types of cervical cancer are squamous cell (69%) and adenocarcinoma (25%). CIN is characterized by abnormal cellular proliferation, maturation, and nuclear atypia.
CIN may regress to normal or progress to invasive cervical cancer if left untreated. Approximately, one-third to one-half of the cases of CIN I and CIN II regress without treatment. However, the more severe the abnormality of the lesion, the less likely it is to regress. The accurate grading of CIN lesions is important for clinical management of patients, because CIN I and CIN II/III lesions are treated differently and inaccurate grading results in over or under treatment. This emphasizes the need for specific biomarkers to aid objective CIN grading and to achieve more accurate diagnosis.

Biomarkers Used in HIV-associated Cervical Cancer Diagnosis/Prognosis

The detection of HPV DNA in cervical cancer has been proven to be a good diagnostic and risk predictor tool for cervical cancer (Table 3). The oncogenic process in cervical cancer is initiated and mediated by the upregulation of HPV E6/E7 oncoproteins, and thus, overexpression of these oncoproteins is a marker for an increased risk of cervical cancer.117–119 The hrHPV subtypes such as 16 and 18 are thought to play a role in malignant transformation of cells by producing E6 and E7 viral regulatory proteins.120 E6 and E7 are involved in cell proliferation and survival. HPV and oncogene E6 and E7 expressions are the most important markers implicated for cervical cancer.116–118 Some studies suggest that HPV oncogenes E6 and E7 mRNA levels in the uterine cervix may be more specific early indicators of predisposition to carcinogenesis than DNA levels.120

Ki-67 is a well-known cell proliferation marker, useful for confirmation of the diagnosis in ambiguous cases of cervical cancer and CIN grading.121 Ki-67 detects a nuclear antigen that is present only in proliferating cells but absent in resting cells.122 Ki-67 has been found to be more intensely stained in HPV-positive than HPV-negative epithelium. P16INK4A (p16) is a cyclin-dependent kinase (cdk) inhibitor that functions as a specific biomarker used for identification of squamous and glandular dysplastic cervical epithelium with tendency to invasive cervical cancer. It has been suggested that p16 is overexpressed in cervical epithelial cells that are transformed in response to the expression of the hrHPV E7 oncoprotein.113 In a nested study by Carozzi and colleagues, it was shown that p16 overexpression is a marker for CIN2 or worse or for its development within 3 years in HPV-positive women.123 Ki-67 and p16 are complimentary alternative biomarkers for HPV-related neoplasia.124,125 Cytokeratin (CK) 17 is a useful marker for endocervical reserve stem cells, which gives rise to metaplasia and antibody to CK17 is used to differentiate between immature squamous metaplasia and high-grade CIN (CIN III).126 CK17 is specific for reserve cells and immature metaplastic cells; it is not expressed in cervical glandular epithelial cells, squamous cells, or mature squamous metaplastic cells.127,128

Overexpression of mini chromosome maintenance (MCM) proteins is seen in severe dysplastic lesions, and overexpressed cell division cycle protein 6 (CDC6) is observed in malignant cervical cancer. The ribosomal protein S12 gene has also been reported as an early molecular diagnostic identifier for the screening of cervical cancer and is a potential target in cancer gene therapy trials. Tumor suppressor protein p53 is a nuclear phosphoprotein encoded by the p53 gene, whose normal function is to control cell proliferation and apoptosis. Mutations of the p53 gene are frequently found in most invasive cancer, resulting in loss of tumor suppressor functions of wild type p53 and gain of oncogenic functions. Overexpression of p53 has been suggested to be a possible prognostic marker for cervical cancer.134

Table 3. Summary of current biomarkers in HIV-associated cervical cancer.

BIOMARKER	CHANGES SEEN IN HIV ASSOCIATED CERVICAL CANCER	REFERENCES
HPV DNA	Elevated	20,113,118
HPV E6/E7	Elevated	116–120
Ki-67	Elevated	121,124,125
P16	Elevated	113,121,123,124,126
CK17	Elevated	113,126–128
MCM	Elevated	129,130,132
CDC6	Elevated	131,132
Ribosomal protein S12	Elevated	133
P53	Elevated	115,125,134
PCNA	Elevated	115,135,137
MIB-1	Elevated	137
P63	suppressed	113,136
CD44	Elevated	138,139

Abbreviations: HPV DNA, Human papillomavirus deoxyribonucleic acid; P16, cyclin-dependent kinase inhibitor p16; CK17, cytokeratin 17; MCM, mini chromosome maintenance protein; CDC6, cell division cycle protein 6; PCNA, proliferating cell nuclear antigen.
Madhumati and colleagues showed that proliferating cell nuclear antigen (PCNA) and P53 expression increases with increasing severity of CIN lesions.\(^1\)\(^2\) It has been previously shown that upregulation of PCNA is closely associated with hrHPV and progressive CIN, but does not predict outcome in cervical cancer.\(^3\)\(^4\) P63, which is a member of the p53 gene family, is expressed in the basal and parabasal cells of mature cervical, vaginal, and vulval squamous epithelium, and also in cervical reserve cells at the transformation zone.\(^5\)\(^6\) It has been shown that MIB-1 may be a useful marker for identification of low-grade CIN lesion with high proliferative index.\(^7\) CD44 is a cell adhesion molecule that has been reported to be correlated with poor prognosis in invasive cervical cancer.\(^8\)\(^9\)\(^10\) The increased serum CD4\(^+\) and CD8\(^+\) T-cell levels and the presence of large number of natural killer (NK) cells have been associated with a favorable response in patients with cervical cancer treated with neo-adjuvant chemotherapy.

Discussion/Conclusion

Cancer biomarkers offer a great potential for improving the management of cancer at every point from screening and detection, diagnosis, staging, prognosis, and assessment of treatment response.\(^11\) Biomarkers offer the hope of early detection as well as tracking cancer progression and recurrence.\(^12\) Early detection may help improve survival of HIV-positive cancer patients, as it could help identify HIV-positive individuals at most risk of cancer development distinguish aggressive from indolent malignancies and track disease progression.

Discovery of new biomarkers suitable for clinical application may aid the diagnosis and classification of cancer, which in turn should lead to better patient stratification.\(^13\) Biomarkers do not need to be cancer specific to be useful; certain proteins may help predict response to therapy or aid in the monitoring of disease progression.\(^14\) As cancer is increasingly defined by dysregulated pathways, relevant biomarkers may cut across tumor types without showing tissue specificity. Abundance of potential cancer biomarkers have been discovered, however, only few of them have been integrated into clinical practice. This is due to the fact that some of these biomarkers are not highly sensitive and specific for cancer detection. It is well recognized that the road from biomarker discovery, validation, and regulatory approval to the translation into clinical setting could be long and difficult.\(^15\)

A new era is underway in which cancer detection, diagnosis, and treatment will be guided increasingly by the molecular attributes of the individual patient.\(^16\) The future of cancer therapy lies in the use of biomarkers that offer the potential to identify and treat cancer years before it is either visible or symptomatic. In addition, the future of cancer management is expected to be profoundly dependent upon the use of biomarkers that will guide physicians at every step of disease management.\(^17\) Cancer biomarkers can be used for the accurate evaluation and management of the disease.

Author Contributions

Conceived and designed the experiments: BF, GS, PB, BR. Analyzed the data: BF, GS, PB, BR. Wrote the first draft of the manuscript: BF, GS, PB, BR. Contributed to the writing of the manuscript: BF, GS, PB, BR. Agree with manuscript results and conclusions: BF, GS, PB, BR. Jointly developed the structure and arguments for the paper: BF, GS, PB, BR. Made critical revisions and approved final version: BF, GS, PB, BR. All authors reviewed and approved of the final manuscript.

REFERENCES

1. Diamandis M, White NM, Yousef GM. Personalized medicine: marking a new epoch in cancer patient management. *Mutat Cancer Res*. 2010;8(9):1175–1187.
2. Sasco AJ, Jaquett A, Boidin E, et al. The challenge of AIDS-related malignancies in sub-Saharan Africa. *PLoS One*. 2010;5(11):e8601.
3. Casper C. The increasing burden of HIV-associated malignancies in resource-detected regions. *Ann Rev Med*. 2011;62:157–170.
4. Ambinder RF, Bhatia K, Martinez-Maza O, Mitsuya Y. Cancer biomarkers in HIV patients. *Curr Opin HIV AIDS*. 2010;5(6):531–537.
5. McDonald KL. Biomarker Discovery, Validation and Clinical Application for Patients Diagnosed with Glioma. Glioma—Exploring Its Biology and Practical Relevance, Dr. Anirban Ghosh, ed. ISBN: 978-953-307-379-8, InTech, 2011. Available at http://www.intechopen.com/books/glioma-exploring-its-biology-and-practical-relevance/biomarker-discovery-validation-and-clinical-application-for-patients-diagnosed-with-glioma. Accessed September 1, 2014.
6. Verma M. Personalized medicine and cancer. *J Pers Med*. 2012;2(1):1–14.
7. Park JW, Kerbel RS, Kelloff GJ, et al. Rationale for biomarkers and surrogate end points in mechanism-driven oncology drug development. *Clin Cancer Res*. 2004;10(11):3885–3896.
8. Biomarkers: Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. *Clin Pharmacol Ther*. 2001;69(3):89–95.
9. Lesko LJ, Atkinson AJ Jr. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. *Ann Rev Pharmacol Toxicol*. 2001;41:347–366.
10. Malati T. Tumour markers: an overview. *Indian J ClinBiochem*. 2007;22(2):17–31.
11. Füzéry AK, Levin J, Chan MM, Chan DW. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. *Clin Proteomics*. 2013;10(1):13.
12. Sririvas PR, Kramer BS, Srivastava S. Trends in biomarker research for cancer detection. *Lancer Oncol*. 2001;2(11):698–704.
13. Verma M, Manne U. Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk populations. *Critt Rev Oncol Hematol*. 2006;60(1):9–18.
14. Miaskowski C, Aouizerat BE. Biomarkers: symptoms, survivorship, and quality of life. *Semin Oncol Nurs*. 2012;28(2):129–138.
15. Overdeweert JR, Theodorescu D, Lee JK. Utilizing the molecular gateway: the path to personalized cancer management. *Clin Chem*. 2009;55(4):648–679.
16. Frank R, Hargreaves R. Clinical markers in drug discovery and development. *Nat Rev Drug Discov*. 2003;2(7):566–580.
17. Erzioni R, Urban N, Runney S, et al. The case for early detection. *Nat Rev Cancer*. 2003;3(4):243–252.
18. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. *Nat Rev Cancer*. 2005;5(11):845–856.
19. Heckman-Strickland BM. Onology biomarkers: discovery, validation, and clinical use. *Semin Oncol Nurs*. 2012;28(2):93–98.
20. Mishra A, Verma M. Cancer biomarkers: are we ready for the prime time? *Cancer*. 2010;2(1):190–208.
21. Pereira PF, Cuatti T, Galhardo MC. Immunohistochemical detection of the latent nuclear antigen-1 of the human herpesvirus type 8 to differentiate cutaneous epidermic Kaposi sarcoma and its histological simulators. *An Bras Dermatol*. 2013, 88(2):243–246.
22. Pantanowitz L, Deuze BJ, Pinkus GS, Tahan SR. Histological characterization of regression in acquired immunodeficiency syndrome-related Kaposi’s sarcoma. *J Cutan Pathol*. 2004;31(1):26–34.
23. Groopman JE. AIDS-Related Kaposi Sarcoma: Staging and Treatment. UpToDate, 2013. Available at http://www.uptodate.com/contents/ aids-related-kaposi-sarcoma-staging-and-treatment?source=search_results&selectedTitle=2~150. Accessed January 6, 2014.
24. Nagata N, Igarashi T, Shimbo T, et al. Diagnostic value of endothelial markers and HHV-8 staining in gastrointestinal Kaposi sarcoma and its difference in endoscopic tumor staging. *World J Gastroenterol*. 2013;19(23):3608–3614.
25. Cheuk W, Wong KO, Wong CS, Dinkel JE, Ben-Dor D, Chan JK. Immuno-nostaining for human herpesvirus 8 latent nuclear antigen-1 helps distinguish Kaposi sarcoma from its mimickers. Am J Clin Pathol. 2004;121(3):335–342.
26. Patel RM, Goldblum JR, Hsi ED. Immunohistochemical detection of human herpes virus-8 latent nuclear antigen-1 is useful in the diagnosis of Kaposi sarcoma. Mod Pathol. 2004;17(6):455–460.
27. Horenstein MG, Cesaroni E, Wang X, Linkov I, Prieto VG, Louie DC. Cyclin D1 and anti-CD31 protein expression in Kaposi’s sarcoma. J Cutan Pathol. 1997; 24(10):585–589.
28. Hong A, Davies S, Stevens G, Lee CS. Cyclin D1 overexpression in AIDS-related and classic Kaposi sarcoma. Appl Immunohistochem Mol Morphol. 2004;12(1):26–30.
29. Long E, Ilie M, Hofman V, et al. LANA-1, Bcl-2, Mel-1 and HIF-1alpha protein expression in HIV-associated Kaposi sarcoma. Virchows Arch. 2009;555(2):159–170.
30. Pflugmacher L, Schwartz EJ, Leibovici I, Kohler N, Thordarson RF, Taban SB. C-Kit (CD117) expression in AIDS-related, classic, and African endemic Kaposi sarcoma. Appl Immunohistochem Mol Pathol. 2005;13(2):162–166.
31. Moses AV, Jarvis MA, Raggo C, et al. Kaposi’s sarcoma-associated herpesvirus-induced upregulation of the c-kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J Virol. 2002;76(16):8383–8389.
32. Schwartz EJ, Dorfman RF, Kohler S. Human herpesvirus-8 latent nuclear antigen-1 expression in endemic Kaposi sarcoma: an immunohistochemical study of 36 cases. Am J Surg Pathol. 2003;27(12):1546–1550.
33. Pflugmacher L, Tainnen M, Salwen P, et al. Kaposi’s sarcoma-associated herpesvirus-encoded v-cyclin triggers apoptosis in cells with high levels of cyclin-dependent kinase 6. Cancer Res. 1999;59(19):4894–4899.
34. Fliepski et al
35. Cai X, Lu S, Zhang G, Gonzalez CM, Damania B, Cullen BR. Kaposi’s sarcoma-associated herpesvirus expression of viral microRNA in latently infected cells. Proc Natl Acad Sci U S A. 2005;102(15):5570–5575.
36. Oya KM, Albrecht CA, Savage P, et al. Kaposi’s sarcoma-associated herpesvirus-encoded v-cyclin triggers apoptosis in cells with high levels of cyclin-dependent kinase 6. Cancer Res. 1999;59(19):4894–4899.
37. Chao C, Silverberg MJ, Martinez-Maza O, et al. Epstein-Barr virus infection and expression of B-cell oncogenic markers in HIV-related diffuse large B-cell lymphoma. Clin Cancer Res. 2012;18(7):4702–4712.
38. Faris M, Ensoli B, Kokot N, Nel AE. Inflammatory cytokines induce the expression of human herpesvirus-8 latent nuclear antigen-1 in endothelial cells. J Virol. 2006;80(2):697–709.
39. Rosado FG, Itani DM, Coffin CM, Cates JM. Utility of immunohistochemical CD34 staining in Kaposi sarcoma. Am J Clin Pathol. 2002;118(4):458–460.
40. Schwartz EJ, Dorfman RF, Kohler S, Cassell J, Prieto VG. Human herpesvirus-8 latent nuclear antigen-1 is useful in the diagnosis of Kaposi sarcoma. Semin Cutan Med Surg. 2012;31(4):247–257.
41. Russell Jones R, Orchard G, Zelger B, Wilson Jones E. Immunostaining for human herpesvirus 8 latent nuclear antigen-1 helps distinguish the T-cell antigens CD2 and CD7. Appl Immunohistochem Mol Pathol. 2011;19(6):579–583.
42. Kim MK, Bae SH, Bae YK, et al. Biological characterization of nodal versus extranodal presentation of diffuse large B-cell lymphoma using immunohistochemistry. Appl Immunohistochem Mol Morphol. 2007;15(3):375–381.
43. Barreto L, Azambuja D, Morais JC. Expression of immunohistochemical markers in patients with AIDS-related lymphoma. Braz J Infect Dis. 2012;16(1):74–77.
44. Sangle NA, Agarwal AM, Smock KJ, et al. Diffuse large B-cell lymphoma with aberrant expression of the T-cell antigens CD2 and CD7. Appl Immunohistochem Mol Pathol. 2011;19(6):579–583.
45. Simonart T, Van Voorren JP. Interleukin-1 beta increases the BCL-2/BAX ratio in Kaposi’s sarcoma cells. Cytokine. 2002;19(6):259–266.
46. Hussain SK, Hessol NA, Levine AM, et al. Expression and cytolytic regulation of glucocorticoid receptors in Kaposi’s sarcoma. Am J Pathol. 1996;148(6):1999–2008.
47. Sangle NA, Agarwal AM, Smock KJ, et al. Diffuse large B-cell lymphoma with aberrant expression of the T-cell antigens CD2 and CD7. Appl Immunohistochem Mol Pathol. 2011;19(6):579–583.
48. Tappero JW, Conant MA, Wolfe SF, Berger TG. Kaposi’s sarcoma: epidemiology, pathogenesis, histology, clinical spectrum, staging criteria and therapy. J Am Acad Dermatol. 1993;28(3):371–395.
49. Guo WX, Antaky T, Cadotte M, et al. Expression and regulation of glucocorticoid receptors in Kaposi’s sarcoma. Am J Pathol. 1996;148(6):1999–2008.
50. Cai J, Gill PS, Maoud R, et al. Oncostatin-M is an autocrine growth factor in Kaposi’s sarcoma. Am J Pathol. 1994;145(3):74–79.
51. Armitage JO. How I treat patients with diffuse large B-cell lymphoma. Blood. 2007;110(1):29–36.
52. Amiraul MC, Miles S, Kumar G, Nel AE. Oncostatin-M stimulates tyrosine protein phosphorylation in parallel with the activation of p42MAPK/ERK3 in Kaposi’s cells. Evidence that this pathway is important in Kaposi cell growth. Cancer Res. 1993;53(2):488–497.
53. American Cancer Society. Cancer Facts and Figures 2010; 2010. Available at http://www.cancer.org/acs/groups/content/@nho/documents/document/acspc-024113.pdf. Accessed June 11, 2013.
54. Shankland KR, Armitage JO, Hancock BW. Non-Hodgkin lymphoma. Lancet. 2012;380(9848):4702–4712.
55. Tappero JW, Conant MA, Wolfe SF, Berger TG. Kaposi’s sarcoma: epidemiology, pathogenesis, histology, clinical spectrum, staging criteria and therapy. J Am Acad Dermatol. 1993;28(3):371–395.
81. Dong HY, Browne P, Liu Z, Gangi M. PAX-5 is invariably expressed in B-cell lymphomas without plasma cell differentiation. Histopathology. 2008;53(3):278–287.

82. Desouki MM, Post GR, Cherry D, Lazarchick J. PAX-5: a valuable immunohistochemical marker in the differential diagnosis of lymphoid neoplasms. Clin Med Res. 2010;8(2):84–88.

83. Yu B, Zhou L, Xin B, Xiao Y, Sun S, Shi D. FOXP1 expression and its clinicopathologic significance in nodal and extranodal diffuse large B-cell lymphoma. Am J Hematol. 2012;87(10):985–989.

84. Sagardoy A, Martinez-Fernandez JI, Roz S, et al. Downregulation of FOXP1 is required during germinal center B-cell function. Blood. 2013;121(12):4311–4320.

85. Hu CR, Wang JH, Wang R, Sun Q, Chen LB. FOXP1 and p63 expression are adverse risk factors in diffuse large B-cell lymphoma: a retrospective study in China. Acta Haematol. 2011;125(2):137–143.

86. Landay M, Ofrit K, Janwar SC, Filipa DA, Chaganti RS. MYC rearrangement and translocations involving band 8q24 in diffuse large cell lymphomas. Blood. 1997;95(2):1075–1083.

87. Horn H, Ziepert M, Becker C, et al. MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood. 2013;121(12):2253–2263.

88. Whitten J, Arcila ME, Teruya-Feldstein J. Burkitt lymphoma. Pathol Case Rev. 2012;17:79–83.

89. Marek RR, Auer S, Cairo MS. Risk factors and treatment of childhood and adolescent Burkitt lymphoma/leukemia. Br J Haematol. 2012;156(6):730–743.

90. de Leval L, Hasserjian RP. Diffuse large B-cell lymphomas and Burkitt lymphoma. Hematol Oncol Clin North Am. 2009;23(4):791–827.

91. Linch DC. Burkitt lymphoma in adults. Blood. 2013;121(9):1869–1870.

92. Iaconis L, Hyjek E, Ellenson LH, Pirog EC. p16 and Ki-67 immunostain are adverse risk factors for acquired immunodeficiency syndrome-related B-cell lymphoma. Am J Pathol. 2012;180(4):1239–1245.

93. Carozzi F, Gillio-Tos A, Confortini M, et al. Risk of high-grade cervical intraepithelial neoplasia during follow-up in HPV-positive women according to HPV 16 and 18 genotype. J Natl Cancer Inst. 2013;105(15):1269–1274.

94. Tsuschek EE, Baccala AC, Stoler MH. p16 as an immunohistochemical marker in the differential diagnosis of lymphoid neoplasms. Arch Pathol Lab Med. 2011;135(9):1225–1229.

95. Mihai-Lazarina O. Assessment of pre-diagnosis biomarkers of immune activation and inflammation: insights on the etiology of lymphoma. J Proteome Res. 2011;10(4):271–281.

96. Vachon E, Mozos N, Vezina G, Ménard R. Expression of p53 and p21 in endometrial stromal tumors. Int J Gynecol Pathol. 2012;31(3):352–358.

97. Rummel C, Rubinstein P, Ghaferi A. Immunohistochemical expression of p16, p53, and p14ARF in cervical cancer. J Gynecol Oncol. 2013;24(1):e1–e5.

98. Talbot DC, Bower M, Amin HB, et al. Expression of p16 and p21 in cervical and vaginal intraepithelial neoplasia. Int J Gynecol Pathol. 2012;31(3):359–364.
128. Ikeda K, Tate G, Suzuki T, Mitsuya T. Coordinate expression of cytokeratin 8 and cytokeratin 17 immunohistochemical staining in cervical intraepithelial neoplasia and cervical squamous cell carcinoma: an immunohistochemical analysis and review of the literature. *Gynecol Oncol*. 2008;108(3):598–602.

129. Ishimi Y, Okayasu I, Kato C, et al. Enhanced expression of MCM proteins in cancer cells derived from uterine cervix. *Eur J Biochem*. 2003;270(6):1089–1101.

130. Das M, Prasad SB, Yadas SS, et al. Over expression of minichromosome maintenance genes is clinically correlated to cervical carcinogenesis. *PLoS One*. 2013;8(7):e69607.

131. Bonds L, Baker P, Gup C, Shroyer KR. Immunohistochemical localization of cdc6 in squamous and glandular neoplasia of the uterine cervix. *Arch Pathol Lab Med*. 2002;126(10):1164–1168.

132. Murphy N, Ring M, Heffron CC, et al. Quantitation of CDC6 and MCM5 mRNA in cervical intraepithelial neoplasia and invasive squamous cell carcinoma of the cervix. *Mad Pathol*. 2005;18(6):844–849.

133. Cheng Q, Lau WM, Chew SH, Ho TH, Tay SK, Hui KM. Identification of molecular markers for the early detection of human squamous cell carcinoma of the uterine cervix. *Br J Cancer*. 2002;86(2):274–281.

134. Romas I, Triningsih FE, Mangunsudirdjo S, Harijadi A. Clinicopathology significance of p53 and p63 expression in Indonesian cervical squamous cell carcinomas. *Asian Pac J Cancer Prev*. 2013;14(12):7737–7741.

135. Branca M, Ciotti M, Giorgi C, et al. Up-regulation of proliferating cell nuclear antigen (PCNA) is closely associated with high-risk human papillomavirus (HPV) and progression of cervical intraepithelial neoplasia (CIN), but does not predict disease outcome in cervical cancer. *Eur J Obstet Gynecol Reprod Biol*. 2007;130(2):223–231.

136. Zhou Y, Xu Q, Ling B, Xiao W, Liu P. Reduced expression of ΔNp63α in cervical squamous cell carcinoma. *Clin Invest Med*. 2011;34(3):E184–E191.

137. Goel MM, Mehrotra A. Immunohistochemical expression of MIB-1 and PCNA in precancerous and cancerous lesions of uterine cervix. *Indian J Cancer*. 2013;50(3):200–205.

138. Speiser P, Wanner C, Tempfer C, et al. CD44 is an independent prognostic factor in early-stage cervical cancer. *Int J Cancer*. 1997;74(2):185–188.

139. Shimabukuro K, Toyama-Sorimachi N, Ozaki Y, et al. The expression patterns of standard and variant CD44 molecules in normal uterine cervix and cervical cancer. *Gynecol Oncol*. 1997;64(1):26–34.

140. Dokmanovic L. Biomarkers in childhood non-Hodgkin’s lymphomas. *Biomark Med*. 2013;7(5):791–801.

141. Hanash SM, Pitteri SJ, Faca YM. Mining the plasma proteome for cancer biomarkers. *Nature*. 2008;452(7187):571–579.

142. Bhart AN, Mathur R, Farooque A, Verma A, Dwarkanath BS. Cancer biomarkers—current perspectives. *Indian J Med Res*. 2010;132:129–149.

143. Chatterjee SK, Zetter BR. Cancer biomarkers: knowing the present and predicting the future. *Future Oncol*. 2005;1(1):37–50.