Review Global seroprevalence of legionellosis - a systematic review and meta-analysis

Frances F. Graham1✉, Simon Hales2, Paul S. White2 & Michael G. Baker1

Legionella is a ubiquitous pathogen yet the global occurrence of legionellosis is poorly understood. To address this deficit, this paper summarises the available evidence on the seroprevalence of Legionella antibodies and explores factors that may influence seroprevalence estimates. Through a systematic review, a total of 3979 studies were identified with seroprevalence results published after 1 January 1990. We tabulated findings by World Health Organization (WHO) region, location, study period and design, composition of study population(s) for all ages in terms of exposure, sex, detection methods, IFA titre, Legionella species measured, and present seroprevalence point estimates and 95% confidence intervals. Sampled populations were classified according to income, WHO region, gender, age, occupation and publication date. We conducted a meta-analysis on these subgroups using Comprehensive Meta-Analysis 3.0 software. Heterogeneity across studies was evaluated by the Q test in conjunction with I² statistics. Publication bias was evaluated via funnel plot and Egger’s test. Fifty-seven studies met our inclusion criteria, giving an overall estimate of seroprevalence for Legionella of 13.7% (95% CI 11.3–16.5), but with substantial heterogeneity across studies.

Legionellosis is the collective term for the clinical syndromes caused by members of the genus Legionella that can present as either Legionnaires’ disease (LD) or Pontiac fever. Since the original description of the gram-negative bacterium in 19771 more than 60 different Legionella species (spp.) have been described with over 70 serogroups2 with L. pneumophila serogroup 1 (sg1) the most prevalent disease causing variant3.

Legionella are largely environmental pathogens. Human-to-human transmission of Legionella may occur in rare cases4,5. There are no documented cases of zoonotic transmission6 despite Legionella antibodies being detected in the sera of animals7–12. The main threat of LD is from contaminated water (natural and artificial) systems colonised by the bacteria as well as natural soil and potting soil/compost13. Prolonged exposure of humans to environmental sources of Legionella triggers immune responses and the production of antibodies which are capable of persisting at measureable levels for several months and up to 10 years after exposure without causing any clinical symptoms14. Studies have shown that there is variation in Legionella antibody levels in healthy populations ranging from less than 1%15 to 45.1%16.

Most of our knowledge about the epidemiology of Legionella comes from testing patients who present with community-acquired or nosocomial pneumonia. The diagnosis is often missed because Legionella infection is difficult to distinguish from other forms of pneumonia, the unavailability of suitable testing or failure by clinicians to request it and the shortcomings of available diagnostic tests. Methods of diagnosing Legionella infections in clinical samples include culturing, antigen detection in urine, identification of the bacterium using paired serology, detection of the bacterium in tissue or body fluids by immunofluorescent microscopy, and genotypic polymerase chain reaction (PCR) methods17. Each method has its limitations, however serological methods for immunoglobulin M (IgM), G (IgG) and A (IgA) have an advantage in that they can determine whether or not a patient has had previous exposure to Legionella. Hence these methods have been described as an excellent technique to determine the seroprevalence of past and recent infection in a population18. The immunofluorescence assay (IFA) and the enzyme-linked immunosorbent assay (ELISA) are the two most widely used serological detection methods although the latter may appear to be less sensitive and specific when compared to IFA19. Microagglutination is also another method for serological diagnosis of legionellosis.
Epidemiological studies of *Legionella* have reported significant geographic variation in the seroprevalence of legionellosis both globally\(^2\) and domestically\(^3\). These studies have usually been cross-sectional and have almost always been used to determine levels of exposure in otherwise healthy populations or in different risk groups\(^4\).

Generally, the prevalence of antibodies to *L. pneumophila* serogroup (sg) 1 has been reported since globally it is the species most frequently isolated. An Italian study showed significant diversity of antibody prevalence in different populations\(^5\). The prevalence of antibodies is not always strictly comparable due to the use of different diagnostic methods in laboratories and titre cut-off values. For example, a 4-fold or greater increase in reciprocal antibody titre to $\geq 1:128$ is considered a laboratory confirmed case of legionellosis\(^6\) while a single high titre of $\geq 1:256$, together with appropriate clinical features suggestive of legionellosis, is considered presumptive evidence of infection at an undetermined time. However, the latter definition should be used with caution since it has been shown that a single acute-phase antibody titre of $\geq 1:256$ could not discriminate between cases of clinical and sub-clinical disease\(^7\). In addition, the utility of serology which have low cut-off titre values can be complicated by cross-reactions which occur among *Legionella* spp. and other gram negative bacteria suggesting that serological cross-reaction is a common occurrence in routine *Legionella* serological testing both in patients with and without pneumonia\(^8\)\(^9\)\(^10\).

Despite several narrative reviews of the epidemiology of legionellosis\(^2\)\(^3\)\(^4\)\(^6\)\(^7\)\(^8\)\(^9\)\(^10\), to date there has been no systematic review or meta-analysis of published data that summarises the global seroprevalence of legionellosis (one review focussed on China\(^10\) and one on occupational risk\(^9\)). Given the significant paucity of information, our aims were to (i) systematically search, assess and summarise the published work on the seroprevalence of *Legionella* globally and its epidemiology; 2) identify whether the seroprevalence data suggest an increasing risk of *Legionella* infection over time; 3) compare measured seroprevalence in ‘high-income’ versus ‘low-income’ countries; and 4) determine whether the prevalence of antibodies differed in ‘high risk’ occupations compared with ‘general populations’. Up-to-date epidemiological information is essential for planning public health interventions and identifying areas requiring further research.

Materials and Methods

Search strategy. We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines\(^11\)\(^12\) (refer to the PRISMA checklist outlined in Supplementary Fig. S2). We examined articles published from 1 January 1990 in Medline (Ovid), Embase, Scopus and the Cochrane Library. We deliberately included grey literature in our citation analysis search process via the following sources: Te Puna, Kiwi Research Information Service, Proquest Dissertations and Theses, Index to Theses, OCLC FirstSearch: WorldCat, ETHOS (Electronic Theses Online Service), OAister, DART-Europe E-Theses Portal, Theses Canada, Trove, as well as GreyLit.org and OpenGrey.eu. Figure S1 shows the search strategy. The main keywords used to identify potentially relevant studies included “legionellosis”, “legionella”, “Legionnaires disease”, “seroepidemiologic”, “prevalence” and “seroprevalence”. In circumstances where data were missing, we contacted the corresponding principal authors of the original studies. We also manually scrutinised the references cited by each potentially relevant paper to identify any additional eligible studies. Available grey literature was not considered useful for our review because it not contain original data on *Legionella* infection seroprevalence.

Study selection. All study titles and abstracts obtained from the database searches were screened for eligibility by the principal author (FG). Suitable papers moved to the second stage where two reviewers independently assessed their eligibility according to the inclusion criteria. Legionellosis was defined as the pneumatic (LD) or non-pneumonic form (Pontiac fever) of infection caused by exposure to *Legionella* spp. In circumstances where multiple publications presented identical data sets and study period, only the most recent article was included. All languages were eligible for inclusion and no publication restrictions were applied. All non-English articles were screened using Google Translate\(^11\). Articles published after 1 January 1990 were selected only if an abstract contained data on the serological assessment of human samples for evidence of *Legionella* infection (LD and suspected Pontiac fever). To address the problem of varying thresholds, we included studies which reported IFA results where the serum samples were titrated from 1:64 and upwards to an end-point titre. To highlight the problem of different positivity thresholds used, all studies and their detection methods including reported titre cut-off to describe a positive antibody response to *Legionella* have been recorded in Supplementary Table S1. Studies which used the ELISA and rapid microagglutination tests to detect *Legionella*-specific antibodies were also included in our analysis. We excluded studies which (i) lacked a suitable denominator to assess seroprevalence, (ii) examined animal sera for *Legionella* antibodies, (iii) focused on *Legionella*-specific antibodies in the environment only, (iv) used IFA with a cut-off titre below 1:64 (although there is no definitive evidence that this is the optimal threshold)\(^12\), which were not considered meaningful due to false reactions and background staining\(^13\) and (v) analysed other pathogens in addition to *Legionella* using the same study populations which resulted in the inability to obtain specific *Legionella* data.

Data extraction and statistical analysis. The following variables were extracted and tabulated: World Health Organization (WHO) region, location, study period, composition of study population(s) in terms of exposure, sex, detection method and IFA titre (upper limit considered positive) and *Legionella* spp. including serogroup that was measured (Supplementary Table S1).

For all qualifying studies, we extracted the number of subjects with antibodies against *Legionella* spp. and population size. To reduce heterogeneity for analysis, subgroup analyses were performed to assess the effect of geographic region (WHO), gender, occupation, age and publication year. Age was classified into three broad categories: children and adolescents ≤ 20 years; adults only (≥ 21 years) and all ages (children and adults combined). If a study did not state the population age range, it was included in the ‘all ages’ category. Countries were classified...
as high, middle or low income according to the World Bank data and thresholds for gross national income per person\(^3\).

The statistical analysis and graphical presentations were performed using the Comprehensive Meta-analysis (CMA) Version 3.0 software package developed by Biostat (Englewood, NJ) (http://www.meta-analysis.com) for comparing two groups with seroprevalence data. Seroprevalence rates were managed as a logit event estimate to normalize the distribution of data. Each logit event estimate was then transformed within the CMA software into proportions with 95% confidence intervals (CIs) when pooled analysis was undertaken. The overall seroprevalence rates were reported as percentages\(^3\). Data were assessed for heterogeneity using the Cochrane Q test, which has limited sensitivity, in conjunction with the \(I^2\) statistic, which represents the percentage of total variation across studies due to between-study heterogeneity\(^3\). The \(I^2\) was used to quantify inconsistency and values \(\geq 75\%\) were considered to represent a substantial degree of heterogeneity\(^3\). Where there was moderate to high between-study heterogeneity, a random-effects meta-analysis was used to produce pooled estimates for all outcome measures. To summarise the data visually and present 95% CIs, Forest plots were created. Publication bias was assessed using Egger's test\(^4\) and funnel-plot-based methods as a means for assessing the validity of this meta-analysis.

No patient recruitment or other involvement in this study was required.

Results

Study selection.

Supplementary Fig. S1 summarizes the results of the search strategy. The literature search was completed on 30 June 2018. The search strategy retrieved 3977 unique citations; 958 were identified from MEDLINE, 1150 from EMBASE, 1829 from Scopus, 18 from Cochrane and 22 from LILACS. Of these 2078 citations were excluded based on duplicates after the first screening based on titles and abstracts, leaving 1967 to be examined (Fig. 1). After initial title and abstract review, 111 articles were read in detail after which 54 were excluded (Fig. 1). From these, we identified 57 articles that reported on the seroprevalence of LD in all ages of the general population (Fig. 1 and Supplementary Table S1).

Characteristics of included studies.

The sample size of these studies ranged from 25\(^1\) and 543\(^1\) (median 252, interquartile range 122–604). Of the 57 studies, 53 were cross-sectional and 4 were cohort studies. IFA was used for laboratory screening in 32 of the 57 selected studies followed by ELISA (16) and microagglutination (9). Based on WHO geographic region, 26 studies were from Europe, 19 studies from the Western Pacific, 5 studies from the Americas, 3 studies from the Eastern Mediterranean and 2 each from South East Asia and Africa (Fig. 2).
Legionella seroprevalence. The overall random-effects pooled Legionella seroprevalence was 13.7 (95% CI: 11.3–16.5) with a high level of heterogeneity ($I^2 = 97.06\%$) (Fig. 3, Table 1). This analysis revealed significant heterogeneity across studies ($p < 0.001$). When only studies representing the general population (excluding occupational exposure) were considered, the pooled seroprevalence was decreased significantly to 10.5% (95% CI: 7.4–14.6) with still high heterogeneity ($I^2 = 96.52\\%$) (Table 1) meaning that the seroprevalence differed when we excluded occupational exposure. The sensitivity analysis showed that regardless of which study was excluded, the results showed that no study had skewed the overall result. Studies reporting the prevalence of antibodies to Legionella in blood donors ranged from 1.2% to 41.7%. The prevalence of antibodies to L. pneumophila sg 1 was reported in all studies with the exception of two serological investigations, one which found that the antibodies of non-L. pneumophila species such as L. longbeachae may be highly prevalent in populations handling compost, and another study of Icelandic children showed an absence to seroreactivity to L. pneumophila sg1 possibly due to antigenic and immunogenic differences between the strains used in the detection test.

Legionella seroprevalence for subgroups. The results of 6 meta-regression analyses for subgroups based on income, WHO region, gender, age, occupation and publication date are included in Table 1. There was an apparent higher seroprevalence in WHO regions such as Europe (14.7% (95% CI: 10.8–19.6)) and higher-income countries (14.3% (95% CI: 11.4–17.9)) possibly due to smaller numbers of studies from low to middle income countries making comparisons between other regions difficult.

Three studies reported the seroprevalence of LD in children and adolescents (defined as those aged ≤20 years) in Iceland, Asia and South America. The seroprevalence of Legionella amongst children and adolescents was 15.9% (95% CI: 10.4–23.6) which was higher than in adults 13.5% (95% CI: 10.6–17.1) and all ages combined (13.4% (95% CI:9.2–19.3)). The Taiwanese children's study reported an increasing overall seroprevalence with age (10% in cases aged 12–18 months, increasing to 30% in the group aged 7–8 years; the seroprevalence showed a plateau from 9–18 years). In Chileans aged ≤20 years, seroprevalence was 10% (cut-off: ≥1:64) overall and
25% in higher socioeconomic groups\(^49\). There appeared to be little consistency within or between countries. For example, in Sweden, 0.2% of the general population had antibodies to *L. pneumophila* sg 1 five years after an outbreak, compared with 11% (IgG) and 16% (IgM) in Norway. The seroprevalence of LD in adults ranged from 0.2% to 43.4%. The examination of individuals of all ages yielded a higher seroprevalence of LD, 21.3% (95% CI: 20.1–22.6) and a range of 5.2% to 76.1%. The seroprevalence of *Legionella* was slightly higher among females (7.1%, 95% CI: 2.7–17.5) compared with males (7.0%, 95% CI: 3.0–15.8).

Assessment of bias.

The funnel plot of standard error with logit effect size (event rate in this case) for all studies included in the meta-analysis did not identify significant publication bias (Fig. 4). Egger’s regression intercept tests (one-tailed) also revealed no evidence of publication bias ($\rho = 0.13$).

Discussion

This systematic review provides the first published summary of the global epidemiology of legionellosis seroprevalence. Findings show that exposure to this organism is global in its distribution and common with an overall random-effects pooled seroprevalence for *Legionella* of 13.7% (95% CI 11.3–16.5). Seroprevalence for various sampled groups that met the inclusion criteria of this review varied widely from 0.2% to 76.1%. The seroprevalence of *Legionella* was slightly higher among females (7.1%, 95% CI: 2.7–17.5) compared with males (7.0%, 95% CI: 3.0–15.8).

Table 1. Results of meta-analyses of the seroprevalence of antibodies to *Legionella* in total and by subgroup.

Meta-analyses/subgroup	Number of studies	Seroprevalence	I^2
All studies	57	13.7% (95% CI: 11.3–16.5)	97.06
All studies (general population)	31	10.5% (95% CI: 7.4–14.6)	96.52
Income (all studies)			
High income	41	14.3% (95% CI: 11.4–17.9)	97.61
Middle income	15	13.3% (95% CI: 9.3–18.8)	93.05
Low income	1	1.2% (95% CI: 0.4–3.6)	0
Income (general population)			
High-income	24	10.9% (95% CI: 7.3–15.9)	97.11
Middle-income	6	13.7% (95% CI: 7.9–22.8)	85.26
Low-income	1	1.3% (95% CI: 0.4–4.1)	0
WHO region			
Africa	2	4.7% (95% CI: 0.3–41.6)	95.10
Eastern Mediterranean	3	12.0% (95% CI: 7.5–18.5)	70.61
European	26	14.7% (95% CI: 10.8–19.6)	97.32
South East Asian	2	12.4% (95% CI: 2.2–46.7)	71.03
The Americas	5	15.7% (95% CI: 6.9–31.7)	98.29
Western Pacific	19	13.0% (95% CI: 9.0–18.3)	97.11
Gender			
Male cases	7	7.0% (95% CI: 3.0–15.8)	95.23
Female cases	5	7.1% (95% CI: 2.7–17.5)	95.52
Age			
All ages	14	13.4% (95% CI: 9.2–19.3)	96.73
Adults only	40	13.5% (95% CI: 10.6–17.1)	97.32
Children/adolescents only (≤20 yrs)	3	15.9% (95% CI: 10.4–23.6)	78.39
Occupation			
Dentists	4	8.8% (95% CI: 3.9–18.7)	94.72
Healthcare workers (including aged care)	6	34.5% (95% CI: 21.9–40.5)	84.30
Commercial/Industrial workers	5	16.6% (95% CI: 5.6–39.7)	98.17
Drivers	2	3.7 (95% CI: 0.1–50.2)	90.12
Divers (professional)	1	28.3% (95% CI: 17.2–42.8)	0
Hotel workers	3	13.6% (95% CI: 4.6–33.7)	94.57
Publication date			
1990 to 1999	21	15.4% (95% CI: 11.9–19.7)	95.23
2000 to 2009	27	15.3% (95% CI: 11.6–19.8)	95.86
2010 to 2017	9	8.0% (95% CI: 4.6–13.7)	98.03
Coupled with a growing predominantly urban population which is also aging population globally, continuous human consumption of drinking water from aging infrastructure and the increased use of artificial water systems to deliver air conditioning, could result in high absolute seroprevalence in parallel with higher relative risk to human health. This hypothesis is consistent with literature demonstrating a higher risk of legionellosis acquisition in urban areas compared to rural regions due to increased exposure to artificial water systems such as cooling towers for air conditioning.

Prevalence data from previous studies are summarized in Table 1. A total of 72 studies were reviewed, with 54 study populations which met the eligibility criteria with a total number of 1,153 individuals and 1,037 personnel).

Study name	Event rate	Lower limit	Upper limit	p-Value
Pancharatna, 2003	0.065	0.021	0.212	<0.001
Sakamoto, 2009	0.006	0.001	0.043	<0.001
You, 2012	0.009	0.006	0.015	<0.001
Demou, 2010	0.028	0.011	0.068	<0.001
Lee, 2008	0.042	0.028	0.064	<0.001
Valente, 2015	0.048	0.039	0.058	<0.001
Linke, 1993	0.050	0.021	0.115	<0.001
Rocha, 1995	0.050	0.026	0.060	<0.001
Siqueira, 2015	0.060	0.037	0.086	<0.001
Headford, 2001	0.009	0.008	0.123	<0.001
Siqueira, 2013	0.076	0.065	0.107	<0.001
Pan, 1996	0.085	0.064	0.115	<0.001
Bell, 1996	0.087	0.067	0.113	<0.001
Yamashita, 1994	0.095	0.052	0.168	<0.001
Lobo, 1994	0.100	0.058	0.168	<0.001
Enstch, 2017	0.104	0.066	0.132	<0.001
Wojdage, 2000	0.120	0.101	0.141	<0.001
Bechuzen, 2005	0.121	0.100	0.147	<0.001
Linkerman, 2002	0.126	0.095	0.166	<0.001
Minehisa, 2005	0.138	0.088	0.211	<0.001
Hsu, 1997	0.156	0.111	0.215	<0.001
Heng, 1997	0.183	0.167	0.201	<0.001
Casal, 1992	0.200	0.165	0.239	<0.001
Nepel, 2007	0.205	0.133	0.302	<0.001
Harvaltono, 1992	0.217	0.179	0.261	<0.001
Rubbeck, 2008	0.230	0.191	0.263	<0.001
Gennaro-Maggior, 1995	0.236	0.162	0.306	<0.001
Coniglio, 2009	0.258	0.212	0.311	<0.001
Neubauer, 1999	0.283	0.217	0.348	<0.001
Mrozowski, 2001	0.283	0.219	0.320	<0.001
Bandia, 2008	0.285	0.252	0.310	<0.001
Rubbeck, 2009	0.288	0.260	0.317	<0.001
De Ory, 2000	0.316	0.247	0.394	<0.001
Nagkingam, 2006	0.317	0.241	0.404	<0.001
Ngah, 2005	0.333	0.263	0.412	<0.001
Penny, 2006	0.333	0.264	0.411	<0.001
Nichol, 1995	0.361	0.315	0.410	<0.001
Queensland Health, 1992	0.425	0.357	0.496	0.038
McGinty, 2006	0.510	0.412	0.608	0.040
Daniel, 2003	0.635	0.538	0.731	0.007
Phoklay, 1990	0.012	0.004	0.016	<0.001
Berlin, 1997	0.154	0.118	0.200	<0.001
Wakelk, 2000	0.040	0.006	0.235	<0.001
Onggi, 2004	0.052	0.030	0.087	<0.001
RFOX, 2007	0.063	0.050	0.121	<0.001
Peng, 2000	0.066	0.051	0.086	<0.001
Ilosa, 1998	0.072	0.033	0.152	<0.001
Tai, 2000	0.086	0.042	0.170	<0.001
Joing, 2009	0.039	0.048	0.193	<0.001
Wang, 1990	0.103	0.068	0.153	<0.001
Polak, 2007	0.152	0.088	0.249	<0.001
Abri, 2009	0.174	0.116	0.252	<0.001
Karvink, 2017	0.218	0.160	0.290	<0.001
Javed, 2010	0.223	0.165	0.295	<0.001
Wang, 1998	0.242	0.185	0.309	<0.001
Sun, 2012	0.281	0.241	0.325	<0.001
Wang, 2004	0.307	0.265	0.353	<0.001
Summary measure	0.137	0.113	0.165	<0.001

Legionnaires’ Disease Surveillance Network (ELDSNet) only report cases with acute pneumonia (LD) in accordance with the 2012 EU/EEA case definition. Nevertheless, as a result of global climate change, environmental conditions are likely to become increasingly favorable for the amplification of Legionella colonization in water systems particularly aging plumbing infrastructure, of urban areas. Coupled with a growing predominantly urban population which is also aging population globally, continuous human consumption of drinking water from aging infrastructure and the increased use of artificial water systems to deliver air conditioning, could result in high absolute seroprevalence in parallel with higher relative risk to human health. This hypothesis is consistent with literature demonstrating a higher risk of legionellosis acquisition in urban areas compared to rural regions due to increased exposure to artificial water systems such as cooling towers for air conditioning and more collective hot water systems.

Previous outbreak studies have detected elevated antibody levels among individuals exposed to L. pneumophila, and although these individuals did not develop overt LD the evidence might suggest a degree of past non-clinical exposure. Given that many widespread and diverse water systems and non-water systems are reservoirs of Legionella and many diverse systems and matrices have been reported as sources of Legionella, it is unknown whether these individuals have only been exposed to particular water systems or other potential sources of L. pneumophila.
is possible that individual differences in behaviour and risk factors could account for varying seroprevalence of antibodies to one or more *Legionella* spp. in the population. Risk factors associated with the occurrence of legionellosis are not fully understood but some studies have suggested that genetic factors may enhance susceptibility to LD. Legionellosis varies by age although the importance of *Legionella* spp. should be considered in all age groups including children. Of interest were two of the three studies which reported the seroprevalence in children and adolescents both used the same *Legionella* IFA Kit (Organon Teknika, USA) to detect antibodies to *L. pneumophila* sg1–6. However, the potential contribution arising from antibody cross reactivity to other Gram-negative bacterial antigens was not investigated by the study authors. Seroprevalence in males generally exceeds that in females although there are exceptions. Other risk factors for the disease include tobacco smoking and pre-existing conditions such as liver cirrhosis, chronic obstructive pulmonary disease, cancer, diabetes mellitus and immunosuppression.

High socioeconomic factors were associated with a raised prevalence of *Legionella* antibodies in Chile. One study which evaluated demographic characteristics such as race/ethnicity reported the highest seroprevalence of LD among the white population. Despite being the inverse to the usual male/female ratio trend, seroprevalence was observed to be slightly higher in females (7.1%) than males (7.0%) which is consistent with a recent study although a plausible explanation could most likely be sought in the low number of studies that were eligible for our review. Nevertheless, one study has shown that women could be more resistant to LD due to the role of Toll-like receptor polymorphisms which protect from an infection.

Cases of LD in occupational settings are widely reported and workers in specific professions with exposure to aerosols may be at higher risk for the disease. Our results showed that the overall pooled *Legionella* seroprevalence across the studies was 13.7% but decreased to 10.5% when occupation exposure was excluded (Table 1). Occupational subgroup analysis in this study showed that some occupations seemed to be at higher risk of antibody response to *L. pneumophila*, namely car and bus drivers, professional diver, dental, hospital and hotel staff and workers from industrial/commercial settings. *Legionella* antibody titres in the blood of dental workers were higher than in the overall population, suggesting that aerosols generated by dental unit waterlines instruments were the primary source. This finding may be a reflection of the rich microbial biofilms commonly present along the length of the fine-bore dental water hoses which contributed to the heavy contamination. Nevertheless another study found that the overall prevalence of *L. pneumophila* antibodies was lower (approximately 10%) and did not significantly vary between those who were involved in the delivery of dental care and those who were not. Such a contrast may be the result of the United States Centers for Disease Control and Prevention (CDC) in 1993 releasing infection control guidelines in dental healthcare settings at a time when there was a higher risk of *Legionella* infection. Despite the low observed seroprevalence in a population comprising of nuclear power plant workers exposed to aerosol-generating sources via cooling towers, it was shown that for exposure from *L. pneumophila* sources not wearing a mask for respiratory protection was a significant risk factor for positive *Legionella* results. Other studies which focused on non-*L. pneumophila* species showed high antibody positivity to *L. longbeachae* in potting media industry workers. This corroborates the notion that cases of *L. longbeachae* infection are frequently associated with exposure to potting mix/soils and composts.

Our meta-analysis identified some geographic variation in legionellosis, but it is based on limited numbers of studies from most regions. Legionellosis is a ubiquitous complex disease that is influenced by a variety of natural and artificial factors (which can promote its proliferation to high concentrations) environmental factors as well as withstand a wide range of temperatures (<0°C to 60°C). Seroprevalence for various sampled groups that met the inclusion criteria of this review varied from 0.2% to 76.1%. Variations depended on the type of population studied, location, season, detection method used and antibody titre cut-off value. For example, an Italian multicentre study showed seroprevalence against *L. pneumophila* sg 1–6 (Naples) was 3.4% compared to 16.4% against *L. pneumophila* sg 7–14 (Milan). The main factors underlying the observed differences was due to the detection and/or reporting cases, and diverse age composition of the two populations (healthcare workers and blood donors). The spatial disparities encountered, however, did not suggest that variation in seroprevalence of legionellosis depended on the distance from the equator.

Continuous environmental exposure of humans to the bacteria from *Legionella*-contaminated sources may stimulate immune responses and generate antibodies. Sero-surveys amongst participants in an outbreak investigation showed that exposure to the bacteria causes increased antibody levels in individuals who do not develop LD and that this effect was higher for those closest to the source. Our findings also assessed health outcomes of *Legionella* infection in highly exposed populations beyond the outbreak situation. In HIV-infected patients, no association was proven with the investigated risk factors for legionellosis, the difference in seroprevalence to *Legionella* spp. and serogroups dependent on their immune status. Immune responses namely that antibodies to less virulent *L. pneumophila* sg7–14 and non-*pneumophila* are less systematically manufactured in HIV infected patients, compared to more virulent *L. pneumophila* sg1–6 that are capable of better arousing the immune system have been hypothesised. Antibody response was not associated with other immunosuppressive disorders such as chronic renal failure (haemodialysis patients) and post-renal transplantation. In another study, Morimoto concluded that the titre in hemodialysis patients was higher than the control group (p < 0.005). The frequency of antibodies to *L. pneumophila* in patients with autoimmune rheumatic diseases was comparable to that in healthy individual patients with this disease being more susceptible to infection owing to the underlying disease itself, comorbidities or to its treatment namely the use of immunosuppressants (including anti-TNF-α). On the other hand legionellosis may be more prevalent among patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease to account for the clinical expression of exacerbations in these patients being characterised by gradual onset and increasing systematic manifestations. Hence, such patients should be appraised with priority, including diverse populations likely to be more at risk.

Studies of *Legionella* seroprevalence have important limitations which in turn limit the conclusions of our meta-analysis. Firstly, while the optimal time for detecting antibodies is generally within a few weeks after onset
of the disease14, high levels of antibodies can persist for years after the infection14 making interpretation of elevated titres difficult. This means that seroprevalence cannot be interpreted as either a measure of recent infection (incidence) nor as a measure of long-term exposure risk (cumulative incidence). Secondly, interpretation of the seroprevalence will not always be strictly comparable because of a lack of a standardized approach between laboratories in their methods employed to detect antibodies to \textit{Legionella} spp75, and titre cut-off values. We found many studies employed different cut-off titre values to define seropositivity meaning that a simple review of results could be misleading. Of significance is the use of a diverse range of in-house and commercially manufactured IFA and enzyme immunoassay antigen preparations which may complicate the interpretation of antibody titre for \textit{Legionella}, in particular over time and from different studies76. For example, in European countries such as Denmark, positive serology rates are systematically confirmed by national reference centers that perform in-house techniques due to a lack of specificity of commercial kits developed for the detection of antibodies to \textit{Legionella}16,77. Lastly, seroprevalence studies are not a good indicator as to the severity or type of infection namely subclinical, non-pneumonic disease (Pontiac fever), LD or extra pulmonary disease78. The impact of this is that while once popular for LD diagnosis, globally the trend is that the scope and number of serological tests performed in the laboratory setting is dropping significantly due to the increase in standardized techniques and culture media in addition to faster, more definitive analyses such as the rapid urinary antigen test and molecular methods. This observation was reflected in our results which showed a significant drop off in the number of published studies between 1990 and 2010 particularly in high-income countries. For example, in Europe the use of serology for LD confirmation decreased from 61% to 6% on average in the period from 1995 to 2010 in favour of rapid, less technically demanding urine antigen test or molecular diagnostic tools78. Acknowledging these limitations, serological diagnostic tests used in epidemiological investigations can provide useful retrospective data on the cumulative incidence of the disease78 as well as potential recurrent outbreaks, since it is the only means of assessing the number of undiagnosed cases.

To conclude, we present a systematic review and meta-analysis of seroprevalence studies of \textit{Legionella} infection to gain a better understanding of the global distribution of this disease. We acknowledge significant heterogeneity was found when data were pooled due to different characteristics among identified studies despite using a random-effects model to provide a more conservative result so the outcome of this pooling needs to be interpreted with caution. For example, the studies that we included were primarily in urban areas where \textit{Legionella} is endemic. Nevertheless, we believe our meta-analysis provides the most comprehensive description of the global seroprevalence of \textit{Legionella} so far published. Given that most studies identified in this review were cross-sectional (53 of 57) further cohort and case-control studies of non-outbreak disease are needed to expand our knowledge of risk factors and exposures for this disease.

Received: 14 June 2019; Accepted: 11 March 2020;
Published online: 30 April 2020

References

1. McDade, J. E. et al. Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease. \textit{N. Engl. J. Med.} \textbf{297}, 1197–1203 (1977).
2. Euzey J. List of prokaryotic names with standing in nomenclature—genus Legionella. \textit{http://www.bacterio.net/legionella.html} (1997).
3. Fields, B. S., Benson, R. F. & Besser, R. E. Legionella and Legionnaires’ disease: 25 years of investigation. \textit{Clin. Microbiol. Rev.} \textbf{15}, 506–526 (2002).
4. Correia, A. M. et al. Probable person-to-person transmission of Legionnaires’ disease. \textit{N. Engl. J. Med.} \textbf{374}, 497–498 (2016).
5. Borges, V. et al. \textit{Legionella} pneumophila strain associated with the first evidence of person-to-person transmission of Legionnaires’ disease: a unique mosaic genetic backbone. \textit{Sci. Rep.} \textbf{6}, 26261 (2016).
6. Cunha, B. A. Legionnaires’ disease: clinical differentiation from typical and other atypical pneumonias. \textit{Infect. Dis. Clin. North. Am.} \textbf{24}, 73–105 (2010).
7. Cho, S. N., Collins, M. T. & Reif, J. S. Serologic evidence of \textit{Legionella} infection in horses. \textit{Am. J. Vet. Res.} \textbf{45}, 2600–2602 (1984).
8. Collins, M. T., Cho, S.-N. & Reif, J. S. Prevalence of antibodies to \textit{Legionella} pneumophila in animal populations. \textit{J. Clin.Microbiol.} \textbf{15}, 130–136 (1982).
9. Phakkey, A., Lindayplist, K. J., Ormland, T. & Berdal, B. P. Legionella antibodies in human and animal populations in Kenya. APMIS. \textbf{98}, 43–49 (1990).
10. Barth, T., Renner, E. & Gabrielson, D. A survey of domestic animals to detect serological responses against \textit{Legionella} spp. by indirect fluorescent antibody. \textit{Can. J. Comp. Med.} \textbf{47}, 341 (1983).
11. Fabbi, M., Pastoris, M. C., Scanziani, E., Magino, S. & Di Matteo, L. Epidemiological and environmental investigations of \textit{Legionella} pneumophila infection in cattle and case report of fatal pneumonia in a calf. \textit{J. Clin. Microbiol.} \textbf{36}, 1942–1947 (1998).
12. Pan, X. & Yang, X. A. serological investigation of Legionella infection in six-species of poultry and domestic animals in Luzhou City, Sichuan Province. \textit{Zhonghua Liu Xing Bing Xue Za Zhi}. \textbf{20}, 108–10 (1999).
13. van Heijnsbergen, E. et al. Confirmed and potential sources of Legionella reviewed. \textit{Environ. Sci. Technol.} \textbf{49}, 4797–4815 (2015).
14. Dareld, J. et al. \textit{Legionella} pneumophila serogroup 1 antibody kinetics in patients with Legionnaires’ disease: implications for serological diagnosis. \textit{Scand. J. Infect. Dis.} \textbf{35}, 15–20 (2003).
15. Pankhurst, C. L. et al. Prevalence of legionella waterline contamination and Legionella pneumophila antibodies in general dental practitioners in London and rural Northern Ireland. \textit{Br. Dent. J.} \textbf{195}, 591–594 (2003).
16. Rudbeck, M., Viskum, S., Mølbak, K. & Uldum, S. Legionella antibodies in a Danish hospital staff with known occupational exposure. \textit{J. Environ Public Health}. \textbf{2009}, 612829 (2009).
17. Cristovam, E., Almeida, D., Caldeira, D., Ferreira, J. J. & Marques, T. Accuracy of diagnostic tests for Legionnaires’ disease: a systematic review. \textit{J. Med. Microbiol.} \textbf{66}, 485–489 (2017).
18. Casal, M., Linares, S. M., Martinez, N. J. & Solis, C. F. Detection of \textit{Legionella} pneumophila-specific antibody by indirect immunofluorescence assay. \textit{Acta Microbiol. Hung.} \textbf{39}, 55–59 (1991).
19. Tay, S. T., Lakhbeer Singh, H., Ramasame, S. D. & Vadivelu, J. Detection of IgM antibodies against \textit{Legionella} pneumophila serogroup 1 in Malaysian blood donors and patients with respiratory illnesses: evaluation of enzyme-linked immunosorbent assay and indirect immunofluorescence assay. \textit{Jpn. J. Infect. Dis.} \textbf{62}, 409–410 (2009).
20. Phin, N. et al. Epidemiology and clinical management of Legionnaires’ disease. \textit{Lancet Infect. Dis.} \textbf{14}, 1011–1021 (2014).
50. Graham, F. F.

57. Berrington, W. R. & Hawn, T. R. Human susceptibility to Legionnaires' disease.

58. Neil, K. & Berkelman, R. Increasing incidence of legionellosis in the United States, 1990-2005: changing epidemiologic trends.

59. Walser, S. M.

51. Commission Implementing Decision 2012/506/EU of 8 August 2012 amending Decision 2002/253/EC laying down case definitions

49. Haraldsson, A., Rechnitzer, C., Friis-Møller, A. & Briem, H. Prevalence of IgM antibodies to nine Legionella species in Icelandic

53. Van Hoof, J., Kazak, J. K., Perek-Białas, J. M. & Peek, S. The challenges of urban ageing: Making cities age-friendly in Europe.

55. Jones, T. F.

61. Nagai, T.

65. Ginevra, C.

30. Jiang, L., Lüttichau, H. R., Phares, C. R., Li, S. & Berkelman, R. The challenges of urban ageing: Making cities age-friendly in Europe.

31. Petti, S. & Vitali, M. Occupational risk for Legionella infection among dental healthcare workers: meta-analysis in occupational epidemiology.

47. Hsu, C. M.

45. Lee, H. K.

38. Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis.

37. Phan, K., Tian, D. H., Cao, C., Black, D. & Yan, T. D. Systematic review and meta-analysis: techniques and a guide for the academic

27. Phares, C. R.

24. Lindsay, D. S.

23. Ditommaso, S., Giacomuzzi, M., Gentile, M. & Zotti, C. Antibody detection and cross-reactivity among species and serogroups of

21. Rudbeck, M. & Olufsen, K. U. Improved diagnosis of Legionnaires' disease: use of the urinary antigen assay. Community Based Pneumonia Incidence Study Group. Clin. Infect. Dis. 20, 1286–1291 (1995).

20. Boswell, T., Marshall, L. & Kedesta, G. False-positive legionella titres in routine clinical serology testing detected by absorption with

19. Estrich, C. G., Gruninger, S. E. & Lipman, R. D. Rates and predictors of exposure to Legionella pneumophila in the United States

18. Rudbeck, M., Molfbak, K. & Uldum, S. Dynamics of Legionella antibody levels during 1 year in a healthy population. Epidemiol.

17. Rudbeck, M. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. PLoS Med. 6, e1000109 (2009).

16. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PloS Med. 6, e1000097 (2009).

15. Rudbeck, M. et al. Seroprevalence of Legionella pneumophila in Santiago: evidences of exposition durante la infancia. Rev. Chil.

14. Haraldsson, A., Rechnitzer, C., Friis-Møller, A. & Briem, H. Prevalence of IgM antibodies to nine Legionella species in Icelandic

13. Rudbeck, M. et al. Seroprevalence of Legionella pneumophila in Santiago: evidences of exposition durante la infancia. Rev. Chil.

12. Luck, P. C. & Helbig, J. H. Epidemiology of legionellosis. Schriftenr. Ver. Wasser. Boden Luftf. 91, 41–58 (1993).

11. Jiang, L. et al. Seroprevalence of Legionella pneumophila infection in children and its role in pediatric community-acquired atypical pneumonia. Zhonghua Min’guo xue ke yi xi xue hui. 37, 188–192 (1996).

10. Lobos, T. et al. Seroprevalence of Legionella pneumophila in Santiago: evidences of exposition durante la infancia. Rev. Chil.

9. Rudbeck, M. et al. Geographical variation of sporadic Legionnaires’ disease analysed in a grid model. Epidemiol. Infect. 138, 9–14 (2010).

8. Franzini, L. & Scramuzza, F. Prevalence of Legionella pneumophila serogroup 1 antibodies in blood donors. Eur. J. Epidemiol. 11, 475–478 (1995).

7. Ditommaso, S., Giacomuzzi, M., Gentile, M. & Zotti, C. Antibody detection and cross-reactivity among species and serogroups of

6. World Bank. New country classifications by income level: 2018-2019, https://blogs.worldbank.org/opendata/new-country-classifications-income-level-2018-2019 (2018).

5. Phan, K., Tian, D. H., Cao, C., Black, D. & Yan, T. D. Systematic review and meta-analysis: techniques and a guide for the academic

4. Higgins, J. P. et al. Prevalence of antibodies to six Legionella species in commercial nursery workers. Brisbane, Australia (1992).

3. Lee, H. K. et al. Prevalence of antibodies to Legionella species, analysis of a healthy population from Jeollanam-do Province, Korea. J. Microbiol. 46, 160–164 (2008).

2. Whiley, H. & Bentham, R. Legionella longbeachae and legionellosis.

1. Rudbeck, M. et al. Prevalence of Legionella pneumophila infection in children and its role in pediatric community-acquired atypical pneumonia. Zhonghua Min’guo xue ke yi xi xue hui. 37, 188–192 (1996).

0. Rudbeck, M. et al. Prevalence of Legionella pneumophila infection in children and its role in pediatric community-acquired atypical pneumonia. Zhonghua Min’guo xue ke yi xi xue hui. 37, 188–192 (1996).
67. Principe, L., Tomao, P. & Visca, P. Legionellosis in the occupational setting. Environ. Res. 152, 485–495 (2017).
68. Sakamoto, R. et al. Is driving a car a risk for Legionnaires’ disease? Epidemiol. Infect. 137, 1615–1622 (2009).
69. Polat, Y., Ergin, C., Kaleli, I. & Pinar, A. Investigation of Legionella pneumophila seropositivity in the professional long distance drivers as a risky occupation. Mikrobiol. Bil. 41, 211–217 (2007).
70. Neubauer, B., Tetzlaff, K., Langfeld, N. & Mutzbauser, T. Occurrence of Bacteria Pathogenic to Man in Different Types of Diving Apparatuses. Int. Marit. Health. 50, 29–37 (1999).
71. Napoli, C., Tato, D., Latta, R. & Montagna, M. T. Assessment of occupational risk of Legionella spp. infection among dental health-care personnel. Ig. Sanita Pubbl. 63, 683–689 (2007).
72. Kevorkyan, A. et al. Legionella pneumophila antibodies in serum samples from medical and dental personnel: a seroepidemiological survey. Biotech. Biotech. Eq. 31, 588–593 (2017).
73. Pancer, K., Rabchenko, D. & Stypurowska-Misiurewicz, H. The influence of contamination of a hospital hot-water system with Legionella pneumophila on serum antibody production by staff members. Indoor Built Environ. 15, 105–109 (2006).
74. Sun, H. et al. Cooling Towers contribute to the high seroprevalence of Legionella pneumophila antibody among hotel workers. J. Public Health. 20, 425–430 (2012).
75. Danau, C., Wallet, F. & Cabanes, P.-A. Seroprevalence survey of antibodies against Legionella pneumophila among exposed and non-exposed personnel at industrial sites. Enivironm Risqs. Sante. 9, 209–216 (2010).
76. Wedge, E. et al. Seroepidemiological study after a long-distance industrial outbreak of Legionnaires’ Disease. Clin. Vaccine Immunol. 16, 528–534 (2009).
77. Wang, S., Wang, J. & Zhang, Z. Epidemiological studies on legionella infection in Taiyuan area of Shanxi Province. Zhonghua yu fang. yi xue za zhi. 32, 208–210 (1998).
78. McGrath, T., Douglas, K. & McGarry, P. Report on Investigation of Background Levels of Antibodies to Legionella. (Department of Industrial Relations, Queensland Government, 2006).
79. Barbeau, J. & Gauthier, C. & Payment, P. Biofilms, infectious agents, and dental unit waterlines: a review. Can. J. Microbiol. 44, 1019–1028 (1998).
80. Williams, J. F., Johnston, A. M., Johnson, B., Huntington, M. K. & Mackenzie, C. D. Microbial contamination of dental unit waterlines: prevalence, intensity and microbiological characteristics. J. Am. Dent. Assoc. 124, 59–65 (1993).
81. Barbot, V., Robert, A., Rodier, M. H. & Imbert, C. Update on infectious risks associated with dental unit waterlines. Pathog. Dis. 65, 196–204 (2012).
82. Currie, S. L. & Beattie, T. K. Compost and Legionella longbeachae: an emerging infection? Perspect. Public. Health. 135, 309–315 (2015).
83. Lindsay, D. S. & Bacterial infection in acute exacerbation of COPD. Eur. Respir. J. 19, 398–402 (1991).
84. Ongut, G. et al. Seroprevalence of antibodies to legionella pneumophila in hemodialysis patients. Transplantation proceedings, Elsevier. 44–46 (2004).
85. Sikora, A. et al. Prevalence of Legionella pneumophila in immunocompromised patients. Open. Med. 8, 208–212 (2013).
86. Morimoto, T. Serum antibodies to Legionella pneumophila by indirect immunofluorescent antibody test in 269 hemodialysis patients and 553 healthy subjects. Rinsho byori. 39, 71–75 (1991).
87. Heudorf, U., Hentschel, W., Hoffmann, M., Luck, C. & Schubert, R. Legionellas in domestic warm water–effects on the health of residents. Gesundheitswesen. 63, 326–334 (2001).
88. Coniglio, M. A., Pignato, S. & Giammanco, G. Prevalence of antibodies against Legionella spp. in HIV-infected subjects and blood donors. J. Infect. 59, 423–425 (2009).
89. Elverdal, P. et al. The occurrence of antibodies against Legionella pneumophila in patients with autoimmune rheumatic diseases. Pol. Arch. Med. Wewn. 125, 749–754 (2015).
90. Lieberman, D. et al. Serological evidence of Legionella species infection in acute exacerbation of COPD. Eur. Respir. J. 19, 392–397 (2002).
91. Ewig, S. Legionella spp. in acute exacerbations of chronic obstructive pulmonary disease: what is the evidence? Eur. Respiratory Soc. 19, 387–389 (2002).
92. Mercante, J. W. & Winchell, J. M. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin. Microbiol. Rev. 28, 95–133 (2015).
93. Elverdal, P., Jørgensen, C. S. & Uldum, S. A. Comparison and evaluation of four commercial kits relative to an in-house immunofluorescence test for detection of antibodies against Legionella pneumophila. Eur. J. Clin. Microbiol. Infect. Dis. 27, 149–152 (2008).
94. Bhopal, R. S. Geographical variation of Legionnaires’ disease: a critique and guide to future research. Int. J. Epidemiol. 22, 1127–1136 (1993).

Acknowledgements
We thank the two anonymous reviewers for their suggestions and comments. Melissa Toohey and Kristie Saumure from the New Zealand Ministry of Health provided valuable help in obtaining some library references and assisted with the literature search. We are grateful to Clare Brazenor from the Victorian Department of Health and Human Services, Melbourne, for the map. While every effort has been made to ensure the information in this publication is accurate, the authors’ do not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information.

Author contributions
F.G. conceived the study aims, design and planned the review. F.G. searched the literature and compiled the list of articles. Two reviewers were assigned to critically review the titles and abstracts and selected the relevant papers. F.G. downloaded the full reports and reviewed, extracted and analysed the data in consultation with S.H., P.W. and M.B. F.G. wrote the first draft of the report with revisions and input from S.H., P.W. and M.B. All authors contributed to revisions lead by F.G. and approved the final version.

Competing interests
The authors declare no competing interests.
Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-63740-y.

Correspondence and requests for materials should be addressed to F.F.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020