Due to divergence, genetic variation is generally believed to be high among distantly related strains, low among closely related ones and little or none within the same classified clonal groups. Several recent genome-wide studies, however, revealed that significant genetic variation resides in a considerable number of genes among strains with identical MLST (Multilocus sequence typing) types and much of the variation was introduced by homologous recombination. Recognizing and understanding genomic variation within clonal bacterial groups could shed new light on the evolutionary path of infectious agents and the emergence of particularly pathogenic or virulent variants. This commentary presents our recent contributions to this line of work.

Introduction

Nucleotide sequences diverge over time due to the combined effects of point mutation and homologous recombination. Recombination events cause changes to regions of contiguous bases in single events and were generally assumed to be rare in bacteria. However, there is growing evidence that homologous recombination has a significant impact on sequence diversification during bacterial genome evolution. A recent analysis on the MLST (Multilocus sequence typing) data of 46 bacterial and two archaeal species revealed 27 (56%) species in which homologous recombination contributed to more nucleotide changes than point mutation. The rapid genetic change introduced by homologous recombination could facilitate ecological adaption and drive pathogenesis in bacterial pathogens. Currently, the MLST scheme, using DNA fragments from seven housekeeping genes, has been routinely used to characterize bacterial isolates. The standard MLST scheme has also been extended to construct fine-scale relationships and further subdivide identical multilocus sequence types (STs) using more loci or a large amount of shared genomic sequences. Given the common occurrence of homologous recombination, it becomes crucial to investigate the genome-wide extent of homologous recombination, which could also benefit the construction of the strain history and tracking the spread of emerging pathogens.

Keywords: homologous recombination, horizontal gene transfer, prophage, multilocus sequence typing, pathogenic adaptation, phylogenomics
allele and on whether the nucleotides are novel in the population.14 We adopted a new approach (illustrated in Fig. 1) to identify recombinant genes in \textit{Neisseria meningitidis} strains with identical STs,15 which does not require the estimation of divergence time and ancestral alleles and can be applied on any two strains with identical STs. In brief, nucleotide substitution was assumed to follow a binomial distribution and an upper bound of genome-wide divergence (μ) by point mutation was calculated for no observed substitution in all nucleotide sites of the seven MLST loci. The estimated maximum genome-wide divergence was then used as a benchmark to compute a P-value for the comparison of nucleotide changes between two genomes for homologous recombination specific to the corresponding species.1 Such a discrepancy between the estimated recombination-mutation ratios highlights the need for a population genetics framework for the study of recombination and bacterial genome evolution.19

Genomic Regions Involved in Recombination

Among the three gene clusters of recombinant genes we identified in \textit{E. coli} O104,16 one gene cluster contained 125 genes and was likely involved in direct chromosomal homologous recombination specific to the ON2010 strain. These 125 genes were found in 20 different functional categories and 70 of them were found in all the studied 57 \textit{E. coli} and \textit{Shigella} genomes. This is consistent with the conclusion that genes from all functional categories are subject to DNA exchange.20 Furthermore, the nearest phylogenetic neighbors of these genes were not clustered in a single phylogenetic group. We hypothesized that extensive recombination with a broad spectrum of strains has taken place in one genome, and this highly mosaic genome then recombined with the precursor to the ON2010 genome.

In another study on \textit{E. coli} O104 (ST678) genomes, we visualized recombinant genes by plotting the pairwise DNA distance of orthologous genes along the genome and identified 167 genes in three gene clusters that have likely undergone homologous recombination.16 A reanalysis on the orthologs between \textit{E. coli} ON2010 and 55989 (labeled as Ec55989 thereafter to avoid unnecessary confusion) genomes using both pairwise DNA distance and the P-values as described in ref. 15 yielded remarkably similar results (Fig. 2). In fact, the use of nucleotide divergence between two genomes for homologous recombination detection has been successful in other studies.5,17 one of which was on two \textit{E. coli} ST131 strains. It has been observed that a higher portion (at least 9\%) of core genes in the \textit{E. coli} ST131 genomes than in the \textit{E. coli} ST678 genomes (Fig. 2) are affected by homologous recombination.5 The findings in both \textit{N. meningitidis} and \textit{E. coli} showed extensive genomic variation within identical STs. Since many bacterial species have a comparable or higher level of recombiningogenicity than \textit{N. meningitidis} or \textit{E. coli};1 extensive genomic variation within identical STs should be expected in many bacterial species.

It is important to note that the high genomic variation discovered within identical STs5,16 should not be interpreted as artifacts of these studies. The high level of genomic variation within identical STs could, instead, be explained by that many non-vertical genes within identical STs are deleterious or transiently adaptive and undergo fast rates of evolution.18 In fact, the ratio of recombination to mutation rates was higher in the comparison of clonally related strains5,14 than of relatively broadly sampled strains from the ON2010 strain. These 125 genes were found in 20 different functional categories and 70 of them were found in all the studied 57 \textit{E. coli} and \textit{Shigella} genomes. This is consistent with the conclusion that genes from all functional categories are subject to DNA exchange.20 Furthermore, the nearest phylogenetic neighbors of these genes were not clustered in a single phylogenetic group. We hypothesized that extensive recombination with a broad spectrum of strains has taken place in one genome, and this highly mosaic genome then recombined with the precursor to the ON2010 genome.

The other two gene clusters of recombinant genes in \textit{E. coli} O104 were located in the prophage regions, but the genes in these two gene clusters were identical
between ON2010 and Ec55989 genomes.16 It is noteworthy that the reanalysis with more single-copy genes (with details in Fig. 2) revealed 5 prophage genes involved in recombination. These prophage genes are not present in all O104 strains and the outgroup IAI1 strain. This could be explained by frequent recombination of the prophage genes with infecting phages or different prophages from other bacterial chromosomes. Since all examined O104 genomes are of conserved genome synteny, our observations support the argument that homologous (legitimate) recombination drives module exchange between phages.21 Together, these findings suggest that homologous recombination takes place frequently in both core genes and dispensable genes.

Phylogenomic Consequence

As the cost of sequencing drops, the characterization of bacterial isolates has utilized more shared genes or loci and shifted toward phylogenomic analysis.8,12,22 Quite often, multiple gene alignments were concatenated into a single super-alignment, from which phylogenies were reconstructed using a variety of methodologies. Such a data set, also known as a super-matrix, has been demonstrated to solve previously ambiguous or unresolved phylogenies,23 even in the presence of a low amount of horizontal gene transfer in the data set.24 Unfortunately, the supermatrix approach becomes very sensitive to recombination when applied to strains with identical STs due to limited genuine sequence diversity. The concatenated sequences of 3794 genes in the *E. coli* O104 strains16 were overwhelmed by the phylogenetic signal of the 125 recombinant genes, as many other genes are identical among the *E. coli* O104 strains (Fig. 2).

The accuracy and robustness of the constructed evolutionary relationships can be improved by the exclusion of recombinogenic and incongruent sequences.8,25 In fact, the removal of the 125 recombinant genes from the *E. coli* O104 data set16 has resulted in consistent phylogenetic relationships of O104 strains by different phylogenetic approaches. One interesting finding of our *E. coli* O104 study is that the number of identical loci implemented in BIGSdb26 was less sensitive to homologous recombination than the concatenated sequences of all loci.16 This could be explained by the fact that recombination has affected a relatively small number of genes but introduced a substantial amount of diversity in the ON2010 genome. It is further noteworthy that superfamilies, another widely used approach for phylogenomic analysis22 are not suitable for characterizing strains with identical MLST types, as many individual genes are identical or nearly identical and contain no or very limited phylogenetic information for each individual gene tree.

Homologous Recombination and Pathogenic Adaptation

Homologous recombination can bring the beneficial mutations arising in different genomes together and have a strong impact on ecological adaptation.4,27 One well-known example was the recombination in the *penA* genes during the emergence of penicillin resistance in *N. meningitidis*.28 Variation of the *penA* gene corresponding to different levels of penicillin susceptibility has also been observed between *N. meningitidis* strains with the same MLST types.15 Furthermore, genetic variation within the same MLST types has been evident in the capsule gene cluster and genes used for vaccine target in *N. meningitidis*.15 These observations suggest a strong relationship between homologous recombination and pathogenic adaptation involved in antibiotic resistance, capsule biosynthesis and vaccine efficacy.

Recombination-mediated pathogenic adaptation was also evident in *E. coli*. Recombination has affected *fimH* which encodes mannose-specific type 1 fimbrial adhesin, resulting in distinct fluoroquinolone-resistance profiles in ST131
strains. A survey of the fimH gene on the 57 E. coli and Shigella genomes revealed that ON2010 was the only E. coli O104 genome containing a fimH blast hit > 10% of length (Fig. 3). Except one nucleotide, the fimH sequence in ON2010 was identical with E24377A and S88. On the ON2010 genome scaffold, fimH is upstream adjacent to a fructuronic acid transporter gene gntP, which is universally present in all E. coli and Shigella genomes. The gntP gene in ON2010 was also found to be involved in homologous recombination (Fig. 3), and most importantly, the most similar sequences to the ON2010 gntP were also in E24377A and S88 (data not shown). The shared origin between the adjacent fimH and gntP genes in ON2010 suggested that patchily distributed genes involved in pathogenesis could be introduced by homologous recombination of the conserved flanking genes.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
The author would like to thank Drs. Gabriel Moreno-Hagelsieb, Markus Friedrich and Edward Golenberg for critically reading earlier versions of the manuscript. This work was supported by funds from Wayne State University.

References

1. Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. ISME J 2009; 3:199-208; PMID:18830278; http://dx.doi.org/10.1038/ismej.2008.93
2. Hughes AL, Friedman R. Nucleotide substitution and recombination at orthologous loci in Staphylococcus aureus. J Bacteriol 2005; 187:2608-704; PMID:15805516; http://dx.doi.org/10.1128/JB.187.8.2608-2704.2005
3. Marri PR, Paniscus M, Weyand NJ, Rendón MA, Calton CM, Hernández DR, et al. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 2010; 5:e1835; PMID:20676376; http://dx.doi.org/10.1371/journal.pone.0011835
4. Didelot X, Méric G, Falush D, Darling AE. Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli. BMC Genomics 2012; 13:256; PMID:22712577; http://dx.doi.org/10.1186/1471-2164-13-256
5. Paul S, Linardopoulos EV, Billig M, Tchesnokova V, Price LB, Johnson JR, et al. Role of homologous recombination in adaptive diversification of extra-articular Escherichia coli. J Bacteriol 2013; 195:231-42; PMID:23123908; http://dx.doi.org/10.1128/ JB.01524-12
6. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing of pathogenic microorganisms. Proc Natl Acad Sci U S A 1998; 95:3140-5; PMID:9501229; http://dx.doi.org/10.1073/pnas.95.6.3140
7. Maiden MC. Multilocus sequence typing of bacteria. Annu Rev Microbiol 2006; 60:561-88; PMID:16774461; http://dx.doi.org/10.1146/annurev.micro.59.030804.121325
8. Ogura Y, Ooka T, Iguchi A, Toh H, Asadulghani M, Oshima K, et al. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci U S A 2009; 106:17939-44; PMID:19815525; http://dx.doi.org/10.1073/pnas.0903585106
9. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 2009; 5:e1000344; PMID:19165319; http://dx.doi.org/10.1371/journal.pgen.1000344
10. Luo C, Walk ST, Gordon DM, Feldgarden M, Tiedje JM, Konstantinidis KT. Genomic sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci U S A 2011; 108:7200-5; PMID:21482770; http://dx.doi.org/10.1073/pnas.105622108
11. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheueman P, et al. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 2011; 365:709-17; PMID:21793740; http://dx.doi.org/10.1056/NEJMoai1106920
12. Bennett JS, Jolley KA, Earle SG, Corton C, Bentley SD, Parkhill J, et al. A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 2012; 158:1570-80; PMID:22422752; http://dx.doi.org/10.1099/mic.0.056077-0
13. Gurtman DS, Dykhuizen DE. Clonal divergence in *Escherichia coli* as a result of recombination, not mutation. Science 1994; 266:1380-3; PMID:7973728; http://dx.doi.org/10.1126/science.7973728

14. Feil EJ, Smith JM, Enright MC, Spratt BG. Estimating recombination parameters in *Streptococcus pneumoniae* from multilocus sequence typing data. Genetics 2000; 154:1439-50; PMID:10747043

15. Hao W, Ma JH, Warren K, Tsang RS, Low DE, Jamieson FB, et al. Extensive genomic variation within clonal complexes of *Neisseria meningitidis*. Genome Biol Evol 2011; 3:1406-18; PMID:22084315; http://dx.doi.org/10.1093/gbe/evr119

16. Hao W, Allen VG, Jamieson FB, Low DE, Alexander DC. Phylogenetic incongruence in *E. coli* O104: understanding the evolutionary relationships of emerging pathogens in the face of homologous recombination. PLoS One 2012; 7:e33971; PMID:22493677; http://dx.doi.org/10.1371/journal.pone.0033971

17. Didelot X, Achtman M, Parkhill J, Thomson NR, Falush D. A bimodal pattern of relatedness between the *Salmonella* Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination? Genome Res 2005; 15:61-8; PMID:17096663; http://dx.doi.org/10.1101/gr.4512905

18. Hao W, Golding GB. The fate of laterally transferred genes: life in the fast lane to adaptation or death. Genome Res 2006; 16:636-43; PMID:16651664; http://dx.doi.org/10.1101/gr.4746406

19. Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science 2007; 315:476-80; PMID:17255503; http://dx.doi.org/10.1126/science.1127573

20. Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT. Phylogenetic analyses of cytochrome oxidase genes: quantification of horizontal gene transfer events. Genome Res 2006; 16:1099-108; PMID:16899658; http://dx.doi.org/10.1101/gr.5322306

21. Clark AJ, Inwood W, Cloutier T, Dhillion TS. Nucleotide sequence of coliphage HK628 and the evolution of lambda phages. J Mol Biol 2001; 311:657-79; PMID:11518522; http://dx.doi.org/10.1006/jmbi.2001.4868

22. Köser CU, Ellington MJ, Cartwright EJ, Gillespie SH, Brown NM, Farrington M, et al. Routine use of microbial whole genome sequencing in diagnostics and public health microbiology. PLoS Pathog 2012; 8:e1002824; PMID:22876174; http://dx.doi.org/10.1371/journal.ppat.1002824

23. Delucq E, Boinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 2005; 6:361-75; PMID:15861208; http://dx.doi.org/10.1038/nrg1603

24. Lapierre P, Laeseke-Nesselquist E, Gogarten JP. The impact of HGT on phylogenomic reconstruction methods. Brief Bioinform 2012; PMID:22908214; http://dx.doi.org/10.1093/bib/bbs050

25. Leigh JW, Susko E, Baumgartner M, Roger AJ. Testing congruence in phylogenomic analysis. Syst Biol 2008; 57:104-15; PMID:18288620; http://dx.doi.org/10.1080/10635150801910436

26. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595; PMID:21143983; http://dx.doi.org/10.1186/1471-2105-11-595

27. Moradigaravand D, Engelstädter J. The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility. PLoS Comput Biol 2012; 8:e1002735; PMID:23133344; http://dx.doi.org/10.1371/journal.pcbi.1002735

28. Bowler LD, Zhang QY, Riou JY, Spratt BG. Interspecies recombination between the *penA* genes of *Neisseria meningitidis* and commensal *Neisseria* species during the emergence of penicillin resistance in *N. meningitidis*: natural events and laboratory simulation. J Bacteriol 1994; 176:333-7; PMID:8288526

29. Felsenstein J. PHYLIP (phylogeny inference package). Version 3.2. Cladistics 1989; 5:164-6