Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination

Keng Hong Tan¹a* and Ritsuo Nishida²b

¹Tan Hak Heng, 20, Jalan Tan Jit Seng, 11200 Penang, Malaysia
²Laboratory of Chemical Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan

Abstract

This review discusses the occurrence and distribution (within a plant) of methyl eugenol in different plant species (> 450) from 80 families spanning many plant orders, as well as various roles this chemical plays in nature, especially in the interactions between tephritid fruit flies and plants.

Keywords: allomone, attractant, Bactrocera, chemical ecology, floral fragrance, insect pollinators, plant–insect interactions, plant semiochemicals, sex pheromone, synomone, tephritid fruit flies

Abbreviations: ME, methyl eugenol; RK, raspberry ketone

Correspondence: a tan.kenghong@yahoo.com, b ritz@kais.kyoto-u.ac.jp, *Corresponding author

Editor: Todd Shelly was editor of this paper.

Received: 28 April 2011, Accepted: 27 August 2011
Copyright: This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
ISSN: 1536-2442 | Vol. 12, Number 56

Cite this paper as:
Tan KH, Nishida R. 2012. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. Journal of Insect Science 12:56 available online: insectscience.org/12.56
1. Introduction

Plants produce a huge array of chemicals, numbering tens of thousands, primarily for defense against herbivores and pathogens as well as for production of floral fragrance to attract pollinators. Among them is a class of phenolics that consists of a group of compounds known as phenylpropanoids. The phenylpropanoids have numerous functions in plants, ranging from structural constituent, growth, and reproductive biochemistry and physiology to chemoeccological interactions with microbes, animals (particularly insects), and neighboring plants.

Methyl eugenol (ME) CAS No. 93-15-12 (Figure 1) is a phenylpropanoid chemical with many synonyms: 4-allylveratrole; 4-allyl-1,2-dimethoxybenzene; eugenyl methyl ether; 1,2-dimethoxy-4-(2-propenyl)benzene; 3,4-dimethoxy-allylbenzene; 3-(3,4-dimethoxyphenyl)prop-l-ene; O-methyl eugenol; and methyl eugenol ether. It is directly derived from eugenol, a product from phenylalanine (an essential amino acid) through caffeic acid and ferulic acid via the shikimate pathway (Herrmann and Weaver 1999). It is a common phenylpropanoid found in many plant species, particularly in spices and medicinal plants. Furthermore, this chemical can be converted to other useful phenylpropanoids either to elemicin or myristicin, and then, in the latter compound, to dillapiole, via the regulation of two genes in Perilla frutescens (Lamiaceae) (Koezuka et al. 1986).

Synthetic ME has been used extensively: a) as a flavoring agent in many types of processed food, soft drinks, and sauces; b) in perfumery; and c) as an essential oil in aromatherapy. From an entomological perspective, synthetic ME has been successfully used in: a) fruit fly surveys (Tan and Lee 1982) and quarantine detection (see reviews by Metcalf and Metcalf 1992; Vargas et al. 2010); b) estimation of native fruit fly populations (Steiner 1969; Newell and Haramoto 1968) and survival rates in natural ecosystems (Tan 1985; Tan and Jaal 1986); c) determining the relationship between fruit phenology and native fruit fly population dynamics (Tan and Serit 1994); d) monitoring movement of native fruit flies between different ecosystems (Tan and Serit 1988); and e) control of tephritid fruit flies (Diptera: Tephritidae) via male annihilation technique through mass trapping (see review by Vargas et al. 2010).

2. Methyl eugenol in nature

The role of ME in citronella grass, Cymbopogon nardus (Poaceae), in the strong attraction of Dacus (currently Bactrocera) fruit flies which also visited other plant species including flowers of papaya and Colocasia antiquorum, was first discovered almost a century ago (Howlett 1915). Sixty years later, ME was found to be the most active attractant for the oriental fruit fly, Bactrocera dorsalis, when compared with 34 chemical analogs (Metcalf et al. 1975). Since then, about 20 plant species from 16 families were reported to contain ME, and the role of chemicals as plant kairomone in dacine fruit fly ecology has been discussed (Metcalf 1990; Metcalf and Metcalf 1992). Additionally, eight plant species containing 0.1-17.9% ME as a natural constituent, and another seven plant species with ME but without quantitative data, were reported by De Vincenzi et al. (2000). Prior to this review, it was reported that a) ME was present in 20 angiosperm and 3 gymnosperm families (Schiestl 2010); and b) ~350 plant species...
belonging to 61 families possessed ME as a constituent component and/or as a component of floral fragrance (Tan et al. 2011).

2.1. Occurrence of methyl eugenol

From an intensive literature search conducted over the first half of 2011, an additional ~100 were added to the 350 plant species to yield a total of over 450 species from 80 families spanning 38 plant orders that contain varying amounts of ME in essential oils from leaves, roots, stems, flowers, or whole plant extracts. The compiled species are presented here in two separate tables. Table 1 shows over 370 species of plants listed alphabetically from 62 families (one fern, two gymnosperms, four monocots, and 55 dicots) having ME content varying from a trace quantity to 99% of essential oils detected in various plant organs, except flowers (which will be presented in Table 2 in section 3.4). The large number of families involved indicates that biosynthesis of ME evolved independently in many of the Plantae orders and families. Families that are represented by 10 or more species in Table 1, in decreasing order, are Asteraceae (47), Apiaceae (44), Lamiaceae (38), Lauraceae (34), Aristolochiaceae (32), Rutaceae (23), Myrtaceae (20), Poaceae (12), Cupressaceae (10), Euphorbiaceae (10), and Zingiberaceae (10). The ME content varies greatly within and between species as well as within and between the plant families. Several species have ME content over 90% in essential oils, namely Croton malambo (Euphorbiaceae), Cinnamomum cordatum (Lauraceae), Melaleuca bracteata, M. ericifolia, M. leucadendra, M. quinquenervia, Pimenta racemosa (all Myrtaceae), Piper divaricatum (Piperaceae), and Clusena anisata (Rutaceae). Furthermore, 68 species possess ME content between 20 and 90% in essential oils of either a whole plant or a part thereof (Table 1). These plant species are likely to involve ME in their chemical defense against pathogens and/or insect herbivores. Most of the plant species listed in the table are either spices, medicinal plants (many with ethnopharmacological properties), or plants of economic importance, especially in the production of essential oils for aromatherapy and perfumery. As such, many more plant species, currently with little or no anthropocentric importance, may contain ME and await discovery and/or chemical analysis.

Methyl eugenol, as a constituent in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. If present in sufficiently high concentration, it will immediately deter the herbivore from further feeding on the affected part (see section 3.2.3). In this case, ME acts as a deterrent or repellent. In many plant species, ME is present along with varying amounts of eugenol—ME’s immediate precursor (see section 3.4.2.2 B). Both the compounds are found in most spices.

For plant species with low ME content, this component may be detected only in certain developmental stages. This is demonstrated by the sweet marjoram, Origanum majorana (Lamiaceae), in which ME was detected during the early vegetative and budding stages of four growth stages investigated (Sellami et al. 2009). Similarly, ME was detected in Artemisia abrotanum (Asteraceae) only during the emergence of runners and mass flowering phases among four studied (Table 1). Nevertheless, in Artemisia dracunculus ME was detected at 6.06, 6.40, 38.16, and 7.82 % of essential oil weight during emergence of runners, budding, mass flowering, and seed ripening phases, respectively (Khodakov et al. 2009).
A native Mediterranean plant species with ethnopharmacological properties, *Erodium cicutarium* (Geraniaceae), was shown to contain a relatively high content of ME (10.6%) in leaf hexane extract (Lis-Balchin 1993). Nevertheless, out of approximately 170 chemical components, many of which existed in trace quantities, ME was not detected in some specimens of the same species (Radulovic et al. 2009). This finding probably reflects geographical variation among varieties or populations and not different extraction methods or chemical analyses.

High variation within a plant species in terms of ME content may lead to the identification of distinct chemotypes. To further illustrate varietal differences in plant species, two common *Ocimum* species (Lamiaceae), *O. basilicum* and *O. sanctum*, which are frequently used for culinary and medicinal purposes in Southeast Asian countries in particular, show distinct variations in terms of ME content. 19 accessions/varieties of *O. basilicum* (sweet basil), two wild and 14 cultivated as ornamentals in Sudan, two from Germany, and one from United Arab Emirates, had varying contents of phenylpropanoids—eugenol, ME, and methyl cinnamate—in combined leaf and flower essential oils. As indicated by peak area in essential oils, 12 varieties had highly variable content of eugenol from 0.05 to 43.3%, and for methyl cinnamate, 11 varieties had content from 1.9 to 42.4%, of which seven had over 15%. However, only one variety had 8.7% ME without the other two phenylpropanoids, and three had ME in trace amounts (Abduelrahman et al. 2009). Nevertheless, two varieties of the sweet basil found in Malaysia had no eugenol, but ME content was at 5.6-12.3% in leaf and 3.2-11.1% in inflorescence essential oils (Nurdijati et al. 1996).

Ocimum sanctum (holy basil) also varies considerably in terms of ME and eugenol contents in leaf and inflorescence essential oils. Seven varieties of holy basil in Malaysia and Indonesia can be grouped into three chemotypes based on the phenylpropanoid content in leaf essential oils: two as eugenol chemotypes with 66-73% eugenol and 0.5-3.1 % ME, four ME chemotypes with 78-81% ME and 2.7-5.8 % eugenol, and one ME–eugenol chemotype with 52% ME and 27% eugenol (Nurdijati et al. 1996). The phenylpropanoids in the leaves of both sweet and holy basils are not released naturally. They are stored in the numerous oily glands (characteristic of Lamiaceae (formerly Labiatae)). More glands per unit surface area are found on the lower surfaces of leaves in the basils. Healthy leaves on a plant do not attract male *Bactrocera* fruit flies (see 3.3.1. Insect attractant). However, when any part of the plant (especially the leaves) is damaged or squashed, many male fruit flies are attracted to the damaged part, indicating the release of ME and eugenol. Further, it is very interesting to note that the *O. sanctum* leaf (chemotype unspecified) essential oil has lipid–lowering and anti–oxidative effects that protect the heart against hypercholesterolemia in rats fed with a high cholesterol diet (Suanarunsawat et al. 2010).

Additionally, another species of *Ocimum* in Brazil, *O. selloi*, has two chemotypes. Leaf and flower essential oils of chemotype A contained estragole (methyl chavicol) at 80.7 and 81.8% with ME at 0.79 and 1.13% of peak area, respectively, while chemotype B had ME as the major component at 65.5 and 66.2% of peak area in leaf and flower essential oils, respectively, and with no trace of estragole (Martins et al. 1997).
The same species of plant grown in different countries may show high variation in chemical constituents. This was well illustrated by *Alpinia speciosa* (Zingiberaceae) in which leaves collected from Japan contained ME, estragole, and (E)-methyl cinnamate at 2.9, 4.6, and 24.1% of essential oil. The phenylpropanoids were not detected in leaves that originated from Amazonia (Brazil), Martinique (French West Indies), Rio Grande (USA), and China and Egypt (Prudent et al. 1993).

Furthermore, within a variety of a plant species, the quantity of ME may also vary depending on the plant tissue and on the time of harvest. This is elucidated by *Myrtus communis* var. *italica* (Myrtaceae) grown in Tunisia. The quantity of ME varied from 0.4 to 1.9% of leaf essential oil, with > 1% for October, November, and March over a period of 12 months. The monthly ME content of stem oil varied between 0.8 and 3.6%, with January and April > 3%. However, fruits had monthly ME content of 1.1-1.3% for August and September, which then rose to 3% in subsequent months and remained between 3.1-3.6% from October to January (Wannes et al. 2010).

Even during storage, the major components of essential oils may change considerably. This is shown by *Agastache foeniculum* (Lamiaceae), which contained five major components. During storage of the plants for 17 days, estragole decreased from 63.2 to 50%, with a corresponding increase of ME from 28.6 to 41% in plant essential oil (Dimitriev et al. 1981).

It was shown that green parts of *Proiphys amboinensis* (Amaryllidaceae) leaves contained a trace quantity of ME, and during browning of a leaf, the yellow and brown parts contained 0.1 and 0.2-0.3 µg/mg of leaf, respectively, that attracted many male fruit flies (Chuah et al. 1997). The attraction phenomenon has never been observed in the normal browning of the leaves, except on one occasion after a raining shower when an infected leaf attracted many male fruit flies (ME-sensitive *Bactrocera* species) that fed along a yellow–brown border between the green and yellow to brown parts (Figure 2, unpublished observation). The attractant in the browning phenomenon may be induced or produced by microbes as a result of an infection, and this certainly warrants further investigation.

Besides large variation within species, differences between species within a genus frequently occur. For example, the genus *Heterotropa* (Aristolochiaceae) possesses species with ME content ranging from 0.1 to 50% of volatile oil. Many of the 27 species have ME content below 5% of volatile oil, except for *H. fudzinoi* (11%), *H. muramatsui* (20%), and *H. megacalyx* (50%). Eleven species of *Artemisia* (Asteraceae) have ME in trace quantities (e.g., *A. campestris*), whereas *A. dranunculus* has an ME content of 35.8%. Similarly, high variation in ME content exists for genera *Ocimum* (Lamiaceae), *Cinnamomum* (Lauraceae), and *Melaleuca* (Myrtaceae), in which most species are known to have relatively high ME content (Table 1). Strangely, many species in the genus *Croton* (Euphorbiaceae) contain ME in aerial parts (stems and leaves) except *Croton micrans*, which has ME in flowers but not in leaves (Compagnone et al. 2010).

It was found that shading from the direct sunlight also affected the content of phenylpropanoids in leaves. *Ocimum selloi* seedlings from the same population grown under normal sunlight and two different shadings, blue and red, showed a change in
two phenylpropanoids, estragole and ME. The leaf estragole content under full sunlight, blue shading (with transmittance of 400-540 nm), and red shading (with transmittance of > 590 nm), was 93.2, 87.6, and 86.1% (relative percentage of peak area), respectively. While for leaves, the ME content was 0.6% under full sunlight and 1.1% under both types of shading (Costa et al. 2010).

2.2 Distribution of ME in various plant organs
The distribution of ME among plant organs is never even as illustrated by many of the species listed in Table 1. A Brazilian folk medicine plant, *Kielmeyera rugosa* (Caryophyllaceae), possesses ME only in flowers and not in leaves and fruits; the showy flowers are pollinated by large bees (Andrade et al. 2007). *Valeriana tuberosa* (Valerianaceae), a medicinal plant used as a mild sedative, commonly found in Greece, has eugenol and ME in similar quantities (~0.45% of oil) in inflorescences but none in roots, stems, or leaves (Fokialakis et al. 2002).

Another medicinal plant, bay laurel *Laurus nobilis* (Lauraceae), is known to have antibacterial, antifungal, anti-inflammatory, and anti-oxidative properties. It was reported to contain ME in all its aerial parts but in different quantities, such as 3.1, 11.8, 4.7, and 16 % of flower, leaf, bark, and wood essential oils, respectively (Fiorini et al. 1997). Recently, 10 populations of wild bay laurel found in Tunisia had ME at 13.1-33.6, 6.6-17.8, 1.0-16.8, and 3.9-14.3 percentage composition of essential oil in stems, leaves, buds, and flowers, respectively (Marzouki et al. 2009). In another study on the same species, plants from Turkey had ME content that varied considerably between old and young leaves at 1.2 and 0.2% of volatile composition, respectively, while buds had 0.3% and fruits had 0.1% ME, with no ME detected in flowers (Kilic et al. 2004). Additionally, flowers of *Myrtus communis* var. *italica* (Myrtaceae) contained ME at 4.02% of the essential oil as one of seven major components, but as a minor component in leaves and stems at 0.38 and 0.22% of the essential oil, respectively (Wannes et al. 2010).

The amount of ME emitted from flowers of carob tree, *Ceratonia siliqua* (Fabaceae), varies considerably. Whole hermaphrodite flowers did not emit ME, male flowers emitted 2.8% ME of total volatiles, and female flowers of cultivars Galhosa and Mulata emitted 32 and 1.5% of total volatiles, respectively. In this species, the stamens and stigmas did not emit ME, but the nectar disk (source of most volatiles) of hermaphrodite, male, and female flowers emitted 0.8, 1.7, and 4.7-5.7% ME of total volatiles, respectively (Custodio et al. 2006). Whole flowers of *Clarkia breweri* from some plants emit eugenol, isoeugenol, ME, and methyl isoeugenol, while those for other plants do not emit ME and methyl isoeugenol. For flowers that emit all the four phenylpropanoids, the petals emit on average ME, methyl isoeugenol, and eugenol approximately 2.5, 1.8, and 0.5 µg/flower/24 hours, respectively, without any isoeugenol. In contrast, pistils and stamens emit only a single component of methyl isoeugenol and ME in very low quantities (Wang et al. 1997). This and the preceding examples clearly show that the phenylpropanoids are distributed or released unevenly among different parts of individual flowers. All these species show that distribution or release of ME varies even in different parts of individual flowers.

Fruit of *Myrtus communis* var. *italica* showed variation in many of its 48 volatile components during development and ripening.
As to its ME content, it increased slightly during the initial stage of development when the fruit was green in color from 1.14 to 1.26% (wt/wt) during 30 to 60 days after flowering. Then, ME concentration increased two-fold when the fruits were pale yellow from 3.05-3.30% during 90-120 days after flowering. A slight increase was noted when the fruits ripened and turned dark blue (Wannes et al. 2009).

Calamus or sweet flag, *Acorus calamus* (Acoraceae), is a unique medicinal plant in that, unlike many other species in which ME is mainly found in aerial parts, it has ME in the roots. In this species, aerial parts contained only about 1% ME but root essential oil contained up to 80% ME, particularly in the European and Japanese samples (Duke 1985). In this species, the high ME content may be used as chemical defense against root–feeding insects or nematodes.

The distribution of ME within a plant is clearly uneven. In many species, ME may be detected in a specific plant part but not in other parts. Intraspecific chemical variation may be the result of several phenomena, namely: a) adaptation to different pollinator species, b) random genetic drift, c) adaptation to disruptive learning processes in pollinators among non–rewarding flowers, and d) introgression effects involved in hybridization (Barkman et al. 1997). Another possible phenomenon is the selection pressure exerted by herbivores, microbes, and nematodes in their interactions with plants (see section 3.2).

3. Role of methyl eugenol in plants

There are two main theories on the evolution of secondary plant metabolites. First, due to oxidative pressure and the possibility of photo–damage, plants might have developed secondary plant metabolites with antioxidant properties, namely flavonoids, to prevent cellular damage by highly reactive chemicals (Close and McArthur 2002; Treutter 2005). The second theory states that it arose from the relationship between plants and various groups of herbivores or pathogens (Dicke and Hilker 2003; Franceschi et al. 2005), and this latter view is further substantiated in this review.

3.1. Induction of phenylpropanoid biosynthesis due to stress

Phenylpropanoids form a large subclass of chemical compounds within the class of phenolics. All of them are derived from cinnamic acid/p–coumaric acid, which in turn is derived from phenylalanine, an essential amino acid, catalyzed by an enzyme, phenylalanine ammonia lyase (see 3.4.2.B below). This enzyme is the branch–point enzyme between primary (shikimate pathway) and secondary (phenylpropanoid) metabolisms. Many simple and complex phenylpropanoids may be induced in plants by external stresses, such as high ultra–violet light, pathogen attack, and physical wounding, such as that caused by herbivory (see review by Dixon and Palva 1995). The cytochrome-p450s-dependent oxygenases, belonging to a large plant gene family, are involved in primary metabolism, such as in steroid and phenylpropanoid biosynthesis, and secondary metabolism. A similar phenomenon also exists for O-methyltransferase enzymes that are involved in primary metabolism, namely lignin synthesis and secondary metabolism, such as phenylpropanoid biosynthesis (Pichersky and Gang 2000).

Essential oils of three untreated orange varieties of *Citrus sinensis* (Rutaceae)—Hamlin, Pineapple and Valencia—did not contain any ME. But, when treated with
abscission agents to loosen fruits for mechanical harvesting, six phenylpropanoids, namely eugenol, ME, (E)- and (Z)-methyl isoeugenol, elemicin, and isoelemicin, were detected for the first time. Among these compounds, ME was the most abundant component present at 42 ppb in orange juice from the treated fruits (Moshonas and Shaw 1978). This study clearly shows induction of phenylpropanoid biosynthesis in fruit under stress. The role of ME in the treated orange is unclear, however.

3.2. Defense

Plants produce a large diversity of chemical compounds to deter phytophagous organisms, especially against insect herbivores and/or pathogens. These chemicals may exist as plant primary constituents or as secondary by-products/metabolites. They have diverse biochemical and physiological activities against a) pathogenic microbes, b) competitive/neighboring plant species, and c) herbivores. Plant chemical constituents that are not secreted naturally, and affect animal behavior in self–defense by acting as a toxicant, antifeedant, deterrent, irritant, repellent, and/or growth regulator, act as para–allomones (an allomone is a naturally secreted chemical that benefits only the releaser in an interaction between two species of organisms).

3.2.1. Microbes

Essential oils and ME have been known for a long time to possess antifungal activity. ME and eugenol have similar antifungal activity against seven species of fungus at 2.0 mM concentration (Kurita et al. 1981). The essential oil of *Echinophora sibthorpiana* (Apiaceae) contains ME, and the oil (~0.1%) or ME alone (at 0.05-0.1%) showed some inhibitory activity against fungi and bacteria (Kivanc 1988). At temperatures 5-15 °C, 1000 ppm ME delayed mold’s initiation of mycelium and spore development in 32 strains: four of *Aspergillus ochraceus*, two *A. niger*, 16 *Penicillium clavigerum*, and 10 *P. expansum* (Kivanc and Akgul 1990). Furthermore, sprays of 0.5% ME on peanut pods and kernels prevented colonization of *Aspergillus flavus*, common mold, and inhibited aflatoxin synthesis in the fungus. Consequently, it was suggested that ME be used to prevent infestation of the fungus in peanuts (Sudhakar et al. 2009).

Fruit essential oil of emblica, *Phyllanthus emblica* (Euphorbiaceae), that contained 1.25% ME among eight major components had high antimicrobial activity against contaminating microbes, such as: a) Gram–positive bacteria, e.g., *Bacillus subtilis* and *Staphylococcus aureus*; b) Gram–negative bacteria, e.g., *Escherichia coli*, and *Salmonella*; c) molds, e.g., *Aspergillus niger* and *A. oryzae*; and d) the budding yeast, *Saccharomyces cerevisiae*. The antimicrobial activity of the oil was mainly due to the presence of ME, β -caryophyllene, β -bourbonene, and thymol (Zhao et al. 2007). Recently, another fruit essential oil of *Eugenia singampattiana* (Myrtaceae) had major constituents, namely, α -terpineol (59.6%), camphene (12.1%), ME (11.5%), and α- pinene (4.7%). A minimum inhibitory concentration (MIC) at 0.2 µL/mL of the essential oil yielded complete inhibition against *Candida albicans* (a form of yeast that causes infections such as "thrush") (Jeya Johti et al. 2009).

The growth of a strain of *Campylobacter jejuni*, a major bacteria species causing gastroenteritis in humans worldwide, was inhibited by essential oil of carrot, *Daucus carota* (Apiaceae), as well as individual component of ME and elemicin at a MIC of
250 µg/mL, which was slightly less effective than methyl isoeugenol at MIC of 125 µg/mL (Rossi et al. 2007).

3.2.2. Nematodes. The pinewood or pine wilt nematode, *Bursaphelenchus xylophilus*, is very damaging to matsutake mushroom cultivation in addition to causing pine wilt. Nematicidal activities against the nematode were demonstrated with LC50 (lethal concentration that induces mortality in 50% of test organisms) values for geranial, isoeugenol, methyl isoeugenol, eugenol, and ME at concentration of 0.120, 0.200, 0.210, 0.480, and 0.517 mg/mL, respectively (Park et al. 2007).

3.2.3. Antifeedant. Plant ME in the growing bud of *Artemisia* capillaries was found to inhibit feeding (100% antifeeding activity on 2 cm diameter leaf disc) by larvae of the cabbage butterfly, *Pieris rapae* subspecies *crucuvera* (Katsumi 1987). In addition, ME was the most potent of seven eugenol analogs in essential oil of *Laurus nobilis* against a noctuid moth white–speck, *Mythimna unipuncta* (Muckensturm et al. 1982).

A fresh water aquatic plant *Micranthemum umbrosum* (Scrophulariaceae) possesses elemicin, a phenylpropanoid as one of two chemicals used in chemical defenses against herbivores, which acts as an antifeedant against generalist consumers such as crayfish (*Procambarus acutus*). To determine the structure–activity relationship among eight naturally occurring phenylpropanoids, bioassays were conducted and showed that ME was most active and much more effective than either eugenol or elemicin in deterring feeding by crayfish (Lane and Kubanek 2006).

3.2.4. Insects. Of the nine major constituents of essential oils, benzene derivatives (eugenol, isoeugenol, ME, safrole, and isosafrole) are generally more toxic and repellent to the American cockroach, *Periplaneta americana*, than the terpenes (cineole, limonene, p-cymene, and α-pinene). Furthermore, ME was most effective in terms of knockdown activity, as well as repelling and killing effects (Ngoh et al. 1998).

Toxicity of ME against larvae of the tobacco armyworm, *Spodoptera litura*, was found to be significant. Larvicidal activity of a residual ME (15 µg/leaf cm²) was 36.0 ± 15.3% and 76.6 ± 11.5% for 24 and 48 hours of exposure, respectively (Bhardwaj et al. 2010). However, as to mosquitocidal impact, ME, found only in leaves of *Magnolia salicifolia* (Magnoliaceae), induced 100% mortality at 60 ppm against 4th instar larvae of the yellow fever mosquito, *Aedes aegypti*, which is responsible for the spread of dengue fever and Chikungnya viruses (Kelm et al. 1997).

In a fumigation study comparing the toxicity of more than a dozen monoterpenes against the rice weevil, *Sitophilus oryzae* (Coleoptera: Curculionidae), ME and eugenol were moderately toxic compared to the most toxic compound tested, menthone (Lee et al. 2001). The latter was the main chemical component in *Mentha arvensis* (Lamiaceae) var. *piperascens* essential oil, which in turn was the most toxic among 16 medicinal and spice plants tested. Nonetheless, ME was the most potent inhibitor against the acetylcholine esterase (Lee et al. 2001), an enzyme responsible for the hydrolysis of the neurotransmitter acetylcholine, which can eventually lead to paralysis. Similarly, fruit essential oil of *Illicium simonsii* (Aquifoliaceae) that contained β-caryophyllene (10.30%), δ-cadinene (9.52%), and ME (8.94%) as major components had strong fumigant and contact toxicities against
adults of the maize weevil, *Sitophilus zeamais*, with LC$_{50}$ values of 14.95 mg/L air and 112.74 µg/adult, respectively (Chu et al. 2010). Fumigant and repellant effects, leading to almost 100% mortality within 24 hours, were observed on adult brown plant hoppers, *Nilaparvata lugens*, feeding on rice seedlings placed over a filter paper containing ME residue at ~0.15mg/cm2 (Tan, unpublished data).

It is interesting to note that ME as a fumigant was also very toxic to two global pest fruit fly species—the Mediterranean fruit fly, *Ceratitis capitata*, and the melon fly, *Bactrocera cucurbitae* (a cue–lure/ raspberry ketone [RK] responsive species)—compared with basil oil, linalool, estragole, and (E)-anethole, all of which showed no knockdown effect at 0.75% concentration (Chang et al. 2009). After two hours of exposure to ME at concentrations of 0.5 and 0.75%, mortality/ knockdown was 96 and 100% against *C. capitata* and 98 and 97% against *Ba. cucurbitae*. However, ME was less toxic as a fumigant, even though it was a strong attractant, to the oriental fruit fly, *Ba. dorsalis*. Concentrations of 10-100 % induced 35-53% mortality/knockdown against this species (Chang et al. 2009).

3.3 Chemical cue

Certain insect species have adapted to using ME as a stimulant or attractant to locate plant host or source for pharmacophagy (consumption of non–nutritive and non–essential chemicals).

3.3.1 Insect attractant

Some insect species are known to be attracted to ME for unknown reasons, while others may be attracted and stimulated to undergo pharmacophagous feeding.

3.3.1. Pest insect species

Two scarabid pest species, *Cetonia aurata aurata* and *Potosia cuprea*, were captured in traps baited with a known attractant consisting of ME, 1-phenylethanol, and (E)-anethole (1:1:1). However, the numbers trapped were significantly increased for both the species with the addition of a synergist, either geraniol or (+)-lavandulol (Vuts et al. 2010). Larvae of the rice stem borer, *Chilo suppressalis*, are attracted to “oryzanone” (p-methylacetophenone), and ME among 30 compounds related to the “oryzanone” also attracted the larvae (Kawano and Saito 1968). Although ME is not present in rice plants, it may be interesting to evaluate the impact of ME on stem borer physiology and behavior.

Two *Dacus* (currently *Bactrocera*) (Diptera: Tephritidae) species of fruit flies were first discovered to be attracted to citronella grass *Cymbopogon nardus* used as a mosquito repellant (Howlett 1912). Subsequently, ME was positively demonstrated to be solely responsible for the attraction (Howlett 1915). Since then, voluminous publications related to fruit fly attraction to ME have appeared. It should be pointed out at this juncture that all *Bactrocera* species may be categorized into three groups based on their response to two potent attractants: cue–lure, a synthetic analog of RK (195 species cue–lure responders, this chemical being a synthetic of RK) and ME (~84 ME responders), and non–responders to the attractants (28 species confirmed and 258 species listed under “lures unknown”) (IAEA 2003). The effects of the attractants on sexual behavior of *Bactrocera* fruit flies have recently been reviewed (Shelly 2010).

ME acts as a precursor or booster to male fruit fly sex pheromonal component(s) in the rectal gland of certain *Bactrocera* species (Nishida et al. 1988, 1990, 1993; Tan and Nishida...
Plant ME, when released, attracts only male fruit flies, although there are two reports of wild females being attracted into traps baited with poisoned synthetic ME (Steiner et al. 1965; Verghese 1998). The attraction of females was probably due to a chemical contamination—perhaps male sex pheromonal components from spontaneous ejaculation induced by the poisoned bait prior to death of captured males. In contrast, no female Bactrocera dorsalis or Ba. umbrosa was ever attracted to or captured in ME-baited clear-traps, without an insecticide, used in the ‘capture–mark–release–recapture’ technique to capture thousands of live wild males for ecological and population studies in areas with high fruit fly infestation (Tan 1985; Tan and Jaal 1986; Tan and Serit 1988, 1994). These field studies further confirm that pure ME is a male attractant, although ME did induce an electrophysiological response in the antennae of Ba. dorsalis females (Siderhurst and Jang 2006) that may be translated into a negative rather than positive attraction response under natural conditions. Male fruit flies do not directly cause harm or damage to plants by just feeding on ME.

Several putative and ME-sensitive sibling species of the Bactrocera dorsalis complex, such as Ba. carambolae, Ba. caryaeae, Ba. dorsalis, Ba. invadens, Ba. kandiensis, Ba. occipitalis, Ba. papayae, and Ba. philippinensis form the most serious group of pests of fruits and vegetables. Males are strongly attracted to and compulsively feed on ME, which acts as a) a sex pheromone precursor in Ba. dorsalis and Ba. papayae—the latter shown to be neither distinct biological nor genetic species from the former (Naeole and Haymer 2003; Tan 2003; Zimowska and Handler 2005), in which ME is converted mainly to (E)-coniferyl alcohol and 2-allyl-4,5-dimethoxyphenol (Nishida et al. 1988; Tan and Nishida 1996, 1998; Hee and Tan 2004); and b) a booster component to endogenously produced sex pheromone in Ba. carambolae, where it is biotransformed to only (E)-coniferyl alcohol (Tan and Nishida 1998; Wee et al. 2007). Recently, it was reported that the extremely invasive species in Africa, Ba. invadens, and in the Philippines, Ba. philippinensis, convert consumed ME to the same ME metabolites in similar ratio as Ba. dorsalis, and they belong to the same species clade, while Ba. zonata biotransformed ME to 2-allyl-4,5-dimethoxyphenol and (Z)-coniferyl alcohol, and Ba. correcta to (Z)-3,4-dimethoxycinnamyl alcohol and (Z)-coniferyl alcohol (Tan et al. 2011 a,b).

Consumption of ME has been shown to significantly improve male mating competitiveness in Ba. dorsalis (Shelly and Dewire 1994, 2000; Tan and Nishida 1996, 1998), Ba. carambolae (Wee et al. 2007), Ba. correcta (Orankanok et al. 2009), and Ba. zonata (Quilici et al. 2004; Sookar et al. 2009). Wild fruit fly males have easy access to natural sources of ME (Tan 2009). Therefore, it would be desirable to feed sterile males with ME in order to compete with wild males “on a level playing field”, before mass release so as to enhance mating success in a sterile insect technique (SIT) program (Shelly et al. 2010).

3.3.1.2. Beneficial insect species. The green lacewing, Ankylopteryx exquisite, was attracted to ME-baited traps set up in two locations in central Taiwan in large numbers (350-800 adults/trap/two weeks during July) (Pai et al. 2004). Additionally, adults of another lacewing, Chrysopa basalis, were captured in plastic traps containing ME (Suda and Cunningham 1970). The reason for their attraction to ME for these predatory insects is
still unclear. This is also the case for the weak attraction of honeybees, *Apis mellifera*, to traps baited with ME in high elevation native forest in Hawaii. The number captured varied with seasons, and it was found that more honeybees were captured in March and between June and August (Asquith and Burny 1998). The numbers trapped certainly did not reflect capture due to chance. Therefore, could the worker honeybees be mistakenly guided into ME traps through previously learned odor of ME resembling floral fragrance of golden shower or other flowers (see below)? Perhaps this question may be satisfactorily answered through proper electrophysiological and chemoecological investigations.

3.4 Methyl eugenol in flowers—ME as attractant and floral reward

Many plants, besides fending off insect herbivores, may require insects to assist in pollination. Recently, Knudsen et al. (2006) reviewed many aspects of floral scent with respect to variation within and between congeneric species belonging to a genus. They listed 12 common compounds, namely limonene, (E)-ocimene, myrcene, linalool, a- and b-pinene, benzaldehyde, methyl 2-hydroxybenzoate, benzyl alcohol, 2-phenylethanol, caryophyllene, and 6-methyl-5-hepten-2-one that are detected in floral scent from over 50% of seed plant families, and also provided a list of 1719 compounds identified from floral fragrances. ME was among the compounds listed and was detected in 21 plant families. Nonetheless, many more plant species produce flowers that possess ME that may be released as a component in floral fragrance. Table 2 shows ~122 species from 42 plant families, many of which (~85 species from 22 families) have ME detected exclusively in flowers or floral fragrances. This further substantiates the notion that synthesis of floral ME evolved independently in different plant families and orders. However, 27 species, namely *Cuminum cyminum*, *Daucus carota*, *Pimpinella affinis*, and *Scandix iberica* (Apiaceae), *Achillea conferta*, *Solidago odora*, and *Tagetes lucida*, (Asteraceae), *Borago officinalis* (Boraginaceae), *Medicago marina* (Fabaceae), *Agastache foeniculum*, *Ocimum basilicum*, *O. gratissimum*, *O. sanctum*, *O. selloi*, *O. suave*, and *Rosemarinus officinalis* (Lamiaceae), *Laurus nobilis* (Lauraceae), *Michelia alba* (Magnoliaceae), *Myrtus communis* and *Syzygium aromaticum* (Myrtaceae), *Piper betel* (Piperaceae), *Cymbopogon flexuosus* (Poaceae), *Rosa damascena* and *R. hybrida* (Rosaceae), *Tamarix boveana* (Tamaricaceae), *Daphne genkwa* (Thymelaceae), and *Lippia alba* and *Lippia schomburgkiiana* (Verbenaceae) also have ME detected in other plant parts (Tables 1 and 2).

Except for several species, neither the role of ME in flowers nor the attraction of fruit flies was mentioned in the published articles. However, if ME is released naturally in an area where *Bactrocera* fruit flies are present, the flowers would have attracted the ME–responsive *Bactrocera* species.

Much of the published work on floral chemical composition with detected ME did not indicate the type of floral visitors or pollinators. While some species of *Dianthus* (Caryophyllaceae) had flowers that bloom at night, these flowers attracted nocturnal insects, such as moths, and bats as visitors/pollinators (Jurgens et al. 2003). Mediterranean flowers of *Dianthus arenarius*, *D. monspessulanus*, *D. superbus*, and *Silene officinalis* are whitish in color and strongly scented (especially during the night), indicating pollination by night–active flower visitors. Another species, *Silene latifora*, in the same family bears night flowers. The
flowers from a European population had no detectable ME, whereas those collected from some plants in a North American population had detectable ME. However, the flowers did not exclude diurnal flower visitors, because unlike some nocturnal *Silene* species, they did not close or wilt during the day following anthesis. Nevertheless, there were clear differences in the floral scent of diurnal butterfly–flowers and moth– or hawkmoth–pollinated nocturnal species. According to Jurgens et al. (2003), the phenylpropanoids such as ME, methyl isoeugenol, elemicin, (Z)-asarone, and (E)-asarone were only found in the nocturnal *Dianthus* species.

Flowers from other families, similar to those of the family Caryophyllaceae, may attract other insects in regions/countries without ME–responsive *Bactrocera* species. Therefore, these flowers are not specifically adapted to fruit fly pollinators even though they possess ME.

3.4.1. ME in flowers with unknown purpose

From 16 *Clusia* species (Clusiaceae) under four different taxonomic sections, only two species, *C. parviflora* (section Criuva) and *C. renggerrioides* (section Corylandra) possessed floral ME (Nogueira et al. 2001). The role of ME in the two species is still unknown. This is similar to the often–cited flowers of golden shower or Indian labernum, *Cassia fistula*, that contained ME and attracted the oriental fruit fly, *Ba. dorsalis* (Kawano et al. 1968). Recently, the flower essential oil was reported to contain ME at 7.3% of peak areas and trace amount of eugenol; these compounds were not detected in leaf oil (Tzakou et al. 2007). Unfortunately, there is still no report that the attracted fruit flies are either potential pollinators or just visitors.

In the family Orchidaceae, many species are known to have trace quantities of ME. Since some of them are known to exist in regions with no insect species that are specifically attracted to ME or flowers in the night (Table 2), it is obvious that the ME–sensitive *Bactrocera* species play no role in pollination. However, flowers of the Malayan type of *Phalaenopsis violacea* possess trace quantities of ME and eugenol (Kaiser 1993), and usually attract one to several fruit flies per flower. The trace amount of floral ME is sufficient to attract fruit flies, since ~ 1 nanogram (10⁻⁹ g) of ME spotted on a silica gel TLC plate placed in the field can attract native male flies of the ME–sensitive species, such as *Ba. dorsalis* (Tan and Nishida 2000). The Bornean type of this orchid species, which is currently placed as a different species, *P. bellina*, has none of the phenylpropanoids (Kaiser 1993), although *Cymbopogon flexuosus* (Poaceae) exists as four varieties based on the major component among approximately 75 constituents in inflorescence essential oils. The varieties of *C. flexuosus* (var. arunachalis, var. assamensis, and var. sikkimensis) had citral, citronellol, elemicin, and ME as the major component, respectively. The first two varieties did not possess floral ME. The var. sikkimensis had 32-34% floral ME, while var. assamensis had 0.2-0.4% of essential oils (Nath et al. 2002). As such, the former variety would be more attractive to ME–responsive *Bactrocera* species than the latter. Nevertheless, this attraction of fruit flies as either pollinators or visitors remains to be determined for the two varieties. This is expected as most floral fragrances contain many chemical components (sometimes well over a hundred), and to ascribe the actual role for each of the ingredients, especially those in trace quantities, is extremely difficult, time consuming, and often unrewarding.
their flowers appear very similar in terms of color pattern and morphology to the untrained eye. As such, the observed attraction of fruit flies to *P. bellina* was probably due to the presence of 2,6-dimethoxy-4-(2-propenyl)-phenol. This compound was emitted as a component of floral fragrance at a rate of 12.0 ± 8.5 ng/flower/hour (Hsiao et al. 2006). It is an isomer of 2-allyl-4,5-dimethoxyphenol, which is a relatively strong fruit fly attractant and a component of the oriental fruit fly sex pheromone after ME consumption. Interestingly, *P. violacea* has no special adaptation, such as a movable lip as in *Bulbophyllum* orchids (see section 3.4.2.2 B), to aid in the removal of pollinarium (a composite structure of pollinia containing numerous pollens, a tegula/hamulus stipe, and visidium). This is further substantiated by our observations that the ME–sensitive fruit fly males never removed pollinarium from flowers of *P. violacea*, are mere visitors, and thus do not assist in pollination for this orchid species.

It has been proposed that an additional role of floral fragrance may be in defense to deter or repel insect herbivores/florivores, as many of the floral volatile compounds are also released from leaves in response to herbivore damage (Kessler and Baldwin 2001). This is further substantiated by ME, which is used by plants as a chemical defense as previously discussed in section 3.2. Therefore, floral ME, which appears not to have any specific function in pollination, may be playing a 'silent' role in deterring and/or repelling possible insect florivores.

3.4.2. In pollination

Floral fragrance is presumably for the sole purpose of guiding potential pollinators to perform pollination that results in fertilization of flowers. The presence of ME in floral fragrances, even in trace quantities, may be responsible for attracting potential *Bactrocera* pollinators in the tropical/subtropical regions where the ME–responsive species of fruit flies are endemic.

3.4.2.1. For non–orchid flowers

The fruit fly lily *Spathiphyllum cannaefolium* (Araceae) floral spadix has a high content of ME (Lewis et al. 1988), which attracts many ME–sensitive *Bactrocera* male flies to visit and pollinate the flower by transferring white powdery pollens as the flies feed on the spadix. Plants grown in Penang (Malaysia) often attract one or two fruit fly males (Figure 3) as well as stingless bees (*Trigona* species) for pollination (unpublished observation).

Another Araceae species, *Colocasia esculenta*, which contained ME and eugenol (relative quantities not provided), attracted many male *Ba. dorsalis* fruit flies (> 40) to the spadix and bract (Sinchaisri and Areekul 1985). In this species, only the fruit flies feeding on the spadix will pick up powdery pollens and transfer them to the stigmas on the radix.

Flowers of the cannon ball tree *Couroupita guianensis* (Lecythidaceae) contained 3% eugenol with a trace quantity of ME in floral essential oil (Knudsen and Mori 1996). Flowers in tropical South America have been observed to attract many male *Ba. carambolae* fruit flies in Suriname (photograph shown by van Saurers-Muller, personal communication, 2010). However, the flowers obtained from trees grown in the Botanical Garden in Penang have eugenol and no detectable ME, and they attract many stingless bees (*Trigona* species) with an occasional *Ba. dorsalis* as a visitor (unpublished observation).
Paraguay jasmine, *Brunfelsia australis* (Solanaceae), commonly known as "Yesterday–Today–and–Tomorrow", has floral fragrances comprised of monoterpenoids (81% of the identified volatile compounds), with ME in trace quantity in young flowers and 0.1% content of mature flowers. But in the scentless mature flowers of a closely related species, *Brunfelsia pauciflora* (Fabaceae), two sesquiterpenes (γ-muurolene and α-copaene) were present with no detectable ME (Bertrand et al. 2006). Similarly, the only species in the Onagraceae family that emits a floral scent containing substantial ME is *Clarkia breweri* (Table 2); its closely related *Clarkia concinna* is virtually scentless with no detectable ME (Raguso and Pichersky 1995).

3.4.2.2. For orchid flowers

Orchids have evolved highly diverse and fascinating mechanisms to attract and entice animals, especially insects, to assist in cross–pollination. In this section, discussion will be confined to orchid flowers that possess or secrete ME that attracts insects to be pollen vectors.

3.4.2.2a. Orchids excluding *Bulbophyllum*

Orchid flowers of *Satyrium microrrhynchum* produce nectar and are visited by several species of flower–visiting insects such as beetles, wasps, and flies, but not various honeybees and solitary bees that are commonly present at the study sites. Two insect species, cetonid beetles, *Atrichelaphinus tigrina* (both sexes) and a pompilid wasp, *Hemipepsis hilaris* (males), have been shown to be pollinators while the other insect visitors do not carry any pollinarium (Johnson et al. 2007). Linalool is the major chemical component in the orchid fragrance and has been shown to attract the pollinators. Although seven phenylpropanoids with ME (at 1.83-4.51%) as the highest component were detected in the flowers from one of three populations studied in South Africa, there was no difference in the type of insect visitors/pollinators observed, as ME also stimulated an electrophysiological response in antennae of the cetonid beetle (Johnson et al. 2007).

The inflorescence of an orchid species, *Gymnadenia conopea*, emits both eugenol and ME at different relative quantities during the day and night (Table 2). It attracts six lepidopteran taxa: three species each of butterflies and moths. Among the lepidopteran visitors caught, two species each of butterflies and moths bore pollinia. This indicates that pollination occurs during the day as well as at night (Huber et al. 2005). Similarly, a closely related species, *Gymnadenia odoratissima*, has 10 lepidopteran taxa, six moth, and four butterfly species as floral visitors, and all the species have been observed to be pollinators confirmed via their bearing of pollinia. There is no overlap of pollinator species between the two orchid species, and eugenol and benzyl acetate, which are among several of the 44-45 volatiles, are physiologically active components in the floral scent of the two species (Huber et al. 2005). In these orchid species, ME is not physiologically active against the lepidopteran species attracted to the orchid flowers and may instead be playing a role in deterring florivores. This certainly warrants further investigation.

3.4.2.2b. Bactrocerophilous *Bulbophyllum* orchids

There are nearly 2000 recognized species of *Bulbophyllum* (Orchidaceae) worldwide. Some species (~30) are known to have adapted to, and are entirely dependent on, *Bactrocera* (Tephritidae: Diptera) fruit flies for pollination without offering the usual nectar as floral reward. These
bactrocerophilous *Bulbophyllum* species might have coevolved with the tephritid fruit flies. They basically make use of either RK, detected in *Bu. apertum* (syn. *Bu. ecornutum*) (Tan and Nishida 2005), zingerone in *Bu. patens* and *Bu. baileyi* (Tan and Nishida 2000, 2007), or ME (examples given below) as a floral attractant and reward for male *Bactrocera* fruit flies (Tan 2009). It is interesting to note that zingerone is the only known compound to attract both RK– and ME–responsive *Bactrocera* species, although it is a relatively weak attractant due to its resemblance to both RK and ME chemical structures (Tan and Nishida 2000).

The possible pathway for the biosynthesis of ME found in *Bulbophyllum* is shown in Figure 4. Starting from phenylalanine, it undergoes a series of intermediary steps involving cinnamic acid, ferulic acid, coniferyl alcohol, coniferyl acetate, and eugenol (Figure 4) (Kapteyn et al. 2007; Ferrer et al. 2008). The eugenol is ultimately biotransformed to ME by the addition of a methyl group to the 'para–hydroxy' group of eugenol catalyzed by an O-methyltransferase (Lewinsohn et al. 2000; Pichersky and Gang 2000).

Here only *Bulbophyllum* flowers that possess and release ME as a component of floral fragrance will be discussed to show that the flowers of some species have coevolved, via special floral architectural modifications to enhance fly pollination, with *Bactrocera* male flies. A nonresupinate flower (with lip/labellum above the floral column) of the ginger orchid, *Bu. patens*, possesses a major component of a fruit fly attractant, zingerone, which is weakly attractive to *Bactrocera* males from both ME–responsive species, such as *Ba. carambolae*, *Ba. dorsalis* and *Ba. umbrosa*, as well as RK–responsive species, namely *Ba. caudata*, *Ba. cucurbitae*, and *Ba. tau*, with trace amounts of ME (Tan and Nishida 2000). It has a see–saw lip that is positioned in a plane above the floral column. When an attracted male *Ba. dorsalis* alights on and continues feeding along the lip, an imbalance will occur, and the fly will suddenly be tipped into the column cavity head first. The fly immediately retreats by moving backwards along the lip still in a closed position, and during this movement it removes the pollinia to initiate pollination. This process is repeated when a fly bearing pollinia lands on another flower (Figure 5) to initiate fertilization by depositing the pollinia onto the stigma.

The fruit fly orchid, *Bulbophyllum cheiri*, with non–resupinate and a solitary flower, does not have its sepals and petals fully spread out but just slightly parted when fully in bloom (Figure 6). It releases ME as its sole major volatile component in its floral fragrance, which attracts only male fruit flies (Tan et al. 2002). The concentration of ME in the various floral parts varies from 107, 95, 91, 44, and 41 ppm for lateral sepals, lip, petals, median sepal, and column, respectively (Tan et al. 2002). Further surveys identified seven more related analogs, including eugenol, (Z)-methyl isoeugenol, (E)-methyl isoeugenol, (E)-coniferyl alcohol (CF), 2-allyl-4,5-dimethoxyphenol (DMP), 5-allyl-1,2,4-trimethoxybenzene (euasarone), and (E)-3,4-dimethoxycinnamyl acetate (Nishida et al. 2004). It is interesting that the two major sex pheromonal components of *Ba. dorsalis*, CF and DMP, are also found in the orchid flowers. Many male flies of *Ba. dorsalis* with one or two *Ba. umbrosa* visit a newly bloomed flower in the morning. Usually, the first fly visitor removes the pollinia from the flower (Figures 6 and 7). Here the movable floral see–saw lip plays an important role in suddenly tipping a probing fly into the floral
column cavity when an imbalance occurs due to the shifting of the fly's weight. This way the fly, during its retreat, either removes or deposits pollinia on the floral stigma. Headspace analysis of the flower indicates a high ME peak in the morning, a much smaller one between 12:00 and 14:00, and no ME detected after 14:00 (Tan et al. 2002). In spite of this, one or two male *Ba. dorsalis* flies can still be seen on a *Bu. cheiri* flower up until approximately 18:30 (personal observations).

The wine red orchid, *Bu. vinaceum*, bears resupinate (lip/labellum below the floral column) and a solitary flower, which has a spring–loaded lip kept in a closed position to protect its sexual organs, especially the pollinarium with a stiff hamulus (derived from the entire distal portion of the rostellum that is prolonged into a stalk). The major floral volatile components identified are ME, CF, DMP, and (E)-3,4-dimethoxycinnamyl acetate, whereas the minor components are eugenol, euasarone, (E)-3,4-dimethoxy cinnamyl alcohol, and (Z)-coniferyl alcohol. The bouquet of floral phenylpropanoids attracts ME–sensitive species, particularly *Ba. dorsalis* with one or two *Ba. unimacula* in the highlands of Sabah (Tan et al. 2006). An attracted male fly normally lands on one of the petals before climbing onto and forcing the “spring loaded” floral lip that has the highest concentration of the phenylpropanoids, into the open position. This action reveals the floral sexual organs. The architecture of the lip and location of attractants compel the fly to align itself precisely along the lip’s longitudinal axis. As the fly probes and feeds, it passes the point of imbalance, causing the lip to spring back to its normal closed position. This catapults the fly head first into the column cavity, and its dorsum strikes the protruding sticky base of the hamulus and adheres to it. The momentum of the fly and the structural morphology of the long stiff hamulus act in tandem to pry out the pollinia from its anther cover. Pollinarium removal (Figure 8) is a precise and very quick process assisted by the specially modified spring lip, which plays an essential and important role in pollination. In this orchid species, ME is the main component in the floral fragrance and plays a pivotal role in the true mutualism between the flower and fruit fly pollinator, in which both receive reproductive benefits. Interestingly, both CF and DMP detected in the flowers are also sex pheromonal components of male *Ba. dorsalis* after consuming ME. Although CF and DMP attract and arrest females during courtship at dusk, and thus would serve as specific female attractants, the flower has never been observed to attract female fruit flies, not even during dusk when they are most sensitive to these chemicals (Tan et al. 2006). This evidence, and that of *Bu. cheiri*, may substantiate and indicate the outcome or culmination of a co–evolutionary process between the orchid species and *Bactrocera* pollinators.

The 'raised dot Bulbophyllum', *Bu. elevatopunctatum*, has relatively high content of ME 78.5 ± 21.6 mg (mean ± standard deviation; n = 10) per flower as a major floral volatile (unpublished data). The solitary and resupinate flower does not have a spring—loaded lip like that present in *Bu. vinaceum*, but a simple hinged one kept at an acute angle with respect to the floral column by the fused lateral sepals. When an attracted male fruit fly moves on to the lip that is prevented from moving away from the column to a fully opened position, it will very quickly be jerked into the floral column cavity, thereby hitting the hamulus and dislodging the pollinia from the anther and its cover. Upon its retreat, the
fly removes the pollinarium to initiate pollination (Figure 9).

In the aforementioned *Bulbophyllum–Bactrocera* association, each *Bulbophyllum* species has specifically adapted and evolved precise lip mechanism to entice fruit flies and enhance pollination through the offer of ME as an attractant as well as a floral reward. Furthermore, both organisms gain direct reproductive benefits, exhibiting a true mutualism; the orchid flower gets pollinated without having to offer nectar as reward, and the fruit fly boosts its pheromone and defense system as well as its sexual competitiveness by feeding on the ME produced by the flower as floral reward to its potential pollinator.

4. Methyl eugenol and human health

When present in human blood serum after a meal, ME is rapidly eliminated and excreted (Schecter et al. 2004). ME has ill effects on human health as a known carcinogen and mutagen, probably because of its conversion to a hydroxy analog at the allylic position (De Vincenzi et al. 2000). Further, safrole, estragole, and ME found in herbs and spices are weak animal carcinogens as demonstrated by the formation of DNA adducts in cultured human cells (Zhou et al. 2007).

Recent research by Choi et al. (2010) indicated that ME may have positive effects on human health as well. Based on their studies, ME may reduce cerebral ischemic injury through suppression of oxidative injury and inflammation (Choi et al. 2010). The chemical also decreased activation of an enzyme, caspase-3, and the death of cultured cerebral cortical neurons through oxygen–glucose deprivation for one hour. Additionally, it was shown that ME elevated the activities of superoxide dismutase and catalase, thereby markedly reducing superoxide generation in the ischemic brain and decreasing intracellular oxidative stress. Furthermore, ME also reduced the production of pro–inflammatory cytokines in the ischemic brain (Choi et al. 2010).

Studies on rodents showed that minimal ME within a dose range of 1-10 mg/kg body weight, which is about 100-1000 times the anticipated human exposure to ME as a result of spiced and/or flavored food consumption, did not pose a significant cancer risk (Smith et al. 2002). Further, toxicological studies in animals demonstrated that orally administered relatively high–bolus doses of ME resulted in hepatic neoplasms. Nevertheless, the detected level of ME in biomonitoring studies indicated that human exposure was several orders of magnitude lower than the lowest dose utilized in the bioassay (Robison and Barr 2006). Arguably, a single high dose may cause any number of ill or side effects in animals.

Conclusions

In this review, the occurrence of ME in over 450 species of plants belonging to 80 families under 48 orders compiled from numerous published papers is listed. The distribution of ME in various plant organs within a species is definitely uneven and varies greatly according to growth stage as well as plant variety/chemotype. Similarly, even in flowers, the distribution and release of ME by various floral parts can vary considerably depending on the physiological stage and time of day.

The various roles of ME in nature especially related to the chemical defense of plants, such as antifungal, antibacterial, antinematodal, or toxicant roles against pathogens and insect herbivores, as well as its functions as an insect antifeedant/repellant and in pollination are
reviewed. In particular, ME has been shown to act as floral synomone in the coevolution of orchid species in the genus Bulbophyllum with fruit flies. More research should be conducted to fully understand the biochemical, physiological, and/or chemoecological basis for these bitrophic interactions between plants and insects mediated by ME.

Acknowledgements

We wish to gratefully thank T.E. Shelly (APHIS, USDA, Waimanalo) for encouragement and assistance in reviewing this manuscript, and L.T. Tan of University College London for reading through the initial draft, and A.K.W. Hee for assistance in providing some reference materials.

References

Abdon APV, Leal-Cardoso JH, Coelho-de-Souza AN, Morais SM, Santos CF. 2002. Antinociceptive effects of the essential oil of Croton nepetaefolius on mice. Brazilian Journal Medical and Biological Research 35: 1215-1219.

Abduelrahman AHN, Elhussein, SA, Osman NA, Nour AH. 2009. Morphological variability and chemical composition of essential oils from nineteen varieties of Basil (Ocimum basilicum L.) growing in Sudan. International Journal of Chemical Technology 1: 1-10.

Aboutabl EA, Tohamy SFE, De Pooter HL, De Buyck LF. 1991. A comparative study of the essential oils from three Melaleuca species growing in Egypt. Flavour and Fragrance Journal 6: 139-141.

Acharya RN, Chaubal MG. 1968. Essential oil of Anemopsis californica. Journal of Pharmaceutical Sciences 57: 1020-1022.

Adams RP. 1997. The leaf oil of Juniperus gracilior Pilger var. urbaniana (Pilger & Ekman) R.P. Adams: Comparison with other Caribbean Juniperus species. Journal of Essential Oil Research 9: 641-647.

Adams RP, Almirall AL, Hogge L. 1987. The volatile leaf oils of the Junipers of Cuba: Juniperus lucayana Britton and Juniperus saxicola Britton and Wilson. Flavour and Fragrance Journal 2: 33-36.

Adams RP, Chu GL, Zhang SZ. 1994. Comparison of the volatile leaf oils of Juniperus chinensis L., J. chinensis var. kaizuca Hort. and cv. pyramidalis from China. Journal of Essential Oil Research 6: 149-154.

Adams RP, Von Rudloff E, Hogue L, Zanoni TA. 1981. The volatile terpenoids of Juniperus blancoi and its affinities with other entire leaf margin of Junipers of North America. Journal of Natural Products 44: 21-26.

Adams RP, Zanoni TH, Hogge L. 1984. The volatile leaf oils of Juniperus flaccida var. flaccida and var. poblana. Journal of Natural Products 47: 1064-1065.

Adedeji J, Hartman TG, Rosen RT, Ho C-T. 1991. Free and glycosidically bound aroma compounds in hog plum (Spondias mombins L.). Journal of Agricultural Chemistry 39: 1494-1497.

Adhikary SR, Tuladhar BS, Sheak A, van Beek TA, Posthumus MA, Lelyveld GP. 1992. Investigation of Nepalese essential oils. I. The oil of Cinnamomum glaucescens
Sugandha Kokila. *Journal of Essential Oil Research* 4: 151-159.

Aggarwal VK, Aggarwal SG, Thappa RK, Mehra MS, Dhar KL. 1983. Chemical constituents of *Lovunga scandens* Buch & Ham. *Indian Perfumer* 27: 163-165.

Ahmad VU, Jassbi AR, Pannahi MCS. 1999. Analysis of the essential oil of *Echinophora sibthorpiana* Guss. by means of GC, GC/MS and 13C-NMR techniques. *Journal of Essential Oil Research* 11: 107-108.

Akgul A, Chialva F. 1989. Constituents of the essential oil of *Echinophora tenuifolia* L. subsp. *sibthorpiana* (Guss.) Tutin from Turkey. *Flavour and Fragrance Journal* 4: 67-68.

Akhila A. 2009. Chapter 2. Chemistry and biogenesis of essential oil from the genus *Cymbopogon*. In: Akhila A, Editor. *Essential oil bearing grasses: The genus Cymbopogon*. pp. 20-106. CRC Press.

Ali NA, Jantan I. 1999. Essential oil of *Cinnamomum tahijanum* Kost. from Sarawak. ASEAN Review of Biodiversity and Environment Conservation (ARBEC), Nov.-Dec. 1999. Available online, http://www.arbec.com.my/pdf/art5novdec99.pdf

Alilou H, Akssirai M, Hassani LMI, Chebli B, El Hak-Moui A, Mellouki F, Rouhi R, Boira H, Blazquez MAB. 2008. Chemical composition and antifungal activity of *Bubonium imbricatum* volatile oil. *Phytopathologia Mediterranea* 47: 3-10.

Alves RJV, Pinto AC, da Costa AVM, Rezende CM. 2005. *Zizyphus mauritiana* Lam. (Rhamnaceae) and the chemical composition of its floral fecal odor. *Journal of Brazilian Chemical Society* 16: 654-656.

Anasari SH, Qadry JS. 1987. TLC and GLC studies on khawi grass oil. *Indian Journal of Natural Products* 3: 10-12.

Andrade EH, Zoghbi MDG, Maia JG. 2001. Volatiles from the leaves and flowers of *Carapa guinensis* Aubl. *Journal of Essential Oil Research* 13: 436-438.

Andrade MS, Sampaio TS, Nogueira PCL, Ribeiro AS, Bitrich V, Amaral MCE. 2007. Volatile compounds of the leaves, flowers and fruits of *Kielmeyera rugosa* Choisy (Clusiaceae). *Flavour and Fragrance Journal* 22: 49-52.

Andrianoelisoa HS, Menut C, de Chanteperron PC, Saracco J, Ramanoeina P, Danthu P. 2006. Intraspecific chemical variability and highlighting of chemotypes of leaf essential oils from *Ravensara aromatica* Sonnerat, a tree endemic to Madagascar. *Flavour and Fragrance Journal* 21: 833-838.

Arrebola ML, Navarro M, Jimenez J, Ocana FA. 1994. Yield and composition of the essential oil of *Thymus serpylloides* subsp. *serpylloides*. *Phytochemistry* 36: 67-72.

Arslan N, Gurbuz B, Sarihan EO. 2004. Variation in essential oil content and composition in Turkish anise (*Pimpinella anisum* L.) populations. *Turkish Journal of Agriculture and Forestry* 28: 173-177.

Asakawa Y, Komatsu T, Hayashi S, Matsura T. 1971. Chemical components of the benzene extract of *Cinnamomum loureiri*. *Flavours of India* 2: 114-119.
Ashafa AOT, Grierson DS, Afolayan AJ. 2008. Effects of drying methods on the chemical composition of essential oil from *Felicia muricata* leaves. *Asian Journal of Plant Science* 7: 603-606.

Askari F, Sefidkon F. 2006. Essential oil composition of *Pimpinella affinis* Ledeb. from two localities in Iran. *Flavour and Fragrance Journal* 21: 754-756.

Asllani U. 2000. Chemical composition of Albanian myrtle oil (*Myrtus communis* L.). *Journal of Essential Oil Research* 12: 140-142.

Asquith A, Burny DA. 1998. Honey bees attracted to the semiocemical methyl eugenol, used for male annihilation of the oriental fruit fly (Diptera: Tephritidae). *Proceedings of the Hawaiian Entomological Society* 33: 57-66.

Atal CK, Bradu BL. 1976. Search for aroma chemicals of industrial value from genus *Cymbopogon*. Part IV. Chandni and Kolar grasses as source of methyl eugenol. *Indian Journal of Pharmacology* 38: 63-64.

Atazhanova GA, Dembitskii AD, Yakovleva TD, Mikhailov VG, Adekenov SM. 1999. About composition of essential oil from *Artemisia filatovae*. *Chemistry of Natural Compounds* 35: 529-531.

Avato P, Trabace G, Smitt UW. 1996a. Essential oils from fruits of three types of *Thapsia villosa*. *Phytochemistry* 43: 609-612.

Avato P, Trabace G, Smitt UW. 1996b. Composition of the essential oils of fruits from polyploid types of *Thapsia villosa* L.: Chemotaxonomic evaluation. *Journal of Essential Oil Research* 8: 123-128.

Avato P, Fortunato IM, Ruta C, D’Elia R. 2005. Glandular hairs and essential oils in micropropagated plants of *Salvia officinalis* L. *Plant Science* 169: 29-36.

Azuma H, Kono M. 2006. Estragole (4-allylanisole) is the primary compound in volatiles emitted from the male and female cones of *Cycas revoluta*. *Journal of Plant Research* 119: 671-676.

Asuma H, Toyota M, Asakawa Y. 2001. Intraspecific variation of floral scent chemistry in *Magnolia kobus* DC. (Magnoliaceae). *Journal of Plant Research* 114: 411-422.

Azuma H, Toyota M, Asakawa Y, Takaso T, Tobe H. 2002. Floral scent chemistry of mangrove plants. *Journal of Plant Research* 115: 47-53.

Baggaley KH, Erdtmann H, McLean NJ, Norin T, Eriksson G. 1967. Chemistry of the order Podocarps. I. Heartwood constituents of the Huon pine (*Dacrydium franklinii*). *Acta Chemica Scandinavica* 21: 2247-2253.

Barkman TJ, Beaman JH, Gade DA. 1997. Floral fragrance variation in *Cypripedium*: implication for evolutionary and ecological studies. *Phytochemistry* 44: 875-882.
Barra A, Coroneo V, Dessi S, Cabras P, Angioni A. 2007. Characterization of the volatile constituents in the essential oil of *Pistacia lenticus* L. from different origins and its antifungal and antioxidant activity. *Journal of Agricultural and Food Chemistry* 55: 7093-7098.

Baser KHC. 2002. Aromatic biodiversity among the flowering plant taxa of Turkey. *Pure and Applied Chemistry* 74: 527-545.

Baser KHC, Kurkcuoglu M. 1998. Composition of the essential oil of *Morina persica* L. flowers. *Journal of Essential Oil Research* 10: 117-118.

Baser KHC, Ozek T, Demirici B, Duman H. 2000. Composition of the essential oil of *Prangos heyniae* H. Duman et M.F. Watson, a new endemic from Turkey. *Flavour and Fragrance Journal* 15: 47-49.

Baser KHC, Demirci B, Duman H. 2001a. Composition of the essential oils of two endemic species from Turkey: *Achillea lycaonica* and *A. ketenoglu*. *Chemistry of Natural Products* 37: 245-252.

Baser KHC, Demirci B, Duman H, Aytac Z, Adiguzel N. 2001b. Composition of the essential oil of *Achillea gonoiocephala* Boiss. et Bal. from Turkey. *Journal of Essential Oil Research* 13: 219-220.

Baser KHC, Demirci B, Tabanca N, Ozek T, Goren N. 2001c. Composition of the essential oils of *Tanacetum armenum* (DC.) Schultz Bip., *T. balsamita* L., *T. chiilophyllum* (Fisch. & Mey.) Schultz Bip. var. *chiilophyllum* and *T. haradjani* (Rech. fil.) Grierson and the enantiomeric distribution of camphor and carvone. *Flavour and Fragrance Journal* 16: 195-200.

Basher KHC, Ozek T, Demirchakmak B, Nuriddinov KR, Abduganiev BY, Arripov KN, Khodzimatov KK, Nigmatullaev OA, Shamyanov ED. 1997. Essential oils of some *Artemisia* species from Central Asia. *Chemistry of Natural Compounds* 33: 293-295.

Baslas RK, Kumar P. 1981. Chemical examination of essential oil of *Coleus aromaticus* Benth. *Journal of Indian Chemical Society* 58: 103-104.

Baydar H, Schulz H, Kruger H, Erbas S, Kineci S. 2008. Influences of fermentation time, hydro-distillation time and fractions on essential oil composition of Damask rose (*Rosa damascena* Mill.). *Journal of Essential Oil Bearing Plants* 11: 224-232.

Beauchamp PS, Chea E, Dimaano JG, Dev V, Ly B, Miranda AE. 2009. Essential oil composition of six *Lomatium* species attractive to Indra swallowtail butterfly (*Papilio indra*): Principal component analysis against essential oil composition of *Lomatium dissectum* var. *multifidum*. *Journal of Essential Oil Research* 21: 535-542.

Benitez NP, Leon EMM, Stashenko EE. 2009. Eugenol and methyl eugenol chemotypes of essential oil of species *Ocimum grastissimum* L. and *Ocimum campechianum* Mill. from Colombia. *Journal of Chromatographic Science* 47: 800-803.

Berger RG, Akkan Z, Drawert F. 1990. The essential oil of *Coleonema album* (Rutaceae) and of a photomixotrophic cell culture derived thereof. *Zeitschrift für Naturforschung Section C, Biosciences* 45: 187-195.
Bertrand C, Comte G, Piola F. 2006. Solid-phase microextraction of volatile compounds from flowers of two Brunfelsia species. *Biochemical Systematics and Ecology* 34: 371-375.

Bettaieb I, Bourgou S, Wannes WA, Hamrouni I, Limam F, Marzouk B. 2010. Essential oils, phenolics, and antioxidant activities of different parts of Cumin (*Cuminum cyminum* L.). *Journal of Agricultural and Food Chemistry* 58: 10410-10418.

Bhardwaj A, Tewary DK, Kumar R, Kumar V, Sinha AK, Shanker A. 2010. Larvicidal and structure–activity studies of natural phenylpropanoids and their semisynthetic derivatives against the tobacco armyworm *Spodoptera litura* (Fab.) (Lepidoptera: Noctuidae). *Chemistry and Biodiversity* 7: 168-177.

Bhuiyan MNI, Chowdhury JU, Begum J, Azim MA. 2010. Aromatic plants of Bangladesh: constituents of leaf and rhizome oil of *Etlingera linguiforme*. *Dhaka University Journal of Science* 58: 13-15.

Bicchi C, Frattini C, Sacco T. 1985. Essential oils of three asiatic *Artemisia* species. *Phytochemistry* 24: 2440-2442.

Billet D, Favre-Bonvin J. 1973. Constituants de l'huile essentielle de *Vepris madagascarica* (Essential oil constituents of *Vepris madagasscarica*). *Phytochemistry* 12: 1194.

Bohannon WB, Kleiman R. 1977. Myristicin. The major volatile component in Maere seed of *Portenschlagia ramosissima*. *Lipids* 12: 321-323.

Borejsza-Wysocki W, Hrazdina G. 1996. Aromatic polyketide synthases (purification, characterization, and antibody development to benzalacetone synthase from raspberry fruits). *Plant Physiology* 110: 791-799.

Boussaada O, Ammar S, Saidana D, Chriaa J, Chraif I, Daami M, Helal AN, Mighri Z. 2007. Chemical composition and antimicrobial activity of volatile components from captula and aerial parts of *Rhaponticum acaule* DC growing wild in Tunisia. *Microbiological Research* 163: 87-95.

Boutaghane N, Nacer A, Kabouche Z, Ait-Kaki B. 2004. Comparative antibacterial activities of the essential oils of stems and seeds of *Pituranthos scoparius* from Algerian septentrional Shara. *Chemistry of Natural Compounds* 40: 606-607.

Bracho R, Crowley KJ. 1966. The essential oils of some Venezuelan *Croton* species. *Phytochemistry* 5: 921-926.

Brandt JJ, Schultze W. 1995. Composition of the essential oils of *Ligusticum mutellina* (L.) Crantz (Apiaceae). *Journal of Essential Oil Research* 7: 231-235.

Brophy JJ, Jogia MK. 1986. Essential oils from Fijian *Ocimum basilicum* L. *Flavour and Fragrance Journal* 1: 53-55.

Brophy JJ, Lassak EV. 1988. *Melaleuca leucadendra* L. leaf oil: two phenylpropanoid chemotypes. *Flavour and Fragrance Journal* 3: 43-46.

Brophy JJ, Goldsack RJ. 1994. The essential oils of *Choricarpia leptoptala* (F. Muell.) Domin and *C. subargentea* (C.T. White) L.A.S. Johnson (Myrtaceae). *Flavour and Fragrance Journal* 9: 7-10.
Brophy JJ, Davies N, Southwell I, Stiff I, Williams L. 1989. Gas chromatographic quality control for oil of Melaleuca alternifolia terpinen-4-ol type (Australian Tea Tree). *Journal of Agricultural and Food Chemistry* 37: 1330-1335.

Brophy JJ, Goldsack RJ, House APN, Lassak EV. 1993. Essential oils of the genus Doryphora. *Journal of Essential Oil Research* 5: 581-586.

Brophy JJ, Goldsack RJ, Forster PI. 1994. The essential oils of Choricarpia leptopetala (F. Muell) Domin and C. subargentea (C.T. White) L.A.S. Johnson (Myrtaceae). *Flavour and Fragrance Journal* 9: 7-10.

Brophy JJ, Goldsack RJ, Fookes CJR, Forster PI. 1995. Leaf oils of the genus Backhousia (Myrtaceae). *Journal of Essential Oil Research* 7: 237-254.

Brophy JJ, Goldsack RJ, Forster PI. 1997. Chemotype variation in the leaf essential oils of Melicope melanophloia C.T. White (Rutaceae). *Journal of Essential Oil Research* 9: 279-282.

Brophy JJ, Goldsack RJ, Rozefelds AC. 2003. Chemistry of the Australian gymnosperms-part 5: Leaf essential oils of some endemic Tasmanian gymnosperms: Diselma archeri, Lagarostrobos franklinii, Microcachrys tetragona and Phyllocladus asplenifolius. *Journal of Essential Oil Research* 15: 139-142.

Brophy JJ, Goldsack RJ, Hook JM, Fooke CJR, Forster PI. 2004. The leaf essential oils of the Australian species of Pseuduvaria (Annonaceae). *Journal of Essential Oil Research* 16: 362-366.

Brophy JJ, Goldsack RJ, Forster PI. 2006. What is the smell of the “fruit salad plant”?: The leaf oil of Leionema ambiens (Rutaceae). *Journal of Essential Oil Research* 18: 131-133.

Brophy JJ, Buchanan AM, Copeland LM, Dimitriadia E, Goldsack RJ, Hibbert DB. 2009. Differentiation between the two subspecies of Antherosperma moschatum Labill. (Antherospermataceae) from their leaf oils. *Biochemical Systematics and Ecology* 37: 479-483.

Brunke E-J, Hammerschmidt F-J, Schmaus G. 1994. Headspace analysis of Hyacinth flowers. *Flavour and Fragrance Journal* 9: 59-69.

Bueno-Sanchez JG, Martinez-Morales JR, Stashenko EE, Ribon W. 2009. Anti-tubercular activity of eleven aromatic and medicinal plants occurring in Colombia. *Biomedica* 29: 51-60.

Bunralhep S, Palanuvej C, Ruangungsi N. 2007. Chemical compositions and antioxidative activities of essential oils from four Ocimum species endemic to Thailand. *Journal of Health Research* 21: 201-206.

Buttery RG, Black DR, Guadagni DG, Ling LC, Connolly G, Teranishi R. 1997. California bay oil. I. Constituents, odor properties. *Journal of Agricultural and Food Chemistry* 22: 773-777.

Bylaite E, Venskutonis RP, Roozen JP. 1998. Influence of harvesting time on the composition of volatile components in different anatomical parts of Lovage (Levisticum officinale Koch.). *Journal of
Agricultural and Food Chemistry 46: 3735-3740.

Caredda A, Marongiu B, Porcedda S, Soro C. 2002. Supercritical carbon dioxide extraction and characterization of Laurus nobilis essential oil. Journal of Agricultural and Food Chemistry 50: 1492-1496.

Caredda A, Marongiu B, Porcedda S, Soro C. 2002. Supercritical carbon dioxide extraction and characterization of Laurus nobilis essential oil. Journal of Agricultural and Food Chemistry 50: 1492-1496.

Carlini EA, De Oliveira AB, Oliveira GG. 1983. Psychopharmacological effects of the essential oil fraction and of the hydrolate obtained from the seeds of Licaria puchury-major. Journal of Ethnopharmacology 8: 225-236.

Carovic-Stanko K, Orlic S, Politeo O, Strikic F, Kolak I, Milos M, Satovic Z. 2010. Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chemistry 119: 196-201.

Carovic-Stanko K, Orlic S, Politeo O, Strikic F, Kolak I, Milos M, Satovic Z. 2010. Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chemistry 119: 196-201.

Chalchat JC, Chabard JL, Gorunovic MS, Djermanovic V, Bulatovic V. 1995. Chemical composition of Eucalyptus globulus oils from the Montenegro coast and east coast of Spain. Journal of Essential Oil Research 7: 147-152.

Chang CL, Cho IK, Li QX. 2009. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. Journal of Economic Entomology 102: 203-209.

Chang CL, Cho IK, Li QX. 2009. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. Journal of Economic Entomology 102: 203-209.

Charles DJ, Simon JE, Widrlechner MP. 1991. Characterization of essential oil of Agastache species. Journal of Agricultural and Food Chemistry 39: 1946-1949.

Chaumont PJP, Mandin D, Sanda K, Koba K, De Souza CA. 2001. Activités antimicrobiennes in vitro de cinq huiles essentielles de Lamiacées togolaises vis-à-vis de germes représentatifs de la microflore cutanée. Acta Botanica Gallica 148: 93-101. (English Abstract)

Chen Y, Li Z, Li H. 1987a. Analysis of fragrance volatiles of fresh flowers by pre-column absorption and GC/MS. Chromatographia 23: 502-506.

Chen Y, Wang R, Xue D, Li Z, Han H. 1987b. Analysis of volatile constituents of Hedysarum polybotrys Hand. by capillary gas chromatography-mass spectrometry. Gaodeng Xuexiao Huaxue Xuebao 8: 538-541. (in Chinese)

Cheng B-Q, Xu Y, Zheng G, Yu XJ, Ding JK. 1993. Ways of propagating Cinnamomum tenuipilum and variations in its leaf essential oil components. Yunnan Zhiwu Yanjiu 15: 78-82. (in Chinese) Database: CAPLUS.

Chialva F, Doglia G. 1990. Essential oil constituents of chinotto (Citrus aurantium L. var. myrtifolia Guill.). Journal of Essential Oil Research 2: 33-35.

Chialva F, Monguzzi F, Manitto P, Akgul A. 1993. Essential oil constituents of Trachyspermum coticum (L.) Link fruits. Journal of Essential Oil Research 5: 105-106.

Chin KW, Sun HL. 1990. Analysis of the phenolic compound in betel quid. Journal of Chinese Agricultural and Chemical Society 31: 623-632.

Cho YS, Cho IH, Park HJ, Chun HK. 2006. Analysis of fragrance volatiles of Korean Rosa hybrida using gas chromatography-mass spectrometry. Agricultural Chemistry and Biotechnology 49: 180-185.
Choi YK, Cho G-S, Hwang S, Kim BW, Lim JH, Lee J-C, Kim HC, Kim W-K, Kim YS. 2010. Methyleugenol reduces cerebral ischemic injury by suppression of oxidative injury and inflammation. *Free Radical Research* 44: 925-935.

Chowdhury JU, Mobarok MH, Bhuiyan MNI, Nandi NC. 2009. Constituents of essential oils from leaves and seeds of *Foeniculum vulgare* Mill. cultivated in Bangladesh. *Bangladesh Journal of Botany* 38: 181-183.

Christensen LP, Jakobsen HB, Paulsen E, Hodal L, Andersen KE. 1999. Airborne Compositae dermatitis: monoterpenes and no parthenolide are released from flowering *Tanacetum parthenium* (feverfew) plants. *Archives of Dermatological Research* 291: 425-431.

Chu SS, Liu SL, Jiang GH, Liu ZL. 2010. Composition and toxicity of essential oil of *Illicium simonsii* Maxim (Illiciaceae) fruit against the maize weevils. *Records of Natural Products* 4: 205-210.

Chuah CH, Yong HS, Goh SH. 1997. Methyl eugenol, a fruit-fly attractant, from the browning leaves of *Proiphys amboinensis* (Amaryllidaceae). *Biochemical Systematics and Ecology* 25: 391-393.

Ciccio JF, Segnini M. 2002. Composition of the essential oil from leaves of *Croton jimenezil* from Costa Rica. *Journal of Essential Oil Research* 14: 357-360.

Close DC, McArthur C. 2002. Rethinking the role of many plant phenolics-protection from photodamage not herbivores? *Oikos* 99: 166-172.

Comai S, Dall’Acqua S, Grillo A, Castagliuolo I, Gurung K, Innocenti G. 2010. Essential oil of *Lindera neesiana* fruit: Chemical analysis and its potential use in topical applications. *Fitoterapia* 81: 11-16.

Compagnone RS, Chavez K, Mateu E, Orsini G, Arvelo F, Suarez AF. 2010. Composition and cytotoxic activity of essential oils from *Croton matourensis* and *Croton micans* from Venezuela. *Records of Natural Products* 4: 101-108.

Cook WB, Howard AS. 1966. The essential oil of *Illicium anisatum* Linn. *Canadian Journal of Chemistry* 44: 2461-2464.

Costa LCB, Pinto JEBP, Castro EM, Alves E, Rosal LF, Bertolucci SKV, Alves PB, Evanglino TS. 2010. Yield and composition of the essential oil of *Ocimum selloi* Benth. cultivated under colored netting. *Journal of Essential Oil Research* 22: 34-39.

Crabas N, Marongiu B, Piras A, Pivetta T, Procedda S. 2003. Extraction, separation and isolation of volatiles and dyes from *Calendula officinalis* L. and *Aloysia triphylla* (L’Her.) Britton by supercritical CO2. *Journal of Essential Oil Research* 15: 350-355.

Craveiro AA, Andrade CHS, Matos FJA, De Alencar JW. 1978. Anise-like flavor of *Croton aff. zehntneri* Pa. et Hoffm. *Journal of Agricultural and Food Chemistry* 26: 772-773.

Craveiro AA, Andrade CHS, Matos FJA, Alencar JW, Machado MIL. 1980. Volatile constituents of *Mangifera indica* Linn. *Revista Latinoamericana de Quimica* 11: 129.

Crockett SL, Demirci B, Baser KHC, Khan IA. 2007. Analysis of the volatile constituents...
of five African and Mediterranean Hypericum L. (Clusiaceae, Hypericoideae) species. *Journal of Essential Oil Research* 19: 302-306.

Custodio L, Serra H, Nogueira JMF, Goncalves S, Romano A. 2006. Analysis of the volatiles emitted by whole flowers and isolated flower organs of the Carob tree using HS-SPME-GC/MS. *Journal of Chemical Ecology* 32: 929-942.

De Etcheves MDC-P, Gros EG, Retamar JA. 1981. Chemical study of Croton parvifolius. *Essenze Derivati Agrumari* 51: 253-261. (in French).

De Fenik J, Ines S, Retamar JA. 1972. Essential oil of Pseudocaryophyllus guili. *Anais da Academia Brasileira de Ciências* 44 (Suppl.): 175-180 (in Spanish).

De Feo V, Soria EU, Soria RU, Pizza C. 2005. Composition and in vitro toxicity of the essential oil of Tagetes terniflora HBK. (Asteraceae). *Flavour and Fragrance Journal* 20: 89-92.

De Pooter HL, Omar MN, Coolsaet BA, Schamp NM. 1985. The essential oil of greater galangal (Alpinia galanga) from Malaysia. *Phytochemistry* 245: 93-96.

De Vincenzi M, Silano M, Stacchini P, Scazzocchio B. 2000. Constituents of aromatic plants: I. Methyleugenol. *Fitoterapia* 71: 216-221.

Degen T. 1998. *Host-plant acceptance by the carrot fly: some underlying mechanisms and the relationship to host-plant suitability*. Ph.D. thesis, Universitat Basel, Basel, Switzerland.

Demetzos C, Angelopoulou D, Perditzoglou D. 2002. A comparative study of the essential oils of Cistus salvifolius in several populations of Crete (Greece). *Biochemical Systematics and Ecology* 30: 651-665.

Dey BB, Choudhuri MA. 1985. Characterization of a few morphological and biochemical parameters to serve as indicators of maximum oil yielding stage of Ocimum sanctum. *PAFAI Journal* 7: 11-16.

Diaz D, Pedro P, Dorado VJ. 1986. Chemical constituents of the leaves of Piper lenticellosum C.D.C. *Anais da Academia Brasileira de Ciências* 17: 58-60.

Dicke M, Hilker M. 2003. Induced plant defences: from molecular biology to evolutionary ecology. *Basic Applied Ecology* 4: 3-14.

Dighe VV, Gursale AA, Sane RT, Menon S, Patel PH. 2005. Quantitative determination of eugenol from Cinnamomum tamala Nees and Eberm. leaf powder and polyherbal formulation using reverse phase liquid chromatography. *Chromatographia* 61: 442-446.

Dimitriev LB, Mumladze MG, Klyuev NA, Kobakhidze SK, Grandberg II. 1981. Dynamics of accumulation and composition of Agastache foeniculum during plant growth and storage. *Izvestiya Timiryazeuvsk. S-kh Akademii* 6: 86-91. (in Russian).

Dixon RA, Palva NL. 1995. Stress-induced phenylpropanoid metabolism. *The Plant Cell* 7: 1085-1097.

Dobson HEM, Bergstrom G. 2000. The ecology and evolution of pollen odors. *Plant Systematics and Evolution* 222: 63-87.
Dobson HEM, Bergström J, Bergström G, Groth I. 1987. Pollen and flower volatiles in two *Rosa* species. *Phytochemistry* 26: 3171-3173.

Dobson HEM, Arroyo J, Bergstrom G, Groth I. 1997. Interspecific variation in floral fragrances within the genus *Narcissus* (Amaryllidaceae). *Biochemical Systematics and Ecology* 25: 685-706.

Dominguez XA, Canales A, Garza JA, Gomez E, Garza L. 1971. Medicinal plants of Mexico. XVIII. Constituents of leaves and branches of *Helietta parvifolia*. *Phytochemistry* 10: 1966.

Dotterl S, Wolfe LM, Jurgens A. 2005. Qualitative and quantitative analyses of flower scent in *Silene latifolia*. *Phytochemistry* 66: 203-213.

Dregus M, Engel K-H. 2003. Volatile constituents of uncooked rhubarb (*Rheum rhabarbarum* L.) stalks. *Journal of Agricultural and Food Chemistry* 51: 6530-6536.

Duke JA. 1981. *Handbook of legumes of world economic importance*. Plenum Press.

Duke JA. 1985. *Acorus calamus* L. In: *CRC Handbook of Medicinal Herbs*. pp. 14-15. CRC Press.

Dung NX, Tham NT, Van Khien P, Quang NT, Thi Le H, Leclercq PA. 1997. Characterization of the oils from various parts of *Talauma gioi* Aug. Chev. (Magnoliaceae) from Vietnam. *Journal of Essential Oil Research* 9: 119-121.

Dzamic A, Sokovic M, Ristic MS, Grijic-Jovanovid S, Vukojevic J, Marin PD. 2009. Chemical composition and antifungal activity of *Illicium verum* and *Eugenia caryophyllata*. *Chemistry of Natural Compounds* 45: 259-261.

Ehret C, Maupetit P, Petrizilka M. 1989. New organoleptically important components from *Narcissus absolute* (*Narcissus poeticus* L.). *Proceedings of the 11th Essential Oil Congress*. Oxford and IBH Publishing.

Ekundaya O, Laakso I, Adegbola R-M, Oguntimein B, Sofowora A, Hiltunen R. 1988. Essential oil constituents of Ashanti pepper (*Piper guineense*) fruits (berries). *Journal of Agricultural and Food Chemistry* 36: 880-882.

Elamrani A, Zrira S, Benjilali B. 2000. A study of Moroccan rosemary oils. *Journal of Essential Oil Research* 12: 487-495.

EMEA 2005. Public statement on the use of herbal medicinal products containing methyl eugenol. European Medicines Agency, Evaluation of medicines for human use. Available online, http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/04/WC500089961.pdf

Engle KH, Heidlas J, Tressl R. 1990. The flavour of tropical fruits (banana, melon, pineapple). In: Morton ID, MacLeod JD, Editors. *Food Flavors: Part C, The Flavor of Fruits*. pp. 195-219. Elsevier Scientific Publications.

Esmaeili A, Nematollahi F, Rustaiyan A, Moazami N, Masoudi S, Bamasian S. 2006. Volatile constituents of *Achillea pachycephala*, *A. oxyodonta* and *A. biebersteinii* from Iran. *Flavour Fragrance Journal* 21: 253-256.
Fakhari AR, Sonboli A. 2006. Essential oil composition of *Pimpinella barbata* (DC.) Boiss. from Iran. *Journal of Essential Oil Research* 18: 679-681.

Farag RS, Shalaby AS, El-Baroty GA, Ibrahim NA, Ali MA, Hassan EM. 2004. Chemical and biological evaluation of the essential oils of different *Melaleuca* species. *Phytotherapy Research* 18: 30-35.

Ferraz ABF, Balbino JM, Zini CA, Ribeiro VLS, Bordignon SAL, von Poser G. 2010. Acaricidal activity and chemical composition of the essential oil from three *Piper* species. *Parasitology Research* 107: 243-248.

Ferrer J-L, Austin MB, Stewart Jr. C, Noel JP. 2008. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. *Plant Physiology and Biochemistry* 46: 356-370.

Flamini G, Cioni PL, Morelli I, Maccioni S, Baldini R. 2004. Phytochemical typologies in some populations of *Myrtus communis* L. on Caprione Promontory (East Liguria, Italy). *Food Chemistry* 85: 599-604.

Fiorini C, Fouraste I, David B, Bessiere JM. 1997. Composition of the flower, leaf and stem essential oils from *Laurus nobilis* L. *Flavour and Fragrance Journal* 12: 91-93.

Firuzi O, Asadollahi M, Gholami M, Javidnia K. 2010. Composition and biological activities of essential oils from four *Heracleum* species. *Food Chemistry* 122: 117-122.

Flamini G, Cioni PL, Morelli I. 2002. Differences in the fragrances of pollen and different floral parts of male and female flowers of *Laurus nobilis*. *Journal of Agricultural and Food Chemistry* 50: 4647-4662.

Flamini G, Cioni PL, Morelli I. 2002. Differences in the fragrances of pollen and different floral parts of male and female flowers of *Laurus nobilis*. *Journal of Agricultural and Food Chemistry* 50: 4647-4652.

Flamini G, Tebano M, Cioni PL. 2008. Composition of the essential oils from leafy parts of the shoots, flowers and fruits of *Eryngium amethystinum* from Amiata Mount (Tuscany, Italy). *Journal of Agricultural and Food Chemistry* 107: 671-674.

Fleisher A, Fleisher Z. 1994. The fragrance of biblical Mandrake. *Economic Botany* 48: 243-251.

Fleisher Z, Fleisher A. 1992. Volatiles of the Mastic tree – *Pistacia lentiscus* L. Aromatic plants of the holy land and the Sinai. Part X. *Journal of Essential Oil Research* 4: 663-665.

Fletcher BS, Bateman MA, Hart NK, Lamberton JA. 1975. Identification of a fruit fly attractant in an Australian plant, *Zieria smithii* as O-methyl eugenol. *Journal of Economic Entomology* 68: 815-816.

Fokialakis N, Magiatis P, Mitaku S. 2002. Essential oil constituents of *Valeriana italic* and *Valeriana tuberosa*. Stereoochemical and conformational study of 15-acetoxyvaleranone. *Zeitschrift für Naturforschung* 57c: 791-796.
Fournier G, Hadjiakhoondi A, Leboeuf M, Cave A, Charles B. 1997. Essential oils of Annonaceae. Part VIII. Volatile constituents of the essential oils from three Guatteria species. *Journal of Essential Oil Research* 9: 275-278.

Franceschi VR, Krokene P, Christiansen E, Krekling T. 2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. *New Phytology* 167: 353-376.

Franchomme P, Peneol D. 1995. *L'Aromatherapie Exactement*. Jollois R. (in French).

Fujita H, Yamashita M. 1973. Constituents of the essential oil from *Alpinia speciosa*. *Yakugaku Zasshi* 93: 1635-1638. (in Japanese).

Fujita S, Fujita Y. 1973. Essential oils of the plants from various territories. XXXIII. Essential oil of *Agastache rugosa*. *Yakugaku Zasshi* 93: 1679-1681. (in Japanese).

Fujita Y, Fujita S, Yoshikawa H. 1974. Biogenesis of essential oils in camphor trees. XXXIII. Components of essential oils of *Cinnamomum doederleinii*. I. *Nippon Nogei Kagaku Kaishi* 48: 633-636. (In Japanese).

Fun CE, Svendsen AB. 1990. The essential oil of *Lippia alba* (Mill.) N.E. Br. *Journal of Essential Oil Research* 2: 265-267.

Fun CE, Svendsen AB. 1990. The essential oil of *Hyptis suaveolens* grown in Aruba. *Flavour and Fragrance Journal* 5: 161-163.

Găinar MZI, Bala D. 2006. Influence of the process parameters on supercritical CO$_2$ extraction of fennel essential oil. *Analele Universității din București – Chimie, Anul XV* 1: 107-111.

Garcia-Fajardo J, Martínez-Sosa M, Estarron-Espinosa M, Vilarem G, Gaset A, De Santos JM. 1997. Comparative study of the oil and supercritcal CO$_2$ extract of Mexican pimento (*Pimenta dioica* Merrill). *Journal of Essential Oil Research* 9: 181-185.

Georgiou C, Koutsaviti A, Bazos I, Tzakou O. 2010. Chemical composition of *Echinophora tenuifolia* subsp. *sibthorpiiana* essential oil from Greece. *Records of Natural Products* 4: 167-170.

Ghani A, Saharkhiz MJ, Hassanzadch M, Msaada K. 2009. Changes in the essential oil content and chemical compositions of *Echinophora platyloba* DC. during three different growth and developmental stages. *Journal of Essential Oil Bearing Plants* 12: 162-171.

Gnavi G, Bertea CM, Usai M, Maffei ME. 2010. Comparative characterization of *Santolina insularis* chemotypes by essential oil composition, 5S-rRNA-NTS sequencing and EcoRV RFLP-PCR. *Phytochemistry* 71: 930-936.

Goel D, Mallavarupu GR, Kumar S, Singh V, Ali M. 2008. Volatile metabolite compositions of the essential oil from aerial parts of ornamental and artemisinin rich cultivars of *Artemisia annua*. *Journal of Essential Oil Research* 20: 147-152.

Gogus, F, Mustafa ZO, Lewis AC. 2006. Extraction of essential oils of leaves and flowers of *Achillea monocephala* by superheated water. *Flavour and Fragrance Journal* 21: 122-128.
Gottlieb OR, Da Rocha AI. 1972. Chemistry of Brazilian Lauraceae. XIX. Constituents of Aniba hostmanniana. *Phytochemistry* 11: 1861-1863.

Gracza L, 1980. HPLC determination of phenylpropane derivatives in drugs and drug preparations. Part 3. Analysis of phenylpropane derivatives. *Deutsche Apotheker Zeitung* 120: 1859-1863.

Gregonis DE, Portwood RD, Davidson WH, Durfee DA, Levinson AS. 1968. Volatile oils from foliage of coast redwood and big tree. *Phytochemistry* 7: 975-981.

Griffiths DW, Robertson GW, Shepherd T, Ramsay G. 1999. Epicuticular waxes and volatiles from faba bean (Vicia faba) flowers. *Phytochemistry* 52: 607-612.

Grosso C, Teixeira G, Gomes I, Martins ES, Barroso JG, Pedro LG, Figueiredo AC. 2009. Assessment of the essential oil composition of Tornabenea annua, Tornabenea insularis and Tornabenea tenuissima fruits from Cape Verde Islands. *Biochemical Systematics and Ecology* 37: 474-478.

Gu J, Liu L, Zhang Y. 1990. Study on the essential oil from the fruits of Cinnamomum camphora (L.) Presl var. linaloolifera Fujita. *Linchan Huaxue Yu Gongye* 10: 77-82. (Chinese with English summary).

Guchu E, Diaz-Maroto MC, Diaz-Maroto JJ, Vila-Lameiro P, Perez-Coello MS. 2006. Influence of the species and geographical location on volatile composition of spanish oak wood (*Quercus petraea* Lieb. and *Quercus robur* L.). *Journal of Agricultural and Food Chemistry* 54: 3062-3066.

Gudaityte O, Venskutonis PR. 2007. Chemotypes of Achillea millefolium transferred from 14 different locations in Lithuania to the controlled environment. *Biochemical Systematics and Ecology* 35: 582-592.

Guerrini A, Sacchetti G, Muzzoli M, Rueda GM, Medici A, Besco E, Bruni R. 2006. Composition of the volatile fraction of Ocotea bofo Kunth (Lauraceae) calyces by GC-MS and NMR fingerprinting and its antimicrobial and antioxidant activity. *Journal of Agricultural and Food Chemistry* 54: 7778-7788.

Gulati BC, Khan MN. 1979. Essential oil of Artemesia pallens Wall (Davana) - as study of minor constituents. *7th International Congress of Essential Oils* 7: 357-359.

Gutierrez, RMP, Luna HH, Garrido SH. 2010. Antioxidant activity of Tagetes erecta essential oil. *Journal of the Chilean Chemical Society* 51: 882-886.

Hadad M, Zygadlo JA, Lima B, Derita M, Feresin GE, Zacchino SA, Tapia A. 2007. Chemical composition and antimicrobial activity of essential oil from Baccharis grisebachii Heiron (Asteraceae). *Journal of Chilean Chemical Society* 52: 1186-1189.

Halabi S, Battah AA, Aburjai T, Hudaib M. 2005. Phytochemical and platelet investigation of Gundelia tournforfirl. *Pharmaceutical Biology* 43: 496-500.

Hamm S, Bletton J, Connan J, Tchapla A. 2005. A chemical investigation by headspace of SPME and GC-MS of volatile and semi-volatile terpenes in various olibanum samples. *Phytochemistry* 66: 1499-1514.
Hammami S, Khoja I, Jannet HB, Halima MB, Highri Z. 2007. Flowers essential oil composition of Tunisian *Matthiola longipetala* and its bioactivity against *Tribolium confusum* insect. *Journal of Essential Oil Bearing Plants* 10: 162-167.

Han A-R, Kim HJ, Shin M, Hong M, Kim YS, Bae H. 2008. Constituents of *Asarum sieboldii* with inhibitory activity on lipopolysaccharide (LPS)-induced NO production in BV-2 microglial cells. *Chemical Biodiversity* 5: 346-351.

Hassanpouraghdam MB, Shalamzari MS, Sepehri N. 2009. GC/MS analysis of *Echinophora platyloba* DC. Essential oil from Northwest Iran: a potential source of (Z)-β-ocimene and α-phellandrene. *Chemija* 20: 120-123.

Hayashi N, Maeshima K, Komae H. Phenol ethers of three north american *Hexastylis* species. *Phytochemistry* 22: 299.

Hazzit M, Baaliouiamer Z, Faleiro ML, Miquel MG. 2006. Composition of the essential oils of *Thymus* and *Origanum* species from Algeria and their antioxidant and antimicrobial activities. *Journal of Agricultural and Food Chemistry* 54: 6314-6321.

Hee AKW, Tan KH. 2004. Male sex pheromonal components derived from methyl eugenol in the haemolymph of fruit fly *Bactrocera papayae*. *Journal of Chemical Ecology* 30: 2127-2138.

Herrmann KM, Weaver LM. 1999. The shikimate pathway. *Annual Review of Plant Physiology and Plant Molecular Biology* 50: 473-503.

Hethelyi E, Danos B, Tetnyl P, Juhasz G. 1987. Phytochemical studies on *Tagetes* species; infraspecific differences of the essential oil in *T. minuta* and *T. tenuifolia*. *Herba Hungarica* 26: 145-158.

Ho C, Wang EIC, Wei X, Lu S, Su Y. 2008. Composition and bioactivities of the leaf essential oils of *Cinnamomum subavenium* Miq. from Taiwan. *Journal of Essential Oil Research* 20: 328-334.

Horvat RJ, Senter SD. 1984. Identification of the volatile constituents from scuppernong berries (*Vitis rotundifolia*). *Journal of Food Science* 49: 64-66.

Horvat RJ, Chapman GW, Robertson JA, Meredith Fl, Scorza R, Callihan AM, Morgan P. 1990. Comparison of the volatile compounds from several commercial peach cultivars. *Journal of Agricultural and Food Chemistry* 38: 234-237.

Hosni K, Msaada K, Taarit MB, Ouchikh O, Kallel M, Marzouk B. 2008. Essential oil composition of *Hypericum perfoliatum* L. and *Hypericum tomentosum* L. growing wild in Tunisia. *Industrial Crops and Products* 27: 308-314.

Howes M-JR, Kite GC, Simmonds MSJ. 2009. Distinguishing Chinese star anise from Japanese star anise using thermal desorption-gas chromatography-mass spectrometry. *Journal of Agricultural and Food Chemistry* 57: 5783-5789.

Howlett FM. 1912. VII. The effect of oil of *Citronella* on two species of *Dacus*. *Transactions of the Entomological Society of London* 60: 412-418.
Howlett FM. 1915. Chemical reactions of fruit flies. *Bulletin of Entomological Research* 6: 297-305.

Hsiao Y-Y, Tsai W-C, Kuoh C-S, Huang T-H, Wang H-C, Wu T-S, Leu Y-L, Chen W-H, Chen H-H. 2006. Comparison of transcripts in *Phalaenopsis bellina* and *Phalaenopsis equestris* (Orchidaceae) flowers to deduce monoterpane biosynthesis pathway. *BMC Plant Biology* 6: 1-14.

Huber FK, Kaiser R, Sauter W, Schiestl FP. 2005. Floral Scent Emission and Pollinator Attraction in two species of *Gymnadenia* (Orchidaceae). *Oecologia* 142: 564-575.

Hudaib MM, Aburjai TA. 2006. Composition of the essential oil from *Artemisis herba-alba* grown in Jordan. *Journal of Essential Oil Research* 18: 301-304.

Hussain RA, Poveda LJ, Pezzuta JM, Soejarto DD, Kinghorn AD. 1990. Sweetening agents of plant origin: Phenylpropanoid constituents of seven sweet-tasting plants. *Economic Botany* 44: 174-182.

Hussein MS, El-Sherbeny SE, Khalil MY, Naguib NY, Aly SM. 2006. Growth characters and chemical constituents of *Dracocephalum moldavica* L. plants in relation to compost fertilizer and planting distance. *Scientia Horticultae* 108: 322-331.

IAEA. 2003. *Trapping guidelines for area-wide fruit fly programmes*. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency.

Ibanez E, de Murga AOG, Lopez-Sebastian S, Tabera J, Reglero G. 1999. Supercritical fluid extraction and fractionation of different preprocessed Rosemary plants. *Journal of Agricultural and Food Chemistry* 47: 1400-1404.

Iscan G, Kirimer N, Kurkuoglu M, Arabach T, Kupeli E, Baser KHC. 2006. Biological activity and composition of the essential oils of *Achillea schischkinii* Sosn. and *Achillea aleppica* Dc. Subsp. aleppica. *Journal of Agricultural and Food Chemistry* 54: 170-173.

Ishikawa M, Tani K. 2007. Odor of flower of *Koufuku-no-Ki* (*Dracaena fragrans* 'Massangeana'). *Koryo* 236: 89-98. (Japanese with English Abstract).

Jakobson HB, Olsen CE. 1994. Influence of climatic factors on emission of flower volatiles in situ. *Planta* 192: 365-371.

Jantan I, Ayop N, Au BH, Ahmad AS. 2002. Chemical composition of the essential oils of *Cinnamomum cordatum* Kosterm. *Flavour and Fragrance Journal* 17: 212-214.

Jantan I, Ayob N, Ali NAM, Ahmad AS, Yalvema MF, Muhammad K, Azizi AR. 2004. The essential oils of *Cinnamomum rychophyllum* Miq. as natural sources of benzyl benzoate, safrole and methyl (E)-cinnamate. *Flavour and Fragrance Journal* 19: 260-262.

Jarikassem S, Brophy JJ, Rerk-am U, Supattanakul W. 2006. Essential oil constituents from two uncommon Zingiber rhizomes. In: 47th Annual Meeting of Society for Economic Botany - Folk Botanical Wisdom: Towards Global Markets.

Javidnia K, Banani A, Miri R, Kamalinejad M, Javidnia A. 2006. Constituents of the volatile oil of *Inula oculus-christi* L. from
Iran. *Journal Essential Oil Research* 18: 676-678.

Jean F-I, Deslauriers H, Collin GJ, Gagnon M, Hachey J-M, Pare JR, Belanger A. 1990. The essential oil of *Ligusticum scoticum* L. *Journal of Essential Oil Research* 2: 37-44.

Jerkovic I, Mastelic J, Milos M, Juteau F, Masotti V, Viano J. 2003. Chemical variability of *Artemisia vulgaris* L. essential oils originated from the Mediterranean area of France and Croatia. *Flavour and Fragrance Journal* 18: 436-440.

Jeong, ES, Choi KY, Kim SC, Son IS, Cho HC, Ahn SY, Woo MH, Hong JT, Moon DC. 2009. Pattern recognition of the herbal drug, Magnoliaceae flos according to their essential oil components. *Bulletin of Korean Chemical Society* 30: 1211-1126.

Jerkovic I, Mastelic J. 2003. Volatile compounds from leaf-buds of *Populus nigra* L. (Salicaceae) *Phytochemistry* 63: 109-113.

Jeya Johti G, Benniamin A, Maridass M, Raju G. 2009. Identification of essential oils composition and antifungal activity of *Eugenia singampattiana* fruits. *Pharmacology online* 2: 727-733.

Jirovetz L, Smith D, Buchbauer G. 2002a. Aroma compound analysis of *Eruca sativa* (Brassicaceae) SPME headspace leaf samples using GC, GC-MS, and olfactometry. *Journal of Agricultural and Food Chemistry* 50: 4643-4646.

Jirovetz L, Buchbauer G, Ngassoum MB, Geissler M. 2002b. Aroma compound analysis of *Piper nigrum* and *Piper guineense* essential oils from Cameroon using solid-phase microextraction–gas chromatography–mass spectrometry and olfactometry. *Journal of Chromatography A* 976: 265-275.

Jirovetz L, Buchbauer G, Stoyanova AS, Georgiev EV, Damianova ST. 2003. Composition, quality control, and antimicrobial activity of the essential oil of long-time stored dill (*Anethum graveolens* L.) seeds from Bulgaria. *Journal of Agricultural and Food Chemistry* 51: 3854-3857.

Jirovetz L, Buchbauer G, Stoyanova A, Balinova A, Guangjiun Z, Xihan M. 2004. Solid phase microextraction/gas chromatographic and olfactory analysis of the scent and fixative properties of the essential oil of *Rosa damascena* L. from China. *Flavour and Fragrance Journal* 20: 7-12.

Jirovetz L, Buchbauer G, Ngassoum MB, Parmentier M. 2005. Chemical composition and olfactory characterization of essential oils of fruits and seeds of African pear (*Dacryodes edulis* (G. Don) H.J. Lam) from Cameroon. *Flavour and Fragrance Journal* 20: 215-218.

Jirovetz, L., Buchbauer G, Stoilova I, Stoyanova A, Krastanov A, Schmidt E. 2006. Chemical composition and antioxidant properties of clove leaf essential oil. *Journal of Agricultural and Food Chemistry* 54: 6303-6307.

Johnson SD, Ellis A, Dotterl S. 2007. Specialization for pollination by beetles and wasps: the role of lollipop hairs and fragrance in *Satyrium microrrhynchum* (Orchidaceae). *American Journal of Botany* 94: 47-55.

Johnson SD, Griffiths ME, Peter CI, Lawes MJ. 2009. Pollinators, “mustard oil” volatiles, and fruit production in flowers if the diecious
tree Drypetes natalensis (Putranjivaceae). American Journal of Botany 96: 2080-2086.

Joichi A, Yomogida K, Awano K, Ueda Y. 2005. Volatile components of tea-scented modern roses and ancient Chinese roses. Flavour and Fragrance Journal 20: 152-157.

Jordan MJ, Martinez RM, Goodner KL, Baldwin EA, Sotomayor JA. 2006. Seasonal variation of Thymus hyemalis Lange and Spanish Thymus vulgaris L. essential oils composition. Industrial Crops and Products 24: 253-263.

Joy B, Rao JM. 1997. Essential oil of the leaves of Annona squamosa L. Journal of Essential Oil Research 9: 349-350.

Jurgens A, Dotterl S. 2004. Chemical composition of anther volatiles in Ranunculaceae: Genera-specific profiles in Anemone, Aquilegia, Caltha, Pulsatilla, Ranunculus, and Trollius species. Journal of Botany 91(12): 1969-1980.

Jürgens A, Witt T, Gottsberger G. 2003. Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy. Biochemical Systematics and Ecology 31: 345-357.

Juteau F, Masotti V, Bessière JM, Viano J. 2002. Compositional characteristics of the essential oil of Artemisia campestris var. glutinosa. Biochemical Systematics and Ecology 30: 1065-1070.

Kainulainen P, Tarhanen J, Tiilikka K, Holopainen JK. 1998. Foliar and emission composition of essential oil in two carrot varieties. Journal of Agricultural and Food Chemistry 46: 3780-3784.

Kaiser R. 1991. New volatile constituents of the flower concrete of Michelia champaca L. Journal of Essential Oil Research 3: 129-146.

Kaiser R. 1993. The Scent of Orchids - Olfactory and Chemical Investigations. Elsevier.

Kaluzna-Czaolinska J. 2007. GC-MS analysis of biologically active compounds in cosmopolitan grasses. ACTA Chromographica 19: 279-282.

Kamdem DP, Gage DA. 1995. Chemical composition of essential oil from the root bark of Sassafras albidum. Planta Medica 61: 574-575.

Kameoka H, 1993. The Essential Oil Constituents of Some Useful Plants from China. In: Recent Developments in Flavour and Fragrance Chemistry – Proceedings of the 3rd International Haarman and Reimer Symposium Pub. VCH NY.

Kameoka H, Wang CP. 1980. The constituents of the essential oils from Trachycarpus excelsa Wendl and T. fortunei W. Nippon Nogei Kagaku Kaishi 54: 111-115. (in Japanese).

Kameoka H, Sagara K, Miyazawa M. 1989. Components of essential oils of Kakushitsu (Daucus carota L. and Carpesium abrotanoides L.) Nippon Nogei Kagaku Kaishi 63: 185-188. (in Japanese).

Kapetamos C, Karrioti A, Bovic S, Marin P, Vejic M, Skaltsa H. 2008. Chemical and principal-component analyses of the essential oils of Apiodeae taxa (Apiaceae) from Ventral Balkan. Chemical Biodiversity 5: 101-118.
Kapteyn J, Qualley AV, Xie ZZ, Fridman E, Dudareva N, Gang DR. 2007. Evolution of cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. The Plant Cell 19: 3212-3229.

Karamenderes C, Demirci, Baser KHC. 2008. Composition of essential oils of ten Centaurea L. taxa from Turkey. Journal of Essential Oil Research 20: 342-349.

Katsouri E, Demetzos C, Perdetzoglou D, Loukis A. 2001. An interpolation study of the essential oils of various parts of Crithmum maritimum L. growing in Amorgos Island, Greece. Journal of Essential Oil Research 13: 303-308.

Katsumi Y. 1987. Minor components from growing buds of Artemisia capillaris that act as insect antifeedants. Journal of Agricultural and Food Chemistry 35(6): 889-891.

Kawano T, Saito T. 1968. Study on attractant of the rice stem borer, Chilo suppressalis Walker. Botyu-Kagaku 33: 122-130. (in Japanese with English summary).

Kawano Y, Mitchell WC, Matshmoto H. 1968. Identification of the male oriental fruit fly attractant in the golden shower blossom. Journal of Economic Entomology 61: 986-988.

Kawata J, Kameda M, Miyazawa M. 2007. Constituents of essential oil from the dried fruits and stems of Akebia quinata (Thunb.) Decne. Journal of Oleo Science 56: 59-63.

Kaya A, Demirci B, Baser KHC. 2007. Study of the essential oils from the flowers and fruits of Scandix iberica Bieb. growing in Turkey.
Khosla MK, Bradu BL, Thapa RK. 1989. Biogenetic studies on the inheritance of different essential oil constituents of Ocimum species, their F1 hybrids and synthesized allopolyploids. *Herba Hungaria* 28: 13-19.

Kilic A, Hafizoglu H, Kollmannsberger H, Nitz S. 2004. Volatile constituents and key odorants in leaves, buds, flowers, and fruits of *Laurus nobilis* L. *Journal of Agricultural and Food Chemistry* 52: 1601-1606.

Kim H-J, Kim K, Kim N-S, Lee D-S. 2000. Determination of floral fragrances of *Rosa hybrida* using solid-phase trapping-solvent extraction and gas chromatography-mass spectrometry. *Journal of Chromatography A* 902: 389-404.

Kim J-Y, Kim S-S, Oh T-H, Baik JS, Song G, Lee NH, Hyun C-G. 2009. Chemical composition, antioxidant, anti-elastase, and anti-inflammatory activities of *Illicium anisatum* essential oil. *ACTA Pharmaceutica* 59: 289-300.

Kiran SR, Devi PS, Reddy KJ. 2007. Bioactivity of essential oils and sesquiterpenes of *Chloroxylon swietenia* DC against *Helicoverpa armigera*. *Current Science* 93: 544-548.

Kittibarmruangsook P. 1980. *Effects of volatile oils extracted from some plants to the Oriental fruit fly* (*Dacus dorsalis* Hendel). M.Sc. Thesis in Agriculture, Kasetsart University, Bangkok, Thailand.

Kivanc M. 1988. Antimicrobial activity of “Cortuk” (*Echinophora sibthorpiana* Guss.) spice, its essential oil and methyleugenol. *Nahrung* 332: 635-637.

Kivanc M, Akgul A. 1990. Mould growth on black table olives and prevention by sorbic acid, methyl-eugenol and spice essential oil. *Nahrung* 34: 369-373.

Klischies M, Stockigt j, Zenk MH. 1975. Biosynthesis of the allylphenols eugenol and methyleugenol in *Ocimum basilicum* L. *Journal of the Chemical Society: Chemical Communications* 1975: 879-880.

Knudsen JT, Mori SA. 1996. Floral scents and pollination in neotropical Lecythidaceae. *Biotropica* 28: 42-60.

Knudsen JT, Tollsten T, Bergstrom LG. 1993. Floral scents – a checklist of volatile compounds isolated by head-space techniques. *Phytochemistry* 33: 253-280.

Knudsen JT, Andersson S, Bergman P. 1999. Floral scent attraction in *Geonoma macrostachys*, an understorey palm of the Amazonian rain forest. *Oikos* 85: 409-418.

Knudsen JT, Tollsten L, Ervik F. 2001. Flower scent and pollination in selected neotropical palms. *Plant Biology* 3: 642-653.

Knudsen JT, Eriksson R, Stahl B. 2006. Diversity and distribution of floral scent. *Botanical Review* 72: 1-120.

Knudsen JT, Tollsten L, Grothe I, Bergstrom G, Raguso RA. 2004. Trends in floral scent chemistry in pollination syndromes: floral scent composition in hummingbird-pollinated taxa. *Botanical Journal of the Linnean Society* 146: 191-199.

Koezuka Y, Honda G, Tabata M. 1986. Genetic control of phenylpropanoids in *Perilla frutescens*. *Phytochemistry* 25: 2085-2087.
Koo BS, Park KS, Ha JH, Park JH, Lim JC, Lee DU. 2003. Inhibitory effects of the fragrance inhalation of essential oil from Acorus gramineus on central nervous system. Biological and Pharmaceutical Bulletin 26: 978-982.

Kordali S, Kotan R, Mavi A, Çakir A, Ala A, Yilsdrim A. 2005. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum and Artemisia spicigera essential oils. Journal of Agricultural and Food Chemistry 53: 9452-9458.

Kosuge T, Yokota M, Nukaya H, Gotoh Y, Nagasawa M. 1978. Studies on antitussive principles of Asiasari radix. Chemical and Pharmaceutical Bulletin 26: 2284-2285. (in Japanese).

Kothari SK, Bhattacharya AK, Ramesh S, Garg SN, Khanuja SPS. 2005. Volatile constituents in oil from different plant parts of methyl eugenol-rich Ocimum tenuiflorum L.f. (syn. O. sanctum L.) grown in South India. Journal of Essential Oil Research 17: 656-658.

Kovacevic NN, Simic MD, Ristic MS. 2007. Essential oil of Laurus nobilis from Montenegro. Chemistry of Natural Compounds 43: 408-411.

Krauze-Baranowska M, Mardarowicz M, Wiwart M, Poblocka L, Dynowska M. 2002. Antifungal activity of the essential oils from some species of the genus Pinus. Zeitschrift für Naturforschung 57c: 478-482.

Kristiawan M, Sobolik V, Allaf K. 2008. Isolation of Indonesian cananga oil using multi-cycle pressure drop process. Journal of Chromatography A 1192: 306-318.

Krüger H, Hammer K, Hammerschmidt F-J, Hennig L. 2005. Methyl Eugenol and g-asarone two new main components in fennel. Abstract (unpublished).

Kubo I, Himejima M, Muroi H. 1991. Antimicrobial activity of flavor components of cardamom Elattaria cardamomum (Zingiberaceae) seed. Journal of Agricultural and Food Chemistry 39: 1984-1986.

Kumar N, Motto MG. 1986. Volatile constituents of Peony flowers. Phytochemistry 25: 250-253.

Kundakovic T, Fokialakis N, Kovacevic N, Chinou I. 2007. Essential oil composition of Achillea lingulata and A. umbellata. Flavour and Fragrance Journal 22: 184-187.

Kurita N, Miyaji M, Kurane R, Takahara Y. 1981. Antifungal activity of components of essential oils. Agricultural Biology and Chemistry 45: 945-952.

Kuo YH, Lin YT, Lin YT. 1983. Studies on the extractive constituents of the nutmeg of Myristica fragrans Houtt. Journal of Chinese Chemical Society 30: 63-67.

Kurkcuoglu M, Baser KHC. 2003. Studies on Turkish rose concrete, absolute and hydrosol. Chemistry of Natural Compounds 39: 457-464.

Lamarque AL, Maestri DM, Zygadlo JA, Grosso NR. 1998. Volatile constituents from flowers of Acacia caven (Mol.) Mol. var. caven, Acacia aroma Gill. ex Hook.,
Lane AL, Kubanek J. 2006. Structure–activity relationship of chemical defenses from the freshwater plant *Micranthemum umbrosum*. *Phytochemistry* 67: 1224-1231.

Lassaak EV, Pinhey JT. 1969. Constituents of *Eriostemon trachyphyllus*. Structure of trachyphyllin, a new coumarin. *Australian Journal of Chemistry* 22: 2175-2185.

Lavid N, Wang J, Shalit M, Guterman I, Bar E, Beuerle T, Menda N, Shafrir S, Zamir D, Adam Z, Vainstein A, Weiss D, Pichersky E, Lewinsohn E. 2002. O-Methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. *Plant Physiology* 129: 1899-1907.

Lechat-Vahirua I, Francois P, Menut C, Lamaty G, Bessiere JM. 1993. Aromatic plants of French Polynesia. I. Constituents of the essential oils of rhizomes of three Zingiberaceae: *Zingiber zerumbet* Smith, *Hedychium coronarium* Koenig and *Etlingera cevuga* Smith. *Journal of Essential Oil Research* 5: 55-59.

Lee S-E, Lee B-H, Choi W-S, Park B-S, Kim J-G, Campbell BC. 2001. Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, *Sitophilus oryzae* (L.). *Pest Management Science* 57: 548-553.

Lewinsohn E, Ziv-Raz I, Dudai N, Tadmor Y, Lastochkin E, Larkov O, Chaimovitsh D, Ravid U, Putievsky E, Pichersky E, Shoham Y. 2000. Biosynthesis of estragole and methyl-eugenol in sweet basil (*Ocimum basilicum* L.). Development and chemotypic association of allylphenol O-methyltransferase activities. *Plant Science* 160: 27-35.

Lewis JA, Moore CJ, Fletcher MT, Drew RAI, Kitching W. 1988. Volatile compounds from the flowers of *Spathiphyllum cannafolium*. *Phytochemistry* 27: 2755-2757.

Lim GK. 2005. Chemical constituents and biological activity of *Clausena excavata* (Rutaceae). M.Sc. Thesis, School of Graduate Studies, Universiti Putra Malaysia.

Limberger RP, Scopel M, Sobral M, Henriques AT. 2007. Comparative analysis of volatiles from *Drimys brasiliensis* Miers and *D. angustifolia* Miers (Winteraceae) from Southern Brazil. *Biochemical Systematics and Ecology* 35: 130-137.

Lin Z, Hua Y. 1989. Chemical constituents of the essential oil from *Mosla scabra* (Thunb.) C.Y. Wu et H.W. Li. *Zhiwu Xuebao* 31: 320-322. (in Chinese).

Lis-Balchin M. 1993. The essential oils of *Pelargonium grossularioides* and *Erodium cicutarium* (Geraniaceae). *Journal of Essential Oil Research* 5: 317-318.

Lis-Balchin M. 1993. The essential oils of *Pelargonium grossularioides* and *Erodium cicutarium* (Geraniaceae). *Journal of Essential Oil Research* 5: 317-318.

Lis-Balchin M, Roth G. 2000. Composition of the essential oils of *P. odoratissimum*, *P. extipulatum* and *P. fragrans* (Geraniaceae). *Flavour and Fragrance Journal* 15: 391.

Liu X, Zhao M, Luo W, Yang B, Jiang Y. 2009. Identification of volatile components in *Phyllanthus emblica* L. and their antimicrobial activity. *Journal of Medicinal Food* 12: 423-428.

Liu C-T, Zhang J-X, Yiao R-R, Gan L-X. 1981. Chemical studies on the essential oils of...
Cymbopogon genus. *Acta Chimica Sinica* 39: 241-247.

Lopes NF, Kato MJ, de Aguiar FH, Andrade JG, Maia S, Yoshida M. 1997. Circadian and seasonal variation in the essential oil from *Virola surinamensis* leaves. *Phytochemistry* 46: 689-693.

Lopes-Lutz D, Alviano DS, Alviano CS, Kolodziejczyk PP. 2008. Screening of chemical composition, antimicrobial and antioxidant activities of *Artemisia* essential oils. *Phytochemistry* 69: 1732-1738.

Lu B, Li Y, Mai L, Sun B, Zhu L. 1986. Chemical constituents of essential oil from *Cinamomum rigidissimum*, a new natural resource of safrole. *Linchan Juaxue Yu Gongye* 6: 39-44. (in Chinese).

Macini B. 1980. Pharmacognostic study of leaves and stems of *Wedelia paludosa* DC var. *vialis* DC., Compositae. Analysis of the essential oil. *Revista de Ciencias Farmaceuticas* 2: 61-76. (in Portugese).

MacLeod AJ, de Troconis NG. 1982. Volatile flavor components of Sapodilla fruit (*Achras sapota* L.). *Journal of Agricultural and Food Chemistry* 30: 515-517.

Magalhães PJC, Criddle DN, Tavares RA, Melo EM, Mota TL, Leal-Cardoso JH. 1998. Intestinal myorelaxant and antispasmodic effects of the essential oil of *Croton nepetaefolius* and its constituents cineole, methyl-eugenol and terpineol. *Phytotherapy Research* 12: 172-177.

Mhamdi B, Wannes WA, Dhiffi W, Marzouk B. 2009. Volatiles from leaves and flowers of Borage (*Borgo officinalis* L.). *Journal of Essential Oil Research* 21: 504-507.

Maia JGS, Andrade EHA. 2009. Database of the Amazon aromatic plants and their essential oils. *Quimica Nova* 32: 595-622.

Maia JGS, Ramos LS, Luz AIR. 1985. Studies on the essential oil from *Licaria puchury-major* by gas chromatography/mass spectrometry (GC/MS). *ACTA Amazonica* 15: 179-183. (in Portugese).

Maia JGS, da Silva MHL, Andrade EHA, Carreira LMM. 2005. Essential oil variation in *Lippia glandulosa* Schauer. *Journal of Essential Oil Research* 17: 676-680.

Malagon O, Vila R, Iglesias J, Zaragoza T, Canigueral S. 2003. Composition of the essential oils of four medicinal plants from Ecuador. *Flavour and Fragrance Journal* 18: 527-531.

Mansour ES, Maatooq GT, Khalil AT, Marwan EM, Sallam AA. 2004. Essential oil of *Daucus glaber* Forssk. *Zeitschrift für Naturforschung* 59c: 373-378.

Manzoor-i-Khuda A, Rahman M, Yusuf M, Chawdhury J. 1986. Studies on essential oil bearing plants of Bangladesh. Part II. Five species of *Cymbopogon* from Bangladesh and the chemical constituents of their essential oils. *Bangladesh Journal of Scientific and Industrial Research* 21: 70-82.

Marotti M, Piccaglia R, Biavati B, Marotti I. 2004. Characterization and yield evaluation of essential oils from different *Tagetes* species. *Journal of Essential Oil Research* 16: 440-444.

Martins ER, Casali VWD, Barbosa LCA, Carazza F. 1997. Essential oil in the taxonomy
of Ocimum selloi Benth. *Journal of Brazilian Chemical Society* 8: 29-32.

Martins AP, Salgueiro L, Vila R, Tomi F, Canigural S, Casanova J, Da Cunha AP, Adzet T. 1998. Essential oils from four *Piper* species. *Phytochemistry* 49: 2019-2023.

Marzouki H, Piras A, Marongiu B, Rosa A, Dessi MA. 2008. Extraction and separation of volatile and fixed oils from berries of *Laurus nobilis* L. by supercritical CO$_2$. *Molecules* 13: 1702-1711.

Marzouki H, Piras A, Haj Salah KB, Medini H, Pivet T, Bouzid S, Marongiu B, Falconieri D. 2009. Essential oil composition and variability of *Laurus nobilis* L. growing in Tunisia, comparison and chemometrical investigation of different plant organs. *Natural Product Research* 23: 343-354.

Masoudi S, Rustaiyan A, Ameri N, Monfared A, Komeilizadeh H, Kamalinejad M, Jami-Roodi J. 2002. Volatile oils of *Carum copticum* (L.) C.B. Clarke in Benth. et Hook. and *Semenovia tragioides* (Boiss.) Manden. from Iran. *Journal of Essential Oil Research* 14: 288-289.

Massumi MA, Fazeli MR, Alavi SHR, Ajani Y. 2007. Chemical constituents and antibacterial activity of essential oil of *Prangos ferulacea* (L.) Lindl. fruits. *Iranian Journal of Pharmaceutical Sciences* 3: 171-176.

Matasyoh LG, Matasyoh JC, Wachira FN, Kinyua MG, Muigai AWT, Mukama TK. 2007. Chemical composition and antimicrobial activity of the essential oil of *Ocimum gratissimum* L. growing in Eastern Kenya. *African Journal of Biotechnology* 6: 760-765.

Mathela CS, Pande C, Pant AK, Singh AK. 1990. Phenylpropanoids constituents of *Cymbopogon microstachys*. *Journal of Indian Chemical Society* 67: 526-528.

Matsuda H, Morikawa T, Ishiwada T, Managi H, Kagawa M, Higashi Y, Yoshikawa M. 2003. Medicinal Flowers. VIII. Radical scavenging constituents from the flowers of *Prunus mume*: Structure of prunose III. *Chemical and Pharmaceutical Bulletin* 51: 440-443.

Matsumoto F, Idstuki H, Harada K. 1993. Volatile components of *Hedychium coronarium* Koenig flowers. *Journal of Essential Oil Research* 5: 123-133.

Mazza G. 1983. GCMS investigation of volatile components of myrtle berries. *Journal of Chromatography* 264: 304-311.

Medina AL, Lucero ME, Holguin FO, Estell RE, Posakony JJ, Simon J, O'Connell MA. 2005. Composition and antimicrobial activity of *Anemopsis californica* leaf oil. *Journal of Agricultural and Food Chemistry* 53: 8694-8698.

Medina AL, Holguin FO, Micheletto S, Goehle S, Simon JA, O'Connell MA. 2008. Chemotypic variation of essential oils in the medicinal plant, *Anemopsis californica*. *Phytochemistry* 69: 919-927.

Merle H, Ferriol M, Boira H, Blazquez A. 2006. Composition of the essential oil of *Dictamnus hispanicus* from Spain. *Journal of Essential Oil Research* 18: 483-485.

Metcalf RL. 1990. Chemical ecology of Dacinae fruit flies (Diptera: Tephritidae).
Metcalf RL, Mitchell WC, Fukuto TR, Metcalf ER. 1975. Attraction of the oriental fruit fly, Dacus dorsalis, by methyl eugenol and related olfactory stimulants. Proceedings of the National Academy of Sciences USA 72: 2501-2505.

Metcalf RL, Metcalf ER. 1992. Fruit flies of the family Tephritidae. In: Metcalf RL, Metcalf ER, Editors. Plant Kairomones in Insect Ecology and Control. pp. 109-152. Chapman Hall.

Mhamdi B, Wannes WA, Dhiffi W, Marzouk B. 2009. Volatiles from leaves and flowers of Borage (Borago officinalis L.). Journal of Essential Oil Research 21: 504-506.

Mihara S, Tateba H, Nishimura O, Machii Y, Kishino K. 1987. Volatile components of Chinese quince (Pseudocydonia sinensis Schneid). Journal of Agricultural and Food Chemistry 35: 532-537.

Miles DH, Kokpol U, Mody NV, Hedin PA. 1975. Volatiles in Sarracenia flava. Phytochemistry 14: 845-846.

Minott DA, Brown HA. 2007. Differentiation of fruiting and non-fruiting Pimenta dioica (L.) Merr. trees based on composition of leaf volatiles. Journal of Essential Oil Research 19: 354-357.

Mishra RK, Chaudhary, Pandey R, Gupta S, Mallavarpu GR, Kumar S. 2010. Analysis of linalool content in the inflorescence (flower) essential oil and leaf oil of Lippia alba cultivar 'kavach'. Journal of Essential Oil Research 22: 3-7.

Mitić V, Đorđević S. 2000. Essential oil composition of Hyssopus officinalis L. cultivated in Serbia. Facta Universitatis Series: Physics, Chemistry and Technology 2: 105-108.

Miyazawa M, Kameoka H. 1989. Volatile flavor components of crude drugs. Part VII. Volatile flavor components of corni fructus (Cornus officinalis Sieb. et Zucc.). Agricultural and Biological Chemistry 53: 3337-3340.

Miyazawa M, Kawata J. 2006. Identification of the key aroma compounds in dried roots of Rubia cordifolia. Journal of Oleo Science 55: 37-39.

Miyazawa M, Minamino Y, Kameoka H. 1996. Volatile components of the rhizomes of Rheum palmatum L. Flavour and Fragrance Journal 11: 57-60.

Miyazawa M, Kurose K, Itoh A, Hiraoka N. 2001. Comparison of the essential oils of Glehnia littoralis from northern and southern Japan. Journal of Agricultural and Food Chemistry 49: 5433-5436.

Miyazawa M, Fujita T, Yamafuji C, Matsui M, Kasahara N, Takagi Y, Ishikawa Y. 2004. Chemical composition of volatile oil from the roots of Periploca sepium. Journal of Oleo Science 53: 511-513.

Moraes LAS, Facanall R, Marques MOM, Ming LC, Meireles MAA. 2002. Phytochemical characterization of essential oil from Ocimum selloi. Anais da Academia Brasileira de Ciências 74: 183-186.

Moreira DL., Souza PO, Kaplan MAC, Pereira NA, Cardoso GL, Guimaraes EF. 2001. Effect of leaf essential oil from Piper solmsianum C.
Anais da Academia Brasileira de Ciencias 73: 33-37.

Moshonas MG, Shaw PE. 1978. Compounds new to essential orange oil from fruit treated with abscission chemicals. Journal of Agricultural and Food Chemistry 26: 1288-1290.

Mostafavi A, Afzali D. 2009. Chemical composition of the essential oils of Rosa damascena from two different locations in Iran. Chemistry of Natural Compounds 45: 110-113.

Moraes LAS, Facanall R, Marques MOM, Ming LC, Meireles MAA. 2002. Phytochemical characterization of essential oil from Ocimum selloi. Anais da Academia Brasileira de Ciências 74(1): 183-186.

Moreira DL, Souza PO, Kaplan MAC, Pereira NA, Cardoso GL, Guimaraes EF. 2001. Effect of leaf essential oil from Piper solmsianum C. Dc. In mice behaviour. Anais da Academia Brasileira de Ciências 73: 33-37.

Mostafavi A, Afzali D. 2009. Chemical composition of the essential oils of Rosa damascena from two different locations in Iran. Chemistry of Natural Compounds 45: 110-113.

Muckensturm B, Duplay D, Muhammadi F, Moradi A, Robert PC, Simonis MT, Kienlen JC. 1982. Role of natural phenylpropanoids as antifeeding agents for insects. Colloques de l'INRA 7: 131-135. (in French).

Naeole CKM, Haymer DS 2003. Use of oligonucleotide arrays for molecular taxonomic studies of closely related species in the oriental fruit fly (Bactrocera dorsalis) complex. Molecular Ecology Notes 3: 662-665.

Nagasawa M, Murakami T, Ikada K, Hisada Y. 1969. Geographical variation of essential oils of Flos magnoliae. Yakugaku Zasshi 89: 454-459.

Najjaa H, Neffati M, Zouari S, Ammar E. 2007. Essential oil composition and antibacterial activity of different extracts of Allium roseum L., a North African endemic species. Comptes Rendus Chimie 10: 820-826.

Nath SC, Sarma KK, Vajezikova I, Leclercq PA. 2002. Comparison of volatile inflorescence oils and taxonomy of certain Cymbopogon taxa described as Cymbopogon flexuosus (Nees ex Steud.) Wats. Biochemical Systematics and Ecology 30: 151-162.

Newell IM, Haramoto FH. 1968. Biotic factors influencing populations of Dacus dorsalis in Hawaii. Proceedings of the Hawaiian Entomological Society 20: 81-139.

Ngassoum MB, Noudjou WF, Ngassoum MB, Mapongmestsem PM, Aminatou Boubakaary AB, Malaisse F, Haubruege E, Lognys G, Hance T. 2007. Investigations on both chemical composition and insecticidal activities of essential oils of Vepris heterophylla (Rutaceae) from two localities of northern Cameroon towards Tribolium castaneum (Heerbst) (Coleoptera: Tenebrionidae). Research Journal of Biological Sciences 2: 57-61.

Ngassoum MB, Ngamo LT, Maponmetsem PM, Jirovetz L, Buchbaluer G. 2003. Investigations of medicinal aromatic plants from Cameroon: GD/Fid, GC/MS and olfactoric analyses of essential oils of Ocimum...
suave Willd. (Lamiaceae). ACTA Pharmaceutica Turica 45: 69-75.

Ngoh SP, Choo LEW, Pang FY, Huang Y, Kini MR, Ho SH. 1998. Insecticidal and repellent properties of nine volatile constituents of essential oils against the American cockroach, Periplaneta americana (L.). Pesticide Science 54: 261-268.

Niemeyer HM. 2009. Composition of essential oils from five aromatic species of Asteraceae. Journal of Essential Oil Research 21: 350-353.

Nishda R, Tan KH, Serit M, Lajis NH, Sukari AM, Takahashi S, Fukami H. 1988. Accumulation of phenylpropanoids in the rectal glands of male Oriental fruit fly, Dacus dorsalis. Experientia 44: 534-536.

Nishida R, Tan KH, Takahashi S, Fukami H. 1990. Volatile components of male rectal glands of the melon fly, Dacus cucurbitae Coquillett (Diptera: Tephritidae). Applied Entomology and Zoology 25: 105-112.

Nishida R, Iwahashi I, Tan KH, 1993. Accumulation of Dendrobium (Orchidaceae) flower fragrance in the rectal glands by males of the melon fly, Dacus cucurbitae (Tephritidae). Journal of Chemical Ecology 19: 713-722.

Nishida R, Tan KH, Wee SL, Hee AKW, Toong YC. 2004. Phenylpropanoids in the fragrance of the fruit fly orchid, Bulbophyllum cheiri, and their relationship to the pollinator, Bactrocera papayae. Biochemical Systematics and Ecology 32: 245-252.

Nivinskienė O, Butkienė R, Gudalevič A, Mockutė D, Meškauskienė V, Grigaliūnaitė B. 2007. Influence of urban environment on chemical composition of Tilia cordata essential oil. Chemija 18: 44-49.

Nor Azah MA, Zaridah MZ, Majid JA, Said AA, Faridz ZM, Rohani A. 2006. Chemical composition of essential oils and their related biological activities. In: Highlights of FRIM’s IRPA Projects 2005: 156-160.

Ntezurubanza L, Scheffer JJC, Svendsen AB. 1988. Composition of the essential oils of Ocimum urticifolium (Lamiaceae) chemotypes grown in Rwanda. Botanical Journal of the Linnean Society 96: 97-104.

Nurdijati S, Tan KH, Toong YC. 1996. Basil plants (Ocimum spp.) and their prospects in the management of fruit flies. In: Chua TH, Khoo SG, Editors. Problems and Management of Tropical Fruit Flies. pp. 47-51. Kai Wah Press.

Ohloff G. 1978. Importance of minor components in flavors and fragrances. Perfume Flavor 3: 10-22.

Orankanok W, Chinvinijkul S, Sawatwangkhongm A, Pinkaew S, Orankanok S. 2009. Application of chemical supplements to enhance Bactrocera dorsalis and B. correcta sterile males performance in Thailand. Fourth FAO/IAEA Research Co-
ordination meetings on “Improving Sterile Male Performance in Fruit Fly SIT Programmes”.

Ozcan MM, Chalchat J-C. 2007. The flavor profile of young shoots, flowerbuds, and unripe fruits of capers growing wild in Turkey. *Chemistry of Natural Compounds* 43: 336-338.

Ozcan M, Bagci Y, Akgul A, Dural H, Novak J. 2000. Chemical composition of the essential oil of *Prangos uechtritzii* Boiss. et Hausskn. fruits from Turkey. *Journal of Essential Oil Research* 12: 183-185.

Ozcan M, Bagci Y, Ertugrul K, Novak J. 2004. Comparison of the leaf, root and fruit oils of *Diplotaenia cachrydifolia* from Turkey. *Journal of Essential Oil Research* 16: 211-213.

Ozek G, Ozek T, Baser KHC, Hamzaoglu E, Duran A. 2007. Composition of the essential oil of *Hippomarathrum cristatum* (DC.) Boiss. *Journal of Essential Oil Research* 19: 540-542.

Ozman M, Chalchar J-C. 2004. Aroma profile of *Thymus vulgaris* L. growing wild in Turkey. *Bulgarian Journal of Plant Physiology* 30: 68-73.

Pai KF, Chen CC, Yang JT, Chen CJ 2004. Green lacewing *Ankylopteryx exquisite* attracted to methyl eugenol. *Plant Protection Bulletin* 46: 93-97.

Paniandy JC, Chane-Ming J, Pieribattesti JC. 2000. Chemical composition of the essential oil and headspace solid-phase microextraction of the guava fruit (*Psidium guajava* L.). *Journal of Essential Oil Research* 12: 153-158.

Paramonov EA, Khalilova AZ, Odinokov VN, Khalilov LM. 2000. Identification and biological activity of volatile organic compounds isolated from plants and insects. III. Chromatography-mass spectrometry of volatile compounds of *Aegopodium podagria*. *Chemistry of Natural Compounds* 36: 584-586.

Park BS, Lee KG, Shibamoto T, Lee SE, Takeoka GR. 2003. Antioxidant activity and characterization of volatile constituents of taheebo (*Tabebuia impetiginosa* Martius ex DC). *Journal of Agricultural and Food Chemistry* 51: 295-300.

Park I-K, Kim J, Lee S-G, Shin S-C. 2007. Nematicidal activity of plant essential oils and components from ajowan (*Trachyspermum ammi*), allspice (*Pimenta dioica*) and litsea (*Litsea cubeba*) essential oils against pine wood nematode (*Bursaphelenchus xylophilus*). *Journal of Nematology* 39: 275-279.

Pavela R, Sajfrtova M, Sovova H, Barnet M, Karban J. 2010. The insecticidal activity of *Tanacetum parthenium* (l.) Schultz Bip. extracts obtained by supercritical fluid extraction and hydrodistillation. *Industrial Crops and Products* 31: 449-454.

Pedro LG, Santos AG, Da Silva JA, Figueiredo AC, Barroso JG, Deans SG, Looman A, Scheffer JJC. 2001. Essential oils from Azorean *Laurus azorica*. *Phytochemistry* 57: 245-250.

Perez AG, Cert A, Rios JJ, Olias JM. 1997. Free and glycosidically bound volatile compounds from two banana cultivars: Valery and Pequena Enana. *Journal of Agricultural and Food Chemistry* 45: 4393-4397.
Perfumi M, Valentini G, Bellomaria B. 1999. Chemical constituents and spasmyloic activity in guinea-pig ileum of essential oil of Artemisia alba from two geographically and ecologically different localities. Journal of Essential Oil Research 11: 223-228.

Piccaglla R, Pace P, Tammaro F. 1999. Characterization of essential oils from three Italian ecotypes of Hyssop [Hyssopus officinalis L. subsp. aristatus (Gordon) Briq.]. Journal of Essential Oil Research 11: 693-699.

Pichersky E, Gang DR. 2000. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in Plant Science 5: 439-445.

Piccone JM, Clery RA, Watanabe N, MacTavish HS, Turnbull CGN. 2004. Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv. 'Quatre Saisons'. Planta 219: 468-478.

Pino JA, Quijano CE. 2008. Volatile compounds of Pourouma cecropiifolia Mart. fruits from Colombia. Journal of Essential Oil Research 20: 242-244.

Pino JA, Marbot R, Aguero J. 2002. Volatile components of baga (Annona glabra L.) fruit. Journal of Essential Oil Research 14: 252-253.

Pina JA, Mesa J, Munoz Y, Marti MP, Marbot R. 2005. Volatile components from Mango (Mangifera indica L.) cultivars. Journal of Agricultural and Food Chemistry 53: 2213-2223.

Pripdeevech P, Machan T. 2010. Fingerprint of volatile flavor constituents and antioxidant activities of teas from Thailand. Food Chemistry 125: 797-802. DOI: 10.1016/j.foodchem.2010.09.074

Prudent D, Perineau F, Bessiere JM, Michel G, Bravo R. 1993. Chemical analysis, bacteriostatic and fungistatic properties of the essential oil of the Atoumau from Martinique (Alpinia speciosa K. Schum.). Journal of Essential Oil Research 5: 255-264.

Quilici S, Duyck PF, Franck A. 2004. Preliminary experiments on the influence of exposure to methyleugenol on mating success of males in the peach fruit fly, Bactrocera zonata. 1st RCM on improving sterile male performance in fruit fly SIT, Antigua, Guatemala.

Rabha LC, Hazarika AK, Bordoloi DN. 1986. Cymbogon khasianus a new rich source of methyl eugenol. Indian Perfumer 30: 339-344.

Radriamiharisoa R, Gaydou EM, Bianchini JP, Ravelojaonha G, Vernin G. 1986. Study of the variation in the chemical composition and classification of basil essential oils from Madagascar. Sciences des Aliments 6: 221-231. (in French).

Radulescu V, Oprea E. 2008. Analysis of volatile compounds of officinal Tiliae flos by gas-chromatography coupled with mass spectrometry. Farmacia 56: 129-138.

Radulovic N, Dekic M, Stojanovic-Radic Z, Palic R. 2009. Volatile constituents of Erodium cicutarium (L.) L’Herit. (Geraniaceae). Central European Journal of Biology 4: 404-410.

Raguso RA, Pichersky E. 1995. Floral volatiles from Clarkia breweri and C. concinna (Onagraceae): recent evolution of
floral scent and moth pollination. *Plant Systematics and Evolution* 194: 55-57.

Raina VK, Kumar A, Srivastava SK, Syamsundar KV, Kahol AP. 2004. Essential oil composition of ‘kewda’ (*Pandanus odoratissimus*) from India. *Flavour and Fragrance Journal* 19: 434–436.

Raina VK, Verma SC, Dhawan S, Khan M, Ramesh S, Singh SC, Yadav A, Srivastava SK. 2006. Essential oil composition of *Murraya exotica* from the plains of northern India. *Flavour and Fragrance Journal* 21: 140-142.

Rajeswara Rao BT, Kaul PN, Bhattacharya AK, Rajput DK. 2006. Comparative chemical composition of steam-distilled and water-soluble essential oils of South American marigold (*Tagetes minuta* L.). *Journal of Essential Oil Research* 18: 622-626.

Ramanoeina PA, Viano J, Bianchini J-P, Gaydou EM. 1994. Occurrence of various chemotypes in Niaouli (*Melaleuca quinquenervia*) essential oils from Madagascar using multivariate statistical analysis. *Journal of Agricultural and Food Chemistry* 42: 1177.

Ramanoeina PAJ, Rasoarahona JRE, Gaydou EM. 2006. Chemical composition of *Ravensara aromatica* Soon, leaf essential oils from Madagascar. *Journal of Essential Oil Research* 18: 215-217.

Rao JT, Nigam SS. 1973. Chemical investigation of essential oil recovered from *Ageratum conyzoides*. *Koerperpflegem* 23: 209-210. (in German).

Ravindran PN, Shulaja M, Babu KN, Krishnamoorthy B. 2003. Botany and crop improvement of cinnamon and cassia. In: Ravindran PN, Babu KN, Shylaja M, Editors. *Cinnamomum and Cassia: The genus Cinnamomum*. pp. 80-120. CRC Press.

Reinaldo S, Chavez K, Mateu E, Orsini G, Arvelo F, Suarez AI. 2010. Composition and cytotoxic activity of essential oils from *Croton matourensis* and *Croton micans* from Venezuela. *Records of Natural Products* 4: 101-108.

Reish JD, Bergenthal SK, Adesina D, Akinwusi D, Olatunji AO. 1986. Constitutents of *Fagara macrophylla* and *Zanthoxylum rigidifollum* pericarps. *Journal of Natural Products* 49: 1169-1171.

Ribnicky DM, Poulev A, O’Neal J, Wnorowski G, Malek DE, Jager D, Raskin I. 2004. Toxicological evaluation of the ethanolic extract of *Artemisia dracunculus* L. for use as a dietary supplement and in functional foods. *Food and Chemical Technology* 42: 585-598.

Robison SH, Barr DB. 2006. Use of biomonitoring data to evaluate methyl eugenol exposure. *Environmental Health Perspectives* 114: 1797-1801.

Rodilla JM, Tinoco MT, Morais JC, Gimenez C, Cabrera R, Martin-Benito D, Castillo L, Gonzalez-Coloma A. 2008. *Laurus novocanariensis* essential oil: Seasonal variation and valorization. *Biochemical Systematics and Ecology* 36: 167-176.

Rossi P, Bao L, Luciani A, Panighi J, Desjobert J, Costa J, Casanova J, Bolla J, Berti L. 2007. (E)methylisoeugenol and elemicin: Antibacterial components of *Daucus carota* L. essential oil against *Campylobacter*
Ruff C, Hor K, Weckerle B, Konig T, Schreier P. 2002. Authenticity assessment of estragole and methyl eugenol by on-line gas chromatography-isotope ratio mass spectrometry. *Journal of Agricultural and Food Chemistry* 50: 1028-1031.

Russell GF, Jennings WG. 1969. Constituents of Black Pepper – Some oxygenated compounds. *Journal of Agricultural and Food Chemistry* 17: 1107-1112.

Ryan D. 1991. *Aromatherapy - the Encyclopedia of Plants and Oils and How They Help You*. Judy Piatkus Ltd.

Saad H-EA, El-Sharkawy SH, Halim AF. 1995. Essential oils of *Daucus carota* ssp. maximus. *Pharmaceuticae Acta Helveticae* 70: 79-84.

Saiednia S, Gohari AR, Yassa N, Shafiee A. 2005. Composition of the volatile oil of *Achillea conferta* DC. from Iran. *DARU Journal of Pharmaceutical Science* 13: 34-36.

Safaei-Ghomi J, Bamoniri A, Hafami A, Batooli H. 2007. Determination of volatile components in Iranian *Rosa hemisphaerica*. *Chemistry of Natural Compounds* 43: 738-740.

Saglam H, Gozler T, Kivcak B, Demirci B, Baser KHC. 2001. Composition of the essential oil of *Haplophyllum myrtifolium*.
Gas chromatography of the volatile oils of plants belonging to the *Heteroptera* genus. 2. *Yakugaku Zasshi* 87: 1539-1543.

Saiki Y, Akakori Y, Morinaga K, Taira T, Noro T, Fudushima S, Harada T. 1967e. Gas chromatography of natural volatile oils. V. Gas chromatography of the volatile oils of plants belonging to the *Heteroptera* genus. 3. *Yakugaku Zasshi* 87: 1544-1547.

Sainsbury M, Sofowora EA. 1971. Essential oil from the leaves and inflorescence of *Ocimum gratissimum*. *Phytochemistry* 10: 3309-3310.

Sajjadi SE, Ghannadi A. 2005. Essential oil of the Persian sage, *Salvia rhytidea* Benth. *ACTA Pharmaceutica* 55: 321-326.

Sajjadi SE, Mehregan I. 2003. Chemical composition of the essential oil of *Prangos asperula* Boiss. subsp. *haussknechtii* (Boiss.) Herrnst et Heyn fruits. *DARU Journal of Pharmaceutical Science* 11: 79-81.

Sammy GM, Nawar WW. 1968. Identification of the major components of nutmeg oil by gas chromatography and mass spectrometry. *Chemistry and Industry* 38: 1279-1280.

Sanford KJ, Heinz DE. 1971. Effects of storage on the volatile composition of nutmeg. *Phytochemistry* 10: 1245-1250.

Sangun MK, Aydin F, Timur M, Karadeniz H, Caliskan M, Ozkan A. 2007. Comparison of chemical composition of the essential oil of *Laurus nobilis* L. leaves and fruits from different regions of Hatay, Turkey. *Journal of Environmental Biology* 28: 731-733.

Sarker SD, Armstrong JA, Waterman PG. 1995. (-)-1,12-oxaguai-10(15)-ene: A sesquiterpene from *Eriostemon fitzgeraldii*. *Phytochemistry* 40: 1159-1162.

Saroglou V, Dorizas N, Kypriotakis Z, Skaltsa HD. 2006. Analysis of the essential oil composition of eight *Anthemis* species from Greece. *Journal of Chromatography* 1104: 313-322.

Saxena BP, Koul O, Tikku K, Atal CK. 1977. A new insect chemosterilant isolated from *Acorus calamus* L. *Nature* 270: 512-513.

Scheuer PJ. 1955. The constituents of mokihana (*Pelea anisata* Mann). *Chemistry and Industry* 33: 1257-1258.

Schecter A, Lucier GW, Cunningham ML, Abdo KM, Blumenthal G, Silver AG, Melnick R, Portier C, Barr DB, Barr JR, Stanfill SB, Patterson Jr. DG, Needham LL, Stopford W, Masten S, Mignogna J, Tung KC. 2004. Human consumption of methyleugenol and its elimination from serum. *Environmental Health Perspectives* 112: 678-683.

Schiestl FP. 2010. The evolution of floral scent and insect chemical communication. *Ecology Letters* 13: 643-656.

Schwerdtfeger M, Gerlach G, Kaiser R. 2002. Anthecology in the Neotropical genus *Anthurium* (Araceae): A preliminary report. *Selbyana* 23: 258-267.

Scrivanti LR, Anton AM, Zygadlo JA. 2009. Essential oil composition of *Bothriochloa* Kuntze (Poaceae) from South America and their chemotaxonomy. *Biochemical Systematics and Ecology* 37: 206-213.

Sellami IH, Maamouri E, Chahed T, Wannes WA, Kchouk ME, Marzouk B. 2009. Effect of growth stage on the content and composition
of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.).

Industrial Crops and Products 30: 395-402.

Senanayake UM, Lee TH, Wills RBH. 1978. Volatile constituents of Cinnamon (Cinnamomum zeylanicum) oils. *Journal of Agricultural and Food Chemistry* 26: 822-824.

Senatore F, Sorta EU, Soria RU, Della Porta G, Taddeo R, De Feo V. 1997. Essential oil of Eremocharis triradiata (Wolff.) Johnston (Apiaceae) growing wild in Peru. *Flavour and Fragrance Journal* 12: 257-259.

Senatore F, De Feo V. 1999. Chemical composition of the essential oil from Tagetes mandonii Sch. Bip. (Asteraceae). *Flavour and Fragrance Journal* 14: 32-34.

Sezik E, Basaran A. 1985. Phytochemical investigations on the plants used as folk medicine and herbal tea in Turkey. II. Essential oil of Stachys lavandulifolia Vahl var. lavandulifolia. *Istanbul Universitesi Eczacilik Fakültesi Mecmuasi* 21: 98-107.

Sezik E, Usun O, Demirci B, Baser KHC. 2010. Composition of the oils of Pinus nigra Arnold from Turkey. *Turkey Journal of Chemistry* 34: 313-325.

Shatar S, Altantsetseg S, Dung NX, Ngoc PH, Klinkby N, Leclercq PA. 2002. The essential oil of Artemisia subdigitata Mattf. from Mongolian the desert-Gobi. *Journal of Essential Oil Research* 14: 99-100.

Sharma ML, Rawat AKS, Blalasubrhmanyam VR, Singh A. 1983. Studies on essential oil of betel vine leaf (Piper betle Linn.). *Indian Perfumer* 27: 91-93.

Shatar S, Altantsetseg S. 2000. Essential oil composition of some plants cultivated in Mongolian climate. *Journal of Essential Oil Research* 12: 745-750.

Shaver TN, Bull DL. 1980. Environmental fate of methyl eugenol. *Bulletin of Environmental Contamination and Toxicology* 24: 619-626.

Shelly TE. 2010. Effects of methyl eugenol and raspberry ketone/cue lure on the sexual behavior of Bactrocera species (Diptera: Tephritidae). *Applied Entomology and Zoology* 45: 349-361.

Shelly TE, Dewire A-LM. 1994. Chemically mediated mating success in male Oriental fruit flies (Diptera: Tephritidae). *Annals of the Entomological Society of America* 87: 375-382.

Shelly TE, Dewire A-LM. 2000. Flower-feeding affects mating performance in male Oriental fruit flies (Diptera: Tephritidae). *Ecological Entomology* 25: 109-114.

Shelly TE, Edu J, McInnis D. 2010. Pre-release consumption of methyl eugenol increases the mating competitiveness of sterile males of the oriental fruit fly, Bactrocera dorsalis, in large field enclosures. *Journal of Insect Science* 10: 8. Available online, insectscience.org/10.8

Shum ACS, Smadja J. 1992. Volatile constituents of Faham (Jumellea fragrans (Thou.) Schltr.). *Journal of Agricultural and Food Chemistry* 40: 642-646.

Siderhurst MS, Jang EB. 2006. Female-biased attraction of Oriental fruit fly, Bactrocera dorsalis (Hendel), to a blend of host fruit
volatiles from *Terminalia catappa* L. *Journal of Chemical Ecology* 32: 2513-2524.

Silou T, Loubak L, Figueredo G, Chalchat J-C. 2006. Study of essential oil composition of *Elyonurus hensii* Schum from Congo. *Journal of Essential Oil Research* 18: 518-520.

Silva CGV, Zago HB, Junior HJGS, Da Camara CAG, De Oliverira JV, Barros R, Schwartz MOE, Lucena MFA. 2008. Composition and insecticidal activity of the essential oil of *Croton grewloides* Baill. against Mexican bean weevil (*Zabrotes subfasciatus* Boheman). *Journal of Essential Oil Research* 20: 179-182.

Simon JE, Morales MR, Phippen WB, Vieira RF, Hao Z. 1999. Basil: A source of aroma compounds and a popular culinary and ornamental herb. In: Janick J, Editor. *Perspectives on New Crops and New Uses*. pp. 499–505. ASHS Press.

Simonsen HT, Adsersen A, Bremner P, Heinrich M, Wagner SU, Jaroszewski JW. 2004. Antifungal constituents of *Melicope borbonica*. *Phytotherapy Research* 18: 542-545.

Sinchaisri P, Areekul S. 1985. Natural attractants in *Colocasia exculenta* blossom for the Oriental fruit fly, *Dacus dorsalis* Hendel. *Thai Agricultural Research Journal* 3: 182-190. (in Thai with English Abstract).

Singh AK, Yadaw A. 2005. Composition of essential oils from different parts of *Thuja orientalis* (L.) syn. *Biota orientalis* Endl. *Indian Perfumer* 49: 173-177.

Sithisarn P, Mols SE, Young J, Podila KG. 2002. Investigations on essential oil and oleoresins of *Zingiber officinale*. *Food Chemistry and Toxicology* 46: 3295-3302.

Smith RL, Adamsb TB, Doullc J, Ferond VJ, Goodmane JJ, Marnettf LJ, Portogheseg PS, Waddellh WJ, Wagneri BM, Rogers AE, Caldwell J, Sipesl IG. 2002. Safety assessment of allylalkoxybenzene derivatives used as flavouring substances - methyl eugenol and estragole. *Food and Chemical Toxicology* 40: 851-870.

Smitt UW. 1995. A chemotaxonomic investigation of *Thapsia villosa* L., Apiaceae (Umbelliferae). *Botanical Journal of the Linnean Society* 119: 367-377.

Sobti SN, Khosla MK, Pushpangadan P, Thapa RK. 1981. Search for new aroma chemicals from *Ocimum* species. II. Essential oil of American species of *O. carnosum* Lk. et Otto. *Herba Hungaria* 20: 49-56.

Sookar P, Alleck M, Aheek N, Khayrattee FB, Permalloo S. 2009. Improving male reproductive performance of *Bactrocera zonata* and *Bactrocera cucurbitae*. Fourth FAO/IAEA Research Co-ordination meetings on “Improving Sterile Male Performance in Fruit Fly SIT Programmes”.

Srivastava AK, Srivastava SK, Syamsundar KV. 2006. Volatile composition of *Curcuma angustifolia* Roxb. Rhizome from central and southern India. *Flavour and Fragrance Journal* 21: 423-426.

Staniszewska M, Kula J. 2001. Composition of the essential oil from wild carrot umbels (*Daucus carota* L. ssp. Carota) growing in Poland. *Journal of Essential Oil Research* 13: 439-441.
Stashenko EE, Martinez JR, Ruiz CA, Arias G, Duran C, Salgar W, Cala M. 2010. Lippia origanoides chemotype differentiation based on essential oil GC-MS and principal component analysis. *Journal of Separation Science* 33: 93-103.

Steiner LF. 1969. A method of estimating the size of native populations of Oriental, Melon and Mediterranean fruit flies, to establish the overflooding ratios required for sterile-male releases. *Journal of Economic Entomology* 62: 4-7.

Steiner LF, Mitchell WC, Harris EJ, Kozuma TT, Fujimoto MS. 1965. Oriental fruit fly eradication by male annihilation. *Journal of Economic Entomology* 58: 961-964.

Suanarunsawat T, Ayutthaya WDN, Songsak T, Thirawarapan S, Poungshompoo S. 2010. Antioxidant activity and lipid-lowering effect of essential oils extracted from *Ocimum sanctum* Linn. leaves in rats fed with a high cholesterol diet. *Journal of Clinical Biochemistry and Nutrition* 46: 52-59.

Suarez C, Enrique L. 1980. Hydrosyotobain and reticuline from *Ocotea caparrapi*. *Revista Latinoamericana de Quimica* 11: 110-111. (in Spanish).

Suarez M, Bonilla J, De Diaz AMP, Achenbach H. 1983. Studies of Colobian Lauraceae. Dehydrodieugenols from *Nectandra polita*. *Phytochemistry* 22: 609-610.

Suárez AI, Vásquez LJ, Manzano MA, Compagnone RS. 2005. Essential oil composition of *Croton cuneatus* and *Croton malambo* growing in Venezuela. *Flavour and Fragrance Journal* 20: 607-610.

Suarez AI, Vasquez LJ, Taddei A, Arvelo F, Compagnone RS. 2008. Antibacterial and cytotoxic activity of leaf essential oil of *Croton malambo*. *Journal of Essential Oil-Bearing Plants* 11: 208-213.

Suda DY, Cunningham RT. 1970. *Chrysopa basalis* captured in plastic traps containing methyl eugenol. *Journal of Economic Entomology* 63: 1706.

Sudhakar P, Latha P, Sreenivasulu Y, Reddy BV, Hemalaatha TM, Balakrishna M, Reddy KR. 2009. Inhibition of *Aspergillus flavus* colonization and aflatoxin (AfB1) in peanut by methyleugenol. *Indian Journal of Experimental Biology* 47: 63-67.

Sukari MA, Takahashi S. 1988. Biological activity of some Malaysian plant extracts. *Pertanika* 11: 249-253.

Suliman FEO, Fatope MO, Al-Saidi SH, Al-Kindy SMZ. 2006. Composition and antimicrobial activity of the essential oil of *Pluchea arabica* from Oman. *Flavour and Fragrance Journal* 21: 469-471.

Svendsen CE, Baerheim A. 1990. The essential oil of *Lippia alba* (Mill.) N.E. Br. *Journal of Essential Oil Research* 2: 265-267.

Taarit MB, Msaada K, Hosni K, Hammanmi M, Kchouk ME, Marzouk B. 2009. Plant growth, essential oil yield and composition of sage (*Salvia officinalis* L.) fruits cultivated under salt stress conditions. *Industrial Crops and Products* 30: 333-337.

Taarit MB, Msaada K, Hosni K, Chahed T, Marzouk B. 2010. Essential oil composition of *Salvia verbenaca* L. growing wild in Tunisia. *Journal of Food Biochemistry* 34: 142-151.
Tabanca N, Kirimer N, Demira B, Demirci F, Baser KHC. 2001. Composition and antimicrobial activity of the essential oils of *Micromeria cristata* subsp. *phrygia* and the enantiomeric distribution of borneol. *Journal of Agricultural and Food Chemistry* 49: 4300-4303.

Tabanca N, Demirci B, Kirimer N, Baser KHC, Bedir E, Khan IA, Wedge DE. 2005a. Gas chromatographic-mass spectrometric analysis of essential oils from *Pimpinella aurea*, *Pimpinella corymbosa*, *Pimpinella peregrina* and *Pimpinella puberula* gathered from eastern and southern Turkey. *Journal of Chromatography A* 109: 192-198.

Tabanca N, Douglas AW, Bedir E, Dayan FE, Kirimer N, Baser KHC, Aytac Z, Khan IA, Scheffler BE, 2005b. Patterns of essential oil relationships in *Pimpinella* (Umbelliferae) based on phylogenetic relationships using nuclear and chloroplast sequences. *Plant Genetic Resources* 3: 149–169.

Tabanca N, Demirci B, Baser KHC, Aytac Z, Ekici M, Khan SI, Jacob MR, Wedge DE. 2006. Chemical composition and antifungal activity of *Salvia macrochlamys* and *Salvia recognita* essential oils. *Journal of Agricultural and Food Chemistry* 54: 6593-6597.

Talenti ECJ. 1982. Study of the essential oil of *Pluchea sagittalis* (Lamarck) Cabrera. 9. *Essenze Derivati Agrumari* 52: 21-51. (in Spanish).

Talenti ECJ, Mancini PME, Retamar JA. 1981. Study of the essential oil of *Acacia caven*. *Essenze Derivati Agrumari* 51: 98-100. (in Spanish).

Tan KH. 1985. Estimation of native populations of male *Dacus* spp. by Jolly's stochastic method using a new designed attractant trap in a village ecosystem. *Journal of Plant Protection in the Tropics* 2: 87-95.

Tan KH. 2003. Interbreeding and DNA analysis of *Bactrocera dorsalis* sibling species. In: *Recent Trends on Sterile Insect Technique and Area-Wide Integrated Pest Management - Economic Feasibility, Control Projects, Farmer Organization and Bactrocera dorsalis Complex Control Study*. pp. 113-122. Research Institute for the Subtropics.

Tan KH. 2009. Fruit fly pests as pollinators of wild orchids. *Orchid Digest* 73: 180-187.

Tan KH, Jaal Z. 1986. Comparison of male adult population densities of the Oriental and *Artocarpus* fruit flies, *Dacus* spp. (Diptera: Tephritidae), in two nearby villages in Penang, Malaysia. *Researches on Population Ecology* 25: 85-89.

Tan KH, Lee SL. 1982. Species diversity and abundance of *Dacus* (Diptera: Tephritidae) in five ecosystems of Penang, Malaysia. *Bulletin of Entomological Research* 72: 709-716.

Tan KH, Nishida R. 1996. Sex pheromone and mating competition after methyl eugenol consumption in *Bactrocera dorsalis* complex. In: McPheron BA, Steck GJ, Editors. *Fruit Fly Pests – A World Assessment of their Biology and Management*. pp. 147-153. St. Lucie Press.

Tan KH, Nishida R. 1998. Ecological significance of a male attractant in the defence and mating strategies of the fruit fly pest, *Bactrocera papayae*. *Entomologia Experimentalis et Applicata* 89: 155-158.
Tan KH, Nishida R. 2000. Mutual reproductive benefits between a wild orchid, *Bulbophyllum patens*, and *Bactrocera* fruit flies via a floral synomone. *Journal of Chemical Ecology* 26: 533-546.

Tan KH, Nishida R. 2005. Synomone or Kairomone? - *Bulbophyllum apertum* (Orchidaceae) flower releases raspberry ketone to attract *Bactrocera* fruit flies. *Journal of Chemical Ecology* 31: 509-519.

Tan KH, Nishida R. 2007. Zingerone in the floral synomone of *Bulbophyllum baileyi* (Orchidaceae) attracts *Bactrocera* fruit flies during pollination. *Biochemical Systmatics and Ecology* 35: 334-341.

Tan KH, Serit M. 1988. Movements and population density comparisons of native male adult *Dacus dorsalis* and *Dacus umbrosus* (Diptera: Tephritidae) between three ecosystems in Tanjong Bungah, Penang. *Journal of Plant Protection in the Tropics* 5: 17-21.

Tan KH, Serit M. 1994. Adult population dynamics of *Bactrocera dorsalis* (Diptera: Tephritidae) in relation to host phenology and weather in two villages of Penang Island, Malaysia. *Environmental Entomology* 23: 267-275.

Tan KH, Nishida R, Toong YC. 2002. *Bulbophyllum cheiri*'s floral synomone lures fruit flies to perform pollination. *Journal of Chemical Ecology* 28: 1161-1172.

Tan KH, Tan LT, Nishida R. 2006. Floral phenylpropanoid cocktail and architecture of *Bulbophyllum vinaceum* orchid in attracting fruit flies for pollination. *Journal of Chemical Ecology* 32: 2429-2441.

Tan KH, Tokushima I, Ono H, Nishida R. 2011a. Comparison of phenylpropanoid volatiles in male rectal pheromone gland after methyl eugenol consumption, and molecular phylogenetic relationship of four global pest fruit fly species - *Bactrocera invadens*, *B. dorsalis*, *B. correcta* and *B. zonata*. *Chemoecology* 21: 25-33.

Tan, K.H., Wee, S.L., Hee, A.K.W., Ono, H., Tokushima, I., Nishida, R. 2011b. Comparison of male sex pheromonal components after methyl eugenol consumption in seven highly invasive *Bactrocera* species. 6th Asia-Pacific Conference on Chemical Ecology, October 11-15, 2011, Beijing, China. Available online, http://apace-news.org/archives/APACE2011_program_and_abstracts.pdf

Tanker N, Tanker M, Sener B, Svendsen AB. 1976. Gas-liquid chromatographic research on the volatile oil of *Echinophora tenuifolia* subsp. *sibthorpiana* (Umbelliferae). *Ankara Universitesi Eczacilik Fakültesi Mecmuasi* 6: 161-180. (in Turkish).

Tellez MR, Estell RE, Fredrickson EL, Havstad KM. 1997. Essential oil of *Dyssodia acerosa* DC. *Journal of Agricultural and Food Chemistry* 45: 3276-3278.

Thongdon-A J, Inprakhon P. 2009. Composition and biological activities of essential oils from *Limnophila geoffrayi* Bonati. *World Journal of Microbiology and Biotechnology* 25: 1313-1320.

Thoppil JE. 1997. Essential oil compostion of *Moschosma polystachya* (L). Benth. *Indian Journal of Pharmaceutical Sciences* 59: 191-192.
Identification of the constituents of volatile oils from Chinese *Asarum* species. I. Volatile oil from Liao xixin, *Asarum hertropoides* var. *mandshuricum*. *Pei-ching I Hsueh Yuan Hsueh Pao* 13: 179-182. (in Chinese).

Identification of the constituents of volatile oils from Chinese *Asarum* species. II. Volatile oil from huaxixin, *Asarum sieboldii*. *Beijing Yixueyuan Xuebao* 13: 282-284. (in Chinese).

Torrado A, Saurez M, Duque C, Krajewski D, Neugebauer W, Schreier P. 1995. Volatile constituents from Tamarillo (*Cyphomandra betacea* Sendtn.) fruit. *Flavour and Fragrance Journal* 10: 349-354.

Tram Ngoc LY, Yamauchi R, Kato K. 2001. Volatile components of the essential oils in Galanga (*Alpinia officinarum* Hance) from Vietnam. *Food Science and Technology Research* 7: 303-306.

Treuutter D. 2005. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. *Plant Biology* 7: 581-591.

Trusheva B, Popova M, Bankova V, Simova S, Marcucci MC, Miorin PL, Pasin FR, Tsvetkova I. 2006. Bioactive constituents of Brazilian red propolis. *Evidence-based Complementary and Alternative Medicine* 3: 249-254.

Tucker AO, Maciarello MJ. 1997. Volatile oils of *Illicium floridanum* and *I. parviflorum* (Illiciaceae) of the southeastern United States and their potential economic utilization. *Economic Botany* 53: 435-436.

Tucker AO, Maciarello MJ, Clancy K. 1999. Sweet goldenros (*Solidago odora*, Asteraceae): A medicine, tea and state herb. *Economic Botany* 53: 281-284.

Tucker AO, Maciarello MJ, Adams RP, Landrynn LR, Zanoni TA. 1991. Volatile leaf oils of Caribbean Myrtaceae. I. Three varieties of *Pimenta racemosa* (Miller) J. Moore of the Dominican Republic and the commercial bay oil. *Journal of Essential Oil Research* 3: 323-329.

Tutupalli LV, Brown JK, Chaubal MG. 1975. Essential oil of *Saururus cernuus*. *Phytochemistry* 14: 595-596.

Tutupalli LV, Chaubal MG, Malone MH. 1975. Saururaceae. VI. Hippocratic screening of *Anemopsis californica*. *Lloydia* 38: 352-354.

Tzakou O, Loukis A, Argyriadou N. 1993. Volatile constituents of *Achillea crithmifolia* flowers from Greece. *Journal of Essential Oil Research* 5: 345-346.

Tzakou O, Loukis A, Said A. 2007. Essential oil from the flowers and leaves of *Cassia fistula*. *Journal of Essential Oil Research* 19: 360-361.

Ueyama Y, Hashimoto S, Nii H. 1990. The chemical composition of the essential oil of *Daphne genkwa* Sieb. et Zucc. *Journal of Essential Oil Research* 2: 247-250.

Vagionas K, Ngassaoa O, Runyoro D, Graikou K, Gortzi O, Chinou I. 2007. Chemical analysis of edible aromatic plants growing in Tanzania. *Food Chemistry* 105: 1711-1717.
van Dort HM, Jiigers PP, ter Heide R, van der Weerdt AJA. 1993. Narcissus trevithian and Narcissus geranium. Analysis and synthesis of compounds. *Journal of Agricultural and Food Chemistry* 41: 2063-2075.

Vanhaelen M, Vanhaelen-Fastre R. 1980. Constituents of essential oil of *Myrtus communis*. *Planta Medica* 39: 164-167.

Vargas RI, Shelly TE, Leblanc L, Pinero JC. 2010. Recent advances in methyl eugenol and cue-lure technologies for fruit fly detection, monitoring, and control in Hawaii. Vitamins and Hormones: 83: 575-596.

Verghese A. 1998. Methyl eugenol attracts female mango fruit fly, *Bactrocera dorsalis* Hendel. *Insect Environment* 4: 101.

Verite P, Nacer A, Kabouche Z, Seguin E. 2004. Composition of seeds and stems essential oils of *Pituranthos scoparius* (Cross. & Dur.) Schinz. *Flavour and Fragrance Journal* 19: 562-564.

Vernin G, Vernin C, Pieribattesti JC, Roque C. 1998. Analysis of the volatile compounds of *Psidium cattleianum* Sabine fruit from Reunion Island. *Journal of Essential Oil Research* 10: 353-362.

Vilegas JHY, Lancas FM, Vilegas W. 1998. Composition of the volatile compounds from *Aniba canelilla* (H.B.K.) Mez. Extracted by CO₂ in the supercritical state. *Revista Brasileira de Farmacognosia* 7-8: 13-19.

Viljoen AM, Moolla AF, van Vuuren SL, van Zyl R, Baser KHC, Demici B, Ozek T, Trinder-Smith T. 2006. The biological activity and essential oil composition of 17 Agathosma (Rutaceae) species. *Journal of Essential Oil Research* 18: 2-16.

Viña A, Murillo E. 2003. Essential oil composition from twelve varieties of basil (*Ocimum* spp) grown in Colombia. *Journal of Brazilian Chemical Society* 14: 744-774.

Vinutha AR, Von Rudloff E. 1968. Gas-liquid chromatography of terpenes. XVII. Volatile oil of the leaves of *Juniperus virginiana*. *Canadian Journal of Chemistry* 46: 3743-3750.

Viswanathan MB, Maridass M, Thangadurai D, Ramesh N. 2002. Chemical constituents of the fruit essential oil of *Diospyros malabarica* (Desr.) Kostel (Ebenaceae). *ACTA Pharmaceutica* 52: 207-211.

Von Bulow MV, Franca NC, Gottlieb OR, Suarez AMP. 1973. Guianan: A neolignan from *Aniba guianensis*. *Phytochemistry* 12: 1805-1808.

Von Guelow MV, Franca NC, Gottlieb OR, Saurez AMP. 1973. Chemistry of Brazilian Lauraceae. XXIV. Guianin. Neolignan from *Aniba guinensis*. *Phytochemistry* 12: 1805-1808.

Vuts J, Imrei Z, Toth M. 2010. New co-attractants synergizing attraction of *Cetonia aurata aurata* and *Potosia cuprea* to the known floral attractant. *Journal of Applied Entomology* 134: 9-15.

Wakayama S, Namba S, Ohno M. 1970. Odorous constituents of lilac flower oil. *Nippon Kagaku Zasshi* 92: 256-259. (in Japanese).

Wang DJ, 1979. Studies on the constituents of the essential oils of four aromatic flowers. *K’o Hssueh Fa Chan Yueh K’an* 7: 1036-1048. (in Chinese).
Wang J, Dudareva N, Bhakta S, Raguso RA, Pichersky E. 1997. Floral scent production in Clarkia breweri (Onagraceae). II. Localization and developmental modulation of the enzyme SAM: (Iso)Eugenol O-methyltransferase and phenylpropanoid emission. Plant Physiology 114: 213-221.

Wang D, Wang X, Xia X. 1997. Analysis of season variation of methyleugenol and safrole in Asarum heterotropoides by gas chromatography. Chinese Journal of Chromatography 15: 85-86. (in Chinese with English summary).

Wannes WA, Mhamdi B, Marzouk B. 2009. Variations in essential oil and fatty acid composition during Myrtus communis var. italica fruit maturation. Food Chemistry 112: 621-626.

Wannes WA, Mhamdi B, Sriti J, Marzouk B. 2010. Changes in essential oil composition of Tunisian Myrtus communis var. italica L. during its vegetative cycle. Journal of Essential Oil Research 22: 13-18.

Wannes WA, Mhamdi B, Sriti J, Jemia MB, Ouchikh O, Hamdaoui G, Kchouk ME, Marzouk B. 2010. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food and Chemical Toxicology 48: 1362-1370.

Weyerstahl P, Marschall-Weyerstahl H, Manteuffel E, Kaul VK. 1992. Constituents of the essential oil of Strobilanthes callosus Nees. Journal of Essential Oil Research 4: 281-285.

Weyerstahl P, Marschall-Weyerstahl H, Manteuffel E, Kaul VK. 1992. Constituents of the essential oil of Strobilanthes callosus Nees. Journal of Essential Oil Research 4: 281-285.

Wee SL, Tan KH, Nishida R. 2007. Pharmacophagy of methyl eugenol by males enhances sexual selection of Bactrocera carambolae (Diptera: Tephritidae). Journal of Chemical Ecology 33: 1272-1282.

Williams NH, Whitten WM. 1983. Orchid floral fragrances and male euglossine bees: methods and advances in the sesquidecade. Biological Bulletin 164: 355-395.

Wilson LA, Senechal NP, Widrlechner MP. 1992. Headspace analysis of the volatile oils of Agastache. Journal of Agricultural and Food Chemistry 40: 1362-1366.

Wu CS, Wang Y, Zhan DW, Sun SW, Ma YP, Chen J. 1985. The main components of the essential oil from Rosa rugosa Thunb. Zhiwu Xuebao 27: 510-515. (in Chinese).

Wu SJ, Kao YH, Li TY, Yang CC. 1981. Study on the chemical constituents in the volatile oil of Michelia hedyosperma Law. Chung Ts’ao Yao 12: 8-10.

Wu S, Watanabe N, Mita S, Ueda Y, Shibuya M, Ebizuka Y. 2003. Two O-methyltransferases isolated from flower petals of Rosa chinensis var. spontanea involved in scent biosynthesis. Journal of Bioscience and Bioengineering 96: 119-128.

Yaacob KB, Zakaria Z, Ramli Z. 1990. Major constituents of Cinnamomum parthenoxylon wood oil. Journal of Essential Oil Research 2: 51.
Yano K. 1987. Minor components from growing buds of *Artemisia capillaris* that act as insect antifeedants. *Journal of Agricultural and Food Chemistry* 35: 889-891.

Yassa N, Akhani H, Aqaahmadi M, Salimian M. 2003. Essential oils from two endemic species of Apiaceae from Iran. *Zeitschrift Naturforschung* 58: 459-463.

Yomogida K. 1992. Scent of modern roses. *Koryo* 175: 65-89. (in Japanese).

Yu J, Lei J, Yu H, Cai X, Zou G. 2004. Chemical composition and antimicrobial activity of the essential oil of *Scutellaria barbata*. *Phytochemistry* 65: 881-884.

Zabaras D, Wyllie SG. 2001. The effect of mechanical wounding on the composition of essential oil from *Ocimum minimum* L. leaves. *Molecules* 6: 79-86.

Zabka M, Pavela R, Slezakova L. 2009. Antifungal effect of *Pimenta dioica* essential oil against dangerous pathogenic and toxinogenic fungi. *Industrial Crops and Products* 30: 250-253.

Zanoni TA, Adams RP. 1991. Essential oils of plants from Hispaniola: 5. The volatile leaf oil of *Lepechinia urbanii* (Briq.) Epling (Lamiaceae). *Flavour and Fragrance Journal* 6: 75-77.

Zhang F, Xu Q, Fu S, Ma X, Xiao H, Liang X. 2005. Chemical constituents of the essential oil of *Asarum forbesii* Maxim (Aristolochiaceae). *Flavour and Fragrance Journal* 20: 318-320.

Zhao C-X, Li X-N, Liang Y-Z, Fang H-Z, Huang L-F, Guo F-Q. 2006. Comparative analysis of chemical components of essential oils from different samples of *Rhododendron* with the help of chemometrics methods. *Chemometrics and Intelligent Laboratory Systems* 82: 218-228.

Zhao C, Zeng Y, Wen M, Li R, Liang Y, Li C, Zeng Z, Chau F-T. 2009. Comparative analysis of essential oils from eight herbal medicines with pungent flavor and cool nature by GC-MS and chemometric resolution methods. *Journal of Separation Science* 32: 660-670.

Zhao M-M, Liu XL, Cul C, Luo W. 2007. Composition and antimicrobial activity of essential oil from *Phyllanthus emblica* L., by supercritical CO\(_2\) extraction. *Journal of South China University of Technology* 35: 116-120.

Zhou G-D, Moorthy B, Bi J, Donnelly KC, Randerath K. 2007. DNA adducts from alkoxyallybenzene herb and spice constituents in cultured human (HepG2) cells. *Environmental and Molecular Mutagenesis* 48: 715-712.

Zhou H, Huang K, Pan Z, Huang G, Guan S, Su T, Lin C. 2008. Analysis of essential oil from the fruit peel of *Clausena indica* (Dat.) Oliv by gas chromatography-mass spectrometry. *Jingxi Huagong* 25: 65-67. (in Chinese with English summary).

Zhu L, Lu B, Xu D. 1982. Preliminary study on the chemical constituents of the essential oil of *Michelia alba* DC. *Zhiwu Xuebao* 24: 355-359. (in Chinese).

Zimowska GJ, Handler AM. 2005. PiggyBac transposons in *Bactrocera dorsalis* and their use for species identification. Abstract in 8\(^{th}\) Exotic Fruit Fly Symposium.
Zoghbi MDGB, Andrade EHA. 2006. Essential oil composition of *Bacopa axillaris* (Benth.) Standl. *Journal of Essential Oil Research* 18: 142-143.

Figure 1. Chemical structures of methyl eugenol (ME) and its analogs. High quality figures are available online.

Figure 2. Male fruit flies (*Bactrocera dorsalis* and *Bactrocera umbrosa*) feeding along yellow–brown border of an infected leaf of *Proiphys amboinensis*. High quality figures are available online.

Figure 3. A male *Bactrocera umbrosa* feeding on *Spathiphyllum cannafolium* spadix. High quality figures are available online.

Figure 4. A possible biosynthetic pathway of methyl eugenol in an orchid flower of a bactrocerophilous *Bulbophyllum* species. PAL, phenylalanine ammonia lyase; CCR, cinnamoyl-CoA reductase; CAD, cinnamyl alcohol dehydrogenase; CFAT, coniferyl alcohol acyltransferase; EGS, eugenol synthase; EOMT, eugenol O-methyltransferase. High quality figures are available online.

Figure 5. A male *Bactrocera dorsalis* bearing pollinia on see-saw lip of *Bulbophyllum patens*. High quality figures are available online.
Figure 6. Male fruit flies, *Bactrocera dorsalis*, congregating and licking on a fully bloomed *Bulbophyllum cheiri* flower. High quality figures are available online.

Figure 7. Male *Bactrocera dorsalis* bearing pollinia of *Bulbophyllum cheiri*. High quality figures are available online.

Figure 8. Flower of *Bulbophyllum vinaceum* with its spring-loaded lip in a closed position and a pollinarium-bearing fruit fly, *Bactrocera dorsalis*. High quality figures are available online.

Figure 9. A male *Bactrocera dorsalis* bearing a pollinarium just removed from the *Bulbophyllum elevatopunctatum* flower (P.T. Ong). High quality figures are available online.
Table 1. Plant family (order) and species containing methyl eugenol (ME)*.

Species (Synonyms)	Common name	Remark**	Reference
Acantus (Megastomata)	*Acanthaceae* - *Acanthus* family (Lamiales)	Plant attracts the oriental fruit fly and volatile oil contained 8.0% ME.	Kishihara & Naito 1980
Stratiotes (Garrica)	*Stratiotes* (Garrica)	Benzylidene leaf stem at pre- and post-flowering stages had ME 0.01 and 0.16% of EO, resp.	Wayant et al. 1992
Aceraceae - *Calamo* family (Araliaceae)	*Acer* calamus	ME 35% (1.9%) plant EO had 1.9% ME, root EO of up to 80% ME in European & Japanese samples.	Severin et al. 1977, De Vincenzi et al. 2006, Dain 1985
Aceraceae - *Calamo* family (Araliaceae)	*Acer* calamus (L.), *Ficus* (C.aurantia)	ME (84.5%) in EO from chinensis.	Koo et al. 2003
Amaranthaceae - *Amaranthus* family (Amaranthaceae)	*Allium* cepa	Green leaf had ME in it, but during leaf growing, yellow and brown parts had 0.1 and 2.5% piperine.	Chua et al. 1997
Amaranthaceae - *Sida* family (Amaranthaceae)	*Allium* cepa (L.)	Leaf EO contained ME, Fruit EO of 10 from 26 Cvs had ME in it.	Covino & et al. 1990, Piao et al. 2005
Pinaceae (Mastix)	*Pinus* elliottii	ME of needle EO from 4 areas tr and 0.18% in another area in Sardinia, Italy, leaves and fruits had ME at 1.97 & 0.79% of EO, resp.	Barra et al. 2007, Finch & Hushar 1992
Ficus (Mastix)	*Ficus* microcarpa	ME (6.3%) in EO from chinensis.	Adey et al. 1991
Annonaceae - *Custard-apple* family (Magnoliaceae)	*Annona* squamosa	ME tr amount in fruit volatiles.	Piao et al. 2002
Annona squamosa (L.)	ME 2.3% of leaf EO.	Brey et al. 1997	
Copaifera (Mastix)	*Copalium* grandiflorum	ME 1.4% & 4.0% in bark and leaf EO, resp.	Fournier et al. 1997
Parasolus (Mastix)	*Parasolus* grandiflorum	ME (64%) as major component.	Brey et al. 1997
Amaranthaceae - *Custard-apple* family (Magnoliaceae)	*Amaranthus* (L.)	ME detected.	Degen 1998
Amaranthaceae - *Custard-apple* family (Magnoliaceae)	*Amaranthus* (L.)	ME 0.3% of EO only in leaves of 1 of 4 populations of *Amaranthus* (Magnoliaceae).	Katsumi et al. 2001
Amaranthaceae - *Custard-apple* family (Magnoliaceae)	*Amaranthus* (L.)	ME of 3.2% of EO, but ME 9.9% of EO.	Sato et al. 2002
Amaranthaceae - *Custard-apple* family (Magnoliaceae)	*Amaranthus* (L.)	ME of 9.9% of EO, but ME 3.2% of EO.	Sato et al. 2002
Amaranthaceae - *Custard-apple* family (Magnoliaceae)	*Amaranthus* (L.)	ME of 3.2% of EO, but ME 9.9% of EO.	Sato et al. 2002
Amaranthaceae - *Custard-apple* family (Magnoliaceae)	*Amaranthus* (L.)	ME of 9.9% of EO, but ME 3.2% of EO.	Sato et al. 2002
Amaranthaceae - *Custard-apple* family (Magnoliaceae)	*Amaranthus* (L.)	ME of 9.9% of EO, but ME 3.2% of EO.	Sato et al. 2002
Amaranthaceae - *Custard-apple* family (Magnoliaceae)	*Amaranthus* (L.)	ME of 9.9% of EO, but ME 3.2% of EO.	Sato et al. 2002
Amaranthaceae - *Custard-apple* family (Magnoliaceae)	*Amaranthus* (L.)	ME of 9.9% of EO, but ME 3.2% of EO.	Sato et al. 2002
Amaranthaceae - *Custard-apple* family (Magnoliaceae)	*Amaranthus* (L.)	ME of 9.9% of EO, but ME 3.2% of EO.	Sato et al. 2002
Amaranthaceae - *Custard-apple* family (Magnoliaceae)	*Amaranthus* (L.)	ME of 9.9% of EO, but ME 3.2% of EO.	Sato et al. 2002
Plant Name	Description	Reference	
----------------------------	---	------------------------------------	
Pimpinella barbata	Aerial parts contained ME & alismicin at 34% & 6.9% of EO, resp.	Fakhrui & Soebol; 2006	
Pimpinella acrylina	Sam & leaf EO contained 0.1% ME	Tabacans et al. 2005a	
Pimpinella obtusata	Leaves contained ME at 70.6% of EO	Tabacans et al. 2005b	
Pimpinella polyacta	Fruit & leaf & stem EO had 23.1% & 29.6% ME, resp. Leaf EO has ME 23.1% of oil.	Tabacans et al. 2005c,b	
Pimpinella rhodocephala	Leaves had <5% ME of EO	Tabacans et al. 2005b	
Pterisanthus scoparius	Stem EO had ME (5.6%) as 1 of 4 major components, seed & stem EE had 1.6 & 5.9% ME, resp.	Verite et al. 2004, Bouttargane et al. 2004	
Ferocarbonea gulosissima (Anahuama* ramusissima)	Seed EO (15%) - with ME, Root, aerial parts and seeds had 0.4, 0.3-0.7 and 1.0% of EO, resp.	Bolanton & Kleinman 1977, Sokovic et al. 2008	
Pungoos epilobioides subsp. hansinaensis	ME (0.6%) of fruit EO	Sajadi et al. 2003	
Pungoos florindea	Fruit EO contained ME (0.07%).	Masumura et al. 2007	
Pungoos florindea	Fruit EO from two localities - one had 0.1% ME, but none in the other.	Basler et al. 2000	
Pungoos recidivans	ME at 2.2% of fruit EO	Ouvet et al. 2000	
Scatophyris scutata	Fruits contained estragole (90.5% of EO) with 0.2% ME.	Kaya et al. 2007	
Semenovia tridenticola	ME (9%) of aerial parts EO.	Masoudi et al. 2002	
Thapsia melastoma	ME (55-65%) major component in fruit EO of two plant types, ME 6.4% in type II & none in type I plants.	Avato et al. 1992, Avato & Smitt 2000	
Thapsia villosa	Polyphloid plants of type 4 & 5 with 2n ~ 44 & 66, resp, had ME and limonene as major components via TLC; ME varied from 0.03 to 0.04% in fruit EO, whereas type 5 had 33-66% ME, ME in 5 tetralong & 4 hexaploid specimens at 33.3 - 66.1% & 45.7 - 62.5%, resp.	Smitt 1995, Avato et al. 1996a, Avato et al. 1996b.	
Turubonea amara (Melanocollina amara)	Trace quantity of ME in fruit EO from same specimens in Cape Verde Islands.	Grosso et al. 2009	
Turubonea antralba	Trace quantities of ME in fruit EO from same specimens in Cape Verde Islands.	Grosso et al. 2009	
Trachyspermum capitatum	ME in quantity in dried fruit EO	Chaiwala et al. 1993	
Zescheria parviflora	ME (0.4%) in EO of dried aerial parts	Yusa et al. 2003	
Aspynaceae - Daphne family (Gennulina)	ME (0.0%)), eugenol (0.3%) and (Z)-methyl-1-isoeugenol (0.2%) in root EO.	Miyazawa et al. 2004	
Aquilegialea - Holly family (Aquifoliaceae)	ME (98%) of 5 major components of leaf EO, ME not detected, isorhodin methylxyloglucanol (0.5%).	Cook & Howard 1966, Kim et al. 2009	
Bilicium asiaticum (L. Willd) *japonicum* *j. shikiumi* & *j. sutori*	ME (98%) of 5 major components of leaf EO, ME not detected, isorhodin methylxyloglucanol (0.5%).	Cook & Howard 1966, Kim et al. 2009	
Bilicium brevifolium	ME detected in fruit EO	Howe et al. 2000	
Bilicium kiwokolubali	Fruit EO contained ME (~0.1 to 2.1%).	Howe et al. 2000	
Bilicium purpureiflorum (Swamp star anise, Yellow star anise tree)	Leaf and branch EO dominated by 68 14 ± 0.88% safrole, 13.18 ± 0.01% limonene, and 11.89 ± 0.87% ME.	Tucker and Masaroue 1997	
Bilicium samarae	8.9% ME & 1.8% elemicin in fruit EO	Chu et al. 2010	
Bilicium variegatum	Fruit EO contained trans-anethole (90.1%) and ME (0.4%).	Hussain et al. 1990	
Aristolochiaceae - Birthwort family (Piperaceae)	ME 11% in volatile oil.	Saito et al. 1967b	
Asarum canadense	ME 15% in volatile oil	Saito et al. 1967b	
Asarum densiclavus	ME 15% in volatile oil	Saito et al. 1967b	
Asarum缶	ME (10.9%) & a-amanita (58.8%) major components in root EO; methyl isoeugenol (33.3%) in leaf EO	Zhang et al. 2000	
Asarum heterotropoides [Xi xin]	ME (47%) in root extract; ME in EO of subterranean & epiphyllous parts 21-39% & 1-6-9-9%, resp, and ME highest during sprouting & after flowering.	Konoge et al. 1978, Wang et al. 1997	
Asarum heterotropoides var. spondulits	ME a major component in volatile oil of the Korean 'Xi xian'.	Saito et al. 1967a	
Asarum latifolium	ME 8% and safrole 39% of EO.	Saito et al. 1967b	
Asarum rubellum [Chinese wild ginger]	EO contained ME; ME (0.47%) in root EO.	Tian et al. 1981b, Han et al. 2008	
Asarum rubellum [Cinnamomum]	ME 78% of EO.	Saito et al. 1967b	
Asarum rubellum [Mackean]	ME 26% of EO.	Saito et al. 1967b	
Asarum rubellum [Manhucreum] [Xi Xian]	ME 59% of EO.	Saito et al. 1967b, Tian et al. 1981a	
Heterotropha chlorophyll	ME 1% of volatile oil.	Saito et al. 1967b	
Heterotropha aspera	ME 2%, elemicin 0.1% and safrole 96% of volatile oil.	Saito et al. 1967e	
Heterotropha aromatica	ME 0.1% of volatile oil.	Saito et al. 1967b	
Heterotropha aromatica	ME 8% of volatile oil.	Saito et al. 1967b	
Heterotropha aromatica	ME 0.2% of volatile oil.	Saito et al. 1967b	
Heterotropha aromatica	ME 0.1% of volatile oil.	Saito et al. 1967b	
Heterotropha aromatica	ME 1% of volatile oil.	Saito et al. 1967b	
Heterotropha aromatica	ME 0.5% of volatile oil.	Saito et al. 1967b	
Heterotropha aromatica	ME 2% of volatile oil.	Saito et al. 1967b	
Heterotropha aromatica	ME 11% of volatile oil.	Saito et al. 1967e	
Heterotropha aromatica	ME 1% of volatile oil.	Saito et al. 1967b	
Heteroptera hexadactyla	ME 3% of volatile oil	Saki et al. 1967c	
-------------------------	-----------------------	------------------	
Heteroptera hexadactyla var. perfecta	ME 41% of volatile oil	Saki et al. 1967c	
Heteroptera kruisiana	ME 1% of volatile oil	Saki et al. 1967a	
Heteroptera kusunoki	ME 0.1% of volatile oil	Saki et al. 1967d	
Heteroptera megacantha	ME 5% of volatile oil	Saki et al. 1967d	
Heteroptera muranouchi	ME 20% of volatile oil	Saki et al. 1967e	
Heteroptera nankensis	ME 0.3% of volatile oil	Saki et al. 1967d	
Heteroptera nipponica	ME 3% of volatile oil	Saki et al. 1967d	
Heteroptera nipponica var. kusunoki	ME 0.5% of volatile oil	Saki et al. 1967d	
Heteroptera nipponica var. rhaphydon	ME 4% of volatile oil	Saki et al. 1967d	
Heteroptera ohioua	ME 2% of volatile oil	Saki et al. 1967c	
Heteroptera rigicrens	ME 0.2% of volatile oil	Saki et al. 1967d	
Heteroptera sakawama	ME 3% of EO	Saki et al. 1967c	
Heteroptera satsumensis	ME 1% of volatile oil	Saki et al. 1967e	
Heteroptera savatieri	ME 2% of volatile oil	Saki et al. 1967d	
Heteroptera takari	ME 21% of volatile oil	Saki et al. 1967d	
Heteroptera takaori var. dilatata	ME 1% of volatile oil	Saki et al. 1967d	
Heteroptera tanenensis	ME 2% of volatile oil	Saki et al. 1967d	
Heteroptera tanae	ME 1% of volatile oil	Saki et al. 1967e	
Heteroptera yakusimenensis	ME 1% of volatile oil	Saki et al. 1967a	
Hexaexys urifolius	Root & leaf EO contained safrole & ME at ratios of 58.2%: 19.9% & 69.9%: 5.8%, resp.	Hayashi et al. 1983	
Hexaexys nitens	Root EO contained safrole and ME in traces, and no ME in leaf EO	Hayashi et al. 1983	

Asteraceae - Aster family (Asterales)

Achillea conferta

Among 48 volatile components - ME (2.7%) of aerial parts EO.
Saeidnia et al. 2005

Achillea geophila

Dried flowering; herbar parts EO had tr quantity of ME.
Baser et al. 2001b

Achillea kryetoglia

(0.0-0.7%) and eucalypt (0.4-0 6%) TIC of EO of aerial parts.
Baser et al. 2001a

Achillea lycochrous

ME (0.3%) and eucalypt (0.8%) TIC in EO of aerial parts.
Baser et al. 2001a

Achillea millefolium [Common yarrow]

Plants from 2 of 14 different locations in Lithuania contained ME (0.07-0.14%) in leaf EO.
Gudatytė & Venskutonis 2007

Achillea monoeckra

ME in leaf EO decreased from 0.6% to 0% at temperatures (100-175 °C) during water extraction.
Gogus et al. 2006

Achillea oxyodon

Aerial parts contained 0.2% ME of EO.
Emanzhi et al. 2006

Agarum conyzae [Whiteweed, Great Weed]

ME 18% of plant (without roots) EO.
Rao & Nagam 1973

Anthemis melaleuca

Air-dried plant EO had 0.4% ME.
Saroglou et al. 2006

Anthemis tinctoria var. maritima

ME (1.1%) in EO of air-dried plant materials.
Saroglou et al. 2006

Anthemis vernalis spa. vernalis

Air-dried plant EO contained 0.1% ME
Saroglou et al. 2006

Artemisia scoparia [Greater Burdock]

PO of dried ripe fruits contained 0.1% of ME.
Zhao et al. 2009

Artemisia annua [Annual or sweet wormwood]

2 CVs - 1 has ME & eugene at 0.2 & 0.3% of EO, resp, and tr in the other.
Geel et al. 2008

Artemisia absinthium

3 of 4 vegetative phases - emergence of turner and mass flowering phases ME was 1.5% & 0.3% in weight of EO.
Klodzko et al. 2009

Artemisia capilaris [Yin Chen Hao, Chinese moina]

Growing buds contained ME.
Yano 1987

Artemisia campestris var. glutinosus [Western Sagewort]

ME in tr amount in EO of aerial parts.
Juteau et al. 2002

Artemisia demissa

ME (0.5%) in oil.
http://www.etna.eurov.eu

Artemisia dracunculus [Tarragon]

ME 280 ± 95.8 ppm in EO of field grown plants; EO of aerial parts had ME (35.8%) and methyl chavicol (16.2%), aerial parts EO had ME (1.8%).
Rimelcy et al. 2004; Lopez-Lut et al. 2008; Nord et al. 2005

Artemisia filifolia [Filatov wormwood]

ME - 0.2% in weight of aerial parts EO
Atashkoeva et al. 1999

Artemisia glabellata

4.6% ME and 0.2% eugene in dried plant EO.
Bicchi et al. 1985

**Artemisia herba-alba (A. inculta) [Desert wormwood]

Combined flowers, leaves, and stems contained ME and estragole at 0.7 and 0.5% of EO, resp.
Hudak & Aburam 2006

Artemisia pallens [Davana]

ME and eugene detected.
Gulati & Khan 1979

Artemisia persicina [Davana]

ME (0.4%) in EO (0.4%) of the dried plant.
Sadeghpour et al. 2004

Artemisia scoparia [Red-stem wormwood]

EO of aerial parts contained ME (27.3%).
Basheer et al. 1997

Artemisia subaerata

Leaf EO deminated by 11.2% eugene, 9.4% ME and 9.0% camphor.
Shatat et al. 2002

Artemisia vulgaris [mugwort or common wormwood]

Plants from France had ME at 3-4, 6-8 and 1% of FO in vegetative, flowering-buds & flowering stages, resp.
Jerkovic et al. 2003

Baccharis griseovaginata

ME (0.5%) in EO of aerial parts.
Hadad et al. 2007
Species	ME	References		
Bathineta rubicundum	0.92% of aerial parts EO	Allou et al. 2008		
Cnemadocera calcuttana	One to two *Cnemadocera* spp. that had ME - 0.5% of aerial parts EO	Karamentes et al. 2008		
Drosophila aescula (Thymophylla aescula)	ME (4.1%), angonin (0.3%), β-xylopyranosyl (0.1%)	Talia et al. 1997		
Feltaco maruta	ME (0.4%) of leaf EO	Ashraft et al. 2008		
Gelsemium sempervirens (Galga)	EO of aerial parts contained ME (1.257%), eugenol (6.7%), & 4-vinylguaiacol (5.34%)	Halabi et al. 2005		
Heliopsis ocularis (Chloris's eye)	ME (0.5%) of one major component of EO	Javindia et al. 2006		
Ophrysopsida gianfoliis	EO of aerial parts from Andes, Chile, contained 8% ME	Nienow et al. 2009		
Pachyrhizus erosus (P. multispinosus)	ME (3.1%) in fresh ripe EO	Suliman et al. 2006		
Plauclavia sagittalis (Wingstem camphorweed, lacuna, madreavado)	Leaf and stem EOs contained 23 terpenoids - including ME.	Tartar 1982		
Rhamnus occidentalis (Redbark buckthorn)	ME of aerial parts contained 14.4 and 8% of ME, etc.	Bonnafond et al. 2007		
Sambucus nigra (Black elder, European elder)	4 epoxyresins - two had ME 50.78 (0.35) and 121.05 (0.04) g/g dry wt in EO, and two with no ME.	Ganci et al. 2010		
Sedum rubra subs. var. texanum (Texas Goldmoss)	ME (0.5%) of fresh feedstock obtained from dry leaves of *Sedum rubrum*	Tucker et al. 1999		
Tajetra heleni	Major components - carotene and ME at 45 and 27% in EO, resp.	Hethelyi et al. 1987		
Taliesis flaxifolia (T. mutata)	Plant EO had estragole (61.3%) and E-nemethole (36.6%) with 0.0% ME	Hossain et al. 1990		
Tagetes patula	Plant EO contained 3.9% ME	Ruff et al. 2002		
Tagetes patula var. chilensis*	ME (0.2%) in EO of aerial parts.	Senator & Die Fehr 1999		
Tagetes patula	ME (3.2%) in EO of aerial parts.	De Fehr et al. 2005		
Tanacetum parthenium (T. parthenium)	Flowering aerial EO contained camphor (46.2%) with 0.1% ME; leaves and inflorescences contained 9.9 + 3.3 mg/kg.	Pineda et al. 2010; Christensson et al. 1999		
Tamoxoacanthus turbinatus (Cardoon)	ME (4.5%) 38% of both oil and 38% of wood bark EO	http://www.cma.europa.eu		
Trema montana (Balsaminaceae)	Dried plant EO contained 5.41% β-sitosterol and 3.12% ME.	Viguero et al. 2007		
Wedelia biflora var. varia*	ME among 28 compounds detected in leaf and stem oils	Mancini 1980		
Bignonia caerulea (Bignonia/Trompeter-creeper family)	*Lamiales*)			
Tetraclisia rampens (Poinciana tree)	ME (0.24%) and eugenol (0.96%) of inner bark EO	Park et al. 2003		
Borassus flabellifer (Borassaceae)	(order: unlined asterid I)			
Borassus flabellifer (Borassaceae)	Leaves EO content at 1.5% of EO or 4.5 µg/g fresh weight	Mubendi et al. 2009		
Brahmia caerulea (Brassicales)	ME (0.9%) in headspace sample of fresh leaf volatiles	Jawetz et al. 2002a		
Bursareinaeae (Bursareinaeae) family (Capsulinae)	*B. sericea* (Indian frankincense)			
Ceratocephala seminanita (B. seminanita)	Gum resin contained ME (3.7%) and			
Cassia acutifolia (Indian saffron)	24 hexadecanols which were absent in other *Bursareinaeae* species.	Harn et al. 2005		
Cassia spicata (B. spicata)	ME (300-700 ppm) in oil.	http://www.cma.europa.eu		
Cassia occidentalis (Wild cinnamon)	Fruit EO contained traces of ME which was not detectable in seeds.	Hoffet et al. 2005		
Cassia occidentalis (Wild cinnamon)	Bark yielded eugenol, ME, asarone etc.	Martin 1980		
Capparaceae - Capparidae family (Brassicaceae)	*Capparis spinosa var. spinosa*	ME (0.3%) of shoot EO and not detected in fruits	Oxun & Chalakhi 2007	
Cistaceae - *Cistaceae* family (Malvales)	*Cistus albidus* (Rock rose)	6 of 15 populations in Greece had ME (0.1-0.95%) in EO of aerial parts during flowering.	Demetres et al. 2002	
Chenopodiaceae - *Chenopodiaceae* family (Malpighiales)	*Chenopodium berlandieri*	ME (0.6%)		
Chenopodium berlandieri (Brazilian rod propolis)	ME (13%), methyl eugenol (4%), 4-methoxy (18%), α-terpineol (26%), and E-isoegenol (11%) in non-polar fraction.	Trushcheva et al. 2006		
Hypericum peruvianum (Hypericaceae)	ME (4.92%) in EO of aerial parts	Hochi et al. 2008		
Chrombataea - *Chrombataea* family (Myrtales)	Terminalia catappa (Tropical almond fruit, Sea almond)	Headspace extraction using SPME and PTV extraction.	Sider & Jung 2006	
Cornaceae - *Cornaceae* family (Cornales)	*Cornus officinalis* (Japanese cornel, Japanese cornelian cherry)	Fruit EO contained ME (7.4%), isoascorone (7.1%), β-phenylpropyl alcohol (4.1%) & cinnamic acid (3.2%).	Miyazawa & Kameoka 1989	
Cupressaceae - *Cupressaceae* family (Pinales)				
Juniperus communis	Leaf EO contained in quantity of ME	Adams et al. 2007		
Juniperus communis	ME (4.53%) in plant EO.	Adams et al. 1994		
Juniperus communis var. cuneata (Chinese juniper)	ME (4.53%) in plant EO.			
Juniperus communis var. cuneata (Chinese juniper)	Trace amount of ME in two varieties - Azzedine & Dinh 2010	Adams et al. 1994		
Family	Species	ME (primary)	FF (secondary)	
-----------------------------	--------------------------------	--------------	---------------	
Jasminaceae - Psychotria family (Psychotriaceae)	Tan and Nishida	0.9-1% in leaf EO.	0.83-0.85% in leaf EO.	
Species/Genus/Species	Source of Essential Oil	Type of Essential Oil	Content	References
-----------------------	------------------------	-----------------------	---------	------------
Ocimum basilicum (Lamiaceae)	Leaf, stem, and flowers	Leaf, stem, flowers, and fruits	1.1%	M. E. Zaidi et al., 2010
Mentha piperita (Lamiaceae)	Leaves, flowers, and stems	Leaf, stem, flowers	0.01%	D. J. Kharat et al., 2009
Cinnamomum zeylanicum (Lamiaceae)	Leaves	Leaf	0.5%	C. C. Arts et al., 2009
Citrus aurantium (Rutaceae)	Fruits and leaves	Fruits	0.3%	D. J. Kharat et al., 2009
Citrus limon (Rutaceae)	Fruits and leaves	Fruits	0.2%	D. J. Kharat et al., 2009
Eugenia caryophyllata (Myrtaceae)	Leaves	Leaf	0.02%	D. J. Kharat et al., 2009
Eucalyptus globulus (Myrtaceae)	Leaves	Leaf	0.1%	D. J. Kharat et al., 2009
Sesame (Sesamum indicum)	Seeds	Seed	0.5%	D. J. Kharat et al., 2009

Note: The content is given as a percentage of the total oil.
Species (Scientific Name)	Description	EOs and Components
Coelopa flavipes	EOs of leaf and stem contained 8.0-16.0% of ME and 1.5-6.0% of E.	ME and E. comp.
C. violaeformis	EOs of leaf and stem contained 1.5-4.0% of ME and 0.5-3.0% of E.	ME and E. comp.
C. furcata	EOs of leaf and stem contained 2.5-5.0% of ME and 0.5-1.0% of E.	ME and E. comp.
C. amurensis	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
C. kikuchii	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
C. koreana	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
C. ochracea	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.

Magnoliaceae - Magnoliaceae Family (Magnoliidae)

Species (Scientific Name)	Description	EOs and Components
Magnolia denudata	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
M. officinalis	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
M. grandiflora	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
M. liliiflora	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.

Myrtaceae - Myrtaceae Family (Myrtales)

Species (Scientific Name)	Description	EOs and Components
Myrtus communis	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
M. rubra	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.

Poaceae - Poaceae Family (Poales)

Species (Scientific Name)	Description	EOs and Components
Oryza sativa	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
M. truncatula	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.

Rosaceae - Rosaceae Family (Rosales)

Species (Scientific Name)	Description	EOs and Components
Malus pumila	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
M. domestica	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.

Santalaceae - Santalaceae Family (Santalales)

Species (Scientific Name)	Description	EOs and Components
Santalum album	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
M. officinalis	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
S. paniculatum	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.

Tannins - Tannins Family (Leguminosae)

Species (Scientific Name)	Description	EOs and Components
Tanellus arborescens	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
M. officinalis	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.

Taxaceae - Taxaceae Family (Taxales)

Species (Scientific Name)	Description	EOs and Components
Taxodium distichum	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
M. virginiana	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.

Zygophyllaceae - Zygophyllaceae Family (Zygophyllales)

Species (Scientific Name)	Description	EOs and Components
Zygophyllum dumosum	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
M. officinalis	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.

Zygophyllaceae - Zygophyllaceae Family (Zygophyllales)

Species (Scientific Name)	Description	EOs and Components
Zygophyllum dumosum	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
M. officinalis	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.

Zygophyllaceae - Zygophyllaceae Family (Zygophyllales)

Species (Scientific Name)	Description	EOs and Components
Zygophyllum dumosum	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
M. officinalis	EOs of leaf and stem contained 3.0-6.0% of ME and 0.5-1.0% of E.	ME and E. comp.
Meliflua leuconeura [Cajuput tree]
One of three chemotypes had ca. 99% ME in leaf EO; EO of aerial parts contained ME (96.6 ± 0.7%).
Brophy & Lapsak 1988, Silva et al. 2008

Meliflua quinquenervia [Metalacea trees, paperbark tea trees]
Two chemotypes rich in ME (up to 99 percent).
Ramanoujina et al. 1994

Myristica fragrans [Armany]
ME (0.2%) a minor component in leaf EO.
Malagon et al. 2003

Myrtus communis [Myrt]
Myrt berry oil 2.3% ME; leaf & ripe fruit ME 2.3% & 0.64% of EO, while ripe fruit had no detectable ME; ME content 2.3% in Myrt EO, fruits & leaves from 1st station had ME at 0.6 & 0.8% of EOs, resp, in 2nd ME 1.1% of leaf EO and none in fruits.
Mazza 1983, Boileau & Limone 1992; De Vincenzi et al. 2000; Flaminii et al. 2004

Pimenta aconcagua [Wild cinnamon, Bay-rum tree, Bayberry or Jamaica barberry,]
Chavutu, eugenol, and ME form 67-70% of leaf and berry EO.
Ryan 1991

Pimenta dioica ['E. officinalis'] [Allspice, Pimento, Jamaica pepper]
ME (48.3-67.9%) main component of Mexican pimento berry EO; EO high in eugenol (64.29%) and ME (20.55%) contents; fruity & non-fruitty truns contained ME (0.08 ± 0.13%) & eugenol (79.8 ± 83.7%) of leaf EO, resp.
Garcia- Figado et al. 1997, Zabala et al. 2009, Meszi & Brown 2007

Pimenta officilzilis [Pimento]
ME (5.0.8.6%) of EO.
De Vincenzi et al. 2000

Pimenta racemosa ['Bay rum tree']
ME in leaf EO for var. grisea (0.50 - 92.60%) and var. hispaniolana (0 - 63.88%); ME 8.9% of fruit EO.
Tucker et al. 1991, Ruff et al. 2002

Pisonia corymbosa [Guava]
ME and eugenol were major volatile components; ME (4.5%) in leaf oil and fruits.
De Faria et al. 1972, http://www.ema.europe.eu

Psidium cattleianum [Strawberry guava]
Red variety of fruit contained ME and eugenol among >154 volatile.
Veinini et al. 1998

Psidium guajava [Guava]
ME (0.2%) of fruit EO.
Pasterny et al. 2000

Syzygium aromatica ['Eugenia caryophyllata, E. caroophylla'] [Clove]
Leaf EO had eugenol (76.8%) and caryophyllene (17.4%) as major components with tr ME; ME (0.12%) of EV containing eugenol (76.8%).
Broverman et al. 2004; Dzamic et al. 2009

Orthodoxaceae - Orchid family (Asparagales)

Braulio calechensis
EO contained ME (8.0%).
qu/M. Masa & Andrade 2009

Jumelia fragrans ['false run orchid']
ME in minute quantity of leaf EO.
Slum & Smijka 1992

Papaveraceae - Peppermint family (Ranunculales)

Escholzia fleursa
EO had 40.5% ME.
http://www.ema.europe.eu

Piperaceae - Pine family (Piperales)

Pinus ponderosa [Northern American pine]
ME (0.0%) in needle (leaf) EO.
Krauze-Baranowska et al. 2002

Piperaceae - Pepper family (Piperales)

Piper auritum
Leaf EO contained ME (0.8%), safrole (91.3%) and myristin (4.8%) in leaf EO.
Bromo-Sanchez et al. 2009

Piper balteum ['Brotte, Brotte pepper, Sirich]
Two C14s; Gary 0.15-0.2% EO - ME (4.1-6.9%) and eugenol (82.2-90.5%).
Sherma et al. 1983

Piper capermeum
Aerial parts EO contained 0.2% ME.
Martini et al. 1998

Piper divaricatum ['Piper colaumbimum']
ME (17-93%) and sucrose (2.0-68%) main constituents in EO.
qu/M. Masa & Andrade 2009

Piper guineense ['West African black pepper']
Berry EO rich in glycoside/propynol - ME (1.5%) & eugenol (0.07%), white and black berries EO's contained 0.11 & 0.22%, resp.
Ekundayo et al. 2008, Irootwi et al. 2002b

Piper jenumiellum
Leaf EO contained limonene, isosafrole, ME and carvone.
Diaz et al. 1986

Piper nigrum ['Black pepper']
EO one of twelve identified polar compounds in oil of black pepper; berry contains 0.92% ME.
Russel & Jennings 1969, Irootwi et al. 2002b

Piper nubianum
Leaf EO had ME (1.1%).
Meirri et al. 2001

Piper pseudocladus
EO 0.08% of aerial parts EO.
Ferrer et al. 2010

Plumbaginaceae - Leadwort family (Caryophyllales)

Limnotria echinata
Aerial parts EO had ME & eugenol at 0.01% and 0.75% of volatiles.
Sadana et al. 2008a

Peaace - Grass family (Poales)

Bothriochloa inspersa
One of 10 Bothriochloa sibog species contained ME (1.5%) in whole plant EO.
Scrimato et al. 2009

Bromus hordeaceus [Soil brome]
Trans methyl cinnamate (31.2%), ME (30.3%) & eugenol (19.1%) of plant EO.
Kaluzna-Czapinska 2007

Cymbopogon absinthum
ME (13.4%) and limonene (25%) as major components in BO.
Singh & Sinha 1976/c/ Akhila 2009

Cymbopogon flexuosus ['Lemon grass]
ME (20%) in EO.
Atul & Brada 1976

C. flexuosus var Skimus
ME (23%) in EO.
Maniure & Khuda et al. 1986

Cymbopogon hieracifolius [hieracifolius grass]
Khao grass - ME of major component.
Artiur & Qadri 1987

Cymbopogon hookerii
6.0-6.8% oil yield - contained ME (75.85%).
Robita et al. 1986

Cymbopogon microstachyus
eO had ca. 69% phyllyl progenoids with ME (19.5%), valerian (25.3%) & methyl isoneugenol (4.3%).
Muthlin et al. 1990

Cymbopogon nardus [Citronella grass]
ME major component, ME (4.1%) with traces of eugenol and ethyl isoeugenol.
Howdall 1915, Akhila 2009

Cymbopogon toruliflorus [Ozarkinka, Ozarkvalaya]
EO (55%) in EO.
Liu et al. 1981

Cymbopogon winterianus ['Java citronella']
EO (20-40) pm of whole plant (1%) EO. EO contained tr quantities of ME and eugenol.
http://www.ema.europe.eu, Akhila 2009

Elemonus hensii
ME (0.6% of EO) in roots and not detected in other aerial parts.
Silu et al. 2006

Lolium perenne
ME (16.6%), eugenol (24.1%) & trans methyl cinnamate as major components in plant EO.
Kaluzna-Czapinska 2007

Podocarpaceae - Podocarpus family (Podales)

Dacrydium franklinii ['Lagarostrobus franklinii'] ['Hino pine heartwood']
Was contained eugenol, ME ether, elemenic, and conifer alcohols.
Baggaley et al. 1967

Lagarostrobus franklinii [Hino pine]
Wood EO had 57-74% ME, 21-18% E-methyl isoeugenol & 22-24% elemen.
Brophy et al. 2000

Lolium perenne ['Porellus eye grass']
Eugene (4.3%), E-methyl cinnamate (18.5%) & ME (16.0%) in plant EO.
Kaluzna-Czapinska 2007
Family	Species/Genus	Description/Remark
Polygonaceae – Buckwheat family (Caryophyllales)	*Fagopyrum tataricum* [Chinese rhubarb]	Rhubarb IEO contained 5.4% ME.
	Rheum rhaponticum [Rhubarb]	Mean value of ME in rhubarb IEO varied from 2-7%.
Rosaceae – Rose family (Rosales)	*Paeonia suffruticosa* [Chinese peony]	0.4% & 0.1% ME in fruit peel and fresh EO, resp.
	Punica granatum [Pomegranate]	ME (<1%) found in fruits of four peach varieties and two breeding lines.
	Rosa damascena (Hybrid of *Rosa gallica* and *Rosa moschata*) ['Damask rose']	Rose oil contained 0.1–1.9% ME and 0.2–1.8% esugenol, ME (5.5%) in Chinese rose oil using SPME technique.
	Rosa hemisphaerica ['Sulphur rose']	ME 0.3% of EO.
	Rosa hybrida CV 'Meying'	ME (0.79%) and esugenol (0.84%) in Korean rose oil.
Rubiaceae – Madder family (Gentianales)	*Rubia cordifolia* [Common Indian Madder]	ME (1.2%) of peel area to root EO.
Rutaceae – Rue family – (Sapindales)	*Aegle marmelos* ['Bael, Buchu']	Plant EO contained 1.4% ME.
	Citrus aurantium var. murraya ['Chinotto']	Fresh fruits were unripe to yield dried peel which possessed tr ME in EO.
	Citrus paradisi ['Grapefruit']	Grapefruit juice contained 0.02 ppm of ME.
	Chlorophora antiscia	Leaf EO contained 92.7% ME.
	Chlorophora excava ['Pink Varaspe']	Elerical (65.02%) and ME (12.55%) as major components of leaf EO.
	Chlorophora indica	Fruit peel EO contained 0.43% ME.
	Citrus limonia ['Orange']	Short oil contained ME.
	Daucus carota ['Bitter melon']	ME (0.7%) in EO of aerial parts.
	Dimorpera indica ['Melicope melicope'] ['Hand aspen']	One of three chemotypes had ME (51.67%) and methyl cinnamol (5.13%).
	Eriodictyon glaucum	234 mg of ME from 10.2 g hesperetin extract concentrate of aerial plant parts.
	Eriodictyon trachyphyllos ['Redb. Wax-flower']	ME and esugenol in tree.
	Fagara anatolica ['East African sassafras']	ME (6.8%) in pericarp EO.
	Haplophyllum myrtifolium	Plant EO had 10.8% ME and 19.1% esugenol.
	Heliotropium orientale	EO of leaves and branches - esugenol & ME.
	Lecanora ambiguus ['Eriodictyon ambiguus']	ME - 1.1% of leaf EO.
	Lunaria scapiata	Berries contained ME among other monoterpenes.
	Malva parviflora ['Polya argentea'] ['Moksha']	Leaf EWEO distillate contained p-methoxyphenylbenzene (ca 40%) with lesser quantities of ME, limonene, methyl isoeugenol and estragole.
	Melicope berlesei	Leaf EO of this medicinal plant with antimicrobial activity contained ME (209 mg of 450 g powdered leaves).
Sapotaceae – Sapodilla family (Erialeae)	*Manilkara zapota* ['A. zapota'] ['Sapodilla, Chico']	ME (0.5%) in fruit EO which had 61 volatiles – 0.03 mg/kg of fruits.
Sapotaceae – Pipturus family (Erialeae)	*Sapotacae*	ME (0.3%) in EO of aerial parts.
Saururaceae – Lizard-tail family (Pteridales)	*Anemopsis californica* ['Tarba maina']	ME ca 0.5% in rhizomes & dried roots; leaf EO contained 6.5-7.3% ME, ME (55%) in New Mexico root EO, ME (55%) of rhizome & root EO.
Saururaceae – Lizard-tail family (Pteridales)	*Saururus chinensis*	ME (< 2%) in EO of dried aerial parts.
Scrophulariaceae – Figwort/Snapdragon family (Lamiales)	*Bocconia frutescens*	Whole plant EO had camphor (30.6%) and ME (28.3%) as major components; ME (35.9%) and camphor (28.1%).
Scrophulariaceae – Figwort/Snapdragon family (Lamiales)	*Lamprophyllia geffreyi* ['Lamprophyllia racemosa']	Aerial parts (flowers not included) contained ME at 0.3% and /% of EO.
Solanaceae – Nightshade/Potato family (Solanales)	*Cyphomandra betacea* ['Solanum betacea'] ['Tamarillo, Tree tomato']	Fruit pulp volatiles contained <100 g/kg of ME.

Journal of Insect Science | www.insectscience.org 69
Family	Species/Description	Essential Oil Components	Reference(s)
Mandragora officinarum	Mandrake, Hog apple, Ground lemon	ME (0.40%), eugenol (2.37%), and E-isoegenol (1.03%) in fruit EO	Flesher & Flesher 1994
Tamarrus - Taxus family	*Taxus baccata*	Aerial parts, leaf and stem EOs had 0.89%, 0.22% & tr ME, resp.	Saitoana et al. 2003b
Theaceae - Tea family	*Camellia sinensis* (Chinese tea)	ME (0.053 - 0.814) as ratio of peak area to that of internal standard in 5 samples of tea EO	Pripdievo et al. 2010
Thymelaeaceae - Moezeum family (Malvales)			
Dogmae group	ME (4.5%) in aerial parts EO		Ueyama et al. 1990
Verbenaceae - Verbena family (Lamiales)			
Abietis trophilla (Lemsn verbanal)	Dried leaves contained eugenol & ME at 0.5-0.6% & 0.3-1.2% of EO, resp.	Grabus et al. 2003	
Ligustus alba (Biaue lippota, Annee verbanal)	ME small amounts.		Svedens & Baurmeier 1990
Ligustus grandifolius	14 plant samples had eugenol 0.1-0.6% of EO but only 2 with tr ME.		Manu et al. 2005
Vitaceae - Grape family	*Vitis montifolia* (Muscadine, Scuppernong berries)	ME in ripe berries from three CVs - Fry, Jumbo and Watergate.	Horvat & Seeter 1984
Winteraceae - Winter's Bark Family (Cornell)			
Drumy 2bracteata	Fresh leaves collected in Dec., May and Oct. contained 0.5, 0.2 and 0% of ME, resp. and no ME in dried leaf, stem, bark and unripe fruit.		Limberger et al. 2007
Zingiberaceae - Ginger family (Zingiberidae)			
Afinger galangal (Langsa galangal) (Greater galangal)	ME and e-copepepe appeared as single peak (3.6%) of EO of fresh rhizomes, ME 0.9% of rhizome EO.		De Pooter et al. 1985, Pripdievo et al. 2009
Afinger officinans (Galanga, galangal, galangale)	1.6% and 3.5% ME in EO of fresh and dried rhizome, resp.; ME 3.3% and eugenol 0.5% of rhizome EO		Tran Ngoc et al. 2001, Pripdievo et al. 2009
Afinger spectans (Chinote Beauty, Aoumou, Variagated Dwarf)	ME in stem & leaves; only leaves from Japan, among 6 countries of origins, had ME, estragole & methyl cinnamate at 2.9, 4.6 & 0.1% of EO, resp.		Fujita & Yamashita 1973, Prudent et al. 1993
Boesenbergia sp. (species unknown)	Plant attracted the oriental fruit fly and volatile oil contained 1% ME		Kottibhramrongsook 1980
Curcuma aromatica (Manava aromatica) (The narrow leaved Tumeric)	Rhizome EO from Central India had ME (10.3%)		Srivastava et al. 2006
Elshisera cokkunnum (Cademense)	ME and eugenol among the ten most abundant volatile compounds in seed EO; plant EO contained 0.1% ME		Abo-Khatiw & Kubo 1987 et Kubo et al. 1991, De Vincenzo et al. 2000
Elongera cevural (Wax flower)	ME (47.4%) and Z & E -methyl isoeugenol (18.8%) in rhizome EO		Leedae-Valinovna et al. 1993
Elongera bugenurum	Rhizome oil contained methyl chavicol (49.9%) & ME (32.3%)		Bhuyan et al. 2010
Zingiber zingiber	ME (54.7%), e-piperine (10.6%) & E-methyl isoeugenol (8.68%) found in rhizome oil.		Jackson et al. 2006 (postur)

* excluding flower/floral fragrance, and quantitative data given if available;
**% = percentage of peak areas (if not stated), cv = cultivar, EO = essential oil, resp = respectively, SPME= Solid phase micro extraction, TLC = Thin layer chromatography, tr = trace, v. = variety, wt = weight.
Table 2. Plant family (order) and species containing methyl eugenol [ME] in flowers*.

Species (Synonym)	Common name	Remark on ME presence**	Reference
Amaryllidaceae	*Amaryllis*	Floral EO contains ME as a minor component	Dobson et al. 1997
Narcissus	[Bosquet]	Flower EO contains ME as a minor component	van Dorp et al. 1993
Narcissus tazetta	*N. tazetta*	Flowers contained ME as a minor component	van Dorp et al. 1993
Narcissus tazetta	*N. tazetta*	ME a minor component of flower EO	Ebert et al. 1988, van Dorp et al. 1993
Annonaceae	*Custard apple family* (Magnoliidae)	Dried flower oil via controlled pressure drop method contained 0.4% ME & 0.5% eugenol, while steam distillation contained 0.1% ME & 0.18% eugenol of EO (% water)	Kristiawan et al. 2008
Apocynaceae	*Carrot family* (Apiales)	0.22% of volatiles collected during flowering via Tenax GC sorbed	Paramonov et al. 2000
Cumin	*Cuminus*	ME (0.08%) & eugenol (0.79%) in floral EO	Bertaeh et al. 2010
Datura stramonium	*Datura stramonium*	Blooming umbels have tr quantities of ME and eugenol in EO	Staniszewska & Kulka 2001
Dryopteris affinis	*Dryopteris affinis*	ME (2.3%) & E-methyl isoeugenol (0.7%) in inflorescences and undetected in other plant parts	Flamini et al. 2008
Euphorbia affinis	*Euphorbia affinis*	Floral EO contains 0.9-0.2% ME among 55 volatiles	Byrde et al. 1998
Pimpinella sativa	*Pimpinella sativa*	Inference and seed EO contain 2.2% and 2.5% ME, resp. while seeds from 2nd locality contain ME (9.7%)	Askari & Sofi 2006
Portenschlagia julii	*Portenschlagia julii*	ME at 0.3% of EO in flowering aerial parts	Solovic et al. 2008
Scrophularia	*Scrophularia*	Flowers contain estragols (93.8% of EO) with 0.3% ME	Kaye et al. 2007
Seseli	*Seseli*	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Areaceae	*Areca palm family* (Arecales)	ME (0.1%) in floral fragrance	Schoedt et al. 2002
Catharanthus roseus	*Catharanthus roseus*	Flowers contain ME and eugenol in floral sebaceous and bract. Photo showed >30 oriental fruit flies on visible side of a flower	Sinding & Antekut 1985
Spantylphium cinnamomifolium	*Spantylphium cinnamomifolium*	Flower spike contains ME (20%), methyl chavicol, p-methoxybenzyl acetate, & benzyl acetate as major components.	Lewis et al. 1988
Arecaceae	*Palm family* (Arecales)	ME varied 0.1-0.6% and 0.09-2.5% during staminate & pistillate phases, resp. & ME and eugenol peaked at 11:15-13:00 hour.	Knutson et al. 1999
Geonoma polyandra	*Geonoma polyandra*	ME detected in tr amount and eugenol (8.2%) in floral EO	Kameoka & Wang 1980
Jacqylla schizandra	*Jacqylla schizandra*	Eucalyptus (2%) & ME (0.7%) as ME in flower EO.	Kameoka & Wang 1980
Asparagaceae	*Agave century plant family* (Asparagales)	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Dracaena fragrans	*Dracaena fragrans* (Corn plant, Chinese money tree, or Cordatum Dracena)	Head-space analysis of leaves using two adsorbents; twister and tenax-TE showed ME at 0.015 and 0.002%, resp.	Ishikawa & Tani 2007
Podococ鞄us abies	*Podococ鞄us abies*	Floral absolute oil contained ca 20% E- and methyl eugenol, and ca 15% of ME and eugenol	Ishikawa & Tani 2007
Asteraceae	*Aster family* (Asteridae)	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Asclepias	*Asclepias*	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Astilba velutina	*Astilba velutina*	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Anthemis alba	*Anthemis alba*	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Nolitangus odoratissima	*Nolitangus odoratissima*	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Zygophyllum dumosum	*Zygophyllum dumosum*	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Zygophyllum dumosum	*Zygophyllum dumosum*	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Boraginaceae	*Borage or Forget-me-not family* (Boraginaceae)	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Borago officinalis	*Borage, Starflower*	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Brassicaceae	*Cabbage/Mustard family* (Brassicales)	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Malus prunifolia	*Malus prunifolia*	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006
Sisymbrium irio	*Sisymbrium irio*	ME in whole flowering tops EOs varied with altitude - 0.1% at 300 m but up to 0.4% at 2000 m in Russian Altai (Baker)	Tkachov et al. 2006

*ME = methyl eugenol, EO = essential oil.
**Table adapted from: Tkachov et al. 2006.*
Family	Genus	Description	
Caryophyllaceae – Pink Family (Caryophyllae)	Dinantia aromatica	Floral volatiles emitted were eugenol (4.2%), ME (2.0%), elemicin (1.3%) & methyl isoeugenol (0.1%) besides methyl benzoate (42.1%)	Jürgens et al. 2003
	Dinantia aromapilosus	ME (1.4%), elemicin (1.5%) emitted as part of floral volatiles.	Jürgens et al. 2003
	Dinantia suberosa	Emitted floral volatiles contain cym-1-octene (49.8%), ME (0.2%) and elemicin (0.2%).	Jürgens et al. 2003
	Dinantia syringoides	Floral volatiles emitted contain methyl benzoate (85.7%), eugenol (0.3%) and tr of ME.	Jürgens et al. 2003
	Thunbergia laiata f. White champaca	ME (60-65%) in single flower volatiles from a North American population but not detected in European populations.	Dottet et al. 2005
Chrysanthemaceae – Manoeetian family (Euphorbiaceae)	Chrysanthemum parthenium	ME (0.8%) and 13.3-(3-methoxy)-benzene (0.5%) in fresh leaf EO.	Nozawa et al. 2001
	Chrysanthemum indicum	ME (2.0%), camphor (1.1%) and eugenol (0.3%) in fresh leaf EO.	Nozawa et al. 2001
	Chrysanthemum frutescens	ME (0.2%) found in blue palatinate flower EO but not in leaf and fruit EOs.	Andrade et al. 2007
Cynancheae – Cyad family (Cycadaceae)	Cycas revoluta	Estragole (67.0 - 92.7%) with small amounts of anethole, methyl salicylate, ME & ethyl benzoate released from male & female cones.	Azuma & Kato 2006
Euphorbiaceae – Spurge Family (Euphorbiaceae)	Casinum rivale	ME (0.1%) in floral EO but not detected in leaf EO.	Compagnone et al. 2010
Fabaceae – Pea Family (Fabales)	Acacia auriculiformis	Flowers contained ME and eugenol at 0.3 and 15.5% of EO.	Lambarque et al. 1998
	Acacia auriculiformis var. auriculiformis (Roman Cascas)	Flowers contained traces of ME and eugenol at 11.2% of EO.	Lambarque et al. 1998
	Cunila undulata (Roseau)	Flowers contained ME and eugenol at 9.4% of EO.	Lambarque et al. 1998
	Coriaria volkensiae	ME (4%) in leaves, flowers, and fruits of plants identified as ME in flower EO contained 2.7% ME and tr of eugenol.	Nozawa et al. 2001, Trakou et al. 2007
	Coromandelia olitoria (Carob tree)	Male whole flowers contained ME (2.8%) and female whole flowers 3.2 and 1.5% in Gallosa and Malusa Cvs.	Cusidó et al. 2006
Malvaceae – Malva Family (Malvaceae)	Medicago sativa (Coastal medick, Sea medick)	EO of reproductive parts contained ME (21.4%) & eugenol (1.5%), and vegetative parts contained eugenol (4.9%) & ME (1.7%).	Flumian et al. 2003
	Tagetes erecta (Zinnia flower)	Flower volatiles contained ME in 5% ME, and kenosis 3 folds of night, and higher with increase temperature (10 – 20°C).	Jakobsen & Olsen 1994
Lamiales – Mint Family (Lamiidae)	Salvia satureioides (Salvia fruticosa) (Needle bush)	Cassie (floral distillate) contained ME.	Duke 1981
	Vicia faba (Broad bean)	Headspace volatiles of cultivar Marns Bead flowers contained ME (0.2%), eugenol (0.66%), cumarin alcohol (0.77%), and methyl isoeugenol (0.02%).	Griffiths et al. 1999
Asteraceae – Astereae Family (Asteraceae)	Agastache foeniculum (Anise hyssop)	ME in inflorescences & leaves increased from 28.6 to 41% in EO during 17 day storage. A putative hybrid of A. rugosa & A. foeniculum possessed ME (2.4%) in inflorescence EO.	Dmitriev et al. 1981, Wilson et al. 1992
	Ocimum basilicum	ME 3-11% of inflorescence EO in two vas.	Nihlström et al. 1996
	Ocimum gratissimum	ME 3-11% of inflorescence EO in two vas.	Samsbury & Sofosina 1971
	Ocimum gratissimum var. Ovata	ME 3-11% of inflorescence EO in two vas.	Nihlström et al. 1996
	Ocimum sanctum (Holy basil; red basil)	ME contents in 4 var high in ME 54-77% and 2 var high in eugenol 1.7 – 2.3% of inflorescence EO; ME in EO of leaf, stem in inflorescence 72.5%, 75.3%, 83.7%, resp.	Nihlström et al. 1996, Kothari et al. 2005
	Ocimum melissafolium (Pepper basil)	Leaf and flower EOs in accession A had ME at 0.79 and 1.13%, resp.	Marinis et al. 1997
	Ocimum sativum	ME (66.18%) in flower oil.	Marinis et al. 1997
	Rosmarinus officinalis	Rosmarin oil obtained from pale blue flowers contained < 0.01% ME.	http://www.amea.ac.in
Malvaceae – Mallow family (Malvales)

Okra ***[Okra]**
Hat-pollinated flowers contained 0.8% ME in floral volatiles

Knudsen & Tollsten 1996

*Vitis vinifera*** [Grape]
Flowers in spring, ME 0.4% and 0.5% of EO, resp.

Nicolini et al. 1994

Melastomataceae – Mahogany family (Melastomatales)

*Cardiospermum** [Heartseed]
Flowers in one campus of Para, Brazil had 8.4% ME in floral volatiles

Aoki et al. 2001

Moraceae – Morinda family (Morinaceae)

*Morinda officinalis*** [Medicine Apple]
Fresh flowers had 32 components with ME 0.3% and 0.7% of EO, resp.

Bauer & Kurkcuoglu 1998

Myrtaceae – Myrtle family (Myrtales)

*Myrtus communis*** [Myrtle]
Flowers from Western and Central Albanian had ME at 0.76 and 1.08% of EO, resp. ME 4% of EO 1 of 7 major floral components in var. tunetana.

Amissible 2000; Wenas et al. 2010

Nyssaceae – Olive family (Lamiales)

*Syringa vulgaris*** [Bach or Common Lilac]
ME (tr) in floral EO, ME present in floral volatiles.

Wu et al. 2008; Lamparski 1985; Knoben et al. 2008

Oenograciaceae – Evening Primrose family (Oenograciaceae)

*Charadha broweri*** [Flower family]
ME and isoME derived from eugenol and iso-eugenol via the action of iso-eugenol O-methyltransferase (IEMT), birch line E contains valerianol (15.5%), methyl iso-eugenol (0.68%), iso-eugenol (0.99%), and iso-eugenol (1.26%), but absent in birch line I.

Wang et al. 1997; Radjouze & Pickerns 1995

Orchidaceae – Orchid family (Orchidaceae)

*Angraecum sorrelii*** [Angraecum scapigera var. angustifolium]
Traces of ME in orchid flower (Madagascar)

Katsur 1993

Psidaceae – Strawberry family (Psidaceae)

*Psidium guajava*** [Guava]
ME (5.6%) major components and four other phenylpropanoids (in much smaller quantities) in floral volatiles

Tan et al. 2002; Nishida et al. 2000

Piperaceae – Pepper family (Piperaceae)

*Piper betle*** [Betel]
Flower EO had safrole as a major phenol, followed by hydroxychavicol, eugenol, ME, iso-eugenol, valerianol, 3-methyl chavicol.

Chin & Sun 1990

Psidaceae – Psidium family (Psidaceae)

*Psidium guajava*** [Guava]
EO (1.9%) in volatile oil of fresh flowers.

Katsur 1993

Rhamnaceae – Rhamnus family (Rhamnaceae)

*Rhamnus cathartica*** [Spinach]
Few minor phenylpropanoids and phenolates by cotton leaf beetles – ME in flower (1.5%); female flowers: 0.9%

Johnson et al. 2007

Rutaceae – Rutaceae family (Rutaceae)

*Cinnamomum*** [Cinnamon]
ME 2.5% of ME in floral volatiles.

Williams & Whitman 1985

Rosaceae – Rosaceae family (Rosaceae)

*Prunus serrulata*** [Redbud]
ME (1.5%) in floral volatiles.

Katsur 1993

Rutaceae – Rutaceae family (Rutaceae)

*Citrus sinensis*** [Lemon]
Floral volatiles of ME 0.1% of EO in flower volatiles.

Nishi et al. 2002

Salicaceae – Willow family (Salicaceae)

*Salix alba*** [Willow]
ME (1%) in floral volatiles.

Katsur 1993

Sapotaceae – Sapodilla family (Sapotaceae)

*Manilkara zapota*** [Poster]
ME (1.5%) in floral volatiles.

Katsur 1993

Verbascum – Verbenaceae family (Verbenaceae)

*Verbascum*** [Verbascum]
ME (1.5%) in floral volatiles.

Katsur 1993
Rhizophoraceae – Mangrove family (Malpighiales)

Genus/Species	Description	Reference
Rhizophora stylosa	Floral ME & eugenol at 6.8 & 27.2% of volatiles, resp. and floral scent had ME in traces – flowers visited by bees and others.	Azuma et al. 2002

Rosaceae – Rose family (Rosales)

Genus/Species	Description	Reference
Prunus mume [Japanese apricot]	ME present as minor component among 22 non-polar constituents of flowers.	Matsuda et al. 2003
Rosa centifolia	ME (1.4%) in EO	Ohlott 1978
Rosa chinensis [China rose]	ME and isoeugenol as minor floral components in var. spontanea. ME at 0.65, 0.64 & 0.59% of volatiles in CVs Diorama, Grand Mogul & Lady Hillingdon, resp. only Diorama emitted ME (0.51% of volatiles).	Wu et al. 2003, Joichi et al. 2005
Rosa damascena [Damask Rose]	ME (1.4%) in EO, ME increased with time of fermentation (3-36 hrs). 0 - 4.34% of EO.	Ohlott 1978, Baydar et al. 2008
Rosa damascena sommervillo cv ‘Quatre Saisons’	Free ME detected in petals volatiles, and detected volatiles emitted rhythmically, with maximum peaks coincided at 8-10 hour.	Picone et al. 2004
Rosa hybrida	Petals contained ME; ME (0.2%) detected only in floral EO of ‘Sandra’ using U.18 (tessaduct indene) cartridge.	Lavid et al. 2002, Kim et al. 2000
Rosa phaeacantha	Tr of ME and eugenol in petals fragrance.	Yomogida 1992
Rosa rugosa	Floral EO contained ME (6.88%), Volatiles from flower and pollen contain >20% ME and eugenol 4% -<20% of highest peak; ME and eugenol among 12 major components in pollen & pollen plus volatiles.	Wu et al. 1985, Dobson et al. 1987, Dobson & Bergstrom 2000
Rosa sericea X rosa rugosa	Floral fragrance contained 0.30% eugenol and 0.68% ME.	Chen et al. 1987a

Solanaceae - Nightshade/Potato family (Solanales)

Genus/Species	Description	Reference
Physalis angulata [Paraguay jasmine]	ME 1% and 0.1% in young deep purple and mature white flowers, resp. with linalool and (E)-cinnamene as major components.	Bertrand et al. 2006

Tamaricaceae – Tamarix family (Tamaricaceae)

Genus/Species	Description	Reference
Tamarix chinensis var. nana	ME (tr) and eugenol (0.38%) in floral EO.	Saitama et al. 2008b

Thymelaeaceae – Mercuria family (Malvales)

Genus/Species	Description	Reference
Duphy genkwa	Flower EO contained 127 compounds, 0.1% ME (4.5%) and eugenol (tr)	Ueyama et al. 1990

Valerianaceae – Valerian family (Dipsacales)

Genus/Species	Description	Reference
Valeriana nihonensis	Inflorescence contained 0.4% and 0.6% of EO for eugenol and ME, resp. which were not found in other plant parts	Fekete et al. 2002

Verbenaceae - Verbena/Vervain family (Lamiales)

Genus/Species	Description	Reference
Lippia citriodora cv 'kavach' [Bushy Mexican Lippia]	Linalool in leaf (67%) & inflorescence (79%) with 0.1% ME & 0.5% eugenol of inflorescence EO, but absent in leaf EO.	Mishra et al. 2010
Lippia odoratissima Lippia schomburgkiana [Orange rum diacynum]	Three chemotypes – only type A collected from 3 different sites in Columbia had ME 0.01-0.01% in aerial parts EO.	Stashenko et al. 2010

Zingiberaceae – Ginger family (Zingiberales)

Genus/Species	Description	Reference
Hedychium coronarium [White ginger lily]	ME tr amount in flower EO with F. & Z-methyl isoeugenol 0.45 & 0.06% of peak area.	Matsunoto et al. 1993

* quantitative data given if available.
** symbols and abbreviations as in Table 1.