Mapping and Deployment of Blast Resistance Gene in Rice – A Work in Progress

Ashim Debnath*, Karma Landup Bhutia and Hage Sumpi

School of Crop improvement, College of Post Graduate Studies, Central Agricultural University (Imphal), Umiam, Pin: 793103, Meghalaya, India

*Corresponding author

A B S T R A C T

Rice (Oryza sativa) plays a significant role in global food security. Various biotic and abiotic stresses limit rice production. Among the various biotic stress, rice blast caused by Magnaporthe oryzae is one of the most ruinous disease in all rice growing regions of the world. Use of resistant genes and quantitative resistance conferred by quantitative trait loci (QTLs) is the best option for management of blast. More than 100 blast resistance genes and a large number of QTLs (more than 350) were identified and mapped in different rice genotypes, but only 22 genes have been cloned and characterized at the molecular level. The genetic dissection of cloned genes revealed that the largest class of R-genes encodes nucleotide-binding, leucine-rich repeat (NBS-LRR) proteins. Gene pyramiding with marker assisted selection helps us to introgress more than one gene for blast resistance into a susceptible background. In this review, we extensively summarize the reported resistance gene information for rice blast along with their selection markers. We also focus on the reports of mapping and deployment of blast resistance with MAS and gene pyramiding. This update information will be helpful in rice breeding programmes to develop durable blast resistant rice variety through marker assisted selection.

Keywords
Blast (Magnaporthe oryzae), Resistance genes, Quantitative trait loci, Cloned genes, Marker assisted selection

Introduction

Rice (Oryza sativa) is one of the major foods for more than 50% of the world’s population. The rice consumer is increasing and demand for rice is also moving up at an alarming rate. Rice production needs to increase more than 40% by 2030 to meet the increase demand for rice (Kush, 2005). The yield potentiality of rice is 10 ton⁻¹, whereas farmers on an average harvest about 5 ton⁻¹ (Kush and Jena, 2009). Various biotic and abiotic stress limit rice production which ultimately leads to this yield difference. Among the biotic stress, rice blast caused by Magnaporthe oryzae ranked first in the ten most important fungal pathogen explained in the journal of Molecular Plant Pathology. The economic importance of M. oryzae; with over one-half of the world’s population relying on rice as the main source of calories, this pathogen can have destructive effects; however this pathogen has evolved into a seminal model system for the study of plant–pathogen interactions (Dean et al., 2012). The pathogen is most usual on leaves, causing leaf blast during the vegetative stage,
or on nodes, neck and panicle branches during the reproductive stage, causing node and neck blast, respectively. The amount of rice destroyed by blast annually is sufficient to give food to 60 million people worldwide (Parker et al., 2008). Leaf blast lesions decrease the net photosynthetic rate of individual leaves to an extent far beyond the visible diseased leaf fraction. Neck blast is considered the most destructive phase of the disease and can occur without being introduced by severe leaf blast (Zhu et al., 2005). Neck blast causes direct yield reduction, since filling of the grains on infected panicles is poor at best. That is why neck blast is the more serious phase of the blast disease (Khan et al., 2014).

Different fungicides can be used to control blast disease but they generate additional costs in rice production and chemical contamination of environment and food items. Therefore strategies for increase in yield in an environmentally sustainable and economical manner need to be implemented urgently. Although host resistance is the most economically viable and environmentally sustainable practice to manage blast disease, the fungus overcomes blast resistance quickly, and cultivars typically become susceptible to disease within 2–3 years. Knowledge of the biology, adaptability and genetic diversity of the blast pathogen is vital for the development of novel and durable strategies to manage this and related devastating fungal diseases. The use of resistant varieties is thought to be one of the most economical and environment friendly ways of crop protection from the disease. The pyramiding of resistant genes or allocate them with multigenic resistance is an efficient way to manage blast disease. Accordingly, different molecular techniques such as QTL analysis, molecular mapping, gene cloning, map-based cloning, marker-assisted selection (MAS) have been introduced to analyse the blast resistant genes in the rice genome (Miah et al., 2013). With a shorter period of time MAS offer better selection strategies in rice breeding. MAS are more efficient, effective and reliable as compare with phenotypic selection. Although MAS is not the only solution of all problem in resistance breeding but it is a promising approach to conventional breeding. Considerable progress has been done for rice blast disease towards cloning and identification of resistance genes, characterization of defense responses and elucidation of signal transduction which ultimately activate different defense responses. MAS help in transferring blast resistance genes to different genetic backgrounds at an early stage with greater accuracy (Gu et al., 2005). The ability to conduct genetic analyses led to the cloning and characterization of several genes for host and cultivar specificity. Today, much attention is given on cloning and characterizing many avirulence and corresponding rice resistance genes that have been genetically identified. Development of broad spectrum and durable blast resistant varieties is essential for combating this devastating disease, which requires continuous efforts of breeders and pathologists. Wild species of *Oryza* can be utilized to widen the gene pool of rice for biotic and abiotic stress. Various studies have demonstrated that wild species serve as a source of hidden gene(s) which can be used for crop improvement (Zhang and Xie, 2014) and yield enhancing QTLs from various wild species (Linh et al., 2008; Rangel et al., 2008).

Blast resistance genes and sources

The genus *Oryza* consists of two cultivated and 21 wild species. Two cultivated species, *O. sativa* and *O. glaberrima*, and six wild species, *O. rufipogon*, *O. nivara*, *O. glumaepatula*, *O. meridionalis*, *O. breviligulata*, and *O. longistaminata* have
been grouped into a primary gene pool based on the transfer ability of genes (Sharma et al., 2012). Rice has domesticated almost 9000 years ago and during the period of domestication rice plant has been subjected to selection both by naturally and artificially which ultimately led to the reduction of diversity in the present rice species. Human selection process favoured the agronomically suitable characters over those of less cultivated species and wild relatives. This selection process for long period of time lead to more uniformity in the cultivated rice lines than wild relatives and land races. So the genetic base has been narrowed down due to the more uniformity in the cultivated rice which ultimately helps plant pathogen for better survival. The large source of genetic pool, land races and some cultivated rice germplasms were left unexplored.

In rice breeding, breeders have successfully taken many genes from wild species for useful trait like blast resistance. Wild rice, *O. rufipogon* has been reported to be a potential source for blast resistance genes (Rathour et al., 2005). Ram et al., (2007) reported the introgression of broad spectrum blast resistance gene(s) from *Oryza rufipogon* into indica rice cultivar. Blast resistance gene Pi9 from *Oryza minuta* (Sharma et al., 2012), Pirf2-1(t) from wild rice *O. rufipogon* (Dwinita et al., 2008) and Pi-40(t) from *Oryza ecaustraliensis* (Jeung et al., 2007) also been isolated. After considering the vast genetic diversity of rice, there is still so much potential to use the rice germplasm for the improvement of traits like blast resistance.

Rice blast disease resistance genes were first described in 1923 by Sasaki in Japan. Pi-a, the first blast resistance gene in rice was designated by Kiyosawa (Kiyosawa, 1966). Till now more than 100 blast resistance gene has been identified and their chromosomal locations and selection markers have been reported in different rice cultivars. Of the 100 blast resistance genes identified, these genes have different origins, and each was identified in different donor rice cultivars and also in wild rice species (Table 1). Out of the total identified resistance genes, 45% are from Japonica cultivars, and 51% from indica cultivars and the remaining 4% are from wild species of rice (Sharma et al., 2012).

From the tabular representation (Table 1) of different blast resistance gene, we can clearly observe that most of the R genes were detected on chromosome 11, 12 and 6. Chromosome 11, with the maximum number of resistance genes, with at least 30 genes and alleles (Pik-h, Pi-hk1, Pi54, Pi-1(t), Pb1, Pise1, Pikur2, Pi 38, Pik,Pif, Pi34, Pia, Mpiz, Piisi, PiCO39(t), Pilm2, Pi30(t), Pi7(t), Pi44(t), Pi49, Pik-m, Pik-p, Pik-s, Pi47, Pikg, Pi60(t), Pi-1(t), Pi1 and PBR), chromosome 12 have atleast23 number of resistance genes and alleles (Pi24(t), Pi-42(t), Pi51(t), Pi62(t), Pi6(t), Pi12(t), Pi4(t), Pi32(t),Pi31(t), Ipi(t), Ipi3(t),Pita2, Pi19(t), Pi21(t), Pita, Pi58(t), Pi39(t), Pi-GD-3(t), Pi20(t), Pi-tq6, Pi48, Pi61(t), Pi157) and chromosome 6 have19 number of genes and alleles (Pigm(t), Pi22(t), Pi26, Pi27(t), Piz-5, Pi8, Pi13(t), Pi40(t), Pi59(t), Pi9, Pi2-2, Pi50(t)). Although numbers are less but R genes were also detected for blast resistance in all other chromosomes except chromosome number 3.

QTL mapping for blast resistance in rice

Disease resistance traits are controlled by many genes which are known as polygenes or quantitative trait loci (QTLs). Molecular marker such as RFLP, AFLP, SSR, SNP and EST are commonly used to map QTLs (Langridge et al., 2001). Basically there are four approaches for QTL mapping such as single marker analysis (SMA), simple or standard interval mapping (SIM), composite interval mapping (CIM) and multiple interval
mapping (MIM). SMA method has been used for the first time in the identification of QTLs for rice blast resistance in cv. Moroberekan, a Japonica rice cultivar (Wang et al., 1994). In SMA method on the basis of the genotype at every marker locus, the mapping population is divided into classes and finally the QTL has been distinguish if significant differences in the overall mean phenotypic score are found for every group (Melchinger et al., 1998). SIM method is more efficient than SMA where at each locus; a flanking marker is used between two marker intervals. The main disadvantage of SIM is the identification of sometimes false QTLs because of linked and unlinked QTLs. Standard interval mapping was used for QTL analysis and mapping of blast resistance gene pi21 in Owarihatamochi, a Japanese upland rice cultivar (Fukuoka and Okuno, 2001).

The third approach, the composite interval mapping, is frequently used. Here, subsets of markers are used at both linked and unlinked QTLs. The CIM method is used for the identification of interaction of QTLs and marker information increase the power of QTL detection. The fourth approach, multiple interval mapping has higher precision for determining the combined effects of individual QTLs. To map the QTLs, multiple marker intervals are used in MIM method to fit various putative QTLs directly into the model.

More than 350 QTLs for leaf blast resistance have been mapped on different chromosomes, which are mainly derived from japonica indica crosses of 15 different populations (Wu et al., 2005; Ballini et al., 2008). The 23 blast resistance loci found within the above mentioned QTL regions are Pi24(t), Pi35(t), Pitq5, Pi25(t), pi21, Pi26(t), Pi27(t), Pi25(t), Pitq1, PiZh, Pi29(t), PiGD-1(t), Pi28(t), PiGD-2(t), Piilm2, Pi30(t), Pi7(t), Pi34,Pi24(t), Pitq6, Pi31(t), Pi32(t), PiGD-3(t) (Fukuoka et al., 2014).

Molecular mapping of blast resistance genes

By crossing a japonica variety (Nipponbare) with an indica variety (Kasalath) a population of 186 F2 individuals was generated which was used for the construction of rice genetic map. With the use of Restriction Fragment Length Polymorphism (RFLP) markers, construction of the rice genetic map started in 1997 and further saturation of RFLP mapping was done by using RAPD and SSR markers (Tanweer et al., 2015).

The molecular mapping of blast resistance genes is a most direct and convenient approach for the identification of blast resistance in the rice genome. Through molecular mapping major blast resistance genes and Quantitative Trait Loci (QTL) linked to blast resistance have been localized. The traditional African variety Moroberekan, with durable resistance against various pathotypes of M. oryzae, has been used as a donor for blast resistance in many breeding programmes.

An in silico approach which uses computational methods for identification of candidate genes. Here for genome wide comparison, the available sequences of two or more genomes are used (Shang et al., 2009). Gene prediction programs like, FGENESH and Rice GASS (using rice genome sequence of the prescribed size of fragment) are used for the identification of candidate genes.

For the verification of a true candidate, PCR-based markers are developed and used as co-segregation markers to screen blast resistant and susceptible varieties. This in silico approach has been successfully applied to identify blast resistance genes such as Pid3, Pik-p and Pi37, Pi25 (Hayashi et al., 2006; Lin et al., 2007; Shang et al., 2009; Chen et al., 2011).
Molecular map based approach which is the most directed approach for the identification of resistance gene. This strategy has been used for identification of 30 blast resistance genes namely; Pit, Pi27(t), Pish, Pid1(t), Pig(t), Piy(t), Piy2(t), Pi39(t), Pi10, Pi40(t), Piz, Pigm(t), Pi33, Pi5(t), Pi15, PiCO39(t), Pi38, PBR, Pb1, Pi-kh, Pi1, Pik-m, Pik, Pik-p, Pik-s, Pi62(t), Pi157, Pita-2, Pi39(t), and Pi20(t) (Das et al., 2012).

Marker density in the rice genome has been increased to one marker per cM (on an average) because of development of high-density linkage map in the USA and Japan (McCouch et al., 2002).

In India identification and cloning of blast resistance genes began in 2002 when rice line Tetep was found to be highly resistant for most of the strains of *M. oryzae* (Sharma et al., 2002).

Blast resistance gene Pitp(t) has been mapped in cultivar Tetep by using simple sequence length polymorphism markers (Barman et al., 2004). Because of the huge potential of Tetep in resistance breeding for the effective management of rice blast in the North-Western region of India, the Pi-kh (Pi54) gene was mapped in the same cultivar Tetep using different types of DNA markers (Sharma et al., 2005).

Subsequently, Pi38 was identified in indica rice Tadukan (Gowda et al., 2006) and Pi-42(t) from aindica cultivar DHR9 by Kumar et al., 2010. The Pi-kh (Pi54) gene is now being introgressed in Indian cultivars of rice using marker assisted back cross breeding because of its effectiveness against many strains of *M. oryzae* and availability of closely linked and also gene based markers (Singh et al., 2011).

The genetic dissection based on the mapping of blast resistance genes on different chromosomes showed that majority of these genes are made up of nucleotide binding site-leucine-rich repeat (NBS-LRR) domain (Monosi et al., 2004).

Molecular cloning and characterization of blast R genes

This is the most effective and direct approach towards understanding the structure and function of blast resistance genes. Although, more than 100 blast resistance genes have been identified and mapped, only 22 R-genes have been cloned and characterized at molecular level (Ashkani et al., 2014). The cloned resistance genes are scattered throughout eight (Chromosomes number 1, 2, 4, 6, 8, 9, 11 and 12) rice chromosomes. Distribution on the chromosomes (Table 2) shows that majority of the cloned genes are spotted on chromosome 11 (36%) followed by chromosome 6 (27.5%), chromosome 1 (14%) and chromosome 2, 4, 8, 9 and 12 (each 4.5%).

The genetic dissection of cloned genes revealed that the largest class of R-genes (Class 1) encodes nucleotide-binding, leucine-rich repeat (NBS-LRR) proteins, except Pid-2, which contains the receptor kinase domain. The NBS-LRR proteins are further subdivided into the Toll/interleukin 1 receptor (TIR) and coiled-coil (CC) groups based on the N-terminal domain.

Out of these two types, only (CC)-NBS-LRR class proteins are found in monocots (Ashkani et al., 2014). As showed in the table among 22 cloned blast resistance genes, 13 genes fall into a category of CC-NBS-LRR type domain, eight into NBS-LRR proteins while Pid-2 possesses a unique type of protein called B-lectin receptor which is having a serine threonine kinase type domain. For cloning most of the genes, map-based cloning strategy has been used.
Table 1: List of identified blast resistance genes on rice chromosomes with necessary information

Gene Symbol	Chr. number	Position(bp)	Marker name	Donar rice variety	References	
Pit	1	2270216-3043185	t311, t256, t8042	Tjahaja	Hayashi et al., 2006	
Pitp(t)	1	25135400–28667306	RM246	CO39 and Tetep	Wongsaprom et al., 2010; Barman et al., 2004	
Pi37	1	33110281–33489931	RM302, RM212, FPSM1, FPSM2, FPSM4	Cultivar St. No. 1	Lin et al., 2007	
Pi35(t)	1	33000000–34150000	RM1216, RM1003	Hokkai 188	Barman et al., 2004; Nguyen et al., 2006	
Pi24(t)	1	5242654–5556378	K5	Azucena	Nguyen et al., 2006	
Pi27	1	6230045–6976491	RM151, RM259	Q14 and Q61	Sallaud et al., 2003	
Pish	1			Shin 2	Zhu et al., 2004	
Pi64	1			Japonica landrace Yangmaogu (YMG)	Ma et al., 2015	
Pid1(t)	2	21875000–22475000	RM262	Lijiangxin-tuan-heigu (LTH) and Jiangnanxianingno (JNXN) crossed with Digu	Chen et al., 2004	
Pi-y1(t)	2	38300000–38525000	RM3248, RM20	Lijiangxin-tuan-heigu (LTH) and Yanxian No.1	Fukuta et al., 2004; Lei et al., 2005	
Pi-Da(t)	2			RM5529, RM211	Dacca6	Lei et al., 2005
Pi-y2(t)	2	38300000–38525001	RM3248, RM20	Yanxian No.1	Fukuta et al., 2004; Lei et al., 2005	
Pig(t)	2	34346727–35135783	RM166, RM208	Guangchangzhan	Shi et al., 2012; Zhu et al., 2004	
Pi25(t)	2	34360810–37725160	RG520	IR64	Wu et al., 1993; Nguyen et al., 2006	
Pi-tq5	2	37625000–39475000	RG520, RZ446b, RZ446a, RG654, RG256	Teqing	Tabien et al., 2002; Zhou et al., 2004	
Pi14(t)	2	1–6725831	Amp-1	Maowang	Pan et al., 1996; Tabien et al., 2000	
Pi-b	2	38300000–38525000	b213, b28, b2, b3989	BL1/Koshihikari	Wang et al., 1999; Hayashi et al., 2006	
Pi16(t)	2	1–6725831	Amp-1	Maowang	Pan et al., 1997	
pi21	4	5242654–5556378	P702D03_79	Owarihatamochi	Ahn et al., 1997; Pan et al., 1998	
Pikur1	4	24611955–33558479	Kuroka		Fukuoka et al., 2007	
Pi39(t)	4	26850000–27050000	RM3843, RM5473	Mineasahi and Chubu 111	Liu et al., 2007	
Pi(t)	4	2270216–3043185	P167(I)		Causse et al., 1994	
Pi23	5	10755867–19175845	Suweon 365		Terashima et al., 2008	
Pi26(t)	5	8751256–11676579	RG313	Azucena/Gumei 2	Wu et al., 1993; Ahn et al., 1996; Nguyen et al., 2006	
Pi10	5	14521809–18854305	OPF62700	Tongil	Wu et al., 2005	
Pigm(t)	6	10367751–10421545	C26348, S47656	Gumei4	Deng et al., 2006	
Source	Accession Numbers	Characteristics	Reference			
--------	------------------	-----------------	-----------			
Pi22(t)	6 4897048–6023472	Pi4(t) K17, R2123	Sweon 365, Terashima et al., 2008			
Pi26	6 8751256–11676579	Pi2(t) K17, R2123	Zhong 156/Gumei 2, Wu et al., 2005			
Pi27(t)	6 5556378–744329	Pi2(t) Est-2	IR64, Nguyen et al., 2006			
Pi3-5	6 BS2-Pi9 and NBS4-Pi9	Pi8	C101A51_CO39, Deng et al., 2006			
Pi8	6 Amp-3, pgi-2	Pi8	Kasalath, Tabien et al., 2000			
Pi13(t)	6 Amp-3	Pi13(t)	Maowang, Pan et al., 1996			
Pi40(t)	6 16274830–17531111	Pi40(t) RM19835	Co39 and IR50 cross with IR65482-4, Jeung et al., 2007			
Pi59(t)	6 18080056–19257588	Pi59(t) RM19835	Haoru_US-2, Zhou et al., 2006			
Pi9	6 10386510–10389466	Pi9	Nbs2-Pi9 and Nbs3-Pi9, Qu et al., 2006			
Pi2-1	6 AP4791 and AP4007	Pi2-1	Tianjingyeshengdao, Qu et al., 2006			
Pi-tq1	6 RZ682, C236, RG653, RZ508	Pi-tq1	Teqing, Zhou et al., 2004			
Pi-z(t)	6 z4794, z60510, z5765, zt5659	Pi-z(t)	Isogenic line C101A51 and cultivar CO39, Hayashi et al., 2006; Deng et al., 2006			
Pi2d2	6 17159337–17163868	Pi2d	CAPS1 and CAPS8, Digu and Lijingxian-tuan-heigu, Chen et al., 2006			
Pi25(t)	6 18080056–19257588	Pi25(t) A7-RG456	Zhong 156/Gumei 2, Ahmet et al., 1996			
Pi2(t)	6 10155975–10517612	Pi2(t)	Z4794, Z60510, Z5765, Z56592, Z565962, Zenith, Hayashi et al., 2006; Wang et al., 2012			
Pi13	6 22250443–24995083	Pi13	R2123, R538, Kasalath, Fjellstrom et al., 2006; Hayasaka et al., 1995			
Pi2-2	6 AP5659-3 and RM19817	Pi2-2	Jeffrey, Ballini et al., 2008			
Pi50(t)	6 GDAP51 and GDAP16	Pi50(t)	EBZ x LTH F2 and (EBZ x LTH) x LTH, BC1F2, Jiang et al., 2012			
Pi17(t)	7 22250443–24995083	Pi17(t)	Kasalath, Zhu et al., 2012			
Pi3	8 5915858–6152906	Pi3	RM72, RM44, IR64_Azucena and Azucena_Bala, Berruyer et al., 2003			
Pi2h	8 4372113–2102219	Pi2h	RZ617, JX17_ZYQ8, Sallaud et al., 2003			
Pi3h	8 2870061–2884353	Pi3h	RM5647, CRG2, CRG3, CRG4, Q61 (I), Liu et al., 2007			
Pi29(t)	8 9664057–16241105	Pi29(t)	RZ617, RGA-IR86, IR64, Nguyen et al., 2006			
Pi55(t)	8 H2 and H66	Pi55(t)	Yuejingsimiao 2 (YJ2), Liu et al., 2005			
Pi5D-1(t)	8 Oxalate oxidase	Pi5D-1(t)	Sanhuangzhan2, He et al., 2012			
Pi15	9 9641358–9685993	Pi15	BAPI15486, BAPI15782 and BAPI15844, Q61 and GA25, Liu et al., 2004			
Pi2(t)	9 1022662–7222779	Pi2(t)	Ishikari shiroke, Pan et al., 2003			
Pi3(t)	9 7825000–8250001	Pi3(t)	Pai-kan-tao, Kinoshiba & Kiyosawa, 1997			
Pi5(t)	9 7825000–8250000	Pi5(t)	94A20r, 76B14f, 40N23r, RIL260 (Moroberekan), Kwon et al., 2008			
Pi56(t)	9 CRG4 (CRG4-1 and CRG4-2) and CRG5, and one SSR marker RM24022	Pi56(t)	SHZ-2 and BC-10 x TXZ-13, Jeon et al., 2003			
Pi28(t)	9	2291804–28431560	RZ500	Ishikari Shiroke (J)	Ise et al., 1991	
Pi28(t)	10	19565132–22667948	Azucena	Nguyen et al., 2006		
PiGD-2(t)	10	r16	Sanhuangzhan 2 x Lijiangxin-tuan-heigu	He et al., 2012		
Pik-h	11	24761902–24762922	RM144, RM224, RM1233, RM144,	HP2216 and Tetep	Fjellstrom et al., 2004; Sharma et al., 2005	
Pi-lk1	11	RM27248 and RM27318	Heikezijing	Liu et al., 2012		
Pi54	11	TRS26, TRS33, RM2191	Tetep	Wu et al., 2013		
Pi-I(t)	11	RM12331 and RM224	Near-isogenic lines C101LAC and C101A5	Sharma et al., 2005		
Pi1	11	2080	Modan	Fuentes et al., 2008; Fujii et al., 2000		
Pi1	11	5740642–16730739	Sensho	Izawall & Iwasakizl, 2000		
Pikur2	11	2840211–18372685	Kuroka	Goto, 1988		
Pi38	11	19137900–21979485	RM206, RM21	CO39 and Tadukan	Goto et al., 1996	
Pik	11	27314916–27532928	k6816, k2167, k6438, k6415, k8823, k8824, k3951, k39512	K60	Hayasaka et al., 1995; Hayashi et al., 2006	
Pif	11	24695583–28462103	Chugoku 31-1 (St. No. 1)	Chubu 32	Zenbayashi et al., 2002	
Pi34	11	19423000–19490000	C1172, E2021	Chauhan et al., 2002; Zenbayashi-Sawata et al., 2005		
Pia	11	4073024–8078510	yca72	Aichi Asahi (J)	Chauhan et al., 2002; Zenbayashi-Sawata et al., 2005	
Mpiz	11	4073024–16730739	Zenith (J)	Goto, 1996		
Pisi	11	2840211–19029573	ImochiShirazu (J)	Goto, 1970		
PiCO39(t)	11	6304007–6888870	RGA8, RZ141, RGACO39	CO39	Chauhan et al., 2002; Kwon et al., 2008	
Pilm2	11	13635033–28377565	L457b, G2132b, RZ536x, RG1109	Teqing	Tabien et al., 2002; Zhou et al., 2004	
Pi30(t)	11	441392–6578785	OpZ11-f, RGA-IR14	IR64	Sallaud et al., 2003; Nguyen et al., 2006	
Pi7(t)	11	17850000–21075000	RIL29 (Moroberekan)	Miyamoto et al., 2001		
Pi44(t)	11	22850000–29475000	RIL29 (Moroberekan)	Chauhan et al., 2002		
Pi49	11	13635033–28377565	L457b, G2132b, RZ536x, RG1109	CO39	Chen et al., 1999	
Pik-m	11	27314916–27532928	k6816, k2167, k641, k6441, k4731, k7237	Tsuyuake	Sun et al., 2013; Wang et al., 2007	
Pik-p	11	26796917–28376959	RZ536	Sweon 365	Li et al., 2007	
Pik-s	11	27314916–27532928	k641, k39575, k403, k3957	HR22	Hayashi et al., 2006	
Pik-s	11	27314916–27532928	RM144, RM224, RM1233, RM144, RM224, RM1233	Shin 2	Fjellstrom et al., 2004	
Pi47	11	2080	RM206 and RM224	Cross between XZ3150 and the highly	Ahn et al., 2000	
Pik²	11	27314916–27532930	susceptible cultivar CO39	GA20	Tabien et al., 2000	
---	---	---	---	---	---	
Pi60(t)	11	K1-4 and E12	93-11	Huang et al., 2011		
Pi-1(t)	11	RM224	Samba mahsuri	Lei et al., 2013		
Pi1	11	CRG11-7 and K28	cv. C101LAC	Prasad et al., 2009		
PBR	11	20125000-30075000	St. No. 1	Fujii et al., 1995		
Pi24(t)	12	5242654–5556378	RGA 3	Zhong 156/Auenca (J)	Zhuang et al., 2002; Hua et al., 2012	
Pi-42(t)	12	STS5, RRS44, RRS51, RRS60, RRS63, RRS6 and CRG 6-1	DHR9	Zhuang et al., 2002		
Pi51(t)	12	RM5364, RM27990	Tianjingyeshengdao	Qu et al., 2006		
Pi62(t)	12	2426648–18050026	RG869	Yashiromochi	Wu et al., 1996; Kumar et al., 2010	
Pi6(t)	12	1–6725831	RG869	Apura	Wu et al., 1996	
Pi12(t)	12	6988220–15120464	RG869	Hong-jiaozhan/Moroberekan (J)	Inukai et al., 1995	
Pi4(t)	12	RG869, RZ397	Aichi Asahi	Inukai & Nelson, 1994; Iwata et al., 1996		
Pi31(t)	12	7731471–11915469	O10-800	IR64	Sallaud et al., 2003; Nguyen et al., 2006	
Pi32(t)	12	13103039–18867450	AF6	IR64	Sallaud et al., 2003; Nguyen et al., 2006	
Ipi(t)	12	RG241X	BS125xWL02	Causse et al., 1994		
IPi3(t)	12	RG241X	BS125xWL02	Causse et al., 1994		
Pita-2	12	10078620–13211331	ta3	Pi No.4	Hayashi et al., 2006	
Pi19(t)	12	8826555–13417088	39M6, 39M7	Q15/Chubu 111 (J)	Bryan et al., 2000; Liu et al., 2007	
Pi21(t)	12	5242654–5556378	Suweon 365	Terasshima et al., 2008		
Pita	12	10603772–10609330	SP4B9 and SP9F3	Yashiro-mochi and Tsuyuake/Tadukan (I)	Hayashi et al., 2006	
Pi58	12	RM27954, RM27933, RM3103	RM179	Sanhuangzhan 2 x Lijiangxin-tuan-heigu	Liu et al., 2005; He et al., 2012	
Pi39(t)	12	39M6, 39M7	Q15/Chubu 111 (J)	Bryan et al., 2000; Liu et al., 2007		
Pi-GD-3(t)	12	13950000	RM1337, RM5364, RM7102	Asominori and IR24	Liu et al., 2007; Liu et al., 2008	
Pi20(t)	12	12875000–12950000	RR341a, RG869, L102, G1468a, RZ397, RZ257	Teqing	Tabien et al., 2002; Zhou et al., 2004	
Pi-tq6	12	5758663–7731471	RM5364 and RM7102	Cross between XZ3150 and the highly susceptible cultivar CO39	Ahn et al., 2000	
Pi48	12	M2 and S29	93-11	Moroberekan	Causse et al., 1994	
Pi61(t)	12	12375000–15550000	M2 and S29	Moroberekan	Causse et al., 1994	
Table 2: List of cloned blast resistance genes with necessary information

Gene Symbol	Chromosome	Domain combination	Cultivar name	Cloning Strategy	References	Percentage (%) of total cloned genes
Pb1	11	CC-NBS-LRR	Modan	Map Based	Hayashi et al., 2010	36%
Pik-h(Pi54)	11	NBS-LRR	Tetep	Map Based	Sharma et al., 2005	
Pikm	11	CC-NBS-LRR	Tsuyuake	Map Based	Ashikawa et al., 2008	
Pi-k	11	CC-NBS-LRR	Koshiminori	Map Based	Wang et al., 2013	
Pik-p	11	CC-NBS-LRR	HR22	Map Based in silico	Yuan et al., 2011	
Pia	11	CC-NBS-LRR	Aichi Asahi	Multifaceted genomics approach	Okuyama et al., 2011	
NLS1	11	NBS-LRR	nls1-1D/NLS1 and Zhongsi 2	Map Based	Ashkani et al., 2014	
Pi54rh	11	CC-NBS-LRR	Oryzarhizomatis	Allele mining approach	Das et al., 2012	
Pi2	6	NBS-LRR	Zhenshan 97	Map Based	Liu et al., 2002	
Pi9	6	NBS-LRR	75-1-127(101141)	Map Based	Qu et al., 2006	27%
Piz-t	6	CC-NBS-LRR	Toride 1	Map Based	Ashkani et al., 2014	
Pid-2	6	Lectin receptor	Digu	Map Based	Chen et al., 2006	
Pid3	6	CC-NBS-LRR	Digu	Silico homology based	Shang et al., 2009	
Pi25	6	CC-NBS-LRR	Nipponbare	In silico approach	Ashkani et al., 2014	
Pi37	1	NBS-LRR	St. No.1	Map Based in silico	Chen et al., 2005	
Pi	1	CC-NBS-LRR	K59	Map Based	Hayashi & Yoshida, 2009	14%
Pis-h	1	CC-NBS-LRR	Nipponbare	Mutant Screening	Ashkani et al., 2014	
Pib	2	NBS-LRR	Tohoku IL9	Map Based	Wang et al., 1999	4.5%
Pi21	4	NBS-LRR	AA-pi21	Map Based Cloing	Fukuoka et al., 2009	4.5%
Pi36	8	CC-NBS-LRR	Q61	In silico map based	Liu et al., 2005	4.5%
Pi5	9	CC-NBS-LRR	RIL260	Map Based Cloing	Lee et al., 2009	4.5%
Pi-ta	12	NBS-LRR	Tadukan	Map Based Cloing	Bryan et al., 2000	4.5%
Table 3 Examples of MAS and gene pyramiding for blast resistance in rice

Target Traits	Gene(s)/QTL (s)	Type/name of marker(s) used	Target variety/application	References
Blast resistance	P1,Piz-5,Pita	RFLP, SSR, ISSR	CO39	Hittalmani et al., 2000
Blast resistance	P1,Piz-5,Pita	RFLP, SSR, ISSR	CO39	Hittalmani et al., 2000
Bacterial blight (BB) resistance and Blast resistance	Xa21 & Piz	STS and transgene specific marker	IR50	Narayanan et al., 2004
Blast resistance	P1	Microsatellite, SSR	Zhenshan97	Liu et al., 2003
Blast resistance	P1,P2	Microsatellite, SSR	Zhenshan97	He et al., 2004
Blast resistance	Pid1, Pib and Pita2	SSR	G46B	Chen et al., 2004
Blast resistance	P2	SSR	Zhenshan97B	Chen et al., 2004
Blast resistance	P1-z	Microsatellite	Used in parental material for gene surveys	Fjellstrom et al., 2006
Submergence tolerance, BPH resistance, Bacterial blight resistance, Blast resistance and quality	Subchr9 QTLs,Xa21,Bph and blast QTLs and quality loci	SSR and STS	KDML105	Toojinda et al., 2005
Blast resistance	Pi-ta	Gene specific marker	Advanced breeding lines for rice breeding programmes.	Wang et al., 2007
Blast resistance	P1, P2 and P33	SSR	Jin23B	Chen et al., 2008
Blast resistance	Two QTLs	Microsatellite markers	RD6	Wongsaprom et al., 2010
Blast resistance	Pish&Pib	SSR	CO39	Koide et al., 2010
Blast resistance	Four resistant QTLs	SSR	F4 generation lines	Sreewongchai et al., 2010
Blast resistance	Pi-9(t)	Marker pB8	Hybrid restorer Luhui17	Wen et al., 2012
Blast resistance and BB	P11 and P2 for blast resistance and Xa23 for BB	SSR	Rongfeng B	Fu et al., 2012
Blast resistance	Piz-5 and Piz4	SSR	Pusa 1602 and Pusa 1603	Singh et al., 2012
Blast resistance	Putative Piz	SSR	MR219	Miah et al., 2015
Blast resistance	Piz21, Piz34, QBR4-2 and QBR12-1	SSR	NILs for evaluation	Fukuoka et al., 2015
Blast resistance	P9, Pita	Gene linked and microsatellite marker	Pusa Basmati 1	Khanna et al., 2015
Bacterial blight and Blast resistance	Xa21 & Piz5	STS marker pTA248 and functional marker Piz4 MAS	DRR17B	Balachiranjeevi et al., 2015
Bacterial blight, Blast, and Brown plant hopper resistance	Xa4, xa5, Xa21, Piz40 and Bph18	SSR	Japonica rice cultivar	Suh et al., 2015
Blast and Bacterial blight resistance	P2 & Xa23	SSR and indel marker	GZ63-4S	Jiang et al., 2015
Blast resistance	Pita and Piz4	SSR	Used in rice breeding programme	Mahesh et al., 2016
Blast resistance	Piz9,Piz and Piz5	Gene linked markers	OSGY31	Xiao et al., 2017
MAS and Gene Pyramiding for blast resistance

Marker-assisted selection is an efficient way to select the desirable characters indirectly. The selection and identification of markers linked to the gene of interest is the basic prerequisite for marker assisted selection. In case of blast resistance, application of marker assisted selection is very powerful as single or a few genes are involved in the resistance mechanism. Development of durable blast resistant rice varieties against *M. oryzae* progressed with the availability of different molecular markers used for marker assisted selection (Ashkani et al., 2012).

With the advent of molecular biology, marker assisted selection (MAS) facilitate gene pyramiding in plants. Gene pyramiding is one of the most effective strategies for achieving durable and multiple resistances. This approach uses both traditional and modern molecular biology approaches depending on the available resources to introgress more than one gene for a specific trait into a single genetic background. Availability of various molecular markers helps in the rapid detection and introgression of resistant genes into susceptible rice varieties as compared to conventional phenotypic screening.

The selection of blast resistance genes through marker assisted selection is very precise because of the true interaction of the particular resistance (R) gene with the avirulence gene.

Gene pyramiding has been successfully applied to combine several genes of blast resistance in rice. Three important blast resistance genes Pi1, Piz-5 and Pita with closely linked RFLP and PCR based markers have been introgressed into a susceptible cultivar CO39 through MAS. Compared to the plant with Piz-5 alone, two and three gene combinations including Piz-5 showed enhanced resistance to blast (Hittalmani et al., 2000). After few years later on the same cultivar CO39, Pish&Pib genes were also introgressed with MAS (Koide et al., 2010). Three genes, Pi-d(t)1,Pi-b, and Pi-ta2, have been fixed into a donor line of rice,G46B (Chen et al., 2004), and two genes, Pi1 and Pi2, have been fixed into cv. Zhenshan 97 (He, 2004).

Pusa1602 and Pusa1603 lines have been developed by incorporating the blast resistance genes Piz-5 and Pi54 through MAB (Singh et al., 2012). The leaf and neck blast resistance have been developed through introgression of the Pi1 and Pi2 genes, respectively, using MAB programmes (Fu et al., 2012). Two quantitative trait loci (QTLs) that confer resistance to blast disease have been successfully introgressed into RD6 using MAS (Wongsaprom et al., 2010). In that same year again four QTLs for blast resistance were introgressed into F₄ lines using marker assisted selection (Sreewongchai et al., 2010).

Pyramiding of resistance genes with different pathogens and insect is of great significance for plant breeding. Narayanan et al., (2004) pyramided two major R-genes Xa21 and Piz for bacterial blight and blast resistance into rice using MAS and genetic transformation. For bacterial blight, blast, and Brown plant hopper resistance gene Xa4, xa5, Xa21, Pi40 and Bph18 has been introgressed into japonica rice cultivar (Suh et al., 2015). Recently a study was done on three major blast resistance genes Pi9, Pizt and Pi54 to find out the best combination for pyramiding and result showed that combination of Pizt and Pi54 gives higher resistant level and better additive effects on panicle blast resistant than Pi9 and Pi54 combination (Xiao et al., 2017). Some examples of MAS for gene pyramiding in rice are shown in Table 3.
The use of resistant cultivar is a powerful tool to develop sustainable and environmental favourable rice production systems. Rice blast is a serious concern in the present day breeding program, as many pathogen strain overcome resistance within a short period of time because of evolution of pathogen strains. Therefore, further research is still required to exploit tools, knowledge in breeding programs. Although, more than 100 blast resistance genes were identified in different rice genotypes and 22 of them were cloned and characterized at the molecular level, they provide resistance to specific pathotypes. So we need to identify more durable and suitable blast resistance genes that confer broad-spectrum resistance to different pathotypes of *M. oryzae*. Recent advances in rice genomics and molecular biology studies come out with new techniques like fine mapping, cloning of blast resistance gene and also gene pyramiding with MAS which ultimately helps in the deployment of various resistant genes in rice background. This review will be helpful to study the necessary information for identification of more than 100 blast resistance genes and also a large number of QTLs (more than 350). We have also discussed mapping and cloning of blast resistance genes and also gene pyramiding with marker assisted selection for different biotic stress mainly rice blast. As blast resistance genes are mostly independent, information from this review can be utilized by plant breeders to develop new cultivar of improved agronomic background with more number of resistant genes for marker assisted breeding programmes. Reported DNA markers can also be used in future rice breeding program to detect the genes and QTLs of interest.

Acknowledgement

We are greatful to Dean, College of Post Graduate Studies and Chairman, School of Crop Improvement, CAU (Imphal) for support. Ashim Debnath is thankful to his advisor and also UGC, Govt. of India for National Fellowship for Students of OBC.

References

Ahn, S., Kim, Y., Han, S., *et al.*, 1996. Molecular mapping of a gene for resistance to a Korean isolate of rice blast. *Rice Genet. Newsl.*, 13: 74–76.

Ahn, S.N., Hong, Y.K.H.C., Han, S.S., Choi, H.C., McCouch, S.R., and Moon, H.P. 1997. Mapping of genes conferring resistance to Korean isolates of rice blast fungus using DNA markers. *Kor. J. Breed.*, 29(4): 416–423.

Ahn, S.N., Kim, Y.K., Hong, H.C., *et al.*, 2000. Molecular mapping of a new gene for resistance to rice blast (*Pyricularia grisea* Sacc.). *Euphytica.*, 116: 17–22.

Ashikawa, I., Hayashi, N., Yamane, H., *et al.*, 2008. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer *Pikm*-specific rice blast resistance. *Genetics*, 180: 2267–2276.

Ashkani, S., Rafii, M.Y., Rusli, I., Sariah, M., Abdullah, S.N.A., Harun, A.R., Latif, M.A. 2012. SSRs for marker-assisted selection for blast resistance in rice (*Oryza sativa* L.). *Plant Mol Biol Rep.*, 30:79–86.

Ashkani, S., Rafii, M.Y., Shabanimofrad, M., Ghasemzadeh, A., Ravanfar, S. A., and Latif, M.A. 2014. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (*Oryza sativa* L.): current status and future considerations. *Crit. Rev. Biotechnol.*, 1–15.

Balachiranjeevi, C.H., Bhaskar, N.S., Abhilash, V., Akanksha, S., Viraktamath, B.C., Madhav, M. S., Harirprasad, A.S., Laha, G.S., Prasad, M.S., Balachandran, S.M., *et al.*, 2015. *Mol Breeding*, 35:151.

Ballini, E., Morel, J.B., Droc,G., *et al.*, 2008. A genome-wide meta analysis of rice blast resistance genes and quantitative trait loci
provides new insights into partial and complete resistance. Mol. Plant Microbe. Interact., 21: 859–868.

Barman, S., Gowda, M., Venu, R., and Chattoo, B. 2004. Identification of a major blast resistance gene in the rice cultivar ‘‘Tetep’’. Plant Breeding, 123: 300–302.

Berruyer, R., Adreit, H., Milazzo, J., Gaillard, S., Berger, A., and Dioh, W.D. 2003. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor. Appl. Genet., 107(6): 1139–1147.

Bryan, G.T., Wu, K.S., Farrall, L. et al., 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pita. The Plant Cell Online, 12: 2033–2045.

Causse, M.A., Fulton, M., Cho, Y.G., Ahn, S.N., Chunwongse, J., Wu, K., and Harrington, S.E. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 138(4): 1251.

Chauhan, R., Farman, M., Zhang, H.B., and Leong, S. 2002. Genetic and physical mapping of a rice blast resistance locus, PiCO39 (t) that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol. Genet. Genom., 267(5): 603–612.

Chen, D.H., Dela, V.M., Inukai, T., et al., 1999. Molecular mapping of the blast resistance gene, Pi44 (t), in a line derived from a durably resistant rice cultivar. Theor. Appl. Genet., 98: 1046–1053.

Chen, H.Q., Chen, Z.X., Ni, S., Zuo, S.M., Pan, X.B., and Zhu, X.D. 2008. Pyramiding three genes with resistance to blast by marker assisted selection to improve rice blast resistance of Jin 23B, application, Zhongguo Shuidao Kexue. Chin. J. Rice Sci., 22(1): 23–27.

Chen, J., Shi, Y., Liu, W. et al., 2011. A ‘‘Pd33’’ allele from rice cultivar Gumei2 confers resistance to ‘‘Magnaporthe oryzae’’. J. Genet. Genom., 38: 209–216.
the Pi-z locus are useful for selection of blast resistance in a broad array of rice germplasm. *Molecular Breeding*, 17: 149–57.

Fu, C., Wu, T., Liu, W. *et al.*, 2012. Genetic improvement of resistance to blast and bacterial blight of the elite maintainer line Rongfeng B in hybrid rice (*Oryza sativa* L.) by using marker-assisted selection. *Afr. J. Biotechnol.*, 11: 149–57.

Fu, C., Wu, T., Liu, W. *et al.*, 2012. Genetic improvement of resistance to blast and bacterial blight of the elite maintainer line Rongfeng B in hybrid rice (*Oryza sativa* L.) by using marker-assisted selection. *Afr. J. Biotechnol.*, 11: 149–57.

Fuentes, J.L., Correa-Victoria, F.J., Escobar, F. *et al.*, 2008. Identification of microsatellite markers linked to the blast resistance gene Pi-1 (t) in rice. *Euphytica.*, 160: 295–304.

Fujii, H.Y., Saito, K., Sugiura, N., Hayashi, N., Tsuji, T., and Izawa, T.I.M. 2000. Identification of a RFLP marker tightly linked to the panicle blast resistance gene, Pb1, in rice. *Breed. Sci.*, 50 (3): 183–188.

Fujii, K., Hayano-Saito, Y., Shumiya, A., and Inoue, M. 1995. Genetical mapping based on the RFLP analysis for the panicle blast resistance derived from a rice parental line St. No. 1. *Breed Sci.*, 45: (Suppl. 1) 209.

Fukuoka, S., and Okuno, K. 2001. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. *Theor. Appl. Genet.*, 103: 185–190.

Fukuoka, S., Okuno, K., and Kawase, M. 2007. Rice blast disease gene Pi21, resistance gene pi21 and utilization thereof. Patent WO/2007/000880.

Fukuoka, S., Saka, N., Koga, H. *et al.*, 2009. Loss of function of a proline containing protein confers durable disease resistance in rice. *Science.*, 325: 998–1001.

Fukuoka, S., Saka, N., Mizukami, Y., Koga, H., Yamanouchi, U., Yoshioka, Y., Hayashi, N., Ebana, K., Mizobuchi, R., and Yano, M. 2015. Gene pyramiding enhances durable blast disease resistance in rice. *Scientific Reports*, 5: 73-77.

Fukuoka, S., Yamamoto, S.I., Mizobuchi, R., Yamanouchi, U., Ono, K., Kitazawa, N., and Koizumi, S. (2014). Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast, *Sci. Rep.*, 4: 4550, http://dx.doi.org/10.1038/srep04550.

Fukuta, Y., Yanoria, M., Mercado-Escueta, D., *et al.*, 2004. Quantitative trait loci (QTL) reactions to rice blast isolates from Japan and the Philippines. In: Kawasaki S, ed. Rice blast: interaction with rice and control. *Springer.*, 113–21.

Goto, I. 1976. Genetic studies on resistance of rice plant to blast fungus, difference in resistance to the blast disease between Fukunishiki and its parental cultivar, Zenith. *Ann. Phytopathol. Soc. Jpn.*, 42(3): 253–260.

Goto, I. 1988. Genetic studies on resistance of rice plant to blast fungus, 7: blast resistance genes of Kuroka. *Ann. Phytopathol. Soc. Jpn.*, 54: 460–465.

Goto, I. 1970. Genetic studies on the resistance of rice plant to the blast fungus I. Inheritance of resistance in crosses Sensho x H-79 and Imochishirazu x H-79. *Ann. Phytopathol. Soc. Jpn.*, 36: 304–312.

Gowda, M., Roy-Barman, S., and Chattoo, B. 2006. Molecular mapping of a novel blast resistance gene Pi38 in rice using SSLP and AFLP markers. *Plant Breed.*, 125: 596–599.

Gu, K., Yang, B., Tian, D., Wu, L., Wang, D., Sreekala, C., Yang, F., Chu, Z., Wang, G., White, F.F., Yin, Z. 2005. R gene expression induced by a type-II effector triggers disease resistance in rice. *Nature* 435:1122–1125. doi:10.1038/nature03630.

Hayasaka, H. 1996. RFLP mapping of a rice blast resistance gene Pi-k. *Breed. Sci.*, 46 (Suppl. 2) 68 (in Japanese).

Hayasaka, H., Takamatsu, M., Kuboki, Y., *et al.*, 1995. Mapping genes conferring rice blast resistance in rice variety Kasalath using RFLP markers. II. Linkage analysis of the resistance gene on chromosome 6. *Breed Sci.*, 45: 168.

Hayashi, K., and Yoshida, H. 2009. Refunctionalization of the ancient rice blast disease resistance gene Pit by the
recruitment of a retrotransposon as a promoter. *Plant J.*, 57: 413–25.

Hayashi, K., Yoshida, H., and Ashikawa, I. 2006. Development of PCR-based allelespecific and InDel marker sets for nine rice blast resistance genes. *Theor. Appl. Genet.*, 113 (2): 251–260.

Hayashi, N., Inoue, H., Kato, T. *et al.*, 2010. Durable panicle blast resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. *Plant J.*, 64: 498–510.

Hayman, B.I. 1958. The separation of epistatic from additive and dominance varia
tion in generation means. *Heredity*, 12: 371–390.

He, X., Liu, X., Wang, L., *et al.*, 2012. Identification of the novel recessive gene pi55 (t) conferring resistance to *Magnaporthe oryzae*. *Sci. China Life Sci.*, 55: 141–9.

He, Y. 2004. Gene pyramiding to improve hybrid rice by molecular marker techniques. *Gene.*, 3: 4.

Hittalmani, S., Parco, A., Mew, T. *et al.*, 2000. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. *Theoret. Appl. Genet.*, 100: 1121–1128.

Hua, L., Wu, J., Chen, C., *et al.*, 2012. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. *Theoret. Appl. Genet.*, 125: 1047–55.

Huang, H., Huang, L., Feng, G., *et al.*, 2011. Molecular mapping of the new blast resistance genes Pi47 and Pi48 in the durably resistant local rice cultivar Xiangzi 3150. *Phytopathology*, 101: 620–626.

Inukai, T., and Nelson, R. 1994. Mapping for blast resistance gene H-3 derived from rice cv. Pai-Kan-Tao. *Rep Hokkaido Br Crop Sol See Japan Jap Soc Breed.*, 35: 54–55.

Inukai, T., Nelson, R., Zeigler, R., Sarkarung, S., Mackill, D., Bonman, J., and Kinoshita, T. 1995. Genetic analysis of blast resistance in tropical rice cultivars using near isogenic lines, In: G.S. Khush (Ed.), Rice Genetics III. Proc 3rd Int Rice Genet Symp, Oct. 16–20 1995, Manila, The Philippines. pp. 447–450.

Ise, K. 1991. Linkage analysis of some blast resistance gene in rice, *Oryza sativa* L., *Jpn. J. Breed.*, 42 (Suppl. 2): 388–389 (in Japanese).

Iwata, N. 1996. Registration of new gene symbols, *Rice Genet. News* 13:12–18.

Izawall, T., and Iwasakizl, M. 2000. Identification of a RFLP marker tightly linked to the panicle blast resistance gene, Pb1, in rice. *Breeding Sci.*, 50: 183–188.

Jeon, J.S., Chen, D. Yi, G.H., *et al.*, 2003. Genetic and physical mapping of Pi5 (t), a locus associated with broad-spectrum resistance to rice blast. *Mol. Genet. Genomics.*, 269: 280–289.

Jeung, J.U., Kim, B.R., Cho, Y.C., Han, S.S., Moon, H.P., Lee, Y.T., and Jena, K.K. 2007. A novel gene, Pi40 (t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. *Theor. Appl. Genet.*, 115:1163–1177.

Jiang, J., Yang, D., Ali, J., and Mou, T. 2015. Molecular marker-assisted pyramiding of broad-spectrum disease resistance genes, Pi2 and Xa23, into GZ63-4S, an elite thermo-sensitive genic male-sterile line in rice. *Mol. Breeding.*, 35:83.

Jiang, N., Li, Z., Wu, J., *et al.*, 2012. Molecular mapping of the Pi2/9 allelic gene Pi2-2 conferring broad-spectrum resistance to *Magnaporthe oryzae* in the rice cultivar Jefferson. *Rice*, 5: 29.

Khan, M.A.I., Sen, P.P., Bhuiyan, R., Kabir, E., Chowdhury, A.K., Fukuta, Y., Ali, A., and Latif, M.A. 2014. Phenotypic screening and molecular analysis of blast resistance in fragrant rice for marker assisted selection. *C.R. Biologies*, 337:318–324.

Khanna, A., Sharma, V., Ellur, R.K., Shikari, A.B., Krishnan, S.G., Singh, U.D., Prakash, D., Sharma, T.R., Rathour, R., Variar, M., *et al.*, 2015. *Indian J. Genet.*, 75(4): 417-425.
Khush, G.S. 2005. What it will take to feed 5.0 billion rice consumers in 2030, \textit{Plant Mol. Biol.}, 59: (1): 1–6.

Khush, G.S., and Jena, K. 2009. Current status and future prospects for research on blast resistance in rice (\textit{Oryza sativa} L.), in: X. Wang, B. Valent (Eds.), Advances in Genetics, Genomics and Control of Rice Blast Disease. \textit{Springer.}, Dordrecht, pp. 1–10.

Kinoshita, T., and Kiyosawa, S. 1997. Some considerations on linkage relationships between Pii and Piz in the blast resistance of rice. \textit{Rice. Genet. Newslett.}, 14: 57–9.

Kiyosawa, S. 1966. Studies on inheritance of resistance of rice varieties to blast: 3. Inheritance of resistance of a rice variety Pi No. 1 to the blast fungus. \textit{Jpn J Breed.}, 16: 243–50.

Koide, Y., Kawasaki, A., Telebanco-Yanoria, M.J., Hairmansis, A., Nguyet, N.T.M., Bigirimana, J., Fujita, D., Kobayashi, N., and Fukuta, Y. 2010. Development of pyramided lines with two resistance genes, Pish and Pib, for blast disease (\textit{Magnaporthe oryzae} B. Couch) in rice (\textit{Oryza sativa} L.). \textit{Plant Breeding}, 129:670–675.

Koide, Y., Kobayashi, N., Xu, D., Fukuta, Y. 2009. Resistance genes and selection DNA markers for blast disease in rice (\textit{Oryza sativa} L.). \textit{Jpn Agric Res Q.}, 43: 255–80.

Koide, Y., Telebanco-Yanoria, M.J., Fukuta, Y., and Kobayashi, N. 2013. Detection of novel blast resistance genes, Pi58 (t) and Pi59 (t), in a Myanmar rice landrace based on a standard differential system. \textit{Molecular Breeding}, 32: 241–52.

Koizumi, S. 2007. Durability of resistance to rice blast disease, JIRCAS Working Rep. 53: 1–10.

Kumar, P., Pathania, S., Katoch, P. \textit{et al.}, 2010. Genetic and physical mapping of blast resistance gene Pi-42 (t) on the short arm of rice chromosome 12. \textit{Molecular Breeding}, 25: 217–28.

Kwon, S.W., Cho, Y.C. Kim, Y.G. Suh, J.P., Jeung, J.U., Roh, J.H., and Lee, Y.T. 2008. Development of near isogenic japonica rice lines with enhanced resistance to \textit{Magnaporthe grisea}. Mol. Cells., 25(3): 407–416.

Langridge, P., Lagudah, E.S., Holton, T. \textit{et al.}, 2001. Trends in genetic and genome analyses in wheat: a review. \textit{Crop Pasture Sci.}, 52: 1043–1077.

Lee, S.K., Song, M.Y., Seo, Y.S. \textit{et al.}, 2009. Rice Pi5-mediated resistance to \textit{Magnaporthe oryzae} requires the presence of two coiled-coil nucleotide-binding-leucine-rich repeat genes. \textit{Genet.}, 181: 1627–38.

Lei, C., Hao, K., Yang, Y., \textit{et al.}, 2013. Identification and fine mapping of two blast resistance genes in rice cultivar 93-11. \textit{Crop J.}, 1: 2–14.

Lei, C., Huang, D., Li, W., Wang, J., Liu, Z., Wang, X., and Ling, Z. 2005. Molecular mapping of a blast resistance gene in an indica rice cultivar Yanxian No. 1. \textit{Rice Genet. Newslett.} 22:76–77.

Li, L.Y., Wang, L., Jing, J.X., Li, Z.Q., Lin, F., Huang, L.F., and Pan, Q.H. 2007. The Pik-m gene, conferring stable resistance to isolates of \textit{Magnaporthe oryzae}, was finely mapped in a crossover-cold region on rice chromosome 11. \textit{Mol. Breed.}, 20(2): 179–188.

Lin, F., Chen, S., Que, Z., \textit{et al.}, 2007. The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. \textit{Genetics}, 177: 1871–80.

Linh, L.H., Hang, N.T., Jin, F. X., Kang, K.H., Lee, Y.T., Kwon, S.J., and Ahn, S.N. 2008. Introgression of a quantitative trait locus for spikelets per panicle from \textit{Oryza minuta} to the \textit{O. sativa} cultivar Hwaseongbyeo. \textit{Plant Breeding}, 127(3): 262–267.

Liu, B., Zhang, S., Zhu, X., \textit{et al.}, 2004. Candidate defense genes as predictors of quantitative blast resistance in rice. \textit{Molecular Plant- Microbe Interact.}, 17: 1146–1152.
Liu, S., Li, X., Wang, C. et al., 2003. Improvement of resistance to rice blast in Zhenshan 97 by molecular marker-aided selection. *Acta Bot Sinica*, 45:1346–50.

Liu, W.G., Jin, S.J., Zhu, X.Y., Wang, F., Li, J.H., Liu, Z.R., and Liu, Y.B. 2008. Improving blast resistance of a thermo-sensitive genic male sterile rice line GD-8S by molecular marker-assisted selection, *Rice Sci.*, 15(3): 179–185.

Liu, X., Lin, F., Wang, L., and Pan, Q. 2007. The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. *Genetics*, 176: 2541–2549.

Liu, X., Yang, Q., Lin, F., Hua, L., Wang, C., Wang, L., and Pan, Q. 2007. Identification and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to *Magnaporthe oryzae*. *Mol. Genet. Genomics.*, 278(4): 403–410.

Liu, Y., Liu, B., Zhu, X., et al., 2012. Fine-mapping and molecular marker development for Pi56 (t), a NBS-LRR gene conferring broad spectrum resistance to *Magnaporthe oryzae* in rice. *Theoret. Appl. Genet.*, 126: 985–998.

Ma, J., Lei, C., Xu, X., Hao, K., Wang, J., Cheng, Z., Ma, X., Ma, J., Zhou, K., Zhang, et al., 2015. Pi64, Encoding a Novel CC-NBS-LRR Protein, Confers Resistance to Leaf and Neck Blast in Rice. *The American Phytopathological Society* 28 (5): pp. 558–568.

Mahesh, H.B., Shirke, M.D., Singh, S., Rajamani, A., Hittalmani, S., Wang, G., and Gowda, M. 2016. Indica rice genome assembly, annotation and mining of blast disease resistance genes *BMC Genomics.*, 17: 242.

McCouch, S.R., Teytelman, L., Xu, Y. et al., 2002. Development and mapping of 2240 new SSR markers for rice (*Oryza sativa* L.). *DNA Res.*, 9: 199–207.

Melchinger, A.E., Utz, H.F., Schon, C.C. 1998. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. *Genetics*, 149(1): 383–403.

Miah, G., Rafii, M., Ismail, M., Puthe, A., Rahim, H., Asfaliza, R., and Latif, M. 2013. Blast resistance in rice: a review of conventional breeding to molecular approaches, *Mol. Biol. Rep.*, 40(3): 2369–2388.

Miah, G., Rafii, M.Y., Ismail, M.R., Puthe, A.B., Rahim, H.A., and Latif, M.A. 2015. Recurrent parent genome recovery analysis in a marker-assisted backcrossing program of rice (*Oryza sativa* L.) *C.R. Biologies.*, 338: 83–94.

Miyamoto, M., Yano, M., and Hirasawa, H. 2001. Mapping of quantitative trait loci conferring blast field resistance in the Japanese upland rice variety Kahei. *Breed. Sci.*, 51: 257–261.

Mohamad, O., Nazir, B.M., Alias, I., Azlan, S., Abdul Rahim, H., Abdullah, M.Z., Othman, O., Hadzim, K., Saad, A., Habibuddin, H., and Golam, F. 2006. Development of improved rice varieties through the use of induced mutations in Malaysia. *Plant Mutat. Rep.*, 1(1): 27–33.

Monosi, B., Wisser, R., Pennill, L., and Hulbert, S. 2004. Full-genome analysis of resistance gene homologues in rice. *Theor. Appl. Genet.*, 109(7): 1434–1447.

Narayanan, N.N., Niranjan, B., Norman, P.O., Casiana, M.V., Samuel, S.G., Karabi, D., and Datta, S.K. 2004. Molecular breeding: marker assisted selection combined with biolistic transformation for blast and bacterial blast resistance in...
Indica rice (cv. CO39). Mol. Breeding, 14: 61–71.

Nguyen, T., Koizumi, S., La, T., Zenbayashi, K., Ashizawa, T., Yasuda, N., and Miyasaka, A. 2006. Pi35 (t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai188. Theor. Appl. Genet., 113(4): 697–704.

Okuyama, Y., Kanzaki, H., Abe, A. et al., 2011. A multifaceted genomics approach allows the isolation of the rice Pi3-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J., 66: 467–479.

Pan, Q., Tanisaka, T., and Ikehashi, H. 1997. Studies on the genetics and breeding of blast resistance in rice VII. Gene analysis for the blast resistance of Indian native cultivar, Aus 373. Breed Sci., 47: 35.

Pan, Q., Wang, L., Ikehashi, H., et al., 1998. Identification of two new genes conferring resistance to rice blast in the Chinese native cultivar ‘Maowangu’. Plant Breeding., 117: 27–31.

Pan, Q.H., Hu, Z.D., Takatoshi, T., and Wang, L. 2003. Fine mapping of the blast resistance gene Pi15, linked to Pi, on rice chromosome 9. Acta Botanica Sinica, 45: 871–877.

Prasad, M.S., Kanthi, B.A., Balachandran, S. et al., 2009. Molecular mapping of rice blast resistance gene Pi-1 (t) in the elite indica variety Samba mahsuri. World J. Microbiol. Biotechnol., 25: 1765–1769.

Prasad, M.S., Viraktamath, B.C., Babu, V.R., and Madhav, M.S. 2015. Development and Identification of Novel Rice Blast Resistant Sources and Their Characterization Using Molecular Markers. Rice Science, 22(6): 300-308.

Qu, S., Liu, G., Zhou, B., Bellizzi, M., Zeng, L., Dai, L., and Wang, G.L. 2006. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 172(3): 1901–1914.

Ram, T., Majumder, N.D., Mishra, B., Ansari, M.M., Padmavathi, G. 2007. Introgression of broad-spectrum blast resistance gene(s) into cultivated rice (Oryza sativa ssp indica) from wild rice O. rufipogon. Curr Sci., 92: 225–230.

Rangel, P.N., Brondani, R.P.V., Rangel, P.H.N., and Brondani, C. 2008. Agronomic and molecular characterization of introgression lines from the interspecific cross Oryza sativa (BG90-2) × Oryza glumaepatula (RS-16). Genet. Mol. Res., 7(1): 184–195.

Rathour, R., Gaur, V.S., Kaushik, R.P., Chauhan, R.S. 2005. Oryza rufipogon A possible source of novel resistance specificities against rice blast (Magnaporthe grisea). Curr Sci., 89:1–4.

Sallaud, C., Lorieux, M., Roumen, E., Tharreau, D., Berruyer, R., Svstasrani, P., and Notteghem, J.L. 2003. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy, Theor. Appl. Genet., 106(5): 794–803.

Shang, J., Tao, Y., Chen, X. et al., 2009. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics, 182: 1303–1311.

Sharma, T., Madhav, M., Singh, B., Shanker, P., Jana, T., Dalal, V., and Upreti, H. 2005. High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance...
to Magnaporthe grisea. Mol. Genet. Genomics., 274(6): 569–578.

Sharma, T., Rai, A., Gupta, S., Vijayan, J., Devanna, B., and Ray, S. 2012. Rice blast management through host-plant resistance: retrospect and prospects, Agric. Res., 1(1): 37–52.

Sharma, T.R., Chauhan, R.S., Singh, B.M., Paul, R., Sagar, V., and Rathore, R. 2002. RAPD and pathotype analysis of Magnaporthe grisea population from North-western Himalayan region of India. J. Phytopathol., 150: 649–656.

Shi, B., Zhang, J., Zheng, Y., et al., 2012. Identification of a new resistance gene Pi-Da (t) from Dacca6 against rice blast fungus (Magnaporthe oryzae) in Jin23B background. Molecular Breeding, 30: 1089–1096.

Singh, A.K., Gopalakrishnan, S., Singh, V.P. et al., 2011. Marker assisted selection: a paradigm shift in Basmati breeding. Indian J. Genet., 71: 1–9.

Singh, V.K., Singh, A., Singh, S. et al., 2012. Incorporation of blast resistance into ‘PRR78’, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crops Res., 128: 8–16.

Sreewongchai, T., Toojinda, T., Thanintorn, N., Kosawang, C., Vanavichit, A., Tharreau, D., and Sirithunya, P. 2010. Development of elite indica rice lines with wide spectrum of resistance to Thai blast isolates by pyramiding multiple resistance QTLs. Plant Breeding, 129: 176—180.

Suh, J., Cho, Y., Won, Y., Ahn, E., Baek, M., Kim, M., Kim, B., and Jena, K. 2015. Plant Breedi. Biotech., 3(4):333-345.

Sun, P., Liu, J., Wang, Y., et al., 2013. Molecular mapping of the blast resistance gene Pi49 in the durably resistant rice cultivar Mowanggu. Euphytica., 192: 45–54.

Tabien, R., Li, Z., Paterson, A. et al., 2000. Mapping of four major rice blast resistance genes from ‘Lemont’ and ‘Teqing’ and evaluation of their combinatorial effect for field resistance. Theoret. Appl. Genet., 101: 1215–1225.

Tabien, R., Li, Z., Paterson, A. Marchetti, M., Stansel, J., and Pinson, S. 2002. Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties, Theor. Appl. Genet. 105: 313–324.

Tanweer, F A., Rafii, M.Y., Sijam, K., Rahim. H.A., Ahmed, F., and Latif. M.A. 2015. Current advance methods for the identification of blast resistance genes in rice. C.R. Biologies, 338: 321–334.

Terashima, T., Fukuoka, S., Saka, N., and Kudo, S. 2008. Mapping of a blast field resistance gene Pi39 (t) of elite rice strain Chubu 111. Plant Breeding, 127: 485–9.

Toojinda, T., Tragoonrung, S., Vanavichit, A., Siangliw, J.L., Pa-In, N., Jantaboon, J., Siangliw, M., and Fukai, S. 2005. Molecular breeding for rainfed lowland rice in the Mekong region. Plant Prod. Sci., 8(3): 330–333.

Wang, G.L., Mackill, D.J., Bonman, J.M., McCouch, S.R., Champoux, M.C., and Nelson, R.J. 1994. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 136 (4): 1421–1434.

Wang, J., Jia, Y., Wen, J., Liu, W., Liu, X., Li, L., and Ren, J. 2013. Identification of rice blast resistance genes using international monogenic differentials, Crop Prot., 45: 109–116.

Wang, Y., Wang, D., Deng, X., et al., 2012. Molecular mapping of the blast resistance genes Pi2-1 and Pi51 (t) in the durably resistant rice ‘Tianjingyeshengdao’. Phytopathology, 102: 779–86.

Wang, Z., Jia, Y., Rutger, J., and Xia, Y. 2007. Rapid survey for presence of a blast resistance gene Pi-ta in rice cultivars using the dominant DNA mar-kers derived from portions of the Pi-ta gene. Plant Breed., 126(1): 36–42.

Wang, Z.X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., Hayasaka, H., and Sasaki, T. 1999. The Pib gene for rice blast resistance belongs to the nucleotide
binding and leucine-rich repeat class of plant disease resistance genes. Plant J., 19(1): 55–64.

Wen, S., Gao, B. 2012. Introgressing blast-resistant gene Pi-9 (t) into elite rice restorer Luhui17 by marker-assisted selection. Rice Genomics Genet., 2(4): 31–36.

Wongsaprom, C., Sirithunya, P., Vanavichit, A., et al., (2010). Two introgressed quantitative trait loci confer a broad-spectrum resistance to blast disease in the genetic background of the cultivar RD6 a Thai glutinous jasmine rice. Field Crops Res., 119: 245–251.

Wu, J.L., Fan, Y.Y., Li, D.B., Zheng, Leung, K.L., and Zhuang, H.J.Y. 2005. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor. Appl. Genet., 111(1): 50–56.

Wu, K., Martinez, C., Lentini, Z., Tohme, J., Chumley, F. Scolnik. and Valent, P.B. 1996. Cloning a blast resistance gene by chromosome walking, in: G.S. Khush (Ed.), Rice Genetics III. Proceedings of the Third International Rice Genetics Symposium, IRRI: International Rice Research Institute, Manila, Philippines. pp. 669–674.

Wu, K.S., and Tanksley, S.D. 1993. Abundance, polymorphism and genetic mapping of microsatellites in rice, Mol. Gen. Genet., 241(1–2): 225–235.

Wu, Y., Bao, Y., Xie, L., et al., 2013. Fine mapping and identification of blast resistance gene Pi-hk1 in a broad-spectrum resistant japonica rice landrace. Phytopathology, 103: 1162–1168.

Xiao, N., Wu, Y., Pan, C. et al., 2017. Improving of Rice Blast Resistances in Japonica by Pyramiding Major R Genes. Front. Plant Sci., 7: 1918.

Yuan, B., Zhai, C., Wang, W. et al., 2011. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theoret. Appl. Genet., 122: 1017–1028.

Zenbayashi, K., Ashizawa, T., Tani, T., and Koizumi, S. 2002. Mapping of the QTL, Theor. Appl. Genet., 104(4): 547–552.

Zenbayashi-Sawata, K., Ashizawa, T., and Koizumi, S. 2005. Pi34-ARVPi34: a new gene-for-gene interaction for partial resistance in rice to blast caused by Magnaporthe grisea. J. Gen. Plant Pathol., 71: 395–401.

Zhang, F.T., and Xie, J.K. 2014. Genes and QTLs resistant to biotic and abiotic stresses from wild rice and their applications in cultivar improvements. In: Yan W G, Bao J S. Rice: Germplasm, Genetics and Improvement. Croatia, European Union: InTech., DOI: 10.5772/56825.

Zhou, B., Qu, S., Liu, G. et al., 2006. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant-Microbe. Interact., 19: 1216–1228.

Zhou, J., Wang, J., Xu, J., et al., 2004. Identification and mapping of a rice blast resistance gene Pi-g (t) in the cultivar Guangchangzhan. Plant Pathol., 53: 191–196.

Zhu, M., Wang, L., and Pan, Q. 2004. Identification and characterization of a new blast resistance gene located on rice chromosome 1 through linkage and differential analyses. Phytopathology, 94: 515–519.

Zhu, X., Chen, S., Yang, J., et al., 2012. The identification of Pi50 (t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theoret. Appl. Genet., 124: 1295–1304.

Zhu, X., Yang, Q., Yang, J., Lei, C., Wang, J., and Ling, Z. 2004. Differentiation ability of monogenic lines to Magnaporthe grisea in indica rice. Acta Phyto-path. Sin., 34(4): 361–368.

Zhu, Y.Y., Fang, H., Wang, Y.Y., Fan, J.X., Yang, S.S., Mew, T.M., and Mundt, C.C. 2005. Panicle blast and canopy moisture
in rice cultivar mixtures, *Phytopathology*, 95: 433–438.
Zhuang, J.Y., Ma, W.B., Wu, J.L., Chai, R.Y.,
Lu, J., Fan, Y.Y., and Zheng, K.L. 2002.
Mapping of leaf and neck blast resistance
genes with resistance gene analog, RAPD
and RFLP in rice. *Euphytica*, 128(3):
363–370.

How to cite this article:
Ashim Debnath, Karma Landup Bhutia and Hage Sumpi. 2018. Mapping and Deployment of Blast
Resistance Gene in Rice - A Work in Progress. *Int.J.Curr.Microbiol.App.Sci.* 7(05): 2073-2094.
doi: https://doi.org/10.20546/ijcmas.2018.705.243