Model prediction of Al Azim changing water level and power relative due to climatic changes

Hmeesh Wisam Hafedh¹, Sinichenko Evgeny Konstantinovich²
Department of Construction Engineering Academy, Peoples' Friendship University, Moscow, Russia (RUDN)

ABSTRACT

To evaluate expectation models related to environmental change and anthropogenic intercessions, impact change in water level and force in Iraq's Al-Adhaim bowl (AARB), multi-relapse, hydrologic affectability, and hydrologic model reproductions were applied. The Al Azim River is the essential wellspring of new water for Kirkuk City, probably Iraq's biggest city. Ongoing investigations have uncovered that the bowl water has been showing expanding inconstancy, conceivably adding to more serious dry seasons and floods because of environmental change. To acquire a superior comprehension of the impacts of environmental change on water assets in the review region in the close and far off future, the Pettitt, precipitation-overflow twofold aggregate bend (PR-DCC), and Mann–Kendall techniques were utilized. The results show that the three techniques delivered steady mean yearly streamflow changes. Moreover, environment inconstancy was the essential driver of streamflow decrease, with commitments going from 66 to 97 percent somewhere in the range of 2003 and 2013, while anthropogenic intercessions brought about decreases going from 4 to 34 percent. To further chip away at this multi-model mix theory, Hydrologiska Byran's Vatten balansavdelning (HBV), Ge'nie Rural a Daily 4 Limits (GR4J), and Medbasin models have been effectively implemented (SAM). Climate change and Al-Adhaim an anthropogenically induced change -Method of combining many models -Multi-regression Hydrological affectability analysis - Reproduction of run-off.

Keywords: Tiger river, Climatice changes, Rainfall, Al Azim Dam

Corresponding Author:
Hmeesh Wisam Hafedh
Department of Construction Engineering Academy
Peoples' Friendship University
Moscow, Russia (RUDN)
Whumaish@uowasit.edu.iq

1. Introduction

Environment examples can usually change because of a particular pattern. A quick change in this example happened during the last century because of an expansion in surface air temperature and abatement in precipitation. The primary sources of this quick change are standard and man-made elements [1]. Environmental change is reflected in watershed hydrology attributes, such as streamflow and residue yield, and can be a critical stretch of drought followed by wide flooding in a brief period [2]. It will probably influence precipitation in Turkey's upper Tigris River by 12.5 percent by 2021 and 26 percent by 2030 [3]. Moreover, after 2040, the overflow will be decreased to 30%. Iraq has tested complex issues in its water asset area ongoing many years, including water asset consumption, contamination, and desertification [4, 5]. Iraq is situated in the Middle East's semi-arid district, and it has encountered outrageous climate occasions in many years. For instance, a serious dry season from 2007 to 2009 was trailed by outrageous precipitation over a couple of months in southern Iraq, with generally double the typical sum [6]. Changes in streamflow because of environmental change and anthropogenic intercessions have for quite some time been a huge focal point of hydrological considers [7, 8]. Environmental change is broadly perceived as the primary factor affecting

© The Author 2022. This work is licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) that allows others to share and adapt the material for any purpose (even commercially), in any medium with an acknowledgement of the work's authorship and initial publication in this journal.
precipitation designs. Anthropogenic intercessions, then again, spatially affect water assets. As a result, streamflow is in dry or semi-arid geological regions is at risk of systematic degradation and a looming water catastrophe. Reviewing elements that impact stream alterations has so revealed significant concerns [9]. Various investigations inspect the effect of environmental change and anthropogenic mediations on bowl streamflow [10, 11] Such effects shift contingent upon geological locale; subsequently, they are as often as possible researched at a regional scale, for example, a sub-bowl or bowl scale. For instance, Dibaba et al. anticipated that this environment changeability would represent more than 64% of the diminishing average yearly streamflow, owing basically to precipitation decay [12-14]. The subsequent advance is to utilize strategies for computing the impacts of environmental change. The hydrologic years going before the adjustment are used as a measure, and the impact of the ecological change period can be confined from the benchmark period. As an outcome, the impacts are ascribed to different factors; for example, anthropogenic mediations include land use, direct drawing of water from a surface or subterranean stream for metropolitan, flow, and business purposes, water structure purposes, and a variety of other applications. A grouping of philosophies have been proposed to perceive the impacts of climate changeability and anthropogenic interventions on streamflow. The precipitation overflow model diversion is the most comprehensively used system present a framework for anticipating the mean overflow affectability to precipitation and possible evapotranspiration, for instance. After that, the streamflow consequences of anthropogenic and natural changes were examined using the technique. A precipitation flood entertainment is an appraisal of the problematical hydrologic ponders that happen in the climate. It is also considered an excellent method for solving the water cycle's mysteries [15, 16]. It has been a long journey from accurate to determine to pass on models for precipitation flood forecasts eventually. A particular model may maybe be a remarkable asset for watching out for significant hydrological challenges. The exactness of hydrological assessment has worked on over the long run. Nonetheless, there are often different displaying vulnerabilities like model boundaries, information, and model primary blunders (Jiang et al., 2014). s of now, weaknesses in hydrological showing were investigated [17, 18]. Zhang et al. showed that the weaknesses in hydrological model limits generally influence model proliferation results [19, 20]. The vulnerabilities in model reproduction are higher during wet periods than during dry periods. There are various precipitation overflow models accessible, every one of which portrays the cycles of hydrological occasions. There is no single model that can depict the norms of bowl precipitation overflow under all conditions. Subsequently, multi-model techniques rely upon the results of different models and can improve hydrological conjecture precision by decreasing model plan weakness [21, 22].

1.1. Study area

Tigris River has five critical feeders: Greater Zab, Khbour, Lesser Zab, Diyala Rivers, and Al-Adhaim. Al Adhaim waterway, otherwise called Nahr Al Uzaym (Figure. 1), is situated in upper east Iraq and ascends from the precipitous territory. It starts in the Zagros Mountains in Sulaymaniyah Governorate and joins the Tigris waterway after 230 kilometers (140 mi) at 34.002°N 44.293°E, nearly 30 kilometers (19 mi) downstream (east-to-southeast) of Samarra. Aside from the Al Azim River, these feeders are shared by Iraq and Iraq or Turkey and Iran (Figure. 2). Its bowl stretches out to 12,965 square kilometers (5,006 sq mi). Since it is just taken care of by precipitation, a successful stream happens just during the wet season [23], and the top release is between January and March where there is no snowfall and precipitation is restricted [24]. In conjunction with the Tigris, Al-Adhaim creates around 0.79 cubic billion meters each year [25]. It interfaces the Tigris River around 13 kilometers downstream of Balad [26]. It is 230 kilometers in length (from its headwaters to its conjunction with the Tigris). The yearly precipitation in the Al-Adhaim bowl goes from 80 to 330 mm, and temperatures range from 2 to 48 degrees Celsius. Table 1 sums up the attributes of every feeder’s bowl. The normal month-to-month stream systems of every feeder as estimated at the bowl outlet are portrayed in Figure 2. Figure 1 shows the areas of the bowl outlets. The following is a short portrayal of every feeder’s bowl. This audit looks at the month-to-month stream rate "at Dokan station, which is a key hydrometric estimating station” (scope 35530 0000N and longitude 44580 0000E) for the hydrological years 1991 to 2021. Drought has been an issue close by suitable lately. The water year 2008 was the driest on record. The Lower Zab River has respectably high streams throughout the pre-summer because water sets free from the Dokan repository to supply the horticultural business and metropolitan clients. The Al-Adhaim stream framework is named an unpredictable,
exceptionally reliant upon precipitation. This stream is dry in the late spring, from May to October, and has a high stream from November to May. Likewise, Al-Adhaim is named a very dry bowl. Generally, 71% of the bowl is covered by forest, while 29% is covered by green land.

![Figure 1. Al-Adham Basin](image)

The environment Al Adhaim River locale portrayed by being influenced by the semi-bone-dry environment, which is a momentary environment between the Mediterranean environment and the desert environment, which is described by low precipitation from one viewpoint, and high temperatures on the other. The northern locale of Iraq has been seriously affected by climatic varieties, water shortage, dry season marvels, and a couple of separate flood occasions. Dry spells contrarily affect a wide assortment of regions in the concentrated area. Floods, then again, happened just incidentally throughout the colder time of year season because of heavy precipitation and an absence of dams and counterfeit waste organizations, achieving monetary damages in the area. This research centers around performing streamflow reenactments and vulnerability investigations utilizing a straightforward multi-model methodology.

2. Methodology

This exploration plans to evaluate how much anthropogenic mediations and environmental change influence the Change in Water Level and Power inside the AARB. Stream bowl stream generally affected via Land use and land cover. Be that as it may, point-by-point evaluations of long haul changes in streamflow because of anthropogenic intercessions to the AARB have been accounted for. This review will utilize one of the most generally utilized spillover recreation techniques, HBV models, too:

- researching the worldly varieties in bowl streamflow;
- Detecting essential change focuses and drifts in yearly bowl streamflow;
- Understanding the vitally driving variables for recorded streamflow changes;
- Assessing the impact of anthropogenic and environmental intercessions such as land use and supply development, in-channel damming, and other such practices on the bowl stream’s flow.

2.1. Data collection and analysis

The following data has been collected: For water changes between 1979/80 and 2012/13, daily climate information, for example, P as delightfully as most and insignificant air temperature from six monitoring stations was obtained. There are environmental monitoring stations over the upper section of the sub-bowl with
heights ranging from 651 to 1536 m. (Table 1). From 1931/32 to 2013/14, the Dokan hydrological station's daily stream information is helpful for the water year's fluctuation. The Uzym stream's catchment area is approximately 12,096 square kilometers at this point. The records were obtained from Iraq's Kurdistan Province's Ministry of Agriculture and Water Resources. (3) Geospatial information: Iraqi cutoff focuses, and the Uzym stream shape files have been downloaded from the Global Administrative Areas (GADM, Global Administrative Areas Database, 2012) and the Global and Land Cover The subsequent evaluation has been completed: The ArcGIS 10.3 programming tool has been used for the hydro-climatic assessment station location predictions, Theissen affiliation, bowl limit, and stream follow. Data sets such as models, monthly and annual sums, changes, and filling genuine elements gaps were analyzed using the Statistical Program for Social Sciences program (SPSS) 23 to evaluate hydroclimatic datasets (ITS 2016). This open-source Excel Add-In is used to turn Microsoft Excel programming diagrams into photographs with clearly stated assessments and goals. HBV storm fall run-off models have been used in this study. Reenactment of the free surface of the floating headway can be done utilizing this free download programming software (Foehn et al., 2016). As shown in Tables 2 and 3, seven GMC outfits demonstrated SRA2 or SRA1B flood conditions simulated using LARS-WG5.5 for 2011–2030, 2046–2065, and time skylines regardless of two measurement time frames. Standard conditions are addressed by the buried period (1988–2000). Nothing is sacred to the RDL Contiguous climate replacement and historical reenactment considerations can be taken into account throughout this period. It has been decided that the second period between 1980 and 2010 is the best period to examine the effect of local environmental exchange on the presence of water. The AR5 chronicle resurrects pioneers in the field of neighborhood environmental research. Due to its sequential release, it is the most comprehensive assessment of current close-by environment substitution assessments, and it serves as a model for appreciation and future efforts. In addition, the AR5 study concludes that human activity is responsible for a significant portion of recent warming, which is currently Bextremely plausible (Bvery likely in the AR4 report). As a result of the new perspective on ice sheet advancements in a benign environment, sea-level predictions have improved significantly. Under a high nursery fuel radiation scenario, the Arctic Ocean is expected to be ice-free for most of the year by the middle of the century (the end of the century in the AR4 study). The AR5 report may have minor adjustments related to the AR4 record and previous evaluation reports, such as going before the plans were sent out. Without a doubt, These long-term advancements in hydrological approaches may be influenced, at least to some extent, by the changing environment and anthropogenic activities in the immediate vicinity. The M–K study has been used to identify long-term improvements in air temperature, precipitation, potential evapotranspiration, and stream actual variables between 1979 and 2013. The Uzym stream demonstrated a rising plan of deriving air temperature with a maximum charge of? 0.67 C_ per decade increase in PET charge was seen in the example study. The bowl's tolerable evapotranspiration increased from 962 mm in 1982/1983 to 1110 mm in 2007/2008, with an average expense of 1065.3 mm (Fig. 2). It is clear from the observed impacts that the immediate surroundings of the targeted area are becoming increasingly sweltering and desiccated. Precipitation fell over the year. The yearly overflow significance reduced as the average air temperature increased. These findings are usually following previous studies (Al-Ansari 2018). Since the hydro-climate elements of Uzym Stream are transmitted through currents rather than precipitation in a certain period, the overflow coefficient is chosen. (Table 1). Throughout the investigation, the coefficient of overflow was 0.22. For every decade that passes, there is an apparent decrease in popularity. Al-Ansari et al. (2014) found a decrease in the run-off coefficient, which indicates that the streamflow yield has become less effective during the past four years. Today's inquiry utilized three of the most often used sensible models for reenacting bowl overflow: Medbasin precipitation flood, GR4J, and HBV precipitation flood models [27]. With equipment for assessing specific climate versions and drought circumstances, the Medbasin life measured model consolidates the two lumped hydrological models Medbasin-M and Medbasin-D, for consistently (D) and month-to-month (M) data. In the Medbasin M model, the soil storage capacity (Smax (mm)) and the coefficient of significant saturation (C) are the two most essential change limits. The stretch factor progressively increases the transfer of overflow from a monthly to a monthly basis (Tigkas and Tsakiris 2004). With the help of Smax (mm), a helpful calculation can be made.
Table 1. Description of five major tributaries

River	Khbour	Greater Zab	Lesser Zab	Al-Adhaim	Diyala
Basin area (km²)	6143	26,473	15,600	13,000	33,240
River length (km)	181	462	302	230	574
Max annual flow (BCM)	4.3	23.6	15.1	1.2	14.4
Min annual flow (BCM)	0.9	3.7	1.7	0.4	1.2
Mean annual flow (BCM)	2	12.7	7.8	0.80	4.6
Dams	-	-	2	1	3

Table 2. Station addresses, average precipitation, and sub-area sizes are provided.

Station	Sub-Area (Km²)	Av²Pᵇ (Mm)	Av²Pᶜ (Mm)
Sulaymaniyah	4479.57	772	1989
Mohabad	2593.31	886	920
Soran	1463.30	813	1433
Chem-Chamal	2827.46	738	2075
Sachez	1182.79	462	1550
Salahuddin	1641.07	652	2058
Halabcha	735.60	585	980

Table 3. Total monthly rainfall, mm in Al-Adhaim Dam period (1991 to 2021)

Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
1991	0	0	3.1	0	0	0	0	0
1992	0	10.5	25	0	20.1	53	0	0
1993	0	30.2	30.4	27	13.2	1	182	7
1994	3	10	4	40	7	10	36	0
1995	1	55	18	6.5	50	32	24.5	0
1996	0	0	11	70.5	1	21.5	9	2
1997	0	0	20	3	3.6	14.5	10.5	0
1998	0	70	57	57	7	8	6	0
subject to anthropogenic interventions, where ΔR_{total} (mm/month) shows the total change in the stream, R_a (mm/month) connotes the streamflow proportion of the recorded characteristics (mm/month), and n is the data point number.

The going with conditions can be used to evaluate the effects of these two factors on stream

To assess model execution, the root means square error (RMSE), association coefficient (r), and coefficient of Nash–Sutcliffe (NSCE (Jones et al. 2004)) were used (Eqs. (1) to (3)). Likewise, the effects of anthropogenic intercessions and natural change on streamflow can be assessed using Eqs. (1) to (3).

$$\text{RMSE} = \sqrt{n \sum_{i=1}^{n} [R_{obs,i} - R_{sim,i}]^2}$$ (Eq.1)

$$\text{IoA} = 1 - \frac{\sum_{i=1}^{n} [R_{obs,i} - R_{sim,i}]^2}{\sum_{i=1}^{n} [(R_{obs,i} - R_{obs})^2 + (R_{sim,i} - R_{obs})^2]}$$ (Eq.2)

$$r = \frac{\sum_{i=1}^{n} [(R_{obs,i} - R_{obs})(R_{sim,i} - R_{obs})]}{\sqrt{\sum_{i=1}^{n} (R_{obs,i} - R_{obs})^2} \sqrt{\sum_{i=1}^{n} (R_{sim,i} - R_{obs})^2}}$$ (Eq.3)

$$\text{NSCE} = 1 - \frac{\sum_{i=1}^{n} [(R_{sim,i} - R_{obs,i})]^2}{\sum_{i=1}^{n} [(R_{obs,i} - R_{obs})]^2}$$ (Eq.4)

where RMSE is the root mean square screw up" "dimensionless, IoA is the rundown of comprehension" "dimensionless, R is the coefficient of relationship" "dimensionless, $R_{obs}(i)$ is the recorded streamflow" "mm/month at time step I, $R_{sim}(i)$ is the expected" "streamflow (mm/month) at time step I, R is the" "typical proportion of the recorded characteristics (mm/month), and n is the data point number.

The going with conditions can be used to evaluate the effects of these two factors on streamflow:

$$\Delta R_{\text{total}} = R_a - R_b$$ (Eq.4)

$$\Delta R_{\text{total}} = \Delta R_{\text{anthropogenic}} + \Delta R_{C}$$ (Eq.5)

$$A_{\text{anthropogenic}} = \frac{\Delta R_{\text{anthropogenic}}}{|\Delta R_{\text{total}}|} \times 100\%$$ (Eq.6)

$$E_{\text{climate}} = \frac{\Delta R_{\text{climate}}}{|\Delta R_{\text{total}}|} \times 100\%$$ (Eq.7)

where ΔR total (mm/month) shows the total change in the stream, R_a (mm/month) connotes the streamflow subject to anthropogenic interventions, and R_b (mm/month) implies the standard time span saw streamflow
\(\Delta R_{\text{anthropogenic}} \) (mm/month) demonstrates the ordinary yearly streamflow change achieved by anthropogenic mediation impacts. In contrast, \(\Delta R_{\text{climate}} \) (mm/month) implies assortments in streamflow. Anthropogenic (rate) impacts anthropogenic interventions on streamflow, and \(|\Delta R_{\text{total}}| \) tends to the through and through the worth of \(\Delta R_{\text{total}} \). Furthermore, Ec (climate (rate)) addresses the impact of environmental change on streamflow.

Figure 3. Average monthly rainfall (m\(^3\)/s) of Al Azim River for the period from 1991 to 2021

Figure 4. Annual expenditures (M3/S) of Al-Adhaim Dam Front (period from 1990 to 2020)

Figure 5. Annual expenditures (M3/S) of Al-Adhaim Dam Back (period from 1990 to 2020)
4. Conclusions and recommendations

This exploration paper uses a basic many-model how to run stream reenactment and weakness assessments). As a notice, relevant investigation (Adhim Dam), which gives off an impression of being one of the principal northern pieces of Iraq, adds to the River Tigris's exorbitant expense, as shown in (Fig. 1). Additionally, there are four spaces of various dishes, unequivocal Diyala and Al-Khabour (Adhim Dam). Over the range of "continuous years, the northern region interfacing Iraq has been affected by climatic changes, water" need, dry season, and some relaxed flood occasions. Dry season oppositely affected a blend of regions in the overview region. In any case, floods happen only intermittently during winter due to significant precipitation and nonappearance of dams and current drainage associations, which finally prompt social and monetary damages at the site. Recently, the overflow of an unimaginable dam has reduced basically during the keep going water seemingly forever as suggested using more than a couple of studies3. Human interventions like the improvement of dams, archives, water framework, leakage systems, land use, and cowl change, similarly as substitute microclimate, are the predominant drivers of flood abatement of the Adhim Dam (Bozkurt 2015), to address the troubles of neighboring environment, move in Iraq, the Iraqi association will sway striking plans. Iraqi experts took urgent measures to stop the flow of the Adhim River and prevent it from saturating the coastline, which is guaranteed to produce sea packs and seabed obstacles, and the coast is treated with sand to compensate for the deterioration of the beach and fix the soil. Stop the interference of streams on dry land to observe the structures, workplaces, electrical energy associations, water and sewage structures of various coastal metropolitan areas in Iraq. No examination is made between the overall commitments of human mediations and the trading of nearby climate to adjust the circulatory buoy at the Adhim Dam. As for the transformation applications to confront the risks of neighborhood climate substitute on the Adhim River, the specialists is endeavoring difficc improve and advance dispersion networks such as lines, valves, tanks, and others.

References

[1] I. C. Change, "The physical science basis," Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, vol. 996, 2007.
[2] M. Owor, R. Taylor, C. Tindimugaya, and D. Mwesigwa, "Rainfall intensity and groundwater recharge: empirical evidence from the Upper Nile Basin," Environmental Research Letters, vol. 4, no. 3, p. 035009, 2009.
[3] Z. Şen, "Climate change expectations in the upper Tigris River basin, Turkey," Theoretical Applied Climatology, vol. 137, no. 1, pp. 1569-1585, 2019.
[4] N. Al-Ansari, "Hydro-politics of the Tigris and Euphrates basins," Engineering, vol. 8, no. 3, pp. 140-172, 2016.
[5] Ф. К. С. Антоню, Е. К. Синиченко, and И. И. Грицук, "Особенности водного режима рек провинции Манаби (Эквадор)," Вестник Российского университета дружбы народов. Серия: Инженерные исследования, no. 4, pp. 41-46, 2014.
[6] M. S. Al-Khafaji and R. D. Al-Chalabi, "Assessment and mitigation of streamflow and sediment yield under climate change conditions in Diyala River Basin, Iraq," Hydrology, vol. 6, no. 3, p. 63, 2019.
[7] Y. Guo, Z. Li, M. Amo-Boateng, P. Deng, and P. Huang, "Quantitative assessment of the impact of climate variability and human activities on runoff changes for the upper reaches of Weihe River," Stochastic Environmental Research Risk Assessment, vol. 28, no. 2, pp. 333-346, 2014.
[8] S. Jiang, L. Ren, B. Yong, V. Singh, X. Yang, and F. Yuan, "Quantifying the effects of climate variability and human activities on runoff from the Laohehe basin in northern China using three different methods," Hydrological Processes, vol. 25, no. 16, pp. 2492-2505, 2011.
[9] А. Ф. К. Седеньо, Е. К. Синиченко, and И. И. Грицук, "Структурный подход к оценке морфометрических характеристик бассейнов рек провинции Манаби (Эквадор)," Вестник Российского университета дружбы народов. Серия: Инженерные исследования, no. 1, 2015.
[10] X. Zambrano, A. C. Cedeno, J. M. Alava, J. M. Cedeno, E. Sinichenko, and I. Gritsuk, "Mathematical model to determine the runoff coefficient based on precipitation and curve number data, in the Manabi hydrographic demarcation, Ecuador," in Journal of Physics: Conference Series, 2020, vol. 1687, no. 1, p. 012036: IOP Publishing.
[11] A. Cedeno, V. Debolsky, E. Sinichenko, and I. Gritsuk, "Mathematical rainfall model for hydrographic demarcation of Manabi (Ecuador)," Journal of Fundamental Applied Sciences, vol. 9, no. 7S, pp. 330-341, 2017.
[12] W. T. Dibaba, T. A. Demissie, and K. Miegel, "Watershed hydrological response to combined land use/land cover and climate change in highland Ethiopia: Finchaa catchment," *Water*, vol. 12, no. 6, p. 1801, 2020.

[13] A. C. Cedeno, P. S. Guillen, J. M. Ramos, E. Sinichenko, and I. Gritsuk, "Estimation of the runoff of the hills of the city of Portoviejo-Ecuador to assess the degree of flooding in the region," in *IOP Conference Series: Materials Science and Engineering*, 2019, vol. 675, no. 1, p. 012020: IOP Publishing.

[14] H. T. Salim, N. A. Jasim, "Design and Implementation of Smart City Applications Based on the Internet of Things," *International Journal of Interactive Mobile Technologies (iJIM)*, vol. 15, no. 13, pp. 4-15, 2021.

[15] C. C. A. Fermín and M. A. J. Orlando, "Influence of the El Niño phenomena on the climate change of the Ecuadorian coast," *Вестник Российского университета дружбы народов. Серия: Инженерные исследования*, vol. 19, no. 4, 2018.

[16] M. a. a. Roa’a, I. A. Aljaazyery, S. K. Al_Dulaimi, and H. TH, "Generation of High Dynamic Range for Enhancing the Panorama Environment," *Bulletin of Electrical Engineering*, vol. 10, no. 1, 2021.

[17] F. Lespinas, W. Ludwig, and S. Heussner, "Hydrological and climatic uncertainties associated with modeling the impact of climate change on water resources of small Mediterranean coastal rivers," *Journal of Hydrology*, vol. 511, pp. 403-422, 2014.

[18] A. C. Cedeno, X. V. Zambrano, C. C. Castro, E. Sinichenko, and I. Gritsuk, "Water supply and demand of the hydrographic demarcation of Manabi, Ecuador," in *IOP Conference Series: Materials Science and Engineering*, 2019, vol. 675, no. 1, p. 012021: IOP Publishing.

[19] M. Sivapalan, G. Blöschl, L. Zhang, and R. Veretessy, "Downward approach to hydrological prediction," ed. Wiley Online Library, 2003.

[20] C. A. Cedeno, E. Sinichenko, I. Gritsuk, and O. Y. Maslikova, "WATER BALANCE OF THE HYDROGRAPHIC DEMARCATION OF MANABI (ECUADOR)," *NATIONAL ACADEMY OF MANAGERIAL STAFF OF CULTURE ARTS HERALD*, no. 1, pp. 636-640, 2018.

[21] К. С. А. Фермин, Е. Синиченко, и И. Грицук, "Математическая модель для определения среднегодовых осадков с использованием растр и других элементов ГИС," *Вестник Российского университета дружбы народов. Серия: Инженерные исследования*, no. 3, pp. 32-40, 2015.

[22] К. С. А. Фермин, Е. Синиченко, и И. Грицук, "Анализ данных метеорологических станций провинции Манаби," *Вестник Российского университета дружбы народов. Серия: Инженерные исследования*, no. 3, 2015.

[23] A. P. Ramos, Z. Merali, P. Talhinhas, S. Sreenivasaprasad, and H. Oliveira, "Molecular and morphological characterisation of Colletotrichum species involved in citrus anthracnose in Portugal," *IOBC wprs Bulletin*, vol. 29, no. 3, p. 317, 2006.

[24] R. Team, "Core (2013) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing," ed, 2014.

[25] A. P. Ramos, P. Talhinhas, S. Sreenivasaprasad, and H. Oliveira, "Characterization of Colletotrichum gloeosporioides, as the main causal agent of citrus anthracnose, and C. karnii as species preferentially associated with lemon twig dieback in Portugal," *Phytoparasitica*, vol. 44, no. 4, pp. 549-561, 2016.

[26] G. Sanders and L. Korsten, "Comparison of cross inoculation potential of South African avocado and mango isolates of Colletotrichum gloeosporioides," *Microbiological research*, vol. 158, no. 2, pp. 143-150, 2003.

[27] R. K. Mohammed, *Assessment of the effect of climate change in anticipated water resources availability in arid climate zones*. University of Salford (United Kingdom), 2017.