Testosterone treatment fails to accelerate disease in a transgenic mouse model of spinal and bulbar muscular atrophy.

Erica S Chevalier-Larsen  
*Department of Biochemistry and Molecular Biology, Thomas Jefferson University*

Diane E Merry  
*Department of Biochemistry and Molecular Biology, Thomas Jefferson University*

Follow this and additional works at: https://jdc.jefferson.edu/bmpfp

Part of the Medical Biochemistry Commons, and the Medical Molecular Biology Commons

Let us know how access to this document benefits you

**Recommended Citation**

Chevalier-Larsen, Erica S and Merry, Diane E, "Testosterone treatment fails to accelerate disease in a transgenic mouse model of spinal and bulbar muscular atrophy." (2012). *Department of Biochemistry and Molecular Biology Faculty Papers*. Paper 34.  
https://jdc.jefferson.edu/bmpfp/34

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Biochemistry and Molecular Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Testosterone treatment fails to accelerate disease in a transgenic mouse model of spinal and bulbar muscular atrophy

Erica S. Chevalier-Larsen1 and Diane E. Merry1,*

SUMMARY
Evidence from multiple animal models demonstrates that testosterone plays a crucial role in the progression of symptoms in spinal and bulbar muscular atrophy (SBMA), a condition that results in neurodegeneration and muscle atrophy in affected men. Mice treated transgenic for the full-length expanded human AR gene, containing 112 CAG repeats, driven by the prion protein (PrP) promoter (AR112Q mice) reproduce several aspects of the human disease. We treated transgenic male AR112Q mice with testosterone for 6 months. Surprisingly, testosterone treatment of AR112Q males did not exacerbate the disease. Although transgenic AR112Q males exhibited functional deficits when compared with non-transgenics, long-term testosterone treatment had no effect on motor function. Testosterone treatment also failed to affect cellular markers of disease, including inclusion formation (the accumulation of large nuclear aggregates of mutant AR protein) and levels of unphosphorylated neurofilament heavy chain. These data suggest that the mechanism of disease in SBMA saturates at close to endogenous hormone levels and that individuals with SBMA who take, or have taken, testosterone for its putative therapeutic properties are unlikely to suffer adverse effects.

INTRODUCTION
Spinal and bulbar muscular atrophy (SBMA) is a slowly progressive adult onset neurodegenerative disease that affects men in mid-life. The disease causes degeneration and atrophy of the muscles of the proximal limb girdle and the bulbar muscles of the jaw (Kennedy et al., 1968), as well as the accumulation of nuclear aggregates of mutant androgen receptor (AR) protein, otherwise known as neuronal intranuclear inclusions (NIIs) (Li et al., 1998). SBMA results from a CAG expansion in the first exon of the AR gene, located on the proximal long arm of the X chromosome (La Spada et al., 1991). In the rare instances when female carriers manifest disease, their symptoms are mild (Ferlini et al., 1995). Initially, it was unclear whether female carriers were protected from disease symptoms owing solely to X-inactivation. However, the finding of homozygous females with very mild symptoms (Schmidt et al., 2002) and evidence from several cell and animal models of SBMA indicate that testosterone plays a crucial and causative role in disease pathogenesis. Cellular models of disease show an increase in nuclear inclusion formation upon hormone treatment (Stenoien et al., 1999; Walcott and Merry, 2002), whereas fly models demonstrate that consumption of testosterone induces disease as well as nuclear inclusion formation (Takeyama et al., 2002). Transgenic mouse models have indicated that both surgical and chemical castration of SBMA males alleviates or prevents disease progression, depending on the stage of disease at the time of intervention (Katsuno et al., 2002; Katsuno et al., 2003; Chevalier-Larsen et al., 2004). Furthermore, administration of testosterone to transgenic female SBMA mice exacerbates disease phenotype (Katsuno et al., 2002), as does giving testosterone to male SBMA mice treated with leuprolrelin, a lutenizing hormone-releasing hormone (LHRH) analog (Katsuno et al., 2003).

For years, many patients with SBMA received testosterone treatment. The rationale for this treatment was complex, but a partial loss of AR function coupled with the known anabolic effects on muscle suggested that testosterone might prove beneficial (Sheffield-Moore, 2000). Despite the evidence indicating that testosterone contributes to the progression of SBMA, these patients have not reported any negative effects as a result of androgen administration (Goldenberg and Bradley, 1996; Neuschmid-Kaspar et al., 1996). However, one case study reported on the substantial decline of a patient with SBMA, with subsequent recovery upon cessation of testosterone treatment (Kinirons and Rouleau, 2008). However, the fact that this patient was taking paroxetine, a selective serotonin reuptake inhibitor (SSRI), might complicate the interpretation of this case. Paroxetine has been shown to enhance the conversion of dihydrotestosterone (DHT) to androstenediol (Griffin and Mellon, 1999), and thus there might have been relatively low relative levels of DHT within his spinal motor neurons. Treatment of this patient with testosterone might have restored his DHT levels and exacerbated disease. Whether the same would occur in SBMA patients not treated with paroxetine is unknown.

Previously, we created and characterized mice that were transgenic for the full-length expanded human AR gene, containing 112 CAG repeats, driven by the prion protein (PrP) promoter (AR112Q mice) (Chevalier-Larsen et al., 2004). The disease in this model progresses slowly, with AR112Q males beginning to exhibit mild motor dysfunction at 3 months of age and developing late-stage disease by 10 months of age (Chevalier-Larsen et al., 2004). Furthermore, lifespan is unaffected. In the current study, we treated...
Fig. 1. Disease phenotype is unaffected by testosterone treatment. (A) Testosterone treatment resulted in elevated serum testosterone levels in transgenic (tg) T-treated (n=8) and non-transgenic (ntg) T-treated (n=10) animals when compared with tg sham-treated (n=6) mice (P<0.05), with the exception of months three and six. Although, testosterone levels dropped at the end of pellet life, testosterone levels were still significantly elevated in ntg T-treated mice in month six and there was a trend towards elevated testosterone in tg T-treated animals. (B) Ability to remain on a rotarod was impaired in AR112Q T-treated (n=10) and AR112Q sham-treated (n=12) males when compared with T-treated non-transgenics (n=14) (P<0.05), but rotarod performance was similar between T-treated AR112Q males and sham-treated AR112Q males (P=0.05). (C-E) Grip strength (using forepaws (C) or all paws (D)) and vertical activity (E) of all AR112Q males was reduced in comparison to T-treated non-transgenic males (P<0.05), but no significant decrease in any of these measures was observed upon T-treatment of AR112Q males (P>0.05). (F) Clasping behavior increased with age in all AR112Q males and was not affected by T-treatment; non-transgenic males rarely showed clasping behavior.
a cohort of these AR112Q male mice with testosterone, beginning at 2 months of age, for a period of 6 months. Behavioral and histopathological measures of disease indicate no change in severity or age of onset of disease with testosterone treatment (T-treatment). These data have important clinical implications for patients and suggest that there is a point at which the role of hormone in the pathogenic mechanism of SBMA becomes saturated.

RESULTS

Transgenic AR112Q and non-transgenic mice were implanted with timed-release pellets designed to deliver 4-6 ng/ml of testosterone for 90 days. Over the course of the experiment, implantation of testosterone pellets increased circulating testosterone an average of threefold, from 0.40±0.23 ng/ml (AR112Q sham-treated; n=10) to 1.26±0.48 ng/ml [non-transgenic (ntg) T-treated; n=8] and 1.17±0.35 ng/ml [transgenic (tg) T-treated; n=6]; this is a significant elevation of testosterone levels in treated animals (ntg T-treated and tg T-treated) over those implanted with placebo pellets (tg sham-treated) (P<0.001). Although 90-day testosterone pellets were used, we observed a decline in potency of the pellets by the end of the 90-day period (months three and six) (Fig. 1A). Implantation of new pellets at the end of 90 days restored circulating testosterone levels (Fig. 1A).

Although circulating testosterone was elevated in treated mice, motor function assays did not reveal any effect of testosterone treatment on phenotype. Motor function assays were performed monthly for 6 months; results were consistent for all 6 months of treatment. Beginning at 3 months of age (1 month following treatment), AR112Q males showed decreased rotarod performance, regardless of T-treatment, when compared with non-transgenic mice (Fig. 1B). Decreased grip strength was apparent in all AR112Q animals, regardless of T-treatment, when animals gripped with either forepaws only (Fig. 1C) or all paws (Fig. 1D). As previously observed (Chevalier-Larsen et al., 2004), weakness was more pronounced when assessing all paws, implying greater weakness in the hindlimbs. Vertical activity, or rearing behavior, was also reduced in AR112Q males (Fig. 1E), although no deficits were seen in T-treated AR112Q males when compared with sham-treated AR112Q males. Clasping behavior was greater in both T-treated and sham-treated AR112Q males when compared with T-treated non-transgenic mice and increased steadily with time (Fig. 1F). T-treatment had no effect on weight or survival and no gross alterations in muscle fiber morphology were observed (data not shown).

Cellular markers of disease were also examined in spinal cord and brain tissue to determine whether T-treatment expedited cellular dysfunction that might not be detected by behavioral changes. As with the behavioral analyses, no changes were detected between the T-treated and sham-treated AR112Q males. NIIs were present in both T-treated and sham-treated males; NII size and frequency were similar between these two groups (Fig. 2A). A total of 49.6±6.5% of motor neurons from lumbar spinal cord contained NIIs in tg sham-treated animals, whereas NIIs were seen in 48.5±10.5% of motor neurons in tg T-treated mice (Fig. 2B). T-treated non-transgenic mice did not exhibit NIIs (Fig. 2A). Similarly, the level of unphosphorylated neurofilament heavy chain (NF-H) was reduced in the neuronal soma of all AR112Q animals when compared with non-transgenic mice (Fig. 2A), and the extent to which unphosphorylated NF-H immunoreactivity was reduced was similar between all AR112Q animals, regardless of T-treatment (Fig. 2C). In summary, signs of cellular pathogenesis were consistent with those observed during characterization of this disease model and were unchanged by long-term treatment with testosterone.

DISCUSSION

Although it is clear that testosterone plays a key role in SBMA pathogenesis, the mechanism leading to neurodegeneration remains unknown, although an increased understanding of the specific aspects of AR metabolism that contribute to its misfolding, aggregation and toxicity have come to light in recent years (Montie et al., 2009; Nedelsky et al., 2010; Orr et al., 2010). The data from this study suggest that, whatever the mechanism that leads to neuronal dysfunction, there is a threshold at which the effect of testosterone on this pathway plateaus. One possibility is that this...
Effects of testosterone in SBMA

**Clinical issue**
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder that is caused by a polyglutamine expansion in the androgen receptor (AR) and affects approximately 1 in every 40,000 men. Affected men typically develop muscle weakness of the proximal limbs and bulbar muscle, tremors and fasciculations in mid-life. Muscle cramping can precede clinical symptoms. Signs of androgen insensitivity, such as gynecomastia and reduced fertility, often accompany muscle deficits. Female carriers of the disease are protected both by X-inactivation of the gene encoding the mutant AR and by lower levels of circulating AR ligands (testosterone and dihydrotestosterone). Prior to the discovery that disease pathogenesis is androgen-dependent, many individuals with SBMA received androgens therapeutically, based on the assumption at the time that a loss of AR function contributed to disease symptoms.

**Results**
This study examines the impact of exogenous testosterone on disease progression in a mouse model of SBMA to determine whether testosterone treatment of the patient population might in fact have exacerbated the disease. The data indicate that the addition of exogenous testosterone does not exacerbate disease progression in intact male mice that are transgenic for a mutant AR. Behavioral measures of disease in testosterone-treated transgenic males are indistinguishable from transgenic males that are sham treated. Additionally, cellular markers of disease in testosterone-treated transgenic males are comparable to those in sham-treated transgenic males.

**Implications and future directions**
These data suggest that it is unlikely that androgen therapy has hastened the progress of disease in SBMA patients. They also suggest that there is a threshold at which the contribution of testosterone to disease pathogenesis becomes saturated.

2-month-old male mice were anesthetized with inhaled isofluorane (3%). The area between the shoulder blades was shaved and the surgical area sterilized with alcohol. A small (1–2 cm) dorsal midline incision was made. A blunt probe was inserted into the incision to create a subcutaneous pocket. A pellet containing a 90-day-release 12.5 mg testosterone pellet or a placebo pellet (both from Innovative Research of America) was placed into the pocket and the incision was closed with a wound clip. Wound clips were removed 3 days later. Mice were re-implanted with hormone or sham pellet once during the course of this study. All animal surgeries were performed according to the guidelines of the Office of Laboratory Animal Welfare (OLAW) and the Institutional Animal Care and Use Committee (IACUC) at Thomas Jefferson University.

Blood samples were obtained monthly from each animal via retro-orbital eye bleed. Sera were assessed for circulating testosterone levels using a colorimetric EIA kit (Camyen Chemical) according to the manufacturer’s instructions.

All behavioral assays were conducted monthly following pellet implantation. Testing was carried out as previously described (Chevalier-Larsen et al., 2004). An Ugo Basile (Italy) rotarod was used.

Immunofluorescence of brain and spinal cord tissue was carried out as previously described (Chevalier-Larsen et al., 2004). Antibodies used include AR H280 (1:100; Santa Cruz) and SM132 (1:1000; Sternberger Monoclonal). Motor neurons of the lumbar spinal cord were scored as inclusion-positive whether they had

---

**METHODS**
Genotyping was performed as described previously (Chevalier-Larsen et al., 2004).

---

**TRANSLATIONAL IMPACT**

**Clinical issue**
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder that is caused by a polyglutamine expansion in the androgen receptor (AR) and affects approximately 1 in every 40,000 men. Affected men typically develop muscle weakness of the proximal limbs and bulbar muscle, tremors and fasciculations in mid-life. Muscle cramping can precede clinical symptoms. Signs of androgen insensitivity, such as gynecomastia and reduced fertility, often accompany muscle deficits. Female carriers of the disease are protected both by X-inactivation of the gene encoding the mutant AR and by lower levels of circulating AR ligands (testosterone and dihydrotestosterone). Prior to the discovery that disease pathogenesis is androgen-dependent, many individuals with SBMA received androgens therapeutically, based on the assumption at the time that a loss of AR function contributed to disease symptoms.

**Results**
This study examines the impact of exogenous testosterone on disease progression in a mouse model of SBMA to determine whether testosterone treatment of the patient population might in fact have exacerbated the disease. The data indicate that the addition of exogenous testosterone does not exacerbate disease progression in intact male mice that are transgenic for a mutant AR. Behavioral measures of disease in testosterone-treated transgenic males are indistinguishable from transgenic males that are sham treated. Additionally, cellular markers of disease in testosterone-treated transgenic males are comparable to those in sham-treated transgenic males.

**Implications and future directions**
These data suggest that it is unlikely that androgen therapy has hastened the progress of disease in SBMA patients. They also suggest that there is a threshold at which the contribution of testosterone to disease pathogenesis becomes saturated.

---

2-month-old male mice were anesthetized with inhaled isofluorane (3%). The area between the shoulder blades was shaved and the surgical area sterilized with alcohol. A small (1–2 cm) dorsal midline incision was made. A blunt probe was inserted into the incision to create a subcutaneous pocket. A pellet containing a 90-day-release 12.5 mg testosterone pellet or a placebo pellet (both from Innovative Research of America) was placed into the pocket and the incision was closed with a wound clip. Wound clips were removed 3 days later. Mice were re-implanted with hormone or sham pellet once during the course of this study. All animal surgeries were performed according to the guidelines of the Office of Laboratory Animal Welfare (OLAW) and the Institutional Animal Care and Use Committee (IACUC) at Thomas Jefferson University.

Blood samples were obtained monthly from each animal via retro-orbital eye bleed. Sera were assessed for circulating testosterone levels using a colorimetric EIA kit (Camyen Chemical) according to the manufacturer’s instructions.

All behavioral assays were conducted monthly following pellet implantation. Testing was carried out as previously described (Chevalier-Larsen et al., 2004). An Ugo Basile (Italy) rotarod was used.

Immunofluorescence of brain and spinal cord tissue was carried out as previously described (Chevalier-Larsen et al., 2004). Antibodies used include AR H280 (1:100; Santa Cruz) and SM132 (1:1000; Sternberger Monoclonal). Motor neurons of the lumbar spinal cord were scored as inclusion-positive whether they had
Effects of testosterone in SBMA

several punctate or single, large inclusions. Unphosphorylated neurofilament immunoreactivity was quantified using ImageJ software; integrated density values were acquired for regions of interest delineated around motor neuron soma of the lumbar spinal cord.

FUNDING
This work was supported by the National Institutes of Health [grant R01 NS32214] to D.E.M.

AUTHOR CONTRIBUTIONS
E.S.-L. and D.E.M. conceived and designed the experiments, analyzed the data, and wrote the manuscript. E.S.-L. performed the experiments.

REFERENCES
Chevalier-Larsen, E. S., O’Brien, C. J., Wang, H., Jenkins, S. C., Holder, L., Lieberman, A. P. and Merry, D. E. (2004). Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbal muscular atrophy. J. Neurosci. 24, 4778-4786.

Griffin, L. D. and Mellon, S. H. (1996). Testosterone therapy and the pathogenesis of Kennedy’s disease (X-linked bulbospinal muscular atrophy). J. Neurosci. 135, 158-161.

Katsuno, M., Adachi, H., Kume, A., Li, M., Nakagomi, Y., Niwa, H., Sang, C., Kobayashi, Y., Doyu, M. and Sobue, G. (2002). Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbal muscular atrophy. Neuron 35, 843-854.

Katsuno, M., Adachi, H., Doyu, M., Minamiyama, M., Sang, C., Kobayashi, Y., Inukai, A. and Sobue, G. (2003). Leuprolin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbal muscular atrophy. Nat. Med. 9, 768-773.

Kennedy, W. R., Alter, M. and Sung, J. H. (1968). Progressive proximal spinal and bulbal muscular atrophy of late onset: a sex-linked recessive trait. Neurology 18, 671-680.

La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E. and Fischbeck, K. H. (1991). Androgen receptor gene mutations in X-linked spinal and bulbal muscular atrophy. Nature 353, 77-79.

Li, M., Miwa, S., Kobayashi, Y., Merry de Yamamoto, M., Tanaka, F., Doyu, M., Hashizume, Y., Fischbeck, K. H. and Sobue, G. (1998). Nuclear inclusions of the androgen receptor protein in spinal and bulbal muscular atrophy. Ann. Neural. 44, 249-254.

Li, M., Chevalier-Larsen, E. S. and Merry de Diamond, M. I. (2007). Soluble androgen receptor oligomers underlie pathology in a mouse model of SBMA. J. Biol. Chem. 282, 167-174.

Monks, D. A., Johansen, J. A., Mo, K., Rao, P., Eagleson, B., Yu, Z., Lieberman, A. P., Breedlove, S. M. and Jordan, C. L. (2007). Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease. Proc. Natl. Acad. Sci. USA 104, 18259-18264.

Montie, H. L., Cho, M. S., Holder, L., Liu, Y., Tsvetkov, A. S., Finkbeiner, S. and Merry, D. E. (2009). Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbal muscular atrophy. Hum. Mol. Genet. 18, 1937-1950.

Nedelsky, N. B., Pennuto, M., Smith, R. B., Palazzolo, I., Moore, J., Nie, Z., Neale, G. and Taylor, J. P. (2010). Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinal and bulbal muscular atrophy. Neuron 67, 936-952.

Neuschmid-Kaspar, F., Gast, A., Peterziel, H., Schneikert, J., Muiig, A., Ransmayer, G., Klocke, H., Bartsch, G. and Cato, A. B. (1996). CAG-repeat expansion in androgen receptor in Kennedy’s disease is not a loss of function mutation. Mol. Cell. Endocrinol. 177, 149-156.

Or, C. R., Montie, H. L., Liu, Y., Bolzoni, E., Jenkins, S. C., Wilson, E. M., Joseph, J. D., McDonnell, D. P. and Merry, D. E. (2010). An interdomain interaction of the androgen receptor is required for its aggregation and toxicity in spinal and bulbal muscular atrophy. J. Biol. Chem. 285, 35567-35577.

Pozzi, P., Bendotti, C., Simeoni, S., Piccioni, F., Guerini, V., Marron, T. U., Martini, L. and Poletti, A. (2003). Androgen 5-alpha-reductase type 2 is highly expressed and active in rat spinal cord motor neurons. J. Neuroendocrinol. 15, 882-887.

Schmidt, B. J., Greenberg, C. R., Allingham-Hawkins, D. J. and Spriggs, E. L. (2002). Expression of X-linked bulbospinal muscular atrophy (Kennedy disease) in two homoygous women. Neurology 59, 770-772.

Sheffield-Moore, M. (2000). Androgens and the control of skeletal muscle protein synthesis. Ann. Med. 32, 181-186.

Stenoien, D. L., Cummings, C. J., Adams, H. P., Mancini, M. G., Patel, K., DeMartino, G. N., Marcelli, M., Weigel, N. L. and Mancini, M. A. (1999). Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum. Mol. Genet. 8, 731-741.

Takeyama, K., Ito, S., Yamamoto, A., Furutani, T., Kanuka, H., Miura, M., Tabata, T. and Kato, S. (2002). Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. Neuron 35, 855-864.

Vismara, G., Simonini, F., Onesto, E., Bignamini, M., Miceli, V., Martini, L. and Poletti, A. (2009). Androgens inhibit androgen receptor promoter activation in motoneurons. Neurobiol. Dis. 33, 395-404.

Walcott, J. L. and Merry, D. E. (2002). Ligand promotes intranuclear inclusions in a novel cell model of spinal and bulbal muscular atrophy. J. Biol. Chem. 277, 50855-50859.

Yu, Z., Dadgar, N., Albertelli, M., Gruis, K., Jordan, D., Robins, D. M. and Lieberman, A. P. (2006). Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. J. Clin. Invest. 116, 2663-2672.