Random Schrödinger operators
with a background potential

Hayk Asatryan and Werner Kirsch
Fakultät für Mathematik und Informatik
FernUniversität in Hagen, Germany

1 Notations, assumptions

We consider Schrödinger operators on $L^2(\mathbb{R})$ of the form

$$H_\omega = -\frac{d^2}{dx^2} + U + V_{\text{per}} + V_\omega.$$ \hspace{1cm} (1)

We assume that the background potential U belongs to the space of real valued uniformly square integrable functions

$$L^2_{\text{loc, unif}} = \{ F : \mathbb{R} \to \mathbb{R} \mid \sup_{x \in \mathbb{R}} \int_{x-1}^{x+1} |F(x)|^2 \, dx < \infty \}$$ \hspace{1cm} (2)

and

$$U(x) \to a^- \text{ as } x \to -\infty, \quad U(x) \to a^+ \text{ as } x \to +\infty.$$ \hspace{1cm} (3)

Moreover, V_{per} is a 1-periodic real valued function in $L^2_{\text{loc, unif}}$. V_{ω} is a random alloy-type potential of the form

$$V_{\omega}(x) = \sum_{k=-\infty}^{\infty} q_k(\omega)f(x-k) \quad (x \in \mathbb{R}),$$ \hspace{1cm} (4)

where q_k are independent random variables with a common distribution P_0. We suppose that f, called the single site potential, is a real valued function satisfying

$$|f(x)| \leq C (1 + |x|)^{-\gamma} \quad (x \in \mathbb{R})$$ \hspace{1cm} (5)

for some $\gamma > 1$. We assume for simplicity that $\text{supp } P_0$ is a compact subset of \mathbb{R}. We remark that it would be sufficient that enough moments of P_0 exist. Moreover, f may have local singularities.
Under the above assumptions the potentials $U, V_{\text{per}}, V_\omega$ and there sums belong to $L^2_{\text{loc, unif}}$, hence they are H_0-bounded by [8], Theorem XIII.96 and all operators are essentially self adjoint on $C_0^\infty(\mathbb{R})$.

We introduce the following notations:

$$H_0 = -\frac{d^2}{dx^2} \quad \text{(the free Hamiltonian)}, \quad (6)$$

$$H_U = H_0 + U \quad (7)$$

$$H_{\text{per}} = H_0 + V_{\text{per}}, \quad (8)$$

$$H_{U, \text{per}} = H_0 + U + V_{\text{per}}. \quad (9)$$

2 The essential spectra of H_{U+V} and $H_{U,\text{per}}$

One of the main observations of this section is the following result.

Theorem 2.1. Let $U_1, U_2, V : \mathbb{R} \to \mathbb{R}$ be H_0-bounded measurable functions and

$$U_j(x) \xrightarrow{x \to -\infty} a^-, \quad U_j(x) \xrightarrow{x \to \infty} a^+ \quad (j = 1, 2)$$

for some $a^\pm \in \mathbb{R}$. Then

$$\sigma_{\text{ess}}(H_{U_1+V}) = \sigma_{\text{ess}}(H_{U_2+V}).$$

Proof. We need to prove that

$$\sigma_{\text{ess}}(H_{U_1+V}) \subset \sigma_{\text{ess}}(H_{U_2+V}),$$

$$\sigma_{\text{ess}}(H_{U_2+V}) \subset \sigma_{\text{ess}}(H_{U_1+V}).$$

We’ll prove the first inclusion (the proof of the second one is similar). Let

$$\lambda \in \sigma_{\text{ess}}(H_{U_1+V}).$$

By Weyl’s criterion and Theorem 3.11 in [3] we conclude that there is a Weyl sequence of functions $\varphi_n \in C_0^\infty(\mathbb{R})$ such that

$$\|\varphi_n\|_2 = 1 \quad (n \in \mathbb{N}),$$

$$\|(H_{U_1+V} - \lambda I) \varphi_n\|_2 \to 0 \quad \text{(10)}$$

such that either

$$\text{supp } \varphi_n \subset (-\infty, n) \quad \text{for all } n \quad \text{(11)}$$

or

$$\text{supp } \varphi_n \subset (n, \infty) \quad \text{for all } n \quad \text{(12)}$$
holds. Assume (11) is true, then

\[
\| (H_{U_1 + V} - \lambda I) \varphi_n \|_2 - \| (H_V - (\lambda - a^-) I) \varphi_n \|_2 \to 0,
\]

\[
\| (H_{U_2 + V} - \lambda I) \varphi_n \|_2 - \| (H_V - (\lambda - a^-) I) \varphi_n \|_2 \to 0
\]

and hence

\[
\| (H_{U_1 + V} - \lambda I) \varphi_n \|_2 - \| (H_{U_2 + V} - \lambda I) \varphi_n \|_2 \to 0.
\]

From this and (10) we obtain

\[
\| (H_{U_2 + V} - \lambda I) \varphi_n \|_2 \to 0,
\]

therefore

\[
\lambda \in \sigma_{ess}(H_{U_2 + V}).
\]

As a corollary to the proof of Theorem 2.1 we get

Corollary 2.2. Let \(U, V : \mathbb{R} \to \mathbb{R} \) be measurable, \(H_0 \)-bounded and

\[
U(x) \xrightarrow[x \to -\infty]{} a^-, \quad U(x) \xrightarrow[x \to \infty]{} a^+
\]

(in the usual sense), where \(a^\pm \in \mathbb{R} \). Then

\[
\sigma_{ess}(H_{U+V}) \subset (a^- + \sigma_{ess}(H_V)) \cup (a^+ + \sigma_{ess}(H_V)),
\]

(13)

Remark 2.3. The previous theorem shows that the knowledge of \(V, a^\pm \) is sufficient for unique determination of \(\sigma_{ess}(H_{U+V}) \). In fact,

\[
\sigma_{ess}(H_{U+V}) = \sigma_{ess}(H_{U_c+V}),
\]

where

\[
U_c = a^- \chi_{(-\infty, 0]} + a^+ \chi_{(0, \infty)}.
\]

In general equality in (13) does not hold. However, for the case of periodic potentials we have:

Theorem 2.4. Let \(U : \mathbb{R} \to \mathbb{R} \) be measurable, \(H_0 \)-bounded and satisfy the conditions

\[
U(x) \xrightarrow[x \to -\infty]{} a^- \quad \text{and} \quad U(x) \xrightarrow[x \to \infty]{} a^+
\]

and let \(W \) be a \(H_0 \)-bounded periodic potential, then

\[
\sigma_{ess}(H_0 + U + W) = (a^- + \sigma_{ess}(H_0 + W)) \cup (a^+ + \sigma_{ess}(H_0 + W)).
\]

Remark 2.5. It is well known that under the above assumptions on \(W \) we have \(\sigma_{ess}(H_0 + W) = \sigma(H_0 + W) \). See [8].
Proof. In the view of Corollary 2.2, we need to prove that
\[a^- + \sigma_{\text{ess}}(H_0 + W) \subset \sigma_{\text{ess}}(H_0 + U + W), \tag{14} \]
\[a^+ + \sigma_{\text{ess}}(H_0 + W) \subset \sigma_{\text{ess}}(H_0 + U + W). \tag{15} \]
We’ll prove (14) (the proof of (15) is similar). Let
\[\lambda \in a^- + \sigma_{\text{ess}}(H_0 + W), \]
i.e. \(\lambda - a^- \in \sigma_{\text{ess}}(H_0 + W). \)
Then there is a Weyl sequence \(\varphi_n \in C_0^\infty(\mathbb{R}) \) with
1. \(\| \varphi_n^- \|_2 = 1 \) (\(n \in \mathbb{N} \)),
2. \(\| (H_0 + W - (\lambda - a^-)I) \varphi_n^- \|_2 \to 0, \)
Since \(W \) is periodic any shift of \(\varphi_n \) by an integer times the period of \(W \) is also a Weyl sequence for \(H_0 + W + a^- \). Thus we may assume that \(\text{supp} \varphi_n \subset (-\infty, -n) \). As in the previous proofs one easily sees that this sequence is also a Weyl sequence for \(H_0 + U + W \).

3 The essential spectrum of \(H_\omega \)

We turn to the spectrum of \(H_\omega \). To do so, we first describe the spectrum of \(H_0 + V_\omega \), i.e. the case \(U = 0 \).
We follow the investigation in [4].

Definition 3.1. A potential \(W(x) = \sum_{k \in \mathbb{Z}} \rho_k f(x - k) \) is called admissible, if \(\rho_k \in \text{supp} P_0 \) for all \(k \). Let us denote by \(\mathcal{P} \) the set of all admissible potentials, generated by \(\ell \)-periodic \(\rho_k \) for some \(\ell \in \mathbb{N} \).

Theorem 3.2. The spectrum \(\sigma(H_0 + V_\omega) \) is independent of \(\omega \) almost surely and is given (almost surely) by
\[\Sigma := \sigma(H_0 + V_\omega) = \bigcup_{W \in \mathcal{P}} \sigma(H_0 + W) \tag{16} \]
For a proof we refer to [4].

In particular, the following result was proved in [4].

Lemma 3.3. If \(W \) is a periodic admissible potential and \(\lambda \in \sigma(H_0 + W) \) then there are sequences \(\varphi_n^+, \varphi_n^- \in L^2(\mathbb{R}) \) in the domain of \(H_0 + W \), such that
1. \(\| \varphi_n^+ \| = \| \varphi_n^- \| = 1 \)
2. The supports of \(\varphi_n^+ \) and \(\varphi_n^- \) are compact and satisfy

\[\text{supp} \varphi_n^+ \subset [n, \infty) \text{ and } \text{supp} \varphi_n^- \subset (-\infty, -n] \]
3. For almost all ω

$$\| (H_0 + V_\omega - \lambda) \varphi^+_n \| \to 0 \text{ and } \| (H_0 + V_\omega - \lambda) \varphi^-_n \| \to 0$$

From this we conclude

Theorem 3.4. Almost surely

$$\sigma(H_\omega) = \sigma(H_0 + V_\omega + a^-) \cup \sigma(H_0 + V_\omega + a^+) \quad (17)$$

Proof. By Corollary 2.2 we know that

$$\sigma(H_\omega) \subset \sigma(H_0 + V_\omega + a^-) \cup \sigma(H_0 + V_\omega + a^+) \quad (18)$$

To prove the converse we observe that for any $W \in \mathcal{P}$

$$\sigma(H_0 + W + a^\pm) \subset \sigma_{ess}(H + U + W) \quad (19)$$

by Theorem 2.4. It is easy to see (e. g. as in [4]) that almost surely for $W \in \mathcal{P}$

$$\sigma_{ess}(H + U + W) \subset \sigma_{ess}(H + U + V_\omega) \quad (20)$$

We conclude that

$$\bigcup_{W \in \mathcal{P}} \sigma(H_0 + W + a^+) \cup \bigcup_{W \in \mathcal{P}} \sigma(H_0 + W + a^-) \subset \sigma_{ess}(H + U + V_\omega). \quad (21)$$

Since the righthand side is a closed set we infer from Theorem 3.2 that almost surely

$$\sigma(H_0 + V_\omega + a^-) \cup \sigma(H_0 + V_\omega + a^+) \subset \sigma(H_\omega). \quad (22)$$

\[\square\]

4 The Integrated Density of States

In this section we investigate the integrated density of states of the operators H_ω.

Definition 4.1. Let A be a self adjoint operator bounded below and with (possibly infinite) purely discrete spectrum $\lambda_1(A) \leq \lambda_2(A) \leq \lambda_3(A) \leq \ldots$ where we count eigenvalues according to their multiplicities. Then we set

$$N(A, E) := \# \{j \mid \lambda_j(A) \leq E \}. \quad (23)$$

For $H = H_0 + W$ (with $W \in L^2_{\text{loc,unit}}$) and $a, b \in \mathbb{R}$, $a < b$ we define $H_{a,b}^D$ to be the operator H restricted to $L^2([a,b])$ with Dirichlet boundary conditions both at a and b. Similarly, $H_{a,b}^N$ has Neumann
boundary conditions at \(a\) and \(b\), \(H_{a,b}^{D,N}\) has Dirichlet boundary condition at \(a\) and Neumann boundary condition at \(b\), \(H_{a,b}^{N,D}\) has Neumann boundary condition at \(a\) and Dirichlet one at \(b\).

If for \(H = H_0 + W\) the limit

\[
\mathcal{N}(E) = \mathcal{N}(H, E) := \lim_{L \to \infty} \frac{1}{2L} N(H_{-L,L}^D, E)
\]

exists for all but countably many \(E\), we call \(\mathcal{N}(E)\) the integrated density of states for \(H\).

It is well known that under our assumptions the integrated density of states for \(H = H_0 + V_\omega\) exists, more precisely:

Theorem 4.2. If \(V_\omega\) satisfies the assumptions of Section 1, then the integrated density of states for \(\mathcal{N}(H, E)\) exists and for all but countably many \(E\) the following equalities hold:

\[
\mathcal{N}(H, E) = \lim_{L \to \infty} \frac{N(H_{-L,L}^N, E)}{2L} = \lim_{L \to \infty} \frac{\mathbb{E} \left(N(H_{-L,L}^D, E) \right)}{2L} = \lim_{L \to \infty} \frac{\mathbb{E} \left(N(H_{-L,L}^N, E) \right)}{2L}.
\]

(\(\mathbb{E}\) denotes expectation with respect to \(\mathbb{P}\).)

For a proof see [5]. The proof there uses the method of Dirichlet-Neumann bracketing (see [8]), in particular it is used:

Theorem 4.3. If \(a < c < b\) and \(X, Y \in \{D, N\}\), then

\[
N(H_{a,c}^{X,D}, E) + N(H_{c,b}^{D,Y}, E) \leq N(H_{a,c}^{X,Y}, E) \leq N(H_{a,c}^{N,N}, E) + N(H_{c,b}^{N,Y}, E).
\]

For the integrated density of states of the operator \(H_\omega = H_0 + U + V_{\text{per}} + V_\omega\) we have the following result.

Theorem 4.4. The integrated density of states \(\mathcal{N}(H_\omega, E)\) exists and can be expressed in terms of \(\mathcal{N}_0(E)\), the integrated density of states of \(H_0 + V_\omega\) by:

\[
\mathcal{N}(H_\omega, E) = \frac{1}{2} \mathcal{N}_0(E - a^-) + \frac{1}{2} \mathcal{N}_0(E - a^+).
\]

To prove this result we need the following lemma:

Lemma 4.5. For the integrated density of states \(\mathcal{N}_0\) of \(H_0 + V_\omega\) we have for any fixed \(M\) with \(M < L\) and any \(X, Y \in \{D, N\}:\)

\[
\mathcal{N}_0(E) = \lim_{L \to \infty} \frac{1}{L} \mathbb{E} \left(N(H_0 + V_\omega)_{X,Y}^{M,L} \right) \quad (28)
\]

\[
= \lim_{L \to \infty} \frac{1}{L} \mathbb{E} \left(N(H_0 + V_\omega)_{X,Y}^{M,-L} \right) \quad (29)
\]

Proof. By the stationarity of the potential we have

\[
\mathbb{E} \left(N(H_0 + V_\omega)_{X,Y}^{M,L} \right) = \mathbb{E} \left(N(H_0 + V_\omega)_{X,Y}^{M,-L} \right). \quad (30)
\]
Thus, the lemma follows from Theorem 4.2.

We now prove Theorem 4.4.

Proof.

\[
\mathbb{E}\left(N\left((H_0 + U + V_\omega)^{X,Y}_{-L,L} \right) \right) \leq \mathbb{E}\left(N\left((H_0 + U + V_\omega)^{X,N}_{-L,-M} \right) \right) + \\
+ \mathbb{E}\left(N\left((H_0 + U + V_\omega)^{N,N}_{-M,L} \right) \right) + \mathbb{E}\left(N\left((H_0 + U + V_\omega)^{N,Y}_{M,L} \right) \right).
\]

(31)

We take \(M > 0 \) so large that \(|U(x) - a^-| < \varepsilon/2 \) for \(x \leq -M \) and \(|U(x) - a^+| < \varepsilon/2 \) for \(x \geq M \).

Let us divide inequality (31) by \(2L \). Then the middle term goes to zero as \(L \to \infty \). Moreover in the limit the first term on the right hand side can be bounded by \(\frac{1}{2} \mathcal{N}_0(E - a_-) + \varepsilon/2 \). Similarly the third term can be bounded by \(\frac{1}{2} \mathcal{N}_0(E - a_+) + \varepsilon/2 \). Since \(\varepsilon > 0 \) was arbitrary we proved

\[
\mathbb{E}\left(N\left((H_0 + U + V_\omega)^{X,Y}_{-L,L} \right) \right) \leq \frac{1}{2} \mathcal{N}_0(E - a^-) + \frac{1}{2} \mathcal{N}_0(E - a^+).
\]

(32)

The inverse inequality follows if we use Dirichlet, instead of Neumann boundary conditions for the inequalities (31).

References

[1] Adams R. A., Fournier J. J. F. *Sobolev Spaces.* – Academic Press, 2003

[2] Eastham M. S. P. *The Spectral Theory of Periodic Differential Equations.* – Belfast, Scottish Academic Press, 1973

[3] Cycon H. L., Froese R. G., Kirsch W., Simon B. *Schrödinger Operators.* – Springer, 2008

[4] Kirsch W., Martinelli F. *On the spectrum of Schrödinger operators with a random potential.* Comm. Math. Phys. 85, 329–350, 1982

[5] Kirsch W., Martinelli F. (1982): *On the density of states of Schrödinger operators with a random potential.* J. Phys. A: Math. Gen. 15 (7), 2139–2156, 1982

[6] Naimark M. A., *Linear differential operators. Part II.* – London, George G. Harrap & Co., 1968.

[7] Reed M., Simon B. *Methods of Modern Mathematical Physics, vol. 2. Fourier Analysis, Self-Adjointness.* – Academic Press, 1975

[8] Reed M., Simon B. *Methods of Modern Mathematical Physics, vol. 4. Analysis of Operators.* – Academic Press, 1978