DWT-based methodology for detection of seismic precursors on electric field signals in Mexico

O. Chavez a, J. R. Millan-Almaraz b, J. Rodríguez-Reséndiz a, J. P. Amezquita-Sanchez c, M. Valtierra-Rodriguez d and J. A. L. Cruz-Abeyro d

aDivision De Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma De Querétaro, Querétaro, México; bFacultad De Ciencias Físico-Matemáticas, Universidad Autónoma De Sinaloa, Culiacán, Sinaloa, México; cFacultad De Ingeniería, Universidad Autónoma De Querétaro, Querétaro, México; dCentro De Geociencias, Universidad Nacional Autónoma de México, Querétaro, México

ABSTRACT
This paper presents an analysis of atmospheric electric field signals which were taken on an important seismic activity period from 2012 to 2015 to study its relationship with seismic events. For this purpose, several measurements were acquired every second by using a triaxial electric field monitoring system. Furthermore, the discrete wavelet transform (DWT) was applied to electric field signals with seismic events of magnitudes greater than Mw > 5.5, which occurred in Mexico with different focal mechanisms. The analysed epochs consist of 24 h of observations for a data-set corresponding to 55 different earthquakes (EQs). The time series were processed 12 h before and 12 h after each seismic event. The proposed methodology proves to be an efficient tool to detect signals with relations between electric field and seismic activity. The methodology presented herein shows important anomalies on different time instants according to the focal mechanism. Finally, a statistical post-processing algorithm was performed in order to quantify the data dispersion as a measure of seismic activity. It is found that the variance increases before, during, and after the seismic event about the coefficients D1 to D7 obtained using the DWT.

KEYWORDS
Early warning; seismic zones; earthquake lights; earthquake predictions

1. Introduction

There are many studies that report relations between earthquakes and other physical phenomena. These phenomena mainly include disturbances such as electromagnetic (EM) anomalies associated with the earthquakes. They often encompass a large frequency range, which comes from quasi-dc to high frequencies, being ultra-low-frequency (ULF) range (0.001-1 Hz) the most promising, because it has been associated with anomalies produced in Earth’s EM field before large earthquakes (Johnston 1997; Kushwah et al. 2009). Other physical anomalies related to pre-earthquake disturbances such as an increment in radon emanation from the ground to the atmosphere, water chemistry alterations, haze production and induced changes in the electric field, among others have been reported (Chen et al. 2004; Pulinets et al. 2003; Pulinets and Boyarchuk 2004; Rishbeth 2006; Freund 2013; Depueva et al. 2007; Liu et al. 2006a; Liu et al. 2006b; Karatay et al. 2010; Le et al. 2011; Namgaladze et al. 2012; Devi et al. 2014; Akhoondzadeh 2015; Heki and Enomoto 2015).
Geo-electromagnetic field changes have been widely observed during seismic events (Yen et al. 2004; Chavez et al. 2010). On the other hand, there are electrical phenomena such as electrical currents, which flow between lithosphere and ionosphere that are also related to seismic events (Kuo et al. 2011; Pulinets and Davidenko 2014). Furthermore, there are atmospheric gravity waves that are generated before and after the main shock (Hegai et al. 2006; Koshevaya et al. 2012). They can reach speeds up to 990 m/s, generating the possibility of being detected by the GPS satellite network. Consequently, it is important to mention that these ionospheric effects can be observed about 2000 km away from the main shock (Astafyeva et al. 2009).

It has been reported that the atmospheric electrical phenomena generate EM signals in ULF and very-low frequency (VLF) bands (Hayakawa and Hobara 2010; Athanasiou et al. 2011). In this regard, geomagnetic storms may disturb large territories in the planet due to atmospheric electrical currents that are related to the geo-magnetic field. These pre-seismic phenomena can be observed depending on their type, magnitude, and seismic event depth (Arikan et al. 2012), which generate a limit to distinguish pre-seismic data from EM storm noise (Devi et al. 2014). Other reports show that there exist a relation between a seismic event and the atmospheric electrical current disturbances based on electron density (Ne) and electron temperature (Te) methods. These techniques were implemented on DEMETER satellite located at 630 km altitude (Athanasiou et al. 2011; Liu et al. 2014).

In this paper, the extraction of anomalies in ULF electrical signals associated with seismic activity by means of discrete wavelet transform (DWT) is presented. It is worth noting that DWT is an efficient tool to analyse signals with time shifting frequencies (Alperovich and Zheludev 1997), features that can be found in ULF signals (Han et al. 2014). For this reason, the DWT is used in this work in order to detect and distinguish different transient variations that are superposed on atmospheric electrical field data, as it has been utilized by different authors in the analysis and detection of ULF geo-EM seismic precursors (Chavez et al. 2010; Alperovich and Zheludev 1997; Febriani et al. 2014; Han et al. 2014). Additionally, the variance of electrical signals processed by DWT is also used as a complementary parameter to measure the fluctuations in seismic activity and seismic calm period.

The paper is organized as follows: Section 2 explains the materials and methods employed. The results are described in Section 3. Finally, Section 4 presents the conclusions.

2. Materials and methods

2.1. Electric field data-set

The goal of this work is to propose a signal processing methodology capable of detecting pre-seismic activity into the ULF electric signals. These signals are measured at the Juriquilla seismic station located at Queretaro, Mexico. Its geographic coordinates are: longitude -100.45 E, latitude 20.70 N, and 1946 m a.s.l. (above sea level). The electrical signals are acquired using a Boltek EFM-100C electric field monitoring system. This system is capable of measuring the change in the atmospheric electric field on thousands of Volts per meter. The sensor employs a sampling frequency of 1 Hz within a period of 24 h (12 h before and 12 h after the seismic event), obtaining 86,400 samples. To compare the signal behaviour between seismic and calm data, a set of random signals with seismic calm are also analysed. Table 1 shows the characteristics of the EQs investigated, which occurred in Mexico from January 2012 to August 2015 with a ratio of $D/r < 1$ and $D/r > 1$, where D is the distance between the epicentre and Juriquilla station and r is the radius of the EQ preparation (Dobrovolsky et al. 1979).

The analysis focused within a distance to the station of $r = (1.8) \times 10^{0.45} M$, where M is the magnitude of the EQ according to Chavez et al. (2010). For each seismic event presented in
Event	Date	Time (UTC)	Depth (km)	Magnitude (M)	Latitude	Longitude	
					D (km)	r (km)	D/r
1	20/03/2012	17:02:47	16	7.4	16 15 3.6	98 31 16	533 3848 0.1
2	02/04/2012	17:36:42	10	6	16 16 12	98 28 12	533 902 0.5
3	12/04/2012	00:55:10	16	6.4	17 54 60	103 4 36	414 1365 0.3
4	12/04/2012	07:15:49	10	6.8	28 47 48	113 26 48	1590 2066 0.7
5	01/05/2012	16:37:59	51	5.6	18 12 0	101 1 36	284 596 0.4
6	15/11/2012	08:20:22	40	6.1	18 10 12	100 31 12	280 1000 0.2
7	20/02/2013	20:23:11	5	5.6	18 36 0	104 2 24	287 596 0.4
8	22/04/2013	01:16:34	10	5.8	17 52 12	102 11 24	363 733 0.5
9	16/06/2013	05:19:03	60	5.8	18 2 24	99 15 0	320 733 0.4
10	21/08/2013	13:38:30	20	6	16 47 24	99 34 36	576 733 0.7
11	19/10/2013	17:54:55	14	6.3	26 5 24	110 28 36	1187 1231 1.0
12	09/03/2014	23:37:57	16	5.8	15 47 24	98 33 60	576 733 0.7
13	18/04/2014	14:27:23	10	7.2	17 11 48	101 11 24	395 3128 0.1
14	08/05/2014	17:00:16	17	6.4	17 7 36	100 52 12	398 1365 0.3
15	10/05/2014	07:36:01	12	6.1	17 4 36	100 57 0	403 1000 0.4
16	21/05/2014	10:06:15	121	5.8	17 7 36	95 4 12	691 733 0.9
17	24/05/2014	08:24:45	18	5.7	16 13 36	98 25 12	540 661 0.8
18	31/05/2014	11:53:49	10	6.2	18 59 24	107 20 48	747 1109 0.6
19	07/07/2014	11:23:58	60	6.9	14 45 0	92 38 48	1057 2292 0.4
20	29/07/2014	10:46:14	117	6.4	17 42 0	95 38 48	604 1365 0.4
21	04/09/2014	19:22:58	10	5.9	18 38 48	106 55 12	715 813 0.8
22	08/10/2014	02:40:39	10	6.1	23 14 48	108 10 36	847 1000 0.8
23	21/02/2015	13:23:16	16	6.3	18 39 60	106 41 24	693 1231 0.5

With a ratio of $D/r < 1$

Event	Date	Time (UTC)	Depth (km)	Magnitude (M)	Latitude	Longitude
					$\circ \circ \circ$	$\circ \circ \circ$
With a ratio of $D/r > 1$						

Event	Date	Time (UTC)	Depth (km)	Magnitude (M)	Latitude	Longitude
					$\circ \circ \circ$	$\circ \circ \circ$

Table 1. Earthquakes greater than 5.5 in magnitude occurred in Mexico from January 2012 to August 2015. D is the distance between the epicentre and Juriquilla station. r is the radius of the EQ preparation. The analysis focused within a distance to the station of $r = (1.8) \times 10^{-5} \times M$, where M is the magnitude of the EQ according to Chavez et al., 2010.
Table 2. Determination of the focal mechanism for each analysed seismic event, according with the United States Geological Survey (USGS). D is the distance between the epicentre and Juriquilla station. r is the radius of the EQ preparation.

Event	Type of focal mechanism	Event	Type of focal mechanism
1	I	2	T
4	N	3	T
5	I	6	T
7	T	9	I
8	N	10	I
20	N	11	T
23	I	12	T
25	I	13	T
26	N	14	N
28	I	15	I
31	T	16	T
34	I	19	I
36	I	21	N
37	I	22	T
38	I	24	N
39	N	27	I
40	I	29	N
41	T	30	I
42	N	32	N
43	N	33	I
44	T	35	T
46	T	45	N
51	T	47	I
48	I	49	N
50	I	52	N
53	I	54	N
55	N		

Note: I: reverse fault – subduction zone; N: normal fault – subduction zone; T: transcurrent fault.

Table 1, its focal mechanism is presented in Table 2, e.g. event 1 from Table 1 presents a reverse fault (I) as shown in Table 2. Table 2 shows all the focal mechanisms: normal, reverse, and transcurrent faults. Some definitions for these faults are presented by Peacock et al. (2000).

In order to discriminate the geo-EM activity of the magnetosphere due to both the solar activity and cultural noise, the Kyoto Observatory web page information was utilized to compare the analysed EQs data.

2.2. Time-frequency analysis

Time-frequency analysis considers both time and frequency domains. It is used when a signal presents a non-stationary and transient behaviour. This property is of vital importance when time or frequency domains are unable to show signal features by using only one domain. For instance, frequency domain techniques such as fast Fourier transform (FFT) are ineffective to show spectral changes of the signal over time (Yue et al. 2014). On the other hand, time domain analysis is also unable to determine which frequency components are present in a transient signal. Therefore, the time-frequency analysis is a mathematical tool that allows distinguishing spectral changes of a transient signal over time (Yue et al. 2014). Among the time-frequency techniques, the short-time FFT (STFT), continuous wavelet transform (CWT), and DWT have demonstrated to be effective tools for time-frequency analysis (Chavez, Amezquita-Sanchez, et al. 2015; Chavez, Valtierra-Rodriguez, ...
et al. 2015). In particular, the DWT is capable of dealing with non-stationary and transient signals, allowing extracting hidden features into analysed signal. Therefore, the DWT was chosen as time-frequency analysis tool to detect differences between calm and seismic activity using ULF signals (Alperovich and Zheludev 1997; Chavez, Amezquita-Sanchez, et al. 2015).

2.3. DWT-based electric field analysis

Previous works have reported that the first pre-seismic information on geo-electromagnetic information appears about 10-7 days before the main shock, whereas the second pre-seismic burst appears around 12 h before the main shock (Hayakawa and Hobara 2010). In this regard, the second pre-seismic emission is selected as case of study due to its smaller time window around the main shock. Each analysed signal contains information for 12 h before and 12 h after each seismic event, hence the main shock is specified as the central position in time.

Different mother wavelets such as Daubechies, Haar, Morlet, Symlets, Coiflets, and Meyer, among others have been used to perform the DWT algorithm, being Daubechies the most recommended for the analysis of ULF signals (Jach et al. 2006; Huang et al. 2016). Taking this into consideration, Daubechies 10 is selected as mother wavelet function in this work. In order to explore different frequency bands, D1 to D7 DWT levels were selected to extract electric field signal information. Table 3 shows the exact frequency range of each DWT level which were utilized in this work.

Table 3. Frequency bands per DWT level.

DWT Level	Frequency band
X(n)	0 to 0.5 Hz
D1	0.25 to 0.5 Hz
D2	0.125 to 0.25 Hz
D3	0.0625 to 0.125 Hz
D4	0.03 125 to 0.0625 Hz
D5	0.015 625 to 0.03 125 Hz
D6	0.0078 125 to 0.015 625 Hz
D7	0.00390 625 to 0.0078 125 Hz

2.4. Variance analysis

In order to evaluate the significance of the results obtained by DWT in ULF electrical signals, a statistical analysis to obtain the variance (V_{DL}) of data is applied to each detail, D_L, from level 1–7. V_{DL} is defined by Equation (1), where a and b represent the lower and upper limits for the region of interest, respectively. $y_{DL}(n)$ is the input sequence at the detail level and \bar{y} is the mean value of $y_{DL}(n)$.

$$V_{DL} = \frac{1}{b-a} \sum_{n=a}^{b} \left\{ [y_{DL}(n) - \bar{y}]^2 \right\} \quad (1)$$

3. Results and discussions

In order to show the performance of a conventional signal processing technique, the events of Table 1 are also analysed with FFT. In this regard, Figure 1 shows the obtained results. It is worth
noting that the results are divided into three classes as shown in Table 2 (normal fault, reverse fault, and transcurrent fault). Also, two kinds of results are considered, the ones for a ratio of $D/r < 1$ and the ones for a ratio of $D/r > 1$, which are depicted in yellow and blue colours, respectively. These results correspond to the average values. Observing Figure 1, it is evident that significant differences are not remarkable, i.e. the results are very similar, compromising the correct discrimination of the different conditions. This is probably caused because the magnitude of the analysed events is larger than 5.5. On previous works, it is shown the attenuation according to the magnitude of the event (Chavez, Valtierra-Rodriguez, et al. 2015; Han et al. 2014). Unlike FFT, a filtering process using

![Figure 1. FFT-based spectra for events with $D/r < 1$ and $D/r > 1$. Amplitude is on dB.](image)
DWT offers an appreciation of the frequency content in the time domain as shown in Figures 2–6. As abovementioned, the V_{DL} is computed in order to assess the V_{DL} of the frequency content (in red colour), which is also depicted in Figures 2–6. In particular, Figure 2 shows the signals for the events 4 and 11 (Table 1 or 2). On the left, the ratio of $D/r < 1$ is presented and, on the right, the ratio of $D/r > 1$ is presented. For both events, the seven details of the DWT are presented. The main shock is on 0 H. The variance is included as the numerical values depicted by labels on the right.

Figure 2. Different types of focal mechanism: DWT results for events 4 and 11 (Table 1 or 2). On the left, the ratio of $D/r < 1$ is presented and, on the right, the ratio of $D/r > 1$ is presented. For both events, the seven details of the DWT are presented. The main shock is on 0 H. The variance is included as the numerical values depicted by labels on the right.

DWT offers an appreciation of the frequency content in the time domain as shown in Figures 2–6. As abovementioned, the V_{DL} is computed in order to assess the V_{DL} of the frequency content (in red colour), which is also depicted in Figures 2–6. In particular, Figure 2 shows the signals for the events 4 and 11 (Table 1), which correspond to normal and transcurrent faults (Table 2). Also, the DWT results for the details, D_L with $L = 1, 2, ... , 7$, are depicted. This figure is only presented to show that different focal mechanisms present different values of V_{DL} according to the analysed detail. This behaviour could be used as starting point in a new research to discriminate between different focal
mechanisms. It should be pointed out that the signals with the same kind of focal mechanism may present different behaviours since they have different features such as depth, magnitude, and D/r ratio (see Table 1).

In Figure 3, the DWT results for the events denoted by 20 ($D/r < 1$) and 21 ($D/r < 1$) from Table 1, being a normal fault on a subduction zone, are presented. As can be observed, the values of V_{DL} change before and after the main shock in all details, D_L. These changes occur in a time window from 11 to 5 h before and after the main shock, between these time windows it is observed a non-
significant increment of the V_{DL}, indicating that the aforementioned changes may be used as precursors of seismic activity. In a similar way, Figure 4 presents the results for the events denoted by 38 ($D/r < 1$) and 48 ($D/r > 1$) from Table 1, being reverse fault on subduction zone. Unlike the results for normal fault, the changes of V_{DL} are presented 5 h before and after the seismic event. For transcurrent faults, events denoted by 51 ($D/r < 1$) and 22 ($D/r > 1$) from Table 1, the V_{DL} of D_L apparently increases only after the main shock as shown in Figure 5. On the other hand, Figure 6 shows...
the results for the analysis of signals with absence of a seismic event, i.e. signals with $M < 5.5$, on the ratio earthquake preparation. Although small values of M are considered, the ratio of D/r can be also calculated. The results for a ratio of $D/r < 1$ (left side of Figure 6) show non-significant changes of V_{DL} since no seismic activity is detected. On the right side, the results consider a signal with a solar event ($Dst = 72$). Dst (disturbance storm-time) represents the geomagnetic activity (data obtained from http://wdc.kugi.kyoto-u.ac.jp/dstdir/) (Chavez, Amezquita-Sanchez, et al. 2015). Finally, Figure 7 shows a summary of the obtained V_{DL} values for the different types of faults. The depicted

Figure 5. Transcurrent fault: DWT results for events 51 and 22 (Table 1 or 2). On the left, the ratio of $D/r < 1$ is presented and, on the right, the ratio of $D/r > 1$ is presented. For both events, the seven details of the DWT are presented. The main shock is on 0 H. The variance is included as the numerical values depicted by labels on the right.
signals are the average of the V_{DL} values for events with the same focal mechanism. As can be observed, important changes in amplitude occur before and after the main shock.

4. Conclusions

A methodology based on DWT and variance (V_{DL}) for the analysis of the geomagnetic data acquired at Juriquilla station is described herein. Electric field behaved in different ways. Signals associated with seismic event data are reported, where the observation time depending on the particular electric

Figure 6. DWT results: On the left, a random analysis without seismic event on the ratio $D/r < 1$ is presented and, on the right, the signal analysis within a solar event, $D_{st} = 72$ and the ratio $D/r > 1$, is presented. For both events, the seven details of the DWT are presented. The variance is included as the numerical values depicted by labels on the right).
and the focal mechanism are implied. Accordingly, the proposed signal processing methodology consists of applying a detail level 1–7 DWT filter using a DB10 wavelet mother function to the existing data in order to obtain frequency components associated to seismic anomalies into the geomagnetic signal. Information in other bandwidths is obtained but with different statistical basis. As demonstrated, \(V_{DL} \) provides information before and after the main shock in the analysed details or bandwidths. According to the obtained results, this methodology can extract the abnormal signals in the ULF range of the electric anomalies related to different stages of the EQ preparation, in a ratio that depends on the focal mechanism.

Acknowledgments

The authors are grateful to CONACYT for their support and collaboration in this research under the project number SNI 64500 and to the data collected from "Centro de Geociencias UNAM.”

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Consejo Nacional de Ciencia y Tecnología [grant number SNI 64500].

ORCID

O. Chavez http://orcid.org/0000-0003-4474-0206

M. Valtierra-Rodriguez http://orcid.org/0000-0003-3839-1396

![Figure 7. Average of the variance \(V_{DL} \) values obtained according to the fault type: On the left, the results for the ratio of \(D/r < 1 \) are presented and, on the right, the results for the ratio of \(D/r > 1 \), are presented. The main shock is on 0 H.](image-url)
References

Akhondzadeh M. 2015. Firefly algorithm in detection of TEC seismo-ionospheric anomalies. Adv Space Res. 56:10–18.

Alperovich L, Zheludev V. 1997. Wavelet transform as a tool for detection precursors of Earthquakes. Phys Chem Earth. 23:9–10.

Arikan F, Deviren MN, Lenk O, Sezen U, Arikan O. 2012. Observed ionospheric effects of 23 October 2011 Van Turkey Earthquake. Geomat Nat Haz Risk. 3:1–8.

Astafyeva E, Heki K, Afraimovich E, Kiryushkin V, Shalimov S. 2009. Two-mode long-distance propagation of coseismic ionosphere disturbances. J Geophys Res. 114:A10307.

Athanasiou MA, Anagnostopoulos GC, Liliopoulos AC, Pavlos GP, David CN. 2011. Enhanced ULF radiation observed by DEMETER two months around the strong 2010 Haiti earthquake. Nat Hazards Earth Syst Sci. 11:1091–1098.

Chavez O, Millan-Almaraz JR, Pérez-Enríquez R, Arzate-Flores JA, Kotsarenko A, Cruz-Abeleyo JA, Rojas E. 2010. Detection of ULF geomagnetic signals associated with seismic events in Central Mexico using discrete wavelet transform. Nat Hazards Earth Syst Sci. 10:2557–2564.

Chavez O, Amezquita-Sanchez JP, Valtierra-Rodriguez M, Cruz-Abeleyo JA, Kotsarenko A. 2015. Novel ST-MUSIC-based spectral analysis for detection of ULF geomagnetic signals anomalies associated with seismic events in Mexico. Geomat Nat Haz Risk. 7:1162–1174.

Chavez O, Valtierra-Rodriguez M, Amezquita-Sanchez JP, Millan-Almaraz JR, Rodriguez LM, Mungray-Moctezuma, A, Dominguez Gonzalez A, Cruz-Abeleyo, JA. 2015. Empirical wavelet transform-based detection of anomalies in ULF geomagnetic signals associated to seismic events with a fuzzy logic-based system for automatic diagnosis. Wavelet transform and some of its real-world applications. Chapter 6. Rijeka, Croatia: Intech. p. 111–124.

Chen YI, Liu JY, Tsai YB, Chen CS. 2004. Statistical tests for pre-earthquake ionospheric σ. Terr Atmos Oceanic Sci. 15:385–396.

Depuwea AKH, Mikhailov AV, Devi M, Barbara AK. 2007. Spatial and time variation in critical frequencies of the ionospheric F region above the zone of equatorial earthquake preparation. Geomagn Aeronomy. 47:129–133.

Devi M, Barbara AK, Oyama K-I, Chen Ch-H. 2014. Earthquake induced dynamics at the ionosphere in presence of magnetic storm. Adv Space Res. 53:609–618.

Dobrovolsky JR, Zubkov SI, Myachkin VI. 1979. Estimation of the size of earthquake preparation zones. Pure Appl Geophys. 117:1025–1044.

Febriani F, Han P, Yoshino C, Hattori K, Nurdiyanto B, Effendi N, Maulana I, Gaffar, E. 2014. Ultra low frequency (ULF) electromagnetic anomalies associated with large earthquakes in Java Island, Indonesia by using wavelet transform and detrended fluctuation analysis. Nat Hazards Earth Syst Sci. 14:789–798.

Freund F. 2013. Earthquake forewarning—a multidisciplinary challenge from the ground up to space. Acta Geophys. 61:775–807.

Han P, Hattori K, Hirokawa M. 2014. Statistical analysis of ULF seismmagnetic phenomena at Kakioka, Japan, during 2001–2010. J Geophys Res. 119:4998–5011.

Han P, Hattori K, Hirokawa M, Zhuang J, Yoshino C. 2014. Statistical analysis of ULF geomagnetic anomaly preceding earthquake at Kakioka, Japan, during 2001–2010. General Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth URSI, Beijing, China: IEEE.

Hayakawa M, Hobara Y. 2010. Current status of seismo-electromagnetics for short-term earthquake prediction. Geomat Nat Haz Risk. 1:115–155.

Hegai VV, Kim VP, Liu JY. 2006. The ionospheric effect of atmospheric gravity waves excited prior to strong earthquake. Adv Space Res. 37:653–659.

Heki K, Enomoto Y. 2015. Mw dependence of the preseismic ionospheric electron enhancements. J Geophys Res. 120:7006–7020.

Huang ZL, Zhang J, Zhao TJ, Sun Y. 2016. Synchrosqueezing S-transform and its application in seismic spectral decomposition. IEEE Trans Geosci Remote Sens. 54:817–825.

Jach, AP, Kokoszka P, Sojka, J, Zhu L. 2006. Wavelet-based index of magnetic storm activity. J Geophys Res. 111:1–11.

Johnston MJS. 1997. Review of electric and magnetic fields accompanying seismic and volcanic activity. Surv Geophys. 18:441–475.

Karatay S, Arikan F, Arikan O. 2010. Investigation of total electron content variability due to seismic and geomagnetic disturbances in the ionosphere. Radio Sci. 45:RS5012.

Koshevaya S, Grimalsky V, Urquiza1 G, Tecpoyotl M, Kotsarenko A, Yutsis V, Makarets N. 2012. Explosions and seismic phenomena based on excited of acoustic-electromagnetic waves. Natural Sci. 4:652–658.

Kuo C, Huba J, Joyce G, Lee L. 2011. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J Geophys Res. 116:A10317.

Kushwah V, Singh V, Singh B. 2009. Ultra low frequency (ULF) amplitude observed at Agra (India) and their association with regional earthquakes. Phys Chem Earth. 34:367–272.

Le H, Liu JY, Liu L. 2011. A statistical analysis of ionospheric anomalies before 736 M6.0 earthquakes during 2002–2010. J Geophys Res. 116:A02303.
Liu JY, Chen CH, Chen YI, Yen HY, Hatton K, Yumoto K. 2006a. Seismo-geomagnetic anomalies and M ≥ 5.0 earthquakes observed in Taiwan during 1988–2001. Phys Chem Earth. 31:215–222.
Liu JY, Chen YI, Chuo YJ, Chen CS. 2006b. A statistical investigation of preearthquake ionospheric anomaly. J Geophys Res. 111:A05304.
Liu J, Huang J, Zhang X. 2014. Ionospheric perturbations in plasma parameters before global strong earthquakes. Adv Space Res. 53:776–787.
Namgaladze AA, Zolotov OV, Karpov MI, Romanovskaya YV. 2012. Manifestations of the earthquake preparations in the ionosphere total electron content variations. Nat Sci. 4:848–855.
Peacock DCP, Knipe RJ, Sanderson DJ. 2000. Glossary of normal faults. J Struct Geol. 22:291–305.
Pulinets S, Boyarchuk K. 2004. Ionospheric precursors of earthquakes. Berlin: Springer-Verlag.
Pulinets S, Davidenko D. 2014. Ionospheric precursors of earthquakes and global electric circuit. Adv Space Res. 53:709–723.
Pulinets SA, Legen’ka AD, Gaivoronskaya TV, Depuev VKh. 2003. Main phenomenological features of ionospheric precursors of strong earthquakes. J Atmos Sol Terr Phys. 65:1337–1347.
Rishbeth H. 2006. Ionoquakes: earthquake precursors in the ionosphere ? EOS. 87:316–317.
Yen HY, Chen CH, Yeh YH, Liu JY, Lin CR, Tsai YB. 2004. Geomagnetic fluctuations during the 1999 Chi-Chi earthquake in Taiwan. Earth Planets Space. 56:39–45.
Yue B, Peng Z, Zhang Q. 2014. Seismic wavelet estimation using covariation approach. IEEE Tran Geosci Remote Sens. 52:7495–7502.