Impact of nutrient management practices and plant growth regulators on growth, productivity and profitability of wheat (*Triticum aestivum*)

SUDESH KUMAR¹, P K SHARMA², M R YADAV³, RANI SEXENA⁴, K C GUPTA⁵, N K GARG⁶ and H L YADAV⁷

Rajasthan Agricultural Research Institute, Jaipur, Rajasthan 302 018, India

Received: 28 May 2018; Accepted: 29 October 2018

ABSTRACT

This study was conducted during winter season of 2016-17 and 2017-18 at Rajasthan Agricultural Research Institute, Durgapura, Jaipur to evaluate the effect of nutrient management and growth retardants on wheat (*Triticum aestivum* L.). Results revealed that the application of 150% RDF+FYM led to higher plant height and dry matter accumulation of wheat at all the growth stages (60 days after sowing (DAS), 90 DAS and at harvest) except at 30 DAS (where it was maximum with 150% RDF). The combined application of Chlormequat Chloride (CCC)+Tebuconazole reduced the plant height of wheat by 4.62, 2.25 and 2.86% (60 DAS), 7.07, 2.24 and 3.05% (90 DAS) and 7.35, 2.76 and 4.11% (at harvest) over water spray, CCC and Tebuconazole alone, respectively. The significantly maximum number of effective tillers (423.42 m⁻²), spike length (10.66 cm) and test weight (40.32 g) were registered with application of 150% RDF+FYM. The combined spray of CCC+Tebuconazole enhanced the test weight by 7.71%, 2.63 and 2.84% over water spray, CCC and Tebuconazole, respectively. The significantly maximum number of effective tillers (423.42 m⁻²), spike length (10.66 cm) and test weight (40.32 g) were registered with application of 150% RDF+FYM. The combined spray of CCC+Tebuconazole enhanced the test weight by 7.71%, 2.63 and 2.84% over water spray, CCC and Tebuconazole, respectively. The significantly maximum grain, straw and biomass yield of wheat were recorded with 150% RDF+FYM which were 50.87, 50.31 and 50.56% and 12.26, 15.92% and 14.27% higher over control and 100% RDF, respectively. The grain, straw and biomass yields of wheat due to different growth retardant treatments were found statistically at par. The application of 150% RDF+FYM increased the gross return by 50.74, 13.10 and 3.83% and mean net returns by 60.56, 12.96 and 3.13% over control, 100% RDF and 150% RDF, respectively. Among growth regulators highest net returns (₹ 68016) and B:C ratio (1.98) were recorded with combined application of CCC+Tebuconazole. It is concluded that integrated nutrient management using 150% RDF+FYM and combined application of CCC+Tebuconazole can be advocated as sustainable strategy for enhancing productivity and profitability of wheat.

Key words: Farm Profitability, Nutrient management, Plant growth regulators, Productivity and Wheat

Worldwide, wheat (*Triticum aestivum* L.) being a staple food for large population contributing about 20% of humans' daily dietary calorie and protein intake (Shiferaw et al. 2013). Wheat is the second most important food grain of India with an area of 30.5M ha, production of 98.4 M tonnes, and an average productivity of 3216 kg ha⁻¹ (Anonymous 2016). Rajasthan is one of the major wheat growing state in India with an area of 3.11 M ha (10.3% area of country), 9.90 M tonnes of production (10.6% production share at the national level), and productivity of 3175 kg ha⁻¹ (Anonymous 2016). Lodging, usually characterized by permanent displacement of stems from an upright position due to internal and external factors, is an important constraint limiting wheat yields and quality in both developed and developing countries (Berry et al. 2003). The key reasons responsible for wheat lodging are increase in weight of mature ears due to water accumulation, occurrence of high speed winds at grain filling stage, wide use of flat planting and flood irrigation and the lack of acceptable cultivars of wheat that are lodging tolerant at higher nitrogen (N) rates etc. (Taiz and Zeiger 2004, Stachecki et al. 2004).

The lodging in wheat can be controlled by using short lodging tolerant cultivars and by applying growth retardant chemicals etc. (Rodrigues et al. 2003). The semi-dwarf wheat cultivars can limit lodging under moderate levels of inputs, especially fertilizer and irrigation. Lodging resistance of these improved semi dwarf cultivars, resulting from shorter and stiffer straw, is markedly expressed at moderate levels of N fertility (Pinthus 1974). Under certain agronomic conditions, however, even semi dwarf wheat cultivars have been observed to lodge under Indian condition (Tripathi et al. 2003). This form of lodging which is most common with well-managed wheat crop occurs near or after flowering.
and is primarily the result of wind during or soon after irrigation or rainstorms (Hobbs 2007). The reduction in grain yield caused by lodging ranged from 7 to 35% with greatest effect when lodging occurred within the month after anthesis, is most commonly reported under Indian condition. The yield potential of high yielding genotypes of wheat under irrigated and high input rates could be achieved consistently and efficiently by finding suitable solutions of lodging problem. In this context, the use of growth retardants found to be most effective for managing the problem of lodging (Zhang et al. 2017) and realizing productivity potential especially under high fertilization conditions (Rajala et al. 2002, Tripathi et al. 2003).

Growth retardants are chemical substances that have the potential to alter structural or vital processes inside the plant by modifying hormone balance to increase yield, improve quality or facilitate harvesting through checking lodging especially in cereals (Zhang et al. 2017). Lodging preventers (plant height retardants) are generally antagonistic to gibberellin and act by altering their metabolism (Peake et al. 2014) and for aforesaid reason they are frequently called anti-gibberellin. The nature and extent of lodging are closely related to height of the stem, which can be modified by application of growth inhibitors (Peng et al. 2014). Application of growth inhibitors, like ethephon (2-chloro ethyl phosphonic acid) or CCC (Chlormequat Chloride), was reported to be useful in decreasing plant height and subsequently reducing lodging (Niu et al. 2012, Pitre et al. 2007). Therefore, the objective of present study was to determine the effects of different fertility practices and lodging preventers on growth behaviour, productivity and farm profitability of wheat under semi-arid conditions.

MATERIALS AND METHODS

The field experiment was conducted during two consecutive winter season of 2016-17 and 2017-18 at research farm of the institute under All India Coordinated Wheat and Barley Improvement Project to examine effect of fertility levels and growth retardants on growth, productivity and economics of wheat. The experimental site falls in the Semi-Arid Eastern Plain Zone of Rajasthan (III-A), characterized by cold winters and hot summers. Occurrence of frost (below 0°C) during December/January in winter season is quite common. The average annual rainfall of zone is 525 mm of which about 90% is received during later half of June to September with erratic distribution over time and space. The soil of the experimental field was loamy sand in texture having pH of 7.9, low in organic carbon and nitrogen, medium in available phosphorus and potassium. The experiment was laid out in split plot design and consist of four fertility levels, viz. Control (No fertilization), 100% RDF (Recommended dose of fertilizer: 150:60:40 kg/ha), 150% RDF (225:90:60 kg/ha) and 150% RDF (225:90:60 kg/ha)+15t FYM/ha in main plots and four plant growth regulators, viz. control (water spray), 0.2% spray of Chlormequat Chloride (CCC), 0.1% spray of Tebuconazole and a combined spray of CCC + Tebuconazole in sub plots and replicated thrice. Growth regulators were used twice i.e. at first node and flag leaf stages.

Field preparation included one deep ploughing by mould board plough followed by 2 cross harrowing and planking. The wheat variety HD-2967 was sown during second week of November with a recommended seed rate of 100 kg/ha. A 15 Mg/ha of FYM was applied 15 days before the sowing of crops as per treatment and well mixed in the soil. During both the seasons 1/3rd quantity of total N and whole amount of P₂O₅ and K₂O were applied as basal at sowing, while remaining quantity of N were applied in two split of equal quantity, i.e. 1/3rd at first irrigation and 1/3rd at second irrigation. Crop was raised under irrigated condition and a total of six irrigations were applied at critical growth stages. Crop protection measures were followed as and when required. The growth and yield attributes were recorded as per the standard procedure by sampling from three places in each plot. The net plots, leaving the two border rows on the rows direction and half meter on opposite direction of the plots of wheat were harvested manually with sickle. The produce was kept for sun drying for some days in field and after drying, the biological yield was recorded and expressed in q/ha. After threshing the bunches from each plot, the grains were cleaned, dried and weighed. The grain yield was expressed in q/ha. Straw yield was obtained by subtracting the grain yield from the weight of total biological yield for individual plots and was expressed in tonnes/ha.

The net return of each treatment was calculated by deducting the total cost of cultivation from gross return of respective treatments and the benefit:cost ratio (B:C) was calculated by dividing the net return with total cost of cultivation. All data recorded were analyzed with the help of analysis of variance (ANOVA) technique (Gomez and Gomez 1984) for split plot using SAS 9.3 (SAS Institute, Cary, NC). The least significant test was used to decipher the main and interaction effects of treatments at 5% level of significance (P<0.05).

RESULTS AND DISCUSSION

Effect of fertility levels and growth retardants on growth parameters and lodging of wheat

The fertility practices had significant effect on plant height of wheat at all the growth stages (Table 1). At early growth stages (30 DAS), every successive increment in fertility level (control to 150% RDF) led significant difference in plant height and significantly maximum value of plant height (28.41 cm) was recorded with 150% RDF compared to control (23.69 cm), 100% RDF (26.82 cm) and 150% RDF+ FYM (27.46 cm). In contrast, at later stage (60, 90 DAS and at harvest) the crop fertilized with 150% RDF+FYM attained significantly maximum plant height (59.94, 77.33 and 107.88 cm) over control (49.27, 64.85 and 91.68 cm), 100% RDF (56.29, 74.51 and 104.85 cm), respectively. However, the crop supplied with 150% RDF produced statistically similar plant height compared to 150% RDF+ FYM during these growth stages. The
fertility levels also led significant effect on periodic dry matter accumulation of wheat (Table 1). At 30 DAS, crop fertilized using 150% RDF produced significantly highest mean dry matter (34.31 g/m) over control (26.83 g/m), 100% RDF (31.74 g/m). However, application of 150% RDF+FYM resulted in statistically similar dry matter accumulation compared to 150% RDF+FYM at 30 DAS. In contrast, at later stage of growth (60, 90 DAS and at harvest) crop fertilized with 150% RDF+FYM recorded significantly highest dry matter accumulation over control and 100% RDF. However, the crop fertilized with 150% RDF produced statistically similar dry matter compared to 150% RDF+FYM during these growth stages. The application of 150% RDF+FYM enhanced the dry matter of crop with the magnitude of 3.72 to 20.40% (30 DAS), 8.38 to 50.43% (60 DAS) 2.12 to 14.73% (90 DAS) and 1.01 to 13.71% (at harvest) over control and 100% RDF. Since, the major nutrients (nitrogen, phosphorus and potassium) are known as important constituents for cell division and cell elongation and their optimum availability with integrated use of organic and inorganic nutrient sources led to higher plant growth. Higher availability of these nutrients might improve photosynthetic area of plants that cumulatively contribute to higher dry matter accumulation. The results of study are in close agreement with the results of Fliessbach et al. 2007, Joergensen et al. 2010, Leifeld et al. 2009.

At early growth stages of wheat (30 DAS), all the tested growth retardants were remained statistically at par for plant height. However, at later stage (60, 90 DAS and at harvest), the combined application of CCC+Tebuconazole resulted in significantly lowest plant height compared to water spray and other growth retardants. The combined application of CCC+Tebuconazole reduced the plant height of wheat with the magnitude of 4.62, 2.25 and 2.86% at 60 DAS, 7.07, 2.24 and 3.05% at 90 DAS and 7.35, 2.76 and 4.11% at harvest over water, CCC and Tebuconazole , respectively. However, all the growth retardant found statistically at par for dry matter accumulation. Though, slight reduction in dry matter was observed with the application of growth retardants over water spray at later stage of the wheat. Plant height and strength of basal internodes are closely related to lodging resistance (Knapp et al. 1987, Berry et al. 2000, Zhang et al. 2010, Wei et al. 2008). Based on the results, it is suggested that, the combined application of CCC+Tebuconazole can avoid risk of lodging occurred by

Table 1 Effect of different nutrient management options and plant growth regulators on plant height and dry matter accumulation of wheat (pooled over 2 years)

Treatment	Plant height (cm)	Dry Matter accumulation (g m⁻²)						
	30 DAS	60 DAS	90 DAS	Harvest	30 DAS	60 DAS	90 DAS	Harvest
Fertility management practices								
Control	23.69	49.27	64.85	91.68	26.83	148.44	782.05	1341.48
100% RDF	26.82	56.29	74.51	104.85	34.31	285.51	834.66	1600.32
150% RDF	28.41	57.75	75.99	107.51	34.31	285.51	834.66	1600.32
150% RDF+FYM	27.46	59.94	77.33	107.88	32.25	299.47	823.39	1553.02
SEm ± 0.18	0.41	0.98	1.57	0.63	1.53	15.00	25.66	56.93
CD (P<0.05)	0.45	0.99	2.39	3.85	1.53	15.00	25.66	56.93
Plant growth regulators								
Water spray	26.54	57.01	76.00	106.75	31.04	245.16	799.56	1482.97
CCC	26.74	55.71	72.57	102.19	31.17	253.49	787.53	1503.06
Tebuconazole	26.95	56.05	73.14	103.53	31.57	250.54	790.61	1512.59
CCC+ Tebuconazole	26.14	54.48	70.98	99.45	31.61	258.58	788.30	1532.75
SEm ± 0.32	0.70	1.01	1.54	0.72	0.94	2.61	10.81	22.74
CD (P<0.05)	0.66	1.44	2.02	3.18	1.48	19.42	22.31	47.05

Table 2 Effect of different nutrient management options and plant growth regulators on wheat productivity potential (pooled over 2 years)

Treatment	Grain yield (q/ha)	Straw yield (q/ha)	Biomass yield (q/ha)
Nutrient management practices			
Control	27.44	33.82	61.26
100% RDF	49.00	57.23	106.23
150% RDF	53.86	64.81	118.68
150% RDF+FYM	55.85	68.08	123.92
SEm ± 1.10	1.54	2.23	
CD (P<0.05)	2.70	3.78	5.45
Plant growth regulators			
Water spray	44.04	54.97	99.01
CCC	47.17	56.23	103.40
Tebuconazole	46.35	55.73	102.08
CCC+ Tebuconazole	48.59	57.01	105.60
SEm ± 1.72	1.96	3.56	
CD (P<0.05)	3.55	4.04	7.36
altering the plant height. The results of study are valuable for enhancing lodging resistance by reducing plant height of wheat to prevent lodging and improving grain yield and quality.

Effect of fertility levels and growth retardants on yield attributes of wheat

The analysis of variance data indicated that nutrient management practices had significant effect on yield attributes of wheat (number of effective tillers, spike length and test weight) of wheat (Fig 1 and 2). The significantly maximum number of effective tillers (423.42/m²), spike length (10.66 cm) and test weight (40.32 g) were registered with 150% RDF+FYM. Whereas, minimum number of effective tillers (330.25/m²), spike length (7.10 cm) and test weight (32.96 g) were recorded under control. However, crop supplied with the 100% RDF and 150% RDF recorded statistically similar results for aforesaid yield attributes compared with 150 RDF+FYM. The combined application of 150% RDF along with FYM enhanced the number of effective tillers by 22.00, 6.16 and 1.71%, spike length by 33.40, 12.28 and 3.55% and test weight by 18.26, 3.21 and 1.36% over control, 100% RDF and 150% RDF, respectively. The optimal and balanced supply of nutrient (macro and micronutrient) from inorganic and organic fertilizers led to higher growth and development of plants and side by side improve the physical, chemical, biological and hydrological properties of soil which further provide an optimum environment for higher growth and development of plants reflected by higher yield attributes of plants (Behera et al. 2007, Mavi and Benbi 2008). The number of effective tillers and spike length under different growth retardant were found statistically at par, although highest values were recorded with combined use of CCC + Tebuconazole (Fig 1 and 2). However, the growth regulators led significant effect on test weight and the maximum values were recorded with the combined application of CCC + Tebuconazole. The magnitude of increase in test weight with the combined spray of CCC and Tebuconazole over water spray, CCC + Tebuconazole was 7.71, 2.63 and 2.84%, respectively. Similar results on wheat with the use of plant growth retardants were also reported by Guoping et al. (2001) and Rajala et al. (2002).

Effect of fertility levels and growth retardants on crop productivity

Present findings revealed that fertility levels had significant effect on wheat productivity (Table 2). The mean
maximum grain and straw yield of wheat were recorded with 150% RDF + FYM which were 50.87 and 12.26% and 50.31 and 15.92% higher compared to control and 100% RDF, respectively. However, the wheat crop fertilized using 150% RDF was found statistically at par with 150% RDF + FYM. Similarly the mean total biomass (grain+straw) was also found maximum with application 150% RDF + FYM. It enhanced the biomass yield of wheat by 50.56 and 14.27% compared to control and 100% RDF, respectively. Similar to grain and straw yield, the crop fertilized using 150% RDF yielded statistically similar biomass compared to 150% RDF + FYM. This increment in crop productivity might be result of higher plant growth, dry matter accumulation and yield attributes with the combined application of organic and inorganic compared to when chemical fertilizer applied alone. Similar results were also reported by many other researchers which state that integration of chemical and organic sources led to higher crop productivity (Manna et al. 2003 and Ram et al. 2015). Moreover, the use of organics with inorganic fertilizers attributed to the better utilization of soil moisture, nutrients uptake and less fluctuation in the soil temperature (Halvorson et al. 2002) and improve soil organic matter which increase the soil water holding capacity, soil aggregation, microbial activity and soil porosity which ultimately led to higher crop productivity (Zamir et al. 2010).

Wheat yield (grain, straw and biomass) due to different growth retardant treatments were found statistically at par, although highest values of were recorded with combined use of CCC and Tebuconazole over others treatments. The magnitude of increase in mean grain, straw yield and biological yield with the combined spray of CCC and Tebuconazole over water spray were 9.37, 3.57 and 6.24%, respectively. These results are in close agreement with the results of earlier researchers (Tripathi et al. 2003, Webster and Jackson 1993) who stated that growth inhibitor significantly reduced plant height and simultaneously produced equal biomass over no application.

Effect of fertility levels and growth retardants on farm profitability

The highest cost of cultivation of wheat was recorded under the treatment fertilized through 150% RDF + FYM and with combined application of CCC and Tebuconazole over others treatments (Table 3). Significantly highest mean gross returns (₹ 117982) and net returns (₹ 80697) were observed with application of 150% RDF + FYM compared to control (₹ 58111 and ₹ 31823) and 100% RDF (₹ 102516 and ₹ 70231), respectively. However, the wheat crop fertilized with 150% RDF was found statistically at par with 150% RDF + FYM. The application of 150% RDF + FYM increased the mean gross return by 50.74, 13.10 and 3.83% and mean net returns by 60.56, 12.96 and 3.13% over control, 100% RDF and 150% RDF respectively. However, the maximum B:C ratio (2.22) was reported with application of 150% RDF compared to control (1.21), 100% RDF (2.18) and 150% RDF+FYM (2.16). Among the growth retardant treatments, the highest cost of cultivation (₹ 33748), gross returns (₹ 101764), net returns (₹ 68016) and B:C ratio (1.98) were recorded with combined application of use of CCC and Tebuconazole. Whereas minimum values for cost of cultivation (₹ 31398), gross returns (₹ 93552), net returns (₹ 62154) and B:C ratio (1.92) were recorded with water spray (control). The combined application of CCC and Tebuconazole increased gross and net returns with magnitude of 8.07, 2.58 and 4.09% and 8.62, 2.76 and 5.01% over water spray and when CCC and tebuconazole used alone, respectively. Thus, the combined application of CCC and Tebuconazole provided additional net returns of ₹ 5862 to the farmers over water spray (control). The higher crop productivity of crop might be the principal reasons for higher net returns under integrated nutrient management and combined application of CCC and Tebuconazole. Similar results of higher farm profitability were also reported by Benbi et al. (2012), Bhandari et al. (2002) for integrated nutrient management and Guoping et al. (2001) for plant growth regulators.

Conclusion

The results of this study demonstrated that cultivation of wheat with the combined use CCC and Tebuconazole and 150% RDF+FYM resulted in significant improvement in the growth, productivity and profitability. Therefore, it can be concluded that integrated nutrient management using 150% RDF+FYM and combined application of CCC and Tebuconazole plant growth regulators can be advocated as sustainable strategy for enhancing productivity and profitability of wheat cultivation in semi-arid conditions.

ACKNOWLEDGEMENT

We sincerely acknowledge Indian Council of Agricultural Research (ICAR-IIWBR, Karnal) for financial support and Director- RARI, Dungapura, Jaipur for providing field staff, facilities and assistance in conducting this research.

Treatments	Cost of cultivation (₹/ha)	Gross return (₹/ha)	Net return (₹/ha)	B:C ratio
Control	26287	58111	31823	1.21
100% RDF	32285	102516	70231	2.18
150% RDF	35284	113452	78167	2.22
150% RDF+ FYM	37284	117982	80697	2.16

Nutrient management practices	Cost of cultivation (₹/ha)	Gross return (₹/ha)	Net return (₹/ha)	B:C ratio
Control	26287	58111	31823	1.21
100% RDF	32285	102516	70231	2.18
150% RDF	35284	113452	78167	2.22
150% RDF+ FYM	37284	117982	80697	2.16

Plant growth regulators	Cost of cultivation (₹/ha)	Gross return (₹/ha)	Net return (₹/ha)	B:C ratio
Water spray	31398	93552	62154	1.92
CCC	32998	99137	66139	1.96
Tebuconazole	32998	97606	64608	1.91
CCC+ Tebuconazole	33748	101764	68016	1.98
REFERENCES

Anonymous. 2016. Agricultural statistics at a glance, Government of India.

Behera U K, Sharma A R and Pandey H N. 2007. Sustaining productivity of wheat–soybean cropping system through integrated nutrient management practices on the Vertisols of central India. Plant and Soil 297(2): 185–99.

Benbi D, Toor A and Kumar S. 2012. Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered. Plant and Soil 360: 145–62.

Berry P M, Griffin J M, Sylvester-Bradley R, Scott R K, Spink J H, Baker C J and Clare R W. 2000. Controlling plant form through husbandry to minimise lodging in wheat. Field Crops Research 67(1): 59–81.

Berry P M, Sterling M, Baker C J, Spink J and Sparkes D L. 2003. A calibrated model of wheat lodging compared with field measurements. Agricultural and Forest Meteorology 119(3): 167–80.

Bhandari A L, Ladha J K, Pathak H, Padre A T, Dawa D and Gupta R K. 2002. Yield and soil nutrient change in a long-term rice-wheat rotation in India. Soil Science Society of America Journal 66: 162–70.

Fliessbach A, Oberholzer H R, Gunst L and Mader P. 2007. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture Ecosystem and Environment 118: 273–84.

Gomez K A and Gomez A A. 1984. Statistical Procedures for Agricultural Research. John Wiley & Sons.

Guoping Z, Jianxing C and Bull D A. 2001. The effects of timing of N application and plant growth regulators on morphogenesis and yield formation in wheat. Plant Growth Regulation 35: 239–45.

Halvorson A D, Wienhold B J and Black A L. 2002. Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Science Society of America Journal 66(3): 906–12.

Hobbs P R. 2007. Conservation agriculture: what is it and why is it important for future sustainable food production? Journal of Agricultural Science 145(2): 127–33.

Joergensen R G, Mäder P and Fliessbach A. 2010. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biology and Fertility of Soil 46: 303–7.

Knapp J S, Harms C L and Volenece J J. 1987. Growth regulator effects on wheat culm non-structural and structural carbohydrates and lignin. Crop Science 27(6): 1201–5.

Leifeld J, Reiser R and Oberholzer H R. 2009. Consequences of conventional versus organic farming on soil carbon: results from a 27-year field experiment. Agronomy Journal 101: 1204–18.

Manna M C, Ghosh P K and Ganguly T K. 2003. Comparative performance of four sources of enriched phosphocompost and inorganic fertilizer application on yield, uptake of nutrients and biological activity of soil under soybean–wheat rotation. Food Agriculture and Environment 1(2): 203–8.

Mavi M S and Benbi D K. 2008. Potassium dynamics under integrated nutrient management in rice-wheat system. Agrochimica 52(2): 83–91.

Niu L Y, Feng S W, Ru Z G, Li G, Zhang Z P and Wang Z W. 2012. Rapid determination of single-stalk and population lodging resistance strengths and an assessment of the stem lodging wind speeds for winter wheat. Field Crops Research 139(1): 1–8.

Peake A S, Huth N I, Carberry P S, Raine S R and Smith R J. 2014. Quantifying potential yield and lodging-related yield gaps for irrigated spring wheat in sub-tropical Australia. Field Crops Research 158(2): 1–14.

Peng D, Chen X, Yin Y, Lu K, Yang W, Tang Y and Wang Z. 2014. Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellic acid. Field Crops Research 157: 1–7.

Pinthus M J. 1974. Lodging in wheat, barley, and oats: the phenomenon, its causes, and preventive measures. Advances in Agronomy 25: 209–63.

Pitre F, Cooke J and Mackay J. 2007. Short-term effects of nitrogen availability on wood formation and fibre properties in hybrid poplar. Trees Structure and Function 21: 249–59.

Rajala A, Peltosen-Sainio P, Onnola M and Jackson M. 2002. Effects of applying stem-shortening plant growth regulators to leaves on root elongation by seedlings of wheat, oat and barley: mediation by ethylene. Plant Growth Regulation 38(1): 51–9.

Roberts J and Srivastava L M. 2003. Plant growth and development hormones and the environment. Plant Growth Regulation 32: 56–71.

Shiferaw B, Smale M, Braun H J, Duveiller E, Reynolds M and Muricho G. 2013. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security 5(3): 291–317.

Stachecki S, Praczyk T and Adamczewski K. 2004. Adjuvant effects on plant growth regulators in winter wheat. Journal of Plant Protection Research 44(4): 365–71.

Tripathi S C, Sayre K D, Kaul J N and Narang R S. 2003. Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Research 84(3): 271–90.

Tripathi S C, Sayre K D, Kaul J N and Narang R S. 2004. Lodging behaviour and yield potential of spring wheat (Triticum aestivum L.): effects of ethephon and genotypes. Field Crops Research 87(2): 207–20.

Webster J R and Jackson L F. 1993. Management practices to reduce lodging and maximize grain yield and protein content of fall-sown irrigated hard red spring wheat. Field Crops Research 33(3): 249–59.

Wei F Z, Li J C, Wang C Y, Qu H J and Shen X S. 2008. Effects of nitrogenous fertilizer application model on culm lodging resistance in winter wheat. Acta Agronomica Sinica 34(6): 1080–5.

Zhang M, Wang H, Yi Y, Ding J, Zhu M, Li C, Guo W, Feng C and Zhu X. 2017. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.). PloS ONE 12(11): 45–9.

Zhang X, Chen S, Sun H, Wang Y and Shao L. 2010. Water use efficiency and associated traits in winter wheat cultivars in the North China Plain. Agricultural Water Management 97(8): 1117–25.