Viruses causing gastroenteritis
I. Wilhelmi¹, E. Romar² and A. Sánchez-Fauquier³

¹Servicio de Microbiología and ²Servicio de Pediatría, Hospital Severo Ochoa and ³Centro Nacional de Microbiología, Instituto de Salud Carlos III, Sección de Virus Productores de Gastroenteritis, Madrid, Spain

Acute gastroenteritis is one of the most common diseases in humans worldwide. Viruses are recognized as important causes of this disease, particularly in children. Since the Norwalk virus was identified as a cause of gastroenteritis, the number of viral agents associated with diarrheal disease in humans has steadily increased. Rotavirus is the most common cause of severe diarrhea in children under 5 years of age. Astrovirus, calicivirus and enteric adenovirus are also important etiologic agents of acute gastroenteritis. Other viruses, such as toroviruses, coronaviruses, picobirnaviruses and pestiviruses, are increasingly being identified as causative agents of diarrhea. In recent years, the availability of diagnostic tests, mainly immunoassays or molecular biology techniques, has increased our understanding of this group of viruses. The future development of a safe and highly effective vaccine against rotavirus could prevent, at least, cases of severe diarrhea and reduce mortality from this disease.

Keywords Viral gastroenteritis, acute diarrhea, rotaviruses, enteric adenoviruses, astroviruses, human caliciviruses, coronaviruses, toroviruses, picobirnaviruses

Accepted 12 June 2002

Clin Microbiol Infect 2003; 9: 247–262

INTRODUCTION

Acute gastroenteritis is one of the most common diseases in humans, and continues to be a significant cause of morbidity and mortality worldwide [1]. Children under 5 years of age are particularly prone, and it is calculated that, in this group, there are more than 700 million cases of acute diarrhea every year [2]. The mortality associated with gastroenteritis has been estimated to be 3–5 million cases per year, the majority of which occur in developing countries [3–5]. In the developed world, the impact of the illness is seen in its high morbidity and in the high incidence of hospitalization that this illness necessitates [6].

HISTORICAL BACKGROUND

Since the 1940s, viruses have been suspected of being important causes of gastroenteritis, as the etiology remained unknown in most cases [7,8]. However, it was not until 1972 that Kapikian et al. first identified a virus (Norwalk virus) in feces after an outbreak of diarrhea [9] as a cause of gastroenteritis. One year later, Bishop et al. observed the presence of rotavirus in the duodenal mucosa of children with gastroenteritis [10], and in 1975, astroviruses [11] and enteric adenoviruses were identified in the feces of children with acute diarrhea [12].

Since then, the number of viruses associated with acute gastroenteritis has steadily increased. Thus, coronaviruses [13], picobirnaviruses [14–16], pestiviruses [17] and toroviruses [18], which produce diarrhea in animals, are emerging as causes of viral gastroenteritis in humans, according to several studies [19–21].
DESCRIPTION OF THE AGENTS

Rotaviruses

Morphology
Rotaviruses are members of the Reoviridae family [22], and are characterized by their non-enveloped icosahedral structure and 70-nm diameter. When observed under an electron microscope, they have a ‘wheel’ shape [23,24] (Figure 1a). The capsid consists of a double protein layer; the outer capsid is composed of the structural proteins VP7 and VP4, and the inner capsid mainly of VP6. The core is found inside the inner capsid, and encloses the rotavirus genome, composed of 11 segments of double-stranded RNA. Given the segmented nature of the RNA genome, co-infection of cells with two different strains of rotavirus may result in reassortant virus, with RNA segments from each of the progenitors [25].

Each of the genomic segments encodes the structural VP proteins (VP1, VP2, VP3, VP4 (VP5 + VP8), VP6 and VP7) and the non-structural NSP proteins (NSP1, NSP2, NSP3, NSP4 and NSP5) [23]. Table 1 shows the characteristics of these proteins. Of particular interest is NSP4, since it has enterotoxin-like activity and can induce diarrhea in mice [26,27].

Classification
Rotaviruses are classified into groups, subgroups and serotypes according to the antigenic properties of the capsid proteins. Protein VP6 is the group reactivity determinant, with seven groups currently in existence, labeled A–G, and two subgroups, I and II [28]. Groups A, B and C are those which produce infection in humans. Classification into serotypes is based on the antigenic differences in the proteins of the outer capsid, VP7 and VP4. The first, a glycoprotein, determines the G-type specificity, and the second, the P-type specificity, owing to its protease sensitivity. At present, there are 15 G types [29], with G1, G2, G3 and G4 being the predominant ones throughout the

Figure 1 Electronmicrographs of: (a) human rotavirus; (b) enteric adenovirus; (c) human astrovirus with a diameter of 28 nm; (d) human calicivirus. Bar = 50 nm (Courtesy of Dr A. Sánchez-Fauquier).
Table 1 Characteristics of structural and non-structural rotavirus group A proteins

Genome segment	Protein encoded	Viral particle localization	Function
1	VP1	Core	RNA polymerase
2	VP2	Core	RNA binding
3	VP3	Core	Guanylyltransferase
4	VP4	Outer capsid (VP5 + VP8 subunits)	Viral hemagglutinin, neutralization antigen, P serotypes
			Proteolytic cell cleavage
5	NSP1	Non-structural	RNA binding
6	VP6	Inner capsid	Group and subgroup antigen
7, 8, 9	NSP3	Non-structural	RNA binding
7, 8, 9	VP7	Outer capsid	Glycoprotein (G serotypes), neutralization antigen
8	NSP2	Non-structural	Viral replication
10	NSP4	Non-structural	Enterotoxin-like activity, viral assembly
11	NSP5	Non-structural	RNA binding

world [6]. However, there have been reports of infections by unusual G types [30–35], and recently there have been reports of the emergence of serotype G9 in several countries, such as Brazil [32], Malawi [35], the USA [36,37], France [38], India [39], Argentina [40], the UK [41] and Australia [42].

Pathogenesis and immune response
Rotaviruses infect the mature enterocytes on the tips of small intestine villi and lead to villous epithelium atrophy and compensatory repopulation of the epithelium by immature secretor cells, with secondary hyperplasia of the crypts [43]. It has been proposed that cellular damage is secondary to villus ischemia [44]. The mechanism that induces the production of diarrhea is not well understood, although it appears to be mediated by the relative decrease of villous epithelium absorption in relation to the secretory capacity of the crypt cells [24]. There is also a loss of intestinal permeability to macromolecules such as lactose, secondary to a decrease in disaccharidase in the intestine. The enteric nervous system is stimulated by this virus, leading to the induction of intestinal water and electrolyte secretion [45].

The immunologic mechanisms responsible for protection against infection by rotavirus are still not well known. Several studies have shown that local intestinal immunity protects against successive severe episodes of diarrhea [46–48]. The presence of neutralizing antibodies directed towards the proteins VP4 or VP7 does not correlate with protection against this disease [49]. It has been reported that the first infection with rotavirus elicits a homotypic neutralizing antibody response, with heterotypic responses in subsequent infections [50]. It has recently been shown that protein NSP4 produces a cellular immunity-mediated response [51].

Enteric adenoviruses
Morphology
Human adenoviruses belong to the Adenoviridae family and, within the genus, the majority of enteric adenoviruses reported to date belong to subgenus F [52,53]. They are DNA viruses without an envelope, 70 nm in diameter, and with icosahedral symmetry (Figure 1). The protein capsid is composed of 252 capsomers—240 hexones and 12 pentones—and structures called fibers that protrude to the outside. The hexones contain proteins II, VI, VIII, and IX, which participate in the stability and assembly of the viral particle. The pentone proteins (III and IIIa) have the function of cellular penetration, and the fibers are hemagglutinins and are responsible for binding the virus to receptors (Figure 1b) [52–54]. There are at least eight proteins making up the core [55]; these maintain the integrity of the genome, and participate in enzymatic activity. The genome consists of a linear molecule of double-stranded DNA that represents 15% of the viral mass [53].

Classification
The enteric serotypes that are most frequently associated with gastroenteritis caused by adenovirus are 40 and 41, which belong to subgenus F. More rarely, serotypes 31, 12 and 18 of subgenus A...
[53] and serotypes 1, 2, 5 and 6 of subgenus C [52,56] have been involved in the etiology of acute
diarrhea.

Pathogenesis and immune response
In the same way as in gastroenteritis produced by
rotavirus, the lesions produced by serotypes 40
and 41 in the enterocytes lead to atrophy of the
villi and compensatory hyperplasia in the crypts,
with subsequent malabsorption and loss of fluids
[44,54]. After the infection, specific antibodies
develop in most cases, and non-neutralizing anti-
bodies are useful for measuring the immune
response. The specific type-neutralizing antibo-
dies can provide protection both in the current
illness and in reinfections by the same serotype,
although patients may continue to eliminate the
virus in their feces for months after an effective
humoral response [56].

Astroviruses
Morphology
In 1993, the Astroviridae family was established
with a single genus, the astrovirus, which encom-
passes human and animal viruses [57,58].

Astrovirus has been reported as small round
viruses of 28 nm with an appearance like that of a
five- or six-pointed star by direct visualization
with electron microscopy. The name stems from
the Greek astron, meaning star [11]. However, it
has recently been verified that this virus has a
different morphology, with an icosahedric appear-
ance, a diameter of 41 nm, and well defined spikes.
When these viruses are subjected to a high pH,
they transform and present the typical morphol-
ogy of the initially described star [59] (Figure 1c).

The genome of human astroviruses is composed
of single-stranded, positive-sense RNA which con-
tains three ‘open reading frames’ (ORFs). ORF1a
and ORF1b encode viral protease and polymerase,
respectively. ORF2 encodes protein capsid precu-
sor and is found at the 3’-terminus of the genome
[57,60].

The protein structure of astrovirus is not well
known at present. However, it seems that the precu-
sor of the capsid proteins, an 87-kDa poly-
protein, gives rise to the structural capsid proteins
VP32, VP29, and VP26 [61].

Trials with monoclonal antibodies against
human astrovirus suggest that VP26 and/or
VP29 may be important in the neutralization,
heterotypic immunity and binding of the virus
to the target cells [61,62]. These proteins, especially
VP26, seem to be responsible for the antigenic
variation observed among the different serotypes
[61].

Classification
Astroviruses are classified into serotypes based on
the reactivity of the capsid proteins with polyclonal
sera and monoclonal antibodies [57,63]. To
date, there have been reports of four neutralizing
monoclonal antibodies, developed by Sanchez-
Fauquier et al. against serotype 2 human astro-
ivirus [61] and by Bass and Upadhyayula against
serotype 1 astrovirus [62]. They all react with the
VP26 capsid protein, involved in the neutraliza-
tion of human astroviruses.

Astroviruses can also be classified into geno-
types on the basis of the nucleotide sequence of a
348-bp region of the ORF2, and there is a good
correlation with the serotypes [64]. There are seven
established genotypes, which correspond with
seven serotypes. The existence of an eighth geno-
type has been suggested, due to the sequence of a
putative serotype 8 [65]. Serotype 1 is predominant
in most studies, followed by 2, 3, 4 and 5. Serotypes
6, 7 and 8 are rarely detected [63,65–69].

Pathogenesis and immune response
The pathogenesis of the disease induced by astro-
ivirus has not yet been established, although it has
been suggested that viral replication occurs in
intestinal tissue [57,70]. Studies in adult volunteers
have not clarified the pathogenic mechanisms
[71,72]. In animal studies, atrophy of the intestinal
villi is observed, as well as inflammatory infiltrates
in the lamina propria [73], leading to osmotic
diarrhea.

Symptomatic astrovirus infection occurs mainly
in small children and the elderly, which suggests a
reduction in antibodies in recent years, but the
determinants of immunity are not well known
[57]. Studies in adult volunteers indicate that peo-
ple with detectable levels of antibodies do not
develop the illness [71].

Human caliciviruses
Morphology
Human caliciviruses are members of the Calicivir-
idae family, and two genera have been described,
the Norwalk-like viruses (NLVs) and Sapporo-like
viruses (SLVs) [74]. The virions are composed of a single structural capsid protein, with icosahedral symmetry [75]. This protein, composed of 180 molecules, folds into 90 dimers, which form a continuous shell with protrusions in the shape of an arch (Figure 1d). A key characteristic is the existence of 32 cup-shaped depressions, situated on the axes of the icosahedron, from whose Latin designation, calyx, the virus derives its name [76].

The genome of the NLVs consists of positive-sense, single-stranded RNA organized into three ORFs. ORF1 encodes the non-structural proteins, such as RNA-dependent RNA polymerase and helicase [77], ORF2 encodes the structural protein of the capsid, and ORF3 encodes for a small protein whose function is unknown [76]. The genome of the SLVs differs from the NLV genome in that the ORF1 encodes the non-structural proteins as well as the structural protein of the capsid [78,79]. ORF2 encodes a small protein of unknown function, and the significance of ORF3 is still uncertain.

Classification
The human caliciviruses genera (NLVs and SLVs) can be further divided into genetic clusters. The NLVs include Norwalk virus (the type species), Desert Storm virus, Southampton virus, Snow Mountain agent, Hawaii virus, Toronto virus, Bristol virus, and Jena virus. The SLVs includes Sapporo virus (the type species), Parkville virus, and London virus [80,81].

Pathogenesis and immune response

In studies carried out on volunteers, infection by calicivirus was observed to produce an expansion of the villi of the proximal small intestine. The epithelial cells remain intact, and there is shortening of the microvilli [82,83]. The mechanism by which diarrhea is produced is unknown, although it has been suggested that the delay in gastric emptying observed in Norwalk virus gastroenteritis may play a role [84].

Infection by the Norwalk virus induces a specific IgG, IgA and IgM serum antibody response, even if there has been previous exposure [83]. Two weeks after infection by the Norwalk virus, an increase in jejunal synthesis has been demonstrated for IgA [85], and most patients are resistant to re-infection for 4–6 months [83]. Nevertheless, a lack of long-term protection has been observed.

Other gastroenteritis-producing viruses

Torovirus

Torovirus is a genus within the Coronaviridae family. Torovirus was detected for the first time in the feces of patients with gastroenteritis in 1984 [18]. These viruses have an envelope of 100–140 nm, with a capsid of helicoidal symmetry and a single-stranded RNA genome of positive sense [86]. They are associated with persistent and acute diarrhea in children, and may represent an important cause of nosocomial diarrhea [19,87].

Coronavirus

Included in the Coronaviridae family, these viruses are between 60 and 220 nm, with helicoidal symmetry and a spiculated envelope that gives them the appearance of a crown. The genome is composed of positive monocatenary RNA [88,89]. Coronavirus was linked with diarrhea in humans for the first time in 1975, but studies have not yet been able to establish a definite etiologic role [90].

Picobirnaviruses

These are small viruses, without an envelope, 30–40 nm in diameter, with a capsid of icosahedral symmetry, and a genome made up of two or three segments of bicatenary RNA. They were identified for the first time by Pereira et al. in 1988 [91]. Since then, they have been found in a wide variety of animal species [14] and in both children and adults with diarrhea, including immunodepressed patients [92–96]. In a recent publication, however, this virus was not found in HIV-infected children with diarrhea [97].

CLINICAL ASPECTS

Viral diarrhea in children

Rotavirus is the main cause of severe diarrhea in children under 5 years of age, and causes more than 130 million episodes per year throughout the world, and between 600,000 and 870,000 deaths [98,99], the vast majority of which are in developing countries [100–102]. Several European studies point to rotavirus as the agent responsible for 20–60% of cases of gastroenteritis requiring hospitalization [103–108]. In Australia, similar figures have been reported [109], and in the USA it has been estimated that one in every 73 children will have been hospitalized because of diarrhea due to rotavirus A during the first 5 years of life [110].

© 2003 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI, 9, 247–262
As far as ‘non-group A’ rotavirus is concerned, group B rotavirus has been identified in epidemic outbreaks of severe diarrhea in adults in Southeast Asia since 1982 [111], and in symptomatic infections in children. Outbreaks of diarrhea due to group C rotavirus have been identified in Asia [112], Brazil [113], and Europe [114,115], and outbreaks of sporadic gastroenteritis caused by this virus in children have been observed in the USA [116], Japan [117], and the UK [118], with frequencies ranging from 1% to 6.8%.

Enteric adenoviruses present variable incidences of infection. In industrialized countries, the incidence varies from 1% to 8% [119–124], whereas in developing countries, figures of 2–31% have been published [125–128].

In the initial studies of astrovirus by electron microscopy carried out in several countries, the virus was detected in about 1% of cases [129–131]. At present, thanks to the development of enzyme immunoassay (EIA) techniques, which use monoclonal antibodies [132], incidences of 2–13% have been detected in children seen at hospitals [65,67,127,133–138]. In the community, astrovirus is responsible for 4–10% of cases of gastroenteritis [66,69,119,139,140], and has become the leading cause of this illness [141].

Human calicivirus was first identified as a cause of outbreaks of non-bacterial diarrhea, initially using electronmicroscopic techniques [9,142]. In recent studies, with the application of new assays such as EIA and reverse transcription–polymerase chain reaction (RT-PCR), our knowledge of the epidemiology of human calicivirus has changed, especially for Norwalk-type virus [76]. Thus, these viruses are recognized as the main agents responsible for outbreaks of non-bacterial diarrhea, and new estimates suggest that they represent the most common cause of illness with a food origin [143–147]. Similarly, recent studies investigating calicivirus in sporadic cases of gastroenteritis in children have found that Norwalk-type viruses comprise the second cause of viral gastroenteritis after rotavirus [119,148–150].

From the clinical point of view, acute viral gastroenteritis cannot be distinguished from that caused by bacteria, and in general it is a self-limiting process of diarrhea and vomiting, with a duration of 1–7 days, which may sometimes become prolonged or persistent [69,121,122,151,152].

The most common age of presentation of sporadic viral gastroenteritis is 6–24 months [7,139,153–155]. During the neonatal period, infection by rotavirus is mostly asymptomatic, possibly due to maternal protective factors and intestinal immaturity. Another factor could be the attenuated nature of certain strains, frequently detected in neonates with symptomatic and asymptomatic infections [153,155,156]. During the first 2 years of life, repeated rotavirus infections occur, 50% of which are asymptomatic [157–159]. Several studies have also shown the asymptomatic elimination in feces of adenovirus and astrovirus, and it is calculated that about 50% of infections by calicivirus are asymptomatic [122,133,139,141,150,154].

The severity of the infection, together with the need for hospitalization, is greater with gastroenteritis caused by group A rotavirus than with that associated with adenovirus [121,160,161], astrovirus [139,140,162] or calicivirus [119,149,150].

The viruses that produce gastroenteritis represent an important cause of nosocomial infection in pediatric admission units. Between 20% and 50% of cases of gastroenteritis caused by rotavirus in hospitals are considered to be of nosocomial origin [6,163,164], and nosocomial diarrhea has been described in 2–6% of children admitted [165,166]. Nosocomial infections by adenovirus and astrovirus also represent an important problem, as several studies have shown [69,136,167,168]. There are fewer data on the incidence of nosocomial infection due to calicivirus, although in the studies published it is calculated to be high, following group A rotavirus in frequency [130,167,169–171]. The prevalence and transmission of nosocomial infection are accounted for by the many asymptomatic patients who eliminate the virus in feces [57,172,173] and the environmental contamination that accompanies the relative resistance of these viruses to normal disinfectants [174,175].

Viral gastroenteritis in adults

Calicivirus is the main agent of viral gastroenteritis in adults, and generally produces epidemic outbreaks [143,176,177]. The cause of sporadic acute non-bacterial gastroenteritis has not been well studied in adults, although a viral origin is presumed, due to the similarity of the illness with the epidemics produced by calicivirus [176]. The detection of calicivirus antigen in the feces of patients with sporadic gastroenteritis has been infrequent, although a high seroprevalence of
antibodies against calicivirus has been found in young adults [178,179].

We do not know the frequency of sporadic gastroenteritis caused by rotavirus in adults either, as this is generally secondary to disease in a child, and it also occurs as travelers’ diarrhea [180], with some cases of severe diarrhea and death in the elderly [181].

Epidemic outbreaks of diarrhea in adults caused by infrequent serotypes of astrovirus have been reported [129,182], and more sensitive techniques such as RT-PCR are likely to reveal a greater prevalence of sporadic gastroenteritis in adults.

Viral gastroenteritis in the immunocompromised patient

The main viral causes of severe gastroenteritis in immunosuppressed patients are cytomegalovirus (CMV) and Epstein–Barr virus (EBV), which mainly affect patients with AIDS and transplant recipients [176,183,184]. CMV is a frequent pathogen in diarrhea associated with AIDS with CD4 counts below 100 cells/mm³ [185,186], although the introduction of antiretroviral therapy has drastically reduced its frequency in this group of patients [176]. Other viruses that produce HIV-associated gastroenteritis include astrovirus, picobirnavirus, calicivirus and adenovirus [92,93]. There is evidence of gastroenteritis due to astrovirus and adenovirus in both child and adult bone marrow transplant recipients [187,188]. Similarly, torovirus has been associated with diarrhea in immunocompromised children [19].

DETECTION OF GASTROENTERITIS-PRODUCING VIRUSES

Detection of gastroenteritis-producing viruses has traditionally been based on techniques of direct visualization using electron microscopy, which, although it is still useful, is limited to reference laboratories [6,23,76,189,190].

Cell culture of these viruses is not considered to be useful for diagnostic purposes, as it is technically cumbersome and slow. Propagation in cellular media of calicivirus, human torovirus or coronavirus has not yet been achieved [76,189].

The progressive incorporation of more sensitive techniques for antigen detection in feces based on immunoassay techniques, as well as the development of molecular biology techniques, has improved the diagnosis of this virus and contributed to an appreciation of its clinical importance.

Antigen detection techniques

In recent years, a wide variety of techniques for the detection of antigen in fecal samples have been developed. These are based on EIA, agglutination with latex particles (LA) and, more recently, immunochromatography (ICG), all of which are available commercially for group A rotavirus, adenovirus and astrovirus [6,189].

EIA has proven to be more sensitive than direct visualization by electron microscopy [191,192], and also has a high specificity in the detection of group A rotavirus, especially when monoclonal antibodies are used [193,194]. The LA technique has lower sensitivity than EIA [6,194]. ICG showed high sensitivity and results comparable to those achieved with EIA, and is rapid and technically very simple [195,196].

Group C rotavirus can be detected in fecal samples by means of recently described immunoanalysis techniques, which use different antigens and monoclonal antibodies [116,118,197] and are more sensitive than electron microscopy.

In the case of adenoviruses, many of these techniques detect group common antigen, and several studies have shown that between 45% and 93% of the samples positive for the group correspond to enteric serotypes 40 and 41 [121,122,198,199].

At present, EIA techniques are available for the detection of astroviruses, due to the development of monoclonal antibodies against this virus [62,132,168,200]. Some have recently been marketed, with good sensitivity and specificity compared with electron microscopy and RT-PCR [67,201].

Recently, EIA methods have been developed with monoclonal and polyclonal antibodies for the detection of human calicivirus. These methods have promise, although their use currently seems to be limited to research laboratories [76,202].

Molecular biology techniques

PCR techniques have been developed for many of the viruses that produce gastroenteritis, although they are not used routinely. These techniques are more sensitive than immunoassay methods. They are useful for the confirmation of the results of other techniques, and for the study of samples
such as cerebrospinal fluid or serum, and environmental samples [203–208].

In the case of human calicivirus, RT-PCR is the most sensitive and widely used technique at present for the detection of these viruses [209–212].

Molecular techniques are also used to genotype these viruses [24,31,63,64]. RT-PCR techniques have been developed to genotype group A rotavirus with type-specific primers for genotypes G and P [213,214].

PREVENTION OF DISEASE

Treatment of viral gastroenteritis is symptomatic, and its aim is to prevent or treat the dehydration secondary to the disease. For this, it is important to start liquid intake early, in order to correct the water deficit and combat the losses due to vomiting and diarrhea [215].

Interruption of transmission of the infection is extremely important, especially in hospitals and centers which care for small children. Therefore, it is necessary to reinforce hygiene measures and clean all surfaces with suitable disinfectants [105,165,174].

Studies with vaccines against group A rotavirus began in 1982. The first vaccine developed was the tetravalent human–rhesus reassortant vaccine, which induces protection against the four main rotavirus serotypes, G1–G4. Efficacy studies showed a reduction in the appearance of severe gastroenteritis caused by rotavirus of between 69% and 91% in vaccinated children [216], and the vaccine was approved in the USA in 1998 [217]. However, the detection of an increase in the risk of intussusception after vaccination led to its suspension [218,219]. At present, plasmidic DNA and antigenic vaccines, which code for specific viral proteins, are being investigated [220].

The wide variety found among circulating genotypes and serotypes of group A rotavirus in studies from around the world leads us to examine the need to cover more serotypes in the development of new vaccines [34,35,40,42, 221–223].

REFERENCES

1. Glass RI, Kilgore PE. Etiology of acute viral gastroenteritis. In: Gracey M, Walker JA, eds. Diarrheal disease. Nestlé Nutrition Workshop Series. Philadelphia: Lippincott-Raven, 1997: 39–54.

2. Snyder JD, Merson MH. The magnitude of the global problem of acute diarrhoeal disease: a review of active surveillance data. Bull WHO 1982; 60: 605–31.

3. Bern C, Glass RI. Impact of diarrhoeal disease worldwide. In: Kapikian AZ, ed. Viral infection of gastrointestinal tract. New York: Marcel Dekker, 1994: 1–26.

4. Guerrant RL, Hughes JM, Lima NL, Crane J. Diarrhea in developed and developing countries: magnitude, special settings, and etiologies. Rev Infect Dis 1990; 12(suppl 1): S41–50.

5. Warren KS. Tropical medicine or tropical health. The Health Clark lectures 1988. Rev Infect Dis 1990; 12: 142–56.

6. Christensen ML. Rotaviruses. In: Murray PR, Baron EJ, Pfaffer MA, Tenover FC, Yolken RH, eds. Manual of clinical microbiology. Washington: ASM Press, 1999: 999–1004.

7. Kapikian AZ. Overview of viral gastroenteritis. Arch Virol Suppl 1996; 12: 7–19.

8. Parashar UD, Bresee JS, Gentsch JR, Glass RI. Rotavirus. Emerg Infect Dis 1998; 4: 561–70.

9. Kapikian AZ, Wyatt RG, Dolin R, Thornhill TS, Kalica AR, Chanock RM. Visualization by immune electron microscopy of a 27 nm particle associated with acute infectious non-bacterial gastroenteritis. J Virol 1972; 10: 1075–81.

10. Bishop RF, Davidson GP, Holmes IH, Ruck BJ. Virus particles in epithelial cells of duodenal mucosa from children with acute non bacterial gastroenteritis. Lancet 1973; 2: 1281–3.

11. Madeley CR, Cosgrove BP. 28 nm particles in faeces in infantile gastroenteritis. Lancet 1975; 2: 451–2.

12. Flewett TH, Bryden AS, Davies H, Morris CA. Epidemic viral enteritis in a long-stay children’s ward. Lancet 1975; 1: 4–5.

13. Cau EOK, Paver K, Clarke SKR. Coronavirus particles in faeces from patients with gastroenteritis. Lancet 1975; i: 1192.

14. Chandra R. Picobirnavirus, a novel group of undescribed viruses of mammals and birds: a minireview. Acta Virol 1997; 41: 59–62.

15. Grohmann GS, Glass RI, Pereira HG, Monroe SS, Hightower AW, Bryan RT. Enteric virus and diarrhea in HIV infected patients. N Engl J Med 1993; 329: 14–20.

16. Ludert JE, Liprandi F. Identification of viruses with bi- and trisegmented double-stranded RNA genome in faeces of children with gastroenteritis. Res Virol 1993; 144: 219–24.

17. Yolken RH, Dubovi E, Leister F, Reid R, Almeido-Hill J, Santosham M. Infantile gastroenteritis associated with excretion of pestiviruses antigens. Lancet 1989; i: 517–20.

18. Beards GM, Brown WG, Green J, Flewett TH. An enveloped virus in stools of children and adults.
with gastroenteritis that resembles de Breda virus of calves. J Med Virol 1986; 20: 67–78.

19. Jamieson F, Wang EL, Bain C et al. Human torovirus: a new nosocomial gastrointestinal pathogen. J Infect Dis 1998; 178: 1263–9.

20. Kapikian AZ. Viral gastroenteritis. In: Evans AS, Kaslow RA, eds. Viral infections of humans: epidemiology and control. New York: Plenum Medical Book Company, 1997: 285–343.

21. Kilgore PE, Glass RI. Gastrointestinal syndromes. In: Richman DD, Whitley RJ, Hayden FG, eds. Clinical virology. New York: Churchill Livingstone, 1997: 55–67.

22. Matthews REF. The classification and nomenclature of viruses: summary of results of meetings of the International Committee on Taxonomy of Viruses in The Hague. Intervirology 1979; 11: 133–5.

23. Kapikian AZ, Chanock RM. Rotaviruses. In: Fields BN, Knipe DM, Howley PM, eds. Virology, 3rd edn. Philadelphia: Lippincott-Raven Press, 1996: 1657–708.

24. Offit PA, Clark HF. Rotavirus. In: Mandell GL, Bennett JE, Dolin R, eds. Principles and practice of infectious diseases. New York: Churchill Livingstone, 1995: 1448–55.

25. Desselberger U. Genome rearrangements of rotaviruses. Arch Virol Suppl 1996; 12: 37–51.

26. Ball JM, Tian P, Zeng CQY, Morris AP, Estes MK. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 1996; 272: 101–4.

27. Kirkwood CD, Palombo EA. Genetic characterization of the rotavirus nonstructural protein, NSP4. Virology 1997; 236: 258–65.

28. Estes MK, Cohen J. Rotavirus gene structure and function. Microbiol Rev 1989; 53: 410–49.

29. Rao CD, Gowda K, Reddy BS. Sequence analysis of VP4 and VP7 genes of nontypeable strains identifies a new pair of outer capsid proteins representing novel P and G genotypes in bovine rotaviruses. Virology 2000; 276: 104–13.

30. Beards G, Xu L, Ballard A, Desselberger U, McCrae MA. A serotype 10 human rotavirus. J Clin Microbiol 1992; 30: 1432–5.

31. Gouvea V, Santos N. Rotavirus serotype G5: an emerging cause of epidemic childhood diarrhea. Vaccine 1999; 17: 1291–2.

32. Santos N, Lima RCC, Pereira CFA, Gouvea V. Detection of rotavirus types G8 and G10 among Brazilian children with diarrhea. J Clin Microbiol 1998; 36: 2727–9.

33. Steele AD, Parker SP, Peenze I, Pager CT, Taylor MB, Cubitt WD. Comparative studies of human rotavirus serotype G8 strains recovered in South Africa and the United Kingdom. J Gen Virol 1999; 80: 3029–34.

34. Adah MI, Wade A, Taniguchi K. Molecular epidemiology of rotaviruses in Nigeria. Detection of unusual strains with G2 P[6] and G8P[1] specificities. J Clin Microbiol 2001; 39: 369–75.

35. Cunliffe NA, Gondwe JS, Graham SM et al. Rotavirus strain diversity in Blantyre, Malawi, from 1997 to 1999. J Clin Microbiol 2001; 39: 836–43.

36. Griffin DD, Kirkwood CD, Parashar UD et al. Surveillance of rotavirus strains in the United States: identification of unusual strains. J Clin Microbiol 2000; 38: 2784–7.

37. Ramachandran M, Gentsch JR, Parashar UD et al. Detection and characterization of novel rotavirus strains in the United States. J Clin Microbiol 1998; 36: 3223–9.

38. Brown F, Fromatin C, Aho S, Pothier P, Kohli E. G and P genotyping of rotavirus strains circulating in France over a three year period: detection of G9 and P6 strains at low frequencies. J Clin Microbiol 2000; 38: 1681–3.

39. Unicomb LE, Podder G, Gentsch JR et al. Evidence of high-frequency genomic reassortment of group A rotavirus strains in Bangladesh: emergence of type G9 in 1995. J Clin Microbiol 1999; 37: 1885–91.

40. Bok K, Palacios G, Sijvager K, Matson D, Gómez J. Emergence of G9 P[6] human rotaviruses in Argentina: phylogenetic relationships among G9 strains. J Clin Microbiol 2001; 39: 4020–5.

41. Iturria-Gomara M, Cubitt D, Steele D et al. Characterization of rotavirus G9 strain isolated in the UK between 1995 and 1998. J Med Virol 2000; 61: 510–17.

42. Palombo EA, Masendycz PJ, Bugg HC, Bogdanic-Sakran N, Barnes GL, Bishop RF. Emergence of serotype G9 human rotavirus in Australia. J Clin Microbiol 2000; 38: 1305–6.

43. Salim AF, Phillips AD, Walker-Smith JA, Farthing MJG. Sequential changes in small intestinal structure and function during rotavirus infection in neonatal rats. Gut 1995; 36: 231–8.

44. Farthing MJG. Acute diarrhea: pathophysiology. In: Gracey M, Walker-Smith JA, eds. Diarrheal disease. Nestlé Nutrition Workshop Series. Philadelphia: Lippincott-Raven, 1997: 55–73.

45. Lundgren O, Perigrin AT, Persson K, Kordasti S, Uhnov I, Svensson L. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 2000; 287: 491–5.

46. Bishop RF, Bugg HC, Masendycz PJ, Lund JS, Gorrell RJ, Barnes GL. Serum, fecal, and breast milk rotavirus antibodies as indices of infection in mother–infant pairs. J Infect Dis 1996; 174(suppl1): S22–9.

47. Colomina J, Raga J, Gil MT, Buesa J. Virus-specific serum and fecal antibodies response in children with acute rotavirus gastroenteritis. Enferm Infecc Microbiol Clin 1998; 16: 55–60.

© 2003 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI, 9, 247–262
48. Burns WB, Siadat-Pajouh M, Krishnamey AA, Greenberg HB. Protective effect of rotavirus VP6 specific IgA monoclonal antibodies that lack conventional neutralizing activity. *Science* 1996; 272: 104–7.

49. Ward RL. Mechanisms of protection against rotavirus in humans and mice. *J Infect Dis* 1996; 174(suppl 1): S51–8.

50. Gorrell RJ, Bishop RF. Homotypic and heterotypic serum neutralizing antibody response to rotavirus proteins following natural primary infection and reinfection in children. *J Med Virol* 1999; 57: 204–11.

51. Johansen K, Hinkula J, Espinoza F et al. Humoral and cell-mediated immune responses in humans to the NSP4 enterotoxin of rotavirus. *J Med Virol* 1999; 59: 369–77.

52. Baum SG. Adenovirus. In: Mandell GL, Bennet JE, Dolin R, eds. *Principles and practice of infectious diseases*. New York: Churchill Livingstone, 2000: 1624–30.

53. Brown M, Grydsuk JD, Fortsas E, Petric M. Structural features unique to enteric adenoviruses. *Arch Virol Suppl* 1996: 12: 301–7.

54. Wadell G, Allard A, Hierholzer JC. Adenoviruses. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. *Manual of clinical microbiology*. Washington: ASM Press, 1999: 970–82.

55. Shenk T. Adenoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM, eds. *Virology*, 3rd edn. Philadelphia: Lippincott-Raven, 1996: 2111–48.

56. Horwitz MS. Adenoviruses. In: Fields BN, Knipe DM, Howley PM, eds. *Virology*, 3rd edn. Philadelphia: Lippincott-Raven, 1996: 2149–71.

57. Matsui SM, Greenberg HB. Astroviruses. In: Fields BN, Knipe DM, Howley PM, eds. *Virology*, 3rd edn. Philadelphia: Lippincott-Raven, 1996: 811–24.

58. Monroe SS, Jiang B, Stine SE, Koopmans M, Glass RI. Subgenomic RNA sequence of human astrovirus supports classification of Astroviridae as a new family of RNA viruses. *J Virol* 1993; 67: 3611–14.

59. Risco C, Carrascosa JL, Pedregosa AM, Humphrey CD, Sánchez-Fauquier A. Ultrastructure of human astrovirus serotype 2. *J Gen Virol* 1995; 76: 2075–80.

60. Carter MJ, Willcocks MM. The molecular biology of astroviruses. *Arch Virol Suppl* 1996: 12: 277–85.

61. Sanchez-Fauquier A, Carrascosa AL, Carrascosa JL et al. Characterization of a human astrovirus serotype 2 structural protein (VP26) that contains an epitope involved in virus neutralization. *Virology* 1994; 201: 312–20.

62. Bass DM, Upadhyayula U. Characterization of human serotype 1 astrovirus-neutralizing epitopes. *J Virol* 1997; 71: 8666–71.

63. Lee TW, Kurtz JB. Prevalence of human astrovirus serotypes in the Oxford region 1976–92, with evidence for two new serotypes. *Epidemiol Infect* 1994; 112: 187–93.

64. Noel JS, Lee TW, Kurtz JB, Glass RI, Monroe SS. Typing of human astroviruses from clinical isolates by enzyme immunoassay and nucleotide sequencing. *J Clin Microbiol* 1995; 33: 797–801.

65. Mustafa H, Palombo EA, Bishop RF. Epidemiology of astrovirus infection in young children hospitalized with acute gastroenteritis in Melbourne, Australia, over a period of four consecutive years, 1995 to 1998. *J Clin Microbiol* 2000; 38: 1058–62.

66. Gaggero A, O’Ryan M, Noel JS et al. Prevalence of astrovirus infection among Chilean children with acute gastroenteritis. *J Clin Microbiol* 1998; 36: 3691–3.

67. McIver CJ, Palombo EA, Dooltree JC, Mustafa H, Marshall JA, Rawlinson WD. Detection of astrovirus gastroenteritis in children. *J Virol Method* 2000; 84: 99–105.

68. Palombo EA, Bishop RF. Annual incidence, serotype distribution, and genetic diversity of human astrovirus isolates from hospitalized children in Melbourne, Australia. *J Clin Microbiol* 1996; 34: 1750–3.

69. Unicomb LE, Banu NN, Azim T et al. Astrovirus infection in association with acute, persistent and nosocomial diarrhea in Bangladesh. *Pediatr Infect Dis J* 1998; 17: 611–14.

70. Phillips AD, Rice SJ, Walker-Smith JA. Astrovirus within human small intestinal mucosa. *Gut* 1982; 23: 923–4.

71. Kurtz JB, Lee TW, Craig JW, Reed SE. Astrovirus infection in volunteers. *J Med Virol* 1979; 3: 221–30.

72. Midthun K, Greenberg HB, Kurtz JB, Gary GW, Lin FC, Kapikian AZ. Characterization and seroepidemiology of a type 5 astrovirus associated with an outbreak of gastroenteritis in Marin County, California. *J Clin Microbiol* 1993; 31: 955–62.

73. Treanor JJ, Dolin R. Astroviruses, toroviruses, and picobirnaviruses. In: Mandell GL, Bennet JE, Dolin R, eds. *Principles and practice of infectious diseases*. New York: Churchill Livingstone, 2000: 1956–8.

74. Berke T, Golding B, Jiang X et al. Phylogenetic analysis of caliciviruses. *J Med Virol* 1997; 52: 419–24.

75. Prasad BVV, Hardy ME, Dokland T, Bella J, Rossmann MG, Estes MK. X-ray crystallographic structure of the Norwalk virus capsid. *Science* 1999; 286: 287–90.

76. Atmar RL, Estes MK. Diagnosis of noncultivatable gastroenteritis viruses, the human calicivirus. *Clin Microbiol Rev* 2001; 14: 15–37.

77. Seah E, Marshall JA, Wright PJ. Open reading frame 1 of Norwalk-like virus Camberwell:
completion of sequence and expression in mammalian cells. *J Virol* 1999; 73: 10531–5.
78. Liu BL, Clarke NI, Caul EO, Lambden PR. Human enteric caliciviruses have a unique genome structure and are distinct from the Norwalk-like viruses. *Arch Virol* 1995; 140: 1345–56.
79. Liu BL, Clarke NI, Caul EO, Lambden PR. The genomic 5′-terminus of Manchester calicivirus. *Virus Genes* 1995; 15: 25–8.
80. Green KY, Ando T, Balayan MS et al. Taxonomy of caliciviruses. *J Infect Dis* 2000; 181(suppl 2): S322–30.
81. Ando T, Noel JS, Frankhauser RL. Genetic classification of Norwalk-like viruses. *J Infect Dis* 2000; 181(suppl 2): S336–48.
82. Schreiber DS, Blacklow NR, Trier JS. The small intestinal lesion induced by Hawaii agent acute infectious nonbacterial gastroenteritis. *J Infect Dis* 1974; 129: 705–8.
83. Treanor JJ, Dolin R. Norwalk virus and other caliciviruses. In: Mandell GL, Bennet JE, Dolin R, eds. *Principles and practice of infectious diseases*. New York: Churchill Livingstone, 2000: 1949–56.
84. Meeroff JC, Schreiber DS, Trier JS, Blacklow NR. Abnormal gastric motor function in viral gastroenteritis. *Ann Intern Med* 1980; 92: 370–3.
85. Agus S, Falchuk ZM, Sessoms CS et al. Increased jejunal IgA synthesis in vitro during acute infectious non bacterial gastroenteritis. *Am J Dig Dis* 1974; 19: 127–31.
86. Horzinek MC. Molecular evolution of corona and toroviruses. *Adv Exp Med Biol* 1999; 473: 6172.
87. Koopmans M, Goosen ESM, Lima AAM et al. Association of rotavirus with acute and persistent diarrhea in children. *Pediatr Infect Dis J* 1997; 16: 504–7.
88. McIntosh K. Coronaviruses. In: Mandell GL, Bennett JE, Dolin R, eds. *Principles and practice of infectious diseases*. Philadelphia: Churchill Livingstone, 2000: 1767–70.
89. Holmes KV, Lai MMC. Coronavirusiae: the viruses and their replication. In: Fields BN, Kipe DM, Howley PM, eds. *Virology*. Philadelphia: Lippincott-Raven, 1995: 1075–93.
90. Glass RI. Other viral agents of gastroenteritis. In: Blaser MJ, Smith PD, Raudin JL, Greenberg HB, Guerrant RL, eds. *Infections of the gastrointestinal tract*. New York: Raven Press, 1995: 1055–64.
91. Pereira HG, Flewett TH, Candeias JAN, Barth OM. A virus with a bisegmented double-stranded RNA genome in rat intestines. *J Gen Virol* 1988; 69: 2749–54.
92. Grohmann GS, Glass RI, Pereira HG et al. Enteric viruses and diarrhea in HIV infected patients. *N Engl J Med* 1993; 329: 1420.
93. Giordano MO, Martinez LC, Rinaldi D et al. Diarrhea and enteric emerging viruses in HIV infected patients. *AIDS Res Hum Retroviruses* 1999; 15: 1427–32.
94. Gonzalez GG, Pujol FH, Liprandi F, Deibis L, Ludert JE. Prevalence of enteric viruses in human immunodeficiency virus seropositive patients in Venezuela. *J Med Virol* 1998; 55: 288–92.
95. Gallimore CL, Appleton H, Lewis D, Green J, Brown DW. Detection and characterization of bisegmented double stranded RNA viruses (picobirnaviruses) in human fecal specimens. *J Med Virol* 1995; 45: 135–40.
96. Cascio A, Bosco M, Giammanco A, Ferraro D, Arista S. Identification of picobirnavirus from feces of Italian children suffering from acute diarrhea. *Eur J Epidemiol* 1996; 12: 545–7.
97. Liste MB, Natera I, Suarez JA, Pujol FH, Liprandi F, Ludert JE. Enteric virus infection and diarrhea in healthy and human immunodeficiency virus infected children. *J Clin Microbiol* 2000; 38: 2873–7.
98. Glass RI, Gentsch J, Smith JC. Rotavirus vaccines: success by reassortment. *Science* 1994; 265: 1389–91.
99. Glass RI, Bressee JS, Parashar UD, Holman RC, Gentsch JR. First rotavirus vaccines licensed: is there really a need? *Acta Paediatr Suppl* 1999; 88: 2–8.
100. Cama RI, Parashar UD, Taylor DN et al. Enteropathogens and other factors associated with severe disease in children with acute watery diarrhea in Lima, Peru. *J Infect Dis* 1999; 179: 1139–44.
101. Cunliffe NA, Kilgore PE, Bresee JS et al. Epidemiology of rotavirus diarrhea in Africa: a review to assess the need for rotavirus immunization. *Bull WHO* 1998; 76: 525–37.
102. Unicombe LE, Kilgore PE, Faruque ASG et al. Anticipating rotavirus vaccines: hospital-based surveillance for rotavirus diarrhea and estimates of disease burden in Bangladesh. *Pediatr Infect Dis J* 1997; 16: 947–51.
103. Caprioli A, Pezzella C, Morelli R et al. Enteropathogens associated with childhood diarrhea in Italy. *Pediatr Infect Dis J* 1996; 15: 876–83.
104. Johansen K, Bennet R, Bondesson K et al. Incidence and estimates of the disease burden of rotavirus in Sweden. *Acta Paediatr Suppl* 1999; 88: 20–3.
105. Matson DO, Estes MK. Impact of rotavirus infection at a large pediatric hospital. *J Infect Dis* 1990; 162: 598–604.
106. Mrukowicz JZ, Krobicka B, Duplaga M et al. Epidemiology and impact of rotavirus diarrhoea in Poland. *Acta Paediatr Suppl* 1999; 88: 53–60.
107. Ruuska T, Vesikari T. A prospective study of acute diarrhoea in Finnish children from birth to 2½ years of age. *Acta Paediatr Scand* 1991; 80: 500–7.
108. Szűcs G, Új M, Mihály I, Deák J. Burden of human rotavirus-associated hospitalizations in three
geographic regions of Hungary. Acta Paediatr Suppl 1999; 88: 61–5.
109. Barnes GL, Uren U, Stevens KB, Bishop RF. Etiology of acute gastroenteritis in hospitalized children in Melbourne, Australia, from April 1980 to March 1993. J Clin Microbiol 1998; 36: 133–8.
110. Glass RI, Kilgore PE, Holman RC et al. The epidemiology of rotavirus diarrhea in the United States: surveillance and estimates of disease burden. J Infect Dis 1996; 174(suppl 1): S5–11.
111. Fang ZY, Ye Q, Ho MS et al. Investigation of an outbreak of adult diarrhea rotavirus in China. J Infect Dis 1989; 160: 948–53.
112. Otsu R. A mass outbreak of gastroenteritis associated with group C rotavirus infection in schoolchildren. Comp Immunol Microbiol Infect Dis 1998; 21: 75–80.
113. Souza DF, Kisielius JJ, Ueda M et al. An outbreak of group C rotavirus gastroenteritis among adults living in Valentin Gentil, Sao Paulo state, Brazil. J Diarrheal Dis Res 1998; 16: 59–65.
114. Bonsdorf CHV, Svensson L. Human serogroup C rotavirus in Finland. Scand J Infect Dis 1988; 20: 475–8.
115. Caul EO, Ashley CR, Darville JM, Bridger JC. Group C rotavirus associated with fatal enteritis in a family outbreak. J Med Virol 1990; 30: 201–5.
116. Jiang B, Denney FH, Spangenberg S, Gentsch JR, Glass RI. First detection of group C rotavirus in fecal specimens of children with diarrhea in the United States. J Infect Dis 1995; 172: 45–50.
117. Kuzuya M, Fujii R, Hamano M et al. Survey of human group C rotaviruses in Japan during the winter of 1992 to 1993. J Clin Microbiol 1998; 36: 6–10.
118. James VLA, Lambden PR, Caul EO, Clarke IN. Enzyme-linked immunosorbent assay based on recombinant human group C rotavirus inner capsid protein (VP6) to detect human group C rotaviruses in fecal samples. J Clin Microbiol 1998; 36: 3178–81.
119. Bonf F, Fascia P, Dauvergne M et al. Prevalence of group A rotavirus, human calicivirus, astrovirus, and adenovirus type 40 and 41 infections among children with acute gastroenteritis in Dijon, France. J Clin Microbiol 1999; 37: 3055–8.
120. De Jong JC, Bijlsma K, Wermenbol AG et al. Detection, typing, and subtyping of enteric adenoviruses 40 and 41 from fecal samples and observation of changing incidences of infections with these types and subtypes. J Clin Microbiol 1993; 31: 1562–9.
121. Grinwood K, Carzino R, Narnes GL, Bishop RF. Patients with enteric adenovirus gastroenteritis admitted to an Australian pediatric teaching hospital from 1981 to 1992. J Clin Microbiol 1995; 33: 131–6.
122. Kotloff KL, Losonsky GA, Morris JG, Wasserman SS, Singh-Naz N, Levine MM. Enteric adenovirus infection and childhood diarrhea: an epidemiologic study in three clinical settings. Pediatrics 1989; 84: 219–25.
123. Shinozaki T, Araki K, Fujita Y, Kobayashi M, Tajima T, Abe T. Epidemiology of enteric adenoviruses 40 and 41 in acute gastroenteritis in infants and young children in the Tokyo area. Scand J Infect Dis 1991; 23: 543–7.
124. Wood DJ, Longhurst D, Killough RJ, David TJ. One-year prospective cross-sectional study to assess the importance of group F adenovirus infections in children under 2 years admitted to hospital. J Med Virol 1988; 26: 429–35.
125. Cruz JR, Cáceres P, Cano F, Flores J, Bartlett A, Torín B. Adenovirus types 40 and 41 and rotaviruses associated with diarrhea in children from Guatemala. J Clin Microbiol 1990; 28: 1780–4.
126. Kim K-H, Yang J-M, Joo S-I, Cho Y-G, Glass RI, Cho Y-J. Importance of rotavirus and adenovirus types 40 and 41 in acute gastroenteritis in Korean children. J Clin Microbiol 1990; 28: 2279–84.
127. Qiao H, Nilsson M, Abreu ER et al. Viral diarrhea in children in Beijing, China. J Med Virol 1999; 57: 390–6.
128. Stiewen KE, Mos EN, Yanaguita RM et al. Viral, bacterial and parasitic pathogens associated with severe diarrhoea in the city of Sao Paulo, Brazil. J Diarrhoeal Dis Res 1993; 11: 148–52.
129. Glass RI, Noel J, Mitchell D et al. The changing epidemiology of astrovirus-associated gastroenteritis: a review. Arch Virol Suppl 1996; 12: 287–300.
130. Lew JF, Glass RI, Petric M et al. Six year retrospective surveillance of gastroenteritis viruses identified at ten electron microscopy centers in the United States and Canada. Pediatr Infect Dis J 1990; 9: 709–14.
131. Monroe SS, Glass RI, Noah N et al. Electronmicroscopic reporting of gastrointestinal viruses in the United Kingdom. J Med Virol 1991; 33: 193–8.
132. Herrmann JE, Nowak NA, Perron-Henry DM, Hudson RW, Cubitt WD, Blacklow NR. Diagnosis of astrovirus gastroenteritis by antigen detection with monoclonal antibodies. J Infect Dis 1990; 161: 226–9.
133. Cruz JR, Bartlett AV, Herrmann JE, Cáceres P, Blacklow NR, Cano F. Astrovirus-associated diarrhea among Guatemalan ambulatory rural children. J Clin Microbiol 1992; 30: 1140–4.
134. Gómez López A, Diez R, Coperias JL, Ladrón de Guevara C. Astrovirus infection in children with gastroenteritis. Enferm Infecc Microbiol Clin 2001; 19: 199–201.
135. López L, Castillo FJ, Fernández MA et al. Astrovirus infection among children with gastroenter-
itis in the city of Zaragoza, Spain. Eur J Clin Microbiol Infect Dis 2000; 19: 545–7.
136. Kotloff KL, Herrmann JE, Blacklow NR et al. The frequency of astrovirus as a cause of diarrhea in Baltimore children. Pediatr Infect Dis J 1992; 11: 587–9.
137. Lew JF, Moe CL, Monroe SS et al. Astrovirus and adenovirus associated with diarrhea in children in day care settings. J Infect Dis 1991; 164: 673–8.
138. Guix S, Caballero S, Villena C et al. Molecular epidemiology of astrovirus infection in Barcelona, Spain. J Clin Microbiol 2002; 40: 133–9.
139. Guerrero ML, Noel JS, Mitchell DK et al. A prospective study of astrovirus diarrhea of infancy in Mexico city. Pediatr Infect Dis J 1998; 17: 723–7.
140. Pang XL, Vesikari T. Human-astrovirus associated gastroenteritis in children under 2 years of age followed prospectively during a rotavirus vaccine trial. Acta Paediatr 1999; 88: 532–6.
141. Maldonado Y, Cantwell M, Old M et al. Population-based prevalence of symptomatic and asymptomatic astrovirus infection in rural Mayan infants. J Infect Dis 1998; 178: 334–9.
142. Kapikian AZ, Estes MK, Chanock RM. Norwalk group of viruses. In: Fields BN, Knipe DM, Howley PM, eds. Virology, 3rd edn. Philadelphia: Lippincott-Raven, 1996: 785–810.
143. Frankhauser RL, Noel JS, Monroe SS, Ando TA, Glass RI. Molecular epidemiology of Norwalk-like viruses in outbreaks of gastroenteritis in the United States. J Infect Dis 1998; 178: 1571–8.
144. Koopmans M, Vinjé J, de Wit M, Leenen I, Poel W, Duynhoven Y. Molecular epidemiology of human enteric caliciviruses in The Netherlands. J Infect Dis 2000; 181(suppl 2): S262–9.
145. Mead PS, Slutsker L, Dietz V et al. Food-related illness and death in the United States. Emerg Infect Dis 1999; 5: 607–25.
146. Nakata S, Honma S, Numata K-K et al. Members of the family Caliciviridae (Norwalk virus and Sapporo virus) are the most prevalent cause of gastroenteritis outbreaks among infants in Japan. J Infect Dis 2000; 181: 2029–32.
147. Vinjé J. The incidence and genetic variability of small round structured viruses in outbreaks of gastroenteritis in the Netherlands. J Infect Dis 1997; 176: 1374–8.
148. Lew JF, Valdesuso J, Vesikari T et al. Detection of Norwalk virus or Norwalk-like virus infections in Finnish infants and young children. J Infect Dis 1994; 169: 1364–7.
149. Pang X-L, Honma S, Nakata S, Vesikari T. Human caliciviruses in acute gastroenteritis of young children in the community. J Infect Dis 2000; 181(suppl 2): S288–94.
150. Pang X-L, Joensuu J, Vesikari T. Human calicivirus-associated sporadic gastroenteritis in Fin-
nish children less than two years of age followed prospectively during a rotavirus vaccine trial. Pediatr Infect Dis J 1999; 18: 420–6.
151. Blacklow NR, Greenberg HB. Viral gastroenteritis. N Engl J Med 1991; 325: 252–64.
152. Kraelen M, Brown M, Petrasek A, Middleton PJ. Clinical features of adenovirus enteritis: a review of 127 cases. Pediatr Infect Dis 1990; 9: 636–41.
153. Bishop RF. Natural history of human rotavirus infection. Arch Virol Suppl 1996; 12: 119–28.
154. Cohen MB, Laney DW. Infectious diarrhea. In: Wyllie R, Hyams JS, eds. Pediatric gastrointestinal disease: pathophysiology, diagnosis, management. Philadelphia: WB Saunders, 1999: 348–70.
155. Haffjee IE. The epidemiology of rotavirus infection: a global perspective. J Pediatr Gastroenterol Nutr 1995; 20: 275–86.
156. Das BK, Gentsch JR, Cicirello HG et al. Characterization of rotavirus strains from newborns in New Delhi, India. J Clin Microbiol 1994; 32: 1820–2.
157. Espinoza F, Paniagua M, Hallander H, Svensson L, Stannegard O. Rotavirus infections in young Nicaraguan children. Pediatr Infect Dis J 1997; 16: 564–71.
158. Ruuska T, Vesikari T. Rotavirus disease in Finnish children: use of numerical scores for clinical severity of diarrheal episodes. Scand J Infect Dis 1990; 22: 259–67.
159. Velazquez FR, Matson DO, Calva JJ et al. Rotavirus infection in infants as protection against subsequent infections. N Engl J Med 1996; 335: 1022–8.
160. Jarecki-Khan K, Tzipori SR, Unicombe LE. Enteric adenovirus infection among infants with diarrhea in rural Bangladesh. J Clin Microbiol 1993; 31: 484–9.
161. Reina J, Hervás J, Ros MJ. Differential clinical characteristics among pediatric patients with gastroenteritis caused by rotavirus and adenovirus. Enferm Infec Microbiol Clin 1994; 12: 378–84.
162. Herrmann JE, Taylor PD, Echeverría P, Blacklow NR. Astroviruses as a cause of gastroenteritis in children. N Engl J Med 1991; 324: 1757–60.
163. Cone R, Mohan K, Thouless M, Corey L. Nosocomial transmission of rotavirus infection. Pediatr Infect Dis J 1988; 7: 103–9.
164. Mesa F, Lajo A, Alonso F, Borque C, Segurado E, Ladrón de Guevara C. Rotavirus infection: clinical characteristics and time of elimination of rotavirus antigen in the feces. Enferm Infec Microbiol Clin 1996; 14: 106–10.
165. Bennet R, Hedlund KO, Ehrnst A, Eriksson M. Nosocomial gastroenteritis in two infant wards over 26 months. Acta Paediatr 1995; 84: 667–71.
166. Rodriguez Cervilla J, Peñalver MD, Curros MC, Pavón P, Alonso C, Fraga JM. Rotavirus: clinical and epidemiological study in hospitalized
children under two years of age. An Esp Pediatr 1996; 45: 499-504.

167. Ford-Jones EL, Minderoff CM, Gold R, Petric M. The incidence of viral-associated diarrhea after admission to a pediatric hospital. Am J Epidemiol 1990; 131: 711–18.

168. Shastri S, Doane AM, Gonzales J, Upadhayayula U, Bass DM. Prevalence of astroviruses in a children’s hospital. J Clin Microbiol 1998; 36: 2571–4.

169. Lew JF, Petric M, Kapikian AZ, Jiang X, Estes MK, Green KY. Identification of minireovirus as a Norwalk-like virus in pediatric patients with gastroenteritis. J Virol 1994; 68: 3391–6.

170. Struve J, Bennet R, Ehrnst A et al. Nosocomial calicivirus gastroenteritis in a pediatric hospital. Pediatr Infect Dis J 1994; 13: 882–5.

171. Caceres VM, Kim DK, Bresee JS et al. A viral gastroenteritis outbreak associated with person-to-person spread among hospital staff. Infect Control Hosp Epidemiol 1998; 19: 162–7.

172. Denneyh PH, Tente WE, Fisher DJ, Veloudis BA, Peter G. Lack of impact of rapid identification of rotavirus-infected patients on nosocomial rotavirus infections. Pediatr Infect Dis J 1989; 8: 290–6.

173. Matson D, Estes MK, Tananka T, Bartlett AV, Pickering LK. Asymptomatic human calicivirus infection in a day care center. Pediatr Infect Dis J 1990; 9: 190–6.

174. Ojeh CK, Cusak TM, Yolken RH. Evaluation of the effects of disinfectants on rotavirus RNA and infectivity by the polymerase chain reaction and cell-culture methods. Mol Cell Probe 1995; 9: 341–6.

175. Sattar SA, Jacobsen H, Rahman H, Cusak M, Rubino JR. Interruption of rotavirus spread through chemical disinfection. Infect Control Hosp Epidemiol 1994; 15: 751–6.

176. Goodgame RW. Viral causes of diarrhea. Gastroenterol Clin North Am 2001; 30: 779–95.

177. Hardy M. Norwalk and Norwalk-like viruses in epidemic gastroenteritis. Clin Lab Med 1999; 19: 675–90.

178. Nakata S, Honma S, Numata K et al. Prevalence of human calicivirus infection in Kenya as determined by enzyme immunoassay for three genogroups of the virus. J Clin Microbiol 1998; 36: 3160–3.

179. Pelosi E, Lambden P, Caul E et al. The seroepidemiology of genogroup I and genogroup II Norwalk-like virus in Italy. J Med Virol 1999; 58: 93–9.

180. Hardy D. Epidemiology of rotavirus infection in adults. Rev Infect Dis 1987; 9: 461–9.

181. Halvorsrud J, Orstavik I. An epidemic of rotavirus-associated gastroenteritis in a nursing home for the elderly. J Infect Dis 1980; 12: 161–4.

182. Belliot G, Laveran H, Monroe S. Outbreaks of gastroenteritis in military recruits associated with serotype 3 astrovirus infection. J Med Virol 1997; 51: 101–6.

183. Yuen K, Woo P, Liang R et al. Clinical significance of alimentary tract microbes in bone marrow transplant recipients. Diagn Microbiol Infect Dis 1998; 30: 75–81.

184. Pirsch J. Cytomegalovirus infection and posttransplant lymphoproliferative disease in renal transplant. Results of the US multicenter FK 506 Kidney Transplant Study Group. Transplantation 1999; 68: 1203–5.

185. Bini E, Cohen J. Diagnostic yield and cost-effectiveness of endoscopy in chronic human immunodeficiency virus related diarrhea. Gastrointest Endosc 1998; 48: 354–61.

186. Weber R, Ledergerber B, Zbinden R et al. Enteric infections and diarrhea in human immunodeficiency virus-infected persons: prospective community-based cohort study. Arch Intern Med 1999; 159: 1473–80.

187. Hale G, Heslop H, Krance R et al. Adenovirus infection after pediatric bone marrow transplantation. Bone Marrow Transplant 1999; 23: 277–82.

188. Cox G, Matsui S, LO R et al. Etiology and outcome of diarrhea after bone marrow transplantation. Gastroenterology 1994; 107: 1398–407.

189. Petric M. Caliciviruses, astroviruses and other diarrheic viruses. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. Manual of clinical microbiology. Washington: ASM Press, 1999: 1005–13.

190. Sherlock CH, Brandt CJ, Middleton PJ, Smith JA. Laboratory diagnosis of viral infections producing enteritis. In: Smith JA, ed. Cunitech 26. Washingon DC: American Society for Microbiology, 1989: 1–12.

191. Denneyh PH, Gauntlett DR, Spangenberger SE. Choice of reference assay for the detection of rotaviruses in fecal specimens: electron microscopy versus enzyme immunoassay. J Clin Microbiol 1990; 28: 1280–3.

192. Singh-Naz N, Rodriguez WJ, Kidd AH, Brandt CD. Monoclonal antibody enzyme linked immunoasorbent assay for specific identification and typing of subgroup F adenoviruses. J Clin Microbiol 1988; 26: 297–300.

193. Denneyh PH, Gauntlett DR, Tente WE. Comparison of nine commercial immunoassays for detection of rotaviruses in fecal specimens. J Clin Microbiol 1988; 26: 1630–4.

194. Thomas EE, Puterman ML, Kawano E, Curtan M. Evaluation of seven immunoassays for detection of rotavirus in pediatric stool samples. J Clin Microbiol 1988; 26: 1189–93.

195. Denneyh PH, Hartin M, Nelson SM, Reising SF. Evaluation of the ImmunoCards TAT rotavirus
assay for detection of group A rotavirus in fecal specimens. J Clin Microbiol 1999; 37: 1977–9.

196. Wilhelmi I, Cololina J, Martín-Rodrigo D, Román E, Sánchez-Fauquier A. New immunochromatographic method for rapid detection of rotaviruses in stool samples compared with standard enzyme immunoassay and latex agglutination techniques. Eur J Clin Microbiol Infect Dis 2000; 20: 741–3.

197. Fujii R, Kuzuya M, Hamano M, Yamada M, Yamazaki S. Detection of human group C rotavirus by an enzyme-linked immunosorbent assay using monoclonal antibodies. J Clin Microbiol 1992; 30: 1307–11.

198. Moore L, Steele AD, Alexander JJ. Relevance of commercial diagnostic tests to detection of enteric adenovirus infections in South Africa. J Clin Microbiol 2000; 38: 1661–3.

199. Noel J, Mansoor A, Thaker U, Herrmann J, Perron-Henry D, Cubitt WD. Identification of adenoviruses in faeces from patients with diarrhoea at the hospitals for sick children, London, 1989–1992. J Med Virol 1994; 43: 84–90.

200. Moe CL, Allen JR, Monroe SS et al. Detection of astrovirus in pediatric stool samples by immunoassay and RNA probe. J Clin Microbiol 1991; 29: 2390–5.

201. Putzker M, Sauer H, Kirchner G, Keksel O, Malic A. Community acquired diarrhea—the incidence of astrovirus infections in Germany. Clin Lab 2000; 46: 269–73.

202. Jiang X, Wilton N, Zhong WM et al. Diagnosis of human caliciviruses by use of enzyme immunoassays. J Infect Dis 2000; 181(suppl 2): S349–59.

203. Buesa J, Cololina J, Raga J, Villanueva A, Prat J. Evaluation of reverse transcription and polymerase chain reaction (RT/PCR) for the detection of rotaviruses: applications of the assay. Res Virol 1996; 157: 353–61.

204. Cubitt WD, Mitchell DK, Carter MJ, Willcocks MM, Holzel H. Application of electronmicroscopy, enzyme immunoassay, and RT-PCR to monitor an outbreak of astrovirus type 1 in a pediatric bone marrow transplant unit. J Med Virol 1999; 57: 313–21.

205. Mustafa H, Palombo EA, Bishop RF. Improved sensitivity of astrovirus-specific RT-PCR following culture of stool samples in CaCO-2 cells. J Clin Virol 1998; 11: 103–7.

206. Pang XL, Joensuu J, Hoshino Y, Kapikian AZ, Vesikari T. Rotaviruses detected by reverse transcription polymerase chain reaction in acute gastroenteritis during a trial of rhesus–human reassortant rotavirus tetravalent vaccine: implications for vaccine efficacy analysis. J Clin Virol 1999; 13: 9–6.

207. Allard A, Albinsson B, Wadell G. Detection of adenoviruses in stools from healthy persons and patients with diarrhea by two-step polymerase chain reaction. J Med Virol 1992; 37: 149–57.

208. Mitchell DK, Monroe SS, Jiang X, Matson DO, Glass RI, Pickering LK. Virologic features of an astrovirus diarrhea outbreak in a day care center revealed by reverse transcriptase–polymerase chain reaction. J Infect Dis 1995; 172: 1437–44.

209. Jiang X, Matson DO, Cubitt WD, Estes MK. Genetic and antigenic diversity of human caliciviruses (HuCVs) using RT-PVR and new ELAs. Arch Virol Suppl 1996; 12: 251–62.

210. Le Guayder F, Estes MK, Hardy ME et al. Evaluation of a degenerate primer for the PCR detection of human caliciviruses. Arch Virol 1996; 141: 2225–35.

211. Vinjé J, Koopmans MPG. Molecular detection and epidemiology of small round structured viruses in outbreaks of gastroenteritis in The Netherlands. J Infect Dis 1996; 174: 610–15.

212. Vinjé J, Deij H, Reina H et al. Molecular detection and epidemiology of Sapporo-like viruses. J Clin Microbiol 2000; 38: 530–6.

213. Gentsch JR, Woods PA, Ramachandran M et al. Review of G and P typing results from a global collection of rotavirus strains: implications for vaccine development. J Infect Dis 1996; 174(suppl 1): 530–6.

214. Gentsch JR, Glass RI, Woods P et al. Identification of group A rotavirus genes 4 types by polymerase chain reaction. J Clin Microbiol 1992; 30: 1365–73.

215. ESPGAN Working Group on Acute Diarrhoea. Recommendations for feeding in childhood gastroenteritis. J Pediatr Gastroenterol Nutr 1997; 24: 619–20.

216. Joensuu J, Koskenniemi E, Vesikari T. Prolonged efficacy of rhesus–human reassortant rotavirus vaccine. Pediatr Infect Dis 1998; 17: 427–9.

217. Centers for Disease Control and Prevention. Rotavirus vaccine for the prevention of rotavirus gastroenteritis among children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 1999; 48: 1–23.

218. Advisory Committee on Immunization Practices (ACIP). Centers for Disease Control and Prevention. Withdrawal of rotavirus vaccine recommendation. MMWR 1999; 48: 1007.

219. Centers for Disease Control and Prevention. Intussusception among recipients of rotavirus vaccine—United States, 1998–1999. MMWR 1999; 48: 577–81.

220. Bressee JS, Glass RI, Ivanoff B, Gentsch JR. Current status and future priorities for rotavirus vaccine development, evaluation and implementation in developing countries. Vaccine 1999; 17: 2207–22.
221. Wilhelmi I, Mier C, Román E, Colomina J, Prat J, Sánchez-Fauquier A. Molecular epidemiology of rotavirus in Spanish children. Enferm Infec Microbiol Clin 1999; 17: 509–14.

222. Jain V, Das BK, Bhan MK, Glass RI, Gentsch JR. Great diversity of group A rotavirus strains and high prevalence of mixed rotavirus infection in India. J Clin Microbiol 2001; 39: 3524–9.

223. Das S, Sen A, Uma G et al. Genomic diversity of group A rotavirus strains infecting humans in eastern India. J Clin Microbiol 2002; 40: 146–9.