ISOLATION OF NUCLEAR MICROSATELITES IN THE AFRICAN TIMBER TREE Lophira alata (Ochnaceae) AND CROSS-AMPLIFICATION IN L. lanceolata

ROSALÍA PIÑEIRO1,2, ADRIEN STAQUET2, and OLIVIER J. HARDY2

1Evolutionary Biology and Ecology Unit, CP 120/12, Faculté des Sciences, Université Libre de Bruxelles, Av. F. D. Roosevelt 50, B-1050 Brussels, Belgium

2Key words: Lophira; next-generation sequencing; nSSR; Ochnaceae; tropical rainforests; universal primers.

Lophira Banks ex C. F. Gaertn. (Ochnaceae) is a genus of tropical trees endemic to Central and West Africa. Taxonomic treatments recognize two closely related species with similar morphology but well-differentiated habitats: a rainforest species, L. alata Banks ex C. F. Gaertn., and a savannah species, L. lanceolata Tiegh. ex Keay (Hutchinson and Dalziel, 1954; Aubreville, 1959; Bamps, 1970). The rainforest congener, L. alata, is a timber tree (azobé) of high economic value in Central Africa (Biwolé et al., 2012; Engone Obiang et al., 2012). Its timber is used for outdoor constructions such as harbors, hydraulic infrastructure, railways, and bridges (Palla et al., 2002). Despite its abundance in Cameroon, it is classified as a vulnerable species in the red list of the International Union for Conservation of Nature (IUCN, 2014) due to the massive logging pressure that currently affects its natural populations. In the contact zone between rainforest and savannah vegetation, the two species can be found in sympatry, and it has been hypothesized that hybridization may be occurring between them. In this study, we provide and characterize the first set of microsatellites for L. alata and test cross-amplification in two populations of L. lanceolata.

METHODS AND RESULTS

A microsatellite-enriched library was generated by Genoscreen genomic platform (Lille, France) for one sample of L. alata from central Gabon (OH2473; Appendix 1) pooled with DNA of three other species, following the methods of Malausa et al. (2011) and Micheneau et al. (2011). One milligram of genomic DNA was digested with RsaI, ligated to adapters, and amplified. PCR products were enriched with streptavidin-coated magnetic beads and 3′-biotinylated (AG)15, (AC)15, (AAC)15, (ACG)15, (AGC)15, (AAG)15, (ACAT)15, (ATCT)15, and subsequently amplified. A total of 14,207 reads were generated on a 454 GS FLX sequencer (454 Life Sciences, a Roche Company, Branford, Connecticut, USA). Using QDD (Méglecz et al., 2010), the Genoscreen genomic platform identified 1505 loci containing microsatellite motifs. Subsequently, primer sets were designed on 376 of the loci (multiple primer pairs per locus up to a total of 2615) giving 80–500-bp PCR products, with more than five repeats and with 50–64°C annealing temperature. Forty-eight primer combinations, corresponding to loci with the longest di-, tri-, and tetrancleotide repeats and with a minimum distance of 10 bp from the microsatellite, were selected. The amplification of the 68 primer pairs was tested on seven geographically separated individuals of L. alata. Fluorescent labeling of primers was performed using three primers per locus: a reverse primer, a forward primer with a universal linker sequence (Q1, Q2, Q3, or Q4) at the 5′ end, and a third primer consisting of the same universal sequence Q1, Q2, Q3, or Q4, labeled with 6-FAM, NED, VIC, or PET, respectively (Schuelke, 2000; Micheneau et al., 2011). PCR amplifications were performed in 1.5 μl buffer (10×), 0.6 μl MgCl₂ (25 mM), 0.45 μl dNPTs (10 mM each), forward primer at 0.07 μM, and reverse primers at 0.2 μM, 0.08 μl Taq polymerase (TopTaq DNA Polymerase, 5 U/μl [IQI GEN, Valencia, California, USA]), 1.5 μl of template DNA (of ca. 10–50 ng/μl), and H₂O up to a final volume of 15 μl. Amplifications were performed as follows: 94°C (4 min); 25 cycles of 94°C (30 s), 55°C (45 s), 72°C (1 min); followed by 10 cycles each of 94°C (30 s), 35°C (45 s), 72°C (45 s); and a final extension 10 minutes at 72°C.

doi:10.3732/apps.1500056
at 72°C for 10 min. PCR products (0.8 μL) were separated on an ABI 3730 sequencer (Applied Biosystems, Lennox, Belgium) with 12 μL of HiDi and 0.3 μL of GeneScan 500 LIZ Size Standard (Applied Biosystems). Thirteen primer combinations exhibiting robust amplification, no stutter peaks, and polymorphism at the intraspecific level were selected (Table 1).

Multiplex PCR containing six (LML11) and seven (LMK13) microsatellites were set up, taking care to avoid complementary primers and markers with identical dye and amplicon size in the same multiplex with the help of Multiplex Manager (Holleley and Geerts, 2009). Fluorescent labeling of primers was performed using three primers per locus: a reverse primer, a forward primer with one universal sequence (Q1, Q2, Q3 or Q4) at the 5′ end, and a third primer consisting of the same universal sequence Q1, Q2, Q3, or Q4, labeled with 6-FAM, NED, VIC, or PET, respectively (Schuelke, 2000; Michenaeu et al., 2011). Type-it Microsatellite PCR Kit (QiAGEN) was used for amplification in a final volume of 14.5 μL containing 1 μL DNA (approx. 5–20 ng), 7.5 μL Type-it Multiplex Mix, 0.1 μL of forward primers (final concentration of 0.07 μM), 0.15 μL of the reverse primers and labeled primers Q1, Q2, Q3, and Q4 (final concentration of 0.1 μM each), and H2O.

The PCR profile was: 95°C (5 min); followed by 20 cycles of 95°C (30 s), 57°C (180 s) for LMK13 or 60°C (90 s) for LML11, 72°C (30 s); followed by eight cycles of 94°C (30 s), 53°C (45 s), 72°C (45 s); and a final extension at 60°C (30 min). PCR products were run on an ABI 3730 (Applied Biosystems) with 12 μL of HiDi and 0.3 μL of GeneScan 500 LIZ Size Standard (Applied Biosysstems). The resulting electropherograms were automatically scored with GeneMapper 3.7 (Applied Biosystems) and manually corrected. Individual genotypes exhibited one or two alleles per microsatellite locus, as expected for diploid organisms.

To characterize the 13 microsatellite loci (Table 2), 33 individuals from a L. alata population in northwestern Cameroon (Pallisco) were genotyped. Allele sizes, number of alleles per locus, expected (Ĥe) and observed (Ĥo) heterozygosity, and inbreeding coefficient (Fis) were estimated with SPAGeDi. Linkage disequilibrium (LD) between each pair of loci was tested with GENEPOP 4.1.4 (Raymond and Rousset, 1995). Deviation from Hardy–Weinberg equilibrium (HWE) was tested for each locus using a χ2 test with GENEPOP, and permutation tests (999 permutations of alleles among individuals) were conducted with SPAGeDi. Transferability of the isolated primers to the savannah congener was tested in 26 individuals from two Cameroonian populations of L. lanceolata (Yong and Bango). The number of private alleles was calculated for each species.

In the L. alata population, all 13 microsatellite loci were polymorphic (Table 2), with the number of alleles per locus ranging from two to seven. Ĥe varied between 0.24 and 0.75, and Fis between −0.14 and 0.85. Three loci (P36, P44, P47) significantly deviated from HWE (P < 0.01 in both χ2 and permutation tests) due to homozygosity excess (Table 2). Significant LD (P < 0.01) was found between loci P18 and P34. LD at P < 0.05 was detected between four pairs of loci (P62 and P40, P62 and P51, P18 and P31, and P51 and P31). Eleven microsatellite markers exhibited robust amplification in the two populations of L. lanceolata studied (Table 2), where one to eight alleles per locus were retrieved. All loci were polymorphic between the two L. lanceolata populations. P24 was monomorphic in the Bango population, whereas P12 and P40 were monomorphic in the Yong population. All loci except for three (P53, P34, and P47) exhibited private alleles for L. alata, whereas all but one (P24) exhibited specific alleles for L. lanceolata.

CONCLUSIONS

The 13 nuclear microsatellite loci optimized showed sufficient levels of variation to estimate genetic diversity levels in L. alata and L. lanceolata. These markers will be an important tool to assess how the Pleistocene climatic oscillations have shaped the genetic structure of the two species in Central African rainforests. In addition, the finding of species-specific alleles may help detect ongoing interspecific gene flow in the rainforest–savanna contact zone, where the two species can be found in sympatry.

Table 1. Description of 13 newly developed microsatellite loci in *Lophira alata* in two multiplex reactions LML11 and LMK13.

Locus	Primer sequences (5′–3′)	Fluorescent label	Repeat motif	Tannealing (°C)	GenBank accession no.
LML11					
P12	F: TTCTCCTACCTCTCTCCTCAC	Q4-NED	(CAC)10	60	KP666122
	R: TGAGAGTTGCTGTTGTGTGTGG				
P24	F: CACCGAGGACTCTCCCTCCT	Q4-NED	(CT)8	60	KP666123
	R: TACCCAATTCAGCAGCAGCAGA				
P31	F: CATGACAGCAAGACAGTGA	Q3-VIC	(TTC)7	60	KP666124
	R: TGAGCTACGGAGTAGGGA				
P44	F: CTTCTTCTCTCTCTCTCTGCCT	Q2-NED	(AC)10	60	KP666125
	R: TTGAGTAGCTCTCGGCTTCC				
P53	F: CCCTGTAGGAGCAACACATTCAA	Q1-6-FAM	(AC)9	60	KP666126
	R: GCCACATATAGAGAACAGGCAA				
P66	F: ATTTGAAGGGGATCTCACTCGG	Q2-NED	(AC)12	60	KP666127
	R: GGAGCTGTAATTAAAGGAGG				
LMK13					
P18	F: TGCGAGTCGCAAATCATTCAA	Q2-NED	(TTG)7	57	KP666128
	R: ATCAAATGCAGCAGCACA				
P34	F: CCCTGTGTCCTACCCCTCCT	Q2-NED	(TTG)7	57	KP666129
	R: GGACGACAGGAGGCAAAT				
P36	F: GACTTTATAGAAGAGCTAAATTTACA	Q1-6-FAM	(ACA)12	57	KP666130
	R: GTGTTGTGATGATCATTGTTT				
P40	F: AAACAGTTTGTGTGTGCCTTTT	Q4-NED	(GTT)7	57	KP666131
	R: CGAGGGAGAAATGAGACC				
P51	F: GGTGAGACACATTTGGAGT	Q1-6-FAM	(AC)7	57	KP666132
	R: TCCATTATTAGTAGACCTGGTGT				
P62	F: CACTGTCAGAGACTGCAATTAC	Q3-VIC	(TG)7	57	KP666133
	R: ATTTGAGGCGTCACACCG				
	R: TGAGAACTGACATTTGGAGATGT	Q2-NED	(TC)7	57	KP666134

Note: Tannealing = annealing temperature.

*Fluorescent label on forward primer. Q1 = TGTAACACGACGGACCAGT (Schuelke, 2000), Q2 = TAGGAGTGACAGCAAAGCAT, Q3 = CACTGC-TTAGGACGATGC, Q4 = CTAGTTAGTGCTACGGATGC (Q2–Q4, after Culley et al., 2008).
Table 2. Genetic properties of the 13 newly developed, polymorphic microsatellite loci in *Lophira alata* and cross-amplification results in two populations of *L. lanceolata.*

Locus	Allele size range (bp)	A	H_0	H_e	F_{IS}	P value	Private	Allele size range (bp)	A	H_0	H_e	F_{IS}	P value	Private
LML11	105–119	2			1.000	0.812		113	4			1.000	0.812	
P12	169–171	5			0.110	0.827		161–171	4			0.110	0.827	
P13	137–151	4			0.857	0.811		137–151	3			0.857	0.811	
P44	170–176	5			0.700	0.018		169–176	4			0.700	0.018	
P45	153–186	5			0.899	0.007		153–186	4			0.899	0.007	
P53	202–204	4			0.280	0.092		202–204	5			0.280	0.092	
P66	271–283	4			0.399	0.803		271–283	4			0.399	0.803	
LMK13	130–137	5			0.700	0.018		130–137	4			0.700	0.018	
P18	162–165	3			0.542	0.755		162–165	4			0.542	0.755	
P34	148–151	5			0.857	0.811		148–151	4			0.857	0.811	
P35	193–184	3			0.803	0.803		193–184	4			0.803	0.803	
P37	192–196	3			0.726	0.740		192–196	4			0.726	0.740	
P62	235–260	4			0.670	0.066		235–260	5			0.670	0.066	

Note: A = number of alleles; H_0 = observed heterozygosity; H_e = expected heterozygosity; P value = P value for permutation of alleles among individuals (>0.01 are set boldface); private = number of species-specific alleles.

Tests for deviation from Hardy-Weinberg equilibrium: P value = P value for permutation of alleles among individuals; private = number of species-specific alleles.

LITERATURE CITED

Aubreville, A. 1959. La flore forestière de la Côte d’Ivoire, 2nd éd. Centre Technique Forestier Tropical, Nogent-sur-Marne, France.

Bamps, P. 1970. Répartition géographique du genre *Lophira* Banks ex Gaertn. (Ochnaceae). *Bulletin du Jardin botanique national de Belgique* 40(4): 291–294.

Bwolé, A., N. Boulrand, K. Dainou, and J.-L. Doucet. 2012. Définition du profil écologique de l’azobé, *Lophira alata,* une espèce ligneuse africaine de grande importance: Synthèse bibliographique et perspectives pour des recherches futures. *Biotechnologie, Agronomie, Société et Environnement* 12: 213–228.

Culley, T. M., S. G. Weller, A. K. Sakai, and K. A. Putnam. 2008. Characterization of microsatellite loci in the Hawaiian endemic shrub *Schiedea adamanis* (Caryophyllaceae) and amplification in related species and genera. *Molecular Ecology Resources* 8: 1081–1084.

Engone Obiang, N. L., A. Ngomanda, L. J. T. White, J. Kathryn, É. Chézeaux, and N. Picard. 2012. A growth model for azobé, *Lophira alata,* in Gabon. *Bois et Forêts des Tropiques* 314: 65–72.

Hardy, O. J., and X. Vekemans. 2002. SPAGEDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. *Molecular Ecology Notes* 2: 615–620.

Holleley, C. E., and P. G. Geerts. 2009. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. *Biotechniques* 46: 511–517.

Hutchinson, J., and J. M. Dalzelle. 1954. Flora of West Tropical Africa. Crown Agents, London, United Kingdom.

IUCN. 2014. The IUCN Red List of Threatened Species. Version 2014.3. Website www.iucnredlist.org [accessed 25 September 2015].

Malaua, T., A. Gilles, E. Meglecz, H. Blanquart, S. Dutfoy, C. Costeostat, V. Dubut, et al. 2011. High-throughput microsatellite isolation through 454 GS-FLX titanium pyrosequencing of enriched DNA libraries. *Molecular Ecology Resources* 11: 638–644.

Meglecz, E., C. Costeostat, V. Dubut, A. Gilles, T. Malaua, N. Pech, and J. F. Martin. 2010. QDD: A user-friendly program to select microsatellite markers and design primers from large sequencing projects. *Bioinformatics (Oxford, England)* 26: 403–404.

Micheneau, C., G. Dauby, N. Boulrand, J.-L. Doucet, and O. J. Hardy. 2011. Development and characterization of microsatellite loci in *Pericopsis elata* (Fabaceae) using a cost-efficient approach. *American Journal of Botany* 98: e268–e270.

Palla, F., D. Louppe, and C. Doumeng. 2002. Azobé. Série Forafric no. 33, CIRAD-Forêt, Montpellier, France.

Raymond, M., and F. Rousset. 1995. GENEPop version 1.2: Population genetics software for exact tests and ecumenicism. *Journal of Heredity* 86: 248–249.

Scheelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology* 18: 233–234.

http://www.bioone.org/loi/apps
APPENDIX 1. Voucher information for *Lophira* populations characterized in this study.

Voucher no.	Species	Collection locality	Collection date	Collector	Latitude (°N)	Longitude (°E)
AS0055–59, AS0065–69	*L. lanceolata*	Yong	25/02/13	Biwole A.	6.21	11.57
AS0099	*L. lanceolata*	Bango	26/02/13	Biwole A.	6.76	11.84
AS0100, AS102–105	*L. lanceolata*	Bango	26/02/13	Biwole A.	6.73	11.87
AS0101	*L. lanceolata*	Bango	26/02/13	Biwole A.	6.73	11.88
AS0120	*L. lanceolata*	Bango	26/02/13	Biwole A.	6.72	11.97
AS0121	*L. lanceolata*	Bango	26/02/13	Biwole A.	6.72	11.98
AS0124	*L. lanceolata*	Bango	26/02/13	Biwole A.	6.71	11.99
AS0128–129	*L. lanceolata*	Bango	26/02/13	Biwole A.	6.67	12.04
AS0130	*L. lanceolata*	Bango	26/02/13	Biwole A.	6.67	12.05
AS0135–137	*L. lanceolata*	Bango	26/02/13	Biwole A.	6.66	12.06
AB0007	*L. alata*	Pallisco	08/08/12	Biwole A.	5.529	9.012
AB0008	*L. alata*	Pallisco	08/08/12	Biwole A.	5.497	9.060
AB0023	*L. alata*	Pallisco	08/08/12	Biwole A.	5.526	9.011
AB0024	*L. alata*	Pallisco	08/08/12	Biwole A.	5.493	9.069
AB0025	*L. alata*	Pallisco	08/08/12	Biwole A.	5.496	9.059
AB0026	*L. alata*	Pallisco	08/08/12	Biwole A.	5.492	9.068
AB0027	*L. alata*	Pallisco	08/08/12	Biwole A.	5.494	9.068
AB0028	*L. alata*	Pallisco	08/08/12	Biwole A.	5.495	9.065
AB0033	*L. alata*	Pallisco	08/08/12	Biwole A.	5.495	8.952
AB0034	*L. alata*	Pallisco	08/08/12	Biwole A.	5.495	8.953
AB0035	*L. alata*	Pallisco	08/08/12	Biwole A.	5.494	8.948
AB0036	*L. alata*	Pallisco	08/08/12	Biwole A.	5.495	8.953
AB0037	*L. alata*	Pallisco	08/08/12	Biwole A.	5.493	8.948
AB0038	*L. alata*	Pallisco	08/08/12	Biwole A.	5.487	8.947
AB0039	*L. alata*	Pallisco	08/08/12	Biwole A.	5.490	8.948
AB0040	*L. alata*	Pallisco	08/08/12	Biwole A.	5.492	8.950
AB0041	*L. alata*	Pallisco	08/08/12	Biwole A.	5.494	8.949
AB0042	*L. alata*	Pallisco	08/08/12	Biwole A.	5.490	8.950
AB0043	*L. alata*	Pallisco	08/08/12	Biwole A.	5.488	8.943
AB0044	*L. alata*	Pallisco	08/08/12	Biwole A.	5.495	8.952
AB0045	*L. alata*	Pallisco	08/08/12	Biwole A.	5.487	8.946
AB0046	*L. alata*	Pallisco	08/08/12	Biwole A.	5.495	8.951
AB0047	*L. alata*	Pallisco	08/08/12	Biwole A.	5.489	8.949
AB0048	*L. alata*	Pallisco	08/08/12	Biwole A.	5.493	8.949
AB0049	*L. alata*	Pallisco	08/08/12	Biwole A.	5.488	8.949
AB0051	*L. alata*	Pallisco	08/08/12	Biwole A.	5.488	8.947
NB0395	*L. alata*	Pallisco	08/08/12	Biwole A.	5.492	8.950
NB0401	*L. alata*	Pallisco	08/08/12	Biwole A.	5.554	9.053
NB0404	*L. alata*	Pallisco	08/08/12	Biwole A.	5.493	8.949
NB0405	*L. alata*	Pallisco	08/08/12	Biwole A.	5.491	8.952
NB0410	*L. alata*	Pallisco	08/08/12	Biwole A.	5.491	8.952
NB0413	*L. alata*	Pallisco	08/08/12	Biwole A.	5.489	8.949
OH2473*	*L. alata*	Savanne-Okondja	15/10/09	Hardy O.J.	−0.654	13.675

*All collections are located in Cameroon except for OH2473 from central Gabon.

*Collection date (day/month/year).

*Seedling grown by Precious Woods Gabon, Compagnie Equatoriale des Bois S.A. The geographical coordinates correspond to the mother plant and are approximate.