新型コロナウイルス（SARS-CoV-2）の変異株にも有効な中和モノクローナル抗体の作成に成功

(ポイント)
● 新型コロナウイルスに感染し、重症化後急速に回復した症例から、中和モノクローナル抗体を作成することに成功しました。本抗体は、ウイルスのスパイク蛋白に強力に結合し、ウイルスが標的細胞のレセプター（受容体）に結合するのを阻止することで、感染の予防、重症化を抑制することができます。
● 本抗体は、従来型ばかりでなく、イギリス型（アルファ型）、南アフリカ型（ベータ型）、ブラジル型（ガンマ型）、インド型（デルタ型）など、多くの変異株も低濃度で中和する活性があることが分かりました。
● 本抗体を用いた中和抗体療法は、ワクチンの効果が不十分な例やワクチン未接種者ばかりでなく、変異株の感染者に対しても、ワクチンと同等の重症化阻止効果や感染予防効果が期待されます。

(概要説明)
ヒトトレトウイルス学共同研究センター熊本大学キャンパスの松下修三特任教授らの研究グループは、新型コロナウイルス感染症（COVID-19）で重症化後に急速に回復した症例から、強力な中和モノクローナル抗体を分離することに成功しました。ウイルスに抗体が結合して細胞へのウイルスの侵入を妨害する効果を「中和」と呼び、中和抗体は、治療薬の本命と言われています。これまで世界各国で中和抗体が開発されてきましたが、十分な臨床効果が得られていません。今回開発した抗体は、中和活性が世界でも最も強力であるばかりでなく、枠外れの結合力を持ち、臨床効果が期待できる抗体と考えられます。本研究は、京都大学ウイルス・再生医科学研究所の小柳義夫教授始めとした多数の共同研究者の協力によってなされました。

なお、本研究成果は、令和3年7月13日午前11時（米国東海岸時間）に科学雑誌「Cell Reports」に掲載されます。
また、本研究は国立研究開発法人日本医療研究開発機構（AMED）の「新興・再興感染症に対する革新的医薬品等開発推進研究事業」の支援を受けて実施したものです。
[背景]
新型コロナウイルス感染症（COVID-19）患者のうち、20%は重症化し、5%は重篤な状態に陥ることが知られていますが、有効性の確立した治療法はなく、一度に多くの重症患者の入院が必要となり、医療崩壊につながることが懸念されてきました。また、異例の速さで開発されたワクチンによって、これまでのパンデミックは抑えられる可能性がありますが、現行のワクチンが有効でない南アフリカ株や、インド株といった変異株の蔓延も報告されています。さらに、ワクチン接種の効果には個人差があることや、ワクチン未接種の人々も一定数残ることから、COVID-19パンデミックは、まだしばらく続くと考えられます。このような状況に対し、本研究グループは中和抗体を用いた感染予防、重症化抑制の治療法開発を考えました。

[研究の内容]
① 中和モノクローナル抗体の分離同定
新型コロナウイルス（SARS-CoV-2）に感染し、重症化後に回復した症例の中から、血清中に強力な中和活性を持つ2症例を選定し、その末梢血B細胞から、抗体のコピー（クローン）を作成しました。次に、ウイルスのスパイク蛋白に対するクローンの結合活性を調べ、1,102クローン中88のクローンに活性を認めました。また、88クローンのうち、スパイク蛋白のレセプター結合部位（RBD）への結合活性を調べたところ、9クローンに活性を認めました。さらに、88クローンのうち、SARS-CoV-2のスパイク蛋白を発現したシュードウイルスを用いて中和活性を調べ、有意な活性を示す5クローンを選定しました。（図1）。

図1: 中和モノクローナル抗体の分離同定
(2) 分離したクローンの中和活性の評価

続いて、上記で中和活性を示した5クローン（6-74, 3-5, 8-92, 10-121, 9-105）について、3種類の異なる標的細胞を用いたシュードウイルス中和試験（図2A）、2種類の標的細胞を用いた細胞融合阻止試験（図2B）を行いました。どの中和試験結果も同様に、9-105抗体に強力な中和活性を認めた（IC₅₀: 0.9〜3.5ng/mL）。また、8-92抗体と10-121抗体もこれまで報告された強力な中和抗体に匹敵する活性を示しました。RBDに対する結合活性の分析を行うと、9-105抗体は、桁外れの強力な結合活性（Kₐ値*: 2.03×10⁻¹¹M）を持つことが明らかとなりました。また、SARS-CoV-2を用いたブラーク抑制試験でも9-105抗体はIC₅₀: 7.3ng/mLと強力な中和能を示しました（図3）。

図2A: シュードウイルス中和試験 B: 細胞融合阻止試験
図3: SARS-CoV-2を用いたブラーク抑制試験

(3) SARS-CoV-2変異株に対する中和活性の評価

COVID-19パンデミックはSARS-CoV-2変異株の感染拡大という新たな局面に入っています。これらの変異株は、現在用いられているワクチンが誘導する抗体に対する抵抗性が報告されています。変異株の代表的なものとして、イギリス株（B.1.1.7株;アルファ型）、南アフリカ株（B.1.351株;ベータ型）とブラジル株（P.1株;ガンマ型）、デンマークのmink cluster 5株の4株がよく知られています。本研究グループは、各変異株のスパイク蛋白変異を導入したシュードウイルスを作成し、交差中和活性を測定しました（図4A, 4B）。図4Cに示すようにイギリス由来の変異株B.1.1.7株とデンマーク由来のmink cluster 5株は9-105抗体、10-121抗体、8-92抗体によって野生型とほぼ同程度の濃度で中和されました。一方、南アフリカ由来のB1.351
株とブラジル由来の P.1 株は、9-105 抗体と 10-121 抗体にのみ中和されました。9-105 抗体の中和活性は、最も中和抵抗性が高い B.1.351 株に対しても IC₅₀: 0.021 μg/ml と低濃度で中和しました。また、図には示しませんが、最近、世界で問題になっているインド株（デルタ型）に対しても IC₅₀: 0.021 μg/ml で中和するというデータが得られ、これらの変異株に対しても十分な中和活性を保っているといえます。一方、感染者血漿中の抗体（本抗体が得られた 2 症例は除外）は、英国株、デンマーク株には中和を示すものの、ブラジル株の中和能は低下し、南アフリカ株にはほとんどの症例が中和活性を示しませんでした（図 4D）。

図 4: SARS-CoV-2 変異株に対する中和活性の評価
A: 代表的な変異株である、イギリス株（B.1.1.7 株；アルファ型）、南アフリカ株（B.1.351 株；ベータ型）とブラジル株（P.1 株；ガンマ型）、デンマークの mink cluster 5 株における spike 蛋白のアミノ酸変異を示す。
B: 野生型（614G）および変異株に対する中和モノクローナル抗体（上段）および、抗体を分離した感染者の血清抗体（下段）の中和活性を IC₅₀ を用いて示す。B.1.351 株（ベータ型）と P.1 型（ガンマ型）の変異株が中和抵抗性であることが示された。
C: 中和モノクローナル抗体の変異株に対する中和試験結果を示す。10-121 と 9-105 はすべての変異ウイルスを中和した。中でも 9-105 抗体は、最も中和抵抗性の B.1.351 株（ベータ型）に対しても 0.021 μg/ml という低濃度で中和活性を示した。
D: 一方、感染者血漿中の抗体は、B.1.1.7 株、mink cluster 5 株には中和活性を示すものの、P.1 株の中和能は低下し（4D 左下）、B.1.351 株にはほとんどの症例が中和活性を示さなかった（4D 右上）。
COVID-19のパンデミックは、既存のワクチンに対して抵抗性をもつ変異株の流行という、新たな局面を迎えています。本研究グループは、SARS-CoV-2に感染し、重症化後に回復した2症例から、力強い中和性を持つ4種類のヒトモノクローナル抗体を分離し、特許を出願しました（出願番号：特願2020-143055）。これらの抗体は、武漢型、ヨーロッパ型（D614G）のウイルスに加え、世界的に問題となっているイギリス（B.1.1.7、アルファ型）、南アフリカ（B.1.351、ベータ型）、デンマーク（mink cluster 5）、ブラジル（P.1、ガンマ型）、インド型（B.1.617.2、デルタ型）の変異株に対し低濃度で強力な中和活性を示し、COVID-19パンデミックに対する切り札となると考えられます。特に、9-105抗体は、SARS-CoV-2のレセプター結合部位に強く結合し、低濃度でウイルスの増殖を阻止すると考えられます（図5）。米国で緊急承認された中和抗体が、70-100mg/kgで投与され、コストが問題であるのに対し、本抗体は強力な中和活性をもつことから、約100分の1の投与量で効果が期待できると考えられます。

図5: 9-105抗体の強力な中和メカニズムのシミュレーション

変異株: 新型コロナウイルスの流行拡大によって出現した、顕著な変異を有するウイルス株。現在まで、イギリス株（B.1.1.7 系統、アルファ型）、
南アフリカ株（B.1.351 系統、ベータ型）、ブラジル株（P.1 系統、ガンマ型）、インド株（B.1.617 系統、デルタ型）が、「懸念すべき変異株」として認定されている。伝播力の向上や、免疫からの逃避能力の獲得などが報告されている。

*5 末梢血 B 細胞：リンパ球の一種。ウイルスなどの病原体を認識し、抗体を産生する細胞へ分化する。

*6 レセプター結合部位（RBD）：スパイク蛋白のうち、ウイルスのレセプターに結合する部分で、多くの中和抗体の標的部位である。

*7 シュードウイルス：表面に SARS-CoV-2 のスパイク蛋白を発現させた増殖性のないウイルス用粒子で、スパイク蛋白を介して細胞内に入りマーカーとなる蛋白を発現する。

*8 IC_{50}：50%のウイルスを中和できる濃度。

*9 K_{D} 値：蛋白の結合力を示す。低いほど結合が強く離れにくい。多くの抗体は、抗原に対して 10^{-9}～10^{-10}M レベルである。

（論文情報）
論文名：Resistance of SARS-CoV-2 variants to neutralization by antibodies induced in convalescent patients with COVID-19
著者：Yu Kaku, Takeo Kuwata*, Hasan Md Zahid, Takao Hashiguchi, Takeshi Noda, Noriko Kuramoto, Shashwata Biswas, Kaho Matsumoto, Mikiko Shimizu, Yoko Kawanami, Kazuya Shimura, Chiho Onishi, Yukiko Muramoto, Tateki Suzuki, Jiei Sasaki, Yoji Nagasaki, Rumi Minami, Chihiro Motozono, Mako Toyoda, Hiroshi Takahashi, Hiroto Kishi, Kazuhiko Fujii, Tsuneyuki Tatsuke, Terumasa Ikeda, Yosuke Maeda, Takamasa Ueno, Yoshio Koyanagi, Hajime Iwagoe and Shuzo Matsushita* (*Corresponding)
掲載誌：Cell Reports
doi：https://doi.org/10.1016/j.celrep.2021.109385
URL：https://www.cell.com/cell-reports/fulltext/S2211-1247(21)00783-X