Tetrahydroanthracene Derivative: Anti-microbial Isolate from Acanthospermum hispidum DC

Olajide Olutayo Olawumi *, Oladosu Adebayo Ibrahim, Christianah Oluwaseun Fakunle
Natural Products/Medicinal Chemistry Research Unit, Department of Chemistry, University of Ibadan, Nigeria
*Corresponding author E-mail: olajidewumi@rocketmail.com

Abstract

The leaves and stems of Acanthospermum hispidum were extracted with distilled ethanol using cold extraction and concentrated using a rotary evaporator at 37 °C. The crude extract was partitioned successively using hexane, benzene and methanol. Fractions 19, 20 and 21 purified on Sephadex LH-20 gave a compound elucidated to be 1, 3, 6, 8-tetrahydroxyl-9-anthracene carbonaldehyde, using the state-of-art tools of spectrometry. The results of the antimicrobial test on the isolated compound show activity against P. mirabilis, B. subtilis, P. aeruginosa, C. albic, S. typhi and B. cereus at minimum inhibitory concentration (MIC) value of 100ppm.

Keywords: Acanthospermum hispidum, Anthracene Carbonaldehyde, Antimicrobial Test, Minimum Inhibitory Concentration.

1. Introduction

Acanthospermum hispidum DC (Compositae) is a medicinal plant commonly known as ‘ewe onitan meta’ in western Nigeria. The plant is a bushy, annual of about 50 cm high, commonly found in a waste places or cultivated land. The cultivated specimens of Acanthospermum hispidum will germinate on a wide variety of soils, from sandy to clay. The transition from the flowering to the fruiting phase of this species is extremely rapid, demonstrating a metabolic priority of reproduction over the elaboration of chemical defences (Miranda, 1996). The leaves are used locally for the treatment of acute tuberculosis, cough, diarrhoea, dysentery, typhoid and pneumonia (Burkill, 1985). In Ghana, the leaves are used to cure kpi (leprosy). In Congo the plant is used to treat stomach complaints, wounds and migraine. It is used throughout north eastern Brazil as a folk medicine for asthma (Evani' de, 2008). Traces of alkaloid have been reported in the whole plant and in the leaves (Burkill, 1985). The ethanol extract of the leaves and flowering tops of Acanthospermum hispidum was showed to have varying degrees of activity against wide range of pathogenic bacteria but no activity was observed for the aequous extract of the fresh plant material (Fleisher et al, 2003). The effects of administering Acanthospermum hispidum DC ethanolic leaf extract on patients of hepatitis were studied on acute hepatitis induced by carbon tetachloride in rats (Edewor and Olajire, 2007). The effects were monitored by estimating the serum transaminases levels and the histopathological changes in the livers of experimental rats. The pre-treatment of the animals with Acanthospermum hispidum DC leaf extract (0.3-2.0 g kg-1) significantly elevated the activities of the serum transaminases as well as the hepatotoxin-induced histopathological changes in the livers of experimental rats (Edewor and Olajire, 2007). Some of the compounds that have been isolated from the plant are acanthamolide, acanthoaustralide, germacratienolide and it derivatives and loliolide (Antagera, 2000). In this paper, we report for the first time the anti-bacterial and cytotoxicity of the extracts obtained from the leaves and stems of Acanthospermum hispidum DC and the newly identified compound, using the state-of-art-tools spectrometry.

2. Materials and methods

General: Column chromatography: silica-gel (merck, 60-200 mesh) Sephadex™ LH-20 (GE health care Bio-science AB). IR spectra: FTIR Nicolet Avater 330, thermo-electron operation. 1H and 13C NMR mercury-200BB. Mass spectra: Fainnigan 4000 spectrometer (low resolution) krats 50 spectrometer (high resolution).

2.1. Plant materials

The leaves and stems of Acanthospermum hispidum DC were collected from the Department of Botany, University of Ibadan. The plant was identified by Mr Donatus Esimakhuai of the Herbarium section of the Department of Botany, University of Ibadan. It was later identified and authenticated by Dr. Ayodele of the same department, with Herbarium No UIH22301.

2.2. Extraction and isolation

Air dried leaves and stems (800 g) were milled into powder with the aid of an electrical grinder. Distilled ethanol (6 L) was added to the mixture of the plant in a stopper glass container. It was left for one week and then finally filtered. The ethanol extract obtained was concentrated at 37°C using rotary evaporator, at reduced pressure. It was then fractionated with n-hexane and methanol. The methanol extract was later macerated with benzene and were separately concentrated with rotary evaporator to give the refine-methanol and benzene extract respectively. The benzene extract was subjected to open column packed with silica gel (70-220 mesh size) using a dry method. The column was eluted with a gradient of n-hexane/ethyl acetate. A total of 27 eluents were ob-

*Corresponding author E-mail: olajidewumi@rocketmail.com
tained. Phytochemical analysis was carried out on the chromatographic fractions. The eluents 19, 20 and 21, was seen to contain alkaloids. The fractions were combined together as fraction (A) based on their TLC pattern. The mixture was concentrated using rotary evaporator. Fraction (A) was loaded on the Sephadex LH-20. The column was eluted with methanol (100%). Eluents were collected at 5 ml rate. Two types of crystals were obtained which were purified using isopropyl alcohols separately. The two crystals were further subjected to 2D TLC. The best spot was sent for spectroscopic analysis.

2.3. Anti-microbial screening

The methanol and fraction (A) extracts were screened for antimicrobial activities against 5 standard strains of bacteria and a fungus: Staphylococcus typhi ATCC 2785, Bacillus subtilis ATTC 14579, Bacillus cereus ATTC 33923, Pseudomonas aeruginosa ATTC 27856, Proteus mirabilis ATTC 21784, Candida albican MTTC 227. The antimicrobial assay was performed according to standard method (Bauer et al., 1966) zones of inhibition was measured with frequent ruler. Determination of MIC was conducted following Bauer Method. The results are presented in Table I.

2.4. Brine shrimp lethality test (BST)

The BST was performed according to standard protocol (5, 6) and LC50 values in μg/ml were determined for partitioned fractions, pooled chromatographic fractions and isolated compound I. The results are presented in table II.

3. Results and discussion

The results of the phytochemical studies on the extracts of Ancanthospermum hispidum show the presence of alkaloids, phenolic compounds, resin, cardiac glycoside, saponins and tannins. This confirmed with what was reported by (Odebiyi et al., 1978 and Sanon et al., 2003). The results of the antimicrobial test on the methanol extracts and the isolated compound I are shown in Table I. The extract shows activity against P. mirabilis, B. subtilis, P. aeruginosa, C. albican, S. typhi and B. cereus at MIC 10; H12 and H-20 which is consistent with and independently confirming the structure of compound I. Based on the spectra data, the compound is trivially named 1, 3, 6, 8-tetrahydroxy-9-anthracene carbaldehyde in figure I.

Micro-organism	Zone of inhibition (mm)
P. aeruginosa	Methanol 12.7, Isolated compound 15.0
P. mirabilis	12.0
B. subtilis	12.3
C. albican	9.0
S. typhi	11.0
B. cereus	9.7

| Table 1: Antimicrobial Activity of Methanol Extract |

Micro-organism	Zone of inhibition (mm)
P. aeruginosa	Methanol 12.7, Isolated compound 15.0
P. mirabilis	12.0
B. subtilis	12.3
C. albican	9.0
S. typhi	11.0
B. cereus	9.7

3. Results and discussion

The results of the phytochemical studies on the extracts of Ancanthospermum hispidum show the presence of alkaloids, phenolic compounds, resin, cardiac glycoside, saponins and tannins. This confirmed with what was reported by (Odebiyi et al., 1978 and Sanon et al., 2003). The results of the antimicrobial test on the methanol extracts and the isolated compound I are shown in Table I. The extract shows activity against P. mirabilis, B. subtilis, P. aeruginosa, C. albican, S. typhi and B. cereus at MIC 10; H12 and H-20 which is consistent with and independently confirming the structure of compound I. Based on the spectra data, the compound is trivially named 1, 3, 6, 8-tetrahydroxy-9-anthracene carbaldehyde in figure I.

Micro-organism	Zone of inhibition (mm)
P. aeruginosa	Methanol 12.7, Isolated compound 15.0
P. mirabilis	12.0
B. subtilis	12.3
C. albican	9.0
S. typhi	11.0
B. cereus	9.7

| Table 2: 1H NMR and 13C NMR of Compound I |

Compound	1H NMR	13C NMR
I		

UV \(\lambda\max\) (CHCl3) 251 nm; IR (Nujol): 3538 (OH); 1051 (C-O); 1600 (C=O) and 2958 (CH srt) EIMS (low and high resolution) m/z 398 (80%) - H2O, 317; 300; 224 CIMS m/e 190.2, 189.2, 188.1, 121.3, 69, 42.9

\(\text{Fig. 1: Structure of Pheanthocerol}\)

\(\text{1H NMR (400 MHz, CHCl}_3\): } \delta 1.10 (3H, t, H-30); 2.65 (1H, bm, H-6); 6.53 (1H, d, H-17); 4.10 (2H, m, H-18); 5.00 (1H, m, H-19); 5.01 (1H, m, H-22); 5.34 (1H, M, H-23) \(\text{13C NMR (100 MHz, CHCl}_3\): } see Table I

The BST was performed according to standard protocol (5, 6) and LC50 values in μg/ml were determined for partitioned fractions, pooled chromatographic fractions and isolated compound I. The results are presented in Table I.
4. Conclusion

The structure of the compound gotten conforms to that which has been reported before and this is only a derivative of the compound found in Acanthospermum hispidum DC. The extracts of the plant has also been shown to have antimicrobial properties.

Acknowledgement

IAO is grateful to University of Ibadan, Nigeria, for the staff development given to him.

References

[1] Antagera E, Bardon A, Catalain CA; J. Nat. Product, 2000, 63 (10), Pages 1323-1328, http://dx.doi.org/10.1021/np9905057.
[2] Bauer AN, Kirby, WM, Sherris JC, & Turck, M; Amer. J. Clinical Path., 1996 45.493-496.
[3] Burkhill HM The Useful Plants of West Tropical Africa [Edition 2], Royal Botanical Gardens KEW, 1985 Vol 1, Pages 641-643.
[4] Edewor A, Olajire, AA and Olanyan EB, Research journal of Medical Sciences (1), 2007, Pages 39-41.
[5] Evani de L, Aranjo, Karina P; Brazilian J. of Pharmacognosy, 2008, 18:777-784.
[6] Fleisher TE, Ameade, EP and Sawyer IK, Antimicrobial Activity of the Leaves and Flowering tops of Acanthospermum Hispidum, 2003, Pages 74-76.
[7] Miranda LFP, Instituto de Biologia da Universidade Federal da Bahia, 1996, Page 78.
[8] Odebiyi OO, Sofowora EA; Lloydia, 1978, 41: 234-246.
[9] Sanon, S; Azas, N; Gasquet, M; Ollivier, V; Parasitology Research, 2003, Vol.90 (4): Pp 314-317. http://dx.doi.org/10.1007/s00436-003-0859-9.
[10] Sofowora EA, Research Trends in Medicinal plants in Africa, Spectrum Book Ltd., Ibadan, 1982, Pp. 80-82.