Functional Mechanism of Ginsenoside Compound K on Tumor Growth and Metastasis

Jinlong Liu, PhD1, Yuchen Wang, PhD1, Zhun Yu, PhD2, Guangfu Lv, PhD1, Xiaowei Huang, PhD1, He Lin, PhD1, Chao Ma, PhD1, Zhe Lin, PhD1, and Peng Qu, PhD3

Abstract
Ginsenosides, as the most important constituents of ginseng, have been extensively investigated in cancer chemoprevention and therapeutics. Among the ginsenosides, Compound K (CK), a rare propanaxadiol type of ginsenoside, has been most broadly used for cancer treatment due to its high anticancer bioactivity. However, the functional mechanism of CK in cancer is not well known. This review describes the structure, transformation and pharmacological activity of CK and discusses the functional mechanisms of CK and its metabolites, which regulate signaling pathways related to tumor growth and metastasis. CK inhibits tumor growth by inducing tumor apoptosis and tumor cell differentiation, regulates the tumor microenvironment by suppressing tumor angiogenesis-related proteins, and downregulates the roles of immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs). There is currently much research on the potential development of CK as a new strategy when administered alone or in combination with other compounds.

Keywords
Ginsenoside Compound K, biotransformation, pharmacological activity, antitumor, antimetastatic

Submitted March 23, 2022; accepted May 1, 2022

Introduction
Ginseng, an herbaceous plant in the Araliaceae family, grows in the northern hemisphere of eastern Asia. Its ingredients are complex, including ginsenosides, polysaccharides, polyacetylenes, flavonoids and volatile oils. For thousands of years, ginseng has been one of the most widely used supplements and medical plants in Asian countries, especially in China, South Korea and Japan. In the past few decades, ginseng has become increasingly popular in the United States and Europe.

Ginseng exerts many pharmacological effects, such as anticancer, anti-inflammatory and treatment of diabetes, due to its important component, ginsenoside, which refers to a series of dammarane- or oleanane-type triterpenoid glycosides.1 Based on the difference in the position and quantity of sugar moieties in glycosides, ginsenosides are classified into propanaxadiol type (PPD), propylene glycol type, steryl alcohol type and oleic acid type ginsenosides.2 According to the amount found in cultivated ginseng, ginsenosides are grouped into major ginsenosides (Rb1, Rb2, Re, Rd, Rg1) and minor ginsenosides (F2, Rg3, Rh1, Rh2, and Compound K). There is increasing evidence that the latter exhibit greater pharmacological activity than the former,3 and minor ginsenosides also have more bioavailability and better permeability through cell membranes.4 However, the natural rare ginsenoside content is very low and they must be produced through transformation.

Compound CK (CK), found in multiple ginseng species, is one of most important minor ginsenosides and has been studied for half a century, since it was found to exert increased pharmacological activity. CK was first discovered and...
identified in 1972; its molecular formula is \(C_{36}H_{64}O_{8}\), and its structure is 20-O-\(\beta\)-(D-glucopyranosyl)-20(S)-protopanaxadiol. CK, also called M1, IH-901, and G-CK, is a protopanaxadiol-type saponin with the same core structural characteristics. Different protopanaxadiol-type saponins are composed of different sugar groups at the C-3 and C-20 positions. There is no CK in natural ginseng; however, after oral administration of ginsenosides Rb1, Rb2, and Rc, human intestinal bacterial enzymes gradually cleave the oligosaccharides linked to the aglycone from the terminal sugars and further decompose them into 20(S)-protopanaxadiol (PPD) by gastric acid and/or intestinal microorganisms. It has been reported that Rb1 and Rb2, the intermediate products of transformed CK, have anticancer effects, among which Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/\(\beta\)-catenin signaling and the epithelial-to-mesenchymal transition,6 while Rb2 inhibits tumor cells and their growth and metastasis in vivo.\(^7\)-\(^10\) In addition to the body, CK can also be converted from the main ginsenosides by heating, acidic hydrolysis, enzyme conversion, and microbial conversion,\(^11\) obtained by the cleavage of the sugar moiety at C-3 or C-20.\(^12\)

CK has a variety of pharmacological activities, such as antitumor, anti-inflammatory and treatment of diabetes, and has the advantages of high safety and diverse biological functions, which are beneficial to the treatment of various clinical diseases.\(^13\)-\(^15\) This article reviews the structure, biotransformation, preparation, pharmacokinetics and pharmacological activities of CK. We focused on the functional mechanisms of CK and its metabolites, which regulate multiple signaling pathways related to tumor growth and metastasis.

The Chemical Structure of CK

CK is one of the main active metabolites of protopanaxadiol-type ginsenosides; its structure is 20-O-\(\beta\)-(D-glucopyranosyl)-20(S)-protopanaxadiol. Zhou et al\(^16\) first determined the crystal structure of CK using both spectroscopy and X-ray diffraction. Its structure consists of a glucopyranosyl group and a tetracyclic aglycone.

Biotransformation of CK

Natural ginseng does not contain CK, which is usually produced by biotransformation of protopanaxadiol-type ginsenosides (such as ginsenosides Rb1, Rb2, Rc, etc.) in the presence of human intestinal bacteria, soil fungi or some commercial enzymes M (Figure 1).\(^11\)-\(^18\) The conversion pathway is Rb1/Rb2/Rc→Rd→F2/Rg3→CK.\(^20\) Among these protopanaxadiol ginsenosides, Rb1 is the most abundant component in ginseng extracts. Therefore, the conversion pathway of ginsenoside Rb1→Rd→F2→CK is the most important.\(^12\),\(^21\) With in-depth research on CK, more transformation methods, such as biotransformation methods,\(^22\) physical methods (such as heating)\(^23\) and chemical methods (such as acid-base hydrolysis),\(^24\) have been found. Compared with physical and chemical methods, biotransformation exhibits the advantages of high specificity, low cost and environmental protection.\(^25\) The biotransformation of CK mainly includes both microbial and enzymatic assays.

Microbial Transformation of CK

Microbial transformation of CK includes both fungal transformation and enzymatic conversion.

Fungal transformation has become an important method, with the characteristics of fewer byproducts, mild reaction conditions, high transformation efficiency and no environmental pollution. Zhou et al\(^16\) first used the fungus *Aspergillus niger* instead of intestinal bacteria to biotransform *Panax notoginseng* saponins (PNS) to produce CK with high quality. PNS can also be converted to CK through similar strains, such as *Fusarium sacchari* fungus,\(^26\) *Paecilomyces bainier* sp. 229,\(^19\),\(^27\) *Fusarium sacchari*,\(^28\) and *Fusarium moniliforme*.\(^29\) In addition, a rod-shaped bacterial strain isolated from a Korean ginseng field was designated strain DCY67T. Strain DCY67T contained \(\beta\)-glucosidase activity, which converts ginsenoside Rb1 to Compound K.\(^30\) Strains similar to DCY67T include *Sphingomonas* GS-09,\(^12\) *Platycodon grandiflorum* endoprotease JG09,\(^21\) *Bifidobacterium* K-103 and *Eubacterium A-44*.\(^31\)-\(^40\) Interestingly, the recombinant *Saccharomyces cerevisiae* strain BA21 expressing UGTPg1 is used to produce a large amount of CK from inexpensive monosaccharides. The whole method of CK synthesis is oxidosqualene→dammarenediol II→DMG→CK(CYP716A47) (Table 1).\(^41\)

Enzymatic Transformation of CK

The enzymatic method is also widely used, with the characteristics of mild conditions without destroying the structure of saponins, strong specificity, high yield and no pollution. Ko et al\(^42\) used \(\beta\)-galactosidase from *Aspergillus oryzae* to transform the main protopanaxadiol ginsenoside into CK. The enzymes similar to \(\beta\)-galactosidase include \(\beta\)-glycosidase from *Sulfolobus solfataricus* supplemented with \(\alpha\)-L-arabinofuranosidase from *Caldicellulosiruptor saccharolyticus*,\(^43\) recombinant \(\beta\)-glucosidase from Microbacterium esteromartium,\(^44\) semirational design of *Sulfolobus solfataricus* \(\beta\)-glycosidase\(^45\) and so on.\(^22\),\(^46\)-\(^53\) In addition, PPD-type gypenosides can be converted into CK through naringinase,\(^54\) and rootlet ginseng can be converted into CK through pectinex containing pectinase and arabanase.\(^55\) Choline chloride, as an enzymatic reaction medium, improves the ginsenoside conversion rate (Table 2).\(^56\)
Other Methods of Transformation of CK

In addition to microbial and enzymatic conversion methods, glycerol is used as a carbon source to effectively improve the glycosylation efficiency of PPD to increase the output of CK. In addition, the optimized *Cordyceps sinensis* was found by Dr. Qiu in our department for the first time to be an effective biocatalyst for the conversion of ginsenoside Rb1 to CK. Under optimized conditions, the molar conversion rate of Rb1 to CK is greater than 82%, which has a high efficiency and high selectivity and has raised new heights for CK production.

CK Solubility

Appreciable antitumor activity of CK has been reported. However, the high polarity of CK leads to low solubility and poor oral bioavailability, which might also affect its biodistribution and efficacy. Thus, improving the slow dissolution rate of CK increases its pharmacological activity by covalently conjugating polyethylene glycol (PEG-CK) on the surface of CK with acid-labile ester bonds. PEG-CK was found to exhibit dose-dependent toxicity. The combination of Compound K and γ-cyclodextrin can improve the solubility of CK. These dissolution behaviors were reflected in the Cmax and Tmax values after oral administration in rats. In addition, the new ester prodrug butyl octyl ester (CK-B and CK-O) improves the lipophilicity of CK through acylation to promote the transport of Caco-2 cells. Prebiotic fiber can promote the metabolic transformation and gastrointestinal absorption of rat ginsenosides. The structures of CK derivatives, as a novel class of LXRα activators, have been shown to have higher biological activity than CK. The pharmacological effects of CK can be enhanced by the methods above.

CK Toxicity and Pharmacokinetics Study

A toxicity study of oral CK in beagle dogs was conducted, and all dogs received oral CK doses of 4, 12, or 36 mg/kg for 26 weeks. Animals in the 12 mg/kg group did not show any apparent toxicity for any of the measured parameters. In the toxicity study of CK on mice and rats, some scholars found that in acute toxicity, oral CK in rats and mice did not cause death or toxicity at the maximum dose of 8 and
Integrative Cancer Therapies

In a 26-week toxicity study, rats were administered CK at doses of 13, 40, or 120 mg/kg. The NOAELs of male and female rats were found to be 40 and 120 mg/kg, respectively.65 Pharmacokinetic studies have shown that oral ginsenosides pass through the stomach and small intestine and enter the large intestine without being decomposed by gastric juice or liver enzymes. In the large intestine, ginsenosides are decomposed by colonic bacteria.66 CK, with the pharmacokinetic characteristics of minor ginsenosides, needs to be studied for its preclinical safety and effectiveness as a drug. The analysis and identification of CK metabolites are important aspects of CK research. The metabolism of CK in rats has been reported. After oral administration of CK at a dose of 50 mg/kg, urine and feces were collected and subjected to ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. CK metabolites in urine and feces were detected and characterized, and various metabolites and metabolic pathways were analyzed in detail.67 The absorption, dose linearity and pharmacokinetics of CK, the main intestinal bacterial metabolite of ginsenosides, have been studied.68 After oral administration of CK in healthy people, CK was detected in both plasma and urine using LC–MS/MS and ESI-MS.69-71 In addition, high-fat food was found to increase the absorption of CK in humans, and

Table 1. Micro-Organism Methods Developed for CK Production.	Transformation pathways	Optimum condition	Yield rate	Ref
Sphingomonas GS-098	Rb1→Rd→F2→CK; Rb2→C-O→C-Y→CK; Rc→C-Mc1→C-Mc→CK	No	No	Phi et al⁸
Aspergillus niger	Panax notoginseng saponins→CK	No	35.4%	Chen et al¹³
Platycodon grandiflorum endophytes JG09	Rb1→Rd→F2→CK; Rb2→C-O→C-Y→CK; Rc→C-Mc1→C-Mc→CK	pH 4.0, 7 d	66.34%	Chen et al¹⁵
Fusarium sacchari fungus	Panax notoginseng saponins→CK; C-Mx, and G-Mc	pH 5.5, 30°C 6 d	146.93 mg/g	Zhou et al¹⁹
Fusarium sacchari	Rb1→CK; G-Rc→CK	No	35.08%	Oh and Kim²⁰
Fusarium moniliforme	Panax notoginseng saponin→CK	No	No	Cui et al²¹
Chryseobacterium yecheonense sp. nov DCY67T	Rb1→F2→CK	pH 6.0-6.5, 30°C	No	Noh et al²²
Bifidobacterium K-103 and Eubacterium A-44 isolated from human fecal microflora	Rb1→Rd→F2→CK; Rc→Mb→Mc→CK; Rc→Mb→F2→CK	pH 7.0, 37°C	No	Kim et al²³
Bifidobacterium sp. Int57 and Bifidobacterium sp. SJ32	Rb2, Rc→F2→CK	pH 5.0, 37°C	No	Bae et al²⁴
Esteya vernicola CNU120806	Rd→F2→CK	No	49.6%	He et al²⁵
Acremonium strictum	G-Rb1→CK, other metabolites of bioactive ginsenosides	No	No	Han et al²⁶
Aspergillus niger g.848	Rb1→Rd→F2→CK; Rb1→Gyp17→Gyp75→CK	No	No	Choi et al²⁷
Leuconostoc citreum LH1	Rb1→gypenoside XVII, Rd→F2→CK	72h, pH 6.0, 30°C	99%	Han et al²⁸
Leuconostoc mesenteroides DC102	Rb1→gypenoside XVII, Rd→F2→CK	pH 6.0-8.0 and 30°C	99%	Yang et al²⁹
Lactobacillus paralimentarius LH4	Rb1→gypenoside XVII, Rd→F2→CK	72h, pH 6.0, 30°C	88%	Hoang et al³⁰
Cladosporium cladosporioides GH21	Rb1→Rd→F2→CK; Rg1→F1→Rb1→Rd→F2→CK	No	74.2%	Bae et al³¹
β-glucosidase-producing microorganisms (K35)	Panax ginseng adventitious roots→CK	pH 7.0, 9 d	0.253	Chi et al³²
Recombinant Saccharomyces cerevisiae strain BA21 expressing UGTPg1	Glucose→2,3-oxidosqualene→dammarenediol→DMG→CK (CYP716A47)	No	No	Hou et al³³
the exposure of CK was higher in females than in males in Chinese subjects. In a Japanese study, all subjects were equally divided into 2 groups and given tablets of Lactobacillus paracasei A221-fermented ginseng (FG) or nonfermented ginseng (NFG). This study intervention consisted of a single administration of 6 tablets. The CK contents of FG and NFG were 0.75 mg/tablet and 0.00 mg (not detected)/tablet, respectively. At 24 h after dosing, volunteers were measured using a validated LC–MS/MS assay, and plasma total testosterone concentrations in male volunteers were measured. The mean testosterone concentration in the fermented ginseng group significantly increased 24 h after administration. In Korean subjects, the administration of fermented red ginseng extract promotes higher and faster absorption of CK in humans and rats compared with the treatment results of unfermented red ginseng. The metabolic activity of ginsenosides in feces is positively correlated with the level of serum CK after conversion.

Antitumor Activity of CK

Regulation of CK on Tumor Growth

CK exerts high antitumor roles with strong cytotoxic activity on tumor cells, such as mouse highly metastatic

Enzymes	Transformation pathways	Optimum condition	Yield rate	Ref	
β-Glycosidase from *Sulfolobus solfataricus*	Rb1 or Rb2→Rd→F2→CK; Rec→C-Mc→CK	pH 4.5-6.5, 75°C	70%-80%	Zhou et al	16
β-Galactosidase from *A. oryzae*	G-Rb1→G-Rd→G-F2→CK; G-Rb2→compound V→compound VII→CK; G-Rc→G-Rd→G-F2→CK; G-Rc→compound VI→compound VIII→CK	pH 6.0, 80°C	56%	Liu et al	17

Enzymatic Methods Developed for CK Production.

Enzymes	Transformation pathways	Optimum condition	Yield rate	Ref	
β-Glycosidase from *Sulfolobus solfataricus*	Rb1→Rd→CK	pH 7.0, 40°C	77%	Quan et al	18
Semi-rational design of β-glycosidase	G-Rb1→G-Rd→G-F2→CK	No	56%	Quan et al	19
β-Glycosidase from *Pyrococcus furiosus*	Rb1, Rb2 or Rc→Rd→CK→APPD	pH 5.5, 95°C	79.5%	Quan et al	20
Novel β-glucosidase MT619	Rd→F2→CK; Rb1→G17→F2→CK; Rb1→G17→G75→CK	pH 7.0, 37°C	79.2%	Wu et al	21
β-Glucosidase from K-60	Rb1→F2→CK	pH 7.0, 40°C	No	Song et al	22
β-Glucosidase from *Paecilomyces bainieri*	Rb1→Rd→F2→CK	pH 3.5, 45°C	84.3%	Yan et al	23
Recombinant β-glucosidase from *Terrabacter ginsenosidimutans*	Rb1→GypXVII→GypLXXV→CK	pH 7.0, 45°C	No	Ko et al	24
Ginsenoside type I from *Aspergillus*	PPD type ginsenosides→F2, CK, Rh2	pH 5.0, 40°C	No	Shin et al	25
β-Glycosidase from *Sulfolobus solfataricus*	Rb1→Rd→CK; Rb2→C-Y→CK	pH 5.5, 85°C	94%	Quan et al	26
β-Glycosidase from *Microbacterium esteraromaticum*	Rb2→C-Y→CK	pH 7.0, 40°C	13.51%	Shin et al	27
Naringinase	PPD type ginsenosides→CK	pH 4.1, 50°C, 71 h	65.44 ± 4.52%	Yoo et al	28
Pectinex containing pectinase/arabanase	Rootlet ginseng→PG1, PG2, PG3 and CK	pH 5.0, 50°C	30%-65%	Cui et al	29
Choline chloride	Rb1→Rd→F2→CK	pH 4.5, 60°C, 48 h	80.6%	Park et al	30
Figure 2. The functional mechanism of CK on different tumors. CK induces apoptosis and autophagy in non-small cell lung cancer cells through activating AMPK/mTOR and JNK pathways. CK induces bladder cancer cell apoptosis through activation of p38MAPK pathway mediated by reactive oxygen species (ROS). CK induces apoptosis of colon cancer cells through the activation of CAMK-IV/AMPK pathway. CK induces autophagy and apoptosis of human colon cancer cells through increasing the level of ROS and activating JNK signal. CK induces osteosarcoma cell apoptosis and inhibits its proliferation and invasion through inhibition of PI3K/mTOR/p70S6K1 pathway. CK induces apoptosis of human multiple myeloma cells through inhibiting JAK1/STAT3 signal. CK inhibits TNF-α-promoted colon cancer metastasis in mice through inhibiting NF-κB signaling. Blue lines demonstrate the promotion (→) or inhibition (⊣) roles of signal pathways. Green lines indicate the promotion (→) or inhibition (⊣) roles of CK.

CK inhibits tumor growth through different signaling pathways. Under hypoxia, CK can reduce the expression levels of HK-II, PDK1, and LDHA to inhibit the expression of HIF-1α and its downstream gene GLUT1, further blocking the growth of lung cancer. CK induces apoptosis and autophagy in lung cancer cells A549 and H1975 through the AMPK/mTOR and JNK pathways. CK also induces the production of ROS and the activation of p38MAPK to promote the apoptosis of bladder cancer T24 cells. CK significantly reduces human multiple myeloma U266 cells through the JAK1/STAT3 pathway (Figure 2).

For some rare tumor types, CK has been found to exert strong antitumor activity. CK induces ROS-mediated apoptosis and autophagy flux to suppress neuroblastoma. For nasopharyngeal carcinoma (NPC), CK-induced HK-1-cell apoptosis is mediated through the mitochondrial pathway.

Increasing evidence has revealed that CK blocks one type of cancer, colon cancer, and also that its regulatory mechanism differs. CK induces the apoptosis of colon cancer HT-29 cells. CK inhibits the expression and activity of deoxyribonucleic acid methyltransferase 1 to achieve demethylation of the RUNX3 gene and induce the expression of Smad4 and Bim mediated by RUNX3, indicating that CK significantly inhibits the growth of colon cells by inhibiting DNMT1 and reactivating epigenetically silenced genes. In addition, CK downregulates cell survival proteins, including Mcl-1 and Bcl-2, upregulates cell proapoptotic proteins, including Bax and tBid, and induces the expression of the TRAIL death receptor DR5 on the cell surface, which promotes the apoptosis of colon cancer cells. CK can increase the mRNA and protein expression of RUNX3, as well as p21, a downstream target of RUNX3. Blocking histone deacetylase activity induces the apoptosis of colon cancer cells. CK induces the apoptosis of HT-29 cells and the destruction of mitochondrial membrane potential by regulating the CAMK-IV/AMPK pathway to achieve inhibition of colon cancer cells (Figure 2). Furthermore, CK mediates ROS production to hinder the growth of human colon cancer HT-29 and HCT-116 cells by regulating the mitochondrial-dependent apoptosis pathway and MAPK pathway (Figure 2). Studies have also shown that CK increases Ca²⁺ influx through TRPC channels and by targeting AMPK, thereby producing effective anticancer effects on colon cancer CT-26 cells.

The protective role of CK was also investigated against liver cancer. CK significantly suppressed the proliferation of MHCC97-H human liver cancer cells and induced their apoptosis through the caspase-dependent pathway mediated by Fas and mitochondria. Another study showed for the first time that CK prevented the interaction between Annexin A2 and the NF-κB p50 subunit and NF-κB nuclear colocalization to reduce the activation of NF-κB and activate caspase9 and caspase3, further blocking the growth of liver cancer.

Studies have reported the effect of CK against leukemia. CK induces apoptosis of HL-60 human leukemia cells through a caspase-8-dependent pathway. The G1 cell cycles of Kasumi-1 and MV4-11 are significantly arrested with CK treatment. CK treatment contributes to G1 blockade of U937 cells through upregulation of p21 and the activation of JNK. Similar results regarding the regulation of the cell cycle were reported in gastric cancer. CK induces apoptosis of BGC823 and SGC7901 cells and arrests the G2 cell cycle by upregulating the expression of p21 and downregulating the expression of cdc2 and cyclin B1. CK also effectively prevents tumor formation of SGC7901 gastric cancer cells in nude mice. In addition, CK downregulates cyclin D1 levels to result in cell cycle arrest I then G1 phase, further retarding the proliferation of MCF10CA1a breast cancer cells. CK also induces the apoptosis of MCF-7 breast cancer cells by suppressing the phosphorylation of GSK3β to reduce the expression of β-catenin and cyclin D1. CK inhibits the growth of different colon cell lines through multiple mechanisms.
indicating that CK may bind to different proteins or have multiple targets. The bioactivity of CK has been described by inhibiting viability and proliferation and inducing the apoptosis of tumor cells (Table 3).

Impact of CK on Tumor Invasion and Metastasis

Tumor metastasis is regarded as a major obstacle to successful cancer therapy. Blocking metastasis provides more survival opportunities for cancer patients. Recent investigations of the regulation of tumor metastasis have involved one family of enzymes, the matrix metalloproteinase (MMP) family, which exacerbates tumor metastasis in the TME. These data were consistent with our previous findings. Thus, the downregulatory roles of CK on the activity of MMPs may attenuate tumor migration/metastasis.

Cancer type	Cell Line	Description	Ref.
Lung cancer	NCI-H46, A549,	To down-regulate the expression of HIF-1α and its downstream gene GLUT1 to suppress the growth of lung cancer cells	Xie et al
	NCI-H1299		
Lung cancer	A549, H1975	To induce cancer cell apoptosis and autophagy through AMPK/mTOR and JNK pathway	Paek et al
Bladder Cancer	T24	To induce the production of ROS and activation of p38MAPK, promoting cancer cell apoptosis	Chen et al
Myeloma	U266	To downregulate the phosphorylation of STAT3/JAK1 to prevent tumors	Yang et al
Neuroblastoma	SK-N-Be, SH-SYSY, SK-N-SH	To induce ROS-mediated apoptosis and autophagy flux to inhibit neuroblastoma	Tawab et al
NPC	HK-1	To induce cancer cell apoptosis through mitochondrial pathway	Chen et al
Colon cancer	HCT-116, SW480	To suppress the proliferation and promote apoptosis	Chen et al
Colon cancer	HT-29	To block DNMT1 and reactivates epigenetic silenced genes	Fukami et al
Colon cancer	HT-29	To upregulate DR5 through autophagy-dependent and independent (p53-CHOP pathway) to enhance TRAIL-induced apoptosis	Choi et al
Colon cancer	HT-29	To inhibit histone deacetylase activity to inhibit growth/promote apoptosis of cancer cells	Kim et al
Colon cancer	HT-29	To induce cancer cell apoptosis through CAMK-IV/AMPK pathway	Li et al
Colon cancer	HT-29	To regulate the mitochondrial-dependent apoptotic and MAPK pathway	Wang et al
Colon cancer	HCT-116	To increase ROS production and JNK activation for inducing autophagy and apoptosis of cancer cells	Park et al
Colon cancer	CT-26	To increase Ca2+ influx through TRPC channel/target AMPK to repress the growth of cancer cells	Oh et al
Liver cancer	MHCC97-H	To retard the proliferation of liver cancer cells and induce their apoptosis	Law et al
Liver cancer	HepG2	To attenuate the activation of NF-κB and the expression of their downstream genes, and activate caspase 3, 9 to induce anti-cancer effects	Wang et al
Leukemia	HL-60	To induce leukemia cell apoptosis through caspase-8 dependent pathway	Kang et al
Leukemia	Kasumi-1, MV4-11	To arrest cell cycle in G1 and promote apoptosis	Chen et al
	U937	To upregulate p21 and activate JNK to block G1 phase of cancer cells	Kang et al
Gastric carcinoma	BGC823 SGC7901	To upregulate the expression of p21, down-regulate the expression of CDC2/Cyclin B1, inducing cancer cell apoptosis and arresting cancer cell cycle	Kim et al
Breast cancer	MCF10CA1	To down-regulate cyclin D1 level, lead to cell cycle arrest in G1 phase, inhibiting tumor cell proliferation	Lee et al
Breast cancer	MCF-7	To reduce GSK3β phosphorylation and the expression of both β-catenin and cyclin D1 to induce cancer cell programed necrosis	Kim et al

Abbreviations: DR5, TRAIL-R2; DNMT1, DNA methyltransferase 1; MMP9, Matrix Metalloproteinase 9; NPC, nasopharyngeal carcinoma; TNF-α, tumor necrosis factor-α; TRPC, transient receptor potential canonical.
colon cancer. In addition, CK was found to diminish the expression of NF-κBp65 nuclear export and MMP2/9, retarding the metastasis of MHCC97-H liver cancer cells (Figure 2). Similar studies have been conducted in astroglia. CK reduces the expression of MMP-9 in human astroglia cells by blocking the expression of AP-1 and PMA-mediated activation of p38 MAPK/ERK/JNK. Recent studies have shown that CK inhibits the proliferation of MG-63 and U2-OS osteosarcoma cells and reduces the expression of MMP-2/9 to prevent the migration and invasion of tumor cells through the PI3K/mTOR/p70S6K1 pathways (Figure 2). The epithelial–mesenchymal transition (EMT) has been shown to promote tumor metastasis. CK and DDP alone or in combination inhibit MCF-7-cell proliferation and the EMT through the PI3K/AKT pathway. Similarly, CK suppresses the self-renewal ability and invasiveness of glioblastoma U87MG and U373MG GBM stem cells through the PI3K/AKT/mTOR signaling pathway (Table 4).

Impact of CK on MDSCs in the Tumor Microenvironment

The tumor microenvironment (TME) is a complicated system in which tumor cells are supported and allowed to flourish by many cells, such as endothelial cells, fibroblasts and myeloid suppressor cells. In the TME, myeloid suppressor cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs) and tumor-associated DCs (TADCs), play important roles in promoting the invasion and metastasis of tumors.

Here, we focus on discussing the roles of CK in tumor MDSCs. MDSCs originate from the bone marrow and are composed of bone marrow progenitor cells and immature bone marrow cells (IMCs). MDSCs, which are important myeloid suppressor cells, accumulate in the TME and exhibit strong immunosuppressive activity against T-cell antitumor responses. In mice, MDSCs are divided into 2 subgroups according to their epitope-specific antibodies: monocyte CD11b+LY6G−LY6Chi phenotype and granulocyte CD11b+LY6G+LY6 slow phenotype. Mononuclear MDSCs and granulocyte MDSCs use different inhibitory mechanisms. Mononuclear MDSCs produce few reactive oxygen species (ROS) but produce high levels of nitric oxide (NO) and consist of IMCs that have the ability to differentiate into macrophages and DCs. In contrast, granulocyte MDSCs express high levels of ROS and very little NO and are the main population of MDSCs in tumor-bearing mice. In humans, MDSCs in cancer patients are defined by a combination of functional markers (eg, CD14, CD33, CD11b, and CD66b). A study in a CT26 colorectal cancer xenograft-bearing mouse model demonstrated that CK had a significant effect against tumor MDSCs. CK promotes the apoptosis of MDSCs by downregulating the expression of Cox-2 and Arg-1 in MDSCs and reduces the secretion of the inflammatory cytokines IL-1β, IL-6, and IL-17, inhibiting the growth and proliferation of tumor cells. These results are consistent with ours (unpublished data).

Synergistic Antitumor Effects of CK and Other Methods/Compounds

The antitumor activity of CK has been widely investigated. However, CK has certain drawbacks that restrict its clinical use since it has low solubility and poor absorption. Therefore, some scientists have combined CK with other clinical antitumor compounds or assays (such as irradiation) to enhance antitumor activity in clinical practice. For example, CK enhances gamma-ray-induced apoptosis of lung cancer cells and inhibits tumor growth in vivo at a dose of 30 mg/kg/day.

Cancer type	Cell Line	Description	Ref.
Colon cancer	CT-26	To reduce TNF-α-induced NF-κB activation and MMP-9 expression to prevent the migration and invasion of cancer cells	Kang et al94
Liver cancer	MHCC97-H	To diminish the expression of NF-κBp65 nuclear export and MMP2/9 to inhibit tumor metastasis.	Hu et al95
Astroglia	U87MG U373MG CRT-MG	To inhibit the expression of AP-1 and PMA-mediated activation of p38 MAPK/ERK/JNK, inhibiting the MMP-9 expression on cancer cells.	Lee et al96
Osteosarcoma	MG-63 U2-OS	To suppress tumor proliferation, promote apoptosis and migration through PI3K/mTOR/p70S6K1 signal pathway	Kwak et al97
Breast cancer	MCF-7	To induce apoptosis through PI3K/AKT pathway	Ma et al98
GBM	U87MG U373MG	To inhibit proliferation and promote apoptosis through PI3K/Akt/mTOR signal pathway	Kessenbrock et al99

Abbreviations: GBM, glioblastoma; AP-1, c-jun and c-fos.
Wang et al117 synthesized \textit{Dendropanax} AgNPs (D-AgNPs) and \textit{Dendropanax} AuNPs (D-AuNPs) and found that 2 CK-added nanoparticles had a strong synergistic anticancer effect on A549 lung cancer. According to reports, A54 peptide was utilized to fabricate CK-loaded micelles (APD-CK) and chitosan nanoparticles loaded with CK (CK-NPs) to more efficiently suppress liver cancer cell proliferation and promote apoptosis.118-120 In addition, the combination of CK with other compounds has also been studied in the treatment of gastric adenocarcinoma, colon cancer and hippocampal nerve cells. DPPH-scavenging gold nanoparticles (DCY51T-AuNps), CK-bearing glycol chitosan conjugates and novel ester prodrugs, such as butyl and octyl ester (CK-B and CK-O), exert better effects on improving the absorption of CK and contributing to its anti-tumor effect.61,121,122 These studies provide an idea for anti-tumor therapy of CK in clinics.

Conclusions and Prospect

CK has attracted an increasing number of scientific workers and is widely used due to its outstanding pharmacological activity. CK enhances human immunity, has antitumor, anti-inflammatory, and antiaging properties, protects the nervous system and treats cardiovascular diseases, especially in the treatment of cancer. This article introduces the chemical structure, biotransformation, preparation, pharmacokinetics and antitumor activity of CK. This article also summarizes the antitumor mechanisms of CK, which inhibits tumor growth by inducing tumor apoptosis and tumor cell differentiation and blocks tumor invasion and metastasis via multiple signaling pathways and the functional inhibition of MDSCs. In the future, the effects of CK against the roles of other immunosuppressive cells need to be investigated, further displaying the immune roles of CK on the TME. Interestingly, CK exhibits antitumor activity through multiple signaling pathways, indicating that CK may target distinct proteins that need to be studied for clinical treatment. We have sorted and integrated different aspects of CK to clarify relevant treatment ideas and help people better understand CK and its broad application prospects.

Acknowledgments

The authors thank the Pharmacy Department staff members who technically supported us for the realization of this article. The authors also thank Steven Qu from MIT for English language editing.

Author Contributions

PQ conceived and designed the work. ZL coordinated technical support and funding. JL and PQ wrote the manuscript. YW, ZY, GL, XH, HL and CM acquired, analyzed, and interpreted the data. All authors read and approved the final manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Natural Science Foundation of China (Grant No. 81572868), the Jilin Province Industrial Technology Project (Grant No. 20200032-2), and the Jilin Province Science and Technology Development Project (Grant No. 20200801028GH).

ORCID iDs

Jinlong Liu \(\text{https://orcid.org/0000-0002-9185-7688}\)

Peng Qu \(\text{https://orcid.org/0000-0003-2304-1430}\)

References

1. Qi LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. \textit{Phytochemistry}. 2011;72:689-699.

2. Mi J, Zhang M, Ren G, Zhang H, Wang Y, Hu P. Enriched separation of protopanaxatriol ginsenosides, malonyl ginsenosides and protopanaxadiol ginsenosides from \textit{Panax ginseng} using macroporous resins. \textit{J Food Eng}. 2012;113:577-588.

3. Nag SA, Qin JJ, Wang W, Wang MH, Wang H, Zhang R. Ginsenosides as anticancer agents: in vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. \textit{Front Pharmacol}. 2012;3:25.

4. Xu QF, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from \textit{Panax} notoginseng in rats. \textit{J Ethnopharmacol}. 2003;84:187-192.

5. Yosioka I, Sugawara T, Imai K, Kitagawa I. Soil bacterial hydrolysis leading to genuine aglycone. \textit{V. on ginsenosides-Rb1, Rb2, and Re of the ginseng root saponins}. \textit{Chem Pharm Bull}. 1972;20:2418-2421.

6. Deng S, Wong CCK, Lai HC, Wong AST. Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/β-catenin signaling and epithelial-to-mesenchymal transition. \textit{Oncotarget}. 2017;8:25897-25914.

7. Dai G, Sun B, Gong T, Pan Z, Meng Q, Ju W. Ginsenoside Rh2 inhibits epithelial-mesenchymal transition of colorectal cancer cells by suppressing TGF-β/Smad signaling. \textit{Phyto medicine}. 2019;56:126-135.

8. Phi LTH, Wijaya YT, Sari IN, Yang YG, Lee YK, Kwon HY. The anti-metastatic effect of ginsenoside Rb2 in colorectal cancer in an EGFR/SH2-dependent manner. \textit{Cancer Med}. 2018;7:5621-5631.

9. Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, Azuma I. Inhibition of tumor angiogenesis and metastasis by a saponin of \textit{Panax ginseng}, ginsenoside-Rb2. \textit{Biol Pharm Bull}. 1994;17:635-639.

10. Li X, Chu S, Lin M, et al. Anticancer property of ginsenoside Rh2 from ginseng. \textit{Eur J Med Chem}. 2020;203:112627.
11. Yang X-D, Yang Y-Y, Ouyang D-S, Yang GP. A review of biotransformation and pharmacology of ginsenoside compound K. *Fitoterapia*. 2015;100:208-220.

12. Fu Y, Yin Z, Wu L, Yin C. Diversity of cultivable β-glucosidase-producing microorganisms isolated from the soil of a ginseng field and their ginsenoside-hydrolysing activity. *Lett Appl Microbiol*. 2014;58:138-144.

13. Chen J, Wang Q, Wu H, et al. The ginsenoside metabolite compound K exerts its anti-inflammatory activity by down-regulating memory B cell in adjuvant-induced arthritis. *Pharm Biol*. 2016;54:1280-1288.

14. Shao X, Li N, Zhan J, Sun H, An L, Du P. Protective effect of compound K on diabetic rats. *Nat Prod Commun*. 2015;10:243-245.

15. Chen HF, Wu LX, Li XF, et al. Ginsenoside compound K inhibits growth of lung cancer cells via HIF-1α-mediated glucose metabolism. *Cell Mol Biol*. 2019;65:48-52.

16. Zhou W, Feng MQ, Li JY, Zhou P. Studies on the preparation, crystal structure and bioactivity of ginsenoside compound K. *J Asian Nat Prod Res*. 2006;8:519-527.

17. Kim S, Kang BY, Cho SY, et al. Compound K induces expression of hyaluronan synthase 2 gene in transformed human keratinocytes and increases hyaluronan in hairless mouse skin. *Biochem Biophys Res Commun*. 2004;316:348-355.

18. Zhou W, Li J, Li X, Yan Q, Zhou P. Development and validation of a reversed-phase HPLC method for quantitative determination of ginsenosides Rb1, Rd, F2, and compound K during the process of biotransformation of ginsenoside Rb1. *J Sep Sci*. 2008;31:921-925.

19. Zhou W, Yan Q, Li JY, Zhang XC, Zhou P. Biotransformation of Panax notoginseng saponins into ginsenoside compound K production by *Paecilomyces bainier* sp. nov. *J Appl Microbiol*. 2008;104:699-706.

20. Oh J, Kim JS. Compound K derived from ginseng: neuroprotection and cognitive improvement. *Food Funct*. 2016;7:4506-4515.

21. Cui L, Wu SQ, Zhao CA, Yin CR. Microbial conversion of major ginsenosides in ginseng total saponins by *Platyctodon grandiflorum* endophytes. *J Ginseng Res*. 2016;40:366-374.

22. Noh KH, Son JW, Kim HJ, Oh DK. Ginsenoside compound K production from ginseng root extract by a thermostable β-glucosidase from *Sulfolobus solfataricus*. *Biosci Biotechnol Biochem*. 2009;73:316-321.

23. Kim WY, Kim JM, Han SB, et al. Steaming of ginseng at high temperature enhances biological activity. *J Nat Prod*. 2000;63:1702-1704.

24. Bae EA, Han MJ, Kim EJ, Kim DH. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. *Arch Pharm Res*. 2004;27:61-67.

25. He Y, Hu Z, Li A, et al. Recent advances in biotransformation of saponins. *Molecules*. 2019;24:E2365. doi:10.3390/molecules24132365

26. Han Y, Sun B, Hu X, et al. Transformation of bioactive compounds by *Fusarium sacchari* fungus isolated from the soil-cultivated ginseng. *J Agric Food Chem*. 2007;55:9373-9379.

27. Choi K, Kim M, Ryu J, Choi C. Ginsenosides compound K and Rh(2) inhibit tumor necrosis factor-alpha-induced activation of the NF-kappaB and JNK pathways in human astroglial cells. *Neurosci Lett*. 2007;421:37-41.

28. Han Y, Sun B, Jiang B, et al. Microbial transformation of ginsenosides Rb1, Rb3 and Re by *Fusarium sacchari*. *J Appl Microbiol*. 2010;109:792-798.

29. Yang Y, Wang Y, Yan M, Sun C, Zheng P. [Screening of plant pathogenic fungi by ginsenoside compound K production]. *Zhongguo Zhong Yao Za Zhi*. 2011;36:1596-1598.

30. Hoang VA, Kim YJ, Nguyen NL, Yang DC. *Chryso- bacterium yeoncheonense* sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field. *Arch Microbiol*. 2013;195:463-471.

31. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. *Biof Pharm Bull*. 2002;25:743-747.

32. Chi H, Kim DH, Ji GE. Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms. *Biol Pharm Bull*. 2005;28:2102-2105.

33. Hou JG, Xue JJ, Sun MQ, et al. Highly selective microbial transformation of major ginsenoside Rb1 to gypenoside LXXV by Esteya vermicola CNU120806. *J Appl Microbiol*. 2012;113:807-814.

34. Chen GT, Yang M, Song Y, et al. Microbial transformation of ginsenoside Rb(1) by *Acremonium strictum*. *Appl Microbiol Biotechnol*. 2008;77:1345-1350.

35. Liu C, Jin Y, Yu H, et al. Biotransformation pathway and kinetics of the hydrolysis of the 3-O- and 20-O-methylglucosides of PPD-type ginsenosides by ginsenoside type I. *Process Biochem*. 2014;49:813-820.

36. Quan LH, Piao JY, Min JW, Yang DU, Lee HN, Yang DC. Bioconversion of ginsenoside rb1 into compound k by *Leuconostoc citreum* LHI isolated from kimchi. *Braz J Microbiol*. 2011;42:1227-1237.

37. Quan LH, Piao JW, Min JW, et al. Biotransformation of ginsenoside Rb1 to prosapogenins, gypenoside XVII, ginsenoside Rd, ginsenoside F2, and Compound K by *Leuconostoc mesenteroides* DC102. *J Ginseng Res*. 2011;35:344-351.

38. Quan LH, Kim YJ, Li GH, Choi KT, Yang DC. Microbial transformation of ginsenoside Rb1 to compound K by *Lactobacillus paralimentarius*. *World J Microbiol Biotechnol*. 2013;29:1001-1007.

39. Wu L, Jia J, Yin C, Bai L. Co-transformation of Panax major ginsenosides Rb, and Rg, to minor ginsenosides C-K and F, by *Cladosporium cladosporioides*. *J Ind Microbiol Biotechnol*. 2012;39:521-527.

40. Song X, Wu H, Piao X, Yin Z, Yin C. Microbial transformation of ginsenosides extracted from *Panax ginseng* adventitious roots in an airlift bioreactor. *Electron J Biotechnol*. 2017;26:20-26.

41. Yan X, Fan Y, Wei W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast. *Cell Res*. 2014;24:770-773.

42. Ko SR, Suzuki Y, Suzuki K, Cho KJ, Cho BG. Marked production of ginsenosides Rd, R2, Rg3, and compound K by enzymatic method. *Chem Pharm Bull*. 2007;55:1522-1527.
43. Shin KC, Choi HY, Seo MJ, Oh DK. Compound K production from red ginseng extract by β-Glycosidase from Sulfolobus solfataricus supplemented with α-L-Arabinofuranosidase from Caldibacterium saccharolyticum. PLoS One. 2015;10:e0145876.

44. Quan LH, Min JW, Jin Y, Wang C, Kim YJ, Yang DC. Enzymatic biotransformation of ginsenoside Rb1 to compound K by recombinant β-glucosidase from Microbacterium esteraromaticum. J Agric Food Chem. 2012;60:3776-3781.

45. Shin KC, Choi HY, Seo MJ, Oh DK. Improved conversion of ginsenoside Rb1 to compound K by semi-rational design of Sulfolobus solfataricus β-glycosidase. AMB Express. 2017;7:186.

46. Yoo MH, Yeom SJ, Park CS, Lee KW, Oh DK. Production of aglycon protopanaxadiol via compound K by a thermostable β-glycosidase from Pyrococcus furiosus. Appl Microbiol Biotechnol. 2011;89:1019-1028.

47. Cui CH, Jeon BM, Fu Y, Im WT, Kim SC. High-density immobilization of a ginsenoside-transforming β-glucosidase for enhanced food-grade production of minor ginsenosides. Appl Microbiol Biotechnol. 2019;103:7003-7015.

48. Park SY, Bae EA, Sung JH, Lee SK, Kim DH. Purification and characterization of ginsenoside rb1-metabolizing beta-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci Biotechnol Biochem. 2001;65:1163-1169.

49. Yan Q, Zhou XW, Zhou W, et al. Purification and properties of a novel β-glucosidase, hydrolyzing ginsenoside Rb1 to CK, from Paecilomyces Bainier. J Microbiol Biotechnol. 2008;18:1081-1089.

50. An DS, Cui CH, Lee HG, et al. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. Beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl Environ Microbiol. 2010;76:5827-5836.

51. Yu H, Zhang C, Lu M, Sun F, Fu Y, Jin F. Purification and characterization of new special ginsenoside hydrolyzing multi-glycosides of protopanaxadiol ginsenosides, ginsenoside type I. Chem Pharm Bull. 2007;55:231-235.

52. Noh KH, Oh DK. Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable β-glycosidase from Sulfolobus acidocaldarius. Biol Pharm Bull. 2009;32:1830-1835.

53. Quan LH, Jin Y, Wang C, Min JW, Kim YJ, Yang DC. Enzymatic transformation of the major ginsenoside Rb2 to minor compound Y and compound K by a ginsoside-dehydrolyzing β-glucosidase from Microbacterium esteraromaticum. J Ind Microbiol Biotechnol. 2012;39:1557-1562.

54. Zheng Y, Zheng Z, Ming Y, et al. Compound K producing from the enzymatic conversion of gypenoside by naringinase. Food Chem Toxicol. 2019;130:253-261.

55. Kim BH, Lee SY, Cho HJ, et al. Biotransformation of Korean Panax ginseng by Pectinex. Biol Pharm Bull. 2006;29:2472-2478.

56. Ma Z, Mi Y, Han X, et al. Transformation of ginsenoside via deep eutectic solvents based on choline chloride as an enzymatic reaction medium. Bioprocess Biosyst Eng. 2020;43:1195-1208.

57. Nan W, Zhao F, Zhang C, Ju H, Lu W. Promotion of compound K production in Saccharomyces cerevisiae by glycerol. Microb Cell Fact. 2020;19:41.

58. Wang WN, Yan BX, Xu WD, Qiu Y, Guo YL, Qiu ZD. Highly selective bioconversion of ginsenoside Rb1 to compound K by the mycelium of Cordyceps sinensis under optimized conditions. Molecules. 2015;20:19291-19309.

59. Mathiyalagan R, Subramaniyam S, Kim YJ, et al. Synthesis and pharmacokinetic characterization of a pH-sensitive polyethylene glycol ginsenoside CK (PEG-CK) conjugate. Biosci Biotechnol Biochem. 2014;78:466-468.

60. Igami K, Ozawa M, Inoue S, et al. The formation of an inclusion complex between a metabolite of ginsenoside, compound K and γ-cyclodextrin and its dissolution characteristics. J Pharm Pharmacol. 2016;68:646-654.

61. Zhang B, Zhu XM, Hu JN, et al. Absorption mechanism of ginsenoside compound K and its butyl and octyl ester prodrugs in Caco-2 cells. J Agric Food Chem. 2012;60:10278-10284.

62. Kim KA, Yoo HH, Gu W, et al. A prebiotic fiber increases the formation and subsequent absorption of compound K following oral administration of ginseng in rats. J Ginseng Res. 2015;39:183-187.

63. Huang Y, Liu H, Zhang Y, et al. Synthesis and biological evaluation of ginsenoside compound K derivatives as a novel class of LXrα activator. Molecules. 2017;22:E1232. doi:10.3390/molecules22071232.

64. Li C, Wang Z, Wang T, et al. Repeated-dose 26-week oral toxicity study of ginsenoside compound K in Beagle dogs. J Ethnopharmacol. 2020;248:112323.

65. Gao Y, Wang T, Wang G, et al. Preclinical safety of ginsenoside compound K, acute, and 26-week oral toxicity studies in mice and rats. Food Chem Toxicol. 2019;131:110578.

66. Ko SR, Suzuki Y, Choi KJ, Kim YH. Enzymatic preparation of genuine prosapogenin, 20(S)-ginsenoside Rh1, from ginsenosides Re and Rg1. Biosci Biotechnol Biochem. 2000;64:2739-2743.

67. Xie T, Li Z, Li B, Sun R, Zhang P, Lv J. Characterization of ginsenoside compound K metabolites in rat urine and feces by ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Biomed Chromatogr. 2019;33:e4643.

68. Paek IB, Moon Y, Kim J, et al. Pharmacokinetics of a ginseng saponin metabolite compound K in rats. Biopharm Drug Dispos. 2006;27:39-45.

69. Chen Y, Lu Y, Yang C, Chen X, Zhu L, Zhong D. Determination of ginsenoside compound K in human plasma by liquid chromatography-tandem mass spectrometry of lithium adducts. Acta Pharm Sin B. 2015;5:461-466.

70. Yang L, Wang CY, Xie XN, et al. LC–MS/MS determination of ginsenoside compound K and its metabolite 20(S)-protopanaxadiol in human plasma and urine: applications in a clinical study. Bioanalysis. 2019;11:365-380.

71. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos. 2003;31:1065-1071.

72. Chen L, Zhou L, Wang Y, et al. Food and sex-related impacts on the pharmacokinetics of a single-dose of...
ginsenoside compound K in healthy subjects. *Front Pharmacol*. 2017;8:636.

73. Chen L, Zhou L, Huang J, et al. Single- and multiple-dose trials to determine the pharmacokinetics, safety, tolerability, and sex effect of oral ginsenoside compound K in healthy Chinese volunteers. *Front Pharmacol*. 2017;8:965.

74. Fukami H, Ueda T, Matsuoka N. Pharmacokinetic study of compound K in Japanese subjects after ingestion of Panax ginseng fermented by *Lactobacillus paracasei* A221 reveals significant increase of absorption into blood. *J Med Food*. 2019;22:257-263.

75. Choi ID, Ryu JH, Lee DE, et al. Enhanced absorption study of ginsenoside compound K (20-O-β-(D-Glucopyranosyl)-20(S)-protopanaxadiol) after oral administration of fermented red ginseng extract (HYFRG™) in Healthy Korean volunteers and rats. *Evid Based Complement Alternat Med*. 2016;2016:3908142.

76. Kim JK, Choi MS, Jeung W, Ra J, Yoo HH, Kim DH. Effects of gut microbiota on the pharmacokinetics of protopanaxadiol ginsenosides Rb1, Rg3, F2, and compound K in healthy volunteers treated orally with red ginseng. *J Ginseng Res*. 2020;44:611-618.

77. Li C, Dong Y, Wang L, et al. Ginsenoside metabolite compound K induces apoptosis and autophagy in non-small cell lung cancer cells via AMPK-mTOR and JNK pathways. *Biochem Cell Biol*. 2019;97:406-414. doi:10.1139/bcb-2018-0226

78. Wang H, Jiang D, Liu J, et al. Compound K induces apoptosis of bladder cancer T24 cells via reactive oxygen species-mediated p38 MAPK pathway. *Cancer Biother Radiopharm*. 2013;28:607-614.

79. Park S, Lee HJ, Jeong SJ, et al. Inhibition of JAK1/STAT3 signaling mediates compound K-induced apoptosis in human multiple myeloma U266 cells. *Food Chem Toxicol*. 2011;49:1367-1372.

80. Oh JM, Kim E, Chun S. Ginsenoside compound K induces Ros-mediated apoptosis and autophagic inhibition in human neuroblastoma cells in vitro and in vivo. *Int J Mol Sci*. 2019;20:E4279. doi:10.3390/ijms20174279

81. Law CK, Kwok HH, Poon PY, et al. Ginsenoside compound K induces apoptosis in nasopharyngeal carcinoma cells via activation of apoptosis-inducing factor. *Chin Med*. 2014;9:9-11.

82. Wang C-Z, Du G-J, Zhang Z, et al. Ginsenoside compound K, not Rb1, possesses potential chemopreventive activities in human colorectal cancer. *Int J Oncol*. 2012;40:1970-1976.

83. Kang KA, Kim HS, Kim DH, Hyun JW. The role of a ginseng saponin metabolite as a DNA methyltransferase inhibitor in colorectal cancer cells. *Int J Oncol*. 2013;43:228-236.

84. Chen L, Meng Y, Sun Q, et al. Ginsenoside compound K sensitizes human colon cancer cells to TRAIL-induced apoptosis via autophagy-dependent and -independent DR5 upregulation. *Cell Death Discov*. 2016;7:e2334.

85. Kang KA, Piao MJ, Kim KC, et al. Compound K, a metabolite of ginseng saponin, inhibits colorectal cancer cell growth and induces apoptosis through inhibition of histone deacetylase activity. *Int J Oncol*. 2013;43:1907-1914.

86. Kim DY, Park MW, Yuan HD, Lee HJ, Kim SH, Chung SH. Compound K induces apoptosis via CAMK-IV/AMPK pathways in HT-29 colon cancer cells. *J Agric Food Chem*. 2009;57:10573-10578.

87. Lee IK, Kang KA, Lim CM, et al. Compound K, a metabolite of ginseng saponin, induces mitochondria-dependent and caspase-dependent apoptosis via the generation of reactive oxygen species in human colon cancer cells. *Int J Mol Sci*. 2010;11:4916-4931.

88. Kim AD, Kang KA, Kim HS, et al. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. *Cell Death Discov*. 2013;4:e750.

89. Hwang JA, Hwang MK, Jang Y, et al. 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginseng, inhibits colon cancer growth by targeting TRPC channel-mediated calcium influx. *J Nutr Biochem*. 2013;24:1096-1104.

90. Zheng ZZ, Ming YL, Chen LH, Zheng GH, Liu SS, Chen QX. Compound K-induced apoptosis of human hepatocellular carcinoma MHCC97-H cells in vitro. *Oncol Rep*. 2014;32:325-331.

91. Wang YS, Zhu H, Li H, Li Y, Zhao B, Jin YH. Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2. *J Ginseng Res*. 2019;43:452-459.

92. Cho SH, Chung KS, Choi JH, Kim DH, Lee KT. Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells. *BMC Cancer*. 2009;9:449.

93. Chen Y, Xu Y, Zhu Y, Li X. Anti-cancer effects of ginsenoside compound k on pediatric acute myeloid leukemia cells. *Cancer Cell Int*. 2013;13:24.

94. Kang KA, Kim YW, Kim SU, et al. G1 phase arrest of the cell cycle by a ginseng metabolite, compound K, in U937 human moncytotic leukaemia cells. *Arch Pharm Res*. 2005;28:685-690.

95. Hu C, Song G, Zhang B, et al. Intestinal metabolite compound K of panaxoside inhibits the growth of gastric carcinoma by augmenting apoptosis via Bid-mediated mitochondrial pathway. *J Cell Mol Med*. 2012;16:96-106.

96. Lee SJ, Lee JS, Lee E, Lim TG, Byun S. The ginsenoside metabolite compound K inhibits hormone-independent breast cancer through downregulation of cyclin D1. *J Funct Foods*. 2018;46:159-166.

97. Kwak CW, Son YM, Gu MJ, et al. A bacterial metabolite, compound K, induces programmed necrosis in MCF-7 cells via GSK3β. *J Microbiol Biotechnol*. 2015;25:1170-1176.

98. Ma B, Wells A, Clark AM. The pan-therapeutic resistance of disseminated tumor cells: role of phenotypic plasticity and the metastatic microenvironment. *Semin Cancer Biol*. 2020;60:138-147.

99. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. *Cell*. 2010;141:52-67.

100. Qu P, Du H, Wang X, Yan C. Matrix-metalloproteinase 12 overexpression in lung epithelial cells plays a key role in emphysema to lung bronchoalveolar adenocarcinoma transition. *Cancer Res*. 2009;69:7252-7261.
101. Qu P, Yan C, Du H. Matrix metalloproteinase 12 overexpression in myeloid lineage cells plays a key role in modulating myelopoiesis, immune suppression, and lung tumorigenesis. *Blood*. 2011;117:4476-4489.

102. Choo MK, Sakurai H, Kim DH, Saiki I. A ginseng saponin metabolite suppresses tumor necrosis factor-alpha-promoted metastasis by suppressing nuclear factor-kappaB signaling in murine colon cancer cells. *Oncol Rep*. 2008;19:595-600.

103. Ming Y, Chen Z, Chen L, et al. Ginsenoside compound K attenuates metastatic growth of hepatocellular carcinoma, which is associated with the translocation of nuclear factor-κB p65 and reduction of matrix metalloproteinase-2/9. *Planta Med*. 2011;77:428-433.

104. Jung SH, Woo MS, Kim SY, et al. Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astrogliaoma cells. *Int J Cancer*. 2006;118:490-497.

105. Chen K, Jiao J, Xue J, et al. Ginsenoside CK induces apoptosis and suppresses proliferation and invasion of human osteosarcoma cells through the PI3K/mTOR/p70S6K1 pathway. *Oncol Rep*. 2020;43:886-896.

106. Zhang K, Li Y. Effects of ginsenoside compound K combined with cisplatin on the proliferation, apoptosis and epithelial mesenchymal transition in MCF-7 cells of human breast cancer. *Pharm Biol*. 2016;54:561-568.

107. Lee S, Kwon MC, Jang JP, Sohng JK, Jung HJ. The ginsenoside metabolite compound K inhibits growth, migration and stemness of glioblastoma cells. *Int J Oncol*. 2017;51:414-424.

108. Arneth B. Tumor microenvironment. *Medicina*. 2019;56: E15. doi:10.3390/medicina56010015

109. Ugel S, Cané S, De Sanctis F, Bronte V. Monocytes in the tumor microenvironment. *Annu Rev Pathol*. 2021;16:93-122.

110. Qu P, Boelte KC, Lin PC. Negative regulation of myeloid-derived suppressor cells in cancer. *Immunol Invest*. 2012;41:562-580.

111. Bronte V. Myeloid-derived suppressor cells in inflammation: uncovering cell subsets with enhanced immunosuppressive functions. *Eur J Immunol*. 2009;39:2670-2672.

112. Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. *J Leukoc Biol*. 2012;91:167-181.

113. Wang R, Li Y, Wang W, et al. [Compound K suppresses myeloid-derived suppressor cells in a mouse model bearing CT26 colorectal cancer xenograft]. *Nan Fang Yi Ke Da Xue Xue Bao*. 2015;35:748-752.

114. Zhang Y, Qiu Z, Qiu Y, Su T, Qu P, Jia A. Functional regulation of ginsenosides on myeloid immunosuppressive cells in the tumor microenvironment. *Integr Cancer Ther*. 2019;18:1534735419886655.

115. Jin X, Yang Q, Cai N. Preparation of ginsenoside compound-K mixed micelles with improved retention and anti-tumor efficacy. *Int J Nanomedicine*. 2018;13:3827-3838.

116. Chae S, Kang KA, Chang WY, et al. Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo. *J Agric Food Chem*. 2009;57:5777-5782.

117. Wang C, Mathiyalagan R, Kim YJ, et al. Rapid green synthesis of silver and gold nanoparticles using *Dendropanax morbifera* leaf extract and their anticancer activities. *Int J Nanomedicine*. 2016;11:3691-3701.

118. Zhang J, Jiang Y, Li Y, et al. Micelles modified with a chitosan-derived homing peptide for targeted intracellular delivery of ginsenoside compound K to liver cancer cells. *Carbohydr Polym*. 2020;230:115576.

119. Zhang J, Wang Y, Jiang Y, et al. Enhanced cytotoxic and apoptotic potential in hepatic carcinoma cells of chitosan nanoparticles loaded with ginsenoside compound K. *Carbohydr Polym*. 2018;198:537-545.

120. Hou J, Xue J, Zhao X, et al. Octyl ester of ginsenoside compound K as novel anti-hepatoma compound: Synthesis and evaluation on murine H22 cells in vitro and in vivo. *Chem Biol Drug Des*. 2018;91:951-956.

121. Kim YJ, Perumalsamy H, Markus J, et al. Development of *Lactobacillus kimchicus* DCY51(T)-mediated gold nanoparticles for delivery of ginsenoside compound K: In vitro photothermal effects and apoptosis detection in cancer cells. *Artif Cells Nanomed Biotechnol*. 2019;47:30-44.

122. Mathiyalagan R, Subramaniyan S, Kim YJ, Kim YC, Yang DC. Ginsenoside compound K-bearing glycol chitosan conjugates: synthesis, physicochemical characterization, and in vitro biological studies. *Carbohydr Polym*. 2014;112:359-366.