Statin use and survival in patients with metastatic castration-resistant prostate cancer treated with abiraterone or enzalutamide after docetaxel failure: the international retrospective observational STABEN study

Jacob A. Gordon1,*, Carlo Buonerba2,3,*, Gregory Pond4, Daniel Crona5, Silke Gillessen6, Giuseppe Lucarelli7, Sabrina Rossetti8, Tanya Dorf9, Salvatore Artale10, Jennifer A. Locke1, Davide Bosso2, Matthew Ivan Milowsky5, Mira Sofie Witek6, Michele Battaglia7, Sandro Pignata11, Cyrus Cherhoudi12, Michael E. Cox4, Pietro De Placido2, Dario Ribera2, Aurelius Omlin6, Gaetano Buonocore13, Kim Chi14, Christian Kollmannsberger14, Daniel Khalaf14, Gaetano Facchini8, Guru Sonpavde15, Sabino De Placido2, Bernhard J. Eigl14,# and Giuseppe Di Lorenzo2,#

1Vancouver Prostate Center, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
2Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
3Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
4McMaster University, Hamilton, Ontario, Canada
5Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
6Department of Medical Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
7Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
8S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corpo-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
9University of Southern California Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, California, USA
10Oncology Department, Ospedale di Gallarate ASST Valle Olona, Gallarate, Italy
11Division of Medical Oncology, Department of Uro-Gynecologic Oncology, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
12Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
13Hospital Directorate, Azienda Ospedaliera Universitaria Federico II of Naples, Naples, Italy
14BC Cancer, Vancouver, British Columbia, Canada
15Genitourinary Oncology Section, Dana Farber Cancer Institute, Boston, Massachusetts, USA

*These two authors equally contributed to this work
#These two authors share equal senior authorship

Correspondence to: Giuseppe Di Lorenzo, email: dilorengiuseppe@gmail.com

Keywords: prostate cancer; abiraterone; enzalutamide; statins

Received: February 01, 2018 Accepted: February 27, 2018 Published: April 13, 2018

Copyright: Gordon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Background: Statins may potentiate the effects of anti-hormonal agents for metastatic castration-resistant prostate cancer (mCRPC) through further disruption of essential steroidogenic processes. We investigated the effects of statin use on clinical outcomes in patients with mCRPC receiving abiraterone or enzalutamide.

Materials and methods: This was a retrospective multicenter study including patients that received abiraterone or enzalutamide for mCRPC. The effect of concurrent
statin use on outcomes was evaluated. The associations of statins with early (≤12 weeks) prostate-specific antigen (PSA) declines (> 30%), cancer-specific survival and overall survival (OS) were evaluated after controlling for known prognostic factors.

Results: Five hundred and ninety-eight patients treated with second-line abiraterone or enzalutamide after docetaxel for mCRPC were included. A total of 199 men (33.3%) received statins during abiraterone/enzalutamide treatment. Median OS was 20.8 months (95% CI = 18.3–23.2) for patients who received statins, versus 12.9 months (95% CI = 11.4–14.6) for patients who did not receive statins (P < 0.001). After adjusting for age, alkaline phosphatase, PSA, neutrophil-to-lymphocytes ratio, Charlson comorbidity score, Gleason score, visceral disease, hemoglobin, opiate use and abiraterone versus enzalutamide treatment, the use of statin therapy was associated with a 53% reduction in the overall risk of death (hazard ratio [HR] = 0.47; 95% CI = 0.35–0.63; P < 0.001). Statin use was also associated with a 63% increased odds of a > 30% PSA decline within the first 12 weeks of treatment (OR = 1.63; 95% CI = 1.03–2.60; P = 0.039).

Conclusions: In this retrospective cohort, statin use was significantly associated with both prolonged OS and cancer-specific survival and increased early > 30% PSA declines. Prospective validation is warranted.

INTRODUCTION

In developed countries, prostate cancer is the most prevalent malignancy in men, with 142,000 patients dying each year, and an 8.8% cumulative lifetime incidence [1]. Statins are a therapeutic class of medications that are commonly prescribed to lower circulating cholesterol levels through inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase [2], and have an established role in primary and secondary cardiovascular prevention [3]. Over the past decade, a preponderance of evidence from numerous studies, mostly conducted in patients with hormone-sensitive disease, has shown that statin use in prostate cancer patients is associated with longer cancer-specific and overall survival (OS) [4]. The putative mechanism for this observed improvement in survival is that statins may impair prostate cancer growth via multiple cholesterol- and non-cholesterol-mediated effects [4]. In a recently published study of a large, registry-based cohort, which included >30,000 prostate cancer patients [5], statin use was predictive of improved cancer-specific and OS, after adjusting for stage, Gleason score and primary treatment at diagnosis. Conversely, there is little evidence regarding the effects of statins among patients with castration-resistant prostate cancer (CRPC), and the potential synergism with active systemic treatments (e.g., abiraterone and enzalutamide).

Abiraterone works by inhibiting residual adrenal and intra-tumoral androgen synthesis via CYP17A blockade [6], while enzalutamide acts by inhibiting binding of testosterone to the androgen receptor (AR) as well as by blocking androgen-mediated change and nuclear translocation of AR [7]. In one small retrospective study, statin use was significantly associated with longer OS and early PSA declines in men who received abiraterone [8]. In contrast, this OS advantage has not been consistently observed in other studies [9, 10]. Furthermore, there is prospective evidence from a phase III trial suggesting that statins may be discontinued in the palliative care setting with no detrimental effect on survival [11].

In view of the potential additive effect of statins with novel hormonal agents and of the unknown value of continuing versus discontinuing statin therapy in patients with metastatic CRPC (mCRPC), a multi-center retrospective study was conducted to further explore the effects of statin use on PSA response and survival outcomes during second-line (post-docetaxel) treatment with abiraterone or enzalutamide, after adjusting for multiple known predictive factors in the second-line setting [12].

RESULTS

Patients’ characteristics and outcomes

Six hundred and forty-two patients were initially included in this dataset. Of these, 44 patients were excluded because statin use could not be ascertained. Baseline characteristics and outcomes are presented for the remaining 598 patients in Table 1A–1D. Notably, > 50% of patients came from one treatment center (BCCA) and an additional 21% of patients came from a second center (Federico II Napoli). Median age of the population was 72 years (range, 42–96). Most of the study patients received abiraterone. Median duration of second-line treatment with abiraterone or enzalutamide was 8.3 months (range, 0.4–47.5), with 52% of patients having a > 30% PSA decrease within the first 12 weeks of treatment. At the time of this analysis, 513 (85.8%) patients had died, with a median OS of 16.1 months (95% confidence interval
[CI] = 13.8–17.0. Cancer-specific survival was 16.2 months (95% CI: 14.3–17.1).

Statin use

Approximately one-third of the evaluable study population (199 of 598 patients) received statins during treatment, with 107 patients receiving atorvastatin (18% of patients). Importantly, statin use was documented by the local investigator using prescription data in almost 91% of cases. Only eleven patients were reported to have started statin after abiraterone or enzalutamide or to have interrupted statins before suspending abiraterone/enzalutamide treatment (2% of

Table 1A: Summary statistics

Characteristic	Statistic	N	All Patients	Abiraterone	Enzalutamide
Site					
Federico II Napoli	N	598	127 (21.2)	91 (19.0)	36 (30.5)
Pascale Napoli			17 (2.8)	14 (2.9)	3 (2.5)
University Bari			21 (3.5)	13 (2.7)	8 (6.8)
St. Gallen			29 (4.9)	27 (5.6)	2 (1.7)
UNC			41 (6.9)	20 (4.2)	21 (17.8)
UCLA			15 (2.5)	9 (1.9)	6 (5.1)
BCCH			342 (57.2)	301 (62.7)	41 (34.8)
Gallarate			6 (1.0)	5 (1.0)	1 (0.9)
Age					
Mean (std dev)	N	598	72.5 (9.0)	72.6 (9.0)	72.0 (8.8)
Median (range)			72 (42.96)	72 (42.96)	72 (43, 90)
Gleason Score					
N (%) ≥8	N	540	306 (56.7)	248/431 (57.5)	58/109 (53.2)
Charlson Score					
Median (range)	N	598	10 (6.17)	10 (6.17)	10 (6.15)
N (%) ≥10			341 (57.0)	274/480 (57.1)	67/118 (56.8)
Baseline PSA					
Median (range)	N	588	87.3 (0, 7938)	97.8 (0, 7938)	61 (1.9, 2220)
Alkaline Phosphatase					
Median (range)	N	448	119 (8.9, 2189)	120 (8.9, 2189)	105 (39, 1791)
LDH					
Median (range)	N	259	264 (90, 2598)	262 (90, 2598)	266 (103, 2219)
Neutrophils/Lymphocyte Ratio					
Median (range)	N	530	3.4 (0.2, 37.5)	3.5 (0.2, 34.5)	2.7 (1.0, 37.5)
Hemoglobin					
Median (range)	N	555	11.9 (5.7, 15.8)	11.9 (5.7, 15.8)	11.8 (7.1, 15.6)
Baseline PSA					
Median (range)	N	390	18.4 (0.2, 65.5)	18.6 (0.2, 65.5)	16.0 (0.8, 59.8)
Months, Castration-sensitive Disease					
Median (range)	N	474	37.0 (0, 162.0)	39.3 (0, 161.3)	25.0 (0, 162.0)
Opiate Use					
N (%) Yes	N	587	191/587 (32.5)	152/476 (31.9)	39/111 (35.1)
Visceral Disease					
N (%) Yes	N	598	46 (7.7)	31/480 (6.5)	15/118 (12.7)
Treatment with abiraterone/enzalutamide ± statins					
Treatment					
N (%) Abiraterone	N	598	480 (80.3)	480 (100.0)	0 (0.0)
N (%) Yes	N	598	199/598 (33.3)	157/480 (32.7)	42/118 (35.6)
Atorvastatin			107 (53.8)	93 (59.2)	14 (33.3)
Lovastatin			3 (1.5)	2 (1.3)	1 (2.4)
Pravastatin			11 (5.5)	8 (5.1)	3 (7.1)
Rosuvastatin			33 (16.6)	30 (19.1)	3 (7.1)
Simvastatin			22 (11.1)	20 (12.7)	2 (4.8)
Unknown			23 (11.6)	4 (2.6)	19 (45.2)
Dose of Statins					
Median (range)	N	122	20 (5, 80)	20 (5, 80)	20 (5, 40)
Simvastatin Equivalent Dose					
Median (range)	N	122	30 (8, 120)	30 (8, 120)	30 (10, 60)
Statins Prior to Abiraterone/Enzalutamide					
N (%) Yes	N	196	191/196 (97.5)	151/154 (98.1)	40/42 (95.2)
Statin Use Suspended during abiraterone/enzalutamide treatment					
N (%) Yes	N	196	3/196 (1.5)	2/154 (1.3)	1/42 (2.4)
Months, Duration of Abiraterone/Enzalutamide Treatment	Median (range)	183	8.3 (0.4, 47.5)	8.5 (0.4, 47.5)	7.1 (1.4, 33.4)
Use Hydrophilic Statin					
N (%) Yes	N	176	44 (25.0)	38/153 (24.8)	6/23 (26.1)
Source of Statin Use Data					
Prescription data			543 (90.8%)	444 (92.5%)	99 (83.8%)
Claims			55 (9.2%)	36 (7.5%)	19 (16.1%)

Characteristics of the study population grouped by treatment.

<www.oncotarget.com> 19863 Oncotarget
Table 1B: Outcomes of the study population, grouped by treatment

Characteristic	Statistic	All Patients	Abiraterone	Enzalutamide
	N (%)	N (%)	N (%)	N (%)
>30% PSA Decline at Week 4	209 (40.3)	169/419 (40.3)	40/100 (40.0)	
>30% PSA Decline at Week 8	223 (46.5)	184/391 (47.1)	39/89 (43.8)	
>30% PSA Decline at Week 12	231 (49.3)	184/383 (48.0)	47/86 (54.7)	
>30% PSA Decline at 4,8 or 12 Weeks†	299/574 (52.1)	243/465 (52.3)	56/109 (51.4)	
Overall Survival		513 (85.8)	424 (88.3)	89 (75.4)
	Median (95% CI)	16.1 (13.8, 17.0)	15.8 (13.7, 17.0)	16.5 (12.1, 20.1)
	6-mo OS (95% CI)	81.7 (78.3, 84.6)	82.4 (78.7, 85.6)	78.5 (69.9, 84.9)
	1-year OS (95% CI)	61.0 (56.9, 64.8)	61.3 (56.7, 65.5)	59.7 (50.1, 68.1)
	2-year OS (95% CI)	31.2 (27.5, 35.1)	30.5 (26.3, 34.7)	34.7 (25.8, 43.7)
Cause of Death	Prostate Cancer	468 (91.2)	390/424 (92.0)	78/89 (87.6)
Cancer-Specific Survival		16.5 (15.3, 17.7)	16.4 (14.6, 17.7)	17.6 (13.6, 21.4)
	6-mo OS (95% CI)	82.7 (79.4, 85.6)	83.4 (79.7, 86.5)	80.0 (71.4, 86.2)
	1-year OS (95% CI)	63.2 (59.1, 67.0)	63.3 (58.7, 67.5)	63.2 (53.5, 71.4)
	2-year OS (95% CI)	33.8 (29.8, 37.8)	33.0 (28.6, 37.4)	37.4 (28.0, 46.8)
Vascular Events	Cardiovascular N (%)	20 (3.3)	15 (3.1)	5 (4.2)
	Cerebrovascular N (%)	13 (2.2)	12 (2.5)	1 (0.9)
	Either N (%)	33 (5.5)	27 (5.6)	6 (5.1)

*denominator is number of patients with a PSA assessment at week 4, 8 or 12.

Table 1C: Summary statistics

Characteristic	Statistic	N	No Statins	N	Statins
Site	Federico II of Napoli	399	74 (18.6)	199	53 (26.6)
	Pascale Napoli		8 (2.0)		9 (4.5)
	University of Bari		14 (3.5)		7 (3.5)
	St. Gallen		25 (6.3)		4 (2.0)
	UNC		27 (6.8)		14 (7.0)
	UCLA		7 (1.8)		8 (4.0)
	BCCA		241 (60.4)		101 (50.8)
	Gallarate		3 (0.8)		3 (1.5)
Age	Mean (std dev)	399	71.9 (9.4)	199	73.8 (7.9)
	Median (range)		72 (42, 96)		74 (43, 94)
Gleason Score	N (%) ≥8	354	204 (57.6)	186	102 (54.8)
Charlson Score	Median (range)	399	10 (6, 15)	199	10 (6, 17)
PSA at Diagnosis	Median (range)	391	95.3 (0, 7149)	197	80 (0.2, 7938)
Alkaline Phosphatase	Median (range)	312	113 (8.9, 2189)	136	120 (25, 1791)
LDH	Median (range)	175	260 (103, 2598)	136	272 (90, 2219)
Neutrophils/Lymphocyte Ratio	Median (range)	358	3.4 (0.2, 34.5)	172	3.3 (0.2, 37.5)
Hemoglobin	Median (range)	373	11.9 (5.7, 15.8)	182	12.0 (7.9, 15.5)
Months, Castration-sensitive Disease	Median (range)	259	18.4 (0.2, 65.5)	131	18.4 (0.6, 65.4)
Months, Diagnosis to Metastases	Median (range)	306	33.3 (0, 162.0)	168	43.5 (0, 161.3)
Opiate Use	N (%) Yes	389	124 (31.9)	198	67 (33.8)
Visceral Disease	N (%) Yes	399	33 (8.3)	199	13 (6.5)
Treatment	N (%) Abiraterone	399	323 (81.0)	199	157 (78.9)
patients). The median simvastatin-equivalent daily dose administered was 30 mg.

Association of statins with OS and cancer-related survival

Median OS was significantly improved for mCPRC patients who received concomitant statins, when compared to patients not treated with statins (20.8 versus 12.9 months; hazard ratio [HR] = 0.57, 95% CI = 0.46–0.71, \(P < 0.001 \)) (Figure 1). Table 2A summarizes the results of univariable and multivariable models for OS. In the multivariable model, statin use remained strongly associated with OS with a 53% reduction in the risk of death. This association was similar in subgroup analyses and in the landmark analyses. Among the study patients who had died (\(n = 513 \)), over 91% of the deaths were attributable to prostate cancer, and thus

Table 1D: Outcomes of the study population, grouped by statin use

Characteristic	Statistic	N (%) Yes	N (%) No Statins	N (%) Statins
>30% PSA Decline at Week 4	N (%) Yes	349	130 (37.3)	170
>30% PSA Decline at Week 8	N (%) Yes	311	136 (43.7)	169
>30% PSA Decline at Week 12	N (%) Yes	305	148 (48.5)	164
>30% PSA Decline at 4, 8 or 12 Weeks†	N (%) Yes	380	186 (49.0)	194
Overall Survival	N (%) Deaths	399	347 (87.0)	199
Median (95% CI)	12.9 (11.4, 14.6)	199	20.8 (18.3, 23.2)	
6-mo OS (95% CI)	78.6 (74.2, 82.3)	199	87.8 (82.3, 91.6)	
1-year OS (95% CI)	53.8 (48.7, 58.7)	199	75.0 (68.3, 80.5)	
2-year OS (95% CI)	25.9 (21.6, 30.5)	199	41.6 (34.5, 48.4)	
Cause of Death	Prostate Cancer	347	324 (93.4)	166
Cancer-Specific Survival	Median (95% CI)	399	13.4 (12.1, 15.8)	199
6-mo OS (95% CI)	79.3 (74.9, 83.0)	199	89.7 (84.5, 93.2)	
1-year OS (95% CI)	56.0 (50.9, 60.9)	199	77.6 (71.0, 82.8)	
2-year OS (95% CI)	27.8 (23.2, 32.5)	199	45.5 (38.1, 52.6)	
Vascular Events	Cardiovascular N (%)	399	8 (2.0)	199
	Cerebrovascular N (%)	399	3 (0.8)	199
	Either N (%)	399	11 (2.8)	199

Characteristics of the study population, grouped by statin use.

*denominator is number of patients with a PSA response assessment at week 4, 8 or 12.
the cancer-specific survival was similar to OS. Median cancer-specific survival was also significantly improved for patients who received concomitant statins, when compared to patients not treated with statins (22.3 versus 13.4 months; HR = 0.43, 95% CI = 0.32 to 0.58, \(P < 0.001 \)) (Table 2B).

No statistically significant treatment effects were observed between enzalutamide versus abiraterone, nor were treatment differences observed based on type (atorvastatin versus other) or dose of statin.

Association of statins with PSA response

Among the 574 patients with available information, 299 (52.1%) experienced a PSA response (> 30% decline) within 12 weeks of abiraterone or enzalutamide initiation. Early PSA responses were observed significantly more often in patients that received statins, when compared to patients who did not receive statin therapy (58% versus 49%; odds ratio [OR] = 1.46, 95% CI = 1.02–2.08, \(P = 0.04 \)) (Table 3). The association between early PSA response and statin use remained significant in the multivariable analysis (OR = 1.63, 95% CI = 1.03–2.60, \(P = 0.04 \)).

Association of statin use and cardiovascular or cerebrovascular events

Thirty-three study patients experienced a cardiovascular or cerebrovascular event during the time period analyzed. Timing of events was not consistently reported, and therefore time-to-event analyses could not be performed. Among the 199 patients prescribed statins, 12 (6.0%) experienced a cardiovascular event, and 10 (5.0%) experienced a cerebrovascular event. In contrast, among the 399 patients not prescribed statin therapy, 8 (2.0%) experienced a cardiovascular event, and 3 (0.8%) experienced a cerebrovascular event. After adjusting for other factors in a multivariable model, concomitant statin use remained a significant predictive factor of increased risk of cardiovascular or cerebrovascular events (OR = 3.24, 95% CI = 1.15–9.17, \(p \)-value = 0.03) (Table 4).

DISCUSSION

Although statin use has been associated with reduced cancer-related mortality in a variety of malignancies [13], the potential synergism of statins with anti-cancer medications has been prospectively investigated only in a few clinical trials. Data from the recently published phase III double-blind, placebo-controlled LUNGSTAR trial failed to detect an OS or progression-free survival (PFS) benefit when pravastatin was added to first-line standard chemotherapy in patients with small-cell lung cancer [14]. Similarly, no benefit in overall survival associated with the use of statins added to chemotherapy was reported in two additional phase III trials conducted in advanced gastric [15] and colorectal [16] cancer patients, respectively.
Table 2A: Cox regression analyses, outcome = overall survival

Type	All Patients	Abiraterone	Enzalutamide
Age	N = 598	P = 0.28	P = 0.98
Months, Castrat.-Sensitive Dz	N = 480	P = 0.28	P = 0.98
Months, Dx-Mets	N = 367	P = 0.28	P = 0.98
Alk Phos	N = 194	P = 0.28	P = 0.98
LDH	N = 65	P = 0.28	P = 0.98
Neutrophils/Lymphocyte Ratio	N = 435	P = 0.28	P = 0.98
Hemoglobin	N = 450	P = 0.28	P = 0.98
Baseline PSA	N = 476	P = 0.28	P = 0.98
Charlson Score	N = 118	P = 0.28	P = 0.98
Gleason Score	N = 109	P = 0.28	P = 0.98
Visceral Disease	N = 111	P = 0.28	P = 0.98
Opiates	N = 111	P = 0.28	P = 0.98
Treatment	N = 480	P = 0.28	P = 0.98
Concomitant Statins	N = 118	P = 0.28	P = 0.98
Statin Type	N = 109	P = 0.28	P = 0.98
Simvastatin Equivalent Dose	N = 111	P = 0.28	P = 0.98
Use of a hydrophilic statin	N = 111	P = 0.28	P = 0.98

Multivariable Model

Age	N = 387	P = 0.28	P = 0.98
Alk Phos	N = 476	P = 0.28	P = 0.98
Neutrophils/Lymphocyte Ratio	N = 435	P = 0.28	P = 0.98
Hemoglobin	N = 450	P = 0.28	P = 0.98
Baseline PSA	N = 476	P = 0.28	P = 0.98
Charlson Score	N = 118	P = 0.28	P = 0.98
Gleason Score	N = 109	P = 0.28	P = 0.98
Visceral Disease	N = 111	P = 0.28	P = 0.98
Opiates	N = 111	P = 0.28	P = 0.98
Treatment	N = 480	P = 0.28	P = 0.98
Concomitant Statins	N = 118	P = 0.28	P = 0.98

3-Month Landmark Analysis – Multivariable Model

Age	N = 360	P = 0.28	P = 0.98
Alk Phos	N = 476	P = 0.28	P = 0.98
Neutrophils/Lymphocyte Ratio	N = 435	P = 0.28	P = 0.98
Hemoglobin	N = 450	P = 0.28	P = 0.98
Baseline PSA	N = 476	P = 0.28	P = 0.98
Charlson Score	N = 118	P = 0.28	P = 0.98
Gleason Score	N = 109	P = 0.28	P = 0.98
Visceral Disease	N = 111	P = 0.28	P = 0.98
Opiates	N = 111	P = 0.28	P = 0.98
Treatment	N = 480	P = 0.28	P = 0.98
Concomitant Statins	N = 118	P = 0.28	P = 0.98
Table 2B: Cox regression analyses, outcome = cancer-specific survival

Type	All Patients	Abiraterone Only	Enzalutamide Only
Age / decade			
Months, Castrat.-Sensitive Dz <12 mos vs ≥12 mos			
Months, Dx-Mets <36 mos vs ≥36 mos			
Alk Phos Log-transformed			
LDH Log-transformed			
Neutrophils/ Lymphocyte Ratio Log-transformed			
Hemoglobin / unit			
Baseline PSA Log-transformed			
Charlson Score / unit			
Gleason Score ≥8 vs <8			
Visceral Disease Yes vs No			
Opiates Yes vs No			
Treatment Enza vs Abi			
Concomitant Statins Yes vs No			
Statin Type Atorvastatin vs Other			
Simvastatin Equivalent Dose / mg			
Use of a hydrophilic statin Yes vs No			

Multivariable Model

Age / decade	All Patients	Abiraterone Only	Enzalutamide Only
Alk Phos Log-transformed			
Neutrophils/ Lymphocyte Ratio Log-transformed			
Hemoglobin / unit			
Baseline PSA Log-transformed			
Charlson Score ≥10 vs <10			
Gleason Score ≥8 vs <8			
Visceral Disease Yes vs No			
Opiates Yes vs No			
Treatment Enza vs Abi			
Concomitant Statins Yes vs No			

3-Month Landmark Analysis – Multivariable Model

Age / decade	All Patients	Abiraterone Only	Enzalutamide Only
Alk Phos Log-transformed			
Neutrophils/ Lymphocyte Ratio Log-transformed			
Hemoglobin / unit			
Baseline PSA Log-transformed			
Charlson Score ≥10 vs <10			
Gleason Score ≥8 vs <8			
Visceral Disease Yes vs No			
Opiates Yes vs No			
Treatment Enza vs Abi			

www.oncotarget.com 19868 Oncotarget
Table 3: Logistic regression analyses, outcome = early 30% PSA decline

	All Patients	Abiraterone	Enzalutamide						
	N	OR (95% CI)	P	N	OR (95% CI)	P	N	OR (95% CI)	P
Age /decade	574	1.05 (0.87, 1.27)	0.63	465	1.20 (0.96, 1.48)	0.10	109	0.60 (0.35, 1.02)	0.059
Months, Castration-sensitive Disease <12 mos vs ≥12 mos	376	0.77 (0.49, 1.22)	0.27	293	0.69 (0.41, 1.17)	0.17	83	1.07 (0.40, 2.92)	0.89
Months, Disease-Metastases <36 mos vs ≥36 mos	457	0.72 (0.49, 1.05)	0.085	360	0.62 (0.40, 0.96)	0.031	97	1.09 (0.46, 2.54)	0.85
Alk Phos Log-transformed	433	1.10 (0.85, 1.41)	0.49	355	1.18 (0.89, 1.56)	0.26	78	0.74 (0.39, 1.37)	0.33
LDH Log-transformed	255	0.72 (0.41, 1.26)	0.24	192	0.91 (0.47, 1.75)	0.78	63	0.44 (0.14, 1.42)	0.17
Neutrophils/Lymphocyte Ratio Log-transformed	516	0.99 (0.76, 1.28)	0.91	423	0.97 (0.73, 1.30)	0.86	93	1.46 (0.68, 3.15)	0.34
Hemoglobin /unit	540	1.17 (1.04, 1.32)	0.008	438	1.16 (1.01, 1.32)	0.034	102	1.15 (0.90, 1.46)	0.27
Baseline PSA Log-transformed	572	1.02 (0.91, 1.14)	0.75	464	1.03 (0.92, 1.17)	0.60	108	1.00 (0.76, 1.32)	0.99
Charlson Score ≥10 vs <10	574	1.02 (0.94, 1.12)	0.62	465	1.06 (0.96, 1.17)	0.23	109	0.86 (0.67, 1.10)	0.22
Gleason Score ≥8 vs <8	520	0.58 (0.40, 0.85)	0.005	419	0.54 (0.35, 0.83)	0.005	101	0.88 (0.39, 2.01)	0.76
Visceral Disease Yes vs No	574	0.52 (0.27, 1.00)	0.50	465	0.71 (0.33, 1.52)	0.38	109	0.32 (0.09, 1.09)	0.068
Opiate Use Yes vs No	571	0.92 (0.62, 1.37)	0.69	463	0.93 (0.60, 1.44)	0.74	108	1.04 (0.38, 2.82)	0.94
Treatment Enzalutamide vs Abiraterone	574	0.95 (0.61, 1.47)	0.81	-	-	-	-	-	-
Concomitant Statins Yes vs No	574	1.46 (1.02, 2.08)	0.040	465	1.57 (1.05, 2.34)	0.030	109	1.09 (0.48, 2.48)	0.85
Statin Type Atorvastatin vs Other	194	0.76 (0.40, 1.42)	0.38	154	0.77 (0.38, 1.58)	0.48	40	0.59 (0.10, 3.59)	0.56
Dose of Statins /mg	122	1.00 (0.98, 1.01)	0.60	99	1.00 (0.98, 1.02)	0.93	23	0.92 (0.84, 1.02)	0.11
Use of a hydrophilic statin Yes vs No	173	1.06 (0.52, 2.16)	0.88	150	1.18 (0.55, 2.55)	0.67	23	0.76 (0.10, 5.94)	0.80

Biologically, statins can potentiate the efficacy of anti-androgen treatments, such as abiraterone and enzalutamide, in mCRPC through a number of potential mechanisms, including: inhibition of intra-tumoral de novo steroid biosynthesis [17], inhibition of biosynthesis of isoprenoids [18], as well as inhibition of the organic anionic transporters (e.g., SLCO2B1) [19] that are responsible for adrenal androgen dehydroepiandrosterone (DHEA) influx into cancer cells [20].

In one translational study, Harshman et al. [21] showed that statins impaired DHEA influx through competitive inhibition of the SLCO2B1 transporter both in androgen-dependent (LNCaP) and partially androgen-dependent (22RV1) prostate cancer cell lines. This was supported by their retrospective clinical study of 926 patients, treated with androgen deprivation, which demonstrated that patients who received statin therapy experienced longer median time to progression, when compared to patients not treated with a statin (27.5 versus 17.4 months; P < 0.001). Because abiraterone is also a SLCO2B1 substrate, the same research group [10] hypothesized that statin use could be a negative predictive factor for patients taking abiraterone. However, their retrospective study of 224 abiraterone-treated patients demonstrated that statin use trended toward longer treatment duration (14.2 versus 9.2 months; HR: 0.79,
Despite lack of validation in an independent cohort of 270 abiraterone-treated patients [10], the authors concluded that concomitant stain use did not negatively impact survival.

In our previous retrospective observational study (n = 187 mCRPC patients from 10 participating centers who received abiraterone), statin use was associated with longer OS in univariate (HR = 0.51, 95% CI = 0.37–0.72, P < 0.001) and multivariate analyses (HR = 0.40, 95% CI = 0.27–0.59, P < 0.001). Statin use was also significantly associated with early PSA declines (>50% declines at week 12 in statin users versus non-users: 72.1% vs. 38.5; P < 0.001). This study was limited by several factors, including the relatively small sample size, the lack of information about statin type and statin treatment duration, comorbidities, cardiovascular events, and prostate cancer–specific survival. To overcome these limitations, we designed a retrospective observational study to be conducted in an international setting that could better define concomitant treatment with statins. One of the purposes of the STABEN trial was to assess whether the potential advantage associated with statin use could be related to their known cardiovascular and cerebrovascular protective effect, of particular potential importance in an elderly population receiving abiraterone – an agent with known cardiovascular toxicity [22]. In the present retrospective study, multivariable models that included known prognostic factors in prostate cancer (e.g., baseline

Table 4: Logistic regression analyses of cardiovascular or cerebrovascular events	All Patients			
Type		**N**	**OR (95% CI)**	**P**
Age	/decade	598	2.24 (1.46, 3.46)	<0.001
Months, Castration-sensitive Disease	<12 mos vs ≥12 mos	390	0.55 (0.16, 1.97)	0.36
Months, Disease-Metastases	<36 mos vs ≥36 mos	474	1.14 (0.51, 2.55)	0.75
Alk Phos	Log-transformed	448	0.94 (0.54, 1.64)	0.83
LDH	Log-transformed	259	0.89 (0.26, 3.03)	0.85
Neutrophils/Lymphocyte Ratio	Log-transformed	530	1.38 (0.81, 2.36)	0.24
Hemoglobin	/unit	555	1.02 (0.80, 1.31)	0.85
PSA at Diagnosis	Log-transformed	587	0.94 (0.74, 1.18)	0.57
Charlson Score	/unit	598	1.54 (1.29, 1.84)	<0.001
	≥10 vs <10	4.51 (1.72, 11.85)	0.002	
Gleason Score	≥8 vs <8	540	0.57 (0.27, 1.19)	0.13
Visceral Disease	Yes vs No	598	0.36 (0.05, 2.71)	0.32
Opiate Use	Yes vs No	587	0.68 (0.30, 1.54)	0.35
Treatment	Enalutamide vs Abiraterone	598	0.90 (0.36, 2.23)	0.82
Concomitant Statins	Yes vs No	598	4.38 (2.08, 9.24)	<0.001
Statin Type	Atorvastatin vs Other	199	1.58 (0.63, 3.96)	0.33
Dose of Statins	/mg	123	1.02 (0.99, 1.04)	0.22
Use of a hydrophilic statin	Yes vs No	176	0.73 (0.23, 2.30)	0.58

Multivariable Analysis

Age	/decade	387	2.56 (1.11, 5.89)	0.028
Alk Phos	Log-transformed	139	0.61 (3.19)	0.43
Neutrophils/Lymphocyte Ratio	Log-transformed	124	0.52 (2.94)	0.63
Hemoglobin	/unit	111	0.73 (1.70)	0.62
PSA at Diagnosis	Log-transformed	65	0.45 (0.93)	0.020
Charlson Score	≥10 vs <10	156	0.43 (5.70)	0.50
Gleason Score	≥8 vs <8	77	0.24 (2.46)	0.66
Visceral Disease	Yes vs No	64	0.07 (6.28)	0.70
Opiate Use	Yes vs No	72	0.22 (2.38)	0.59
Treatment	Enalutamide vs Abiraterone	58	0.12 (2.78)	0.50
Concomitant Statins	Yes vs No	3.24	1.15 (9.17)	0.027

95% CI, 0.57–1.09, P = 0.14). Despite lack of validation in an independent cohort of 270 abiraterone-treated patients [10], the authors concluded that concomitant stain use did not negatively impact survival.
Data analysis

Summary statistics were used to describe patient outcomes. Time-to-event outcomes were calculated from the first date of treatment with abiraterone or enzalutamide.

The primary objective of this study was to determine whether concomitant statin therapy was predictive of OS improvement for mCRPC patients treated with second-line abiraterone or enzalutamide. The secondary objective of the study was to determine whether concomitant statin therapy was predictive of early (>30% PSA decline) >30% PSA declines. The Kaplan-Meier method was used to estimate differences in survival between mCRPC patients treated who did and did not receive statin therapy, while Cox proportional hazards regression was used to investigate prognostic factors of overall survival. Logistic regression was used to investigate predictive factors of early >30% PSA declines. Using Cox proportional hazards, multivariable models were constructed to examine the effects of concomitant statins after adjusting for all other potential sources of variation. However, there were large numbers of missing data for some factors. Thus, a priori,
it was decided to include only those factors which had <30% missing data and were significant on univariate analysis, or those factors with <15% missing data overall. The impact of statins was then assessed after adjusting for factors included in the multivariable model. Supportive analyses were performed by including only those treated with abiraterone (~80% of the cohort), only those treated with enzalutamide, by performing a cancer-specific survival analysis and by performing a landmark analysis using 3-months as the landmark time. For the purposes of the landmark analysis, any patient who was not prescribed statin therapy at the time of abiraterone or enzalutamide initiation, experienced interruption of statin therapy, or received less than 3 months of statin therapy, was deemed to not have received statins. Data modifications were performed for statistical purposes. Specifically, a logarithmic transformation was used on covariates which were highly non-normal. Duration from prostate cancer diagnosis to detection of metastases, and duration of prostate cancer diagnosis to determination of castration-resistant disease were dichotomized. All analyses included site as a stratification factor. All tests were two-sided and a p-value of 0.05 or less was considered statistically significant. No p-value adjustments were performed due to multiple testing; however, inferences were performed understanding that multiple analyses were performed.

ACKNOWLEDGMENTS AND FUNDING

The authors would like to acknowledge contribution by Isabella Ricci from the Gallarate Hospital; by Giuseppe Bassi, Antonio Verde, Francesca Vittrone, Luigi Marone, Simona Iaccarino, Mirta Mosca, Simona De Vivo, Francesco Amaniera, Antonella Mollo, Salvatore Cipolla and Chiara Rapolla from University Federico II of Naples; by Thomas De los Reyes from the Vancouver Cancer Center.

The study was partially supported by LILT sez. Napoli and Benevento.

CONFLICTS OF INTEREST

Omlin Aurelius: AO Advisory role (compensated, institutional): Astra Zeneca, Astellas, Bayer, Janssen, MSD, Pfizer, Roche, Sanofi Aventis. Research support (institutional): Teva, Janssen. Travel support: Astellas, Bayer, Sanofi Aventis

Silke Gillesen: Speaker bureau (uncompensated, institutional): Astellas, Roche and Sanofi; Speaker bureau (compensated, institutional): Ferring, Janssen, Novartis; Consultant (compensated, institutional): AAA International; Astellas; Bayer; Bristol-Myers Squibb; Clovis; CureVac; Ferring; Janssen; MaxiVax SA; Roche; Sanofi; Consultant (uncompensated, institutional): ESSA Pharmaceuticals; Nectra; ProteoMediX

Guru Sonpavde: Consultant for Bayer, Sanofi, Pfizer, Novartis, Eisai, Janssen, Amgen, Astrazeneca, Merck, Genentech, Argos, Agensys, EMD Serono; Research support to institution from Bayer, Amgen-Onyx, Celgene, Boehringer-Ingehelm, Merck, Pfizer, Author for Uptodate; Speaker for Clinical Care Options, PER (Physicians Education Resource), RTP (Research To Practice), Onclive

Bernhard J. Eigl: Consultant for Janssen; Travel support for conferences from Janssen

Carlo Buonarba: Consultant for Sanofi; Travel support from Pfizer, Janssen, Sanofi; Research support to institution from Quercegen, Astellas, Sanofi

Giuseppe Di Lorenzo: Speaker bureau: Sanofi, Bristol-Meier-Squibb, Astellas, Janssen, Pfizer; Consultant for Sanofi; Research support to institution from Quercegen, Astellas, Sanofi

Tanya Dorff: Consultant for Janssen

All other authors declare they have nothing to disclose.

REFERENCES

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65:87–108. https://doi.org/10.3322/caac.21262.
2. Gu Q, Paulose-Ram R, Burt VL, Kit BK. Prescription cholesterol-lowering medication use in adults aged 40 and over: United States, 2003-2012. NCHS Data Brief. 2014; 177:1–8.
3. Naci H, Brugts JJ, Fleurence R, Tsoi B, Toor H, Ades AE. Comparative benefits of statins in the primary and secondary prevention of major coronary events and all-cause mortality: a network meta-analysis of placebo-controlled and active-comparator trials. Eur J Prev Cardiol. 2013; 20:641–57. https://doi.org/10.1177/2047487313480435.
4. Alfaqih MA, Allott EH, Hamilton RJ, Freeman MR, Freedland SJ. The current evidence on statin use and prostate cancer prevention: are we there yet? Nat Rev Urol. 2017; 14:107–19. https://doi.org/10.1038/nrurol.2016.199.
5. Larsen SB, Deh Bendorf C, Skriver C, Dalton SO, Jespersen CG, Borre M, Brasso K, Norgaard M, Johansen C, Sorensen HT, Hallas J, Friis S. Postdiagnosis Statin Use and Mortality in Danish Patients With Prostate Cancer. J Clin Oncol. 2017; 35:3290–7. https://doi.org/10.1200/JCO.2016.71.8981.
6. Grist E, Attard G. The development of abiraterone acetate for castration-resistant prostate cancer. Urol Oncol. 2015; 33:289–94. https://doi.org/10.1016/j.urolonc.2015.03.021.
7. Bhattacharya S, Hirmand M, Phung D, van Os S. Development of enzalutamide for metastatic castration-resistant prostate cancer. Ann N Y Acad Sci. 2015; 1358:13–27. https://doi.org/10.1111/nyas.12846.
8. Di Lorenzo G, Sonpavde G, Pond G, Lucarelli G, Rossetti S, Facchini G, Scaglìarini S, Carteni G, Federico P, Daniele B, Morelli F, Bellelli T, Ferro M, et al. Statin Use and Survival in Patients with Metastatic Castration-resistant Prostate Cancer Treated with Abiraterone Acetate. Eur Urol Focus.
9. Boegemann M, Schlack K, Fischer AK, Gerss J, Steinestel J, Semjonov A, Schroder AJ, Krabbe LM. Influence of Statins on Survival Outcome in Patients with Metastatic Castration Resistant Prostate Cancer Treated with Abiraterone Acetate. PLoS One. 2016;11:e0161959. https://doi.org/10.1371/journal.pone.0161959.

10. Harshman LC, Werner L, Tripathi A, Wang X, Maughan BL, Antonarakis ES, Nakabayashi M, McKay R, Pomerantz M, Ucetti LA, Taplin ME, Sweeney CJ, Lee GM, et al. The impact of statin use on the efficacy of abiraterone acetate in patients with castration-resistant prostate cancer. Prostate. 2017;77:1303–11. https://doi.org/10.1002/pros.23390.

11. Kretner JS, Blatchford PJ, Taylor DH Jr, Ritchie CS, Bull JH, Fairclough DL, Hanson LC, LeBlanc TW, Samsa GP, Wolf S, Aziz NM, Currow DC, Ferrell B, et al. Safety and benefit of discontinuing statin therapy in the setting of advanced, life-limiting illness: a randomized clinical trial. JAMA Intern Med. 2015;175:691–700. https://doi.org/10.1001/jamainternmed.2015.0289.

12. Buonarba C, Pond GR, Sonpavde G, Federico P, Ressigno P, Rescigno P, Puglia L, Bosso D, Virtuoso A, Policastro T, Izzo M, Vaccaro L, Ferro M, Aita M, et al. Potential value of Gleason score in predicting the benefit of cabazitaxel in metastatic castration-resistant prostate cancer. Future Oncol. 2013;9:889–97. https://doi.org/10.2217/fon.13.39.

13. Zhong S, Zhang X, Chen L, Ma T, Tang J, Zhao J. Statin use and mortality in cancer patients: Systematic review and meta-analysis of observational studies. Cancer Treat Rev. 2015;41:554–67. https://doi.org/10.1016/j.ctrv.2015.04.005.

14. Sekel MJ, Ottensmeier CH, Cullen M, Schmid P, Ngai Y, Muthukumar D, Thompson J, Harden S, Middleton G, Fife KM, Crosse B, Taylor P, Nash S, et al. Multicenter, Phase III, Randomized, Double-Blind, Placebo-Controlled Trial of Pravastatin Added to First-Line Standard Chemotherapy in Small-Cell Lung Cancer (LUNGSTAR). J Clin Oncol. 2017;35:1506–14. https://doi.org/10.1200/JCO.2016.69.7391.

15. Kim ST, Kang JH, Lee J, Park SH, Park JO, Park YS, Lim HY, Hwang IG, Lee SC, Park KW, Lee HR, Kang WK. Simvastatin plus capecitabine-cisplatin versus placebo plus capecitabine-cisplatin in patients with previously untreated advanced gastric cancer: a double-blind randomised phase 3 study. Eur J Cancer. 2014;50:2822–30. https://doi.org/10.1016/j.ejca.2014.08.005.

16. Lim SH, Kim TW, Hong YS, Han SW, Lee KH, Kang HJ, Hwang IG, Lee JY, Kim HS, Kim ST, Lee J, Park JO, Park SH, et al. A randomised, double-blind, placebo-controlled multi-centre phase III trial of XELIRI/FOLFIRI plus simvastatin for patients with metastatic colorectal cancer. Br J Cancer. 2015;113:1421–6. https://doi.org/10.1038/bjc.2015.371.

17. Gordon JA, Midha A, Szeitz A, Ghaffari M, Adomat HH, Guo Y, Klassen TL, Guns ES, Wasan KM, Cox ME. Oral simvastatin administration delays castration-resistant progression and reduces intratumoral steroidogenesis of LNCaP prostate cancer xenografts. Prostate Cancer Prostatic Dis. 2016;19:21–7. https://doi.org/10.1038/pcan.2015.37.

18. Roy M, Kung LJ, Ghosh PM. Statins and prostate cancer: role of cholesterol inhibition vs. prevention of small GTP-binding proteins. Am J Cancer Res. 2011;1:542–61.

19. Nejoe J, Portmann R, Brun ME, Funk C. Substrate-dependent drug-drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos. 2007;35:1308–14. https://doi.org/10.1124/dmd.106.012930.

20. Wright JL, Kwon EM, Ostrander EA, Montgomery RB, Lin DW, Vessella R, Stanford JL, Mostaghel EA. Expression of SLCO transport genes in castration-resistant prostate cancer and impact of genetic variation in SLCO1B3 and SLCO2B1 on prostate cancer outcomes. Cancer Epidemiol Biomarkers Prev. 2011;20:619–27. https://doi.org/10.1158/1055-9965.EPI-10-1023.

21. Harshman LC, Wang X, Nakabayashi M, Xie W, Valenca L, Werner L, Yu Y, Kantoff AM, Sweeney CJ, Ucetti LA, Pomerantz M, Lee GS, Kantoff PW. Statin Use at the Time of Initiation of Androgen Deprivation Therapy and Time to Progression in Patients With Hormone-Sensitive Prostate Cancer. JAMA Oncol. 2015;1:495–504. https://doi.org/10.1001/jamaoncol.2015.0829.

22. Moreira RB, Debsi M, Francini E, Nuzzo PV, Velasco G, Maluf FC, Fay AP, Bellmunt J, Choueiri TK, Schutz FA. Differential side effects profile in patients with mCRPC treated with abiraterone or enzalutamide: a meta-analysis of randomized controlled trials. Oncotarget. 2017;8:84572–8. https://doi.org/10.18632/oncotarget.20028.

23. Miller K, Carles J, Gschwend JE, Van Poppel H, Diels J, Brookman-May SD. The Phase 3 COU-AA-302 Study of Abiraterone Acetate Plus Prednisone in Men with Chemotherapy-naive Metastatic Castration-resistant Prostate Cancer: Stratified Analysis Based on Pain, Prostate-specific Antigen, and Gleason Score. Eur Urol. 2017 Sep 20. https://doi.org/10.1016/j.eururo.2017.08.035. [Epub ahead of print].

24. Gandaglia G, Karakiewicz PI, Briganti A, Passoni NM, Schiffmann J, Trudeau V, Graefen M, Montorsi F, Sun M. Expression of SLCO transport genes in castration-resistant prostate cancer: Stratified Analysis Based on Pain, Prostate-specific Antigen, and Gleason Score. Eur Urol. 2017 Sep 20. https://doi.org/10.1016/j.eururo.2017.08.035. [Epub ahead of print].

25. van Soest RJ, Efstathiou JA, Sternberg CN, Tombal B. The Natural History and Outcome Predictors of Metastatic Castration-resistant Prostate Cancer. Eur Urol Focus. 2016;2:480–7. https://doi.org/10.1016/j.euf.2016.12.006.

26. Thomsen RW, Nielsen RB, Norgaard M, Horsdal HT, Lin HY, Hwang IG, Lee SC, Park KW, Lee HR, Kang WK. Simvastatin plus capecitabine-cisplatin versus placebo plus capecitabine-cisplatin in patients with previously untreated advanced gastric cancer: a double-blind randomised phase 3 study. Eur J Cancer. 2014;50:2822–30. https://doi.org/10.1016/j.ejca.2014.08.005.

27. Preston-Shoot WB, Bagli R, Tan A, Popov L, Van V, Tan T, et al. Drug-drug interactions between gemfibrozil, fluvastatin, and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos. 2007;35:1308–14. https://doi.org/10.1124/dmd.106.012930.

28. van Soest RJ, Efstathiou JA, Sternberg CN, Tombal B. The Natural History and Outcome Predictors of Metastatic Castration-resistant Prostate Cancer. Eur Urol Focus. 2016;2:480–7. https://doi.org/10.1016/j.euf.2016.12.006.

29. Thomsen RW, Nielsen RB, Norgaard M, Horsdal HT, Sturmer T, Larsen FB, Sorensen HT. Lifestyle profile study. Eur J Cancer. 2014;50:2822–7. https://doi.org/10.1016/j.ejca.2014.08.005.

30. van Soest RJ, Efstathiou JA, Sternberg CN, Tombal B. The Natural History and Outcome Predictors of Metastatic Castration-resistant Prostate Cancer. Eur Urol Focus. 2016;2:480–7. https://doi.org/10.1016/j.euf.2016.12.006.

31. Thomsen RW, Nielsen RB, Norgaard M, Horsdal HT, Sturmer T, Larsen FB, Sorensen HT. Lifestyle profile among statin users. Epidemiology. 2013;24:619–20. https://doi.org/10.1097/EDE.0b013e318296e646.