Multi-indexed Wilson and Askey–Wilson polynomials

Satoru Odake¹ and Ryu Sasaki²

¹ Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
² Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

E-mail: ryu@yukawa.kyoto-u.ac.jp

Received 2 August 2012, in final form 6 December 2012
Published 15 January 2013
Online at stacks.iop.org/JPhysA/46/045204

Abstract

As the third stage of the project multi-indexed orthogonal polynomials, we present, in the framework of ‘discrete quantum mechanics’ with pure imaginary shifts in one dimension, the multi-indexed Wilson and Askey–Wilson polynomials. They are obtained from the original Wilson and Askey–Wilson polynomials by multiple applications of the discrete analogue of the Darboux transformations or the Crum–Krein–Adler deletion of ‘virtual state solutions’ of types I and II, in a similar way to the multi-indexed Laguerre, Jacobi and \((q-)\)Racah polynomials reported earlier.

PACS numbers: 03.65.—w, 03.65.Ca, 03.65.Fd, 03.65.Ge, 02.30.Ik, 02.30.Gp

1. Introduction

This is a third report on the project multi-indexed orthogonal polynomials. Following the examples of multi-indexed Laguerre and Jacobi polynomials [1] and multi-indexed \((q-)\)Racah polynomials [2], we present multi-indexed Wilson and Askey–Wilson polynomials constructed in the framework of discrete quantum mechanics with pure imaginary shifts [3]. It is well known that the original Wilson and Askey–Wilson polynomials are the most generic members of the Askey scheme of hypergeometric orthogonal polynomials [4–7]. These new multi-indexed orthogonal polynomials are specified by a set of indices \(D = \{d_1, \ldots, d_M\}\) consisting of distinct natural numbers \(d_j \in \mathbb{N}\), on top of \(n\), which counts the nodes as in the ordinary orthogonal polynomials. The simplest examples \(D = \{\ell\}, \ell \geq 1, \{P_{\ell,n}(x)\}\) are also called exceptional orthogonal polynomials [8]–[29]. They are obtained as the main part of the eigenfunctions (vectors) of various exactly solvable Schrödinger equations in one-dimensional quantum mechanics and their ‘discrete’ generalizations, in which the corresponding Schrödinger equations are second-order difference equations [3, 30, 31]. They form a complete set of orthogonal polynomials, although they start at a certain positive degree (\(\ell \geq 1\)) rather than a degree-zero constant term. The latter situation is essential for avoiding the constraints of Bochner’s theorem [32]. We strongly believe that these new orthogonal polynomials will find
plenty of novel applications in various branches of science and technology in the good old tradition of orthogonal polynomials.

The basic logic for constructing multi-indexed orthogonal polynomials is essentially the same for the ordinary Schrödinger equations, i.e. those for the Laguerre and Jacobi polynomials and for the difference Schrödinger equations with real and pure imaginary shifts, i.e. the \((q)\)-Racah polynomials, the Wilson and Askey–Wilson polynomials, etc. The main ingredients are the factorized Hamiltonians and the Crum–Krein–Adler formulae \([33–35]\) for deletion of eigenstates, i.e. the multiple Darboux transformations \([36]\) and the virtual state solutions \([1]\) which are generated by twisting the discrete symmetries of the original Hamiltonians. Most of these methods for discrete Schrödinger equations had been developed \([30, 26, 3, 31, 37–39]\) and they were used for the exceptional Wilson and Askey–Wilson polynomials \([12, 19]\). In different contexts, Darboux transformations for orthogonal polynomials have been discussed by many authors \([40–42]\).

It is important to stress that the factorized Hamiltonians in the discrete quantum mechanics, i.e. those governing the \((q)\)-Racah, Wilson, Askey–Wilson polynomials, etc., possess a certain discrete symmetry. They lead to virtual Hamiltonians which are linearly connected with the original Hamiltonian. (See (2.14)–(2.16) of this paper and (2.18)–(2.22), (2.59)–(2.63) of \([2]\).) In the ordinary quantum mechanics of the radial oscillator potential \((x^2 + \frac{g(x-1)}{x}, \text{ for the Laguerre polynomials})\) and the Pöschl–Teller potential \((\frac{g(x-1)}{\sin^2 x} + \frac{h(h-1)}{\cos^2 x}, \text{ for the Jacobi polynomials})\), the discrete symmetry is well known. For the former, \(g \rightarrow 1 - g\) and/or \(x \rightarrow ix\), and for the latter, \(g \rightarrow 1 - g\) and/or \(h \rightarrow 1 - h\). To the best of our knowledge, those discrete symmetries for the \((q)\)-Racah, Wilson and Askey–Wilson systems do not seem to be widely recognized, since they are not easily identifiable in the polynomial equations. The virtual state solutions belong to the virtual Hamiltonians. The actual contents of virtual state solutions depend on the types of the Schrödinger equations. For the ordinary Schrödinger equations with a second-order differential operator, the virtual state solutions satisfy the Schrödinger equation. But they do not belong to the Hilbert space of square integrable solutions, due to the twisted boundary condition on either one of the two boundaries, to be called the type I or type II. For the multi-indexed \((q)\)-Racah polynomials in the discrete quantum mechanics with real shifts, the virtual state ‘solutions’ fail to satisfy the Schrödinger equation at either one of the two boundary points \([2]\). They are called virtual state vectors of type I or II. In the present case of discrete quantum mechanics with pure imaginary shifts, the virtual state solutions satisfy the difference Schrödinger equation. But they do not belong to the Hilbert space of eigenfunctions either by the lack of square integrability or by the presence of singularities in a certain rectangular domain. (See a more detailed discussion in section 2.2.) In other words, the analyticity requirements supersede the boundary conditions which used to classify the virtual state solutions for the Laguerre, Jacobi and \((q)\)-Racah cases. In section 3, we introduce two types of twistings or the discrete symmetry transformations and the corresponding virtual Hamiltonians and virtual state solutions. They are of the same structure but adopt different sets of parameters. We will call them of types I and II as in the other cases but they are not related to boundary conditions. In all these cases, the features disqualifying them from becoming the eigenfunctions are carried by the so-called virtual ground-state functions \(\tilde{\phi}_0(x)\), see (3.28). The polynomial parts of the virtual state solutions, to be denoted by \(\xi_v(\eta)\), see (3.28), are the genuine solutions of equations determining the eigenpolynomials, but with twisted parameters. It is the virtual state polynomials \(\xi_v(\eta)\), not the virtual ground state \(\tilde{\phi}_0(x)\), that play the main role in the construction of multi-indexed and exceptional \([12, 19]\) polynomials and the set of their degrees \(\{d_1, \ldots, d_M\}\) constitutes the multi-index. We focus on the algebraic structure of the multi-indexed orthogonal polynomials and their difference equations, which hold for any parameter range. We do not pursue the other important aspect
of the problem, i.e., the determination of the parameter ranges in which the hermiticity of the multi-indexed Hamiltonians and the positivity of the orthogonality weight functions for the multi-indexed polynomials are ensured.

The rest of this paper is organized as follows. In section 2, the basic logic of virtual states deletion in discrete quantum mechanics with pure imaginary shifts in general is outlined. Starting from the general setting of discrete quantum mechanics with pure imaginary shifts in section 2.1, the analyticity requirements in connection with the hermiticity (self-adjointness) of the Hamiltonians are briefly recapitulated in section 2.2. General procedures and formulae of multiple virtual states deletion are reviewed in section 2.3. The main logics are essentially the same as those for the multi-indexed Laguerre, Jacobi and (q-)Racah polynomials but the explicit formulae look rather different reflecting the specific properties of discrete quantum mechanics with pure imaginary shifts. After recapitulating the basic properties of the Wilson and Askey–Wilson systems in section 3.1, the discrete symmetries of the Wilson and Askey–Wilson systems are introduced in section 3.2. The multi-indexed Wilson and Askey–Wilson polynomials are constructed explicitly in section 3.3 for the type-I and type-II virtual state deletions. The analyticity and hermiticity of the multi-indexed Hamiltonians are discussed in some detail in section 3.4. The final section is for a summary and comments including the limits to the multi-indexed Jacobi and Laguerre polynomials. For simplicity of presentation, we relegate several technical results to the appendix.

Throughout this paper, we will focus on the algebraic aspects of the theory. To determine the exact ranges of validity of various formulae is another problem.

2. Formulation

2.1. Original system

Let us recapitulate the discrete quantum mechanics with pure imaginary shifts developed in [3]. The dynamical variables are the real coordinate x ($x_1 \leq x \leq x_2$) and the conjugate momentum $p = -i\partial_x$, which are governed by the following factorized positive semi-definite Hamiltonian:

$$H \equiv \sqrt{V(x)e^{ip}}\sqrt{V^*(x)} + \sqrt{V^*(x)}e^{-ip}\sqrt{V(x)} - V(x) - V^*(x) = A^\dagger A,$$ \hspace{1cm} (2.1)

$$A \equiv i\left(e^{ip}\sqrt{V^*(x)} - e^{-ip}\sqrt{V(x)}\right), \quad A^\dagger \equiv -i\left(\sqrt{V(x)}e^{-ip} - \sqrt{V^*(x)}e^{ip}\right).$$ \hspace{1cm} (2.2)

Here, the potential function $V(x)$ is an analytic function of x and γ is a real constant. The $*$-operation on an analytic function $f(x) = \sum_n a_n x^n$ ($a_n \in \mathbb{C}$) is defined by $f^*(x) = \sum_n a_n^* x^n$, in which a_n^* is the complex conjugation of a_n. Obviously, $f^{**}(x) = f(x)$ and $f(x)^* = f^*(x)^*$. If a function satisfies $f^* = f$, then it takes real values on the real line. Since the momentum operator appears in exponentiated forms, the Schrödinger equation

$$\mathcal{H}\phi_n(x) = \mathcal{E}_n\phi_n(x) \quad (n = 0, 1, 2, \ldots)$$ \hspace{1cm} (2.3)

is an analytic difference equation instead of a differential equation. Throughout this paper, we consider those systems which have a square-integrable ground state together with an infinite number of discrete energy levels: $0 = \mathcal{E}_0 < \mathcal{E}_1 < \mathcal{E}_2 < \cdots$. The orthogonality relation reads

$$(\phi_n, \phi_m) \equiv \int_{x_1}^{x_2} dx \phi_n^*(x)\phi_m(x) = h_n\delta_{nm} \quad (n, m = 0, 1, 2, \ldots), \quad 0 < h_n < \infty.$$ \hspace{1cm} (2.4)
The eigenfunctions $\phi_n(x)$ can be chosen to be ‘real’, $\phi_n^*(x) = \phi_n(x)$, and the ground-state wavefunction $\phi_0(x)$ is determined as the zero mode of the operator A, $A\phi_0(x) = 0$, namely,

$$\sqrt{V^*(x - i\frac{\gamma}{2})} \phi_0 \left(x - i\frac{\gamma}{2} \right) = \sqrt{V(x + i\frac{\gamma}{2})} \phi_0 \left(x + i\frac{\gamma}{2} \right).$$

(2.5)

2.2. Analyticity requirements

The hermiticity of the Hamiltonians of discrete quantum mechanics with pure imaginary shifts is more involved than that of the ordinary quantum mechanics [3, 31]. Here, we review the hermiticity of the Hamiltonian (2.1) in general, in a way applicable to those appearing in the multi-indexed Wilson and Askey–Wilson systems, e.g., (2.18)–(2.20), (2.26)–(2.28). Of course, the hermiticity of the original Hamiltonians of the Wilson and Askey–Wilson systems (3.4)–(3.11) is well established [3, 31].

Let us consider the functions of the form $f(x) = \phi_0(x)\tilde{R}(x)$, where $\phi_0(x)^2$ and $\tilde{R}(x)$ are the meromorphic functions and $\tilde{R}^*(x) = \overline{\tilde{R}(x)}$. For two such functions $f_1 = \phi_0\tilde{R}_1$ and $f_2 = \phi_0\tilde{R}_2$, the condition of the hermiticity $(f_1, H f_2) = (H f_1, f_2)$ becomes

$$\int_{x_1}^{x_2} dx \left(G \left(x - i\frac{\gamma}{2} \right) + G^* \left(x + i\frac{\gamma}{2} \right) \right) = \int_{x_1}^{x_2} dx \left(G \left(x + i\frac{\gamma}{2} \right) + G^* \left(x - i\frac{\gamma}{2} \right) \right),$$

(2.6)

where $G(x)$ is defined by

$$G(x) = V \left(x + i\frac{\gamma}{2} \right) \phi_0 \left(x + i\frac{\gamma}{2} \right)^2 \tilde{R}_1 \left(x + i\frac{\gamma}{2} \right) \tilde{R}_2 \left(x - i\frac{\gamma}{2} \right),$$

$$\Rightarrow G^*(x) = V \left(x + i\frac{\gamma}{2} \right) \phi_0 \left(x + i\frac{\gamma}{2} \right)^2 \tilde{R}_1 \left(x - i\frac{\gamma}{2} \right) \tilde{R}_2 \left(x + i\frac{\gamma}{2} \right).$$

(2.7)

Although the term $V(x) + V^*(x)$ in \mathcal{H} is canceled out in this calculation, this term $V(x) + V^*(x)$ should be non-singular for $x_1 \leq x \leq x_2$, and the integral $\int_{x_1}^{x_2} dx V(x)\phi_0(x)^2\tilde{R}_1(x)\tilde{R}_2(x)$ should be finite. By using the residue theorem, the condition (2.6) is rewritten as

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx \left(G(x_2 + i\gamma) - G^*(x_2 - i\gamma) \right) - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dx \left(G(x_1 + i\gamma) - G^*(x_1 - i\gamma) \right)$$

$$= 2\pi \sum_{\text{pole in } D_y} \text{Res}_{\text{pole}} (G(x) - G^*(x)),$$

(2.8)

where the residue of the function $G(x) - G^*(x)$ is taken at the poles in the rectangular domain D_y:

$$D_y \overset{\text{def}}{=} \{ x \in \mathbb{C} \mid x_1 \leq \text{Re}\, x \leq x_2, \ |\text{Im}\, x| \leq \frac{\pi}{2} |\gamma| \}. $$

(2.9)

In our previous work on the exceptional Wilson and Askey–Wilson [12, 19], we required that G and G^* have no poles in the rectangular domain D_y, as a sufficient condition for the hermiticity of the Hamiltonian. This requirement was too strong. In later examples, $\tilde{R}(x) = \mathcal{R}(\eta(x))$ is a rational function of $\eta(x)$, and $V(x)\phi_0(x)^2$ has the form $\sim (V\phi_0^{\text{original}}) \times \mathcal{R}(\eta(x))$. In the original Wilson and Askey–Wilson theory, $(V\phi_0^{\text{original}})$ has no poles in D_y, see (3.14). In the deformed theory in general, however, $(V\phi_0^{\text{original}})$ has shifted parameters and we continue to require that this part has no poles in the rectangular domain D_y. We also remark that even if the (rational function of $\eta(x)$)-part has poles in the rectangular domain D_y, there is a possibility that the sum of the residues vanishes.
2.3. Deletion of virtual states

In [38], we have presented the Crum–Adler scheme, i.e. the deletion of \(M \) eigenstates. In that case, the index set of the deleted eigenstates \(D \equiv \{d_1, d_2, \ldots, d_M\} \) (\(d_j \in \mathbb{Z}_{\geq 0} \)) should satisfy the condition \(\prod_{j=1}^{M} (m - d_j) \geq 0 \) (\(\forall m \in \mathbb{Z}_{\geq 0} \)), see equation (2.8) in [38]. We now apply the Crum–Adler scheme to virtual states instead of eigenstates. The above condition, see equation (2.8) in [38], is no longer necessary.

The Casorati determinant of a set of \(n \) functions \(\{f_j(x)\} \) is defined by

\[
W_{\gamma}[f_1, \ldots, f_n](x) \equiv i^{\frac{1}{2}(n(n-1))} \det \left(f_k(x_j) \right)_{1 \leq j, k \leq n}, \quad x_j \equiv x + i \left(\frac{n+1}{2} - j \right). \tag{2.10}
\]

(for \(n = 0 \), we set \(W_{\gamma}[\cdot](x) = 1 \)), which satisfies identities

\[
W_{\gamma}[f_1, \ldots, f_n^*](x) = W_{\gamma}[f_1', \ldots, f_n'](x), \tag{2.11}
\]

\[
W_{\gamma}[g_1, g_2, \ldots, g_n] = \prod_{j=1}^{n} g(x_j), \quad W_{\gamma}[f_1, f_2, \ldots, f_n, h](x) = \prod_{j=1}^{n} f_j(x_j) W_{\gamma}[f_1, f_2, \ldots, f_n, h](x) \quad (n \geq 0). \tag{2.12}
\]

Let us assume the existence of an analytic function \(V(x) \) of \(x \) satisfying

\[
V(x)V'(x - iy) = \alpha^2 V(x)V''(x - iy), \quad \alpha > 0,
\]

\[
V(x) + V'(x) = \alpha(V(x) + V''(x) - \alpha'), \quad \alpha' < 0, \tag{2.14}
\]

where \(\alpha \) and \(\alpha' \) are constants. Then, we obtain a linear relation between two Hamiltonians:

\[
\mathcal{H} = \alpha \mathcal{H}' + \alpha', \tag{2.15}
\]

\[
\mathcal{H}' \equiv \sqrt{V(x)}e^{\gamma p} \sqrt{V''(x)} + \sqrt{V''(x)}e^{-\gamma p} \sqrt{V'(x)} - V'(x) - V''(x). \tag{2.16}
\]

Since \(\mathcal{H} \) is positive semi-definite, \(\mathcal{H}' \) is obviously positive definite and it has no zero-mode. Let us also assume the existence of virtual state wavefunctions \(\tilde{\phi}_v(x) \) (\(v \in V \)), which are the ‘polynomial solutions’ of degree \(v \) of the Schrödinger equation

\[
\mathcal{H}\tilde{\phi}_v(x) = \tilde{\mathcal{E}}_v\tilde{\phi}_v(x) \quad \text{or} \quad \mathcal{H}\tilde{\phi}_v(x) = \tilde{\mathcal{E}}_v\tilde{\phi}_v(x), \quad \tilde{\mathcal{E}}_v \equiv \alpha \tilde{\mathcal{E}}_v' + \alpha', \quad \tilde{\phi}_v^*(x) = \tilde{\phi}_v(x), \tag{2.17}
\]

but they, including the zero mode \(\phi_0 \), do not belong to the Hilbert space of \(\mathcal{H} \). Here, \(V \) is the index set of the virtual state wavefunctions. We require that \(\tilde{\mathcal{E}}_v < 0 \) and some analytic properties of \(\tilde{\phi}_v(x) \), which are explicitly presented in section 3.

We have developed the method of virtual states deletion for ordinary quantum mechanics in [1] and for discrete quantum mechanics with real shifts in [2]. Algebraic aspects of this method are the same and can be applied to discrete quantum mechanics with pure imaginary shifts. The procedure is as follows: (i) rewrite the original Hamiltonian as \(\mathcal{H} = \tilde{\mathcal{A}}_d^\dagger \tilde{\mathcal{A}}_d + \tilde{\mathcal{E}}_d, \quad (d \in V) \),

(ii) define a new isospectral Hamiltonian \(\mathcal{H}_d \equiv \tilde{\mathcal{A}}_d^\dagger \tilde{\mathcal{A}}_d + \tilde{\mathcal{E}}_d \), whose eigenfunctions are given by \(\phi_{d,v}(x) \equiv \tilde{\phi}_{d,v}(x) \) together with virtual state wavefunctions \(\tilde{\phi}_{d,v}(x) \equiv \tilde{\phi}_{d,v}(x) \) (\(v \in V \setminus \{d\} \)), \(\mathcal{H}_d \phi_{d,v}(x) = \tilde{\mathcal{E}}_d\tilde{\phi}_{d,v}(x) \), \(\mathcal{H}_d\tilde{\phi}_{d,v}(x) = \tilde{\mathcal{E}}_d\tilde{\phi}_{d,v}(x) \), (iii) rewrite this as \(\mathcal{H}_d = \tilde{\mathcal{A}}_d^\dagger \tilde{\mathcal{A}}_d + \tilde{\mathcal{E}}_d \), (d \(\in V \setminus \{d\} \)), (iv) define the next isospectral Hamiltonian \(\mathcal{H}_d \equiv \tilde{\mathcal{A}}_d^\dagger \tilde{\mathcal{A}}_d + \tilde{\mathcal{E}}_d \), whose eigenfunctions are given by \(\phi_{d,v}(x) \equiv \tilde{\phi}_{d,v}(x) \) together with the virtual state wavefunctions \(\tilde{\phi}_{d,v}(x) \equiv \tilde{\phi}_{d,v}(x) \) (\(v \in V \setminus \{d\} \)), \(\mathcal{H}_d \phi_{d,v}(x) = \tilde{\mathcal{E}}_d\tilde{\phi}_{d,v}(x) \), \(\mathcal{H}_d\tilde{\phi}_{d,v}(x) = \tilde{\mathcal{E}}_d\tilde{\phi}_{d,v}(x) \), (v) by repeating this process, we obtain \(\mathcal{H}_d \) and its eigenfunctions \(\phi_{d,v}(x) \) together with the virtual state wavefunctions \(\tilde{\phi}_{d,v}(x) \), (vi)
\(\mathcal{H}_{d_1\cdots d_s} \) can be written in the standard form, i.e. \(\mathcal{H}_{d_1\cdots d_s} = A_{d_1\cdots d_s}^\dagger A_{d_1\cdots d_s} \). If the resulting system is well defined, we obtain the isospectrally deformed systems just as those in [1] and [2].

Here, we present ‘formal’ expressions of the deformed systems, which are proved inductively. The system obtained after \(s \) virtual state deletions (\(s \geq 1 \)), which are labeled by \(\{d_1, \ldots, d_s\} \) (\(d_j \in \mathcal{V} : \) mutually distinct), is

\[
\mathcal{H}_{d_1\cdots d_s} \overset{\text{def}}{=} \hat{A}_{d_1\cdots d_s} \hat{A}_{d_1\cdots d_s}^\dagger + \tilde{\mathcal{E}}_{d_s},
\]

(2.18)

\[
\hat{A}_{d_1\cdots d_s} \overset{\text{def}}{=} i(e^{\frac{i}{2}p} \sqrt{\mathcal{V}_{d_1\cdots d_s}(x)} - e^{-\frac{i}{2}p} \sqrt{\mathcal{V}_{d_1\cdots d_s}(x)}),
\]

\[
\hat{A}_{d_1\cdots d_s}^\dagger \overset{\text{def}}{=} -i(\sqrt{\mathcal{V}_{d_1\cdots d_s}(x)} e^{\frac{i}{2}p} - \sqrt{\mathcal{V}_{d_1\cdots d_s}(x)} e^{-\frac{i}{2}p}),
\]

(2.19)

\[
\hat{V}_{d_1\cdots d_s}(x) \overset{\text{def}}{=} \sqrt{V \left(x - i \frac{s - 1}{2} \gamma \right)} V^* \left(x - i \frac{s + 1}{2} \gamma \right)
\]

\[
\times \frac{W_x[\tilde{\phi}_{d_1}, \ldots, \tilde{\phi}_{d_s}](x - i\gamma_{13}) W_x[\tilde{\phi}_{d_1}, \ldots, \tilde{\phi}_{d_s}](x - i\gamma_{21})}{W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x - i\gamma_{13}) W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x)}.
\]

(2.20)

\[
\phi_{d_1\cdots d_s}(x) \overset{\text{def}}{=} \hat{V}_{d_1\cdots d_s}(x) \quad (n = 0, 1, 2, \ldots),
\]

\[
\tilde{\phi}_{d_1\cdots d_s}(x) \overset{\text{def}}{=} \hat{A}_{d_1\cdots d_s} \hat{V}_{d_1\cdots d_s}(x) \quad (v \in \mathcal{V} \setminus \{d_1, \ldots, d_s\}),
\]

(2.21)

\[
\mathcal{H}_{d_1\cdots d_s} \phi_{d_1\cdots d_s}(x) = \mathcal{E}_s \phi_{d_1\cdots d_s}(x) \quad (n = 0, 1, 2, \ldots),
\]

\[
\mathcal{H}_{d_1\cdots d_s} \tilde{\phi}_{d_1\cdots d_s}(x) = \tilde{\mathcal{E}}_{d_s} \phi_{d_1\cdots d_s}(x) \quad (v \in \mathcal{V} \setminus \{d_1, \ldots, d_s\}),
\]

(2.22)

\[
(\phi_{d_1\cdots d_s}, \phi_{d_1\cdots d_s}) = \prod_{j=1}^{s} (\mathcal{E}_n - \tilde{\mathcal{E}}_{d_s}) \cdot h_{dn} \delta_{mn} \quad (n, m = 0, 1, 2, \ldots).
\]

(2.23)

Let us remark that the eigenfunctions and the virtual state solutions in all steps are ‘real’ by construction, \(\phi_{d_1\cdots d_s}(x) = \phi_{d_1\cdots d_s}(x) \), \(\tilde{\phi}_{d_1\cdots d_s}(x) = \tilde{\phi}_{d_1\cdots d_s}(x) \) and they have Casoratian expressions:

\[
\phi_{d_1\cdots d_s}(x) = A(x) W_x[\phi_{d_1}, \ldots, \phi_{d_s}, \phi_n](x),
\]

\[
\tilde{\phi}_{d_1\cdots d_s}(x) = A(x) W_x[\phi_{d_1}, \ldots, \tilde{\phi}_{d_s}, \tilde{\phi}_n](x),
\]

(2.24)

\[
A(x) = \left(\sqrt{\prod_{j=0}^{s-1} V(x + i \left(\frac{j}{2} - \gamma \right)) V^* \left(x - i \frac{s + 1}{2} \gamma \right) \frac{W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x - i\gamma_{13}) W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x - i\gamma_{21})}{W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x - i\gamma_{13}) W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x)}} \right)^{1/2},
\]

which are shown by using (2.13).

Writing down (2.22) and dividing it by \(\phi_{d_1\cdots d_s}(x) \) or \(\tilde{\phi}_{d_1\cdots d_s}(x) \) and using (2.24), we obtain

\[
\tilde{V}_{d_1\cdots d_s} \left(x + i \frac{s}{2} \gamma \right) + \tilde{\mathcal{E}}_{d_s} \left(x - i \frac{s}{2} \gamma \right) - \tilde{\mathcal{E}}_{d_s} + \mathcal{E}_n
\]

\[
= \sqrt{V \left(x - i \frac{s}{2} \gamma \right)} V^* \left(x - i \frac{s + 2}{2} \gamma \right) \frac{W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x - i\gamma_{13}) W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x - i\gamma_{21})}{W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x - i\gamma_{13}) W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x)}
\]

\[
+ \sqrt{V \left(x + i \frac{s}{2} \gamma \right)} V \left(x + i \frac{s + 2}{2} \gamma \right)
\]

\[
\times \frac{W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x + i\gamma_{21}) W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x + i\gamma_{13})}{W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x + i\gamma_{21}) W_x[\phi_{d_1}, \ldots, \phi_{d_s}](x)}.
\]

(2.25)

and a similar equation for the virtual state solution.
The deformed Hamiltonian $\mathcal{H}_{d_1 \cdots d_n}$ can be rewritten in the standard form:

$$\mathcal{H}_{d_1 \cdots d_n} = A_{d_1 \cdots d_n}^\dagger A_{d_1 \cdots d_n},$$

(2.26)

$$A_{d_1 \cdots d_n} \overset{\text{def}}{=} i(e^{\gamma p} \sqrt{V_{d_1 \cdots d_n}^*(x)} - e^{-\gamma p} \sqrt{V_{d_1 \cdots d_n}(x)}),$$

$$A_{d_1 \cdots d_n}^\dagger \overset{\text{def}}{=} -i(\sqrt{V_{d_1 \cdots d_n}(x)} e^{\gamma p} - \sqrt{V_{d_1 \cdots d_n}^*(x)} e^{-\gamma p}),$$

(2.27)

$$V_{d_1 \cdots d_n}(x) \overset{\text{def}}{=} \sqrt{V(x - \frac{s}{2}\gamma)} V^*(x - \frac{s}{2}\gamma)$$

$$\times \frac{W_\gamma[\phi_{d_1}, \ldots, \phi_{d_n}](x + i\gamma)}{W_\gamma[\phi_{d_1}, \ldots, \phi_{d_n}](x - i\gamma)} W_\gamma[\phi_{d_1}, \ldots, \phi_{d_n}](x),$$

(2.28)

in which the A operator annihilates the ground state,

$$A_{d_1 \cdots d_n} \phi_{d_1 \cdots d_n,0}(x) = 0.$$

(2.29)

The conditions for the equality of (2.26) and (2.18) are

$$V_{d_1 \cdots d_n}(x)V_{d_1 \cdots d_n}^*(x - i\gamma) = V_{d_1 \cdots d_n}^\dagger(x - i\gamma) V_{d_1 \cdots d_n}^*(x - i\gamma);$$

$$V_{d_1 \cdots d_n}(x) + V_{d_1 \cdots d_n}^*(x - i\gamma) = \hat{V}_{d_1 \cdots d_n}(x + i\gamma) + \hat{V}_{d_1 \cdots d_n}^*(x + i\gamma) - \hat{\mathcal{E}}_{d_n}.$$

(2.30)

The first equation is trivially satisfied and the second equation is a consequence of (2.25) with $n = 0$.

It should be stressed that the above results after s-deletions are independent of the orders of deletions ($\phi_{d_1 \cdots d_n, a}(x)$ and $\phi_{d_1 \cdots d_n, a}(x)$ may change sign).

In order that this deformed system is well defined, i.e. Hamiltonian $\mathcal{H}_{d_1 \cdots d_n}$ is hermitian, we have to study the singularities of $V_{d_1 \cdots d_n}(x)$ and $\phi_{d_1 \cdots d_n}(x)$. We will do this for explicit examples in section 3.4.

3. Multi-indexed Wilson and Askey–Wilson polynomials

In this section, we apply the method of virtual states deletion to the exactly solvable systems whose eigenstates are described by the Wilson (W) and Askey–Wilson (AW) polynomials. We delete M virtual states labeled by

$$D = \{d_1, d_2, \ldots, d_M\} \quad (d_j \in \mathcal{V} : \text{mutually distinct}),$$

(3.1)

and denote $\mathcal{H}_{d_1 \cdots d_n}, \phi_{d_1 \cdots d_n}, A_{d_1 \cdots d_n},$ etc. simply by $\mathcal{H}_D, \phi_{D}, \delta, \delta_{D},$ etc.

We follow the notation of [3]. Various quantities depend on a set of parameters $\lambda = (\lambda_1, \lambda_2, \ldots)$.

3.1. Original Wilson and Askey–Wilson systems

Let us consider the Wilson and Askey–Wilson cases. Various parameters are

- **W**: $x_1 = 0, x_2 = \infty, \gamma = 1, \lambda = (a_1, a_2, a_3, a_4), \delta = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \kappa = 1,$
- **AW**: $x_1 = 0, x_2 = \pi, \gamma = \log q, q^\delta = (a_1, a_2, a_3, a_4), \delta = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \kappa = q^{-1},$

(32)
where \(q^k\) stands for \(q^{k_1, k_2, \ldots} = (q^{k_1}, q^{k_2}, \ldots)\) and \(0 < q < 1\). The parameters are restricted by
\[
[a'_1, a'_2, a'_3, a'_4] = [a_1, a_2, a_3, a_4] \quad \text{(as a set)}; \quad \text{W : Re} \ a_j > 0, \quad \text{AW :} \ |a_j| < 1. \quad (3.3)
\]
Here are the fundamental data [3]:
\[
V(x; \lambda) = \left(\frac{2ix(2ix + 1)}{e^{\lambda x} - 1}\right)^{-1} \prod_{n=1}^{\infty} (a_j + ix) : \text{W} \quad \text{by} \eta(x)
\]
\[
\eta(x) = \begin{cases} \frac{x^2}{\cos x} : \text{W} \\ \frac{2x}{\sin x} : \text{AW} \end{cases}, \quad \varphi(x) = \begin{cases} 2x : \text{W} \\ 2i : \text{AW} \end{cases}
\]
\[
E_n(\lambda) = \left(\frac{n(n + b_1 - 1)}{(q^n - 1)(1 - b_4 q^{a_1 - 1})} : \text{W} \quad b_1 \overset{\text{def}}{=} a_1 + a_2 + a_3 + a_4, \quad b_4 \overset{\text{def}}{=} a_1 a_2 a_3 a_4, \quad (3.6)\right.
\]
\[
\phi_n(x; \lambda) = \phi_0(x; \lambda) \tilde{P}_n(x; \lambda), \quad (3.7)
\]
\[
\tilde{P}_n(x; \lambda) \equiv P_n(\eta(x); \lambda) = \begin{cases} W_n(\eta(x); a_1, a_2, a_3, a_4) : \text{W} \\ p_n(\eta(x); a_1, a_2, a_3, a_4|q) : \text{AW} \end{cases}
\]
\[
= \begin{cases} \binom{-n, n + b_1 - 1}{a_1 + a_2 + a_3, a_1 + a_4} : \text{W} \\ \times_4 F_3 \left(\begin{array}{c} -n, a_1 + a_2, a_1, a_1 a_2 + a_3, a_1 + a_4 \\ a_1, a_2, a_3, a_4 \end{array} ; q \right) : \text{AW} \end{cases}
\]
\[
\phi_0(x; \lambda) = \begin{cases} \sqrt{\prod_{j=1}^{\infty} (a_j + ix) \Gamma(a_j - ix)} : \text{W} \\ \sqrt{\prod_{j=1}^{\infty} (a_j e^{2\pi i}; q_{a_1}^{-1} (a_j e^{-2\pi i}; q_{a_1}^{-1})^{-1} : \text{AW} \end{cases}
\]
\[
h_n(\lambda) = \begin{cases} n! (n + b_1 - 1) \prod_{1 \leq i < j \leq 4} \Gamma(n + a_i + a_j) : \text{W} \\ 2 \pi (b_4 q^{a_1 - 1}, q_{a_1}^{2b_4 a_2}, q_{a_1}^{a_1 e^{2\pi i}}, q_{a_1}^{a_1 e^{-2\pi i}}, q_{a_1}^{a_2 e^{2\pi i}}, q_{a_1}^{a_2 e^{-2\pi i}}, q_{a_1}^{a_3 e^{2\pi i}}, q_{a_1}^{a_3 e^{-2\pi i}}, q_{a_1}^{a_4 e^{2\pi i}}, q_{a_1}^{a_4 e^{-2\pi i}}, q_{a_1}^{a_5 e^{2\pi i}}, q_{a_1}^{a_5 e^{-2\pi i}}, q_{a_1}^{a_6 e^{2\pi i}}, q_{a_1}^{a_6 e^{-2\pi i}}, q_{a_1}^{a_7 e^{2\pi i}}, q_{a_1}^{a_7 e^{-2\pi i}} : \text{AW} \end{cases}
\]
Here, \(W_n\) and \(p_n\) in (3.8) are the Wilson and the Askey–Wilson polynomials [6] and the symbols \((a)_n\) and \((a; q)_n\) are \((q)-\)shifted factorials. We have \(\phi_0(x; \lambda) = \phi_0(x; \lambda)\) and \(\tilde{P}_n(x; \lambda) = \tilde{P}_n(x; \lambda)\). Note that
\[
\phi_0(x; \lambda + \delta) = \varphi(x) \sqrt{V(x + i\frac{Y}{2}; \lambda)} \phi_0(x + i\frac{Y}{2}; \lambda), \quad (3.12)
\]
\[
V(x; \lambda + \delta) = e^{-i\frac{Y}{2} \varphi(x)} V(x - i\frac{Y}{2}; \lambda). \quad (3.13)
\]
The sinusoidal coordinate \(\eta(x)\) has a special dynamical meaning [30, 33, 43]. The Heisenberg operator solution for \(\eta(x)\) can be expressed in a closed form and its time evolution is a
sinusoidal motion. The hermiticity of the Hamiltonian is satisfied because the function $V \phi_0^2$ has the property
\begin{equation}
(3.3) \iff V \left(x + i \frac{\gamma}{2}; \lambda \right) \phi_0 \left(x + i \frac{\gamma}{2}; \lambda \right)^2 \text{ has no poles in the rectangular domain } D_\gamma, \quad (3.14)
\end{equation}
and the function $G(2.7) (\tilde{G} (x_i) = \tilde{P}_n (x; \lambda))$ satisfies $G(x_1 + ix) = G^* (x_1 - ix), G(x_2 + ix) = 0 = G^* (x_2 - ix)$ for W and $G(x_1 + ix) = G^* (x_1 - ix), G(x_2 + ix) = G^* (x_2 - ix)$ for AW. Note that equation (3.12) implies
\begin{equation}
V \left(x + i \frac{\gamma}{2}; \lambda \right) \phi_0 \left(x + i \frac{\gamma}{2}; \lambda \right)^2 = \frac{\phi_0 (x; \lambda + \delta)^2}{\psi(x)^2}. \quad (3.15)
\end{equation}
The system is shape invariant [44, 3],
\begin{equation}
\mathcal{A} (\lambda) \mathcal{A} (\lambda)^\dagger = \kappa \mathcal{A} (\lambda + \delta)^\dagger \mathcal{A} (\lambda + \delta) + \mathcal{E}_1 (\lambda), \quad (3.16)
\end{equation}
which is a sufficient condition for exact solvability and it provides the explicit formulae for the energy eigenvalues and the eigenfunctions, i.e. the generalized Rodrigues formulae [3]. The action of the operators $\mathcal{A} (\lambda)$ and $\mathcal{A} (\lambda)^\dagger$ on the eigenfunctions is
\begin{equation}
\mathcal{A} (\lambda) \phi_0 (x; \lambda) = f_n (\lambda) \phi_{n-1} (x; \lambda + \delta), \quad (3.17)
\end{equation}
The factors of the energy eigenvalue, $f_n (\lambda)$ and $b_{n-1} (\lambda)$, $\mathcal{E}_n (\lambda) = f_n (\lambda) b_{n-1} (\lambda)$, are given by
\begin{equation}
f_n (\lambda) \defeq \begin{cases} -n(n + 1) & : W, \\ q^2 (q^n - 1) (1 - b_0 q^{n-1}) & : AW, \end{cases} \quad (3.18)
\end{equation}
The forward and backward shift operators $\mathcal{F} (\lambda)$ and $\mathcal{B} (\lambda)$ are defined by
\begin{equation}
\mathcal{F} (\lambda) \defeq \phi_0 (x; \lambda + \delta)^{-1} \circ \mathcal{A} (\lambda) \circ \phi_0 (x; \lambda) = i \varphi (x)^{-1} (e^{\frac{\gamma}{2}p} - e^{-\frac{\gamma}{2}p}), \quad (3.19)
\end{equation}
\begin{equation}
\mathcal{B} (\lambda) \defeq \phi_0 (x; \lambda + \delta)^{-1} \circ \mathcal{A} (\lambda)^\dagger \circ \phi_0 (x; \lambda) = -i (V (x; \lambda) e^{\frac{\gamma}{2}p} - V^* (x; \lambda) e^{-\frac{\gamma}{2}p}) \varphi (x), \quad (3.20)
\end{equation}
and their action on the polynomials is
\begin{equation}
\mathcal{F} (\lambda) \tilde{P}_n (x; \lambda) = f_n (\lambda) \tilde{P}_{n-1} (x; \lambda + \delta), \quad (3.21)
\end{equation}
The second-order difference operator $\tilde{\mathcal{H}} (\lambda)$ acting on the polynomial eigenfunctions is square-root free. It is defined by
\begin{equation}
\tilde{\mathcal{H}} (\lambda) \defeq \phi_0 (x; \lambda)^{-1} \circ \mathcal{H} (\lambda) \circ \phi_0 (x; \lambda) = \mathcal{B} (\lambda) \mathcal{F} (\lambda)
\end{equation}
\begin{equation}
= V (x; \lambda) (e^{\frac{\gamma}{2}p} - 1) + V^* (x; \lambda) (e^{-\frac{\gamma}{2}p} - 1), \quad (3.22)
\end{equation}
\begin{equation}
\tilde{\mathcal{H}} (\lambda) \tilde{P}_n (x; \lambda) = \mathcal{E}_n (\lambda) \tilde{P}_n (x; \lambda). \quad (3.23)
\end{equation}

3.2. Discrete symmetries of the Wilson and Askey–Wilson systems

Since the potential function $V (x; \lambda)$ (3.4) is invariant under the permutation of (a_1, a_2, a_3, a_4), the system is symmetric in (a_1, a_2, a_3, a_4). So are the ground-state wavefunction $\phi_0 (x; \lambda)$ (3.10) and the eigenpolynomial $\tilde{P}_n (x; \lambda)$ (3.8).

In the following, we restrict the parameters as follows:
\begin{equation}
a_1, a_2 \in \mathbb{R} \text{ or } a_2^* = a_1; \quad a_3, a_4 \in \mathbb{R} \text{ or } a_4^* = a_3. \quad (3.24)
\end{equation}

Let us introduce twist operations t^I and t^II and constants δ^I and δ^II:
\begin{equation}
t^I (\lambda) \defeq (1 - \lambda_1, 1 - \lambda_2, \lambda_3, \lambda_4), \quad \delta^I \defeq (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}),
\end{equation}
\begin{equation}
t^{II} (\lambda) \defeq (\lambda_1, 1 - \lambda_3, 1 - \lambda_4), \quad \delta^{II} \defeq (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}). \quad (3.25)
\end{equation}
By using these twist operations, we define deformed potential functions V' by

$$V'(x; \lambda) \overset{\text{def}}{=} V(x; t^I(\lambda)), \quad V''(x; \lambda) \overset{\text{def}}{=} V(x; t^II(\lambda)).$$

(3.26)

These V''s satisfy (2.14) with

$$\alpha^I(\lambda) = \begin{cases} 1 & : W, \\ a_1a_2q^{-1} & : AW. \end{cases}, \quad \alpha^II(\lambda) = \begin{cases} 1 & : W, \\ a_1a_2q^{-1} & : AW. \end{cases}$$

(3.27)

(For $\alpha > 0$, we have $a_1a_2 > 0$ and $a_1a_3 > 0$ for the AW case. For $\alpha' < 0$, we will restrict the parameters further as in (3.36).) We obtain a linear relation between the two Hamiltonians (2.15). The virtual state wavefunctions satisfying (2.17) are given by

$$\phi^I_0(x; \lambda) \overset{\text{def}}{=} \phi_0(x; t^I(\lambda)), \quad \phi^II_0(x; \lambda) \overset{\text{def}}{=} \phi_0(x; t^II(\lambda)) = \tilde{\phi}^I_0(x; \lambda)\tilde{\phi}^II_0(x; \lambda) \quad (v \in \mathbb{Z}),$$

$$\tilde{\phi}^I_0(x; \lambda) \overset{\text{def}}{=} \xi^I_0(\eta(x); \lambda) \overset{\text{def}}{=} \tilde{P}_I(x; t^I(\lambda)) = P_I(\eta(x); t^I(\lambda)), \quad \tilde{\phi}^II_0(x; \lambda) \overset{\text{def}}{=} \xi^II_0(\eta(x); \lambda) \overset{\text{def}}{=} \tilde{P}_I(x; t^II(\lambda)) = P_I(\eta(x); t^II(\lambda)).$$

(3.28)

The virtual state polynomials $\xi^I_0(\eta; \lambda)$ are the polynomials of degree v in η. They are chosen ‘real,’ $\phi^I_0(x; \lambda) = \phi_0(x; \lambda), \tilde{\phi}^I_0(x; \lambda) = \tilde{\phi}_0(x; \lambda)$ and the virtual energies are $\xi^I_0(\lambda) = \xi^I_0(t^I(\lambda))$:

$$\tilde{\phi}^I_0(x; \lambda) = \begin{cases} -(a_1 + a_2 - v - 1)(a_3 + a_4 + v) & : W, \\ (1 - a_1a_2q^{-v-1})(1 - a_3a_4q^v) & : AW. \end{cases}$$

(3.29)

Note that $\alpha'(\lambda) = \tilde{\phi}^I_0(\lambda) < 0$ and

$$W: \quad \tilde{\phi}^I_0(\lambda) < 0 \Leftrightarrow a_1 + a_2 > v + 1, \quad \tilde{\phi}^II_0(\lambda) < 0 \Leftrightarrow a_3 + a_4 > v + 1,$$

$$AW: \quad \tilde{\phi}^I_0(\lambda) < 0 \Leftrightarrow 0 < a_1a_2 < q^{v+1}, \quad \tilde{\phi}^II_0(\lambda) < 0 \Leftrightarrow 0 < a_3a_4 < q^{v+1},$$

for $v \geq 0$. We choose ν^I and ν^II as

$$\nu^I = \{1, 2, \ldots, [\lambda_1 + \lambda_2 - 1]\}, \quad \nu^II = \{1, 2, \ldots, [\lambda_3 + \lambda_4 - 1]\}, \quad (3.31)$$

where $[x]$ denotes the greatest integer not equal or exceeding x. We will not use the label 0 states for deletion, see (3.58)–(3.59).

For later use, we define the following functions (recall $x^{(n)}_j$ in (2.10)):

$$v^I(x; \lambda) \overset{\text{def}}{=} \phi_0(x; \lambda \phi^I_0(x; \lambda), \quad r^I_j(x^{(M)}; \lambda, M) \overset{\text{def}}{=} \frac{v^I(x^{(M)}; \lambda)}{v^I(x; \lambda + (M - 1)\delta)} \quad (1 \leq j \leq M),$$

$$v^II(x; \lambda) \overset{\text{def}}{=} \phi_0(x; \lambda \phi^II_0(x; \lambda), \quad r^II_j(x^{(M)}; \lambda, M) \overset{\text{def}}{=} \frac{v^II(x^{(M)}; \lambda)}{v^II(x; \lambda + (M - 1)\delta)} \quad (1 \leq j \leq M).$$

(3.32)

Their explicit forms are

$$r^I_j(x^{(M)}; \lambda, M) = \begin{cases} \alpha^I(\lambda + (M - 1)\delta)j^{-(M-1)\delta - (j-1)(M-j)} & : W, \\ \left(\prod_{k=1,2} (a_k - M - \frac{1}{2} + ix)\right)^{(M-1)\delta - (j-1)(M-j)} \cdot \left(\prod_{k=1,2} (a_k - M - \frac{1}{2} - ix)\right)_{M-j} & : AW, \end{cases}$$

(3.33)
are chosen so that further as follows:

\[
\begin{align*}
J. Phys. A: Math. Theor. 46 (2013) 045204 & \quad S Odake and R Sasaki \\

r_{j}^{(M)}(x^{(M)}_{j}; \lambda, M) = a^{(M)}(\lambda + (M - 1)\delta)_{-\frac{1}{2}}^{(M-1)} \kappa^{-\frac{1}{2}}(M-1)^{2-(j-1)(M-j)} \\
& \times \left\{ \prod_{k=3,4} (a_k - M - 1 \pm 2 + ix) \right\}_{j-1} \left\{ (a_k - M - 1 \pm 2 - ix) \right\}_{M-j} : W \\
& \left\{ \prod_{k=3,4} \left(\sum_{q} \left(a_k q^{-\frac{2M}{2M+1}} e^{ix}, q \right) \right)_{j-1} \left(a_k q^{-\frac{M}{2M+1}} e^{-ix}, q \right)_{M-j} : AW \right\}.
\end{align*}
\]

(3.34)

The auxiliary function \(\varphi_M(x) \) [38] is defined by

\[
\begin{align*}
\varphi_M(x) & \overset{\text{def}}{=} \varphi(x)^{\frac{1}{2}} \prod_{k=1}^{M-2} \left(\varphi \left(x - \frac{k}{2M} \right) \varphi \left(x + \frac{k}{2M} \right) \right) \left[\frac{M}{M+1} \right] \\
& = \left\{ \prod_{1 \leq i \neq k \leq M} \eta(x_{ij}) - \eta(x_{ki}) \right\} \times \left\{ \prod_{1 \leq i \leq M} \frac{1}{\varphi(x)} \right\} : W \\
& \left\{ \prod_{-(M-2)}^{-(M-1)} : AW \right\}.
\end{align*}
\]

(3.35)

and \(\varphi_0(x) = \varphi(1) = 1 \). Here, \([x]\) denotes the greatest integer not exceeding \(x\).

3.3. Explicit forms of multi-indexed Wilson and Askey–Wilson polynomials

We delete \(M = M_1 + M_2 \) virtual states \(D = \{ d_1^1, \ldots, d_{M_1}, d_1^2, \ldots, d_{M_2} \} \), where \(d_1^1 \) and \(d_1^2 \) are labels of the type-I and type-II virtual states, respectively. We restrict the parameter range further as follows:

\[
\begin{align*}
W: & \quad \text{Re} a_i > \frac{1}{2} \left(\max \left\{ d_1^1 \right\} + 1 \right) \quad (i = 1, 2), \quad \text{Re} a_i > \frac{1}{2} \left(\max \left\{ d_1^2 \right\} + 1 \right) \quad (i = 3, 4), \\
AW: & \quad |a_i| < q_i^{\frac{1}{2} \max \left\{ d_1^1 \right\} + 1} \quad (i = 1, 2), \quad |a_i| < q_i^{\frac{1}{2} \max \left\{ d_1^2 \right\} + 1} \quad (i = 3, 4), \quad a_1 a_2, a_3 a_4 > 0.
\end{align*}
\]

(3.36)

Then, the condition \(\xi_2(\lambda) < 0 \) \((v \in D)\) is satisfied, see (3.30). We assume that the parameters are chosen so that \(\zeta_2(x; \lambda) \neq 0 \) for \(x_1 \leq x \leq x_2 \). For example, if we take the parameters as

\[
\begin{align*}
a_1 & \in \mathbb{R}, -1 < \lambda_j - \lambda_k < 1 \quad (j = 1, 2; k = 3, 4), \\
a_1, a_2 & \in \mathbb{R}, a_4^* = a_3, \quad \lambda_1 + \lambda_2 + 2v < \lambda_3 + \lambda_4, \\
a_3, a_4 & \in \mathbb{R}, a_2^* = a_1, \quad \lambda_3 + \lambda_4 + 2v < \lambda_1 + \lambda_2,
\end{align*}
\]

then \(\xi_2(x; \lambda) \) and \(\xi_2(x; \lambda + \delta) \) have a definite sign for real \(x \).

Let us write down \(\varphi_D(x) \) (2.24) concretely. The Casoratians in (2.24) are reduced to the following determinants, by which we define two polynomials \(\hat{\Xi}_D(x; \lambda) \) and \(\tilde{P}_{D,\sigma}(x; \lambda) \), to be called the denominator polynomial and the multi-indexed orthogonal polynomial, respectively:

\[
\begin{align*}
& 1^{2M-1} \begin{bmatrix} \hat{X}_d^{(M)}_{k \ell} & \cdots & \hat{X}_d^{(M)}_{d_{M_1}} \\
\hat{Y}_d^{(M)}_{k \ell} & \cdots & \hat{Y}_d^{(M)}_{d_{M_2}} \end{bmatrix} = \varphi_M(x) \hat{\Xi}_D(x; \lambda) \times A, \\
A &= \left[\prod_{k=3,4} \prod_{j=1}^{M-1} (a_k - M - 1 + 2 + ix, a_k - M - 1 - ix) \right] \left[\prod_{k=3,4} \prod_{j=1}^{M-1} (a_k - M - 1 + 2 - ix, a_k - M - 1 + 2 + ix) \right] : W, \\
& \left[\prod_{k=3,4} \prod_{j=1}^{M-1} (a_k - M - 1 + 2 - 2M+1 + ie^ix, a_k - M - 1 - 2M+1 + ie^{-ix}, q) \right] \left[\prod_{k=3,4} \prod_{j=1}^{M-1} (a_k - M - 1 - 2M+1 + ie^{-ix}, a_k - M - 1 - 2M+1 + ie^ix, q) \right] : AW
\end{align*}
\]

(3.37)

\[
\begin{align*}
& 1^{2M+1} \begin{bmatrix} \hat{X}_d^{(M+1)}_{k \ell} & \cdots & \hat{X}_d^{(M+1)}_{d_{M_1}} \\
\hat{Y}_d^{(M+1)}_{k \ell} & \cdots & \hat{Y}_d^{(M+1)}_{d_{M_2}} \end{bmatrix} = \varphi_M(x) \tilde{P}_{D,\sigma}(x; \lambda) \times B,
\end{align*}
\]

\[
\begin{align*}
B &= \left[\prod_{k=3,4} \prod_{j=1}^{M_1} (a_k - M - 1 + 2 + ix, a_k - M - 1 - ix) \right] \left[\prod_{k=3,4} \prod_{j=1}^{M_2} (a_k - M - 1 + 2 - ix, a_k - M - 1 + 2 + ix) \right] : W, \\
& \left[\prod_{k=3,4} \prod_{j=1}^{M_1} (a_k - M - 1 - 2M+1 + ie^ix, a_k - M - 1 - 2M+1 + ie^{-ix}, q) \right] \left[\prod_{k=3,4} \prod_{j=1}^{M_2} (a_k - M - 1 - 2M+1 + ie^{-ix}, a_k - M - 1 - 2M+1 + ie^ix, q) \right] : AW
\end{align*}
\]

(3.38)
They are ‘real’, \(\tilde{\mathcal{E}}_{D}(x; \lambda) = \tilde{\mathcal{E}}_{D}(x; \lambda) \) and \(\tilde{P}_{D,n}(x; \lambda) = \tilde{P}_{D,n}(x; \lambda) \). After some calculation, the eigenfunction (2.24) is rewritten as
\[
\phi_{D,a}(x; \lambda) = \alpha^{(M)}(\lambda[M_{a},M_{b}]) \partial_{r}^{n} \mathcal{H}(\lambda[M_{a},M_{b}]) - \frac{i}{2} H_{n}(M_{a}+1) - \frac{i}{2} M_{b}(M_{a}+1) + \frac{i}{2} M_{b} n
\times \psi_{D}(x; \lambda) \tilde{P}_{D,a}(x; \lambda),
\]
(3.40)
and their degrees are generically \(\ell \) and \(\ell + n \), respectively (see (A.6)–(A.7)). Here, \(\ell \) is
\[
\ell \equiv \sum_{j=1}^{M_{a}} d_{j}^{l} + \sum_{j=1}^{M_{b}} d_{j}^{m} - \frac{1}{2} M_{1}(M_{1} - 1) - \frac{1}{2} M_{2}(M_{2} - 1) + M_{1}M_{2}.
\]
(3.43)
We assume that the parameters are so chosen that \(\tilde{\mathcal{E}}_{D}(x; \lambda) \neq 0 \) for \(x_{1} \leq x \leq x_{2} \). We have also \(\tilde{\mathcal{E}}_{D}(x; \lambda + \delta) \neq 0 \) for \(x_{1} \leq x \leq x_{2} \). By using these and (A.16)–(A.19), we can show that \(\tilde{\mathcal{E}}_{D}(x + i \frac{\pi}{2}; \lambda) \neq 0 \) for \(x_{1} \leq x \leq x_{2} \). The lowest degree multi-indexed orthogonal polynomial \(\tilde{P}_{D,0}(x; \lambda) \) is related to \(\tilde{\mathcal{E}}_{D}(x; \lambda) \) by the parameter shift \(\lambda \rightarrow \lambda + \delta \):
\[
\tilde{P}_{D,0}(x; \lambda) = A \tilde{\mathcal{E}}_{D}(x; \lambda + \delta),
\]
(3.44)
where the proportionality constant \(A \) is given in (A.1). This can be shown by using (A.9)–(A.12), etc. The potential function \(V_{D}(2.28) \) after \(M \) deletions \((s = M) \) can be expressed neatly in terms of the denominator polynomial:
\[
V_{D}(x; \lambda) = V(x; \lambda[M_{a},M_{b}]) \tilde{\mathcal{E}}_{D}(x + i \frac{\pi}{2}; \lambda) \tilde{\mathcal{E}}_{D}(x - i \frac{\pi}{2}; \lambda + \delta) \tilde{\mathcal{E}}_{D}(x; \lambda + \delta).
\]
(3.45)
The orthogonality relation (2.23) is
\[
\int_{x_{1}}^{x_{2}} dx \psi_{D}(x; \lambda) \tilde{P}_{D,m}(x; \lambda) \tilde{P}_{D,n}(x; \lambda) = h_{D,n}(\lambda) \delta_{mn} (n, m = 0, 1, 2, \ldots),
\]
\[
h_{D,n}(\lambda) = h_{0}(\lambda) \alpha^{(M)}(\lambda[M_{a},M_{b}]) - \frac{i}{2} M_{b}(M_{a}+1)\alpha^{(M)}(\lambda[M_{a},M_{b}]) - M_{b} \alpha^{(M)}(\lambda[M_{a},M_{b}]) n
\times \prod_{j=1}^{M_{a}} \left(\mathcal{E}_{n}(\lambda) - \tilde{\mathcal{E}}_{d_{j}^{l}}(\lambda) \right) \prod_{j=1}^{M_{b}} \left(\mathcal{E}_{n}(\lambda) - \tilde{\mathcal{E}}_{d_{j}^{m}}(\lambda) \right).
\]
(3.46)
The shape invariance of the original system is inherited by the deformed systems. The operators \(\tilde{\mathcal{A}}_{d_{-1},d_{+1}}(\lambda) \) and \(\tilde{\mathcal{A}}_{d_{-1},d_{+1}}(\lambda)^{\dagger} \) intertwine the two Hamiltonians \(\mathcal{H}_{d_{-1},d_{+1}}(\lambda) \) and \(\mathcal{H}_{d_{-1},d_{+1}}(\lambda) \),
\[
\tilde{\mathcal{A}}_{d_{-1},d_{+1}}(\lambda)^{\dagger} \tilde{\mathcal{A}}_{d_{-1},d_{+1}}(\lambda) = \mathcal{H}_{d_{-1},d_{+1}}(\lambda) - \tilde{\mathcal{E}}_{d_{-1},d_{+1}}(\lambda),
\]
(3.47)
It is important that they have no zero mode so that the eigenstates of the two Hamiltonians are mapped one to one. In other words, the two Hamiltonians $H_{d_{1}}(\lambda)$ and $H_{d_{1}}(\lambda)$ are exactly isospectral. By the same argument given in section 4 of [19], the shape invariance of $H(\lambda)$ is inherited by $H_{d_{1}}(\lambda)$, $H_{d_{1}}(\lambda)$, ... Therefore, the Hamiltonian $H_{d_{1}}(\lambda)$ is shape invariant:

$$A_{D}(\lambda) A_{D}(\lambda)^{\dagger} = \kappa A_{D}(\lambda + \delta)^{\dagger} A_{D}(\lambda + \delta) + E_{1}(\lambda).$$

(3.48)

As a consequence of the shape invariance, the actions of $A_{D}(\lambda)$ and $A_{D}(\lambda)^{\dagger}$ on the eigenfunctions $\phi_{D,n}(x; \lambda)$ are

$$A_{D}(\lambda) \phi_{D,n}(x; \lambda) = \kappa^{-\frac{N}{2}} f_{n}(\lambda) \phi_{D,n-1}(x; \lambda + \delta),$$

$$A_{D}(\lambda)^{\dagger} \phi_{D,n-1}(x; \lambda + \delta) = \kappa^{\frac{-N}{2}} b_{n-1}(\lambda) \phi_{D,n}(x; \lambda).$$

(3.49)

The forward and backward shift operators are defined by

$$F_{D}(\lambda) \phi_{D,n}(x; \lambda) = \frac{i}{\psi(x) \Xi_{D}(x; \lambda)} \left(\tilde{Z}_{D} x + \frac{1}{2} i \gamma; \lambda + \delta \right) e^{i \gamma p} - \tilde{Z}_{D} x - i \frac{1}{2} \gamma; \lambda + \delta \right) e^{-i \gamma p} \psi(x),$$

(3.50)

$$B_{D}(\lambda) \psi(x; \lambda) = \frac{1}{\psi(x) \Xi_{D}(x; \lambda)} \left(V(x; \lambda^{[M_{1},M_{1}]}) \tilde{Z}_{D} x + \frac{1}{2} i \gamma; \lambda \right) e^{i \gamma p} - V^{*}(x; \lambda^{[M_{1},M_{1}]}) \tilde{Z}_{D} x - i \frac{1}{2} \gamma; \lambda \right) e^{-i \gamma p} \psi(x),$$

(3.51)

and their actions on $\tilde{p}_{D,n}(x; \lambda)$ are

$$F_{D}(\lambda) \tilde{p}_{D,n}(x; \lambda) = f_{n}(\lambda) \tilde{p}_{D,n-1}(x; \lambda + \delta), \quad B_{D}(\lambda) \tilde{p}_{D,n-1}(x; \lambda + \delta) = b_{n-1}(\lambda) \tilde{p}_{D,n}(x; \lambda).$$

(3.52)

The similarity transformed Hamiltonian is square-root free:

$$\tilde{H}_{D}(\lambda) \phi_{D,n}(x; \lambda) = \psi(x; \lambda)^{-1} H_{D}(\lambda) \psi(x; \lambda) = B_{D}(\lambda) F_{D}(\lambda)$$

$$= V(x; \lambda^{[M_{1},M_{1}]}) \tilde{Z}_{D} x + \frac{1}{2} i \gamma; \lambda \left(\psi \right) - \tilde{Z}_{D} x - i \frac{1}{2} \gamma; \lambda \right) e^{-i \gamma p} \psi(x),$$

(3.53)

and the multi-indexed orthogonal polynomials $\tilde{p}_{D,n}(x; \lambda)$ are its eigenpolynomials:

$$\tilde{H}_{D}(\lambda) \tilde{p}_{D,n}(x; \lambda) = E_{n}(\lambda) \tilde{p}_{D,n}(x; \lambda).$$

(3.54)

Other intertwining relations are (see (A.16)–(A.19))

$$\kappa^{-1} \tilde{A}_{d_{1} - d_{1} - d_{1}}(\lambda + \delta) A_{d_{1} - d_{1}}(\lambda) = A_{d_{1} - d_{1} - d_{1}}(\lambda) \tilde{A}_{d_{1} - d_{1} - d_{1}}(\lambda),$$

(3.55)

$$\kappa^{-1} \tilde{A}_{d_{1} - d_{1}}(\lambda) A_{d_{1} - d_{1}}(\lambda)^{\dagger} = A_{d_{1} - d_{1} - d_{1}}(\lambda)^{\dagger} \tilde{A}_{d_{1} - d_{1}}(\lambda + \delta),$$

(3.56)

with the potential function $\tilde{V}_{d_{1} - d_{1}}$, given in (2.20) (with $s \rightarrow s + 1$)

$$\tilde{V}_{d_{1} - d_{1}}(x; \lambda) = \frac{\Xi_{d_{1} - d_{1}} x + \frac{1}{2} i \gamma; \lambda \left(\Xi_{d_{1} - d_{1}} x - i \frac{1}{2} \gamma; \lambda \right)}{\Xi_{d_{1} - d_{1}} x - i \frac{1}{2} \gamma; \lambda \left(\Xi_{d_{1} - d_{1}} x; \lambda \right)} \times \begin{cases} e^{i \gamma} \left(\lambda^{[n_{1},n_{1}]} \right) V^{I}(x; \lambda^{[n_{1},n_{1}]}): d_{1} + 1 \text{ is of type I} \vspace{1mm} \\ e^{i \gamma} \left(\lambda^{[n_{1},n_{1}]} \right) V^{II}(x; \lambda^{[n_{1},n_{1}]}): d_{1} + 1 \text{ is of type II} \end{cases},$$

(3.57)
where \(s_I \) and \(s_{II} \) are the numbers of the type-I and type-II states in \(\{d_1, \ldots, d_M\} \), respectively.

Although we have restricted \(d_j \geq 1 \), there is no obstruction for deletion of \(d_j = 0 \).
Including the level 0 deletion corresponds to \(M - 1 \) virtual states deletion:

\[
\tilde{P}_{D,n}(x; \lambda) \bigg|_{d_{Mn}=0} = A\tilde{P}_{D,n}(x; \lambda + \tilde{\delta}),
\]
\[
\tilde{P}_{D,n}(x; \lambda) \bigg|_{d_{Mn}=0} = B\tilde{P}_{D,n}(x; \lambda + \tilde{\delta}),
\]
\[
D' = \{d_1' - 1, \ldots, d_{M-1}' - 1, d_1'' + 1, \ldots, d_M'' + 1\},
\]
\[
\tilde{P}_{D,n}(x; \lambda) \bigg|_{d_{Mn}=0} = B\tilde{P}_{D,n}(x; \lambda + \tilde{\delta}),
\]
\[
D' = \{d_1' + 1, \ldots, d_M' + 1, d_1'' - 1, \ldots, d_M'' - 1\},
\]
where the proportionality constants \(A \) and \(B \) are given in (A.2)–(A.3). These can be shown by using (3.21), (A.9), (A.11), etc. The denominator polynomial \(\Xi_D \) behaves similarly due to (3.44). This is why we have restricted \(d_j \geq 1 \).

The exceptional \(X_c \) Wilson and Askey–Wilson orthogonal polynomials presented in [12, 19] correspond to the simplest case \(M = 1, D = \{\ell\} \) of type I, \(\ell \geq 1 \):

\[
\xi_c(x; \lambda) = \tilde{\xi}_c(x; \lambda + \ell \delta - \tilde{\delta}),
\]
\[
\tilde{P}_{c,n}(x; \lambda) = \tilde{P}_{c,n}(x; \lambda + \ell \delta - \tilde{\delta}) \times \begin{pmatrix}
-(a_1 + a_2 + n)^{-1} & : W \\
(a_1 a_2 q^n)^{\ell - 1} (1 - a_1 a_2 q^n)^{-1} & : AW
\end{pmatrix}
\]
(60)

As observed in some multi-indexed Laguerre and Jacobi polynomials [1], it can happen that two systems with different sets \(D \) turn out to be equivalent. Namely the denominator polynomials with different sets \(D \) may be proportional to each other. For example, the denominator polynomial of \(k \) deletions of type-I virtual states, \(D_1 = \{m^1, (m + 1)^1, \ldots, (m + k - 1)^1\} \) and that of \(m \) deletions of type-II virtual states, \(D_2 = \{k^II, (k + 1)^{II}, \ldots, (k + m - 1)^{II}\} \) are related:

\[
\tilde{\Xi}_{D_1}(x; \lambda + m\tilde{\delta}) = A\tilde{\Xi}_{D_2}(x; \lambda + k\tilde{\delta}) \quad (k, m \geq 1),
\]
(61)
where the proportionality constant \(A \) is given in (A.4). From this and (3.45), we have

\[
V_{D_1}(x; \lambda + m\tilde{\delta}) = V_{D_2}(x; \lambda + k\tilde{\delta}).
\]
(62)

Therefore, these two systems are equivalent under the shift of parameters. The classification of the equivalent classes leading to the same polynomials is a challenging future problem.

For the cases of type I only \((M_I = M, M_{II} = 0, D = \{d_1, \ldots, d_M\})\), expressions (3.37) and (3.38) are slightly simplified,

\[
W_\nu[s_{d_1}, \ldots, s_{d_M}](x; \lambda) = \varphi_M(x)\tilde{\Xi}_D(x; \lambda),
\]
(63)

\[
v^I(x; \lambda + M\tilde{\delta})^{-1}W_\nu[s_{d_1}, \ldots, s_{d_M}, \nu^I\tilde{P}_n](x; \lambda) = \varphi_{M+1}(x)\tilde{P}_{D,n}(x; \lambda)
\]
\[
= \begin{bmatrix}
\xi_{d_1}^{(M+1)}(x_1; \lambda) & \cdots & \xi_{d_1}^{(M+1)}(x_{M+1}; \lambda) & r_1^{(M+1)}(x_1^{(M+1)}; \lambda) & r_1^{(M+1)}(x_2^{(M+1)}; \lambda) & \cdots & r_1^{(M+1)}(x_{M+1}^{(M+1)}; \lambda) \\
\vdots & \cdots & \vdots & \cdots & \cdots & \cdots & \cdots \\
\xi_{d_M}^{(M+1)}(x_1; \lambda) & \cdots & \xi_{d_M}^{(M+1)}(x_{M+1}; \lambda) & r_1^{M+1}(x_1^{(M+1)}; \lambda) & r_1^{M+1}(x_2^{(M+1)}; \lambda) & \cdots & r_1^{M+1}(x_{M+1}^{(M+1)}; \lambda)
\end{bmatrix}
\]
(64)
where \(r_1^j(x) = r_1^j(x; \lambda, M + 1) \). The cases of type II only \((M_I = 0, M_{II} = M)\) are similar.
3.4. Analyticity and hermiticity

At the end of this section, we comment on the hermiticity of the Hamiltonian H_D. The functions $V(x), \phi_0(x)$ and $\mathcal{R}(x)$ in section 2.2 correspond to $V_D(x; \lambda), \phi_{D,0}(x; \lambda) \propto \psi_D(x; \lambda) \tilde{P}_{D,0}(x; \lambda)$ and $\tilde{P}_{D,0}(x; \lambda)/\tilde{P}_{D,0}(x; \lambda)$, respectively. So the function $G(x)$ (2.7) becomes (up to an overall constant)

$$G(x) = \frac{V(x + i\frac{\gamma}{2}; \lambda^{[M,M_0]}) \phi_0(x + i\frac{\gamma}{2}; \lambda^{[M,M_0]})^2}{\mathcal{Z}_D(x; \lambda)^2} \tilde{P}_{D,n} \left(x + i\frac{\gamma}{2}; \lambda \right) \tilde{P}_{D,m} \left(x - i\frac{\gamma}{2}; \lambda \right),$$

and we have

$$G(x) - G^*(x) = V(x + i\frac{\gamma}{2}; \lambda^{[M,M_0]}) \phi_0(x + i\frac{\gamma}{2}; \lambda^{[M,M_0]})^2 \times \mathcal{P}(x) \frac{1}{\mathcal{Z}_D(x; \lambda)}.$$

(3.65)

From (3.14) and (3.36), this $V\phi_0^2$ part $V(x + i\frac{\gamma}{2}; \lambda^{[M,M_0]})\phi_0(x + i\frac{\gamma}{2}; \lambda^{[M,M_0]})^2$ has no poles in the rectangular domain D_γ. The function $\mathcal{P}(x)$ can be divided by $\mathcal{Z}_D(x; \lambda)$; $\mathcal{P}(x)/\mathcal{Z}_D(x; \lambda) = \tilde{\eta}(x) \times$ (polynomial in $\eta(x)$). Thus, the potential singularities of $G - G^*$ originate from the zeros of $\mathcal{Z}_D(x; \lambda)$. The left-hand side of condition (2.8) vanishes because of $G(x_1 + ig) = G^*(x_1 - ig)$, $G(x_2 + ig) = G^*(x_2 - ig)$ for W and $G(x_1 + ig) = G^*(x_1 - ig)$, $G(x_2 + ig) = G^*(x_2 - ig)$ for AW, on the assumption that there is no singularity on the integration paths. If $\mathcal{Z}_D(x; \lambda)$ has no zeros in D_γ, the function $G - G^*$ has no poles in D_γ and condition (2.8) is satisfied. If $\mathcal{Z}_D(x; \lambda)$ has zeros in D_γ, they appear as complex conjugate pairs, $\alpha \pm i\beta (1 \leq \alpha \leq x, 0 < \beta \leq \frac{1}{4}|\gamma|)$, because of $\mathcal{Z}_D^* = \mathcal{Z}_D$ and $\mathcal{Z}_D(x; \lambda) \neq 0 (x_1 \leq x \leq x_2)$. In order to satisfy the condition (2.8), the sum of the residues of $G - G^*$ should vanish.

The term $V_D + V^*_D$ in H_D is

$$V_D(x; \lambda) + V^*_D(x; \lambda) = V(x; \lambda^{[M,M_0]}) \frac{\mathcal{Z}_D(x + i\frac{\gamma}{2}; \lambda) \mathcal{Z}_D^*(x - i\gamma; \lambda + \delta)}{\mathcal{Z}_D(x + i\frac{\gamma}{2}; \lambda) \mathcal{Z}_D(x; \lambda + \delta)} + V^*(x; \lambda^{[M,M_0]}) \frac{\mathcal{Z}_D(x - i\frac{\gamma}{2}; \lambda) \mathcal{Z}_D^*(x + i\gamma; \lambda + \delta)}{\mathcal{Z}_D(x - i\frac{\gamma}{2}; \lambda) \mathcal{Z}_D(x; \lambda + \delta)}.$$

This does not cause any obstruction for the hermiticity. The potential singularities in the interval $x_1 \leq x \leq x_2$ are (i) $V(x; \lambda^{[M,M_0]})$ and $V^*(x; \lambda^{[M,M_0]})$ at $x = x_1, x_2$, (ii) zeros of $\mathcal{Z}_D(x \mp i\frac{\gamma}{2}; \lambda)$ in the denominators and (iii) zeros of $\mathcal{Z}_D(x; \lambda + \delta)$ in the denominators. For case (i), the singularities cancel out as in the original case $V(x; \lambda) + V^*(x; \lambda)$. For case (ii), we can show $\mathcal{Z}_D(x \mp i\frac{\gamma}{2}; \lambda) \neq 0 (x_1 \leq x \leq x_2)$ by using $\mathcal{Z}_{D,0}(x; \lambda) \neq 0, \mathcal{Z}_{D,0}(x; \lambda + \delta) \neq 0 (x_1 \leq x \leq x_2)$ and (A.16)–(A.19). For case (iii), (2.30) and (3.57) imply that the denominator factor $\mathcal{Z}_D(x; \lambda + \delta)$ disappears, namely $\mathcal{Z}_D(x; \lambda + \delta)$ does not give singularities.

Thus, the Hamiltonian H_D is well defined and hermitian, if $\mathcal{Z}_D(x; \lambda)$ has no zeros in D_γ or the residues coming from the zeros of $\mathcal{Z}_D(x; \lambda)$ cancel. At present we have no general proof of the cancellation nor generic procedures to restrict the parameters so that there will be no zeros of $\mathcal{Z}_D(x; \lambda)$ in the rectangular domain D_γ. The existence of such parameter ranges such that $\mathcal{Z}_D(x; \lambda)$ has no zeros in D_γ can be verified by numerical calculation for small M.

4. Summary and comments

By following the examples of the multi-indexed Laguerre, Jacobi [11] and (q)-Racah [2] polynomials, the multi-indexed Wilson (W) and Askey–Wilson (AW) polynomials are
constructed within the framework of discrete quantum mechanics with pure imaginary shifts [3, 26]. The method is, as in the previous cases, multiple Darboux–Crum transformations [33, 34, 36] by using the virtual state solutions. The virtual state solutions are derived through certain discrete symmetries of the original Wilson and Askey–Wilson Hamiltonians and by definition they are not eigenfunctions of the discrete Schrödinger equation. The type-I and type-II virtual state solutions are introduced (3.28) but they are not related with specific boundary conditions, in contradistinction with the multi-indexed Laguerre, Jacobi or (q)Racah cases. The main emphasis is on the algebraic structure and the difference equations for the multi-indexed W and AW polynomials, (3.52), (3.54), etc, which hold for any parameter range. So far we do not have a comprehensive method to determine the parameter ranges which ensure the hermiticity of the deformed Hamiltonians and thus the orthogonality of the multi-indexed W and AW polynomials. The one-indexed W or AW polynomials reported earlier [12, 19].

Like the other exceptional polynomials, the multi-indexed W and AW polynomials do not satisfy the three term recurrence relations. As in the ordinary Sturm–Liouville problems, the multi-indexed orthogonal polynomial $P_{D,n}(y; \lambda)$ has n zeros in the orthogonality range, $0 < y < \infty$ (W) or $-1 < y < 1$ (AW) (the oscillation theorem). It is well known that various hypergeometric orthogonal polynomials in the Askey scheme are obtained from the Wilson and Askey–Wilson polynomials in certain limits. Similarly, from the multi-indexed W and AW polynomials presented in the previous section, we can obtain the multi-indexed version of various orthogonal polynomials, such as the continuous (dual) Hahn, etc. In that sense, the multi-indexed Wilson polynomials are also obtained from the multi-indexed Askey–Wilson polynomials. Here, we briefly discuss the limits to the multi-indexed Jacobi and Laguerre cases. In an appropriate limit, the discrete quantum mechanics with pure imaginary shifts reduces to the ordinary quantum mechanics [45]. Explicitly, the W and the AW systems reduce to the Laguerre (L) and the Jacobi (J) systems, respectively, in the following way [45]:

$$\mathbf{W: \lambda = \left(\frac{c^2}{\omega_1}, \frac{c^2}{\omega_2}, g_1, g_2 \right), \quad 1 = \omega_1 + \omega_2, \quad g = g_1 + g_2 - \frac{1}{2},}$$

$$\frac{4}{a_1a_2} \mathcal{H}_W \times c^2 \longrightarrow \mathcal{H}_L = p^2 + x^2 + \frac{g(g-1)}{x^2} - 1 - 2g.$$ (4.1)

$$\mathbf{AW: q^i = \left(-q^{h_1}, -q^{h_2}, q^{g_1}, q^{g_2} \right), \quad g = g_1 + g_2 - \frac{1}{2}, \quad h = h_1 + h_2 - \frac{1}{2}, \quad q = \epsilon^{x}, \quad x = 2l,}$$

$$(a_1a_2a_3a_4q^{-1})^{-\frac{1}{2}} \mathcal{H}_{AW} \times c^2 \longrightarrow \frac{1}{4} \mathcal{H}_L, \quad \mathcal{H}_L = (p')^2 + \frac{g(g-1)}{\sin^2 x} + \frac{h(h-1)}{\cos^2 x} - (g+h)^2.$$ (4.2)

The ground-state wavefunction $\phi_0(x)$ (3.10) and the eigenpolynomial $P_n(x)$ (3.8) also reduce to those of L and J cases after an appropriate overall rescaling. For the deformed systems, we have the same correspondence under the same limit. For the AW case, the type-I and type-II twists (3.25) reduce to those of the J cases given in [1], $(g, h) \rightarrow (g, 1 - h)$ and $(g, h) \rightarrow (1 - g, h)$. For the W case, the type-II twist (3.25) reduces to that of the L case given in [1], $g \rightarrow 1 - g$. For the type-I of W case, there is subtlety because of negative components of $\psi_1(\lambda) = (1 - \frac{x^2}{\omega_1}, 1 - \frac{x^2}{\omega_2}, g_1, g_2)$. For example, in order to obtain the limit of the ground-state wavefunction, we need certain regularization. The limit of type I becomes unchanging g and effectively changing x to ix. This corresponds to the type I of L given in [1]. Therefore, the deformed W and AW systems reduce to the deformed L and J systems in [1]. The multi-indexed Wilson and Askey–Wilson polynomials (3.38) reduce to the multi-indexed Laguerre and Jacobi polynomials given in [1] after an appropriate overall rescaling.
When all the parameters a_i are real, we have four other twists:

\[
\begin{align*}
\tau^{(13)}(\lambda) &= (1 - \lambda_1, \lambda_2, 1 - \lambda_3, \lambda_4), \\
\tau^{(14)}(\lambda) &= (1 - \lambda_1, \lambda_2, \lambda_3, 1 - \lambda_4), \\
\tau^{(23)}(\lambda) &= (\lambda_1, 1 - \lambda_2, 1 - \lambda_3, \lambda_4), \\
\tau^{(24)}(\lambda) &= (\lambda_1, 1 - \lambda_2, \lambda_3, 1 - \lambda_4),
\end{align*}
\]

because of the permutation symmetry of the a_i. Algebraically, any one of the six twists defines a deformed Hamiltonian. According to the parameter configuration, e.g., $a_1 < a_2 < a_3 < a_4$, etc, the compatibility of any two or more twists and the hermiticity of the resulting multi-indexed Hamiltonians would be determined. The detailed analysis of these allowed parameter ranges is beyond the scope of this paper.

With this paper, the project of generic construction of multi-indexed orthogonal polynomials of a single variable is now complete. It is a real challenge to pursue the possibility of constructing multi-indexed orthogonal polynomials of several variables.

Acknowledgments

RS was supported in part by grant-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), numbers 23540303 and 22540186.

Appendix. Several formulæ

In this appendix, we provide several formulæ which are not included in the main text for smooth presentation.

First, we give various proportionality constants:

\[
\begin{align*}
A \text{ in (3.44)} &= \left\{ \begin{array}{l}
\prod_{j=1}^{M_a} (-a_1 - a_2 + d_j^1 + 1) \\
\times \prod_{j=1}^{M_a} (-a_3 - a_4 + d_j^1 + 1)
\end{array} \right\} = W \\
&\times \prod_{j=1}^{M_a} (a_1 a_2 a_3 a_4 q^{-d_j^1 - 1})^{-\frac{1}{2}} (1 - a_1 a_2 q^{-d_j^1 - 1})
\end{align*}
\]

\[
\begin{align*}
A \text{ in (3.58)} &= \left\{ \begin{array}{l}
(-1)^{M_a + 1} (a_1 + a_2 + n - 1) \\
\times \prod_{j=1}^{M_a} d_j^1 (-a_1 - a_2 + a_3 + a_4 + d_j^1 + 1)
\end{array} \right\} = W \\
&\times \prod_{j=1}^{M_a} q^{-\frac{1}{2}d_j^1} (1 - q^{-d_j^1}) (1 - a_1^{-1} a_2 a_3 a_4 q^{d_j^1 + 1})
\end{align*}
\]

\[
\begin{align*}
B \text{ in (3.59)} &= \left\{ \begin{array}{l}
\prod_{j=1}^{M_a} a_1 a_3 a_4 q^{-d_j^1 - 1} \\
\times \prod_{j=1}^{M_a} q^{-d_j^1} (1 - a_1^{-1} a_2 a_3 a_4 q^{d_j^1 + 1})
\end{array} \right\} = W \\
&\times \prod_{j=1}^{M_a} q^{-\frac{1}{2}d_j^1} (1 - q^{-d_j^1}) (1 - a_1^{-1} a_2 a_3 a_4 q^{d_j^1 + 1})
\end{align*}
\]

\[
\begin{align*}
A \text{ in (3.61)} &= \left\{ \begin{array}{l}
(-1)^{k_m} \prod_{j=1}^{k_m} (-j)^{k_m-j} \\
\times \prod_{j=1}^{k_m} (a_1 + a_4 - a_1 - a_2 + 2j)_{2k-4j+1}
\end{array} \right\} = W \\
&\times \prod_{j=1}^{k_m} q^{-\frac{1}{2}(k_m-j)(k_m-j-1)(k_m-j+1)}
\end{align*}
\]
Next, we give the coefficients of the highest degree term of the polynomials Ξ_D and P_D,n,
\[
\tilde{\Xi}_D(x; \lambda) = c^\Xi_D(\lambda)\eta(x)^{I} + \text{(lower order terms)},
\]
\[
\tilde{P}_{D,n}(x; \lambda) = c^\Pi_{D,n}(\lambda)\eta(x)^{I+n} + \text{(lower order terms)},
\]
For $D = \{d^1, \ldots, d^m, d^1, \ldots, d^i_{Mq}\}$, they are
\[
c^\Xi_D(\lambda) = \prod_{j=1}^{M} c_d^{j}(t^{I}(\lambda)) \cdot \prod_{j=1}^{M} c_d^{j}(t^{II}(\lambda))
\]
\[
\times \left\{ \prod_{1 \leq i < k \leq M} (d^i - d^j) \cdot \prod_{1 \leq j < k \leq M} (d^i - d^j) \right. \\
\left. \times \prod_{1 \leq j < k \leq M} 2q^2(1-q^2)(1-q^2-d^j) \cdot \prod_{1 \leq j < k \leq M} 2q^2(1-q^2-d^j) \right\}^{:W} \\
\times \prod_{1 \leq j < k \leq M} 2q^2(1-q^2-d^j) (1-q^2-d^j) \cdot \prod_{1 \leq j < k \leq M} 2q^2(1-q^2-d^j) \right\}^{:AW},
\]
\[
c^\Pi_{D,n}(\lambda) = c^\Pi_D(\lambda)c_n(\lambda)
\]
\[
\times \left\{ \prod_{j=1}^{M} (- a_1 - a_2 - n + d^j + 1) \cdot \prod_{j=1}^{M} (- a_1 - a_2 - n + d^j + 1) \right. \\
\left. \times q^{2MqM} \prod_{j=1}^{M} (a_1a_2) q^{1}q^{2}(d^j+1-n)(1-a_1a_2q^{-d^j-1}) \\
\times \prod_{j=1}^{M} (a_1a_2) q^{1}q^{2}(d^j+1-n)(1-a_1a_2q^{-d^j-1}) \right\}^{:AW},
\]

The virtual state wavefunction $\tilde{\phi}_{D,n}$ (2.24) for $D = \{d^1, \ldots, d^m, d^1, \ldots, d^i_{Mq}\}$ is given by
\[
\tilde{\phi}_{D,n}(x; \lambda) = \frac{\tilde{\Xi}_D(x; \lambda)}{\sqrt{\Xi_D(x - i\xi; \lambda)\Xi_D(x + i\xi; \lambda)}}
\]
\[
\times (a_1a_2)^{1/4}Mq \tilde{\phi}(x; \lambda^{[M,Mq]}): v \text{ is of type I} \\
\times (a_1a_2)^{1/4}Mq \tilde{\phi}(x; \lambda^{[M,Mq]}): v \text{ is of type II}
\]

The polynomial ξ_v with parameters λ and $\lambda + \delta$ are related in the following way [19]:
\[
\frac{i}{\varphi(x)} (v_1^* (x; \lambda + \delta)e^{\mp \delta} - v_1 (x; \lambda + \delta)e^{\pm \delta}) \xi_v^I(x; \lambda) = f_{0,v}(\lambda)\xi_v^I(x; \lambda + \delta),
\]
\[
\frac{-i}{\varphi(x)} (v_2 (x; \lambda)e^{\pm \delta} - v_2^* (x; \lambda)e^{\mp \delta}) \xi_v^II(x; \lambda + \delta) = f_{0,v}(\lambda)\xi_v^II(x; \lambda),
\]
\[
\frac{i}{\varphi(x)} (v_1^* (x; \lambda + \delta)e^{\mp \delta} - v_1 (x; \lambda + \delta)e^{\pm \delta}) \xi_v^II(x; \lambda) = f_{0,v}(\lambda)\xi_v^II(x; \lambda + \delta),
\]
\[
\frac{-i}{\varphi(x)} (v_2 (x; \lambda)e^{\pm \delta} - v_2^* (x; \lambda)e^{\mp \delta}) \xi_v^II(x; \lambda + \delta) = f_{0,v}(\lambda)\xi_v^II(x; \lambda),
\]
where the functions v_1 and v_2 are
\[
v_1(x; \lambda) \overset{def}{=} \prod_{j=1}^{M} (a_j + ix) : W, \quad v_2(x; \lambda) \overset{def}{=} \prod_{j=1}^{M} (1 - a_j e^{ix}) : AW,
\]
\[
v_1(x; \lambda) \overset{def}{=} \prod_{j=1}^{M} (a_j + ix) : W, \quad v_2(x; \lambda) \overset{def}{=} \prod_{j=1}^{M} (1 - a_j e^{ix}) : AW.
\]
and the constants $\hat{f}_{s,v}$ and $\hat{b}_{s,v}$ are

$$
\hat{f}_{s,v}(\lambda) = \begin{cases}
 a_1 + a_2 - v - 1 & : W \\
 -q^{(v-1)}(1 - a_2a_3q^{-v}) & : AW,
\end{cases} \quad \hat{b}_{s,v}(\lambda) = \begin{cases}
 a_3 + a_4 + v & : W \\
 -q^{-(v-1)}(1 - a_3a_4q^{-v}) & : AW.
\end{cases}
(A.14)
$$

$$
\hat{f}_{s,v}^H(\lambda) = \begin{cases}
 a_3 + a_4 - v - 1 & : W \\
 -q^{(v-1)}(1 - a_3a_4q^{-v}) & : AW,
\end{cases} \quad \hat{b}_{s,v}^H(\lambda) = \begin{cases}
 a_1 + a_2 + v & : W \\
 -q^{-(v-1)}(1 - a_1a_2q^{-v}) & : AW.
\end{cases}
(A.15)
$$

These relations are generalized to the denominator polynomials $\Xi_{d_i-d_v}$. In the rest of the appendix, we consider the set $D = \{d_1, \ldots, d_s\}$, in which the number of type-I virtual states is s_1 and that of type-II is s_2, $s = s_1 + s_2$. When v is of type I, the denominator polynomials $\Xi_{D,V}$ with λ and $\lambda + \delta$ are related as

$$
\frac{i}{\varphi(x)\Xi_D(x; \lambda)} \left(v_1^*(x; \lambda^{[n,m]} + \delta) \Xi_D(x + i\frac{\gamma}{2}; \lambda + \delta) e^{\bar{z}p} \right.
- v_1(x; \lambda^{[n,m]} + \delta) \Xi_D(x - i\frac{\gamma}{2}; \lambda + \delta) e^{-\bar{z}p} \left) \Xi_{D,v}(x; \lambda) = \kappa^{-\gamma} f^I_{s,v}(\lambda) \Xi_{D,v}(x; \lambda + \delta). \right)
(A.16)
$$

$$
\frac{-i}{\varphi(x)\Xi_D(x; \lambda + \delta)} \left(v_2(x; \lambda^{[n,m]} + \delta) \Xi_D(x + i\frac{\gamma}{2}; \lambda) e^{\bar{z}p} \right.
- v_2^*(x; \lambda^{[n,m]} + \delta) \Xi_D(x - i\frac{\gamma}{2}; \lambda) e^{-\bar{z}p} \left) \Xi_{D,v}(x; \lambda) = \kappa^{-\gamma} \hat{f}_{s,v}^I(\lambda) \Xi_{D,v}(x; \lambda + \delta). \right)
(A.17)
$$

When v is of type II, they are

$$
\frac{i}{\varphi(x)\Xi_D(x; \lambda)} \left(v_1^*(x; \lambda^{[n,m]} + \delta) \Xi_D(x + i\frac{\gamma}{2}; \lambda) e^{\bar{z}p} \right.
- v_1(x; \lambda^{[n,m]} + \delta) \Xi_D(x - i\frac{\gamma}{2}; \lambda) e^{-\bar{z}p} \left) \Xi_{D,v}(x; \lambda) = \kappa^{-\gamma} f^H_{s,v}(\lambda) \Xi_{D,v}(x; \lambda + \delta). \right)
(A.18)
$$

$$
\frac{-i}{\varphi(x)\Xi_D(x; \lambda + \delta)} \left(v_2(x; \lambda^{[n,m]} + \delta) \Xi_D(x + i\frac{\gamma}{2}; \lambda) e^{\bar{z}p} \right.
- v_2^*(x; \lambda^{[n,m]} + \delta) \Xi_D(x - i\frac{\gamma}{2}; \lambda) e^{-\bar{z}p} \left) \Xi_{D,v}(x; \lambda) = \kappa^{-\gamma} \hat{f}_{s,v}^H(\lambda) \Xi_{D,v}(x; \lambda + \delta). \right)
(A.19)
$$

These relations are used to show (3.55)–(3.56) and imply the difference equations of $\Xi_{D,V}$; when v is of type I, they are

$$
\left(a^I(\lambda^{[n,m]} + \delta) \Xi_D(x + i\frac{\gamma}{2}; \lambda) \Xi_{D,v}(x; \lambda + \delta) \Xi_D(x - i\frac{\gamma}{2}; \lambda) e^{\bar{z}p} + a^I(\lambda^{[n,m]} + \delta) \Xi_D(x + i\frac{\gamma}{2}; \lambda) \Xi_{D,v}(x; \lambda + \delta) \Xi_D(x - i\frac{\gamma}{2}; \lambda) e^{-\bar{z}p} \right)
$$

$$
- V(x; \lambda^{[n,m]} + \delta) \Xi_D(x + i\frac{\gamma}{2}; \lambda) \Xi_{D,v}(x; \lambda + \delta) \Xi_D(x - i\frac{\gamma}{2}; \lambda) e^{\bar{z}p}.
$$
\[
-V^+(x; \lambda^{[n\alpha, \mu]}) \frac{\hat{\mathcal{D}}_D(x - i \frac{\lambda}{2}; \lambda)}{\hat{\mathcal{D}}_D(x + i \frac{\lambda}{2}; \lambda)} \frac{\hat{\mathcal{D}}(x + i y; \lambda + \delta)}{\hat{\mathcal{D}}(x + i \frac{\lambda}{2}; \lambda)} \hat{\mathcal{E}}_{\alpha} \big(\lambda; x, \lambda \big)
= \hat{\mathcal{E}}_{\alpha}^I \big(\lambda; x, \lambda \big) \mathcal{E}_{\alpha} \big(\lambda; x, \lambda \big),
\]
(A.20)

and when \(v\) is of type II, they are
\[
\left(\alpha^I(\lambda^{[n\alpha, \mu]})\right) \frac{\hat{\mathcal{D}}_D(x + i \frac{\lambda}{2}; \lambda)}{\hat{\mathcal{D}}_D(x - i \frac{\lambda}{2}; \lambda)} \hat{\mathcal{D}}(x - i y; \lambda) e^{\gamma_p x} + \alpha^I(\lambda^{[n\alpha, \mu]}) \frac{\hat{\mathcal{D}}(x + i \frac{\lambda}{2}; \lambda)}{\hat{\mathcal{D}}(x + i \frac{\lambda}{2}; \lambda)} \hat{\mathcal{D}}(x - i \frac{\lambda}{2}; \lambda) e^{-\gamma_p x}

- V(x; \lambda^{[n\alpha, \mu]}) \frac{\hat{\mathcal{D}}_D(x + i \frac{\lambda}{2}; \lambda)}{\hat{\mathcal{D}}_D(x + i \frac{\lambda}{2}; \lambda)} \hat{\mathcal{D}}(x + i y; \lambda + \delta)
- V^+(x; \lambda^{[n\alpha, \mu]}) \frac{\hat{\mathcal{D}}_D(x - i \frac{\lambda}{2}; \lambda)}{\hat{\mathcal{D}}_D(x + i \frac{\lambda}{2}; \lambda)} \hat{\mathcal{D}}(x - i \frac{\lambda}{2}; \lambda) e^{\gamma_p x}

= \hat{\mathcal{E}}_{\alpha}^I \big(\lambda; x, \lambda \big) \mathcal{E}_{\alpha} \big(\lambda; x, \lambda \big). \]
(A.21)

References

[1] Odake S and Sasaki R 2011 Exactly solvable quantum mechanics and infinite families of multi-indexed orthogonal polynomials Phys. Lett. B 702 164–70 (arXiv:1105.0508 [math-ph])
[2] Odake S and Sasaki R 2012 Multi-indexed \((q-)\) Racah polynomials J. Phys. A: Math. Theor. 45 385201 (arXiv:1203.5868 [math-ph])
[3] Odake S and Sasaki R 2008 Exactly solvable ‘discrete’ quantum mechanics; shape invariance, Heisenberg solutions, annihilation–creation operators and coherent states Prog. Theor. Phys. 119 663–700 (arXiv:0802.1075 [quant-ph])
[4] Andrews G E, Askey R and Roy R 1999 Basic Hypergeometric Series (Encyclopedia of Mathematics and Its Applications vol 71) (Cambridge: Cambridge University Press)
[5] Ismail M E H 2005 Classical and Quantum Orthogonal Polynomials in One Variable (Encyclopedia of Mathematics and Its Applications vol 96) (Cambridge: Cambridge University Press)
[6] Koekoek R and Swarttouw R F 1996 The Askey-scheme of hypergeometric orthogonal polynomials and its \(q\)-analogue arXiv:math.CA0602214
[7] Gasper G and Rahman M 2004 Basic Hypergeometric Series (Encyclopedia of Mathematics and Its Applications vol 96) 2nd edn (Cambridge: Cambridge University Press)
[8] Gómez-Ullate D, Kamran N and Milson R 2010 An extension of Bochner’s problem: exceptional invariant subspaces J. Approx. Theory 162 987–1006 (arXiv:0805.3376 [math-ph])
Gómez-Ullate D, Kamran N and Milson R 2009 An extended class of orthogonal polynomials defined by a Sturm–Liouville problem J. Math. Anal. Appl. 359 352–67 (arXiv:0807.3939 [math-ph])
[9] Quesne C 2008 Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry J. Phys. A: Math. Theor. 41 392001 (arXiv:0807.4087 [quant-ph])
Bagchi B, Quesne C and Roychoudhury R 2009 Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry Pramana J. Phys. 73 337–47 (arXiv:0812.1468 [quant-ph])
[10] Odake S and Sasaki R 2009 Infinitely many shape invariant potentials and new orthogonal polynomials Phys. Lett. B 679 414–7 (arXiv:0906.0142 [math-ph])
[11] Quesne C 2009 Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics SIGMA 5 084 (arXiv:0906.2331 [math-ph])
[12] Odake S and Sasaki R 2009 Infinitely many shape invariant discrete quantum mechanical systems and new exceptional orthogonal polynomials related to the Wilson and Askey–Wilson polynomials Phys. Lett. B 682 130–6 (arXiv:0909.3668 [math-ph])
[13] Odake S and Sasaki R 2010 Infinitely many shape invariant potentials and cubic identities of the Laguerre and Jacobi polynomials J. Math. Phys. 51 053513 (arXiv:0911.1585 [math-ph])
Andrianov A A, Ioffe M V and Spiridonov V P 1993 Higher-derivative supersymmetry and the Witten index

Krein M G 1957 On continuous analogue of a formula of Christoffel from the theory of orthogonal polynomials

Ho C-L, Odake S and Sasaki R 2011 Properties of the exceptional \((X_L)\) Laguerre and Jacobi polynomials SIGMA 7 107 (arXiv:0902.2666[math-ph])

Gómez-Ullate D, Kamran N and Milson R 2010 Exceptional orthogonal polynomials and the Darboux transformation J. Phys. A: Math. Theor. 43 434016 (arXiv:1002.2666[math-ph])

Gómez-Ullate D, Kamran N and Milson R 2012 On orthogonal polynomials spanning a nonstandard flag Contemp. Math. 563 51–70 (arXiv:1101.5584[math-ph])

Sasaki R, Tsujimoto S and Zhedanov A 2010 Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux–Crum transformations J. Phys. A: Math. Theor. 43 315204 (arXiv:1004.4711[math-ph])

Odake S and Sasaki R 2010 Exceptional Askey–Wilson type polynomials through Darboux–Crum transformations J. Phys. A: Math. Theor. 43 335201 (arXiv:1004.0554[math-ph])

Odake S and Sasaki R 2011 A new family of shape invariantly deformed Darboux–Pöschl–Teller potentials with continuous \(\ell\) J. Phys. A: Math. Theor. 44 195203 (arXiv:1007.3800[math-ph])

Ho C-L 2011 Dirac(-Pauli), Fokker–Planck equations and exceptional Laguerre polynomials Ann. Phys. 326 797–807 (arXiv:1008.0744[quant-ph])

Ho C-L and Sasaki R 2011 Zeros of the exceptional Laguerre and Jacobi polynomials ISRN Math. Phys. 2012 920745 (arXiv:1102.5669[math-ph])

Odake S and Sasaki R 2011 Exceptional \((X_L)\) \((q)\)-Racah polynomials Prog. Theor. Phys. 125 851–70 (arXiv:1102.0813[math-ph])

Grandati Y 2011 Solvable rational extensions of the isotonic oscillator Ann. Phys. 326 2074–90 (arXiv:1101.0055[math-ph])

Grandati Y 2011 Solvable rational extensions of the Morse and Kepler–Coulomb potentials J. Phys. A: Math. Theor. 45 365202 (arXiv:1103.5023[math-ph])

Ho C-L 2011 Prepotential approach to solvable rational potentials and exceptional orthogonal polynomials Prog. Theor. Phys. 126 185–201 (arXiv:1104.3511[math-ph])

Odake S and Sasaki R 2011 Discrete quantum mechanics J. Phys. A: Math. Theor. 44 353001 (arXiv:1104.0473[math-ph])

Gómez-Ullate D, Kamran N and Milson R 2012 Two-step Darboux transformations and exceptional Laguerre polynomials J. Math. Anal. Appl. 387 410–8 (arXiv:1103.5724[math-ph])

Takekura K 2012 Heun’s equation, generalized hypergeometric function and exceptional Jacobi polynomial J. Phys. A: Math. Theor. 45 085211 (arXiv:1106.1543[math.CA])

Quesne C 2011 Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials Mod. Phys. Lett. A 26 1843–52 (arXiv:1106.1990[math-ph])

Quesne C 2011 Rationally-extended radial oscillators and Laguerre exceptional orthogonal polynomials in \(k\)-th order SUSYQM J. Mod. Phys. A. 26 5337–47 (arXiv:1106.3938[math-ph])

Quesne C 2011 Exceptional orthogonal polynomials and new exactly solvable potentials in quantum mechanics arXiv:1111.6467[math-ph]

Odake S and Sasaki R 2008 Orthogonal polynomials from hermitian matrices J. Math. Phys. 49 053503 (arXiv:0712.4106[math.CA]) (The dual \(q\)-Meixner polynomial in section 5.2.4 and dual \(q\)-Charlier polynomial in section 5.2.8 should be deleted because the hermiticity of the Hamiltonian is lost for these two cases.)

Odake S and Sasaki R 2010 Unified theory of exactly and quasi-exactly solvable ‘discrete’ quantum mechanics. J. Formalism J. Math. Phys. 51 083502 (arXiv:0903.2604[math-ph])

Routh É 1884 On some properties of certain solutions of a differential equation of the second order Proc. Lond. Math. Soc. 16 245–61

Bochner S 1929 Über Sturm–Liouvillesche polymomsysteme Math. Z. 29 730–6

Crum M M 1955 Associated Sturm–Liouville systems Q. J. Math. Oxford Ser. (2) 6 121–7 (arXiv:physics/9908019)

Krein M G 1957 On continuous analogue of a formula of Christoffel from the theory of orthogonal polynomials Dokl. Acad. Nauk CCCP 113 970–3

Adler V É 1994 A modification of Crum’s method Theor. Math. Phys. 101 1381–6

Andrianov A A, Ioffe M V and Spiridonov V P 1993 Higher-derivative supersymmetry and the Witten index Phys. Lett. A 174 273–9
Aoyama H, Sato M and Tanaka T 2001 General forms of a N-fold supersymmetric family Phys. Lett. B 503 423–9 (arXiv:quant-ph/0012065)

Fernández D J and Hussin C V 1999 Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states J. Phys. A: Math. Gen. 32 3603–19

Bagrov V G and Samsonov B F 1996 Supersymmetry of a nonstationary Schrödinger equation Phys. Lett. A 210 60–4

[36] Darboux G 1888 Théorie Générique des Surfaces vol 2 (Paris: Gauthier-Villars)

[37] Odake S and Sasaki R 2009 Crum's theorem for ‘discrete’ quantum mechanics Prog. Theor. Phys. 122 1067–79 (arXiv:0902.2593[math-ph])

[38] García-Gutiérrez L, Odake S and Sasaki R 2010 Modification of Crum’s theorem for ‘discrete’ quantum mechanics Prog. Theor. Phys. 124 1–26 (arXiv:1004.0289[math-ph])

[39] Odake S and Sasaki R 2011 Dual Christoffel transformations Prog. Theor. Phys. 126 1–34 (arXiv:1101.5468[math-ph])

[40] Grünbaum F A, Haine L and Horozov E 1999 Some functions that generalize the Krall–Laguerre polynomials J. Comput. Appl. Math. 106 271–97

[41] Grünbaum F A and Yakimov M 2002 Discrete bispectral Darboux transformations from Jacobi operators Pac. J. Math. 204 395–431

[42] Haine L and Iliev P 2006 Askey–Wilson type functions with bound states Ramanujan J. 11 285–329

[43] Odake S and Sasaki R 2006 Unified theory of annihilation-creation operators for solvable (‘discrete’) quantum mechanics J. Math. Phys. 47 102102 (arXiv:quant-ph/0605215)

Odake S and Sasaki R 2006 Exact solution in the Heisenberg picture and annihilation–creation operators Phys. Lett. B 641 112–7 (arXiv:quant-ph/0605221)

[44] Gendenshtein L E 1983 Derivation of exact spectra of the Schroedinger equation by means of supersymmetry JETP Lett. 38 356–9

[45] Odake S and Sasaki R 2005 Calogero–Sutherland–Moser systems, Ruijsenaars–Schneider–van Diejen systems and orthogonal polynomials Prog. Theor. Phys. 114 1245–60 (arXiv:hep-th/0512155)

Odake S and Sasaki R 2005 Equilibrium positions and eigenfunctions of shape invariant (‘discrete’) quantum mechanics Elliptic Integrable Systems (Rokko Lectures in Mathematics vol 18) ed M Noumi and K Takasaki (Kobe: Department of Mathematics, Kobe University) pp 85–110 (arXiv:hep-th/0505070)