Localization via fractional moments for models on \mathbb{Z} with single-site potentials of finite support

A Elgart1, M Tautenhahn2 and I Veselic2

1 Department of Mathematics, Virginia Tech., Blacksburg, VA 24061, USA
2 Fakultät für Mathematik, TU Chemnitz, 09126 Chemnitz, Germany

E-mail: aelgart@vt.edu, martin.tautenhahn@mathematik.tu-chemnitz.de and ivan.veselic@mathematik.tu-chemnitz.de

Received 27 May 2010, in final form 16 September 2010
Published 9 November 2010
Online at stacks.iop.org/JPhysA/43/474021

Abstract

One of the fundamental results in the theory of localization for discrete Schrödinger operators with random potentials is the exponential decay of Green’s function and the absence of a continuous spectrum. In this paper, we provide a new variant of these results for one-dimensional alloy-type potentials with finitely supported sign-changing single-site potentials using the fractional moment method.

PACS number: 71.23.An
Mathematics Subject Classification: 82B44, 60H25, 35J10

1. Introduction

Anderson models on the lattice are discrete Schrödinger operators with random potentials. Such models have been studied for a long time in computational and theoretical physics, as well as in mathematics. One of the fundamental results for these models is the physical phenomenon of localization. There are various manifestations of localization: exponential decay of Green’s function, absence of diffusion, spectral localization (meaning almost sure absence of the continuous spectrum), exponential decay of generalized eigensolutions or non-spreading of wave packets. Such properties have been established exclusively (apart from one-dimensional situations) by two different methods, the multiscale analysis and the fractional moment method. The multiscale analysis (MSA) was invented by Fröhlich and Spencer in [1], while the fractional moment method (FMM) was introduced by Aizenman and Molchanov [2].

In this paper we focus our attention on correlated Anderson models. More precisely, we develop the FMM for a one-dimensional discrete Schrödinger operator with a random potential.
potential of alloy-type. In this model, the potential at the lattice site $x \in \mathbb{Z}$ is defined by a finite linear combination $V_\omega(x) = \sum_k \omega_k u(x - k)$ of independent identically distributed (i.i.d.) random coupling constants ω_k having a bounded density. The function $u(\cdot - k)$ is called the single-site potential and may be interpreted as a finite interaction range potential associated with the lattice site $k \in \mathbb{Z}$. Consequently, for the model under consideration the potential values at different sites are not independent random variables. Let us stress that we have no sign assumption on the single-site potential; thus, the correlations may be negative.

For such models we prove in one space dimension and at all energies a so-called fractional moment bound, i.e. exponential off-diagonal decay of an averaged fractional power of Green’s function. The restriction to the one-dimensional case allows an elegant and short proof in which the basic steps—decoupling and averaging—are particularly transparent. Currently we are working on the extension of our result to the multi-dimensional case.

A second result concerns a criterion of exponential localization, i.e. the fact that in a certain interval there is no continuous spectrum and all eigenfunctions decay exponentially almost surely. Our proof uses an idea developed first in the context of MSA but actually establishes exponential localization directly from fractional moment bounds on Green’s function, without going through the induction step of the MSA.

Let us discuss which localization results established previously apply to the case of correlated potentials. The papers [3] and [2, 4] derive localization for Anderson models with correlated potentials, using the MSA or the FMM, respectively. However, all of them require quite stringent conditions on the conditional distribution of the potential value at a site conditioned on the remaining sites. These are typically not satisfied for the discrete alloy-type potential whenever the coupling constants are bounded random variables, cf [5]. Thus, our results are not covered by those in [2–4].

For continuous alloy-type models spectral localization can be derived via MSA, as soon as one has verified a Wegner-type bound and an initial scale estimate. There are certain energy/disorder regimes where this has been achieved for sign-changing single-site potentials. All of them require that the random variables have a bounded density. For weak disorder [6] establishes localization near non-degenerate simple band edges. For the bottom of the spectrum localization holds as well. In the case that the bottom of the spectrum is $-\infty$ this has been proven in [7], while for lower bounded operators it follows from a combination of [7, 8] and [9]. See also [10–12] for related results, which however apply only to particular single-site potentials of a generalized step-function form. It should be emphasized that all these proofs use monotonicity at some stage of the argument which is not the case for our proof of exponential decay of fractional moments. This is discussed in more detail below. In [13, 14] localization is established for alloy-type models on \mathbb{R} with sign-changing single-site potentials using genuinely one-dimensional techniques. Thus, these results are related to ours. However, to our knowledge, fractional moment bounds have not been established for alloy-type models with a sign-changing single-site potential so far (neither in the continuous nor in the discrete setting). Let us stress that even for models where the MSA is well established, the implementation of the FMM gives new insights and slightly stronger results. For instance, the paper [15] concerns models for which the MSA was developed much earlier.

We would like to bring one particular feature of our proof of exponential decay of fractional moments to the attention of the reader. Contrary to standard proofs of localization either via multiscale analysis or via the fractional moment method this proof nowhere uses a monotonic spectral averaging, a monotonic Wegner estimate or any other kind of monotonicity argument. The key tool which allows us to disregard monotonicity issues is an averaging result for determinants, formulated in lemma 3.1.
Let us elaborate on the role played by monotonicity in previous arguments in some more detail. The first approach to localization for alloy-type models which does not use monotonicity is the one pursued in [13, 14]. However, this method does not yield such a strong bound on Green’s function as theorem 2.1 below. Furthermore, the method [13, 14] is based on the Prüfer coordinate, a quantity which is only defined for one-dimensional models. The fractional moment method is a tool suited for models in arbitrary dimension, albeit so far we have implemented it only in one dimension for our model.

A result related to bounds on the fractional moments of Green’s function is a Wegner estimate. Such estimates have been developed for alloy-type models with sign-changing single-site potentials. There are two methods at disposal to derive a Wegner bound in this situation, one developed in [6–8] and the other in [10, 11, 20]. Now both of them use monotonicity at some stage of the argument. Let us first discuss aspects of the method in [6–8], restricting ourselves for simplicity to the energy region near the bottom of the spectrum. ([6, 8] also have results about internal spectral edges in the weak disorder regime.) There it is shown that negative eigenvalues of certain auxiliary operators have a negative derivative with respect to an appropriately chosen vector field. Thus, a monotonicity property is established for appropriately chosen spectral subspaces. On the other hand, the idea of [10, 11] consists in finding a linear combination of single-site potentials which is non-negative and averaging w.r.t. the associated transformed coupling constants. This is obviously again a monotonicity argument.

Recently, Bourgain [16] has developed a method to establish Wegner estimates for Anderson models with matrix-valued potentials. These models, like ours, lack monotonicity. To overcome this difficulty Bourgain uses analyticity and subharmonicity properties of the relevant matrix functions. A key ingredient is (a multidimensional version of) Cartan’s theorem. If one likes, one can interpret our lemma 3.1 as a very specific and explicit version of Cartan’s theorem.

Using methods from dynamical systems Sadel and Schulz-Baldes prove in [17] the positivity of Lyapunov exponents and at most logarithmic growth of quantum dynamics for one-dimensional random potentials with correlations. However, due to the assumptions on the underlying probability space it seems that our model cannot be reduced to the ones in [17]. Avila and Damanik have related results as announced and sketched in [18, 19].

Finally, another recent development concerns localization results for discrete alloy-type models based on the MSA. After the first version of this paper was completed, Veselić [20] obtained a Wegner estimate for the multi-dimensional analog of the model considered in this paper, which can be used to obtain exponential spectral localization at large disorder. For these results the distribution of the coupling constants has to satisfy an analog of condition (a) in theorem 2.3 below. In a preprint, of which we learned after the final version of our paper was submitted, Krüger [21] obtained results about spectral and dynamical localization for a class of multi-dimensional models which includes ours as a subclass. This work uses some of the ideas of [16] mentioned above and establishes Wegner-like estimates without the use of monotonicity.

2. Model and results

We consider a one-dimensional Anderson model. This is the random discrete Schrödinger operator

\[H_\omega := -\Delta + V_\omega, \quad \omega \in \Omega, \]

(1)
acting on $\ell^2(\mathbb{Z})$, the space of all square-summable sequences indexed by \mathbb{Z} with an inner product $\langle \cdot, \cdot \rangle$. Here, $\Delta : \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ denotes the discrete Laplace operator and $V_\omega : \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ is a random multiplication operator. They are defined by

$$(\Delta \psi)(x) := \sum_{|e|=1} \psi(x + e) \quad \text{and} \quad (V_\omega \psi)(x) := V_\omega(x)\psi(x)$$

and represent the kinetic energy and the random potential energy, respectively. We assume that the probability space has a product structure $\Omega := \times_{k\in\mathbb{Z}} \mathbb{R}$ and is equipped with the probability measure $\text{d}P(\omega) := \prod_{k\in\mathbb{Z}} \rho(\omega_k) \text{d}\omega_k$, where $\rho \in L^\infty(\mathbb{R}) \cap L^1(\mathbb{R})$ with $\|\rho\|_{L^1} = 1$. Hence, each element ω of Ω may be represented as a collection $\{\omega_k\}_{k\in\mathbb{Z}}$ of i.i.d. random variables, each distributed with the density ρ. The symbol $\mathbb{E}\{\cdot\}$ denotes the expectation with respect to the probability measure, i.e. $\mathbb{E}\{\cdot\} := \int_{\Omega}\text{d}P(\omega)\cdot$. For a set $\Gamma \subset \mathbb{Z}$, $\mathbb{E}_\Gamma\{\cdot\}$ denotes the expectation with respect to ω_k, $k \in \Gamma$. That is, $\mathbb{E}_\Gamma\{\cdot\} := \int_{\Omega_\Gamma}\text{d}P(\omega)\cdot$, where $\Omega_\Gamma := \times_{k\in\Gamma} \mathbb{R}$. Let the single-site potential $u : \mathbb{Z} \to \mathbb{R}$ be a function with finite and non-empty support $\Theta := \text{supp} u = \{k \in \mathbb{Z} : u(k) \neq 0\}$. We assume that the random potential V_ω has an alloy-type structure, i.e.

$$V_\omega(x) := \sum_{k \in \mathbb{Z}} \omega_k u(x - k)$$

at a lattice site $x \in \mathbb{Z}$ is a linear combination of the i.i.d. random variables ω_k, $k \in \mathbb{Z}$, with coefficients provided by the single-site potential. For this reason we call the Hamiltonian (1) sometimes a discrete alloy-type model. The function $u(-k)$ may be interpreted as a finite-range potential associated with the lattice site $k \in \mathbb{Z}$. The Hamiltonian (1) is possibly unbounded, but self-adjoint on a dense subspace of $\ell^2(\mathbb{Z})$, see e.g. [22]. Finally, for the operator H_ω in (1) and $z \in \mathbb{C}\setminus\sigma(H_\omega)$ we define the corresponding resolvent by $G_\omega(z) := (H_\omega - z)^{-1}$. For Green’s function, which assigns to each $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ the corresponding matrix element of the resolvent, we use the notation

$$G_\omega(z; x, y) := \langle \delta_x, (H_\omega - z)^{-1}\delta_y \rangle.$$ \hspace{1cm} (2)

For $\Gamma \subset \mathbb{Z}$, $\delta_k \in \ell^2(\Gamma)$ denotes the Dirac function given by $\delta_k(k) = 1$ for $k \in \Gamma$ and $\delta_k(j) = 0$ for $j \in \Gamma \setminus \{k\}$. The quantities $\|\rho\|_{L^1}^{-1}$ and (in the case that ρ is weakly differentiable) $\|\rho'\|_{L^1}^{-1}$ may be understood as a measure of the disorder present in the model (a small value of norms corresponds to the strong disorder). Our results in the case of strong disorder are the following three theorems.

Theorem 2.1. Let $n \in \mathbb{N}$, $\Theta = \{0, \ldots, n - 1\}$, $x \in (0, 1)$ and $\|\rho\|_\infty$ be sufficiently small. Then there exist constants $C, m \in (0, \infty)$ such that for all $x, y \in \mathbb{Z}$ with $|x - y| \geq n$ and all $z \in \mathbb{C}\setminus\mathbb{R}$,

$$\mathbb{E}[|G_\omega(z; x, y)|^{s/n}] \leq C e^{-m|x-y|}.$$ \hspace{1cm} (3)

Theorem 2.2. Let $n \in \mathbb{N}$, $\Theta \subset \mathbb{Z}$ finite with min $\Theta = 0$ and max $\Theta = n - 1$, r as in equation (21) (the width of the largest gap in Θ) and $s \in (0, n/(n + r))$. Assume

(a) $\rho \in W^{1,1}(\mathbb{R})$ with $\|\rho'\|_{L^1}$ sufficiently small or
(b) $\text{supp } \rho$ compact with $\|\rho\|_\infty$ sufficiently small.

Then there exist constants $C, m \in (0, \infty)$ such that the bound (3) holds true for all $x, y \in \mathbb{Z}$ with $|x - y| \geq 2(n + r)$ and all $z \in \mathbb{C}\setminus\mathbb{R}$.

Theorem 2.3. Let $\text{supp } \rho$ be compact with $\|\rho\|_\infty$ sufficiently small. Then H_ω has almost surely only pure point spectrum with exponentially decaying eigenfunctions.
The difference between theorems 2.1 and 2.2 is the following. In theorem 2.1, we assume that \(\Theta \) is finite and connected (cf section 3). The latter condition can be dropped if \(\rho \) is sufficiently regular, cf theorem 2.2. A quantitative version of theorem 2.1 is proven in sections 3 and 4, compare also theorem 4.3. A quantitative version of theorem 2.2 is stated and proven in section 5.

We can actually apply theorems 2.1 and 2.2 to arbitrary \(\Theta \) with \(\max \Theta - \min \Theta = n - 1 \). In this situation a translation of the indices of the random variables \(\{\omega_k\}_{k \in \mathbb{Z}} \) by \(\min \Theta \) transforms the model to the case \(\min \Theta = 0 \) and \(\max \Theta = n - 1 \). Note that \(\min \Theta \) and \(\max \Theta \) are well defined since \(\Theta \subset \mathbb{R} \) is finite.

Remark 2.4.

(i) Our proof gives estimates about fractional moments of certain matrix elements of the resolvent for somewhat more general models. Let us formulate this class of random potentials next. Assume that \(V_\omega := V^{(1)}_\omega + V^{(2)}_\omega \), where \(V^{(1)}_\omega, V^{(2)}_\omega : \mathbb{Z} \to \mathbb{R} \) are potentials indexed by the random parameter \(\omega \) in some probability space \(\Omega \). Assume that \(u : \mathbb{Z} \to \mathbb{R} \) has support equal to \([0, \ldots, n - 1]\), and that there exists a sequence \(\lambda_k : \Omega \to \mathbb{R} \) of i.i.d. random variables indexed by \(k \in n\mathbb{Z} \), each being distributed according to a density \(\rho \in L^\infty(\mathbb{R}) \). Assume that \(V^{(1)}_\omega(x) = \sum_{k \in n\mathbb{Z}} \lambda_k(\omega)u(x - k) \) and that \(V^{(2)}_\omega \) is uniformly bounded on \(\Omega \times \mathbb{Z} \), but otherwise arbitrary. If \(F : \Omega \to [0, \infty) \) is a random variable we denote its average over all random variables \(\lambda_k, k \in n\mathbb{Z} \), by \(\mathbb{E}^{(1)}(F) := \int F(\omega) \prod_{k \in n\mathbb{Z}} \rho(\lambda_k) d\omega_k \), where the domain of integration is \(\times_{k \in n\mathbb{Z}} \mathbb{R} \). It follows directly from the iterative application of lemma 3.3 that for all \(p \in \mathbb{N} \) and for the constant \(C_{u,\rho} \) defined in (11) we have

\[
\mathbb{E}^{(1)}[|G_\omega(x; 0, np - 1)|^{1/n}] \leq C_{u,\rho}^p.
\]

A decomposition of the type \(V_\omega := V^{(1)}_\omega + V^{(2)}_\omega \) is implicitly used in the proof of theorem 2.2, given in section 5. Note that in this particular situation the two stochastic processes \(V^{(1)}_\omega, V^{(2)}_\omega \) are not independent from each other. If \(V^{(2)}_\omega \equiv 0 \) then the full potential \(V_\omega \) equals \(\sum_{k \in n\mathbb{Z}} \lambda_k(\omega)u(x - k) \). Hence, in this case the bound (4) also holds true.

(ii) The statements of theorems 2.1 and 2.2 concern only off-diagonal elements. If we assume that \(\rho \) has compact support, \(\mathbb{E}[|G_\omega(E + i0; x, y)|^{1}] \) is finite for any \(x, y \in \mathbb{Z} \) and \(s > 0 \) sufficiently small. This is proven in section 6.

(iii) Thus, in this situation, we have full control over fractional moments, which for the usual Anderson model with i.i.d. potential values suffices to prove spectral and dynamical localization. However, for our model neither dynamical nor spectral localization can be directly inferred using the existent methods in \([15, 23–25]\), see section 7. The reason is that the random variables \(\lambda_k(\omega), x \in \mathbb{Z} \), are not independent, while the dependence of \(H_\omega \) on the i.i.d. variables \(\omega_x, x \in \mathbb{Z} \), is not monotone.

(iv) In section 7 we provide a new criterion for spectral localization without applying the multiscale analysis. It deduces from fractional moment bounds and the fact that the set of generalized eigenvalues has full spectral measure almost sure exponential decay of eigenfunctions. In fact it can be extended to more general random potentials, as long as the correlation length is finite.

(v) In this context it is natural to ask whether it is possible to extract a positive part from the random potential in such a way that the original methods for deriving fractional moment bounds apply. It turns out that this is not possible in general (even in one space dimension) but that the corresponding class of single-site potentials can be characterized in the following way. If the polynomial \(p_u(x) := \sum_{k=0}^{n-1} u(k) x^k \) does not vanish on \([0, \infty)\)
it is possible to extract from V_ω a positive single-site potential with certain additional properties. In this situation the method of [15] applies and gives exponential decay of the fractional moments of Green’s function. This is worked out in detail in the appendix.

3. Fractional moment bounds for Green’s function

In this section we present fractional moment bounds for Green’s function. A very useful observation is that ‘important’ matrix elements of the resolvent are given by the inverse of a determinant. The latter can be controlled using the following spectral averaging lemma for determinants.

Lemma 3.1. Let $n \in \mathbb{N}$ and $A, V \in \mathbb{C}^{n \times n}$ be two matrices and assume that V is invertible. Let further $0 \leq \rho \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$ and $s \in (0, 1)$. Then we have for all $\lambda > 0$ the bound

$$\int_{\mathbb{R}} |\det(A + rV)|^{-s/n} \rho(r) \, dr \leq |\det V|^{-s/n} \|\rho\|_{L^1}^{1-s} \frac{2^{s-1}}{1-s}$$ \hspace{1cm} (5)

and

$$\leq |\det V|^{-s/n} \left(\lambda^{-s} \|\rho\|_{L^1} + \frac{2\lambda^{1-s}}{1-s} \|\rho\|_{\infty} \right).$$ \hspace{1cm} (6)

Proof. Since V is invertible, the function $r \mapsto \det(A + rV)$ is a polynomial of order n and thus the set $\{ r \in \mathbb{R} : A + rV \text{ is singular} \}$ is a discrete subset of \mathbb{R} with the Lebesgue measure zero. We denote the roots of the polynomial by $z_1, \ldots, z_n \in \mathbb{C}$. By multilinearity of the determinant, we have

$$\det(A + rV) = \det V \prod_{j=1}^{n} |r - z_j|.$$ \hspace{1cm} (4)

The H"older inequality implies for $s \in (0, 1)$ that

$$\int_{\mathbb{R}} |\det(A + rV)|^{-s/n} \rho(r) \, dr \leq |\det V|^{-s/n} \prod_{j=1}^{n} \left(\int_{\mathbb{R}} |r - \text{Re} z_j|^{-s} \rho(r) \, dr \right)^{1/n}.$$ \hspace{1cm} (5)

For arbitrary $\lambda > 0$ and all $z \in \mathbb{R}$ we have

$$\int_{\mathbb{R}} \frac{1}{|r - z|^s} \rho(r) \, dr = \int_{|r - z| > \lambda} \frac{1}{|r - z|^s} \rho(r) \, dr + \int_{|r - z| \leq \lambda} \frac{1}{|r - z|^s} \rho(r) \, dr$$

$$\leq \lambda^{-s} \|\rho\|_{L^1} + \|\rho\|_{\infty} \frac{2\lambda^{1-s}}{1-s},$$

which gives inequality (6). We now choose $\lambda = s\|\rho\|_{L^1} / (2\|\rho\|_{\infty})$ (which minimizes the right-hand side of inequality (6)) and obtain inequality (5). \hfill \square

In order to use the estimate of lemma 3.1 for our infinite-dimensional operator $G_\omega(z)$, we will use a special case of the Schur complement formula (also known as the Feshbach formula or the Grushin problem), see e.g. [26, appendix]. Before providing such a formula, we will introduce some more notation. Let $\Gamma_1 \subset \Gamma_2 \subset \mathbb{Z}$. We define the operator $P_{\Gamma_1}^{\Gamma_2} : l^2(\Gamma_2) \to l^2(\Gamma_1)$ by

$$P_{\Gamma_1}^{\Gamma_2} \psi := \sum_{k \in \Gamma_1} \psi(k) \delta_k.$$
Note that the adjoint \((P_{\Gamma_1})^* : \ell^2(\Gamma_1) \to \ell^2(\Gamma_2)\) is given by \((P_{\Gamma_1})^* \phi = \sum_{k \in \Gamma_1} \phi(k) \delta_k\). If \(\Gamma_2 = \mathbb{Z}\) we will drop the upper index and write \(P_{\Gamma_1}\) instead of \(P_{\Gamma_1}^\ast\). For an arbitrary set \(\Gamma \subset \mathbb{Z}\) we define the restricted operators \(\Delta_{\Gamma}, V_{\Gamma}, H_{\Gamma} : \ell^2(\Gamma) \to \ell^2(\Gamma)\) by
\[
\Delta_{\Gamma} := P_{\Gamma} \Delta P_{\Gamma}^* \quad \text{and} \quad V_{\Gamma} := P_{\Gamma} V_{\Gamma} P_{\Gamma}^*.
\]
Furthermore, we define \(G_{\Gamma}(z) := (H_{\Gamma} - z)^{-1}\) and \(G_{\Gamma}(z; x, y) := \langle \delta_x, G_{\Gamma}(z) \delta_y \rangle\) for \(z \in \mathbb{C} \setminus \sigma(H_{\Gamma})\) and \(x, y \in \Gamma\). For an operator \(T : \ell^2(\Gamma) \to \ell^2(\Gamma)\) the symbol \([T]\) denotes the matrix representation of \(T\) with respect to the basis \(\{\delta_k\}_{k \in \Gamma}\). By \(\partial \Gamma\) we denote the interior vertex boundary of the set \(\Gamma\), i.e. \(\partial \Gamma := \{k \in \Gamma : \# \{j \in \Gamma : |j - k| = 1\} < 2\}\). For finite sets \(\Gamma \subset \mathbb{Z}, |\Gamma|\) denotes the number of elements of \(\Gamma\). A set \(\Gamma \subset \mathbb{Z}\) is called connected if \(\partial \Gamma \subset \{\text{inf} \Gamma, \text{sup} \Gamma\}\). In particular, \(\mathbb{Z}\) is a connected set.

Lemma 3.2. Let \(\Gamma \subset \mathbb{Z}\) and \(\Lambda \subset \Gamma\) be finite and connected. Then we have the identity
\[
G_{\Gamma}(z; x, y) = \langle \delta_x, (H_{\Lambda} - B_{\Lambda}^\delta - z)^{-1} \delta_y \rangle
\]
for all \(z \in \mathbb{C} \setminus \sigma(H_{\Gamma})\) and all \(x, y \in \Lambda\), where \(B_{\Lambda}^\delta : \ell^2(\Lambda) \to \ell^2(\Lambda)\) is specified in equation (7). Moreover, the operator \(B_{\Lambda}^\delta\) is diagonal and does not depend on \(V_{\omega(k)}, k \in \Lambda\).

An analogous statement for arbitrary dimension was established in [27].

Proof. Since \(\Lambda\) is finite, \(H_{\Lambda}\) is bounded and the Schur complement formula gives
\[
P_{\Lambda}^\ast (H_{\Gamma} - z)^{-1} (P_{\Lambda}^\ast)^\ast = (H_{\Lambda} - z - B_{\Lambda}^\delta)^{-1},
\]
where
\[
B_{\Lambda}^\delta = P_{\Lambda}^\ast \Delta_{\Lambda} (P_{\Gamma \setminus \Lambda}^\ast)^\ast (H_{\Gamma \setminus \Lambda} - z)^{-1} P_{\Gamma \setminus \Lambda} \Delta_{\Gamma} (P_{\Gamma \setminus \Lambda}^\ast)^\ast.
\]
It is straightforward to calculate that the matrix elements of \(B_{\Lambda}^\delta\) are given by
\[
\langle \delta_x, B_{\Lambda}^\delta \delta_y \rangle = \begin{cases} \sum_{k \in \Gamma \setminus \Lambda} \langle \delta_x, (H_{\Lambda} - z)^{-1} \delta_k \rangle & \text{if } x = y \in \partial \Lambda, \\ 0 & \text{else}. \end{cases} \tag{7}
\]
Here we have used that \(\Lambda\) is connected. \(\square\)

Lemma 3.3. Let \(n \in \mathbb{N}, \Theta = \{0, \ldots, n - 1\}, s \in (0, 1)\) and \(\Gamma \subset \mathbb{Z}\) be connected. Then,

(i) for every pair \(x, x + n - 1 \in \Gamma\) and all \(z \in \mathbb{C} \setminus \mathbb{R}\) we have
\[
\mathbb{E}_{|\Theta|} (|G_{\Gamma}(z; x, x + n - 1)|^{1/n}) \leq C_n C_\rho :=: C_{n, \rho}; \tag{8}
\]

(ii) if \(1 \leq |\Gamma| \leq n\), we have for all \(z \in \mathbb{C} \setminus \mathbb{R}\) the bound
\[
\mathbb{E}_{|\Theta|} (|G_{\Gamma}(z; \gamma_0, \gamma_1)|^{1/n}) \leq C_n^+ C_\rho^+ :=: C_{n, \rho}^+; \tag{9}
\]
where \(\gamma_0 = \min \Gamma\) and \(\gamma_1 = \max \Gamma\).

(iii) if \(\Gamma = \{x, x + 1, \ldots\}\) and \(y \in \Gamma\) with \(0 \leq y - x \leq n - 1\), we have for all \(z \in \mathbb{C} \setminus \mathbb{R}\) the bound
\[
\mathbb{E}_{|\Theta|} (|G_{\Gamma}(z; x, y)|^{1/n}) \leq C_{n, \rho}; \tag{10}
\]
The constants \(C_n, C_\rho, C_n^+, C_\rho^+, C_{n, \rho}\) and \(C_{n, \rho}^+\) are given in equations (11), (12) and (13).
Proof. We start with the first statement of the lemma. By assumption $x, x + n - 1 \in \Gamma$. We apply lemma 3.2 with $\Lambda := \{x, x + 1, \ldots, x + n - 1\} \subset \Gamma$ (since Γ is connected) and obtain for all $x, y \in \Lambda$

$$G_{x}(z; x, y) = \{\delta_{x}, (H_{x} - B_{x}^\Lambda - z)^{-1}\delta_{y}\},$$

where the operator B_{x}^Λ is given by equation (7). Set $D = H_{x} - B_{x}^\Lambda - z$. By Cramer’s rule we have $G_{x}(z; x, y) = \det C_{x,y}/\det[D]$. Here, $C_{i,j} = (-1)^{i+j}M_{i,j}$ and $M_{i,j}$ is obtained from the tridiagonal matrix $[D]$ by deleting row i and column j. Thus, $C_{x+n-1,x}$ is a lower triangular matrix with the determinant ± 1. Hence,

$$|G_{x}(z; x, x + n - 1)| = \frac{1}{|\det[D]|}.$$

Since $\Theta = \text{supp } u = \{0, \ldots, n - 1\}$, every potential value $V_{\Theta}(k), k \in \Lambda$, depends on the random variable ω_{Θ}, while the operator B_{x}^Λ is independent of ω_{Θ}. Thus, we may write $[D]$ as a sum of two matrices

$$[D] = A + \omega_{\Theta}V,$$

where $V \in \mathbb{R}^{n \times n}$ is diagonal with the elements $u(k - x), k = x, \ldots, x + n - 1$ and $A := [D] - \omega_{\Theta}V$. Since A is independent of ω_{Θ}, we may apply lemma 3.1 and obtain for all $s \in (0, 1)$ the estimate (8) with

$$C_{u} = \prod_{k=0}^{n} u(k)^{-s/n} \quad \text{and} \quad C_{\rho} = \|\rho\|_{\infty} 2^{-s} \frac{s}{1-s}. \quad (11)$$

The proof of inequality (9) is similar but does not require lemma 3.2. We have the decomposition $[H_{x} - z] = \bar{A} + \omega_{\Theta}V$, where $d := \gamma_{0} - \gamma_{0}, \bar{V} \in \mathbb{R}^{(d+1) \times (d+1)}$ is diagonal with elements $u(k - \gamma_{0}), k = \gamma_{0}, \ldots, \gamma_{1}$, and $\bar{A} := [H_{x} - z] - \omega_{\Theta}V$ is independent of ω_{Θ}. By Cramer’s rule and lemma 3.1 we obtain

$$\prod_{\gamma_{0}} [G_{x}(z; \gamma_{0}, \gamma_{1})]^{\tau/(d+1)} \leq \prod_{k=0}^{d} u(k)^{\cdot t/(d+1)} \|\rho\|_{\infty}^{(1-t)/(d+1)} 2^{1-t} \|\rho\|_{\infty}^{\cdot t}$$

for all $t \in (0, 1)$. We choose $t = s \frac{d+1}{n}$ and obtain inequality (9) with the constants

$$C_{u}^{+} = \max_{t \in \Theta} \left[\prod_{k=0}^{i} u(k)^{-s/n} \right] \quad \text{and} \quad C_{\rho}^{+} = \max_{t \in \Theta} \left[\frac{\|\rho\|_{\infty}^{\cdot s/n}}{t^{s} / (1-s)} \right]. \quad (12)$$

In the final step we have used $s \geq t$ and the monotonicity of $(0, 1) \ni x \mapsto 2^{x}x^{-x}/(1-x)$. For the proof of the third statement we apply lemma 3.2 with $\Lambda = \{x, y\}$ and obtain using Cramer’s rule $|G_{x}(z; x, y)| = |1/\det [H_{x} - B_{x}^\Lambda - z]|$. Set $d := y - x$. Note that B_{x}^Λ is independent of ω_{y-n+1}, while every potential value $V_{\Theta}(k), k \in \Lambda$, depends on ω_{y-n+1}. Thus, we have the decomposition $[H_{x} - B_{x}^\Lambda - z] = A + \omega_{y-n+1}V$, where $V \in \mathbb{R}^{(d+1) \times (d+1)}$ is diagonal with the elements $u(k), k = n - d, \ldots, n - 1$, and $A := [H_{x} - B_{x}^\Lambda - z] - \omega_{y-n+1}V$. Since A is independent of ω_{y-n+1}, we may apply lemma 3.1 and obtain for all $t \in (0, 1)$

$$\prod_{\gamma_{0}} [G_{x}(z; x, y)]^{\tau/(d+1)} \leq \prod_{k=0}^{n} u(k)^{\cdot t/(d+1)} \|\rho\|_{\infty}^{(1-t)/(d+1)} 2^{1-t} \|\rho\|_{\infty}^{\cdot t}.$$

We choose $t = s \frac{d+1}{n}$ and obtain inequality (10) with

$$C_{u,t} := \max_{t \in \Theta} \left[\prod_{k=0}^{n} u(k)^{-s/n} \right]. \quad (13)$$

Here we have used $s \geq t$ and the monotonicity of $(0, 1) \ni x \mapsto 2^{x}x^{-x}/(1-x)$. □
4. Exponential decay of Green's function

In this section we use the so-called depleted Hamiltonians to formulate a geometric resolvent formula. Such Hamiltonians are obtained by setting to zero the 'hopping terms' of the Laplacian along a collection of bonds. More precisely, let \(\Lambda \subset \Gamma \subset \mathbb{Z} \) be arbitrary sets. We define the depleted Laplace operator \(\Delta^\Lambda : \ell^2(\Gamma) \to \ell^2(\Gamma) \) by

\[
\{\delta_x, \Delta^\Lambda \delta_y\} := \begin{cases}
0 & \text{if } x \in \Lambda, \quad y \in \Gamma \setminus \Lambda \quad \text{or} \quad y \in \Lambda, \quad x \in \Gamma \setminus \Lambda, \\
\\langle \delta_x, \Delta^\Lambda \delta_y \rangle & \text{else.}
\end{cases}
\]

In other words, the hopping terms which connect \(\Lambda \) with the

\(\Gamma \setminus \Lambda \) or vice versa are deleted. The depleted Hamiltonian \(H^\Lambda : \ell^2(\Gamma) \to \ell^2(\Gamma) \) is then defined by

\[
H^\Lambda := -\Delta^\Lambda + V^\Lambda.
\]

Let further \(T^\Lambda = \Delta^\Lambda - \Delta^\Lambda \) be the difference between the 'full' Laplace operator and the depleted Laplace operator. Analogously to equation (2) we use the notation \(G^\Lambda(z) := (H^\Lambda - z)^{-1} \) and \(G^\Lambda(z; x, y) := \{\delta_x, G^\Lambda(z)\delta_y\} \). The second resolvent identity yields for arbitrary sets \(\Lambda \subset \Gamma \subset \mathbb{Z} \)

\[
G^\Lambda(z) = G^\Lambda(z) + G^\Lambda(z)T^\Lambda G^\Lambda(z) \quad \text{(14)}
\]

\[
= G^\Lambda(z) + G^\Lambda(z)T^\Lambda G^\Lambda(z). \quad \text{(15)}
\]

In the following we will use that \(G^\Lambda(z; x, y) = G_\Lambda(z; x, y) \) for all \(x, y \in \Lambda \), since \(H^\Lambda \) is block-diagonal, and that \(G^\Lambda(z; x, y) = 0 \) if \(x \in \Lambda \) and \(y \not\in \Lambda \) or vice versa.

Lemma 4.1. Let \(n \in \mathbb{N} \), \(\Theta = \{0, \ldots, n - 1\} \), \(\Gamma \subset \mathbb{Z} \) be connected and \(s \in (0, 1) \). Then we have for all \(x, y \in \Gamma \) with \(y - x \geq n \), \(\Lambda := \{x + n, x + n + 1, \ldots\} \cap \Gamma \) and for all \(z \in \mathbb{C} \setminus \mathbb{R} \) the bound

\[
\mathbb{E}_{x, y}\{|G^\Lambda(z; x, y)|^{i/n}\} \leq C_{u, \rho} \cdot |G_\Lambda(z; x + n, y)|^{i/n}.
\]

In particular,

\[
\mathbb{E}|G^\Lambda(z; x, y)|^{i/n} \leq C_{u, \rho} \cdot \mathbb{E}|G_\Lambda(z; x + n, y)|^{i/n}.
\]

Proof. Our starting point is equation (14). Taking the matrix element \((x, y) \) yields

\[
G^\Lambda(z; x, y) = G^\Lambda(z; x, y) + \{\delta_x, G^\Lambda(z)T^\Lambda G^\Lambda(z)\delta_y\}.
\]

Since \(x \not\in \Lambda \) and \(y \in \Lambda \), the first summand on the right vanishes as the depleted Green’s function \(G^\Lambda(z; x, y) \) decouples \(x \) and \(y \). For the second summand we calculate

\[
G^\Lambda(z; x, y) = G^\Lambda(z; x, x + n - 1)G_\Lambda(z; x + n, y). \quad \text{(17)}
\]

The second factor is independent of \(\omega_x \). Thus, taking expectation with respect to \(\omega_x \) bounds the first factor using inequality (8) and the proof is complete. \(\square \)

Lemma 4.2. Let \(n \in \mathbb{N} \), \(\Theta = \{0, \ldots, n - 1\} \), \(\Gamma = \{x, x + 1, \ldots\} \), \(y \in \Gamma \) with \(n \leq y - x < 2n \) and \(s \in (0, 1) \). Then we have for all \(z \in \mathbb{C} \setminus \mathbb{R} \) the bound

\[
\mathbb{E}_{y-n+1, y}\{|G^\Lambda(z; x, y)|^{i/n}\} \leq C_{u, \rho}^+ C_{u, \rho}.
\]

Proof. The starting point is equation (15). Choosing \(\Lambda = \{x, \ldots, y - n\} \) gives

\[
G^\Lambda(z; x, y) = G_\Lambda(z; x, y - n)G^\Lambda(z; y - n + 1, y).
\]
Since \(G_\Lambda(z; x, y-n) \) depends only on the potential values at lattice sites in \(\Lambda \) it is independent of \(\omega_{y-n+1} \). We take expectation with respect to \(\omega_{y-n+1} \) to bound the second factor of the above identity using inequality (8). Since \(1 \leq |\Lambda| \leq n \) by assumption, we may apply inequality (9) to \(G_\Lambda(z; x, y-n) \) which ends the proof.

The proof of the following theorem will serve as a basis to complete the proof of (i) theorem 2.1 at the end of this section, and (ii) theorem 2.2 in section 5.

The difference between the proof of theorem 2.1 and theorem 4.3 is that the latter is better suited for a generalization to single-site potentials with disconnected support.

Theorem 4.3. Let \(\Theta = \{0, \ldots, n-1\} \), \(\Gamma \subset \mathbb{Z} \) connected and \(s \in (0, 1) \). Assume

\[
\|\rho\|_\infty < \frac{(1-s)^{1/s}}{2^{s-1}} \left(\prod_{k=0}^{n-1} u(k) \right)^{1/n}.
\]

Then \(m = -\ln C_{u,\rho} \) is strictly positive and

\[
\mathbb{E}[|G_\Gamma(z; x, y)|^{s/n}] \leq C_{u,\rho}^s \exp \left\{ -m \left(\frac{|x-y|}{n} \right) \right\}
\]

for all \(x, y \in \Gamma \) with \(|x-y| \geq 2n \) and all \(z \in \mathbb{C}\backslash\mathbb{R} \). Here, \(\lfloor \cdot \rfloor \) is defined by \(\lfloor z \rfloor := \max\{ k \in \mathbb{Z} | k \leq z \} \).

Proof. The constant \(m \) is larger than zero since \(C_{u,\rho} < 1 \) by assumption. By symmetry we assume without loss of generality \(y-x \geq 2n \). In order to estimate \(\mathbb{E}[|G_\Gamma(z; x, y)|^{s/n}] \), we iterate equation (16) of lemma 4.1 and finally use equation (18) of lemma 4.2 for the last step. Figure 1 shows this procedure schematically. We choose \(p := \lfloor (y-x)/n \rfloor - 1 \in \mathbb{N} \) such that \(y-2n < x+pn \leq y-n \). We iterate equation (16) exactly \(p \) times and obtain

\[
\mathbb{E}[|G_\Gamma(z; x, y)|^{s/n}] \leq C_{u,\rho}^p \cdot \mathbb{E}[|G_{\Lambda_p}(z; x+pn, y)|^{s/n}],
\]

where \(\Lambda_p = \{ x+pn, x+pn+1, \ldots \} \). Now the first \(p \) jumps of figure 1 are done and it remains to estimate \(\mathbb{E}[|G_{\Lambda_p}(z; x+pn, y)|^{s/n}] \). Since \(n \leq y-(x+pn) < 2n \) and \(\Lambda_p = \{ x+pn, x+pn+1, \ldots \} \) we may apply lemma 4.2 and get

\[
\mathbb{E}[|G_\Gamma(z; x, y)|^{s/n}] \leq C_{u,\rho}^{p+1} C_{u,\rho}^+ = C_{u,\rho}^{p+1} \ln C_{u,\rho}.
\]

Proof of theorem 2.1. Without loss of generality we assume \(y-x \geq n \). We iterate equation (16) exactly \(q := \lfloor (y-x)/n \rfloor \) in \(\mathbb{N} \) times, starting with \(\Gamma = \mathbb{Z} \), and obtain

\[
\mathbb{E}[|G_\omega(z; x, y)|^{s/n}] \leq C_{u,\rho}^q \cdot \mathbb{E}[|G_{\Lambda_q}(z; x+qn, y)|^{s/n}],
\]

where \(\Lambda_q = \{ x+qn, x+qn+1, \ldots \} \). Since \(0 \leq y-(x+qn) \leq n-1 \) by construction, we may apply part (iii) of lemma 3.3 and obtain

\[
\mathbb{E}[|G_\omega(z; x, y)|^{s/n}] \leq C_{u,\rho}^q C_{u,\rho,+} = C_{u,\rho,+} \exp \left\{ -m \left(\frac{y-x}{n} \right) \right\},
\]

where \(m = -\ln C_{u,\rho} \). In particular, \(m > 0 \) if inequality (19) holds.
5. Single-site potentials with arbitrary finite support

In this section we prove theorem 2.2. We consider the case in which the support Θ of the single-site potential is an arbitrary finite subset of \mathbb{Z}. By translation, we assume without loss of generality that $\min \Theta = 0$ and $\max \Theta = n - 1$ for some $n \in \mathbb{N}$. Furthermore, we define

$$r := \max \{b - a \mid [a, b] \subset \{0, \ldots, n - 1\}, [a, b] \cap \Theta = \emptyset\}. \quad (21)$$

Thus, r is the width of the largest gap in Θ. In order to handle arbitrary finite supports of the single-site potential, we need one of the following additional assumptions on the density $\rho \in L^\infty(\mathbb{R})$:

$$A_1 : \rho \in W^{1,1}(\mathbb{R}) \quad A_2 : \supp \rho \subset [-R, R] \text{ for some } R > 0. \quad (22)$$

To illustrate the difficulties arising for non-connected supports Θ we consider an example. Suppose $\Theta = \{0, 2, 3, \ldots, n - 1\}$ so that $r = 1$. If we set $\Lambda = \{0, \ldots, n - 1\}$ there is no decomposition $H_\Lambda - B_\Lambda^R = A + \omega_0 V$ with an invertible V. If we set $\Lambda = \{0, \ldots, n - 1 + r\} = \{0, \ldots, n\}$ we observe that every diagonal element of H_Λ depends at least on one of the variables ω_0 and $\omega_1 = \omega_r$, while the elements of B_Λ^R (which appear after applying lemma 3.2) are independent of ω_r, $k \in \{0, \ldots, r\} = \{0, 1\}$. Thus, we have a decomposition $H_\Lambda - B_\Lambda^R = A + \omega_0 V_0 + \omega_1 V_1$, where A is independent of ω_k, $k \in \{0, 1\}$ and for all $i \in \Lambda$ either $V_0(i)$ or $V_1(i)$ is not zero. As a consequence there is an $\alpha \in \mathbb{R}$ such that $V_0 + \alpha V_1$ is invertible on $\ell^2(\Lambda)$. Motivated by this observation, we prove the following lemma.

Lemma 5.1. Let $N, d \in \mathbb{N}$ and $A, V_0, V_1, \ldots, V_N \in \mathbb{C}^{d \times d}$ be matrices. Let $(\alpha_k)_{k=0}^N \in \mathbb{R}^{N+1}$ with $\alpha_0 \neq 0$. Assume that $\sum_{k=0}^N \alpha_k V_k$ is invertible. Let further $0 \leq \rho \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$ with $\|\rho\|_{L^1} = 1$, $t \in (0, 1)$ and A_1, A_2 be as in (22). Then, if the condition A_1 is satisfied, we have the bound

$$I = \int_{\mathbb{R}^{N+1}} \left| \det \left(A + \sum_{i=0}^N r_i V_i \right) \right| \prod_{i=0}^N \rho(r_i) \, dr \leq \left| \det \left(\sum_{k=0}^N \alpha_k V_k \right) \right|^{-\frac{1}{d}} \left(\sum_{k=0}^N |\alpha_k| \right)^t \frac{1}{1-t} \|\rho\|_{L^1}. \quad (\text{if the condition } A_2 \text{ is satisfied, we have the bound)}$$

$$I \leq \left| \det \left(\sum_{k=0}^N \alpha_k V_k \right) \right|^{-\frac{1}{d}} |\alpha_0| \left(1 + \max_{i \in \{1, \ldots, N\}} \frac{|\alpha_i|}{|\alpha_0|} \right)^{N t} \frac{2^{\frac{1-t}{t}} (2R)^{N t} \|\rho\|_{L^\infty}}{1-t}.$$

Proof. Substituting

$$\begin{pmatrix} r_0 \\ r_1 \\ \vdots \\ r_N \end{pmatrix} = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_N \end{pmatrix} = T \begin{pmatrix} \alpha_0 & 0 & \cdots & 0 \\ \alpha_1 & \alpha_0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_N & 0 & \cdots & \alpha_0 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} \alpha_0 x_0 \\ \alpha_1 x_0 + \alpha_0 x_1 \\ \vdots \\ \alpha_N x_0 + \alpha_0 x_N \end{pmatrix}$$

we get

$$I = \int_{\mathbb{R}^N} \left(\int_{\mathbb{R}} \left| \det \left(A + \sum_{i=0}^N \alpha_i V_i \right) \right|^{\frac{1}{d}} g(x_0, \ldots, x_N) \, dx_0 \right) |\alpha_0|^{N+1} \, dx_1 \ldots dx_N,$$
where \(\tilde{A} = A + \alpha_0 \sum_{i=1}^{N} v_i V_i \) and \(g(x_0, \ldots, x_N) = \rho(\alpha_0 x_0) \prod_{i=1}^{N} \rho(\alpha_i x_i + \alpha_0 x_i) \). Since \(x_0 \mapsto g(x_0, \ldots, x_N) \) is an element of \(L^1(\mathbb{R}) \cap L^\infty(\mathbb{R}) \) we may apply lemma 3.1 and obtain for all \(\lambda > 0 \)

\[
I \leq \left| \det \left(\sum_{i=0}^{N} \alpha_i V_i \right) \right|^{-1/d} \left(\lambda^{-1} + \frac{2^{1-t}}{1-t} \int_{\mathbb{R}^N} \sup_{x_0 \in \mathbb{R}} g(x_0, \ldots, x_N)|\alpha_0|^{N+1} \, dx_1 \ldots \, dx_N \right),
\]

where \(dx = dx_1 \ldots dx_N \). In the case of \(A_1 \) we use \(\sup_{x_0 \in \mathbb{R}} g \leq \frac{1}{2} \int_{\mathbb{R}} |\partial g/\partial x_0| \, dx_0 \), substitute back into the original coordinates and finally choose \(\lambda = t/(\|\rho\|L^1 \sum_{k=0}^{\infty} |\alpha_k|) \). To end the proof if the condition \(A_2 \) is satisfied, we use sup\(\rho \subset [-R, R] \) and see that if \(|x_j| > R \) \(T^{-1} \) for some \(j = 0, \ldots, N \), then \(g(x_0, \ldots, x_N) = 0 \). Thus, it is sufficient to integrate over the cube \([-R, T^{-1}] \cap [-R, T^{-1}] \cap \cdots \cap [-R, T^{-1}] \). We estimate \(\sup_{x_0 \in \mathbb{R}} g(x_0, \ldots, x_N) \leq \|\rho\|_{\infty}^{N+1} \) and choose \(\lambda = t/(2\|\rho\|_{\infty}^{N+1} |\alpha_0|^{N+1})(2R \|T^{-1}\|^{N}) \). The row-sum norm of \(T^{-1} \) equals \(\|T^{-1}\|_{\infty} = \max_{x \in \{1, \ldots, N\}} \left\{ |\alpha_0|^{-1} + |\alpha_0/\alpha_0| \right\} = (1 + \max_{x \in \{1, \ldots, N\}} |\alpha_0/\alpha_0|)/|\alpha_0| \). \(\square \)

With the help of lemma 5.1 we prove the following analogues of lemma 3.3 and theorem 4.3.

Lemma 5.2. Let \(n \in \mathbb{N} \), \(\Theta \subset \mathbb{Z} \) with \(\min \Theta = 0 \), \(\max \Theta = n - 1 \), and \(\Gamma \subset \mathbb{Z} \) be connected. Let further \(r \) be as in equation (21), \(A_1, A_2 \) as in (22) and \(s \in (0, 1) \). Then there exists a constant \(D \) such that for all \(x, x + n - 1 + r \in \Gamma \) and \(z \in \mathbb{C} \setminus \mathbb{R} \)

\[
\mathbb{E}_{(\ldots, r+1)} \left[\left| G(z; x, x + n - 1 + r) \right|^{s/(n+r)} \right] \leq D. \quad (23)
\]

The constant \(D \) is characterized in equation (25) and estimated in inequalities (27) and (28). If \(1 \leq |\Gamma| \leq n + r \) with \(\gamma_0 = \min \Gamma \) and \(\gamma_1 = \max \Gamma \) there exists a constant \(D^* \) such that for all \(z \in \mathbb{C} \setminus \mathbb{R} \)

\[
\mathbb{E}_{(\ldots, n+1)} \left[\left| G(z; \gamma_0, \gamma_1) \right|^{s/(n+r)} \right] \leq D^*. \quad (24)
\]

The constant \(D^* \) is characterized in equation (29) and estimated in inequalities (30) and (31).

Proof. The proof is similar to the proof of lemma 3.3. Apply lemma 3.2 with \(\Lambda = \{x, x + 1, \ldots, x + n - 1 + r\} \) and Cramer’s rule to get \(\left| G(z; x, x + n - 1 + r) \right| = 1/|\det[D]| \) where \(D = H_\Lambda - B^* - z \). Note that \(B^* \) is independent of \(\omega_k \), \(k \in \{x, x + 1, \ldots, x + r\} \). We have the decomposition \([D] = A + \sum_{k=0}^{k} \omega_k V_k \), where the elements of the diagonal matrices \(V_k \in \mathbb{R}^{(n+r+1) \times (n+r+1)} \) \(k = 0, \ldots, r \), are given by \(V_k(i) = u(i-k), i = 0, \ldots, n - 1 + r \), and \(A = D - \sum_{k=0}^{k} \omega_k V_k \) is independent of \(\omega_k \), \(k \in \{x, x + 1, \ldots, x + r\} \). We apply lemma 5.1 and obtain for all \(\alpha = (\alpha_k)_{k=0}^{\infty} \in M := \{\alpha \in \mathbb{R}^{r+1} : \alpha_0 \neq 0\} \)

\[
\sum_{k=0}^{\infty} |\alpha_k| \prod_{i=0}^{r} \alpha_k u(i-k) \leq D_0 \quad \text{if } A_1 \text{ is satisfied and}
\]

\[
D_0 = \|\rho\|^{|r+1|}(2R)^r 2^{s-n} \left(1 + \max_{i \in \{1, \ldots, r\}} |\alpha_0| \prod_{i=0}^{r} \alpha_k u(i-k) \right) \leq D_0 \quad \text{if } A_2 \text{ is satisfied.}
\]

We set \(M \) is non-empty and equal to the set \(\{\alpha \in \mathbb{R}^{r+1} : \alpha_0 \neq 0, D_0 \text{ is finite}\} \). Thus, inequality (23) holds with the constant

\[
D := \inf_{\alpha \in M} D_2. \quad (25)
\]
In the following we establish an upper bound for J. Phys. A: Math. Theor. $\leq D |\Gamma|$ rule we get
\[
\langle \cdot \rangle,
\]
where \(s = \omega \gamma \). This implies \(\alpha \). With this choice of \(E\) and the notation \(\omega(i-k)\) for all \(\gamma\), we conclude (using continuity) that there is a vector \(\omega\) whose distance to each hyperplane \(\Gamma_i\), \(i \in [0, n-1+r] \), is at least $d_0/2$.

In the following we establish an upper bound for D. Using a volume comparison criterion we can find a vector \(\omega = (\alpha_i)_{i=0}^{n-1} \in [0, 1]^{n+1}\) which has to each hyperplane \(\sum_{k=0}^{n-1} \alpha_k u(i-k) = 0\), \(i = 0, \ldots, n-1+r\), at least the Euclidean distance \(2(n+r)(r+1)^{r/2}\), as outlined in figure 2. This implies \(\alpha_0^2 \geq V_{n-1} \sum_{k=0}^{n-1} u(i-k)^2\) since the hyperplane for \(i = 0\) is \(\alpha_0 = 0\). With this choice of \(\alpha\) and the notation \(\omega(i-k)\) for all \(\gamma\), we have
\[
\prod_{i=0}^{n-1} \left| \sum_{k=0}^{r} \alpha_k u(i-k) \right|^2 = n \prod_{i=0}^{n-1} \| u_i \| \alpha_i \|u_i\|_{2}^{-r/2} \leq \frac{2(n+r)(r+1)^{r/2}}{\prod_{i=0}^{n-1} (\sum_{k=0}^{r} u(i-k)^2)^{r/2}},
\]
where \(\langle \cdot, \cdot \rangle_2\) denotes the standard Euclidian scalar product. Now, in both cases \(A_1\) and \(A_2\) we choose \(\alpha = \omega\) and obtain
\[
D \leq \|\rho\|_{L^1}^{r/2} \frac{(r+1)^r [2(n+r)(r+1)^{r/2}]^p}{\prod_{i=0}^{n-1} (\sum_{k=0}^{r} u(i-k)^2)^{r/2}},
\]
if \(A_1\) is satisfied and
\[
D \leq \|\rho\|_{L_\infty}^{r/2} \frac{(r+1)^r [2(n+r)(r+1)^{r/2}]^p}{\prod_{i=0}^{n-1} (\sum_{k=0}^{r} u(i-k)^2)^{r/2}},
\]
if \(A_2\) is satisfied.

The proof of the second statement is similar but without use of lemma 3.2. By Cramer’s rule we get \(|G_T(z; \gamma_0, \gamma_1)| = 1/|\det[H_T - \gamma]|\). Set \(d = \gamma_1 - \gamma_0\). We have the decomposition \([H_T - \gamma] = A + \sum_{k=0}^{n-1} w_k V_k\), where the elements of the diagonal matrices \(V_k \in \mathbb{R}^{(d+1) \times (d+1)}\), \(k = 0, \ldots, r\), are given by \(V_k(i) = u(i-k), i \in [0, \ldots, d]\), and \(A := [H_T - \gamma] - \sum_{k=0}^{n-1} w_k V_k\) is independent of \(u_k\) \(k \in [x, \ldots, x+r]\). We apply lemma 5.1 with \(t = s \frac{d+1}{\alpha r}\) and obtain (using \(s \geq t\) for all \(s\)) \(\langle G_T(z; \gamma_0, \gamma_1) \rangle^{r/(r+1)} \leq D_0^*(d)\) where
\[
D_0^*(d) = \|\rho\|_{L^1}^{r/2} \frac{s^{-r/2} \sum_{k=0}^{n} \alpha_k}{1-s} \prod_{i=0}^{d} \sum_{k=0}^{r} u(i-k) \left| \alpha_k \right|^{r/(r+1)}
\]

Figure 2. Sketch of the existence of a vector \(\omega\) \(\in \mathbb{R}^{n+1}\) with the desired properties.
if A_1 is satisfied and $D_\alpha^*(d)$ equals
\[
\| \rho \|_\infty^{(2(d+1))} \frac{2}{(2R)^{d+1}} \left[\frac{2^{d+1} \max_{|\alpha'| < d}|\alpha|}{1 - s} \right] \left(1 + \max_{i \in \{1, \ldots, r\}} |a_i| \right)^{s r} \left(\prod_{|k| = 0}^r \sum_{|i| = 0}^r |\alpha_k u(i - k)| \right)^{\frac{s}{r}}
\]
if A_2 is satisfied. Since $\tilde{M} \supset M$ for each $d \in 0, \ldots, n - 1 + r$ the set \tilde{M} is non-empty. Thus, inequality (24) holds with the constant
\[
D^* := \max_{d \in \{0, \ldots, n - 1 + r\}} \inf_{\alpha \in \tilde{M}} D_\alpha^*(d).
\]
We again choose $\alpha = \alpha'$ as in figure 2, use $\alpha'_k \in [0, 1]$ and $\alpha'_k \geq (2(n + r)(r + 1) \tau')^{-1}$, estimate $D_\alpha^*(d)$ similar to inequality (26) and obtain
\[
D^* \leq \max_{d \in \{0, \ldots, n - 1 + r\}} \left\{ \left(\| \rho \|_\infty^{(2(d+1))} \frac{2}{(2R)^{d+1}} \left[\frac{2^{d+1} \max_{|\alpha'| < d}|\alpha|}{1 - s} \right] \right)^{s r} \left(\prod_{|k| = 0}^r \sum_{|i| = 0}^r |\alpha_k u(i - k)| \right)^{\frac{s}{r}} \right\}
\]
if A_1 is satisfied and
\[
D^* \leq \max_{d \in \{0, \ldots, n - 1 + r\}} \left\{ \left(\| \rho \|_\infty^{(2(d+1))} \frac{2}{(2R)^{d+1}} \left(\frac{2}{(2R)^{d+1}} \left[\frac{2^{d+1} \max_{|\alpha'| < d}|\alpha|}{1 - s} \right] \right)^{s r} \left(\prod_{|k| = 0}^r \sum_{|i| = 0}^r |\alpha_k u(i - k)| \right)^{\frac{s}{r}} \right\}
\]
if A_2 is satisfied.

\[\square\]

Theorem 5.3. Let $n \in \mathbb{N}$, $\Theta \subset \mathbb{Z}$, $\min \Theta = 0$, $\max \Theta = n - 1$, $\Gamma \subset \mathbb{Z}$ connected, $s \in (0, 1)$, r as in equation (21), D the constant from lemma 5.2, and let ρ satisfy one of the assumptions A_1 or A_2 from (22). Assume $D < 1$. Then, $m = -\ln D$ is strictly positive and we have the bound
\[
\mathbb{E}[|G_\Gamma(z; x, y)|^{s/(n+r)}] \leq D^* e^{-m|\frac{\|x\|}{\max(k \in \mathbb{Z})}}
\]
for all $x, y \in \mathbb{Z}$ with $|x - y| \geq 2(n + r)$ and all $z \in \mathbb{C} \setminus \mathbb{R}$, where $|\cdot|$ is defined by $|z| := \max\{k \in \mathbb{Z} \mid k \leq z\}$.

Proof. The proof is similar to the proof of theorem 4.3. We again assume $y > x$. Let $\Gamma_1 \subset \mathbb{Z}$ be connected. Using equation (14) with $\Lambda := \{x + n + r, \ldots \} \cap \Gamma_1$ and lemma 5.2 we have for all pairs $x, y \in \Gamma_1$ with $y - x \geq n + r$
\[
\mathbb{E}[|G_{\Gamma_1}(z; x, y)|^{s/(n+r)}] \leq D \mathbb{E}[|G_\Lambda(z; x + n + r, y)|^{s/(n+r)}]
\]
which is the analog to lemma 4.1. Now, let $\Gamma_2 = \{x, x + 1, \ldots \}$ and $y \in \Gamma_2$ with $n + r \leq y - x < 2(n + r)$. By equation (15) with $\Lambda = \{x, \ldots, y - (n + r)\}$ and lemma 5.2 we have
\[
\mathbb{E}[|G_{\Gamma_1}(z; x, y)|^{s/(n+r)}] \leq DD^*
\]
which is the analog of lemma 4.2. Iterating equation (32) exactly $p = \lfloor (y - x)/(n + r) \rfloor - 1$ times, starting with $\Gamma_1 = \Gamma$, and finally using equation (33) once gives the statement of the theorem.

\[\square\]

6. A priori bound

Here we prove a global uniform bound on $(x, y) \mapsto \mathbb{E}[|G(z; x, y)|^s]$ for $s > 0$ sufficiently small. We assume throughout that assumption A_2 holds, i.e. there is an $R \in (0, \infty)$ such that $\text{supp } \rho \subset [-R, R]$. We use the notation $u_j(x) = u(x - j)$, for all $j, x \in \mathbb{Z}$, for the translated function as well as for the corresponding multiplication operator.
Theorem 6.1. Let \(\Gamma \subset \mathbb{Z} \) be connected, \(s \in (0, 1) \), \(\Theta \subset \mathbb{Z} \) with \(\min \Theta = 0 \) and \(\max \Theta = n - 1 \) for some \(n \in \mathbb{N} \), and \(\text{supp } \rho \) be compact. Then there is a positive constant \(C \) such that for all \(x, y \in \Gamma \) and all \(z \in \mathbb{C} \setminus \mathbb{R} \) we have
\[
\mathbb{E}[|G_\Gamma(z; x, y)|^{s/(4\alpha)}] \leq C.
\]

For the proof we will need

Lemma 6.2. Let \(n \in \mathbb{N} \), \(R \in \mathbb{R} \), \(A \in \mathbb{C}^{n \times n} \) an arbitrary matrix, \(V \in \mathbb{C}^{n \times n} \) an invertible matrix and \(s \in (0, 1) \). Then we have the bounds
\[
\|V^{-1}\| \leq \frac{\|V\|^{n-1}}{|\det V|} \tag{34}
\]
and
\[
\int_{-R}^{R} \|(A + rV)^{-1}\|^{s/n} dr \leq \frac{2R^{1-s}(\|A\| + \|rV\|)^{(n-1)/n}}{s^n(1-s)|\det V|^{1/n}}. \tag{35}
\]

Proof. To prove inequality (34) let \(0 < s_1 \leq s_2 \leq \cdots \leq s_n \) be the singular values of \(V \). Then we have \(\prod_{i=1}^n s_i \leq s_1 s_n^{n-1} \), that is,
\[
\frac{1}{s_1} \leq \frac{s_n^{n-1}}{\prod_{i=1}^n s_i}. \tag{36}
\]

For the norm we have \(\|V^{-1}\| = 1/s_1 \) and \(\|V\| = s_n \). For the determinant of \(V \) holds \(|\det V| = \prod_{i=1}^n s_i \). Hence, inequality (34) follows from inequality (36). To prove inequality (35) recall that, since \(V \) is invertible, the set \(\{ r \in \mathbb{R} : A + rV \text{ is singular} \} \) is a discrete set. Thus, for almost all \(r \in [-R, R] \) we may apply inequality (34) to the matrix \(A + rV \) and obtain
\[
\|(A + rV)^{-1}\|^{s/n} \leq \frac{(\|A\| + \|rV\|)^{(n-1)/n}}{|\det(A + rV)|^{1/n}}. \]
Note that B_2^ω is independent of ω_k, $k \in \{ -1, \ldots, 3n + 1 \}$, and K is independent of ω_k, $k \in \{0, \ldots, 3n\}$. Thus, in the matrix representation with respect to the canonical basis, the operator $K : \ell^2(\partial \Lambda_+) \to \ell^2(\partial \Lambda_+)$ may be decomposed as

$$[K] = \begin{pmatrix} \omega_{-1} u(0) & 0 \\ \omega_{3n+1} u(n-1) - f_1 & 0 \\ 0 & f_2 \end{pmatrix},$$

where $f_1 := \sum_{k \in \mathbb{Z}\{(-1)\}} \omega_k u(-1 - k) - \{\delta_{-1} B_2^\omega \delta_{-1}\}$ and $f_2 := \sum_{k \in \mathbb{Z}\{3n+1\}} \omega_k u(4n - k) - \{\delta_{4n} B_2^\omega \delta_{4n}\}$ are independent of ω_{-1} and ω_{3n+1}. Standard spectral averaging or lemma 3.1 gives for all $t \in (0, 1)$

$$\mathbb{E}_\{(-1,3n+1)\} [\| (K - z)^{-1} \|^t] \leq (|u(0)|^{-t} + |u(n-1)|^{-t}) \frac{\|\rho\|_\infty^2 t^{1-t}}{1-t}. \quad (38)$$

Now, the operator H_Λ can be decomposed as $H_\Lambda = A + \sum_{k=0}^{3n} \omega_k u_k$ where $A := H_\Lambda - \sum_{k=0}^{3n} \omega_k u_k$ is independent of ω_k, $k \in \{0, \ldots, 3n\}$. Let $\alpha := (\alpha_k)_{k=0}^{3n+1}$ with $\alpha_0 \neq 0$. Similarly to the proof of lemma 5.2, we use the substitution $\omega_0 = \alpha_0 \zeta_0$ and $\omega_k = \alpha_k \zeta_k + \alpha_0 \zeta_0$ for $i \in \{1, \ldots, 3n\}$ and obtain from equation (37)

$$E := \mathbb{E}_{\{0,\ldots,3n\}} \left\{ \left\| P_A \Delta \rho A^* \right\|_{s/(4n)}^s \right\}$$

$$\leq \|\rho\|_{s+1}^3 \int_{[-R,R]^{3n+1}} \left\| \left(A + \sum_{k=0}^{3n} \omega_k u_k - z \right) \right. - P_A \Delta \rho A^* \right\| \left(K - z \right)^{-1} P_A \Delta \rho A^* \right\|^s \, d\omega_0 \ldots d\omega_{3n}$$

$$\leq \|\rho\|_{s+1}^3 \int_{[-S,S]^{3n+1}} \left\| \left(A' + \zeta_0 \sum_{k=0}^{3n} \alpha_k u_k \right) \right. - P_A \Delta \rho A^* \right\| \left(K - z \right)^{-1} P_A \Delta \rho A^* \right\|^s \, d\zeta_0 \ldots d\zeta_{3n},$$

where $A' = A + \sum_{k=0}^{3n} \omega_k u_k - z - P_A \Delta \rho A^* (K - z)^{-1} P_A \Delta \rho A^*$ and $S = R(1 + \max_{j \in \{1,\ldots,3n\}} |\alpha_j|/|\alpha_0|)/|\alpha_0|$. Since $\bigcup_{j=0}^{3n} \text{supp } u_i = \Lambda$, there exists an $\alpha \in [0,1]^{3n+1}$ such that $\sum_{k=0}^{3n} \alpha_k u_k$ is invertible on $\ell^2(\Lambda)$, compare the proof of lemma 5.2 and figure 2. Thus, we may apply lemma 6.2 and obtain

$$E \leq \|\rho\|_{s+1}^3 \int_{[-S,S]^{3n+1}} \left\| 2s^{-1} S^{1-s} (\|A'\| + S) \sum_{k=0}^{3n} |\alpha_k u_k| \right\|_s^{(4n-1)} \frac{\det \left(\sum_{k=0}^{3n} |\alpha_k u_k| \right)}{|\det \left(\sum_{k=0}^{3n} |\alpha_k u_k| \right)|^{s/(4n)}} \, d\zeta_0 \ldots d\zeta_{3n}. \quad (39)$$

Using $\zeta_k \in [-S,S]$ for $k \in \{1, \ldots, 3n\}$, $\alpha_0 \in [-R,R]$ for $k \in \mathbb{Z}\{0, \ldots, 3n\}$ and $\alpha_k \in [0,1]$ for $k \in \{0, \ldots, 3n\}$, the norm of A' can be estimated as

$$\|A'\| = \left\| H_\Lambda - \sum_{k=0}^{3n} \omega_k u_k + \omega_0 \sum_{k=1}^{3n} \zeta_k u_k - z - P_A \Delta \rho A^* (K - z)^{-1} P_A \Delta \rho A^* \right\|$$

$$\leq 2 + (n-1) R \|u\|_\infty + 3S n \|u\|_\infty + m + 4\|K - z\|^{-1} \|A'\|. \quad (40)$$

All terms in the sum (40) are independent of ζ_k, $k \in \{0, \ldots, 3n\}$. Using $\left(\sum |\alpha_j| \right)^t \leq \sum |\alpha_j|^t$ for $t < 1$ we see from inequalities (39) and (40) that there are constants C_1 and C_2 such that

$$E \leq C_1 + C_2 \|K - z\|^{-1} \|A'\| \|A'\|^{(4n-1)/(4n)}. \quad (38)$$

If we average over ω_{-1} and ω_{3n+1}, inequality (38) gives the desired result. \hfill \square
7. Localization

In this section we discuss exponential localization for the discrete alloy-type model. In particular,

- we prove theorem 2.3 on exponential localization in the one-dimensional discrete alloy-type model for large disorder, see the end of the section;
- we establish a criterion for exponential localization using fractional moment bounds only, see theorem 7.5;
- we discuss why previous papers on fractional moment bounds do not imply immediately spectral localization for our model.

The existing proofs of localization via the fractional moment method use either the Simon Wolff criterion, see e.g. [2, 4, 23], or the RAGE-theorem, see e.g. [24, 25], or eigenfunction correlators, see e.g. [15]. Neither dynamical nor spectral localization can be directly inferred from the behavior of Green’s function using the existent methods. The reason is that the random variables $V_{ω}(x), x ∈ Z$, are not independent, while the dependence of $H_{ω}$ on the i.i.d. random variables $ω_k, k ∈ Z$, is not monotone.

However, for the discrete alloy-type model it is possible to show localization using the multiscale analysis. The two ingredients of the multiscale analysis are the initial length scale estimate and the Wegner estimate; compare assumptions (P1) and (P2) of [28]. The initial length scale estimate is implied by the exponential decay of an averaged fractional power of Green’s function, i.e. theorems 4.3 and 5.3, using Chebyshev’s inequality. A Wegner estimate for the models considered here was established in [20]. Thus, a variant of the multiscale analysis of [28] yields the pure point spectrum with exponential decaying eigenfunctions for almost all configurations of the randomness. We say a variant, since in our case the potential values are independent only for lattice sites having a minimal distance. It has been implemented in detail in the paper [29] for random Schrödinger operators in the continuum and holds similarly for discrete models.

In this section we conclude localization from bounds on averaged fractional powers of Green’s function without using the multiscale analysis. Roughly speaking, we skip over the induction step of the multiscale analysis and directly compute the ‘typical output’ of the multiscale analysis, i.e. the hypothesis of theorem 2.3 in [28] (without applying the induction step of the multiscale analysis).

Proposition 7.1. Let $Θ ⊂ [0, n − 1] ∩ Z$ for some $n ∈ N$, $I ⊂ R$ be a bounded interval and $s ∈ (0, 1)$. Assume the following two statements.

(i) There are constants $C, μ ∈ (0, ∞)$, $L_0 ∈ N$ and $N ∈ N$ such that $E[|G_{A_{k,L}}(E; x, y)|^{s/N}] ≤ C e^{-μ|x−y|}$ for all $k ∈ Z, L ∈ N, x, y ∈ A_{k,L}$ with $|x−y| ≥ L_0$ and all $E ∈ I$.

(ii) There are constants $C' ∈ (0, ∞)$ and $N' ∈ N$ such that $E[|G_{A_{k,L}}(E + iε; x, x)|^{s/N'}] ≤ C'$ for all $k ∈ Z, L ∈ N, x ∈ A_{k,L}, E ∈ I$ and $ε > 0$.

17
Then we have for all \(L \geq \max\{8 \ln(2)/\mu, L_0\} \) and all \(x, y \in \mathbb{Z} \) with \(|x - y| \geq 2L + n \) that
\[
\mathbb{P}\{E \in I \text{ either } \Delta_{x,L} \text{ or } \Delta_{y,L} \text{ is } (\mu/8, E)\text{-regular} \} \geq 1 - K,
\]
where \(K = 8(C|I| + C_W(2L + 1)^2) e^{-\mu L/(8N')} \) and \(C_W = 4C'/\pi \).

Proof. Fix \(L \in \mathbb{N} \) with \(L \geq \max\{8 \ln(2)/\mu, L_0\} \) and \(x, y \in \mathbb{Z} \) such that \(|x - y| \geq 2L + n \). For \(\omega \in \Omega \) and \(k \in \{x, y\} \) we define the sets
\[
\Delta^k_{\omega} := \left\{ E \in I : \sup_{w \in \tilde{\Lambda}_{x,L}} |G_{\Lambda_{x,L}}(E; k, w)| > e^{-\mu L/8} \right\},
\]
\[
\tilde{\Lambda}^k_{\omega} := \left\{ E \in I : \sup_{w \in \tilde{\Lambda}_{x,L}} |G_{\Lambda_{x,L}}(E; k, w)| > e^{-\mu L/4} \right\}
\]
and
\[
\tilde{B}_k := \{ \omega \in \Omega : \mathcal{L}\{\tilde{\Lambda}^k_{\omega}\} > e^{-5\mu L/8}\}.
\]

Here \(\mathcal{L} \) denotes the Lebesgue measure. For \(\omega \in \tilde{B}_k \) we have
\[
\sum_{w \in \tilde{\Lambda}_{x,L}} \int_I |G_{\Lambda_{x,L}}(E; k, w)|^{4N} \, dE \geq \int_I \sup_{w \in \tilde{\Lambda}_{x,L}} |G_{\Lambda_{x,L}}(E; k, w)|^{4N} \, dE
\]
\[
> e^{-5\mu L/8} e^{-\mu L/(4N)} > e^{-7\mu L/8}.
\]

By assumption (i) this implies for \(k \in \{x, y\} \)
\[
\mathbb{P}\{\tilde{B}_k\} < 2|I|C e^{-\mu L/8}.
\]

For \(k \in \{x, y\} \) we denote by \(\sigma(H_{\Lambda_{x,L}}) = \{E_{\omega,k}\}_{i=1}^{2L+1} \) the spectrum of \(H_{\Lambda_{x,L}} \). We claim that for \(k \in \{x, y\} \),
\[
\omega \in \Omega \setminus \tilde{B}_k \implies \Delta^k_{\omega} \subset \bigcup_{i=1}^{2L+1} [E_{\omega,k}^i - \delta, E_{\omega,k}^i + \delta] := I_{\omega,k}(\delta),
\]
(42)
where \(\delta = 2e^{-\mu L/8} \). Indeed, suppose that \(E \in \Delta^k_{\omega} \) and \(\text{dist}(E, \sigma(H_{\Lambda_{x,L}})) > \delta \). Then there exists \(w \in \tilde{\Lambda}_{x,L} \) such that \(|G_{\Lambda_{x,L}}(E; k, w)| > e^{-\mu L/8} \). For any \(E' \) with \(|E - E'| \leq 2e^{-5\mu L/8} \) we have \(\delta - |E - E'| \geq e^{-\mu L/8} \geq 2e^{-3\mu L/8} \) since \(L \geq 8 \ln(2)/\mu \). Moreover, the first resolvent identity and the estimate \(\| (H - E)^{-1} \| \leq \text{dist}(E, \sigma(H))^{-1} \) for self-adjoint \(H \) and \(E \in \mathbb{C} \setminus \sigma(H) \) imply
\[
|G_{\Lambda_{x,L}}(E; k, w) - G_{\Lambda_{x,L}}(E'; k, w)| \leq |E - E'| \cdot \| G_{\Lambda_{x,L}}(E) \| \cdot \| G_{\Lambda_{x,L}}(E') \| \leq \frac{1}{2} e^{-\mu L/8},
\]
and hence
\[
|G_{\Lambda_{x,L}}(E'; k, w)| > \frac{e^{-\mu L/8}}{2} \geq e^{-\mu L/4}
\]
for \(L \geq 8 \ln(2)/\mu \). We infer that \([E - 2e^{-5\mu L/8}, E + 2e^{-5\mu L/8}] \cap I \subset \tilde{\Lambda}^k_{\omega} \) and conclude \(\mathcal{L}(\tilde{\Lambda}^k_{\omega}) \geq 2e^{-5\mu L/8} \). This is however impossible if \(\omega \in \Omega \setminus \tilde{B}_k \) by (41); hence, the claim (42) follows.

In the following step we use assumption (ii) to deduce a Wegner-type estimate.

We denote by \(P_{[a,b]}(H_{\Lambda_{x,L}}) \) the spectral projection corresponding to the interval \([a, b] \subset \mathbb{R}\) and the operator \(H_{\Lambda_{x,L}} \). Since we have for any \(a, b \in \mathbb{R} \) with \(a < b \), any \(\lambda \in \mathbb{R} \) and \(0 < \epsilon \leq b - a \)
\[
\arctan\left(\frac{\lambda - a}{\epsilon}\right) - \arctan\left(\frac{\lambda - b}{\epsilon}\right) \geq \frac{\pi}{4} \chi_{[a,b]}(\lambda),
\]
one obtains an inequality version of Stones formula:
\[
\langle \delta_x, P_{[a,b]}(H_{\Lambda_{x,L}}) \delta_x \rangle \leq \frac{4}{\pi} \int_{[a,b]} \text{Im}[G_{\Lambda_{x,L}}(E + i\epsilon; x, x)] \, dE
\]
for all \(\epsilon \in (0, b - a) \). Using triangle inequality, \(|\text{Im} z| \leq |z|\) for \(z \in \mathbb{C} \), Fubini’s theorem,
\[|G_{\Lambda_{x,L}}(E + i\epsilon; x, x)|^{-1/N} \leq \text{dist}(\sigma(H_{\Lambda_{x,L}}), E + i\epsilon)^{1/N - 1} \leq \epsilon^{1/N - 1} \]
and assumption (ii) we obtain for \([a, b] \subset I\) and all \(\epsilon \in (0, b - a) \)
\[
\mathbb{E}[\text{Tr} P_{[a,b]}(H_{\Lambda_{x,L}})] \leq \frac{4\epsilon^{1/N - 1}}{\pi} \sum_{x \in \Lambda_{x,L}} \int_{[a,b]} \text{Im}[G_{\Lambda_{x,L}}(E + i\epsilon; x, x)] \, dE
\leq \frac{4\epsilon^{1/N - 1}}{\pi} \sum_{x \in \Lambda_{x,L}} \int_{[a,b]} \mathbb{E}[|G_{\Lambda_{x,L}}(E + i\epsilon; x, x)|^{1/N}] \, dE
\leq \frac{4\pi^{-1}\epsilon^{1/N - 1}(2L + 1)|b - a|C'}.\]

We minimize the right-hand side by choosing \(\epsilon = b - a \) and obtain the Wegner estimate
\[
\mathbb{E}[\text{Tr} P_{[a,b]}(H_{\Lambda_{x,L}})] \leq \frac{4C'}{\pi} |b - a|^{1/N}(2L + 1)
=: C_W |b - a|^{1/N}(2L + 1). \tag{43}\]

Now we want to estimate the probability of the event \(B_{\text{res}} := \{ \omega \in \Omega : I \cap I_{\omega,x}(\delta) \cap I_{\omega,y}(\delta) \neq \emptyset \} \) that there are ‘resonant’ energies for the two box Hamiltonians \(H_{\Lambda_{x,L}} \) and \(H_{\Lambda_{y,L}} \). For this purpose we denote by \(\Lambda^+_x \) the set of all lattice sites \(k \in \mathbb{Z} \) whose coupling constant \(\omega_k \) influences the potential in \(\Lambda_{x,L} \), i.e., \(\Lambda^+_x = \bigcup_{k \in \Lambda_{x,L}} \{ k \in \mathbb{Z} : u(x - k) \neq 0 \} \). Note that the expectation in inequality (43) may therefore be replaced by \(\mathbb{E}_{\Lambda^+_x} \). Moreover, since \(|x - y| \geq 2L + n \) and \(\Theta \subset [0, n - 1] \cap \mathbb{Z} \), the operator \(H_{\Lambda_{x,L}} \) and hence the interval \(I_{\omega,y}(\delta) \) is independent of \(\omega_k, k \in \Lambda^+_x \). We use the product structure of the measure \(\mathbb{P} \), Chebyshev’s inequality, and estimate (43) to obtain
\[
\mathbb{P}_{\Lambda^+_x}(B_{\text{res}}) = \sum_{i=1}^{2L+1} \mathbb{P}_{\Lambda^+_x}[\omega \in \Omega : \text{Tr}(P_{I\cap\{E_{\omega,x},-2\delta,E_{\omega,x}+2\delta\}}(H_{\Lambda_{x,L}})) \geq 1]
\leq \sum_{i=1}^{2L+1} \mathbb{E}_{\Lambda^+_x}[\text{Tr}(P_{I\cap\{E_{\omega,x},-2\delta,E_{\omega,x}+2\delta\}}(H_{\Lambda_{x,L}}))]
\leq (2L + 1)^2 C_W^{(43)} \tag{44}.\]

Consider now an \(\omega \notin \hat{B}_x \cup \hat{B}_y \). Recall that (42) states that \(\Delta_{\omega}^x \subset I_{\omega,x}(\delta) \) and \(\Delta_{\omega}^y \subset I_{\omega,y}(\delta) \). If additionally \(\omega \notin B_{\text{res}} \) then no \(E \in I \) can be in \(\Delta_{\omega}^x \) and \(\Delta_{\omega}^y \) simultaneously. Hence for each \(E \in I \) either \(\Lambda_{x,L} \) or \(\Lambda_{y,L} \) is \((\mu/8, E)\)-regular. A contraposition gives us
\[
\mathbb{P}[\exists E \in I, \Lambda_{x,L} \text{ and } \Lambda_{y,L} \text{ is } (\mu/8, E)\text{-singular}] \leq \mathbb{P}(\hat{B}_x) + \mathbb{P}(\hat{B}_y) + \mathbb{P}(B_{\text{res}})
\leq 4|I|Ce^{-\frac{\pi}{2\epsilon}} + (2L + 1)^2 C_W^{(43)} \frac{\pi}{2\epsilon},
\]
which proves the statement of the proposition. \(\square \)

Remark 7.2. In the proof of proposition 7.1, assumption (ii) is only used to get a Wegner estimate, see inequality (43). Hence, if we know that a Wegner estimate holds for some other reason, we can drop assumption (ii) and skip a part of the proof of proposition 7.1. In the situation where \(\rho \in W^{1,1}(\mathbb{R}) \), a Wegner estimate for our model was established in [20].

Remark 7.3. Note that the conclusions of proposition 7.1 states that the probabilities of \(\forall E \in I \text{ either } \Lambda_{x,L} \text{ or } \Lambda_{y,L} \text{ is } (\mu/8, E)\text{-regular} \) tend to one exponentially fast as \(L \) tends to infinity. In particular, for any \(p > 0 \) there is some \(\ell \in \mathbb{N} \) such that for all \(L \geq \ell \):
\[
\mathbb{P}[\forall E \in I \text{ either } \Lambda_{x,L} \text{ or } \Lambda_{y,L} \text{ is } (m, E)\text{-regular}] \geq 1 - L^{-2p}.
\]
To conclude exponential localization from the estimate provided in proposition 7.1 we will use theorem 2.3 in [28] in the 1d situation. Since the potential values at different lattice sites are not necessarily independent in our model we need a slight extension which can be proven with the same arguments as the original result.

Theorem 7.4 ([28]). Let \(I \subset \mathbb{R} \) be an interval and let \(p > 1 \), \(L_0 > 1 \), \(\alpha \in (1, 2p), m > 0 \), \(n \in \mathbb{N} \). Assume that \(\Theta \subset \{0, n - 1\} \cap \mathbb{Z} \). Set \(L_k = L_k^{n-1} \), for \(k \in \mathbb{N} \). Suppose that for any \(k \in \mathbb{N}_0 \)

\[
\mathbb{P}\{\forall E \in I \text{ either } \Lambda_{x,L_k} \text{ or } \Lambda_{y,L_k} \text{ is } (m, E)\text{-regular} \} \geq 1 - L_k^{-2p}
\]

for any \(x, y \in \mathbb{Z} \) with \(|x - y| > 2L_k + n \).

Then for almost all \(\omega \in \Theta \) there is no continuous spectrum of \(H_\omega \) in \(I \) and the eigenfunctions of all eigenvalues of \(H_\omega \) in \(I \) decay exponentially at infinity with mass \(m \).

Putting together proposition 7.1, theorem 7.4 and lemma 7.6, we obtain the statement that exponential decay of fractional moments of Green’s function implies exponential localization.

Theorem 7.5. Let \(n \in \mathbb{N}, \Theta \subset \{0, n - 1\} \cap \mathbb{Z}, x \in (0, 1), C, \mu \in (0, \infty), N \in \mathbb{N}, \) and \(I \subset \mathbb{R} \) be a bounded interval. Assume that \(\mathbb{E}[|G_{\Lambda_{L_k}}(E + i\epsilon; x, y)|^{p/|N|}] \leq Ce^{-|\epsilon|^{a(x,y)}} \) for all \(k \in \mathbb{Z}^d \), \(L \in \mathbb{N}, x, y \in \Lambda_{k,L}, E \in I \) and all \(\epsilon > 0 \). Then for almost all \(\omega \in \Theta \) there is no continuous spectrum of \(H_\omega \) in \(I \) and the eigenfunctions of all eigenvalues of \(H_\omega \) in \(I \) decay exponentially at infinity.

We now verify the hypotheses of propositions 7.1. The next lemma shows that for finite box restrictions of our model the resolvent is well defined at almost all energies.

Lemma 7.6. Let \(\min \Theta = 0 \) and \(\max \Theta = n - 1 \) for some \(n \in \mathbb{N} \). Let further \(\mathcal{F} \) denote the set of all finite connected subsets of \(\mathbb{Z} \). Then, for each \(E \in \mathbb{R} \) the set

\[
\bigcup_{\Gamma \in \mathcal{F}} \{\omega \in \Theta \mid E \in \sigma(H_\Gamma)\}
\]

has \(\mathbb{P} \)-measure zero.

Proof. Let \(\Lambda = \{0, 1, \ldots, m\} \) for some \(m \in \mathbb{N} \). The potential \(V_\Lambda \) depends on the random variables \(\omega_k, k \in \{-n+1, -n+2, \ldots, m\} = \Lambda^\ast \). For computing the probability \(P = \mathbb{P}\{\det(H_\Lambda - E) = 0\} \) we have the estimate

\[
P \leq \|\rho\|_{n+1}^{n+1} \int_{R^{n+1}} \chi_{\{\omega \in \Theta \mid \det(H_\Lambda - E) = 0\}}(\omega) \, d\omega,
\]

where \(\omega = (\omega_k)_{k \in \Lambda^\ast} \) and \(d\omega = \prod_{k \in \Lambda^\ast} d\omega_k \). We introduce the linear transformation \(\omega_k = r_k \) for \(k \in \{-n+1, \ldots, -1\} \), \(\omega_0 = \alpha_0 r_0 \) and \(\omega_k = \alpha_k r_0 + \alpha_0 r_k \) for \(k \in \{1, 2, \ldots, m\} \) with \(\alpha_0 = 1 \).

With this transformation we can rewrite the potential as

\[
V_\Lambda = \sum_{k=-n+1}^{-1} \omega_k V_k + \sum_{k=0}^{m} \omega_k V_k = \sum_{k=-n+1}^{-1} r_k V_k + \sum_{k=1}^{m} \alpha_0 r_k V_k + r_0 \sum_{k=0}^{m} \alpha_k V_k,
\]

where \(V_k, k = -n+1, \ldots, m \), are diagonal matrices with diagonal elements \(u(i-k), i = 0, \ldots, m \). We introduce the notation

\[
A = -\Delta + \sum_{k=-n+1}^{-1} r_k V_k + \sum_{k=1}^{m} \alpha_0 r_k V_k - E \quad \text{and} \quad V = \sum_{k=0}^{m} \alpha_k V_k
\]
transform the integral and obtain
\[P \leq \|\rho\|_{\infty}^{m+n} \int_{\mathbb{R}^{m+n}} \chi_{\sigma(V) \cap \det(A + r V) = 0}(r) \, dr, \]
where \(r = (r_k)_{k \in \Lambda^*} \) and \(dr = \prod_{k \in \Lambda^*} \, dr_k \). For the determinant of \(V \) we have
\[\det(V) = \prod_{i=0}^{m} \left(\sum_{k=0}^{m} \alpha_k u(i - k) \right) = \prod_{i=0}^{m} \langle \alpha, u_i \rangle, \]
where we have used the notation \(u_i = (u(i - k))_{k=0}^{m} \) and \(\alpha = (\alpha_k)_{k=0}^{m} \). From \(u(0) \neq 0 \) we conclude that \(u_i \neq 0 \) for all \(i \in \{0, \ldots, m\} \). We choose the vector \(\alpha \) with \(\alpha_0 = 1 \) such that \(\langle \alpha, u_i \rangle \neq 0 \) for all \(i \in \{0, \ldots, m\} \). With this choice of \(\alpha \) the matrix \(V \) is invertible. Thus, for any fixed collection of \(r_k, k \in \Lambda^* \setminus \{0\} \), the mapping \(\mathbb{R} \ni r_0 \mapsto \det(A + r_0 V) \) is a polynomial of order \(m + 1 \). Therefore, the set
\[\{ r_0 \in \mathbb{R} \mid \det(A + r_0 V) = 0 \} \]
is a finite set. From this property, Fubini’s theorem and inequality (45) we obtain \(P = 0 \). By translation this gives for arbitrary finite connected set \(\Lambda \subset \mathbb{Z} \) and each \(E \subset \mathbb{R} \) that \(\mathbb{P}[E \in \sigma(H_{\Lambda})] = 0 \). Since the union (7.6) is countable, we obtain the statement of the lemma. \(\square \)

Remark 7.7. Lemma 7.6 allows us to obtain the results of theorems 4.3, 5.3 and 6.1 also for real energies \(z \) in the case where \(\Gamma \) is a finite set. For sets of measure zero, the integrand may not be defined. However, for the bounds on the expectation value, this is irrelevant.

Proof of theorem 2.3. Since \(\mathbb{R} = \bigcup_{M \in \mathbb{Z}} [M, M + 1] \) is a countable union of compact intervals, it is sufficient to show that the assumptions of theorem 7.4 hold for each interval \([M, M + 1]\) individually. The assumptions of proposition 7.1 are fulfilled by theorems 2.2, 6.1 and remark 7.7. Hence we obtain the statement of the theorem if \(\|\rho\|_{\infty} \) is sufficiently small. \(\square \)

Acknowledgments

It is a pleasure to thank Professor Günter Stolz for stimulating discussions. This work was partially supported by NSF grant DMS–0907165 (AE) and by the Deutsche Forschungsgemeinschaft within the Emmy-Noether-Programme (MT and IV). The authors enjoyed the hospitality of the Mathematisches Forschungsinstitut Oberwolfach during the final stage of this work.

Appendix. Reduction to the monotone case

This appendix concerns the last statement of remark 2.4. First we discuss a criterion which ensures that an appropriate one-parameter family of positive potentials can be extracted from the random potential \(V_{\omega} \).

Lemma A.1. Let \(u = \sum_{k=0}^{n-1} u(k) \delta_k : \mathbb{Z} \to \mathbb{R} \). Then, the following statements are equivalent.

(A) There exists an \(N \in \mathbb{N} \) and real \(\lambda_0, \ldots, \lambda_N \) such that \(w := u * \lambda := \lambda_0 u_0 + \ldots + \lambda_N u_N \) is a non-negative function and \(w(0) > 0, w(N + n - 1) > 0 \) hold.

(B) There exists an \(M \in \mathbb{N} \) and real \(\gamma_0, \ldots, \gamma_M \) such that \(v := u * \gamma := \gamma_0 u_0 + \ldots + \gamma_M u_M \) is a non-negative function and \(\supp v = \{0, \ldots, M + n - 1\} \) holds.

(C) The polynomial \(\mathbb{C} \ni z \mapsto p_u(z) := \sum_{k=0}^{n-1} u(k) z^k \) has no roots in \([0, \infty)\).
Proof. If (A) holds, one may choose \(v(x) = \sum_{j=0}^{N+n-2} w(x - j) \) to conclude (B). Thus, it is sufficient to show (B) \(\Rightarrow \) (C). Using the Fourier transform and the identity theorem for holomorphic functions one sees that (B) is equivalent to

(D) There exists an \(M \in \mathbb{N} \) and real \(\gamma_0, \ldots, \gamma_M \) such that all coefficients of the polynomial \(p_u(z) \cdot \sum_{j=0}^{M} \gamma_j z^j \) are strictly positive.

If (D) holds, \(p_u(x) \cdot \sum_{j=0}^{M} \gamma_j x^j \) is strictly positive for \(x \in [0, \infty) \). Thus, its divisor \(p_u \) has no root in \([0, \infty)\) and one concludes (C). Assuming (C), one infers from corollary 2.7 of [30] that there exists a polynomial \(p \) such that \(p_u \cdot p \) has strictly positive coefficients. Choosing \(M = \deg(p) \) and \(\gamma_0, \ldots, \gamma_M \) to be the coefficients of \(p \) leads to (D). \(\square \)

If the random potential \(V_w \) contains a positive building block \(w \) as in (A) of the previous lemma, one obtains theorem 2.2 with [15], as we outline now. The crucial tool is proposition 3.2 of [15]. Here are two direct consequences of the latter:

Lemma A.2. Let \(H \) be bounded, self-adjoint on \(L^2(\mathbb{Z}), \phi, \psi : \mathbb{Z} \rightarrow [0, \infty) \) bounded, \(z \in \mathbb{C} \) with \(\text{Im} \ z > 0 \) and \(t, S \in (0, \infty) \). Then there is a universal constant \(C_w \in (0, \infty) \) such that for all \(x, y \in \mathbb{Z} \):

(i) \(\sqrt{\phi(x)\psi(y)} L \{ v_1, v_2 \in [-S, S] : |(\delta_x, (H + z - v_1\phi - v_2\psi)^{-1}\delta_y)| > t \} \leq 4C_w t^4 \) where \(L \) denotes the Lebesgue measure.

(ii) If \(\phi(x)\psi(y) \neq 0 \) and \(s \in (0, 1) \):

\[
\int_{[-S,S]^2} |(\delta_x, (H + z - v_1\phi - v_2\psi)^{-1}\delta_y)|^s \, dv_1 \, dv_2 \leq \frac{4}{1-s} \left(\frac{C_w}{\sqrt{\phi(x)\psi(y)}} \right)^s S^{2-s}.
\]

To obtain statement (ii) from (i) use the layer cake representation

\[
\int_{[-S,S]^2} |f(v_1, v_2)|^s \, dv_1 \, dv_2 = \int_0^\infty L \{ |v_1|, |v_2| \leq S : |f(v_1, v_2)|^t > t \} \, dt
\]

and decompose the integration domain into \([0, \kappa] \) and \([\kappa, \infty) \) where

\[
\kappa = \left(C_w/S \sqrt{\phi(x)\psi(y)} \right)^t.
\]

Proposition A.3. Let \(\Gamma \subset \mathbb{Z} \) be connected, \(\Theta \subset \mathbb{Z} \) with \(\min \Theta = 0 \) and \(\max \Theta = n - 1 \) for some \(n \in \mathbb{N} \). Assume that \(u \) satisfies condition (A) in the lemma A.1 and that \(\sup \rho \) is compact. Set \(\Lambda_x = \{ \ldots, x + N \} \) and \(\Lambda_j = \{ j - n + 1 - N, \ldots, j - n + 1 \} \). Then we have for all \(x, j \in \Gamma \) with \(|j - x| \geq 2(N+n) - 1 \) and all \(z \in \mathbb{C} \) with \(\text{Im} \ z > 0 \)

\[
\mathbb{E}_\Lambda [|G(z; x, j)|^t] \leq C,
\]

where \(C \) is defined in equation (A.1) and \(\Lambda = \Lambda_x \cup \Lambda_j \).

Proof. Without loss of generality we assume \(j - x \geq 2(N+n) - 1 \) and \(\lambda_0 = 1 \). By assumption \(\Gamma \supset \{ x, x + 1, \ldots, j \} \). Note that the operator \(A' := H - z - \sum_{k \in \Lambda_x} \omega_k u_k - \sum_{k \in \Lambda_j} \omega_k u_k \) is independent of \(\omega_k \), \(k \in \Lambda \). To estimate the expectation

\[
E: = \mathbb{E}_\Lambda [|G(z; x, j)|^t]
\]

\[
= \int_{[-R, R]^\Lambda} \left[|\delta_x, \left(A' + \sum_{k \in \Lambda_x} \omega_k u_k + \sum_{k \in \Lambda_j} \omega_k u_k \right)^{-1} \delta_j |^t \right] \prod_{k \in \Lambda} \rho(\omega_k) \, d\omega_k,
\]
we use the substitutions
\[
\begin{pmatrix}
\omega_x \\
\omega_{x+1} \\
\vdots \\
\omega_{x+N}
\end{pmatrix}
= T
\begin{pmatrix}
\zeta_x \\
\zeta_{x+1} \\
\vdots \\
\zeta_{x+N}
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
\omega_{j-N+1} \\
\omega_{j-N+2} \\
\vdots \\
\omega_{j-N}
\end{pmatrix}
= T
\begin{pmatrix}
\zeta_{j-N+1} \\
\zeta_{j-N+2} \\
\vdots \\
\zeta_{j-N}
\end{pmatrix},
\]
where the matrix \(T \) is the same as in lemma 5.1 with \(\alpha_k \) replaced by \(\lambda_k \), \(k = 0, \ldots, N \). This gives the bound
\[
E \leq \|\rho\|^{[A]}_{\infty} \int_{-[S,S]^A} \left| \delta_x \left(A + \zeta_x \sum_{k \in \Lambda_x} \lambda_k u_k + \sum_{j \in J_{x-N+1}} \lambda_k \delta_k u_k \right) \right|^{-1} \delta_j \right|^{\psi} \, d\xi_A,
\]
where \(d\xi_A = \prod_{k \in \Lambda} d\xi_k, S = R(1 + \max_{\lambda \in [1, \ldots, N]} |\lambda_i|) \) and
\[
A := A' + \sum_{k \in \Lambda_x} \zeta_k u_k + \sum_{k \in \Lambda_{x-N+1}} \zeta_k u_k
\]
is independent of \(\zeta_x \) and \(\zeta_{j-N+1} \). By assumption the functions \(\phi := \sum_{k \in \Lambda_x} \lambda_k u_k \) and
\[
\psi := \sum_{k \in \Lambda_{x-N+1}} \lambda_k \delta_k u_k
\]
are bounded and non-negative, with \(\phi(x) = u(0) > 0 \) and \(\psi(j) = \lambda_N u(n-1) > 0 \). Using lemma A.2 we obtain
\[
E' := \int_{-[S,S]^A} \left| \delta_x \left(A + \zeta_x \phi + \delta_{j-N+1} \psi \right)^{-1} \delta_j \right|^{\psi} \, d\xi_x \, d\xi_{j-N+1} \leq \frac{4}{1 - s} \left(\sqrt{\frac{C_w}{\phi(x) \psi(f)}} \right)^{\psi} S^{2-\psi}. \]
Thus, the original integral is estimated by
\[
E \leq \|\rho\|^{[A]}_{\infty} (2S)^{A-2} \frac{4}{1 - s} \left(\sqrt{\frac{C_w}{\phi(x) \psi(f)}} \right)^{\psi} S^{2-\psi}
\]
\[
= \frac{4}{1 - s} \left(\frac{C_w}{\sqrt{u(0) \lambda_N u(n-1)}} \right)^{\psi} (2S\|\rho\|_{\infty})^{2(N+1)} \frac{1}{S^{\psi}} =: C. \quad (A.1) \]

The last proposition and a formula analogous to (17) now give for \(j = x + 2(N + n) - 1 \) and \(x + 2(N + n) \leq y \)
\[
\mathbb{E}_\lambda \parallel G_{\Gamma_0}(z; x, y) \parallel^\psi = \mathbb{E}_\lambda \parallel G_{\Gamma_0}(z; x + 2(N + n) - 1) \parallel^\psi \parallel G_{\Gamma_1}(z; x + 2(N + n), y) \parallel^\psi
\leq C \parallel G_{\Gamma_1}(z; x + 2(N + n), y) \parallel^\psi,
\]
where \(\Gamma_0 = \mathbb{Z} \) and \(\Gamma_1 = \{ x + 2(N + n), x + 2(N + n) + 1, \ldots \} \). In an appropriate large disorder regime, where the constant \(C \) in (A.1) is smaller than 1, exponential decay now follows by iteration, similarly as in theorem 4.3.

References

[1] Fröhlich J and Spencer T 1983 Absence of diffusion in the Anderson tight binding model for large disorder or low energy Commun. Math. Phys. 88 151–84
[2] Aizenman M and Molchanov S 1993 Localization at large disorder and at extreme energies: an elementary derivation Commun. Math. Phys. 157 245–78
[3] von Dreifus H and Klein A 1991 Localization for random Schrödinger operators with correlated potentials Commun. Math. Phys. 140 133–47
[4] Aizenman M, Schenker J H, Friedrich R M and Hundertmark D 2001 Finite-volume fractional-moment criteria for Anderson localization Commun. Math. Phys. 224 219–53
[5] Tautenhahn M and Veselić I 2010 Spectral properties of discrete alloy-type models XVth Int. Congress on Mathematical Physics ed P Exner pp 551–5 (arXiv:1004.2385)
[6] Klopp F 2002 Weak disorder localization and Lifshitz tails: continuous Hamiltonians Ann. Henri Poincaré 3 711–37
[7] Klopp F 1995 Localization for some continuous random Schrödinger operators Commun. Math. Phys. 167 553–69
[8] Hislop P D and Klopp F 2002 The integrated density of states for some random operators with nonsign definite potentials J. Funct. Anal. 195 12–47
[9] Klopp F and Nakamura S 2009 Spectral extrema and Lifshitz tails for non-monotonic alloy type models Commun. Math. Phys. 287 1133–43
[10] Veselić I 2002 Wegner estimate and the density of states of some indefinite alloy type Schrödinger operators Lett. Math. Phys. 59 199–214
[11] Kostrykin V and Veselić I 2006 On the Lipschitz continuity of the integrated density of states for sign-indefinite potentials Math. Z. 252 367–92
[12] Veselić I 2010 Wegner estimates for sign-changing single site potentials Math. Phys. Anal. Geom. submitted (doi:10.1007/s11040-010-9081-z)
[13] Buschmann D and Stolz G 2001 Two-parameter spectral averaging and localization for non-monotonic random Schrödinger operators Trans. Am. Math. Soc. 353 635–53
[14] Stolz G 2002 Strategies in localization proofs for one-dimensional random Schrödinger operators Proc. Indian Acad. Sci. Math. Sci. 112 229–43
[15] Aizenman M, Elgart A, Naboko S, Schenker J H and Stolz G 2006 Moment analysis for localization in random Schrödinger operators Invent. Math. 163 343–413
[16] Bourgain J 2009 An approach to Wegner’s estimate using subharmonicity J. Stat. Phys. 134 969–78
[17] Sadel Ch and Schulz-Baldes H 2008 Positive Lyapunov exponents and localization bounds for strongly mixing potentials Adv. Theor. Math. Phys. 12 1377–99
[18] Damanik D 2007 Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a survey of Kotani theory and its applications Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday (Proc. Symp. Pure Math. vol 76) (Providence, RI: American Mathematical Society) pp 539–63
[19] Damanik D 2009 Correlated random potentials and dominated Schrödinger cocycles Oberwolfach Rep. 55 doi:10.4171/OWR/2009/55
[20] Veselić I 2010 Wegner estimate for discrete alloy-type models Ann. Henri Poincaré submitted (doi:10.1007/s00023-010-0052-5)
[21] Krüger H Localization for random operators with non-monotone potentials with exponentially decaying correlations arXiv:1006.5233
[22] Kirsch W 2008 An invitation to random Schrödinger operators Random Schrödinger Operators (Panor. Synthèses vol 25) (Paris: Société Mathématique de France) pp 1–119
[23] Simon B and Wolff T 1986 Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians Commun. Pure Appl. Math. 39 75–90
[24] Aizenman M 1994 Localization at weak disorder: some elementary bounds Rev. Math. Phys. 6 1163–82
[25] Graf G M 1994 Anderson localization and the space-time characteristic of continuum states J. Stat. Phys. 75 337–46
[26] Bellissard J V,Hislop P D and Stolz G 2007 Correlations estimates in the lattice Anderson model J. Stat. Phys. 129 649–62
[27] Elgart A and Graf G M Localization in the matrix valued Anderson model (in preparation)
[28] von Dreifus H and Klein A 1989 A new proof of localization in the Anderson tight binding model Commun. Math. Phys. 124 285–99
[29] Germinet F and Klein A 2001 Bootstrap multiscale analysis and localization in random media Commun. Math. Phys. 222 115–48
[30] Motzkin T S and Straus E G 1969 Divisors of polynomials and power series with positive coefficients Pac. J. Math. 29 641–52

24