Over the past years, echocardiography has been shown to play a crucial role in the accurate evaluation of left ventricular function particularly in patients suspected for ischemic heart disease [1–3]. The ability to rapidly perform bedside echocardiography with Echo-Doppler imaging places this modality in the heart of clinical research to understand cardiac function and to quantify various associated abnormalities [4–8]. Echocardiography has found a major niche in visualizing left ventricular function both at rest and during stress. Widespread use of dobutamine-echocardiography has contributed to more frequent recognition of wall motion disturbances due to coronary artery disease [9–11]. Its applicability in prognostic assessment of such patients has been repeatedly confirmed, particularly in diabetic subjects [12]. Coronary artery disease is the leading cause of morbidity and mortality in patients with diabetes mellitus. In fact, patients with diabetes have the same risk of myocardial infarction as do non-diabetic subjects with a history of infarction. Present data indicate a substantially elevated risk of cardiovascular disease even before a clinical diagnosis of type-2 diabetes has been made. Identifying patients with diabetes suspected for coronary artery disease who will benefit from medical and/or invasive intervention to prevent cardiovascular events is a challenge in both symptomatic and asymptomatic patients. The decision to evaluate patients with diabetes who are asymptomatic for coronary artery disease presents the greatest challenge; investigation will reveal 10–15% of these patients to have coronary artery disease. Current diagnostic tools include exercise tolerance testing [13–18], stress myocardial perfusion imaging [19–26], stress MRI [27–57], and stress echocardiography [12].

In the current issue of the International Journal of Cardiovascular Imaging, Innocenti et al. [58] studied 322 type-2 diabetic patients who underwent dobutamine-stress echocardiography for known or suspected coronary artery disease. Indications to dobutamine-stress echocardiography were evaluation of symptoms suggesting presence of coronary artery disease or assessment of known coronary artery disease. Endpoints of the study were all-cause mortality, cardiac death, and non-fatal myocardial infarction. Present data indicate a substantially elevated risk of cardiovascular disease even before a clinical diagnosis of type-2 diabetes has been made. Identifying patients with diabetes suspected for coronary artery disease who will benefit from medical and/or invasive intervention to prevent cardiovascular events is a challenge in both symptomatic and asymptomatic patients. The decision to evaluate patients with diabetes who are asymptomatic for coronary artery disease presents the greatest challenge; investigation will reveal 10–15% of these patients to have coronary artery disease. Current diagnostic tools include exercise tolerance testing [13–18], stress myocardial perfusion imaging [19–26], stress MRI [27–57], and stress echocardiography [12].

In the current issue of the International Journal of Cardiovascular Imaging, Innocenti et al. [58] studied 322 type-2 diabetic patients who underwent dobutamine-stress echocardiography for known or suspected coronary artery disease. Indications to dobutamine-stress echocardiography were evaluation of symptoms suggesting presence of coronary artery disease or assessment of known coronary artery disease. Endpoints of the study were all-cause mortality, cardiac death, and non-fatal myocardial infarction. During dobutamine-stress echocardiography, viability and inducible ischemia developed in 65 (20%) and 192 (60%) subjects, respectively. Severe ischemia (defined as an asynergic area including more than 40% of all segments combined with a rate pressure product <17000) appeared in 88 (27%) of patients. Presence of diabetic treatment or microvascular
diabetic complications did not affect prognosis, while longer diabetes duration was associated with higher all-cause mortality at univariate analysis. At multivariate analysis, advanced age, decreased left ventricular ejection fraction, and peripheral vascular disease independently determined increased all-cause mortality. New hard cardiac events occurred more frequently in presence of peripheral vascular disease, viability and severe ischemia. The authors concluded that in diabetic patients with known or suspected coronary artery disease, presence of viability and severe ischemia during dobutamine-stress echocardiography are independently associated with a higher occurrence of hard cardiac events. The clinical variables showed a weak prognostic role, except for age and presence of peripheral vascular disease. These findings emphasize the role of stress echocardiography in patients with type-2 diabetes.

It should, however, be realized, that the value of stress imaging in diabetic patients is dependent on the presence and nature of symptoms. In symptomatic patients, myocardial perfusion imaging provides similar diagnostic and prognostic accuracies as in patients without diabetes [59]. However, the utility of screening patients with type-2 diabetes for asymptomatic coronary artery disease remains controversial [60–62]. For instance, the Detection of Ischemia in Asymptomatic Diabetics (DIAD) study [62] assessed whether routine screening for coronary artery disease identified patients with type-2 diabetes as being at high cardiac risk and whether it affects their cardiac outcomes. A total of 1123 participants with type-2 diabetes and no symptoms of coronary artery disease were randomly assigned to be screened with adenosine-stress radionuclide myocardial perfusion imaging or no screening. It was found that in patients with diabetes, the cardiac event rates were low and were not significantly reduced by screening for myocardial ischemia over almost 5 years. Therefore, findings from the DIAD study indicate that routine screening of asymptomatic patients with diabetes is not justified.

Notwithstanding, the current study [58] shows that dobutamine-stress echocardiography has a major role in the evaluation of diabetic patients. In symptomatic diabetic patients with known or suspected coronary artery disease, advanced age and reduced left ventricular function are independent predictors of total mortality. Presence of viability and severe ischemia during dobutamine-stress echocardiography are independently associated with higher occurrence of new major cardiac events. Therefore, dobutamine-stress echocardiography is an important prognostic imaging modality in assessing cardiovascular risk in symptomatic diabetic patients.

References

1. Bax JJ, van der Wall EE (2003) Viability assessment: nuclear imaging vs. dobutamine echocardiography. Int J Cardiovasc Imaging 19:529–531
2. Bax JJ, Maddahi J, Poldermans D et al (2003) Preoperative comparison of different noninvasive strategies for predicting improvement in left ventricular function after coronary artery bypass grafting. Am J Cardiol 92:1–4
3. Bax JJ, Schinkel AF, Boersma E et al (2003) Early versus delayed revascularization in patients with ischemic cardiomyopathy and substantial viability: impact on outcome. Circulation 108(Suppl 1):II39–II42
4. Bleeker GB, Schalij MJ, Boersma E et al (2007) Relative merits of M-mode echocardiography and tissue Doppler imaging for prediction of response to cardiac resynchronization therapy in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 99:68–74
5. Bleeker GB, Bax JJ, Fung JW et al (2006) Clinical versus echocardiographic parameters to assess response to cardiac resynchronization therapy. Am J Cardiol 97:260–263
6. Bleeker GB, Holman ER, Steendijk P et al (2006) Cardiac resynchronization therapy in patients with a narrow QRS complex. J Am Coll Cardiol 48:2243–2250
7. Ypenburg C, Sieders A, Bleeker GB et al (2007) Myocardial contractile reserve predicts improvement in left ventricular function after cardiac resynchronization therapy. Am Heart J 154:1160–1165
8. Torn M, Bollen WL, van der Meer FJ, van der Wall EE, Rosendaal FR (2005) Risks of oral anticoagulant therapy with increasing age. Arch Intern Med 165:1527–1532
9. Ypenburg C, Schalij MJ, Bleeker GB et al (2007) Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. Eur J Heart J 28:33–41
10. Ypenburg C, van der Wall EE, Schalij MJ, Bax JJ (2008) Imaging in cardiac resynchronisation therapy. Neth Heart J 16:S36–S40
11. Nemes A, Geleijnse ML, van Geuns RJ et al (2008) Dobutamine stress MRI versus threedimensional contrast echocardiography: it’s all black and white. Neth Heart J 16:217–218
12. Bigi R, Desideri A, Cortigiani L, Bax JJ, Celegon L, Fiorentini C (2001) Stress echocardiography for risk
stratification of diabetic patients with known or suspected coronary artery disease. Diabetes Care 24:1596–1601
13. van der Laarse A, Kerkhof PL, Vermeer F et al (1988) Relation between infarct size and left ventricular performance assessed in patients with first acute myocardial infarction randomized to intracoronary thrombolytic therapy or to conventional treatment. Am J Cardiol 61:1–7
14. Posma JL, Blanksma PK, van der Wall EE, Hamer HP, Mooijer EL, Lie KI (1996) Assessment of quantitative hypertrophy scores in hypertrophic cardiomyopathy: magnetic resonance imaging versus echocardiography. Am Heart J 132:1020–1027
15. Pluim BM, Beyerbach HP, Chin JC et al (1997) Comparison of echocardiography with magnetic resonance imaging in the assessment of the athlete’s heart. Eur Heart J 18:1505–1513
16. van der Wall EE, den Hollander W, Heidennal GA, Westera G, Majid PA, Roos JP (1981) Dynamic myocardial scintigraphy with 123I-labeled free fatty acids in patients with myocardial infarction. Eur J Nucl Med 6:383–389
17. Braun S, van der Wall EE, Emanuelsson S, Kobrin I (1996) Effects of a new calcium antagonist, mibefradil (Ro 40–5967), on silent ischemia in patients with stable chronic angina pectoris: a multicenter placebo-controlled study. The mibefradil international study group. J Am Coll Cardiol 27:317–322
18. de Nooijer R, Verkleij CJ, von der Thüsen JH et al (2006) Lesional overexpression of matrix metalloproteinase-9 promotes intraplaque hemorrhage in advanced lesions but not at earlier stages of atherogenesis. Arterioscler Thromb Vasc Biol 26:340–346
19. Bakx AL, van der Wall EE, Braun S, Emanuelsson H, Bruschke AV, Kobrin I (1995) Effects of the new calcium antagonist mibefradil (Ro 40–5967) on exercise duration in patients with chronic stable angina pectoris: a multicenter, placebo-controlled study. Ro 40–5967 International Study Group. Am Heart J 130:748–757
20. van der Hoven BL, Pires NM, Warda HM et al (2005) Drug-eluting stents: results, promises and problems. Int J Cardiol 99:9–17
21. van der Laan A, Hirsch A, Nijveild R et al (2008) Bone marrow cell therapy after acute myocardial infarction: the HEBE trial in perspective, first results. Neth Heart J 16:436–439
22. Oosterholt T, Tulevski II, Roest AA et al (2005) Disparity between dobutamine stress and physical exercise magnetic resonance imaging in patients with an intra-atrial correction for transposition of the great arteries. J Cardiovasc Magn Reson 7:383–389
23. Tulevski II, Hirsch A, Sanson BJ et al (2001) Increased brain natriuretic peptide as a marker for right ventricular dysfunction in acute pulmonary embolism. Thromb Haemost 86:1193–1196
24. Bax JJ, de Roos A, van Der Wall EE (1999) Assessment of myocardial viability by MRI. J Magn Reson Imaging 10:418–422
25. van der Meer RW, Rijzewijk LJ, de Jong HW et al (2009) Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation 119:2069–2077
26. Raggi P, Bellasi A, Ratti C (2005) Ischemia imaging and plaque imaging in diabetes: complementary tools to improve cardiovascular risk management. Diabetes Care 28:2787–2794
27. Holman ER, Buller VG, de Roos A et al (1997) Detection and quantification of dysfunctional myocardium by magnetic resonance imaging. A new three-dimensional method for quantitative wall-thickening analysis. Circulation 95:924–931
28. Schuijf JD, Bax JJ, Shaw LJ et al (2006) Meta-analysis of comparative diagnostic performance of magnetic resonance imaging and multislice computed tomography for noninvasive coronary angiography. Am Heart J 151:404–411
29. van Ruggen FP, van der Wall EE, Bruschke AV (1992) New developments in pharmacologic stress imaging. Am Heart J 124:468–485
30. van Ruggen FP, Holman ER, van der Wall EE et al (1993) Quantification of global and regional left ventricular function by cine magnetic resonance imaging during dobutamine stress in normal human subjects. Eur Heart J 14:456–463
31. Pluim BM, Lamb HJ, Kayser HW, Leujes F et al (1998) Functional and metabolic evaluation of the athlete’s heart by magnetic resonance imaging and dobutamine stress magnetic resonance spectroscopy. Circulation 97:666–672
32. van Ruggen FP, van der Wall EE, Spanjersberg SJ et al (1994) Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 90:127–138
33. Schuijf JD, Bax JJ, van der Wall EE (2007) Anatomical and functional imaging techniques: basically similar or fundamentally different? Neth Heart J 15:43–44
34. Vliegen HW, Doornbos J, de Roos A, Jukema JW, Beckedam MA, van der Wall EE (1997) Value of fast gradient echo magnetic resonance angiography as an adjunct to coronary arteriography in detecting and confirming the course of clinically significant coronary artery anomalies. Am J Cardiol 79:773–776
35. Hoogendoorn LJ, Pattynama PM, Buis B, van der Geest RJ, van der Wall EE, de Roos A (1995) Noninvasive evaluation of aortocoronary bypass grafts with magnetic resonance flow mapping. Am J Cardiol 75:845-848
36. Langerak SE, Vliegen HW, de Roos A et al (2002) Detection of vein graft disease using high-resolution magnetic resonance angiography. Circulation 105:328–333
37. Rebergen SA, Ottenkamp J, Doornbos J, van der Wall EE, Chin JG, de Roos A (1993) Postoperative pulmonary flow dynamics after Fontan surgery: assessment with nuclear magnetic resonance velocity mapping. J Am Coll Cardiol 21:123–131
38. Groenink M, Lohuis TA, Tijssen JG et al (1999) Survival and complication free survival in Marfan’s syndrome: implications of current guidelines. Heart 82:499–504
39. Niezen RA, Helbing WA, van der Wall EE, van der Geest RJ, Rebergen SA, de Roos A (1996) Biventricular systolic function and mass studied with MR imaging in children with pulmonary regurgitation after repair for tetralogy of Fallot. Radiology 201:135–140
40. Vliegen HW, van Straten A, de Roos A et al (2002) Magnetic resonance imaging to assess the hemodynamic effects of pulmonary valve replacement in adults late after repair of tetralogy of fallot. Circulation 106:1703–1707

41. Oosterhof T, van Straten A, Vliegen HW et al (2007) Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation 116:545–551

42. van der Geest RJ, de Roos A, Reiber JH (1997) Quantitative analysis of cardiovascular MR images. Int J Card Imaging 13:247–258

43. van der Geest RJ, Niezen RA, van der Wall EE, de Roos A, Reiber JH (1998) Automated measurement of volume flow in the ascending aorta using MR velocity maps: evaluation of inter- and intraobserver variability in healthy volunteers. J Comput Assist Tomogr 22:904–911

44. van der Geest RJ, van der Wall EE, de Roos A, Bruschke AV (1995) Magnetic resonance imaging in coronary artery disease. Circulation 92:2723–2739

45. Bavelaar-Croon CD, Kayser HW, van der Wall EE et al (2000) Left ventricular function: correlation of quantitative gated SPECT and MR imaging over a wide range of values. Radiology 217:572–575

46. Buller VG, van der Geest RJ, Kool MD, van der Wall EE, de Roos A, Reiber JH (1997) Assessment of regional left ventricular wall parameters from short axis magnetic resonance imaging using a three-dimensional extension to the improved centerline method. Invest Radiol 32:529–539

47. Pluim BM, Chin JC, De Roos A et al (1996) Cardiac anatomy, function and metabolism in elite cyclists assessed by magnetic resonance imaging and spectroscopy. Eur Heart J 17:1271–1278

48. Matheijssen NA, de Roos A, van der Wall EE et al (1990) Myocardial infarct size after reperfusion therapy: assessment with Gd-DTPA-enhanced MR imaging. Radiology 176:517–521

49. Scholte AJ, Schuijf JD, Kharagjitsingh AV et al (2008) Different manifestations of coronary artery disease by stress SPECT myocardial perfusion imaging, coronary calcium scoring, and multislice CT coronary angiography in asymptomatic patients with type 2 diabetes mellitus. J Nucl Cardiol 15:503–509

50. Scholte AJ, Schuijf JD, Kharagjitsingh AV et al (2009) Prevalence and predictors of an abnormal stress myocardial perfusion study in asymptomatic patients with type 2 diabetes mellitus. Eur J Nucl Med Mol Imaging 36:567–575

51. Young LH, Wackers FJ, Chyun DA et al (2009) Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA 301:1547–1555