Leptin as a Modulator of Neuroendocrine Function in Humans

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Khan, Sami M., Ole-Petter R. Hamnvik, Mary Brinkoetter, and Christos S. Mantzoros. 2012. Leptin as a modulator of neuroendocrine function in humans. Yonsei Medical Journal 53(4): 671-679.
Published Version	doi:10.3349/ymj.2012.53.4.671
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:10445611
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Leptin as a Modulator of Neuroendocrine Function in Humans

Sami M. Khan, Ole-Petter R. Hännvik, Mary Brinkoetter, and Christos S. Mantzoros

Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Section of Endocrinology, Boston VA Healthcare System, Boston, MA; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.

INTRODUCTION

Leptin, a peptide hormone secreted by adipocytes in proportion of the amount of energy stored in fat, plays a central role in regulating human energy homeostasis. In addition, leptin plays a significant permissive role in the physiological regulation of several neuroendocrine axes, including the hypothalamic-pituitary-gonadal, -thyroid, -growth hormone, and -adrenal axes. Decreased levels of leptin, also known as hypoleptinemia, signal to the brain a state of energy deprivation. Hypoleptinemia can be a congenital or acquired condition, and is associated with alterations of the aforementioned axes aimed at promoting survival. More specifically, gonadotropin levels decrease and become less pulsatile under conditions of energy deprivation, and these changes can be at least partially reversed through leptin administration in physiological replacement doses. Similarly, leptin deficiency is associated with thyroid axis abnormalities including abnormal levels of thyrotropin-releasing hormone, and leptin administration may at least partially attenuate this effect. Leptin deficiency results in decreased insulin-like growth factor 1 levels which can be partially ameliorated through leptin administration, and leptin appears to have a much more pronounced effect on the growth of rodents than that of humans. Similarly, adrenal axis function is regulated more tightly by low leptin in rodents than in humans. In addition to congenital leptin deficiency, conditions that may be associated with decreased leptin levels include hypothalamic amenorrhea, anorexia nervosa, and congenital or acquired lipodystrophy syndromes. Accumulating evidence from proof of concept studies suggests that leptin administration, in replacement doses, may ameliorate neuroendocrine abnormalities in individuals who suffer from these conditions.

Key Words: Leptin, leptin deficiency, amenorrhea
nal to the central nervous system about the amount of energy reserves available for reproductive and other essential functions. Thus, circulating leptin levels dictate the body’s energy homeostasis and neuroendocrine, immune as well as metabolic function. More recently, human and rodent studies have demonstrated that leptin plays an important role in regulating neuroendocrine axes such as the hypothalamic-pituitary-gonadal axis, the thyroid axis, the growth hormone axis, and the adrenal axis. Leptin levels are also influenced by several other factors including acute change in energy intake; leptin levels decrease in response to acute and chronic energy deprivation. It appears that leptin may be especially important in mediating neuroendocrine adaptations that act in a concerted manner to conserve energy. We review herein the current state of knowledge about the effects of leptin, leptin deprivation, and leptin replacement on these neuroendocrine axes.

Biology of leptin: an overview

Leptin, the product of the *ob* gene in rodents and the *LEP* gene in humans, is a 167-amino acid, 16 kDa hormone. It structurally resembles a cytokine and as it was one of the first adipocyte-secreted hormones to be discovered with this cytokine-like structure, it is the prototype of the adipocytokine proteins. Orthologs of leptin with slightly varied amino acid sequences but conserved functional properties and tertiary structure have been found in several species including fish and reptiles. Leptin is produced primarily by the white adipose tissue, but is also expressed in other tissues such as the brown adipose tissue, the primary and secondary lymphoid organs, the bone marrow, the mammary epithelium, the ovaries, the skeletal muscle, and the placenta to mention a few. Leptin levels in humans are secreted in proportion to energy stored in fat (total body fat mass). Acute changes in caloric intake, mainly acute decreases in food intake, have been shown to have a dramatic effect on circulating leptin concentrations. For example, fasting for one or three days results in a marked decrease of leptin levels (by 50% and 80% respectively). Leptin levels in humans are also influenced by sex steroid levels, thyroid hormones, cytokines, and other factors to a lesser degree than the factors mentioned above.

Leptin exerts its effects through binding and activating specific leptin receptors, which are coded for by the *ob* gene in mice and the *LEPR* gene in humans. These receptors exist both in the central nervous system, especially the hypothalamus, kidneys, lungs, lymphocytes, adipose tissue, prostate, ovaries, liver, small intestines, and heart. There are at least six isoforms of the murine leptin receptor, whereas in humans, only four alternatively spliced isoforms have been described. The ObRb receptor, the long form of the leptin receptor, is considered the active leptin receptor and is highly expressed in the hypothalamus, including in nuclei associated with body weight control.

Circulating leptin levels in humans

Leptin levels in the blood stream display a circadian pattern such that leptin concentration is at the lowest point between early afternoon and mid-afternoon and is at its highest point between midnight and early morning. Furthermore, leptin secretion appears to be pulsatile. Though the pulsatility of leptin secretion is similar in obese and in lean individuals, the amplitude of leptin pulses is greater among obese individuals.

Several factors contribute to the inter-individual variability of leptin levels in humans, including gender and total body fat mass. Leptin levels display sexual dimorphism, with women having higher levels than men even after controlling for adiposity. Sex hormones such as testosterone and estrogen explain some of the gender variation in leptin levels. Among women, leptin levels appear to be at their highest level during the luteal phase of the menstrual cycle. Distribution of fat also plays a role in variability of leptin levels; subcutaneous fat appears to produce more leptin than omental fat.

Data on the neuroendocrine functions of leptin in humans emanate mainly from case reports of congenital leptin deficiency and leptin administration to these individuals, as well as from observational and interventional physiology studies involving fasting and/or weight loss in normal subjects followed by leptin administration. In a direct extension of these studies, leptin physiology and pathophysiology has also been studied using various disease states as experimental models. These include conditions associated with relative leptin deficiency, such as hypothalamic amenorrhea and lipodystrophies. We summarize findings from these studies in the following paragraphs.
Humans with genetic mutations that lead to congenital leptin deficiency experience hypogonadotropic hypogonadism and failure to undergo puberty,35 the latter is restored by leptin administration in replacement doses.48,49,56 These data in the extremely rare subjects with congenital leptin deficiency are consistent with our finding that a rise in leptin levels precedes the onset of puberty in normal boys.57 Even in rodents, exogenous leptin administration results in earlier onset of markers of puberty including vaginal opening,58 and leptin antibodies appear to inhibit pubertal onset in female rats.59 Although ob/ob mice have complete leptin deficiency and are infertile, female ob/ob mice can ovulate and give birth if they are treated with leptin in replacement doses,60 which stimulates the secretion of luteinizing hormone (LH) \textit{in vivo}.61 In mice, fasting-induced hypoleptinemia also diminishes the levels of gonadotropins and impairs the reproductive function and sex hormone levels of these mice; however, leptin administration restores testosterone levels in male mice, estrous cycles in female mice, and LH levels in both.6 In a follow-up to our rodent experiments and observational studies in humans, we have also demonstrated that caloric deprivation of normal-weight men decreases testosterone levels as well as LH pulsatility, effects that can be fully normalized by administering leptin in physiological replacement doses.7,62 Similarly, caloric deprivation that leads to partial leptin deficiency in normal-weight women decreases their LH peak frequency, and this effect can be reversed through leptin administration.8 Leptin’s effect on luteinizing hormone secretion appears to proceed via an indirect mechanism, as neurons that secrete gonadotropin-releasing hormone (GnRH) do not have leptin receptors.63 There is evidence that leptin may act on groups of neurons that in turn provide input to populations of GnRH secreting neurons in regions of the brain such as the hypothalamic ventral premammillary nucleus and the preoptic region have been found in close proximity to both Kiss1 and GnRH neurons.74 Although leptin’s initiation of puberty in mice requires a functional ventral premammillary nucleus, this does not appear to require the action of Kiss1 mRNA expressing neurons.75

A well-studied mediator of the relationship between leptin and reproduction is kisspeptin. This protein is a product of the \textit{Kiss1} gene.64 Kiss1 mRNA expression is reduced in the caudal hypothalamus of fasting female rats69,70 and ob/ob mice express Kiss1 mRNA to a lesser degree than do their wild-type counterparts.67 The expression of Kiss1 mRNA is partially restored with the administration of exogenously administered leptin76 whereas exogenously administered kisspeptin to rodents that are relatively leptin deficient stimulates the secretion of GnRH73 and increases levels of LH, follicle-stimulating hormone,72,73 and testosterone.71 Populations of neurons with leptin receptors in brain regions such as the hypothalamic ventral premammillary nucleus and the preoptic region have been found in close proximity to both Kiss1 and GnRH neurons.74 Although leptin’s initiation of puberty in mice requires a functional ventral premammillary nucleus, this does not appear to require the action of Kiss1 mRNA expressing neurons.75
which caloric deprivation altered TSH secretion patterns and
levels. In contrast to men, in whom significant hypolepti-
nemia was induced (levels less than 2-3 ng/mL), similarly
pronounced effects of leptin administration were not seen in
a similar study on normal-weight women 8 in whom leptin
levels were decreased but remained within normal limits. We
proposed that the reason for the discrepant results between
these two otherwise similar studies could be the fact that men
experienced a decrease in leptin levels to an average of 0.27
ng/mL (much lower than the lower normal level in our labo-
ratory, 3 ng/mL). 7 In contrast, leptin levels dropped to an av-
erage level of approximately 3 ng/mL in women 8 and thus
we suggested that leptin appears to have a threshold level for
regulation of TSH. 51 In contrast to TSH, T3 and T4 were
much less regulated in humans than in rodents.

These data, taken together, suggest that although leptin
may have a significant effect in regulating the secretion pat-
tern of TSH in humans, its role in regulating circulating lev-
els of T3 and T4 may not be as important in humans as it is
in rodents and may be different in complete leptin deficien-
cy than in relative, acute hypoleptinemia. 21,65,81

A subsequent interventional but non-randomized study
focused on both lean and obese participants who were stud-
ied before and after they had lost 10% of their body weight
(and thus became relatively hypoleptinemic) over the course
of an average of eight weeks. 51 Though all participants ex-
perienced decreased levels of leptin, obese subjects still had
relatively higher levels, which ranged from 10 ng/mL up to
60 ng/mL. 51 Levels of TSH, T3, and T4 were reportedly all
decreased, though leptin replacement only increased T3 and
T4 levels in these subjects. 51 The authors of this study
suggest that leptin may increase the bioactivity of TSH or
stimulate T4 secretion, but these results from this non-ran-
donized study remain to be replicated by future random-
ized studies involving administration of leptin in physiolog-
ical replacement doses. 51 We have recently reported that
administering leptin in pharmacological doses to subjects
undergoing a 6-month-long mild hypocaloric diet does not
appear to alter levels of the circulating hormones of the thy-
roid axis but doses administered were supraphysiological
and may have thus suppressed leptin receptors leading to
suboptimal results. 82

In vitro evidence indicates that corticotropin-releasing hor-
more is released in response to leptin in a dose-dependent
manner 90 and suggests that leptin decreases the secretion of
corticosterone from cells of rat adrenal cortex. 85 Additionally,
leptin decreases the degree to which stress increases ACTH
and corticosterone levels. 80

On the basis of very small and non-randomized studies, it
has been suggested that the adrenal axis of individuals with
mutated leptin or leptin receptor genes may not be signifi-
cantly impaired. 96,48,49 Similarly, leptin administration in a
group of men who became hypoleptinemic in response to
fasting for 72 hours did not appear to have a major effect on
cortisol secretion. 7 Likewise, leptin administration did not
attenuate significantly the activation of the adrenal axis in a
similar study of fasting women. 8 In contrast, in the context
of a larger randomized placebo-controlled study, we found
that women with hypothalamic amenorrhea who were hy-
percortisolemic did experience a statistically significant de-
crease in cortisol levels after they were treated with replace-
ment doses of metreleptin. 87 Along the same lines, we have
reported that there appears to be an inverse relationship be-

Humans who are leptin-deficient due to mutations of the
leptin gene demonstrate normal growth velocity in child-
hood 48,49 although their final height is decreased due to the
lack of pubertal growth spurt. 83 We have proposed on the
basis of the above and other experimental data from our
own physiology studies in humans that leptin may regulate
growth hormone’s ability to stimulate the secretion of insu-
lin-like growth factor 1 (IGF-1) as well as the corresponding
binding proteins in the periphery as opposed to acting di-
rectly on pituitary secretion of growth hormone itself. 84

We have shown by studying a group of normal-weight
men who became truly hypoleptinemic through prolonged
fasting that leptin administration tends to restore total IGF-1
levels, which are decreased due to caloric deprivation. 7 In
normal weight women, though, we found that leptin re-
placement did not significantly normalize IGF-1 levels. 8
Again, this was interpreted as illustrative of leptin having a
threshold for neuroendocrine regulation as the men’s leptin
levels dropped below 3 ng/mL whereas the women’s aver-
age leptin level did not. 81 Similarly, administering leptin to
euleptinemic subjects undergoing a 6-month-long mild hy-
pocaloric diet did not appear to alter levels of the circulat-

GROWTH HORMONE AXIS

In contrast, in the context of a larger randomized placebo-controlled study, we found that women with hypothalamic amenorrhea who were hypercortisolemic did experience a statistically significant decrease in cortisol levels after they were treated with replacement doses of metreleptin. Along the same lines, we have reported that there appears to be an inverse relationship be-
tween healthy men’s fluctuations in circulating levels of leptin and both cortisol and ACTH. Thus, the effect of leptin to regulate the adrenal axis in humans is rather small in magnitude and thus can be detected only in larger, randomized studies.

POTENTIAL APPLICATIONS OF LEPTIN IN HUMAN PATHOPHYSIOLOGY AND THERAPEUTICS

Congenital leptin deficiency
Mutations of the leptin gene result in congenital leptin deficiency, a rare condition in humans seen more commonly in populations where consanguineous marriage is relatively more common. Congenital leptin deficiency leads to obesity, which arises early in life, due to uncontrollable hyperphagia. It is also accompanied by neuroendocrine abnormalities such hypothalamic hypogonadism and pubertal failure which can be treated with leptin administration in replacement doses. As mentioned above, these individuals may have an impaired pituitary-thyroid axis (though one case series did not find abnormal thyroid function), with increased T3 and T4 levels and unchanged TSH levels after leptin replacement. Leptin is currently available on a compassionate basis for the treatment of morbid obesity and hypothalamic hypogonadism of these subjects.

Hypothalamic amenorrhea
Hypothalamic amenorrhea (HA) caused by an imbalance between energy expenditure and energy intake associated with excessive stress, excessive exercise, or inadequate food intake leads to significant neuroendocrine abnormalities, infertility and osteoporosis/stress fractures. In association with low fat mass, women with HA have abnormally low levels of leptin. We have reported that administration of leptin, in replacement doses, may lead to normalization of neuroendocrine action in women with hypothalamic amenorrhea. Leptin replacement normalized LH levels and pulsatility within weeks and ovulation within months in an open label study with a course of treatment of ten weeks. Moreover, in a subsequent placebo-controlled, double-blind, randomized study with a larger sample size we confirmed these results using a course of treatment of nine months.

The aforementioned ten-week study of leptin replacement in women with hypothalamic amenorrhea yielded increased levels of bone-specific alkaline phosphatase and osteocalcin, two bone formation markers. More definitive results in terms of changes in overall or regional bone mineral content or density were reported in the nine-month long randomized placebo-controlled study. In this study, six women underwent nine months of double-blind leptin administration and then elected to receive an additional year of open-label leptin administration; these women experienced significant gains in bone mineral content and density.

Anorexia nervosa
Anorexia nervosa is associated with hypoleptinemia. Among amenorrheic anorexic women with who have gained weight, circulating leptin levels are higher in those whose menses had resumed than in those who had remained amenorrheic. Unfortunately, there may be mild weight and/or fat loss with leptin replacement in lean women, which may be a potential reason not to administer leptin to anorexic women.

Lipodystrophy
Lipodystrophy is a condition characterized by abnormal distribution of adipose tissue. It is either inherited, in a very small number of patients, or can be acquired. The latter is much more frequent and most often occurs in HIV-positive subjects being treated with highly-active antiretroviral therapy for human immunodeficiency virus (HIV) infection. Subjects with significant degrees of lipodystrophy have lower leptin levels than unaffected subjects. Leptin administration in replacement doses is associated with normalization of neuroendocrine parameters in subjects who have lipodystrophy. Additionally, and probably even more importantly, leptin administration in replacement doses to subjects with lipodystrophy improves their metabolic abnormalities; including hypertriglyceridemia and impaired glucose control which often are resistant to maximum doses of insulin sensitizers or very high doses of insulin. The development of anti-leptin antibodies has been considered by many as a factor that may limit the use of this medication in humans but data remain inconclusive.

CONCLUSION

In conclusion, it appears that leptin regulates neuroendocrine function in humans and has a special role in mediating the neuroendocrine response to energy deprivation. Directions for future research include further elucidating the anatomical connections between energy homeostasis and
neuroendocrine functions and the specific molecular mechanisms underlying these connections.

Additionally, it appears that leptin levels are decreased in conditions such as congenital leptin deficiency, hypothalamic amenorrhea, anorexia nervosa, and lipodystrophy, conditions in which a leptin measurement in the blood could provide important novel diagnostic information. Small-scale proof-of-concept studies have shown that several of the neuroendocrine and other abnormalities associated with these conditions can be ameliorated via leptin therapy in replacement doses. Future research should involve larger-scale phase III placebo-controlled leptin administration trials to fully establish leptin’s therapeutic role in disease states associated with leptin deficiency.

REFERENCES

1. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425-32.
2. Moschos S, Chan JL, Mantzoros CS. Leptin and reproduction: a review. Fertil Steril 2002;77:433-44.
3. Bliúher S, Mantzoros CS. Leptin in humans: lessons from translational research. Am J Clin Nutr 2009;89:991S-7S.
4. Harnvik OP, Liu X, Petrou M, Gong H, Chamberland JP, Kim EH, et al. Soluble leptin receptor and leptin are associated with baseline adiposity and metabolic risk factors, and predict adiposity, metabolic syndrome, and glucose levels at 2-year follow-up: the Cyprus Metabolism Prospective Cohort Study. Metabolism 2011;60:987-93.
5. Matarese G, Mantzoros C, La Cava A. Leptin and adipocytokines: bridging the gap between immunity and atherosclerosis. Curr Pharm Des 2013;19:3676-80.
6. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, et al. Role of leptin in the neuroendocrine response to fasting. Nature 1996;382:250-2.
7. Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest 2003;111:1409-21.
8. Chan JL, Matarese G, Shetty GK, Raciti P, Kelesidis I, Aufero D, et al. Differential regulation of metabolic, neuroendocrine, and immune function by leptin in humans. Proc Natl Acad Sci U S A 2006;103:9641-6.
9. Luque RM, Huang ZH, Shah B, Mazzone T, Kineman RD. Effects of leptin replacement on hypothalamic-pituitary-gonadotropin hormone axis function and circulating ghrelin levels in ob/ob mice. Am J Physiol Endocrinol Metab 2007;292:E891-9.
10. Costa A, Pomá A, Martignoni E, Nappi G, Ur E, Grossman A. Stimulation of corticotropin-releasing hormone release by the obese (ob) gene product, leptin, from hypothalamic explants. Neuroreport 1997;8:1131-4.
11. Licinio J, Mantzoros C, Negrão AB, Cizza G, Wong ML, Bongiorno PB, et al. Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat Med 1997;3:575-9.
12. Boden G, Chen X, Mozoli M, Ryan I. Effect of fasting on serum leptin in normal human subjects. J Clin Endocrinol Metab 1996;81:3419-23.
13. Denver RJ, Bonett RM, Boorse GC. Evolution of leptin structure and function. Neuroendocrinology 2011;94:21-38.
14. Trayhurn P, Duncan JS, Hoggard N, Rayner DV. Regulation of leptin production: a dominant role for the sympathetic nervous system? Proc Nutr Soc 1998;57:413-9.
15. Matarese G, Moschos S, Mantzoros CS. Leptin in immunology. J Immunol 2005;174:3137-42.
16. Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord 2002;26:1407-33.
17. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996;334:292-5.
18. Yannakoulia M, Yiannakouris N, bliúher S, Matalas AL, Klimis-Zacas D, Mantzoros CS. Body fat mass and macronutrient intake in relation to circulating soluble leptin receptor, free leptin index, adiponectin, and resistin concentrations in healthy humans. J Clin Endocrinol Metab 2003;88:1730-6.
19. Mantzoros CS, Flier JS. Editorial: leptin as a therapeutic agent—trials and tribulations. J Clin Endocrinol Metab 2000;85:4000-2.
20. Mantzoros CS. Role of leptin in reproduction. Ann N Y Acad Sci 2000;900:174-83.
21. Kelesidis T, Kelesidis I, Chou S, Mantzoros CS. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med 2010;152:93-100.
22. Mullington JM, Chan JL, Van Dongen HP, Szuba MP, Samaras J, Price NJ, et al. Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol 2003;15:851-4.
23. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 2009;106:4453-8.
24. Mantzoros CS, Liolios AD, Tritos NA, Kaklamani VG, Doulgerakis DE, Griveas I, et al. Circulating insulin concentrations, smoking, and alcohol intake are independent important predictors of leptin in young healthy men. Obes Res 1998;6:179-86.
25. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996;84:491-5.
26. Clément K, Vaisse C, Lahlu N, Cabrol S, Pelloux V, Cassudo D, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998;392:398-401.
27. Mantzoros CS, Moschos SJ. Leptin: in search of role(s) in human physiology and pathophysiology. Clin Endocrinol (Oxf) 1998;50:551-67.
28. Tartaglia LA, Dembski M, Weng X, Deng N, Culppepper J, De vos R, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995;83:1263-71.
29. Fei H, Okano HJ, Li C, Lee GH, Zhao C, Darnell R, et al. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci U S A 1997;94:7001-5.
30. Baumann H, Morella KK, White DW, Dembski M, Bailon PS, Kim H, et al. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad
Neuroendocrine Functions of Leptin

31. Maffei M, Fei H, Lee GH, Dani C, Leroy P, Zhang Y, et al. Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc Natl Acad Sci U S A 1995;92:6957-60.

32. Papathanassoglou E, El-Haschimi K, Li XC, Matarese G, Strom T, Montzoros C. Leptin receptor expression and signaling in lymphocytes: kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J Immunol 2006;176:7745-52.

33. Moon HS, Chamberland JP, Diakopoulos KN, Fiorenza CG, Ziemke F, Schneider B, et al. Leptin and amylin act in an additive manner to activate overlapping signaling pathways in peripheral tissues: in vitro and ex vivo studies in humans. Diabetes Care 2011;34:132-8.

34. Moon HS, Matarese G, Brennan AM, Chamberland JP, Liu X, Fiorenza CG, et al. Efficacy of metreleptin in obese patients with type 2 diabetes: cellular and molecular pathways underlying leptin tolerance. Diabetes 2011;60:1647-56.

35. Cioffi JA, Shafer AW, Zupaneck TJ, Smith-Gbar J, Mikhail A, Platika D, et al. Novel B219/0B receptor isoforms: possible role of leptin in hematopoiesis and reproduction. Nat Med 1996;2: 585-9.

36. Lee GH, Proenca R, Monteze JM, Carroll KM, Darwishzadeh JG, Lee JI, et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996;379:632-5.

37. Peelman F, Couturier C, Dam J, Zabeau L, Tavernier J, Jockers R. Techniques: new pharmacological perspectives for the leptin receptor. Trends Pharmacol Sci 2006;27:218-25.

38. Sun Q, Comelis MC, Kraft P, Qi L, van Dam RM, Girman CJ, et al. Genome-wide association study identifies polymorphisms in LEPR as determinants of plasma soluble leptin receptor levels. Hum Mol Genet 2010;19:1846-55.

39. Sinha MK, Ohamnessian JP, Heiman ML, Kriauciunas A, Stephens TW, Magosin S, et al. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest 1996;97:1344-7.

40. Shea SA, Hilton MF, Orlova C, Ayers RT, Mantzoros CS. Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J Clin Endocrinol Metab 2005;90:2537-44.

41. Roemmich JN, Clark PA, Berr SS, Mai V, Mantzoros CS, Flier JS, et al. Gender differences in leptin levels during puberty are related to the subcutaneous fat depot and sex steroids. Am J Physiol 1998;275(3 Pt 1):E543-51.

42. Lin KC. Increase of leptin levels following exogenous administration of estrogen in women with normal menstruation. Kaohsiung J Med Sci 2000;16:13-9.

43. Shimizu H, Shimomura Y, Nakashish N, Futawatari T, Ohtani K, Sato N, et al. Estrogen increases in vivo leptin production in rats and human subjects. J Endocrinol 1997;154:285-92.

44. Asimakopoulou B, Milouis A, Gioka T, Kabouromiti G, Giamisilis G, Troussa A, et al. Serum pattern of circulating adipokines throughout the physiological menstrual cycle. Endocr J 2009;56:425-33.

45. Montague CT, Prins JB, Sanders L, Digby JE, O’Rahilly S. Dependent sex-specific differences in human leptin mRNA expression: implications for the control of regional fat distribution. Diabetes 1997;46:342-7.

46. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999;341: 879-84.

47. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002;110:1093-103.

48. Paz-Filho G, Delibasi T, Erol HK, Wong ML, Licinio J. Congenital leptin deficiency and thyroid function. Thyroid Res 2009;2:11.

49. Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S, et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest 2005;115:3579-86.

50. Chan JL, Mietus JE, Raciti PM, Goldberger AL, Mantzoros CS. Short-term fasting-induced autonomic activation and changes in catecholamine levels are not mediated by changes in leptin levels in healthy humans. Clin Endocrinol (Oxf) 2007;66:49-57.

51. Manzoros C, Flier JS, Lesmend MD, Brewerton TD, Jimerson DC. Cerebrospinal fluid leptin in anorexia nervosa: correlation with nutritional status and potential role in resistance to weight gain. J Clin Endocrinol Metab 1997;82:1845-51.

52. Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, et al. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med 2004;351:987-97.

53. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998;18:213-5.

54. Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O’Kirwan F, et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci U S A 2004;101: 4531-6.

55. Manzoros CS, Flier JS, Rogol AD. A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty. J Clin Endocrinol Metab 1997;82:1066-70.

56. Ahima RS, Dushay J, Flier SN, Prabakaran D, Flier JS. Leptin accelerates the onset of puberty in normal female mice. J Clin Invest 1997;99:391-5.

57. Chen R, Mick GI, Xu R, Zheng D, Fan Y, Lin X, et al. Effect of central antileptin antibody on the onset of female rat puberty. Int J Pediatr Endocrinol 2009;2009:194807.

58. Chehab FF, Lim ME, Lu R. Correction of the sterility defect in hypoestrogenic obese female mice by treatment with the human recombinant leptin. Nat Genet 1996;12:318-20.

59. Yu WH, Kimura M, Walczewska A, Karanth S, McCann SM, Prentice AM, et al. Effects of recombinant leptin on peripheral tissues: in vitro and ex vivo studies in humans. Diabetes Care 2008;31:753-64.

60. Quennell JH, Mulligan AC, Tups A, Liu X, Phipps SJ, Kemp CJ, Rosier C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002;110:1093-103.
et al. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology 2009;150:2805-12.
64. Hill JW, Elmoquist JK, Elias CF. Hypothalamic pathways linking energy balance and reproduction. Am J Physiol Endocrinol Metab 2008;294:E827-32.
65. Dardeno TA, Chou SH, Moon HS, Chamberland JP, Fiorenza CG, Mantzoros CS. Leptin in human physiology and therapeutics. Front Neuroendocrinol 2010;31:377-93.
66. Lehman MN, Coolen LM, Goodman RL. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 2010;151:3479-89.
67. Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurons are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 2006;18:298-303.
68. Kotani M, Dethieux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2007;282:34631-6.
69. Matsuzaki T, Iwasa T, Kinouchi R, Yoshida S, Murakami M, Gereltsseg G, et al. Fasting reduces the kiss1 mRNA levels in the caudal hypothalamus of gonadally intact adult female rats. Endo J 2011;58:1003-12.
70. Castellano JM, Bentsen AH, Sánchez-Garrido MA, Ruiz-Pino F, Romero M, Garcia-Galiano D, et al. Early metabolic programming of puberty onset: impact of changes in postnatal feeding and rearing conditions on the timing of puberty and development of the hypothalamic kisspeptin system. Endocrinology 2011;152:3396-408.
71. Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 2004;80:264-72.
72. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WE, et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 2004;145:4073-7.
73. Thompson EL, Patterson M, Murphy KG, Smith KL, Dhillo WS, Todd JF, et al. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J Neuroendocrinol 2004;16:850-8.
74. Louis GW, Greenwald-Yarnell M, Phillips R, Coolen LM, Lehman MN, Myers MG Jr. Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 2011;152:2302-10.
75. Donato J Jr, Cravo RM, Frazão R, Gautron L, Scott MM, Lachey J, et al. Leptin’s effect on puberty in mice is relayed by the central premammary nucleus and does not require signaling in Kiss1 neurons. J Clin Invest 2011;121:355-68.
76. Mantzoros CS, Ozata M, Negrao AB, Suchard MA, Ziotopoulou M, Caglayan S, et al. Synchronicity of frequently sampled thyrotropin (TSH) and leptin concentrations in healthy adults and leptin-deficient subjects: evidence for possible partial TSH regulation by leptin in humans. J Clin Endocrinol Metab 2001;86:3284-91.
77. van der Kroon PH, Boldewijn H, Langeveld-Soeter N. Congenital hypothyroidism in latent obese (ob/ob) mice. Int J Obes 1982; 6:83-90.
78. Légradi G, Emerson CH, Ahima RS, Flier JS, Lechan RM. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology 1997;138:2569-76.
79. Kim MS, Small CJ, Stanley SA, Morgan DG, Seal LJ, Kong WM, et al. The central melanocortin system affects the hypothalamic-pituitary thyroid axis and may mediate the effect of leptin. J Clin Invest 2000;105:1005-11.
80. Sanchez VC, Goldstein J, Stuart RC, Hovanesian V, Hoo L, Munzberg H, et al. Regulation of hypothalamic prohormone convertases 1 and 2 and effects on processing of prothyrotropin-releasing hormone. J Clin Invest 2004;114:357-69.
81. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Darde AO, Kim SY, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 2011;301:E567-84.
82. Shetty GK, Matarese G, Magkos F, Moon HS, Liu X, Brennan AM, et al. Leptin administration to overweight and obese subjects for 6 months increases free leptin concentrations but does not alter circulating hormones of the thyroid and IGF axes during weight loss induced by a mild hypocaloric diet. Eur J Endocrinol 2011;165:249-54.
83. Farooqi IS, Wangersteen T, Collins S, Kimber W, Matarese G, Koghs JM, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 2007;356:237-47.
84. Chan JL, Williams CJ, Raciti P, Blakeman J, Kelesidis T, Kelesidis I, et al. Leptin does not mediate short-term fasting-induced changes in growth hormone pulsatility but increases IGF-I in leptin deficiency states. J Clin Endocrinol Metab 2008;93:2819-27.
85. Pralong FP, Roduit R, Waeder G, Castillo E, Mosimann F, Thorens B, et al. Leptin inhibits directly glucocorticoid secretion by normal human and rat adrenal gland. Endocrinology 1998;139:4264-8.
86. Heiman ML, Ahima RS, Craft LS, Schoner B, Stephens TW, Flier JS. Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology 1997;138:3859-63.
87. Sienkiewicz E, Magkos F, Aronis KN, Brinkoetter M, Chamberland JP, Chou S, et al. Long-term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypothalimipenic women. Metabolism 2011;60:1211-21.
88. Blüher S, Shah S, Mantzoros CS. Leptin deficiency: clinical implications and opportunities for therapeutic interventions. J Investig Med 2009;57:784-8.
89. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997;387:903-8.
90. Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet 2005;366:74-85.
91. Miller KK, Parulekar MS, Schoenfeld E, Anderson E, Hubbard J, Klibanski A, et al. Decreased leptin levels in normal weight women with hypothalamic amenorrhoea: the effects of body composition and nutritional intake. J Clin Endocrinol Metab 1998; 83:2309-12.
92. Chou SH, Chamberland JP, Liu X, Matarese G, Gao C, Stefanakis R, et al. Leptin is an effective treatment for hypothalamic amenorrhoea. Proc Natl Acad Sci U S A 2011;108:6585-90.
93. Arimura C, Nozaki T, Takakura S, Kawai K, Takii M, Sudo N, et al. Predictors of menstrual resumption by patients with anorexia nervosa. Eat Weight Disord 2010;15:e226-33.
94. Fiorenza CG, Chou SH, Mantzoros CS. Lipodystrophy: patho-
Neuroendocrine Functions of Leptin

physiology and advances in treatment. Nat Rev Endocrinol 2011;7:137-50.
95. Pardini VC, Victória IM, Rocha SM, Andrade DG, Rocha AM, Pieroni FB, et al. Leptin levels, beta-cell function, and insulin sensitivity in families with congenital and acquired generalized lipoatrophic diabetes. J Clin Endocrinol Metab 1998;83:503-8.
96. Nagy GS, Tsiodras S, Martin LD, Avihingsanon A, Gavrila A, Hsu WC, et al. Human immunodeficiency virus type 1-related lipoatrophy and lipohypertrophy are associated with serum concentrations of leptin. Clin Infect Dis 2003;36:795-802.
97. Musso C, Cochran E, Javor E, Young J, Depaoli AM, Gorden P. The long-term effect of recombinant methionyl human leptin therapy on hyperandrogenism and menstrual function in female and pituitary function in male and female hypo leptinemic lipo dystrophic patients. Metabolism 2005;54:255-63.
98. Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med 2002;346:570-8.
99. Chong AY, Lupsa BC, Cochran EK, Gorden P. Efficacy of leptin therapy in the different forms of human lipodystrophy. Diabetologia 2010;53:27-35.
100. Mantzoros CS. W(h)ither metreleptin for lipodystrophy and the metabolic syndrome? Endocr Pract 2010;1-18.
101. Mantzoros CS. Whither recombinant human leptin treatment for HIV-associated lipoatrophy and the metabolic syndrome? J Clin Endocrinol Metab 2009;94:1089-91.