Review article

Metabolomics for the masses: The future of metabolomics in a personalized world

Drupal K. Trivedi¹, Katherine A. Hollywood¹, Royston Goodacre* ⁵

Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK

ABSTRACT

Current clinical practices focus on a small number of biochemical directly related to the pathophysiology with patients and thus only describe a very limited metabolome of a patient and fail to consider the interations of these small molecules. This lack of extended information may prevent clinicians from making the best possible therapeutic interventions in sufficient time to improve patient care. Various post-genomics ('omic') approaches have been used for therapeutic interventions previously. Metabolomics now a well-established 'omic' approaches, has been widely adopted as a novel approach for biomarker discovery and in tandem with genomics (especially SNPs and GWAS) has the potential for providing systemic understanding of the underlying causes of pathology. In this review, we discuss the relevance of metabolomics approaches in clinical sciences and its potential for biomarker discovery which may help guide clinical interventions. Although a powerful and potentially high throughput approach for biomarker discovery at the molecular level, true translation of metabolomics into clinics is an extremely slow process. Quicker adaptation of biomarkers discovered using metabolomics can be possible with novel portable and wearable technologies aided by clever data mining, as well as deep learning and artificial intelligence; we shall also discuss this with an eye to the future of precision medicine where metabolomics can be delivered to the masses.

1. Introduction

Central to this review is the role of metabolomics within the clinical sciences and so metabolomics as a discipline is first introduced, along with the role of clinically useful biomarkers (small molecules). Following this we discuss metabolomics approaches for personalised and precision medicine and the future role of delivering metabolomics to the masses.

Whilst there are many definitions of metabolomics we consider that metabolomics is a multidisciplinary science that seeks to define the entire complement of small molecular weight molecules termed metabolites within a biological matrix of interest. Metabolomics has been readily applied to a vast array of biological matrices of pre-clinical and clinical medicine relevance, with perhaps not surprisingly the most common being blood plasma and serum as well as urine. These are not the only samples accessible to the clinician and many studies have also focussed on extending these measurements towards intact tissues. This is particularly important for cancer diagnostics as measuring the pathology directly is likely to yield pathophysiological information about the disease (i.e. the cause) rather than measuring circulating metabolites (i.e. the likely downstream effect). In addition, studies have also shown that it is possible to generate information-rich metabolomes from human saliva, breath, cerebrospinal fluid (CSF), broncho alveolar lavage (BAL), sweat, faeces (as well as other locations in the gastro-intestinal tract), semen, and amniotic fluid. Finally, some research has also cultured primary cells for mammalian cell-based models, which may be particularly important for ADME-Tox (adsorption, distribution, metabolism and excretion-toxicology) studies.

The term metabolomics was first coined in the late 1990s [1] and had its 18th anniversary last year [2]. Metabolomics has increased in popularity and applicability ever since. Metabolomics can no longer be described as a novel concept within the clinical arena and it is now emergent. A simple search of Web of Science (on 7th Feb 2017) for metabolomics approach, returns over 3700 articles. Within the range of 'omic approaches (i.e. transcriptome, proteome) the metabolome is perhaps the most closely linked to the phenotype of the subject and thus, can report on disease status as well as the effect and response to external stimuli (e.g. drug therapy, nutrition, exercise, etc).

* Corresponding author.
E-mail address: roy.goodacre@manchester.ac.uk (R. Goodacre).
¹ These authors contributed equally to production of this manuscript.

http://dx.doi.org/10.1016/j.nhtm.2017.06.001
Received 25 May 2017; Received in revised form 2 June 2017; Accepted 2 June 2017
Available online 07 June 2017
2307-5023/ © 2017 The Authors. Published by Elsevier Ltd on behalf of European Society for Translational Medicine. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
With this in mind we believe that the field must drive forward towards the undertaking of large cohort multi-centre studies to enhance the discovery of biomarkers that have increased prospects of translation into point of care and rapid diagnostics; this biomarker discovery process is highlighted in Fig. 2, and of course is not limited to metabolites but any molecule.

Table 2 highlights several key metabolomics studies that have been aimed towards identifying biomarker candidates for an array of diseases. This table indicates the target disease of interest and the publication year, which illustrates the attempts made for biomarker discovery using metabolomics approaches, for a specific condition. It also summarises the number of control candidates and the number of diseased patients that were incorporated into the studies. Although these and other authors do not deliberately eschew obfuscation these numbers are often difficult to distinguish clearly within a manuscript. In addition, in some cases longitudinal studies are conducted whereby a patient is their own control. In order to have clarity in what was done within a study and what should be reported the Metabolomics Standards Initiative (MSI) initiated and subsequently published a series of papers on minimum reporting standards [7]. Within Table 2 the biomarker (or biomarker panels) that have been discovered within each study are documented and, we note if an independent validation has occurred within the same study which will of course increase confidence in the validity of said biomarker.

It is clear from inspecting this Table 2 that there is a broad difference in the number of subjects included in these studies. The community is yet to decide what this number should be, but it should be noted and acknowledged that the availability of patients will greatly vary from disease to disease and equally access to valuable (sometimes very rare) samples will be limited. In this century alone, there have been more than 1600 publications (using a combined search of the above PLUS biomarker* from 2000 to date) that 'claim' to have discovered a biomarker using a metabolomics approach, which is nearly half of all papers surveyed! Although there are some exceptions, most of this research fails to acquire enough statistical power due to a limited sample size (<100 subjects in total) and almost none repeat the analysis in a further cohort and thus fail to demonstrate a lack of biomarker utility. We believe that these thwart the potential translation of metabolomics research into clinics. For instance, there is minimal-known translation of metabolomics biomarker discovery into clinics for the top five causes of death in the UK (Table 3) which include: ischaemic heart diseases, dementia and Alzheimer’s disease, malignant neoplasms of trachea, bronchus and lung, chronic lower respiratory diseases and cerebrovascular diseases [8]. Malignant neoplasms, respiratory disease and ischaemic heart diseases are also three of the top five leading causes of death across Europe [9].

Despite the above disease being of obvious importance we note the rapid rise of microorganisms as contributing to world-wide mortality. The obvious ‘culprits’ here being Mycobacterium tuberculosis and HIV, but with the almost meteoric rise in antimicrobial resistance (AMR) many normally harmless opportunistic pathogens will become increasingly important. Indeed it is predicted by 2050 that bacterial infections will kill more humans than cancer and heart disease [10]. Whilst it is accepted that there are many microbial interactions with the host cell microbiome and that man is a true superorganism [11] it is also notable that many common human disease may indeed have a microbial origin [12]. Metabolomics is likely to play a valuable role in understanding AMR and the host-pathogen interaction.

This review seeks to provide an overview of metabolomics in respect to diagnostic applications and demographic screening and present a futuristic perspective on the implementation of the field with novel portable and wearable technologies.
4. Is the future of healthcare simply personalized medicine?

Although personalised medicine is a generic entity relatively new to the field of healthcare research, it has of course been practiced for decades within a so-called evidence-based framework (Fig. 3). In evidence-based medicine an individual is treated for disease largely based on the most popular medicine. After the drug is taken for some time an assessment is made, with the desire to evaluate whether this has relieved symptoms (this may involve the measurement of a clinically useful biomarker (Table 1)). Based on this deterministic assessment the patient may then stay on the same drug, be diagnosed an alternate medicine, or be given a treatment to relieve side effects of the first drug. This process is slow and potentially dangerous to the patient. A much more desirable approach is to use precision medicine and this was brought to the forefront of attention when, during his 2015 State of the Union address President Obama announced that he was launching the Precision Medicine Initiative. This was heralded as a bold new research direction with changing for biobank made available by NIH to support the initiative.

Precision medicine involves assessing the genotype (e.g. SNPs) and phenotype (e.g. metabolome) of the patient before they undergo any treatment (Fig. 3) and therefore relies on accurate analytical methods for directing therapy. Biomarkers are needed that can accurately identify the underlying pathology as these may help understand the disease aetiology and thereby result in a precise treatment. Clearly the lack of suitable biomarkers currently holds back the wider implementation of personalised medicine. This is where metabolomics plays a key role as an approach to discover a biomarker, trial its detection within a large diverse population and then translate its detection into cheaper, quicker and reliable methods that could be used by a wider audience. As indicated above the main use of metabolomics as a tool is for biomarker discovery. The closest representation of a disease phenotype is a key-driving factor for the increased use of metabolomics for biomarker discovery to understand disease pathologies and finding methods of cure, and as many diseases result in changes in human metabolism it makes sense to use a method that measures metabolism directly!

However, the focus of biomarker discovery should not only be for pathological cures but also for preventive screening of healthy individuals (Fig. 1), as earlier biomarkers may be useful in directing dietary and lifestyle changes prior to more radical surgical treatment. Within biomarker discovery this raises the tantalising idea that all healthy individuals should undergo some biomarker screen well before any disease is found so that any change in a biomarker(s) level is personalised; for example, someone with an already raised PSA level may not have prostate cancer and this higher PSA levels may be indicative of an enlarged prostate as one ages. Developing a well-designed screening program at a reasonable cost may not always be possible due to the numerous associated challenges; these include monetary limitations (labour and consumable costs) as well as ethical, legal and social considerations for an opt-in test. The risk-benefit ratio needs to be clearly defined per disease for a successful personalised screening.

Biomarker	Clinical Relevance	Biological Matrix	Analytical Test
5-Hydroxytryptophan acid	Intestinal anorexia syndrome	U P Sm Sa Se WB BS C	LCMS
Acetylcholine	Acetylcholine esterase deficiencies, severe organic ataxias & new born screening	U P Sm Sa Se WB BS C	LCMS
Aminophylline	Inborn errors of metabolism	U P Sm Sa Se WB BS C	LCMS
Alanine aminotransferase	Newborn screening, branched-chain amino acid elevations	U P Sm Sa Se WB BS C	LCMS
Aminopeptidase	Inborn errors of metabolism	U P Sm Sa Se WB BS C	LCMS
Aspartate aminotransferase	Newborn screening, branched-chain amino acid elevations	U P Sm Sa Se WB BS C	LCMS
Arginase	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Arachidonic acid	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Ascorbic acid	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aminoacyl-tRNA synthetase	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Arginine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aspartic acid	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aspartate	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aspartate	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aspartate	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aspartate	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aspartate	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aspartate	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aspartate	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aspartate	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aspartate	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aspartate	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Aspartate	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
Asparagine	Ureaplasma urealyticum	U P Sm Sa Se WB BS C	LCMS
of these biomarkers into a routine clinical test is the failure to validate. In the absence of a universally accepted procedure for metabolic profiling used for biomarker discovery, different sites use their own optimized procedures. Additionally, even if identical analytical platforms and routines are used, the inherent inter-laboratory variation will play a great role in detracting from the validity of a potential biomarker and there can never be certainty that the entire metabolome has been profiled with that said platform, and in fact it is accepted in the metabolomics community that there is no magic tricorder that measures everything [39]. Thus, there is always a potentially better biomarker waiting to be discovered.

Some notable large scale and/or multicentre metabolomics studies have been successfully conducted (Table 2) to map the human serum metabolome [40], to identify biomarkers for incident coronary heart disease [41], and to study the response of Aspergillus nidulans to epigenetic perturbation with a hope to expedite the search for new pharmaceutical leads [42]. A correct balance needs to be considered between large scale vs. small sub-population focused studies where the risk is minimal but with maximum benefits [43,44]. Due to the higher cost and effort involved in the analysis of samples by a standard metabolomics workflow, it is often tempting (albeit one could say lazy) to use a smaller sample size for biomarker discovery and pre-validation [45]. However, such studies which lack the required statistical power for confident biomarker assessment will entice anyone to start designing specific assays for assessments in large cohorts (Fig. 2).

Like all ‘omics which are data rich, metabolomics on humans is influenced by many confounding factors such as age, gender, ethnicity, diet etc. [40] and thus, large validation studies with suitable control cohorts must be used to remove any potential bias [44,46]. Certain metabolites that alter with normal physiological changes may also be significantly different in a metabolomics study. By way of an example, citrate has been shown to increase with age [40] even in healthy individuals. A recent metabolomics study indicated amongst other metabolites that citrate was a significantly important biomarker for cancer [47]. However, since an increase in citrate could also be attributed to difference in mean age (17 cancer patients = 70 and 21 healthy controls = 60) rather than altered TCA cycle in cancer, in the absence of closely age matched case-control cohort such results need to be taken with caution before inferring pathological importance of such a biomarker.

Whilst the current perception is that screening large control groups of healthy individuals at the same time as diseases populations is not an option for validation studies, this position must change. Indeed, many people already use wearable technology for the assessment of their exercise levels, heart rate, blood oxygen levels, as well as sleeping patterns, so collecting data on ‘healthy’ individuals is not that maverick.

5. Metabolomics for the masses

With recent technological advancements in the form of affordable hardware (e.g. pedometers which include heart rate monitoring), health apps on smartphones, fitness bands and smart-watches, it is feasible to generate large amounts of useful health-related data even in healthy populations [48,49]. These measurements are readily available on a personalised level and could be used to complement clinical studies. For example, in treatment regimens which may include nutritional and exercise advice.

The tantalising question is whether metabolomics could be delivered to the masses on a personalised level? Whilst mass spectrometry linked to chromatography is a very powerful metabolomics platform for biomarker discovery, it is laborious and expensive and therefore unlikely to be suitable for large-scale screening of very large populations (i.e. when n > 10,000), which is of course still small when we consider that the earth’s population is estimated to be > 7.5×10^9; http://www.worldometers.info/world-population/). Of course, once a series of biomarkers are discovered and validated the scenario is different where one now knows the measurable and these can be detected and quantified using analytical chemistry. These can include methods based on:

- Lateral flow devices – much like the pregnancy test which is based on antibody detection of the appropriate antigen (viz., human chorionic gonadotropin (hCG));
- Dipstick approaches – for example the detection of nitrite for confirming urinary tract infections;
- Breath measurements for volatiles – for example ethanol detection and quantification using fuel cells for road side testing;
- Electrochemical detection – under skin glucose test is based on this and allows constant assessment of blood glucose that can be linked automatically to insulin injections [50].

With the above in mind emerging technologies in metabolomics provide new platforms for high-throughput, highly sensitive, functional assays, biomarker discovery and offer opportunities for personalised medicine, complementing existing and emerging genomic, proteomic and transcriptomic technologies (Fig. 4). However, personalised medicine in the future could be better served when these biomarkers provide enough knowledge to translate them successfully into one or more types of wearable technologies that are readily available to an end user (as also illustrated in Fig. 4). Biosensors used in wearable technologies like smartphones [51,52], smart-watches [53] for monitoring heart conditions, health bands, necklaces, glucose monitoring contact lenses [54,55], headbands etc., are excellent innovations transferring biomarker discovery onto a more individual level. Technological advances translating biochemical changes into physical
Disease/condition	Year of publication	Control subjects	Test subjects	Proposed biomarkers
Abnormal savda	2008 [84]	20	110	Glycochenodeoxycholic acid and bilirubin
Acute coronary syndrome	2009 [90]	10	19	Citric acid, 4-hydroxyproline, aspartic acid, fructose, lactate, urea, glucose and
Acute kidney injury	2012 [132]	17	17	Dimethylarginine, pyroglutamate, lysoPC (selection of), acylcarnitine (selection of),
Advanced liver fibrosis	2016 [165]	30	27	Panel inc: choline, glucose, glutamine, cysteine, histidine, citrate, acetoacetate
Alzheimer's disease	2010 [99]	20	20	Lysophosphocholine, tryptophan, phytosphingosine, dihydrophosphingosine, hexadecosaphingamine
Alzheimer's disease	2012 [127]	52	77	Desmosterol
Alzheimer's disease	2014 [148]	57	57	Arachidonic acid, N,N-dimethylglycine, thymine, glutamine, glutamic acid, and cytidine
Alzheimer's disease	2014 [151]	15	15	Alanine and taurine
Alzheimer's disease	2015 [164]	218	256	Sphinganine–1-phosphate, ornithine, phenylhydrolactic acid, inosine, 3-dehydrocarnitine, hyposphantine
Asthma	2011 [110]	42	20	Panel inc: Adenosine, alaine, carnitine, formate, hemurate, glucose, histidine, taurine, threonine, succinate
Asthma	2013 [139]	26	39	Methionine, glutamine, histidine
Atherosclerosis	2010 [103]	28	16	Palmitate, stearate and 1-monoleinoglycerol
Autism*	2015 [161]	24	22	Methylguanidine, indoxyl sulfate, glucuronic acid, desaminotyrosine, guanidiosuccinate acid
Autism*	2016 [169]	63	73	Panel inc: decaoylcarnitine, pregnanetriol, uric acid, 9,10 epoxyoctadecanoic acid,
Bladder cancer	2011 [125]	16	28	Panel of 50+ differential metabolites
Bladder cancer	2014 [146]	121	138	Succinate, pyruvate, oxoglutarate, carnitine & acylcarnitines, phosphoethanolpyruvate
Breast cancer	2010 [97]	50	50	Free unidentified biomarkers
Breast cancer	2012 [134]	34	80 (40 vs 40)	Palmitic acid, stearic acid, linoleic acid, FFA
Cardiovascular diseases	2014 [145]	/	67	Medium-and-long-chain acylcarnitines, alanine
Chronic heart disease	2013 [143]	15	39	Lactate, creatine, glucose, glycoprotein, lipid species and amino acids
Chronic Hepatitis B	2006 [73]	50	37	Lysophosphatidyl choline and glycochenodeoxycholic acid
Chronic kidney disease	2011 [120]	13	18	Urinary neutrophil galactolipase-associated lipidalin
Chronic widespread musculoskeletal pain	2015 [160]	3736	1191	Epigallocatechin gallate, adenosine, dihydroxy and dideoxy 3-(4-hydroxyphenyl) acetate, nonadecanoate
Colorectal cancer staging	2009 [87]	–	31	Panel inc: fatty acids, organic acids, sugars, steroid, fatty acid ester and
Colorectal cancer*	2010 [94]	110	112	Hydroxylated, polyunsaturated ultra-long-chain fatty acids
Colorectal cancer	2011 [117]	8	42	Free fatty acids and esterified fatty acids
Coronary artery disease	2012 [126]	254	320 (31)	Panel inc: octadecanoic acid, lactic acid, choline acid, 3-hydroxy butanoic acid,
Coronary heart disease	2009 [88]	25	23	Diacyllycarnitines, medium-chain acylcarnitines, fatty acids
Coronary heart disease*	2014 [41]	897	131	Saturated fatty acids, trans-fatty acid, m3 and m6 poly unsaturated fatty acids
Diabetes	2016 [106]	60	40	LysoPC (18:1), LysoPC (18:2), MG (18:2), SM (28:1)
Diabetic kidney disease	2012 [128]	52	26 (26 vs 26)	3-indoxyl sulfate, glycophospholipids, free fatty acids and bile acids
Diabetic mellitus and diabetic nephropathy	2011 [111]	30	120	Asyl-carnitines, acyl-glycine and metabolites related to tryptophan metabolism
Diabetic nephropathy and type 2 diabetes	2009 [93]	25	41	Non-esterified fatty acids and esterified fatty acids
Disorders of Propionate Metabolism*	2007 [78]	10	9	Phytosphingosine, glycine, hyamine, dihydrophosphingosine, leucine
Down syndrome	2015 [159]	93	23	Propionyl carnitine, unsaturated acylcarnitine, γ-butyrobetaine, isovaleryl carnitine
Endometrial carcinoma	2016 [173]	25	25 (10)	Progestosterone and dihydrocortisol
Gastric cancer	2016 [166]	40	83	Porphobilinogen, acetylcysteine, N-acetylslerine, urocanic acid, isobutylglycine
Gastrointestinal cancer	2012 [129]	12	38	Sucrose, dimethylamine, 1-methylionicinamide, 2-furylglycine, N-acetyl-serotonin,
Healthy plasma metabolome	2008 [81]	269	–	Trans-acatinate, alanine, formate, and serotonin
Hepatitis B*	2013 [140]	11	13	3-hydroxypropionic acid, pyruvic acid, t-alanine, glucuronolactone, t-glutamine
Hepatitis E and Hepatitis B	2011 [119]	18	32	300+ unique compounds
Hepatocarcinoma	2011 [121]	38	41	Tyroisnamide, biotin sulfone, hexanoic acid, 1-ammonioaphthaleine, 7-dehydroxycholesterol, azelaic acid
Hepatoceullar carcinoma	2009 [92]	29	20	Panel inc: t-proline, t-isoleucine, acetone, glyceral, glycerine, biotperine, adenosine
High altitude pulmonary edema*	2015 [162]	35	35	1-methyldesoxyinosine
Human hepatocellular carcinoma	2011 [116]	71	106	Panel of 18 metabolites incl: glycine, urea, threonine

(continued on next page)
Disease/condition	Year of publication	Control subjects	Test subjects	Proposed biomarkers
Interstitial cystitis	2016 [172]	21	42	Oleic acid, 2-deoxyetnmonic acid, saccharic acid, phosphate, trehalose, erthronic acid, oxalic acid, sulfuric acid, cystine, lysyl, lysine, histidine
Intestinal fistulas	2006 [76]	17	40	Glycero-dieneo-soracic acid, glycro-dieneo-soracic acid, tauro-no-soracic acid, tauro-soracic acid, lyso-phosphatidyl choline (C16:0 and C18:2), phenylalanine, tryptophan and carnitine
IVF	2008 [85]	17	17	Glutamate and alanine/lactate ratios
Lepromatous leprosy	2011 [118]	10	13	Eicosapentaenoic acid, docosahexaenoic acid and arachidonic acid
Liver cirrhosis	2011 [113]	22	37	Lyso-phosphatidyl cholines, bile acids, hyponanthe, stearamide, oleamide, myristamide
Liver failure due to Hepatitis B	2010 [104]	16	26	1-Lysophosphatidylcholine or 1-linoleoylphosphatidylcholine
Lung cancer	2010 [108]	12	12	Lysophosphatidylcholines: 1syo16:0, sn−2 lysolPC 16:0, sn−1 lysolPC 18:0, sn−1 lysolPC 18:2
Neurological disorders				A panel of 23 serum metabolites and 48 tissue specific metabolites
Lung cancer	2011 [122]	29	33	Creatine riboside, cortisol sulfite, N-acetyleneuraminic acid
Lung cancer*	2014 [149]	536	469	Maltose, ethanolamine, glycerol, palmitic acid, lactic acid, Panel inc: triacetylcholine, trihexose, nonanedioic acid, MG (22:2), tetrahexose
Lung cancer	2015 [157]	25	26	Tryptophan, GABA and lysine
Lung cancer	2015 [153]	59	60	Asyl carnitines, lipid metabolism and tryptophan
Lung cancer	2014 [152]	45	102	Panel inc: metabolites from steroid metabolism pathways
Major depressive disorder	2011 [124]	25	26	Alanine, lipids, valine, the total choline compounds, proline, myo-inositol, taurine, glutamine, glutamate, GABA, NAA, acetate, and creatine
Major depressive disorder*	2015 [153]	10	24	Phosphatidylcholines, 12-oxo-20-dihydroxy-leukotriene B4, sphinganine 1-phosphate, LysoPC, phosphtidyl ethanolamine, phosphatidyl choline
Malignant adrenal tumours	2011 [124]	74	73	Panel inc: 14 inc: hexacosenoic acid, fatty acids, proteins, sterol lipids and phosphorylated sphingolipids
Melamine-induced nephrolithiasis	2011 [123]	74	73	Proline, SC-aglycone and hypoxanuhe
Malignant Oligodendrogloma*	2011 [124]	74	73	Choline, myo-inositol, threonate
Multiple sclerosis	2014 [150]	17	15	LPC (18:1), LPC (18:0), LPI (16:0), Glutamate
Multiple sclerosis	2015 [156]	12	13	Panel inc: trisacetylcholine, trihexose, nonanedioic acid, MG (22:2), tetrahexose
Muscular dystrophies	2015 [156]	13	24	AMP, N-acetyl asparagine, oxoglutaric acid, N-acyl-lys-L-2,6 diaminoimimale
Nasopharyngeal carcinoma	2011 [115]	40	37	Kynurenine, N-acetylguloaminylamine, N-acetylguloamine and hydroxyphenylpruvate
Oesophageal cancer	2013 [141]	26	69	Formate, acetate, short-chain fatty acids, GABA
Oesophageal squamous-cell carcinoma	2013 [144]	53	53	Phosphatidylserines, 12-oxo-20-dihydroxy-leukotriene B4, sphinganine 1-phosphate, LysoPC, phosphtidyl ethanolamine, phosphatidyl choline
Onchoerocercis*	2010 [105]	56	76	Panel inc: metabolites from steroid metabolism pathways
Oral cancer	2014 [152]	50	30	Phenylalanine & leucine
Oral, breast and pancreatic cancer	2010 [95]	87	128	betaine, choline, carnitine, glycero-phospholoholine, cadaverine, putrescine, hypoxanthe, ethanolamine, trimethylamine and amino acids
Osteoarthritis*	2010 [98]	299	123	Valine to histidine ratio and leucine to histidine ratio
Ovarian cancer	2011 [112]	27	57	27-nor-5-beta-cholestan-3,7,12,24,25 pentol glicuronide
Ovarian cancer	2011 [114]	12	18	N-acetylsparate and N-acetyl-aspartyl-glutamate
Ovarian cancer*	2012 [131]	50	50	2-piperidino, γ-tryptophan, lysoPC (18:3), lysoPC (14:0)
Ovarian endometriositis	2012 [133]	52	40	Sphingomyelins and phosphatidylcholines
Paediatric acute liver failure	2009 [89]	20	20	α-NH2-butyric acid (Aab) and Aab: leucine ratio
Pancreatic cancer	2016 [168]	40	40	Panel inc: palmitic acid, 1,2 dioxyo GLP Na2, lanosterol, lignoceric acid, 1 oleoyl rac GL, chol epoxide, erucic acid
Parkinson’s disease	2008 [79]	25	66	Uric acid and glutathione
Parkinson’s disease	2009 [91]	37	43	Pyruvate
Parkinson’s disease	2015 [158]	104	297	Cortisol, 11-deoxycortisol, 21-deoxycortisol, histidine, uracil oaconic acid, imadoaleuetic acid, hydroxyphenylcetic acid
Periodontal disease	2010 [101]	21	18	Inosine, lysine, putrescine and xanthine
Pre-eclampsia	2005 [72]	87	87	Three unidentified molecules
Pre-eclampsia	2017 [174]	20	20	Panel inc: PC (14:0/0:0), proline betaine, proline
Premature labour*	2010 [107]	16	39	Panel inc: Methyldenine, heptanoic acid, N-acetylglutamine, glycerol, succinic acid, mannosone
Prostate cancer	2010 [96]	30	40	Asycarnitine and arachidonoyl amine
Prostate cancer	2013 [138]	178	331	Panel of 25 metabolites inc top 5: histidine, glycin, alanine, kynurene, glutamate & glycerol-3-phosphate
Psoriasis	2017 [175]	15	14	Asparagus, aspartic acid, isoleucine, phenylalanine, ornithine, proline, lactic acid & urea
Rectal cancer	2013 [142]	43	127	Lactate, threonine, acetate, glutathione, uracil, succinate, serine, formate, lysine and tyrosine
Renal cell carcinoma	2010 [100]	13	32	Panel inc: acetate, glutamate, glutamine, glucose, tyrosine, histidine, phenylalanine, formic acid, alanine, glutathione, hyaluronic acid

(continued on next page)
Table 2 (continued)

Disease/condition	Year of publication	Control	Test subjects	Proposed biomarkers
Rheumatoid arthritis	2010 [102]	51 47	Cholesterol, lactate, acetylated glycoprotein and lipids	
Rheumatoid arthritis	2011 [109]	20 25	Panel inc: Glyceric acid, hypoxanthine, histidine, threonic acid, methionine, cholesterol, threonine	
Schizophrenia	2006 [74]	70 82	Citrate, glutamine, acetate, lactate	
Schizophrenia	2007 [77]	50 50	Lipids including triglycerides, free fatty acids, phosphatidylethanolamine.	
Schizophrenia*	2013 [137]	62 62	Glycerate, eicosenoic acid, beta-hydroxybutyrate, pyruvate, cysteine	
Systemic inflammatory response syndrome (SIRS) & sepsis	2012 [130]	143 (74 vs 69)	Acylcarnitines and glycerophosphatidylcholines (C10:1 and PCaaC32:0)	
Type 2 diabetes	2006 [75]	45 78	Non-esterified and esterified fatty acids in plasma	
Type 2 diabetes	2008 [80]	28 23	3-hydroxyhippuric acid	
Type 2 diabetes	2008 time course study	75	Citrate, H+ and moehly-lactate and unchanged amino acid degradation products	
Type 2 diabetes & impaired fasting glucose	2013 [136]	1897 & 192 respectively	Panel inc: amino acids, lipids, carbohydrates (T2DM) and panel of lipids, carbohydrates, amino acid plus urate & erythritol (IFG)	
Type 2 diabetes mellitus	2015 [154]	300 300	Lipids, hexose sugars, purine nucleotide	
Ulcerative colitis (UC) & Crohn’s disease (CD)	2014 [147]	17 24 UC & 19 CD	Panel inc: N-acetylated glycoprotein, lactate, methanol, mannose, formate	

Table 3

Top 5 leading causes of death in men and women in England and Wales (2014).

Condition	Men	Women
Ischaemic heart diseases	36,293	15,973
Dementia and Alzheimer’s disease	14,359	13,952
Chronic lower respiratory diseases	13,952	12,584
Cerebrovascular diseases	14,181	11,309
Malignant neoplasm of trachea, bronchus and lung	33,153	24,057

Figure 1

Metabolomics and AI or machine learning technologies that are driven by data. This is where metabolomics should aim to take personalised medicine to - not only being able to predict a persons current or near future health or globally screen for potential biomarkers - but to link that information to dynamic metadata from patients to predict further risks and disease prognosis.
approach as opposed to evidence-based medicine (Fig. 3) will enable better health care outcomes instead of trial and error treatment regimes.

A potential future scenario illustrating precision medicine where together the patient and physician are at the centre of the diagnostics is shown in Fig. 5, once the hurdles of costs, barriers to patient inclusion and ease of use are overcome [64]. On the right-hand side of this figure is the expected laboratory-based scenario where metabolomics data are a standalone set of information which may be frequently linked to other ‘omics data. These measurements are detailed and thus slow and usually reserved for the initial diagnostics often when disease is already apparent. This provides useful but limited retrospective information about a population. By contrast the left-hand side illustrates the role of self-testing at home which can occur much more frequently, and for some wearable devices constantly and in real-time. For example, using dipstick tests for diabetes may be a quicker assessment of glucose levels but as is already known by individuals with Type I diabetes, it lacks real-time prolonged monitoring of patient health. As mentioned above

Fig. 3. Flow diagram illustrating personalised medicine and highlighting the differences between Evidence-based versus Precision medicine-based approaches to disease treatment. As is clear the evidence-based approach is imprecise as it relies on the patient reporting progress to therapy. By contrast, precision medicine necessitates analytical measurements on the patient – typically from genetics (viz. SNPs) and metabolomics—and then using these to direct therapy.

Fig. 4. The future cycle of metabolomics precision medicine-based research and healthcare where academia, industrial partners, corporate data analytics work with patients’ wearable data collection devices to provide health monitoring solutions.
implantable devices are now available for real-time glucose sensing and when combined with a ‘health band’ which reports information on a patient’s sleep patterns, heart rate, and physical exercise schedules may lead to better management of the disease.

6. Conclusions

The future of metabolomics does not stop at personalised medicine itself. For the application of metabolomics in preventive medicine as well as screening, the world is your oyster. Indeed, metabolomics could play not only a crucial role in monitoring life on the Earth but also as screening, the world is your oyster. Indeed, metabolomics could well also a crucial role in monitoring life on the Earth but also beyond [68]. NASA’s recent famous twin study which was concluded last year will hopefully show a glimpse of how powerful and useful the human metabolome can be [66,67].

At present metabolomics is very much research laboratory-based and needs to move out of academic laboratories and into the clinic. As a step towards this the UK has established two Phenome centres [68], one in London and the other in Birmingham; time will tell whether these are successful but a real opportunity is presented for the large-scale use of metabolomics for preventive health care, disease diagnosis, disease monitoring as well as finding novel therapeutics on a personalised level, which will account for differences within each individual.

A recently published white paper demonstrates the strengths of metabolomics in shaping precision medicine [69], and we would urge all readers to dip into the text along with the accompanying Topical Issue published in Metabolomics on “Recent advances in Pharmacometabolomics: enabling tools for precision medicine” [70].

As the ancient proverb says:

“Vita brevis, ars longa, occasio praeceps, experimentum periculosum, iudicium difficile” [71]

which translates to:

“Life is short, and art long, opportunity fleeting, experimentations perilous, and judgement difficult.”

Thus, there is an urgent and somewhat imminent need for precision medicine! This will require appropriate infrastructure for metabolomics for (and indeed on) the masses and will require alterations in healthcare practices across the globe. Once delivered this may improve medicine, put the patient at the centre of the analysis, and allow for healthier lifestyles and efficient medication for each and every one of us.

Acknowledgments

D.K.T. and R.G. thank the Cancer Research UK (including Experimental Cancer Medicine Centre award) for funding, RG also thanks the UK Medical Research Council (Grant MRC G1001375/1) and the Wellcome Trust (Grant 202952/Z/16/Z) for funding of metabolomics.

References

[1] S.G. Oliver, et al., Systematic functional analysis of the yeast genome, Trends Biotechnol. 16 (9) (1998) 373–378.
[2] D.B. Kell, S.G. Oliver, The metabolome 18 years on: a concept comes of age, Metabolomics 12 (9) (2016) 148.
[3] K. Strimbus, J.A. Tavel, What are biomarkers?, Curr. Opin. HIV AIDS 5 (6) (2010) 463–466.
[4] D.I. Broadhurst, D.B. Kell, Statistical strategies for avoiding false discoveries in metabolomics and related experiments, Metabolomics 2 (4) (2006) 171–186.
[5] G. Poste, Bring on the biomarkers, Nature 469 (7329) (2011) 156–157.
[6] Nix, H., A National Geographic Information System - An Achievable Objective?, in: Keynote address, Anzisa, 1990.
[7] S. Sansone, P.T. Goodacre, R. Griffin, J.L. Wardy, N.W. Kaddurah-Daouk, R. Kristal, B.S. London, J. Mendez, P. Morrison, N. Nikolau, B. Robertson, D. Sumner, L.W. Taylor, C. van der Werf, M. Ommen, B.V. Fiehn O, The metabolomics standards initiative, Nat. Biotechnol. 25 (8) (2007) 846–848.
[8] O.N. Statistics, Registered deaths by age, sex, selected underlying causes of death, and the 10 leading causes of death for both males and females, Stat. Bull. (2015).
[9] E. Commission, Causes of death - standardised death rate by residence, Eurostat (2013).
[10] J. O’Neill, Review on antimicrobial resistance, Antimicrob. Resist.: Tackling Crisis Health Wealth Nations (2014).
[11] R. Goodacre, Metabolomics of a superorganism, J. Nutr. 137 (1) (2007) 2595–2665.
[12] M. Potgieter, et al., The dormant blood microbiome in chronic, inflammatory
Erb, et al., Toward improved grading of malignancy in oligodendrogliomas using metabolomics, Magn. Reson. Med. 59 (5) (2008) 959–965.

P. Tan, et al., Serum metabolic profiling of abnormal saliva by liquid chromatography–mass spectrometry, J. Chromatogr. B 871 (2) (2008) 322–327.

E. Seli, et al., Noninvasive metabolic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization, Fertil. Steril. 90 (6) (2008) 2183–2189.

Y. Qiu, et al., Multivariate classification analysis of metabolic data for candidate biomarker discovery in type 2 diabetes mellitus, Metabolomics 4 (4) (2008) 337–346.

E.C.Y. Chan, et al., Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS), J. Proteome Res. 8 (9) (2009) 3929–3938.

X. Zheng, et al., Plasma fatty acids metabolic profiling analysis of coronary heart disease based on GC–MS and pattern recognition, J. Pharm. Biomed. Anal. 49 (2) (2009) 481–486.

D.A. Rudnick, et al., Serum α-NH2-butyric acid may predict spontaneous survival in pediatric acute liver failure, Pediatr. Transplant. 13 (2) (2009) 225–230.

M. Vallejo, et al., Plasma fingerprinting with GC-MS in acute coronary syndrome, Anal. Bioanal. Chem. 394 (6) (2011) 1517–1524.

S.S. Ahmed, et al., Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection, J. Biomed. Sci. 16 (1) (2009) 63.

H. Wu, et al., Metabolic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry, Anal. Chim. Acta 648 (1) (2009) 98–104.

J. Zhang, et al., Metabolomics research of diabetic nephropathy and type 2 diabetes mellitus based on UPLC–oa-TOF-MS system, Anal. Chim. Acta 650 (1) (2009) 16–22.

S.A. Ritchie, et al., Reduced levels of hydroxylated, polynaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection, BMC Med. 8 (1) (2010) 13.

M. Sugimoto, et al., Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles, Metabolomics 6 (1) (2010) 78–95.

P.O. Lokhov, et al., Metabolic profiling of blood plasma of patients with prostate cancer, Metabolomics 6 (1) (2010) 156–163.

Y. Kim, et al., Multivariate classification of urine metabolome profiles for breast cancer diagnosis, BMC Bioinform. 11 (2) (2010) 84.

G. Zhao, et al., Metabolomic changes of breast cancer tissue: histidine ratio: a novel metabolic biomarker of knee osteoarthritis, Ann. Rheum. Dis. 69 (6) (2010) 1227–1231.

N.-J. Li, et al., Plasma metabolic profiling of Alzheimer’s disease by liquid chromatography/mass spectrometry, Clin. Biochem. 43 (12) (2010) 992–997.

A.N. Zira, et al., 1H NMR metabolomics analysis in renal cell carcinoma: a possible diagnostic tool, J. Proteome Res. 9 (8) (2010) 4038–4044.

V.M. Barnes, et al., Assessment of the effects of dentifrice on periodontal disease biomarkers in gingival crevicular fluid, J. Periodontol. 81 (9) (2010) 1273–1279.

M.B. Lauridsen, et al., 1H NMR spectroscopy-based interventional metabolic phenotyping: a cohort study of rheumatoid arthritis patients, J. Proteome Res. 9 (9) (2010) 4545–4553.

X. Chen, et al., Plasma metabolomics reveals biomarkers of the atherosclerosis, J. Exp. Med. 193 (3) (2010) 337–344.

L. Zhang, et al., Development and validation of a liquid chromatography–mass spectrometry metabolomics platform in the diagnosis of liver failure caused by hepatitis B virus, Acta Biochim. Biophys. Sin. 42 (10) (2010) 688–698.

J.R. Denery, et al., Metabolomics-based discovery of diagnostic biomarkers for oncchecirrosis, PLoS Negl. Trop. Dis. 4 (10) (2010) e834.

K. Suhre, et al., Metabolic footprint of diabetes: a multiprotocol metabolomics study in an epidemiological setting, PLoS One 5 (11) (2010) e19593.

R. Romero, et al., Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery, J. Matern. Fetal Neonatal Med. 23 (12) (2010) 1344–1359.

J. Dong, et al., Lysophosphatidylcholine profiling of plasma: discrimination of isomers and discovery of lung cancer biomarkers, Metabolomics 6 (4) (2010) 478–488.

R.K. Madsen, et al., Diagnostic properties of metabolic perturbations in rheumatoid arthritis, Arthritis Rheum. 61 (1) (2010) R19.

E.J. Saule, et al., Metabolomic profiling of asthma: diagnostic utility of urine nuclear magnetic resonance spectroscopy, J. Allergy Clin. Immunol. 127 (3) (2011) 630–637.

L.-D. Han, et al., Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography–mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy, Anal. Chim. Acta 689 (1–2) (2011) 85–91.

J. Chen, et al., Serum 27-nor-5β-cholanoate-3β,7α,12α,24,25 pentanol glucuronide discovered by metabolomics as potential diagnostic biomarker for epithelium ovarian cancer, J. Proteome Res. 10 (5) (2011) 2625–2632.

J.S. Lim, et al., A noninvasive metabolomic study of the difference between alcohol and HBV-induced liver cirrhosis by ultraperformance liquid chromatography coupled to mass spectrometry plus quadrupole time-of-flight mass spectrometry, Clin. Chim. Acta 412 (9–10) (2011) 1367–1373.

M.Y. Fong, J. McLaughlin, S.S. Kakar, Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer, PLoS One 6 (5) (2011) e19963.

F. Tang, et al., Novel potential markers of nasopharyngeal carcinoma for diagnosis and therapy, Clin. Biochem. 44 (10–11) (2011) 711–718.

T. Chen, et al., Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma, Mol. Cell. Proteom. 10 (7) (2011).

Y. Kondo, et al., Serum fatty acid profiling of colorectal cancer by gas chromatography/mass spectrometry, Mol. Med. 5 (4) (2011) 265–268.

A. R. Al-Mubarak, et al., Serum metabolomics reveals higher levels of polysaturated fatty acids in lepromatous leprosy: potential markers for susceptibility and pathogenesis, PLoS Negl. Trop. Dis. 5 (9) (2011) e1305.

S.U. Munshi, et al., Metabolomic analysis of hepatitis E patients shows deregulated metabolic cycles and abnormalities in amino acid metabolism, J. Viral Hepat. 18 (10) (2011) e591–e602.

G. Wang, et al., Plasma metabolite profiling of Alzheimer’s disease and mild cognitive impairment, J. Proteome Res. 13 (5) (2014) 2649–2658.
and prognostic markers in lung cancer, Cancer Res. 74 (12) (2014) 3259–3270.

[150] S.N. Reinke, et al., Metabolomic profiling in multiple sclerotic insights into biomarkers and pathogenesis, Mult. Scler. 20 (10) (2014) 1396–1400.

[151] S.F. Graham, C. Holscher, B.D. Green, Metabolic signatures of human Alzheimer’s disease (AD): H-1 NMR analysis of the polar metabolome of post-mortem brain tissue, Metabolomics 10 (4) (2014) 744–753.

[152] Q. Wang, et al., Measurement of salivary metabolite biomarkers for early monitoring of oral cancer with ultra performance liquid chromatography-mass spectrometry, Talanta 119 (2014) 299–305.

[153] X. Liu, et al., Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry, J. Proteome Res. 14 (5) (2015) 2322–2330.

[154] D. Drogan, et al., Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study, Clin. Chem. 61 (3) (2015) 487–497.

[155] M. Calderon-Santiago, et al., Human sweat metabolomics for lung cancer screening, Anal. Bioanal. Chem. 407 (18) (2015) 5381–5392.

[156] D. Pieragostino, et al., An integrated metabolomics approach for the research of new cerebrospinal fluid biomarkers of multiple sclerosis, Mol. Biosyst. 11 (6) (2015) 1563–1572.

[157] S. Miyamoto, et al., Systemic metabolic changes in blood samples of lung cancer patients identified by gas chromatography time-of-flight mass spectrometry, Metabolites 5 (2) (2015) 192–210.

[158] H. Luan, et al., LC-MS-based urinary metabolite signatures in idiopathic Parkinson’s disease, J. Proteome Res. 14 (1) (2015) 467–478.

[159] D.K. Trivedi, R.K. Iles, Shotgun metabolomic profiles in maternal urine identify potential mass spectral markers of abnormal fetal biochemistry – dihydroxypyrimidine and progesterone in the metabolism of Down syndrome, Biomed. Chromatogr. 29 (8) (2015) 1173–1183.

[160] G. Livshits, et al., An omics investigation into chronic widespread musculoskeletal pain reveals epiandrosterone sulfate as a potential biomarker, Pain 156 (10) (2015) 1845–1851.

[161] B. Dieme, et al., Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology, J. Proteome Res. 14 (12) (2015) 5273–5282.

[162] L. Guo, et al., Three plasma metabolite signatures for diagnosing high altitude pulmonary edema, Sci. Rep. 5 (2015), 102.

[163] L. Venter, et al., Untargeted urine metabolomics reveals a biosignature for muscle respiratory chain deficiencies, Metabolomics 11 (1) (2015) 111–121.

[164] Q. Liang, et al., Metabolomics-based screening of salivary biomarkers for early diagnosis of Alzheimer’s disease, RSC Adv. 5 (116) (2015) 96074–96079.

[165] N. Embade, et al., Metabolic characterization of advanced liver fibrosis in HCV patients as studied by serum H-1-NMR spectroscopy, PLoS One 11 (5) (2016).

[166] A.W. Chan, et al., H-1-NMR urinary metabolic profiling for diagnosis of gastric cancer, Br. J. Cancer 114 (11) (2016) 59–62.

[167] S.J.S. Cameron, et al., The metabolomic detection of lung cancer biomarkers in sputum, Lung Cancer 94 (2016) 88–95.

[168] I.M. Di Gangi, et al., Metabolomic profile in pancreatic cancer patients: a consensus-based approach to identify highly discriminating metabolites, Oncotarget 7 (5) (2016) 5815–5829.

[169] H. Wang, et al., Potential serum biomarkers from a metabolomics study of autism, J. Psychiatry Neurosci. 41 (1) (2016) 27–37.

[170] P. Farshidifar, et al., A validated metabolomic signature for colorectal cancer: exploration of the clinical value of metabolomics, Br. J. Cancer 115 (7) (2016) 848–857.

[171] Z. Smolenzka, R.T. Smolenzki, Z. Zdrojewski, Plasma concentrations of amino acid and nicotinamide metabolites in rheumatoid arthritis–potential biomarkers of disease activity and drug treatment, Biomarkers 21 (3) (2016) 218–224.

[172] T. Kind, et al., Interstitial cystitis-associated urinary metabolites identified by mass-spectrometry based metabolomics analysis, Sci. Rep. 6 (2016) 39227.

[173] X. Shao, et al., Screening and verifying endometrial carcinoma diagnostic biomarkers based on a urine metabolomic profiling study using UPLC-Q-TOF/ MS, Clin. Chim. Acta 463 (2016) 200–206.

[174] T. Chen, et al., Biomarker identification and pathway analysis of preeclampsia based on serum metabolomics, Biochim. Biophys. Res. Commun. 485 (1) (2017) 119–125.

[175] H. Kang, et al., Exploration of candidate biomarkers for human psoriasis based on gas chromatography-mass spectrometry serum metabolomics, Br. J. Dermatol. 176 (3) (2017) 713–722.

[176] Ellis, D.I., Dunn, W.B., Griffin, J.L., Allwood, J.W. and Goodacre, R. Metabolic fingerprinting as a diagnostic tool, Pharmacogenomics (2007), 1243-1266.

[177] Van der Greef, J., Stroobant, P. and van der Heijden, B. The role of analytical sciences in medical systems biology, Curr. Opin. Chem. Biol. 8 (2004), 559-565.