A Multilevel Modeling Analysis of the Determinants and Cross-regional Variations of HIV Testing in Ethiopia: Ethiopian DHS 2011

Tesfay Gidey Hailu*

School of Interdisciplinary, Department of Statistics, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

Abstract

Background: Determinants of HIV testing can be affected at both individual and community levels but most studies in Ethiopia did not assume any clustering effect hence the estimates will often be biased.

Methods: Given the hierarchical nature of the survey population, that is; Ethiopian Demographic and Health Survey (EDHS2011), multilevel modeling approach was used.

Results: About 4.07% (6.68%) of the total variation on ever being tested for HIV was attributable to region-level factors and 17.27% (18.45%) was attributable to cluster level factors among men (women) respectively.

Conclusion: Random effects are useful for modeling intra-cluster correlation; that is, observations in the same cluster were correlated because they share common cluster-level random effects. This study hence will help to notify national efforts targeting on specific population who mostly under-utilized HIV testing services as well as to identify key geographic areas for further investigation. In line with this, the strengthening of the health programs on advocating the benefits of HIV testing through mass media, integrating family planning services with HIV testing, concentrating on both men and women in the age groups of 20 to 34 years old, targeting on Somali region and Nuwer ethnic group while designing services would greatly improve the proportion of HIV testing. Moreover, efficient distribution of health care facilities offering HIV testing services among women urban and rural areas residents are required.

Keyword: Determinants; Contextual and individual factors; HIV testing; Multilevel modeling

Background

Expanding access to HIV counseling and testing (HCT) and antiretroviral treatment services help globally to reduce morbidity and mortality in people living with HIV/AIDS [1]. To increase access to HIV testing, WHO recommended that population with stronger desire for HCT would be a reasonable priority target to be reached and served by HCT programs [2]. Despite the global coverage for HIV testing remains low; it has helped millions of people to learn their HIV status [3,4]. World Health Organization (WHO) (2004) has estimated that only 5% of people living with HIV/AIDS are aware of their status worldwide and this is because of people didn’t get testing for HIV [5]. Therefore, promoting early detection of HIV infection through HIV testing has been an important public health priority [6]. Furthermore, late detection of HIV infection is a burden for both individuals and society since it is associated with increased morbidity, mortality and probability of transmission [7].

Despite the potential benefits of HIV testing, utilization is often poor in SSA regardless of the availability of the services [8,9]. Ethiopia is one of the countries in SSA that have been affected by a generalized HIV/ AIDS epidemic [10]. Thus, Ethiopia has adopted early HIV testing as one of the key strategies in the HIV/AIDS prevention and control programs for the larger community after the national HIV/ AIDS policy was launched in 1998 [10]. Regardless of the various efforts made to implement HIV prevention activities [11], HIV testing is a critical issue among adults in Ethiopia though there is a good progress compared to the reports in EDHS 2005. According to the 2011 Ethiopia Demographic and Health Survey about 61 percent of women and 59 percent of men have never been tested for HIV [12].

A descriptive analysis made by the 2011 EDHS has reported that the rates of HIV testing are varying by different demographic factors, socioeconomic variations and HIV risky behaviors in Ethiopia [12]. This variations of HIV testing observed among regions, place of residence, sex and other factors calls for continued efforts to improve understanding of factors associated with HIV testing in Ethiopia to identify target groups for specific interventions using some advanced statistical method [12].

Several studies in various settings have examined determinants associated with HIV testing. A study conducted using data from 49 primarily low and middle-income countries that administered the coverage module of the 2002–2003 World Health Survey has examined income-related inequalities in voluntary and counseling HIV testing. This study revealed that HIV testing was more likely among higher income quintiles and in countries with higher GDP [13]. Studies of socioeconomic status and HIV testing have also indicated that there is a consistent relationship between income and access to HIV testing [14]. This might justify that the costs of the actual HIV testing and transportation to and from the testing site may hinder low-income individuals from being tested. Moreover, higher income individuals consistently report superior access to testing and health-care services in general [15,16].

Other studies had also analyzed that the barriers of HIV testing at the individual level [17-20] respectively. These studies have shown that the rate of HIV testing in Sub-Saharan Africa are low (less than
Methods

Study area

This study is conducted in Ethiopia.

Data source

This study is based on secondary data analysis of the existing data from Ethiopian DHS 2011; the most recent national dataset on HIV testing (for both men and women) [12]. The sample was selected using a stratified, two-stage cluster design and EAs were the sampling units for the first stage. The hierarchical structure (three-level data structure) of the study data among both men and women are described in Figures 1 and 2.

Data transformation

The HIV testing datasets of men and women which were used for this study were prepared separately; hence, these databases have been integrated into one database in order to make sexual comparison with respect to HIV testing. Hence, in order to make the analysis simple and cost-effective the study variables needed to be defined in appropriate manner. Therefore, HIV/AIDS-related knowledge index was built from the answers to eight questions; three questions on knowledge of HIV prevention and five on misconceptions about modes of HIV transmission. Five questions that reflected negative attitudes towards people living with HIV/AIDS were also used to create a stigma index as presented in Tables 1-5. A variable religion had also six distinct values and later categorized into three distinct values. Ethnicity was also originally with 57 distinct values but it has been converted into ten distinct categories as: Tigrean, Affar, Amara, Gurage, Somalie, Sidama, Nuwer, Welayita, Oromo and Others.

The multilevel logistic regression analysis

The structure of data in the survey population is hierarchical; hence, the clustering effect of the sample’s data should be taken into consideration during analysis. In this regard, the units at lower level are individuals (Individuals: level-1) who have been asked to ever

The 2011 EDHS

Level 3: 11 Regions K

Level 2: 596 Clusters (EAs) j

Level 1: 14,110 Individuals i

1,384 1,000 1,965 1,699 1,318 2,060 940 1,139 715 972 918

Total: 11 regions EAs=624 men individuals=14,110

Figure 1: The hierarchical structure (three-level data structure) of the study data in men.
is the residual between regions. Similarly, the variance component at regions and is row [23]. That is, is the probability of being tested for HIV for an individual described in Rabe-Hesketh and Skrondal [23]: the three-level random intercept logistic regression can be expressed as

\[
\text{logit}\{P(y_{ijk}) = \beta_0 + \beta_1 X_{ijk} + \gamma_{ik} + \epsilon_{ijk}\}
\]

(1)

where \(y_{ijk}\) is the probability of being tested for HIV for an individual \(i\), in the \(j^\text{th}\) cluster in the \(k^\text{th}\) region of Ethiopia; \(X_{ijk}\) is row vector of characteristics which may be defined at the individual \(i\), who is living in cluster \(j\) located at \(k\) region of the country; \(\beta\) is a \(1 \times (P + 1)\) column vector of regression parameter estimates; and the quantities \(\gamma_{ik}\) and \(\epsilon_{ijk}\) are the random intercept terms for level 2 (the cluster) and level 3 (the region) respectively. In this case, the random-intercepts represent unobserved heterogeneity in the overall response. These are assumed to have normal distribution with mean zero and variances \(\psi^{(2)}\) and \(\psi^{(3)}\) [23]. That is,

- \(\left(\gamma_{ik}, X_{ijk}\right) \sim N\left(0, \psi_{ik}\right)\) \(\Rightarrow\) the variance component at regions level given any covariate is independent across the regions.
- \(\left(\epsilon_{ijk}, X_{ijk}\right) \sim N\left(0, \psi_{ijk}\right)\) \(\Rightarrow\) the variance component at cluster level given any covariate is independent across the clusters and regions. It is clear that the variance component at regions \(\psi^{(3)}\) is the residual between regions. Similarly, the variance component at clusters \(\psi^{(2)}\) is the residual between clusters nested within in regions.

The variance components estimate for both region and cluster levels have been used to calculate intra-unit correlation coefficients in order to examine the extent to which how HIV testing behavior of individuals was associated for those who live in clusters nested in regions of the country, before and after taking into account the effect of significant covariates. Since individuals within the same clusters are also within the same region, the intra-cluster correlation includes regional variances [24]. Thus, the intra-cluster \((\psi^{(2)})\) and intra-region \((\psi^{(3)})\) correlation coefficients are, respectively, given by

\[
\rho^{(1)}_3 = \frac{\psi^{(1)}_3 + \psi^{(2)}_3 + \sigma^2}{\psi^{(1)}_3 + \psi^{(2)}_3 + \sigma^2}
\]

(2)

Where \(\psi^{(3)}_k\) denotes that the total variance at level 3; \(\psi^{(2)}_k\) is the total variance at cluster level; and \(\sigma^2\) is the total variance at individual level. In multilevel logistic regression model, the residuals at individuals level (level 1) are represented by \(e_{ijk}\) and assumed to have a standard logistic distribution with mean zero and variance \((\psi^{(1)}_k = \pi^2 / 3)\), where \(\pi\) is the constant 3.1416 [25].

Conceptual analytical framework

Different sets of factors were assessed to examine determinants that could explain the variation of HIV testing experienced by individuals at regional and cluster levels and their interrelationships among factors as presented in the schema of Figure 3.
probability of an individual (men and women) being tested for HIV without an adjustment for predictors. The second step included first the univariate multilevel logistic analysis and then random slope multilevel univariate analysis for each of the selected explanatory variables. The third step considered a model building for three levels multiple multilevel logistic regression analysis. The Wald χ^2 test was

Results and analysis

The HIV testing datasets contained 14,110 (46%) participants of men and 16,515 (54%) participants are women. The detailed socio demographic and/or culture of the participants with respect to ever getting HIV is shown that the variations of HIV testing observed among men and women in Ethiopia, 2014.

The Univariate Multilevel Logistic Regression

Univariate multilevel logistic model was first fitted on HIV testing dataset (for men and women) to select covariates which then will be used as covariates at the time of multilevel analysis. The level of significance was fixed to be less than 5% for drawing any kind of conclusion about the predictors in which the model is different from univariate multilevel model. The first step examined the null model (empty model with no predictor) was first fitted to measure the overall

S.No	Characteristics	Category	HIV Testing			
1	Region		Men (n = 14,110)	Women (n = 16,515)		
		Yes	No	Yes	No	
1	Region	Tigray	53.90	46.10	59.43	40.57
		Afar	29.40	70.60	23.78	76.22
		Amhara	40.76	59.24	33.97	66.03
		SNPP	41.32	58.68	33.19	66.81
		Addis Ababa	56.99	43.01	65.94	34.06
		Oromiya	33.64	66.36	35.36	64.64
		Gambella	45.85	54.15	36.28	63.72
		Benishangul Gumuz	40.21	59.79	35.82	64.18
		Somali	17.20	82.80	10.07	89.93
		Harari	42.08	57.92	57.31	42.69
		Dire dawa	59.50	40.40	64.84	35.16

Table 2: Percentage of HIV testing by region and place of residence, among men and women, Ethiopia, 2014.

S.No	Characteristics	Category	HIV Testing	
1	HIV/AIDS knowledge indicators			
	Using Condom during Sex	Yes	11,373 (80.60)	9,667 (58.53)
	Not having sex at all	No	1,664 (11.79)	3,296 (19.96)
	Having one sex partner only	No	1,898 (13.45)	3,229 (20.31)
	Sharing food with HIV/AIDS infected person	No	2,863 (20.29)	3,973 (24.06)
	Reduce the risk of getting HIV by	No	1,074 (7.68)	2,285 (13.84)
	Healthy looking Person can have HIV	Yes	1,480 (10.35)	15,442 (93.50)
	Can get HIV by super natural?	No	12,132 (85.98)	591 (3.58)
	Can get HIV from mosquito bite	No	518 (3.67)	482 (2.92)
	Can get HIV by sharing sharp materials	Yes	10,882 (77.83)	10,513 (63.66)
	Using Condom during Sex	Yes	1,898 (13.45)	3,229 (20.31)
	Healthy looking Person can have HIV	Yes	1,898 (13.45)	3,229 (20.31)
	Can get HIV by super natural?	No	10,088 (75.75)	11,766 (71.24)
	Can get HIV from mosquito bite	Yes	3,424 (24.27)	4,165 (25.22)
	Can get HIV by sharing sharp materials	No	8,823 (62.53)	9,139 (55.34)
	Reduce the risk of getting HIV by	No	1,230 (8.72)	2,069 (12.53)
	Healthy looking Person can have HIV	Yes	3,424 (24.27)	4,165 (25.22)
	Can get HIV by super natural?	No	8,823 (62.53)	9,139 (55.34)
	Can get HIV from mosquito bite	Yes	3,424 (24.27)	4,165 (25.22)
	Can get HIV by sharing sharp materials	No	1,230 (8.72)	2,069 (12.53)

Table 3: Distribution of HIV Testing in relation to HIV/AIDS-related knowledge indicators among men and women, Ethiopia, 2014.
Table 5: Multilevel Logistic Model: The random Intercept Only

Characteristics	Men	Women	
	Category n (%)	n (%)	
Had any STIs in last 12 months	Yes	87 (0.62)	85 (0.51)
	No	14,016 (99.33)	16,426 (99.46)
	Don’t know	7 (0.05)	4 (0.02)
Had genital ulcer in last 12 months	Yes	83 (99.28)	181 (1.10)
	No	14,008 (99.28)	16,173 (97.93)
	Don’t know	19 (0.13)	161 (0.97)
Had genital discharge last 12 months	Yes	164 (1.16)	168 (1.02)
	No	13,926 (98.70)	16,069 (97.92)
	Don’t know	20 (0.14)	279 (1.69)
Wife justified asking husband to use condom if he had STI	Yes	12,154 (86.14)	11,133 (67.41)
	No	1,462 (10.36)	3,391 (20.53)
	Don’t know	494 (3.50)	1,991 (12.06)
Ever took alcohol during sex	Yes	7,223 (51.19)	6,334 (38.35)
	No	8,687 (48.81)	10,181 (61.65)

Table 4: Distribution of HIV Testing in relation to HIV/AIDS risky sexual behaviours among men and women in Ethiopia, 2014.

used to determine the significance of each model as a whole as well as to determine significance of individual \(\beta \) coefficients. STATA version 11.1 was used to analyze the data.

Multilevel Logistic Model: The random Intercept Only

Firstly, an empty model with no predictors was fitted to HIV testing data set and this means that a random intercept-only model could predicts the probability of an individual whether an individual has ever been tested for HIV. The functional form of the model is given by:

\[
\text{logit} \{y_{ik}\} = \ln \left(\frac{\pi_{ik}}{1 - \pi_{ik}} \right) = \beta_{0k} + \xi_{i} + \phi_{ik} \\
\]

The parameters under random effect displayed in Table 6 are the estimated variances of the random intercepts at both levels (level 2: cluster and 3: region) for fitting a model of three-level random intercept-only. The fixed effect term (fixed intercept) is estimated to be \(\beta_{0} = 0.4245 \) indicated that the average of all regions or all clusters for experiencing HIV testing. Moreover, the estimates for the random effects of the three-level intercept-only model explained that the unique effect up on the HIV testing behavior of an individual that came from each region (level 3) and cluster (level 2). The percentage of observed variation in ever have tested for HIV attributable to regional level is found by dividing the variance for the random effect of the region by the total variance. This means that the intra-correlation coefficient (ICC) for men and women respectively will be given as follows:

\[
\rho_{(3)} = -\frac{\omega(1)}{\sigma_{\xi}^{2}} = \frac{0.4930}{0.4193} = 0.9929 \text{ And } \rho_{(2)} = -\frac{\omega(2)}{\sigma_{\xi}^{2}} = \frac{0.2792}{0.4193} = 0.9929 \\
\]

denotes for the ICC of HIV testing among men at regional and cluster level. And \(\rho_{(3)} = 0.019 \) and \(\rho_{(2)} = 0.443 \) for the ICC of HIV testing among women at regional and cluster level (Table 6). When the multilevel model (that is random intercept only model) is applied the expected log-odds of ever been tested for HIV is -0.4283, which is corresponding to an odds of \(\exp(-0.4283) = 0.6516 \) as seen in Table 6. The 95% confidence interval for \(\rho_{(3)} = -0.4283 \pm 1.96 \times 0.27248 = (-2.259, 2.173) \).

This indicates that the multilevel effects (that is the random effects at different levels) would impact the rate of HIV testing to vary from 6.6 percent to 85.7 percent within the regions (clusters nested with in regions) and no predictor has been included in this model. Moreover, the likelihood ratio test indicated that the random effect model is highly significant in explaining the variation of HIV testing observed among both men and women (P-value = 0.0000 < 0.05). Hence, the random intercept model is better in comparison to standard logistic regression on explaining the variation of HIV testing observed among both men and women (Table 7).

Multilevel Univariate Logistic Model

A multilevel univariate logistic analysis for both men and women are presented in Table 8 and 9 and each of the multilevel models presents a random intercept (specific effects due to region and cluster) and a fixed slope for the particular variable fitted with the outcome. It has been observed the same results for both men and women with slight variations on their parameter estimates (Table 9).

Multilevel univariate model for random slope

Random slope univariate model allows the effect that the coefficient of the predictor variable to vary from region to region and from cluster to cluster. The random effects model (with both random intercept and slope) was fitted for two predictors which are wealth index and place of residence. The three-level random model for place of residence and wealth index can be written as below:

\[
\text{logit} \{y_{ik}\} = \ln \left(\frac{\pi_{ik}}{1 - \pi_{ik}} \right) = \beta_{0k} + \beta_{1} PR_{ik} + \beta_{2} WI_{ik} + \xi_{ik} + \phi_{ik} \\
\]

Where the additive term \(\xi_{ik} + \phi_{ik} \) is in fact the residual \(\epsilon_{ik} \) of the model which is a function of place of residence and wealth index. However, the random slope for place of residence and wealth index were found to be in significant (estimates of the variance components of the two predictors are not greater than 2 times of their standard errors) across both region and cluster level of both men and women. Hence, the random slope model for place of
HIV testing

Demographic factors
- Age
- Sex
- Marital status
- Ethnicity

Socio-economic factors
- Education
- Wealth Index
- Place of residence
- Region
- Media exposure
- Heard family planning
- Religion

Cultural factors
- Religion
- Circumcision
- Relationship with recent sexual partner your partner

Knowledge HIV related
- Don’t have sex at all
- One sex partner
- Use condom
- Healthy looking has HIV
- Sharing sharp materials
- Mosquito bite
- Sharing food with AIDS person
- Super natural

HIV related stigma
- Buy vegetables from vendor with AIDS person
- Female teacher with HIV should continue to teach
- Ever heard of AIDS
- Willing to care for relatives with HIV
- HIV infection in family remain secret

HIV risky behaviour
- Had any STI in last 12 months
- Had genital ulcer last 12 months
- Had genital discharge in last 12 months
- Wife justified asking husband to use condom if he has STI
- Ever took alcohol drink

Figure 3: The variation of HIV testing experienced by individuals at regional and cluster levels and their interrelationships among factors as presented in the schema.

Figure 4: Shows that the variations of HIV testing observed in men across regions in Ethiopia.
residence and wealth index that were being allowed to vary at region or cluster level was not considered any more while fitting the final multiple multilevel model with all significant predictors (Table 10).

Multilevel Multiple Logistic Model

The multiple logistic of multilevel model is fitted with all the significant predictors, found at multilevel univariate analysis to assess their simultaneous effect on HIV testing. The proposed functional form of the multilevel model is:

$$\logit\left(\pi_{ijkl} \right) = \beta_0 + \beta_1 \text{AgeGroup}_{ijkl} + \beta_2 \text{PR}_{ijkl} + \beta_3 \text{EduLevel}_{ijkl} + \beta_4 \text{Relgn}_{ijkl} + \beta_5 \text{Ethnic}_{ijkl} + \beta_6 \text{WlthIndex}_{ijkl} + \ldots$$

Where $$\beta_{0,ijkl} = \beta_0 + \zeta_{0,ijkl} + \xi_{ijkl}$$ and $$\beta_{2,ijkl} = \beta_2 + \zeta_{2,ijkl} + \xi_{2,ijkl}$$ and

The variation of HIV testing among men and women were significant ($p < 0.05$) at all levels of the hierarchy (individual, cluster and region). It has been also found that the random effects of both cluster and region levels were significant on explaining the variations of HIV testing among both men and women (Tables 11 and 12).

In summary, the random-effects multiple multilevel model results indicated that all the predictors are not equally and effectively defining the characteristics of both men and women for utilizing HIV testing. HIV testing is therefore correlated among women and/or men in the same cluster within each region but the correlation differs from region to region. Despite the more complex model (random intercept and slope model) explains the variations of HIV testing among individuals better than the other model, in this study the variance components for the random slope of both wealth index and place of residence were

Table 6: Parameters estimates and standard errors of an intercept-only multilevel model predicting the probability of being tested for HIV among men and women (S.Es are placed in parentheses).

Men=14,110	Observations per group				
Group variable	Number of groups	Minimum	Average	Maximum	Integration points
Region	11	715	1282.7	2060	7
Cluster number	596	3	23.7	77	7

Women=16,515	Observations per group				
Group variable	Number of groups	Minimum	Average	Maximum	Integration points
Region	11	914	1501.4	2135	7
Cluster number	596	5	27.7	59	7

Table 7: Summary results for both men and women datasets.

$$β_{0,ijkl} = β_0 + η_{0,ijkl} + η_{ijkl}$$

$$β_{2,ijkl} = β_2 + η_{2,ijkl} + η_{ijkl}$$

The variation of HIV testing among men and women were significant ($p < 0.05$) at all levels of the hierarchy (individual, cluster and region). It has been also found that the random effects of both cluster and region levels were significant on explaining the variations of HIV testing among both men and women (Tables 11 and 12).

In summary, the random-effects multiple multilevel model results indicated that all the predictors are not equally and effectively defining the characteristics of both men and women for utilizing HIV testing. HIV testing is therefore correlated among women and/or men in the same cluster within each region but the correlation differs from region to region. Despite the more complex model (random intercept and slope model) explains the variations of HIV testing among individuals better than the other model, in this study the variance components for the random slope of both wealth index and place of residence were
Table 8: Parameter estimates and standard errors of univariate multilevel model predicting the probability of ever been tested for HIV with random intercept and fixed slope among men, Ethiopia (S.Es are placed in parentheses).

Fixed effects	**Men (n=14,110)**	**Multilevel model**	**Multilevel model**
Age group			
15-19	.4250 (.1950)**	.9342 (.0773)**	
20-24	.9081 (.0658)	1.0139 (.0731)	
25-29	1.1543 (.0666)	.8731 (.0735)	
30-34	.6689 (.0809)		
35-39	.6289 (.0874)	.4494 (.0971)	
40-44	.0483 (.1159)		
Education level		.2905 (.1345)**	.6325 (.0570)**
No education	Ref (1)		
Primary	.6888 (.0496)	.1329 (.0753)	
Secondary	1.6591 (.0845)		
Religion	.3222 (.1479)**	.5783 (.0521)**	
Urban	Ref (0)		
Rural	1.3782 (.0990)	.3529 (.1633)**	.8178 (.0692)**
Place of residence			
Christianity	1.915 (.0928)**	.7387 (.0642)**	
Tigrean	1.5394 (2571)	1.473 (.1491)	0.323
Affair	.5240 (.0446)	.4998 (.1544)	
Amara	1.0897 (.0783)	1.1612 (.3240)	
Gurage	1.5627 (.0983)	1.2312 (.5089)	
Sidama	1.9857 (.0895)	.0857 (.1805)	
Oromo	1.498 (.1554)	1.2393 (.2359)	
Nuwereal	1.6514 (.1859)	.3967 (.2098)	
Others	.3625 (.1666)**	.2007 (.0954)**	.6868 (.3894)**
Media exposure			
Yes	Ref (1)		
No	1.0182 (.0639)	.2632 (.1217)*	.5032 (.0475)*
Wealth index			
Poorest	1.2029 (.5362)**	1.5413 (.1183)**	
Poorer	.5240 (.0446)	.4998 (.1544)	
Middle	1.0897 (.0783)	1.1612 (.3240)	
Richer	1.498 (.1554)	1.2393 (.2359)	
Richest	1.9857 (.0895)	.3967 (.2098)	
Marital status			
Not married	.4541 (.2072)**	.9244 (.0765)**	
Divorced	.3600 (.2398)	.9789 (.0761)	
Widowed	1.7211 (.0868)	.7545 (.3446)**	
Married	.4091 (.0411)		
Relationship with most sex partner		.3945 (.1808)**	.8301 (.0700)**
Living with partner			
Boy-girl friend	.4678 (.1599)	.1433 (.3119)	.3467 (.0597)
Commercial	.2006 (.1393)	.4678 (.1599)	
Spouse	.9789 (.0761)		
Other	.3967 (.2098)		

** Indicates significant value
whether there is sexual variation with respect to HIV testing (Table 13).

Table 9: Parameters and standard errors of univariate multilevel model predicting the probability of ever been tested for HIV with random intercept and fixed slope among women, Ethiopia (S.Es are placed in parentheses).

Relationship with most recent sex partner	Men	Women
Not married Ref (0)	.8906 (.3995)**	1.1701 (.0942)**
Married	.9312 (.0450)	.0000
Boy-girl friend	.9899 (.4421)**	1.2509 (.0959)**
Commercial	.4617 (.0590)	.0000
Spouse	.8059 (.3817)	.822
Other	.8906 (.3995)**	1.1701 (.0942)**

Table 10: Parameters estimates and standard errors of a univariate random intercept and slope-only multilevel model predicting the probability of being tested for HIV (S.Es are placed in parentheses).

Region:	Men	Women
Residence	1.848 (.0820)	2.600 (.8965)
Village	1.093 (.0546)	1.800 (.5263)

Discussion

The main objective of this study was to provide an overall picture of the general patterns and determinants of HIV testing across regions in Ethiopia. In summary, this study showed that for both men and women, the probability of being tested for HIV was relatively higher...
Model 1	Model 2	P-value	Model 3	P-value	Model 4	P-value	
Age group							
15-19	Ref (0)		Ref (0)		Ref (0)		
20-24	2.0911	0.000	1.8611	0.000	1.9995	0.000	
25-29	2.5285	0.000	2.1879	0.000	2.4004	0.000	
30-34	2.1644	0.000	1.9231	0.000	2.0439	0.000	
35-39	1.945	0.000	1.7676	0.000	1.8900	0.000	
40-44	1.5749	0.000	1.4278	0.001	1.4976	0.000	
45-49	1.5883	0.000	1.4418	0.001	1.5249	0.000	
50-54	1.4086	0.004	1.2783	0.049	1.3834	0.007	
55-59	1.0177	0.897	0.9535	0.739	1.0138	0.921	
Place of residence							
Rural	Ref (0)		Ref (0)		Ref (0)		
Urban	1.3667	0.010	1.0666	0.584	-	-	
Education level							
No education							
Primary	2.3060	0.000	1.6590	0.000	1.9224	0.000	
Secondary	3.8617	0.000	2.1864	0.000	2.3806	0.000	
Higher	4.1499	0.000	2.3794	0.000	3.0359	0.000	
Religion							
Christian	Ref (0)		Ref (0)				
Muslim	0.9802	0.768	1.0238	0.745	-	-	
Others	0.9044	0.531	1.0875	0.624	-	-	
Ethnicity							
Tigrean	Ref (0)		Ref (0)		Ref (0)		
Affar	0.6049	0.055	0.6400	0.075	0.6229	0.072	
Amara	0.8298	0.227	0.8639	0.325	0.8803	0.412	
Guragie	0.6268	0.012	0.6265	0.010	0.636	0.015	
Somali	0.9167	0.000	0.3334	0.000	0.3284	0.000	
Sidama	0.4513	0.004	0.5438	0.022	0.5038	0.014	
Oromo	0.6279	0.004	0.6850	0.016	0.6662	0.013	
Nuer	0.3297	0.000	0.4718	0.014	0.3802	0.002	
Welayita	0.7456	0.216	0.8388	0.449	0.8541	0.510	
Others	0.5625	0.000	0.6049	0.017	0.6443	0.007	
Wealth index							
Poorest	Ref (0)		Ref (0)		Ref (0)		
Poorer	1.4007	0.000	1.2531	0.006	1.3360	0.000	
Middle	1.6820	0.000	1.4155	0.000	1.5302	0.000	
Richer	2.2051	0.000	1.6424	0.000	1.9092	0.000	
Richest	3.0615	0.000	2.0368	0.000	2.6567	0.000	
Marital status							
Not married	Ref (0)		Ref (0)		Ref (0)		
Divorced	2.1139	0.000	2.0425	0.000	2.0896	0.000	
Widowed	2.0300	0.006	2.0326	0.010	1.9653	0.008	
Married	1.7208	0.000	1.5849	0.000	1.6739	0.000	
HIV related knowledge							
No stigma	Ref (0)		Ref (0)				
Low	0.8544	0.003	0.8118	0.020	0.000	0.000	
Moderate	0.6972	0.000	0.5630	0.000	0.000	0.000	
High	1.0813	0.000	0.5659	0.000	0.000	0.000	
HIV risky behaviour							
No risk	Ref (0)						
Some risk	1.0347	0.0578	0.542	-	-		
High	0.9742	0.1058	0.810	-	-		
Media exposure							
No	Ref (0)						
Yes	1.3488	0.000	1.4892	0.000	0.000	0.000	
Heard Family planning on Mass Media							
No	Ref (0)		Ref (0)		Ref (0)		
Yes	1.4495	0.000	1.5926	0.000	0.000	0.000	
Knowing Place for HIV test							
No							
Yes	1.72e+08	0.960	-	-	-		
Random effects	Model 1	Model 2	Model 3	Model 4			
Var (Region)	.4193	.1325	.000	.000			
Var (Cluster)	.8591	.1325	.000	.000			
Table 11: Parameters and standard errors of multiple multilevel model predicting the probability of ever been tested for HIV with random intercept and fixed slope among men, Ethiopia (S.E.s are placed in parentheses).

Fixed effects	Model 1	Model 2	P-value	Model 3	P-value	Model 4	P-value	
Age group								
15-19	Ref (0)	Ref (0)	Ref (0)					
20-24	1.9262	0.000	2.0146	0.8462	1.9916	0.000	1.6443	0.000
25-29	1.8252	0.000	1.7903	1.0468	1.7688	0.000	1.3850	0.000
30-34	1.6209	0.000	1.8409	1.1474	1.6165	0.000	1.4481	0.000
35-39	1.3888	0.000	1.4086	1.1298	1.3388	0.000	1.2703	0.000
40-44	1.1366	0.000	1.0791	1.1127	1.0593	0.000	1.1030	0.000
45-49	0.8529	0.000	0.8756	0.9064	0.9188	0.122	0.9410	0.120
50-54	-	-	-	-	-	-	-	-
55-59	-	-	-	-	-	-	-	-
Place of residence								
Rural	Ref (0)	Ref (0)	Ref (0)					
Urban	2.3337	0.000	1.4972	1.1875	1.4830	0.002	1.8570	0.000
Education level								
No education	Ref (0)	Ref (0)	Ref (0)					
Primary	2.3076	0.000	1.6785	1.1013	1.6684	0.000	1.9064	0.000
Secondary	3.7547	0.000	2.0280	1.8893	2.0401	0.000	1.8800	0.000
Higher	5.0011	0.000	2.6474	2.2965	2.6364	0.000	2.2913	0.000
Religion								
Christian	Ref (0)	Ref (0)	Ref (0)					
Muslim	1.0461	0.522	1.0516	0.7098	0.508	-	-	-
Others	0.4702	0.001	0.5127	1.1256	0.006	-	-	-
Ethnicity								
Tigrean	Ref (0)	Ref (0)	Ref (0)					
Affar	3.420	0.000	4.594	1.2968	4.865	0.000	1.3289	0.002
Amara	0.7736	0.015	0.7178	1.1162	0.7225	0.014	1.1730	0.045
Guragie	0.6649	0.032	0.5761	0.1097	0.5986	0.007	0.1132	0.007
Somali	0.3192	0.000	0.3453	0.0999	0.3670	0.000	0.0945	0.000
Sidama	0.2741	0.000	0.3409	0.0999	0.3522	0.000	0.1033	0.000
Oromo	0.5457	0.000	0.5796	0.0882	0.5964	0.002	0.1060	0.000
Nuwer	.1135	0.000	.2939	0.0099	2.691	0.000	.1093	0.000
Welaiyta	.4996	0.005	.4630	0.1164	2.4754	0.003	.1195	0.000
Others	.4873	0.000	.5480	0.0943	5.520	0.001	.0948	0.001

N.B.: Model 1: Represents random intercept model i.e. an empty model
Model 2: A multilevel multiple logistic model that consists socio-demographic and economic variables
Model 3: A multilevel logistic model included both socioeconomic characteristics and HIV related knowledge, stigma, risky social behaviour, media exposure, heard family planning and knowing place where to get test for HIV.
Model 4: The final multilevel logistic model with significant predictors associated with HIV testing.

Table 12: Parameters and standard errors of fixed effect logistic model predicting the probability of ever been tested for HIV with random intercept and fixed slope among men, Ethiopia (S.E.s are placed in parentheses).

Fixed effects	Model 1	Model 2	Model 3	Model 4	P-value
Deviance	17488.88	16114.77	14440.73	15816.75	
AIC	1754.89	16180.77	14526.74	15886.76	
BIC	17477.55	16430.07	14851.59	16151.17	

Citation: Hailu TG (2016) A Multilevel Modeling Analysis of the Determinants and Cross-regional Variations of HIV Testing in Ethiopia: Ethiopian DHS 2011. J Biom Biostat 7: 277. doi:10.4172/2155-6180.1000277
among women, Ethiopia (S.E.s are placed in parentheses). The probability of ever been tested for HIV with random intercept and fixed slope parameters and standard errors of multiple multilevel model predicting with HIV testing.

Table 12: Parameters and standard errors of multiple multilevel model predicting the probability of ever been tested for HIV with random intercept and fixed slope among women, Ethiopia (S.E.s are placed in parentheses).

Cluster	1.4636 (1.127)**	0.7241 (.0836)**	0.4678 (.0505)**	0.4764 (.0510)**
Residual	3.27	3.27	3.27	3.27

Model Fit Statistics

Model 1	Model 2	Model 3	Model 4
Deviance	18420.45	18085.76	14948.03
AIC	18426.45	18096.89	14959.04
BIC	18449.59	18343.68	15304.48

NB:

Model 1: Represents random intercept model i.e. an empty model
Model 2: A multilevel multiple logistic model that consists socio-demographic and economic variables
Model 3: A multilevel logistic model included both socioeconomic characteristics and HIV related knowledge, stigma, risky social behaviour, media exposure, heard family planning and knowing place where to get test for HIV.
Model 4: The final multilevel logistic model with significant predictors associated with HIV testing.

Table 13: Parameters and standard errors of multiple multilevel model predicting the probability of ever been tested for HIV with random intercept and fixed slope among adults (both men and women together), Ethiopia (S.E.s are placed in parentheses).

Place of residence	Model 1	Model 2	P-value
Rural	Ref (0)	Ref (0)	
Urban	1.2886 (.1234)	0.008	

Education level	Model 1	Model 2	P-value
No education			
Primary	1.6423 (.0678)	0.000	
Secondary	2.0853 (.1289)	0.000	
Higher	2.4134 (.1701)	0.000	

Ethnicity	Model 1	Model 2	P-value
Tigréan			
Affar	0.5723 (.1092)	0.003	
Amara	0.7885 (.0878)	0.033	
Gurage	0.6143 (.0808)	0.000	
Somalie	0.3474 (.0607)	0.000	
Sidama	0.4651 (.0100)	0.000	
Oromo	0.6587 (.0767)	0.000	
Nuwer	0.3519 (.0883)	0.000	
Welaita	0.6709 (.1185)	0.024	
Others	0.6229 (.0740)	0.000	

Wealth Index	Model 1	Model 2	P-value
Poorest			
Poorer	1.2380 (.0734)	0.000	
Middle	1.4117 (.0861)	0.000	
Richer	1.6025 (.1002)	0.000	
Richest	1.8780 (.1567)	0.000	

Marital status	Model 1	Model 2	P-value
Not married	Ref (0)		

HIV related stigma	Model 1	Model 2	P-value
No stigma	Ref (0)		
Low	.8972 (.0348)	0.005	
Moderate	.6791 (.0294)	0.000	
High	.7574 (.0917)	0.022	

Media exposure	Model 1	Model 2	P-value
No	Ref (0)		
Yes	1.1867 (.0542)	0.000	

Heard Family planning on Mass Media	Model 1	Model 2	P-value
No	Ref (0)		
Yes	1.4417 (.0540)	0.000	

Knowing Place for HIV test	Model 1	Model 2	P-value
No	Ref (0)		
Yes	2302.016 (1629.32)	0.000	

Table 12: Parameters and standard errors of multiple multilevel model predicting the probability of ever been tested for HIV with random intercept and fixed slope among adults (both men and women together), Ethiopia (S.E.s are placed in parentheses). among wealthier households, higher educated people, those of age categories of 20 to 34 years old, people who have no stigmatizing attitude towards HIV infected person and who have heard about family planning in Ethiopia.

The final multilevel model (Table 12) demonstrated that participants who were in the age categories of 20 to 34 years old (of both men and women) were more likely to have ever been tested for HIV than those who belong to a reference age category (15-19 years). This showed that those of men and/or women belonging to different age categories of same cluster nested with in a region might differ on utilizing the HIV testing significantly across the region. A nationwide study conducted in Ethiopia has also revealed that those people who were in the age category of 15 to 40 are the most affected group by HIV/AIDS which has the highest prevalence of HIV infection [1]. This study has also noted that there is a positive association between HIV testing and age categories of participants (20 to 29). This association might be justified due to the better awareness in which they might obtained through school, public gatherings, clubs, organizations and using other means of mass media [26].

This study has also showed that the rate of HIV testing was increasing with an increment in educational level. The odds of women who were belonging to higher educational level were more than twice (OR =2.64) more likely to have ever been tested for HIV compared to odds of women who were belonging to no education category while other predictors are holding constant. A study conducted in Kenya.
showed that education was positively associated with HIV testing [27]. Similarly, this study has also revealed that those who were with higher educational level were more likely to be tested for HIV.

This study demonstrated that the probability of ever being tested for HIV showed an increased pattern with increasing wealth index among adults of both men and women in Ethiopia. This indicates that those of individuals who were belonging to the same cluster nested in a region of belonging to different wealth index of the household have a positive correlation with HIV testing though not perfectly linear. Auburn Larose et al stated that the association between HIV testing and wealth status is generally positive though not strictly linear [28]. This might be related to the fact that the differences in wealth status which was observed among individuals in Ethiopia could be a barrier on creating awareness through mass media, accessing education, preventing from risky sexual behaviors as a result this could lead to poor HIV testing practice.

Furthermore, this study demonstrated that those who had higher wealth index of same clusters nested within a region were more likely to get tested for HIV. A study conducted in Kenya has also showed that a significant difference of HIV testing practice among individuals who were belonging to the poorer, middle, richer and richest wealth categories and had a greater probability of getting to be tested for HIV than those who were in the poorest wealth category, the reference group [27]. This might reflect that the wealthier individuals had a wider opportunity to access education and mass media which have direct impact on HIV testing utilization than the poorest and this agrees with this study. It had been also stated that the inequalities in socio-economic position result in unequal health outcomes in general [29]. Similarly, the variation observed on being tested for HIV leads to inequality in access to prevention and treatment of HIV/AIDS.

In this study, it has been also shown that having HIV related stigma was also negatively associated with ever being tested for HIV. This indicates that those of individuals who were belonging to the same cluster nested in a region of belonging to different stigmatizing index of the household have a negative correlation with HIV testing practice. A study based on EDHS 2005 revealed that having stigmatizing attitudes toward people living with HIV/AIDS person was found to be negatively associated with HIV testing utilization in both urban and rural areas [26]. This stigmatizing attitude observed within the community could let the individuals not to be tested in a timely manner even though people are at substantial risk for HIV infection. Moreover, this could justify that the odds of those individuals who came from community/cluster with high level of stigmatization constituted the lesser proportion of being tested for HIV than those individuals who came from a community/cluster with no stigmatization towards a person living with HIV/AIDS while other predictors are keeping constant.

This study has also indicated that marital status was significantly associated with ever being tested for HIV. This indicates that those of individuals who were belonging to the same cluster nested in a region of belonging to different stigmatizing index of the household have a negative correlation with HIV testing practice. A study conducted in South Africa and showed that those married individuals were more likely to have ever been tested for HIV than those single once [30]. Furthermore, another study had been conducted in four south Indian states; indicated that marital status was confirmed as an important indicator of HIV risk [31]. The study indicates that married female sexual workers (FSW) who resided with their husbands started sex work relatively later in life and had a lower sex client volume. FSW who were widowed and divorced also tended to start sex work relatively later in life (mostly after separation from their husbands), but depended exclusively on sex work for income. It further indicates that unmarried female sexual workers, on the other hand, were younger and reported a higher client volume. This result could reflect that those un-married FSW who had a history of risky sexual behavior (having sexual activity with higher client volume) might have perceived them as being at risk of HIV infection and thus hinders them for HIV testing due to the possible psychosocial factors such as fear of HIV/AIDS related stigma and discrimination and discrediting from their community. Moreover, the variability in the current marital status of adults across the regions in Ethiopia could represent the different patterns on HIV testing and has an important influence on HIV testing program implications.

This study has also revealed that having knowledge on family planning was positively associated with ever being tested for HIV. This is consistent with the findings of a systematic review which found that behaviors that might lead to unintended pregnancies can also be a risk factor for HIV infection [32,33]. Therefore, having knowledge on family planning may provide a wider opportunity to be tested for HIV.

This study also demonstrated that ethnicity was significantly associated with HIV testing among both men and women. Individuals from other ethnic group in Ethiopia (non-Tigréans) were less likely (i.e. OR < 1 for all other ethnicities) to have ever been tested for HIV than the Tigréans of Tigray region. There was borderline significant (P-value = 0.045) difference on HIV testing among women belonging to the Tigréans and Amara ethnic groups of Ethiopia (Table 11 and 12). This study has also showed that the Nuwer ethnic group (Gambella region) was less likely to have ever been tested for HIV compared to any other ethnic groups among both men and women in Ethiopia and yet in Gambella region it has been reported that the prevalence of HIV is higher (6.5%) than that of the national rate (1.5%) [12]. It has been reported that the proportion of black students and had been tested is higher (24%) than Hispanic students (12%) and white students (11%) [9]. Moreover, Denison JA et al conducted a study in Nairobi urban informal settlements and noted that ethnicity was associated with ever being tested for HIV. The study has also revealed that the Luhya ethnic group was less likely to have either client initiative testing and provider initiated testing and counseling compared to Kikuyu. These differences might be attributed to the cultural differences, HIV related knowledge, exposure to mass media, access to health services and other risky sexual behaviors that place them at risk to ever being tested for HIV. However, this study recommends that it is highly important that future ethnographic research should investigate this observation.

Furthermore, this study has integrated the separate datasets of men and women to assess whether there is sexual variation with respect to HIV testing or not in Ethiopia. This study hence also revealed that men were less likely to have ever been tested for HIV than women. The odds of men who had ever being tested for HIV (OR=0.67) were 33% less likely than women while other predictors are holding constant. This is similar to a study conducted in Nairobi which showed that sex differentials were confirmed and women were more likely to have had testing for HIV compared to men. The apparently wider gap observed on HIV testing between women and men in Ethiopia might be due to the increased testing services among women in PMTCT programs. Another study also conducted in USA has also showed that the rate of HIV testing is varied by sex [9].

It has been also reported that women are at a greater risk of heterosexual transmission of HIV. This is due to the fact that biologically women are twice more likely to become infected with HIV through unprotected heterosexual intercourse than men. This result could reflect that those people who had a history of risky sexual behavior might have perceived themselves as being at risk of HIV infection and thus be motivated to be tested for HIV. The major limitation of
this study is that its principal data source is a cross-sectional survey; potentially affected by recall bias in case the test was offered long time ago. However, it is also a large representative population-based sample with high survey completion rates and very little missing data which allowed for greater generalization of these findings are strong side of the study.

Conclusions and Recommendations

This study used multilevel modeling analysis on HIV testing dataset and the results showed that there was significant variation of HIV testing across clusters and to a lesser extent across regions among both men and women in Ethiopia. About 4.07% (6.68%) of the total variation on ever being tested for HIV was attributable to region-level factors and 17.27% (18.45%) was attributable to cluster level factors among men (women) respectively. This indicates that random effects are useful for modeling intra-cluster correlation; that is, observations in the same cluster were correlated because they share common cluster-level random effects and similarly individuals who were nested with in a region were more correlated since they share common region-level random effects. Moreover, the variations on HIV testing that has been observed across clusters and regions were partly explained by individual and contextual background of socio-economic characteristics such as education, wealth index, age-group, mass media, knowledge on family planning, marital status and HIV/AIDS related stigma factors. Based on the findings of this study, the following recommendations are forwarded.

- Emphasizing on promoting HIV testing services for both men and women in the age groups of 20 to 34 years old, would greatly reduce the risk of HIV/AIDS
- Integrating family planning services with HIV testing could improve the proportion of both men and women that could be tested for HIV.
- Targeting on Somali region and Nuwer ethnic group (Gambella) while designing for HIV testing services would greatly reduce the risk of HIV/AIDS.
- It is highly important that future ethnographic research should investigate the observation found on Nuwer ethnic group by comparing with other ethnic groups in Ethiopia.
- The strengthening of the health programs on advocating the benefits of HIV testing through mass media (TV, radio or newspaper) might be helpful to reduce fear of stigma and discrimination amongst adults.
- Efficient distribution of health care facilities offering HIV testing services among women urban and rural residents are required
- Finally, the HIV/AIDS prevention and control programs in Ethiopia should focus on reducing HIV related stigma, improving educational level and creating awareness of the society on HIV testing through mass media at large in order to encourage people to get testing for HIV

Competing Interests

The author declares that he has no competing interests.

Acknowledgments

I am very grateful to MEASURE DHS authority that offered me all the necessary data used for this study.

References

1. Chan KC, Wong KH, Lee SS (2008) Universal decline in mortality in patients with advanced HIV-1 disease in various demographic subpopulations after the introduction of HAART in Hong Kong, from 1993 to 2002. HIV Med 7: 186-192.
2. (2003) Increasing Access to HIV Testing and Counselling: report of a WHO consultation, 19-21 November 2002. Geneva, Switzerland: World Health Organization.
3. Reniers G, Arayta T, Davey G, Nagelkerke N, Berhane Y, et al. (2009) Steep declines in population-level AIDS mortality following the introduction of antiretroviral therapy in Addis Ababa, Ethiopia. AIDS 23: 511-518.
4. (2013) HIV testing and counselling services
5. (2004) Investing in a comprehensive health sector response to HIV/AIDS – scaling up treatment and accelerating prevention. WHO.
6. (2001) HIV/AIDS Surveillance Report, Department of Health and Human Services, Centers for Disease Control and Prevention Atlanta, Georgia.
7. Valdiserri RO, Holgate DR, West GR (1999) Promoting early HIV diagnosis and entry into care. AIDS 13: 2317-2330.
8. Sherr L, Lopman B, Kakowa M, Dube S, Chawira G, et al. (2007) Voluntary counselling and testing: uptake, impact on sexual behaviour, and HIV incidence in a rural Zimbabwean cohort. AIDS 21: 851-860.
9. Denison JA, O'Reilly KR, Schmid GP, Kennedy CE, Sweat MD (2008) HIV voluntary counselling and testing and behavioral risk reduction in developing countries: a meta-analysis, 1990-2005. AIDS Behav 12: 363-373.
10. (2008) HIV / AIDS in Ethiopia- An Epidemiological Synthesis World Bank Global HIV/AIDS Program. Washington DC, USA.
11. Maman S, Mtumbo J, Hogan NM, Kilronzo GP, Sweet M (2001) Women's barriers to HIV-1 testing and disclosure: challenges for HIV-1 voluntary counselling and testing. AIDS Care 13: 595-603.
12. (2012) Ethiopia Demographic and Health Survey (EDHS) 2011. ICF international Calverton, Maryland, USA: Central Statistical Authority, Addis Ababa, Ethiopia.
13. (2013) UNAIDS (2002): HIV voluntary counseling and testing: a gateway to prevention and care.
14. (2006) WHO: Towards universal access: Scaling up priority HIV/AIDS interventions in the health sector.
15. Lawn SD, Myer L, Orrell C, Bekker LG, Wood R (2005) Early mortality among adults accessing a community-based antiretroviral service in South Africa: implications for programme design. Aids 19: 2141-2148.
16. Korra A, Bejiga M, Tesfaye S (2005) Socio-demographic profile and prevalence of HIV infection among VCT clients in Addis Ababa. Ethiop J Health Dev 19: 109.
17. Simbayi LC, Kalichman SC, Skinner D, Jooste S, Cain D, et al. (2004) Theory-based HIV risk reduction counselling for sexually transmitted infection clinic patients in Cape Town, South Africa. Sex Transm Dis 31: 727-733.
18. Siziya S, Muula AS, Rudatsikira E, Mataya RH (2008) Correlates of HIV testing among women in Malawi: results from the 2008 Multiple Indicator Cluster Survey. Trop Med Int Health 13: 1351-1356.
19. Weiser SD, Heisler M, Leiter K, Perdy-de Korte F, Touli S, et al. (2006) Routine HIV testing in Botswana: a population-based study on attitudes, practices, and human rights concerns. PLoS Med 3: e261.
20. Bwambale FM, Ssali SN, Byaruhanga S, Kalyango JN, Karamagi CA (2008) Voluntary HIV counselling and testing among men in rural western Uganda: implications for HIV prevention. BMC Public Health 8: 263.
21. Sweat M, Gregorich S, Sangiwa G, Furlonge C, Balmer D, et al. (2000) Cost-effectiveness of voluntary HIV-1 counselling and testing in reducing sexual transmission of HIV-1 in Kenya and Tanzania. Lancet 356: 113-121.
22. Allen S, Tice J, Van de Perre P, Serufilira A, Hudes E, et al. (1992) Effect of sero testing with counselling on condom use and seroconversion among HIV discordant couples in Africa. BMJ 304: 1605-1609.
23. Rabe-Hesketh S, Skrondal A (2008) Multilevel and Longitudinal Modeling Using Stata (2nded). College Station, TX: Stata Press.
24. Lynch J, Kaplan G (2000) Socio-economic position. In Social epidemiology. Edited by Berkman L, Kawachi I. New York: Oxford University Press, New York.
25. Gage AJ, Ali D (2005) Factors associated with self-reported HIV testing among men in Uganda. AIDS Care 17: 153-165.
26. Leta TH, Sandøy IF, Fylkesnes K (2012) Factors affecting voluntary HIV counselling and testing among men in Ethiopia: a cross-sectional survey. BMC Public Health 12: 438.
27. Namazzi J (2009) Determinants of using Voluntary Counselling and Testing for HIV/AIDS in Kenya. Monash University, Australia. 75: 135-140.
28. Larose A, Moore S, Harper S, Lynch J (2011) Global income-related inequalities in HIV testing. J Public Health (Oxf) 33: 345-352.
29. Venkatesh KK, Madiba P, De Bruyn G, Lurie MN, Coates TJ, et al. (2011) Who gets tested for HIV in a South African urban township? Implications for test and treat and gender-based prevention interventions. J Acquir Immune Defic Syndr 56: 151-165.
30. Ramesh BM, Moses S, Washington R, Isaac S, Mohapatra B, et al. (2008) Determinants of HIV prevalence among female sex workers in four south Indian states: analysis of cross-sectional surveys in twenty-three districts. AIDS 22 Suppl 5: S35-44.
31. Spaulding AB, Brickley DB, Kennedy C, Almers L, Packel L, et al. (2009): Linking family planning with HIV/AIDS interventions: a systematic review of the evidence. AIDS 1: S79-88.
32. Matovu JK, Makumbi FE (2007) Expanding access to voluntary HIV counselling and testing in sub-Saharan Africa: alternative approaches for improving uptake, 2001-2007. Trop Med Int Health 12: 1315-1322.
33. Denison JA, O'Reilly KR, Schmid GP, Kennedy CE, Sweat MD (2008) HIV voluntary counseling and testing and behavioral risk reduction in developing countries: a meta-analysis, 1990-2005. AIDS Behav 12: 363-373.