Investigating diversity of pathogenic microbes in commercial bait trade water

Andrew R Mahon Corresponding Author, 1, Dean J. Horton 1, Deric R. Learman 1, Lucas R. Nathan 2, Christopher L. Jerde 3

1 Department of Biology, Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, United States
2 Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, United States
3 Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States

Corresponding Author: Andrew R Mahon
Email address: mahon2a@cmich.edu

The recreational bait trade is a potential pathway for pathogen introduction and spread when anglers dump bait shop sourced water into aquatic systems. Despite this possibility, and previous recognition of the importance of the bait trade in the spread of aquatic invasive species (AIS), to date there has been no region wide survey documenting pathogens in retail bait shops. In this study we analyzed 96 environmental DNA samples from retail bait shops around the Great Lakes region to identify pathogens, targeting the V4 hypervariable region of the 16S rRNA gene. Additionally, we used samples from one site in Lake Michigan as a comparison to pathogen diversity and abundance in natural aquatic systems. Our results identified nine different groups of pathogens in the bait shop samples, including those that pose risks to both humans and fish species. Compared to wild sourced samples, the bait shops had higher relative abundance and greater taxonomic diversity. These findings suggest that the bait trade represents a potentially important pathway that could introduce and spread pathogens throughout the Great Lakes region. Improving pathogen screening and angler outreach should be used in combination to aid in preventing the future spread of high risk pathogens.
1 Investigating diversity of pathogenic microbes in commercial bait trade water
2 Andrew R. Mahon¹*, Dean J. Horton¹, Deric R. Learman¹, Lucas R. Nathan¹,², Christopher L.
3 Jerde³
4
5
6
7
8
9 ¹Department of Biology, Institute for Great Lakes Research, Central Michigan University, Mount
10 Pleasant, MI 48859 USA
11
12 ²Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT
13 06269 USA
14
15 ³Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106,
16 USA
17
18
19
20 *corresponding author: mahon2a@cmich.edu
Abstract (200 words)

The recreational bait trade is a potential pathway for pathogen introduction and spread when anglers dump bait shop sourced water into aquatic systems. Despite this possibility, and previous recognition of the importance of the bait trade in the spread of aquatic invasive species (AIS), to date there has been no region wide survey documenting pathogens in retail bait shops. In this study we analyzed 96 environmental DNA samples from retail bait shops around the Great Lakes region to identify pathogens, targeting the V4 hypervariable region of the 16S rRNA gene. Additionally, we used samples from one site in Lake Michigan as a comparison to pathogen diversity and abundance in natural aquatic systems. Our results identified nine different groups of pathogens in the bait shop samples, including those that pose risks to both humans and fish species. Compared to wild sourced samples, the bait shops had higher relative abundance and greater taxonomic diversity. These findings suggest that the bait trade represents a potentially important pathway that could introduce and spread pathogens throughout the Great Lakes region. Improving pathogen screening and angler outreach should be used in combination to aid in preventing the future spread of high risk pathogens.

Introduction

With over 30 million anglers in the United States and Canada, and with many of them using live bait in the form small fish (USDI 2011, DFO 2012), there is a significant risk of invasive species introduction and spread through the commercial bait trade vector (Drake & Mandrak, 2014). This is particularly alarming when commercial bait retailers are contaminated with invasive fish, such as Goldfish (Carassius auratus), Round Goby (Neogobius melanostomus), Eurasian Rudd...
Scardinius erythrophthalmus), and Silver Carp (Hypophthalmichthys molitrix) (Nathan et al., 2015). Invasion risk significantly increases when anglers dump unused bait and water into the lakes and rivers at the end of a fishing day (Drake & Mandrak, 2014). However, this angling behavior has the potential to introduce more than just invasive fish species into new areas. Smith et al. (2012) revealed the water in which ornamental fish are transported contains a unique biota of fish and human pathogens beyond those found in the fish themselves. Additionally, the diversity of pathogens within wild and cultured baitfish is well studied (Goodwin et al., 2004; Lowry & Smith, 2007). As such, it is reasonable to suspect that water which contains bait fish could also serve as a reservoir for pathogenic bacterial species. This raises the question, what pathogens are found in the bait bucket water?

Pathogens have the potential to be very damaging to human and wildlife health (Daszak, Cunningham & Hyatt, 2000) and economically costly (Jenkins, 2012). With respect to fisheries, pathogens can be spread between commercial operations and wild populations, resulting in costly damages. Such was the case with amplified sea lice densities from farmed Atlantic Salmon leading to the decline of native Coho and Pink Salmon populations in British Columbia, Canada (Krkošek et al., 2007; 2009; 2011). The damages become more acute when the pathogens in question are generalists and spread throughout a valuable fishery, such as with viral hemorrhagic septicemia virus (VHSV) spread throughout the Laurentian Great Lakes (Rothlisberger et al., 2010; Escobar et al., 2017). While VHSV is a known pathogen already in the Great Lakes region, the identity and impact of other pathogens are largely unknown.
In the summers of 2012 and 2013, we visited over 500 bait shops across the U.S. Great Lakes states of Minnesota, Wisconsin, Illinois, Indiana, Michigan, Ohio, Pennsylvania and New York to collect water samples from commercial bait tanks for use in environmental DNA (eDNA) screening of invasive species (Mahon, Nathan & Jerde, 2014; Nathan et al., 2015). Our hypothesis was that if invasive species are in a bait tank, then the water would contain DNA from sloughed tissue, cells, and organelles in the water, which could be filtered, extracted, and screened using molecular tools to detect the invasive species (Ficetola et al., 2008; Jerde et al., 2011; Simmons et al., 2016). Additional to our initial hypotheses, these extracted eDNA samples also contain DNA from all organisms in the water, including potential pathogens, similar to those evaluated by Smith et al. (2014) who screened water samples for pathogens in the water of imported, ornamental fish.

Here, we repurpose the eDNA samples previously collected from commercial bait shops in the search for Great Lakes invasive fish species and analyze them using similar methods to those employed by Smith et al. (2014) to document putative pathogens. Our goal was to identify pathogenic species present in the samples, compare the diversity and abundance of bait shop sourced pathogens to Great Lake sourced pathogens, and evaluate the potential threat of unique, bait sourced pathogens being spread in the Laurentian Great Lakes in a manner similar to that documented for invasive species.

Methods

Sample Collection and DNA Extraction
Two-liter water samples were collected from the bait holding tanks in commercial bait shops from each of the states in the Laurentian Great Lakes basin (Table 1; Figure 1; for additional collection details see Nathan et al. 2014). Samples were filtered through ~1.5 μm glass fiber filter paper within 24 h of their collection. DNA was extracted from filtered samples using a MOBio PowerWater DNA Isolation Kit (MoBio Laboratories) following manufacturer recommendations. All samples for this study were collected and analyzed using previously described quality assurance protocols (Mahon et al., 2010; Jerde et al., 2011; Mahon et al., 2013; Jerde et al., 2013; Nathan et al., 2015). Samples were chosen for analyses based on two factors: a) available DNA remaining from previous studies (Mahon, Nathan & Jerde, 2014; Nathan et al., 2015) and b) proportional number of samples (out of 96 total) based on availability from each Great Lakes state where samples were collected. Upon consideration of those factors, samples were then randomly chosen for inclusion in this study. Total number of samples used in this study are listed in Table 1 by collection location. Because our previous collection site numbers (i.e., bait shops) were not equal from all Great Lakes states, proportionally, some states had more samples included in this investigation than others (Table 1). We chose to restrict our location information for individual bait shops (names, street addresses) where sample collections were taken to the U.S. state to conceal the identity of individual vendors.

Along with investigating water samples from commercial bait vendors, we included sequence data collected from a location in northern Lake Michigan to provide a point of comparison between water samples collected in commercial bait shops and in natural Great Lakes ecosystems (Hengy et al., 2017; Figure 1). Five samples from one collection site were included in this study to serve as a comparison to our bait shop sequencing data. Although the Lake Michigan samples likely do not represent the true pathogenic diversity in the entire Great...
Lakes region, we included the wild samples to provide a comparison to the potential differences between wild and bait sourced pathogens.

Genetic Sequencing

Genomic DNA extracted from each of the 96 eDNA samples was sent to the Michigan State University Research Technology Support Facility for microbial amplicon sequencing. Amplicon sequencing libraries targeting the V4 hypervariable region of the 16S rRNA gene (515f/806r) were made following the protocol described by (Kozich et al., 2013). After PCR amplification, resulting amplicon products were normalized using Invitrogen’s SequaPrep DNA normalization plates, pooled and purified. Pooled amplicons were validated and quantified using Qubit dsDNA, Caliper LabChipGX DNA, and Kapa Biosystems Illumina Library Quantification qPCR assays. The pool of samples was then loaded on an Illumina MiSeq flow cell (v2) and sequenced in a 2x250bp paired end format with a 500 cycle v2 reagent cartridge. Base calling was done by Illumina Real Time Analysis (RTA) v1.18.54 and the sequencing output was demultiplexed and converted to FastQ format using Bcl2fastq v1.8.4.

Data filtering, QAQC, and analyses

Sequences were screened for quality using MOTHUR version 1.35.1 (Schloss et al., 2009) following the MiSeq SOP (https://www.mothur.org). Paired-end reads were assembled into contigs and were retained if they were between 251 and 254 bp in length, contained ≤ 8 homopolymers, and lacked ambiguous bases. Sequences were then aligned against the Silva (v. 119) rRNA database (Quast et al., 2013) and chimeric DNA sequences were screened for and removed with UCHIME (Edgar et al., 2011). Sequences were classified using the Ribosomal
Database Project (RDP) (training set v9; Cole et al., 2014). Reads identified as chloroplast, mitochondrial, or eukaryotic DNA, as well as those with unknown classifications, were removed from the dataset. Operational Taxonomic Units (OTUs) were clustered using a threshold of 0.03 sequence dissimilarity. Additionally, any OTUs that were represented less than twice in the dataset were removed as a conservative measure. Following data processing, we then screened our results for a targeted group of potential pathogens similar to those noted by Smith et al. (2012) (Table 2) using standard NCBI BLAST searches (Altschul et al., 1990). The search for putative pathogens was limited to those that were used in the study, Smith et al. (2014). This is not an exhaustive list of pathogens of concern in the Great Lakes, however, it allows for a comparison of putative pathogens that are related to the unique ecosystem found in bait tank water. The search did include some known fecal indicator bacteria, *E. coli*, *Enterococcus*, *Staphylococcus*, and *Bacteroides* (see reviews, Sinigalliano et al., 2010; Mclellan et al. 2015). The data described here did not contain any OTUs that had enough genetic resolution to be classed as *E. coli*.

The same approach for processing and analyzing the dataset, from sample collection through data filtering, was applied to samples collected from Lake Michigan (Hengy et al., 2017). Briefly, five samples were collected and filtered (0.2 μm) from St. John’s Bay (Lake Michigan), Beaver Island, Michigan, USA. DNA was extracted and sequenced targeting the V4 region of the 16s rRNA gene as described above for the commercial bait shop samples. This set of samples was chosen for a comparision site as it used the same amplicon region and sequencing platform as used in this study and was also available immediately for our use in this study. Comparing different amplicon regions and sequencing plateforms have been shown to be difficult and could provide misleading information and conclusions (e.g. Claesson et al., 2010).
Additionally, we used a Chi-square test to evaluate independence between bait shop sourced and Lake Michigan sourced pathogen sequence counts. All tests were performed in Mathematica (Wolfram Research, 2017).

Results

Sequence data associated with this study are available on the MG-RAST database (Meyer et al., 2008) under accession numbers mgm4791794.3 – mgm4791986.3 and as referenced in Hengy et al. (2017). From our resulting sequence data of the V4 hypervariable region of the 16S rRNA gene (515f/806r), a total of 1,594,572 sequence reads (of 8,082,960 total assembled sequences) matched the nine targeted groups listed in Table 2. Of these, *Flavobacterium* was the most diverse (400 OTUs) and most abundant (1,173,491 sequences) taxonomic group of putative pathogens (Table 3). Additionally, *Flavobacterium* was present in all of the eDNA samples processed and sequenced as a part of this effort. Least common in our resulting data was *Plesiomonas*, with a total of 17 reads found in the water sample from a single commercial bait shop in Michigan and the resulting BLAST search matches were to an unknown strain. Further, our results found that both potential human and fish pathogens were present in water samples collected in the commercial bait trade (Table 3). While we restricted our study to pathogens in trade (see Smith et al. 2012), our data from bait shop samples did show the presence of three putative fecal indicator bacteria: *Bacteroides* (13 OTUs with 9828 total reads), *Staphylococcus* (1 OTUs with 56356 total reads), and *Enterococcus* (1 OTUs with 3706 total reads). Future investigations on these and other comparable datasets should investigate these organisms further.
Compared to bait samples, the five water samples collected from one location in northern Lake Michigan had only 5 of 9 of our chosen target groups present when sequenced and analyzed in same fashion (Table 4). Additionally, numbers of OTUs for Lake Michigan targeted groups were significantly lower (ranging from 1-39 total OTUs; Table 4). The Chi-square test indicated the distribution of pathogens was different between Lake Michigan and Bait shops (p-value<0.001, $d.f.$=8).

Discussion

In this study, we documented the presence of human and fish pathogens in commercial bait retailers in the Great Lakes region using genomic surveillance. Compared to a sample sourced from Lake Michigan, bait samples had higher counts and higher diversity of multiple groups of pathogens. Bait samples collected for this study even found the presence of human fecal indicator bacteria ($Bacteroides$, $Staphylococcus$, and $Enterococcus$). Given the number of recreational anglers that use live bait and potentially dispose of bait bucket water into aquatic systems, the bait trade represents a potential vector for introducing and spreading pathogens throughout the Great Lakes. Along with this, angler’s use of bait presents the possibility of contact with the bait tank water increasing risk of exposure to these potential pathogens. While the virulence of these organisms remains unknown, this still represents a distinct possibility of transfer, spread, and/or infection when they are present in the system.

While most any water sample, be it from the holding water of an ornamental fish (Smith et al., 2012) or a commercial bait shop, local pond, drinking water source, or from a Great Lake, is expected to have some pathogenic biota, clearly there is a difference in the distribution and diversity of pathogens contained within samples. Our dataset found no evidence of $Vibrio$,

Campylobacter, Francisella, or Pleasiomonas bacterial strains in the limited number of samples from Lake Michigan water we sampled and sequenced, yet they comprised 1.5% of the sequenced pathogens in bait shop sourced water. While admittedly rare in our bait shop samples, these pathogens may be thriving or at some ecological advantage in bait shops or they may be at undetectable levels in the natural system. In contrast, OTUs similar to Aeromonas pathogens were nearly four times more abundant (as a percentage) in bait shops than in Lake Michigan sourced water. This again demonstrates an important point about these data, where a high percentage, i.e., dominant, microbes in bait water are potential pathogens, and in our Lake Michigan sampling, dominant microbes were likely non-pathogens. A study by Fujimoto et al. (2016) on lake water did not find OTUs classified as Vibrio, Mycobacterium, Aeromonas, or Pleasiomonas but did find one OTU that can be classified as Campylobacter and Francisella. However, these were very rare as the study defined a total of 158,900 OTUs (Fujimoto et al. 2016). Although, in this study, the wild sourced Lake Michigan collections (from five samples sequenced and included here), came from a relatively limited spatial extent, which likely represent a fraction of the true pathogenic diversity in the Great Lakes, the contrast between the wild and bait shop samples suggests a substantial variation between the two sources. Future investigations should include a wider sampling effort from throughout the basin to make a more direct comparison between these two sources of water samples.

Conclusions

Detection and identification of pathogens is not new to science with over 19,000 articles published on pathogen detection in the last 10 years (from 2008-2018; IS Web of Science, query on 3/15/18). Researchers have previously reported on pathogen identification from areas outside
of water and the environment, including the food industry, defense, and clinical applications (Lazcka, Campo & Muñoz, 2007). Analytical methods for these industries include traditional screening procedures (culturing and colony counts) through molecular methods and biosensors (Lazcka, Campo & Muñoz, 2007). However, the role bait water plays in pathogen transmission is unclear.

In the United States, there are approximately 33 million people that participate in recreational fishing (16 years of age and older) that account for an industry of over $48 billion annually and approximately 828,000 jobs (Southwick, 2012). Within this, the access to and the use of live bait from commercial shops presents a need to ensure the safety of participants. Spread of these pathogens is an ongoing important problem in the bait industry. Despite the concern over pathogens in the industry, actions towards prevention of pathogen spread by commercial vendors do not always address the issue (Connelly et al., 2018).

In this study, we note a number of potentially harmful pathogens in samples fully accessible to the public. However, there are a number of caveats to this. First, potential pathogens, albeit present in the samples as noted, could be at low levels and may never become virulent. Additionally, the pathogenicity of the documented OTUs was not specifically tested in this study. Second, there is no guarantee of spread from source (e.g., commercial shop) to additional sites, or that bait water bacteria could become harmful to humans as the pathogens may become damaged during transport or die when released into the environment, a similar observation to that of the importance of propagule pressure in the invasive species literature (Lockwood, Cassey & Blackburn, 2005). However, while there are no guarantees for spread and/or infection, the likely repeated introduction of these potentially dangerous strains of organisms to the environment and as documented in the invasive species literature, even low
probability survival and arrival can ultimately lead to establishment and damages of invasive

species (Jerde & Lewis, 2007; Jerde & Bampfylde, 2009). Future screening and monitoring is

needed to ensure safety for millions of participants in recreational fishing annually and also to

the ecosystems where these harmful pathogens could be spread.

Literature Cited

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ 1990. Basic local alignment search tool.

Journal of Molecular Biology 215:403–410. DOI: 10.1016/S0022-2836(05)80360-2.

Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O’Toole PW 2010.

Comparison of two next-generation sequencing technologies for resolving highly complex

microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids

Research, 38(22), e200.

Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske

CR, Tiedje JM 2014. Ribosomal Database Project: data and tools for high throughput rRNA

analysis. Nucleic Acids Research 42:D633–D642. DOI: 10.1093/nar/gkt1244.

Connelly NA, Lauber TB, Stedman RC, Knuth BA 2018. Bait dealers' roles in preventing the

spread of aquatic invasive species and fish pathogens in the Great Lakes region. Journal of

Great Lakes Research:1–7. DOI: 10.1016/j.jglr.2018.04.005.

Daszak P, Cunningham AA, Hyatt AD 2000. Emerging Infectious Diseases of Wildlife-- Threats

to Biodiversity and Human Health. Science 287:443–449. DOI:

10.1126/science.287.5452.443.

DFO (Department of Fisheries and Oceans Canada). 2012. Survey of recreational fishing in

Canada, 2010. Fisheries and Oceans Canada, Ottawa, Ontario.

Drake DAR, Mandrak NE 2014. Ecological Risk of Live Bait Fisheries: A New Angle on

Selective Fishing. Fisheries 39:201–211.

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R 2011. UCHIME improves sensitivity and

speed of chimera detection. Bioinformatics 27:2194–2200. DOI:

10.1093/bioinformatics/btr381.

Escobar LE, Kurath G, Escobar-Dodero J, Craft ME, Phelps NBD 2017. Potential distribution of

the viral haemorrhagic septicaemia virus in the Great Lakes region. Journal of fish diseases

40:11–28. DOI: 10.1111/jfd.12490.

Ficetola GF, Miaud C, Pompanon F, Taberlet P 2008. Species detection using environmental

DNA from water samples. Biology Letters 4:423–425. DOI: 10.1098/rsbl.2008.0118.

Fujimoto M, Cavaletto J, Lebig JR, McCarthy A, Vanderploeg HA, Denef VJ 2016.

Spatiotemporal distribution of bacterioplankton functional groups along a freshwater estuary

to pelagic gradient in Lake Michigan. J. Great Lakes Res. 1036-1048.

Goodwin AE, Peterson JE, Meyers TR, Money DJ 2004. Transmission of Exotic Fish Viruses.

Fisheries 29:19–23. DOI: 10.1577/1548-8446(2004)29[19:TOEFV]2.0.CO;2.
Hengy MH, Horton DJ, Uzariski DG, Learman DR 2017. Microbial community diversity patterns are related to physical and chemical differences among temperate lakes near Beaver Island, MI. PeerJ 5:e3937. DOI: 10.7717/peerj.3937.

Jenkins PT 2012. Invasive animals and wildlife pathogens in the United States: the economic case for more risk assessments and regulation. Biological Invasions 15:243–248. DOI: 10.1007/s10530-012-0296-8.

Jerde CL, Bampfylde C 2009. Chance establishment for sexual, semelparous species: overcoming the Allee effect. The American Naturalist.

Jerde CL, Lewis MA 2007. Waiting for invasions: a framework for the arrival of nonindigenous species. The American Naturalist 170:1–9. DOI: 10.1086/518179.

Jerde CL, Chadderton WL, Mahon AR, Renshaw MA, Corush J, Budny ML, Mysorekar S, Lodge DM 2013. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Canadian Journal of Fisheries and Aquatic Sciences 70:522–526. DOI: 10.1139/cjfas-2012-0478.

Jerde CL, Mahon AR, Chadderton WL, Lodge DM 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters 4:150–157. DOI: 10.1111/j.1755-263X.2010.00158.x.

Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology 79:5112–5120. DOI: 10.1128/AEM.01043-13.

Krkošek M, Connors BM, Morton A, Lewis MA, Dill LM, Hilborn R 2011. Effects of parasites from salmon farms on productivity of wild salmon. Proceedings of the National Academy of Sciences 108:14700–14704. DOI: 10.1073/pnas.1101845108.

Krkošek M, Ford JS, Morton A, Lele S, Myers RA, Lewis MA 2007. Declining Wild Salmon Populations in Relation to Parasites from Farm Salmon. Science 318:1772–1775. DOI: 10.1126/science.1148744.

Krkošek M, Morton A, Volpe JP, Lewis MA 2009. Sea lice and salmon population dynamics: effects of exposure time for migratory fish. Proceedings of the Royal Society B: Biological Sciences 276:2819–2828. DOI: 10.1098/rspb.2009.0317.

Lazcka O, Campo FJD, Muñoz FX 2007. Pathogen detection: A perspective of traditional methods and biosensors. Biosensors & bioelectronics 22:1205–1217. DOI: 10.1016/j.bios.2006.06.036.

Lockwood JL, Cassey P, Blackburn T 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution 20:223–228. DOI: 10.1016/j.tree.2005.02.004.

Lowry T, Smith SA 2007. Aquatic zoonoses associated with food, bait, ornamental, and tropical fish. Journal of the American Veterinary Medical Association 231:876–880. DOI: 10.2460/javma.231.6.876.

Mahon AR, Jerde CL, Galaska M, Bergner JL, Chadderton WL, Lodge DM, Hunter ME, Nico LG 2013. Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PloSone 8:e58316. DOI: 10.1371/journal.pone.0058316.t002.

Mahon AR, Nathan LR, Jerde CL 2014. Meta-genomic surveillance of invasive species in the bait trade. Conservation Genetics Resources 6:563–567. DOI: 10.1007/s12686-014-0213-9.

Mahon AR, Rohly A, Budny ML, Jerde CL, Chadderton WL, Lodge DM 2010. Environmental DNA Monitoring and Surveillance: Standard Operating Procedures. Report to the United
330 States Army Corps of Engineers, Environmental Laboratories, Cooperative Environmental Studies Unit, Vicksburg, Mississippi. CESU agreement #W912HZ08-02-0014, modification P00007.

333 McLellan SL, Fisher JC, Newton RJ 2015. The microbiome of urban waters. *Int Microbiol.* 18(3): 141-149.

335 Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA 2008. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. *BMC Bioinformatics* 9:386. DOI: 10.1186/1471-2105-9-386.

339 Nathan LR, Jerde CL, Budny ML, Mahon AR 2015. The Use of Environmental DNA in Invasive Species Surveillance of the Great Lakes Commercial Bait Trade. *Conservation Biology* n/a–n/a. DOI: 10.1111/cobi.12381.

342 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Research* 41:D590–D596. DOI: 10.1093/nar/gks1219.

345 Rothlisberger JD, Lodge DM, Cooke RM, Finnoff DC 2010. Future declines of the binational Laurentian Great Lakes fisheries: the importance of environmental and cultural change. *Frontiers in Ecology and the Environment* 8:239–244. DOI: 10.1890/090002.

348 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF 2009. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. *Applied and Environmental Microbiology* 75:7537–7541. DOI: 10.1128/AEM.01541-09.

353 Simmons M, Tucker A, Chadderton WL, Jerde CL, Mahon AR 2016. Active and passive environmental DNA surveillance of aquatic invasive species. *Canadian Journal of Fisheries and Aquatic Sciences* 73:76–83. DOI: 10.1139/cjfas-2015-0262.

356 Smith KF, Schmidt V, Rosen GE, Amaral-Zettler L 2012. Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water. *PloS one* 7:e39971. DOI: 10.1371/journal.pone.0039971.s004.

359 Sinigalliano CD, Fleisher JM, Gidley ML, Solo-Gabriele HM, Shibata T, Plano LRW, Elmir SM, Wanless D, Bartkowiak J, Roiteau R, Withum K, Abdelzaher AM, He G, Ortega C, Zhu X, Wright ME, Kish J, Hollenbeck J, Scott T, Backer LC, Fleming LE 2010. Traditional and molecular analyses for fecal indicator bacteria in non-point source subtropical recreational marine waters. *Water research.* 44: 3763–3772.

364 Southwick A 2012. Sportfishing in America: an economic force for conservation. *Produced for the American Sportfishing Association (ASA) under a U.S. Fish and Wildlife Service (USFWS) Sport Fishing Restoration Grant (F12AP00137, VA M-26-R) awarded by the Association of Fish and Wildlife Agencies (AFWA):1–12.*

368 U.S. Department of the Interior, U.S. Fish and Wildlife Service, and U.S. Department of Commerce, U.S. Census Bureau. 2011. National survey of fishing, hunting and wildlife-associated recreation.

371 Wolfram Research, Inc. 2017. Mathematica, Version 11.2, Champaign, IL.
Figure 1. Collection locations of bait water samples collected from commercial vendors utilized in this study. Included are shop locations (black circles) and the sampling location for the Lake Michigan water sample (black star) included in the dataset.

Table 1: Collection location (by U.S. state) and number of bait shop DNA samples used in the study.

Table 2. List of bacterial pathogen groups that were searched for in our resulting data. Note that while not all members of each group listed are known to cause the effects listed, these are “worst case” scenarios for that genus/group.

Table 3. Reads and OTUs of targeted pathogen groups for bait sourced samples and their virulence/pathogenic effects regardless of their origin. Note that Top/Notable matches from BLAST results were for all top matches >98% similar for the OTUs found.

Table 4. Reads and OTUs of targeted pathogen groups for the five Lake Michigan samples (one collection location; Hengy et al. 2017) and their virulence/pathogenic effects regardless of their origin. Note that Top/Notable matches from BLAST results were for all top matches >98% similar for the OTUs found.
Figure 1

Map of collection locations for samples used in this study

Collection locations of bait water samples collected from commercial vendors utilized in this study. Included are shop locations (black circles) and the sampling location for the Lake Michigan water sample (black star) included in the dataset.
Table 1 (on next page)

Sample collection locations

Collection location (by U.S. state) and number of bait shop DNA samples used in the study.
State	Number of Samples
IL	6
IN	7
MI	53
MN	4
NY	9
OH	7
PA	2
WI	8
Table 2 (on next page)

Pathogens screened

List of bacterial pathogen groups that were searched for in our resulting data. Note that while not all members of each group listed are known to cause the effects listed, these are “worst case” scenarios for that genus/group.
Pathogen	Some harmful effects caused by members of group
Vibrio	Some species can cause gastroenteritis, septicemia, cholera
Legionella	Legionnaires disease, Pontiac fever
Mycobacterium	Tuberculosis, leprosy
Coxiella	Q fever
Campylobacter	campylobacteriosis (gastrointestinal infection)
Francisella	tularemia (rabbit fever), septicemia and invasive systemic infections
Plesiomonas	gastroenteritis
Flavobacterium	Bacterial cold water disease on salmonids, rainbow trout fry disease on rainbow trout, cotton-wool disease on freshwater fishes, the bacterial gill disease on trouts.
Salmonella	typhoid fever, paratyphoid fever, and food poisoning
Giardia	Giardiasis
Shigella	Shigellosis, dissentary
Aeromonas	Gastroenteritis and wound infections, with or without bacteremia.
Table 3 (on next page)

Sequence reads bait shops

Reads and OTUs of targeted pathogen groups for bait sourced samples and their virulence/pathogenic effects regardless of their origin. Note that Top/Notable matches from BLAST results were for all top matches >98% similar for the OTUs found.
Genus	Total number reads in all samples	Highest # reads in single sample (location)	Total OTUs found in dataset from all shops	Present in # of samples (and % of samples)	Top/Notable matches (disease)
Vibrio	20977	6406 (MI)	1	65 (67.71%)	V. cholerae (cholera), V. anguillarum (cultured salmon pathogen)
Legionella	26419	7264 (WI)	141	86 (89.58%)	L. maceachernii (pneumonia), L. pneumophilia (Legionnaires disease), L. micdadei (Pontiac fever), L. longbeachae (Pontiac fever)
Mycobacterium	164190	51052 (WI)	37	93 (96.88%)	M. tuberculosis (tuberculosis), M. bovis (TB in cattle), M. lepramatosis (leprosy), M. microti (other mammal TB), M. tusciae (chronic fibrosis from tap water), M. mucogenicum (BSL 2, skin infections)
Coxiella	95	37 (IN)	6	7 (7.29%)	Q fever (closest at 95% match)
Campylobacter	1414	503 (WI)	2	5 (5.21%)	C. consisus (intestinal disease), C. gracilis (intestinal disease)
Francisella	1164	485 (MI)	1	17 (17.71%)	F. philomiragia (rare human infection)
Plesiomonas	17	17 (MI)	1	1 (1.04%)	Unknown strain.
Flavobacterium	1173491	64265 (MN)	400	100 (100%)	F. psychrophilum (bacterial cold water disease in salmonids, rainbow trout fry disease), F. columnare (cotton-wool disease in freshwater fish), F. branchiophilum (bacterial gill disease in trout)
Salmonella	-	-	-	-	Not present
Giardia	-	-	-	-	Not present
Shigella	-	-	-	-	Not present
Aeromonas	206805	10426 (MI)	24	95 (98.95%)	A. veronii (human pathogen), A. salmonicida (virulent salmon pathogen), A. schubertii (infection of Chana argus!)
Table 4 (on next page)

Sequence data Lake MI

Reads and OTUs of targeted pathogen groups for the five Lake Michigan samples (one collection location; Hengy et al. 2017) and their virulence/pathogenic effects regardless of their origin. Note that Top/Notable matches from BLAST results were for all top matches >98% similar for the OTUs found.
	Total # of reads in all samples	Highest # reads in single sample/location	Total OTUs found in dataset from all samples	Present in # of samples (and % of samples)	Top/Notable matches (disease)
Vibrio	0	0	0	0	Not present
Legionella	16	4	11	5 (100%)	L. longbeachae, L. wadsworthii, L. santicruci
Mycobacterium	9	4	6	3 (60%)	n/a
Coxiella	1	1	1	1 (20%)	Not present
Campylobacter	0	0	0	0	Not present
Francisella	0	0	0	0	Not present
Plesiomonas	0	0	0	0	Not present
Flavobacterium	1379	915	39	5 (100%)	Pseudomonas veronii, Pseudomonas gessardi, Pseudomonas sp., Pseudomonas fluorescens
Salmonella	-	-	-	-	Not present
Giardia	-	-	-	-	Not present
Shigella	-	-	-	-	Not present
Aeromonas	46	33	1	5 (100%)	Aeromonas jandaei, Aeromonas allosaccharophila, Aeromonas bivalvium, Aeromonas molluscum, Aeromonas caviae, Aeromonas salmonicida, others (all 100%) A.c. causes necrotizing fasciatus