FINITE MORPHISMS FROM CURVES OVER DEDEKIND RINGS TO \mathbb{P}^1.

T. CHINBURG*, G. PAPPAS†, AND M. J. TAYLOR‡

Abstract. A theorem of B. Green states that if A is a Dedekind ring whose fraction field is a local or global field, every normal projective curve over $\text{Spec}(A)$ has a finite morphism to \mathbb{P}^1_A. We give a different proof of a variant of this result using intersection theory and work of Moret-Bailly.

1. Introduction

In this paper we will use intersection theory to prove a variant of a theorem first proved by B. Green. We will make the following hypotheses:

Hypothesis 1.1. Let A be an excellent Dedekind ring such that:

i. The residue field of each maximal ideal of A is an algebraic extension of a finite field.

ii. If A' is the normalization of A in a finite extension K' of the fraction field K of A, then $\text{Pic}(A')$ is a torsion group.

Theorem 1.2. Suppose that \mathcal{Y} is a normal scheme over $\text{Spec}(A)$ whose structure morphism is flat and projective with fibers of dimension 1. Then there is a finite flat morphism $\pi : \mathcal{Y} \to \mathbb{P}^1_A$ over $\text{Spec}(A)$.

This theorem was proved by Green, see [3, Theorem 2], when K is a local or global field. (See also [4].) The proof of Theorem 2 in [3] is written in the language of valuation theory, and follows from a more general result giving sufficient conditions for a family of valuations on the function field of \mathcal{Y} to be principal.

Since Theorem 1.2 is a geometric result, it is natural to seek an entirely geometric proof. In this paper shall provide such a proof using intersection theory and the work of Moret-Bailly in [7]. To give a little more insight into the structure of the proof, we remark that first step is to show in [2] that the result follows from the existence of effective horizontal linearly equivalent ample divisors D_1 and D_2 on \mathcal{Y} which do not intersect. Note that if there is
a finite morphism \(\mathcal{Y} \to \mathbb{P}^1_A \), then pulling back the divisors on \(\mathbb{P}^1_A \) associated to homogeneous coordinates \(x_0 \) and \(x_1 \) results in such \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \).

We then use results of Moret-Bailly \([7]\) to produce an element \(f \) of the function field \(K(\mathcal{Y}) \) for which \(\text{div}_\mathcal{Y}(f) = \mathcal{D}_1 - \mathcal{D}_2 \) for some \(\mathcal{D}_i \) of the above kind. Moret-Bailly’s method does not lead directly to \(\mathcal{D} \) having no vertical components. Instead we produce a finite set \(\{ f_i \} \) of functions for which the horizontal parts of \(\text{div}_\mathcal{Y}(f_i) \) are of the desired kind, and for which the vertical parts of the \(\text{div}_\mathcal{Y}(f_i) \) have the following property. The vertical parts as \(i \) varies generate a subgroup of finite index in the subgroup of the divisor class group of \(\mathcal{Y} \) generated by divisors contained in the reducible fibers of \(\mathcal{Y} \) over \(\text{Spec}(A) \). We then use the negative semi-definiteness of the intersection pairing in fibers to show that a constant times a product of positive integral powers of the \(f_i \) has a divisor \(\mathcal{D}_1 - \mathcal{D}_2 \) of the required kind.

In conclusion, we note that Theorem 1.2 and B. Green’s results in \([8]\) or \([4]\) are in fact slightly different. Each covers cases that the other does not. His results apply, for example, to the ring \(A = \mathbb{Z}[\mu_{p^n}]\lbrack 1/p \rbrack \) obtained by adjoining to \(\mathbb{Z} \) all \(p \)-power roots of unity in an algebraic closure of \(\mathbb{Q} \) and by then inverting the prime number \(p \).

Acknowledgements: The authors would like to thank M. Matignon for pointing out the prior work of B. Green after a preliminary version of this manuscript had been circulated. The authors would also like to thank J.-B. Bost for useful discussions.

2. Horizontal divisors

Lemma 2.1. To prove Theorem 1.2, it will suffice to show that when \(\mathcal{Y} \) is connected, there are ample, effective linearly equivalent horizontal divisors \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \) on \(\mathcal{Y} \) such that \(\mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset \).

Proof. Since \(\mathcal{Y} \) is normal it is the disjoint union of its connected components, so we can reduce to the case in which \(\mathcal{Y} \) is connected. Given \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \) as in the Lemma, we can replace each of these divisors by a high integral multiple of themselves to be able to assume that there is a projective embedding \(\mathcal{Y} \to \mathbb{P}^n_A \) and hyperplanes \(H_1 \) and \(H_2 \) in \(\mathbb{P}^n_A \) such that \(H_i \cap \mathcal{Y} = \mathcal{D}_i \) for \(i = 1, 2 \).

The fact that \(\mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset \) implies that \(\mathcal{Y} \) is contained in the open set \(U = \mathbb{P}^n_A - (H_1 \cap H_2) \). Let \(h_i(x) \) be a linear form in the homogenous coordinates \(x = (x_0; \ldots; x_n) \) of \(\mathbb{P}^n_A \) such that \(H_i \) is the zero locus of \(h_i(x) \). There is a morphism \(f : U \to \mathbb{P}^1_A \) defined by \(x = (x_0; \ldots; x_n) \to (h_1(x); h_2(x)) \).

We first show that the restriction \(f_\mathcal{Y} : \mathcal{Y} \to \mathbb{P}^1_A \) of \(f \) to \(\mathcal{Y} \) is quasi-finite. Let \(c \) be a point of \(\text{Spec}(A) \), and let \(Z \) be the reduction of an irreducible component of the fiber \(\mathcal{Y}_c \) of \(\mathcal{Y} \) over \(c \). Since \(\mathcal{Y}_c \) has finitely many irreducible components, it will suffice to show that the restriction \(f_Z : Z \to \mathbb{P}^1_A \) of \(f \) is quasi-finite. If \(H_1 \) contains \(Z \), then \(Z - (Z \cap U) = Z \cap H_1 \cap H_2 = Z \cap H_2 \neq \emptyset \) since \(Z \) is projective and \(H_2 \) is a hyperplane in \(\mathbb{P}^n_A \). This is a contradiction.
and similarly H_2 cannot contain Z. Thus $h(x) = h_2(x)/h_1(x)$ defines a non-zero rational function on Z, and it will suffice to show that $h(x)$ is not in the field of constants $\ell(Z)$ of the function field $k(Z)$ of Z.

Suppose first that c is the generic point of $\text{Spec}(A)$. Since \mathcal{Y} is normal and connected, its generic fiber Y is regular and irreducible. Thus $Z = Y$. If $h(x) \in \ell(Z)$, the ample divisors which D_1 and D_2 determine on Y are equal, contradicting $D_1 \cap D_2 = \emptyset$.

Suppose now that c is a closed point of $\text{Spec}(A)$. Then $\ell(Z)$ is a finite extension of the residue field $k(c)$ of c. By Hypothesis 1.1(i), $k(c)$ is an algebraic extension of a finite field, so $\ell(Z)$ is also such an extension. Therefore if $h(x) \in \ell(Z)$, the fact that $h(x)$ is non-zero implies that there is an integer $m > 0$ such that $h(x)^m = (h_2(x)/h_1(x))^m = 1$ in $\ell(Z)$. Hence the zero locus of $h_2(x)^m - h_1(x)^m$ contains a dense open subset of Z, and thus all of Z. Since Z is projective over A, there is a point z in $Z \cap H_2$. Then $h_2(z) = 0$ and $h_2(z)^m - h_1(z)^m = 0$, so $h_1(z)^m = 0$ and $h_1(z) = 0$. This implies $z \in Z \cap H_0 \cap H_1$, which contradicts $D_1 \cap D_2 = \emptyset$. Thus f_Y is quasi-finite.

Since the projective morphism $\mathcal{Y} \to \text{Spec}(A)$ factors through f_Y, we see that f_Y must be projective. By [4, Ex. III.11.2] a quasi-finite projective morphism is finite. By [6, Thm. 38, p. 124], \mathcal{Y} is Cohen-Macaulay because it noetherian and normal of dimension two. By [6, Thm. 46, p. 140], a finite morphism from a Cohen-Macaulay scheme to a regular scheme is flat. Hence $f_Y : \mathcal{Y} \to \mathbb{P}^1_A$ is finite and flat, so Lemma 2.1 is proved.

\[\square \]

3. Intersection Numbers and Ample Divisors

In this section we define some notation and we recall some well known results about intersection numbers and ample divisors. We will assume throughout that \mathcal{Y} is connected.

Definition 3.1. Let $S_v = S_v(\mathcal{Y})$ be the set of irreducible components of the fiber $\mathcal{Y}_v = k(v) \otimes_A \mathcal{Y}$ of \mathcal{Y} over $v \in \text{Spec}(A)$. Define $\mathcal{Y}_v^{\text{red}}$ to be the reduction of \mathcal{Y}_v. Let $Y = K \otimes_A \mathcal{Y}$ be the general fiber of \mathcal{Y}.

Definition 3.2. Suppose E is a Cartier divisor on \mathcal{Y} and that $C \in S_v$ for some maximal ideal v of A. Let $C^\#$ be the normalization of C, and let $i : C^\# \to \mathcal{Y}$ be the composition of the natural morphism $C^\# \to C$ with the closed immersion $C \to \mathcal{Y}$. Define

\[\langle E, C \rangle_v = \deg_{k(v)} i^*(O_Y(E)) \]

where $i^*(O_Y(E))$ is a line bundle on the regular curve $C^\#$ over the residue field $k(v)$ of v. This pairing may be extended by bilinearity to all Cartier divisors E and to all Weil divisors C in the free abelian group W_v generated by S_v.

The value of $\langle E, C \rangle$ clearly depends only on the linear equivalence class of E. We will need the following result.
Lemma 3.3. (Moret-Bailly) A non-zero integral multiple of a Weil divisor on \(Y \) is a Cartier divisor. One may thus extend \(\langle E, C \rangle_v \) to all Weil divisors \(E \) and all \(C \in W_v \) by linearity in both arguments. Define \(QW_v = Q \otimes \mathbb{Z} W_v \) and let \(QY_v \) be the subspace spanned by the Weil divisor \(Y_v \). Then \(\langle \cdot, \cdot \rangle_v \) gives rise to a negative definite pairing
\[
\langle \cdot, \cdot \rangle_v : \frac{QW_v}{QY_v} \times \frac{QW_v}{QY_v} \to \mathbb{Q}.
\] (3.1)

Let \(T \) be a horizontal Cartier divisor on \(Y \), and let \(T \) be the general fiber of \(T \). Then
\[
\langle T, Y_v \rangle_v = \deg_K(T)
\] (3.2)
for all maximal ideals \(v \in \text{Spec}(A) \).

Proof. The first assertion is shown in [7, Lemme 3.3]. Since \(\langle E, C \rangle_v \) is bi-linear over Cartier divisors \(E \), it follows that we can extend this pairing to all Weil divisors \(E \). The proof of the second assertion concerning (3.1) is indicated immediately after [7, eq. (3.5.4)]. For further details, see [8, exp. 1, Prop. 2.6] and [2, §2.4, Appendices A.1 and A.2]. The last assertion is from [7, §3.5]. \(\square \)

Note that if \(Y \) is not regular, the extension of \(\langle \cdot, \cdot \rangle_v \) described in 3.3 is different in general from the proper intersection pairing considered by Artin in [1, §2].

Lemma 3.4. Suppose \(D \) is an ample Cartier divisor on \(Y \) and that \(E \) is an effective horizontal Cartier divisor. Then \(D + E \) is ample.

Proof. By [5, Prop. III.5.3], \(D + E \) is ample if and only if for each coherent sheaf \(F \) on \(Y \), there is an integer \(n_0(F) > 0 \) such that
\[
H^i(Y, F \otimes O_Y(D + E)^{\otimes n}) = 0
\]
for all \(n \geq n_0 \) and all \(i > 0 \). Consider the long exact cohomology sequence associated to the exact sequence of sheaves
\[
0 \to F \otimes O_Y(D)^{\otimes n} \to F \otimes O_Y(D + E)^{\otimes n} \to (F \otimes O_Y(D + E)^{\otimes n})|_{nE} \to 0.
\]
Because \(nE \) is horizontal, it is affine, and the higher cohomology of coherent sheaves on \(nE \) is trivial. It follows that \(D + E \) is ample because \(D \) is ample. \(\square \)

Note that if \(E \) is allowed to have vertical components, then \(D + E \) might have negative degree on some irreducible vertical component of \(Y \). Thus the conclusion of Lemma 3.4 need not hold for arbitrary effective Cartier divisors \(E \).

We will leave the proof of the following Lemma to the reader.

Lemma 3.5. Suppose \(T \) is a finite set of closed points of \(\mathbb{P}_A^m \) for some integer \(m \geq 1 \). Then there is an integer \(n \geq 1 \) and a homogenous polynomial \(f = f(x_0, \ldots, x_m) \) of degree \(n \) in homogenous coordinates \((x_0; \ldots; x_m) \) for \(\mathbb{P}_A^m \) such that \(f \) does not vanish at any point of \(T \).
Lemma 3.6. There is an effective horizontal divisor D on Y which is very ample relative to the structure morphism $Y \to \text{Spec}(A)$. Each such D intersects every irreducible component of a fiber of Y over $\text{Spec}(A)$.

Proof. Since we have assumed Y is projective, there is an effective very ample Cartier divisor D on Y. Let T be a finite set of closed points of Y which contains a point on every irreducible component of every reducible fiber of Y over $\text{Spec}(A)$. Lemma 3.5 implies that there is an effective very ample Cartier divisor which is linearly equivalent to nD for some $n > 0$ and which contains no point of T; we replace D by this divisor. Now D can contain no irreducible component of a reducible vertical fiber of Y over $\text{Spec}(A)$. Thus the vertical part of D is an integral combination of fibers of Y. Since Pic(A) is finite by assumption, we can now replace D by $dD + \text{div}_Y(g)$ for some g in the fraction field K of A and some $d > 0$ to be able to assume that D is horizontal, effective and very ample. Since D is effective and ample when restricted to every irreducible component of a fiber of Y, it must intersect each such component. □

4. An application of work of Moret-Bailly

Proposition 4.1. Suppose Y is connected. Let D be a divisor with the properties stated in Lemma 3.6. Let M be the finite set of maximal ideals $v \in \text{Spec}(A)$ such that Y_v has more than one irreducible component. For each $v \in M$, choose an element $C(v)$ of S_v. Suppose

$$Y_v = \sum_{C \in S_v} n_C C$$

as Weil divisors for some integers $n_C > 0$. There is a non-constant function f in the function field $K(Y)$ having the following properties. The divisor of f on Y has the form

$$\text{div}_Y(f) = D_1(f) - nD + \sum_{v \in M} E_v$$

(4.1)

where $0 < n \in \mathbb{Z}$, E_v is a Cartier divisor supported on Y_v for $v \in M$ and the following is true:

i. $D_1(f)$ is an effective, horizontal Cartier divisor and is equal to the Zariski closure of its general fiber $D_1(f)$. The intersection $D_1(f) \cap D$ is empty.

ii. Suppose $v \in M$ and $C \in S_v$. Then

$$\langle nD, C \rangle_v - \langle D_1(f), C \rangle_v = \langle E_v, C \rangle_v \in \mathbb{Z}.$$ (4.2)

iii. Let m be the degree of f on the general fiber Y. If $v \in M$ and $C \in S_v$ then

$$0 < \langle nD, n_C C \rangle_v < m.$$ (4.3)

iv. If $v \in M$, the unique component of the special fiber Y_v which $D_1(f)$ intersects is the $C(v)$ we have chosen. For $C \in S_v$ one has

$$\langle D_1(f), C \rangle_v = 0 \quad \text{if} \quad C \neq C(v) \quad \text{and} \quad \langle D_1(f), n_{C(v)} C(v) \rangle_v = m.$$ (4.4)
v. For \(v \in M \) one has
\[
\langle E_v, n_C C \rangle_v > 0 \quad \text{if} \quad C(v) \neq C \in S_v \quad \text{and} \quad \langle E_v, n_C C(v) \rangle_v < 0. \quad (4.5)
\]

Proof. We use the construction given in the proof of [7, Prop. 3.8]. To match the notation used in [7], let \(\mathcal{X} = \mathcal{Y} \). Define \(Z \) to be the union of \(\mathcal{D} \) with
\[
V = \cup \{ C : v \in M \quad \text{and} \quad C(v) \neq C \in S_v \}. \quad (4.6)
\]
In the proof of [7, Prop. 3.8], Moret-Bailly shows there is an integer \(n > 0 \) and rational linear combination \(\Delta \) of vertical divisors with the following properties:

i. The rational divisor \(n(\mathcal{D} + \Delta) \) is a Cartier divisor.

ii. Let \(\mathcal{L} = O_\mathcal{Y}(n(\mathcal{D} + \Delta)) \). There is a non-zero global section \(t \in H^0(\mathcal{Y}, \mathcal{L}) \) such that \(t \) generates the stalk of \(\mathcal{L} \) at all points of \(Z \).

On viewing \(\mathcal{L} \) as a subsheaf of the function field \(K(\mathcal{Y}) \) we may identify \(t \) with a function \(f \in K(\mathcal{Y}) \). Then
\[
\text{ord}_w(f) = -\text{ord}_w(n(\mathcal{D} + \Delta)) \quad (4.7)
\]
at all codimension 1 points \(w \) of \(\mathcal{Y} \) lying in \(Z = \mathcal{D} + V \). Since \(V \) and \(n\Delta \) are fibral, and \(Z \) contains \(\mathcal{D} \), we conclude that
\[
\text{div}_\mathcal{Y}(f) = \mathcal{D}_1(f) - n\mathcal{D} + \mathcal{T}
\]
where \(\mathcal{T} \) is a fibral divisor and \(\mathcal{D}_1(f) \) is an effective, horizontal divisor having no irreducible components in common with \(\mathcal{D} \). It follows that \(\mathcal{D}_1(f) \) is the Zariski closure of its general fiber \(\mathcal{D}_1(f) \).

Write \(\mathcal{T} \) as a finite integral combination of irreducible components of the \(\mathcal{Y}_v \) as \(v \) ranges over \(\text{Spec}(A) \). If \(v \not\in M \), then \(\mathcal{Y}_v^{\text{red}} \) is irreducible, and a non-zero integral multiple of \(\mathcal{Y}_v^{\text{red}} \) is the divisor of a non-zero element of \(K \) since \(\text{Pic}(A) \) is torsion by Hypothesis [11]. By Lemma [8.3] a non-zero integral multiple of a Weil divisor on \(\mathcal{Y} \) is a Cartier divisor. Therefore on replacing \(f \) by \(f^m\alpha \) for some \(0 \neq \alpha \in K \) and some sufficiently divisible integer \(m > 0 \), we will have an equality of the form in [11], with \(n\mathcal{D} \) and \(n\Delta \) being Cartier divisors.

Since \(t \) generates the stalk of \(\mathcal{L} = O_\mathcal{Y}(n(\mathcal{D} + \Delta)) \) at each point of \(Z \), \(f^{-1} \) is a local equation for the Cartier divisor \(n(\mathcal{D} + \Delta) \) at each point of \(Z \). From [11], \(f^{-1} \) is also a local equation for \(-\mathcal{D}_1(f) + n\mathcal{D} + \sum_{v \in M} E_v \) at all points of \(\mathcal{Y} \). Recall that the \(E_v \) and \(n\Delta \) are vertical Cartier divisors, and \(\mathcal{D}_1(f) \) is a horizontal Cartier divisor with no irreducible components in common with \(\mathcal{D} \subset Z \). Therefore if \(c \in \mathcal{D}_1(f) \cap \mathcal{D} \subset Z \), a local equation for \(\mathcal{D}_1(f) \) in a neighborhood of \(c \) would have to be a local equation for \(\sum_{v \in M} E_v - n\Delta \). These Cartier divisors would then agree in an open neighborhood of \(c \) in \(\mathcal{Y} \), which is impossible since one is vertical and the other is horizontal. Therefore \(\mathcal{D}_1(f) \cap \mathcal{D} = \emptyset \), which completes the proof of (i).

Statement (ii) is clear from [11] and the fact that since \(\text{div}_\mathcal{Y}(f) \) is principal, \(\langle \text{div}_\mathcal{Y}(f), C \rangle_v = 0 \).
Concerning (iii), we know by (3.2) that
\[\sum_{C \in S_v} \langle nD, nC \rangle_v = \langle nD, Y_v \rangle_v = \deg(nD) = m \] (4.8)
since \(nD \) is the polar part of the divisor \(\text{div}_Y(f) \) on the general fiber \(Y \) of \(\mathcal{Y} \). We have \(\langle D, C \rangle_v > 0 \) for all \(C \in S_v \) because \(D \) intersects each such \(C \) by Lemma 3.6. Therefore (4.3) follows from (4.8) and the fact that \(S_v \) has more than one element if \(v \in M \).

To show (iv), suppose \(v \in M \) and that \(C(v) \neq C \in S_v \). Since \(C \subset Z \) and \(C \) is fibral, (4.1) and (4.7) imply that the multiplicities of \(C \) in \(-n(D + \Delta) \), \(-n\Delta \), \(\text{div}_Y(f) \) and \(E_v \) must be equal. We conclude from (4.1) and (4.7) that if \(D_1(f) \) intersects a point \(c \in C \subset Z \), then \(t \) would not be a local generator of the stalk of \(\mathcal{L} \) at \(c \). This contradicts condition (ii) in the definition of \(t \) following equation (4.6). Thus \(D_1(f) \) can only intersect the component \(C(v) \) of \(Y_v \). Now (3.2) shows
\[\langle D_1(f), nC(v)C(v) \rangle_v = \langle D_1(f), Y_v \rangle_v = \deg(D_1(f)) = m. \]
This shows (4.4) and completes the proof of (iv).

Finally, the inequalities in (4.5) of part (v) are a consequence of (4.2), (4.3) and (4.4). \(\square \)

5. Controlling vertical divisors

Lemma 5.1. Let \(D, M \) and \(S_v \) be as in Proposition 4.1. Suppose \(M' \subset M \) and that \(C_0(v) \in S_v \) for \(v \in M' \). Then there is a function \(h \in K(\mathcal{Y}) \) such that
\[\text{div}_Y(h) = D_1 - D_2 + \sum_{v \in M'} E_v \] (5.1)
where \(D_1 \) and \(D_2 \) are horizontal effective divisors which do not intersect, \(D_2 \) has the same support as \(D \), \(E_v \) is supported on \(Y_v \), and for \(v \in M' \) and \(C' \in S_v \) we have
\[\langle E_v, C' \rangle_v > 0 \quad \text{if} \quad C_0(v) \neq C \in S_v \quad \text{and} \quad \langle E_v, C_0(v) \rangle_v < 0. \] (5.2)

Proof. We use induction on the number of elements of \(M - M' \). If \(M = M' \), the Lemma is shown by Proposition 4.1. Suppose now that Lemma 5.1 holds when \(M' \) is replaced by \(M' \cup \{v_0\} \) for some \(v_0 \in M - M' \). For each \(C \in S_{v_0} \), we thus can find a function \(h_C \) with the following properties:

i. The divisor of \(h_C \) is
\[\text{div}_Y(h_C) = D_{C,1} - D_{C,2} + \sum_{v \in M'} E_{C,v} + E_{C,v_0} \] (5.3)
where \(D_{C,1} \) and \(D_{C,2} \) are horizontal effective divisors which do not intersect, \(D_{C,2} \) has the same support as \(D \), and \(E_{C,v} \) is supported on \(Y_v \) for \(v \in M' \cup \{v_0\} \).

ii. For \(v \in M' \) and \(C' \in S_v \) we have
\[\langle E_{C,v}, C' \rangle_v > 0 \quad \text{if} \quad C_0(v) \neq C' \quad \text{and} \quad \langle E_{C,v}, C_0(v) \rangle_v < 0. \] (5.4)
iii. For $C' \in S_{v_0}$ we have
\[\langle E_{C,v_0}, C' \rangle_{v_0} > 0 \quad \text{if} \quad C \neq C' \quad \text{and} \quad \langle E_{C,v_0}, C \rangle_{v_0} < 0. \] (5.5)

We claim that there are positive integers $\{a_C\}_{C \in S_{v_0}}$ such that the divisor
\[E_{v_0} = \sum_{C \in S_{v_0}} a_C E_{C,v_0} \]
has the property that
\[\langle E_{v_0}, C' \rangle_{v_0} = 0 \quad \text{for all} \quad C' \in S_{v_0}. \] (5.6)

Before showing this, let us first show how it can be used to complete the proof of Lemma 5.1.

By Lemma 3.3, the intersection pairing \langle , \rangle_{v_0} is negative semi-definite on the vector space spanned by S_{v_0}. Hence (5.6) implies that E_{v_0} is a rational multiple of the fiber \mathcal{Y}_{v_0}. Since $\text{Pic}(A)$ is finite by Hypothesis ii), there is a positive integer d such that $d \cdot E_{v_0}$ is the principal (vertical) divisor of a constant $a \in K^*$. We have
\[\sum_{C \in S_{v_0}} a_C \cdot \text{div}_Y(h_C) = D_1 - D_2 + \sum_{v \in M'} E_v + E_{v_0} \] (5.7)

where
\[D_i = \sum_{C \in S_{v_0}} a_C D_{C,i} \] (5.8)

and
\[E_v = \sum_{C \in S_{v_0}} a_C E_{C,v} \] (5.9)

for $v \in M' \cup \{v_0\}$. The support of each $D_{C,2}$ equals that of D, and this does not intersect the support of any of the $D_{C,1}$ by our induction hypothesis. It follows that D_1 and D_2 are effective horizontal divisors which do not intersect, and D_2 and D have the same support. Because of the induction hypotheses (5.4) and (5.5), the fact that all of the a_C associated to $C \in S_{v_0}$ are positive integers implies that condition (5.4) holds if we replace $E_{C,v}$ in that condition by E_v. Now since
\[\text{div}_Y(a) = d \cdot E_{v_0} \]
and $d > 0$ we conclude from (5.7) that the function
\[h = a^{-1} \cdot \left(\prod_{C \in S_{v_0}} h_{C}^{a_C} \right)^d \] (5.10)

will have all the properties required to show the induction step for Lemma 5.1 and complete the proof.

It remains to produce positive integers $\{a_C\}_{C \in S_{v_0}}$ such that
\[E_{v_0} = \sum_{C \in S_{v_0}} a_C E_{C,v_0} \]
has property (5.6), i.e. is perpendicular to every irreducible component C' of \mathcal{Y}_{v_0}. It will suffice to show that we can do this using positive rational
numbers \(a_C \) since the intersection pairing is well defined for all rational linear combinations of fibral divisors.

Consider the square matrix \(W = (W_{C,C'})_{C,C' \in S_v} \) with integral entries

\[
W_{C,C'} = \langle E_{C,v_0}, n(C')C' \rangle
\]

where \(n(C') > 0 \) is the multiplicity of \(C' \) in the fiber \(Y_v \). The sum of all the entries in the row indexed by \(C \) is

\[
\sum_{C' \in S_v} \langle E_{C,v_0}, n(C')C' \rangle v_0 = \langle E_{C,v_0}, \sum_{C' \in S_v} n(C')C' \rangle v_0 = \langle E_{C,v_0}, Y_v \rangle v_0 = 0
\]

where the last equality is from Lemma 3.3. Condition (5.5) of the induction hypothesis now says that \(W \) satisfies the hypotheses of the following Lemma, and this Lemma completes the proof of Lemma 5.1.

\[
\text{Lemma 5.2. Suppose } W = (w_{i,j})_{1 \leq i,j \leq t} \text{ is a square matrix of rational numbers such that the diagonal (resp. off-diagonal) entries are negative (resp. positive) and that the sum of the entries in any row is 0. Then there is a positive rational linear combination of the rows which is the zero vector.}
\]

\[
\text{Proof. We prove this assertion by ascending induction on the size } t \text{ of } W. \text{ If } t = 1 \text{ then } W \text{ has to be the zero matrix since the sum of the entries in any row of } W \text{ is trivial. If } t = 2 \text{ then the rows of } W \text{ have the form } (-a, a) \text{ and } (b, -b) \text{ for some positive rationals } a \text{ and } b, \text{ so } b \text{ times the first row plus } a \text{ times the second is } (0, 0). \text{ We now suppose the statement is true for matrices of smaller size than } t \geq 3. \text{ Without loss of generality, we can multiply the } i\text{-th row of } W \text{ by } -1/w_{i,i} > 0 \text{ to be able to assume that the diagonal entries are all equal to } -1. \text{ Since every off diagonal entry is positive, every off diagonal entry has to be a rational number in the open interval } (0, 1) \text{ because the sum of the entries in each row is 0 and } t \geq 3. \text{ Thus when we add } w_{i,t} \text{ times the last row to the } i\text{-th row for } i = 1, \ldots, t-1, \text{ we arrive at a matrix } W' = (w'_{i,j})_{i,j=1}^t \text{ such that } w'_{i,t} = 0 \text{ for } i = 1, \ldots, t-1. \text{ It is elementary to check that the } (t-1) \times (t-1) \text{ matrix } W'' = (w'_{i,j})_{i,j=1}^{t-1} \text{ which results from dropping the last row and the last column of } W' \text{ satisfies our induction hypotheses. We now conclude by induction that there is a positive rational linear combination of the rows of } W'' \text{ which equals 0. The corresponding linear combination of the rows of } W' \text{ is then also 0. Since each of the first } t-1 \text{ rows of } W' \text{ is the sum of the corresponding row of } W \text{ with a positive multiple of the last row of } W, \text{ we arrive in this way at the a positive linear combination of the rows of } W \text{ which is the zero vector.}
\]

\[
\text{Completion of the proof of Theorem 1.2}
\]

Let \(M' \) be the empty set in Lemma 5.1. This Lemma now produces divisors \(D_1 \) and \(D_2 \) which are horizontal, effective, disjoint, linearly equivalent, and for which \(D_2 \) has the same support as the horizontal effective ample divisor \(D \). Lemma 3.4 shows there is an integer \(m > 0 \) such that \(mD_2 \) is
ample. So on replacing D_i by mD_i for $i = 1, 2$ we arrive at divisors of the kind needed in Lemma 2.1 which finishes the proof.

References

[1] M. Artin, Lipman’s proof of resolution of singularities for surfaces, in: Arithmetic Geometry, G. Cornell and J. H. Silverman editors, Springer-Verlag, New York (1986), 267–287.

[2] W. Fulton, Intersection Theory. 2nd edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2. Springer-Verlag, Berlin (1998).

[3] B. Green, Geometric families of constant reductions and the Skolem property, Transactions of the A. M. S., Vol.350, no. 4 (1998), 1379–1393.

[4] B. Green, On curves over valuation rings and morphisms to P^1. J. Number Theory 59 (1996), no. 2, 262–290.

[5] R. Hartshorne, Algebraic geometry. Graduate Texts in Math. 52, Springer-Verlag, Berlin Berlin-New York-Heidelberg (1977).

[6] H. Matsumura, Commutative Algebra. 2nd edition. Benjamin/Cummings, Reading Mass. (1980).

[7] L. Moret-Bailly, Groupes de Picard et problèmes de Skolem I. Ann. E. N. S., 4e série, tome 22, no. 2 (1989), 161–179.

[8] L. Szpiro et al, Séminaire sur les pinceaux de courbes de genre au moins deux, Astérisque, vol. 86.