A tetranuclear nickel(II) complex, [Ni_4(L)_4](ClO_4)_4·C_2H_3N·2H_2O, with an asymmetric Ni_4O_4 open-cubane-like core

R. N. Patel, S. K. Patel, A. K. Patel, N. Patel and Ray J. Butcher

Department of Chemistry, APS University, Rewa 486001, India, and Department of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA. *Correspondence e-mail: rnp64@ymail.com

A tetranuclear complex with an open-cubane-like core structure was synthesized from 2-methoxy-6-(pyridin-2-yl-hydrazonomethyl)phenol (HL), namely, cyclo-tetrakis(µ-2-methoxy-6-[2-(pyridin-2-yl)hydrazin-1-ylidene]-methyl)phenolato]tetranickel(II) tetrakis(perchlorate) acetonitrile monosolvate dihydrate, [Ni_4(C_18H_12N_3O_2)_4](ClO_4)_4·C_2H_3N·2H_2O, and characterized using micro-analytical and spectroscopic techniques. The crystal-structure determination reveals the formation of a distorted Ni_4O_4 cubane-like core architecture encapsulated by four hydrazone Schiff base (HL) molecules. An open-cube tetranuclear architecture is created in which nickel(II) ions of the NiN_2O_3 unit are connected by µ_2-O anions of the phenolate moiety of HL. In this complex, each Ni centre has a slightly distorted square-pyramidal coordination environment. The supramolecular architectures are stabilized via the presence of various intermolecular hydrogen bonds and (aryl–aryl, aryl–chelate and chelate–chelate) stacking interactions.

1. Chemical context

Polynuclear metal(II) complexes have attracted much attention owing to their structural variety and significant applications in biology, catalysis, molecular recognition and magnetism (Alcantara et al., 2006; Powell, 2003). As such, complexes containing a tetranuclear cubane-like core have been an important class of compounds (Yang et al., 2005). The synthesis of such polynuclear metal complexes can often be promoted with the use of polydentate Schiff base ligands possessing nitrogen and oxygen donor atoms. Such Schiff bases are known to form high nuclearity complexes with interesting architectures, and the hydroxyl groups and other donor atoms are often suitable for the synthesis of polynuclear complexes (Gungor & Kara, 2015; Dutta et al., 2020; Shit et al., 2013). Several tetranuclear nickel(II) complexes have also been synthesized and their different electronic properties explored (Lin et al., 2011; Nihei et al., 2003; Zhang et al., 2012; Liu et al., 2012; Shit et al., 2013). As part of our study of polynuclear complexes, we have been interested in cubane-like structures to build complexes with high nuclearity (Ray et al., 2009; Chakraborthy et al., 2009; Sagar et al., 2017; Pouralimardan et al., 2007; Patel et al., 2019). In this article, the results were obtained with the Schiff base ligand (HL) 2-methoxy-6-(pyridin-2-yl-hydrazonomethyl)-phenol, which can bind one or two metal ions, simultaneously. The stoichiometric reaction of nickel(II) perchlorate hexahydrate with this ligand resulted the formation of Ni_4O_4 distorted cubane-like structure described herein.
2. Structural commentary

The hydrazone Schiff base (HL) was prepared by the reaction of 2-hydrazinopyridine and 2-hydroxy-3-methoxybenzaldehyde in a 1:1 ratio in ethanol. The reaction of nickel perchlorate hexahydrate and the HL ligand yielded a tetranuclear open-cubane-like complex with an Ni$_4$O$_4$ core-type architecture. The tetranuclear complex is formulated as [Ni$_4$(L)$_4$(ClO$_4$)$_4$]$_4$C$_2$H$_3$N$_2$H$_2$O (Fig. 1). Selected bond parameters are given in Table 1. The crystal-structure analysis reveals the formation of a distorted Ni$_4$O$_4$ cubane-like core. In this complex, four HL molecules coordinate to the four nickel centres as a pentadentate ligand (Fig. 2). The deprotonated Schiff base (L$^-$) ligand coordinates in a pentadentate mode (μ_2-O$_{phenolate}$, η^1-N$_{imin}$, η^1-N$_{pyridin}$, η^1-O$_{methoxy}$), thus forming eight fused metal chelate rings (four five-membered and four six-membered rings). Such a coordination pattern results in a distorted square-pyramidal coordination sphere around each nickel(II) ion. The distortion in the square-pyramidal geometry is shown by the τ index (τ_α, with values of 0 for a perfect square pyramid and 1 for a perfect trigonal bipyramid; Addison et al., 1984). The values for each NiII ion are 0.0383 for Ni1, 0.0050 for Ni2, 0.0033 for Ni3 and 0.0250 for Ni4. The fact that the τ-values are very close to zero indicates that the

Bond Distance or Angle	Value

Table 1

Selected geometric parameters (Å, °).

Figure 1

Molecular structure of the tetranuclear nickel complex, [Ni$_4$(L)$_4$(ClO$_4$)$_4$]$_4$C$_2$H$_3$N$_2$H$_2$O. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Ball-and-stick figure of the tetranuclear nickel complex, illustrating the coordination sphere about the nickel centres.

Jerry P. Jasinski tribute

Acta Cryst. (2022). E78, 98–102

Patel et al. • [Ni$_4$(C$_7$H$_5$Ni$_3$O$_2$)$_4$(ClO$_4$)$_4$]$_4$C$_2$H$_3$N$_2$H$_2$O
geometries around each Ni centre are slightly distorted from a perfect square-pyramidal environment.

The hydroxyl group of each HL phenol is deprotonated and the oxygen atoms bridge two nickel centres. Similarly, the oxygen atom of the methoxy group coordinates to a second nickel centre in a μ_2-mode. Each nickel centre is connected to the μ_2-oxygen atoms, resulting in the construction of an Ni$_4$O$_4$ cubane-like core (Fig. 2). The basal plane of each nickel centre is constituted by one phenoxy oxygen, one methoxy oxygen, one azomethine nitrogen and one pyridine nitrogen atom. As a result of its weakly coordinating nature, each methoxy oxygen remains in an axial position. The Ni–N/O bond lengths are in the range 1.932 (7)–1.988 (5) Å and are very close to those reported for similar tetranuclear cubane-core-type complexes (Zhang et al., 2011, 2013; Yu et al., 2011; Tong et al., 2002; Mandal et al., 2008; Clemente-Juan et al., 2000; Li et al., 2006; Sun et al., 2011; Saha et al., 2014; Yang et al., 2006).

3. Supramolecular features

In the polynuclear crystal, intermolecular hydrogen-bonding interactions are detected involving C–H and N–H donors from the hydrazone Schiff base and acceptor oxygen atoms of perchlorate counter-ions and solvate water molecules (Fig. 3). The important hydrogen-bonding parameters are collected in Table 2. The two tetranuclear complexes are interconnected through intermolecular hydrogen bonding between C–H⋅⋅⋅O and N–H⋅⋅⋅O hydrogen bonds with the perchlorate ions, forming heterosynths (Fig. 3). Additionally, oxygen atoms of solvate water molecules also act as acceptor atoms for intermolecular hydrogen bonds. Furthermore, stabilization of the tetranuclear crystal lattice is facilitated by the presence of various weak (aryl–aryl, aryl–chelate and chelate–chelate) intramolecular stacking interactions (Fig. 4). The orthorhombic cell contains four formula units, and the packing is shown
in Fig. 5. The entire stacking pattern reveals that the intermolecular hydrogen bonds remain between perchlorate counter-ions and C–H/N–H moieties of the same molecule or adjacent molecules. Similarly, solvate water molecules also exert cooperative intermolecular hydrogen bonds from C—H/N—H moieties of the complex, and the crystal lattice is also stabilized via π–π stacking interactions [centroid–centroid distances = 3.343 (3)–3.668 (3) Å].

4. Database survey
A search of the Cambridge Structural Database (CSD; Groom et al., 2016) for 2-methoxy-6-(pyridin-2-yl-hydrazonomethyl)phenol gave no results. Several tetranuclear nickel complexes have been synthesized with several Schiff base ligands (Lin et al., 2011; Liu et al., 2012; Nihei et al., 2003; Saha et al., 2014; Shit et al., 2013; Zhang et al., 2012).

5. Synthesis and crystallization
A mixture of 2-hydrazinopyridine (0.327 g, 3.0 mmol) and 2-hydroxy-3-methoxybenzaldehyde (0.456 g, 3.0 mmol) in 30 mL of ethanol was refluxed for 3 h. The resulting light-yellow solution was cooled to room temperature. The obtained crystalline material was filtered off, washed with ethanol and kept in a CaCl₂ desiccator. Yield 80%. Analysis calculated for C₁₃H₁₂N₃O₂: C, 64.18; H, 5.38; N, 17.27%. Found: C, 64.11; H, 5.27; N, 17.18%. FTIR (KBr cm⁻¹): 1648, for (C≡N) and 3480 (–OH). The tetranuclear nickel complex was synthesized by taking an equimolar methanolic solution (10 ml) of the HL ligand (0.243 g, 1.0 mmol) and nickel perchlorate hexahydrate (0.365 g, 1.0 mmol). The resulting solution was stirred for 3 h.

Figure 5
Crystal packing diagram viewed along a-axis of the complex.

D—H · · · A	D−H	H · · · A	D−A	D−··· A
C7B—H7BB···N1S	0.98	2.60	3.523 (11)	157
C13C—H13B···O13	0.95	2.42	3.126 (9)	131
C13C—H13C···N1S	0.95	2.59	3.348 (11)	137
N2D—H2DA···O2W	0.88	1.91	2.720 (9)	152
C7D—H7DC···O12	0.98	2.56	3.389 (10)	142
C12S—H12G···O14	0.98	2.37	3.335 (12)	168
O2W—H2W1···O11	0.84 (3)	2.12 (7)	2.795 (8)	138 (9)
O2W—H2W2···O14	0.83 (3)	2.78 (3)	3.599 (6)	170 (9)

Symmetry codes: (i) x+1/2, y+1/2, z; (ii) −x+1, −y+1, z−1/2.

Table 2
Hydrogen-bond geometry (Å).
FTIR (KBr, v, cm⁻¹): 1626 (C≡N), 1537 (C–O), 487 (Ni–O) and 421 (Ni–N).

6. Refinement
Crystallographic data and refinement details are presented in Table 3. H atoms were located in difference-Fourier maps and constrained to ride on their parent atoms with with C–H bond distances of 0.95 Å (aromatic H), 0.98 Å (methyl H) and 0.88 Å (N–H) and were refined as riding with isotropic displacement parameters 1.2 and 1.5 times those of the parent C/N atoms. Water H atoms were refined isotropically with \(U_{eq}(H) = 1.5 U_{eq}(O) \). Three of the four perchlorate anions are disordered over two orientations and were restrained to have tetrahedral geometries with occupancies of 0.57 (6)/0.43 (6), 0.412 (13)/0.488 (13), and 0.806 (12)/0.194 (12), respectively.

Acknowledgements
The authors are thankful to the Head of the Department of Chemistry, A. P. S. University, Rewa, for providing the facilities required to perform this work. The authors are also thankful to SAIF, CDRI Lucknow, for the microanalysis.

References
Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
Alcantara, K., Munge, B., Pendon, Z., Frank, H. A. & Rusling, J. F. (2006). J. Am. Chem. Soc. 128, 14930–14937.
Baker (2002). S.A.I.N.T. Bruker AXS Inc., Madison, Wisconsin, USA.
Baker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Chakraborty, J., Thakurta, S., Pilet, G., Luneau, D. & Mitra, S. (2009). Polyhedron, 28, 819–825.
Clemente-Juan, J. M., Chansou, B., Donnadieu, B. & Tuchagues, J.-P. (2000). Inorg. Chem. 39, 5515–5519.
Dutta, N., Haldar, S., Majumder, A., Vijaykumar, G., Carrella, L. & Bera, M. (2020). Inorg. Chem. Commun. 121, 108208.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Gungor, E. & Kara, H. (2015). J. Struct. Chem. 56, 1646–1652.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 1–10.
Li, Y.-M., Zhang, J.-J., Fu, R.-B., Xiang, S.-C., Sheng, T.-L., Yuan, D.-Q., Huang, X.-H. & Wu, X.-T. (2006). Polyhedron, 25, 1618–1624.
Lin, S.-Y., Xu, G.-F., Zhao, L., Guo, Y.-N., Tang, J., Wang, Q.-L. & Liu, G.-X. (2011). Inorg. Chem. Acta, 373, 173–178.
Mandal, D., Hong, C. S., Kim, H. C., Fun, H.-K. & Ray, D. (2008). Polyhedron, 27, 2372–2378.
Nihei, M., Hoshino, N., Ito, T. & Oshio, H. (2003). Polyhedron, 22, 2359–2362.
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
Patel, S. K., Patel, R. N., Singh, Y., Singh, Y. P., Kumhar, D., Jadeja, R. N., Roy, H., Patel, A. K., Patel, N., Banerjee, A., Choquesillo-Lazarte, D. & Gutierrez, A. (2019). Polyhedron, 161, 198–212.
Pourali-mardan, O., Chamayou, A. C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.
Powell, A. K. (2003). Comprehensive Coordination Chemistry II edited by J. A. McCleverty & T. J. Meyer, p. 169. Oxford: Pergamon.
Ray, A., Rizzoli, C., Pilet, G., Desplanches, C., Garribba, E., Rentschler, E. & Mitra, S. (2009). Eur. J. Inorg. Chem. pp. 2915–2928.
Sagar, S., Sengupta, S., Mota, A. J., Chattopadhyay, S. K., Espinosa, Feroa, A., Riviere, E., Lewis, W. & Naskar, S. (2017). Dalton Trans. 46, 1249–1259.
Saha, S., Kottalanka, R. K., Bhowmik, P., Jana, S., Harms, K., Panda, T. K., Chattopadhyay, S. & Nayek, H. P. (2014). J. Mol. Struct. 1061, 26–31.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. B71, 3–8.
Shit, S., Nandy, M., Rosair, G., Gómez-García, C. J., Almenar, J. J. B. & Mitra, S. (2013). Polyhedron, 61, 73–79.
Sun-J.-P., Li, L.-C. & Zheng, X.-J. (2011). Inorg. Chem. Commun. 14, 877–881.
Tong, M.-L., Zheng, S.-L., Shi, J.-X., Tong, Y.-X., Lee, H. K. & Chen, X.-M. (2002). J. Chem. Soc. Dalton Trans. pp. 1727–1734.
Yang, E.-C., Wernsdorfer, W., Zakharov, L. N., Karaki, Y., Yamaguchi, A., Isidro, R. M., Lu, G.-D., Wilson, S. A., Rheingold, A. L., Ishimoto, H. & Hendrickson, D. N. (2006). Inorg. Chem. 45, 529–546.
Yu, G.-M., Zhao, L., Zou, L.-F., Guo, Y.-N., Xu, G.-F., Li, Y.-H. & Tang, J. (2011). J. Chem. Crystallogr. 41, 606–609.
Zhang, S.-H., Chen, W.-Q., Hu, B., Chen, Y.-M., Li, W. & Li, Y. (2012). Inorg. Chem. Commun. 16, 74–77.
A tetranuclear nickel(II) complex, [Ni₄(L)₄](ClO₄)₄·C₂H₃N·2H₂O, with an asymmetric Ni₄O₄ open-cubane-like core

R. N. Patel, S. K. Patel, A. K. Patel, N. Patel and Ray J. Butcher

Crystal data

[Ni₄(C₁₃H₁₂N₃O₂)₄](ClO₄)₄·C₂H₃N·2H₂O

M_r = 1678.75
Orthorhombic, Pna2₁
a = 23.5976 (6) Å
b = 11.8723 (3) Å
c = 22.2989 (6) Å
V = 6247.2 (3) Å³
Z = 4

D_x = 1.785 Mg m⁻³
Mo Kα radiation, λ = 0.71073 Å

Cell parameters from 9461 reflections
θ = 2.4–26.3°
µ = 1.46 mm⁻¹
T = 100 K
Needle, green

0.25 × 0.11 × 0.09 mm

14617 independent reflections
11629 reflections with I > 2σ(I)
R_factor = 0.068
θ_max = 28.3°, θ_min = 1.9°
h = −31→31
k = −15→15
l = −26→29

Refinement

Refinement on F²
Least-squares matrix: full
R[F² > 2σ(F²)] = 0.048
wR(F²) = 0.125
S = 1.06
14617 reflections
1051 parameters
320 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ(F²)² + (0.0571P)² + 9.1783P]
where P = (F² + 2Fc²)/3
(Δ/σ)max = 0.001
Δρ_max = 0.84 e Å⁻³
Δρ_min = −1.30 e Å⁻³
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso*	Ueq	Occ. (<1)
Ni1	0.73671 (3)	0.62167 (6)	0.50776 (4)	0.01973 (18)		
Ni2	0.65087 (3)	0.46794 (6)	0.42646 (4)	0.01955 (17)		
Ni3	0.58915 (3)	0.60905 (7)	0.53570 (4)	0.02116 (18)		
Ni4	0.64341 (3)	0.75702 (6)	0.42586 (4)	0.02228 (18)		
O1A	0.6789 (2)	0.7401 (4)	0.5065 (2)	0.0261 (10)		
O2A	0.6144 (2)	0.9102 (4)	0.4796 (3)	0.0319 (12)		
N1A	0.7519 (2)	0.6456 (5)	0.5919 (3)	0.0282 (13)		
N2A	0.7897 (3)	0.5687 (5)	0.6153 (3)	0.0315 (13)		
H2AA	0.797624	0.565969	0.653817	0.06 (3)*		
N3A	0.7945 (2)	0.5026 (5)	0.5191 (3)	0.0251 (12)		
C1A	0.6699 (3)	0.8175 (6)	0.5507 (3)	0.0259 (15)		
C2A	0.6349 (3)	0.9109 (5)	0.5375 (4)	0.0284 (15)		
C3A	0.6212 (4)	0.9884 (6)	0.5812 (4)	0.0383 (19)		
H3AA	0.597016	1.049895	0.571891	0.046*		
C4A	0.6423 (4)	0.9769 (7)	0.6381 (4)	0.045 (2)		
H4AA	0.632679	1.030502	0.668040	0.054*		
C5A	0.6775 (4)	0.8881 (7)	0.6523 (4)	0.0406 (19)		
H5AA	0.692022	0.881058	0.691864	0.049*		
C6A	0.6920 (3)	0.8081 (6)	0.6086 (3)	0.0302 (16)		
C7A	0.5891 (4)	1.0134 (6)	0.4589 (4)	0.044 (2)		
H7AA	0.612658	1.077293	0.471255	0.066*		
H7AB	0.551164	1.021250	0.476297	0.066*		
H7AC	0.586234	1.011904	0.415072	0.066*		
C8A	0.7308 (3)	0.7216 (6)	0.6278 (3)	0.0311 (16)		
H8AA	0.741612	0.719868	0.668851	0.037*		
C9A	0.8139 (3)	0.4970 (6)	0.5750 (3)	0.0265 (15)		
C10A	0.8565 (3)	0.4202 (7)	0.5921 (4)	0.0326 (17)		
H10A	0.869548	0.417446	0.632430	0.039*		
C11A	0.8782 (3)	0.3517 (7)	0.5509 (4)	0.0363 (18)		
H11A	0.906120	0.298033	0.562076	0.044*		
C12A	0.8601 (3)	0.3578 (6)	0.4908 (4)	0.0342 (17)		
H12A	0.876312	0.310984	0.460768	0.041*		
C13A	0.8179 (3)	0.4346 (6)	0.4770 (4)	0.0298 (15)		
H13A	0.804979	0.439766	0.436785	0.036*		
O1B	0.71137 (17)	0.5813 (3)	0.4250 (2)	0.0231 (9)		
-----	-----	-----	-----	-----	-----	-----
O2B	0.80171 (19)	0.7036 (4)	0.4463 (2)	0.0256 (10)		
N1B	0.6495 (2)	0.4613 (5)	0.3398 (3)	0.0254 (13)		
N2B	0.6028 (3)	0.4046 (5)	0.3185 (3)	0.0301 (13)		
H2BA	0.594259	0.403529	0.280135	0.07 (4)*		
N3B	0.5861 (2)	0.3646 (4)	0.4175 (3)	0.0252 (12)		
C1B	0.7471 (3)	0.6010 (5)	0.3779 (3)	0.0239 (14)		
C2B	0.7959 (3)	0.6656 (5)	0.3881 (3)	0.0240 (14)		
C3B	0.8342 (3)	0.6893 (6)	0.3426 (3)	0.0272 (15)		
H3BA	0.867365	0.732216	0.350462	0.033*		
C4B	0.8230 (3)	0.6488 (6)	0.2849 (3)	0.0302 (15)		
H4AB	0.849159	0.663339	0.253437	0.036*		
C5B	0.7750 (3)	0.5886 (6)	0.2734 (3)	0.0282 (15)		
H5BA	0.767612	0.563818	0.233670	0.034*		
C6B	0.7361 (3)	0.5626 (6)	0.3195 (3)	0.0252 (14)		
C7B	0.8561 (3)	0.7453 (7)	0.4645 (4)	0.0367 (18)		
H7BA	0.865425	0.812932	0.441373	0.055*		
H7BB	0.884944	0.687402	0.457407	0.055*		
H7BC	0.855123	0.763956	0.507341	0.055*		
C8B	0.6866 (3)	0.4975 (6)	0.3018 (3)	0.0260 (14)		
H8BA	0.681397	0.480901	0.260520	0.031*		
C9B	0.5706 (3)	0.3504 (6)	0.3597 (4)	0.0282 (15)		
C10B	0.5229 (3)	0.2854 (6)	0.3442 (4)	0.0352 (17)		
H10B	0.511292	0.278466	0.303583	0.042*		
C11B	0.4938 (3)	0.2330 (6)	0.3886 (4)	0.0369 (19)		
H11B	0.461388	0.188949	0.379192	0.044*		
C12B	0.5115 (3)	0.2435 (6)	0.4488 (4)	0.0316 (16)		
H12B	0.492177	0.204730	0.479900	0.038*		
C13B	0.5568 (3)	0.3103 (5)	0.4614 (4)	0.0298 (16)		
H13B	0.568312	0.319200	0.501973	0.036*		
O1C	0.64418 (19)	0.4911 (4)	0.5149 (2)	0.0252 (10)		
O2C	0.7018 (2)	0.3254 (4)	0.4662 (2)	0.0303 (11)		
N1C	0.6018 (2)	0.5844 (5)	0.6203 (3)	0.0281 (13)		
N2C	0.5735 (3)	0.6611 (5)	0.6559 (3)	0.0327 (14)		
H2CA	0.575273	0.658689	0.695341	0.14 (6)*		
N3C	0.5404 (2)	0.7317 (5)	0.5660 (3)	0.0270 (12)		
C1C	0.6662 (3)	0.4124 (6)	0.5522 (3)	0.0253 (15)		
C2C	0.6976 (3)	0.3228 (6)	0.5273 (4)	0.0299 (16)		
C3C	0.7222 (3)	0.2412 (6)	0.5633 (4)	0.0367 (18)		
H3CA	0.742965	0.181040	0.545793	0.044*		
C4C	0.7164 (3)	0.2480 (7)	0.6254 (4)	0.0385 (19)		
H4CA	0.733433	0.192783	0.650417	0.046*		
C5C	0.6862 (3)	0.3341 (7)	0.6501 (4)	0.0364 (18)		
H5CA	0.682536	0.337817	0.692492	0.044*		
C6C	0.6602 (3)	0.4172 (6)	0.6149 (4)	0.0290 (15)		
C7C	0.7241 (3)	0.2280 (6)	0.4358 (4)	0.041 (2)		
H7CA	0.764599	0.220712	0.444534	0.062*		
H7CB	0.718647	0.236542	0.392429	0.062*		
H7CC	0.704131	0.160439	0.449638	0.062*		
Atom	X	Y	Z	Uiso		
-------	--------	--------	--------	-------		
C8C	0.6291 (3)	0.5033 (6)	0.6458 (4)	0.0329 (17)		
H8CA	0.628574	0.500392	0.688326	0.040*		
C9C	0.5425 (3)	0.7411 (6)	0.6262 (4)	0.0315 (16)		
C10C	0.5134 (3)	0.8263 (7)	0.6577 (4)	0.0387 (18)		
H10C	0.516037	0.832498	0.700031	0.046*		
C11C	0.4814 (4)	0.8989 (7)	0.6252 (5)	0.047 (2)		
H11C	0.461404	0.957613	0.644892	0.056*		
C12C	0.4776 (4)	0.8880 (7)	0.5629 (4)	0.0383 (18)		
H12C	0.454778	0.938126	0.540173	0.046*		
C13C	0.5076 (3)	0.8034 (6)	0.5351 (4)	0.0314 (15)		
H13C	0.534959	0.795620	0.492831	0.038*		
O1D	0.5854 (2)	0.6484 (4)	0.4489 (2)	0.0273 (11)		
O2D	0.5803 (2)	0.5253 (4)	0.5041 (3)	0.0355 (11)		
N1D	0.6176 (3)	0.7490 (5)	0.3430 (3)	0.0319 (14)		
N2D	0.6544 (3)	0.7994 (6)	0.3044 (3)	0.0354 (15)		
H2DA	0.650230	0.794969	0.265219	0.06 (3)*		
N3D	0.7016 (3)	0.8547 (5)	0.3897 (3)	0.0287 (13)		
C1D	0.5384 (3)	0.6181 (5)	0.4174 (4)	0.0278 (15)		
C2D	0.4963 (3)	0.5530 (5)	0.4450 (3)	0.0276 (15)		
C3D	0.4487 (3)	0.5165 (6)	0.4145 (4)	0.0330 (17)		
H3DA	0.420861	0.472560	0.434478	0.040*		
C4D	0.4418 (3)	0.5441 (7)	0.3551 (4)	0.0381 (18)		
H4DA	0.408760	0.520128	0.334346	0.046*		
C5D	0.4820 (3)	0.6059 (6)	0.3257 (4)	0.0365 (18)		
H5DA	0.477119	0.623155	0.284384	0.044*		
C6D	0.5309 (3)	0.6444 (6)	0.3562 (4)	0.0319 (16)		
C7D	0.4621 (4)	0.4883 (7)	0.5406 (4)	0.045 (2)		
H7DA	0.451192	0.411766	0.528798	0.067*		
H7DB	0.429829	0.539144	0.535135	0.067*		
H7DC	0.473691	0.488523	0.582776	0.067*		
C8D	0.5718 (3)	0.7045 (6)	0.3210 (4)	0.0324 (16)		
H8DA	0.564968	0.712128	0.279187	0.039*		
C9D	0.6979 (3)	0.8568 (6)	0.3297 (4)	0.0333 (17)		
C10D	0.7367 (4)	0.9166 (7)	0.2944 (4)	0.0397 (19)		
H10D	0.734936	0.914895	0.251865	0.048*		
C11D	0.7779 (4)	0.9786 (7)	0.3244 (5)	0.046 (2)		
H11D	0.804852	1.026885	0.302010	0.056*		
C12D	0.7801 (3)	0.9795 (6)	0.3863 (5)	0.042 (2)		
H12D	0.807932	1.023129	0.406559	0.050*		
C13D	0.7415 (3)	0.9164 (6)	0.4182 (4)	0.0342 (17)		
H13D	0.742885	0.916202	0.460822	0.041*		
C14	0.52002 (8)	0.25270 (17)	0.65520 (9)	0.0359 (4)		
O11	0.4683 (2)	0.1969 (6)	0.6705 (3)	0.0526 (16)		
O12	0.5136 (3)	0.3696 (5)	0.6678 (3)	0.0580 (18)		
O13	0.5308 (4)	0.2377 (7)	0.5934 (3)	0.071 (2)		
O14	0.5644 (3)	0.2096 (7)	0.6908 (3)	0.072 (2)		
C12	0.64516 (10)	0.75422 (18)	0.80261 (10)	0.0462 (5)		
O21	0.6408 (13)	0.711 (2)	0.8612 (9)	0.044 (6)	0.57 (6)	
Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}																																																																			
Ni1	0.0225 (4)	0.0185 (4)	0.0181 (4)	0.0000 (3)	0.0010 (3)	−0.0011 (3)																																																																			
Ni2	0.0213 (3)	0.0167 (3)	0.0207 (4)	−0.0003 (3)	0.0006 (4)	0.0004 (4)																																																																			
Ni3	0.0231 (4)	0.0197 (4)	0.0206 (4)	0.0018 (3)	0.0008 (3)	0.0027 (3)																																																																			
Ni4	0.0266 (4)	0.0175 (4)	0.0227 (4)	0.0018 (3)	0.0022 (4)	0.0019 (4)																																																																			
O1A	0.031 (2)	0.018 (2)	0.029 (3)	0.0000 (18)	0.005 (2)	−0.003 (2)																																																																			
	O2A	N1A	N2A	N3A	C1A	C2A	C3A	C4A	C5A	C6A	C7A	C8A	C9A	C10A	C11A	C12A	C13A	O1B	O2B	N1B	N2B	N3B	C1B	C2B	C3B	C4B	C5B	C6B	C7B	C8B	C9B	C10B	C11B	C12B	C13B	O1C	O2C	N1C	N2C	N3C	C1C	C2C	C3C	C4C	C5C	C6C	C7C	C8C																									
----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------
Atom	U11	U22	U33	U12	U13	U23																																																																			
------	------	------	------	------	------	------																																																																			
C9C	0.028 (3)	0.031 (4)	0.035 (5)	−0.004 (3)	0.005 (3)	0.004 (3)																																																																			
C10C	0.044 (4)	0.042 (4)	0.031 (4)	0.010 (4)	0.016 (4)	0.000 (3)																																																																			
C11C	0.039 (4)	0.047 (5)	0.053 (6)	0.012 (4)	0.015 (4)	−0.004 (4)																																																																			
C12C	0.037 (4)	0.035 (4)	0.043 (5)	0.007 (3)	0.012 (4)	0.003 (4)																																																																			
C13C	0.033 (4)	0.030 (4)	0.032 (4)	0.005 (3)	0.004 (3)	0.006 (3)																																																																			
O1D	0.029 (2)	0.025 (2)	0.028 (3)	0.001 (2)	−0.005 (2)	0.002 (2)																																																																			
O2D	0.030 (2)	0.032 (3)	0.038 (3)	−0.002 (2)	−0.002 (2)	0.006 (2)																																																																			
N1D	0.038 (3)	0.028 (3)	0.030 (4)	0.004 (3)	0.006 (3)	0.006 (3)																																																																			
N2D	0.037 (4)	0.043 (4)	0.027 (4)	0.000 (3)	0.003 (3)	0.009 (3)																																																																			
N3D	0.039 (3)	0.018 (3)	0.030 (3)	0.004 (2)	0.004 (3)	0.001 (2)																																																																			
C11D	0.049 (5)	0.032 (4)	0.058 (6)	−0.001 (3)	0.007 (4)	−0.007 (4)																																																																			
C12D	0.037 (4)	0.024 (4)	0.066 (6)	−0.001 (3)	0.007 (4)	−0.007 (4)																																																																			
C13D	0.033 (4)	0.022 (3)	0.047 (5)	0.001 (3)	0.005 (4)	−0.004 (3)																																																																			
C11	0.0321 (9)	0.0463 (10)	0.0294 (10)	0.0015 (8)	0.0001 (7)	0.0039 (8)																																																																			
O11	0.037 (3)	0.063 (4)	0.058 (4)	−0.010 (3)	−0.002 (3)	0.007 (3)																																																																			
O12	0.080 (5)	0.043 (3)	0.051 (4)	−0.009 (3)	−0.002 (4)	0.002 (3)																																																																			
O13	0.091 (5)	0.081 (5)	0.040 (4)	0.010 (4)	0.022 (4)	−0.001 (4)																																																																			
O14	0.039 (4)	0.099 (6)	0.076 (5)	0.015 (4)	−0.010 (3)	0.025 (4)																																																																			
O21	0.0553 (12)	0.0398 (11)	0.0434 (13)	0.0063 (9)	0.0047 (10)	0.0041 (9)																																																																			
O22	0.114 (18)	0.054 (10)	0.049 (11)	0.039 (11)	−0.045 (11)	−0.015 (8)																																																																			
O23	0.064 (10)	0.044 (9)	0.059 (11)	0.026 (7)	0.025 (8)	0.018 (7)																																																																			
O24	0.066 (11)	0.115 (17)	0.110 (18)	−0.021 (11)	0.008 (10)	0.031 (14)																																																																			
O21A	0.057 (15)	0.053 (16)	0.049 (16)	−0.011 (11)	−0.001 (12)	0.012 (13)																																																																			
O22A	0.088 (18)	0.038 (10)	0.032 (10)	0.018 (10)	0.000 (11)	0.001 (7)																																																																			
O23A	0.064 (13)	0.12 (2)	0.062 (15)	0.035 (15)	−0.011 (11)	0.040 (16)																																																																			
O24A	0.15 (2)	0.074 (16)	0.056 (14)	−0.063 (16)	−0.006 (15)	−0.003 (11)																																																																			
C11	0.076 (2)	0.126 (3)	0.067 (2)	−0.032 (2)	−0.0087 (16)	0.013 (2)																																																																			
O31	0.114 (8)	0.178 (10)	0.139 (9)	−0.060 (8)	0.030 (7)	−0.013 (8)																																																																			
O32	0.078 (7)	0.074 (7)	0.040 (6)	−0.002 (6)	−0.023 (6)	−0.005 (6)																																																																			
O33	0.066 (7)	0.085 (8)	0.073 (8)	0.021 (7)	−0.024 (7)	−0.008 (7)																																																																			
O34	0.061 (9)	0.085 (9)	0.062 (8)	−0.005 (8)	−0.043 (7)	−0.002 (7)																																																																			
O32A	0.056 (7)	0.076 (8)	0.040 (7)	−0.010 (6)	−0.003 (6)	0.017 (6)																																																																			
O33A	0.097 (8)	0.086 (8)	0.055 (7)	−0.004 (7)	−0.051 (6)	0.001 (6)																																																																			
O34A	0.079 (10)	0.080 (8)	0.045 (7)	−0.005 (8)	−0.028 (7)	0.007 (6)																																																																			
C14	0.0608 (15)	0.081 (2)	0.074 (2)	0.0103 (14)	0.0146 (14)	0.0152 (16)																																																																			
O41	0.096 (8)	0.088 (6)	0.046 (6)	−0.016 (6)	−0.020 (5)	0.040 (5)																																																																			
O42	0.087 (7)	0.044 (5)	0.060 (6)	−0.010 (5)	0.012 (5)	0.009 (4)																																																																			
Geometric parameters (Å, °)

Bond	Distance (Å)	Angle (°)			
Ni1—N1A	1.932 (7)	1.406 (11)			
Ni1—O1A	1.960 (5)	1.410 (10)			
Ni1—N3A	1.980 (6)	1.386 (10)			
Ni1—O1B	1.998 (5)	1.393 (12)			
Ni1—O2B	2.276 (4)	0.9500			
Ni2—N1B	1.935 (6)	1.363 (12)			
Ni2—O1B	1.962 (4)	0.9500			
Ni2—N3B	1.971 (6)	1.401 (10)			
Ni2—O1C	1.997 (5)	0.9500			
Ni2—O2C	2.257 (5)	1.434 (11)			
Ni3—N1C	1.932 (7)	0.9800			
Ni3—O1C	1.965 (5)	0.9800			
Ni3—N3C	1.975 (6)	0.9800			
Ni3—O1D	1.993 (5)	0.9500			
Ni3—O2D	2.264 (5)	1.409 (11)			
Ni4—N1D	1.948 (7)	1.355 (13)			
Ni4—O1D	1.950 (5)	0.9500			
Ni4—N3D	1.969 (6)	1.397 (13)			
Ni4—O1A	1.993 (5)	0.9500			
Ni4—O2A	2.283 (5)	1.375 (10)			
O1A—C1A	1.365 (8)	0.9500			
O2A—C2A	1.378 (10)	0.9500			
O2A—C7A	1.439 (8)	1.360 (9)			
N1A—C8A	1.305 (9)	1.387 (9)			
N1A—N2A	1.377 (9)	1.429 (9)			
N2A—C9A	1.364 (10)	1.300 (10)			
N2A—H2AA	0.8800	1.362 (9)			
N3A—C9A	1.330 (9)	1.355 (11)			
N3A—C13A	1.356 (9)	0.8800			
C1A—C6A	1.396 (11)	1.341 (10)			
C1A—C2A	1.414 (10)	1.351 (10)			
C2A—C3A	1.379 (10)	1.403 (10)			
C3A—C4A	1.370 (13)	1.410 (11)			
Bond	Length	Bond	Length	Bond	Length
----------------------	---------	----------------------	---------	----------------------	---------
C3A—H3AA	0.9500	C2D—C3D	1.383 (10)	C2D—C3D	1.383 (10)
C4A—C5A	1.378 (13)	C3D—C4D	1.373 (12)	C3D—C4D	1.373 (12)
C4A—H4AA	0.9500	C4D—C5D	1.368 (12)	C4D—C5D	1.368 (12)
C5A—C6A	1.403 (10)	C4D—H4DA	0.9500	C4D—H4DA	0.9500
C5A—H5AA	0.9500	C5D—C6D	1.416 (11)	C5D—C6D	1.416 (11)
C6A—C8A	1.441 (11)	C5D—H5DA	0.9500	C5D—H5DA	0.9500
C7A—H7AA	0.9800	C6D—C8D	1.433 (11)	C6D—C8D	1.433 (11)
C7A—H7AB	0.9800	C7D—H7DA	0.9800	C7D—H7DA	0.9800
C7A—H7AC	0.9800	C7D—H7DB	0.9800	C7D—H7DB	0.9800
C8A—H8AA	0.9500	C8D—H8DA	0.9500	C8D—H8DA	0.9500
C9A—C10A	1.411 (10)	C8D—H8DA	0.9500	C8D—H8DA	0.9500
C10A—C11A	1.330 (12)	C9D—C10D	1.401 (11)	C9D—C10D	1.401 (11)
C10A—H10A	0.9500	C10D—C11D	1.390 (13)	C10D—C11D	1.390 (13)
C11A—C12A	1.408 (12)	C10D—H10D	0.9500	C10D—H10D	0.9500
C11A—H11A	0.9500	C11D—C12D	1.381 (14)	C11D—C12D	1.381 (14)
C12A—C13A	1.384 (10)	C11D—H11D	0.9500	C11D—H11D	0.9500
C12A—H12A	0.9500	C12D—C13D	1.380 (11)	C12D—C13D	1.380 (11)
C13A—H13A	0.9500	C12D—H12D	0.9500	C12D—H12D	0.9500
O1B—C1B	1.367 (8)	C13D—H13D	0.9500	C13D—H13D	0.9500
O2B—C2B	1.380 (8)	CI1—O14	1.409 (6)	CI1—O14	1.409 (6)
N1B—C8B	1.292 (9)	CI1—O13	1.413 (7)	CI1—O13	1.413 (7)
N1B—N2B	1.377 (8)	CI1—O12	1.424 (6)	CI1—O12	1.424 (6)
N2B—C9B	1.353 (10)	CI1—O11	1.429 (6)	CI1—O11	1.429 (6)
N2B—H2BA	0.8800	CI2—O24A	1.378 (18)	CI2—O24A	1.378 (18)
N3B—C9B	1.351 (10)	CI2—O21A	1.397 (18)	CI2—O21A	1.397 (18)
N3B—C13B	1.360 (9)	CI2—O23	1.399 (14)	CI2—O23	1.399 (14)
C1B—C2B	1.402 (9)	CI2—O21	1.405 (15)	CI2—O21	1.405 (15)
C1B—C6B	1.404 (10)	CI2—O22	1.430 (14)	CI2—O22	1.430 (14)
C2B—C3B	1.387 (10)	CI2—O22A	1.437 (17)	CI2—O22A	1.437 (17)
C3B—C4B	1.398 (10)	CI2—O24	1.438 (14)	CI2—O24	1.438 (14)
C3B—H3BA	0.9500	CI2—O23A	1.449 (17)	CI2—O23A	1.449 (17)
C4B—C5B	1.364 (10)	CI3—O33A	1.248 (12)	CI3—O33A	1.248 (12)
C4B—H4BA	0.9500	CI3—O34A	1.326 (15)	CI3—O34A	1.326 (15)
C5B—C6B	1.414 (10)	CI3—O32	1.336 (12)	CI3—O32	1.336 (12)
C5B—H5BA	0.9500	CI3—O34	1.377 (15)	CI3—O34	1.377 (15)
C6B—C8B	1.453 (10)	CI3—O31	1.448 (9)	CI3—O31	1.448 (9)
C7B—H7BA	0.9800	CI3—O33	1.517 (12)	CI3—O33	1.517 (12)
C7B—H7BB	0.9800	CI3—O32A	1.677 (14)	CI3—O32A	1.677 (14)
C7B—H7BC	0.9800	CI4—O41	1.363 (9)	CI4—O41	1.363 (9)
C8B—H8BA	0.9500	CI4—O44	1.368 (9)	CI4—O44	1.368 (9)
C9B—C10B	1.408 (10)	CI4—O44A	1.38 (2)	CI4—O44A	1.38 (2)
C10B—C11B	1.356 (12)	CI4—O41A	1.40 (2)	CI4—O41A	1.40 (2)
C10B—H10B	0.9500	CI4—O43A	1.40 (2)	CI4—O43A	1.40 (2)
C11B—C12B	1.411 (12)	CI4—O42	1.420 (9)	CI4—O42	1.420 (9)
C11B—H11B	0.9500	CI4—O43	1.457 (10)	CI4—O43	1.457 (10)
C12B—C13B	1.360 (10)	CI4—O42A	1.47 (2)	CI4—O42A	1.47 (2)
C12B—H12B	0.9500	N1S—C11S	1.117 (13)	N1S—C11S	1.117 (13)
C13B—H13B 0.9500 C11S—C12S 1.462 (15)
O1C—C1C 1.355 (8) C12S—H12E 0.9800
O2C—C2C 1.368 (9) C12S—H12F 0.9800
O2C—C7C 1.439 (9) C12S—H12G 0.9800
N1C—C8C 1.290 (9) O1W—H1W1 0.80 (3)
N1C—N2C 1.381 (9) O1W—H1W2 0.82 (3)
N2C—C9C 1.371 (10) O1WA—H1W3 0.82 (3)
N2C—H2CA 0.8800 O1WA—H1W4 0.82 (3)
N3C—C13C 1.341 (9) O2W—H2W1 0.84 (3)
N3C—C9C 1.347 (10) O2W—H2W2 0.83 (3)

N1A—Ni1—O1A 92.2 (2) C8C—N1C—N2C 118.7 (7)
N1A—Ni1—N3A 81.6 (2) C8C—N1C—Ni3 128.3 (6)
O1A—Ni1—N3A 173.5 (2) N2C—N1C—Ni3 112.8 (5)
N1A—Ni1—O1B 171.2 (2) C9C—N2C—Ni1C 115.9 (7)
O1A—Ni1—O1B 87.1 (2) C9C—N2C—H12CA 122.1
N3A—Ni1—O1B 98.8 (2) N1C—N2C—H12CA 122.1
N1A—Ni1—O2B 113.4 (2) C13C—N3C—C9C 118.6 (6)
O1A—Ni1—O2B 98.83 (19) C13C—N3C—Ni3 129.0 (5)
N3A—Ni1—O2B 85.3 (2) C9C—N3C—Ni3 112.4 (5)
O1B—Ni1—O2B 75.39 (17) O1C—C1C—C6C 123.0 (6)
N1B—Ni2—O1B 91.3 (2) O1C—C1C—C2C 118.7 (7)
N1B—Ni2—N3B 82.0 (2) C6C—C1C—C2C 118.3 (6)
O1B—Ni2—N3B 171.8 (2) O2C—C2C—C3C 124.2 (7)
N1B—Ni2—O1C 172.1 (2) O2C—C2C—C1C 114.4 (6)
O1B—Ni2—O1C 88.8 (2) C3C—C2C—C1C 121.3 (8)
N3B—Ni2—O1C 97.1 (2) C2C—C3C—C4C 119.6 (7)
N1B—Ni2—O2C 111.7 (2) C2C—C3C—H3CA 120.2
O1B—Ni2—O2C 97.69 (18) C4C—C3C—H3CA 120.2
N3B—Ni2—O2C 89.2 (2) C5C—C4C—C3C 119.8 (7)
O1C—Ni3—O1C 76.02 (19) C5C—C4C—H4CA 120.1
N1C—Ni3—O1C 91.2 (2) C3C—C4C—H4CA 120.1
N1C—Ni3—N3C 82.4 (3) C4C—C5C—C6C 122.0 (8)
O1C—Ni3—N3C 172.3 (2) C4C—C5C—H5CA 119.0
N1C—Ni3—O1D 172.1 (2) C6C—C5C—H5CA 119.0
O1C—Ni3—O1D 88.1 (2) C5C—C6C—C1C 119.0 (7)
N3C—Ni3—O1D 97.7 (2) C5C—C6C—C8C 117.2 (8)
N1C—Ni3—O2D 111.5 (2) C1C—C6C—C8C 123.8 (7)
O1C—Ni3—O2D 99.81 (19) O2C—C7C—H7CA 109.5
N3C—Ni3—O2D 86.5 (2) O2C—C7C—H7CB 109.5
O1D—Ni3—O2D 76.3 (2) H7CA—C7C—H7CB 109.5
N1D—Ni4—O1D 89.9 (2) O2C—C7C—H7CC 109.5
N1D—Ni4—N3D 81.9 (3) H7CA—C7C—H7CC 109.5
O1D—Ni4—N3D 170.6 (2) H7CB—C7C—H7CC 109.5
N1D—Ni4—O1A 169.1 (2) N1C—C8C—C6C 125.2 (7)
O1D—Ni4—O1A 89.5 (2) N1C—C8C—H8CA 117.4
N3D—Ni4—O1A 97.8 (2) C6C—C8C—H8CA 117.4
N1D—Ni4—O2A 116.3 (2) N3C—C9C—N2C 116.4 (7)
Bond	Angle (°) (E)	Bond	Angle (°) (E)		
O1D—Ni4—O2A	100.3 (2)	N3C—C9C—C10C	122.5 (7)		
N3D—Ni4—O2A	87.4 (2)	N2C—C9C—C10C	121.1 (7)		
O1A—Ni4—O2A	74.5 (2)	C11C—C10C—C9C	117.5 (8)		
C1A—O1A—Ni1	125.5 (4)	C11C—C10C—H10C	121.3		
C1A—O1A—Ni4	121.3 (4)	C9C—C10C—H10C	121.3		
Ni1—O1A—Ni4	112.2 (2)	C10C—C11C—C12C	120.5 (8)		
C2A—O2A—C7A	116.2 (6)	C10C—C11C—H11C	119.7		
C2A—O2A—Ni4	113.0 (4)	C12C—C11C—H11C	119.7		
C7A—O2A—Ni4	129.4 (5)	C13C—C12C—C11C	118.8 (8)		
C8A—N1A—N2A	118.3 (7)	C13C—C12C—H12C	120.6		
C8A—N1A—Ni1	128.8 (5)	C11C—C12C—H12C	120.6		
N2A—N1A—Ni1	112.9 (5)	N3C—C13C—C12C	122.0 (8)		
C9A—N2A—N1A	115.8 (6)	N3C—C13C—H13C	119.0		
C9A—N2A—H2AA	122.1	C12C—C13C—H13C	119.0		
N1A—N2A—H2AA	122.1	C1D—O1D—Ni4	127.6 (5)		
C9A—N3A—C13A	118.5 (6)	C1D—O1D—Ni3	118.5 (4)		
C9A—N3A—Ni1	113.1 (5)	Ni4—O1D—Ni3	112.3 (2)		
C13A—N3A—Ni1	128.2 (5)	C2D—O2D—Ni3	117.2 (6)		
O1A—C1A—C6A	123.8 (6)	C2D—O2D—C7D	111.3 (4)		
O1A—C1A—C2A	117.9 (7)	C7D—O2D—Ni3	126.9 (5)		
C6A—C1A—C2A	118.3 (6)	C8D—N1D—N2D	118.1 (7)		
O2A—C2A—C3A	125.7 (7)	C8D—N1D—Ni4	129.7 (5)		
O2A—C2A—C1A	113.3 (6)	N2D—N1D—Ni4	112.2 (5)		
C3A—C2A—C1A	120.8 (8)	C9D—N2D—N1D	116.1 (7)		
C4A—C3A—C2A	120.2 (8)	C9D—N2D—H2DA	121.9		
C4A—C3A—H3AA	119.9	N1D—N2D—H2DA	121.9		
C2A—C3A—H3AA	119.9	C9D—N3D—C13D	120.3 (7)		
C3A—C4A—C5A	120.5 (8)	C9D—N3D—Ni4	112.0 (5)		
C3A—C4A—H4AA	119.7	C13D—N3D—Ni4	127.7 (6)		
C5A—C4A—H4AA	119.7	O1D—C1D—C2D	119.7 (7)		
C4A—C5A—C6A	120.3 (9)	O1D—C1D—C6D	122.9 (6)		
C4A—C5A—H5AA	119.8	C2D—C1D—C6D	117.2 (7)		
C6A—C5A—H5AA	119.8	C3D—C2D—O2D	124.0 (6)		
C1A—C6A—C5A	119.8 (7)	C3D—C2D—C1D	122.2 (7)		
C1A—C6A—C8A	124.7 (6)	O2D—C2D—C1D	113.8 (6)		
C5A—C6A—C8A	115.5 (7)	C4D—C3D—C2D	119.8 (7)		
O2A—C7A—H7AA	109.5	C4D—C3D—H3DA	120.1		
O2A—C7A—H7AB	109.5	C2D—C3D—H3DA	120.1		
H7AA—C7A—H7AB	109.5	C5D—C4D—C3D	120.5 (7)		
O2A—C7A—H7AC	109.5	C5D—C4D—H4DA	119.7		
H7AA—C7A—H7AC	109.5	C3D—C4D—H4DA	119.7		
H7AB—C7A—H7AC	109.5	C4D—C5D—C6D	120.5 (8)		
N1A—C8A—C6A	123.6 (7)	C4D—C5D—H5DA	119.7		
N1A—C8A—H8AA	118.2	C6D—C5D—H5DA	119.7		
C6A—C8A—H8AA	118.2	C1D—C6D—C5D	119.8 (7)		
N3A—C9A—N2A	116.2 (6)	C1D—C6D—C8D	123.8 (7)		
N3A—C9A—C10A	122.2 (7)	C5D—C6D—C8D	116.4 (7)		
N2A—C9A—C10A	121.6 (7)	O2D—C7D—H7DA	109.5		
Bond	Bond Angle (°)	Bond Angle (°)			
-----------------------------	----------------	----------------			
C11A—C10A—C9A	118.8 (8)	O2D—C7D—H7DB	109.5		
C11A—C10A—H10A	120.6	H7DA—C7D—H7DB	109.5		
C9A—C10A—H10A	120.6	O2D—C7D—H7DC	109.5		
C10A—C11A—C12A	120.7 (7)	H7DA—C7D—H7DC	109.5		
C10A—C11A—H11A	119.6	H7DB—C7D—H7DC	109.5		
C12A—C11A—H11A	119.6	N1D—C8D—C6D	123.7 (7)		
C13A—C12A—C11A	117.5 (7)	N1D—C8D—H8DA	118.2		
C13A—C12A—H12A	121.2	C6D—C8D—H8DA	118.2		
C11A—C12A—H12A	121.2	N3D—C9D—N2D	117.1 (7)		
N3A—C13A—C12A	122.2 (7)	N3D—C9D—C10D	121.9 (8)		
N3A—C13A—H13A	118.9	N2D—C9D—C10D	121.0 (8)		
C12A—C13A—H13A	118.9	C11D—C10D—C9D	117.1 (8)		
C1B—O1B—Ni2	125.4 (4)	C11D—C10D—H10D	121.5		
C1B—O1B—Ni1	118.9 (4)	C9D—C10D—H10D	121.5		
Ni2—O1B—Ni1	111.5 (2)	C12D—C11D—C10D	120.7 (8)		
C2B—O2B—C7B	117.9 (5)	C12D—C11D—H11D	119.6		
C2B—O2B—Ni1	111.1 (4)	C10D—C11D—H11D	119.6		
C7B—O2B—Ni1	125.4 (4)	C13D—C12D—C11D	119.1 (8)		
C8B—N1B—N2B	118.7 (6)	C13D—C12D—H12D	120.4		
C8B—N1B—Ni2	129.1 (5)	C11D—C12D—H12D	120.4		
N2B—N1B—Ni2	121.2 (4)	N3D—C13D—C12D	120.8 (9)		
C9B—N2B—N1B	116.7 (6)	N3D—C13D—H13D	119.6		
C9B—N2B—H2BA	121.7	C12D—C13D—H13D	119.6		
N1B—N2B—H2BA	121.7	O14—Cl1—O13	111.7 (5)		
C9B—N3B—C13B	119.4 (6)	O14—Cl1—O12	108.8 (5)		
C9B—N3B—Ni2	112.6 (5)	O13—Cl1—O12	109.5 (4)		
C13B—N3B—Ni2	128.0 (5)	O14—Cl1—O11	109.3 (4)		
O1B—C1B—C2B	118.5 (6)	O13—Cl1—O11	109.1 (5)		
O1B—C1B—C6B	122.7 (6)	O12—Cl1—O11	108.3 (4)		
C2B—C1B—C6B	118.8 (6)	O24A—Cl2—O21A	112.5 (17)		
O2B—C2B—C3B	123.8 (6)	O23—Cl2—O21	111.8 (11)		
O2B—C2B—C1B	114.3 (6)	O23—Cl2—O22	107.8 (11)		
C3B—C2B—C1B	121.8 (7)	O21—Cl2—O22	108.6 (13)		
C2B—C3B—C4B	118.7 (7)	O24A—Cl2—O22A	111.1 (14)		
C2B—C3B—H3BA	120.6	O21A—Cl2—O22A	108.6 (16)		
C4B—C3B—H3BA	120.6	O23—Cl2—O24	112.1 (12)		
C5B—C4B—C3B	120.7 (7)	O21—Cl2—O24	106.6 (13)		
C5B—C4B—H4BA	119.7	O22—Cl2—O24	109.9 (12)		
C3B—C4B—H4BA	119.7	O24A—Cl2—O23A	111.2 (15)		
C4B—C5B—C6B	121.2 (7)	O21A—Cl2—O23A	109.4 (17)		
C4B—C5B—H5BA	119.4	O22A—Cl2—O23A	103.7 (15)		
C6B—C5B—H5BA	119.4	O33A—Cl3—O34A	131.5 (15)		
C1B—C6B—C5B	118.8 (6)	O32—Cl3—O34	117.6 (13)		
C1B—C6B—C8B	125.1 (6)	O33A—Cl3—O31	109.2 (10)		
C5B—C6B—C8B	116.1 (6)	O34A—Cl3—O31	110.4 (13)		
O2B—C7B—H7BA	109.5	O32—Cl3—O31	111.5 (9)		
O2B—C7B—H7BB	109.5	O34—Cl3—O31	103.8 (12)		
H7BA—C7B—H7BB	109.5	O32—Cl3—O33	108.8 (9)		
Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
---------------	-----------	---------------	-----------	---------------	-----------
O2B—C7B—H7BC	109.5	O34—Cl3—O33	109.1		
H7BA—C7B—H7BC	109.5	O31—Cl3—O33	105.3		
H7BB—C7B—H7BC	109.5	O33A—Cl3—O32A	100.3		
N1B—C8B—C6B	122.9	O34A—Cl3—O32A	102.7		
N1B—C8B—H8BA	118.6	O31—Cl3—O32A	95.4		
C6B—C8B—H8BA	118.6	O41—Cl4—O44	120.0		
N3B—C9B—N2B	115.9	O44A—Cl4—O41A	114		
N3B—C9B—C10B	121.2	O44A—Cl4—O43A	111.8		
N2B—C9B—C10B	122.9	O41A—Cl4—O43A	111		
C11B—C10B—C9B	118.5	O41—Cl4—O42	108.1		
C11B—C10B—H10B	120.7	O44—Cl4—O42	109.7		
C9B—C10B—H10B	120.7	O41—Cl4—O43	101.2		
C10B—C11B—C12B	120.2	O44—Cl4—O43	104.3		
C10B—C11B—H11B	119.9	O42—Cl4—O43	113.3		
C12B—C11B—H11B	119.9	O44A—Cl4—O42A	110.2		
C13B—C12B—C11B	118.8	O41A—Cl4—O42A	104.0		
C13B—C12B—H12B	120.6	O43A—Cl4—O42A	105.6		
C11B—C12B—H12B	120.6	N1S—Cl1S—Cl12S	177.7		
C12B—C13B—N3B	121.7	C11S—Cl12S—H12E	109.5		
C12B—C13B—H13B	119.1	C11S—Cl12S—H12F	109.5		
N3B—C13B—H13B	119.1	H12E—Cl12S—H12F	109.5		
C1C—O1C—Ni3	126.9	C11S—Cl12S—H12G	109.5		
C1C—O1C—Ni2	118.8	H12E—Cl12S—H12G	109.5		
Ni3—O1C—Ni2	112.6	H12F—Cl12S—H12G	109.5		
C2C—O2C—C7C	118.5	H1W1—O1W—H1W2	107 (5)		
C2C—O2C—Ni2	111.7	H1W3—O1WA—H1W4	108 (5)		
C7C—O2C—Ni2	127.8	H2W1—O2W—H2W2	102 (4)		

Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
C8A—N1A—N2A—C9A	−174.9	C8C—N1C—N2C—C9C	−176.2		
Ni1—N1A—N2A—C9A	6.2	Ni3—N1C—N2C—C9C	−0.8		
Ni1—O1A—C1A—C6A	−14.8	Ni3—O1C—C1C—C6C	−12.1		
Ni4—O1A—C1A—C6A	177.7	Ni2—O1C—C1C—C6C	−175.5		
Ni1—O1A—C1A—C2A	167.0	Ni3—O1C—C1C—C2C	169.2		
Ni4—O1A—C1A—C2A	−0.5	Ni2—O1C—C1C—C2C	5.8		
C7A—O2A—C2A—C3A	17.2	C7C—O2C—C2C—C3C	11.8		
Ni4—O2A—C2A—C3A	−175.2	Ni2—O2C—C2C—C3C	176.9		
C7A—O2A—C2A—C1A	−166.9	C7C—O2C—C2C—C1C	−169.2		
Ni4—O2A—C2A—C1A	0.8	Ni2—O2C—C2C—C1C	−4.1		
O1A—C1A—C2A—O2A	−0.2	O1C—C1C—C2C—O2C	−0.5		
C6A—C1A—C2A—O2A	−178.6	C6C—C1C—C2C—O2C	−179.3		
O1A—C1A—C2A—C3A	175.9	O1C—C1C—C2C—C3C	178.5		
C6A—C1A—C2A—C3A	−2.4	C6C—C1C—C2C—C3C	−0.3		
O2A—C2A—C3A—C4A	176.9	O2C—C2C—C3C—C4C	178.5		
C1A—C2A—C3A—C4A	1.2	C1C—C2C—C3C—C4C	−0.5		
C2A—C3A—C4A—C5A	0.1	C2C—C3C—C4C—C5C	0.6		
C3A—C4A—C5A—C6A	−0.2	C3C—C4C—C5C—C6C	0.1		
O1A—C1A—C6A—C5A	−175.9	C4C—C5C—C6C—C1C	−0.8		
C2A—C1A—C6A—C5A	2.3	C4C—C5C—C6C—C8C	179.5		
Bond	Value (deg)	Bond	Value (deg)		
-----------------------------	-------------	-----------------------------	--------------		
O1A—C1A—C6A—C8A	5.5 (11)	O1C—C1C—C6C—C5C	-177.8 (6)		
C2A—C1A—C6A—C8A	-176.2 (6)	C2C—C1C—C6C—C5C	0.9 (10)		
C4A—C5A—C6A—C1A	-1.1 (11)	O1C—C1C—C6C—C8C	1.8 (10)		
C4A—C5A—C6A—C8A	177.6 (7)	C2C—C1C—C6C—C8C	-179.5 (6)		
N2A—N1A—C8A—C6A	178.6 (6)	N2C—N1C—C8C—C6C	179.8 (6)		
Ni1—N1A—C8A—C6A	-2.7 (11)	Ni3—N1C—C8C—C6C	5.2 (10)		
C1A—C6A—C8A—N1A	3.8 (11)	C5C—C6C—C8C—N1C	-178.4 (7)		
C5A—C6A—C8A—N1A	-174.8 (7)	C1C—C6C—C8C—N1C	1.9 (11)		
C13A—N3A—C9A—N2A	178.7 (6)	C13C—N3C—C9C—N2C	175.7 (6)		
Ni1—N3A—C9A—C6A	2.9 (7)	Ni3—N3C—C9C—N2C	-4.9 (8)		
C13A—N3A—C9A—C10A	-2.2 (10)	C13C—N3C—C9C—C10C	-2.6 (10)		
Ni1—N3A—C9A—C10A	-178.0 (5)	Ni3—N3C—C9C—C10C	176.8 (6)		
N1A—N2A—C9A—N3A	-6.0 (9)	Ni3—N2C—C9C—N3C	3.9 (9)		
N1A—N2A—C9A—C10A	174.9 (6)	N1C—N2C—C9C—C10C	-177.8 (7)		
N3A—C3A—C10A—C11A	0.4 (11)	N3C—C9C—C10C—C11C	1.4 (12)		
N2A—C9A—C10A—C11A	179.4 (7)	N2C—C9C—C10C—C11C	-176.8 (7)		
C9A—C10A—C11A—C12A	1.9 (11)	C9C—C10C—C11C—C12C	0.4 (13)		
C10A—C11A—C12A—C13A	-2.2 (11)	C10C—C11C—C12C—C13C	-1.0 (13)		
C9A—N3A—C13A—C12A	1.8 (10)	C9C—N3C—C13C—C12C	2.0 (10)		
Ni1—N3A—C13A—C12A	176.9 (5)	Ni3—N3C—C13C—C12C	-177.3 (6)		
C11A—C12A—C13A—N3A	0.4 (11)	C11C—C12C—C13C—N3C	-0.3 (12)		
C8B—N1B—N2B—C9B	168.2 (6)	C8D—N1D—N2D—C9D	172.1 (6)		
Ni2—N1B—N2B—C9B	-8.9 (7)	Ni4—N1D—N2D—C9D	-7.5 (8)		
Ni2—O1B—C1B—C2B	-165.5 (4)	Ni4—O1D—C1D—C2D	-169.2 (4)		
Ni1—O1B—C1B—C2B	-10.6 (7)	Ni3—O1D—C1D—C2D	-5.0 (8)		
Ni2—O1B—C1B—C6B	16.7 (9)	Ni4—O1D—C1D—C6D	14.1 (9)		
Ni1—O1B—C1B—C6B	171.7 (5)	Ni3—O1D—C1D—C6D	178.3 (5)		
C7B—O2B—C2B—C3B	-16.1 (10)	C7D—O2D—C2D—C3D	-20.3 (10)		
Ni1—O2B—C2B—C3B	-171.2 (5)	Ni3—O2D—C2D—C3D	-178.1 (5)		
C7B—O2B—C2B—C1B	164.7 (6)	C7D—O2D—C2D—C1D	162.5 (6)		
Ni1—O2B—C2B—C1B	9.6 (7)	Ni3—O2D—C2D—C1D	4.7 (7)		
O1B—C1B—C2B—O2B	-0.7 (9)	O1D—C1D—C2D—C3D	-177.7 (6)		
C6B—C1B—C2B—O2B	177.2 (6)	C6D—C1D—C2D—C3D	-0.8 (9)		
O1B—C1B—C2B—C3B	-179.9 (6)	O1D—C1D—C2D—O2D	-0.4 (9)		
C6B—C1B—C2B—C3B	-2.1 (10)	C6D—C1D—C2D—O2D	176.5 (6)		
O2B—C2B—C3B—C4B	-178.2 (6)	O2D—C2D—C3D—C4D	-177.0 (7)		
C1B—C2B—C3B—C4B	1.0 (10)	C1D—C2D—C3D—C4D	0.0 (10)		
C2B—C3B—C4B—C5B	1.0 (11)	C2D—C3D—C4D—C5D	1.0 (11)		
C3B—C4B—C5B—C6B	-1.9 (11)	C3D—C4D—C5D—C6D	-1.3 (12)		
O1B—C1B—C6B—C5B	178.9 (6)	O1D—C1D—C6D—C5D	177.3 (6)		
C2B—C1B—C6B—C5B	1.1 (10)	C2D—C1D—C6D—C5D	0.5 (10)		
O1B—C1B—C6B—C8B	-0.5 (10)	O1D—C1D—C6D—C8D	0.6 (11)		
C2B—C1B—C6B—C8B	-178.3 (6)	C2D—C1D—C6D—C8D	-176.2 (6)		
C4B—C5B—C6B—C1B	0.8 (11)	C4D—C5D—C6D—C1D	0.5 (11)		
C4B—C5B—C6B—C8B	-179.7 (7)	C4D—C5D—C6D—C8D	177.5 (7)		
N2B—N1B—C8B—C6B	177.2 (6)	N2D—N1D—C8D—C6D	177.0 (7)		
Ni2—N1B—C8B—C6B	-6.3 (10)	Ni4—N1D—C8D—C6D	-3.5 (11)		
C1B—C6B—C8B—N1B	-5.2 (11)	C1D—C6D—C8D—N1D	-6.1 (11)		
Bond	Angle (°)	Error			
-------------------------	-----------	---------			
C5B—C6B—C8B—N1B	175.3 (6)				
C5D—C6D—C8D—N1D	177.1 (7)				
C13B—N3B—C9B—N2B	-178.2 (6)				
C13D—N3D—C9D—N2D	-175.4 (6)				
Ni2—N3B—C9B—N2B	2.5 (7)				
Ni4—N3D—C9D—N2D	3.8 (8)				
C13B—N3B—C9B—C10B	3.5 (10)				
C13D—N3D—C9D—C10D	3.8 (10)				
Ni2—N3B—C9B—C10B	-175.8 (5)				
Ni4—N3D—C9D—C10D	-177.0 (6)				
N1B—N2B—C9B—N3B	4.2 (9)				
N1D—N2D—C9D—N3D	2.5 (10)				
N1B—N2B—C9B—C10B	-177.5 (6)				
N1D—N2D—C9D—C10D	-176.8 (7)				
N3B—C9B—C10B—C11B	-2.8 (11)				
N3D—C9D—C10D—C11D	-3.0 (11)				
N2B—C9B—C10B—C11B	179.1 (7)				
N2D—C9D—C10D—C11D	176.2 (7)				
C9B—C10B—C11B—C12B	-0.2 (11)				
C9D—C10D—C11D—C12D	0.4 (12)				
C10B—C11B—C12B—C13B	2.4 (11)				
C10D—C11D—C12D—C13D	1.2 (12)				
C11B—C12B—C13B—N3B	-1.6 (10)				
C9D—N3D—C13D—C12D	-2.1 (10)				
C9B—N3B—C13B—C12B	-1.3 (9)				
Ni4—N3D—C13D—C12D	178.9 (5)				
Ni2—N3B—C13B—C12B	177.9 (5)				

Hydrogen-bond geometry (Å, °)

Bond	D—H	H···A	D···A	D—H···A
C7B—H7BB···N1S	0.98	2.60	3.523 (11)	157
C13B—H13B···O13	0.95	2.42	3.126 (9)	131
C13C—H13C···N1S	0.95	2.59	3.348 (11)	137
N2B—H2DA···O2W	0.88	1.91	2.720 (9)	152
C7D—H7DC···O12	0.98	2.56	3.389 (10)	142
C12S—H12G···O14	0.98	2.37	3.335 (12)	168
O2W···H2W1···O11	0.84 (3)	2.12 (7)	2.795 (8)	138 (9)
O2W···H2W2···C14	0.83 (3)	2.78 (3)	3.599 (6)	170 (9)

Symmetry codes: (i) x+1/2, -y+3/2, z; (ii) -x+1, -y+1, z-1/2.