A LEHTO–VIRTANEN-TYPE THEOREM AND A RESCALING PRINCIPLE FOR AN ISOLATED ESSENTIAL SINGULARITY OF A HOLOMORPHIC CURVE IN A COMPLEX SPACE

YÜSUKE OKUYAMA

To the memory of Professor Shoshichi Kobayashi

Abstract. We establish a Lehto–Virtanen-type theorem and a rescaling principle for an isolated essential singularity of a holomorphic curve in a complex space, which are useful for establishing a big Picard-type theorem and a big Brody-type one for holomorphic curves.

1. Introduction

Let V be a complex space. For a holomorphic mapping $f : \mathbb{D} \setminus \{0\} \to V$, we say that f has an isolated essential singularity at the origin if f does not extend holomorphically to \mathbb{D}. Our aim is to contribute to the study of the Kobayashi hyperbolicity and the Brody one of a complex space by establishing a Lehto–Virtanen-type theorem and a rescaling principle for an isolated essential singularity of a holomorphic curve in a complex space.

Notation 1.1. Set $\mathbb{D}(a, r) := \{z \in \mathbb{C} : |z| < r\}$ for every $a \in \mathbb{C}$ and every $r > 0$, and set $\mathbb{D}(r) := \mathbb{D}(0, r)$ for every $r > 0$. Then $\mathbb{D}(1) = \mathbb{D}$. For every metric δ on a complex space V, set $\text{diam}_\delta(S) := \sup\{\delta(a, a') : a, a' \in S\}$ for a non-empty subset S in V. Finally, for a complex space V, let d_V be the Kobayashi pseudometric on V.

For the foundation of hyperbolic complex spaces, see the books [4, 5].

1.1. A Lehto–Virtanen-type theorem and a big Picard-type theorem. The following is a generalization of Lehto–Virtanen [7].

Theorem 1 (a Lehto–Virtanen-type theorem). Let V be a complex space equipped with a metric δ inducing the topology of V, and $f : \mathbb{D} \setminus \{0\} \to V$ be a holomorphic mapping having an isolated essential singularity at the origin. If $\bigcap_{r > 0} f(\mathbb{D}(r) \setminus \{0\}) \neq \emptyset$, then there exists a sequence (z_n) in $\mathbb{D} \setminus \{0\}$ tending to 0 as $n \to \infty$ such that $\lim_{n \to \infty} f(z_n)$ exists in V and that $\liminf_{n \to 0} \text{diam}_\delta(f(\partial \mathbb{D}(|z_n|))) > 0$.

There always exists a metric δ on V inducing the topology of V. When V is Kobayashi hyperbolic, we can set $\delta = d_V$ in Theorem 1 and the following
is an immediate consequence of Theorem 1 (see also Example 2.2 and Facts 2.3 and 2.5).

Corollary 1.2 (a big Picard-type theorem, Kwack [6]). Let V be a complex space and $f : \mathbb{D} \setminus \{0\} \to V$ be a holomorphic mapping having an isolated essential singularity at the origin. If $\bigcap_{r>0} f(\mathbb{D}(r) \setminus \{0\}) \neq \emptyset$, then V is not Kobayashi hyperbolic.

Remark 1.3. The corresponding little Picard-type theorem follows from the definition of the Kobayashi hyperbolicity: see Fact 2.7.

1.2. A rescaling principle and a big Brody-type theorem. When a complex space is compact, it admits a nice metric (see Theorem 2.8).

Theorem 2 (a rescaling principle). Let V be a compact complex space equipped with a metric satisfying the conditions in Theorem 2.8, and $f : \mathbb{D} \setminus \{0\} \to V$ be a holomorphic mapping having an isolated essential singularity at the origin. Then there are sequences (z_k) and (ρ_k) in \mathbb{C} and $(0, \infty)$, respectively, and a non-constant holomorphic mapping $g : X \to V$, where X is either \mathbb{C} or $\mathbb{C} \setminus \{0\}$, such that $\lim_{k \to \infty} z_k = 0$ on \mathbb{C}, that $\lim_{k \to \infty} \rho_k = 0$ in \mathbb{R}, and that $\lim_{k \to \infty} f(z_k + \rho_k v) = g(v)$ locally uniformly on X.

Remark 1.4. Originally, similar results to Theorems 1 and 2 have been established in [9, Lemma 3.1, Theorem 1] for quasiregular mappings from a punctured ball to a (compact) Riemannian manifold having an isolated essential singularity at the puncture, and are applied not only to deduce “big” results from their corresponding “little” ones (e.g., Holopainen–Rickman’s big Picard-type theorem [2] from Holopainen–Rickman’s little one [3] for quasiregular mappings when the target is compact) but also to establish the density of repelling periodic points in the Julia set for local uniformly quasiregular dynamics including complex dynamics [5].

Remark 1.5 (a holomorphic mapping exceptional in Julia’s sense). In Theorem 2 when V is a compact Hermitian manifold equipped with an Hermitian metric δ_V, the sequence (z_k) can identically equal 0 (and then $X = \mathbb{C} \setminus \{0\}$) if the mapping f is exceptional in Julia’s sense in that

$$\limsup_{z \to 0} |z| f^\#(z) < \infty,$$

where we set $f^\#(z) := \lim_{w \to z} \delta_V(f(z), f(w))/|z - w|$ on $\mathbb{D} \setminus \{0\}$. Conversely, if $\limsup_{z \to 0} |z| f^\#(z) = \infty$, then the case $X = \mathbb{C}$ can occur. Some examples of both non-exceptional f and exceptional f in Julia’s sense have been known and studied in the Nevanlinna theory: see Lehto–Virtanen [7].

When V is compact, the following improvement of Corollary 1.2 immediately follows from Theorem 2 (see also Remark 2.7).

Corollary 1.6 (a big Brody-type theorem). If there is a holomorphic mapping from $\mathbb{D} \setminus \{0\}$ to a compact complex space V having an isolated essential singularity at the origin, then V is not Brody hyperbolic.
Remark 1.7. Corollary 1.6 is also a consequence of Corollary 1.2 and the equivalence between the Kobayashi hyperbolicity and the Brody one for compact complex spaces, the latter of which is known as Brody’s theorem [1]. See Remark 2.7 below.

1.3. Organization of this article. We gather some background materials in Section 2, and show Theorems 1 and 2 in Sections 3 and 4 respectively. Section 5 is devoted to some details on Remark 1.5.

2. Background

For the definition of a complex space and its Kobayashi pseudometric, see [5, §VII] or [10, §2].

Recall that \(d_{\mathbb{D}}\) is the Kobayashi pseudometric on a complex space \(\mathbb{D}\).

Example 2.1. The Kobayashi pseudometric \(d_{\mathbb{D}}\) on \(\mathbb{D}\) coincides with the Poincaré (or hyperbolic) metric on \(\mathbb{D}\), which is a Kähler metric given by \(d_{\mathbb{D}} = |dz|/(1 - |z|^2)\) on \(\mathbb{D}\).

Example 2.2 (cf. [5, Propositions IV.1.1 and VI.2.1]). The Kobayashi pseudometric \(d_{\mathbb{D}\setminus\{0\}}\) on \(\mathbb{D}\setminus\{0\}\) coincides with the hyperbolic metric on \(\mathbb{D}\setminus\{0\}\), which is a Kähler metric given by \(d_{\mathbb{D}\setminus\{0\}} = |dz|/(-|z|\log|z|)\) on \(\mathbb{D}\setminus\{0\}\). In particular, the arc length of the circle \(\partial \mathbb{D}(r)\) with respect to \(d_{\mathbb{D}\setminus\{0\}}\) is \(O(1/(-\log r))\) as \(r \to 0\).

Fact 2.3. The Kobayashi pseudometrics on complex spaces enjoy the non-increasing property under holomorphisms in that for complex spaces \(X, Y\), a holomorphic mapping \(f : X \to Y\), and points \(x, x' \in X\),

\[d_Y(f(x), f(x')) \leq d_X(x, x')\]

In particular, the Kobayashi pseudometrics are invariant under biholomorphisms between complex spaces.

Definition 2.4 (Kobayashi hyperbolicity and the Brody one). A complex space \(V\) is said to be Kobayashi hyperbolic (resp. Brody hyperbolic) if the Kobayashi pseudometric \(d_V\) is a metric on \(V\) (resp. if there is no non-constant holomorphic mapping from \(\mathbb{C}\) to \(V\)).

Fact 2.5. If a complex space \(V\) is Kobayashi hyperbolic, then \(d_V\) induces the topology of \(V\).

Remark 2.6. For a non-constant holomorphic mapping \(g : \mathbb{C}\setminus\{0\} \to V\), \(g \circ \exp : \mathbb{C} \to V\) is non-constant and holomorphic. Conversely, for a non-constant holomorphic mapping \(g : \mathbb{C} \to V\), \(g|((\mathbb{C}\setminus\{0\})) : \mathbb{C}\setminus\{0\} \to V\) is non-constant and holomorphic.

Hence, a complex space \(V\) is Brody hyperbolic if and only if there is no non-constant holomorphic mapping from \(X\) to \(V\), where \(X\) is either \(\mathbb{C}\) or \(\mathbb{C}\setminus\{0\}\).

Fact 2.7 (a little Picard-type theorem and Brody’s theorem). If a complex space \(V\) is Kobayashi hyperbolic, then it is also Brody hyperbolic; this is almost by the definition of the Kobayashi hyperbolicity and that of the Brody one.
Brody’s theorem asserts that the converse is also true if in addition V is compact, that is, a Brody hyperbolic compact complex space is Kobayashi hyperbolic.

When a complex space is compact, it admits a nice metric.

Theorem 2.8 (cf. [10] Subsection 4.1). For every compact complex space V, there is a metric δ on V satisfying that

1. The distance δ induces the (equipped) topology of V, and that
2. There is an open covering $\{U_x : x \in V\}$ of V such that for every $x \in V$, U_x is a Kobayashi hyperbolic subdomain in V containing x and satisfies $\delta \leq d_{U_x}$ on U_x.

The following local Lipschitz continuity of holomorphic curves into compact complex spaces is derived from the properties of the metric δ in Theorem 2.8 and the non-increasing property of the Kobayashi pseudometrics, and plays a key role in the proof of Theorem 2.

Theorem 2.9 (cf. [10] Subsection 2.3). Let V be a compact complex space equipped with a metric δ satisfying the conditions in Theorem 2.8. Then for every open disk $D(a, r)$ and every holomorphic mapping f from an open neighborhood of $D(a, r)$ in \mathbb{C} to V, we have

$$
L_{f, D(a, r)} := \sup_{w, w' \in D(a, r), w \neq w'} \frac{\delta(f(w), f(w'))}{d_{D(a, r)}(w, w')} < \infty,
$$

which satisfies the invariance

$$
L_{f \circ \phi, D(b, s)} = L_{f, D(a, r)}
$$

for every biholomorphism $\phi : D(b, s) \to D(a, r) = \phi(D(a, r))$.

Definition 2.10. For complex spaces X, Y, let $O(X, Y)$ be the set of all holomorphic mappings from X to Y.

We conclude this section with the following generalization of Zalcman’s lemma [11].

Theorem 2.11. Let D be a domain in \mathbb{C} and V a compact complex space equipped with a metric satisfying the conditions in Theorem 2.8. If a family \mathcal{F} in $O(D, V)$ is not normal at a point $a \in D$, then there are sequences (f_k), (z_k), and (ρ_k) in \mathcal{F}, D, and $(0, \infty)$, respectively, and a non-constant holomorphic mapping $g : \mathbb{C} \to V$ such that $\lim_{k \to \infty} z_k = a$, that $\lim_{k \to \infty} \rho_k = 0$, and that $\lim_{k \to \infty} f_k(z_k + \rho_kv) = g(v)$ locally uniformly on \mathbb{C}.

Remark 2.12. A proof of Zalcman’s lemma begins as follows: by the non-normality of \mathcal{F} (in $O(D, V)$) at a and the Arzelà–Ascoli theorem, we can choose an $r > 0$ small enough and a sequence (f_k) in \mathcal{F} such that

$$
\lim_{k \to \infty} L_{f_k, D(a, r)} = \infty.
$$

Such a sequence (f_k) in $\mathcal{F} = O(D, V)$ for $D = \mathbb{D}$ and an open disk $D(a, r)$ in $D = \mathbb{D}$ satisfying 2.24 can also be chosen if V is not Kobayashi hyperbolic.

Now Zalcman’s lemma and Brody’s theorem (see Fact 2.7) are shown simultaneously by rescaling (f_k) appropriately: for the details, we recommend [10] Proof of Theorem 2.6], where a compact complex space which is not necessarily an Hermitian manifold is carefully treated.
Let V be a complex space equipped with a metric δ inducing the topology of V, and $f : \mathbb{D} \setminus \{0\} \to V$ a holomorphic mapping having an isolated essential singularity at the origin. Suppose that $\bigcap_{r>0} f(\mathbb{D}(r) \setminus \{0\}) \neq \emptyset$. Then we can fix a sequence (z_n) in $\mathbb{D} \setminus \{0\}$ tending to 0 as $n \to \infty$ such that $a := \lim_{n \to \infty} f(z_n)$ exists in V. Fix an open neighborhood W of a in V equivalent to an analytic subset in an open subset Ω in \mathbb{C}^d for some $d \in \mathbb{N}$, and fix a subdomain $W' \subset W$ containing a.

If $\lim_{n \to \infty} \diam_\delta f(\partial \mathbb{D}(|z_n|)) > 0$, then we are done. So, suppose that $\lim_{n \to \infty} \diam_\delta f(\partial \mathbb{D}(|z_n|)) = 0$. Taking a subsequence if necessary, we can even assume that
\begin{equation}
\lim_{n \to \infty} \diam_\delta f(\partial \mathbb{D}(|z_n|)) = 0.
\end{equation}

Then for every $n \in \mathbb{N}$ large enough, $f(\partial \mathbb{D}(|z_n|)) \subset W'$. For every $n \in \mathbb{N}$ large enough, since the origin is an isolated essential singularity of f, by Riemann’s extension theorem, the following minimum
\begin{equation}
r'_n := \min\{r \in (0, |z_n|) : f(\partial \mathbb{D}(r)) \not\subset W'\} > 0
\end{equation}
exists, and then $f(\overline{\mathbb{D}(|z_n|)} \setminus \mathbb{D}(r'_n)) \subset W'$ by the continuity of f. Fix a sequence (z'_n) in $\mathbb{D} \setminus \{0\}$ tending to 0 as $n \to \infty$ such that for every $n \in \mathbb{N}$ large enough, $z'_n \in \partial \mathbb{D}(r'_n) \cap f^{-1}(W' \setminus W')$. By the compactness of $\overline{W'} \setminus W'$, we can assume that the limit $b := \lim_{n \to \infty} f(z'_n)$ exists in $\overline{W'} \setminus W'$. It remains to show that $\lim \inf_{n \to \infty} \diam_\delta f(\partial \mathbb{D}(|z'_n|)) > 0$.

Suppose contrary that $\lim \inf_{n \to \infty} \diam_\delta f(\partial \mathbb{D}(|z'_n|)) = 0$. Taking a subsequence if necessary, we can even assume that
\begin{equation}
\lim_{n \to \infty} \diam_\delta f(\partial \mathbb{D}(|z'_n|)) = 0.
\end{equation}

Since a and b are distinct points in W, which we identify with an analytic subset in an open subset Ω in \mathbb{C}^d, there exists an affine coordinate system $w = (w_1, \ldots, w_d)$ on Ω such that $w(a) = 0$ and that $w_1(b) \neq 0$. Set $w \circ f = (f_1, \ldots, f_d) : f^{-1}(W) \to w(W)$. Then, for every $n \in \mathbb{N}$ large enough, under the assumptions (3.1) and (3.11), we have both
\begin{equation}
f_1(\partial \mathbb{D}(|z_n|)) \subset \mathbb{D}(|w_1(b)|/3) \quad \text{and} \quad f_1(\partial \mathbb{D}(|z'_n|)) \subset \mathbb{D}(w_1(b), |w_1(b)|/3).
\end{equation}

Fix such $n \in \mathbb{N}$ as satisfies (3.2). Let ℓ be a line segment in the ring domain $\mathbb{D}(|z_n|) \setminus \overline{\mathbb{D}(|z'_n|)} \subset f^{-1}(W)$ having one end point in $\partial \mathbb{D}(|z_n|)$ and the other in $\partial \mathbb{D}(|z'_n|)$. Then the path $f_1(\ell)$ in $w_1(W)$ joins the closed curves $f_1(\partial \mathbb{D}(|z_n|))$ and $f_1(\partial \mathbb{D}(|z'_n|))$, so by (3.2), we may fix $y_0 \in \ell$ such that
\begin{equation}
f_1(y_0) \not\in \mathbb{D}(|w_1(b)|/3) \cup \overline{\mathbb{D}(w_1(b), |w_1(b)|/3)}.
\end{equation}

Since f_1 is a holomorphic function on $f^{-1}(W)$ and takes the value $f_1(y_0)$ at least at $y_0 \in \mathbb{D}(|z_n|) \setminus \overline{\mathbb{D}(|z'_n|)}$, by the argument principle,
\begin{equation}
1 \leq \int_{\partial(\mathbb{D}(|z_n|) \setminus \overline{\mathbb{D}(|z'_n|)})} \frac{f'_1(z)dz}{f_1(z) - f(y_0)} = \int_{(f_1)_{+}(\partial(\mathbb{D}(|z_n|)))} \frac{dw_1}{w_1 - f(y_0)} - \int_{(f_1)_{+}(\partial(\mathbb{D}(|z'_n|)))} \frac{dw_1}{w_1 - f(y_0)}.
\end{equation}
where the boundary $\partial(\mathbb{D}(|z_n|) \setminus \overline{\mathbb{D}(|z'_n|)})$ is canonically oriented. On the other hand, by (2.2) and (3.3), the residue theorem yields

$$\int_{(f_1)_* \partial(\mathbb{D}(|z_n|))} \frac{dw_1}{w_1 - f(y_0)} = \int_{(f_1)_* \partial(\mathbb{D}(|z'_n|))} \frac{dw_1}{w_1 - f(y_0)} = 0,$$

which contradicts (3.4).

Hence $\liminf_{n \to \infty} \operatorname{diam} f(\partial \mathbb{D}(|z'_n|)) > 0$, and the proof is complete. \(\square\)

Remark 3.1. The final residue theoretic argument applied to f_1 can be replaced by a more topological argument (for f_1) as in [9, Proof of Lemma 3.1]. In [9, Lemma 3.1], the target Riemannian n-manifold M of a quasiregular mapping $f : \mathbb{B}^n \setminus \{0\} \to M$ was assumed to be compact, but this assumption can be relaxed as $\bigcap_{r>0} f(\mathbb{B}^n(r) \setminus \{0\}) \neq \emptyset$ as in Theorem 1. Moreover, in [9, Lemma 3.1], we only claimed that $\limsup_{r \to 0} \operatorname{diam}(f(\partial \mathbb{B}^n(r))) > 0$, but this assertion can be strengthened that there exists a sequence (x_j) in $\mathbb{B}^n \setminus \{0\}$ tending to 0 as $j \to \infty$ such that $\lim_{j \to \infty} f(x_j)$ exists in M and that $\lim\inf_{j \to \infty} \operatorname{diam}(f(\partial \mathbb{B}^n(|x_j|))) > 0$, as in Theorem 1.

4. Proof of Theorem 2

Let V be a compact complex space and $f : \mathbb{D} \setminus \{0\} \to V$ be a holomorphic mapping having an isolated essential singularity at the origin, and fix a metric δ on V satisfying the conditions in Theorem 2.8. Define a function $Q_f : \mathbb{D}(2/3) \setminus \{0\} \to \mathbb{R}_{\geq 0}$ by

$$Q_f(z) := L_{f, \mathbb{D}(z, |z|/2)},$$

where the right hand side is defined in (2.4). We study the cases that $\limsup_{z \to 0} Q_f(z) = \infty$ and that $\limsup_{z \to 0} Q_f(z) < \infty$, separately.

Suppose first that $\limsup_{z \to 0} Q_f(z) = \infty$. Then there exists a sequence (y_k) in $\mathbb{D} \setminus \{0\}$ such that $\lim_{k \to \infty} y_k = 0$ and $\lim_{k \to \infty} Q_f(y_k) = \infty$. Fix $\epsilon \in (0, 1)$. Then for every $k \in \mathbb{N}$ large enough, a holomorphic mapping $g_k : \mathbb{D}(1 + \epsilon) \to V$ is defined by

$$g_k(w) := f \left(y_k + \frac{|y_k|}{2}w \right).$$

Then for every $k \in \mathbb{N}$ large enough, there exist distinct $w_k, w'_k \in \mathbb{D}$ such that

$$\frac{\delta(g_k(w_k), g_k(w'_k))}{d_{\mathbb{D}}(w_k, w'_k)} \geq \frac{1}{2} \frac{L_{g_k, \mathbb{D}}}{L_{g_k, \mathbb{D}}} = \frac{1}{2} Q_f(y_k),$$

where the final equality is by (2.2). We claim that that the family $\{g_k : k \in \mathbb{N}\}$ is not normal at a point $a \in \mathbb{D}$; otherwise, decreasing $\epsilon > 0$ if necessary, $\{g_k : k \in \mathbb{N}\}$ is normal on $\mathbb{D}(1 + \epsilon)$, so there is a locally uniform limit point g of $\{g_k : k \in \mathbb{N}\}$ on $\mathbb{D}(1 + \epsilon)$, which is in $\mathcal{O}(\mathbb{D}(1 + \epsilon), V)$. Then by (4.1), we have

$$\infty = \limsup_{k \to \infty} \frac{1}{2} Q_f(y_k) \leq L_{g, \mathbb{D}},$$

which contradicts (2.1), so the claim holds.
By this claim, Theorem 2.1 yields sequences \((z_j), (\rho_j), \text{ and } (k_j)\) in \(\mathbb{C}, (0, \infty), \) and \(N, \) respectively, and a non-constant \(g \in \mathcal{O}(\mathbb{C}, V)\) such that \(\lim_{j \to \infty} z_j = a, \) \(\lim_{j \to \infty} \rho_j = 0, \) \(\lim_{j \to \infty} k_j = \infty, \) and
\[
\lim_{j \to \infty} g_{k_j}(z_j + \rho_j v) = g(v)
\]
locally uniformly on \(\mathbb{C}.\) Since
\[
g_{k_j}(z_j + \rho_j v) = f((y_{k_j} + (|y_{k_j}|/2)z_j) + ((|y_{k_j}|/2)\rho_j)v)
\]
on \(\mathbb{C}, \) \(\lim_{j \to \infty}(y_{k_j} + (|y_{k_j}|/2)z_j) = 0 \) in \(\mathbb{C},\) and \(\lim_{j \to \infty}(|y_{k_j}|/2)\rho_j = 0 \) in \(\mathbb{R},\) we are done in the case that \(\limsup_{z \to 0} Q_f(z) = \infty.\)

Suppose next that \(\limsup_{z \to 0} Q_f(z) < \infty.\) For every \(k \in \mathbb{N},\) define a holomorphic mapping \(g_k : \mathbb{D}(e^k) \setminus \{0\} \to V\) by
\[
g_k(v) := f(0 + e^{-k}v).
\]
Then for every \(v \in \mathbb{C} \setminus \{0\},\)
\[
\limsup_{k \to \infty} L_{g_k, D(v, |v|/2)} = \limsup_{k \to \infty} Q_f(e^{-k}v) \leq \limsup_{z \to 0} Q_f(z) < \infty,
\]
where the first equality is by \((2.2).\) Hence the family \(\{g_k : k \in \mathbb{N}\}\) is locally equicontinuous on \(\mathbb{C} \setminus \{0\}.\) By the Arzelà–Ascoli theorem, taking a subsequence if necessary, the locally uniform limit \(g := \lim_{k \to \infty} g_k\) exists on \(\mathbb{C} \setminus \{0\},\) which is in \(\mathcal{O}(\mathbb{C} \setminus \{0\}, V).\) It remains to show that \(g\) is non-constant.

By the compactness of \(V,\) we have \(\bigcap_{r>0} f(\mathbb{D}(r) \setminus \{0\}) \neq \emptyset,\) so that by Theorem 1 there is a sequence \((z_j)\) in \(\mathbb{D} \setminus \{0\}\) tending to 0 as \(j \to \infty\) such that \(a := \lim_{j \to \infty} f(z_j)\) exists in \(V\) and \(\liminf_{j \to \infty} \text{diam}_A f(\partial \mathbb{D}(|z_j|)) > 0.\) Then there is a sequence \((k_j)\) in \(\mathbb{N}\) tending to \(\infty\) as \(j \to \infty\) such that for every \(j \in \mathbb{N},\) \(\partial \mathbb{D}(|z_j|) \subset \mathbb{D}(e^{-k_j}) \setminus \mathbb{D}(e^{-k_j-1}).\)

If \(g\) is constant, then, since
\[
g_{k_j}(\mathbb{D} \setminus \mathbb{D}(e^{-1})) = f(\mathbb{D}(e^{-k_j}) \setminus \mathbb{D}(e^{-k_j-1})) \supset f(\partial \mathbb{D}(|z_j|)) \ni f(z_j)
\]
for every \(j \in \mathbb{N},\) we must have not only \(g \equiv a = \lim_{j \to \infty} f(z_j)\) on \(\mathbb{C} \setminus \{0\}\) but also
\[
0 = \text{diam}_A(a) = \limsup_{j \to \infty} \text{diam}_A(g_{k_j}(\mathbb{D} \setminus \mathbb{D}(e^{-1})))
\]
\[
\geq \liminf_{j \to \infty} \text{diam}_A f(\partial \mathbb{D}(|z_j|)),
\]
which contradicts that \(\liminf_{j \to \infty} \text{diam}_A f(\partial \mathbb{D}(|z_j|)) > 0.\) Hence \(g\) is non-constant, and we are done in the case that \(\limsup_{z \to 0} Q_f(z) < \infty.\)

Now the proof of Theorem 2 is complete.

Remark 4.1. The proof of Theorem 2 is similar to [9, Proof of Theorem 1] for quasiregular mappings. In the holomorphic curve case, however, the locally *Lipschitz continuity* (2.1) of holomorphic curves and the invariance of Kobayashi pseudometrics under biholomorphisms between complex spaces make the argument much simpler than that in the quasiregular case.
Let \(V \) be a compact Hermitian manifold equipped with an Hermitian metric \(\delta_V \). Then \(\delta_V \) satisfies the properties in Theorem 2.8 (cf. [10, §2.3]). Let \(f : \mathbb{D} \setminus \{0\} \to V \) be a holomorphic curve having an isolated essential singularity at the origin, and recall that \(f^\#(z) := \lim_{w \to z} \delta_V(f(z), f(w))/|z - w| \) on \(\mathbb{D} \setminus \{0\} \).

For every \(z \in \mathbb{D}(2/3) \setminus \{0\} \), the Kobayashi (pseudo)metric \(d_{\mathbb{D}(z,|z|/2)} \) on \(\mathbb{D}(z, |z|/2) \) is given by the Kähler metric \(d\mathbb{D}(z,|z|/2) = (|z|/2)|dw|/((|z|/2)^2 - |w - z|^2) \) (cf. Example 2.1 and Fact 2.3) and we have

\[
\lim_{w \to z} \frac{\delta_V(f(w), f(w'))}{d\mathbb{D}(z,|z|/2)(w, w')} = \left(\frac{|z|/2 - |w - z|^2}{|z|/2}\right) f^\#(w) \leq \frac{|z|}{2} f^\#(w) \leq |w| f^\#(w).
\]

For every \(z \in \mathbb{D}(2/3) \setminus \{0\} \), setting \(w = z \) in the first equality in (5.1), we also have

\[
\lim_{w' \to z} \frac{\delta_V(f(z), f(w'))}{d\mathbb{D}(z,|z|/2)(z, w')} = \frac{|z|}{2} f^\#(z).
\]

These computations conclude that the case that \(\limsup_{z \to 0} Q_f(z) < \infty \) in the proof of Theorem 2 occurs if and only if \(f \) is exceptional in Julia’s sense.

Acknowledgement. The author thanks Professor Katsutoshi Yamanoi for discussions on the Kobayashi hyperbolic geometry of complex spaces, and Professor Pekka Pankka for invaluable comments.

References

[1] Brody, R. Compact manifolds in hyperbolicity, Transactions of the American Mathematical Society, 235 (1978), 213–219.
[2] Holopainen, I. and Pankka, P. A big Picard theorem for quasiregular mappings into manifolds with many ends, Proc. Amer. Math. Soc., 133, 4 (2005), 1143–1150 (electronic).
[3] Holopainen, I. and Rickman, S. A Picard type theorem for quasiregular mappings of \(\mathbb{R}^n \) into \(n \)-manifolds with many ends, Rev. Mat. Iberoamericana, 8, 2 (1992), 131–148.
[4] Kobayashi, S. Hyperbolic complex spaces, Vol. 318 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin (1998).
[5] Kobayashi, S. Hyperbolic manifolds and holomorphic mappings, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, second edition (2005), An introduction.
[6] Kwack, M. H. Generalization of the big Picard theorem, Annals of Mathematics (1969), 9–22.
[7] Lehto, O. and Virtanen, K. I. On the behaviour of meromorphic functions in the neighbourhood of an isolated singularity, Ann. Acad. Sci. Fenn. Ser. A. I., 1957, 240 (1957), 9.
[8] Okuyama, Y. and Pankka, P. Accumulation of periodic points for local uniformly quasiregular mappings, RIMS Kôkyûroku Bessatsu, B43 (2013), 121–139.
[9] Okuyama, Y. and Pankka, P. Rescaling principle for isolated essential singularities of quasiregular mappings, Proc. Amer. Math. Soc. (to appear).
[10] Yamanoi, K. Kobayashi hyperbolicity and higher dimensional Nevanlinna theory, preprint (2014).
[11] Zalcman, L. A heuristic principle in complex function theory, Amer. Math. Monthly, 82, 8 (1975), 813–817.
