AUTOMORPHISMS OF KRONROD-REEB GRAPHS OF MORSE FUNCTIONS ON 2-SPHERE

ANNA KRAVCHENKO AND SERGIY MAKSYMENKO

Abstract. Let M be a compact two-dimensional manifold, $f \in C^\infty(M, \mathbb{R})$ be a Morse function, and Γ_f be its Kronrod-Reeb graph. Denote by $O(f) = \{f \circ h \mid h \in \mathcal{D}\}$ the orbit of f with respect to the natural right action of the group of diffeomorphisms \mathcal{D} on $C^\infty(M, \mathbb{R})$, and by $S(f) = \{h \in \mathcal{D} \mid f \circ h = f\}$ the corresponding stabilizer of this function. It is easy to show that each $h \in S(f)$ induces a homeomorphism of Γ_f. Let also $\mathcal{D}_{id}(M)$ be the identity path component of $\mathcal{D}(M)$, $S'(f) = S(f) \cap \mathcal{D}_{id}(M)$ be group of diffeomorphisms of M preserving f and isotopic to identity map, and G_f be the group of homeomorphisms of the graph Γ_f induced by diffeomorphisms belonging to $S'(f)$. This group is one of the key ingredients for calculating the homotopy type of the orbit $O(f)$.

Recently the authors described the structure of groups G_f for Morse functions on all orientable surfaces distinct from 2-torus T^2 and 2-sphere S^2. The present paper is devoted to the case $M = S^2$. In this situation Γ_f is always a tree, and therefore all elements of the group G_f have a common fixed subtree $Fix(G_f)$, which may even consist of a unique vertex. Our main result calculates the groups G_f for all Morse functions $f: S^2 \to \mathbb{R}$ whose fixed subtree $Fix(G_f)$ consists of more than one point.

1. Introduction

Let M be a compact two-dimensional manifold and $\mathcal{D}(M)$ the group of diffeomorphisms of M. Then there exists a natural right action

$$\phi: C^\infty(M, \mathbb{R}) \times \mathcal{D}(M) \to C^\infty(M, \mathbb{R})$$

of this group on the space of smooth functions on M defined by the formula $\phi(f, h) = f \circ h$. For $f \in C^\infty(M, \mathbb{R})$ denote by

$$S(f) = \{h \in \mathcal{D}(M) \mid f \circ h = f\}$$

its stabilizer with respect to the specified action.

Definition 1.1. Let $\mathcal{F}(M, \mathbb{R})$ be the subset of $C^\infty(M, \mathbb{R})$ consisting of maps $f: M \to \mathbb{R}$ such

(1) f takes constant values on the connected components of the boundary ∂M and has no critical points on ∂M;
(2) for each critical point z of f there are local coordinates (x, y) in which $z = (0, 0)$ and $f(x, y) = f(z) + g_z(x, y)$, where $g_z: \mathbb{R}^2 \to \mathbb{R}$ is a homogeneous polynomial without multiple factors.

2010 Mathematics Subject Classification. 37E30, 22F50.
Key words and phrases. Morse function, Kronrod-Reeb graph.
Notice that every critical point of \(f \in \mathcal{F}(M, \mathbb{R}) \) is isolated.

A function \(f \in \mathcal{F}(M, \mathbb{R}) \) is called Morse, if \(\deg g_z = 2 \) for each critical point \(z \) of \(f \). In that case, due to Morse Lemma, one can assume that \(g_z(x, y) = \pm x^2 \pm y^2 \).

We will denote by \(\mathcal{M}(M, \mathbb{R}) \) the space of all Morse maps \(M \to \mathbb{R} \).

Homotopy types of stabilizers and orbits of Morse functions and functions from \(\mathcal{F}(M, \mathbb{R}) \) were studied in \([8], [9], [10], [1], [2], [3], [4], [5], [6]\).

Let \(f \in C^\infty(M, \mathbb{R}) \), \(\Gamma_f \) be a partition of the surface \(M \) into the connected components of level sets of this function, and \(p: M \to \Gamma_f \) be the canonical factor-mapping, associating to each \(x \in M \) the connected component of the level set \(f^{-1}(f(x)) \) containing that point.

Endow \(\Gamma_f \) with the factor topology with respect to the mapping \(p \): so a subset \(A \subset \Gamma_f \) will be regarded as open if and only if its inverse image \(p^{-1}(A) \) is open in \(M \). Then \(f \) induces the function \(\hat{f}: \Gamma_f \to \mathbb{R} \), such that \(f = \hat{f} \circ p \).

It is well known, that if \(f \in \mathcal{F}(M, \mathbb{R}) \), then \(\Gamma_f \) has a structure of a one-dimensional CW-complex called the Kronrod-Reeb graph, or simply the graph of \(f \). The vertices of this graph correspond to critical connected components of level sets of \(f \) and connected components of the boundary of the surface. By the edge of \(\Gamma_f \) we will mean an open edge, that is, a one-dimensional cell.

Denote by \(\mathcal{H}(\Gamma_f) \) the group of homeomorphisms of \(\Gamma_f \). Notice that each element of the stabilizer \(h \in S(f) \) leaves invariant each level set of \(f \), and therefore induces a homeomorphism \(\rho(h) \) of the graph of \(f \), so that the following diagram is commutative:

\[
\begin{array}{ccc}
M & \xrightarrow{p} & \Gamma_f \\
\downarrow{h} & & \downarrow{\rho(h)} \\
M & \xrightarrow{\hat{f}} & \mathbb{R}
\end{array}
\]

Moreover, the correspondence \(h \mapsto g(h) \) is a homomorphism of groups

\[\rho: S(f) \to \mathcal{H}(\Gamma_f). \]

Let also \(D_{id}(M) \) be the path component of the identity map \(id_M \) in \(D(M) \). Put

\[S'(f) = S(f) \cap D_{id}(M) \quad \text{and} \quad G_f = \rho(S'(f)). \]

Thus, \(G_f \) is the group of automorphisms of the Kronrod-Reeb graph of \(f \) induced by diffeomorphisms of the surface preserving the function and isotopic identity.

Remark 1.2. Since \(\hat{f} \) is monotone on edges of \(\Gamma_f \), it is easy to show that \(G_f \) is a finite group. Moreover, if \(g(E) = E \), for some \(g \in G \) and an edge \(E \) of the graph \(\Gamma_f \), then \(g(x) = x \) for all \(x \in E \).

Since \(G_f \) is finite and \(\rho \) is continuous, it follows that \(\rho \) reduces to an epimorphism

\[\rho_0: \pi_0 S'(f) \to G_f, \]

of the group \(\pi_0 S'(f) \) path components of \(S'(f) \) being an analogue of the mapping class group for \(f \)-preserving diffeomorphisms.

Algebraic structure of the group \(\pi_0 S'(f) \) of connected components of \(S'(f) \) for all \(f \in \mathcal{F}(M, \mathbb{R}) \) on orientable surfaces \(M \) distinct from 2-torus and 2-sphere is described in \([11]\), and the structure of its factor group \(G_f \) is investigated in \([7]\). These groups play
an important role in computing the homotopy type of the path component $\mathcal{O}_f(f)$ of the orbit of f, see also [8], [9], [1], [2], [3].

The purpose of this note is to describe the groups G_f for a certain class of smooth functions on 2-sphere S^2.

The main result Theorem 1.4 reduces computation of G_f to computations of similar groups for restrictions of f to some disks in S^2. As noted above the latter calculations were described in [7].

First we recall a variant of the well known fact about automorphisms of finite trees from graphs theory.

Lemma 1.3. Let Γ be a finite contractible one-dimensional CW-complex («a topological tree»), G be a finite group of its cellular homeomorphisms, and $\text{Fix}(G)$ be the set of common fixed points of all elements of the group G. Then $\text{Fix}(G)$ is either a contractible subcomplex or consists of a single point belonging to some edge E an open 1-cell), and in the latter case there exists $g \in G$ such that $g(E) = E$ and g changes the orientation of E.

Suppose $f : S^2 \to \mathbb{R}$ belongs to $\mathcal{F}(M, \mathbb{R})$. Then it is easy to show that Γ_f is a tree, i.e., a finite contractible one-dimensional CW-complex, and by Remark 1.2 G_f is a finite group of cellular homeomorphisms of Γ_f. Therefore, for G_f, the conditions of Lemma 1.3 are satisfied. Note that according to Remark 1.2 the second case of Lemma 1.3 is impossible, and hence G_f has a fixed subtree.

In this paper we consider the case when the fixed subtree of the group G_f contains more than one vertex, i.e. has at least one edge.

Let us also mention that $\mathcal{D}_d(S^2)$ coincides with the group $\mathcal{D}(S^2)$ of diffeomorphisms of the sphere preserving orientation, [12]. Therefore $S(f)$ consists of diffeomorphisms of the sphere preserving the function f and the orientation of S^2.

Theorem 1.4. Let $f \in \mathcal{F}(M, \mathbb{R})$. Suppose that all elements of the group G_f have a common fixed edge E. Let $x \in E$ be an arbitrary point and A and B be the closures of the connected components of $S^2 \setminus p^{-1}(x)$. Then

1. A and B are 2-disks being invariant with respect to $S(f)$;
2. the restrictions $f|_A \in \mathcal{F}(M, \mathbb{R})$ and $f|_B \in \mathcal{F}(M, \mathbb{R})$;
3. the map $\phi : G_f \to G_f|_A \times G_f|_B$ defined by the formula

$$\phi(\gamma) = (\gamma|_A, \gamma|_B)$$

is an isomorphism of groups.

Proof. (1) By assumption x belongs to the open edge E. Therefore $p^{-1}(x)$ is a regular connected component of some level set of the function f, that is, a simple closed curve. Then, by Jordan Theorem, $p^{-1}(x)$ divides the sphere into two connected components whose closures are homeomorphic to two-dimensional disks. Consequently, A and B are two-dimensional disks.

Let us show that A and B are invariant with respect to S_f, i.e., $h(A) = A$ and $h(B) = B$ for each $h \in S(f)$. Denote

$$\Gamma_A = p(A) \quad \Gamma_B = p(B).$$

Then

$$\Gamma_A \cup \Gamma_B = \Gamma \quad \Gamma_A \cap \Gamma_B = \{x\}.$$
By definition, $\rho(h)(x) = x$, whence $\rho(h)$ either preserves both Γ_A and Γ_B or interchange them. We claim that

$$\rho(h)(\Gamma_A) = \Gamma_A \quad \rho(h)(\Gamma_B) = \Gamma_B.$$

Indeed suppose $\rho(h)(\Gamma_A) = \Gamma_B$. Since $\rho(h)$ is fixed on E, it follows that

$$\rho(h)(\Gamma_A \cap E) = \Gamma_A \cap E,$$

whence

$$\rho(h)(\Gamma_A \cap E) = \rho(h)(\Gamma_A) \cap \rho(E) = \Gamma_B \cap E \neq \Gamma_A \cap E,$$

which contradicts to our assumption. Thus Γ_A and Γ_B are invariant with respect to the group G_f.

Now we can show that A and B are also invariant with respect to h. By virtue of the commutativity of the diagram (1.1) $\rho(h)(p(y)) = p(h(y))$ for all $y \in \Gamma$. In particular:

$$p(h(A)) = \rho(h)(p(A)) = \rho(h)(\Gamma_A) = \Gamma_A.$$

Therefore, $h(A) = p^{-1}(\Gamma_A) = A$. The proof for B is similar. Thus, A and B are invariant with respect to $S'(f)$.

(2) Notice that the function f takes a constant value on the simple closed curve $p^{-1}(x)$ being a common boundary of disks A and B, and does not contain critical points of f. Therefore, the restrictions $f|_A, f|_B$ satisfy the conditions 1) and 2) the Definition 1.1, and so they belong to $\mathcal{F}(M, \mathbb{R})$ and $\mathcal{F}(M, \mathbb{R})$ respectively.

(3) We should prove that the map $\phi: G_f \to G_{f|_A} \times G_{f|_B}$ defined by formula

$$\phi(\gamma) = (\gamma|_{\Gamma_A}, \gamma|_{\Gamma_B})$$

is an isomorphism.

First we will show that ϕ is correctly defined. Let $\gamma \in G_f = \rho(S'(f))$, that is, $\gamma = \rho(h)$, where h is a diffeomorphism of the sphere preserving the function f and isotopic to the identity.

We claim that $h|_A \in S'(f|_A) = S(f|_A) \cap D_{id}(A)$. Indeed, for each point $x \in A$ we have that:

$$f(x) = f|_A(x) = f|_A(h|_A(x)) = f|_A(h(x)) = f(h(x)),$$

which means that $h|_A \in S(f|_A)$.

Moreover, since h preserves the orientation of the sphere, it follows that $h|_A$ preserves the orientation of the disk A, and therefore by [12], $h|_A \in D_{id}(A)$. Thus $\gamma|_{\Gamma_A} \in G_{f|_A}$.

Similarly $\gamma|_{\Gamma_B} \in G_{f|_B}$, and so ϕ is well defined.

Let us now verify that ϕ is an isomorphism of groups, that is, a bijective homomorphism. Let $\delta, \omega \in G_f$. Then

$$\phi(\delta \circ \omega) = (\delta \circ \omega|_{\Gamma_A}, \delta \circ \omega|_{\Gamma_B}) =$$

$$= (\delta|_{\Gamma_A}, \delta|_{\Gamma_B}) \circ (\omega|_{\Gamma_A}, \omega|_{\Gamma_B}) =$$

$$= (\delta|_{\Gamma_A} \circ \omega|_{\Gamma_A}, \delta|_{\Gamma_B} \circ \omega|_{\Gamma_B}) =$$

$$= (\delta \circ \omega|_{\Gamma_A}, \delta \circ \omega|_{\Gamma_B}),$$

so ϕ is a homomorphism.

Let us show that $ker \phi = \{ \text{id}_f \}$. Indeed, suppose $\gamma \in ker \phi$, that is $\gamma|_{\Gamma_A} = \text{id}_{\Gamma_A}$ and $\gamma|_{\Gamma_B} = \text{id}_{\Gamma_B}$. Then γ is fixed on $\Gamma_A \cup \Gamma_B = \Gamma$, and hence it is the identity map.
Surjectivity of $\phi: G_f \to G_{f|A} \times G_{f|B}$ is implied by the following simple lemma whose proof we leave to the reader.

Lemma 1.5. Suppose $f: D^2 \to \mathbb{R}$ belongs to the space $\mathcal{F}(M, \mathbb{R})$. Then for arbitrary $\alpha \in G_f$, there exists $a \in \mathcal{S}(f)$ fixed near the boundary ∂D^2 and such that $\alpha = \rho(a)$. □

Let $(\alpha, \beta) \in G_{f|A} \times G_{f|B}$, then by Lemma 1.5 there exist $a \in \mathcal{S}(f|A)$ and $b \in \mathcal{S}(f|B)$ fixed near $\partial A = \partial B = p^{-1}(x)$ and such that $\alpha = \rho_A(a)$ and $\beta = \rho_B(b)$. Define h by the following formula:

$$h = \begin{cases} a(x), & x \in A, \\ b(x), & x \in B. \end{cases}$$

Then, h is a diffeomorphism of the sphere, preserving the function and orientation, whence $h \in \mathcal{S}(f)$.

Moreover if we put $\gamma = \rho(h) \in G_f$, then $\gamma|_{r_A} = \rho(h|_{A}) = \alpha$ and $\gamma|_{r_B} = \rho(h|_{B}) = \beta$. In other words, $\phi(\gamma) = (\gamma|_{r_A}, \gamma|_{r_B}) = (\alpha, \beta)$, i.e., ϕ is surjective and therefore an isomorphism. □

References

[1] E. A. Kudryavtseva. Connected components of spaces of Morse functions with fixed critical points. *Vestnik Moskov. Univ. Ser. I Mat. Mekh.*, (1):3–12, 2012.

[2] E. A. Kudryavtseva. The topology of spaces of Morse functions on surfaces. *Math. Notes*, 92(1-2):219–236, 2012. Translation of Mat. Zametki 92 (2012), no. 2, 241–261.

[3] E. A. Kudryavtseva. On the homotopy type of spaces of Morse functions on surfaces. *Mat. Sb.*, 204(1):79–118, 2013.

[4] E. A. Kudryavtseva and D. A. Permyakov. Framed Morse functions on surfaces. *Mat. Sb.*, 201(4):33–98, 2010.

[5] S. Maksymenko and B. Feshchenko. Orbits of smooth functions on 2-torus and their homotopy types. *Matematychni Studii*, 44(1):67–84, 2015.

[6] S. Maksymenko and B. Feshchenko. Smooth functions on 2-torus whose kronrod-reeb graph contains a cycle. *Methods Funct. Anal. Topology*, 21(1):22–40, 2015.

[7] S. Maksymenko and A. Kravchenko. Automorphisms of Kronrod-Reeb graphs of morse functions on compact surfaces. page arXiv:1808.08746, 2018.

[8] Sergiy Maksymenko. Homotopy types of stabilizers and orbits of Morse functions on surfaces. *Ann. Global Anal. Geom.*, 29(3):241–285, 2006.

[9] Sergiy Maksymenko. Functions with isolated singularities on surfaces. *Geometry and topology of functions on manifolds. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos.*, (7(4):7–66, 2010.

[10] Sergiy Maksymenko. Homotopy types of right stabilizers and orbits of smooth functions on surfaces. *Ukrainian Math. Journal*, 64(9):1186–1203, 2012.

[11] Sergiy Maksymenko. Deformations of functions on surfaces by isotopic to the identity diffeomorphisms. 2013.

[12] Stephen Smale. Diffeomorphisms of the 2-sphere. *Proc. Amer. Math. Soc.*, 10:621–626, 1959.

E-mail address: annakravchenko1606@gmail.com

Department of Geometry, Topology, and Dynamical Systems, Taras Shevchenko National University of Kyiv Hlushkova Avenue, 4e, Kyiv, Ukraine, 03127

E-mail address: maks@imath.kiev.ua

Topology Laboratory of Algebra and Topology Department, Institute of Mathematics of National Academy of Sciences of Ukraine, Tereshchenkovs’ka str. 3, Kyiv, Ukraine, 01024