New localization method of $U(1)$ gauge vector field on flat branes in (asymptotic) AdS_5 spacetime

Zhen-Hua Zhao1, Qun-Ying Xie2,3 and Yuan Zhong3,4

1Department of Applied Physics, Shandong University of Science and Technology, Qingdao, 266590 People’s Republic of China
2School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
3Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
4IFAE, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

E-mail: zhaozhh09@lzu.edu.cn, xieqy@lzu.edu.cn and yzhong@ifae.es

Received 9 August 2014, revised 3 November 2014
Accepted for publication 17 November 2014
Published 14 January 2015

Abstract

It is well known that the $U(1)$ gauge vector field, with standard five-dimensional (5D) action, cannot be localized on Randall–Sundrum-like braneworlds with an infinite extra dimension. In this paper, we propose a modified 5D action to localize the $U(1)$ gauge vector field on flat branes with an infinite or finite extra dimension. The localization method is realized by adding a dynamical mass term into the standard 5D action of the vector field, which is proportional to the 5D scalar curvature. It is shown that the vector zero mode is localizable if the 5D spacetime is (asymptotic) AdS_5. Moreover, the massive tachyonic modes can be excluded.

Keywords: extra dimensions, braneworld, localization of vector field

1. Introduction

Braneworld theories have received much attention since the success of the Randall–Sundrum (RS) thin brane models [1, 2]. In braneworld theories, the localization of gravity and all kinds of matter fields on the brane is always an important issue. It is well known that the four-dimensional graviton can be localized in the RS thin brane scenario [1, 3] and in thick brane scenarios [4–10]. The localization of the real scalar field is the same as gravity in general relativity [11], but may be different from or even opposite to gravity in some modified gravity [12, 13]. By introducing the usual Yukawa coupling between the background scalar field and
the fermion field, the fermion can also be localized on the brane generated by an odd scalar field [11, 14–19]. However, if the brane is generated by an even scalar field, we need to introduce a new localization mechanism in order to localize the fermion on the brane [20].

In five-dimensional (5D) spacetime, the $U(1)$ gauge field A_M with the usual action

$$S \sim \int d^5x \sqrt{-g} F_{MN} F^{MN}, \quad (1.1)$$

where $F_{MN} = \partial_M A_N - \partial_N A_M$ is the field strength, can be localized on the brane in some special braneworld models, for example, in the standing-wave braneworld model [21], in braneworld models with finite extra dimension [22–26], and in a 6D model [27]. But it cannot be localized in an RS-like braneworld model with an infinite extra dimension [11, 28, 29].

In order to localize the $U(1)$ gauge field on branes in 5D RS-like models with an infinite extra dimension, the typical localization mechanism is to reform the action (1.1). In the thin brane scenario, many ideas have been proposed for this issue [30–33]. In [30], the author added a topological term and a three-form gauge potential into the action (1.1). In [31], a bulk mass term of the vector and a coupling between the vector potential and the brane were introduced. In [32], the action (1.1) was changed to

$$S \sim \int d^5x \sqrt{-g} e^{2\alpha(y)} F_{MN} F^{MN}, \quad (1.2)$$

where $e^{2\alpha(y)}$ is the warp factor. In this model the vector zero mode can be localized on the negative tension brane. In [33], gauge field kinetic terms induced by localized fermions were added into the gauge field action.

In order to localize $U(1)$ vector fields in thick brane models, Kehagias and Tamvakis (KT) proposed a coupling between the gauge field and an extra dilaton field. The KT mechanism has been applied in many different braneworld scenarios [34–40]. Recently, Chumbes, Holf da Silva and Hott (CHH) proposed a new mechanism [29], in which gauge and tensor fields directly couple to a functional of the background scalar field. By introducing a Stueckelberg-like action, Vaquera-Araujo and Corradini realized the localization of a vector in a thick brane model [41].

In this paper, we propose a new localization method to localize the $U(1)$ gauge field on the brane. We assume that the 5D gauge field has a dynamic mass term, which is proportional to the 5D scalar curvature. Our localization method can be used both in thin and thick braneworld models with an infinite or finite extra dimension. To localize the gauge field zero mode, the only assumption we need is that the 5D spacetime is (asymptotic) AdS$_5$. With the same assumption, we can further prove that there is no tachyonic mode in the KK spectrum.

The paper is structured as follows. In section 2, we show the setup of our localization method of the gauge field on the brane and prove that the zero mode is localizable under the assumption that the five-dimensional spacetime is (asymptotic) AdS_5. Further, in section 3, we prove that tachyon modes can be excluded. We conclude our results in the final section.

2. The localization method of the vector field on the branes

The line-element describing a flat (Minkowski) braneworld embedded in five-dimensional spacetime is assumed to be [1]

$$ds^2 = G_{MN} dx^M dx^N = e^{2\alpha(y)} \eta_{\mu\nu} dx^\mu dx^\nu + dy^2,$$ \quad (2.1)

where $e^{2\alpha(y)}$ is the warp factor, $\alpha(y)$ is a function of the extra dimension y, G_{MN} is the metric of 5D bulk spacetime and $M, N = 0, 1, 2, 3, 4$ stand for the bulk coordinate indices, and the
Minkowski metric $\eta_{\mu\nu}$ on branes with signature $(-1, +1, +1, +1)$ and $\mu, \nu = 0, 1, 2, 3$ correspond to the brane coordinate indices.

In order to localize vector fields on branes, we introduce a dynamical mass term and the action reads

$$S = \int d^4x dy \sqrt{-G} \left(-\frac{1}{4} G^{MN} G^{RS} F_{MR} F_{NS} - \frac{1}{2} M^2 G^{MN} A_M A_N \right).$$ \hfill (2.2)$$

where M^2 is a function of the 5D scalar curvature. Here, we set

$$M^2 = -\frac{1}{16} R, \quad \hfill (2.3)$$

With the metric in equation (2.1), the scalar curvature is given by

$$R = -4 \left(5a^2 + 2a' \right).$$ \hfill (2.4)$$

In this paper, the prime stands for the derivative with respect to y. Because the brane is flat, R is only a function of the extra-dimension coordinate y.

Here, we parametrize A_M in the following way [31, 42, 43]:

$$A_M = \left(\hat{A}_\mu + \partial_\mu \phi, \ A_4 \right), \quad \hfill (2.5)$$

where \hat{A}_μ is the transverse component, which satisfies the transverse condition $\partial_\mu \hat{A}^\mu = 0$, and ϕ is the longitudinal component. Substituting equation (2.5) into the action (2.2), with the transverse condition, one can find that the transverse vector \hat{A}_μ decouples from the scalar fields ϕ and A_4, and the action (2.2) can be split into two parts,

$$S = S_V (\hat{A}_\mu) + S_S (\hat{A}_4, \ \phi),$$ \hfill (2.6)$$

where [44, 45]

$$S_V = \int d^4x dy \sqrt{-\tilde{G}} \left(-\frac{1}{4} \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{2} \tilde{\partial}_\mu \tilde{A}_\mu \tilde{\partial}_\nu \tilde{A}_\nu G^{\nu\mu} - \frac{1}{2} M^2 \tilde{A}_\mu \tilde{A}^\mu G^{\mu\nu} \right).$$ \hfill (2.7)$$

$$S_S = \int d^4x dy \sqrt{-\tilde{G}} \left(-\frac{1}{2} \tilde{\partial}_\mu (\tilde{A}_\nu \tilde{\partial}_\mu (\tilde{A}_\nu \tilde{\partial}_\nu \phi) G^{\nu\mu} - \frac{1}{2} \tilde{M}^2 \tilde{\partial}_\mu \phi \tilde{\partial}_\nu \phi G^{\mu\nu} \right.$$

$$- \frac{1}{2} \tilde{\partial}_\mu \tilde{A}_\nu \tilde{\partial}_\nu \tilde{A}_4 \tilde{G}^{\mu\nu} - \frac{1}{2} \tilde{A}_4 \tilde{A}_4 \tilde{M}^2 \tilde{G}^{\mu\nu} + \tilde{\partial}_\mu \tilde{A}_4 \tilde{\partial}_\nu (\tilde{A}_\nu \tilde{\partial}_\nu \phi) G^{\nu\mu} \right).$$ \hfill (2.8)$$

and $\tilde{F}_{\mu\nu} = \partial_\mu \tilde{A}_\nu - \partial_\nu \tilde{A}_\mu$.

Because we focus on the localization of the vector field, and the scalar sector has been discussed in [43], we will therefore not discuss the localization of the scalar particles in this paper. The transverse vector field can be decomposed as

$$\hat{A}_\mu (x, y) = \sum_n A^{(n)}_\mu (x) \chi_n (y),$$ \hfill (2.9)$$

where $A^{(n)}_\mu (x)$ is the 4D vector KK mode and $\chi_n (x)$ is called the KK wave function [46], here and the following $'\Sigma_n'$ is a shorthand for the summation and integration over discrete and continuum KK modes.

By means of the KK decomposition (2.9), the action (2.7) can be further reduced to

$$S_V = -\frac{1}{4} \sum_n \int d^4x \int d^4y (\eta^{\mu\nu} \eta^{\rho\sigma} F_{\mu\rho}^{(n)} F_{\nu\sigma}^{(n)} + 2m_n^2 \eta^{\mu\nu} A^{(n)}_\mu A^{(n)}_\nu).$$ \hfill (2.10)$$

3
where \(F_{\mu\nu}^{(4)} = \partial_{\rho} A_{\nu}^{(4)} - \partial_{\nu} A_{\mu}^{(4)} \) is the four-dimensional vector field strength tensor. In order to obtain the action (2.10), the KK wave function \(\chi_n(y) \) is required to satisfy the following equation
\[
-\partial_y \left(e^{2\alpha} \partial_y \chi_n \right) + \chi_n e^{2\alpha} \mathcal{M}^2 = m_n^2 \chi_n, \tag{2.11}
\]
and the orthonormalization condition
\[
\int \chi_m(y) \chi_n(y) dy = 0, \quad (m \neq n). \tag{2.12}
\]
From the actions (2.10), the localization of the 4D vector KK mode requires
\[
I \equiv \int_{-\infty}^{+\infty} \chi_n^2(y) dy < \infty. \tag{2.13}
\]
By using the following field transformation
\[
\chi_n = e^{-\alpha} \tilde{\chi}_n, \tag{2.14}
\]
Equation (2.11) can be rewritten as
\[
-\tilde{\chi}_n'' + \left(\alpha'' + \alpha'^2 + \mathcal{M}^2 - e^{-2\alpha} m_n^2 \right) \tilde{\chi}_n = 0. \tag{2.15}
\]
For the vector zero mode, \(m_0 = 0 \), equation (2.15) can be written as
\[
-\tilde{\chi}_0'' + \left(\alpha'' + \alpha'^2 + \mathcal{M}^2 \right) \tilde{\chi}_0 = 0. \tag{2.16}
\]
Substituting equations (2.3) and (2.4) into equation (2.16), we can obtain
\[
-\tilde{\chi}_0'' + \left(\frac{3\alpha'}{2} + \frac{9\alpha^2}{4} \right) \tilde{\chi}_0 = 0, \tag{2.17}
\]
which can be further factorized as
\[
\left(-\frac{d}{dy} - \frac{3}{2} \alpha' \right) \left(\frac{d}{dy} - \frac{3}{2} \alpha' \right) \tilde{\chi}_0 = 0. \tag{2.18}
\]
The solution of the above equation is
\[
\tilde{\chi}_0(y) = c_0 e^{\frac{3}{2} \alpha(y)}, \tag{2.19}
\]
and further one can get
\[
\chi_0 = e^{-\alpha} \tilde{\chi}_0 = c_0 e^{\frac{3}{2} \alpha}. \tag{2.20}
\]
With the above solution, the integration (2.13) reads
\[
I = \int_{-\infty}^{+\infty} \chi_0^2 dy = c_0^2 \int_{-\infty}^{+\infty} e^{3\alpha} dy. \tag{2.21}
\]
Because the integrand in equation (2.21) is continuous at the interval \(y \in (-\infty, +\infty) \), the convergency of the above integrations is determined by the asymptotic behaviors of integrands at the infinity.

Now, we prove that if the five-dimensional spacetime is asymptotic AdS, the vector zero mode is always localizable. The condition of asymptotic AdS means that, when \(y \rightarrow \pm \infty \), the warp factor has the following asymptotic behavior
\[
\alpha(y) \big|_{y \rightarrow \pm \infty} \rightarrow -k |y|, \tag{2.22}
\]
where k is a positive constant and usually relates with the five-dimensional fundamental scale in RS-like braneworld scenarios. With this condition, the asymptotic behavior of the integrand in equation (2.21) reads as

$$e^{\alpha y} \mid_{y \to \pm \infty} \to e^{-k|y|},$$

(2.23)

Therefore, the integration (2.21) is convergent, namely, the 4D vector zero mode is localizable. If the extra dimension is finite, the conclusion is also valid.

Our conclusion can easily be verified in the RS-II model [3], in which $\alpha(y) = -k |y|$. Substituting it into equation (2.21), we obtain

$$I = 2e_{0}^{2} \int_{0}^{+\infty} e^{-k y} dy = 2e_{0}^{2}/k.$$

(2.24)

Normalizing I results in $e_{0} = \sqrt{k/2}$. Therefore, the vector zero mode is localizable in the RS-II model.

3. Excluding 4D vector tachyonic modes

Further, we will discuss if this new localization method can exclude the tachyonic modes of the 4D vector field. To discuss the massive modes and mass spectrum, it is more convenient to work with the conformal metric:

$$ds^{2} = e^{2\alpha(z)} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2} \right).$$

(3.1)

The form of dynamic mass with above metric (3.1) is

$$M^{2} = -\frac{1}{16} \mathcal{R} = \frac{1}{4} e^{-2\alpha} \left(3\dot{\alpha}^{2} + 2\ddot{\alpha} \right).$$

(3.2)

where the symbol \cdot means the derivative with respect to z. Making use of the KK decomposition

$$\hat{A}_{\mu}(x, z) = \sum_{n} A^{(n)}_{\mu}(x) \chi_{n}(z),$$

(3.3)

and the transformation

$$\chi_{n}(z) = \rho_{n}(z) e^{-\alpha/2},$$

(3.4)

the action (2.7) reduces to

$$S_{V} = -\frac{1}{4} \sum_{n} \int d\tau \rho_{n}^{2}(\tau) \int d^{4}x \left(F_{\mu\nu}^{(n)} F^{(n),\mu\nu} + 2m_{n}^{2} A^{(n)}_{\mu} A^{(n),\mu} \right).$$

(3.5)

The localization of KK modes means

$$I \equiv \int_{-\infty}^{+\infty} \rho_{n}^{2}(y) dy < \infty.$$

(3.6)

At the same time, the function $\rho(z)$ is required to satisfy a Schrödinger-like equation

$$\left(-\ddot{\rho} + V(z) \right) \rho_{n}(z) = m_{n}^{2} \rho_{n}(z).$$

(3.7)
and the orthonormalization condition
\[\int \rho_m(z) \rho_n(z) \, dz = 0 \quad (m \neq n). \] (3.8)
The effective potential is given by,
\[V(z) = \frac{1}{2} \ddot{\alpha}(z) + \frac{1}{4} \dot{\alpha}(z)^2 + e^{2\alpha} M^2. \] (3.9)
Substituting the expression of \(M^2 \) in (3.2) into equation (3.9), we obtain
\[V(z) = \ddot{\alpha}(z) + \dot{\alpha}(z)^2. \] (3.10)
With the above potential equation (3.7) can be further factored as
\[\left(-\partial_z - \dot{\alpha} \right) \left(\partial_z - \dot{\alpha} \right) \rho_k(z) = m_n^2 \rho_k(z). \] (3.11)
This is the supersymmetry mechanics form of the Schrödinger equation (3.7) [47], which guarantees the positivity of \(m_n^2 \). Therefore, the tachyonic vector modes are excluded. This result is independent of the asymptotic behavior of spacetime.

4. Conclusion

In this paper, we proposed a new localization method of the \(U(1) \) gauge field. In our method a dynamical mass term was added into the 5D action of the vector field. The dynamical mass term is proportional to the 5D scalar curvature. It was shown that, if the brane is embedded in a 5D \(AdS_5 \) spacetime, then the vector zero mode is localized on the brane. Moreover, we also proved that there is no vector tachyonic mode with our method.

Acknowledgments

We thank Professor Y-X Liu for helpful discussions. ZHZ is supported by the National Natural Science Foundation of China (grant no. 11305095), the Natural Science Foundation of Shandong Province, China (grant no. ZR2013AQ016), and the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (grant no. 2013RCJJ026). QYX is supported by the National Natural Science Foundation of China (grant no. 11375075). YZ is supported by the scholarship granted by the Chinese Scholarship Council (CSC).

References

[1] Randall L and Sundrum R 1999 A large mass hierarchy from a small extra dimension Phys. Rev. Lett. 83 3370 [hep-ph/9905221]
[2] Garriga J and Tanaka T 2000 Gravity in the Randall-Sundrum brane world Phys. Rev. Lett. 84 2778 [hep-th/9911055]
[3] Randall L and Sundrum R 1999 An alternative to compactification Phys. Rev. Lett. 83 4690 [hep-th/9906064]
[4] Gremm M 2000 Four-dimensional gravity on a thick domain wall Phys. Lett. B 478 434 [hep-th/9912060]
[5] Bazeia D and Gomes A R 2004 Bloch brane J. High Energy Phys. JHEP05(2004)012 [hep-th/0403141]
[6] Barbosa-Cendejas N and Herrera-Aguilar A 2005 4d gravity localized in non \(z_2 \)-symmetric thick branes J. High Energy Phys. JHEP10(2005)101 [hep-th/0511050]
[7] Barbosa-Cendejas N and Herrera-Aguilar A 2006 Localization of 4d gravity on pure geometrical thick branes Phys. Rev. D 73 084022 [hep-th/0603184]

[8] Farakos K, Koutsoumbas G and Papouliasides P 2007 Graviton localization and Newton’s law for brane models with a non-minimally coupled bulk scalar field Phys. Rev. D 76 064025 (arXiv:0705.2364)

[9] German G, Herrera-Aguilar A, Malagon-Morejon D, Mora-Luna R R and da Rocha R 2013 A de Sitter tachyon thick braneworld J. Cosmol. Astropart. Phys. JCAP02(2013)035 (arXiv:1210.0721)

[10] Herrera-Aguilar A, Malagon-Morejon D, Mora-Luna R R and Quiros I 2012 Thick braneworlds generated by a non-minimally coupled scalar field and a Gauss–Bonnet term: conditions for localization of gravity Class. Quantum Grav. 29 035012 (arXiv:1105.5479)

[11] Bajc B and Gabadadze G 2000 Localization of matter and cosmological constant on a brane in anti de Sitter space Phys. Lett. B 474 282 [hep-th/9912232]

[12] Zhong Y, Liu Y-X and Yang K 2011 Tensor perturbations of f(r)-branes Phys. Lett. B 699 398 (arXiv:1010.3478)

[13] Yang K, Liu Y-X, Zhong Y, Du X-L and Wei S-W 2012 Gravity localization and mass hierarchy in scalar-tensor braneworlds Phys. Rev. D 86 127502 (arXiv:1212.2735)

[14] Rubakov V A and Shaposhnikov M E 1983 Do we live inside a domain wall? Phys. Lett. B 125 136

[15] Randjbar-Daemi S and Shaposhnikov M E 2000 Fermion zero-modes on brane-worlds Phys. Lett. B 492 361 [hep-th/0008079]

[16] Ringeval C, Peter P and Uzan J-P 2002 Localization of massive fermions on the brane Phys. Rev. D 65 044016 [hep-th/0109194]

[17] Koley R and Kar S 2005 Scalar kinks and fermion localization in warped spacetimes Class. Quantum Grav. 22 753 [hep-th/0407158]

[18] Melfo A, Pantoja N and Tempo J D 2006 Fermion localization on thick branes Phys. Rev. D 73 044033 [hep-th/0601161]

[19] Liu Y-X, Zhang L-D, Zhang L-J and Duan Y-S 2008 Fermions on thick branes in background of sine-gordon kinks Phys. Rev. D 78 064025 (arXiv:0804.4553)

[20] Liu Y-X, Xu Z-G, Chen F-W and Wei S-W 2014 New localization mechanism of fermions on braneworlds Phys. Rev. D 89 086001 (arXiv:1312.4145)

[21] Gogberashvili M, Miododashvili P and Miododashvili L 2012 Localization of gauge bosons in the 5d standing wave braneworld Phys. Lett. B 707 169 (arXiv:1105.1866)

[22] Liu Y-X, Zhang L-D, Wei S-W and Duan Y-S 2008 Localization and mass spectrum of matters on weyl thick branes J. High Energy Phys. JHEP08(2008)041 (arXiv:0803.0098)

[23] Liu Y-X, Zhao Z-H, Wei S-W and Duan Y-S 2009 Bulk matters on symmetric and asymmetric de Sitter thick branes J. Cosmol. Astropart. Phys. 0902 003 (arXiv:0901.0782)

[24] Liu Y-X, Fu C-E, Guo H and Li H-T 2012 Deformed brane with finite extra dimension Phys. Rev. D 85 084023 (arXiv:1102.4500)

[25] Guo H, Herrera-Aguilar A, Liu Y-X, Malagon-Morejon D and Mora-Luna R R 2013 Localization of bulk matter fields on a pure de Sitter thick braneworld Phys. Rev. D 87 095011 (arXiv:1103.2430)

[26] Herrera-Aguilar A, Rojas A D and Santos-Rodriguez E 2014 Localization of gauge fields in a tachyonic de Sitter thick braneworld Eur. Phys. J. C 74 2770 (arXiv:1401.0999)

[27] Oda I 2000 Localization of matters on a string—like defect Phys. Lett. B 496 113 [hep-th/0006203]

[28] Pomarol A 2000 Gauge bosons in a five-dimensional theory with localized gravity Phys. Lett. B 486 153 [hep-ph/9911294]

[29] Chumbes A, Hoff da Silva J and Hott M 2012 A model to localize gauge and tensor fields on thick branes Phys. Rev. D 85 085003 (arXiv:1108.3821)

[30] Oda I 2001 A new mechanism for trapping of photon (arXiv:hep-th/0103052)

[31] Ghoroku K and Nakamura A 2002 Massive vector trapping as a gauge boson on a brane Phys. Rev. D 65 084017 [hep-th/0106145]

[32] Giovannini M 2002 Vector field localization and negative tension branes Phys. Rev. D 65 124019 [hep-th/0204235]

[33] Guerrero R, Melfo A, Pantoja N and Rodriguez R O 2010 Gauge field localization on braneworlds Phys. Rev. D 81 086004 (arXiv:0912.0463)
[34] Cruz W, Tahim M and Almeida C 2010 Gauge field localization on a dilatonic deformed brane *Phys. Lett.* B **686** 259

[35] Alencar G, Landim R, Tahim M, Muniz C and Costa Filho R 2010 Antisymmetric tensor fields in Randall Sundrum thick branes *Phys. Lett.* B **693** 503 (arXiv:1008.0678)

[36] Cruz W, Lima A R and Almeida C 2013 Gauge field localization on the bloch brane *Phys. Rev.* D **87** 045018 (arXiv:1211.7355)

[37] Fu C-E, Liu Y-X and Guo H 2011Bulk matter fields on two-field thick branes *Phys. Rev.* D **84** 044036 (arXiv:1101.0336)

[38] Cruz W, Tahim M and Almeida C 2009 Results in Kalb–Ramond field localization and resonances on deformed branes *Euro Phys. Lett.* **88** 41001 (arXiv:0912.1029)

[39] Christiansen H, Cunha M and Tahim M 2010 Exact solutions for a Maxwell–Kalb–Ramond action with dilaton: localization of massless and massive modes in a sine–Gordon brane-world *Phys. Rev.* D **82** 085023 (arXiv:1006.1366)

[40] Cruz W, Maluf R and Almeida C 2013 Kalb–Ramond field localization on the bloch brane *Eur. Phys. J.* C **73** 2523 (arXiv:1303.1096)

[41] Vaquera-Araujo C A and Corradini O Localization of abelian gauge fields on thick branes (arXiv:1406.2892)

[42] Batell B and Gherghetta T 2006 Localized u(1) gauge fields, millicharged particles, and holography *Phys. Rev.* D **73** 045016

[43] Alencar G, Landim R, Tahim M and Filho R N C 2014 Gauge field localization on the brane through geometrical coupling *Phys. Lett.* B **739** 125 (arXiv:1409.4396)

[44] Peeters K 2007 A field-theory motivated approach to symbolic computer algebra *Comput. Phys. Commun.* **176** 550 [cs/0608005]

[45] Peeters K Introducing Cadabra: a symbolic computer algebra system for field theory problems (hep-th/0701238)

[46] Ponton E 2012 Tasi 2011: four lectures on TeV scale extra dimensions (arXiv:1207.3827)

[47] Andrianov A A, Andrianov V A, Giacconi P and Soldati R 2003 Domain wall generation by fermion self-interaction and light particles *J. High Energy Phys.* JHEP07(2003)063 [hep-ph/0305271]