Species of *Dickeya* and *Pectobacterium* Isolated during an Outbreak of Blackleg and Soft Rot of Potato in Northeastern and North Central United States

Rebecca D. Curland 1, Amanda Mainello 2, Keith L. Perry 3, Jianjun Hao 4, Amy O. Charkowski 5, Carolee T. Bull 2, Ryan R. McNally 1, Steven B. Johnson 6, Noah Rosenzweig 7, Gary A. Secor 8, Robert P. Larkin 9, Beth K. Gugino 2 and Carol A. Ishimaru 1,*

1 Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA; curl0013@umn.edu (R.D.C.); rmcnally@western.edu (R.R.M.)
2 Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA; ammainel@ncsu.edu (A.M.); CaroleeBull@psu.edu (C.T.B.);
3 School of Integrative Plant Science Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; KLP3@cornell.edu
4 School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
5 Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA; Amy.Charkowski@colorado.edu
6 Cooperative Extension, University of Maine, Orono, ME 04469, USA; stevenj@maine.edu
7 Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; rosenzw4@msu.edu
8 Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA; Gary.Secor@ndsu.edu
9 USDA ARS, New England Plant, Soil and Water Research Laboratory, University of Maine, Orono, ME 04469, USA; bob.larkin@usda.gov

Correspondence: jianjun.hao1@maine.edu (J.H.); cishimar@umn.edu (C.A.I.)

Abstract: An outbreak of bacterial soft rot and blackleg of potato has occurred since 2014 with the epicenter being in the northeastern region of the United States. Multiple species of *Pectobacterium* and *Dickeya* are causal agents, resulting in losses to commercial and seed potato production over the past decade in the Northeastern and North Central United States. To clarify the pathogen present at the outset of the epidemic in 2015 and 2016, a phylogenetic study was made of 121 pectolytic soft rot bacteria isolated from symptomatic potato; also included were 27 type strains of *Dickeya* and *Pectobacterium* species, and 47 historic reference strains. Phylogenetic trees constructed based on multilocus sequence alignments of concatenated *dnaJ*, *dnaX* and *gyrB* fragments revealed the epidemic isolates to cluster with type strains of *Dickeya* and *Pectobacterium* species, and 47 historic reference strains. Phylogenetic trees constructed based on multilocus sequence alignments of concatenated *dnaJ*, *dnaX* and *gyrB* fragments revealed the epidemic isolates to cluster with type strains of *D. chrysanthemi*, *D. dianthicola*, *D. dadantii*, *P. brasiliense*, *P. carotovorum*, *P. parmentieri*, *P. carotovorum*, *P. punjabense*, and *P. atrosepticum*. Genetic diversity within *D. dianthicola* strains was low, with one sequence type (ST1) identified in 17 of 19 strains. *Pectobacterium parmentieri* was more diverse, with ten sequence types detected among 37 of the 2015–2016 strains. This study can aid in monitoring future shifts in potato soft rot pathogens within the U.S. and inform strategies for disease management.

Keywords: blackleg; plant bacteriology; *Pectobacteriaceae*; phylogeny; *Solanum tuberosum*

1. Introduction

In 2020, potatoes were, by weight, the fifth most produced food crop globally, behind sugar cane, maize, wheat, and rice [1]. The United States was the fifth top country, producing 41.5 billion pounds of potatoes valued at $3.9 billion in 2020 [1,2]. Pectolytic soft rot diseases cause annual field and storage losses in potato production [3–5]. Severe outbreaks of soft rot in 2014 in particular led to yield and crop losses across the Northeastern and North Central U.S. [6].
Pectolytic soft rot bacteria can infect potato at any stage in production, from planting to post-harvest storage. Blackleg disease results from infections in mother tubers that spread through vascular tissue and eventually cause dark greasy lesions in the lower stem. Aerial soft rots can be caused by infections of fleshy above-ground tissues including stems and leaves. In potato production, soft rot usually refers to tuber decay in storage, but is also used in general to describe all forms of disease. Infested potatoes, water supplies, equipment, and storage facilities serve as inoculum sources [7]. Symptom development depends on environmental conditions favorable to host susceptibility and to pathogen growth and virulence [6–9].

Soft rot diseases of potato are caused by several bacterial taxa. Paine described the first known report of the disease in Great Britain [10]. The causal agent was identified as *Bacillus atrosepticus* and the descriptions of morphological characteristics and disease symptoms are almost exactly as described today. Several soft rot bacteria were later classified in the *Enterobacteriaceae* and named as *Erwinia* spp. Currently, most pectolytic soft rot bacteria affecting potato are classified in the genera *Pectobacterium* and *Dickeya* within the family *Pectobacteriaceae* [3,11]. Numerous species of *Pectobacterium* and *Dickeya* are of concern in potato production. The importance of each species varies. Some, like *Dickeya solani* van der Wolf et al. 2014 sp. nov., which emerged in Europe and caused severe losses for several years, have not yet been reported in the U.S. [12]. Zero tolerance laws and international quarantines were established to limit the spread of such highly virulent pathogens.

The severe 2014 outbreak of blackleg in Maine brought attention to the significance of soft rot diseases in the U.S. potato industry [13]. In 2016, increased losses due to blackleg were reported relative to 2015. In Maine, economic losses in the seed industry resulted from reduced seed emergence and seed disqualifications [14]. In New York, blackleg and aerial soft rot were found at multiple locations, with Long Island incurring significant yield losses [15].

To address continued concerns about the impacts of soft rot diseases on potato production and to increase awareness of the soft rot pathogens present in the U.S., a multi-state survey was conducted to identify the taxa of *Pectobacterium* and *Dickeya* present in the Northeastern and North Central U.S. during 2015–2016. *Dickeya solani* was not detected in any samples collected during the survey; however, the survey led to multiple state-level new, first reports of bacterial species in the region. *Dickeya dianthicola* [5] is now attributed to the devastating losses seen in Maine, New Jersey, and New York [5,13,15,16]. It has since been isolated in Texas and Hawaii [17,18]. *Dickeya solani* has not been isolated from any of the samples collected in 2015–2016. *Pectobacterium parmentieri* [19] emerged from the surveys as another pectolytic soft rot pathogen associated with recent aerial soft rot outbreaks in Maine, New York, Minnesota, North Dakota, and Michigan [15,19–22]. Although the species *P. parmentieri* was only recently described, it has been in Wisconsin since at least 2001 and is also present in Hawaii [19,23–25]. Other *Pectobacterium* species identified from the survey included *P. atrosepticum* and *P. carotovorum* in Maine, and *P. brasiliense* in Minnesota [15,26].

Since 2018, several additional valid species and amended names have been validly published or proposed for *Dickeya* and *Pectobacterium* [27–37]. To increase awareness of the currently recognized soft rot species present in the U.S., we conducted phylogenetic analyses of type strains of several newly named species of *Dickeya* and *Pectobacterium* and soft rot strains from the 2015–2016 survey. To gain insights on the possibility that some of the newly named species were present in older collections, strains isolated prior to 2014 were evaluated as references. The relatedness among strains of *Dickeya dianthicola* and of *P. parmentieri* isolated from different states was also assessed. Our findings confirm that soft rot diseases in the U.S potato industry are caused by a wide range of *Dickeya* and *Pectobacterium* species.
2. Materials and Methods

2.1. Bacterial Strains

Soft rot bacteria analyzed in this study included 113 strains isolated in 2015 and 2016 from symptomatic potato tissues collected in production and testing fields in Northeastern and North Central USA. Six of the 113 strains, CIR1009, CIR1011, CIR1058, CIR1182, CIR1183, and CIR1185, were obtained from decaying tubers in Minnesota. Eight strains isolated from pond water were also included, giving a total of 121 strains in the 2015–2016 collection (Table 1). The number of strains varied by state: Florida (1), Hawaii (5), Maine (11), Massachusetts (1), Michigan (2), Minnesota (50), New Jersey (1), New York (20), North Dakota (25), and Pennsylvania (5) (Table 1). Isolation and initial classification and identification of bacteria were conducted as previously described [13,15,22,38]. A total of 26 type strains were included in the study (Table 2). Cultures of type and pathotype strains of nine *Dickeya* spp. and six *Pectobacterium* spp. were obtained from the Belgian Co-Ordinated Collections of Micro-Organisms (BCCM/LMG) (Table 2). DNA sequence data of additional type strains of *Dickeya* spp. and *Pectobacterium* spp. were obtained from GenBank (Table 2). DNA or sequences of an additional 40 reference strains of *Dickeya* spp. and eight strains of *Pectobacterium* spp. were obtained from GenBank and ASAP [39], or provided by A. Charkowski from the A. Kelman collection or R.S. Dickey collection (Table 3).

Table 1. Description and MLSA clade of *Dickeya* and *Pectobacterium* strains collected in 2015 and 2016 from production and testing areas associated with potato production in Northeastern and North Central U.S.

Initial Identification	Strain ID	Year Isolated	Geographic Origin	Source Sample	MLSA Clade Identification	Reference(s)
Dickeya chrysanthemi	CIR1064	2016	Minnesota	*S. tuberosum*	*Dickeya chrysanthemi*	[38]
Dickeya dianthicola	ME23	2015	Maine	*S. tuberosum*	*Dickeya dianthicola*	[15,40]
Dickeya dianthicola	ME30	2015	Maine	*S. tuberosum*	*Dickeya dianthicola*	[13]
Dickeya dianthicola	2820	2015	Michigan	*S. tuberosum*	*Dickeya dianthicola*	[22]
Dickeya dianthicola	PA24	2015	Pennsylvania	water	*Dickeya dianthicola*	[41]
Dickeya dianthicola	16MB-01	2016	Maine	*S. tuberosum*	*Dickeya dianthicola*	[41]
Dickeya dianthicola	NY1547B	2016	New York	*S. tuberosum*	*Dickeya dianthicola*	[15]
Dickeya dianthicola	NY1556C	2016	New York	*S. tuberosum*	*Dickeya dianthicola*	[15]
Dickeya dianthicola	NY1557A	2016	New York	*S. tuberosum*	*Dickeya dianthicola*	[15]
Dickeya dianthicola	NY1558D	2016	New York	*S. tuberosum*	*Dickeya dianthicola*	[15]
Dickeya dianthicola	NY1559C	2016	New York	*S. tuberosum*	*Dickeya dianthicola*	[15]
Dickeya dianthicola	NY1562C	2016	New York	*S. tuberosum*	*Dickeya dianthicola*	[15]
Dickeya dianthicola	NY1578A	2016	New York	*S. tuberosum*	*Dickeya dianthicola*	[15]
Dickeya sp.	FL13	2016	Florida	*S. tuberosum*	*Dickeya dianthicola*	this study
Dickeya sp.	STE4	2016	Maine	water	*Dickeya dianthicola*	this study
Dickeya sp.	16MA-15 T	2016	Massachusetts	*S. tuberosum*	*Dickeya dianthicola*	this study
Dickeya sp.	16NJ-12 1	2016	New Jersey	*S. tuberosum*	*Dickeya dianthicola*	this study
Dickeya sp.	BP7034	2016	Pennsylvania	*S. tuberosum*	*Dickeya dianthicola*	this study
Dickeya sp.	16H2-68-A	2016	Maine	water	*Dickeya zeae adjacent*	this study
Dickeya sp.	CIR1065	2016	Minnesota	*S. tuberosum*	*Dickeya chrysanthemi*	this study
Dickeya sp.	CIR1066	2016	Minnesota	*S. tuberosum*	*Dickeya chrysanthemi*	this study
Dickeya sp.	S20	2015	Hawaii	*S. tuberosum*	*Dickeya dadantii* subsp. dadantii	this study
Dickeya sp.	S21	2015	Hawaii	*S. tuberosum*	*Dickeya dadantii* subsp. dadantii	this study
Dickeya sp.	S23	2015	Hawaii	*S. tuberosum*	*Dickeya dadantii* subsp. dadantii	this study
Dickeya sp.	S25	2015	Hawaii	*S. tuberosum*	*Dickeya dadantii* subsp. dadantii	this study
Dickeya sp.	S26	2015	Hawaii	*S. tuberosum*	*Dickeya dadantii* subsp. dadantii	this study
Pectobacterium atrosepticum	NY1586A	2016	New York	*S. tuberosum*	*Pectobacterium atrosepticum*	[15]
Pectobacterium atrosepticum	NY1589H	2016	New York	*S. tuberosum*	*Pectobacterium atrosepticum*	[15]
Initial Identification a	Strain ID	Year Isolated	Geographic Origin	Source Sample	MLSA Clade Identification b	Reference(s)
------------------------	----------------	---------------	-------------------	---------------	----------------------------	--------------
Pectobacterium brasiliense	CIR1036 (=SR36)	2015	Minnesota	S. tuberosum	Pectobacterium brasiliense	[26]
Pectobacterium brasiliense/Pectobacterium carotovorum	NY1563A	2016	New York	S. tuberosum	Pectobacterium brasiliense	[15]
Pectobacterium brasiliense	CIR1124 (=SR124)	2016	North Dakota	S. tuberosum	Pectobacterium brasiliense	[26]
Pectobacterium brasiliense	CIR1162 (=SR162)	2016	North Dakota	S. tuberosum	Pectobacterium brasiliense	[26]
Pectobacterium brasiliense	16H2-LB	2016	Maine	water	Pectobacterium brasiliense	this study
Pectobacterium parmentieri	3230	2015	Michigan	S. tuberosum	Pectobacterium parmentieri	[22]
Pectobacterium parmentieri	CIR1056 (=SR56)	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	[21]
Pectobacterium parmentieri	NY1532B	2016	New York	S. tuberosum	Pectobacterium parmentieri	[15]
Pectobacterium parmentieri	NY1533B	2016	New York	S. tuberosum	Pectobacterium parmentieri	[15]
Pectobacterium parmentieri	NY1539A	2016	New York	S. tuberosum	Pectobacterium parmentieri	[15]
Pectobacterium parmentieri	NY1548A	2016	New York	S. tuberosum	Pectobacterium parmentieri	[15]
Pectobacterium parmentieri	NY1584A	2016	New York	S. tuberosum	Pectobacterium parmentieri	[15]
Pectobacterium parmentieri	NY1585A	2016	New York	S. tuberosum	Pectobacterium parmentieri	[15]
Pectobacterium parmentieri	NY1587A	2016	New York	S. tuberosum	Pectobacterium parmentieri	[15]
Pectobacterium parmentieri	NY1588A	2016	New York	S. tuberosum	Pectobacterium parmentieri	[15]
Pectobacterium sp.	16ME-31	2016	Maine	S. tuberosum	Pectobacterium versatile	this study
Pectobacterium sp.	CIR1080	2016	Minnesota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1118	2016	North Dakota	S. tuberosum	Pectobacterium atrosepticum	this study
Pectobacterium sp.	CIR1093	2016	North Dakota	S. tuberosum	Pectobacterium atrosepticum	this study
Pectobacterium sp.	CIR1044	2015	Minnesota	S. tuberosum	Pectobacterium brasiliense	this study
Pectobacterium sp.	CIR1052	2015	North Dakota	S. tuberosum	Pectobacterium brasiliense	this study
Pectobacterium sp.	CIR1053	2015	North Dakota	S. tuberosum	Pectobacterium brasiliense	this study
Pectobacterium sp.	CIR1143	2016	Minnesota	S. tuberosum	Pectobacterium brasiliense	this study
Pectobacterium sp.	CIR1144	2016	Minnesota	S. tuberosum	Pectobacterium brasiliense	this study
Pectobacterium sp.	CIR1188	2016	Minnesota	S. tuberosum	Pectobacterium brasiliense	this study
Pectobacterium sp.	CIR1070	2016	Minnesota	S. tuberosum	Pectobacterium brasiliense	this study
Pectobacterium sp.	CIR1071	2016	Minnesota	S. tuberosum	Pectobacterium brasiliense	this study
Pectobacterium sp.	CIR1078	2016	Minnesota	S. tuberosum	Pectobacterium brasiliense	this study
Pectobacterium sp.	BP7026	2016	Pennsylvania	S. tuberosum	Pectobacterium brasiliense	this study
Pectobacterium sp.	BP7029	2016	Pennsylvania	S. tuberosum	Pectobacterium brasiliense	this study
Pectobacterium sp.	CIR1011	2015	Minnesota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1030	2015	Minnesota	S. tuberosum	Pectobacterium carotovorum	this study
Initial Identification	Strain ID	Year Isolated	Geographic Origin	Source Sample	MLSA Clade Identification	Reference(s)
------------------------	-----------	---------------	-------------------	---------------	----------------------------	---------------
Pectobacterium sp.	CIR1145	2016	Minnesota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1165	2016	Minnesota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1169	2016	Minnesota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1174	2016	Minnesota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1182	2016	Minnesota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1068	2016	Minnesota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1074	2016	Minnesota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1084	2016	Minnesota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1100	2016	North Dakota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1101	2016	North Dakota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1104	2016	North Dakota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1111	2016	North Dakota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1133	2016	North Dakota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1087	2016	North Dakota	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	BP7050	2016	Pennsylvania	S. tuberosum	Pectobacterium carotovorum	this study
Pectobacterium sp.	CIR1018	2015	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1019	2015	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1002	2015	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1021	2015	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1009	2015	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1051	2015	North Dakota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1054	2015	North Dakota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1055	2015	North Dakota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1146	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1153	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1154	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1175	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1176	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1177	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1178	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1179	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1180	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1181	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Table 1. Cont.

Initial Identification a	Strain ID	Year Isolated	Geographic Origin	Source Sample	MLSA Clade Identification b	Reference(s)
Pectobacterium sp.	CIR1058	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1059	2016	Minnesota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1102	2016	North Dakota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1108	2016	North Dakota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1114	2016	North Dakota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1127	2016	North Dakota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1137	2016	North Dakota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1160	2016	North Dakota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1109	2016	North Dakota	S. tuberosum	Pectobacterium parmentieri	this study
Pectobacterium sp.	CIR1047	2015	Minnesota	S. tuberosum	Pectobacterium polaris	this study
Pectobacterium sp.	CIR1140	2016	Minnesota	S. tuberosum	Pectobacterium polaris	this study
Pectobacterium sp.	CIR1152	2016	Minnesota	S. tuberosum	Pectobacterium punjabense	this study
Pectobacterium sp.	CIR1015	2015	Minnesota	S. tuberosum	Pectobacterium punjabense	this study
Pectobacterium sp.	CIR1026	2015	Minnesota	S. tuberosum	Pectobacterium punjabense	this study
Pectobacterium sp.	CIR1028	2015	Minnesota	S. tuberosum	Pectobacterium punjabense	this study
Pectobacterium sp.	CIR1163	2016	North Dakota	S. tuberosum	Pectobacterium punjabense	this study
Pectobacterium sp.	CIR1164	2016	North Dakota	S. tuberosum	Pectobacterium punjabense	this study
Pectobacterium sp.	CIR1016	2015	Minnesota	S. tuberosum	Pectobacterium versatile	this study
Pectobacterium sp.	CIR1032	2015	Minnesota	S. tuberosum	Pectobacterium versatile	this study
Pectobacterium sp.	16H2-64-A	2016	Maine	water	Pectobacterium versatile	this study
Pectobacterium sp.	16H2-64-B	2016	Maine	water	Pectobacterium versatile	this study
Pectobacterium sp.	16H2-67	2016	Maine	water	Pectobacterium versatile	this study
Pectobacterium sp.	CIR1185	2016	Minnesota	S. tuberosum	Pectobacterium versatile	this study
Pectobacterium sp.	CIR1131	2016	North Dakota	S. tuberosum	Pectobacterium versatile	this study
Pectobacterium sp.	CIR1183	2016	Minnesota	S. tuberosum	Pectobacterium sp.	this study

a Initial classification of strains from Maine, New York, and Michigan was based on information in cited references. Initial genus classification of strains from Florida, Hawaii, Massachusetts, Minnesota, New Jersey, North Dakota, and Pennsylvania was based minimally on 16S DNA sequence similarities in BLASTN. b MLSA clades were predicted by Bayesian phylogeny of concatenated alignments of dnd, dnx, and gyrB. Genus and species names correspond to the type strain of the nearest related clade. This study was the source of all amplified and aligned DNA sequences of the 2015–2016 strains. All DNA amplification, sequencing, and sequence editing was performed by the author(s), with the resulting sequences submitted to GenBank (Accession MW978791 to MW979234).
Table 2. Description of type and pathotype strains used in this study.

Classification a	Type Strain Identifiers b	Year of Isolation	Geographic Origin	Source	Genome Assembly Accession	Source of dnaJ, dnaX, and gyrB c	Reference(s)
Dickeya aquatica sp. nov. Parkinson et al., 2014	LMG27354T (=174/2; NCPPB 4580; LMG 27354)	2014	England	river water	GCA_90095085.1	GenBank	[28,42]
Dickeya chrysanthemi (Burkholder et al., 1953) Samson et al., 2005, comb. nov.	LMG 2004T (=ATCC 11663; CCUG 3876; CFBP 2048; CIP 82.99; DSM 4610; ICMP 5703; NCAIM B.01392; NCPPB 402; IPO 2118; T)	1956	USA	Chrysanthemum morifolium	GCA_000406105.1	this study	[5,43,44]
Dickeya chrysanthemi pv. parthenii (Starr 1947) comb. nov.	LMG 2486T (=CFBP 1270; ICMP 1547; NCPPB 4580; LMG 2486)	1957	Denmark	Parthenium argentatum	GCA_000406145.1	this study	[5,44–46]
Dickeya chrysanthemi pv. parthenii (Starr 1947) comb. nov.	LMG 27992T (=CFBP 2051; ICMP 1568; NCPPB 2976)	1957	USA	Dieffenbachia sp.	GCA_000406185.1	this study	[5,44–46]
Dickeya dianthicola Samson et al., 2005, sp. nov.	LMG 2485T (=CFBP 1200; ICMP 6427; DSM 18054; NCPPB 453)	1956	United Kingdom	Dianthus caryophyllus	GCA_000365305.1	this study	[5,45]
Dickeya fangzhongdai Tian et al., 2016, sp. nov.	DSM 101947T (=JS5; CGMCC 1.15464)	2009	China	Pyrus pyrifolia	GCA_002812485.1	GenBank	[47]
Dickeya paradisiaca (Fernandez-Borrero and Lopez-Duque 1970) Samson et al., 2005, comb. nov.	LMG 2542T (=ATCC 33242; CFBP 4176; NCPPB 2511)	1970	Columbia	Musa paradisiaca	GCA_900403505.1	this study	[5,44,45]
Dickeya solani van der Wolf et al., 2014, sp. nov.	LMG 25993T (=CFBP 2052; ICMP 1554; NCPPB 998)	2007	Netherlands	Solanum tuberosum	GCA_001644705.1	this study	[4,30]
Dickeya zeae Samson et al., 2005, sp. nov.	LMG 2505T (=CFBP 2052; ICMP 1568; NCPPB 2976)	1970	USA	Zea mays	GCA_000406165.1	this study	[5,45]
Pectobacterium atrosepticum (van Hall 1902) Gardan et al., 2003, comb. nov.	LMG 2665T (=ATCC 23131; LMG 266303; A212-S19-A16T)	2012?	Korea	Actinidia chinensis	GCA_90083315.1	GenBank	[30,49]
Pectobacterium brasiliense Portier et al., 2019, sp. nov.	LMG 21371T (=CFBP 6617; NCPPB 4609)	1999	Brazil	Solanum tuberosum	GCA_900754695.1	this study	[30,50,51]
Pectobacterium carotovorum (Alcorn et al., 1991) Hauben et al., 1999, comb. nov.	LMG 178681 (=1-12; Dye EH-3; ATCC 48481; CFBP 3628; CIP 105191; ICMP 1551-66; ICMP 11136; ICMP EC186; NCPPB 3849)	1958	Arizona	Carnegeia gigantea	none available	this study	[30,51]
Pectobacterium carotovorum (James 1901) Walden 1945 (Approved List 1980)	LMG 2404T (=ATCC 15713; CFBP 2046; CIP 82.83; DSM 30168; IAM 1429; ICMP 5702; NCPPB 51109; NCPPB 312; VKM B-2427)	1952	Denmark	Solanum tuberosum	GCA_900129615.1	this study	[30,51]
Pectobacterium fontis sp. nov. Oulghazi et al., 2019	LMG 2485T (=CFBP 8629; LMG 30744)	2013	Malaysia	waterfall	GCA_000803215.1	GenBank	[27]
Table 2. Cont.

Classification a	Type Strain Identifiers b	Year of Isolation	Geographic Origin	Source	Genome Assembly Accession	Source of dnaJ, dnaX, and gyrB c	Reference(s)
Pectobacterium odoriferum (Galloiset al., 1992) Portier et al., 2019 sp. nov.	NCPPB 3830³ (=LMG 17566; CFBP 13876; CIP 103762; ICMP 11533)	1978	France	Cichorium intybus	GCA_000754765.1	GenBank	[30]
Pectobacterium parmentieri Khayi et al., 2016, sp. nov.	RNS 08-42-1A² (=CFBP 8475; LMG 29774)	2008	France	Solanum tuberosum	GCA_001742145.1	GenBank	[19,30]
“Pectobacterium persicivorum” Waleron et al., 2018	IFB 52322 (=PCM 2893; LMG 30269; SCRI 179)	1979	Peru	Solanum tuberosum	GCA_002847345.1	GenBank	[33]
Pectobacterium polare Dees et al., 2017, sp. nov.	NIBIO 1006¹ (=DSM 105255; NCPPB 4611)	2012?	Korea	Actinidia chinensis	GCA_002307355.1	GenBank	[52]
Pectobacterium polonicum sp. nov. Waleron et al., 2019	DPF M 3157 (=PCM 3006; LMG 31077)	2016	Poland	ground water	GCA_005497185.1	GenBank	[35]
Pectobacterium punjibense Sarfraz et al., 2018, sp. nov.	5895² (=CFBP 8604; LMG 30022)	2017	Pakistan	Solanum tuberosum	GCA_003028395.1	GenBank	[36]
Pectobacterium versatilis Portier et al., 2019, sp. nov. Syn. = Candidatus Pectobacterium macracanthum (Shirshikov et al., 2018)	CFPB 6051³ (=NCCP 3387; ICMP 9168)	pre- 1978	Netherlands	Solanum tuberosum	GCA_004296685.1	GenBank	[30,53]
Pectobacterium vasinfectum (Goto and Matsumoto 1987) Gardan et al., 2003, comb. nov.	LMG 8401³ (=SR91; ATCC 43316; CFBP 3306; CIP 10194; ICMP 9121; NCPPB 3701; PDDCC 9212)	1985	Japan	Extrema wasabi	GCA_001742185.1	this study	[4,30]
“Pectobacterium zantocole” sp. nov. Waleron et al., 2019	GCA_004137795.1	2005	Poland	Zantedeschia aethiopica	GCA_004137795.1	GenBank	[34]

* All names of type strains have been validly published, except for those placed within quotations marks. b Strains in bold type were obtained from Belgian Co-Ordinated Collections of Micro-Organisms (BCCM/LMG) and used to obtain DNA for amplification of dnaJ, dnaX, and gyrB sequences. c Designates the origin of the data for the sequence fragments of the three loci used in the MLSA phylogenies. d “This study” indicates that all DNA amplification, sequencing, and sequence editing was performed by the author(s), with the resulting sequences submitted to GenBank (Accession MW978791 to MW992954). Sequences that were downloaded from genome repositories are indicated as such.

Table 3. Description of reference strains of Dickeya and Pectobacterium and MLSA clades predicted by dnaJ, dnaX, and gyrB multilocus sequence alignments.

Initial Identification a	Strain Identifier(s)	Year of Isolation	Geographic Origin	Sample Origin	MLSA Clade Identification b	GenBank Assembly Accession c	Source of dnaJ, dnaX, and gyrB c	Reference(s)
Dickeya australis	DW 0440 NCPPB 3533 (=IPO 655)	2005	Finland	river water	Dickeya australis	GCA_004144665.1	GenBank/ASAP	[28,44,45,54]
Dickeya chrysanthemi	L11	1994	Malaysia	lake water	Dickeya chrysanthemi	GCA_004006245.1	GenBank/ASAP	[43,44]
Dickeya chrysanthemi	1591	?	USA (A. Kellman collection)	Zea mays	Dickeya chrysanthemi	GCA_006784225.1	GenBank/ASAP	[55]
Dickeya dadantii	NCPPB 3537 3937 (=CFBP 3855; Lematre 3937)	1991	Peru	Solanum tuberosum	Dickeya dadantii	GCA_00147055.1	GenBank/ASAP	[24,51,56]
Dickeya dadantii	NCPPB 3334 3937 (=CFBP 3855; Lematre 3937)	1986	Finland	river water	Dickeya dadantii	GCA_004016265.1	GenBank/ASAP	[43,44]
Dickeya dianthicola	GBCR 2039 (=LMG 25864)	2004	Belgium	Solanum tuberosum	Dickeya dianthicola	GCA_000365365.1	GenBank/ASAP	[59]
Dickeya dianthicola	NCPPB 3534 (=IPO 713)	1987	Netherlands	Solanum tuberosum	Dickeya dianthicola	GCA_000365405.2	GenBank/ASAP	[59,60]
Dickeya dianthicola	IPO 980	?	Netherlands	Solanum tuberosum	Dickeya dianthicola	GCA_00430955.1	GenBank/ASAP	[58,59]
Dickeya dianthicola	RNS 04.9	2004	France	Solanum tuberosum	Dickeya dianthicola	GCA_000975305.1	GenBank/ASAP	[61]
Dickeya fangzhongdai	M074	2013	Malaysia	water fall	Dickeya fangzhongdai	GCA_000774065.1	GenBank/ASAP	[62,63]
Dickeya fangzhongdai	B16 (=NIB Z 2098)	2010	Slovenia	Phalaenopsis sp. (orchid)	Dickeya fangzhongdai	GCA_001187965.2	GenBank/ASAP	[62,64]

* Designates the origin of the data for the sequence fragments of the three loci used in the MLSA phylogenies. **This study** indicates that all DNA amplification, sequencing, and sequence editing was performed by the author(s), with the resulting sequences submitted to GenBank (Accession MW978791 to MW992954). Sequences that were downloaded from genome repositories are indicated as such.
| Strain Identifier(s) | Year of Isolation | Geographic Origin | Sample Origin | MLSA Clade | GenBank Assembly Accession | Source of dnaJ, dnaX, and gyrB | Reference(s) |
|----------------------|-------------------|------------------|---------------|------------|---------------------------|-------------------------------|-------------|
| Dickeya fangzhongdai MK7 | ? | Scotland river water | Dickeya fangzhongdai | GCA_00406305.1 | GenBank/ASAP | [44,62] |
| Dickeya fangzhongdai S1 | 2012 | Slovenia | Phalaenopsis sp. | Dickeya fangzhongdai | GCA_001187965.2 | GenBank/ASAP | [62,64] |
| Dickeya paradisiaca Ech703 | ? | Australia (R. S. Dickey collection) | Solarum tuberosum | Dickeya paradisiaca | GCA_00023545.1 | this study | [24,28,56] |
| Dickeya solani IFB0099 (=IFO2276) | 2005 | Poland | Solarum tuberosum | Dickeya solani | GCA_000831935.2 | GenBank/ASAP | [65] |
| Dickeya solani GBBC 2040 | ? | Belgium | Solarum tuberosum | Dickeya solani | GCA_000400565.1 | GenBank/ASAP | [59] |
| Dickeya solani D s0432-1 | 2004 | Finland | Solarum tuberosum | Dickeya solani | GCA_000474655.1 | GenBank/ASAP | [66] |
| Dickeya solani MK10 | ? | Israel | Solarum tuberosum | Dickeya solani | GCA_000365285.1 | GenBank/ASAP | [9,59] |
| Dickeya solani MK16 (=IFB0272; DUC-1) | ? | Scotland river water | Dickeya solani | GCA_000365345.1 | GenBank/ASAP | [9,45,59] |
| Dickeya solani RNS08.23.1.A | 2008 | France | Solarum tuberosum | Dickeya solani | GCA_000511285.2 | GenBank/ASAP | [67] |
| Dickeya zeae NCPPB 3531 (=JPO 645; SCR 4000) | ? | Australia | Solarum tuberosum | Dickeya zeae | GCA_000406225.1 | GenBank/ASAP | [44] |
| Dickeya zeae NCPPB 3532 (=JPO 644) | ? | Australia | Solarum tuberosum | Dickeya zeae | GCA_000409525.1 | GenBank/ASAP | [44] |
| Dickeya zeae CSL RW192 | ? England | Italy | Oryza sativa | Dickeya zeae | GCA_000404055.1 | GenBank/ASAP | [68] |
| Dickeya zeae EC1 | ? | China | Oryza sativa | Dickeya zeae | GCA_00081405.1 | GenBank/ASAP | [69,70] |
| Dickeya zeae MK19 | ? | Scotland | river water | Dickeya zeae | GCA_000406325.1 | GenBank/ASAP | [44] |
| Dickeya zeae MS1 | ? | China | Musa sapientum | Dickeya zeae | GCA_000382585.1 | GenBank/ASAP | [71,72] |
| Dickeya zeae ZJU1202 | 2012 | China Florida, USA (R. S. Dickey collection) | Dickeya zeae | GCA_000264075.1 | GenBank/ASAP | [73] |
| Dickeya zeae Ech586 | ? | Philodendron sp. | Dickeya zeae | GCA_000025065.1 | GenBank/ASAP | [24,56] |
| Dickeya sp. K1015 | ? | USA (A. Kelman collection) Zea mays cv. cornvar. Saccharata (sweet corn) | Dickeya chrysanthemi | n.a. | this study | this study |
| Dickeya sp. 678 | ? | USA (R. S. Dickey collection) USA (A. Kelman collection) Usa (A. Kelman collection) | Dickeya chrysanthemi | n.a. | this study | [24] |
| Dickeya sp. K1088 | ? | USA (A. Kelman collection) USA (A. Kelman collection) USA (A. Kelman collection) | Dickeya dadantii subsp. dadantii | n.a. | this study | [24] |
| Dickeya sp. K1673 | ? | USA (A. Kelman collection) USA (A. Kelman collection) USA (A. Kelman collection) | Dickeya dadantii subsp. dadantii | n.a. | this study | [24] |
| Dickeya sp. K1686 | ? | USA (A. Kelman collection) Peru (R. S. Dickey collection) Florida, USA (R. S. Dickey collection) Georgia, USA (R. S. Dickey collection) | Dickeya dadantii subsp. dadantii | n.a. | this study | [24] |
| Dickeya sp. K1687 | ? | Ipomea batatas | Dickeya dadantii | n.a. | this study | this study |
| Dickeya sp. 655 | ? | Florida, USA (R. S. Dickey collection) Alocasia sp | Dickeya dadantii subsp. dianthicola | n.a. | this study | this study |
| Dickeya sp. 699 | ? | Ipomea batatas | Dickeya dianthicola | n.a. | this study | this study |
| Dickeya sp. 600 | ? | Ipomea batatas | Dickeya dianthicola | n.a. | this study | this study |
| Dickeya sp. K1030 | ? | Zea mays | Dickeya zeae | n.a. | this study | this study |
| Pectobacterium atrosepticum Pc1 | 2004 | Israel | Ornithogalum dubium Solarum tuberosum | Pectobacterium atrosepticum | GCA_00002605.1 | GenBank | [74] |
| Pectobacterium atrosepticum SCR1043 | 1985 | Scotland | Pectobacterium atrosepticum | Pectobacterium atrosepticum | GCA_000011605.1 | GenBank | [75] |
Table 3. Cont.

Strain Identifier(s)	Year of Isolation	Geographic Origin	MLSA Clade Identification	GenBank Assembly Accession	Source of dnaJ, dnaX, and gyrB	Reference(s)	
Pectobacterium brasiliense LMG 21370 (=CFBP 5507; ATCC BAA-416; Duarte Ecbr 8)	1999	Brazil	Pectobacterium brasiliense	n.a.	this study	[30,76]	
Pectobacterium brasiliense LMG 21372 (=CFBP 6618; ATCC BAA-418; Duarte Ecbr 213)	1999	Brazil	Solarum tuberosum	Pectobacterium brasiliense	GCA_000754705.1	this study	[30,65,76]
Pectobacterium carotovorum WPP14	2001	USA	Solarum tuberosum	Pectobacterium carotovorum	GCA_000173155.1	GenBank	[8,24,77]
Pectobacterium parmentieri Sec3193	1980's	Finland	Solarum tuberosum	Pectobacterium parmentieri	GCA_000266925.1	GenBank	[33,78,79]
Pectobacterium versatile Ecc71 (=H.P. Maas Geesteranus/226)	?	Netherlands	Solarum tuberosum	Pectobacterium versatile	GCA_002983505.1	GenBank	[30,76]

a Identification as given within cited reference or strain collection. b MLSA clade assignments based on Bayesian analysis of concatenated partial sequences of dnaJ, dnaX, and gyrB. Genus and species names correspond to the type strain of the nearest related clade. c Designates the origin of the data for the sequence fragments of the three loci used in the MLSA phylogenies. d "This study" indicates that all DNA amplification, sequencing, and sequence editing was performed by the author(s), with the resulting sequences submitted to GenBank (Accession MW978791 to MW979234). Sequences that were downloaded from genome repositories are indicated as such.

2.2. DNA Extraction and Amplification

DNA extractions were performed using DNeasy Blood and Tissue kit (Qiagen). Three loci were targeted for analysis: dnaJ, dnaX, and gyrB [56]. PCR mixtures contained 5 µL GoTaq master mix (Promega, Madison, WI, USA), 0.5 µL dNTPs, 0.125 µL GoTaq polymerase (Promega), 1 µL each forward and reverse primer (10 µM), 16.875 µL sterile H2O, and 0.5 µL template DNA. Thermal cycler programs varied for each locus. For dnaX, amplification cycles included an initial denaturation for 3 min at 94 °C, 35 cycles consisting of 1 min at 94 °C, 1 min of annealing at 59 °C, a 2 min extension at 72 °C, and a final extension of 5 min at 72 °C. For dnaJ, cycle settings consisted of an initial denaturation of 3 min at 94 °C, 35 cycles of 30 s at 94 °C, 30 s annealing at 55 °C, 1 min extension at 72 °C, and a final extension of 10 min at 72 °C. For gyrB, the thermal cycler program included a 4 min initial denaturation at 94 °C, 35 cycles of 1 min at 94 °C, 1 min of annealing at 56 °C, 2 min extension at 72 °C, and a final extension of 10 min at 72 °C. PCR products were visualized on 1.0% TBE agarose gel stained with ethidium bromide and shipped to McLabs (San Francisco, CA, USA) for PCR purification and Sanger sequencing.

2.3. Multilocus Sequence Analysis (MLSA)

Nucleotide sequences obtained by direct amplification as described above and from GenBank, ASAP, and collaborators, were aligned, trimmed to a consistent length, and concatenated using CLC Main Workbench (Qiagen, Germantown, MD, USA). Fragment lengths for each gene locus were selected as previously described [56]. Sequence fragments and sequences were concatenated in the following order: dnaJ (672 bp), dnaX (450 bp), gyrB (822 bp for Dickeya spp., 711 bp for Pectobacterium spp.), with a total concatenated length of 1944 bp for Dickeya spp. and 1833 bp for Pectobacterium spp. Evolutionary model testing was run in CLC Main Workbench which determined the general time reversible model (GTR+G+T) to be the best fit model for this data set. Phylogenies were inferred via Bayesian analysis using Bayesian Evolutionary Analysis Sampling Trees (BEAST 1.8.2) assuming a strict molecular clock and 10 million generations [80]. Output from BEAST was analyzed in Tracer v1.6.0 [81] and phylogenetic trees were constructed in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree, accessed on 11 August 2021).
2.4. Multilocus Sequence Typing (MLST)

Sequence types were assigned for 25 strains of *D. dianthicola* and 39 strains of *P. parmentieri* to further characterize diversity within these groups. Unique haplotypes for each locus and for concatenated sequences were identified using DnaSP v5 [82]. Minimum spanning trees were constructed in PHYLOViZ 2.0 to infer distance-based relativity of STs and predict founder STs within clonal complexes [83].

2.5. Nucleotide Accession Numbers

Sequences were deposited in GenBank and assigned to following accession numbers: MW978791 to MW979234.

3. Results

3.1. Phylogeny of 2015–2016 and Reference Strains of Dickeya spp.

The phylogeny predicted by concatenated *dnaJ*, *dnaX*, and *gyrB* sequences placed several reference and 2015–2016 strains, some previously identified only to genus, within clades containing type strains of *D. chrysanthemi*, *D. dianthicola*, *D. dadantii*, and *D. zeae* (Figure 1; Tables 1–3). All strains identified previously as *D. dianthicola* were grouped in the same MLSA clade as the *D. dianthicola* type strain, LMG 2485^T^ [13,15,22]. Seven strains in the 2015–2016 collection identified by their providers as *Dickeya* sp. were also grouped with LMG 2485^T^, as was reference strain *Dickeya* sp. 600, which was isolated from a sweet potato in Georgia. Five potato strains from Hawaii were most closely related to the type strain of *D. dadantii* subsp. *dadantii*, as were four strains from maize. Two strains isolated from pond water adjacent to potato fields, PA24 and ST64, in the 2015–2016 collection were related to *D. dianthicola*, while two others, 16H2-68-A and 16H2-68-B were most closely related to *D. zeae*.

Some reference strains, but none of the 2015–2016 strains, were grouped with type strains of *D. aquatica*, *D. chrysanthemi* pv. *parthenii*, *D. solani*, *D. dadantii* subsp. *dieffenbachiae*, *D. fangzhongdai*, or *D. paradisiaca* (Figure 1 and Tables 1 and 3). Only *D. aquatica* DW 0440, a reference strain isolated from river water in Finland, was identified as *D. aquatica* [54]. In our analyses, one reference strain, *Dickeya* sp. 699, was identified as *D. dadantii* subsp. *dieffenbachiae*, while the subspecies status of *D. dadantii* strain 655 was ambiguous. Reference strain *Dickeya* sp. K1015 was most closely related to *D. chrysanthemi* pv. *parthenii*. The *D. solani* clade contained all six reference strains initially identified as *D. solani*: MK10, MK16, IFB 0099, GBBC 2040, D s0432-1, and RNS0823.3.1.A. The MLSA phylogeny placed four reference strains recently classified as *D. fangzhongdai* within the same clade as the type strain of this species DSM 101947^T^ (Figure 1, Table 3).
Figure 1. Bayesian tree of Dickeya spp. constructed from concatenated sequences of fragments of the genes dnaJ, dnaX, and gyrB of 29 strains collected in 2015–2016, 10 type strains, and 40 historic reference strains. The superscript letter T indicates the species type strain. Posterior probabilities > 0.6 are shown at the corresponding node. Branch lengths are drawn to scale and represent sequence changes since the common ancestor.

3.2. Phylogeny of 2015–2016 and Reference Strains of Pectobacterium spp.

The phylogenetic tree of Pectobacterium placed several strains from the 2015–2016 and reference collections into well-supported clades containing the type strains of P. atrosepticum, P. brasiliense, P. carotovorum, and P. parmentieri (Figure 2). In addition, strains of the 2015–2016 collection were most closely related to type strains of P. polaris, P. punjabense, and P. versatile. Minnesota strains CIR1140, CIR1152 and CIR1152 from potato were grouped with P. polaris NIBIO 1006T. Five strains (CIR1015, CIR1026, CIR1028, CIR1163, CIR1164), all from potato originating in Minnesota or North Dakota, were most closely related to type strain P. punjabense SS95T. P. versatile was the closest relative of three water strains from Maine (16H2-64-A, 16H2-64-B, 16ME-31) and four potato strains isolated in Maine, Minnesota, and North Dakota. Five strains isolated from potato tubers in Minnesota clustered with type strains of either P. versatile, P. parmentieri, or P. carotovorum. The other tuber isolate, CIR1183 was most closely related to P. versatile but was on a separate branch nearly
as divergent from *P. versatile* as that of *P. polaris* and *P. versatile*. None of the 2015–2016 strains were found in MLSA clades corresponding to *P. actinidae*, *P. aquatica*, *P. aroidearum*, *P. betavasculorum*, *P. cacticida*, *P. fontis*, *P. odoriferum*, *P. peruviense*, *P. polonicum*, *P. wasabiae*, or *P. zantedeschiae*.

Figure 2. Bayesian tree of *Pectobacterium* spp. constructed from concatenated sequences of fragments of the genes *dnaJ*, *dnaX*, and *gyrB* of 92 strains collected in 2015–2016, 17 type strains, and seven historic reference strains. The superscript letter T indicates the species type strain. Posterior probabilities > 0.6 are shown at the corresponding node. Branch lengths are drawn to scale and represent sequence changes since the common ancestor.
Some of the major phylogenetic clades predicted by concatenated \textit{dnaJ}, \textit{dnaX}, and \textit{gyrB} sequence alignments were further subdivided into well-supported sub-lineages. This was especially evident in \textit{P. brasiliense} and \textit{P. carotovorum}, which contained sub-branching of greater divergence than detected within other \textit{Pectobacterium} species. Two major branches of \textit{P. brasiliense} were evident. One, which was further subdivided into four lineages, contained the type strain, eight strains from the 2015–2016 collection, and reference strains LMG 21370 and LMG 21372. The other was comprised of seven strains collected in 2015 and 2016 from Minnesota or North Dakota. Three groups of \textit{P. carotovorum} were detected. Two strains, 16H2-LB and CIR 1080 were located on a branch that was distinct from the major clade containing \textit{P. carotovorum} LMG 2402T (Figure 2, Table 1).

3.3. Diversity within \textit{Dickeya dianthicola}

Twenty-five \textit{Dickeya dianthicola} isolates were included in this study, with six STs identified (Table S1). Most (17/19) \textit{D. dianthicola} strains from the 2015–2016 collection were assigned sequence type 1 (ST1). ST1 strains came from Maine, New York, Pennsylvania, Massachusetts, and Florida. None of the strains from Netherlands, France, Belgium, or the United Kingdom were ST1. ST2 was found in only one strain isolated in 2016 from New York. The sweet potato strain, 600, from R. S. Dickey’s collection, previously identified as \textit{Dickeya} sp. and identified here as \textit{D. dianthicola}, shared the same sequence type (ST5) as New Jersey strain 16NJ-12 1, and strains RNS0.4.9 and LMG 2485T from France and from the United Kingdom, respectively (Figure 3 and Table S1).

![Minimal spanning tree showing relatedness of 25 strains of \textit{D. dianthicola} including 19 strains obtained in 2015–2016. Each circle represents a unique sequence type (ST) derived from the concatenated sequences of three housekeeping genes (\textit{dnaJ}, \textit{dnaX}, and \textit{gyrB}). Sequence type numbers are given in black in each circle. Sizes of circles are relative to the number of individuals sharing the same ST. The relatedness between strains is indicated by relative distance as indicated by branch lengths. Geographic origins of strains are depicted by color: New York (blue); Maine (light blue); Pennsylvania (orange); Netherlands (light orange); Georgia (green); Michigan (light green); Massachusetts (red); New Jersey (pink); United Kingdom (purple); Belgium (light purple); France (brown); Florida (light brown).](image)

Figure 3. Minimal spanning tree showing relatedness of 25 strains of \textit{D. dianthicola} including 19 strains obtained in 2015–2016. Each circle represents a unique sequence type (ST) derived from the concatenated sequences of three housekeeping genes (\textit{dnaJ}, \textit{dnaX}, and \textit{gyrB}). Sequence type numbers are given in black in each circle. Sizes of circles are relative to the number of individuals sharing the same ST. The relatedness between strains is indicated by relative distance as indicated by branch lengths. Geographic origins of strains are depicted by color: New York (blue); Maine (light blue); Pennsylvania (orange); Netherlands (light orange); Georgia (green); Michigan (light green); Massachusetts (red); New Jersey (pink); United Kingdom (purple); Belgium (light purple); France (brown); Florida (light brown).

3.4. Diversity within \textit{Pectobacterium parmentieri}

Several (37) strains in the 2015–2016 collection clustered with type strain, RNS08.42.1A, of \textit{P. parmentieri}, including strains from Michigan, Minnesota, New York, and North Dakota. Ten sequence types were identified within \textit{P. parmentieri} (Figure 4 and Table S2). \textit{P. parmentieri} RNS08.42.1AT from France was assigned ST2. ST2 was also detected in Minnesota, New York, and North Dakota. Strains with ST5 originated in Finland, Minnesota, New York, and North Dakota. Multiple sequence types were found in some states. For example, strains from Minnesota and New York separated into five and six sequence types, respec-

Note: The text above is a natural representation of the document, formatted for clarity and readability. Please refer to the PDF for the full context and details.
tively. While some STs, such as ST2 and ST5, were found in multiple states, ST8 and ST10 appeared only in Minnesota and North Dakota, and ST1, ST3, ST4, ST6, ST7, and ST9 were unique to particular states.

![Minimal spanning tree showing relatedness of 39 strains of P. parmentieri including 37 strains obtained in 2015–2016. Each circle represents a sequence type based on concatenated STs from three housekeeping genes (dnaJ, dnaX, and gyrB). Sequence type numbers are given in black in each circle. Sizes of circles are relative to the number of individuals sharing the same ST. The relatedness between strains is indicated by relative distance as indicated by branch lengths. Geographic origins of strains are depicted by color: Minnesota (lime green); North Dakota (yellow); New York (blue); Michigan (green); France (brown); Finland (pink).](image)

Figure 4. Minimal spanning tree showing relatedness of 39 strains of *P. parmentieri* including 37 strains obtained in 2015–2016. Each circle represents a sequence type based on concatenated STs from three housekeeping genes (*dnaJ*, *dnaX*, and *gyrB*). Sequence type numbers are given in black in each circle. Sizes of circles are relative to the number of individuals sharing the same ST. The relatedness between strains is indicated by relative distance as indicated by branch lengths. Geographic origins of strains are depicted by color: Minnesota (lime green); North Dakota (yellow); New York (blue); Michigan (green); France (brown); Finland (pink).

4. Discussion

The taxonomy of *Pectobacterium* and *Dickeya* has been refined substantially in the past ten years by the widespread adaption of DNA sequencing strategies in soft rot research. Classification and identification of soft rot bacteria by multilocus sequence alignments of concatenated sequences and by whole genome sequence comparisons has added clarification to the complex polyphyletic nature of some earlier-described species of *Pectobacterium* and *Dickeya*. In this study, all strains of *Pectobacterium* and *Dickeya* previously identified to species level by whole genome sequencing grouped with the corresponding type strains in phylogeny predicted by MLSA of *dnaJ*, *dnaX*, and *gyrB*. The clades and phylogenies predicted in this study using concatenated sequences of *dnaJ*, *dnaX*, and *gyrB* are also similar to those generated by single and multiple sequence alignments [15,35,37,51,56,58,63,84–86]. The consistency among tree topologies generated by single, multiple, or entire genome sequences enables presumptive identification of unknown soft rot bacteria to species and provides insights on the diversity, ecology, and epidemiology of specific taxa [6,54,85,87,88].

The inclusion of several reference and type strains in our MLSA study provided new insights on species diversity of soft rot bacteria prior to the 2014 blackleg outbreak. MLSA was sufficient for identification of several reference strains previously identified only to the genus level. Reference strains identified as *Dickeya* sp. in Kelman’s and Dickey’s collections were assigned to MLSA clades *D. chrysanthemi*, *D. dadantii* subsp. *dadantii*, *D. dadantii* subsp. *dieffenbachia*, *D. dianthicola*, and *D. zeae*. The placement of the sweet potato strain *Dickeya* sp. 600 within *D. dianthicola* is evidence that *D. dianthicola* was present in the USA prior to the 2014 blackleg outbreak. The four strains identified as *D. fangzhongdai* in the reference collection all originated outside the U.S. *D. fangzhongdai* has very recently been identified in New York as the cause of soft rot of onion [89]. Historic isolates of *Pectobacterium versatilis* have been reported from the U.S. In a retrospective study of soft rot bacteria, Portier et al. identified four historic strains from the USA as *P. versatilis*; three from potato isolated in 2001 and one from *Iris* sp. isolated in 1973 [37]. Reference strain *Pectobacterium* sp. Ecc71 was recently reclassified as *P. versatilis* [30]. In our study, Ecc71 grouped with other *P. versatilis* strains. The taxon includes soft rot strains isolated in Russia from potato and cabbage unofficially named “*Candidatus Pectobacterium maceratum*” [30,90].
MLSA and MLST of the 2015–2016 collection provides a broad view of the species of pectolytic soft rot bacteria present in the Northeastern and North Central U.S. immediately following the 2014 blackleg outbreak. The identification of *P. parmentieri*, *P. brasiliense*, *P. carotovorum*, and *P. atrosepticum* is consistent with prior reports of the occurrences of these species in the U.S. [15,20,21,23,24,26]. We did not expect to find nine strains of *P. versatile* in the 2015–2016 collection. *P. versatile* was recently reported in potato from New York and appears to represent a shift in 2017 from the *P. parmentieri* that predominated in 2016 [91]. Less expected was finding *P. polaris* and *P. punjabense*, as these have not been reported in the U.S. *P. polaris* was validly reported in 2017 and is found in Norway [52] and Morocco [85]. *P. punjabense* was reported in Pakistan [36]. No strains of *P. polaris* or *P. punjabense* originating from the U.S. were noted in the original species description or in recent examinations of other species of *Pectobacterium* [30,31,35,37,52,84]. Further polyphasic analyses are warranted to validate the MLSA identification of *P. polaris* or *P. punjabense* within the 2015–2016 collection.

The 2015–2016 collection contained *D. dianthicola* strains originating from multiple states. *D. dianthicola* has been reported previously in New York, Maine, Michigan, and New Jersey [6,13,15,16,22]. Our findings confirmed that *D. dianthicola* is also present in Florida, Massachusetts, and Pennsylvania. The majority (17/19) of *D. dianthicola* isolates in the 2015–2016 collection from Maine, New York, Pennsylvania, Massachusetts, and Florida are sequence type 1 (ST1). This result might be expected if soft rot outbreaks in the Northeastern U.S. were caused by a single (or limited) introduction of one strain of *D. dianthicola*. However, isolates of ST2 and ST5, from New York and New Jersey, respectively, were also identified within the 2015–2016 collection, which suggests the outbreak was not only clonal. A genetic diversity analysis of 256 isolates of *D. dianthicola* collected over 5 years concluded that the blackleg outbreak in Northeastern U.S. was caused by multiple strains [41]. Ge et al., 2021 identified three genotypes within *D. dianthicola*, the frequencies of which varied by year and by state [41]. Some *D. dianthicola* isolates reported by Ge et al. were also included in our study. Based on overlapping results, ST1 in our study corresponds well to Type I of Ge et al., 2021, while ST 2–6 strains are represented in Type II and III [41].

The 2015–2016 collection is not comprehensive, in that the number of strains from the contributing states varied and no systematic sampling strategy was applied for obtaining isolates over states. The variation in coverage by state resulted in different findings. For example, the deep coverage of strains from Minnesota and North Dakota led to first reports of some species and the likely identification of *P. polaris* and *P. punjabense* originating from the U.S. The abundance of strains of *D. dianthicola* and *P. parmentieri* in the collection enabled sequence type analyses, from which we can conclude that the genetic diversity within *P. parmentieri* was greater than that of *D. dianthicola* during those years and across states.

Most strains in the 2015-2016 collection originated from plants. The eight strains from water were enough to show that water can serve as a source of *D. dianthicola*, *D. zeae*, *P. actinidiae*, and *P. versatile*. In a large comprehensive study of *Dickeya* in temperate regions of Central Europe, the diversity of *Dickeya* species recovered from water was different than that obtained from potato [45]. In that study, *D. dianthicola* was not recovered from water. Future studies involving larger numbers of aquatic strains could improve our understanding of the relative diversity of soft rot species in water and plant sources in the U.S. [6,13,15,16,22,41].

Four newly described species of *Dickeya* were validly published as we completed our analyses [27,29,86,92]. Future studies with two of these, *D. oryzae* and *D. poaceiphila*, would aid in resolution of isolates within the MLSA clade *D. zeae*. Since *D. oryzae* ZYY5³ was not included in our study, we did not delineate a clade of *D. oryzae*. NCPPB 3531, CSL RW192, DZZQ, ZJU 1202, EC1, and the reference strain K1030 from maize clustered together in the MLSA phylogeny presented here. All these strains are currently identified as *D. oryzae* [86]. We also note that two water strains from Maine, 16H2-68-A and 16H2-68-B, and the reference strain, Ech586, are divergent of other strains within the *D. zeae* clade. This
might reflect the natural diversity within \textit{D. zeae} or an unresolved species assignment. In a phylogenetic study that included NCPPB 569, the type strain of \textit{D. poaceiphila} [92] and the reference strain Ech586, Ech586 was placed in \textit{D. zeae} [31,93]. It is likely that the water strains are also correctly placed within \textit{D. zeae}; however, because \textit{D. zeae}, \textit{D. poaceiphila}, and \textit{D. chrysanthemi} are closely related species within \textit{Dickeya}, future studies of water strains 16H2-68-A and 16H2-68-B including the type strain of \textit{D. poaceiphila} could verify their species assignment.

\textit{P. parvum} is the only validly published and currently used species name of \textit{Pectobacterium} not included in our study [84]. The inclusion of \textit{P. parvum} might have provided insights on the identity of \textit{Pectobacterium} sp. CIR1183, the 2016 isolate from Minnesota, which by \textit{dnaJ}, \textit{dnaX}, and \textit{gyrB} phylogeny represented a separate branch within the \textit{P. polaris}/\textit{P. versatile} clade. The closest relatives of \textit{P. parvum} are \textit{P. polaris} and \textit{P. versatile}. Isolates of \textit{P. parvum} were described as a group of atypical, less virulent strains closely related to, but distinguished from \textit{P. polaris} [84]. In the future, whole genomic sequence comparisons, evaluation of differentiating biochemical traits, toxicity tests in insects, and soft rot virulence assays that include the type strain of \textit{P. parvum} might enable more accurate placement of \textit{Pectobacterium} sp. CIR1183 within the \textit{P. versatile}/\textit{P. polaris}/\textit{P. parvum} super clade.

While much progress has been made toward defining a stable, monophyletic taxonomy for species of \textit{Dickeya} and \textit{Pectobacterium}, some taxa remain notably complex and certain strains of soft rot bacteria do not align well with known species [37,63,84]. Two strains, classified here as \textit{P. carotovorum}, CIR1080 and 16H2-LB, clustered together on a separate branch of \textit{P. carotovorum}. These might belong to other species related to \textit{P. carotovorum}. Similarly, the diverging branches of \textit{P. brasiliense} strains within the 2015–2016 collection and reference strains is consistent with the conclusion that \textit{P. brasiliense} is less homogenous than other species of \textit{Pectobacterium} [87].

Phylogenetic relationships predicted by the MLSA schema of \textit{dnaJ}, \textit{dnaX}, and \textit{gyrB} support and extend recent evidence that several newly described species of \textit{Dickeya} and \textit{Pectobacterium} cause soft rot diseases of potato in the U.S. The importance of specific species on disease occurrence, symptomology, and severity remains unclear. MLSA/MLST studies could be extended to study the contributions of within- and between-location genetic variability, multiple species and genotype combinations, and cultivar on disease severity. Comprehensive genomic comparisons of large numbers of representative strains within a given species will continue to advance stable, well-delineated species definitions with the goal of improving pathogen detection and disease management [6,41,87].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/microorganisms9081733/s1, Table S1: Haplotypes of \textit{dnaJ}, \textit{dnaX}, and \textit{gyrB} and sequence types (ST) of strains within the MLSA clade of \textit{Dickeya dianthicola}, Table S2: Allelic variation in \textit{dnaJ}, \textit{dnaX}, and \textit{gyrB} and sequence types (ST) of strains within the MLSA clade of \textit{Pectobacterium parmentieri}.

Author Contributions: Conceptualization and methodology, formal analysis, investigation, and writing—original draft preparation, C.A.I. and R.D.C.; resources and writing—review and editing, A.M., K.L.P., J.H., A.O.C., C.T.B., R.R.M., S.B.J., N.R., G.A.S., R.P.L., B.K.G.; supervision, project administration, and funding acquisition, C.A.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by United States Department of Agriculture/Agricultural Research Service State Partnership Potato Program 8030-62660-003-00D. Funding for the project came from Minnesota Department of Agriculture/USDA Farm Bill, Northern Plains Potato Growers Association, Cavendish Farms, MN Area II Potato Research and Promotion Council, and Minnesota Agricultural Experiment Station, and the United States Department of Agriculture National Institute of Food and Agriculture Federal Appropriations (USDA-NIFA), United States Department of Agriculture/Agricultural Research Service State Partnership Potato Program 8030-62660-003-00D, Pennsylvania Department of Agriculture, and USDA-NIFA-Hatch ME022010 through the Maine Agricultural and Forest Experiment Station, and Maine Agricultural and Forest Experiment Publication Number 3827.
Acknowledgments: We thank Blake Webster and Hilary Snyder for technical assistance and A. P. Robinson, K. Sather, and J. Miller for providing soft rot samples from commercial and seed potato fields in Minnesota and North Dakota. The helpful discussions and agency of Kromroy and J. Ciborowski, Minnesota Department of Agriculture, are especially acknowledged. Thank you to the Pennsylvania Co-Operative Potato Growers for connecting growers with symptomatic potatoes to researchers.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAO. FAOSTAT Statistical Database; Food and Agricultural Organization of the United Nations: Rome, Italy, 2020.
2. NASS. Agricultural Statistics Board; United States Department of Agriculture (USDA), National Agricultural Statistics Service: Washington, DC, USA, 2021.
3. Hauben, L.; Moore, E.R.; Vauterin, L.; Steenackers, M.; Mergaert, J.; Verdonck, L.; Swings, J. Phylogenetic Position of Phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 1998, 21, 384–397. [CrossRef]
4. Gardan, L.; Gouy, C.; Christen, R.; Samson, R. Elevation of Three Subspecies of Pectobacterium carotovorum to Species Level: Pectobacterium atrosepticum sp. nov., Pectobacterium betaovasculatorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 381–391. [CrossRef]
5. Samson, R.; Legendre, J.B.; Christen, R.; Saux, M.F.; Achouak, W.; Gardan, L. Transfer of Pectobacterium chrysanthemi (Burkholder et Al. 1953) Brenner et Al. 1973 and Brenneria paradiisaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradiisaca comb. nov. and Delineation of Four Novel Species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zae sp. nov. Int. J. Syst. Evol. Microbiol. 2005, 55, 1415–1427. [PubMed]
6. Charkowski, A.O. The Changing Face of Bacterial Soft-Rot Diseases. Annu. Rev. Phytopathol. 2018, 56, 269–288. [CrossRef]
7. Glasner, J.D. Novel Approach for Identification of Potato Seed Lots Suspected to Be Affected by Pectobacterium and Dickeya Species: A Review. Plant Pathol. 2011, 60, 999–1013. [CrossRef]
8. Czajkowski, R.; Pérömbelon, M.C.M.; van Veen, J.A.; van der Wolf, J.M. Control of Blackleg and Tuber Soft Rot of Potato Caused by Pectobacterium and Dickeya Species: A Review. Plant Pathol. 2011, 60, 999–1013. [CrossRef]
9. Paine, S.G. Studies in Bacteriosis: I. “Blackleg” of the Potato. J. Agric. Sci. 1917, 8, 480. [CrossRef]
10. Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-Based Phylogeny and Taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacteriales ord. nov. Divided into the Families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Xanthomonaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budriaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [PubMed]
11. Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-Based Phylogeny and Taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacteriales ord. nov. Divided into the Families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Xanthomonaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budriaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [PubMed]
12. Van der Wolf, J.M.; Nijhuis, E.H.; Kowalewska, M.J.; Saddler, G.S.; Parkinson, N.; Elphinstone, J.G.; Pritchard, L.; Toth, I.K.; Lojkowska, E.; Potrykus, M.; et al. Dickeya solani sp. nov., a Pectinolytic-Plant-Pathogenic Bacterium Isolated from Potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 2016, 66, 768–774. [CrossRef]
13. Jiang, H.H.; Hao, J.J.; Johnson, S.B.; Brueggeman, R.S.; Secor, G. First Report of Dickeya dianthicola Causing Blackleg and Bacterial Soft Rot on Potato in Maine. Plant Dis. 2016, 100, 2320. [CrossRef]
14. Johnson, S.B. Novel Approach for Identification of Potato Seed Lots Suspected to Be Affected by Dickeya. Plant Pathol. J. 2017, 16, 96–100. [CrossRef]
15. Ma, X.; Schloep, A.; Swingle, B.; Perry, K.L. Pectobacterium and Dickeya Responsible for Potato Blackleg Disease in New York State in 2016. Plant Dis. 2018, 102, 1834–1840. [CrossRef] [PubMed]
16. Patel, N.; Baldwin, A.C.; Patel, R.D.; Kobayashi, D.Y.; Wyenandt, C.A. First Report of Dickeya dianthicola Causing Blackleg and Soft Rot on Potato (Solanum tuberosum) in New Jersey, USA. Plant Dis. 2019, 103, 146. [CrossRef]
17. Nasaruddin, A.S.; Charkowski, A.O.; Seller, B.N.; Perna, N.T.; Glasner, J.D. First Report of Dickeya dianthicola Causing Blackleg on Potato in Tennessee. Plant Dis. 2019, 103, 2121. [CrossRef]
18. Bohuk, G.; Arif, M. First Report of Dickeya dianthicola as a Causal Agent of Bacterial Soft Rot of Potato in Hawaii. Plant Dis. 2019, 103, 2943. [CrossRef]
19. Khayi, S.; Cigna, J.; Chong, T.M.; Quétu-Laurent, A.; Chan, K.G.; Hélias, V.; Faure, D. Transfer of the Potato Plant Isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5379–5383. [CrossRef]
20. Ge, T.L.; Jiang, H.H.; Hao, J.J.; Johnson, S.B. First Report of Pectobacterium parmentieri Causing Bacterial Soft Rot and Blackleg on Potato in Maine. Plant Dis. 2018, 102, 437. [CrossRef]
21. McNally, R.R.; Curland, R.D.; Webster, B.T.; Robinson, A.P.; Ishimaru, C.A. First Report of Blackleg and Tuber Soft Rot of Potato Caused by *Pectobacterium carotovorum* subsp. *carotovorum* in Minnesota and North Dakota. *Plant Dis.* 2017, 101, 2144. [CrossRef]

22. Rosenzweig, N.; Steere, L.; Kirk, W.W.; Mambetova, S.; Long, C.; Schafer, R.; Dangi, S.; Byrne, J. First Report of *Dickeya dianthicola* and *Pectobacterium wasabiae* Causing Aerial Stem Rot of Potato in Michigan, USA. *New. Dis. Rep.* 2016, 33, 10. [CrossRef]

23. Arizala, D.; Dobhal, S.; Paudel, S.; Gunarathne, S.; Boluk, G.; Arif, M. First Report of Bacterial Soft Rot and Blackleg on Potato Caused by *Pectobacterium parmentieri* in Hawaii. *Plant Dis.* 2020, 104, 970. [CrossRef]

24. Ma, B.; Hibbing, M.E.; Kim, H.S.; Reedy, R.M.; Yedidia, I.; Breuer, J.; Breuer, J.; Glasner, J.D.; Perna, N.T.; Kelman, A.; et al. Host Range and Molecular Phylogenies of the Soft Rot Enterobacterial Genera *Pectobacterium* and *Dickeya*. *Phytopathology* 2007, 97, 1150–1163. [CrossRef]

25. Kim, H.S.; Ma, B.; Perna, N.T.; Charkowski, A.O. Phylogeny and Virulence of Naturally Occurring Type III Secretion System-Deficient *Pectobacterium* Strains. *Appl. Environ. Microbiol.* 2009, 75, 4539–4549. [CrossRef]

26. McNally, R.R.; Curland, R.D.; Webster, B.T.; Robinson, A.P.; Ishimaru, C.A. First Report of *Pectobacterium carotovorum* subsp. *brassilensis* Causing Blackleg and Stem Rot in Commercial and Seed Potato Fields in Minnesota and North Dakota. *Plant Dis.* 2017, 101, 1672. [CrossRef]

27. Oulghazi, S.; Pédroz, J.; Cigna, J.; Lau, Y.Y.; Moumni, M.; Van Gijsegem, F.; Chan, K.-G.; Faure, D. *Dickeya undulica* sp. nov., a Novel Species for Pectinolytic Isolates from Surface Waters in Europe and Asia. *Int. J. Syst. Evol. Microbiol.* 2019, 69, 2440–2444. [CrossRef] [PubMed]

28. Duprey, A.; Taib, N.; Leonard, S.; Garin, T.; Flandrois, J.-P.; Nasser, W.; Brocher-Armante, C.; Reverchon, S. The Phytopathogenic Nature of *Dickeya aquatica* 174/2 and the Dynamic Early Evolution of *Dickeya* Pathogenicity. *Environ. Microbiol.* 2019, 21, 2809–2835. [CrossRef]

29. Hugouvieux-Cotte-Pattat, N.; Jacot-des-Combes, C.; Briolay, J. *D. lacustris* sp. nov., a Water-Living Pectinolytic Bacterium Isolated from Lakes in France. *Int. J. Syst. Evol. Microbiol.* 2019, 69, 721–726. [CrossRef]

30. Portier, P.; Pédroz, J.; Taghouti, G.; Fischer-Le Saux, M.; Caulliere, E.; Bertrand, C.; Laurent, A.; Chawki, K.; Oulghazi, S.; Moumni, M.; et al. Elevation of *Pectobacterium carotovorum* subsp. *Odoriferum* to Species Level as *Pectobacterium odoriferum* sp. nov., Proposal of *Pectobacterium brassilense* sp. nov. and *Pectobacterium actiniadum* sp. nov., Emended Description of *Pectobacterium carotovorum* and Description of *Pectobacterium versatilis* sp. nov., Isolated from Streams and Symptoms on Diverse Plants. *Int. J. Syst. Evol. Microbiol.* 2019, 69, 3207–3216. [PubMed]

31. Pédroz, J.; Bertrand, C.; Taghouti, G.; Portier, P.; Barny, M.-A. *Pectobacterium aquaticum* sp. nov., Isolated from Waterways. *Int. J. Syst. Evol. Microbiol.* 2019, 69, 745–751. [CrossRef]

32. Oulghazi, S.; Cigna, J.; Lau, Y.Y.; Moumni, M.; Chan, K.G.; Faure, D. Transfer of the Waterfall Source Isolate *Pectobacterium carotovorum* M022 to *P. fontis* sp. nov., a Deep-Branching Species within the Genus *Pectobacterium*. *Int. J. Syst. Evol. Microbiol.* 2019, 69, 470–475. [CrossRef]

33. Waleron, M.; Miszat, A.; Waleron, M.; Franczuk, M.; Wielgomas, B.; Waleron, K. Transfer of *Pectobacterium carotovorum* Subsp. *Carotovorum* Strains Isolated from Potatoes Grown at High Altitudes to *Pectobacterium pusimense* sp. nov. *Syst. Appl. Microbiol.* 2018, 41, 85–93. [CrossRef] [PubMed]

34. Waleron, M.; Miszat, A.; Waleron, M.; Franczuk, M.; Jonca, J.; Wielgomas, B.; Mikiciński, A.; Popović, T.; Waleron, K. *Pectobacterium zantedeschiæ* sp. nov. A New Species of a Soft Rot Pathogen Isolated from Calla Lily (*Zantedeschia Spp.*). *Syst. Appl. Microbiol.* 2019, 42, 275–283. [CrossRef]

35. Waleron, M.; Miszat, A.; Waleron, M.; Jonca, J.; Furmaniak, M.; Waleron, K. *Pectobacterium polonicum* sp. nov. Isolated from Vegetable Fields. *Int. J. Syst. Evol. Microbiol.* 2019, 69, 1751–1759. [CrossRef]

36. Sarfraz, S.; Riaz, K.; Oulghazi, S.; Cigna, J.; Sahi, S.T.; Khan, S.H.; Faure, D. *Pectobacterium punjabense* sp. nov., Isolated from Blackleg Symptoms of Potato Plants in Pakistan. *Int. J. Syst. Evol. Microbiol.* 2018, 68, 3551–3556. [CrossRef] [PubMed]

37. Portier, P.; Pédroz, J.; Taghouti, G.; Dutrieux, C.; Barny, M.A. Updated Taxonomy of *Pectobacterium* Genus in the Cym-Cibp Bacterial Collection: When Newly Described Species Reveal “Old” Endemic Population. *Microorganisms* 2020, 8, 1441. [CrossRef] [PubMed]

38. McNally, R.R.; Curland, R.D.; Webster, B.T.; Robinson, A.P.; Ishimaru, C.A. First Report of Stem Rot on Potato Caused by *Dickeya chrysanthemi* in Minnesota. *Plant Dis.* 2018, 102, 238. [CrossRef]

39. Glasner, J.D.; Liss, P.; Plunkett, I.G.; Darling, A.; Prasad, T.; Rusch, M.; Byrnes, A.; Gilson, M.; Biehl, B.; Blattner, F.R.; et al. Asap, a Systematic Annotation Package for Community Analysis of Genomes. *Nucleic Acids Res.* 2003, 31, 147–151. [CrossRef] [PubMed]

40. Ma, X.; Perna, N.T.; Glasner, J.D.; Hao, J.; Johnson, S.; Nasaruddin, A.S.; Charkowski, A.O.; Wu, S.; Fei, Z.; Perry, K.L.; et al. Complete Genome Sequence of *Dickeya dianthicola* Mc23, a Pathogen Causing Blackleg and Soft Rot Diseases of Potato. *Microbiol. Res. Announc.* 2019, 8, e01526-18. [CrossRef] [PubMed]

41. Ge, T.; Jiang, H.; Johnson, S.B.; Larkin, R.; Charkowski, A.O.; Secor, G.; Hao, J. Genotyping *Dickeya dianthicola* Causing Potato Blackleg and Soft Rot Outbreak Associated with Inoculum Geography in the United States. *Plant Dis.* 2021. [CrossRef]

42. Parkinson, N.; DeVos, P.; Pirhonen, M.; Elphinstone, J. *Dickeya aquatica* sp. nov., Isolated from Waterways. *Int. J. Syst. Evol. Microbiol.* 2014, 64, 2264–2266. [CrossRef] [PubMed]

43. Van Vaerenbergh, J.; Baeyen, S.; De Vos, P.; Maes, M. Sequence Diversity in the *Dickeya* Genus and Taqman (R) Pcr for *D. Solani*, New Biovar 3 Variant on Potato in Europe. *PLoS ONE* 2012, 7, e35738. [CrossRef] [PubMed]
