Acute Embolic Occlusion of the Left Common Iliac Artery Treated With Intra-Arterial Thrombolysis and Percutaneous Thrombectomy

Wang-Soo Lee, Kwang Je Lee and Wang Seong Ryu

Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea

Acute embolic occlusion of the common iliac artery is a rare medical emergency that is not only limb-threatening, but also potentially life-threatening. Several treatment options exist for acute limb ischemia, although no treatment is clearly best. We report a case of acute embolic occlusion of the left common iliac artery in a patient with atrial fibrillation who was treated successfully using mechanical thrombectomy following intra-arterial thrombolysis. (Korean J Intern Med 2009;24:153-155)

Keywords: Peripheral vascular disease; Thrombolytic therapy; Thrombectomy; Embolism

INTRODUCTION

Acute embolic occlusion of a limb artery is a rare but serious medical emergency because acute limb ischemia is not only limb-threatening, but also potentially life-threatening. It requires prompt diagnosis and management. Surgery, local thrombolysis, percutaneous thrombectomy, and stenting have all been used to treat acute embolic...
limb ischemia, but the best treatment strategy remains controversial.

We report a case of acute embolic occlusion of the left common iliac artery in a patient with atrial fibrillation who was treated successfully with combined local thrombolysis and mechanical thrombectomy.

CASE REPORT

A 56-year-old woman was admitted to our hospital with sudden-onset pain, absent pulses, paresthesia, and pallor of the left lower extremity that had begun 10 hours before admission. She had been diagnosed with atrial fibrillation at another hospital 4 years before this presentation.

Computed tomographic (CT) angiography of the left lower extremity showed total occlusion of the proximal left common iliac artery (Fig. 1). Initially, we performed intra-arterial thrombolysis with urokinase 200,000 units for 1 hour. Follow-up angiography revealed antegrade flow with large residual thrombi (Fig. 2), so we decided to perform a percutaneous mechanical thrombectomy through the ipsilateral femoral artery using the OASIS™ thrombectomy system (Medi-Tech/Boston Scientific, Watertown, MA) (Fig. 3). Immediate post-procedural angiography demonstrated almost complete patency of the previously occluded artery. Follow-up CT angiography 14 days later showed a normal left common iliac artery (Fig. 4).

The patient tolerated the procedures well with no

Figure 2. Follow-up angiography after initial intra-arterial thrombolysis using urokinase 200,000 units for 1 hour showed antegrade flow with large residual thrombi.

Figure 3. Percutaneous mechanical thrombectomy with the OASIS™ thrombectomy system through the ipsilateral femoral artery.

Figure 4. Immediate post-procedural angiography (A) and follow-up CT angiogram (B) after 2 weeks showed complete patency of the previously occluded artery.
complications and was clinically stable at the 9-month follow-up.

DISCUSSION

A recent epidemiologic study showed that peripheral artery obstruction occurs in 14 of every 100,000 people in the general population [1]. The most common cause of non-traumatic acute limb ischemia is embolism or thrombosis. The heart is the major source of emboli in patients with valvular disease with or without atrial fibrillation or ventricular mural thrombus after myocardial infarction. Thrombotic obstructions of the peripheral arteries are generally associated with atherosclerotic progression. However, differentiating these two pathologies clinically is difficult in most cases, and impossible in 10-15% of cases [2,3].

Classically, the symptoms of acute limb ischemia are dominated by the six Ps (pain, pallor, paralysis, poikilothermia, paresthesias, and pulselessness) or ‘blue toe syndrome’ [4]. Patients in whom acute limb occlusion is suspected are evaluated using digital subtraction angiography (DSA), duplex ultrasonography, CT angiography, and magnetic resonance angiography. Although DSA is regarded as the gold standard for limb ischemia imaging, CT angiography has recently come into wider use [5-7].

Various options have been proposed for the management of acute embolic limb ischemia. For years, surgical procedures such as embolectomy, bypass, and amputation were considered the gold standard treatment for total common iliac artery occlusion. However, early operative intervention has several procedural limitations and is characterized by a high mortality rate, with a 30-day mortality rate of 15-25% [8,9].

Randomized studies have shown that thrombolysis is generally as effective as surgery. Therefore, local thrombolysis has become a treatment modality in appropriately selected patients [10,11]. Moreover, several recent studies have reported that percutaneous mechanical thrombectomy has a high success rate, with low amputation and mortality rates [12,13]. Primary endovascular stenting is not usually considered for the treatment of acute embolic limb lesions due to the fear of distal embolization [14]. Therefore, instead of using surgery or stenting, we decided to combine treatment with intra-arterial thrombolysis and percutaneous thrombectomy.

In conclusion, initial local thrombolysis followed by mechanical thrombectomy, as performed in this case, is an option for treating acute embolic occlusion of the common iliac artery.

REFERENCES

1. Davies B, Braithwaite BD, Birch PA, Poskitt KR, Heather BP, Earnshaw JJ. Acute leg ischaemia in Gloucestershire. Br J Surg 1997;84:504-508.
2. Dormandy J, Heeck L, Vig S. Acute limb ischemia. Semin Vasc Surg 1999;12:148-153.
3. Panetta T, Thompson JE, Talkington CM, Garrett WV, Smith BL. Arterial embolectomy: a 34-year experience with 400 cases. Surg Clin North Am 1986;66:339-353.
4. Halperin JL. Evaluation of patients with peripheral vascular disease. Thromb Res 2002;106:V303-V311.
5. Ascher E, Hingorani A, Markevich N, Schutzer R, Kallakuri S. Acute lower limb ischemia: the value of duplex ultrasound arterial mapping (DUAM) as the sole preoperative imaging technique. Ann Vasc Surg 2003;17:284-289.
6. Willmann JK, Baumert B, Schertler T, et al. Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology 2005;236:1083-1093.
7. Huegli RW, Aschwanden M, Bongartz G, et al. Intraarterial MR angiography and DSA in patients with peripheral arterial occlusive disease: prospective comparison. Radiology 2006;239:901-908.
8. Henry M, Rath PC, Klōnaris C, Katsargyris A, Henry I, Hugel M. Peripheral vascular diseases: an update on endovascular therapy. Indian Heart J 2005;57:747-766.
9. Ouriel K, Veith FJ, Sasahara AA. A comparison of recombinant urokinase with vascular surgery as initial treatment for acute arterial occlusion of the legs. N Engl J Med 1998;338:1105-1111.
10. The STILE Investigators. Results of a prospective randomized trial evaluating surgery versus thrombolysis for ischemia of the lower extremity. Ann Surg 1994;220:251-266.
11. Ouriel K, Veith FJ, Sasahara AA. Thrombolysis or peripheral arterial surgery: phase I results. J Vasc Surg 1996;23:64-73.
12. Müller-Hülsbeck S, Kalinowski M, Heller M, Wagner HJ. Rheolytic hydrodynamic thrombectomy for percutaneous treatment of acutely occluded infra-aortic native arteries and bypass grafts: midterm follow-up results. Invest Radiol 2000;35:131-140.
13. Ansel GM, George BS, Botti CF, et al. Rheolytic thrombectomy in the management of limb ischemia: 30-day results from a multicenter registry. J Endovasc Ther 2002;9:395-402.
14. Berczi V, Thomas SM, Turner DR, Bottomley JR, Cleveland TJ, Gaines PA. Stent implantation for acute iliac artery occlusions: initial experience. J Vasc Interv Radiol 2006;17:645-649.