Systemic and local responses to repeated HL stress-induced retrograde signaling in Arabidopsis

Matthew J. Gordon, Melanie Carmody, Verónica Albrecht and Barry Pogson*

INTRODUCTION
Acclimation to changes in the environment is required for optimal plant performance under adverse conditions. Factors such as light, temperature, drought, mineral concentrations, and biotic infection are all capable of causing extensive damage to plants as well as inducing short and long term acclimation responses (Stitt and Hurry, 2002; Durrant and Dong, 2004; Bartels and Sunkar, 2005; Atkin et al., 2006; Gorsuch et al., 2010; Biswal et al., 2011). High light (HL) causes damage to DNA, proteins, and lipids, including components of the photosynthetic apparatus (Kalbin et al., 2001; Takahashi and Badger, 2011). Exposure to prolonged periods of HL increases the generation of reactive oxygen species (ROS) and alters the redox state of photosynthetic components such as the electron carrier, plastoquinone (Karpinski et al., 1997; Asada, 2006). These components provide important retrograde signals that communicate the chloroplast status to the nucleus proving important information to drive transcriptional activation of defense systems (Pogson et al., 2008; Ramel et al., 2012). Recently, evidence for novel HL retrograde signals including the SAL1-PAP pathway and an oxidative by-product of beta-carotene has been published (Estavillo et al., 2011; Ramel et al., 2012).

Chloroplastic and retrograde signaling in response to HL induces (1) pathways that allow for the dissipation of excess energy; (2) systems that detoxify the harmful by-products of HL; and (3) mechanisms that reduce the amount of light absorbed by the plant. Plants have also evolved different mechanisms that facilitate the dissipation of accumulated excess energy absorbed under HL conditions, including chlororespiration, cyclic electron flow (CEF), photorespiration, and non-photochemical quenching (NPQ; Rumeau et al., 2007; Bauwe et al., 2010; de Bianchi et al., 2010; Johnson, 2011). Depending on light conditions, NPQ can account for 50% or more of the absorbed energy (Demmig-Adams et al., 1996) and thus is one of the main avenues for excess energy dissipation under HL exposure. On the other hand, to detoxify accumulating ROS plants can also use enzymes or plant pigments to convert ROS into more benign molecules. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) are responsible for directly detoxifying ROS, superoxide (O$_2^-$), and hydrogen peroxide (H$_2$O$_2$), respectively. In contrast, plant pigments such as carotenoids and tocopherols remove ROS via chemical and physical quenching (Conn et al., 1991; Kobayashi and Della Penna, 2008).

From dawn till sunset plants are subjected to varying light intensities due to the angle of the sun and transient shade from clouds, leaves, and neighboring plants. Living in such an environment creates “hot spots” of solar energy that have the potential to cause extensive local photo-oxidative damage to plants. Moreover, such hotspots can trigger rapid acclimation in tissues directly experiencing high irradiance stress, and in distal tissues still under partial shade (i.e., leaves that do not experience HL stress). Acclimation of metabolism in distal leaves occurs as a result of a 15- to 60-min term HL exposure, termed high light systemic acquired acclimation (HL SAA), in which HL stressed tissues of individual plants communicate to the distal parts of the plant.

Keywords: systemic acquired acclimation, high light, photoprotection, retrograde signaling, oxidative stress
initiating stress acclimation. Even though research over that last decade has significantly progressed the understanding of HL SAA many unknowns still exist in regards to the identity of the retrograde signal(s) and the acclimation processes which they govern. Also unclear is the exact nature of the synergistic relationships between different stresses, how they affect the initiation of HL SAA and subsequent acclimation processes against multiple stresses (Koussevitzky et al., 2007; Mullineaux and Baker, 2010).

By exposing 1/3 of the Arabidopsis rosette to non-specific HL, research has shown that such leaves seem to be tightly regulated by retrograde signals initiated through changes in photosynthesis during HL stress, specifically changes to the PQ pool redox state and ROS production (Karpinski et al., 1997; Rossel et al., 2007; Muhlenbock et al., 2008). H₂O₂ accumulates rapidly under HL and remains a likely signaling candidate as H₂O₂-signaling components have been implicated in triggering HL SAA (Mateo et al., 2004; Muhlenbock et al., 2008; Miller et al., 2009) and are associated with inducing defense responses under both abiotic and biotic stress (Vanderwaerden et al., 2005; Miller et al., 2007, 2010; Muhlenbock et al., 2008). Additionally, recent publications suggest the involvement of light-wavelength-specific electrochemical and memory-based signaling systems influenced by both calcium-mediated signaling and glutathione (GSH; Karpinski and Szychska-Hebda, 2010; Szychska-Hebda et al., 2010). Nonetheless, specific components and connections between these different processes, particularly from a temporal perspective, remain to be clarified.

Microarray data shows that distal protective mechanisms in response to short term or transient HL exposure in 1/3 of the Arabidopsis rosette are controlled by the transcriptional regulation of many HL-, ROS-, pathogen infection-, hormone-, and drought-responsive genes (Mullineaux et al., 2000; Rossel et al., 2007; Muhlenbock et al., 2008). Among these genes are transcripts responsible for ROS detoxification and signal transduction such as zinc finger transcription factors (ZAT), APXs, and pathogenesis-related proteins (PRs). The induction of these transcripts and subsequent acclimation is known to impart enhanced tolerance to two distinct types of stress: pathogen infection and HL oxidative stress (Rossel et al., 2007; Muhlenbock et al., 2008; Szychska-Hebda et al., 2010). The relationship between HL SAA, the transcriptional activation of these many genes, their role in specific HL signaling, and acclimation processes however remains less clear.

In addition to short term transient HL SAA the growth of young, unstressed developing leaves can be altered by changing the environment in which the mature leaves are maintained. This process of developmentally linked long term acclimation allows plants to exhibit further phenotypic changes to improve performance of new tissue to that which the mature leaves were exposed; whether through differences in irradiance, CO₂, or temperature (Yano and Terashima, 2001; Coupe et al., 2006; Gorsuch et al., 2010). These modifications to new leaves include modifying leaf structure, growth rates, leaf and palisade tissue thickness, epidermal cell shape and size, as well as chloroplast number and density in the developing leaves (Lake et al., 2001; Yano and Terashima, 2001; Thomas et al., 2004; Coupe et al., 2006; Miyazawa et al., 2006; Araya et al., 2008; Jiang et al., 2011; Woo et al., 2011). Even though the exact mechanisms and signaling processes from mature leaves to meristems remain elusive there is evidence suggesting the possible involvement of retrograde signaling components such as ROS, the redox status of the PQ pool, other plant hormones, or microRNAs (Yano and Terashima, 2001; Thomas et al., 2004; Coupe et al., 2006; Jiang et al., 2011).

Many questions persist in regards to the mechanisms controlling short term HL SAA, the synergistic relationships with other stresses, and its role in acclimation processes that occur during a single day and over longer periods of time (several days). This is a study in two parts, firstly, the investigation of how light and environmental conditions affect HL SAA and secondly, the study of repeated HL treatments on signaling in exposed and distal mature leaves. This was achieved through (1) the development of a novel treatment system to further characterize the short term HL SAA gene activation in existing tissues under varying ambient qualities such as the duration of treatment, light intensity, temperature, and relative humidity (RH), as well as to determine the spatial distribution of oxidative stress tolerance across the rosette; (2) investigation of whether and how repeated, transient, and localized HL treatments can alter acclimation responses within existing mature leaves.

MATERIALS AND METHODS

GROWTH CONDITIONS AND LIGHT EXPERIMENTS

For all experiments Arabidopsis thaliana (Col-0) plants were cultivated in soil under a 12-h photoperiod of 150 ± 25 μmol photons m⁻² s⁻¹, 25/22 ± 2°C day/night temperatures, and 70 ± 10% day/night RH. All HL treatments utilized a new light emitting diode (LED)-array system and mature (approximately 4 weeks old) Arabidopsis plants. Arabidopsis leaf position for tissue collection were counted according to Arabidopsis phyllotaxy (Jurgens, 2001).

The HL SAA LED-array system consisted of nine white Luxeon III star LEDs (Lumileds Lighting) controlled by current limiters and focusing lenses which produced a light spot with a 1 cm radius (Karpinski et al., 1999; Rossel et al., 2007; Muhlenbock et al., 2008; Szychska-Hebda et al., 2010). For initial HL treatments, HL LED-array validation and HL SAA transcriptional analysis, individual leaves of nine plants were simultaneously exposed to HL (1500 ± 50 μmol photons m⁻² s⁻¹) or to LL conditions (40 ± 25 μmol photons m⁻² s⁻¹). Subsequently, HL control, and distal tissues from three treated individual plants were pooled to yield three “biological” replicates per tissue, immediately frozen in liquid N₂, and stored at −80°C. During analysis of environmental effects on HL SAA, plants were subjected to: HL exposure (1500 ± 50 μmol photons m⁻² s⁻¹) for either 5, 30, 60, and 120 min; varied irradiances of 250, 500, 1000, or 1500 ± 50 μmol photons m⁻² s⁻¹ for 60 min. Light quality treatments were performed with white, ultra violet A (400 nm), blue (460 nm), green (515 nm), yellow (600 nm), red (680 nm), and far-red (720 nm) specific light. The wavelength and irradiance of the specialized LEDs (Roithner LaserTechnik, Vienna, Austria) was verified by a spectrophotometer (Figure 1). For the repeated medium-term treatments, mature Arabidopsis plants were either subjected to HL array treatment

1http://www.philips-lumileds.com/
FIGURE 1 | High light systemic acquired acclimation-array, spectral output of specific LEDs and schematic overview of experiments conducted throughout the research article. (A) HL LED-array. Inset depicts a close-up image of a single treated Arabidopsis plant. Components of the HL LED-array include (i) power supply, (ii) current limiters for each LED, (iii) individual movable LED stage with heat sink, and (iv) light focusing lens. (B) Measured irradiance spectra from colored LEDs, n = 3. (C) Schematic diagram of the main areas of study, light treatments, and methods of analysis conducted throughout the research article. For all light treatment mature plants of approximately 4 weeks old grown under normal light conditions as detailed in Section "Materials and Methods" are used. For more detail on each individual treatment and analysis refer to Section "Materials and Methods." *Experiment conducted irrespective of leaf position.
**Experiment conducted taking leaf position into account.
(1500 ± 50 μmol photons m⁻² s⁻¹) three times a day for 60 min (separated by 120 min), for eight consecutive days, or remained untreated in the same growth environment.

All variable humidity and temperature specific HL SAA treatments were performed in a controlled environment chamber (Conviron S10H, Conviron, Ltd., Winnipeg, MB, Canada). Plants were subjected to either HL LED-array exposure (1500 ± 50 μmol photons m⁻² s⁻¹) under varied humidity levels (30, 55, and 90% RH) at 21°C or at increasing temperatures (21, 28, and 32°C) at 55% RH.

RT-qPCR ANALYSIS

For gene transcript analysis, RNA was extracted from frozen samples using an RNeasy Plant Mini Kit (Qiagen, Ltd.) as instructed by the manufacturer’s instructions. RNA was converted to cDNA using SuperScript III Reverse Transcriptase (Invitrogen), and RT-qPCR performed using a LightCycler 480 (Roche) with either the LightCycler Universal ProbeLibrary or Sybr green specified by the manufacturer’s instructions. The LightCycler 480 software application (Roche; version 1.5.0) was used to determine crossing-point values for each reaction, amplification efficiency of each primer set, validation of each reaction, and relative expression values obtained as described (Pfäffli, 2001). For initial RT-qPCR experiments and primer validation target transcript levels were normalized to both reference genes, CYCLOPHILIN 5 (CYP5) and PROTEIN PHOSPHATASE 2A (PP2A). In subsequent experiments target transcript levels were normalized to one of the aforementioned reference genes. List of primers are outlined in Table 2. Statistical significance of results was tested by conducting paired student t-tests (between LL controls and other samples) and one-way analyses of variance (ANOVA) on all samples using the scientific statistical analysis program, SigmaPlot12 (Systat Software, Inc.). Least significant difference (LSD) post hoc tests were used where one-way ANOVAs indicated significant differences between factors.

IN VITRO AND IN VIVO STRESS TOLERANCE ASSAYS AND PHOTOSYNTHETIC MEASUREMENTS

The in vitro photo-oxidative stress tolerance assay was performed after short term HL SAA treatments and at the end of the 8-day period of the repeated, HL SAA study, using a method adapted from Rossel et al. (2007). Leaf disks from each of the treated plants were removed and floated (abaxial side down) on 0.5 M H₂O₂ in a clear 200 μL 96-well plate. The leaf disks were then exposed to HL (1500 ± 50 μmol photons m⁻² s⁻¹) for 60 min and moved to LL growth conditions for 24 h while remaining in H₂O₂ solution, during which time photographs were taken periodically every 2 h to determine the extent of bleaching of the leaves. Analysis of the photos was performed using ImageJ⁵ and Microsoft Excel (Microsoft, Washington, USA). The percentage of healthy (green), and bleached (white) tissue in each leaf disk was calculated and compared over time.

Plants subjected to the in vivo HL-stress tolerance assay were exposed to the HL spot treatment (leaf 4 @ 1000 ± 50 μmol photons m⁻² s⁻¹) for 60 min or remained untreated under LL growth conditions. Following the initial HL SAA treatment, treated and untreated whole plants were placed in a controlled growth environment chamber (Conviron S10H, Conviron, Ltd., Winnipeg, MB, Canada) under LL growth conditions for 24 h (1500 ± 25 μmol photons m⁻² s⁻¹, 23/22 ± 2°C). Plants remained well watered for the duration of the 24-h treatment. During the 24-h HL treatment photographs were taken periodically to assess the first appearance photobleaching.

Chlorophyll fluorescence measurements were taken during the repeated, HL SAA study using an IMAGING-PAM chlorophyll fluorometer and analyzed with the ImagingWin software application (Walz, Effeltrich, Germany) as described (Krause and Weis, 1991; Oxborough, 2004; Baker, 2008). Tissue was sampled from existing mature tissues, as well as from the treated leaf as outlined in the transient HL SAA experiments.

MICROARRAY DATA COMPARISON AND TRANSCRIPT ANALYSIS

Microarray data from Rossel et al. (2007) was directly compared to six different studies of auxin microarray experiments (Sawa et al., 2002; Zhao et al., 2003; Redman et al., 2004; Overvoorde et al., 2005; Nemhauser et al., 2006; Lee et al., 2009). Only gene transcripts that demonstrated significant changes in gene expression (as determined in each respective article) were considered in this comparison. The functional characterization was based on gene ontology (GO) descriptions available on TAIR 10 (2012). As all transcripts had numerous GO descriptions, preference was given to auxin-related or stress networks.

AUXIN DETECTION USING DR5:GUS TRANSGENICS

DR5:GUS transgenic lines were provided by Dr. Christopher Cazonelli (ANU). Mature DR5:GUS transgenic plants were either treated with LL conditions (40 ± 25 μmol photons m⁻² s⁻¹), or with HL spot (1500 ± 50 μmol photons m⁻² s⁻¹) for 60 or 120 min. GUS staining and localization was performed using a modified version of the GUS visualization assay (Stomp, 1992). Each plant was divided into separate 2 ml microfuge tubes.

RESULTS

TRANSCRIPTUAL REGULATION OF GENES SPECIFIC TO HL SAA

A new HL SAA LED-array system was developed to enable repeated exposure of a leaf without altering the growth conditions of other leaves (Figure 1). This treatment applied a spot of light in the absence of heat and shading, facilitating a more environmentally relevant and specific test of HL-induced SAA compared to previous light treatment methods (Karpinski et al., 1999; Rossel et al., 2007; Muhlenbock et al., 2008; Szychynska-Hebda et al., 2010). Due to the specific nature of the treatment it also allows differentiation between retrograde signals derived from other stresses and solely HL.

It was necessary to validate the new method given the differences in light regimes between this and previous HL and HL SAA treatments. Thus, a detailed analysis of transcript changes in response to HL spot treatment of numerous genes involved in a range of plant processes from light signaling to ROS metabolism was performed. This provided (1) a greater understanding of the genetic regulation of HL retrograde responses governing the initiation and perpetuation of SAA; (2) identification of SAA marker...
genes that could be used in this study for an efficient quantification of HL SAA activation under different treatment regimes; and (3) identification of genes which are specifically induced in distal leaves, but not exposed leaves, which may give novel insight into the mechanisms or role of HL SAA in Arabidopsis.

For this analysis, genes were selected based on one of two factors: if they were reported to be involved in HL or SAA in previous studies (Karpinski et al., 1999; Mullineaux et al., 2000; Rossel et al., 2002, 2007); and according to their relative importance and involvement in light and stress signaling pathways in Arabidopsis (Rapp and Mullet, 1991; Yamaguchi-Shinozaki and Shinozaki, 1999; Braam et al., 1997; Hutin et al., 2003; Barrero et al., 2006; Lee et al., 2007; Zhu et al., 2010). Over 45 transcripts induced in both HL and distal leaf tissue, as well as genes reported to be induced in distal, but not HL-exposed leaves, were chosen for confirmation with RT-qPCR (Table 1). The vast majority of genes reported to be induced by HL SAA in microarrays and other experiments when a 1/3 of the rosette is exposed to HL were confirmed to be induced by the single spot of the HL LED-array system. However, all except one of the reported SAA specific inducible genes were also induced in the exposed tissue. The single gene that exhibited distal-specific expression, Gretchen Hagen 3.3 (GH3.3; Table 1), encodes an enzyme involved in maintaining auxin homeostasis by auxin conjugation with amino acids (Staswick et al., 2005), which will be addressed later in this manuscript. REDOX RESPONSIVE FACTOR 1 (RRTF1) and ZAT10 were selected as marker genes for HL SAA in subsequent experiments as both transcripts exhibited strong, relatively consistent transcript induction under short term HL spot treatment.

INFLUENCE OF LIGHT QUALITY, QUANTITY, AND DURATION ON TRANSIENT HL SAA
Light intensity, quality, and duration of exposure all influence the generation of retrograde signals that in turn influence and activate different developmental and acclimation responses of treated tissues (Franklin and Whitelam, 2004; Li et al., 2009). Thus a series of experiments was conducted to explore the relationship between specific light qualities and specific HL SAA (Figure 1C). SAA induction was analyzed in plants treated with HL for 5, 30, 60, and 120 min, respectively. Both ZAT10 and RRTF1 transcript levels increased significantly within 5 min in both HL-treated and distal tissues and remained elevated for at least 60 min (Figures 2A,B), largely confirming earlier findings using different HL systems. However, after 2 h of HL exposure, transcript levels declined to pre-HL levels in both treated and distal tissues. Even though both SAA marker genes exhibit significant gene induction within 5 min (fourfold), RRTF1 mRNA accumulation was highest after 60 min (60-fold). Since treatment for 60 min showed the maximal increase in both marker genes, this treatment time was applied for all subsequent analyses.

Previous studies analyzed SAA-induced gene expression using relatively high, and ultimately damaging, light intensities in the order of 1500 µmol photons m⁻² s⁻¹ (Karpinski et al., 1999; Rossel et al., 2007; Muhlenbock et al., 2008). With such elevated light intensities to what extent this reflected severe photo-oxidative stress or changes in the electron transport rate and redox poise could not be evaluated. Consequently, 60 min HL LED-array treatments were performed on Arabidopsis plants at different light intensities (250, 500, 1000, and 1500 µmol photons m⁻² s⁻¹, respectively). RRTF1 and ZAT10 were induced at already relatively small changes in light intensity (Figures 2C,D). Significantly, treatment with 250 µmol photons m⁻² s⁻¹ was sufficient to significantly increase mRNA-levels for both genes in HL-treated and distal tissues. As the light intensity increased, RRTF1 transcript levels in both HL and distal tissues increased proportionally. In contrast, ZAT10 showed a relatively small but significant increase in gene expression in both HL-treated and distal tissues under light intensities lower than 1500 µmol photons m⁻² s⁻¹.

Light quality (wavelength) also plays an important role in HL response, acclimation, and plant developmental processes (Li et al., 2009). The HL-specific SAA response to different wavelengths was investigated using colored LEDs. The white LEDs exhibited two maximum peaks of emission (460, 570 nm). Each colored LED had a single specific peak of wavelength irradiance, namely: UVA (400 nm), blue (460 nm), green (515 nm), yellow (600 nm), red (680 nm), and far-red (720 nm; Figure 1). The relative expression levels of RRTF1 and ZAT10 were analyzed after HL treatment under the different light qualities using various statistical tests: independent t-tests for each time point, and LSD post hoc tests from one-way ANOVA combining all tissue-light treatment combinations. As expected, independent samples t-tests for each light quality treatment showed white light caused the most statistically significant SAA gene induction, followed by blue light, while UVA, yellow, and red light had less prominent induction of both ZAT10 and RRTF1 (Figures 2E,F). LSD tests from one-way ANOVA reveal that for both RRTF1 and ZAT10 white light caused the most prominent SAA gene induction (P < 0.05). Under blue light RRTF1 also shows significant induction in comparison to the majority of the other light treatments (P < 0.05). On the other hand the significance of transcriptional changes of ZAT10 between different light qualities becomes less apparent due to small relative fold changes and experimental variance. The results clearly demonstrate that the degree of HL SAA induction of the marker genes is wavelength-dependent.

THE INVOLVEMENT OF HEAT AND HUMIDITY ON THE INDUCTION OF TRANSIENT HL SAA
High light stress in a natural environment rarely occurs without changes in temperature and humidity, both of which are also powerful inducers of separate retrograde signaling and acclimation defense responses (Fryer et al., 2003; Zhou et al., 2004; Allakhverdiev et al., 2008). Consequently, we investigated the effect of heat and humidity in the induction of HL SAA. Relative transcript levels were normalized to LL at 21°C for each temperature (Figure 3A). Both RRTF1 and ZAT10 transcript levels increased after HL exposure in both treated and distal tissues under all analyzed temperatures. Interestingly, expression of RRTF1 at 28°C was already increased in untreated LL plants compared to LL 21°C. In contrast, at 32°C RRTF1 showed a significant reduction of transcript levels in all tissues. At the same time, ZAT10 exhibited a slightly more linear response to HL SAA and heat. The results demonstrate that while the ambient temperature has a significant effect on the induction of HL SAA marker genes HL SAA still occurs at elevated temperatures.
Table 1 | Analysis of gene transcript abundance after 60 min HL LED-array treatment.

Gene locus	Annotation (TAIR10)	HL mRNA fold change	Standard error	DL mRNA fold change	Standard error	Ref*
AT1G43160	RAP2.6	2395	1606	450.4	253.1	ii
AT4G15210	ATBETA AMY	1090.3	2773	85.7	9.9	i, iii
AT3G22840	ELIP1	79.1	8	7.3	1.7	ii
AT4G34410	RRTF1	68.9	13.8	28.2	5	iii
AT5G20230	BCB	39.8	7.3	65.8	175	iii
AT4G28140	Unknown (F26K10.20)	34.8	6.8	10.4	2.5	iii
AT1G52890	ANACO19	31.6	12.6	10.5	0.8	iii
AT3G63060	EDL3	29.5	6.7	4.9	0.5	iii
AT1G12610	DDF1	21.2	3.9	10.3	3.1	iii
AT4G05410	DREB2A	15.5	1.5	4.2	0.6	i, ii
AT1G02400	DTA1	12.2	1.7	9	2.6	iii
AT5G59820	ZAT6	9.3	3	3.8	0.3	iii
AT2G35090	CAT2	8.4	0.4	4.9	1.7	iii
AT5G67300	MYB44	8.2	2.6	4.5	1.2	iii
AT1G27730	ZAT10	7.6	0.8	6.2	1.9	i
AT1G21550	Put. calcium binding protein	6.6	0.9	3.7	0.4	iii
AT2G38870	PR6-like	5.9	2.5	8.7	3.2	iii
AT4G18170	WRY28	5.5	0.5	4.3	0.4	iii
AT3G46660	UGT76E12	5.4	1.2	2.2	0.4	iii
AT5G7220	ERF2	5.2	1.6	6.5	1.4	iii
AT3G14440	NCED3	3.8	0.4	4.3	1.4	ii
AT2G35980	NHL10	3.8	0.9	2.2	0.3	iii
AT4G35090	CAT2	3.3	0.4	2.5	0.2	i
AT4G21880	NRT1.8	2.6	0.4	3.6	0.4	iii
AT5G50760	Unknown (MFB16.16)	2.2	0.1	2.8	0.5	iii
AT2G23170	GH3.3	1.3	0.5	6.2	0.9	iii
AT2G47730	GST6	2.6	0.3	2.12	0.2	ii
AT5G57560	TCH4	2.2	0.2	2.1	0.3	ii
AT5G52310	RD29a	2	0.5	1.9	0.2	ii
AT3G09640	APK2	258.5	234.2	1.2	0.6	ii
AT4G14980	ELIP2	100.5	18.4	0.7	0.1	i
AT1G67090	RBCS1A	2.2	0.1	1.1	0.7	ii
AT2G22470	AGP2	1.9	0.2	1.6	0.2	iii
AT1G17170	GST24	1.8	0.6	0.9	0.1	iii
AT2G31570	GPX2	1.7	0.4	1.2	0.2	i
AT1G05680	UGT74E2	1.4	0.1	0.9	0.2	iii
AT1G29910	LHC12	1.3	0.1	1.4	0.2	ii
AT2G27030	CAM5	1.1	0.1	1.1	0	ii
AT4G23630	EX1	1.1	0.1	1.4	0.1	ii
AT3G57260	PR2	0.7	0.4	0.8	0.3	ii

References used for gene selection: i. Karpinski et al. (1999), Mullineaux et al. (2000), Rossel et al. (2007), Rossel et al. (2002), ii. Rapp and Mullet (1991), Yamaguchi-Shinozaki and Shinozaki (1993), Braam et al. (1997), Hutin et al. (2003), Barrero et al. (2006), Lee et al. (2007), Zhu et al. (2010), iii Rossel et al. (2007).

Bold indicates gene fold change.

To assess the role of humidity in the induction of HL SAA, different humidity levels were used (30, 55, and 90% RH). Normalizing transcript levels of HL spot exposed plants to LL 90% RH revealed that humidity directly affects the induction of HL SAA. Even though independent samples t-tests for each treatment show statistically significant differences between LL samples at 90% humidity, LSD tests on one-way ANOVAs on all sample groups reveal that the difference between the expression of both marker genes under lower levels of humidity in LL and DL tissues is not statistically disparate ($P > 0.05$; Figure 3B). This is especially...
Table 2 | Real-time RT-PCR primers and Universal ProbeLibrary probes (Roche) used for quantitative transcript analysis.

Target sequence annotation	Gene locus	Universal Probe Library probe	Primer sequences
ACS2	AT1G01480	80	F
			CCGACACTTTTACGAGGATGG
			R
			GCTCGAGAAAGAAGTGGATAG
AGP2	AT2G22470	15	F
			GTTGTCCTTCTCCTCCTCCCA
			R
			TGGAGTTAATCCACCGCGGAAG
ANOCC19	AT1G52890	143	F
			CCAAACGCGACTTTGCTCCCA
			R
			TTGTCCATCTTTGATGAAGAAGG
APX2	AT3G09640	10	F
			TCTACTGTTGAGATCTGGGCAA
			R
			CACACTCTTTAGTATGATCCACACCC
ATBETA AMY	AT4G15210	116	F
			CGCCCTTAGCTTATGCTCC
			R
			ACGTTGAAGCTGGTGTTCAG
BCB	AT5G20230	3	F
			GTAGCCGACGGACTCGGAAT
			R
			TTCTGTTACACAAGCTCCACATCA
CAM5	AT2G27030	103	F
			GTCCAAGTGTTATGTAGGCAA
			R
			GAATTGCTACTACGCTTGTGCT
CAT2	AT4G35090	25	F
			TCTGTTGGTCTCCTGTTGGA
			R
			TGTGTAATCTCAGAGAGGATAGGA
CYCLO	AT2G29060	103	F
			GGCAGTCTCTCAAACGCTCGAAA
			R
			TTCCCTTGTAGATGAGGTTTCTCC
DDF1	AT1G12610	12	F
			CGGAGATGAGCGCTTAAAGAAGG
			R
			TGCCCCTTGAACTCGTGATGA
DREB2A	AT5G06410	121	F
			GATTTTCAAAATTTGCACTCTA
			R
			TGGTCATCTTATCCTCACTCTGA
DTA1	AT1G02400	141	F
			TCATGATGATCCTTTCAAGTTCA
			R
			CAAATCTCAAACGCTCGTGA
EDL3	AT3G63060	28	F
			ATGCCCGCAGCAAGATCC
			R
			CAGAAAGAACATGATCTGGCTAAC
ELIP1	AT3G22840	126	F
			GCACAAGAATTTGACGTTCG
			R
			CGAAACAATCCACACCAT
ELIP2	AT4G14690	101	F
			CACCCAAATAACGCCACAG
			R
			GCCAACTTCAAACGCTCCACCT
ERF11	AT1G28370	82	F
			GCCTAAACAACACGAAAGTGA
			R
			AGCTCCCATGCTGTCTTC
ERF2	AT5G47220	82	F
			TTAGGAGAAGGAGAAGTTCA
			R
			AATTCCCACAGCTCTC
EX1	AT4G33630	116	F
			AGAAAGAAGAAGAAGATTCTGTCAAGA
			R
			ATTGTGCAAAACCGCACAG
GH3.3	AT2G23170	148	F
			CATCAGACAAGTTCCTCAAAGC
			R
			GTCGCTTACTGCTTCATCA
GH3.5	AT4G27260	148	F
			CATCTCAGTTCTCACAAGC
			R
			ATCCGGAACAGCTGTCATCA
GPX2	AT2G31570	91	F
			CCGTATGGCAAGCTTTACAG
			R
			GACAGTCCAAATCTCCTGTCG
GST6	AT2G47730	15	F
			AGCAAGACAGACGCACCTT
			R
			TTGGACTGAAAAAACGCTGTA
GST24	AT1G17170	12	F
			AGACGGTGGCAGCACAATAC
			R
			TCTCTCGCCGATACACTTCA
LHCBI.2	AT1G29910	110	F
			CCCACATTGAGCCTTGGTACC
			R
			CCGCTTGGGAGCCTCCTGAC
MYB44	AT5G67300	98	F
			AGAGAAAGGAGTTGACACACAG
			R
			ACCTCGGGTAGGTTGATTTCA
NCEO3	AT3G14440	22	F
			TGCCGTTGAGGAGTCTCGG
			R
			TTCTCGCAGACTCGTGGAA

(Continued)
Table 2 | Continued

Target sequence annotation	Gene locus	Universal Probe Library probe	Primer sequences
NHL10	AT2G35980	24	F GCTCTCTAGGTCCATCAGT
			R GTGCCACAGCTGGATAGT
NRT1.8	AT4G21680	47	F TGTGACCATGAAAGATGGA
			R TGTAACATAGCGCTCATCAAG
PIN3	AT1G70940	59	F TCTTGGAATGCGCAAATGTTAGT
			R CTAAAGCCTGACGGTAAAAC
PIN4	AT2G01420	159	F TGCCAAAGATTATACAAACATTC
			R TGGGTGAAAGTGCATATT
PIN7	AT1G23080	159	F TGGGCTCTTGGTCTTCTC
			R TCACCAAAGCTGAAATGTC
PP2A	AT1G13320	29	F GACCGGAGCAACTGAGCAGCTG
			R AAACAGTTGGAACATTTCCCAAGA
PR2	AT3G57260	111	F GCTTAGCTCCACACCAACTG
			R CCGTAGACATATCCGGATT
PR6-like	AT2G38870	155	F GACAGTGGTGTGGTTATTG
			R AAATTTGAGGTGGTTAACAAAGAA
Putative calcium binding protein	AT1G21550	63	F GATGTTGGAAGCTGGCTAGG
			R CATTCTCCACACATCCAAAG
Putative zinc finger protein	AT2G42360	35	F AAACACGCTGAACTGAGCAGCTG
			R CCGGGGATACACTACCTTCGGT
RAP2.6	AT1G43160	140	F GACAGTGGTGCTAAGAGAGA
			R TGAAGTTTCACATCTTACGAC
RBCS1A	AT1G67090	8	F CGCTTCTCCACACGGACTTA
			R AGTTGGTGGTGTGACCTTCG
RD29a	AT5G52310	69	F AGCGTAGACACCCGATAAC
			R CAATCTCCACACGTCCTACCA
RRTF1	AT4G34410	68	F TCCTGGATCATACCTCTTCAA
			R AGACTGTGTCGGTCGGTGA
TCH4	AT5G57560	6	F GTCAACAAAGGATGAAGTAGG
			R CCTCTCCACACGTCCTTAC
UGT76E12	AT3G46660	138	F TCTTTGTGATACCTCTTACCAAGA
			R CTTCTGGCTCCACACGATG
UGT74E2	AT1G06580	29	F TGTTGGAAAGGTGGGTTGA
			R TCTTGTCTTCACGACCAAG
Unknown (F26K10.20)	AT4G28140	143	F TCTGTCAAACCCCTTTCCC
			R AAAAGGGAAGCGCTCCTAAC
Unknown (MFB16.16)	AT5G50780	152	F CAAAAGGGAAGCGCTCCTAAC
			R GAGCAACAGTGAACCGTGAAC
WRY28	AT4G18170	70	F AGAGCGCCAGCTTACTACAGC
			R CATTTGTCCATACCTAATCCAA
ZAT6	AT5G04340	8	F CTCGCGACGGAGTAAAGAAP
			R AACACAGGAGGAGAAGAAC
ZAT10	AT1G27730	31	F GACGACGAGCGAAGCTCCTCAA
			R AGAACCATGAGGCCAAGAAGC
ZAT12	AT5G59820	103	F CCCACGCTGACTGTTGA
			R TCAAAAGTCCACACATCTTCA

apparent at 30% RH, where the ability to induce distal expression of both RRTF1 and ZAT10 is almost abolished. Therefore, both humidity and temperature have an impact on the induction of HL SAA in distal leaves; with low humidity largely abolishing HL SAA compared to untreated, low humidity exposed plants.

LEAF AGE SPECIFIC RESPONSES TO SHORT TERM HL SAA

In a prior study, treating 1/3 of the rosette with HL for 60 min increased the tolerance to H₂O₂-mediated bleaching of leaf disks (Rossel et al., 2007). The new treatment system however exposes a much smaller area of a single leaf with HL,
FIGURE 2 | Influence of duration, intensity, and quality of HL on SAA-mediated gene expression. (A), (C), and (E) RRTF1; (B), (D), and (F) ZAT10. LL (black bars, 40 ± 25 µmol photons m⁻² s⁻¹), HL-treated leaves (white, 1500 ± 50 µmol photons m⁻² s⁻¹), and distal leaves (grey). (A,B) Duration of HL (1500 µmol photons m⁻² s⁻¹) treatments after 0, 5, 30, 60, 120 min; (C,D) 60 min HL at 250, 500, 1000, and 1500 ± 50 µmol photons m⁻² s⁻¹; (E,F) 60 min HL (1500 µmol photons m⁻² s⁻¹) using LEDs of different light qualities: LL control plants (black, LL), distal (grey), white HL (WL), ultra violet light (UVL), blue (BL), green (GL), yellow (YL), red (RL), and far-red (FRL). For each sample n = 6, *p < 0.005, **p < 0.001, n.s., not significant, error bars indicate standard error. LSD post hoc tests from one-way ANOVAs show that for both RRTF1 and ZAT10 plants under white and blue light LED treatments caused the significant SAA gene induction (P < 0.05). For spectral details, Section “Materials and Methods” and Figure 1.

and thus a preliminary investigation into whether this has an impact on the HL SAA physiological response was assessed. The capacity of plant tissues to resist oxidative damage was measured by conducting an in vitro photo-oxidative stress tolerance assay which determines the degree of bleaching in response to HL and exogenous H₂O₂ (Förster et al., 2005; Rossel et al., 2007). As described in the Section “Materials and Methods” this assay uses HL and H₂O₂ as powerful reducing agents to extenuate and rapidly cause oxidative damage to plant tissues, thus inducing pigment bleaching. The extent and the rate at which bleaching occurs can thus be used to estimate the extent of photo-oxidative stress tolerance in plant tissues. However,
variability between replicates was greater than variability between treatments (Figure 4A).

The variability between leaf disks was hypothesized to be a result of sampling leaves at different developmental stages. Indeed, an in vitro oxidative stress tolerance assay investigating leaf positional effects across an Arabidopsis rosette under normal LL growth conditions indicated basal leaf age-dependent tolerance in younger leaves (Figures 4B,C). Consequently, leaf age-dependent HL SAA transcriptional responses in the exposed and adjacent leaves were measured. Mature, fully expanded leaf 6 (Figures 5A–C) or 5 (Figures 5D,E) were also exposed to the HL LED-array, and the distal response quantified in two ways: tissue was either sampled from within the same leaf, immediately above (younger) and below (older; Figures 5B,C), or sampled only from the three younger leaves (Figures 5D,E). Independent samples t-tests for each leaf show statistically significant induction of the two marker genes in all treated tissues compared to LL controls (Figures 5B–E). More specifically, LSD tests on one-way ANOVAs combining all tissues show significant differences between leaf 5 and 7 when leaf 6 is treated with HL (P < 0.05; Figures 5B,C) and also between leaf 5, 6, and 8 when leaf 5 is treated (P < 0.05; Figures 5D,E). Thus revealing that in general, distal tissue within the treated leaf, or immediately adjacent, had comparable accumulation of transcripts to the exposed leaf, whereas transcript levels then decreased consistently in progressively younger leaves.

Based on the results of Figures 4 and 5, oxidative stress tolerance was investigated using the in vitro photo-oxidative stress tolerance assay taking leaf position into account (Figure 6A). Leaf 4 was treated with HL spot, leaf disks sampled from all leaves and the assay performed as described in Section “Materials and Methods.” Results
from this *in vitro* assay did not indicate any substantial difference in photobleaching development between HL SAA acclimated and non-acclimated plants; however, there was a general trend of increased oxidative tolerance in younger tissues (Figure 6A).
Age-dependent HL SAA was then investigated in vivo by determining the first appearance of photobleaching in intact leaves subject to continuous HL after the HL spot treatment. This treatment was used to determine whether there is a specific spatial and age-dependent pattern of the onset of photobleaching as a result of HL SAA. *Arabidopsis* plants were either treated with HL SAA or left non-acclimated. The entire rosette was then subjected to 20 h HL and appearance of photobleaching recorded after 0, 4, 6, 16, and 20 h (Figures 6B,C). In both treated and untreated plants there was less and a slower rate of induction of bleaching in younger leaves. Interestingly, the temporal aspect of this assay revealed a slight difference between HL SAA acclimated and control, non-acclimated plants in that most HL SAA plants developed photobleaching at 20 h, whereas photobleaching in control plants appeared more rapidly and sporadically across the rosette under HL (indicated by increased number of darker shaded boxes). The temporal aspect of this assay indicates that HL SAA may be responsible for the coordinated acclimation of leaves across the rosette that could confer resistance to stress within the duration of a natural day length.

THE INFLUENCE OF REPEATED, TRANSIENT HL SAA ON ACCLIMATION IN EXISTING LEAVES

As plants exposed to short term HL SAA treatments failed to generate a strong acclimation response, we hypothesized that repetitive treatments are required to generate stronger acclimation responses. Under long term HL conditions systemic signaling from mature leaves influences the development of new, emerging tissues mediating changes in leaf structure and thickness, chloroplast prevalence, and growth rates (Coupe et al., 2006; Araya et al., 2008; Jiang et al., 2011). However, how existing leaves respond to repeated, short term HL spot treatments in distal and exposed leaves is unknown. Plants were subject to three, 1 h HL spot treatments per day for 8 days (Figure 7). Interestingly, analysis of HL SAA treated plants showed that the exposed leaf (6) and young emerging leaves (11+) of the HL-treated plants exhibited a statistically significant increased tolerance to oxidative stress after repeated, transient stress than their respective LL controls (Figure 7). By contrast, leaves 3–5 and 7–10 showed no significant difference between the respective HL-treated and non-treated tissues.

To determine if the acclimation response to repeated 1 h HL treatments was also reflected in changes to photosynthesis and photoinhibition, two photosynthetic parameters, Φ_{PSII} (Figure 8) and NPQ (Figure 9), were measured at the end of the 8-day treatment. The measurements were undertaken at both 150 and 500 μmol photons $\text{m}^{-2}\text{s}^{-1}$. Under both light intensities, all leaves from HL-exposed and untreated plants exhibited relatively similar Φ_{PSII} values (Figure 8), except for leaf 6 of the HL-exposed plants, which had slightly increased levels of Φ_{PSII}. On the other hand, NPQ was markedly higher in the exposed leaf 6 and significantly higher in distal (HL SAA) tissue than in controls for the younger leaves (Figure 9). These observations indicate that repeated transient HL SAA treatments result in long term acclimation to HL in both exposed and distal leaves.

HL SAA AND AUXIN

Our initial analysis of different HL SAA marker transcript levels demonstrated specific distal expression of *GH3.3* (Table 1), an
FIGURE 8 | Comparison of photoinhibition and recovery in plants after the repeated, transient HL SAA acclimation experiment exposed to 150 and 500 µmol photons m⁻² s⁻¹. Treated plants were subjected to three separate 1 h HL LED-spot treatments per day for 8 days prior to measurement. (A) \(F_{v}/F_{m}\) and \(\Phi_{PSII}\) measurements of both HL LED-array treated (circle) and untreated plants (square) subsequently exposed to either 150 (closed symbol) or 500 µmol photons m⁻² s⁻¹ (open symbol) and dark for the indicated time are shown. The leaf position is indicated. The entire experiment was performed in triplicate, one representative is shown for which \(n = 3\). (B) A representative false colour image of \(F_{v}/F_{m}\) and \(\Phi_{PSII}\) (measured at 420 s) from HL LED-array exposed (HL) and untreated (LL) plants under 100 and 500 µmol photons m⁻² s⁻¹. The colored scale bar represents the corresponding value of \(\Phi_{PSII}\) or \(F_{v}/F_{m}\), increasing in value from left (red) to right (pink).
Non-photochemical quenching induction and relaxation in plants after repeated, transient HL SAA. Treated plants were subjected to three separate 1 h HL LED-spot treatments per day for 8 days prior to measurement. (A) NPQ measurements of both HL LED-array treated (circle) and control plants (square) subsequently exposed to either 150 (closed symbol) or 500 µmol photons m$^{-2}$s$^{-1}$ (open symbol) and dark for the indicated time are shown. The leaf position is indicated. The entire experiment was performed in triplicate, one representative is shown for which $n = 3$. (B) A representative false color image of NPQ (measured at 420 s) from HL LED-array exposed (HL) and untreated (LL) plants under 100 and 500 µmol photons m$^{-2}$s$^{-1}$. The colored scale bar represents the corresponding value of NPQ increasing in value from left (red) to right (pink). The circle of dark blue on the treated leaf six is indicated with an arrow.
important gene in regulating auxin homeostasis (Staswick et al., 2005). This may indicate connections between HL SAA and developmental processes mediated by auxin. To determine the influence of HL SAA on auxin-regulated transcripts, we compared the genes that exhibited significant changes in the distal leaves of HL SAA plants (Rossel et al., 2007) with data from six different auxin treatment studies (Sawa et al., 2002; Zhao et al., 2003; Redman et al., 2004; Overvoorde et al., 2005; Nemhauser et al., 2006; Lee et al., 2009). The analysis revealed that a subset of 123 (out of 602) SAA transcripts were co-expressed with auxin-responsive genes (total of 1188; **Figure 10, Table 2**). This was a significantly higher overlap of genes than expected by random chance (two-sample z-statistic = 15.6, equivalent p = 0.01). Using GO annotation (TAIR 10, 2012) it became evident that the co-expressed genes in both HL SAA and two or more auxin treatment experiments exhibited a large proportion of genes involved in either auxin-related (29%) or plant stress processes (29%).

The connection between HL SAA and auxin was further investigated by analyzing the expression of auxin-responsive genes and the spatial distribution of auxin. Five transcripts were chosen (GH3.3, GH3.5, PIN-FORMED3 (PIN3), PIN4, and PIN7). After the LED-spot treatment, independent samples t-tests show that both GH3 transcripts exhibited statistically significant induction in the distal leaves (**Figures 11A,B**). The induced expression of the GH3 transcripts is also specifically limited to that of the distal tissues, as LSD tests on one-way ANOVAs combining all tissues show significant differences between LL, DL, and HL-treated tissues (P < 0.05). Whereas PIN4 and PIN7 were down-regulated in HL and distal tissues and PIN3 exhibited no significant changes in transcript levels (**Figures 11C-E**). Auxin distribution was inferred by using the auxin-responsive DR5:GUS transgene. Under LL, plants exhibited typical DR5:GUS staining, mainly localized to the leaf borders, hydathodes, and main vascular tissues (**Figure 11F**). In contrast, after HL spot treatment the distal leaves showed increased distribution of DR5:GUS in secondary vasculature and mesophyll cells (**Figure 11F**).

DISCUSSION

In this study we shed light on the processes which govern the initiation of HL SAA and retrograde signaling and provided evidence for acclimation in treated and young, distal leaves that include changes to photo-oxidative stress tolerance, NPQ, and auxin-responsive gene expression in response to repeated 1 h treatments. However, given the disparate nature of the HL treatment systems and marker genes used in this study, further DCMU treatments with our system would have to be conducted to support this theory. We demonstrated that the signal was initiated at low increases in light intensity, not just in response to severe stress of more than 10× of normal growth light as used in earlier studies (Karpinski et al., 1999; Mateo et al., 2004; Rossel et al., 2007; Muhlenbock et al., 2008; Miller et al., 2009; Szczynska-Hebda et al., 2010). Furthermore, the induction of these transcripts in distal tissues using a small area of applied light at moderate intensity indicates that the signaling of HL stress is not an average integration of shade and light signals generated across the plant, but a response to HL in a specific portion of a single leaf.

UVA, blue, yellow and red light-exposed plants exhibited significant systemic induction of ZAT10 and RRTF1 transcripts (**Figures 2E,F**), however the increase in mRNA under these conditions is a fraction of the observed response under white HL (**Figure 2C**). This may reflect the impact of the specific wavelengths on the rate of photosynthesis in the treated leaf (McCree, 1972), but would require additional photosynthetic measurements for confirmation. That is, while the intensity was the same for all treatments as in this study (1500 ± 50 mmol photons m−2 s−1), the narrow wavelength would result in a lower overall total photosynthetic available radiation (PAR) available for capture by chlorophylls and carotenoids. Interestingly, for both UVA and blue light the lack of systemic response is in spite of an observed strong physiological photobleaching response in the treated tissue (data not shown). This indicates the presence of separate retrograde signaling systems which activate HL SAA independent from those that govern blue light responses and photodamage acclimation responses (Franklin and Whitehead, 2004; Suetsugu and Wada, 2007; Takahashi et al., 2010; Lehmann et al., 2011). This is further supported by the observation that the white LEDs do not produce any UV spectra yet exhibit the highest induction of HL SAA and that HL SAA induction occurs at intensities as low as 250 μmol photons m−2 s−1. Such intensities are unlikely to even induce the xanthophyll cycle as zeaxanthin typically accumulates in response to 400 μmol photons m−2 s−1 and above (Demmig-Adams et al., 1989). Thus, the induction at 250 μmol photons m−2 s−1 indicates that changes in photosynthetic parameters and subsequent retrograde signals initiate HL SAA, not oxidative stress and damage, although the latter may contribute to the intensity of the response at higher light intensities.

Interestingly, blue light treatments resulted in increased transcript induction for both RRTF1 and ZAT10 compared to the other wavelengths (**Figures 2E,F**). This may be attributed to the known role of blue light in multiple acclimation responses (Liscum and Briggs, 1995; Folta and Spalding, 2001; Jarillo et al., 2001; Danon et al., 2006; Matsuda et al., 2008). Contrary to this hypothesis, it was shown that under HL the systemic induction of APX1 and APX2 exhibit no apparent attenuation and dependency of blue light perception via cryptochrome photoreceptors in double mutants cry1/cry2 (Szczynska-Hebda et al., 2010). The discrepancy between the analyses and results presented in this study highlight the complexity of HL SAA and possible involvement of different retrograde signals including ROS and...
Induccion de APX2 (Estavillo et al., 2011). Además, la humedad baja ya se conoce como genetico similar impact on ABA induction and expresion of tal leaves. With respect to epistasis, as noted above, both drought distal leaves at lower RH. This either reflects an epistatic effect, or may have been expected. Y et, there was no additive induction in is if anything a synergistic or additive effect of low RH and HL interaction. fotosynthesis-mediated signaling pathways. Two major forms of ROS, H$_2$O$_2$ and O$_2$, trigger diferent transcriptional responses including induction of ZAT10 and RRTF1, respectively (op den Camp et al., 2003; Gadjev et al., 2006). Under HL SAA the downstream transcriptional regulation of APX isoforms may be influenced by both H$_2$O$_2$-derived and blue light O$_2$-derived signaling and be dependent on how these different ROS signaling pathways interact.

THE INFLUENCE OF TEMPERATURE AND HUMIDITY ON HL SAA

Even though heat exposure is able to cause photoinhibition (Allakhverdiev et al., 2008; Sainz et al., 2010) and to be synergistic to photo-oxidative stress (Rossel et al., 2002; Mittler, 2006), our study reveals that moderate heat stress does not influence HL SAA induction. That is, the increase in induction of RRTF1 and ZAT10 in distal leaves was similar at all analyzed temperatures (Figure 3), although at 32°C there was a suppression of RRTF1 transcripts relative to 21°C in all three tissues, including the control.

In contrast to increased temperatures lower RH levels proportionally inhibited HL SAA induction in distal leaves (normalized to LL 90% RH; Figure 3B). This is surprising as 70% of HL inducible genes are also induced by drought stress and there are common regulators of both pathways that alter the expression of ZAT10 and APX2, such as SAL1 (Kimura et al., 2003; Wilson et al., 2009; Estavillo et al., 2011). Furthermore, low humidity is already known to induce APX2 (Karpinski et al., 1997; Fryer et al., 2003; Hetherington and Woodward, 2003; Szechynska-Hebda et al., 2010); that is if anything a synergistic or additive effect of low RH and HL may have been expected. Yet, there was no additive induction in distal leaves at lower RH. This either reflects an epistatic effect, or the lower RH impairs the propagation of the SAA signal to distal leaves. With respect to epistasis, as noted above, both drought and HL have similar impacts on ABA induction and expresion of genes such as APX2 and ZAT10 (Rossel et al., 2006) and it could be low RH and HL SAA act via the same pathway. Contradictory to this, there is an additive increase in gene expression in HL-treated leaves at low RH (Figure 3B). Furthermore, the drought and HL stress signaling SAL1 mutant, alx8, also retains the additive increase in APX2 and ELIP2 gene expression under drought and light stress (Rossel et al., 2006; Estavillo et al., 2011). This suggests that the loss of HL SAA induction under low RH is more consistent with impaired propagation than epistasis. This is intriguing as HL SAA acts via the vasculature, but most likely not in the xylem as it is observed in upper and lower leaves (Figure 5). Proposed SAA signals include ROS and electrochemical gradients, none of which are directly impacted by changes in transpiration. How exactly low RH impacts HL SAA signaling still needs further investigation.

THE RESPONSE TO REPEATED, SHORT TERM, LOCALIZED HL

To date, the study of aclimation processes and function of HL SAA has been restricted to evaluation of the immediate adaptation responses to one or several hours of HL (Rossel et al., 2007; Muhlenbock et al., 2008; Szechynska-Hebda et al., 2010). However, our study demonstrates that the single application of a highly localized signal did not result in any observable distal aclimation *in vitro* beyond the transcriptional changes (Figures 4–6). This is in contrast to earlier reports using 1/3 rosette HL treatment that resulted in distal aclimatory changes with respect to H$_2$O$_2$ tolerance and NPQ (Karpinski et al., 1999; Rossel et al., 2007; Szechynska-Hebda et al., 2010). Significantly, repeated, short term applications of the HL spot treatment over 8 days resulted in enhanced tolerance to H$_2$O$_2$ and elevated NPQ capacity compared to LL controls (Figures 7–9). Key to these observations was that the aclimatory response was increased in younger leaves as they had lower levels of RRTF1 and ZAT10 mRNA accumulation (Figure 7), and higher basal resistance to H$_2$O$_2$ bleaching compared to LL control plants (Figure 5). Younger leaf tissues are already described to exhibit increased resistance to numerous other stress conditions.

A HL SAA and auxin global transcript profiles

HL SAA (distal)	Auxin responsive
479	123
Total: 602	

Co-expressed: 20% *, p = 0.01

FIGURE 10 Comparative analysis of HL SAA (distal) and auxin-responsive genes. (A) Venn diagram of all transcripts that exhibit significant co-expression between 60 min HL SAA treatment microarray data (Rossel et al., 2007) and at least two of the following auxin arrays (Sawa et al., 2002; Zhao et al., 2003; Redman et al., 2004; Overvoorde et al., 2005; Nemhauser et al., 2006; Lee et al., 2009). *The percentage of co-expressed genes is greater than would be expected by chance by a two-sample z-statistic (equals 15.6, equivalent p = 0.01). (B) GO annotation (TAIR 10, 2012) of co-expressed genes between HL SAA and two or more auxin treatment experiments.
FIGURE 11 | Analysis of GH3 and PIN transcript accumulation during HL SAA. Relative transcript levels of (A) GH3.3, (B) GH3.5, (C) PIN4, (D) PIN7, and (E) PIN3 after the HL SAA treatment of leaf 6 (yellow circle). Distal tissue was sampled from leaves 5, 6, and 7 (grey), distal tissue was also sampled from within the HL-treated leaf (red bar). (F) Localization and distribution of auxin visualized by DR5:GUS after HL SAA. Representative images from four different plants showing leaves 4–8 (left to right) from DR5:GUS transgenics following illumination with either LL conditions (40 ± 25 µmol photons m$^{-2}$ s$^{-1}$), HL LED-array treatment of leaf 6 (1500 ± 50 µmol photons m$^{-2}$ s$^{-1}$) for either 60 (HL 60), or 120 min (HL 120). Pairwise t-tests were performed comparing the transcript levels in HL and DL samples with those of LL samples yielding p-values as shown. Error bars indicate standard error, for each sample type, n = 6, *p < 0.05, **p < 0.001, n.s., not significant. n = 8 Per leaf for two independent auxin experiments.
Allakhverdiev, S., Kreslavski, V., Klimov, V., Aloni, R., Schwalm, K., Langhans, M., Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. *Annu. Rev. Plant Biol.*, 57, 593–628.

Aloni, R., Schwalm, K., Langhans, M., and Ulrich, C. I. (2003). Production of reactive oxygen species in Arabidopsis leaves. *Plant Physiol.*, 131, 185–194.

Araya, T., Noguchi, K., and Terashima, I. (2008). Production of reactive oxygen species in the primary leaves of bean (Phaseolus vulgaris L.) affects photosynthesis in both the primary and the first trifoliate leaves: involvement of systemic regulation. *Plant Cell Environ.*, 31, 50–61.

Asada, K. (2000). Production and scavenging of reactive oxygen species in chloroplasts and their functions. *Plant Physiol.*, 141, 1–9.

Atkin, O. K., Loveys, B. R., Atkinson, L. J., and Pons, T. L. (2006). Phenotypic plasticity and growth temperature: understanding interspecific variability. *J. Exp. Bot.*, 57, 267–281.

Baker, N. R. (2007). Chlorophyll fluorescence: a probe of photosynthesis in vivo. *Annu. Rev. Plant Biol.*, 59, 89–110.

Barrero, J. M., Rodriguez, P. L., Quezada, V., Péqueras, P., Ponce, M. R., and Miclo, J. L. (2006). Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3, and ABA1 in response to salt stress. *Plant Cell Environ.*, 29, 2000–2008.

Bartels, D., and Sunkar, R. (2005). Drought and salt tolerance in plants. *CRC Crit. Rev. Plant Sci.*, 24, 23–58.

Baupf, H., Hagemann, M., and Ferne, A. B. (2010). Photosynthesis: players, partners and origin. *Trends Plant Sci.*, 15, 330–336.

Benjamin, R., and Scheres, B. (2008). Auxin: the looping star in plant development. *Annu Rev Plant Biol.*, 59, 443–465.

Biswal, B., Joshi, P. N., Raval, M. K., and Biswal, U. C. (2011). Photosynthesis and conjugated auxin enhancing tolerance to pathogen infection in Arabidopsis thaliana. *Nat. Commun.*, 2, 1–10.

Braam, J., Sistrom, M. L., Polsenisky, D. H., Xu, W., Purugganan, M. M., Antosiewicz, D. M., et al. (1997). Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes. *Plant Cell*, 20, 535–541.

Conn, P. F., Schall, W., and Truscott, T. G. (1991). The singlet oxygen and carotenoid interaction. *J. Photochem. Photobiol. B*, 11, 41–47.

Coupe, S. A., Palmer, B. G., Lake, J. A., Overy, S. A., Oxboorph, K., Woodward, F. I., et al. (2006). Systemic signalling of environmental cues in Arabidopsis leaves. *J. Exp. Bot.*, 57, 329–341.

Danon, A., Sánchez Coll, N., and Apel, K. (2006). Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana. *Proc. Natl. Acad. Sci. U.S.A.*, 103, 17036–17041.

de Bianchi, S., Ballottari, M., Dall’Osto, L., and Bassi, R. (2010). Regulation of plant light harvesting by thermal dissipation of excess energy. *Biochem. Soc. Trans.*, 38, 651–660.

Demmg-Adams, B., Adams, W. W. III, Barker, D. H., Logan, B. A., Bowling, D. R., and Verhoeven, A. S. (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. *Physiol Plant.*, 98, 253–264.

Demmg-Adams, B., Winter, K., Kruger, A., and Crygan, F. (1989). "Light stress and photoprotection related to the carotenoid zeaxanthin in higher plants," in Photosynthesis. *Plant Biol. Ecol.*, Vol. 4, ed. W. R. Briggs (New York: Alan R. Liss, Inc.), 357–391.

Durrant, W. E., and Dong, X. (2004). Light signals, phytochromes and cross-talk with other environmental cues. *J. Exp. Bot.*, 55, 271–276.

Fryer, M. J., Ball, L., Oxboorph, K., Karpinski, S., Mullineaux, P. M., and Baker, N. R. (2003). Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. *Plant J.*, 33, 691–705.

Gadjev, I., Vanderauwera, S., Gechev, T. S., Laloi, C., Minkov, I. N., Shulaev, V., et al. (2006). Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. *Plant Physiol.*, 141, 436–445.

Gordon et al. Systemic HL stress-induced signalling
regulated independently. *Plant Mol. Biol.* 17, 813–823.

Redman, J., Haas, B., Tanimoto, G., and Town, C. (2004). Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. *Plant J.* 38, 545–561.

Rossel, J., Walter, P., Hendrickson, L., Chow, W., Poele, A., Mullineaux, P., et al. (2006). A mutation affecting ascorbate peroxidase 2 gene expression reveals a link between responses to high light and drought tolerance. *Plant Cell Environ.* 29, 269–281.

Rossel, J. B., Wilson, P. B., and Pogson, B. J. (2002). Global changes in gene expression in response to high light in Arabidopsis. *Plant Physiol.* 130, 1109–1120.

Rossel, J. B., Wilson, P. B., Hussain, D., Woo, N. S., Gordon, M. J., Mewett, O. P., et al. (2007). Systemic and intracellular responses to photooxidative stress in Arabidopsis. *Plant J.* 44, 4091–4110.

Rumeau, D., Pelizer, G., and Courtois, L. (2007). Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. *Plant Cell Environ.* 30, 1041–1051.

Sainz, M., Diaz, P., Monza, J., and Borsani, O. (2010). Heat stress results in loss of chloroplast Ca/Zn superoxide dismutase and increased damage to photosystem II in combined drought-heat stressed Lotus japonicus. *Physiol Plant* 140, 46–56.

Sawa, S., Ohgishi, M., Goda, H., Higuchi, K., Shimada, Y., Yoshida, S., et al. (2002). The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis. *Plant J.* 32, 1011–1022.

Stitt, M., and Hurry, V. (2002). A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. *Curr. Opin. Plant Biol.* 5, 199–206.

Stomp, A. M. (1992). “Histochemical localization of b-glucuronidase,” in GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression, ed. S. R. Gallagher (San Diego, CA: Academic Press), 103–113.

Suterusu, N., and Wada, M. (2007). Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. *Biol. Chem.* 388, 927–935.

Szczynska-Hebda, M., Kruk, J., Gorecka, M., Karpinska, B., and Karpinski, S. (2010). Evidence for light wavelength-specific photoreceptor-mediated signaling and memory of e light excess episodes in Arabidopsis. *Plant Cell* 22, 2201–2218.

Takagi, T., Nakamura, M., Hayashi, H., Inatugi, R., Yano, R., and Nishida, I. (2003). The leaf-order-dependent enhancement of freezing tolerance in cold-acclimated Arabidopsis rosettes is not correlated with the transcript levels of the cold-inducible transcription factors of CBF/DREB1. *Plant Physiol.* 44, 922–931.

Takahashi, S., and Badger, M. R. (2011). Photoprotection in plants: a new perspective for sun or shade type chloroplast and psalidase tissue differentiation in *Chenopodium album*. *Plant Physiol.* 42, 1303–1310.

Yano, S., and Terashima, I. (2001). Separation of local phototaion of light signal perception for sun or shade type chloroplast and palisade tissue differentiation. New light in *Chenopodium album*. *Plant Physiol.* 42, 1303–1310.

Yoon, J. Y., Shin, J. S., Shin, D. Y., Hyun, K. H., Burgos, N. R., Lee, S., et al. (2011). Tolerance to paraquat-mediated oxidative and environmental stresses in squash (*Cucurbita moschata*) leaves of various ages. *Pestic. Biochem. Physiol.* 99, 65–76.

Zhang, Z., Li, Q., Li, Z., Staswick, P. E., Wang, M., Zhu, Y., et al. (2007). Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis Rhizobium-induced stress. *Plant Physiol.* 145, 450–464.

Zhao, Y., Dai, X., Blackwell, H. E., Schreiber, S. L., and Chory, J. (2003). SIR1, an upstream component in auxin signaling identified by chemical genetics. *Science* 301, 1107–1110.