Data Article

Data on taxonomic status and phylogenetic relationship of tits

Xue-Juan Li a, Li-Liang Lin a, Ai-Ming Cui a, Jie Bai a, Xiao-Yang Wang a,b, Chao Xin a, Zhen Zhang a, Chao Yang c, Rui-Rui Gao a, Yuan Huang a,* Fu-Min Leib

a Co-Innovation Center for Qinba regions’ sustainable development, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
b Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, The Chinese Academy of Sciences, Beijing 100101, China
c Shaanxi Institute of Zoology, Xi’an 710032, China

A R T I C L E I N F O

Article history:
Received 21 July 2016
Received in revised form
17 November 2016
Accepted 23 November 2016
Available online 28 November 2016

A B S T R A C T

The data in this paper are related to the research article entitled “Taxonomic status and phylogenetic relationship of tits based on mitogenomes and nuclear segments” (X.J. Li et al., 2016) [1]. The mitochondrial genomes and nuclear segments of tits were sequenced to analyze mitochondrial characteristics and phylogeny. In the data, the analyzed results are presented. The data holds the resulting files of mitochondrial characteristics, heterogeneity, best schemes, and trees.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology, Genetics and Genomics
More specific subject area	Phylogenetics and Phylogenomics
Type of data	Figures, Tables, Trees

DOI of original article: http://dx.doi.org/10.1016/j.ympev.2016.07.022
* Corresponding authors.
E-mail addresses: yuanh@snnu.edu.cn (Y. Huang), leifm@ioz.ac.cn (F.-M. Lei).
How data was acquired

The analyses of A+T contents, conserved site percentages and P-distances, were obtained in MEGA 4.1[2]. Sequences were aligned in Muscle[3]. The best schemes were analyzed in Partitionfinder v1.1.1[4]. The heterogeneity was inferred with AliGROOVE[5]. The gene trees based on six datasets (one mitochondrial dataset and five nuclear segments) were constructed in RAxML 7.0.3[6]. A species tree was obtained with employing these gene trees in ASTRAL[7].

Data format

Experimental factors

The RY-coding method was employed for the third sites of protein-coding genes, while nuclear dataset was divided into different parts (exons and introns).

Experimental features

The phylogeny employed the best schemes inferred by PartitionFinder v1.1.1[4]. A species tree was obtained by employing gene trees in ASTRAL[7].

Data source location

Shaanxi Normal University

Data accessibility

Data is with this article

Value of the data

- The provided files of comparative mitochondrial characteristics of tits can be valuable to further summarize.
- The files of phylogenetic relationships would help to further study the phylogeny of tits and even Passeriformes.
- The provided `.tree` files can be directly used to compare with other results.

1. Data

In the data, Figs. 1 and 2 show base compositions and conserved site percentages of tits, respectively. Fig. 3 is the result of heterogeneity. Fig. 4 shows gene trees and a species tree. Table 1 describes the taxonomic samples. Table 2 lists the primer sequences. Table 3 is the P-distance based on mitochondrial dataset. Table 4 shows the best schemes.

2. Experimental design, materials and methods

This study sampled 13 individuals of tits by using *Sylviparus modestus* and *Remiz consobrinus* as outgroups. Each gene was aligned in Muscle[3] independently. The mitochondrial characteristics, including A+T contents, conserved site percentages and P-distances, were analyzed by using MEGA 4.1[2], and the results can be found in Figs. 1 and 2 and Table 3, respectively.

Four datasets, A: the first and second sites of protein-coding genes, B: protein-coding genes with the third sites not employing RY-coding method, C: 37 mitochondrial genes with the third sites of protein-coding genes not using RY-coding method plus one control region, D: five nuclear segments, were used to analyze the heterogeneity in AliGROOVE[5], and the results can be found in Fig. 3. The best schemes were analyzed by using Partitionfinder v1.1.1[4], and the results were in Table 4. The gene trees in Fig. 4 were constructed by using RAxML 7.0.3[6], employing 1000 replications, and these results were used to construct a species tree by using ASTRAL[7].
Fig. 1. Nucleotide compositions of different mitochondrial partitions in 10 tits species. Note: AT-skew ([A−T]/[A+T]), GC-skew ([G−C]/[G+C]), PCG-1st (the first codon positions of protein-coding genes), PCG-2nd (the second codon positions of protein-coding genes), PCG-3rd (the third codon positions of protein-coding genes), tRNA-H (the tRNA genes on H-strand), tRNA-L (the tRNA genes on L-strand).

Fig. 2. Conserved site percentages of mitochondrial genes among 10 tits species.
Fig. 3. The heterogeneity analyzed by AliGROOVE. Note: The heterogeneity continuously decreased from -1 (red coloring) to $+1$ (blue coloring). A: the first and second codon positions of protein-coding genes, B: protein-coding genes with the third codon positions not using RY-coding method, C: mitochondrial genome with the third codon positions not using RY-coding method, D: nuclear segments dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 4. The gene trees and species tree analyzed by ASTRAL. Note: The gene trees (A–F) were constructed based on maximum likelihood method. A: MOS; B: FGB; C: ALDOB; D: PCBD1; E: CALB1; F: mitochondrial genome; G: species tree.
Family	Genus	Species and subspecies	Sample locality/source	GenBank accession Nos.					
			Mitogenome	MOS	FGB	ALDOB	PCBD1	CALB1	
Paridae	Parus	Parus major	Beach forestry centre, Zhouqu County, Gansu Province	KX388473	KX388398	KX388413	KX388428	KX388443	KX388458
		Parus major	Baihuling, Gaoligongshan, Yunnan Province	KX388480	KX388405	KX388420	KX388435	KX388450	KX388465
		Parus monticolus	Beach forestry centre, Zhouqu County, Gansu Province	KX388474	KX388399	KX388414	KX388429	KX388444	KX388459
		Parus monticolus	Dahaoping, Gaoligongshan, Yunnan Province	KX388481	KX388406	KX388421	KX388436	KX388451	KX388466
		Poecile							
		Parus montanus	Liaocheng, Yongdeng County, Gansu Province	KX388478	KX388403	KX388418	KX388433	KX388448	KX388463
		Parus montanus	Maoershan, Shangzhi City, Heilongjiang Province	KX388479	KX388404	KX388419	KX388434	KX388449	KX388464
		Parus palustris	Beach forestry centre, Zhouqu County, Gansu Province	KX388475	KX388400	KX388415	KX388430	KX388445	KX388460
	Cyanistes	Parus cyanus	Kizil, Baicheng County, Xinjiang	KX388472	KX388397	KX388412	KX388427	KX388442	KX388457
	Machlolophus	Parus spilonotus	Longqishan Nature Reserve, Fujian Province	KX388476	KX388401	KX388416	KX388431	KX388446	KX388461
	Lophophanes	Parus dichrous	Sanguanmiao, Shaanxi Province	KX388477	KX388402	KX388417	KX388432	KX388447	KX388462
	Periparus	Parus ater	Wen County, Gansu Province	NC_026223	KX388408	KX388423	KX388438	KX388453	KX388468
	Pardaliparus	Parus venustulius	Yangxin County, Huangshi City, Hubei Province	NC_026701	KX388410	KX388425	KX388440	KX388455	KX388470
	Pseudopodoces	Pseudopodoces humilis	Bird Island, Qinghai Lake, Qinghai Province	KP001174	KX388407	KX388422	KX388437	KX388452	KX388467
	Sylviparus	Sylviparus modestus	Luding County, Sichuan Province	NC_026793	KX388409	KX388424	KX388439	KX388454	KX388469
Remizidae	Remiz	Remiz consobrinus	Xinxing Town, Panjin City, Liaoning Province	NC_021641	KX388411	KX388426	KX388441	KX388456	KX388471
Table 2
The primers used in this study.

Name	Sequence(5′–3′)	Name	Sequence(5′–3′)
L1263b^a	AAAGCATRRCACTGAA	H10343b	TGGGCTCATGTGACKTRACKCC
H1859b	TCGATTAGAGAACGCCTCCTCA	L10236b	TCTCTGCACTTTCCACCATAG
L1754b	TGGGATTAGATACCCCACTATG	H10884b^a	GGGTCAAWRCRCATCTTCCATAG
H2294b	TTTCAGGTGTAAGCTGAATGCTT	L10635b^a	CACACTTYGAAGCTGACGAC
L2260ba	CAAGGTAAGTACCCCACTGATT	H11837b	ARGGTRGCCTRCAATGGRATRAAAA
H2891ba	TTTCAGGTGTAAGCTGAATGCTT	L10234b^a	CTTCTGAGCMTCCTAGCGAC
L3218b	CGAAGTCAGCACCAGCATTACC	H11047b	ATCTTACCTTTGACCATACCAA
H3784b	CGGCTCTGAGATACCCCACTATG	L13040b^a	ATCCATGCTTCAAGGAC
L3722b	CGGCTCTGAGATACCCCACTATG	H13563b^a	TCGAGGCHDCRGRRTTGC
H4170b	CCAACCTAGATGACAGAGGAGGAC	L13525b	GMYGAGACATGATGATCATCTAC
L3803b	CTAGATACCCCACTGAGGAACG	H14127b	CCAATTTCTGACRTCTT
H4644b	CTAGATACCCCACTGAGGAACG	L14080b	TCAATCGACCCATTCCTAAAG
L4500b	GTAGGCTACCAATTTACCTGCAARG	H15049b	GTCTGCTCTGCTAGTYATG
H5201b	CGGCTCTGAGATACCCCACTATG	L14770b	TMGGCACCAAGAYT
L5143b	CGGCTCTGAGATACCCCACTATG	H15295b	CCTCAGAATTGATATTGCTATCAG
H5766b	CGGCTCTGAGATACCCCACTATG	L14996b	AACATCTAAGTACATGTAAGAACTTYGG
L5758b	CGGCTCTGAGATACCCCACTATG	H15646b	GGYGGTCAATTTCTGCTTC
H6681b^a	CGGCTCTGAGATACCCCACTATG	L15413b	GYGGATYTTGAGTACAAAC
L6615b^a	CGGCTCTGAGATACCCCACTATG	H16064b^a	CTCCAAATTTCTGACRTCTT
H7122b	CGGCTCTGAGATACCCCACTATG	L15725b^a	AAACCHGAGATGAGTACATG
H7036b	CGGCTCTGAGATACCCCACTATG	H1530b^a	GGTCTGCTGCCACAGTCAT
H7458b	CGGCTCTGAGATACCCCACTATG	L14127b	CCAATTTCTGACRTCTT
L7525b	CGGCTCTGAGATACCCCACTATG	L14770b	TMGGCACCAAGAYT
H8121b	CGGCTCTGAGATACCCCACTATG	L14996b	AACATCTAAGTACATGTAAGAACTTYGG
L7987b	CGGCTCTGAGATACCCCACTATG	H15646b	GGYGGTCAATTTCTGCTTC
H8628b	CGGCTCTGAGATACCCCACTATG	L15413b	GYGGATYTTGAGTACAAAC
L8386b	CGGCTCTGAGATACCCCACTATG	H16064b^a	CTCCAAATTTCTGACRTCTT
H9235b	CGGCTCTGAGATACCCCACTATG	H15725b^a	AAACCHGAGATGAGTACATG
L8929b	CGGCTCTGAGATACCCCACTATG	L14127b	CCAATTTCTGACRTCTT
H9726b	CGGCTCTGAGATACCCCACTATG	L14770b	TMGGCACCAAGAYT
L9700b	CGGCTCTGAGATACCCCACTATG	H15646b	GGYGGTCAATTTCTGCTTC

^a Means the primers used in LA-PCR.
Table 3
The P-distance based on mitogenome dataset.

Species	Genus
Parus cyanus	Cyanistes
Parus major	Parus
Parus monticolus	Poecile
Parus palustris	Machlolaphus
Parus spilonotus	Lophophanes
Parus dichrous	Pseudopodoces
Parus montanus	Periparus
Parus montanus baicalensis	Pardaliparus
Parus major	0.085
Parus monticolus	0.084 0.051
Parus palustris	0.092 0.087 0.088
Parus spilonotus	0.090 0.084 0.083 0.094
Parus dichrous	0.096 0.089 0.089 0.080 0.096
Parus montanus	0.091 0.088 0.088 0.038 0.093 0.080 0.090 0.088 0.088
Parus montanus baicalensis	0.086 0.021 0.052 0.087 0.084 0.090 0.088 0.088
Parus major	0.085 0.052 0.010 0.088 0.083 0.089 0.088 0.088 0.053
Parus monticolus	0.096 0.091 0.090 0.097 0.094 0.101 0.100 0.099 0.091 0.091
Pseudopodoces humilis	0.093 0.090 0.089 0.080 0.094 0.082 0.078 0.079 0.090 0.089 0.102
Parus ater	0.092 0.089 0.086 0.077 0.092 0.080 0.077 0.076 0.088 0.086 0.099 0.071
Parus venustulus	0.092 0.089 0.086 0.077 0.092 0.080 0.077 0.076 0.088 0.086 0.099 0.071
Table 4
Best schemes analyzed by PartitionFinder.

Dataset	Subset	Subset partitions	Optimal model
Protein-coding	P1	atp6_pos1, nad1_pos1, nad2_pos1, nad3_pos1, nad4L_pos1, nad4_pos1, nad5_pos1	GTR + I + G
	P2	atp6_pos2, atp8_pos2, cox3_pos2, cox2_pos2, cox1_pos2, cytb_pos2, nad1_pos2,	GTR + I + G
		nad2_pos2, nad3_pos2, nad4L_pos2, nad4_pos2, nad5_pos2	
	P3	atp6_pos3, atp8_pos1, atp8_pos3, cox3_pos3, cox2_pos3, cox1_pos3, cytb_pos3,	GTR + G
		nad1_pos3, nad2_pos3, nad3_pos3, nad4L_pos3, nad4_pos3	
	P4	cox3_pos1, cox2_pos1, cox1_pos1, cytb_pos1	GTR + I + G
	P5	nad5_pos3, nad6_pos3	GTR + G
	P6	nad6_pos1, nad6_pos2	GTR + G
Mitogenomes	P1	rrnS, rrnL, atp6_pos1, nad1_pos1, nad2_pos1, nad3_pos1, nad4L_pos1, nad4_pos1,	GTR + I + G
		nad5_pos1, trnR, trnD, trnG, trnH, trnL, trnM, trnF, trnS(agy), trnW, trnV	
	P2	atp6_pos2, atp8_pos2, cox3_pos2, cox2_pos2, cox1_pos2, cytb_pos2, nad1_pos2,	GTR + I + G
		nad2_pos2, nad3_pos2, nad4L_pos2, nad4_pos2, nad5_pos2	
	P3	atp6_pos3, atp8_pos3, cox3_pos3, cox2_pos3, cox1_pos3, cytb_pos3, D_loop, nad1_-	GTR + I + G
		pos3, nad2_pos3, nad3_pos3, nad4L_pos3, nad4_pos3	
	P4	cox3_pos1, cox2_pos1, cox1_pos1, cytb_pos1, trnN, trnL(uur), trnL(cun), trnS(ucn),	GTR + I + G
		trnT, trnY	
	P5	atp8_pos1, nad5_pos3, nad6_pos3	GTR + I + G
	P6	nad6_pos1, nad6_pos2, trnA, trnC, trnQ, trnE, trnP	GTR + I + G

Nuclear segments

P1	ALDOB_exon, CALB1_exon, MOS_exon, PCBD1_exon, PCBD1_intron, FGB_exon	GTR + I + G
		GTR + I + G
P2	ALDOB_intron, CALB1_intron, FGB_intron	GTR + G

Note: Pos1, pos2, and pos3 indicate the first, second and third codon positions of protein-coding genes in mitogenomes, respectively.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.11.079.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.11.079.

References

[1] X.J. Li et al., Taxonomic status and phylogenetic relationship of tits based on mitogenomes and nuclear segments, Mol. Phyloinet. Evol. (2016) 14–20.
[2] K. Tamura et al., MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol. 24 (8) (2007) 1596–1599.
[3] R.C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res. 32 (2004) 1792–1797.
[4] R. Lanfear et al., Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses, Mol. Biol. Evol. 29 (2012) 1695–1701.
[5] P. Kück et al., AliGROOVE – visualization of heterogeneous sequence divergence within multiple sequence alignments and detection of inflated branch support, BMC Bioinform. 15 (2014) 294.
[6] A. Stamatakis, RAxML-VI-HPC: maximumlikelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics 22 (2006) 2688–2690.
[7] S. Mirarab et al., ASTRAL: genome-scale coalescent-based species tree estimation, Bioinformatics 30 (17) (2014) i541–i548.