MONODROMY WEIGHT FILTRATION IS INDEPENDENT OF l

Tomohide Terasoma

§1 Weight monodromy filtration for nilpotent monodromy

In this section, we recall several fundamental properties of monodromy weight filtration for nilpotent monodromy and prove some approximation theory. Let K_0 a local field of characteristic p with a finite residue field $k = F_q$. The integer ring of K_0 is denoted by R_0. Let F be an algebraic closure of F_q and $R = R_0 \otimes_{F_q} F$. The fraction field of R is denoted by K and we use the notations

\[
\text{Spec}(R_0) = S_0, \text{Spec}(K_0) = \eta_0, \text{Spec}(k_0) = s_0,
\]
\[
\text{Spec}(R) = S, \text{Spec}(K) = \eta, \text{Spec}(k) = s.
\]

The algebraic closure of K is denoted by \bar{K} and $\text{Spec}(\bar{K})$ is denoted by $\bar{\eta}$. Let X_0 be a scheme over S_0 whose generic geometric fiber $X_\eta = X_0 \times_{S_0} \eta$ is smooth. Denote by X the fiber product $X_0 \times_F F$. Then by a theorem of Grothendieck, the action of the Galois group $I = \text{Gal}(\bar{K}/K)$ on $H^i(X_\bar{\eta}, Q_l)$ is quasi unipotent. Let J be an open compact subgroup of I whose action on $H^i(X_\bar{\eta}, Q_l)$ is unipotent. The action of J factors through the maximal tame quotient J^t of J. Let U a topological generator of $J^t \simeq \mathbb{Z}'(1)$ and N be the logarithm of the action of U on $H^i(X_\bar{\eta}, Q_l)$. In [D], Deligne introduced an increasing filtration W^+ with the following properties:

1. $N(W_k H^i(X_\bar{\eta}, Q_l)) \subset W_{k-2} H^i(X_\bar{\eta}, Q_l)$
2. The induced map $N : Gr^W_k (H^i(X_\bar{\eta}, Q_l)) \to Gr^W_{k-2} (H^i(X_\bar{\eta}, Q_l))$ induces an isomorphism;

\[
N^k : Gr^W_k (H^i(X_\bar{\eta}, Q_l)) \xrightarrow{\sim} Gr^W_{k-2} (H^i(X_\bar{\eta}, Q_l)).
\]

We define the primitive part $P_k (H^i(X_\bar{\eta}, Q_l))$ of $Gr^W_k (H^i(X_\bar{\eta}, Q_l)) (k \geq 0)$ by the kernel of N^{k+1}. Let G be an open compact subgroup of $\text{Gal}(\bar{K}/K_0)$ such that $J = G \cap \text{Gal}(K_0/K)$ acts $H^i(X_\bar{\eta}, Q_l)$ nilpotently. Let L_0 be the corresponding extension of K_0 and $F_{q'}$ be the residue field. Then we have the exact sequence

\[
1 \to J \to G \to \text{Gal}(F/F_{q'}) \to 1.
\]

Since the action of J on the the associated graded vector space $Gr^W_k (H^i(X_\bar{\eta}, Q_l))$ is trivial, $\text{Gal}(F/F_{q'})$ acts on this vector space.

Before studying the action of $\text{Gal}(F/F_{q'})$ on $Gr^W_k (H^i(X_\bar{\eta}, Q_l))$, we try to approximate the local situation by the global situation. Let $g_0 : Y_0 \to C_0$ be a projective generic geometrically smooth morphism of relative dimension n, where C_0 is a projective curve over $F_{q'}$. Let p be an $F_{q'}$ valued point of C_0.

We denote by O_p and K_p by the completion of the structure sheaf of C_0 at the point p and its quotient field respectively. Let \bar{K}_p be the algebraic closure of K_p, and $\xi = \text{Spec}(\bar{K}_p)$. We denote by Y_ξ the base extension of Y_0 to ξ.
Lemma 1.1. Let \(f_0 : \mathcal{X}_0 \rightarrow S_0 \) be as above and \(l_1, \ldots, l_s \) be finite set of primes different from \(p \). There exist a projective smooth curve \(C_0 \) over \(\mathbb{F}_q \), and a projective geometric generically smooth morphism \(Y_0 \rightarrow C_0 \) of relative dimension \(n \) with the following property:

1. There exists an isomorphism

\[
H^i(Y_\xi, \mathbb{Q}_{l_i}) \simeq H^i(X_\eta, \mathbb{Q}_{l_i})
\]

for all \(i = 1, \ldots, s \).

2. There exists the isomorphism

\[
\begin{array}{ccc}
\text{Gal}(\bar{K}_0/K_0)/P_{K_0,i} & \longrightarrow & \text{Gal}(\mathbb{F}_q/\mathbb{F}_q) \\
\simeq & & \\
\text{Gal}(\bar{K}_p/K_p)/P_{K_p,i} & \longrightarrow & \text{Gal}(\bar{F}_q/\mathbb{F}_q),
\end{array}
\]

which is compatible with the isomorphism of (1.1), where \(P_{K_0,i} \) and \(P_{K_p,i} \) is the kernel of

\[
\text{Gal}(\bar{K}_0/K) \rightarrow \text{Aut}(H^i(X_\eta, \mathbb{Q}_{l_i}))
\]

and

\[
\text{Gal}(\bar{K}_p/K_p \otimes_{\mathbb{F}_q} \mathbb{F}) \rightarrow \text{Aut}(H^i(Y_\xi, \mathbb{Q}_{l_i}))
\]

respectively.

Proof. Let us write \(R_0 = \mathbb{F}_q[[t]] \). By fixing a projective model of \(\mathcal{X}_0 \) on \(S_0 \), we can take a finitely generated sub ring \(\mathbb{F}_q[t, x_1, \ldots, x_m] \) of \(\mathbb{F}_q[[t]] \) which contains all the coefficients of \(\mathcal{X}_0 \). The element corresponding to \(x_i \) is denoted by \(\xi_i(t) \in \mathbb{F}_q[[t]] \). Let \(M_0 = \text{Spec}(\mathbb{F}_q[t, x_1, \ldots, x_m]) \). By the definition of \(M_0 \) there exists a projective variety \(\mathcal{X}_{M_0} \rightarrow M_0 \) of relative dimension \(n \) such that the base change of \(\mathcal{X}_{M_0} \) by the map \(S_0 \rightarrow M_0 = \mathcal{X}_0 \). Let \(M = M_0 \otimes_{\mathbb{F}_q} \mathbb{F}, \mathcal{X}_M = \mathcal{X}_{M_0} \otimes_{\mathbb{F}_q} \mathbb{F}, \) and \(f_M : \mathcal{X}_M \rightarrow M \).

Since it is generically smooth, there exists an open set \(U_0 \) of \(M_0 \) such that \(R^i(f_M)_* \) is a smooth sheaf on \(U = U_0 \otimes_{\mathbb{F}_q} \mathbb{F} \). The complement of \(U_0 \) in \(M_0 \) is denoted by \(D_0 \). By taking a finite covering of \(M_0 \) and alterations [J], Theorem 7.3, we have a proper dominant morphism \(\phi : N_0 \rightarrow M_0 \) and an action of a group \(G \) on \(N_0 \) over \(M_0 \) with the following property:

1. Let \(Q(N_0) \) and \(Q(M_0) \) be the rational function field of \(N_0 \) and \(M_0 \). The field extension \(Q(N_0)^G \) of \(Q(M_0) \) is purely inseparable.
2. The variety \(N_0 \) is smooth and \(E_0 = \phi^{-1}(D_0) \) is a \(G \)-strict normal crossing divisor.
3. Let \(\mathbb{F}_{q'} \) be the constant field of \(N_0 \), \(N = N_0 \otimes_{\mathbb{F}_{q'}} \mathbb{F}, E = E_0 \otimes_{\mathbb{F}_{q'}} \mathbb{F}, \) \(f_N : \mathcal{X}_N \rightarrow N \) be the base change of \(f_M \) by the morphism \(N \rightarrow M \). Let \(\delta \) be a geometric point of \(N - E \). Then the image of the geometric monodromy action of \(\pi_1(N - E, \delta) \) on the geometric fiber of \(R^i(f_N)_* \mathbb{Q}_{l_i} \) at \(\delta \) is a pro-\(l_i \) group.

Since the field \(Q(N_0) \) is a finite extension of \(Q(M_0) \), by choosing an embedding of \(Q(N_0) \) into the algebraic closure of \(K_0 \), the composite field \(K_0 = K_0 \otimes \mathbb{Q}(N_0) \) is finite over \(\mathbb{Q}(N_0) \).
a finite extension of K_0. Let T_0 be the trait corresponding to the extension L_0. Then, by using valuative criterion of properness, we have the following diagram.

$$
\begin{array}{ccc}
T_0 & \longrightarrow & N_0 \\
\downarrow & & \downarrow \\
S_0 & \longrightarrow & M_0
\end{array}
$$

(1.2)

Let t_0 be the image of the closed point of T_0 in N_0. Let G_0 be the subgroup of G which preserves the image of T_0. By blowing up t_0, we get the similar diagram as (1.2). Repeating the process, we may assume that the image of the trait T_0 intersects only one component $E_{0,i}$ of E_0 transversally. Let m be the maximal ideal corresponding to t_0 and $\hat{N}_{0,m}$ be the completion of N_0 at m and $\hat{N}_m = \hat{N}_{0,m} \times_{F_q F} F$. Since the image of T_0 meets $E_{0,i}$ transversally, the natural homomorphism

$$
\pi_1(T - \{t\})^{(l_i)} \cong \mathbb{Z}_{l_i}(1) \rightarrow \pi_1(\hat{N}_m - E_i)^{(l_i)} \cong \mathbb{Z}_{l_i}(1)
$$

is an isomorphism, where $T = T_0 \times_{F_q F} F$ and $E_i = E_{0,i} \times_{F_q F} F$. Here we denote by $\pi_1(T - \{t\})^{(l)}$ the maximal pro-l quotient of the fundamental group of $T - \{t\}$. Now we take a curve D_0 in N_0 passing through t_0 meeting $E_{0,i}$ transversally and equivariant under the action of G_0. Let $Z_0 = (f_{N_0})^{-1}(C_0)$ and take a quotient $Y_0 = Z_0/G_0$ and $C_0 = D_0/G_0$ of Z_0 and D_0 under the action of G_0. Let p_0 be the image of t_0 under the quotient map. Then the induced morphisms $Y_0 \rightarrow C_0$ and p_0 satisfies the required properties.

As an application of this approximation lemma, we have the following Deligne’s theorem for varieties on local fields.

Lemma 1.2 (see also [D]). The action of $\text{Gal}(F/F_q)$ on $\text{Gr}^W_1(H^i(X_\eta, \mathbb{Q}_l))$ is of pure weight $i + k$.

Definition. The filtration W introduced here is called the weight monodromy filtration of $H^i(X_\eta, \mathbb{Q}_l)$.

§2 Independence of l in the Global Situation

Let C_0 be a proper smooth curve over F_q, $f_0 : X_0 \rightarrow C_0$ be a projective flat relative n-dimensional morphism with generic geometrically smooth fiber. Let $X = X_0 \otimes_{F_q F} F$, $C = C_0 \otimes_{F_q F} F$, and K_0 and K be the function field of C_0 and C respectively. Let s_0 be a F_q-valued point of C_0 and s be the spectrum of the algebraic closure of the residue field of s_0. For a rational function $g \in K$ and a character $\chi : \mu_d(F) \rightarrow \mathbb{Q}_l^\times$, the associate Kummer sheaf on C is denoted by $\text{Kum}(g, \chi)$. The twist of χ by an element of Galois group $\sigma \in \text{Gal}(F_q(\mu_d)/F_q)$ is denoted by χ^σ. Let \mathcal{F}_0 be an étale sheaf on C_0 with a finite geometric monodromy. The restriction of \mathcal{F}_0 to C is denoted by \mathcal{F}.

Lemma 2.1. There exists an element $g \in K_0$, a positive integer d, and an injective character $\chi : \mu_d \rightarrow \mathbb{Q}_l^\times$ such that

1. The support $\text{Supp}(g)$ of the divisor (g) in C is non-empty and the finite set $\text{Supp}(f) \cup \{s_0\}$ contains all the points in C where the morphism f or the sheaf \mathcal{F} are not smooth.
(2) \(f(s_0) = 1, \)
(3) the order of the class \(g \) in \(K^\times/K^d \) is \(d \), and
(4) for all \(x \in \text{Supp}(g) \) and \(\sigma \in \text{Gal}(F_{q}/F_q) \), the semi-simplification of the local monodromy group on \(R^if_*\mathbb{Q}_l \otimes \text{Kum}(g, \chi^\sigma) \otimes F \) at \(x \) has no fixed part.

Proof. Fix one closed point \(x_1 \) in \(C_0 \) different from \(s_0 \). By Riemann-Roch theorem, we can choose a rational function \(g \) on \(C_0 \)

1. whose order at \(x_1 \) is 1,
2. if \(f \) or \(F \) are not smooth at a point \(x \) different from \(s_0 \), then \(\text{ord}_x(g) \neq 0 \), and
3. regular at \(s_0 \) and \(g(s_0) = 1 \).

Choose a sufficiently big \(d \) and \(\chi \) such that \(\text{Kum}(g, \chi) \) has the property (4). Then we get the required \(g, d, \) and \(\chi \).

Remark 2.2. The condition (1) and (4) of Lemma 2.1 implies

\[
H^0_c(U, R^if_*\mathbb{Q}_l \otimes \text{Kum}(g, \chi^\sigma) \otimes F) = H^2_c(U, R^if_*\mathbb{Q}_l \otimes \text{Kum}(g, \chi^\sigma) \otimes F) = 0
\]

for all \(\sigma \in \text{Gal}(F_{q'/F_q}) \).

Now we introduce a covering \(\tilde{C}_0, \tilde{X}_0 \) of \(C_0 \) and \(X_0 \). Let \(F_{q'} = F_q(\mu_d) \) and \(C_1 = C_0 \otimes_{F_q} F_{q'} \). By Kummer theory, the \(d \)-root of \(g \) defines a finite cyclic covering \(\tilde{C}_0 \) of \(C_1 \). By the composite \(\tilde{C}_0 \to F_{q'} \to F_q \), \(\tilde{C}_0 \) is considered as a curve on \(F_q \). Note that it is not always geometrically connected. Let \(\pi : \tilde{C}_0 \to C_0 \) be the natural projection. Then we have

\[
G = \text{Aut}(\tilde{C}_0/C_0) \simeq \mu_d \rtimes \text{Gal}(F_{q'/F_q}).
\]

The induced representation \(\text{Ind}_{\mu_d}^G(\chi) \) is denoted by Ind and the group ring \(\mathbb{Q}_l[G] \) is denoted by \(A \). The Kummer sheaf \(K_0 \) on \(C_0 \) is defined by

\[
K_0 = \pi_*\mathbb{Q}_l \otimes_A \text{Ind}.
\]

Then it is easy to see that

\[
K_0 \mid_C \simeq \oplus_{\sigma \in \text{Gal}(F_{q'/F_q})} \text{Kum}(g, \chi^\sigma).
\]

Let \(\tilde{X}_0 = X_0 \times_{C_0} \tilde{C}_0 \) and \(\tilde{X} = \tilde{X}_0 \otimes_{F_q} F \). The projection \(\tilde{X}_0 \to C_0 \) and \(\tilde{X} \to C \) is denoted by \(\tilde{f}_0 \) and \(\tilde{f} \) respectively. Then the group \(G \) acts on \(\tilde{X}_0 \) and \(\tilde{X} \). Let \(W_0 = C_0 - \{s_0\}, U_0 = W_0 - \text{Supp}(g) \) and \(W = W_0 \otimes_{F_q} F, U = U_0 \otimes_{F_q} F \). The natural inclusions \(U \to W, W \to C \) and \(U \to C \) are denoted by \(j_1, j_2 \) and \(j_3 \) respectively.

Proposition 2.3. The action of the Frobenius \(\text{Frob}_{F_q} \) on

\[
(2.1) \quad H^1(C, (j_2)_*(j_1)!((R^if_*\mathbb{Q}_l \otimes_A \text{Ind}) \otimes F))
\]

is pure of weight \(i + 1 \).

Proof. Let \(\tilde{X}^0 = X_0 \times_{F_{q'}} F \) be the connected component of \(\tilde{X} \), and \(\tilde{f}^0 : \tilde{X}^0 \to C \) be the natural projection. Then the \(\text{Gal}(F/F_q) \)-module (2.1) is isomorphic to the induced representation of the \(\text{Gal}(F/F_q') \)-module

\[
(2.2) \quad H^1(C, (j_2)_*(j_1)!((R^if_*\mathbb{Q}_l \otimes_{\mathbb{Q}_l[\mu_d]} \mathbb{Q}_l(\chi)) \otimes F))
\]

\[
\otimes H^1(C, j_3^!(j_1,R^if_*\mathbb{Q}_l \otimes \text{Kum}(g, \chi) \otimes F))
\]

or
Proposition 2.4. The characteristic polynomial of $Q_{\tilde{R}}$ for zeta function of the sheaf ζ is independent of τ. By Remark 2.2 and Lefschetz trace formula, we have the following equality

$$(j_1)! (R^i f^* \mathbb{Q}_l \otimes \text{Kum}(g, \chi) \otimes \mathcal{F}) \simeq (j_1)_* (R^i f_* \mathbb{Q}_l \otimes \text{Kum}(g, \chi) \otimes \mathcal{F}).$$

Therefore we have

$$(j_2)_* (j_1)! (R^i f^* \mathbb{Q}_l \otimes \text{Kum}(g, \chi) \otimes \mathcal{F}) \simeq (j_3)_* (R^i f_* \mathbb{Q}_l \otimes \text{Kum}(g, \chi) \otimes \mathcal{F}).$$

Since f is projective smooth on U, $R^i f^* \mathbb{Q}_l \otimes \text{Kum}(g, \chi) \otimes \mathcal{F}$ is punctually pure of weight i. Therefore by the theorem of purity in [D], Theorem 3.2.3, we get the proposition.

Now we fix an identification $\mathbb{Q}_l \cong \mathbb{Q}_{l'}$ for primes l and l' different from p. Let $D_0 \to C_0$ be a Galois covering with the finite Galois group G and τ a \mathbb{Q}_l-valued representation of G. Let $F_0(\tau)$ be the l-adic sheaf associated to the representation τ. The restriction of \mathcal{F} to C is denoted by \mathcal{F}. We compare elements of \mathbb{Q}_l and $\mathbb{Q}_{l'}$ via the isomorphism ι.

Proposition 2.4. The characteristic polynomial of $\text{Frob}_{\mathbb{F}_q}$ on

$$H^1_c(U, R^i \tilde{f}_* \mathbb{Q}_l \otimes A \text{Ind} \otimes \mathcal{F}(\tau))$$

is independent of l.

Proof. By Remark 2.2 and Lefschetz trace formula, we have the following equality for zeta function of the sheaf $R^i (\tilde{f}_0)_* \mathbb{Q}_l \otimes A \text{Ind} \otimes F_0(\tau)$ on U_0.

$$\det(1 - t \text{Frob}_{\mathbb{F}_q} | H^1_c(U, R^i \tilde{f}_* \mathbb{Q}_l \otimes A \text{Ind} \otimes \mathcal{F}(\tau)))$$

$$= \prod_{x \in [U_0]} \det(1 - t \text{Frob}_x | (R^i \tilde{f}_* \mathbb{Q}_l \otimes A \text{Ind} \otimes \mathcal{F}(\tau))^{-1})$$

$$= \prod_{x \in [U_0]} \det(1 - t \text{Frob}_x | H^i((\tilde{f})^{-1}(\bar{x}), \mathbb{Q}_l) \otimes A \text{Ind} \otimes \mathcal{F}(\tau))^{-1}$$

Since \tilde{f} is projective smooth at $x \in U$, the right hand side is independent of l by the classical Weil conjecture and relation between Zeta function and the Frobenius action and the action of G on the \mathbb{F} rational points of $\tilde{f}^{-1}(x)$. Therefore we get the proposition.

§3 Proof of the main theorem

Let K_0 be a local field of characteristic $p > 0$ with a residue field \mathbb{F}_q. Let X_η be a projective geometrically smooth variety of dimension n over K_0. The variety X_η is called globalizable if there exist projective varieties C_0, X_0 over \mathbb{F}_q of dimension one and $n + 1$, a morphism $g : X_0 \to C_0$, a point $p \in C_0(\mathbb{F}_q)$ and an isomorphism of local field between K_0 and the quotient field K_p of the completion of the structure sheaf of C_0 at p such that the base change of X_0 by the morphism $\text{Spec}(K_0) \to \text{Spec}(K_p) \to C_0$ is isomorphic to X_η. Let τ be a representation of $\pi_1(C_0)$ with a finite image and $\mathbb{Q}_l(\tau)$ be the representation space of τ.

Proposition 3.1. The characteristic polynomial of the Frobenius action \(\text{Frob}_{\kappa(s_0)} \) on the space \((H^i(X_\eta, Q_l) \otimes Q_l(\tau))^\text{Gal}(K_{\ell}/K_{\ell}) \) is independent of \(l \).

Proof. To show the independence of \(l \), it is enough to compare two primes \(l_1 \) and \(l_2 \). By using Lemma 1.1, we may assume that \(X_\eta \) is globalizable. We use the same notation for \(X_0, C_0, p_0 \) and so on. First we choose a rational function \(g \) on \(C_0 \), an integer \(d \), and a character \(\chi : \mu_d(F) \to Q_l^\times \) satisfying the properties in Lemma 2.1. We consider varieties \(\bar{C}_0, \bar{C}, \bar{X}_0, \bar{X} \) and so on as in §2. Now we consider the exact sequence of sheaves on \(C \):

\[
0 \to (j_3)_!(R^i\bar{f}_*Q_l \otimes A \text{Ind}) \otimes \mathcal{F}(\tau) \to (j_2)_!((j_1)_!(R^i\bar{f}_*Q_l \otimes A \text{Ind}) \otimes \mathcal{F}(\tau)) \to i_s^*((j_3)_!(R^i\bar{f}_*Q_l \otimes A \text{Ind} \otimes \mathcal{F}(\tau))) \to 0,
\]

where \(i_s : \{s\} \to C \) is the natural inclusion. Taking the cohomology, we have the long exact sequence:

\[
0 \to H^0(Spec(K), H^i(\bar{X}_\eta, Q_l) \otimes_A \text{Ind} \otimes \bar{Q}_l(\tau)) \to H^1_c(U, R^i\bar{f}_*Q_l \otimes_A \text{Ind} \otimes \mathcal{F}(\tau)) \to H^1(C, (j_2)_!(R^i\bar{f}_*Q_l \otimes A \text{Ind} \otimes \mathcal{F}(\tau))) \to 0.
\]

The weight of

\[
H^0(Spec(K), H^i(\bar{X}_\eta, Q_l) \otimes_A \text{Ind} \otimes \bar{Q}_l(\tau))
\]

is less than or equal to \(i \), and that of \(H^1(C, (j_2)_!(R^i\bar{f}_*Q_l \otimes A \text{Ind}) \otimes \mathcal{F}(\tau)) \) is purely \(i+1 \). Therefore the characteristic polynomial of the Frobenius action on (3.1) is independent of \(l \). By the property Lemma 2.1 (2) of the choice of \(g \), (3.1) is isomorphic to

\[
H^0(Spec(K), H^i(\bar{X}_\eta Q_l) \otimes Q_l(\tau)) \otimes r,
\]

where \(r = [F_q(\mu_d) : F_q] \), and we get the theorem.

By using Poincare duality and local duality, we have the following corollary.

Corollary 3.2. The characteristic polynomial of the Frobenius action on \(H^1(Spec(K), H^i(\bar{X}_\eta, Q_l) \otimes Q_l(\tau)) \) is independent of \(l \).

Now we recall some properties of the weight monodromy filtration \(\text{W} \). Let \(G_0 \) and \(G \) be the absolute Galois groups of \(K_0 \) and \(K \) respectively. There exists an open compact subgroup \(M^0 \) which acts on \(H^i(\bar{X}_\eta, Q_l) \) unipotently and the corresponding quotient of \(M^0 \) is denoted by \(M^0 \). It is isomorphic to \(Z_l(1) \). Then the image \(M \) of \(G \) in \(\text{Aut} H^i(\bar{X}_\eta, Q_l) \) contains \(M^0 \) and we may assume that \(M^0 \) is a normal subgroup of \(M \) by changing \(M^0 \) sufficiently small. Then the quotient group \(M/M^0 \) acts on \(Z_l(1) \) by the conjugation and the corresponding character is denoted by \(\beta \). Then the relation of \(N : G^W_{k} \to G^W_{k-2} \) and \(g \in M/M^0 \) is given by \(Ng = \beta(g)^{-1}gN \). Therefore, by the universal property of the filtration \(\text{W} \), the action of the group \(M/M^0 \) preserves the filtration \(\text{W} \) and as a consequence \(M/M^0 \) acts on the associate graded module \(G^W_{k} = G^W_{k}(H^i(\bar{X}_\eta, Q_l)) \). Again by the relation of \(N \) and \(g \), the group \(M/M^0 \) acts on the primitive part \(\text{P} \). The corresponding representation of
P_k is denoted by α_k. Then as representations of M/M^0, $Gr^W_k, H^i(X_{\tilde{\eta}}, Q_l)^{M^0}$, and the coinvariant $H^i(X_{\tilde{\eta}}, Q_l)_{M^0}$ under the action of M^0 are isomorphic to

$$Gr^W_k = \bigoplus_{m \geq 0} \alpha_{k+2m} \otimes \beta^m,$$

$$H^i(X_{\tilde{\eta}}, Q_l)^{M^0} = \bigoplus_{m \geq 0} \alpha_m \otimes \alpha^m,$$

$$H^i(X_{\tilde{\eta}}, Q_l)_{M^0} = \bigoplus_{m \geq 0} \beta_m.$$

It is easy to see that all the intersection of the kernel of α and α_k corresponds to the maximal nilpotent subgroup for the action of M on $\text{Aut}(H^1(X_{\tilde{\eta}}, Q_l))$. Changing notation, this group is denoted by M^0. Let \tilde{M}^0 be the inverse image of M^0 under the natural map $G \to M$. Let N_0 be an open compact subgroup of G_0 where the intersection $N_0 \cap G$ is contained in \tilde{M}_0. The corresponding extension of K_0 is denoted by L_0. The residue field of L_0 is denoted by $F_{q'}$.

Theorem 3.3.

1. The representation α_k and β of G is independent of l. Especially, \tilde{M}^0 does not depend on l and the dimension of P_k is independent of l.

2. The characteristic polynomial of the Frobenius action $Frob_{F_{q'}}$ on P_k is independent of l.

Proof of (1). Let τ be a finite dimensional irreducible representation with finite image H. Then there exists a Galois covering $\pi : D \to C$ and a lifting q of p such that the quotient field $K_{D,q}$ of the completion of the structure sheaf \mathcal{O}_D of D at q corresponds to the quotient H of G. Then the curve C, D and all the morphism in $\text{Gal}(D/C)$ is defined over a finite extension $F_{q'}$ of F_q. The model of C and D defined on $F_{q'}$ is denoted by C_1 and C_2 respectively. Let C_1' be the covering between $D \to C$ corresponding to the stabilizer $\text{Stab}_q(G)$ of q. Since $H \simeq \text{Stab}_q(G) \simeq \text{Gal}(D_1/C_1')$, we can consider a sheaf $\mathcal{F}'_1(\tau)$ on C_1'. We apply Proposition 3.1 to $\mathcal{F}_1(\tau)$ and C_1'. Then the characteristic polynomial of the Frobenius action on $(Q_l(\tau) \otimes H^i(X_{\tilde{\eta}}, Q_l))^G$ is independent of l. Let \tilde{M}^0_l be the maximal unipotent subgroup for the representation $H^i(X_{\tilde{\eta}}, Q_l)$. Then there exists a finite normal subgroup \tilde{M}^1_l of \tilde{M}^0_l such that the restriction of τ to \tilde{M}^1_l is trivial. Then the characteristic polynomial of Frobenius action on

$$(Q_l(\tau) \otimes H^i(X_{\tilde{\eta}}, Q_l))^G = ((Q_l(\tau) \otimes H^i(X_{\tilde{\eta}}, Q_l))(\tilde{M}^1_l)^{\tilde{M}^0_l}$$

is independent of l. The dimension of weight k-part of the above equality is nothing but the multiplicity of τ^* in $\alpha_k \otimes \beta^k$. Since τ is the arbitrary irreducible representation of G with finite image, $\alpha_k \otimes \beta^k$ is independent of l. Similarly, the characteristic polynomial of Frobenius action on

$$H^1(\text{Spec}(K), H^i(X_{\tilde{\eta}}, Q_l) \otimes Q_l(\tau))$$

is independent of l. The dimension of weight k-part of the above equality is nothing but the multiplicity of τ^* in $\alpha_k \otimes \beta^k$. Since τ is the arbitrary irreducible representation of G with finite image, $\alpha_k \otimes \beta^k$ is independent of l.
is independent of \(l \) and we have the \(l \)-independence of \(\alpha_k \) \((k \geq 0)\). This proves (1) of Theorem 3.3. Therefore by the characterization of \(\tilde{M}_l^0 \) gives as above, it is independent of \(l \).

Let \(D \) be a covering of \(C \) and \(q \in D \) a lifting of \(p \) such that the field \(K_{D,q} \) defined as above corresponds to the sub group \(M^0 \) of \(G \). Then \(D, C \) are defined over some finite extension \(F_{q'} \) of \(F_q \) and the model over \(F_{q'} \) are denoted by \(D_1 \) and \(C_1 \) respectively. We may assume \(q \in D_1(F_{q'}) \). We apply Proposition 3.1 to \(q \in D_1 \) and the trivial representation of \(\pi_1(D_1) \). Then the characteristic polynomial of Frobenius action on \(H^1(\bar{X}_{\eta}, \bar{Q}_l)\tilde{M}_l^0 \) is independent of \(l \). Considering weight of \(P_k \), the characteristic polynomial of Frobenius on \(P_k \) is independent of \(l \).

Remark 3.4.

(1) By the independence of \(l \) for \(P_k \) implies the independence for the Swan conductor.

(2) Since \(\beta \) is independent of \(l \), it is order 2 character by Chevotalev density theorem.

References

[J] de Jong, A.J., *smoothness, semi-stability and alterations*, Publ. Math. IHES 83 (1996), 51-93.

[D] Deligne, P., *La conjecture de Weil. II*, Publ. Math. IHES 52 (1981), 313-428.