Rac1 relieves neuronal injury induced by oxygen-glucose deprivation and re-oxygenation via regulation of mitochondrial biogenesis and function

Ping-Ping Xia1,2, Fan Zhang1, Cheng Chen1, Zhi-Hua Wang1, Na Wang1, Long-Yan Li1, Qu-Lian Guo1, Zhi Ye1,2,*
1 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
2 National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province, China
3 Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan Province, China

Funding: This study was supported by the National Natural Science Foundation of China, No. 81771422 (to ZY).

Graphical Abstract

Neuroprotective effects of miRNA-142-3p against the injury of oxygen-glucose deprivation and re-oxygenation

Abstract

Certain microRNAs (miRNAs) can function as neuroprotective factors after reperfusion/ischemia brain injury. miRNA-142-3p can participate in the occurrence and development of tumors and myocardial ischemic injury by negatively regulating the activity of Rac1, but it remains unclear whether miRNA-142-3p also participates in cerebral ischemia/reperfusion injury. In this study, a model of oxygen-glucose deprivation/re-oxygenation in primary cortical neurons was established and the neurons were transfected with miR-142-3p agomirs or miR-142-3p antagomirs. miR-142-3p expression was down-regulated in neurons when exposed to oxygen-glucose deprivation/re-oxygenation. Over-expression of miR-142-3p using its agomir remarkably promoted cell death and apoptosis induced by oxygen-glucose deprivation/re-oxygenation and improved mitochondrial biogenesis and function, including the expression of peroxisome proliferator-activated receptor-γ coactivator-1α, mitochondrial transcription factor A, and nuclear respiratory factor 1. However, the opposite effects were produced if miR-142-3p was inhibited. Luciferase reporter assays verified that Rac Family Small GTPase 1 (Rac1) was a target gene of miR-142-3p. Over-expressed miR-142-3p inhibited NOX2 activity and expression of Rac1 and Rac1-GTPase (its activated form). miR-142-3p antagomirs had opposite effects after oxygen-glucose deprivation/re-oxygenation. Our results indicate that miR-142-3p down-regulates the expression and activation of Rac1, regulates mitochondrial biogenesis and function, and inhibits oxygen-glucose deprivation damage, thus exerting a neuroprotective effect. The experiments were approved by the Committee of Experimental Animal Use and Care of Central South University, China (approval No. 201703346) on March 7, 2017.

Key Words: biogenesis; ischemia/reperfusion injury; microRNAs; miR-142-3p; mitochondria; neuroprotection; NOX2; oxygen-glucose deprivation; Rac1

Chinese Library Classification No. R456; R741; Q731

Introduction

Cerebral ischemia/reperfusion injury interrupts the blood supply to the brain, disrupting the flow of oxygen and nutrients needed to keep brain cells functioning, which can cause acute death or long-term complications. Although perioperative cerebral ischemia is a rare complication of generalized surgery (1% to 6%), it can cause high rates of disability and mortality and a great deal of financial and psychological stress to patients’ families (Weintraub and Khoury, 1998). Unexpected difficulties with tracheal intubation, hypotension caused by extracorporeal circulation, perioperative cardiac arrest, and a hyperextended position during surgery, may predispose a patient to or play a role in perioperative cerebral ischemic injury. Anesthetists should, therefore, be proactive in eliminating or at least reducing harmful damage
resulting from perioperative cerebral ischemia.

MicroRNAs (miRNAs) are small, non-coding RNAs of approximately 19–25 nucleotides, which can post-transcriptionally modulate gene expression and gene silencing (Ambros, 2004; Bartel, 2004). miRNAs have important roles in the development and function of the nervous system (Maes et al., 2009; Hommers et al., 2015) and accumulating evidence shows that various miRNAs play important roles in cerebral injury after ischemia/reperfusion (Qi et al., 2017; Tian et al., 2018; Wang et al., 2018). The functional roles of miR-142-3p in cancer have been well studied (Gao et al., 2018). miR-142-3p suppressed the fibrosis and apoptosis of cardiomyocytes by directly targeting high-mobility group protein 1 (HMGBl) during hypoxia/reoxygenation injury in in vitro models (Wang et al., 2016b). However, the relationship between miR-142-3p and cerebral ischemia/reperfusion injury is not known.

Rac Family Small GTPase 1 (Rac1) has a crucial role in assembling the NADPH holoenzyme (Raz et al., 2010) and modulating multiple cellular activities, including cytoskeletal reorganization, cell growth, protein kinase activation, and antimicrobial cytotoxicity (Ridley, 2006; Xiang et al., 2016).

Our previous studies also indicate that Rac1 deletion prevents cerebral ischemia in rats with diabetes and ameliorates hyperglycemia-induced oxidative damage in PC12 cells (Liao et al., 2014; Pan et al., 2018). An interaction between miR-142-3p and Rac1 has been demonstrated (Wu et al., 2011; Liu et al., 2014; Gao et al., 2018). miR-142-3p can negatively and directly modulate Rac1 in hepatocellular carcinoma cell lines and inhibit the migration and invasion of hepatocellular carcinoma cells (Wu et al., 2011). Conversely, miR-142-3p can facilitate the invasion of colorectal tumor cells via activation of Rac1 (Gao et al., 2018). Considering the controversial roles of miR-142-3p in malignancies and the necessity of developing an effective treatment strategy for cerebral ischemia, the detailed relationships between miR-142-3p and Rac1 need to be systematically studied.

During cerebral ischemia/reperfusion injury, mitochondria play a crucial role in supplying energy. Generally, increased mitochondrial content is strongly associated with improved neurological outcomes. Biogenesis of mitochondria is a sophisticated process that promotes adenosine triphosphate (ATP) production in response to challenges of high-energy demands. Biogenesis of mitochondria can serve as a novel endogenous protective mechanism following cerebral ischemia and might have a neuroprotective effect (Stetler et al., 2012; Yans et al., 2015). The biogenesis of mitochondria is modulated through a group of signaling factors, which includes peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), mitochondrial transcription factor A (TFAM), and nuclear respiratory factor 1 (NRF1). After ischemia/reperfusion injury, the activity of PGC1α was increased in neurons, and it subsequently interacted with NRF1 via linking to the binding domain of NRF1 DNA. Therefore, activation or over-expression of PGC1α facilitates the expression and activation of NRF1, thereby regulating the expression of the downstream gene, TFAM, and promoting mitochondrial biogenesis, and activation or over-expression of PGC1α facilitates the expression and activation of NRF1, thereby regulating the expression of the downstream gene, TFAM, and promoting mitochondrial biogenesis (Piao et al., 2012). Disrupted mitochondrial biogenesis contributes to mitochondrial dysfunction leading to cell death after cerebral ischemic injury (Bai et al., 2017; He et al., 2018). However, the regulation of mitochondrial biogenesis and function following cerebral ischemia is still poorly understood.

Therefore, this study aimed to investigate the neuroprotective role of mitochondrial biogenesis. Moreover, the role of Rac1 and miR-142-3p in promoting mitochondrial biogenesis and function was also explored to reveal the underlying mechanisms of this action.

Materials and Methods

Primary cortical neuron culture

Primary cortical neurons were isolated from embryonic day 16–18 (E16–18) cerebri of Sprague-Dawley rats supplied by the Animal Center of Central South University, China (license No. SCXK(Xiang)2017-0003). The cell suspensions were seeded on six-well plates at 1.5 × 10^5 cells per well and cultured in neurobasal medium containing 2% B27 (Gibco, Grand Island, NY, USA), 2 mM glutamine (Sigma-Aldrich, St. Louis, MO, USA) and 50 U/mL penicillin/streptomycin (Sigma-Aldrich) under 5% CO2 in a 37°C incubator. The experiments were approved by the Committee of Experimental Animal Use and Care of Central South University (approval No. 201703346) on March 7, 2017.

Model of oxygen-glucose deprivation and re-oxygenation

The model of oxygen-glucose deprivation and re-oxygenation (OGD/R) was established as previously described with slight modification (Chen et al., 2016). In short, primary cortical neurons were placed in glucose-free Earle's balanced salt solution, before transfer to an anaerobic chamber and exposure to 5% CO2 and 95% N2 for 2 hours at 37°C to establish OGD. Reperfusion was performed by removing the plates from the incubator. After immediately washing twice with EBSS, the culture medium was replaced by DMEM medium and neuron specific medium. The cells were put into a CO2 incubator (Forma 3110) with a condition of 5% CO2, 95% air, and 98% humidity at 37°C for 24 hours. Neurons without OGD exposure were used as controls.

Cell transfection

Neurons were transfected with miR-142-3p agomirs or antagonirs (Ribobio Co., Guangzhou, China) at a final concentration of 5 μM for 6 hours. Subsequently, the medium in each well was replaced with Dulbecco's modified Eagle's medium (DMEM; Frockell, Wuhan, China) containing 10% fetal bovine serum (Gibco, Carlsbad, CA, USA) for subsequent OGD/R analyses.

To overexpress Rac1, a pcDNA-Rac1 plasmid was constructed by GenePharma (Shanghai, China) as described previously (Liu et al., 2018). Briefly, in 6-well culture plates, primary cortical neurons were transfected with 2 μg of either pcDNA-Rac1 or empty vector using Lipofectamine 2000 (Invitrogen Life Technologies, Carlsbad, CA, USA). After 6 hours, the medium was replaced with fresh DMEM supplemented with 10% (v/v) fetal bovine serum, 100 μg/mL streptomycin, and 100 U/mL penicillin.

Cell culture and treatment

Cells were randomly divided into the following groups: (1) Control group (normal conditions): cells were cultured for 26 hours in culture medium without OGD. (2) OGD group: Cells were subjected to OGD for 2 hours, and re-oxygenation for 24 hours. (3) OGD + agomirs group: Cells were treated with miR142-3p agomirs (5 μM) for 6 hours prior to OGD and subsequently subjected to OGD for 2 hours. The OGD
medium was replaced with the original culture medium and the cells incubated for 24 hours in a humidified atmosphere with 5% CO2 at 37°C. (4) OGD + agomirs control group: As for the OGD + agomirs group, except that the same volume of vehicle was used instead of agomirs. (5) OGD + agomirs group: Cells were treated with mir142-3p agomirs (5 μM) for 6 hours prior to OGD and subsequently subjected to OGD for 2 hours. Then, the OGD medium was replaced with the original culture medium and the cells incubated for 24 hours in a humidified atmosphere with 5% CO2 at 37°C. (6) OGD + agomirs control group: As for the OGD + agomirs group, except that the same volume of vehicle was used instead of agomirs. (7) OGD + Rac1-NC group: Cells were transfected with pcDNA-Rac1 (2 μg) for 6 hours and the medium then replaced with fresh medium. Successful transfection was confirmed by western blot assay. (8) OGD + Rac1-OE group: Cells were transfected with pcDNA-Rac1 for 6 hours prior to OGD and subsequently subjected to OGD for 2 hours. Then, the OGD medium was replaced with the original culture medium and the cells incubated for 24 hours in a humidified atmosphere with 5% CO2 at 37°C. (9) OGD + antagomirs group, except that the same volume of vehicle was used instead of antagomirs. (10) OGD + antagomirs control group: As for the OGD + antagomirs group, except that the same volume of vehicle was used instead of antagomirs.

Quantitative reverse transcription-polymerase chain reaction
Total RNAs were extracted using TRIzol (Life Technologies, Carlsbad, CA, USA), and reverse transcribed into cDNA. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted with Taqman Universal Master Mix II and a Taqman MicroRNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) to estimate mir142-3p levels. U6 was used as the internal control and used to determine relative expression. qRT-PCR was performed to detect the levels of Nrf1, TFAM, PGC1α, Rac1 and GADPH mRNAs using Power SYBR® Green Master Mix (Applied Biosystems). Primers were purchased from Sangon Biotech Co., Ltd. (Shanghai) and the sequences are shown in Table 1. TFAM, PGC1α, Nrf1, and Rac1 mRNA levels were measured according to the formula, 2^(-ΔΔCt) (Wang et al., 2016c).

Cell survival assays
Living cells were detected using a CCK-8 kit (Dojindo, Kumamoto, Japan). In short, treated neurons were cultured in 96-well plates. CCK-8 solution (10 μL) was then added to every well and culture continued at 37°C for 2 hours. The viability of cells was detected at 450 nm with a microplate reader (Tecan, Männedorf, Switzerland). Cell survival ratios were standardized to the control group (normal conditions), and the survival ratios are expressed as percentages.

Lactate dehydrogenase release assay
Lactate dehydrogenase (LDH) release was determined using a previously reported method (Xia et al., 2018; Ye et al., 2018). Briefly, the culture supernatant was taken after OGD/R exposure and LDH levels in the culture samples were measured using an LDH cytotoxicity detection kit (Roche, Basel, Switzerland). The absorbance of samples was detected at 490 nm using a microplate reader (Tecan). LDH release was standardized to the value of the control group (normal condition), and is expressed as a percentage.

Detection of cell apoptosis
Primary cortical cell apoptosis was evaluated using an Annexin V-FITC/PI apoptosis detection kit (Sigma-Aldrich Trading Co., Shanghai, China) following the manufacturer’s instructions. Apoptotic cells were quantified using a FACSCalibur cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). Additionally, the activity of caspase-3 in primary cortical neurons was measured to determine apoptosis. The caspase-3 assay kit (Beyotime Institute of Biotechnology, Shanghai, China) was used according to the manufacturer’s instructions.

Western blotting
Western blotting was performed according to a previously described protocol (Ye et al., 2015). Cells were harvested using Trypsin-EpDTA Solution (0.25%) (Thermo Fisher Scientific, Shanghai, China) and lysed in RIPA buffer [25 mM Tris-HCl, pH 7.6, 150 mM NaCl, 1% NP40, 1% sodium deoxycholate and 0.1% sodium dodecyl sulfate; Thermo Fisher Scientific] containing Protease Inhibitor Cocktail (Thermo Fisher Scientific) at 4°C for 30 minutes. After separating debris by centrifugation, total proteins were quantified using a BCA protein assay kit (Beyotime Biotechnology, Shanghai, China). Loading buffer was added to cytosolic extracts followed by boiling for 5 minutes. The same amount of supernatant from each sample was fractionated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the proteins were transferred onto polyvinylidene difluoride membranes via wet transfer. Next, the membranes were blocked with 5% fat-free milk for 60 minutes in fresh blocking buffer [0.1% Tween20 in Tris-buffered saline (TBS-T)] at room temperature, and then incubated with rabbit anti-PGC1α (1:1000, sc-517380; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and rabbit anti-NRF1 (1:1000, sc-23624; Santa Cruz Biotechnology). The membranes were then incubated with rabbit anti-GAPDH (#5174, 1:1000; Cell Signaling Technology, Beverly, MA, USA) and rabbit anti-TFAM (#7495, 1:1000; Cell Signaling Technology) and rabbit anti-Rac1 (#ab97372, 1:1000; Abcam), in freshly prepared TBS-T with 3% fat-free milk with gentle agitation at 4°C overnight. Membranes were then washed for 5 minutes in TBS-T and then incubated with horseradish peroxidase-conjugated goat anti-rabbit IgG (Santa Cruz Biotechnology) at a 1:5000 dilution in TBS-T with 3% fat-free milk for 2 hours at room temperature. The membranes were then washed three times in TBS-T for 15 minutes. The immunoreactive signals were visualized using enhanced chemiluminescence detection. To quantify protein levels, X-ray films were scanned and analyzed using Image J 1.47i software (National Institutes of Health, Bethesda, MD, USA).

Table 1 Sequence information

Name	Sequence (5’–3’)
miR-142-3p	Forward: UUU GGC AAA AGU GGU AGA ACU CAC ACC G
	Reverse: AAC AGU AUU UCC AGG AUU CCC U
Rac1	Forward: ACC GAG CTT TGG GTA AAA CCT
	Reverse: AGA CCG TGG GGA TGT ACT CTC
Nrf1	Forward: TTA CTC TGC TGT GGC TGA TGG
	Reverse: CCT CTC ATG TCT GCC TCG TCT
PGClα	Forward: GTG CAG CCA AGA CTC TGT ATG G
	Reverse: GTC CAG ATC ATT CAC ATC AAG TCC
TFAM	Forward: GAA AGC ACA AAT CAA GAG GAG
	Reverse: GTG CTC ATT ATG ATG AGA GG
GADPH	Forward: GGG TCA GAA GGA TCT CTA TG
	Reverse: GGT CTC AAA CAT GAT CTG GG
U6	Forward: AGT GGT CGA AGT GCT AGT AGC C
	Reverse: TTC TCG GCG TCT TCT TCC TCG
Luciferase reporter assays
TargetScan (http://www.targetscan.org) was used to explore if Rac1 is a target gene of miR-142-3p. Wild-type Rac1 and a mutant Rac1 with mutations located in the predicted miR-
142-3p binding sites within the 3′-UTR were synthesized and inserted into the pmirGLO DualLuciferase miRNA Target Expression Vector (Promega, Madison, WI, USA). They were named Rac1-WT and Rac1-Mut. Rac1-WT and Rac1-Mut were then co-transfected with miR-142-3p agomirs or control agomirs into cells in 48-well plates using Lipofectamine 2000 (Invitrogen). Forty-eight hours after transfection, Renilla luciferase and luciferase activities were measured using the Dual Luciferase Assay (Promega).

NOX2 and Rac1 activity
Rac1, an important component of the NADPH oxidase 2 (NOX2) complex, is essential to stimulate reactive oxygen species (ROS) production in conjunction with another NOX2 component, p67phox (Akbar et al., 2018). NOX2 activity was detected in cell homogenates (protein: 10 μg) by applying lucigenin (20 μM) as an electron acceptor and NADPH (100 μM) as a substrate. The specificity of NOX2 activity was measured with or without 0.2 mM apocynin (Sigma-Aldrich, St. Louis, MO, USA) (Kumar et al., 2015). Rac1 activation (Rac1-GTPase) assays were performed according to the manufacturer’s instructions (Rac1/CDC42 assay kit; Upstate Biotechnology) and as previously described (Liao et al., 2014; Pan et al., 2018).

Mitochondrial isolation
A Mitochondria Isolation Kit (Thermo Fisher Scientific, Waltham, MA, USA) was used to separate cytosolic and mitochondrial fractions, as previously described (Liao et al., 2014; Pan et al., 2018). The absence of cytoplasmic calnexin in western blot assays demonstrated the efficiency of mitochondrial isolation (data not shown).

Analysis of mitochondrial DNA
Mitochondrial DNA (mtDNA) copy number was detected by quantitative PCR as described above (Wang et al., 2016c). A QIAamp DNA extraction kit (Qiagen, Germantown, USA) was used to extract total DNA from primary cortical neurons. mtDNA copy number was normalized by measuring the ratio between the mitochondrial cytochrome b gene (MT-CYB, Rn03296746_s1) and the acidic ribosomal phosphoprotein P0 (Arpb/36b4) nuclear gene. The primer sequences and probes are listed in Table 2.

ATP measurement
ATP concentration was measured using a commercial assay kit (Invitrogen, Eugene, OR, USA) according to the manufacturer’s instructions.

Determination of mitochondrial ROS and mitochondrial membrane potential
ROS formation was measured using a dichlorodihydrofluorescein diacetate (DCFH-DA) assay (Liao et al., 2014; Wang et al., 2016c). In brief, cells were cultured with DCFH-DA (10 μM) at 37°C for 20 minutes in the dark, and then rinsed twice with PBS. Fluorescence was determined with an excitation wavelength of 485 nm and an emission wavelength of 530 nm using a fluorescence plate reader (Genios, Tecan, Männedorf, Switzerland).

Variations in mitochondrial membrane potential (MMP) were detected with the fluorescent dye, rhodamine 123 (Rh123), as described previously (Chen et al., 2016). Briefly, cells in 96-well plates were placed in an incubator for 30 minutes with Rh123 (20 μL, 100 μg/mL). Rh123 concentration was determined by flow cytometry and neurons showing reduced fluorescence indicated collapse of the mitochondrial membrane potential.

Detection of mitochondrial complex I–III activity
To measure mitochondrial respiratory chain complex activities, neurons were plated on Petri dishes. Activity of mitochondrial complex I (NADH dehydrogenase) was determined based on a previously described protocol (Birch-Machin et al., 1994). Activity of mitochondrial complex II (succinate-ubiquinone oxidoreductase) was measured according to the rate of 2,6-dichlorophenolindophenol (DCPIP) reduction at 600 nm, which was driven by succinate and sensitive to malonate (Tawfik et al., 2005). Activity of mitochondrial complex III (ubiquinone-cytochrome-c oxidoreductase) was determined by observing the change of oxidized Cyt c (III) into reduced Cyt c at a wavelength of 550 nm (Torres-Mendoza et al., 1999). Activities of mitochondrial complex I–III are expressed as increments compared with the values of the control groups (100%).

Statistical analysis
All data are presented as the mean ± SD. One-way analysis of variance with a Bonferroni post hoc test or Student’s t-test was applied. Data were analyzed with SPSS 18.0 software (SPSS Inc., Chicago, IL, USA). P < 0.05 was considered statistically significant.

Results
OGD/R decreases miR-142-3p expression and induces cytotoxicity in primary cortical neurons
Primary cortical neurons subjected to OGD/R were used to investigate effects of miR-142-3p on cerebral ischemic damage. To reveal the role of miR-142-3p in OGD/R injury in primary cortical neurons, miR-142-3p levels were measured by qRT-PCR following 2 hours of OGD treatment and re-oxygenation. miR 142-3p expression was down-regulated compared with the control group (P < 0.05). miR-142-3p expression was lowest at 24 hours after re-oxygenation (Figure 1A), indicating that the decrease in miR142-3p levels was involved in OGD/R-induced injury. Therefore, OGD treatment for 2 hours and re-oxygenation for 24 hours were employed in subsequent experiments. Moreover, OGD (2 hours) re-oxygenation (24 hours) treatment significantly reduced cellular viability in primary cortical neurons (P < 0.01; Figure 1B) and raised LDH levels (P < 0.01; Figure 1C) compared with...
the control group, indicating successful establishment of the in vitro hypoxia model.

miR 142-3p agomir suppresses and miR 142-3p antagomir enhances cytotoxicity in OGD/R-treated primary cortical neurons

To determine whether miR-142-3p is associated with the viability of primary cortical neurons after OGD/R insult, miR-142-3p agomirs and antagomirs were applied and CCK-8 and LDH leakage tests were performed. As shown in Figure 2A, miR142-3p levels were increased in the OGD + agomir group and decreased in the OGD + antagomir group compared with the corresponding negative controls (P < 0.05). Furthermore, neither miR142-3p agomir nor antagonir were neurotoxic in normal conditions (data not shown). OGD (2 hours)/re-oxygenation (24 hours) significantly decreased the viability of primary cortical neurons compared with the control group (P < 0.05). However, cell viability was increased in the OGD + agomir group compared with the OGD + agomir control group (P < 0.01). In contrast, cell death was facilitated by miR-142-3p antagomir transfection compared with the antagomir control (P < 0.05; Figure 2B). miR-142-3p agomirs significantly reduced LDH release (P < 0.05) and miR-142-3p antagomirs promoted LDH release following OGD/R compared with the corresponding negative controls (P < 0.05; Figure 2C). There was no significant difference in cell viability or LDH leakage among the OGD, OGD + agomirs control and the OGD + antagonirs control groups. These results indicate that OGD/R induces primary cortical neuron injury in part by suppressing miR-142-3p expression.

To determine if miR-142-3p influenced apoptosis of primary cortical neurons subjected to OGD/R, ANNEXIN V-APC/7-AAD assays and a commercial caspase-3 kit were used to measure neuronal apoptosis. Non-transfected cells acted as controls. As shown in Figure 2D and E, OGD/R

Figure 1 miR-142-3p levels following OGD over multiple time points.

(A) miR-142-3p levels in primary cortical neurons were measured by quantitative real-time polymerase chain reaction following OGD/R injury and are expressed as a ratio to the control group. (B, C) OGD treatment for 2 hours and re-oxygenation for 24 hours remarkably reduced the viability of primary cortical neurons and increased the release of LDH, which are expressed as ratios to control group values. Data are presented as the mean ± SD (n = 3, ##P < 0.05, ###P < 0.01, vs. control group (one-way analysis of variance followed by Student’s t-test). LDH: lactate dehydrogenase; OGD: oxygen-glucose deprivation; OGD/R: oxygen-glucose deprivation/re-oxygenation.

Figure 2 miR-142-3p agomirs suppress and miR-142-3p antagomirs enhance cytotoxicity in primary cortical neurons subjected to OGD/R.

(A) miR-142-3p was abnormally expressed in primary cortical neurons following transfection. Cells were transfected with miR-142-3p agomirs, control agomirs, miR-142-3p antagonirs, or control antagonirs. Non-transfected cells were considered as controls. Quantitative real-time polymerase chain reaction was used to determine miR-142-3p levels. The relative level of miR-142-3p is presented as the mean level standardized to U6. (B-E) Influence of miRNA-142-3p agomirs/antagomirs on cell viability, LDH leakage, cell apoptosis, and caspase-3 activity, respectively. Data are expressed as the ratio to the control group: a: control group; b: OGD group; c: OGD + agomir control group; d: OGD + agomir group; e: OGD + antagomir control group; f: OGD + antagomir group. Data are expressed as the mean ± SD. The experiments were conducted in triplicate. ##P < 0.05, ###P < 0.01 (one-way analysis of variance followed by Student’s t-test). LDH: lactate dehydrogenase; OGD: oxygen-glucose deprivation; OGD/R: oxygen-glucose deprivation/re-oxygenation.
Xia PP, Zhang F, Chen C, Wang ZH, Wang N, Li LY, Guo QL, Ye Z (2020) Rac1 relieves neuronal injury induced by oxygen-glucose deprivation and re-oxygenation via regulation of mitochondrial biogenesis and function. Neural Regen Res 15(10):1937-1946. doi:10.4103/1673-5374.280325

Differences were seen in activities of complex I–III in the OGD + agomir control, OGD, and OGD + miR-142-3p agomir groups (P < 0.05). Therefore, enzyme activity of the mitochondrial electron transport chain in almost all cell types, including neurons (<0.05). Furthermore, in contrast with the agomir control, activities of apoptotic cells and caspase-3 were enhanced by miR-142-3p antagonists (P < 0.05). There was no significant difference in neuronal apoptosis or caspase-3 activity among OGD + agomirs control, OGD, and OGD + antagonists control groups. These data demonstrated that miR-142-3p alleviated the apoptosis induced by OGD/R.

miR-142-3p modulates the levels of key molecules involved in mitochondrial biogenesis and OGD-induced mitochondrial dysfunction

TFAM, PGC1α and NRF1 are major regulators of mitochondrial biogenesis (Zhang and Xu, 2016). Thus, the protein and mRNA levels of these transcription molecules were determined. The mRNA levels of TFAM, PGC1α and NRF1 were examined by qRT-PCR. Low levels of PGC1α, TFAM and NRF1 mRNA were observed in non-treated cells (control group). Compared with the control group, TFAM, PGC1α and NRF1 mRNA were not affected in the miR-142-3p agomir control group (P < 0.05). However, in contrast with the agomir control group, miR-142-3p agomirs markedly raised PGC1α, TFAM and NRF1 mRNA levels. However, treatment with miR-142-3p antagonists following OGD/R decreased mRNA levels of TFAM, PGC1α and NRF1 compared with the OGD/R-exposed neurons (P < 0.05). Furthermore, NOX2 was activated when cells were exposed to OGD/R insult significantly raised Rac1 protein and mRNA levels compared with the control group. However, miR-142-3p antagonists further increased NOX2 activity compared with the OGD + agomir control group (P < 0.05).

Mitochondrial function plays a prominent role in inducing neuronal death after ischemia and increased mitochondrial biogenesis can lead to improved mitochondrial function. The generation of ATP, changes in MMP and production of ROS are involved in mitochondrial reactive oxygen species (mROS) after OGD/R treatment were at a basal level in the control group. A remarkable reduction in MMP and ATP was measured in the OGD group, but this was effectively reversed in the OGD + agomir group (Figure 3E and F). Furthermore, ROS fluorescence intensity was increased in neurons by OGD/R treatment, but was significantly reduced by miR-142-3p agomir pre-treatment (P < 0.05; Figure 3G). The administration of miR-142-3p antagonists increased mROS and decreased ATP and MMP levels compared with the OGD + agomir control group. No remarkable difference was observed for these parameters in the OGD + agomirs control and antagonists control groups compared with the OGD group.

The main ROS producer is the mitochondrial electron transport chain in almost all cell types, including neurons (Angelova and Abramov, 2018). Therefore, enzyme activity in electron transfer chain complexes I–III was assessed. Differences were seen in activities of complex I–III in the control, OGD, and OGD + miR-142-3p agomir groups (P < 0.05) (Figure 3H). Compared with the OGD + agomir control group, activities of all three enzymes were significantly elevated in the OGD + agomir group (P < 0.05). Similarly, administration of miR-142-3p antagonists following OGD injury diminished the levels of complex I–III compared with the OGD + agomir control group (P < 0.05).

miR-142-3p down-regulates levels of Rac1, a target gene of miR-142-3p

TargetScan predicted complementarity between the Rac1 3′-UTR and miR-142-3p (Figure 4A). As shown in Figure 4B–D, Rac1-GTPase (Rac1 activated form) was hardly measurable by western blot assay. Nonetheless, Rac1-GTPase levels were significantly raised in the OGD group. miR-142-3p agomirs markedly increased Rac1-GTPase levels, whereas the miR-142-3p antagonists augmented Rac1-GTPase levels, relative to the agomir control and antagonist control groups, respectively (P < 0.05). These data clearly indicate that Rac1 levels and activation were inversely related to the expression of miR-142-3p.

The activity of Rac1-WT luciferase was significantly suppressed in OGD/R-exposed neurons pre-treated with miR-142-3p agomirs (P < 0.01; Figure 4E). There was no significant change in Rac1-WT luciferase activity between OGD + agomir control and OGD + agomir groups. These observations show that miR-142-3p and Rac1 are linked and might participate in ischemic injuries in the brain. As shown in Figure 4F, NOX2 was activated when cells were exposed to OGD/R injury. Similarly to ROS production, NOX2 activation was also significantly reduced when miR-142-3p agomirs were administrated (P < 0.05). Moreover, miR-142-3p antagonists further increased NOX2 activity compared with the OGD + agomir control group (P < 0.05).

Rac1 over-expression alters the effect of miR-142-3p agomirs against OGD/R neuronal injuries

Rescue experiments were performed to evaluate Rac1 function in the protective effect of miR-142-3p against neuronal cell injury induced by OGD/R. Rac1 was overexpressed from a Rac1 plasmid (Rac1-OE) in OGD/R-treated neurons. Firstly, western blot assays showed that Rac1-OE significantly raised Rac1 expression in normal control cells (Figure 5A), and transfection of the Rac1 over-expression vector significantly restored the expression of Rac1 and of Rac1-GTPase in OGD-damaged cells (P < 0.05; Figure 5B). Secondly, cell viability results indicated that over-expression of Rac1 significantly reduced the viability in neurons and aggravated LDH leakage compared with OGD-damaged neurons (P < 0.05). However, the neuroprotective effects of miR-142-3p agomirs and the viability of primary cortical neurons were also reversed by overexpression of Rac1 after OGD damage (P < 0.05; Figure 5B–D). Similarly, as shown in Figure 5E, the protective role of miR-142-3p agomirs on the upregulation of proteins associated with the biogenesis of mitochondria, such as PGC1α, TFAM and NRF1, was abrogated by overexpression of Rac1 after OGD damage (P < 0.05). Furthermore, neuroprotective effects of miR-142-3p agomirs by reducing ROS production, increasing ATP content, and reserving MMP, were also neutralized by Rac1.
overexpression after OGD damage \((P < 0.05) \). In addition, overexpression of Rac1 following OGD was more harmful than OGD alone \((P < 0.05) \).

Discussion

During perioperative periods, brain ischemia may be caused by many factors, including coexistent hypertension, atherosclerosis, diabetes mellitus, and the surgery itself. Thus, this study has focused on exploring new therapeutic targets to treat perioperative cerebral ischemia. Over the past decade, evidence has accumulated to show that miRNAs play essential roles in cell responses to brain ischemia (Qi et al., 2017; Tian et al., 2018; Wang et al., 2018). Furthermore, a variety of data have indicated dysregulation of specific circulating miRNAs in stroke patients (Dewdney et al., 2018). These findings indicate that miRNAs modulate the expression of genes involved in essential cellular activities associated with the development and progression of brain stroke. miR-142-3p exerted a markedly cardio-protective effect by inhibiting HMGB1 expression (Wang et al., 2016b). Nonetheless, the particular mechanisms of miR-142-3p action in cerebral ischemic injury remain unknown. In this study, miR-142-3p was down-regulated by OGD/R in a time-dependent manner. Interestingly, miR-142-3p agomirs effectively protected primary cortical neurons against injury from OGD/R, as shown by improved cell viability, reduced cellular LDH leakage and suppressed neuronal apoptosis and caspase-3 activity, whereas as these effects were aggravated by miR-142-3p antagomirs. These data clearly illustrated that miR-142-3p plays an essential role in the neuronal damage induced by OGD/R. Nevertheless, to date, the functions and underlying mechanisms of miR-142-3p in cerebral ischemia remain unknown.

Mitochondrial biogenesis, a highly regulated process, is crucial for cellular adaptation (Onyango, 2018). It is pertinent to note that there is a potential connection between impaired mitochondrial biogenesis and cerebral injury following ischemia/reperfusion (Li et al., 2016a; Wang et al., 2016a; Bai et al., 2017). Recent evidence has demonstrated that disruption of mitochondrial biogenesis results in deterioration of mitochondrial function following cerebral ischemic injury (Wang et al., 2014), and that this effect relieves ischemic brain injury (McLeod et al., 2005). Certain proteins expressed from nuclear genes act as powerful stimulators of mitochondrial biogenesis, including NRF1, TFAM, and PGC-1α. Silencing PGC1α exacerbates mitochondrial dysfunction in SH-SY5Y cells after N-methyl-4-phenylpyridinium ion (MPP+)-insult (Ye et al., 2017). In contrast, increased PGC1α expression markedly promotes neuronal survival in OGD/R models (Ye et al., 2016). In neurons, PGC1α activation or overexpression enhances NRF1 activation and expression, and subsequently modulates the expression of the downstream molecule, TEAM, to promote mitochondrial biogenesis (Piao et al., 2012). We previously showed that the biogenesis of mitochondria was important in the neuroprotective effect of sevoflurane following cardiac arrest in hippocampal neurons (Wang et al., 2016c). Consistently, this study provides novel evidence for miR-142-3p alleviating OGD/R-caused injury via a mechanism involving improved mitochondrial biogenesis. Furthermore, TEAM is responsible for the transcription of mtDNA and is a typical marker to test the biogenesis of mitochondria. The present study also measured the amount of mtDNA to analyze the role of miR-142-3p in the biogenesis of mitochondria. We demonstrated that compared with negative controls, miR-142-3p agomirs counteracted mitochondrial damage by augmenting the amount of mtDNA, whereas, miR-142-3p antagomirs abrogated this effect.

Mitochondrial biogenesis is strongly associated with mitochondrial function; increased mitochondrial biogenesis can lead to improved mitochondrial function. Hence, the role of miR-142-3p in mitochondrial function was investigated using some pivotal indicators. Firstly, OGD/R injury leads to mitochondrial damage by reducing ATP. Hence, it is of great significance to prevent the decrease of mitochondrial ATP content during OGD/R. We found that the ATP content of the primary cortical neurons in the OGD + agomir group was significantly higher compared with that in the agomir control group, indicating that mitochondrial function could be improved by miR-142-3p. Secondly, OGD/R injury induces depolarization of the MMP, resulting in release of apoptotic factors and loss of oxidative phosphorylation (Luo et al., 2013). Therefore, MMP was measured to evaluate the integrity of mitochondria. We found that miR-142-3p agomirs reversed the decrease in MMP in the OGD/R injury group. Finally, the pathological mechanism of brain ischemia can cause a decline in the activities of mitochondrial electron transfer chain complexes I–III. All these decreases were notably attenuated by miR-142-3p agomirs. Consistent with previous results, miR-142-3p antagonists had the opposite effect on these physiopathological changes. These results revealed that the role of miR-142-3p in ameliorating neuronal injury induced by OGD/R might be associated with improved mitochondrial function and biogenesis. Unfortunately, the mechanisms by which miR-142-3p improves mitochondrial function and mitochondrial biogenesis remain obscure.

The Targetscan algorithm was used to investigate the underlying mechanisms and to determine miR-142-3p target miRNAs associated with OGD/R-triggered injury. We speculated that miR-142-3p bound to the 3′-UTR of Rac1. Both protein and mRNA levels of Rac1 and even Rac1-GTase (the active Rac1 form) were decreased when the primary cortical neurons were treated with miR-142-3p agomirs following OGD/R, while miR-142-3p antagonists had the opposite effects. Moreover, a remarkable decrease in luciferase activity was found when miR-142-3p was upregulated. If the binding sites between miR-142-3p and the 3′-UTR of Rac1 were mutated, the effect disappeared. These results indicated that Rac1 can interact with miR-142-3p and can be suppressed at both transcription and translation levels. Rac1 is a small G-protein and Rac1 activation is considered critical for many cellular processes, including mitogenesis, transcriptional activation, kinase cascade activation, cytoskeleton reorganization and DNA synthesis (Jamieson et al., 2015; Tsuchiya et al., 2015; Li et al., 2016b). It is universally known that Rac1 is an additional requisite component of functional NADPH oxidase 2 (NOX2) and Rac1 activation is essential in the activation of NOX2 and the production of reactive oxygen species (ROS) (Brennan-Minnella et al., 2015). Numerous studies have confirmed that Rac1 inhibition using pharmacological and genetic tools can suppress cerebral ischemia in cells and experimental animals (Zhang et al., 2009; Liao et al., 2014; Pan et al., 2018; Xia et al., 2018). Rac1 was considered an miR-142-3p target gene, with miR-142-3p acting as a negative modulator for Rac1 to inhibit the invasion and migration of hepatocellular carcinoma cells (Wu et al., 2011) and ameliorate the migration activities of CD4+ T cells by...
targeting Rac1 in arteriosclerosis obliterans (Liu et al., 2014). It is well known that elevated ROS levels are regulated by NOX2-Rac1 signaling. Hence, mitochondrial ROS (mROS) production was next measured using a DCFH-DA method. Mitochondrial ROS production was reduced or exacerbated by administration of miR-142-3p antagonirs or agomirs, respectively, indicating that miRNA-142-3p suppressed the generation of mROS in hypoxic cortical neurons. Additionally, Rac1 over-expression inhibited the beneficial effects of miRNA-142-3p on mitochondrial biogenesis-associated...
proteins and indicators of mitochondrial functions, and on mROS production following OGD/R injury, indicating that Rac1 modulated the positive effect of miRNA-142-3p on preventing OGD/R injury in primary cortical neurons. Actually, it is well established that brain ischemia/reperfusion injury enhances the generation of ROS (Wang et al., 2016c; Pan et al., 2018). Furthermore, NOX2 is considered a main source of ROS production in neurons of the central nervous system through activation of Rac1 (Zhang et al., 2009; Brennan-Minnella et al., 2015). Moreover, the biogenesis of mitochondria is severely impaired by excessive ROS production and decreased mitochondrial biogenesis is a key factor of mitochondrial dysfunction (Jung et al., 2016). Therefore, the neuroprotective effect of miRNA-142-3p involves reducing surplus ROS production to improve mitochondrial biogenesis and function by a mechanism inhibiting the NOX2/Rac1 signaling pathway.

Taken together, this study indicates that miRNA-142-3p is decreased in cortical neurons treated by OGD/R and that miRNA-142-3p activation can improve cell viability, reduce LDH leakage and inhibit neuronal apoptosis in neurons following persistent hypoxia-induced injury. Moreover, our data also indicate that Rac1 is a key target of miRNA-142-3p and that Rac1 expression was negatively related to miRNA-142-3p levels. Finally, miRNA-142-3p was shown to restore mitochondrial functions and biogenesis along with inhibition of the NOX2/Rac1/ROS signaling pathways.

There are several limitations of the present study. This study only investigated the protective effect of miR-142-3p in primary cortical neurons in an in vitro model. Further studies are warranted to elucidate the interaction of miR142-3p and Rac1 in an in vivo study. The mtDNA/gDNA measurements do not distinguish between the possibility of more mitochondria and known apoptotic gDNA degradation. gDNA is the denominator in the mtDNA/gDNA ratio and a reduction in gDNA will cause an increase in the ratio. However, we also have other indicators, such as mROS, MMP and MPTP to confirm the roles of miR142-3p in mitochondrial fitness.

In summary, miRNA-142-3p protected primary cortical neurons from OGD/R injury through maintenance of mitochondrial functions and biogenesis by negatively regulating Rac1. This generates a novel perspective for clinical diagnosis and therapy of cerebral ischemic injury.

Author contributions: Study concept and design: PPX, ZY and QLG; experimental implementation: PPX, CC, ZY and NW; data analysis: ZHW, LYL and FZ; provision of analysis tools/materials/reagents: QLG, ZHW and FZ; manuscript drafting: PPX and ZY. All authors approved the final version of the paper.

Conflicts of interest: The authors declare that they have no competing interests.
Financial support: This study was supported by the National Natural Science Foundation of China, No. 81771422 (to YZ). The funding source had no role in study conception and design, data analysis or interpretation, paper writing or deciding to submit this paper for publication.

Institutional review board statement: The study was approved by the Committee of Experimental Animal Use and Care in Central South University. Consent obtained: All animal experimental protocols were conducted in accordance with the ARRIVE guidelines. Ethical review: Human study approval was not required because the study did not involve human participants.

Data sharing statement: Datasets analyzed during the current study are available from the corresponding author on reasonable request.

Plagiarism check: Checked twice by iThenticate.

Peer review: Externally peer reviewed.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Open peer reviewer: Robert B White, University of Western Australia, Australia.

Additional file: Open peer review report 1.

References

Ahura K, Duan X, Purti R, Saleem S, Davis AK, Tandon NN, Bergman Z, Yang Y (2018) Small molecule targeting the Rac1-NOX2 interaction prevents collagen-related peptide and thrombin-induced reactive oxygen species generation and platelet activation. J Thromb Haemost 16:2009-2016.

Ambrose V (2004) The function of animal microRNAs. Nature 431:350-355.

Argeño PR, Doria AL (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 592:692-702.

Bai E, Guo F, Jiang T, Wei H, Zhou Y, Yin H, Zhong H, Xiong L, Wang Q (2017) Achiocidusa chinensis: anti-apoptotic and osteogenic activity through glycyrrhizin synthesis ki- nase-3β-mediated mitochondrial biogenesis and functional improvement. Mol Neurobiol 54:1204-1253.

Baraf DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-297.

Birch-Machin MA, Briggs HL, Sabotido AA, Birdfold LA, Turnbull DM (1994) An evaluation of the activities of the complexes 1-IV in the respiratory chain of skeletal muscle mitochondria. Biochim Biophys Acta 1150:31-42.

Brennan-Minnella AM, Woon SJ, Swanson RA (2015) NADPH oxidase-2: linking glycosides, acidosis, and excitotoxicity in stroke. Antioxid Redox Signal 22:161-174.

Cao XC, Yu Y, Hou LK, Sun XQ, Gie J, Chen B, Wang Z, Yang W (2016) miR-142-3p inhibits cancer cell proliferation by targeting CDC25C. Cell Prog 49:58-68.

Chen H, Lin W, Zhang Y, Lin J, Chen J, Zeng Y, Zheng M, Zhu D, Hu C, Ren L, Liu N (2016) IL-1β promotes cell proliferation in cultured cortical neu- rons after the oxygen-glucose deprivation via Jak1/STAT3 pathway. Sci Rep 6:30459.

Chen S, Dong Z, Zhao Y, Sai N, Wang X, Liu H, Huang G, Zhang X (2017) Homocysteine induces mitochondrial dysfunction involving the crosstalk between oxidative stress and inflammation following cerebral ischemia in the rat. PLoS One 12:e21066.

 Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522-529.

Sterler RA, Leak RK, Yin W, Zhang L, Wang S, Gao Y, Chen J (2012) Mitochondrial biogen- esis contributes to ischemic neuroprotection afforded by LPS pre-conditioning. J Neurochem 123 Suppl 2:125-137.

Tawfik A, Lin L, Banes-Bercel AKL, Caldwell RB, Ogi S, Shirley A, Barber D, Catzavetas JD, Streeter FM, Fulton D, Caldwell BWK (2003) Hyperglycemic control of the insulin signal in skeletal muscle species mediates apoptotic aorta endothelial cells through Janus kinase 2. Vasc Pharmacol 43:330-336.

Tian YS, Zhong D, Liu QQ, Xiao ZL, Sun HX, Jin J, Wang HW, Li GZ (2018) Upregulation of miR-216a exerts neuroprotective effects against ischemic injury through negatively regu- lating JAK2/STAT3-associated apoptosis and inflammatory pathways. J Neurosurg 130:977-988.

Torres-Mendoza CE, Alberti A, de la Cruz Arriaga MJ (1999) Molecular study of the rat liver NADPH cytochrome c oxidase complex during development and ageing. Mol Cell Biochem 195:133-142.

Tsuchiya A, Kanou T, Shimizu T, Tanaka A, Nishitake T (2015) Rac1 and ROCK are implicat- ed in cell surface delivery of the OPN ligand in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem 289:17377-17387.

Wang Y, Yao L, Liu YY, Liu SY, Chen MD, Wu HD, Chang RM, Li ZH, Zhou MG, Fang XS, Yu TJ, Jiang LY, Huang ZT (2016a) Carbon monoxide improves neurologic outcomes by stimulating miR-204 after cerebral ischemia by carbohydrate in rat brain. Int J Biol Sci 12:1006-1009.

Wang X, Li H, Ding S (2014) The effects of NAD+ on apoptotic neuronal death and mito- chondrial biogenesis and function after glutamate excitotoxicity. Int J Mol Sci 15:20449-20468.

Wang X, Chen S, Ni J, Cheng J, Jia A, Zhen X (2018) miRNA-347B contributes to neuroin- flammation following cerebral ischemia. Cell Death Dis 9:11.

Wang Y, Ouyang M, Wang Q, Juan Z (2016b) MicroRNA-142-3p inhibits hypoxia/reoxyge- nesis-induced apoptosis and fibrosis of cardiomyocytes by targeting high mobility group box 1. Int J Mol Med 38:1377-1386.

Wang Z, Yao L, Zhou LL, Liu YS, Chen MD, Wu HD, Chang RM, Li ZH, Zhou MG, Fang XS, Yu TJ, Jiang LY, Huang ZT (2016c) Nrf2 signaling. J Biochem Mol Toxicol:e22159.

Wang X, Tai X, Pan Y, Zhang M, Wang Q, Guo Y, Ye Z (2018) Pimonidazole confers neuroprotection against ischemia-induced injury due to its inhibitory effects on HMGB1/RAC1 and Rac1/ROCK3/MDM2 pathways by activating p27kip1. Stem Cells Transl Med 7:63.

Wang X, Tai X, Pan Y, Zhang M, Wang Q, Guo Y, Ye Z (2018) Pimonidazole confers neuroprotection against ischemia-induced injury due to its inhibitory effects on HMGB1/RAC1 and Rac1/ROCK3/MDM2 pathways by activating p27kip1. Stem Cells Transl Med 7:63.

Ye Q, Huang W, Li D, Si E, Wang J, Wang Y, Chen C, Chen X (2016) Overexpression of PGCA- 1α enhances mitochondrial signal transduction of dopaminergic neurons. Mol Neurobiol 53:3756-3770.

Ye Q, Chen C, Si E, Cai Y, Wang J, Wang H, Li D, Wang Y, Chen X (2017) Mitochondrial effects of PGC-1α silence in SH-SY5Y cells. FEBS Lett 590:2692-2699.

Ye Q, Huang W, Li D, Si E, Wang J, Wang Y, Chen C, Chen X (2016) Overexpression of PGCA- 1α enhances mitochondrial signal transduction of dopaminergic neurons. Mol Neurobiol 53:3756-3770.

Ye Q, Chen C, Si E, Cai Y, Wang J, Wang H, Li D, Wang Y, Chen X (2017) Mitochondrial effects of PGC-1α silence in SH-SY5Y cells. FEBS Lett 590:2692-2699.

Ye Q, Huang W, Li D, Si E, Wang J, Wang Y, Chen C, Chen X (2016) Overexpression of PGCA- 1α enhances mitochondrial signal transduction of dopaminergic neurons. Mol Neurobiol 53:3756-3770.

Ye Q, Chen C, Si E, Cai Y, Wang J, Wang H, Li D, Wang Y, Chen X (2017) Mitochondrial effects of PGC-1α silence in SH-SY5Y cells. FEBS Lett 590:2692-2699.