Title: Co-occurrence of organic and inorganic N sources influences asparagine uptake and internal amino acid profiles in white clover

Weronika Czaban¹ ², Jim Rasmussen³ ⁴

¹Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
²Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Taastrup, Denmark
³Department of Agroecology, Faculty of Science and Technology, Aarhus University, Tjele, Denmark

Corresponding author:
E-mail: w.czaban@plen.ku.dk

⁴ These authors contributed equally to this work
Abstract

Direct plant uptake of organic nitrogen (N) is important for plant N nutrition, but we lack knowledge of how the concentration of external N forms (organic and inorganic) -influence organic N uptake and plant N status. We investigated the uptake of the amino acid asparagine (Asn) in white clover in the presence of different nitrate (NO$_3^-$), Asn, and total N concentrations. White clover seedlings were for one week exposed to combinations of NO$_3^-$ (3-30 \(\mu \)mol N kg$^{-1}$ sand DW) and Asn (3-30 \(\mu \)mol N kg$^{-1}$ sand DW), where after the Asn uptake rate was determined by addition of 13C$_4$-Asn. Shoot and root Asn content and amino acid profiles were also analyzed. Increasing external NO$_3^-$ and total N concentrations decreased 13C$_4$-Asn uptake rates and internal clover Asn content. Furthermore, total N affected clover amino acid profiles from non-essential amino acids at low N doses to the dominance of essential amino acids at increasing N doses. Asn uptake rate in white clover is reduced by increasing inorganic N, but not by increasing organic N concentrations. Furthermore, plant amino acid profiles are likely to be a more sensitive indicator of N supply and descriptor of the N status.

Introduction

Legumes (Leguminosae) are of great significance to human, food, and animal feed due to their high nitrogen content and are mainly grown as grain, and forage species (1). They are rich in amino acids that are assimilated or derived from N accessed in three different processes: (1) N$_2$-fixation, (2) inorganic N uptake (NO$_3^-$, NH$_4^+$), (3) organic N uptake (amino acids) (2, 3). N$_2$-fixation and inorganic N uptake have been widely studied in legumes (4-6). In terms of energy cost, amino acid assimilation through these two pathways is the most-energy demanding. While direct uptake of organically bound N, where N is already in reduced form, costs less energy (7). Moreover, carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N (8). We recently reported white clover (Trifolium repens, cv. Rivendel) uptake of Asn in a sterile hydroponic solution (3) and in soil conditions at field relevant concentrations (9). Other legumes such as alfalfa (Medicago sativa), alsike-clover (Trifolium hybridum L., cv. Stena), and red clover (T. pratense L., cv.Betty) have also been reported to take up organic N in laboratory or soil studies (10, 11). Although the literature underlines the potential of amino acid absorption by legumes, the importance of amino acid uptake is unclear. This uncertainty is due to a lack of knowledge on how the amino acid uptake is influenced by the presence of other N forms that occur in soil simultaneously and can be acquired by N$_2$-fixing legumes. To
advance our understanding on how much amino acids contribute to the legume N budget, plant growth should be compared in soils that differ in N quality and quantity.

Information on the co-occurrence of different N forms and their influence on root absorption of amino acids mainly comes from studies with non-legume crop and tree species. One of the common findings is that uptake of amino acids is increased, while the absorption of inorganic N is reduced in mixtures of different N sources. Perennial ryegrass (*Lolium perenne*) exposed to a single and equimolar mixture of N sources (2 mM total N) doubled the uptake of glycine when supplied with NO$_3^-$ and NH$_4^+$ compared to when supplied alone (12). Spring wheat (*Triticum aestivum* L. cv. Amaretto) downregulated the assimilation of NO$_3^-$ when exposed to a mixture of glycine (1 mM) and NO$_3^-$ (1 mM), while the acquisition of the amino acid was unaffected by the NO$_3^-$ (13). Pre-incubation of young spruce (*Picea abies* L.) and beech (*Fagus sylvatica* L.) with amino acids (10 mM) reduced the NO$_3^-$ uptake when exposed to NO$_3^-$ and NH$_4^+$ (300-600 µM), whereas the root amino acid content increased (14). Similar results were obtained for non-mycorrhizal beech (*Fagus sylvatica* L.), which was fed with NO$_3$NH$_4$ with and without amino acids: uptake of organic N was significantly higher than inorganic N (15). On the contrary, other studies on temperate and tropical forests point to a preferential uptake of inorganic rather than organic N from mixtures different N sources (16, 17). Whether such interactions occur in legumes is unknown. However, a significance of amino acid uptake in the presence of inorganic N has been documented for white clover (*Trifolium repens*). Based on the detection of L-asparagine-13C$_4$,15N$_2$, we reported uptake rates of 0.4 and 0.04 µmol g$^{-1}$ root DW h$^{-1}$ in a sterile hydroponic solution in both the presence and absence of NH$_4$NO$_3$ (3). Clover plants were also shown to compete for amino acids under soil conditions with uptake rates between 0.05 and 0.15 µmol g$^{-1}$ root DW h$^{-1}$ (9). Hence, amino acids can constitute a significant portion of N that is acquired by legumes, but we lack knowledge on the uptake of organic N in the presence of different N mixtures.

N uptake is thought to be strongly regulated by the N demand of the plant, specifically by the pool of amino compounds circulating between shoot and roots (7). Correspondingly, changes in amino acid composition can be affected by the N supply (18). This was observed by Cambui et al. (2011) who reported that in *Arabidopsis thaliana* grown on a mixture with NO$_3$ and glutamine, a greater fraction of root N was derived from organic than inorganic N. Some studies also reported that plants supplied with organic N show different root morphology and higher root:shoot ratio than those supplied with inorganic N (8). A relation between amino acid composition and N supply was also found in legumes. We demonstrated for *Trifolium repens* that N supplementation (ON vs. ON + IN) affected the abundance of amino acids in the shoots, whereas in the roots, only the concentration (10 µM vs. 1 mM) influenced the amino acid profile (3). This study indicated that root metabolism is more sensitive to nutrient quantity than quality. Thus understanding how the co-
occurrence of different N forms in soil solution affects legume root and shoot performance would be fundamental not
only from a pure scientific perspective, but also for the productivity and quality of forage legumes in agroecosystems.
A complex interaction between the organic and inorganic N suggests that the co-occurrence of different N forms, rather
than the presence of one, affects plant N uptake. However, so far this hypothesis has not been tested for legumes.
Moreover, despite the extensive collection of data, studies mostly determined the uptake of amino acids from a one
defined N mixture (12, 13, 17), while in soil solution inorganic and organic N occur in mixtures at various ratios and
concentrations. Therefore, in this study the objective was to determine how different external N combinations influence
and regulate amino acid uptake in a N₂-fixing legume, white clover (*Trifolium repens*, cv. Rivendel). To systematically
address some of the possible occurrences of organic and inorganic N in soil solution, we used an experimental space of
N treatments. Three mechanisms are proposed for the external N regulation of amino acid uptake (Fig 1a):

1) a single N source: ON or IN independent of the presence of the other one,
2) the IN/ON ratio,
3) neither IN or ON, but the total N.

White clover was chosen due to importance of amino acid uptake in this plant in both hydroponic and soil conditions (3,
9). The uptake of amino acid was evaluated based on acquisition of Asn, which is known to be taken up by clover and
to be the most abundant amino acid in clover root extracts (19, 20).

Fig 1. Experimental design. (a) Hypothetical models to explain regulation of Asn uptake, model 1 represents a single
N source: ON or IN independent of the presence of the other one, model 2 represents ON/IN ratio, and model 3
represents the total N. (b) Matrix of 24 treatments to investigate possible regulation effects on Asn uptake according to
model 1 (solid line), 2 (dotted line), and 3 (dashed line), each point on the graph represents one treatment (n = 4), the x-
axis indicates the concentration of organic N (Asn), the y-axis indicates the concentration of inorganic N (KNO₃).

Materials and methods

Plant and Rhizobium material

Seeds of white clover (*Trifolium repens* L., cv. Rivendel) were surface sterilized with sodium hypochlorite, rinsed with water, and germinated in filter centrifugal tubes (25 ml, Thermo Scientific) containing 38 g of
inert Ottawa sand and placed in the climate chamber (day/night temperature of 18/8 °C; 16 h photoperiod of 70 µmol
All seedlings received basic nutrient solution (2 ml) modified based on Varin, Cliquet (19) (mM): (mM): 0.18 CaCO$_3$, 0.4 K$_2$HPO$_4$, 0.15 K$_2$HPO$_4$, 3 CaCl$_2$, 0.375 MgSO$_4$, 0.2 EDTA 2NaFe(3H$_2$O), 0.014 H$_2$BO$_3$, 0.003 ZnSO$_4$, 7H$_2$O, 0.0007 CuSO$_4$, 0.117 Na$_2$MoO$_4$, 0.0001 CoCl$_2$, 0.005 MnSO$_4$, containing KNO$_3$ and Asn as an inorganic and organic N source, respectively. Seedlings were assigned to testing and control groups: (1) 96 seedlings were assigned to testing group, which received basic nutrient solution containing 15N-KNO$_3$ (3 µmol N kg$^{-1}$ sand) and 15N-Asn (3 µmol N kg$^{-1}$ sand). KNO$_3$ and Asn were added as 15N-labeled (both at 5 at%) for later assessment of N$_2$-fixation by the isotope dilution method (21). Five, seven, and nice days after sowing (DAS), those seedlings were inoculated with *Rhizobium leguminosarum* bv. trifolii TA1, (2) four uninoculated seedlings were assigned as control for the isotope dilution method and received basic nutrient solution containing 15N-KNO$_3$, 5 at% (30 µmol N kg$^{-1}$ sand) and 15N-Asn, 5 at% (30 µmol N kg$^{-1}$ sand), (3) four uninoculated seedlings were assigned as control for the natural abundance of 15N and received basic nutrient solution containing 14N-KNO$_3$ (30 µmol N kg$^{-1}$ sand) and 14N-Asn, (30 µmol N kg$^{-1}$ sand), (4) four inoculated seedlings were assigned as control for the natural abundance of 13C$_4$-Asn and received basic nutrient solution containing 14N-KNO$_3$ (3 µmol N kg$^{-1}$ sand) and 12C$_4$14N-Asn (3 µmol N kg$^{-1}$ sand). Seedlings were watered daily and grown for 60 days in the climate chamber.

Experimental setup

60 DAS clover plants from the testing group (n=96) were randomly assigned into 24 treatments giving four biological replicates per treatment (Fig 1b). Based on current understanding of amino acid uptake and interaction with IN, three general mechanisms were proposed: (1) a single N source: ON or IN independent of the presence of the other one, (2) IN/ON ratio, (3) neither IN or ON, but the total N. To support or reject these modes of control of Asn uptake, we designed an experimental space that systematically covers a matrix of ON (Asn) and IN (KNO$_3$) conditions (Figure 1). For one week, plants were treated with 24 nutrient solutions containing different combinations of 15N-labeled Asn and KNO$_3$ (µmol N kg$^{-1}$ sand). Treatment solutions contained 1) constant Asn concentration with increasing dose of KNO$_3$, 2) constant KNO$_3$ concentration with increasing Asn dose, 3) Asn and KNO$_3$ supplied at ratios of 1/3, 1/2, 2/3, 4) total N corresponding to equimolar concentration of Asn and KNO$_3$. Control plants received respective basic nutrient solutions. On day seven, Asn in all the treatment solutions was replaced by the labeled 13C$_4$-Asn (98 atom% 13C) to determine the uptake rate of Asn. Plants were immersed in the solution for 60 min. After that time, plants were taken out and the shoots were cut off. Roots and shoots were thoroughly washed in 0.5 mM CaCl$_2$, dried with a paper towel, and frozen in liquid N.
Fig 1. Experimental design. (a) Hypothetical models to explain regulation of Asn uptake, model 1 represents a single N source: ON or IN independent of the presence of the other one, model 2 represents ON/IN ratio, and model 3 represents the total N. (b) Matrix of 24 treatments to investigate possible regulation effects on Asn uptake according to model 1 (solid line), 2 (dotted line), and 3 (dashed line), each point on the graph represents one treatment (n = 4), the x-axis indicates the concentration of organic N (Asn), the y-axis indicates the concentration of inorganic N (KNO₃).

Analysis

15N, total N, and C analysis

 Freeze-dried roots and shoots were ground (Geno/Grinder 2000; CertiPrep. Metuchen, NJ 08840) and analyzed for total N and C, and 15N-enrichment (EA-IRMS EA, Thermo Fisher Scientific, Bremen, Germany).

13C₄-Asn uptake and amino acid analysis

 2 mg of the freeze-dried (72 hr) ground plant material was extracted in a 1-ml extraction mixture of chloroform, methanol and water (1:3:1, v:v:v) in Sarstedt’s Eppendorf tubes (Sarstedt AG & Co, Nümbrecht, Germany). One metal bead (a 3-mm tungsten carbide bead) was added to each tube. All tubes were shaken (1300 rpm, 3 min) in a 2010 Geno/Grinder (SPEX Sample Prep., Metuchen, NJ 08840). After shaking, the metal beads were removed, and the tubes were centrifuged (10,000 rpm, 4°C, 10 min). From each of the root and shoot extracts, 200 µl was transferred to 0.1 ml inserts (Mikrolab Aarhus A/S, Denmark) placed in Eppendorf tubes. The rest of the supernatant was stored at -18°C. To each of the extracts, 25 µl of internal standard (norvaline, 0.5 µM) was added and then all evaporated to dryness in a SpeedVac Concentration (Savant, Fisher Scientific, Denmark). The dry extracts were then re-suspended in 20 µl of 20 mM HCl. Extracts were derivatized using an AccQ•Tag Ultra Derivatization Kit (Waters Corp.) according to the manufacturer’s protocol and analyzed using an HPLC (Agilent) coupled to a mass spectrometer (4500 QTRAP Sciex) using electrospray ionization in positive ion mode (ion voltage of 4500 eV). Full details of the method can be found in (9). The presence of compounds in the samples was confirmed by comparing the retention times and MRM transitions with reference standard compounds (S1 Table). The compounds were analyzed using Sciex Analyst 1.6.2 software. Calibration curves (0.001–1 pmol µL⁻¹) of the unlabeled standards were prepared, and the peak area of each standard was plotted against the standard concentration. A linear function was applied to the calibration curves and used to calculate the concentrations of the amino acids in the samples,
Calculations and statistics

The proportion of clover N derived from symbiotic N\textsubscript{2}-fixation was calculated using the 15N isotope dilution method (21):

\[
%Ndfa = \left(1 - \frac{\text{atom}\%\text{15N excess (inoculated clover)}}{\text{atom}\%\text{15N excess (uninoculated clover)}}\right) \times 100\%
\]

Where the atom\% 15N excess of inoculated and uninoculated clover were calculated as the atom \% 15N for the clovers receiving 15N-enriched nutrient solution subtracted the atom \% 15N for the respective inoculated or uninoculated clover control receiving un-enriched nutrient solution.

No labeled 13C\textsubscript{4}-Asn was detected in the unlabeled clover roots and shoots therefore, no corrections for the natural abundance was made when calculating the excess of labeled amino acid. The net uptake rate of intact 13C\textsubscript{4}-Asn (\textmu mol \text{g}^{-1} \text{root DW h}^{-1}) by clover was calculated by adding the amount (\textmu mol) of 13C\textsubscript{4}-Asn in the shoots and roots and then dividing by the dry weight of the roots (g). A two-way Anova was conducted to compare the main effects of inorganic and organic N dose and the interaction effect on the Asn uptake rate, amino acid concentration, and clover performance followed by Tukey’s test. The model assumption of normality was tested using the Shapiro-Wilk test, and the assumption of equal variance was tested using Levene's test and a plot of the residuals against the fitted values.

Relationships between 13C\textsubscript{4}-Asn uptake rate and Asn concentration in the roots and shoots were tested by Pearson’s correlation analysis. To visualize and characterize the major sources of variability in the samples form the different ON, IN, and total N treatments, Principal Component Analysis (PCA) was applied to autoscaled data of the amino acid concentrations, 13C\textsubscript{4}-Asn uptake, total N and C. The data were analyzed using R Studio 3.1.1.

Results

We did not find evidence that the obtained results were related to the effect of different ratios of N forms (S2 Table) which demonstrates that the IN/ON ratio model is likely not a major regulatory mechanism, at least under the conditions tested. Thus, we have focused the presentation on the effect of IN, ON, and total N.

General clover performance
Clover was actively fixing N\textsubscript{2} in all the treatments with the majority of clover N obtained from N\textsubscript{2}-fixation (i.e. %Ndfa ranging from 89-97\%) (S3 Table), but no significant changes in biomass, root-shoot ratio, total N and C were found (S4-S7 Tables).

\textbf{13C\textsubscript{4}-Asn uptake}

The 13C\textsubscript{4}-Asn uptake was markedly affected by the different N doses. There was a significant interactive effect of IN and ON dose on the 13C\textsubscript{4}-Asn uptake rate ($F_{9,48}=18.16$, $p<0.05$) (Table 1). Specifically, the uptake rate was significantly greater at the lowest IN and ON doses than at increasing IN and ON doses (Fig 2, Table 2). A decreasing pattern of net uptake rate of 13C\textsubscript{4}-Asn ($p<0.05$) was observed with increasing total N dose. At low total N (3 IN and 3 ON) the uptake (16.1 nmol g-1 root DW) was eight times greater than the uptake (2.1 nmol g-1 root DW) at higher total N (30 IN and 30 ON). The interaction between ON dose and IN dose in regulating 13C\textsubscript{4}-Asn uptake, was found to respond to IN in an ON-dependent manner. It was observed that at 3 and 30 ON ($p<0.05$) as well as at 20 ON dose ($p>0.05$), the net uptake rate decreased from 50-80\% alongside increasing IN dose (Fig 2, Table 2), while the effect of ON on the 13C\textsubscript{4}-Asn uptake was not as clear. Namely, when clover plants were exposed to 3 IN dose, the net uptake rate of 13C\textsubscript{4}-Asn markedly declined, and then increased together with increasing ON dose, while for the remaining 10, 20 and 30 IN doses this tendency was not shown.
Table 1. Two-way Anova for the effects of IN and ON dose (µmol kg\(^{-1}\) sand) on Asn uptake rate (nmol g\(^{-1}\) root DW), Asn concentration in roots (µmol g\(^{-1}\) DW) and Asn concentration in shoots (µmol g\(^{-1}\) DW) of white clover.

Effect	df	SS	F	P	SS	F	P	SS	F	P
IN dose	3	310.5	43.9	< 0.001	9478	31.7	< 0.001	13554	35.1	< 0.001
ON dose	3	192.6	27.2	< 0.001	996	3.3	< 0.05	5331	13.8	< 0.001
IN dose x ON dose	9	385	18.1	< 0.001	2562	2.8	< 0.01	6119	5.2	< 0.001
Error	48	113.1			4778			6171		

\(df\) (degrees of freedom); SS (sum of squares)
Fig 2. Uptake rate. Uptake rate of 13C$_4$-Asn (nmol g$^{-1}$ root DW) by the clover treated with different doses of ON and IN (µmol kg$^{-1}$ sand). Data are mean ± sdev.

Table 2. Uptake rate. Uptake rate of 13C$_4$-Asn (nmol g$^{-1}$ root DW) by the clover treated with different doses of ON and IN (µmol kg$^{-1}$ sand).

ON dose	IN dose	3	10	20	30
3	16.1 ± 1.3 e	2.5 ± 1.6 ab	5.6 ± 3.6 bcd	7.6 ± 2.7 cde	
10	8.9 ± 1.5 de	7.4 ± 1.7 cde	2.2 ± 0.4 ab	1.6 ± 0.7 a	
20	2.6 ± 1.1 ab	2.8 ± 0.5 abc	2.0 ± 1.0 ab	4.4 ± 0.6 abcd	
30	3.0 ± 0.8 abc	2.3 ± 1.0 ab	2.7 ± 0.6 abc	2.1 ± 1.4 ab	

Values with different superscripts are significantly different ($p < 0.05$). Data are mean ± sdev

Asn concentration in the roots and shoots

The Asn concentration in white clover shoots and roots was significantly affected by a combined effect of IN and ON doses ($F_{9,48} = 2.86, p < 0.05$) (Table 1). In the roots, the highest Asn concentrations were found at the lowest IN dose irrespective of the ON dose with 50-60% decreases in root Asn concentration as IN dose increased (Table 3). However, the pattern for Asn concentration was not clear with increasing ON dose, where Asn concentration was observed to variably rise or decline. The interactive effect of ON and IN doses ($F_{9,48} = 5.29, p < 0.05$) was also shown on the Asn concentration in the shoots (Table 1). The highest Asn content was observed at the lowest IN and ON dose, which decreased alongside increasing ON and IN doses resembling the data of the 13C$_4$-Asn uptake rate (Table 4). At the 3 IN dose, Asn concentration initially decreased, but then increased together with increasing ON dose ($p < 0.05$). Interestingly, increasing total N doses significantly ($p < 0.05$) reduced both root and shoot Asn concentrations in a similar manner like in case of 13C$_4$-Asn uptake rate. We found positive correlations between the 13C$_4$-Asn uptake rate and the Asn concentration in the roots and shoots, respectively, with the strongest correlation found for shoots (R = 0.83) (Fig 3).
Table 3. Asn concentration in the clover roots. Asn concentration (µmol g⁻¹ DW) in the roots of clover treated with different doses of ON and IN (µmol kg⁻¹ sand).

ON dose	IN dose	3	10	20	30
		59.3 ± 19.5 bc	41.8 ± 6.5 ab	58.4 ± 5.3 bc	73.6 ± 5.7 c
3	10	36.2 ± 9.4 ab	37.1 ± 7.7 ab	24.7 ± 12.3 a	34.7 ± 6.2 ab
10	20	25.6 ± 6.0 a	23.5 ± 11.8 a	29.0 ± 2.5 a	43.3 ± 9.4 ab
20	30	29.2 ± 8.2 a	32.5 ± 14.8 a	26.4 ± 8.9 a	23.6 ± 11.6 a

Values with different superscripts are significantly different (p < 0.05). Data are mean ± sdev.

Table 4. Asn concentration in the clover shoots. Asn concentration (µmol g⁻¹ DW) in the shoots of clover treated with different doses of ON and IN (µmol kg⁻¹ sand).

ON dose	IN dose	3	10	20	30
		105.2 ± 10.6 c	42.4 ± 5.5 abcd	57.2 ± 20.7 bcd	68.4 ± 14.4 d
3	10	62.5 ± 9.1 cd	39.9 ± 4.1 abcd	31.8 ± 2.4 ab	34.0 ± 12.8 abc
10	20	37.1 ± 13.7 abc	25.4 ± 2.5 a	35.9 ± 8.9 abc	29.3 ± 7.6 ab
20	30	31.9 ± 6.4 ab	31.4 ± 5.9 ab	37.6 ± 17.5 abc	33.8 ± 17.3 abc

Values with different superscripts are significantly different (p < 0.05). Data are mean ± sdev.

Fig 3. Correlation analysis. Pearson correlation analysis between ¹³C₄-Asn uptake rate (nmol g⁻¹ root DW) and Asn concentration (µmol g⁻¹DW) in the roots (a) and shoots (b).

Correlations between internal amino acid concentrations

PCA of amino acid concentrations, ¹³C₄-Asn uptake rate, total N and C revealed different groupings depending how objects were assembled in sets. No groupings was found when each singular treatment (one ON and one IN dose) was marked as a separate set (S1 Fig). On the contrary, two groupings related IN and total N dose were revealed. In the shoots, the groups related to the lowest IN (Fig 4a) and Total N (Fig S2b) doses were characterized by higher concentrations of most the non-essential amino acids: Asn, Asp, Glu, Gln,
Cys, Pro, Gly and Ala, as well as 13C$_4$-Asn uptake rate, whereas the groups related to the higher IN and total N doses contained more of the essential amino acids: Thr, Val, Ile, Leu, Phe, Tyr, Trp and Met. The same pattern was shown in the roots (S2a Fig, S3 Fig). No separation related to the ON was observed (Fig 4b).

Fig 4. PCA analysis. PCA analysis of amino acids, 13C$_4$-Asn net uptake rate, total N and C content in clover shoots treated with (a) IN and increasing doses of ON (μmol kg$^{-1}$ sand), (b) ON and increasing doses of IN (μmol kg$^{-1}$ sand).

Discussion

13C$_4$-Asn uptake is restricted by external IN, but not ON

We found that one week of exposure to increasing, yet low, IN and ON concentrations reduced the 13C$_4$-Asn uptake rate in white clover by a factor of seven; with the 13C$_4$-Asn uptake rates being about an order of magnitude lower than previously reported for white clover grown in hydroponics (3) and under soil conditions (9). N uptake is affected both by the internal N status of the plant and the external co-occurrence of N sources (22). In clover no changes in the total N were observed, when exposed to different doses of ON, IN, and total N. Thus, changes in the 13C$_4$-Asn uptake rate were more related to the presence of external N, with decreasing uptake along the increasing total N and increasing IN at the low ON dose (Table 2). Decreased uptake of amino acid in the presence of IN was also found by (22), where the uptake of arginine by scots pine (*Pinus sylvestris* L.) was twice as high when provided alone compared to when supplied with NO$_3^-$. The reduced uptake of 13C$_4$-Asn with increasing IN doses demonstrates that assimilation of amino acids is less relevant to the clover under those conditions. However, a greater uptake of the amino acid under limiting IN availability could also point to that clover have a high flexibility to fulfill optimal N nutrition under various conditions. Such properties were for example reported for tree species (15), tundra plants (23) or deciduous and coniferous taiga forest (24) growing in natural ecosystems where ON nutrition is important due to slow mineralization rate. Increasing ON doses resulted in a more complex effect on the 13C$_4$-Asn uptake (Table 2). Some studies documented a downregulation of amino acid uptake by IN (12), whereas other reported an amino acid uptake to be concentration-dependent and that increasing amino acid concentration results in increased uptake rates. This was observed for wheat (*Hordeum vulgare* L.) supplied with glycine (2-30 μM) (25), and spruce (*Fagus sylvatica*) supplied with glutamine (1 μM-10 mM) (26). The reports of increasing amino acid uptake rates with increasing amino acid concentrations all come from studies of non-legumes, whereas the present results indicate that
increasing amino acid concentrations has the opposite effect on amino acid uptake in legumes. We conclude that it was a complex interaction due to the co-occurrence of different N forms, rather than the presence of one N form that affected clover amino acid uptake. Similar to the effect of increasing IN doses a reduced $^{13}\text{C}_4$-Asn uptake rate was found for increasing total N doses (equimolar concentration of IN and ON) (Table 2), which point to a greater influence of IN than ON in the regulation of amino acid uptake in clover.

$^{13}\text{C}_4$-Asn uptake correlates with the internal Asn concentration

Similar to $^{13}\text{C}_4$-Asn uptake rates, the Asn concentration in white clover shoots and roots was significantly influenced by exposure to increasing IN, ON, and total N doses; with the Asn concentration declining along with increasing external total N (Tables 3 and 4). White clover in this study would have three sources of N available: 1) N from NO$_3^-$ uptake, 2) N from Asn uptake, and 3) N from N$_2$-fixation. It is clear that with lower $^{13}\text{C}_4$-Asn uptake rates at increasing external N doses either NO$_3^-$ uptake or N$_2$-fixation must have been upregulated to maintain plant N status. However, %Ndfa was stable and unaffected by the different N doses (S3 Table). Therefore, it is more likely that NO$_3^-$ uptake was increased with increasing external IN and total N doses as the present N$_2$-fixation paradigm states that increasing external NO$_3^-$ availability reduces the N$_2$-fixation activity (27). For instance, Sulieman, Schulze (28) grew Medicago truncatula under high NO$_3^-$ (5 mM) and observed a significant reduction in nitrogenase activity along with Asn accumulation in nodules. The decrease in enzymatic activity was further associated with Asn build-up participating in a negative N-feedback and inhibiting nitrogenase in response to excessive NO$_3^-$.

In the present study the decreasing Asn concentration in shoots with increasing IN and total N doses could therefore be explained by Asn loading into nodules to reduce N$_2$-fixation (Table 4). However, we did not see a greater Asn accumulation in the roots, which were sampled together with nodules, nor did we observe a decrease in the N$_2$-fixation. This result is unusual because a negative feedback system is common for most of the legume plants (29). In retrospect, it would have been very useful if we had sampled nodules separately to measure nodule Asn concentration, because the present findings on the relation between external N doses and internal Asn concentrations does not seem to be directly in line with the hypothesis of Asn being the key in internal regulation of N$_2$-fixation in legumes. Alternatively, other pathways in which Asn is utilized for synthesis of other amino acids could be a reason for a declining Asn content (18, 30), as we observed an increasing tendency in the concentration of Phe, Thr, and Tyr alongside increasing total N (S4 Fig). However, more research would be needed to establish this link. We furthermore were puzzled by finding a positive correlation between shoot Asn concentration and the uptake rate of $^{13}\text{C}_4$-Asn across the external IN and
ON doses, which points to that the two are connected. Although we cannot here deduce whether uptake rate controls internal concentration or vice versa.

Internal amino acid composition is affected by external N doses

In parallel to 13C$_4$-Asn uptake rate and internal Asn concentration, external IN and total N doses changed the concentrations of amino acids in the roots and shoots. At low N, we found a dominance of non-essential amino acids including Asn, whereas increasing external N changed the amino acid profile towards essential amino acids (Fig 4). At the same time, the total N content remained unchanged (S7 Table). This is in line with observations made by Ferreira, Novais (18), who concluded that free-amino acids show a greater promise than total N in understanding the effect of external N on the plant N status, in that amino acid content can respectively increase or decrease in stress conditions without any changes in the total N. Although no studies could be found on the effect of external N on amino acid profile in legumes, (31) reported a decrease in the content of non-essential amino acids in response to high N for maize (Zea mays L.). They hypothesized that decline of the non-essential amino acids was due to deficiency of carbon skeletons for the assimilation of NH$_4^+$. Perhaps a decreased content of Asn in our study (Tables 3 and 4) could also be linked to its metabolism, so that Asn carbon skeletons could be precursors for the synthesis of other amino acids. In that context our findings support that not only the amount of amino acids, but also information on the composition of amino acids is needed to determine to what extent the plant is N stressed and how the plant signals N demand between root and shoot. Thus, our findings demonstrate that the external organic and inorganic N affects the accumulation of certain amino acids in clover, which could help in further understanding how the plant senses various N stress conditions and circulates amino acids between roots and shoots (18, 32). Soil inorganic and organic N status could therefore be used as an indicator for nutritional quality of protein content in forage legumes. Furthermore, our results on shoot and root amino acid composition could also be relevant in understanding how legumes regulate N$_2$-fixation activity as e.g. Glu, Gln, and Pro (33-35) have been found related to the N$_2$-fixation regulation in addition to Asn. Indeed, we found that Glu, Gln, and Pro were all related to both Asn and 13C$_4$-Asn uptake rate at the low external N doses (Fig 4), which would be the conditions where we would expect the greatest N$_2$-fixation activity in the white clover. Thus, in future studies on the impact of external N concentrations and forms it would be relevant to investigate how increasing soil N affects the amino acid profile and N$_2$-fixation activity in legumes and N$_2$-fixation activity in legumes.
Conclusion

In conclusion, a complex interaction due to the co-occurrence of different N forms, rather than the presence of one N form affected clover amino acid uptake; with increasing external IN and total N concentrations reducing 13C-Asn uptake rates. In addition, increasing total external N concentrations affected both Asn and amino acid profiles indicating that plant amino acid profiles may be a good indicator for plant N status. Interestingly, there was a positive correlation between 13C-Asn uptake rate and shoot Asn concentration, although further studies are needed to elucidate whether this link is controlled by the external N concentrations or internal Asn content.

Acknowledgements

The study was financially supported by The Independent Research Fund Denmark – Technology and Production (Project no. 1335-00760B). The authors would like to thank Professor Wanda Malek (Maria Curie Skłodowska University in Lublin, Poland) for providing bacterial strain Rhizobium leguminosarum bv. trifolii TA1 for the plant inoculation.

References

1. Graham PH, Vance CP. Legumes: importance and constraints to greater use. Plant Physiol. 2003;131(3):872-7.
2. Schubert S. Nitrogen assimilation by legumes - processes and ecological limitations. Fertilizer Research. 1995;42:99-107.
3. Czaban W, Jammtgrd S, Nasholm T, Rasmussen J, Nicolaisen M, Fomsgaard IS. Direct acquisition of organic N by white clover even in the presence of inorganic N. Plant and Soil. 2016;407.
4. Hatch DJ, Macduff JH. Concurrent rates of N$_2$ fixation, nitrate and ammonium uptake by white clover in response to growth at different temperatures. Annals of Botany. 1991;67(3):265-74.
5. Høgh-Jensen H, Nielsen B, Thamsborg SM. Productivity and quality, competition and facilitation of chicory in ryegrass/legume-based pastures under various nitrogen supply levels. European Journal of Agronomy. 2006;24:247-56.
6. Liu YY, Wu LH, Baddeley JA, Watson CA. Models of biological nitrogen fixation of legumes. A review. Agronomy for Sustainable Development. 2011;31(1):155-72.

7. Miller AJ, Fan X, Shen Q, Smith SJ. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. Journal of Experimental Botany. 2008;59(1):111-9.

8. Franklin O, Cambui CA, Gruffman L, Palmroth S, Oren R, Nasholm T. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants. Plant Cell and Environment. 2017;40(1):25-35.

9. Czaban W, Rasmussen J, Laursen BB, Vidkjaer NH, Sapkota R, Nicolaisen M, et al. Multiple effects of secondary metabolites on amino acid cycling in white clover rhizosphere. Soil Biol Biochem. 2018;123:54-63.

10. Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR. Microbial Products Trigger Amino Acid Exudation from Plant Roots. Plant Physiology. 2004;136(1):2887-94.

11. Nasholm T, Huss-Danell K, Hogberg P. Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology. 2000;81(4):1155-61.

12. Thorton B, Robinson D. Uptake and assimilation of nitrogen from solutions containing multiple N sources. Plant, Cell, and Environment. 2005;28:813-21.

13. Gioseffi E, de Neergaard A, Schjoerring JK. Interactions between uptake of amino acids and inorganic nitrogen in wheat plants. Biogeosciences. 2012;9(4):1509-18.

14. Gessler A, Schneider S, Von Sengbusch D, Weber P, Hanemann U, Huber C, et al. Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytologist. 1998;138(2):275-85.

15. Stoelken G, Simon J, Ehlting B, Rennenberg H. The presence of amino acids affects inorganic N uptake in non-mycorrhizal seedlings of European beech (Fagus sylvatica). Tree Physiology. 2010;30(9):1118-28.

16. Wei LL, Chen CR, Yu S. Uptake of organic nitrogen and preference for inorganic nitrogen by two Australian native Araucariaceae species. Plant Ecology & Diversity. 2015;8(2):259-64.
17. Liu M, Li CC, Xu XL, Wanek W, Jiang N, Wang HM, et al. Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests. Tree Physiology. 2017;37(11):1515-26.

18. Ferreira EVdO, Novais RF, Dubay GR, Pereira GL, Araujo WL, Jackson RB. Nitrogen supply affects root and shoot amino acid composition in Eucalyptus clones. Australian Journal of Crop Science. 2016;10(3).

19. Varin S, Cliquet JB, Personeni E, Avice JC, Lemauniel-Lavenant S. How does sulphur availability modify N acquisition of white clover (Trifolium repens L.)? Journal of Experimental Botany. 2010;61(1):225-34.

20. Lesuffleur F, Cliquet JB. Characterisation of root amino acid exudation in white clover (Trifolium repens L.). Plant and Soil. 2010;333(1-2):191-201.

21. Jørgensen FV, Jensen ES, Schjoerring JK. Dinitrogen fixation in white clover grown in pure stand and mixture with ryegrass estimated by the immobilized 15N isotope dilution method. Plant and Soil. 1999;208(2):293-305.

22. Gruffman L, Jamtgard S, Nasholm T. Plant nitrogen status and co-occurrence of organic and inorganic nitrogen sources influence root uptake by Scots pine seedlings. Tree Physiol. 2014;34(2):205-13.

23. Schimel J, Stuart Chapin III, F. Tundra plant uptake of amino acid and NH$_4^+$ nitrogen in situ: plants compete well for amino acid N. Ecology. 1996;77(7):2142-7.

24. Kielland K, McFarland J, Olson K. Amino acid uptake in deciduous and coniferous taiga ecosystems. Plant and Soil. 2006;288(1-2):297-307.

25. Jamtgard S, Nasholm T, Huss-Danell K. Characteristics of amino acid uptake in barley. Plant and Soil. 2008;302(1-2):221-31.

26. Wallenda T, Read DJ. Kinetics of amino acid uptake by ectomycorrhizal roots. Plant Cell and Environment. 1999;22(2):179-87.

27. Soussana JF, Minchin FR, Macduff JH, Raistrick N, Abberton MT, Michaelson-Yeates TPT. A Simple Model of Feedback Regulation for Nitrate Uptake and N2 Fixation in Contrasting Phenotypes of White Clover. Annals of Botany. 2002;90(1):139-47.
28. Sulieman S, Schulze J, Tran LSP. N-feedback regulation is synchronized with nodule carbon alteration in Medicago truncatula under excessive nitrate or low phosphorus conditions. Journal of Plant Physiology. 2014;171(6):407-10.

29. Sulieman S, Tran LS. Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes. Crit Rev Biotechnol. 2013;33(3):309-27.

30. Merchant A, Peuke AD, Keitel C, Macfarlane C, Warren CR, Adams MA. Phloem sap and leaf δ^{13}C, carbohydrates, and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment. Journal of Experimental Botany. 2010;61(6):1785-93.

31. Losak T, Hlusek J, Filipcik R, Pospisilova L, Manasek J, Prokes K, et al. Effect of nitrogen fertilization on metabolisms of essential and non-essential amino acids in field-grown grain maize (Zea mays L.). Plant Soil and Environment. 2010;56(12):574-9.

32. Gent L, Forde BG. How do plants sense their nitrogen status? Journal of Experimental Botany. 2017;68(10):2531-9.

33. Neo HH, Layzell DB. Phloem glutamine and the regulation of O_2 diffusion in legume nodules. Plant Physiology. 1997;113(1):259-67.

34. Fischinger SA, Drevon JJ, Claassen N, Schulze J. Nitrogen from senescing lower leaves of common bean is re-translocated to nodules and might be involved in a N-feedback regulation of nitrogen fixation. Journal of Plant Physiology. 2006;163(10):987-95.

35. Larraínzar E, Wienkoop S, Scherling C, Kempa S, Ladrera R, Arrese-Igor C, et al. Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago truncatula under drought and recovery. Mol Plant-Microbe Interact. 2009;22(12):1565-76.
Supporting information

S1 Table. Mass-to-charge ratio (m/z) used in selected ion monitoring and retention times

S2 Table Uptake rate of 13C$_4$-Asn (nmol g$^{-1}$ root DW) and Asn concentration (µmol g$^{-1}$ DW) in the roots and shoots in the clover treated with different doses of ON and IN (µmol kg$^{-1}$ sand) supplied at different ratios. Data are mean ± sdev

S3 Table %Ndfa in clover treated with different doses of ON and IN (µmol kg$^{-1}$ sand). Data are means ± sd

S4 Table Total biomass (g) of clover treated with different doses of ON and IN (µmol kg$^{-1}$ sand). Data are means ± sd

S5 Table Root:shoot ratio of clover treated with different doses of ON and IN (µmol kg$^{-1}$ sand). Data are means ± sd

S6 Table Total C (g g$^{-1}$ DW) of clover treated with different doses of ON and IN (µmol kg$^{-1}$ sand). Data are means ± sd

S7 Table Total N (g g$^{-1}$ DW) of clover treated with different doses of ON and IN (µmol kg$^{-1}$ sand). Data are means ± sd

S1 Fig. PCA of amino acids, 13C$_4$-Asn net uptake rate, total C and N content in clover shoots (a) and roots (b) treated with different doses of ON and IN.

S2 Fig. PCA analysis of amino acids, 13C$_4$-Asn net uptake rate, total N and C content in clover roots (a) and shoots (b) treated with increasing total N dose.

S3 Fig. PCA analysis of amino acids, 13C$_4$-Asn net uptake rate, total N and C content in clover roots treated with (a) IN and increasing doses of ON, (b) ON and increasing doses of IN.

S4 Fig. Phenylalanine, tryptophan, and tyrosine concentration (µmol g$^{-1}$ DW) in the shoots (a) and roots (b) at total N (equimolar concentration of ON and IN µmol kg$^{-1}$ sand DW).
Figure
Figure