De novo transcriptome assembly and hepatic gene expression analyses in overfed and *ad libitum* fed Muscovy and Pekin ducks and their reciprocal interspecific Mule and Hinny hybrids

CURRENT STATUS: UNDER REVIEW

BMC Genomics

Xi Liu
CNRS

Frédéric Hérault
INRAE

Christian Diot
INRA Centre de Rennes
christian.diot@inra.fr

Corresponding Author

ORCID: https://orcid.org/0000-0001-9525-6401

Erwan Corre
CNRS

DOI:
10.21203/rs.3.rs-18946/v1

SUBJECT AREAS
Epigenetics & Genomics

KEYWORDS
RNA sequencing, Interspecific Hybrids, Transcriptome assembly, Gene expression, Liver steatosis
Abstract

Background

Common Pekin and Muscovy ducks and their intergeneric hinny and mule hybrids have different abilities for fatty liver production. RNA-Seq analyses from the liver of these different genetic types fed ad libitum or overfed would help to identify genes with different response to overfeeding between them. However RNA-seq analyses from different species and comparison is challenging. The goal of this study was develop a relevant strategy for transcriptome analysis and comparison between different species.

Results

Transcriptomes were first assembled with a reference-based approach. Important mapping biases were observed when heterologous mapping were conducted on common duck reference genome, suggesting that this reference-based strategy was not suited to compare the four different genetic types. De novo transcriptome assemblies were then performed using Trinity and Oases. Assemblies of transcriptomes were not relevant when more than a single genetic type was considered. Finally, single genetic type transcriptomes were assembled with DRAP in a mega-transcriptome. No bias was observed when reads from the different genetic types were mapped on this mega-transcriptome and differences in gene expression between the four genetic types could be identified.

Conclusions

Analyses using both reference-based and de novo transcriptome assemblies point out a good performance of the de novo approach for the analysis of gene expression in different species. It also allowed the identification of differences in responses to overfeeding between Pekin and Muscovy ducks and hinny and mule hybrids.

Background

In waterfowls, liver steatosis can occur spontaneously as a result of energy storage before migration. This natural ability has been exploited for thousand years to produce fatty liver or “foie gras” by overfeeding ducks or geese in a short period of time. However, fatty liver production varies according to species and breeds [1-5]. In France, the main producer worldwide, most of the production (90%)
involves Mule ducks, i.e. intergeneric hybrids between a female common Pekin duck (Anas platyrhynchos) and a male Muscovy duck (Cairina moschata), and in a far lesser extent Muscovy ducks or geese from the Landes grey breed (Anser anser). Conversely, Pekin ducks are not involved due to their lower ability to produce fatty liver. Some studies have been conducted to better characterize hepatic steatosis development in waterfowls and analyze differences between genotypes. However, they mainly focused on biochemical levels [1–5]. Some studies also focused on gene expression levels but were conducted on few candidate genes only [6–9]. This was mainly due to the lack of duck specific microarrays for transcriptome analyses at the genome level. Thus, genome-wide analyses of gene expression are still needed to better characterize hepatic steatosis in ducks and their hybrids.

The recent development of high throughput RNA sequencing now allows characterization of expressed transcripts and quantification in samples of any species without the need of preexisting tools such as microarrays [10, 11]. Different strategies were applied for transcriptome assembly and analyses of RNA sequences referred as reference-based or de novo assemblies [12–15]. Reference-based strategy is generally conducted when a reference genome for the target transcriptome is available. In such a situation, RNA sequences are aligned on the reference genome using mapping tools like Burrows-Wheeler transform (BWA) [16] or TopHat-Cufflinks [17]. This approach has also been applied in heterologous situations where reference genome and RNA sequences were from different species, for examples mapping horse, donkey and their hybrids transcriptomes on horse reference genome [18], sparrows transcriptome on zebra finch reference genome [19] or red deer transcriptome on cow reference genome [20]. However, in such heterologous situations, i.e. in the absence of reference genome from the same species or when different species and hybrids are compared, de novo approaches are more generally conducted using de novo transcriptome assembling tools such as Trinity [21] or Oases [22]. Some examples of transcriptome analyses in interspecific hybrids are the studies conducted in cyprinidae [23] or in brassica [24]. As different tools are available for reconstructing transcripts de novo, the choice of an optimal method is challenging. Surprisingly, different de novo assembly tools and methods were compared using common duck RNA sequences
while common duck reference genome is available [26]. Although different strategies can be applied to analyze transcriptomes from different species, no one appears as the best one. Interestingly, a de novo RNA-Seq Assembly Pipeline (DRAP) has been developed improving de novo transcriptome assemblies performed by Trinity and Oases in terms of compaction (number of contigs needed to represent the transcriptome) and quality (chimera and nucleotide error rates) [27]. In the present study, reference-based approach using Anas platyrhynchos genome as reference and de novo assembly approach were used and compared to analyze hepatic gene expression of overfed and ad libitum fed Muscovy and Pekin ducks and their reciprocal inter-specific Mule and Hinny hybrids and to identify differentially expressed genes between feeding and duck genetic types.

Methods

Animals and experimental design

Animals, experimental design, RNA preparation and sequencing have been described in previous publications [5, 6, 8, 28]. Briefly, male ducks corresponding to common Pekin (Anas platyrhynchos) and Muscovy (Cairina Moschata) duck species and to their two reciprocal interspecific Mule and Hinny hybrids were fed ad libitum or overfed 14 days with corn and corn meal. RNA were extracted from liver samples, cloned in libraries and paired-ends sequenced. The whole transcriptomic project included 80 Illumina libraries for a total of 2 252 041 541 paired-end reads with a read length of 100 bp. The four genetic types (Anas platyrhynchos, Cairina moschata, Hinny and Mule hybrids) correspond to 20, 19, 20 and 21 libraries for 554 893 036, 513 608 258, 544 599 927 and 638 940 320 paired end reads in total for each of them, respectively. RNA sequences are accessible in the NCBI sequence read archive (SRA) under the accession number SRP144764.

Transcriptome assembly using reference genome

After adapter trimming, mapping of RNA sequences and transcripts reconstruction on the common duck (Anas platyrhynchos) reference genome (BGI_duck_1.0, INSDC Assembly GCA_000355885.1) [26] were performed using TopHat2, Cufflinks and Cuffmerge tools of the Tuxedo suite [17].

De novo transcriptome assemblies

RNA-seq data were alternatively assembled using de novo approaches. The raw datasets for each of the 4 species were assembled independently using Trinity v2.3.2 [21, 29], including a reads cleaning
process with Trimmomatic (using defaults parameters) [30] and an in silico reads normalization step (provided within the Trinity suite). Parental transcriptome (mixing Pekin + Muscovy normalized reads) and hybrid transcriptome (mixing Hinny and Mule duck normalized reads) were assembled with Trinity and Oases (-m 25 -M 65 -s 10) [22]. Composite meta-transcriptome assembly of single genetic type transcriptomes was also conducted using DRAP v1.91 [27] for compacting and correcting Trinity assemblies and constructing a reference transcriptome. By default, DRAP produced 4 assemblies which were filtered for low coverage with Fragments Per Kilobase per Million (FPKM) thresholds set at 1, 3, 5 and 10 respectively.

Assembly Assessment
Quantification for the abundances of transcripts was performed by library using pseudo-aligner Kallisto [31] (trinityrnaseq-2.4.0/util/align_and_estimate_abundance.pl) in no strand-specific paired-end mode. Transrate [32] assembly evaluation which was regrouped in DRAP package was set to version 1.0.1. Transcriptome completeness was assessed by BUSCO v3.0.2 [33] with Eukaryota sets odb9.

Functional Annotation
Peptide prediction was performed using TransDecoder 5.0.2 [29]. Similarity search (Blast search using Atomic Blast+, https://github.com/ppericard/bioinfo-toolkit/blob/master/bin/atomicblastplus.py v5.0.2) of transcriptome and the Transdecoder predicted peptides were performed against the uniprot-swissprot databases (provided by Trinotate annotation pipeline v3.1.1: june 2017). Peptide signal prediction was performed using signalP v4.1 (-c 0) [34]. Prediction of transmembrane helices in proteins was performed using TMHMM v2.0c [35]. Protein domain search was performed using hmmscan from the HMMER v.3.1b2 suite against the Pfam-A database (provided by Trinotate) [36]. Identification of rRNA sequences was performed using RNAmmer v1.2 [37]. Finally, transcriptome functional annotation was performed using Trinotate pipeline v3.1.1 (http://trinotate.github.io described in [38]).

Differential Gene Expression Analyses
Differential gene expression analyses were performed using TMM [39] normalization counts at gene level with GO-enrichment at the same time by DEseq2 [40] and edgeR [41] through Trinity suite
v2.5.1 (--dispersion 0.1 -P 1e-3 -C 1). Common and specific DEG were described using Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/). Expression profiles of down- and up-regulated DEG were drawn using clusterProfiler v3.5 [42].

Results
Transcriptome assembly using reference genome
Transcriptome assemblies of RNA sequences from Pekin (Anas platyrhynchos), Muscovy (Cairina moschata), Hinny and Mule ducks were first performed by a reference-based approach using the common duck reference genome (Anas platyrhynchos, BGI_duck_1.0, INSDC Assembly GCA_000355885.1). Heterologous mapping rate of Muscovy and to a lesser extend of Hinny and Mule transcriptomes (40%, 58%, 59%, respectively) were lower than homologous mapping rate of Pekin transcriptome (71%) on common duck reference genome, clearly indicating an important bias in heterologous mapping when compared to homologous mapping. Direct mapping of reads on reference genome produced similar results (data not shown). This mapping bias prompted us to test the relevance of a de novo approach.

De novo transcriptome assemblies
After adapters removing, quality trimming and filtering of reads, 545 691 171, 504 591 419, 534 967 150 and 627 575 995 pairs were conserved for Pekin, Muscovy, Hinny and Mule ducks, respectively. Subsequently, 37 073 089, 36 822 075, 43 650 600 and 46 866 094 pairs were selected during normalization. They were assembled de novo using Trinity in four independent “single genetic type” transcriptomes, in a “mixed parental” transcriptome (with Pekin and Muscovy reads) and in a “mixed hybrids” transcriptome (with Hinny and Mule reads). A mixed hybrids transcriptome was also assembled using Oases for comparison. As shown in Table 1, single parental species Pekin or Muscovy transcriptome assemblies with Trinity were of higher quality when compared to single hybrid Hinny or Mule transcriptome assemblies with greater average lengths, higher N50 values and lower numbers of transcripts. The quality of the mixed parental (Pekin + Muscovy) transcriptome assembly was also lower, similar to those of single hybrids transcriptome assemblies. The quality of the mixed hybrids (Hinny + Mule) transcriptome assembly was even lower. When mixed hybrids transcriptome assembly was conducted with Oases, very long transcripts with a great N50 value were produced suspected to
be chimeras.

Table 1

| Transcrip
tome Assembler	Pekin	Muscovy	Hinny	Mule	Pekin + Muscovy	Hinny + Mule	Hinny + Mule
Transcripts	Trinity	Trinity	Trinity	Trinity	Trinity	Trinity	Oases
Average length	491,089	481,855	631,041	661,646	808,211	1,388,585	1,328,985
N50	2,330	2,694	1,441	1,464	1,406	858	5014

Pseudo-alignments of sample reads on these de novo transcriptome assemblies and quantification were performed using Kallisto (Fig. 1). Mapping rates of sample reads on single parental species Pekin and Muscovy Trinity assemblies were better than those on hybrids Mule and Hinny assemblies (85.63 ± 1.10%, 85.15 ± 2.27%, 77.94 ± 2.56% and 78.82 ± 2.27%, respectively) (Fig. 1A). Mapping rates on single species transcriptomes were globally better than those on mixed Pekin + Muscovy and Hinny + Mule assemblies (74.24 ± 2.14 and 75.59 ± 1.79), except for Oases assembly that displayed a similar rate but a greater variability across samples (83.43 ± 2.78%) (Fig. 1B).

Unique meta-transcriptomes were finally assembled with DRAP using single genetic type Pekin, Muscovy, Mule and Hinny assemblies and after filtering at 4 different FPKM thresholds. This filtering on FPKM values resulted in a reduction of transcript number by removing lowly expressed transcripts. For example, 175,572 sequences were conserved after filtering of FPKM > 1 and 64,862 with FPKM > 3, representing 28,687,845 and 127,395,003 residues, respectively. We chose to keep the transcriptome assembly produced by DRAP after FPKM > 1 filtering for further analyses. This assembly was of high quality, with a N50 value of 2,807 bp. Pseudo-alignments of reads on this meta-transcriptome and quantification were performed using Kallisto. As shown on Fig. 2, pseudo-alignment rates of sample reads on DRAP meta-assembly were very similar to pseudo-alignment rates on Pekin Trinity assembly, with low “heterologous biases” and variability across samples (84.56 ± 0.98% and 85.63 ± 1.10, respectively).

Annotation completeness in terms of gene content of transcriptome assemblies using mapping approach with Cufflinks and de novo approach with DRAP were assessed with BUSCO for the presence/absence of the conserved eukaryotic single copy orthologous genes. As shown in Table 2,
DRAP de novo approach produced more orthologues (97.1% completeness), provided a more complete (0% missing) and less fragmented (only 3%) catalog of orthologues when compared to the mapping approach using Cufflinks (81.5%, 7.3% and 11.2%, respectively). Interestingly, when same BUSCO analyses were conducted on common duck reference genome, it appears that this genome contains more complete and single copy orthologous genes but less complete orthologues in total (82.9%) with more genes missing (7.2%) suggesting that our RNA sequencing and assembly allowed identifying new genes that are missing in the reference genome assembly.

Categories	DRAP	Cufflinks	Reference genome
Complete	97.1%	81.5%	82.9%
Complete and single-copy	59.1%	42.9%	81.2%
Complete and duplicated	38.0%	38.6%	1.7%
Fragmented	3.0%	11.2%	9.9%
Missing	0.0%	7.3%	7.2%

Gene expression analyses

Gene expressions after DRAP de novo approach were analyzed with edgeR. Significant (p-value < 0.01) differentially expressed genes (fold change ≥ 2) were determined. In total, 13898 different genes were found up- or down-regulated by overfeeding in the four genetic types (Table 3). Much less differentially expressed genes (DEG) were identified in Pekin than in other genetic types (3749, versus 6167, 8920 and 7696, respectively). Among all 13898 DEG, 903 were identified in the four genetic types. Similar results were found when analyses were conducted with DESeq2 (data not shown).

DEG	Pekin	Muscovy	Mule	Hinny	common
up	2281	3450	4907	3901	539
down	1468	2717	4013	3795	364
all	3749	6167	8920	7696	903

Expression levels of DEG were analyzed by principal component analysis (PCA) and hierarchical clustering (HC) to cluster samples according to similarities in gene expression. As shown in Fig. 3A, the first principal component (PC 1) of PCA summarized 50% of the whole variability and discriminated samples according to genetic type, pure species being extreme and hybrids intermediate. The second principal component (PC2) summarized 16% of the whole variability and
discriminated samples according to feeding. The cluster corresponding to overfed Pekin ducks appeared more dispersed than the other clusters. Two clusters were defined for Mule and Hinny samples according only to feeding (ad libitum and overfed) without any distinction according to genetic type. When expressions of DEG were analyzed by HC (Fig. 3B), two clusters were first defined: one including all Pekin samples, whatever the feeding was, and the other including all other samples. This second cluster included two groups. One corresponded to ad libitum and overfed Muscovy samples. The second included two groups: on one hand ad libitum and on the other hand overfed mule and hinny hybrid samples as was observed in PCA. Finally, 4 different clusters were defined again according first to genetic type: a Pekin cluster more distant from the 3 others and including ad libitum and overfed samples; a Muscovy cluster also including ad libitum and overfed samples; a fed ad libitum Hinny and Mule cluster; and an overfed Hinny and Mule cluster. As observed in PCA, these two latter clusters suggest that Hinnies and Mules in the same feeding status cannot be distinguished according to differential gene expression.

The presence of down- and up-regulated DEG in the four genetic types was shown with Venn diagrams (Fig. 4A). Few down- and up-regulated DEG (364 and 539, respectively) were identified in the four genetic types. However, fold change in expressions of these common DEG were very different according to genetic type (Fig. 4B). DEG expression levels in Pekin were more different from the three other genetic types with less down- and up-regulated DEG visualized, suggesting that DEG responses to overfeeding are less important in Pekin ducks. Conversely, many DEG were not found in each of the 4 genetic types or specifically found in one genetic type only (821, 2171, 1281, and 2125 in Pekin, Muscovy, Hinny and Mule ducks, respectively) indicating genetic type effects (Fig. 4A). Some examples of such feeding and gene effects interactions are shown in additional file 1. Hybrids shared the highest number of DEG with 2677 down- and 3061 up-regulated DEG found in both mule and hinny ducks. Only two genes were found with interaction, i.e. down-regulated in one hybrid and up-regulated in the other hybrid. These results indicate that few differences were observed in response to overfeeding between the two hybrids or in other words few genetic type effects and therefore few interactions with feeding effect. For comparison, less down- and up-regulated DEG were found in both
mule and Muscovy ducks (1640 and 1936, respectively), even less in both mule and Pekin ducks (956 and 1611, respectively) and only 415 down- and 598 up- regulated DEG in both Pekin and Muscovy ducks indicating more differences in feeding effect between the two duck “pure” species.

Discussion
The aim of this study was to analyze and compare gene expressions in four different duck genetic types, common Pekin and Muscovy duck species and their reciprocal mule and hinny hybrids using a relevant approach. As mentioned by Moreton et al. [14], choice for using reference-based or de novo transcriptome assembly approach for gene expression analyses is generally based on the question whether or not a reference genome is available. Reference-based strategy involves mapping of RNA sequences on a reference genome to assemble transcripts and count reads. This strategy is generally conducted when reference genome in the species of interest or in a closely related species is available. For examples, this strategy was conducted in sparrows using zebra finch reference genome [19] or in red deer using cow reference genome [20]. Otherwise, when a reference genome from the species or a closely related species is not available, de novo assembly approach is generally recommended and many examples can be found in the literature. However, when gene expression from different species are to be analyzed and compared, the question of strategy is more complex and cannot be taken up with the question of availability of a reference-genome for one of these species. Few relevant results for such a situation have been published. Reference-based strategy was applied for transcriptome analysis of horse, donkey and their hybrids using the horse reference genome [18]. Conversely, de novo assembly approach was conducted for transcriptome analyses in interspecific cyprinidae [23] and brassica [24] hybrids. In support of these studies, neither strategy seemed a priori better than the other. Therefore, we decided to test both approach in our study. Reference-based approach was first conducted using the common duck (Anas platyrhynchos) genome as reference for the four genetic types. As indicated, mapping rates were very different when homologous and heterologous mapping were considered (71% with Pekin duck reads and 41% with Muscovy duck reads). In the study of Wang et al. [18], homologous mapping rate of horse reads on horse reference genome (61.70%) was very similar to heterologous mapping rate of donkey reads on
horse reference genome (62.07%). The reason of this difference of heterologous mapping rate between equids and ducks was not directly investigated but we can speculate that it is partly due to the difference of evolution distance between equids and duck species (estimated time according to http://www.timetree.org/, [43], 7.7 and 22.8 MYA, respectively), but also to different mapping parameters in the two studies. In our study, these parameters were set by defaults and were not optimized for heterologous mapping. As described in a previous study [28], this bias of mapping was not a problem to analyze differences in gene response to feeding in ducks from the same genetic type. It was however too important for gene expression comparisons between the four genetic types and to analyze genetic effect in gene expression.

Therefore, de novo transcriptome assembly approaches were then conducted. Many tools are available for de novo transcriptome assembly, with different efficiencies according to species assembled [44]. We chose to use and compare two of them, Trinity [21, 29] and Oases [22]. As shown in Table 1 and Fig. 1A, Trinity “single” transcriptome assemblies from “pure” Pekin or Muscovy duck sequences were very similar and better in terms of length and alignments of reads than assemblies from hinny and mule hybrid sequences. This result is probably due to the fact that in hybrids transcripts are expressed from two different genomes making assembly less efficient according to the presence of some polymorphisms in transcripts from the same orthologs between the two species. This was also observed when assemblies were performed with sequences from two different species (Fig. 1B). We have also shown that more reads were aligned on these de novo assembled transcriptomes than on common duck reference genome. Furthermore, homologous mapping of Pekin reads on de novo Pekin transcriptome assembly (around 85%) was more efficient than that on reference genome (71%). We can speculate that some reads correspond to genes that are missing in the reference genome, corresponding to new or misassembled genes, or to genes that are in unknown regions, i.e. unassembled and unassigned regions. Thus, these reads are not mapped on reference genome but are assembled together in transcripts by de novo approach and map on theses transcripts.

As previously said, mapping of reads on transcriptomes assembled from hybrids or two genetic types
were less efficient, whatever the assembler Trinity or Oases used, indicating that these tools are not well suited for “complex” transcriptome assembly. Interestingly, Cabau et al. have described a de novo RNA-Seq Assembly Pipeline (DRAP) expected to improve Trinity and Oases RNA-Seq assemblies [27]. This prompted us to test DRAP, not only to improve “single” genetic type assemblies but also to perform a meta-transcriptome assembly of transcriptomes from the four duck genetic types. As shown in Fig. 2, this meta-transcriptome assembly with DRAP was very efficient, with a mapping rate of sample reads similar to the best rates previously observed, i.e. homologous mapping rate of Pekin or Muscovy duck reads on de novo assembled Pekin or Muscovy transcriptomes. Further analysis with BUSCO [33] confirmed the quality of this meta-transcriptome assembled with DRAP (Table 2). As stated on the dedicated website, BUSCO provides quantitative measures for the assessment of genome assembly, gene set, and transcriptome completeness, based on evolutionarily-informed expectations of gene content from near-universal single-copy orthologs. In our study, more than 97% of single-copy orthologs were assembled by DRAP as complete (i.e. full expected transcript length), 3% were fragmented (assembled with a shorter length than expected) and finally no (0%) were missing. With reference-based approach using Cufflinks, only 81.5% single-copy orthologs were assembled to full length, 11.2% were fragmented and 7.3% were missing. This clearly indicates that de novo assembly of meta-transcriptome using DRAP is of higher quality when compared to assembly using reference-based approach. Again, this is probably due to the missing of genes in the reference genome. Moreover, when BUSCO was applied to reference genome, proportions of complete and missing orthologs were similar (82.9% and 7.2%, respectively) to those found after reference-based approach for transcriptome assembly using Cufflinks. It is interesting to note that lower proportions of complete and single copy orthologs were found in DRAP and Cufflinks assembled transcriptomes (59.1% and 42.9%) than in reference genome (81.2%). The fact that most of orthologs were complete and as expected in a single copy in the genome and not in transcriptomes whatever the approach used is probably the result of the presence of only one isoform for one orthologs in the genome (by definition because BUSCO applies only on single-copy orthologs in related species) but of multiple alternative transcripts from one single-copy orthologs making assembly in one transcript more tricky.
This clearly indicates that development of methods to improve transcriptome assembly and reduce duplication and more generally redundancy remains a concern today. Nevertheless, our results show that the de novo approach with DRAP is more relevant than the reference-based approach to assemble a meta-transcriptome from reads of the four duck genetic types.

Gene expression analyses and identification of differentially expressed genes was then conducted using this meta-transcriptome as reference, assuming that mapping bias were substantially reduced when compared to our previous study using a reference based approach [28] and allowed us to analyze differentially expressed genes within and between genetic types. Many genes were found up- and down-regulated by overfeeding and some of them (903) were found in the four genetic types. These results indicate some similarities but also some genetic type-specific responses to overfeeding.

This was further confirmed by principal component analyses and hierarchical clustering. Different conclusions can be drawn from these results. First, responses to overfeeding in hinny and mule hybrids were very similar and indicate that expectation that hinnies are not used for fatty liver production due to a different and lower response to overfeeding is wrong. In fact, the reason essentially lies in the difficulty to produce viable hinnies due to a lower efficiency of artificial insemination of Muscovy females and their lower fertility when compared to Pekin females. Second important conclusion is that many genes are differentially expressed in the four genetic types. This suggests that response to overfeeding and consequently development of hepatic steatosis is a complex trait involving many genes and functions and is not well described by the expression of few candidate genes [6–9], even if expressions of these genes are well correlated to fatty liver weight [6].

Third, although some differentially expressed genes were found in the four genetic types, some other were not found in Pekin ducks, making this species less similar and more distant to the three other genetic types. Furthermore, individual variability of responses in Pekin ducks was very important making some overfed Pekin samples near to Pekin ducks fed ad libitum samples. This is directly linked to the greater variability and lower ability of Pekin ducks to produce fatty liver in response to overfeeding when compared to hinny and mule hybrids and Muscovy ducks. To conclude on this point, response to overfeeding in ducks is very complex, different in some extent from a genetic type to the
other and involves many genes suggesting that genetic improvement of duck selection for fatty liver production should be undertaken at the whole genome level.

Conclusion
We have shown that differential gene expression analyses in different duck genetic types and comparisons are more accurate when a meta-transcriptome is assembled with DRAP from single transcriptomes of the four different genetic types assembled by Trinity. Using this strategy, we have shown that differences in responses to overfeeding can be identified between the four genetic types. This work provides new information to describe hepatic steatosis in different duck genetic types in a much more holistic way. This information could also be exploited in the context of genomic selection programs that will certainly be developed in ducks in the coming years.

Abbreviations
BUSCO: Benchmarking Universal Single-Copy Orthologs; BWA: Burrows-Wheeler transform; DEG: differentially expressed gene; DRAP: de novo RNA-Seq Assembly Pipeline; FPKM: fragments per kilobase per million; HC: hierarchical clustering; NCBI: National Center for Biotechnology Information; PC: principal component; PCA: principal component analysis; RNA: Ribonucleic acid; RNA-seq: Ribonucleic acid sequencing; SRA: sequence read archive.

Declarations
Acknowledgements
Sequence analyses were performed on ABiMS bioinformatics facility (http://abims.sb-roscoff.fr/).

Funding
The research was supported by the National Institute for Agronomical Researches (INRAE) AIP Bio-Ressources research grant and by the ANR project IDEALG [ANR-10-BTBR-04] “Investissements d’Avenir, Biotechnologies-Bioressources”. With the exception of funding, INRAE played no role in this study.

Availability of data and materials
The dataset supporting the conclusions of this article is available in the NCBI Sequence Read Archive (SRA), under the accession number SRP144764 (https://www.ncbi.nlm.nih.gov/sra/SRP144764).

Authors’ contributions
CD and EC conceived and coordinated the study. XL and FH performed the analyses. XL, FH, EC and CD interpreted the results and drafted the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. ABiMS bioinformatics facility, CNRS, Sorbonne Université, FR2424, Station Biologique, 29680, Roscoff, France.
2. PEGASE, INRA, Agrocampus Ouest, 35590 Saint-Gilles, France.

References

1. Hermier D, Guy G, Guillaumin S, Davail S, André JM, Hoo-Paris R: *Differential channelling of liver lipids in relation to susceptibility to hepatic steatosis in two species of ducks*. Comp Biochem Physiol B Biochem Mol Biol 2003, **135**(4):663-675.

2. Fournier E, Peresson R, Guy G, Hermier D: *Relationships between storage and secretion of hepatic lipids in two breeds of geese with different susceptibility to liver steatosis*. Poult Sci 1997, **76**(4):599-607.

3. Hermier D, Salichon MR, Guy G, Peresson R: *Differential channelling of liver lipids in relation to susceptibility to hepatic steatosis in the goose*. Poult Sci 1999, **78**(10):1398-1406.

4. Davail S, Rideau N, Guy G, Andre JM, Hermier D, Hoo-Paris R: *Hormonal and metabolic responses to overfeeding in three genotypes of ducks*. Comp Biochem Physiol A Mol Integr Physiol 2003, **134**(4):707-715.
5. Chartrin P, Bernadet MD, Guy G, Mourot J, Hocquette JF, Rideau N, Duclos MJ, Baéza E: Does overfeeding enhance genotype effects on liver ability for lipogenesis and lipid secretion in ducks? Comp Biochem Physiol A Mol Integr Physiol 2006, 145(3):390-396.

6. Hérault F, Saez G, Robert E, Al Mohammad A, Davail S, Chartrin P, Baéza E, Diot C: Liver gene expression in relation to hepatic steatosis and lipid secretion in two duck species. Anim Genet 2010, 41(1):12-20.

7. Tavernier A, Davail S, Ricaud K, Bernadet MD, Gontier K: Genes involved in the establishment of hepatic steatosis in Muscovy, Pekin and mule ducks. Mol Cell Biochem 2017, 424(1-2):147-161.

8. Hérault F, Duby C, Baéza E, Diot C: Adipogenic genes expression in relation to hepatic steatosis in the liver of two duck species. Animal 2018:1-7.

9. Zhu LH, Meng H, Duan XJ, Xu GQ, Zhang J, Gong DQ: Gene expression profile in the liver tissue of geese after overfeeding. Poult Sci 2011, 90(1):107-117.

10. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.

11. Ozsolak F, Milos PM: RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 2011, 12(2):87-98.

12. Hekman JP, Johnson JL, Kukekova AV: Transcriptome Analysis in Domesticated Species: Challenges and Strategies. Bioinform Biol Insights 2015, 9(Suppl 4):21-31.

13. Vijay N, Poelstra JW, Kunstner A, Wolf JB: Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Mol Ecol 2013, 22(3):620-634.
14. Moreton J, Izquierdo A, Emes RD: Assembly, Assessment, and Availability of
De novo Generated Eukaryotic Transcriptomes. Front Genet 2015, 6:361.

15. Martin JA, Wang Z: Next-generation transcriptome assembly. Nat Rev Genet
2011, 12(10):671-682.

16. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 2009, 25(14):1754-1760.

17. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL,
Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks. Nat Protoc 2012, 7(3):562-578.

18. Wang X, Miller DC, Harman R, Antczak DF, Clark AG: Paternally expressed genes
predominate in the placenta. Proc Natl Acad Sci U S A 2013, 110(26):10705-
10710.

19. Balakrishnan CN, Mukai M, Gonser RA, Wingfield JC, London SE, Tuttle EM, Clayton
DF: Brain transcriptome sequencing and assembly of three songbird model
systems for the study of social behavior. PeerJ 2014, 2:e396.

20. Marfell BJ, O'Brien R, Griffin JF: Global gene expression profiling of monocyte-
derived macrophages from red deer (Cervus elaphus) genotypically resistant
or susceptible to Mycobacterium avium subspecies paratuberculosis
infection. Dev Comp Immunol 2013, 40(2):210-217.

21. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,
Raychowdhury R, Zeng Q et al: Full-length transcriptome assembly from RNA-Seq
data without a reference genome. Nat Biotechnol 2011, 29(7):644-652.

22. Schulz MH, Zerbino DR, Vingron M, Birney E: Oases: robust de novo RNA-seq
assembly across the dynamic range of expression levels. Bioinformatics 2012,
28(8):1086-1092.
23. Zhou Y, Ren L, Xiao J, Zhong H, Wang J, Hu J, Yu F, Tao M, Zhang C, Liu Y et al: Global transcriptional and miRNA insights into bases of heterosis in hybridization of Cyprinidae. *Sci Rep* 2015, 5:13847.

24. Chu P, Liu H, Yang Q, Wang Y, Yan G, Guan R: *An RNA-seq transcriptome analysis of floral buds of an interspecific Brassica hybrid between B. carinata and B. napus*. *Plant Reprod* 2014, 27(4):225-237.

25. Moreton J, Dunham SP, Emes RD: *A consensus approach to vertebrate de novo transcriptome assembly from RNA-seq data: assembly of the duck (Anas platyrhynchos) transcriptome*. *Front Genet* 2014, 5:190.

26. Huang Y, Li Y, Burt DW, Chen H, Zhang Y, Qian W, Kim H, Gan S, Zhao Y, Li J et al: The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. *Nat Genet* 2013, 45(7):776-783.

27. Cabau C, Escudie F, Djari A, Guiguen Y, Bobe J, Klopp C: *Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies*. *PeerJ* 2017, 5:e2988.

28. Hérault F, Houée-Bigot M, Baéza E, Bouchez O, Esquerré D, Klopp C, Diot C: *RNA-seq analysis of hepatic gene expression of common Pekin, Muscovy, mule and hinny ducks fed ad libitum or overfed*. *BMC Genomics* 2019, 20(1):13.

29. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M et al: *De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis*. *Nat Protoc* 2013, 8(8):1494-1512.

30. Bolger AM, Lohse M, Usadel B: *Trimmomatic: a flexible trimmer for Illumina sequence data*. *Bioinformatics* 2014, 30(15):2114-2120.

31. Bray NL, Pimentel H, Melsted P, Pachter L: *Near-optimal probabilistic RNA-seq...
quantification. *Nat Biotechnol* 2016, **34**(5):525-527.

32. Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S: **TransRate: reference-free quality assessment of de novo transcriptome assemblies.** *Genome Res* 2016, **26**(8):1134-1144.

33. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM: **BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs.** *Bioinformatics* 2015, **31**(19):3210-3212.

34. Petersen TN, Brunak S, von Heijne G, Nielsen H: **SignalP 4.0: discriminating signal peptides from transmembrane regions.** *Nat Methods* 2011, **8**(10):785-786.

35. Krogh A, Larsson B, von Heijne G, Sonnhammer EL: **Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.** *J Mol Biol* 2001, **305**(3):567-580.

36. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J et al: **Pfam: the protein families database.** *Nucleic Acids Res* 2014, **42**(Database issue):D222-230.

37. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW: **RNAmmer: consistent and rapid annotation of ribosomal RNA genes.** *Nucleic Acids Res* 2007, **35**(9):3100-3108.

38. Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, Lee TJ, Leigh ND, Kuo TH, Davis FG et al: **A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors.** *Cell Rep* 2017, **18**(3):762-776.

39. Robinson MD, Oshlack A: **A scaling normalization method for differential expression analysis of RNA-seq data.** *Genome Biol* 2010, **11**(3):R25.

40. Love MI, Huber W, Anders S: **Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol 2014, 15(12):550.

41. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics 2010, 26(1):139-140.

42. Yu G, Wang LG, Han Y, He QY: clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics 2012, 16(5):284-287.

43. Hedges SB, Marin J, Suleski M, Paymer M, Kumar S: Tree of life reveals clock-like
speciation and diversification. Mol Biol Evol 2015, 32(4):835-845.

44. Holzer M, Marz M: De novo transcriptome assembly: A comprehensive cross-
species comparison of short-read RNA-Seq assemblers. Gigascience 2019, 8(5).

Figures
Pseudo-alignments rates of sample reads on transcriptome assemblies and quantification using Kallisto. Mapping rates of sample reads on (A) single genetic type transcriptome assemblies using Trinity or (B) on two genetic type transcriptome assemblies using Trinity (Pekin+Muscovy and Hinny+Mule) or Oases (Hinny+Mule/Oases). Pekin mapping rates in B is the same as in A.
Figure 2

Pseudo-alignment rates of sample reads on DRAP meta-assembly. Mapping rates of sample reads on DRAP meta-transcriptome assembly. Pekin assembly using Trinity is again indicated to ease the comparison.
Clustering according to DEG expression levels. Expression levels of DEG were analyzed by (A) principal component analysis (PCA) and (B) hierarchical clustering (HC). Sample color code in (B) is the same as in (A).
Differentially expressed genes. (A) Venn diagram of down and up-regulated DEG in the four genetic types. (B) Expression profiles of 903 DEG found in the four genetic types (fold}
changes FC > 2, adjusted p value < 0.05).

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
Additional file 1_GxE interaction.pdf