A NOTE ON THE SET $A(A + A)$

PIERRE-YVES BIENVENU, FRANÇOIS HENNECART, AND ILYA SHKREDOV

Abstract. Let p a large enough prime number. When A is a subset of $\mathbb{F}_p \setminus \{0\}$ of cardinality $|A| > (p + 1)/3$, then an application of Cauchy-Davenport Theorem gives $\mathbb{F}_p \setminus \{0\} \subseteq A(A + A)$. In this note, we improve on this and we show that if $|A| \geq 0.3051p$ implies $A(A + A) \supseteq \mathbb{F}_p \setminus \{0\}$. In the opposite direction we show that there exists a set A such that $|A| > (1/8 + o(1))p$ and $\mathbb{F}_p \setminus \{0\} \not\subseteq A(A + A)$.

1. Introduction

The aim of this note is to study the size of the set $A(A + A) = \{a(b + c) : a, b, c \in A\}$ for a subset $A \subseteq \mathbb{F}_p \setminus \{0\}$. This sort of problems belongs to the realm of expanding polynomials and sum-product problems. In the literature, they are usually discussed in the sparse set regime; for instance, Roche-Newton et al. [8], Aksoy Yazici et al. [9], and [11] proved that in the regime where $|A| \ll p^{2/3}$, one has $\min(|A + A|, |A(A + A)|) \gg |A|^{3/2}$ (see also [10]). This implies in particular that as soon as $|A| \gg p^{2/3}$, both sets $A(A + A)$ and $A + AA$ occupy a positive proportion of \mathbb{F}_p.

Now we focus in the case where $A \subseteq \mathbb{F}_p$ occupies already a positive proportion of \mathbb{F}_p. Let $\alpha = |A|/p$, so we suppose that $\alpha > 0$ is bounded below by a positive constant while p tends to infinity. We will see that in this case the set $A(A + A)$ contains all but a finite number of elements. Besides, we prove that this finite number of elements may be strictly larger than one, unless α is large enough.

Here are our main results.

Theorem 1.1. Let $A \subseteq \mathbb{F}_p$ so that $|A| = \alpha p$ with $\alpha \geq 0.3051$. Then for any large enough prime p, we have $A(A + A) \supseteq \mathbb{F}_p \setminus \{0\}$.

For smaller densities, we have the following result.

Theorem 1.2. Let $A \subseteq \mathbb{F}_p \setminus \{0\}$ and $0 < \alpha < 1$ satisfy $|A| \geq \alpha p$. Then one has $|A(A + A)| \gg p - 1 - \alpha^{-2}(1 - \alpha)^2 + o(1)$.

We note that similar results were obtained [4] for the set $AA + A$. However, the constant $(1 + c_0)^{-1}$ is replaced by the larger $1/3$ in Theorem 1.1 and the term $\alpha^{-3}(1 - \alpha)^2$ is replaced by the larger α^{-3}. Further, the slightly weaker bound $|A(A + A)| \geq p - \alpha^{-3}$ may be extracted from [9].

In the opposite direction, we have the following result.

Theorem 1.3. There exists $A \subseteq \mathbb{F}_p \setminus \{0\}$ such that $|A| > (1/8 + o(1))p$ and $A(A + A) \not\subseteq \mathbb{F}_p \setminus \{0\}$ for any large prime p. Besides, for any $\epsilon > 0$ there exists a set of size $O(p^{3/4 + \epsilon})$ such that $A(A + A)$ misses $\Omega(p^{1/4 - \epsilon})$ elements.

2010 Mathematics Subject Classification. 11B75.

This work was performed within the framework of the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
2. Proof of Theorem 1.1

In this section, we shall need the Cauchy-Davenport Theorem, which we now state. See for instance [7, Theorem 2.2] for a proof.

Lemma 2.1. Let A and B be subsets of \mathbb{F}_p. Then $|A + B| \geq \min(|A| + |B| - 1, p)$.

In particular, if $|A| + |B| > p$, then $A + B = \mathbb{F}_p$, which is also obvious because A and $x - B$ cannot be disjoint for any x.

First, we note that if $\alpha > 1/2$, then $|A + A| \geq |A| > p/2$ so that $A(A + A) = \mathbb{F}_p$.

But as soon $\alpha < 1/2$, we can easily have $A(A + A) \subseteq \mathbb{F}_p^*$ for instance by taking $A = \{1, \ldots, \lfloor \frac{p-1}{2} \rfloor \}$.

Here is another almost equally immediate corollary.

Corollary 2.2. Let $A \subseteq \mathbb{F}_p \setminus \{0\}$ satisfy $|A| > (p+1)/3$. Then either $A(A + A) = \mathbb{F}_p$ or $\mathbb{F}_p \sim \{0\}$.

Proof. Let $B = (A + A) \sim \{0\}$. Using Theorem 2.1, we have $|A + A| > (2p - 1)/3$ so $|B| > (2p - 4)/3$, whence $|A| + |B| > p - 1$. We infer that for any $x \in \mathbb{F}_p \setminus \{0\}$ we have $xB^{-1} \cap A \neq \varnothing$, which yields $AB = \mathbb{F}_p \setminus \{0\}$.

We now prove Theorem 1.1 which reveals that we can lower the density requirement from $1/3$ to 0.3051 while maintaining $A(A + A) \supset \mathbb{F}_p \setminus \{0\}$.

To start with, we recall the famous Freiman’s $3k - 4$ Theorem for the integers, which gives precise structural information on a set which has quite small, but not necessarily minimal, doubling [7, Theorem 1.16].

Proposition 2.3. If $A \subseteq \mathbb{Z}$ satisfies $|A + A| \leq 3|A| - 4$ then A is contained in an arithmetic progression of length at most $|A| - |A| + 1$.

An analogue of this proposition has been developed in \mathbb{F}_p, and it is known as the Freiman 2.4-theorem. A useful lemma in [3] (see also [7, Theorem 2.9]) was derived in the proof thereof, and we will need it here. We also include an improvement due to Lev.

We first define the Fourier transform of a function $f : \mathbb{F}_p \rightarrow \mathbb{C}$ by

$$\hat{f}(t) = \sum_{x \in \mathbb{F}_p} f(x)e_p(tx)$$

for any $t \in \mathbb{F}_p$ where $e_p(x) = \exp(2i\pi x / p)$. The Parseval identity is the following

$$\sum_{x \in \mathbb{F}_p} f(x)\overline{g(x)} = \frac{1}{p} \sum_{h \in \mathbb{F}_p} \hat{f}(h)\overline{\hat{g}(h)}.$$

The characteristic function of a subset A of \mathbb{F}_p is denoted by 1_A and for $r \in \mathbb{F}_p$ we let $rA = \{ra, a \in A\}$.

Lemma 2.4. Let $A \subseteq \mathbb{F}_p$ with $|A| = \alpha p$ and $0 < \gamma < 1$ satisfy $|\text{supp}(rA)| \geq \gamma |A|$ for some $r \in \mathbb{F}_p \setminus \{0\}$. Then there exists an interval modulo p of length at most $p/2$ that contains at least $\alpha_1 p$ elements of rA where α_1 can be freely chosen as

i) $\alpha_1 = \frac{(1 + \gamma)\alpha}{2}$, cf. [3].

ii) or $\alpha_1 = \frac{\alpha}{2} + \frac{1}{2\gamma} \arcsin(\pi \gamma \alpha)$, cf. [5].

There a few other basic results about Fourier transforms that we will need in the sequel.
Lemma 2.5. Let P be an arithmetic progression in \mathbb{F}_p. Then
\[
\sum_{r \in \mathbb{F}_p} |\widehat{1}_P(r)| \ll p\log p.
\]

We now recall Weil’s bound [12] for Kloosterman sums.

Lemma 2.6. For any $(a,b) \neq (0,0)$, we have
\[
\left| \sum_{k \in \mathbb{F}_p \setminus \{0\}} e_p(ak + bk^{-1}) \right| \leq 2\sqrt{p}
\]

We will also need a bound for so-called incomplete Kloosterman sums, whose proof follows easily from the last two lemmas.

Lemma 2.7. Let $P \subseteq \mathbb{F}_p \setminus \{0\}$ be an arithmetic progression. Then for any $r \neq 0$ we have
\[
\left| \widehat{1}_{P^{-1}}(r) \right| \ll \sqrt{p}\log p.
\]

Now we start the proof of Theorem [14] itself. Let $\alpha \geq 0.3051$, $A \subseteq \mathbb{F}_p \setminus \{0\}$ of size $|A| = \alpha p$ and denote $B = (A + A) \setminus \{0\}$. We assume that there exists $x \in \mathbb{F}_p \setminus \{0\}$ such that $x \notin A(A + A)$. Then
\[
xB^{-1} \cap A = \emptyset, \quad (xA^{-1} - A) \cap A = \emptyset.
\]
It follows that $|A| + |B| \leq p - 1$, since otherwise $AB = \mathbb{F}_p \setminus \{0\}$. Hence $|A + A| \leq |B| + 1 \leq p - |A|.$

We define
\[
r_1(y) = |\{(a,b) \in A \times A : y = xa^{-1} - b\}|, \\
r_2(y) = |\{(c,d) \in A \times A : c + d \neq 0 \text{ and } y = x(c + d)^{-1}\}|
\]
and $E_i = \sum_{y \in \mathbb{F}_p} r_i(y)^2$, $i = 1, 2$, the corresponding energies. Observe from (2) that
\[
\sum_{y \in \mathbb{F}_p} r_1(y)^2 + r_2(y)^2 > 0
\]
By Cauchy-Schwarz we get
\[
4|A|^4 = \left(\sum_{y \in \mathbb{F}_p} (r_1(y) + r_2(y)) \right)^2 \leq (p - |A|) \times \sum_{y \in \mathbb{F}_p} (r_1(y) + r_2(y))^2.
\]
Expanding the later inner sum gives
\[
\sum_{y \in \mathbb{F}_p} (r_1(y) + r_2(y))^2 = E_1 + E_2 + 2 \sum_{y \in \mathbb{F}_p} r_1(y)r_2(y).
\]
Let
\[
\gamma = \max_{h \neq 0} \frac{|\widehat{1}_A(h)|}{|A|}
\]
We have by Parseval
\[
pE_2 = \sum_h |\widehat{1}_A(h)|^4 = |A|^4 + \sum_{h \neq 0} |\widehat{1}_A(h)|^4 \leq |A|^4 + \gamma^2|A|^2(p|A| - |A|^2)
\]
and
\[
pE_1 = \sum_h |\widehat{1}_{xA^{-1}}(h)|^2 |\widehat{1}_A(h)|^2 = |A|^4 + \sum_{h \neq 0} |\widehat{1}_{xA^{-1}}(h)|^2 |\widehat{1}_A(h)|^2
\]
\[
\leq |A|^4 + \gamma^2|A|^2(p|A| - |A|^2).
\]
Moreover
\[p \sum_{y \in \mathbb{F}_p} r_1(y) r_2(y) = \sum_h \widehat{1_{xA^{-1}}}(h) \widehat{1_A}(-h) \widehat{r_2}(h) \]
\[\leq |A|^4 + \max_{h \neq 0} |\widehat{r_2}(h)| \sum_{h \neq 0} |\widehat{1_{xA^{-1}}}(h)||\widehat{1_A}(h)| \]
\[\leq |A|^4 + \max_{h \neq 0} |\widehat{r_2}(h)|(p|A| - |A|^2), \]
by Parseval and Cauchy-Schwarz. For \(h \neq 0 \),
\[\widehat{r_2}(h) = \sum_{c,d \in A \atop c+d \neq 0} e_p(hx(c+d)^{-1}) = \frac{1}{p} \sum_r \sum_{z \neq 0} \sum_{c,d \in A} e_p(r(c+d-z)) e_p(hxz^{-1}), \]
hence by the Parseval identity \((1)\) and Lemma 2.6
\[|\widehat{r_2}(h)| \leq \frac{1}{p} \sum_r |\widehat{1_A}(r)|^2 \sum_{z \neq 0} e_p(hxz^{-1}) \ll \sqrt{p}|A| \]
(similar arguments were used in \([3\text{ Theorem 4}]\)). We thus obtain from \((3)\) and the above bounds
\[2\alpha \leq (1 - \alpha)(2\alpha + \gamma^2(1 - \alpha) + o(1)). \]
This finally gives the lower bound
\[\gamma \geq \frac{\sqrt{2}\alpha}{1 - \alpha} + o(1). \]

We are in position to apply Lemma 2.4 i). Let \(A_1 \subset A \) be such that \(|A_1| \geq (1 + \gamma)|A|/2 \) and \(rA_1 \) is included in an interval of length \(p/2 \) for some \(r \neq 0 \). This shows that \(A_1 \) is 2-Freiman isomorphic\(^1\) to a subset \(A'_1 \) of \(\mathbb{Z} \). So we seek to apply Proposition 2.3 to \(A'_1 \). We get
\[\alpha_1 = \frac{|A_1|}{p} \geq f(\alpha) + o(1) := \frac{(1 + (\sqrt{2} - 1)\alpha)}{2(1 - \alpha)} + o(1), \]
and
\[c_1 = \frac{|A_1 + A_1|}{|A_1|} \leq \frac{|A + A|}{|A|} \leq \frac{(1 - \alpha)p}{\alpha_1 p} \leq \frac{1 - \alpha}{f(\alpha)} + o(1). \]
In order to have \(c_1 < 3 \), it is sufficient to have that
\[\alpha > \frac{7 - \sqrt{9 + 24\sqrt{2}}}{10 - 6\sqrt{2}} = 0.29513 \ldots \]
which is satisfied since we have assumed \(\alpha \geq 0.3051 \). We thus obtain that \(A_1 \) (resp. \(A_1 + A_1 \)) is contained inside an arithmetic progression \(P_1 \) (resp. \(Q_1 = P_1 + P_1 \)) of length \(|P_1| = |A_1 + A_1| - |A_1| + 1 \) (resp. \(|2P_1| - 1 \)).

We define \(B_1 = (A_1 + A_1) \setminus \{0\} \) and \(Q'_1 = Q_1 \setminus \{0\} \). We need to estimate
\[T = \frac{1}{p} \sum_{r \text{ mod } p \atop a \in P_1 \atop b \in Q'_1} e_p(r(a - b^{-1}x)) \geq \frac{|P_1||Q'_1|}{p} - \frac{1}{p} \sum_{0 < |r| < p/2} \left|\widehat{1_{P_1}}(r)||\widehat{1_{Q'_1}}(rx)\right| \]
which counts the solutions \((a, b) \in P_1 \times Q'_1\) to the equation \(a = b^{-1}x \).
Now \(\left|\widehat{1_{P_1}}(r)\right| \ll p/|r| \) by Lemma 2.8 and \(\left|\widehat{1_{Q'_1}}(rx)
ight| \ll \sqrt{p}\log p \) by Lemma 2.7 because \(Q'_1 \) is the union of at most two arithmetic progressions.

\(^1\)i.e. there exists a bijection \(f : A_1 \rightarrow A'_1 \) such that \(a + b = c + d \iff f(a) + f(b) = f(c) + f(d) \) for all \(a, b, c, d \in A_1 \).
As a result, we have
$$T \geq \frac{|P_1||Q^*_1|}{p} + O(\sqrt{p}(\log p)^2).$$

The number of solutions to \(a = b^{-1}x \) with \(a \in P_1 \setminus A_1 \) or \(b \in Q^*_1 \setminus B_1 \) is at most \(|P_1| - |A_1| + |Q^*_1| - |B_1| \). Since by assumption there is no solution to \(a = b^{-1}x \) with \((a, b) \in A_1 \times B_1\) we get
$$T \leq |P_1| - |A_1| + |Q^*_1| - |B_1|$$
yielding
$$\frac{|P_1||Q^*_1|}{p} \leq |P_1| - |A_1| + |Q^*_1| - |B_1| + O(\sqrt{p}(\log p)^2).$$

This implies
$$\frac{(|B_1| - |A_1|)^2}{p} \leq |B_1| - 2|A_1| + O(\sqrt{p}(\log p)^2)$$
whence
$$\alpha_1(c_1 - 1)^2 \leq c_1 - 2 + o(1).$$
Because of (4), this gives
$$f(\alpha) \times (c_1 - 1)^2 - c_1 + 2 \leq o(1).$$
The left-hand side of this inequality defines a function of \(c_1 \) which is decreasing in the range \(2 \leq c_1 \leq 1 + 1/(2f(\alpha)) \). contradiction. We check easily that \(\alpha + f(\alpha) \geq 1/2 \) whenever \(\alpha \geq 0.3 \). Hence for such \(\alpha \)
$$\frac{1 - \alpha}{f(\alpha)} \leq 1 + \frac{1}{2f(\alpha)}.$$
We thus obtain from (4) and (6)
$$f(\alpha) \left(\frac{1 - \alpha}{f(\alpha)} - 1 \right)^2 - \frac{1 - \alpha}{f(\alpha)} + 2 \leq o(1),$$
which reduces to
$$(1 - \alpha - f(\alpha))^2 - (1 - \alpha - 2f(\alpha)) \leq o(1).$$
In view of the definition of \(f(\alpha) \) in (4), we get by expanding the above formula
$$(11 - 6\sqrt{2})\alpha^3 - (22 - 6\sqrt{2})\alpha^2 + 17\alpha - 4 \leq o(1),$$
giving \(\alpha < 0.305091 + o(1) \), a contradiction for all \(p \) large enough. This concludes the proof of Theorem 1.1.

Remark 2.8. Using instead the sharpest result ii) of Lemma 2.4 leads to a slight improvement: if \(|A| \geq 0.30065p \) then \(F_p \setminus \{0\} \subseteq A(A + A) \) for any large \(p \). The improvement is very small and uses non-algebraic expressions, which is why we decided not to exploit it.

3. Proof of Theorem 1.2

We will now use multiplicative characters of \(F_p \). We denote by \(\mathcal{X} \) the set of all multiplicative characters modulo \(p \) and by \(\chi_0 \) the trivial character. In this context Parseval’s identity is the statement that
$$\frac{1}{p-1} \sum_{\chi \in \mathcal{X}} \left| \sum_{x \in F_p \setminus \{0\}} f(x)\chi(x) \right|^2 = \sum_{x \in F_p \setminus \{0\}} |f(x)|^2.$$
We state and prove a lemma which is a multiplicative analogue of a lemma of Vinogradov [11] (see also [9, Lemma 7]), according to which

\[\sum_{(x,y) \in A \times B} e_p(xy) \leq \sqrt{p|A||B|}. \]

Lemma 3.1. For any subsets \(A, B \) of \(\mathbb{F}_p \setminus \{0\} \) and any nontrivial character \(\chi \in \mathcal{X} \), we have

\[\left| \sum_{(y,z) \in A \times B} \chi(y + z) \right| \leq (|A||B| p)^{1/2} \left(1 - \frac{|B|}{p} \right)^{1/2} \]

We now prove Theorem 1.2. Let \(A \) be a subset of \(\mathbb{F}_p \setminus \{0\} \) and \(\alpha = |A|/p \). We estimate the number of nonzero elements in \(A(A + A) \) by estimating the number \(N \) of solutions to

\[x(y + z) = x'(y' + z') \neq 0, \quad x, y, z, x', y', z' \in A, \]

which we can rewrite as \(x'x^{-1}(y + z)^{-1}(y' + z') = 1 \). This number is

\[N = \frac{1}{p-1} \sum_{\chi \in \mathcal{X}} \left| \sum_{y,z \in A} \chi(z + y) \sum_{x \in A} \chi(x) \right|^2 \]

\[\leq \frac{|A|^6}{p-1} + \frac{1}{p-1} \max_{\chi \neq \chi_0} \left| \sum_{y,z \in A} \chi(y + z) \right|^2 \times \frac{1}{p-1} \sum_{x \in A} \left| \sum_{\chi \neq \chi_0} \chi(x) \right|^2, \]

hence by Lemma 3.1 and Parseval’s identity [7]

\[N \leq \frac{|A|^6}{p-1} + p|A|^2 (1 - \alpha) \left(|A| - \frac{|A|^2}{p} \right) \]

\[\leq \frac{|A|^6}{p-1} + p|A|^3 (1 - \alpha)^2 \]

\[\leq \frac{|A|^6}{p-1} \left(1 + p^2 |A|^{-3} (1 - \alpha)^2 \right) \]

\[\leq \frac{|A|^6}{p-1} \left(1 + p^{-1} \alpha^{-3} (1 - \alpha)^2 \right). \]

We let \(\rho(w) = |\{(x, y, z) \in A \times A \times A \mid w = x(y + z)\}| \) for \(w \in \mathbb{F}_p \). Then

\[N = \sum_{w \in A(A + A) \setminus \{0\}} \rho(w)^2 \quad \text{and} \quad \sum_{w \in A(A + A) \setminus \{0\}} \rho(w) \geq |A|^6 - |A|^4. \]

Finally \(N \) is related to \(|A(A + A)| \) by the Cauchy-Schwarz inequality as follows

\[|A(A + A)| \geq |A(A + A) \setminus \{0\}| \geq \left(|A|^6 - |A|^4 \right) N^{-1} \]

\[\geq (p - 1) \left(1 - \alpha^{-2}p^{-2} \right) \left(1 + p^{-1} \alpha^{-3} (1 - \alpha)^2 \right)^{-1} \]

\[> p - 1 - \alpha^{-2}p^{-2} + o(1). \]

This concludes the proof of Theorem 1.2 \(\square \)

4. Proof of Theorem 1.3

First we need a lemma.
Lemma 4.1. Let $c < 1/2$ and p large enough. Let $P = \{1, \ldots, [cp]\}$. Then the set $(P + P)^{-1}$ of the inverses (modulo p) of nonzero elements of $P + P$ has at most $2c^2 p + O(\sqrt{p} \log p)^2$ common elements with P, that is,

$$|(P + P)^{-1} \cap P| \leq 2c^2 p + O(\sqrt{p} \log p)^2.$$

Proof. We note that $P + P = \{2, \ldots, 2[cp]\} \subset \mathbb{F}_p \setminus \{0\}$. Now we observe that

$$|P \cap (P + P)^{-1}| = \sum_{x \in P + P} 1 = \sum_{x \in P + P} \sum_{y \in P + P} e_p(t(x - y^{-1})) = \frac{1}{p} \sum_{t \in \mathbb{F}_p} \sum_{x \in P} e_p(tx) \sum_{y \in P + P} e_p(-ty^{-1})$$

Using Lemmas 2.5 and 2.7 we find that

$$|P \cap (P + P)^{-1}| = \frac{|P| P + P}{p} + \frac{1}{p} \sum_{t \in \mathbb{F}_p \setminus \{0\}} \hat{1}_P(t) \hat{1}_{P+P}^{-1}(-t) = 2c^2 p + O(\sqrt{p} \log p)^2. \quad \square$$

Now we prove Theorem 1.3.

Let $c < 1/2$ (to be determined later) and p large enough. Let $P = \{1, \ldots, [cp]\}$. Let $A = P \setminus (P + P)^{-1}$. It satisfies $A \cap (A + A)^{-1} = \emptyset$, i.e. $A \neq A(A + A)$, and has cardinality at least $cp - 2c^2 p - O(\sqrt{p} \log p)^2$. To optimise, we take $c = 1/4$, in which case $|A| \geq p/8 - O(\sqrt{p} \log p)^2$. For any $\epsilon > 0$, for p large enough, this is at least $(1/8 - \epsilon)p$, whence the first part of the theorem.

For the second part, we note that Lemma 4.1 provides a bound for the cardinality $|P \cap x(P + P)^{-1}|$ for any x, so for any $k \leq p - 1$ we can get a set a of size $kp - 2kc^2 p - O(k \sqrt{p} \log p)^2$ so that $A(A + A)$ misses 0 and k nonzero elements. The main term is optimised for $c = 1/4k$, where it is worth $p/8k$. Taking k of size $p^{1/4} (\log p)^{-3/2}$, the error term is significantly smaller than the main term (for large p), so we obtain a set A of size $\Omega(p^{3/4} (\log p)^{3/2})$ for which $A(A + A)$ misses at least $p^{1/4} (\log p)^{-3/2}$ elements. This is even a slightly stronger statement than claimed. \square

5. Final remarks

5.1. Let p an odd prime, $a, b \in \mathbb{F}_p \setminus \{0\}$ and assume that $ba^{-1} = c^2$ is a square.

Let $A \subset \mathbb{F}_p \setminus \{0\}$. Then $a \not\in A(A + A)$ if and only if $b \not\in cA(cA + cA) = c^2 A(A + A)$. Moreover $|cA| = |A|$.

We denote

$$m_p = \max \{|A| : A \subset \mathbb{F}_p \setminus \{0\} \text{ and } A(A + A) \supsetneq \mathbb{F}_p \setminus \{0\}\}.$$

From the above remark we have

$$m_p = \max\{|A| : A \subset \mathbb{F}_p \setminus \{0\} \text{ and } 1 \not\in A(A + A) \text{ or } r \not\in A(A + A)\},$$

where r is any fixed nonsquare residue modulo p. By Theorems 1.1 and 1.3 we have

$$3.277 \cdots \leq \liminf_{p \to \infty} \frac{p}{m_p} \leq \limsup_{p \to \infty} \frac{p}{m_p} \leq 8.$$
5.2. Let $p > 3$ a prime number. The set I of residues modulo p in the interval \(r \in \mathbb{F}_p : p/3 < r < 2p/3 \) is sum-free (i.e. $a + b \neq c$ for any $a, b, c \in I$) and achieves the largest cardinality for those sets, namely $|I| = \left\lfloor \frac{p+1}{2} \right\rfloor$, as it can be deduced from the Cauchy-Davenport Theorem combined with the fact that $|I \cap (I + I)| = 0$.

Let \(A = \{ x \in I : x^{-1} \in I \} \).

Then $A = A^{-1}$ and A is sum-free. It readily follows that $1 \not\in A(A+A)$. Moreover, since I is an arithmetic progression, the events $x \in I$ and $x^{-1} \in I$ are independent, so we may observe that A has cardinality $\sim p/9$ as p tends to infinity (it can be formally proved using Fourier analysis). This raises the next question:

What is the largest size of a sum-free set $A \subset \mathbb{F}_p \setminus \{0\}$ such that $A = A^{-1}$?

From Theorem 5.1 we deduce the following statement.

Corollary 5.1. Let $A \subset \mathbb{F}_p \setminus \{0\}$ a sum-free set such that $A = A^{-1}$. Then $|A| < 0.3051p$ for any sufficiently large prime number p.

This is related to the question of how large a sum-free multiplicative subgroup of \mathbb{F}_p^* can be. Alon and Bourgain showed [2] that it can be at least $\Omega(p^{1/3})$.

5.3. Let $A \subset \mathbb{F}_p \setminus \{0\}$ with $\alpha = |A|/p \gg 1$, and let us denote $A_\alpha = A \cap (A + s)$. Let $0 < \epsilon < 1$ be defined by

$$E^+(A) = \sum_{s \in A - A} |A_s|^2 = (1 - \epsilon)|A|^3,$$

and S be the subset of $A - A$

$$S = \{ s \in A - A : |A_s| > (1 - \epsilon - p^{-1/3})|A| \}.$$

Then

$$E^+(A) \leq (1 - \epsilon - p^{-1/3})|A| \sum_{s \in S} |A_s| + |A|^2|S| = (1 - \epsilon - p^{-1/3})|A|^3 + |A|^2|S|,$$

from which we deduce

$$|S| \geq |A| p^{-1/3}.$$

Assume that $A = A^{-1}$ and let N be the number of solutions to equation

$$(a - s)(b - t) = 1, \quad (s, a, t, b) \in S \times A_\alpha \times S \times A_\alpha.$$

For fixed $s, t \in S$, we have

$$|(A - s) \cap (A_t - t)^{-1}| = |A_s| + |A_t| - |(A - s) \cap (A_t - t)^{-1}|$$

$$\geq 2(1 - \epsilon - o(1))|A| - |A| = (1 - 2\epsilon - o(1))|A|$$

since $A_s - s \subset A$ and $(A_t - t)^{-1} \subset A^{-1} = A$. This yields

$$N \geq (1 - 2\epsilon - o(1))|A||S|^2.$$

On the other hand, denoting $r(x) = \{(a, s) \in A \times S : x(a - s) = 1\}$, we have

$$N \leq \frac{1}{p} \sum_h \widehat{I_A}(h)\overline{\widehat{I_S}(-h)}\overline{\widehat{r}(-h)} \leq \frac{|A|^2|S|^2}{p} + \max_{h \neq 0} |\widehat{r}(h)| \times \frac{1}{p} \sum_h \widehat{I_A}(h)\overline{\widehat{I_S}(h)}.$$

By adapting equation (8) we get $\max_{h \neq 0} |\widehat{r}(h)| \leq \sqrt{|p|A||S|}$ and by Cauchy-Schwarz and Parseval we derive $N \leq |A|^2|S|^2/p + O(\sqrt{|p|A||S|})$. Combined with (10), this gives

$$\alpha + O(\sqrt{|p||S|^2}) \geq 1 - 2\epsilon - o(1),$$
A NOTE ON THE SET $A(A + A)$

yielding by (10), that $\epsilon \geq (1 - \alpha)/2 + o(1)$. Hence when $A = A^{-1}$

$$E^+(A) \leq \frac{1 + \alpha + o(1)}{2} |A|^3.$$

Together with Theorem [11] this implies the following result.

Proposition 5.2. Let $A \subset \mathbb{F}_p^*$ be as in Corollary [5.7]. Then for large enough p the additive energy satisfies

$$E^+(A) \leq 0.6526 |A|^3.$$

By considering similarly the multiplicative energy of A, it is possible to get the following sum-product upper bound for an arbitrary $A \subset \mathbb{F}_p$:

$$2E^+(A) + E^\times(A) \leq (2 + \alpha + o(1)) |A|^3.$$

References

[1] Esen Aksoy Yazici, Brendan Murphy, Misha Rudnev, and Ilya Shkredov. Growth estimates in positive characteristic via collisions. *Int. Math. Res. Not. IMRN*, (23):7148–7189, 2017.

[2] Noga Alon and Jean Bourgain. Additive patterns in multiplicative subgroups. *Geom. Funct. Anal.*, 24(3):721–739, 2014.

[3] G. A. Freiman. Inverse problems of additive number theory. VII. The addition of finite sets. IV. The method of trigonometric sums. *Izv. Vysš. Učebn. Zaved. Matematika*, 1962(6 (31)):131–144, 1962.

[4] Norbert Hegyvári and François Hennecart. A note on the size of the set $A^2 + A$. *Ramanujan J.*, 46(2):357–372, 2018.

[5] Vsevolod F. Lev. Distribution of points on arcs. *Integers*, 5(2):A11, 6, 2005.

[6] Nikolay G. Moshchevitin. Sets of the form $A + B$ and finite continued fractions. *Sb. Math.*, 198:4 (2007), 537–557.

[7] Melvyn B. Nathanson. *Additive number theory*, volume 165 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1996. Inverse problems and the geometry of sumsets.

[8] Oliver Roche-Newton, Misha Rudnev, and Ilya D. Shkredov. New sum-product type estimates over finite fields. *Adv. Math.*, 293:589–605, 2016.

[9] A. Sárközy. On sums and products of residues modulo p. *Acta Arith.*, 118(4):403–409, 2005.

[10] Sophie Stevens and Frank de Zeeuw. An improved point-line incidence bound over arbitrary fields. *Bull. Lond. Math. Soc.*, 49(5):842–858, 2017.

[11] I. M. Vinogradov. *An introduction to the theory of numbers*. Pergamon Press, London & New York, 1955. Translated by H. Popova.

[12] André Weil. On some exponential sums. *Proc. Nat. Acad. Sci. U. S. A.*, 34:204–207, 1948.

P.-Y. Bienvenu, Univ Lyon, CNRS, ICJ UMR 5208, 69622 Villeurbanne cedex, France
E-mail address: pbienvenu@math.univ-lyon1.fr

F. Hennecart, Univ Lyon, UJM-Saint-Étienne, CNRS, ICJ UMR 5208, 42023 Saint-Étienne, France
E-mail address: francois.hennecart@univ-st-etienne.fr

I.D. Shkredov, Steklov Mathematical Institute, Division of Algebra and Number Theory, ul. Gubkina, 8, Moscow, Russia, 119991 and IITP RAS, Bolshoy Karetny per. 19, Moscow, Russia, 127994
E-mail address: ilya.shkredov@gmail.com