Bio-efficacy of newer insecticides against lepidopteran pests in castor (Ricinus communis L.)

Ranganath, TR, Shivanna BK, Lakshmana, Jayalaxmi Narayana Hegde, Shashidara KC and Hugar AY

DOI: https://doi.org/10.22271/chemi.2020.v8.i3ah.9562

Abstract
Field experiments were conducted during Kharif 2018-19 to evaluate the efficacy of different insecticides against major lepidopteran pests of castor revealed that all the treatments were found significantly superior over untreated control in reducing pest population. The results the newer insecticides were in general, superior over the untreated check in reducing the larval population. Among the tested treatments, efficacy of the treatments viz., chlorantraniliprole 18.5 SC and flubendiamide 480 SC were superior and followed by spinosad 45 SC and indoxacarb 15.80 EC which were found to be effective for all lepidopteran pests of castor. Considering the cost-effectiveness of various treatments, the maximum cost-benefit ratio (1:3.08) was registered in lambda cyhalothrin 2.5 EC with yield of 10.83 q / ha followed by flubendiamide 480 SC with C:B ratio of 1:3.06 and chlorantraniliprole 18.50 SC with C:B ratio of 1:3.05 as well yield of 13.10 q / ha and 13.8 q / ha, respectively.

Keywords: Newer insecticides, lepidopteran pests, castor and C:B ratio

Introduction
Castor (Ricinus communis L.) is the most important non-edible oilseed crop of India. Its seed oil has multifarious applications in production of wide industrial products including medicine, cosmetics, lubricants, paints, biopolymers and biodiesel. The global production of castor seed on an average is 13.2 lakh tonnes and of castor oil is 5.5 lakh tonnes with total area of 15.02 m ha. India, China and Brazil are the major castor cultivating countries which accounts for 90 per cent of world’s production. The current castor production in the country is 15.4 mt from 10.9 m ha hectares with a productivity of 1512 kg/ha in 2015 (DAC, 2015) [1]. The major problem limiting castor production in India is the damage due to insect pests viz., semilooper, Achaea janata L. (Lepidoptera: Noctuidae) and capsule borer, Conogethes (Dichocrosis) punctiferalis Guen. (Lepidoptera: Pyralidae). Incidence of A. janata is generally noticed from vegetative to early reproductive phase of the crop (Lakshminarayanama and Raoo, 2005) [5].

The yield loss due to insects pests has been estimated in the range of 35-40 per cent. Pesticides are the most powerful tools available for the control of pests infesting the economic produce in castor. Spinosad, Flubendiamide, chlorantraniliprole, emamectin benzoate are new molecules with novel mode of action and very effective against lepidopteran pests (Gadhiya et al, 2014) [3]. However, information on the Bioefficacy of these newer molecules against lepidopteran pests in castor is very limited (Lakshminarayanama et al, 2013) [6]. The present study was, therefore, planned to evaluate some alternate newer insecticides against castor pests under field condition.

Materials and methods
An experiment was laid out in Randomized Block Design with nine treatments and three replications in a plot size of 5.4mx4.2 m. The seeds were dibbled with a spacing of 90cm × 60cm on and all the recommended agronomic practices were followed except plant protection measures. The treatments were imposed when the pest reached economic threshold level (3-4 larvae/plant).
Observations on the larval population counts of lepidopteran insects and in case of capsule borer the per cent capsule damage were made one day before spraying and three, seven and fifteen days after spraying on five randomly selected and tagged plants in each treatment. The per cent reduction in population was worked out and statistically analyzed with ANOVA and WASP-2. The second spray was taken up 30 days after first spray. Finally, the yield was recorded and computed to hectare basis, C: B ratio was worked out for all the insecticides used for evaluation. Per cent reduction was carried out by using following formula (Henderson and Tilton, 1955) [4].

Results and discussion
Per cent reduction over untreated control in each spraying of major lepidopteran insect pests due to all the 2 sprayings were calculated and the results are presented in the tables.

After First Spraying  
Castor Semilooper (Achaea janata)  
Pre-treatment count  
There was no significant difference between the treatments with respect to mean no. of larvae per plant before the imposition of treatments on the crop. The mean larval population ranged from 3.20 to 4.02 per plant (Table1).

Three Days after Spraying 
The plots sprayed with spinosad 45 SC recorded least number of larvae per plant (1.00) which was on par with chlorantraniliprole 18.5 SC (1.20 larvae / plant). They were followed by flubendiamide 480 SC and indoxacarb 15.8 EC (1.33 and 1.43 larvae / plant, respectively). The next best treatment was emamectin benzoate 5 SG. Lambda cyhalothrin 2.5 EC and quinalphos 25 EC were found to be on par with one another (2.06 and 2.20 larvae / plant). Novaluron 10 EC with larval count 2.33 larvae per plant was noticed to be less effective.

Seven days after spray  
The lowest number of larvae per plant (0.73) was recorded in chlorantraniliprole 18.5 SC which was followed by spinosad 45 SC (0.80 larvae / plant). The next best treatment was found to be flubendiamide 480 SC, followed by indoxacarb 15.8 EC (1.25 larvae / plant) in which emamectin benzoate 5 SG and lambda cyhalothrin 2.5 EC were on par with each other (1.33 larvae / plant). The maximum numbers of larvae (2.13 larvae / plant) were observed in novaluron 10 EC which was on par with quinalphos 25 EC (1.93 larvae / plant).

Fifteen days after spray  
It is evident from the data that on 15 days after spraying chlorantraniliprole 18.5 SC was highly effective in reducing the larval population to 0.80 larvae per plant and emerged as the best treatment. The next treatments were spinosad 45 SC (1.20 larvae / plant) closely on par with flubendiamide 480 SC (1.26 larvae / plant) and differed significantly with other treatments.

Per cent reduction over untreated control  
With regard to percent reduction, the highest reduction of the population (80.40%) was observed in the plot treated with chlorantraniliprole 18.5 SC, followed by spinosad 45 SC (75.6%) and flubendiamide 480 SC (71.41%). The least per cent reduction (45.10%) of the population over untreated control was recorded in novaluron 10 EC.

After Second Spraying  
Castor Semilooper (Achaea janata)  
Pre-treatment count  
There was a significant difference between the treatments with respect to mean no. of larvae per plant before the imposition of treatments on the crop. The mean larval population ranged between 2.53 and 4.73 per plant (Table2).

Three days after spray  
Three days after spraying, chlorantraniliprole 18.5 SC and spinosad 45 SC reduced the larval population to 0.53 larvae per plant and 0.73 larvae per plant respectively and found to be superior. The next best chemical was flubendiamide 480 SC (1.20 larvae / plant) which was followed by emamectin benzoate 5 SG (1.46 larvae / plant). Among all these treatments maximum larval population was recorded in quinalphos 25 EC (2.41 larvae / plant).

Seven days after spray  
Data recorded on seven days after spraying depicts that chlorantraniliprole 18.5 SC recorded least number of larvae per plant (0.24) which was on par with spinosad 45 SC (0.33 larvae / plant), flubendiamide 480 SC (0.54 larvae / plant) and indoxacarb 15.8 EC (0.74 larvae / plant) but differed significantly with other treatments. Quinalphos 25 EC was found to be least effective with maximum number of larval counts of 1.93 larvae per plant.

Fifteen days after spray  
It is evident from the data that on 15 days after spraying chlorantraniliprole 18.5 SC was highly effective in reducing the larval population to 0.31 larvae per plant and emerged as the best treatment followed by spinosad 45 SC (0.60 larvae / plant). The next best treatments were flubendiamide 480 SC and emamectin benzoate 5 SG with larval count of 0.86 and 1.10 larvae per plant. Whereas, the highest mean larval population of 2.21 larvae per plant was recorded in quinalphos 25 EC.

Per cent reduction over untreated control  
The highest reduction of the population (87.50%) was recorded in chlorantraniliprole 18.5 SC, followed by spinosad 45 EC (82.32%), flubendiamide 480 SC (77.23%). The least per cent reduction (58.71%) of the population was recorded in quinalphos 25 EC (60.31%). The decreasing order of efficacy was chlorantraniliprole 18.5 EC > spinosad 45 SC > flubendiamide 480 SC > emamectin benzoate 5 SG > indoxacarb 15.8 EC > lambda cyhalothrin 2.5 EC > novaluron 10 EC > quinalphos 25 EC. 

A similar trend was also reported by Gadhiya et al., (2014) [3] in that chlorantraniliprole (0.006%), spinosad (0.018%) and emamectin benzoate (0.002%) were the most effective and which were statistically at par with each other in protecting the groundnut crop against H. armigera and S. litura.
Table 1: Efficacy of different Insecticides against Acathodela janata of Castor during Kharif-2018 (First spray)

| Sl. No. | Treatment details | Dosage     | Mean no. of larvae per plant | Overall mean | Per cent reduction over untreated control |
|---------|-------------------|------------|-----------------------------|-------------|------------------------------------------|
|         |                   | 1 DBS      | 3 DAS | 7 DAS | 15 DAS |                                     |
| 1       | Emamectin benzoate 5 SG | 0.5 g/lit  | 3.36 (1.82) | 1.73 (1.31) | 1.33 (1.15) | 1.46 (1.20) | 1.51 (1.22) | 61.35 |
| 2       | Flubendiamide 480 CS | 0.2 ml/lit | 3.73 (1.92) | 1.53 (1.15) | 1.13 (1.05) | 1.26 (1.11) | 1.24 (1.11) | 71.41 |
| 3       | Chlorantraniliprole 18.5 SC | 0.3 ml/lit | 4.02 (2.0) | 1.20 (1.09) | 0.73 (0.84) | 0.80 (0.87) | 0.91 (0.94) | 80.40 |
| 4       | Spinosad 45 SC | 0.3 ml/lit | 3.53 (1.87) | 1.0 (0.99) | 0.8 (0.88) | 1.20 (1.08) | 1.0 (0.99) | 75.63 |
| 5       | Indoxacarb 15.8 EC | 1 ml/lit | 3.40 (1.84) | 1.43 (1.19) | 1.25 (1.11) | 1.46 (1.19) | 1.38 (1.17) | 65.0 |
| 6       | Novaluron 10 EC | 1 ml/lit | 3.57 (1.88) | 2.33 (1.52) | 2.13 (1.45) | 2.46 (1.57) | 2.31 (1.51) | 45.10 |
| 7       | Lambda cyhalothrin 2.5 EC | 1ml/lit  | 3.49 (1.86) | 2.06 (1.43) | 1.33 (1.14) | 1.55 (1.24) | 1.65 (1.27) | 60.0 |
| 8       | Quinalphos 25 EC | 2ml/lit | 3.69 (1.92) | 2.20 (1.47) | 1.93 (1.38) | 2.20 (1.48) | 2.11 (1.45) | 51.10 |
| 9       | Untreated Control | -  | 3.20 (1.78) | 3.53 (1.87) | 3.6 | 4.0 (1.99) | 3.71 (1.92) | - |

Mean ± SD, *P<0.05*; **P<0.01**; ***P<0.001**

Table 2: Efficacy of different Insecticides against Acathodela janata of Castor during Kharif-2018 (Second spray)

| Sl. No. | Treatment details | Dosage     | Mean no. of larvae per plant | Overall mean | Per cent reduction over untreated control |
|---------|-------------------|------------|-----------------------------|-------------|------------------------------------------|
|         |                   | 1 DBS      | 3 DAS | 7 DAS | 15 DAS |                                     |
| 1       | Emamectin benzoate 5 SG | 0.5 g/lit  | 4.0 (1.99) | 1.46 (1.20) | 0.93 (0.95) | 1.10 (0.99) | 1.13 (1.06) | 74.5 |
| 2       | Flubendiamide 480 CS | 0.2 ml/lit | 3.40 (1.84) | 1.20 (1.08) | 0.54 (0.70) | 0.86 (0.92) | 0.86 (0.91) | 77.23 |
| 3       | Chlorantraniliprole 18.5 SC | 0.3 ml/lit | 2.53 (1.58) | 0.53 (0.70) | 0.24 (0.50) | 0.31 (0.57) | 0.36 (0.58) | 87.50 |
| 4       | Spinosad 45 SC | 0.3 ml/lit | 2.80 (1.67) | 0.73 (0.84) | 0.33 (0.57) | 0.60 (0.76) | 0.55 (0.73) | 82.32 |
| 5       | Indoxacarb 15.8 EC | 1 ml/lit | 3.91 (1.97) | 1.60 (1.26) | 0.74 (0.84) | 1.40 (1.18) | 1.24 (1.09) | 71.8 |
| 6       | Novaluron 10 EC | 1 ml/lit | 4.33 (2.06) | 2.26 (1.50) | 1.6 (1.26) | 1.86 (1.36) | 1.91 (1.38) | 60.31 |
| 7       | Lambda cyhalothrin 2.5 EC | 1ml/lit  | 4.21 (2.04) | 1.80 (1.34) | 1.20 (1.12) | 1.40 (1.08) | 1.46 (1.19) | 69.57 |
| 8       | Quinalphos 25 EC | 2ml/lit | 4.73 (2.17) | 2.41 (1.54) | 1.93 (1.39) | 2.21 (1.48) | 2.11 (1.45) | 58.71 |
| 9       | Untreated Control | -  | 4.4 (2.09) | 4.61 (2.11) | 4.93 (2.22) | 5.13 (2.26) | 4.88 (2.20) | - |

Mean ± SD, *P<0.05*; **P<0.01**; ***P<0.001**

Figures in parentheses are √X +0.5 transformed values, Means in the columns followed by the same alphabet do not differ significantly by DMRT (P=0.05); DBD- Days before spray; DAS- Days after spray.

After First Spraying

**Tobacco Caterpillar (Spodoptera litura)**

**Pre-treatment count**

The pre-treatment count of larvae from treatments ranged from 4.51 to 5.33 larvae per plant and the differences were non-significant (Table 3).

**Three days after spraying**

Flubendiamide 480 SC recorded least number of larvae per plant (1.41) which was followed by chlorantraniliprole 18.5 SC (1.73 larvae / plant) and spinosad 45 SC (1.93 larvae / plant). After these three treatments, other insecticides in the order of superior were indoxacarb 15.8 EC, emamectin benzoate 5 SG, lambda cyhalothrin 2.5 EC and quinalphos 25 EC. The higher larval count was recorded in novaluron i.e., 3.13 larvae per plant and it was found to be least effective among the insecticides tested.

** Seven days after spraying**

Similar trend was observed, flubendiamide 480 SC reduced the larval population to 0.46 larvae per plant and found to be superior, followed by chlorantraniliprole 18.5 SC (0.66 larvae / plant) and spinosad 45 SC (0.86 larvae / plant). Novaluron 10 EC registered with a maximum number of larval population of 2.27 larvae per plant. Untreated control mean larval population was found to be increased to 5.22 larvae per plant.

Fifteen days after spraying

The lowest number of larvae per plant (1.06) was recorded in flubendiamide 480 SC which was closely followed by chlorantraniliprole 18.5 SC (1.13 larvae / plant). The next best treatment was found to be spinosad 45 SC and indoxacarb 15.8 EC which were on par with one another with 1.26 and 1.33 larvae per plant. Novaluron 10 EC was noticed to be least effective with a maximum larval population of 2.66 larvae per plant.

**Per cent reduction over untreated control**

With a maximum reduction of larval count over untreated control 81.80 per cent flubendiamide 480 SC stood as superior treatment followed by chlorantraniliprole 18.5 SC (78.21%) which were significant over the other treatments. Whereas, novaluron 10 EC with 50.00 per cent larval reduction over the untreated control noticed as least effective.

After Second Spraying

**Tobacco Caterpillar (Spodoptera litura)**

**Pre-treatment count**

The pre-treatment count of larvae ranged from 3.12 to 5.30 larvae per plant and the treatments found to be significant. (Table 4).

**Three days after spraying**

All the treatments were significantly superior over untreated...
control in reducing the larval count. However, among these treatments chlorantraniliprole 18.5 SC successfully reduced the larval population to lowest level 0.72 larvae per plant followed by flubendiamide 480 SC (0.93 larvae / plant). The next best treatments were spinosad 45 SC and emamectin benzoate 5 SG which were on par with each other.

Seven days after spraying
Chlorantraniliprole 18.5 SC was highly effective in reducing the larval population to 0.25 larvae per plant and emerged as significantly by DMRT (P=0.05). The Per cent reduction of 15.67% was observed in flubendiamide 480 SC, followed by spinosad 45 SC (8.65%). The least per cent reduction (76.51%) of the population over untreated control was recorded in novaluron 10 EC.

These current findings are in agreement with Narayanamma et al. (2013) [1], who reported that flubendiamide and chlorantraniliprole were found to be the most effective chemicals for the control of S. litura in castor.

Fifteen days after spraying
The lowest number of larvae per plant (0.59) was recorded in chlorantraniliprole 18.5 SC found to be the best treatment.

The next best treatment was found to be flubendiamide 480 SC (0.65 larvae / plant) which was on par with spinosad 45 SC. The highest number of larval population of 1.69 larvae per plant was reported in novaluron 10 EC emerged as the least effective treatment.

Per cent reduction over untreated control
With regard to percent reduction, the highest reduction of the population (89.00%) was observed in the plot treated with chlorantraniliprole 18.5 SC, followed by flubendiamide 480 SC (85.37%) and spinosad 45 SC (82.65%). The least per cent reduction (56.51%) of the population over untreated control was recorded in novaluron 10 EC.

Table 3: Efficacy of different Insecticides against Spodoptera litura of Castor during Kharif-2018 (First spray)

| Sl. No. | Treatment details | Dosage | Mean no. of larvae per plant | Overall mean | Per cent reduction over untreated control |
|---------|-------------------|--------|------------------------------|-------------|------------------------------------------|
|         |                   |        | 1 DBS | 3 DAS | 7 DAS | 15 DAS |                              |                          |
| 1       | Emamectin benzoate 5 SG | 0.5 g/lit | 5.33 (2.30) | 2.20 (1.47) | 1.20 (1.08) | 1.79 (1.33) | 1.73 (1.30) | 70.10                      |
| 2       | Flubendiamide 480S C | 0.2 ml/lit | 4.93 (2.21) | 1.41 (1.18) | 0.46 (0.65) | 1.06 (1.02) | 0.97 (0.96) | 81.80                      |
| 3       | Chlorantraniliprole 18.5 SC | 0.3 ml/lit | 4.72 (2.17) | 1.73 (1.30) | 0.66 (0.80) | 1.13 (1.05) | 1.17 (1.06) | 78.21                      |
| 4       | Spinosad 45 SC | 0.3 ml/lit | 5.21 (2.27) | 1.93 (1.38) | 0.86 (0.92) | 1.26 (1.12) | 1.35 (1.14) | 76.11                      |
| 5       | Indoxacarb 15.8 EC | 1 ml/lit | 4.51 (2.12) | 2.06 (1.43) | 1.05 (1.02) | 1.33 (1.13) | 1.48 (1.20) | 71.50                      |
| 6       | Novaluron 10 EC | 1 ml/lit | 4.93 (2.21) | 3.13 (1.76) | 2.27 (1.50) | 2.66 (1.62) | 2.68 (1.63) | 50.00                      |
| 7       | Lambda cyhalothrin 2.5 EC | 1ml/lit | 5.13 (2.26) | 2.46 (1.56) | 1.40 (1.16) | 2.06 (1.43) | 1.97 (1.39) | 64.61                      |
| 8       | Quinalphos 25 EC | 2ml/lit | 5.20 (2.28) | 2.73 (1.65) | 1.81 (1.33) | 2.33 (1.52) | 2.27 (1.50) | 59.60                      |
| 9       | Untreated Control | - | 4.80 (2.18) | 4.92 (2.22) | 5.22 (2.28) | 5.40 (2.32) | 5.17 (2.27) | -                          |

Table 4: Efficacy of different Insecticides against Spodoptera litura of Castor during Kharif-2018 (Second spray)

| Sl. No. | Treatment details | Dosage | Mean no. of larvae per plant | Overall mean | Per cent reduction over untreated control |
|---------|-------------------|--------|------------------------------|-------------|------------------------------------------|
|         |                   |        | 1 DBS | 3 DAS | 7 DAS | 15 DAS |                              |                          |
| 1       | Emamectin benzoate 5 SG | 0.5 g/lit | 3.80 (1.94) | 1.10 (1.05) | 0.61 (0.76) | 0.91 (0.95) | 0.87 (0.92) | 79.3                      |
| 2       | Flubendiamide 480S C | 0.2 ml/lit | 4.0 (2.0) | 0.93 (0.95) | 0.39 (0.61) | 0.65 (0.76) | 0.65 (0.79) | 85.37                     |
| 3       | Chlorantraniliprole 18.5 SC | 0.3 ml/lit | 3.91 (1.94) | 0.72 (0.84) | 0.25 (0.50) | 0.59 (0.71) | 1.51 (0.70) | 89.0                      |
| 4       | Spinosad 45 SC | 0.3 ml/lit | 4.12 (2.03) | 1.10 (1.06) | 0.47 (0.65) | 0.80 (0.88) | 0.79 (0.87) | 82.65                     |
| 5       | Indoxacarb 15.8 EC | 1 ml/lit | 4.30 (2.08) | 1.29 (1.12) | 0.80 (0.88) | 1.20 (1.09) | 1.09 (1.04) | 79.46                     |
| 6       | Novaluron 10 EC | 1 ml/lit | 3.12 (1.76) | 1.61 (1.25) | 1.20 (1.08) | 1.69 (1.28) | 1.50 (1.22) | 56.51                     |
| 7       | Lambda cyhalothrin 2.5 EC | 1ml/lit | 4.00 (1.99) | 1.33 (1.11) | 0.89 (0.90) | 1.29 (1.12) | 1.17 (1.07) | 73.60                     |
| 8       | Quinalphos 25 EC | 2ml/lit | 4.20 (2.04) | 1.43 (1.15) | 1.22 (1.09) | 1.58 (1.23) | 1.40 (1.18) | 70.0                      |
| 9       | Untreated Control | - | 5.30 (2.30) | 5.51 (2.34) | 5.90 (2.42) | 6.1 (2.46) | 5.83 (2.41) | -                         |

After First Spraying
Shoot and Capsule Borer (Conogethes punctiferas)
Pre-treatment count
There was no significant difference between the treatments with respect to per cent capsule damage before the imposition of treatments on the crop. The mean per cent capsule damage ranged between 15.06 and 20.93 per cent (Table5).

Three Days After Spraying
The lowest per cent damage was noticed in chlorantraniliprole 18.5 SC (8.50%) followed by flubendiamide 480 SC (9.76%), spinosad 45 SC (10.90%), indoxacarb 15.8 EC (11.26%) which were significantly superior over the treatments novaluron 10 EC (15.96%), whereas, the highest per cent damage (22.10%) of capsules was observed in untreated control.
Seven days after spraying
The least per cent capsule damage (7.17%) was recorded in chlorantraniliprole 18.5 SC followed by flubendiamide 480 SC (8.50%), spinosad 45 SC (9.40%), indoxacarb 15.8 EC (9.86%). The highest per cent capsule damage (14.43%) of capsules was observed in novaluron 10 EC and found to be least effective. 22.63 per cent capsule damage was recorded in untreated control.

Fifteen days after spraying
The lowest per cent damage was recorded in chlorantraniliprole 18.5 SC (8.83%) followed by flubendiamide 480 SC (10.26%), spinosad 45 SC (11.20%). The highest per cent capsule damage (16.16%) of capsules was observed in novaluron 10 EC and found to be least effective. Whereas the highest per cent damage (24.06%) of capsules was observed in untreated control.

Per cent reduction over untreated control
With regard to per cent reduction of capsule damage maximum per cent reduction was observed in chlorantraniliprole 18.5 SC (64.62%) emerged as highly effective treatment which was followed by flubendiamide 480 SC (59.29%) and spinosad 45 SC (54.86%). The least per cent reduction (32.31%) of capsule damage over untreated control was noticed in novaluron 10 EC.

After Second Spraying
Shoot and Capsule Borer (Conogethes punctiferalis)
Pre-treatment count
The pre-treatment counts on per cent capsule damage ranged from 16 to 28.30 per cent and the treatments were found to be significant (Table 6).

Three days after spraying
All the treatments were significantly superior over untreated control in reducing the per cent capsule damage. However, among these treatments chlorantraniliprole 18.5 SC successfully reduced the per cent capsule damage to lowest level of 6.80 per cent and found on par with flubendiamide 480 SC (7.90%). The next best treatments were spinosad 45 SC (12.51%) and emamectin benzoate 5 SG (13.71%). Whereas, the highest per cent damage (28.03%) of capsules was observed in untreated control.

Seven days after spraying
Similar trend was observed, the lowest per cent damage was noticed in chlorantraniliprole 18.5 SC (4.01%), followed by flubendiamide 480 SC (5.30%) and found to be best treatments. The next best treatments were indoxacarb 15.8 EC (6.50%) and spinosad 45 SC (7.42%) which were on par with each other.

Fifteen days after spraying
The least per cent capsule damage (5.10%) was recorded in chlorantraniliprole 18.5 SC which was found to be highly effective. Flubendiamide 480 SC (6.93%) was the second effective chemical which was on par with indoxacarb 15.8 EC (7.70%). The highest per cent capsule damage (18.00%) was observed in novaluron 10 EC and found to be least effective. Whereas, the highest per cent damage (36.20%) of capsules was observed in untreated control.

Per cent reduction over untreated control
With maximum reduction per cent capsule damage of 70.81 per cent chlorantraniliprole 18.5 SC stood as effective treatment followed by flubendiamide 480 SC (65.90%) which were significantly superior over the other treatments. Whereas, novaluron 10 EC with 40.82 per cent capsule damage reduction over the untreated control noticed as least effective. Order of efficacy was chlorantraniliprole 18.5 SC > flubendiamide 480 SC > indoxacarb 15.8 EC > spinosad 45 SC > emamectin benzoate 5 SG > lambda cyhalothrin 2.5 EC > quinaphos 25 EC > novaluron 10 EC.

These results are in agreement with the works of Narayanamma et al., (2013) and Duraimurugan and Lakshminarayana (2014) who found lower per cent capsule damage in the treatments Chlorantraniliprole 18.5 SC and flubendiamide 480 SC have superior compared to control and other treatments.

Table 5: Efficacy of different Insecticides against Conogethes punctiferalis of Castor during KhariB-2018 (First spray)

| S. No. | Treatment details | Dosage | Per cent capsule damage | Post Mean | Per cent reduction over control |
|-------|-------------------|--------|-------------------------|-----------|---------------------------------|
|       |                   |        | 1DBS | 3DAS | 7DAS | 15DAS |                   |           |                   |
| 1     | Emamectin benzoate 5 SG | 0.5 g/lit | 18.3 (25.32) | 11.96 (20.17) | 10.93 (19.26) | 13.56 (21.56) | 12.14 (20.37) | 47         |
| 2     | Flubendiamide 480 SC | 0.2 g/lit | 15.9 (23.46) | 9.76 (18.02) | 8.50 (16.91) | 10.26 (18.65) | 9.51 (17.94) | 59.29     |
| 3     | Chlorantraniliprole 18.5 SC | 0.3 g/lit | 15.06 (22.82) | 8.50 (16.81) | 7.17 (15.45) | 8.83 (17.17) | 8.16 (16.58) | 64.62     |
| 4     | Spinosad 45 SC | 0.3 g/lit | 16.9 (24.21) | 10.90 (19.18) | 9.40 (17.81) | 11.2 (19.50) | 10.5 (18.89) | 54.86     |
| 5     | Indoxacarb 15.8 EC | 0.5 g/lit | 17.5 (24.64) | 11.26 (19.53) | 9.86 (18.23) | 12.17 (20.37) | 11.1 (19.44) | 51.96     |
| 6     | Novaluron 10 EC | 1 ml/lit | 19.9 (26.43) | 15.96 (23.53) | 14.43 (22.28) | 16.16 (23.68) | 15.52 (23.19) | 32.31     |
| 7     | Lamda cyhalothrin 2.5 EC | 1 ml/lit | 18.63 (25.46) | 12.56 (20.72) | 11.10 (19.39) | 12.83 (20.95) | 12.16 (20.40) | 52.83     |
| 8     | Quinaphos 25 EC | 2 ml/lit | 19.20 (25.89) | 14.06 (21.98) | 12.53 (20.68) | 13.92 (21.85) | 13.50 (21.35) | 41.01     |
| 9     | Untreated Control | - | 20.93 (27.19) | 22.10 (28.03) | 22.63 (28.39) | 24.06 (29.36) | 22.93 (28.60) | -         |
| CD (P=0.05) | 9.8 | 0.5 g/lit | 1.24 | 0.99 | 1.05 | 1.13 |                   |           |                   |
| CV%   |                   | 9.8    | 10.30 | 9.60 | 8.49 | 7.20 |                   |           |                   |

Figures in parentheses are angular transformed; Means in the columns followed by the same alphabet do not differ significantly by DMRT (P=0.05); DBD- Day before spray; DAS- Days after spray.
Table 6: Efficacy of different Insecticides against Conogethes punctiferalis of Castor during Kharif-2018 (Second spray)

| S. No. | Treatment details | Dosage | Per cent capsule damage | Post Mean | Per cent reduction over control |
|--------|-------------------|--------|-------------------------|-----------|-------------------------------|
|        |                   |        | 1DBS | 3DAS | 7DAS | 15DAS |                     |                      |
| 1      | Emamectin benzoate 5% SG | 0.5 g/lit | 20.06 | (26.59) | 13.71 | (21.70) | 8.31 | (16.74) | 9.50 | (17.94) | 10.50 | (18.80) |
| 2      | Flubendiamide 480SC C | 0.2 l/lit | 17.3 | (24.54) | 7.90 | (16.28) | 5.30 | (13.29) | 6.93 | (15.21) | 6.71 | (14.95) |
| 3      | Chlorantraniliprole 18.5 SC | 0.3 l/lit | 16.0 | (23.54) | 6.80 | (15.03) | 4.01 | (11.52) | 5.10 | (13.02) | 5.30 | (13.23) |
| 4      | Spinosad 45 SC | 0.3 l/lit | 19.50 | (26.18) | 12.51 | (20.67) | 7.42 | (15.77) | 8.61 | (17.04) | 9.51 | (17.84) |
| 5      | Indoxacarb 15.8 EC | 1 ml/lit | 18.70 | (25.52) | 11.30 | (19.55) | 6.50 | (14.70) | 7.70 | (16.10) | 8.50 | (16.84) |
| 6      | Novaluron 10 EC | 1 ml/lit | 21.44 | (29.38) | 16.52 | (23.89) | 14.10 | (21.99) | 18.0 | (24.99) | 16.52 | (23.70) |
| 7      | Lambda cyhalothrin 2.5 EC | 1 ml/lit | 22.50 | (28.26) | 14.91 | (22.66) | 10.33 | (8.67) | 12.30 | (20.50) | 12.51 | (20.65) |
| 8      | Quinphos 25 EC | 2 ml/lit | 23.53 | (28.97) | 15.16 | (23.38) | 12.12 | (20.34) | 14.10 | (22.01) | 14.0 | (21.94) |
| 9      | Untreated Control | 28.30 | (32.13) | 28.03 | (31.96) | 32.10 | (34.44) | 36.20 | (36.91) | 32.11 | (34.46) |

Figures in parentheses are angular transformed; Means in the columns followed by the same alphabet do not differ significantly by DMRT (P=0.05); DBD- Day before spray; DAS- Days after spray.

Effect on yield and economics

Data on yield revealed that there was significant impact of insecticidal treatments on seed yield of castor. Chlorantraniliprole 18.5 SC was most effective with regard to yield (13.80 q / ha) followed by flubendiamide 480 SC (13.10 q / ha). Spinosad 45 SC (11.77 q / ha) and indoxacarb 15.8 EC (11.44 q / ha) were the next best ones. However, all the treatments recorded higher yield and significantly superior over untreated control (2.25 q / ha) (Table 7). Lambda cyhalothrin 2.5 EC registered highest C:B ratio of 3.08 compared to rest of the treatments, followed by flubendiamide 480 SC (3.06) and chlorantraniliprole 18.5 SC (3.05). Novaluron 10 EC recorded the lowest C: B ratio of 2.32 compared to untreated control (1.99).

The C:B ratio was highest in case of lambda cyhalothrin 2.5 EC (1: 3.08) due to the lower cost of production and gave average yield of 10.83 q / ha followed by flubendiamide 480 SC (1: 3.06). Novaluron 10 EC recorded least cost benefit ratio (1: 2.32) due to lower yield (9.56 q / ha) compared to untreated control. The reason attributed could be highest pest population and per cent capsule damage.

Table 7: Cost economics of different insecticides

| S. No. | Treatments | Dosage (g or ml/lit) | Yield (q /ha) | Cost of production (Rs/ha) | Cost of protection (Rs/ha) | Total cost of production (Rs/ha) | Gross returns (Rs/ha) | Net returns (Rs/ha) | C:B ratio |
|--------|----------------|----------------------|--------------|---------------------------|---------------------------|-------------------------------|--------------------|-----------------|-----------|
| 1      | Emamectin benzoate 5% SG | 0.50 | 11.12 | 14100 | 4040 | 18150 | 50640 | 31890 | 2:76 |
| 2      | Flubendiamide 480 SC | 0.20 | 13.10 | 14100 | 5140 | 19240 | 58950 | 39710 | 3:06 |
| 3      | Chlorantraniliprole 18.5 SC | 0.30 | 13.8 | 14100 | 6260 | 20360 | 62100 | 41740 | 3:05 |
| 4      | Spinosad 45% SC | 0.30 | 11.77 | 14100 | 6760 | 20860 | 52965 | 32105 | 2:54 |
| 5      | Indoxacarb 15.8 EC | 1.00 | 11.44 | 14100 | 7200 | 31200 | 51480 | 30180 | 2:42 |
| 6      | Novaluron 10 EC | 1.00 | 9.56 | 14100 | 4460 | 18560 | 43020 | 24460 | 2:32 |
| 7      | Lambda cyhalothrin 2.5% EC | 1.00 | 10.82 | 14100 | 1720 | 15820 | 48735 | 32915 | 3:08 |
| 8      | Quinphos 25 EC | 2.00 | 9.89 | 14100 | 2480 | 16580 | 44505 | 27925 | 2:68 |
| 9      | Untreated control | - | 6.25 | 14100 | - | - | 28080 | 13980 | 1:99 |

Conclusion

From the results of the present investigation, it is reveals that all the tested treatments were effective in reducing the infestation of lepidopteran pests of castor over untreated control. Especially newer insecticide molecules like chlorantraniliprole 18.5 SC, flubendiamide 480 SC and spinosad 45 SC which were emerged as most promising in managing the major defoliators of castor, whereas novaluron 10 EC was found to be least effective because of their different mode of action and efficacy of the insecticide.

References

1. DAC. Department of Agriculture and Co-operation, Ministry of Agriculture, Government of India. 2015.
2. Duraimurugan P, Lakshmi Narayana M. Efficacy of newer insecticides against defoliators and capsule borer in castor. Indian J Plant Prot. 2014; 42(4):307-311.
3. Gadihiya HA, Borad PK, Bhut JB. Effectiveness of synthetic insecticides against Helicoverpa armigera (Hubner) and Spodoptera litura (Fabricius) infesting groundnut. The Bioscan. 2014; 9(1):23-26.
4. Henderson CF, Tilton EW. Test with acaricides against the brown wheat mite. J Econ. Entomol. 1955; 48(2):157-161.
5. Lakshmi Narayana M, Raoof MA. Insect pests and diseases of castor and their management. Directorate of Oilseeds Research, 2005, 78.
6. Lakshmi Narayamamma V, Reddy DK, Reddy AV. Management of lepidopteran pests through newer insecticides in castor. Indian Journal of Plant Protection. 2013; 41:25-29.
7. Narayamamma LV, Reddy AD, Reddy AV. Management of lepidopteran pests through newer insecticides in castor. Indian J Plant Prot. 2013; 41(1):25-29.