On a Model of Superconductivity and Biology

Monica De Angelis

Abstract

The paper deals with a semilinear integrodifferential equation that characterizes several dissipative models of Viscoelasticity, Biology and Superconductivity. The initial - boundary problem with Neumann conditions is analyzed. When the source term F is a linear function, then the explicit solution is obtained. When F is non linear, some results on existence, uniqueness and a priori estimates are deduced. As example of physical model the reaction - diffusion system of Fitzhugh Nagumo is considered.

Keywords: Reaction - diffusion systems; Biological applications; Laplace transform

Mathematics Subject Classification (2000) 35E05 35K35 35K57 35Q53 78A70

1 Introduction

Let consider a function $u = u(x,t)$, where x is a direction of propagation and t is the time, and let

\begin{equation}
\mathcal{L} u \equiv u_t - \varepsilon u_{xx} + au + b \int_0^t e^{-\beta(t-\tau)} u(x,\tau) \, d\tau = F(x, t, u(x,t))
\end{equation}

with a, b, ε, β positive constants.

The equation (1.1) describes the evolution of several physical models as motions of viscoelastic fluids or solids [3, 6, 17]; heat conduction at low temperature [13], sound propagation in viscous gases [12]. Other two specific examples for the integro differential equation (1.1) are related to biological models and superconductivity.

*Univ. of Naples "Federico II", Faculty of Engineering, Dip. Mat. Appl. "R.Caccioppoli", Via Claudio n.21, 80125, Naples, Italy.
modeange@unina.it
As for the biological phenomena, a well known reaction diffusion model is given by the FitzHugh - Nagumo system (FHN) [9,14,19]:

\[\begin{align*}
\frac{\partial u}{\partial t} &= \varepsilon \frac{\partial^2 u}{\partial x^2} - v + f(u) \\
\frac{\partial v}{\partial t} &= bu - \beta v.
\end{align*} \]
(1.2)

In this case the function \(f(u) \) is:

\[f(u) = -a u + \varphi(u) \quad \text{with} \quad \varphi = u^2 (a + 1 - u) \quad (0 < a < 1) \]
(1.3)

As for the variables \(u \) and \(v \), \(u(x,t) \) represents a membrane potential of a nerve axon at distance \(x \) and time \(t \), and \(v(x,t) \) is a recovery variable that models the transmembrane current.

If \(v_0 \) represents the initial value of \(v \), the system (1.2) can be given the form (1.1) with

\[F(x,t,u) = \varphi(u) - v_0(x) e^{-\beta t}. \]
(1.4)

Moreover, equation (1.1) occurs also in superconductivity to describe the Josephson tunnel effects in junctions. In this case the unknown \(u \) denotes the difference between the phases of the wave functions of the two superconductors and the differential equation is:

\[\varepsilon u_{xxt} - u_{tt} + u_{xx} - \alpha u_t = \sin u + \gamma \]
(1.5)

where \(\gamma \) is a constant forcing term that is proportional to a bias current. The \(\varepsilon \) \(-\)term and the \(\alpha \) \(-\)term account for the dissipative normal electron current flow along and across the junction, respectively [1,18].

From (1.1) one obtains the equation (1.5) as soon as one assumes

\[a = \alpha - \frac{1}{\varepsilon} \quad b = -\frac{a}{\varepsilon} \quad \beta = \frac{1}{\varepsilon} \]
(1.6)

and \(F \) is such that
\[(1.7) \quad F(x, t, u) = -\int_0^t e^{-\frac{1}{\epsilon(t-\tau)}} \left[\gamma + \text{sen} u(x, \tau) \right] d\tau.\]

As (1.6) show, in the superconductive case the constants \(a, b\) could be negative too.

The explicit fundamental solution \(K_0(x,t)\) of the operator \(L\) defined in (1.1) has been already determined in [7] together with numerous basic properties. When \(F\) is a linear function, by means of \(K_0(x,t)\) it is possible to obtain the explicit solution of both the Neumann and the Dirichlet problem for (1.1). When \(F\) is non linear, an appropriate analysis of the integro differential equation implies results on the existence, uniqueness and a priori estimates of the solution. These results will be applied to (FHN) system.

2 Statement of the problem and transform solution

If \(T\) is an arbitrary positive constant and

\[\Omega_T \equiv \{(x,t): 0 \leq x \leq L; \ 0 < t \leq T\},\]

let \((P_N)\) the following Neumann initial - boundary value problem related to equation (1.1):

\[
\begin{cases}
\frac{\partial u}{\partial t} - \varepsilon \frac{\partial^2 u}{\partial x^2} + au + b \int_0^t e^{-\beta(t-\tau)} u(x, \tau) d\tau = F(x, t, u) & (x, t) \in \Omega_T \\
u(x, 0) = u_0(x) & x \in [0, L], \\
\frac{\partial u}{\partial x}(0, t) = \psi_1(t) & \frac{\partial u}{\partial x}(L, t) = \psi_2(t) & 0 < t \leq T.
\end{cases}
\]

(2.1)

In excitable systems this problem occurs when two-species reaction diffusion system is subjected to flux boundary condition [15]. The same conditions are present in case of pacemakers [11]. Neumann conditions are applied also to study distributed FHN system [16].

In superconductivity, instead, \((P_N)\) problem can be referred to the boundary specification of the magnetic field [2, 8, 10].

When \(F = f(x,t)\) is a linear function, the problem \((P_N)\) can be solved by Laplace transform with respect to \(t\).
If
\begin{equation}
\begin{cases}
\hat{u}(x,s) = \int_0^\infty e^{-st} u(x,t) \, dt \\
\hat{f}(x,s) = \int_0^\infty e^{-st} f(x,t) \, dt \\
\hat{\psi}_i(s) = \int_0^\infty e^{-st} \psi_i(t) \, dt \quad (i = 1, 2),
\end{cases}
\end{equation}

one deduces the following transform (\hat{P}_N) problem:
\begin{equation}
\begin{cases}
\hat{u}_{xx} - \frac{\sigma^2}{\varepsilon} \hat{u} = -\frac{1}{\varepsilon} \left[\hat{f}(x,s) + u_0(x) \right] \\
\hat{u}_x(0,s) = \hat{\psi}_1(s) \\
\hat{u}_x(L,s) = \hat{\psi}_2(s),
\end{cases}
\end{equation}

where $\sigma^2 = s + a + \frac{b}{s + \beta}$. Letting $\tilde{\sigma}^2 = \sigma^2/\varepsilon$, and considering the following function
\begin{equation}
\hat{\theta}_0 (y, \tilde{\sigma}) = \frac{\cosh \left[\tilde{\sigma} (L - y) \right]}{2 \varepsilon \tilde{\sigma} \sinh (\tilde{\sigma} L)} =
\end{equation}

\begin{equation}
= \frac{1}{2 \sqrt{\varepsilon} \sigma} \left\{ e^{-\frac{y}{\sqrt{\sigma}}} \sigma + \sum_{n=1}^{\infty} \left[e^{-\frac{2nL+y}{\sqrt{\sigma}} \sigma} + e^{-\frac{2nL-y}{\sqrt{\sigma}} \sigma} \right] \right\},
\end{equation}

the formal solution $\hat{u}(x,s)$ of the problem (\hat{P}_N) can be given the form:
\begin{equation}
\hat{u}(x,s) = \int_0^L \left[\hat{\theta}_0 (|x - \xi|, s) + \hat{\theta}_0 (|x + \xi|, s) \right] [u_0(\xi) + \hat{f}(\xi, s)] \, d\xi - 2 \varepsilon \hat{\psi}_1(s) \hat{\theta}_0(x,s) + 2 \varepsilon \hat{\psi}_2(s) \hat{\theta}_0(L-x,s).
\end{equation}

3 Explicit solution in the linear case and asymptotic properties

The fundamental solution $K_0(x,t)$ of the linear operator \mathcal{L} defined in (1.1) has been already obtained in [7] and it is:
(3.1) \[K_0(r, t) = \frac{1}{2\sqrt{\pi \varepsilon}} \left[e^{-\frac{r^2}{4\varepsilon t}} - \sqrt{b} \int_0^t e^{-\frac{r^2}{4\varepsilon \tau} - ay} e^{-\beta(t-y)} J_1(2\sqrt{by(t-y)}) \, dy \right], \]

where \(r = |x|/\sqrt{\varepsilon} \) and \(J_n(z) \) denotes the Bessel function of first kind.

More, the following theorems have been proved in [7]:

Teorema 3.1. In the half-plane \(\Re s > \max(-a, -\beta) \) the Laplace integral \(\mathcal{L}_t K_0(r, t) \) converges absolutely for all \(r > 0 \), and it results:

(3.2) \[\mathcal{L}_t K_0 \equiv \int_0^\infty e^{-st} K_0(r, t) \, dt = \frac{e^{-r \sigma}}{2\sqrt{\pi \varepsilon \sigma}}. \]

Teorema 3.2. The function \(K_0 \) has the same basic properties of the fundamental solution of the heat equation, that is:

i) \(K_0(x, t) \in C^\infty \) for \(t > 0, \ x \in \mathbb{R} \).

ii) For fixed \(t > 0 \), \(K_0 \) and its derivatives are vanishing exponentially fast as \(|x| \) tends to infinity.

iii) For any fixed \(\delta > 0 \), uniformly for all \(|x| \geq \delta \), it results:

(3.3) \[\lim_{t \downarrow 0} K_0(x, t) = 0, \]

iv) For \(t > 0 \), it is \(\mathcal{L} K_0 = 0 \).

Moreover, if \(\omega = \min(a, \beta) \) and one puts

(3.4) \[E(t) = \frac{e^{-\beta t} - e^{-at}}{a - \beta} > 0, \quad \beta_0 = \frac{1}{a} + \pi \sqrt{b} \frac{a + \beta}{2(a \beta)^{3/2}}, \]

then the following estimates hold [7]:

(3.5) \[|K_0| \leq \frac{e^{-\frac{a^2}{4\varepsilon t}}}{2\sqrt{\pi \varepsilon t}} [e^{-at} + bt E(t)]; \quad \int_0^t dt \int_\mathbb{R} |K_0(x - \xi, t)| \, d\xi \leq \beta_0 \]
\[(3.6) \quad \int_{\mathbb{R}} |K_0(x - \xi, t)| \, d\xi \leq e^{-at} + \sqrt{b} \pi t \, e^{-\omega t}. \]

In order to obtain the inverse formulae for (2.5), let apply (3.2) to (2.4). Then one deduces the following function similar to theta functions:

\[(3.7) \quad \theta_0(x, t) = K_0(x, t) + \sum_{n=1}^{\infty} [K_0(x + 2nL, t) + K_0(x - 2nL, t)] = \sum_{n=-\infty}^{\infty} K_0(x + 2nL, t). \]

As consequence, by (2.5), the explicit solution of the linear problem \((P_N)\) where \(F = f(x, t)\) is:

\[(3.8) \quad u(x, t) = \int_{0}^{L} [\theta_0(|x - \xi|, t) + \theta_0(x + \xi, t)] \, u_0(\xi) \, d\xi + \]
\[- 2 \varepsilon \int_{0}^{t} \theta_0(x, t - \tau) \, \psi_1(\tau) \, d\tau + 2 \varepsilon \int_{0}^{t} \theta_0(L - x, t - \tau) \, \psi_2(\tau) \, d\tau \]
\[+ \int_{0}^{t} d\tau \int_{0}^{L} [\theta_0(|x - \xi|, t - \tau) + \theta_0(x + \xi, t - \tau)] \, f(\xi, \tau) \, d\xi. \]

Owing to the basic properties of \(K_0(x, t)\), it is easy to deduce the following theorem:

Theorem 3.3. When the linear source \(f(x, t)\) is continuous in \(\Omega_T\) and the initial boundary data \(u_0(x)\), \(\psi_i(t)\) \((i = 1, 2)\) are continuous, then problem \((P_N)\) admits a unique regular solution \(u(x, t)\) given by (3.8).

As consequence of the properties of fundamental solution \(K_0(x, t)\), various estimates for \(u, \ u_t, \ u_x\) could be obtained.

As an example, let evaluate the asymptotic properties of the terms caused by the initial datum \(u_0(x)\) and the source \(f(x, t)\). If

\[||u_0|| = \sup_{0 \leq x \leq L} |u_0(x)|, \quad ||f|| = \sup_{\Omega_T} |f(x, t)|, \]

it results:
Teorema 3.4. When $\psi_i = 0$ ($i = 1, 2$), the solution (3.8) of (PN), for large t, verifies the following estimate:

\begin{equation}
|u(x,t)| \leq 2 \left[\| f \| \beta_0 + \| u_0 \| (1 + \sqrt{b} \pi t) e^{-\omega t} \right]
\end{equation}

where $\omega = \min (a, \beta)$ and β_0 is defined by (3.4)$_2$.

Proof: Properties of $K_0(x,t)$ imply that:

\begin{equation}
\left| \int_0^L \theta_0(|x - \xi|, t) \, d\xi \right| \leq \sum_{n=-\infty}^{\infty} \int_0^L |K_0(|x - \xi + 2nL|, t)| \, d\xi = \sum_{n=-\infty}^{\infty} \int_{x+(2n-1)L}^{x+2nL} |K_0(y, t)| \, dy \leq \int_{\mathbb{R}} |K_0(y, t)| \, dy.
\end{equation}

So, applying properties (4.1)$_2$ and (3.6) to (3.8), the estimate (3.9) follows.

4 The Fitzhugh - Nagumo model. A priori estimates

Consider now the non linear case of the (FHN) model defined by (1.2). By means of the previous results we are able to obtain integral equations for the two components (u,v) in terms of the data. All this implies the qualitative analysis of the solution together with a priori estimates.

At first let us observe that by (1.2)$_2$ one has:

\begin{equation}
v = v_0 e^{-\beta t} + b \int_0^t e^{-\beta(t-\tau)} u(x, \tau) \, d\tau
\end{equation}

and this formula, together with (1.4) require the presence of the following convolutions:

\begin{equation}
K_i(r, t) = \int_0^t e^{-\beta(t-\tau)} K_{i-1}(x, \tau) \, d\tau \quad (i = 1, 2)
\end{equation}

which explicitly are given by [7]:

7
\[(4.3) \quad K_i = \int_0^t \frac{e^{-\frac{x^2}{4y} - \beta(t-y)}}{2\sqrt{\pi y}} \left(\sqrt{\frac{t-y}{by}} \right)^{i-1} J_{i-1}(2\sqrt{by(t-y)}) \, dy \quad (i = 1, 2).\]

As consequence, together with \(\theta_0\) defined by (3.7), the other two \(\theta\) functions

\[(4.4) \quad \theta_i(x, t) = \sum_{n=-\infty}^{\infty} K_i(x + 2nL, t) \quad (i = 1, 2)\]

must be considered.

To allow a clearer reading let’s set

\[(4.5) \quad G_i(x, \xi, t) = \theta_i(|x - \xi|, t) + \theta_i(x + \xi, t) \quad (i = 0, 1, 2)\]

In this manner, owing to (3.8) one has:

\[(4.6) \quad u(x, t) = \int_0^L \left[G_0(x, \xi, t) \ u_0(\xi) - G_1(x, \xi, t) \ v_0(\xi) \right] d\xi +
\quad -2\varepsilon \int_0^t \theta_0(x, t - \tau) \ \psi_1(\tau) \, d\tau + 2\varepsilon \int_0^t \theta_0(L - x, t - \tau) \ \psi_2(\tau) \, d\tau
\quad + \int_0^t d\tau \int_0^L G_0(x, \xi, t - \tau) \ \varphi[\xi, \tau, u(\xi, \tau)] \, d\xi.\]

As for the \(v\) component, by (4.1) one deduces:

\[(4.7) \quad v(x, t) = v_0 e^{-\beta t} + b \int_0^L \left[G_1(x, \xi, t) \ u_0(\xi) - G_2(x, \xi, t) \ v_0(\xi) \right] d\xi +
\quad -2b \varepsilon \int_0^t \theta_1(x, t - \tau) \ \psi_1(\tau) \, d\tau + 2b \varepsilon \int_0^t \theta_1(L - x, t - \tau) \ \psi_2(\tau) \, d\tau
\quad + b \int_0^t d\tau \int_0^L G_1(x, \xi, t - \tau) \ \varphi[\xi, \tau, u(\xi, \tau)] \, d\xi.\]
Let us observe that the kernels $K_1(x,t)$ and $K_2(x,t)$ have the same properties of $K_0(x,t)$. In fact [7]:

Theorema 4.1. For all the positive constants $a, b\varepsilon, \beta$ it results:

\begin{align}
(4.8) & \quad \int_{\mathbb{R}} |K_1| \ d\xi \leq E(t); \quad \int_0^t d\tau \int_{\mathbb{R}} |K_1| \ d\xi \leq \beta_1 \\
(4.9) & \quad \int_{\mathbb{R}} |K_2(x-\xi,t)| \ d\xi \leq \int_0^t e^{-a(y-\beta(t-y))} (t - y) dy \leq t E(t)
\end{align}

where $E(t)$ is defined in (3.4) and $\beta_1 = (a \beta)^{-1}$.

Now, let $||z|| = \sup_{\Omega_T} |z(x,t)|$, and let B_T denote the Banach space $B_T = \{ z(x,t) : z \in C(\Omega_T), \ |z| < \infty \}$.

By means of standard methods related to integral equations and owing to basic properties of $K_i, G_i (i = 0, 1, 2)$ and $\varphi(u)$, it is easy to prove that the mapping defined by (4.6) is a contraction of B_T in B_T and so it admits an unique fixed point $u(x,t) \in B_T$ [4, 5]. Hence

Theorema 4.2. When the initial data (u_0, v_0) are continuous functions, then the Neumann problem related to the nonlinear (FHN) system (1.2), (1.3) has a unique solution in the space of solutions which are regular in Ω_T.

Continuous dependence for the solution of (P_N) is an obvious consequence of the previous estimates. As an example of asymptotic properties let us consider the case $\psi_1 = \psi_2 = 0$ and let

$$||\varphi|| = \sup_{\Omega_T} |\varphi(x, t, u)|,$$

then by means of (4.6), (4.7) and owing to the estimates (4.10), (3.6), (4.8), (4.9), the following theorem can be stated:
Teorema 4.3. For regular solution (u,v) of the (FHN) model, when $\psi_1 = \psi_2 = 0$, the following estimates hold:

\[
\begin{align*}
|u| & \leq 2 \left[\|u_0\| (1 + \pi \sqrt{b} t e^{-\omega t} + \|v_0\| E(t) + \beta_0 \|\varphi\|) \right] \\
|v| & \leq \|v_0\| e^{-\beta t} + 2 \left[b \left(\|u_0\| + t \|v_0\| \right) E(t) + b \beta_1 \|\varphi\| \right]
\end{align*}
\]

Therefore, when t is large, the effect due to the initial disturbances (u_0, v_0) is exponentially vanishing while the effect of the non linear source is bounded for all t.

All the previous results can be applied to the boundary Dirichlet or mixed conditions, too.

Acknowledgements This work has been performed under the auspices of the G.N.F.M. of I.N.D.A.M. and M.I.U.R. (P.R.I.N. 2009) ”Waves and stability in continuous media”.

The author thanks Professor P. Renno for his useful suggestions.

References

[1] Barone, A., Paternó, G. Physics and Application of the Josephson Effect. Wiles and Sons N. Y. (1982)
[2] A. Benabdallah and J. G. Caputo, A. C. Scott Laminar phase flow for an exponentially tapered Josephson oscillator J. appl. Physics 88, 6 (2000)
[3] Bini D., Cherubini C., Filippi S. Viscoelastic Fitzhugh-Nagumo models. Physical Review E 041929 (2005)
[4] J. R. Cannon, The one-dimensional heat equation, Addison-Wesley Publishing Company (1984)
[5] De Angelis, E Maio . Mazziotti Existence and uniqueness results for a class of non linear models. In Mathematical Physics models and engineering sciences. (2008)
[6] De Angelis, M. Renno,P. Diffusion and wave behaviour in linear Voigt model. C. R. Mecanique 330 (2002)
[7] De Angelis, M. Renno,P Existence, uniqueness and a priori estimates for a non linear integro - differential equation Ricerche di Mat. 57 (2008)
[8] M. G. Forest, S. Pagano, R. D. Parmentier, P. L. Christiansen, M. P. Soerensen and S. P. Sheu1 Numerical evidence for global bifurcations leading to switching phenomena in long Josephson junctions Wave Motion,12 (1990)
[9] Izhikevich E.M.: *Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting*. The MIT press. England (2007)

[10] M. Jaworski *Fluxon dynamics exponentially shaped Josephson junction* Phys Rev B 71 (2005)

[11] Keener, J. P. Sneyd, J. *Mathematical Physiology*. Springer-Verlag, N.Y (1998)

[12] Lamb, H.: *Hydrodynamics*. Cambridge University Press (1971)

[13] Morro, A., Payne, L. E., Straughan, B.: *Decay, growth, continuous dependence and uniqueness results of generalized heat theories*. Appl. Anal., 38 (1990)

[14] Murray, J.D.: *Mathematical Biology. I. An Introduction*. Springer-Verlag, N.Y (2002)

[15] Murray, J.D.: *Mathematical Biology. II. Spatial models and biomedical applications*. Springer-Verlag, N.Y (2003)

[16] O. Nekhamkina and M. Sheintuch *Boundary-induced spatiotemporal complex patterns in excitable systems* Phys. Rev. E 73, (2006)

[17] Renardy, M. *On localized Kelvin - Voigt damping*. ZAMM Z. Angew Math Mech 84, (2004)

[18] Scott, Alwyn C. *The Nonlinear Universe: Chaos, Emergence, Life*. Springer-Verlag (2007)

[19] Scott, Alwyn C. *Neuroscience A mathematical Primer*. Springer-Verlag (2002)