Effect of ginger (Zingiber officinalis L.) on quality and shelf life of Chhana whey beverage

Sharma N, Chavan KD and Jaybhay VB

DOI: https://doi.org/10.22271/chemi.2020.v8.i5m.10418

Abstract

The present investigation was planned to evaluate the effect of ginger on chhana whey beverage (CWB). The pre optimized and finalized different levels of ginger powder in chhana whey were used to conduct the experimental trials. The experiments were laid out in completely randomized design with four replications for pre experimental and experimental trials. The experimental treatments were; without ginger powder (T0), addition of 0.1% (T1), 0.2% (T2), 0.3% (T3), 0.4% (T4) ginger powder. All the experimental samples were analyzed for sensory, chemical and microbiological qualities on day 0 (fresh), 5th day, 10th and 15th day of storage at refrigerated temperature of (5-6 °C). The standard methods of analysis were followed and the data were statistically analyzed. The fresh samples of CWB were analyzed for chemical, sensory and microbiological qualities. On increasing level of ginger over 0.3% and 10% sugar, the sensory scores for colour and appearance, consistency, flavour and overall acceptability was going decreasing, the chemical parameters like lactose protein, total sugar, total solids, titrable acidity increased significantly (p<0.05) whereas fat was irrespective and pH show close similarity. The SPC counts increased, The YMC and Coliforms were detected during storage period.

On storage time increased the sensory scores for colour and appearance, consistency, flavour and overall acceptability was going decreasing. The chemical parameters like fat, protein, total sugar, total solids, titrable acidity increased significantly (p<0.05) whereas lactose and pH decreased significantly. The SPC mean counts increased from 11.0 (T4) to 15.0 (T0) cfu/ml x 103 on 15th day of storage period. The YMC increased from 0 to 38.0 cfu/ml x 103. No coliforms were detected during storage period.

Better quality Chhana Whey Beverage (CWB) could be prepared by blending of 0.3% ginger powder and 10% sugar. The prepared ginger CWB remained acceptable upto 10 days at refrigerated temperature (5-6 ± 2 °C).

Keywords: Whey, Chhana, ginger, evaluation, storage, shelf life

Introduction

Whey is the highly nutritious by-product of the dairy industry. It is obtained during the manufacture of casein, cheese, paneer, shrikhand and chhana. In whey, lactose is the major constituent and whey proteins, water soluble vitamins and minerals are secondary components. The conversion of whey into beverages through fermentation or without fermentation is one of the most attractive avenues for the utilization of whey for human consumption. Beverages based on fruit and milk products are currently receiving considerable attention as their market potential is growing. Besides being delicious, these beverages are highly nutritious. In terms of functionality, whey protein enhances protein content of beverage while improving its quality. The production of a beverage from whey butter, cheese and acerola juice has been shown to have good commercialization potential, uniting the benefits provided by the former with that of the latter, including the ingestion of essential amino acids and increasing vitamin C content, resulting in a product of differentiated nutritive value (Cruz et al., 2009) [6].

Ginger, being a major spice, has many uses in food as a flavoring and Medicinal product. The aroma of ginger is pleasant with flavor, slightly biting due to antiseptic or pungent compounds present in it, which make it indispensable in the manufacture of number of food products. (Abdullah Al-Nahain, et al. 2014) [1] It is common ingredient in Asian cooking. Ginger has a several medicinal properties. According to the Ayurvedic medical system, ginger is carminative, stimulant and gives stimulating remedies. Ginger is diaphoretic, spasmyolytic and intestinal stimulant.
Fresh ginger has been used for cold induced diseases, asthma, nausea, cough, heart palpitation, swelling and rheumatism. Ginger extracts also have antibacterial, anti spasmodic, antiulcer, antiallergenic and antioxidant qualities as well. (Prasanna, et al. 2014) Ginger (Zingiber officinale L.) belonging to family Zingiberaceae. It is a major spice and has many uses in food as flavoring and having medicinal properties. The aroma of ginger is pleasant with flavor, slightly biting due to antiseptic or pungent compounds present in it, which make it indispensable in the manufacture of number of food products. Though it was revealed that blending of milk shake with ginger extract yield was novel dairy Nutraceutical. Those improve the acceptability of milk shake and also result into its value addition.

However, available literature indicates that the scantily work has been so far carried out on analysis of ginger powder admixed with whey. Therefore, thought essential to evaluate the suitability of ginger juice as a flavoring agent in developing ginger whey beverage. Hence the present investigation has been planned with following objectives:

1. To study sensory quality of whey beverage
2. To study chemical quality of whey beverage
3. To study microbiological quality of whey beverage
4. To study the shelf life of the product

Material and Methods
The Present investigation entitled, “Development of ginger (Zingiber officinale L.) Flavored chhana whey beverage was undertaken in laboratories of Animal husbandry, Dairy Science and Biochemistry, Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri, Dist. Ahmednagar (Maharashtra).

Materials
Milk
The fresh, clean, composite milk samples of crossbred cows were be procured from Research cum-Development Project on cattle (RCDP), Dept. of Animal husbandry and dairy science, Mahatma Phule Krishi Vidyapeeth Rahuri, Dist. Ahmednagar (Maharashtra).

Ingredients
All ingredients like Sugar, Ginger powder (Geo fresh organic powder) was purchased from local market, LR grade citric acid was used for coagulation of milk purpose.

Glasswares
The corning/Borosil brand glasswares were used for analytical work,

Chemicals
All the chemicals used for analysis were of the A.R and G.R grades manufactured by Merk, India Ltd and Glaxo India Ltd.

Laboratory instruments Packaging material
Glass bottles (250 ml capacity) were made available from the department of Post-harvest technology of Horticulture for filling of whey beverage and sterilized aluminium foil was used for packaging the filled bottles.

Microbiological media
Dehydrated media viz, tryptone glucose yeast extract agar (M-014) and potato dextrose agar (M-016) from M/S Hi-media Laboratory Pvt. Ltd, Mumbai (India) were used.

Experimental trials
On the basis of the results of sensory evaluation of pre-experimental trials 0, 0.1, 0.2,0.3 and 0.4 per cent ginger powder levels were chosen for experimental trials.

Experimental Treatments Levels of Ginger powder (w/v)
T0 - Control (Without addition of ginger powder)
T1 - 0.1 per cent ginger powder of chhana whey. T2 - 0.2 per cent ginger powder of chhana whey. T3 - 0.3 per cent ginger powder of chhana whey. T4 - 0.4 per cent ginger powder of chhana whey.

Sugar @ 10 per cent of whey was used for all treatments.

Methods
Sensory evaluation
Experimental trials were subjected to sensory evaluation using the method described in the IS:6273, Part-I and Part- II (1971) adopting 9 point Hedonic scale. A panel of five semi trained judges was formulated for this purpose. The samples were coded every time.

Chemical analysis of Chhana whey and Chhana Whey Beverage
The fat content was determined by Gerber method, The protein content was determined by Micro-Kjeldahl method, The lactose content was determined by Lane -Eynon volumetric method, The total solids content was determined by gravimetric method, The titratable acidity and pH content was determined as per procedure described in BIS (1981) \[4\]. The total sugar content was determined as per the method described by Ranganna (1986) \[16\].

Storage studies
The chhana whey beverage samples were stored at refrigerator temperature 5-60 C. The samples were analysed for sensory, chemical and microbiological qualities on day 0,5,10 and 15th day of storage.

Microbiological analysis enumeration of microorganisms
The pour plate method was adopted for enumeration of Standard Plate Counts (SPC) was determined by adopting standard procedure using Standard Plate Count Agar (SPCA) media as mentioned by Amin, (1997) \[2\]. Yeast and Mould Counts (YMC) was determined as per the procedure described in IS: 5403 (1999) \[8\] using Potato Dextrose Agar (PDA), Coliform Counts of whey beverage samples was determined as per the procedure described in IS: 5550 (1970) \[9\].

Statistical analysis
Experiment was laid out in completely randomized design (CRD) with four replications for pre-experimental and experimental trials. The data was tabulated and analyzed according to Snedecor and Cochran (1994) \[19\].

Result and Discussion
The present investigation entitled “Effect of ginger (Zingiber officinale) on chhana whey beverage” was undertaken to evaluate the effect of ginger on quality and shelf life of chhana whey beverage. The prepared chhana whey beverage was evaluated for sensory, chemical and microbiological qualities.

Chemical composition of Chhana whey
The composite samples of the crossbred cow’s milk were used for preparation of chhana whey. The average chemical
composition of chhana whey used during the study is presented in Table 1.

Table 1: Chemical composition of Chhana whey

Sr. No.	Constituent	Content
1.	Fat (%)	0.50
2.	Protein (%)	0.70
3.	Lactose (%)	4.86
4.	Total solids (%)	6.3
5.	Lactic Acidity (% L.A)	0.19
6.	pH	5.50

Table 2: Sensory quality of fresh chhana whey beverage (Sensory score out of 9)

Treatment	Colour and appearance	Consistency	Flavor	Overall acceptability
T0	7.5c	8.0a	7.4d	7.5c
T1	7.8b	7.8b	7.8c	7.9b
T2	7.9a	7.7c	8.0b	8.0a
T3	7.9a	7.7c	8.1a	8.2a
T4	7.8b	7.4d	7.8c	7.7b
SE(+)	0.005	0.031	0.015	0.021
CD at 5%	0.016	0.095	0.047	0.064

- Nine point hedonic scale score card

Colour and Appearance
From Table 4 it is revealed that Treatment T3 with score 7.9 was superior among all other treatments under study. It might be due to intense colour of ginger powder. whey guava beverage get sensory score for colour as 6.02 to 7.82 in the different blends studied Singh et al. (2014)\(^{18}\).

Consistency
The mean score ranged from 7.4 (T4) to 8.0 (T0). The treatment T3 had more acceptable consistency. The consistency became thicker as level of ginger powder increased.

Flavour: The flavour score increased from T1 to T3 significantly. It might be due to oleoresin and gingerol levels of ginger powder.

Overall acceptability
The overall acceptability chhana whey beverage sample significantly influenced due to addition of ginger powder in chhana whey.

The sensory score for overall acceptability ranged from 7.5(T0) to 8.2(T3).

Chemical composition of fresh Chhana whey beverage

Table 3: Chemical composition of fresh Chhana whey beverage (day 0)

Treatments	Fat (%)	Protein (%)	Lactose (%)	Total Sugar (%)	Total Solids (%)	Titratable Acidity (%)	pH
T0	0.48e	0.70e	4.90a	14.91e	16.39e	0.20d	5.19a
T1	0.53d	0.72d	4.81b	14.97d	16.47d	0.20d	5.18b
T2	0.57c	0.73c	4.69c	15.07c	16.56c	0.21c	5.16c
T3	0.61b	0.76b	4.65d	15.14b	16.68b	0.22b	5.14d
T4	0.64a	0.78a	4.60e	15.17a	16.77a	0.23a	5.11e
SE(+)	0.003	0.002	0.002	0.009	0.006	0.001	0.001
CD at5%	0.009	0.006	0.006	0.028	0.020	0.003	0.005

Fat
The mean fat content in the samples under experimental treatments ranged from 0.48 (T0) to 0.64 (T4) per cent fat content irrespective of the addition of the ginger powder in the CWB samples.

Protein
The mean values for protein content under various experimental samples ranged from 0.70 (T0) to 0.78 (T4). The highest value for protein content was 0.78 in the treatment T4 (0.4% ginger powder). It may be cause of higher protein content of ginger powder.

Lactose
The mean values for Lactose content under various experimental samples ranged from 4.60 (T4) to 4.90 (T0). It is obviously due to sugar content in the ginger powder.

Total sugar
The mean values of total sugar in the experimental samples ranged from 14.91 (T0) to 15.17 (T4) per cent. It was noticed that as the level of addition of ginger powder increased the total sugar content in the experimental CWB samples increased significantly.

Total solids
From Table (3) it is seen that mean total solids content in the various experimental samples were range from 16.39 to 16.77 per cent. The control sample had lower total solids content (16.39%). Mohamed et al., (2014)\(^{14}\) studied physico-chemical properties of papaya functional whey beverage and noted the TS content 18%.

Titratable acidity
The titratable acidity were ranged from 0.20% LA (T0) to

On an average chhana whey contains: 0.50, 0.70, 4.86, 6.37, 0.19 and 5.50, per cent fat, protein, lactose, Total solids, lactic acidity (% L.A.) respectively. The pH of chhana whey beverage was 5.50.

Experimental trials
On the basis of results of sensory evaluation 0 (T0), 0.1(T1), 0.2(T2), 0.3(T3) and 0.4(T4) per cent ginger powder levels were chosen for experimental trials.

Sensory quality of fresh chhana whey beverage
0.23% LA (T4) in the experimental samples. The results indicated that as the level of addition of ginger powder increases, the acidity content of CWB samples were also increased proportionately. Sakhale et al., (2012) [17] developed whey based RTS beverage from mango kesar and reported the acidity content from 0.32 to 036%.

pH
The mean pH values of CWB samples were varied from 5.11 to 5.19. The pattern of pH in the various sample of CWB show close similarity. Bhavsagar et al., (2010) [3] reported the pH values of pineapple flavoured beverage from chhana whey as 3.91 to 3.89.

Microbiological quality of fresh Chhana Whey Beverage (day 0)
In the present investigation, were made to evaluate The microbiological quality has of prime importance as quality of the product is considered. Hence after preparation of CWB, microbiological qualities of fresh CWB samples were evaluated.

Storage period/ Treatment	SPC 0 day (cfu/ml x 102)	YMC 0 day (cfu/ml x 10)	Coliform count 0 day cfu/ml x 10
T0	9.2a	ND	ND
T1	8.5b	ND	ND
T2	8.2b	ND	ND
T3	7.5b	ND	ND
T4	7.5b	ND	ND
SE (+)	0.37b	-	-
CD at 5%	1.134	-	-

ND: Not detected

Standard Plate Count (SPC)
The CWB samples under various treatments showed a variation in microbiological quality (Table 6). The SPC content of the different sample treatments ranged from 7.5x102 cfu/ml (T4) to 9.2x102 cfu/ml (T0). Damane et al., (2015) [18] reported total plate count less than 20 in formulation of milk whey blended sugarcane juice.

Yeast and Mould Count (YMC)
No YMC was detected in the CWB samples.

Treatments	0 Days	5 Days	10 Days	15 Days
Colour and appearance				
T0	7.5	7.5	7.3	7.0
T3	7.9	7.9	7.5	6.9
Consistency				
T0	8.0	7.9	7.5	6.9
T3	7.7	7.7	7.6	6.7
Flavour				
T0	7.5	7.5	7.4	6.9
T3	8.1	8.2	7.7	6.6
Overall acceptability				
T0	7.5	7.5	7.4	6.8
T3	8.2	8.0	8.0	6.7

Quality of chhana Whey Beverage during Storage
On the basis of chemical, sensory and microbiological analysis of fresh Chhana Whey Beverage the best treatment T3 (0.3% Ginger powder) was selected for storage study. T0 treatment was taken as control treatment.

Sensory Quality of chhana Whey Beverage during Storage

Colour and appearance
The addition of ginger powder in the chhana whey significantly (P< 0.05) influenced the colour and appearance (Table 5) of the product during storage period. The mean score for colour and appearance varied from 7.9 to 6.7 (T3) and 7.5 to 7.0 (T0) during storage. The colour and appearance score remain, liked moderately up to 10 day of storage at 5-60 C. The original colour creamish white declined to darker in all treatments from 10 days onwards. All the treatments became dull in appearance at 15 days storage. Yadav et al., (2010) [20] noted colour score 7.60 on day 0 and 6.80 on 10th day of storage while studying the development and storage studies on whey based banana herbal (Mentha arvensis) beverage.

Consistency
The consistency becomes thicker in the treatment samples as storage period. The consistency score decreased from 7.7 to 6.7 (T3) and 8.0 to 6.9 (T0) as storage period increased from day 0 to day 15 in all the treatments. Kumar et al., (2005) [12] reported the sensory score for consistency on day 0 was 4.50 and 4.40 on 10th day in formulation of whey sweet orange based RTS fruit beverage.

Flavour
The flavour is one of the important component of sensory quality, from the (Table 5). It is revealed that, influence of addition of ginger powder on flavour during all the days of storage. The mean sensory score of the samples under different experimental treatments were ranged from 8.1 to 6.6 (T3) and 7.5 to 6.9 (T0) on 0th, 5th, 10th and 15th days respectively during storage period. The flavour score of CWB significantly decreased as the storage period increased. It might be due to physico-chemical changes takes place in the product during storage. Particularly increased in lactic acidity of the product. Which results in decrease of flavour attribute. Chavan et al., (2015) [5] reported that sensory score for flavor was 8.5 on day 0 and also 8.5 on 10th day of storage in development of whey based mango beverage.
Overall acceptability
From the (Table 5) it is revealed that, the influence of addition of different level of ginger powder in the chhana whey samples significantly ($P<0.05$) influenced the overall acceptability of the product during all the days of storage. The mean overall acceptability scores of the CWB samples under two treatments ranged from 8.2 to 6.7 (T3) and 7.5 to 6.8 (T0) on day 0th, 5th, 10th and 15th of storage. Chavan et al., (2015)\(^{[5]}\) reported that sensory score for overall acceptability was 8.5 on day 0 and also 8.4 on 10th day of storage in development of whey based mango beverage.

Chemical Composition of Chhana whey beverage during storage

Table 6: Chemical Composition of Chhana Whey Beverage During Storage

Storage period / parameter	Treatments	0 Days	5 Days	10 Days	15 Days
Fat	T0	0.48	0.44	0.42	0.36
	T3	0.61	0.60	0.51	0.43
Protein	T0	0.70	0.68	0.65	0.62
	T3	0.76	0.73	0.70	0.64
Lactose	T0	4.90	4.82	4.55	4.26
	T3	4.65	4.55	4.29	4.10
Total Sugar	T0	14.91	14.89	13.88	12.88
	T3	15.14	15.10	14.09	13.09
Total Solids	T0	16.39	16.42	16.48	16.59
	T3	16.68	16.72	16.73	16.85
Titratable acidity (L.A.)	T0	0.20	0.26	0.30	0.39
	T3	0.22	0.29	0.34	0.46
pH	T0	5.19	5.17	5.13	4.8
	T3	5.14	5.13	5.00	4.6

FAT
The data presented in Table (6) revealed that, blends of ginger powder affected fat content significantly ($P<0.05$) The mean fat content in the samples under experimental treatment 0.61 per cent. On a 15th day of storage all the treatments differed significantly among themselves.

Kumar and Peter (2015)\(^{[13]}\) prepared whey based aonla beverage and reported fat content in the range of 0.05 to 0.07 per cent.

Protein
The influence of storage life (Table 6) on protein content in CWB samples was significant ($P<0.05$). The mean values for protein content ranged from 0.70 (T0) to 0.76(T3).

Protein content was decreased on increasing storage time. Singh et al., (2014)\(^{[18]}\) observed 0.33% protein content on day 0 and 0.32% on 10th day of storage period, while studying development, quality evaluation and shelf life studies of whey guava beverage.

Lactose
The mean values for lactose content under various experimental samples ranged from 4.65 to 4.10 (T3) and 4.90 to 4.26 (T0). The lactose content was decreased with increasing storage study.

Total solids
All the experimental treatment samples differed significantly among themselves. The mean values of total sugar in the experimental samples decreased from 15.14 to 13.09 per cent (T3) and 14.91 to 12.88 (T0). Ismail et al., (2011)\(^{[11]}\) reported the total sugar content 16.28% on day 0 and 16.17% on 30th day of storage period in the cheese whey based mango beverage while studying microbial and chemical evaluation of whey based mango beverage.

Total solids
The total solid content (Table 6) of CWB significantly ($P<0.05$) influenced on day 0, 5th, 10th and 15th day of storage period. All the sample treatments significantly differed on storage. Total solid content was ranged from 16.68 to 16.85 (T3). It is due to total solid content of ginger powder. Mohamed et al., (2014)\(^{[14]}\) studied physico-chemical and microbiological properties of papaya functional whey beverage and noted the TS content 18% on day 0 and reduces upto 17.70% on 30th day of storage.

Titratable acidity (%L.A.)
The values for acidity content varied from 0.22 to 0.46(T3) during storage period. It is seen that the acidity content increased with increase in the storage period progressed. Chavan et al., (2015)\(^{[5]}\) reported increase in acidity content during storage i.e. on day 0 acidity was 0.40 per cent and on 10th day it increases upto 0.41 per cent, while studying the development of whey based mango beverage.

pH
The mean pH values of CWB samples were varied from 4.8 (T3) to 5.19(T0). The pattern of pH in the sample of CWB show close similarity, The pH and acidity levels in the various experimental samples of CWB seemed to be having a close relationship. Mohamed et al., (2014)\(^{[14]}\) observed the pH values of fresh functional papaya whey beverage as 4.90 to 5.30.

Microbiological quality of Chhana whey beverage during storage

Table 7: Microbiological quality of Chhana whey beverage during storage

Storage Time / parameters	Treatments	0 Days	5 Days	10 Days	15 Days
SPC	T0	9.2	8.0	13.5	15.0
	T3	7.5	5.0	11.0	11.0
Yeast and mould count	T0	ND	ND	7.0	38.0
	T3	ND	ND	8.2	36.2
Coliform count	T0	ND	ND	ND	ND
	T3	ND	ND	ND	ND

Standard plate count (SPC): The mean standard plate count of chhana whey beverage during storage is depicted in the (Table 7). The mean SPC varied from 7.5 cfu/ml x 102 to 11 cfu/ml (T3) during storage at 5-60 C. Ismail et al., (2011)\(^{[11]}\) observed total viable count on day 0 were 2.60 x 104 and 2.67 x 104 on 10th day of storage.
Yeast and Moulds counts (YMC)

It was seen that YMC was not detected on a day 0 and day 5 of storage. The YMC ranged from 7.0 to 8.2 x 102 on day 10 of storage and which were increased to 36.2 cfu/ml x 103 to 38.00 cfu/ml x 103 on day 15 of storage. This might be due to contamination during post handling of the product. Mohamed *et al.*, (2014) reported YMC on day 0 was 6.33 x 102/gm, it becomes 0.50 x 102/gm on 30th day of storage in papaya functional beverage based on sweet cheese whey.

Coliform Counts of Channa whey beverage during storage

ND: Not detected
No Coliforms were detected during storage of the product.

Conclusions

Better quality *chhana* whey beverage can be prepared by addition of 0.3 per cent ginger powder and 10% sugar in the *chhana* whey. The prepared ginger based *chhana* whey beverage remains acceptable up to 10 days at refrigerated temperature of 5-60C.

The sensory score of the T3(0.3%) for colour and appearance, consistency, flavor and over all acceptability ranged from 6.9 to 7.9, 6.7 to 7.7, 6.6 to 8.1 and 6.7 to 8.2, respectively. The physico-chemical composition of sample (T3) remain more or less similar during storage at 5-60C.

The SPC of T3 (0.3% ginger powder) was in the range of 7.5x102cfu/ml to 11.0 x103cfu/ml during 15 days storage at 5 - 60C.

References

1. Abdullah Al-Nahain, Rownak Jahan, Mohammed Rahmatullah Zingiber officinale: A Potential Plant against Rheumatoid Arthritis Arthritis, 2014, 1-8.
2. Amin JB. Preparation of media, reagents and sterilization of glassware. Compendium of Laboratory Quality Assurance in Dairy Industry, 1997, C-1-8.
3. Bhavsagar MS. Manufacture of pineapple flavoured beverage from chhana whey. J. Dairying, Foods and H. S. 2010; 29(2):110-113.
4. BIS. Handbook of Food Analysis, XI: Dairy Products, SP: 18. Bureau of Indian Standards, New Delhi, 1981.
5. Chavan RS, Nalawade T, Kumar A. Studies on the development of whey based mango beverage. Research and Review: J. of Food and Dairy Technology, 2015, (3).
6. Cruz AG, Ana AS, Macchione MM, Teixeira Schmidt FL. Milk drink using whey butter cheese Queijomanteiga and Acerola juice as a potential source of vitamin C. Food and bio process technology. 2009; 2:368-373.
7. Damane PT, Sonkar C, Darade R. Development and formulation of milk whey blended sugarcane juice and its physicochemical analysis, Dept. of Food Process Engineering, Sam Higgin Bottom institute of Agriculture, Technology and science, Allahabad, U.P. ISSN (0):2348-4098, 2015.
8. IS: 5403. Method for Yeast and Mould Count of Food stuff and animal feeds [FAD 15 Food Hygiene, safety], 1999.
9. IS: 5550, Method for Coliform Count of food stuff, Bureau of Indian Standards, New Delhi, 1970.
10. IS: 6273, Part-I and Part-II. Guide for sensory evaluation of food. Methods and Evaluation cards, Indian Standard Institution, Manak Bhavan, New Delhi, India, 1971.
11. Ismail AE, Abdelgader MO, Ali AA. Microbial and chemical evaluation of whey based mango beverage.