Two-parton contribution to the heavy-quark A_{FB} at NNLO QCD in e^+e^- collisions

R. Bonciani

"Departament de Física Teòrica, IFIC, CSIC – Universitat de València, E-46071 València, Spain"

At the next generation of linear colliders, forward-backward asymmetries will be involved again in the precise determination of the neutral current couplings of heavy quarks in inclusive heavy-quark production. The theoretical understanding of these observables at the level of NNLO radiative corrections is required. We review a recent calculation of the two-parton contribution to the heavy-quark A_{FB} at NNLO QCD in e^+e^- collisions. The results are valid for arbitrary values of the momentum transfer and non-vanishing heavy-quark mass m_Q.

The precision measurements of the forward-backward asymmetries in the production of fermions at high-energy e^+e^- colliders provide the determination of the respective fermion neutral current couplings with a remarkable accuracy. For instance, the forward-backward asymmetry of b quarks measured at the Z resonance with a 1.7% accuracy, led to a determination of $\sin^2\theta_{W,eff}$ of the Standard Model with a relative precision of about 1 per mille [1,2].

At a future linear e^+e^- collider [3], precision determinations of electroweak parameters will again involve forward-backward asymmetries. When such a collider will be operated at the Z peak, accuracies of about 0.1% may be reached for these observables [4,5]. Moreover, the top quark asymmetry A_{FB} will be experimentally accessible. Therefore, it becomes important a theoretical understanding of these observables at the level of NNLO radiative corrections.

At present, the forward-backward asymmetry for the c and b quarks are known at the level of NLO electroweak and fully massive NLO QCD [6,7,8] corrections. The NNLO QCD corrections were calculated in the limit of massless quarks in [9,10,11] and retaining logarithmically-enhanced terms of the type $\ln(Q/m_{Q})$ in [12], where the calculation of A_{FB} is done both with respect to the quark and the thrust axis.

In view of the future perspectives for the b- and t-quark asymmetries at a linear collider, a computation of the order α_s^2 contributions to A_{FB} for massive quarks Q is clearly desirable. The NNLO QCD corrections involve three classes of contributions: (1) the two-loop corrections to the decay of a vector boson into a heavy quark-antiquark pair; (2) the one-loop corrected matrix elements for the decay of a vector boson into a heavy quark-antiquark pair plus a gluon; (3) the tree level matrix elements for the decay of a vector boson into four partons, at least two of which being the heavy quark-antiquark pair.

The contributions (1) from the two-parton final state, and (2) plus (3), i.e., those from the three- and four-parton final states, are separately infrared-finite. The latter can be obtained along the lines of the calculations of three-jet production involving heavy quarks [15,16,17,18]. However, a full computation of $A_{3+4\text{ parton}}$ has not yet been done for massive quarks.

For what concerns the contribution (1), instead, an analytic expression valid for non-vanishing heavy-quark mass m_Q and arbitrary momentum transfer was given in [19]. This expression lies on a previous calculation of the NNLO QCD corrections to the form factors for the vertices $\gamma Q\bar{Q}$ and $Z Q\bar{Q}$ [20,21,22,23], done using the Laporta algorithm [24] for the reduction of the dimensionally-regularized scalar integrals.

This work was supported by MCYT (Spain) under Grant FPA2004-00996, by Generalitat Valenciana (Grants GRUPOS03/013 and GV05/015).
to the set of master integrals and the differential equations technique \cite{25} for their calculation \cite{20} in terms of harmonic polylogarithms \cite{27} (all the calculations are done in FORM \cite{28}).

Forward-backward asymmetry for heavy quarks can be defined as the ratio of the “antisymmetric” and “symmetric” cross sections, \(\sigma_A \) and \(\sigma_S = \sigma \),

\[
A_{FB} = \frac{\sigma_A}{\sigma_S},
\]

where \(\sigma_A \) and \(\sigma_S \) are defined by:

\[
\sigma_A = \int_0^1 \frac{d\sigma}{d\cos \vartheta} d\cos \vartheta - \int_{-1}^0 \frac{d\sigma}{d\cos \vartheta} d\cos \vartheta, \quad (2)
\]

\[
\sigma_S = \int_{-1}^1 \frac{d\sigma}{d\cos \vartheta} d\cos \vartheta. \quad (3)
\]

\(\vartheta \) is the angle between the incoming electron and the direction defining the forward hemisphere (in the \(e^+e^- \) center-of-mass frame), that must be infrared- and collinear-safe in order that \(A_{FB} \) is computable in perturbation theory. Common choices are the direction of flight of \(Q \) or the thrust axis direction. In the case of the \(QQ \) contribution to \(A_{FB} \), \(A_{FB}^{(2p)} \) (two-parton contribution), the result in the two cases is the same.

Expanding in series of \(\alpha_s \) both \(\sigma_A \) and \(\sigma_S \), and retaining only the contributions coming from the two-parton final state, we can write \(A_{FB}^{(2p)} \) as follows:

\[
A_{FB}^{(2p)} = A_{FB,0} \left[1 + A_1^{(2p)} + A_2^{(2p)} \right], \quad (4)
\]

where \(A_{FB,0} \) is the forward-backward asymmetry at the Born level, and \(A_1^{(2p)} \) and \(A_2^{(2p)} \) are the \(O(\alpha_s) \) and \(O(\alpha_s^2) \) contributions normalized to \(A_{FB,0} \). Their expressions in terms of the form factors can be found in \cite{19}. Note that, although the single form factors, ultraviolet-renormalized, contain still infrared divergencies, the two-parton contributions to the forward-backward asymmetry \(A_1^{(2p)} \) and \(A_2^{(2p)} \) are infrared-finite. This is due to the factorized structure of the infrared singularities at the level of the form factors. For massless multiloop amplitudes the factorization of the infrared poles can be derived from exponentiation

\[\text{Figure 1. Leading order asymmetry } A_{FB,0}^{(2p)} \text{ for three values of the top quark mass.}\]
Two-parton contribution to the heavy-quark A_{FB} at NNLO QCD in $e^+ e^-$ collisions

Figure 2. Order α_s correction $A_1^{(t\bar{t})}$ for three values of the renormalization scale μ, using $m_t = 172.7$ GeV.

Figure 3. Order α_s^2 correction $A_2^{(t\bar{t},A)}$ (upper figure) and $A_2^{(t\bar{t},B)}$ (lower figure) for three values of the renormalization scale μ, using $m_t = 172.7$ GeV.

Figure 4. Forward-backward asymmetry to lowest, first and second order in α_s, using $m_t = 172.7$ GeV and $\mu = \sqrt{s}$. $A_{FB}^{(t\bar{t})}$ (dashed), $A_{FB}^{(t\bar{t},\alpha_s)}$ (dotted), $A_{FB}^{(t\bar{t},\alpha_s^2)}$ (solid).

In [19,32], a detailed analysis of the behaviour of the exact formulas in the energy region near the threshold of production of the $t\bar{t}$ pair is also done. For values of the quark velocity β such that $\alpha_s \ll \beta \ll 1$, the heavy-quark production cross section can be written as follows:

$$\sigma_{NNLO} = \sigma_S^{(2,0,\gamma)} \left\{ 1 + \Delta^{(0,Ax)} + C_F \left(\frac{\alpha_s}{2\pi}\right) \Delta^{(1,Ve)} (1 + \Delta^{(0,Ax)}) + C_F \left(\frac{\alpha_s}{2\pi}\right) \Delta^{(1,Ax)} + C_F \left(\frac{\alpha_s}{2\pi}\right)^2 \Delta^{(2,Ve)} (1 + \Delta^{(0,Ax)}) + C_F \left(\frac{\alpha_s}{2\pi}\right)^2 \Delta^{(2,Ax)} \right\}, \quad (5)$$

where the various terms are given in Laurent series of β (Coulomb poles in $1/\beta$ are present). At order β^0 the cross section in Eq. (5) is infrared finite. The analytic expressions of $\Delta^{(1,Ve)}$ and $\Delta^{(0,Ax)}$ agree with the results in [33,34,35,36,37], while in [19,32] the term

$$\Delta^{(2,Ax)} = \frac{64 \zeta(2) m_t^4 v_Z^2 (v_Z^2)^2 + (a_Z^2)^2}{(v_Z^2)^2 (4m_Z^2 - m_Z^2)^2} C_F \quad (6)$$

In $\mu = \sqrt{s}/2$ (dashed), $\mu = \sqrt{s}$ (solid), $\mu = 2 \sqrt{s}$ (dotted).
The second order forward-backward asymmetry $A_{FB}^{(2)}(\alpha_s^2)$ near threshold: exact values (dashed) as given in Fig. 4 and the values obtained from the near-threshold formula (solid), using $\mu = m_t = 172.7$ GeV.

is also given. These results, however, can not be used to extract the matching coefficients at two loops between QCD and NRQCD [86].

Using Eq. (5) and an analogous expression for the antisymmetric cross section, we can compute the forward-backward asymmetry near the threshold, that, at this order in β, is equal to the complete forward-backward asymmetry $A_{FB}^{(2)}$. In Fig. 5 we show the comparison between the exact second order forward-backward asymmetry $A_{FB}^{(2)}(\alpha_s^2)$ as given in Fig. 4 and the values obtained from the near-threshold formula. For $\sqrt{s} \lesssim 360$ GeV corresponding to $\beta \lesssim 0.3$ the deviation of the threshold from the respective exact value is less than 5%.

Acknowledgments
The author wishes to thank W. Bernreuther, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and E. Remiddi for their collaboration.

REFERENCES
1. [LEP and SLD Collaborations], “Precision electroweak measurements on the Z resonance,” hep-ex/0509008.
2. D. Abbaneo et al. [LEP Heavy Flavor Working Group], Eur. Phys. J. C 4 (1998) 185.
3. J. A. Aguilar-Saavedra et al. [ECFA/DESY LC Physics Working Group Collaboration], “TESLA Technical Design Report Part III: Physics at an e^+e^- Linear Collider”, DESY-report 2001-011 [hep-ph/0106315].
4. R. Hawkings and K. Möning, Eur. Phys. J. direct C 1 (1999) 8 [hep-ex/9910022].
5. J. Erler, S. Heinemeyer, W. Hollik, G. Weiglein and P. M. Zerwas, Phys. Lett. B 486 (2000) 125 [hep-ph/0005024].
6. M. Böhm et al., “Forward - Backward Asymmetries,” in: CERN Yellow Report “Z Physics at LEP 1”, CERN 89-08 (1989), G. Altarelli et al. (eds.).
7. D. Y. Bardin, P. Christova, M. Jack, L. Kalinovskaya, A. Olchevski, S. Riemann and T. Riemann, Comput. Phys. Commun. 133 (2001) 229 [hep-ph/9908433].
8. A. Freitas and K. Möning, Eur. Phys. J. C 40 (2005) 493 [hep-ph/0411304].
9. J. Jersak, E. Laermann and P. M. Zerwas, Phys. Rev. D 25 (1982) 1218 [Erratum-ibid. D 36 (1987) 310].
10. B. Arbuzov, D. Y. Bardin and A. Leike, Mod. Phys. Lett. A 7 (1992) 2029 [Erratum-ibid. A 9 (1994) 1515].
11. A. Djouadi, B. Lampe and P. M. Zerwas, Z. Phys. C67 (1995) 123 [hep-ph/9411386].
Two-parton contribution to the heavy-quark \(A_{FB} \) at NNLO QCD in \(e^+e^- \) collisions

17. P. Nason and C. Oleari, Phys. Lett. B 407 (1997) 57 [hep-ph/9705295]; Nucl. Phys. B521 (1998) 237, [hep-ph/9709360].
18. W. Bernreuther, A. Brandenburg and P. Uwer, hep-ph/0008291.
19. W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and E. Remiddi, hep-ph/0604031, to be published in Nucl. Phys. B.
20. W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and E. Remiddi, Nucl. Phys. B 706, 245 (2005) [hep-ph/0406046].
21. W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and E. Remiddi, Nucl. Phys. B 712 (2005) 229 [hep-ph/0412259].
22. W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber and E. Remiddi, Nucl. Phys. B 723 (2005) 91 [hep-ph/0504190].
23. W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, P. Mastrolia and E. Remiddi, Phys. Rev. D 72 (2005) 096002 [hep-ph/0508254].
24. S. Laporta and E. Remiddi, Phys. Lett. B 379 (1996) 283. [hep-ph/9602417].
25. S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087. [hep-ph/0102033].
26. C. Anastasiou and A. Lazopoulos, JHEP 0407 (2004) 046 [hep-ph/0404258].
27. F. V. Tkatchov, Phys. Lett. B 100 (1981) 65. G. Chetyrkin and F. V. Tkatchov, Nucl. Phys. B 192 (1981) 159.
28. T. Gehrmann and E. Remiddi, Nucl. Phys. B 580 (2000) 485. [hep-ph/9912329].
29. A. V. Kotikov, Phys. Lett. B 254 (1991) 158; Phys. Lett. B 259 (1991) 314; Phys. Lett. B 267 (1991) 123.
30. E. Remiddi, Nuovo Cim. A 110 (1997) 1435. [hep-th/9711188].
31. M. Caffo, H. Czyz, S. Laporta and E. Remiddi, Acta Phys. Polon. B 29 (1998) 2627. [hep-th/9807119]Nuovo Cim. A 111 (1998) 365. [hep-th/9805118].
32. R. Bonciani, P. Mastrolia and E. Remiddi, Nucl. Phys. B 661 (2003) 289 [Erratum-ibid. B 702 (2004) 359]; [hep-ph/0301170]. Nucl. Phys. B 676 (2004) 399; [hep-ph/0307295].
33. M. Czakon, J. Gluza and T. Riemann, Nucl. Phys. Proc. Suppl. 135 (2004) 83. [hep-ph/0406203]; Phys. Rev. D 71 (2005) 073009 [hep-ph/0412164].
34. A. B. Goncharov, Math. Res. Lett. 5 (1998), 497-516.
35. D. J. Broadhurst, Eur. Phys. J. C 8 (1999) 311. [hep-th/9803091].
36. E. Remiddi and J. A. M. Vermaseren, Int. J. Mod. Phys. A 15 (2000) 725. [hep-ph/9905237].
37. T. Gehrmann and E. Remiddi, Comput. Phys. Commun. 141 (2001) 296 [hep-ph/0107173]; D. Maitre, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152].
38. J. A. M. Vermaseren, Symbolic Manipulation with FORM, Version 2, CAN, Amsterdam, 1991; New features of FORM [math-ph/0010025].
39. S. Catani, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439].
40. G. Sterman and M. E. Tejeda-Yeomans, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130].
41. S. Catani, S. Dittmaier and Z. Trocsanyi, Phys. Lett. B 500 (2001) 149 [hep-ph/0011222].
42. W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and E. Remiddi, PoS HEP2005 (2006) 229 [hep-ph/0601207].
43. M. Beneke, A. Signer and V. A. Smirnov, Phys. Lett. B 454 (1999) 137 [hep-ph/9903260].
44. A. H. Hoang, A. V. Manohar, I. W. Stewart and T. Teubner, Phys. Rev. D 65 (2002) 014014 [hep-ph/0107144].
45. A. Czarnecki and K. Melnikov, Phys. Rev. Lett. 80 (1998) 2531 [hep-ph/9712222].
46. A. H. Hoang, Phys. Rev. D 56 (1997) 7276 [hep-ph/9703404].
47. J. H. Kühn and T. Teubner, Eur. Phys. J. C 9 (1999) 221 [hep-ph/9903322].
48. B. A. Kniehl, A. Onishchenko, J. H. Piclum and M. Steinhauser, Phys. Lett. B 638 (2006) 209 [hep-ph/0604072].