The impact of variable fluid properties on hydromagnetic boundary layer and heat transfer flows over an exponentially stretching sheet

Asif Mushtaq 1, M Asif Farooq 2, Razia Sharif 3 and Mudassar Razzaq 1

1 Seksjon for Matematikk, Nord Universitet, 8026 Bodø, Norway
2 Department of Mathematics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
3 Department of Mathematics, Lahore University of Management Sciences (LUMS), 54792, Lahore, Pakistan

E-mail: asif.mushtaq@nord.no

Keywords: Magnetohydrodynamic (MHD), Sakiadis flow, Variable fluid properties, Shooting technique, bvp4c, Exponentially stretching sheet

Abstract
This paper put forward an analysis of variable fluid properties and their impact on hydromagnetic boundary and thermal layers in a quiescent fluid which is developed due to the exponentially stretching sheet. The viscous incompressible fluid has been set into motion due to aforementioned sheet. We assume that the viscosity and the thermal conductivity of the Newtonian fluid are temperature dependent. The governing boundary layer equations containing continuity, momentum and energy equations are coupled and nonlinear in nature, thereby, cannot be solvable easily by using analytical methods. Since the general boundary layer equations admits a similarity solutions, thus a generalized Howarth-Dorodnitsyn transformations have been exploited for the set-up of a coupled nonlinear ODEs. These transformed ODEs are solved numerically by a shooting method and is verified from MATLAB built-in collocation solver bvp4c for different parameters appearing in the work. We show results graphically and in a tabulated form for a constant and a variable fluid properties. We find that the temperature dependent variable viscosity and a thermal conductivity influence a velocity and a temperature profiles. We show that the thermal boundary layer decreases for constant variable fluid properties and increases for variable fluid properties

Nomenclature

\((u, v) \) the velocity components
\((x, y) \) Cartesian coordinates
\(L \) characteristic length
\(U_w \) sheet velocity
\(T_w \) sheet temperature
\(\mu \) the coefficient of viscosity
\(\rho \) the density of fluid
\(M \) magnetic parameter
\(T \) fluid temperature
\(k \) the thermal conductivity of the fluid
\(Pr_0 \) ambient Prandtl number
\(C_p \) the specific heat at constant pressure
\(T_0 \) the ambient fluid temperature
\(C_f \) local skin friction coefficient

© 2019 The Author(s). Published by IOP Publishing Ltd
1. Introduction

The principles of heat transfer in manufacturing industry is a chief theory behind the design and production of many household appliances and commercially used devices. The examples of heat transfer can be found in air conditioning system, refrigerators, the TV and the DVD player, to name a few. Even heat transfer flows are more important due to stretching sheet which has abundance of applications in industries, engineering, metallurgy, paper production, drawing of plastic films, hot rolling wires, elongation bubbles, extrusion processes in which the deformed materiel is pass out from die for final product, geological stretching of the tectonic plates during earthquake etc.

A Blasius type moving flow due to a stretching sheet issuing steadily from the slit has been investigated by Sakiadis [1]. The numerical and integral methods have been carried out to obtain the solution of the underlying study. He indicated that the boundary layer behavior on such surface is different than the surface of finite length. Owing to the need of definitive experiment for the boundary layer of continuous surface, the combination of experimental and analytical verifications have been considered in Tsou et al [2]. A three page article by Crane [3] extended the work of Sakiadis in that he took the boundary layer flow over a stretching sheet where velocity varies linearly from the slit. The work on unsteady viscous flow has been only assumed adjacent to stagnation point by Rott [4] but far away from the plate the flow is taken as steady. The plate performed harmonic motion in its own plane i.e. along x-direction and he has shown that this problem is solvable exactly. Danberg and Fansle [5] enhanced this idea further for non-similar stretching wall where velocity is proportional to the distance x. Chakrabarti and Gupta[6] has extended the specialized case of Danberg and Fansle [5] and considered an electrically conducting fluid with a uniform transverse magnetic field. The motion in the fluid is caused by a stretching of the wall. Soundalgekar and Murty [7] tackled a heat transfer problem past a continuous semi-infinite flat plate in which temperature varies nonlinearly i.e. Ax^n, where A is a constant and n is never 0 or 1. They observed that the Nusselt number increases with increasing the exponent n. Wang [8], on the other hand, moved one step further and presented analysis for the three dimensional flow caused by two lateral directions where wall velocities varies linearly. The list of available literature on boundary layer flows for different fluids and flows over a stretching sheet with different aspects is long. For detail the reader is referred to Dutta et al [9], Grubka and Bobba [10–21], and forthcoming cited literature in next paragraphs.

In boundary layer flow, if a temperature difference is strong then the assumption of fluid properties are constant may lead to different results and hence wrong interpretation of the post processing. The dynamic viscosity is highly dependent on a temperature and is weakly dependent on thermodynamic pressure. Takhar et al [22] was the first who has discussed variable fluid properties. Pantokratoras [23] have discussed results of variable viscosity on the flow due to a continuous moving flat plate. He assumed that the Prandtl number is variable across a boundary layer. His assumption is based on the definition of Prandtl number which depends on viscosity i.e. if viscosity is variable so do the Prandtl number. This assumption is not correct as discussed in Andersson and Aarsaeth [24]. A compact analysis on variable fluid properties for Sakiadis problem have been presented by Andersson and Aarsaeth [24]. They clarify some of the misconceptions prevalent in scientific community over a variable fluid properties. Lai and Kulacki [25] investigated variable fluid properties for convective heat transfer in a saturated porous medium since previous studies mostly dealt with constant fluid properties for water. Their work is also concerned on heat transfer analysis for gases too. Kameswaran et al [26] studied the effect of radiation on the MHD Newtonian fluid flow due to an exponentially stretching sheet when considering the effects of viscous dissipation and frictional heating on the heat transport. Hayat et al [27] have deliberated axisymmetric hydromagnetic flow of a third grade fluid. The idea was to observe characteristics of flow over a stretching cylinder. They reported that the velocity and momentum boundary layer thickness is dependent on the curvature parameter. They also mentioned that velocity profile is higher for third grade fluid than the Newtonian and second grade fluid with and without MHD. Very recently Babu et al [28] discussed MHD dissipative flow across slendering stretching sheet with temperature dependent variable viscosity. Study of viscoelastic boundary layer flow and heat transfer over an exponentially stretching sheet was examined by Khan and Sanjayanand [29]. Pop et al [30] have examined the influence of variable viscosity on laminar boundary layer flow. They assumed the fluid viscosity varies inversely with temperature. Ali [31] considered heat transfer characteristics over a nonlinearly stretching sheet. Prasad et al [32] similar to Ali [31] have studied the effect of variable viscosity and thermal conductivity over a nonlinearly stretching sheet. Magyari and Keller [33] considered mass and heat transfer in the boundary layers on a continuous surface which is stretched exponentially. The flow of a viscoelastic fluid over a stretching sheet with transverse magnetic field is assumed by Andersson [34]. He showed that the MHD has the same effect on the flow as viscoelasticity. In a similar work, a power-law fluid over a stretching sheet was investigated by Andersson et al [35]. They have shown that the...
magnetic field make the boundary layer thinner for the underlying case. Nadeem et al [36] analyzed the heat transfer characteristic while presenting two cases, Prescribed exponential order surface temperature (PEST) and prescribed exponential order heat flux (PEHF). They studied Jeffrey fluid over an exponentially stretching surface. Although, viscous dissipation is a key term appearing in energy equation but considered by very few scientists. Pavithra et al [37] took this task to include viscous dissipation in dusty fluid over an exponentially stretching sheet and also discussed two cases for heat transfer analysis: Prescribed exponential order surface temperature (PEST) and prescribed exponential order heat flux (PEHF). Mabood et al [38] did analysis on viscous incompressible flow along with radiation effect while taking exponentially stretching sheet. They obtained the solution by using homotopy analysis method (HAM). Mukhopadhyay [39] studied MHD boundary layer flow and heat transfer towards an exponentially stretching sheet embedded in a thermally stratified permeable medium. Singh and Agarwal [40] investigated the effects of variable fluid properties of Maxwell fluid over an exponentially stretching sheet. They applied Keller-Box method to find a numerical solution. A variable thermal conductivity has been accounted with Cattaneo—Christov heat flux formulation in Hayat et al [13].

All studies of the past have considered variable fluid properties with many different fluids over a different type of stretching sheets. Not much work has been done on variable fluid properties, specifically temperature dependent viscosity and thermal conductivity, over an exponentially stretching sheet with MHD effect. We fill these gaps and present some interesting results on this topic.

The present paper has been organized as follows. In section 2, we present a mathematical model for the flow and heat transfer analysis. The three distinct cases have been discussed in section 3. The computational procedure has been explained in section 4. In section 5, we present the graphs, tables and their discussion. The conclusion has been drawn in section 6.

2. Problem formulation

Consider a steady, two dimensional, incompressible flow of an electrically conducting fluid over a sheet that has been stretched exponentially. The x-axis is taken along the sheet and y-axis is normal to it. B_0 is the strength of uniform magnetic field which is applied normal to the sheet. The induced magnetic field is neglected because the value of a magnetic Reynolds number is less than unity in an electrically conducting fluids. T_o is a temperature of the sheet and T_e is the temperature of the ambient fluid. The geometrical configuration of the problem can be seen in the figure 1 for better understanding and visualization. The governing equations with these assumptions are given by Andersson and Aarseth [4]

$$\partial_x (\rho u) + \partial_y (\rho v) = 0,$$ \hspace{1cm} (1a)

$$\rho (u \partial_x u + v \partial_y u) = \partial_x (\mu \partial_x u) - \sigma B_0^2 u,$$ \hspace{1cm} (1b)

$$\rho C_p (u \partial_x T + v \partial_y T) = \partial_x (k T),$$ \hspace{1cm} (1c)
with boundary conditions
\[
\begin{align*}
 u(x, 0) &= U_w(x) = ae^{-y/L}, & v(x, 0) &= 0, & T(x, 0) &= T_w(x) = T_0 + ce^{bx/2L} \\
 u &\to 0, & T &\to T_0, & \text{as} & y \to \infty
\end{align*}
\]
(2)

where \(u \) is a \(x \)-component and \(v \) is a \(y \)-component of a fluid’s velocity. Fluid density is represented by \(\rho \), \(B_0 \) is the strength of an applied magnetic field, \(\mu \) is the dynamic viscosity, specific heat is denoted by \(C_p \), fluid’s temperature is symbolized by \(T \) and the factor \(k \) appearing in energy equation is commonly known as a thermal conductivity. \(U_w \) represents the velocity of the sheet, wall temperature is denoted by \(T_w(x) \).

Since governing equations are written in general set-up, we cannot apply usual similarity transformation. But we take the following Howarth-Dorodnitsyn transformations \[41\], Howarth \[42\]:
\[
\begin{align*}
 a \to a, & \quad e^{y/L} = e^{y/L}, & \quad b \to b, & \quad cx/L = cx/L,
\end{align*}
\]
(3)

where the stream function is denoted by \(\psi \) and its relation with \(u \) and \(v \) have been given as Andersson and Aarseth \[4\].

Using equation (4) the x and y components of velocity can be written as
\[
\begin{align*}
 u &= ae^{y/L}f'(\eta), & v &= -e^{y/L} \sqrt{\frac{\rho_0 a}{2\rho_0}} \left(\eta f'' + f \right)
\end{align*}
\]
(5)

Inserting equations (3), (4) and (5) into (1a), (1b) and (1c), we get a system of nonlinear ODEs
\[
\begin{align*}
 \left(\frac{\rho u}{\rho_0} \right)' - 2Mf'' - 2(f')^2 + f'' &= 0 \quad \text{(6a)} \\
 \left(\frac{\rho v}{\rho_0} \right)' + \frac{C_p}{C_p} P_r(b\theta' - bf\theta) &= 0 \quad \text{(6b)}
\end{align*}
\]

where \(Pr \), \(M \) are Prandtl number and magnetic parameter, respectively. These parameters are defined as follows
\[
\begin{align*}
 P_r &= \frac{\mu a}{k \rho_0}, & M &= \frac{\sigma B_0^2 L}{\rho_0 a e^{y/L}}
\end{align*}
\]

The connected transformed boundary conditions of the ODEs (2) are:
\[
\begin{align*}
 f(0) &= 0, & f'(0) &= 1, & \theta(0) &= 1, \\
 f'(\eta) &= 0, & \theta(\eta) &= 0 & \text{as} & \eta \to \infty
\end{align*}
\]
(7)

where \(f' \) denotes dimensionless velocity and \(\theta \) denotes dimensionless temperature.

The skin friction coefficient \(C_f \) and local Nusselt number \(N_u \) are defined as follows:
\[
\begin{align*}
 C_f &= \frac{2\tau_w}{\rho U_w^2}, & N_u &= \frac{xq_w}{k(T_w - T_0)}
\end{align*}
\]
(8)

where \(\tau_w \) is a shear stress and \(q_w \) regarded as a heat flux, and these are defined as:
\[
\begin{align*}
 \tau_w &= \frac{a}{2\rho_0 L} e^{3x/2L}f''(0), & q_w &= -ke^{3x/2L} \sqrt{\frac{\rho_0 a}{2\rho_0}} e^{x/L} \theta'(0),
\end{align*}
\]
(9)

Using above equations (8) and (9) we get
\[
\begin{align*}
 C_f Re^{1/2} &= (2X)^{1/2} f''(0), & N_u Re^{-1/2} &= -\left(\frac{X}{2} \right)^{1/2} \theta'(0),
\end{align*}
\]

where \(Re \) denotes local Reynolds number.

It is important to note that all the fluid properties considered here are constant except the viscosity and thermal conductivity which are temperature dependent.

3. Special cases

3.1. Case A: constant fluid properties

For this case, we assume all the fluid properties as constant. By this assumption the momentum equation (6a) and energy equation (6b) becomes
\[f''' + ff'' - 2f'^2 - 2Mf' = 0, \]
\[\theta'' + Prb(\theta') - bf'(\theta) = 0, \]

The boundary conditions given in equation (7) remains the same.

3.2. Case B: variable fluid properties

For this case, we assume viscosity and thermal conductivity as variable that depends on a temperature when keeping the other physical properties as constant. For this case the momentum boundary layer equation equation (6a) becomes

\[\left(\frac{f''}{\mu_0} \right)' + ff'' - 2f'^2 - 2Mf' = 0. \]

Energy equation (6b) reads as

\[\left(\frac{k}{k_0} \theta' \right)' + Prb(\theta') - bf'(\theta) = 0. \]

Lai and Kulachi [5], Ling and Dybbs [31] and Pop et al [10] suggested the following relation between viscosity and temperature:

\[\mu(T) = \frac{\mu_{ref}}{[1 + \delta(T - T_{ref})]}, \]

where \(\delta \) is property of the fluid that depends on the reference temperature \(T_{ref} \).

If \(T_{ref} \approx T_0 \), the above formula becomes

\[\mu = \frac{\mu_0}{1 - \frac{\theta - \theta_{ref}}{\theta_{ref}(T_w - T_0)}}, \]

here \(\theta_{ref} \equiv \frac{-1}{(T_w - T_0)} \) and \(\Delta T = (T_w - T_0) \).

By using equation (14) in equation (12), we get the following momentum equation

\[f'' + \frac{\theta'}{\theta_{ref}}f' + \left(\frac{\theta_{ref} - \theta}{\theta_{ref}} \right)(ff'' - 2Mf' - 2f'^2) = 0. \]

The thermal conductivity is defined as Subhas et al [36]

\[k(T) = k_0(1 + e\theta), \]
\[\frac{k}{k_0} = 1 + e\theta, \]

using the above relation (16) in equation (13) we get the following energy equation.

\[(1 + e\theta)\theta'' + e\theta'^2 + Prb(\theta') - bf'(\theta) = 0. \]

3.3. Case C: exponential temperature dependency

Similar to Case B, viscosity is again taken as variable but its variation depends exponentially on temperature White [43]

\[\ln \left(\frac{\mu}{\mu_{ref}} \right) = - \left(2.10 + 4.45 \frac{T_{ref}}{T} - 6.55 \left(\frac{T_{ref}}{T} \right)^2 \right). \]

Substituting the above equation (18) in equation (12) the equation results into:

\[f'' = -f''\theta'\Delta T \left(4.45 \frac{T_{ref}}{T^2} - 13.1 \frac{T_{ref}^2}{T^3} \right) + \frac{\mu_0}{\mu} (2f'^2 - ff'' + 2Mf'). \]

while energy equation remains the same as shown in equation (17).

4. Numerical procedure

Here we find the numerical solution of nonlinear (ODEs) for each Cases A, B and C with the boundary conditions as given in equation (12). We apply shooting technique to obtain numerical results. The basic idea behind the shooting technique is to transform BVP into an IVP. Then find the roots by using Newton-Raphson technique and Runge-Kutta technique of fifth order on the resultant IVP. Results obtained from shooting
technique are verified with \textit{bvp4c}, a built-in solver in MATLAB. For numerical solutions of different cases, we adopted the strategy as explained below:

(a) Case A: system of equations for momentum and energy becomes

\begin{align}
 y'_3 &= -y_1 y_3 + 2y_2^2 + 2M y_2, \\
 y'_4 &= P_0 (b y_2 y_4 - y_1 y_5).
\end{align}

(b) Case B: momentum equation becomes,

\begin{equation}
 y'_3 = \frac{y_1 y_5}{0.25 + y_4} + \frac{0.25 + y_4}{0.25} (2y_2^2 + 2M - y_1 y_5).
\end{equation}

Energy equation takes the form

\begin{equation}
 y'_5 = - \frac{1}{1 + \epsilon y_5} (\epsilon y_5^2 + P_0 (y_1 y_5 - b y_2 y_4)).
\end{equation}

(c) Case C: momentum equation becomes,

\begin{equation}
 y'_3 = -y_1 y_5 \Delta T \left(4.45 \frac{T_{ref}}{T_3} - 13.1 \frac{T_{ref}^2}{T_3^2} \right) + \frac{\mu_0}{\mu} (2y_2^2 - y_1 y_5 + 2M y_2).
\end{equation}

here White \cite{43}

\begin{equation}
 \frac{\mu}{\mu_0} = \mu_{ref} \left(2.10 + 4.45 \left(\frac{T_{ref}}{T_3} - 13.1 \frac{T_{ref}}{T_3}^2\right) - 6.6 \frac{T_{ref}}{T_3}\right),
\end{equation}

here \(\mu_{ref} = 0.001 \) 792kg/ms, \(\mu_0 = 0.001 \) 520kg/ms, \(T_{ref} = 273 \) K and \(T_0 = 278 \) K while energy equation remains same as shown in equation\ (23).

5. Results and discussions

In this part, numerical results of velocity and temperature gradients are discussed. Results are shown in tabular and graphical form. Numerical solutions for \(-f'(0)\) (coefficient of skin friction) and \(-\theta'(0)\) (temperature gradient) for various values of physical parameters that are Prandtl number, magnetic parameter and the parameter \(\epsilon \) numerical results of have been shown from numerical results of tables 1 to 4. From tables 1–3 one can observe that the skin friction coefficient increases whereas a reduction in wall temperature have been seen as magnetic parameter arises. The Prandtl number increases wall temperature for all the three cases but skin friction changes slightly. It can also be seen that the parameter \(\epsilon \) reduces both the skin friction coefficient and wall temperature for the Cases B and C. In table 4 numerical results for skin friction coefficient and heat transfer rate are computed for all the cases by increasing the Prandtl number. The value of skin friction coefficient increases for two Cases B and C but for case A it shows a decreasing behaviour. The wall temperature shows increasing behavior for all the three cases. In table 5 we compare our results with the previously published data.

Pr	M	bvp4c	Shooting method	cpu time(bvp4c)		
7	0.1	1.281	3.013 197 6	1.281 808 6	3.013 278 3	1.702 288 4
0.2	1.358	981 4	1.848 470 2	1.358 957 1	1.848 469 8	0.722 257 4
0.3	1.500	470 9	2.957 044 9	1.500 464 3	2.957 069 9	1.685 556 3
0.4	1.566	199 1	3.640 761 6	1.358 956 9	3.640 832 3	0.749 508 3

Table 1. Values of skin friction and wall temperature gradient for different physical parameters for Case A.
The effect of viscosity and thermal conductivity for all the three cases have been studied. Temperature of ambient fluid is $T_0 = 278$ K while temperature of surface is taken as $T_w = 358$ K. In figures 2–3 velocity and temperature profiles are presented for all Cases A, B and C. In comparison with Case A and C velocity profile for
Case B have been reduced adjacent to moving surface as shown in figure 2. The same results have been observed in momentum boundary layer thickness. Comparing with the Case B the temperature profile for both Cases A and C decreases close to moving surface as shown in figure 3. Effect of magnetic parameter M on temperature and velocity profiles have been shown in figures 4–9. Temperature profile increases as we increase M and there is a decreasing effect on momentum boundary layer for all three Cases A, B and C. In figures 10–13 the effect of

b	Pr	Magyari and Kellar [24]	Pal [44]	Present result
0.0	0.5	0.330 493	0.330 49	0.330 496 78
—	1	0.549 643	0.549 64	0.549 650 44
—	3	1.122 188	1.122 09	1.122 091 5
—	5	1.521 243	1.521 24	1.521 232
1.0	0.5	0.594 338	0.594 34	0.594 343 14
—	1	0.954 782	0.954 78	0.954 789 73
—	3	1.869 075	1.869 07	1.869 069 5
—	5	2.500 135	2.500 13	2.500 063 9
3.0	0.5	1.008 405	1.008 41	1.008 416 5
—	1	1.560 294	1.560 30	1.560 305 1
—	3	2.938 535	2.938 54	2.938 552 8
—	5	3.886 555	3.886 56	3.886 566 2

Figure 2. Variation in dimensionless velocity profiles $f'(\eta)$ for different cases at $Pr = 0.7, M = 0.1$ and $\varepsilon = 0.1$.

Figure 3. Variation in dimensionless temperature profiles $\theta(\eta)$ for different cases at $Pr = 0.7, M = 0.1$ and $\varepsilon = 0.1$.

Table 5. Comparison of $\theta(0)$ for $M = 0$ and for various Prandtl numbers to previous data.
Figure 4. Variation in dimensionless velocity profiles $f'(\eta)$ for different values of M with $Pr = 3$.

Figure 5. Variation in dimensionless temperature profiles $\theta(\eta)$ for different values of M with $Pr = 3$.

Figure 6. Variation in dimensionless velocity profiles $f'(\eta)$ for different values of M with $\epsilon = 0.1$ and $Pr = 3$.
Figure 7. Variation in dimensionless temperature profiles $\theta(\eta)$ for different values of M with $\epsilon = 0.1$ and $Pr = 3$.

Figure 8. Variation in dimensionless velocity profiles $f'(\eta)$ for different values of M with $\epsilon = 0.1$ and $Pr = 3$.

Figure 9. Variation in dimensionless temperature profiles $\theta(\eta)$ for different values of M with $\epsilon = 0.1$ and $Pr = 3$.
Prandtl number has been shown. The wall temperature reduces for all the Cases A, B and C whereas the velocity profile increases in Case B. In figures 14–15 the effect of parameter ε on temperature profile has been shown. For both the Cases B and C there is an increment in temperature profile.
Figure 13. Variation in dimensionless temperature profiles $\theta(\eta)$ for different values of Pr with $M = 0.1$ and $\varepsilon = 0.1$.

Figure 14. Variation in dimensionless temperature profiles $\theta(\eta)$ for different values of parameter ε with $Pr = 0.7$ and $M = 0.1$.

Figure 15. Variation in dimensionless temperature profiles $\theta(\eta)$ for different values of parameter ε with $Pr = 0.7$ and $M = 0.1$.
6. Conclusions

In this paper, MHD flow and transfer of heat for viscous fluid with changeable fluid properties over an exponentially stretching surface has been discussed. The problem has following governing parameters: Magnetic parameter M, Prandtl number Pr and parameter ϵ. Their effect on MHD flow and transfer of heat characteristics have been discussed. Main focus of our study has been to describe viscosity and thermal conductivity as functions of temperature. The boundary layer equations together with the boundary conditions have been reduced to nonlinear ordinary differential equations by using similarity variables. The resulting differential equations are then solved numerically by shooting method and verified by $bvp4c$ and from the literature.

The results are summarized as follows:

- It is observed that skin friction and thermal boundary layer both increases with increment in magnetic parameter while velocity profile and wall temperature decreases.
- The Prandtl number causes a slight change in momentum boundary layer and skin friction whereas wall temperature and momentum boundary layer thickens for the case of variable viscosity. Thermal boundary layer reduces as Prandtl number rises.
- The parameter ϵ reduces both the skin friction coefficient and Nusselt number whereas it enhances thermal boundary layer thickness.

ORCID IDs

@ https://orcid.org/0000-0001-6262-145X

References

[1] Sakidis B C 1961 Boundary-layer behaviour on continuous solid surfaces: II The boundary-layer flow on a continuous flat surface $AIChE J.$ 7 221–5
[2] Tsou F K, Sparrow E M and Goldstein R J 1967 Flow and heat transfer in the boundary layer on a continuous moving surface $Int. J. Heat Mass Transfer$ 10 219–35
[3] Crane L J 1970 Flow past a stretching plane $Z. Angew. Math. Phys.$ 21 645–7
[4] Rott N 1956 Unsteady viscous flow in the vicinity of a stagnation point $Q. Appl. Math.$ 13 444–51
[5] Danberg E and Fansler K S 1976 A nonsimilar moving-wall boundary-layer problem $Q. Appl. Math.$ 34 305–9
[6] Chakrabarti A and Gupta A S 1979 Hydromagnetic flow and heat transfer over a stretching sheet $Q. Appl. Math.$ 37 73–8
[7] Soundalgekar V M and Murty T V R 1980 Heat transfer in flow past a continuous moving plate with variable temperature $Wärmertechnik$ 24 191–3
[8] Wang C Y 1984 The three–dimensional flow due to a stretching flat surface $The Physics of Fluids$ 27 1915–7
[9] Dutta B K, Roy P and Gupta A S 1985 Temperature field in flow over a stretching sheet with uniform heat flux $Int. Commun. Heat Mass Transfer$ 12 89–94
[10] Grubka L J and Bobba K M 1985 Heat transfer characteristics of a continuous, stretching surface with variable temperature $J. Heat Transfer$ 107 248–50
[11] Khan M I, Waqas M, Hayat T and Alsaedi A 2017 A comparative study of Casson fluid with homogeneous-heterogeneous reactions $J. Colloid Interface Sci.$ 498 85–90
[12] Hayat T, Khan M I, Qayyum S and Alsaedi A 2018 Entropy generation in flow with silver and copper nanoparticles $Colloids Surf., A$ 539 335–46
[13] Hayat T, Khan M I, Farooq M, Alsaedi A, Waqas M and Yasmeen T 2016 Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface $Int. J. Heat Mass Transfer$ 99 702–10
[14] Khan M I, Qayyum S, Hayat T and Alsaedi A 2018 Entropy generation minimization and statistical declaration with probable error for skin friction coefficient and Nusselt number $Chin. J. Phys.$ 56 1325–46
[15] Khan M I, Hayat T, Alsaedi A, Qayyum S and Tannor M 2018 Entropy optimization and quartic autocatalysis in MHD chemically reactive stagnation point flow of Sisko nanoparticle $Int. J. Heat Mass Transfer$ 127 829–37
[16] Khan M I, Hayat T, Imran Khan M, Waqas M and Alsaedi A 2019 Numerical simulation of hydromagnetic mixed convective radiative slip flow with variable fluid properties: a mathematical model for entropy generation $J. Phys. Chem. Solids$ 125 153–64
[17] Shah R A, Rehman S, Idriss M and Abbas T 2018 Theoretical investigation of MHD convection Navier–Stokes flow over an unsteady stretching sheet $Int. J. Fluid Mech. Res.$ 45
[18] Shah R A, Rehman S, Idriss M and Abbas T 2018 Magnetohydrodynamic convection flow on an unsteady surface stretching with pressure–dependent transverse velocity and surface tension linearly varying with temperature $Heat Transfer Res.$ 49 1077–1101
[19] Idriss M, Rehman S, Shah R A, Ullah M and Abbas T 2018 A similarity solution of time dependent MHD liquid film flow over stretching sheet with variable physical properties $Results in Phys.$ 8 194–205
[20] Shah R A, Rehman S, Idriss M, Ullah M, Abbas T 2018 Similarity analysis of MHD flow field and heat transfer of a second grade convection flow over an unsteady stretching sheet $Boundary Value Problems$ 2017 162
[21] Rehman S, Idriss M, Shah R A and Khan Z 2019 Suction/injection effects on an unsteady MHD Casson thin film flow with slip and uniform thickness over a stretching sheet along variable flow properties $Boundary Value Problems$ 2019 26
[22] Takhar H S, Nitu S and Pop I 1991 Boundary layer flow due to a moving plate: variable fluid properties $Acta Mech.$ 90 37–42
[23] Panotakis A 2004 Further results on the variable viscosity on flow and heat transfer to a continuous moving flat plate $Int. J. Eng. Sci.$ 42 1891–6
[24] Andersson H and Aarseth J 2007 Sakiadis flow with variable fluid properties revisited Int. J. Eng. Sci. 45 554–61

[25] Lai F C and Kulacki F A 1990 The effect of variable viscosity on convective heat transfer along a vertical surface in a saturated porous medium Int. J. Heat Mass Transfer. 33 1028–31

[26] Kameswaran P K, Narayana M, Sibanda P and Makanda G 2012 On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet Boundary Value Problems 2012 105

[27] Hayat T, Shafiq A and Alsaedi A 2015 MHD axisymmetric flow of third grade fluid by a stretching cylinder AEJ 54 205–12

[28] Babu M J, Sandeep N, Ali M E and Nuhait A O 2017 Magnetohydrodynamic dissipative flow across the slendering stretching sheet Results in Physics 7 1801–7

[29] Khan S K and Sanjayanand E 2005 Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet Int. J. Heat Mass Transfer. 48 1534–42

[30] Pop I, Gorla R S R and Rashidi M 1992 The effect of variable viscosity on flow and heat transfer to a continuous moving flat plate Int. J. Eng. Sci. 30 1–6

[31] Ali M E 1994 Heat transfer characteristics of a continuous stretching surface Warme Stoffu- Bert 29 227–34

[32] Prasad K V, Vajravelu K and Datti P S 2010 The effects of variable fluid properties on the hydro-magnetic flow and heat transfer over a non-linearly stretching sheet Int. J. Thermal Sci. 49 603–10

[33] Magyari E and Keller B 1999 Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface J. Phys. D: Appl. Phys. 32 577–85

[34] Andersson H I 1992 MHD flow of a viscoelastic fluid past a stretching surface Acta Mech. 95 227–30

[35] Andersson H I, Bech K H and Dandapat B S 1992 Magnetohydrodynamic flow of a power–law fluid over a stretching sheet Int. J. Non-Linear Mechanics. 27 929–36

[36] Nadeem S, Zaheer S and Fang T 2011 Effects of thermal radiation on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface Numer. Algorithms 57 187–205

[37] Pavithra G M and Gireesh B J 2013 Effect of internal heat generation/absorption on dusty fluid flow over an exponentially stretching sheet with viscous dissipation Journal of Mathematics 2013

[38] Mabood F, Khan W A and Ismail A M 2017 MHD flow over exponential radiating stretching sheet using homotopy analysis method JKSUS 29 68–74

[39] Pal D 2010 Mixed convection heat transfer in the boundary layers on an exponentially stretching surface with magnetic field Appl. Math. Comput. 217 2356–69