ABSTRACT

Five mutants (MaE10, MaE27, MaE24, MaE41 and MaE49) of *Metarhizium anisopliae* wild strain E9 were analysed for DNA profile through the RAPD technique and for changes in total protein content by spectrophotometry, polyacrylamide gel electrophoresis and densitometry. The pattern of RAPD markers showed genetic polymorphism among the strains: out of twenty primers seven were selected, producing 113 bands. Forty seven bands were present in all strains (41.6% of monomorphic bands) and 66 showed polymorphism (58.4%). The mean coefficient of similarity among all strains was 0.75 (75%). The total protein content varied, staining in the interval of 6.0-8.0 µg/µl. The electrophoresis analysis, through zymogram and protein fraction profiles by densitometry, allowed the observation of seven bands for the wild strain E9 and five bands for the mutants MaE10, MaE27, MaE41, MaE49, and MaE49, evidence of variations in µg% among protein fractions. The RAPD technique was very sensitive to detect genetic differences between the wild type and the mutants obtained through gamma radiation. The total protein analysis also showed changes in quantity and pattern of bands after electrophoresis in the mutants compared to the wild type.

Key words: *Metarhizium anisopliae*, mutants, RAPD, total protein

INTRODUCTION

Among the entomopathogenic fungi, *Metarhizium anisopliae* presents a wide spectrum of pathogenicity and infectivity reaching different species of pest insects. In Brazil this fungus is used with success for the control of *Mahanarva posticata* Stal on sugarcane and against *Deois flavopicta* Stal. and *Zulia entreriana* Berg on pastures (2,12). In entomopathogenic fungi genetic manipulation allows the alteration of factors such sporulation, dispersion and tolerance to stress in the spores, with the purpose of increasing their efficiency in biological control (29). Knowledge of recombination mechanisms and variability in *M. anisopliae* made it possible to accomplish improved techniques for obtaining strains with expressive characteristics of pathogenicity and infectivity important for biological control (5,17,19,20). Using gamma radiation Oliveira *et al.* (19) obtained mutants of the strain E9 of *M. anisopliae* var. *anisopliae* with altered germination and suggested the possibility of its utilization in genetic crossings for incorporation of desirable characteristics.

The RAPD (Random Amplified Polymorphic DNA) technique described by Williams *et al.* (28) and Welsh and McClelland (27) has been used in studies of genetic variability, taxonomy and ecology of several fungi (1,3,6,9,21). The RAPD markers are important tools for evaluation of the variability among different isolates of a species, the degree of genetic relationship among isolates, and may also be useful to help distinguish isolates of nonpathogenic and pathogenic fungi (8,13,16,31,32). Fegan *et al.* (10) observed a great genetic variability in isolates of *M. anisopliae* var. *anisopliae* using this technique. Using RAPD in 13 isolates of *M. anisopliae* var. *anisopliae* Fungaro *et al.* (11) verified a great genetic diversity among them. There was less genetic variability among the isolates from insects, suggesting a certain degree of host specificity. Schlick *et al.* (26) analyzed strains of *Trichoderma harzianum* (Rifai) and mutants of a wild isolate induced by gamma radiation through RAPD, and verified that it was possible to differentiate all mutants by at least one primer. The authors emphasised the great importance of the possibility of discriminating these mutants of the original strain for a single
technique of genomic fingerprint for use in protection of patents of fungal strains.

The electrophoresis profile of proteins in fungi and techniques for direct observation of DNA have been of great usefulness in taxonomical, phylogenetical and ecological studies (14,18,22,30).

We report the differentiation of five mutants originated from the wild strain E9 of M. anisopliae var. anisopliae obtained by gamma radiation, using the RAPD technique and protein electrophoresis.

MATERIALS AND METHODS

Strains

E9 strain of M. anisopliae var. anisopliae and five mutants (MaE34, MaE41, MaE49, and MaE10) obtained by gamma radiation (19) were used.

Growth Conditions

Erlenmeyer flasks with 100 ml of Complete Media (4,23) were inoculated, separately, with 106 conidia/ml of the wild strain E9 and mutants MaE27, MaE34, MaE41, MaE49, and MaE10 and incubated under agitation at 28ºC for 96 hs. The mycelium was recovered by vacuum filtration, washed with sterilized water, and stored at -12ºC.

Extraction and amplification of DNA

The total genomic DNA of the samples was extracted from mycelium as described by Raeder and Broda (24). Twenty primers of the kit OPW were tested and selected for amplification with the DNA of the wild strain E9. Kit OPW, Taq DNA polymerase and the dNTPs for RAPD were supplied by Operon Technologies, CA, USA. Amplification reactions were carried out in a total volume of 25 µl containing approximately 20-25 ng of template DNA, primer 0.4 µmol l-1 and MgCl2 3.0 mmol l-1. The reaction control consisted of all components, except the genomic DNA. The amplification process was accomplished in a thermal cycler (MJ Research), programmed to accomplish an initial denaturation of 5 minutes at 92ºC, 40 cycles of 1 minute at 92ºC (denaturation), 1 minute and 30 seconds at 39ºC (annealing), 2 minutes at 72ºC (extension) and finally 5 minutes in 72ºC for a final extension, during 40 cycles. Samples of 22 µl of the amplification products were assayed by electrophoresis in 1.4% agarose gels at 3 V/cm of distance among the electrodes, running with Tris-Borate-EDTA (TBE) buffer. Gels were stained with ethidium bromide, and photographed under U.V. light.

The NTSYS.PC (Numerical Taxonomy System Applied Biostatistics, Setauket, New York) computer program was used for data analysis. The data (band presence or absence) were introduced in the form of a binary matrix and a pairwise similarity matrix was constructed using the JACCARD coefficient (25). The values were obtained by the double number of shared bands between two patterns divided by the sum of all the bands in the same pattern (value 1 indicates identical patterns for two individuals and value 0 indicates completely different patterns). The UPGMA (Unweighted pair-group method with arithmetical averages) grouping of the values was generated using the NTSYS program.

Results and Discussion

The RAPD profiles obtained with the selected primers (OPW01, OPW02, OPW03, OPW04, OPW09, OPW12, OPW13) are shown in Figs. 1 and 2. The seven primers provided a total of 113 bands, with an average of 16 bands per primer. 41.6% were polymorphic, because they were present in all samples, while 58.4% were monomorphic, because at least one sample did not present the band. A similarity matrix and a dendrogram (Fig. 2) using the UPGMA method were constructed. All the mutants of the wild strain E9 presented a ramification point around 0.75, equivalent to 75% similarity, which corresponds to a moderate variation degree. The MaE34 and MaE49 mutants presented the highest similarity index (about 87.5%). These mutants presented the same physiological characteristics such as mycelial growth in complete media and minimum media, percentage of germination, beginning of conidia germination, and colony morphology, as reported by Oliveira et al. (19). The MaE10 mutant presented a ramification point around 0.81 (81.2% of similarity); the wild strain 0.78 (78% of similarity) and the MaE27 and MaE41 mutants 0.71 and 0.62, corresponding to 71% and 62% of similarity, respectively.
Mutants of *M. anisopliae*

The RAPD molecular markers allowed verification of DNA polymorphism among the wild strain E₉ and the mutants obtained by gamma radiation. This confirms the capability of the RAPD technique to distinguish mutants obtained by gamma radiation, as observed by Schlick et al. (26). These authors used the RAPD technique to detect mutants of *Trichoderma harzianum* obtained by gamma radiation, observing an evident DNA polymorphism among the wild strain and the mutants this was interpreted as an indication of the occurrence of deletions and inserts, detected by the molecular markers of RAPD.

Total protein analysis

The concentration of total protein in the mycelium extracts of the wild strain E₉ of *M. anisopliae* var. *anisopliae* and its mutants varied from 6.0 to 8.0 µg/µl (Table 1). The zymogram obtained after electrophoresis of the total proteins is shown in Fig. 3. The wild strain E₉ presented seven bands (considered as 100% for a comparative analysis), and the mutants five bands, resulting therefore in 71.4% of monomorphic bands and 28.6% of polymorphic bands. Quantitative analysis of the fractions of total proteins obtained by densitometry are shown Fig. 4. As shown in Table 1, the wild strain E₉ presented seven fractions of proteins (A, B, C, D, E, F, and G) in the electrophoretic profile. Variation in the amount of proteins in fractions was observed. All samples presented the fractions A, C, E, F, G. Fractions B and D were not observed in mutants. The amount of protein in fraction A varied from 1.44 to 2.5 µg%, and the MaE₁₀ mutant presented the highest percentage. For fraction C the amount varied from 1.7 to 2.63 µg%. The percentage of protein in fraction E varied

Mutants	Fractions	Total protein µg/µl						
	A	B	C	D	E	F	G	
Wild strain E₉	1.44	0.42	1.80	0.30	0.42	1.02	0.60	6.0
MaE₁₀	2.50	1.85	-	0.90	0.64	0.51	0.74	6.4
MaE₂₇	1.94	1.73	0.72	2.16	0.65	7.2		
MaE₃₄	2.22	1.70	0.37	2.37	0.74	7.4		
MaE₄₁	2.20	2.63	0.71	1.21	0.35	7.1		
MaE₄₉	2.16	2.40	1.12	1.92	0.40	8.0		

Table 1. Percentage (µg%) of protein total fractions of wild strain E₉ and five mutants MaE of *Metarhizium anisopliae* var. *anisopliae*.

Figure 1. *Metarhizium anisopliae* var. *anisopliae* wild strain E₉ and five mutants MaE RAPD profiles, obtained with the primers: A- OPW01 B- OPW02 C-OPW03 D- OPW04 E- OPW09 F-OPW12 G- OPW13. M- Molecular weight size markers (Hind III cut λ DNA) in base pairs. Positions 1-6 corresponding to wild strain E₉, MaE₁₀, MaE₂₇, MaE₃₄, MaE₄₁, MaE₄₉ respectively.

Figure 2. Dendrogram obtained by UPGMA agroupment, with Jaccard coefficient starting from RAPD profiles of *Metarhizium anisopliae* var. *anisopliae* wild strain E₉ and five mutants MaE.

Figure 3. Zymogram obtained after protein total electrophoresis of *Metarhizium anisopliae* var. *anisopliae* wild strain E₉ and five mutants MaE. A- wild strain E₉; B- MaE₁₀; C- MaE₂₇; D- MaE₃₄; E- MaE₄₁; F- MaE₄₉; G- bovine serum albumin standard.
ACKNOWLEDGEMENTS

The authors are indebted to CNPq and CAPES for financial support.

RESUMO

Polimorfismo de DNA e proteína total em mutantes da linhagem E9 de *Metarhizium anisopliae* var. *anisopliae* (Metsch.) Sorokin

Foram analisados cinco mutantes MaE (MaE10, MaE27, MaE34, MaE41 e MaE49) da linhagem selvagem E9 de *Metarhizium anisopliae* var. *anisopliae* quanto ao perfil de DNA pela técnica de RAPD e também quanto ao conteúdo de proteína total por espectrometria e eletroforese em gel de poliacrilamida e densitometria. O padrão de marcadores de RAPD evidenciou polimorfismo nas amostras; dos 20 primers testados foram selecionados 7 que geraram 113 bandas. Deste total, 47 estavam presentes em todas as amostras (41.6% de bandas monomórficas) e 66 mostraram polimorfismo (58.4%). O coeficiente médio de similaridade foi de 75%. O conteúdo de proteína total variou de 6 a 8 µg/µl. O zimograma e perfis das frações de proteínas obtidos por densitometria revelaram 7 bandas para a linhagem selvagem E9 e 5 bandas para os mutantes com variações nos percentuais em µg% entre as frações de proteínas. A técnica de RAPD mostrou-se bastante sensível para detectar diferenças entre a linhagem selvagem e os mutantes obtidos por radiação gama. A análise de proteína total também evidenciou mudanças ocorridas na quantidade e no padrão de bandas nos mutantes em relação à linhagem selvagem.

Palavras-chave: *Metarhizium anisopliae*, mutantes, RAPD, proteína total

REFERENCES

1. Abbasi, P.A.; Miller, S.A.; Meulia, T.; Hoitink, H.A.J.; Kim, J.M. Precise detection and tracing of *Trichoderma hamatum* 382 in compost-amended potting mixes by using molecular markers. *Appl. Environ. Microbiol.*, 65(12):5421-5426. 1999.
2. Alves, S.B. Fungos Entomopatogênicos. In: ALVES, S.B., ed Controle microbiano de Insetos. Editora ESALQ-USP, Piracicaba, SP, Brasil. p.289-381, 1998.
3. Azevedo, A.C.S. Variabilidade genética entre isolados de *B. bassiana* obtidos de *Schizotermium palens*, *Castria licus* e *Deois flavopicta* Dissertação (Monografia). Universidade Estadual de Londrina, Centro de Ciências Biológicas, Departamento de Biologia Geral. Londrina, 1996.
4. Azevedo, J.L.; Costa, S.O.P. Exercícios práticos de Genética. Orgs. São Paulo, Ed. Nacional, ED. USP, 288p. 1973.
5. Bagalhi, E.; Valadares, M.C.C.; Azevedo, J.L. Parameiosis in the entomopathogenic fungus *Metarhizium anisopliae* (Metsch.) Sorokin. *Rev. Bras. Gen.*, 14(2):261-271, 1991.
6. Bidochka, M.J.; Mc Donald, M.A.; ST-Leger, R.J.; Roberts, D.W. Differentiation of species and strains of entomopathogenic fungi by Random Amplified Polymorphic DNA (RAPD). *Curr. Gen.*, 25: 107-113, 1994.

Figure 4. Total protein densitometric analysis of wild strain E9 and five mutants of *Metarhizium anisopliae* var. *anisopliae*. A-wild strain E9, B-MaE10, C-MaE27, D-MaE34, E-MaE41, F-MaE49.
Mutants of *M. anisopliae*

7. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. *Anal. Biochem.*, 72:248-254, 1976.

8. Chew, J.S.K.; Strongman, D.B.; Mackay, R.M. Comparisons of twenty isolates of the entomopathogen *Paecilomyces farinosus* by analysis of RAPD markers. *Mycol. Res.*, 102(10):1254-1258, 1998.

9. Crowhurst, R.N.; King, F.Y.; Hawthorne, B.T.; Sanderson, F.R.; Choi, Pheng, Y.; RAPD characterization of *Fusarium oxysporum* associated with wilt of angsana (*Pterocarpus indicus*) in Singapore. *Mycol. Res.*, 99(1):14-18, 1995.

10. Fegan, M.; Manners, J.M.; Maclean, D.J.; Irwim, J.A.G.; Samuels, K.D.Z.; Holdom, D.G.; Li, D.P. Random amplified polymorphic DNA markers reveal a high degree of genetic diversity in the entomopathogenic fungus *Metarhizium anisopliae* var. *anisopliae*. *J. Gen. Microbiol.*, 139:2075-2081, 1993.

11. Fungaro, M.H.P.; Vieira, M.L.C.; Pizzirani-Kleiner, A.A.; Azevedo, J.L. Diversity among soil and insect isolates of *Metarhizium anisopliae* var. *anisopliae* detected by RAPD. *Lett. Appl. Microbiol.*, 22:389-392, 1996.

12. Garcia, A.S.; Messias, C.L.; Souza, H.M.L.; Piedrabuena, A.E. Patogenicidade de *Metarhizium anisopliae* var. *anisopliae* em *Ceratitis capitata* (Wied.) (Diptera: Tephritidae). *Rev. Bras. Entomol.*, 28:421-424, 1984.

13. Gomez, I.; Chet, I.; Herrera-Aestrata, A. Genetic diversity and vegetative compatibility among *Trichoderma harzianum* isolates. *Mol. Gen. Genetics*, 256:127-135, 1997.

14. Gorinstein, S.; Paccola-Meirelles, L.D.; Belo, V.A.; Azevedo, J.L. Characterization of *Beauveria bassiana*, *Metarhizium anisopliae* and *Aspergillus nidulans* through eleetrophoretic patterns of their protein fractions. *J. Ferm. Bioeng.*, 82(2):89-92, 1996.

15. Hanson, L.C.; Wells, K. Characterization of tree *Tremella* species by isozymes analysis. *Mycologia*, 83(4):446-454, 1991.

16. Manulis, S.; Kuhls, K.; Meyer, W.; Lieck Fel Dt, E.; Borner, T.; Messner, M. Fingerprinting reveals gamma-ray induced mutations in fungal DNA: implications for identification of patent strains of *Trichoderma harzianum*. *Curr. Gen.*, 26:74-78, 1994.

17. Pontecorvo, G.; Roper, J.A.; Hemons, J.M.; Mac Donald, K.D.; Button, A.W.J. The genetics of *Aspergillus nidulans*. *Adv. Gen.*, 5:141-238, 1953.

18. Raeder, U.; Broda, P. Rapid preparation of DNA from filamentous fungi. *Lett. Appl. Microbiol.*, 1:16-20, 1985.

19. Rheault, F.; Hamid, M.; Fargue, X.; Marquis, P. Use of RAPD markers to analyze the reproducibility of isolates from the same species. *Ann. Microbiol.*, FEALQ, 54p, 1988.

20. Roper, J.A.; Hemons, J.M.; Mac Donald, K.D.; Button, A.W.J. The genetics of *Aspergillus nidulans*. *Adv. Gen.*, 5:141-238, 1953.

21. Schlick, A.; Kuhl, K.; Meyer, W.; Lieck Fel Dt, E.; Borner, T.; Messner, M. Fingerprinting reveals gamma-ray induced mutations in fungal DNA: implications for identification of patent strains of *Trichoderma harzianum*. *Curr. Gen.*, 26:74-78, 1994.

22. Welsh, J.; Mc Clelland, M. Fingerprinting genomes using PCR with arbitrary primers. *Nucleic Acid Res.*, 18:7213-7218, 1990.

23. Williams, J.G.K.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.A.; Tingey, S.V. DNA polymorphisms amplified by arbitrary primers. *Nucleic Acid Res.*, 18(22):6531-6535, 1990.

24. Wilson, M.; Lindow, S.E. Release of recombinant microorganisms. *Ann. Rev. Microbiol.*, 47:913-944, 1993.

25. Zervakis, G.; Sourdis, J.; Balis, C. Genetic variability and systematics of eleven *Pleurotus* species based on isozyme analysis. *Mycol. Res.*, 98(3):329-341, 1994.

26. Zinno, T.D.; Longrée, H.; Maraite, H. Diversity of *Paecilomyces farinosus* got by treatment with gamma radiation. *Bol. Micol.* 40(3):586-595, 1997.

27. Oliveira, M.G.; Oliveira, N.T.; Luna-Alves Lima, E.A. Characterization of new biotypes of *P157* strain of *Metarhizium anisopliae* var. *anisopliae*, got by treatment with gamma radiation. *Bol. Micr. 12(1-2):41-48, 1997.

28. Oliveira, M.G.; Oliveira, N.T.; Luna-Alves Lima, E.A. Novos biotipos de *Metarhizium anisopliae* var. *anisopliae* (Metsch.) Sorokin com germinação alterada de conídios, obtidos pela exposição à radiação gama radiação gama. *Arq. Biol. Tecnol.*, 40(3):586-595, 1997.