Peripartum management of patient with long QT3 after successful implantable cardioverter defibrillator device discharge resulting in device failure: a case report

Melissa J. Lee 1*, Danielle C. Monteil 2, and Michael T. Spooner 3†

1 Department of Internal Medicine, Naval Medical Center Portsmouth, 620 John Paul Jones Cir, Portsmouth, VA 23708, USA; 2 Department of Neurodevelopmental Pediatrics, Naval Medical Center Portsmouth, 620 John Paul Jones Cir, Portsmouth, VA 23708, USA; and 3 Department of Cardiology, Naval Medical Center Portsmouth, 620 John Paul Jones Cir, Portsmouth, VA 23708, USA

Received 27 July 2021; first decision 17 August 2021; accepted 24 November 2021; online publish-ahead-of-print 30 November 2021

Background

Long QT3 syndrome type 3 (LQT3) is a gain of function mutation of the SCN5A gene that is inherited in an autosomal dominant fashion. Long QT3 syndrome type 3 results in an increase in arrhythmic events during rest, sleep, and bradycardia by extending the QT interval and inducing Torsades de pointes and sudden cardiac death. Attempting to block the sodium channel with Class I anti-arrhythmics or blocking adrenergic tone with beta-blockers especially in women has shown to be beneficial. There have been few large-scale studies on treating patients with LQT3 due to its lethality and underreported number of cases. Specifically, the safety and efficacy of pharmacologic treatment in pregnant LQT3 patients are unknown.

Case summary

This case demonstrates the safe use of Mexiletine and Propranolol in a 3rd-trimester pregnant LQT3 patient after a presumed ventricular arrhythmia and device-lead electrical short from therapy rendered her implantable cardioverter defibrillator inoperable in a VVI mode (ventricular demand pacing). With appropriate medications, the patient was safely monitored through the remainder of her pregnancy and safely delivered at 36 weeks of pregnancy a healthy baby girl. The daughter, heterozygous for LQT3, showed no evidence of intrauterine growth restriction or other side effects from the medications.

Discussion

There are many variants of the SCN5A gene mutations that can lead to different phenotypes and not all mutations are responsive to the same medications. In this case, Mexiletine and Propranolol, both of which have only recently shown to benefit certain variants or LQT3 respectively, were safely started during the 3rd trimester of pregnancy without harming the foetus.

Keywords

Long QT3 syndrome • Peripartum management • Mexiletine • ICD discharge • Life-Vest • case report

ESC Curriculum

9.8 Pregnancy with cardiac symptoms or disease • 5.10 Implantable cardioverter defibrillators

* Corresponding author. Tel: 757-953-2277, Email: melissa.j.lee21.mil@mail.mil; melissajlee88@gmail.com
† Present address. Mercy One North Iowa Heart and Vascular Institute, Mason City Clinic, 250 S. Crescent Dr., Mason City, IA 50401, USA

Handling Editor: Robert Schönbauer

Peer-reviewers: Peregrine Green and Zain Ul Abideen Asad

Compliance Editor: Alexander Tindale

Supplementary Material Editor: Ross Thomson

© The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Learning points

- Long QT3 syndrome has many genotypic and phenotypic variants that respond differently to medications, and therefore, require a full biophysical assessment of the individual channel mutants and genotypes before treatment.
- Mexiletine is a late sodium channel blocker that has recently been shown to shorten QT interval and reduce arrhythmic events in Long QT3 patients. Beta-blockers have only recently been shown to be beneficial in patients with Long QT3 given the concern for susceptibility to arrhythmia during periods of bradycardia.
- Propranolol and Mexiletine during the 3rd trimester of pregnancy were effective in treating a patient with long QT3 syndrome without harming the foetus.

Introduction

Long QT syndrome type 3 (LQT3) represents an autosomal dominant mutation of the gene SCN5A which codes for the Nav1.5 Na\(^+\) channel α-subunit. There are over 103 mutations of the SCN5A gene leading to different phenotypes that can be influenced by both genetic and environmental factors including LQT3, Brugada syndrome, sick sinus syndrome, dilated cardiomyopathy, atrial fibrillation, and sudden infant death syndrome.\(^1,2\) Long QT3 syndrome type 3 is caused by a gain of function of the late sodium channel leading to an excessive inflow of late sodium current in phase 2 of the cardiac action potential.\(^3\) Clinically, the SCN5A mutation can cause arrhythmias during rest, sleep, or during periods of bradycardia, increasing the risk for torsades de pointes and sudden cardiac death.\(^1\) The prevalence of long QT syndrome worldwide is \(~1\) in 2000 to 1 in 5000, with LQT3 accounting for 10% of cases. LQTS is underreported due to the sudden cardiac death causing 180 000–450 000 deaths per year and the fact that 37% of genotyped LQTS patients have normal QT intervals.\(^4\) Despite a reduced number of cardiac events compared with other LQTS, LQT3 leads to a disproportionate increase in lethality.\(^5\) Treatment with sodium channel blockers such as Mexiletine (Class IB) has shown improvement in the condition.\(^6\) Additionally, beta-blockers have shown benefit specifically in female patients with the condition.\(^7\) The safety and efficacy of pharmacological treatment in LQT3 have not been extensively studied during pregnancy, because of small population sizes and the variation in genotype causing differences in response to treatment.\(^2\) We present a rare case of a pregnant female who underwent medical management of her LQT3 after her implantable cardioverter defibrillator (ICD) fired.

Timeline

Date	Event
2002	Implantable cardioverter defibrillator (ICD) implanted after multiple syncopal events
	Started on Nadolol
2009	Official genetic testing confirming long QT3 (SCNSA variant)

Case presentation

The patient was a 29-year-old female G1P0 with a history of LQT3 diagnosed at age 13. Following recurrent syncopal episodes, she was diagnosed when genetic testing revealed an SCN5A Val411Met gain of function mutation (Figure 1). This genetic variant has been reported to be pathogenic in multiple unrelated people on Clinvar. Functional studies indicate this variant results in the hyperpolarizing shifts in both conductance-voltage, inactivation-voltage, and a two-fold increase in the late sustained sodium current indicating an increased number of open-activated sodium channels.\(^10\) At age 13, she was placed on Nadolol and had a Boston Scientific-Maple Grove, MN, USA) dual-chamber ICD with a Medtronic (Minneapolis, MN, USA) 6943 defibrillator lead and a Guidant 4469 right atrial pacing lead placed at due to multiple VT events in-hospital after syncopal events. The right atrial lead was eventually revised 11 years later with a Guidant 4472 right atrial pacing lead. Following implantation, she showed intermittent non-compliance with her Nadolol during adolescence causing 30 prior ICD shocks. She was placed on Midodrine at an outside hospital for episodes of recurrent orthostatic hypotension while on Nadolol. Both of her parents tested negative for the gene causing LQT3.

When she became pregnant with her first child at age 29, she discontinued Nadolol due to lack of recent events and her concern for intrauterine growth restriction (IUGR). Her electrocardiogram in Figure 2 shows her prolonged QTc at 488 ms while not on treatment. While watching a controversial call during the
Kentucky Derby at 31 weeks and 5 days pregnant, she had sudden loss of consciousness followed by firing of her ICD, which she felt as she was falling. Workup at an outside hospital revealed post-shock device failure with the ICD resorting to a VVI pacing mode (Figure 3). No retrievable information of the arrhythmia could be obtained from the device or programmer though Boston Scientific was contacted. Given the abrupt episode during a moment of high adrenergic stimulation, it is felt that her syncope was cardiac and arrhythmic in origin with an appropriate device discharge. Her most recent device interrogation in clinic 3 months prior...
showed the device functioning well. After further discussion with the device manufacturer, it was felt that a short in the RV lead insulation that shorted back to the generator resulting in a catastrophic failure of the device. The device had then defaulted to its ‘Safety Mode’ VVI setting at a rate of 70 b.p.m., a setting infrequently encountered and usually only during catastrophic

Figure 3 VVI pacing at heart rate of 70 and QTc 477.

Figure 4 Electrocardiogram of baby of girl with heart rate 170 and QTc 487.
subsequently started on Propranolol (predicted to result in amino acid substitution Val411Met; she was well with medications, including the ability to perform basic non-con-Scientific for further diagnostic evaluation. She has continued to do outside hospital. Her extracted device was not returned to Boston lead (Boston Scientific 0672) were placed without complication at an with one right atrial (Medtronic 5076-15) and one right ventricular fully extracted. A new Boston Scientific Dynagen D152 ICD system common cases being LQT1-3 (Long QT syndromes from 1 to 17 have been identified with the most Discussion

Type of LQT	Chromosome	Ion channel	Prevalence	Treatment
1	11	\(l_{Kn}\)	30–35%	Beta-blocker
2	7	\(l_{Kr}\)	20–25%	Beta-blocker
3	3	Late \(l_{Kn}\)	5–10%	Beta-blocker, sodium channel blockers, pacemaker with defibrillator

Peripartum management of patient with long QT3

At 8 weeks post-partum, the ICD device and leads were successfully fully extracted. A new Boston Scientific Dynagen D152 ICD system with one right atrial (Medtronic 5076-15) and one right ventricular lead (Boston Scientific 0672) were placed without complication at an outside hospital. Her extracted device was not returned to Boston Scientific for further diagnostic evaluation. She has continued to do well with medications, including the ability to perform basic non-con-tact exercises. Genetic testing of the daughter identified the hetero-zygous presence of the familial SCNSA variant, c.1231>T, which is predicted to result in amino acid substitution Val411Met; she was subsequently started on Propranolol (Figure 4).

Table 1 Comparison of LQT1-3 adapted from Sicouri and Antzelevitch

Discussion

Long QT syndromes from 1 to 17 have been identified with the most common cases being LQT1-3 (Table 1). Long QT3 syndrome type 3 is unique out of these due to properties of increased arrhythmic le-thality and increased risk during episodes of bradycardia. There are many variants of the SCNSA gene mutations that can lead to different phenotypes. In order to treat patients with LQT3, patients should have a full biophysical assessment of the individual channel mutants and genotypes. Not all SCNSA mutations are responsive to the same medications as what benefits one patient may harm another patient.13

Mexiletine is a Class 1B antiarrhythmic late sodium channel block-er and pregnancy Class C medication.14 It works by inhibiting inward sodium current, which then decreases the rate at which phase 0 rises and increases the effective refractory period to action potential dur-a tion ratio. Sodium channel blockers such as Mexiletine have some proven benefit in LQT3, especially in certain SCNSA genotypes com-pared with others.2 Some variants of the SCNSA including I1771M, R1623Q, and A1186T have been shown to be resistant to Mexiletine.15 Though there have been few studies of Mexiletine in pregnancy, there have not been any reported teratogenic long-term adverse effects in case studies.16 Animal studies that received four times the maximum daily dose in humans did not show any terato-genic effects on the foetus though there was an increase in absorp-tion of Mexiletine in the foetus.17 Mexiletine was used in this patient due to history of VT and phenotype of her LQT3 diagnosis. This medication shortens the QT interval and also reduces arrhythmic events in LQT3 patients.18 It also allows measurement of trough levels to ensure adequate dosing.

Beta-blockers, while well established in LQT1 and LQT2, have only recently been shown to have benefit in LQT3, especially in fe-male patients.7 These benefits persist despite a concern in LQT3 for susceptibility to arrhythmia during periods of bradycardia, and in many cases, atrial pacing can help overcome the ill effects of beta-blockers. The mechanism of benefit, however, remains undescribed: perhaps due to a suppression of early after depolarizations. In our pa-tient, the device resorted to a VVI 70 mode, which likely provided protective benefit to the patient.

Not all beta-blockers are safe during pregnancy. Nadolol is a preg-nancy category C medication with limited human studies. It has a long half-life and has low protein binding (30%) which increases the risk of exposing the foetus possible teratologic properties of Nadolol. Propranolol (pregnancy Class C) is preferred over Nadolol due to its shorter half-life and extensive protein binding (90%). There are more studies and patients on propranolol as it has been deemed safe during pregnancy. After multiple prospective clinical studies, the incidence of IUGR from propranolol is about 4%. Other documented foetal effects include bradycardia, birth apnoea, hypoglycaemia, IUGR, hyperbilirubinaemia, polycythaemia, prolonged labour, and single cause of fetal death.17 Atenolol should not be used as it has been shown to have ill-effects and is pregnancy Class D.15

Conclusion

In this case, both Propranolol and Mexiletine, as well as VVI pacing ef-fectively prevented QT prolongation and further events, with no documented ill-effect on the foetus. This case illustrates the safe and effective use of the appropriate medical management of an LQT3 pa-tient during the 3rd trimester of pregnancy utilizing a sodium channel blocker and a beta-blocker which allowed postponement of a high-risk device and lead extraction until after delivery.
Lead author biography

Dr Melissa Lee is currently a 4th year Internal Medicine Resident at Naval Medical Center Portsmouth in Virginia. She attended undergraduate and graduate school at University of California, San Diego from 2006 to 2012. She was a student at A.T. Still University—College of Osteopathic Medicine in Kirksville, Missouri from 2012 to 2016. She completed a Transitional Year at Beaumont Trenton in Michigan and then was an active duty General Medical Officer at Naval Health Clinic Cherry Point in New Bern, North Carolina for 2 years. She is going to complete Internal Medicine residency this year and then become Chief Resident. She is interested in a Cardiology Fellowship.

Supplementary material

Supplementary material is available at European Heart Journal - Case Reports online.

Acknowledgements

We are military service members. This work was prepared as part of our official duties. Title 17 U.S.C. 105 provides that ‘Copyright protection under this title is not available for any work of the United States Government’. Title 17 U.S.C. 101 defines a United States Government work as a work prepared by a military service member or employee of the United States Government as part of that person’s official duties. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the United States Government.

Slide sets: A fully edited slide set detailing this case and suitable for local presentation is available online as Supplementary data.

Consent: The authors confirm that written consent for submission and publication of this case report including images and associated text has been obtained from the patient in line with COPE guidance.

Conflict of interest: None declared.

Funding: None declared.

References

1. Moric E, Herbert E, Trusz-Gluza M, Filipiack A, Mazurek U, Wilczok T. The implications of genetic mutations in the sodium channel gene (SCN5A). Europace 2003;5:325–334.
2. Remme CA. Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. J Physiol 2013;591:4099–4116.
3. Remme CA, Wilde AA. Late sodium current inhibition in acquired and inherited ventricular (dys)function and arrhythmias. Cardiovasc Drugs Ther 2013;27:91–101.
4. Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death. Circulation 2012;125:620–637.
5. Perez-Riera AR, Barbosa-Barrios R, Damilino Raimundo R, da Costa de Rezende Barbosa MP. Esposito Sorpresa IC, de Abreu LC. The congenital long QT syndrome Type 3: an update. Indian Pacing Electrophysiol J 2018;18:35–39.
6. Mazzanti A, Maragna R, Faraggi A, Monteforte N, Bloise R, Menconi M et al. Gene-specific therapy with mexiletine reduces arrhythmic events in patients with long QT syndrome type 3. J Am Coll Cardiol 2016;67:1053–1058.
7. Wilde AA, Moos A, Kaufman E, Shimizu W, Peterson D, Benhorin J et al. Clinical aspects of type 3 long-QT syndrome. Circulation 2016;134:872–882.
8. Ruan Y, Liu N, Priori SG. Sodium channel mutations and arrhythmias. Nat Rev Cardiol 2009;6:337–348.
9. “Clinvar.” National Center for Biotechnology Information. U.S. National Library of Medicine. https://www.ncbi.nlm.nih.gov/clinvar/ (last accessed July 23, 2021).
10. Home AJ, Eltstrom J, Sanatrani S, Fiedler D. A novel mechanism for LQT3 with 2:1 block: a pore-lining mutation in Nav1.5 significantly affects voltage-dependence of activation. Heart Rhythm 2011;8:770–777.
11. Goldenberg R, Cliver S. Small for gestational age and intrauterine growth restriction: definitions and standards. Clin Obstet Gynecol 1997;40:704–714.
12. Sicouri S, Antzelevitch C. Mechanisms underlying the actions of antidepressant and antipsychotic drugs that cause sudden cardiac arrest. Arrhythm Electrophysiol Rev 2015;10:199–209.
13. Abdelsayed M, Peters C, Ruben P. Arrhythmogenic triggers associated with sudden cardiac death. Circulation (Austin) 2016;12:76–77.
14. Enriquez AD, Economy KE, Tedrow UB. Contemporary management of arrhythmias during pregnancy. Curr Arrhythm Electrophysiol 2016;14:676–679.
15. Funasaki M, Aiba T, Ishibashi K, Nakajima I, Miyamoto K, Inoue Y et al. Pronounced shortening of QT interval with mexiletine infusion test in patients with type 3 congenital long QT syndrome. Circ J 2016;80:340–345.
16. Grogg AR, Tomich PG. Mexiletine use in pregnancy. J Perinatol 1988;8:33–35.
17. Qasqas SA, Camille M, William F, Uri E. Cardiovascular pharmacotherapeutic considerations during pregnancy and lactation. Cardiol Rev 2004;12:201–221.