Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species

Röhrich, Christian René; Jaklitsch, Walter Michael; Voglmayr, Hermann; Iversen, Anita; Vilcinskas, Andreas; Nielsen, Kristian Fog; Thrane, Ulf; von Döhren, Hans; Brückner, Hans; Degenkolb, Thomas

Published in:
Fungal Diversity

Link to article, DOI:
10.1007/s13225-013-0276-z

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Röhrich, C. R., Jaklitsch, W. M., Voglmayr, H., Iversen, A., Vilcinskas, A., Nielsen, K. F., Thrane, U., von Döhren, H., Brückner, H., & Degenkolb, T. (2014). Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. Fungal Diversity, 69(1), 117-146. https://doi.org/10.1007/s13225-013-0276-z
Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous *Trichoderma/Hypocrea* species

Christian R. Röhrich · Walter M. Jaklitsch · Hermann Voglmayr · Anita Iversen · Andreas Vilcinskas · Kristian Fog Nielsen · Ulf Thrane · Hans von Döhren · Hans Brückner · Thomas Degenkolb

Received: 16 October 2013 / Accepted: 21 December 2013 / Published online: 9 April 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract
Approximately 950 individual sequences of non-ribosomally biosynthesised peptides are produced by the genus *Trichoderma/Hypocrea* that belong to a perpetually growing class of mostly linear antibiotic oligopeptides, which are rich in the non-proteinogenic α-aminoisobutyric acid (Aib). Thus, they are comprehensively named peptaibiotics. Notably, peptaibiotics represent ca. 80 % of the total inventory of secondary metabolites currently known from *Trichoderma/Hypocrea*. Their unique membrane-modifying bioactivity results from amphipathicity and helicity, thus making them ideal candidates in assisting both colonisation and defence of the natural habitats by their fungal producers. Despite this, reports on the in vivo-detection of peptaibiotics have scarcely been published in the past. In order to evaluate the significance of peptaibiotic production for a broader range of potential producers, we screened nine specimens belonging to seven hitherto uninvestigated fungicolous or saprotrophic *Trichoderma/Hypocrea* species by liquid chromatography coupled to electrospray high resolution mass spectrometry. Sequences of peptaibiotics found were independently confirmed by analysing the peptaibiome of pure agar cultures.

Dedicated to Gary J. Samuels on the occasion of his 70th birthday.

Electronic supplementary material
The online version of this article (doi:10.1007/s13225-013-0276-z) contains supplementary material, which is available to authorized users.

C. R. Röhrich · A. Vilcinskas
Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Winchesterstrasse 2, 35394 Giessen, Germany

W. M. Jaklitsch · H. Voglmayr
Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria

A. Iversen · K. F. Nielsen · U. Thrane
Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark

H. von Döhren
Biochemistry and Molecular Biology OE 2, Institute of Chemistry, Technical University of Berlin, Franklinstrasse 29, 10587 Berlin, Germany

H. Brückner
Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany

A. Vilcinskas · T. Degenkolb
Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
e-mail: thomas.degenkolb@ernaehrung.uni-giessen.de

Present Address:
C. R. Röhrich
AB SCIEX Germany GmbH, Landwehrstrasse 54, 64293 Darmstadt, Germany

Present Address:
A. Iversen
Danish Emergency Management Agency, Universitetsparken 2, 2100 Copenhagen, Denmark
obtained by single-ascospore isolation from the specimens. Of the nine species examined, five were screened positive for peptaibiotics. A total of 78 peptaibiotics were sequenced, 56 (≈72%) of which are new. Notably, dihydroxyphenylalaninol and O-prenylated tyrosinol, two C-terminal residues, which have not been reported for peptaibiotics before, were found as well as new and recurrent sequences carrying the recently described tyrosinol residue at their C-terminus. The majority of peptaibiotics sequenced are 18- or 19-residue peptaibols. Structural homologies with ‘classical representatives’ of subfamily 1 (SF1)-peptaibiotics argue for the formation of transmembrane ion channels, which are prone to facilitate the producer capture and defence of its substratum.

Keywords HPLC/QTOF-ESI-HRMS · Metabolite profiling · Peptaibiotics · Peptaibols · Aib peptides · Trichoderma · Hypocrea

Introduction

Currently, the fungal genus *Trichoderma/Hypocrea* \(^1\) comprises more than 200 validly described species, which have been recognised by molecular phylogenetic analysis (Atanasova et al. 2013). This high taxonomic diversity in *Trichoderma/Hypocrea* is not only reflected in a permanently increasing number of species (Jaklitsch 2009, 2011; Jaklitsch and Voglmayr 2012; Jaklitsch et al. 2012, 2013; Chaverri et al. 2011; Samuels and Ismaiel 2011, Samuels et al. 2012a,b; Kim et al. 2012, 2013; Yamaguchi et al. 2012; Li et al. 2013; López-Quintero et al. 2013, Yabuki et al. 2014), but also in a fast-growing number of secondary metabolites of remarkable structural diversity. The latter include low-molecular-weight compounds such as pyrones (Jeleń et al. 2013), butenolides, terpenes, and steroids, but also -heterocyclic compounds and isocyanides. In addition to these relatively nonpolar and often partly volatile compounds, an impressive inventory of nonvolatile compounds, comprising some alkaloids and an imposing number of peptide antibiotics, is produced. Reino et al. (2008) reviewed 186 compounds; however, peptaibiotics (see below) were treated only marginally and incomprehensively. As of August 2013, a total of 501 entries are recorded for *Trichoderma* (461) and *Hypocrea* (40) in AntiBase, more than 300 of which are N-containing, including less than 100 in the range of 50–800 Da (Laatsch 2013). Considering recent publications in this field, which have not yet been included into AntiBase 2013 (Table 1), an estimate of 225 to 250 non-peptaibiotic secondary metabolites from *Trichoderma/Hypocrea* seems appropriate. However, the overwhelming majority of secondary metabolites obtained from this genus so far belong to a perpetually growing family of non-ribosomally biosynthesised, linear or, in a few cases, cyclic peptide antibiotics of exclusively fungal origin, comprehensively named peptaibiotics:

According to the definition, the members of this peptide family show, besides proteinogenic amino acids, \(i\) a relatively high content of the marker \(\alpha\)-aminoisobutyric acid (Aib), which is often accompanied by other \(\alpha\)-\(\alpha\)-dialkyl \(\alpha\)-amino acids such as D- and/or L-isovaline (Iva) or, occasionally, \(\alpha\)-ethynorvaline (EtNa), or 1-aminocyclop propane-1-carboxylic acid (Aec); \(ii\) have a molecular weight between 500 and 2,100 Da, thus containing 4–21 residues; \(iii\) are characterised by the presence of other non-proteinogenic amino acids and/or lipoamino acids; \(iv\) possess an acylated N-terminus, and \(v\) in the case of linear peptides, have a C-terminal residue that most frequently consists of an amide-bonded \(\beta\)-amino alcohol, thus defining the largest subfamily of peptaibiotics, named peptaibols. Alternatively, the C-terminus might also be a polyanine, amide, free amino acid, 2,5-diketopiperazine, or a sugar alcohol (Degenkolb and Brückner 2008; Stoppacher et al. 2013).

Of the approximately 1,250 to 1,300 individual sequences of peptaibiotics known as of autumn 2013 (Ayers et al. 2012; Carroux et al. 2013; Figueroa et al. 2013; Kimonyo and Brückner 2013; Röhrich et al. 2012; Röhrich et al. 2013a, b; Chen et al. 2013; Panizel et al. 2013; Ren et al. 2013; Stoppacher et al. 2013), about 950 have been obtained from *Trichoderma/Hypocrea* species, thus confirming the genus as the most prolific source of this group of non-ribosomal peptide antibiotics (Brückner et al. 1991; Degenkolb and Brückner 2008; Brückner et al. 2009).

Both the taxonomic and metabolic diversity of *Trichoderma/Hypocrea* are hypothesised to originate from mycoparasitism or hyperparasitism, which may represent the ancestral life style of this genus (Kubicek et al. 2011). The unique bioactivities of peptaibiotics, resulting from their amphipathicity and helicity, make them ideal candidates to support the parasitic life style of their fungal producers:

Under in vitro-conditions, the parallel formation of peptaibiotics such as the 19-residue trichorzianins\(^2\) and of hydrolytic enzymes, above all chitinases and \(\beta\)-1,3-glucanases (Schirmböck et al. 1994), could be demonstrated. This observation led to a widely accepted model describing the synergistic interaction of peptaibiotics and hydrolases in the course of mycoparasitism of *Trichoderma atroviride* towards *Botrytis*.

\(^1\) Authors are aware of the drastic change of the ICBN (International Code of Botanical Nomenclature), which has been adopted at the IBC in Melbourne in July 2011 (Gams et al. 2012; Rossman et al. 2013). However, all strains used in this study were deposited at CBS in July/August 2012, and practical work for this study was finished in December 2012. For reasons of conformity with recently published contributions in the field of peptaibiotics, dual nomenclature is retained in this chemically focussed article.

\(^2\) The trichorzianin-producing strain ATCC 36042 (= CBS 391.92) has originally been identified as *T. harzianum* (el Hajji et al. 1987) but later shown to belong to *T. atroviride* (Kuhls et al. 1996).
Table 1 Recently described, non-peptaibiotic secondary metabolites from *Trichoderma/Hypocrea* species not yet listed in AntiBase 2013

Producing species and strains	Name of new metabolite(s)	Chemical subclass of metabolites	References
T. atroviride G20-12	4'-((4,5-dimethyl-1,3-dioxolan-2-yl)methyl)phenol	D- and tetramerpenes	Lu et al. 2012
	(3'-hydroxybutan-2'-yl)5-oxopyrrolidine-2-carboxylate Atroviridetide		
T. atroviride UB-LMA^a	one bicyclic, three tetracyclic diterpenes		Adelin et al. 2014
T. gamsii SQP 79–1	Trichalasin C, D	Cytochalasans	Ding et al. 2012
		Spiro-cytochalasan	Ding et al. 2014
T. sp. FKI-6626	Cyto sporone S		Ishii et al. 2013
T. erinaeum AF007	Trichodermaerin	Diterpenoid lactone	Xie et al. 2013

^aThe scientific name of the producer has been misspelled as *Trichoderma atroviride* in Adelin et al. (2014)

cinerea* (Lorito et al. 1996). Despite this, reports on in vivo detection of peptaibiotics have scarcely been published in the past. Examples include the isolation of hypelcins A and B obtained from ca. 2 kg of dried, crushed stromata of the mycoparasite Hypocrea peltata (Fujita et al. 1984; Matsura et al. 1993, 1994)³ as well as the detection of antiamoebins in herbivore dung, which have been produced by the coprophilous Stibella finetaria (syn. *S. erythrocephala*) (Lehr et al. 2006).

In order to close this gap, we initiated a screening project aimed at resolving the question as to whether peptaibiotic production in vivo is a common adaptation strategy of *Trichoderma/Hypocrea* species for colonising and defending ecological niches:

Several *Hypocrea* specimens were freshly collected in the natural habitat and analysed for the presence of peptaibiotics. Sequences of peptaibiotics found were independently confirmed by analysing the peptaibiome⁴ of pure agar cultures obtained by single-ascospore isolation from the specimens. Using liquid chromatography coupled to electrospray high resolution mass spectrometry we succeeded in detecting 28 peptaibiotics from the polyporicolous *Hypocrea pulvinata* (Röhrich et al. 2012). Another 49 peptaibiotics were sequenced in *Hypocrea phellinicola*, a parasite of *Phellinus* sp., especially *Ph. ferruginosus* (Röhrich et al. 2013a).

Due to these encouraging results, our screening programme was extended to another nine specimens belonging to seven hitherto uninvestigated mycoparasitic or saprotrophic *Trichoderma/Hypocrea* species, respectively (Table 2).

Materials and methods

Specimens of *Hypocrea* teleomorphs were collected from four different locations in Austria (Table 3). Pure agar cultures were obtained by single-ascospore isolations from the respective, freshly collected specimens as previously described by Jaklitsch (2009):

Parts of stromata were crushed in sterile distilled water. The resulting suspension was transferred to cornmeal agar plates (Sigma, St. Louis, Missouri) supplemented with 2 % (w/v) D(+)-glucose-monohydrate (CMD), and 1 % (v/v) of an aqueous solution of 0.2 % (w/v) streptomycin sulfate (Sigma) and 0.2 % (w/v) neomycin sulfate (Sigma). Plates were incubated overnight at 25 °C. In order to exclude possible contamination by spores of other fungal species, few germinated ascospores from within an ascus were transferred to fresh plates of CMD using a thin platinum wire. The plates were sealed with Parafilm (Pechiney, Chicago, Illinois) and incubated at 25 °C. As all species listed in Table 2 could unambiguously be identified by their morphological and growth characteristics (Jaklitsch 2009, 2011), no molecular phylogenetic analyses needed to be performed.

Detailed descriptions of chemicals, extraction and work-up procedures for specimens and agar plate cultures, cultivation methods, as well as comprehensive protocols for HPLC/QTOF-ESI-HRMS were given by Röhrich et al. (2012, 2013a). For routine screening, a high-resolution microTOF Q-II mass spectrometer with orthogonal ESI source (Bruker Daltonic, Bremen, Germany), coupled to an UltiMate 3000 HPLC (Dionex, Idstein, Germany), was used. Samples, which have been screened negative with the above HPLC/MS system, were re-examined using a maXis 3G QTOF mass spectrometer with orthogonal ESI source (Bruker Daltonic, Bremen, Germany), coupled to an UltiMate 3000 UHPLC (Dionex, Idstein, Germany) as previously described (Röhrich et al. 2012, 2013a).

Results and discussion

General considerations. All strains investigated in this study represent phylogenetically well-defined species (Tables 2 and 3). This is in contrast to most of the reports published until the end of the 1990s, when peptaibiotic production by the genus *Trichoderma/Hypocrea* was — according to Rifai’s classification...
mostly attributed to one of the four common species *T. viride*, *T. koningii*, *T. harzianum*, *T. longibrachiatum*, and sometimes *T. pseudokoningii* and *T. aureoviride*. Careful inspection of the literature published prior to the turn of the millennium revealed that only three of the *Trichoderma* strains, reported as sources of ‘classical’ peptaibiotics have correctly been identified and appropriately been deposited, viz. the paracelsin-producing *T. reesei* QM 9414 (Brückner and Graf).

Table 2 Habitats and geographic distribution of *Hypocrea* species included in this study

Species	Clade	Habitat	Geographic distribution
Hypocrea thelephoricola	Chlorospora	On and around basidiomata of *Steccherinum ochraceum*, on wood and bark	North America (USA), Europe (Austria)
Hypocrea minutispora	Pachybasium	Most common hyaline-spored species in temperate zones	Europe (Austria, Czech Republic, Denmark, Estonia, France, Germany, Spain, Sweden, United Kingdom) and North America (USA)
Hypocrea sulphurea	Hypocreanum	On basidiomes of *Exidia* spp.	Europe (Eastern Austria, Ukraine), North America (USA), Japan
Hypocrea citrina	Hypocreanum	Spreading from stumps or tree bases on soil and debris such as small twigs, bark, leaves, dead plants; incorporating also living plants; more rarely on bark of logs on the ground. Most typically in mixed coniferous forest	widespread and locally common, mostly found from the end of August to the beginning of October. Europe (Austria, Belgium, Czech Republic, Netherlands, Sweden, United Kingdom) and North America (USA)
Hypocrea voglmayrii	Lone lineage	On dead, mostly corticated branches and small trunks of *Alnus alnobetula* (= *A. viridis*) and *A. incana* standing or lying on the ground	Austria (at elevations of 1,000–1,400 m in the upper montane vegetation zone of the Central Alps)
Hypocrea gelatinosa	Lone lineage	On medium- to well-decayed wood, also on bark and overgrowing various fungi	Europe (Austria, France, Germany, Netherlands, Slovenia, Ukraine, United Kingdom)
Hypocrea parmastoi	Lone lineage	On medium- to well-decayed wood and bark of deciduous trees	Europe (Austria, Estonia, Finland, France, Germany); uncommon

Data were compiled from Chaverri and Samuels (2003), Overton et al. (2006a, b), and Jaklitsch (2009, 2011)

(1969) – mostly attributed to one of the four common species *T. viride*, *T. koningii*, *T. harzianum*, *T. longibrachiatum*, and sometimes to *T. pseudokoningii* and *T. aureoviride*. Careful inspection of the literature published prior to the turn of the millennium revealed that only three of the *Trichoderma* strains, reported as sources of ‘classical’ peptaibiotics have correctly been identified and appropriately been deposited, viz. the paracelsin-producing *T. reesei* QM 9414 (Brückner and Graf).

Table 3 Habitat and geographic origin of *Hypocrea* isolates included in this study

Isolate	Substrate	Collecting information	Culture
H. thelephoricola	*Steccherinum ochraceum* / *Carpinus betulus*	Austria, Niederösterreich, Wien-Umgebung, Mauerbach, MTB 7763/1, 13 June 2011, W. Jaklitsch	CBS 133226
H. gelatinosa	*Carpinus betulus*	Austria, Niederösterreich, Wien-Umgebung, Mauerbach, MTB 7763/1, 30 October 2011, W. Jaklitsch (Hypo 656)	not deposited*
H. minutispora	*Carpinus betulus*	Austria, Vienna, Lainzer Tiergarten, near Nikolaiör, 25 September 2011, H. Voglmayr	CBS 133242
H. sulphurea 1	*Exidia glandulosa* / *Carpinus betulus*	Austria, Niederösterreich, Wien-Umgebung, Mauerbach, MTB 7763/1, 13 June 2011, W. Jaklitsch	not deposited*
H. sulphurea 2	*Exidia glandulosa* / *Carpinus betulus*	Austria, Styria, Schladming, Untertal, at Riesachfälle, 12 June 2011, H. Voglmayr	CBS 133225
H. sulphurea 3	*Exidia sp.*	Austria, Carinthia, Obermiegler, Sabautach, MTB 9452/2, 23 September 2011, W. Jaklitsch (Hypo 654)	CBS 133244
H. parmastoi	*Fagus sylvatica*		
H. voglmayrii	*Alnus alnobetula*		
H. citrina	*Pinus sylvestris* litter, ground		

* a Stroma immature, isolation of single germinable ascospores impossible

b The specimens of *H. sulphurea* 1 and 2 were collected from two different trees found in the same area
1983; Brückner et al. 1984), the trichosporin/trichopolyn producer *T. polysporum* TMI 60146 (Iida et al. 1990, 1993, 1999), and the paracelsin E-producing *T. saturnisporum* CBS 330.70 (Ritienni et al. 1995). Furthermore, none of the numerous peptaibiotic-producing strains, reported to belong to those six *Trichoderma* species mentioned above, has subsequently been verified by phylogenetic analyses. Statements on the identity of the producers must therefore be regarded with great caution, unless it is being described how isolates were identified (Degenkolb et al. 2008). Unfortunately, most of the peptaibiotic-producing *Trichoderma/Hypocrea* strains investigated prior to 2000 have never been appropriately deposited either i) in a publicly accessible culture collection or ii) in an International Depositary Authority (IDA) under the

Fig. 1 Base-peak chromatograms (BPCs) analysed with the micrOTOF-Q II.

a specimen of *H. thelephorica*,
b plate culture of *H. thelephorica* on PDA. †, non-peptaibiotic metabolite(s); ‡, co-eluting peptaibiotics, not sequenced. The y-axis of all BPC chromatograms in this publication refers to relative ion intensities.
Table 4 Sequences of 11- and 18-residue peptaibiotics detected in the specimen of *Hypocrea thelephoricola*

No.	t_R [min]	$[M+H]^+$	Residuea																		
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	37.6-37.9	1161.7527	Ac Aib Gln Vxx Lxx Aib Pro Vxx Lxx Aib Pro Lxxol																		
2	37.6-37.9	1161.7527	Ac Aib Gln Vxx Vxx Aib Pro Lxx Lxx Aib Pro Lxxol																		
3	39.3-39.5	1175.7712	Ac Aib Gln Vxx Lxx Aib Pro Lxx Lxx Aib Pro Lxxol																		
4	39.7-40.0	1175.7712	Ac Aib Gln Lxx Lxx Aib Pro Vxx Lxx Aib Pro Lxxol																		
5	41.5-41.7	1189.7806	Ac Aib Gln Lxx Lxx Aib Pro Lxx Lxx Aib Pro Lxxol																		
6	42.9-43.0	1203.7981	Ac Vxx Gln Lxx Lxx Aib Pro Lxx Lxx Aib Pro Lxxol																		
7	44.2-44.5	1732.0673	Ac Aib Ala Aib Ala Vxx Gln Aib Vxx Aib Gly Lxx Aib Pro Lxx Lxx Aib Vxxol																		
8	44.8-45.0	1746.0866	Ac Aib Ala Aib Ala Vxx Gln Aib Lxx Aib Gly Lxx Aib Pro Lxx Lxx Aib Vxxol																		
9	45.2-46.0	1760.1035	Ac Aib Ala Vxx Ala Vxx Gln Aib Lxx Aib Gly Lxx Aib Pro Lxx Lxx Aib Vxxol																		
10	47.5-47.8	1774.1161	Ac Aib Ala Vxx Ala Vxx Gln Aib Lxx Aib Gly Lxx Aib Pro Lxx Lxx Aib Vxxol																		

No.	Compound identical or positionally isomeric with	Ref.
1	New	
2	Trichorovins: IIIa, IVa	Wada et al. 1995
	Hypomurocin A-1	Becker et al. 1997
	Trichobrachins III: 5, 9b	Krause et al. 2007
	Tv-29-11-III g	Mukherjee et al. 2011
	Hypojecorin A: 8	Degenkolb et al. 2012
3	Trichobrachins III: 10a, 12a, 15b	Krause et al. 2007
	Trichorovins: VIII, IXa	Wada et al. 1995
	Hypomurocin A-3	Becker et al. 1997
	Tv-29-11-IV g	Mukherjee et al. 2011
4	Tv-29-11-IV e	Mukherjee et al. 2011
5	Trichobrachins III: 16a, 17, 18	Krause et al. 2007
	Trichorovins: XIII, XIV	Wada et al. 1995
	Tv-29-11-V b	Mukherjee et al. 2011
	Hypomurocin: A-5, A-5a	Becker et al. 1997
	Trichorozin IV	Iida et al. 1995
	Trichobrachins: C-I, C-II	Ruiz et al. 2007
	Trilongin A9	Mikkola et al. 2012
6	Trichofumin B	Berg et al. 2003
	Tv-29-11-VI	Mukherjee et al. 2011
7	Thelephoricolin-1	
8	Thelephoricolin-2	
9	Thelephoricolin-3	
10	Thelephoricolin-4	

a Variable residues are underlined in the table header. Minor sequence variants are underlined in the sequences. This applies to all sequence tables.
Table 5 Sequences of 11- and 18-residue peptaibiotics detected in the plate culture of *Hypocrea thelephoricola*

No.	t_R [min]	[M+H]^+	Residue^a	Ref.
11	35.6–35.8	1147.7443	Ac Aib Gln Vxx Vxx Aib Pro Vxx Lxx Aib Pro Lxxol	Tv-29-11-II h Mukherjee et al. 2011
1	37.2–37.4	1161.7623	Ac Aib Gln Vxx Lxx Aib Pro Vxx Lxx Aib Pro Lxxol	Trichobrachin III 11a Krause et al. 2007
2	37.7–37.9	1161.7652	Ac Aib Gln Vxx Vxx Aib Pro Lxx Lxx Aib Pro Lxxol	Trichorovin Xa Wada et al. 1995
12	39.8–40.0	1175.7747	Ac Aib Gln Lxx Vxx Aib Pro Lxx Lxx Aib Pro Lxxol	Hypomurocin A-4 Becker et al. 1997
5	41.5–41.7	1189.7893	Ac Aib Gln Lxx Lxx Aib Pro Lxx Lxx Aib Pro Lxxol	Tv-29-11-IV f Mukherjee et al. 2011
13	40.6–40.8	1189.7996	Ac Vxx Gln Vxx Lxx Aib Pro Lxx Lxx Aib Pro Lxxol	Trichobrachin III 11a Krause et al. 2007
6	42.8–43.0	1203.8004	Ac Vxx Gln Lxx Lxx Aib Pro Lxx Lxx Aib Pro Lxxol	Trichorovin Xa Wada et al. 1995
8	44.8–44.9	1746.0955	Ac Aib Ala Aib Ala Vxx Gln Aib Lxx Aib Gly Lxx Aib Pro Lxx Aib Vxx Gln Vxxol	Thelephoricolin-2 Mukherjee et al. 2011
9	45.5–45.7	1760.1104	Ac Aib Ala Vxx Ala Vxx Gln Aib Lxx Aib Gly Lxx Aib Pro Lxx Aib Vxx Gln Vxxol	Thelephoricolin-3 Mukherjee et al. 2011

^a Variable residues are underlined in the table header. Minor sequence variants are underlined in the sequences. This applies to all sequence tables.
Table 6 Sequences of 11-, 18, and 19-residue peptaibiotics detected in the specimen of
Hypocrea gelatinosa

No.	t_R [min]	[M+H]+	Residuea
			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
14	37.1–37.3	1866.0929	Ac Ala Ala Ala Ala Glx Ala Gly Lxx Ala Pro Vxx Ala Gln Glx Pheol
15	37.7–37.8	1895.1067	Ac Ala Ala Ala Ala Phe Glx Ala Ala Glx Lxx Ala Pro Vxx Ala Gln Glx Lxxol
16	38.0–38.2	1908.1358	Ac Ala Ala Ala Ala Phe Glx Ala Ala Glx Lxx Ala Pro Vxx Ala Gln Glx Lxxol
17	38.8–38.9	1909.1186	Ac Ala Ala Ala Ala Phe Glx Ala Ala Glx Lxx Ala Pro Vxx Ala Gln Glx Lxxol
18	39.5–39.6	1880.1083	Ac Ala Ala Ala Ala Glx Ala Glx Ala Lxx Ala Pro Vxx Ala Gln Glx Pheol
19	40.2–40.4	1762.0856	Ac Ala Ala Ala Ala Glx Ala Glx Ala Lxx Ala Pro Vxx Ala Gln Glx Lxxol
20	40.9–41.1	1762.0840	Ac Ala Ala Ala Ala Glx Ala Glx Ala Lxx Ala Pro Vxx Ala Gln Glx Lxxol
21	41.2–41.4	1776.1023	Ac Ala Ala Ala Ala Glx Ala Glx Ala Lxx Ala Pro Vxx Ala Gln Glx Lxxol
22	41.9	1952.1674	Ac Ala Ala Ala Ala Glx Ala Glx Ala Lxx Ala Pro Vxx Ala Gln Glx Lxxol
23	42.1–42.3	1776.1023	Ac Ala Ala Ala Ala Glx Ala Glx Ala Lxx Ala Pro Vxx Ala Gln Glx Lxxol
24	42.9	1953.1515	Ac Ala Ala Ala Ala Glx Ala Glx Ala Lxx Ala Pro Vxx Ala Gln Glx Lxxol
25	43.0–43.1	1790.1199	Ac Ala Ala Ala Ala Glx Ala Glx Ala Lxx Ala Pro Vxx Ala Gln Glx Lxxol
26	44.6	1919.1568	Ac Ala Ala Ala Ala Glx Ala Glx Ala Lxx Ala Pro Vxx Ala Gln Glx Lxxol
27	45.8	1774.1299	Ac Ala Ala Ala Ala Glx Ala Glx Ala Lxx Ala Pro Vxx Ala Gln Glx Lxxol

No. Compound identical or positionally isomeric with Ref.

14 Hypopulvin-9 Röhrich et al. 2012
15 Gelatinosin-A 1 (C-terminal undecapeptide cf. hypelcins B-I and -II) Matsuura et al. 1994
16 Gelatinosin-A 2 (C-terminal nonapeptide cf. tricholongin B-I) Rebuffat et al. 1991
17 Gelatinosin-A 3 (cf. 16)
18 Hypopulvin-14 Röhrich et al. 2012
19 Gelatinosin-B 1 (cf. hypomurocin B-5: [Vxx]8→[Lxx]8) Becker et al. 1997
20 Gelatinosin-B 3 (cf. hypomurocin B-3h: [Vxx]8→[Lxx]8, [Alb]11→[Vxx]11) Becker et al. 1997
21 Gelatinosin-B 3 (cf. neoatroviridin B: [Gly]7→[Ser]7) Oh et al. 2005
22 Gelatinosin-A 4 (cf. 16: [Gly]10→[Ser]10, [Alb]5→[Vxx]5) Oh et al. 2005
23 Gelatinosin-B 4 (cf. hypomurocin B-4: [Alb]5→[Vxx]5) Becker et al. 1997
24 See *H. thelephoricola*
25 Gelatinosin-A 5 (cf. 17: [Gly]10→[Ser]10, [Alb]5→[Vxx]5) Oh et al. 2005
26 Gelatinosin-B 5 (cf. neoatroviridin D: [Gly]2→[Ser]2) Oh et al. 2005
27 Gelatinosin-B 6 (cf. neoatroviridin D: [Gly]2→[Ala]2) Oh et al. 2005

a Variable residues are underlined in the table header. Minor sequence variants are underlined in the sequences. This applies to all sequence tables.
No.	Compound identical or positionally isomeric with Ref.
28	Gelatinosin-B 7 (cf. hypomurocin B-2: [Vxx]8→[Lxx]8) Becker et al. 1997
29	Tv-29-11-IVe (positionals isomer of 4) Mukherjee et al. 2011
30	Gelatinosin-B 8 (cf. hypomurocin B-4: [Vxx]8→[Lxx]8) Becker et al. 1997
31	Gelatinosin-B 9 (cf. hypomurocin B-3b: [Vxx]8→[Lxx]8, [Vxxol]18→[Lxxol]18) Becker et al. 1997
32	Gelatinosin-B 10 (cf. 25: [Gln]17→[Glu]17) Jaworski et al. 1999; Oh et al. 2005
33	See H. thelephoricola (positionals isomer of 5)
20	Gelatinosin-B 2 (cf. hypomurocin B-4: [Aib]7→[Vxx]7, [Vxx]8→[Lxx]8) Becker et al. 1997
34	Gelatinosin-B 11 (cf. trichovirin II 6a and neatoviridin C: [Gly]2→[Ser]2) Jaworski et al. 1999; Oh et al. 2005
6	See H. thelephoricola
25	Gelatinosin-B 5
27	Gelatinosin-B 6

Table 7 Sequences of 11- and 18-residue peptaibiotics detected in the plate culture of *Hypocrea gelatinosa*

No.	\(t_\text{R} [\text{min}] \)	\([M+H]^+\)	Residuea
28	38.0–38.1	1748.0789	Ac Aib Ser Ala Lxx Aib Gln Aib Gln Aib Lxx Aib Gly Aib Aib Pro Lxx Aib Aib Gln Lxxol
29	38.8–38.9	1175.7832	Ac Aib Gln Lxx Lxx Aib Pro Vxx Lxx Aib Pro Lxxol
30	39.2–39.3	1748.0789	Ac Aib Ser Ala Lxx Aib Gln Aib Lxx Aib Gly Vxx Aib Pro Lxx Aib Aib Gln Vxxol
31	39.4–39.7	1762.0802	Ac Aib Ser Ala Lxx Aib Gln Aib Gln Vxx Lxx Aib Gly Aib Aib Pro Lxx Aib Aib Gln Lxxol
32	40.1–40.4	1777.0993	Ac Aib Ser Ala Lxx Vxx Gln Vxx Lxx Aib Gly Aib Pro Lxx Aib Aib Gln Lxxol
33	40.8–41.0	1189.8026	Ac Aib Gln Lxx Lxx Aib Pro Lxx Aib Pro Lxxol
34	41.8–42.1	1776.1016	Ac Aib Ser Ala Lxx Aib Gln Vxx Vxx Lxx Aib Gly Vxx Aib Pro Lxx Aib Aib Gln Lxxol
35	41.4–42.9	1203.8234	Ac Vxx Gln Lxx Lxx Aib Pro Lxx Aib Lxxol
32	43.1–43.3	1790.1139	Ac Aib Ser Ala Lxx Vxx Gln Vxx Lxx Aib Gly Vxx Aib Pro Lxx Aib Aib Gln Lxxol
27	45.7–46.0	1774.1162	Ac Aib Ala Ala Lxx Vxx Gln Vxx Lxx Aib Gly Vxx Aib Pro Lxx Aib Aib Gln Lxxol

a Variable residues are underlined in the table header. Minor sequence variants are underlined in the sequences. This applies to all sequence tables.
Screening of *Hypocrea thelephoricola*. Ten peptaibols from the specimen of *H. thelephoricola* were sequenced (Fig. 1a). Six of them, compounds 1–6, are 11-residue sequences displaying the classical building scheme of subfamily 4 (SF4) peptaibols (Chugh and Wallace 2001; Degenkolb et al. 2012; Röhrich et al. 2013b). Compound 1 is new,
whereas compounds 2–6 are likely to represent 11-residue peptaibols, which have been described before (Tables 4 and 5, Table S1a and S1b). Compounds 7–10 are new 18-residue peptaibols, named thelephoricolins 1–4 sharing some structural similarity (N-terminal dipeptide, [Gln]⁶/[Aib]³, C-terminal heptapeptide) with trichotoxins A-50H and A-50-J⁵ (Brückner and Przybylski 1984). The plate culture produced predominantly 11-residue SF4-peptaibols (compounds 1, 2, 5, 6, 11–13), but only two 18-residue peptaibols, thelephoricolins 2 and 3 (Fig. 1b).

Screening of Hypocrea gelatinosa. A single strain (ICMP 5417) of this species has previously been screened positive Aib and Iva by a GC/MS-based approach (Brückner et al. 1991). From the specimen of H. gelatinosa,
Table 8 Sequences of 18- and 19-residue peptaibiotics detected in the specimen of *Hypocrea voglmayrii*

No.	[M+H]+ (Da)	Residuea
35	1762.0125	Ac Aib Ala Aib Ala Aib Gln Aib Aib Ala Lxx Vxx Pro Vxx Aib Vxx Gln Gln
36	1775.0433	Ac Aib Ala Aib Aib Aib Gln Aib Aib Ala Lxx Vxx Pro Vxx Aib Vxx Gln Gln
37	1924.1239	Ac Aib Aib Aib Aib Gln Aib Aib Ala Lxx Vxx Pro Vxx Aib Vxx Gln Gln Tyrol
38	1911.1015	Ac Aib Ala Aib Aib Gln Aib Aib Ala Lxx Vxx Pro Vxx Aib Vxx Gln Gln Tyrol
39	1925.1100	Ac Aib Aib Aib Aib Aib Aib Gln Aib Aib Ala Lxx Aib Pro Vxx Aib Vxx Gln Gln
40	1880.1041	Ac Aib Aib Aib Gln Aib Aib Aib Ala Lxx Aib Pro Vxx Aib Vxx Gln Gln
41	1894.1197	Ac Aib Aib Aib Aib Aib Gln Aib Aib Aib Ala Lxx Aib Pro Vxx Aib Vxx Gln Gln
42	1881.0933	Ac Aib Aib Aib Aib Gln Aib Aib Aib Ala Lxx Aib Pro Vxx Aib Vxx Gln Gln
43	1894.1218	Ac Aib Ala Aib Aib Aib Gln Aib Aib Aib Ala Lxx Vxx Pro Vxx Aib Vxx Gln Gln
44	1908.1391	Ac Aib Aib Aib Aib Aib Aib Aib Gln Aib Aib Ala Lxx Vxx Pro Vxx Aib Vxx Gln Gln
45	1909.1203	Ac Aib Aib Aib Aib Aib Aib Aib Gln Aib Aib Ala Lxx Vxx Pro Vxx Aib Vxx Gln Gln
46	1978.1743	Ac Vxx Ala Aib Aib Aib Aib Gln Aib Aib Aib Ala Lxx Vxx Pro Vxx Aib Gln Gln
47	1978.1741	Ac Aib Aib Aib Aib Aib Aib Aib Gln Aib Aib Ala Lxx Vxx Pro Vxx Aib Vxx Gln Gln
48	1992.1924	Ac Aib Aib Aib Aib Aib Gln Aib Aib Aib Ala Lxx Vxx Pro Vxx Aib Vxx Gln Gln
49	1997.1385	Ac Aib Aib Aib Aib Aib Aib Aib Gln Aib Aib Ala Lxx Vxx Pro Vxx Aib Vxx Gln Gln
50	1993.1762	Ac Aib Aib Aib Aib Aib Aib Aib Gln Aib Aib Ala Lxx Vxx Pro Vxx Aib Vxx Gln Gln
51	2007.1881	Ac Vxx Ala Aib Aib Aib Aib Gln Aib Aib Aib Ala Lxx Vxx Pro Vxx Aib Vxx Gln Gln

No. Compound identical or positionally isomorphic with Ref.
35 Voglmayrin-1 (N-terminal heptapeptide, pos. 13–15 and 18 cf. trichokonin V)
36 Voglmayrin-2 (cf. 35: [Ala]3→[Aib]4, [Glu]17→[Gln]17: deletion sequence of 37)
37 Voglmayrin-3 (cf. 36: + C-terminal Tyrol)
38 Voglmayrin-4
39 Voglmayrin-5 (cf. 37: [Gln]18→[Glu]18)
40 Voglmayrin-6 (N-terminal nonapeptide cf. trichorzianine B-VIb, [Ser]10→[Ala]10, C-terminal nonapeptide cf. trichorzianine B-VIb, [Ile]16→[Vxx]16)
41 Voglmayrin-7
42 Voglmayrin-8 (homologue of 40: [Gln]18→[Glu]18)
43 Voglmayrin-9 (homologue of 40: [Aib]12→[Vxx]12)
44 Voglmayrin-10 (homologue of 37: [Tyrol]19→[Pheol]19)

Huang et al. 1995
Rebuffat et al. 1989
14 compounds 14–27, six 18-residue and eight 19-residue peptaibols, were sequenced. All of them but compounds 14 and 18 are new (Tables 6 and 7, Table S2a and S2b; Fig. 2a). The 18-residue sequences, compounds 19–21, 23, 25, and 27, named gelatinosins B 1–6, resemble hypomurocins or neoatroviridins. Two of the 19-residue sequences, compounds 14 and 18, are identical with the recently described hypopulvins from H. pulvinata (Röhrich et al. 2012). The new compounds 15–17, 22, and 24, named gelatinosins A 1–5, exhibit a partially new building scheme – the residue in position 5 of the peptide chain was assigned as Phe, based upon HR-MS/MS data. In contrast to this, the new 19-residue compound 26 displays a different building scheme, resembling trichostrigocins A/B (Degenkolb et al. 2006a). The plate culture of H. gelatinosa was shown to produce three minor 11-residue SF4-peptaibols, compounds 6, 29, and 33, and nine gelatinosins B (compounds, 19, 20, 25, 27, 28, 30–32, and 34), 18-residue peptaibols of the hypomurocin/neoatroviridin-type. However, 19-residue peptaibols have not been detected (Tables 6 and 7, Table S2a and S2b; Fig. 2b).

Compound 6 is likely to represent the second one of the partial sequences reported by Krause et al. (2006a) for H. gelatinosa CBS 724.87. In contrast, the first one, for which an unknown N-terminal residue m/z 157 was claimed (Krause et al. 2006a), could not be detected in this screening.

Screening of Hypocrea voglmayrii. The most notable species screened is by far H. voglmayrii (Fig. 3), the specimen of which produced two 18-residue deletion sequences, compounds 35 and 36, which lack the C-terminal amino alcohol, and as well as 15 19-residue peptaibols, compounds 37–51 (Tables 8 and 9, Table S3a and S3b). As all of them are new, the names voglmayrins 1–17 are introduced. They partly resemble the building schemes of trichostrigocins A/B (Huang et al. 1995) and of trichorzianins B (Rebuffat et al. 1989). Six of the major compounds (40–45) carry a C-terminal phenylalaninol (Pheol) residue, whereas three minor compounds (37–39) terminate in tyrosinol (Tyrol) – a residue that has not been described for peptaibiotics until recently (Röhrich et al. 2013a). Another six major compounds (46–51) display an additional fragment ion 68.0628 ± 2.3 mDa at their C-terminus (Fig. 4). Thus, the p-OH group of their Tyrol residue is hypothesised to be substituted by a prenyl or isoprenyl residue (C₅H₈, for details see paragraph below). In contrast to this, major 19-residue peptaibols produced by the plate culture, compounds 40, 41, 43, 44, and two additional compounds, 52 and 53, voglmayrins-18 and -19, terminate in Pheol. HR-MS data clearly confirm the presence of additional minor

Table 8 (continued)

No.	Compound identical or positionally isomeric with	Ref.
45	Voglmayrin-1	Hypomurocin-1 (Becker et al. 1997)
46	Voglmayrin-12	Hypomurocin-12 (Becker et al. 1997)
47	Voglmayrin-13	Hypomurocin-13 (Becker et al. 1997)
48	Voglmayrin-15	Hypomurocin-15 (Becker et al. 1997)
49	Voglmayrin-16	Hypomurocin-16 (Becker et al. 1997)
50	Voglmayrin-17	Hypomurocin-17 (Becker et al. 1997)
51	Voglmayrin-18	Hypomurocin-18 (Becker et al. 1997)

Variable residues are underlined in the table header. Minor sequence variants are underlined in the sequence. This applies to all sequence tables.

8 Hypomurocins have been isolated from strain IFO 31288 (Becker et al. 1997), originally misidentified as Hypocrea muroiana. The producer belongs, in fact, to T. atroviride (Samuels et al. 2006).

7 The neoatroviridin producer T. atroviride F80317 (Oh et al. 2005) has neither been deposited with an IDA, nor has its identity been verified phylogenetically.
Table 9 Sequences of 11- and 19-residue peptaibiotics detected in the plate culture of *Hypocrea voglmayrii*

No.	t_R [min]	[M+H]+	Residuea																			
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
52	35.2–35.6	1852.0739	Ac Aib Ala Ala Aib Aib Gln Ala Aib Aib Ala Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol																			
53	35.6–35.8	1866.0884	Ac Aib Ala Ala Aib Aib Gln Ala Aib Aib Ala Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol																			
40	37.3–37.6	1880.1099	Ac Aib Ala Ala Aib Aib Gln Aib Aib Aib Ala Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol																			
41	37.7–37.8	1894.1237	Ac Aib Ala Aib Aib Aib Gln Aib Aib Aib Ala Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol																			
43	39.6–39.7	1894.1238	Ac Aib Ala Aib Aib Aib Gln Aib Aib Aib Ala Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol																			
44	40.0	1908.1395	Ac Aib Ala Aib Aib Aib Gln Aib Aib Aib Ala Lxx Aib Pro Vxx Aib Vxx Gln Gln Pheol																			
54	40.7–41.0	1052.7130	Oc Aib Gly Lxx Aib Gly Gly Vxx Aib Gly Lxx Lxxol																			
55	42.8–43.1	1066.7288	Oc Aib Gly Lxx Aib Gly Gly Lxx Aib Gly Lxx Lxxol																			

No.	Comment (compound identical or positionally isomeric with)	Ref.
52	Voglmayrin-18 (homologue of 53; [Vxx]^16→[Aib]^16; N-terminal hexapeptide cf. trichorzianine B-VIIb; C-terminal nonapeptide cf. trichosporins B)	Rebuffat et al. 1989; Iida et al. 1990
53	Voglmayrin-19 (homologue of 40; [Aib]^17→[Ala]^17; C-terminal nonapeptide cf. polysporin D)	New et al. 1996
40	Voglmayrin-20	
41	Voglmayrin-21	
43	Voglmayrin-22	
44	Voglmayrin-23	
54	cf. lipostrigocins B-04 and B-05	Degenkolb et al. 2006a
55	cf. trichogin A-IV	Auvin-Guette et al. 1992; Degenkolb et al. 2006a

a Variable residues are underlined in the table header. Minor sequence variants are underlined in the sequences. This applies to all sequence tables
Fig. 4 HR-MS/MS sequencing of diagnostic, C-terminal γ-ions, displaying novel and recurrent residues of β-amino alcohols. a phenylalaninol (Pheol); b tyrosinol (Tyrol); c O-prenylated tyrosinol (Tyr(C5H8)ol); d dihydroxyphenylalaninol (DOPAol)
Table 10 Sequences of 19-residue peptaibiotics detected in the specimen of *Hypocrea minutispora*

No.	t_{R} [min]	$[M+H]^+$	Residuea	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
56	34.5–34.7	1847.1051	Ac Aib Ala	Aib Gly	Aib	Gln	Aib	Lxx	Aib	Gly	Lxx	Aib	Pro	Vxx	Aib	Vxx	Glu	Gln	Lxxol			
57	37.5–38.1	1846.1192	Ac Aib Ala	Aib	Aib	Aib	Aib	Gln	Aib	Lxx	Aib	Gly	Lxx	Aib	Pro	Vxx	Aib	Aib	Gln	Gln	Lxxol	
58	38.5–38.6	1846.1099	Ac Aib Ala	Aib	Ala	Aib	Gln	Aib	Lxx	Aib	Gly	Lxx	Aib	Pro	Vxx	Aib	Vxx	Glu	Gln	Lxxol		
59	39.1–39.4	1860.1278	Ac Aib Ala	Aib	Aib	Aib	Aib	Gln	Aib	Lxx	Aib	Gly	Lxx	Aib	Pro	Vxx	Aib	Vxx	Glu	Gln	Lxxol	
60	39.8–40.1	1861.1130	Ac Aib Ala	Aib	Gln	Aib	Aib	Lxx	Aib	Gly	Lxx	Aib	Pro	Vxx	Aib	Vxx	Glu	Gln	Lxxol			
61	40.9–41.0	1874.1420	Ac Aib Ala	Aib	Ala	Aib	Aib	Vxx	Glu	Aib	Lxx	Aib	Lxx	Aib	Pro	Vxx	Aib	Vxx	Glu	Gln	Lxxol	
62	41.5–41.6	1875.1390	Ac Aib Ala	Aib	Aib	Aib	Aib	Gln	Aib	Lxx	Aib	Gly	Lxx	Aib	Pro	Vxx	Aib	Vxx	Glu	Gln	Lxxol	
63	41.9–42.0	1875.1284	Ac Aib Ala	Aib	Ala	Aib	Aib	Lxx	Aib	Lxx	Aib	Vxx	Glu	Aib	Vxx	Glu	Gln	Lxxol				

* Variable residues are underlined in the table header. Minor sequence variants are underlined in the sequences. This applies to all sequence tables.
Table 11 Sequences of 19-residue peptaibiotics detected in the plate culture of Hypocrea minutispora

No.	t_R [min]	$[M+H]^+$	Residuea
64	36.1–36.3	1832.1060	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Aib Gln Gln Vxxol
65	37.3–37.5	1832.1025	Ac Aib Ala Aib Gly Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Vxx Gln Gln Vxxol
66	37.5–37.9	1846.1196	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Vxx Aib Pro Vxx Aib Vxx Gln Gln Lxxol
57	37.8–38.0	1846.1199	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Aib Gln Gln Vxxol
67	38.6–38.7	1847.1135	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Aib Gly Aib Vxx Gln Gln Lxxol
59	39.0–39.2	1860.1318	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Aib Gln Gln Vxxol
60	39.8–40.0	1861.1271	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Aib Gly Aib Vxx Gln Gln Lxxol
68	40.4–40.6	1874.1492	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Lxx Aib Vxx Gln Gln Lxxol
61	40.6–40.9	1874.1554	Ac Aib Ala Aib Ala Vxx Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Aib Vxx Gln Gln Lxxol

No.	Compound identical or positionally isomeric with	Ref.
64	Minutisporin-9 (pos. 1, 6–10, 12–19; [Pro]7→[Ala]9, [Aib]11→[Lxx]11 and deletion of [Aib]5: cf. stilbollavin B-5)	Jaworski and Brückner 2001b
65	Minutisporin-10 (positionally isomer of 64: [Ala]9→[Gly]9, [Aib]11→[Vxx]11)	
66	Minutisporin-11 (positionally isomer of 57: [Lxx]1→[Vxx]11, [Aib]10→[Vxx]10)	
57	Minutisporin-2	
67	Minutisporin-12 (positionally isomer of 57: [Gln]7→[Glu]17 and of 56: [Aib]7→[Gly]7, [Aib]10→[Vxx]10)	
59	Minutisporin-4	
60	Minutisporin-5	
68	Minutisporin-13 (positionally isomer of 61: [Aib]7→[Vxx]7)	
61	Minutisporin-6	

a Variable residues are underlined in the table header. Minor sequence variants are underlined in the sequences. This applies to all sequence tables.
components carrying a C-terminal Tyrol or prenylated Tyrol residue, respectively. Unfortunately, the intensities were too low for MS/MS sequencing of the respective \(y_6 \) ions. Two 11-residue lipopeptaibols, compound 54 and 55, resembling lipostrigocin B-04/B-05 (Degenkolb et al. 2006a) and trichogin A IV (Auvin-Guette et al. 1992), have also been sequenced.

Screening of *Hypocrea minutispora*. The specimen of *H. minutispora* has been shown to produce a mixture of eight new 19-residue peptaibols, compounds 56–63, named...
Table 12 Sequences of 19-residue peptaibiotics detected in the specimen of Hypocrea citrina

No.	\(t_R \) [min]	\([M+H]^+\)	Residue^a
			1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
69	31.6–31.7	1926.1036	Ac Aib Ala Aib Ala Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Vxx Gln Gln di-OH-Pheol
70	32.0–32.1	1896.0937	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Gln Gln Tyrol
71	32.9–33.1	1910.1084	Ac Aib Ala Aib Ala Aib Gly Lxx Aib Pro Vxx Aib Vxx Gln Gln Tyrol
72	33.6–33.9	1880.0971	Ac Aib Ala Aib Gly Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Vxx Gln Gln Tyrol
73	34.6–34.7	1880.0975	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Vxx Gln Gln Tyrol
74	36.4–36.6	1880.0999	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Vxx Gln Gln Tyrol
75	37.7–37.9	1880.1050	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Vxx Gln Gln Tyrol
76	38.2–38.4	1880.1018	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Vxx Gln Gln Tyrol
77	38.8–39.1	1894.1241	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Vxx Gln Gln Tyrol
78	39.7–39.9	1895.1083	Ac Aib Ala Aib Ala Aib Gln Aib Lxx Aib Gly Lxx Aib Pro Vxx Aib Vxx Glu Glu Tyrol

No.	Compound identical or positionally isomeric with	Ref.
69	Hypocitrin-1 (homologue of hypophellin-15: [Tyrol]¹⁹→[di-OH-Pheol]¹⁹)	Röhrich et al. 2013a
70	Hypocitrin-2 (homologue of hypophellin-15: [Vxx]¹⁷→[Aib]¹⁷)	Röhrich et al. 2013a
71	Hypophellin-15	Röhrich et al. 2013a
72	Hypocitrin-3 (positional isomer of 73, 74, and 76; [Ala]³→[Aib]³, [Ala]⁴→[Gly]⁴)	Röhrich et al. 2013a
73	Hypocitrin-4 (positional isomer of 75 and 77, homologue of hypophellin-17: [Vxx]¹⁷→[Aib]¹⁷)	Röhrich et al. 2013a
74	Hypocitrin-5 (positional isomer of 73 and 77, homologue of hypophellin-17: [Vxx]¹⁷→[Aib]¹⁷)	Röhrich et al. 2013a
75	Hypophellin-18	Röhrich et al. 2013a
76	Hypocitrin-6 (positional isomer of 73 and 75, homologue of hypophellin-17: [Vxx]¹⁷→[Aib]¹⁷)	Röhrich et al. 2013a
77	Hypophellin-20	Röhrich et al. 2013a
78	Hypocitrin-7 (homologue of 77: [Gln]¹⁷→[Glu]¹⁷)	Röhrich et al. 2013a

^aVariable residues are underlined in the table header. Minor sequence variants are underlined in the sequences. This applies to all sequence tables.
minutisporins 1–8 (Tables 10 and 11, Table S4a and S4b; Fig. 5a), resembling the recently described hypophellins (Röhrich et al. 2013a). Analysis of the plate culture (Fig. 5b) revealed that compounds 59–61 were recurrently isolated along with another five new 19-residue sequences, minutisporins 9–13 (compounds 64–68).

Screening of Hypocrea citrina. The specimen of H. citrina was shown to be a prolific producer of 19-residue peptaibols, compounds 69–78, of which seven are new, viz. compounds 69, 70, 72–74, 76, and 78. The names hypocitrins 1–7 were selected in order to avoid possible confusion with the mycotoxin citrinin and its derivatives. The remaining three were identified as hypophellin-15, 18, and 20, respectively (Röhrich et al. 2013a). Notably, compound 69, hypocitrin-1, exhibits a C-terminal substituent, which is novel to peptaibiotics, dihydroxyphenylalaninol (Table 12 and Table S5; Fig. 6). Compound 70, hypocitrin-2, a homologue of hypophellin-15 (compound 73), also terminates in Tyrol (Fig. 4). Due to exceptionally high background noise of unknown origin, the methanolic extract of the well-grown H. citrina plate culture could not be interpreted appropriately.

Screening of Hypocrea sulphurea. All three specimens of H. sulphurea were negatively screened for peptaibiotics. From two of them, plate cultures could be obtained; however, those were also screened negatively (data not shown).

Screening of Hypocrea parmastoi. Neither specimen, nor plate culture of H. parmastoi displayed the presence of peptaibiotics (data not shown).

Screening of specimens collected in the natural habitat(s) corroborated the distinguished importance of the genus Trichoderma/Hypocrea as the currently richest source of peptaibiotics. Five of the nine specimens were screened positively, and the results of this screening confirmed by the sequences obtained from screening of the plate cultures. Notably, 56 of the 78 peptaibiotics (72 %) detected represent new sequences.

Screening of H. voglmayrii and H. citrina revealed five peptaibols (compounds 37–39, 70, and 73) carrying a C-terminal Tyrol, a residue quite recently described for H. phellinicola (Röhrich et al. 2013a), which is considered comparatively rare. The additional substituent of the C-terminal Tyrol of voglmayrins 12–17 (compounds 46–51), which has tentatively been assigned as a prenyl or isoprenyl (C5H8) residue, is hypothesised to be located at the p-hydroxy group. A regiospecific O-prenylation at the 4-position of the aromatic ring has recently been demonstrated for SirD (Zou et al. 2011), a tyrosine O-prenyltranferase (Kremer and Li 2010) catalysing the first pathway-specific step in the biosynthesis of the phytotoxin sirodesmin PL. The latter is produced by Leptosphaeria maculans (anamorph: Phoma lingam), the causal agent of blackleg of canola (Brassica napus). Recently, O-prenyltyrosine diketopiperazines have been described from Fusarium sp. and Penicillium crustosum (Guimarães et al. 2010).

Another notable structural element, dihydroxy-Phelol was found at the C-terminus of hypocitrin-1 (compound 69). While the presence of either Phelol or Tyrol may be assumed to originate from the relaxed substrate specificity in the terminal adenylate domain of the respective peptaibol synthetase, the direct incorporation of dihydroxy-Phel, presumably 3,4-dihydroxy-L-Phel (DOPA), is one possible biosynthetic route. Fungal tyrosinases are known to oxidise not only Tyr and various other monophenols, e.g. in the route to melanins, but also act on tyrosyl residues within peptides and proteins, leading to the formation of inter- and intra-molecular crosslinks (Selinheimo et al. 2007). Thus, Tyrol-containing peptaibols could be further oxidised by tyrosinases, and even

Fig. 6 Base-peak chromatograms (BPCs) of the specimen of H. citrina analysed with the micrOTOF-Q II. †, co-eluting peptaibiotics, not sequenced.
become attached to components of the fungal cell wall (Mattinen et al. 2008).

Considering the sequences of all species screened, including those of *H. pulvinata* and *H. phellinicola*, a general building scheme for those SF1-peptaibiotics can be given (Table 13):

As can be seen from above, all structural features (Röhrich et al. 2012) required for ion channel formation (Grigoriev et al. 2003), are present in the 17-, 18-, 19-, and 20-residue peptaibiotics sequenced. Multiple bioactivities of pore-forming 20-residue SF1-peptaibiotics (Röhrich et al. 2013a) and of 11-residue SF4-peptaibiotics (Bobone et al. 2013; Röhrich et al. 2013b) have recently been compiled.

The results of our screening programme further extend the list of peptaibiotic-producing species of *Trichoderma/Hypocrea* compiled in Table 14. Most notably, the sequences of peptaibiotics produced by the freshly collected specimens are either identical to those found in the plate cultures, or represent—at least—closely related homologues and positional isomers of the latter. Thus, our LC-MS/MS screening approach confirmed that all peptaibiotic-producing specimens and plate cultures obtained thereof represent one and the same species. Consequently, the same type (= subfamily) of peptaibiotics is produced both in the natural habitat and under artificial (= laboratory) conditions—a fact, which is important for the application of *Trichoderma* formulations in biocontrol and integrated pest management schemes. A *Trichoderma/Hypocrea* species capable of producing peptaibiotics under the conditions of its natural habitat may defend its ecological niche more effectively compared to a non-producing species, as will be outlined below. At present, ca. 15 % of the phylogenetically verified *Trichoderma/Hypocrea* species have been positively screened for peptaibiotics; however, it appears that the inventory of peptaibiotics of the remaining 85 % is still waiting to be scrutinised by state-of-the-art bioanalytical—particularly mass spectrometric—methods. Of approximately 130 *Trichoderma/Hypocrea* species pre-screened by LC/HRMS (Nielsen et al. 2011), ca. 60 were found to produce peptaibiotics. Thus, the production of peptaibiotics in the natural habitat seems to be independent of the habitat preference, i.e. mycoparasitism vs. saprotrophy (Chaverri and Samuels 2013), but neither predictable per se nor universal.

Given that peptaibiotics are readily biosynthesised in the natural habitat of the producers, they could significantly contribute to the complex interactions of phytoprotective *Trichoderma* species, which are used in commercial or semi-commercial biocontrol agents (BCAs) against plant pathogenic fungi (Harman et al. 2004; Viterbo et al. 2007; Vinale et al. 2008a, b). Examples of successful biocontrol approaches using *Trichoderma* strains include ‘Tricovab’, a Brazilian formulation recently approved (Anonymous 2012) for integrated management of *Crinipellis*

| Residue | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|---------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| Ae | Aib | Ala | Aib | Ala | Aib | Ala | Gln | Aib | Lxx | Aib | Gly | Lxx | Aib | Pro | Vxx | Aib | Vxx | Gln | Gln | Pheol |
| Aib | Ala | Aib | Vxx | Aib | Vxx | Gln | Gln | Pheol |

Minor sequence variants are parenthesised.
8 Nielsen KF, Samuels GJ (2013) unpublished results.

Table 13 General building scheme of the sequences of *Hypocrea* *Trichoderma* SF1-peptaibiotics screened (Röhrich et al. 2012, 2013a, this study)
Table 14 Phylogenetically verified peptaibiotic-producing strains and species of *Trichoderma*/*Hypocrea*. NB: Species and strains for which only MALDI-TOF-MS screening data have been published are not considered for inclusion

Species	Positively screened strains	Peptaibiotics found	References
T. arundinaceum	CBS 119575 (ex-type)	alamethicins F30	Degenkolb et al. 2008
		alamethicins F50	
		trichobrevis A	
		trichobrevis B	
		trichocompactins	
		trichoferins A	
	CBS 119576 (= ATCC 90237)	trichobrevis A	Degenkolb et al. 2006b
		trichobrevis B	
		alamethicins F30	
		trichocompactins	
		trichoferins A	
		trichoferins B	
		trichoferins B	
	CBS 119577	trichobrevis A	Degenkolb et al. 2008
		alamethicins F30	
		trichobrevis B	
		trichocompactins	
		trichoferins A	
	CBS 121153	alamethicins F30	
		alamethicins F50	
		trichobrevis A	
		trichobrevis B	
		trichocompactins	
		trichoferins A	
	CBS 123793 (= NRRL 3199)	alamethicins F30	Kirschbaum et al. 2003;
		alamethicins F50	Psurek et al. 2006;
		trichobrevis A	Degenkolb et al. 2006b,
		trichobrevis B	Degenkolb et al. 2008
		trichocompactins	
		trichoferins A	
T. brevicompactum	CBS 109720 (= DAOM 231232,	alamethicins F30	Degenkolb et al. 2006b
	ex-type)	trichoferins A	
		trichoferins B	
		trichocompactins	
	CBS 112444	alamethicins F30	
		trichocompactins	
		trichoferins A	
		trichoferins	
	CBS 112446	alamethicins F30	Degenkolb et al. 2008
		alamethicins F50	
		trichobrevis A	
		trichobrevis B	
		trichocompactins	
	CBS 112447	alamethicins F30	
		alamethicins F50	
		trichobrevis A	
		trichobrevis B	
		trichocompactins	
	CBS 119569	alamethicins F30	Degenkolb et al. 2006b
		trichobrevis A	
		trichobrevis B	
	CBS 119570	trichobrevis A	
		trichobrevins A	
		trichobrevins B	
		trichocompactins	
(syn. *Moniliophthora* perniciosa), the causal agent of Witches’ broom of cacao (Pomella et al. 2007; Loguercio et al. 2009; Medeiros et al. 2010). Notably, ‘Tricovab’ contains a peptaibiotic-producing strain (Degenkolb et al. 2006a) of the hyperparasitic endophyte *Trichoderma stromaticum*. Moreover, the in vivo-detection of peptaibiotics corroborates the recently demonstrated pro-apoptotic in vitro-activities of the 19-residue peptaibols trichokonin VI from *Trichoderma pseudokoningii* SMF2			

Trichokonin VI is identical to gliodeliquestin A that has been isolated from *Gliocladium deliquescens* NRRL 1086 (Brückner et al. 1988) and not from NRRL 3091 (Brückner and Przybylski 1984). According to phylogenetic data, *G. deliquescens* NRRL 1086 (= CBS 228.48=ATCC 10097) was re-identified as *G. viride*, see (www.straininfo.net/strains/260309).
Table 14 (continued)

Species	Positively screened strains	Peptaibiotics found	References
T. turrialbense	CBS 112445 (ex-type)	alamethicins F30	Degenkolb et al. 2006b;
		trichocryptins A	Degenkolb et al. 2008
		trichocryptins B	
		trichocompactins	
	CBS 122554	alamethicins F30	Degenkolb et al. 2008
		alamethicins F50	
		trichocryptins C	
		trichocryptins D	
		trichocompactins	
		trichoferin A (trichobrevins A)	
		(trichobrevins B)	
T. protrudens	CBS 121320 (ex-type)	trichobrevins A	Degenkolb et al. 2008
		trichobrevins B	
		alamethicins F30	
		alamethicins F50	
		trichocryptins	
		trichoferins	
T. strigosum	CBS 348.93 (ex-type)	tricholongins	
		trichobrevins	
		trichostrigocins	
		trikoningins	
		trichogin A IV	
T. cf. strigosum	CBS 119777	tricholongins	
		lipostrigocins A	
		lipostrigocins B	
		trichostrigocins	
		trikoningin KB II	Degenkolb et al. 2006a
T. erinaceus	CBS 117088 (= DAOM 230019,	tricholongins	
	ex-type)	lipostrigocins B	
		trichostrigocins	
T. pubescens	CBS 345.93 (= DAOM 166162,	tricholongins	
	ex-type)	lipostrigocins	
		lipopubescin	
T. cf. pubescens	CBS 119776	trichostromaticins	
T. stromaticum	CBS 101875 (holotype)	trichocompactins	
	CBS 101730		
T. spirale	CBS 346.93 (ex-type)	trichobrevins B	
H. rodmanii	CBS 109719	hypocompactins	Degenkolb et al. 2008
	CBS 120897	hyporodicins	
		trichokonins	
T. asperellum	CBS 361.97^b (= ATCC 38501,	trichotoxins A-50	Przybylski et al. 1984
	NRRL 5242)	trichotoxins A-40	Jaworski and Brückner 1999
	CBS 433.97 (ex-type)	trichotoxins A-50	Krause et al. 2006
	T32	trichotoxins	Chutrakul et al. 2008
	Y19-07	asperelines	Ren et al. 2009; 2013;
			Chen et al. 2013
T. harzianum	CBS 354.33 (= CECT 2413,	11-, 14-, and 18- residue peptaibols	Vizcaíno et al. 2006
	= ATCC 48131)	(not sequenced)	
Species	Positively screened strains	Peptaibiotics found	References
--------------------------	-----------------------------	---	--
T. cf. harzianum	CBS 130670^c	trichovirins II	Jaworski et al. 1999
	(ATCC 90200, NRRL 5243)		
T. virens	Tv29-8	trichorzins (18-residue peptaibols),	Wiest et al. 2002
		11- and 14-residue peptaibols	
T. polysporum	TMI 60146	trichopolys	Fuji et al. 1978; Fujita et al. 1981; Iida et al. 1991; Iida et al. 1993
		trichosporins-B	
T. reesei (H. jecorina)	FKI-4452	trichosporins-B	Iwatsuki et al. 2010
	CBS 392.92	paracelins	Brückner and Graf 1983; Brückner et al. 1984
	(ATCC 2692, QM 9414)		
T. parareesei	C.P.K. 618	hypojecorins-A	Degenkolb et al. 2012
	C.P.K. 665	hypojecorins-B	
		paracelins	
T. saturnisporum	CBS 330.70	paracelins E	Ritieni et al. 1995
(ex-type)			
T. atroviride	IFO 31288^d	hypomurocins A	Becker et al. 1997
		hypomurocins B	
		trichorzianins	El Hajji et al. 1987
	CBS 391.92^e	trichorzianins,	
	(= ATCC 36042)	trichortrokontins	
	ATCC 74058^f		
	(= P1) and mutants		
	thereof		
	MMS 639	unprecedented	
	MMS 925	17-residue peptaibiotics and	
	MMS 927	19-residue peptaibols	
	MMS 1295		
	MMS 1513		
T. atroviride	NF16	new and recurrent trichorzianins	Panizel et al. 2013
T. citrinoviride	IMI 91968^g	trichoaureocins	Jaworski and Brückner 2001a
	S25	20-residue peptaibols	Maddau et al. 2009
T. longibrachiatum	DAOM 234100	11-residue peptaibols	Mohamed-Benkada et al. 2006; Ruiz et al. 2007
	(= MMS 151)	11- and 20-residue trilongins	Mikkola et al. 2012
	Thb		
	Tbd		
	CNM-CM 2171		
	(= C.P.K. 1696)		
	CNM-CM 2277		
	(= C.P.K. 2277)		
	IMI 291014		
	(= C.P.K. 1303)		
	CECT 2412		
	(= C.P.K. 2062)		
	CECT 20105		
	(= C.P.K. 1698 = IMI 297702)		
towards plant fungal pathogens such as *Fusarium oxysporum* (Shi et al. 2012). The value of peptaibiotics for chemotaxonomy of *Trichoderma/Hypocrea* has scarcely been scrutinised in the past (Neuhof et al. 2007; Degenkolb et al. 2008). To exhaustively answer this question, a larger number of strains, belonging to recently described species, are required to be included in an LC-MS/MS-based study.

Species	Positively screened strains	Peptaibiotics found	References
T. ghanense (syn. *T. parceramosum*)	CBS 936.69¹	trichobrachins	Brückner et al. 1993; Krause et al. 2007
H. pulvinata	CBS 133228		Röhrich et al. 2012
	CBS 133229	hypopulvins	
	CBS 133230		
H. phellinicolana (ex-type)	CBS 119283	hypophellins	Röhrich et al. 2013
H. peltata	Not deposited	hypelcins	Fujita et al. 1984; Matsuura et al. 1993, 1994
T. deliqueszens (= *G. deliqueszens* (= ATCC 10097)	CBS 228.48	gliodeliquescin A	Brückner and Przybylski 1984
(*= G. viride)¹			
T. flavofuscum (ex-type: syn. *T. viridus*: Chaverri = DSM 3500 and Samuels [2003])	CBS 248.59	trichofumins	Berg et al. 2003
T. asperellum	CBS 433.97		
T. aggressivum var. europaeum	CBS 100526	only partial	
T. inhamatum	CBS 345.96	given, for	
H. dichromospora	CBS 337.69	comments on	
H. vinosae	CBS 247.63	sequencing/putative	
H. semiorbis	CBS 244.63	identification of	
H. citrina (syn. *H. lactea*)	CBS 853.70	peptaibiotics, see	Krause et al. (2006)
H. nigricans	MUCL 28439		
H. lactea	IFO 8434	screened positive for peptidic Aib and Iva	Brückner et al. 1991
H. swceinitzii	ICMP 5421		

^a Accession numbers under which the peptaibiotic-producing strain was first published are highlighted in bold.

^b Originally misidentified as *T. viride* (Hou et al. 1972).

^c Originally misidentified as *T. viridus* (Hou et al. 1972).

^d Originally misidentified as *H. muroiana*, for taxonomic revision see Samuels et al. (2006).

^e Originally misidentified as *T. harzianum* (el Hajji et al. 1987), for reidentification see Kühls et al. (1996).

^f Originally misidentified as *T. harzianum*.

^g Originally misidentified as *T. aureoviride*, data taken from http://www.lahan.info/Herbinia/specimen.HTM?IMI=91968

^h Not identical to those trichobrachins reported by Brückner et al. (1993) and Krause et al. (2007) from *T. ghanense* CBS 936.69.

ⁱ Originally misidentified as *T. longibrachiatum*.

^j For taxonomic recombination of *G. deliqueszens*, the anamorph of *H. lutea*, see Jaklitsch (2011).
aimed at analysing the peptaibiotome of strains and species within different clades of Trichoderma/Hypocrea. However, statements on peptaibiotic production by a particular Trichoderma/Hypocrea species must always be treated with great caution as they are highly habitat-, isolate-, and/or cultivation-dependent. Furthermore, ‘peptaibol subfamilies’ were introduced at a time when the total number of peptaibiotics described did not exceed 200 (Chugh and Wallace 2001) – less than a sixth of the currently known sequences. Notably, the additional 1,000–1,100 individual peptaibiotics published since then exhibit both new building schemes and constituents. This issue becomes even more complex as ‘peptaibol subfamilies’ were published when phylogenetic methods have not yet been recognised as an indispensable tool in fungal taxonomy. Thus, a considerable number of peptaibiotics, the sequences of which have been elucidated correctly, cannot be linked to an unambiguously identified producer that is deposited in a publicly accessible culture collection. These facts illustrate the urgent need to reconsider the classification into the nine subfamilies – a task that has to be completed before the aforementioned study can be performed.

Currently, any approach for a peptaibiotics-based chemotaxonomy of Trichoderma/Hypocrea must be regarded as extremely complicated – even within a defined clade –, because i) peptaibiotics only represent one single class of secondary metabolites produced by Trichoderma/Hypocrea, ii) most of the producers reported in literature have never been deposited appropriately, and iii) the persistently high degree of misidentification makes any comparison between members of different clades problematic and challenging. This is illustrated by the following examples (references are compiled in Table 14):

i) The 20-residue alamethicins (ALMs) have hitherto been found in four species belonging to the Brevicompactum clade of Trichoderma; however, it is not yet possible to estimate if the Pro\(^2\) residue of the ALMs could be regarded as a structurally highly conserved position, comparable to the Pro\(^{14}\) residue. Chemotaxonomy of the Brevicompactum clade encompassed the comparison of hydrophobins, peptaibiotics, and low-molecular weight secondary metabolites, including simple trichothecone-type mycotoxins.

ii) The 18-residue trichotoxins (TXT) A-50 and A-40, for example, have been obtained from Trichoderma asperellum NRRL 5242, whereas Trichoderma asperellum Y 19-07 did not produce TXTs but 9- and 10-residue peptaibols instead (and vice versa).

iii) Trichoderma citrinoviride strains S 25 and IMI 91968 are rich sources of 20-residue peptaibols of the paracelsin/saturnisporin/trichocellin/suzukacillin/tricho Aureocin-type. These are the only two strains of T. citrinoviride that have been investigated for peptaibiotics. Hypocrea schweinitzii ICMP 5421, which has also been verified phylogenetically (Réblová and Seifert 2004), had only been screened positive for Aib by GC/MS; but – to the best of the authors’ knowledge – specimens of that species have never been investigated for its inventory of peptaibiotics. Parcelsins, which have been isolated from T. reesei QM 9414, are also produced by a member of the Longibrachiatum clade. However, the producer of saturnisporin (T. saturnisporum MNHN 903578: Rebuffat et al. 1993) has never been made publicly available, nor has its identity been verified phylogenetically. The producers of both trichocellins and suzukacillins A (Krause et al. 2006b) have not been deposited in a publicly available culture collection; thus, their identification as T. ‘viride’ is highly questionable.

iv) T. flavofuscum CBS 248.59 is the only species of Trichoderma/Hypocrea, which produces 13-residue sequences – notably trichofumins C and D are the only two peptaibols of that chain length reported to date. They display the rare Gln-Gln motif in positions 5 and 6. Looking at the sequences, their biosynthesis seems to be distantly related to that one of trichofumins A and B (and positional isomers thereof). The latter are 11-residue SF4-peptaibols and widespread amongst Trichoderma/Hypocrea species.

v) T. virens strain Tv29-8 produces common 11- and 14-residue peptaibols, and it is the only phylogenetically verified source of 18-residue peptaibols of the trichorzintype.

However, the results of our LC-MS/MS screening are also of interest for analysis of environmental samples as well as extraterrestrial materials such as carbonaceous meteorites as their contamination by propagules of soil- or airborne peptaibiotic-producing fungi has to be taken into account (Brückner et al. 2009; Elsila et al. 2011).

To sum up, production of peptaibiotics may generally be regarded as a sophisticated ecological adaptation for the producing fungus providing it with an obvious advantage over non-producing fungal and other competitors. This group of ‘chemical weapons’ in their ‘armoury’ may effectively assist a remarkable number of strains currently identified as belonging to ca. 30 Trichoderma/Hypocrea species in colonising and defending their ecological niches.

Acknowledgments This study was supported by the Hessian Ministry for Science and Art by a grant from the LOEWE-Schwerpunkt ‘Insect Biotechnology’ to Andreas Vilcinskas. DTU acknowledges the grant from the Danish Research Council (FI 2136-08-0023) for the maXis QTOF system, and MYCORED (EC KBBE-2007-222690-2) for supporting Anita Iversen. Walter M. Jaklitsch gratefully acknowledges...
the support by the Austrian Science Fund (project P22081-B17). Thanks to James L. Swezey (USDA-ARS, NCAUR) for his comments on two peptaibol-producing Trichoderma strains, NRRL 5242 and NRRL 5243. Hans Brückner gratefully acknowledges his position as a Visiting Professor at King Saud University (Riyadh, Kingdom of Saudi Arabia).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Adelin E, Servy C, Martin M-T, Arcile G, Iorga BI, Retailleau P, Bonfill M, Ouazanni J (2014) Bicyclic and tetracyclic diterpenes from a Trichoderma symbiont of Taxus baccata. Phytochemistry 97:55–61

Anonymous, Novembr 2011/Feeveroo 2012. Ministerio da agricultura, pecuária e abastecimento (MAPA)comissão executivo plano da lavoura caueira (CEPLAC). Ministerio da agricultura aprovou registro do tricovab para combate à vassoura-de-bruxa. Jornal de Cacau 6:5

Atanasova L, Druzhinina IS, Jaklitsch WM (2013) Two hundred Aib-containing peptides of fungal origin. I. Gliodeliquescin A from Gliocladium deliquescens.

Becker D, Kiess M, Brückner H (1997) Structures of peptaibol antibiotics by molds of the genus Trichoderma. Biochim Biophys Acta 1828:1013

Berg A, Grigorjeva PA, Degenkolb T, Neuhoff T, Härlt A, Schlegel B, Gräfe U (2003) Isolation, structure elucidation and biological activities of trichoflamins A, B, C and D, new 11 and 13mer peptaibols from Trichoderma sp. HKJ 0276. J Pept Sci 9:810–816

Bobone S, Gerelli Y, De Zotti M, Bocchintufo G, Farrotti A, Orioni B, Sebastiani F, Latronico C, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ (2013) Membrane thickness and the mechanism of action of the short peptaibol trichogin GA IV. Biochim Biophys Acta 1828:1013–1024

Brückner H, Graf H (1993) Paracelsin; characterization by Peptaibiotics by marine-derived Trichoderma atroviride. Chem Biodivers 10: 772–786

Degenkolb T, Karimi Aghcheh R, Dieckmann R, Neuhof T, Baker SE, Berg A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ (2013) Asperelines G and H, two new peptaibols from the marine-derived fungus Trichoderma asperellum. Heterocycles 87:645–655

Chavneri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ (2013) Evolution of habitat preference and nutrition mode in acomosopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 67:2823–2837

Chavneri P, Gazis RO, Samuels GJ (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia 103:139–151

Chugh JK, Wallace BA (2001) Peptaibols: models for ion channels. Biochem Soc Trans 29:565–570

Chutarakul C, Alcocer M, Bailey K, Peberdy JF (2008) The production and characterisation of trichotoxin peptides by Trichoderma asperellum. Chem Biodivers 5:1694–1706

Degenkolb T, Bronk T, Kieß M (1993) Polypeptide antibiotics trichovirin and trichobrachin: Sequence determination and total synthesis. In: Brandenburg D, Ivanov V, Voelter W (eds) Chemistry of Peptides and Proteins; Proceedings of the 7th USSR-FRG Symposium Chemistry of Peptides and Proteins’, Dilizhan, USSR, 1989, and in ‘Chemistry of Peptides and Proteins; Proceedings of the 8th USSR-FRG Symposium Chemistry of Peptides and Proteins, Aachen, FRG, 1991’, Mainz Verlag, Aachen, 1993, DWI Reports, vol. 112a+B, pp 357–373

Degenkolb T, Becker D, Gams W, Degenkolb T, Bronk T, Kieß M (2009) Aib and Iva in the biosphere: neither rare nor necessarily extraterrestrial. Chem Biodivers 6:38–56

Degenkolb T, Krähenbühl T, Neuhoff T, Härlt A, Schlegel B, Gräfe U (2008) Peptaibiomics: towards a myriad of peptide synthetases in Trichoderma. Amino Acids 1:251–257

Degenkolb T, Gräfenhan T, Nirenberg HI, Gams W, Brückner H (2006a) Peptaibiomics: screening for polypeptide antibiotics (peptaibiotics) from plant-protective Trichoderma species. Chem Biodivers 3:593–610

Degenkolb T, Gräfenhan T, Nirenberg HI, Gams W, Brückner H (2006b) Trichoderma brevicompactum complex: Rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J Agric Food Chem 54:7074–7061

Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chavneri P, Samuels GJ (2011) Evolution of habitat preference and nutrition mode in acomosopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 67:2823–2837

Degenkolb T, Gräfenhan T, Nirenberg HI, Gams W, Brückner H (2006a) Peptaibiomics: screening for polypeptide antibiotics (peptaibiotics) from plant-protective Trichoderma species. Chem Biodivers 3:593–610

Degenkolb T, Gräfenhan T, Nirenberg HI, Gams W, Brückner H (2006b) Trichoderma brevicompactum complex: Rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J Agric Food Chem 54:7074–7061

Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chavneri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ (2008) The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and myco-toxins. Mycol Prog 7:177–219

Degenkolb T, Karimi Aghcheh R, Dieckmann R, Neuhoff T, Baker SE, Druzhinina IS, Kubicek CP, Brückner H, von Döhren H (2012) The production of multiple small peptaibol families by single 14-module derived fungus Trichoderma gamsii. In: Mukherjee PK, Singh US, Horwitz BA, Schmoll M, Chaverri P, Samuels GJ (2013) Evolution of habitat preference and nutrition mode in acomosopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 67:2823–2837

Chavneri P, Gazis RO, Samuels GJ (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia 103:139–151

Cheng L, Zhang P, Pan J-R, Zhou K-J, Huang K, Fang Z-X, Zhang Q-Q (2013) Asperelines G and H, two new peptaibols from the marine-derived fungus Trichoderma asperellum. Heterocycles 87:645–655

Chugh JK, Wallace BA (2001) Peptaibols: models for ion channels. Biochem Soc Trans 29:565–570

Chutarakul C, Alcocer M, Bailey K, Peberdy JF (2008) The production and characterisation of trichotoxin peptides by Trichoderma asperellum. Chem Biodivers 5:1694–1706

Degenkolb T, Brückner H (2008) Peptaibiomics: towards a myriad of bioactive peptide containing Cα-dialkylamino acids? Chem Biodivers 5:1817–1843

Degenkolb T, Gräfenhan T, Berg A, Nirenberg HI, Gams W, Brückner H (2006a) Peptaibiomics: screening for polypeptide antibiotics (peptaibiotics) from plant-protective Trichoderma species. Chem Biodivers 3:593–610

Degenkolb T, Gräfenhan T, Nirenberg HI, Gams W, Brückner H (2006b) Trichoderma brevicompactum complex: Rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J Agric Food Chem 54:7074–7061

Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari D, Chavneri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ (2008) The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and myco-toxins. Mycol Prog 7:177–219

Degenkolb T, Karimi Aghcheh R, Dieckmann R, Neuhoff T, Baker SE, Druzhinina IS, Kubicek CP, Brückner H, von Döhren H (2012) The production of multiple small peptaibol families by single 14-module peptide synthetases in Trichoderma Hypocrea. Chem Biodivers 9: 499–535

Ding G, Chen L, Chen A, Tian X, Chen X, Zhang H, Chen H, Liu XZ, Zhang Y, Zou ZM (2012) Trichalasins C and D from the plant endophytic fungus Trichoderma gamsii. Fitoterapia 83: 541–544

Ding G, Wang H, Li L, Song B, Chen H, Zhang H, Liu X, Zou Z (2014) Trichodermone, a spiro-cytochalasin with a tetracyclic nucleus (7/5/6/5) skeleton from the plant endophytic fungus Trichoderma gamsii. J Nat Prod 77:164–167

Springer
el Hajji M, Rebuffat S, Lecommaneur D, Bodo B (1987) Isolation and sequence determination of trichorizinanes A, antifungal peptides from *Trichoderma harzianum*. Int J Pept Prot Res 29:207–215

Elsila JE, Callahan MP, Glavin DP, Dworkin JP, Brückner H (2011) Distribution and stable isotopic composition of amino acids from fungal peptaibiotics: assessing the potential for meteorite contamination. Astrobiology 11:123–133

Figueoza M, Raja H, Falkinham JO III, Adcock AF, Kroll DJ, Wani MC, Pearce CJ, Oberlies NH (2013) Peptaibols, tetracyclic acid derivatives, isoocoumarins, and sesquispiropenes from a *Bionectria* sp. (MSX 47401). J Nat Prod 76:1007–1015

Fujita T, Takeishi Y, Fujita E, Takaishi Y, Komatsu M, Hiratsuka N (1978) New antibiotics, trichopolylns A and B: isolation and biological activity. Experientia 34:237–239

Fujita T, Takeishi Y, Okamura A, Fujita E, Fuji K, Hiratsuka N, Komatsu M, Arita I (1981) New peptide antibiotics, trichopolylns I and II, from *Trichoderma harzianum*. J Chem Soc Chem Comm 585–587

Fujita T, Takeishi Y, Ogawa T, Tokimoto K (1984) Fungal metabolites. 1. Isolation and biological activities of hypcelins A and B (growth inhibitors against *Lentinus edodes*) from *Hypocrea peltata*. Chem Pharm Bull 32:1822–1828

Fujita T, Iida A, Uesato S, Takeishi Y, Shingu T, Saito M, Moriita M (1988) Structural elucidation of trichosporin-B-Ia, Illa, Illd and V from *Trichoderma viride*. J Antibiot 41:814–818

Gams W, Baral HO, Jaklitsch WM, Kirschner R, Stadler M, V oglmayr H (2012) Blue pigment in European species of *Trichoderma polysporum*. Int J Pept Prot Res 29:207–215

Hou CT, Ciegler A, Hesseltine CW (1972) New mycotoxin, trichotoxin. J Chem Soc Chem Comm 585–587

Huang Q, Tezuka Y, Kikuchi T, Nishi A, Tubaki K, Tanaka K (1995) Diketopiperazines produced by endophytic fungi found in association with two Asteraceae species. Phytochemistry 71:1423–1429

Iida A, Okuda M, Usato S, Takeishi Y, Shingu T, Morita M, Fujita T (1990) Fungal metabolites. Part 3. Structural elucidation of antibiotic peptides, trichosporin-B-Illb, -lllc, -lVb, -lVc, -lVd, -Vla and -Vlb from *Trichoderma polysporum*. Application of fast‐atom bombardment mass spectrometry/mass spectrometry to peptides containing a unique Aib-Pro peptide bond. J Chem Soc Perkin Trans 1:3249–3255

Iida J, Iida A, Takahashi Y, Takaishi Y, Nagaoka Y, Fujita T (1993) Fungal metabolites. Part 5. Rapid structure elucidation of antibiotic peptides, minor components of trichosporin B from *Trichoderma polysporum*. Application of linked-scan and continuous-flow fast-atom bombardment mass spectrometry. J Chem Soc Perkin Trans 1:357–365

Iida A, Sanekata M, Wada S, Fujita T, Tanaka H, Enoki A, Fuse G, Kanai M, Asami K (1995) Fungal metabolites. XVIII. New membrane-modifying peptides, trichorizinones I–IV, from the fungus *Trichoderma harzianum*. Chem Pharm Bull 43:392–397

Iida A, Mihara T, Fujita T, Takeishi Y (1999) Peptidic immunosuppresants from the fungus *Trichoderma polysporum*. Bioorg Med Chem Lett 9:3393–3396

Isishii T, Nonaka K, Suga T, Obara S, Shiomi K (2013) Cytoosporone S with antimicrobial activity, isolated from the fungus *Trichoderma sp*. FKI-6626. Bioorg Med Chem Lett 23:679–681

Iwatsuki M, Kinoshita Y, Niitsuuma M, Hashida J, Mori M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Nonaka K, Masuma R, Otoguro K, Yamada H, Shiomi K, Obara S (2010) Antitrypanosomal peptaibiotics, trichosporins B-VIIa and B-VIIb, produced by the fungus *Trichoderma polysporum* FKI-4452. J Antibiot 63:331–333

Jaklitsch WM (2009) European species of *Hypocrea* Part I. The green-spores species. Stud Mycol 63:1–91

Jaklitsch WM (2011) European species of *Hypocrea* part II: species with haline ascosporles. Fungal Divers 48:1–250

Jaklitsch WM, Voglmayr H (2012) *Hypocrea britanniae* and *H. foliorum*: two remarkable new European species. Mycologia 104:925–941

Jaklitsch WM, Stadler M, Voglmayr H (2012) Blue pigment in *Hypocrea caeruleascens* sp. nov. and two additional new species in sect. *Trichoderma*. Mycologia 104:1213–1211

Jaklitsch WM, Samuels GI, Ismael A, Voglmayr H (2013) Disentangling the *Trichoderma viride* complex. Persoonia 31:112–146

Jaworski A, Brückner H (1999) Detection of new sequences of peptaibol antibiotics trichotoxins A–40 by on-line liquid chromatography–electrospray ionization mass spectrometry. J Chromatography A 862:179–189

Jaworski A, Brückner H (2001a) Peptaibol antibiotics trichoaureocins A, B, from the fungus *Trichoderma aureovertinum*. Amino Acids 21:6–7

Jaworski A, Brückner H (2001b) Sequences of polypeptide antibiotics stilboflavins, natural peptaibol libraries of the mold *Stilbella flavipes*. J Pept Sci 7:433–447

Jaworski A, Kirschbaum J, Brückner H (1999) Structures of trichovirins II, peptaibol antibiotics from the mold *Trichoderma viride* NRRL 5243. J Pept Sci 5:341–351

Jehee H, Blaszczzy L, Chelkowski J, Rogowicz K, Strakowska J (2013) Formation of 6-n-aryl-2H-pyran-2-one (6-PAP) and other volatile by different *Trichoderma* species. Mycol Prog. doi:10.1007/s11557-013-0942-2

Kim CS, Shirouzu T, Nakagin A, Sotome K, Nagasawa E, Maekawa N (2012) *Trichoderma mienon* sp. nov., isolated from mushroom farms in Japan. Antonie van Leeuwenhoek 102:629–641

Kim CS, Shirouzu T, Nakagin A, Sotome K, Nagasawa E, Maekawa N (2013) *Trichoderma eijii* and *T. pseudocloaceum*, two new species from Japan. Mycol Prog 12:739–753

Kimono Y, Brückner H (2013) Sequences of metanicins, 20-residue peptaibols from the ascomycetous fungus CBS 597.80. Chem Biodivers 10:813–826

Kirschbaum J, Krause C, Wcinheimer RK, Brückner H (2003) Sequences of alamethicins F30 and F50 reconsidered and reconciled. J Pept Sci 9:799–809

Knue C, Kirschbaum J, Brückner H (2006a) Peptaibiotics: an advanced, rapid and selective analysis of peptaibiotics/peptaibols by SPE/LC‐ES‐MS. Amino Acids 30:435–443

Knue C, Kirschbaum J, Jung G, Brückner H (2006b) Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold *Trichoderma viride*. J Pept Sci 12:321–327

Knue C, Kirschbaum J, Brückner H (2007) Peptaibiotics: microheterogeneity, dynamics, and sequences of trichobrachins, peptaibiotics from *Trichoderma parceramosum* Bissett (*T. longibrachiatum* Rifai). Chem Biodivers 4:1083–1102

Kremer A, Li SM (2010) A tyrosine O-prenyltransferase catalyses the first pathway-specific step in the biosynthesis of srideasin PL. Microbiology 156:278–286

Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpiere F, Deshpande N, von

© Springer
