Parameter free predictions within the proxy-SU(3) model

A. Martinou¹, D. Bonatsos¹, I.E. Assimakis¹, N. Minkov², S. Sarantopoulou¹, R.B. Cakirli³, R.F. Casten⁴,⁵, K. Blaum⁶

¹Institute of Nuclear and Particle Physics, National Centre for Scientific Research “Demokritos”, GR-15310 Aghia Paraskevi, Attiki, Greece
²Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigrad Road, 1784 Sofia, Bulgaria
³Department of Physics, University of Istanbul, 34134 Istanbul, Turkey
⁴Wright Laboratory, Yale University, New Haven, Connecticut 06520, USA
⁵Facility for Rare Isotope Beams, 640 South Shaw Lane, Michigan State University, East Lansing, MI 48824 USA
⁶Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany

Received 31 October 2017

Abstract.

Using a new approximate analytic parameter-free proxy-SU(3) scheme, we make predictions of shape observables for deformed nuclei, namely β and γ deformation variables, and compare them with empirical data and with predictions by relativistic and non-relativistic mean-field theories. Furthermore, analytic expressions are derived for $B(E2)$ ratios within the proxy-SU(3) model, free of any free parameters, and/or scaling factors. The predicted $B(E2)$ ratios are in good agreement with the experimental data for deformed rare earth nuclides.

PACS number: 21.60.Fw, 21.60.Ev, 21.60.Cs

1 Introduction

The proxy-SU(3) model has been recently introduced in Refs. [1][2]. The approximations used in this scheme have been discussed and justified through a Nilsson calculation in Ref. [1], while in Ref. [2] the way to predict the β and γ deformation parameters for any nucleus, using as input only the proton number Z and the neutron number N of the nucleus, as well as the quantum numbers λ and μ appearing in the SU(3) irreducible representation (irreps) characterizing this nucleus within the proxy-SU(3) scheme, has been described in detail.
A. Martinou, D. Bonatsos, I.E. Assimakis, N. Minkov, S. Sarantopoulou, et al.

In Section 2 of the present paper we carry out in the rare earth region a detailed comparison of the proxy-SU(3) predictions to detailed results obtained with the D1S Gogny interaction, tabulated in Ref. [3], while in Section 3 we calculate \(B(E2) \) ratios within ground state bands and \(\gamma_1 \) bands of some deformed rare earth nuclei and compare them to the existing data [4]. In both sections, no free parameters are used.

2 Predictions for the deformation parameters

2.1 Connection between deformation variables and SU(3) quantum numbers

A connection between the collective variables \(\beta \) and \(\gamma \) of the collective model [5] and the quantum numbers \(\lambda \) and \(\mu \) characterizing the irreducible representation \((\lambda, \mu) \) of SU(3) [6, 7] has long been established [8, 9], based on the fact that the invariant quantities of the two theories should possess the same values.

The relevant equation for \(\beta \) reads [8, 9]

\[
\beta^2 = \frac{4\pi}{5} \frac{1}{(Ar^2)^2} (\lambda^2 + \lambda\mu + \mu^2 + 3\lambda + 3\mu + 3),
\]

where \(A \) is the mass number of the nucleus and \(r^2 \) is related to the dimensionless mean square radius [10], \(\sqrt{r^2} = r_0 A^{1/6} \). The constant \(r_0 \) is determined from a fit over a wide range of nuclei [11, 12]. We use the value in Ref. [8], \(r_0 = 0.87 \), in agreement to Ref. [12]. The quantity in Eq. (1) is proportional to the second order Casimir operator of SU(3) [13],

\[
C_2(\lambda, \mu) = \frac{2}{3} (\lambda^2 + \lambda\mu + \mu^2 + 3\lambda + 3\mu).
\]

The relevant equation for \(\gamma \) reads [8, 9]

\[
\gamma = \arctan \left(\frac{\sqrt{3}(\mu + 1)}{2\lambda + \mu + 3} \right).
\]

2.2 Numerical results

In Fig. 1 (Fig. 2) results for the collective variable \(\beta \) (\(\gamma \)) are shown, calculated from Eq. (1) [Eq. (3)] and rescaled in the case of \(\beta \) as described in detail in Ref. [2]. Experimental results obtained from Ref. [15] are also shown for comparison, as in Ref. [2]. Furthermore, comparison to the detailed results provided by the D1S Gogny force, tabulated in Ref. [3], is made. By “Gogny D1S mean” we label the mean ground state \(\beta \) (\(\gamma \)) deformation [entry 11 (12) in the tables of [3]], while the error bars correspond to the variance of the ground state \(\beta \) (\(\gamma \)) deformation.
Parameter free predictions within the proxy-SU(3) model

deformation [entry 13 (14) in [3]]. By “Gogny D1S min.” we label the β (γ) deformation at the HFB energy minimum [entry 4 (5) in [3]]. In the case of β, predictions obtained with relativistic mean field theory (RMF) [14] are also shown.

In the case of β we note that the HFB minimum lies always within the error bars of the D1S Gogny mean g.s. deformation (except for $N = 84$), while in the case of γ we see that the HFB minimum lies well below the error bars of the D1S Gogny mean g.s. deformation for most of the N values, but jumps suddenly to very high values, close to 60 degrees, at or near $N = 116$.

In Fig. 1 the proxy-SU(3) predictions for β lie within the error bars of the D1S Gogny mean g.s. deformation, with the following few exceptions: a) The first ($N = 84$) point in Gd-Hf, b) the last two ($N = 120, 122$) points in Gd and Dy, as well as the last point ($N = 122$) in Er, c) a few isolated cases, like the $N = 110$ point in Er, the $N = 102$ point in W and Os, and the $N = 100, 102$ points in Pt. We stress, however, that proxy-SU(3) is only valid for deformed nuclei and therefore some of these differences [items a) and b)] may not be meaningful.

Similar observations can be made for γ in Fig. 2, where the exceptions occur in: a) The first three points ($N = 84, 86, 88$) in Gd-Yb, b) the last three ($N = 118, 120, 122$) points in W-Pt, which agree with the HFB minimum rather than with the mean g.s. deformation, c) a few isolated cases, like some of the $N = 106$ in Gd, Dy, Er, Hf, W, and several points in Yb.

2.3 Discussion

The above observations can be summarized as follows:

1) While the β deformation at the HFB energy minimum remains always close to the mean ground state β deformation, the behavior of the γ deformation is strikingly different. In most of the region the γ deformation at the HFB energy minimum remains close to zero, but it suddenly jumps to values close to 60 degrees near the end of the shell ($N = 116-122$). This jump is sudden in Gd-Hf, while it becomes more gradual in W, Os, Pt.

2) In the beginning of the region we see some failures of proxy-SU(3) at $N = 84, 86, 88$ in Gd-Hf. These failures are expected, since these nuclei are not well deformed, as known from their $R_{4/2}$ ratios.

3) In most of the region, the proxy-SU(3) predictions for both β and γ are in good agreement with the D1S Gogny mean g.s. deformations.

4) The agreement of the proxy-SU(3) predictions with the D1S Gogny mean g.s. deformations remains good up to the end of the shell for β, while for γ in W, Os, Pt it is observed that the proxy-SU(3) predictions for γ jump at the end of the shell from close agreement to the D1S Gogny mean g.s. deformations to close agreement with γ at the HFB energy minimum, i.e., close to 60 degrees.
3 B(E2) ratios

As discussed in Appendix A, $B(E2)$s within the proxy-SU(3) model are proportional to the square of the relevant reduced matrix element of the quadrupole operator Q. If ratios of $B(E2)$s within the same nucleus and within the same irreducible representation are considered, only the relevant SU(3)\rightarrowSO(3) coupling coefficients remain, while all other factors cancel out, leading to

$$
\frac{B(E2; L_i \rightarrow L_f)}{B(E2; 2g \rightarrow 0g)} = 5 \frac{2L_f + 1}{2L_i + 1} \frac{((\lambda, \mu)K_iL_i; (1, 1)2||((\lambda, \mu)K_fL_f))}{((\lambda, \mu)02; (1, 1)2||((\lambda, \mu)00))}^2, \quad (4)
$$

where normalization to the $B(E2)$ connecting the first excited 2^+ state to the 0^+ ground state of even-even nuclei is made. The needed SU(3)\rightarrowSO(3) coupling coefficients are readily obtained from the SU3CGVCS code [16], as described in Appendix A.

It should be noticed that the ratios given by Eq. (4) are completely free of any free parameters and/or scaling factors.

3.1 Numerical results

Calculations have been performed for the proxy-SU(3) irreps (54,12), (52,14), and (50,10). The irrep (54,12) accommodates 168Er, for which complete spectroscopy has been performed [17], and 160Gd, for which little data on $B(E2)$s exist [4]. The irrep (52,14) accommodates 162Dy, for which complete spectroscopy has been performed [18], and 166Er, for which rich data exist [4]. It also accommodates 172Er, for which little data on $B(E2)$s exist [4]. The irrep (50,10) accommodates 156Gd, which has been cited as the textbook example of the bosonic SU(3) in the IBM-1 framework [13]. The Alaga values [19], derived from the relevant Clebsch-Gordan coefficients alone, are also given for comparison.

3.2 Comparisons to experimental data for specific nuclei

$B(E2)$s within the ground state band are shown in Fig. 3. Agreement between the proxy-SU(3) predictions and the data is excellent in the cases of 156Gd, 162Dy, and 166Er, while in 168Er three points are missed. It appears that nuclear stretching [20] has been properly taken into account.

In Fig. 4 three pairs of nuclei, each pair accommodated within a single proxy-SU(3) irrep, are shown. These are the only pairs for which adequate data exist [4] in the region of 50-82 protons and 82-126 neutrons. Agreement within the experimental errors is seen in almost all cases.

Proxy-SU(3) predictions for $B(E2)$s within the γ_1 band, with $\Delta L = -2$ (increasing with L) and $\Delta L = -1$ (decreasing with L), are shown in Fig. 5, and
Parameter free predictions within the proxy-SU(3) model

are compared to the data for nuclei for which sufficient data exist \cite{4}. The distinction between increasing $B(E2)$s with $\Delta L = -2$ and decreasing $B(E2)$s with $\Delta L = -1$ is seen clearly in the data.

3.3 Discussion

The main findings of the present section can be summarized as follows.

Analytic expressions for $B(E2)$ ratios for heavy deformed nuclei providing numerical results in good agreement with experiment are derived within the proxy-SU(3) scheme without using any free parameters and/or scaling factors. The derivation, described in Appendix A, is exact. The only quantities appearing in the final formula are the relevant SU(3)\rightarrowSO(3) coupling coefficients, for which computer codes are readily available \cite{16,21}.

Concerning further work, spectra of heavy deformed nuclei will be considered within the proxy-SU(3) scheme, involving three- and/or four-body terms in order to break the degeneracy between the ground state and γ_1 bands \cite{22–24}. Furthermore, $B(M1)$ transition rates can be considered along the proxy-SU(3) path, using the techniques already developed \cite{25} in the framework of the pseudo-SU(3) scheme.

Acknowledgements

Work partly supported by the Bulgarian National Science Fund (BNSF) under Contract No. DFNI-E02/6, by the US DOE under Grant No. DE-FG02- 91ER- 40609, and by the MSU-FRIB laboratory, by the Max Planck Partner group, TUBA-GEBIP, and by the Istanbul University Scientific Research Project No. 54135.

Appendix A. Formulae used for $B(E2)$s

In most of the earlier work, effective charges

$$e_\pi = e + e_{eff}, \quad e_\nu = e_{eff}, \quad (5)$$

have been used, where the effective charge e_{eff} is usually fixed so that the calculated $B(E2)$ transition rate for the $2^+_1 \rightarrow 0^+_1$ transition reproduces the experimental value \cite{25}. In the present approach we make the choice $e_{eff} = 0$, which leads to $e_\pi = e$ and $e_\nu = 0$.

The needed matrix elements of the relevant quadrupole operators, Q^π and Q^ν for protons and neutrons respectively, are given in detail in Appendix D of Ref. \cite{23}, with SU(3)\rightarrowSO(3) coupling coefficients \cite{16,21,26,27}, as well as 9-(λ, μ) coefficients \cite{21,26,28} appearing in the relevant expressions. Codes for calculating
these coefficients are readily available, given in the references just cited. With $e_{eff} = 0$ one sees that only the matrix elements of Q^π are needed. Furthermore, if we use ratios of $B(E2)$ transition rates within a given nucleus, the $9\,\left(\lambda, \mu\right)$ coefficients will cancel out and the only nontrivial term remaining in the $B(E2)$ ratios will be the ratio of the relevant SU(3)\rightarrowSO(3) coupling coefficients, which remarkably involve only the highest weight (λ, μ) irrep characterizing the whole nucleus, while they are independent of the (λ_π, μ_π) and (λ_ν, μ_ν) irreps characterizing the protons and the neutrons separately.

References

[1] D. Bonatsos, I. E. Assimakis, N. Minkov, A. Martinou, R. B. Cakirli, R. F. Casten, and K. Blaum, Proxy-SU(3) symmetry in heavy deformed nuclei, Phys. Rev. C 95, 064325 (2017).
[2] D. Bonatsos, I. E. Assimakis, N. Minkov, A. Martinou, S. Sarantopoulou, R. B. Cakirli, R. F. Casten, and K. Blaum, Analytic predictions for nuclear shapes, prolate dominance and the prolate-oblate shape transition in the proxy-SU(3) model, Phys. Rev. C 95, 064326 (2017).
[3] J. -P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Péru, N. Pillet, and G. F. Bertsch, Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction, Phys. Rev. C 81, 014303 (2010).
[4] Brookhaven National Laboratory ENSDF database [http://www.nndc.bnl.gov/ensdf/]
[5] A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. II: Nuclear Deformations (Benjamin, New York, 1975).
[6] J. P. Elliott, Collective motion in the nuclear shell model I. Classification schemes for states of mixed configurations, Proc. Roy. Soc. Ser. A 245, 128(1958).
[7] J. P. Elliott, Collective motion in the nuclear shell model II. The introduction of intrinsic wave-functions, Proc. Roy. Soc. Ser. A 245, 562 (1958).
[8] O. Castaños, J. P. Draayer, and Y. Leschber, Shape variables and the shell model, Z. Phys. A 329, 33 (1988).
[9] J. P. Draayer, S. C. Park, and O. Castaños, Shell-model interpretation of the collective-model potential-energy surface, Phys. Rev. Lett. 62, 20 (1989).
[10] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980).
[11] H. De Vries, C. W. De Jager, and C. De Vries, Nuclear charge-density-distribution parameters from elastic electron scattering, At. Data Nucl. Data Tables 36, 495 (1987).
[12] J. R. Stone, N. J. Stone, and S. Moszkowski, Incompressibility in finite nuclei and nuclear matter, Phys. Rev. C 89, 044316 (2014).
[13] F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).
[14] G. A. Lalazissis, S. Raman, and P. Ring, Ground-state properties of even-even nuclei in the relativistic mean-field theory, At. Data Nucl. Data Tables 71, 1 (1999).
[15] S. Raman, C. W. Nestor, Jr., and P. Tikkanen, Transition probability from the ground to the first-excited 2^+ state of even-even nuclides, At. Data Nucl. Data Tables 78, 1 (2001).
Parameter free predictions within the proxy-SU(3) model

[16] C. Bahri, D. J. Rowe, and J. P. Draayer, Programs for generating Clebsch-Gordan coefficients of SU(3) in SU(2) and SO(3) bases, Comput. Phys. Commun. 159, 121 (2004).

[17] D. D. Warner, R. F. Casten, and W. F. Davidson, Interacting boson approximation description of the collective states of 168Er and a comparison with geometrical models, Phys. Rev. C 24, 1713 (1981).

[18] A. Aprahamian, X. Wu, S.R. Lesher, D.D. Warner, W. Gelletly, H.G. Börner, F. Hoyler, K. Schreckenbach, R.F. Casten, Z.R. Shi, D. Kusnezov, M. Ibrahim, A.O. Macchiavelli, M.A. Brinkman, and J.A. Becker, Complete spectroscopy of the 162Dy nucleus, Nucl. Phys. A 764, 42 (2006).

[19] R. F. Casten, Nuclear Structure from a Simple Perspective, 2nd edition (Oxford U. Press, Oxford, 2000).

[20] J.-L. Pin, J.-Q. Chen, C.-L. Wu, and D. H. Feng, Nuclear stretching, Phys. Rev. C 43, 2224 (1991).

[21] Y. Akiyama and J. P. Draayer, A user’s guide to FORTRAN programs for Wigner and Racah coefficients of SU$_3$, Comput. Phys. Commun. 5, 405 (1973).

[22] J. P. Draayer and K. J. Weeks, Shell-model description of the low-energy structure of strongly deformed nuclei, Phys. Rev. Lett. 51, 1422 (1983).

[23] J. P. Draayer and K. J. Weeks, Towards a shell model description of the low-energy structure of deformed nuclei I. Even-even systems, Ann. Phys. (N.Y.) 156, 41 (1984).

[24] G. Berghe, H. E. De Meyer, and P. Van Isacker, Symmetry-conserving higher-order interaction terms in the interacting boson model, Phys. Rev. C 32, 1049 (1985).

[25] O. Castaños, J. P. Draayer, and Y. Leschber, Towards a shell-model description of the low-energy structure of deformed nuclei II. Electromagnetic properties of collective M1 bands, Ann. Phys. (NY) 180, 290 (1987).

[26] J. P. Draayer and Y. Akiyama, Wigner and Racah coefficients for SU$_3$, J. Math. Phys. 14, 1904 (1973).

[27] D. J. Rowe and C. Bahri, Clebsch-Gordan coefficients of SU(3) in SU(2) and SO(3) bases, J. Math. Phys. 41, 6544 (2000).

[28] D. J. Millener, A note on recoupling coefficients for SU(3), J. Math. Phys. 19, 1513 (1978).
Figure 1. Proxy SU(3) predictions for Gd-Pt isotopes for β, obtained from Eq. (1), as described in detail in Ref. [2], compared with results by the D1S-Gogny interaction (D1S-Gogny) [3] and by relativistic mean field theory (RMF) [14], as well as with empirical values (exp.) [15]. See subsection 2.2 for further discussion.
Parameter free predictions within the proxy-SU(3) model

Figure 2. Same as Fig. 1, but for γ, derived from Eq. (3). See subsection 2.2 for further discussion.
Figure 3. B(E2) values within the ground state band are shown for the indicated proxy-SU(3) irreps and for four nuclei, with data taken from [4]. All values are normalized to $B(E2; 2_1^+ \rightarrow 0_1^+)$. Results for (54,12) are not shown in the upper left panel, because for this band they are very similar to those of (52,14). See subsection 3.2 for further discussion.
Parameter free predictions within the proxy-SU(3) model

Figure 4. Experimental values of $B(E2)$s within the ground state bands of three pairs of nuclei, each pair accommodated within the same proxy-SU(3) irrep. Data are taken from [4]. All values are normalized to $B(E2; 2^+_1 \rightarrow 0^+_1)$. See subsection 3.2 for further discussion.
Figure 5. B(E2)s within the γ_1 band are shown for the indicated proxy-SU(3) irreps and for two nuclei, for which sufficient data exist \[4\]. All values are normalized to $B(E2; 2^+ \rightarrow 0^+)$.

See subsection 3.2 for further discussion.