Mitochondrial Ca2+ uptake in skeletal muscle health and disease

Jingsong Zhou*, Kamal Dhakal & Jianxun Yi

Kansas City University of Medicine and Bioscience, Dybedal Research Center, Kansas City MO 64106, USA

Received May 16, 2015; accepted June 7, 2016; published online July 15, 2016

Muscle uses Ca2+ as a messenger to control contraction and relies on ATP to maintain the intracellular Ca2+ homeostasis. Mitochondria are the major sub-cellular organelle of ATP production. With a negative inner membrane potential, mitochondria take up Ca2+ from their surroundings, a process called mitochondrial Ca2+ uptake. Under physiological conditions, Ca2+ uptake into mitochondria promotes ATP production. Excessive uptake causes mitochondrial Ca2+ overload, which activates downstream adverse responses leading to cell dysfunction. Moreover, mitochondrial Ca2+ uptake could shape spatio-temporal patterns of intracellular Ca2+ signaling. Malfunction of mitochondrial Ca2+ uptake is implicated in muscle degeneration. Unlike non-excitable cells, mitochondria in muscle cells experience dramatic changes of intracellular Ca2+ levels. Besides the sudden elevation of Ca2+ level induced by action potentials, Ca2+ transients in muscle cells can be as short as a few milliseconds during a single twitch or as long as minutes during tetanic contraction, which raises the question whether mitochondrial Ca2+ uptake is fast and big enough to shape intracellular Ca2+ signaling during excitation-contraction coupling and creates technical challenges for quantification of the dynamic changes of Ca2+ inside mitochondria. This review focuses on characterization of mitochondrial Ca2+ uptake in skeletal muscle and its role in muscle physiology and diseases.

skeletal muscle, mitochondria, Ca2+

Citation: Zhou, J., Dhakal, K., and Yi, J. (2016). Mitochondrial Ca2+ uptake in skeletal muscle health and disease. Sci China Life Sci 59, 770–776. doi: 10.1007/s11427-016-5089-3

INTRODUCTION

ATP is the major currency of energy for sustaining life and is mostly produced in mitochondria. At the expense of other nutrient substrates and oxygen, mitochondria produce ATP that can be exchanged instantly whenever intracellular energy is required (Knowles, 1980). As described in the historical review by O’Rourke (O’Rourke, 2010), mitochondria, when initially discovered by Richard Altman in 1890, were called “bioplast”, meaning “life germs”. The word “mitochondria” was given by Carl Benda in 1898. For decades mitochondria were studied as the power house of cell, and soon it was realized that Ca2+ entry into mitochondria is required to stimulate the Krebs cycle and electron transport chain activity that result in enhanced ATP synthesis inside mitochondria (Balaban, 2002; Carafoli, 2014; Denton et al., 1980; Drago et al., 2011).

Ca2+ is fundamental to normal cellular function. Cells possess specialized mechanisms to ensure a tightly controlled intracellular Ca2+ level. These mechanisms involve complex interplay between intracellular Ca2+ storage, buffering and Ca2+ influx and efflux through the plasma membrane. The mitochondrial matrix has the ability to sequester Ca2+ when free cytosolic Ca2+ rises above a set point (Nicholls, 2005). Thus, mitochondria are recognized as one of the sub-cellular organelles participating in regulation of the intracellular Ca2+ homeostasis. Mitochondria are dynamic organelles that interact with the plasma membrane and the endoplasmic reticulum (ER) (Boncompagni et al., 2009; Eisner et al., 2013), and contribute to the recycling of Ca2+ back to the vicinal ER (Arnaudeau et al., 2001; Frieden et al., 2005). While intracellular Ca2+ signaling controls...
mitochondrial motility, distribution and function (Yi et al., 2004), reciprocally, mitochondria also modulates spatial and temporal intracellular Ca\(^{2+}\) levels.

Skeletal muscle contraction needs both Ca\(^{2+}\) and ATP. Thus, muscle physiology largely depends on two intracellular organelles: the sarcoplasmic reticulum (SR) for Ca\(^{2+}\) storage and release (Franzini-Armstrong and Jorgensen, 1994), and mitochondria for ATP synthesis (Russell et al., 2014). In non-muscle cells, the functional and physical coupling between ER and mitochondria is attributed to the inner-organellar tether proteins called mitofusin at the juxtaposition between the ER and mitochondria (de Brito and Scorrano, 2008). This type of structure was also found in skeletal muscle cells in which a tether like protein connects the SR and mitochondria (Boncompagni et al., 2009; Pietrangelo et al., 2015). These pivotal findings have heightened the role of mitochondria as a key player in the dynamic regulation of physiological Ca\(^{2+}\) signaling in skeletal muscle. Although it is believed that there is resemblance of mitochondrial structure and function among all cell types, the way by which mitochondrial Ca\(^{2+}\) uptake regulating intracellular Ca\(^{2+}\) signaling has specific features in skeletal muscle. Mitochondria in muscle cells face rapid changes of intracellular Ca\(^{2+}\) levels during contraction. Whether mitochondria Ca\(^{2+}\) uptake modifies Ca\(^{2+}\) signaling during excitation-contraction coupling has been a fundamental question in muscle physiology (O’Rourke and Blatter, 2009; Rossi et al., 2009). In order to answer this fundamental question, effort has been made to evaluate mitochondrial Ca\(^{2+}\) uptake in skeletal muscle under various physiological conditions. Characterization of mitochondrial Ca\(^{2+}\) uptake is a key step to understand the role of mitochondria in muscle physiology and diseases. This review focuses on characterization of mitochondrial Ca\(^{2+}\) uptake in skeletal muscle and its significance in skeletal muscle physiology and diseases.

MITOCHONDRIAL Ca\(^{2+}\) UPTAKE REGULATES ENERGY PRODUCTION IN SKELETAL MUSCLE

Ca\(^{2+}\) is a critical messenger not only for muscle contraction, but also for promoting mitochondrial ATP production. In mammalian cells, Ca\(^{2+}\) is a key regulator of ATP production (Griffiths and Rutter, 2009). Four important mitochondrial dehydrogenase involved in the direct supply of NADH (reduced nicotinamide adenine dinucleotide) and FADH (reduced flavin adenine dinucleotide) for ATP production were found to be regulated by Ca\(^{2+}\) inside mitochondria (Denton, 2009). A transient increase of free Ca\(^{2+}\) concentration is required to stimulate electron transport chain (ETC) of mitochondria in cardiac cells (Gueguen et al., 2005; Territo et al., 2000). The role of mitochondrial Ca\(^{2+}\) uptake in cardiac muscle energy metabolism has been widely studied (Balaban, 2002; Brookes et al., 2004).

In skeletal muscle, ATP demand increases ~100 times during rapid muscle contraction. Such high demand of ATP cannot be fulfilled by the finite amount ATP normally stored inside the skeletal muscle. Muscle contraction requires fast and sustained ATP production, which is fulfilled primarily by mitochondria (Porter and Wall, 2012). As such, skeletal muscle is known to be a tissue of high energy demand with mitochondria occupying 10%–15% of the fiber volume and densely packed within muscle cells (Eisenberg, 1983). In skeletal muscle, mitochondria are located largely within the I-bands, surrounding the SR network (Eisenberg, 1983). Importantly, mitochondria are found to be linked to the SR in skeletal muscle by developmentally regulated tethering structures (Boncompagni et al., 2009; Pietrangelo et al., 2015). This intimate juxtaposition of the SR and mitochondria, together with the ability of mitochondria to take up Ca\(^{2+}\) from their surroundings, allows the movement of Ca\(^{2+}\) between these organelar systems (Bianchi et al., 2004; Csordas and Hajnoczky, 2009; Rizzuto and Pozzan, 2006; Santo-Domingo and Damaurex, 2010). These movements are believed to help tailor mitochondrial metabolism and ATP synthesis to the demand of muscle contraction. Early studies of intact skeletal muscle observed an increase in NADH/NAD\(^{+}\) during the transition from resting to working status, suggesting that an enhanced intracellular Ca\(^{2+}\) level promotes mitochondrial metabolism in skeletal muscle (Duboc et al., 1988; Kunz, 2001; Sahlin, 1985). Later, using isolated mitochondria derived from skeletal muscle, Kavanagh et al. confirmed that an elevation in mitochondrial Ca\(^{2+}\) was able to stimulate oxidative phosphorylation (Kavanagh et al., 2000). As discussed in the review article by Rossi et al., mitochondrial Ca\(^{2+}\) uptake should assist with stimulation of aerobic ATP production in order to balance increased ATP consumption associated with cross bridge cycling and SERCA-mediated Ca\(^{2+}\) sequestration during muscle contraction (Rossi et al., 2009).

EVALUATION OF MITOCHONDRIAL Ca\(^{2+}\) UPTAKE IN SKELETAL MUSCLE

In order to understand the role of mitochondrial Ca\(^{2+}\) uptake in skeletal muscle physiology, it is vital to evaluate the amount and the kinetics of mitochondrial Ca\(^{2+}\) uptake in skeletal muscle cells under physiological conditions. The early studies on mitochondrial Ca\(^{2+}\) uptake were performed on isolated mitochondria (Deluca and Engstrom, 1961; Mraz, 1962). These studies showed that isolated mitochondria from rat kidney were able to take up 60% of Ca\(^{2+}\) from the surrounding medium (Deluca and Engstrom, 1961). The kinetics of mitochondrial Ca\(^{2+}\) uptake was well documented in the isolated mitochondria from the liver and heart (Carafoli and Crompton, 1978; McMillin-Wood et al., 1980). Sembrowich et al. was the first to explore the Ca\(^{2+}\) uptake by mitochondria derived from different types of skeletal muscle both from rats and rabbits (Sembrowich et al., 1985). Using direct patch-clamp recording on the inner mi-
tochondrial membrane, Fieni et al. recorded the mitochondrial Ca2+ uptake activity in mitoplasts isolated from mitochondria of different types of including skeletal muscle (Fieni et al., 2012). These \textit{in vitro} studies also suggested a potential influence of mitochondrial Ca2+ uptake on cytosolic Ca2+ signaling during muscle contraction. However, such conclusion needs validation from \textit{in vivo} studies. Specifically, it requires characterization of mitochondrial Ca2+ uptake in intact muscle cells under physiological conditions.

There are a few probes available to monitor Ca2+ fluxes into and out of mitochondria in live cells. The commercially available fluorescent dye Rhod-2 has been widely used in investigating mitochondrial Ca2+ handling in cultured cells because the acetoxymethyl (AM) ester of rhod-2 (Rhod-2-AM) preferentially targets mitochondria (see review (Pozzan and Rudolf, 2009)). Rhod-2 has been used to measure mitochondrial Ca2+ uptake in cultured skeletal muscle myotubes under electric stimulation (Eisner et al., 2010). The shortcoming is that Rhod-2 is not a ratiometric dye (Fonteriz et al., 2010). The uneven distributions of the dye among individual mitochondria can also cause problems for quantification of mitochondrial Ca2+ concentration changes based on fluorescence intensity (Lakin-Thomas and Brand, 1987). Rhod-2 has also been used to monitor mitochondrial Ca2+ uptake in intact skeletal muscle fibers following repeated tetanic stimulation (Ainbinder et al., 2015; Bruton et al., 2003). However, the specific targeting of Rhod-2-AM to mitochondria in intact muscle fibers was challenging. To avoid the Rhod-2 signals from outside mitochondria, Shkryl and Shirokova recorded mitochondrial Ca2+ uptake during caffeine-induced Ca2+ release in permeabilized rat skeletal muscle fibers (Shkryl and Shirokova, 2006). In this case, cell membrane permeabilization of the muscle fibers allowed the non-targeted Rhod-2 dye to leak out of the cytosol. However, since muscle fibers with permeabilized membrane no longer respond to physiological stimulations (i.e. membrane depolarization), the condition employed in such a study is not suitable for quantitative and specific evaluation of mitochondrial Ca2+ uptake in intact skeletal muscle cells under physiological conditions.

Due to various limitations, quantitative measurement of mitochondrial Ca2+ uptake in skeletal muscle remains to be challenging. GFP and other functionally similar fluorescent proteins have modernized the research in cell biology (Tsien, 1998). Owing to mutations and variations in gene sequences, genetically encoded fluorescent proteins have been developed as Ca2+ biosensors with varying properties including differences in fluorescence spectra, Ca2+ binding affinities and kinetics as well as those that change spectral properties upon binding to calcium (Palmer et al., 2006). The rapid growth of molecular biology techniques also allows the genetically encoded Ca2+ biosensors to target to specific sub-cellular organelles such as mitochondria (Pozzan and Rudolf, 2009). Thus, organelle-targeted ratiometric Ca2+ biosensors has become a better choice for characterization of mitochondrial Ca2+ uptake in skeletal muscle under physiological conditions. Using a mitochondrial targeted biosensor (2mtYC2), Rudolf et al. demonstrated that a single twitch could cause measurable dynamic changes in mitochondrial Ca2+ levels in live skeletal muscle fibers. However, they also noted some limitations of 2mtYC2 for mitochondrial Ca2+ measurement in muscle cells, for instance, YC2 had a small dynamic range with an increase of the emission ratio <26% in the cytosol and <14% in mitochondria during muscle contraction (Rudolf et al., 2004). Subsequently, Palmer et al. developed a new version of mitochondrial targeted Ca2+ biosensor, 4mtD3cpv, which has a dynamic ratio range of 5.1 (Palmer et al., 2006). Upon testing 4mtD3cpv on live skeletal muscle fibers under voltage-clamp conditions, Zhou et al. found that while 4mtD3cpv showed a significant improvement in monitoring mitochondrial Ca2+ levels in live muscle fibers with an increased dynamic ratio range, the kinetics of the detected signal set some limitations for quantitatively calculating the changes of the mitochondrial Ca2+ level (Zhou et al., 2008). As an alternative, YC3.6, another Ca2+ biosensor constructed by Nagai and colleagues (Nagai et al., 2004), with a dynamic ratio range of 5.6 and apparent K_d of 0.25 μmol L-1 was later tested by Yi et al. in live skeletal muscle fibers (Yi et al., 2011). By introducing a mitochondrial targeting sequence (Wang et al., 2008) at the 5′-end of YC3.6 cDNA, they developed a mitochondrial targeting Ca2+ biosensor, mt11-YC3.6. The highly specific mitochondrial expression of mt11-YC3.6 and the simple kinetics of the recorded YC3.6 ratio signal allowed quantitative evaluation of the dynamic changes of free Ca2+ levels inside mitochondrial matrix in skeletal muscle fibers in response to a Ca2+ release transient induced by cell membrane depolarization under whole-cell voltage clamped conditions. This study shows that at the peak of the voltage-induced Ca2+ release, the mitochondrial Ca2+ uptake contributes to around 10%–18% of the total Ca2+ removal, and the average mitochondrial Ca2+ influx is around 4.1±1.0 μmol L-1 ms-1 (Yi et al., 2011). This study represents the first quantitative characterization of mitochondrial Ca2+ uptake and its role in shaping the cytosolic Ca2+ signaling in skeletal muscle during excitation-contraction coupling.

IMPAIRED SKELETAL MUSCLE MITOCHONDRIAL Ca2+ SIGNALING IN MUSCLE DISEASES

Mitochondrial Ca2+ uptake plays vital roles in life and death of the cell. Impaired mitochondrial Ca2+ uptake is observed in various skeletal muscle myopathies and neuromuscular diseases. Defective intracellular Ca2+ signaling is associated with degeneration of skeletal muscle cells in aging (Dellino, 2002; Weisleder et al., 2006) and muscular dystrophy (mdx) (De Backer et al., 2002; DiFranco et al., 2008; Han...
Ca2+ are mainly controlled by the SR, which forms a network that is intimately associated with mitochondria. This close spatial proximity between the SR and mitochondria, together with the ability of mitochondria to take up Ca2+, suggests that mitochondria could play an important role in shaping intracellular Ca2+ signaling in muscle cells. However, whether mitochondrial Ca2+ uptake is large and rapid enough to modulate physiological Ca2+ transients in skeletal muscle and whether alterations in mitochondrial Ca2+-buffering capacity contribute to muscle dysfunction under pathophysiological conditions are fundamental questions for understanding muscle degeneration in various diseases. A direct evidence of mitochondrial regulation on the SR Ca2+ release activity in live skeletal muscle cells was obtained from the study on an amyotrophic lateral sclerosis (ALS) mouse model (G93A) with transgenic overexpression of the human ALS-associated SOD1(G93A) mutant (Zhou et al., 2010). The G93A muscle fibers display localized depolarization of mitochondrial inner membrane potential in the fiber segment near the neuromuscular junction. The depolarized mitochondria lose the driving force for Ca2+ uptake, which impairs mitochondrial Ca2+ buffering capacity. The fiber segments with depolarized mitochondria shows greater osmotic stress-induced Ca2+ release activity, which can include propagating Ca2+ waves. Those Ca2+ waves are confined to regions of depolarized mitochondria and stop propagating shortly upon entering the regions of normal, polarized mitochondria. Uncoupling of mitochondrial membrane potential with FCCP or inhibition of mitochondrial Ca2+ uptake by Ru360 also led to cell-wide propagation of such Ca2+ release events. These data reveals that mitochondrial Ca2+ uptake is large and rapid enough to shape cytosolic Ca2+ signaling in skeletal muscle under physiological conditions.

The ALS muscle fibers provide a unique opportunity to characterize the mitochondrial Ca2+ uptake under physiological conditions. The localized mitochondrial defect in the ALS muscle fibers allows for examination of mitochondrial contribution to Ca2+ removal during excitation-contraction coupling by comparing Ca2+ transients in regions with normal and depolarized mitochondria in the same muscle fiber. Using whole cell voltage-clamp technique, Yi et al. showed that Ca2+ transients elicited by membrane depolarization in the fiber segment with depolarized mitochondria displayed increased amplitude of ~10%. Using the mitochondria-targeted Ca2+ biosensor (mt11-YC3.6) expressed in ALS muscle fibers, these authors recorded the dynamic change of mitochondrial free Ca2+ levels during voltage-induced SR Ca2+ release and detected a reduced Ca2+ uptake by mitochondria in the fiber segment with depolarized mitochondria, which mirrored the elevated Ca2+ transients in the cytosol in the same region (Yi et al., 2011). This study provides a direct demonstration of the importance of mitochondrial Ca2+ uptake in shaping cytosolic Ca2+ signaling in skeletal muscle during excitation-
contraction coupling and suggests that the reduced Ca\(^{2+}\) buffering capacity of mitochondria likely contributes to muscle degeneration in ALS.

Although, it was well known that mitochondria from all cell types were able to take up Ca\(^{2+}\) and that the channel or transport responsible for mitochondrial Ca\(^{2+}\) uptake was defined as mitochondrial Ca\(^{2+}\) uniporter (MCU), the molecular identity of the putative MCU had remained mysterious for decades (Carafoli, 2014; Drago et al., 2011; Starkov, 2010). It was not until 2011 when two research groups independently identified the gene that encodes MCU, a transmembrane protein located to the inner mitochondrial membrane (Baughman et al., 2011; De Stefani et al., 2011). This new progress has further advanced the investigation of the role of mitochondrial Ca\(^{2+}\) uptake in skeletal muscle health and diseases. Pan et al. generated a global knockout mouse model (MCU-/-). The MCU-/- mice survived well with a smaller body size, but showed impaired skeletal muscle performance along with absence of mitochondrial Ca\(^{2+}\) uptake in isolated skeletal muscle mitochondria, indicating that mitochondrial Ca\(^{2+}\) uptake plays an important role in skeletal muscle development and performance (Pan et al., 2013). Recently, direct evidence of MCU-dependent mitochondrial Ca\(^{2+}\) uptake in protecting denervation-induced skeletal muscle atrophy was provided by Mammucari et al. and Chemello et al., in which, the authors have shown that virus-mediated overexpression or silencing of MCU had significant impact on skeletal muscle atrophy shown that virus-mediated overexpression or silencing of MCU had significant impact on skeletal muscle atrophy. This new progress has further advanced the investigation of the role of mitochondrial Ca\(^{2+}\) uptake in skeletal muscle function. While the Ca\(^{2+}\) influx into mitochondria is required for promoting ATP synthesis, excessive Ca\(^{2+}\) accumulation in mitochondria initiates a series of molecular malfunctions leading to mitochondrial damage and cell death. Under diseased conditions, such as muscular dystrophy, gene-mutation related myopathies and aging, enhanced SR Ca\(^{2+}\) release activity overloads mitochondria with Ca\(^{2+}\), leading to mitochondrial dysfunction and muscle cell degeneration. In those cases, mitochondrial damage seems to be a consequence of extensive elevation of cytosolic Ca\(^{2+}\) levels. In ALS G93A skeletal muscle, the mitochondrial membrane potential is depolarized, which leads to a reduced Ca\(^{2+}\) buffering capacity of mitochondria. This reduced mitochondrial Ca\(^{2+}\) uptake further overloads those polarized mitochondria with Ca\(^{2+}\) and causes further mitochondrial damage in the same cell. In this case, the compromised mitochondrial Ca\(^{2+}\) uptake is a leading cause of the disrupted intracellular Ca\(^{2+}\) signaling that initiates muscle cell degeneration. In summary, any dysregulation in the amount and kinetics of mitochondrial Ca\(^{2+}\) uptake will cause mitochondrial dysfunction and abnormal intracellular Ca\(^{2+}\) signaling that leads to muscle cell degeneration. It is predicted that identification of molecular basis associated with mitochondrial Ca\(^{2+}\) uptake will further advance the understanding of the role of mitochondrial Ca\(^{2+}\) uptake in skeletal muscle health and diseases.

Compliance and ethics The author(s) declare that they have no conflict of interest.

Acknowledgements This work was supported by National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)/National Institutes of Health (NIH) Grant (R01 AR057404) to Jingsong Zhou. Funder plays no role for this study, in design, data collecting, data analysis and interpretation, and manuscript writing.

Ainbinder, A., Boncompagni, S., Protasi, F., and Dirksen, R.T. (2015). Role of Mitofusin-2 in mitochondrial localization and calcium uptake in skeletal muscle. Cell Calcium 57, 14–24.

Andersson, D.C., Betzenhauser, M.J., Reiken, S., Meli, A.C., Umanakaya, A., Xie, W., Shioni, T., Zalk, R., Lacampagne, A., and Marks, A.R. (2011). Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 14, 196–207.

Arnaudeau, S., Kelley, W.L., Walsh, J.V.Jr., and Demaurex, N. (2001). Mitochondria recycle Ca\(^{2+}\) to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 276, 29430–29439.

Aydin, J., Andersson, D.C., Hanninen, S.L., Wredenberg, A., Tavi, P., Park, C.B., Larsson, N.G., Bruton, J.D., and Westerblad, H. (2009). Increased mitochondrial Ca\(^{2+}\) and decreased sarcoplasmic reticulum Ca\(^{2+}\) in mitochondrial myopathy. Hum Mol Genet 18, 278–288.

Balaban, R.S. (2002). Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 34, 1259–1271.

Baughman, J.M., Perocchi, F., Dirksen, R.T., Meli, A.C., Umanskaya, O., Bogorad, R.L., Koteliansky, V., and Mootha, V.K. (2011). Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345.

Bianchi, K., Rimessi, A., Prandini, A., Szabokai, G., and Rizzuto, R. (2004). Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochim Biophys Acta 1742, 119–131.

Boncompagni, S., Rossi, A.E., Micaroni, M., Beznoussenko, G.V., Polishchuk, R.S., Dirksen, R.T., and Protasi, F. (2009). Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol Biol Cell 20, 1058–1067.

Brini, M., Manni, S., Pierobon, N., Du, G.G., Sharma, P., MacLennan, D.H., and Carafoli, E. (2005). Ca\(^{2+}\) signaling in HEK-293 and skeletal muscle cells expressing recombinant Ryanodine receptors harboring malignant hyperthermia and central core disease mutations. J Biol Chem 280, 3327–3337.
Chem 280, 15380–15389.
Brookes, P.S., Yoon, Y., Robotham, J.L., Anders, M.W., and Sheu, S.S. (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287, C817–C833.
Brunot, J., Tavi, P., Aydin, J., Westerblad, H., and Lannergren, J. (2003). Mitochondrial and myoplasmic [Ca\(^{2+}\)] in single fibers from mouse limb muscles during repeated tetanic contractions. J Physiol 551, 179–190.
Carafoli, E. (2014). Discussion forum on mitochondrial calcium. Historical introduction. Biochem Biophys Res Commun 449, 365–366.
Carafoli, E., and Crompton, M. (1978). The regulation of intracellular calcium by mitochondria. Ann N Y Acad Sci 307, 269–284.
Chemello, F., Mammucari, C., Gherardi, G., Rizzuto, R., Lanfranchi, G., and Cagni, S. (2015). Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU). Genom Data 5, 64–67.
Csdorás, G., Golenár, T., Seifert, E.L., Kamer, K.J., Sancak, Y., Perocchi, F., Moffat, C., Weaver, D., de la Fuente Perez, S., Bogorad, R., Koteli-anský, V., Adijanto, J., Mootha, V.K., and Hajnóczky, G. (2013). MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca\(^{2+}\) uniporter. Cell Metab 17, 976–987.
Csdoras, G., and Hajnóczky, G. (2009). SR/ER-mitochondrial local communication: calcium and ROS. Biochim Biophys Acta 1787, 1352–1362.
De Backer, F., Vandebrouck, C., Gailly, P., and Gillis, J.M. (2002). Molecular mechanisms and therapeutics of the deficit in mitochondrial calcium in- and efflux machineries reveal themselves. EMBO J 21, 309–320.
De Stefani, D., Raffaello, A., Teardo, E., Szabo, I., and Rizzuto, R. (2011). A forty-kidodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 470, 336–340.
De Stefani, D., Rizzuto, R., and Pozzan, T. (2016). Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem 85, 161–192.
Delbono, O. (2002). Molecular mechanisms and therapeutics of the deficit in mitochondrial calcium in- and efflux machineries reveal themselves. EMBO J 21, 309–320.
Deluca, H.F., and Engstrom, G.W. (1961). Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci USA 47, 1744–1750.
Eisner, V., Parra, V., Lavandero, S., Hidalgo, C., and Jaimovich, E. (2010). Mitochondria fine-tune the slow Ca\(^{2+}\) transients induced by electrical stimulation of skeletal myotubes. Cell Calcium 48, 358–370.
Fiene, F., Lee, S.B., Jan, Y.N., and Kirchok, Y. (2012). Activity of the mitochondrial calcium uniporter varies greatly between tissues. Nat Commun 3, 1317.
Fonteriz, R.I., de la Fuente, S., Moreno, A., Lobaton, C.D., Montero, M., and Alvarez, J. (2010). Monitoring mitochondrial [Ca\(^{2+}\)] dynamics with rhod-2, ratiometric perimac and aequorin. Cell Calcium 48, 61–69.
Frappanti-Armstrong, C., and Jorgensen, A.O. (1994). Structure and development of E-C coupling units in skeletal muscle. Annu Rev Physiol 56, 509–534.
Frieden, M., Arnaudeau, S., Castelbou, C., and Demaures, N. (2005). Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca\(^{2+}\)-ATPases. J Biol Chem 280, 43198–43208.
Griffiths, E.J., and Rutter, G.A. (2009). Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophys Acta 1787, 1324–1333.
Gueguen, N., Lefaucheur, L., Ecolan, P., Fillaut, M., and Herpin, P. (2005). Ca\(^{2+}\)-activated myosin-ATPases, creatine and adenylate kinas regulate mitochondrial function according to myofibre type in rabbit. J Physiol 564, 723–735.
Han, R., Grounds, M.D., and Bakker, A.J. (2006). Measurement of sub-membrane [Ca\(^{2+}\)] in adult myofibers and cytosolic [Ca\(^{2+}\)] in myotubes from normal and mdx mice using the Ca\(^{2+}\) indicator FFP-18. Cell Calcium 40, 299–307.
Hofp, F.W., Turner, P.R., Denetclaw, W.F., Jr., Reddy, P., and Steinhardt, R.A. (1996). A critical evaluation of resting intracellular free calcium regulation in dystrophic mdx muscle. Am J Physiol 271, C1325–C1339.
Juhn, B.S., Mishra, J., monoac, S., Fu, D., Jiang, W., Sheu, S.S., and J. O.U. (2016). The mitochondrial Ca\(^{2+}\) uniporter: regulation by auxiliary subunits and signal transduction pathways. Am J Physiol Cell Physiol, pp.0319 02015.
Kamer, K.J., and Mootha, V.K. (2015). The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol 16, 545–553.
Kavanagh, N.L., Ainscow, E.K., and Brand, M.D. (2000). Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria. Biochim Biophys Acta 1457, 57–70.
Knowles, J.R. (1980). Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49, 877–914.
Kunz, W.S. (2001). Control of oxidative phosphorylation in skeletal muscle. Biochim Biophys Acta 1504, 12–19.
Lakin-Thomas, P.L., and Brand, M.D. (1987). Mitogenetic stimulation transiently increases the exchangeable mitochondrial calcium pool in rat thymocytes. Biochem J 246, 173–177.
Logan, C.V., Szabadkai, G., Sharpe, J.A., Parry, D.A., Torelli, S., Childs, A.M., Kriek, M., Phadke, R., Johnson, C.A., Roberts, N.Y., Bonnithon, D., Tsien, R.Y., Whyte, T., Munteanu, I., Foley, A.R., Wheway, G., Szymanska, K., Natarajan, S., Abdelhame, Z.A., Morgan, J.E., Roer, H., Santen, G.W., Niks, E.H., van der Pol, W.L., Lindbou, D., Raffaello, A., De Stefani, D., den Dunnen, J.T., Sun, Y., Ginjaa, I., Sewry, C.A., Hurles, M., Rizzuto, R., UK10K Consortium, Duchen, M.R., Muntoni, F., and Sheridan, E. (2014). Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nature 46, 188–193.
Mallouk, N., Jacquesmond, V., and Allard, B. (2000). Elevated subsarcolemmal Ca\(^{2+}\) in mdx mouse skeletal muscle fibers detects with Ca\(^{2+}\)-activated K\(^{+}\) channels. Proc Natl Acad Sci USA 97, 4950–4955.
Mammucari, C., Gherardi, G., Zamparo, I., Raffaello, A., Boncompagni, S., Chemello, F., Cagnin, S., Braga, A., Zanin, S., Pallafacchina, G., Zentilin, L., Sandri, M., De Stefani, D., Protasi, F., Lanfranchi, G., and Rizzuto, R. (2015). The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. Cell Rep 10, 1269–1279.
McMillin-Wood, J., Wolokowitz, P.E., Chu, A., Tate, C.A., Goldstein, M.A., and Entman, M.L. (1980). Calcium uptake by two preparations of mitochondria from heart. Biochim Biophys Acta 951, 251–265.
Mraz, F.R. (1962). Calcium and strontium uptake by rat liver and kidney mitochondria. Proc Soc Exp Biol Med 111, 429–431.
Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M., and Miyawaki, A. (2004). Expanded dynamic range of fluorescent indicators for Ca\(^{2+}\) by
circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101, 10554–10559.

Nicholls, D.G. (2005). Mitochondria and calcium signaling. Cell Calcium 38, 311–317.

O’Rourke, B. (2010). From bioblats to mitochondria: ever expanding roles of mitochondria in cell physiology. Front Physiol 1, 7.

O’Rourke, B., and Blatter, L.A. (2009). Mitochondrial Ca2+ uptake: tortoise or hare? J Mol Cell Cardiol 46, 767–774.

Palmer, A.E., Giacomello, M., Kortemme, T., Hires, S.A., Lev-Ram, V., Baker, D., and Tsien, R.Y. (2006). Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13, 521–530.

Pan, X., Liu, J., Nguyen, T., Liu, C., Sun, J., Teng, Y., Fergusson, M.M., Rovira, II, Allen, M., Springer, D.A., Aponte, A.M., Gucek, M., Balaban, R.S., Murphy, E., and Finkel, T. (2013). The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15, 1464–1472.

Percocchi, F., Gohil, V.M., Girgis, H.S., Bao, X.R., McCombs, J.E., Pietrangelo, L., D’Incecco, A., Ainbinder, A., Michelucci, A., Kern, H., Rudolf, R., Mongillo, M., Magalhães, P.J., and Pozzan, T. (2004).

Robert, V., Massimino, M.L., Tosello, V., Marsault, R., Cantini, M., Sorrentino, V., and Pozzan, T. (2010). MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467, 291–296.

Pietrangelo, L., D’Incecco, A., Ambinder, A., Michelucci, A., Kern, H., Dirksen, R.T., Boncompagni, S., and Protasi, F. (2013). Age-dependent uncoupling of mitochondria from Ca2+ release units in skeletal muscle. Oncotarget 6, 35358–35371.

Porter, C., and Wall, B.T. (2012). Skeletal muscle mitochondrial function: is it quality or quantity that makes the difference in insulin resistance? J Physiol 590, 5935–5936.

Pozzan, T., and Rudolf, R. (2009). Measurements of mitochondrial calcium in vivo. Biochim Biophys Acta 1787, 1317–1323.

Rizzuto, R., and Pozzan, T. (2006). Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86, 369–408.

Robert, V., Massimino, M.L., Tosello, V., Marsault, R., Cantini, M., Sorrentino, V., and Pozzan, T. (2001). Alteration in calcium handling at the subcellular level in mdx myotubes. J Biol Chem 276, 4647–4651.

Rossi, A.E., Boncompagni, S., and Dirksen, R.T. (2009). Sarcolasmic reticulum mitochondrial symbiosis: bidirectional signaling in skeletal muscle. Exerc Sport Sci Rev 37, 29–35.

Rudolf, R., Mongillo, M., Magalhaes, P.J., and Pozzan, T. (2004). In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166, 527–536.

Russell, A.P., Foletta, V.C., Snow, R.J., and Wadley, G.D. (2014). Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochim Biophys Acta 1840, 1276–1284.

Sahlin, K. (1985). NADH in human skeletal muscle during short-term intense exercise. Pflugers Arch 403, 193–196.

Santo-Domingo, J., and Demaurex, N. (2010). Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797, 907–912.

Sembrowich, W.L., Quintinski, J.J., and Li, G. (1985). Calcium uptake in mitochondria from different skeletal muscle types. J Appl Physiol 59, 137–141.

Shkryl, V.M., Martins, A.S., Ullrich, N.D., Nowycky, M.C., Niggli, E., and Shirokova, N. (2009). Reciprocal amplification of ROS and Ca2+ signals in stressed mdx dystrophic skeletal muscle fibers. Pflugers Arch 458, 915–928.

Shkryl, V.M., and Shirokova, N. (2006). Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle. J Biol Chem 281, 1547–1554.

Starkov, A.A. (2010). The molecular identity of the mitochondrial Ca2+ sequestration system. FEBS J 277, 3652–3663.

Territo, P.R., Mootha, V.K., French, S.A., and Balaban, R.S. (2000). Ca2+ activation of heart mitochondrial oxidative phosphorylation: role of the F0F1-ATPase. Am J Physiol Cell Physiol 278, C423–C435.

Tsien, R.Y. (1998). The green fluorescent protein. Annu Rev Biochem 67, 527–554.

Vandehouck, C., Martin, D., Colson-Van Schoor, M., Debaix, H., and Gailly, P. (2002). Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158, 1089–1096.

Wang, W., Fang, H., Groom, L., Cheng, A., Zhang, W., Liu, J., Wang, X., Li, K., Han, P., Zheng, M., Yin, J., Wang, W., Mattson, M.P., Kao, J.P., Lakatta, E.G., Sheu, S.S., Ouyang, K., Chen, J., Dirksen, R.T., and Cheng, H. (2008). Superoxide flashes in single mitochondria. Cell 134, 279–290.

Wang, X., Weisleder, N., Collet, C., Zhou, J., Chu, Y., Hirata, Y., Zhao, X., Pan, Z., Broto, M., Cheng, H., and Ma, J. (2005). Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 7, 525–530.

Weisleder, N., Broto, M., Komazaki, S., Pan, Z., Zhao, X., Nosek, T., Parness, J., Takeshima, H., and Ma, J. (2006). Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. J Cell Biol 174, 639–645.

Warendberg, A., Wibom, R., Wilhelmsson, H., Graff, C., Wiener, H.H., Burden, S.J., Oldfors, A., Westerblad, H., and Larsson, N.G. (2002). Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci USA 99, 15066–15071.

Yi, J., Ma, C., Li, Y., Weisleder, N., Rios, E., Ma, J., and Zhou, J. (2011). Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling. J Biol Chem 286, 32436–32443.

Yi, M., Weaver, D., and Hajnoczky, G. (2004). Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167, 661–672.

Zhou, J., Yi, J., Fu, R., Liu, E., Siddique, T., Rios, E., and Deng, H.X. (2010). Hyperactive intracellular calcium signaling associated with localized mitochondrial defects in skeletal muscle of an animal model of amyotrophic lateral sclerosis. J Biol Chem 285, 705–712.

Zhou, J., Yi, J., Royer, L., Pouvreau, S., and Rios, E. (2008). Distribution, responses during Ca2+ transients and calibration of a mitochondria-targeted cameleon biosensor expressed in muscle of live mice. Biophys J 94, 253a.