On the Biharmonic Curves in the Special Linear Group $\text{SL}(2, \mathbb{R})$

I. I. Onnis and A. Passos Passamani

Abstract. We characterize the biharmonic curves in the special linear group $\text{SL}(2, \mathbb{R})$. In particular, we show that all proper biharmonic curves in $\text{SL}(2, \mathbb{R})$ are helices and we give their explicit parametrizations as curves in the pseudo-Euclidean space \mathbb{R}^4_2.

Mathematics Subject Classification. 53C30, 58E20.

Keywords. Special linear group, biharmonic curves, helix curves, homogeneous spaces.

1. Introduction

Let $\phi : (M^m, g) \rightarrow (N^n, h)$ be a smooth map between two Riemannian manifolds. The tension field of ϕ is, by definition, $\tau(\phi) = \text{trace} \nabla d\phi$. According to Eells and Lemaire, see [8], ϕ is biharmonic if it is a critical point of the bienergy functional

$$E_2(\phi) = \frac{1}{2} \int_M |\tau(\phi)|^2 v_g.$$

The first variation formula for E_2 was computed by Jiang in [9, 10] as

$$\tau_2(\phi) := -\Delta^\phi \tau(\phi) - \text{trace} R^N (d\phi, \tau(\phi)) d\phi = 0,$$

where Δ^ϕ denotes the rough Laplacian acting on $C(\phi^{-1}TN)$, that with respect to a local orthonormal frame field $\{E_i\}_{i=1}^m$ on M is defined by

$$\Delta^\phi = -\text{trace} \left(\nabla^2 \phi \right)^2 = -\sum_{i=1}^m \left\{ \nabla^\phi_{E_i} \nabla^\phi_{E_i} - \nabla^\phi_{\nabla^h_{E_i} E_i} \right\},$$

where ∇^ϕ is the connection in $C(\phi^{-1} TN)$ induced by the Levi–Civita connection of (N, h).

The field $\tau_2(\phi)$ is named bitension field of ϕ.

A. Passos Passamani was supported by Capes–Brasil.
A curve \(\gamma : I \to (N, h) \), parametrized by arc-length, is biharmonic if \(\gamma \) is a biharmonic map, that is if
\[
\nabla^3_{\gamma'} \gamma' - R(\gamma', \nabla_{\gamma'} \gamma') \gamma' = 0.
\]

As a geodesic curve \((\tau(\phi) = \nabla_{\gamma'} \gamma' = 0)\) is biharmonic, we are interested in biharmonic curves that are not geodesics, i.e. proper biharmonic curves.

The study of the proper biharmonic curves on a curved surface starts with [5] where are described such curves for a surface, proving that biharmonic curves on a surface of non-positive Gaussian curvature are geodesics.

For 3-dimensional Riemannian manifolds with constant sectional curvature, the cases of null and negative curvature are considered in [3, 7] and it is shown that the only biharmonic curves are the geodesics. Moreover, in [2], it is considered the case of positive curvature showing that biharmonic curves have constant geodesic curvature and geodesic torsion.

Besides the spaces forms, the most interesting 3-dimensional homogeneous Riemannian spaces are those with 4-dimensional isometry group: the Berger spheres, the Heisenberg group, the special linear group \(SL(2, \mathbb{R}) \), and the Riemannian products \(S^2 \times \mathbb{R} \) and \(\mathbb{H}^2 \times \mathbb{R} \), where \(S^2 \) and \(\mathbb{H}^2 \) are the 2-dimensional sphere and the hyperbolic plane, respectively. A crucial feature in these spaces is that they admit a Riemannian submersion onto a surface of constant Gaussian curvature, called the Hopf fibration.

Balmuş [1] determined the parametric equations of all proper biharmonic curves on the Berger sphere \(S^3 \) as curves in \(\mathbb{R}^4 \) and gave a geometric interpretation for those curves in the unit Euclidean sphere \(S^3 \). In [6] the authors proved that any proper biharmonic curve in the Heisenberg group is a helix and gave its explicit parametrization.

Also, in [4] the authors considered the proper biharmonic curves in the Bianchi–Cartan–Vranceanu spaces \(\widetilde{SL}(2, \mathbb{R}) \), \(SU(2) \), \(S^2 \times \mathbb{R} \) and \(\mathbb{H}^2 \times \mathbb{R} \), proving that these curves are helices and giving their parametric equations.

In this paper we study the proper biharmonic curves in the special linear group \(SL(2, \mathbb{R}) \) endowed with a suitable 1-parameter family \(g_\tau \) of metrics that we shall describe in Sect. 2. Using the same technique given in [1] (for the case of the Berger spheres) and in [6] (for the Heisenberg group), we conclude that the biharmonic curves of \(SL(2, \mathbb{R}) \) make a constant angle \(\vartheta \) with the vector field tangent to the Hopf fibration. Moreover, in Theorem 3.4, we prove that the differential equation
\[
\gamma^{IV} + (b^2 - 2a) \gamma'' + a^2 \gamma = 0,
\]
where \(a \) and \(b \) are real constants depending on \(\vartheta \) and \(\tau \), must be satisfied by any proper biharmonic curve in \(SL(2, \mathbb{R}) \), as a curve in the pseudo-Euclidean space \(\mathbb{R}^4_2 \). We separate the study in three cases depending on the sign of the constant \((b^2 - 4a)\) obtaining, in each case, the expressions of these curves as curves in \(\mathbb{R}^4_2 \).
2. Preliminaries

Let \mathbb{R}^4 denote the 4-dimensional pseudo-Euclidean space endowed with the semi-definite inner product of signature $(2, 2)$ given by

$$\langle v, w \rangle = v_1 w_1 + v_2 w_2 - v_3 w_3 - v_4 w_4, \quad v, w \in \mathbb{R}^4.$$

We identify the special linear group with

$$\text{SL}(2, \mathbb{R}) = \{(z, w) \in \mathbb{C}^2: |z|^2 - |w|^2 = 1\} = \{v \in \mathbb{R}^4: \langle v, v \rangle = 1\} \subset \mathbb{R}^4_2$$

and we shall use the Lorentz model of the hyperbolic plane with constant Gauss curvature -4, that is

$$H^2(-4) = \{(x, y, z) \in \mathbb{R}^3_1: x^2 + y^2 - z^2 = -1/4\},$$

where \mathbb{R}^3_1 is the Minkowski 3-space. Then the Hopf map $\psi: \text{SL}(2, \mathbb{R}) \to H^2(-4)$ given by

$$\psi(z, w) = \frac{1}{2} (2z\bar{w}, |z|^2 + |w|^2)$$

is a submersion, with circular fibers, and if we put

$$X_1(z, w) = (iz, iw), \quad X_2(z, w) = (i\bar{w}, i\bar{z}), \quad X_3(z, w) = (\bar{w}, \bar{z}),$$

we have that X_1 is a vertical vector field, while X_2, X_3 are horizontal. The vector X_1 is called the Hopf vector field.

We shall endow $\text{SL}(2, \mathbb{R})$ with the 1-parameter family of metrics $g_\tau, \tau > 0$, given by

$$g_\tau(X_i, X_j) = \delta_{ij}, \quad g_\tau(X_1, X_1) = \tau^2, \quad g_\tau(X_1, X_j) = 0, \quad i, j \in \{2, 3\},$$

which renders the Hopf map $\psi: (\text{SL}(2, \mathbb{R}), g_\tau) \to H^2(-4)$ a Riemannian submersion. With respect to the inner product in \mathbb{R}^4_2 the metric g_τ is given by

$$g_\tau(X, Y) = -\langle X, Y \rangle + (1 + \tau^2)\langle X, X_1 \rangle\langle Y, X_1 \rangle. \quad (4)$$

From now on, we denote $(\text{SL}(2, \mathbb{R}), g_\tau)$ with $\text{SL}(2, \mathbb{R})_{\tau}$. Obviously

$$E_1 = -\tau^{-1} X_1, \quad E_2 = X_2, \quad E_3 = X_3, \quad (5)$$

is an orthonormal basis on $\text{SL}(2, \mathbb{R})_{\tau}$. The Levi-Civita connection ∇^τ of $\text{SL}(2, \mathbb{R})_{\tau}$ is given by:

$$\nabla^\tau_{E_1} E_1 = 0, \quad \nabla^\tau_{E_2} E_2 = 0, \quad \nabla^\tau_{E_3} E_3 = 0,$$

$$\nabla^\tau_{E_1} E_2 = -\tau^{-1} (2 + \tau^2) E_3, \quad \nabla^\tau_{E_1} E_3 = \tau^{-1} (2 + \tau^2) E_2,$$

$$\nabla^\tau_{E_2} E_1 = -\tau E_3, \quad \nabla^\tau_{E_2} E_3 = \tau E_2, \quad \nabla^\tau_{E_3} E_2 = -\tau E_1 = -\nabla^\tau_{E_2} E_3. \quad (6)$$

Using the conventions

$$R(X, Y)Z = \nabla^\tau_X \nabla^\tau_Y Z - \nabla^\tau_Y \nabla^\tau_X Z - \nabla^\tau_{[X,Y]} Z$$

and

$$R(X, Y, W, Z) = g_\tau(R(X, Y)Z, W),$$
the nonzero components of the Riemannian curvature are
\[R_{1212} = \tau^2, \quad R_{1313} = \tau^2, \quad R_{2323} = -(4 + 3\tau^2), \] (7)
where \(R_{ijkl} = R(E_i, E_j, E_k, E_l) \).

Finally, we recall that the isometry group of \(SL(2, \mathbb{R})_{\tau} \) is the 4-dimensional indefinite unitary group \(U_1(2) \) that can be identified with:
\[
U_1(2) = \{ A \in O_2(4) : AJ_1 = \pm J_1 A \},
\]
where \(J_1 = \begin{pmatrix} J & 0 \\ 0 & J \end{pmatrix} \), \(J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \), and \(O_2(4) = \{ A \in GL(4, \mathbb{R}) : A^t = \epsilon A - \epsilon \} \), \(\epsilon = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \), \(I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \), is the indefinite orthogonal group.

3. Biharmonic Curves in \(SL(2, \mathbb{R})_{\tau} \)

Let \(\gamma : I \to SL(2, \mathbb{R})_{\tau} \) be a differentiable curve parametrized by arc length and let \(\{ T, N, B \} \) be the orthonormal frame field tangent to \(SL(2, \mathbb{R})_{\tau} \) along \(\gamma \) defined as follows: we denote by \(T \) the unit vector field tangent to \(\gamma \), by \(N \) the unit vector field in the direction of \(\nabla_{\gamma} T \) normal to \(\gamma \), and we choose \(B \) so that \(\{ T, N, B \} \) is a positive oriented orthonormal basis. Then we have the following Frenet equations:
\[
\begin{align*}
\nabla_{\gamma} T &= k_1 N, \\
\nabla_{\gamma} T N &= -k_1 T + k_2 B, \\
\nabla_{\gamma} T B &= -k_2 N,
\end{align*}
\] (8)
where \(k_1 = |\nabla_{\gamma} T| \) is the geodesic curvature of \(\gamma \) and \(k_2 \) its geodesic torsion.

Theorem 3.1. Let \(\gamma : I \to SL(2, \mathbb{R})_{\tau} \) be a differentiable curve parametrized by arc length. Then \(\gamma \) is proper biharmonic if and only if
\[
\begin{align*}
k_1 &= \text{constant} \neq 0, \\
k_1^2 + k_2^2 &= \tau^2 - 4(1 + \tau^2) B_1^2, \\
k_2' &= -4(1 + \tau^2) N_1 B_1.
\end{align*}
\] (9)

Proof. Consider a curve \(\gamma : I \to SL(2, \mathbb{R})_{\tau} \) parametrized by arc length. In this case the Eq. (2) becomes
\[
(\nabla_{\gamma} T)^3 T - R(T, \nabla_{\gamma} T T) T = 0.
\] (10)
Using the Frenet equations into (10), we obtain the conditions
\[
\begin{align*}
k_1 &= \text{constant} \neq 0, \\
k_1^2 + k_2^2 &= R(T, N, T, N), \\
k_2' &= -R(T, N, T, B).
\end{align*}
\] (11)
Writing
\[
T = \sum_{i=1}^{3} T_i E_i, \quad N = \sum_{i=1}^{3} N_i E_i, \quad B = \sum_{i=1}^{3} B_i E_i, \tag{12}
\]
and using (7), we have that
\[
R(T, N, T, N) = \tau^2 - 4(1 + \tau^2)B_1^2,
\]
\[
R(T, N, T, B) = 4(1 + \tau^2)N_1 B_1.
\]

Proposition 3.2. If \(\gamma : I \to \text{SL}(2, \mathbb{R})_\tau \) is a proper biharmonic curve parameterized by arc length, then its geodesic curvature and torsion are constant.

Proof. From the Frenet equations it results that
\[
g_\tau(\nabla^r T, E_1) = -g_\tau(k_2 N, E_1) = -k_2 N_1.
\]
On the other hand, using (6), we get
\[
g_\tau(\nabla^r T, E_1) = g_\tau(B'_1 E_1 + T_2 B_3 \nabla^r E_2 E_3 + T_3 B_2 \nabla^r E_3 E_2, E_1) \\
= B'_1 + \tau(T_2 B_3 - T_3 B_2) \\
= B'_1 - \tau N_1.
\]
Combining these two equations, we have
\[
B'_1 = (\tau - k_2) N_1. \tag{13}
\]
Now, using (9) we obtain
\[
k_2 k'_2 = -4(1 + \tau^2) B_1 B'_1. \tag{14}
\]
From (13) and (14) it results that \((\tau - 2k_2)B_1 N_1 = 0\). Therefore, we have two possibilities: \(B_1 N_1 = 0\) that, together with (9), implies \(k'_2 = 0\); or \(k_2 = \frac{\tau}{2}\). In both cases \(k_2\) is constant. \qed

Proposition 3.3. If \(\gamma : I \to \text{SL}(2, \mathbb{R})_\tau \) is a proper biharmonic curve parameterized by arc length, then it makes a constant angle with the Hopf vector field \(E_1 \) and its tangent vector field can be written as:
\[
\gamma'(s) = T(s) = \cos \vartheta E_1 + \sin \vartheta \sin \beta(s) E_2 + \sin \vartheta \cos \beta(s) E_3, \tag{15}
\]
where \(\vartheta \in (0, \pi/2] \) and \(\beta : I \to \mathbb{R} \) is a smooth function.

Proof. First we note that \(B_1 \neq 0 \). Indeed if \(B_1 = 0 \) and \(N_1 = 0 \), then the curve is the integral curve of the vector field \(E_1 \) and it is a geodesic. Moreover, if \(B_1 = 0 \) and \(N_1 \neq 0 \), from (13) we get \(k_2 = \tau \) that, together with the second equation of (9), gives \(k_1 = 0 \).

Since \(B_1 \neq 0 \), the third equation of (9) and the Proposition 3.2 imply \(N_1 = 0 \). Now, using the Eqs. (6) and (8) we get
\[
k_1 N_1 = g_\tau(\nabla^r T, E_1) = T'_1.
\]
We conclude that \(T_1 = \text{constant} \) and we obtain the expression (15). \qed

Using the previous result we have the following
Theorem 3.4. Let $\gamma : I \to \text{SL}(2, \mathbb{R})_\tau \subset \mathbb{R}^4_2$ be a curve parametrized by arc length. Then γ is proper biharmonic if and only if, as a curve in \mathbb{R}^4_2, it satisfies

$$\gamma^{IV} + (b^2 - 2a)\gamma'' + a^2 \gamma = 0,$$

(16)

where a and b are the constants given by:

$$\begin{cases}
a = \frac{1}{2}(-\tau^{-2} + 1 - (1 + \tau^{-2}) \cos 2\vartheta) - \tau^{-1} \cos \vartheta \beta', \\
b = \beta' = -\tau^{-1}(2 + \tau^2) \cos \vartheta \pm \sqrt{(4 + 5\tau^2) \cos^2 \vartheta - 4(1 + \tau^2)},
\end{cases}$$

(17)

with

$$\frac{4(1 + \tau^2)}{(4 + 5\tau^2)} \leq \cos^2 \vartheta < 1.$$

Proof. Writing

$$\gamma(s) = (x_1(s), x_2(s), x_3(s), x_4(s)),$$

from (15) we have that the coordinates functions of γ in \mathbb{R}^4_2 satisfy

$$\begin{cases}
x_1' = \tau^{-1} \cos \vartheta x_2 + \sin \vartheta \cos \beta x_3 + \sin \vartheta \sin \beta x_4, \\
x_2' = -\tau^{-1} \cos \vartheta x_1 + \sin \vartheta \sin \beta x_3 - \sin \vartheta \cos \beta x_4, \\
x_3' = \sin \vartheta \cos \beta x_1 + \sin \vartheta \sin \beta x_2 + \tau^{-1} \cos \vartheta x_4, \\
x_4' = \sin \vartheta \sin \beta x_1 - \sin \vartheta \cos \beta x_2 - \tau^{-1} \cos \vartheta x_3,
\end{cases}$$

(18)

Deriving (18), it results that

$$\begin{cases}
x_1'' = ax_1 - bx_2', \\
x_2'' = ax_2 + bx_1', \\
x_3'' = ax_3 - bx_4', \\
x_4'' = ax_4 + bx_3',
\end{cases}$$

(19)

where

$$\begin{cases}
a = \frac{1}{2}(-\tau^{-2} + 1 - (1 + \tau^{-2}) \cos 2\vartheta) - \tau^{-1} \cos \vartheta \beta', \\
b = \beta' = -\tau^{-1}(2 + \tau^2) \cos \vartheta \pm \sqrt{(4 + 5\tau^2) \cos^2 \vartheta - 4(1 + \tau^2)}.
\end{cases}$$

Now, we shall prove that b is constant and we determine its expression. Computing $\nabla^\tau T T$, using (15) and (6), the geodesic curvature and the normal vector field are given by

$$k_1 = \pm \sin \vartheta(\beta' + 2\tau^{-1}(1 + \tau^2) \cos \vartheta), \quad N = \pm(\cos \beta E_2 - \sin \beta E_3).$$

(20)

Then

$$B = T \wedge N = \pm(- \sin \vartheta E_1 + \cos \vartheta \sin \beta E_2 + \cos \vartheta \cos \beta E_3),$$

$$k_2 = g_\tau(\nabla^\tau N, B) = \tau - \cos \vartheta(\beta' + 2\tau^{-1}(1 + \tau^2) \cos \vartheta).$$

(21)

Substituting the expressions of k_1, k_2 and B_1 in the second equation of (9), it results that

$$\beta' = -\tau^{-1}(2 + \tau^2) \cos \vartheta \pm \sqrt{(4 + 5\tau^2) \cos^2 \vartheta - 4(1 + \tau^2)}.$$
Now deriving twice (19), and using (18), we obtain the Eq. (16). Also, as the curve γ is not harmonic, from (20), $\cos \vartheta \neq 1$. □

Remark 3.5. Using (18) and (19), we find that:

$$
\langle \gamma, \gamma \rangle = 1, \quad \langle \gamma', \gamma' \rangle = \tilde{B}, \quad \langle \gamma, \gamma' \rangle = 0,
$$

$$
\langle \gamma', \gamma'' \rangle = 0, \quad \langle \gamma'', \gamma'' \rangle = D, \quad \langle \gamma, \gamma'' \rangle = -\tilde{B},
$$

$$
\langle \gamma', \gamma''' \rangle = -D, \quad \langle \gamma'', \gamma''' \rangle = 0, \quad \langle \gamma, \gamma''' \rangle = 0,
$$

$$
\langle \gamma''', \gamma''''' \rangle = E,
$$

where

$$
\tilde{B} = (1 + \tau^{-2}) \cos^2 \vartheta - 1, \quad D = a^2 + b^2 \tilde{B} + 2ab \tau^{-1} \cos \vartheta,
$$

$$
E = a(a - 2b^2)\tilde{B} + b^2D - 2a^2b \tau^{-1} \cos \vartheta.
$$

In addition, as

$$
J_1\gamma = X_1|_{\gamma} = -\tau E_1|_{\gamma},
$$

using (15) and (19), we obtain the following identities

$$
\langle J_1\gamma, \gamma' \rangle = -\tau^{-1} \cos \vartheta,
$$

$$
\langle J_1\gamma, \gamma'' \rangle = 0, \quad \langle J_1\gamma', \gamma'' \rangle = -a \tau^{-1} \cos \vartheta - b \tilde{B} := \tilde{I},
$$

$$
\langle J_1\gamma', \gamma''' \rangle = 0, \quad \langle J_1\gamma', \gamma''''' \rangle = 0,
$$

$$
\langle J_1\gamma'', \gamma''' \rangle + \langle J_1\gamma, \gamma''''' \rangle = 0.
$$

To determine the expression of the position vector of γ in \mathbb{R}^4, we integrate (16), dividing the study in three cases, according to the three possibilities:

(i) $b^2 = 4a$;
(ii) $b^2 > 4a$;
(iii) $b^2 < 4a$.

4. The Case $b^2 = 4a$

Theorem 4.1. Let $\gamma : I \rightarrow \text{SL}(2, \mathbb{R})_\tau \subset \mathbb{R}^4_2$ be a proper biharmonic curve parametrized by arc length such that $b^2 = 4a$. Then

$$
b = -\tau^{-1}(2 + \tau^2) \cos \vartheta + \sqrt{(4 + 5\tau^2) \cos^2 \vartheta - 4(1 + \tau^2)},
$$

with

$$
\cos^2 \vartheta = \frac{(2 + \tau^2)^2}{4 + 5\tau^2 + \tau^4}.
$$

Also,

$$
\gamma(s) = A \left(\cos(\sqrt{a} s) + g_{14} s \sin(\sqrt{a} s), -\sin(\sqrt{a} s) + g_{14} s \cos(\sqrt{a} s),
$$

$$
-g_{14} s \cos(\sqrt{a} s), g_{14} s \sin(\sqrt{a} s) \right),
$$

(25)
where \(g_{14} \) is the constant given by

\[
g_{14} = \frac{\tau}{\sqrt{4 + 5\tau^2 + \tau^4}}
\]

and \(A \in O_2(4) \) is a \(4 \times 4 \) indefinite orthogonal matrix which commutes with \(J_1 \).

Proof. As \(b^2 = 4a \), the differential equation (16) becomes

\[
\gamma''''(s) + 2a \gamma''(s) + a^2 \gamma(s) = 0.
\]

(26)

Integrating (26) we have

\[
\gamma(s) = \cos(\sqrt{a} s) g_1 + \sin(\sqrt{a} s) g_2 + s \cos(\sqrt{a} s) g_3 + s \sin(\sqrt{a} s) g_4,
\]

(27)

where \(g_1, g_2, g_3 \) and \(g_4 \) are constant vectors of \(\mathbb{R}^4 \).

A direct calculation shows that \(b^2 = 4a \) occurs in two cases: for \(\vartheta = 0 \) and for

\[
\cos^2 \vartheta = \frac{(2 + \tau^2)^2}{4 + 5\tau^2 + \tau^4},
\]

and in both cases \(b \) must have the expression given in (24). Since the first case produces harmonic curves, we study only the second one.

Using the relations (22) we get

\[
\langle g_1, g_1 \rangle = \langle g_2, g_2 \rangle = 1,
\]

\[
\langle g_3, g_3 \rangle = \langle g_4, g_4 \rangle = 0,
\]

\[
\langle g_1, g_4 \rangle = -\langle g_2, g_3 \rangle = \frac{\tau}{\sqrt{4 + 5\tau^2 + \tau^4}},
\]

\[
\langle g_1, g_2 \rangle = \langle g_1, g_3 \rangle = \langle g_2, g_4 \rangle = \langle g_3, g_4 \rangle = 0,
\]

(28)

while from (23) we obtain

\[
\langle J_1 g_1, g_2 \rangle = -1,
\]

\[
\langle J_1 g_2, g_4 \rangle = \langle J_1 g_1, g_3 \rangle = \frac{\tau}{\sqrt{4 + 5\tau^2 + \tau^4}},
\]

\[
\langle J_1 g_1, g_4 \rangle = \langle J_1 g_2, g_3 \rangle = \langle J_1 g_3, g_4 \rangle = 0.
\]

(29)

Now, putting

\[
\begin{align*}
e_1 &= g_1, \\
e_2 &= g_2, \\
e_3 &= g_3 - \frac{g_3}{\langle g_2, g_3 \rangle} - g_2, \\
e_4 &= g_4 - \frac{g_4}{\langle g_1, g_4 \rangle} - g_1,
\end{align*}
\]

we have that \(\{e_i\}_{i=1}^4 \) is an orthonormal basis of \(\mathbb{R}^4 \) that satisfies:

\[
\langle J_1 e_1, e_2 \rangle = \langle J_1 e_3, e_4 \rangle = -1,
\]

\[
\langle J_1 e_1, e_3 \rangle = \langle J_1 e_1, e_4 \rangle = \langle J_1 e_2, e_3 \rangle = \langle J_1 e_2, e_4 \rangle = 0.
\]

We conclude that \(e_2 = -J_1 e_1 \) and \(e_4 = J_1 e_3 \). So if we consider the orthonormal basis \(\tilde{E}_i \) of \(\mathbb{R}^4 \) given by

\[
\tilde{E}_1 = (1, 0, 0, 0), \quad \tilde{E}_2 = (0, -1, 0, 0), \quad \tilde{E}_3 = (0, 0, 1, 0), \quad \tilde{E}_4 = (0, 0, 0, 1),
\]
there must exist a matrix \(A \in O_2(4) \), with \(J_1 A = A J_1 \), such that \(e_i = A \tilde{E}_i, i \in \{1,2,3,4\} \). Finally, putting \(\langle g_1,g_4 \rangle = g_{14} \), we can rewrite (27) as (25).

\[\Box \]

5. The Case \(b^2 > 4a \)

Theorem 5.1. Let \(\gamma : I \rightarrow \text{SL}(2,\mathbb{R}) \subset \mathbb{R}^4_2 \) be a proper biharmonic curve parametrized by arc length, such that \(b^2 > 4a \). Then there are two possibilities:

(i)
\[
b = -\tau^{-1}(2 + \tau^2) \cos \vartheta + \sqrt{(4 + 5\tau^2)} \cos^2 \vartheta - 4(1 + \tau^2)
\]
and
\[
\frac{4(1 + \tau^2)}{(4 + 5\tau^2)} \leq \cos^2 \vartheta < \frac{(2 + \tau^2)^2}{4 + 5\tau^2 + \tau^4}.
\]

(ii)
\[
b = -\tau^{-1}(2 + \tau^2) \cos \vartheta - \sqrt{(4 + 5\tau^2)} \cos^2 \vartheta - 4(1 + \tau^2)
\]
and
\[
\frac{4(1 + \tau^2)}{(4 + 5\tau^2)} \leq \cos^2 \vartheta.
\]

In both cases, the expression of \(\gamma \) as a curve in \(\mathbb{R}^4_2 \) is
\[
\gamma(s) = A\left(\sqrt{C_{33}} \cos(\alpha_2 s), \sqrt{C_{33}} \sin(\alpha_2 s), \sqrt{-C_{11}} \cos(\alpha_1 s), \sqrt{-C_{11}} \sin(\alpha_1 s) \right),
\]
where
\[
\alpha_{1,2} = \sqrt{\frac{(b^2 - 2a) \pm \sqrt{b^2(b^2 - 4a)}}{2}}
\]
and
\[
C_{11} = \frac{\tilde{B} - \alpha_2^2}{\alpha_1^2 - \alpha_2^2}, \quad C_{33} = \frac{-\tilde{B} + \alpha_1^2}{\alpha_1^2 - \alpha_2^2}
\]
are real constants and \(A \in O_2(4) \) is a \(4 \times 4 \) indefinite orthogonal matrix anticommuting with \(J_1 \).

Proof. First, observe that the condition \(b^2 > 4a \) gives the two possibilities (i) and (ii). Also, a direct integration of (16) gives the solution
\[
\gamma(s) = \cos(\alpha_1 s) C_1 + \sin(\alpha_1 s) C_2 + \cos(\alpha_2 s) C_3 + \sin(\alpha_2 s) C_4,
\]
where
\[
\alpha_{1,2} = \sqrt{\frac{(b^2 - 2a) \pm \sqrt{b^2(b^2 - 4a)}}{2}}
\]
are real constants, while the \(C_i, i \in \{1,2,3,4\} \), are constants vectors of \(\mathbb{R}_2^4 \).
Putting $C_{ij} = \langle C_i, C_j \rangle$, and evaluating the relations (22) in $s = 0$, we obtain:

$$C_{11} + C_{33} + 2C_{13} = 1, \quad (31)$$

$$\alpha_1^2 C_{22} + \alpha_2^2 C_{44} + 2\alpha_1\alpha_2 C_{24} = \tilde{B}, \quad (32)$$

$$\alpha_1 C_{12} + \alpha_2 C_{14} + \alpha_1 C_{23} + \alpha_2 C_{34} = 0, \quad (33)$$

$$\alpha_1^2 C_{12} + \alpha_1\alpha_2 C_{23} + \alpha_2^2 C_{14} + \alpha_3 C_{34} = 0, \quad (34)$$

$$\alpha_1^4 C_{11} + \alpha_2^4 C_{33} + 2\alpha_1^2\alpha_2^2 C_{13} = D, \quad (35)$$

$$\alpha_1^2 C_{11} + \alpha_2^2 C_{33} + (\alpha_1^2 + \alpha_2^2) C_{13} = \tilde{B}, \quad (36)$$

$$\alpha_1^4 C_{22} + (\alpha_1^3\alpha_2 + \alpha_1\alpha_2^3) C_{24} + \alpha_2^4 C_{44} = D, \quad (37)$$

$$\alpha_1^5 C_{12} + \alpha_1^3\alpha_2^2 C_{23} + \alpha_1^2\alpha_2^3 C_{14} + \alpha_2^5 C_{34} = 0, \quad (38)$$

$$\alpha_1^3 C_{12} + \alpha_1^3 C_{23} + \alpha_1^3 C_{14} + \alpha_2^3 C_{34} = 0, \quad (39)$$

$$\alpha_1^6 C_{22} + \alpha_2^6 C_{44} + 2\alpha_1^3\alpha_2^3 C_{24} = E. \quad (40)$$

From (33), (34), (38), (39), it follows that
$$C_{12} = C_{14} = C_{23} = C_{34} = 0.$$
Also, from (31), (35) and (36), we obtain
$$C_{11} = \frac{\tilde{B} - \alpha_2^2}{\alpha_1^2 - \alpha_2^2}, \quad C_{13} = 0, \quad C_{33} = \frac{-\tilde{B} + \alpha_1^2}{\alpha_1^2 - \alpha_2^2}.$$
Finally, using (32), (37) and (40), we get
$$C_{22} = \frac{D - \tilde{B}\alpha_2^2}{\alpha_1^2(\alpha_1^2 - \alpha_2^2)}, \quad C_{24} = 0, \quad C_{44} = \frac{-D + \tilde{B}\alpha_1^2}{\alpha_2^2(\alpha_1^2 - \alpha_2^2)}.$$
We observe that as
$$\frac{4(1 + \tau^2)}{(4 + 5\tau^2)} \leq \cos^2 \vartheta,$$
then
$$C_{11} = C_{22} < 0, \quad C_{33} = C_{44} > 0.$$
Since $\{C_i\}_{i=1}^4$ are mutually orthogonal and
$$||C_1|| = ||C_2|| = \sqrt{-C_{11}}, \quad ||C_3|| = ||C_4|| = \sqrt{C_{33}},$$
we obtain a pseudo-orthonormal basis of \mathbb{R}_2^4 putting $e_i = C_i/||C_i||$, $i \in \{1, 2, 3, 4\}$, and we can write:

$$\gamma(s) = \sqrt{-C_{11}} (\cos(\alpha_1 s) e_1 + \sin(\alpha_1 s) e_2) + \sqrt{C_{33}} (\cos(\alpha_2 s) e_3 + \sin(\alpha_2 s) e_4). \quad (41)$$
Now, evaluating in $s = 0$ the identities (23), we have:

\[
\begin{align*}
\alpha_2 C_{33} \langle J_1 e_3, e_4 \rangle - \alpha_1 C_{11} \langle J_1 e_1, e_2 \rangle \\
+ \sqrt{-C_{11} C_{33}} (\alpha_1 \langle J_1 e_3, e_2 \rangle + \alpha_2 \langle J_1 e_1, e_4 \rangle) &= -\tau^{-1} \cos \vartheta, \quad (42) \\
\langle J_1 e_1, e_3 \rangle &= 0, \\
\alpha_2^2 C_{33} \langle J_1 e_3, e_4 \rangle - \alpha_1^2 C_{11} \langle J_1 e_1, e_2 \rangle \\
+ \sqrt{-C_{11} C_{33}} (\alpha_1 \alpha_2 \langle J_1 e_3, e_2 \rangle + \alpha_1^2 \alpha_2 \langle J_1 e_1, e_4 \rangle) &= -I, \quad (43) \\
\langle J_1 e_2, e_4 \rangle &= 0, \\
\alpha_1 \langle J_1 e_2, e_3 \rangle + \alpha_2 \langle J_1 e_1, e_4 \rangle &= 0, \quad (44) \\
\alpha_2 \langle J_1 e_2, e_3 \rangle + \alpha_1 \langle J_1 e_1, e_4 \rangle &= 0. \quad (45)
\end{align*}
\]

We point out that to obtain the previous identities we have divided by

\[
\alpha_1^2 - \alpha_2^2 = \sqrt{b^2(b^2 - 4a)},
\]

which is always different from zero. From (44) and (45), taking into account

that $\alpha_1^2 - \alpha_2^2 \neq 0$, it results that

\[
\langle J_1 e_3, e_2 \rangle = 0, \quad \langle J_1 e_1, e_4 \rangle = 0. \quad (46)
\]

Then, $J_1 e_1 = \pm e_2$ and $J_1 e_3 = \pm e_4$. So, the position vector of γ is given by:

\[
\gamma(s) = \sqrt{-C_{11}} (\cos(\alpha_1 s) e_1 \pm \sin(\alpha_1 s) J_1 e_1) \\
+ \sqrt{C_{33}} (\cos(\alpha_2 s) e_3 \pm \sin(\alpha_2 s) J_1 e_3). \quad (47)
\]

Evaluating (19) in $s = 0$, we get $J_1 e_1 = -e_2$ and $J_1 e_3 = -e_4$. Therefore, if

we fix the orthonormal basis of \mathbb{R}^4 given by:

\[
E_1 = (0, 0, 1, 0), \quad E_2 = (0, 0, 0, 1), \quad E_3 = (1, 0, 0, 0), \quad E_4 = (0, 1, 0, 0),
\]

there must exists a matrix $A \in O_2(4)$, with $J_1 A = -A J_1$, such that $e_i = A E_i$, $i \in \{1, 2, 3, 4\}$. Replacing $e_i = A E_i$ in (41) we obtain (30). \square

6. The Case $b^2 < 4a$

Theorem 6.1. Let $\gamma : I \to \text{SL}(2, \mathbb{R}) \subset \mathbb{R}^4$ be a proper biharmonic curve parametrized by arc length, such that $b^2 < 4a$. Then

\[
b = -\tau^{-1}(2 + \tau^2) \cos \vartheta + \sqrt{(4 + 5\tau^2) \cos^2 \vartheta - 4(1 + \tau^2)}, \quad (48)
\]

\[
\frac{(2 + \tau^2)^2}{4 + 5\tau^2 + \tau^4} < \cos^2 \vartheta < 1, \quad (49)
\]
and the expression of \(\gamma \) as a curve in \(\mathbb{R}^4_2 \) is

\[
\gamma(s) = A \left(\cos \left(\frac{b}{2} s \right) \cosh(\mu s) + w_{14} \sin \left(\frac{b}{2} s \right) \sinh(\mu s) \right),
\sin \left(\frac{b}{2} s \right) \cosh(\mu s) - w_{14} \cos \left(\frac{b}{2} s \right) \sinh(\mu s),
\cos \left(\frac{b}{2} s \right) \sinh(\mu s) \sqrt{1 + w_{14}^2},
\sin \left(\frac{b}{2} s \right) \sinh(\mu s) \sqrt{1 + w_{14}^2},
\right),
\]

where

\[
\mu = \frac{\sqrt{4a - b^2}}{2}, \quad w_{14} = \frac{b \tau + 2 \cos \vartheta}{2 \tau \mu}
\]

are real constants and \(A \in O_2(4) \) is a \(4 \times 4 \) indefinite orthogonal matrix commuting with \(J_1 \).

Proof. From \(b^2 < 4a \), it results that \(b \) is given by \((48) \) and \(\vartheta \) satisfies \((49) \). Also, a direct integration of \((16) \) gives

\[
\gamma(s) = \cos \left(\frac{b}{2} s \right) (\cosh(\mu s) w_1 + \sinh(\mu s) w_3) + \sin \left(\frac{b}{2} s \right) (\cosh(\mu s) w_2 + \sinh(\mu s) w_4),
\]

where

\[
\mu = \frac{\sqrt{4a - b^2}}{2},
\]

while the \(w_i, i \in \{1, 2, 3, 4\} \), are constant vectors in \(\mathbb{R}^4_2 \). If \(w_{ij} := \langle w_i, w_j \rangle \), evaluating the relations \((22) \) in \(s = 0 \), we obtain

\[
w_{11} = 1, \quad \frac{b^2}{4} w_{22} + \mu^2 w_{33} + \mu b w_{23} = \tilde{B},
\]

\[
\frac{b}{2} w_{12} + \mu w_{13} = 0,
\]

\[
\frac{b}{2} \left(\mu^2 - \frac{b^2}{4} \right) w_{12} + \mu^2 b w_{34} + \mu \frac{b^2}{2} w_{24} + \mu \left(\mu^2 - \frac{b^2}{4} \right) w_{13} = 0,
\]

\[
\left(\mu^2 - \frac{b^2}{4} \right)^2 w_{11} + \mu^2 b^2 w_{44} + 2 \mu b \left(\mu^2 - \frac{b^2}{4} \right) w_{14} = D,
\]

\[
\left(\mu^2 - \frac{b^2}{4} \right) w_{11} + \mu b w_{14} = -\tilde{B},
\]

\[
\frac{b^2}{4} \left(3\mu^2 - \frac{b^2}{4} \right) w_{22} + \mu^2 \left(\mu^2 - \frac{b^2}{4} \right) w_{33} + \mu \frac{b}{2} (4\mu^2 - b^2) w_{23} = -D,
\]
\[
\begin{align*}
\frac{b}{2} \left(3\mu^2 - \frac{b^2}{4} \right) & \left(\mu^2 - \frac{b^2}{4} \right) w_{12} + b \mu^2 \left(\mu^2 - 3\frac{b^2}{4} \right) w_{34} \\
+ \mu \left(\mu^2 - 3\frac{b^2}{4} \right) & \left(\mu^2 - \frac{b^2}{4} \right) w_{13} + \mu \frac{b^2}{2} \left(3\mu^2 - \frac{b^2}{4} \right) w_{24} = 0, \\
(59) \\
\frac{b}{2} \left(3\mu^2 - \frac{b^2}{4} \right) & \left(\mu^2 - \frac{b^2}{4} \right) w_{12} + \mu \left(\mu^2 - 3\frac{b^2}{4} \right) w_{13} = 0, \\
(60) \\
\frac{b^2}{4} \left(3\mu^2 - \frac{b^2}{4} \right)^2 & w_{22} + \mu^2 \left(\mu^2 - 3\frac{b^2}{4} \right)^2 w_{33} \\
+ \mu b \left(3\mu^2 - \frac{b^2}{4} \right) & \left(\mu^2 - 3\frac{b^2}{4} \right) w_{23} = E. \\
(61)
\end{align*}
\]

From (52), (56) and (57), it follows that
\[
\begin{align*}
w_{11} &= -w_{44} = 1, \\
w_{14} &= \frac{b\tau + 2\cos \vartheta}{2\tau \mu}.
\end{align*}
\]
Also, from (54) and (60), we obtain
\[
w_{12} = w_{13} = 0
\]
and, therefore, from (55) and (59),
\[
w_{24} = w_{34} = 0.
\]
Moreover, using (53), (58) and (61), we get
\[
\begin{align*}
w_{22} &= -w_{33} = 1, \\
w_{23} &= -\frac{b\tau + 2\cos \vartheta}{2\tau \mu}.
\end{align*}
\]
Then, we can define the following pseudo-orthonormal basis of \(\mathbb{R}^4_2\):
\[
\begin{align*}
e_1 &= w_1, \\
e_2 &= w_2, \\
e_3 &= \frac{w_3 + w_{14} w_2}{\sqrt{1 + w_{14}^2}}, \\
e_4 &= \frac{w_4 - w_{14} w_1}{\sqrt{1 + w_{14}^2}},
\end{align*}
\]
with \(\langle e_1, e_1 \rangle = 1 = \langle e_2, e_2 \rangle \) and \(\langle e_3, e_3 \rangle = -1 = \langle e_4, e_4 \rangle\).

Evaluating the identities (23) in \(s = 0\), and taking into account that
\[
\begin{align*}
\gamma(0) &= w_1, \\
\gamma'(0) &= \frac{b}{2} w_2 + \mu w_3, \\
\gamma''(0) &= \left(\mu^2 - \frac{b^2}{4} \right) w_1 + \mu b w_4, \\
\gamma'''(0) &= \frac{b}{2} \left(3\mu^2 - \frac{b^2}{4} \right) w_2 + \mu \left(\mu^2 - 3\frac{b^2}{4} \right) w_3, \\
\gamma^{IV}(0) &= \left(\mu^4 - \frac{3}{2} \mu^2 b^2 + \frac{b^4}{16} \right) w_1 + 2\mu b \left(\mu^2 - \frac{b^2}{4} \right) w_4,
\end{align*}
\]
we conclude that
\[\langle J_1 w_1, w_2 \rangle = -\langle J_1 w_3, w_4 \rangle = 1, \]
\[\langle J_1 w_3, w_2 \rangle = \langle J_1 w_1, w_4 \rangle = 0, \]
\[\langle J_1 w_1, w_3 \rangle = \langle J_1 w_2, w_4 \rangle = -w_{14}. \]

Then,
\[\langle J_1 e_1, e_2 \rangle = -\langle J_1 e_3, e_4 \rangle = 1, \]
\[\langle J_1 e_1, e_4 \rangle = \langle J_1 e_1, e_3 \rangle = \langle J_1 e_2, e_3 \rangle = \langle J_1 e_2, e_4 \rangle = 0. \]

Therefore, we obtain that
\[J_1 e_1 = e_2, \quad J_1 e_3 = e_4. \]

Consequently, if we consider the orthonormal basis \(\{ E_i \}_{i=1}^4 \) of \(\mathbb{R}^4 \) given by
\[E_1 = (1, 0, 0, 0), \quad E_2 = (0, 1, 0, 0), \quad E_3 = (0, 0, 1, 0), \quad E_4 = (0, 0, 0, 1), \]
there must exist \(A \in O_2(4) \), with \(J_1 A = A J_1 \), such that \(e_i = A E_i, \ i \in \{1, 2, 3, 4\} \). Therefore, using (51) and (62) we obtain (50).

\[\square \]

Acknowledgments
The authors would like to thank the referee for his suggestions.

References

[1] Balmus, A.: On the biharmonic curves of the Euclidean and Berger 3-dimensional spheres. Sci. Ann. Univ. Agric. Sci. Vet. Med. 47, 87–96 (2004)
[2] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of \(S^3 \). Internat. J. Math. 12, 867–876 (2001)
[3] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres. Israel J. Math. 130, 109–123 (2002)
[4] Caddeo, R., Montaldo, S., Oniciuc, C., Piu, P.: The Euler–Lagrange method for biharmonic curves. Mediterr. J. Math. 3, 449–465 (2006)
[5] Caddeo, R., Montaldo, S., Piu, P.: Biharmonic curves on a surface. Rend. Mat. Appl. 21(7), 143–157 (2001)
[6] Caddeo, R., Piu, P., Oniciuc, C.: Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group. Rend. Mat. Univ. Politec. Torino 62, 265–277 (2004)
[7] Dimitric, I.: Submanifolds of \(\mathbb{E}^m \) with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sinica 20, 53–65 (1992)
[8] Eells, J., Lemaire, L.: Selected topics in harmonic maps. In: CBMS Regional Conference Series in Mathematics, vol. 50. American Mathematical Society, Providence (1983)
[9] Jiang, G.Y.: 2-harmonic isometric immersions between Riemannian manifolds. Chin. Ann. Math. Ser. A 7, 130–144 (1986)
[10] Jiang, G.Y.: 2-harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A 7, 389–402 (1986)
