Distribution patterns of Chinese Cixiidae (Hemiptera, Fulgoroidea), highlight their high endemic diversity

Yang Luo‡, Thierry Bourgoin§, Jia-Lin Zhang‡, Ji-Nian Feng‡

‡ Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China, Yangling, China
§ Institut de Systématique, Évolution, Biodiversité, ISYEBAO-UMR 7205, MNHN-CNRS-Sorbonne Université-EPHE-Univ. Antilles, Muséum national d'histoire naturelle, CP 50, 57 rue Cuvier, F-75005, Paris, France

Corresponding author: Thierry Bourgoin (thierry.bourgoin@mnhn.fr), Ji-Nian Feng (jinianf@nwsuaf.edu.cn)

Academic editor: J. Adilson Pinedo-Escatel

Received: 15 Sep 2021 | Accepted: 13 Jan 2022 | Published: 24 Jan 2022

Citation: Luo Y, Bourgoin T, Zhang J-L, Feng J-N (2022) Distribution patterns of Chinese Cixiidae (Hemiptera, Fulgoroidea), highlight their high endemic diversity. Biodiversity Data Journal 10: e75303. https://doi.org/10.3897/BDJ.10.e75303

Abstract

Background

Cixiidae are small strictly phytophagous hemipteran insects worldwide distributed. Ecology and systematics of Chinese fauna remains poorly investigated. For instance, does their distribution follows the patterns of biogeographical distribution established for their host plants or other related-taxis because they are all obligatory phytophagous taxa? Do they follow the usual distributional Chinese realms and boundaries already recognized? Which zoogeographical Chinese regions and connections between them do they depict. To investigate these issues, we provide here a referenced and comprehensive checklist of the 250 cixiid species currently reported from China (77 new records), with their precise distribution at the regional level. In the 8 Chinese main zoogeographical regions usually recognized and 2 adjacent areas, we analyzed further their diversity at the tribal, generic, and specific levels using a non-metric multidimensional scaling and an unweighted pairwise group analysis using an arithmetic mean cluster analyses. The observed distribution patterns shown that an intercalary Sino-Japanese realm is recognisable.
between the Palearctic and Oriental realms. At the regional level, the South China region clusters more closely with the Southwest, Central and North China regions. Taiwan, clearly separated from the South China region and mainland China, is more closely related to the Qinghai-Tibet region and Indochina countries. Although Central and South China regions remain close to each other, the Qinghai-Tibet region appears singularly different.

New information

An updated checklist of the 250 Cixiidae species, known to occur in China and counting for 10% of the Chinese planthopper fauna, is presented based on literature, recent collections, and museum records. More than 400 records distributed among the 28 provinces and 8 regions in China are extensively provided, including 77 new records. Of these, more than 80% of the species (205 species, 82%) have been only reported from China, and most of them are endemic species, which could reflect the great diversity degree of the Chinese regions and local biotypes highlights the uniqueness of this fauna. These species are found in 8 Chinese zoogeographical regions: The Taiwan region is the most diversified with 161 species and the highest rate of endemic species (69.57%), followed by South China (78 species, 17.95%), Central China (60 species, 33.33%), Southwest China (43 species, 39.53%), North China (29 species, 34.48%), Qinghai-Tibet region (10 species, 20%), Northeast China (8 species, 12.5%), and 5 species found in the Inner Mongolia-Xinjiang region that are not endemic ones. Endemism was analyzed for each region and repeated for species distribution patterns across them, 9 being bi-regionally and tri-regionally distributed. The South China-Taiwan pattern is the most richest one, followed by the Central-South China-Taiwan pattern. Semonini and Pentastirini tribes are widespread among all the zoological regions, representing respectively 21.20% and 17.20% of all the species, while Cixiini being is the most common tribe with 45.20%, remains absent from the North-Eastern China region. Andini with only 5.20% of the species is distributed in the Sino-Japanese - Oriental Region; Eucarpiini (6.40%) and Borystenini (2.00%) are mainly concentrated in the south of the Qingling Mountain-Huai River. The remaining four tribes, Bennini (0.40%), Briixini (0.80%), Oecleini (1.20%) and Stenophilepsiini (0.40%) are relatively rare and restricted to Taiwan. At the generic level, Kuvera (7.2%) is the most widely distributed genus in China while Cixius, Betacixius, Kuvera, Oecleopsis and Andes are the more diversified. One genus (Oliparisca) is distributed only in the Tibet region, while 10 genera are distributed only in the Taiwan region. In addition, nearly half of the genera (16 genera, 48.48%) are distributed south of the Palearctic/Oriental boundary. A non-metric multidimensional scaling and an unweighted pairwise group method analysis using arithmetic mean clustering based on the Jaccard similarity coefficient matrix support a Palearctic/Sino-Japanese boundary and a South China region closer to the Southwest, Central and North China regions. The Taiwan region appears clearly separated from the South China region and to mainland China, and more closely related to the Qinghai-Tibet region and Indochina countries. The Central and South China regions appear close to each other, but the Qinghai-Tibet region is singularly isolated.
Introduction

China covers an area of 9,634,057 km², encompassing a area of entire Europe, and spans nearly 50 degrees of latitude from north to south, and more than 60 degrees of longitude from east to west in a world-renowned monsoon region (National Bureau of Statistics of the People’s Republic of China, http://data.stats.gov.cn). Most regions have cold, dry winters and warm, rainy summers, but in combination with the varying topography and terrain conditions, the climate is actually very complex and locally diverse with a wide variety of temperature zones and precipitation gradients (Ren and Wen 2011). Most regions are located in the temperate zone (semi-tropical, warm, mid-range, and cold-temperatures). A small portion of the country is in the tropics and plateau climate zone (the Qinghai-Tibet plateau temperate zone), and northern regions are close to the boreal zone (Jiang 2017). Annual precipitation decreases from the rain-forest of the southeast coast to the Gobi Desert in the northwestern interior (Jiang 2017). An arid humidity zone covers about 31% of the land area (mainly in northwest China). A semi-arid zone covers 22%, a semi-humid zone covers 15%, and the humid zone (32%) is located primarily in the southeast of China (Ge et al. 2013). Geological complexity of China is also significant, particularly with the uplift of the Qinhai-Tibet Plateau, which occurred in the middle of the Eocene era (45-38 Ma) (Zhou et al. 2018). When this complexity is combined with the monsoonal climate evolution, it has created strongly diversified biotopes, isolated by biogeographical barriers that manage dispersal pathways for species, providing new ecological niches, which has driven the recent evolution of plants and animal diversity (Favre et al. 2015, Liu et al. 2017).

From a biogeographical point of view, China is usually divided in two parts, the Palearctic realm in the north, and the Oriental one in the south (Sclater 1858, Wallace 1876, Morrone 2015, He et al. 2017). From a zoological perspective, Holt et al. (2013) recently recognized an additional Sino-Japanese realm ranging from west of Tibet to the east of the Japanese archipelago standing between them. Accordingly, three main biogeographical lines cross China (Fig.1): the Palearctic/Sino-Japanese boundary at about 40–41N, the Palearctic/Oriental line that follows the Qingling Mountain-Huai River, around 32–34N, and the Sino-Japanese/Oriental boundary at 24–25N in Southeastern China.

The family Cixiidae Spinola, 1839 (Hemiptera: Fulgoromorpha), is a numerous and diverse taxon with a world-wide distribution (Holzinger et al. 2002, Bourgoin 2021). It comprises 18.6% of the currently known planthopper species (Bourgoin 2021), and is the largest family of the group. Classical taxonomy has divided the Cixiidae into 3 subfamilies: Borystheninae Emeljanov, 1989, Bothriocerinae Muir, 1923 and Cixiinae Spinola, 1839 (Holzinger et al. 2002). However, recent phylogenetical analyses have shown that these divisions remain artificial and three main lineages should better reflect of evolution of the family: an oecleinian lineage (including Bothriocerini), a cixiinian lineage and a
pentastirian lineage (including Borysthenini) (Luo et al. 2021). Therefore, without including the fossil taxa, Cixiidae are currently divided into 18 tribes, 250 genera, and 2600 species (Bourgoin 2021).

Cixiidae nymphs usually live underground and feed on plant rootlets, whereas the adults feed on the above ground phloem tissues of woody or herbaceous plants and ferns (Wilson 1994, Wheeler 2003), predominantly on Asterales (9.2%), Rosales (7.8%), Fabiales (6.7%), Myrtales (6.5%), Lamiales (5.1%) and Ericales (5.1%) in Eudicots and on Poales (8.3%) in Monocots (Bourgoin 2021). Several cixiidae species are considered to be vectors of plant pathogen including viruses, phytoplasmas and other prokaryotic-like organisms (Wilson 2005).

Although the Cixiidae are one of the larger planthopper families, little is known about their ecology, distribution and host plants. In China, knowledge of this fauna is still fragmented and an overall comprehensive study is lacking. The first contribution was by Melichar (1902) who described 2 genera with 5 species from western China. Matsumura (1914) published 'Die Cixiinen Japans', describing 14 genera and 30 species, mostly from Taiwan. Kato (1932) focused on Northeastern China taxa, and published one new species. The first checklist of Cixiidae from the China mainland was provided by Hu (1935), who listed 11 species in 5 genera, which was updated by Metcalf (1936) in his 'Catalogue of the Homoptera'. Since then, many new species have been added. Jacobi (1944) reported 5 new species from the Fujian province. Fennah (1956) added 6 genera and 17 species from South China. Hori (1982) described 3 new Betacixius species from Taiwan. Chou et al. (1985) described 7 species in 4 genera in his "Economic Insect Fauna of China (Fulgoromorpha)". Tsaur provided a series of important contributions to the fauna from Taiwan, describing 155 species in 20 genera (Tsaur and Lee 1987, Tsaur et al. 1988, Tsaur 1989a, Tsaur 1989b, Tsaur 1990a, Tsaur 1990b, Tsaur et al. 1991a, Tsaur et al. 1991b, Tsaur and Hsu 2003, Tsaur 2009). Since then, several papers describing new recent taxonomic discoveries have been published (Wang 1991, Wang 1992, Huang 1995, Hua 2000, Liang 2001, Liang 2005a, Liang 2005b, Guo and Wang 2007, Guo et al. 2009, Guo and Feng 2010, Zhang and Chen 2011a, Zhang and Chen 2011b, Zhang and Chen 2013a, Zhang and Chen 2013b, Ren et al. 2014, Xing and Chen 2014, Bai et al. 2015, Li et al. 2016, Zhi et al. 2017, Zhi et al. 2018a, Zhi et al. 2018b, Luo et al. 2019a, Luo et al. 2019b, Zhi et al. 2019, Zhi et al. 2020a, Zhi et al. 2020b, Zhi et al. 2021). All of these studies primarily focused on taxonomical treats, with limited ecological and geographical interpretations or evaluations. However, Cixiidae are obligatory phytophagous taxa and therefore directly linked to the distribution of their host plants (Attié et al. 2008). They are generally considered feeding on a variety of plants (Larivière 1999) but more precisely documented, they appear mostly oligiphagous or monphagous (Wilson et al. 1994, Bourgoin 2021). The planthopper and its host-plants are both patterned by the historical biogeography of the areas where they are distributed. How Cixiidae do follow the patterns of biogeographical distribution (major biological realms, biogeographical regions) already well established in China? Which boundaries can be identified for Cixiidae and at which taxonomical levels? The aim of this paper is to identify these correlations and to investigate how these zoogeographical regions are connected in China.
This current paper provides the first distribution pattern of the Chinese Cixiidae following current Chinese zoogeographical regions recognized and updated species list of Chinese Cixiidae. Accordingly, the objectives of this paper are: (1) to compare Cixiidae species richness at the level of the Chinese zoogeographical regions and to document their distribution patterns and their endemism in each region, both at the tribal and generic level; (2) to investigate what biogeographical patterns the Cixiidae reflect: are they recognized effectively in a particular Sino-Japanese realm or a simple area of transition between the Palearctic and Oriental realms? (3) to provide a comprehensive species list of the Cixiidae from China.

Materials and methods

Eight Chinese zoogeographic regions, based on geographic, climatic, and vegetation characteristics (Gao et al. 2017, He et al. 2017), were used for the biogeographical analyses: Northeast China, North China, Nei Mongol-Xinjiang, Qinghai-Tibet, South China, Central China, Southwest China and the Taiwan region (Fig. 1). Two other regions were added for countries adjacent to China: 1) a south China ‘VM region’ including Vietnam, Laos, Thailand, Cambodia, Myanmar, Bhutan, Bangladesh and part of India, and 2) a north East China ‘Far East region’ including a portion of Russia. The map (Fig. 1) was created using the National Earth System Science Data Sharing Infrastructure (http://www.geodata.cn).
The distribution matrix includes 253 Chinese Cixiidae species (of which 87 species were recorded from museums and the remaining species were recorded from the literature). Among them, 3 species: *Cixius narke* Kramer, 1981, *Oliarus splendidulus* Fieber, 1876, and *Tachycixius (Tachycixius) pilosus* (Olivier, 1791), were excluded from the analyses and checklist because we could not confirm their occurrence in China (no specimens information was found in our inspection of museum specimens in the collections) or because of uncertainties about where they were collected. 48 additional Cixiidae species (Suppl. material 1) from adjacent areas based on literature and FLOW (Bourgoin 2021) were added for the cluster analysis. The observed material information of checklist, as a formatted Excel spreadsheet, are provided here in the supplementary materials: Suppl. material 2. Figure 2 and 3 were generated using ArcGIS Version 10.8 statistical software (URL: https://desktop.arcgis.com/en/system-requirements/latest/arcgis-desktop-system-requirements.htm). The distribution information of the Cixiidae in China was imported into ArcGIS Version 10.8 software, the latitude and longitude of the distribution sites were set as the coordinate attribute elements, and the symbols in the map were set to different colors for distinguishing different genera of the tribes, and finally the maps of the distribution of the tribes and species were exported.

Presence/absence matrices for species and for genera were built for each of the 10 OGUs (physiographical regions as operative geographical units, Crovello 1981). Similarity coefficients use binary data to measure association between OGU. On the basis of a review of similarity coefficients (Shi 1993), the Jaccard’s coefficient in NTSYS Version 2.1 software (Rohlf 2000) was used according to Legendre and Legendre (1983) and Rohlf (2000). Clustering of OGUs using the UPGMA algorithm, UPGMA (an unweighted pairwise group method using arithmetic mean) was used to cluster similarities (Legendre and Legendre 1983). Based on the similarity of clustering results, Jaccard’s coefficients were analyzed through nonmetric multidimensional scaling (NMDS) according to Kenkel and Orloci (1986).

Data resources

This publication follows the classical systematic classification based on Holzinger et al. (2002) and Emeljanov (2002) as synthetized and updated in Bourgoin (2021) and Luo et al. (2021). Fossil species are indicated by the symbol (†). The checklist contains information updated up to April, 2021 compiled from scientific papers, book chapters, conference abstracts, theses, and from the FLOW website (Bourgoin 2021). It also includes our own unpublished taxonomic data and original museum specimens information from the following institutions: Shanghai Entomological Museum C.A.S (SEM), Museum of China Agricultural University (CAU), Entomological Museum of Northwest A&F University (NWAFU), Museum of Chinese Academy of Forestry (CAF), Institute of Entomology, Guizhou University (GZU), Chongqing Normal University (CQNU) and Muséum National d'Histoire Naturelle (MNHN). Distribution sets were collected from the original sources with their original latitude and longitude information; Those lacking such information were
approximated with the latitude and longitude coordinates of the corresponding administrative center.

Annotated checklist of Cixiidae from China

Family Cixiidae Spinola, 1839

Subfamily Borystheninae Emeljanov, 1989

Genus Borysthenes Stål, 1866

Borysthenes acuminatus Fennah, 1956

Nomenclature:
Borysthenes acuminatus Fennah, 1956: 459.| Liang, 2005a: 810.

Distribution: China: Hubei (Liang 2005a).

Borysthenes deflexus Fennah, 1956

Nomenclature:
Borysthenes deflexus Fennah, 1956: 460.| Liang, 2005a: 810.

Distribution: China: Guangdong (Fennah 1956).

Borysthenes emarginatus Fennah, 1956

Nomenclature:
Borysthenes emarginatus Fennah, 1956: 461.| Liang, 2005a: 810.

Distribution: China: Guangdong (Fennah 1956).

Borysthenes lacteus Tsaur & Lee, 1987

Nomenclature:
Borysthenes lacteus Tsaur & Lee, 1987: 9.

Distribution: China: Taiwan (Tsaur and Lee 1987).
Borysthenes maculatus (Matsumura, 1914)

Nomenclature:

Barma maculata Matsumura, 1914: 430.| *Borysthenes* (sic) *guttatus* Kato, 1933: 468.| *Borysthenes maculatus* (Matsumura, 1914), Fennah, 1956: 459.| Chou, 1985: 26.| Tsaur & Lee, 1987: 8.| Liang, 2005a: 810| Liang, 2005b: 429.| Hayashi & Fujinuma, 2016: 326.

Distribution: China: Fujian (Liang 2005a, Liang 2005b), Hainan, Hunan, Guangxi, Sichuan, Taiwan (Tsaur and Lee 1987); Japan: Nansei-shoto (Hayashi and Fujinuma 2016).

Notes: New record: China: Hainan (Diaoluo Mountain).

Subfamily Cixiinae Spinola, 1839

Tribe Andini Emeljanov, 2002

Genus Andes Stål, 1866

Andes formosanus (Matsumura, 1914)

Nomenclature:

Brixia formosana Matsumura, 1914: 432.| *Andes formosanus* (Matsumura, 1914), in Tsaur et al., 1991a: 70.

Distribution: China: Fujian, Sichuan, Taiwan (Matsumura 1914).

Notes: New record: China: Fujian (Wuyi Mountain).

Andes hemina Fennah, 1978

Nomenclature:

Andes hemina Fennah, 1978: 209.

Distribution: China: Yunnan; Malaysia: Kuala Lumpur, Kedah (Fennah 1978); Vietnam: Ninh Binh (Fennah 1978).

Notes: New record: China: Yunnan (Menglun).

Andes lachesis Fennah, 1956

Nomenclature:

Andes lachesis Fennah, 1956: 447.

Distribution: China: Zhejiang (Fennah 1956).
Andes luzonensis Tsaur & Hsu, 1991

Nomenclature:

Andes luzonensis Tsaur & Hsu in Tsaur et al., 1991a: 72.

Distribution: China: Zhejiang, Taiwan (Tsaur et al. 1991a).

Andes marmoratus (Uhler, 1896)

Nomenclature:

Metabrixia marmorata Uhler, 1896: 280. | Brixia marmorata (Uhler, 1896), Matsumura, 1914: 431. | Andes marmorata (Uhler, 1896), Chou, 1985: 24. | Liang, 2005b: 429. | Hayashi & Fujinuma, 2016: 323.

Distribution: China: Beijing (Liang 2005b), Henan, Jiangsu, Zhejiang, Guangxi, Guizhou; Japan: Hokkaido, Honshu, Shikoku, Kyushu, Tsushima Island (Palaearctic) (Hayashi and Fujinuma 2016); Russia: Far East.

Notes: New record: China: Jiangsu (Suzhou), Zhejiang (Taishun).

Andes noctua Fennah, 1956

Nomenclature:

Andes noctua Fennah, 1956: 446. | Zhang, 2008: 33.

Distribution: China: Beijing, Henan, Hubei (Fennah 1956), Guizhou.

Notes: New record: China: Beijing (Mentougou), Henan (Huixian), Hubei (Lichuan).

Andes notatus Tsaur & Hsu, 1991

Nomenclature:

Andes notatus Tsaur & Hsu in Tsaur et al., 1991a: 70.

Distribution: China: Guangxi, Tibet, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Guangxi (Jinxiu, Longsheng), Tibet (Motuo).

Andes othrepte Fennah, 1956

Nomenclature:

Andes othrepte Fennah, 1956: 445.

Distribution: China: Hong Kong (Fennah 1956).
Andes truncatus Fennah, 1978

Nomenclature:
Andes truncatus Fennah, 1978: 208.

Distribution: China: Guizhou, Zhejiang; Vietnam: Ninh Binh (Fennah 1978).

Notes: New record: China: Zhejiang (Fengyang Mountain).

Andes unicinatus Fennach, 1956

Nomenclature:
Andes unicinatus Fennach, 1956: 444. | Zhang, 2008: 38.

Distribution: China: Guangdong, Sichuan (Fennah 1956).

Genus Andixius Emeljanov & Hayashi, 2007

Andixius longispinus Zhi & Chen, 2018

Nomenclature:
Andixius longispinus Zhi & Chen in Zhi et al., 2018b: 57.

Distribution: China: Yunnan (Zhi et al. 2018b).

Andixius trifurcus Zhi & Chen, 2018

Nomenclature:
Andixius trifurcus Zhi & Chen, in Zhi et al., 2018b: 60.

Distribution: China: Yunnan (Zhi et al. 2018b).

Andixius venustus Tsaur & Hsu, 1991

Nomenclature:
Brixia venusta Tsaur & Hsu in Tsaur et al., 1991a: 65. | *Andixius venustus* (Tsaur & Hsu, 1991), Emeljanov & Hayashi, 2007: 129.

Distribution: China: Taiwan (Tsaur et al. 1991a).
Tribe Bennini Metcalf, 1938

Genus *Kotonisia* Matsumura, 1938

Kotonisia kanoi (Matsumura, 1938)

Nomenclature:

Benna kanoi Matsumura, 1938: 152. | *Benna formosana* (Nast), Tsaur, 1988: 76. | *Kotonisia kanoi* (Matsumura, 1938), Tsaur, 2009: 67. | *Kotonisia kanoi* (Matsumura, 1938), Hoch, 2013: 174.

Distribution: China: Taiwan (Tsaur 2009).

Tribe Brixini Emeljanov, 2002

Genus *Brixia* Stål, 1859

Brixia ocellata Matsumura, 1914

Nomenclature:

Brixia ocellata Matsumura, 1914: 433.

Distribution: China: Taiwan (Matsumura 1914).

Brixia neglecta Van Stalle, 1983

Nomenclature:

Brixia neglecta Van Stalle, 1983: 272.

Distribution: China: Taiwan.

Tribe Cixiini Spinola, 1839

Genus *Ankistrus* Tsaur & Hsu, 1991

Ankistrus basalis Tsaur & Hsu, 1991

Nomenclature:

Ankistrus basalis Tsaur & Hsu in Tsaur et al., 1991a: 19.

Distribution: China: Taiwan (Tsaur et al. 1991a).
Ankistrus choui Tsaur & Hsu, 1991

Nomenclature:
Ankistrus choui Tsaur & Hsu in Tsaur et al., 1991a: 12.

Distribution: China: Taiwan (Tsaur et al. 1991a).

Ankistrus guttatus Tsaur & Hsu, 1991

Nomenclature:
Ankistrus guttatus Tsaur & Hsu in Tsaur et al., 1991a: 17.

Distribution: China: Taiwan (Tsaur et al. 1991a).

Ankistrus montanus Tsaur & Hsu, 1991

Nomenclature:
Ankistrus montanus Tsaur & Hsu in Tsaur et al., 1991a: 9.

Distribution: China: Taiwan (Tsaur et al. 1991a).

Ankistrus pini Tsaur & Hsu, 1991

Nomenclature:
Ankistrus pini Tsaur & Hsu in Tsaur et al., 1991a: 9.

Distribution: China: Taiwan (Tsaur et al. 1991a).

Ankistrus taoi Tsaur & Hsu, 1991

Nomenclature:
Ankistrus taoi Tsaur & Hsu in Tsaur et al., 1991a: 14.

Distribution: China: Taiwan (Tsaur et al. 1991a).

Ankistrus varius Tsaur & Hsu, 1991

Nomenclature:
Ankistrus varius Tsaur & Hsu in Tsaur et al., 1991a: 14.

Distribution: China: Taiwan (Tsaur et al. 1991a).
Genus *Cixius* Latreille, 1804

Cixius aculeatus Tsaur & Hsu, 1991

Nomenclature:
Cixius aculeatus Tsaur & Hsu in Tsaur et al., 1991b: 199.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius acutus Tsaur & Hsu, 1991

Nomenclature:
Cixius acutus Tsaur & Hsu in Tsaur et al., 1991b: 204.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius aduncus Tsaur & Hsu, 1991

Nomenclature:
Cixius aduncus Tsaur & Hsu in Tsaur et al., 1991b: 239.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius alpinus Tsaur & Hsu, 1991

Nomenclature:
Cixius alpinus Tsaur & Hsu in Tsaur et al., 1991b: 242.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius anmashanus Tsaur & Hsu, 1991

Nomenclature:
Cixius anmashanus Tsaur & Hsu in Tsaur et al., 1991b: 266.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius aquilonius Tsaur & Hsu, 1991

Nomenclature:
Cixius aquilonius Tsaur & Hsu in Tsaur et al., 1991b: 260.

Distribution: China: Taiwan (Tsaur et al. 1991b).
Cixius arisanus Tsaur & Hsu, 1991

Nomenclature:

Cixius arisanus Matsumura, 1914: 386. | Tsaur et al., 1991b: 185.

Distribution: China: Zhejiang, Hainan, Taiwan (Tsaur et al. 1991b).

Notes: New record: China: Zhejiang (Fengyang Mountain).

Cixius bicolor Matsumura, 1914

Nomenclature:

Cixius bicolor Matsumura, 1914: 395. | Esaki, 1932: 1773. | Tsaur et al., 1991b: 175.

Distribution: China: Taiwan (Tsaur et al. 1991b), Hainan; Japan.

Notes: New record: China: Hainan (Limuling).

Cixius bidentis Tsaur & Hsu, 1991

Nomenclature:

Cixius bidentis Tsaur & Hsu in Tsaur et al., 1991b: 279.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius brochus Tsaur & Hsu, 1991

Nomenclature:

Cixius brochus Tsaur & Hsu in Tsaur et al., 1991b: 222.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius broncus Tsaur & Hsu, 1991

Nomenclature:

Cixius broncus Tsaur & Hsu in Tsaur et al., 1991b: 233.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius capillatus Tsaur & Hsu, 1991

Nomenclature:

Cixius capillatus Tsaur & Hsu in Tsaur et al., 1991b: 208.

Distribution: China: Taiwan (Tsaur et al. 1991b).
Cixius cathetus Tsaur & Hsu, 1991

Nomenclature:

Cixius cathetus Tsaur & Hsu in Tsaur et al., 1991b: 275.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius chituanus Tsaur & Hsu, 1991

Nomenclature:

Cixius chituanus Tsaur & Hsu in Tsaur et al., 1991b: 236.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius chouorum Tsaur & Hsu, 1991

Nomenclature:

Cixius chouorum Tsaur & Hsu in Tsaur et al., 1991b: 225.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius chydaeus Tsaur & Hsu, 1991

Nomenclature:

Cixius chydaeus Tsaur & Hsu in Tsaur et al., 1991b: 252.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius circinatus Tsaur & Hsu, 1991

Nomenclature:

Cixius circinatus Tsaur & Hsu in Tsaur et al., 1991b: 202.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius circulus Tsaur & Hsu, 1991

Nomenclature:

Cixius circulus Tsaur & Hsu in Tsaur et al., 1991b: 219.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius communis Tsaur & Hsu, 1991

Nomenclature:

Cixius communis Tsaur & Hsu in Tsaur et al., 1991b: 200.
Distribution: China: Guangxi, Zhejiang, Taiwan (Tsaur et al. 1991b).

Notes: New record: China: Guangxi (Nanning), Zhejiang (Fengyang Mountain).

Cixius curvus Tsaur & Hsu, 1991

Nomenclature:
Cixius curvus Tsaur & Hsu in Tsaur et al., 1991b: 183.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius cyclus Tsaur & Hsu, 1991

Nomenclature:
Cixius cyclus Tsaur & Hsu in Tsaur et al., 1991b: 256.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius deflexus Tsaur & Hsu, 1991

Nomenclature:
Cixius deflexus Tsaur & Hsu in Tsaur et al., 1991b: 300.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius denotatus Tsaur & Hsu, 1991

Nomenclature:
Cixius denotatus Tsaur & Hsu in Tsaur et al., 1991b: 294.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius dentatus Tsaur & Hsu, 1991

Nomenclature:
Cixius dentatus Tsaur & Hsu in Tsaur et al., 1991b: 254.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius denticulatus Tsaur & Hsu, 1991

Nomenclature:
Cixius denticulatus Tsaur & Hsu in Tsaur et al., 1991b: 180.

Distribution: China: Taiwan (Tsaur et al. 1991b).
Cixius diductus Tsaur & Hsu, 1991

Nomenclature:
Cixius diductus Tsaur & Hsu in Tsaur et al., 1991b: 241.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius dilatus Tsaur & Hsu, 1991

Nomenclature:
Cixius dilatus Tsaur & Hsu in Tsaur et al., 1991b: 286.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius discretus Li, Liu, Ren, Li & Yao, 2016

Nomenclature:
Cixius discretus† Li, Liu, Ren, Li & Yao in Li et al., 2016: 2.

Distribution: China: Qinghai (Li et al. 2016).

Notes: Fossil species

Cixius elegantulus Tsaur & Hsu, 1991

Nomenclature:
Cixius elegantulus Tsaur & Hsu in Tsaur et al., 1991b: 244.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius elongatus Tsaur & Hsu, 1991

Nomenclature:
Cixius elongatus Tsaur & Hsu in Tsaur et al., 1991b: 206.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius fangi Tsaur & Hsu, 1991

Nomenclature:
Cixius fangi Tsaur & Hsu in Tsaur et al., 1991b: 180.

Distribution: China: Taiwan (Tsaur et al. 1991b).
Cixius flavescens Matsumura, 1914

Nomenclature:
Cixius flavescens Matsumura, 1914: 405.

Distribution: China: Shaanxi, Taiwan (Matsumura 1914).

Notes: New record: China: Shaanxi (Hanzhong).

Cixius furvus Tsaur & Hsu, 1991

Nomenclature:
Cixius furvus Tsaur & Hsu in Tsaur et al., 1991b: 285.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius fustis Tsaur & Hsu, 1991

Nomenclature:
Cixius fustis Tsaur & Hsu in Tsaur et al., 1991b: 228.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius galeolus Fennah, 1956

Nomenclature:
Cixius galeolus Fennah, 1956: 449.

Distribution: China: Guangdong (Fennah 1956).

Cixius gladius Tsaur & Hsu, 1991

Nomenclature:
Cixius gladius Tsaur & Hsu in Tsaur et al., 1991b: 225

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius habunus Tsaur & Hsu, 1991

Nomenclature:
Cixius habunus Tsaur & Hsu in Tsaur et al., 1991b: 188.

Distribution: China: Taiwan (Tsaur et al. 1991b).
Cixius hopponis Matsumura, 1914

Nomenclature:

Cixius hopponis Matsumura, 1914: 399| Tsaur et al., 1991b: 195.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius hsui Tsaur & Hsu, 1991

Nomenclature:

Cixius hsui Tsaur & Hsu in Tsaur et al., 1991b: 256.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius hueisunus Tsaur & Hsu, 1991

Nomenclature:

Cixius hueisunus Tsaur & Hsu in Tsaur et al., 1991b: 279.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius inaffectus Tsaur & Hsu, 1991

Nomenclature:

Cixius inaffectus Tsaur & Hsu in Tsaur et al., 1991b: 212.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius incisus Tsaur & Hsu, 1991

Nomenclature:

Cixius incisus Tsaur & Hsu in Tsaur et al., 1991b: 219.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius inflatus Tsaur & Hsu, 1991

Nomenclature:

Cixius inflatus Tsaur & Hsu in Tsaur et al., 1991b: 272.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius kommonis Matsumura, 1914

Nomenclature:

Cixius kommonis Matsumura, 1914: 401| Tsaur et al., 1991b: 301.
Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius kukuanus Tsaur & Hsu, 1991

Nomenclature:
Cixius kukuanus Tsaur & Hsu in Tsaur et al., 1991b: 269.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius kuyanyanus Matsumura, 1914

Nomenclature:
Cixius kuyanyanus Matsumura, 1914: 398.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius laboriosus Tsaur & Hsu, 1991

Nomenclature:
Cixius laboriosus Tsaur & Hsu in Tsaur et al., 1991b: 272.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius latus Tsaur & Hsu, 1991

Nomenclature:
Cixius latus Tsaur & Hsu in Tsaur et al., 1991b: 248.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius leei Tsaur & Hsu, 1991

Nomenclature:
Cixius leei Tsaur & Hsu in Tsaur et al., 1991b: 282.

Distribution: China: Zhejiang, Taiwan (Tsaur et al. 1991b).

Notes: New record: China: Zhejiang (Feng Mountain).

Cixius linorum Tsaur & Hsu, 1991

Nomenclature:
Cixius linorum Tsaur & Hsu in Tsaur et al., 1991b: 216.

Distribution: China: Taiwan (Tsaur et al. 1991b).
Cixius luridus Tsaur & Hsu, 1991

Nomenclature:
Cixius luridus Tsaur & Hsu in Tsaur et al., 1991b: 264.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius maculosus Tsaur & Hsu, 1991

Nomenclature:
Cixius maculosus Tsaur & Hsu in Tsaur et al., 1991b: 188.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius meifengensis Tsaur & Hsu, 1991

Nomenclature:
Cixius meifengensis Tsaur & Hsu in Tsaur et al., 1991b: 208.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius montosus Tsaur & Hsu, 1991

Nomenclature:
Cixius montosus Tsaur & Hsu in Tsaur et al., 1991b: 205.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius mukwanus Tsaur & Hsu, 1991

Nomenclature:
Cixius mukwanus Tsaur & Hsu in Tsaur et al., 1991b: 176.

Distribution: China: Fujian, Taiwan (Tsaur et al. 1991b).

Notes: First record: China: Fujian (Wuyi Mountain).

Cixius nervosus (Linné, 1758)

Nomenclature:
Cicada nervosa Linné, 1758: 437. | *Cixius nervosus* (Linné, 1758), Beirne, 1951: 315. | Kramer, 1981: 8. | Bartlett et al., 2014: 90. | Hayashi & Fujinuma, 2016: 324.

Distribution: China: Ningxia; Algeria (Nast 1972, Holzinger et al. 2003) Austria (Nast 1972, Holzinger et al. 2003) Belgium (Nast 1972, Holzinger et al. 2003); Canada: Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland, Nova Scotia,
Ontario, Quebec, Saskatchewan (Bartlett et al. 2014) Czechoslovakia (Nast 1972, Holzinger et al. 2003); Denmark (Nast 1972, Holzinger et al. 2003); Finland (Nast 1972, Holzinger et al. 2003); France (Nast 1972, Holzinger et al. 2003); Germany (Nast 1972, Holzinger et al. 2003); Great Britain (Nast 1972, Holzinger et al. 2003); Hungary (Nast 1972, Holzinger et al. 2003); Italy (Nast 1972, Holzinger et al. 2003); Japan: Hokkaido, Honshu; Macedonia; Morocco; Netherlands; Norway; Poland; Romania; Russia; Serbia; Spain; Sweden; Switzerland; Tunisia; USA: Alaska, Arizona, California, Colorado, Connecticut, Delaware, Georgia, Idaho, Illinois, Indiana, Iowa, Kansas, Maine, Maryland, Massachusetts, Michigan, Minnesota, New Hampshire, New Jersey, New Mexico, New York, North Carolina, Ohio, Oregon, Pennsylvania, Rhode Island, South Dakota, Tennessee, Utah, Vermont, Virginia, Washington, Wisconsin (Bartlett et al. 2014).

Notes: New record: China: Ningxia (Liupan Mountain).

Cixius nitobei Matsumura, 1914

Nomenclature:

Cixius nitobei Matsumura, 1914: 401. | Jacobi, 1944: 14. | Schumacher, 1915: 131.

Distribution: China: Fujian, Taiwan (Matsumura 1914).

Cixius obvius Tsaur & Hsu, 1991

Nomenclature:

Cixius obvius Tsaur & Hsu in Tsaur et al., 1991b: 288.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius operosus Tsaur & Hsu, 1991

Nomenclature:

Cixius operosus Tsaur & Hsu in Tsaur et al., 1991b: 247.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius parallelus Tsaur & Hsu, 1991

Nomenclature:

Cixius parallelus Tsaur & Hsu in Tsaur et al., 1991b: 251.

Distribution: China: Taiwan (Tsaur et al. 1991b).
Cixius paucus Tsaur & Hsu, 1991

Nomenclature:
Cixius paucus Tsaur & Hsu in Tsaur et al., 1991b: 289.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius perexiguus Tsaur & Hsu, 1991

Nomenclature:
Cixius perexiguus Tsaur & Hsu in Tsaur et al., 1991b: 236.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius perpendicularis Tsaur & Hsu, 1991

Nomenclature:
Cixius perpendicularis Tsaur & Hsu in Tsaur et al., 1991b: 291.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius petilus Tsaur & Hsu, 1991

Nomenclature:
Cixius petilus Tsaur & Hsu in Tsaur et al., 1991b: 231.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius phonascus Fennah, 1956

Nomenclature:
Cixius phonascus Fennah, 1956: 449 (Fennah 1956).

Distribution: China: Guangdong.

Cixius pilosellus Matsumura, 1914

Nomenclature:
Cixius pilosellus Matsumura, 1914: 405.

Distribution: China: Taiwan (Matsumura 1914).

Cixius polydentis Tsaur & Hsu, 1991

Nomenclature:
Cixius polydentis Tsaur & Hsu in Tsaur et al., 1991b: 297.
Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius privus Tsaur & Hsu, 1991

Nomenclature:
Cixius privus Tsaur & Hsu in Tsaur et al., 1991b: 244.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius procerus Tsaur & Hsu, 1991

Nomenclature:
Cixius procerus Tsaur & Hsu in Tsaur et al., 1991b: 278.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius quinarius Tsaur & Hsu, 1991

Nomenclature:
Cixius quinarius Tsaur & Hsu in Tsaur et al., 1991b: 249.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius rarus Tsaur & Hsu, 1991

Nomenclature:
Cixius rarus Tsaur & Hsu in Tsaur et al., 1991b: 190.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius reversus Tsaur & Hsu, 1991

Nomenclature:
Cixius reversus Tsaur & Hsu in Tsaur et al., 1991b: 260.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius scrupeus Fennah, 1956

Nomenclature:
Cixius scrupeus Fennah, 1956: 450.| Tsaur et al., 1991b: 297.

Distribution: China: Anhui (Fennah 1956), Hunan, Henan, Taiwan (Tsaur et al. 1991b).

Notes: New record: China: Hunan (Mang Mountain), Hunan (Huping Mountain), Anhui (Guniujiang), Henan (Yuhuang).
Cixius segregatus Tsaurs & Hsu, 1991
Nomenclature:
Cixius segregatus Tsaurs & Hsu in Tsaurs et al., 1991b: 263.
Distribution: China: Taiwan (Tsaurs et al. 1991b).

Cixius separatus Tsaurs & Hsu, 1991
Nomenclature:
Cixius separatus Tsaurs & Hsu in Tsaurs et al., 1991b: 214.
Distribution: China: Taiwan (Tsaurs et al. 1991b).

Cixius serratus Tsaurs & Hsu, 1991
Nomenclature:
Cixius serratus Tsaurs & Hsu in Tsaurs et al., 1991b: 266.
Distribution: China: Taiwan (Tsaurs et al. 1991b).

Cixius spinosus Tsaurs & Hsu, 1991
Nomenclature:
Cixius spinosus Tsaurs & Hsu in Tsaurs et al., 1991b: 282.
Distribution: China: Taiwan (Tsaurs et al. 1991b).

Cixius spirus Tsaurs & Hsu, 1991
Nomenclature:
Cixius spirus Tsaurs & Hsu in Tsaurs et al., 1991b: 186.
Distribution: China: Taiwan (Tsaurs et al. 1991b).

Cixius stallei Tsaurs & Hsu, 1991
Nomenclature:
Cixius stallei Tsaurs & Hsu in Tsaurs et al., 1991b: 291.
Distribution: China: Taiwan (Tsaurs et al. 1991b).

Cixius suturalis Matsumura, 1914
Nomenclature:
Cixius suturalis Matsumura, 1914: 401| Tsaurs et al., 1991b: 301.
Distribution: China: Taiwan (Matsumura 1914).

Cixius taipingshanus Tsaur & Hsu, 1991

Nomenclature:
Cixius taipingshanus Tsaur & Hsu in Tsaur et al., 1991b: 275.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius taiwanus Tsaur & Hsu, 1991

Nomenclature:
Cixius taiwanus Tsaur & Hsu in Tsaur et al., 1991b: 294.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius tappanus Matsumura, 1914

Nomenclature:
Cixius tappanus Matsumura, 1914: 398| Tsaur et al., 1991b: 195.

Distribution: China: Zhejiang, Taiwan (Tsaur et al. 1991b).

Notes: New record: China: Zhejiang (Longwang Mountain).

Cixius transversus Tsaur & Hsu, 1991

Nomenclature:
Cixius transversus Tsaur & Hsu in Tsaur et al., 1991b: 229.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius tsuifenghuensis Tsaur & Hsu, 1991

Nomenclature:
Cixius tsuifenghuensis Tsaur & Hsu in Tsaur et al., 1991b: 259.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius tungpuus Tsaur & Hsu, 1991

Nomenclature:
Cixius tungpuus Tsaur & Hsu in Tsaur et al., 1991b: 233.

Distribution: China: Taiwan (Tsaur et al. 1991b).
Cixius tzuenus Tsaur & Hsu, 1991

Nomenclature:

Cixius tzuenus Tsaur & Hsu in Tsaur et al., 1991b: 222.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius vatius Tsaur & Hsu, 1991

Nomenclature:

Cixius vatius Tsaur & Hsu in Tsaur et al., 1991b: 216.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius velox Matsumura, 1914

Nomenclature:

Cixius velox Matsumura, 1914: 403.

Distribution: China: Taiwan (Matsumura 1914).

Cixius vittatus Tsaur & Hsu, 1991

Nomenclature:

Cixius vittatus Tsaur & Hsu in Tsaur et al., 1991b: 211.

Distribution: China: Guangxi, Ningxia, Taiwan (Tsaur et al. 1991b).

Notes: New record: China: Ningxia (Liupan Mountain), Guangxi (Huaping nature reserve).

Cixius wui Tsaur & Hsu, 1991

Nomenclature:

Cixius wui Tsaur & Hsu in Tsaur et al., 1991b: 178.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Cixius wusheus Tsaur & Hsu, 1991

Nomenclature:

Cixius wusheus Tsaur & Hsu in Tsaur et al., 1991b: 269.

Distribution: China: Taiwan (Tsaur et al. 1991b).
Cixius yangi Tsaur & Hsu, 1991

Nomenclature:

Cixius yangi Tsaur & Hsu in Tsaur et al., 1991b: 192.

Distribution: China: Taiwan (Tsaur et al. 1991b).

Subgenus Acanthocixius Wagner, 1939

Cixius (Acanthocixius) stigmaticus (Germar, 1818)

Nomenclature:

Flata stigmaticus Germar, 1818: 199.| *Cixius stigmaticus* (Germar, 1818), Stephens, 1829: 357.| *Cixius (Acanthocixius) stigmaticus* (Germar, 1818), Mozaffarian & Wilson, 2011: 9.| *Cixius stigmaticus* (Germar, 1818), Emeljanov, 2015: 115.

Distribution: China: Guangxi, Guizhou, Zhejiang; France (Ribaut and Lacroix 1958); Germany (Holzinger et al. 2003); UK (Holzinger et al. 2003); Iran: Kandovān (Mozaffarian and Wilson 2011); Netherlands (De Haas and Den Bieman 2018); Poland (Gebicki et al. 2013).

Notes: New record: China: Guangxi (Huaping), Zhejiang (Hangzhou).

Subgenus Ceratocixius Wagner, 1939

Cixius (Ceratocixius) subsimplex Vilbaste, 1968

Nomenclature:

Cixius subsimplex Vilbaste, 1968: 5.| Anufriev & Emeljanov, 1988: 452.| *Cixius (Ceratocixius) subsimplex*, Emeljanov, 2015: 98.

Distribution: China: Gansu.

Notes: New record: China: Gansu (Wenxian).

Genus Gonophallus Tsaur & Hsu, 1991

Gonophallus trinus Tsaur & Hsu, 1991

Nomenclature:

Gonophallus trinus Tsaur & Hsu in Tsaur et al., 1991a: 25.

Distribution: China: Taiwan(Tsaur et al. 1991a).
Genus *Macrocixius* Matsumura, 1914

Macrocixius giganteus Matsumura, 1914

Nomenclature:

Macrocixius giganteus Matsumura, 1914: 394.| Schumacher, 1915: 131.| Fennah, 1956: 459.| Tsaur et al., 1991a: 3.| Liang, 2005: 429.| Orosz, 2013: 107.| Zhang & Chen, 2013b: 279.| Hayashi & Fujinuma, 2016: 325.

Distribution: China: Fujian, Hainan, Jiangxi (Zhang and Chen 2013a), Taiwan (Tsaur et al. 1991a); Japan: Kyushu; Vietnam (Hayashi and Fujinuma 2016).

Notes: New record: China: Fujian (Chongan), Hainan (Jianfeng), Jiangxi (Wuyishan).

Macrocixius grossus Tsaur & Hsu, 1991

Nomenclature:

Macrocixius grossus Tsaur & Hsu in Tsaur et al. 1991a: 5.| Orosz, 2013: 108.| Zhang & Chen, 2013b: 281.

Distribution: China: Guizhou, Sichuan, Yunnan, Zhejiang (Zhang and Chen 2013a), Taiwan (Tsaur et al. 1991a); Vietnam.

Notes: New record: China: Guizhou (Luodian).

Macrocixius rarimaculatus Zhang & Chen, 2013

Nomenclature:

Macrocixius rarimaculatus Zhang & Chen, 2013a: 283.| Orosz & Redei, 2016: 376.

Distribution: China: Guizhou (Zhang and Chen 2013a), Jiangxi, Taiwan (Tsaur et al. 1991a); Nepal: Ganesh Himal.

Macrocixius unispinus Zhang & Chen, 2013

Nomenclature:

Macrocixius unispinus Zhang & Chen, 2013a: 285.

Distribution: China: Yunnan (Zhang and Chen 2013a) .
Genus *Semicixius* Tsaur & Hsu, 1991

Semicixius denticulus Tsaur & Hsu, 1991

Nomenclature:
Semicixius denticulus Tsaur & Hsu in Tsaur et al., 1991a: 23.

Distribution: China: Taiwan (Tsaur et al. 1991a).

Genus *Tsauria* Kocak & Kemal, 2009

Tsauria brevispina Zhi & Chen, 2019

Nomenclature:
Tsauria brevispina Zhi & Chen, 2019: 57.

Distribution: China: Guizhou, Hubei (Zhi et al. 2019).

Tsauria cehengensis (Zhang & Chen, 2011)

Nomenclature:
Discophorellus cehengensis Zhang & Chen, 2011a: 61.] *Tsauria chengensis* (Zhang & Chen, 2011), Xing, 2014: 149.

Distribution: China: Guizhou (Zhang and Chen 2011a).

Tsauria longispina Zhi & Chen, 2019

Nomenclature:
Tsauria longispina Zhi & Chen, 2019: 63.

Distribution: China: Fujian, Guizhou, Hainan (Zhi et al. 2019).

Tsauria major (Tsaur & Hsu, 1991)

Nomenclature:
Discophorellus major Tsaur & Hsu in Tsaur et al., 1991a: 21.] *Tsauria major* (Tsaur & Hsu, 1991), Kocak, 2009: 6.

Distribution: China: Taiwan (Tsaur et al. 1991a).
Tsauria transspinus (Zhang & Chen, 2011)

Nomenclature:

Discophorellus transspinus Zhang & Chen, 2011a: 64. | *Tsauria transspinus* (Zhang & Chen, 2011), Xing, 2014: 150.

Distribution: China: Guizhou (Zhang and Chen 2011a).

Tribe Eucarpiini Emeljanov, 2002

Genus Bajauana Distant, 1907

Bajauana mestra Fennah, 1980

Nomenclature:

Bajauana mestra Fennah, 1980: 285.

Distribution: China: Hunan; Indonesia: Irian Jaya (Fennah 1980).

Notes: New record: China: Hunan (Nanyue).

Bajauana smaragus Fennah, 1980

Nomenclature:

Bajauana smaragus Fennah, 1980: 277.

Distribution: China: Hainan; Indonesia: Irian Jaya (Fennah 1980).

Notes: New record: China: Hainan (Qixianling).

Genus Dilacreon Fennah, 1980

Subgenus Dilacreon Fennah, 1980

Dilacreon (Dilacreon) semiramis Fennah, 1980

Nomenclature:

Dilacreon (Dilacreon) semiramis Fennah, 1980: 242.

Distribution: China: Hainan; Indonesia: Irian Jaya; Papua New Guinea: Hollandia (Fennah 1980).

Notes: New record: China: Hainan (Wuzhi Mountain).
Genus *Eucarpia* Walker, 1857

Eucarpia specialis Tsaur & Hsu, 2003

Nomenclature:

Eucarpia specialis Tsaur & Hsu, 2003: 438.

Distribution: China: Hainan, Taiwan (Tsaur and Hsu 2003).

Notes: New record: China: Hainan (Wuzhi Mountain).

Eucarpia stellata Tsaur & Hsu, 2003

Nomenclature:

Eucarpia stellata Tsaur & Hsu, 2003: 436.

Distribution: China: Fujian, Hainan, Taiwan (Tsaur and Hsu 2003).

Notes: New record: China: Hainan (Liping), Fujian (Meihu).

Eucarpia truncata Tsaur & Hsu, 2003

Nomenclature:

Eucarpia truncata Tsaur & Hsu, 2003: 438.

Distribution: China: Taiwan (Tsaur and Hsu 2003).

Ptoleria indica (Distant, 1916)

Nomenclature:

Caneirona indica Distant, 1916: 39. | *Ptoleria indica* (Distant, 1916), Fennah, 1956: 448.

Distribution: China: Hubei (Fennah 1956); India (Distant 1916).

Notes: This species is recorded here from China based on female specimens of literature data.

Genus *Kirbyana* Distant, 1906

Kirbyana aspina Zhi & Chen, 2021

Nomenclature:

Kirbyana aspina Zhi & Chen in Zhi et al., 2021: 7.

Distribution: China: Hunan (Zhi et al. 2021).
Kirbyana furcata Zhi & Chen, 2021

Nomenclature:
Kirbyana furcata Zhi & Chen in Zhi et al., 2021: 8.

Distribution: China: Yunnan, Guangxi (Zhi et al. 2021).

Kirbyana lini Tsaur & Hsu, 2003

Nomenclature:
Kirbyana lini Tsaur & Hsu, 2003: 434.

Distribution: China: Taiwan (Tsaur and Hsu 2003).

Kirbyana pagana (Melichar, 1903)

Nomenclature:
Kirbya pagana Melichar, 1903: 248.| *Kirbyana pagana* (Melichar, 1903), Distant, 1907: 262.| Tsaur, 2003: 432.

Distribution: China: Hainan, Taiwan (Tsaur and Hsu 2003); India; Malaysia; Sri Lanka: Peradeniya.

Notes: New record: China: Hainan (Wuzhi Mountain).

Genus Neocarpia Tsaur & Hsu, 2003

Neocarpia acutata Zhi & Chen, 2017

Nomenclature:
Neocarpia acutata Zhi & Chen in Zhi et al., 2017: 23.

Distribution: China: Yunnan (Zhi et al. 2017).

Neocarpia bidentata Zhang & Chen, 2013

Nomenclature:
Neocarpia bidentata Zhang & Chen, 2013b: 43.

Distribution: China: Guizhou (Zhang and Chen 2013b).

Neocarpia hamata Zhang & Chen, 2013

Nomenclature:
Neocarpia hamata Zhang & Chen, 2013b: 45.| Zhi et al., 2017: 27.
Neocarpia maai Tsaur & Hsu, 2003

Nomenclature:

Neocarpia maai Tsaur & Hsu, 2003: 441.

Distribution: China: Zhejiang, Taiwan (Tsaur and Hsu 2003).

Notes: New record: China: Zhejiang (Fengyang Mountain).

Neocarpia reversa Zhi & Chen, 2017

Nomenclature:

Neocarpia reversa Zhi & Chen in Zhi et al., 2017: 30.

Distribution: China: Yunnan (Zhi et al. 2017).

Tribe Oecleini Muir, 1922

Genus Haplaxius Fowler, 1904

Haplaxius ovatus Ball, 1933

Nomenclature:

Myndus ovatus Ball, 1933: 473.| *Haplaxius ovatus* (Ball, 1933), Caldwell, 1946: 203.| *Myndus ovatus* (Ball, 1933), Kramer, 1979: 344.| *Haplaxius ovatus* (Ball, 1933), Emeljanov, 1989: 62.| Bartlett et al., 2014: 99| Wheeler, 2014: 360.

Distribution: China: Guizhou; USA: Delaware, Georgia, Illinois, Iowa, Kansas, Maryland, Massachusetts, Minnesota, Missouri, Nebraska, New Jersey, Oklahoma, South Dakota, Virginia, Wisconsin (Bartlett et al. 2014).

Genus Mundopa Distant, 1906

Mundopa kotoshonis Matsumura, 1914

Nomenclature:

Mundopa kotoshonis Matsumura, 1914: 430.| Tsaur et al., 1991a: 76.

Distribution: China: Taiwan (Tsaur et al. 1991a).
Genus *Myndus* Stål, 1862

Myndus kotoshonis Matsumura, 1940

Nomenclature:

Myndus kotoshonis Matsumura, 1940: 45.| Tsaur et al., 1991a: 74.

Distribution: China: Taiwan (Tsaur et al. 1991a).

Tribe Pentastirini Emeljanov, 1971

Genus *Oteana* Hoch, 2006

Oteana oryzae (Matsumura, 1911)

Nomenclature:

Oliarus oryzae Matsumura, 1911: 134.| Van Stalle, 1991: 34.| *Oteana oryzae* (Matsumura, 1911), Emeljanov, 2007: 291.

Distribution: China: Taiwan (Van Stalle 1991).

Subtribe Pentastirina Emeljanov, 1971

Genus *Arosinus* Emeljanov, 2007

Arosinus hopponis (Matsumura, 1914)

Nomenclature:

Oliarus boninensis Matsumura, 1914: 423.| Fennah, 1956: 83; Van Stalle, 1991: 46.| *Arosinus boninensis* (Matsumura, 1914), Emeljanov, 2007: 291.| Hayashi & Fujinuma, 2016: 323.

Distribution: China: Taiwan (Matsumura 1914).

Arosinus velox (Matsumura, 1914)

Nomenclature:

Oliarus velox Matsumura, 1914: 425.| *Arosinus velox* (Matsumura, 1914), Emeljanov, 2007: 291.

Distribution: China: Taiwan (Matsumura 1914).
Genus *Atretus* Emeljanov, 2007

Atretus horishanus (Matsumura, 1914)

Nomenclature:

Oliarus horishanus Matsumura, 1914: 418. | Schumacher, 1915: 131. | Van Stalle, 1991: 84. | Liang, 2005: 429. | *Atretus horishanus* (Matsumura, 1914), Emeljanov, 2007: 291.

Distribution: China: Taiwan (Matsumura 1914).

Atretus hsui (Tsaur, 1990)

Nomenclature:

Oliarus hsui Tsaur, 1990b: 135. | *Atretus hsui* (Tsaur, 1990), Emeljanov, 2007: 291.

Distribution: China: Taiwan (Tsaur 1990b).

Atretus nigronervatus (Fennah, 1956)

Nomenclature:

Oliarus nigronervatus Fennah, 1956: 451. | Liang, 2005a: 429. | *Atretus nigronervatus* (Fennah, 1956), Emeljanov, 2007: 291.

Distribution: China: Fujian, Guangxi, Hubei (Fennah 1956).

Notes: New record: China: Guangxi (Baiyangsi).

Atretus shiaoi (Tsaur, 1990)

Nomenclature:

Oliarus shiaoi Tsaur, 1990b: 137. | *Atretus shiaoi* (Tsaur, 1990), Emeljanov, 2007: 291.

Distribution: China: Taiwan (Tsaur 1990b).

Atretus yangi (Tsaur, 1989)

Nomenclature:

Oliarus yangi Tsaur, 1989a: 171. | Van Stalle, 1991: 84. | *Atretus yangi* (Tsaur, 1989), Emeljanov, 2007: 291.

Distribution: China: Taiwan (Tsaur 1989a).
Genus *Indolipa* Emeljanov, 2001

Indolipa fopingensis Luo, Liu & Feng 2019

Nomenclature:

Indolipa fopingensis Luo, Liu & Feng, 2019b: 184.

Distribution: China: Shaanxi (Luo et al. 2019b).

Indolipa longlingensis Zhi & Chen, 2020

Nomenclature:

Indolipa fugongensis Zhi & Chen in Zhi et al., 2020b: 22.

Distribution: China: Yunnan (Zhi et al. 2020b).

Indolipa gansuensis Guo & Feng, 2010

Nomenclature:

Indolipa gansuensis Guo & Feng, 2010: 35.

Distribution: China: Gansu (Guo and Feng 2010).

Indolipa huapingensis Luo, Liu & Feng, 2019

Nomenclature:

Indolipa huapingensis Luo, Liu & Feng, 2019b: 189.

Distribution: China: Guangxi (Luo et al. 2019b).

Indolipa kurseongensis (Distant, 1911)

Nomenclature:

Oliarus kurseongensis Distant, 1911: 737.| Fennah, 1956: 451.| Van Stalle, 1991: 51.| *Indolipa kurseongensis* (Distant, 1911), Emeljanov, 2001: 72.| Guo & Feng, 2010: 38.| Luo, Liu & Feng, 2019b: 192.

Distribution: China: Hubei (Fennah 1956), Guangxi, Hunan, Yunnan (Luo et al. 2019b), Tibet (Guo and Feng 2010); India: Darjeeling (Van Stalle 1991).

Indolipa longlingensis Zhi & Chen, 2020

Nomenclature:

Indolipa longlingensis Zhi & Chen in Zhi et al., 2020b: 25.

Distribution: China: Yunnan (Zhi et al. 2020b).
Indolipa tappanus (Matsumura, 1914)

Nomenclature:

Oliarius tappanus Matsumura, 1914: 424.| Tsaur, 1988: 46.| Van Stalle, 1991: 51.|
Indolipa tappanus (Matsumura, 1914), Emeljanov, 2001: 72.| Guo & Feng, 2010: 41.

Distribution: China: Hainan, Taiwan (Guo and Feng 2010).

Notes: New record: China: Hainan (Diaoluo Mountain).

Genus Melanoliarus Fennah, 1945

Melanoliarus canyonensis (Mead & Kramer, 1981)

Nomenclature:

Oliarius canyonensis Mead & Kramer, 1982: 381.| *Melanoliarus canyonensis* (Mead & Kramer, 1981), Bartlett et al., 2014: 92.

Distribution: China: Taiwan; Japan; USA: California, New Mexico (Bartlett et al. 2014).

Notes: This species is recorded here from China based on female specimens of literature data.

Melanoliarus vicarius (Walker, 1851)

Nomenclature:

Cixius vicaria Walker, 1851: 343.| *Oliarius vicarius* (Walker, 1851), Distant, 1907: 282.| *Oliarius lucidus* Metcalf, 1936: 79.| *Oliarius vicarius* (Walker, 1851), Mead & Kramer, 1981: 390.| *Melanoliarus vicarius* (Walker, 1851), Emeljanov, 2001: 122.| Bartlett et al., 2014: 96.

Distribution: China: Hunan; USA: Florida, Colorado; Georgia; Illinois; Maryland; Massachusetts; Mississippi; New Jersey; North Carolina; South Carolina; Texas (Bartlett et al. 2014).

Notes: This species is recorded here from China based on female specimens of literature data.

Genus Oecleopsis Emeljanov, 1971

Oecleopsis articara Van Stalle, 1991

Nomenclature:

Oecleopsis articara Van Stalle, 1991: 22.| Guo et al., 2009: 48.
Oecleopsis bifidus (Tsaur, Hsu & Van Stalle, 1988)

Nomenclature:

Oliarus bifidus Tsaur, Hsu & Van Stalle, 1988: 52. | *Oecleopsis bifidus* (Tsaur, Hsu & Van Stalle, 1988), Van Stalle, 1991: 25. | Guo et al., 2009: 48.

Distribution: China: Fujian, Taiwan (Tsaur et al. 1988).

Notes: New record: China: Fujian (Shaowu).

Oecleopsis chiangi (Tsaur, Hsu & Van Stalle, 1988)

Nomenclature:

Oliarus chiangi Tsaur, Hsu & Van Stalle, 1988: 50. | *Oecleopsis chiangi* (Tsaur, Hsu & Van Stalle, 1988), Van Stalle, 1991: 26. | Guo et al., 2009: 49.

Distribution: China: Fujian, Taiwan (Tsaur et al. 1988).

Notes: New record: China: Fujian (Shaowu).

Oecleopsis elevatus (Tsaur, Hsu & Van Stalle, 1988)

Nomenclature:

Oliarus elevatus Tsaur, Hsu & Van Stalle, 1988: 53. | *Oecleopsis elevatus* (Tsaur, Hsu & Van Stalle, 1988), Van Stalle, 1991: 26. | Guo et al., 2009: 49. | Hayashi & Fujinuma, 2016: 325.

Distribution: China: Guangxi, Taiwan (Tsaur et al. 1988); Japan: Honshu (Hayashi and Fujinuma 2016).

Notes: New record: China: Guangxi (Lingchuan).

Oecleopsis laminatus Zhi & Chen, 2018

Nomenclature:

Oecleopsis laminatus Zhi & Chen in Zhi et al., 2018a: 5.

Distribution: China: Yunnan (Zhi et al. 2018a).
Oecleopsis mori Matsumura, 1914

Nomenclature:

Oecleopsis mori Matsumura, 1914: 426. | Van Stalle, 1991: 23. | Guo et al., 2009: 50. | Zhi et al., 2018a: 9.

Distribution: China: Guangxi, Yunnan (Zhi et al. 2018a), Taiwan (Van Stalle 1991).

Oecleopsis petasatus (Noualhier, 1896)

Nomenclature:

Oliarus petasatus Noualhier, 1896: 255. | Fennah, 1956: 455. | Oecleopsis petasatus (Noualhier, 1896), Van Stalle, 1991: 22. | Guo et al., 2009: 50.

Distribution: China: Hainan, Sichuan, Yunnan (Guo et al. 2009); Cambodia: (Noualhier 1896).

Notes: New record: China: Yunnan (Yaoqu, Mengla, Longling, Kunming), Sichuan (Yaan), Hainan (Yinggeling).

Oecleopsis productus Zhi & Chen, 2018

Nomenclature:

Oecleopsis productus Zhi & Chen in Zhi et al., 2018a: 9.

Distribution: China: Yunnan (Zhi et al. 2018a).

Oecleopsis sinicus (Jacobi, 1944)

Nomenclature:

Mnemosyne sinica Jacobi, 1944: 12. | Chou, 1985: 23. | Oliarus sinicus (Jacobi, 1944), Van Stalle, 1988: 46. | Oecleopsis sinicus (Jacobi, 1944), Van Stalle, 1991: 23. | Liang, 2005b: 429. | Guo et al., 2009: 45. | Hayashi & Fujinuma, 2016: 325.

Distribution: China: Beijing, Anhui, Fujian (Jacobi 1944), Guangdong, Guangxi (Guo et al. 2009), Henan, Hubei, Hunan, Sichuan, Guizhou, Zhejiang, Taiwan; Cambodia; Japan: Kyushu (Hayashi and Fujinuma 2016).

Notes: New record: China: Beijing (Mentougou), Hunan (Chenzhou, Huping), Fujian (Fuzhou), Guangxi (Lingchuan), Guangdong (Lohchan).

Oecleopsis spinosus Guo & Wang, 2009

Nomenclature:

Oecleopsis spinosus Guo & Wang in Guo et al., 2009: 54.
Oecleopsis tiantaiensis Guo & Wang, 2009

Nomenclature:

Oecleopsis tiantaiensis Guo & Wang in Guo et al., 2009: 54.

Distribution: China: Shaanxi (Guo et al. 2009), Gansu.

Notes: New record: China: Shaanxi (Hanzhong), Gansu (Xiaolong Mountain).

Oecleopsis wuyiensis Guo & Wang, 2009

Nomenclature:

Oecleopsis wuyiensis Guo & Wang in Guo et al., 2009: 56.

Distribution: China: Fujian, Shaanxi, Henan, Hunan (Guo et al. 2009), Yunnan.

Notes: New record: China: Yunnan (Lvchun).

Oecleopsis yoshikawai (Ishihara, 1961)

Nomenclature:

Oliarus yoshikawai Ishihara, 1961: 228. | *Oecleopsis yoshikawai* (Ishihara, 1961), Van Stalle, 1991: 22. | Guo et al., 2009: 58. | Zhi et al., 2018a: 12.

Distribution: China: Guizhou (Zhi et al. 2018a), Yunnan; Thailand: Doi Inthanon (Van Stalle 1991).

Notes: New record: China: Yunnan (Sumie).

Oecleopsis cucullatus (Noulahier, 1896) comb. nov.

Nomenclature:

Oliarus cucullatus Noulahier, 1896: 255. | Jacobi, 1917: 11. | Fennah, 1956: 453. | *Oecleus cucullatus* (Noulahier, 1896), Emeljanov, 1971: 621.

Distribution: China: Guangdong, Hubei (Fennah 1956); Cambodia (Van Stalle 1991).

Notes: This species was originally belonged to *Oecleus*, and when the authors observed the paratype specimens of this species, we found that its morphology indicates the misclassification of this species, this species with strongly elevated and foliaceous lateral carinae, consistent with the diagnostic characteristics of *Oecleopsis*, so in this study this species was transferred to *Oecleopsis* as a new combination.
Genus *Oliarus* Stål, 1862

Oliarus bizonatus Kato, 1932

Nomenclature:

Oliarus bizonatus Kato, 1932: 216.

Distribution: China: Northwestern of China (Kato 1932).

Oliarus cingalensis (Distant, 1911)

Nomenclature:

Mnemosyne cingalensis Distant, 1911: 738. | *Oliarus cingalensis* (Distant, 1911), Van Stalle, 1988: 46. | Van Stalle, 1991: 82.

Distribution: China: Yunnan; Sri Lanka: Trincomalee (Distant 1911); USA: Puerto Rico.

Notes: New record: China: Yunnan (Yuanmou).

Oliarus indicus Distant, 1911

Nomenclature:

Oliarus indicus Distant, 1911: 735. | Van Stalle, 1991: 80.

Distribution: China: Beijjing; India: (Van Stalle 1991).

Notes: New record: China: Beijjing (Xishan).

Oliarus mlanjensis Van Stalle, 1987

Nomenclature:

Oliarus mlanjensis Van Stalle, 1987: 66.

Distribution: China: Guangxi, Hubei; Malawi; Tanzania; Zimbabwe: ex Rhodesia (Van Stalle 1987).

Notes: New record: China: Guangxi (Longsheng), Hubei (Shennongjia).

Oliarus speciosus Matsumura, 1914

Nomenclature:

Oliarus speciosus Matsumura, 1914: 424.

Distribution: China: Taiwan (Matsumura 1914).
Oliarus zaoensis Wang, 1991

Nomenclature:
Oliarus zaoensis Wang, 1991: 85.

Distribution: China: Hebei (Wang 1991).

Genus Oliparisca Emeljanov, 2001

Oliparisca pundaloyensis (Van Stalle, 1991)

Nomenclature:
Oliarus pundaloyensis Van Stalle, 1991: 72.| Oliparisca pundaloyensis (Van Stalle, 1991), Emeljanov, 2001: 72.

Distribution: China: Tibet; Sri Lanka: (Van Stalle 1991).

Genus Pentastiridius Kirschbaum, 1868

Pentastiridius apicalis (Uhler, 1896)

Nomenclature:
Myndus apicalis Uhler, 1896: 281.| Oliarus apicalis (Uhler, 1896), Matsumura, 1900: ?.| Chou, 1985: 21.| Pentastiridius apicalis (Uhler, 1896), Emeljanov, 1979: 223.| Anufriev & Emeljanov, 1988: 463.| Van Stalle, 1991: 15.| Liang, 2005b: 429.| Anufriev, 2009: 68.| Hayashi & Fujinuma, 2016: 326.

Distribution: China: Beijing (Liang 2005b), Shanghai, Fujian, Jiangxi, Jiangsu, Shaanxi, Sichuan, Zhejiang; Japan: Hokkaido, Honshu, Kyushu, Shikoku (Hayashi and Fujinuma 2016); Russia: Khabarovsk, Primorye.

Notes: New record: China: Hebei (Shijiazhuang), Jiangsu (Jinshan), Shanghai (Songjiang).

Pentastiridius bohemani (Stål, 1859)

Nomenclature:
Cixius bohemani Stål, 1859: 272.| Oliarus bohemani (Stål, 1859), Stål, 1862: 306.| Pentastiridius bohemani (Stål, 1895), Van Stalle, 1991: 12.

Distribution: China: Hainan, Hongkong (Van Stalle 1991).

Notes: New record: China: Hainan (Xisha).
Pentastiridius leporinus (Linné, 1761)

Nomenclature:

Cicada leporinus Linné, 1761: 242. | *Cixius leporinus* (Linné, 1761), Curtis, 1829: 194. | *Flata leporina* (Linné, 1761), Germar, 1830: 50. | *Oliarus leporinus* (Linné, 1761), Scott, 1870: 720. | *Pentastiridius leporinus* (Linné, 1761), Van Stalle, 1985: 441. | Kalkandelen, 1990: 3.

Distribution: China: Nei-Mongol, Heilongjiang; Iran: bādeh, Albāji, Bampur, Bazmān, Birjand, Chābahār, Dālaki, Evin, Gāmbuyeh, Gāvbandi, Gharechaman, Hafttapeh, Hamidieh, Hāresābād, Hashtpar, Irānshahr, Kandovān (Māzandarān), Marand, Miāneh-ZanjānRd, Minushahr, Mollāsān, Shādegān, Shieh, Susangerd, Suza, Tabriz, Varāmin, Zābol (Kalkandelen 1990); Afghanistan (Nast 1972, Holzinger et al. 2003); Albania; Algeria: (Nast 1972, Holzinger et al. 2003) Armenia; Austria; Azerbaijan (Nast 1972, Holzinger et al. 2003); Belgium: (Nast 1972, Holzinger et al. 2003); Cyprus; Czech Republic; Denmark: (Nast 1972, Holzinger et al. 2003); Estonia: (Nast 1972, Holzinger et al. 2003); Finland: (Nast 1972, Holzinger et al. 2003); France: (Nast 1972, Holzinger et al. 2003); Georgia: (Nast 1972, Holzinger et al. 2003); Germany: (Nast 1972, Holzinger et al. 2003); UK: (Nast 1972, Holzinger et al. 2003); Greece: (Nast 1972, Holzinger et al. 2003); Hungary: (Nast 1972, Holzinger et al. 2003); Ireland: (Nast 1972, Holzinger et al. 2003); Iceland: (Nast 1972, Holzinger et al. 2003); Italy: (Nast 1972, Holzinger et al. 2003); Jordan: (Nast 1972); Kazakhstan: (Holzinger et al. 2003); Kyrgyzstān: (Nast 1972, Holzinger et al. 2003); Lithuania; Moldova: (Holzinger et al. 2003); Mongolia; Netherlands: (Nast 1972, Holzinger et al. 2003); Poland: (Nast 1972, Holzinger et al. 2003); Portugal: (Nast 1972, Holzinger et al. 2003); Romania: (Nast 1972, Holzinger et al. 2003); Russia: Primorye; Slovakia; Spain; Sweden; Switzerland; Tadzhikstān: (Nast 1972, Holzinger et al. 2003); Tunisia (Nast 1972); Turkey (Kalkandelen 1990); Turkmenistān (Kalkandelen 1990); Ukraine: (Nast 1972, Holzinger et al. 2003); Yugoslavia: (Nast 1972, Holzinger et al. 2003).

Notes: New record: China: Hainan (Lingshui).

Pentastiridius pachyceps (Matsumura, 1914)

Nomenclature:

Oliarus pachyceps Matsumura, 1914: 420. | Schumacher, 1915: 131. | *Pentastiridius pachyceps* (Matsumura, 1914), Van Stalle, 1991: 13. | Hayashi & Fujinuma, 2016: 326.

Distribution: China: Hainan, Taiwan (Van Stalle 1991); Nansei-shotō: Ryukyu Islands (Hayashi and Fujinuma 2016).

Notes: New record: China: Hainan (Lingshui).
Pentastiridius tsoui (Muir, 1925)

Nomenclature:

Oliarus tsoui Muir, 1925: 365. | *Nesopompe tsoui* (Muir, 1925), Fennah, 1956: 455. | *Pentastiridius tsoui* (Muir, 1925), Van Stalle, 1991: 16.

Distribution: China: Jiangsu, Hubei (Fennah 1956); Japan (Fennah 1956).

Genus Reptalus Emeljanov, 1971

Reptalus arcbogdulus (Dlabola, 1985)

Nomenclature:

Oliarus arcbogdulus Dlabola, 1965: 87. | *Reptalus arcbogdulus* (Dlabola, 1965), Emeljanov, 1971: 622. | Emeljanov, 1982: 111. | Emeljanov, 2015: 209.

Distribution: China: Beijing; Mongolia: Uburchangaj aimak (Anonymous 2015).

Notes: New record: China: Beijing (Mentougou).

Reptalus basiprocessus Guo & Wang, 2007

Nomenclature:

Reptalus basiprocessus Guo & Wang, 2007: 276. | Bai et al., 2015: 37.

Distribution: China: Fujian (Bai et al. 2015), Hubei, Hunan (Guo and Wang 2007), Zhejiang, Sichuan, Guizhou, Hebei, Qinghai, Jiangsu.

Notes: New record: China: Jiangsu (Xinghua), Jiangsu (Zhenze).

Reptalus iguchii (Matsumura, 1914)

Nomenclature:

Oliarus iguchii Matsumura, 1914: 419. | *Reptalus iguchii* (Matsumura, 1914), Rahman, 2011: 35. | Hayashi & Fujinuma, 2016: 326.

Distribution: China: Guizhou, Hunan; South Korea: Gyeongsangbuk-do (Rahman et al. 2011); Japan: Honshu, Kyushu (Hayashi and Fujinuma 2016).

Notes: New record: China: Guizhou (Duyun), Guizhou (Tongren), Guizhou (Kaili), Hunan (Suining).
Reptalus quadricinctus (Matsumura, 1914)

Nomenclature:

Oliarus quadricinctus Matsumura, 1914: 419. | Chou, 1985: 20. | *Reptalus quadricinctus* (Matsumura, 1914), Emeljanov, 1971: 622. | Anufriev & Emeljanov, 1988: 464. | *Reptalus quadricinctus* (Matsumura, 1914), Van Stalle, 1991: 17. | Liang, 2005b 429 | Guo & Wang, 2007: 27. | Rahman, 2011: 35. | Bai et al., 2015: 35. | Emeljanov, 2015: 215. | Hayashi & Fujinuma, 2016: 326.

Distribution: China: Beijing, Anhui, Fujian, Hunan, Hubei, Jinlin, Shaanxi, Zhejiang, Jiangsu, Shanghai, Sichuan, Guizhou; Japan: Honshu, Kyushu, Shikoku (Hayashi and Fujinuma 2016); Russia: Primorye; South Korea: Daegu (Rahman et al. 2011).

Notes: New record: China: Anhui (Anhui labor university), Shaanxi (Foping nature reserve, Taibai Mountain, Ningqiang, Shiquan, Suining, Chenxi), Hunan (Hupengshan nature reserve, Zhanjiajie nature reserve), Hubei (Houhe nature reserve, Shennongjia), Jilin (Linjiang), Fujian (Shaowu, Huangkeng, Jianning, Daan), Anhui (Anhui labor university), Zhejiang (Fengyangshan), Beijing (Mentougou), Zhejiang (Hangzhou), Jiangsu (Zhenze, Suzhou), Shanghai (Qingpu, Bao Mountain, Sheshan, Jinshan), Sichuan (Qianjiang).

Reptalus quinquecostatus (Dufour, 1833)

Nomenclature:

Cixius quinquecostatus Dufour, 1833: 224. | *Reptalus quinquecostatus* (Dufour, 1833), Emeljanov, 1971: 622. | Lodos & Kalkandelen, 1980: 23. | Jovic, 2009: 1055. | Bertin, 2010: 552. | Cvrkovic, 2010: 222. | Jovic, 2010: 238. | Drobnjaković, 2010: 313. | Cvrkovic, 2011: S130. | Mozaffarian & Wilson, 2011: 14. | Emeljanov, 2015: 209. | Mozaffarian, 2018: 480.

Distribution: China: Chongqing; Armenia; Austria; Bulgaria; Czech Republic; France; Germany; Greece; Hungary: Andornaktaalya; Iran: North (Mozaffarian and Wilson 2011); Italy: Emilia Romagna, Piemonte; Kazakhstan; Portugal; Romania: Csi kózéreda, Fundulea; Russia: Azov; Serbia: Vršac, Topla, Rajac, South Banat District; Slovakia; Spain; Tadzhikistan; Turkey; Ukraine; Yugoslavia.

Notes: New record: China: Chongqing.

Reptalus shunxiwuensis Bai, Guo & Feng, 2015

Nomenclature:

Reptalus shunxiwuensis Bai, Guo & Feng, 2015: 38.

Distribution: China: Anhui, Sichuan, Zhejiang (Bai et al. 2015).
Genus *Siniarus* Emeljanov, 2007

Siniarus formosanus (Matsumura, 1914)

Nomenclature:

Oliarus formosanus Matsumura, 1914: 427.| Van Stalle, 1991: 31.| Schumacher, 1915: 131.| *Siniarus formosanus* (Matsumura, 1914), Emeljanov, 2007: 291.

Distribution: China: Taiwan (Matsumura 1914).

Siniarus insetosus (Jacobi, 1944)

Nomenclature:

Oliarus insetosus Jacobi, 1944: 13.| Fennah, 1956: 454.| *Siniarus insetosus* (Jacobi, 1944), Emeljanov, 2007: 291.

Distribution: China: Fujian (Jacobi 1944), Guangdong, Hongkong, Hubei, Sichuan (Fennah 1956), Yunnan, Tibet, Guangxi, Guizhou, Hunan, Taiwan.

Siniarus scalenus (Tsaur, Hsu & Van Stalle, 1988)

Nomenclature:

Oliarus scalenus Tsaur, Hsu & Van Stalle, 1988: 41.| Van Stalle, 1988: 29.| *Siniarus scalenus* (Tsaur, Hsu & Van Stalle, 1988), Emeljanov, 2007: 291.

Distribution: China: Taiwan (Tsaur et al. 1988).

Tribe Semonini Emeljanov, 2002

Genus *Betacixius* Matsumura, 1914

Betacixius bispinus Zhang & Chen, 2011

Nomenclature:

Betacixius bispinus Zhang & Chen, 2011b: 53.

Distribution: China: Sichuan (Zhi et al. 2020a), Guangxi, Guizhou (Zhang and Chen 2011b), Xinjiang, Yunnan (Zhi et al. 2020a).

Notes: New record: China: Xinjiang (Changji Temple), Guangxi (Lintian).
Betacixius brunneus Matsumura, 1914

Nomenclature:

Betacixius brunneus Matsumura, 1914: 417.| Hori, 1982: 181.| Tsaur et al., 1991b: 37.| Zhang & Chen, 2011b: 50.| Hayashi & Fujinuma, 2016: 323.

Distribution: China: Fujian, Zhejiang, Taiwan (Zhang and Chen 2011b); Japan; Nansei-shoto: Ryukyu Islands (Hayashi and Fujinuma 2016).

Notes: New record: China: Fujian (Taoyuan valley scenic spot of Wuyi Mountain).

Betacixius clypealis Matsumura, 1914

Nomenclature:

Betacixius clypealis Matsumura, 1914: 415.| Hori, 1982: 181.| Tsaur et al., 1991b: 39.

Distribution: China: Zhejiang, Taiwan (Matsumura 1914).

Notes: New record: China: Zhejiang (Jiulong Mountain, Wuyanling).

Betacixius clypealis subsp. *vitifrons* (Matsumura, 1914)

Nomenclature:

Betacixius clypealis vitifrons Matsumura, 1914: 416.

Distribution: China: Taiwan (Matsumura 1914).

Betacixius delicates Tsaur & Hsu, 1991

Nomenclature:

Betacixius delicates Tsaur & Hsu in Tsaur et al., 1991a: 29.

Distribution: China: Shaanxi, Zhejiang, Yunnan, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Zhejiang (Fengyang Mountain).

Betacixius euterpe Fennah, 1956

Nomenclature:

Betacixius euterpe Fennah, 1956: 458; Zhang & Chen, 2011b: 50.

Distribution: China: Guangdong (Fennah 1956).
Betacixius flagellihamus Zhang & Chen, 2011

Nomenclature:

Betacixius flagellihamus Zhang & Chen, 2011b: 54.

Distribution: China: Guizhou (Zhang and Chen 2011b).

Betacixius flavovittatus Hori, 1982

Nomenclature:

Betacixius flavovittatus Hori, 1982: 179.| Tsaur et al., 1991a: 41.| Zhang & Chen, 2011b: 50.

Distribution: China: Zhejiang, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Zhejiang (Fengyang).

Betacixius fuscus Tsaur & Hsu, 1991

Nomenclature:

Betacixius fuscus Tsaur & Hsu in Tsaur et al., 1991a: 44.| Zhang & Chen, 2011b: 50.

Distribution: China: Fujian, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Fujian (Longyan City Contour Park).

Betacixius herbaceous Tsaur & Hsu, 1991

Nomenclature:

Betacixius herbaceous Tsaur & Hsu in Tsaur et al., 1991a: 28.

Distribution: China: Yunnan, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Yunnan (Yangyang Valley, Matang Reservoir).

Betacixius latistilus Zhi, Zhang, Yang & Chen, 2020

Nomenclature:

Betacixius latistilus Zhi, Zhang, Yang & Chen, 2020a: 8.

Distribution: China: Yunnan (Zhi et al. 2020a).
Betacixius maculosus Tsaur & Hsu, 1991

Nomenclature:

Betacixius maculosus Tsaur & Hsu in Tsaur et al., 1991a: 31.

Distribution: China: Fujian, Sichuan, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Fujian (Wuyi Mountain), Sichuan (Emei Mountain).

Betacixius maguanensis Zhi, Zhang, Yang & Chen, 2020

Nomenclature:

Betacixius maguanensis Zhi, Zhang, Yang & Chen, 2020a: 11.

Distribution: China: Yunnan (Zhi et al. 2020a).

Betacixius michioi Hori, 1982

Nomenclature:

Betacixius michioi Hori, 1982: 176. | Tsaur et al., 1991a: 35. | Zhang & Chen, 2011b: 50.

Distribution: China: Yunnan, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Yunnan (Yangyang Valley, Matang Reservoir).

Betacixius nelides subsp. *atrior* Fennah, 1956

Nomenclature:

Betacixius nelides atrior Fennah, 1956: 458.

Distribution: China: Zhejiang (Fennah 1956).

Betacixius nelides subsp. *nelides* Fennah, 1956

Nomenclature:

Betacixius nelides nelides Fennah, 1956: 457.

Distribution: China: Guangdong (Fennah 1956).

Betacixius nigromarginalis Fennah, 1956

Nomenclature:

Betacixius nigromarginalis Fennah, 1956: 457.

Distribution: China: Hubei (Fennah 1956).
Betacixius obliquus Matsumura, 1914

Nomenclature:

Betacixius obliquus Matsumura, 1914: 414.| Chou, 1985: 23; Chou, 1998: 382.| Liang, 2005b: 429.| Zhang & Chen, 2011b: 50.| *Betacixius obliquus* (Matsumura, 1914), Hayashi & Fujinuma, 2016: 323.

Distribution: China: Fujian, Guizhou, Guangxi, Guangdong, Hainan, Hunan, Sichuan (Liang 2005b), Yunnan, Zhejiang; Japan: Honshu, Kyushu, Shikoku (Hayashi and Fujinuma 2016).

Notes: New record: China: Hainan (Diaoluoshan, Limu Island), Fujian (Wuyi Mountain, Chongan, Guangze, Yongan), Sichuan (Emei Mountain), Guangxi (Huaping nature reserve), Hunan (Shenzhou); Guangdong (Dinghu Mountain), Zhejiang (Qingyuan, Longquan).

Betacixius ocellatus Matsumura, 1914

Nomenclature:

Betacixius ocellatus Matsumura, 1914: 412.| Esaki 1932: 1774.| Hori, 1982: 181.| Tsaur et al., 1991b: 33.

Distribution: China: Yunnan, Fujian, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Fujian (Shaowu Jiangshi Nature Reserve).

Betacixius pallidior Jacobi, 1944

Nomenclature:

Betacixius pallidior Jacobi, 1944: 15.| Fennah, 1978: 213.

Distribution: China: Fujian (Jacobi 1944); Vietnam: Hanio (Fennah 1978).

Betacixius rinkihonis Matsumura, 1914

Nomenclature:

Betacixius rinkihonis Matsumura, 1914: 417.| *Betacixius rinkihonis* Hori, 1982: 180.| Tsaur et al., 1991a: 42.

Distribution: China: Guangdong, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Guangdong (Shaoguan Nanling).
Betacixius robustus Jacobi, 1944

Nomenclature:
Betacixius robustus Jacobi, 1944: 15.| Zhang & Chen, 2011b: 50.

Distribution: China: Fujian (Jacobi 1944).

Betacixius shirozui Hori, 1982

Nomenclature:
Betacixius shirozui Hori, 1982: 178.| Tsaur et al., 1991a: 48.| Zhang & Chen, 2011b: 50.

Distribution: China: Yunnan, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Yunnan (Mengla).

Betacixius sparsus Tsaur & Hsu, 1991

Nomenclature:
Betacixius sparsus Tsaur & Hsu in Tsaur et al., 1991a: 46.| Zhang & Chen, 2011b: 50.

Distribution: China: Fujian, Hainan, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Fujian (Longyan), Hainan (Jianfengling).

Betacixius transversus Jacobi, 1944

Nomenclature:
Betacixius transversus Jacobi, 1944: 14| Zhang & Chen, 2011b: 50.

Distribution: China: Fujian (Jacobi 1944).

Genus Kuvera Distant, 1906

Kuvera communis Tsaur & Hsu, 1991

Nomenclature:
Kuvera communis Tsaur & Hsu in Tsaur et al., 1991a: 59.

Distribution: China: Fujian, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Fujian (Fengyang Mountain).
Kuvera flaviceps (Matsumura, 1900)

Nomenclature:

Oliarus flaviceps Matsumura, 1900: 208. | Kuvera flaviceps (Matsumura, 1900), Matsumura, 1914: 407. | Anufriev, 1987: 14. | Anufriev & Emeljanov, 1988: 449. | Hayashi & Fujinuma, 2016: 325.

Distribution: China: Gansu, Jilin; Japan: Hokkaido, Honshu, Kyushu, Shikoku (Hayashi and Fujinuma 2016); Korea; Russia: Sakhalin.

Notes: New record: China: Gansu (Wen County).

Kuvera hama Tsaur & Hsu, 1991

Nomenclature:

Kuvera hama Tsaur & Hsu in Tsaur et al., 1991b: 61.

Distribution: China: Jilin, Fujian, Hunan, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Fujian (Wuyi Mountain), Hunan (Huping Mountain).

Kuvera huoditangensis Luo, Liu & Feng, 2019

Nomenclature:

Kuvera huoditangensis Luo, Liu & Feng, 2019a: 140.

Distribution: China: Shaanxi (Luo et al. 2019a), Henan, Gansu.

Kuvera kurilensis Anufriev, 1987

Nomenclature:

Kuvera kurilensis Anufriev, 1987: 15. | Anufriev & Emeljanov, 1988: 449.

Distribution: China: Jilin, Fujian, Hunan, Tibet, Taiwan; Russia: Kuril Islands (Anufriev 1987).

Notes: New record: China: Tibet (Motlin Green).

Kuvera laticeps (Metcalf, 1936)

Nomenclature:

Cixius latifrons Melichar, 1902: 85. | Cixius laticeps Metcalf, 1936: 180. | Kuvera laticeps (Metcalf, 1936), Anufriev, 1987: 6.

Distribution: China: Sichuan (Anufriev 1987).
Kuvera longipennis Matsumura, 1914

Nomenclature:
Kuvera longipennis Matsumura, 1914: 411.

Distribution: China: Taiwan (Matsumura 1914).

Kuvera longwangshanensis Luo, Liu & Feng, 2019

Nomenclature:
Kuvera longwangshanensis Luo, Liu & Feng, 2019a: 144.

Distribution: China: Zhejiang (Luo et al. 2019a).

Kuvera pallidula Matsumura, 1914

Nomenclature:
Kuvera flaviceps var. pallidula Matsumura, 1914: 409. | Kuvera pallidula Matsumura, 1914, Anufriev, 1987: 10. | Anufriev & Emeljanov, 1988: 449. | Hayashi & Fujinuma, 2016: 325.

Distribution: China: Jilin, Guangxi, Shaanxi, Sichuan; Japan: Hokkaido, Honshu (Hayashi and Fujinuma 2016); Russia: Far East (Anufriev 1987).

Notes: New record: China: Jilin (Antu County), Guangxi (Longsheng), Sichuan (Yaan).

Kuvera semihyalina Distant, 1906

Nomenclature:
Kuvera semihyalina Distant, 1906: 261. | Anufriev, 1987: 6.

Distribution: China: Liaoning, Shaanxi; Myanmar: (Distant 1906).

Notes: New record: China: Liaoning (Baling County National Balding National Nature Reserve), Shaanxi (Shiquan, Qinling).

Kuvera similis Tsaur & Hsu, 1991

Nomenclature:
Kuvera similis Tsaur & Hsu in Tsaur et al., 1991a: 55.

Distribution: China: Beijing, Fujian, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Beijing (Mentougou), Fujian (Meihua).
Kuvera taiwana Tsaur & Hsu, 1991

Nomenclature:

Kuvera taiwana Tsaur & Hsu in Tsaur et al., 1991a: 50.

Distribution: China: Hainan, Shaanxi, Yunnan, Ningxia, Zhejiang, Tibet, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Zhejiang (Fengyang Mountain, Linan), Hainan (Yinggeling), Tibet (Yadong); Shaanxi (Huayin), Yunnan (Lvchun), Ningxia (Liupan Mountain).

Kuvera tappanella Matsumura, 1914

Nomenclature:

Kuvera tappanella Matsumura, 1914: 410.

Distribution: China: Hubei, Jiangxi, Hunan, Jilin, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Hubei (Shennongjia), Jiangxi (Jinggang Mountain), Hunan (Mang Mountain), Hubei (Shennongjia), Jilin (Changbai Mountain).

Kuvera toroensis Matsumura, 1914

Nomenclature:

Kuvera toroensis Matsumura, 1914: 410.; Anufriev, 1987: 18.

Distribution: China: Yunnan, Jiangxi, Zhejiang, Hunan, Tibet, Taiwan (Matsumura 1914).

Notes: New record: China: Hunan (Qianyang), Jiangxi (Lu Mountain), Yunnan (Mengla Longmen, Matang Reservoir), Zhejiang (Hangzhou), Tibet (Langxian Cuona).

Kuvera transversa Tsaur & Hsu, 1991

Nomenclature:

Kuvera transversa Tsaur & Hsu in Tsaur et al., 1991a: 57.

Distribution: China: Yunnan, Taiwan (Tsaur et al. 1991a).

Notes: New record: China: Yunnan (Tengchong Laifeng Mountain).

Kuvera ussuriensis (Vilbaste, 1968)

Nomenclature:

Betacixius ussuriensis Vilbaste, 1968: 9.; *Kuvera ussuriensis* (Vilbaste, 1968), Anufriev, 1987: 17.
Distribution: China: Sichuan; Russia: Primorsky Territory, South of the Khabarovsk Territory (Anufriev 1987); Japan: Hokkaido.

Kuvera vilbastei Anufriev, 1987

Nomenclature:

Kuvera vilbastei Anufriev, 1987: 7. | Anufriev & Emeljanov, 1988: 448. | Anufriev, 2009: 68.

Distribution: China: Shaanxi, Zhejiang, Tibet; Russia: Primorye (Anufriev 1987).

Notes: New record: China: Tibet (Bomi Yigong, Yadong), Shaanxi (Hua Mountain, Huxian), Zhejiang (Tianmu Mountain).

Kuvera yecheonensis Rahman, Kwon & Suh, 2017

Nomenclature:

Kuvera yecheonensis Rahman, Kwon & Suh, 2017: 10.

Distribution: China: Guizhou; South Korea: Gyeongsangbuk-do (Rahman et al. 2017).

Notes: New record: China: Guizhou (Qiandong).

Tribe Stenophlepsiini Metcalf, 1938

Genus *Euryphlepsia* Muir, 1922

Euryphlepsia yamia Tsaur, 1989

Nomenclature:

Euryphlepsia yamia Tsaur, 1989: 82.

Distribution: China: Taiwan (Tsaur 1989b).

Analysis

Checklist

Ten cixiid tribes are reported in China: Cixiini Spinola, 1839, Oecleini Muir, 1922, Bennini Metcalf, 1938, Stenophlepsiini Metcalf, 1938, Pentastirini Emeljanov, 1971, Borysthenini Emeljanov, 1989, Emeljanov, 2002; Brixiini Emeljanov, 2002, Eucarpiini Emeljanov, 2002, and Semonini Emeljanov, 2002. These tribes include 35 genera and subgenera, 250 species and 400 collection records from 28 Chinese provinces. In this study, 77 new species were recorded for the first time from China.
Regional richness and endemism

A species richness gradient occurs from north to south and from west to east for Cixiidae as shown in Fig. 2. Substantial variation in species richness and endemism among the different zoogeographic regions were observed. Table 1 describes the species richness of Cixiidae by region, ranging from 5 species and no endemic species in the Nei Mongol-Xinjiang region, to 161 species and 69.57% of endemic species in Taiwan region. In-between, species richness and endemism ratios are distributed in two groups: the Northeast China and the Qinghai-Tibet regions, respectively with 8 and 10 species and 12.5% and 20% of endemism, and the North, Southwest and Central China regions, which have comparable numbers of species and endemism, respectively, with 29, 43 and 60 species and 33-40% of endemism. No significant differences in endemism among regions was observed. More than five-fourths of the species (205 species; 82%) are reported to occur in only in China, depicting a high level of endemism of the Chinese fauna for this family (Table 1).

Figure 2. doi
The distribution of species records of Cixiidae species in China.
Table 1.
Species richness, endemism and the proportion of endemic species in the 8 zoogeographical regions of China.

Zoogeographical regions	Species richness	Number of endemic species	Endemic species %
South China	78	14	17.95
Southwest China	43	17	39.53
Central China	60	20	33.33
North China	29	10	34.48
Northeast China	8	1	12.5
Nei Mongol-Xinjiang	5	0	0
Qinghai-Tibet	10	2	20.00
Taiwan	161	112	69.57
China	250	205	82.00

Figure 3. Distribution of records of the tribes Andini and Bennini in China. (a) Andini Emeljanov, 2002; (b) Bennini Metcalf, 1938.
Figure 4. Distribution of records of the tribes Borystenini and Brixiini in China. (a) Borystenini Emeljanov, 1989; (b) Brixiini Emeljanov, 2002.

Figure 5. Distribution of records of the tribes Cixiini and Eucarpiini in China. (a) Cixiini Spinola, 1839; (b) Eucarpiini Emeljanov, 2002.
Distribution patterns of cixiid species in China

Based on the eight zoogeographic regions of China (Fig. 1), 38 main distribution patterns are observed (Table 2). The number of species distributed in a single region (accounting for regional endemism) is highly variable among the regions: Taiwan (44.80%), Central China (8.00%), Southwest China (6.80%), South China (5.60%), North China (4.00%), Qinghai-Tibet (0.80%) and Northeast China (0.40%). No endemic species were observed in the Nei Mongol-Xinjiang region (Table 2). Nine bi-regional distribution patterns were observed, and among them the South China-Taiwan pattern has the greatest number of species (15 species, 6.00% of the species). Nine tri-regional distribution patterns were also observed, among which, the largest number of species (11 species, 4.40% of the species) was for the Central-South China-Taiwan distribution pattern. The Southwest-South China-Taiwan distribution pattern is depicted by 6 species (2.40% of the species). Five distribution patterns occur in 4 zoogeographic regions, among which the North Southwest-Central-South China region and the Northeast-Central-South China-Taiwan region have two species (0.80% of the total number of cixiids in China). All the remaining four-, five-, six- and seven-regional distribution patterns have only a single species, accounting for 0.40% of the total number of cixiids in China (Table 2).

Distributed pattern	Number of species	Species number %
TW	112	44.80
CC	20	8.00
SWC	17	6.80
SC	14	5.60
NC	10	4.00
QT	2	0.80
NEC	1	0.40
SC-TW	15	6.00
SWC-SC	3	1.20
SWC-CC	3	1.20
CC-SC	2	0.80
NC-CC	2	0.80
CC-TW	1	0.40
NEC-NC	1	0.40
NC-SC	1	0.40

Table 2. Distribution patterns of Cixiidae among China zoogeographical regions and proportion of species in these patterns of the total number of species.

* Abbreviations: NEC, Northeast China; NC, North China; NX, Nei Mongol-Xinjiang; QT, Qinghai-Tibet; SWC, Southwest China; CC, Central China; SC, South China; TW, Taiwan.
| Distributed pattern | Number of species | Species number % |
|---------------------|-------------------|------------------|
| NEC-NX | 1 | 0.40 |
| CC-SC-TW | 11 | 4.40 |
| SWC-SC-TW | 6 | 2.40 |
| NC-SC-CC | 2 | 0.80 |
| SWC-SC-CC | 2 | 0.80 |
| NC-SC-TW | 2 | 0.80 |
| NX-SC-TW | 2 | 0.80 |
| NC-QT-CC | 1 | 0.40 |
| NX-CC-SC | 1 | 0.40 |
| QT-SC-TW | 1 | 0.40 |
| NC-SWC-CC-SC | 2 | 0.80 |
| NEC-CC-SC-TW | 2 | 0.80 |
| NC-CC-SC-TW | 1 | 0.40 |
| QT-SWC-CC-SC | 1 | 0.40 |
| SWC-CC-SC-TW | 1 | 0.40 |
| NC-SWC-CC-SC-TW | 2 | 0.80 |
| NEC-NC-SWC-CC-SC | 1 | 0.40 |
| NC-QT-SWC-CC-SC | 1 | 0.40 |
| NEC-QT-CC-SC-TW | 1 | 0.40 |
| QT-SWC-CC-SC-TW | 1 | 0.40 |
| NEC-NC-SWC-CC-TW | 1 | 0.40 |
| NC-QT-SWC-CC-SC-TW | 1 | 0.40 |
| NC-NX-QT-SWC-CC-SC-TW | 1 | 0.40 |

Cixiid patterns of distribution at the tribal level and generic level

Of the ten cixiid tribes distributed in China (Table 3), Pentastirini (21.20%, Fig. 6b) and Semonini (17.20%, Fig. 7a) are the two most widely distributed tribes in China. Cixiini (Fig. 5a), which is the most species-rich tribe with 45.20% of the species, is distributed in 7 regions of China, but has not been reported from the Northeast China region. Andini (5.20%, Fig. 3a) is not distributed in the Palaeartic realm in China; Eucarpiini (6.40%, Fig. 5b) and Borysthenini (2.00%, Fig. 4a) are distributed only in the Southwest, Central, South China, and in the Taiwan regions. The remaining tribes, Bennini (0.40%, Fig. 3b), Brixini (0.80%, Fig. 4b), Oecleini (1.20%, Fig. 6a) and Stenophlepsiini (0.40%, Fig. 7b) are only found in Taiwan.
Table 3.
Number and percentage of cixiid species distributed in China by tribes among the Chinese zoogeographical regions. Abbreviations: NEC, Northeast China; NC, North China; NX, Nei Mongol-Xinjiang; QT, Qinghai-Tibet; SWC, Southwest China; CC, Central China; SC, South China; TW, Taiwan.

Chinese tribes of Cixiidae	Number of species	Species %	Zoogeographical distribution
Andini Emeljanov, 2002	13	5.20	NC, QT, SWC, CC, SC, TW
Bennini Metcalf, 1938	1	0.40	TW
Brixini Emeljanov, 2002	2	0.80	TW
Cixiini Spinola, 1839	113	45.20	NC, NX, QT, SWC, CC, SC, TW
Eucarpiini Emeljanov, 2002	16	6.40	SWC, CC, SC, TW
Oecleini Muir, 1922	3	1.20	TW
Pentastirini Emeljanov, 1971	53	21.20	NEC, NC, NX, QT, SWC, CC, SC, TW
Semonini Emeljanov, 2002	43	17.20	NEC, NC, NX, QT, SWC, CC, SC, TW
Stenophlepsiini Metcalf, 1938	1	0.40	TW
Borysthenini Emeljanov, 1989	5	2.00	SWC, CC, SC, TW

Figure 6. doi
Distribution of the tribes Oecleini and Pentastirini in China. (a) Oecleini Muir, 1922; (b) Pentastirini Emeljanov, 1971.
Thirty-three Cixiidae genera are present in China (Table 4; Fig. 3; Fig. 4; Fig. 5; Fig. 6; Fig. 7), with *Kuvera* (18 species, 7.2%) being the most widespread genus in China although *Pentastiridius* (5 species, 2%) is only unreported from the Qinghai-Tibet region. *Cixius* is the most diverse (95 species, 38%) but is not distributed in the Southwest and Northeast China regions. *Betacixius* (25 species, 10%) is not distributed in the Northeast China and Qinghai-Tibet regions. *Oliarus* and *Reptalus* (each with 6 species 2.4%) are both undistributed in the Nei Mongol-Xinjiang region, while the former is not reported from the Qinghai-Tibet region and the latter not reported from the Taiwan region. *Oliparisca* (1 species, 0.4%) is only distributed in the Qinghai-Tibet region and 10 genera are only reported from the Taiwan region. In addition, we also found that 16 genera are all distributed in the south of Sino-Japanese/Oriental boundary.

Table 4.

Number and percentage of cixiid genus and species distributed in China by genera amongst the Chinese zoogeographical regions. Abbreviations: NEC, Northeast China; NC, North China; NX, Nei Mongol-Xinjiang; QT, Qinghai-Tibet; SWC, Southwest China; CC, Central China; SC, South China; TW, Taiwan.

Chinese genera of Cixiidae	Number of species	Species %	Zoogeographical distribution
Andes Stål, 1866	10	4	NC, QT, SWC, CC, SC, TW
Andixius Emeljanov & Hayashi, 2007	3	1.2	SWC, TW
Ankistrus Tsaur & Hsu, 1991	7	2.8	TW
Chinese genera of Cixiidae	Number of species	Species %	Zoogeographical distribution
---------------------------	------------------	-----------	----------------------------
Arosinus Emeljanov, 2007	2	0.8	TW
Atretus Emeljanov, 2007	5	2	CC, SC, TW
Bajauana Distant, 1907	2	0.8	CC, SC
Betacixius Matsumura, 1914	25	10	NC, NX, SWC, CC, SC, TW
Borysthenes Stål, 1866	5	2	SWC, CC, SC, TW
Brixia Stål, 1859	2	0.8	TW
Cixius Latreille, 1804	95	38	NC, NX, QT, CC, SC, TW
Dilacreon Fennah, 1980	1	0.4	SC
Eucarpia Walker, 1857	4	1.6	SC, TW
Euryphlepsia Muir, 1922	1	0.4	TW
Gonophallus Tsaur & Hsu, 1991	1	0.4	TW
Hapaxius Fowler, 1904	1	0.4	CC
Indolipa Emeljanov, 2001	7	2.8	NC, QT, SWC, CC, SC, TW
Kirbyana Distant, 1906	4	1.6	SWC, CC, SC, TW
Kotonisia Matsumura, 1938	1	0.4	TW
Kuvera Distant, 1906	18	7.2	NEC, NC, NX, QT, SWC, CC, SC, TW
Macrocixius Matsumura, 1914	4	1.6	SWC, CC, SC, TW
Melanoliarus Fennah, 1945	2	0.8	CC, TW
Myndus Stål, 1862	1	0.4	TW
Neocarpia Tsaur & Hsu, 2003	5	2	SWC, CC, TW
Oecleopsis Emeljanov, 1971	14	5.6	NC, SWC, CC, SC, TW
Oliarus Stål, 1862	6	2.4	NEC, NC, SWC, CC, SC, TW
Oliparisca Emeljanov, 2001	1	0.4	QT
Oteana Hoch, 2006	1	0.4	TW
Pentastiridius Kirschbaum, 1868	5	2	NEC, NC, NX, SWC, CC, SC, TW
Reptalus Emeljanov, 1971	6	2.4	NEC, NC, QT, SWC, CC, SC
Semicixius Tsaur & Hsu, 1991	1	0.4	TW
Siniarius Emeljanov, 2007	3	1.2	NC, QT, SWC, CC, SC, TW
Tsauria Kocak & Kemal, 2009	5	2	CC, TW
Mundopa Distant, 1906	1	0.4	TW

Cluster and Ordination

In both the generic and specific taxonomic levels (Fig. 8a, c), the dendograms clearly separate the northernmost regions (Russian Far East, Nei Mongol-Xinjiang and Northeast China regions) from all other regions and with the similar relationships for Chinese zoogeographical regions: South-Central + SouthWest + North + Taiwan + Qinghai-Tibet. At the species-level the south adjacent China country region appears as sister to all of China.
In contrast, at the generic level, this south adjacent China region sister to the central and south Chinese regions. In the northernmost regions, Russian Far East is closer to the Northeast China region at the species level and closer to the Nei Mongol-Xinjiang region at the generic level. In both analyses, the cophenetic correlation coefficient ($r>0.8$) is high, indicating close agreement between the cluster assignment and the original Jaccard similarity coefficient matrix.

Figure 8. Dendrograms from UPGMA clustering and NMDS ordination of Jaccard similarity coefficients based on Chinese zoogeographical regions and adjacent areas for Chinese Cixiidae genera (a), (b) and species (c), (d). Abbreviations: NEC, Northeast China; NC, North China; NX, Nei Mongol-Xinjiang; QT, Qinghai-Tibet; SWC, Southwest China; CC, Central China; SC, South China; TW, Taiwan; RFE, Russian Far East; VM, Vietnam, Laos, Thailand, Cambodia, Myanmar, Bhutan, Bangladesh and part of Indian.

The cluster analysis and the NMDS ordination generally showed similar interrelationships among regions (Fig. 8b, d). The stress values of 0.18 (generic level) and 0.30 (species level) demonstrate the accuracy of the projections in the matrix in the 2D ordination space. At the generic level (Fig. 8b), the Nei Mongol-Xinjiang and Russian Far East regions are closely related to each other, and the Northeast China, Nei Mongol-Xinjiang, and Russian Far East regions are clearly separated from the other 7 regions. The Southwest, Central, and South China regions are closely grouped together, and are also related to the North China and Taiwan regions, but the Qinghai-Tibet and VM regions are more separated. At the species level (Fig. 8d), a roughly similar pattern occurs and the Russian Far East is
closer to the Northeast China region, but the VM region is clearly separated and more distant from all other regions.

Discussion

Current Chinese Cixiidae diversity and distribution

More than 80% of the Cixiidae species are considered to be endemic to China. The highest endemism is found in Taiwan (69.57%), followed by the Southwest China (39.53%), North China (34.48%) and Central China (33.33%) regions. These figures are consistent with the species richness and endemism patterns observed in other Hemiptera groups, such as aphids (Huang et al. 2008, Gao et al. 2018), leafhoppers (Yuan et al. 2014), or more specifically for planthoppers (Zhao et al. 2020a, Zhao et al. 2020b). For the patterns of distribution, the South China-Taiwan pattern (6.00%), the Central-South China-Taiwan one (4.40%) and the South-Western-South China-Taiwan one (2.40%) are the richer in term of species. This pattern probably results from the past interconnection of the island of Taiwan with the Asian continent during the Quaternary period, when the sea level fell, facilitating the species flow between these areas (Lei et al. 2003, Tang et al. 2006). Its subsequent geographical isolation after the Quaternary period explains its relatively independent pattern of speciation (Gao et al. 2018) and its high endemicity of species.

At the tribal level Cixiini, Pentastirini, and Semonini are widely distributed in China, except in the Northeastern China region for the Cixiini, which is probably a collect artefact as Cixiini are known to occur in higher latitudes (Bourgoin 2021). With 5.20% of the species, Andini is distributed in the Sino-Japanese - Oriental Region (NC, QT, SWC, CC, SC, TW), and Eucarpini and Borysthenini (6.40% and 2.00% respectively) are mainly concentrated south to the Qingling Mountain-Huai River (SWC, CC, SC, TW). The remaining four tribes [Bennini (0.40%), Briixini (0.80%), Oecleini (1.20%) and Stenophlepsiini (0.40%)] are all distributed in Taiwan.

At the generic level, *Kuvera* (7.2%) is the most widely distributed genus in China. *Pentastiridius* (2%) is not distributed in the Qinghai-Tibet region. *Cixius* (38%) is not distributed in the Southwest and Northeast China regions, but the genus was reported from the Russian Far East, so it may be a collection bias. In addition, one genus is distributed only in the Tibet region, while 10 genera are distributed only in the Taiwan region. We also found that nearly half of the genera (16 genera, 48.48%) are distributed south of the Sino-Japanese/Oriental boundary.

Biogeographical history shaped Chinese Cixiidae diversity

Cixiidae have a wide range of host plants, including mostly angiosperm Eudicot shrubs: Asterales, Rosales, Fabales, Myrtales, Lamiales, etc., but also Monocots as Poales and Arecales and tall trees such as Gymnosperm Pinales, or Magnolids Laurales, etc (Bourgoin 2021). Known from fossil records since the Barremian period, 130MYA (Luo et al. 2020) and probably occurring at least since 200MYA (Urban and Cryan 2012, Song and
Liang 2013, Johnson et al. 2018), it is likely that the radiation of angiosperms around 145 MY (Condamine et al. 2020), has greatly influenced the diversification of the major Cixiidae lineages (Labandeira 2014, Szwedo 2016, Luo et al. 2020).

More recently, the uplift of the Qinghai-Tibetan Plateau starting in the middle of the Eocene period (45-38 Ma), also had profound effects on the topography and watersheds of East Asia, the aridity of inland Asia, and the Asian monsoon system. These abiotic factors produced a three-stage pattern of species distribution, from high in the west to low in the east (Zhang et al. 2000). The vertical differentiation in plant distribution (Jin et al. 2003), affected their diversity and increased the richness of local speciation events (Wen et al. 2014, Favre et al. 2015, Ye et al. 2017), and subsequently influenced the species distribution and speciation of the Cixiidae. During the late Oligocene to early Miocene periods (25-15 Ma), the expansion of the Tibetan Plateau continued, and the East Asian monsoon and Indian monsoon prevailed in the Asian continent. This resulted in an increase of both temperature and sea levels (Ye et al. 2017), which allowed the northward propagation of fauna and flora. This area was pushed back southwards at the end of the Miocene period (10 Ma) by the uplift of the Hengduan Mountains (Li et al. 2020), which caused the climate to cool (Xie et al. 2019, Yu et al. 2020). Since the middle of the Holocene period (6 Ka), rainfall declined and monsoon strength weakened, resulting in a dramatic decrease in precipitation in northern China, which affected the vegetative environment (Zhao et al. 2009, Huang et al. 2012). Quantitative precipitation reconstructions based on pollen collected from northern China indicated that a strong sea-land pressure and temperature gradient caused by strong summer insolation in the northern hemisphere during the early Holocene period (0.14-0.07 Ma) caused enhanced monsoons (Zhao et al. 2009, Cook et al. 2011, Chen et al. 2015, Ge et al. 2017). Obviously the cixiid fauna diversity fluctuated at the same periods along with the diversity of their host-plants. However, without more robust phylogeny studies of Cixiidae, it remains difficult to better infer a more precise biogeographic historical scenario for the family and to link their distribution patterns to any of these important past events.

Biogeographical patterns of Chinese cixiids

Traditionally, the global biogeographical regionalization of China covers both the Oriental and Palearctic realms, which are bounded by the Qingling Mountain-Huai River, around 32–34°N in the east of China (Sclater 1858, Wallace 1876, Zhen 1960, Zhang 1999, Cox 2001, Kreft and Jetz 2010, Morrone 2015, Song et al. 2016, He et al. 2017). In 2013, based on its zoological fauna, Holt added a Sino-Japanese realm standing between the Palearctic and Oriental realms, and from west of Tibet to east of the Japanese archipelago. He located the Palearctic/Sino-Japanese boundary at about 40–41°N, and the Sino-Japanese/Oriental boundary at 24–25°N in southeast China (Fig. 1). Kreft and Jetz (2013) questioned the validity of this realm because they regarded it as just a biogeographical transition zone between the Palearctic and Oriental realms. According to their taxa ethological characteristics, the Sino-Japanese realm boundaries are generally clustered with the Oriental realm (Kreft and Jetz 2010, Song et al. 2016, He et al. 2017, Gao et al. 2017, He et al. 2018).
This result is also observed here for the Chinese Cixiidae divided into two major zoogeographic areas: the Nei Mongol-Xinjiang and Northeast China regions from the rest of China. This boundary corresponds to the Palearctic/Sino-Japanese north boundary and appears to be more well defined than the Palearctic/Oriental boundary. The Andini tribe serves as a landmark for the Palearctic/Sino-Japanese north boundary, while the Eucarpini and Borysthenini tribes are primarily concentrated south to the Qingling Mountain-Huai River point to the traditional Palaearctic/Oriental boundary as proposed by Zhang (2011). Eucarpini and Borysthenini are landmarks for the south Sino-Japanese realm, clustering with the Oriental realm. Bennini, Briixini, Oecleini and Stenoplepsiini, which are all distributed in Taiwan, may either indicate the northern limit of older and wider distributions of these tribes or might have resulted from occasional dispersions from neighbouring south regions.

At the genus level, the south parts of China cluster with the Indochina region in our analyses, but at the species level all of China forms a unique group. This may be related to the late Eocene uplift of the Himalayas and recent uplift of the Himalayan-Hengduan Mountains in the late Miocene, with a peak before the late Pliocene (Harrison et al. 1992, Sun et al. 2011). These geographical uplifts resulted in the formation of large topographic barriers isolating South China fauna and favorizing recent speciation events and endemism as already shown in several other taxa such as frogs (Che et al. 2010), insects (Ye et al. 2016; Chen et al. 2016), birds (Liu et al. 2016, Cai et al. 2018, Dong et al. 2020), mammals (Ge et al. 2017) and plants (Feng et al. 2013, Favre et al. 2016, Ebersbach et al. 2017, Liu et al. 2017, Ye et al. 2017). Moreover, Quaternary (2.6 Ma) tectonic movements and the influence of the Indian and Pacific monsoons greatly contributed also to the segregation, dispersal and speciation of Cixiidae in southern China and Southeast Asia (Shi et al. 1998, Liang 2003).

The South China region is usually included in the Oriental realm in other studies (Zhang 1999, Zhang 2011), but our analysis indicates that for Cixiidae the South China region is closer to the Central, Southwes, and North China region (Sino-Japanese realm). This is consistent with the results of a quantitative analysis of terrestrial mammals in China and adjacent regions by Xiang et al. (2004), where clustering analysis showed the proximity of South China region to Central and Southwest China regions, and they suggested these regions as the South China Division.

Conclusions

This study is the first zoogeographic analysis based on grid cells of Cixiidae in China and adjacent areas, including all the available data for the family. However this dataset has its own limits: 1) the stronger collecting efforts into southern China and taxonomic studies clearly advanced in the Taiwan region because of studies by Tsaur over the past three decades (Tsaur and Lee 1987, Tsaur et al. 1988, Tsaur 1989a, Tsaur 1989b, Tsaur 1990a, Tsaur 1990b, Tsaur et al. 1991a, Tsaur et al. 1991b, Tsaur and Hsu 2003, Tsaur 2009), 2) the limited to very limited knowledge of Cixiidae in countries adjacent to China, despite studies by Distant (1911), Emeljanov (1974), Fennah (1978), Anufriev (1987), Anufriev and
Emeljanov (1988), Hoch (2013), Anonymous (2015), 3) it does not take into account host-plants, which are however key factors also affecting the distribution of these obligatory, phytophagous planthoppers, although host-plants and the planthopper species complex are also together affected by other complex topographic and climatic factors embedded in a long dynamic geological process. Accordingly, if the high diversity of Chinese Cixiidae - no less than 8.6% of the current total species richness of the family (Bourgoin, 2021) - is probably related to the high diversity of Chinese biotopes, the figures presented here probably over-estimate the level of endemismity of the fauna in comparison with the adjacent countries.

With the current available data, the observed distribution patterns reveals that an intercalary Sino-Japanese realm is recognizable between the Palaearctic and Oriental realms. At the regional level, the South China region clusters more closely with the Southwest, Central and North China regions. Taiwan is clearly separated from the South China region and mainland China, but is more closely related to the Qinghai-Tibet region and Indochina countries. The Central and South China regions are close to each other, but the Qinghai-Tibet region is singularly different. However a much better knowledge of the cixiid fauna in the adjacent countries will be needed in the future for a better evaluation and analysis of the singularity of the Chinese fauna. Addionnally, a yet to be done phylogenetic analysis of the Cixiidae family will be essential to provide the frame of reference allowing to support any reliable historical biogeography scenario of the evolution, development, and distribution of Cixiidae in China.

Acknowledgements

We wish to express our sincere thanks to Prof. Dr. W. H. Reissig (New York State Agriculture Station, Cornell University, USA) for his critical comments on an earlier version of this manuscript as well as to our reviewers. The principal phase of this research was supported by the Pilot Project of Standardized Curation, Data Integration and Resource Sharing of Zoological Collections (2015FY210300) by the Ministry of Science and Technology of China and China Scholarship Council (201906300092).

Author contributions

Conceptualization, Y.L., J.F. and T.B.; Specimen identification, Y.L.and J.Z.; Methodology and Experiments, Y.L., J.Z. and T.B.; Data analysis, Y.L., J.F. and T.B.; writing—original draft preparation, Y.L.; writing—review and editing, Y.L., J.F. and T.B.; funding acquisition, J.F. All authors have read and agreed to the published version of the manuscript.
References

- Anufriev GA (1987) Review of the cixiid genus Kuvera Distant (Homoptera, Auchenorrhyncha, Cixiidae). Taksonomiia nasekomykh Sibiri i Dal'nego Vostoka SSR, Vladivostok Dalnauka, 4-21 pp.
- Anufriev GA, Emeljanov AF (1988) Suborder Cicadinea - (Auchenorrhyncha). In: Emeljanov AF, et al. (Ed.) P. A. 1988 - Keys to the insects of the Far East of the USSR, 2. Nauka, Leningrad (Russia). 12-49 pp.
- Attié M, Bourgoin T, Veslot J, Soulier-Perkins A (2008) Patterns of trophic relationships between planthoppers (Hemiptera: Fulgoromorpha) and their host plants on the Mascarene Islands. Journal of Natural History 42: 1591-1638. https://doi.org/10.1080/00222930802106963
- Bai RK, Guo HW, Feng JN (2015) A new species in the genus Reptalus Emeljanov, 1971 (Hemiptera: Cixiidae: Pentastirini) from China. Entomotaxonomia 37 ((1)): 31-42. https://doi.org/10.11680/entomotax.2015005
- Bartlett CR, O'Brien LB, Wilson SW (2014) A review of the planthoppers (Hemiptera: Fulgoroidea) of the United States. 50. Memoirs of the American Entomological Society, 1-287 pp.
- Bourgoin T (2021) FLOW (Fulgoromorpha Lists On the Web): a world knowledge base dedicated to Fulgoromorpha. URL: http://hemiptra-databases.org/flow
- Cai T, Fjeldså J, Wu Y, Shao S, Chen Y, Quan Q, Li X, Song G, Qu Y, Qiao G, Lei F (2018) What makes the Sino-Himalayan mountains the major diversity hotspots for pheasants? Journal of Biogeography 45 (3): 640-651. https://doi.org/10.1111/jbi.13156
- Che J, Zhou W, Hu J, Yan F, Papenfuss T, Wake D, Zhang Y (2010) Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proceedings of the National Academy of Sciences of the United States of America 107 (31): 13765-70. https://doi.org/10.1073/pnas.1008415107
- Chen R, Shen J, Li C, Zhang E, Sun W, Ji M (2015) Mid- to late-Holocene East Asian summer monsoon variability recorded in lacustrine sediments from Jingpo Lake, Northeastern China. The Holocene 25 (3): 454-468. https://doi.org/10.1177/0959683614561888
- Chen R, Jiang L, Chen J, Qiao G (2016) DNA barcoding reveals a mysterious high species diversity of conifer-feeding aphids in the mountains of southwest China. Scientific Reports 6 (1): 1-11. https://doi.org/10.1038/srep20123
- Chou I, Lu JS, Huang J, Wang SZ (1985) Economic Insect Fauna of China. Fasc. 36. Homoptera: Fulgoroidea. Science Press, Beijing, China 2: 1-152.
- Condamine F, Silvestro D, Koppelhus E, Antonelli A (2020) The rise of angiosperms pushed conifers to decline during global cooling. Proceedings of the National Academy of Sciences of the United States of America 117 (46): 28867-28875. https://doi.org/10.1073/pnas.2005571117
- Cook C, Jones R, Langdon P, Leng M, Zhang E (2011) New insights on Late Quaternary Asian palaeomonsoon variability and the timing of the Last Glacial Maximum in southwestern China. Quaternary Science Reviews 30 (7-8): 808-820. https://doi.org/10.1016/j.quascirev.2011.01.003
- Cox B (2001) The biogeographic regions reconsidered. Journal of Biogeography 28 (4): 511-523. https://doi.org/10.1046/j.1365-2699.2001.00566.x
• Crovello TJ (1981) Quantitative biogeography: an overview. *Taxon* 30 (3): 563-575. https://doi.org/10.2307/1219938
• De Haas M, Den Bieman CFM (2018) Ecology and distribution of dutch lacehoppers (Hemiptera: Fulgoromorpha: Cixiidae). Nederlandse Faunistische Mededelingen 50: 39-54.
• Distant WL (1906) The fauna of British India, including Ceylon and Burma. 3. Lt. Col. C. T. Birgham., 503 pp.
• Distant WL (1911) New genera and species of Oriental Homoptera. Annals and Magazine of Natural History 9 (52): 459-471. https://doi.org/10.1080/00222931208693156
• Distant WL (1916) The Fauna of British India including Ceylon and Burma. Rhynchota 6: 1-239.
• Dong F, Hung C, Yang X (2020) Secondary contact after allopatric divergence explains avian speciation and high species diversity in the Himalayan-Hengduan Mountains. Molecular Phylogenetics and Evolution 143: 106671. https://doi.org/10.1016/j.ympev.2019.106671
• Ebersbach J, Schnitzler J, Favre A, Muellner-Riehl AN (2017) Evolutionary radiations in the species-rich mountain genus *Saxifraga* L. BMC Evolutionary Biology 17 (1): 119. https://doi.org/10.1186/s12862-017-0967-2
• Emeljanov AF (1974) Suggestions on Classification and Nomenclature of Ranges. *Entomologicheskoe obozrenie* 53 (3): 479-522.
• Emeljanov AF (2002) Contribution to classification and phylogeny of the family Cixiidae (Hemiptera, Fulgoromorpha). Denisia 4 (176): 103-112.
• Emeljanov AF (2015) Planthoppers of the family Cixiidae of Russia and adjacent territories. Keys to the fauna of Russia. 177. 149 pp.
• Favre A, Päckert M, Pauls S, Jähnig S, Uhl D, Michalak I, Muellner-Riehl A (2015) The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biological Reviews 90 (1): 236-253. https://doi.org/10.1111/brv.12107
• Favre A, Michalak I, Chen C, Wang J, Pringle J, Matuszak S, Sun H, Yuan Y, Struwe L, Muellner-Riehl A (2016) Out-of-Tibet: the spatio-temporal evolution of *Gentiana* (Gentianaceae). Journal of Biogeography 43 (10): 1967-1978. https://doi.org/10.1111/jbi.12840
• Feng X, Tang B, Kodrul T, Jin J (2013) Winged fruits and associated leaves of *Shorea* (Dipterocarpaceae) from the Late Eocene of South China and their phytogeographic and paleoclimatic implications. American Journal of Botany 100 (3): 574-581. https://doi.org/10.3732/ajb.1200397
• Fennah GR (1980) The genus *Bajauana* and two allied new genera in New Guinea (Fulgoroidea: Cixiidae). Pacific Insects 22 (1): 237-328.
• Fennah RG (1956) Fulgoroidea from southern China. Proceedings of the California Academy of Science (4th Series) 28 (4): 441-527.
• Fennah RG (1978) Fulgoroidea (Homoptera) from Viet-nam. Annales Zoologici 34 (9): 207-279.
• Gao C, Chen J, Li Y, Jiang L, Qiao G (2018) Congruent patterns between species richness and areas of endemism of the Greenideinae aphids (Hemiptera: Aphididae) revealed by global-scale data. Zoological Journal of the Linnean Society 183 (4): 791-807. https://doi.org/10.1093/zoolinnean/zlx092
• Gao E, He J, Wang Z, Xu Y, Tang X, Jiang H (2017) China's zoogeographical regionalization based on terrestrial vertebrates. Biodiversity Science 25 (12): 1321-1330. https://doi.org/10.17520/biods.2017135

• Gebicki C, Świerczewski D, Szwedo J (2013) Planthoppers and leafhoppers of Poland (Hemiptera: Fulgoromorpha et Cicadomorpha). Systematics. Check-list. Bionomy. The Monograph. Annals of the Upper Silesia Museum, Entomology 21-22: 5-259.

• Ge D, Lu L, Cheng J, Xia L, Chang Y, Wen Z, Lv X, Du Y, Liu Q, Yang Q (2017) An endemic rat species complex is evidence of moderate environmental changes in the terrestrial biodiversity centre of China through the late Quaternary. Scientific Reports 7 (1): 46127. https://doi.org/10.1038/srep46127

• Ge QS, Bian JJ, Zheng JY, Liao YM, Hao ZX, Yin YH (2013) The climate regionalization in China for 1981-2010. Chinese Science Bulletin 58 (30): 3088-3099. https://doi.org/10.1360/972012-1491

• Guo H, Wang Y (2007) Taxonomic study of the genus *Reptalus* (Hemiptera: Cixiidae: Pentastirinini) from China with description of a new species. Entomotaxonomia 29: 275-280.

• Guo H, Wang Y, Feng J (2009) Taxonomic study of the genus *Oecleopsis* Emeljanov, 1971 (Hemiptera: Fulgoromorpha: Cixiidae: Pentastirinini), with descriptions of three new species from China. Zootaxa 2172 (1): 45-58. https://doi.org/10.11646/zootaxa.2172.1.3

• Guo H, Feng J (2010) A new species of the genus *Indolipa* Emeljanov, 2001 from China (Hemiptera: Fulgoromorpha: Cixiidae: Pentastirinini), with a checklist of world species. Zootaxa 2668 (1): 33-43. https://doi.org/10.11646/zootaxa.2668.1.3

• Holt B, Lessard J, Borregaard M, Fritz S, Araújo M, Dimitrov D, Fabre P, Graham C, Jønsson K, Nogués-Bravo D, Wang Z, Whittaker R, Fjeldså J, Rahbek C (2013) An update of Wallace’s Zoogeographic regions of the World. Science 339 (6115): 74-78. https://doi.org/10.1126/science.1228282

• Hoch H (2013) Diversity and evolution of the Southeast-Asian planthopper taxon Bennini (Hemiptera ,Cixiidae). Nova Supplementa Entomologica 23 (September): 1-2.

• Holt B, Lessard J, Borregaard M, Fritz S, Araújo M, Dimitrov D, Fabre P, Graham C, Graves G, Jønsson K, Nogués-Bravo D, Wang Z, Whittaker R, Fjeldså J, Rahbek C (2013) An update of Wallace’s Zoogeographic regions of the World. Science 339 (6115): 74-78. https://doi.org/10.1126/science.1228282

• Holzinger W, Emeljanov AF, Kammerlander I (2002) The family Cixiidae Spinola, 1839 (Hemiptera: Fulgoromorpha) - a Review. Denisia 04 (176): 113-138.

• Holzinger WE, Kammerlander I, Nickel H (2003) The Auchenorrhyncha of Central Europe. Die Zikaden Mitteleuropas. Fulgoromorpha, Cicadomorpha excl. Cicadellidae. Brill Publishers, Leiden, 673 pp. https://doi.org/10.1163/9789004231108

• Horii Y (1982) The genus *Betacixius* Matsumura, 1914 (Homoptera: Cixiidae) of Formosa. Special issue to the memory of retirement of Emeritus Professor Michio
Chûjô. Association of the Memorial Issue of Emeritus Professor M. Chûjô C/O Biological Laboratory, Nagoya Women’s University, Nagoya175-182.

- Hua LZ (2000) List of Chinese Insects. 1. Zhejiang Science and Technology Publishing House, 52-53 pp.
- Huang J (1995) Homoptera: Cixiidae In: Zhu Ting (Ed.) An 1995 – Insects and macrofungi of Gutianshan. Zhejiang Science and Technology Publishing House, 673-688 pp.
- Huang J, Chen B, Liu C, Lai J, Zhang J, Ma K (2012) Identifying hotspots of endemic woody seed plant diversity in China. Diversity and Distributions 18 (7): 673-688. https://doi.org/10.1111/j.1472-4642.2011.00845.x
- Huang X, Lei F, Qiao G (2008) Areas of endemism and patterns of diversity for aphids of the Qinghai-Tibetan Plateau and the Himalayas. Journal of Biogeography 35: 230-240. https://doi.org/10.1111/j.1365-2699.2007.01776.x
- Hu JF (1935) Catalogus Insectorum Sinensium (Catalogue of Chinese Insects). In: Hu JF, et al. (Ed.) The Fan Memorial Institute of Biology. 1. The Fan Memorial Institute of Biology, 1-378 pp.
- Jacobi A (1944) Die Zikadenfauna der Provinz Fukien in Sudchina und ihre tiergeographischen Beziehungen. Mitteilungen der Munchner Entomologischen Gesellschaft 34: 5-66.
- Jiang J;JDLY (2017) Changes and projection of dry/wet areas over China. Journal of Atmospheric Sciences 41 (1): 43-56.
- Jin J, Liao W, Wang B, Peng S (2003) Global change in Cenozoic and evolution of flora in China. Guihaia 23: 217-225.
- Johnson K, Dietrich C, Friedrich F, Beutel R, Wipfler B, Peters R, Allen J, Petersen M, Donath A, Walden KO, Kozlov A, Podsiadlowski L, Mayer C, Meusemann K, Vasilikopoulos A, Waterhouse R, Cameron S, Weirauch C, Swanson D, Percy P, Hardy N, Terry I, Liu S, Zhou X, Misof B, Robertson H, Yoshizawa K (2018) Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences 115 (50): 12775-12780. https://doi.org/10.1073/pnas.1815820115
- Kalkandelen A (1990) Türkiye Cixiidae (Homoptera) Türleri Üzerinde Taksonomik Çalışmalar V-Pentastrini: Pentastiridus ve Setapius. Bitki Koruma Bülteni 30: 3-27.
- Kato M (1932) Notes on some Homoptera from South Manchurai, collected by Mr. Yukimichi Kikuchi. Kontyu. Tokyo Entomological Society 5: 216-229.
- Kenkel NC, Orloci L (1986) Applying Metric and Nonmetric Multidimensional Scaling to Ecological Studies: Some New Results. Ecology 67 (4): 919-928. https://doi.org/10.2307/1939814
- Kreft H, Jetz W (2010) A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography 37 (11): 2029-2053. https://doi.org/10.1111/j.1365-2699.2010.02375.x
- Kreft H, Jetz W (2013) Comment on "An update of Wallace’s zoogeographic regions of the world". Science (New York, N.Y.) 341 (6144): 343. https://doi.org/10.1126/science.1237471
- Labandeira C (2014) Why did terrestrial insect diversity not increase during the angiosperm radiation? Mid-Mesozoic, plant-associated insect lineages harbor clues. In: Labandeira C, et al. (Ed.) Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life. Springer International Publishing, Cham, 38 pp. https://doi.org/10.1007/978-3-319-07623-2_13
• Larivière M- (1999) Cixiidae (Insecta: Hemiptera: Auchenorrhyncha). Fauna of New Zealand 40: 1-93.
• Legendre L, Legendre P (1983) Partitioning ordered variables into discrete states for discriminant analysis of ecological classifications. Canadian Journal of Zoology 61 (5): 1002-1010. https://doi.org/10.1139/z83-134
• Lei FM, Qu YH, Lu JL, Liu Y, Yin ZH (2003) Conservation on diversity and distribution patterns of endemic birds in China. Biodiversity and Conservation 12 (2): 239-254. https://doi.org/10.1023/A:1021928801558
• Liang AP (2001) Taxonomic notes on oriental and eastern Palaearctic Fulgoroidea (Hemiptera). Journal of the Kansas Entomological Society 73 (4): 235-237. https://doi.org/10.2307/25085975
• Liang AP (2003) Zoogeography of the spittlebug superfamily Cercopoidea (Hemiptera) in Southern Tibet and the nearby areas. Acta Zootaxonomica Sinica 28: 589-598.
• Liang AP (2005a) A new structure on the subantennal process of Borysthenes species (Hemiptera: Fulgoromorpha: Cixiidae: Borystheninae). Proceedings of the Biological Society of Washington 118 (4): 809-814. https://doi.org/10.2988/0006-324X(2005)118[809:ANSOTS] 2.0.CO;2
• Liang AP (2005b) Occurrence of the latero-subapical labial sensillum in Borysthenes maculata and Andes marmorata (Hemiptera: Fulgoromorpha: Cixiidae). Journal of Entomological Science 40: 428-437. https://doi.org/10.18474/0749-8004-40.4.428
• Li S, Ji X, Harrison T, Deng C, Wang S, Wang L, Zhu R (2020) Uplift of the Hengduan Mountains on the southeastern margin of the Tibetan Plateau in the late Miocene and its paleoenvironmental impact on hominoid diversity. Palaeogeography, Palaeoclimatology, Palaeoecology 553 https://doi.org/10.1016/j.palaeo.2020.109794
• Liu J, Luo Y, Li D, Gao L (2017) Evolution and maintenance mechanisms of plant diversity in the Qinghai-Tibet Plateau and adjacent regions: retrospect and prospect. Biodiversity Science 25 (2): 41-45. https://doi.org/10.17520/biods.2016293
• Liu Y, Hu J, Li S, Duchen P, Wegmann D, Schweizer M (2016) Sino-Himalayan mountains act as cradles of diversity and immigration centres in the diversification of parrotbills (Paradoxornithidae). Journal of Biogeography 43 (8): 1488-1501. https://doi.org/10.1111/jbi.12738
• Li Y, Liu XH, Ren D, Li XC, Yao YZ (2016) First report of Cixiidae insect fossils from the Miocene of the northeastern Tibetan Plateau and their palaeoenvironmental implications. Alcheringa 41 (1): 54-60. https://doi.org/10.1080/03115518.2016.1180027
• Luo C, Jiang T, Szwedo J, Wang B, Xiao C (2020) A new planthopper family Katlasidae fam. nov. (Hemiptera: Fulgoromorpha: Fulgoroidea) from mid-Cretaceous Kachin amber. Cretaceous Research 115: 104532. https://doi.org/10.1016/j.cretres.2020.104532
• Luo Y, Liu J, Feng J (2019a) Two new species in the genus Kuvera Distant, 1906 (Hemiptera, Cixiidae, Cixiinae) from China. ZooKeys 832: 135-152. https://doi.org/10.3897/zookeys.832.30301
• Luo Y, Liu JJ, Feng JN (2019b) Two new species in the genus Indolipa Emeljanov, 2001 (Hemiptera: Fulgoromorpha: Cixiidae: Pentastirini) from China. Zootaxa 4560 (1): 184-194. https://doi.org/10.11646/zootaxa.4560.1.11
• Luo Y, Bourgoin T, Szwedo J, Feng J (2021) Acrotiarini trib. nov., in the Cixiidae (Insecta, Hemiptera, Fulgoromorpha) from mid-Cretaceous amber of northern Myanmar,
with new insights in the classification of the family. Cretaceous Research 128: 104959. https://doi.org/10.1016/j.cretres.2021.104959

- Matsumura S (1914) Die Cixiinen Japans. Annotationes Zoologicae Japonenses 8: 393-434.
- Melichar L (1902) Homopteren aus West-China, Persien, und dem Sud-Ussuri-Gebiete. Annuaire du Musée Zoológique de l'Académie Impériale des Sciences de Saint Pétersbourg 7: 76-146.
- Metcalf ZP (1936) Cixiidae- General Catalogue of the Homoptera. Fascicule IV, 266 pp.
- Morrone J (2015) Biogeographical regionalisation of the world: A reappraisal. Australian Systematic Botany 28 (3): 81-90. https://doi.org/10.1071/SB14042
- Mozaffarian F, Wilson MR (2011) An annotated checklist of the planthoppers of Iran (Homiptera, Auchenorrhyncha, Fulgoromorpha) with distribution data. ZooKeys 145: 1-57. https://doi.org/10.3897/zookeys.145.1846
- Nast J (1972) Palaeartic Auchenorrhyncha (Homoptera). An Annotated Check List. Polish Scientific Publishers, Warsaw, 550 pp.
- Noualhier JM (1896) Note sur les Hémiptères récoltés en Indo-Chine et offerts au Muséum par M. Pavie. Bulletin du Muséum National d'Histoire Naturelle 10: 251-25.
- Rahmam MA, Kwon YJ, Suh SJ (2011) Sexual dimorphism documented in Reptalus iguchii (Matsumura) (Homiptera: Fulgoromorpha: Cixiidae) with a description of males. Entomological Research 42 (1): 35-43. https://doi.org/10.1111/j.1748-5967.2011.00358.x
- Rahmam MA, Kwon YJ, Suh SJ (2017) Three new species of the genus Kuvera Distant (Homiptera: Fulgoromorpha: Cixiidae) from Korea. Oriental Insects 52 (1): 66-78. https://doi.org/10.1080/00305316.2017.1344741
- Ren X, Wen R (2011) All about Chinese Geography. The Chinese Overseas Publishing House, 367 pp.
- Ren ZY, Qiu ZT, Hu CL, Sun CH (2014) Four new record species of Cixiidae and Dictyopharidae from Jiangsu Province (Homiptera: Fulgoroidea). Journal of Jinling Institute of Technology 30 (3): 76-7.
- Ribaut H, Lacroix C (1958) Liste des espèces françaises des genres Cixius, Tachycixius, Neocixius et description de Tachycixius pyrenaicus (Fieb.) (Homoptera Cixiidae). Bulletin de la Société d'Histoire Naturelle de Toulouse 93: 483-488.
- Rohlf FJ (2000) NTSYS: Numerical Taxonomy and Multivariate analysis System (version 2.1). Numerical Taxonomy and Multivariate analysis System, 82 pp.
- Sclater PL (1858) On the general geographical distribution of the members of the class Aves. Journal of the Proceedings of the Linnean Society of London. Zoology 2 (7): 130-136. https://doi.org/10.1111/j.1096-3642.1858.tb02549.x
- Shi G (1993) A comparative study of 39 binary similarity coefficients. Memoir-Association of Australasian Paleontologists 15: 329-341.
- Shi Y, Tang M, Ma Y (1998) The relationship of the second phase uplift of Qinghai-Xizang Plateau with the inoculation of Asian monsoon. Science in China: Earth Sciences 28: 263-271.
- Song G, Zhang R, Qu Y, Wang Z, Dong L, Kristin A, Alström P, Ericson PP, Lambert D, Fjeldså J, Lei F (2016) A zoogeographical boundary between the Palaearctic and Sino-Japanese realms documented by consistent north/south phylogeographical divergences in three woodland birds in eastern China. Journal of Biogeography 43 (11): 2099-2112. https://doi.org/10.1111/jbi.12758
• Song N, Liang A (2013) A preliminary molecular phylogeny of planthoppers (Hemiptera: Fulgoroidea) based on nuclear and mitochondrial DNA sequences. PLOS One 8 (3): 1-11. https://doi.org/10.1371/journal.pone.0058400

• Sun B, Wu J, Liu Y, Ding S, Li X, Xie S, Yan D, Lin Z (2011) Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeography, Palaeoclimatology, Palaeoecology 304 (3-4): 328-336. https://doi.org/10.1016/j.palaeo.2010.09.023

• Szwedo J (2016) The unity, diversity and conformity of bugs (Hemiptera) through time. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 107 (2-3): 109-128. https://doi.org/10.1017/S175569101700038X

• Tang Z, Wang Z, Zheng C, Fang J (2006) Biodiversity in China's mountains. Frontiers in Ecology and the Environment 4 (7): 347-352. https://doi.org/10.1890/1540-9295(2006)004[0347:BICM]2.0.CO;2

• Tsaur SC, Lee P (1987) Cixiidae of Taiwan, Part II. Bothriocerini. Bulletin of the Entomological Society of NCHU 20: 7-14.

• Tsaur SC, Hsu TC, Van Stalle J (1988) Cixiidae of Taiwan, Part I. Pentastirini. Journal of Taiwan Museum 41 (1): 35-74.

• Tsaur SC (1989a) A new specie of Oliarus from Taiwan. Academia Sinica 28 (3): 171-174.

• Tsaur SC (1989b) Cixiidae of Taiwan, Part IV. Stenophilespiini. Bulletin of the Institute of Zoology, Academia Sinica 28 (2): 81-85.

• Tsaur SC (1990a) Two new species of Cixius from California (USA) (Homoptera Fulgoroidea Cixiidae) with a revised key to the species of the genus. Bulletin of the Institute of Zoology, Academia Sinica 29 (1): 49-55.

• Tsaur SC (1990b) Two new species of Oliarius from Taiwan (Homoptera: Fulgoroidea: Cixiidae), with proposition and discussion on O. horishanus group. Bulletin of the Institute of Zoology, Academia Sinica 29 (3): 135-139.

• Tsaur SC, Hsu TC, Van Stalle J (1991a) Cixiidae of Taiwan, Part V. Cixiini except Cixius. Journal of Taiwan Museum 44 (1): 1-78.

• Tsaur SC, Hsu TC, Van Stalle J (1991b) Cixius. Journal of Taiwan Museum 44 (2): 169-306.

• Tsaur SC, Hsu TC (2003) Cixiidae of Taiwan, Part VII. Pintaliini. Zoological Studies 42 (3): 431-443.

• Tsaur SC (2009) The rediscovery of the holotype of Kotonisia kanoi Matsumura, 1938 with notes on Matsumura’s type specimens of Fulgoroidea (Insecta: Hemiptera: Fulgoromorpha). Zootaxa (2315)66-68. https://doi.org/10.11646/zootaxa.2315.1.7

• Urban JM, Cryan JR (2012) Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evolutionary Biology 12 (1): 87. https://doi.org/10.1186/1471-2148-12-87

• Van Stalle J (1991) Taxonomy of Indo-Malayan Pentastirini (Homoptera, Cixiidae). Bulletin de l'Institut Royal des Sciences Naturelles de Belgique 61: 5-101.

• Van Stalle J (1987) Revision of Afrotropical Pentastirini (Homoptera, Cixiidae) 5: the genus Oliarius Stål, 1862. Musée Royal de l’Afrique Centrale Tervuren, Belgique. 252: 1-173.

• Wallace A (1876) The geographical distribution of animals: With a study of the relations of living and extinct faunas as elucidating the past changes of the Earth's surface. 1. Harper Brothers, 503 pp. https://doi.org/10.2307/1101
• Wang S (1991) A new pest in Chinese jujube tree- A new species of Cixiidae described in China. Acta Agriculturae Boreali—Sinica 6 (3): 85-87. https://doi.org/10.1029/ JB073i010p03295

• Wang ZY (1992) An initial observation of overwintering habits of Pentastiridius apicalis Uhler (Hemiptera: Cixiidae) in China. Guangxi Plant Protection 1: 16-41.

• Wen J, Zhang J, Nie Z, Zhong Y, Sun H (2014) Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Frontiers in Genetics 5: 1-16. https://doi.org/10.3389/fgene.2014.00004

• Wheeler A (2003) Bryophagy in the Auchenorrhyncha: Seasonal history and habits of a moss specialist Javesella opaca (Beamer) (Fulgoroidea: Delphacidae). Proceedings of the Entomological Society of Washington 105: 599-610.

• Wilson S, Mitter C, Denno R, Wilson M (1994) Evolutionary Patterns of Host Plant Use by Delphacid Planthoppers and Their Relatives. Planthoppers7-113. https://doi.org/10.1007/978-1-4615-2395-6_2

• Wilson S (2005) Keys to the families of fulgoromorpha with emphasis on planthoppers of potential economic importance in the southeastern United States (Hemiptera: Auchenorrhyncha). Florida Entomologist 88 (4): 464-481. https://doi.org/10.1653/0015-4040(2005)88[464:KTTFOF]2.0.CO;2

• Wilson SWMCDRWM (1994) Evolutionary patterns of host plant use by delphacid planthoppers and their relatives. In: Wilson SW, et al. (Ed.) n: Denno RF; Perfect TJ 1994 - Planthoppers: Their Ecology and Management, Chapman. 106 pp.

• Xiang Z, Liang X, Huo S, Ma S (2004) Quantitative analysis of land mammal zoogeographical regions in China and adjacent regions. Zoological Studies 43 (1): 142-160.

• Xie C, Xie D, Zhong Y, Guo X, Liu Q, Zhou S, He X (2019) The effect of Hengduan Mountains Region (HMR) uplift to environmental changes in the HMR and its eastern adjacent area: Tracing the evolutionary history of Allium section Sikkimensia (Amaryllidaceae). Molecular Phylogenetics and Evolution 130: 380-396. https://doi.org/10.1016/j.ympev.2018.09.011

• Xing JC, Chen XS (2014) Nomenclatural changes for the genus Discophorellus Tsaur & Hsu, 1991 and new replacement name for Numata Matsumura, 1935 (Hemiptera: Fulgoromorpha). Zootaxa 3856 (1): 149-150. https://doi.org/10.11646/zootaxa.3856.1.8

• Ye J, Bai W, Bao L, Wang T, Wang H, Ge J (2017) Sharp genetic discontinuity in the aridity-sensitive Lindera obtusiloba (Lauraceae): solid evidence supporting the Tertiary floral subdivision in East Asia. Journal of Biogeography 44 (9): 2082-2095. https://doi.org/10.1111/jbi.13020

• Ye JW, Zhang Y, Wang XJ (2017) Phylogeographic breaks and the mechanisms of their formation in the Sino-Japanese floristic region. Chinese Journal of Plant Ecology 41 (9): 1003-1019. https://doi.org/10.17521/cjpe.2016.0388

• Ye Z, Chen P, Bu W (2016) Terrestrial mountain islands and Pleistocene climate fluctuations as motors for speciation: A case study on the genus Pseudovaleria (Hemiptera: Veliidae). Scientific Reports 6 (1): 3362. https://doi.org/10.1038/srep33625

• Yuan S, Huang M, Wang X, Ji L, Zhang Y (2014) Centers of endemism and diversity patterns for typhlocybine leaffighters (Hemiptera: Cicadellidae: Typhlocybinae) in China. Insect Science 21 (4): 523-536. https://doi.org/10.1111/1744-7917.12040

• Yu H, Miao S, Xie G, Guo X, Chen Z, Favre A (2020) Contrasting floristic diversity of the Hengduan Mountains, the Himalayas and the Qinghai-Tibet Plateau sensu stricto in
China. Frontiers in Ecology and Evolution 8: 136. https://doi.org/10.3389/fevo.2020.00136

- Zhang D, Fengquan L, Jianmin B (2000) Eco-environmental effects of the Qinghai-Tibet Plateau uplift during the Quaternary in China. Environmental Geology 39 (12): 1352-1358. https://doi.org/10.1007/s002540000174

- Zhang P, Chen XS (2011a) Two new species of the genus *Discophorellus* Tsaur & Hsu (Hemiptera: Fulgoromorpha: Cixiidae: Cixiini) from Guizhou Province, China. Zootaxa 68 (3105): 60-68. https://doi.org/10.11646/zootaxa.3105.1.3

- Zhang P, Chen XS (2011b) A checklist and key to species of the genus *Betacixius matsumura* (Hemiptera: Fulgoromorpha: Cixiidae) with descriptions of two new species from Guizhou Province, China. Florida Entomologist 94 (1): 48-56. https://doi.org/10.1653/024.094.0107

- Zhang P, Chen X (2013a) Taxonomic study on the planthopper genus *Macrocixius Matsumura* (Hemiptera: Fulgoromorpha: Cixiidae) with descriptions of two new species from China. Zootaxa 3646 (3): 277-88. https://doi.org/10.11646/zootaxa.3646.3.6

- Zhang P, Chen X (2013b) Two new bamboo-feeding species of the genus *Neocarpia Tsaur & Hsu* (Hemiptera: Fulgoromorpha: Cixiidae: Eucaupini) from Guizhou Province, China. Zootaxa 3641 (1): 41-8. https://doi.org/10.11646/zootaxa.3641.1.4

- Zhang R (1999) Zoogeography of China. Science Press, 393 pp.

- Zhang R (2011) China Animal Geography. Science Press

- Zhao Y, Yu Z, Chen F, Zhang J, Yang B (2009) Vegetation response to Holocene climate change in monsoon-influenced region of China. Earth-Science Reviews 97 (1-4): 242-256. https://doi.org/10.1016/j.earscirev.2009.10.007

- Zhao Z, Jin B, Zhou Z, Yang L, Long J, Chen X (2020a) Determinants of Delphacidae richness and endemism in China. Ecological Entomology 45 (6): 1396-1407. https://doi.org/10.1111/een.12924

- Zhao Z, Yang L, Long J, Chang Z, Zhou Z, Zhi Y, Yang L, Li H, Sui Y, Gong N, Wang X, Chen X (2020b) Testing seven hypotheses to determine what explains the current planthopper (Fulgoridae) geographical and species richness patterns in China. Insects 11 (12): 892. https://doi.org/10.3390/insects11120892

- Zhen Z (1960) The zoogeographic division of China and the distribution of chief economic animals. Chinese Journal of Zoology 154 (4): 176-177.

- Zhi Y, Yang L, Zhang P, Chen XS (2017) Taxonomic study of the genus *Neocarpia Tsaur & Hsu*, with descriptions of two new species from China (Hemiptera, Fulgoromorpha, Cixiidae). ZooKeys 2017 (695): 19-35. https://doi.org/10.3897/zookeys.695.12809

- Zhi Y, Yang L, Zhang P, Chen XS (2018a) Two new species of genus *Oeleopsis* Emeljanov from China, with descriptions of female genitalia of five species (Hemiptera, Fulgoromorpha, Cixiidae). ZooKeys 2018 (768): 1-17. https://doi.org/10.3897/zookeys.768.24796

- Zhi Y, Yang L, Zhang P, Chen XS (2018b) Two new species of the genus *Andixius* Emeljanov & Hayashi from China (Hemiptera, Fulgoromorpha, Cixiidae). ZooKeys 2018 (739): 55-64. https://doi.org/10.3897/zookeys.739.13043

- Zhi Y, Zhang P, Yang L, Chen XS (2019) Two new species of the genus *Tsauria* Koçak & Kemal (Hemiptera, fulgoromorpha, cixiidae) from China, with descriptions of female genitalia of three species. ZooKeys 2019 (855): 55-69. https://doi.org/10.3897/zookeys.855.34024

- Zhi Y, Zhang P, Yang L, Chen XS (2018b) Two new species of the genus *Andixius* Emeljanov & Hayashi from China (Hemiptera, Fulgoromorpha, Cixiidae). ZooKeys 2018 (739): 55-64. https://doi.org/10.3897/zookeys.739.13043
• Zhi Y, Zhang C, Yang L, Chen X (2020a) Two new species of the genus *Betacixius* Matsumura, 1914 from China (Hemiptera, Fulgoromorpha, Cixiidae). ZooKeys 956: 1-18. https://doi.org/10.3897/zookeys.956.50195

• Zhi Y, Zhang P, Yang L, Chen X (2020b) Two new species of the genus *Indolipa* Emeljanov (Hemiptera, Fulgoromorpha, Cixiidae) from Yunnan Province, China, with a key to species. ZooKeys 956: 19-30. https://doi.org/10.3897/zookeys.956.51326

• Zhi Y, Yang L, Chen XS (2021) Two new bamboo-feeding species of the genus *Kirbyana* Distant, 1906 from China (Hemiptera, fulgoromorpha, cixiidae). ZooKeys 1037: 1-1. https://doi.org/10.3897/zookeys.1037.64653

• Zhou Q, Sun H, Evans N, Li C, Liu Z, Zhang Q, Yan G, Huang J (2018) Contemporaneous east–west extension and north–south compression at 43 Ma in the Himalayan orogen. Journal of Structural Geology 117: 124-135. https://doi.org/10.1016/j.jsg.2018.09.011

Supplementary materials

Suppl. material 1: 48 additional Cixiidae species from adjacent areas based on literature and FLOW (Bourgoin, 2021). [doi](https://doi.org/10.3897/zookeys.1037.64653)

Authors: Yang Luo, Thierry Bourgoin, Ja-Lin Zhang and Ji-Nian Feng
Data type: Table
Brief description: Presence (1) or absence (0) of 48 Cixiidae species in VM (Bangladesh, Bhutan, Cambodia, Laos, Myanmar, Thailand, Vietnam) and RFE (Russian Far East).
* BD, Bangladesh; BT, Bhutan; KH, Cambodia; LA, Laos; MM, Myanmar; TH, Thailand; VN, Vietnam.
Download file (31.80 kb)

Suppl. material 2: The observed material information of checklist [doi](https://doi.org/10.3897/zookeys.1037.64653)

Data type: spreadsheet
Brief description: Excel version of the observed specimen information for Checklist.
Download file (238.67 kb)