TOPICAL REVIEW • OPEN ACCESS

Near-field radiative heat transfer in hyperbolic materials

To cite this article: Ruiyi Liu et al 2022 Int. J. Extrem. Manuf. 4 032002

View the article online for updates and enhancements.
Topical Review

Near-field radiative heat transfer in hyperbolic materials

Ruiyi Liu1,2, Chenglong Zhou3,4, Yong Zhang3,4, Zheng Cui1,2,*, Xiaohu Wu2,* and Hongliang Yi3,4

1 Institute for Advanced Technology, Shandong University, Jinan 250061, People’s Republic of China
2 Shandong Institute of Advanced Technology, Jinan 250100, People’s Republic of China
3 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
4 Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, People’s Republic of China

E-mail: zhengc@sdu.edu.cn and xiaohu.wu@iat.cn

Received 23 August 2021, revised 10 February 2022
Accepted for publication 6 April 2022
Published 21 April 2022

Abstract

In the post-Moore era, as the energy consumption of micro-nano electronic devices rapidly increases, near-field radiative heat transfer (NFRHT) with super-Planckian phenomena has gradually shown great potential for applications in efficient and ultrafast thermal modulation and energy conversion. Recently, hyperbolic materials, an important class of anisotropic materials with hyperbolic isofrequency contours, have been intensively investigated. As an exotic optical platform, hyperbolic materials bring tremendous new opportunities for NFRHT from theoretical advances to experimental designs. To date, there have been considerable achievements in NFRHT for hyperbolic materials, which range from the establishment of different unprecedented heat transport phenomena to various potential applications. This review concisely introduces the basic physics of NFRHT for hyperbolic materials, lays out the theoretical methods to address NFRHT for hyperbolic materials, and highlights unique behaviors as realized in different hyperbolic materials and the resulting applications. Finally, key challenges and opportunities of the NFRHT for hyperbolic materials in terms of fundamental physics, experimental validations, and potential applications are outlined and discussed.

Keywords: near-field radiative heat transfer, hyperbolic materials, photon tunneling, hyperbolic phonon polaritons

1. Introduction

As one of three pathways of heat transfer, radiative heat transfer is ubiquitous in nature and plays an important role in many different areas of science and engineering. For some time, the understanding of radiative heat transfer has focused on the well-known Stefan–Boltzmann law, which establishes a ceiling on radiative heat transfer between two bodies, i.e. \(Q = \sigma (T_1^4 - T_2^4) \), where \(\sigma \) is the Stefan–Boltzmann constant \([1]\). In such a law, the maximal heat flux between two objects only can be maintained at 6.12 W m\(^{-2}\) when the temperature of the hot emitter and cold receiver are 301 K and 300 K, respectively. However, such a low heat flux density can barely meet current cooling requirements for highly integrated micro-nano electromechanical devices. On the other
hand, the power output of thermophotovoltaic (TPV) systems is far weaker than thermoelectric systems and thermodynamic cycle technologies, which results in a limit on the widespread application in the field of recovered waste heat [2].

 Fortunately, the limit can be greatly overcome by bringing two objects in proximity at the near field; that is, distances smaller than the thermal wavelengths. In the near field, the coupling phenomenon of evanescent waves provides an additional channel for photon tunneling [3–5]. As a result, the near-field radiative heat transfer (NFRHT) can exceed the blackbody limit by orders of magnitude [6–9]. The significant radiative heat flux in the near field provides a new route for many potential applications [10, 11], such as TPV [12–23], thermal rectification [24–36], noncontact refrigeration [37–41], and thermal transistors [42]. As large heat fluxes are critical in such applications, continuous efforts have been devoted to highly efficient near-field heat transport.

Initially, the polar dielectric materials that support surface phonon polaritons (SPhPs), and the materials (metals, semiconductors, etc) that supporting surface plasmon polaritons (SPPs) were extensively investigated to enhance the NFRHT both theoretically and experimentally [43–57]. These strategies have largely explored the enhancement effects of isotropic surface polaritons (i.e. isotropic materials) on near-field thermal radiation. However, the enhancements are restricted to narrow frequency bands around the frequency of the surface mode resonance.

Hyperbolic materials are novel anisotropic materials with different dielectric properties along orthogonal directions, and have attracted enormous interest in the field of NFRHT in recent years due to their preeminent optical properties [58–60]. Their dispersion relations for electromagnetic waves show an open hyperboloid, which makes it possible to support propagating waves with high wavevector [61]. In 2012, Biehs et al showed that the broadband excitation of hyperbolic phonon polaritons (HPPs) in hyperbolic materials could greatly enhance the NFRHT, indicating that hyperbolic materials have great potential for NFRHT [62]. After this pioneering work, various hyperbolic materials were since explored to enhance the NFRHT.

Due to broadband excitations of surface polaritons and their unique optical properties, hyperbolic materials have great potential for a variety of applications. However, the phenomenon and physical mechanism of NFRHT in hyperbolic materials still need to be further studied. To broaden the understandings of hyperbolic materials and help define their role in potential applications, it is necessary to make a comprehensive overview of NFRHT in hyperbolic materials, summarize the current research results, and clarify research concepts, which will lay a foundation for further research. In this paper, the NFRHT in hyperbolic materials is reviewed, the related concepts and recent research progress are introduced. Applications of near-field radiation in hyperbolic materials, such as thermal switches and near-field TPVs (NTPVs), are also described.

2. Theory and methods

2.1. Introduction to hyperbolic materials

For non-magnetic materials, the response to electromagnetic waves can be described as a permittivity tensor, which is usually a 3×3 diagonal matrix diag($\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}$) [63]. When the three principal diagonal elements are equal, the material is called isotropic. The isotropic behavior of propagating waves leads to a spherical isofrequency contour described by the equation $k_x^2 + k_y^2 + k_z^2 = \omega^2/\varepsilon^2$ (figure 1(a)), where k_x, k_y, and k_z are the x, y, and z components of the wavevector, ω is the wave frequency and c is the speed of light. The closed sphere isofrequency contour in isotropic materials results in the finite wavevector of the propagating waves. As the energy carried by an electromagnetic wave is directly proportional to its wavevector, the limitations of wavevectors indicate that the thermal radiation of isotropic materials is finite.

Materials with larger electromagnetic wavevectors are desired to increase the radiative heat transfer. In recent years, researchers have found a class of materials for which the principal diagonal elements of dielectric tensor are not all the same sign [58–60]. For a transverse magnetic wave (TM polarized) in such medium, the isofrequency relation changes to $(k_x^2 + k_z^2)/\varepsilon_{\perp} + k_y^2/\varepsilon_{\parallel} = \omega^2/c^2$ Note the dielectric tensor is given by $\varepsilon = \sqrt{\varepsilon_{xx}^2 + \varepsilon_{yy}^2 + \varepsilon_{zz}^2}$, where $\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{\parallel}$ are the in-plane components, and $\varepsilon_{zz} = \varepsilon_{\perp}$ is the out-of-plane component. For such anisotropic materials, the spherical isofrequency contour distorts to an ellipsoid, when extreme anisotropy such that $\varepsilon_{\perp} \cdot \varepsilon_{\parallel} < 0$ exists, the isofrequency contour opens into an open hyperboloid (figures 1(b) and (c)). Therefore, this kind of materials are called hyperbolic materials. When one component of the dielectric tensor is negative ($\varepsilon_{xx} > 0, \varepsilon_{yy} > 0, \varepsilon_{zz} < 0$), it is called type I hyperbolic material, while two negative components ($\varepsilon_{xx} < 0, \varepsilon_{yy} < 0, \varepsilon_{zz} > 0$) for type II hyperbolic material. The openness of the isofrequency contour means the electromagnetic wavevector can be infinite. Therefore, electromagnetic waves in hyperbolic materials can carry more energy and lead to increased radiative heat transfer.

As an artificial subwavelength structure, hyperbolic metamaterials (HMMs) have many unusual optical properties. There are several forms of metamaterials to realize hyperbolic properties: layered metal-dielectric structures [67–70], nanowire arrays [71–76], arrays of metal-dielectric nanoparticles [64], graphene-based metamaterials [65, 77–79], and others (figures 1(d)–(g)). These anisotropic structured materials have unique properties that include strong enhancements in the spontaneous emission, divergence of the state density, negative refraction, and enhanced superlensing effects [79–83]. The divergence of the state density and special electromagnetic responses different from conventional media provide HMMs with great potential in the fields of super-resolution imaging, tunable radiative heat fluxes at the nanoscale, nanophotonic devices, and solar photovoltaics [58, 59].

However, for artificial HMMs, when the tangential wavevector component is larger than π/Λ (Λ is the unit metamaterial period), the hyperbolic dispersion is no longer
2.2. Fabrication of hyperbolic materials

In the fabrication of hyperbolic materials, some factors affecting the hyperbolic behavior, such as surface roughness, porosity, and filling fraction of materials, are the key factors to be considered. There have been some successful fabrication methods for reference, here is a brief overview.

2.2.1. Nanowire metamaterials. To fabricate nanowire structures, anodic alumina membrane can be used to grow the required templates to form a dielectric host substrate with periodic nanopores, in which silver (or gold) nanowires can be electrochemical deposited (figure 2(a)) [77, 93–96]. The nanowires can be grown by direct current electrodeposition from a thiosulfate bath [97, 98], or prepared by partially etching the anodic alumina membrane template in a NaOH solution [99]. The optical properties can be further improved by two-step anodizing and pre-pattern induced self-assembly [95]. The spacing of nanowires is determined by the anodizing conditions, but the pore size and diameter of nanowires are determined by pre-deposition etching. Compared to the optical wavelength used in the experiment, the lateral sizes and spacing between nanowires are smaller, so only the average value of nanowire parameters matters. The optical characteristics of nanowires could be stable relative to the fabrication tolerance [100, 101]. The silicon nanowires sample can be fabricated by using a mask made of polystyrene nanosphere array [102], the details on the transfer technique can be found in [103, 104].

2.2.2. Multilayer metamaterials. The fabrication of multilayer HMMS requires the deposition of ultra-thin and smooth metal/dielectric films (figure 2(b)). The materials behaving as metal can be surface deposited by electron beam evaporation [105, 106], low pressure chemical vapor deposition (CVD) [107], or be grown by molecular beam epitaxy (MBE) on lattice-matched substrates [108]. Dielectrics can be grown by plasma enhanced CVD [109]. The alternate plasmonic materials can be deposited by reactive sputtering or pulsed laser deposition [110]. The requirement of very uniform and smooth surface can be achieved through MBE, and the minor deviation of layer thickness will not significantly affect the effective medium response [111–113].

2.2.3. Natural hyperbolic materials. For natural hyperbolic materials, thin sheets are usually used. The hBN sheets could be obtained from hBN crystals or N-methyl-2-pyrrolidone (NMP) [66, 114, 115]. High-pressure/high-temperature method is often used for the growth of hBN crystals [116, 117]. The lateral sizes for hBN crystals in commercial powder are usually between hundreds of nanometers and tens of microns. The hBN sheets of lateral sizes similar to or smaller than crystal can be obtained by top-down approaches like mechanical exfoliation [118–122], sonication-assisted direct solvent exfoliation [123], chemical functionalization [124]; while the lateral sizes of hBN sheets from bottom-up approaches like CVD and non-epitaxial growths could be as large as a few centimeters (figures 2(d) and (e)) [125–127]. The α-MoO₃ sheets can also be obtained from MoO₃ powder, the commonly used method is thermal physical deposition method (figure 2(c)) [128, 129], and focused ion beam etching could be employed to meet the requirements [89].

2.3. Characterization of hyperbolic materials

The optical and morphology characterization of hyperbolic materials could be performed using Fourier transform infrared spectrometer [87], scanning transmission electron microscope [99, 102, 109], atomic force microscope...
the NFRHT between anisotropic plates can be expressed for these functions can be found in \[2\]. While the dyadic Green’s function is used to stochastic Maxwell’s equations and fluctuation-dissipation 2.4. Calculation formula for NFRHT The topological transition can be observed by time resolved Using the time correlated single photon counting technique, active refraction ability of hyperbolic materials \[2\]. Optical measurements can be made to characterize the negative refraction ability of hyperbolic materials \[95, 133\]. Using the time correlated single photon counting technique, the topological transition can be observed by time resolved photoluminescence \[106\].

\begin{align*}
\xi(\omega, \beta, \varphi) = & \begin{cases}
\text{Tr} \left[(I - R_z^2 T_z^1 T_z^2) \right], & \beta < k_0, \\
\text{Tr} \left[(R_z^2 - R_z^1) D (R_z^1 - R_z^0) D^* \right] e^{-2|k_z|d}, & \beta < k_0
\end{cases}
\end{align*}

where \(\varphi \) is the azimuth angle, and \(\xi(\omega, \beta, \varphi) \) is the energy transmission coefficient, which can be expressed as:

\begin{equation}
Q = \frac{1}{8\pi} \int_0^{\infty} \int_0^{2\pi} \int_0^{\pi} \Theta(\omega, T_1) - \Theta(\omega, T_2) |d\omega| d\beta d\varphi,
\end{equation}

2.4. Calculation formula for NFRHT

The calculation of NFRHT depends primarily on the stochastic Maxwell’s equations and fluctuation-dissipation theory, while the dyadic Green’s function is used to express the electric and magnetic fields. The derivations for these functions can be found in \[4, 5, 134-136\], and the NFRHT between anisotropic plates can be expressed as:

\begin{equation}
R_{1,2} = \left[\begin{array}{cc} r_{sp}^{(1,2)} & r_{pp}^{(1,2)} \\
r_{ps}^{(1,2)} & r_{pp}^{(1,2)} \end{array} \right], \quad T_{1,2} = \left[\begin{array}{cc} t_{ps}^{(1,2)} & t_{pp}^{(1,2)} \\
t_{sp}^{(1,2)} & t_{pp}^{(1,2)} \end{array} \right],
\end{equation}

where \(r_{m,n} \) and \(t_{m,n} \) \((m = s, p; n = s, p)\) are the reflection and transmission coefficients from vacuum to the emitter or receiver, in which \(m \) and \(n \) represent the polarization state of the incident and reflected (transmitted) waves respectively, \(s \) and \(p \) indicate \(s \)-polarized and \(p \)-polarized plane waves. These coefficients can be obtained from the modified \(4 \times 4 \) transfer matrix method described in the next section. The matrix \(\mathbf{D} \) is given as \(\mathbf{D} = (\mathbf{I} - \mathbf{R}_1 \mathbf{R}_2 e^{-2|k_z|d})^{-1} \). For isotropic materials, no polarization conversion occurs between two linearly polarized waves, so the off-diagonal elements in the transmission and
reflection coefficients are zero. However, the off-diagonal elements cannot be ignored for anisotropic materials.

2.4.1. The 4×4 transfer matrix method. To calculate NFRHT, the calculation for the reflection and transmission coefficients at different azimuth angles ϕ is needed, where ϕ is the angle at which the incident plane deviates from the x-z plane. The permittivity tensor in the $x'y'z'$ coordinate system is expressed as [137]:

$$
\begin{pmatrix}
 \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\
 \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\
 \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz}
\end{pmatrix} = T_zT_z^{-1},
$$

(4)

where T_z is the coordinate rotational transformation matrix, and ε is the permittivity tensor in the coordinate system. The matrix of T_z is:

$$
T_z = \begin{pmatrix}
 \cos \phi & \sin \phi & 0 \\
 -\sin \phi & \cos \phi & 0 \\
 0 & 0 & 1
\end{pmatrix}.
$$

(5)

This method was used in the analysis of Casimir interactions in anisotropic materials [138, 139]. Taking the TM incident wave as an example, the EM fields in the medium can be written according to the $x'y'z'$ coordinate system, as follows:

$$
H = U(z) \exp(j\omega t - j\beta x), \quad \text{where} \quad U = (U_x, U_y, U_z),
$$

(6)

$$
E = j(\mu_0/\varepsilon_0)^{1/2}S(z) \exp(j\omega t - j\beta x), \quad \text{where} \quad S = (S_x, S_y, S_z),
$$

(7)

where the superscript ' of the space variables was deleted for simplicity. Bringing equations (4), (6), and (7) into Maxwell’s equations, the following differential equations can be obtained:

$$
\frac{d}{dz}\begin{pmatrix}
 S_x \\
 S_y \\
 U_x \\
 U_y
\end{pmatrix} = k_0 A \begin{pmatrix}
 S_x \\
 S_y \\
 U_x \\
 U_y
\end{pmatrix},
$$

(8)

where the coefficient matrix is:

$$
A = \begin{bmatrix}
 jK_x\varepsilon_{xx}/\varepsilon_{zz} & jK_x\varepsilon_{xy}/\varepsilon_{zz} & 0 & K_x^2/\varepsilon_{zz} - 1 \\
 0 & 0 & 1 & 0 \\
 \varepsilon_{yz}\varepsilon_{xx}/\varepsilon_{zz} - \varepsilon_{yx} & \varepsilon_{yz}\varepsilon_{yy}/\varepsilon_{zz} + K_x^2 - \varepsilon_{zy} & 0 & -jK_x\varepsilon_{xz}/\varepsilon_{zz} \\
 \varepsilon_{zx} - \varepsilon_{xz}\varepsilon_{xx}/\varepsilon_{zz} & \varepsilon_{zx} - \varepsilon_{xx}\varepsilon_{yz}/\varepsilon_{zz} & jK_x\varepsilon_{xz}/\varepsilon_{zz}
\end{bmatrix}.
$$

(9)

It was shown that the heat flux between SiC nanowire arrays could reach 36 times that between SiC plates at the same temperature.

3. NFRHT of hyperbolic materials

3.1. NFRHT of hyperbolic metamaterials (HMMs)

The broadband excitation of phonon polaritons in hyperbolic metamaterials promotes significant photon tunneling, which results in super-Planckian thermal radiation. In 2012, Bihe et al first studied the NFRHT of hyperbolic materials [62]. They considered the NFRHT between HMMs composed of periodic SiC nanowire arrays, where the optical axis is vertical to the material surface (figures 3(a) and (b)). These media could support frustrated modes that transport heat via photon tunneling. In particular, the frustrated modes can be supported in a broadband spectrum, resulting in larger heat fluxes compared with those generated by the narrowband coupled surface polariton modes. The frustrated modes supported by HPPs are demonstrated to achieve perfect transmission for wavevectors smaller than $1/2d$, which significantly enhances the NFRHT. In particular, the frustrated modes can be supported in a broadband spectrum, resulting in larger heat fluxes compared with those generated by the narrowband coupled surface polariton modes. The frustrated modes supported by HPPs are demonstrated to achieve perfect transmission for wavevectors smaller than $1/2d$, which significantly enhances the NFRHT.

3.1.1. Nanowire/nanohole array structures. After the work of [62], many theoretical works on the NFRHT of various nanowire and nanohole array structure HMMs were performed. Basu and Wang [140] studied the NFRHT between doped Si nanowire array HMMs, and found that the heat flux between doped Si nanowire arrays can be nearly three times that between two doped Si plates with a vacuum gap of 20 nm. Liu et al [141] investigated the NFRHT between two doped Si nanowire/nanohole array HMMs and found that the heat flux of both configurations are more than one order of magnitude stronger than that of bulk doped Si, the enhancement of nanowire arrays is larger than that of nanohole arrays. Liu et al [142] studied the NFRHT of doped Si nanowire/nanohole HMMs and showed that the heat flux between Si nanohole arrays at submicron gap was nearly eight times larger than that between Si plates, and that of Si nanowire arrays was approximately 12 times larger than Si plates (figures 3(c)–(f)). Liu and Shen [143] described an HMM made of metal wire arrays and observed that the heat flux between a gold nanowire array and a SiC plate is much greater than that between a gold plate and a SiC plate. Lang et al [144] found that...
GaN/Ge nanowire HMMs have a larger penetration depth of thermal photons than semi-infinite phonon-polaritonic media, which gives a preferred NFRHT. Bihs et al [145] studied the NFRHT between two SiC nanoporous materials and found that the air inclusions can significantly enhance the heat flux, which is explained by the appearance of additional surface waves and frustrated modes in a wide spectral range. Liu et al [146] investigated the NFRHT between carbon nanotube arrays and predicted that at any vacuum gap distance, the heat flux could be enhanced compared to that between SiC plates. At a gap distance of 10 nm, the heat flux is approximately ten times greater (figures 3(g) and (h)).

3.1.2. Periodic layered structure. In studies on NFRHT, periodic layered structures are another common form of HMMs (figure 4). Guo et al [147] proposed an HMM made from periodic layered SiC/SiO\(_2\) and calculated the super-Planckian radiation heat flux using effective medium theory. Bihs et al [148] used scattering-matrix calculations to determine the heat flux of SiC/SiO\(_2\)-layered HMMs and arrived at the same conclusions. They showed that the layer thickness determines the wavevector cutoff for the Bloch band (figures 4(b) and (c)). Lang et al [144] investigated the NFRHT between GaN/Ge layered HMMs and revealed a significantly enhanced heat flux due to the large penetration depth of thermal photons (figures 4(d) and (e)). Liu et al [142] found that the NFRHT between D-Si/Ge layered HMMs can significantly exceed the blackbody limit. In the far-field, the heat flux between D-Si/Ge layered HMMs is nearly twice as large as that between bulk materials (figure 4(f)). Bihs and Ben-Abdallah [149] studied the NFRHT between SiC/Ge layered HMMs and showed that regardless of whether the top layer is SiC or Ge, the heat flux can significantly exceed the blackbody limit but is stronger when SiC is the top layer. Song et al [150] studied the NFRHT between periodic layered HMMs consisting of a magneto-optical material (InSb) and a dielectric (SiO\(_2\)). They observed an enhanced heat flux due to hyperbolic modes and introduced the induction of the hyperbolic modes from an external magnetic field.

3.1.3. Two-dimensional (2D) materials. Two-dimensional (2D) materials, such as black phosphorus (BP) and graphene, have attracted significant attention due to their excellent optical properties [50, 151–153]. Such 2D materials can produce a large number of resonances and provide channels for photon tunneling, and show a nice tunability. Patterning the 2D material sheet into metasurface will open the dispersion to become hyperbolic. The excitation of hyperbolic plasmons has led to enhanced radiative heat flux (figure 5). Liu and Zhang [154] proposed a hyperbolic metasurface (HMS) based on periodic graphene ribbon arrays. They revealed that the coupling between high wavevector evanescent waves and hyperbolic graphene plasmons could increase the NFRHT between the HMS by more than one order of magnitude compared to that of graphene sheets (figures 5(c) and (d)). Zhou et al [155] discovered that when a drift current is applied to graphene ribbons, the hyperbolic mode evolves into an extremely asymmetric shape. Yi et al [156] proposed an HMS based on narrow BP ribbons and found the NFRHT between HMS sheets can be significantly enhanced at high electron doping levels compared to that of BP sheets. Liu et al [157] investigated the NFRHT of BP gratings considering different patterning and electronic doping approaches. The BP grating was found to produce a higher heat flux by as much as 65% compared with its planar counterparts (figure 5(b)). Shen et al [158] studied the NFRHT of mono/multilayer BP and found that the heat...
Figure 4. (a) Sketch of multilayer HMM. Reprinted figure with permission from [150], Copyright (2020) by the American Physical Society. (b) Heat transfer coefficient for the SiC–SiO$_2$ multilayer HMM with passive materials as the topmost layer at various thicknesses. (c) Energy transmission coefficient of a SiC–SiO$_2$ multilayer HMM for 100 nm thick layers and $d = 10$ nm. Reprinted from [148], with the permission of AIP Publishing. (d) Heat transfer coefficient varying with the vacuum gap for a GaN/Ge multilayer HMM compared to other configurations. (e) Spectral penetration depth (solid) and heat transfer coefficient (dashed) for GaN/Ge multilayer HMMs at $d = 10$ nm. Reprinted from [144], with the permission of AIP Publishing. (f) Energy transmission coefficient for a D-Si/Ge multilayer HMM at $d = 10$ nm. Reprinted from [142], Copyright (2014), with permission from Elsevier.

Figure 5. (a) Schematic of NFRHT between two graphene gratings composed of arrays of ribbons. [155] (2020), reprinted by permission of the publisher (Taylor & Francis Ltd, www.tandfonline.com,). (b) Schematic of the NFRHT between nanostructured BP layers. [157] (2019), reprinted by permission of the publisher (Taylor & Francis Ltd, www.tandfonline.com,). Energy transmission coefficient at $\omega = 5 \times 10^{13}$ rad s$^{-1}$ for (c) graphene sheets and (d) graphene ribbon arrays at $d = 50$ nm. Reprinted from [154], with the permission of AIP Publishing. Energy transmission coefficient at $\omega = 5.5 \times 10^{13}$ rad s$^{-1}$ for monolayer BP with (e) $\mu = 1$ eV and (f) $\mu = 2$ eV at $d = 50$ nm. Reprinted from [158], Copyright (2018), with permission from Elsevier.
flux of monolayer BP could exceed that of blackbodies by three orders of magnitude, which was 18.5% higher than the heat flux of optimized graphene sheets (figures 5(e) and (f)).

3.2. NFRHT of natural hyperbolic materials

3.2.1. Uniaxial natural hyperbolic materials. Some uniaxial van der Waals crystals have natural hyperbolic properties. For example, in the infrared region, graphite can support broadband type II hyperbolic dispersion [146]. Shen et al [159] demonstrated the enhancement effect of non-resonant type II hyperbolic modes to NFRHT in graphite plates. After patterning graphite gratings, the material dispersion of graphite changes from type II to type I. For the case of optical axes in plane and perpendicular to the etching direction, non-resonant type I hyperbolic modes dominate the NFRHT, the heat flux is seven-fold larger than the counterpart plates and outperforms blackbodies by over four orders of magnitude (figures 6(a) and (b)). In the mid infrared region, calcite has two Reststrahlen bands with type I and type II hyperbolic dispersion, respectively. Salihoglu et al [160] carried out analyses on NFRHT of calcite, and compared to that of SiC. Their study revealed that the high-wavevector modes within the hyperbolic bands lead to the largely enhanced NFRHT of calcite.

Hexagonal BN (hBN) is a common natural hyperbolic material. In two infrared Reststrahlen bands where the permittivity tenses are opposite (\(\varepsilon_\parallel < 0, \varepsilon_\perp > 0\) in type I hyperbolic band, \(\varepsilon_\parallel > 0, \varepsilon_\perp < 0\) in type II hyperbolic band), hBN can support many phonon-polaritonic waveguide modes [130–132, 162]. Liu and Xuan [161] considered the NFRHT between two hBN films with the optical axis parallel to the surface and identified the excitation of hyperbolic SPhPs (HSPPs) for the first time (figures 6(c)–(f)). As seen in figure 6(d), the main contributions of the radiation heat flux originate from the two hyperbolic bands. As a result, the NFRHT between bulk hBN slabs could be 120 times larger than the blackbody limit. Thus, HSPPs are demonstrated to enhance the NFRHT.

Wu and Fu [163] further studied the phonon polaritons of hBN and distinguished the roles for two kinds of HPPs: HSPPs and hyperbolic volume phonon polaritons (HVPPs). The HVPPs are essentially Fabry–Pérot resonances, which are propagating waves in the medium; while HSPPs are surface waves, which are evanescent waves in the medium. It was shown that when the optical axis is perpendicular to the medium surface, only HVPPs can be excited in the two hyperbolic bands (figures 7(a), (c), and (d)). When the optical axis is parallel to the medium surface, there are HVPPs excited in type I hyperbolic band, while both HVPPs and HSPPs excited in type II hyperbolic band (figures 7(b), (e), and (f)). Further research shows that in ultra-thin hyperbolic slabs, the dispersion curves of HVPPs and HSPPs can be smoothly connected [164]. In particular, the topology of HVPPs can be convex, flat, as well as concave, and can be regulated by adjusting the thickness of the hyperbolic slab, as seen in figures 7(g) and (h).

For hBN, the effects of the optical axis orientation and slab thickness were also discussed. For example, the absorption in a hBN slab could be manipulated by adjusting the tilted angle of its optical axis [165]. As the optical axis deviates from...
normal, the emissivity decreases in the type I hyperbolic band and increases in the type II hyperbolic band [166]. As the tilting angle increases, the wavevector of electromagnetic waves decreases and leads to a reduced radiation heat flux [137]. With the decrease of thickness, the excitation of HVPPs becomes dispersed [163]. Variations in the radiation heat flux and the topological shape of phonon polaritons open up new ways to clarify the mechanism and manipulation method of NFRHT in hyperbolic materials [167].

3.2.2. Biaxial natural hyperbolic materials. Biaxial hyperbolic crystals (such as \(\alpha\)-MoO\(_3\)) show different optical responses along their three crystalline directions, their hyperbolicity will become more complicated than uniaxial crystals [89–91]. The \(\alpha\)-MoO\(_3\) crystal has three Reststrahlen bands, there are \(\varepsilon_{xx} > 0, \varepsilon_{yy} < 0, \varepsilon_{zz} > 0\) and \(\varepsilon_{xx} > 0, \varepsilon_{yy} > 0, \varepsilon_{zz} < 0\) in band 1, 2 and 3 respectively (figure 8(b)). The regions for phonon polariton excitation are determined from the signs of the three permittivity components (figure 8(c)) [168]. Wu et al [169] studied the NFRHT between two \(\alpha\)-MoO\(_3\) biaxial crystals, it is observed that different crystal orientations will produce varying results (figure 8(d)). Due to the HVPPs excitation inside \(\alpha\)-MoO\(_3\) and HSPPs at the vacuum/\(\alpha\)-MoO\(_3\) interface, the NFRHT between two semi-infinite \(\alpha\)-MoO\(_3\) crystals is significantly enhanced. At a vacuum gap of 20 nm, the NFRHF can be larger than 2200 kW m\(^{-2}\) when the heat flux is along the [001] crystalline direction, which is much larger than between two hBN uniaxial crystals (figures 8(e) and (f)). In addition, based on the in-plane anisotropy, the NFRHT can be well controlled by relative rotation. Thus, biaxial natural hyperbolic materials have the potential for NFRHT as their special properties give a multitude of possible applications of interest.

3.3. NFRHT of 2D material/hyperbolic material heterostructures

It has been confirmed that the combination of graphene and dielectric (or metal) materials can produce coupling of graphene plasmons and other SPhPs (or SPPs), which leads to further mediation of the NFRHT [170–175]. However, the near-unity photon tunneling probability only appears over a narrow frequency range of exciting coupled SPhPs or SPPs, thus the frequency range of NFRHT enhancement is limited. Hyperbolic materials support broadband excitation of surface polaritons and have large energy transmission coefficients over a wide range of wavevectors. Therefore, the combination of graphene and hyperbolic materials produces new effects that are worthy of study.

Liu et al [176] investigated the NFRHT between graphene-coated doped Si nanowires (figures 9(a) and (b)), and theoretically demonstrated that the hybridization of graphene plasmons and hyperbolic modes cause a near-uniform photon tunneling probability over a wide frequency domain and large wavevector space. Thus, the NFRHT increases significantly and reaches 80% of the theoretical limit for hyperbolic materials. Besides, the NFRHT of graphene-coated metamaterials can be actively regulated by modulating the graphene chemical potential [177].

Combining uniaxial natural hyperbolic materials and graphene to form heterostructures could produce new hybrid polaritons in the mid-infrared band [137, 162, 178, 179].
After adjusting the chemical potential of graphene, the coupling ability of phonon-plasmon polaritons changes significantly, which illustrates a strong tunability \[180, 181\]. Zhao and Zhang \[182\] studied the NFRHT in graphene/hBN heterostructures, they found that graphene plasmons can be coupled with phonon polarons in hBN films, and produce two hybrid
Specifically, HPPPs always suppress the heat flux while SPPPs according to the chemical potential of graphene. More specifically, the spectral heat flux can be enhanced or suppressed by adding graphene plasmonic and phonon polaritons in hyperbolic materials. They demonstrated that the total heat flux can be significantly enhanced due to the coupling between graphene plasmon–phonon polaritons (HPPPs) produced from the coupling of SPPs and HSPPs, and hyperbolic plasmon–phonon polaritons (HPPPs) produced from the coupling of SPPs and HVPPs. HPPPs maintain the features of hyperbolic-waveguide-mode and could suppress the heat transfer, while SPPPs could enhance the heat transfer. Due to the coupling of polaritons, the total heat flux between graphene/hBN heterostructures can be greatly enhanced compared to bare hBN films or graphene monolayers, and can exceed the blackbody limit by three orders of magnitude (figure 9(d)). The periodic multilayer graphene/hBN structures can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN [183]. The NFRHT could be actively modulated by changing the graphene chemical potential or through the number of graphene layers. Shi et al [184] found that heterostructures composed of five or more graphene-hBN cells perform better than other structures (figure 9(c)), the heat flux of infinite-cell heterostructure could be 1.87- and 2.94-fold larger than that of sandwich and monolayer structures, and exceed the blackbody limit by four orders of magnitude.

While biaxial natural hyperbolic materials like α-MoO$_3$ exhibit excellent NFRHT performances, there are few studies on the combination of α-MoO$_3$ and graphene. Wu et al [168] investigated the NFRHT between graphene-coated α-MoO$_3$. They demonstrated that the total heat flux can be significantly enhanced due to the coupling between graphene plasmons and phonon polaritons in α-MoO$_3$. In the Reststrahlen bands, the spectral heat flux can be enhanced or suppressed according to the chemical potential of graphene. More specifically, HPPPs always suppress the heat flux while SPPPs can enhance or suppress it, depending on the frequency [185]. Take the angular frequencies of 1.82 × 1014 rad s$^{-1}$ as an example, for bulk α-MoO$_3$, the heat flux contributions from HSPPs and HVPPs are 5.66 and 3.51 nJ m$^{-2}$ rad$^{-1}$ respectively. After covering graphene, the contributions of hybrid polaritons decreases (figures 9(f) and (g)). It can be seen that after coating graphene to hyperbolic materials, though the total heat flux can be enhanced, the relative size of spectral heat flux is variable.

In summary, hyperbolic materials have great potential to enhance NFRHT. Heterostructures of graphene and hyperbolic materials will bring more significant enhancements, which may have guiding significance in the designs of NFRHT experimental devices.

3.4. Experimental measurements

The experimental measurement and verification of the super-Planckian heat flux between two objects will provide a reliable basis for theoretical research, so it has always been the focus of academic attention. In the early stages, due to the difficulty of maintaining the nano-spacing and parallelism between two plates, the experimental configurations are mostly probe-substrate [186–189] or sphere-plate structures (figure 10(a)) [52, 190–194]. In recent years, due to the progress of technology, a number of experiments of plate-plate structure have emerged (figure 10(b)) [6, 9, 45, 56, 195–208]. The methods of controlling the parallelism and spacing of two plates can be divided into four categories: (a) separation by nanosphere/nanocolumn [6, 8, 9, 56, 202, 205, 208], (b) judging by the on-off of electrical signals [45, 196, 204], (c)
using the change of signal strength and interference fringes of transmitted/reflected light [201, 206, 209], and (d) using the correlation between capacitance electrode spacing and capacitance [195, 199, 207]. The temperature of the plates can be measured by embedding a temperature sensor/thermistor/thermocouple in the carrier loaded with the sample sheet [8, 9, 45, 56, 196, 199, 202, 204–208], or preparing a Pt electrode on the surface of the sample, and the temperature can be determined by the relationship between the change of resistance and temperature [188, 194, 197, 198, 200, 201, 203]. The measurement of heat flux can be achieved by heat flux meter, or by using the change of measured power and temperature in far-field and near-field to convert the heat flux [9, 45, 195, 198, 203, 204, 206–208]. The techniques used in the existing NFRHT experiments will provide reference and basis for the measurement of super-Planck heat flux of hyperbolic materials.

In recent years, the NFRHT of HMMs has also been experimentally studied. Shi et al [99] demonstrated a broadband thermal energy extraction device based on nickel nanowire HMMs (figures 10(c) and (d)). The thermal extractor made of HMMs acts as a transparent pipe to guide the radiative energy from the emitter without absorbing or emitting any radiation. They observed that compared to the case without thermal extractor, the NFRHT with HMMs thermal extractor can be enhanced by around one order of magnitude. Lim et al [107] measured the NFRHT between metallo-dielectric multilayer HMMs. The HMMs are made of alternating Ti and MgF2, and the active heat transfer area is 7.56 mm2 (figures 10(e) and (f)). They fabricated an integrated platform, and used a three-axis nanopositioner to locate the plate, the parallel of the plate is realized by capacitive sensing. With an Au temperature sensor placed on the back of the receiver component and a thermometer attached to the heat sink, the heat flux could be measured. The NFRHT between multilayer HMMs at d = 160 nm was increased by about 100 times compared to the far-field case, and was equivalent to that between bulk Ti media at d = 75 nm. Du et al [102] fabricated two 2 × 2 cm2 HMMs made of silicon nanorod arrays and studied their NFRHT using a home-made setup (figure 10(g)). The emitter and receiver are separated by four AZ photoresist pillars to keep parallel. The heat flux is measured by a differential way, i.e. subtracting the background dissipation from the input power. At the 500 nm vacuum gap, a strong heat flux density of 830 W m−2 was observed, which is 4.7 times larger than the blackbody value.

4. Applications

4.1. Twistable thermal switch

In recent years, the requirements of thermal information processing, thermal management, and thermoelectric conversion have drawn attention to the manipulation of heat flux as analogous to that of electric currents, such as a thermal switch. Many researches focused on thermal modulations for heat conduction through engineering phonon transport [210–212]. However, the phonon transmission speed is much lower, and the inevitable existence of local Kapitza resistance dramatically reduces the phononic heat flow. In Recent years, photon-based thermal transistors have attracted much attention because photons travel faster and can be used in non-contact applications [42, 213–215]. The relative rotation between the emitter and receiver can regulate the electromagnetic interactions between their interfaces [216, 217]. This effect symbolizes the adjustability of NFRHT, which can be used for twistable thermal switches [170, 218–224].

In 2011, Biehs et al [225] proposed to modulate the NFRHT by rotating two polar-metallic gratings around the heat flux direction (figures 11(a) and (b)). The results showed that at room temperature, the net heat flux could be modulated by up to 90%. Other materials were subsequently investigated to control the NFRHT by relative rotations, and the role of hyperbolic modes in twistable thermal switches was explored. Luo et al [226] studied the NFRHT between two twisted finite size polar dielectric nanoparticle gratings. Because of the size effect of square and circular gratings, changing the twisting angle will lead to significant oscillations of heat flux (figure 11(c)). Ge et al [227] studied the NFRHT between two suspended 2D anisotropic materials and observed that relative twisting of the upper and bottom sheets caused nearly four-fold differences in heat flux. He et al [228] realized the magnetoplasmodynamic manipulation of NFRHT using two twisted graphene gratings and observed that the magnetic field makes the grating have higher NFRHT modulation ability (by changing the graphene filling factor and twisted angles) compared with the zero field case (figures 11(d)–(f)). After covering graphene gratings with isotropic material slabs, the NFRHT was increased by approximately 150% and decreased by around 30% via mechanical twisting compared to that of bare slabs [229]. The twistable thermal switch composed of BP gratings was also proposed, the optimized switching factors could reach 90% at a gap distance of 50 nm, in the far-field regime, the switching factors could also be more than 70% at a gap distance of 1 μm [230].

Grating fabrication will be a significant challenge to provide modulators with good performances at nanometer gaps because the roughness and defects must be within a few nanometers. However, natural hyperbolic materials can be directly used for thermal modulation without patterning. Liu et al [231] proposed a pattern-free thermal modulator based on mechanical rotations between two hBN films with optical axes parallel to their surfaces (figures 12(a)–(c)). They found that the mismatch of type I HSPPs between two films enabled the hBN films to support a large modulation contrast. At a gap distance of 10 nm, the modulation contrast could be more than 5 for 1 nm thick films. Unlike uniaxial hyperbolic crystals which exhibit in-plane anisotropy only with the optical axis parallel to the surface, biaxial hyperbolic crystal α-MoO3 naturally exhibits both out-of-plane and in-plane anisotropy. In twisted α-MoO3, the highly anisotropic hyperbolic polaritons will produce electromagnetic interaction, which is conducive to rotational thermal modulation [234]. Wu et al [169] investigated the effects of relative rotations between two α-MoO3 films and found that the heat flux varies significantly due to misalignments of the HPPs inside α-MoO3 and HSPPs at the vacuum/α-MoO3 interfaces. When the heat flux was along the [010] direction, the modulation contrast can reach 2. Based on this work, the thermal modulation by relative rotations
between hBN and α-MoO$_3$ was also studied (figures 12(d) and (e)) [232]. It was found that the mismatch of HVPPs in the emitter and receiver leads to large modulation contrasts. By optimizing the thickness of the slabs, the modulation contrast can be up to 12.45, which is the highest known value. The unique electromagnetic properties of hyperbolic materials have great application potential in thermal modulations. The manipulation of NFRHT will open new ways for thermal management in microelectronic devices.

4.2. Near-field thermophotovoltaic (NTPV)

TPVs are a pollution-free and multi-purpose thermoelectric conversion device without moving parts, which can use a variety of heat sources. A TPV is composed of thermal emitters and low-bandgap photovoltaic cells. Semiconductor photovoltaic cells generate electron–hole pairs through electron valence band transitions based on incident photon radiation and directly convert the thermal energy into electricity. The energy conversion efficiency of TPV is limited by the Shockley–Queisser limit with a maximum of 41% [233]. However, when the distance between the emitter and the cell is less than the thermal wavelength, the dramatically increased energy transmission generated by NFRHT can significantly improve the efficiency of NTPV and even break the Shockley–Queisser limit. Therefore, NFRHT has inspiring potential in TPV applications.

There have been some explorations of NTPVs using conventional materials that reduce the vacuum distance to the nanometer level for increased efficiencies [12–23]. Hyperbolic materials are ideal high-temperature heat sources because of their large wavevector transmission characteristics. This has naturally led to their use in NTPVs to improve the output power. Vongsoasup et al [235] proposed an HMM radiator made of 2D tungsten grating that supports hyperbolic modes, and found that with the HMM radiator, the energy absorbed by the cell is enhanced compared to isotropic radiator (figure 13(a)). The maximum power output and conversion efficiency could reach 4.28×105 W m$^{-2}$ and 35%, respectively. Mirmoosa et al [236] theoretically show that NTPV system include tungsten nanowires allow the frequency-selective super-Planckian spectrum of thermal radiation, thus lead to efficient power generation, the power output per unit area can reach 3.3–4.3 W cm$^{-2}$. Chang et al [237] proposed an HMM composed of tungsten nanowire arrays embedded in Al$_2$O$_3$ as thermal emitter (figure 13(b)). They showed that at the vacuum gap of 20 nm, the output power of a semi-infinite HMM thermal emitter is 2.15 times greater than that of pure...
tungsten, and the energy conversion efficiency increased from 17.7% to 31.1% when using a limited thickness cell. Yu et al [238] investigated the NFRHT for an NTPV consisting of a plasmonic emitter and GaSb absorber with nanowire/nanohole arrays (figure 13(c)). Compared to the efficiency of 14.6% in planar GaSb system, the optimal efficiency of proposed system was up to 26.0%, and the power enhancement could up to a maximum of 78.3%. Jiang et al [239] proposed a NTPV composed of a tungsten nanowire HMM emitter and a two-junction tandem cell, the system can generate a power output of 4.7236×10^6 W m$^{-2}$ and the conversion efficiency can reach 45.26%, achieving 1.3 (2.38) times more electricity with 15.3% (25.95%) higher conversion efficiency than the single InGaAsSb (InAs) cell.

Jin et al [244] proposed using multilayer metamaterials formed alternately by tungsten and SiO$_2$ as the thermal emitter. At a vacuum gap of 100 nm, the output power was increased approximately six-fold compared to the case of a conventional tungsten emitter. Mirmoosa et al [240] proposed a germanium/tungsten-multilayer-based emitter (figure 13(d)) that achieved a large ultimate efficiency of more than 50% and radiative heat flux of about 200 kW m$^{-2}$. Lim et al [241] used doped Si/SiO$_2$-multilayer-based emitter (figure 13(e)) and coated multilayer graphene/SiO$_2$ on the cell. Compared with the system with bulk emitter and bare cell, the power output of the system is 24.2-fold enhanced. Ghanekar et al [243] chose a stack of alternating ZrC and SiO$_2$ thin films as the HMM in place of a bulk metallic heat sink. It was found that the presence of hyperbolic modes created additional NFRHT channels, which led to a sevenfold increased power density.

Combining 2D materials with natural hyperbolic materials to modulate the NFRHT between the emitter and cell allows optimizing the NTPV performance. Messina et al [12] proposed a kind of NTPV with an hBN emitter and an InSb cell coated with graphene. The calculation results showed that the cell efficiency and generated current are improved when InSb cell is coated with graphene, the system efficiency can reach 20% at a vacuum gap of 16 nm and graphene chemical potential of 0.5 eV. Wang et al [242] studied the performance of NTPV with both hBN emitters and InSb cells coated with graphene (figure 13(f)). The highest output electric power reached 7.6×10^4 W m$^{-2}$, while the highest energy efficiency was 34% for the system with a heterostructure emitter and uncoated cell. With graphene/hBN/graphene sandwiched structure as the emitter and uncoated InSb cell, the optimal output power density can reach 1.3×10^5 W m$^{-2}$ and the energy efficiency can be as large as 42% of the Carnot efficiency [245].
Though natural hyperbolic materials have unique advantages in NFRHT, the natural Reststrahlen bands are difficult to change due to their inherent lattice structure, which limits the spectral selection for NTPV. To overcome this limitation, the performance of natural hyperbolic materials in NTPV can be improved by coating with graphene or tilting the optical axis, which will be explored in the future. The application of HMMs in NTPVs has a strong development space with more forms of metamaterials that can bring new possibilities for NTPVs. In summary, improving the output power and efficiency of NTPVs can be achieved using the important class of hyperbolic materials.

5. Summary and prospects

The NFRHT of hyperbolic materials is introduced and reviewed. We first introduce the optical properties of hyperbolic materials and review their origin and development. The established calculation models for the NFRHT in hyperbolic materials are then introduced. After introducing the basic concepts of NFRHT for hyperbolic materials, we review the theoretical and experimental research progress of super Planck thermal radiation in hyperbolic materials, which includes metamaterials, 2D materials, and natural hyperbolic materials. In addition, we discuss the NFRHT of heterostructures that consist of 2D and hyperbolic materials. Finally, we introduce the application of NFRHT for hyperbolic materials, such as twistable thermal switches and NTPVs. The summary of this review helps to sort out the research content for the NFRHT in hyperbolic materials and lays a foundation for further research.

As the NFRHT of hyperbolic materials is rich in physics and has become increasingly practical, we anticipate that hyperbolic materials will continue to promote theoretical and technological development for NFRHT, and will play a crucial role in micro/nano thermal modulation and next-generation energy conversion systems. However, despite the extraordinary evolution of NFRHT in hyperbolic materials, there still exist plentiful fascinating phenomena and promising opportunities in both fundamental advances and practical applications.

(a) For theoretical works, although research on the NFRHT mechanisms in hyperbolic materials is relatively mature, there are still some challenges. To date, focus has been limited to the hybrid effects between hyperbolic materials and isotropic polaritons, but the hybrid phenomenon between hyperbolic materials and other anisotropic polaritons has rarely been considered. In addition, the hyperbolic effect of pseudo-periodic artificial metamaterials on the NFRHT has not been explored. Finally, the limit of NFRHT that hyperbolic materials can support has not been determined.

(b) For experimental works, many theoretical results and concepts require experimental verification, which may revolutionize the study of NFRHT. This includes hBN and other uniaxial anisotropic materials. Most importantly, in NFRHT experiments, research on hyperbolic anisotropic surface polaritons and the hybrid effects of hyperbolic polaritons is still missing.

(c) For practical applications, devices composed of hyperbolic materials are still in the concept stage, and there
is a long way to go into realistic production and life. In addition, as hyperbolic waveguides can transmit evanescent wave energy over long distances, it is an open question of whether hyperbolic materials can help break the strict requirements for heat transfer distances with near-field radiation, which reduces the processing costs and difficulty of these applications.

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province (ZR2020LZ004), the National Natural Science Foundation of China (Grant No. 52106099), the National Natural Science Foundation of China (Grant No. 52076056), and the Fundamental Research Funds for the Central Universities (Grant No. AUGE5710094020).

ORCID ID

Xiaohu Wu @ https://orcid.org/0000-0003-4283-9958

References

[1] Modest M F 2013 Radiative Heat Transfer (Amsterdam: Elsevier Ltd)
[2] Park K, Basu S, King W P and Zhang Z M 2008 Performance analysis of near-field thermophotovoltaic devices considering absorption distribution J. Quant. Spectrosc. Radiat. Transfer 109 305–16
[3] Cuevas J C and García-Vidal F J 2018 Radiative heat transfer ACS Photonics 5 3896–915
[4] Zhang Z M 2007 Nano/microscale Heat Transfer (New York: McGraw-Hill)
[5] Polder D and Hove M V 1971 Theory of radiative heat transfer between closely spaced bodies Phys. Rev. B 4 3303–14
[6] Hu L, Narayanaswamy A, Chen X and Chen G 2008 Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law Appl. Phys. Lett. 92 133106
[7] Shi J, Li P, Liu B and Shen S 2013 Tuning near field radiation by doped silicon Appl. Phys. Lett. 102 183114
[8] Watjen J I, Zhao B and Zhang Z M 2016 Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm Appl. Phys. Lett. 109 689
[9] Yang J, Du W, Su Y, Fu Y, Gong S, He S and Ma Y 2018 Observing the super-Planckian near-field thermal radiation between graphene sheets Nat. Commun. 9 4033
[10] Basu S, Zhang Z M and Fu C J 2009 Review of near-field thermal radiation and its application to energy conversion Int. J. Energy Res. 33 1203–32
[11] Lalitha L, Bisht S A and Ben-Abdallah P 2021 Smart thermal management with near-field thermal radiation Opt. Express 29 24816–33
[12] Messina R and Ben-Abdallah P 2013 Graphene-based photovoltaic cells for near-field thermal energy conversion Sci. Rep. 3 1383
[13] Zhao B, Chen K, Buddhira J S, Bhatt G, Lipson M and Fan S 2017 High-performance near-field thermophotovoltaics for waste heat recovery Nano Energy 41 344–50
[14] Ilic O, Jablan M, Ioannopoulos J D, Celanovic I and Soljačić M 2012 Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems Opt. Express 20 A366–84
[15] Lalitha L and Ben-Abdallah P 2021 Graphene-based autonomous pyroelectric system for near-field energy conversion Sci. Rep. 11 19489
[16] Dimatteo R S, Greiff P, Finberg S L, Young-Waith K A, Choy H K H, Masaki M M and Fonstad C G 2001 Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap Appl. Phys. Lett. 79 1894–6
[17] Narayanaswamy A and Chen G 2003 Surface modes for near field thermophotovoltaics Appl. Phys. Lett. 82 3544–6
[18] Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P and Meyhofer E 2018 Nanogap near-field thermophotovoltaics Nat. Nanotechnol. 13 806–11
[19] Bhatt G R, Zhao B, Roberts S, Datta I, Mohanty A, Lin T, Hartmann J-M, St-Gelais R, Fan S and Lipson M 2020 Integrated near-field thermo-photovoltaics for heat recycling Nat. Commun. 11 2545
[20] Franoceur M, Vaillon R and Mengüç M P 2011 Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators IEEE Trans. Energy Convers. 26 686–98
[21] Bright T J, Wang L P and Zhang Z M 2014 Performance of near-field thermophotovoltaic cells enhanced with a backside reflector J. Heat Transfer 136 062701
[22] Lim M, Jin S, Lee S S and Lee B J 2015 Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications Opt. Express 23 240–53
[23] Lim M, Lee S S and Lee B J 2017 Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances J. Quant. Spectrosc. Radiat. Transfer 197 84–94
[24] Otey C R, Lai W T and Fan S 2010 Thermal rectification through vacuum Phys. Rev. Lett. 104 154301
[25] Zhu L, Otey C R and Fan S 2013 Ultrahigh-contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles Phys. Rev. B 88 4159–73
[26] Ott A, Messina R, Ben-Abdallah P and Biels S-A 2019 Radiative thermal diode driven by non-reciprocal surface waves Appl. Phys. Lett. 114 163105.1–163105.4
[27] Basu S and Franoceur M 2011 Near-field radiative transfer based thermal rectification using doped silicon Appl. Phys. Lett. 98 113106
[28] Zwol P, Joulain K, Ben-Abdallah P and Chevrier J 2011 Phonon-polaritons enhance near field thermal transfer across the phase transition of VO2 Phys. Rev. B 84 161413
[29] Wang L P and Zhang Z M 2013 Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material Nanoscale Microscale Thermophys. Eng. 17 337–48
[30] Xu G, Sun J, Mao H and Pan T 2018 Surface plasmon-enhanced near-field thermal rectification in graphene-based structures J. Appl. Phys. 124 183104
[31] Ben-Abdallah P and Biels S A 2013 Phase-change radiative thermal diode Appl. Phys. Lett. 103 191907
[32] Yang Y, Bhatt G and Wang L 2013 Radiation-based near-field thermal rectification with phase transition materials Appl. Phys. Lett. 103 648–348
[33] Huang J, Li Q, Zheng Z and Xuan Y 2013 Thermal rectification based on thermochromic materials Int. J. Heat Mass Transfer 67 575–80
[34] Ito K, Nishikawa K, Iizuka H and Toshiyoshi H 2014 Experimental investigation of radiative thermal rectifier using vanadium dioxide Appl. Phys. Lett. 105 1121
[35] Fiorino A et al 2018 A thermal diode based on nanoscale thermal radiation ACS Nano 12 5774–9
[36] Moncada-Villa E and Cuevas J C 2021 Normal metal–superconductor near-field thermal diodes and transistors Phys. Rev. Appl. 15 024036
[37] Chen K, Santhanam P and Fan S 2016 Near-field enhanced low luminescence refrigeration Phys. Rev. Appl. 6 024014

[38] Chen K, Santhanam P, Sandhu S, Zhu L and Fan S 2015 Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer Phys. Rev. B 91 1825–32

[39] Zhu L, Fiorino A, Thompson D, Mitrapall R, Meyhoefer E and Reddy P 2019 Near-field photonic cooling through control of the chemical potential of photons Nature 566 239–44

[40] Latella I, Messina R, Rubi J M and Ben-Abdallah P 2018 Radiative heat shuttling Phys. Rev. Lett. 121 023903

[41] Buddhiraju S, Li W and Fan S 2020 Photonic refrigeration from time-modulated thermal emission Phys. Rev. Lett. 124 074702

[42] Ben-Abdallah P and Biels S-A 2013 Near-field thermal transistor Phys. Rev. Lett. 112 044301

[43] Mulet J-P, Joulain K, Carminati R and Greffet J-J 2009 Near-field radiation heat transfer at nanometric distances Microscale Thermophys. Eng. 6 209–22

[44] Zheng Z and Xuan Y 2011 Theory of near-field radiative heat transfer for stratified magnetic media Int. J. Heat Mass Transfer 54 10101–10

[45] Ghashami M, Geng H, Kim T, Iacopino N, Cho S K and Park K 2018 Precision measurement of phonon-polariton near-field energy transfer between macroscale planar structures under large thermal gradients Phys. Rev. Lett. 120 175901

[46] Fu C J and Tan W C 2009 Near-field radiative heat transfer between two plane surfaces with one having a dielectric coating J. Quant. Spectrosc. Radium. Transfer 110 1027–36

[47] Ben-Abdallah P, Joulain K, Drevillon J and Domingues G 2009 Near-field heat transfer mediated by surface wave hybridization between two films J. Appl. Phys. 106 18517

[48] Basu S, Lee B J and Zhang Z M 2010 Near-field radiation calculated with an improved dielectric function model for doped silicon J. Heat Transfer 132 765–72

[49] Francoeur M, Mengui M P and Vaillon R 2010 Spectral tuning of near-field radiative heat flux between two thin silicon carbide films J. Phys. D: Appl. Phys. 43 075501

[50] Zhang Y, Yi H-L and Tan H-P 2018 Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface phonon-polaritons ACS Photonics 5 3739–47

[51] Francoeur M, Mengui M P and Vaillon R 2008 Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films Appl. Phys. Lett. 93 043109

[52] Shen S, Narayanaswamy A and Chen G 2009 Surface phonon polaritons mediated energy transfer between nanoscale gaps Nano Lett. 9 3290–93

[53] Shchegrov A V, Joulain K, Carminati R and Greffet J-J 2017 Near-field spectral effects due to electromagnetic surface excitations Phys. Rev. Lett. 118 154508

[54] Fu C J and Zhang Z M 2006 Nanoscale radiation heat transfer for silicon at different doping levels Int. J. Heat Mass Transfer 49 1703–18

[55] Rousseau E, Laroche M and Greffet J J 2009 Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon Appl. Phys. Lett. 95 351

[56] Bernardi M P, Milovich D and Francoeur M 2016 Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap Nat. Commun. 7 12900

[57] Liu R, Ge L, Wu B, Cui Z and Wu X 2021 Near-field radiative heat transfer between topological insulators via surface plasmon polaritons Science 24 103408

[58] Shekhar P, Atkinson J and Jacob Z 2014 Hyperbolic metamaterials: fundamentals and applications Nano Converg. 1 14

[59] Podubny A, Iorsh I, Belov P and Kivshar Y 2013 Hyperbolic metamaterials Nat. Photon. 7 948–57

[60] Guo Y, Newman W, Cortes C L and Jacob Z 2012 Applications of hyperbolic metamaterial substrates Adv. Optoelectron. 2012 452502

[61] Cortes C L, Newman W, Molesky S and Jacob Z 2012 Quantum nanophotonics using hyperbolic metamaterials J. Opt. 14 063001

[62] Bihs S-A, Tschikin M and Ben-Abdallah P 2012 Hyperbolic metamaterials as an analog of a blackbody in the near field Phys. Rev. Lett. 109 104301

[63] Smith D R and Schurig D 2012 Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors Phys. Rev. Lett. 90 077405

[64] Yang X, Yao J, Rho J, Yin X and Zhang X 2012 Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws Nat. Photon. 6 450–4

[65] Iorsh I, Mukhin I S, Shadrivov I V, Belov P A and Kivshar Y S 2013 Hyperbolic metamaterials based on multilayer graphene structures Phys. Rev. B 87 478–86

[66] Lin Y and Connell J W 2012 Advances in 2D boron nitride nanostructures: nanosheets, nano ribbons, nanomeshes, and hybrids with graphene Nano scale 4 6908

[67] Orlov A A, Voroshilov P M, Belov P A and Kivshar Y S 2011 Engineered optical nonlocality in nanostructured metamaterials Phys. Rev. B 84 045424

[68] Guclu C, Campione S and Capolino F 2012 Hyperbolic metamaterial as super absorber for scattered fields generated at its surface Phys. Rev. B 86 205130

[69] Chebykin A V, Orlov A A, Voziyanova A V, Maslowski S I, Kivshar Y S and Belov P A 2011 Nonlocal effective medium model for multilayered metal-dielectric metamaterials Phys. Rev. B 84 115438

[70] Chebykin A V, Orlov A A, Simovski C R, Kivshar Y S and Belov P A 2012 Nonlocal effective parameters of multilayered metal-dielectric metamaterials Phys. Rev. B 86 64–73

[71] Wurtz G A, Pollard R, Hendren W, Wiederrecht G P, Gosztola D J, Podolskiy V A and Zayats A V 2011 Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality Nat. Nanotechnol. 6 107–11

[72] Kanungo J and Schilling J 2010 Experimental determination of the principal dielectric functions in silver nanowire metamaterials Appl. Phys. Lett. 97 77

[73] Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M and Zhang X 2008 Optical negative refraction in bulk metamaterials of nanowires Science 321 930

[74] Simovski C R, Belov P A, Atrashchenko A V and Kivshar Y S 2012 Wire metamaterials: physics and applications Adv. Mater. 24 4229–48

[75] Yao J, Yang X, Yin X, Bartal G and Zhang X 2011 Three-dimensional nanometer-scale optical cavities of indefinite medium Proc. Natl Acad. Sci. USA 108 11327–31

[76] Noginov M A, Barnakov Y A, Zhu G, Tumkur T, Li H and Narimanov E H 2009 Bulk photonic metamaterial with hyperbolic dispersion Appl. Phys. Lett. 94 151105

[77] Deb D T, Ladani F T, French D, Bauman S J and Herzog J B 2019 Hyperbolic plasmon–phonon dispersion on group velocity reversal and tunable spontaneous emission in graphene–ferroelectric substrate npj 2D Mater. Appl. 3 30
[78] Othman M, Guclu C and Capolino F 2013 Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption Opt. Express 21 7614–32

[79] Sreekanth K V, Luca A D and Strangi G 2013 Negative refraction in graphene-based hyperbolic metamaterials Appl. Phys. Lett. 103 509

[80] Smith D R, Kolinko P and Schurig D 2004 Negative refraction in indefinite media J. Opt. Soc. Am. B 21 1032–43

[81] Fang A, Koschny T and Soukoulis C M 2009 Optical anisotropic metamaterials: negative refraction and focusing Phys. Rev. B 79 1377–81

[82] Li J, Fok L, Yin X, Bartal G and Zhang X 2009 Experimental demonstration of an acoustic magnifying hyperlens Nat. Mater. 8 931–4

[83] Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G and Zhang X 2010 Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies Nat. Commun. 1 143

[84] Liu X L, Bright T J and Zhang Z M 2014 Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials J. Heat Transfer 136 027013

[85] Narimanov E E and Kildishev A V 2015 Naturally hyperbolic Nat. Photon. 9 214–6

[86] Jacob Z 2014 Hyperbolic phonon-polaritons Nat. Mater. 13 1081–3

[87] Caldwell J D et al 2014 Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride Nat. Commun. 5 5221

[88] Wu W X 2018 Theoretical investigation of the effect of hexagonal boron nitride on perfect absorption in infrared regime Opt. Commun. 425 172–5

[89] Dong W et al 2020 Broad-spectral-range sustainability and controllable excitation of hyperbolic phonon polaritons in alpha-MoO3 Adv. Mater. 32 2002014

[90] Zheng Z et al 2018 Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconductor metamaterials Nano Energy 46 184–92

[91] Zheng Z et al 2019 A mid-infrared biaxial hyperbolic van der Waals crystal Sci. Adv. 5 eaav8690

[92] Dixit S, Sahoo N R, Mall A and Kumar A 2021 Mid infrared polarization engineering via sub-wavelength biaxial hyperbolic van der Waals crystals Sci. Rep. 11 6612

[93] Kabashin A V, Evans P, Paskovskiy S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolsky V A and Zayats A V 2009 Plasmonic nanorod metamaterials for biosensing Nat. Mater. 8 867–71

[94] Pollard R J, Murphy A, Hendren W R, Evans P R, Atkinson R, Wurtz G A, Zayats A V and Podolsky V A 2009 Optical nonlocalities and additional waves in epsilon-near-zero metamaterials Phys. Rev. Lett. 102 127405

[95] Yao J, Wang Y, Tsai K-T, Liu Z, Yin X, Bartal G, Stacy A M, Wang Y-L and Zhang X 2011 Design, fabrication, and characterization of indefinite metamaterials of nanowires Phil. Trans. A 369 3434–46

[96] Chen R, Lu M-C, Srinivasan V, Wang Z, Cho H H and Majumdar A 2009 Nanowires for enhanced boiling heat transfer Nano Lett. 9 548–53

[97] Evans P, Hendren W R, Atkinson R, Wurtz G A, Dickson W, Zayats A V and Pollard R J 2006 Growth and properties of gold and nickel nanorods in thin film alumina Nano Technology 17 5746–53

[98] Nielsch K, Müller F, Li A-P and Gösele U 2000 Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition Adv. Mater. 12 582–6

[99] Shi J, Liu B, Li P, Ng L Y and Shen S 2015 Near-field energy extraction with hyperbolic metamaterials Nano Lett. 15 1217–21

[100] Dickson W, Wurtz G A, Evans P, O’Connor D, Atkinson R, Pollard R and Zayats A V 2007 Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tunable optical properties Phys. Rev. B 76 3398–407

[101] Wurtz G A, Evans P R, Hendren W, Atkinson R, Dickson W, Pollard R J, Zayats A V, Harrison W and Bower C 2007 Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies Nano Lett. 7 1297

[102] Du W, Yang J, Zhang S, Iqbal N, Dang Y, Xu J-B and Ma Y 2020 Super-Planckian near-field heat transfer between hyperbolic metamaterials Nano Energy 78 105264

[103] Dai Z, Li Y, Duan G, Jia L and Cai W 2012 Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface ACS Nano 6 6706

[104] Yang L, Kou P, He N, Dai H and He S 2017 Anomalous light trapping enhancement in a two-dimensional gold nanobowl array with an amorphous silicon coating Opt. Express 25 14114–24

[105] Jacob Z, Kim J-Y, Naik G V, Boltsasseva A, Narimanov E E and Shalaev V M 2010 Engineering photonic density of states using metamaterials Appl. Phys. B 100 215–8

[106] Krishnamoorthy H N, Jacob Z, Narimanov E, Kretzschmar I and Menon V M 2011 Topological transitions in metamaterials Science 336 205–9

[107] Lim M, Song J, Lee S J and Lee B J 2018 Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasma polaritons Nat. Commun. 9 4302

[108] Hoffman A J, Alekseyev L, Howard S S, Franz K J, Wasserman D, Podolsky V A, Narimanov E E, Sivco D L and Gmachl C 2007 Negative refraction in semiconductor metamaterials Nat. Mater. 6 946–50

[109] Korobkin D, Neuner B, Fietz C, Jegenyes N, Ferro G and Shvets G 2010 Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium Opt. Express 18 22754–46

[110] Naik G V, Kim J and Boltsasseva A 2011 Oxides and nitrides as alternative plasmonic materials in the optical range Opt. Mater. Express 1 1090–9

[111] Chen W, Thoreson M D, Ishii S, Kildishev A V and Shalaev V M 2010 Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer Opt. Express 18 5124–34

[112] Nagpal P, Lindquist N C, Oh S-H and Norris D J 2009 Ultrasmooth patterned metals for plasmonics and metamaterials Science 325 594

[113] Hong L, Wang B, Leong E S P, Yang P, Zong Y, Si G, Teng J and Maier S A 2010 Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer ACS Nano 4 3139–46

[114] Coleman J N et al 2011 Two-dimensional nanosheets produced by liquid exfoliation of layered materials Science 331 568–71

[115] Zhang X, Coleman A C, Katsonis N, Browne W R, van Wees B J and Feringa B L 2010 Dispersion of graphene in ethanol using a simple solvent exchange method Chem. Commun. 46 7539–41

[116] Taniguchi T and Watanabe K 2007 Synthesis of high-purity boron nitride single-crystals under high pressure by using Ba–BN solvent J. Cryst. Growth 303 525–9

[117] Watanabe K, Taniguchi T and Kanda H 2004 Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal Nat. Mater. 3 404
[118] Pacioli D, Meyer J C, Girit Ç Ö and Zettl A 2008 The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes Appl. Phys. Lett. 92 666

[119] Gorbachev R V et al 2011 Hunting for monolayer boron nitride: optical and Raman signatures Small 7 465–8

[120] Jin C, Lin F, Suenaga K and Jijima S 2009 Fabrication of a freestanding boron nitride single layer and its defect assignments Phys. Rev. Lett. 102 195505

[121] Meyer J C, Chuvilin A, Algarza-Siller G, Biskupek J and Kaiser U 2009 Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes Nano Lett. 9 2683–9

[122] Alem N, Erni R, Kissielowski C, Rossell M D, Gannett W and Zettl A 2009 Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy Phys. Rev. B 80 155425

[123] Zhi C, Bando Y, Tang C, Kuwahara H and Golberg D 2009 Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties Adv. Mater. 21 2899–93

[124] Yu J, Huang X, Wu C, Wu X, Wang G and Jiang P 2012 Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties Polymer 53 471–80

[125] Song L et al 2010 Large scale growth and characterization of atomic hexagonal boron nitride layers Nano Lett. 10 3209–15

[126] Shi Y et al 2010 Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition Nano. Lett. 10 4134–9

[127] Kim K K et al 2012 Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition Nano Lett. 12 161–6

[128] Xie W et al 2016 Nanoscale insights into the hydrogenation process of layered alpha-MoO 3 ACS Nano 10 1662–70

[129] Wang Y, Du X, Wang J, Su M, Wan X, Meng H, Xie W, Xu J and Liu P 2017 Growth of large-scale, large-size, few-layered alpha-MoO 3 on SiO 2 and its photoresponse mechanism ACS Appl. Mater. Interfaces 9 5543–9

[130] Dai S et al 2014 Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride Science 343 1125–9

[131] Li P, Lewin M, Kretinin A V, Caldwell J D, Novoselov K S, Taniguchi T, Watanabe K, Gaumann F and Tanbour T 2015 Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing Nat. Commun. 6 7507

[132] Li N et al 2021 Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride Nat. Mater. 20 43–48

[133] Yao J, Tsai K-T, Wang Y, Liu Z, Bartal G, Wang Y-L and Zhang X 2009 Imaging visible light using anisotropic metamaterial slab lens Opt. Express 17 22380–5

[134] Rytov S M, Kravtsov Y A and Tartarski V I 1989 Principles of Statistical Radiophysics. 3. Elements of Random Fields (Berlin: Springer)

[135] Joulain K, Mulet J-P, Marquier F, Carminati R and Greffet J-J 2005 Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field Surf. Sci. Rep. 57 59–112

[136] Francoeur M and Pinard Mengüç M 2008 Role of fluctuational electrodynamics in near-field radiative heat transfer J. Quant. Spectrosc. Radiat. Transfer 109 280–93

[137] Wu X, Fu C and Zhang Z 2018 Influence of hBN orientation on the near-field radiative heat transfer between graphene/hBN heterostructures J. Photon. Energy 9 032702

[138] Rosa F, Dalvit D and Milonni P W 2008 Casimir interactions for anisotropic magnetodielectric metamaterials Phys. Rev. A 78 032117

[139] McCauley A P, Rosa F S S, Rodriguez A W, Joannopoulos J D, Dalvit D A R and Johnson S G 2011 Structural anisotropy and orientation-induced Casimir expulsion in fluids Phys. Rev. A 83 52503

[140] Basu S and Wang L 2013 Near-field radiative heat transfer between doped silicon nanowire arrays Appl. Phys. Lett. 102 053101

[141] Liu B, Shi J, Liew K and Shen S 2014 Near-field radiative heat transfer for Si based metamaterials Opt. Commun. 314 57–65

[142] Liu X-L, Zhang R-Z and Zhang Z M 2014 Near-field radiative heat transfer with doped-silicon nanostructured metamaterials Int. J. Heat Mass Transfer 73 389–98

[143] Liu B and Shen S 2013 Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: direct numerical simulation by the Wiener chaos expansion method Phys. Rev. B 87 1214–22

[144] Lang S, Tschikin M, Biehs S-A, Petrov A Y and Eich M 2014 Large penetration depth of near-field heat flux in hyperbolic media Microfluid. Nanofluid. 10 131106

[145] Biels S-A, Ben-Abdallah P, Rosa F S S, Joulain K and Greffet J-J 2016 Nanoscale heat flux between nanoporous materials Opt. Express 19 A1088

[146] Liu X-L, Zhang R-Z and Zhang Z M 2013 Near-field thermal radiation between hyperbolic metamaterials: graphite and carbon nanotubes Appl. Phys. Lett. 103 213102

[147] Guo Y, Cortes C L, Molesky S and Jacob Z 2012 Broadband super-Planckian thermal emission from hyperbolic metamaterials Appl. Phys. Lett. 101 131106

[148] Biels S-A, Tschikin M, Messina R and Ben-Abdallah P 2013 Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials Appl. Phys. Lett. 102 131106

[149] Biels S-A and Ben-Abdallah P 2017 Near-field heat transfer between multilayer hyperbolic metamaterials Z. Naturforsch. A 72 115–27

[150] Song J, Cheng Q, Lu L, Li B, Zhou K, Zhang B, Luo Z and Zhou X 2020 Magnetically tunable near-field radiative heat transfer in hyperbolic metamaterials Phys. Rev. Appl. 13 024054

[151] Grigorenko A N, Polini M and Novoselov K S 2012 Graphene plasmonics Nat. Photon. 6 749–58

[152] Xia F, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Two-dimensional material nanophotonics Nat. Photon. 8 899–907

[153] Zhou C-L, Qu L, Zhang Y and Yi H-L 2020 Enhancement and active mediation of near-field radiative heat transfer through multiple nonreciprocal graphene surface plasmons Phys. Rev. B 102 245421

[154] Liu X-L and Zhang Z M 2015 Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons Appl. Phys. Lett. 107 143114

[155] Zhou C, Yang S-H, Zhang Y and Yi H-L 2020 Near-field electromagnetic heat transfer through nonreciprocal hyperbolic graphene plasmons Nanoscale Microscale Thermophys. Eng. 24 168–83

[156] Yi X-J, Zhong L-Y, Wang T-B, Liu W-X, Zhang D-J, Yu T-B, Liao Q-H and Liu N-H 2019 Near-field radiative heat transfer between hyperbolic metasurfaces based on black phosphorus Eur. Phys. J. B 92 217

[157] Liu X, Shen J and Xuan Y 2019 Near-field thermal radiation of nanopatterned black phosphorene mediated by topological transitions of phosphorene plasmons Nanoscale Microscale Thermophys. Eng. 23 188–99

[158] Shen J, Guo S, Liu X, Liu B, Wu W and He H 2018 Super-Planckian thermal radiation enabled by coupled
quasi-elliptic 2D black phosphorus plasmons Appl. Therm. Eng. 144 403–10

[159] Shen J, Liu X and Xuan Y 2018 Near-field thermal radiation between nanostructures of natural anisotropic material Phys. Rev. Appl. 10 034029

[160] Salihoglu H and Xu X 2019 Near-field radiative heat transfer enhancement using natural hyperbolic material J. Quant. Spectrosc. Radiat. Transfer 222–223 115–21

[161] Liu X and Xuan Y 2016 Super-Planckian thermal radiation enabled by hyperbolic surface phonon polaritons Sci. China Technol. Sci. 59 1680–8

[162] Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system Nano Lett. 15 3172–80

[163] Wu X and Fu C 2021 Near-field radiative heat transfer between uniaxial hyperbolic media: role of volume and surface phonon polaritons J. Quant. Spectrosc. Radiat. Transfer 258 107337

[164] Wu X and Fu C 2021 Hyperbolic volume and surface phonon polaritons excited in an ultrathin hyperbolic slab: connection of dispersion and topology Nanoscale Microscale Thermophys. Eng. 25 64–71

[165] Wu X and Fu C 2018 Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs J. Quant. Spectrosc. Radiat. Transfer 209 150–5

[166] Wu X, Fu C and Zhang Z M 2019 Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials Int. J. Heat Mass Transfer 135 1207–17

[167] Wu X 2021 Thermal Radiative Properties of Uniaxial Anisotropic Materials and Their Manipulations (Berlin: Springer)

[168] Wu X and Liu R 2020 Near-field radiative heat transfer between graphene covered biaxial hyperbolic materials ES Energy Environ. 10 66–72

[169] Wu X, Fu C and Zhang Z M 2020 Near-field radiative heat transfer between two α-MoO$_3$ biaxial crystals J. Heat Transfer 142 072802

[170] Svetovoy V B, Zwol P and Chevrier J 2012 Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics Phys. Rev. B 85 155418

[171] Messina R, Hugonin J-P, Greffet J-J, Marquier F, de Wilde Y, Belarouci A, Frechette L, Cordier Y and Ben-Abdallah P 2013 Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons Phys. Rev. B 87 085421

[172] Wang A, Zheng Z and Xuan Y 2016 Near-field radiative thermal control with graphene covered on different materials J. Quant. Spectrosc. Radiat. Transfer 180 117–25

[173] Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F and Avouris P 2014 Graphene plasmon enhanced vibrational sensing of surface-absorbed layers Nano Lett. 14 1573–7

[174] Messina R, Ben-Abdallah P, Guizal B and Antezza M 2017 Graphene-based amplification and tuning of near-field radiative heat transfer between dissimilar polar materials Phys. Rev. B 96 045402

[175] Zhao B and Zhang Z M 2015 Strong plasmonic coupling between graphene ribbon array and metal gratings ACS Photonics 2 1611–8

[176] Liu X, Zhang R Z and Zhang Z 2014 Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes ACS Photonics 1 785–9

[177] Zhao Q, Zhou T, Wang T, Liu W, Liu J, Yu T, Liao Q and Liu N 2017 Active control of near-field radiative heat transfer between graphene-covered metamaterials J. Phys. D: Appl. Phys. 50 145101

[178] Dai S et al 2015 Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial Nat. Nanotechnol. 10 682–6

[179] Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M and Atwater H 2014 Hybrid surface-phonon-plasmon polarization modes in graphene/metal-layer h-BN heterostructures Nano Lett. 14 3876–80

[180] Jia Y, Zhao H, Guo Q, Wang X, Wang H and Xia F 2015 Tunable plasmon–phonon polaritons in layered graphene–hexagonal boron nitride heterostructures ACS Photonics 2 907–12

[181] Cai M, Wang S, Liu Z, Wang Y, Gao B, Han T, Liu H, Zhang H and Qiao Y 2021 Adjusting transmissivity based on graphene–h-BN–graphene heterostructure as a tunable phonon–plasmon coupling system in mid-infrared band J. Mater. Sci. 56 1–10

[182] Zhao B and Zhang Z M 2017 Enhanced photon tunneling by surface plasmon–phonon polaritons in graphene/hBN heterostructures J. Heat Transfer 139 022701

[183] Zhao B, Guizal B, Zhang Z M, Fan S and Anteza M 2017 Near-field heat transfer between graphene/hBN multilayers Phys. Rev. B 95 245437

[184] Shi K, Bao F and He S 2017 Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures ACS Photonics 4 971–8

[185] Liu R, Ge L, Yu H, Cui Z and Wu X 2022 Near-field radiative heat transfer via coupling graphene plasmons with different phonor polaritons in the Reststrahlen bands Eng. Sci. 18

[186] Xu J-B, Lüger K, Müller R, Dransfeld K and Wilson I H 1994 Heat transfer between two metallic surfaces at small distances J. Appl. Phys. 76 7209–16

[187] Kittel A, Müller-Hirsch W, Parisi J, Biels S-A, Reddig D and Holthaus M 2005 Near-field heat transfer in a scanning thermal microscope Phys. Rev. Lett. 95 224304

[188] Kim K et al 2015 Radiative heat transfer in the extreme near field Nature 528 387–91

[189] Klopstech K, Könne N, Biels S-A, Rodriguez A W, Worbes L, Hellmann D and Kittel A 2017 Giant heat transfer in the crossover regime between conduction and radiation Nat. Commun. 8 14475

[190] Narayanaswamy A, Shen S and Chen G 2008 Near-field radiative heat transfer between a sphere and a substrate Phys. Rev. B 78 115303

[191] Rousseau E, Siria A, Jourand G, Volz S, Comin F, Chevrier J and Greffet J-J 2009 Radiative heat transfer at the nanoscale Nat. Photon. 3 514–7

[192] Shen S, Mavrokefalos A, Sambeugoro P and Chen G 2012 Nanoscale thermal radiation between two gold surfaces Appl. Phys. Lett. 100 233114

[193] Zwol P, Thiele S, Berger C, de Heer W A and Chevrier J 2012 Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon Phys. Rev. Lett. 109 264301

[194] Song B et al 2015 Enhancement of near-field radiative heat transfer using polar dielectric thin films Nat. Nanotechnol. 10 253–8

[195] Ottens R S, Quetschke V, Wise S, Alexi A, Lundock R, Mueller G, Reitze D H, Tanner D B and Whiting B F 2011 Near-field radiative heat transfer between macroscopic planar surfaces Phys. Rev. Lett. 107 014301

[196] Krakl T, Hanzelka P, Zobac M, Musilova V, Fort T and Horak M 2012 Strong near-field enhancement of radiative heat transfer between metallic surfaces Phys. Rev. Lett. 109 224302

[197] Feng C, Tang Z, Yu J and Sun C 2013 A MEMS device capable of measuring near-field thermal radiation between membranes Sensors 13 1998–2010
[198] St-Gelais R, Guha B, Zhu L, Fan S and Lipson M 2014 Demonstration of strong near-field radiative heat transfer between integrated nanointerfaces *Nano Lett.* 14 6971–5

[199] Lim M, Lee S S and Lee B J 2015 Near-field thermal radiation between doped silicon plates at nanoscale gaps *Phys. Rev. B* 91 195136

[200] St-Gelais R, Zhu L, Fan S and Lipson M 2016 Near-field radiative heat transfer between parallel structures in the deep subwavelength regime *Nat. Nanotechnol.* 11 515–9

[201] Song B, Thompson D, Fiorino A, Ganjeh Y, Reddy P and Meyhofer E 2016 Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps *Nat. Nanotechnol.* 11 509–14

[202] Ito K, Nishikawa K, Miura A, Toshiyoshi H and Izuka H 2017 Dynamic modulation of radiative heat transfer beyond the blackbody limit *Nano Lett.* 17 4347–53

[203] Fiorino A, Thompson D, Zhu L, Song B, Reddy P and Meyhofer E 2018 Giant enhancement in radiative heat transfer in sub-30 nm gaps of plane parallel surfaces *Nano Lett.* 18 3711–5

[204] Shi K, Sun Y, Chen Z, He N, Bao F, Evans J and He S 2019 Colossal enhancement of near-field thermal radiation across hundreds of nanometers between millimeter-scale plates through surface plasmon and phonon polaritons coupling *Nano Lett.* 19 8082–8

[205] DeSutter J, Tang L and Francoeur M 2019 A near-field radiative heat transfer device *Nat. Nanotechnol.* 14 751–5

[206] Salihoglu H, Nam W, Traverso L, Segovia M, Venuthurumilli P K, Liu W, Wei Y, Li W and Xu X 2020 Near-field thermal radiation between two plates with sub-10 nm vacuum separation *Nano Lett.* 20 6991–6

[207] Lim M, Song J, Lee S S, Lee J and Lee B J 2020 Surface-plasmon-enhanced near-field radiative heat transfer between planar surfaces with a thin-film plasmonic coupler *Phys. Rev. Appl.* 14 014070

[208] Shi K, Chen Z, Xu X, Evans J and He S 2021 Optimized colossal near-field thermal radiation enabled by manipulating coupled plasmon polariton geometry *Adv. Mater.* 33 2106997

[209] Fong K Y, Li H-K, Zhao R, Yang S, Wang Y and Zhang X 2019 Phonon heat transfer across a vacuum through quantum fluctuations *Nature* 576 243–7

[210] Tschikin M, Biels S-A, Rosa F S S and Ben-Abdallah P 2012 Radiative cooling of nanoparticles close to a surface *Eur. Phys. J. B* 85 235

[211] Li B, Wang L and Casati G 2006 Negative differential thermal resistance and thermal transistor *Appl. Phys. Lett.* 88 143501

[212] Wang L and Li B 2007 Thermal logic gates: computation with phonons *Phys. Rev. Lett.* 99 177208

[213] Ben-Abdallah P and Biels S A 2015 Contactless heat flux control with phononic devices *Appl.Phys. A* 5 556–1810

[214] Ozbay E 2006 Plasmonics: merging photonics and electronics at nanoscale dimensions *Science* 311 189–93

[215] Caglayan H, Hong S-H, Edwards B, Kagan C R and Engheta N 2013 Near-infrared metatronic nanocircuitry by design *Phys. Rev. Lett.* 111 073904

[216] Hu G et al 2020 Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers *Nature* 582 209–13

[217] Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone J and Dean C R 2018 Twistable electronics with dynamically rotatable heterostructures *Science* 361 690–3

[218] Papadakis G T, Zhao B, Buddhhiraju S and Fan S 2019 Gate-tunable near-field heat transfer *ACS Photonics* 6 709–19

[219] Ilic O, Thomas N H, Christensen T, Sherrott M C, Soljacić M, Minnich A J, Miller O D and Atwater H A 2018 Active radiative thermal switching with graphene plasmon resonators *ACS Nano* 12 2474–81

[220] Ben-Abdallah P, Belarouci A, Frechette L and Biels S-A 2015 Heat flux splitter for near-field thermal radiation *Appl. Phys. Lett.* 107 143501

[221] Ben-Abdallah P 2016 Photon thermal Hall effect *Phys. Rev. Lett.* 116 85401

[222] Thomas N H, Sherrott M C, Brouillet J, Atwater H A and Minnich A J 2019 Electronic modulation of near-field radiative transfer in graphene field effect heterostructures *Nano Lett.* 19 3898–904

[223] Latella I and Ben-Abdallah P 2017 Giant thermal magnetoresistance in plasmonic structures *Phys. Rev. Lett.* 118 173902

[224] Ilic O, Jablan M, Ioannopoulos J D, Celanovic I, Buljan H and Soljacić M 2012 Near-field thermal radiation transfer controlled by plasmons in graphene *Phys. Rev.* 85 155422

[225] Biels S A, Rosa F S S and Ben-Abdallah P 2011 Modulation of near-field heat transfer between two gratings *Appl. Phys. Lett.* 98 243102

[226] Luo M, Zhao J and Antezza M 2020 Near-field radiative heat transfer between a sub-10 nm vacuum separation *Nano Lett.* 20 113905

[227] Ge L, Cang Y, Gong K, Zhou L, Yu D and Luo Y 2018 Control of near-field radiative heat transfer based on anisotropic 2D materials *Appl. Phys. Lett.* 107 053901

[228] He M-J, Qi H, Ren Y-T, Zhao Y-J and Antezza M 2020 Magnetoplasmonic manipulation of nanoscale thermal radiation using twisted graphene gratings *Int. J. Heat Mass Transfer* 150 119305

[229] He M, Qi H, Ren Y, Zhao Y and Antezza M 2020 Active control of near-field radiative heat transfer by a graphene-gratings coating-twisting method *Opt. Lett.* 45 2914–7

[230] He M-J, Qi H, Ren Y-T, Zhao Y-J, Zhang Y, Shen J-D and Antezza M 2020 Radiative thermal switch driven by anisotropic black phosphorus plasmons *Opt. Express* 28 26922–34

[231] Liu X, Shen J and Xuan Y 2017 Pattern-free thermal modulator via thermal radiation between van der Waals materials *J. Quant. Spectrosc. Radiat. Transfer* 200 100–7

[232] Wu X and Fu C 2021 Near-field radiative modulator based on dissimilar hyperbolic materials with in-plane anisotropy *Int. J. Heat Mass Transfer* 168 120908

[233] Shockley W and Queisser H J 1961 Detailed balance limit of efficiency of p-n-junction solar cells *J. Appl. Phys.* 32 510–9

[234] Chen M, Lin X, Dinh T H, Zheng Z, Shen J, Ma Q, Chen H, Jarillo-Herrero P and Dai S 2020 Configurable phonon polaritons in twisted α-MoO3 *Nat. Mater.* 19 1307–11

[235] Vongssoasup N, Francoeur M and Hanamura K 2017 Performance analysis of near-field thermophotovoltaic system with 2D grating tungsten radiator *Int. J. Heat Mass Transfer* 115 326–32

[236] Mirmoosa M S and Simovski C 2015 Micron-gap thermophotovoltaic systems enhanced by nanowires *Photon. Nanostuct: Fundam. Appl.* 13 20–30

[237] Chang J-Y, Yang Y and Wang L 2015 Tungsten nanowire based hyperbolic metamaterial emissors for near-field thermophotovoltaic applications *Int. J. Heat Mass Transfer* 87 237–47

[238] Yu H, Duan Y and Yang Z 2018 Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics *Int. J. Heat Mass Transfer* 123 67–74

[239] Jiang C, Huang H and Zhou Z 2021 Enhancement in the multi-junction thermophotovoltaic system based on
near-field heat transfer and hyperbolic metamaterial \textit{Sol. Energy} \textbf{217} 390–8

[240] Mirmoosa M S, Biehs S A and Simovski C R 2017
Super-Planckian thermophotovoltaics without vacuum gaps \textit{Phys. Rev. Appl.} \textbf{8} 054202

[241] Lim M, Song J, Kim J, Lee S S, Lee I and Lee B J 2018
Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap \textit{J. Quant. Spectrosc. Radiat. Transfer} \textbf{210} 35–43

[242] Wang R, Lu J and Jiang J-H 2019 Enhancing thermophotovoltaic performance using graphene-BN-InSb near-field heterostructures \textit{Phys. Rev. Appl.} \textbf{12} 044038

[243] Ghanekar A, Tian Y, Liu X and Zheng Y 2019 Performance enhancement of near-field thermoradiative devices using hyperbolic metamaterials \textit{J. Photon. Energy} \textbf{9} 032706

[244] Jin S, Lim M, Lee S S and Lee B J 2016 Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap \textit{Opt. Express} \textbf{24} A635–49

[245] Wang R, Lu J and Jiang J-H 2021 Moderate-temperature near-field thermophotovoltaic systems with thin-film InSb cells \textit{Chin. Phys. Lett.} \textbf{38} 024201