Article

Nested Named Entity Recognition Based on Dual Stream Feature Complementation

Tao Liao, Rongmei Huang *, Shunxiang Zhang, Songsong Duan, Yanjie Chen, Wenxiang Ma and Xinyuan Chen

College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China

* Correspondence: h1683551760@163.com

Abstract: Named entity recognition is a basic task in natural language processing, and there is a large number of nested structures in named entities. Nested named entities become the basis for solving many tasks in NLP. A nested named entity recognition model based on dual-flow features complementary is proposed for obtaining efficient feature information after text coding. Firstly, sentences are embedded at both the word level and the character level of the words, then sentence context information is obtained separately via the neural network Bi-LSTM; Afterward, two vectors perform low-level feature complementary to reinforce low-level semantic information; Sentence-local information is captured with the multi-head attention mechanism, then the feature vector is sent to the high-level feature complementary module to obtain deep semantic information; Finally, the entity word recognition module and the fine-grained division module are entered to obtain the internal entity. The experimental results show that the model has a great improvement in feature extraction compared to the classical model.

Keywords: named entity recognition; nested structure; dual-flow feature complementary; neural network

1. Introduction

Named Entity Recognition (NER) refers to identifying and judging a word with special meaning and its type from unstructured text, such as a person’s name, location, organization name, and proper noun [1–3]. NER is of great significance in the process of natural language processing (NLP), playing a crucial role in a wide range of downstream natural language processing tasks, including relation extraction [4,5], information retrieval [6], machine translation [7], aspect-based sentiment analysis [8,9], question answering system [10,11]. Previous research has focused on non-nested named entities (Flat NER). When dealing with non-nested named entities, the current method generally is to solve the problem as sequence annotation, but this method cannot accurately identify entities with nested structures. For example, in an English sentence such as “He used to study in University of Cambridge.”, where Cambridge is a location entity, embedded in another longer organization entity: University of Cambridge. The nature of phrasal representation in natural languages makes named entities usually nested, therefore, more and more people consider and study nested named entities.

In recent years, with the wide application of deep learning in NLP, many new approaches to nested NER have emerged. The hierarchical approach addresses this task through multi-level sequential labeling, that is, dividing entities into multiple levels, where the number of labeled layers indicates the depth of entity nesting. Shibuya and Hovy [12] adopted a hierarchical method, repeatedly detected the internal entities by applying the traditional conditional random field (CRF) [13], and then searched out the best path from the space to obtain the next layer of entities. Li and Feng [14] proposed the idea of taking the nested NER task as reading comprehension and achieved good results on GENIA and
other nested entity recognition datasets. Another method of transformation converts nested named entities into linear structures, followed by sequence markup. For example, Muis and Lu [15] proposed a new method based on hypergraph, and Katiyar and Cardie [16] also based their work on the hypergraph method and used LSTM [17,18] for linear learning in a greedy way. It can be found that most of the current methods use the joint embedding of word-level representation and character-level representation to obtain feature information, which does not consider the dependence between word features and character features so that the hidden feature information cannot be obtained efficiently.

To solve the problem that the hidden information of word-level embedding feature vectors and character-level embedding feature vectors is not enough, a dual-stream feature complementation mechanism is proposed. The main contributions of this paper are as follows: (1) a novel dual-stream feature complementary nested named entity recognition method is proposed. Different from the existing methods, which directly integrate character embedding vectors and word embedding vectors during embedding, this paper puts the two embedding vectors into Bi-LSTM [19] to obtain text context features respectively and then uses a bidirectional feature complementation mechanism to explore the maximum information gain between the two feature vectors. (2) To implement the feature complementation mechanism proposed in this paper, a low-level bidirectional complementation module and a high-level bidirectional complementation module are designed to realize the bidirectional feature information complementation mechanism from two dimensions respectively. (3) Through a comparative analysis of the GENIA dataset, the conclusion obtained in this paper is that compared with other classical experiments, the experimental results in this paper are the best.

Overall, the main contributions of this proposed work are as follows:

- a novel dual-stream feature complementary nested named entity recognition method is proposed. Different from the existing methods, which directly integrate character embedding vectors and word embedding vectors during embedding, this paper puts the two embedding vectors into Bi-LSTM [19] to obtain text context features respectively and then uses a bidirectional feature complementation mechanism to explore the maximum information gain between the two feature vectors.
- To implement the feature complementation mechanism proposed in this paper, a low-level bidirectional complementation module and a high-level bidirectional complementation module are designed to realize the bidirectional feature information complementation mechanism from two dimensions respectively.
- Through a comparative analysis of the GENIA dataset, the conclusion obtained in this paper is that compared with other classical experiments, the experimental results in this paper are the best.

The remainder of this article is organized as follows. Section 2 reviews the related work, and the our model for NER is presented in Section 3. Comprehensive experimental results are discussed in Section 4 for performance evaluations compared with SOTA methods. Finally, concluding remarks and future directions are given in Section 5.

2. Related Work

2.1. Named Entities

Existing methods for identifying non-nested named entities usually treat the NER task as a sequence labeling problem. Compared with feature-based methods, deep learning is helpful in automatically discovering hidden features. Hammerton [20] uses LSTM for NER work for the first time. Collobert and Weston et al. [21] use CNN-CRF [13,21] structure to achieve the speed and effectiveness of many NLP tasks.

In recent years, the use of external resources has improved the overall effect of named entity recognition. For example, Peters et al. [22] capture the high-level state of context-related information and the low-level state of modeling syntax through the linear combination of the superimposed internal hidden states in the deep bidirectional language model ELMo [23–25]. Sun et al. [26] viewed biomedical entities as machine reading comprehen-
sion (MRC) problems and used BERT to perform biomedical named entity recognition in the MRC framework to improve the ability of the model to identify target entities. Guo et al. [27] combined the transformer with the soft item position lattice to form a soft lattice structure transformer and simulated a network similar to LSTM, which is superior to the LSTM network. The overall effect of the model applies to Chinese clinical records. Li et al. [28] proposed the NEAT model to extract named entities. It effectively combines the classic rule-based and dictionary extractors with the context language model to capture special names. The model alleviates the noise problem in advertising text. Alsaaran et al. [29] proposed the BGRU-CRF named entity recognition model based on BERT. The experiment shows that it is superior to other classical models and has achieved good results on the classic Arabic NER dataset.

2.2. Nested Named Entities

Nested named entities are common in real life and have attracted a growing number of scholars’ attention in recent years. Scholars have proposed many approaches to nested NER, which can be classified as transform-based approaches and span-based approaches. The transformation-based method finally transforms the complex sequence nesting problem into an annotated sequence labeling task. Wang and Lu et al. [30] constructed the forest structure based on the Stack-LSTM network in a bottom-up way by mapping nested sentences to a specified forest. Lin et al. [31] proposed a sequence-to-block architecture, which first identifies anchor words, that is, possible headers of all entities, then uses a regular phrase structure to identify the entity boundaries of each anchor word, and finally divides these candidate entities into corresponding entity types. Ju et al. [32] proposed a stacked LSTM-CRF to identify nested named entities, the output of each layer is used as the input of the next layer, and the model uses the information encoded in its corresponding internal entities. Straka et al. [33] proposed Bi-LSTM as an encoder and LSTM as a decoder to realize the sequence-to-sequence sequence labeling model.

Span-based methods identify nested entities by classifying subsequences, or text spans, in a given sentence. Luan et al. [34] proposed a general information extraction framework, DYGIE, in which the state-span graph method enhances the interaction between tasks and allows the model to learn useful information from a wider range of contexts. Zheng et al. [35] proposed a boundary sensing neural network model, which detects the span formed by the starting and ending boundaries of entities, and then divides these spans into corresponding entity types or non-entity types. Sohrab and Miwa [36] regarded nested entity recognition as a classification problem and used the deep exhaustive model to determine whether the set interval L and the interval below L (L is artificially set data) were entities from top to bottom. Huang et al. [37] designed an extractor to extract entities of specific entity categories using a hybrid selection method and used a discriminator to score. In addition, they used GAT to train the extractor and discriminator to reduce the need for labeling. Shen et al. [38] regarded nested NER as a joint task of boundary regression and span classification, regressed the boundary of each span with a regression to locate the left and right boundaries of the entity, and adjusted the boundary of the span according to the output of the regression. The experiment showed that it achieved good results on ACE and other datasets. Yuan et al. [39] introduced such factors as tags, boundaries, labels, and related spans, using boundaries and tags as queries, and using internal tags and related spans as keys and values for span representation to improve span classification. Wan et al. [40] built an entity-entity diagram and cross-entity diagram globally based on n-gram similarity to integrate information of similar adjacent entities into span representation to enhance span-based methods.

2.3. Discussion

Non-nested NER assumes no overlap between entities, so they do not apply to nested NER. The nested NER method based on transformation requires some complex transformation and decoding operations, which may lead to cascading errors and high computational
costs. The current span-based nested NER methods lack clear boundary supervision and generate many negative samples for span-based classification. In addition, their computational costs are also very expensive. There are some other problems in nested named entity recognition, including weak fusion effect of word semantic features and insufficient detection of boundary information. This paper proposes a nested NER model based on two-flow feature complementation. The model is different from the current span-based method and proposes a dual flow complementary mechanism to obtain more feature information. Finally, it enters the entity judgment module and the fine-grained partition module to identify nested entities. The model fully captures the dependencies between different features and more semantic information and achieves good results.

3. Methodology

3.1. Overview Network Architecture

The overall model architecture of this paper is shown in Figure 1. The whole model can be divided into four layers: the first layer is the word embedding and feature extraction part, which sends the word-level and character-level representation vectors of words into Bi-LSTM to obtain the context information of sentences; The second layer is a low-level feature complementary layer, and each feature vector adds effective information of another feature to obtain a new feature representation; The third layer is a high-level feature complementary layer, and the final sentence representation vector is obtained through feature vector fusion; The fourth layer is category judgment. The expression vector of the sentence first enters the entity perception module, and the span of entity words is judged to enter the fine-grained division interval to judge whether there are nested entity words. Finally, it enters the full connection layer and the softmax layer [41] to obtain the final entity type classification. The abbreviations used throughout the paper are present in Table 1.

![Figure 1](image-url)
Table 1. Abbreviations of terms.

Terms	Abbreviations	Function
WEM	word-induced enhance module	This module obtains word-level embedded feature vectors after low-level feature complementation.
CCM	char-steered complementary module	This module obtains character-level embedded feature vectors after low-level feature complementation
MHSM	multi-head self-attention mechanism	It makes the model pay more attention to important features, reduces the attention to non important features, and optimizes resource allocation.
HBCL	Height bi-directional interactive connect layer	Height bi-directional interactive connect layer Two word representation vectors complement high-level features to obtain the final sentence representation vector.

3.2. Character Embedding and Feature Extraction

Define the input sentence code as \(s = \{s_1, s_2, ..., s_n\} \). There are two kinds of expression vectors embedded in each sentence, which are the word-level expression of words and character-level expression of words. The word-level embedding vector of each word is expressed as \(e^w_i \), and the character-level embedding vector is expressed as \(e^c_i \), where \(i \) is the \(i \)th word of the sentence. The word-level embedding process of words is as follows: First, we build a word vocabulary according to the dataset and then initialize the vocabulary to obtain the word vector table by publicly available pre-training word vectors (We used an open pre-training word vector used in the work of Sohrab and Miwa et al. [36]) or by random initialization. All unknown words outside the word vector table are mapped to the same randomly initialized “UNK” word vector, and the word vector is updated in the continuous training process to obtain the final word representation vector. In the process of character-level embedding of words, Bi-LSTM is used to capture the character-level information of words. First, a character table is constructed for all character, and character vectors are randomly initialized for them. Then, each word is regarded as a determined character sequence. Finally, Bi-LSTM is used to obtain the character-level embedding vector of words. Figure 2 shows the process of obtaining vectors.

![Figure 2](image-url)

Figure 2. The token representation of a token ‘gene’ in our model. In the process of character-level embedding of words, Bi-LSTM is used to capture the character-level information of words.

In this paper, we define the word-level embedding vector of a sentence as \(s^w \) and the character-level embedding vector of a sentence as \(s^c \). Formulas (1) and (2) give two kinds of embedded representation vectors of sentences.

\[
s^w = \{e^w_1, e^w_2, ..., e^w_n\}, \quad (1)
\]

\[
s^c = \{e^c_1, e^c_2, ..., e^c_n\}, \quad (2)
\]
\[s^c = \{ e^c_1, e^c_2, ..., e^c_n \}, \]
where \(e^w \) represents the pre-trained word vector lookup table, and \(e^c \) represents the character embedding vector table obtained by Bi-LSTM.

Then, the two embedded vectors are input into Bi-LSTM to obtain the context information of the sentence, and the word-level feature representation vector and the character-level feature representation vector are obtained. Taking the word-level feature representation vector as an example, formulas (3)–(8) calculate the hidden state of each cell at that time.

\[
i^w_t = \sigma (W^w_i \cdot [h^w_{t-1}; e^w_t] + b^w_i) \tag{3}
\]

\[
f^w_t = \sigma (W^w_f \cdot [h^w_{t-1}; e^w_t] + b^w_f) \tag{4}
\]

\[
u^w_t = \tanh (W^w_o \cdot [h^w_{t-1}; e^w_t] + b^w_o) \tag{5}
\]

\[
o^w_t = \sigma (W^w_o \cdot [h^w_{t-1}; e^w_t] + b^w_o) \tag{6}
\]

\[
c^w_t = f^w_t \cdot c^w_{t-1} + i^w_t \cdot u^w_t \tag{7}
\]

\[
h^w_t = o^w_t \cdot \tanh (c^w_t) \tag{8}
\]

where \(\cdot \) is element-wise multiplication; \([;]\) is cat operation; \(i^w_t, f^w_t, o^w_t\) denote an input gate, a forgetting gate, and an output gate respectively. The functions are to determine the information to be added to the cell state, what information to discard from the cell state and output the processed value based on the contents saved in the cell state. \(u^w_t \) represents the state candidate value, \(c^w_t \) represents the latest state of the memory cell at that time. \(W^w \) is the weight matrix output by the unit, and \(b^w \) represents the offset vector.

To effectively use the context information, a bidirectional LSTM structure is used to input the text forward and backward to obtain two different intermediate layer representations. Finally, the final hidden layer output is obtained by splicing:

\[
\overrightarrow{h^w_i} = LSTM(h^w_{t-1}, e^w_i) \tag{9}
\]

\[
\overleftarrow{h^w_i} = LSTM(h^w_{t-1}, e^w_i) \tag{10}
\]

\[
h^w_i = [\overrightarrow{h^w_i}; \overleftarrow{h^w_i}] \tag{11}
\]

where \(\overrightarrow{h^w_i} \) and \(\overleftarrow{h^w_i} \) represent the forward and backward representations of the LSTM at the \(i \)th position, respectively. Similarly, the character-level feature representation vector at the \(i \)th position of the sentence can be obtained as \(h^c_i = [\overrightarrow{h^c_i}; \overleftarrow{h^c_i}] \).

3.3. Low-Level Feature Complementarity

This layer belongs to low-level feature complementation, which not only focuses on the feature dependency between different word expression vectors but also will obtain more low-level semantic information. As shown in Figure 3, the process of low-level feature complementation is given.

In Figure 3, CCM refers to the new word-level embedded feature vector after supplement. MLP [42] refers to multi-layer perceptron, which is used to extract low-level semantic information. The character-level embedded feature vector obtains the feature weight through the sigmoid activation function, and then the weight is multiplied with the word-level embedded feature vector to extract the useful features of the character-level embedded. Finally, a new word-level embedded feature vector is obtained through residual connection. Equation (12) gives the operation process.

\[
\overrightarrow{h^w_i} = [(\text{sigmoid}(\text{MLP}(h^c_i)) \cdot h^w_i); h^w_i] \tag{12}
\]

Similarly, WEM refers to a new character-level embedded feature vector after feature complementation. The whole operation process is similar to the generation of CCM. First,
the low-level semantic information is extracted by the multi-layer perceptron MLP, and the weight is obtained by activating the sigmoid function. Then, the weight is multiplied by the character-level embedded vector to obtain the useful features contained in the character-level embedded vector. Finally, the new character-level embedded feature vector is obtained by residual connection. Formula (13) gives the whole operation process.

$$\bar{h}_i^c = [(\text{sigmoid}(\text{MLP}(h_i^w)) \cdot h_i^c); h_i^c]$$ (13)

![Figure 3](image.png)

Figure 3. The structures of the WEM and CCM. WEM(CCM) obtains a new word (character)-level embedded feature vector after low-level feature complementation. The character (word)-level embedded feature vector obtains the feature weight through the activation function, and then the weight is multiplied with the character (word)-level embedded feature vector to extract the useful feature of the character (word)-level embedded. Finally, the new word (character)-level embedded feature vector is obtained through residual connection.

3.4. High-Level Feature Complementarity

3.4.1. Multi-Head Self-Attention Mechanism

This paper adds a multi-head attention mechanism [43] to this module, which makes the model focus more on important features, reduces the attention to non-important features, and optimizes resource allocation. MHSM in the overall model framework of this paper is the multi-head attention mechanism.

We need to calculate the weight of attention, firstly, enter Q (query) and K (key) of dimension, V (value) of the dimension, and then calculate the similarity of Q and K to obtain the weight. After the dot product of Q and K, divide by $\sqrt{d_k}$ (to prevent the gradient from disappearing), and use a softmax function to obtain a weight of V. The calculation process is shown in formula (14).

$$\text{Attention}(Q, K, V) = \text{softmax} \frac{QK^T}{\sqrt{d_k}}V$$ (14)

Multi-head self-attention is used to connect multiple self-attention, which can be formatted as:

$$\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h)W^o$$ (15)

$$\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$$ (16)

where K, Q, V, W^o are the trained weight parameters, and h is the number of attention heads. head_i is a single head attention unit, which is set to 8. W_i^Q, W_i^K, W_i^V represent a trainable weight matrix.
3.4.2. HBCL

After the local features are obtained by the multi-head attention mechanism, the two feature vectors can be further complemented to obtain deeper semantic information. The features of the whole high level are complementary as shown in Figure 4.

![Figure 4](image)

Figure 4. The structure of the HBCL. When high-level feature complementation generates a new word-level embedded feature vector and character-level embedded feature vector, feature complementation is performed twice, which greatly improves the acquisition of effective features and reduces the proportion of useless features.

A fused vector is the fusion of word-level embedded feature vector and a character-level embedded feature vector. It is connected by vectors and recorded as $\tilde{h}_i = [h^w_i; h^c_i]$. Then, the weight H of the feature is obtained through the activation function. The word-level feature vector and the character-level feature vector are respectively multiplied by the weight to obtain a new feature vector. At this time, high-level feature complementation is carried out. The whole process is shown in formulas (17)–(19).

$$H = \text{sigmoid}(\tilde{h}_i)$$ \hspace{1cm} (17)

$$\hat{h}^w_i = H \cdot h^w_i$$ \hspace{1cm} (18)

$$\hat{h}^c_i = H \cdot h^c_i$$ \hspace{1cm} (19)

\hat{h}^w_i and \hat{h}^c_i after activation, the weight matrices H^w and H^c are obtained, which are respectively multiplied with the two input eigenvectors \tilde{h}^w_i and \tilde{h}^c_i to obtain a new eigenvector \tilde{h}^w_i and \tilde{h}^c_i, finally, the final expression vector at the sentence level is obtained. The whole process is shown in formulas (20)–(24).

$$H^w = \text{sigmoid}(\tilde{h}^w_i)$$ \hspace{1cm} (20)

$$H^c = \text{sigmoid}(\tilde{h}^c_i)$$ \hspace{1cm} (21)

$$\tilde{h}^w_i = H^w \cdot \hat{h}^w_i$$ \hspace{1cm} (22)

$$\tilde{h}^c_i = H^c \cdot \hat{h}^c_i$$ \hspace{1cm} (23)

$$H_i = [\tilde{h}^w_i; \tilde{h}^c_i]$$ \hspace{1cm} (24)

High-level feature complementation generates a new word-level embedded feature vector \tilde{h}^w_i and character-level embedded eigenvector \tilde{h}^c_i. It is necessary to change the feature weight twice, that is, to complement the features twice, which greatly improves the acquisition of effective features and reduces the proportion of useless features.
3.5. Entity Classification

After feature complementation, the final expression vector of the sentence first enters the entity word judgment module, and each text is marked with a binary sequence marking method. The entity word is marked as 1 and the non-entity word is marked as 0. This can filter some non-physical areas. Specifically, the feature sequence passes through a full connection layer and sigmoid activation function to obtain the entity word probability \(p \) (when \(p \) is greater than 0.5, it is regarded as an entity word) that each word belongs to the internal or boundary of the entity.

The entire span is the span interval of entity words and then enters the fine-grained division module to identify internal entities. For each entity word span interval (the number of words is greater than or equal to 3) \(\text{span}(i,j) = \{s_i, s_{i+1}, ..., s_j\} \), which defines the sentence-level feature vector of the starting word is used to represent the left boundary information, and the sentence-level feature vector \(H_j \) of the last word is used to represent the right boundary information, and the information in the middle part is the average value of the sentence-level feature vectors of all words in the interval. The splicing of the three forms the final representation of the span, that is, \(S(i,j) = \{H_i, \frac{1}{j-i+1} \sum_{k=i}^{j} H_k, H_j\} \), where \(H_k \) is the sentence-level feature representation vector of the \(k^{th} \) word.

The fine-grained division of entity word span can be used to identify nested entities. The finely divided interval enters a full connection layer and softmax layer to get the final category mark. The whole process is shown in Figure 5.

In the training process, the cross entropy loss [44] is used as the model structure loss function. The loss function in this paper is composed of two parts. One part is the loss function formed by judging whether the text is an entity word, which is recorded as \(L_l \). As shown in formula (25):

\[
L_l = -[y \log(p) + (1-y)\log(1-p)]
\]

where \(y \) refers to the real label (1 refers to entity word, 0 refers to non-entity word) that discriminates the element as an entity word, and \(p \) refers to the probability that discriminates the element as an entity word.

![Figure 5. The span interval with the whole span of entity words enters the fine-grained division module to identify internal entities, and fine-grained division can be used to identify internal nested entities. The divided interval enters a full connection layer and softmax layer to get the final category mark.](image-url)
Another part of the loss function, which is recorded as L_h, is whether the classification is correct when a certain entity word interval $< I, J >$ is finely divided. The cross-entropy loss function is adopted, as shown in formula (26):

$$L_h = -\sum_{j=1}^{N} \sum_{i=1}^{\mathcal{N}} y_{h,c} \log(P_{h,c})$$

where $y_{h,c}$ indicates whether entity words belong to the binary label of entity category c (1 indicates belonging, 0 indicates not belonging), $P_{h,c}$ indicates the probability that entity words belong to entity category c, and there are N entity categories in total.

Therefore, the loss L of the model in this paper on the training set is the weighted average of the multi-task training loss. As shown in formula (27):

$$L = \lambda \sum_{i=1}^{x} L_l(s_i) + (1 - \lambda)L_h(span_i)$$

where s_i of the first item represents the ith text and x represents the number of text, $span_i$ of the second item represents the ith entity word span, and t represents the number of entity word spans. λ is a super parameter ($0 < \lambda < 1$), and it represents the weight of judging whether the element is an entity word in the whole model loss.

4. Experiments
4.1. DataSet and Annotation Method

To verify the validity of the model, the dataset used in this paper is the preprocessed version published by GENIA [45]. The GENIA dataset contains five entity categories, namely DNA, RNA, Protein, cell line, and cell type. The training set, development set, and test set of this paper will be tested according to the ratio of 8.1:0.9:1. Table 2 gives the statistical data of this dataset.

Item	Train	Dev.	Test	Overall	Nested
DNA	7650	1026	1257	9933	1774
RNA	692	132	109	933	407
Protein	28,728	2303	3066	34,097	1902
Cell line	3027	325	438	3790	347
Cell type	5832	551	604	6987	389
Overall	45,929	4337	5474	55,740	4789

Different datasets may use different annotation methods. The common annotation methods are the BIOES annotation method, Markup annotation method, and BIO annotation method. The dataset selected in this paper is the BIO annotation method. “B-X” indicates that the fragment of this element belongs to type X and this element is at the beginning of this fragment, “I-X” indicates that the fragment of this element belongs to type X and this element is in the middle of the fragment, “O” indicates that it does not belong to any type.

Before labeling, the maximum number of nesting layers N (N is set to 4) shall be obtained. During labeling, N columns shall be marked for each word, and category information shall be marked from the inner layer to the outer layer. Table 3 shows the nested entity annotation results of a segment in the GENIA dataset.
Table 3. BIO annotation fragment.

Element	First-Level Annotation	Second-Level Annotation	Third-Layer Annotation	Fourth-Layer Annotation
IL	B-protein	B-RNA	O	O
-	I-protein	I-RNA	O	O
2R	I-protein	I-RNA	O	O
alpha	I-protein	I-RNA	O	O
mRNA	O	I-RNA	O	O
that	O	O	O	O
is	O	O	O	O

4.2. Experimental Parameters and Environment

The model in this paper is based on PyTorch 1.3.1 framework. The pre-trained word-level embedded vector dimension and character-level embedded vector dimension are each 200 dimensions and are initialized randomly. The model parameters are shown in Table 4. The specific experimental environment settings are shown in Table 5.

Table 4. Experimental parameter setting.

Parameter Type	Parameter Value
dropout loss rate	0.5
batch size	50
word-level embedded vector dimension	200
character-level embedded vector dimension	200
LSTM hidden layers	200
LSTM layers	1
number of attention mechanism heads	8
learning rate	0.0005
Epoch	60

Table 5. Experimental environment settings.

Object	Environment
system	window 10
GPU	NVIDIA GTX 2080Ti GPU
hard disk	200G
memory	64G
Python version	Python 3.7
Pytorch	1.3.1

4.3. Evaluation Criterion

In the experiment, the precision rate (P), recall rate (R), and comprehensive evaluation index F1 were used as the evaluation indexes of the model performance. The accuracy rate refers to the probability that the elements predicted by the model are entities, and the recall rate refers to the probability that all entities in the dataset are accurately identified by the model.

4.4. Comparison of Experimental Results

To verify the effectiveness of two kinds of embedded eigenvectors for dual stream complementation in this paper, the following five representative models are selected as the baseline model, and the selectional results are as follows:

1. Lu and Roth [46] jointly modeled and identified entity boundaries, entity types, and entity heads based on the Hypergraph method for the first time.
2. Xu and Jiang et al. [47] proposed the method based on local detection, which is superior to the traditional sequence labeling method without any external resources or feature engineering;
3. Sohrab and Miwa [36] listed all possible interval spans as potential entity segments, and then used a deep neural network to classify them;
4. Ju and Miwa et al. [32] proposed a new neural model to identify nested entities by dynamically stacking non-nested NER layers, and the cascaded CRF layer was used to extract information encoded by internal entities in an internal to external manner to identify external entities;
5. Lin and Shao et al. [48] proposed combining the hypergraph model with a neural network to identify overlapping elements by hypergraph and recognize nested entities by neural network acquiring features;

Table 6 shows the experimental results of different models on the GENIA dataset. From the experimental results, the R-value and F1-value in this paper are optimal. Among them, the model proposed by Ju and Miwa may be better because CRF can learn the constraint conditions from the training data, thus improving the effectiveness of the prediction tag, but the model may generate cascading errors. Lin and Shao et al. use the hypergraph model to identify nested results. This is not as effective as other models, which may be due to the large gap between the mapping between the actual nested structure and the graph structure. The experiment shows that the model in this paper is superior to the former. Specifically, the R-value of this model is 8.3% higher than that of Lin and Shao, and the F1-value is 1% higher than that of Ju and Miwa.

Table 6. Experimental results of different models on GENIA.

Model	P	R	F1
Lu & Roth	72.5	65.2	68.7
Xu & Jiang	71.2	64.3	67.6
Sohrab & Miwa	73.3	68.3	70.7
Ju & Miwa	76.1	66.8	71.7
Lin & Shao	70.3	68.9	69.6
Ours	68.7	77.2	72.7

4.5. Ablation Studies

Feature extraction is an important step and key part of nested named entity recognition, so it is very important to consider the extraction of feature information when designing the model. To verify the effect of this model on feature recognition based on dual stream feature complementation, the following five models are designed for comparison, and experiments and analysis are carried out on the GENIA dataset. All models adopt two embedding methods, word-level embedding, and character-level embedding.

1. Bi-LSTM + MHSM: the two embedded vectors use Bi-LSTM to extract context feature information, and then use a multi-head attention mechanism to obtain local feature information.
2. Bi-LSTM + CCM + MHSM + HBCL: after using Bi-LSTM to obtain the text context information features, the effective information of the character-level embedded feature vector is added to the word-level embedded feature vector, and then the multi-head attention mechanism is entered, and high-level feature complementation is performed.
3. Bi-LSTM + WEM + MHSM + HBCL: after obtaining two kinds of feature vectors through Bi-LSTM, the effective information of the word-level embedded feature vector is added to the character-level embedded feature vector, and then local feature information is obtained, and then high-level feature complementation is performed.
4. Bi-LSTM + MHSM + HBCL: use Bi-LSTM to obtain the text context feature information, then obtain the sentence local feature information, and then directly carry out high-level feature complementation to obtain the sentence feature vector.
5. Bi-LSTM + CCM + WEM + MHSM: after obtaining the two feature vectors through Bi-LSTM, the low-level feature complementation of the two dimensions is carried out, and then the multi-head attention mechanism is entered to obtain the local feature information of the sentence.

The results of each model of the ablation experiment are shown in Table 7.

Model	P	R	F1
Bi-LSTM + MHSM	69.1	68.1	68.6
Bi-LSTM + CCM + MHSM + HBCL	67.5	75.9	71.5
Bi-LSTM + WEM + MHSM + HBCL	66.0	77.7	71.4
Bi-LSTM + MHSM + HBCL	66.1	72.6	69.2
Bi-LSTM + CCM + WEM + MHSM	70.7	71.6	71.1
Ours	68.7	77.2	72.7

Comparing the model in this paper with the ablation model (1), it can be seen that the extraction performance of feature information is significantly improved after the two flow feature complementation, in which the R-value is increased by 9.1%, and the F1-value is increased by 4.1%. Comparing the ablation model (1) with the ablation models (2) and (3), it can be seen that the extraction effect of feature information is improved after adding feature complementation of a certain dimension. This is because low-level semantic information can be obtained after low-level feature complementation, thus improving the overall recognition effect. From the comparison of the results of the ablation model (1) and ablation model (4), it can be found that high-level feature information complementation is also very important for feature information extraction. Comparing the model in this paper with the ablation model (5), we can find the importance of high-level feature complementation. After the low-level feature complementation, the high-level feature complementation is added, in which the R-value is increased by 5.6%, and the F1-value is increased by 1.6%. Comparing ablation models (4) and (5), it can be found that the F1-value of only low-level feature complementation is slightly higher than that of only high-level feature complementation, which may be because the high-level feature complementation depends on the low-level feature complementation to a certain extent.

Based on the above experimental results, it can be concluded that the feature vectors obtained by the two different embedding methods enhance the extraction of useful feature information after integrating the low-level feature complementation and the high-level feature complementation, thus improving the overall recognition effect of nested named entities.

5. Conclusions

In this paper, we propose a model based on two-stream feature complementation to obtain efficient and useful feature information. In this model, a multi-head attention mechanism is used to mine the local information of sentences. Meanwhile, this paper uses word-level embedding and character-level embedding to obtain the features of sentences. The results show that the sentence representation vectors obtained from the two dimensions improve the recognition effect of nested entities after the feature complementation operation. It is proved that the method in this paper captures the hidden low-level semantic information and deep semantic information, and provides more favorable feature information for subsequent entity classification.

Some studies have found that the latest pre-training language models such as Roberta or ALBERT can obtain good initialization effects, handle the prediction within sentences, and capture the dependency between words across sentences. It can be seen that if the transformer-based pre-training model is used in the sentence embedding process, it will bring great advantages. Therefore, in future research work, we will combine some pre-
training language models to obtain sentence feature information, and we will continue to study how to efficiently decode tags in nested named entities.

Author Contributions: Data curation, R.H. and S.D.; Methodology, R.H. and S.D.; Writing-original draft, R.H.; Writing-review and editing, T.L., S.Z. and S.D.; visualization, Y.C., W.M. and X.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (62076006), University Synergy Innovation Program of Anhui Province (GXXT-2021-008) and Anhui Natural Science Foundation (1908085MF189).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. He, J.; Wang, H. Chinese named entity recognition and word segmentation based on character. In Proceedings of the Sixth SIGHAN Workshop on Chinese Language Processing, Hyderabad, India, 11–12 January 2008.

2. Sasano, R.; Kurohashi, S. Japanese named entity recognition using structural natural language processing. In Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-II, Hyderabad, India, 7–12 January 2008.

3. Xue, N.; Shen, L. Chinese Word Segmentation as LMR Tagging. In Proceedings of the Second Workshop on Chinese Language Processing, SIGHAN 2003, Sapporo, Japan, 11–12 July 2003; pp. 176–179.

4. Gupta, P.; Schütte, H.; Andrassy, B. Table filling multi-task recurrent neural network for joint entity and relation extraction. In Proceedings of the COILING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, 11–16 December 2016; pp. 2537–2547.

5. Mintz, M.; Bills, S.; Snow, R.; Jurafsky, D. Distant supervision for relation extraction without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, Singapore, 2–7 August 2009; pp. 1003–1011.

6. Bai, T.; Ge, Y.; Gou, S.; Zhang, Z.; Gong, L. Enhanced natural language interface for web-based information retrieval. *IEEE Access* 2020, 9, 4233–4241. [CrossRef]

7. Selya, A.; Anshutz, D.; Griese, E.; Weber, T.L.; Hsu, B.; Ward, C. Predicting unplanned medical visits among patients with diabetes: Translation from machine learning to clinical implementation. *BMC Med. Inform. Decis. Mak.* 2021, 21, 1–11. [CrossRef] [PubMed]

8. Fei, H.; Zhang, Y.; Ren, Y.; Ji, D. Latent emotion memory for multi-label emotion classification. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 7692–7699.

9. Fei, H.; Zhang, Y.; Ren, Y.; Li, B.; Li, F.; Ji, D. High-order pair-wise aspect and opinion terms extraction with edge-enhanced syntactic graph convolution. *IEEE/ACM Trans. Audio Speech Lang. Process.* 2021, 29, 2396–2406. [CrossRef]

10. Hanifah, A.F.; Kusumaningrum, R. Non-Factoid Answer Selection in Indonesian Science Question Answering System using Long Short-Term Memory (LSTM). *Procedia Comput. Sci.* 2021, 179, 736–746. [CrossRef]

11. Mollá, D.; Van Zaanen, M.; Cassidy, S. Named Entity Recognition in Question Answering of Speech Data. In Proceedings of the Australasian Language TechnologyWorkshop 2007, Melbourne, Australia, 10–11 December 2007.

12. Shibuya, T.; Hovy, E. Nested named entity recognition via second-best sequence learning and decoding. *Trans. Assoc. Comput. Linguist.* 2020, 8, 605–620. [CrossRef]

13. Lafferty, J.; McCallum, A.; Pereira, F.C. *Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data*; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2001.

14. Li, X.; Feng, J.; Meng, Y.; Han, Q.; Wu, F.; Li, J. A unified MRC framework for named entity recognition. *arXiv 2019*, arXiv:1910.11476.

15. Muis, A.O.; Lu, W. Labeling gaps between words: Recognizing overlapping mentions with mention separators. *arXiv 2018*, arXiv:1810.09073.

16. Katiyar, A.; Cardie, C. Nested named entity recognition revisited. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Volume 1.

17. Hammerton, J. Named entity recognition with long short-term memory. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, Edmonton, AB, Canada, 31 May–1 June 2003; pp. 172–175.

18. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. *arXiv 2015*, arXiv:1508.01991.

19. Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural architectures for named entity recognition. *arXiv 2016*, arXiv:1603.01360.

20. Chiu, J.P.; Nichols, E. Named entity recognition with bidirectional LSTM-CNNs. *Trans. Assoc. Comput. Linguist.* 2016, 4, 357–370. [CrossRef]
21. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing (almost) from scratch. *J. Mach. Learn. Res.* 2011, 12, 2493–2537.

22. Ilie, S.; Marresse-Taylor, E.; Balazs, J.A.; Matsuo, Y. Deep contextualized word representations for detecting sarcasm and irony. *arXiv* 2018, arXiv:1809.09795.

23. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their compositionality. *Adv. Neural Inf. Process. Syst.* 2013, 26–35.

24. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, Doha, Qatar, 25–29 October 2014; pp. 1532–1543.

25. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of tricks for efficient text classification. *arXiv* 2016, arXiv:1607.01759.

26. Sun, C.; Yang, Z.; Wang, L.; Zhang, Y.; Lin, H.; Wang, J. Biomedical named entity recognition using BERT in the machine reading comprehension framework. *J. Biomed. Inform.* 2021, 118, 103799. [CrossRef]

27. Guo, S.; Yang, W.; Han, L.; Song, X.; Wang, G. A multi-layer soft lattice based model for Chinese clinical named entity recognition. *BMC Med. Inform. Decis. Mak.* 2022, 22, 1–12. [CrossRef]

28. Li, Y.; Nair, P.; Pelrine, K.; Rabbany, R. Extracting Person Names from User Generated Text: Named-Entity Recognition for Combating Human Trafficking. In *Proceedings of the Findings of the Association for Computational Linguistics: ACL 2022*, Dublin, Ireland, 22–27 May 2022; pp. 2854–2868.

29. Alsaaran, N.; Alrabaiah, M. Classical Arabic named entity recognition using variant deep neural network architectures and BERT. *IEEE Access* 2021, 9, 91537–91547. [CrossRef]

30. Wang, B.; Lu, W.; Wang, Y.; Jin, H. A neural transition-based model for nested mention recognition. *arXiv* 2018, arXiv:1810.01808.

31. Lin, H.; Lu, Y.; Han, X.; Sun, L. Sequence-to-nuggets: Nested entity mention detection via anchor-region networks. *arXiv* 2019, arXiv:1906.03783.

32. Ju, M.; Miwa, M.; Ananiadou, S. A neural layered model for nested named entity recognition. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, New Orleans, LA, USA, 1–6 June 2018; pp. 1446–1459.

33. Straková, J.; Straka, M.; Hajíc, J. Neural architectures for nested NER through linearization. *arXiv* 2019, arXiv:1908.06926.

34. Luan, Y.; Wadden, D.; He, L.; Shah, A.; Ostendorf, M.; Hajishirzi, H. A general framework for information extraction using dynamic span graphs. *arXiv* 2019, arXiv:1904.03296.

35. Zheng, C.; Cai, Y.; Xu, J.; Leung, H.; Xu, G. A boundary-aware neural model for nested named entity recognition. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, Hong Kong, China, 3–7 November 2019.

36. Sohrab, M.G.; Miwa, M. Deep exhaustive model for nested named entity recognition. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, Hong Kong, China, 3–7 November 2019.

37. Huang, P.; Zhao, X.; Hu, M.; Fang, Y.; Li, X.; Xiao, W. Extract-Select: A Span Selection Framework for Nested Named Entity Recognition with Generative Adversarial Training. In *Proceedings of the Findings of the Association for Computational Linguistics: ACL 2022*, Dublin, Ireland, 22–27 May 2022; pp. 85–96.

38. Shen, Y.; Ma, X.; Tan, Z.; Zhang, S.; Wang, W.; Lu, W. Locate and label: A two-stage identifier for nested named entity recognition. *arXiv* 2021, arXiv:2105.06804.

39. Yuan, Z.; Tan, C.; Huang, S.; Huang, F. Fusing Heterogeneous Factors with Triaffine Mechanism for Nested Named Entity Recognition. *arXiv* 2021, arXiv:2110.07480.

40. Wan, J.; Ru, D.; Zhang, W.; Yu, Y. Nested Named Entity Recognition with Span-level Graphs. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, Dublin, Ireland, 22–27 May 2022; pp. 892–903.

41. Joulin, A.; Cissé, M.; Grangier, D.; Jégou, H. Efficient softmax approximation for gpus. In *Proceedings of the International Conference on Machine Learning*, Sydney, Australia, 1–6 August 2017; pp. 1302–1310.

42. Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al. Mlp-mixer: An all-mlp architecture for vision. *arXiv* 2021, 2106.22865.

43. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. *Adv. Neural Inf. Process. Syst.* 2017, 30, 3–45.

44. De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the cross-entropy method. *Ann. Oper. Res.* 2005, 134, 19–67. [CrossRef]

45. Kim, J.D.; Ohta, T.; Tateisi, Y.; Tsujii, J. GENIA corpus—A semantically annotated corpus for bio-textmining. *Bioinformatics* 2003, 19, i80–i82. [CrossRef] [PubMed]

46. Lu, W.; Roth, D. Joint mention extraction and classification with mention hypergraphs. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, Lisbon, Portugal, 17–21 September 2015; pp. 857–867.

47. Xu, M.; Jiang, H.; Watcharawittayakul, S. A local detection approach for named entity recognition and mention detection. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, Vancouver, BC, Canada, 30 July–4 August 2017; pp. 1237–1247.

48. Lin, J.C.W.; Shao, Y.; Fournier-Viger, P.; Hamidou, F. BILU-NEMH: A BILU neural-encoded mention hypergraph for mention extraction. *Inf. Sci.* 2019, 496, 53–64. [CrossRef]