Evidence of 1991-2013 decrease of biogenic secondary organic aerosol in response to SO2 emission controls

Marais, Eloise Ann; Jacob, Daniel; Turner, Jay; Mickley, Loretta

DOI:
10.1088/1748-9326/aa69c8

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Marais, EA, Jacob, D, Turner, J & Mickley, L 2017, 'Evidence of 1991-2013 decrease of biogenic secondary organic aerosol in response to SO2 emission controls', Environmental Research Letters, vol. 12, no. 5, 054018. https://doi.org/10.1088/1748-9326/aa69c8

Link to publication on Research at Birmingham portal
Evidence of 1991–2013 decrease of biogenic secondary organic aerosol in response to SO$_2$ emission controls

To cite this article: Eloise A Marais et al 2017 Environ. Res. Lett. 12 054018

View the article online for updates and enhancements.
Environmental Research Letters

LETTER

Evidence of 1991–2013 decrease of biogenic secondary organic aerosol in response to SO2 emission controls

Eloise A Marais1,4,5, Daniel J Jacob1,2, Jay R Turner3 and Loretta J Mickley1

1 School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
2 Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States of America
3 Department of Energy, Environmental and Chemical Engineering, Washington University, St Louis, MO, United States of America
4 Present address: School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, UK
5 Author to whom any correspondence should be addressed.
E-mail: e.a.marais@bham.ac.uk

Keywords: isoprene, SOA, sulfate, Southeast US, air quality, GEOS-Chem

Abstract

Air quality policy to decrease fine particulate matter mass concentrations (PM2.5) in the US has mainly targeted sulfate aerosol through controls on sulfur dioxide (SO2) emissions. Organic aerosol (OA) instead of sulfate is now the dominant component of total PM2.5. Long-term surface observations (1991–2013) in the Southeast US in summer show parallel decreases in sulfate (2.8%–4.0% a−1) and OA (1.6%–1.9% a−1). Decline of anthropogenic OA emissions is uncertain but is unlikely to fully explain this trend because most OA in the Southeast US in summer is biogenic. We conducted a 1991–2013 simulation with the GEOS-Chem chemical transport model including inventory decreases in anthropogenic SO2, NOx, and volatile organic compounds (VOCs) emissions, constant anthropogenic primary OA emissions, and a new mechanism of aqueous-phase SOA formation from isoprene. This simulation reproduces the observed long-term decreases of sulfate and OA, and attributes the OA decrease to decline in the OA yield from biogenic isoprene as sulfate decreases (driving lower aqueous aerosol volume and acidity). Interannual OA variability in the model (mainly driven by isoprene) is also well correlated with observations. This result provides support for a large air quality co-benefit of SO2 emission controls in decreasing biogenic OA as well as sulfate.

1. Introduction

Air quality policy in the US to decrease mass concentrations of fine particulate matter (PM2.5, mass concentration of particles less than 2.5 μm diameter) has focused primarily on sulfur dioxide (SO2) emission controls. Anthropogenic SO2 emissions decreased by 3.3% a−1 over the 1991–2013 period according to the US Environmental Protection Agency (EPA 2015). This has successfully decreased the sulfate component of PM2.5 by 2.7% a−1 nationwide over 1992–2010 (Hand et al 2012). Organic aerosol (OA) is now the dominant component of PM2.5 in the eastern US in summer and particularly in the south (Attwood et al 2014, Kim et al 2015), but there is no clear emission control strategy to target that component. OA has a primary combustion source (POA) but appears to be predominantly secondary (SOA) in summer, formed when oxidation products of mostly biogenic volatile organic compounds (VOCs) condense to pre-existing aerosol (Weber et al 2007, Kleindienst et al 2010, Blanchard et al 2016). Recent field studies and models for the Southeast US in summer have pointed to isoprene, the dominant biogenic VOC emitted by vegetation, as a major contributor to OA (Kim et al 2015, Xu et al 2015).

Long-term observations of speciated PM2.5 at Southeast US sites show a decrease in summertime OA of 0.9% a−1 over 1992–2013 and 1.5% a−1 over 1998–2013 (Attwood et al 2014). The contribution to this decrease in anthropogenic OA sources is unclear but unlikely to fully explain the observed OA trend. Source apportionment studies and carbon isotope measurements indicate that anthropogenic sources
account for only 5%–10% of OA concentrations in the Southeast US in summer in Atlanta, Georgia (Zheng et al 2007) and at a regionally representative rural site (Blanchard et al 2008). A regional model analysis finds that anthropogenic sources contribute 28% of OA in the Southeast US in summer (Kim et al 2015). Anthropogenic VOC emissions decreased by 1.6% a\(^{-1}\) over the 1991–2013 period (EPA 2015) but the link to SOA is uncertain (Attwood et al 2014). The EPA reports trends in annual primary PM\(_{2.5}\) emissions but not the POA component (Blanchard et al 2013, EPA 2015). Blanchard et al (2016) estimate large decreases in annual mean combustion-derived OA (3.2%–4.2% a\(^{-1}\)) at urban sites in the Southeast US and attribute most of this trend to decline in vehicle emissions. On the other hand, in the rural Southeast US principal component analysis and multiple linear regression applied to long-term (1999–2013) observations show no significant trend in the anthropogenic OA component (Hidy et al 2014, Blanchard et al 2016).

Observations of OA in the Southeast US indicate a ~30% contribution from isoprene epoxydiols (IEPOX SOA) that correlates strongly with sulfate (Budisulistiorini et al 2015, Hu et al 2015, Xu et al 2015, Marais et al 2016). This correlation appears to reflect acid-catalyzed aqueous-phase IEPOX SOA formation (Marais et al 2016). Biogenic SOA produced from glyoxal by aqueous-phase aerosol pathways (Ervens and Volkamer 2010, McNell et al 2012) would also depend on the availability of sulfate as a source of aerosol water (Nguyen et al 2015). One might therefore expect a decrease in biogenic SOA as SO\(_2\) emissions decrease, and this has been suggested as a major co-benefit of SO\(_2\) emission controls (Surratt et al 2010, Carlton and Turpin 2013, Pye et al 2013, Xu et al 2015, Marais et al 2016, Xu et al 2016).

Anthropogenic emissions of reactive nitrogen oxides (NO\(_x\) ≡ NO + NO\(_2\)) have also decreased over the past decade to improve ozone air quality. Nitrate is a negligibly small component of PM\(_{2.5}\) in the Southeast in summer because of high temperatures (Kim et al 2015). A potentially larger effect is that the SOA yield from VOC oxidation depends on whether this oxidation proceeds by high-NO\(_x\) or low-NO\(_x\) pathways (Pye et al 2010).

Here we conduct a 1991–2013 simulation of aerosol chemistry with the GEOS-Chem chemical transport model (CTM), including long-term trends in anthropogenic SO\(_2\), NO\(_x\), and VOC emissions as well as meteorological variability. We show that the observed OA trend in the Southeast US in summer can be explained at least in part by a decrease in isoprene SOA driven by decreasing SO\(_2\) emissions. This result has major implications for air quality management as evidence of the co-benefit of SO\(_2\) emission controls for decreasing PM\(_{2.5}\).

2. Observed 1991–2013 trends in Southeast US sulfate and organic aerosol

Figure 1 shows time series of summertime average concentrations of sulfate and OA from the Southeastern Aerosol Research and Characterization (SEARCH) (1998–2013) (Edgerton et al 2005) and Interagency Monitoring of Protected Visual Environments (IMPROVE) (1991–2013) (Solomon et al 2014) networks in the Southeast US. There are also observations at Chemical Speciation Network (CSN) sites, but a shift in carbonaceous aerosol sampling and analysis protocols in 2007–2009 (Solomon et al 2014) obfuscates trend analysis. SEARCH sites are a mix of rural, urban, and suburban (Edgerton et al 2005); IMPROVE sites are mainly rural (Solomon et al 2014). Samples at both networks are collected every 3 days (Chow et al 2010).

Measurements are reported as mass concentration of organic carbon (OC), and are converted here to OA using a mass conversion factor of 2.2 (OA/OC = 2.2) representative of summertime conditions in the Southeast US (Canagaratna et al 2015, Xu et al 2015). OA averages 30% lower at IMPROVE than SEARCH sites due to differences in measurement protocols (Chow et al 2010, Kim et al 2015) and greater urban influence at SEARCH sites (Blanchard et al 2016).

Mean decline in sulfate is 4.0% a\(^{-1}\) at SEARCH and 2.8% a\(^{-1}\) at IMPROVE sites, as compared to a national trend of 2.7% a\(^{-1}\) (Hand et al 2012). Mean decline in OA is 1.9% a\(^{-1}\) at SEARCH and 1.6% a\(^{-1}\) at IMPROVE sites. Figure 1 further illustrates how OA instead of sulfate is now the dominant component of total PM\(_{2.5}\) in the Southeast US in summer. The relationship between the trend in summertime sulfate and OA is 0.48 μg OA per μg sulfate at SEARCH and 0.37 μg OA per μg sulfate at IMPROVE, similar to interannual relationships previously reported by Blanchard et al (2016).

Figure 1 focuses on summertime when biogenic OA dominates. We find that wintertime (December–February) OA shows a decreasing trend similar to summer, 2.9% a\(^{-1}\) at SEARCH and 1.6% a\(^{-1}\) at IMPROVE. Wintertime OA mostly originates from biomass burning (residential heating and prescribed burns) and vehicles. Zheng et al (2007) use a chemical mass balance receptor model to estimate that the vehicle contribution to OA in Atlanta is 0.39 μg m\(^{-3}\) (11% of OA) in summer but 1.46 μg m\(^{-3}\) (30% of OA) in winter, in part because vehicles emit more OA in winter than summer (Zheng et al 2002, Zheng et al 2007, Chen et al 2012). Residential heating and prescribed burns are absent in summer (Tian et al 2009). Apart from extreme events such as the fall 2016 fires (Samuel 2016), wildfires and agricultural fires make little contribution to OA (<20% of total OA) in the Southeast (Park et al 2007, Tian et al 2009, Kim et al 2015). We do not attempt to explain the wintertime OA trend here, but the causes would have to be different than in summer and we view the
similarity of trends as mostly coincidental. Combining the 3.2%–4.2% a\(^{-1}\) decrease in combustion-derived OC inferred by Blanchard et al. (2016) with a 5%–10% contribution of this source to summertime OA in the Southeast (Zheng et al. 2007, Blanchard et al. 2008) would imply an overall OA trend of only 0.16%–0.42% a\(^{-1}\), much less than observed in figure 1.

3. Modeled 1991–2013 trends of Southeast US sulfate and organic aerosol

We compare the observed 1991–2013 trends of figure 1 to a GEOS-Chem simulation for the same period including interannual meteorological variability and driven by EPA trends in anthropogenic emissions of \(\text{SO}_2\), \(\text{NO}_x\), and VOCs (EPA 2015). We assume no trend in anthropogenic POA emissions because of large uncertainty, as discussed in the Introduction, and to focus on the impact of the biogenic OA component. Anthropogenic SOA in the model is solely from aromatic VOCs and the associated long-term trends are very small as reported below. Model results are obtained for successive summers (June–August 1991–2013) following one month of spinup each year for chemical initialization. GEOS-Chem is driven with meteorology from the NASA MERRA consistent reanalysis product covering 1991–2013.
The MERRA data are produced at 0.5° × 0.667° horizontal resolution and are re-gridded here to 2° × 2.5° for input to GEOS-Chem.

Annual US anthropogenic emissions of SO₂, NOₓ, and VOCs are from EPA (2015) and are distributed spatially and temporally using the EPA National Emission Inventory for 2005 (EPA/NEI2005, https://epa.gov/pub/EmisInventory/nei_criteria_summaries/2005summaryfiles/). Anthropogenic emissions decreased over 1991–2013 by 3.3% a⁻¹ for SO₂, 2.1% a⁻¹ for NOₓ, and 1.6% a⁻¹ for VOCs. Anthropogenic emissions of ammonia are from NEI2005 and are constant over the period (Hidy et al 2014, Silvern et al 2016). POA emissions are from Bond et al (2007) for fossil fuel and biofuel combustion and from the annual Global Fire Emissions Database (GFED3) (van der Werf et al 2010) for open fires. Fuel POA emissions are assumed constant over the 1991–2013 period, as explained above, while open fire emissions vary from year to year on the basis of satellite data.

Isoprene, monoterpenes, and sesquiterpene emissions are from the Model of Emissions of Gases and Aerosols from Nature (MEGAN2.1) (Guenther et al 2012); they vary locally as a function of leaf area index (LAI), temperature, and (for isoprene) solar insolation. LAI values are monthly means from the MODIS satellite instruments for 2000–2008 (Yang et al 2006), and the 2000–2008 mean is applied for the remainder of the 1991–2013 period. There is no significant regional trend in LAI over 2000–2008 and IAV is less than 4%. We assume no trend in vegetation type over 1991–2013. Interannual variability (IAV) in isoprene emission in the Southeast US is driven predominantly by temperature (Abbot et al 2003, Palmer et al 2006). We find that isoprene emission IAV over 1991–2013 of 12% can be explained by temperature (R² = 0.81 using GEOS-Chem isoprene emissions and MERRA temperature).

The GEOS-Chem simulation includes detailed aerosol-oxidant chemistry as described by Marais et al (2016) for their summer 2013 simulation over the Southeast US. SOA formation from anthropogenic and biomass burning VOCs, monoterpenes, and sesquiterpenes is by reversible partitioning of VOC oxidation products to pre-existing OA (Pye et al 2010). Isoprene SOA formation is by reactive uptake of isoprene oxidation products to aqueous aerosol and is coupled to a detailed gas-phase chemical mechanism for isoprene oxidation. The rate of reactive uptake depends on aqueous aerosol volume, and also for the IEPOX pathway on aerosol acidity (Eddingsaas et al 2010). GEOS-Chem isoprene SOA mass yields (3.3%) and composition, dominated by IEPOX (58% of isoprene SOA mass) and glyoxal (28%) as immediate precursors, are consistent with surface and aircraft observations for the summer 2013 (Marais et al 2016).

Isoprene SOA formation depends strongly on sulfate but is relatively insensitive to NOₓ. Partitioning of isoprene oxidation between high-NOₓ and low-NOₓ pathways is only moderately dependent on anthropogenic NOₓ emissions (Pye et al 2013, Zheng et al 2015). NOₓ contributes to particle-phase organonitrate formation from oxidation of isoprene and monoterpenes by the nitrate radical (Boyd et al 2015, Xu et al 2015), but in the Southeast US organonitrate accounts for only 3%–8% of observed OA (Lee et al 2016), while IEPOX SOA accounts for 28%–32% of OA (Budisulistiorini et al 2013, Budisulistiorini et al 2015, Hu et al 2015).

We find in our model that isoprene SOA contributes on average 59% of total OA over the Southeast US in summer 1991–1995. Biogenic SOA from terpenes contributes an additional 13%, so that 72% of total OA is biogenic. The remaining 28% are contributed by anthropogenic and biomass burning (open fires and biofuel use) sources as POA (together 21%) and SOA (together 7%). By 2009–2013 biogenic SOA has declined to 62% of total OA (40% isoprene SOA; 22% terpene SOA) and the remainder is anthropogenic and biomass burning sources as POA (together 25%) and SOA (together 13%). This is consistent with the previous GEOS-Chem study by Kim et al (2015), which attributed OA over the Southeast US in summer 2013 as 42% from isoprene, 20% from terpenes, 28% anthropogenic, and 10% from open fires. Our results suggest that the biogenic contribution was greater in the past.

Aqueous aerosol volume used to compute the reactive uptake of isoprene SOA precursors (mostly IEPOX and glyoxal) is determined in GEOS-Chem from the mass concentrations of different aerosol components with relative humidity (RH) dependent hygroscopic growth factors from the Global Aerosol Data Set (GADS) (Koepe et al 1997). Sulfate growth factors are applied to sulfate-nitrate-ammonium (SNA) aerosol and OC growth factors are applied to OC. Most aerosol growth is associated with SNA aerosol because of its greater hygroscopicity. Aerosol acidity for IEPOX SOA formation is computed with the ISORROPIA thermodynamic equilibrium model (Fountoukis and Nenes 2007). Hygroscopic growth factors for sulfate from GADS and ISORROPIA agree within 10%.

1991–2013 model trends for the Southeast US in summer are shown in figure 1. The long-term declines over 1991–2013 are 2.4% a⁻¹ for sulfate and 1.4% a⁻¹ for OA, roughly consistent with observed trends from SEARCH and IMPROVE. The majority of the model trend in OA is driven by isoprene SOA, which declines by 2.2% a⁻¹ as also shown in figure 1. The IEPOX SOA component similarly declines by 2.2% a⁻¹. In GEOS-Chem 1 µg decline in sulfate leads to a 0.35 µg decline in IEPOX SOA. This can be compared to the observed relationships between IEPOX SOA and sulfate of 0.42 µg µg⁻¹ at the Centreville, AL site (Xu et al 2015) and 0.23 µg µg⁻¹ from aircraft observations downwind of a power plant (Xu et al 2016). There is no significant
model trend in OA from open fires, and decline in anthropogenic SOA due to decline in VOC precursor emissions is only 0.7% a⁻¹. SOA from terpenes increases by 1.7% a⁻¹ due to increase in terpene SOA yields with decline in NOₓ (Pye et al. 2010), partly offsetting the isoprene SOA trend. As also shown in figure 1, the model trend in isoprene SOA is not seen if the aqueous-phase chemistry mechanism is replaced by the commonly used mechanism involving reversible partitioning of semivolatile oxidation products to pre-existing OA (Pye et al. 2010).

We find in the model that isoprene SOA mass yields per unit isoprene oxidized decrease from 13% in 1991 to 3.5% in 2013. Decrease in NOₓ emissions increases the isoprene SOA yield in the model, due to an increase in the formation of IEPOX under low-NOₓ conditions, but the effect is small compared to that of SO₂. The branching ratio of the IEPOX-forming hydroperoxyl radical (HO₂) oxidation channel for isoprene peroxy radicals increases from 24% in 1991 to 32% in 2013. An isoprene SOA yield of 13% in 1991 is higher than the range (0.1%–10%) obtained for chamber studies reviewed by Marais et al. (2016), but the chamber conditions are generally not representative of the atmosphere. Surratt et al. (2010) reported a yield of 28% in an experiment under low-NOₓ conditions using highly acidic inorganic seed aerosol.

Figure 2 compares the spatial distributions of observed and simulated OA over the Southeast US in summer for 1991–1995 and 2009–2013. The spatial pattern in the observations is consistent with a dominant biogenic source. The model normalized mean bias (NMB) is −9.7% in 1991–1995 and −7.9% in 2009–2013. Mean OA concentrations in the Southeast US decrease from 1991–1995 to 2009–2013 by 25% in the observations and 23% in the model. There is no significant change in spatial pattern, either in the observations or the model, offering supporting evidence that biogenic SOA is driving the trend.

4. Discussion

The decline in isoprene SOA is driven in the model by decreases in aqueous aerosol volume and acidity (figure 3) that are both driven in turn by decreasing SO₂ emissions. Aqueous aerosol volume mass concentration decreases by 54% over 1991–2013. Nguyen et al. (2015) estimated a 79% decrease in aerosol water over 2001–2012 by applying ISORROPIA to the SEARCH observations. Decline in aerosol water mass concentrations in GEOS-Chem for the same time period is 40%. SEARCH sites show steeper decline in sulfate than the domain sampled by the
model and the IMPROVE network (figure 1). Aerosol acidity decreases by 83%. We conducted a separate GEOS-Chem simulation for summer 1991 using summer 2013 aerosol acidity and find that acidity alone is responsible for half of the long-term trend in isoprene SOA, with the rest due to decline in aerosol water. We further find in additional sensitivity simulations with aerosol [H^+] fixed at 0.1, 0.2, 0.5, 0.8, and 1.1 mol l^-1 that the relationship between isoprene SOA and aerosol acidity is logarithmic, due to limitation of the overall rate by mass accommodation of IEPOX at low pH. Within the above range, a decrease in aerosol pH of 0.1 increases isoprene SOA by ~0.2 μg m^-3.

Decline in aerosol acidity over 1991–2013 as shown in figure 3 would be expected from standard thermodynamics as sulfate decreases with constant ammonia. However, observations in the Southeast US in summer show that the ammonium–sulfate aerosol ratio is actually decreasing (Weber et al. 2016). This decrease is inconsistent with simple SNA thermodynamics and might reflect an OA effect on the thermodynamics (Kim et al. 2015, Silvern et al. 2016).

We examined the implications of possible model error in the 1991–2013 trend of aerosol acidity. Assuming constant acidity in the model would decrease the isoprene SOA trend by half, as pointed out above, and would underestimate the observed trend in OA. This deficit could be compensated by a decline in anthropogenic POA or by a dependence of monoterpene and sesquiterpene SOA formation on aqueous aerosol volume, not included in our simulation. The laboratory study of Aljawhary et al. (2016) suggests that aqueous-phase processing may be an important SOA formation pathway for monoterpene. Glyoxal is an oxidation product of monoterpene (Fu et al. 2008, Chan Miller et al. 2016) and would also contribute to dependence of monoterpene SOA on aqueous aerosol volume. Assuming that the terpene SOA yield increases linearly with aqueous aerosol volume (as for isoprene SOA) and the trend in isoprene SOA is due to aqueous aerosol volume only, we find that the deficit between the observed OA trend and the model could be compensated by an effective terpene SOA yield (mass SOA formed per unit mass of monoterpene/sesquiterpene oxidized) of 13% in 1991 dropping to 5% in 2013. This is within the range of terpene SOA yields measured in chamber studies (Ng et al. 2007, Shilling et al. 2008, Saathoff et al. 2009, Fry et al. 2014), although chamber conditions may differ from the actual atmosphere (Hallquist et al. 2009).

We also examined the interannual variability (IAV) superimposed on the long-term trends (figure 1) to confirm the importance of biogenic SOA to the long-term trend. IAV should be driven mainly by weather, including effects on biogenic VOC emissions. Isoprene SOA IAV in the model accounts for 95% of the IAV in total OA and is correlated with the IAV in isoprene emission (R = 0.68). The model OA IAV, obtained as the relative departure from the regression line of long-term trends in figure 1, is correlated with the observed OA IAV at SEARCH (R = 0.49) and IMPROVE (R = 0.55), but is 60%–80% higher than the observations. The overestimate is due to very high model OA in 1998–2000 and 2005–2007 that is not seen in the observations. These years correspond to drought in the Southeast US (Seager et al. 2009) that may suppress isoprene emission (Pegoraro et al. 2004). This effect is not included in MEGAN as implemented in GEOS-Chem and thus model isoprene emission may be too high. OA IAV is correlated with mean surface air temperature both in the model (R = 0.71, using MERRA temperature) and in the observations (R = 0.44 at SEARCH sites using collocated temperature data; R = 0.47 at IMPROVE sites using temperature from nearby EPA monitoring sites).

In summary, observations of organic aerosol (OA) over the Southeast US in summer show a large 1991–2013 decrease. We find with the GEOS-Chem model that this trend can be largely explained by a decrease in the yield of secondary OA (SOA) from biogenic isoprene as SO2 emissions have decreased. This decline in isoprene SOA yield in GEOS-Chem is based on an aqueous-phase mechanism for isoprene SOA formation that is dependent on aqueous aerosol volume and acidity, both of which decrease as SO2 emissions decrease. Better understanding is needed of the factors controlling aerosol acidity and its trends in the Southeast US, and of the role of trends in anthropogenic emissions of OA and VOC precursors. Nevertheless, this study provides support that SO2 emission controls to decrease sulfate aerosol have had a large co-benefit by concurrently decreasing OA.

Acknowledgments

This work was funded by the NASA Earth Science Division, and a South African National Research Foundation Fellowship and Schlumberger Faculty for the Future Fellowship to EAM. Data for simulations discussed are available from the authors upon request.

References

Abbot D S, Palmer P I, Martin R V, Chance K V, Jacob D J and Guenther A 2003 Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space Geophys. Res. Lett. 30 1886

Aljawhary D, Zhao R, Lee A K Y, Wang C and Abbatt J P D 2016 Kinetics, mechanism, and secondary organic aerosol yield of aqueous phase photo-oxidation of alpha-pinene oxidation products J. Phys. Chem. A 120 1395–407

Attwood A R et al. 2014 Trends in sulfate and organic aerosol mass in the Southeast US: impact on aerosol optical depth and radiative forcing Geophys. Res. Lett. 41 7701–09

Blanchard C L, Hidy G M, Tanenbaum S, Edgerton E, Hartsell B and Jansen J 2008 Carbon in southeastern US aerosol particles: empirical estimates of secondary organic aerosol formation Atmos. Environ. 42 6710–20
Blanchard C. L, Tanenbaum S and Hidy G M 2013 Source attribution of air pollutant concentrations and trends in the Southeastern aerosol research and characterization (SEARCH) network Environ. Sci. Technol. 47 15356–45

Blanchard C. L, Hidy G M, Shaw S, Baumann K and Edgerton E S 2016 Effects of emission reductions on organic aerosol in the southeastern United States Atmos. Chem. Phys. 16 215–38

Bond T C, Bhadra D, Dong R, Logan R, Jung S K, Roden C, Streets D G and Trautmann N M 2007 Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000 Glob. Biogeochem. Cycles 21 GB2018

Boyd C M, Sanchez J, Xu L, Eugene A J, Nah T, Tuet W Y, Guzman M I and Ng N L 2015 Secondary organic aerosol formation from the beta-pinene+NO3 system: effect of humidity and peroxy radical fate Atmos. Chem. Phys. 15 7497–522

Budisulistiorini S H et al 2013 Real-time continuous characterization of secondary organic aerosol derived from isoprene epoxides in downtown Atlanta, Georgia, using the aerodynamic aerosol chemical speciation monitor Environ. Sci. Technol. 47 5866–94

Budisulistiorini S H et al 2015 Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 southern oxidant and aerosol study (SOAS) at the Look Rock, Tennessee ground site Atmos. Chem. Phys. 15 8871–88

Canagaratna M R et al 2015 Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications Atmos. Chem. Phys. 15 253–72

Carlton A G and Turpin B J 2013 Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water Atmos. Chem. Phys. 13 10203–14

Chan Miller C, Jacob D J, Abad G G and Chance K 2016 Hotspot of glyoxal over the Pearl River delta seen from the OMI satellite instrument: implications for emissions of aromatic hydrocarbons Atmos. Chem. Phys. 16 4631–39

Chen Y J, Zheng M, Edgerton E S, Ke L, Sheng G Y and Fu J M 2012 PM2.5 source apportionment in the southeastern United States, spatial and seasonal variations during 2001–2005 J. Geophys. Res. 117 D08304

Chow J C, Watson J G, Chen L W A, Rice J and Frank N H 2010 Quantification of PM10 carbonic organic sampling artifacts in US networks Atmos. Chem. Phys. 10 5223–39

Eddingsaas N C, VanderVelden D G and Wennberg P O 2010 Kinetics and products of the acid-catalyzed ring-opening of atmospherically relevant butyl epoxide alcohols J. Phys. Chem. A 114 8106–13

Edgerton E S, Hartsell B E, Saylor R D, Jansen J J, Hansen D A 2010 Quantiﬁcation of PM10, organic carbon sampling artifacts in US networks Atmos. Chem. Phys. 10 5223–39

Erdman E A et al 2016 Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeastern United States and co-beneﬁt of SO2 emission controls Atmos. Chem. Phys. 16 1603–18

McNeill V F, Woo J L, Kim D D, Schwier A N, Wannell N J, Sumner A J and Barakat J M 2012 Aqueous-phase secondary organic aerosol and organosulfate formation in atmospheric aerosols: a modeling study Environ. Sci. Technol. 46 8075–81

Ng N L et al 2007 Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes Atmos. Chem. Phys. 7 5159–74

Nguyen T K V, Capps S L and Carlton A G 2015 Decreasing aerosol water is consistent with OC trends in the Southeast US Environ. Sci. Technol. 49 7843–50

Palmer P I et al 2006 Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column J. Geophys. Res. 111 D12315

Park R J, Jacob D J and Logan J A 2007 Fire and biofuel contributions to annual mean aerosol mass concentrations in the United States Atmos. Environ. 41 7389–400

Fountoukis C and Nenes A 2007 ISORROPIA II: a computationally efﬁcient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42––NO32––Cl−–H2O aerosols Atmos. Chem. Phys. 7 6839–59

Ford B and Heald C L 2013 Aerosol loading in the Southeastern United States: reconciling surface and satellite observations Atmos. Chem. Phys. 13 9269–83

Fry J L et al 2014 Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons Environ. Sci. Technol. 48 11944–53

Fu T M, Jacob D J, Wittrock F, Burrows J P, Vrekoussis M and Henze D K 2008 Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols J. Geophys. Res. 113 D15S03

Guenther A B, Jiang X, Head C L, Sakayunontvittaya T, Dahl T, Emmons L K and Wang X 2012 The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions Geosci. Model Dev. 5 1471–92

Hu W et al 2015 Characterization of a real-time tracer for isoprene epoxides-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements Atmos. Chem. Phys. 15 11807–33

Kim P S et al 2015 Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem transport model Atmos. Chem. Phys. 15 10411–33

Kleindienst T E, Lewandowski M, Offenberg J H, Eddye S, Jaoui M, Zheng M, Ding X A and Edgerton E S 2010 Contribution of primary and secondary sources to organic aerosol and PM2.5 at SEARCH network sites J. Air Waste Manage. 60 1388–99

Koepke P, Hess M, Schult I and Shelte E P 1997 Global aerosol data set (Hamburg, Germany: Max-Planck Inst. für Meteorol)

Lee B H et al 2016 Highly functionalized organic nitrates in the southeast United States: contribution to secondary organic aerosol and reactive nitrogen budgets Proc. Natl Acad. Sci. USA 113 1516–21

Marais E A et al 2016 Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-beneﬁt of SO2 emission controls Atmos. Chem. Phys. 16 1603–18

McNeill V F, Woon J L, Kim D D, Schwier A N, Wannell N J, Sumner A J and Barakat J M 2012 Aqueous-phase secondary organic aerosol and organosulfate formation in atmospheric aerosols: a modeling study Environ. Sci. Technol. 46 8075–81

Ng N L et al 2007 Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes Atmos. Chem. Phys. 7 5159–74
van der Werf G R et al 2010 Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires 1997–2009 Atmos. Chem. Phys. 10 11707–35

Weber R J et al 2007 A study of secondary organic aerosol formation in the anthropogenically influenced southeastern United States J. Geophys. Res. 112 D13302

Weber R J, Guo H Y, Russell A G and Nenes A 2016 High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years Nat. Geosci. 9 282–86

Xu L et al 2015 Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States Proc. Natl Acad. Sci. USA 112 37–42

Xu L et al 2016 Enhanced formation of isoprene-derived organic aerosol in sulfur-rich power plant plumes during Southeast Nexus J. Geophys. Res. 121 11137–53

Yang W Z et al 2006 MODIS leaf area index products: from validation to algorithm improvement IEEE T. Geosci. Remote 44 1885–98

Zheng M, Cass G R, Schauer J J and Edgerton E S 2002 Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers Environ. Sci. Technol. 36 2361–71

Zheng M, Cass G R, Ke L, Wang F, Schauer J J, Edgerton E S and Russell A G 2007 Source apportionment of daily fine particulate matter at Jefferson Street, Atlanta, GA, during summer and winter J. Air Waste Manage. 57 226–42

Zheng Y, Unger N, Hodzic A, Emmons L, Knote C, Tilmes S, Lamarque J F and Yu P 2015 Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation Atmos. Chem. Phys. 15 13487–506