The effects of knee joint angle on neuromuscular activity during electrostimulation in healthy older adults

James P Gavin¹, Meryl Cooper² and Thomas W Wainwright²

Abstract

Introduction: Electrostimulation devices stimulate the common peroneal nerve, producing a calf muscle-pump action to promote venous circulation. Whether knee joint angle influences calf neuromuscular activity remains unclear. Our aim was to determine the effects of knee joint angle on lower limb neuromuscular activity during electrostimulation.

Methods: Fifteen healthy, older adults underwent 60 min of electrostimulation, with the knee joint at three different angles (0°, 45° or 90° flexion; random order; 20 min each). Outcome variables included electromyography of the peroneus longus, tibialis anterior and gastrocnemius medialis and lateralis and discomfort.

Results: Knee angle did not influence tibialis anterior and peroneus longus neuromuscular activity during electrostimulation. Neuromuscular activity was greater in the gastrocnemius medialis (p = 0.002) and lateralis (p = 0.002) at 90° knee angle. Electrostimulation intensity was positively related to neuromuscular activity for each muscle, with a knee angle effect for the gastrocnemius medialis (p = 0.05).

Conclusion: Results suggest that during electrostimulation, knee joint angle influenced gastrocnemii neuromuscular activity; increased gastrocnemius medialis activity across all intensities (at 90°), when compared to 0° and 45° flexion; and did not influence peroneus longus and tibialis anterior activity. Greater electrostimulation-evoked gastrocnemii activity has implications for producing a more forceful calf muscle-pump action, potentially further improving venous flow.

Keywords

Electrical stimulation, knee joint, electromyography, gastrocnemius, isometric contraction, peroneal nerve

Date received: 9 June 2017; accepted: 27 March 2018

Introduction

Reduced mobility following surgery, such as hip or knee arthroplasty, presents a risk of deep vein thrombosis (DVT) in patients. Clot formation arising from venous stasis and lower limb muscle inactivity can be prevented by mechanical counter-measures (i.e. compression stockings/devices). Although commonly used, the bulk and discomfort of mechanical devices can result in poor compliance. In contrast, neuromuscular electrostimulation devices offer a non-invasive, practical and economical alternative to reduce the risk of venous thromboembolism.

Electrostimulation devices stimulate the common peroneal nerve to induce an involuntary, isometric muscle contraction of calf extensor muscles (i.e. tibialis anterior and peroneus longus) and an additional stretch of the flexor gastrocnemii muscles. The passive stretch compresses the antagonist gastrocnemii, as the muscle is pulled in a distal direction during dorsiflexion. The passive motion of the flexor gastrocnemii acts as the calf muscle pump to promote venous circulation by raising intramuscular pressure. In healthy adults, 5 min periods of lower leg electrostimulation has been shown to enhance venous volume (flow up to 100%) and velocity, with minimal discomfort at maximum stimulation intensity. Recently, Zhang et al. trialled an electrostimulation device by modelling venous stasis...
in healthy adults using an automated tourniquet. Short periods (10 min) of electrostimulation were shown to (i) augment calf muscle-pump action and (ii) reduce DVT-associated rises in blood volume and tissue deoxygenation. Alongside reduced limb volume, others have shown reduced venous transit-time and venous ambulatory pressure in the young. Clinically, stimulating lower limb venous circulation with electrostimulation can also reduce limb volume oedema in orthopaedic, diabetic and cardiovascular disease patients. During electrostimulation, the activated tibialis anterior becomes an agonist, and the medial gastrocnemius an antagonist. Force and EMG recordings indicate that electrostimulation intensity relates directly to ankle dorsiflexion (and muscle-pump force). This involuntarily stretches the gastrocnemii, reducing the muscle anatomical cross-sectional area and subsequently venous diameter to eject blood to a greater extent than voluntary contraction alone.

Interestingly, Khanbhai et al. reported greater change in limb volume and venous function with electrostimulation applied in a lying position, when compared to sitting and standing. Standing elevates lower limb volume and venous pressure, in comparison to lying and sitting. In these positions, knee joint angle (and therefore muscle length) may influence muscle tension of the bi-articular gastrocnemius prior to innervation. Furthermore, altering muscle length (via joint angle) during electrostimulation is recommended to promote spatial motor unit recruitment. Clinical observations from our group support a visible twitch response during electrostimulation when seated (~90° knee joint angle), but little visible twitch with the knee extended (~0° knee joint angle) in orthopaedic patients. Receiving electrostimulation whilst lying may be preferable to standing, in terms of gravitational pressure influencing peripheral haemodynamics. However, the common peroneal nerve becomes displaced from the fibular head by approximately 17 mm when standing or sitting with 0° knee flexion, when compared to sitting with 90° knee flexion. It is reasonable to assume that if an individual is upright and unable to sit whilst receiving electrostimulation, they will experience less calf muscle activation (and potentially muscle-pump action). This proof-of-concept study will assess the impact of knee joint position on the neuromuscular responses of calf muscles during electrostimulation. A subsequent study will incorporate haemodynamic, alongside neuromuscular assessments, with post-operative orthopaedic patients.

What is not clearly understood is whether knee joint angle influences the neuromuscular activity of the lower leg muscles, particularly the gastrocnemii co-contraction (and therefore the effectiveness muscle-pump action) during electrostimulation. This pilot study aimed to assess the effect of seated, knee joint angle on the neuromuscular activity of the (i) gastrocnemii (co-contractor muscle pump) and (ii) peroneus longus and tibialis anterior (innervated) muscles during electrostimulation in healthy, older adults.

Methods

Participants

Fifteen community-dwelling, older adults (Table 1) were recruited by advertisement from Dorset, UK. Sample size estimation was based upon a minimum of n = 12, as deemed adequate for a pilot study, whereby data will inform the power analyses of a follow-up, clinical-cohort study. Volunteers were initially screened by the completion of an online pre-test health questionnaire, followed by a telephone-call by an investigator to further discuss eligibility. Table 2 details inclusion and exclusion criteria, which served to limit confounding variables and provide a control to compare future age-matched, orthopaedic cohorts with. Eligible volunteers provided written informed consent and completed a Physical Activity Scale for the Elderly questionnaire on the day of experimental testing. The experimental protocol was approved by the Bournemouth University Research Ethics Committee (Ref: 8029) and accepted on the International Standard Randomised Controlled Trial Number Register on http://isrctn.org (Ref number: ISRCTN28232918).

Experimental protocol

Participants visited the laboratory once to undergo 60 min of lower leg transcutaneous electrostimulation, with knee joint at three different angles (20 min administrations each (Figure 1)). Online software (sealedenvelope.com) was used to randomly allocate electrostimulation joint angle order (0° first, n = 4; 45° first, n = 5; 90° first, n = 6); no order effect was found for knee joint angle on the neuromuscular responses of calf muscles during electrostimulation.

Table 1. Demographic characteristics of recruited older adults.

	Male	Female	All
N	7	8	15
Age (years)	62 ± 3	70 ± 9	66 ± 8
Height (cm)	174.2 ± 6.7	163.1 ± 5.4	168.3 ± 8.2
Weight (kg)	79.0 ± 9.4	67.7 ± 15.9	73.0 ± 14.1
BMI (kg/m²)	26.0 ± 2.2	25.2 ± 4.6	25.6 ± 3.6
Stimulation intensity (level 1–7)	4 ± 1	5 ± 2	5 ± 2
PASE score	218 ± 79	136 ± 59	174 ± 79

Note: Values are mean ± SD. BMI: body mass index; PASE: the Physical Activity Scale for the Elderly; SD: standard deviation.
neuromuscular activity for each muscle \((p > 0.1)\). Each 20 min bout was separated by 60 s rests. Pilot testing \((n = 3\) (males), age \(56 \pm 2\) years) confirmed no fatigue effect from monitoring EMG signals during three, 25 min electrostimulation bouts. Instruction was given to arrive hydrated, having maintained habitual physical activity levels in the preceding 48 h (Appendix 1). Upon arrival at the laboratory, the experimental protocol was re-explained, body mass was then recorded using digital scales (Seca Ltd, Birmingham, UK) and height with a stadiometer (Holtain Ltd, Crymych, UK). All subsequent measures and electrostimulation treatments refer to the non-dominant limb.

Once the electrostimulation device was fitted according to manufacturer instructions (full knee extension \((0^\circ)\); Firstkind Limited, Bucks, UK) and stimulation intensity determined, four EMG sensors were placed on the lower limb with the participant lying prone, and for the \(\text{tibialis anterior}\) lying supine. Electrostimulation was administered with participants seated upright (hip joint at \(\sim 90^\circ\)) in an adjustable isokinetic dynamometer chair (Humac Norm, Cybex International Inc., NY, USA) to replicate clinical administration. The lateral femoral epicondyle of the tested limb was aligned to the rotational axis of the dynamometer and the ankle joint was secured to the lever-arm. Participants were guided to extension and flexion limits by the investigator to determine knee joint range of motion \((0^\circ = \text{full extension}); the lever-arm was then mechanically set to the first knee joint angle \((0^\circ, 45^\circ \text{or } 90^\circ)\). Lower limb neuromuscular activity was recorded for 20 min throughout electrostimulation. Participant discomfort was self-reported in the final 60 s only, so as not to interfere with EMG

Table 2. Inclusion and exclusion criteria for participation.
Inclusion
Age
Between 55 years and 85 years
Health
Good general health \((\text{PASE score} > 70; \text{norm} \ 103 \pm 64\) \((\text{Washburn et al.}^{19})\)
Cognitive
Able to understand the participant information and informed consent sheets; willing to follow the protocol requirements
Exclusion
Age
< 55 years
Health
Recently undergone surgery and/or suffered illness
Medical history
Neuromuscular, haematological and/or cardiovascular disorders; fitted with a pacemaker; history or signs of previous superficial or DVT/pulmonary embolism; varicosities, ulceration or erosion around lower leg
BMI
Chronic obesity \((\text{BMI} > 40 \text{kg/m}^2)\)

DVT: deep-vein thrombosis; BMI: body mass index; PASE: the Physical Activity Scale for the Elderly.

Figure 1. Schematic of the experimental protocol to examine the effect of leg position on electrostimulation. Leg position order was randomised. Black arrows indicate beginning \((0–1 \text{ min})\), middle \((9–10 \text{ min})\) and end \((19–20 \text{ min})\) time-points for electromyography (EMG) root mean square (RMS) analysis; discomfort was assessed in the end time-point, only grey arrows indicate the mid time-point \((9–10 \text{ min})\).
sensor recordings and summatively assess perceived discomfort for each 20 min bout. The procedure above was then repeated for 20 min in the second knee angle and 20 min in the third knee angle. Instruction was given to relax both lower limbs throughout the entire electrostimulation period.

Electrical stimulator

A small (186 mm x 31 mm), non-invasive electrostimulation device (geko™ T2, Firstkind Limited, Bucks, UK) was attached horizontally below the fibula head on the lateral–posterior aspect of the knee, according to the manufacturer’s instructions for use. The device stimulates the common peroneal nerve, which leads to isometric contraction of the peroneus longus and tibialis anterior muscles of the lower leg. Seven stimulation intensities can be selected (50, 70, 100, 140, 200, 280 and 400 µs), to deliver a 27 mA pulse current (200 Ω–5 kΩ load impedance), at a 1 Hz repetition rate. Hereafter, electrostimulation intensities are referred to as levels 1 to 7. Participant stimulation intensity (or level) was determined based upon (i) maximal stimulation effect (slight visible dorsiflexion/eversion movement) and (ii) patient comfort. To investigate a potential staircase effect20 for knee joint angle on electrostimulation neuromuscular activity, stimulation intensity was increased from the participant’s prescribed level up to maximum (level 7) at 10 s intervals at the end of each 20 min period (Figure 1).

Perceived discomfort

Participants self-reported lower limb discomfort during electrostimulation for each knee joint angle. The same investigator presented a 10 cm Visual Analogue Scale (VAS), ranging from 0 (no discomfort/pain) to 10 (extreme discomfort/pain); participants marked perceived discomfort on the 0 to 10 cm scale. A Verbal Rating Score (VRS) was also used, ranging from 1 (no sensation) to 7 (very severe discomfort) that aligned to the stimulation levels. Participants circled perceived sensation.

Electromyography (EMG) recording, normalisation and processing

Peroneus longus, tibialis anterior, gastrocnemius medialis and gastrocnemius lateralis EMG were recorded via SX230-1000 bipolar sensors from a portable Biometrics PS850 system (DataLOG, Biometrics Ltd, Newport, UK) during electrostimulation (Figure 2). The skin was shaved, cleansed and gently abraded to reduce sensor-to-skin impedance. Sensors were placed over the respective muscle bellies according to surface electromyography for the non-invasive assessment of muscles (SENIAM) recommendations,21 and the reference electrode was strapped over the lateral malleolus of the tested limb. To limit electrostimulation artefacts in the raw electromyogram (EMG) signal, recording sensors were positioned orthogonal to the stimulation

Figure 2. Left leg showing the EMG sensor placements for the tibialis anterior (TA), peroneus longus (PL) (left figure), and the gastrocnemius lateralis (GL), gastrocnemius medialis (GM) and reference electrode (REF) affixed to the lateral malleolus (right figure).
Statistical analysis

Shapiro–Wilk tests confirmed neuromuscular activity data were non-normally distributed; non-parametric tests were used to analyse RMS for each muscle. One-way, repeated measures Friedman’s analyses of variance (ANOVARs) were used to compare (i) RMS activity and (ii) discomfort (VAS and VRS) between knee joint angle (0°, 45° and 90°) for each muscle. Paired Wilcoxon Signed-Rank tests identified angle-specific differences. Mixed-design ANOVAs (within-group, repeated measures on levels (7) and degrees (3)) tested whether there was an electrostimulation intensity effect on RMS activity, dependent upon knee joint angle. Relationship between stimulation intensity and neuromuscular activity (normalised RMS) at each knee angle was determined by Spearman’s correlation (based upon group mean (n = 15) for each stimulation intensity).

Data were expressed as mean and standard deviation. Non-normal data were expressed as mean, with 95% confidence intervals (CIs), and the Friedman’s ANOVA test statistic represented as Chi-squared (χ²). Effect sizes (Cohen’s d) were calculated to determine meaningful differences (small = 0.2, moderate = 0.5, large, 0.8) and statistical significance set as p < 0.05.

Results

Anthropometry and discomfort

There were no significant differences in anthropometric measures following 60 min of electrostimulation (p > 0.05), when compared to baseline measures. There were no significant differences in values of discomfort (VAS and VRS) during electrostimulation at each knee joint angle (p > 0.05; Table 3).

Neuromuscular activity and knee joint angle

During electrostimulation, knee joint angle did not affect RMS activity of the tibialis anterior (χ²(2) = 1.857, p = 0.4, d = 0.07; Figure 3(a)) and peroneus longus (χ²(2) = 3.0, p = 0.2, d = 0.08; Figure 3(b)). However, knee angle did influence gastrocnemius medialis RMS activity (χ²(2) = 12.0, p = 0.002, d = 0.54), with greater RMS activity at 90° knee joint angle, when compared to 0° (p = 0.003, d = 1.07) and 45° (p = 0.003, d = 1.06; Figure 3(c)) angles. Knee joint angle influenced gastrocnemius lateralis RMS activity (χ²(2) = 16.714, p = 0.0001, d = 0.49), with greater RMS activity at 90° knee joint angle, when compared to 0° (p = 0.002, d = 0.99) and 45° (p = 0.002, d = 1.31; Figure 3(d)) angles. Gastrocnemius lateralis RMS activity was greater at 45° knee joint angle, when compared to 0° (p = 0.02, d = 0.27) angle.

Table 3. Perceived discomfort VAS and VRS during electrostimulation at each leg position.

Discomfort scale	Male	Female	All
VAS (0–10)			
0°	1.7 ± 0.8	2.3 ± 0.7	2.0 ± 0.8
45°	1.9 ± 0.7	2.0 ± 0.5	1.9 ± 0.6
90°	1.6 ± 0.8	1.8 ± 0.7	1.7 ± 0.7
VRS (1–7)			
0°	2.1 ± 0.4	2.3 ± 0.7	2.2 ± 0.6
45°	2.3 ± 0.5	2.0 ± 0.5	2.1 ± 0.5
90°	2.1 ± 0.4	2.0 ± 0.4	2.1 ± 0.5

Values are mean ± SD. VAS: Visual Analogue Scale; VRS: Verbal Rating Score; SD: standard deviation.
Joint angle-dependent effect on electrostimulation intensity

When increasing the electrostimulation intensity from minimum (level 1) to maximum (level 7), knee joint angle did not affect tibialis anterior RMS activity ($p = 0.27$, $d = 0.09$), although there was a linear trend ($p = 0.004$, $d = 0.48$; Figure 4(a)). Peroneus longus RMS activity was influenced by electrostimulation intensity and knee joint angle ($p = 0.02$, $d = 0.21$; quadratic trend: $p = 0.01$, $d = 0.41$; Figure 4(b)), with greater effect at 90° knee joint angle than at 45° ($p = 0.05$). Gastrocnemius medialis RMS activity showed an interaction effect (intensity x knee joint angle) ($p = 0.01$, $d = 0.15$; quadratic trend: $p = 0.05$, $d = 0.26$), with greater effect at 90° knee joint angle than at 0° and 45° angles (see Figure 4(c)). The gastrocnemius lateralis was influenced by intensity only ($p = 0.001$, $d = 0.52$; quadratic trend: $p = 0.03$, $d = 0.32$; Figure 4d). There was a positive relationship between electrostimulation intensity and RMS activity for each muscle ($n = 15$; tibialis anterior: 0°, $r = 0.96$; 45°, $r = 0.97$; 90°, $r = 0.94$; peroneus longus: 0°, $r = 0.89$; 45°, $r = 0.81$; 90°, $r = 0.90$; gastrocnemius medialis: 0°, $r = 0.76$; 45°, $r = 0.78$; 90°, $r = 0.91$; gastrocnemius lateralis: 0°, $r = 0.87$; 45°, $r = 0.85$; 90°, $r = 0.94$; $p < 0.001$).

Discussion

This proof-of-concept pilot study investigated whether knee joint angle influenced lower limb neuromuscular activity during electrostimulation in healthy, older adults. It is recommended that the joint angle (and therefore muscle length) remains the same during electrostimulation,15 as the device stimulates the common peroneal nerve to activate the calf muscle pump to subsequently promote venous circulation in the lower limb. We examined the muscles responsible for the muscle-pump action: the peroneus longus, tibialis anterior and the co-contractor gastrocnemii (lateral and medial heads) at three different knee joint angles (i.e. 0° (full extension), 45° and 90° knee flexion). We found that
during electrostimulation positioning the knee joint at 90° flexion (i) influenced gastrocnemii (ankle plantarflexor) muscle activation; (ii) increased gastrocnemius medialis activation at each stimulation intensity (from minimum (level 1) to maximum (level 7)), when compared to 0° and 45° knee flexion and (iii) did not affect activation of the peroneus longus (ankle plantarflexor and evertor) and the tibialis anterior (ankle dorsiflexor) muscles.

There was a significant correlation between stimulation intensity and muscle activation for each calf muscle. The strongest correlation was observed at 90° knee flexion intensity and muscle activation for each calf muscle. The strongest correlation was observed at 90° knee flexion intensity and muscle activation for each calf muscle.

Figure 4. Relationship between the electrostimulation intensity and the normalised EMG activity (% of maximum stimulation intensity level 7) of the (a) tibialis anterior, (b) peroneus longus, (c) gastrocnemius medialis and (d) gastrocnemius lateralis, at 0°, 45° and 90° knee joint angles. *Significant difference at 90°, p < 0.05. RMS: root mean square.
in 0\(^\circ\) flexion,\(^{17}\) which would result in sub-optimal \textit{peroneus longus} and \textit{tibialis anterior} activation. In addition, stimulating lengthened \textit{gastrocnemii}, with longer contractile and/or elastic component would likely affect muscle activation. For example, as the \textit{gastrocnemius} is an agonist in knee flexion, stimulation at 90\(^\circ\) flexion would innervate an already ‘active’ muscle under tension. As an antagonist in knee extension, \textit{gastrocnemii} activation increases during voluntary knee flexion\(^{20}\) but decreases during voluntary knee extension.\(^{30}\) In a lengthened position (0\(^\circ\)), the stimulation would have to overcome a stretched \textit{gastrocnemius} tendon and greater passive force.\(^{27,31}\) Therefore, a proportion of muscular tension evoked by electrostimulation would be attenuated by the Achilles tendon of the \textit{gastrocnemius}, which accounts for \(\sim73\%\) of the total muscle-tendon length change (in contrast, the \textit{tibialis anterior} tendon accounts for \(\sim45\%\) length change).\(^{25}\)

Another possible explanation for the increased \textit{gastrocnemius medialis} activity with electrostimulation at 90\(^\circ\) knee flexion arises from neuromuscular propagation. Decreases in contraction time and half-relaxation time during progressive muscle shortening\(^{32}\) reflect a requirement for higher excitation rates to produce the same evoked torque. Greater activation at 90\(^\circ\) knee flexion may indicate a need to increase activation at a shorter muscle length. However, this seems unlikely, given that the \textit{gastrocnemius} muscle is at a favourable position on the length–tension relationship at 90\(^\circ\) knee angle. Others have reported decreased \textit{gastrocnemii} activation at pronounced knee flexion angles up to 60\%,\(^{33,34}\) which disagree with our findings. However, it should be noted that these studies evoked muscle activity by maximal voluntary contraction, whilst manipulating ankle angle.

The neuromuscular activity of the \textit{tibialis anterior} and \textit{peroneus longus} during electrostimulation were not influenced by knee joint angle. \textit{Tibialis anterior} activation at 45\(^\circ\) (59.3\%) and 90\(^\circ\) knee flexion (64\%) appeared greater than 0\(^\circ\) knee flexion (49.9\%) after the first minute, yet this did not reach significance. Additional linear trend analyses (\(p=0.008\)) indicated that \textit{tibialis anterior} neuromuscular activity increased proportionally from minimum (level 1) to maximum (level 7) stimulation intensities similarly across each knee joint angle. However, these findings are unsurprising given that both are mono-articular muscles and span only the ankle joint, whereas the bi-articular \textit{gastrocnemii} spans the ankle and knee joints. The \textit{tibialis anterior} is composed predominantly of slow twitch, type I fibres, with slower contraction time,\(^{32}\) which may also contribute to the electrostimulation-evoked muscle activation being lower at each knee angle, when compared to the other muscles (Figure 4(a) to (d)). Additionally, the common peroneal nerve first passes the \textit{peroneus longus}, which when activated, will oppose force produced by the \textit{tibialis anterior}.\(^{32}\)

Knee joint angle did not influence discomfort, with the majority of perceptual ratings showing that stimulation involved \textit{minimal discomfort}, and only the highest stimulation setting, level 7 (pulse current: 27 mA; intensity: 400\(\mu\)s; repetition rate: 1 Hz), reached \textit{mild discomfort}. Similar discomfort values have been reported during percutaneous electrostimulation administered intermittently (5 min stimulation, 10 min rest for 4 h) in healthy adults\(^{8}\) and in hip arthroplasty patients of similar age.\(^{2}\) Electrostimulation settings were participant-specific and determined according to the manufacturer’s instructions which recommend that the appropriate stimulation intensity should evoke a visible twitch in the foot. Even at 0\(^\circ\) knee flexion, \textit{tibialis anterior} and \textit{gastrocnemius medialis} activation increased by a minimum of \(\sim49\%\) maximum with little discomfort using prescribed settings. As lower limb blood flow can be increased by a muscle producing 30\% of maximal contraction,\(^{35}\) our preliminary results show promise with regard to electrostimulation at 90\(^\circ\) knee flexion enhancing neuromuscular activity, and potentially venous blood flow, with minimal discomfort.

From a clinical perspective, these pilot data from healthy, older adults suggest that receiving electrostimulation when seated at 90\(^\circ\) knee flexion can enhance \textit{gastrocnemii} activation, when compared to seated at 45\(^\circ\) or 0\(^\circ\) knee flexion. The electrostimulation device stimulates the common peroneal nerve to evoke an involuntary, isometric contraction of the \textit{peroneus longus} and \textit{tibialis anterior} muscles simultaneously. The \textit{gastrocnemius} then undergoes as passive stretch as the antagonist flexor muscle. This calf muscle-pump action improves venous blood flow in bedrest,\(^{36}\) sitting for prolonged periods\(^{8}\) and during venous stasis.\(^{7}\) The \textit{gastrocnemii} contributes a greater physiological cross-sectional area (96.1 cm\(^2\)) of the calf muscle pump than the \textit{tibialis anterior} (18.5 cm\(^2\)) and \textit{peroneus longus}\(^{37}\) and therefore has greater potential for force-producing capacity and venous circulation. However, straightening the leg to 0\(^\circ\) knee flexion may displace the common peroneal nerve from the fibular head\(^{17}\) and reduce the impact of the calf muscle pump. Based on our pilot observations, future work should determine whether receiving electrostimulation seated, with 90\(^\circ\) knee flexion can increase \textit{gastrocnemius} activation and, in turn, produce a more forceful muscle-pump action to enhance venous blood flow in clinical cohorts (i.e. orthopaedic patients undergoing hip/knee arthroplasty).

The main limitations of this proof-of-concept pilot study were that we did not measure electrostimulation-evoked (i) torque-production or (ii) venous blood flow.
Ankle torque would have been difficult to assess given that our experimental aim was to study the potential influence of knee joint angle on electrostimulation. Zhanget al., assessed electrostimulation-evoked torque and during isometric ankle dorsiflexion with participants lying prone. They were able to fix a load cell in this position, whereas our dynamometer lever-arm (measuring torque) was used to fix knee joint angle. Our 20 min electrostimulation periods were too brief to accurately apply both EMG and Doppler ultrasound to measure venous blood flow.

Conclusions

This pilot study presents the first observation that knee joint angle can influence gastrocnemius activation during seated electrostimulation in healthy, older adults. The results suggest that receiving electrostimulation when seated, with the knee flexed at 90°, can augment increases in gastrocnemius activity shown with the knee partially flexed (45°) or extended (0°). This could have implications for an electrostimulation device stimulating a more forceful calf muscle-pump action and, in turn, further improving lower limb venous blood flow with little discomfort.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The study was supported by Bournemouth University Grants Academy and the Orthopaedic Research Institute.

Guarantor

JPG

Contributorship

All authors were involved in the study design and manuscript writing. JPG and MC were responsible for gaining ethical approval, participant recruitment, data collection and data analysis. JPG wrote the manuscript drafts, with guidance on clinical interpretation from TWW. JPG, MC and TWW critically revised, and approved the final manuscript.

Acknowledgements

The authors would like to thank all those who volunteered their time to participate in the study, as well as Debbie Gale whose laboratory support was invaluable. The findings of this paper were presented at the 20th European Congress of Physical Rehabilitation Medicine, Lisbon, Portugal, 2016.

References

1. Geerts WH, Bergqvist D, Pineo GF, et al. Prevention of venous thromboembolism: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2008; 133: 381–453.
2. Malone PC and Agutter PS. The aetiology of deep venous thrombosis. QJM Int J Med 2006; 99: 581–593.
3. Broderick BJ, Breathnach O, Condon F, et al. Haemodynamic performance of neuromuscular electrical stimulation (NMES) during recovery from total hip arthroplasty. J Orthop Surg Res 2013; 8: 3.
4. Froimson MI, Murray TG and Fazeekas AF. Venous thromboembolic disease reduction with a portable pneumatic compression device. J Arthroplasty 2009; 24: 310–316.
5. National Institute for Health and Care Excellence (NICE). NICE medical technologies guidance [MTG19]: the geko device for reducing the risk of venous thromboembolism. In: Medical technologies evaluation programme (ed NICE), 25 June 2014, pp. 1–27.
6. Summers JA, Clinch J, Radhakrishnan M, et al. The geko electro-stimulation device for venous thromboembolism prophylaxis: a NICE medical technology guidance. Appl Health Econ Health Policy 2015; 13: 135–147.
7. Zhang Q, Styf J, Ekstrom L, et al. Effects of electrical nerve stimulation on force generation, oxygenation and blood volume in muscles of the immobilized human leg. Scand J Clin Lab Invest 2014; 74: 369–377.
8. Tucker A, Maass A, Bain D, et al. Augmentation of venous, arterial and microvascular blood supply in the leg by isometric neuromuscular stimulation via the peroneal nerve. Int J Angiol 2010; 19: e31–37.
9. Khanbhai M, Harsnari J, Burke J, et al. The effect of neuromuscular electrostimulation on lower limb venous physiology. The Society of Academic and Research Surgery (SARS) Congress, London. http://www.surgical-research.org.uk/wp-content/uploads/2014/12/Vascular1.pdf (2014, accessed 22 March 2017).
10. Wainwright TW, Imms T and Middleton RG. A randomised-controlled-trial comparing the effect of the gekoTM device and TED stockings on post-operative oedema in total hip replacement patients. Birmingham: Chartered Society of Physiotherapy, 2014.
11. Ingves MV and Power AH. Two cases of transcutaneous electrical nerve stimulation of the common peroneal nerve successfully treating refractory, multifactorial leg edema. J Investig Med High Impact Case Rep 2014; 2: 2324709614559839.
12. Faghi PD, Votto JJ and Hovorka CF. Venous hemodynamics of the lower extremities in response to electrical stimulation. Arch Phys Med Rehabil 1998; 79: 842–848.
13. Man IO, Glover K, Nixon P, et al. Effect of body position on foot and ankle volume in healthy subjects. Clin Physiol Funct Imaging 2004; 24: 323–326.
14. Partsch B and Partsch H. Calf compression pressure required to achieve venous closure from supine to standing positions. J Vasc Surg 2005; 42: 734–738.
15. Gobbo M, Maffiuletti NA, Orizio C, et al. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. *J Neuroeng Rehabil* 2014; 11: 17.

16. Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. *Eur J Appl Physiol* 2010; 110: 223–234.

17. Weller CD, Buchbinder R and Johnston RV. Interventions for helping people adhere to compression treatments for venous leg ulceration. *Cochrane Database Syst Rev* 2016; 3: CD008378.

18. Julious SA. Sample size of 12 per group rule of thumb for experimental electrostimulation testing. *J Physiol* 2014; 407: 599–613.

19. Washburn RA, Smith KW, Jette AM, et al. The Physical Activity Scale for the Elderly (PASE): development and evaluation. *J Clin Epidemiol* 1993; 46: 153–162.

20. Hanson J. The effects of repetitive stimulation on the action potential and the twitch of rat muscle. *Acta Physiologica* 1974; 90: 387–400.

21. Hermens HJ, Freriks B, Disselhorst-Klug C, et al. Development of recommendations for SEMG sensors and sensor placement procedures. *J Electromyogr Kinesiol* 2000; 10: 361–374.

22. McNeil CJ, Vandervoort AA and Rice CL. Peripheral impairments cause a progressive age-related loss of strength and velocity-dependent power in the dorsiflexors. *J Appl Physiol* 2007; 102: 1962–1968.

23. Edgerton VR, Smith JL and Simpson DR. Muscle fibre type populations of human leg muscles. *Histochem J* 1975; 7: 259–266.

24. Duyssen J, van Wezel BM, Prokop T, et al. Medial gastrocnemius is more activated than lateral gastrocnemius in sural nerve induced reflexes during human gait. *Brain Res* 1996; 727: 230–232.

25. Herbert RD, Moseley AM, Butler JE, et al. Change in length of relaxed muscle fascicles and tendons with knee and ankle movement in humans. *J Physiol* 2002; 539: 637–645.

26. Gordon AM, Huxley AF and Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. *J Physiol* 1966; 184: 170–192.

27. Li L, Landin D, Grodesky J, et al. The function of gastrocnemius as a knee flexor at selected knee and ankle angles. *J Electromyogr Kinesiol* 2002; 12: 385–390.

28. Rassier DE, MacIntosh BR and Herzog W. Length dependence of active force production in skeletal muscle. *J Appl Physiol* 1999; 86: 1445–1457.

29. Gravel D, Arsenault AB and Lambert J. Soleus-gastrocnemius synergies in controlled contractions produced around the ankle and knee joints: an EMG study. *Electromyogr Clin Neurophysiol* 1987; 27: 405–413.

30. Suzuki T, Chino K and Fukashiro S. Gastrocnemius and soleus are selectively activated when adding knee extensor activity to plantar flexion. *Hum Mov Sci* 2014; 36: 35–45.

31. Bahler AS. Series elastic component of mammalian skeletal muscle. *Am J Physiol* 1967; 213: 1560–1564.

32. Gandevia SC and McKenzie DK. Activation of human muscles at short muscle lengths during maximal static efforts. *J Physiol* 1988; 407: 599–613.

33. Arampatzis A, Karamanidis K, Staflidis S, et al. Effect of different ankle- and knee-joint positions on gastrocnemius medialis fascicle length and EMG activity during isometric plantar flexion. *J Biomech* 2006; 39: 1891–1902.

34. Lauber B, Lichtwark GA and Cresswell AG. Reciprocal activation of gastrocnemius and soleus motor units is associated with fascicle length change during knee flexion. *Physiol Rep* 2014; 2: e12044 (1–10).

35. Barcroft H and Millen JL. The blood flow through muscle during sustained contraction. *J Physiol* 1939; 97: 17–31.

36. Broderick BJ, O’Brien DE, Breen PP, et al. A pilot evaluation of a neuromuscular electrical stimulation (NMES) based methodology for the prevention of venous stasis during bed rest. *Med Eng Phys* 2010; 32: 349–355.

37. Fukunaga T, Roy RR, Shelloch FG, et al. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. *J Orthop Res* 1992; 10: 928–934.

Appendix I

Activity	Days per week	Hours per day
Sitting	5.83 ± 0.65	2.90 ± 1.06
Walk outside home	2.47 ± 0.92	1.37 ± 0.86
Light sport/recreational activities	0.73 ± 0.11	0.73 ± 0.79
Moderate sport/recreational activities	0.87 ± 1.06	0.59 ± 0.90
Strenuous sport/recreational activities	1.33 ± 1.45	0.92 ± 1.12
Muscle strength/endurance exercises	0.80 ± 1.01	0.20 ± 0.25
Light housework	0.93 ± 0.26	
Heavy housework or chores	0.80 ± 0.41	
Home repairs	0.20 ± 0.41	
Lawn work or yard care	0.40 ± 0.51	
Outdoor gardening	0.53 ± 0.52	
Caring for another person	0.20 ± 0.41	
Volunteering/paid work (n = 12)²	29.88 ± 18.30	4.27 ± 2.61

Values are mean ± SD. Data were collected from the Physical Activities Scale for the Elderly (PASE). SD: standard deviation.

²Three participants did not volunteer.