TILINGS DEFINED BY AFFINE WEYL GROUPS

E. MEINRENKEN

Abstract. Let W be a Weyl group, presented as a reflection group on a Euclidean vector space V, and $C \subset V$ an open Weyl chamber. In a recent paper, Waldspurger proved that the images $(\text{id} - w)(C)$ for $w \in W$ are all disjoint, with union the closed cone spanned by the positive roots. We prove that similarly, the images $(\text{id} - w)(A)$ of the open Weyl alcove A, for $w \in W^a$ in the affine Weyl group, are disjoint and their union is V.

1. Introduction

Let W be the Weyl group of a simple Lie algebra, presented as a crystallographic reflection group in a finite-dimensional Euclidean vector space $(V, \langle \cdot, \cdot \rangle)$. Choose a fundamental Weyl chamber $C \subset V$, and let D be its dual cone, i.e. the open cone spanned by the corresponding positive roots. In his recent paper [2], Waldspurger proved the following remarkable result.

Theorem 1.1 (Waldspurger). The images $D_w := (\text{id} - w)(C)$, $w \in W$ are all disjoint, and their union is the closed cone spanned by the positive roots:

$$\overline{D} = \bigcup_{w \in W} D_w.$$

For instance, the identity transformation $w = \text{id}$ corresponds to $D_{\text{id}} = \{0\}$ in this decomposition, while the reflection s_α defined by a positive root α corresponds to the open half-line $D_{s_\alpha} = \mathbb{R}_{>0} \cdot \alpha$.

The aim of this note is to prove a similar result for the affine Weyl group W^a. Recall that $W^a = \Lambda \rtimes W$ where the co-root lattice $\Lambda \subset V$ acts by translations. Let $A \subset C$ be the Weyl alcove, with $0 \in \overline{A}$.

Theorem 1.2. The images $V_w = (\text{id} - w)(A)$, $w \in W^a$ are all disjoint, and their union is V:

$$V = \bigcup_{w \in W^a} V_w.$$

Figure 1 is a picture of the resulting tiling of V for the root system G_2. Up to translation by elements of the lattice Λ, there are five 2-dimensional tiles, corresponding to the five Weyl group elements with trivial fixed point set. Letting s_1, s_2 denote the simple reflections, the lightly shaded polytopes are labeled by the Coxeter element $s_1 s_2$, $s_2 s_1$, the medium shaded polytopes by $(s_1 s_2)^2$, $(s_2 s_1)^2$, and the darkly shaded polytope by the longest Weyl group element $w_0 = (s_1 s_2)^3$.

One also has the following related statement.
Theorem 1.3. Suppose $S \in \text{End}(V)$ with $||S|| < 1$. Then the sets $V_w^{(S)} = (S - w)(A)$, $w \in W^a$ are all disjoint, and their closures cover V:

$$V = \bigcup_{w \in W^a} V_w^{(S)}.$$

Note that for $S = 0$ the resulting decomposition of V is just the Stiefel diagram, while for $S = \tau \text{id}$ with $\tau \rightarrow 1$ one recovers the decomposition from Theorem 1.2.

The proof of Theorem 1.2 is in large parts parallel to Waldspurger’s [2] proof of Theorem 1.1. We will nevertheless give full details in order to make the paper self-contained.

Acknowledgments: I would like to thank Bert Kostant for telling me about Waldspurger’s result, and the referee for helpful comments. I also acknowledge support from an NSERC Discovery Grant and a Steacie Fellowship.

2. Notation

With no loss of generality we will take W to be irreducible. Let $\mathfrak{R} \subset V$ be the set of roots, $\{\alpha_1, \ldots, \alpha_l\} \subset \mathfrak{R}$ a set of simple roots, and

$$C = \{x | \langle \alpha_i, x \rangle > 0, \ i = 1, \ldots, l\}$$

the corresponding Weyl chamber. We denote by $\alpha_{\text{max}} \in \mathfrak{R}$ the highest root, and $\alpha_0 = -\alpha_{\text{max}}$ the lowest root. The open Weyl alcove is the l-dimensional simplex defined as

$$A = \{x | \langle \alpha_i, x \rangle + \delta_{i,0} > 0, \ i = 0, \ldots, l\}.$$

Its faces are indexed by the proper subsets $I \subset \{0, \ldots, l\}$, where A_I is given by inequalities $\langle \alpha_i, x \rangle + \delta_{i,0} > 0$ for $i \not\in I$ and equalities $\langle \alpha_i, x \rangle + \delta_{i,0} = 0$ for $i \in I$. Each A_I has codimension
$|I|$. In particular, $A_i = A_{\{i\}}$ are the codimension 1 faces, with α_i as inward-pointing normal vectors. Let s_i be the affine reflections across the affine hyperplanes supporting A_i,

$$s_i: x \mapsto x - (\langle \alpha_i, x \rangle + \delta_i,0)\alpha_i^\vee, \quad i = 0, \ldots, l,$$

where $\alpha_i^\vee = 2\alpha_i/\langle \alpha_i, \alpha_i \rangle$ is the simple co-root corresponding to α_i. The Weyl group W is generated by the reflections s_1, \ldots, s_l, while the affine Weyl group W^a is generated by the affine reflections s_0, \ldots, s_l. The affine Weyl group is a semi-direct product

$$W^a = \Lambda \rtimes W$$

where the co-root lattice $\Lambda = \mathbb{Z}[\alpha_1^\vee, \ldots, \alpha_l^\vee] \subset V$ acts on V by translations. For any $w \in W^a$, we will denote by $\tilde{w} \in W$ its image under the quotient map $W^a \to W$, i.e. $\tilde{w}(x) = w(x) - w(0)$, and by $\lambda_w = w(0) \in \Lambda$ the corresponding lattice vector.

The stabilizer of any given element of A_I is the subgroup W_I generated by s_i, $i \in I$. It is a finite subgroup of W^a, and the map $w \mapsto \tilde{w}$ induces an isomorphism onto the subgroup W_I generated by \tilde{s}_i, $i \in I$. Recall that W_I is itself a Weyl group (not necessarily irreducible): its Dynkin diagram is obtained from the extended Dynkin diagram of the root system Φ by removing all vertices that are in I.

3. **The top-dimensional polytopes**

For any $w \in W^a$, the subset

$$V_w = (\text{id} - w)(A)$$

is the relative interior of a convex polytope in the affine subspace $\text{ran}(\text{id} - w)$. Let

$$W^a_{\text{reg}} = \{ w \in W^a | \text{id} - w \text{ is invertible} \}$$

and $W_{\text{reg}} = W \cap W^a_{\text{reg}}$, so that $w \in W_{\text{reg}} \iff \tilde{w} \in W_{\text{reg}}$. The top dimensional polytopes V_w are those indexed by $w \in W_{\text{reg}}$, and the faces of these polytopes are $V_{w,I} := (\text{id} - w)(A_I)$. For $w \in W_{\text{reg}}$ and $i = 0, \ldots, l$ let

$$n_{w,i} := (\text{id} - \tilde{w}^{-1})^{-1}(\alpha_i).$$

Lemma 3.1. For all $w \in W^a_{\text{reg}}$, the open polytope V_w is given by the inequalities

$$\langle n_{w,i}, \xi + \lambda_w \rangle + \delta_i,0 > 0$$

for $i = 0, \ldots, l$. The face $V_{w,I} = (\text{id} - w)(A_I)$ is obtained by replacing the inequalities for $i \in I$ by equalities.

Proof. For any $\xi = (\text{id} - w)x \in V$, we have

$$\langle \alpha_i, x \rangle = \langle (\text{id} - \tilde{w}^{-1})^{-1}\alpha_i, (\text{id} - \tilde{w})x \rangle = \langle n_{w,i}, (\text{id} - \tilde{w})x \rangle = \langle n_{w,i}, \xi + \lambda_w \rangle,$$

since \tilde{w}^{-1} is the transpose of \tilde{w} under the inner product $\langle \cdot, \cdot \rangle$. This gives the description of V_w and of its faces $V_{w,I}$. \qed

Lemma 3.2. Suppose $w \in W^a_{\text{reg}}$, $i \in \{0, \ldots, l\}$. Then

$$V_{w,i} = V_{\sigma,i} \subset \text{ran}(\text{id} - \sigma)$$

with $\sigma = ws_i$. In particular, σ is an affine reflection, and $n_{w,i}$ is a normal vector to the affine hyperplane $\text{ran}(\text{id} - \sigma)$. One has $\langle n_{w,i}, \alpha_i^\vee \rangle = 1$.

Proof. For any orthogonal transformation \(g \in O(V) \) and any reflection \(s \in O(V) \), the dimension of the fixed point set of the orthogonal transformations \(g, gs \) differs by \(\pm 1 \). Since \(\tilde{w} \) fixes only the origin, it follows that \(\tilde{\sigma} \) has a 1-dimensional fixed point set. Hence \(\text{ran}(\text{id} - \sigma) \) is an affine hyperplane, and \(\sigma \) is the affine reflection across that hyperplane. Since \(s_i \) fixes \(A_i \), we have \(V_{w,i} = (\text{id} - w)(A_i) = (\text{id} - ws_i)(A_i) = V_{\sigma,i} \cap \text{ran}(\text{id} - \sigma) \). By definition \(n_{w,i} = \tilde{w}^{-1}n_{w,i} = \alpha_i \). Hence

\[-2\langle n_{w,i}, \alpha_i \rangle = \left| n_{w,i} - \alpha_i \right|^2 - \left| n_{w,i} \right|^2 = \left| \tilde{w}^{-1}n_{w,i} \right|^2 - \left| n_{w,i} \right|^2 = 0. \]

The following Proposition indicates how the top-dimensional polytopes \(V_{w,i} \) are glued along the polytopes of codimension 1.

Proposition 3.3. Let \(\sigma \in W^a \) be an affine reflection, i.e. \(\text{ran}(\text{id} - \sigma) \) is an affine hyperplane. Consider

\[\xi \in V_\sigma \setminus \bigcup_{|I| \geq 2} V_{\sigma,I}. \]

Then there are two distinct indices \(i, i' \in \{0, \ldots, l\} \) such that \(\xi \in V_{\sigma,i} \cap V_{\sigma,i'} \). Furthermore, \(w = \sigma s_i \) and \(w' = \sigma s_{i'} \) are both in \(W^a_{\text{reg}} \), so that \(V_{w,i} = V_{\sigma,i} \) and \(V_{w',i'} = V_{\sigma,i'} \), and the polytopes \(V_w, V_{w'} \) are on opposite sides of the affine hyperplane \(\text{ran}(\text{id} - \sigma) \).

Proof. Let \(n \) be a generator of the 1-dimensional subspace \(\ker(\text{id} - \tilde{\sigma}) \). Then \(n \) is a normal vector to \(\text{ran}(\text{id} - \sigma) \). The pre-image \((\text{id} - \sigma)^{-1}(\xi) \subset V \) is an affine line in the direction of \(n \). Since \(\xi \in V_\sigma \), this line intersects \(A_i \), hence it intersects the boundary \(\partial A \) in exactly two points \(x, x' \). By \(\mathbb{1} \), \(x, x' \) are contained in two distinct codimension 1 boundary faces \(A_i, A_{i'} \). Since \(n \) is ‘inward-pointing’ at one of the boundary faces, and ‘outward-pointing’ at the other, the inner products \(\langle n, \alpha_i \rangle \), \(\langle n, \alpha_{i'} \rangle \) are both non-zero, with opposite signs. Let \(w = \sigma s_i \) and \(w' = \sigma s_{i'} \). We will show that \(w \in W^a_{\text{reg}} \), i.e. \(\tilde{w} \in W_{\text{reg}} \) (the proof for \(w' \) is similar). Let \(z \in V \) with \(\tilde{w}z = z \). Then \(\tilde{\sigma}^{-1}z = \tilde{s}_iz \), so

\[(\text{id} - \tilde{\sigma}^{-1})(z) = (\text{id} - \tilde{s}_i)(z) = \langle \alpha_i, z \rangle \alpha_{i'}^\lor. \]

The left hand side lies in \(\text{ran}(\text{id} - \tilde{\sigma}) \), which is orthogonal to \(n \), while the right hand side is proportional to \(\alpha_i \). Since \(\langle n, \alpha_i \rangle \neq 0 \) this is only possible if both sides are 0. Thus \(z \) is fixed under \(\tilde{\sigma} \), and hence a multiple of \(n \). On the other hand we have \(\langle \alpha_i, z \rangle = 0 \), hence using again that \(\langle n, \alpha_i \rangle \neq 0 \) we obtain \(z = 0 \). This shows \(\ker(\text{id} - \tilde{w}) = 0 \).

As we had seen above, \(n_{w,i} \) is a normal vector to \(\text{ran}(\text{id} - \sigma) \), hence it is a multiple of \(n \). By Lemma 3.2 it is a positive multiple if and only if \(\langle n, \alpha_i \rangle > 0 \). But then \(\langle n, \alpha_{i'} \rangle < 0 \), and so \(n_{w',i'} \) is a negative multiple of \(n \). This shows that \(V_w, V_{w'} \) are on opposite sides of the hyperplane \(\text{ran}(\text{id} - \sigma) \). \(\square \)

Consider the union over \(W \subset W^a \),

\[X := \bigcup_{w \in W} V_w. \]

Thus \(\bigcup_{w \in W^a} V_w = \bigcup_{\lambda \in A} (\lambda + X) \). The statement of Theorem 1.2 means in particular that \(X \) is a fundamental domain for the action of \(A \). Figures 2 and 3 give pictures of \(X \) for the root systems \(B_2 \) and \(G_2 \). The shaded regions are the top-dimensional polytopes (i.e. the sets \(V_w \) for \(\text{id} - w \) invertible), the dark lines are the 1-dimensional polytopes (corresponding to reflections), and the origin corresponds to \(w = \text{id} \).

\[\begin{aligned} \text{Figure 2} & \quad \text{Figure 3} \end{aligned} \]
Proposition 3.4. (a) The sets $\lambda + \text{int}(X)$, $\lambda \in \Lambda$ are disjoint, and $\bigcup_{\lambda \in \Lambda} \lambda + X = V$. (b) The open polytopes V_w for $w \in W_{\text{reg}}$ are disjoint, and $\bigcup_{w \in W_{\text{reg}}} V_w = V$.

Proof. Since the collection of closed polytopes \overline{V}_w, $w \in W_{\text{reg}}$ is locally finite, the union $\bigcup_{w \in W_{\text{reg}}} \overline{V}_w$ is a closed polyhedral subset of V. Proposition 3.3 shows that a point $\xi \in V_{w,i}$ cannot contribute to the boundary of this subset unless it lies in $\bigcup_{\sigma \in W^a} \bigcup_{|I| \geq 2} V_{\sigma,I}$. We therefore see that the boundary has codimension ≥ 2, and hence is empty since $\bigcup_{w \in W_{\text{reg}}} \overline{V}_w$ is a closed polyhedron. This proves $\bigcup_{w \in W_{\text{reg}}} V_w = V$, and also $\bigcup_{\lambda \in \Lambda} (\lambda + X) = V$ with X as defined in (2). Hence the volume $\text{vol}(X)$ (for the Riemannian measure on V defined by the inner product) must be at least the volume of a fundamental domain for the action of Λ:

$$\text{vol}(X) \geq |W| \text{vol}(A).$$
On the other hand, \(\text{vol}(V_w) = \text{vol}((\text{id} - w)(A)) = \det(\text{id} - w) \text{vol}(A) \), so
\[
(4) \quad \text{vol}(X) \leq \sum_{w \in W} \text{vol}(V_w) = \text{vol}(A) \sum_{w \in W} \det(\text{id} - w) = |W| \text{vol}(A)
\]
where we used the identity \([1, \text{p.134}] \sum_{w \in W} \det(\text{id} - w) = |W| \). This confirms \(\text{vol}(X) = |W| \text{vol}(A) \). It follows that the sets \(\lambda + \text{int}(X) \) are pairwise disjoint, or else the inequality \((3)\) would be strict. Similarly that the sets \(V_w, w \in W_a \) are disjoint, or else the inequality \((4)\) would be strict. (Of course, this also follows from Waldspurger’s Theorem 1.1 since \(C_w \subset D_w \).)

Hence all \(V_w, w \in W_a \) are disjoint. \(\square \)

To proceed, we quote the following result from Waldspurger’s paper, where it is stated in greater generality \([2, \text{“Lemme”}]\).

Proposition 3.5 (Waldspurger). Given \(w \in W \) and a proper subset \(I \subset \{0, \ldots, l\} \) there exists a unique \(q \in W_I \) such that
\[
\ker(\text{id} - wq) \cap \{ x \in V | \langle \alpha_i, x \rangle > 0 \text{ for all } i \in I \} \neq \emptyset.
\]
Following \([2]\) we use this to prove,

Proposition 3.6. Every element of \(V \) is contained in some \(V_w, w \in W^a \):
\[
(5) \quad \bigcup_{w \in W^a} V_w = V.
\]

Proof. Let \(\xi \in V \) be given. Pick \(w \in W^a_{\text{reg}} \) with \(\xi \in \overline{V}_w \), and let \(I \subset \{0, \ldots, l\} \) with \(\xi \in V_{w,I} \). Then \(x := (\text{id} - w)^{-1}(\xi) \in A_I \) is fixed under \(W^a_I \). Using Proposition 3.5 we may choose \(\tilde{q} \in W_I \) and \(n \in V \) such that
(a) \(\tilde{w}\tilde{q}(n) = n \),
(b) \(\langle \alpha_i, n \rangle > 0 \text{ for all } i \in I \)
Taking \(||n||\) sufficiently small we have \(x + n \in A \), and
\[
(\text{id} - wq)(x + n) = (\text{id} - wq)(x) + (\text{id} - \tilde{w}\tilde{q})n = (\text{id} - w)(x) = \xi.
\]
This shows \(\xi \in V_w \). \(\square \)

4. **Disjointness of the sets \(\lambda + X \)**

To finish the proof of Theorem 1.2 we have to show that the union \((5)\) is disjoint. Waldspurger’s Theorem 1.1 shows that all \(D_w = (\text{id} - w)(C), w \in W \) are disjoint. (We refer to his paper for a very simple proof of this fact.) Hence the same is true for \(V_w \subset D_w, w \in W \). It remains to show that the sets \(\lambda + X, \lambda \in \Lambda, \) with \(X \) given by \([2]\), are disjoint.

The following Lemma shows that the closure \(\overline{X} = \bigcup_{w \in W} \overline{V}_w \) only involves the top-dimensional polytopes.

Lemma 4.1. The closure of the set \(X \) is a union over \(W_{\text{reg}} \),
\[
\overline{X} = \bigcup_{w \in W_{\text{reg}}} \overline{V}_w.
\]
Furthermore, \(\text{int}(\overline{X}) = \text{int}(X) \).
Proof. We must show that for any $\xi \in \nabla_\sigma$, $\sigma \in W \setminus W_{\text{reg}}$, there exists $w \in W_{\text{reg}}$ such that $\xi \in \nabla_w$. Using induction, it is enough to find $\sigma' \in W$ such that $\xi \in \nabla_{\sigma'}$ and dim($\ker(\text{id} - \sigma')$) = dim($\ker(\text{id} - \sigma)$) - 1. Let $\pi : V \to \ker(\text{id} - \sigma) ^{\perp} = \text{ran}(\text{id} - \sigma)$ denote the orthogonal projection. Then $\text{id} - \sigma$ restricts to an invertible transformation of $\pi(V)$, and ∇_σ is the image of $\pi(\overline{A})$ under this transformation. We have
\[
\pi(\overline{A}) = \pi(\partial \overline{A}) = \bigcup_{i=0}^{l} \pi(\overline{A}_i),
\]
and this continues to hold if we remove the index $i = 0$ from the right hand side, as well as all indices i for which $\dim(\pi(A_i)) < \dim(\pi(V))$. That is, for each point $x \in \pi(\overline{A})$ there exists an index $i \neq 0$ such that $x \in \pi(\overline{A}_i)$, with $\dim(\pi(A_i)) = \dim(\pi(V))$. Taking x to be the pre-image of ξ under $(\text{id} - \sigma)|_{\pi(V)}$, we have $\xi \in \nabla_{\sigma,i}$ with $i \neq 0$ and $\dim V_{\sigma,i} = \dim \text{ran}(\text{id} - \sigma)$. Let $\sigma' = \sigma s_i$. Then $V_{\sigma,i} = V_{\sigma',i}$, hence $\dim(\text{ran}(\text{id} - \sigma')) \geq \dim V_{\sigma,i} = \dim(\text{ran}(\text{id} - \sigma))$, which shows $\dim(\ker(\text{id} - \sigma')) \leq \dim(\ker(\text{id} - \sigma))$. By elementary properties of reflection groups, the dimensions of the fixed point sets of σ, σ' differ by either $+1$ or -1. Hence $\dim(\ker(\text{id} - \sigma')) = \dim(\ker(\text{id} - \sigma)) - 1$, proving the first assertion of the Lemma.

It follows in particular that the closure of $\text{int}(X)$ equals that of X. Suppose $\xi \in \text{int}(\overline{X})$. By Proposition 3.6 there exists $\lambda \in \Lambda$ with $\xi \in \lambda + X$. It follows that $\text{int}(\overline{X})$ meets $\lambda + X$, and hence also meets $\lambda + \text{int}(\overline{X})$. Since the Λ-translates of $\text{int}(\overline{X})$ are pairwise disjoint (see Proposition 3.3), it follows that $\lambda = 0$, i.e. $\xi \in X$. This shows $\xi \in X \cap \text{int}(\overline{X}) = \text{int}(X)$, hence $\text{int}(\overline{X}) \subset \text{int}(X)$. The opposite inclusion is obvious. \qed

Since we already know that the sets $\lambda + \text{int}(X)$ are disjoint, we are interested in $X \setminus \text{int}(X) \subset \partial X = \overline{X} \setminus \text{int}(X)$. Let us call a closed codimension 1 boundary face of the polyhedron \overline{X} ‘horizontal’ if its supporting hyperplane contains $V_{w,0}$ for some $w \in W_{\text{reg}}$, and ‘vertical’ if its supporting hyperplane contains $V_{w,i}$ for some $w \in W_{\text{reg}}$ and $i \neq 0$. These two cases are exclusive:

Lemma 4.2. Let n be the inward-pointing normal vector to a codimension 1 face of \overline{X}. Then $\langle n, \alpha_{\text{max}} \rangle \neq 0$. In fact, $\langle n, \alpha_{\text{max}} \rangle < 0$ for the horizontal faces and $\langle n, \alpha_{\text{max}} \rangle > 0$ for the vertical faces.

Proof. Given a codimension 1 boundary face of \overline{X}, pick any point ξ in that boundary face, not lying in $\bigcup_{w \in W} \bigcup_{|i| \geq 1} V_{w,i}$. Let $w \in W_{\text{reg}}$ and $i \in \{0, \ldots, l\}$ such that $\xi \in V_{w,i}$, and $n_{w,i}$ is an inward-pointing normal vector. By Proposition 3.3 there is a unique $i' \neq i$ such that $\xi \in V_{w',i'}$, where $w' = ws_is_{i'}$. Since $V_{w}, V_{w'}$ lie on opposite sides of the affine hyperplane spanned by $V_{w,i}$, and ξ is a boundary point of \overline{X}, we have $w' \notin W$. Thus one of i, i' must be zero. If $i = 0$ (so that the given boundary face is horizontal) we obtain $\langle n_{w,0}, \alpha_{\text{max}} \rangle = -\langle n_{w,0}, \alpha_0 \rangle < 0$. If $i = 0$ we similarly obtain $\langle n_{w',0}, \alpha_{\text{max}} \rangle < 0$, hence $\langle n_{w,i}, \alpha_{\text{max}} \rangle > 0$. \qed

Lemma 4.3. Let $\xi \in X \setminus \text{int}(X)$. Then there exists a vertical boundary face of \overline{X} containing ξ. Equivalently, the complement $\partial X \setminus (X \setminus \text{int}(X))$ is contained in the union of horizontal boundary faces.

Proof. The alcove A is invariant under multiplication by any scalar in $(0, 1)$. Hence, the same is true for the sets V_w for $w \in W$, as well as for X and $\text{int}(X)$. Hence, if $\xi \in X \setminus \text{int}(X)$ there exists $t_0 > 1$ such that $t \xi \in X \setminus \text{int}(X)$ for $1 \leq t < t_0$. The closed codimension 1 boundary face
containing this line segment is necessarily vertical, since a line through the origin intersects the affine hyperplane \(\{ x | \langle n_w, 0, x - \xi \rangle = 0 \} \) in at most one point.

Proposition 4.4. For any \(\xi \in X \), there exists \(\epsilon > 0 \) such that \(\xi + s \alpha_{\text{max}} \notin \text{int}(X) \) for \(0 < s < \epsilon \).

Proof. If \(\xi \in \text{int}(X) \) there is nothing to show, hence suppose \(\xi \in X \setminus \text{int}(X) \). Suppose first that \(\xi \) is not in the union of horizontal boundary faces of \(X \). Then there exists an open neighborhood \(U \) of \(\xi \) such that \(U \cap X = U \cap X \). All boundary faces of \(X \) meeting \(\xi \) are vertical, and their inward-pointing normal vectors \(n \) all satisfy \(\langle n, \alpha_{\text{max}} \rangle > 0 \). Hence, \(\xi + s \alpha_{\text{max}} \in \text{int}(U \cap X) = \text{int}(X) \subset X \) for \(s > 0 \) sufficiently small.

For the general case, suppose that for all \(\epsilon > 0 \), there is \(s \in (0, \epsilon) \) with \(\xi + s \alpha_{\text{max}} \notin \text{int}(X) \). We will obtain a contradiction. Since \(\xi \) is contained in some vertical boundary face, one can choose \(t > 1 \) so that \(\xi' := t \xi \in X \setminus \text{int}(X) \), but \(\xi' \) is not in the closure of the union of horizontal boundary faces. Given \(\epsilon > 0 \), pick \(s \in (0, \epsilon) \) such that \(\xi + \frac{s}{t} \alpha_{\text{max}} \notin \text{int}(X) \). Since \(\text{int}(X) \) is invariant under multiplication by scalars in \((0,1) \), the complement \(V \setminus \text{int}(X) \) is invariant under multiplication by scalars in \((1, \infty) \), hence we obtain \(\xi' + s \alpha_{\text{max}} \notin \text{int}(X) \). This contradicts what we have shown above, and completes the proof.

Proposition 4.5. The sets \(\lambda + X \) for \(\lambda \in \Lambda \) are disjoint.

Proof. Suppose \(\xi \in (\lambda + X) \cap (\lambda' + X) \). By Proposition 4.4, we can choose \(s > 0 \) so that \(\xi + s \alpha_{\text{max}} \in (\lambda + \text{int}(X)) \cap (\lambda' + \text{int}(X)) \). Since the \(\Lambda \)-translates of \(\text{int}(X) \) are disjoint, it follows that \(\lambda = \lambda' \).

This completes the proof of Theorem 1.2. We conclude with some remarks on the properties of the decomposition \(V = \bigcup_{w \in W^a} V_w \).

Remarks 4.6. (a) The group of symmetries \(\tau \) of the extended Dynkin diagram (i.e. the outer automorphisms of the corresponding affine Lie algebra) acts by symmetries of the decomposition \(V = \bigcup_{w \in W^a} V_w \), as follows. Identify the nodes of the extended Dynkin diagram with the simple affine reflections \(s_0, \ldots, s_l \). Then \(\tau \) extends to a group automorphism of \(W^a \), taking \(s_i \) to \(\tau(s_i) \). This automorphism is implemented by a unique Euclidean transformation \(g: V \to V \) i.e. \(gwg^{-1} = \tau(w) \) for all \(w \in W^a \). Then \(g \) preserves \(A \), and consequently \(gV_w = g(\text{id} - w)(A) = (\text{id} - \tau(w))(A) = V_{\tau(w)}, \quad w \in W^a \).

(b) It is immediate from the definition that the Euclidean transformation \(-w: V \to V, \quad x \mapsto -wx \) takes \(V_{w^{-1}} \) into \(V_w \):

\[
-w(V_{w^{-1}}) = V_w.
\]

(c) For any positive root \(\alpha \), let \(s_\alpha \) be the corresponding reflection. Then \((\text{id} - s_\alpha)(\xi) = \langle \alpha, \xi \rangle \alpha^\vee \), where \(\alpha^\vee \) is the co-root corresponding to \(\alpha \). Hence \(D_{s_\alpha} \) is the relative interior of the line segment from \(0 \) to \(\lambda \alpha^\vee \), where \(\lambda \) is the maximum value of the linear functional \(\xi \mapsto \langle \alpha, \xi \rangle \) on the closed alcove \(\overline{A} \). This maximum is achieved at one of the vertices. Let \(\varpi_i^\vee, \ldots, \varpi_l^\vee \) be the fundamental co-weights, defined by \(\langle \alpha_i, \varpi_j^\vee \rangle = \delta_{ij} \) for \(i, j = 1, \ldots, l \).

Let \(c_i \in \mathbb{N} \) be the coefficients of \(\alpha_{\text{max}} \) relative to the simple roots: \(\alpha_{\text{max}} = \sum_{i=1}^l c_i \alpha_i \). Then the non-zero vertices of \(A \) are \(\varpi_i^\vee / c_i \). Similarly let \(a_i \in \mathbb{Z}_{\geq 0} \) be the coefficients of \(\alpha \), so that \(\alpha = \sum_{i=1}^l a_i \alpha_i \). Then the value of \(\alpha \) at the \(i \)-th vertex of \(\overline{A} \) is \(a_i / c_i \), and \(\lambda \) is the maximum of those values. Two interesting cases are: (i) If \(\alpha = \alpha_{\text{max}} \), then all
\(a_i/c_i = 1\), and \(\alpha^\vee = \alpha\). That is, the open line segment from the origin to the highest root always appears in the decomposition. (ii) If \(\alpha = \alpha_i\), then \(a_i = 1\) while all other \(a_j\) vanish. In this case, one obtains the open line segment from the origin to \(\frac{1}{c_i}\alpha^\vee\).

(d) Every \(V_w\) contains a distinguished ‘base point’. Indeed, let \(\rho \in V\) be the half-sum of positive roots, and \(h^\vee = 1 + \langle \alpha_{\text{max}}, \rho \rangle\) the dual Coxeter number. Then \(\rho/h^\vee \in A\), and consequently \(\rho/h^\vee - w(\rho/h^\vee) \in V_w\).

5. Proof of Theorem 1.3

The proof is very similar to the proof of Proposition 3.4, hence we will be brief. Each \(V_w(S) = (S - w)(A)\) is the interior of a simplex in \(V\), with codimension 1 faces \(V_{w,i} = (S - w)(A_i)\). As in the proof of Lemma 3.1 we see that

\[n_{w,i} = (S - w^{-1})^{-1} \alpha_i\]

is an inward-pointing normal vector to the \(i\)-th face \(V_{w,i}^{(S)}\). For \(S = 0\) this simplifies to

\[n_{w,i}^{(0)} = -w \alpha_i\]

If \(w' = ws_i\) we have \(V_{w,i}^{(S)} = V_{w',i}^{(S)}\), so that \(n_{w,i}^{(S)}\) and \(n_{w',i}^{(S)}\) are proportional. Since \(n_{w,i}^{(0)} = -n_{w',i}^{(0)}\), it follows by continuity that \(n_{w,i}^{(S)}\) is a negative multiple of \(n_{w',i}^{(S)}\). As a consequence, we see that \(V_w^{(S)}, V_{w'}^{(S)}\) are on opposite sides of affine hyperplane supporting \(V_{w,i}^{(S)} = V_{w',i}^{(S)}\). Arguing as in the proof of Proposition 3.4, this shows that

\[\bigcup_{w \in W} V_w^{(S)} = V.\]

Letting \(X^{(S)} = \bigcup_{w \in W} V_w^{(S)}\), it follows that \(V = \bigcup_{\lambda \in A} (\lambda + X^{(S)})\). Hence \(\text{vol}(X^{(S)}) \geq |W| \text{vol}(A)\).

But

\[\text{vol}(X^{(S)}) \leq \sum_{w \in W} \text{vol} \left((S - w)(A)\right)\]

\[= \text{vol}(A) \sum_{w \in W} |\text{det}(S - w)|\]

\[= \text{vol}(A) \sum_{w \in W} |\text{det}(\text{id} - S w^{-1})| = |W| \text{vol}(A),\]

using \([11, p.134]\). It follows that \(\text{vol}(X^{(S)}) = |W| \text{vol}(A)\), which implies (as in the proof of Proposition 3.3) that all int\((V_w^{(S)}) = V_w^{(S)}\) are disjoint. This completes the proof.

Remark 5.1. Theorem 1.3 and its proof, go through for any \(S\) in the component of 0 in the set \(\{S \in \text{End}(V) \mid \text{det}(S - w) \neq 0 \ \forall w \in W\}\). For instance, the fact that \(\text{det}(\text{id} - S w^{-1}) > 0\) follows by continuity from \(S = 0\). On the other hand, if e.g. \(S\) is a positive matrix with \(S > 2 \text{id}\), the result becomes false, since then (cf. \([11, p.134]\)) \(\sum_{w \in W} |\text{det}(S - w)| = \sum_{w \in W} \text{det}(S - w) = \text{det}(S)|W|\).
References

[1] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV – VI, Hermann, Paris, 1968.
[2] J.-L. Waldspurger, Une remarque sur les systèmes de racines, Journal of Lie theory 17 (2007), no. 3, 597–603.

University of Toronto, Department of Mathematics, 40 St George Street, Toronto, Ontario M4S2E4, Canada
E-mail address: mein@math.toronto.edu