A proposal for a multivariate quantitative approach to infer karyological relationships among taxa

Lorenzo Peruzzi¹, Fahim Altinordu²

¹ Department of Biology, Unit of Botany, Pisa University, Via L. Ghini 13, 56126 Pisa, Italy ² Department of Biology, Science Faculty, Selçuk University, Konya, Turkey

Corresponding author: Lorenzo Peruzzi (lorenzo.peruzzi@unipi.it)

Academic editor: M. Guerra | Received 7 September 2014 | Accepted 20 November 2014 | Published 10 December 2014

Citation: Peruzzi L, Altinordu F (2014) A proposal for a multivariate quantitative approach to infer karyological relationships among taxa. Comparative Cytogenetics 8(4): 337–349. doi: 10.3897/CompCytogen.v8i4.8564

Abstract
Until now, basic karyological parameters have been used in different ways by researchers to infer karyological relationships among organisms. In the present study, we propose a standardized approach to this aim, integrating six different, not redundant, parameters in a multivariate PCoA analysis. These parameters are chromosome number, basic chromosome number, total haploid chromosome length, MCA (Mean Centromeric Asymmetry), CVCL (Coefficient of Variation of Chromosome Length) and CVCI (Coefficient of Variation of Centromeric Index). The method is exemplified with the application to several plant taxa, and its significance and limits are discussed in the light of current phylogenetic knowledge of these groups.

Keywords
Comparative cytogenetics, cytotaxonomy, karyotype asymmetry, karyotype variation, PCoA

Copyright Lorenzo Peruzzi, Fahim Altinordu. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Chromosomes, especially those of plants, have been efficient material for almost every kind of cytogenetic research (Guerra 2005, 2012). The genetic information of an organism is transferred via chromosomes, and changes in their number (e.g. polyploidy, dysploidy) and structure (rearrangements such as inversions, deletions, or translocations) are important contributors to plant evolution and speciation (Levin 2002, Doyle et al. 2004, Schubert 2007, Leitch and Leitch 2008, Weiss-Schneeweiss et al. 2009). Since the putative discovery of a constant species-specific chromosome number by Strasburger (1910), several times researchers posed the question, whether basic karyotype structure might provide information about the systematic position of a species (Venora et al. 2008). As a result, vast amounts of data on chromosome number have been collected until now (Stace 2000, Garbari et al. 2012) and chromosome data are constantly used for karyosystematic purposes. More recently, efforts to process this huge quantity of chromosome numbers accumulated in literature have been made, producing interesting results (Peruzzi et al. 2011, 2012, 2014, Bedini et al. 2012, Góralski et al. 2013, 2014). However, it is well known that chromosome numbers alone are not sufficient to exactly trace the evolutionary history of a group (Weiss-Schneeweiss and Schneeweiss 2003). Also, when considering some genera with many species, the ecological and the morphological data may not be an efficient tool to provide a clear representation of the systematic relationships between species. In these cases cytotomy (or comparative cytogenetics), together with molecular data, can be an effective tool and it can allow a more accurate knowledge of the relationships (Coutinho 1952, Dewey 1984, Venora et al. 2008). In such cases, more detailed information about the karyotype is essential besides the chromosome number.

The karyotype of a species is generally subject to little variation and it is generally assumed that two similar species can be different for a number of chromosome rearrangements correlated with phylogenetic distance among them (Stebbins 1966, Venora et al. 2008). Karyomorphological traits are evaluated by many authors as important taxonomic characters which not only provide additional characters but also allow conclusions about evolutionary events in the group of interest (Greilhuber and Speta 1978, Greilhuber 1982, Cerbah et al. 1998, Weiss-Schneeweiss and Schneeweiss 2003). A karyotype clarifies the phenotypic aspects of the chromosome complement of a species in terms of number, size, arm ratio, centromere position, and other basic landmark features of its chromosomes (Levin 2002). In recent years, in the light of the great positive impact of the molecular phylogeny, the knowledge on the chromosome complement is still a fundamental aid to evaluate the phylogenetic relationships among taxa (Garbari et al. 2012 and literature cited therein). The karyotype asymmetry is a good expression of the general morphology of plant chromosomes. It is therefore very important to have a uniform system to compare karyotypes on correct statistical grounds (Paszko 2006). The position of centromere and the relative chromosome size are the two most important
karyotype features which allowed reasonable assessment of chromosomal affinities based on the concept of symmetry (Lavania and Srivastava 1999). Hence the use of statistically correct parameters as characters for the reconstruction of karyological relationships is fundamental. Some authors also tried to reconstruct phylogenetic relationships using only the highest possible number of karyological parameters (Caputo et al. 2013 and literature cited therein). However, until now two main problems were, more or less consciously, encountered by researchers: a) a lack of agreement in which karyotype asymmetry parameters have to be used, often leading to their misuse (e.g. redundancy etc.); b) the use of taxon-specific parameters, not of general applicability (for instance the comparison of each chromosome pair in a karyotype, which can be carried out only among closely related taxa with equal chromosome number). Concerning karyotype asymmetry, we think that the revisions of Paszko (2006), Zuo and Yuan (2011) and Peruzzi and Eroğlu (2013) were decisive, in definitely showing how and what to measure (see beyond, in Materials and methods, for more details). Despite this, many researchers – even in the very last year – continued to use outdated and often not statistically correct parameters to quantify karyotype asymmetry (Gao et al. 2012, Eroğlu et al. 2013, Wang et al. 2013, Altinordu et al. 2014, Morales et al. 2014, De Oliveira et al. 2014, Jafari et al. 2014, Chen et al. 2014). In addition, a number of basic karyological parameters (besides karyotype asymmetry) are of general applicability and can be compared among taxa: chromosome number, basic chromosome number (x, as defined by Peruzzi 2013), and total length of chromosomes (which is a rough proxy of genome size; Peruzzi et al. 2009).

Hence, the aims of our study were (1) to propose a standardized use of basic karyological characters as a valid, of general use, complement to other source of systematic data to understand the relationships among taxonomic groups as families, tribes, genera, sections and species, and (2) to demonstrate the using of this new quantitative method in cytotaxonomy in selected groups, for which data were available in literature.

Materials and methods

Data source

The data about Smilacaceae, Liliaceae and its tribes and genera were derived by Kong et al. (2007) and by the supplementary material published along with Peruzzi et al. (2009), Gao et al. (2012), and by Peruzzi (2012), concerning specifically the genus *Gagea* Salisbury, 1806. For *Cyananthus* Wallich ex Bentham, 1836 (Campanulaceae) and for *Crocus* Linnaeus, 1753 ser. *Verni* Mathew, 1982 (Iridaceae), the data were derived by the recent papers by Chen et al. (2014) and Harpke et al. (2014), respectively. Most of these papers report also information on the phylogenetic relationships among groups (for *Cyananthus* available in Zhou et al. 2013), as inferred from molecular systematic studies. All the datasets are available as Supplementary material 1.
Karyological parameters

To determine the karyological relationships among taxa, we used chromosome number \(2n\), basic chromosome number \(x\), and other basic karyomorphological characters such as genome size, grossly estimated as total haploid length of the chromosome set, THL (Peruzzi et al. 2009). Also karyotype symmetry indices were used, such as \(M_{CA}\) (Mean Centromeric Asymmetry) which gives a measure of intrachromosomal asymmetry, and \(CV_{CL}\) (Coefficient of Variation of Chromosome Length) which gives a measure of interchromosomal asymmetry, together with \(CV_{CI}\) (Coefficient of Variation of Centromeric Index), which gives a measure of centromere position heterogeneity (Paszko 2006; Zuo and Yuan 2011, Peruzzi and Eroğlu 2013). For a karyotype, \(M_{CA}\) is calculated as the mean \((L-S)/(L+S) \times 100\) where, for each chromosome, \(L\) is the length of long arm and \(S\) is the length of short arm; \(CV_{CL}\) as the standard deviation of \((L+S) \times 100\); \(CV_{CI}\) as the standard deviation of \(S/(L+S) \times 100\). These three parameters estimate quantitatively three different features of a karyotype, so that any redundancy of data is avoided. Moreover, they were shown to be the only quantitative parameters correct on statistical grounds (Peruzzi and Eroğlu 2013). For these reasons, other parameters proposed earlier to estimate the intrachromosomal (TF\%, AsK\%, AsI\%, Syi, A\(_1\), CG; for details and references see Peruzzi and Eroğlu 2013) or the interchromosomal asymmetry (Rec, R; for details and references see Peruzzi and Eroğlu 2013) were discarded. The same applied also to semi-quantitative methods such as that of Stebbins (1971) or to indices trying to summarize both kind of asymmetries (intra- and inter-chromosomal) in a single value (i.e. DI, AI; for details and references see Paszko 2006, and Peruzzi et al. 2009 for criticisms). Also karyomorphometric measurements of single chromosome pairs (as for instance those used by Caputo et al. 2013 and in previous works of the same research team) were not considered, to guarantee a general applicability of the method independent from chromosome number.

Other karyological characters might have been used, such as number of 45S and 5S sites or “best practice” genome size estimations, but this kind of data is not yet widespread (Roa and Guerra 2012; Garcia et al. 2012, 2014a, 2014b) and would also limit the applicability of the method.

Data analysis

Since our main objective was to highlight correctly karyological relationships among objects (e.g. single accessions) and not to form groups, we avoided multivariate classification techniques such as cluster analysis etc. and focused on a general ordination method as PCoA (Principal Coordinate Analysis). In cases where specific \(a\ priori\) grouping hypotheses (based on independent sources of systematic data) needed to be tested, this approach was complemented by subjecting the same data matrix to DA (Discriminant Analysis). To perform PCoA, a similarity matrix was created using Gower’s (1971)
general coefficient similarity to summarize relationship among accessions (Sneath and Sokal 1973), which can be used directly with a mixture of character types (binary, qualitative, and quantitative characters) as well as taking into account missing values (St-Laurent et al. 2000). To perform these kind of analyses, the software Past 3.03 (Hammer et al. 2001, Hammer 2013), freely available online, was used.

Results

Testing the new approach at family level

We analyzed 434 accessions for Liliaceae and 35 accessions for Smilacaceae by PCoA (cumulative variance explained by the first two axes: 54.21%). Only a modest overlap among the two families was evident (Fig. 1). Indeed, DA correctly attributed objects (accessions) to the two families in 95.24% of cases (jackknifed). The most important characters in recognizing the two families as distinct resulted THL, CV_CIP, and M_CA.

Testing the new approach at tribe level

Within Liliaceae, 103 accessions for Tulipeae tribe, 252 accessions for Liliæae tribe, 14 accessions for Medeoelae tribe, 13 accessions for Streptopeae tribe, 27 accessions for Tricyrtideae tribe and 25 accessions for Calochorteae tribe were analyzed by PCoA (cumulative variance explained by the first two axes: 53.96%). Also in this case, the accessions belonging to the same tribe clearly tend to cluster together (Fig. 2). Indeed,
Figure 2. PCoA for Liliaceae tribes based on 6 quantitative karyological parameters (Axis 1 vs. Axis 2).

Figure 3. PCoA for Tulipeae genera based on 6 quantitative karyological parameters (Axis 1 vs. Axis 2). The two Amana accessions are represented by the “×” symbol.

DA correctly attributed objects (accessions) to the two families in 93.97% of cases (jackknifed). The most important characters in recognizing the two families as distinct resulted THL, CV_{CL}, and M_{CA}.

Testing the new approach at genus level

Within Liliaceae tribe Tulipeae, Erythronium Linnaeus, 1753 (3), Tulipa Linnaeus, 1753 (42), Amana Honda, 1935 (2), Gagea (56) accessions were analyzed by PCoA (cumulative variance explained by the first two axes: 48.3%). The isolated position of Gagea respect with other genera was particularly evident (Fig. 3). The DA, restricted to
A proposal for a multivariate quantitative approach to infer karyological...
accessions belonging to same species close each other (Fig. 6). DA correctly attributed objects (accessions) to each species in 69.44% of cases (jackknifed). The most important characters in recognizing the three sections resulted THL, \(CV_{CL}\), and \(M_{CA}\).

Discussion

Our method allows to describe basic karyological relationships among taxa in a correct way, avoiding redundant data or the use of statistically not well founded parameters. Concerning
the examples presented, there is always a certain degree of agreement among the information resulting from karyological multivariate analysis and the available phylogenetic information (used to form the groups highlighted in the PCoA and tested by means of DA). Liliaceae and Smilacaceae are sister families (Peruzzi et al. 2009 and literature cited therein), and despite their closeness show very modest overlap on karyological grounds. This is true also at tribe level within Liliaceae, albeit for instance Tricyrtideae are karyologically closer to Tulipeae, while on phylogenetic grounds they result an independent lineage (Peruzzi et al. 2009). This can be easily explained by the striking overall similarity in karyotype structure among *Gagea* (within Tulipeae) and Tricyrtideae, albeit chromosome numbers are different ($x = 12$ the former, $x = 13$ the latter; Peruzzi et al. 2009). As far infrageneric taxa are concerned, *Cyananthus* sections show a certain degree of karyological separation. Zhou et al. (2013) showed that sect. *Cyananthus* is sister to *Annui* + *Stenolobi*. Our data point towards a higher karyological affinity between *Annui* and *Stenolobi* (Figs 4 and 5), as already evidenced by Chen et al. (2014). PCoA, however, highlights a certain karyological heterogeneity within sect. *Annui*, which is partly close to *Cyananthus* and in part overlapping to *Stenolobi*. The accessions falling close to *Cyananthus* in the PCoA share the same basic chromosome number with the latter. Also the karyological relationships among the species of *Crocus* ser. *Verni*, as evidenced here, are fully congruent with the current systematic knowledge of the group (Harpke et al. 2014). In particular, *C. neapolitanus*, *C. siculus* and *C. vernus* resulted karyologically very closely related species and this is supported by available phylogeny. The resolution of karyological relationships is much better than that obtained by simply plotting karyotype asymmetry parameters against each other, as done by Harpke et al. (2014).

Conclusions

For various reasons, researchers used until very recently outdated, wrong or redundant parameters in order to establish relationships among taxa. We propose here a standardized method, taking into account six quantitative parameters: $2n$ (somatic chromosome number), x (basic chromosome number), THL (total length of haploid chromosome set), CV$_{CI}$ (Coefficient of Variation of Centromeric Index, measuring the heterogeneity in the centromere position), M_{CA} and CV$_{CL}$ (Mean Centromeric Asymmetry and Coefficient of Variation of Chromosome Length, both measuring the karyotype asymmetry). We used a multivariate ordination approach (PCoA), eventually complemented by DA, if specific grouping hypotheses need to be tested. We think this method is best suited to establish karyological relationships, relationships, compared with classification approaches (i.e. clustering, used for instance by Caputo et al. 2013, Chen et al. 2014 and many others), which may be misinterpreted concerning their real significance (i.e. a dendrogram can resemble a phylogenetic tree). We applied our method to several taxa at various ranks from family to species, showing that the discriminatory power of karyological parameters is very variable among groups. As already highlighted by Siljak-Yakovlev and Peruzzi (2012) and Peruzzi and Eroğlu (2013), basic karyological data alone are not sufficient to definitely establish systematic
and phylogenetic relationships among taxa, and should always be complemented by independent sources of systematic data. However, karyological data significantly contribute to understanding evolutionary relationships, jointly with morphological and molecular approaches. To this aim, our method is better than others because it is easy to use, based on correct, not redundant parameters of general use, and also because the data are treated with ordination and not classification techniques.

References

Altınordu F, Martin E, Hamzaoğlu E, Çetin Ö (2014) New chromosome counts, karyotype analyses and asymmetry indices in some taxa of genus Senecio L. and related genera Teproseris (Rchb.) Rchb. and Turanecio Hamzaoğlu belong to tribe Senecioneae (Asteraceae) from Turkey. Plant Systematics and Evolution 300(10): 2205–2216. doi: 10.1007/s00606-014-1042-8
Bedini G, Garbari F, Peruzzi L (2012) Does chromosome number count? Mapping karyological knowledge on Italian flora in a phylogenetic framework. Plant Systematics and Evolution 298: 739–750. doi: 10.1007/s00606-011-0585-1
Caputo P, Frediani M, Gelati MT, Venora G, Cremonini R, Ruffini Castiglione M (2013) Karyological and molecular characterisation of subgenus Vicia (Fabaceae). Plant Biosystems 147: 1242–1252. doi: 10.1080/11263504.2013.861532
Cerbah M, Coulaud J, Siljak-Yakovlev S (1998) rDNA organization and evolutionary relationships in the genus Hypochaeris (Asteraceae). Journal of Heredity 89: 312–318. doi: 10.1093/jhered/89.4.312
Chen GF, Sun WG, Hong DY, Zhou Z, Niu Y, Nie ZL, Sun H, Zhang JW, Li ZM (2014) Systematic significance of cytology in Cyananthus (Campanulaceae) endemic to the Sino-Himalayan region. Journal of Systematics and Evolution 52: 260–270. doi: 10.1111/jse.12095
Coutinho LA (1952) Possibilitadades taxonomicas da citogenetica. Genetica Iberica 4: 21–42.
De Oliveira VM, Barros F de, Forni-Martins ER (2014) Chromosome numbers and karyotypes of Catasetum species (Orchidaceae). Plant Biosystems 148: 499–507. doi: 10.1080/11263504.2013.788093
Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (Ed.) Gene manipulation in plant improvement. Plenum, New York, 209–279. doi: 10.1007/978-1-4613-2429-4_9
Doyle JJ, Doyle JL, Rauscher JT, Brown AHD (2004) Evolution of the perennial soybean polyploid complex (Glycine subgenus Glycine): a study of contrasts. Biological Journal of the Linnean Society 82: 583–597. doi: 10.1111/j.1095-8312.2004.00343.x
Eroğlu HE, Simşek N, Koç M, Hamzaoğlu E (2013) Karyotype analysis of some Minuartia L. (Caryophyllaceae) taxa. Plant Systematics and Evolution 299: 67–73. doi: 10.1007/s00606-012-0703-8
Gao YD, Zhou SD, He XJ, Wan J (2012) Chromosome diversity and evolution in tribe Lilieae (Liliaceae) with emphasis on Chinese species. Journal of Plant Research 125: 55–69. doi: 10.1007/s10265-011-0422-1
Garbari F, Bedini G, Peruzzi L (2012) Chromosome numbers of the Italian flora. From the Caryologia foundation to present. Caryologia 65: 62–71. doi: 10.1080/00087114.2012.678090
Garcia S, Gálvez F, Gras A, Kovařík A, Garnatje T (2014a) Plant rDNA database: update and new features. Database 2014: ba063. doi: 10.1093/database/ba063
Garcia S, Garnatje T, Kovařík A (2012) Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma 121(4): 389–394. doi: 10.1007/s00412-012-0368-7
Garcia S, Leitch IJ, Anadon-Rosel A, Canela MÁ, Gálvez F, Garnatje T, Gras A, Hidalgo O, Johnston E, Mas de Xaxars G, Pellicer J, Siljak-Yakovlev S, Vallès J, Vitales D, Bennett MD (2014b) Recent updates and developments to plant genome size databases. Nucleic Acids Research 42(1): 1159–1166. doi: 10.1093/nar/gkt1195
Góralski G, Bal M, Gacek P, Orzechowski TM, Kosecka-Wierzejska A (2014) Chromosome numbers and polyploidy in life forms of Asteraceae, Poaceae and Rosaceae in Polish flora. Acta Biologica Cracoviensia series Botanica 56(1): 1–9. doi: 10.2478/abcscb-2014-0001
Góralski G, Judasz A, Gacek P, Grabowska-Joachimiak A, Joachimiak AJ (2013) Polyploidy, alien species and invasiveness in Polish angiosperms. Plant Systematics and Evolution 300(2): 225–238. doi: 10.1007/s00606-013-0875-x
Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27: 857–871. doi: 10.2307/2528823
Greilhuber J, Speta F (1978) Quantitative analyses of C-banded karyotypes, and systematics in the cultivated species of the Scilla siberica group (Liliaceae). Plant Systematics and Evolution 129: 63–109. doi: 10.1007/BF00988984
Greilhuber J (1982) Trends in der Chromosomenevolution von Scilla (Liliaceae). Staphia 10: 11–51.
Guerra M (2005) What is new on plant cytogenetics? Genetics and Molecular Biology 28: 444–445. doi: 10.1590/S1415-47572005000300019
Guerra M (2012) Cytotaxonomy: the end of childhood. Plant Biosystems 146: 703–710.
Hammer Ø (2013) PAST 3.03. http://folk.uio.no/ohammer/past [accessed October 2014]
Hammer Ø., Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics sofware package for education and data analysis. Paleontologia Electronica 4(1): 1–9.
Harpke D, Carta A, Tomović G, Randelović V, Randelović N, Blattner FR, Peruzzi L (2014) Phylogeny, karyotype evolution and taxonomy of Crocus ser. Verni (Iridaceae). Plant Systematics and Evolution. doi: 10.1007/s00606-014-1074-0
Jafari H, Babaei A, Karimzadeh G, Ahmadi-Roshan M (2014) Cytogenetic study on some Fritillaria species of Iran. Plant Systematics and Evolution 300: 1373–1383. doi: 10.1007/s00606-013-0968-6
Kong HH, Wang AL, Lee J, Fu CX (2007) Studies of systematic evolution and karyotypic variation in Smilax and Heterosmilax (Smilacaceae). Acta Phytotaxonomica Sinica 45: 257–273. doi: 10.1360/aps050125
Lavania UC, Srivastava S (1999) Quantitative delineation of karyotype variation in Papaver as a measure of phylogenetic differentiation and origin. Current Science India 77: 429–435.
Leitch AR, Leitch IJ (2008) Genome plasticity and diversity of polyploid plants. Science 320: 481–483. doi: 10.1126/science.1153585
Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York, 240 pp.
Morales M, Wulff AF, Fortunato RH, Poggio L (2014) Chromosome studies in southern species of Mimosa (Fabaceae, Mimosoideae) and their taxonomic and evolutionary inferences. Plant Systematics and Evolution 300: 803–817. doi: 10.1007/s00606-013-0920-9
Paszko B (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Systematics and Evolution 258: 39–48. doi: 10.1007/s00606-005-0389-2
Peruzzi L, Caparelli KF, Bedini G (2014) A new index for the quantification of chromosome number variation: an application to selected animal and plant groups. Journal of Theoretical Biology 353: 55–60. doi: 10.1016/j.jtbi.2014.03.012
Peruzzi L, Dawson MI, Bedini G (2011) Chromosome number variation in two antipodean floras. AoB Plants plr020, doi: 10.1093/aobpla/plr020
Peruzzi L, Eroğlu HE (2013) Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics 7: 1–9. doi: 10.3897/compcytogen.v7i1.4431
Peruzzi L, Góralski G, Joachimiak AJ, Bedini G (2012) Does actually mean chromosome number increase with latitude in vascular plants? An answer from the comparison of Italian, Slovak and Polish floras. Comparative Cytogenetics 6: 371–377. doi: 10.3897/compcytogen.v6i4.3955
Peruzzi L, Leitch IJ, Caparelli KF (2009) Chromosome diversity and evolution in Liliaceae. Annals of Botany 103: 459–475. doi: 10.1093/aob/mcn230
Peruzzi L (2012) Chromosome diversity and evolution in the genus Gagea Salisb. (Liliaceae). Bocconea 24: 147–158.
Peruzzi L. (2013) “x” is not a bias, but a number with real biological significance. Plant Biosystems 147: 1238–1241. doi: 10.1080/11263504.2013.861533
Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evolutionary Biology 12: 225. doi: 10.1186/1471-2148-12-225
Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35: 526–530. doi: 10.2307/1221906
Schubert I (2007) Chromosome evolution. Current Opinion in Plant Biology 10: 109–115. doi: 10.1016/j.pbi.2007.01.001
Siljak-Yakovlev S, Peruzzi L (2012) Cytogenetic characterization of endemics: past and future. Plant Biosystems 146: 694–702.
Sneath PH, Sokal RR (1973) Numerical Taxonomy: The principles and practice of numerical classification. WH Freeman, San Francisco, 588 pp.
Stace C (2000) Cytogeny and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49: 451–477. doi: 10.2307/1224344
Stebbins GL (1966) Chromosomal variation and evolution. Science 152: 1463–1469. doi: 10.1126/science.152.3728.1463
Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London, 220 pp.
St-Laurent L, Baum BR, Akpagana K, Arnason JT (2000) A numerical Taxonomic Study of Trema (Ulmaceae) from Togo, West Africa. Systematic Botany 30: 399–413.
Strasburger E (1910) Chromosomenzahl. Flora 100: 398–446. doi: 10.2307/2666686
Venora G, Blangiforti S, Ruffini Castiglione M, Pignone D, Losavio F, Cremonini R (2002) Chromatin organisation and computer aided karyotyping of *Triticum durum* Desf. cv Timilia. Caryologia 55: 91–98. doi: 10.1080/00087114.2002.10589262

Venora G, Ravalli C, Cremonini R (2008) The karyotype as a tool to identify plant species: *Vicia* species belonging to *Vicia* subgenus. Caryologia 61: 300–319. doi: 10.1080/00087114.2008.10589642

Venora G, Ravalli C, Cremonini R (2008) The karyotype as a tool to identify plant species: *Vicia* species belonging to *Vicia* subgenus. Caryologia 61: 300–319. doi: 10.1080/00087114.2008.10589642

Vijayavalli B, Mathew PM (1989) Karyomorphology of five South Indian species of *Smilax* Linn. Cytologia 54: 65–72. doi: 10.1508/cytologia.54.65

Wang GY, Meng Y, Yang YP (2013) Karyological analyses of 33 species of the tribe *Ophiopogoneae* (Liliaceae) from Southwest China. Journal of Plant Research 126: 597–604. doi: 10.1007/s10265-013-0557-3

Weiss-Schneeweiss H, Schneeweiss GM (2003) Karyological investigations of selected Angiosperms from Georgia and Azerbaijan. Acta Biologica Cracoviensia series Botanica 45: 49–56.

Weiss-Schneeweiss H, Stuessy TF, Villasenory JL (2009) Chromosome Numbers, Karyotypes, and Evolution in *Melampodium* (Asteraceae). International Journal of Plant Sciences 170: 1168–1182. doi: 10.1086/605876

Zhou Z, Hong D, Niu Y, Li G, Nie Z, Wen J, Sun H (2013) Phylogenetic and biogeographic analyses of the Sino-Himalayan endemic genus *Cyananthus* (Campanulaceae) and implications for the evolution of its sexual system. Molecular Phylogenetics and Evolution 68: 482–497. doi: 10.1016/j.ympev.2013.04.027

Zuo J, Yuan G (2011) The difference between the heterogeneity of the centromeric index and intrachromosomal asymmetry. Plant Systematics and Evolution 297: 141–145. doi: 10.1007/s00606-011-0528-x

Supplementary material I

Karyological parameters available for the studied taxa

Authors: Lorenzo Peruzzi, Fahim Altnordu

Data type: measurement

Explanation note: Excel file with three different worksheets (Liliaceae+Smilacaceae; *Cyananthus*; *Crocus* ser. *Verni*).

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.