Structure-based modeling and dynamics of MurM, a *Streptococcus pneumoniae* penicillin resistance determinant present at the cytoplasmic membrane

Authors

Anna York, Adrian.J. Lloyd, Charo I. del Genio, ..., Christopher.G. Dowson, Syma Khalid, David.I. Roper

Correspondence

s.khalid@soton.ac.uk (S.K.), david.roper@warwick.ac.uk (D.I.R.)

In brief

With an improved homology model of MurM, York et al., use docking and molecular dynamics studies to identify a potential Lipid II binding site and simulate how MurM interacts with this membrane-embedded substrate. Cardiolipin, a membrane phospholipid, was also found to associate with MurM and upregulate its enzymatic activity.

Highlights

- *S. aureus* FemX structure generated an improved homology model of *S. pneumoniae* MurM
- A Lipid II binding site in MurM was identified by docking and molecular dynamics
- Modeling indicates cardiolipin is enriched at the MurM protein:membrane interface
- Enzyme assays show that phospholipids influence MurM activity
including cell wall biosynthesis is a key mechanism for many antibiotics, constitutional integrity, and resisting high osmotic pressures. Inhibition of cell wall, involved in cell growth and division, maintaining structure (Bugg et al., 2011). PG biosynthesis begins with the cytoplasmic formation of a Park nucleotide, which is subsequently converted into a lipid-linked PG precursor known as Lipid II. Lipid II is then transported across the membrane, where it is polymerized and crosslinked by the penicillin-binding proteins (PBPs) (Figure 1). PG is an essential component of the bacterial cell wall, a polymer consisting of alternating β-1,4-linked N-acetyl glucosamine (GlcNAc) and N-acetyl muramic acid (MurNAc) residues. Appended to the MurNAc sugar is a pentapeptide stem that can be crosslinked directly or indirectly to form a rigid mesh-like structure (Bugg et al., 2011). PG biosynthesis begins with the cytoplasmic formation of a Park nucleotide, which is subsequently converted into a lipid-linked PG precursor known as Lipid II. Lipid II is then transported across the membrane, where it is polymerized and crosslinked by the penicillin-binding proteins (PBPs) (Figure 1). PG is an essential component of the cell wall, involved in cell growth and division, maintaining structural integrity, and resisting high osmotic pressures. Inhibition of cell wall biosynthesis is a key mechanism for many antibiotics, including β-lactams, glycopeptides, and amino acid analogs (Schneider and Sahl, 2010).

In Streptococcus pneumoniae and other Gram-positive bacteria, the glutamate at the second position of the Lipid II pentapeptide is γ-amidated to form iso-glutamine by the essential GatT/MurD complex (Figueiredo et al., 2012; Münch et al., 2012; Zapun et al., 2013; Morlot et al., 2018). In addition, branched Lipid II, capable of generating indirect crosslinks, can be formed by the non-essential aminoacyl-tRNA-dependent ligases, MurM and MurN. MurM and MurN are responsible for the sequential addition of amino acids to the third-position lysine of the pentapeptide stem of Lipid II (Filipe et al., 2000). MurM can append either L-serine or L-alanine at the first position of the dipeptide bridge, while MurN extends this modification by addition of an invariant L-alanyl moiety. Branched PG precursors are also found in several other Gram-positive bacterial pathogens, for example the glycyll-tRNA^{Gly}-dependent enzymes FemX, FemA, and FemB are responsible for the addition of a pentaglycyl bridge in Staphylococcus aureus (Schneider et al., 2004). In comparison with other Gram-positive organisms, the PG of S. pneumoniae is highly heterogeneous: the predominant C-terminal amino acid at position 1 of the dipeptide and the proportion of indirect crosslinks throughout the PG vary significantly between different strains (Severin and Tomasz, 1996; García-Bustos et al., 1987; García-Bustos and Tomasz, 1990). In vitro and in vivo studies indicate that MurM from the penicillin-resistant strain S. pneumoniae(Pn16) preferentially incorporates L-alanine, while MurM from a penicillin-sensitive strain S. pneumoniae(Pn16) preferentially incorporates L-serine (Lloyd et al., 2008). In addition, penicillin-resistant strains demonstrated higher levels of penicillin resistance.
indirect crosslinking in the PG compared with penicillin-susceptible isolates, although the overall degree of crosslinking remained constant (Garcia-Bustos and Tomasz, 1990).

Resistance to β-lactam antibiotics in S. pneumoniae is characterized by extensive interspecies recombination of PBP transpeptidase domains, which results in sequence heterogeneity within and around the mosaic PBP active site with a consequential lowering of β-lactam binding affinity (Smith et al., 1991). This mechanism of resistance contrasts with that of many other bacteria that have acquired genes for β-lactamase enzymes which inactivate the antibiotic before it binds to and inhibits the PBPs. Interestingly, deletion of the murM gene in S. pneumoniae eliminates indirect crosslinks from the PG and results in a complete loss of penicillin resistance (Filipe et al., 2001). It has been proposed that the changes to the PBP active site, which prevent β-lactam binding, may also alter the Lipid II substrate specificity such that the PBPs bind branched Lipid II more tightly than unbranched Lipid II. MurM is therefore necessary but not sufficient for resistance in clinical strains of S. pneumoniae, making it an interesting target for the development of new inhibitors of antimicrobial resistance (Filipe and Tomasz, 2000).

The cytoplasmic membrane of S. pneumoniae contains two phospholipids, phosphatidylglycerol and cardiolipin (Trombe et al., 1979; Pesakhov et al., 2007), where cardiolipin synthase is responsible for generating cardiolipin from two molecules of phosphatidylglycerol (Schlame, 2008). The proportion of cardiolipin and phosphatidylglycerol, as a percentage of the overall membrane lipids, varies in S. pneumoniae between anaerobic and aerobic growth conditions. Cardiolipin was found to decrease from 15.3% to 8.3% while phosphatidylglycerol increased from 12.7% to 16.3% in anaerobic conditions compared with aerobic conditions (Pesakhov et al., 2007). The peptidoglycan precursor, Lipid II, is tethered to the cell membrane by virtue of its C55 Lipid II tail. Therefore, MurM acts on its lipid substrate in close proximity to the cytoplasmic leaflet.
Minimum inhibitory concentration, indicating that these compounds have shown growth inhibition or any effect on penicillin resistance.

Phospholipid composition.

Structure and activity of the cell membrane and is potentially influenced by membrane phospholipid composition.

Previously, MurM inhibitors have been identified; however, none have shown growth inhibition or any effect on penicillin minimum inhibitory concentration, indicating that these compounds cannot effectively cross the cytoplasmic membrane of *S. pneumoniae* (Cressina et al., 2007, 2009). MurM has thus far resisted extensive crystallization in our laboratory, and consequently its X-ray-solved structure is not available. However, in a related study we were able to solve the X-ray structure of the isofunctional homolog of MurM from *S. aureus* (FemX), which we have used here as a template for homology modeling of MurM. Using this MurM homology model, we have successfully identified the Lipid II binding site and have used molecular dynamics (MD) simulations to investigate interactions between MurM and both membrane phospholipids and its Lipid II substrate (Witzke et al., 2016). We subsequently studied the effects of these membrane-embedded phospholipids, on the enzymatic activity of MurM in vitro, corroborating our in silico analysis. These studies provide insights into the structure and activity of MurM, providing a link between phospholipid membrane composition and peptidoglycan architecture. This may be useful for the development of chemical probes for these proteins and has important implications for future studies on penicillin resistance mechanisms in *S. pneumoniae*.

RESULTS

X-ray crystallography and structure determination of *S. aureus* FemX

The crystal structure of *S. aureus* FemX was solved to a resolution of 1.62 Å, and the structure was deposited in the PDB with accession number PDB: 6SNR. A summary of the data collection and refinement statistics is given in Table 1.

Data collection	FemX
Synchrotron radiation detector, wavelength (Å)	Pilatus 6M-F, 0.920
Unit cell a, b, c (Å), α, β, γ (°)	45.01, 83.62, 133.93, 90.0, 90.0, 90.0
Space group	P2_12_12
Resolution (Å)	52.27–1.62 [1.66–1.62]
Observations	422,822 [29,596]
Unique reflections	65,058 [4,782]
I/σ(I)	15.7 [2.6]
Rsym	0.065 [0.567]
Rmeas	0.078 [0.690]
Rfree	0.031 [0.273]
Completeness (%)	99.7 [99.8]

Refinement:

Non-hydrogen atoms	3,937 (including 177 waters)
Rcryst	0.221 [0.262]
Refinements used	61,691 [4,531]
Rfree	0.262 [0.296]
Refinements used	3,294 [244]
Rcryst (all data)	0.222
Average temperature factor (Å²)	26
RMSDs from ideal values	
Bonds (Å)	0.013
Angles (°)	1.5
DPI coordinate error (Å)	0.098
Ramachandran plot	
Favored (%)	98.0
Outliers (%)	0.0

Results and discussion	
The highest-resolution bin of data is indicated by square brackets. Numbers in square brackets refer to values in the highest-resolution shell.	
Rcryst = S[Fobs
Rfree is equivalent to Rcryst for a 4% subset of reflections not used in the refinement.	
DPI refers to the diffraction component precision index (Cruickshank, 1999).	
As calculated by MolProbity (Williams et al., 2008).	

The crystal structure of *S. aureus* FemX comprises residues 1–145 and 384–421 while subdomain 1B comprises residues 235–297. FemX and FemA can be superimposed onto each other with a root-mean-square deviation (RMSD) of ~2.7 Å over 384 residues. Similarly to FemA, FemX has a deep L-shaped channel of about 20 × 40 Å located alongside the globular domain and mainly in subdomain 1B. This channel comprises a peptidoglycan precursor binding site which was previously identified in *S. aureus* FemA (Benson et al., 2002). The identity of this peptidoglycan precursor binding site has been further confirmed by crystallographic analysis of *Weissella viridescens* FemX complexed with substrates (Biarrotte-Sorin et al., 2004).

Homology modeling of *S. pneumoniae* MurM

The structures of two MurM homologs, *S. aureus* FemA and *W. viridescens* FemX, were solved previously by X-ray crystallography (Benson et al., 2002; Fonvielle et al., 2013; Biarrotte-Sorin et al., 2004). The *S. aureus* FemA structure was subsequently used as a template for homology modeling of MurM by Fiser et al. (2003). However, alignment of *S. aureus* FemA, *S. aureus* FemX, *S. pneumoniae* MurM, and *W. viridescens* FemX (Fig. S1) showed that *S. aureus* FemX possesses the highest sequence identity to MurM and is also more functionally homologous to *S. pneumoniae* MurM, as it appends the first amino acid of the cross-bridge to the Lipid II precursor (Matsushita et al., 1967; Schneider et al., 2004). In contrast, *S. aureus* FemA appends the second and third amino acid residues of the cross-bridge to the α-amino group of a glycyl residue appended to
the ε-amino group of the stem peptide L-lysyl residue of the Lipid II precursor. Therefore, given the difficulties in obtaining MurM crystals, we were motivated to solve the structure of its functional homolog (S. aureus FemX) by X-ray crystallography to access the structure of MurM in silico.

Using the structure of S. aureus FemX, we generated a homology model for MurM, which consists of a globular domain comprising two subdomains and a coiled-coil helical arm (Figure 2). Each subdomain comprises two twisted β-sheet cores surrounded by α helices; subdomain 1A is formed of residues 1–153 and 382–401, while subdomain 1B is made up of residues 154–241 and 294–381. The coiled-coil domain comprises residues 242–293. While the MurM homology model presented here is similar to the previous model (Fiser et al., 2003), the RMSD of the two models is 3.8 Å over 368 residues, indicating that there are some key structural differences, namely: loss of N-terminal β1 and antiparallel β6/β13 from the previous model; addition of α5 and β11/β12; and presence of an α-helical secondary structure proximal to the C-terminal end of this MurM model.

Identification of a possible Lipid II binding site of MurM

Our MurM model revealed a binding pocket that was not present in the previous model of MurM produced by Fiser et al. (2003). Structural comparison between W. viridescens FemX co-crystallized with its uridine diphosphate (UDP)-MurNAc-pentapeptide substrate and this MurM model allowed identification of a Lipid II binding site that corresponds to the peptidoglycan precursor binding sites identified previously in S. aureus FemA and W. viridescens FemX (Benson et al., 2002; Biarrotte-Sorin et al., 2004) and in our structure of S. aureus FemX. When this MurM model and the W. viridescens FemX were aligned and overlaid, the proposed MurM binding site appeared to easily accommodate the soluble UDP-MurNAc-pentapeptide substrate well (Figure 3A). The following eight residues—Tyr103, Lys36, Asn38, Trp39, Thr209, Arg211, Tyr215 and Tyr256—were independently proposed to be involved in substrate binding in the peptidoglycan precursor and tRNA liganded W. viridescens FemX structures (Biarrotte-Sorin et al., 2004; Fonvielle et al., 2013). The corresponding MurM residues, defined as having residues which have similar properties, and occupying a similar location and orientation in physical space with side chains facing the binding pocket, were identified in the MurM structure as Phe103, Lys35, Trp38, Arg215, and Tyr219; therefore, these residues may also be important for substrate binding in MurM.

Next, molecular docking using AutoDock Vina (Trott and Olson, 2010) was conducted to independently investigate docking of the Lipid II substrate to the MurM model we generated. Lipid II is a large molecule that is, in general, unsuitable for molecular docking studies. In addition, the lipid tail is embedded in the membrane, and so is not itself available for binding to MurM. Therefore, a truncated Lipid II molecule, composed of a methyl capped diphospho GlcNAc-MurNAc-pentapeptide, was used for these docking experiments (Figure S2).

When AutoDock Vina was allowed to search the entire protein surface of MurM, all docking results returned were within the identified binding site, indicating that there are no other suitable binding sites on the protein. The search was then restricted to the binding site, and the top ten results were obtained. The top five results obtained all had identical binding affinities; however, two of these docking orientations, where the phosphates are located deep within the binding pocket, would be physically impossible for the natural substrate (Lipid II) in vivo, since the membrane-embedded prenyl lipid tail is appended via the phosphate. The remaining three docking orientations all orient the phosphates close to the opening of the binding site with the pentapeptide chain disappearing deep into the binding pocket. The exact orientation of the pentapeptide chain is variable, indicating that the binding site is spacious and that Lipid II may be accommodated in a number of different possible orientations. Figure 3B shows one conformation in which the docking of truncated Lipid II is similar to the orientation of the soluble UDP-MurNAc-pentapeptide from W. viridescens FemX overlaid with MurM (Figure 3A), the remaining four substrate orientations are shown in Figure S3. A key limitation of docking is that it considers the protein as rigid; therefore, multiple substrate orientations may indicate that conformational changes within the binding site may occur upon substrate binding or during catalysis.

Additional docking studies were performed to further explore the Lipid II binding pose in the putative MurM binding site and establish whether this binding site shows specific affinity for Lipid II or is indiscriminate between different lipid species. Therefore, Lipid II, cardiolipin, phosphatidylglycerol, and phosphatidylethanolamine lipids (full molecules) were docked into the
putative binding site, where the binding site is defined by the residues Lys35, Trp38, Phe103, Arg215, and Tyr219. We found Lipid II bound into this site with atoms of the headgroup within 3 Å of the residues Lys35, Trp38, Phe215, and Arg219, and with the Lipid II tail outside of this site. In stark contrast, the cardiolipin and phosphatidylethanolamine headgroups did not show any preference for this site; instead the binding poses showed their tails inserted into the cavity. There was one binding pose for phosphatidylglycerol whereby the phospholipid head-group was in the putative binding site, although a portion of the tail was also inside it; the remaining two phosphatidylglycerol poses had the tails inserted into this cavity. For each lipid type the top cluster of binding poses produced by HADDOCK2.4 (Van Zundert et al., 2016) were analyzed, and the top three binding poses for each lipid are shown in Figure S4.

Interactions between MurM and the lipid bilayer

Given the docking studies are performed in the absence of the membrane environment, a set of coarse-grained MD simulations was next performed to establish the likelihood of MurM being oriented on the membrane such that the putative binding site is available to Lipid II. MD simulations were used to model the interactions of MurM with the lipid bilayer. Six independent coarse-grained simulations were conducted for each of three membrane systems described in Table S1. In 16 of these simulation runs, MurM readily associated with the membrane in <3 μs and its orientation with respect to the membrane remained unchanged for the remaining 2 μs (Figure S5). In addition, in the same membrane leaflet as the peripheral MurM, more than 50% of Lipid II molecules were located within 2 nm of the protein. MurM associated with the membrane in a number of different orientations, which can be classified into two groups: those in which the binding site predicted from docking studies is available for lipid binding and those in which it is not. Table 2 shows that in 18 unbiased simulations; MurM adhered to the membrane in 16 of the simulations and of these, the binding site was available for Lipid II binding in 11 and unavailable in only 5. In 3 of these 18 unbiased simulations, MurM was oriented such that the Lipid II molecule was located in the putative binding site, which demonstrates that Lipid II is able to successfully enter this binding site even on the short timescale of an MD simulation (Figure 4). Back mapping of one of these systems to all-atom resolution allowed the binding site to be explored in more detail. Three independent atomic simulations each of 250 ns duration found Lipid II located in the same binding site of MurM that was identified during molecular docking of the truncated Lipid II substrate, and in the co-crystal structure of UDP-MurNAc-pentapeptide with W. viridescens FemX (Figure 3A). In both the molecular docking and atomic simulations, the Lipid II headgroup forms stable interactions with Lys35, Trp38, Arg215, and Tyr219. Similarly to the molecular docking findings, this MD simulation shows that the MurM binding site is flexible and allows the Lipid II molecule to adopt a wide variety of conformations (Figure 5). This may suggest that binding of a second substrate or a large conformational change may be required for catalysis.

Interactions between MurM and membrane phospholipids

MD simulations were used to investigate the effects of membrane phospholipids (cardiolipin and phosphatidylglycerol) on MurM at the cytoplasmic membrane interface. To investigate local lipid enrichment/depletion, we calculated two-dimensional enrichment maps across the entire membrane and depletion-enrichment (D-E) indices within 1.1 nm of MurM, as described by Corradi et al. (2018) (see STAR Methods). A D-E index <0, or an enrichment percentage <0%, indicated that the specified lipid was depleted with respect to the bulk membrane composition. Figure 6 shows that upon association of MurM with the
cytoplasmic membrane, there was no effect on the distribution of phosphatidylglycerol or phosphatidylethanolamine. However, in membranes containing 8% or 16% cardiolipin, cardiolipin was enriched at the MurM:membrane interface.

The importance of these observations was considered in vitro by measuring the enzymatic activity of MurM in the presence of varying concentrations of cardiolipin or phosphatidylglycerol. These enzymatic studies show that cardiolipin activates MurM while phosphatidylglycerol inhibits MurM in a concentration-dependent manner. Figure 6E shows the enzymatic activation of MurM with respect to cardiolipin concentration whereby a 9.1-fold activation of MurM was achieved, with 50% activation occurring at 0.4 mM cardiolipin. Figure 6F shows that the activity of MurM could be completely inhibited by phosphatidylglycerol, with an IC_{50} of 0.2 mM. Furthermore, Hill coefficients of 2.7 ± 0.3 and 2.8 ± 0.2 for cardiolipin and phosphatidylglycerol, respectively, indicate that both these phospholipids exhibit their effects on MurM in a cooperative manner. Phosphatidylethanolamine, used in the construction of the model pneumococcal membrane to which MurM bound, when tested at a concentration of 0.72 mM, only slightly activated MurM activity by 0.32-fold (doplicate determination with a difference of <10%). In comparison, 0.72 mM cardiolipin activated MurM by 8-fold (Figure 6E). Therefore, the impact of phosphatidylethanolamine on the disposition of MurM relative to its interaction with Lipid II and the phospholipid bilayer could be neglected.

DISCUSSION

The crystal structure of S. aureus FemX has allowed us to generate an improved homology model of MurM leading to the identification of a putative Lipid II binding site. Fiser et al. (2003) proposed a different MurM model and speculated about an alternative binding site based on structural and functional analogy between MurM and N-myristoyltransferase (NMT) proteins. However, while the substrates of both NMT proteins and MurM are lipids, they are contextually very different. The NMT proteins are cytoplasmic proteins that contain a deep, narrow pocket which is highly specific for the myristoyl fatty acyl chain (Wright et al., 2010; Heuckeroth et al., 1988). In contrast, MurM binds the disaccharide headgroup and pentapeptide side chain of Lipid II, and the undecaprenyl C55 lipid tail is embedded in the membrane. Despite similarities with NMT proteins, the substrate binding site we propose more closely resembles those of W. viridescens FemX, S. aureus FemX, and FemA.

The orientations of truncated Lipid II in docking studies and Lipid II in MD simulations are strikingly similar to each other and also the orientation of UDP-MurNAc-pentapeptide substrate co-crystallized in W. viridescens FemX. This is consistent with the observation that, although inefficient compared with Lipid II, UDP-MurNAc pentapeptide is a MurM substrate (Lloyd et al., 2008). In all cases, the diphosphates are near the surface of the protein, and the protruding pentapeptide reaches into the binding pocket with the third-position lysine on the left-hand side of the binding pocket. In addition, previous studies suggest that the height of the Lipid II headgroup is 19 Å (Ganchev et al., 2006), and the binding pocket of this model was measured to be 15 Å. Since the Lipid II headgroup is flexible and the binding site provides enough room for the substrate to bend, these measurements are consistent. Together with our findings, this strongly supports the identification of this cavity as the Lipid II binding site and suggests that the Lipid II binds to MurM in an orientation similar to that of W. viridescens FemX binding to its substrate.

Alanyl-phosphatidylglycerol synthase (PDB: 4v34), similarly to MurM, also utilizes both lipid and alanyl-tRNA^{Ala} substrates (Hebecker et al., 2015). To successfully bring these two substrates together for catalysis it possesses two binding sites, located on opposite sides of the protein, which are connected by a channel. The protein itself provides a barrier between the hydrophobic lipid and the hydrophilic tRNA, such that they do not come into close proximity with each other. The negatively charged surface patch identified previously (Fiser et al., 2003) remains present on this homology model of MurM and is located on the opposite side of the protein with respect to the Lipid II binding site, which is located within a positively charged surface patch. This negative patch is unsuitable for the binding of negatively charged tRNA, so it is unlikely that MurM shares the same mechanism of action as alanyl-phosphatidylglycerol synthase. The negatively charged surface patch may, however, be important for protein-protein interactions occurring either at the cell surface or in the cytoplasm.

These modeling studies reveal that the stem peptide protrudes perpendicular to the surface of the membrane into the active site of MurM. Therefore, in order for alanyl-tRNA^{Ala} to simultaneously interact with MurM, while it is located over its lipid substrate the highly negatively charged hydrophilic tRNA would have to be brought into close proximity with the negatively charged phospholipid headgroups and/or the hydrophobic phospholipid tails below them. Given that this would be a highly unfavorable interaction, we propose an alternative “ping-pong” mechanism of action for MurM whereby MurM is initially aminoacylated by alanyl- or seryl-tRNA in the cytoplasm before translocation to the cell membrane for aminoacyl transfer to Lipid II. While the MurM is in the cytoplasm and not interacting with the membrane, the positively charged patch, of the proposed Lipid II binding site, may facilitate interaction with a polyamionic substrate such as tRNA. Once this has occurred, subsequent interaction of the aminoacyl-MurM with the surface of the membrane could accommodate the correct and catalytically productive interaction of aminoacylated-MurM with Lipid II. Although this proposed mechanism is at variance with the sequential mechanism of catalysis proposed for W. viridescens FemX

Table 2. Summary of MurM adherence to and orientation on the three different membrane systems

Membrane	Available	Unavailable	Lipid II in binding site
1 (0% cardiolipin)	4	1	1
2 (12% cardiolipin)	4	1	1
3 (16% cardiolipin)	3	3	0

Orientation of MurM was categorized such that the putative binding site was either available for Lipid II binding (facing close to the membrane) or unavailable for Lipid II binding (facing away from the membrane).
(Hegde and Blanchard, 2003), here both substrates are highly hydrophilic nucleotide or polynucleotide derivatives in the same cellular subcompartment and are therefore without biophysical impediment with regard to their proximity during catalysis. Here, with regard to MurM, the chemical properties and location of both substrates indicate an advantage to a mechanism that avoids their simultaneous binding.

The pneumococcal peptidoglycan is heterogeneous with respect to its composition of directly and indirectly crosslinked stem peptides. It remains unclear as to whether the activity of MurM, and therefore the generation of indirect crosslinks, is distributed equally around the entire cell surface or whether it is localized to specific sites. Phospholipids are known to be involved in the spatial and temporal biochemistry of cells (Lin et al., 2019), and cardiolipin was shown to be enriched at the poles and septa of Escherichia coli and Bacillus subtilis, localizing specific membrane-associated proteins to these regions (Bramkamp and Lopez, 2015). Our simulations indicate that, while cardiolipin enrichment occurs within the membrane in the presence of MurM, this phospholipid is not essential for

Figure 4. Lipid II binding to the putative MurM binding site
(A), (B), and (C) show the three simulations whereby Lipid II was found to bind in the putative MurM binding site. Each panel shows the MurM binding to Lipid II with respect to the membrane (top), and an enlarged image of the MurM binding to Lipid II, with the membrane removed (bottom). MurM binding site residues K36, W38, R215, and Y219 are depicted in yellow; the Lipid II headgroup and prenyl chain are rendered in red and blue, respectively. See also Figure S1.

Figure 5. Different conformations of Lipid II inside MurM binding site
(A and B) MurM (gray) with Lipid II binding, colored on a blue to white to red scale with respect to simulation time, in system 5 (Table S2).
membrane association of MurM to occur. Therefore, it remains uncertain as to whether in vivo cardiolipin is highly concentrated in patches in the membrane and is used to recruit MurM to that location or whether association of MurM with the membrane drives the enrichment of cardiolipin in the membrane.

Despite this uncertainty, we show that cardiolipin stimulates the enzymatic activity of MurM, and while it is not clear if this increased activity is a result of a direct effect on the protein or the Lipid II substrate, or both, the spatial association of cardiolipin to the MurM protein suggests that at least some of this effect may be due to direct interactions with the MurM protein.

Cardiolipin has previously been found to bind to and activate a wide range of proteins including MurG (van den Brink-van der Laan et al., 2003), rat liver protein kinase N (Morrice et al., 1994; Peng et al., 1996), porcine heart AMP deaminase (Purzycka-Preis and Zydowo, 1987), rat liver multi-catalytic proteinase (Ruiz de Mena et al., 1993), E. coli glycerol-3-phosphate acyltransferase (Scheideler and Bell, 1989), E. coli dnaA (Sekimizu and Komberg, 1988), and streptococcal hyaluronan synthases (Tlapak-Simmons et al., 1999a, 1999b, 2004; Weigel et al., 2006; Tlapak-Simmons et al., 1998). This further supports the contention that cardiolipin affects MurM activity by directly interacting with MurM. Similar cardiolipin-mediated sigmoidal stimulatory effects have been seen with other streptococcal membrane proteins such as the hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis (Tlapak-Simmons et al., 1999a, 1999b, 2004; Weigel et al., 2006).

In these examples, up to 16 cardiolipin molecules are believed to associate with single hyaluronan synthase molecule (Tlapak-Simmons et al., 1998).

We also show that phosphatidylglycerol inhibits the catalytic activity of MurM and that the concentration of this lipid in the membrane environment surrounding the MurM changes very little. Therefore, the inhibitory effect of phosphatidylglycerol may be exerted by altering the presentation of the Lipid II substrate to MurM rather than by having a direct effect on the protein itself. It is possible that in S. pneumoniae, as in E. coli and B. subtilis, cardiolipin gathers in specific regions of the membrane, where
in the pneumococcus it localizes and upregulates the activity of MurM, resulting in higher levels of indirect crosslinking in these regions.

While MurM alone is not sufficient for penicillin resistance, the enzyme is crucial together with mosaic S. pneumoniae PBPs for the generation of a highly resistant phenotype. Deletion of murM from resistant strains resulted in a virtual abolition of penicillin resistance that could not be restored by PBP DNA. Indeed, additional murM DNA from a resistant strain was required for full expression of donor-level penicillin resistance (Filipe and Tomasz, 2000; Smith and Klugman, 2001). Given the importance of MurM for penicillin resistance, the enrichment of cardiolipin at the MurM:membrane interface which activates MurM, and the inhibition of MurM activity by phosphatidylglycerol may regulate the penicillin resistance phenotype imparted by MurM activity, which may therefore be regulated by cardiolipin synthase activity. These findings have therefore revealed a crucial and hitherto unexplored facet of penicillin resistance suggesting the involvement of other areas of pneumococcal metabolism in the expression of clinical antibiotic resistance.

Conclusions
The MurM structural model presented in this work allowed identification of the Lipid II binding site and the contextual presentation of this substrate to MurM. Furthermore, this work characterized the impact of membrane phospholipids on MurM at the MurM:membrane interface and may have spatial mechanistic implications for the catalytic activity of this protein. MD enabled the in silico investigation into MurM-membrane interactions, which are often overlooked when studying enzymes that act at the cytoplasmic membrane interface. The subsequent in vitro experiments on the importance of phospholipids for MurM activity corroborate the in silico findings, supporting the role of phospholipids as an important contributor to the regulation of MurM at the membrane. These studies provide insights into the structure of MurM, which may guide future mutational studies and allow a more detailed analysis of the structure-function relationship of this protein. This research contributes important findings toward achieving a more complete understanding of the role of MurM in pneumococcal penicillin resistance mechanisms.

STAR Methods
Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
- **METHOD DETAILS**
 - Cloning, overexpression and purification of S. pneumoniae(Fn16) AlaRS
 - Preparation of MurM substrates
 - S. pneumoniae MurM enzymology
 - Computational studies overview
 - Homology modelling of MurM
 - Molecular docking of truncated Lipid II to MurM
 - Molecular docking of Lipid II, Cardiolipin, Phosphatidylglycerol and Phosphatidylethanolamine to the putative MurM binding site.
 - Coarse-grained molecular dynamics simulations
 - All-atom molecular dynamics simulations
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

Supplemental information can be found online at https://doi.org/10.1016/j.str.2021.03.001.

Acknowledgments
This research was supported in part by the Midlands Integrative Biosciences Training Partnership (MiBTP) BB/S014532/1, and the Center for Doctoral Training in Theory and Modeling in Chemical Sciences (TMCS DTC) EPSRC grant EP/L015722/1, as well as MRC grants G100127, G0400848, MR/N002679/1 and BB/S00324/1. The authors would like to acknowledge the help of the Media Preparation Facility in the School of Life Sciences at the University of Warwick. We would also like to thank Dr Allister Crow for his help and support with using PyMOL.

Author Contributions
Conceptualization, A.Y., A.J.L., D.I.R., and S.K.; Investigation, K.F., K.J.H., V.F., A.J.L., A.Y., J.S., and C.I.d.G.; Methodology/software/formal analysis, C.I.d.G., J.S., A.Y., and S.K.; Writing – original draft, A.Y., J.S., and C.I.d.G.; Writing – review & editing, A.Y., A.J.L., S.K., D.I.R., and C.G.D.; Funding acquisition, A.Y., J.S., and C.G.D.; Supervision, A.J.L., D.I.R., S.K., and C.G.D.; Project administration, A.Y.; Visualization, A.Y., A.J.L., J.S., and S.K.

Declaration of Interests
The authors declare no competing interests.

Received: June 20, 2020
Revised: January 13, 2021
Accepted: March 1, 2021
Published: March 18, 2021

References
Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., and Lindahl, E. (2015). GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19–25.
Benson, T.E., Prince, D.B., Mutchier, V.T., Curry, K.A., Ho, A.M., Sarver, R.W., Hagadorn, J.C., Choi, G.H., and Garlick, R.L. (2002). X-ray crystal structure of Staphylococcus aureus FemA. Structure 10, 1107–1115.
Berendsen, H.J., Postma, J.V., van Gunsteren, W.F., DiNola, A., and Haak, J. (1984). Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690.
Biarrat-Serin, S., Maillard, A.P., Deletrè, J., Sougakoff, W., Arthur, M., and Mayer, C. (2004). Crystal structures of Weisella viridescens FemX and its complex with UDP-MurNAc-pentapeptide: insights into FemABX family substrates recognition. Structure 12, 257–267.
Brannick, M., and Lopez, D. (2015). Exploring the existence of lipid rafts in bacteria. Microbiol. Mol. Biol. Rev. 79, 81–100.
Brungger, A.T. (1992). Free F value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475.

Bugg, T.D.H., Bradick, D., Dowson, C.G., and Roper, D.I. (2011). Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol. 29, 167–173.

Corradi, V., Mendez-Villuendas, E., Ingólfsson, H.I., Gu, R.-X., Sidua, I., Melo, M.N., Moussatova, A., DeGagné, L.J., Sejdiu, B.I., Singh, G., et al. (2018). Lipid-protein interactions are unique fingerprints for membrane proteins. ACS Cent. Sci. 4, 709–717.

Cressina, E., Lloyd, A.J., De Pascale, G., Roper, D.I., Dowson, C.G., and Bugg, T.D.H. (2007). Adenosine phosphate inhibitors of lipid II: alanyl tRNA ligase MurM from Streptococcus pneumoniae. Bioorg. Med. Chem. Lett. 17, 4654–4656.

Cressina, E., Lloyd, A.J., De Pascale, G., Mok, B.J., Caddick, S., Roper, D.I., Dowson, C.G., and Bugg, T.D.H. (2009). Inhibition of RNA-dependent ligase MurM from Streptococcus pneumoniae by phosphate and sulfonamide inhibitors. Bioorg. Med. Chem. 17, 3443–3455.

Cruickshank, D. (1999). Remarks about protein structure precision. Acta Crystallogr. D Biol. Crystallogr. 55, 583–601.

Darden, T., York, D., and Pedersen, L. (1993). Particle mesh Ewald: an N log (N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092.

de Jong, D.H., Singh, G., Bennett, W.D., Amarez, C., Wassenaar, T.A., Schäfer, L.V., Periolo, X., Tielman, D.P., and Marrink, S.J. (2012). Improved parameters for the martini coarse-grained protein force field. J. Chem. Theor. Comput. 9, 687–697.

de Jong, D.H., Singh, G., Bennett, W.F., Amarez, C., Wassenaar, T.A., Schäfer, L.V., Periolo, X., Tielman, D.P., and Marrink, S.J. (2013). Improved parameters for the martini coarse-grained protein force field. J. Chem Theory Comput. 9, 897–907.

Dong, G.Q., Fan, H., Schneidman-Dughovny, D., Webb, B., and Sali, A. (2013). Optimized atomic statistical potentials: assessment of protein interfaces and loops. Bioinformatics 29, 3158–3168.

Doublé, S. (1997). Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530.

Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501.

Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M., Eramian, D., Shen, M.-Y., Pieper, U., and Sali, A. (2006). Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics 15, 5–6.

Figueiredo, T.A., Sobral, R.G., Ludovice, A.M., de Almeida, J.M.F., Bui, N.K., Corradi, V., Mendez-Villuendas, E., Ingólfsson, H.I., Gu, R.-X., Siuda, I., Melo, M.N., Moussatova, A., DeGagne, L.J., Sejdiu, B.I., Singh, G., et al. (2013). Structure of FemXWv in complex with a peptidyl-tRNA conjugate: mechanism of aminoacyl transfer from Ala-tRNAAla to peptidoglycan precursors. Angew. Chem. Int. Ed. Engl. 125, 7419–7422.

Ganchev, D., Hasper, H., Breukink, E., and de Kruijff, B. (2006). Size and orientation of the lipid II headgroup as revealed by AFM Imaging. Biochemistry 45, 6195–6202.

Garcia-Bustos, J., and Tomasz, A. (1990). A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc. Natl. Acad. Sci. U S A 87, 5415–5419.

Garcia-Bustos, J., Chait, B.T., and Tomasz, A. (1987). Structure of the peptide network of pneumococcal peptidoglycan. J. Biol. Chem. 262, 15400–15405.

Gowers, R.R., Linke, M., Barnoud, J., Reddy, T.J., Melo, M.N., Seyler, S.L., Domariaski, J., Dotson, D.L., Buchoux, S., Kenney, I.M., et al. (2016). MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations. In Proceedings of the 15th Python in Science Conference (SCIPY 2016), S. Benthall and S. Rostrup, eds. (SciPy). https://doi.org/10.25080/Majora-629e541a-00e.

Graham, J.A., Essex, J.W., and Khalid, S. (2017). PyGCTool: automated generation of coarse-grained molecular dynamics models from atomistic trajectories. J. Chem. Inf. Model. 57, 650–656.

Hanwell, M.D., Curtis, D.E., Lnie, D.C., Vandermeersch, T., Zurek, E., and Hutchison, G.R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17.

Hebecker, S., Krausje, J., Hasenkampf, T., Schneider, J., Groenewold, M., Reichelt, J., Jahn, D., Heinz, D.W., and Moser, J. (2019). Structures of two bacterial resistance factors mediating tRNA-dependent aminocytologic of phosphatidylglycerol with lysine or alanine. Proc. Natl. Acad. Sci. U S A 112, 10891–10896.

Hegele, S.S., and Blanchard, J.S. (2003). Kinetic and mechanistic characterization of recombinant Lactobacillus viridescens FemX (UDP-N-acetylmuramoyl pentapeptide-lysine N6-alanyltransferase). J. Biol. Chem. 278, 22861–22867.

Heckrother, R.O., Glaser, L., and Gordon, J.I. (1988). Heteroatom-substituted fatty acid analogs as substrates for N-myristoyltransferase: an approach for studying both the enzymeology and function of protein acylation. Proc. Natl. Acad. Sci. U S A 85, 8795–8799.

Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., Grubmüller, H., and MacKerrill, A.D., Jr. (2017). CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73.

Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. J. Mol. Graph. 14, 35–38.

Jo, S., Kim, T., Iyer, V.G., and Im, W. (2008). CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865.

Jo, S., Cheng, X., Lee, J., Kim, S., Park, S.J., Patel, D.S., Beaven, A.H., Lee, K.I., Rui, H., Park, S., et al. (2017). CHARMM-GUI 10 years for biomolecular modeling and simulation. J. Comput. Chem. 38, 1114–1124.

Kabsch, W. (2010). XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132.

Langer, G., Cohen, S.X., Lamzin, V.S., and Perrakis, A. (2008). Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171.

Leahy, D.J., Hendrickson, W.A., Aukhil, I., and Erickson, H.P. (1992). Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the lipid II headgroup as revealed by AFM imaging. Biochemistry 31, 6402–6417.

Levesque, R.C., Catherwood, A.C., Tomasz, A., Bugg, T.D., Roper, D.I., Levesque, R.C., Catherwood, A.C., Tomasz, A., Bugg, T.D., Roper, D.I., et al. (2016). MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations. In Proceedings of the 15th Python in Science Conference (SCIPY 2016), S. Benthall and S. Rostrup, eds. (SciPy). https://doi.org/10.25080/Majora-629e541a-00e.

Lloyd, A.J., Gilbay, A.M., Biewert, A.M., De Pascale, G., El Zoebiy, A., Levesque, R.C., Catherwood, A.C., Tomasz, A., Bugg, T.D., Roper, D.I., et al. (2008). Characterization of tRNA-dependent peptide bond formation by MurM in the synthesis of Streptococcus pneumoniae peptidoglycan. J. Biol. Chem. 283, 6402–6417.

Malde, A.K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P.C., Oostenbrink, C., and Mark, A.E. (2011). An automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theor. Comput. 7, 4028–4037.
Marti-Renom, M.A., Stuart, A.C., Fiser, A., Sánchez, R., Melo, F., and Sali, A. (2000). Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325.

Matsushashi, M., Dietrich, C.P., and Strominger, J.L. (1967). Biosynthesis of the peptidoglycan of bacterial cell walls III. The role of soluble ribonucleic acid and of lipid intermediates in Glycine incorporation in Staphylococcus aureus. J. Bacteriol. 94, 123–128.

Morlet, C., Straume, D., Peters, K., Hegnar, O.A., Simon, N., Villard, A.M., Contreras-Martel, C., Leisico, F., Breukink, E., Gravier-Pelletier, C., et al. (2018). Structure of the essential peptidoglycan amidotransferase MurT/GatD complex from Streptococcus pneumoniae. Nat. Commun. 9, 3180.

Morrice, N.A., Gabrielli, B., Kemp, B.E., and Wettenhall, R. (1994). A cardiolipin-activated protein kinase from rat liver structurally distinct from the protein kinases C. J. Biol. Chem. 269, 20040–20046.

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Chem. J. Comput. 16, 2785–2791.

Munch, D., Roemer, T., Lee, S.H., Engeser, M., Sahl, H.G., and Schneider, T. (2012). Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II synthesis in Staphylococcus aureus. PLoS Pathog. 8, e1002509.

Parrinello, M., and Rahman, A. (1981). Polymorphic transitions in simple crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190.

Peng, B., Morrice, N.A., Groenen, L.C., and Wettenhall, R.E. (1996). Phosphorylation events associated with different states of activation of a hepatic cardioplin/protease-activated protein kinase structural identity to the protein kinase N-type protein kinases. J. Biol. Chem. 271, 32233–32240.

Periolo, X., Cavalli, M., Marrink, S.J., and Ceruso, M.A. (2009). Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theor. Comput. 5, 2531–2543.

Pesaikov, S., Benisty, R., Sikron, N., Cohen, Z., Gomelsky, P., Khozin-Goldberg, I., Dagan, R., and Porat, N. (2007). Effect of hydrogen peroxide production and the Fenton reaction on membrane composition of Streptococcus pneumoniae. Biochim. Biophys. Acta 1768, 590–597.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1625.

Purzycka-Przei, J., and Zydowow, M. (1987). Regulatory effect of pig heart phospholipids on heart muscle AMP-deaminase. Int. J. Biochem. 19, 565–568.

Ruiz de Mena, I., Mahillo, E., Arribas, J., and Castano, J. (1993). Kinetic mechanism of activation by cardiolipin (diphosphatidylglycerol) of the rat liver multifunctional proteinase. Biochem. J. 296, 93–97.

Sali, A., and Blundell, T.L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815.

Scheideler, M., and Bell, R.M. (1989). Phospholipid dependence of homogeneous, reconstituted sn-glycerol-3-phosphate acetyltransferase of Escherichia coli. J. Biol. Chem. 264, 12455–12461.

Schlame, M. (2008). Thematic Review Series: glycerolipids. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J. Lipid Res. 49, 1607–1620.

Schneider, T., and Sahl, H.G. (2010). An oldie but a goodie—cell wall biosynthesis as antibiotic target pathway. Int. J. Med. Microbiol. 300, 161–169.

Schneider, T., Senn, M.M., Berger-Bächli, B., Tossi, A., Sahl, H.G., and Wiedermann, I. (2004). In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Mol. Microbiol. 53, 675–685.

Sekimizu, K., and Komberg, A. (1988). Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. J. Biol. Chem. 263, 7131–7135.

Severin, A., and Tomasz, A. (1996). Naturally occurring peptidoglycan variants of Streptococcus pneumoniae. J. Bacteriol. 178, 168–174.

Shearer, J., Jeffries, D., and Khalid, S. (2019). Outer membrane proteins OmpA, FhuA, OmpF, EstA, BtuB, and OmpX have unique lipopolysaccharide fingerprints. J. Chem. Theor. Comput. 15, 2608–2619.

Sheldrick, G.M. (2010). Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 479–485.

Shen, M.Y., and Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524.

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539.

Smith, A.M., and Klugman, K.P. (2001). Alterations in MurM, a cell wall mureopeptide branching enzyme, increase high-level penicillin and cephalosporin resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 45, 2393–2396.

Smith, J.M., Dowson, C.G., and Spratt, B.G. (1991). Localized sex in bacteria. Nature 349, 29–31.

Tironi, I.G., Sperb, R., Smith, P.E., and van Gunsteren, W.F. (1995). A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 102, 5451–5459.

Tlapak-Simmons, V.L., Kempner, E.S., Baggenstoss, B.A., and Weigel, P.H. (1998). The active streptococcal hyaluronan synthases (HASs) contain a single HAS monomer and multiple cardiolipin molecules. J. Biol. Chem. 273, 26100–26109.

Tlapak-Simmons, V.L., Baggenstoss, B.A., Clyne, T., and Weigel, P.H. (1999a). Purification and lipid dependence of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis. J. Biol. Chem. 274, 4239–4245.

Tlapak-Simmons, V.L., Baggenstoss, B.A., Kumari, K., Heidermon, C., and Weigel, P.H. (1999b). Kinetic characterization of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis. J. Biol. Chem. 274, 4246–4253.

Tlapak-Simmons, V.L., Baron, C.A., and Weigel, P.H. (2004). Characterization of the purified hyaluronan synthase from Streptococcus equisimilis. Biochemistry 43, 9234–9242.

Trombe, M.C., Lanéelle, M.A., and Lanéelle, G. (1979). Lipid composition of aminoperoxidase-resistant and sensitive strains of Streptococcus pneumoniae. Effect of aminoperoxidin inhibition. Biochim. Biophys. Acta 574, 290–300.

Trott, O., and Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multitreading. J. Comput. Chem. 31, 455–461.

Vagin, A.A., Steiner, R.A., Lebedev, A.A., Potterson, L., McNicholas, S., Long, F., and Murshudov, G.N. (2004). REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184–2195.

van den Brink-van der Laan, E., Boots, J.-W.P., Spelbrink, R.E., Kool, G.M., Breukink, E., Killian, J.A., and de Kruijf, B. (2003). Membrane interaction of the glycosyltransferase MurG: a special role for cardiolipin. J. Bacteriol. 185, 3775–3779.

Van Zundert, G., Remmert, M., Söding, J., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539.

Wassenaar, T.A., Puhackova, K., Bockmann, R.A., Marrink, S.J., and Tieleman, D.P. (2014). Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J. Chem. Theor. Comput. 10, 676–680.
Weigel, P.H., Kyossev, Z., and Torres, L.C. (2006). Phospholipid dependence and liposome reconstitution of purified hyaluronan synthase. J. Biol. Chem. 281, 36542–36551.

Williams, C.J., Headd, J.J., Moriarty, N.W., Prisant, M.G., Vizeau, L.L., Deis, L.N., Verma, V., Keedy, D.A., Hintze, B.J., Chen, V.B., et al. (2008). MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315.

Winter, G. (2010). xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Cryst. 43, 186–190.

Witzke, S., Petersen, M., Carpenter, T.S., and Khalid, S. (2016). Molecular dynamics simulations reveal the conformational flexibility of lipid II and its loose association with the defensin plectasin in the Staphylococcus aureus membrane. Biochemistry 55, 3303–3314.

Wright, M.H., Heal, W.P., Mann, D.J., and Tate, E.W. (2010). Protein myristoylation in health and disease. J. Chem. Biol. 3, 19–35.

Zapun, A., Philippe, J., Abrahams, K.A., Signor, L., Roper, D.I., Breukink, E., and Vernet, T. (2013). In vitro reconstitution of peptidoglycan assembly from the Gram-positive pathogen Streptococcus pneumoniae. ACS Chem. Biol. 8, 2688–2696.

Zubay, G. (1962). The isolation and fractionation of soluble ribonucleic acid. J. Mol. Biol. 4, 347–356.
STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Bacterial and Virus Strains		
E. coli BL21 Star (DE3): F− *ompT hsdS*₃₄ (r_B- m_B-) *gal dcm me131* (DE3)	Invitrogen	Cat# C601003
E. coli B834 (DE3): F− *ompT hsdS*₃₄ (r_B- m_B-) *gal dcm met* (DE3)	Novagen	Cat# 69401
E. coli Rosetta 2 (DE3): F− *ompT hsdSB*₈ (r_B- m_B-) *gal dcm* (DE3) pRARE2 (CamR)	Novagen	Cat# 71405
E. coli BL21 Star *pRosetta2* (DE3) − F− *ompT hsdSB*₈ (r_B- m_B-) *gal dcm* me131 pRARE (DE3)	Lloyd et al. (2008)	N/A
E. coli C41 (DE3) (a derivative of BL21(DE3) [F− *ampT hsdS8* (r_Bm_B)gal dcm me131] pRARE (DE3)	Lloyd et al. (2008)	N/A
E. coli B834 (DE3): *pRosetta2* - F− *ompT hsdS*₃₄ (r_B- m_B-) *gal dcm* met pRARE2 (DE3)	Novagen	Cat# 69041
M. flavus (*M. luteus*) (Stanley130.21)	NCIMB	Cat# 8166

Chemicals, Peptides, and Recombinant Proteins		
Poly(ethylene glycol) 8000	Fluka	Cat# 81272
L-Alanine, [2,3-3H]	Moravek	Cat# MT-886
Lipid II (Lys)	BACWAN/Lloyd et al. (2008)	Cat# C55-LII-5K
Phosphatidylglycerol	MERCK LIFE SCIENCE UK LTD	Cat# P8318
L-alpha-Phosphatidyl-DL-glycerol sodium salt from egg yolk lecithin, =99% (TLC), lyophilized powder		
Cardiolipin	MERCK LIFE SCIENCE UK LTD	Cat# C0563
Cardiolipin sodium salt from bovine heart, =98% (TLC), lyophilized powder		
JCSG-plus™ crystallization screen	Molecular Dimensions	Cat# MD1-37
PACT premier™ crystallization screen	Molecular Dimensions	Cat# MD1-29
Morpheus® crystallization screen	Molecular Dimensions	Cat# MD1-46
Cobalt TALON resin	Takara	Cat# 635502
Nickel- Chelating Sepharose	Cytiva	Cat# 17526801
Superdex 75 Size exclusion media	Cytiva	Cat# 17104404
Sephacryl S200 size exclusion media	Cytiva	Cat# 17058401
Selenomethionine	Acros Organics	Cat# 259960025
Tomato etch virus (TEV) Protease	New England Biolabs	Cat# P8112
BsaI	New England Biolabs	Cat# R0535S
XhoI	New England Biolabs	Cat# R0146S
Hen egg white lysozyme	MERCK LIFE SCIENCE UK LTD	Cat# L9764

| **Deposited Data** | | |
| *S. aureus* FemX | This paper | PDB: 6SNR |

Oligonucleotides		
FemX Forward TTTGCGGTTGCTCTCCCATGGAAA AGATGCAATACACTAATCAGG	IDT DNA	N/A
S. aureus FemX Reverse TTTGCGGTCGAGGGCCCTGAAAAATACAG GTTTTCTTTCTGTTTATAATGTACGATGTTTTATAGGC	IDT DNA	N/A

(Continued on next page)
Continued

REAGENT or RESOURCE	**SOURCE**	**IDENTIFIER**
Recombinant DNA
pRosetta 2 (purified from *Escherichia coli* Rosetta™2 (DE3)) | Novagen | Cat# 71405
pET28a(+) | Novagen | Cat# 69864
pET21b::MurM159 | Lloyd et al. (2008) | N/A
pET26b::alaRS | Lloyd et al. (2008) | N/A
pET28::FemX | This paper | N/A

Software and Algorithms
GraphPad Prism Version 8.4.1. | GraphPad Soft-ware, San Diego, CA, USA. | www.graphpad.com
Xia2 | Winter (2010) | https://xia2.github.io/
XDS package | Kabsch (2010) | http://xds.mpimf-heidelberg.mpg.de
SHELX suite | Sheldrick (2010) | https://www.shelxle.org/shelx/eingabe.php
ARP/wARP | Langer et al. (2008) | https://www.embl-hamburg.de/ARP/
REFMAC | Vagin et al. (2004) | https://ww2.mrc-ibm.cam.ac.uk/groups/murshudov/content/refmac/refmac.html
COOT | Emsley et al. (2010) | https://ww2.mrc-ibm.cam.ac.uk/personal/pemsley/coot/
MODELLER | Eswar et al. (2006); Martí-Renom et al., 2000; sali and Blundell (1993); Fiser et al. (2000) | https://salilab.org/modeller/
Chimera (Version 1.13.1) | Pettersen et al., (2004) | https://www.cgl.ucsf.edu/chimera/
Discrete Optimized Protein Energy (DOPE-HR) | Shen and sali (2006) | https://github.com/salilab/chimera/
Statistically Optimized Atomic Potentials (SOAP) | Dong et al. (2013) | https://github.com/salilab/SOAP
PyMOL (Version 2.2.0) | Schrodinger, LLC, 2010. The PyMOL Molecular Graphics System, Version 2.1.0 | https://pymol.org/2/#download
Avogadro2 software | Hanwell et al. (2012) | https://www.openchemistry.org/downloads/
AutoDock Vina | Trott and Olson (2010) | http://vina.scripps.edu/download.html
HADDOCK web server | Van Zundert et al. (2016) | https://bianca.science.uu.nl/haddock2.4/
GROMACS package (Version 2018) | Abraham et al. (2015) | http://www.gromacs.org/
Auto-mated topology builder (ATB) web-interface | Maide et al. (2011) | https://atb.uq.edu.au/
PyCGTOOL | Graham et al. (2017) | https://pypl.org/project/pycgtool/
CHARMM-GUI web interface | Jo et al. (2017) | http://charmm-gui.org/
backward script | Wassenaar et al. (2014) | http://www.cgmartini.nl/index.php/downloads/tools/240-backward
Particle mesh Ewald (PME) algorithm | Darden et al. (1993) | N/A
Visual Molecular Dynamics (VMD) | Humphrey et al. (1996) | https://www.ks.uiuc.edu/Research/vmd/

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David Roper (David.Roper@warwick.ac.uk).

Materials availability
This study did not generate any new unique reagents. Plasmids will be available by Materials Transfer Agreement (MTA) request in line with University of Warwick IP requirements.
Data and code availability
No novel code was generated during this work. Modelling scripts and raw data are available from the authors upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

E. coli B834 (DE3) - F- ompT hsdSB (rB- mB-) gal dcm met (DE3), referred to as E. coli B834 (DE3) in the method details section was transformed with pRosetta2 to yield E. coli B834 (DE3): pRosetta2 - F- ompT hsdSB (rB- mB-) gal dcm met (DE3) which was employed as the expression host for selenomethionine substituted S. aureus FemX. E. coli C41 (DE3) (a derivative of BL21 (DE3) [F- ompT hsdS8 (rBm8gal dcm DE3)] was transformed with pRIL (Camφ)). The resulting transformant referred to as E. coli C41 (DE3):pRIL in the method details section was employed as the expression host for expression of S. pneumoniae (159) MurM. E. coli BL21 Star (DE3): F- ompT hsdS8 (rB- mB-) gal dcm me131 (DE3) was transformed with pRosetta2 to yield E. coli BL21 Star pRosetta2 (DE3) - F- ompT hsdSB (rB- mB-) gal dcm me131 (DE3) referred to as E. coli BL21(DE3) star/pRosetta2 in the methods details section which was utilized as the expression host for expression of S. pneumoniae (Pn16) alanyl-tRNA synthetase (AlaRS). Expression of selenomethionine-labelled FemX was performed in M9 media supplemented with 19 canonical amino acids and 40 mg mL\(^{-1}\) [LA1] L-selenomethionine in place of L-methionine. Expression of the remaining proteins were performed in luria broth. For all expression experiments freshly transformed expression hosts were cultured shaken at 180–200 rpm at 37°C in the presence of the appropriate antibiotics (30 mg mL\(^{-1}\) kanamycin, 30 mg mL\(^{-1}\) chloroamphenicol for FemX; 50 mg mL\(^{-1}\) carbenicillin, 30 mg mL\(^{-1}\) chloroamphenicol for MurM and 30 mg mL\(^{-1}\) kanamycin, 30 mg mL\(^{-1}\) chloroamphenicol for AlaRS) until mid-exponential phase (Optical density at 600 nm (OD\(_{600}\)) of 0.4–0.6. At this point, cultures were supplemented with fresh antibiotics and protein expression was induced by 1 mM isopropyl-D-1-thiogalactopyranoside at 25°C for 4 h. Micrococcus flavus (Synonymous with M. luteus) was cultured shaken at 200 rpm at 37°C in tryptic soy broth to late exponential phase (OD\(_{600}\) of 4).

METHOD DETAILS

Cloning, overexpression and purification of S. aureus FemX

The S. aureus Mu50 FemX gene was amplified from chromosomal DNA using Oligonucleotides FemX forward: TTGGCGGGTGCTCTCCCATGAAAAAGATCATATC ACTAATCAGG and FemX Reverse: TTTGCGCTCGAGGCCCTGAAAATACAG. The resulting PCR fragment was cleaved with BsaI and XhoI and cloned into pET28 between the Ncol and Xhol restriction sites to create pET28::FemX, containing a Tobacco Etch Virus (TEV) protease cleavable C-terminal hexa-histidine tag. E. coli B834 (DE3) harbouring plasmid pRosetta2 (which supplies seven rare tRNAs to support expression of genes in E. coli and derived from the Rosetta 2(DE3) strain) were transformed with pET28::FemX. Transformed E. coli B834 (DE3) pRosetta2 were inoculated into M9 media supplemented with 30 mg mL\(^{-1}\) kanamycin, 30 mg mL\(^{-1}\) chloroamphenicol, and 40 mg mL\(^{-1}\) of each of the canonical amino acids [LA1] except L-methionine, which was replaced by 40 mg mL\(^{-1}\) (Doublé, 1997). Transformants were cultured at 37°C at 180 rpm until an optical density at 600 nm (OD\(_{600}\)) of 0.4–0.6 was reached. Protein expression was induced by 1 mM isopropyl-D-1-thiogalactopyranoside at 25°C for 4 h. Cells were harvested by centrifugation at 6,000 xg for 15 minutes and cell pellets containing 4-6 g of cells were resuspended in 20 mL of 50 mM sodium phosphate pH 7.0, 1M NaCl and 2.5 mg mL\(^{-1}\) lysozyme to which one tablet of Pierce EDTA free Protease Inhibitor was added. The cell suspension was incubated with slow rotation for 30 minutes at 4°C before disruption using a Bandelin Sonopuls sonicator with 3 x 30 second bursts at 70% power. The lysate was clarified by centrifugation at 50,000 xg at 4°C for 30 minutes. FemX was then purified by immobilised metal affinity chromatography (IMAC) using a 5 mL gravity fed column of cobalt Talon resin equilibrated with 50 mL of 50 mM sodium phosphate pH 7.0, 500 mM NaCl, 20% (v/v) glycerol (equilibration buffer) supplemented with 10 mM imidazole. Once the 50,000 xg supernatant was loaded onto the column, it was eluted sequentially with 50 mL of equilibration buffer with 10 mM imidazole, 30 mL of elution buffer with 50 mM imidazole and 30 mL of elution buffer with 200 mM imidazole. 10 mL Fractions were analysed by SDS-PAGE and those containing FemX were pooled and concentrated, using a vivaspin 20 centrifugal concentrator (10,000 molecular weight cut off (MWCO), as required. Size exclusion chromatography in 50 mM sodium phosphate pH 7.0, 500 mM NaCl and 20% (v/v) glycerol was used to further purify FemX on a Superdex 75 10/300 column. The histidine tag was then removed from the FemX protein by digestion with histidine-tagged TEV protease at a molar ratio of 100:1 FemX : TEV protease at 4°C overnight. Cleaved and uncleaved protein were separated by a reverse IMAC following the procedure described above.

FemX crystallisation and data collection

FemX was exchanged into 50 mM ethanolamine pH 10.0, 100 mM NaCl and 20% (v/v) glycerol, concentrated to 15 mg mL\(^{-1}\) using a vivaspin 20 centrifugal concentrator column with a 10,000 MWCO and screened for suitable crystallisation conditions using a honeybee 963 crystallisation robot against JCSG plus, PACT primer and Morpheus crystallisation screens. Crystals obtained from the Morpheus screen were used directly for data collection experiments, although crystallization conditions were further refined to 0.12 M ethylene glycol, 0.1 M MES/imidazole pH 6.3 and 28% (v/v) ethylene glycol-PEG 8000. Crystals were frozen directly for X-ray diffraction data experiments on the I04-1 beamline at the Diamond synchrotron (Didcot, UK) using a Pilatus 6M-F detector. Data were processed automatically using Xia2 (Winter, 2010) to 1.62 Å. Molecular replacement was not successful so selenomethionine containing FemX protein was produced and used to obtain FemX crystals (FemX-SeMet) in the same crystallisation conditions and
the structure was solved by single anomalous diffraction (Leahy et al., 1992). X-ray data from the FemX-SeMet crystal were collected on the I02 beamline at the Diamond synchrotron (Didcot, UK) using a Pilatus 6M detector. All data were indexed, integrated and scaled using the XDS package (Kabsch, 2010). All 10 of expected selenium atoms in the asymmetric unit were located and refined by the SHELX suite (Sheldrick, 2010). These sites were used to obtain preliminary phases. The starting model was built by ARP/wARP (Langer et al., 2008). This model was used to refine the higher resolution data. The structure was refined using iterative cycles of REFMAC (Vagin et al., 2004) and model building/solvent addition with COOT (Emsley et al., 2010).

Cloning, Overexpression and Purification of S. pneumoniae(159) MurM
As described in Lloyd et al. (2008), the MurM allele of S. pneumoniae(159) was cloned with a C-terminal histidine tag into pET21b and over-expressed in E. coli C41 (DE3)/pRIL. Cells were harvested by centrifugation and treated with 2.5 mg/mL 1 hen egg white lysozyme prior sonication. MurM was solubilised with 1 M NaCl and fractionated between 25% and 50% of saturation ammonium sulfate followed by purification by size exclusion chromatography with Sephacryl S-200 and by immobilized metal affinity chromatography (IMAC) using cobalt Talon resin. The purity and identity of the final products of these purifications were assessed by SDS-PAGE.

Cloning, Overexpression and Purification of S. pneumoniae(Pn16) AlaRS
As described in Lloyd et al. (2008), the AlaRS allele of S. pneumoniae(Pn16) was cloned into pET26a and over-expressed in E. coli BL21(DE3) star/pRosetta2. The soluble protein was purified using nickel-chelated Chelating sepharose, desalted and further purified by anion exchange chromatography on a 0.98 ml MonoQ™ column. The purity and identity of the final products of these purifications were assessed by SDS-PAGE.

Preparation of MurM substrates
The substrates used for assays of MurM were prepared as follows:

Lipid II(Lys): The peptidoglycan intermediate Lipid II(Lys) (undecaprenyl pyrophosphoryl N-N-acetyl muramyl (N-acetyl glucosaminyl)L-alanyl-γ-D-glutamyl-L-lysyl-D-alanyl-D-alanine) was prepared by re-capitulation of the peptidoglycan synthesis pathway as described (Lloyd et al., 2008).

[^3H]-Alanyl-tRNAAla. Micrococcus flauus tRNA was isolated from cell pellets of M. flauus cultures grown to late exponential phase by phenol extraction followed by isopropanol precipitation, anion exchange chromatography and ethanol precipitation as described by Zubay (1962) as adapted by Lloyd et al. (2008). tRNAs were renatured in 2 mM MgCl2 at 60°C and aminoacylated with [2,3-^3H]-L-alanine S. pneumoniae (Pn16) AlaRS as described by Lloyd et al. (2008) and quantitated by liquid scintillation counting.

S. pneumoniae MurM enzymology
MurM was assayed as described by Lloyd et al. (2008) in duplicate in a final volume of 35 µl of 50 mM 3-(N-morpholino)-propane sulphonic acid adjusted to pH 6.8, 30 mM KCl, 10 mM MgCl2, 1.5% (w/v) CHAPS (Assay Buffer), 1 mM DTT, 1 mM L-alanine, 10 µM Lipid II-Lys and 24.3 nM MurM. Reactions were initiated by the addition of 0.45 M [3H]-alanyl-tRNAAla (1000 cpm.pmol⁻¹) and were incubated at 37°C for two minutes, over which time frame, product accumulation was linear with respect to time. Where the impact of cardiolipin or phosphatidylglycerol on MurM activity was assessed, the required amounts of 10 mg/mL stocks of each phospholipid and plotted as fold activation or percentage inhibition vs phospholipid concentration. The data were then fitted using GraphPad Prism (Version 8.4.1) to either of equations 1 or 2 as appropriate:

$$\text{Fold Activation} = \frac{\text{Maximum Activation} \cdot \text{[Cardiolipin]}^n}{S_{0.5(\text{Activation})}^n + \text{[Cardiolipin]}^n} \quad (\text{Equation 1})$$

$$\% \text{Inhibition} = \frac{100 \cdot \text{[Phosphatidylglycerol]}^n}{I_{C50}^n + \text{[Phosphatidylglycerol]}^n} \quad (\text{Equation 2})$$

Maximum activation and $S_{0.5}$ (Activation) (Equation 1) corresponded to the degree of activation at infinite cardiolipin concentration and the cardiolipin concentration required to elicit half maximal activation respectively, I_{C50} (Equation 2) corresponds to the phosphatidylglycerol concentration that elicited half maximal inhibition. For both equations, n denoted the Hill coefficient.

Computational studies overview
A number of computational techniques were used in this study, to assist the reader in understanding the logistics of these methods, we have provided a summary flowchart (supplemental information: Figure S6).
Homology modelling of MurM

Due to the natural ability of streptococci to undergo homologous recombination, *S. pneumoniae* MurM genes are highly mosaic, and so, in line with the enzymology studies, the MurM sequence used for homology modelling was that of *S. pneumoniae* MurM₁₅₉. *S. pneumoniae* MurM, *S. aureus* FemX (PDB ID: 6SNR) and FemA (PDB ID: 1LRZ), and *Weissella viridescens* FemX (PDB ID: 3GKR) were aligned (supplemental information: Figure S1) by multiple sequence alignment using Clustal Omega to determine sequence identity (Sievers et al., 2011).

The structure of *S. aureus* FemX was used as the template for homology modelling due to its high relatedness with MurM. *S. aureus* FemX and MurM₁₅₉ sequences were aligned, and using MODELLER (Eswar et al., 2006; Martí-Renom et al., 2000; sali and Blundell, 1993; Fiser et al., 2000) a test model was generated to verify the validity of the template and the alignment. This model was evaluated by computing its energy profile according to the DOPE-HR (high-resolution version of the Discrete Optimized Protein Energy) (Shen and sali, 2006), smoothed via window averaging with a size of 15 residues. The profiles of template and model were compared (supplemental information: Figure S7), and further refinement was conducted in the region between Lys230 and Pro299, as well as in all loop regions. This optimisation was conducted by performing a very slow MD annealing on the selected regions, whilst maintaining the remaining structure. The scoring of the resulting conformations was obtained via a function built specifically to evaluate the geometry of loops. For this step, 64 different base models were created and their secondary structure was refined independently 16 times. The resulting 1024 models were evaluated and ranked using DOPE-HR as well as the SOAP (Statistically Optimized Atomic Potentials) (Dong et al., 2013). The 10 best scoring models for each score were selected and evaluated based on the number of physical constraint violations present.

The best model of MurM₁₅₉ was aligned with the previously published MurM model (Fiser et al., 2003) or *W. viridescens* Femx homologues (Fonvielle et al., 2013; Biarrotte-Sorin et al., 2004) for visualisation and analysis in PyMOL (Version 2.1.0).

Molecular docking of truncated Lipid II to MurM

A truncated Lipid II substrate (supplemental information: Figure S2) was created for initial molecular docking simulations. The truncated Lipid II was drawn in ChemDraw Professional (Version 17.1) and converted to a pdb file using Avogadro (Version 1.2.0). To prepare the ligand file for docking, the protonation state in H₂O at pH 7.4 was computed. Subsequently the equilibrium geometry minimizing the potential energy was computed using the general amber force field (GAFF) (Wang et al., 2004) from within the Avogadro2 software (Hanwell et al., 2012). Molecular docking was conducted using AutoDock Vina (Trott and Olson, 2010), for which pdbqt files were generated from the pdb files of receptor model and ligands using AutoDock Tools (Morris et al., 2009). Initially the location of the binding site was verified by providing the algorithm with a search space that included the entire protein. Docking was then repeated by restricting the search space to the identified binding site, in order to obtain the final docked conformation.

Molecular docking of Lipid II, Cardiolipin, Phosphatidyglycerol and Phosphatidylethanolamine to the putative MurM binding site.

Using the HADDOCK2.4 web server (Van Zundert et al., 2016), full length Lipid II, cardiolipin and phosphatidyglycerol and phosphatidylethanolamine were docked into the putative MurM binding site, where the binding site is defined by the residues Lys33, Trp38, Phe103, Arg215 and Tyr219.

Coarse-grained molecular dynamics simulations

All coarse-grained simulations were carried out with the GROMACS package (Version 2018) and the Martini (Version 2.2) forcefield (Abraham et al., 2015; de Jong et al., 2012). Simulations at the coarse-grained and atomistic resolutions were carried out at 313 K. For coarse-grained simulations, a stochastic velocity rescale thermostat with a coupling constant of 1:0 ps controlled the temperature.

The coordinates of the MurM homology model were used to generate a coarse-grained model using the ‘martinise.py’ script (de Jong et al., 2013). The protein was coarse grained to the EINeDyn model (Periole et al., 2009) with an elastic network strength and cutoff of 500 kJmol⁻¹nm⁻² and 0:9 nm, respectively. The Lipid II model for inclusion in the membrane was parameterised using a united atom model (Gromos 53a6) generated by the Auto-mated topology builder (ATB) web-interface (Malde et al., 2011). Following this, the coarse-grained mapping was pursued iteratively, and the bonded terms were fitted with PyCGTOOL (Graham et al., 2017).

Since the pneumococcal membrane comprises a complex mixture of lipids, a simplified membrane composition was required for the simulations. In order to elucidate the effects of phosphatidyglycerol and cardiolipin on MurM, a non-pneumococcal lipid, phosphatidylethanolamine, was used as the majority lipid. Simulations were conducted with three different membrane systems (supplemental information: Table S1). System 1 comprised phosphatidylethanolamine and phosphatidyglycerol in a molar ratio of 75% and 25% respectively, system 2 contained phosphatidylethanolamine, phosphatidyglycerol and cardiolipin in a molar ratio of 76%, 16% and 8% respectively and system 3 comprised phosphatidylethanolamine, phosphatidyglycerol and cardiolipin at a molar ratio of 72%, 12% and 16% respectively. The membrane systems of size ~16x16x11:5 nm were generated with the CHARMM-GUI web interface (Jo et al., 2017). Each system was relaxed with a series of minimisation and equilibration steps with timesteps of 5-20 fs, for up to 30 ns. The equilibration steps utilised a semi-isotropic Berendsen barostat, with a 4:0 ps coupling constant (Berendsen et al., 1984). Following equilibration, Lipid II molecules (10 in total) were added to each membrane. The systems were then minimised and equilibrated (for 10 ns), followed by a 2 μs production run to ensure sufficient mixing of all the lipid components. All production runs were carried out using a 10 fs timestep and a Parrinello-Rahman semi-isotropic barostat with a 12 ps coupling constant (Parrinello and Rahman, 1981). The Lennard-Jones potential was cutoff using the Potential shift Verlet scheme at long...
ranges. The reaction field method (Tironi et al., 1995) was used for electrostatics calculations, with dielectric constants of 15 and infinity for charge screening in the short- and long-range regimes, respectively. The short-range cutoff for non-bonded and electrostatic interactions was 1.2 nm. Once lipid mixing was ensured, the size of each system was increased to ~32 nm in the dimension perpendicular to the membrane and MurM was added in a random orientation around 8 nm above each membrane. Biologically relevant salt concentrations (0.15 M NaCl) were added and 10% of the water molecules were changed to antifreeze particles to prevent localised freezing during simulations. After minimisation and 1 ns of equilibration, during which the protein backbone was restrained with 1000 kJmol⁻¹nm⁻² harmonic restraints, 6x5 ns production runs were generated per membrane composition (supplemental information: Table S1).

All-atom molecular dynamics simulations

Atomistic simulations were conducted using the CHARMM36m forcefield (Huang et al., 2017). The Lipid II model used here was also used in previous work (Witzke et al., 2016), while all other lipid models were obtained from the CHARMM-GUI membrane builder module (Jo et al., 2008). For each coarse-grained membrane system, two repeats were chosen where: 1) the last frame of the production run had a distinct orientation of MurM, relative to the membrane 2) MurM adhered to the membrane surface (supplemental information: Table S2). The last frame of the chosen coarse-grained repeats were then backmapped to the all-atom model, using the backward script (Wassenaar et al., 2014). Unfavourable ring conformers were corrected by carrying our minimisation and equilibration steps with dihedral restraints of 25000 kJmol⁻¹rad⁻² on key ring torsions. After the transformation was carried out, each system was cropped in the z dimension to a height of 16.5 nm, to remove unnecessary H₂O molecules.

Each system was minimised and equilibrated for a total of 1 ns, while the backbone of the protein was restrained with 1000 kJmol⁻¹nm⁻² harmonic restraints. Two production runs of 250 ns were carried out for each system. During the production runs a timestep of 2 fs was used, and the pressure (1 bar) regulated with a semi-isotropic Parrinello-Rahman barostat, with a coupling constant of 5.0 ps. The Lennard-Jones potential was cutoff with the Force-switch modifier from 1.0 to 1.2 nm. The short range cutoff for the electrostatic interaction was also 1:2 nm and the Particle mesh Ewald (PME) algorithm (Darden et al., 1993) was used for the long-range regime.

Analysis was carried out over the final 100 ns of each simulation, unless stated otherwise. All simulations were visualised using Visual Molecular Dynamics (VMD) or PyMOL (Version 2.2.0) (Humphrey et al., 1996). Other analysis tools were written with a combination of GROMACS tools and in house scripts, that utilised the python module MDAnalysis (Gowers et al., 2016). The depletion/enrichment (D-E) indices were determined by first counting the number of lipids with a centre of geometry within 1.1 nm of the protein and then comparing this number to the number expected in the bulk of the membrane, using the procedure described by Corradi et al. (2018). The D-E index was obtained by dividing the lipid composition in the 1.1 nm shell around the protein by the bulk membrane composition. Thus a D-E index >1 indicates enrichment, while a D-E index <1 indicates depletion. The D-E index was determined for the last 100 ns of each simulation in 50 ns blocks for all repeats. For a given membrane composition, 8 D-E indices were obtained for each lipid, from which the average and standard errors were calculated. The enrichment maps were generated by first determining the 2D density map of the membrane using the GROMACS tool densmap. Following this, the enrichment percentage was determined using the procedure described by Corradi et al. (2018). An enrichment percentage <0% indicated that local membrane composition was depleted with respect to the bulk membrane composition. The code for the 2D enrichment maps and D-E indices was reported in Shearer et al. (2019).

QUANTIFICATION AND STATISTICAL ANALYSIS

Crystallographic statistics were calculated using software/programs as described in the methods, and values are reported in Table 1. Enzyme assays were performed in duplicate, generating data that differed by no more than 10%. Average values were then plotted. The standard errors of the fits of constants defining the relationships between the response of MurM to phospholipid and phospholipid concentration according to equations 1 and 2 were calculated by GraphPad Prism (Version 8.4.1).