Environmental Variance and Broad-sense Heritability of Nut Traits in Japanese Chestnut Breeding

Sogo Nishio1, Masahiko Yamada, Norio Takada, Hidenori Kato, Noriyuki Onoue2, Yutaka Sawamura, and Toshihiro Saito
NARO Institute of Fruit Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan

Additional index terms. Castanea crenata, genetic variance, genetic variation, phenotypic selection

Abstract. We evaluated the nut harvesting date (NHD), nut weight (NW), pericarp splitting (PS), and infestation by insects (II) in eight cultivars/selections of Japanese chestnut, including a Japanese–Chinese hybrid, over 6 years. Data were analyzed by analysis of variance (without transformation for NHD, after log-transformation for NW and PS, and after square root transformation for II). The among-tree variance accounted for only 1.1% to 8.5% of the total variance. The variance component resulting from residual factors for the tree × year interaction and sampling errors was the largest component for NW, PS, and II, accounting for 46% to 54% of the total environmental variance. Because tree replication is costly and time-consuming in chestnut breeding, increasing the number of yearly replications is more efficient than increasing the number of tree replicates. Broad-sense heritability was 0.84 for NHD, 0.27 for NW, 0.48 for PS, and 0.17 for II in evaluations with one tree without yearly replication. It increased to 0.91 for NHD, 0.40 for NW, 0.62 for PS, and 0.29 for II in evaluations with one tree in 2 years. For NHD, the heritabilities are sufficiently high to distinguish genetic differences among cultivars/selection. In contrast, the low heritability of II suggests that this trait should not be evaluated with an emphasis on the initial selection stage but rather with an emphasis on the secondary selection stage based on testing at several locations with a large number of yearly and tree replications.

The chestnut (Castanea spp.) has been an important food source in East Asia, Asia Minor, Europe, and North America for centuries. Three main chestnut species are currently produced commercially and are naturally distributed around the world: Japanese chestnut (C. crenata Sieb. et Zucc.) in Japan and the Korean Peninsula, Chinese chestnut (C. mollissima BL) in China, and European chestnut (C. sativa Mill.) in Europe and Asia Minor.

The history of chestnut use in Japan is very long. For example, a large number of chestnut pericarps and large chestnut timbers were found in a tower at the Sannai-Maruyama ruins (3500 to 2000 BCE) in Aomori Prefecture, northern Japan (Sawamura, 2006). For primitive Japanese people, chestnuts were important sources of food and construction materials. Even now, they are commercially grown throughout Japan for food, and chestnut orchards covered more than 21,400 ha in 2011, ranking fourth among woody fruit and nut crops in Japan after citrus, apple, and persimmon (FAOSTAT, 2013).

An organized chestnut breeding program started in 1947 at the National Institute of Fruit Tree Science in Japan and continues at the National Agriculture and Food Research Organization (NARO) Institute of Fruit Tree Science (NIFTS; Kotobuki et al., 1999; Pereira-Lorenzo et al., 2012). Currently, the most important target of the program is to release Japanese chestnut cultivars with an easily peeled pellicle. One such elite cultivar, Poro-tan, was released by NIFTS in 2006 (Pereira-Lorenzo et al., 2012; Saito et al., 2009). In addition, it is desirable to broaden the range of NHD to provide cultivars that are adapted to a much wider range of growing seasons. Simultaneously, large nut weight, the absence of PS, and freedom from II by the peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae), are also important targets. The easily peeled pellicle trait in Japanese chestnut is controlled by a major gene at a single locus (Takada et al., 2012). Molecular markers associated with this trait are now being used in applied chestnut breeding programs (Nishio et al., 2013). On the other hand, the inheritance of NHD and NW has been insufficiently studied. Kotobuki et al. (1984) reported the narrow-sense heritability of NHD and NW using F1 progeny from the chestnut breeding program at NIFTS, but their experiment was not replicated over multiple years, and they did not estimate the environmental variance components. In addition, no reports are available for the inheritance of PS and II and the associated selection efficiency. However, breeders have recorded the performance data for these traits of cultivars/selections for many years in the NIFTS breeding program.

Environmental variance in an orchard comprises the variance among years and variance among trees within a genotype as well as the genotype × year interaction variance, the tree × year interaction variance, and the variance among nuts (fruits) within a tree, which can all be estimated by repeating measurements of replications of several genotypes in 2 or more years (Hansche and Beres, 1966; Hansche and Brooks, 1965; Sato et al., 2000; Yamada et al., 1993, 2002). Genetic and environmental variance has been estimated for many fruit crops such as sweet cherry (Hansche and Beres, 1966), Japanese persimmon (Yamada et al., 1993), strawberry (Sacks and Shaw, 1994; Shaw, 1991), peach (De Souza et al., 1998), grape (Sato et al., 2000), guava (Thaipong and Boonprakob, 2005), and Japanese pear (Nishio et al., 2011). Once accurate estimates of the components of environmental variance have been obtained under a given set of cultural conditions, the environmental variance under any given number of replications and measurement repetitions can be estimated for those conditions (Nyquist and Baker, 1991; Yamada et al., 1993, 2002).

It is necessary to estimate the broad-sense heritability to determine whether the breeder has made or will be able to make an effective selection. If the broad-sense heritability is zero, any selection is meaningless, and the breeder cannot select superior genotypes. Therefore, breeders should concentrate on traits with high heritability. Broad-sense heritability is defined as the ratio of genetic variance to phenotypic variance. However, the broad-sense heritability of a breeding offspring population is difficult to estimate using the seedlings from controlled crosses, because the use of seedlings does not permit replication of each seedling’s genotype and because the seedlings quickly outgrow the space allowed in the breeding nursery. Instead, we can estimate the broad-sense heritability using environmental variance obtained from cultivars/selections over 2 or more years.

Environmental variance and broad-sense heritability are important both for selection and for future genomic-breeding. All genomics-based breeding techniques, including quantitative trait locus (QTL) analyses, genome-wide association studies (GWAS), and genomic selection (GS), need accurate phenotype evaluations to build an accurate phenotype database. Phenotypic variance contains both genetic and environmental variance components. The fluctuation of phenotypic values in response to changes in environmental conditions hinders the identification of useful molecular markers and can provide misleading results for marker effects detected by these analyses.
The objective of the present study was to accurately estimate the components of environmental variance and the broad-sense heritability of NHD, NW, PS, and II with the goal of supporting phenotypic selection in chestnut breeding programs, studies to detect linkages between molecular markers and traits of interest, and future genomics-based breeding.

Materials and Methods

Expt. 1: Estimation of variance in nut weight among fruits within a tree (100 nuts × two trees × four cultivars, 1 year). This experiment was based on two trees each of four cultivars (‘Ishizuchi’, ‘Mikuri’, ‘Porotan’, and ‘Tsukuba’; Table 1). The trees were 12 years old in 2011, were grafted on the seedling roots of ‘Kunimi’, and were randomly planted at a spacing of 6.0 m × 7.2 m in an orchard at NIFTS in Tsukuba, Ibaraki, Japan (lat. 36°04’N, long. 140°10’E). The trees were pruned in winter to promote stable nut production and were grown using the standard cultural techniques used in commercial production orchards in Japan.

Up to three nuts are contained in a bur that develops on a shoot of Japanese chestnut. In 2011, all the burs from each tree of the four cultivars were harvested when the bur had changed from green to brown and dropped. After removal of the bur, NW of each nut was changed from green to brown and dropped. We estimated NW, we analyzed the NW of 100 nuts randomly chosen from the total and infestation by insects out of 50 randomly chosen nuts from each tree. Because nuts were harvested every 3 or 4 d, the number of intact nuts on a given harvesting day was recorded and the group weight was measured (in grams) on a digital scale on each date. We chose this approach because it is impractical to weigh each nut individually in practical breeding operations. The average individual NW was calculated as the total intact nut weight among fruits within a tree (100 nuts × two trees × four cultivars, 6 years).

Table 1. The eight Japanese chestnut and Japanese–Chinese hybrid cultivars/selections used in Expts. 1 and 2.

Cultivar/selection	JP accession No.	Origin
Ishizuchi	113862	F1 of Ganne × unknown cultivar
Kunimi	176783	F1 of Tanzawa × Ishizuchi
Mikuri	—	F1 of Shitou × Ishizuchi
Porotan	—	F1 of 550-40 × Tanzawa
Riheiguri	176840	Japanese–Chinese hybrid cultivar
Tanzawa	113902	F1 of Otohume × Taishiwase
Tsukuba	113909	F1 of Hayadama × Ganne
Tsukuba-37	—	F1 of Tsukuba-31 × Kunimi

All the trees were grown and conserved at the NARO Institute of Fruit Tree Science (NIFTS), in Tsukuba, Japan.

The JP number in the National Institute of Agrobioscience Genebank in Japan.

‘Elite selections from the NIFTS chestnut breeding program, derived from local Japanese and Chinese chestnut cultivars.

To estimate the number of nuts required to evaluate NW, we analyzed the NW of 100 defect-free nuts randomly chosen from the total harvest from each tree by means of one-way analysis of variance (ANOVA). The phenotypic value of NW (P_{ijk}) for the ith nut of the jth tree of the kth genotype (cultur v/selection) was expressed using the following model:

$$P_{ijk} = μ + g_{ij} + t_{ij} + n_{ijk},$$

where the subscript i refers to Expt. 1, and:

- $μ$ = a constant value (the overall mean),
- g_{ij} = the random effect of the ith genotype,
- t_{ij} = the random effect of the jth tree of the ith genotype, and
- n_{ijk} = the random effect of the kth nut of the ith tree of the jth genotype.

Cochran’s test (Cochran, 1941) did not reject homogeneity of variance within a tree at $P < 0.05$. ANOVA provided the variance among genotypes ($σ_i^2$), among trees within a genotype ($σ_t^2$), and among the nuts within a tree ($σ_n^2$). The distribution of the residuals was not significant at $P = 0.05$ by the one-sample Kolmogorov–Smirnov test (Campbell, 1974), and it approached a normal distribution. The ANOVA was performed in JMP Version 9.0.2 software (SAS Institute, 2012).

Expt. 2: Estimation of environmental variance components in nut harvesting date, nut weight, pericarp splitting, and infestation by insects (three trees × eight cultivars, 6 years).

This experiment was based on three trees each of eight cultivars/selections (‘Ishizuchi’, ‘Kunimi’, ‘Mikuri’, ‘Porotan’, ‘Riheiguri’, ‘Tanzawa’, ‘Tsukuba’, and ‘Tsukuba-37’; Table 1). The trees were 12 years old in 2011, were grafted on the seedling roots of ‘Kunimi’, and were randomly planted at a spacing of 6.0 m × 7.2 m in the orchard at NIFTS. We evaluated NHD, PS, II, and NW over 6 years, from 2004 to 2009 (Table 2).

The burs and nuts were harvested as in Expt. 1. After removal of the bur, the number of nuts harvested on a given day was recorded. The number of harvested nuts per tree was at least 64 and the average was ≈ 300. The NHD of each nut was expressed as the number of days after 1 Aug. Fifty nuts were randomly chosen, and the average value of NHD was analyzed. PS was evaluated as the proportion of nuts with a split pericarp and II was evaluated as the proportion of the nuts infested by insects out of 50 randomly chosen nuts from each tree. Because nuts were harvested every 3 or 4 d, the number of intact nuts on a given harvesting day was recorded and the group weight was measured (in grams) on a digital scale on each date. We chose this approach because it is impractical to weigh each nut individually in practical breeding operations. The average individual NW was calculated as the total intact nut weight on a given harvesting day.

Table 2. The performance of the cultivars/selections in terms of nut traits.

Trait	Cultivar/selection	2004	2005	2006	2007	2008	2009
NHD (days)	Ishizuchi	60.7	68.5	61.2	64.0	39.8	57.2
	Kunimi	37.9	46.1	40.8	37.8	41.0	37.6
	Mikuri	54.3	65.3	59.1	61.5	59.7	49.5
	Porotan	38.3	46.9	41.5	35.8	39.3	34.7
	Riheiguri	46.3	57.0	52.2	51.4	54.1	47.1
	Tanzawa	28.9	39.8	35.1	28.9	33.3	27.2
	Tsukuba	51.9	63.2	53.3	55.0	56.4	48.2
	Tsukuba-37	32.7	38.1	37.1	30.4	38.9	29.0
PS (%)	Ishizuchi	5.3	3.7	6.7	12.7	10.0	17.3
	Kunimi	5.3	6.3	9.3	15.0	5.3	6.0
	Mikuri	8.7	5.3	9.3	2.7	9.3	4.7
	Porotan	5.3	3.3	2.3	4.7	3.3	4.7
	Riheiguri	32.0	14.7	30.7	36.0	61.3	22.7
	Tanzawa	10.7	14.7	10.0	20.7	14.0	18.0
	Tsukuba	5.3	4.0	6.0	8.0	4.0	3.3
	Tsukuba-37	3.7	6.7	14.7	18.0	12.0	12.0

II (%) | Ishizuchi | 8.0 | 30.7 | 36.0 | 38.0 | 12.0 | 18.0 |
	Kunimi	23.3	15.3	27.3	34.0	14.0	17.3
	Mikuri	9.3	29.3	43.3	47.3	20.0	33.3
	Porotan	13.3	34.7	45.3	28.0	34.7	16.7
	Riheiguri	14.7	24.7	10.7	15.3	18.0	17.3
	Tanzawa	16.0	14.0	18.7	31.3	36.0	24.0
	Tsukuba	4.7	22.7	36.0	30.0	9.3	13.3
	Tsukuba-37	26.7	51.3	42.7	48.7	31.3	46.0

Each value is the average of values from three trees.

NHD = nut harvesting date (the number of days after 1 Aug.); NW = nut weight; PS = pericarp splitting; II = infestation by insect.
weight divided by the total number of intact nuts.

Data were analyzed using two-way ANOVA. The phenotypic value of the jth tree of the ith genotype in the kth year was expressed as follows:

\[P_{2ijk} = \mu + g_{i} + t_{j} + y_{k} + (g_t)_{ik} + r_{2ijk} \]

where the subscript 2 refers to Expt. 2 and:
- \(\mu \) = a constant value (the overall mean),
- \(g_{i} \) = the random effect of the ith genotype,
- \(t_{j} \) = the random effect of the jth tree of the ith genotype,
- \(y_{k} \) = the random effect of the kth year,
- \((g_t)_{ik} \) = the interaction between the ith genotype and the kth year, and
- \(r_{2ijk} \) = the residual effect of the jth tree of the kth genotype in the lth year.

ANOVA provided the variance among genotypes (\(\sigma_{g}^2 \)), among trees within a genotype (\(\sigma_{t}^2 \)) and among years (\(\sigma_{y}^2 \)) as well as the variance associated with the genotype × year interaction (\(\sigma_{gy}^2 \)) and the variance associated with the residuals (\(\sigma_{e}^2 \)). The residual variance included the tree × year interaction and sampling errors other than those for the year effect, genotype × year interaction, and tree effect.

Before statistical analysis, the NW and PS values were log-transformed and the IV values were square root-transformed to improve the normality of the distribution of the residual estimates. Because PS values of 0 could not be log-transformed, they were set to 0.01 (the minimum measured value for this trait). The distribution of the residuals was not significantly different from a normal distribution at \(P = 0.05 \) by the Kolmogorov–Smirnov one-sample test (Campbell, 1974) for all traits. Therefore, the ANOVOA model was applicable to the data.

The environmental variance for a genotype (\(\sigma_{e}^2 \)) was estimated as \(\sigma_{e}^2 = \sigma_{g}^2 + \sigma_{t}^2 + \sigma_{y}^2 + \sigma_{gy}^2 \), where \(y \) is the number of years and \(t \) is the number of tree replicates per genotype. We defined the broad-sense heritability (\(h^2_i \)) as \(h^2_i = (\sigma_{g}^2 + \sigma_{y}^2) / \sigma_{e}^2 \).

Results and Discussion

Expt. 1: Estimation of variance in nut weight among fruits within a tree (100 nuts × two trees × four cultivars, 1 year). To determine the correct sample size for future determination of mean nut weight, we estimated the variance in NW among nuts within a tree. One-way ANOVA showed that the genotypic and tree effects were both highly significant (\(P < 0.01 \); Table 3). Variance components were \(\sigma_{g}^2 = 39.29 \times 10^{-4} \), \(\sigma_{t}^2 = 2.42 \times 10^{-4} \), and \(\sigma_{y}^2 = 98.59 \times 10^{-4} \). Although \(\sigma_{g}^2 \) and \(\sigma_{t}^2 \) had a small number of df (\(df = 3 \) and 4, respectively) and a high relative se (85.2% and 98.8%, respectively), and thus had low reliability, \(\sigma_{g}^2 \) had a large df (792) and a low relative se (5.0%) and therefore provides a reliable estimate of the variance among nuts within a tree in the model we used. \(\sigma_{y}^2 \) accounted for 70% of the total variance. The average NW of a nuts of b trees in a genotype has an environmental variance of \(\sigma_{e}^2 / ab + \sigma_{y}^2 / b \). Increasing the number of nuts evaluated effectively reduces the environmental variance component among the nuts within a tree. The environmental variance component among the nuts for the average NW of 50 and 100 nuts from a tree can be estimated as \(\sigma_{y}^2 / 50 (= 1.97 \times 10^{-4}) \) and \(\sigma_{y}^2 / 100 (= 0.99 \times 10^{-4}) \). These estimates were considerably smaller than \(\sigma_{e}^2 \), which suggests that 50 to 100 nuts are sufficient to determine accurately the mean and variance of the nuts.

For NW, the number of nuts evaluated per tree was not constant. Strictly speaking, this means that the data were not highly appropriate for the ANOVA model, but weighting each nut requires more time and labor than would be available in practical breeding, which requires efficient measurements. The \(\sigma_{e}^2 \) in NW was \(17.8 \times 10^{-4} \) and consisted of the effects of the tree × year interaction and within-tree variation among the nuts. In this study, the number of nuts evaluated per tree was at least 64 and was mostly more than 100; therefore, the variance resulting from within-tree variance was large as less than \(1.54 \times 10^{-4} \) from the results in Expt. 1, indicating that most of \(\sigma_{e}^2 \) was accounted for by the tree × year interaction variance and that the variance among nuts within a tree was minimal. Therefore, the bias for the ANOVA model was minimal, and the result can be used for practical chestnut breeding.

Table 3. Analysis of variance for the nut weight records for 100 nuts from two-tree replicates of four chestnut cultivars (genotypes) in 2011 (Expt. 1).

Source of variation	Sum of squares	df	Mean squares (× 10⁻⁴)	Expected mean square²
Genotype	2.46	3	820.6**	\(\sigma_{g1}^2 + 1000 \sigma_{g2}^2 + 2000 \sigma_{g3}^2 \)
Tree (genotype)	0.14	4	34.1***	\(\sigma_{t1}^2 + \sigma_{t2}^2 \)
Nut (tree genotype)	7.81	792	9.9	\(\sigma_{y}^2 \)

²Analysis of variance was performed with log-transformed values.

³Variance terms: \(\sigma_{y}^2 \), nuts within a tree; \(\sigma_{t}^2 \), trees within a genotype; \(\sigma_{g}^2 \), among genotypes.

*P < 0.05; **P < 0.01.

Table 4. Analysis of variance for four nut traits using eight cultivars/selections with trait evaluations repeated for 6 years.

Source of variation	Sum of squares (× 10⁻²)	Mean squares (× 10⁻³)	Expected mean square²		
Genotype	2531.1**	286.6**	\(\sigma_{g1}^2 + \sigma_{g2}^2 + \sigma_{g3}^2 + \sigma_{g4}^2 \)		
Year	3875.9**	226.6**	\(\sigma_{g2}^2 + \sigma_{g3}^2 + \sigma_{g4}^2 \)		
Year × genotype	352.6**	3.1	\(\sigma_{g5}^2 \)		
Year × tree	141.1**	4.2	\(\sigma_{g6}^2 \)		
Residuals	30.2	1.8	3.7	11.1	\(\sigma_{e}^2 \)

²Analysis of variance was performed with log-transformed values of NW and PS and with square-root-transformed values of II.

³Original values of “0” were changed to 0.01, which was the minimum value in the population for PS.

⁴Variance terms: \(\sigma_{y}^2 \), residuals; \(\sigma_{g}^2 \), genotype × year interaction; \(\sigma_{t}^2 \), among trees within a genotype; \(\sigma_{g}^2 \), among genotypes; \(\sigma_{y}^2 \), among years.

NHD = nut harvesting date; NW = nut weight; PS = pericarp splitting; II = infestation by insects.

ns NonSignificant at \(P = 0.05 \); *P < 0.05; **P < 0.01.
Table 5. Estimates of the variance components in the analysis of variance for nut traits using eight cultivars/selections with three trees per genotype for 6 years.

Trait	Variance component	Estimate	SE of estimate
NHD	Genetic variance (\(\sigma^2_g\))	128.2 (84.3)	69.2
	Year variance (\(\sigma^2_y\))	15.7 (10.3)	10.3
	Genotype \times year variance (\(\sigma_{gy}^2\))	3.1 (2.1)	1.0
	Tree variance (\(\sigma^2_t\))	1.8 (1.2)	0.8
	Residual variance (\(\sigma^2_r\))	3.2 (2.1)	0.5
	Total variance (\(\sigma^2_T\))	152.0	
NW (\(\times 10^{-4}\))	Genetic variance (\(\sigma^2_g\))	12.8 (27.2)	8.5
	Year variance (\(\sigma^2_y\))	8.2 (17.5)	6.0
	Genotype \times year variance (\(\sigma_{gy}^2\))	4.3 (9.2)	2.6
	Tree variance (\(\sigma^2_t\))	4.0 (8.5)	2.5
	Residual variance (\(\sigma^2_r\))	17.8 (37.7)	2.8
	Total variance (\(\sigma^2_T\))	47.2	
PS (\(\times 10^{-3}\))	Genetic variance (\(\sigma^2_g\))	73.3 (47.9)	44.5
	Year variance (\(\sigma^2_y\))	6.1 (4.0)	7.0
	Genotype \times year variance (\(\sigma_{gy}^2\))	26.6 (17.3)	9.5
	Tree variance (\(\sigma^2_t\))	10.2 (6.7)	5.9
	Residual variance (\(\sigma^2_r\))	37.0 (24.1)	5.8
	Total variance (\(\sigma^2_T\))	153.2	
II (\(\times 10^{-4}\))	Genetic variance (\(\sigma^2_g\))	42.4 (17.1)	30.2
	Year variance (\(\sigma^2_y\))	51.5 (20.8)	38.7
	Genotype \times year variance (\(\sigma_{gy}^2\))	39.6 (16.0)	19.2
	Tree variance (\(\sigma^2_t\))	2.8 (1.1)	8.1
	Residual variance (\(\sigma^2_r\))	110.8 (44.8)	17.5
	Total variance (\(\sigma^2_T\))	247.1	

\[a\] Log-transformed value.
\[b\] Square root-transformed value.
\[c\] Numbers in parentheses represent the percentage of the total variance.

NHD = nut harvesting date; NW = nut weight; PS = pericarp splitting; II = infestation by insect.

Table 6. Broad-sense heritability (\(h^2\)) of nut traits using eight cultivars/selections with three trees per genotype for 6 years.

Broad-sense heritability	NHD	NW*	PS*	II*
\(h^2\) based on one tree and 1 year of evaluation	0.84	0.27	0.48	0.17
\(h^2\) based on one tree and 2 years of evaluation	0.91	0.40	0.62	0.29
\(h^2\) based on two trees and 1 year of evaluation	0.86	0.35	0.57	0.22
\(h^2\) based on two trees and 2 years of evaluation	0.92	0.50	0.71	0.36

\[d\] Log-transformed value.
\[e\] Square root-transformed value.

NHD = nut harvesting date; NW = nut weight; PS = pericarp splitting; II = infestation by insect.

Unlike annual crops, fruit and nut trees have a long juvenile period before flowering and fruit or nut set. Because tree replication requires a large space and an enormous effort, and given the time and cost over the long juvenile period, increasing the number of yearly repetitions is more reasonable than increasing the number of tree replicates.

Application to genomics-based breeding. The estimated environmental variance is useful in both conventional breeding and genomics-based breeding based on methods such as QTL analyses, GWAS, and GS. Accurate phenotype evaluation is necessary to develop molecular markers or to predict the value of a given cultivar in breeding. The genetic variance depends on the plant population: the seedling population for QTL analyses, the sets of cultivars for GWAS, and all of the seedling population for GS. It is difficult to evaluate the traits of chestnut seedling trees over several years because the trees grow swiftly and become too large to manage easily in a breeding orchard. Because chestnut seedlings were traditionally planted at a spacing of 2 m \times 5 m in the NIFTS orchard, the evaluation of the seedlings for genetic analyses was limited to 2 years. If the phenotypic variance of seedlings can be obtained, we can estimate heritabilities using the environmental variance estimated in the present study and predict how accurately we can evaluate the performance of the trees for each of the four traits that we studied. We are currently preparing F1 populations, a phenotype database for the cultivars, and records of the seedling populations used in the NIFTS chestnut breeding program to support these genetic analyses. Accurate evaluation of the phenotype based on sufficient repetition to reduce the environmental variance will improve future genomics-based breeding.

Literature Cited.

Campbell, R.C. 1974. Statistics for biologists. 2nd Ed. Cambridge Univ. Press, Cambridge, UK.

Cochran, W.G. 1941. The distribution of the largest of a set of estimated variances as a fraction of their total. Ann. Eugen. 11:47–52.

De Souza, V.A.B., D.H. Byrne, and J.F. Taylor. 1998. Heritability, genetic and phenotypic correlations, and predicted selection response of quantitative traits in peach I. An analysis of several reproductive traits. J. Amer. Soc. Hort. Sci. 123:598–603.

FAOSTAT. 2014. <http://www.fao.org>.

Hansche, P.E. and V. Beres. 1966. An analysis of environmental variability in sweet cherry. Proc. Amer. Soc. Hort. Sci. 88:173–188.

Hansche, P.E. and R.M. Brooks. 1965. Temporal and spatial repeatability of a series of quantitative characters in sweet cherry (Prunus avium L.). Proc. Amer. Soc. Hort. Sci. 86:120–128.

Kotobuki, K., Y. Machida, Y. Saito, J. Kajitura, and T. Kozono. 1984. Chestnut breeding program in National Institute of Fruit Tree Science, Japan. Bull. Fruit Tree Res. Stn. A 11:43–53 [in Japanese].

Kotobuki, K., T. Saito, Y. Kashimura, and M. Shoda. 1999. Chestnut breeding program in National Institute of Fruit Tree Science, Japan. Acta Hort. 494:323–325.

Nishio, S., T. Takada, T. Yamamoto, S. Terakami, Y. Sawamura, and T. Saito. 2013. Mapping and pedigree analysis of the gene that controls the easy peel pfellite trait in Japanese chestnut (Castanea crenata Sieb. et Zucc.). Tree Genet. Genomes 9:723–730.

Nishio, S., M. Yamada, Y. Sawamura, N. Takada, and T. Saito. 2011. Environmental variance components of fruit ripening date as used in both phenotypic and marker-assisted selection in Japanese Pear Breeding. HortScience 46:1540–1544.

Nyquist, W.E. and R.J. Baker. 1991. Estimation of heritability and prediction of selection response in plant populations. Crit. Rev. Plant Sci. 10:235–322.

Pereira-Lorenzo, S., A. Ballester, E. Corredoira, A.M. Vieitez, S. Agranostakis, R. Costa, G. Bounous, R. Botta, G.L. Beccaro, T.L. Kubisiak, M. Conedera, P. Krebs, T. Yamamoto, Y. Sawamura, N. Takada, J. Gomez-Larango, and A.M. Ramos-Cabrero. 2012. Chestnut. p. 729–769. In: Badenes, M.L. and D.H. Byrne (eds.). Fruit breeding. Springer, New York, NY.

Sacks, E.J. and D.V. Shaw. 1994. Optimum allocation of objective color measurements for evaluating fresh strawberries. J. Amer. Soc. Hort. Sci. 119:330–334.

Saito, T., K. Kotobuki, Y. Sawamura, K. Abe, O. Terai, M. Shoda, N. Takada, Y. Sato, T. Hirabayashi,
A. Sato, T. Nishibata, Y. Kashimura, T. Kozono, H. Fukuda, K. Kihara, K. Suzuki, and M. Uchida. 2009. New Japanese chestnut cultivar ‘Porotan’. Bull. Natl. Inst. Fruit Tree Sci. 9:1–9 [in Japanese with English abstract].

SAS Institute. 2012. JMP. Version 9.0.2. SAS Institute Inc., Cary, NC.

Sato, A., M. Yamada, H. Iwanami, and N. Hirakawa. 2000. Optimal spatial and temporal measurement repetition for reducing environmental variation of berry traits in grape breeding. Sci. Hort. 85:75–83.

Sawamura, Y. 2006. Chestnut, p. 82–85. In: Jpn. Soc. Hort. Sci. (ed.). Horticulture in Japan 2006. Shoukadoh, Kyoto, Japan.

Shaw, D.V. 1991. Genetic-variation for objective and subjective measures of fresh fruit color in strawberries. J. Amer. Soc. Hort. Sci. 116:894–898.

Takada, N., S. Nishio, M. Yamada, Y. Sawamura, A. Sato, T. Hirabayashi, and T. Saito. 2012. Inheritance of the easy-peeling pellicle trait of Japanese chestnut cultivar Porotan. HortScience 47:845–847.

Thaipong, K. and U. Boonprakob. 2005. Genetic and environmental variance components in guava fruit qualities. Sci. Hort. 104:37–47.

Yamada, M., A. Sato, and Y. Ukai. 2002. Genetic differences and environmental variations in calyx-end fruit cracking among Japanese persimmon cultivars and selections. HortScience 37:164–167.

Yamada, M., H. Yamane, K. Yoshinaga, and Y. Ukai. 1993. Optimal spatial and temporal measurement repetition for selection in Japanese persimmon breeding. HortScience 28:836–841.