Alleviating the H_0 and σ_8 anomalies with a decaying dark matter model

Kanhaiya L. Pandey, Tanvi Karwal and Subinoy Das

Abstract. The Hubble tension between the ΛCDM-model-dependent prediction of the current expansion rate H_0 using Planck data and direct, model-independent measurements in the local universe from the SH0ES collaboration disagree at $> 3.5\sigma$. Moreover, there exists a milder $\sim 2\sigma$ tension between similar predictions for the amplitude S_8 of matter fluctuations and its measurement in the local universe. As explanations relying on unresolved systematics have not been found, theorists have been exploring explanations for these anomalies that modify the cosmological model, altering early-universe-based predictions for these parameters. However, new cosmological models that attempt to resolve one tension often worsen the other. In this paper, we investigate a decaying dark matter (DDM) model as a solution to both tensions simultaneously. Here, a fraction of dark matter density decays into dark radiation. The decay rate Γ is proportional to the Hubble rate H through the constant α_{dr}, the only additional parameter of this model. Then, this model deviates most from ΛCDM in the early universe, with α_{dr} being positively correlated with H_0 and negatively with S_8. Hence, increasing α_{dr} (and allowing dark matter to decay in this way) can then diminish both tensions simultaneously. When only considering Planck CMB data and the local SH0ES prior on H_0, $\sim 1\%$ dark matter decays, decreasing the S_8 tension to 0.3σ and increasing the best-fit H_0 by 1.6 km/s/Mpc. However, the addition of intermediate-redshift data (the JLA supernova dataset and baryon acoustic oscillation data) weakens the effectiveness of this model. Only $\sim 0.5\%$ of the dark matter decays bringing the S_8 tension back up to $\sim 1.5\sigma$ and the increase in the best-fit H_0 down to 0.4 km/s/Mpc.

Keywords: cosmological parameters from CMBR, cosmological parameters from LSS, dark matter theory, supernova type Ia - standard candles

ArXiv ePrint: 1902.10636
1 Introduction

The simple ΛCDM concordance model has been immensely successful in describing numerous cosmological observables at different epochs [1–3]. Nonetheless, when fit to measurements of the early universe, the ΛCDM model finds results inconsistent with observations of the late universe [4]. These include the persistent Hubble tension [5] as well as the milder S_8 tension [6].

The current state-of-the-art experiment Planck which measures the cosmic microwave background (CMB) radiation, assumes a flat ΛCDM model to extract cosmological parameter values and finds the local expansion rate H_0 to be 67.37 ± 0.54 km/s/Mpc [7]. On the other hand, the SH0ES collaboration finds the larger value $H_0 = 73.52 \pm 1.62$ km/s/Mpc [8, henceforth R18] through model-independent measurements of the local universe, at $\gtrsim 3.5\sigma$ tension with the Planck value. This tension between the early and late universe exists even without Planck CMB data or the SH0ES distance ladder [4]. Another direct measurement of $H_0 = 72.5_{-2.3}^{+2.1}$ km/s/Mpc [9] from the H0LiCOW collaboration based on lensing time delays is in moderate tension with Planck, while a constraint from Big Bang nucleosynthesis (BBN) combined with baryon acoustic oscillation (BAO) data of $H_0 = 66.98 \pm 1.18$ km/s/Mpc [4] is inconsistent with SH0ES.

There is also evidence of $\gtrsim 2\sigma$ tension between the constraints from Planck on the matter density Ω_m and the amplitude σ_8 of matter fluctuations in linear theory and those from local measurements [6, 10]. Planck derives $S_8 = \sigma_8(\Omega_m/0.3)^{0.5} = 0.832 \pm 0.013$ whereas local measurements find the smaller values: $S_8 \lesssim 0.783_{-0.025}^{+0.021}$ from Sunyaev-Zeldovich cluster counts [11], $S_8 = 0.783{+0.021}{-0.025}$ from DES [12] and $S_8 = 0.745 \pm 0.039$ from KiDS-450 [13] weak-lensing surveys. The CFHTLenS weak-lensing survey also finds support for disagreement with Planck CMB predictions [14].

Although systematic causes for these discrepancies cannot entirely be ruled out, numerous potential systematics have been investigated and exonerated over the years while the tensions have persisted and worsened [7, 10, 15–20]. Hence, we must consider the alternative — that the model-dependent results from the early universe are inconsistent with the model-independent measurements of the late universe because the ΛCDM model of cosmology is incorrect.
There have been numerous attempts at resolving these discrepancies via non-standard cosmological models [21–35, and references therein], however, most such attempts at solving the Hubble tension worsen the S_8 tension and vice-versa. Solutions to the Hubble tension either reduce the size r_s of the sound horizon with an early-universe modification [36–38], or increase the angular diameter distance D_A to the CMB with new physics in the post-recombination universe. Then, to keep the locations of the peaks in the CMB fixed, H_0 increases, diminishing the tension. On the other hand, a solution to the S_8 tension would require either late-universe physics that leads to a suppression of the linear matter power spectrum or a decrease in the CMB-predicted value of Ω_m.

In this paper, we tackle both requirements with a decaying dark matter (DDM) model which has a decay rate proportional to the Hubble rate. In this scenario, a fraction of dark matter density decays into dark radiation per Hubble time [39], with the effect being amplified close to the onset of matter domination. This leads to an increase in the expansion rate relative to ΛCDM around recombination, resulting in a decrease in r_s. Fits to the CMB then predict a higher H_0, alleviating the Hubble tension. These fits also predict smaller Ω_m, leading to smaller S_8. This model can hence simultaneously diminish both the Hubble and the S_8 tensions. Testing against various cosmological datasets, we find that this DDM model can provide a better fit to some datasets and simultaneously alleviate the two aforementioned tensions, but not fully resolve them. We also find that at most, a fraction $f_{dm} \lesssim 0.003$ of dark matter can decay into dark radiation in the light of recent Planck, supernova and BAO data, and an external prior on H_0 from R18. This paper is organised as follows. A brief description of the model is given in section 2, along with its effect on observables. In section 3, we provide a detailed description of our analysis. Our results are presented in section 4 and discussed in section 5 where we also conclude.

2 Decaying dark matter model

Motivation for exploring a DDM resolution to the Hubble tension comes from considering the effective radiation degrees of freedom N_{eff} [2, 7, 24, 40–43]. Increasing the amount of radiation in the early universe such that $\Delta N_{\text{eff}} \sim 0.4–1$ has been shown to diminish the Hubble tension [2]. This extra radiation must be ‘dark’ as the presence of an extra photon-like component is strongly constrained by both BBN and the CMB [44]. A fourth, massive, sterile neutrino could provide such extra dark radiation however, the existence of such a particle is constrained by oscillation experiments [45].

The scenario explored here follows the model proposed by ref. [39]. It involves dark radiation interacting within the dark sector, in particular, a particle (beyond the framework of the standard model) decaying into an extra dark radiation component. All the dark radiation in this scenario is a product of dark matter decay and forms a small fraction of the total dark matter density. The decay rate Γ determines this fraction f_{dm} of dark matter energy density that decays into dark radiation. This fraction remains nearly constant over time after matter-radiation equality. If f_{dm} is large, it can alter the expansion rate as shown in figure 1, which we demonstrate leads to a higher predicted H_0. Moreover, the decay naturally reduces the amount of dark matter in galaxies and clusters leading to smaller predicted values of S_8. A brief description of the background dynamics of the model, contribution of dark radiation to N_{eff} and effect on observables is discussed in the following subsections.
2.1 Background dynamics

A general coupling between dark matter and dark radiation can be described by the energy balance equations [46]

\[\dot{\rho}_{\text{dm}} + 3H \rho_{\text{dm}} = -Q \]
\[\dot{\rho}_{\text{dr}} + 3H(1 + w_{\text{dr}})\rho_{\text{dr}} = Q \]

where \(\rho_{\text{dm}} \) and \(\rho_{\text{dr}} \) are the dark matter and dark radiation energy densities and \(H = \dot{a}/a \) is the Hubble rate, where \(a \) is the scale factor and overdots denote derivatives with respect to conformal time. We also assume dark radiation has an equation of state \(w_{\text{dr}} = P_{\text{dr}}/\rho_{\text{dr}} = 1/3 \). A positive rate of energy transfer \(Q \) denotes the direction of energy transfer from dark matter to dark radiation. Non-zero values of \(Q \) imply that dark matter no longer redshifts exactly as \(a^{-3} \) nor dark radiation as \(a^{-4} \). We adopt the covariant form of the energy-momentum transfer 4-vector introduced in [46]

\[Q = \Gamma \rho_{\text{dm}}, \]

where the exact form of the interaction rate \(\Gamma \) depends on the details of the particle physics of the decay process.

Many forms of \(\Gamma \) have been studied in the literature [29, 47–50]. Here, we explore the simple case where \(\Gamma = \alpha H \), where \(\alpha \) is a constant and \(H \) is the Hubble rate. Although we do not model the particle physics resulting in \(\Gamma \propto H \), we refer the reader to two fundamental particle physics motivations for such an interaction. As discussed in section 5 of ref. [39], if dark matter is a coherently oscillating scalar field and decays into light fermions similar to the reheating mechanism, it can give rise to our DDM set up. It may also arise in the model proposed by ref. [51], where a fraction of dark matter converts to dark radiation through late kinetic decoupling and Sommerfeld-enhanced dark matter annihilation. The mass ranges for dark matter particles in each of these models differ greatly. As our analysis here is phenomenological, our constraints are independent of the mass of the dark matter particle undergoing decay. Interpreting these results in the framework of a particular fundamental model can translate our constraints to particle mass and interaction cross-section.

For \(\Gamma = \alpha H \), the background evolution is readily solved

\[\rho_{\text{dm}} = \rho_{\text{dm},0}a^{-(3+\alpha_{\text{dr}})} \]
\[\rho_{\text{dr}} = \rho_{\text{dr},0}a^{-3(1+w_{\text{dr}})} + \frac{\alpha_{\text{dr}}}{\alpha_{\text{dr}} - 3w_{\text{dr}}}\rho_{\text{dm},0}a^{-3}(a^{-3w_{\text{dr}}} - a^{-\alpha_{\text{dr}}}) \]

where the subscript 0 denotes values today. For \(w_{\text{dr}} = 1/3 \), eq. (2.5) can be further simplified to

\[\rho_{\text{dr}} = \beta a^{-4} + \frac{\alpha_{\text{dr}}}{1 - \alpha_{\text{dr}}}\rho_{\text{dm},0}a^{-(3+\alpha_{\text{dr}})} \]

where \(\beta \) is a constant. The first term in eq. (2.6) behaves like a standard radiation density while the second behaves like a fluid with an equation of state \(\alpha_{\text{dr}}/3 \). For weak couplings between dark matter and dark radiation, \(\alpha_{\text{dr}} \ll 1 \), which leads to \(\beta \sim \rho_{\text{dr},0} \). Assuming no dark radiation exists initially, we set \(\beta = 0 \) and only retain the second term in our analysis. With this assumption, we obtain the fraction \(f_{\text{dm}} \) of dark matter that decays into dark radiation

\[f_{\text{dm}} = \frac{\rho_{\text{dr}}}{\rho_{\text{dm}}} \rightarrow \frac{\alpha_{\text{dr}}}{3w_{\text{dr}} - \alpha_{\text{dr}}} = \frac{\alpha_{\text{dr}}}{1 - \alpha_{\text{dr}}} \simeq \alpha_{\text{dr}}. \]
Therefore, f_{dm} is constant over time and the density of dark radiation $\rho_{\text{dr}} \simeq \alpha_{\text{dr}} \rho_{\text{dm}}$. Our model is then parameterised by a single parameter α_{dr}.

For a detailed description of the perturbations in our model, we refer the reader to refs. [39, 52].

2.2 Calculation of ΔN_{eff}

In standard cosmology, the energy density ρ_{rad} of relativistic species in terms of the photon energy density ρ_{γ} is

$$
\rho_{\text{rad}} = \left[1 + \frac{7}{8} N_{\text{eff}} \left(\frac{4}{11}\right)^{4/3}\right] \rho_{\gamma}.
$$

(2.8)

This includes standard model (SM) neutrinos (for which $N_{\nu, \text{eff}} = 3.046$) [53, 54], and characterizes any free-streaming radiation beyond the SM expectation. Then, any departure from the SM can be accounted for through ΔN_{eff}, where $N_{\text{eff}} = N_{\nu, \text{eff}} + \Delta N_{\text{eff}}$. In our case, $\Delta N_{\text{eff,dr}}$ can be expressed in terms of α_{dr} [39] as

$$
\frac{7}{8} \Delta N_{\text{eff,dr}} \left(\frac{4}{11}\right)^{4/3} \frac{\rho_{\gamma,0}}{a^{4}} = \frac{1}{1 - \alpha_{\text{dr}} \rho_{\text{dm,0}} a} \rho_{\text{dm,0}} a^{-(3+\alpha_{\text{dr}})} - \rho_{\text{dm,0}} a^{-3},
$$

(2.9)

making it a derived parameter in our analysis.

2.3 Effects on observables

To understand the effect of our model on observables, figure 1 shows how decaying dark matter affects the CMB TT power spectrum, the matter power spectrum and the expansion rate. These plots were produced by fixing all ΛCDM parameters except Ω_{dm} to their best-fit ΛCDM values, with $\Omega_{\Lambda,0} = 1 - \Omega_{m,0}$ preserving flatness. The early universe fixes Ω_{dm} at early times, that is, if dark matter decays, $\Omega_{\text{dm,0}}$ should decrease as its decay rate increases. This is also reflected in our posteriors, most evident in figure 3 from the negative correlation of $\Omega_{\text{dm,0}}$ and α_{dr}. Therefore, to better represent the cosmology in our posteriors, we fix matter-radiation equality at a_{eq} and hence Ω_{dm} at early times and determine $\Omega_{\text{dm,0}}$ as a function of α_{dr}. Then, at a_{eq}, equating the matter and radiation contents of the Universe,

$$
\Omega_{\text{dm,0}} a_{\text{eq}}^{-(3+\alpha_{\text{dr}})} + \Omega_{b,0} a_{\text{eq}}^{-3} = \Omega_{\gamma,0} a_{\text{eq}}^{-4} + \frac{\alpha_{\text{dr}}}{1 - \alpha_{\text{dr}}} \Omega_{\text{dm,0}} a_{\text{eq}}^{-(3+\alpha_{\text{dr}})},
$$

(2.10)

where we have substituted ρ_{dr} using eq. (2.7). Then for the dark sector today, we have

$$
\Omega_{\text{dm,0}} = \frac{a_{\text{eq}}^{-1} \Omega_{\gamma} - \Omega_{b}}{a_{\text{eq}}^{-\alpha_{\text{dr}}}} \left(\frac{1 - \alpha_{\text{dr}}}{1 - 2 \alpha_{\text{dr}}} \right), \text{ and}
$$

$$
\Omega_{\Lambda,0} = 1 - \Omega_{\text{dm,0}} - \Omega_{b}.
$$

(2.11)

(2.12)

The main effect of the DDM model is an alteration of the expansion history of the Universe, as seen from the bottom-right panel of figure 1. At very early times, the Universe is radiation-dominated and the DDM universe resembles the ΛCDM universe as dark radiation is always subdominant. As we fix Ω_{dm} at a_{eq}, the pre-equality DDM universe has more dark matter than ΛCDM, increasing its expansion rate with $H_{\text{DDM}}/H_{\Lambda\text{CDM}}$ peaking at a_{eq}. After a_{eq}, the DDM universe has less dark matter than ΛCDM as dark matter decays into dark
Figure 1. Shown here are the effects of DDM on various observables. These plots were produced using a modified version of CAMB, fixing all ΛCDM parameters except Ω_{dm,0} and deriving Ω_{Λ,0} by imposing flatness (see section 2.3). The blue line with α_{dr} = 0 represents a ΛCDM cosmology. Top: effect of non-zero α_{dr} on the CMB TT power spectrum; left: effect on the matter power spectrum; right: the DDM expansion rate relative to ΛCDM.

radiation which quickly redshifts away and \(H_{\text{DDM}} \) decreases. The two expansion rates are equal when \(\Omega_{\text{dm}} + \Omega_{\text{dr}} = \Omega_{\text{cdm}} \) which occurs at

\[
a_{\text{cross}} = \frac{1}{(1 - 2\alpha_{\text{dr}})^{1/\alpha_{\text{dr}}}} a_{\text{eq}},
\]

ignoring minor variations due to \(\Omega_{\Lambda,0} \). The DDM expansion rate continues to decrease past this point until \(\Lambda \) becomes important and begins to dominate. The Universe again resembles a ΛCDM universe and \(H_{\text{DDM}} = H_{\text{ΛCDM}} \) at \(a = 1 \) as set by our choice of \(\Omega_{\Lambda,0} \). Hence, the early, pre-recombination universe expands faster than ΛCDM and the post-recombination universe slower. This effect is more pronounced as \(\alpha_{\text{dr}} \) increases.
The effect of DDM on the CMB is shown in the top panel of figure 1. The increase in the pre-recombination expansion rate and decrease in the post-recombination expansion rate lead to a smaller r_s and larger angular distance D_A to the CMB respectively. The inferred angular size of the sound horizon $\theta_* = r_s/D_A$ is then smaller and the CMB peaks are shifted to smaller scales or larger multipoles ℓ as α_{dr} increases. These can be shifted back into agreement with data by increasing the Hubble constant, relieving the tension. Other changes to the CMB include the following suppressions and enhancements of power. An increase in the amount of dark matter in the pre-equality universe suppresses power in CMB peaks which entered the horizon during radiation domination, as the enhancement due to acoustic driving is reduced. On the other hand, as there is less dark matter post-equality, the first CMB peak receives a boost in power, having entered the horizon during matter-domination. Finally, $\Omega_{\Lambda,0}$ is larger for larger α_{dr} and the late universe is Λ-dominated sooner. The late ISW effect hence enhances power in low multipoles. Small shifts in the other ΛCDM parameters can absorb these changes in the CMB.

Finally, the matter power spectrum, shown in the bottom-left panel of figure 1 is effectively inflected about $k_{cross} \simeq a_{cross}H$ where a_{cross} is given by eq. (2.13). At scales larger than k_{cross}, there is more power in a DDM universe for larger α_{dr}, and less at scales smaller than k_{cross}. Relating to the bottom-right plot in figure 1 of $H_{DDM}/H_{\Lambda CDM}$, we find that the change to the expansion rate dictates the power in the matter power spectrum. At early times, when the DDM universe is expanding faster than the ΛCDM universe, clustering and therefore power in the matter power spectrum is suppressed. The opposite is true after a_{cross}, or below k_{cross} — the DDM universe expands slower than ΛCDM and power in the matter power spectrum is boosted. These trends are enhanced for larger values of α_{dr}, as expected. The BAO peaks at $k > k_{cross}$ are also slightly shifted to smaller scales, same as the trend in r_s in the CMB, and sharper as the pre-equality universe has more dark matter. Altogether, as power is suppressed at scales ~ 8Mpc, the DDM model helps alleviate the S_8 tension.

3 Methodology

To investigate this DDM model, we use a modified version of the publicly available Boltzmann code CAMB [55]. The modified version is based on the dynamics described in [39]; we vary the 6 standard ΛCDM parameters: the baryon density ω_b today, the dark matter density ω_{dm} today, the angular size θ_{MC} of the sound horizon at recombination, the optical depth τ to reionisation, the scalar spectral index n_s, and the amplitude A_s of the primordial power spectrum. To this, we add the DDM parameter α_{dr}. We then use the publicly available Markov chain Monte Carlo code CosmoMC [56, 57] to explore our 7-dimensional parameter space with the following assumptions. We assume a flat universe with $\Omega_k=0$, a constant dark energy equation of state, $w_{de} = -1$ and fix the running of the scalar spectral index $dn_s/d\ln k = 0$. We adopt standard values for the sum of neutrino masses $\Sigma m_\nu = 0.06$eV and the SM $N_{\nu,\text{eff}} = 3.046$. The entire DDM model is described by the sole parameter α_{dr}. The dark radiation energy density Ω_{dr} and $\Delta N_{\text{eff,dr}}$ are derived parameters which can be expressed in terms of α_{dr}. Table 1 shows the priors for the 7 varied parameters.

We fit to various early and late-universe data sets in certain combinations. Our data include:

- **Planck**: the CMB temperature and polarization angular power spectra (high-ℓ Plik TT + low-ℓ TEB) released by Planck 2015 [44, 58]
Table 1. Priors on the cosmological parameters we vary in our MCMC analyses.

Parameter	ΛCDM	DDM
Ω\(^{b}h^2\)	[0.005, 0.1]	[0.005, 0.1]
Ω\(^{dm}h^2\)	[0.001, 0.99]	[0.001, 0.99]
100\(θ_{MC}\)	[0.5, 10]	[0.5, 10]
τ	[0.01, 0.8]	[0.01, 0.8]
n\(_s\)	[0.8, 1.2]	[0.8, 1.2]
ln(10\(^10\)\(A_s\))	[2.0, 4.0]	[2.0, 4.0]
\(α_{dr}\)	–	[0.00, 0.05]

• **JLA**: luminosity distance of supernovae Type Ia coming from ‘joint light-curve analysis’ using SNLS (Supernova Legacy Survey) and SDSS (Sloan Digital Sky Survey) catalogs [59]

• **BAO**: the ‘Baryonic Acoustic Oscillation’ data from DR12-BAO [60], SDSS-6DF [61] and SDSS-MGS [62]

• **R18**: an external gaussian prior on \(H_0 = 73.52 \pm 1.62\) km/s/Mpc [8].

We fit to the combinations Planck, Planck+R18 and Planck+JLA+BAO+R18. We adhere to the Gelman-Rubin convergence criteria of \(R - 1 < 0.01\) and discard the first 30% of our chains as burn-in.

4 Results

Figures 2–4 compare our posteriors for the ΛCDM (blue) and DDM (red) models for various data sets. Along with posteriors for \(Ω^{b}h^2\), \(Ω^{dm}h^2\) and \(α_{dr}\), we also show posteriors for the derived parameters \(H_0\) and \(S_8\). The green bands represent local measurements of \(H_0\) and \(S_8\). From these figures, the correlation of \(H_0\) with \(α_{dr}\) and the anticorrelation of \(S_8\) with \(α_{dr}\) are apparent. An increase in \(α_{dr}\) results in a greater \(H_0\) and a smaller \(S_8\). This is the exact effect required to solve the \(H_0\) and \(S_8\) tensions simultaneously. These correlations are most evident in the posteriors of Planck+R18 in figure 3. The inclusion of JLA and BAO data diminishes these correlations as seen in figure 4.

As seen from table 2, Planck data places an upper bound on \(α_{dr}\) (≤ 0.003). However, the addition of an external prior on \(H_0\) from R18 leads to a small preference for non-zero \(α_{dr}\) (≈ 0.005 ± 0.003) at the ~ 1.5σ level. Also for the Planck only case we see that, with the DDM model, Hubble tension is reduced to ~ 2.5σ and the \(S_8\) tension to ~ 1.4σ. Moreover, if we use the R18 prior on \(H_0\), the Hubble tension is further reduced to ~ 1.5σ and the \(S_8\) tension to ~ 0.3σ. The addition of JLA and BAO data weakens these resolutions, as seen from table 2. For Planck+JLA+BAO+R18, the \(H_0\) and \(S_8\) tensions remain at ~ 2.5σ and ~ 1.5σ levels respectively. For all dataset combinations explored, we remain consistent with ΛCDM within 1σ for all ΛCDM parameters.

Table 3 shows the best-fit \(χ^2\) values for the ΛCDM and DDM models. Though for the Planck only case we find that ΛCDM provides slightly better fit to the data than the DDM model, we find that DDM provides slight better fit to data in comparison to ΛCDM if we use R18 prior on \(H_0\), largely due to fitting the R18 measurement better than ΛCDM.
Figure 2. Comparison between the standard ΛCDM and the DDM models: constraints on various cosmological parameters along with their covariances when tested against the Planck data. The green bands represent the constraints on \(H_0\) and \(S_8\) coming from [8, R18] and [12, DES-YI, 2017]. The positive correlation between \(H_0\) and \(\alpha_{\text{dr}}\) and the negative correlation \(S_8\) and \(\alpha_{\text{dr}}\) can be seen here.

In figure 5, we show how the decay parameter \(\alpha_{\text{dr}}\) improves the \(H_0\) and \(S_8\) tensions. In the DDM scenario (red contours), \(\alpha_{\text{dr}}\) increases towards the bottom right. Considering just Planck+R18, the external prior on \(H_0\) pushes the decay rate of dark matter to be \(\sim 1\%\) of the Hubble rate. These large values of \(\alpha_{\text{dr}}\) alter expansion history enough for the model to predict a larger \(H_0\). As the early universe fixes the density of dark matter, the DDM model also leads to smaller \(\Omega_{\text{dm}}\) and therefore \(\Omega_m\), lowering the predicted \(S_8\). Without data at intermediate redshifts, such large changes in cosmology are permitted. As seen from the left panel of figure 5, within the scope allowed by Planck+R18, the DDM contours intersect the 1σ local-measurement square (green). For these datasets, while the 1σ ΛCDM contour...
Figure 3. Comparison between the standard ΛCDM and the DDM models: constraints on various cosmological parameters along with their covariances when tested against the Planck+R18. The green bands represent the constraints on H_0 and S_8 coming from [8, R18] and [12, DES-YI, 2017]. The correlations of α_{dr} with H_0 and S_8 are more clearly visible here from the tilts of their contours. This data set combination also has the largest shift in Ω_m, which helps relieve both tensions.

Including data at intermediate redshifts, primarily supernova data from JLA, the tensions remain unresolved. As seen from the right panel of figure 5, while DDM nearly resolves the S_8 tension, the Hubble tension still exists. The combined datasets Planck+R18+JLA+BAO do not permit large deviations from ΛCDM cosmology, which is in agreement with other studies where it has been found that supernovae and BAO measurements generically prefer standard ΛCDM [25, 63]. Moreover, smaller values of α_{dr} are permitted, with the decay rate of dark matter constrained to be $\sim 0.5\%$ of the Hubble rate.
Figure 4. Comparison between the standard ΛCDM and the DDM models: constraints on various cosmological parameters along with their covariances when tested against the Planck+JLA+BAO+R18. The green bands represent the constraints on H_0 and S_8 coming from [8, R18] and [12, DES-YI, 2017].
Figure 5. The figures show the ΛCDM (blue) and DDM (red) constraints on the $H_0 - S_8$ plane for two dataset combinations, Planck+R18 and Planck+R18+JLA+BAO. The green bands represent the 1 and 2 σ constraints on H_0 and S_8 coming from [8, R18] and [12, DES-Y1, 2017]. The scattered points are for the DDM model representing values of α_{dr}.

Table 2. Comparison between the standard ΛCDM and the DDM models showing 1σ constraints on parameters fitting to Planck only, Planck+R18 and Planck+JLA+BAO+R18.
Table 3. Comparison between the standard ΛCDM and the DDM models: χ^2 values for various datasets from a combined fit to Planck only, Planck+R18 and Planck+JLA+BAO+R18 are given with the χ^2_{prior} for the contribution coming from the chosen priors.

5 Discussion and conclusions

While the ΛCDM model of cosmology fits numerous datasets well, its predictions based on the early and late universe disagree [4, 38]. The current expansion rate H_0 is underpredicted by ΛCDM when fit to the early universe [7, 8]. Despite this, measurements of the late universe are in agreement with a ΛCDM expansion history, but with different parameter values [2]. This Hubble tension has persisted and worsened over the years and no systematic cause has yet been found [5]. Moreover, ΛCDM overpredicts the amplitude of matter fluctuations S_8 relative to direct measurements in the late universe [6, 10]. Although this is a milder tension, combined, these tensions might hint new physics beyond the standard model of cosmology.

Theories that address each tension often worsen the other. In this paper, we explored a decaying dark matter model than can simultaneously improve both tensions. We considered dark matter that decays into dark radiation, parameterised by a single new parameter [39, 46]. The DDM model increases the expansion rate relative to ΛCDM, with the largest effect being close to recombination. This leads to a reduced sound horizon, to compensate for which H_0 increases, alleviating the Hubble tension. The DDM model also reduces the dark matter density in the late universe, suppressing structure formation and lowering the predicted value of S_8. Hence, it offers solutions to both tensions simultaneously.

Considering just data from the early and current universes, that is the Planck+R18 combination, we find that the Hubble tension is reduced below the 1.5σ level and the S_8 tension below 0.5σ. DDM not only significantly diminishes both tensions, but also provides a slightly better fit to these datasets with $\Delta \chi^2_{\text{tot}} = -1.9$, as seen from table 3. However, including measurements of the Universe at intermediate redshifts with Planck+R18+JLA+BAO, we find that the DDM model is strongly constrained and the H_0 and S_8 tensions persist at the $\sim 2.5\sigma$ and $\sim 1.5\sigma$ levels respectively. The DDM model alters expansion history relative to ΛCDM all through matter domination, as shown in figure 1. As found by numerous models that
aim to resolve the Hubble tension through modifications of the late universe, late-universe datasets such as JLA and BAO strongly constrain expansion history and keep such models from fully resolving the Hubble tension [7, 24–26]. In this case, the “new physics” we add is present not only in the early universe where it has maximal effect, but throughout cosmic history. Its presence in the late universe would spoil the fits to JLA and BAO, keeping it from diminishing the H_0 and S_8 tensions further. This can also be seen from the tilt of the H_0 and S_8 vs α_{dr} contours in figures 3 and 4. Without JLA and BAO data, α_{dr} has a stronger correlation with H_0 and anticorrelation with S_8 in figure 3. This relaxes when intermediate-redshift datasets are added as in figure 4, implying that the addition of JLA and BAO data weakens the effectiveness of DDM at resolving both tensions.

Numerous models of dark matter interacting within the dark sector have been explored [64–67]. In these models, the interaction is effective only up to a certain scale and negligible at larger scales. This produces a cut-off-like feature in the matter power spectrum at small scales, keeping the power in scales ~ 8Mpc the same as in ΛCDM. For decaying dark matter with a constant time-independent decay rate [29, 47], the constraints are driven by the change to the late integrated Sachs-Wolfe (ISW) effect on the large-scale CMB data. To be consistent with it, the dark matter must decay very slowly which only allows a slight improvement in the S_8 tension. The DDM model considered here circumvents this by having a smaller decay rate in the early universe around decoupling which then increases with time. Models which introduce a time-dependent dark-matter drag force due to dark radiation which also shut-off at late times [49] have similar effects.

The S_8 and Hubble tensions are intriguing results in cosmology. They require careful investigation whether from a systematic or a new-physics perspective. Future data may shed further light on whether these anomalies are hints of physics beyond the standard model of cosmology after all.

Acknowledgments

We thank Marc Kamionkowski and Vivian Poulin for their comments on the initial results of this work. KLP’s research was supported by the Department of Atomic Energy, Government of India. SD and TK acknowledge the IUSSTF-JC-009-2016 award from the Indo-US Science & Technology Forum which supported the project and facilitated the authors visiting each other. TK also acknowledges support from the 2018 Johns Hopkins Discovery Award.

References

[1] Planck collaboration, Planck intermediate results. XLI. Reducation of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth, Astron. Astrophys. 596 (2016) A107 [arXiv:1605.02985] [SPIRE].

[2] A.G. Riess et al., A 2.4% Determination of the Local Value of the Hubble Constant, Astrophys. J. 826 (2016) 56 [arXiv:1604.01424] [SPIRE].

[3] M. Ata et al., The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2, Mon. Not. Roy. Astron. Soc. 473 (2018) 4773 [arXiv:1705.06373] [SPIRE].

[4] G.E. Addison, D.J. Watts, C.L. Bennett, M. Halpern, G. Hinshaw and J.L. Weiland, Elucidating ΛCDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy, Astrophys. J. 853 (2018) 119 [arXiv:1707.06547] [SPIRE].
[5] W.L. Freedman, *Cosmology at a Crossroads*, Nature Astron. 1 (2017) 0121 [arXiv:1706.02739] [SPIRE].

[6] R.A. Battye, T. Charnock and A. Moss, Tension between the power spectrum of density perturbations measured on large and small scales, Phys. Rev. D 91 (2015) 103508 [arXiv:1409.2769] [SPIRE].

[7] PLANCK collaboration, *Planck 2018 results. VI. Cosmological parameters*, arXiv:1807.06209 [SPIRE].

[8] A.G. Riess et al., Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant, Astrophys. J. 861 (2018) 126 [arXiv:1804.10655] [SPIRE].

[9] S. Birrer et al., H0LiCOW — IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant, Mon. Not. Roy. Astron. Soc. 476 (2019) 4726 [arXiv:1809.01274] [SPIRE].

[10] I.G. Mccarthy, S. Bird, J. Schaye, J. Harnois-Deraps, A.S. Font and L. Van Waerbeke, The BAHAMAS project: the CMB-large-scale structure tension and the roles of massive neutrinos and galaxy formation, Mon. Not. Roy. Astron. Soc. 484 (2019) 2999 [arXiv:1712.02411] [SPIRE].

[11] DES collaboration, Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev. D 98 (2018) 043526 [arXiv:1708.01530] [SPIRE].

[12] H. Hildebrandt et al., KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing, Mon. Not. Roy. Astron. Soc. 465 (2017) 1454 [arXiv:1606.05338] [SPIRE].

[13] S. Joudaki et al., CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics, Mon. Not. Roy. Astron. Soc. 465 (2017) 2033 [arXiv:1601.05786] [SPIRE].

[14] G.E. Addison et al., Quantifying discordance in the 2015 Planck CMB spectrum, Astrophys. J. 818 (2016) 132 [arXiv:1511.00055] [SPIRE].

[15] PLANCK collaboration, Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters, Astron. Astrophys. 607 (2017) A95 [arXiv:1608.02487] [SPIRE].

[16] T. Shanks, L. Hogarth and N. Metcalfe, Gaia Cepheid parallaxes and ‘Local Hole’ relieve H0 tension, Mon. Not. Roy. Astron. Soc. 484 (2019) L64 [arXiv:1810.02595] [SPIRE].

[17] A.G. Riess, S. Casertano, D. Kenworthy, D. Scolnic and L. Macri, Seven Problems with the Claims Related to the Hubble Tension in arXiv:1810.02595, arXiv:1810.03526 [SPIRE].

[18] J. Soltis, A. Farah, D. Huterer and C.M. Liberato, Percent-Level Test of Isotropic Expansion Using Type Ia Supernovae, Phys. Rev. Lett. 122 (2019) 091301 [arXiv:1902.07189] [SPIRE].

[19] V. Poulin, T.L. Smith, T. Karwal and M. Kamionkowski, Early Dark Energy Can Resolve The Hubble Tension, Phys. Rev. Lett. 122 (2019) 221301 [arXiv:1811.04083] [SPIRE].

[20] T. Karwal and M. Kamionkowski, Dark energy at early times, the Hubble parameter and the string axiverse, Phys. Rev. D 94 (2016) 103523 [arXiv:1608.01309] [SPIRE].

[21] A. Bhattacharyya, U. Alam, K.L. Pandey, S. Das and S. Pal, Are H0 and σ8 tensions generic to present cosmological data?, Astrophys. J. 876 (2019) 143 [arXiv:1805.04716] [SPIRE].
[24] V. Poulin, K.K. Boddy, S. Bird and M. Kamionkowski, Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions, Phys. Rev. D 97 (2018) 123504 [arXiv:1803.02474] [nSPIRE].

[25] E. Di Valentino, A. Melchiorri, E.V. Linder and J. Silk, Constraining Dark Energy Dynamics in Extended Parameter Space, Phys. Rev. D 96 (2017) 023523 [arXiv:1704.00762] [nSPIRE].

[26] E. Di Valentino, A. Melchiorri and J. Silk, Reconciling Planck with the local value of H_0 in extended parameter space, Phys. Lett. B 761 (2016) 242 [arXiv:1606.00634] [nSPIRE].

[27] E. Di Valentino, A. Melchiorri and J. Silk, Beyond six parameters: extending ΛCDM, Phys. Rev. D 92 (2015) 121302 [arXiv:1507.06646] [nSPIRE].

[28] K. Ichikawa, M. Kawasaki, K. Nakayama, M. Senami and F. Takahashi, Increasing effective number of neutrinos by decaying particles, JCAP 05 (2007) 008 [hep-ph/0703034] [nSPIRE].

[29] K. Enqvist, S. Nadathur, T. Sekiguchi and T. Takahashi, Decaying dark matter and the tension in σ_8, JCAP 09 (2015) 067 [arXiv:1505.05511] [nSPIRE].

[30] E. Di Valentino and S. Bridle, Exploring the Tension between Current Cosmic Microwave Background and Cosmic Shear Data, Symmetry 10 (2018) 585 [nSPIRE].

[31] Z. Berezhiani, A.D. Dolgov and I.I. Tkachev, Reconciling Planck results with low redshift astronomical measurements, Phys. Rev. D 92 (2015) 061303 [arXiv:1505.03644] [nSPIRE].

[32] R.C. Nunes, Structure formation in $f(T)$ gravity and a solution for H_0 tension, JCAP 05 (2018) 052 [arXiv:1802.02281] [nSPIRE].

[33] S. Anand, P. Chaubal, A. Mazumdar and S. Mohanty, Cosmic viscosity as a remedy for tension between PLANCK and LSS data, JCAP 11 (2017) 005 [arXiv:1708.07030] [nSPIRE].

[34] S. Kumar, R.C. Nunes and S.K. Yadav, Cosmological bounds on dark matter-photon coupling, Phys. Rev. D 98 (2018) 043521 [arXiv:1803.10229] [nSPIRE].

[35] A. Chudaykin, D. Gorbunov and I. Tkachev, Dark matter component decaying after recombination: Lensing constraints with Planck data, Phys. Rev. D 94 (2016) 023528 [arXiv:1602.08121] [nSPIRE].

[36] J.L. Bernal, L. Verde and A.G. Riess, The trouble with H_0, JCAP 10 (2016) 019 [arXiv:1607.05617] [nSPIRE].

[37] J. Evslin, A.A. Sen and Ruchika, Price of shifting the Hubble constant, Phys. Rev. D 97 (2018) 103511 [arXiv:1711.01051] [nSPIRE].

[38] K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan and W.L.K. Wu, Sounds Discordant: Classical Distance Ladder & ΛCDM -based Determinations of the Cosmological Sound Horizon, Astrophys. J. 874 (2019) 4 [arXiv:1811.00537] [nSPIRE].

[39] O.E. Bjaelde, S. Das and A. Moss, Origin of ΔN_{eff} as a Result of an Interaction between Dark Radiation and Dark Matter, JCAP 10 (2012) 017 [arXiv:1205.0535] [nSPIRE].

[40] C. Kelso, S. Profumo and F.S. Queiroz, Non-thermal WIMPs as “Dark Radiation” in Light of ATACAMA, SPT, WMAP9 and Planck, Phys. Rev. D 88 (2013) 023511 [arXiv:1304.5243] [nSPIRE].

[41] D. Hooper, F.S. Queiroz and N.Y. Gnedin, Non-Thermal Dark Matter Mimicking An Additional Neutrino Species In The Early Universe, Phys. Rev. D 85 (2012) 063513 [arXiv:1111.6599] [nSPIRE].

[42] P. Ko and Y. Tang, Residual Non-Abelian Dark Matter and Dark Radiation, Phys. Lett. B 768 (2017) 12 [arXiv:1609.02307] [nSPIRE].

[43] P. Ko and Y. Tang, Light dark photon and fermionic dark radiation for the Hubble constant and the structure formation, Phys. Lett. B 762 (2016) 462 [arXiv:1608.01083] [nSPIRE].
[44] Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [SPIRE].

[45] IceCube collaboration, Searches for Sterile Neutrinos with the IceCube Detector, Phys. Rev. Lett. 117 (2016) 071801 [arXiv:1605.01990] [SPIRE].

[46] J. Valiviita, E. Majerotto and R. Maartens, Instability in interacting dark energy and dark matter fluids, JCAP 07 (2008) 020 [arXiv:0804.0232] [SPIRE].

[47] V. Poulin, P.D. Serpico and J. Lesgourgues, A fresh look at linear cosmological constraints on a decaying dark matter component, JCAP 08 (2016) 036 [arXiv:1606.02073] [SPIRE].

[48] J. Lesgourgues, G. Marques-Tavares and M. Schmaltz, Evidence for dark matter interactions in cosmological precision data?, JCAP 02 (2016) 037 [arXiv:1507.04354] [SPIRE].

[49] M.A. Buen-Abad, M. Schmaltz, J. Lesgourgues and T. Brinckmann, Interacting Dark Sector and Precision Cosmology, JCAP 01 (2018) 008 [arXiv:1708.09406] [SPIRE].

[50] Z. Chacko, Y. Cui, S. Hong, T. Okui and Y. Tsai, Partially Acoustic Dark Matter, Interacting Dark Radiation and Large Scale Structure, JHEP 12 (2016) 108 [arXiv:1609.03569] [SPIRE].

[51] M.-Y. Wang and A.R. Zentner, Effects of Unstable Dark Matter on Large-Scale Structure and Constraints from Future Surveys, Phys. Rev. D 85 (2012) 043514 [arXiv:1201.2426] [SPIRE].

[52] G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti and P.D. Serpico, Relic neutrino decoupling including flavor oscillations, Nucl. Phys. B 729 (2005) 221 [hep-ph/0506164] [SPIRE].

[53] G. Mangano, G. Miele, S. Pastor and M. Peloso, A Precision calculation of the effective number of cosmological neutrinos, Phys. Lett. B 534 (2002) 8 [astro-ph/0111408] [SPIRE].

[54] A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177] [SPIRE].

[55] A. Lewis, Efficient sampling of fast and slow cosmological parameters, Phys. Rev. D 87 (2013) 103529 [arXiv:1304.4473] [SPIRE].

[56] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D 66 (2002) 103511 [astro-ph/0205436] [SPIRE].

[57] Planck collaboration, Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters, Astron. Astrophys. 594 (2016) A11 [arXiv:1507.02704] [SPIRE].

[58] SDSS collaboration, Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, Astron. Astrophys. 568 (2014) A22 [arXiv:1401.4064] [SPIRE].

[59] BOSS collaboration, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470 (2017) 2617 [arXiv:1607.03156] [SPIRE].

[60] F. Beutler et al., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017 [arXiv:1106.3366] [SPIRE].

[61] A.J. Ross, L. Samushia, C. Howlett, W.J. Percival, A. Burden and M. Manera, The clustering of the SDSS DR7 main Galaxy sample — I. A 4 per cent distance measure at $z = 0.15$, Mon. Not. Roy. Astron. Soc. 449 (2015) 835 [arXiv:1409.3242] [SPIRE].

[62] A. Chudaykin, D. Gorbunov and I. Tkachev, Dark matter component decaying after recombination: Sensitivity to baryon acoustic oscillation and redshift space distortion probes, Phys. Rev. D 97 (2018) 083508 [arXiv:1711.06738] [SPIRE].
[64] P. Serra, F. Zalamea, A. Cooray, G. Mangano and A. Melchiorri, Constraints on neutrino-dark matter interactions from cosmic microwave background and large scale structure data, Phys. Rev. D 81 (2010) 043507 [arXiv:0911.4411] [arXiv:1310.3278] [SPIRE].

[65] F.-Y. Cyr-Racine, R. de Putter, A. Raccanelli and K. Sigurdson, Constraints on Large-Scale Dark Acoustic Oscillations from Cosmology, Phys. Rev. D 89 (2014) 063517 [arXiv:1310.3278] [arXiv:1712.03976] [SPIRE].

[66] S. Das, R. Mondal, V. Rentala and S. Suresh, On dark matter-dark radiation interaction and cosmic reionization, JCAP 08 (2018) 045 [arXiv:1712.03976] [SPIRE].

[67] R.J. Wilkinson, C. Boehm and J. Lesgourgues, Constraining Dark Matter-Neutrino Interactions using the CMB and Large-Scale Structure, JCAP 05 (2014) 011 [arXiv:1401.7597] [SPIRE].