Diabetes and cancer: Associations, mechanisms, and implications for medical practice

Chun-Xiao Xu, Hong-Hong Zhu, Yi-Min Zhu

Abstract
Both diabetes mellitus and cancer are prevalent diseases worldwide. It is evident that there is a substantial increase in cancer incidence in diabetic patients. Epidemiologic studies have indicated that diabetic patients are at significantly higher risk of common cancers including pancreatic, liver, breast, colorectal, urinary tract, gastric and female reproductive cancers. Mortality due to cancer is moderately increased among patients with diabetes compared with those without. There is increasing evidence that some cancers are associated with diabetes, but the underlying mechanisms of this potential association have not been fully elucidated. Insulin is a potent growth factor that promotes cell proliferation and carcinogenesis directly and/or through insulin-like growth factor 1 (IGF-1). Hyperinsulinemia leads to an increase in the bioactivity of IGF-1 by inhibiting IGF binding protein-1. Hyperglycemia serves as a subordinate plausible explanation of carcinogenesis. High glucose may exert direct and indirect effects upon cancer cells to promote proliferation. Also chronic inflammation is considered as a hallmark of carcinogenesis. The multiple drugs involved in the treatment of diabetes seem to modify the risk of cancer. Screening to detect cancer at an early stage and appropriate treatment of diabetic patients with cancer are important to improve their prognosis. This paper summarizes the associations between diabetes and common cancers, interprets possible mechanisms involved, and addresses implications for medical practice.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Diabetes mellitus; Cancer; Association; Mechanism; Medical practice

Core tip: The diabetes-cancer link is summarized and discussed in detail and it may potentially be attributed to hormonal disorders, chronic inflammation and metabolic alterations. Besides, implications for medical practice are also addressed.
2 diabetes mellitus (T2DM) is 8.3%. The prevalence of T2DM varies by country and area. The highest rate is 10.5% in North America, 8.7% in South-East Asia, 6.7% in Europe and 4.3% in Africa. It is predicted that 552 million people worldwide will develop diabetes by 2030[1].

DM and cancer are frequently diagnosed in the same individual[2]. DM is reported to be associated with an increased risk of different types of cancer, including pancreatic, liver, breast, colorectal, urinary tract, gastric, and female reproductive cancers. The relative risk ranges from 2.0 to 2.5 for liver, pancreatic and endometrial cancers, and 1.2 to 1.5 for breast, colon and bladder cancers associated with DM[3]. It is worth noting that DM is a growing health problem worldwide. Even if the increased risk in cancer incidence and mortality due to DM is small, the consequence would be significant at the population level[4].

The mechanism of DM associated with cancer remains uncovered and needs to be examined in further studies. The mechanism for the diabetes-cancer link has been hypothesized to be mainly related to hormonal [insulin and insulin-like growth factor (IGF)-1], inflammatory or metabolic (hyperglycemia) characteristics of the DM and even to certain treatments[5]. Anti-diabetic medications may have effects on the risk for cancer. Increasing evidence shows that insulin sensitizers such as metformin and thiazolidinediones (TZDs) are associated with prostate cancer[6] and HER2-positive breast cancer[7] among diabetic patients. The diabetic patients who are treated with insulin or insulin secretagogues are more likely to develop cancer than those with metformin[8-11].

In this paper, we summarize the associations between diabetes and cancer in epidemiologic studies, possible mechanisms and implications for medical practice.

POSSIBLE BIOLOGIC LINKS BETWEEN DIABETES AND CANCER RISK

Insulin resistance

Insulin resistance is very common in T2DM, in which circulating insulin level is frequently increased. The insulin/IGF axis plays an important role in diabetes-associated increased risk and progression of cancer. The cancer cells overexpress insulin and IGF-1 receptors[2].

Hyperinsulinemia is a hallmark of insulin resistance. The mechanisms whereby hyperinsulinemia could link diabetes and cancer have been extensively investigated and discussed. Hyperinsulinemia may influence cancer development through ligand by binding with the insulin receptor (IR) and/or indirectly through increasing circulating IGF-1 levels[12,13]. Insulin signal transduction is mediated through two IR isoforms: IR-A and IR-B[14]. IR-A recognizes insulin and IGFs, with a higher affinity for IGF2 than IGF1, and IR-B is insulin specific and is mainly involved in glucose homeostasis. Insulin binds with IR-A and exerts a direct pro-growth mitogenic effect. When elevated, insulin can increase the hepatic expression of IGF-1 and then activate the IGF-1 receptor, further stimulating cell growth through this mechanism[14,15]. IR-A and IGF-1 receptor are expressed primarily in fetal tissues and cancer cells[16].

The independent role of the IR is confirmed by the observation that down-regulation of IRs in LCC6 cells reduces xenograft tumor growth in athymic mice and inhibits lung metastasis[17]. Besides, blockade of the IGF-1 receptor has been associated with decreased growth of breast cancer cells[18,19]. Hyperinsulinemia also results in decreased levels of IGF binding protein-1 and thus increased levels of bioactive IGF-1[20,21].

Multiple downstream signaling pathways are activated after IRs or IGF-1 receptors interact with their ligands. By phosphorylation of adaptor proteins, two major pathways are involved: (1) the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt)/mammalian target of rapamycin (mTOR), PI3K/Akt/forerkhead box O, and Ras/ MAPK/extracellular signal-related kinase 1/2 pathway which plays important roles in cancer cell growth and carcinogenesis[22,23] is activated; and (2) the inhibitor of the oncogenic β-catenin signaling (glycogen synthase kinase 3β) is inactivated, through the PI3K/Akt signaling pathway, resulting in β-catenin signaling activation that has been related to cancer stem cells and chemo-resistance[24].

Hyperglycemia

Hyperglycemia has been classically considered as a subordi nate whereas hyperinsulinemia as a primary causal factor for cancer[25].

Several large cohort and case-control studies have found a positive relationship between hyperglycemia and the risk of cancer[26-29]. In a tumor-prone animal model, it was found that the number and size of liver tumors increased and apoptosis was reduced in insulin-deficient hyperglycemic mice compared with insulin-sufficient mice. This phenomenon was reversed by insulin therapy[30]. However, in vivo studies showed that T1DM, which is characterized by hyperglycemia, reduces the tumor growth. This finding does not support that hyperglycemia increases tumor growth, at least in the setting of insulin deficiency[31]. A recent research found that tumors continue to consume high amounts of glucose, regardless of plasma glucose levels[32]. A recent meta-analysis confirmed this finding that improved glycemic control does not reduce cancer risk in diabetic patients[33]. Hyperglycemia may be an independent risk factor for cancer. Further studies are needed to evaluate the relative roles of insulin and glucose.

The possible mechanisms of hyperglycemia increasing cancer risk include “indirect effect” and “direct effect”[34,35]. The “indirect effect” is the action that takes place at other organs and will later on influence tumor cells by inducing production of circulating growth factors (insu lin/IGF-1) and inflammatory cytokines. The “direct effect” is the effect that is exerted directly upon tumor cells by increasing proliferation, inducing mutations, augmenting invasion and migration and rewiring cancer-related signaling pathways. Recently, Wnt/β-catenin signaling has been suggested as a key cancer-associated pathway and
Table 1 Combined relative risk and 95%CI in meta-analyses of cohort studies of cancer risk in different organs of diabetic patients

Cancer	Ref.	No. of cohort studies	RR (95%CI)	RR (95%CI) male	RR (95%CI) female
Pancreas	Ben et al[36], 2011	35	1.94 (1.66-2.27)	1.70 (1.55-1.87)^1	1.60 (1.43-1.77)^1
Liver	Wang et al[37], 2012	18	2.01 (1.61-2.51)	1.96 (1.71-2.24)^1	1.66 (1.14-2.41)^1
Breast	De Brujin et al[38], 2013	20	1.29 (1.12-1.44)	NA	1.23 (1.12-1.34)
Endometrium	Zhang et al[39], 2013	15	1.81 (1.38-2.37)	NA	1.81 (1.38-2.37)
Colon-rectum	Jiang et al[40], 2011	30	1.27 (1.21-1.34)	1.25 (1.17-1.33)^1	1.23 (1.13-1.33)^1
Kidney	Bao et al[41], 2013	11	1.39 (1.09-1.78)	1.28 (1.10-1.48)	1.47 (1.18-1.73)
Bladder	Zhu et al[42], 2013	29	1.29 (1.08-1.54)	1.36 (1.05-1.77)	1.28 (1.05-1.79)
Prostate	Zhang et al[43], 2012	25	0.92 (0.81-1.05)	0.92 (0.81-1.05)	NA
Gastric	Yoon et al[44], 2013	11	1.20 (1.08-1.34)	1.10 (0.97-1.24)	1.24 (1.03-1.52)
Non-Hodgkin’s lymphoma	Castillo et al[45], 2012	11	1.21 (1.02-1.45)	1.13 (0.96-1.34)	1.24 (0.97-1.58)

^1Based on the studies reported by gender. NA: Unavailable.

Chronic inflammation

The deregulated metabolism in poorly controlled diabetes causes a long-term pro-inflammatory condition characterized by increased levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), C-reactive protein, and other markers of chronic inflammation. Emerging evidence suggests that persistent inflammation can promote genetic instability and chronic inflammation is associated with increased cancer risk[37-40]. This finding is also supported by the classical evidence that non-steroidal anti-inflammatory drugs can reduce the risk of certain cancers[41-44].

Tumor-promoting mechanism of inflammation in diabetic patients is not much clear. Chronic inflammation and chronic oxidative stress go hand-in-hand. Oxidants affect almost all stages of the inflammatory response process, including the release of inflammatory cytokines, the sensing by innate immune receptors from the families of Toll-like receptors and the nucleotide-binding oligomerization domain-like receptors, and the activation of signaling like receptors and the nucleotide-binding oligomerization domain-like receptors, and the activation of signaling pathways independent of obesity and inflammation[45]. Reactive oxygen species can cause damage to lipids, protein, and DNA, and then initiate carcinogenesis[46-48]. Meanwhile, chronic inflammation is associated with high levels of TNF-α, which would strongly activate nuclear factor-kappa B (NF-κB) and further induce downstream signaling transduction to promote the development and progression of many tumors. NF-κB is involved in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immunity, and mediates responses to hormones and/or chemotherapeutic agents[49-51]. Therefore, continued exposure to chronic inflammation and oxidative stress puts susceptible cells at risk of progression toward malignant transformation[52].

Impact of diabetes on cancer

Evidence from animal studies

DM is mainly characterized by insulin resistance, hyperinsulinemia, hyperglycemia, and dyslipidemia. The independent role of diabetes and obesity in cancer development has been difficult to distinguish since obesity is also related to inflammation and hyperinsulinemia. Studies in transgenic diabetic mice might shed light on the relative contributions of these factors. In a transgenic model of skin and mammary carcinogenesis, non-obese diabetic mice (A-ZIP/F-1) developed more tumors than wild-type controls[53]. In MKR mouse models of mammary carcinogenesis, female mice with T2DM showed accelerated mammary gland development and breast cancer progression independent of obesity and inflammation[54]. Hyperinsulinemia promoted the growth of primary mammary tumor and subsequent metastasis to the lung[55]. Tumor progression was abrogated with the decreased level of serum insulin after treatment with anti-insulin drugs[56]. Taken together, findings from animal studies support that diabetes plays interconnected roles in the development of cancer.

Epidemiologic findings

The findings from a meta-analysis of 12 cohort studies showed that diabetes increased the risk of all-cancer incidence for overall subjects, with a pooled adjusted RR of 1.14 (1.06-1.23) for men, and 1.18 (1.08-1.28) for women[57]. Diabetes is reported to be associated with several types of cancer, including pancreas, liver, breast, colorectal, urinary tract, gastric, and female reproductive cancers. Meta-analyses on the associations between diabetes and site specific cancer are summarized in Table 1.

Liver cancer: In various studies examining the link between DM and cancer, the highest risk has been seen for liver cancer. A meta-analysis demonstrated that individuals with diabetes had a 2.0-fold increased risk of developing hepatocellular carcinomas (HCC), compared with non-diabetics. And this link was observed in both men and women[58]. The liver is exposed to high concentrations of endogenously produced insulin transported via the portal vein. Hyperinsulinemia stimulates the production of IGF-1, which further promotes cellular proliferation and then inhibits apoptosis in the liver. The important role of hyperinsulinemia and IGF-1 in hepatic carcinogenesis has been demonstrated by in vitro, in vivo, and epidemiologic studies[59,60]. Liver steatosis, hepatitis,
and cirrhosis are more frequent among diabetic patients and are well-known risk factors for HCC. Insulin resistance stimulates the release of multiple pro-inflammatory cytokines and consequently promotes the development of hepatic steatosis and inflammation and subsequent cancer in the liver[89]. A causal relationship was also reported by Jee et al[89], who found that fasting glucose and liver cancer risk had a dose-responsive relationship. Besides, T2DM-induced hyperglycemia induces the release of TNF-α and IL-6 in patients with hepatic steatosis and enhances the pathogenesis of cancer[91].

Colorectal cancer: A meta-analysis comprising 30 cohort studies showed that diabetes was associated with an increase in the risk of colorectal cancer, with a combined RR of 1.27 (1.21-1.34). This association was consistent for both men and women[92]. Our previous retrospective cohort study showed that a significant association of diabetes was found with colon cancer and not with rectal cancer[93]. This finding indicated that there was a subsite-specific association of T2DM with colorectal cancer. General factors like hyperinsulinemia and IGF-1 have contributed to intramucosal adenocarcinomas. Diabetic patients have slower bowel peristalsis and more common constipation and thus increased exposure to bowel toxins (i.e., elevated concentrations of fecal bile acids) and potential carcinogens[94]. Animal models have demonstrated that increased concentrations of fecal bile acids could induce colorectal carcinogenesis[95-97].

Breast and other female cancers: A meta-analysis including 20 cohort studies found an association between diabetes and breast cancer with a summary RR of 1.23 (1.12-1.34)[66]. A meta-analysis including 15 cohort studies reported an increased risk [RR = 1.81 (1.38-2.37)] of endometrial cancer in diabetic women[67]. Hyperinsulinemia could increase the levels of bioactive estrogens by reducing the concentration of circulating sex hormone binding protein in diabetic women. It is well known that bioactive estrogens are the risk factors for malignancies of female reproductive organs[68,69]. Increased bioactive estrogen will stimulate the proliferation of breast and endometrial cells and the inhibition of apoptosis to increase cancer risk.

Kidney and bladder cancers: A meta-analysis including eleven cohort studies showed that diabetes was significantly associated with an increased risk of kidney cancer [RR = 1.39 (1.09-1.78)]. The association was slightly stronger in women [RR = 1.47 (1.18-1.83)] than in men [RR = 1.28 (1.10-1.48)][70]. Hypertension and late stage renal disease, two common comorbidities of DM, contribute to the increased incidence of kidney cancer[71,72]. Impaired renal function results in higher circulating levels of carcinogens and toxins and immune inhibition and thereby renders the kidney susceptible to carcinogens and tumor growth. Findings from a meta-analysis of 29 cohort studies suggest that individuals with DM display an increase in the risk of bladder cancer [RR = 1.29 (1.08-1.54)]. The positive association is only observed in men [RR = 1.36 (1.05-1.77)][73]. In addition to general factors, the frequent infections of the urinary tract in diabetic patients might also be involved[74].

Pancreatic cancer: In a 3-year follow-up study[75], subjects with new-onset DM had a higher risk of pancreatic cancer with a RR of 7.94 than the subjects without DM. A meta-analysis of 35 cohort studies showed that DM was associated with an increased risk of pancreatic cancer in both men and women[76]. However, the question arises about whether diabetes is a risk factor or the consequence of the pancreatic cancer (so-called “reverse causality”). Pancreatic cancer might induce a diabetic status because of impaired pancreatic beta cells. In vitro studies show that blockage of insulin receptors and impaired insulin action and glucose transport in a model of pancreatic cancer led to insulin resistance[77]. However, the new onset of pancreatic cancer induced DM depends on the peripheral insulin resistance rather than on the impaired pancreatic beta cells. On the other hand, in patients with T2DM exocrine pancreatic cells are exposed to very high insulin levels because of their proximity to insulin secreting islets. Insulin stimulates the growth of cancer cells. Thus, hyperinsulinemia might account for the risk of developing pancreatic cancer in T2DM.

Prostate cancer: Prostate cancer risk appears to decrease in patients with diabetes. An inverse association was observed between diabetes and risk of prostate cancer in the studies from the United States but not in the studies from other countries, as shown by an updated meta-analysis[78]. The protective effect of DM was also observed in different grades or stages of prostate cancer in another meta-analysis[79]. One possible explanation is that low testosterone levels have been shown in diabetic men. The conversion of testosterone to dihydrotestosterone promotes prostate cell growth[80].

Other cancers in diabetes: A 20% increased gastric cancer risk in diabetic patients was found in a meta-analysis. A positive association was observed in female diabetic patients, whereas it was not the case in diabetic men[81]. The IGF/IGF-IR axis interacts with the vascular endothelial growth factor/vascular endothelial growth factor receptor system in gastrointestinal malignancies[82,83]. It is also possible that reactive oxygen-dependent DNA damage further enhances the effect of Helicobacter pylori on epithelial cell proliferation[84]. A meta-analysis of large prospective cohort studies has shown a moderate increase of non-Hodgkin's lymphoma in diabetic patients, whereas stratified analysis by gender shows no significance based on the studies with reported cancer incidence by gender[85]. The immune dysfunction related to impaired neutrophil activity and abnormalities in cellular and humoral immunity in diabetes may contribute to cancer development[86].

Mortality

A meta-analysis suggests that preexisting diabetes is as-
sociated with a higher risk of all-cause long term cancer mortality compared with non-diabetic individuals HR = 1.41 (1.28-1.55)[67]. Mortality among diabetes was significantly increased for liver, breast, and bladder cancers, with pooled RRs of 1.56 (1.30-1.87)[66], 1.38 (1.20-1.58)[66], and 1.33 (1.14-1.55)[5], respectively. Similar but mild results are also seen in gastric cancer[66] and colorectal cancer[5], with 29% and 20% increased all-cause mortalities, respectively (Table 2). Non-significance is found for the cancers of the pancreas[66], prostate[66], kidney[5], endometrium[67], and non-Hodgkin’s lymphoma[66] (Table 2).

Several possible explanations might elucidate the increased risk of cancer death in DM. Impaired immune function and pro-inflammatory condition in diabetes may make the cancer more aggressive, favor cancer growth by making host organism less resistant to cancer progression, and strengthen the metastatic potential of cancer. Hyperglycemia may be an important risk factor. There is evidence that poor glycemic controls can lead to poorer outcomes. Survival rates in cancer are decreasing linearly with declining glycemic controls[90]. Diabetic patients may have a worse response to chemotherapy with a higher occurrence of adverse effects compared with non-diabetic individuals.

Diabetes patients are more often poor candidates for surgery. Preexisting diabetes was associated with increased odds of postoperative mortality across all cancer types [OR = 1.51 (1.13-2.02)]91.

IMPLICATIONS FOR MEDICAL PRACTICE

Cancer screening is required for patients with preexisting diabetes

As shown by the above studies, patients with DM have a higher risk of developing certain types of cancer. A healthy diet, physical activity, and weight management could decrease the risk and improve outcomes of DM and some types of cancer. This was supported by a consensus report of the American Diabetes Association and the American Cancer Society[91]. In order to improve the prognosis, early screening of DM-related cancers is important for T2DM patients. Cancer screening tests of proven benefit for malignancies (breast, colon, endometrial cancer, etc.) in at-risk individuals/populations should begin relatively earlier than the general population. Future cancer screenings should be based on current existing recommendations. However, specific DM-related cancer screening recommendations remain to be made.

The impact of anti-diabetic treatments on cancer risk

The major classes of DM drugs function to replace circulating insulin and reduce hyperglycemia by different mechanisms or to reduce the associated obesity[89]. Insulin sensitizers, including metformin and TZDs, are oral anti-diabetic drugs that decrease insulin resistance by altering signaling through the AKT/mTOR pathway[97,98]. Metformin has been used with confidence in the treatment of T2DM[99]. Emerging evidence from research on humans and from the preclinical setting suggests that metformin has an anti-cancer effect. A meta-analysis of 17 randomized controlled trials showed a clinically significant 39% decreased risk of cancer with metformin use in patients with or at risk for diabetes, compared to no use of metformin[90]. Metformin can decrease cell proliferation and induce apoptosis in certain cancer cell lines[97,99]. In a recent retrospective cohort study, metformin use is not associated with improved survival in subjects with advanced pancreatic cancer[97]. Whereas metformin use was also reported to be associated with a lower risk of colon, liver, pancreas, or breast cancers, it was not associated with the risk of prostate cancer[100,101]. Metformin therapy decreases and insulin and insulin secretagogues slightly increase the risk of certain cancers in T2DM. Nonetheless, it is premature to prescribe metformin and TZDs solely for those as yet unproven indications for cancers.

Managing diabetic patients with cancer

Managing diabetes can be a daunting task for patients with cancer. Diabetes may negatively impact both cancer risk and outcomes of cancer treatment. It is clear that comorbidities may play a role in clinical outcomes in patients with cancer. Clinicians who treat cancer patients with T2DM should pay more attention to comorbidities...
ties. Thus, rigorous and multifactorial approaches should be adopted to control diabetes for patients undergoing treatment for malignancies. Poor glycemic control increases morbidity and mortality in patients with cancer. Therefore, hyperglycemia management in patients with cancer is important. Monitoring symptoms of both hyperglycemia and hypoglycemia is necessary. DM patients with cancer and their family members should monitor these symptoms and render suitable medical treatment once these symptoms occur. For hospitalized patients with acute concurrent complications, aggressive glycemic management should be taken to improve the prognosis.

CONCLUSION

Previous evidence provides strong support for an increase of both cancer risk and mortality in diabetic patients and more evidence for certain site-specific cancers. The molecular mechanisms for the association between diabetes and cancer development are still uncovered. As underlined in this review, mechanisms on hormonal (insulin and IGF-1), inflammatory and metabolic (hyperglycemia) characteristics have been proposed to elucidate this association. Guidelines specific for diabetic patients should include both treatment in medical practices and mass screening for specific cancers according to the risk factor profile of each patient.

REFERENCES

1. IDF Diabetes Atlas. International Diabetes Federation. Available from URL: http://www.idf.org/diabetesatlas.
2. Onitilo AA, Engel JM, Glurich I, Stankowski RV, Williams GM, Doi SA. Diabetes and cancer: risk, survival, and implications for screening. Cancer Causes Control 2012; 23: 967-981. [PMID: 22552844 DOI: 10.1007/s10552-012-9972-3]
3. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D. Diabetes and cancer: a consensus report. CA Cancer J Clin 2010; 60: 207-221. [PMID: 20554718 DOI: 10.3322/caac.20078]
4. Sciacca L, Vigneri R, Tumminia A, Frasca F, Squatrito S, Dorca J, Vazquez-Martin A, Oliveras-Murillo A, Mitogenic insulin receptor-A is overexpressed in human hepatocellular carcinoma due to EGFR-mediated dysregulation of RNA splicing factors. Cancer Res 2013; 73: 3974-3986. [PMID: 23633480 DOI: 10.1158/0008-5472.CAN-12-3824]
5. Dijouche S, Nbawo Kamdie AH, Vecchio L, Kipanyula MJ, Faraheh MN, Aldebasai Y, Seke Ett PF. Insulin resistance and cancer: the role of insulin and IGFs. Endocr Relat Cancer 2013; 20: R1-R17. [PMID: 23207292 DOI: 10.1530/ERC-12-0324]
6. Novosyadlyy R, LeRoith D. Hyperinsulinemia and type 2 diabetes: impact on cancer. Cell Cycle 2010; 9: 1449-1450. [PMID: 20307207 DOI: 10.4161/cc.9.8.11152]
7. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, Goldfine ID, Belfiore A, Vigneri R. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 1999; 19: 3278-3288. [PMID: 10207053]
8. Zhang H, Fagan DH, Zeng X, Freeman KT, Sachdev D, Yee D. Inhibition of cancer cell proliferation and metastasis by insulin receptor downregulation. Oncogene 2010; 29: 2517-2527. [PMID: 20547228 DOI: 10.1038/onc.2010.17]
9. Arteaga CL, Kitten LJ, Coronado EB, Jacobs S, Kull FC, Allred DC, Osborne CK. Blockade of the type I somatotropin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest 1989; 84: 1418-1423. [PMID: 2553774 DOI: 10.1172/JCI14315]
10. Arteaga CL, Osborne CK. Growth inhibition of human breast cancer cells in vitro with an antibody against the type I somatotropin receptor. Cancer Res 1989; 49: 6237-6241. [PMID: 2553250]
11. Levine AJ, Feng Z, Mak TW, You H, Jin S. Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 2006; 20: 267-275. [PMID: 16452501 DOI: 10.1101/gad.1363206]
12. Qin L, Wang Y, Tao L, Wang Z. AKT down-regulates insulin-like growth factor-1 receptor as a negative feedback. J Biochem 2011; 150: 151-156. [PMID: 21616916 DOI: 10.1093/jb/mvr066]
13. Alvino CL, Ong SC, McNeil KA, Delaine C, Booker GW, Wallace JC, Forbes BE. Understanding the mechanism of insulin and insulin-like growth factor (IGF) receptor activation by IGF-II. PLoS One 2011; 6: e27488. [PMID: 22140443 DOI: 10.1371/journal.pone.0027488]
14. Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors: Regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 2011; 1813: 1898-1945. [PMID: 21708191 DOI: 10.1016/j.bbamcr.2011.06.002]
15. Fleming HE, Janzen V, Lo Celso C, Guo J, Leathy KM, Kroenember HM, Scadden DT. Wnt signaling in the niche en
forces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008; 2: 274-283 [PMID: 18571542 DOI: 10.1016/j.stem.2008.01.003]

Giovannucci E. Insulin, insulin-like growth factors and colorectal cancer: a review of the evidence. J Natl 2001; 131: 3105S-3120S [PMID: 11694656]

Muti P, Quattrin T, Grant BJ, Krogh V, Micheli A, Schüne mann HJ, Ram M, Freudenberg JL, Sieri S, Trevisan M, Berrino F. Fasting glucose is a risk factor for breast cancer: a prospective study. Cancer Epidemiol Biomarkers Prev 2002; 11: 1361-1368 [PMID: 12433712]

Saydah SH, Platza EA, Rifai N, Pollak MN, Brancati FL, Hel zblouzer K. Association of markers of insulin and glucose control with subsequent colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2003; 12: 412-418 [PMID: 12750235]

Stattin P, Björk O, Ferrari P, Lunakova A, Lenner P, Lindahl B, Hallmans G, Kaaks R. Prospective study of hyperglycemia and cancer risk. Diabetes Care 2007; 30: 561-567 [PMID: 17327321 DOI: 10.2337/db06-0922]

Takahashi H, Mizuta T, Eguchi Y, Kawaguchi Y, Kuwashiro T, Oeda S, Isoda H, Oza N, Iwane S, Izumi K, Anzai K, Osa ki I, Fujimoto K. Post-challenge hyperglycemia is a significant risk factor for the development of hepatocellular carcinoma in patients with chronic hepatitis C. J Gastroenterol 2011; 46: 790-798 [PMID: 21331763 DOI: 10.1007/s00535-011-0381-2]

Yamasaki K, Hayashi Y, Okamoto S, Osanai M, Lee GH. Insulin-independent promotion of chemically induced hepatocellular tumor development in genetically diabetic mice. Cancer Sci 2010; 101: 65-72 [PMID: 19775258 DOI: 10.1111/j.1440-1695.2009.01345.x]

Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabe tes and cancer. Endocr Relat Cancer 2009; 16: 1103-1123 [PMID: 19620249 DOI: 10.1677/ERC-09-0087]

Taubes G. Cancer research. Unraveling the obesity-cancer connection. Science 2012; 335: 28; 30-32 [PMID: 22225787 DOI: 10.1126/science.335.6064.28]

Johnson JA, Bowker SL. Intensive glycaemic control and cancer risk in type 2 diabetes: a meta-analysis of major trials. Diabetologia 2011; 54: 25-31 [PMID: 20959956 DOI: 10.1007/s00125-010-1933-3]

Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012; 21: 297-308 [PMID: 22439925 DOI: 10.1016/j.ccr.2012.02.014]

Chocarro-Calvo A, Garcia-Martinez JM, Ardila-Gonzalez S, De la Vieja A, Garcia-Jimenez C. Glucose-induced β-catenin acetylation enhances Wnt signaling in cancer. Mol Cell 2013; 49: 474-486 [PMID: 23273980 DOI: 10.1016/j.molcel.2012.11.022]

Anagnostou SH, Shepherd PR. Glucose induces an autocrine activation of the Wnt/β-catenin pathway in macrophage cell lines. Biochem J 2008; 416: 211-218 [PMID: 18823284 DOI: 10.1042/BJ20081426]

Kundu JK, Surt YJ. Inflammation: gearing the journey to cancer. Mutat Res 2008; 659: 15-30 [PMID: 18485806 DOI: 10.1016/j.mrrev.2008.03.002]

Ono M. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 2008; 99: 1501-1506 [PMID: 18754859 DOI: 10.1111/j.1349-7006.2008.00853.x]

Moore MM, Chua W, Charles KA, Clarke SJ. Inflammation and cancer: causes and consequences. Clin Pharmacol Ther 2010; 87: 504-508 [PMID: 2147899 DOI: 10.1038/clpt.2009.254]

Del Prete A, Allavena P, Santoro G, Fumarollo R, Corsi MM, Mantovani A. Molecular pathways in cancer-related inflammation. Biochem Med (Zagreb) 2011; 21: 264-275 [PMID: 22420240]

Brasky TM, Potter JD, Kristal AR, Patterson RE, Peters U, Asgari MM, Thorquist MD, White E. Non-steroidal anti-inflammatory drugs and cancer incidence by sex in the Vi-
tients with diabetes mellitus: a systematic review and meta-analysis of cohort studies. Int J Cancer 2012; 130: 1639-1648 [PMID: 21544812 DOI: 10.1002/ijc.26165]

Weng CJ, Hsieh YH, Tsai CM, Chu YH, Ueng KC, Liu YF, Yeh YH, Su SC, Chen YC, Chen MK, Yang SF. Relationship of insulin-like growth factors system gene polymorphisms with the susceptibility and pathological development of hepatocellular carcinoma. Ann Surg Oncol 2010; 17: 1808-1815 [PMID: 2019675 DOI: 10.1245/s10434-009-9040-8]

Wienecke JK. Impact of race/ethnicity on molecular pathways in human cancer. Nat Rev Cancer 2004; 4: 79-84 [PMID: 14708028 DOI: 10.1038/nrc1257]

Papa S, Bubici C, Zazzeroni F, Franzoso G. Mechanisms of liver disease: cross-talk between the NF-kappaB and JNK pathways. Biol Chem 2009; 390: 965-976 [PMID: 19642868 DOI: 10.1515/BC.2009.111]

Jee SH, Ohrr H, Sull JW, Yun JE, Mi S, Samet JM. Fasting, Zhang X, Shen Z, Zhong S, Wang X, Lu Y, Xu C. Diabetes mellitus and risk of bladder cancer: a meta-analysis of cohort studies. Br J Nutr 2013; 110: 863-876 [PMID: 21938478 DOI: 10.1016/j.jchirpm.1104-21]

Jiang Y, Ben Q, Shen H, Lu W, Zhang Y, Zhu J. Diabetes mellitus and incidence and mortality of colorectal cancer: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol 2011; 26: 863-876 [PMID: 21938478 DOI: 10.1007/s10654-011-9617-y]

Ren X, Zhang X, Zhang X, Gu W, Chen K, Le Y, Lai M, Zhu Y. Type 2 diabetes mellitus associated with increased risk for colorectal cancer: evidence from an international ecological study and population-based risk analysis in China. Public Health 2009; 123: 540-554 [PMID: 19664792 DOI: 10.1016/j.puhe.2009.06.019]

Kajura K, Ohkusa T, Okayasu I. Relationship between fecal bile acids and the occurrence of colorectal neoplasia in experimental murine ulcerative colitis. Digestion 1998; 59: 69-72 [PMID: 9468101]

De Bruyne PR, Bruyneel EA, Li X, Zimber A, Gespach C, Key TJ, Dossus L, Rinaldi S, Cust A, Lukanova A, Peeters PH, Onland-Moret NC, Lahmann PH, Berrino F, Panico S, Tumino R, Sacerdote C, Rodriguez-L, Buckland G, Sánchez MJ, Ardanaz E, Bueno-de-Ros M, van Gils CH, Peeters PH, Khaw KT, Wareham N, Key TJ, Allen NE, Romieu J, Siddiqui A, Cox D, Riboli E, Kaaks R. Preneoplastic serum sex steroids and risk of hormone receptor-positive and -negative breast cancer: a nested case-control study. Cancer Prev Res (Phila) 2011; 4: 1626-1635 [PMID: 21813404 DOI: 10.1158/1940-6207.\(\text{CAPR}-11-0090\)

Allen NE, Key TJ, Dossus L, Rinaldi S, Cust A, Luukanova A, Peeters PH, Onland-Moret NC, Lahmann PH, Berrino F, Panico S, Tumino R, Sacerdote C, Rodriguez-L, Buckland G, Sánchez MJ, Ardanaz E, Bueno-de-Ros M, van Gils CH, Peeters PH, Khaw KT, Wareham N, Key TJ, Allen NE, Romieu J, Siddiqui A, Cox D, Riboli E, Kaaks R. Preneoplastic serum sex steroids and risk of hormone receptor-positive and -negative breast cancer: a nested case-control study. Cancer Prev Res (Phila) 2011; 4: 1626-1635 [PMID: 21813404 DOI: 10.1158/1940-6207.\(\text{CAPR}-11-0090\)

D, Overvad K, Clavel-Chapelon F, Boutron-Rualut MC, Bingham S, Khaw KT, Bueno-de-Mesquita HB, Trichopoulou A, Trichopoulou D, Naska A, Tumino R, Riboli E, Kaaks R. Endogenous sex hormones and endometrial cancer risk in women in the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer 2008; 15: 485-497 [PMID: 18590901 DOI: 10.1677/ERC-07-0064]

Bao C, Yang X, Xu W, Luo H, Xu Z, Su C, Qi X. Diabetes mellitus and incidence and mortality of kidney cancer: a meta-analysis. J Diabetes Complications 2013; 27: 357-364 [PMID: 23436269 DOI: 10.1016/j.jdiacomp.2013.01.004]

Chow WH, Gridley G, Fraumeni JF, Järvholm B. Obesity, hypertension, and the risk of kidney cancer in men. N Engl J Med 2010; 363: 1305-1311 [PMID: 21085675 DOI: 10.1056/NEJMoa1002341804]

Russo P. End stage and chronic kidney disease: associations with renal cancer. Front Oncol 2012; 2: 28 [PMID: 22649783 DOI: 10.3389/fonc.2012.00028]

Zhu Z, Zhang X, Shen Z, Zhong S, Wang X, Lu Y, Xu C. Diabetes mellitus and risk of bladder cancer: a meta-analysis of cohort studies. Plas One 2013; 8: e66662 [PMID: 23547204 DOI: 10.1371/journal.pone.0065662]

El-Mosalamy H, Salman TM, Ashmawy AM, Osama N. Role of chronic e. coli infection in the process of bladder cancer- an experimental study. Infect Agent Cancer 2012; 7: 19 [PMID: 22875280 DOI: 10.1186/1750-9378-7-19]

Chari ST, Leibson CL, Rabe KG, Ransom J, de Andrade M, Petersen GM. Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology 2005; 129: 504-511 [PMID: 16083707 DOI: 10.1053/j.gastro.2005.05.007]

Ben Q, Xu M, Niu X, Liu J, Hong S, Huang W, Zhang H, Li Z. Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. Eur J Cancer 2011; 47: 1928-1937 [PMID: 21458985 DOI: 10.1016/j.ejca.2011.03.003]

Liu J, Knezetic JA, Stro¨mmer I, Permentt J, Larsson J, Adrian TE. The intracellular mechanism of insulin resistance in pancreatic cancer patients. J Clin Endocrinol Metab 2009; 85: 1232-1238 [PMID: 19702068 DOI: 10.1210/jc.2008-2332]

Zhang F, Yang Y, Skrip L, Hu D, Wang Y, Wong C, Qiu J, Lei H. Diabetes mellitus and risk of prostate cancer: an updated meta-analysis based on 12 case-control and 25 cohort studies. Acta Diabetol 2012; 49 Suppl 1: S235-S246 [PMID: 23124624 DOI: 10.1007/s00592-012-0439-5]

Xu H, Jiang HW, Ding GX, Zhang H, Zhang LM, Mao SH, Ding Q. Diabetes mellitus and prostate cancer risk of different grade or stage: a systematic review and meta-analysis. Diabetes Res Clin Pract 2013; 99: 241-249 [PMID: 23296664 DOI: 10.1016/j.diabres.2012.12.003]

Corona G, Monami M, Rastrelli G, Aversa A, Sforza A, Lenzi A, Forti G, Mannucci E, Maggi M. Type 2 diabetes mellitus and testosterone: a meta-analysis study. Int J Androl 2011; 34: 528-540 [PMID: 20965999 DOI: 10.1111/j.1365-2605.2010.01117.x]

Yoon JM, Son KY, Eom CS, Durrance D, Park SM. Pre-existing diabetes mellitus increases the risk of gastric cancer: a meta-analysis. World J Gastroenterol 2013; 19: 936-945 [PMID: 23424969 DOI: 10.3748/wjg.v19.i9.963]

Warren RS, Yuan H, Matti MR, Ferrara N, Donner DB. Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J Biol Chem 1996; 271: 29483-29488 [PMID: 8910616 DOI: 10.1074/jbc.271.46.29483]

Akaagi Y, Liu W, Zebrowski B, Xie K, Ellis LM. Regulation of vascular endothelial growth factor expression in human colon cancer by insulin-like growth-factor-I. Cancer Res 1998; 58: 4008-4014 [PMID: 9731515]

Ikeda F, Doi Y, Yonemoto K, Ninomiya T, Kubo M, Shikata K, Hata J, Tanizaki Y, Matsumoto T, Iida M, Kiyohara Y. Hyperglycemia increases risk of gastric cancer posed by Helicobacter pylori infection: a population-based cohort study. Gastroenterology 2009; 136: 1254-1261 [PMID: 19226964 DOI: 10.1053/j.gastro.2008.11.057]
Xu CX et al. Diabetes and cancer

10.1053/j.gastro.2008.12.045

85 Castillo JJ, Mull N, Reagan JL, Nemr S, Mitri J. Increased incidence of non-Hodgkin's lymphoma, leukemia, and myeloma in patients with diabetes mellitus type 2: a meta-analysis of observational studies. Blood 2012; 119: 4845-4850 [PMID: 22496152 DOI: 10.1182/blood-2011-06-362830]

86 Mitri J, Castillo J, Pittas AG. Diabetes and risk of Non-Hodgkin's lymphoma: a meta-analysis of observational studies. Diabetes Care 2008; 31: 2391-2397 [PMID: 19033419 DOI: 10.2337/dc08-1034]

87 Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL, Wolff AC, Brancati FL. Diabetes mellitus associated with the occurrence and prognosis of non-Hodgkin's lymphoma. Eur J Cancer Prev 2007; 16: 471-478 [PMID: 17923820 DOI: 10.1097/01.ejcp.0000226523.93984.8f]

88 Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mavasani KJ, Gillum RF, Holme I, Njølstad I, Fletcher A, Nilsson P, Lewington S, Collins R, Gudnason V, Thompson SG, Sattar N, Selvin E, Hu FB, Danesh J. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 2011; 364: 829-841 [PMID: 21366474 DOI: 10.1056/NEJMoa100862]

90 Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL, Wolff AC, Brancati FL. Postoperative mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 2008; 300: 2754-2764 [PMID: 19088353 DOI: 10.1001/jama.2008.824]

91 Tian T, Zhang LQ, Ma XH, Zhou JN, Shen J. Diabetes mellitus and incidence and mortality of gastric cancer: a meta-analysis. Exp Clin Endocrinol Diabetes 2012; 120: 217-223 [PMID: 22187293 DOI: 10.1055/s-0031-1297969]

92 Lin SY, Hsieh MS, Chen LS, Chiu YH, Yen AM, Chen TH. Diabetes mellitus associated with the occurrence and prognosis of non-Hodgkin's lymphoma. Eur J Cancer Prev 2007; 16: 471-478 [PMID: 17923820 DOI: 10.1097/01.ejcp.0000226523.93984.8f]

93 Onitilo AA, Ong EL, Glurich I, Stankowski RV, Williams GM, Doi SA. Diabetes and cancer II: role of diabetes medications and influence of shared risk factors. Cancer Causes Control 2012; 23: 991-1008 [PMID: 22527174 DOI: 10.1007/s10552-012-9971-4]

94 Norwood P, Liutkus JF, Haber H, Pintilei E, Boardman MK, Trautmann ME. Safety of exenatide once weekly in patients with type 2 diabetes mellitus treated with a thiazolidinedione alone or in combination with metformin for 2 years. Clin Ther 2012; 34: 2082-2090 [PMID: 23031623 DOI: 10.1016/j.clinthera.2012.09.007]

95 Stein SA, Lamos EM, Davis SN. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin Drug Saf 2013; 12: 153-175 [PMID: 23241069 DOI: 10.1517/14740338.2013.752813]

96 Hemmingsen B, Christensen LL, Wetterslev J, Vaag A, Gluud C, Lund SS, Almdal T. Comparison of metformin and insulin versus insulin alone for type 2 diabetes: systematic review of randomised clinical trials with meta-analyses and trial sequential analyses. BMJ 2012; 344: e1771 [PMID: 22517929 DOI: 10.1136/bmj.e1771]

97 Soranna D, Scotti L, Zambon A, Bosetti C, Grassi G, Catapano A, La Vecchia C, Mancia G, Corrao G. Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist 2012; 17: 813-822 [PMID: 22643536 DOI: 10.1634/theoncologist.2011-0462]

98 Rattan R, Ali Fahmi R, Munkarah A. Metformin: an emerging new therapeutic option for targeting cancer stem cells and metastasis. J Oncol 2012; 2012: 928127 [PMID: 22701483 DOI: 10.1155/2012/928127]

99 Hirsch HA, Iliopoulos D, Tschilpin PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009; 69: 7507-7511 [PMID: 19752085 DOI: 10.1158/0008-5472.CAN-09-2994]

100 Hwang AL, Haynes K, Hwang WT, Yang YX. Metformin and survival in pancreatic cancer: a retrospective cohort study. Pancreas 2013; 42: 1054-1059 [PMID: 24051965 DOI: 10.1097/MPA.0b013e3182965a5c]

101 Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 2009; 52: 1766-1777 [PMID: 19572116 DOI: 10.1007/s00125-009-1440-6]

102 Hsieh MC, Lee TC, Cheng SM, Tu ST, Yen MH, Tseng CH. The influence of type 2 diabetes and glucose-lowering therapies on cancer risk in the Taiwanese. Exp Diabetes Res 2012; 2012: 413782 [PMID: 22719752 DOI: 10.1155/2012/413782]

103 Colmers IN, Bowker SL, Majumdar SR, Johnson JA. Use of thiazolidinediones and the risk of bladder cancer among people with type 2 diabetes: a meta-analysis. CMAJ 2012; 184: E675-E683 [PMID: 22764178 DOI: 10.1503/cmaj.112102]

P-Reviewers: Pirola L, Xu H S-Editor: Wen LL L-Editor: Wang TQ E-Editor: Liu SQ
