Intrathecal Drug Delivery Systems for the Management of Chronic Noncancer Pain: A Systematic Review of Economic Evaluations

Rui V. Duarte, PhD*; Tosin Lambe, MSc†; Jon H. Raphael, MD‡,§; Sam Eldabe, MD¶; Lazaros Andronis, PhD†,**

*Liverpool Reviews and Implementation Group, Department of Health Services Research, University of Liverpool, Liverpool; †Health Economics Unit, Institute of Applied Health Research, University of Birmingham, Birmingham; ‡Faculty of Health, Birmingham City University, Birmingham; §Department of Pain Management, Russells Hall Hospital, Dudley; ¶Department of Pain and Anaesthesia, The James Cook University Hospital, Middlesbrough; **Populations, Evidence and Technologies Group, Division of Health Sciences, University of Warwick, Coventry, U.K.

Abstract

Background: Intrathecal drug delivery (ITDD) systems are one of a limited number of management options for chronic noncancer pain, cancer pain, and spasticity. Concerns over their effectiveness and high initial costs led National Health Service (NHS) England to decommission ITDD for patients with chronic noncancer pain. However, the extent to which this decision is in line with existing economic evidence is unclear. The aim of this systematic review was to identify and review the existing evidence on the cost effectiveness of ITDD for chronic noncancer pain.

Methods: Full and partial economic evaluations on ITDD were identified through systematic searches in MEDLINE, Embase, Web of Science, and the NHS for Reviews and Dissemination databases. Database searches were complemented by hand searching of reference lists of relevant studies and searches of grey literature. Study selection was carried out by 2 assessors, independently. Study quality assessment was performed to inform critical appraisal of health economics studies. Data were extracted using a data extraction form developed for the purposes of this study.

Results: Four thousand four hundred and sixty-four unique studies were identified, of which 7 met the inclusion criteria. With the exception of 1 study, the studies found ITDD to be either cost saving or cost effective compared to conventional medical management. ITDD became cost ineffective in 1 further study following price year adjustment to 2016.

Conclusions: Study findings showed ITDD to be not cost effective only in extremely conservative scenarios. There is limited evidence on the effectiveness of ITDD in noncancer pain; however, the available economic evidence controverts arguments to refute the treatment on economic grounds.

Key Words: chronic pain, cost-effectiveness, economic evaluations, intrathecal drug delivery

INTRODUCTION

Estimates of the prevalence of chronic pain range between 13% and 51%.1–3 The variation across studies is mainly due to the employed definition of chronic pain and the
populations studied. Regardless, the prevalence of chronic pain is higher than that of other common chronic conditions such as diabetes mellitus (type 1 or type 2), which has a considerably lower prevalence of 7% among men and 4.9% among women. Chronic pain presents a significant health burden associated with significant reductions in health-related quality of life. The National Pain Audit 2012 observed that the mean EuroQol index score in people suffering from chronic pain was 0.4, which is lower than that reported by people with progressive neurological disorders such as Parkinson’s disease (0.432). Furthermore, persistent pain conditions such as neck pain, migraine, arthritis, and low back pain cause more global disability than any other condition.

The economic burden of chronic pain is equally significant. The U.K. economy incurs about £12.3 billion/year for managing back pain alone, and costs associated with pain are estimated to be much higher. Chronic pain sufferers are 7 times more likely to quit their jobs due to ill health than the general population, and chronic pain remains the second most common reason for claiming incapacity benefit. More concretely, pain prevents 40% of people with chronic pain from working and causes an additional 12% to have reduced working hours.

Pain management strategies explored first include those options with the lowest risk for complications and the least invasiveness. Treatment plans with higher risks are gradually introduced as the pain becomes refractory to previous options.

Spinal cord stimulation (SCS) and intrathecal drug delivery (ITDD) have been seen as “last resort” options and are typically made available to patients who have experienced prolonged periods of pain, sometimes as long as 40 years. ITDD is used for the management of cancer and noncancer pain, and for spasticity. There are different levels of evidence for the use of ITDD in these different conditions. National Health Service (NHS) England currently commissions ITDD for the management of cancer pain and spasticity, but not for pain of noncancer origin as it was considered that there was insufficient evidence to support routine commissioning in this patient group. Although the limitations of the effectiveness data are undeniable (randomized controlled trials [RCTs] are not available), poor-quality economic evaluation studies were used to inform the commissioning decision for chronic noncancer pain. The overarching aim of this systematic review was therefore to investigate the cost effectiveness of ITDD systems using opioids for the management of chronic noncancer pain. To the authors’ best knowledge, this is the first systematic review on the topic.

Accordingly, this work set out to:

- Search bibliographic sources to identify relevant evidence on the cost effectiveness of ITDD as compared to conventional medical management (CMM);
- Appraise the quality of the identified studies, and highlight their strengths and limitations;
- Use evidence reported in the studies to determine the cost effectiveness of ITDD as compared to CMM;
- Discuss the potential policy implications of the findings, especially in relation to future policy reviews of ITDD for chronic noncancer pain.

METHODS AND ANALYSIS

The systematic review was conducted according to a prespecified protocol. The systematic review registration number is PROSPERO CRD42016035266. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines.

Search Methods for Identification of Studies

Systematic searches were conducted to identify relevant economic evaluations of ITDD for the management of chronic noncancer pain. The searches were carried out using the following electronic databases: MEDLINE® In-Process & Other Non-Indexed Citations and MEDLINE® (Ovid), Embase (Ovid), Science Citation Index (Web of Science), Conference Proceedings Citation Index (Web of Science), the NHS Centre for Reviews and Dissemination databases (NHS Economic Evaluation Database [EED], Database of Abstracts of Reviews of Effects [DARE], and Health Technology Assessment [HTA]) (all via Wiley). Grey literature was searched using OpenGrey, GreyNet, and GreyLit. Searches in the electronic databases were complemented by hand searching of reference lists of relevant studies.

Searches in the electronic databases were complemented by hand searching of reference lists of relevant studies.

Databases were initially searched from their inception to February 15, 2016, and updated up to September 5, 2017. Economic study filters designed by the NHS EED and Scottish Intercollegiate Guidelines Network (SIGN) to locate economic evaluation studies were used and a comprehensive search strategy developed (Appendix 1). No language restriction was applied in
the searches. Literature search results were uploaded to and managed using EndNote X7.0.1 software (Thomson Reuters).

Study Selection

The selection criteria described in Table 1 were applied to the citations identified from the literature search. Two reviewers screened titles and abstracts of all retrieved citations independently. Where compliance with the selection criteria was unclear from titles and abstracts, full texts were retrieved. Full-text papers for studies deemed potentially relevant were retrieved, and selection criteria were applied. Disagreement was resolved by discussion and consensus between the 2 reviewers. A third reviewer would have been involved if dissenting opinions were observed and consensus was not reached.

Data Extraction

Two reviewers extracted relevant information using an extraction form developed specifically for the purposes of this study. A third reviewer assessed the extracted data to ensure accuracy. Disagreements were resolved by discussion. Information was extracted in relation to the following factors: (1) general information, including study author, year, funding source, country, setting, and study design; (2) recruitment details, sample size, demographic characteristics (age, gender), and baseline health data (diagnosis, comorbidities); (3) interventions, effectiveness data, and cost data; (4) type of economic evaluation, perspective, time horizon, and measure of benefit; (5) quality assessment; (6) results; (7) analysis of uncertainty; and (8) conclusions. The outcomes for which data were sought were selected taking into account the data necessary to conduct an economic evaluation.

Quality Assessment

Quality assessment of all included studies was performed using the Evers checklist (all economic evaluations)25 and the Philips et al.26 checklist for model-based economic studies as recommended in the Cochrane Handbook for Systematic Reviews of Interventions.27 Two reviewers independently assessed the quality of the included studies. Any discrepancies were resolved by discussion and consensus between the 2 reviewers, and if necessary by consultation with a third reviewer.

Data Synthesis and Reporting

The Results section was organized based on the good practice recommendations for narrative summary of health economic studies as outlined in the Cochrane Handbook for Systematic Reviews.28 To facilitate the comparison of estimates reported in different studies, monetary values reported in all the identified studies were converted to U.K. pounds sterling (£) at 2016 price

Table 1. Inclusion Criteria for Identification of Relevant Studies
Population
Intervention
Comparator
Outcomes
Study design
Type of Economic Evaluation
Full economic evaluation
Cost-minimization analysis
Cost-consequence analysis
Cost-effectiveness analysis
Cost-benefit analysis
Cost-utility analysis
Partial economic evaluation
Cost analysis
Cost description
Cost-outcome description

*Consequences assumed to be equal.

ITDD, intrathecal drug delivery; QALY, quality-adjusted life years.
year. The year the study was published was assumed as the price year for those studies not reporting this information. Conversion of cost estimates was performed using the CCEMG–EPPI-Centre Cost Converter web-based tool version 1.5. The CCEMG–EPPI-Centre Cost Converter tool takes into consideration international exchange rates based on purchasing power parities and gross domestic product deflator values as recommended in the Economics Evidence section of the Cochrane Handbook for Systematic Reviews.28

RESULTS

The search identified 4,891 records from database searches and reference lists. After removal of duplicates \((n = 427)\) and records not meeting the eligibility criteria \((n = 4,448)\), 16 full-text articles were retrieved and assessed for eligibility. Nine studies were excluded from the review following assessment of the full text for various reasons, as shown in Figure 1. One cost description study was excluded because the study population comprised patients with spasticity (14%), cancer pain (6%), and other chronic pain conditions, but cost results were not presented separately for the different etiologies.29 Another study that compared the costs of ITDD to those of external infusion pumps was excluded because 60% of the patients had cancer pain and the cost comparison was not presented for each patient group.30 Three of the 9 studies were narrative reviews of other economic evaluations already included in this review, and were therefore excluded.31–33 Staats et al.34 did not report any cost data, and the conference abstract by Sawyer and Blowey35 presented no information on how the total cost estimate (£460,000 for all the patients in the study, equivalent to £24,000 per patient) was calculated. Both records were excluded. The last 2 studies were excluded because an economic evaluation of ITDD therapy was not performed; either only the cost impact of dose escalation36 or of elimination of systemic opioid use was captured.37

Seven studies were included in the final set of relevant studies (Table 2). Six of the studies were published in peer-reviewed journals,38–43 and 1 was a conference proceeding.44 The study designs in the 7 studies varied considerably. Two of the studies were retrospective analyses of database records,38,39 while another pair were retrospective case series.40,44 Two model-based studies were identified.41,42 Kumar et al.42 developed a Markov model based on retrospective assessment of patient notes, and de Lissovoy et al.41 developed a Markov model based on the literature. One of the studies was an economic evaluation based on an RCT.43

In terms of the type of analysis, the 2 retrospective database studies were partial economic evaluations: 1 cost-analysis evaluation38 and 1 cost-description study.39 The other 5 studies were full economic evaluations,
Author (Year)	Funding	Country	Setting	Sample Size	Age	Gender (%)	Diagnosis	Study Design	Interventions	Effectiveness Data	Cost Data
Bensemmane et al. (2011)	None declared	France	Secondary care	5	NR	NR	Chronic LBP	Retrospective case series	CMM with ITDD vs. CMM alone	Hospital visits and hospital days per patient per year, number of pharmaceuticals, ODI, VAS	Costs of pharmaceuticals and ITDD. All costs were in Euros. Unclear if the price year was 2011
Biggs et al. (2011)	None declared	U.K.	Secondary care	12	54 ± 11 years (SD)	7 females (58%)	Chronic LBP	Retrospective case series	CMM with ITDD vs. CMM alone	EQ-5D	Costs of surgery and injection treatments, investigations, drugs, and consultations for pain management. All costs were in pounds sterling for the price year 2009
de Lissovoy et al. (1997)	Contract between Medtronic, Inc., and the Battelle Memorial Institute, Washington, DC	U.S.A.	Secondary care	1,000	N/A	N/A	Neuropathic pain (FBSS)*	Economic model based on review of the literature	CMM with ITDD vs. CMM alone	Efficacy defined as good to excellent pain relief ranged from 65% (worst case) to 81% (best case). Base case was the average of the 2 figures (73%). Base case for duration of pain relief was calculated as 60 months × 0.73. Assumed to be 0 for CMM group	Analysis of expenditures for alternative modalities and analysis of billing data for patients of 2 of the authors. Physician fees were adjusted upwards to the average private sector using a Medicare–private sector payment ratio of 0.64. Costs were in U.S. dollars for the price year 1994
Guillemette et al. (2013)	Funded by Medtronic, Inc.	U.S.A.	Secondary care	555	Median age group = 50 to 59 years	205 females (37%)	Chronic noncancer pain	Retrospective database analysis of claims data	CMM with ITDD vs. CMM alone	N/A	Cost data were derived from a national claims database, comprising medical and prescription drug claims. Annual trend rates were applied to the reimbursement amounts based on each claim's date. An annual discount rate of 3% was used. Costs were in U.S. dollars for the price year 2007
Kumar et al. (2002)	None declared	Canada	Secondary care	N = 67 (ITDD group, n = 23; CMM group, n = 44)	NR	ITDD group, 32 females (48%); CMM group, 21 females (48%)	FBSS	RCT	CMM with ITDD vs. CMM alone	ODI, VAS, patient satisfaction	Cost references were taken from the province's fee schedule where the study was conducted (Regina, Saskatchewan, Canada). Costs of the implantable devices were obtained from
Table 2. (Continued)

Author (Year)	Funding	Country	Setting	Sample Size	Age	Gender (%)	Diagnosis	Study Design	Interventions	Effectiveness Data	Cost Data
Kumar et al. (2013)	None declared	Canada	Secondary care	N = 169	ITDD group, 52 years; CMM group, 51 years	Chronic noncancer pain	Economic model based on retrospective assessment of patients' notes	CMM with ITDD vs. CMM alone	EQ-5D		
				ITDD group, 58 females; CMM group, 21 females	Gender (%)	Diagnosis	Study Design	Interventions	Effectiveness Data	Cost Data	
Thrasher & Fisher (2013)	Funded by Pentec Health, Inc.	U.S.A.	Secondary care	Before and after implantation, n = 1,139	Range: 18 to 64 years	Chronic pain	Retrospective database analysis of claims data	ITDD	N/A		
				After implantation only, n = 22,582	NR	Diagnosis	Study Design	Interventions	Effectiveness Data	Cost Data	

NR, not reported; LBP, low back pain; CMM, conventional medical management; ITDD, intrathecal drug delivery systems; ODI, Oswestry Disability Index; VAS, visual analog scale; N/A, not applicable; FBSS, failed back surgery syndrome; RCT, randomized controlled trial.

*Data from studies of ITDD on cancer pain was pooled for the rate of occurrence of specific complications.

The costs for each category were tabulated and averaged for a 5-year period. Costs were in Canadian dollars for the price year 2000. Cost references were taken from the province’s fee schedule where the study was conducted (Regina, Saskatchewan, Canada). Costs of the implantable devices were obtained from the manufacturer. Costs were in Canadian dollars for the price year 2011. Cost data were obtained from a claims database of 14 commercial health plans operating throughout the U.S.A. comprising medical and pharmacy claims. Costs were in U.S. dollars for the price year 2011.
including 2 cost-consequence analyses, \(^{43,44}\) 2 cost-utility analyses, \(^{40,42}\) and 1 cost-effectiveness analysis. \(^{41}\)

Findings from Economic Evaluations of ITDD

The 5 full economic evaluations included in this systematic review found that ITDD is a cost-effective alternative to CMM (Table 3). The 2 cost-consequence analyses observed better patient outcomes and reduced costs following ITDD. Bensemmane et al. \(^{44}\) reported an average treatment cost reduction per patient year of 26% following ITDD and improvements in pain and disability. Kumar et al. \(^{43}\) saw an average improvement in disability of 27% and a break-even point in comparison to CMM at 28 months after ITDD implantation. The model-based cost-effectiveness analysis by de Lissovoy et al. \(^{41}\) found that only in a worst-case scenario would ITDD become more costly than CMM. The cost-utility analyses by Biggs et al. \(^{40}\) and Kumar et al. \(^{42}\) reported that ITDD was cost effective when compared to CMM at a willingness-to-pay (WTP) threshold of £30,000 per quality adjusted life year (QALY) gained in the United Kingdom and $20,000 per QALY gained in Canada, respectively. Biggs et al. \(^{40}\) also observed that there was a reduction in costs between the decision to perform implantation on a patient and the actual procedure, which could have an impact in the cost-effectiveness analysis. Kumar et al. \(^{42}\) estimated an 84% probability that ITDD was a cost-effective alternative to CMM at the Canadian WTP threshold and that these results were resistant to parameter uncertainty.

Discrepant findings were reported by the 2 partial economic evaluations included in this systematic review. Guillemette et al. \(^{38}\) observed that noncancer pain patients who had received an ITDD implant experienced a reduction in future medical costs when compared to CMM. Thrasher and Fisher \(^{39}\) reported that the postimplantation costs were higher than the costs prior to implantation. The time horizon for this study was 6 years, which includes 3 years prior to implantation and 3 years postimplantation. Other studies have found that ITDD breaks even within 3 years following implantation. \(^{38,43}\)

Currency and Price Year Adjusted Findings. For the purposes of comparison across studies, the cost estimates were converted to pounds sterling for the price year 2016 (Table 4). The most important change occurred in the Biggs et al. \(^{40}\) study, but gave more relevance to what the authors had observed (ie, a reduction in healthcare resource use in the period between the decision to perform implantation on a patient and the actual procedure [latent period]). The inclusion in the study time horizon of this latent period would lead to ITDD being considered cost ineffective at the United Kingdom’s WTP threshold of £30,000 per QALY gained. This period was found to have an average duration of 263 ± 176 days (range 3 to 489). \(^{40}\) The incremental cost-effectiveness ratios (ICERs) without and with the inclusion of a latency period were £26,080/ QALY gained and £29,030/QALY gained, respectively. \(^{40}\) These values increased to £29,453 and £32,784 after currency and price year adjustment. No relevant alterations were observed for the remaining studies.

Methodological Aspects

Perspective. Four of the studies adopted a health services perspective, \(^{40,42–44}\) and the 3 U.S. studies adopted the perspective of the insurer. \(^{38,39,41}\) Thrasher and Fisher mentioned societal costs throughout the study. \(^{39}\) However, only costs from medical and pharmacy claims were analyzed from the perspective of health insurance. It was also clearly stated by the researchers that only direct costs were included; indirect costs, such as lost time or lost productivity, were not considered. Throughout the title, abstract, and text, the term societal was used incorrectly as only insurance claims were considered.

Costs, Currency, and Price Year. All the included studies reported the currency, which included Canadian dollars, \(^{42,43}\) U.S. dollars, \(^{38,39,41}\) U.K. pounds sterling, \(^{40}\) and Euros. \(^{44}\) With the exception of the Bensemmane study, all of the studies reported the price year used. \(^{44}\) There was considerable variation amongst the included studies regarding the costs that were included in their analyses. Equipment and implantation costs were included in all of the full-text papers. It is not clear whether these costs were included by Bensemmane et al., \(^{44}\) who appear to have included only pharmaceutical costs, number of visits, and days of hospitalization. Costs of intrathecal drugs were considered by all the included studies, but it is unclear if all the studies accounted for the refill procedure, which incurs a higher cost than just the intrathecal drug(s). A limitation evident in most of the studies was the noninclusion of additional treatments and systemic medications that patients may still require even if using an ITDD system.
Author (Year)	Type of Economic Evaluation	Perspective	Time Horizon	Measure of Benefit	Analysis of Uncertainty	Results	Conclusions
Bensemmane et al. (2011)	CCA	Health service	8 years	VAS	Not performed	Average treatment cost per patient per year decreased by 26% from €3,163 (drugs) to €2,326 (€806 drugs + €7,600 pump cost amortized over 5 years). Average number of visits and hospital days per patient per year decreased by 30% (from 10 to 7 consultations) and 37% (6.2 days 3.9 days), respectively	The use of ITDDs appears to provide better management of pain and decreased treatment costs. However, this study covers only 5 patients over a short period and does not include the cost of installation and monitoring costs. A prospective study on a larger number of patients is needed to confirm these preliminary results.
Biggs et al. (2011)	CUA	Health service	4 years plus latent period	QALY	Results presented using nonparametric bootstrapping	The estimated mean QALYs were 0.3341 before implantation and 0.6458 after implantation. When including the latent period, the incremental cost per QALY gained with the ITDD vs. CMM was £29,029.52. When excluding the latent period, the incremental cost per QALY gained with the ITDD vs. CMM was £26,079.54	ITDD offers an economically feasible alternative solution for chronic nonmalignant pain patients whose current treatment is inappropriate or ineffective. Assessments of the cost effectiveness of a healthcare treatment should take into consideration the existence of a latent period since this may influence not only cost efficacy evaluations but also decisions to go through with a treatment.
de Lissovoy et al. (1997)	CEA	Third party (Medicare)	5 years	Efficacy defined as good to excellent pain relief	Sensitivity analyses were conducted on all parameters of the model by varying their values across low (best case) to high (worst case) ranges to assess the effects on projected total cost. The best case value was set at 50% and the worst case value was set at 200% of the base case. Elasticity values were calculated	The incremental cost per year of pain relief for the base case was -£624, -£7,832 for the best case and £12,276 for the worst case. Based on the elasticity value, the cost of the pump/catheter implant, ongoing monthly expenses for therapy, and pump replacement were the most sensitive parameters of the model.	ITDD appears to be cost effective when compared with alternative (medical) management for selected patients when the duration of therapy exceeds 12 to 22 months.
Guillemette et al. (2013)	Cost analysis	Third party (private commercial and Medicaid)	Data for a 6-year period was modeled over 30 years	N/A	Univariate sensitivity analysis: (1) changes in the ITDD system’s battery life; (2) altering the pre-implant experience period used to establish starting average cost for projection purposes; and (3) altering the medical cost trend assumptions	ITDD was found to break even in comparison to CMM after 27 months postimplantation. Analysis of the 30-year postimplantation time horizon indicates annual per patient savings of £3,111 compared with CMM. Sensitivity analyses indicated that an ITDD life expectancy increase of 50%	Noncancer pain patients who receive an ITDD implant may experience reduced future medical costs relative to anticipated costs under conventional therapeutic methods. The level of savings is sensitive to the duration of the implantation cycle.

Economic Evaluations of ITDD: 673
Author (Year)	Type of Economic Evaluation	Perspective	Time Horizon	Measure of Benefit	Analysis of Uncertainty	Results	Conclusions
Kumar et al. (2002)	CCA	Health service	5 years	ODI	Best- and worst-case scenarios. Best-case group consisted of 9 patients who experienced no complications in the 5-year follow-up period. Worst-case group consisted of 14 patients who experienced 1 or more complications during the follow-up period. Sensitivity analyses were conducted for cost of the pump, changes in the pump battery's life, and complications associated with surgery for ITDD	The incremental effectiveness of ITDD was 1.1508 QALYs, at an incremental cost of $13,034, which produced an ICER of $11,326/QALY. Results from deterministic and probabilistic sensitivity analyses were conducted. For the cost and efficacy parameters, the extremes of ±20% from the mean were selected as would result in an increase of 311% in patient per year savings. If assuming a 3-year ITDD replacement cycle, ITDD would cost more than CMM over the 30-year time horizon. The other variables subjected to sensitivity analysis did not impact on the results. The cumulative costs per patient receiving ITDD for a 5-year period equalled $29,410. The cumulative costs per patient receiving CMM totalled $38,000 during the 5-year period. The cumulative costs for patients receiving ITDD in a best- and worst-case scenarios were $28,264 and $31,131, respectively. ITDD was found to break even in comparison to CMM at 28 months in the base-case scenario, at 26 months in the best-case scenario, and at 30 months in the worst-case scenario. Sensitivity analyses indicated that an increase in the cost of the pump would lead to a delay in the break-even point, an increase in the pump battery life would have no impact on the break-even point, while a decrease in costs associated with complications would shorten the break-even point to 26 months. Patients receiving ITDD experienced an average improvement in disability of 27% over the 5-year period compared with 12% improvement in those patients in the CMM group. Over 10 years, a patient in ITDD treatment will, on average, accrue an additional 1.15 QALYs compared with CMM. ITDD is a cost-effective treatment	
Kumar et al. (2013)	CUA	Health service	10 years	QALY	Deterministic and probabilistic sensitivity analyses were conducted. For the cost and efficacy parameters, the extremes of ±20% from the mean were selected as would result in an increase of 311% in patient per year savings. If assuming a 3-year ITDD replacement cycle, ITDD would cost more than CMM over the 30-year time horizon. The other variables subjected to sensitivity analysis did not impact on the results. The cumulative costs per patient receiving ITDD for a 5-year period equalled $29,410. The cumulative costs per patient receiving CMM totalled $38,000 during the 5-year period. The cumulative costs for patients receiving ITDD in a best- and worst-case scenarios were $28,264 and $31,131, respectively. ITDD was found to break even in comparison to CMM at 28 months in the base-case scenario, at 26 months in the best-case scenario, and at 30 months in the worst-case scenario. Sensitivity analyses indicated that an increase in the cost of the pump would lead to a delay in the break-even point, an increase in the pump battery life would have no impact on the break-even point, while a decrease in costs associated with complications would shorten the break-even point to 26 months. Patients receiving ITDD experienced an average improvement in disability of 27% over the 5-year period compared with 12% improvement in those patients in the CMM group. Over 10 years, a patient in ITDD treatment will, on average, accrue an additional 1.15 QALYs compared with CMM. ITDD is a cost-effective treatment.	CUA is a cost-effective method of treating chronic nonmalignant pain caused by FBSS in patients who respond positively to an initial trial of ITDD. This holds true even when considering worst-case scenarios in which multiple complications may be involved. Additional benefits include increased ability to work and improved QoL with better pain control. Further cost savings will result from technological advances that will increase the life span of the pumps and improvements in catheter design that will decrease the incidence of their fracture, occlusion, and detachment. Better understanding of the long-term cost implications of ITDD compared with CMM will lead to more effective allocation of scarce healthcare resources.	
Author (Year)	Type of Economic Evaluation	Perspective	Time Horizon	Measure of Benefit	Analysis of Uncertainty	Results	Conclusions
-----------------------	-----------------------------	--------------------------------------	--------------	-------------------	------------------------	--	---
Thrasher & Fisher (2013)	Cost description	Third party (medical and pharmacy claims)	6 years	N/A	Not performed	For those patients with data for before and after implantation, the costs of care pre-implantation (mean ± SD) were $15,873 ± 25,273, the implantation costs were $24,413 ± 39,851, and postimplantation costs were $23,541 ± 77,546. For those patients with only postimplantation data, the medical costs were $15,034 ± 63,950 and the pharmacy costs were $451 ± 2,805	The societal costs for ITDD patients are high and extremely variable. This heterogeneous population is complex and represents a heavy societal cost burden. Our data highlight the open-ended risk these patients represent for a health insurance plan and society as a whole. The opportunity exists to drastically change this pattern with a method to better identify the highest-risk individuals and develop an improved care model that can minimize some of the cost variability.

CCa, cost-consequence analysis; VAS, visual analog scale; ITDD, intrathecal drug delivery system; CUA, cost-utility analysis; QALY, quality-adjusted life-years; CMM, conventional medical management; CEA, cost-effectiveness analysis; N/A, not applicable; ODI, Oswestry Disability Index; QoL, quality of life; ICER, incremental cost effectiveness ratio; WTP, willingness-to-pay.
The exceptions were the studies by Biggs et al. and Guillemette et al. Only 1 of the studies acknowledged the omission of costs that would be relevant to address the economic question as a limitation of the study. Biggs et al. did not include costs due to general practitioners’ appointments and prescriptions related to the patients’ pain, but argued that the inclusion of these costs would lead to an increase of the cost effectiveness of ITDD. The rationale was that as patients gain access to pain clinicians, it would be likely that patients require fewer general practitioner appointments for pain-related causes.

Measures of Benefits Used in the Economic Analysis. The measure of benefit was the QALY in 2 of the studies, derived from responses to the EQ-5D instrument. The cost-consequence analysis by Kumar et al. used disability as measured in the Oswestry Disability Index (ODI), while de Lissovoy et al. defined efficacy as good to excellent pain relief. Two studies collected effectiveness data but did not employ a measure of benefit. The studies by Guillemette et al. and Thrasher and Fisher were partial economic evaluations where no assessment of benefits was undertaken.

Time Horizons and Discount Rates Adopted. Chronic pain is typically a life-long condition, and this would be the ideal time horizon for an economic evaluation in this population. The longest time horizon reported was 10 years in the economic model developed by Kumar et al. The effectiveness data and estimates of complications were sourced from patients’ notes. The researchers considered a 10-year time horizon as meaningful because robust outcome data were unavailable, and technological and pharmacological advances would have occurred within this period. All of the studies included had a time horizon longer than 1 year. Guidance on the conduct of economic evaluations prescribes that costs and outcomes estimated over 1 year should be discounted at an appropriate rate and reported. However, 4 studies either did not use or did not report a discount rate. Thrasher and Fisher evaluated information from a longitudinal claims database over a 6-year period. For patients with pre- and postimplantation data, 12-month information before and after implantation were considered in the analysis, while

Author (Year)	Findings	Findings (Currency and Price Year Adjusted)*
Bensemmane et al. (2011)	Average treatment cost per patient per year decreased from £3,163 (drugs) to £2,326 (€806 drugs + £7,600 pump cost amortized over 5 years)	Average treatment cost per patient per year decreased from £2,804 (drugs) to £2,062 (€715 drugs + £6,738 pump cost amortized over 5 years)
Biggs et al. (2011)	With latent period included, the incremental cost per QALY gained with the ITDD vs. CMM was £29,029. When excluding the latent period, the incremental cost per QALY gained with the ITDD vs. CMM was £26,079	With latent period included, the incremental cost per QALY gained with the ITDD vs. CMM was €32,784. When excluding the latent period, the incremental cost per QALY gained with the ITDD vs. CMM was €29,452
de Lissovoy et al. (1997)	The incremental cost per year of pain relief for the base case was £624 to £7,832 for the best case and £12,276 for the worst case	The incremental cost per year of pain relief for the base case was -£654 to £8,213 for the best case and £12,873 for the worst case
Guillemette et al. (2013)	Analysis of the 30-year postimplantation time horizon indicates annual per-patient savings of £3,111	Analysis of the 30-year postimplantation time horizon indicates annual per-patient savings of £2,473
Kumar et al. (2002)	The cumulative costs per patient receiving ITDD for a 5-year period was £29,410 and £38,000 for patients receiving CMM over the same period. The cumulative costs for patients receiving ITDD in best- and worst-case scenarios were £28,264 and £31,131, respectively	The cumulative costs per patient receiving ITDD for a 5-year period were £22,972 and £29,682 for patients on CMM over the same period. The cumulative costs for patients receiving ITDD in best- and worst-case scenarios were £22,077 and £24,316, respectively
Kumar et al. (2013)	The incremental effectiveness of ITDD was 1.1508 QALYs, while the incremental cost was £13,034 when compared to CMM, generating an ICER of £11,326/QALY	The incremental effectiveness of ITDD was 1.1508 QALYs, while the incremental cost was £7,869 when compared to CMM, generating an ICER of £6,829/QALY
Thrasher & Fisher (2013)	For those patients with data for before and after implantation, the costs of care pre-implantation (mean ± SD) were £15,873 ± £39,851, and postimplantation costs were £24,413 ± £39,851, and postimplantation costs were £23,541 ± £77,546. For those patients with only postimplantation data, the medical costs were £15,034 ± £63,950 and the pharmacy costs were £451 ± £2,805	For those patients with data for before and after implantation, the costs of care pre-implantation (mean ± SD) were £11,888 ± £18,928, the implantation costs were £18,284 ± £28,846, and postimplantation costs were £17,631 ± £58,077. For those patients with only postimplantation data, the medical costs were £11,260 ± £47,895 and the pharmacy costs were £338 ± £2,101

QALY, quality-adjusted life-years; ITDD, intrathecal drug delivery system; CMM, conventional medical management.

*Cost estimates were converted to pounds sterling (£) for the price year 2016.
information on just the first 12 months was considered in patients for whom only postimplantation data were available. Given that the total information content for the former patient group was 24 months, cost and benefits should have been discounted.

Kumar et al. used an annual 5% discount rate. Kumar et al. discounted both costs and benefits, but it is not clear if de Lissovoy et al. applied the discount rate to the treatment outcomes and cost or only the costs. In their cost analysis, Guillemette and colleagues only discounted costs at a 3% annual rate.

Assessment of Uncertainty. Two studies did not assess uncertainty. Different approaches were observed in the remaining studies. Biggs et al. used a nonparametric bootstrapping approach to analyze the data. Guillemette et al. carried out a univariate sensitivity analysis to investigate the impact of changes in the ITDD battery life, the pre-implantation experience period, and the medical cost trend assumptions. Sensitivity analyses in the form of best- and worst-case scenarios were undertaken in the studies of de Lissovoy et al. and Kumar et al. Kumar et al. also investigated the impact that an increase in the cost of the pump, an increase in the pump's battery life, and a reduction in the costs of complications associated with ITDD surgery would have on the results. The rationale for choosing these aspects and the reason for not investigating the impact on the results (e.g., impact of a reduction in the pump’s battery life [the potential consequence of a higher intrathecal dose]) is not clear. Kumar et al. carried out deterministic and probabilistic sensitivity analyses to identify key areas of uncertainty and to determine model drivers.

Generalizability of the Results. Most studies attempted to address the generalizability of the observed results to other settings, either by carrying out assessments of uncertainty or by comparing the results with those from previous studies. The exceptions to this were the abstract by Bensemmane et al. and the study by Thrasher and Fisher. There were no indications that the results in the Thrasher and Fisher study were generalizable to settings outside the United States. The researchers discussed other studies that evaluated the cost effectiveness of ITDD; however, they did not conduct a full economic evaluation, and the perspective used was incorrectly claimed as societal. Kumar et al. attempted to address the generalizability of the results to other settings by reporting the costs and quantities separately, by carrying out sensitivity analyses, and by comparing the results obtained to those observed in previous studies. The data that informed the Markov model in the Kumar et al. study were obtained from a single center, and as acknowledged by the researchers, the model represents the management of a typical patient with chronic noncancer pain at that particular center. The researchers carried out sensitivity analyses that demonstrated the robustness of the results. Kumar et al. compared their results with those from previous studies and to the WTP threshold adopted in the United States and the United Kingdom.

Methodological Quality and Limitations. The conference proceedings abstract by Bensemmane et al. does not contain sufficient information to allow quality assessment. Based on the Evers checklist, the studies addressed most items (Appendix 2). Five of the 6 studies addressed more than half of the items on the checklist. None of the studies addressed item 19, which relates to the discussion of ethical and distributional issues. Some of the studies were partial economic evaluations; therefore, items on outcome measures would be answered negatively. Based on the Evers checklist, the study by Thrasher and Fisher was considered to be of the lowest quality because only 4 questions were answered positively. According to the Evers checklist, the best quality study was that of Kumar et al., which just failed to address ethical and distributional issues.

Two of the studies were model-based economic evaluations and were therefore also assessed using the Philips checklist (Appendix 3). The first model was developed in 1997, before the publication of any specific checklist for economic models. Twenty-five of 57 questions in the Philips checklist were either unclear or not addressed in de Lissovoy et al.’s model, and 15 questions were not applicable; 11 of 15 questions were in the Data section of the checklist. The second model by Kumar et al. addressed 35 questions in the checklist, and only 8 were answered negatively. According to the Philips criteria, the paper by Kumar et al. presented a better quality economic model of ITDD for chronic noncancer pain.

Additional Methodological Issues. In the abstract by Bensemmane et al., the data were collected retrospectively from the medical records of 5 patients who underwent implantation during 2006/2007. Although
the researchers stated that data from a period of 3 years after implantation were collected, the effectiveness results only covered the first 12 months and it is not clear if the remaining data collected were limited to this period as well. Although the researchers did not use a measure of benefit in the economic evaluation, effectiveness outcomes included the visual analog scale (VAS) and ODI.

One of the economic models intended to focus on chronic intractable pain attributed to failed back surgery syndrome (FBSS). However, the researchers considered that the available data on the rate of occurrence of specific complications associated with ITDD was sparse and therefore also pooled data from ITDD studies on cancer pain. Patients with cancer pain usually require higher intrathecal doses, leading to a higher rate per day, which contributes to faster battery depletion and consequent replacement. It is not clear if the data provided by the manufacturer on pump failure rates and pump life (median = 48 months) refer only to those patients with FBSS or also include other nonmalignant etiologies and cancer pain. The adverse event rates were converted into an annual rate and were assumed to remain constant over the 60-month time horizon. Although this approach is acceptable, the most common complications that are catheter related occur early; the estimates used are likely not reflective of current practices due to improvement in technology, and for some adverse events, alternative time to event rates may need to be considered. The longest average follow-up in the studies included was 27.8 months. Some complications and associated comorbidities may occur or may be identified at later stages, such as granulomas, hypogonadotropic hypogonadism, or decrease in bone mineral density, and could have an impact on the results observed.

The only conventional management included by de Lissovoy et al. in the ITDD group was supplemental medication with a base-case cost of $59. Although patients receiving CMM are more likely to require interventions, in the long term, it is possible that patients receiving ITDD will also require additional treatments (eg, spinal fusion, facet injections) if their condition deteriorates. A large discrepancy in the cost of medication was used for the model, with CMM patients estimated to have an annual medication cost of $4,847 compared with ITDD patients’ cost of $59/month or $708/year. Patients receiving CMM may also experience complications/side-effects that have not been accounted for.

Efficacy data used in the study by de Lissovoy et al. were based on data from 2 studies. Neither of these studies had a focus on patients with FBSS, and the administration route in the Auld et al. study was epidural rather than intrathecal. For CMM patients, it was assumed that these would only have inadequate pain relief; therefore, efficacy of CMM was valued as 0 (ie, 0 months of pain relief), presumably for base-, best-, and worst-case scenarios.

It should be noted that although the data from Kumar et al. were based on an RCT, besides stating that the 2 groups were matched for age, sex, and number of prior operations, the researchers did not present additional details to assess the quality of the RCT design, including information on power calculation, methods of randomization, or loss to follow-up. The researchers collected effectiveness data using the ODI, VAS, and patient satisfaction. While the results for improvement in disability using the ODI were presented for each group, the VAS and satisfaction were only reported for those patients receiving ITDD, therefore not allowing comparisons with the CMM group.

Guillemette et al. extracted data over a 6-year period, which covered 3 years prior to implantation, the implantation month, and 3 years following implantation. The data for this period of time were used as the basis for extrapolating the patient medical costs over a 30-year time horizon. The pre-implantation data were used to simulate a CMM protocol to compare with the actual post-ITDD implant claim experience to determine the difference in outcomes. For the simulation of the CMM protocol, it was assumed that the patients’ costs would follow the patterns as experienced during the pre-implantation period. Although the researchers indicated that the data extracted were for a 6-year period, from a sample size of 555, only 7% (n = 39) of the patients prior to implantation and 8.3% (n = 46) of the patients postimplantation provided 3-year data for each of the time periods. However, when the researchers presented the 3-year “actuarial” cost projection for the CMM group postimplantation, the number of patients was claimed to be 46, when in fact the information had been derived from the data of 39 patients (those with pre-implantation data).

DISCUSSION

This systematic review investigated the cost effectiveness of ITDD for the management of chronic noncancer pain. Although a limited number of economic evaluations...
were identified, 6 of the 7 studies indicated that ITDD is a cost-effective alternative to CMM for this population. While differences across the studies in terms of type of economic evaluation, perspective adopted, and setting in which ITDD was evaluated did not allow us to draw firm conclusions, this systematic review reveals important points that are relevant for future economic evaluations of ITDD for chronic noncancer pain. An important finding of this review concerns the limitations and biases observed in the current literature that should be taken into account in subsequent economic evaluations, mainly:

- No RCT evidence was presented on the effectiveness of ITDD for chronic noncancer pain that could inform an economic evaluation;
- CMM was not standardized across the studies, and it was unclear whether it was standardized within studies;
- Systematic review of effectiveness and safety data was not performed to inform development of existing economic models;
- Costs may have been underestimated as not all costs related to interventions for the management of the patients’ pain were included in the studies;
- Costs associated with complications due to CMM were not included in the studies;
- Discount rates were not used in all studies with a time horizon longer than 1 year;
- No economic evaluations were conducted adopting a societal perspective.

Strengths and Weaknesses of the Current Review

This systematic review focused on the cost effectiveness of ITDD for chronic noncancer pain. Comprehensive methods were employed, including searches in key electronic bibliographic databases, citation searching, and discussion with experts. The search results were also not restricted for language, type of study, or type of economic evaluation. Furthermore, an assessment of the quality of all of the studies was performed, including an additional quality assessment of model-based economic studies where appropriate. Because there is currently no agreement as to a minimum methodological criterion to be applied to decide whether economic evaluations are included in systematic reviews, no study was excluded based on quality assessment. The implication is that the review explored the full range of costs and outcomes for ITDD. Although studies have investigated the impact of excluding studies following quality assessment on results of systematic reviews, there is currently no consensus on how to generate a score or the value of these scores from the Evers et al. and Philips et al. checklists. A study by Thurston et al. identified 6 different scoring systems. However, quality-scoring systems have several limitations, their use is not currently recommended, and it is preferable to present a checklist or a descriptive critical assessment.

Poole estimates of costs and cost effectiveness were not produced in this systematic review. The value of meta-analytic methods remains unexplored, and the feasibility and usefulness of this technique for economic data require further study. It has been argued that the genuine contribution that a systematic review of economic evaluations can provide is to help identify the most relevant studies considering the decision problem and setting; understanding the causal relationships in a decision problem or policy area; and informing decision model development. Considering the decision problem (whether ITDD is a cost-effective alternative to CMM) and setting (hospital), the most relevant study identified was that of Kumar et al. Only 1 study was conducted in the United Kingdom, although it was based on a single center and had a small sample size. Both studies found ITDD to be a cost-effective alternative to CMM. The longest time horizon in the currently available literature is 10 years, but a model with a life-long time horizon would be the most beneficial. Other factors to contemplate when developing a model-based economic evaluation of ITDD include consideration of systemic medication and additional treatments (despite the use of an ITDD), complications that may occur following the prolonged use of ITDD, changes in practice and technology, complications following CMM, and societal costs. Societal costs are likely to assume particular importance considering the life-long nature of this condition, potential deterioration of the patient, and continuous support necessary. It should be noted that none of the studies identified included or discussed societal costs and their potential implications for the economic evaluation of ITDD.

Limitations of Included Studies

Limitations inherent to the studies included also contributed to the strengths and weaknesses of this review. The main limitation was the reduced number of available full economic evaluations. Five full economic evaluations were identified, 1 of which was merely
published as a conference proceeding abstract. There were several methodological limitations in the studies included. Four of the studies did not mention the use of a discount rate, and none of the studies used a life-long time horizon that would be appropriate for this chronic condition. Furthermore, 5 of the 7 studies relied on cost and outcome data from either database claims data or retrospective assessment of patients’ notes. The data for one of the studies came from an RCT; however, there were not many details to appraise the quality of the RCT, and the results of the RCT were not published in a separate paper. Therefore, a quality assessment for the effectiveness study on which this economic study was based was not performed. The data to inform the remaining study were derived from a literature review, although due to the limited available literature, the researchers had to extract data from cancer pain papers. Although the studies included were conducted in the United Kingdom, France, Canada, and the United States, and considered different perspectives, the majority of the studies concluded that ITDD was less costly or cost effective when compared to CMM. Only 1 of the studies considered that the costs of ITDD are superior to CMM. However, this study was judged as the one with the lowest quality and the perspective was incorrectly presented; it claimed to be societal when it was in fact that of the insurer. The findings from Thrasher and Fisher may have occurred due to a reduction in healthcare costs once the patient is informed of suitability for ITDD. The reduction in healthcare costs at this stage may lead to a significant impact on the results of the economic assessment, although this impact is reliant on the delay period between decision and implantation, which is practice dependent.

Implications for Policymakers

NHS England currently commissions the use of ITDD for the management of severe cancer pain and spasticity. However, NHS England does not routinely commission ITDD for severe chronic noncancer pain as it was considered that there was insufficient evidence to support routine commissioning. The economic studies used for the decision concerning the use of ITDD for severe chronic noncancer pain were those of de Lissovoy et al. (although Mueller-Schwefe et al. was referenced), Kumar et al., and Bolash et al. It is important to note that Bolash et al. included patients with noncancer pain, spasticity, and cancer pain, but cost results were not presented separately for the different etiologies. This systematic review therefore assumes particular importance, and it is thought that its findings may be taken into consideration when this policy is reviewed in 2017. Nevertheless, the main limitation in the currently available literature is the absence of an RCT on ITDD in noncancer pain patients. Despite this lack of RCT evidence, it is unlikely that such a study would obtain funding and report its findings within this time frame. RCT evidence is difficult to produce for a fourth- or fifth-line therapy due to lack of a plausible comparator therapy at this stage. Alternatively, long-term observational studies may provide appropriate data to inform a model-based economic study with a longer time horizon. A de novo economic evaluation should take into account the aspects identified through this review and address the limitations of previous economic evaluations. Similarly to other medical technologies, ITDD has high initial costs, but according to the identified economic evaluations, the cost of ITDD breaks even within 2 to 3 years following implantation when compared to CMM and has reduced costs subsequently.

Future Research

A limitation of currently available literature in the field of ITDD for chronic noncancer pain is the lack of robust effectiveness studies. Systematic reviews that investigated the clinical effectiveness of ITDD for the management of chronic noncancer pain did not identify RCTs in this area. A recently published RCT has evaluated the efficacy of ITDD by randomizing the patients to either a dose reduction group or a dose maintenance group. Although this study supports the efficacy of ITDD, the design is not adequate for use in an economic evaluation since the same intervention (ITDD) is being compared. The lack of reliable data limits the value and interpretation of economic evaluations in this field. An adequately powered RCT comparing ITDD to CMM with a nested economic evaluation is therefore necessary to address enduring uncertainties around the clinical effectiveness and the cost effectiveness of ITDD for chronic noncancer pain.

Alternatively, a systematic review of effectiveness, safety, and cost data to inform a de novo economic evaluation comparing ITDD to CMM could be carried out. An HTA of ITDD was previously conducted. This HTA did not develop an economic model, and a plethora of additional evidence has been published since
that time that could be valuable to inform such a model. Recently, an HTA from Health Quality Ontario identified 4 economic evaluations of ITDD for noncancer pain, not considering partial economic evaluations. In the HTA, quality of the economic evaluations was assessed using the Phillips checklist that should only be used for model-based economic evaluations. The researchers scored the quality of the economic papers (low and very low), although the Phillips checklist was not developed or validated for this purpose. The HTA considered that current evidence does not establish (or rule out) the superiority or cost effectiveness of ITDD for managing chronic noncancer pain. We agree with the HTA report that evidence from within-trial studies is weak. However, models are meant to address this issue. The results suggest that model ICERS are only higher than the £20,000/QALY threshold in extremely conservative scenarios, therefore suggesting that in the absence of better evidence, ITDD should be funded by the NHS. The commissioning of SCS for the management of complex regional pain syndrome and FBSS in the United Kingdom followed the publication of the Simpson et al. HTA. However, the data to inform the SCS economic model were based on RCT evidence. In relation to methodological research, a survey observed that for decision makers who require information on the quality and relevance of health economic studies, it would be of most use to have a combination of a summary or score, together with a short abstract. Taking into consideration the above-mentioned difficulties to generate a single score based on quality assessment tools of economic evaluations, the best currently available alternative would be to present a checklist together with a short abstract. It may be beneficial that such a format is requested by NHS England following a systematic review of the economic evidence to better inform the next policy review of ITDD for chronic noncancer pain.

CONCLUSION

This systematic review identified 7 economic evaluations of ITDD for chronic noncancer pain. Six of the 7 studies concluded that ITDD was less costly or cost effective compared to CMM for a chronic noncancer pain population. Despite the homogeneity in these findings, the main limitation of the currently available evidence is the lack of robust effectiveness data to inform economic evaluations, which also limits the robustness of the results observed. In addition to summarizing the existing literature on the cost effectiveness of ITDD, this systematic review identified factors that need to be taken into consideration in the process of model development and discusses implications for policymakers. Of particular importance is the fact that the recent NHS England policy review of ITDD for severe chronic pain did not take into account the better quality economic evidence, relying instead on lower quality studies, including one that included cancer pain and spasticity patients. In some instances, it is possible that important evidence with the potential to influence decisions may not have been identified. Therefore, if there is uncertainty about the clinical effectiveness or cost effectiveness of a treatment, a systematic review should be commissioned prior to a decision. The authors do not state that this review alone or the use of better quality economic evaluations would lead to a change in the decision, due to the limited evidence for effectiveness. However, economic models are meant to address the lack of effectiveness data. In the absence of better evidence, the results observed suggest that ITDD should be funded by the NHS based on the model ICERs observed. Even with better effectiveness data, the assessment of poor economic evaluations (when better evidence is available) could tip the decision towards noncommissioning and, as a consequence, access to patients with noncancer pain who could potentially benefit from ITDD would be denied. For the large majority of these patients, ITDD is the last option to obtain improvements in quality of life.

ACKNOWLEDGEMENTS

The authors are grateful to Sue Bayliss, Information Specialist, University of Birmingham, for assistance with the development of the search strategy.

CONFLICT OF INTEREST

The authors declare that they have no competing interests.

FUNDING

R.V.D. has received funding from the Neuromodulation Society of the United Kingdom and Ireland (NSUKI) in support of this study. The views expressed here are those of the authors and not necessarily those of the NSUKI. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
REFERENCES

1. Breivik H, Collett B, Ventafredda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10:287–333.

2. Bridges S. Chronic pain. In: Craig R, Mindell J, eds. Health Survey for England 2011, Health, Social Care and Lifestyles. London: The Health and Social Care Information Centre; 2012:1–33.

3. Fayaz A, Croft P, Langford RM, Donaldson LJ, Jones GT. Prevalence of chronic pain in the UK: a systematic review and meta-analysis of population studies. BMJ Open. 2016;6:e010364.

4. Moody A. Diabetes and hyperglycaemia. In: Craig R, Mindell J, eds. Health Survey for England 2011, Health, Social Care and Lifestyles. London: The Health and Social Care Information Centre; 2012:1–28.

5. Price C, Hoggart B, Olukoga O, Williams AC, Bottle A. National Pain Audit Final Report 2012–2012. London: Healthcare Quality Improvement Partnership, British Pain Society and Dr Foster Intelligence Ltd; 2012.

6. Hoy D, March L, Brooks P, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis. 2014;73:968–974.

7. Donaldson L. Pain: breaking through the barrier. In: Donaldson L, ed. 150 Years of the Annual Report of the Chief Medical Officer: On the State of Public Health 2008. London: Department of Health; 2009:32–39.

8. Krames ES, Olson K. Clinical realities and economic considerations: patient selection in intrathecal therapy. J Pain Symptom Manage. 1997;14:S3–S13.

9. Duarte RV, Raphael JH, Sparkes E, Southall JL, LeMarchand K, Ashford RL. Long-term intrathecal drug administration for chronic nonmalignant pain. J Neurosurg Anesthesiol. 2012;24:63–70.

10. Sparkes E, Duarte RV, Mann S, Lawrence TR, Raphael JH. Analysis of psychological characteristics impacting spinal cord stimulation treatment outcomes: a prospective assessment. Pain Physician. 2015;18:E369–E377.

11. Mann SA, Sparkes E, Duarte RV, Raphael JH. Attraction with spinal cord stimulation. Br J Neurosurg. 2015;29:823–828.

12. Duarte R, Raphael J, Eldabe S. Intrathecal drug delivery for the management of pain and spasticity in adults: an executive summary of the British Pain Society’s recommendations for best clinical practice. Br J Pain. 2016;10:67–69.

13. Eldabe S, Duarte R, Raphael J, Thomson S, Bojanic S. Intrathecal Drug Delivery for the Management of Pain and Spasticity in Adults: Recommendations for Best Clinical Practice. London: British Pain Society; 2015.

14. Smith TJ, Staats PS, Deer T, et al. Randomized clinical trial of an implantable drug delivery system compared with comprehensive medical management for refractory cancer pain: impact on pain, drug-related toxicity, and survival. J Clin Oncol. 2002;20:4040–4049.

15. Narendran RC, Duarte RV, Valyi A, Eldabe S. The need for and provision of intrathecal baclofen therapy for the management of spasticity in England: an assessment of the Hospital Episode Statistics database. BMJ Open. 2015;5:e007517.

16. Raphael JH, Duarte RV, Southall JL, Nightingale P, Kitas GD. Randomised, double-blind controlled trial by dose reduction of implanted intrathecal morphine delivery in chronic non-cancer pain. BMJ Open. 2013;3:e003061.

17. NHS England. Clinical Commissioning Policy: Intrathecal Pumps for Treatment of Severe Cancer Pain. 2015. https://www.england.nhs.uk/commissioning/wp-content/uploads/sites/12/2015/10/d08pb-intra-pumps-trtmt.pdf (accessed December 10, 2016).

18. NHS Commissioning Board. Clinical Commissioning Policy: Intrathecal Baclofen (ITB). 2013. https://www.england.nhs.uk/wp-content/uploads/2013/04/d04-p-c.pdf (accessed December 10, 2016).

19. NHS England. Clinical Commissioning Policy: Intrathecal Pumps for Treatment of Severe Chronic Pain. 2015. https://www.england.nhs.uk/commissioning/wp-content/uploads/sites/12/2015/10/d08pa-intrathecal-pumps-oct15.pdf (accessed December 10, 2016).

20. Duarte RV, Lambe T, Raphael JH, Eldabe S, Andronis L. Intrathecal drug delivery systems for the management of chronic non-cancer pain: protocol for a systematic review of economic evaluations. BMJ Open. 2016;6:e012285.

21. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–269, W64.

22. Centre for Reviews and Dissemination. Search Strategies. 2015. http://www.crd.york.ac.uk/crdweb/searchstrategie s.asp (accessed December 17, 2015).

23. Scottish Intercollegiate Guidelines Network. Search Filters. 2015. http://www.sign.ac.uk/methodology/filters.html (accessed December 17, 2015).

24. Drummond MF, Sculpher MJ, Torrance GW. Methods for the Economic Evaluation of Health Care Programmes, 3rd ed. Oxford, U.K.: Oxford University Press; 2005.

25. Evers S, Goossens M, de Vet H, van Tulder M, Ament A. Criteria list for assessment of methodological quality of economic evaluations: Consensus on Health Economic Criteria. Int J Technol Assess Health Care. 2005;21:240–245.

26. Philips Z, Ginnelly L, Sculpher M, et al. Review of guidelines for good practice in decision-analytic modelling in health technology assessment. Health Technol Assess. 2004;8:1–158.

27. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. [Updated March 2011]. Chichester, U.K.: John Wiley & Sons; 2011.

28. Shehmi I, Mugford M, Byford S, et al. Incorporating economics evidence. In: Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. [Updated March 2011]. Chichester, U.K.: John Wiley & Sons; 2011.

29. Bolash R, Udeh B, Saweris Y, et al. Longevity and cost of implantable intrathecal drug delivery systems for chronic
pain management: a retrospective analysis of 365 patients.
Neuromodulation. 2015;18:150–156.
30. Bedder MD, Burchiel K, Larson A. Cost analysis of two implantable narcotic delivery systems. J Pain Symptom Manage. 1991;6:368–373.
31. Hassenbusch SJ, Paice JA, Patt RB, Bedder MD, Bell GK. Clinical realities and economic considerations: economics of intrathecal therapy, J Pain Symptom Manage. 1997;14:S36–S48.
32. Mueller-Schwefe G, Hassenbusch SJ, Reig E. Cost effectiveness of intrathecal therapy for pain. Neuromodulation. 1999;2:77–87.
33. Nguyen H, Hassenbusch SJ. Cost-effectiveness of intraspinal drug delivery for chronic pain. Semin Pain Med. 2004;2:43–45.
34. Staats P, Whitworth M, Barakat M, Anderson W, Lilienfeld S. The use of implanted programmable infusion pumps in the management of nonmalignant, chronic low back pain. Neuromodulation. 2007;10:376–380.
35. Sawyer R, Blowey S. Cost effective outcomes in intrathecal drug delivery devices (ITDD) for chronic noncancer pain management (CNMP). Neuromodulation. 2013;16:65.
36. Kumar K, Rizvi S, Bishop S, Tang W. Cost impact of intrathecal polyanalgesia. Pain Med. 2013;14:1569–1584.
37. Hatheway JA, Caraway D, David G, et al. Systemic opioid elimination after implantation of an intrathecal drug delivery system significantly reduced health-care expenditures. Neuromodulation. 2015;18:207–213.
38. Guillemette S, Witzke S, Leier J, Hinnenthal J, Prager JP. Medical cost impact of intrathecal drug delivery for noncancer pain. Pain Med. 2013;14:504–515.
39. Thrasher TA, Fisher S. Societal costs of intrathecal drug delivery systems—an administrative analysis based on patient claims. Neuromodulation. 2013;16:261–265.
40. Biggs SA, Duarte RV, Raphael JH, Ashford RL. Influence of a latent period in QALY analysis: pilot study of intrathecal drug delivery systems for chronic non-malignant pain. Br J Neurosurg. 2011;25:401–406.
41. de Lissovoy G, Brown RE, Halpern M, Hassenbusch SJ, Ross E. Cost-effectiveness of long-term intrathecal morphine therapy for pain associated with failed back surgery syndrome. Clin Ther. 1997;19:96–112.
42. Kumar K, Rizvi S, Bishop S. Cost effectiveness of intrathecal drug therapy in management of chronic nonmalignant pain. Clin J Pain. 2013;29:138–145.
43. Kumar K, Hunter G, Demeria DD. Treatment of chronic pain by using intrathecal drug therapy compared with conventional pain therapies: a cost-effectiveness analysis. J Neurosurg. 2002;97:803–810.
44. Bensemmane D, Advenier-Iakovlev E, Djian MC, Paubel P. Evaluation of the cost and effectiveness of a morphine implantable pump in chronic low back pain. Int J Clin Pharm. 2011;33:397.
45. Yaksh TL, Hassenbusch S, Burchiel K, Hildebrand KR, Page LM, Coffey RJ. Inflammatory masses associated with intrathecal drug infusion: a review of preclinical evidence and human data. Pain Med. 2002;3:300–312.
46. Duarte RV, Raphael JH, Southall JL, Baker C, Hanucernat D. Intrathecal inflammatory masses: is the yearly opioid dose increase an early indicator? Neuromodulation. 2010;13:109–113.
47. Duarte RV, Raphael JH, Southall JL, Baker C, Ashford RL. Intrathecal granuloma formation as result of opioid delivery: systematic literature review of case reports and analysis against a control group. Clin Neurol Neurosurg. 2012;114:577–584.
48. Abs R, Verhelst J, Maeyart J, et al. Endocrine consequences of long-term intrathecal administration of opioids. J Clin Endocrinol Metab. 2000;85:2215–2222.
49. Duarte RV, Raphael JH, Labib M, Southall JL, Ashford RL. Prevalence and influence of diagnostic criteria in the assessment of hypogonadism in intrathecal opioid therapy patients. Pain Physician. 2013;16:9–14.
50. Duarte RV, Raphael JH, Southall JL, Labib MH, Whallett AJ, Ashford RL. Hypogonadism and low bone mineral density in patients on long-term intrathecal opioid delivery therapy. BMJ Open. 2013;3:e002856.
51. Finch PM, Price LM, Pullan PT, Drummond PD. Effects of testosterone treatment on bone mineral density in hypogonadal men receiving intrathecal opioids. Pain Pract. 2015;15:308–313.
52. Auld AW, Maki-Jokela A, Murdoch DM. Intraspinal narcotic analgesia in the treatment of chronic pain. Spine (Phila Pa 1976). 1985;10:777–781.
53. Krames ES, Lanning RM. Intrathecal infusional analgesia for nonmalignant pain: analgesic efficacy of intrathecal opioid with or without bupivacaine. J Pain Symptom Manage. 1993;8:539–548.
54. Thurston SJ, Craig D, Wilson P, Drummond MF. Increasing decision-makers’ access to economic evaluations: alternative methods of communicating the information. Int J Technol Assess Health Care. 2008;24:151–157.
55. Centre for Reviews and Dissemination. Quality Assessment. 2009. https://www.york.ac.uk/crd/SysRev/!SSL!/WebHelp/SysRev3.htm#5_5_QUALITY_ASSESSMENT.htm (accessed September 2, 2016).
56. Shemilt I, McDaid D, Marsh K, et al. Issues in the incorporation of economic perspectives and evidence into Cochrane reviews. Syst Rev. 2013;2:83.
57. Anderson R, Shemilt I. The role of economic perspectives and evidence in systematic review. In: Shemilt I, Mugford M, Vale L, Marsh K, Donaldson C, eds. Evidence-Based Decisions and Economics: Health Care, Social Welfare, Education and Criminal Justice. Oxford, U.K.: Wiley-Blackwell; 2010:23–42.
58. Gough D, Thomas J. Commonality and diversity in reviews. In: Gough D, Oliver S, Thomas J, eds. An Introduction to Systematic Reviews. London: Sage; 2012:35–65.
59. Williams JE, Louw G, Towlerton G. Intrathecal pumps for giving opioids in chronic pain: a systematic review. Health Technol Assess. 2000;4:iii–iv, 1–65.
60. Turner JA, Sears JM, Loeser JD. Programmable intrathecal opioid delivery systems for chronic noncancer pain management: a retrospective analysis of 365 patients. Neuromodulation. 2015;18:150–156.
pain: a systematic review of effectiveness and complications. *Clin J Pain*. 2007;23:180–195.

61. Patel VB, Manchikanti L, Singh V, Schultz DM, Hayek SM, Smith HS. Systematic review of intrathecal infusion systems for long-term management of chronic non-cancer pain. *Pain Physician*. 2009;12:345–360.

62. Noble M, Treadwell JR, Tregear SJ, et al. Long-term opioid management for chronic noncancer pain. *Cochrane Database Syst Rev*. 2010;1:CD006605.

63. Hayek SM, Deer TR, Pope JE, Panchal SJ, Patel VB. Intrathecal therapy for cancer and non-cancer pain. *Pain Physician*. 2011;14:219–248.

64. Health Quality Ontario. Intrathecal drug delivery systems for noncancer pain: a health technology assessment. *Ont Health Technol Assess Ser*. 2016;16:1–77.

65. Simpson EL, Duenas A, Holmes MW, Papaioannou D, Chilcott J. Spinal cord stimulation for chronic pain of neuropathic or ischaemic origin: systematic review and economic evaluation. *Health Technol Assess*. 2009;13:iii, ix–x, 1–154.

Appendix 1

Ovid MEDLINE® In-Process & Other Non-Indexed Citations and Ovid MEDLINE® Search strategy:

1. pain.mp. or exp Pain/
2. ((Chronic or intractable or refractory or persistent) adj3 pain$).mp.
3. or1–2
4. infusion pumps.mp. or exp Infusion Pumps/
5. drug delivery systems.mp. or exp Drug Delivery Systems/
6. (intrathecal adj3 administration).mp.
7. it administration.mp.
8. intrathecal.mp.
9. or4–8
10. health care costs.mp. or exp Health Care Costs/
11. direct service costs.mp. or exp Direct Service Costs/
12. drug costs.mp. or exp Drug Costs/
13. employer health costs.mp. or exp Employer Health Costs/
14. hospital costs.mp. or exp Hospital Costs/
15. health expenditures.mp. or exp Health Expenditures/
16. capital expenditures.mp. or exp Capital Expenditures/
17. health economics.mp.
18. economic evaluation$.mp.
19. economic analy$.mp.
20. costs.mp. or exp “Costs and Cost Analysis”/
21. cost-benefit analysis.mp. or exp Cost-Benefit Analysis/
22. cost effective$.mp.
23. cost benefit$.mp.
24. cost utility$.mp.
25. cost consequence.mp.
26. value of life.mp. or exp “Value of Life”/
27. economics, hospital.mp. or exp Economics, Hospital/
28. economics, medical.mp. or exp Economics, Medical/
29. economics, nursing.mp. or exp Economics, Nursing/
30. economics, pharmaceutical.mp. or exp Economics, Pharmaceutical/
31. exp “Fees and Charges”/ or fees charges.mp.
32. (fees and charges).mp.
33. budgets.mp. or exp Budgets/
34. (cost or costs or costed or costly or costing$).mp.
35. (economic$ or pharmacoeconomic$ or price$ or pricing$).mp.
36. quality-adjusted life years.mp. or exp Quality-Adjusted Life Years/
37. (qaly or qaly$).af.
38. or10–37
39. 3 and 9 and 38
Appendix 3. Quality Assessment of Model-Based Studies (Philips Checklist)

Item	de Lissovoy et al. (1997)	Kumar et al. (2013)
	Biggs et al. (2011)	Kumar et al. (2013)
1. Is there a clear statement of the decision problem?	Yes	Yes
2. Are the objectives of the model specified and consistent with the stated decision problem?	Yes	Yes
3. Is the primary decision maker specified?	No	Yes
4. Is the perspective of the model stated clearly?	Yes	Yes
5. Are the model inputs consistent with the stated perspective?	Yes	Yes
6. Has the scope of the model been stated and justified?	Yes	Yes
7. Are the outcomes of the model consistent with the stated perspective, scope, and overall objective of the model?	Unclear	Yes
8. Has the evidence regarding the model structure been described?	Yes	Yes
9. Is the structure of the model consistent with a coherent theory of the health condition under evaluation?	Unclear	Yes
10. Are the sources of data used to develop the structure of the model specified?	Yes	Yes
11. Are the causal relationships described by the model structure justified appropriately?	Unclear	Yes
12. Are the structural assumptions transparent and justified?	No	Yes
13. Are the structural assumptions reasonable given the overall objective, perspective, and scope of the model?	Unclear	Yes
14. Is there a clear definition of the options under evaluation?	Yes	Yes
15. Have all feasible and practical options been evaluated?	No	Yes
16. Is there justification for the exclusion of feasible options?	No	Not applicable
17. Is the chosen model type appropriate given the decision problem and specified causal relationships within the model?	No	Yes
18. Is the time horizon of the model sufficient to reflect all important differences between options?	No	No
19. Is the time horizon of the model, the duration of treatment, and the duration of treatment effect described and justified?	Yes	Yes
20. Do the disease states (state transition model) or the pathways (decision tree model) reflect the underlying biological process of the disease in question and the impact of interventions?	No	Yes
21. Is the cycle length defined and justified in terms of the natural history of disease?	Not applicable	Yes
Data	de Lissovoy et al. (1997)	Kumar et al. (2013)
22. Are the data identification methods transparent and appropriate given the objectives of the model?	No	Yes
23. Where choices have been made between data sources, are these justified appropriately?	Unclear	Yes
24. Has particular attention been paid to identifying data for the important parameters in the model?	No	Unclear
Appendix 3. (Continued)

Item	de Lissovoy et al.\(^{41}\) (1997)	Kumar et al.\(^{42}\) (2013)
25. Has the process of selecting key parameters been justified and systematic methods used to identify the most appropriate data?	Unclear	Unclear
26. Has the quality of the data been assessed appropriately?		
27. Where expert opinion has been used, are the methods described and justified?	No	Not applicable
28. Is the premodel data analysis methodology based on justifiable statistical and epidemiological techniques?	Unclear	Unclear
29. Is the choice of baseline data described and justified?	Yes	Yes
30. Are transition probabilities calculated appropriately?	Not applicable	Yes
31. Has a half cycle correction been applied to both cost and outcome?	Not applicable	Unclear
32. If not, has this omission been justified?	Not applicable	No
33. If relative treatment effects have been derived from trial data, have they been synthesized using appropriate techniques?	Not applicable	Not applicable
34. Have the methods and assumptions used to extrapolate short-term results to final outcomes been documented and justified?	Yes	Unclear
35. Have alternative extrapolation assumptions been explored through sensitivity analysis?	Yes	Yes
36. Have assumptions regarding the continuing effect of treatment once treatment is complete been documented and justified?	Not applicable	Not applicable
37. Have alternative assumptions regarding the continuing effect of treatment been explored through sensitivity analysis?	Not applicable	Not applicable
38. Are the utilities incorporated into the model appropriate?	Not applicable	Yes
39. Is the source for the utility weights referenced?	Not applicable	Yes
40. Are the methods of derivation for the utility weights justified?	Not applicable	Yes
41. Have all data incorporated into the model been described and referenced in sufficient detail?	Yes	Yes
42. Has the use of mutually inconsistent data been justified (ie, are assumptions and choices appropriate)?	Yes	Yes
43. Is the process of data incorporation transparent?	Yes	Yes
44. If data have been incorporated as distributions, has the choice of distribution for each parameter been described and justified?	Not applicable	Yes
45. If data have been incorporated as distributions, is it clear that second order uncertainty is reflected?	Not applicable	Unclear
46. Have the 4 principal types of uncertainty been addressed?	No	No
47. If not, has the omission of particular forms of uncertainty been justified?	No	No
48. Have methodological uncertainties been addressed by running alternative versions of the model with different methodological assumptions?	No	No
49. Is there evidence that structural uncertainties have been addressed via sensitivity analysis?	No	No
50. Has heterogeneity been dealt with by running the model separately for different subgroups?	No	No
51. Are the methods of assessment of parameter uncertainty appropriate?	No	Yes
52. If data are incorporated as point estimates, are the ranges used for sensitivity analysis stated clearly and justified?	Yes	Not applicable
Consistency		
53. Is there evidence that the mathematical logic of the model has been tested thoroughly before use?	No	No
54. Are the conclusions valid given the data presented?	Yes	Yes
55. Are any counterintuitive results from the model explained and justified?	Not applicable	Not applicable
56. If the model has been calibrated against independent data, have any differences been explained and justified?	Not applicable	Not applicable
57. Have the results of the model been compared with those of previous models and any differences in results explained?	Not applicable	Yes