Supershell Effect and Stability of Classical Periodic Orbits in Reflection-Asymmetric Superdeformed Oscillator

Ken-ichiro ARITA

Department of Physics, Faculty of Science,
Kyoto University, Kyoto 606-01

Abstract

A semiclassical analysis is made of the origin of an undulating pattern in the smoothed level density for a reflection-asymmetric superdeformed oscillator potential. It is suggested that, when the octupole-type deformation increases, an interference effect between two families of periodic orbit with the ratio of periods approximately 2:1 becomes stronger and thus a pronounced “supershell” structure appears.

The quantum-energy spectrum in the axially-symmetric oscillator potential with frequency ratio $\omega_\perp/\omega_z=2$ (called “superdeformed” oscillator) is known to have “supershell” structure (i.e., modulation with periodicity $2\hbar\omega_{sh}$ in the oscillating level density, ω_{sh} being the basic frequency of the superdeformed oscillator). We have indicated in our previous paper\(^1\) that the supershell effect is significantly enhanced when octupole (Y_{30}) deformation is added to the 2:1 deformed harmonic-oscillator potential, and suggested that this enhancement might be responsible for the odd-even effect (with respect to the shell quantum number N_{sh}) in stability of superdeformed states against octupole deformed shape, discussed by Bengtsson et al.,\(^2\) Höller and Åberg,\(^3\) and Nazarewicz and Dobaczewski.\(^4\)
The single-particle Hamiltonian we used in our analysis is

\[h = \frac{p^2}{2M} + \sum_{i=x,y,z} \frac{M\omega^2_i x_i^2}{2} - \lambda_3 K M\omega^2_0 \left(r^2 Y_3 K(\Omega) \right)'' , \tag{1} \]

where \(\omega_x = \omega_y = 2\omega_z \equiv 2\omega_{sh} \) and \(\omega^3_0 = \omega_x\omega_y\omega_z \). The double primes denote that the variables in parenthesis are defined in terms of the doubly-stretched coordinates\(^5\) \(x''_i = (\omega_i/\omega_0) x_i \).

In the following, we limit to the case \(K = 0 \). When the variables are scale-transformed to dimensionless ones, the Hamiltonian (1) is rewritten as

\[h = \frac{p^2}{2} + \left(\frac{r^2}{2} - \lambda_30 r^2 Y_{30}(\theta) \right)'' , \tag{2} \]

where \(x'' = 2x, y'' = 2y \) and \(z'' = z \).

As is well known, the quantum level density \(g(E) = \sum_n \delta(E - E_n) \) is expressed in semiclassical theory as\(^6\)

\[g(E) \approx \bar{g}(E) + \sum_{\gamma} A_\gamma(E) \cos \left(\frac{S_\gamma(E)}{\hbar} - \text{(phases)}_{\gamma} \right) , \tag{3} \]

where \(\bar{g} \) is an average level density corresponding to the Thomas-Fermi approximation, and the second term in the r.h.s. represents the oscillatory contributions from periodic orbits, \(S_\gamma \) is the action integral \(\oint_{\gamma} p \cdot dq \), and the amplitude factor \(A_\gamma \) is mainly related to the stability of the orbit \(\gamma \). When one is interested in an undulating pattern in \(g(E) \) smoothed to a finite resolution \(\delta E \) (i.e., shell structure), it is sufficient to only consider short periodic orbits with the periods \(T_\gamma < 2\pi \hbar/\delta E \). The supershell structure is expected to arise from interference effects between orbits with different periods \(T_\gamma \). The short periodic orbits are calculated by Monodromy Method\(^7\) and shown in Fig. 1.

[Fig. 1]

For the Hamiltonian system under consideration whose phase space is constructed with both regular and chaotic regions, evaluation of \(A_\gamma \) in eq. (3) is not always easy because
the stationary-phase approximation breaks down near resonances which take places rather frequently in the regular regions. Fortunately, however, by virtue of the scaling property, $h(\alpha p, \alpha q) = \alpha^2 h(p, q)$, we can use the Fourier-transformation techniques and extract informations about classical periodic orbits from quantum energy spectrum. The scaling rules for variables in eq. (3) are

$$\bar{g}(E) = E^2 \bar{g}(1),$$
$$S_\gamma(E) = E T_\gamma,$$
$$A_\gamma(E) = E^{k\gamma} A_\gamma(1) \quad \begin{cases} k_\gamma = 0 & \text{for isolated orbits}, \\ k_\gamma = \frac{1}{2} & \text{otherwise}. \end{cases}$$

The last equality is obtained under the stationary-phase approximation. Using these relations, it is easy to see that the Fourier transform of eq. (3) multiplied by an appropriate weighting factor E^{-k} will exhibit peaks at the periods T_γ of classical periodic orbits and the heights of the peaks represent the strengths of their contributions. In Fig. 2, we show the power spectrum $P(s)$ for several values of λ_{30}, taking $k = \frac{1}{2}$ appropriate to non-isolated orbits;

$$P(s) = \left| \sum_n e^{i s E_n} \right|^2.$$

![Fig. 2](image)

We see nice correspondence between peak locations of $P(s)$ and periods of classical periodic orbits. The most important observation is that relative intensity between peaks at $s \approx \pi$ and $s \approx 2\pi$ changes as the octupole deformation parameter λ_{30} increases. This result indicates that the enhancement of the supershell effect (shown in Fig. 6 of Ref. 1) may be explained as due to the growth of the interference effect between classical periodic orbits with periods $T \approx \pi$ and those with $T \approx 2\pi$.

To understand the cause of the change in relative intensity mentioned above, let us investigate properties of the classical periodic orbits. Calculating periodic orbits by the
Monodromy Method,7) we obtain stability matrices M_γ for the periodic orbits γ. They are linearized Poincaré maps at the periodic orbits defined as

$$
\begin{pmatrix}
\delta p (T_\gamma) \\
\delta q (T_\gamma)
\end{pmatrix} = M_\gamma \begin{pmatrix}
\delta p (0) \\
\delta q (0)
\end{pmatrix} + \mathcal{O} (\delta^2),
$$

(6)

where $(\delta p, \delta q)$ represent deviations from the periodic orbits γ in phase space. These six-dimensional matrices M_γ are real and symplectic, so that eigenvalues of each M_γ appear in pairs $\pm (e^\alpha, e^{-\alpha})$, α being real or pure imaginary. As the Hamiltonian (2) is axially-symmetric, classical orbits are usually non-isolated. For such orbits, each stability matrix has 4 unit eigenvalues. Values of $\text{Tr} M$ written in Fig. 1 are sums of the remaining 2 eigenvalues which determine stabilities of the periodic orbits; $\alpha=iv$ is pure imaginary and $|\text{Tr} M| = |2 \cos v| \leq 2$ when the orbit is stable, while $\alpha=u$ is real and $|\text{Tr} M| = |\pm 2 \cosh u| > 2$ when the orbit is unstable. Under the stationary-phase approximation, the amplitude factors A_γ in eq. (3) are inversely proportional to $\sqrt{|\text{Tr} M_\gamma - 2|}$. Fig. 3 shows values of $\text{Tr} M$ for relevant orbits calculated as functions of the octupole-deformation parameter λ_{30}.

From this figure, we see that the orbits with $T \approx \pi$ are always stable and their values of $\text{Tr} M$ approach to 2 with increasing λ_{30}, while the orbit B (C,C') with $T \approx 2\pi$ become unstable (more unstable). Therefore, we can expect that the contributions from orbits with $T \approx \pi$ increase when λ_{30} becomes large, while those from orbits with $T \approx 2\pi$ decrease. This result suggests that the enhancement of the supershell effect stems from the difference of the stability against octupole deformation between these two families of periodic orbit.

A more detailed analysis of the supershell structure in reflection-asymmetric superdeformed oscillator potentials will be given in a forthcoming full-length paper.9) The author thanks Prof. Matsuyanagi for carefully reading the manuscript.
References

1) K. Arita and K. Matsuyanagi, Prog. Theor. Phys. 89 (1993), 389.

2) T. Bengtsson, M.E. Faber, G. Leander, P. Möller, M. Ploszajczak, I. Ragnarsson and S. Åberg, Physica Scripta 24 (1981), 200.

3) J. Höller and S. Åberg, Z. Phys. A336 (1990), 363.

4) W. Nazarewicz and J. Dobaczewski, Phys. Rev. Lett. 68 (1992), 154.

5) H. Sakamoto and T. Kishimoto, Nucl. Phys. A501 (1989), 205.

6) M.C. Gutzwiller, J. Math. Phys. 8 (1967), 1979; ibid. 12 (1971), 343.

7) M. Baranger, K.T.R. Davies and J.H. Mahoney, Ann. of Phys. 186 (1988), 95.

8) See, for instance, H. Friedrich and D. Wintgen, Phys. Rep. 183 (1989), 37.

9) K. Arita and K. Matsuyanagi, in preparation.
Fig. 1. Short periodic orbits for the Hamiltonian (2) with $\lambda_{30} = 0.4$. Upper part: Planar orbits in the plane containing the symmetric axis z. Lower part: A circular orbit in the plane perpendicular to the symmetry axis (A’) and a three-dimensional orbit (C’). Their projections on the (x, y) plane and on the (z, y) plane are shown.
Fig. 2. Power spectra $P(s)$ defined by eq. (5) for $\lambda_{30} = 0.2 \sim 0.4$. The summation is taken up to $n=200$. Arrows indicate periods of the classical periodic orbits (see Fig. 1) and their repetitions.
Fig. 3. Traces of the stability matrices M for the periodic orbits shown in Fig. 1 (see text for their definitions). For the isolated orbit A', the stability matrix M has 2 unit eigenvalues and the remaining 4 eigenvalues appear in two pairs $(e^{\alpha_a}, e^{-\alpha_a})$ and $(e^{\alpha_b}, e^{-\alpha_b})$. Thus, A'_a and A'_b denote the traces of these pairs, respectively.