A new species of the genus *Tylototriton* (Caudata, Salamandridae) from Guangdong, southern China, with discussion on the subgenera and species groups within the genus

Zhi-Tong Lyu¹,²,⁷, Jian Wang¹,²,⁷, Zhao-Chi Zeng¹,², Jia-Jun Zhou³, Shuo Qi¹, Han Wan¹,⁴,⁵, You-Yu Li⁶, Ying-Yong Wang¹

¹ State Key Laboratory of Biocontrol/ The Museum of Biology, School of Life Sciences/ School of Ecology, Sun Yat-sen University, Guangzhou 510275, PR China
² Shenzhen Shuanghuamu Biological Technology Co., Ltd, Shenzhen 518000, PR China
³ Zhejiang Forest Resource Monitoring Center / Zhejiang Forestry Survey Planning and Design Company Limited, Hangzhou 310020, PR China
⁴ State Key Laboratory of Genetic Resources and Evolution State, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, PR China
⁵ Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 65004, PR China
⁶ Guangdong Yunkaishan National Nature Reserve, Maoming 525300, PR China
⁷ These authors contributed equally to this work

Corresponding authors: Zhi-Tong Lyu (lvzht@foxmail.com); Ying-Yong Wang (wangyy@mail.sysu.edu.cn)

http://zoobank.org/36FE6B75-1F35-4E4C-A08C-8DAA077CAEBC

Academic editor: Raffael Ernst

Received 2 September 2021 | Accepted 25 October 2021 | Published 4 November 2021

Citation: Lyu Z-T, Wang J, Zeng Z-C, Zhou J-J, Qi S, Wan H, Li Y-Y, Wang Y-Y (2021) A new species of the genus *Tylototriton* (Caudata, Salamandridae) from Guangdong, southern China, with discussion on the subgenera and species groups within the genus. Vertebrate Zoology 71:697–710. https://doi.org/10.3897/vz.71.e73563

Abstract

In this work, a new species of the genus *Tylototriton* is described from Guangdong, southern China. *Tylototriton sini* sp. nov. was recorded as *T. asperrimus* for decades, and was indicated to represent an independent lineage based on recent molecular phylogenetic analyses. After detailed molecular analysis and morphological comparisons, *Tylototriton sini* sp. nov. is recognized as a distinct species which can be clearly distinguished from all known congeners by a combination of morphological characteristics and the significant divergence in the mitochondrial gene. Because the genus *Tylototriton* is of high conservation concern and all formally described members are protected by law, we also provide first data on the conservation status and recommendations for IUCN categorization for *Tylototriton sini* sp. nov. A suggestion on the species groups division of the genus *Tylototriton* is also provided based on their morphological differences and phylogenetic relationships.

Key words

Chresonymy, conservation, morphology, phylogeny, *Tylototriton sini* sp. nov., Yunkai Mountains

Copyright Zhi-Tong Lyu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

The newt genus *Tylototriton* Anderson, 1871 contains 32 known species distributed in the mountain areas of southern and eastern Himalaya, southern and central China, and northern Indochina Peninsula (Frost 2021). *T. asperrimus* Unterstein, 1930, the second described species within this genus, was originally nominated based on two specimens collected by Prof. Shu-Szi Sin (= Shu-Zhi Xin) from Loshiang (= Luxuixiang Town), Yao Shan (= Mt Dayao, Jixiu Yao Autonomous County), Kwangsi (= Guangxi Zhihuang Autonomous Region), China (Unterstein 1930; Fan 1931; Bauer et al. 1993). Subsequently, this species was widely recorded from multiple localities of China and Vietnam (Liu et al. 1973; Zhao and Adler 1993; Bain and Nguyen 2004; Fei et al. 1990, 2006, 2012; Nguyen et al. 2009; Fei and Ye 2016).

Liu et al. (1973) firstly noticed the morphological variations among different recorded populations of *T. asperrimus* in China, and suggested that detailed studies on this wide-spreading species are required. Afterward, based on the morphological differences, the populations in Hainan Island were proposed as an identical species *T. hainanensis* Fei, Ye & Yang, 1984, the populations in central China (Gansu, Sichuan, Guizhou, Hunan, and Anhui provinces) were assigned to *T. wenzianensis* Fei, Ye & Yang, 1984, and the populations in southern China (Guangxi Zhihuang Autonomous Region, and Guangdong and Guizhou provinces) and northern Vietnam were kept as *T. asperrimus* (Fei et al. 1984, 1990, 2006). In recent years, the approach of integrative taxonomy combining morphological and molecular data has revealed that the recognition of *T. asperrimus* should be a species complex with multiple paraplyetic lineages, and the populations from northern Vietnam have been described as different new species, *T. ziegleri* Nishikawa, Matsui & Nguyen, 2013, *T. pasmansi* Bernardes, Le, Nguyen, Pham, Pham, Nguyen & Ziegler, 2020, and *T. sparreboomi* Bernardes, Le, Nguyen, Pham, Pham, Nguyen & Ziegler, 2020, respectively (Nishikawa et al. 2013a; Wang et al. 2018; Bernardes et al. 2020). After these taxonomic revisions, *T. asperrimus* is currently known only from southern China (Frost 2021). Nonetheless, the population in Mt Yunkai, Xinyi, Guangdong has been suggested to represent an independent lineage based on phylogenetic analyses using multi-locus of mitochondrial and nuclear data but without morphological comparisons (Wang et al. 2018; Poyarkov et al. 2021). Besides, this population was surprisingly reported as *T. ziegleri* after a rough phylogenetic analysis without including any data of *T. hainanensis* and other recently-described congeners from Vietnam (Li et al. 2020).

In this work, we performed detailed morphological comparisons and molecular analyses on the “*T. asperrimus*” population from Mt Yunkai, Xinyi, Guangdong, China (Fig. 1, site 1), to clarify its exact taxonomic status. The results substantiate that the *Tylototriton* population from Guangdong should be a distinct species and can be distinguished reliably from all known congeners in morphology and phylogeny, especially from *T. asperrimus* from Guangxi, China (Fig. 1, sites 2–4) and *T. ziegleri* from northern Vietnam (Fig. 1, sites 5–6). Therefore, we describe this *Tylototriton* population from Guangdong as a new species below.

Materials and methods

Specimens and morphological analyses

Four specimens of the genus *Tylototriton* were collected from Mt Yunkai, Xinyi, Guangdong. All specimens were fixed in 10% buffered formalin, later transferred to 70% ethanol, and deposited in the Museum of Biology, Sun Yat-sen University (SYS) and Chengdu Institute of Biology, the Chinese Academy of Sciences (CIB), PR China. External measurements were made for the unnamed specimens with digital calipers (Neiko 01407A Stainless Steel 6-Inch Digital Caliper) to the nearest 0.1 mm. These measurements are as follows: total length (TOL) from tip of snout to tip of tail; snout–vent length (SVL) from tip of snout to posterior edge of vent; head length (HL) from jugular fold to snout tip; maximum head width (HW); eye diameter (ED) from the anterior corner to the posterior corner of the eye; snout length (SL) from tip of snout to the anterior corner of eye; minimum interorbital distance (IOD) between the eyes; minimum internasal distance (IND) between the external nares; trunk length (TRL) from gular fold of throat to anterior tip of vent; tail length (TAL) from posterior edge of vent to tip of tail; maximum tail height (TH); lower arm length (LLA) from elbow to wrist; hand length (HL) from elbow to the tip of finger III; the third finger length (F3L) from base to tip of finger III; thigh length (TLH) from groin to knee; tibia length (TIB) from knee to tarsii; the third toe length (T3L) from base to tip of toe III.

The morphological comparisons for recognized congeners were attained from their original descriptions and latest revisions based on toptotypic specimens (Anderson 1871; Unterstein 1930; Fang and Chang 1932; Liu 1950; Fei et al. 1984; Nussbaum et al. 1995; Böhme et al. 2005; Chen et al. 2010; Stuart et al. 2010; Hou et al. 2012; Nishikawa et al. 2013a, b, 2014; Yang et al. 2014; Le et al. 2015; Phimmachak et al. 2015; Fei and Ye 2016; Qian et al. 2017; Grismer et al. 2018, 2019; Zaw et al. 2019; Bernardes et al. 2020; Li et al. 2020; Pomchote et al. 2020; Poyarkov et al. 2021) and from the examination of museum specimens listed in Appendix.

Phylogenetic sampling and analyses

Totally 11 liver samples of the genus *Tylototriton* were used in this study, encompassing four samples of the undescribed *Tylototriton* specimens from Guangdong, four
samples of *T. asperrimus* from Guangxi, one sample of *T. broadoridgus* Shen, Jiang & Mo, 2012, one sample of *T. kweichowensis* Fang & Chang, 1932, and one sample of *T. maolanensis* Li, Wei, Cheng, Zhang & Wang, 2020. All samples were attained from previously anesthetized and subsequently euthanized specimens and then preserved in 95% ethanol and stored at −40 °C.

Genomic DNA was extracted, using a DNA extraction kit from Tiangen Biotech (Beijing) Co., Ltd. One mitochondrial gene, namely NADH dehydrogenase subunit 2 (ND2), were amplified using the primers ND2-4F (5′-TATGAGTACGAGCATCATACCC-3′) and ND2-4R (5′-CTTCTGCTTAAGACTTTGAAGGTC-3′). PCR amplifications were processed with the cycling conditions that initial denaturing step at 95°C for 4 min, 35 cycles of denaturing at 95°C for 40 s, annealing at 53°C for 34 s and extending at 72°C for 60 s, and a final extending step at 72°C for 10 min. PCR products were purified with spin columns and then sequenced with both forward and reverse primers using BigDye Terminator Cycle Sequencing Kit from Applied Biosystems, on an ABI Prism 3730 automated DNA sequencer by Shanghai Majorbio Bio-pharm Technology Co., Ltd. All sequences were deposited in GenBank (Table 1).

For phylogenetic analyses, 35 sequences from additional *Tylototriton* congeners and 2 sequences of the outgroup *Echinotriton* Nussbaum and Brodie, 1982, were obtained from GenBank and incorporated into our dataset. Detailed information is provided in Table 1. DNA sequences were aligned by the Clustal W algorithm with default parameters (Thompson et al. 1997). PartitionFinder2 was used to test the best partitioning scheme and jModelTest v2.1.2 was used to test the best fitting nucleotide substitution model. Sequenced data were analyzed using Bayesian inference (BI) in MrBayes 3.2.4 (Ronquist et al. 2012), and maximum likelihood (ML) in RaxmlGUI 1.3 (Silvestro and Michalak 2012). Two independent runs were conducted in a BI analysis, each of which was performed for 10,000,000 generations and sampled every 1000 generations with the first 25% samples discarded as burn-in, resulting in a potential scale reduction factor (PSRF) of <0.005. In ML analysis, the bootstrap consensus tree inferred from 1000 replicates was used to represent the evolutionary history of the taxa analyzed. Genetic distances among samples were calculated in MEGA 6 using the uncorrected *p*-distance model.
Table 1. Localities, voucher information, and GenBank accession numbers for all ingroup *Tylototriton* and outgroup *Echinotriton* samples used in this study.

ID	Species	Locality	Voucher	ND2
1	*Tylototriton* sp. nov.	China: Guangdong: Mt Yunkai	SYS a004679	OK539834
2	*Tylototriton* sp. nov.	China: Guangdong: Mt Yunkai	SYS a008353	OK539835
3	*Tylototriton* sp. nov.	China: Guangdong: Mt Yunkai	SYS a008354	OK539836
4	*Tylototriton* sp. nov.	China: Guangdong: Mt Yunkai	SYS a008355	OK539837
5	*Tylototriton* sp. nov.	China: Guangdong: Xinyi	CIB XZ20091201	KY800876
6	*Tylototriton* sp. nov.	China: Guangdong: Mt Yunkai	GIABR 20187231	MH664279
7	*Tylototriton* sp. nov.	China: Guangdong: Mt Yunkai	GIABR 20187232	MH664280
8	*T. asperrimus*	China: Guangxi: Guiping	SYS a006890	OK539838
9	*T. asperrimus*	China: Guangxi: Guiping	SYS a006891	OK539839
10	*T. asperrimus*	China: Guangxi: Guiping	SYS a008200	OK539840
11	*T. asperrimus*	China: Guangxi: Guiping	SYS a008201	OK539841
12	*T. asperrimus*	China: Guangxi: Longsheng	CIB 70063	KC147816
13	*T. asperrimus*	China: Guangxi: Guiping	CIB 200807055	KC147815
14	*T. asperrimus*	China: Guangxi: Guiping	CIB 20081048	KC147817
15	*T. ziegleri*	Vietnam: Cao Bang: Bao Lac	VNMN 3338	KY800888
16	*T. ziegleri*	Vietnam: Ha Giang: Quan Ba	VNMN 3390	AB769539
17	*T. hainanensis*	China: Hainan: Mt Diaoluo	CIB 201406287	KT765210
18	*T. hainanensis*	China: Hainan: Mt Jianfengling	MVZ 236632	DQ517850
19	*T. anguliceps*	Laos: Luang Namtha: Viengphoukhana	NCSM 82952	KT304300
20	*T. anhuiensis*	China: Anhu: Yuxi	AHU-16-EE-007	KY321413
21	*T. broadaridus*	China: Hunan: Mt Huping	SYS a008391	OK539842
22	*T. dabiencus*	China: Henan: Shangcheng	HNNU10042015	KC147811
23	*T. himalayanus*	Nepal: Mechi: Illam	CIB 201406287	KT765210
24	*T. kachinorum*	Myanmar: Kachin: Indawgyi	ZMMU A5953	MK097273
25	*T. kweichovensis*	China: Guizhou: Shuiucheng District	SYS a004967	OK539843
26	*T. liyangensis*	China: Hunan: Liuyang	CSUFT 20100108	KJ205598
27	*T. lizhengechangi*	China: Hunan: Yizhang	KUHE 42317	AB769533
28	*T. maolanensis*	China: Guizhou: Libo County	SYS a002212	OK539844
29	*T. ngarsuensis*	Myanmar: Shan: Taunggyi	LSUHC 13763	MH863684
30	*T. notialis*	Vietnam: Nghe An: Pu Hoat	VNMN TAO1235	AB769536
31	*T. panhai*	Thailand: Loei: Phu Hin Rong Kla NP	KUHE PH019	AB830735
32	*T. panwaensis*	Myanmar: Kachin: Myitkyina	CAS 245418	KT304279
33	*T. pasmani*	Vietnam: Phu Tho: Tan Son	IEBR 4467	MT210167
34	*T. phukhaensis*	Thailand: Nan: Doi Phu Kha NP	CUMZ A-7718	MN912574
35	*T. podichthys*	Laos: Luang Phabang: Phoukhoun	NCSM 77725	KT304295
36	*T. pseudoverrucosus*	China: Sichuan: Ningnan	CIB WCG2012003	KY800861
37	*T. pulcherrima*	China: Yunnan: Luuchun	CIB TY040	KY800890
38	*T. shanjing*	China: Yunnan: Jingdong	MVZ219763	DQ517852
39	*T. shanorum*	Myanmar: Shan: Taunggyi	CAS 230933	AB922822
40	*T. sparreboomi*	Sin Ho, Lai Chau, Vietnam	IEBR 4476	MT210162
41	*T. taliangensis*	China: Sichuan: Liangshan	CAS 195126	DQ517853
42	*T. uyenoi*	Thailand: Chiang Mai: Doi Suthep	KUHE 19147	ABB30733
43	*T. verrucosus*	China: Yunnan: Longchuan	CIB TSHS2	KY800848
44	*T. vietnamensis*	Vietnam: Bac Giang: Son Dong	IEBR 3243	HM770088
Results

The BI and ML analyses resulted in identical topologies (Fig. 2). Most nodes were well supported with the Bayesian posterior probabilities (BPP) > 0.95 and the bootstrap supports (BS) > 70. The p-distances based on the ND2 gene among all samples used in this study are presented in Supplementary Table S1. As shown in the tree, five clades of *Tylototriton* were revealed. Within the clade IV (BPP 1.00, BS 100), the samples from Mt Yunkai, Xinyi, Guangdong, China clustered into a monophyletic lineage with small divergence (p-distances 0.0–0.7%) and strong support (BPP 1.00, BS 100). This lineage is phylogenet-
Taxonomic account

Tylototriton sini sp. nov. Lyu, Wang, Zeng, Zhou, Qi, Wan & Wang

Tylototriton asperrimus — Fei et al. 1990 (Xinyi, Guangdong); Fei et al. 2006 (Xinyi, Guangdong); Li et al. 2011 (Mt Yunkai, Xinyi, Guangdong)

Echinotriton asperrimus asperrimus — Zhao and Adler 1993 (Guangdong)

Yuotriton asperrimus — Fei et al. 2012 (Xinyi, Guangdong); Fei and Ye 2016 (Xinyi, Guangdong)

Tylototriton asperrimus lineage 2 — Wang et al. 2018 (Xinyi, Guangdong)

Tylototriton ziegleri — Li et al. 2020 (Mt Yunkai, Xinyi, Guangdong)

Tylototriton sp. 3 — Poyarkov et al. 2021 (Xinyi, Guangdong)

Holotype. SYS a008354 (Figs. 3, 4A), adult male, collected by Jian Wang, Shuo Qi, and Hong-Hui Chen on 14 June 2020 from Mt Yunkai (22°16′32.90″N, 111°11′42.87″E; ca 1500 m a.s.l.), Xinyi, Guangdong, China.

Paratypes. Two adult males and one adult female (Figs. 4B, C, D, 5A, B). Male SYS a008353 and female SYS a008355, the same collection data as the holotype; male SYS a004679 /CIB 116083, collected by Jian Wang, Zhi-Tong Lyu, and Zhao-Chi Zeng on 16 April 2016 from the same locality as the holotype.

Etymology. The specific name _sini_ refers to the outstanding biologist Prof. Shu-Szi Sin (= Shu-Zhi Xin, 辛树帜, 1894–1977). During his position at Sun Yat-sen University (1927–1931), Prof. Shu-Szi Sin organized repeated biology surveys throughout Guangxi, Guangdong, Guizhou, Hunan, and Hainan in southern China, pochally promoting the developments of zoological and botanic studies in this region. He collected specimens of _T. asperrimus_ for the first time, as well as other amphibians and reptiles such as _Quasipaa shini_ (Ahl, 1930) and the famous _Shiniasurus crocodilarius_ Ahl, 1930. His family name “Sin” was mispronounced as “Shin” by the German researchers (Beolens et al. 2011), and we decided to use the correct spelling for this new species as _Tylototriton sini_ sp. nov. in honor of Prof. Sin and his contributions.

Common name. Sin’s Knobby Newt (in English) / xīn shì yòu yuán (辛氏疣螈 in Chinese).

Diagnosis. (1) Dorsolateral bony ridges on head low; (2) quadrate spines absent; (3) medium body size, TOL 118.4–124.5 mm in males, 144.5 mm in a single female; (3) snout obtusely rounded in dorsal view and rounded in lateral profile; (4) head longer than wide, HW/HL ratio 0.87–0.95; (5) supratemporal bony ridges and the sagittal ridge on head distinctly visible; (6) limbs slender, tips of forelimb and hindlimb overlapping when adpressed along the body; (7) vertebral ridge distinct, relatively smooth, not segmented; (8) rib nodules 12–13, relatively small, distinctly isolated from each other; (9) ground coloration dark brown; (10) digits orange with irregular dark brown mottling; (11) in breeding season, rib nodules mottled with orange coloration, much brighter in the first two rib nodules; (12) in breeding season, lateral tail dark brown, fin with dorsal orange margin, ventral tail ridge orange.

Description of the holotype. SYS a008354 (Figs. 3, 4A), adult male with a stout body, medium in size (SVL 62.0 mm, TAL 56.4 mm). Head longer than wide (HW/HL ratio 0.93); maximum head width slightly larger than the maximum trunk width; head nearly rounded hexagonal in shape in dorsal view, depressed, gently sloping in profile. Snout obtusely rounded in dorsal view, rounded in profile view, projecting beyond lower jaw. Nostril on anterior margin of snout, located notably closer to snout tip than to eye, with anterolateral orientation, not visible from dorsal view. Tongue oval, not notched distally; vomerine tooth series in an inverted ‘V’ shape, converging anteriorly but not reaching choanae. Parotoids distinct, large, crescent-shaped, slightly projecting posteriorly. Dorsolateral supratemporal bony ridges on head wide, distinctly protruding, beginning at the anterior corner of orbit continuing to anterior end of parotoid, posterior ends slightly curved inside; sagittal bony ridge on head strong.

Vertebral middorsal ridge distinct, wide, not segmented, running from occiput region to sacrum and the base of tail. Rib nodules distinct, relatively small, distinctly isolated from each other but arranged in two longitudinal series on dorsolateral surfaces of dorsum from shoulder to base of tail, counting 13 nodules on each side of body.

Limbs slender, forelimb and hindlimb overlapping when adpressed towards each other along body; fingers and toes well developed, lacking webbing or fringes; relative finger lengths I < IV < III = II, relative toe lengths I = V < II < III = IV. Tail long, TAL/SVL ratio 0.91; lateroventral fin with dorsal orange margin, ventral tail ridge orange.

Skin of dorsum, flanks, and lateral sides of tail very rough with small granules and larger warts. Skin of head ridges and middorsal vertebral ridge relatively smooth. Skin of limbs with numerous tiny tubercles. Ventral surfaces relatively smoother, corrugated, with smaller granules arranged in transverse striations; throat with numerous tiny flat tubercles; weak gular fold present. Cloacal region slightly swollen, vent as a longitudinal slit, vent edges with numerous small transverse folds.
Coloration of holotype. In life (Fig. 3), ground color of head, dorsum, lateral tail, limbs, and venter uniform dark brown. Rib nodules mottled with orange coloration, the coloration of the first two rib nodules much brighter. Dorsal skin of hands and feet excluding the digits dark brown. Digits orange, with irregular dark brown mottling. Tail fin with dorsal orange margin, ventral tail ridge orange.

In preservative (Fig. 4A), ground color of head, dorsum, tail, limbs, and venter uniform dark. Orange coloration on all rib nodules fade. Orange coloration on the digits change into light brown. Ventral tail ridge pale yellow. Vent region pale yellow.

Variations. Measurements of the type series are given in Table 2. The single female paratype SYS a008355 (Figs. 4D) possesses a larger and more robust body, however, its tail is relatively shorter, TAL/SVL ratio 0.82 vs 0.87–0.91 in males. Both the male holotype SYS a008354 (Figs. 3, 4A) and the male paratype SYS a004679 (Figs. 4B, 5A) bear 13 rib nodules on each side of body, while only 12 rib nodules in the male paratype SYS a008353 (Figs. 4C, 5B) and the female paratype SYS a008355 (Figs. 4D). In life, all rib nodules mottled with orange coloration, and much brighter in the first two rib nodules in several individuals (Figs. 3, 5A, 5C).

Comparisons. Tylototriton sini sp. nov. was recorded as T. asperrimus for a long time, but can be distinguished by the head longer than wide (vs head wider than long in T. asperrimus), the snout obtusely rounded in dorsal view (vs truncate), the distal tip of limbs greatly overlapping when the fore and hind limbs pressed along the trunk (vs slightly overlapping or just meeting), rib nodules small and distinctly isolated from each other (vs rib nodules large, knob-like, and nearly in contact with each other), rib nodules with orange coloration (vs rib nodules completely black or brown), and tail fin with dorsal orange margin (vs completely brownish black).

Tylototriton sini sp. nov. further differs from other congeners within the clade IV (Fig. 2) by the head longer than wide (vs head wider than long in T. hainanensis, T. thaiorum Poyarkov, Nguyen & Arkhipov, 2021, and T. ziegleri), snout obtusely rounded in dorsal view (vs truncate in T. pasmansii, T. sparreboomi, T. notialis...
Zhi-Tong Lyu et al.: A new species of the genus Tylototriton

Table 2. Measurements (in mm) of Tylototriton sini sp. nov., * for the holotype.

	SYS a008354	SYS a004679 / CIB 116083	SYS a008353	SYS a008355
Sex	M	M	M	F
TOL	118.4	124.5	118.6	144.5
SVL	62.0	66.5	63.2	79.3
HL	18.1	18.5	19.1	20.1
HW	16.8	16.8	16.7	19.0
ED	4.0	4.1	4.1	4.6
SL	5.8	5.7	5.9	6.5
IOD	7.3	7.6	7.1	6.7
IND	5.1	5.5	5.4	6.4
TRL	42.5	46.4	44.3	57.0
TAL	56.4	58.0	55.4	65.2
TH	8.1	8	7.1	7
LLA	7.3	7.3	6.9	8.9
HL	6.8	7.7	7.1	8.6
F3L	4.4	4.5	4.5	5.3
TLH	4.7	5.8	5.8	6.7
TIB	4.9	5.6	5.8	7.1
T3L	4.6	5.1	5.1	6.3

Stuart, Phimmachak, Sivongxay & Robichaud, 2010, and T. ziegleri), snout rounded in profile view (vs slightly angular in T. pasmansi and T. notialis), sagittal bony ridge on head strong (vs obscure in T. hainanensis), vertebral ridge not segmented (vs segmented, forming a row of tubercles in T. ziegleri), absence of orange markings on the parotoid (vs present in T. pasmansi and T. notialis), and the presence of orange coloration on all rib nodules (vs absent in T. hainanensis, T. pasmansi, T. sparreboomi, T. thailandicus, and T. ziegleri).

For the species within clades III and IV (Fig. 2), Tylototriton sini sp. nov. can be distinguished from T. panhai Nishikawa, Khonsue, Pomchote & Matsui, 2013 by the absence of orange markings on the parotoid (vs present); from T. vietnamensis Böhme, Schöttler, Nguyen & Köhler, 2005 by the presence of gular fold (vs absent); from T. maolainensis by the smaller body size with TOL 118.4–124.5 mm in adult males (vs larger body size with TOL 151.0–172.0 mm in adult males); and from T. hainanensis by the presence of orange coloration on all rib nodules (vs absent in T. hainanensis, T. pasmansi, T. sparreboomi, T. thailandicus, and T. ziegleri).

Distribution. Tylototriton sini sp. nov. is currently known only from its type locality Mt Yunkai and the neighboring Mt Ehuangzhang (this study; Hernandez 2018), both situated in the Yunkai Mountains of western Guangdong.

Natural history. This newt is terrestrial and inhabits leaf litters in well-preserved montane evergreen broadleaf forest. During its breeding season from April to July, adult individuals can be observed in small ponds with muddy bottoms, small marshes, and vernal pools. Larvae can be found from June to August. On 15 August 2017, different stages of larvae were observed in the same vernal pool near the road (ca 2 m long and ca 3 m wide of the pool with water depth ca 4 cm), without adults observed (Fig. 6).

Conservation recommendation. The extent of occurrence of Tylototriton sini sp. nov. is estimated to be less than 100 km², and the area of occupancy is estimated to be less than 10 km². Habitat degradation due to tourism development and illegal capture are the major threats. We recommend Tylototriton sini sp. nov. to be listed...
This species must be added in the Appendix II of CITES, as the *Tylototriton* spp. are collectively included (CITES 2021). National Forestry and Grassland Administration of China (2021) has declared that the species *T. asperrimus* (as *Y. asperrimus*) is one of the Class II protected species of China, which was before the description of *Tylototriton sini* sp. nov. in this work. Therefore, the “*T. asperrimus* (as *Y. asperrimus*)” being listed as protected species of China should include the Guangdong population (now *Tylototriton sini* sp. nov.). Thus, we suggest *Tylototriton sini* sp. nov. should be also regarded as protected species of China with at least Class II.
The phylogeny of genus *Tylototriton* has been well studied on the basis of multi-locus of mitochondrial and nuclear data (Wang et al. 2018). Subsequently, Poyarkov et al. (2021) employed two mitochondrial segments and got a unanimous result. In this study, our phylogenetic result from the sole mitochondrial ND2 segment is consistent with the topology revealed in the above studies, suggesting that the ND2 gene is adequate for settling the phylogeny in the genus *Tylototriton*.

After the taxonomic revisions in this work and previous studies (Nishikawa et al. 2013a; Wang et al. 2018; Bernardes et al. 2020), the species *T. asperrimus* can be confirmed to be present in Jiuxiu and Longsheng counties in northeastern Guangxi based on molecular data, while the taxonomic status for the populations from other localities such as northern and southwestern Guangxi (Mo et al. 2014) remain unknown and further studies are required. As the *Tylototriton* population from Guangdong is substantiated to be a new species *Tylototriton sini* sp. nov., the records of *T. asperrimus* and *T. ziegleri* should be removed from the herpetofauna of Guangdong. Given our recent findings, another record of *T. ziegleri* from China (Malipo County, Yunnan), recently published by Ye et al. (2017), should be re-examined whether it in fact represents the species that originally was described from northern Vietnam.
The taxonomy for interspecific relationships in the genus *Tylototriton* is controversial for decades (Zhao and Adler 1993; Dubois and Raffaëlli 2009; Fei et al. 2012; Nishikawa et al. 2013a; Fei and Ye 2016; Dubois et al. 2021; Poyarkov et al. 2021), and several nomenclatures were proposed to accommodate different species, such as *Yaotriton* Dubois & Raffaëlli, 2009, *Qiantriton* Fei, Ye & Jiang, 2012, and *Liangshantriton* Fei, Ye & Jiang, 2012. In the nearest study, the genus *Tylototriton* was partitioned into two subgenera *Tylototriton* and *Yaotriton*, and further into five species groups, based on the phylogenetic topology (Poyarkov et al. 2021). Despite the phylogenetic separation of *Tylototriton* and *Yaotriton*, the morphological characters for these two subgenera/genera remain unclear (Nishikawa et al. 2013a). The five species groups are corresponding to the five robust clades in phylogeny (Wang et al. 2018; Poyarkov et al. 2021; this work), while the morphological definitions for these five groups were not yet provided. Indeed, the morphological differences are unclear among some of these groups, for instance, *T. maolanensis* is morphologically similar to *T. asperrimus* but phylogenetically close to *T. wenxianensis*, and *T. pasmansi*, *T. thaiorum*, and *T. ziegleri* used to be morphologically identified as *T. vietnamensis* but phylogenetically close to *T. asperrimus*. Furthermore, as a genus including 33 recognized species, we consider it is too overstaffed to partition *Tylototriton* into both subgenera and species groups.

Thus, after a comprehensive review on these species, we suggest to divide the genus *Tylototriton* into three species groups, which is most reasonable with their morphological differences and phylogenetic relationships. Below we provide a key for the three species groups with their morphological definitions. We further provide a key for the *T. asperrimus* group recognized in this work, which includes the former *T. asperrimus*, *T. wenxianensis*, and *T. vietnamensis* groups in Poyarkov et al. (2021).

Key to species groups within genus *Tylototriton*

1a Body relatively robust, TAL smaller, equal, or slightly larger than SVL, TAL/SVL < 120% in adult males 2
1b Body slender, TAL distinctly larger than SVL, TAL/SVL > 125% in adult males .. *T. taliangensis* group (2 species)

2a Tail with different colorations, the lateral tail with the same color as the ground coloration of body, the dorsal tail fin or/and ventral tail ridge with orange margin .. *T. asperrimus* group (17 species)
2b Tail with uniform coloration, orange or light brown, much brighter and lighter than the ground coloration of body and head .. *T. verrucosus* groups (14 species)

Figure 6. Different stages of larvae were observed in the same vernal pool without adults observed on 15 August 2017 from the type locality of *Tylototriton sini* sp. nov. in Mt Yunkai.
Key to species within *Tylototriton asperrimus* group

1a Vertebral ridge segmented, tuberculate... *T. asperrimus*
1b Vertebral ridge not segmented..
2a Rib nodules flatten, indistinct, not separated, and almost in continuous longitudinal rows forming a dorsolateral fold... 2
2b Rib nodules swollen, distinct, clearly separated or slightly contacted at the base... 3
3a Orange markings on the parotoid present in males ... *T. lizhengchangi*
3b Orange markings on the parotoid absent in males... 4
4a Head as wide as long... *T. wenxianensis*
4b Head longer than wide ..
5a Peripheral area of cloaca brownish black ..
5b Peripheral area of cloaca orange .. *T. liuyangensis*
6a Vertebral ridge rather wide, its width approximately equal to the eye diameter ... *T. broadoridigus*
6b Vertebral ridge narrow, its width smaller than the eye diameter.. 7
7a The orange coloration at the ventral edge of tail contacted with the orange coloration around the cloaca.................
7b The orange coloration at the ventral edge of tail isolated from the orange coloration around the cloaca................
8a Orange markings on the parotoid present.. *T. dabienicus*
8b Orange markings on the parotoid absent... *T. panhai*
9a Anterior half of head and vertebral ridge yellow to reddish brown ... *T. notialis*
9b Anterior half of head and vertebral ridge dark brown, with the same color as the ground coloration of body...........
10a Head wider than long ...
10b Head longer than wide ..
11a Sagittal bony ridge on head strong .. *T. asperrimus*
11b Sagittal bony ridge on head obscure.. *T. hainanensis*
12a Orange coloration of the rib nodules present... *T. asiaticus*
12b Orange coloration of the rib nodules absent... 13
13a Smaller body size with TOL 118.4–124.5 mm in adult males ... *T. sinii sp. nov.*
13b Larger body size with TOL 151.0–172.0 mm in adult males... *T. vietnamensis*
14a Gular fold absent..
14b Gular fold present... *T. thaiboum*
15a Snout obtusely rounded in dorsal view; rib nodules light brown ..
15b Snout truncate in dorsal view; rib nodules uniformly black .. *T. pasreboomi*
16a Tips of fingers reaching nostril, rib nodules slightly enlarged round-like .. *T. pasreboomi*
16b Tips of fingers reaching eye, rib nodules slightly smaller, pointy to rounded .. *T. pasreboomi*
Chen XH, Wang XW, Tao J (2010) A new subspecies of genus *Tylototriton* from China (Caudata, Salamandridae). Acta Zootaxonomica Sinica 35: 666–670.

CITES (2021) Convention on international trade in endangered species of wild fauna and flora Appendices I, II and III valid from 22 June 2021. https://cites.org/eng/app/appendices.php

Dubois A, Raffaelli J (2009) A new ergotaxonomy of the family Salamandridae Goldfuss, 1820 (Amphibia, Urodela). Alytes 26: 1–85.

Dubois A, Ohler A, Pyron RA (2021) New concepts and methods for phylogenetic taxonomy and nomenclature in zoology, exemplified by a new ranked cladonomy of recent amphibians (Lissamphibia). Megataxa 5: 1–738. https://doi.org/10.11646/megataxa.5.1.1

Fan TH (1931) Preliminary report of reptiles from Yaoshan, Kwangsi, China. Bulletin of the Biological Department, College of Science, Sun Yat-sen University 11: 1–154.

Fang PW, Chang MLY (1932) Notes on *Tylototriton kweichowensis* sp nov. and *Tylotolitoris* Unterstein. Sinensia 2: 111–122.

Fei L, Hu SQ, Ye CY, Huang YZ (2006) Fauna Sinica. Amphibia. Volume 1. General Accounts of Gymnophiona and Urodela. Science Press, Beijing.

Fei L, Ye CY (2016) Amphibians of China (Vol. 1). Science Press, Beijing.

Fei L, Ye CY, Huang YZ (1990) Key to Chinese Amphibians. Publishing House for Scientific and Technical Literature, Chongqing.

Fei L, Ye CY, Jiang JP (2012) Colored Atlas of Chinese Amphibians and Their Distributions. Sichuan Publishing House of Science & Technology, Chengdu.

Fei L, Ye CY, Yang RS (1984) A new species and subspecies of the genus *Tylototriton* (Caudata: Salamandridae). Acta Zoologica Sinica 30: 85–91.

Frost DR (2021) Amphibian Species of the World 6.1, an Online Reference. American Museum of Natural History, New York. https://amphibiansoftheworld.amnh.org [accessed 20 August 2021]

Grisser LL, Wood PL Jr, Quash ESH, Thura MK, Espinoza RE, Grisser MS, Murdoch ML, Lin A (2018) A new species of Crocodile Newt *Tylototriton* (Caudata: Salamandridae) from Shan State, Myanmar (Burma). Zootaxa 4500: 442–573.

Grisser LL, Wood PL Jr, Quash ESH, Thura MK, Espinoza RE, Murdoch ML (2019) A new species of crocodile newt *Tylototriton* (Caudata: Salamandridae) from northern Myanmar (Burma). Journal of Natural History 53: 475–495. https://doi.org/10.1080/00222933.2019.1587534

Hernandez A (2018) Ecological affinities of *Tylototriton asperrimus* Unterstein, 1930 (Amphibia, Caudata: Salamandridae) at Bainiu, Dayaoshan, Guangxi Province, China with an emphasis on its cryptic diversity. Bulletin de la Société Herpétologique de France 166: 79–82.

Hou M, Li PP, Lü SQ (2012) Morphological research development of genus *Tylototriton* and primary confirmation of the status of four cryptic populations. Journal of Huangshan University 14: 61–65.

Le DT, Nguyen TT, Nishikawa K, Nguyen SHL, Pham AV, Matsui M, Bernardes M, Nguyen TQ (2015) A new species of *Tylototriton* Anderson, 1871 (Amphibia: Salamandridae) from northern Indochina. Current Herpetology 34: 38–50.

Li H, Yang B, Chi H, Lai R, Liu C, Xu Z, Zhu X, Gong S, Chen J (2020) Distribution and Supplementary Description of *Tylototriton ziegleri* in China. Chinese Journal of Wildlife 41: 791–795. https://doi.org/10.19711/j.cnki.sxxis2310-1490.2020.03.032

Li S, Wei G, Cheng Y, Zhang B, Wang B (2020) Description of a new species of the Asian newt genus *Tylototriton* sensu lato (Amphibia: Urodela: Salamandridae) from southwest China. Asian Herpetological Research 11: 282–296. https://doi.org/10.16373/j.cnki.ahr.200026

Li ZC, Xiao Z, Liu SR (2011) Amphibians and reptiles of Guangdong. Guangdong Science and Technology Press, Guangzhou.

Liu CC (1950) Amphibians of western China. Fieldiana. Zoology Mem- ories 2: 1–397.

Liu CC, Hu SQ, Fei L, Huang CC (1973) On collections of amphibians from Hainan Island. Acta Zoologica Sinica 19: 385–404.

Mo VM, Wei ZY, Chen WC (2014) Colored atlas of Guangxi amphibians. Guangxi Science & Technology Publishing House, Nanning.

National Forestry and Grassland Administration of China (2021) Official release of the updated List of Wild Animals under Special State Protection in China. https://www.forestry.gov.cn/main/586/20210208/095403793167571.html

Nguyen TQ, Nguyen HS, Ho LT, Le QK, Nguyen TT (2009) Phyloge- netic relationships and taxonomic review of the family Salamandridae (Amphibia: Caudata) from Vietnam (in Vietnamese). Vietnam Journal of Biotechnology 7: 325–333.

Nishikawa K, Khonsue W, Pomchote P, Matsui M (2013a) Two new species of *Tylototriton* from Thailand (Amphibia: Urodela: Salamandridae). Zootaxa 3737(3): 261–279. https://doi.org/10.11646/ zootaxa.3737.3.5

Nishikawa K, Matsui M, Nguyen TT (2013b) A New Species of *Tylototriton* from northern Vietnam (Amphibia: Urodela: Salamandridae). Current Herpetology 32: 34–49.

Nishikawa K, Matsui M, Rao DQ (2014) A new species of *Tylototriton* (Amphibia: Urodela: Salamandridae) from central Myanmar. Natural History Bulletin of the Siam Society 60: 9–22.

Nussbaum RA, Brodie ED Jr, Yang DT (1995) A taxonomic review of *Tylototriton verrucosus* Anderson (Amphibia: Caudata: Salamandridae). Herpetologica 51: 257–268.

Phimmachak S, Aowphol A, Stuart BL (2015) Morphological and molecular variation in *Tylototriton* (Amphibia: Salamandridae) in Laos, with description of a new species. Zootaxa 4006: 285–310.

Pomchote P, Khonsue W, Thammachoti P, Hernandez A, Peerachidacho P, Suwannapoom C, Onishi Y, Nishikawa K (2020) A new species of *Tylototriton* (Urodela: Salamandridae) from Nan Province, northern Thailand. Tropical Natural History 20: 144–161.

Poyarkov NA Jr, Nguyen TV, Arkhipov DV (2021) A new species of the genus *Tylototriton* (Amphibia: Caudata, Salamandridae) from central Vietnam. Tropobanica 10: 4–22.

Qian L, Sun X, Li J, Guo W, Pan T, Kang X, Wang H, Jiang J, Wu J, Zhang BW (2017) A new species of the genus *Tylototriton* (Amphibia: Urodela: Salamandridae) from the southern Daihe Mountains in Anhui Province. Asian Herpetological Research 8: 151–164.

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Silvestro D, Michalak I (2012) RaxMLGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution 12: 335–337. https://doi.org/10.1007/s13127-011-0056-0

Stuart BL, Phimmachak S, Sivongxay N, Robichaud WG (2010) A new species in the *Tylototriton asperrimus* group (Caudata: Salamandridae) from central Laos. Zootaxa 2650: 19–32.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.
Zhi-Tong Lyu et al.: A new species of the genus *Tylototriton*

Appendix 1

Examined specimens

Tylototriton asperrimus (*N*=4): **China**: **Guangxi**: Guiping: SYS a006890–6891, 8200–8201.

Tylototriton kweichowensis (*N*=6): **China**: **Guizhou**: Shuicheng: SYS a004967; Qixingguan: SYS a007119–7120, 7287, 7307–7308.

Tylototriton maolansis (*N*=5): **China**: **Guizhou**: Libo: SYS a000950–0953, 2212.

Tylototriton pulcherrima (*N*=3): **China**: **Guizhou**: Libo: SYS a003438–3440.

Tylototriton shanjing (*N*=3): **China**: **Yunnan**: Zhenyuan: SYS a001924–1925, 3371.

Tylototriton verrucosus (*N*=3): **China**: **Yunnan**: Tengchong: SYS a003768–3769; Longyang: SYS a006607.

Supplementary material 1

Table S1

Authors: Lyu Z-T, Wang J, Zeng Z-C, Zhou J-J, Qi S, Wan H, Li Y-Y, Wang Y-Y (2021)

Data type: .xlsx

Explanation note: Pairwise distances among all *Tylototriton* samples used in this study.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/vz.71.e73563.suppl1