O1. Oral Session: Biomarkers

O1.1 ALTERED COMPLEMENT PATHWAY PROTEIN EXPRESSION IS ASSOCIATED WITH PSYCHOTIC EXPERIENCES AT AGE 11 WHICH PERSIST AT AGE 18

David Cotter1, Jane English2, Melanie Foecking1, Mary Cannon1, Bart Rutten1, Stanley Zammit1, Glyn Lewis1, Sophie Sabhwerwal1, Lorna Lopez1, Aoife O’Gorman1, Gerard Cagney2
1Royal College of Surgeons in Ireland; 2Royal College of Surgeons in Ireland, Beaumont Hospital; 3Maastricht University Medical Centre; 4Cardiff University; 5University College London; 6Proteome Research Centre, University College Dublin

Background: The identification of early biomarkers of psychotic disorder is important because early treatment is associated with improved outcome. We have previously shown that altered complement and coagulation pathway associated proteins are associated pathway with psychotic disorder at age 18. In the current study we test the hypothesis that altered complement pathway proteins are associated with persisting psychotic experiences from age 11 to age 18.

Methods: The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospective general population cohort, and a rich resource of demographic, environmental, and clinical data on the individuals involved. We studied a subsample of the cohort who participated in psychiatric assessment interviews at age 11 and 18, and who provided plasma samples at age 11. Semi-targeted proteomic profiling was used to specifically assess the complement pathway proteins in age 11 children who experienced psychotic experiences (but not disorder) at age 11 and age 18 (n=39) compared to age 11 children who only experienced psychotic experiences at age 11.

Results: 11 of 34 proteins assessed were significantly differentially expressed at p<0.05 and of these 8 remained significant following correction for multiple comparisons. Protein changes were in keeping with increased proteins expression of most complement pathway proteins. Several protein changes represented specific replications of the changes observed in age 11 samples prior to psychotic disorder at age 18, namely increased plasminogen, complement factor H, and complement factor 1r.

Discussion: Our findings implicate the blood complement system in the persistence of psychotic experiences from age 11 to age 18. Considering that psychotic experiences are predictive of many psychiatric disorders our findings implicate the complement system not just in psychotic disorders, but more broadly in the vulnerability to a range of adult psychiatric disorders.

O1.2 PERIPHERAL INFLAMMATORY MARKERS ARE PREDICTIVE OF CLINICAL CHARACTERISTICS AND OUTCOME IN PSYCHOSIS

Graham Blackman*1, Thomas Pollak1, Megan Pritchard1, John Hanrahan2, Anthony Dalrymple2, Amalia Velarde3, Vivienne Curtis1, Robert Stewart1, Anthony David1
1Institute of Psychiatry, Psychology and Neuroscience, King’s College London; 2King’s College London; 3Ramón y Cajal University Hospital

Background: Dysregulation of the immune system represents an important vulnerability factor for schizophrenia. A rise in peripheral inflammatory markers has previously been demonstrated in psychosis; however, its significance remains uncertain. Characterising this relationship aids our understanding of the role of immunological factors in psychosis, as well as potentially identifying candidate biomarkers to guide diagnosis, treatment and prognosis. Whilst specialized inflammatory marker assays have been found to be associated with outcome and treatment, these tests are not typically available in clinical practice. We sought to establish whether routine inflammatory markers are associated with clinical characteristics and outcomes in patients with schizophrenia and related disorders.

Methods: A multi-site cohort study of patients admitted to an acute psychiatric ward between January 2013 and December 2016 within a large Mental Health Trust was undertaken. Cases were identified from an electronic database containing full clinical records. Inclusion criteria were patients aged 18 and 65 years with a discharge diagnosis of schizophrenia, or related disorder and a routine blood test within 3 days of admission. Exclusion criteria were diagnoses of drug-induced psychosis, organic brain disorder, or admission during the perinatal period. Pro-inflammatory (white blood cell total and differential count, C-reactive protein) and anti-inflammatory markers (albumin) recorded during the admission were extracted. Clinical characteristics were based upon the Health of the Nation Outcome Scale, a 12-item clinician rated tool contemporaneously rated at admission and discharge.

Results: A total of 968 patients met the inclusion criteria. 309 patients were female and mean age was 38 years. The most frequent ethnicities were White, Black African, Black Other and Black Caribbean and the commonest diagnoses were schizophrenia, unspecified non-organic psychosis and schizoaffective disorder. Mean interval from admission to admission blood test was 0.8 days.

Patients with affective psychosis had a significantly higher white cell count, monocyte count and lymphocyte count than patients with non-affective psychosis on admission. Furthermore, among patients with affective psychosis, a partial correlation controlling for age, body mass index, blood pressure, physical health and smoking status found a significant association between symptom severity and monocyte count. There was a highly significant association between both neutrophil count and white cell count with hallucinatory symptoms. There was also a highly significant positive association between C-reactive protein and self-injurious behaviour, replicating recently published findings in smaller samples. There was a significant reduction in overall psychiatric symptoms over the course of admission, which was significantly associated with admission monocyte count. A partial correlation found white cell count and neutrophil count at admission were associated with reductions in hallucinatory symptoms. Eosinophil count was significantly associated with admission length.

Discussion: In a large cohort of patients admitted due to psychotic disorder, pro-inflammatory markers were associated with affective psychosis and overall symptom severity, and predicted admission length and reduction in symptom severity. The study supports an association between immune dysregulation and psychosis. Furthermore, the study highlights the role of routinely and inexpensively measured peripheral inflammatory markers as potential diagnostic and prognostic biomarkers in psychosis.

O1.3. A COMPUTATIONAL TRIAL-BY-TRIAL EEG ANALYSIS OF HIERARCHICAL PRECISION-WEIGHTED PREDICTION ERRORS

Sara Tomiello*1, Dario Schöbi2, Lilian Weber2, Helene Haker2, Iglesias Sandra2, Klasa Enno Stephan2
1ETH Zurich; 2University of Zurich & ETH Zurich

Background: Action optimisation relies on learning about past decisions and on accumulated knowledge about the stability of the environment. In Bayesian models of learning, belief updating is informed by multiple, hierarchically related, precision-weighted prediction errors (pwPEs). Recent work suggests that hierarchically different pwPEs may be encoded by specific neurotransmitters such as dopamine (DA) and acetylcholine (ACh). Abnormal dopaminergic and cholinergic modulation of N-methyl-D-aspartate (NMDA) receptors plays a central role in the disconnection

Abstracts for the Sixth Biennial SIRS Conference
hypothesis, which considers impaired synaptic plasticity a central mechanism in the pathophysiology of schizophrenia.

Methods: To probe the dichotomy between DA and ACh and to investigate timing parameters of pwPEs, we tested 74 healthy male volunteers performing a probabilistic reward associative learning task in which the contingency between cues and rewards changed over 160 trials between 0.8 and 0.2. Furthermore, the current study employed pharmacological interventions (amisulpride / biperiden / placebo) and genetic analyses (COMT and ChAT) to probe DA and ACh modulation of these computational quantities. The study was double-blind and between-subject.

We inferred, from subject-specific behavioural data, a low-level choice PE about the reward outcome, a high-level PE about the probability of the outcome as well as the respective precision-weights (uncertainties) and used them, in a trial-by-trial analysis, to explain electroencephalogram (EEG) signals (64 channels). Behavioural data was modelled implementing three versions of the Hierarchical Gaussian Filter (HGF), a Rescorla-Wagner model, and a Sutton model with a dynamic learning rate. The computational trajectories of the winning model were used as regressors in single-subject trial-by-trial GLM analyses at the sensor level. The resulting parameter estimates were entered into 2nd-level ANOVAs. The reported results were family-wise error corrected at the peak-level (p<0.05) across the whole brain and time window (outcome phase: 0 - 500 ms).

Results: A three-level HGF best explained the data and was used to compute the computational regressors for EEG analyses. We found a significant interaction between pharmacology and COMT for the high-level precision-weight (uncertainty). Specifically:

- At 276 ms after outcome presentation the difference between Met/Met and Val/Met was more positive for amisulpride than for biperiden over occipital electrodes.
- At 274ms and 278 ms after outcome presentation the difference between Met/Met and Val/Met was more negative over fronto-temporal electrodes for amisulpride than for placebo, and for amisulpride than for biperiden, respectively.

No significant results were detected for the other computational quantities or for the ChAT gene.

Discussion: The differential effects of pharmacology on the processing of high-level precision-weight (uncertainty) were modulated by the DA-related gene COMT.

Previous results linked high-level PEs to the cholinergic basal forebrain. One possible explanation for the current results is that high-level computational quantities are represented in cholinergic regions, which in turn are influenced by dopaminergic projections. In order to disentangle dopaminergic and cholinergic effects on synaptic plasticity further analyses will concentrate on biophysical models (e.g. DCM). This may prove useful in detecting pathophysiological subgroups and might therefore be of high relevance in a clinical setting.

O1.4. CEREBROSPINAL FLUID FINDINGS IN TWINS WITH PSYCHOTIC SYMPTOMS – NOVEL FINDINGS AND FUTURE PROSPECTS

Viktoria Johansson*, 1
1Karolinska Institutet

Background: Schizophrenia and bipolar disorder are severe mental disorders with unknown etiology. Our research group has studied biomarkers in the cerebrospinal fluid (CSF) of twins with schizophrenia and bipolar disorder to be able to determine the genetic and environmental influences. In brain disorders, CSF is the most appropriate substrate to study as it is elevated in the brains of people with schizophrenia and bipolar disorder. To probe the dichotomy between DA and ACh and to investigate timing parameters of pwPEs, we tested 74 healthy male volunteers performing a probabilistic reward associative learning task in which the contingency between cues and rewards changed over 160 trials between 0.8 and 0.2. Furthermore, the current study employed pharmacological interventions (amisulpride / biperiden / placebo) and genetic analyses (COMT and ChAT) to probe DA and ACh modulation of these computational quantities. The study was double-blind and between-subject.

We inferred, from subject-specific behavioural data, a low-level choice PE about the reward outcome, a high-level PE about the probability of the outcome as well as the respective precision-weights (uncertainties) and used them, in a trial-by-trial analysis, to explain electroencephalogram (EEG) signals (64 channels). Behavioural data was modelled implementing three versions of the Hierarchical Gaussian Filter (HGF), a Rescorla-Wagner model, and a Sutton model with a dynamic learning rate. The computational trajectories of the winning model were used as regressors in single-subject trial-by-trial GLM analyses at the sensor level. The resulting parameter estimates were entered into 2nd-level ANOVAs. The reported results were family-wise error corrected at the peak-level (p<0.05) across the whole brain and time window (outcome phase: 0 - 500 ms).

Results: A three-level HGF best explained the data and was used to compute the computational regressors for EEG analyses. We found a significant interaction between pharmacology and COMT for the high-level precision-weight (uncertainty). Specifically:

- At 276 ms after outcome presentation the difference between Met/Met and Val/Met was more positive for amisulpride than for biperiden over occipital electrodes.
- At 274ms and 278 ms after outcome presentation the difference between Met/Met and Val/Met was more negative over fronto-temporal electrodes for amisulpride than for placebo, and for amisulpride than for biperiden, respectively.

No significant results were detected for the other computational quantities or for the ChAT gene.

Discussion: The differential effects of pharmacology on the processing of high-level precision-weight (uncertainty) were modulated by the DA-related gene COMT.

Previous results linked high-level PEs to the cholinergic basal forebrain. One possible explanation for the current results is that high-level computational quantities are represented in cholinergic regions, which in turn are influenced by dopaminergic projections. In order to disentangle dopaminergic and cholinergic effects on synaptic plasticity further analyses will concentrate on biophysical models (e.g. DCM). This may prove useful in detecting pathophysiological subgroups and might therefore be of high relevance in a clinical setting.

O1.5. ICAM-1 IS INCREASED IN BRAIN AND PERIPHERAL LEVELS OF SOLUBLE ICAM-1 IS RELATED TO COGNITIVE DEFICITS IN SCHIZOPHRENIA

Thomas Weickert*, 1 Helen Cai†, Maryanne O’Donnell†, Ryan Balzan†, Ruth Wells†, Dennis Liu†, Cherrie Galletly†, Cynthia Shannon Weickert†
1University of New South Wales, NeuRA; 2University of New South Wales; 3Prince of Wales Hospital; 4Flinders University; 5Neuroscience Research Australia; 6University of Adelaide

Background: Schizophrenia is a disabling and often unremitting mental illness with an unknown cause that is characterized by heterogeneity in psychotic symptom presentation, cognitive deficits and treatment response. There is accumulating evidence for the role of inflammation in the etiology of schizophrenia. Inflammatory markers have been identified in the brains and peripheral blood of chronically ill patients with schizophrenia and in first episode patients and these markers have been associated with structural and functional brain abnormalities and cognitive deficits. Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein expressed on endothelial cells which binds to leukocyte receptors that promotes transmigration of white blood cells into tissue. While peripheral inflammatory markers are altered in people with schizophrenia relative to controls, the extent to which ICAM-1 is elevated in the brains of people with schizophrenia and peripheral levels of soluble ICAM-1 (sICAM-1) is increased in relation to cognitive impairment in schizophrenia is unknown.

Methods: In a post-mortem cohort, 8 mRNAs relating to BBB function and 3 immune cell markers were measured by qPCR in the prefrontal cortex of