Evaluation of antioxidant and anticancer properties of zinc oxide nanoparticles synthesized using Aspergillus niger extract

Ali Es-haghi1, Mazhgan Soltani1, Ehsan Karimi1, Farideh Namvar2 and Masoud Homayouni-Tabrizi1

1 Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2 Department of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
E-mail: eshaghi5510@mshdiau.ac.ir and ashaghi@gmail.com

Keywords: Zinc oxide nanoparticles, antioxidant, anticancer, Aspergillus niger

Abstract
Microorganisms and plants have grabbed great attention as potential biological sources for ecofriendly synthesizing nanoparticles. In this study, zinc nitrate and Aspergillus niger were applied to synthesize stable spherical zinc oxide nanoparticles (ZnO-NPs). The FTIR, DLS, SEM, TEM and XRD methods were utilized to characterize the synthesized nanoparticles in terms of structure, morphology, and optic features. Electron microscopic images revealed poly dispersed nanoparticles with the length of 30 to 70 nm. Regarding morphology, the majority of the particles were spherical. Regarding antioxidant capacity, the synthesized ZnO-NPs showed the IC50 of about 1000 μg ml⁻¹. The synthesized ZnO-NPs also induced apoptosis and inhibited cellular growth in neoplastic MCF-7 cells.

Abbreviations

ZnO-NPs Zinc oxide nanoparticles
NPs Nanoparticles
FTIR Fourier-transform infrared spectroscopy
DLS Dynamic light scattering
SEM Scanning electron microscope
TEM Transmission electron microscopy
XRD X-ray diffraction
MCF7 Breast cancer cells
PDA Potato Dextrose Agar
DMEM Dulbecco’s Modified Eagle Medium
BHA Butylated hydroxyanisole
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
PBS Phosphate-Buffered Saline
PI Propodium Iodide
AO Acridine-Orange
DPPH 1, 1-Diphenyl-2-picrylhydrazyl

1. Introduction
Nanotechnology is the science of engineering nanoscale (1–100 nm) materials (i.e. nanoparticles-NPs), characterizing their physiochemical features, and finally divulging their effects on living cells [1–4]. Various medicinal diagnostic (e.g. imaging techniques, biosensing) and therapeutic applications (e.g. drug targeting,
In this study, cancer therapy has been noted for metal oxides as sources for synthesizing inorganic NPs [5–8]. Zinc oxide (ZnO) NPs are commonly utilized as solar cells, biosensors, and photocatalysts in various industrial and pharmaceutical fields [9–13]. Also, ZnO-NPs have been applied as safe antimicrobial agents in biomedicine [14–17]. In addition, ZnO-NPs are resistant against degradation by microorganisms delivering them as stable sources for developing antimicrobial agents [18]. The functional properties of ZnO-NPs largely depend on their structural (e.g. size, morphology, direction, and surface ratio) and physiochemical (e.g. electrical and thermal conductance) features [19, 20]. Although physicochemical methods which are commonly used to synthesize NPs can deliver large volumes of these particles in a relatively short period of time, trace depositions of toxic elements on the surface of physiochemically synthesized materials limit their clinical application [21]. As alternatives to physicochemical biosynthesis methods, green-synthesis approaches have increasingly been used to safely and eco-friendly produce NPs [22, 23].

Anti-apoptotic mechanisms of cancer cells are important for their proliferation and propagation [24]. Therefore, apoptosis induction is one of the main therapeutic goals of any cancer therapeutic agent [25]. In the present study, we aimed to ascertain the cytotoxicity effects of ZnO-NPs against MCF-7 breast cancer cell line. Furthermore, the antioxidant capacity of the biosynthesized ZnO-NPs was also studied.

Fungi have notable metal binding and bioaccumulating abilities and produce a wide variety of enzymes. They are also ease in the scale-up process, handling the biomass, and cost-effective to be grown [26, 27]. In this study, we used Aspergillus niger to synthesize ZnO-NPs and evaluate their antioxidant and anticancer properties.

2. Materials and methods

2.1. ZnO-NPs synthesis

In this study, A. niger (PTCC: 5012) was prepared from the Iranian Bank of industrial fungi and bacteria. After activation, 2 ml of the fungus suspension was transferred to plates containing Potato Dextrose Agar (PDA). The plates were incubated for 7 to 10 days at 25 °C. The fungal biomass was cultured in a fluid culture medium while shaking. After that, 10 ml of 0.1 M sterile nitrate solution was prepared and added to 50 ml of the bacterial culture medium. The solution was heated in a hot water bath at 80 °C for 10 to 5 min. The turning to white of the precipitate marked the beginning of the production of ZnO-NPs.

2.2. Characterizing biosynthesized ZnO-NPs

The synthesized ZnONPs were characterized using particle size analyzer, as well as TEM, SEM, XRD, and FTIR analyses. The physical properties (i.e. size and shape) of the ZnO-NPs were characterized by TEM (JEOL, Japan) and FESEM (JEOL, Japan). The crystal structure and purity of the ZnO-NPs were also determined using Philips PW1800 x-ray diffractometer (XRD) (Almelo, Netherlands). Meanwhile, FTIR was carried out (Perkin Elmer, Walthman, MA, USA) to further characterize the NPs.

2.3. DPPH test

DPPH method was utilized to determine the radical scavenging capacity of the synthesized NPs. Equal volumes of various concentrations of ZnO-NPs were admixed with 0.1 mM methanolic DPPH solution. The solutions were then incubated at room temperature for 30 min. The absorbance of the sample was finally read at 517 nm. The butylated hydroxyanisole (BHA) was used as a reference antioxidant compound [28].

2.4. Cell cytotoxicity

The MCF-7 breast cancer cell line was cultured in DMEM and incubated at 37 °C and 5% CO₂. These cells (5 × 10⁴ cells/well) were treated with different concentrations of ZnO-NPs (0, 15.6, 31.2, 62.5 and 125 μg ml⁻¹) for 24, 48 and 72 h. Finally, MTT assay was utilized to determine cell viability by reading the absorbance at 570 nm (Plate Reader Spectrophotometer, Epoch, Biotek, UK) [29].

2.5. Apoptosis assay using flow-cytometry and AO/PI staining

The MCF-7 cells were cultured in 6-well plates and then treated with different concentrations of ZnO-NPs for 48 h. After incubation and washing with Phosphate-buffered saline (PBS), 1 mg ml⁻¹ PI was added to the wells. Finally, the plates were placed in incubator for 30 min, and then the cells were separated and analyzed using flow-cytometry. To perform acridine-orange (AO) test, cell suspensions (5 ml) were cultured and incubated for 24 h. At the next step, the culture medium was discarded, and the cells were treated with different concentrations of ZnO-NPs for 48 h. After trypsinization and washing cells with PBS, 10 μl acridine orange and 10 μl PI (Propodium Iodide) were added to 10 μl of the cell suspension. The mixture was then incubated for 5 min. In the next step, 20 μl of the mixture was placed on a slide to be photographed and examined by fluorescence microscopy [30].
3. Results and discussion

3.1. Characterizing of the biosynthesized ZnO-NPs

The x-ray diffraction (XRD) pattern was acquired using a x-ray diffractometer (Panalytical X’PERT) equipped with a Ni filter applying Cu K\(\alpha\) (\(\lambda = 1.540 \text{ Å}\)) radiation as an x-ray source at room temperature. The crystalline structure of the ZnO-NPs has been shown in figure 1. The peaks at 2\(\theta\) = 31.67°, 34.31°, and 36.14° were assigned to (100), (002), and (101) indicating the polycrystalline wurtzite structures of the NPs (Zincite, JCPDS 5-0664).

The field emission (JSM-7600F, JEOL Inc., Akishima, Japan) and transmission (JEM-2100F, JEOL Inc.,) electron microscopies with accelerating voltages of 15 kV and 200 kV, respectively were used to determine the structural properties of the NPs. The TEM images showed that the diameters of the ZnO-NPs ranged from 30 to 70 nm (average of about 40 nm). The NPs also revealed normal length distribution (figure 2).

The dynamic light scattering (DLS) (Nano-ZetaSizer- HT, Malvern Instruments, Malvern, UK) was performed to determine the average hydrodynamic size and zeta potential of the ZnO-NPs in water and complete cell culture (DMEM) medium (figure 3). At the 15 \(\mu\)g ml\(^{-1}\) concentration, ZnO-NPs were dispersed in water and DMEM medium for 24 h. Finally, the suspension was sonicated (room temperature, 15 min, 40 W), and the DLS method was conducted (figure 4).

The FTIR spectroscopy was performed to determine the effects of bioactive compounds in A. niger extract in the synthesis of ZnO-NPs (figure 5). The peaks appeared around 3478, 2083, 1638, 1075 and 566 cm\(^{-1}\) probably
Figure 3. Zeta potential of ZnO-NPs synthesized using *A. niger*.

Figure 4. Size dispersion of ZnO-NPs synthesized using *A. niger*.

Figure 5. The FTIR spectra of ZnO-NPs synthesized using *A. niger* extract.
representing flavonoid and phenolic (i.e. aromatic) groups in the structure of biosynthesized ZnO-NPs. Another study showed the peak at 1637.56 cm$^{-1}$ showing $-$C$=$C– aromatic structure [31]. Thus, the strong aromatic ring identified in FTIR analysis seems to participate in the biosynthesis of ZnO-NPs.

3.2. DPPH antioxidant assay

The capacity of ZnO-NPs to scavenge free radicals was investigated by the DPPH assay which is an easy, rapid, and amenable (requiring only an UV–vis spectrophotometer) method widely used to determine antioxidant activity of plant extracts [32]. The results showed that the synthesized ZnO-NPs dose-dependently scavenged free radicals (figure 6, $p < 0.001$). The IC$\text{_{50}}$ of the NPs was obtained as 1000 μgm l$^{-1}$. The BHA was used as a reference antioxidant.

3.3. Cytotoxicity activity of ZnO-NPs

The cytotoxicity of the synthesized ZnO-NPs against MCF-7 breast cancer cells was investigated by MTT assay at 0, 15.6, 31.2, 62.5 and 125 μgm l$^{-1}$ concentrations for 24, 48, and 72 h (figure 7). Cell viability of cancer cells depend on time and concentration. The IC$\text{_{50}}$ of 24, 48 and 72 h were measured in 50, 48 and 38 μgm l$^{-1}$ respectively.

3.4. Apoptosis assessment using flow cytometry and acridine orange test

The results of flow cytometry showed a significant elevation in the ratio of cells at the sub-G1 phase of cell cycle in cells treated with the synthesized ZnO-NPs compared with control. The ratio of cells at the sub-G1 phase increased dose-dependently up to 60 μgm l$^{-1}$ concentration of the synthesized ZnO-NPs (figure 8). The results of fluorescence microscopy indicated a green appearance in control cells indicating their viability. However, the cells treated with the synthesized ZnO-NPs had orange to brownish colors indicating apoptotic cells. An increase in the ratio of orange cells at higher concentrations of the ZnO-NPs showed a dose-dependent apoptotic effect (figure 9).
4. Conclusion

Fungi have gained attention as beneficial sources for synthesizing nano-materials. We here utilized *A. niger* extract to introduce a simple and fast approach to synthesize ZnO-NPs. The synthesized ZnO-NPs were revealed as spherical particles with an average length of 40 nm (the range of 30 to 70 nm). Various biological compounds in *A. niger* extract (e.g. phenols, flavonoids, and proteins) can contribute to the development of ZnO-NPs. The biosynthesized ZnO-NPs showed potent antioxidant activity and also inhibited the growth of MCF-7 cancer cells.
Acknowledgments

This work was supported by the Islamic Azad University of Mashhad Branch, Mashhad, Iran as a research project and therefore, is appreciated by the authors.

Conflicts of interest

The authors declare no conflict of interests.

ORCID iDs

Ali Es-haghi @ https://orcid.org/0000-0001-5292-6161

References

[1] Hamidi A et al 2019 Biological synthesis of silver nanoparticles in Tribulus terrestris L. extract and evaluation of their photocatalyst, antibacterial, and cytotoxicity effects Res. Chem. Intermed. 45 2915–25
[2] Yazdi M E T et al 2018 Role of Ribes khorasanicum in the biosynthesis of silver nanoparticles and their antibacterial properties IET Nanobiotechnol. 13 189–92
[3] Yazdi M E T et al 2019 Plant-based synthesis of silver nanoparticles in Handelia trichophylla and their biological activities Bull. Mater. Sci. 42 155
[4] Pramila P and Gopalakrishnan N 2018 Enhancement of antibacterial activity in nanofillers incorporated PSF/PVP membranes Mater. Res. Express 5 045306
[5] Javadi F et al 2019 Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities Mater. Res. Express 6 6
[6] Rahdar A et al 2017 CuO–NiO nano composites: synthesis, characterization, and cytotoxicity evaluation Nanomedicine Research Journal 2 78–86
[7] Rahdar A et al 2019 Synthesis and characterization of highly efficacious Fe–doped ceria nanoparticles for cytotoxic and antifungal activity Ceram. Int. 45 7990–55
[8] Darroudi M et al 2014 Green chemistry approach for the synthesis of ZnO nanopowders and their cytotoxic effects Ceram. Int. 40 4827–31
[9] Zheng Z et al 2019 Exquisite modulation of ZnO nanoparticles electron transporting layer for high–performance fullerene–free organic solar cell with inverted structure J. Mater. Chem. A 7 3570–76
[10] Phan L et al 2019 The facile synthesis of novel ZnO nanostucture for galactose biosensor application J. Nanomater. 2019
[11] Bomila R, Suresh S and Sririvasan S 2019 Synthesis and characterization of comparative studies of dual doped ZnO nanoparticles for photocatalytic applications J. Mater. Sci., Mater. Electron. 30 582–92
[12] Sabouni R and Gomaa H 2019 Photocatalytic degradation of pharmaceutical micro–pollutants using ZnO–TiO2 nanoparticles Adv. Powder Technol. 30 1763–67
[13] Amalayth N et al 2015 Plasma in–liquid method for reduction of zinc oxide in zinc nanoparticle synthesis Mater. Res. Express 2 025004
[14] Akbar A et al 2019 Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus Bioanalysis and Agricultural Biotechnology 17 36–42
[15] Hameed S et al 2019 Greener synthesis of ZnO and Ag–ZnO nanoparticles using Silybum marianum for diverse biomedical applications Nanomedicine 14 655–73
[16] Kaushik M et al 2019 Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles Appl. Surf. Sci. 479 1169–77
[17] Seil J T and Webster T J 2012 Antibacterial effect of zinc oxide nanoparticles combined with ultrasound Nanotechnology 23 495101
[18] de Lucas–Gil E et al 2019 The fight against multidrug–resistant organisms: the role of ZnO crystalline defects Materials Science and Engineering C 99 537–41
[19] Dokhlalei A et al 2009 Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology J. Cryst. Growth 311 399–406
[20] Knoll B and Keilmann F 1999 Near–field probing of vibrational absorption for chemical microscopy Nature 399 134
[21] Agarwal H, Kumar S V and Rajeshkumar S 2017 A review on green synthesis of zinc oxide nanoparticles–An eco–friendly approach Resource–Efficient Technologies 3 406–13
[22] Yazdi M E T et al 2019 Eco–friendly and plant–based synthesis of silver nanoparticles using Allium giganteum and investigation of its bactericidal, cytotoxicity, and photocatalytic effects Mater. Technol. 34 1–8
[23] Baghani M and Es–haghi A 2019 Biosynthesis, characterization of silver nanoparticles using amaranthus cruentus and their biological activities. bioinspired Biomimetic and Nanomaterials 1–8
[24] Abotaleb M et al 2019 Flavonoids in cancer and apoptosis Cancers 11 28
[25] Ferreira C G et al 2002 Apoptosis: target of cancer therapy Clinical Cancer Research 8 2024–34
[26] Kitching M, Ramani M and Marsili E 2015 Fungal biosynthesis of gold nanoparticles: mechanism and scale up Microb. Biotechnol. 8 904–17
[27] Zonooz N F and Salouti M 2011 Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI–3 Scientia Iranica 18 1631–5
[28] Leaves L 2014 Antioxidant activity by DPPH radical scavenging method of ageratum conyzoides American Journal of Ethnomedicine 1 244–9
[29] Riss T L et al Cell viability assays, in Assay Guidance Manual [Internet], 2016, Eli Lilly & Company and the National Center for Advancing Translational Sciences
[30] Riccardi C and Nicoletti L 2006 Analysis of apoptosis by propidium iodide staining and flow cytometry Nat. Protoc. 1 1458
[31] Kalpana V et al 2018 Biosynthesis of Zinc oxide nanoparticles using culture filtrates of Aspergillus niger: antimicrobial textiles and dye degradation studies OpenNano 3 48–55

[32] Taghavizadeh Yazdi M et al 2018 Biocomponents and antioxidant activity of ribes khorasanicum International Journal of Basic Science in Medicine 3 99–103