EIGENVALUES OF THE STURM-LIOUVILLE PROBLEM WITH A FROZEN ARGUMENT ON TIME SCALES

ZEYNEP DURNA AND A. SINAN OZKAN

Abstract. In this study, we consider a boundary value problem generated by the Sturm-Liouville problem with a frozen argument and with non-separated boundary conditions on a time scale. Firstly, we present some solutions and characteristic function of the problem on an arbitrary bounded time scale. Secondly, we prove some properties of eigenvalues and obtain a formulation for the eigenvalues-number on a finite time scale. Finally, we give an asymptotic formula for eigenvalues of the problem on another special time scale: \(T = [\alpha, \delta_1] \cup [\delta_2, \beta] \).

1. Introduction

A Sturm-Liouville equation with a frozen argument has the form

\[-y''(t) + q(t)y(a) = \lambda y(t),\]

where \(q(t) \) is the potential function, \(a \) is the frozen argument and \(\lambda \) is the complex spectral parameter. The spectral analysis of boundary value problems generated with this equation is studied in several publications [3], [11], [12], [20], [27] and references therein. This kind problems are related strongly to non-local boundary value problems and appear in various applications [4], [8], [25] and [32].

A Sturm-Liouville equation with a frozen argument on a time scale \(T \) can be given as

\[-y^{\Delta\Delta}(t) + q(t)y(a) = \lambda y^{\sigma}(t), \quad t \in T^\kappa,\]

where \(y^{\Delta\Delta} \) and \(\sigma \) denote the second order \(\Delta \)-derivative of \(y \) and forward jump operator on \(T \), respectively, \(q(t) \) is a real-valued continuous function, \(a \in T^\kappa := T \setminus (\rho(\sup T), \sup T) \), \(y^{\sigma}(t) = y(\sigma(t)) \) and \(T^\kappa = (T^\kappa)^\kappa \).

Spectral properties the classical Sturm-Liouville problem on time scales were given in various publications (see e.g. [1], [2], [4], [6], [13]-[19], [21]-[23], [28]-[31] and references therein). However, there is no any publication about the Sturm-Liouville equation with a frozen argument on a time scale.

In the present paper, we consider a boundary value problem which is generated by equation (1) and the following boundary conditions

\[
U(y) : = a_{11}y(a) + a_{12}y^\Delta(a) + a_{21}y(\beta) + a_{22}y^\Delta(\beta)
\]
\[
V(y) : = b_{11}y(a) + b_{12}y^\Delta(a) + b_{21}y(\beta) + b_{22}y^\Delta(\beta)
\]

2000 Mathematics Subject Classification. 45C05, 34N05, 34B24, 34C10.

Key words and phrases. Dynamic equations on time scales or measure chains, Eigenvalue problems, Sturm-Liouville theory, frozen argument.
where α = inf T, β = ρ(sup T), α ≠ β and a_ij, b_ij ∈ R for i, j = 1, 2. We aim to give some properties of some solutions and eigenvalues of (1)-(3) for two different cases of T.

For the basic notation and terminology of time scales theory, we recommend to see [7], [9], [10] and [26].

2. Preliminaries

Let S(t, λ) and C(t, λ) be the solutions of (1) under the initial conditions
\begin{equation}
S(a, λ) = 0, S^Δ(a, λ) = 1,
\end{equation}
\begin{equation}
C(a, λ) = 1, C^Δ(a, λ) = 0,
\end{equation}
respectively. Clearly, S(t, λ) and C(t, λ) satisfy
\begin{align*}
S^ΔΔ(t, λ) + λS^σ(t, λ) &= 0 \\
C^ΔΔ(t, λ) + λC^σ(t, λ) &= q(t),
\end{align*}
respectively and so these functions and their ∆-derivatives are entire on λ for each fixed t (see [28]).

Lemma 1. Let ϕ(t, λ) be the solution of (1) under the initial conditions ϕ(a, λ) = δ_1, ϕ^Δ(t, λ) = δ_2 for given numbers δ_1, δ_2. Then ϕ(t, λ) = δ_1C(t, λ) + δ_2S(t, λ) is valid on T.

Proof. It is clear that the function y(t, λ) = δ_1C(t, λ) + δ_2S(t, λ) is the solution of the initial value problem
\begin{align*}
y^ΔΔ(t) + λy^σ(t) &= q(t)δ_1 \\
y(a, λ) &= δ_1 \\
y^Δ(a, λ) &= δ_2.
\end{align*}
We obtain by taking into account uniqueness of the solution of an initial value problem that y(t, λ) = ϕ(t, λ).

Consider the function
\begin{equation}
Δ(λ) : \text{det} \begin{pmatrix} U(C) & V(C) \\ U(S) & V(S) \end{pmatrix}.
\end{equation}
It is obvious Δ(λ) is also entire.

Theorem 1. The zeros of the function Δ(λ) coincide with the eigenvalues of the problem (1)-(3).

Proof. Let λ₀ be an eigenvalue and y(t, λ₀) = δ_1C(t, λ₀) + δ_2S(t, λ₀) is the corresponding eigenfunction, then y(t, λ₀) satisfies (2) and (3). Therefore,
\begin{align*}
δ_1U(C(t, λ₀)) + δ_2U(S(t, λ₀)) &= 0, \\
δ_1V(C(t, λ₀)) + δ_2V(S(t, λ₀)) &= 0.
\end{align*}
It is obvious that y(t, λ₀) ≠ 0 iff the coefficients-determinant of the above system vanishes, i.e., Δ(λ₀) = 0.

Since Δ(λ) is an entire function, eigenvalues of the problem (1)-(3) are discrete.
3. Eigenvalues of (1)-(3) on a finite time scale

Let T be a finite time scale such that there are m (or r) many elements which are larger (or smaller) than a in T. Assume $m \geq 1$, $r \geq 0$ and $r + m \geq 2$. It is clear that the number of elements of T is $n = m + r + 1$. We can write T as follows

$$T = \left\{ \rho^r (a), \rho^{r-1} (a), \ldots, \rho^2 (a), \rho (a), \sigma (a), \sigma^2 (a), \ldots, \sigma^{m-1} (a), \sigma^m (a) \right\},$$

where $\sigma^j = \sigma^{j-1} \circ \sigma$, $\rho^j = \rho^{j-1} \circ \rho$ for $j \geq 2$, $\rho^r (a) = \alpha$ and $\sigma^{m-1} (a) = \beta$.

Lemma 2. i) If $r \geq 3$ and $m \geq 2$, the following equalities hold for all λ

$$S (\alpha, \lambda) = (-1)^r \mu^r (a) \left[\mu^r (a) \mu^3 (a) \ldots \mu^r (a) \right]^2 \lambda^{r-1} + O \left(\lambda^{r-2} \right)$$

$$S^\sigma (\alpha, \lambda) = (-1)^{r-1} \mu^r (a) \left[\mu^r (a) \mu^3 (a) \ldots \mu^{r-1} (a) \right]^2 \lambda^{r-2} + O \left(\lambda^{r-3} \right)$$

$$S (\beta, \lambda) = S^{\sigma^{m-1}} (\alpha, \lambda) = (-1)^m \left[\mu (a) \mu^\sigma (a) \ldots \mu^{\sigma^{m-3}} (a) \right] \lambda^{m-2} \mu^{\sigma^{m-2}} (a) + O \left(\lambda^{m-3} \right)$$

$$S^\sigma (\beta, \lambda) = S^{\sigma^{m-1}} (\alpha, \lambda) = (-1)^{m+1} \left[\mu (a) \mu^\sigma (a) \ldots \mu^{\sigma^{m-2}} (a) \right] \lambda^{m-1} \mu^{\sigma^{m-1}} (a) + O \left(\lambda^{m-2} \right)$$

$$C (\alpha, \lambda) = (-1)^r \left[\mu^\sigma (a) \mu^{\sigma^2} (a) \ldots \mu^r (a) \right] \lambda^r + O \left(\lambda^{r-1} \right)$$

$$C^\sigma (\alpha, \lambda) = (-1)^{r-1} \left[\mu^\sigma (a) \mu^{\sigma^2} (a) \ldots \mu^{\sigma^{r-1}} (a) \right] \lambda^{r-1} + O \left(\lambda^{r-2} \right)$$

$$C (\beta, \lambda) = C^{\sigma^{m-1}} (\alpha, \lambda) = (-1)^m \left[\mu (a) \mu^\sigma (a) \ldots \mu^{\sigma^{m-3}} (a) \right] \mu^{\sigma^{m-2}} (a) \lambda^{m-2} + O \left(\lambda^{m-3} \right)$$

$$C^\sigma (\beta, \lambda) = C^{\sigma^{m-1}} (\alpha, \lambda) = (-1)^{m+1} \mu (a) \left[\mu^\sigma (a) \mu^2 (a) \ldots \mu^{\sigma^{m-2}} (a) \right] \mu^{\sigma^{m-1}} (a) \lambda^{m-1} + O \left(\lambda^{m-2} \right),$$

where $O(\lambda^l)$ denotes polynomials whose degrees are l.

ii) If $r \in \{0, 1, 2\}$ or $m \in \{0, 1\}$, degrees of all above functions are vanish.

Proof. It is clear from $f^\sigma (t) = f(t) + \mu(t)f^\lambda (t)$ that $S^\sigma (\alpha, \lambda) = \mu (a)$ and $C^\sigma (\alpha, \lambda) = 1$. On the other hand, since $S(t, \lambda)$ and $C(t, \lambda)$ satisfy (1) then the following equalities hold for each $t \in T^\kappa$ and for all λ.

$$S^\sigma (t, \lambda) = \left(1 + \frac{\mu(t)}{\mu^\sigma(t)} - \lambda \mu(t) \mu^\sigma(t) - \lambda \mu^2(t) \mu^\sigma(t) \right) S^\sigma (t, \lambda)$$

$$-\mu^\sigma(t) S(t, \lambda)$$

$$C^\sigma (t, \lambda) = \left(-\mu(t) \mu^\sigma(t) \lambda + \frac{\mu(t) + \mu^\sigma(t)}{\mu(t)} \right) C^\sigma (t, \lambda)$$

$$+ \mu(t) \mu^\sigma(t) q(t)$$
Corollary 1. \(\deg C(\alpha, \lambda)S^\sigma(\beta, \lambda) = \begin{cases} r + m - 1, & r > 0 \text{ and } m > 1 \\ 1, & \text{the other cases} \end{cases} \)

Lemma 3. The following equalities hold for all \(\lambda \in \mathbb{C} \).
\[
S^\sigma(\alpha, \lambda)C(\alpha, \lambda) - S(\alpha, \lambda)C^\sigma(\alpha, \lambda) = A\lambda^\delta + O(\lambda^{\delta-1})
\]
\[
S^\sigma(\beta, \lambda)C(\beta, \lambda) - S(\beta, \lambda)C^\sigma(\beta, \lambda) = B\lambda^\gamma + O(\lambda^{\gamma-1})
\]
where \(A = (-1)^r \mu(\alpha) \mu^\rho(\alpha) \left[\mu^{\sigma^2}(\alpha) \cdots \mu^{\sigma^r-1}(\alpha) \right]^2 \mu^{\sigma^r}(\alpha) q(\alpha) \),
\[
B = (-1)^m \mu(\beta) \left[\mu(\alpha) \mu^\sigma(\alpha) \cdots \mu^{\sigma^m-2}(\alpha) \right]^2 q(\rho(\beta)),
\]
\[
\delta = \begin{cases} r - 2, & r \geq 3 \\ 0, & r < 3 \end{cases}
\]
\[
\gamma = \begin{cases} m - 2, & m \geq 3 \\ 0, & m < 3. \end{cases}
\]
Proof. Consider the function
\[
\varphi(t, \lambda) := \frac{1}{\mu(t)} \left[S^\sigma(t, \lambda)C(t, \lambda) - S(t, \lambda)C^\sigma(t, \lambda) \right]
\]
It is clear that
\[
\varphi(t, \lambda) := \left[S^\Delta(t, \lambda)C(t, \lambda) - S(t, \lambda)C^\Delta(t, \lambda) \right] = W[C(t, \lambda), S(t, \lambda)]
\]
and it is the solution of initial value problem
\[
\varphi^\Delta(t) = -q(t) S^\sigma(t, \lambda)
\]
\[
\varphi(a) = 1
\]
Therefore, we can obtain the following relations
\[
\varphi^\sigma(t, \lambda) = \varphi(t, \lambda) - \mu(t) q(t) S^\sigma(t, \lambda)
\]
\[
\varphi^\rho(t, \lambda) = \varphi(t, \lambda) + \mu^\rho(t) q(\rho(t)) S(t, \lambda).
\]
By using (9), (10), (14) and (15), the proof is completed. \(\square \)
Corollary 2. i) \(\deg (S^\sigma (\alpha, \lambda) C(\alpha, \lambda) - S (\alpha, \lambda) C^\sigma (\alpha, \lambda)) < \deg C(\alpha, \lambda) S^\sigma (\beta, \lambda) \),

ii) \(\deg (S^\sigma (\beta, \lambda) C (\beta, \lambda) - S (\beta, \lambda) C^\sigma (\beta, \lambda)) < \deg C(\alpha, \lambda) S^\sigma (\beta, \lambda) \).

The next theorem gives the number of eigenvalues of the problem (1)-(3) on \(T \). Recall \(n = m + r + 1 \) denotes the number of elements of \(T \) and put \(A = \begin{pmatrix} a_{11} \mu (\alpha) - a_{12} & b_{11} \mu (\alpha) - b_{12} \\ a_{22} & b_{22} \end{pmatrix} \).

Theorem 2. If \(\det A \neq 0 \), the problem (1)-(3) has exactly \(n - 2 \) many eigenvalues with multiplications, otherwise the eigenvalues-number of (1)-(3) is least than \(n - 2 \).

Proof. Since \(T \) is finite, \(\Delta(\lambda) \) is a polynomial and its degree gives the number eigenvalues of the problem. It can be calculated from (6)-(14) that

\[
\Delta(\lambda) = \frac{1}{\mu(\alpha) \mu(\beta)} \det \begin{pmatrix} a_{11} \mu(\alpha) - a_{12} & b_{11} \mu(\alpha) - b_{12} \\ a_{22} & b_{22} \end{pmatrix} C(\alpha, \lambda) S^\sigma (\beta, \lambda) + \\
+ \frac{1}{\mu(\alpha)} \det \begin{pmatrix} a_{11} & a_{12} \\ b_{11} & b_{12} \end{pmatrix} (S^\sigma (\alpha, \lambda) C(\alpha, \lambda) - S (\alpha, \lambda) C^\sigma (\alpha, \lambda)) + \\
+ \frac{1}{\mu(\beta)} \det \begin{pmatrix} a_{21} & a_{22} \\ b_{21} & b_{22} \end{pmatrix} (S^\sigma (\beta, \lambda) C (\beta, \lambda) - S (\beta, \lambda) C^\sigma (\beta, \lambda)) + O(\lambda^{n+m-2}).
\]

According to Corollary 1 and Corollary 2, if \(\det A \neq 0 \), \(\deg \Delta(\lambda) = \deg C(\alpha, \lambda) S^\sigma (\beta, \lambda) = m + r - 1 = n - 2 \).

Corollary 3. i) The eigenvalues-number of (1)-(3) depends only on the elements-number of \(T \) and the coefficients of the boundary conditions (2) and (3). On the other hand, it does not depend on \(q(t) \) and \(a \) (neither value nor location of \(a \) on \(T \)).

ii) If \(\det A \neq 0 \), the eigenvalues-number of (1)-(3) and the elements-number of \(T \) determine uniquely each other.

Example 1 (Separated boundary conditions). Let us consider the time scale \(T = \{0, 1, 2, ..., n - 1\} \) and the following boundary value problem which appears some applications.

(16) \(-y^\Delta (t) + q(t) y(a) = \lambda y (t + 1), t \in T^2 = \{0, 1, ..., n - 3\} \)

(17) \(y^\Delta (0) + h y(0) = 0 \)

(18) \(y^\Delta (n - 2) + H y(n - 2) = 0, \)

where \(0 \leq a \leq n - 2 \) and \(h, H \in \mathbb{R} \). According to Theorem 2, if \(h \neq 1 \), the eigenvalues-number of this problem is exactly \(n - 2 \), otherwise less than \(n - 2 \).

Now, we want to give a theorem which includes some informations about the eigenvalues of (16)-(18).
Theorem 3. Let $Q = Q_1 + Q_2$,

$$Q_1 = \begin{pmatrix} 2 - \frac{1}{t_H} & -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & \ldots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & -1 & 1 - H \end{pmatrix}_{(n-2) \times (n-2)}$$

and $Q_2 = (q_{ij})_{(n-2) \times (n-2)}$, where $q_{ij} = \begin{cases} q(i-1), & j = a \\ 0, & j \neq a \end{cases}$ and $h \in \mathbb{R} - \{1\}$.

The problem (16)-(18) and the matrix Q have the same eigenvalues.

Proof. Let $y(t)$ be an eigenfunction of (16)-(18). Since $y^\Delta(t) = y(t+1) - y(t)$ for $t \in \mathbb{T}^c$ and $y^{\Delta\Delta}(t) = y(t+2) - 2y(t+1) + y(t)$ for $t \in \mathbb{T}^c$, we can write (16)-(18) as follows

(19) \(y(t+2) - 2y(t+1) + y(t) = q(t)y(a) - \lambda y(t+1), \ t \in \mathbb{T}^c, \)

(20) \(y(1) = (h-1)y(0), \)

(21) \(y(n) = (1-H)y(n-1). \)

We obtain from (19)-(21) a linear system whose coefficients-matrix is $\lambda I - Q$. Therefore it is concluded that the boundary value problem (16)-(18) and the matrix Q have the same eigenvalues. \hfill \square

Remark 1. The result in the Theorem 3 can be generalized easily to (1)-(3) on the general discrete time scale.

Remark 2. As is known, all eigenvalues of the classical Sturm-Liouville problem with separated boundary conditions on time scales are real and algebraically simple [2]. However, the Sturm-Liouville problem with the frozen argument may have non-real or non-simple eigenvalues even if it is equipped with separated boundary conditions.

We end this section with two examples. The problem in the first example has non-real or non-simple eigenvalues, unlike, all eigenvalues of the latter problem are real and simple.

Example 2. Consider the following problem on $\mathbb{T} = \{0, 1, 2, 3, 4, 5\}$.

$$L_1 : \begin{cases} -y^{\Delta\Delta}(t) + q_1(t)y(3) = \lambda y^\sigma(t), \ t \in \{0, 1, 2, 3\} \\ y^{\Delta}(0) + \frac{1}{2}y(0) = 0 \\ y^{\Delta}(4) + y(4) = 0, \end{cases}$$
where \(q_1(t) = \begin{cases}
-3 & t = 0 \\
10 & t = 1 \\
-5 & t = 2 \\
1 & t = 3
\end{cases} \). According to Theorem 3, eigenvalues of \(L_1 \) coincide with eigenvalues of the matrix \(Q_1 = \begin{pmatrix}
0 & -1 & -3 & 0 \\
-1 & 2 & 9 & 0 \\
0 & -1 & -3 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix} \) and they are \(\lambda_1 = \frac{1}{2} - \frac{1}{2}i\sqrt{7} \), \(\lambda_2 = 0 \), \(\lambda_3 = -\frac{1}{2} + \frac{1}{2}i\sqrt{7} \), \(\lambda_4 = -\frac{1}{2} - \frac{1}{2}i\sqrt{7} \).

Example 3. Consider the following problem on \(\mathbb{T} = \{0, 1, 2, 3, 4\} \).

\[
L_2 : \begin{cases}
-y^\Delta(t) + q_2(t)y(4) = \lambda y^\sigma(t), & t \in \{0, 1, 2, 3\} \\
y^\Delta(0) = 0 & y^\Delta(4) = 0,
\end{cases}
\]

where \(q_2(t) = t \).

Clearly, eigenvalues of \(L_2 \) coincide with eigenvalues of \(Q_2 = \begin{pmatrix}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 1 \\
0 & -1 & 2 & 1 \\
0 & 0 & -1 & 4
\end{pmatrix} \) and they are \(\lambda_1 = 2 + \sqrt{3} \), \(\lambda_2 = 2 - \sqrt{3} \), \(\lambda_3 = 3 \), \(\lambda_4 = 2 \).

4. Eigenvalues of (1)-(3) on the time scale \(\mathbb{T} = [\alpha, \delta_1] \cup [\delta_2, \beta] \)

In this section, we investigate eigenvalues of the problem (1)-(3) on another special time scale: \(\mathbb{T} = [\alpha, \delta_1] \cup [\delta_2, \beta] \), where \(\alpha < a < \delta_1 < \delta_2 < \beta \). We assume that \(a \in (\alpha, \delta_1) \). The similar results can be obtained in the case when \(a \in (\delta_2, \beta) \).

The following relations are valid on \([\alpha, \delta_1] \) (see [11]).

\[
S(t, \lambda) = \frac{\sin \sqrt{\lambda} (t - a)}{\sqrt{\lambda}} \\
C(t, \lambda) = \cos \sqrt{\lambda} (t - a) + \int_a^t \frac{\sin \sqrt{\lambda} (t - \xi)}{\sqrt{\lambda}} q(\xi) d\xi
\]

The following asymptotic relations for the solutions \(S(t, \lambda) \) and \(C(t, \lambda) \) can be proved by using a method similar to one in [29].

(22) \(S(t, \lambda) = \begin{cases}
\frac{\sin \sqrt{\lambda} (t - a)}{\sqrt{\lambda}}, & t \in [\alpha, \delta_1], \\
\delta^2 \sqrt{\lambda} \cos \sqrt{\lambda} (\delta_1 - a) \sin \sqrt{\lambda} (\delta_2 - t) + O(\exp |\tau| (\delta + a - t)), & t \in [\delta_2, \beta],
\end{cases} \)

(23) \(S^\Delta(t, \lambda) = \begin{cases}
\cos \sqrt{\lambda} (t - a), & t \in [\alpha, \delta_1], \\
-\delta^2 \sqrt{\lambda} \cos \sqrt{\lambda} (\delta_1 - a) \cos \sqrt{\lambda} (\delta_2 - t) + O \left(\sqrt{\lambda} \exp |\tau| (\delta + a - t) \right), & t \in [\delta_2, \beta],
\end{cases} \)
\(\lambda \) and \(\delta \) satisfies initial value problem

\[
\varphi (t, \lambda) := C_{\lambda}(t, \lambda)S(t, \lambda) - C(t, \lambda)S_{\lambda}(t, \lambda)
\]

satisfies initial value problem

\[
\varphi^{\Delta} (t) = q(t)S^{\sigma} (t, \lambda), \ t \in [\alpha, \delta_1]
\]

and

\[
\varphi (a) = 1
\]

Hence, we get proof by using (22). \(\square \)

Theorem 4.

i) The problem (1)-(3) on \(T = [\alpha, \delta_1] \cup [\delta_2, \beta] \) has countable many eigenvalues such as \(\{ \lambda_n \}_{n \geq 0} \).

ii) The numbers \(\{ \lambda_n \}_{n \geq 0} \) are real for sufficiently large \(n \).

iii) If \(a_{22}b_{12} - a_{12}b_{22} \neq 0 \) and \(\beta - \delta_2 = \delta_1 - \alpha \), the following asymptotic formula holds for \(n \to \infty \).

\[
\sqrt{\lambda_n} = \frac{(n-1)\pi}{2(\beta - \delta_2)} + O \left(\frac{1}{n} \right)
\]

Proof. The proof of (i) is obvious, since \(\Delta(\lambda) \) is entire on \(\lambda \).

By calculating directly, we get

\[
\Delta(\lambda) = \det \begin{pmatrix} U(C) & V(C) \\ U(S) & V(S) \end{pmatrix}
\]

\[
= \left[C_{\lambda}(\beta, \lambda)S_{\lambda}(\alpha, \lambda) - C_{\lambda}(\alpha, \lambda)S_{\lambda}(\beta, \lambda) \right] + \left[C_{\lambda}(\beta, \lambda)S_{\lambda}(\beta, \lambda) - C(\beta, \lambda)S_{\lambda}(\beta, \lambda) \right] + \left[C_{\lambda}(\beta, \lambda)S(\alpha, \lambda) - C(\alpha, \lambda)S_{\lambda}(\alpha, \lambda) \right] + O(\lambda \exp |\tau| (\beta - \alpha - \delta)).
\]
It follows from (22)-(25) and Lemma 4 that
\[
\Delta(\lambda) = (a_{22}b_{12} - a_{12}b_{22})\delta^2 \lambda^{3/2} \sin \sqrt{\lambda}(\delta_1 - \alpha) \cos \sqrt{\lambda}(\beta - \delta_2) \\
+ O(\lambda \exp|\tau| (\beta - \alpha - \delta))
\]
is valid for $|\lambda| \to \infty$. Since $a_{22}b_{12} - a_{12}b_{22} \neq 0$ and $\beta - \delta_2 = \delta_1 - \alpha$, the numbers $\{\lambda_n\}_{n \geq 0}$ are roots of
\[
(27) \quad \lambda^2 \frac{\sin 2\sqrt{\lambda}(\beta - \delta_2)}{\sqrt{\lambda}} + O(\lambda \exp 2|\tau| (\beta - \delta_2)) = 0.
\]
Now, we consider the region
\[
G_n := \{\lambda \in \mathbb{C} : \lambda = \rho^2, |\rho| < \frac{n\pi}{2(\beta - \delta_2)} + \varepsilon\}
\]
where ε is sufficiently small number. There exist some positive constants C_ε such that,
\[
|\lambda^2 \frac{\sin 2\sqrt{\lambda}(\beta - \delta_2)}{\sqrt{\lambda}}| \geq C_\varepsilon |\lambda|^{3/2} \exp 2|\tau| (\beta - \delta_2)
\]
for sufficiently large $\lambda \in \partial G_n$. Thus, we establish the proof of (ii). On the other hand by using Rouche’s theorem to (27) on G_n, we can show clearly that (26) holds for sufficiently large n. \hfill \Box

Remark 3. Since $\mu(\alpha) = 0$ in the considered time scale, the term $a_{22}b_{12} - a_{12}b_{22}$ is not another than $\det A$ in section 3.

Acknowledgement 1. This work does not have any conflicts of interest.

References

[1] Adalar, I., Ozkan, A.S.: An interior inverse Sturm–Liouville problem on a time scale, Analysis and Mathematical Physics, 10, 1-9, (2020)

[2] Agarwal, R.P., Bohner, M., Wong, P.J.Y.: Sturm-Liouville eigenvalue problems on time scales. Appl. Math. Comput. 99, 153–166 (1999)

[3] Albeverio S., Hryniv, R.O., Nizhnik, L.P.: Inverse Spectral Problems for non-local Strum Liouville operators, 2007-523-535, (1975)

[4] Albeverio S., Nizhnik, L.: Schrödinger operators with nonlocal point interactions J. Math. Anal. Appl., 332(2), 884-895, (2007)

[5] Amster, P., De Nápoli, P., Pinoso, J.P.: Eigenvalue distribution of second-order dynamic equations on time scales considered as fractals. J. Math. Anal. Appl. 343, 573–584 (2008)

[6] Amster, P., De Nápoli, P., Pinoso, J.P.: Detailed asymptotic of eigenvalues on time scales, J. Differ. Equ. Appl. 15 pp. 225–231 (2009)

[7] Atkinson, F.: Discrete and Continuous Boundary Problems. Academic Press, New York (1964)

[8] Berezin, F.A. and Faddeev, L.D.: Remarks on Schrödinger equation Sov. Math.—Dokl. 137, 1011–4, (1961)

[9] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston, MA (2001)

[10] Bohner, M., Peterson, A.: Advanced in Dynamic Equations on Time Scales. Birkhäuser, Boston, MA (2003)

[11] Bondarenko, N.P., Buterin, S.A., Vasiliev, S.V.: An inverse problem for Sturm -Liouville operators with frozen argument, Journal of Mathematical Analysis and Applications, 472(1), 1028-1041, (2019)

[12] Buterin, S., Kuznetsova, M. On the inverse problem for Sturm–Liouville-type operators with frozen argument: rational case, Comp. Appl. Math., 39(5), (2020)

[13] Davidson, F.A., Rynne, B.P.: Global bifurcation on time scales. J. Math. Anal. Appl. 267, 345–360 (2002)

[14] Davidson, F.A., Rynne, B.P.: Self-adjoint boundary value problems on time scales. Electron. J. Differ. Equ. 175, 1–10 (2007)

[15] Davidson, F.A., Rynne, B.P.: Eigenfunction expansions in L^2 spaces for boundary value problems on time-scales. J. Math. Anal. Appl. 335, 1038–1051 (2007)
[16] Erbe, L., Hilger, S.: Sturmian theory on measure chains. Differ. Equ. Dyn. Syst. 1, 223–244 (1993)
[17] Erbe, L., Peterson, A.: Eigenvalue conditions and positive solutions. J. Differ. Equ. Appl. 6, 165–191 (2000)
[18] Guseinov, G.S.: Eigenfunction expansions for a Sturm-Liouville problem on time scales. Int. J. Differ. Equ. 2, 93–104 (2007)
[19] Guseinov, G.S.: An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales. Adv. Dyn. Syst. Appl. 3, 147–160 (2008)
[20] Hu, Y.T., Bondarenko, N.P., Yang, C.F.: Traces and inverse nodal problem for Sturm–Liouville operators with frozen argument. Applied Mathematics Letters, 102, 106096, (2020)
[21] Hilger, R.S., Zemanek, P.: Weyl-Titchmarsh theory for time scale symplectic systems on half line. Abstr. Appl. Anal. Art. ID 738520, 41 pp.(2011)
[22] Huseynov, A.: Limit point and limit circle cases for dynamic equations on time scales. Hacet. J. Math. Stat. 39, 379–392 (2010)
[23] Huseynov, A., Bairamov, E.: On expansions in eigenfunctions for second order dynamic equations on time scales. Nonlinear Dyn. Syst. Theory 9, 7–88 (2009)
[24] Kong, Q.: Sturm-Liouville problems on time scales with separated boundary conditions. Results Math. 52, 111–121 (2008)
[25] Krall, A.M. The development of general differential and general differential-boundary systems Rocky Mount. J. Math., 5, 493–542, (1975)
[26] Lakshmikantham,V., Sivasundaram, S., Kaymakcalan B.: Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Dordrecht, (1996)
[27] Nizhink, L.P.: Inverse Eigenvalue Problems for non-local Sturm Liouville Problems, Methods Funct. Anal. Topology, 15(1), 41–47, (2009)
[28] Ozkan, A.S.: Sturm-Liouville operator with parameter-dependent boundary conditions on time scales. Electron. J. Differential Equations, 212, 1-10, (2017)
[29] Ozkan, A.S., Adalar, I.: Half-inverse Sturm-Liouville problem on a time scale. Inverse Probl. 36, 025015, (2020)
[30] Rynne, B.P.: L2 spaces and boundary value problems on time-scales. J. Math. Anal. Appl. 328, 1217–1236 (2007)
[31] Sun, S., Bohner, M., Chen,S.: Weyl-Titchmarsh theory for Hamiltonian dynamic systems. Abstr. Appl. Anal. Art. ID 514760, 18 pp.(2010)
[32] Wentzell, A.D.:On boundary conditions for multidimensional diffusion processes Teor. Veroyatnost. Primenen. 4 172–85 (1959) (in Russian)

Wentzell A D On boundary conditions for multidimensional diffusion processes Theory Probab. 4 164–77 (1959) (Engl. Transl.)

Cumhuriyet University, Faculty of Science, Department of Mathematics, 58140, Sivas, Turkey

Email address: zeynepdurna14@gmail.com

Cumhuriyet University, Faculty of Science, Department of Mathematics, 58140, Sivas, Turkey

Email address: sozkan@cumhuriyet.edu.tr