Enhanced charge separation and transport efficiency induced by vertical slices on the surface of carbon nitride for visible-light-driven hydrogen evolution

Qian Yang, Zehao Li, ChengCheng Chen, Zhengguo Zhang and Xiaoming Fanga,b

a Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

b Guangdong Engineering Technology Research Center of Efficient Heat Storage and Application, South China University of Technology, Guangzhou 510640, China

*Corresponding author, Tel: 86 20 87112997, Fax: 86 20 87113870, Email: cexmfang@scut.edu.cn
Table S1 BET surface area and weights of the as-synthesized samples.

Sample	BET Surface Area (m²/g)	Product weight (g)
BCN	24.1	0.200
BCN-ht	82.9	0.142
H-CN (1.2 g, 24 h, 180 °C)	64.1	0.153
CN₀.₄ g	74.1	0.157
CN₀.₈ g	65.1	0.164
CN₁.₀ g	63.7	0.171

Table S2 XPS analysis of BCN, BCN-ht and H-CN.

Binding Energy /eV	Samples	C-N=C	C=C	C-N=C	N(C)	N-H	C/N from charge effect	C1	N3	C/N from XPS
	BCN	288.1	284.8	398.0	398.7	400.1	404.4	6.81	0.289	0.850
	BCN-ht	287.9	284.8	398.2	398.7	400.3	404.4	5.68	0.184	0.847
	H-CN	288.1	284.8	398.4	398.8	400.4	404.7	7.56	0.206	0.696

Table S3 Elemental analysis of BCN, BCN-ht and H-CN.

Sample	C/% Wt.	N/% Wt	H/% Wt	O/% Wt	C/N molar ratio
BCN	34.91	62.07	1.12	1.91	0.656
BCN-ht	30.06	54.04	0.35	15.55	0.649
H-CN	33.02	59.49	0.40	7.09	0.647

Table S4 Kinetic parameters of the fitting decay curves of BCN, BCN-ht and H-CN.

Sample	τ₁ (ns) - %contribution	τ₂ (ns) - %contribution	χ²	ave.τ (ns)
BCN	2.0751-50.55	7.2390-49.45	1.078	4.62864855
BCN-ht	1.3274-49.64	4.7958-50.36	0.975	3.07408624
H-CN	1.5577-50.90	5.9560-49.10	1.097	3.7172653
Figure S1 SEM images of CN$_{0.4\,g}$ (A), CN$_{0.8\,g}$ (B) and CN$_{1.6\,g}$ (C).

Figure S2 The TEM image of H-CN.

Figure S3 Elemental mapping patterns of H-CN.

Figure S4 SEM images of CN-8 (A), CN-16 (B) and CN-32 (C).
Figure. S5 SEM images of the samples obtained from the hydrothermal treatment systems containing NH₄Cl (A) or NaNO₃ (B).

Figure. S6 The pH values of the supernatants from the two hydrothermal systems for preparing BCN-ht and H-CN under different reaction durations.

Figure. S7 PL spectra of BCN, BCN-ht, and the samples obtained from the hydrothermal treatment with different amounts of NH₄NO₃.
Figure. S8 Mott–Schottky plots for BCN (A) and BCN-ht (B) performed in 0.5 M Na$_2$SO$_4$ at 8, 10 and 12 kHz. (C) Electrochemical impedance spectroscopy (EIS) at 0.20 V vs. Ag/AgCl for H-CN performed in 0.5 M Na$_2$SO$_4$. (Note that the real part of the impedance is constant above 1 kHz, while the imaginary part has a slope of -1. This implies that the system behaves as a resistance in series with a pure capacitance, which is a prerequisite for Mott-Schottky analysis.)

Figure. S9 Photocatalytic hydrogen evolution rates of samples obtained from the hydrothermal treatment at different temperatures.
Figure. S10 SEM (A) and TEM images (B) of H-CN after photocatalytic reaction.

Figure. S11 FT-IR spectra of BCN, BCN-ht and H-CN. The intense peak at 807 cm$^{-1}$ is assigned to breathing mode of heptazine ring systems. The peaks in the region from 1700 to 1200 cm$^{-1}$ are identified to skeletal vibration of C-N heterocycles. And the broad band between 3260-3070 cm$^{-1}$ range correspond to the symmetric –NH and C-H vibration in the aromatic system, in which the difference of intensity mainly because of the adsorbed water molecular.