TRADITIONAL MEDICINAL SYSTEMS FOR TREATMENT OF DIABETES MELLITUS: A REVIEW

DIMPLE, ASHWANI KUMAR*, VIKAS KUMAR, VIDISHA TOMER

Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
Email: ashwannichandel480@gmail.com

Received: 19 Feb 2018 Revised and Accepted: 14 Apr 2018

ABSTRACT

Diabetes mellitus (DM) is a chronic disease which has clinched the world. More than 300 million people of the world are suffering from this disease and the number is still increasing at a rapid rate as modern medical science has no permanent solution for the disease. Current scenario of the nutraceuticals has increased patient's faith on the traditional medicinal system and world nutraceutical industry is estimated to reach $285.0 billion by 2021. The increasing trend of nutraceuticals in diabetes treatment makes it important to collect the traditional knowledge of medicines under one heading as it can help researchers to formulate new functional foods and nutraceuticals which can either lower down the risk or cure DM. In addition, the discussion of market available food products, their active components and possible health benefits can help the patients to understand the herbal medicines in a better way.

Keywords: Diabetes mellitus (DM), Herbal medicines, Traditional systems, Herbs

INTRODUCTION

World health organization (WHO) has defined diabetes mellitus (DM) as a chronic disease caused by inherited and/or acquired deficiency in the production of insulin by the pancreas, or by the ineffectiveness of the insulin produced [1-3]. It is a metabolic disorder of endocrine system which is characterized by hyperglycemia or hypoglycemia. Diabetes is categorized into two types i.e. insulin-dependent (type 1) and insulin independent (type 2). Type 1 diabetes (insulin dependent) is caused due to the failure of the pancreas to produce insulin. This form develops most frequently in children and adolescents. On the other hand, Type 2 diabetes (insulin independent) results from the impaired action of insulin in the body. This type is more prevalent in adults in comparison to type 1 diabetes [4] and contributes to about 90 percent of the adult cases worldwide. Diabetes is a major risk factor for morbidity like blindness, kidney failure, heart attacks and limb amputation. It was the direct cause for 1.2 million deaths in 2015 [5]. In India, the number of diabetic patients has increased from 31.7 million in 2000 to 69.1 million in 2016 [6]. A record increase of 117% has been noticed in diabetic patients in last 16 years and India has now been declared as “Diabetic Capital” of the world [7]. Diabetes also increases the incidents of hypertension and approximately 70% of diabetic patients suffer from this side effect. Hypertension is related to increased risk of cardiovascular diseases (CVD) in diabetic patients [8]. Diabetes has no permanent cure but can be controlled or suppressed with the help of chemical or natural ways. Various chemical drugs like miglitol, acarbose, metformin etc. are used in the management of diabetes [9] whereas traditional medicinal systems rely on herbs to suppress diabetes. Researchers are still trying to find a medicine or product which can eradicate the disease from the roots [3]. Due to the lack of any solid claimant for the treatment of diabetes till date, many people continue to trust the indigenous medicinal systems. Hence, it is important to review the various traditional medicinal systems, important herbs, their bioactive compounds and mechanism of treatment to generate useful information to carry future studies and develop drugs for the treatment of DM.

Search criteria

The review included articles until 2018. Articles related to indigenous herbal systems like Ayurveda, Chinese traditional medicines system, African medicinal system, Unani herbal system, the Greek-Arab herbal system were reviewed for the study. Studies were included from Research gate, Google Scholar, Science Direct, Scopus, Pubmed, SciElo by using several keywords for search: world diabetes status, traditional medicinal systems for diabetes, herbs for diabetes, herbal drugs for diabetes, phytochemicals as hypoglycemic agents. An attempt was made to review all the important literature from the ancient time to modern era. The scenario for the current herbal medicines was added by searching the online retail stores like Amazon and Indiamart. Google Scholar was used for citation and bibliography.

Blood glucose concentrations

Glucose is considered as a source of energy and an essential nutrient for the body. Normal blood sugar level varies from person to person and normal range of blood sugar (fasting) and after eating (postprandial) has been reported to range within 70-100 mg/dl and 130-150 mg/dl, respectively [10]. A person having blood sugar level above this limit is said to be diabetic (table 1). In normal condition, insulin keeps blood glucose in a normal range but under diabetic conditions, insulin function is damaged and hence a high blood sugar level is observed. Not only the high blood sugar level but low blood sugar is also considered as a major health problem [11].

Table 1: Different concentrations of blood glucose levels in different conditions

Categories	Blood glucose levels	References
Normal (fasting)	70-100 mg/dl	[10]
Normal (post prandial)	130-150 mg/dl	[12]
Hyperglycaemia	Below 70 mg/dl	[13]
Mild	Below 40 mg/dl	
Severe	Below 20 mg/dl	
Hyperglycaemia	Above 250 mg/dl	[14]
Mild (fasting)	>109 mg/dl	
Severe (fasting)	>165 mg/dl	
Different traditional medicinal systems for the treatment of diabetes mellitus

Every civilization has developed indigenous medicinal systems to treat or cure diseases with the help of locally available materials. The age-old experience of thousand years in medical therapy has made these systems more reliable. Majority of the population trusts the traditional medicinal systems over allopathic system due to its lesser-known health implications. Among the traditional medicinal systems, Indian, Chinese, Arab and African systems are world renowned and a crisp review of these medicinal systems has been presented here. A variety of herbal plants and trees used for the treatment of DM, their bioactive components, mode of action and related animal studies have been discussed here.

Traditional medicinal system prevalent in India

Ayurveda is the major traditional system practised in India. Three elemental substances (doshas) are mentioned in Ayurveda, namely, Vata, Pitta and Kapha. An imbalance in these elements results in disease. This traditional system primarily relies on plants and herbs to treat diseases. A separate ministry of Ayurveda, Yoga and Naturopathy, Unani, Siddha and Homeopathy (AYUSH) has been constituted under the government of India with a purpose to develop education and research in the indigenous medicinal system. By seeing the popularity of indigenous medicinal systems, All India Institute of Ayurveda has been established in national capital Delhi by the government of India [15].

Many herbs have been employed traditionally to treat diabetes in India (table 2). A list of indigenous flora i.e. Neem (Azadirachta indica), Babul (Acacia arabica), Kawar (Aloe barbadensis), Peepal (Ficus religiosa), Jamun (Eugenia jambolana), Karela (Momordica charantia), Lahsun (Allium sativum) etc. are used to treat DM [16]. These herbs are rich in antioxidants and phytochemicals. Phytochemicals increase antioxidant enzymes like catalase and glutathione, which suppress the high glucose levels and hence increase the insulin production in the body [17]. Amongst these, bitter melon is one of the most popular herbal plants used by hakims for preparation of anti-diabetic medicines in India. Bitter melon juice has been reported to be more effective than other forms as it reacts faster than any other formulation [18]. The beneficial effect of bitter melon has been reported due to its ability to maintain the structural integrity of the pancreatic islets and regulating the synthesis and release of pancreatic hormones [19]. It has also been reported to maintain blood cholesterol. Bitter melon is highly hypoglycaemic, so it has been advised to avoid its consumption with other medicines having a similar effect as it can immediately lower blood glucose level which leads to other health problems [20]. Nutraceutical industry has also knocked the door of medicinal systems and many ready to serve beverages and capsules like Health karte Karela, Diabeta, Neem Tea are commercially available in India. These herbal products claim to suppress the conditions like hepatic and renal problems which arise due to diabetes. Anti-stress properties have also been reported for such products [15]. In spite of commercially available herbal products, people have more faith in local hakims/vaids and hence, a large chunk of the traditional medicinal system is still unorganised.

Table 2: Popular Indian herbs used for the treatment of diabetes mellitus

Plant name (botanical name/Family)	Parts used	Bioactive compounds	Related animal studies	References
Peepal (Ficus religiosa/Moraceae)	Leaves, bark, fruits, roots, seeds	Saponins, steroids, methanol extract, gingerol, eugenol, cedrane, vanillin, zingerone	Aqueous extracts of bark of peepal (50 and 100 mg/kg body weight) showed hypoglycemic effect in streptozotocin-induced diabetic rats.	[21]
Blackberry (Syzygium cumini or Eugenia jambolana/Myrtaceae)	Leaves, roots, bark, stem, seeds	Saponins, flavonoids, tannins, saponins, sterols, carbohydrates, phenolic alcohols, ellagic acid, salicylic acid, fibres, polyphenols, flavonoids, cardiac glycosides, terpenes, steroids, and resins	Aqueous extracts of seeds of Syzygium cumini (2.5 g and 5 g/kg body weight) showed a hypoglycemic effect in alloxan-induced diabetic rats.	[22]
Fenugreek (Trigonella foenum graecum/Fabaceae)	Seeds and leaves	Saponins, steroids, methanol extract, gingerol, eugenol, cedrane, vanillin, zingerone	Aqueous extract of fenugreek (60 mg/kg body weight) showed hypoglycemic activity in streptozotocin-induced hyperglycemic rats.	[23]
Bitter melon (Momordica charantia/Cucurbitaceae)	Pulp, seeds and leaves	Triterpene, protein, steroid, alkaid, inorganic lipids and phenolic compounds, saponins, charantin, resins	Aqueous extract of bitter melon lowered the glycemic response to both oral and intraperitoneal glucose load in normal mice without altering the insulin response.	[24]
Onion (Allium cepa/Amaryllidaceae)	Whole	Alkaloids, flavonoids, cardiac glycosides, terpenes, steroids, and resins	A mixture of minerals and vitamin extract of onion juice (1 ml/100 g body weight) showed hypoglycemic activity in alloxan-induced rats.	[25]
Holy basil (Ocimum sanctum/Lamiaceae)	Leaves	Volatile oil, carislineol, cirmaratin, isothymusin, rosmarinic acid, apigenin, campestrol	Ethanolic extracts of basil leaves (200 mg/kg body weight) showed hypoglycemic effects in streptozotocin-induced male albino rats.	[26]
Gum Arabic (Acacia nilotica/Fabaceae)	Bark, pods, leaves	Tannins, gallic acid, alkaloids, saponins	Aqueous extracts of leaves of gum arabic showed hypoglycemic effects in alloxan-induced diabetic mice.	[27]
Aloe vera (Barbadensis mill/Asphodelaceae)	Leaves extract	Anthraquinones, glycosides, vitamins (A, C, E), lipids, sterols, gibberlins, pseudototinosaponin AII and prototinosaponins AII	A mixture of minerals and vitamin extract of leaf pulp of aloe vera (300 mg/kg body weight) showed hypoglycemic effect in streptozotocin-induced adult male albino rats.	[28]
Gooseberry (Ribes uva-crispa/Grossulariaceae)	Whole	Tannins, phenols, alkaloids, flavonoids, gallic acid, corilagin, geraniin, ellagic acid	Phenol extracts of gooseberry (13.5 mg/kg body weight) showed hypoglycemic activity in type 2 diabetic rat models.	[29]
Plant	Parts Used	Active Constituents	Effects	
-------	------------	---------------------	---------	
Mulberry (Morus alba)	Leaves, stems, flowers	Rutin, isoquercitrin, astragalin, caffeic acid, ethanolic extract	Aqueous extract (300 mg/kg body weight) showed hypoglycemic effects in streptozotocin-induced diabetic rats. [40]	
Guava (Psidium guajava)	Fruits	Oxalic acid, malic acid, ammonia, phenylpropanol amide, butenyl acetate, tannins, resins, calcium oxalate, tannic acid, flavonoids, phenolic acid	Methanol extracts of guava leaves (250 mg/kg body weight) showed hypoglycemic effects in streptozotocin and alloxan-induced diabetic mice. [38]	
Coriander (Coriandrum sativum)	Leaves, roots and stems	Flavonoids, sterols, amino acids, saponins and tannins	A Dose of 200 mg/kg and 400 mg/kg body weight of a methanolic extract of coriander showed a significant dose-dependent decrease in blood glucose level. [42]	
Cumin (Cuminum cyminum)	Seeds	Flavonoids, anthraquinones, phytosterol, saponins, steroids, tannins, triterpenoids	Normal rats maintained on 1.25% cumin powder for 8 weeks showed reduction in hyperglycaemia and glucosuria. [44]	
Cinnamon (Cinnamomum cassia)	Stems, seeds	Methylhydroxycalcohol, tannins, flavonoids, glycosides, terpenoids, coumarins, anthraquinones	Streptozotocin-induced diabetic rats showed positive effects with cinnamon methanol extracts (3 g/kg body weight). [46]	
Olives (Olea europaea)	Leaves, fruits, roots	Alkaloids, terpenoids, secoiridoids, ethanolic, oleosides, tyrosol	Aqueous extract of olive leaves (200 mg/kg body weight) showed hypoglycemic effects in streptozotocin-induced diabetic rats. [48]	
Stinging nettle (Urtica dioica)	Leaves, stems, flowers	Ethanol, aluminum chloride, flavonoids, acetylcholine, histamine, phenylpropanol amide, caffeic acid, chlorogenic acid, fatty acids	Acetate extracts of nettle leaf (100 mg/kg body weight) showed hypoglycemic effects in streptozotocin-induced diabetic rats. [51]	
Periwinkle (Catharanthus roseus)	Leaves, roots, flowers	Alkaloids, bisphosphatase, fructose, superoxide dimitase, peroxidase, catalase, dichloromethane, methanol	Methanolic extracts of periwinkle (500 mg/kg body weight) showed hypoglycemic activity in alloxan diabetic rats. [53]	
Garlic (Allium sativum)	Whole	Alkaloids, saponins, steroids, carbohydrates, tannins, flavonoids, terpenoids, phenolics	Minerals and vitamin extract of garlic juice (1 ml/100 g body weight) showed hypoglycemic effects in alloxan-induced diabetic rats. [56]	
Ginseng (Panax quinquefolius)	Leaves, flowers and berries	Triterpenes, saponins, polyacetylenes, polysaccharides, nitrogen-containing compounds, ubiquitins, phenolic compounds	Ethanol extract of ginseng root (500 mg/kg body weight) showed a hypoglycemic effect in streptozotocin-induced diabetic rats. [61]	
Lilac (Syringa vulgaris)	Stems, flowers, leaves	Isocoumarin, nimbinflavone, nimbolinol, nimbinene, nimbolide, quercetin, quercitrin	Ether extracts of neem seed (2 g/kg body weight) showed antidiabetic effects in streptozotocin-induced diabetic rats. [63]	
Curry leaves (Murraya koenigii)	Leaves	Carbohydrates, alkaloids, phytosterols, alcohol, flavonoids, saponins, tannins, glycosides, carbohydrates	Aqueous extract of curry leaves (300 mg/kg body weight) showed antidiabetic activity in alloxan-induced diabetic rats. [65]	
Gymnema (Gymnema sylvestre)	Leaves	Steroids, terpenoids, alkaloids, flavonoids, coumarins, saponins, tannins	Ethanol extract of Gymnema sylvestre (800 mg/kg body weight) showed hypoglycemic activity in Otsuka Long-Evans Tokushima fatty (OLETF) mice. [70]	
Loquat (Eriobotrya japonica)	Fruits, dried leaves	Triterpenes, flavonoids, glycosides, sesquiterpenes, uronic acid, oleic acid, precuscin B1, chlorogenic acid	Leaf extracts of loquat (800 mg/kg body weight) showed hypoglycemic activity in Otsuka Long-Evans Tokushima fatty (OLETF) mice. [68]	

Note: The effects listed are based on the in vivo studies conducted on various animal models. The results are indicative of the potential efficacy of the plant extracts in managing diabetes-related parameters. Further research is needed to ascertain their clinical efficacy and safety.
Traditional medicinal system prevalent in China

In traditional Chinese medicinal system, diabetes is categorised as Xiaokezheng and Xiaodanzheng. The predominance of yin deficiency explains the syndrome differentiation of the disease. According to the religion of China, yin deficiency means negative forces which are present in the food and the universe. There should be a positive balance between yin (negative forces) and yang (positive forces).

According to Chinese theory, these forces regulate the life of their people. Even if one of these forces is lacking, it results in the symptoms of DM. Inflammation in the stomach, deficiency of kidney yin, deficiency of yin or yang and yin yang has been described as the symptoms of DM. The yin-deficiency may be due to emotional disorders, overstrain, improper diet and excessive sexual activities.

Chinese doctors suggest the use of integrated treatment for diabetes. The treatment includes nourishing yin, moistening of dryness and increasing fluid production. They usually mix two or more herbs together to make one formula which shows hypoglycemic activity as well as suppresses the symptoms caused by the DM [81].

Chinese herbs (table-3) are reported to be most effective for type 2 DM, when they are consumed in mixture form. Chinese doctors always provide 2 or 3 types of medicines after examining the symptoms to reduce the effects. Indian Ayurveda and Chinese traditional system have many herbs (peepal, blackberry, onion, garlic etc.) in common [82]. Berberine is the most commonly found bioactive compound in major Chinese herbs used for the treatment of diabetes [83]. Rhizoma pumipidis is the richest source for this bioactive compound [84]. There are 30 anti-diabetic herbal formulas in China which are chemically approved by the Chinese State Food and Drugs Administration (SFDA). This system is being practised for hundred years and is still followed [3].

Chinese name/English name	Botanical name/family	Parts used	Bioactive compounds	Related animal studies	Reference
Shu di Huang/Rehmania root	Rehmannia glutinosa/Scrophula riacae	Roots	Catalpol, phenethyl alcohol, leucosceptoside, glycosides, monoterpene sesquiterpenes, pinelleic acid, mannitol, ajugal, uracil, raffinose, terpenoids	Oligosaccharide in rehmanniaceae (100 mg/kg body weight) showed hypoglycemic effects in alloxan-induced diabetic rats.	[85]
Guang fang ji/Hang fang ji	Stephania tetranda moore/Menipperm aceae	Roots	Alkaidoids, tetrandrine, protoberbine, morphinane, phenanthrene, steroids, terpenoids, lignans, coumarins	Alkaidoids present in Stephania tetranda S. Moore has been reported to cause anti-hyperglycemic effects in streptozotocin diabetic animals at a dosage of 1 mg/kg body weight.	[86] [87]
Huang lian/Coptis goldthread	Rhizoma coptidis/Ranuncula la	Roots, stems, seeds, leaves	Isoquinoline, alkaloids, berberine, palmatine, jateorhizine, epiberberine, coptisine	Berberine extract of coptis (200 mg/kg body weight) showed the hypoglycemic activity in alloxan-induced diabetic rats.	[84] [88]
Huang Qi/Milk vetch root	Radix astragali/Fabaceae ae	Roots	Isoflavones, iso-flavonoids, saponins, gaskodes 2, astragalside, polysaccharides	Ethanollic extracts (2 g/kg body weight) showed hypoglycemic activity in db/db induced diabetic mice.	[89] [90]
Bai guo/Maidenhair tree	Ginkgo biloba/Ginkgoace ae	Leaves	Flavonoid glycosides, terpene lactones, ginkgolic acids	Ginkgo protein extracts (200 mg/kg body weight) showed hypoglycemic activity in pregnant rats and effect on their reproductive outcome.	[91]
Wuweizi/Five flavor berry	Fructus schisandraei/Schis andreae	Fruits	Lignans, polysaccharides	Flavonoids extracts showed hypoglycemic activity in streptozotocin-induced rats.	[92]
Pueraria /Gegen	Pueraria lobata/Fabaceae	Dried roots	Isoflavonoids, triterpenoids	Isoflavins extract of pueraria (100 mg/kg body weight) acted on skeletal muscles and improve insulin levels in the body of type 2 diabetic male sprague dawley rats' model.	[93]
Shan zhu yu/Cornelian cherry	Cornus mas/Cornacea	Carp	Ethanol, ursoic acid, glycosides, loganic acid, olea nolic acid, mevaloside	Ethanollic extract of cornelian cherries showed hypoglycemic activity and directly affected the insulin levels in the pancreas in alloxan-induced rats.	[94]
Unani medicinal system

Unani system of medicine deals with various conditions of health and provides preventive, curative and curative health care. Scientific principles and holistic concepts of healing and health are the basis of Unani treatment system [95]. This system is practiced in India, Bangladesh, Pakistan, Sri Lanka, Nepal, China, Iran, Iraq, Malaysia, Indonesia, Central Asia, Middle Eastern countries, some African and European countries [96]. Arabs developed the Unani medicinal system into elaborate medical sciences and its teaching was started in Greece. So, Unani medicinal system is also known as Greco-Arab medicinal system [97]. Unani medicinal system is based on four humors. These are 4 fluids of body i.e. blood, phlegm, yellow bile, and black bile which are related to mental, emotional, spiritual and physical causes of any disease. The humors are assigned such characteristics as body heat, urine and stool examination, observation and palpitation. The prescriptions of medicines given by Unani medicinal system contains detailed instructions about the dosage of the medicine [99]. This system was introduced to India in eighth century by Arabs and Iranians [95]. Herbs used for treatment of DM under Unani system are bitter apple, virgin’s mental, cape liliac, spiny gourd, hisawarg, marshmallows, malabar nut, senna, fennel, licorice root etc. [table 4] [99].

Although the Unani system is known as a Greco-Arab system but with time Greco-Arab system has created a new identity and new system is somewhat different from Unani. In the Greco-Arab medicinal system, a mixture of four herbal plants is prepared. These medicinal plants are leaves of walnut (juglans regia), olive (Olea europaea), nettle (Urtica dioica) and saltbush (Atriplex). The mixture is known as ‘Glucolevel’. It has been reported to enhance the insulin production in the body and thus maintaining blood glucose level. Medicines prepared from these herbs or their products are used clinically [100]. Along with herbs, mineral extracts from animals are also used to prepare traditional medicines for the treatment of DM [100, 101]. The use of common Indian herbs like garlic and onion has been also reported in this medicinal system.

Herb name	Botanical name/family	Parts used	Bioactive compounds	Related animal studies	References
Bitter apple	Citrullus colocynthus/Cucurbitaceae	Fruits, leaves, roots	Glycosides, alkaloids, flavonoids, carbohydrates, phenolic acids, tocopherols, carotenoids	Saponin extracts of the rind of bitter apple (50 mg/kg body weight) showed a hypoglycemic effect in alloxan diabetic rats and rabbits.	[102, 103]
Virgin’s mantle	Fagonia indicura brum or Fagonia cretica/Zygophyllaceae	Whole plant	Glycosides, saponins, tannins, alkaloids, flavonoids, anthraquinones, coumarins, phenols	Methanol extracts of rind of virgin’s mantle (500 mg/kg body weight) showed hypoglycemic effects in alloxan-induced diabetic rabbits.	[104, 105]
Cape liliac	Melia azedarach/Meliaceae	Fruits, leaves, stem, bark	Flavonoids, phenolic, linoleic acid, saponins, terpenoids, glycosides, rutins, alkaloids	Methanolic leaf extract showed an increase in wound healing capacity in alloxan diabetic rats.	[106, 107, 108]
Spiny gourd	Mimordica dioca/Cucurbit	Fruits, seeds	Phytic acid, alkaloids, flavonoids, saponins, steroids, saponins, triterpenoids, lectin	Methanol extracts of spiny gourd (300 mg/kg body weight) showed anti-diabetic activities in streptozotocin-induced diabetic rats.	[109, 110]
Hisawarg	Rhyza stricta decne/Apocynaceae	Fruits, seeds, flowers, leaves	Alkaloids, flavonoids, b-carboline	Rhaza (2-4 g/kg body weight) showed anti-diabetic properties in alloxan-induced diabetic rats.	[111, 112]
Malabar nut	Justicia adhatoda or Adhatoda zeylanica/Anacanthaceae	Leaves, roots	Carbohydrates, proteins, steroids, alkaloids	Ethanolic extracts of leaves (50-100 mg/kg body weight) and roots (100 mg/kg body weight) showed anti-diabetic properties in alloxan-induced diabetic rats.	[114, 115]
Senna	Senna didymobotrya or Senna auriculata/legumes	Leaves	Flavonoids, steroids, phenols, tannins, alkaloids, terpenoids, glycosides, saponins	Ethanol extracts of leaves of senna (150 mg/kg body weight) showed hypoglycemic activity in streptozotocin-induced diabetic mice.	[116, 117]
Fennel	Foeniculum vulgare/Umeliifers	Leaves, flowers	Tannins, saponins, flavonoids, alkaloids, terpenoids	Aqueous extracts (300 mg/kg body weight) showed anti-diabetic activity in streptozotocin-induced diabetic rats.	[118, 119]
Licorice root	Glycyrrhiza glabra/legumes	Leaves, fruits, stem, roots	Flavonoids, sterols, amino acids, saponins, triterpene, tannic acid, isoflavonoids, coumarins, saponins	Flavonoid extract of licorice root oil showed anti-diabetic effects in obese diabetic rats.	[120, 121]

Traditional medicinal system prevalent in Africa

In Africa, the traditional medicinal system is ritually followed in Guinea [122] and nearly 45000 species of medicinal plants are used in the treatment of various diseases [123]. Herbal medicines used in Africa are very effective and most of them have been approved chemically. According to 2005 data, about 80% of the people in Africa followed herbal treatments and had positive results [124]. Many surveys have been conducted in Africa which proved the effectiveness of traditional medicines. Tsabang et al. conducted a survey on 116 diabetic patients in Cameroon, Africa in 2016 and reported that Allium cepa, Momordica charantia, Persea americana and Phyllanthus amarus were the principal plants used for the treatment of DM. Authors concluded that herbal medicine played an important role in the management of diabetes in Cameroon [125].
Table 5: Important herbs used in African medicinal system for the treatment of diabetes mellitus

Name of the herb	Parts used	Bioactive compounds	Related animal studies	Reference
Riboss tea plant	Leaves, stem, seeds	Aspalathin, dibydroachalcone, orientin, flavones, isovitexin, tannins, flavanols	Alkaline extracts of rooibos tea (500 mg/kg body weight) showed hypoglycemic activity and reduced the oxidative stress in streptozotocin-induced diabetic rats.	[126]
Gota kola (Centella asiatica/Apocynaceae)	Leaves	Alkaloids, flavonoids, phenols, tannins, glycosides, steroids, saponins	Ethanolic and methanolic extracts of leaves of this plant (250 mg/kg body weight) showed anti-diabetic effects in alloxan-induced diabetic rats.	[128]
Honey bush/kustee/herbal tea (Cyclopia intermedia/Fabaceae)	Leaves	Xanthone, magnifierin, flavone, glycoside, flavanones, lutecin, isomagniferin, hesperetin, eriocitrin	Hot water aqueous honey bush extract (5 mg/kg body weight) showed anti-diabetic activities in streptozotocin-induced diabetic rats as well as in diet-induced diabetic rats.	[130]
Wood spider or devil’s claw (Harpagophyllum procumbens/Pedaliaceae)	Leaves, roots	Flavonoids, phytosterols, glycosides, acetoside, isoacetoside	The secondary aqueous root extract of devil’s claw plant (800 mg/kg body weight) showed hypoglycemic activity in streptozotocin induced diabetic rats.	[131]
Um'akalaabo (Pelargonium graveolens/Geraniaceae)	Leaves	Terpenoids, flavonoids, phenolics, cinnamic acids, tannins, coumarins, isomenthone	Essential oil of leaves of *Pelargonium graveolens* (two doses of 75 mg/kg and 150 mg/kg body weight along with reference drug glibenclamide) showed hypoglycemic activity in alloxan-induced diabetic rats.	[133]

Herbal formulations available in the market, their dosage and health claims

The traditional herbal medicine system has entered a new era of nutraceuticals. Many formulations of these herbal plants are available in the market in the form of pills, capsules, oils and syrups. These products may either be a preparation of single herb or formulation of two or more herbs. Health claims for many disorders like obesity, DM, CVD and sex irregularities have been reported for these products [135-171]. These are known to control diabetes either by controlling glycemic index or enhancing the effectiveness of insulin. Major herbal products available in the market have been discussed in table 6.

Table 6: Herbal medicines available in Indian market, their dosage and their health claims

Medicines/Dosage	Herb present	Health claims	References
Stream CP3 Capsules/1 in a day	Peepal	Helps to cure diabetes, constipation treats ear infections, prevents arthritis, and heals wounds, treat skin conditions and show antimicrobial properties.	[135]
Herbal Hills Methi Seed Powder/once in a day	Fenugreek	Helps to treat diabetes and in proper digestion, helps to detoxify the body, supports uterine health.	[136]
Pitambari Karela Tablets/2 in a day	Bitter melon	Helps to treat diabetes, fever, common cold, cough, sore throat, kidney stone and heart disorders.	[137]
Himalaya Karela Tablets/2 in a day	Aloe vera	Helps to treat diabetes, hypertension, skin problems, rashes, wounds and hyperlipidemia.	[138]
Gloco Care Karela Medicine/2 in a day	Onion	Helps to cure DM, slower the rate of occurrence of cancer, CVDs.	[139]
Deemark Diaba Amrit/50 mg in a day	Garlic	Helps to cure diabetes, CVD, hyperlipidemia, hypertension, helps in cancer, fungal infections, have antimicrobial effects.	[140]
Reese Fresh Onion Juice/50 g a day	Holy basil	Helps in diabetes fever, common cold, cough, sore throat, kidney stone and heart disorders.	[141]
Durkee Garlic Oil/2-5 mg	Aloe vera juice/10-20 ml daily	Helps to treat diabetes, hypertension, skin problems, rashes, wounds and hyperlipidemia.	[142]
Bhumijs Tulsi Capsules/2 in a day	Triphala Aloe vera Juice/1 cap twice a day	Helps to cure diabetes, constipation, insomnia, bloating and blood pressure.	[143]
Shivalik Tulsi Capsules/1 in a day	Patanjali Aloe vera/20-30 ml daily	Helps to cure diabetes, improve digestion problems, good for hair health and also helps to cure respiratory problems.	[144]
Patanjali Amla Juice/20-30 ml daily	Holy basil Amla Capsules/1 in a day, Cure Garden Gluco Balance/2 in a day (added cumin)	Helps to cure diabetes, prevent atherosclerosis, suppress effects of cancer and enhances immunity.	[145]
Best Naturals Mulberry Leaf Extract/1g in a day	Mulberry	Helps to cure diabetes, prevent atherosclerosis, suppress effects of cancer and enhances immunity.	[146]
Shri ji Neem Tablets/1-2 tablets daily	Lilac	Helps to cure diabetes, treat skin infections, helps in heart diseases, in fever, breathing conditions, cure malaria.	[147]
Ayurvedic Neem Capsules/1 d, Gold 350 Raw Coriander Seeds/In meal time vegetables we can add	Coriander	Helps to cure diabetes, high blood pressure, cholesterol and in urinary infections also.	[148]
Health Thru Nutrition Black Cumin Seed Oil/once in a day, Raw jeera seeds/In meal we can use	Cumin	Helps to cure diabetes, constipation, insomnia, bloating and blood pressure.	[149]
The vitagreen Cinnamon/1 capsule in a day, Gluco care/1 capsule in a day, Nutri flair Ceylon Cinnamon Capsules/2 in a day	Cinnamon, bitter melon	Helps to cure diabetes, allergies, relieve cold and flu, boost energy and improves digestion.	[150]
Livestamin Ashwagandha Capsules/2 in a day, Herbal Hills Dia Care Churna/2 spoons in morning in empty stomach	Ginseng	Helps to cure diabetes, to treat stress, boost the immune system, enhance stamina, and reduces high cholesterol, prevention of heart disease.	[151]
In life Diastan/2 capsules in a day	Gymnema basil	Helps to cure diabetes, maintain lipid levels in the body.	[152]
CONCLUSION
Increase in the number of diabetic patients, high cost for medical treatments, unsatisfactory treatment response and mistrust of people in present-day health care facilities signifies the still incomplete nature of the modern medicinal system. These factors are the major reasons for the continuous trust of people in the traditional medicinal systems. All the major traditional medicinal systems, viz., Indian, Chinese, African and Unani medicinal systems provide strong evidence for their effectiveness and the rationale for why people continue to trust traditional knowledge. It can be concluded that important constituents of Ayurveda and other traditional medicinal systems can provide a base for development of more effective drugs in modern medicinal system.

AUTHORS CONTRIBUTIONS
All the authors have contributed equally

CONFLICT OF INTERESTS
Declared none

REFERENCES
1. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1. Diagnosis and classification of diabetes mellitus; 1999.
2. American Diabetic Association. Classification Diagnosis Diabetes 2015;38 Suppl 1:58-16.
3. Li WL, Zheng HC, Bukuru J, De Kimpe N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 2004;9:2-12.
4. Nagalakshmi K, Sujatha S.Nanoencapsulation augments release efficacy and glucose tolerance of 14-deoxy, 11,12-didehydro andrographolide loaded poly(caprolactone) nanoparticles in streptozotocin-nicotinamide induced type 2 diabetes. Int J Pharm 2017;55:1-5.
5. About diabetes as a risk factor. Available from: http://www.who.int/medicentre/factsheets/fs312/en/[Last accessed on 04 Apr 2018]
6. Khavane Karn B, Magar Vidya K, Pagghan S.A current status of diabetes mellitus in India: a review. World J Pharm Sci 2017;6:235-43.
7. About Diabetes Capital of the world. Available from https://timesofindia.indiatimes.com/lifestyle/health-fitness/health-news/India-is-the-diabetes-capital-of-the-world/articleshow/50753468.ltm [Last accessed on 29 Nov 2017]
8. Dhaliwal C, Errnmacpherson, Richardson J. Effectiveness of telephone-delivered interventions for increasing physical activity levels in persons with type 2 diabetes or hypertension: a systematic review. J Crit Rev 2015;2:6-11.
9. About chemical drugs. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020682s0081bl.pdf. [Last accessed on 16 Mar 2018]
10. About blood sugar levels. Available from: https://www.livescience.com/44498-what-is-normal-blood-sugar.html [Last accessed on 29 Nov 2017].
11. About blood sugar levels. Available from: https://www.diabetteselfmanagement.com/bl/blog/what-is-a-normal-blood-sugar-level/ [Last accessed on 29 Nov 2017]
12. Srilakshmi B. Dietetics. 7th ed. New age international publishers; 2014.
13. About blood glucose levels. Available from: https://www.shadesonline.org/health-services/health-information/healthwise/2017/06/27/13/25/diabetes-related-high-and-low-blood-sugar-levels [Last accessed on 29 Nov 2017]
14. About hyperglycemia. Available from: https://www.endocrinewhich.com/high_blood_sugar_hyperglycemia/article_em.html#high_blood_sugar_hyperglycemia_facts [Last accessed on 29 Nov 2017].
15. About AYUSH. Available from: http://aayush.nic.in/index.php?title=ayush/diabetes_awareness/2017-02-24-view /modak-m-dixit-p-lonchhe-j-gshakti-s-devasagayam-tp. Recent advances in Indian herbal drug research guest editor: Thomas Paul Asir Devasagayam Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 2010;74:163-73.
16. Rizvi SI, Mishra N. Traditional Indian medicines used for the management of diabetes mellitus. J Diabetes Res 2013;1:11. http://dx.doi.org/10.1155/2013/712092
17. Abascal K, Yarnell E. Using bitter melon to treat diabetes. J Altern Complement 2005;11:179-84.
18. Alam MA, Uddin R, Subhan N, Rahman MM, Jain P, Reza HM. Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome. J Lipids 2015;1:18. http://dx.doi.org/10.1155/2015/496169
19. Bhownik D, Trigpathi K, Das B. Natural medicines used in the traditional Indian medical system for therapy of diabetes mellitus. J Ethnopharmacol 2009;2:1-21.
20. Makhiya IK, Sharma IP, Khamar D. Phytochemistry and pharmacological properties of Ficus religiosa: an overview. Ann Biol Res 2013;1:171-90.
21. Pandit R, Phadke A, Jagtap A. Antidiabetic effect of Ficus religiosa extract in streptozotocin-induced diabetic rats. J Ethnopharmacol 2010;128:462-6.
22. Prince PS, Menon VP, Par L. Hypoglycaemic activity of Syzigium cumini seeds: effect on lipid peroxidation in alloxan diabetic rats. J Ethnopharmacol 1998;61:1-7.
23. Sharma SB, Nasir A, Prabhu KM, Murthy PS, Dev G. Hypoglycaemic and hypolipidemic effect of ethanolic extract of seeds of Eugenia jambolana in alloxan-induced diabetic rabbits. J Ethnopharmacol 2003;85:204-6.
24. El-Soud NS, Khali MV, Hussein JS, Oraby FS, Farrag AH. Antidiabetic effects of fenugreek alkaloid extract in streptozotocin induced hyperglycemic rats. J Appl Sci Res 2007;3:1073-83.
25. Al-Daghri NM, Alalkil MS, Alkharfy KM, Mohammed AK, Abd-Alrahman YH, Yakout SM, et al. Fenugreek extract as an inducer
of cellular death via autophagy in human T lymphoma Jurkat cells. BMC Altern Complement Med 2012;12:202.

27. Joseph B, Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac J Trop Dis 2013;3:93-102.

28. Gazuwa SY, Makanjuola ER, Jarum KH, Kutbshik JR, Mafaliul SI. Antidiabetic activity of Allium cepa/Allium sativum and the effect of their aqueous extracts (cooked and raw forms) on the lipid profile and other hepatic biochemical parameters in female albino wistar rats. Asian J Exp Biol Sci 2013;4:406-10.

29. El-Demerdash FM, Yousef MI, El-Naga NA. Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food Chem Toxicol 2005;43:57-63.

30. Vats V, Yadav SP, Grover JK. Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycojen content and carbohydrate metabolism in rats. J Ethnopharmacol 2004;96:155-60.

31. Mukundi MJ, Piro NM, Mwaniki NE, Murugi NJ, Daniel AS, Peter GK, et al. Antidiabetic effects of aqueous leaf extracts of Acacia nilotica in alloxan induced diabetic mice. J Diabetes Metab 2011;5:1-6.

32. Abou-Youssef AM, Menshia BA. Beneficial effects of Aloe vera in treatment of Mycobacterium tuberculosis in vivo and in vitro studies. Bull Faculty Pharm Cairo University 2013;51:7-11.

33. Krishnaveeni M, Mirunalini S. Amla-the role of ayurvedic therapeutic herb in cancer. Asian J Pharm Clin Res 2011;4:13-7.

34. Pinto MDS, Kwon YI, Apostolidis E, Lajolo F, Genovese MI, Shoaib ZM, Muhammad F, Javed I, Akhtar M, Khaliq T, Aslam B, Farzami B, Ahmadvand D, Vardarsi S, Majin FJ, Khaghani SH. Induction of insulin secretion by a component of Urtica dioica leave extract in perfused islets of langerhans and its in vivo effects in normo and streptozotocin diabetic rats. J Ethnopharmacol 2003;89:47-53.

35. Ahmed MF, Kazim SM, Ghori SS, Mehbabeen SS, Ahmed SR, Ali SM, et al. Antidiabetic activity of Vinca rosea extracts in alloxan-induced diabetic rats. Int J Endocrinol 2010;1:6. DOI:10.1155/2010/409090.

36. Nammi S, Biennik MK, Lodagala SD, Behara RB. The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rats. BMC Complementary Altern Med 2003;3:1-4.

37. Gajalakshmi S, Vijayalakshmi S, Devi RV. Pharmacological activities of Catharanthus roseus in vitro: a perspective review. Int J Pharma Sci 2013;5:431-9.

38. Divya BJ, Suman B, Venkataswamy M, Thyagaraju K. A study on phytochemicals, functional groups and mineral composition of Allium sativum (garlic) cloves. Int J Curr Pharm Res 2017;9:42-5.

39. El-Demerdash FM, Yousef MI, El-Naga NA. Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food Chem Toxicol 2005;43:57-63.

40. Ohaeri OC. Effect of garlic oil on the levels of various enzymes in the serum and tissue of streptozotocin diabetic rats. Biosci Rep 2001;21:19-24.

41. Angelova N, Kong HW, Heijden R, Yang SY, Choi YH, Kim HK, et al. Recent methodology in the phytochemical analysis of ginseng. Phytochem Anal 2008;19:2-16.

42. Kim HY, Kang KS, Yamabe N, Nagai R, Yokoza T. Protective effect of heat-processed American ginseng against diabetic renal damage in rats. J Agric Food Chem 2007;55:8491-7.

43. Haesan NA, Karunakaran R, Sankar U, Aye KM. Anti-inflammatory effect of Zingiber officinale on spleen and paw edema in rats. Asian J Pharm Clin Res 2017;10:353-5.

44. Islam MS, Choi H. Comparative effects of dietary ginger (Zingiber officinale) and garlic (Allium sativum) investigated in a type 2 diabetes model of rats. J Med Food 2008;11:152-9.

45. Sabapathy R, Nagini S. Medicinal properties of neem leaves: a review. Curr Med Chem Anticancer Agents 2005;5:149-56.

46. Gupta S, Kataria M, Gupta PK, Murganandan S, Yashroc RY. Protective role of extracts of neem seeds in diabetes caused by streptozotocin in rats. J Ethnopharmacol 2004;94:185-9.

47. Farzami B, Ahmadvand D, Vardarsi S, Majin FJ, Khaghani SH. Induction of insulin secretion by a component of Urtica dioica leave extract in perfused islets of langerhans and its in vivo effects in normo and streptozotocin diabetic rats. J Ethnopharmacol 2003;89:47-53.
Tumkur district, Karnataka. J Pharmacogn Phytochem 2012;4:09-11.

69. Kang MH, Lee MS, Choi MK, Min KS, Shimamoto T. Hypoglycemic activity of Gymnema sylvestre extracts on oxidative stress and antioxidant status in diabetic rats. J Agric Food Chem 2012;60:2517-24.

70. Tanaka K, Nishizono S, Makino N, Tamano S, Terai O, Ikeda I. Hypoglycemic activity of Eriobotrya japonica seeds in type 2 diabetic rats and mice. Biosci Biotechnol Biochem 2008;72:686-93.

71. Vishwakarma S, Chandan K, Jha RC, Khushi S. Comparative study of qualitative phytochemical screening and antioxidant activity of Mentha arvensis, Eclipta prostrata and Allium porrum. Indo Am J Pharm Res 2014;4:2538-56.

72. El-Yamani MA. Cinnamon, cardamom and ginger impacts as evaluated on hyperglycemic rats. Res Specific Education 2011;2:655-76.

73. Park SH, Ryu DN, Bu Y, Kim H, Simon JE, Kim KS. Antioxidant components as potential neuroprotective agents in sesame (Sesamum indicum). Food Rev Int 2010;26:103-21.

74. Bhuvaneswari P, Krishnakumari S. Antihyperglycemic potential of Sesamum indicum (Lin) seeds in streptozotocin induced diabetic rats. Int J Pharm Sci 2012;4:527-31.

75. Khadse PM, Deshmukh VR. Qualitative phytochemical analysis, pharmacological studies and traditional benefits of Trachyspermum ammi (L.).Sprag. Int J Ap Appl Res 2013;7:49-51.

76. Niaz K, Gull S, Zia MA. Antihyperglycemic/hypoglycemic effect of celery seeds (ajwain/ajmod) in streptozotocin induced diabetic rats. J Rawalpindi Med Coll 2013;17:134-7.

77. Ahmad N, Fazehi M, Abbasi BH, Farooq S, Ali M, Khan MA. Biological role of Piper nigrum L. (black pepper): a review. Asian Pac J Trop Biomed 2012;2:51945-53.

78. Rauscher FM, Sanders RA, Watkins JB. Effects of piperine on antioxidant pathways in tissues from normal and streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 2000;14:292-94.

79. Sharafi SM, Rasooli I, Owlia P, Taghizadeh M, Astaneh SD. Protective effects of bioactive phytochemicals from Mentha piperita with multiple health potentials. Pharmacogn Mag 2010;6:147-53.

80. Barbhilo SM, Damasonco DC, Spada AP, Silva VS, Martuchi KA, Oshiwa M, et al. Metabolic profile of offspring from diabetic wistar rats treated with Mentha piperita (peppermint). Evid Based Complement Alternat Med 2011;1-6. http://dx.doi.org/10.1155/2011/430237

81. Xie W, Zhao Y, Zhang Y. Traditional Chinese medicines in treatment of patients with type 2 diabetes mellitus. Evid Based Complement Alternat Med 2011;1-5. DOI:10.1155/2011/726723.

82. Patwardhan B, Warude D, Pushpangadan P, Bhut N. Ayurveda and traditional Chinese medicine: a comparative overview. J Evidence-Based Complement Altern Med 2005;2:465-73.

83. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shin Y, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006;55:2256-64.

84. Tang LQ, Wei W, Chen LM, Liu S. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J Ethnopharmacol 2010;138:109-15.

85. Zhang R, Zhou J, Jia Z, Zhang Y, Gu G. Hypoglycemic effect of Rehmannia glutinosa oligosaccharide in hyperglycemic and alloxa-induced diabetic rats and its mechanism. J Ethnopharmacol 2010;130:36:93.

86. Semwal DK, Badoni R, Semwal R, Kothiyal SK, Singh GJ, Rawat U. The genus Stephania (Menispermaceae): Chemical and pharmacological perspectives. J Ethnopharmacol 2018;230:132:369-83.

87. Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK. Antidiabetic agents from medicinal plants Curr Med Chem 2006;13:2120-38.

88. Wang D, Liu Z, Guo M, Liu S. Structural elucidation and identification of alkaloids in Rhuszoma copidis by electrospray ionization tandem mass spectrometry. J Mass Spectrom 2004:39:1355-65.

89. Xiao W, Han L, Shi B. Microwave-assisted extraction of flavonoids from Radix astragali. Sep Purif Technol 2008;62:614-8.

90. Hoo RL, Wong JY, Qiao CF, Xu A, Xu PX, Lam KS. The effective fraction isolated from Radix astragali alleviates glucose intolerance, insulin resistance and hyperglycemia in db/db diabetic mice through its anti-inflammatory activity. J Clin Nutr Metab 2010;7:1-12.

91. Rugde MV, Damasonco DC, Volpato GT, Almeida FC, Calderon LD, Lemonica IP. Effect of Ginkgo biloba on the reproductive outcome and oxidative stress biomarkers of streptozotocin-induced diabetic rats. Braz J Med Biol Res 2007;40:1095-9.

92. Kim JO, Kim KS, Lee GD, Kwon JT. Antihyperglycemic and antioxidant effects of new herbal formula in streptozotocin-induced diabetic rats. J Med Food 2009;12:278-35.

93. Chen X, Wang L, Fan S, Song S, Min H, Wu Y, et al. Puerarin acts on the skeletal muscle to improve insulin sensitivity in diabetic rats involving p-oxidation receptor. Eur J Pharmaco 2018;818:115-23.

94. Asgary S, Rafeieian Kopaee M, Shamsi F, Najafi S, Sabehkar A. Biochemical and histopathological study of the antihyperglycemic and anti-hyperlipidemic effects of cornelion (Cornus mas L) in alloxa-induced diabetic rats. J Complementary Int Med 2014;11:63-9.

95. Subbarayappa BV. The roots of ancient medicine: an historical outline. J Biosci 2001;26:135-43.

96. Rahman R, Pasha S, Kate D, Siddiqui K, Khan M, Janm C. Unani system of medicine the science of health and healing 2013.p.1-16.

97. Husain A, Sofi GD, Tajuddin T, Dang R, Kumar N. Unani system of medicine-introduction and challenges. Med J Islamic World Acad Sci 2010;18:27-30.

98. Rahman SZ, Khan RA, Latif I. A importance of pharmacovigilance in Unani system of medicine. Indian J Pharm 2009;40:17-20.

99. Sadh M. The Unani system of health and medicine, 1983.p. 61-7.

100. Sadh O, Fulder S, Khalil K, Azaiez K, Kassies E, Saad B. Maintaining a physiological blood glucose level with ‘glucosevel’, a combination of four anti-diabetes plants used in the traditional Arab herbal medicine. J Evidence-Based Complementary Altern Med 2008;5:21-25.

101. Zaid H, Sadh O, Badieh A, Eldeh AK. Diabetes prevention and treatment with Greco-Arab and Islamic-based natural products. Civilization 2011;15:19-38.

102. Abdel-Hasan IA, Abdel-Barry JA, Mohammed ST. The hypoglycaemic and antihyperglycaemic effect of Citrus colocynthis fruit aqueous extract in normal and alloxa diabetic rabbits. J Ethnopharmacol 2000;71:325-30.

103. Hussain AI, Rathore HA, Sattar MZ, Chatha SA, Sarker SD, Gilani AH. Citrus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J Ethnopharmacol 2014;155:54-66.

104. Anil P, Nikhil B, Manoj G, Prakash NB. Phytochemicals and biological activities of Fagonia indica. Int Res J Pharm 2012;3:56-9.

105. Kamran SH, Shoaib RM, Mobasher Ahmad SI, Anvar R. Antidiabetic and renoprotective effect of Fagonia cretica L. methanolic extract and Citrus paradise Macfad. juice in alloxa induced diabetic rabbits. J Pharm Pharmacol 2017;55:360-5.

106. Munir A, Sultana B, Babar T, Bhashi A, Anjum M, Hasan Q. Investigation on the antioxidant activity of leaves, fruit and stem bark of Dhrak (Melia azedarach). European J Appl Sci 2012;4:47-51.

107. Sultana S, Asif HM, Akhtar N, Waqas M, Rehman SU. Comprehensive review on ethanobotanical uses, phytochemistry and pharmaceutical properties of Melia azedarach Linn. Asian J Pharm Clin Res 2014;7:62-32.

108. Vijaya VT, Srinivasan D, Sengottuvelu S. Wound healing potential of Melia azedarach L. leaves in alloxa induced diabetic rats. Glob J Res Med Plants Indig Med 2012;1:265-71.

109. Talukdar SN, Hossain MN. Phytochemical, phytotherapeutical and pharmacological study of Monarda dioica J. Evidence Based Complementary Altern Med 2014;1-11.

110. Gupta R, Bhatnagar P, Mathur M, Balkhi VK, Yadav S, Kamal R, et al. Antidiabetic and renoprotective activity of Monarda dioica in diabetic rats. Diabetologia Croatica 2011;40:81-8.

111. Ali BH, Al-Qarawi AA, Bhashi AK, Tanira MO. Phytochemistry, pharmacology and toxicity of Rhazya stricta decene: a review. Phytother Res 2010;14:229-34.
112. Ali BH. The effect on plasma glucose, insulin and glucagon levels of treatment of diabetic rats with the medicinal plant *Rhazya stricta* and with glibenclamide, alone and in combination. J Pharm Pharmacol 1997;49:1003-7.

113. Wasfi IA, Bashir AK, Amiri MH, Abdalla AA. The effect of *Rhazya stricta* on glucose homeostasis in normal and streptozotocin diabetic rats. J Ethnopharmacol 1999;4:43-141.

114. Bhatt M, Gahlot M, Juyal V, Singh A. Phytochemical investigation and antidiabetic activity of *Adhatoda zeylanica*. Asian J Pharm Clin Res 2011:4:27-30.

115. Gulfranz M, Ahmad A, Asad MJ, Afzal U, Imran M, Ansar P, et al. Antidiabetic activities of leaves and root extracts of *Justicia adhatoda* Linn against alloxan induced diabetes in rats. Afr J Biotechnol 2011:10:6101-6.

116. Ngule CM, Swamy A. Phytochemical and bioactivity evaluation of *Senna diadymbotrya* Fresen Irwin used by the Nandi community in Kenya. Int J Biosci 2013:2:1037-43.

117. Shannugusundaram R, Devi KV, Soris TP, Maruthupandian A, Mohan VR. Antidiabetic, antihyperlipidemic and antioxidant activity of *Senna auriculata* (L.) Roxb. leaves in alloxan induced diabetic rats. Int J Pharm Tech Res 2011:3:747-56.

118. Anitha T, Balakumar C, Ilango KB, Benedict Jose C, Vetivel R. Antidiabetic activity of the aqueous extracts of *Foeniculum vulgare* on streptozotocin-induced diabetic rats. Int J Adv Pharm Biol Chem 2014:3:487-94.

119. Jamwal NS, Kumar S, Rana AC. Phytochemical and pharmacological review on *Foeniculum vulgare*. Pharma Sci Monit 2013:4:327-41.

120. Bahmani M, Safaee B, Shirzad H, Shahnard F, Rafieian-Kopaei M, Shahsavari S, et al. Pharmaceutical, phytochemical, and economical potentials of *Glycyrhiza glabra* L.: a review. J Chem Pharm Sci 2015;8:683-92.

121. Nakagawa K, Kehida H, Arai N, Nishiyama T, M. T. Licorice flavonoids suppress abdominal fat accumulation and increase in blood glucose level in obese diabetic KK-Ay mice. Biol Pharm Bull 2004:27:1775-8.

122. Baldé NM, Youla A, Balde MA, Kake A, Diallo MM, Balde MA, et al. Herbal medicine and treatment of diabetes in Africa: an example from Guinea. Diabetes Metab 2006:32:171-5.

123. Mahomoodally MF. Traditional medicines in Africa: an appraisal of ten potent African medicinal plants. J Evidence Based Complementary Altern Med 2013:1-14. DOI:10.1155/2013/617459.

124. Elujoba AA, Odeleye OM, Ogunyemi CM. Traditional medicine development for medical and dental primary health care delivery system in Africa. Afr J Tradit Complement Altern Med 2013:1-14. DOI:10.1155/2013/617459.

125. Kumar et al. Int J Pharm Sci, Vol 10, Issue 5, 7-17
Count/dp/B00FM9RURJ/ref=sr_1_1_a_it?s=groceryandie=UTF8&anddj=151785400&randr=8-1&keywords=Swanson+White+Mulberry+Leaf+Extract [Last accessed on 20 Dec 2017]

152. Butt MS, Nazir A, Sultan MT, Schroën K. *Morus alba L.* nature’s functional tonic. Trends Food Sci Technol 2008;19:505-12.

153. Neem Capsules. Available from: https://www.indiamart.com/proddetail/neem-capsules-10344830488.html [Last accessed on 23 Dec 2017].

154. Ayurleaf Neem Capsules. Available from: http://www.ayurleaf.in/ayurvedic-supplements.html#neem-capsules [Last accessed on 23 Dec 2017].

155. Coriander Gold 350 Seeds. Available from: http://www.sikkioindustries.net/vegetable-seeds.html#coriander-gold-350-seeds [Last accessed on 23 Dec 2017]

156. Black Cumin Seed Oil Softgels. Available from: https://www.amazon.com/Black-Cumin-Seed-Oil-Softgels/dp/B01M1CK0SN/ref=sr_1_1_sspa?ie=UTF8&anddj=1517938031&andr=8-1-spons&keywords=health%2Bthru%2Bnutrition%2Bblack%2Bcumin%2Bseed%2Boilandth=1 [Last accessed on 23 Dec 2017]

157. Dalchini Capsules. Available from: http://www.vitawinherbal.com/single-herb-capsule.html#dalchini-capsule [Last accessed on 25 Dec 2017]

158. Himalaya Gluco Care Diabecon Gymnema Capsules. Available from: https://www.amazon.com/Himalaya-GlucoCare-Diabecon-Gymnema-Capsules/dp/B000H89G2I/ref=sr_1_1_sspa?ie=UTF8&anddj=1517938388&andr=1andkeywords=Gluco%2Caretinuria%2Band%2BBlack%2Bcumin%2BSupplements%2B%2B-%2BSafety%2BSpecs%2B-%2B%2Boids%3D61HQd6l5vlAnd%3Bt%3DS%3BX300QL70andalddpSrc%3Crch [Last accessed on 25 Dec 2017]

159. Nutria Flair Cinnamon Organic Serving Capsules. Available from: https://www.amazon.com/NutriFlair-Cinnamon-Organic-Serving-Capsules/dp/B01IGNJZEW/ref=sr_1_1_sspa?ie=UTF8&anddj=1517938692&andr=1-1-spons&keywords=Ceylon%2BCinnamon%2Bfor%2Bdiabetic%2Bpatients&specs=1 [Last accessed on 25 Dec 2017]

160. Ashwagandha Capsules. Available from: https://www.indiamart.com/proddetail/ashwagandha-capsules-12717607512.html [Last accessed on 25 Dec 2017]

161. Herbal Hills Dia Care Churna. Available from: https://www.amazon.com/Herbal-Hills-Dia-Care-Churna/dp/B000FLZLXZ/ref=sr_1_2_s_it?ie=UTF8&anddj=1517939478&andr=1-2-spons&keywords=Herbal%2BDia%2BCare%2BChurna [Last accessed on 25 Dec 2017]

162. Inlife Diastan Diabetic Balance Supplement. Available from: https://www.amazon.com/INLIFE-Diastan-Diabetic-Balance-Supplement/dp/B0776RLDL3/ref=sr_1_1_s_it?ie=UTF8&anddj=1517939753&andr=1-1-spons&keywords=Inlife%2BDiastan [Last accessed on 27 Dec 2017]

163. Sunergetic Olive Leaf Extract. Available from: https://www.amazon.com/gp/product/B01H46PX8Q/ref=abs_brd_tag_dp [Last accessed on 27 Dec 2017]

164. Disano Extra Light Flavour. Available from: https://www.amazon.com/Disano-Olive-Extra-Light-Flavour/dp/B016DM4PTK/ref=sr_1_1_a_it?ie=UTF8&anddj=1517940492&andr=8-1-spons&keywords=Disano%2BOlive%2BOil [Last accessed on 27 Dec 2017]

165. Planetary Herbs Rehmannia Endurance 150 Tabs. Available from: https://www.amazon.com/Planetary-Herbs-Rehmannia-Endurance-Planetary-Herbs-Tabs/dp/B005P0NKE6/ref=sr_1_1_a_it?ie=UTF8&anddj=1517940559&andr=8-1-spons&keywords=Planetary%2BHerbs%2BRehmannia%2BEndurance%2B150%2Btabs&ddpId=16Asr-954Land%3Bsrc%3STY300QL70andalddpSrc%3Crch [Last accessed on 27 Dec 2017]

166. Pure Berberine 900 mg Serving Capsules. Available from: https://www.amazon.com/Pure-Berberine-900-mg-Serving-Capsules/dp/B017DULZKI [Last accessed on 27 Dec 2017]

167. Pure Mountain Botanicals Immuno Well RX Capsules. Available from: https://www.amazon.com/Immuno-Well-RX-Capsules-Organic-Astragalus/dp/B005LIJO05/ref=sr_1_1_a_it?ie=UTF8&anddj=1517942154&andr=8-1-spons&keywords=Pure%2BMountain%2Botanicals%2BAstragalus%2BCapsules [Last accessed on 27 Dec 2017]

168. Herbal Hills Dhamasa Powder. Available from: https://www.amazon.com/Herbal-Hills-Dhamasa-Powder-Pack/dp/B0146LVQ9E/ref=sr_1_1_s_it?ie=UTF8&anddj=1517942606&andr=1-1-spons&keywords=Herbal%2BHills%2BDhamasa%2Powder&ddpId=51LUnphr58Land%3Bsrc%3Ch [Last accessed on 27 Dec 2017]

169. Shri ji Herbal Spenai Bitter Powder. Available from: http://www.shrijiberbalproducts.net/anti-diabetic-medicines.html#spenai-powder [Last accessed on 29 Dec 2017]

170. Piping Rock Licorice Extract. Available from: https://www.amazon.com/Piping-Rock-Licorice-Extract-Dropper/dp/B014GDWAIU/ref=sr_1_1_a_it?ie=UTF8&anddj=1517943202&andr=8-1-spons&keywords=Piping%2B%2BLicorice%2BRoot%2B%2Bjob%2B%2Boids%3D6198ExBExand%3Bsrc%3Ch [Last accessed on 28 Dec 2017]