Spin filling of valley–orbit states in a silicon quantum dot

W H Lim, C H Yang, F A Zwanenburg1 and A S Dzurak

Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia

E-mail: wee.lim@unsw.edu.au

Received 20 April 2011, in final form 7 July 2011
Published 25 July 2011
Online at stacks.iop.org/Nano/22/335704

Abstract

We report the demonstration of a low-disorder silicon metal–oxide–semiconductor (Si MOS) quantum dot containing a tunable number of electrons from zero to $N = 27$. The observed evolution of addition energies with parallel magnetic field reveals the spin filling of electrons into valley–orbit states. We find a splitting of 0.10 meV between the ground and first excited states, consistent with theory and placing a lower bound on the valley splitting. Our results provide optimism for the realisation in the near future of spin qubits based on silicon quantum dots.

Onlin supplementary data available from stacks.iop.org/Nano/22/335704/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Semiconductor quantum dots [1] are islands to which electrons can be added one by one by means of an electric field. Like real atoms they have discrete quantum levels and can exhibit phenomena such as shell filling [2], where orbital levels are filled by spin-paired electrons to produce a spin-zero many-electron state. Quantum dots also provide a promising platform for spin qubits, which can have long coherence times due to the weak coupling of spins to local fluctuations in charge. For a quantum dot to be useful as a spin qubit it is essential to understand the details of its excitation spectrum and its spin-filling structure. One powerful method to probe the spin filling is via magnetospectroscopy. This has been applied to both vertical [2] and lateral GaAs/AlGaAs quantum dots [3], showing ground-state spin filling in agreement with Hund’s rule.

Silicon devices are attractive for spin-based quantum computing [4, 5] and spintronics [6] because of their scalability and long spin coherence times [7]. Silicon quantum dots, in particular, have potential as electron spin qubits, but to date it has not been possible to create devices with the low disorder present in their GaAs counterparts [2, 3]. This is primarily due to disorder at the Si/SiO$_2$ interface, which has made it difficult to achieve single-electron occupancy [8, 9].

In addition, the conduction band structure in silicon is complex and only a few experiments have been carried out to examine the spin states in either Si MOS or Si/SiGe quantum dots [9–13]. The valley degree of freedom makes the measurement and interpretation of spin states in all silicon-based dots non-trivial [14, 15], while for Si MOS dots the substantial amount of disorder usually present at the Si/SiO$_2$ interface impedes the ability to make smooth potential wells.

In this work we present the investigation of an Si MOS quantum dot with lower disorder than any studied to date, in which it is possible to analyse the electron occupancy in a manner previously inaccessible. We deduce the spin filling of the first 12 electrons in this quantum dot from ground-state magnetospectroscopy measurements. The formation of a two-electron ($N = 2$) spin-singlet state at low magnetic fields confirms that there is no valley degeneracy present, while the magnetic field dependence of the higher-order Coulomb peaks allows us to deduce the level structure for the first four electrons.

In section 2 we present the architecture of the quantum dot and the charge stability diagram in the few-electron regime. We then, in section 3, study the valley–orbit states in this quantum dot and extract a valley–orbit splitting of 0.10 meV. In section 4 we investigate the spin filling of the first four electrons in this...
quantum dot in detail. We then present the spin filling of the 5th–12th electrons, discussing some anomalies observed, before concluding in section 6.

2. Low-disorder silicon MOS quantum dot

The triple-layer gate stack in our structure (figures 1(a) and (b)) provides excellent flexibility for tuning the barrier transparency and the energy levels of the dot independently, see supplementary information (available at stacks.iop.org/Nano/22/335704/mmedia) for fabrication processes. The lowest layer defines the barrier gates (B1 and B2). They are used to define the dot spatially and control the tunnel coupling. The second layer of gates defines the source–drain leads (L1 and L2). The lead gates induce the electron accumulation layers that act as source–drain reservoirs. The plunger gate (P) extends over the barrier gates, lead gates and the dot island, and is used to control the electron occupancy of the dot. Figure 1(c) is a plot of the differential conductance dI/dV_{SD} of the device versus plunger gate voltage V_P and source–drain voltage V_{SD}, showing the familiar ‘Coulomb diamond’ charge stability map. Before the first charge transition the diamond edges open entirely to a source–drain voltage $|V_{SD}| > 20 \text{ mV}$, because the quantum dot has been fully depleted of electrons. We have previously reported a device with similar gate architecture but an accidental parallel quantum dot created distortion of the charge stability map in the few-electron regime, complicating the interpretation of the dot’s level structure [8]. Here, clear and sharp Coulomb peaks mark the first 27 electrons entering the dot, see figure 1(d), while the charge stability map of figure 1(c) shows no distortions from disorder potentials.

As with quantum dots in GaAs/AlGaAs [2], shell filling has very recently been observed in Si/SiGe quantum dots, with a filled shell structure observed for $N = 4$ electrons [12]. The addition spectrum of our Si MOS quantum dot (inset of figure 1(d)) also shows a noticeable peak at $N = 4$. A filled shell at $N = 4$ would be consistent with the filling of a first orbital state in a two-valley system. However, an accurate description of orbital and valley levels in silicon quantum dots is somewhat more complex, as described below.

3. Valley–orbit splitting

In recent years, valley physics in silicon has been studied extensively both theoretically [15–22] and experimentally [23–26]. In bulk silicon, there are six degenerate conduction band minima (valleys) in the Brillouin zone, as depicted in figure 2(a). Confinement of electrons in the Γ direction at the Si/SiO$_2$ interface lifts the sixfold valley degeneracy: four Δ valleys with a heavy effective mass parallel to the interface have an energy several tens of meV higher than the two Γ valleys [27]. The sharp and flat interface produces...
a potential step in the z direction and lifts the degeneracy of the \(\Gamma \) valleys in two levels separated by the valley splitting \(E_V \).

Theoretical predictions for the valley splitting are generally of the order of 0.1–0.3 meV [15, 20]. Experimental values in Si inversion layers mostly vary from 0.3 to 1.2 meV [23]. A very large valley splitting of 23 meV in a similar structure has also been measured [24] and is explained in [20, 21]. Recently, resonant tunnelling features spaced by \(\sim 0.1 \) meV in a single-crystal silicon quantum dot were attributed to valley excited states [26], while measurements on Si/SiGe quantum dots revealed valley splittings in the range of 0.12–0.27 meV [12].

Valleys and orbits can also hybridise [19], making it inappropriate to define distinct orbital and valley quantum numbers. Depending on the degree of mixing, the valley–orbit levels behave mostly like valleys or like orbits. Instead of referring to a pure valley splitting we therefore adopt the term valley–orbit splitting, \(\Delta E_{VO} = E_{VO2} - E_{VO1} \) for the difference in energy between the first two single-particle levels, \(E_{VO1} \) and \(E_{VO2} \). This is sometimes referred to as the ground-state gap [19].

Full electrostatic control of the electron number allows us to investigate the spin filling by measuring the magnetic field dependence of the electrochemical potential \(\mu_N \), which is by definition the energy required for adding the \(N \)th electron to the dot. The slope of \(\mu_N(B) \) is given by [14]

\[
\frac{\partial \mu_N}{\partial B} = -g \mu_B \Delta S_{tot}(N),
\]

Figure 2. (a) Conduction band minima (valleys) in bulk silicon, showing six ellipsoids of equal energy in the Brillouin zone. Each ellipsoid has two light traverse masses \((m_\ell) \) and a heavy longitudinal mass \((m_l) \). Under the z-direction confinement at the Si/SiO\(_2\) interface, the sixfold degenerate valleys split into two \(\Gamma \) valleys (lower in energy) and four \(\Delta \) valleys (higher in energy). The sharp interface potentials split the \(\Gamma \) valleys by an amount \(E_V \). (b) Magnetospectroscopy of the first two electrons entering the quantum dot. The circle 2a marks a kink in the second Coulomb peak at \(\sim 0.86 \) T. The arrows in the boxes (VO\(_1\) for valley–orbit 1 and VO\(_2\) for valley–orbit 2) represent the spin filling of electrons in the quantum dot. Coulomb peak positions in gate voltage are converted to energies using the lever arm \(\alpha_P \) extracted from the corresponding Coulomb diamonds. (c) A model showing that the valley–orbit splitting can be estimated from the magnetic field at which \(\Delta E_{VO} = \Delta E_{\Delta Z} \), i.e. when the spin-up state of VO\(_1\) is at the same energy as the spin-down state of VO\(_2\). For \(B < 0.86 \) T, the first two electrons fill with opposite spins in the same valley–orbit level (left panel). As we increase the magnetic field, the Zeeman energy exceeds the valley–orbit splitting and the second electron occupies a spin-down state in valley–orbit 2. The sign change appears as a kink and occurs when the valley–orbit splitting is equal to the Zeeman energy (0.10 meV).

where \(g \) is the g factor, the Bohr magneton \(\mu_B = 58 \mu eV T^{-1} \) and \(\Delta S_{tot}(N) \) is the change in total spin of the dot when the \(N \)th electron is added. The electrochemical potential has a slope of \(+g \mu_B/2 \) when a spin-up electron is added, whereas addition of a spin-down electron results in a slope of \(-g \mu_B/2 \). The rate at which \(\mu_N \) changes with magnetic field thus reveals the sign of the added spin. For the experiments in this work we apply the magnetic field \(B parallel \) to the Si/SiO\(_2\) interface.

The conductance at the first two charge transitions is plotted as a function of the electrochemical potential energy and the magnetic field in figure 2(b). Here, the Coulomb peak positions in gate voltage are converted to electrochemical potential \(\mu_N \) using the lever arm \(\alpha_P \) extracted from the corresponding Coulomb diamonds. The blue lines above the Coulomb peaks are guides for the eye with slopes of \(\pm g \mu_B/2 \), as predicted by equation (1) using \(g = 2 \) for bulk silicon. Since the first Coulomb peak moves down in energy with increasing magnetic field the peak corresponds to a spin-down electron entering the quantum dot, as expected for the \(N = 1 \) ground state. For \(B \gtrsim 1 \) T the second Coulomb peak also falls in
energy with increasing B at a rate close to $-g\mu_B/2$. However, for low magnetic fields the peak noticeably increases in energy with B, leading to a ‘kink’ (marked 2a) at $B \sim 0.86$ T. This kink (2a) is confirmed by several repeated measurements over positive and negative magnetic field, see supplementary information (figure S2 available at stacks.iop.org/Nano/22/335704/mmedia). These results imply that, at low magnetic field (before the kink), the second electron fills the quantum dot with its spin up. As we increase the magnetic field (after the kink), the sign of the second electron spin changes from up to down at $B \sim 0.86$ T. We note that, in previous measurements on a similar quantum dot device, disorder and instability made it difficult to accurately probe this kink feature [8].

We explain the sign change observed here with a simple model where the two lowest valley–orbit levels are separated by the valley–orbit splitting ΔE_{VO}, see figure 2(c). At zero magnetic field, the first two electrons fill with opposite spins in valley–orbit level 1. When a magnetic field is applied, the spin-down and spin-up states are split by the Zeeman energy E_Z. Above 0.86 T the spin-up state of valley–orbit level 1 (VO1) is higher in energy than the spin-down state of valley–orbit level 2 (VO2) and it becomes energetically favoured for the second electron to occupy the latter, i.e. VO2. At the kink the valley–orbit splitting equals the Zeeman energy, which is 0.10 meV at 0.86 T. With the interfacial electric field of $\sim 2 \times 10^7$ V m$^{-1}$ extracted from Technology Computer-Aided-Design modelling for our device structure, the valley–orbit splitting agrees well with modelling results (0.08–0.11 meV) based on the effective-mass approximation [20, 22]. We note that, if no valley–orbit mixing were present, then $\Delta E_{VO} = 0.10$ meV would place a lower bound on the valley splitting for this structure.

For $B > 0.86$ T the first two electrons fill two different levels split by $\Delta E_{VO} = 0.10$ meV. We note that the presence of a doubly degenerate ground-state level would demand the two electrons to exhibit parallel spin filling starting from 0 T, since the two electrons would then occupy two different valley states in order to minimise the exchange energy [14]. A valley-degenerate state is therefore ruled out by the results in figure 2(b).

To assess the degree of valley–orbit mixing we compare the expected values for the orbital level spacing and the valley splitting. As stated above, theoretical calculations of the latter predict $0.1–0.3$ meV. An estimate of the orbital level spacing in a quantum dot is given by $2\pi \hbar^2/g_s g_v m^* A$ [1], where g_s (g_v) is the valley (spin) degeneracy, m^* the electron effective mass and A the dot area. For non-degenerate valleys, $g_v = 1$ and $g_s = 2$. Using the effective mass of 0.19m_0 and the lithographic dot area of $\sim 30 \times 60$ nm2 we obtain an expected orbital level spacing of 0.7 meV. This value is considerably larger than the lower bound on the valley splitting, suggesting that the first two levels may be valley-like. However, to maintain generality we will continue to refer to the levels as valley–orbit states.

4. Spin filling of the first four electrons

We now turn to the spin filling for $N \geq 2$ electrons. Figure 3(a) shows the differential conductance as a function of plunger gate voltage and barrier gate voltage V_{B1}. The highly regular pattern of parallel Coulomb peak lines again demonstrates the low disorder in this device. In order to determine the spin filling for higher electron numbers we investigate the difference between successive electrochemical potentials as a function of magnetic field. The resulting addition energies $E_{add}(N) = \mu_N - \mu_{N-1}$ have slopes which depend on the spin filling of two consecutive electrons, according to [28]

$$\frac{\partial E_{add}(N)}{\partial B} = 0 \quad \text{for } \downarrow, \downarrow \text{ or } \uparrow, \uparrow$$

$$= -g\mu_B \quad \text{for } \uparrow, \downarrow$$

$$= +g\mu_B \quad \text{for } \downarrow, \uparrow$$

(2)

where the first (second) arrow depicts the spin of the $(N-1)$th (Nth) electron, respectively.

Figure 3(b) plots the measured addition energies, $E_{add}(N) = \mu_N - \mu_{N-1}$, for $N = 2–4$ electrons for magnetic fields B in the range of -8 T $< B < 8$ T. We see that the data in figure 3(b) tend to follow $\partial E_{add}(N)/\partial B = 0, \pm g\mu_B$, as expected from equation (2). Furthermore, the $E_{add}(N)$ data is relatively symmetric about $B = 0$, indicating that the trends
are real and not measurement artefacts. As a guide to the eye, we also show lines with slopes of exactly 0, ±μB (blue lines in figure 3(b)) that we interpret the $E_{\text{add}}(N)$ to be following. While in regions the match is not exact, we propose that these trend lines are the best qualitative fit to the data. We are thus able to infer spin states for each of the first four electrons at all values of magnetic field $|B| < 8$ T. These spin states are labelled with red (green) arrows, representing spin down (up), in figure 3(b).

We now focus on the spin states of the these four electrons, $N = 1–4$. At low magnetic fields (< 0.8 T), the electrons populate the quantum dot ground states with alternating spin directions: ↓, ↑, ↓, ↑. Conversely, at high magnetic fields (> 4 T) a configuration with four spin-down electrons has least energy: ↓, ↓, ↓, ↓. Recently, parallel spin filling in an Si quantum dot was explained as a result of a large exchange energy and an unusually large valley splitting of 0.77 meV [9]. When the level spacing is smaller than the exchange energy, it is energetically favoured for two electrons to occupy two consecutive levels with the same spin sign. This is not the case for the device measured here: the anti-parallel spin filling of the first two electrons below 0.86 T is only possible in the case of a small exchange energy (less than ΔE_{VO}). This is an unexpected result for a dot of this size where the exchange energy is predicted to be larger than the orbital level spacing [14]. Possibly the Coulomb interaction in the dot is strongly screened by the plunger gate. This is not unlikely since the distance from gate to dot (10 nm) is smaller than the dimensions of the dot itself (30–60 nm).

In figure 3(c), we illustrate the magnetic field evolution of four non-degenerate valley–orbit levels by means of an elementary model. Each level splits into spin-up and spin-down levels in a finite magnetic field. We assume that the exchange interaction is small in comparison to the level spacing. The level crossings that follow from our model fit the kinks observed in the first four Coulomb peaks. The observed kink positions yield three valley–orbit levels which are 0.10, 0.23 and 0.29 meV above the lowest ground-state level. The extracted level spacings for the first four valley–orbit states are then: $E_{\text{VO2}} - E_{\text{VO1}} = 0.10$ meV; $E_{\text{VO3}} - E_{\text{VO2}} = 0.13$ meV and $E_{\text{VO4}} - E_{\text{VO3}} = 0.06$ meV.

5. Spin filling of electrons 5–12

Finally in figure 4, we plot the addition energies $E_{\text{add}}(N)$ as a function of B for electrons $N = 5–12$. Once again, we predominantly observe slopes of $\partial E_{\text{add}}(N)/\partial B = 0, \pm \mu B$, as expected from equation (2). Occasionally, e.g. at $N = 6 \leftrightarrow 7$, a segment has a slope of $\pm 2\mu B$, because the total spin on the dot changes by more than $\frac{1}{2}$. This can occur due to many-body interactions on the dot and leads to spin blockade [29]. The latter phenomenon could also explain the suppression of current in the fifth charge transition at $B = 2–5$ T [10, 11, 14].

Also, the picture of alternating spin filling below 0.8 T no longer holds for $N > 4$. Unexpectedly, the fifth electron is spin up at low magnetic field, while the lowest-energy configuration predicts a spin-down state. This anomaly could be explained by an extra electron in a dot nearby, which alters the spin configuration of the main dot. Such a small dot can be created at high plunger gate voltages, where the potential well differs from a perfect parabola. As more electrons are added to the main dot, the wavefunctions extend further and would have more opportunity to spin-couple to the unintentional dot nearby, thus affecting the spin filling of electrons.

6. Conclusion

The results here show that silicon MOS quantum dots can be fabricated with the low levels of disorder necessary to form well-defined electron spin qubits in a host material that can be made almost free of nuclear spins. The excellent charge
stability allows the spin states of the dot to be mapped up to $N = 12$ electrons and a valley–orbit splitting of 0.10 meV to be extracted. A recent theoretical study [15] has shown that a valley splitting of 0.1 meV is sufficient for the operation of a silicon double quantum dot as a singlet–triplet qubit, in analogy with recent experiments in GaAs [30]. Given that the valley–orbit splitting is strongly dependent on the interfacial electric field, it should be possible to further increase the splitting via appropriate device engineering. Our results therefore provide real promise for the realisation of low-decoherence spin qubits based upon silicon MOS technology.

Acknowledgments

We thank M Eto, R Okuyama and M Friesen for valuable discussions and comments on the manuscript. We thank D Barber and R P Starrett for technical support. This work was supported by the Australian Research Council, the Australian Government, and by the US National Security Agency (NSA) and US Army Research Office (ARO) (under contract no. W911NF-08-1-0527).

References

[1] Kouwenhoven L P et al 1997 NATO Advanced Study Institute on Mesoscopic Electron Transport ed L L Sohn, L P Kouwenhoven and G Schön (Berlin: Springer) pp 105–214
[2] Tarucha S, Austing D G, Honda T, van der Hage R J and Kouwenhoven L P 1996 Shell filling and spin effects in a few electron quantum dot Phys. Rev. Lett. 77 3613
[3] Ciorga M et al 2000 Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy Phys. Rev. B 61 R16315
[4] Loss D and DiVincenzo D P 1998 Quantum computation with quantum dots Phys. Rev. A 57 120
[5] Kane B E 1998 A silicon-based nuclear spin quantum computer Nature 393 133
[6] Zutic I, Fabian J and Das Sarma S 2004 Spintronics: fundamentals and applications Rev. Mod. Phys. 76 323
[7] Tyryshkin A M, Lyon S A, Astashkin A V and Raitsimring A M 2003 Electron spin relaxation times of phosphorus donors in silicon Phys. Rev. B 68 193207
[8] Lim W H et al 2009 Observation of the single-electron regime in a highly tunable silicon quantum dot Appl. Phys. Lett. 95 242102
[9] Xiao M, House M G and Jiang H W 2010 Parallel spin filling and energy spectroscopy in few-electron Si metal-on-semiconductor-based quantum dots Appl. Phys. Lett. 97 032103
[10] Rokhinson L P, Guo L J, Chou S Y and Tsui D C 2001 Spin transitions in a small quantum dot Phys. Rev. B 63 035321
[11] Hu B and Yang C H 2009 Electron spin blockade and singlet–triplet transition in a silicon single electron transistor Phys. Rev. B 80 075310
[12] Borselli M G et al 2011 Measurement of valley splitting in high-symmetry Si/SiGe quantum dots Appl. Phys. Lett. 98 123118
[13] Simmons C B et al 2011 Tunable spin loading and T1 of a silicon spin qubit measured by single-shot readout Phys. Rev. Lett. 106 156804
[14] Hada Y and Eto M 2003 Electronic states in silicon quantum dots: multivalley artificial atoms Phys. Rev. B 68 155322
[15] Culcer D, Cywiński L, Li Q, Hu X and Das Sarma S 2009 Realizing singlet–triplet qubits in multivalley Si quantum dots Phys. Rev. B 80 205302
[16] Boykin T B et al 2004 Valley splitting in strained silicon quantum wells Appl. Phys. Lett. 84 115
[17] Friesen M, Chutia S, Tahan C and Coppersmith S N 2007 Valley splitting theory of SiGe/Si/SiGe quantum wells Phys. Rev. B 75 115318
[18] Saraiva A L, Calderón M J, Hu X, Das Sarma S and Koiller B 2009 Physical mechanisms of interface-mediated intervalley coupling in Si Phys. Rev. B 80 081305
[19] Friesen M and Coppersmith S N 2010 Theory of valley–orbit coupling in a Si/SiGe quantum dot Phys. Rev. B 81 115324
[20] Saraiva A L, Calderón M J, Hu X, Das Sarma S and Koiller B 2010 Intervalley coupling for silicon electronic spin qubits: insights from an effective mass study arXiv:1006.3338
[21] Saraiva A L, Koiller B and Friesen M 2010 Extended interface states enhance valley splitting in Si/SiO$_2$ Phys. Rev. B 82 245314
[22] Culcer D, Hu X and Das Sarma S 2010 Interface roughness, valley–orbit coupling and valley manipulation in quantum dots Phys. Rev. B 82 205315
[23] Köhler H and Roos M 1979 Quantitative determination of the valley splitting in n-type inverted silicon (100) MOSFET surfaces Phys. Status Solidi b 91 233
[24] Takahina K, Ono Y, Fujiwara A, Takahashi Y and Hirayama Y 2006 Valley polarization in Si(100) at zero magnetic field Phys. Rev. Lett. 96 236801
[25] Goswami S et al 2007 Controllable valley splitting in silicon quantum devices Nature Phys. 3 41
[26] Fuechsle M et al 2010 Spectroscopy of few-electron single-crystal silicon quantum dots Nature Nanotechnol. 5 502
[27] Ando T, Fowler A B and Stern F 1982 Electronic properties of two-dimensional systems Rev. Mod. Phys. 54 437
[28] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Spins in few-electron quantum dots Rev. Mod. Phys. 79 1217–65
[29] Weinmann D, Häusler W and Kramer B 1995 Spin blockades in linear and nonlinear transport through quantum dots Phys. Rev. Lett. 74 6
[30] Petta J R et al 2005 Coherent manipulation of coupled electron spins in semiconductor quantum dots Science 309 2180