Cerebrospinal Fluid Hypovolemia and Posterior Reversible Encephalopathy Syndrome

Yuan-yuan Zheng†, Xiong-peng Weng†, Fang-wang Fu†, Yun-gang Cao†, Yan Li†, Guo-qing Zheng† and Wei Chen‡*

† Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China, ‡ Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China

Posterior reversible encephalopathy syndrome (PRES) is a reversible neuroradiological syndrome characterized by reversible vasogenic edema. The pathophysiological mechanism is still unclear, but PRES may be triggered by various etiologies. To date, only a few PRES cases linked to cerebrospinal fluid (CSF) hypovolemia were reported. The association between PRES and CSF hypovolemia needs to be explored. We presented a case of PRES with CSF hypovolemia as a result of an inadvertent dural puncture and reviewed the literature to identify the clinical characterization and pathophysiological mechanism of PRES following CSF hypovolemia. A total of 31 cases of PRES-CSF hypovolemia was included for analysis. The median age was 33 years, with a notable female predominance (87.1%). Fifteen patients (48.4%) didn’t have either a history of hypertension nor an episode of hypertension. The most common cause of CSF hypovolemia was epidural or lumbar puncture (n = 21), followed by CSF shunt (n = 6). The median interval between the procedure leading to CSF hypovolemia and PRES was 4 days. Seizure, altered mental state, and headache were the most frequent presenting symptom. The parietooccipital pattern was most frequent (71.0%). Conservative management remains the mainstay of treatment with excellent outcomes. Three patients had a second episode of PRES. CSF hypovolemia is a plausible cause of PRES via a unique pathophysiologic mechanism including arterial hyperperfusion and venous dysfunction. Patients with CSF hypovolemia is more susceptible to PRES, which is potentially life-threatening. Given that CSF hypovolemia is a common complication of anesthetic, neurological, and neurosurgical procedures, PRES should be early considered for prompt diagnosis and appropriate management.

Keywords: posterior reversible encephalopathy syndrome, cerebrospinal fluid hypovolemia, intracranial hypotension, dural puncture, epidural analgesia, cerebral hyperperfusion

INTRODUCTION

Posterior reversible encephalopathy syndrome (PRES), initially described by Hinchey et al. in 1996 (1), refers to a reversible clinical and neuroradiological syndrome characterized by acute headache, seizures, visual disturbances, impaired consciousness, focal neurological deficits, or combinations of them (2). The typical finding in neuroimaging is reversible vasogenic edema in subcortical
white matter dominating in the bilateral posterior parieto-occipital region (2, 3). An increasing number of predisposing factors for PRES have been recognized including eclampsia, hypertensive crisis, organ transplantation, sepsis, subarachnoid hemorrhage (SAH), autoimmune disorders, renal insufficiency, and various immunosuppressive drugs (2, 4). The mechanism of PRES remains controversial. Hypertension/hyperperfusion theory and vasoconstriction/hypoperfusion theory have been commonly proposed to explain the pathophysiology of PRES (2, 5).

Cerebrospinal fluid (CSF) hypovolemia, which is used to be referred to as intracranial hypotension (IH) synonymously, is increasingly recognized as a critical but often a misdiagnosed cause of new-onset cephalalgia (6, 7). Usually, it included IH, but it was not an unequivocal definition of IH as a normal or even an increased CSF pressure was not rare in reported cases (8). It is usually triggered by dural puncture, lumbar puncture, spinal surgery, lumboperitoneal shunt, or other spontaneous reasons (6). Atypical clinical presentations including non-orthostatic headaches, visual defects, neurocognitive decline, epilepsy, and focal neurological deficits, which are similar to PRES, have already been reported. Recently, the association between PRES and CSF hypovolemia has started to emerge in the neurology (9–17), neurosurgery (18–24), and anesthesiology literature (10–13, 16, 19, 25–35). However, the association between PRES and CSF hypovolemia has not been fully elucidated.

To our knowledge, there was no systematic review exploring the pathogenesis, clinical and imaging characteristics, and management of PRES in patients with CSF hypovolemia. Herein, a case of PRES who suffered CSF hypovolemia after an inadvertent dural puncture was presented with potential evidence of hyperperfusion. Then, a systematic analysis of published literature was undertaken to reveal the possible association between PRES and CSF hypovolemia.

METHODS

The information of the patient from the department of Neurology of our hospital was collected for a preliminary analysis. The additional 30 cases (29 articles) in the PubMed and Web of Science database from inception to July 2019 using a combination with "PRES" and various terms related to CSF hypovolemia or high risks of CSF hypovolemia including "cerebrospinal fluid hypovolemia," “intracranial hypotension," "CSF leakage," “epidural puncture," “epidural anesthesia," “spinal puncture," “spinal anesthesia," “lumbar puncture," “cerebrospinal fluid shunt," “spinal surgery," and “cranial surgery." A standardized form was applied to collect clinical information from each eligible article including demographic characteristics, related medical history, the probable cause of CSF hypovolemia, clinical manifestations, magnetic resonance (MR) findings (both PRES and CSF hypovolemia), treatment, and clinical outcome. The flow diagram was shown in the Supplementary Material.

Written informed consent for participation, data collection, and publication was obtained from the patient. Because this is a case report and review of literature, no research legal, and ethical approval is required.

Case Presentation

A 30-year-old woman, gravida 3 para 0, without a previous history of hypertension, presented to the Department of Obstetrics at 40 weeks’ gestation. Laboratory investigations at admission remained within the normal range. Epidural analgesia was planned for painless labor. An inadvertent dural puncture occurred in the first procedure. Then, no complication was found in the repeated epidural procedure. Her blood pressure remained consistently normal throughout labor, delivery, and the immediate postpartum period. Two hours after delivery, she complained of mild neck pain that resolved after receiving 2,000 ml Ringer’s solution.

On postpartum day 2, she developed a moderate postural occipital headache. In the absence of other focal neurological deficits, postdural puncture headache was diagnosed. The patient was managed with non-steroidal anti-inflammatory agents, hydration, and strictly bed rest. The epidural blood patch (EBP) was recommended as the following therapeutic measure, but the patient refused. On postpartum day 3, the patient complained of progressively worsening postural headache, nausea, and photophobia. The patient had to keep a recumbent posture to relief. The blood pressure was noted elevate to an average level of 140/85 mmHg and a highest-level of 178/96 mmHg. Nifedipine was taken to control hypertension. Then, the blood pressure was under 150/90 mmHg. On the early morning of postpartum day 4, the patient became confused when she woke up and turned to a supine position with a blood pressure of 131/90 mmHg. After a few minutes, she had a generalized tonic-clonic seizure which was controlled by diazepam. After she regained consciousness, she complained of diplopia and severe headache in occipital and left frontal region. Neurological examination revealed left abducens nerve palsy, right hemianesthesia, horizontal nystagmus, right tongue paralysis, and right Babinski sign. Diazepam and magnesium sulfate were taken with a concern that the patient was developing postpartum eclampsia. Six hours later, brain magnetic resonance imaging revealed vasogenic edema in the bilateral parieto-occipital regions, basal ganglia, and brainstem (Figures 1A–E). Convexity SAH was identified in the left frontal lobes (Figure 1C). MR angiography and venography were negative for aneurysms, venous thrombosis, and cerebral vasospasm (Figures 2A,B). The arterial spin labeling perfusion (ASL) imaging showed hyperperfusion areas in the bilateral occipitoparietal lobe (Figure 2F). On susceptibility-weighted imaging (SWI), the commonly marked hypointensity of the cerebral deep venous system was absent, suggestive of blood oxygen level dependent (BOLD) effect probably induced by cerebral hyperperfusion (Figure 2E). In addition, brain MR showed signs of intracranial hypertension including diffuse enhancement of the dura (Figures 2C,D), mild enlargement of pituitary and dural sinuses (Figure 1F), and slightly sagging of brainstem and cerebellum (Figure 1F). Thus, PRES and IH was the diagnosis. Over the following hours, the patient remained normal blood pressure and seizure-free. Magnesium sulfate infusion and diazepam were stopped. The patient was treated

Figures 1A–E

Figures 2A,B

Figures 2C,D

Figures 2E

Figures 2F

Figure 1C

Figure 1D

Figure 1E

Figure 1F
with intravascular rehydration which was used to prevent the progression of IH and SAH-induced cerebrovascular spasm. On postpartum day 14, the patient had a full recovery without any headache and neurological deficits. Follow-up MR imaging showed the complete disappearance of vasogenic edema, venous engorgement and convexity SAH (Figures 3A–D), together with the normalization of the signal of the deep venous system in SWI (Figure 3E) and the cerebral blood flow (CBF) in the bilateral occipitoparietal lobe (Figure 3F).

RESULTS

In total, we collected the data on 31 patients (30 patients from literature and our patient) for descriptive analysis. The detailed data of cases were summarized in Table 1.

Clinical Characteristics

The clinical characteristics of patients with PRES and CSF hypovolemia were listed in Table 2. The median age was 33 years (range: 16–82 years). There was a female predominance (27 females, 87.1%). Thirty patients were associated with one or more known offending factors, most commonly hypertension ($n = 16$), pregnancy ($n = 14$), pre-eclampsia or eclampsia ($n = 5$), subarachnoid hemorrhage ($n = 2$). Five patients had a history of hydrocephalus or intracranial hypertension. Fifteen patients (48.4%) didn’t have either a history of hypertension nor an episode of hypertension. The reduction of CSF was resulted from epidural or lumbar puncture ($n = 21$), CSF shunt ($n = 6$), spinal surgery ($n = 2$), head trauma ($n = 1$). Excluding patient 29 who had no exact date of the onset time of PRES (17), the median interval between the procedure leading to CSF reduction and the onset of PRES was 4 days, varying from 2 h to 7 weeks. Headache (71%) was the most common symptom preceding the PRES. Only one patient had a severe elevation of systolic blood pressure more than 200 mmHg. Seizure (83.9%) is the most common neurological symptom in PRES patients with CSF hypovolemia, following by headache (71.0%), altered mental state (64.5%), visual disturbances (41.9%), and hemiparesis (12.9%). Mild edema (51.6%) was most frequent, while the parieto-occipital pattern was most frequent (71.0%). In 80.6% of PRES-CSF hypovolemia patients, follow-up neuroimaging was performed. Of them, complete or nearly complete resolution of edematous lesions was noted in 80.0% of the patients, while 87.1% of the patients had a complete clinical recovery. Three of PRES-CSF hypovolemia patients had a recurrence of PRES after another experience of CSF reduction (22, 24, 36).
FIGURE 2 | MR angiography (A), MR venography (B), post contrast T1WI (C,D), SWI (E), and ASL (F) MRI images at symptom onset: MR angiography and venography were negative for aneurysms, venous thrombosis, and cerebral vasospasm. SWI images showed lack of the normal hypointensity in deep venous system. Coronal and axial T1WI images with gadolinium-enhancement showed diffuse enhancement of the dura. ASL images showed hyperperfusion areas in bilateral occipitoparietal lobe.

DISCUSSION

PRES is commonly described as a neuroradiological disease entity characterized by reversible vasogenic edema in the subcortical white matter of bilateral posterior parieto-occipital region with a rapid onset of neurological deficits including seizures, headache, visual disturbances, and altered mental state (2, 4). With the wide application of MR scans, PRES has been much more often recognized in the past decade. The precise pathophysiology underlying PRES is not entirely established. Two contradictory hypotheses are commonly cited (2, 5). The most recognized “Hypertension/hyperperfusion” theory, also called “vasogenic” theory, proposes that severe hypertension, which may overcome the limits of cerebral autoregulation, induces secondary cerebral hyperperfusion leading to an excess of cerebral blood flow, then alterations to the vascular permeability, disruptions to the blood-brain barrier, extravasations of plasma, and subsequent vasogenic edema (2, 5). This concept is primarily supported by the common presence of significant elevation of blood pressure in patients with PRES. Increased perfusion in the vasogenic edema area has been shown in case reports using ASL MRI or CT perfusion (38, 39). Nevertheless, 30–50% of patients with PRES show normal blood pressure or only slightly-to-moderate elevated blood pressure which may not exceed the auto-regulatory limits. The other theory “vasoconstriction/hypoperfusion” theory, or called “endothelial dysfunction” theory, purports that systemic toxicity induces endothelial dysfunction that leads to vascular instability, cerebral vasoconstriction, local hypoperfusion, and subsequent edema (5). This theory is supported by recent vessel imaging and perfusion imaging studies, which have demonstrated diffuse or focal cerebral vasoconstriction, and cerebral hypoperfusion in lesional areas (40). Other proposed theories, such as “cytotoxic” theory, “immunogenic” theory, “neuropeptide” theory, share a similar pathophysiologic mechanism with “vasoconstriction/hypoperfusion” theory (2).

Our case had no stigmata of pre-eclampsia or eclampsia, and the blood pressure maintained normal before and during delivery. She only showed averaged MAP level of 105 mmHg and a peak mean artery pressure (MAP) level of 123 mmHg after delivery. Did hypertension lead to PRES? Our patient complained postural headache before the changes in blood pressure, and the development of hypertension was following the deterioration of headache. On the other hand, the patient only had a slight elevation of averaged MAP. Even the maximum blood pressure didn’t exceed the upper MAP limits of autoregulation. Although puerperium might reduce the threshold of PRES, it is likely that hypertension is not pinpointed as the major cause of PRES.
Zheng et al. CSF Hypovolemia and PRES

FIGURE 3 | Axial FLAIR (A–C), sagittal T2WI (D), SWI (E), ASL (F) MRI images on follow up: Axial FLAIR imaging demonstrated complete regression of vasogenic edema and convexity SAH. Sagittal T2WI images showed regression of the engorgement of the pituitary and dural sinuses. SWI and ASL images showed the normalization of the signal of the deep venous system and the CBF in bilateral occipitoparietal lobe.

In our review, only 16 patients had hypertension (11–14, 17, 18, 23, 25–29, 31, 32, 34, 37), while only one patient had systolic blood pressure more than 200 mmHg (18). Some patients even experienced hypotension during the development of the disease (11, 24). So, patients with CSF hypovolemia have a different pathophysiological process other than hypertension. CSF hypovolemia is characterized by orthostatic headaches which almost relive after lying down (6). It was an unequivocal definition of IH characterized by low CSF pressure (≤60 mmH2O). However, nearly half of the IH patients showed normal CSF pressure (8). Even a few patients showed a CSF pressure of more than 200 mmH2O (8). So, IH is a clinical syndrome resulting from CSF volume depletion. CSF hypovolemia was proposed to replace the definition of IH (7). The neuroradiological features include pachymeningeal enhancement, brain sagging, subdural fluid collections, pituitary hyperemia, and venous distension sign (41). Although the intracranial pressure was not measured in our case, CSF hypovolemia was well-established on clinical and neuroradiological evidence. Grelat et al. (36) reported a case of chronic hydrocephalus who presented PRES after a depletive lumbar puncture. Interestingly, the patient underwent another episode of PRES following emergency ventriculoperitoneal shunt placement. Similarly, Karakis et al. (22) presented a case of PRES in a patient with IH following lumbo-peritoneal shunt placement. Our patient, the ASL imaging provided the evidence of cerebral hyperperfusion in basal ganglion and occipital regions. We speculated that CSF hypovolemia combined with a slight elevation of MAP precipitated PRES by inducing cerebral hyperperfusion. Cerebral perfusion pressure (CPP) is dependent on the relationship between MAP and intracranial pressure (ICP). Depends on the cerebral auto-regulation system, CPP varies from 60 to 80 mmHg. Either increased MAP or decreased ICP will lead to an increase in CPP. When the CPP overwhelms the limits of the cerebral auto-regulation system, cerebral hyperperfusion occurs. Therefore, on the base of CSF hypovolemia, either slightly elevated MAP or normal MAP can lead to cerebral hyperperfusion, endothelial dysfunction, and vasogenic edema (13, 15, 22). On the other hand, the cerebral auto-regulation system ensures a steady ICP in the encephalic space as long as possible. In accordance with the Monro–Kellie doctrine, cerebral blood flow and perfusion in cerebral arteries will firstly increase to maintain normal ICP when CSF leak. If the increased cerebral blood flow and perfusion failed to compensate for the loss of CSF completely, dural sinuses, and veins would engorge for increasing the cerebral blood volume which will...
TABLE 1 | Characteristics and clinical manifestations of cases diagnosed with PRES and CSF hypovolemia.

| No | References | Age/Sex | Related history | Highest BP (mmHg) | Cause of CSF leak | Clinical manifestation | Time of PRES | PRES patterns | Edema grading | Atypical image of PRES | Treatment for IH | Edema resolution | Relapse | Outcome |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Moriarity et al. (18) | 19/M | Hydrocephalus, cesarean delivery | 200/130 | Tumor resection, VP shunt | Headache, altered mental status, GTCS, disturbed vision | 2 h | Parieto-occipital | Severe | Cytotoxic edema | Conservative management | Incomplete | No | Mildly disconjugate gaze |
| 2 | Prout et al. (27) | 32/F | Cesarean delivery | 160/70 | Spinal anesthesia | Headache, GTCS, disturbed vision | 15 h | Parieto-occipital | Mild | Unilateral PRES | Conservative management | Complete | No | No residual deficit |
| 3 | Ho and Chan (25) | 33/F | Cesarean delivery | 140/80 | Spinal anesthesia | Headache, altered mental status, disturbed vision, slurred speech, right-sided numbness | 2 days | Parieto-occipital | Mild | Cytotoxic edema, diffuse arteries vasospasm | Conservative management | Incomplete | No | No residual deficit |
| 4 | Tomillo et al. (32) | 32/F | Preeclampsia, cesarean delivery | 160/90 | Epidural anesthesia | Headache, disturbed vision, buzzing, nausea and vomiting, GTCS | 4 days | Superior | Mild | Negative | Conservative management | Complete | No | No residual deficit |
| 5 | Hong et al. (26) | 32/F | Cesarean delivery | 170/100 | Spinal anesthesia | Headache, GTCS, left side homonymous hemianopia | 4 days | Superior | Mild | Cytotoxic edema | EBPs, conservative management | Complete | No | No residual deficit |
| 6 | Ortiz et al. (9) | 33/F | Multiple sclerosis | 134/82 | Lumbar puncture | Headache, blindness, altered mental status, GTCS | 3 days | Parieto-occipital | Mild | Negative | Conservative management | Complete | No | No residual deficit |
| 7 | Pradhan et al. (33) | 34/F | Renal transplant, preeclampsia, diazepam | Normal | Epidural anesthesia | Headache, GTCS | 4 days | Parieto-occipital | Mild | Negative | EBPs, conservative management | Complete | No | No residual deficit |
| 8 | Eran and Barak (29) | 51/F | Hypertension | 144/98 | Spinal anesthesia | Altered mental status | 1 h | Parieto-occipital | Mild | Cerebral and leptomeningeal enhancement | Conservative management | Nearly complete | No | No residual deficit |
| 9 | Pugliese et al. (10) | 41/F | Cesarean delivery, normal preeclampsia | Normal | Epidural anesthesia | Headache, mild left motor syndrome, mild right anosmia, altered mental status, GTCS | 7 days | Holohemispheric | Medium | Pachimeningeal enhancement | EBPs, conservative management | Nearly complete after 15 days | No | No residual deficit |
| 10 | Minai et al. (19) | 36/F | Cesarean delivery | Normal | Epidural anesthesia | Neck pain and headache, GTCS, Babinski’s sign | 3 days | Parieto-occipital | Mild | Negative | Conservative management | ND | ND | No residual deficit |
| 11 | Yamada et al. (11) | 59/F | Hypertension, ropivacaine | 150/80 | Epidural anesthesia | Headache, disturbed vision | 4 days | Parieto-occipital | Mild | Diffuse arteries vasospasm | Conservative management | Complete | No | No residual deficit |
| 12 | Orehek et al. (12) | 26/F | Pre-eclampsia | SBB 190 | Epidural anesthesia | Headache, GCTS, altered mental status, conjugate left gaze | 5 days | Holohemispheric | Medium | Intracranial hemorrhage | Conservative management | ND | No | Mild left arm dysthesia |
| 13 | Sahin et al. (31) | 31/F | Cesarean delivery | 170/100 | Spinal anesthesia | Headache, disturbed vision, GCTS, altered mental status | 7 days | Central | Mild | Negative | Conservative management | Incomplete | No | No residual deficit |
| 14 | Doherty et al. (32) | 19/F | Cesarean delivery | 158/91 | Epidural anesthesia | Headache, vomiting, photophobia, neck stiffness, disturbed vision, seizure | 4 days | Parieto-occipital | Mild | Negative | Conservative management | Complete | No | No residual deficit |
| 15 | Grelat et al. (36) | 69/F | Chronic hydrocephalus | Normal | Lumbar puncture | Right hemiplegia, altered mental status, deviation to right, disturbed vision, GTCS | 12 h | Parieto-occipital | Severe | Negative | Conservative management | Incomplete | Yes | Hemiplegia, difficulties with executive functions |
| 16 | Rajan et al. (33) | 38/F | Cesarean delivery | Normal | Spinal anesthesia | Headache, GTCS, altered mental status | 3 days | Parieto-occipital | Medium | Negative | Conservative management | ND | No | No residual deficit |

(Continued)
No	References	Age/Sex	Related history	Highest BP (mmHg)	Cause of CSF leak	Clinical manifestation	Time of PRES	PRES patterns	Edema grading	Atypical image of PRES	Treatment for IH	Edema resolution	Relapse	Outcome
17	Shah et al. (34)	62/F	Ischemic colitis, hypertension	190/80	Epidural anesthesia	Headache, disturbed vision, blurred discs, status epilepticus	3 days	Parieto-occipital	Severe	Negative	Conservative management	ND	No	Minor visual disturbances and memory problems
18	Hammad et al. (13)	72/M	Hypertension	170/100	Spinal anesthesia	Disturbed vision, altered mental status, GTCS	15 days	Parieto-occipital	Medium	Leptomeningeal enhancement	Complete	No	No residual deficit	
19	Fell et al. (16)	19/F	Cesarean delivery	Normal	Epidural anesthesia	Headache, nausea, GTCS, 6 days altered mental status, gaze deviation to right	Central	Medium	Diffuse arteries vasospasm	Complete	No	No residual deficit		
20	Fok et al. (14)	33/F	Idiopathic intracranial hypertension	142/90	Lumboperitoneal shunt	Orthostatic headache, GCTS,	4 days	Parieto-occipital	Medium	Convexity SAH	Conservative management, removal of lumboperitoneal shunt	Complete	No	No residual deficit
21	Karakis et al. (22)	26/F	Cryptococcal meningitis, AIDS	Normal	Lumboperitoneal shunt	Seizure, altered mental status	1 day	Parieto-occipital	Medium	Negative	Revision of lumboperitoneal shunt, conservative management	ND	Yes	No residual deficit
22	Shields et al. (21)	47/F	Hypertension	Normal	Thoracotomy	GTCS, positional headache, altered mental status, disturbed vision	3 days	Parieto-occipital	Severe	Negative	Surgery repair	Minimal residual	No	Mildly blurred vision
23	Santillan et al. (15)	65/F	No	Normal	Subarachnoid hemorrhage	Headache, altered mental status, left Hoffmann sign	12 days	Parieto-occipital	Medium	Negative	Caffeine, conservative management	Complete	No	No residual deficit
24	Sato et al. (20)	79/M	Subarachnoid hemorrhage	Normal	Ventriculo-peritoneal shunt	Headache, altered mental status, left hemiplegia	54 days	Parieto-occipital	Mild	Unilateral PRES	Conservative management	Minimal residual	No	No residual deficit
25	Niwa et al. (27)	72/M	Hypertension, subarachnoid hemorrhage	159/91	Continuous ventricular drainage	Altered mental status, GTCS	6 h	Central	Severe	Negative	Conservative management	Complete	No	No residual deficit
26	Present case	30/F	Pregnancy, vaginal delivery	Normal	Cysto-peritoneal shunt placement	Altered mental status, GTCS	1 day	Parieto-occipital	Medium	Negative	Conservative management	Complete	No	No residual deficit
27	Yoon et al. (23)	16/F	Head Trauma, head surgery	SSB 160	Head trauma	GTCS	3 days	Superior	Medium	Negative	Conservative management	Complete	No	No residual deficit
28	Delgado-Lopez et al. (24)	62/F	Hypotension	L4, L5 laminectomy	Hypotension	L4, L5 laminectomy	3 days	Parieto-occipital	Medium	Negative	Conservative management	Complete	Yes	No residual deficit
29	Yilmaz et al. (17)	24/F	HELLP syndrome	Normal	Hypotension	Headache, altered mental status, GTCS	3 days	Parieto-occipital	Medium	Negative	Conservative management	Complete	No	No residual deficit
30	Yildiz et al. (30)	23/F	Cesarean section	Normal	Spinal anesthesia	Headache, altered mental status, GTCS	3 days	Parieto-occipital	Mild	Unilateral PRES	Conservative management	No	No	No residual deficit
31	Present case	30/F	Pregnancy, vaginal delivery	Epidural anesthesia	Headache, nausea, photophobia, GTCS, diplopia, left abducens nerve palsy, right hemianesthesia, horizontal nystagmus, right tongue paralysis, and right Babinski sign	4 days	Central	Medium	Convexity SAH	Conservative management	Complete	No	No residual deficit	

ND, not described; BP, blood pressure; SBP, systolic blood pressure; CSF, cerebrospinal fluid; GTCS, generalized tonic-clonic seizure; SAH, subarachnoid hemorrhage.
TABLE 2 | Clinical characteristics and neuroimaging manifestations of patients with PRES and CSF hypovolemia.

Characteristics	Cases, n = 31
Age	33 (26–62)
Gender (Female)	27 (87.1%)
Time to PRES onset (Median, range)	4 days (2 h to 7 weeks)
Clinical features	
Headache	22 (71.0%)
Seizure	26 (83.9%)
Disturbed vision	13 (41.9%)
Altered mental state	20 (64.5%)
Hemiparesis	4 (12.9%)
Brainstem symptom	3 (9.7%)
Babinski’s sign	1 (3.2%)
Systolic blood pressure (mmHg)	
Normal (<140)	15 (48.4%)
Mild (140–169)	7 (22.6%)
Moderate (170–199)	7 (22.6%)
Severe > 200	1 (3.2%)
Edema grading	
Mild	16 (51.6%)
Medium	11 (35.5%)
Severe	5 (16.1%)
Distribution pattern	
Parieto-occipital	22 (71.0%)
Superior	4 (12.9%)
Central	3 (9.7%)
Holohemispheric	2 (6.5%)
Vasculopathy	3 (9.7%)
Complete restitution	20 (60%)
Recurrence	3 (10%)
Favorite outcome	26 (83.9%)

*The percentages for subcategories are based on the patients who have related data.

lead to capillary and venous hypertension. As a result, fluids extravasated into the interstitial space and vasogenic edema occur. In addition, the brain sagging can result in mechanical traction on the vessels, particularly on the veins of Galen and straight sinus (10, 42). Indeed, the velocity of blood flow in the straight sinus was reported to be declined by an average of 47% in supine patients during and shortly after lumbar punctures (43). Therefore, it impairs the deep venous drainage, induces venous hypertension in the deep venous system, and leads to vasogenic edema dominating in the basal ganglia and occipital regions. To summarize, a combination of arterial hyperperfusion and venous dysfunction may be the pathophysiological link between PRES and CSF hypovolemia.

Some authors hypothesized that reversible cerebral vasoconstriction syndrome (RCVS) secondary to the mechanical stimuli of the sagging of the brain and its affiliations would trigger PRES (11, 16, 25). The pathophysiological mechanism and clinical manifestations of PRES and RCVS partially overlap (16). They share similar triggers, including postpartum, drugs, autoimmune disease, and transplantation. The activation of the adrenergic system is presumed to be key of the development of both diseases (16). In the literature, PRES was observed in nearly 9% of the RCVS patients (44). Vasoconstriction was found in up to 30% of patients with PRES (45). However, cerebral vasoconstriction was found only in three of the patients with PRES and CSF hypovolemia. What draws more attention is that the frequency of RCVS in patients with CSF hypovolemia is particularly low. In a MR-angiography study of a series of 56 patients with IH, only one patient was reported to show segmental stenosis of cerebral arteries (46). There was no evidence of RCVS in our case. As a result, we hypothesize that vasoconstriction/hypoperfusion is not the common etiology of PRES in patients with CSF hypovolemia.

In general, PRES is regarded as a benign disease with favorable outcomes (2, 47). Complete resolution of vasogenic edema and full recovery of neurological deficit were observed in 70–90% of patients. In fact, the poor prognosis was reported in nearly 26–36% cases. Meanwhile, the fatal outcome was documented in 8–17% cases (2). Early identification and rational treatments are crucial to reduce morbidity and mortality. The diagnosis of PRES was usually delayed in patients with CSF hypovolemia until the patients presented with epilepsy and encephalopathy. The most common initial clinical presentations of PRES in patients with CSF hypovolemia is headache which usually misleads to a diagnosis of postdural puncture headache, intracranial hypotension, or pain-related headache. In this regard, the symptom of headache was found to be not of value in the diagnosis of PRES in a retrospective study (48). Only the symptoms of visual disturbances, epilepsy, and encephalopathy are the reasonable predictor of PRES. So, in patients with substantial risk factors of CSF hypovolemia including dural puncture, lumbar puncture, lumboperitoneal shunt, ventriculoperitoneal shunt, and spinal surgery, PRES should be early considered when the clinical manifestations (e.g., epilepsy, visual disturbances, impaired consciousness, focal neurological deficits, resistant headache) could not be entirely explained by CSF hypovolemia, hypertension or other medical condition alone. Multi-spectral MRI sequences, including diffusion-weighted imaging (DWI) imaging, ASL imaging, SWI, and MR angiography, should be performed immediately to establish the diagnosis early, and prevent poor prognosis.

Clinical managements of PRES are based on the elimination of underlying trigger factors and immediate control of epilepsy. Due to the differences in pathogenesis, the treatment strategy for patients with CSF hypovolemia may differ from those with other etiology. Compared with other etiologies, PRES patients with CSF hypovolemia were likely to have a shorter median time from CSF loss to PRES onset, which support a direct link between the CSF hypovolemia and PRES. The time between the procedure that incited CSF loss and the ictus of the PRES syndrome may depend on the baseline ICP and the speed of the reduction of CSF volume or ICP. We found that seven patients experienced PRES within 1 day. Of them, five patients had intracranial hypertension before PRES onset; all of them had a rapid loss of CSF or a rapid reduction of ICP. One patient with chronic hydrocephalus developed PRES 2 h after a rapid CSF loss of 50 ml. The other patient developed PRES 6 h after a 2 h inadvertent overdrainage of 200 ml CSF. These two patients experienced PRES recurrence rapidly after another rapid reduction of CSF volume. On the
other hand, a marked increase in blood pressure may contribute to the development of PRES. Patients who experienced a systolic blood pressure more than 179 mmHg had a shorter interval of PRES onset. Base on the evidence from the reviewed reports, we propose the following recommendations: First, a precipitous reduction of CSF volume or ICP should be avoided. A graded reduction of ICP is strongly recommended in patients with intracranial hypertension, especially in patients with extremely high CSF pressures. Second, in patients with CSF hypovolemia, the treatment of CSF hypovolemia should be initiated at the early stage of the disease (49). CSF hypovolemia often recovered spontaneously. Conservative medical management could be processed, including strict supine positioning, ample hydration, analgesia, and non-steroidal drugs. Caffeine and steroids should be avoided due to the risks of RCVS which may induce PRES (9, 15). When the conservative measures failed to bring alleviation of the symptoms or in patients who present moderate and severe CSF hypovolemia, epidural blood patching is recommended as the mainstay of first-line treatment (49, 50). Surgical repair should be considered for patients with clearly identified leak sites and no response to non-surgical treatment and EBPs (50). Third, tight blood pressure control is recommended for patients with CSF hypovolemia due to the increased susceptibility to PRES with a slightly elevated MAP or even normal MAP (13, 15).

CONCLUSION

The present case and reviewed literature highlight the pathophysiological link between PRES and CSF hypovolemia. Both arterial hyperperfusion and venous dysfunction may contribute to the development of PRES in patients with CSF hypovolemia. PRES should be early considered in patients with a high risk of CSF hypovolemia when the clinical manifestations can not be explained by CSF hypovolemia or other conditions alone. Precipitous reduction of CSF should be avoided, while appropriate treatments of CSF hypovolemia should be initiated early. The blood pressure should be strictly controlled in patients with CSF hypovolemia to prevent the development of PRES and improve the clinical outcome.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

ETHICS STATEMENT

Written informed consent was obtained from the individual(s), and minor(s) legal guardian/next of kin, for the publication of any potentially identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

FF designed the study. YZ and XW collected clinical data and wrote the manuscript. YC and YL searched the literature and edited the pictures. GZ revised the manuscript. All authors contributed to the manuscript revision and approved the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur.2020.00591/full#supplementary-material

REFERENCES

1. Hinchey J, Chaves C, Appignani B, Breen J, Pao L, Wang A, et al. A reversible posterior leukoencephalopathy syndrome. N Engl J Med. (1996) 334:494–500. doi: 10.1056/NEJM19960223340803
2. Liman TG, Siebert E, Endres M. Posterior reversible encephalopathy syndrome. Curr Opin Neurol. (2019) 32:25–35. doi: 10.1097/WCO.0000000000000640
3. Brady E, Parikh NS, Navi BB, Gupta A, Schweitzer AD. The imaging spectrum of posterior reversible encephalopathy syndrome: a pictorial review. Clin Imaging. (2018) 47:80–9. doi: 10.1016/j.clinimag.2017.08.008
4. Fugate JE, Rabinstein AA. Posterior reversible encephalopathy syndrome: clinical and radiological manifestations, pathophysiology, and outstanding questions. Lancet Neurol. (2015) 14:914–25. doi: 10.1016/S1474-4422(15)00111-8
5. Bartsynski WS. Posterior reversible encephalopathy syndrome, part 2: controversies surrounding pathophysiology of vasogenic edema. AJNR Am J Neuroradiol. (2008) 29:1043–9. doi: 10.3174/ajnr.A0929
6. Chung SJ, Kim JS, Lee MC. Syndrome of cerebral spinal fluid hypovolemia: clinical and imaging features and outcome. Neurology. (2000) 55:1321–7. doi: 10.1212/wnl.55.9.1321
7. Mokri B. Spontaneous cerebrospinal fluid leaks: from intracranial hypotension to cerebrospinal fluid hypovolemia-evolution of a concept. Mayo Clin Proc. (1999) 74:1113–23. doi: 10.4065/74.11.1113
8. Yao LL, Hu XY. Factors affecting cerebrospinal fluid opening pressure in patients with spontaneous intracranial hypotension. J Zhejiang Univ Sci B. (2017) 18:577–85. doi: 10.1631/jzus.B1600343
9. Ortiz GA, Bianchi NA, Tiede MP, Bhatia RG. Posterior reversible encephalopathy syndrome after intravenous caffeine for post-lumbar puncture headaches. AJNR Am J Neuroradiol. (2009) 30:586–7. doi: 10.3174/ajnr.A1321
10. Pugliese S, Finocchi V, Borgia ML, Nania C, Della Vella B, Pierallini A, et al. Intracranial hypotension and PRES: case report. J Headache Pain. (2010) 11:437–40. doi: 10.1007/s10194-010-0226-z
11. Yamada SM, Kitagawa R, Teramoto A. A case of reversible posterior leukoencephalopathy syndrome with acute hypertensio. Neuror Sci. (2011) 32:165–8. doi: 10.1007/s10072-010-0417-z
12. Orehek EK, Burns JD, Koyfman F, Azocar RJ, Holsapple JW, Green DM. Postpartum trifecta: simultaneous eclamptic intracerebral hemorrhage, PRES, and herniation due to intracranial hypotension. Neurocrit Care. (2012) 17:434–8. doi: 10.1007/s12028-012-9742-9
13. Hammad T, DeDent A, Algahtani R, Alastal Y, Elmer L, Medhkour A, et al. Posterior reversible encephalopathy syndrome secondary to CSF leak and intracranial hypotension: a case report and literature review. Case Rep Neurol Med. (2015) 2015:538523. doi: 10.1155/2015/538523
14. Fok A, Chandra RV, Gutman M, Ligtermoet M, Seneviratne U, Kempster P. Posterior reversible encephalopathy syndrome and subarachnoid hemorrhage after lumboperitoneal shunt for fulminating idiopathic intracranial hypertension. J Neuroophthalmol. (2016) 36:164–6. doi: 10.1097/WNO.0000000000000355
15. Santillan A, Aamodt W, Bhavaraju-Sanka R, Pears & Oy-sters: Spontaneous intracranial hypotension and posterior reversible encephalopathy syndrome. *Neurology.* (2016) 86e55–7. doi: 10.1212/WNL.000000000002349

16. Feil K, Forbrig R, Thaler FS, Conrad J, Heck S, Dorn F, et al. Reversible cerebral vasosconstriction syndrome and posterior reversible encephalopathy syndrome associated with intracranial hypotension. *Neurocrit Care.* (2017) 26:103–8. doi: 10.1007/s12028-016-0320-4

17. Yilmaz Z, Vovvoda N, Sirinocak PB, Terzi H. Association of hemolysis, elevated liver enzymes, low platelets syndrome with posterior reversible encephalopathy and intracranial hypotension. *Neuroil. India.* (2018) 66:226–7. doi: 10.4103/0028-3886.222856

18. Moriarity JL Jr, Lim M, Storm PB, Beauchamp NJ Jr, Olivi A. Reversible posterior leukoencephalopathy occurring during resection of a posterior fossa tumor: case report and review of the literature. *Neurosurgery.* (2001) 49:1237–9; discussion 9–40. doi: 10.1227/00006123-200111000-00040

19. Minai FN, Hasan SF, Sheerani M. Post-dural puncture posterior reversible encephalopathy syndrome following an inadvertent dural puncture during an emergency laparotomy for ischemic colitis - a case report. *Local Reg Anesth.* (2014) 7:1–4. doi: 10.2147/LRA.S37660

20. Yldiz E, Öner Ö, Çetinler M, Tokur ME, Köç A, Alan K. Posterior reversible encephalopathy syndrome after cesarean section: a case report. *Turk J Intens Care.* (2019) 17:226–30. doi: 10.4274/tjgb.galenos.2019.19870

21. Grelat M, Debaux JB, Sauteaux JL. Posterior reversible encephalopathy syndrome after depleting lumbar puncture: a case report. *J Med Case Rep.* (2014) 8:261. doi: 10.1186/1752-1474-8-261

22. Niwa R, Oya S, Nakamura T, Hana T, Matsu T. Rapid intracranial pressure drop as a cause for posterior reversible encephalopathy syndrome: two case reports. *Surg Neurol Int.* (2017) 8:103. doi: 10.4103/sni.sni_55_17

23. Hedna VS, Stead LG, Bidari S, Patel A, Gottipati A, Favilla CG, et al. Posterior reversible encephalopathy syndrome (PRES) and CT perfusion changes. *Int J Emerg Med.* (2012) 5:112. doi: 10.1186/1865-1380-5-112

24. Sakashita Y, Hamada T, Machiya T, Yamada M. Acute intermittent porphyria presenting as posterior reversible encephalopathy syndrome with hyperperfusion in bilateral occipital lobes: a case report. *J Neurol Sci.* (2017) 377:47–9. doi: 10.1016/j.jns.2017.03.052

25. Brubaker LM, Smith JK, Lee YZ, Lin W, Castillo M. Hemodynamic and permeability changes in posterior reversible encephalopathy syndrome measured by dynamic susceptibility perfusion-weighted MR imaging. *AJNR Am J Neuroradiol.* (2005) 26:825–30. doi: 10.3174/ajnr.2005.26.825

26. Urbach H. Intracranial hypotension: clinical presentation, imaging findings, and imaging-guided therapy. *Curr Opin Neuroil.* (2014) 27:314–24. doi: 10.1097/WCO.000000000000105

27. Doherty H, Hameed S, Ahmed I, Russell IF. Post-dural puncture posterior reversible encephalopathy syndrome following caesarean section under spinal anaesthesia. *Indian J Anesth.* (2014) 58:762–5. doi: 10.4103/0019-5049.147179

28. Shah R, Kubisz-Pudelko A, Reid J. Posterior reversible encephalopathy syndrome following an inadvertent dural puncture during an emergency procedure - a case report. *Local Reg Anesth.* (2014) 7:1–4. doi: 10.2147/LRA.S37660

29. Rajan S, Puthenveettil N, Paul J, Kumar L. Posterior reversible encephalopathy syndrome following caesarean section under spinal anaesthesia. *Indian J Anaesth.* (2014) 58:762–5. doi: 10.4103/0019-5049.147179

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.