ARBUSCULAR MYCORRHIZAL FUNGI ASSOCIATION IN SOME ORNAMENTAL PLANTS OF PARUL UNIVERSITY CAMPUS, WAGHODIA, VADODARA

ARUNA CHARANTIMATH¹ & DR. SAILAJA INAMPUDI²

¹Ph.D Scholar, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Limda, Waghodia, Vadodara, Gujarat, India
²Faculty of Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Limda, Waghodia, Vadodara, Gujarat, India

ABSTRACT

From different locations of Parul University, Waghodia, Vadodara, Gujarat Rhizospheric soil samples were collected. 12 ornamental plants were colonized with Arbuscular Mycorrhiza (AM) Fungi and were studied for root colonization. Between percent root colonization and spore number no correlation was found. In all the ornamental plants the diversity of AM Fungal spores were determined. Glomus spp were found predominant followed by Acaulospora, Scutellospora and Gigaspora by isolating and identifying four AMF spores up to genus level. The roots of Mycorrhiza plants with intense hyphal connection suggests the interconnecting fungal network in the Rhizosphere and appears to be the most effective method for nutrient transfer in an ecosystem. AM Fungi root colonization ranged from 12% to 99.4 % with higher value for Crinum asiaticum. Importance of AM Fungi with ornamental plants of Parul University campus garden has been discussed.

KEYWORDS: Ornamental plants, Arbuscular Mycorrhiza Fungi (AMF), Parul University campus garden, root colonization.

INTRODUCTION

Innumerable microorganisms have found soil as their natural home. Participation of Soil fungi and bacteria is important for the process of agriculture which includes mineralization, pesticide decomposition, disease production, nitrogen fixation, and promotion of growth promoters, soil system process, antibiotic production, soil formation and other biological processes. In various habitats, including soil and rhizosphere, fungi are abundantly found. The portion of the soil which is specialized in ecological niche is Rhizosphere and it is under the influence of the plant roots which includes the root surface and adhering soil. The microbes are stimulated by the root exudates, sloughed off cells and decaying roots. Rhizosphere soils have abundant Mycorrhizal fungi. Since 1880’s, Mycorrhizal association or fungus root is known (Frank, 1885). In most of the plants, the common Mycorrhizal association is Arbuscular type occurring in the majority of agricultural and horticultural crops. Plant roots transformation by these symbiotic fungi into unique morphological entities are called Mycorrhizae and these Endomycorrhizae produced by the non-septate fungi are generally known as “Arbuscular Mycorrhizal” (AM). Nature’s most ubiquitous constitute is AM Fungi and it occurs in varied soil. It is spread widely, interesting and is persistent example of parasitism. Non-septate Zygomycetous fungi forms the AM belonging to the genera Gigaspora, Glomus, Sclerocystis, Acaulospora, Enterophosphora, Scutellospora, Archaeospora and Paraglomus in the Glomales order. The obligate symbionts are the fungi and are not cultured on nutrient media. These endophytes
are not host specific. 90% of terrestrial plant roots forms a symbiotic association with these fungi and are commonly associated with pulses, cereals, fiber crops, ornamental and horticultural plants, aromatic and medicinal plants, weeds, trees, rhizoids and roots of Bryophytes, Pteridophytes, etc. In a root, energy moves primarily from plant to fungus and inorganic resources move from fungus to plant (Smith and Read, 1997) where there is a mutualistic symbiosis between plant and fungus, especially in AM Fungi. Many tropical plants including vegetables are colonized by AM Fungi. The growth of various crops including horticultural plants like Tomato and Carrot (Sasal 1991) is due to Arbuscular Mycorrhiza association. Many workers investigated improved plant growth mechanism due to Mycorrhizal inoculation. Increasing phosphate uptake by Mycorrhizal roots through greater soil exploration is well established. It also improved the uptake of limited elements like Zinc, Copper etc. Biological control of root pathogens, hormone production, biological nitrogen fixation and better ability to withstand water stress (Bagyaraj 1984) are the other beneficial effects. In this study ornamental plants grown in different locations of Parul University campus have been surveyed for AM Fungal association. Present investigation attempts were made to study AMF colonization in 12 ornamental plants belonging to 12 different families growing in Parul University, Vadodara. There are reports on the natural colonization and importance of AM with most of the ornamental, agricultural, medicinal, horticultural and floricultural plants. The information pertaining to the occurrence of AM Fungi with ornamental plants of Parul University garden is very meagre.

MATERIALS AND METHODS

The roots and Rhizospheric samples have been collected from 12 ornamental plants grown in the Parul University garden. AM Fungal propagules of the soil samples were isolated by wet-sieving and decanting method (Gerdemann and Nicolson, 1963) and identified up to genus level following Morton (1988), Schenk and Perez (1990), Morton and Redecker (2001). Plants were screened in Rabi season during the month of March and April 2021. For each species five plants were sampled. Plant roots were brought to the laboratory by digging out, which were then washed in tap water, free of soil and cut into the segments of 1cm length. Cleaning and staining of the roots were done with 0.05 percent Tryphan blue in Lactophenol as per the technique of Phillips and Hayman (1970). Root colonization of AM was observed under microscope (figure 1). Root slide technique (Read et al., 1976) was used to estimate the percentage of AM infection. The following formula was used to determine the Mycorrhizal colonization.

\[
\text{Percent colonization} = \frac{\text{Total number of root segments colonized}}{\text{Total number of root segments examined}} \times 100
\]

Fifty grams of Rhizospheric soil samples of individual plants within the species were mixed with one part which is used for AM Fungal spore enumeration. Wet sieving and decanting method (Gerdemann and Nicolson, 1963) was used to recover the AM Fungal spores. AM- Fungal spores (Figure 1) were mounted in polyvinyl alcohol Lactophenol and identified using Schenk and Perez’s manual (1990).

RESULTS AND DISCUSSION

The list of twelve ornamental plants associated with AM Fungi in Parul University garden showing percentage of root colonization(figure 1), spore number and AM fungal genera are represented in Table 1, Figure 2. The soil investigated in this study is sandy loamy soil and they formed good habitats for AM Fungal colonization. Four genus of AM Fungi were isolated, identified and were found associated with 12 ornamental plants soil samples belongs to 12 different families (Table 1, Figure 2) were collected from different localities of Parul university garden. This shows that all the 12
ornamental plants are found to be colonized by AMF. In the present work, the association of VAM in ornamental plants, the percent of colonization and number of spores showed no correlation (Figure 2). Lower percentage of colonization was recorded among members of Amaranthaceae that is in little Ruby (Alternanthera dentata- 12%). Moderately colonized plants possess 65%-67% among members of Portulacaceae (Portulaca grandiflora) and Asparagaceae (Chlorophytum comosum). However, highest colonization was recorded among members of Amaryllidaceae (Crinum asiaticum- 99.4 %) (Table 1, Figure 2). The colonization found in roots of different plants are of Hypha and vesicular type. In all the tested plants Hypheae were found common.

Physiologically and morphologically all the fungi are not the same. These Fungi are not specific in their effect on host species in spite of having wide host range. On cultivars, their effect can vary within a single plant species and also on plants in different eco system, similar soils and soil type’s change in their physico-chemical constituents. In soil, Arbuscular Mycorrhizal fungal spores are physiologically inactive. The spores germinate, grows and multiply in the presence of actively growing plant roots (Tommerup and Briggs, 1988).

Similarly, more number of spores (92/50gms of soil) was recorded in rhizosphere soil of petunia atkinsiana. Glomus species predominated in the Rhizosphere soil supporting ornamental plants followed by Acaulospora, Scutellospora and Gigaspora were considered to be the least spore genera among the isolated spore genera (Table 1). AMF genera with high number is associated with ixora coccinea while AM Fungal genera with low number is recorded in other remaining plant species.

Increased growth of seedlings of plantation crops like Cashew was observed when inoculated with AM Fungi (Lakshmipathy et al., 2000). It’s observed that in AM inoculated plants there is increased number of flowers and cut flowers’ vase life of Chrysanthemum and China Asters (Bagyaraj and Mallesh 2000). More rootings in Tamarindus and Cashew plants propagated through air layering was reported (Bagyaraj and Mallesh 2000). AM inoculated Avocado and Cashew plants withstood transplant shock better than uninoculated stock (Menge et al 1980, Lakshmipathy et al 2004). The result obtained from the investigation for the present study suggests that the number of AM fungal spores and colonization percentage vary with different ornamental plants. Glomus spp genera is frequently found more than other four genera. More number of Mycorrhizal spores in rhizospheric soil and AM fungal infection is found in the roots of Petunia atkinsiana and Crinum asiaticum, shows that under natural conditions these plant species are considered as a good host for AMF. Hence it can be concluded that distribution or occurrence of Arbuscular Mycorrhizal Fungi differ with host ranges. However population, size, shape of spores and percentage of root colonization differs from plant to plant. This study provides an AM fungi association with ornamental plants and it is an indication of Mycorrhizal dependency of these plants.

Table 1: List of Ornamental Plants Associated with Am Fungi in Parul University Garden Showing Percentage of Root Colonization, Spore Number and AM Fungal Genera

Sl No	Name of the Plants	Common Name	Family	Percentage of Root Colonization (%)	Spore Number/50gm of Soil	AM Fungal Genera
1	Rosa hybrid L.	Tea rose	Rosacea	54.1 %	63	Gl, Ac spp
2	Madagascar periwinkle (L.)Rchb.ex Spach	Vinca	Apocynaceae	52.4 %	80	Gl, Sc spp
3	Bougainvillea spectabilis Wild	Paper flower	Nyctaginaceae	46 %	76	Gl, Ac spp
4	Crinum asiaticum	Poison bulb	Amaryllidaceae	99.4 %	52	Gl, Gi spp
L.	Name	Genus	Family	Root Colonization	AM Fungal Genera	
----	------	-------	--------	-------------------	------------------	
5	*Alternanthera dentate* (Moench) Stuchlik	Little ruby	Amaranthaceae	12 %	Gl, Ac spp	
6	*Ixora coccinea* L.	Westindian jasmine	Rubiaceae	44 %	Gl, Ac, Sc spp	
7	*Hibiscus rosa-sinensis* L.	Chinese hibiscus	Malvaceae	45.8 %	Gl, Sc spp	
8	*Portulaca grandiflora* Hook.	China rose	Portulacaceae	65 %	Gl, Ac spp	
9	*Chlorophytum comosum* (Thunb.) Jacques	Spider plant	Asparagaceae	67 %	Gl, Sc spp	
10	*Jasminum sambac* (L.) Aiton	Mogra	Oleaceae	48.9 %	Gl, Gi spp	
11	*Petunia atkinsiana* (Sweet) D.Don ex W.H. Baxter	Garden petunia	Solanaceae	75 %	Gl, Ac spp	
12	*Sphagneticola trilobata* (L.) Pruski	Trailing daisy	Asteraceae	84.4 %	Gl, Sc spp	

- Names of four AM fungal genera - Gl- Glomus spp, Ac- Acaulospora, Sc- Scutellospora and Gi- Gigaspora spp.

Root colonization of *Sphagneticola Trilobata* (X450)

Root colonization of *Crinum asiaticum* (X 100)
Arbuscular Mycorrhizal Fungi Association in Some Ornamental Plants of Parul University Campus, Waghodia, Vadodara

Figure 1: The Root Colonization and Some AM Fungal Spores Associated with Ornamental Plants.

Root Colonization of Portulaca Grandiflora (x 100)

Glomus spp

Acaulospora spp

Scutellospora spp

Gigaspora spp
Figure 2: 12 Ornamental Plants Associated with Am Fungi Showing Percentage of Root Colonization & Spore Numbers

Key:

Rh - Rosa hybrid
Hr - Hibiscusrosasinensis

Mp - Madagascar periwinkle
Pg - Portulaca grandiflora

Bs - Bougainvillea spectabilis
Cc - Chlorophytum comosum

Ca - Crinum asiaticum
Js - Jasminumsambac

Ad - Alternanthera dentate
Pa - Petunia atkinsiana

Ic - Ixora coccinea
St - Sphagnicolatrilobata
Arbuscular Mycorrhizal Fungi Association in Some Ornamental Plants of Parul University Campus, Waghodia, Vadodara

REFERENCES

1. Bagyaraj, D.J. 1984. In: VA Mycorrhiza, (Eds.C.L.Powell and D.J. Bagyaraj) CRC Press, Boca Ration. USA. pp 131-154.

2. Bagyaraj, D.J. & B.C.Mallesh (2000). In: Glimps in plant sciences (Eds.K.R.Aneja et al.,) Pragathi Prakashan Meerut pp 37-41.

3. Frank, A.B. 1885. Uber die auf Warzwl-symbiose beruhende ernahrung gewisser Baume durch unterirdische Pilze. Ber. Deutsch.Bot.Ges. 3:128-145.

4. Gerademann J.W and Nicolson T.H. 1963. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of British Mycological Society, 46;235-244.

5. Lakshmipathy, R., A.N. Balakrishna, D.J. Bagyaraj, D.A. Sumana & D.P. Kumar 2000. Symbiotic response of Cashew root stocks to different VA Mycorrhizal fungi. The Cashew 14: 20-24.

6. Lakshmipathy, R., A.N. Balakrishna, D.J. Bagyaraj, D.A. Sumana & D.P. Kumar 2004. Evaluation grafting success & field establishment of Cashew root stock as influenced by VAM fungi. Indian Journal of Experimental Biology, 42: 1132-1135.

7. Menge, J.A., J.Illaur, C.K.Labanawskas & E Johnson 1980. The effect of two Mycorrhizal fungi upon growth and nutrition of Avocado seedlings grown with six fertilizer treatments. J.Amer.Soc.Hort.Sci. 105: 400-404.

8. Morton, J.B. 1988. Taxonomy of VA Mycorrhizal fungi: classification, nomenclature and identification. Mycotaxon 32: 267-324.

9. Motion J.B and Redecker, D. 2001. Two new families of Glomales, Archaeasporaceae and Paraglomaceae, with two new genera Archaeaspora and Paraglomus based on concordant molecular and morphological characters. Mycologia 93(1):181-195.

10. Phillips, J.M. and Hayman D.S. 1970. Improved procedures for cleaning root and staining Mycorrhizal fungi for rapid assessment of infection. Transactions of British Mycological Society, 55(1), 158-161.

11. Read, D.J., Kouchek, H.K. and Hodgson, X 1976. Vesicular-arbuscular mycorrhiza in natural vegetation systems I. The occurrence of infection. New Phytol 77: 641-653.

12. Sasal, K. 1991. Effect of Vesicular Arbuscular Mycorrhizal fungi in some horticultural crops. Sci.Rep. Miyagi Agric. Coll. 39:1-9.

13. Smith S.E and Read D.J. 1997. Mycorrhizal symbiosis, 2nd Ed. Academic, San Diego, CA.

14. Schenck N.C. and Perez Y. 1990. Manual for the identification of Vesicular Arbuscular Mycorrhizal fungi. Synergistic Publications: Gainesville, FL, U.S.A., pp.1-286.

15. Tommerup. J.C. and G.G. Briggs 1988. Influence of agricultural chemicals on germination of vesicular Arbuscular endophyte spores. Transactions of British Mycological Society 76:326-328.

16. Gowtham, HITTANAHALLIKOPPAL GAJENDRAMURTHY, S. B. Singh, and S. R. Niranjana. “Evaluation of plant growth promoting ability of Providencia spp. collected from North Eastern Region of India in Crucifers.” Int. J. Agric. Sci. Res. 5 : 321-327.

17. Choube, Govind, et al. “A pilot scale process for the production of high shelf life multi-functional liquid bio-fertilizer.” Int. J. Biotechnol. Res 8 : 1-10.

18. Bharvad, Rajesh. “The Inheritance of Loss: A Story of Colonized Minds and the Subsequent Impacts of Immigration and Westernization.” International Journal of Linguistics and Literature (IJLL) 3 : 25-30.

www.tjprc.org

editor@tjprc.org
19. Biswas, Koushik, and Parthadeb Ghosh. "Recent advancements and biological management of fusarium udum: a causative agent of pigeonpea wilt." International Journal of Applied and Natural Sciences 5.3 : 57-72.