Incidence and impact of acute kidney injury on patients with implantable left ventricular assist devices: a Meta-analysis

Charat Thongprayoon, Ploypin Lertjitbanjong, Wisit Cheungpasitporn, Panupong Hansrivijit, Tibor Fülop, Karthik Kovuru, Swetha R. Kanduri, Paul W. Davis, Saraschandra Vallabhajosyula, Tarun Bathini, Kanramon Watthanasuntorn, Narut Prasitlumkum, Ronpichai Chokesuwattanaskul, Supawat Ratanapao, Michael A. Mao, and Kianoush Kashanian

Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY, USA; Division of Nephrology, University of Mississippi Medical Center, Jackson, MS, USA; Department of Internal Medicine, University of Pittsburgh Medical Center Pinnacle, Harrisburg, PA, USA; Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA; Medicine Service, Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, University of Arizona, Tucson, Arizona, USA; Department of Medicine, University of Hawaii, Honolulu, HI, USA; Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand; Division of Cardiology, Department of Medicine, Phramongkutklao College of Medicine, Bangkok, Thailand; Division of Nephrology and Hypertension, Mayo Clinic Health System, Jacksonville, FL, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA

ABSTRACT

Background: We aimed to evaluate the acute kidney injury (AKI) incidence and its associated risk of mortality in patients with implantable left ventricular assist devices (LVAD).

Methods: A systematic literature search in Ovid MEDLINE, EMBASE, and Cochrane Databases was conducted through January 2020 to identify studies that provided data on the AKI incidence and AKI-associated mortality risk in adult patients with implantable LVADs. Pooled effect estimates were examined using random-effects, generic inverse variance method of DerSimonian-Laird.

Results: Fifty-six cohort studies with 63,663 LVAD patients were enrolled in this meta-analysis. The pooled incidence of reported AKI was 24.9% (95% CI: 20.1%–30.4%) but rose to 36.9% (95% CI: 31.1%–43.1%) when applying the standard definition of AKI per RIFLE, AKIN, and KDIGO criteria. The pooled incidence of severe AKI requiring renal replacement therapy (RRT) was 12.6% (95% CI: 10.5%–15.0%). AKI incidence did not differ significantly between types of LVAD (p = .35) or indication for LVAD use (p = .62). While meta-regression analysis did not demonstrate a significant association between study year and overall AKI incidence (p = .55), the study year was negatively correlated with the incidence of severe AKI requiring RRT (slope = −0.068, p < .001). The pooled odds ratios (ORs) of mortality at 30 days and one year in AKI patients were 3.66 (95% CI, 2.00–6.70) and 2.22 (95% CI, 1.62–3.04), respectively. The pooled ORs of mortality at 30 days and one year in severe AKI patients requiring RRT were 7.52 (95% CI, 4.58–12.33) and 5.41 (95% CI, 3.63–8.06), respectively.

Conclusion: We found that more than one-third of LVAD patients develop AKI based on standard definitions, and 13% develop severe AKI requiring RRT. There has been a potential improvement in the incidence of severe AKI requiring RRT for LVAD patients. AKI in LVAD patients was associated with increased 30-day and 1 year mortality.

Introduction

Implantable left ventricular assist devices (LVADs) are increasingly utilized as a bridge to heart transplantation or destination therapy for patients with end-stage heart failure [1–7]. The use of LVADs is shown to be associated with reduced mortality in patients on heart transplantation waiting lists, and they improve quality of life and functional status in advanced heart failure patients [8]. LVADs alleviate the cardiovascular load on a failing heart and have shown notable advantages in treating patients with advanced heart failure, providing prolonged survival and improvement in the quality of

CONTACT Wisit Cheungpasitporn (wcheungpasitporn@gmail.com) Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 38216-4505, USA.

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
life [9,10]. Clinical outcomes after LVAD implantation have significantly improved over the past decade, with 1 year and 2 year survival of 83% and 73%, respectively [11, 12]. In the United States, the number of LVAD implantations rose, from only 459 implants in 2008 to a total of 2,118 implants in 2017 [11].

Despite the LVAD benefits mentioned above, several studies have reported persistent adverse complications following LVAD implantation, such as bleeding, cardiac arrhythmias, hypertension, sepsis, disabling stroke, and acute kidney injury (AKI) [8,13]. Post-implantation AKI has been associated with negative impacts on patient outcomes, including right ventricular failure, arrhythmia, and reduced survival [14,15]. The reported AKI incidence among LAVD patients widely ranged from 4–70%. This variability is likely due to the use of non-standardized AKI definitions in previous studies [15–70]. Furthermore, the mortality associated with AKI and current trends of AKI occurrence in LVAD patients are unclear [18,21,22,24,26,40,44,46,52,54,57,63,65].

This systematic review and meta-analysis were conducted to summarize the AKI incidence and mortality risk among adult patients with LVADs.

Methods

The protocol for this meta-analysis is registered with PROSPERO (no. CRD42020134592). The meta-analyses were conducted in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement [71].

Search strategy

Two investigators (CT and PL) independently searched for published clinical trials or observational studies indexed in MEDLINE, EMBASE and the Cochrane databases from inception to January 2020 using a search strategy (S1 in online Supplementary Data 1) that included the terms “left ventricular assist device”, “LVAD”, “ventricular assist device”, “acute kidney failure”, “acute kidney injury” and “renal replacement therapy”. No language restrictions were applied in this systematic review and meta-analysis. A manual search for additional pertinent studies and review articles using references from the retrieved articles was also completed.

Study eligibility criteria

Two main criteria were used for study inclusion. First, the study had to report the incidence of AKI or severe AKI requiring renal replacement therapy (RRT), and AKI associated mortality risk in adult patients with LVADs aged at least 18 years. Second, the study had to include data assessing AKI incidence or mortality risk with 95% confidence intervals (CIs) (or sufficient raw data for the calculation). Patients were excluded if they only used a temporary, short-term, non-implantable LVAD during a hospitalization. Study eligibility was independently determined by two investigators (CT and PL). Differences were resolved by mutual consensus.

A standardized data collection form was used to obtain the following information from each study: title, name of the first author, year of study, year of publication, country of origin, number of participants, demographic data of participants, the method used to diagnose the outcomes of interest (AKI incidence and associated mortality), the average duration of follow-up, adjusted and unadjusted risk ratios and their corresponding 95% CI, and list of confounders that were adjusted for in the multivariate analyses. To ensure accuracy, both investigators independently performed this data extraction process. Any data discrepancy was resolved by referring back to the original articles. The Newcastle-Ottawa quality assessment scale was utilized to appraise the quality of observational studies [72].

Statistical analysis

The meta-analysis of combined data was performed using a random-effects, generic inverse variance method of DerSimonian and Laird [73]. We assessed the overall incidence of AKI, which was defined by the consensus definitions provided by the Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease (RIFLE) [74], Acute Kidney Injury Network (AKIN) [75], and Kidney Disease: Improving Global Outcomes (KDIGO) [76] classifications. We did not impute missing values for any outcomes in our analyses. A random-effect model was used to pool AKI incidence and AKI-associated mortality risk due to the possibility of between-study variance. Heterogeneity among included studies was statistically evaluated by the Cochrane’s Q test and the I² statistic. Heterogeneity was considered insignificant when I² of ≤25%, low when I² of 26–50%, moderate when I² of 51–75%, and high when I² of ≥75% [77]. Per Cochrane, publication bias was assessed using a funnel plot. Funnel plot asymmetry was further confirmed with Egger’s test if there were >10 available studies [78]. All analysis was performed using The Comprehensive Meta-Analysis software version 3.3.070 (Biostat Inc, New Jersey, USA). The data underlying the results presented in the study are
Results

Our search approach identified a total of 1,665 potentially eligible articles. We initially excluded 846 articles because they were case reports, correspondences, review articles, or studies involving in-vitro, animal, or pediatric patients. Six hundred fifty-eight duplicated articles were additionally excluded. After the review of 161 full-length articles, we subsequently excluded 67 articles because the data on AKI incidence and its associated mortality was not available, 28 articles because they were not observational studies or clinical trials, and 10 articles because they investigated AKI in short-term LVAD use, not implantable LVAD [79–88]. Therefore, 56 cohort studies [15–70] with a total of 63,663 adult patients were included in this meta-analysis. Figure 1 demonstrates by flowchart the systematic review of the literature. Table 1 shows the characteristics of the included studies. The kappa for systematic searches, selection of studies and data extraction were 1.00, 0.91 and 0.98, respectively.

Incidence of AKI in LVAD patients

Fifty-six studies [15–70] evaluated AKI incidence in LVAD patients. The pooled incidence of reported AKI was 24.9% (95%CI: 20.1%–30.4%, $I^2 = 99\%$, Supplementary Figure S1), and the pooled incidence of severe AKI requiring RRT was 12.6% (95%CI: 10.5%–15.0%, $I^2 = 95\%$, Figure 2). Using standard AKI definitions (RIFLE, AKIN, and KDIGO criteria), the pooled incidence of AKI was 36.9% (95%CI: 31.1%–43.1%, $I^2 = 97\%$, Figure 3).

AKI incidence did not differ significantly between types of LVAD (pulsatile vs. continuous flow) ($p = .35$) or indication of LVAD use (bridge to transplant vs.
Study	Year	Country	Patients	Number	LVAD type	AKI definition	AKI and/or RRT incidence
Kaltenmaier et al. [40]	2000	Germany	Patient underwent LVAD implantation during 1988–1995 Mean age: 41.7 F: 22% Bridge to transplant: 71.8%	227	Pulsatile Berlin Heart System HeartMate 2000, Novacor	RRT	RRT 55/227 (24.2%)
Frazier et al. [35]	2001	USA	Cardiac transplant candidate underwent LVAD implantation Median age: 55 F: 17.1% Bridge to transplant: 100%	280	Pulsatile HeartMate Vented Electric LVAS (VE LVAS)	SCr ≥ 2.2 mg/dL or BUN value ≥50 mg/dL	AKI 158/280 (56.4%)
Haddad et al. [37]	2004	Canada	Patients underwent LVAS as a bridge to cardiac transplant during 1991–2003 Mean age: 43.8 F: 31.4%	54	Pulsatile Thoratec VAD, Novacor	RRT	RRT 4/54 (7.4%)
Deng et al. [32]	2005	USA	Patients underwent LVAD implantation during 2002–2004 from Mechanical Circulatory Support Device (MCSD) database LVAD only: 82.2% LVAD + RVAD : 15.3% Bridge to transplant : 78.3% Destination therapy : 11.9%	655	Continuous and Pulsatile (90%)	Not specified	AKI 85/655 (13%)
Topkara et al. [65]	2005	USA	Patients underwent LVAD implantation during 1996–2004	201	Pulsatile Thoratec HeartMate	RRT	RRT 65/201 (32.3%)
Feller et al. [34]	2007	USA	Patients underwent LVAD implantation during 2002–2005 Mean age: 54.1 F: 26% Bridge to transplant: 77.8% Destination therapy: 22.2% ICM: 48.1%	27	Continuous (51.9%) and Pulsatile (48.1%) Jarvik 2000, HeartMate XVE, Novacor	RRT	RRT 6/27 (22.2%)
Miller et al. [43]	2007	USA	Patient with end-stage heart failure on a waiting list for heart transplant underwent LVAD from 2005 to 2006 Mean age : 50.1 F: 21% ICM: 49/133 (37%)	133	Continuous HeartMate II	RRT	RRT 18/133 (13.5%)
Sandner et al. [52]	2008	Austria	Patients with end-stage heart failure underwent LVAD implantation as bridge to transplant during 1994–2007	92	Continuous (68.5%) and Pulsatile (31.5%) MicroMed DeBakey, HeartWare, Terumo DuraHeart	RRT : Total 33/92 (35.9%) Continuous LVAD 24/63 (38.1%) Pulsatile LVAD 9/29 (31.0%)	RRT Total 33/92 (35.9%) Continuous LVAD 24/63 (38.1%) Pulsatile LVAD 9/29 (31.0%)
Pagani et al. [48]	2009	USA	Patient with end-stage heart failure on a waiting list for heart transplant underwent LVAD from 2005 to 2008 Bridge to transplant :100% Age: 50 F: 24% ICM: 43%	281	Continuous HeartMate II	RRT	RRT 30/281 (10.7%)

(continued)
Study	Year	Country	Patients	Number	LVAD type	AKI definition	AKI and/or RRT incidence
Alba et al.	2009	Canada	Patients with end-stage heart failure underwent LVAD during 2001–2007	53	Continuous and Pulsatile Abiomed BVSS00, Thoratec, Novacor, VE HeartMate, HeartMate II, Novacor	RIFLE criteria	AKI: 24/53 (45.28%) RRT: 15/53 (28.3%)
Slaughter et al.	2009	USA	Patients with end-stage heart failure underwent LVAD implantation	200	Continuous (67%) and Pulsatile (33%) HeartMate II, HeartMate XVE	RRT	RRT: 35/200 (17.5%)
Genovese et al.	2010	USA	Patients underwent LAVD or bi-VAD from 1996 to 2008	163	Continuous (18%), pulsatile (54%), BiVAD (27.6%)	INTERMACS criteria: RRT or an increase in Scr ≥ 3 times baseline or Scr ≥ 5 mg/dL sustained for over 48 hours	AKI: 22/163 (13.5%)
Demirozu et al.	2011	USA	Patients underwent LVAD implantation during 2003–2009	107	Continuous HeartMate II	RRT	RRT: 15/107 (14.0%) New RRT after LVAD: 10/102 (9.8%)
John et al.	2011	USA	Patients underwent HeartMate II implantation as a bridge to transplant after FDA approval during 2008–2010 from the INTERMACS registry	1496	Continuous HeartMate II	INTERMACS criteria: RRT or an increase in Scr ≥ 3 times baseline or Scr ≥ 5 mg/dL sustained for over 48 hours	AKI: 129/1496 (8.6%)
Starling et al.	2011	USA	Patient underwent LVAD implantation as a bridge to transplant in 2008	338	169 Continuous HeartMate II, HeartMate XVE, Implantable VAD	INTERMACS criteria: RRT or an increase in Scr ≥ 3 times baseline or Scr ≥ 5 mg/dL sustained for over 48 hours	HM II
Strueber et al.	2011	Germany, Australia, United Kingdom, USA, Austria	Patients with end-stage heart failure underwent LVAD implantation as a bridge to transplant during 2006–2008	50	Continuous HeartWare	INTERMACS criteria: RRT or an increase in Scr ≥ 3 times baseline or Scr ≥ 5 mg/dL sustained for over 48 hours	AKI: 21/169 (12.4%) AKI: 5/50 (10%)
Park et al.	2012	USA	Patient underwent LVAD implantation during 2005–2009	414	Continuous HeartMate II	RRT	RRT: 51/414 (12.3%)
Study	Year	Country	Patients Description	Number	LVAD type	AKI definition	AKI and/or RRT incidence
---------------------	------	--------------	--	--------	---------------------------	--	--------------------------
Aaronson et al. [16]	2008	USA	Patient with end-stage heart failure underwent LVAD bridging to heart transplant during 2008–2010				
Mean age: 52.4							
F: 24.9%	Continuous						
HeartWare	INTERMACS criteria:						
RRT or an increase in SCr							
≥3 times baseline or SCr							
≥ 5 mg/dl sustained for over 48 hours	AKI						
12/140 (8.6%)							
Arnaoutakis et al. [23]	2012	USA	Patients underwent LVAD bridging to orthotropic heart transplant during 2005–2010 from UNOS database				
Mean age: 52							
F: 18.1%							
Idiopathic cardiomyopathy: 50.7%							
Ischemic: 41.2%							
Patients underwent LVAD from 2007 to 2010							
Mean age: 63							
F: 19%							
CKD: 54%							
Mean GFRs: 40 ml/min/1.73 m² ischemic: 55%							
Bridge to transplant: 32%							
Destination therapy: 68%	1312	Continuous					
HeartMate II	RRT	RRT					
106/1312 (8.1%)							
Hasin et al. [38]	2012	USA	Patient with end-stage heart failure underwent LVAD implantation during 2007–2011				
Mean age: 51							
F: 15%							
ICM: 23.5%							
Preop IABP: 2.9%							
Ischemic: 41.2%							
Bridge to transplant: 53.9%							
Destination therapy: 25.3%	34	Continuous					
HeartWare	RRT	RRT					
12/34 (35.3%)							
Popov et al. [50]	2012	United Kingdom	Patient with end-stage heart failure underwent LVAD implantation during 2007–2011				
Mean age: 52							
F: 24.2%							
ICM: 29.1%							
Idiopathic: 46.3%							
Bridge to transplant: 53.9%							
Destination therapy: 25.3%	182	Continuous and Pulsatile					
HeartMate XVE, HeartMate II	RRT	RRT					
32/182 (17.6%)							
Yuan et al. [69]	2012	USA	Patients with end-stage heart failure underwent LVAD during 2000–2012				
Mean age: 50							
F: 24.2%							
ICM: 29.1%							
Idiopathic: 46.3%							
Bridge to transplant: 53.9%							
Destination therapy: 25.3%	488	Continuous and Pulsatile					
HeartMate XVE, HeartMate II							
HeartWare, VentAssist,							
DuraHeart, Novacor, CorAide,							
Lionheart, Incor, DeBakey							
LVAD alone 166/443 (37.9%)							
LVAD + RVAD 33/45 (73.3%)	Not specified	AKI					
199/488 (40.8%)							
LVAD alone 166/443 (37.9%)							
LVAD + RVAD 33/45 (73.3%)							
Aissaoui et al. [20]	2013	Germany	Patients undergone LVAD implantation during 2001–2011				
LAVD + RVAD: 45/488 (9.2%) | 100 | Continuous
HeartMate II, HeartWare | RIFLE criteria | AKI
28/100 (28%)
RRT
9/100 (9%) |

(continued)
Study	Year	Country	Patients	Number	LVAD type	AKI definition	AKI and/or RRT incidence
Lok et al. [42]	2013	The Netherlands	End-stage heart failure patients who underwent LVAD placement as a bridge to transplantation during 2006–2011	85	Continuous	RRT	RRT: 9/85 (10.6%)
			Mean age: 45		HeartMate II		
			F: 27%				
			NICM: 71%				
			ICM: 28%				
			2006–2011				
Ono et al. [47]	2012	USA	Patient underwent LVAD implantation	15	Continuous	RIFLE criteria	AKI 1/15 (6.7%)
Slaughter et al.	2013	USA	Patients underwent LVAD implantation as a bridge to transplant in 2008	332	Continuous	INTERMACS criteria:	AKI: 32/332 (9.6%)
			Mean age: 52.5		HeartWare	RRT or an increase in SCr ≥ 3 times baseline or SCr ≥ 5 mg/dL sustained for over 48 hours	
			F: 28.4%				
			NICM: 70.45%				
			ICM: 29.5%				
			Bridge to transplant: 68.2%				
Tsiouris et al.	2013	USA	Patients underwent LVAD implantation during 2006–2011	88	Continuous	Not specified	AKI: 22/88 (25%)
			Mean age: 52.5		HeartMate II, HeartWare		RRT 6/88 (6.8%)
			F: 21.7%				
			NICM: 70.45%				
			ICM: 29.5%				
			Bridge to transplant: 39.3%				
Brisco et al.	2014	USA	Patients underwent LVAD or LVAD + RVAD implantation from INTERMACS database during 2006–2011	3363	Continuous (79.3%) and Pulsatile (20.7%)	Decrease in eGFR ≥ 25%	AKI: 336/3363 (10%)
			Mean Age: 54.5				
			F: 21.7%				
			NICM: 70.45%				
			ICM: 29.5%				
			Bridge to transplant: 39.3%				
			Destination therapy: 17.7%				
			LVAD alone: 92.1%				
Strueber et al.	2014	Europe and Australia	Patients underwent LVAD implantation from ReVOLVE registry from 2009 to 2012	254	Continuous	INTERMACS criteria:	10/254 (3.9%)
			Mean age: 41.5		HeartWare	RRT or an increase in SCr ≥ 3 times baseline or SCr ≥ 5 mg/dL sustained for over 48 hours	
			F: 19.3%				
			NICM: 15.2%				
			ICM: 64.5%				
Naik et al. [46]	2014	USA	Patients underwent LVAD during 2008–2012	157	Pulsatile (3.2%)	RIFLE criteria or AKN criteria	RIFLE AKI 44/157 (28.02%)
			Bridge to transplant: 47.78%		HeartMate XVE	Continuous HeartMate II, Heartware,	AKN AKI 67/157 (42.7%)
			Destination therapy: 51.59%		Continuous		RRT 11/157 (7.0%)
					HeartWare		
Sumida et al.	2014	Japan	Patients underwent LVAD implantation during 2011–2013	31	Not specified	KDIGO criteria	AKI 17/31 (54.8%)
			Mean age: 41.5				RRT 6/31 (19.4%)
			F: 19.3%				
			NICM: 15.2%				
			ICM: 64.5%				

(continued)
Study	Year	Country	Patients	Number	LVAD type	AKI definition	AKI and/or RRT incidence
Schechter et al. [53]			Patients underwent LVAD implantation from 2003 to 2012			All: 12/60 (20%)	
			Primary implantation: 50% Replacement: 50%			Primary implantation: 3/30 (10%) Replacement: 9/30 (30%)	
Go et al. [36]	2015	USA	Patients underwent LVAD implantation during 2006–2014	200	Continuous	RIFLE criteria	AKI 74/200 (37.5%)
			Mean age: 54.3 F: 24% Chronic renal insufficiency: 40.5 Bridge to transplant: 49.5% Definitive treatment: 50.5%		HeartMate II, HeartWare		
Topkara et al. [64]	2015	USA	Patients underwent LVAD implantation during 2004–2015	389	Continuous	RRT	Any RRT 44/389 (11.3%) New RRT after LVAD 38/383 (9.9%)
			Mean age: 60.3 F: 20.1% ICM: 45.8% Bridge to transplant: 64% IABP: 27.5%		HeartMate II, HeartWare		
Deschka et al. [33]	2016	Germany	LVAD recipients with pre-operative biventricular impairment who received an additionally RVAD after a failed weaning attempt from cardiopulmonary bypass due to acute RV failure	25	Not specified	RRT	RRT 9/25 (36%)
			Age: 55.4 F: 20% ICM: 56% DCM: 40% Destination therapy: 36% Bridge to transplant: 64%				
Nadziakiewicz et al. [45]	2016	Poland	Patients with end-stage heart failure underwent LVAD implantation during 2007–2014	44	Pulsatile (54.5%) Polvad MEV Continuous Heartware, HeartMate II	RRT	RRT 7/44 (15.9%)
			ICM: 36.6%				
Raichlin et al. [51]	2016	USA	End-stage heart failure Patients with preexisting renal dysfunction underwent LVAD implantation during 2009–2014	165	Continuous	RRT	RRT : 15/165 (9.1%)
			Age: 55.6 F: 19% Bridge to transplant: 50% ICM: 51% Mean Baseline GFR: 64.1		HeartMate II		
Shehab et al. [55]	2016	Australia	Patients with dilated cardiomyopathy and severe biventricular failure who underwent dual HVAD implantation as a bridge to transplant during 2011–2014	13	Continuous	INTERMACS criteria: RRT or an increase in Scr ≥ 3 times baseline or Scr ≥ 5 mg/dL sustained for over 48 hours	AKI 4/13 (30.7%)
			Mean age: 45.6 F: 23%		HeartWare		

(continued)
Study	Year	Country	Patients	Number	LVAD type	AKI definition	AKI and/or RRT incidence
Abbas et al. [17]	2017	USA	Patients underwent LVAD from the National Inpatient Sample (NIS) 2009–2011 database	4869	Not specified	ICD-9 codes and procedure code	AKI 1985/4869 (40.8%) RRT 277/4869 (5.7%)
			Mean age: 56 F: 22.2%				
			Chronic renal failure: 38%				
Verma et al. [67]	2017	USA	Patients with end-stage heart failure underwent LVAD placement during 2010–2013	169	Continuous	Increase in Scr of 0.3 mg/dL in 48 hours or 1.5 times from baseline in the seven days, or the need for RRT.	AKI 70/169 (47.3%) RRT 6/169 (3.5%)
			Mean age: 57.8 F: 23.7%				
			CKD: 43.8%				
			Bridge to transplant: 23.67%				
Anjum et al. [22]	2018	USA	Patients underwent LVAD during 2003–2016	520	Continuous	RIFLE criteria	AKI 75/520 (14.4%)
			Mean age: 54.7 F: 21.9%				
			Bridge to transplant: 53.3%				
Briasoulis et al. [27]	2018	USA	Patients underwent LVAD during 2009–2014 from the National Inpatient Sample (NIS) database	3572	Continuous	ICD9, procedure codes	RRT 228/3572 (6.4%)
			Mean age: 55.42 F: 23.63%				
			Chronic renal failure: 37.79%				
Catino et al. [29]	2018	USA	Patients with chronic heart failure underwent LVAD implantation during 2008–2014	81	Continuous	INTERMACS criteria: RRT or an increase in Scr ≥ 3 times baseline or Scr ≥ 5 mg/dL sustained for over 48 hours	AKI 9/81 (11.1%) RRT 3/81 (3.7%)
			Mean age: 52.8 F: 21%				
			Bridge to transplant: 76.5%				
			ICM: 40.7%				
Critsinelis et al. [30]	2018	USA	Patients underwent LVAD implantation during 2004–2016	524	Continuous	RIFLE criteria	AKI 75/524 (14.3%)
			Mean age: 54.7 F: 21.9%				
			Bridge to transplant: 76.5%				
			ICM: 45.6%				
Kurihara et al. [41]	2018	USA	Patients underwent LVAD implantation during 2003–2016	526	Continuous	RIFLE criteria	AKI 75/526 (14.3%)
			Mean age: 54.7 F: 21.9%				
			Bridge to transplant: 283/526 (52.6%)				
			CM: 45.4%				
			Bridge to transplant: 155/241 (64.32%)				
Muslem et al. [44]	2018	The Netherlands, USA	Patients underwent LVAD implantation during 2004–2015	241	Continuous	KDIGO criteria	AKI 169/241 (70.1%) RRT 23/241 (9.5%)
			Mean age: 52.4 F: 24%				
			ICM: 34.4%				
			Bridge to transplant: 155/241 (64.32%)				
Schmack et al. [54]	2018	Germany	Symptomatic end-stage heart failure patients underwent LVAD from 2010 to 2017	68	Continuous	RRT	RRT 32/68 (47.1%) RRT 11/68 (17.0%)
Shehab et al. [56]	2018	Australia	Patients underwent VAD implantation as a bridge to transplant from 2007 to 2016	112	Continuous	RRT	RRT 11/112 (17.0%)
			Bridge to transplant: 100%				
Study	Year	Country	Patients	Number	LVAD type	AKI definition	AKI and/or RRT incidence
------------------	-------	---------	--	--------	---	----------------	--------------------------
Baxter et al. [25]	2019	USA	Patients underwent LVAD during 2008–2016	202	Continuous HeartMate II (90%), HeartMate III (3.3%), HeartWare (6.0%)	KDIGO criteria	AKI stage 2 and 3 66/202 (32.7%)
Silver et al. [57]	2019	USA	Patients with end-stage heart failure who were ineligible for transplantation underwent LVAD implantation during 2008–2013 from the national inpatient sample database	8362	Not specified	ICD-9 codes	AKI 4186/8362 (50.1%)
Walther et al. [68]	2019	USA	Patient with end-stage heart failure underwent LVAD implantation during 2006–2015 from the national inpatient sample database	24140	Not specified	ICD-9-CM, procedure codes	AKI 13534/24140 (56.1%)
Zhigalov et al. [70]	2019	Germany	Patient underwent LVAD implantation from 2007 to 2018	124	Continuous HeartMate II (60%), HeartMate III (27%), HeartWare (13%)	RRT	RRT 1568/24140 (6.5%)
Adegbala et al. [18]	2019	USA	Patients underwent LVAD implantation from 2012 to 2014 from National readmission database	3957	Not specified	RRT	RRT 178/3957 (4.5%)
Asleh et al. [24]	2019	USA	Patients underwent LVAD implantation during 2007–2017	354	Continuous HeartMate II (80%), HeartMate III (2%) HeartWare (18%)	RRT	RRT 54/354 (15.3%)
Ahmed et al. [19]	2020	USA	Patients underwent LVAD implantation during 2009–2014 from the National Inpatient Sample database	3511	Not specified	ICD9 codes, procedure codes	AKI 1996/3511 (56.9%)

Abbreviations. AKI: acute kidney injury; AKIN: Acute Kidney Injury Network; CKD: chronic kidney disease; F: female; ICD: International Classification of Diseases; ICM: ischemic cardiomyopathy; KDIGO: Kidney Disease: Improving Global Outcomes; LVAD: left ventricular assist device; RVAD: right ventricular assist device; RRT: renal replacement therapy; SCr: serum creatinine; USA: Unites States of America; RIFLE: Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease.
destination therapy) \((p = 0.62)\). While meta-regression analysis did not demonstrate a significant association between study year and overall AKI incidence \((p = .55)\) (Supplementary Figure S2), the study year was negatively correlated with the incidence of severe AKI requiring RRT (slope = \(-0.068\), \(p < .001\), Figure 4).

Mortality associated with AKI in LVAD patients

Thirteen studies \([18,21,22,24,26,40,44,46,52,54,57,63,65]\) evaluated mortality associated with AKI in LVAD patients, as shown in Table 2. The pooled odds ratio (OR) of 30-day mortality was 3.66 (95% CI, 2.00–6.70, \(I^2 = 71\%\), Supplementary Figure S3) and the pooled OR of 1-year mortality was 2.22 (95% CI, 1.62–3.04, \(I^2 = 0\%\), Supplementary Figure S4) in LVAD patients with AKI, compared with no AKI. The pooled OR of 30-day mortality was 7.52 (95% CI, 4.58–12.33, \(I^2 = 73\%\), Supplementary Figure S5) and the pooled OR of 1-year mortality was 5.41 (95% CI, 3.63–8.06, \(I^2 = 0\%\), Supplementary Figure S6) in LVAD patients with severe AKI requiring RRT, compared with no RRT.

Publication bias evaluation

Using funnel plots (Supplementary Figure S7–10) and Egger’s regression asymmetry tests, there was no significant publication bias found in this meta-analysis \((p\text{-values} = .78, .25, .53, \text{and} .59, \text{respectively})\).
Group by AKI definition	Study name	Statistics for each study	Event rate and 95% CI	Relative weight				
		Event rate	Lower limit	Upper limit	Z-Value	p-Value		
AKIN	Naik et al	0.427	0.352	0.505	-1.829	0.067		100.00
AKIN		0.427	0.352	0.505	-1.829	0.067		31.08
KDIGO	Sumida et al	0.548	0.374	0.711	0.538	0.591		34.51
KDIGO	Muslem et al	0.701	0.640	0.756	6.063	0.000		34.42
KDIGO	Baxter et al	0.327	0.266	0.394	-4.820	0.000		14.34
KDIGO		0.526	0.260	0.779	0.180	0.857		15.23
RIFLE	Alba et al	0.453	0.325	0.587	-0.686	0.493		4.50
RIFLE	Borgi et al	0.280	0.201	0.376	-4.241	0.000		16.30
RIFLE	Ono et al	0.067	0.009	0.352	-2.550	0.011		16.54
RIFLE	Go et al	0.370	0.306	0.439	-3.634	0.000		16.54
RIFLE	Anjum et al	0.144	0.117	0.177	-14.265	0.000		16.55
RIFLE	Critsinelis et al	0.143	0.116	0.176	-14.346	0.000		
RIFLE	Kurihara et al	0.143	0.115	0.175	-14.386	0.000		
RIFLE		0.220	0.146	0.318	-4.950	0.000		
Overall		0.369	0.311	0.431	-4.041	0.000		

Figure 3. Forest plots of the included studies evaluating the incidence of AKI using standard AKI definitions (RIFLE, AKIN, and KDIGO criteria) among LVAD patients. A diamond data marker represents the overall rate from the individual studies (square data marker) and 95% CI.

Figure 4. Meta-regression analysis demonstrated a significant negative correlation between the incidence of severe AKI requiring RRT and study year (slope = −0.068, p < .001)
Discussion

This meta-analysis supports that AKI is a common complication after LVAD implantation. The pooled incidence of post-LVAD AKI (using standard AKI definitions) and severe AKI requiring RRT was 37% and 13%, respectively. We found no significant difference in AKI...
incidence after adjusting for LVAD indication (bridging vs. destination therapy). Moreover, our analysis did not show any difference in AKI incidence between pulsatile and continuous flow LVAD devices. It was also noted that the incidence of AKI was higher (37% vs. 25%) when using standard AKI criteria, such as RIFLE, AKIN, and KDIGO. This may indicate that defining AKI using consensus criteria may improve the sensitivity of detecting AKI in LVAD patients. This meta-analysis further identified that AKI incidence remained constant over time, while the need for RRT due to AKI decreased significantly in more recent studies.

The mechanisms of AKI among LVAD patients are complex and can be multifactorial [5,89,90]. Mechanical stress on red blood cells traveling through the LVAD leads to constant low-level hemolysis, potentially resulting in pigment nephropathy [5]. These patients also tend to have acquired von Willebrand disease, as the von Willebrand factor multimers suffer fragmentation when passing through the LVAD pump, leading to subsequent increased risk of AKI due to decreased effective blood volume secondary to bleeding from arteriovenous malformations or severe epistaxis [5,8]. An additional concern is, the development of right heart failure following LVAD implantation, which is observed in approximately 20–50% of patients [14,91–94]. This right heart failure could further potentiate renal venous congestion, compromised net effective renal perfusion pressure and decrease GFR [95,96]. Hemodynamic instability in the immediate post-operative period could exacerbate kidney ischemia and lead to acute tubular necrosis. Accelerated thrombogenicity secondary to the LVAD pump and blood stasis may trigger renal microemboli, as evidenced by the presence of kidney infarctions [97]. Yet another proposed hypothesis for the development of worsening kidney function in LVAD patients is that the continuous flow of the LVAD might lead to a proliferation of afferent arteriolar smooth muscle cells and periarteriolaris, which causes an eventual decline in eGFR [98]. However, in our study, the incidence of AKI was similar between pulsatile-flow and continuous-flow LVADs, suggesting that the lack of pulsatility from continuous-flow LVADs might not be the cause of associated AKI. On the other hand, currently only a limited amount of pulsatility can be generated by LVADs using periodic speed steps, and it is considerably smaller in both flow increase and rate than what is found with natural pulsatile circulation [99]. Given the ongoing efforts to advance LVAD technology, future studies are needed to evaluate whether or not improvements in pulsatile-flow LVADs can reduce the incidence of post-LVAD implantation AKI.

The findings from our study demonstrated that LVAD patients who developed AKI had greater odds of 30-day and 1-year mortality. The pooled odds ratios were even higher in patients with severe AKI requiring RRT. It is emphasized that even an occurrence of AKI following LVAD implantation has long-lasting negative clinical impacts, especially if dialysis is required [40, 100]. Post-implantation AKI is associated with right ventricular failure and arrhythmias, both of which are, in turn, associated with increased mortality [28]. Our study shows that LVAD patients with severe AKI requiring RRT are associated with 7.5-fold and 5.4-fold increased risks of 30-day and 1-year mortality, respectively. While the findings of our study suggested no significant changes in overall AKI incidence over the study years, the incidence of severe AKI requiring RRT appeared to decrease over study year significantly. This finding suggests potential improvements in the prevention, mitigation, and clinical management of severe AKI in LVAD patients. Interventions proposed to mitigate the incidence and severity of post-LVAD implantation AKI include maintenance of high mean arterial pressures (MAP) and coronary perfusion rates [96], inotropic support when needed, frequent monitoring of MAP via audible doppler ultrasound in combination with calibrated blood pressure measurement devices, and maintaining central venous pressures between 8 and 12 mm Hg via diuretics or extracorporeal ultrafiltration. Avoiding nephrotoxic medications postoperatively until hemodynamic stability is achieved has also been recommended. In patients with severe right heart failure, right ventricular assist devices may help decrease right-sided venous congestion and improve renal perfusion [96]. Future studies are required to assess whether these measures can significantly help to reduce AKI incidence or promote AKI recovery among LVAD patients, to improve patient survival rates ultimately.

Our systematic and meta-analysis is subject to certain limitations. First, all studies were observational in design, making them susceptible to potential selection bias. The potential sources of this heterogeneity included differences in variation in baseline characteristics (e.g., age, sex, ethnicity, and underlying chronic kidney disease), LVAD types, indications for LVAD, and outcome ascertainment. Second, the incidence of AKI is predisposed to several confounding factors. Our meta-analysis had a high degree of heterogeneities. However, we performed subgroup analyses after applying standardized AKI definitions and conducted meta-regression analyses assessing the effects of the study year, LVAD types (pulsatile vs. continuous flow), and indications for LVAD implantation (bridge to transplant
were limited [104, 106]. Furthermore, future studies using artificial intelligence to predict AKI among LVAD patients are needed [107].

In conclusion, AKI is a common complication among LVAD patients. There have been some potential improvements in the incidence rates of severe AKI requiring RRT in LVAD patients, AKI, while on LVAD, is associated with increased 30-day and 1-year mortality.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Authors’ contributions
All authors had access to the data, reviewed, and approved the final manuscript.

ORCID
Charat Thongprayoon http://orcid.org/0000-0002-8313-3604
Wisit Cheungpasitporn http://orcid.org/0000-0001-9954-9711
Michael A. Mao http://orcid.org/0000-0003-1814-7003

References
[1] Sen A, Larson JS, Kashani KB, et al. Mechanical circulatory assist devices: a primer for critical care and emergency physicians. Crit Care. 2016;20(1):153.
[2] Slaughter MS, Pagani FD, Rogers JG, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(4 Suppl):S1–S39. [20181499]
[3] Timms D. A review of clinical ventricular assist devices. Med Eng Phys. 2011;33(9):1041–1047.
[4] Kirklin JK, Pagani FD, Kormos RL, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36(10):1080–1086.
[5] Patel AM, Adeseun GA, Ahmed I, et al. Renal failure in patients with left ventricular assist devices. Clin J Am Soc Nephrol. 2013;8(3):484–496.
[6] Mao H, Katz N, Kim JC, et al. Implantable left ventricular assist devices and the kidney. Blood Purif. 2014;37(1):57–66.
[7] Tromp TR, de Jonge N, Joles JA. Left ventricular assist devices: a kidney’s perspective. Heart Fail Rev. 2015;20(4):519–532.
[8] Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376(5):451–460.
[9] Gustafsson F, Rogers JG. Left ventricular assist device therapy in advanced heart failure: patient selection and outcomes. Eur J Heart Fail. 2017;19(5):595–602.
[10] Maciver J, Ross HJ. Quality of life and left ventricular assist device support. Circulation. 2012;126(7):866–874.
[11] Singhvi A, Trachtenberg B. Left ventricular assist devices 101: shared care for general cardiologists and primary care. J Clin Med. 2019;8(10):pii:E1720.
[12] Kormos RL, Cowger J, Pagani FD, et al. The society of thoracic surgeons intermacs database annual report: evolving indications, outcomes, and scientific partnerships. J Heart Lung Transplant. 2019;38(2):114–126.
[13] Soliman OI, Akin S, Muslem R, et al. Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices: the EUROMACS (European Registry for Patients with Mechanical Circulatory Support) right-sided heart failure risk score. Circulation. 2018;137(9):891–906.
[14] Yalcin YC, Bunge JJH, Guven G, et al. Acute kidney injury following left ventricular assist device implantation: contemporary insights and future perspectives. J Heart Lung Transplant. 2019;38(8):797–805.
[15] Genovese EA, Dew MA, Teuteberg JJ, et al. Early adverse events as predictors of 1-year mortality during mechanical circulatory support. J Heart Lung Transplant. 2010;29(9):981–988.
[16] Aaronson KD, Slaughter MS, Miller LW, et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125(25):3191–3200.
[17] Abbas A, Mahmoud A, Ahmed M, et al. Gastrointestinal bleeding during the index hospitalization for mechanical circulatory support devices implantation, a nationwide perspective. Dig Dis Sci. 2017;62(1):161–174.
[18] Adegbala O, Olakanmi O, Akintoye E, et al. Trends, outcomes, and readmissions among left ventricular assist device recipients with acute kidney injury requiring hemodialysis. ASAIO journal (American Society for Artificial Internal Organs: 1992). 2019.
[19] Ahmed A, Adegbala O, Akintoye E, et al. Gender differences in outcomes after implantation of left ventricular assist devices. Ann Thorac Surg. 2020;109(3):780–786.
[20] Aissaoui N, Morshuis M, Schoenbrodt M, et al. Temporary right ventricular mechanical circulatory support for the management of right ventricular failure in critically ill patients. J Thorac Cardiovasc Surg. 2013;146(1):186–191.
[21] Alba AC, Rao V, Ivanov J, et al. Predictors of acute renal dysfunction after ventricular assist device placement. J Card Fail. 2009;15(10):874–881.

[22] Anjum A, Kurihara C, Critsinelis A, et al. Acute kidney injury after implantation of a left ventricular assist device: a comparison of axial-flow (HeartMate II) and centrifugal-flow (HeartWare HVAD) devices. J Artif Organs. 2018;21(3):285–292.

[23] Arnaoutakis GJ, George TJ, Kilic A, et al. Risk factors for early death in patients bridged to transplant with continuous-flow left ventricular assist devices. Ann Thorac Surg. 2012;93(5):1549–1555. discussion 1555.

[24] Asleh R, Schettle S, Briasoulis A, et al. Predictors and outcomes of renal replacement therapy after left ventricular assist device implantation. Mayo Clin Proc. 2019;94(6):1003–1014.

[25] Baxter RD, Tecson KM, Still S, et al. Predictors and impact of right heart failure severity following left ventricular assist device implantation. J Thorac Dis. 2019;11(56):5864–5870.

[26] Borgi J, Tsiouris A, Hodari A, et al. Significance of postoperative acute renal failure after continuous-flow left ventricular assist device implantation. Ann Thorac Surg. 2013;95(1):163–169.

[27] Briasoulis A, Inampudi C, Akintoye E, et al. Trends in utilization, mortality, major complications, and cost after left ventricular assist device implantation in the United States (2009–2014). Am J Cardiol. 2018;121(10):1214–1218.

[28] Brisco MA, Kimmel SE, Coca SG, et al. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail. 2014;7(1):68–75.

[29] Catino AB, Ferrin P, Wever-Pinzon J, et al. Clinical and histopathological effects of heart failure drug therapy in advanced heart failure patients on chronic mechanical circulatory support. Eur J Heart Fail. 2018;20(1):164–174.

[30] Critsinelis A, Kurihara C, Volkovich N, et al. Model of end-stage liver Disease-exCluding International Normalized Ratio (MELD-XI) scoring system to predict outcomes in patients who undergo left ventricular assist device implantation. Ann Thorac Surg. 2018;106(2):513–519.

[31] Demiroz ZT, Etheridge WB, Radovancevic R, et al. Results of HeartMate II left ventricular assist device implantation on renal function in patients requiring post-implant renal replacement therapy. J Heart Lung Transplant. 2011;30(2):182–187.

[32] Deng MC, Edwards LB, Hertz MI, et al. Mechanical circulatory support device database of the International Society for Heart and Lung Transplantation: third annual report-2005. J Heart Lung Transplant. 2005;24(9):1182–1187.

[33] Deschka H, Holthaus AJ, Sindermann JR, et al. Can perioperative right ventricular support prevent post-operative right heart failure in patients with biventricular dysfunction undergoing left ventricular assist device implantation? J Cardiothorac Vasc Anesth. 2016;30(3):619–626.

[34] Feller ED, Sorensen EN, Haddad M, et al. Clinical outcomes are similar in pulsatile and nonpulsatile left ventricular assist device recipients. Ann Thorac Surg. 2007;83(3):1082–1088.

[35] Frazier OH, Rose EA, Oz MC, et al. Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2001;122(6):1186–1195.

[36] Go PH, Hodari A, Nemej HW, et al. Effect of pre-operative albumin levels on outcomes in patients undergoing left ventricular device implantation. ASAIO J (Am Soc Artif Int Organs: 1992). 2015;61(6):734–737.

[37] Haddad M, Hendry PJ, Masters RG, et al. Ventricular assist devices as a bridge to cardiac transplantation: the Ottawa experience. Artif Organs. 2004;28(2):136–141.

[38] Hasin T, Topolsky Y, Schirger JA, et al. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012;59(1):26–36.

[39] John R, Naka Y, Smedira NG, et al. Continuous flow left ventricular assist device outcomes in commercial use compared with the prior clinical trial. Ann Thorac Surg. 2011;92(4):1406–1413; discussion 1413.

[40] Kaltenmaier B, Pommer W, Kaufmann F, et al. Outcome of patients with ventricular assist devices and acute renal failure requiring renal replacement therapy. ASAIO J (Am Soc Artif Int Organs: 1992). 2000;46(3):330–333.

[41] Kurihara C, Critsinelis AC, Kawabori M, et al. Frequency and consequences of right-sided heart failure after continuous-flow left ventricular assist device implantation. Am J Cardiol. 2018;121(3):336–342.

[42] Lok SI, Martina JR, Hesselink T, et al. Single-centre experience of 85 patients with a continuous-flow left ventricular assist device: clinical practice and outcome after extended support. Eur J Cardiothorac Surg. 2013;44(3):e233–e238.

[43] Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–896.

[44] Muslem R, Caliskan K, Akin S, et al. Acute kidney injury and 1-year mortality after left ventricular assist device implantation. J Heart Lung Transplant. 2018;37(1):116–123.

[45] Nadzialakiewicz P, Szygula-Jurkiewicz B, Niklewski T, et al. Effects of left ventricular assist device support on end-organs function in patients with heart failure: comparison of pulsatile- and continuous-flow support in a single-center experience. Transplant Proc. 2016;48(5):1775–1780.

[46] Naik A, Akhter SA, Fedson S, et al. Acute kidney injury and mortality following ventricular assist device implantation. Am J Nephrol. 2014;39(3):195–203.

[47] Ono M, Joshi B, Brady K, et al. Cerebral blood flow autoregulation is preserved after continuous-flow left ventricular assist device implantation. J Cardiothorac Vasc Anesth. 2012;26(6):1022–1028.

[48] Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54(4):312–321.
Easterbrook PJ, Berlin JA, Gopalan R, et al. Publication bias in clinical research. Lancet (London, England). 1991;337(8746):867–872.

Bresson D, Sibellas F, Farhat F, et al. Preliminary experience with Impella Recover LP5.0 in nine patients with cardiogenic shock: a new circulatory support system in the intensive cardiac care unit. Arch Cardiovasc Dis. 2011;104(8–9):458–464.

Cohen MG, Matthews R, Maini B, et al. Percutaneous left ventricular assist device for high-risk percutaneous coronary interventions: real-world versus clinical trial experience. Am Heart J. 2015;170(5):872–879.

Flaherty MP, Pant S, Patel SV, et al. Hemodynamic support with a microaxial percutaneous left ventricular assist device (Impella) protects against acute kidney injury in patients undergoing high-risk percutaneous coronary intervention. Circ Res. 2017;120(4):692–700.

Iliodromitis KE, Kahler P, Plicht B, et al. High-risk PCI in acute coronary syndromes with Impella LP 2.5 device support. Int J Cardiol. 2011;153(1):59–63.

Kusa S, Miller MA, Whang W, et al. Outcomes of ventricular tachycardia ablation using percutaneous left ventricular assist devices. Circul-Arrhythmia Elec. 2017;10(6):pii004717.

Miller MA, Dukkipati SR, Chinitz JS, et al. Percutaneous hemodynamic support with Impella 2.5 during scar-related ventricular tachycardia ablation (PERMIT 1). Circ Arrhythm Electrophysiol. 2013;6(1):151–159.

O’Neill WW, Kleiman NS, Moses J, et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II study. Circulation. 2012;126(14):1717–1727.

Parascandola SA, Pae WE, Jr., Davis PK, et al. Determinants of survival in patients with ventricular assist devices. ASAIO Trans. 1988;34(3):222–228.

Pieri M, Contri R, Winterton D, et al. The contemporary role of Impella in a comprehensive mechanical circulatory support program: a single institutional experience. BMC Cardiovasc Disord. 2015;15:126

Schiller P, Hellgren L, Vikholm P. Survival after refractory cardiogenic shock is comparable in patients with Impella and veno-arterial extracorporeal membrane oxygenation when adjusted for SAVE score. Eur Heart J Acute Cardiovasc Care. 2019;8(7):1107–1129.

Nigwekar SU, Kandula P, Hix JK, et al. Off-pump coronary artery bypass surgery and acute kidney injury: a meta-analysis of randomized and observational studies. Am J Kidney Dis: Off J Nat Kidney Found. 2009;54(3):413–423.

Tecson KM, Lima B, Lee AY, et al. Determinants and outcomes of vasoplegic following left ventricular assist device implantation. J Am Heart Assoc. 2018;7(11):pii008377.

Meineri M, Van Rensburg AE, Vegas A. Right ventricular failure after LVAD implantation: prevention and treatment. Best Pract Res Clin Anaesthesiol. 2012;26(2):217–229.

Bhatia RS, Tu JV, Lee DS, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355(3):260–269.

Goldstein SL. Medication-induced acute kidney injury. Curr Opin Crit Care. 2016;22(6):542–545.

Nickel NP, O’Leary JM, Brittain EL, et al. Kidney dysfunction in patients with pulmonary arterial hypertension. Pulm Circ. 2017;7(1):38–54.

Kopitkó C, Gondos T, Fülöp T, et al. Reinterpreting renal hemodynamics: the importance of venous congestion and effective organ perfusion in acute kidney injury. Am J Med Sci. 2020;359(4):193–205.

Ross DW, Stevens GR, Wanchoo R, et al. Left ventricular assist devices and the kidney. Clin J Am Soc Nephrol. 2018;13(2):348–355.

Cooper TK, Zhong Q, Nabiyy M, et al. Use of urinary biomarkers of renal ischemia in a lamb preclinical left ventricular assist device model. Artif Organs. 2012;36(9):820–824.

Ootaki C, Yamashita M, Ootaki Y, et al. Reduced pulsatility induces periarteritis in kidney: role of the local renin-angiotensin system. J Thorac Cardiovasc Surg. 2008;136(1):150–158.

Schima H, Dmitrov K, Zimpfer D. Debate: creating adequate pulse with a continuous flow ventricular assist device: can it be done and should it be done? Probably not, it may cause more problems than benefits! Curr Opin Cardiol. 2016;31(3):337–342.

Sandner SE, Zimpfer D, Zrunek P, et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg. 2009;87(4):1072–1078.

Thongprayoon C, Cheungpasitporn W, Kashani K. Serum creatinine level, a surrogate of muscle mass, predicts mortality in critically ill patients. J Thorac Dis. 2016;8(5):E305–E311.

Cheungpasitporn W, Kashani K. Electronic data systems and acute kidney injury. Contrib Nephrol. 2016;187:73–83.

Thongprayoon C, Cheungpasitporn W, Kittanamongkolchai W, et al. Prognostic importance of low admission serum creatinine concentration for mortality in hospitalized patients. Am J Med. 2017;130(5):545–554 e541.

Thongprayoon C, Hansrivijit P, Kovvuru K, et al. Diagnostics, risk factors, treatment and outcomes of acute kidney injury in a new paradigm. J Clin Med. 2020;9(4):1104.

Thongprayoon C, Kaewput W, Thamcharoen N, et al. Incidence and impact of acute kidney injury after liver transplantation: a meta-analysis. J Clin Med. 2019;8(3):372.

Thongprayoon C, Kaewput W, Kovvuru K, et al. Promises of big data and artificial intelligence in nephrology and transplantation. J Clin Med. 2020;9(4):1107.