Mir-193a-5p Replacement Can Alter Metastasis Gene Expression in Breast Adenocarcinoma Cells In Vitro

Monireh Khordadmehr1, 2, Roya Shabhazi1, Behzad Baradaran1, 2, Masoumeh Firouzamandi1 and Dariush Shanehbandi1, 2, Khalil Hajiagharzadeh1, Masoumeh Firouzamandi1

1Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran.
2Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.

Abstract

Background: Recent evidence presented the significant role of the microRNA-193 (miR-193) family in biological processes by the contribution of specific targeting, which mainly display as a tumor suppressor in various cancers. In the present study, we evaluated the effect of miR-193a-5p replacement on some metastasis gene expression in metastatic breast cancer (BC) cells.

Methods: For this purpose, firstly, the quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the miR-193a-5p expression in the MDA-MB-231 BC cell line. Subsequently, miR-193a-5p was transfected into the cells, and the expression levels of ROCK1 (Rho-associated, coiled-coil containing protein kinase 1), CXCR4 (Chemokine Receptor-4), CD44, and vimentin genes were evaluated by qRT-PCR.

Results: The expression level of miR-193a-5p strongly reduced in MDA-MB-231 cells. Interestingly, the ROCK1 (P < 0.001), CD44 (P < 0.0001), CXCR4 (P < 0.001) and vimentin (P < 0.001) expression levels significantly decreased following miR-193a-5p transfection in MDA-MB-231 BC cells.

Conclusion: To conclude, it seems that miR-193a-5p restoration can attenuate the metastatic behavior of BC cells in vitro through decreased expression level of metastasis-related genes and may constitute an effective novel therapeutic strategy in miRNA-replacement therapy and treatment of metastatic breast adenocarcinoma in the future.

Keywords:
-miR-193
-Tumor-suppressor
-Breast cancer
-Microrna replacement therapy
-Metastasis genes

Introduction

Breast cancer (BC) is the most commonly diagnosed cancer in women worldwide. Indeed, the American Cancer Society had predicted that there would be an estimated 266,120 and 2,550 new cases of invasive BC diagnosed in women and men, respectively, associated with 41,400 BC deaths (40,920 women, 480 men) in the US in 2018. Also, the 5- and 10-year relative survival rates for invasive BC are 90% and 83%, respectively.1 In BC treatment, surgery (including a lumpectomy and mastectomy), radiotherapy (recommended for most patients having breast-conserving surgery), chemotherapy (before or after surgery), hormone (anti-estrogen) therapy, and targeted therapy are considered as the therapeutic strategies. However, these treatment approaches occasionally present some impediments like toxicity, relapse, different side effects, and high-cost treatment. For these reasons, in recent years, the large number of researchers has interested and focused on several replacement therapy methods, particularly microRNA replacement therapy for the treatment of BC.2-4 MiRNAs are well known as an important regulator of gene expression with fundamental impacts on numerous biological functions. Likewise, emerging evidence proposes that miRNAs are often deregulated in various cancers, and carcinogenesis occurs through the dysregulation of the pivotal tumor suppressor genes or oncogenes.5 In this regard, they have been involved in cancer biology and development, such as cell proliferation and apoptosis, angiogenesis, cell motility and migration, invasion, metastasis and EMT (Epithelial to Mesenchymal Transformation) of various tumors like BC.6-8 In this connection, it was previously demonstrated that miR-193 family (includes has-miR-193a and has-miR-193b) which define as MIR193a and MIR193b where located on chromosome 17 (chr17: 31559996-31560083) and 16 (chr16: 14303967-14304049), respectively, contributes mainly as a tumor suppressor in both liquid and solid tumors.9-11 Indeed, previous studies indicated the considerable role of miR-193a in various cancers such as bladder carcinoma,6 hepatocellular carcinoma,7 colon cancer, and breast cancer.7 Besides, several studies have

*Corresponding Authors: Monireh Khordadmehr, E-mail: khordadmehr@tabrizu.ac.ir and Behzad Baradaran, Email: baradaranb@tbzmed.ac.ir
©2020 The Author(s). This is an open access article and applies the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited.
been similarly identified the inhibitory effects of miR-193b in several cancer tissues and cell lines, such as BC,10 hepatocellular carcinoma,9 glioma,11 and pancreatic cancer.12 As previously described, convincing evidence indicated that ectopic expression of miRNAs could impact on one or several steps of metastatic mechanisms comprise cell adhesion and motility, invasiveness, and EMT. In the present study, we evaluated the effect of miR-193a-5p replacement on expression levels of ROCK1, CD44, CXCR4, and vimentin potential targeting of MDA-MB-231 BC cell line, which involve in the metastatic manner of BC.

Materials and Methods

Cell culture and transfections

MDA-MB-231 cell line that originated from the human epithelial BC cells were acquired from the Pasteur Institute, Tehran, Iran. Firstly, the cells were cultured in a standard cell culture condition based on our previous study.14 Subsequently, 2 × 105 cells were seeded in a 6-well plate. When the seeded cells reached to 50-70\% confluent, the cells were washed with PBS (phosphate-buffered saline), and the miR-193a-5p mimic transfection was performed using JetPEI reagent (Polyplus-transfection, Strasbourg, France). To understand the appropriate dosage of transfected miRNA and optimal time, pilot assessments were performed in three 24, 48, and 72 h time intervals,15 and three dosages of 5, 7.5, and 10 nmol to obtain the effective time and dosage, respectively. MiRNA from *Caenorhabditis elegans* (MISSION2* miRNA, Sigma-Aldrich Co.), with no sequence homology to the human gene, was used for transfection of negative controls (Table 1).

RNA extraction, RT-PCR, and qRT-PCR for miRNA and genes expression

Total RNA was isolated from the cell pellets (approximately 1 × 106 cells) using RiboEx reagent (Gene All Biotechnology, Seoul, South Korea), and the quality and concentration of RNA were determined by Nano-Drop spectrophotometer (Thermo Fisher Scientific Life Sciences, USA). Moreover, the integrity of the RNA was checked by agarose gel electrophoresis. For miR-193a-5p (cDNA) synthesis, the miRNA Reverse Transcription Kit (Exiqon, Vedbaek, Denmark) was used according to the manufacturer’s protocol. In parallel, CDNA synthesis for the ROCK1, CD44, CXCR4, and vimentin genes were performed using first-strand cDNA synthesis Kit (Thermo, USA) according to the suggested protocol. A Bio-Rad thermal cycler (Bio-Rad Laboratories, Inc., Hercules, CA) was utilized for applying temperatures.

Statistical analysis

For statistical analysis of the present data, GraphPad Prism software (GraphPad Prism 4.0, San Diego, CA) was used. The statistical significant differences between the experimental groups were evaluated by Student’s t and ANOVA tests, and a p < 0.05 was considered statistically significant.

Results and Discussion

In the present study, qRT-PCR indicated that the miR-193a-5p mimic transfection led to the efficient restoration of miR-193a-5p in BC cells. It was found the 5 nmol in 24 h as appropriate dosage of transfected miRNA and optimal time (P < 0.0001), which considered for the subsequent examinations (Table 2).

Primer name	Forward/Reverse sequences
ROCK1	5’-AATCGTGGGGATGCTACTCT-3’ 5’-AAAACCTCAGTGGTGTCG-3’
CXCR4	5’-TCTTCCCTGCCACCATCTACT-3’ 5’-TGCAGCCTTGACTTGGTGC-3’
CD44	5’-CAAGGCCACTCAGGAGGAA-3’ 5’-ATCCAAAGTTGAGGAATACAACAG-3’
Vimentin	5’-CAGGCAAAGCAGAGGATTCA-3’ 5’-AAGTGGTCTCAGGACGCA-3’
β-actin	5’-TCCCTGGGAAGAGCTACG-3’ 5’-GTAGTTCTGGTAGTTGACA-3’
U6 snRNA	Target sequence 5’-UGCUUCGUUCGCGACACACAUUAUACUAUUUUUGGAACGAAUACAGGAGAAGAUAUAGCCUGCGCAAGAGACACAGCAGAUAUUAUAAUUU-3’
Has-miR-193a-5p	Target sequence 5’-UCA UCU CGC CCG CAA AGA CCC A-3’
C. elegans miRNA	Target sequence 5’-CGGUACGAUCGCGCCGGAAUAC-3’

449 | Pharmaceutical Sciences, 2020, 26(4), 448-453
To evaluate the expression levels of ROCK1, CD44, CXCR4, and vimentin after transfection of miR-193a-5p mimic in MDA-MB-231 BC cells, qRT-PCR was also used. These data demonstrated the considerable decrement in the expression levels of ROCK1 (P < 0.001), CD44 (P < 0.0001), CXCR4 (P < 0.001), and vimentin (P < 0.001) genes compared to the control group (Figure 1). Therefore, it was suggested that the miR-193a-5p transfection could attenuate metastases manner in BC cells in vitro by modulation of related metastasis genes.

The present study exhibited the impact of miR-193a-5p transfection on BC cells, which subsequently decreased expression levels of some related genes involved in BC metastases, including ROCK1, CD44, CXCR4, and vimentin. In this regard, increasing evidence indicated the effective function of miR-193a-5p on BC migration and invasion.16,17 However, little was previously known about the effect of miR-193a-5p on the biological behavior of BC cells. Indeed, the present findings were consistent with previous data which confirmed the tumor-suppressive function of miR-193a in tumor biology.16,17

In the present study, we observed the marked decreased expression levels of ROCK1, CXCR4, CD44, and vimentin, which are involved in invasion and metastasis biology of BC cells. ROCK1 functions as a substantial modulator of focal adhesion formation, cancer cell motility, and invasion.18 A recent study indicated that the down-regulation of ROCK1 by miR-340 could repress the invasion and metastasis of BC cells.19 Recently, it was established miR-335 reduced metastasis of osteosarcoma by functional ROCK1 targeting.20 Moreover, it was clarified that miR-148a suppresses tumor cell invasion and metastasis by down-regulating ROCK1 in gastric cancer.21 Also, it was reported that miR-1280 decreases invasion and metastasis by targeting ROCK1 in bladder cancer.22 Very recently, it was also demonstrated that miR-448 inhibits the progression of

Parameters	Groups	Related miR-193a-5p expression	P value
Concentration	Mimic 5 nM	17.03 ± 0.072	
	Mimic 7.5 nM	15.06 ± 0.097	
	Mimic 10 nM	14.47 ± 0.106	0.0001
Time interval	Control	1 ± 0.00	
	24 h	0.937 ± 0.006	0.0001
	48 h	0.604 ± 0.004	
	72 h	0.751 ± 0.006	

Table 2. The results to determine the appropriate dosage of transfected miRNA and assessment time, showed that 5 nmol in the 24 h was the most effective dosage at the most effective time. The data represent mean ± SD (n = 3).

Figure 1. The effect of miR-193a-5p replacement on ROCK1 (A), CD44 (B), CXCR4 (C), and vimentin (D) expression levels in breast cancer MDA-MB-231 cell line. Q-RT-PCR assay exhibited that ROCK1, CD44, CXCR4, and vimentin expression markedly reduced (P < 0.001, P < 0.0001, P < 0.001, P < 0.001, respectively) in miRNA replaced cells compared with the control group. The data represent mean ± SD, n = 3.
retinoblastoma by directly targeting ROCK1.24

The role of CXCR4 in BC metastasis was previously clarified and demonstrated that overexpression of the CXCR4 receptor in BC is closely associated with increasing of cancer metastasis phenotype and is necessary for cellular migration of BC cells.24 Recently, it was indicated that miR-145 and miR-203 could regulate the invasiveness of BC cells by CXCR4 targeting.25 A previous study revealed that miR-302a inhibits the metastatic feature of BC cells by down-regulating of CXCR4.26 The present results indicate that overexpression of miR-193a-5p can reduce the expression level of CXCR4 in BC cells, and would be probably inhibited migration and metastasis features of BC.

Some miRNAs like miR-373 and miR-520c promote cell migration and invasion by targeting CD44 in BC cells.27,28 Also, it was investigated that HER2 interacts with CD44 to CXCR4 up-regulation through epigenetic silencing of miR-139 in gastric cancer cells.29 On the other hand, it is believed that cancer cells that undergo EMT gain stem cell-like properties and exhibit an enhanced in CD44 expression.29 Besides, cancer cells with an EMT phenotype present augmented invasiveness and occasionally are more resistant to chemotherapy.30 The contribution of CD44 in cancer progression proposes that CD44 may be a molecular target for cancer therapy. According to the present findings, it seems that the down-regulation of CD44 induced by the restoration of miR-193a-5p may be related to the CXCR4 expression level.

EMT is a remarkable index of cellular plasticity that contributes to the epithelial-tight-junctions dissolution, adherence-junctions intonation, and cytoskeleton remodeling.31 In this way, some scientists indicated the critical role of vimentin as one of the main EMT-related proteins in the EMT process. It was provided that miR-214 contribute to the EMT process in BC cells by vimentin presentation.32 Besides, miR-138 suppresses metastasis and EMT phenotype in BC cells by potentially targeting vimentin.33 Likewise, it was believed that miRNA-30a inhibits cell migration and invasion by down-regulating vimentin expression in BC.34 Interestingly, it was previously indicated that overexpression of CD44 up-regulated vimentin expression, which led to the cell invasion and migration.35 Very recently, it was also reported that miR-193a-5p can repress migration and invasion of colorectal cancer cells via directly targeting vimentin.36 Interestingly, these results are consistent with the present findings. Collectively, current data indicate an important role of miR-193a-5p as an inhibitory miRNA for breast adenocarcinoma metastasis.

Conclusion

To conclude, we present here that miR-193a-5p functions as a tumor-suppressive miRNA, which conventionally down-regulate in BC cells, and can negatively modulate BC cell migration, metastases, and EMT by targeting ROCK1, CD44, CXCR4, and vimentin. Taken together, these findings provide that restoration of miR-193a-5p may consider as a beneficial therapeutic strategy for miRNA-replacement therapy and treatment of metastatic breast adenocarcinoma in the future.

Acknowledgments

The authors are grateful to the Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran, and also the Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, for the financial support.

Conflict of Interest

The authors declare they have no conflict of interest.

References

1. American Cancer Society. Breast Cancer Facts & Figures 2019. Atlanta: American Cancer Society, Inc; 2019.

2. Khordadmehr M, Shahbazi R, Ezzati H, Jigari-Asl F, Sadreddini S, Baradaran B. Key microRNAs in the biology of breast cancer; emerging evidence in the last decade. J Cell Physiol. 2019;234(6):8316-26. doi:10.1002/jcp.27716

3. van Schooneveld E, Wilders H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res. 2015;17:21. doi:10.1186/s13058-015-0526-y

4. Khordadmehr M, Shahbazi R, Sadreddini S, Baradaran B. miR-193: A new weapon against cancer. J Cell Physiol. 2019;234(10):16861-16872. doi:10.1002/jcp.28368

5. Grossi I, Salvi A, Abeni E, Marchina E, De Petro G. Biological Function of MicroRNA193a-3p in Health and Disease. Int J Genomics. 2017;2017:5913195. doi:10.1155/2017/5913195

6. Lv L, Deng H, Li Y, Zhang C, Liu X, Liu Q, et al. The DNA methylation-regulated miR-193a-3p dictates the multi-chemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression. Cell Death Dis. 2014;5(9):e1402. doi:10.1038/cddis.2014.367

7. Salvi A, Conde I, Abeni E, Arici B, Grossi I, Specchia C, et al. Effects of miR-193a and sorafenib on hepatocellular carcinoma cells. Mol Cancer. 2013;12:162. doi:10.1186/1476-4598-12-162

8. Teng Y, Ren Y, Hu X, Hu M, Samykutty A, Zhuang X, et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun. 2017;8:14448. doi:10.1038/ncomms14448

9. Noh H, Hong S, Dong Z, Pan ZK, Jing Q, Huang S. Impaired MicroRNA Processing Facilitates Breast Cancer Cell Invasion by Upregulating Urokinase-Type Plasminogen Activator Expression. Genes Cancer. 2011;2(2):140-50. doi:10.1177/1947601911408888

10. Yang Z, He M, Wang K, Sun G, Tang L, Xu Z. Tumor suppressive microRNA-193b promotes breast cancer progression via targeting DNAJC13 and RAB22A. Int
Mir-193a-5p Replacement in Breast Adenocarcinoma Cells In Vitro

10.1038/
10.1158/1078-0432.
10.1016/j.
10.1371/journal.pone.01255
23.
22.
20.
19.
18.
17.
16.
15.
14.
13.
12.
11.
10.
9.
8.
7.
6.
5.
4.
3.
2.
1.

J Clin Exp Pathol. 2014;7(11):7563-70.
11. Xu C, Liu S, Fu H, Li S, Tie Y, Zhu J, et al. MicroRNA-193b regulates proliferation, migration and invasion in human hepatocellular carcinoma cells. Eur J Cancer. 2010;46(15):2828-36. doi:10.1016/j.ejca.2010.06.127
12. Zhong Q, Wang T, Lu P, Zhang R, Zou J, Yuan S. miR-193b promotes cell proliferation by targeting Smad3 in human glioma. J Neurosci Res. 2014;92(5):619-26. doi:10.1002/jnr.23339
13. Jin X, Sun Y, Yang H, Li J, Yu S, Chang X, et al. Deregelation of the miR-193b-KRAS axis contributes to impaired cell growth in pancreatic cancer. PLoS One. 2015;10(4):e0125515. doi:10.1371/journal.pone.0125515
14. Ghazanchaei A, Mansoori B, Mohammadi A, Biglari A, Baradaran B. Restoration of miR-152 expression suppresses cell proliferation, survival, and migration through inhibition of AKT-ERK pathway in colorectal cancer. J Cell Physiol. 2018;234(1):769-76. doi:10.1002/jcp.26891
15. Aletaha M, Mansoori B, Mohammadi A, Fazeli M, Baradaran B. Therapeutic effects of bach1 siRNA on human breast adenocarcinoma cell line. Biomed Pharmacother 2017;88:34-42. doi:10.1016/j.biopha.2017.01.030
16. Iliopoulos D, Rotem A, Struhl K. Inhibition of miR-193a expression by Max and RXXRa activates K-Ras and PLAU to mediate distinct aspects of cellular transformation. Cancer Res. 2011;71(15):5144-53. doi:10.1158/0008-5472.CAN-11-0425
17. Tsai KW, Leung CM, Lo YH, Chen TW, Chan WC, Yu SY, et al. Arm selection preference of microRNA-193a varies in breast cancer. Sci Rep. 2016;6:28176. doi:10.1038/srep28176
18. Narumiya S, Tanji M, Ishizaki T. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev. 2009;28(1-2):65-76. doi:10.1007/s10555-008-9170-7
19. Maskey N, Li D, Xu H, Song H, Wu C, Hua K, et al. MicroRNA-340 inhibits invasion and metastasis by downregulating ROCK1 in breast cancer cells. Oncol Lett. 2017;14(2):2261-7. doi:10.3892/ol.2017.6439
20. Wang W, Zhou X, Wei M. MicroRNA-144 suppresses osteosarcoma growth and metastasis by targeting ROCK1 and ROCK2. Oncotarget. 2015;6(12):10297-308. doi:10.18632/oncotarget.3305
21. Zheng B, Liang L, Wang C, Huang S, Cao X, Zha R, et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin Cancer Res. 2011;17(24):7574-83. doi:10.1158/1078-0432.CCR-11-1714
22. Majid S, Dar AA, Saini S, Shahzariy V, Arora S, Zaman MS, et al. MicroRNA-1280 inhibits invasion and metastasis by targeting ROCK1 in bladder cancer. PLoS One. 2012;7(10):e46743. doi:10.1371/journal.pone.0046743
23. Wu S, Ai N, Liu Q, Zhang J. MicroRNA-448 inhibits the progression of retinoblastoma by directly targeting ROCK1 and regulating PI3K/AKT signalling pathway. Oncol Rep. 2018;39(5):2402-12. doi:10.3892/or.2018.6302
24. Yagi H, Tan W, Dillenburg-Pilla P, Armando S, Amornphimoltham P, Simaan M, et al. A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. Sci Signal. 2011;4(191):ra60. doi:10.1126/scisignal.2002221
25. Mohammadzadeh R, Saeid Harouyan M, Ale Tah AM. Silencing of bach1 gene by small interfering RNA-mediates repression of expression level of miR-203, miR-145, matrix metalloproteinase-9, and CXCR4 receptor in MDA-MB-468 breast cancer cells. Tumour Biol. 2017;39(3):1010428317695925. doi:10.1177/10428317695925
26. Liang Z, Bian X, Shim H. Inhibition of breast cancer metastasis with microRNA-302a by downregulation of CXCR4 expression. Breast Cancer Res Treat. 2014;146(3):535-42. doi:10.1007/s10549-014-3053-0
27. Yan GR, Xu SH, Tan ZL, Liu L, He QY. Global identification of miR-373-regulated genes in breast cancer by quantitative proteomics. Proteomics. 2011;11(5):912-20. doi:10.1002/pmic.201000539
28. Huang Q, Gumireddy K, Schrier M, Le Sage C, Nagel R, Nair S, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10(2):202-10. doi:10.1038/ncb1681
29. Bao W, Fu HJ, Xie QS, Wang L, Zhang R, Guo ZY, et al. HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology. 2011;141(6):2076-87. e6. doi:10.1053/j.gastro.2011.08.050
30. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704-15. doi:10.1016/j.cell.2008.03.027
31. Zhao S, Chen C, Chang K, Karnad A, Jagirdar J, Kumar AP, et al. CD44 Expression Level and Isoform Contributes to Pancreatic Cancer Cell Plasticity, Invasiveness, and Response to Therapy. Clin Cancer Res. 2016;22(22):5592-5604. doi:10.1158/1078-0432.CCR-15-3115
32. Zavadil J, Narasimhan M, Blumenberg M, Schneider RJ. Transforming growth factor-beta and microRNA:mRNA regulatory networks in epithelial plasticity. Cells Tissues Organs. 2007;185(1-3):157-61. doi:10.1159/000101316
33. Lv JW, Wen W, Jiang C, Fu QB, Gu YJ, Lv TT, et al. Inhibition of microRNA-214 promotes epithelial-mesenchymal transition process and induces interstitial cystitis in postmenopausal women by upregulating Mfn2. Exp Mol Med. 2017;49(7):e357. doi:10.3838/emm.2017.98
34. Zhang J, Liu D, Feng Z, Mao J, Zhang C, Lu Y, et al. MicroRNA-138 modulates metastasis and EMT in...
breast cancer cells by targeting vimentin. Biomed Pharmacother. 2016;77:135-41. doi:10.1016/j.biopharm.2015.12.018

35. Cheng CW, Wang HW, Chang CW, Chu HW, Chen CY, Yu JC, et al. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat. 2012;134(3):1081-93. doi:10.1007/s10549-012-2034-4

36. Cho SH, Park YS, Kim HJ, Kim CH, Lim SW, Huh JW, et al. CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. Int J Oncol. 2012;41(1):211-8. doi:10.3892/ijo.2012.1453

37. Noorolyai S, Baradaran B. MiR-193a-5p inhibits migration and invasion of colorectal cancer cells via targeting vimentin. Adv Biosci Clin Med. 2019;7(1):1-5. doi:10.7575/aiac.abcmed.v.7n.1p.1