Synthesis and molecular docking studies of some 4-phthalimidobenzenesulfonamide derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors

Zeynep Soyer, Sirin Uysal, Sulunay Parlar, Ayse Hande Tarikogullari Dogan and Vildan Alptuzun

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey

ABSTRACT
A series of 4-phthalimidobenzenesulfonamide derivatives were designed, synthesized and evaluated for the inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Structures of the title compounds were confirmed by spectral and elemental analyses. The cholinesterase (ChE) inhibitory activity studies were carried out using Ellman’s colorimetric method. The biological activity results revealed that all of the title compounds (except for compound 8) displayed high selectivity against AChE. Among the tested compounds, compound 7 was found to be the most potent against AChE (IC₅₀ = 1.35 ± 0.08 μM), while compound 3 exhibited the highest inhibition against BuChE (IC₅₀ = 13.41 ± 0.62 μM). Molecular docking studies of the most active compound 7 in AChE showed that this compound can interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE.

Introduction
Alzheimer’s disease (AD), characterized by memory loss and other cognitive impairments, is currently one of the most difficult progressive neurodegenerative disorders to treat. In the past decades, various pathogenesis hypothesis of AD have been proposed, such as cholinergic hypothesis, amyloid cascade hypothesis, oxidative stress hypothesis and tau protein hypothesis. Among them, cholinergic hypothesis was a widely accepted theory, which suggests that the low level of acetylcholine in specific regions of the brain is the major cause leading to learning and memory dysfunctions. Based on the cholinergic hypothesis, one possible approach to treat AD is to restore the level of acetylcholine by using reversible inhibitors to inhibit cholinesterases that include acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Currently, four AChE inhibitors have been approved by European and US agency: tacrine, donepezil, galantamine and rivastigmine (Figure 1). These agents are important for the palliative treatment of AD, but their clinically efficacy is limited, mainly due to their poor selectivity, bioavailability and adverse side effects on peripheral nervous system and liver. Thus, the search for new ChE inhibitors is still of great interest.

The crystal structure of AChE in complex with inhibitors revealed that there are two binding sites, a peripheral anionic site (PAS) and catalytic active site (CAS). According to the structure characteristics of AChE, several new compounds were synthesized as anti-AD agents.

Phthalimide derivatives are important compounds due to their various bioactivities such as anticancer, anti-inflammatory, anti-convulsant and AChE inhibitory activity. Literature survey revealed that phthalimide structure had been proved to interact with the active site of AChE and several novel AChE inhibitors were designed based on this pharmacophore. Meanwhile, sulfonamide derivatives are another important class of pharmacophores in medicinal chemistry effective in a number of different therapeutic areas. They act as antibacterials, diuretics, carbonic anhydrase inhibitors, anticonvulsants, anti-inflammatory, antitumors and AChE inhibitors.

In this study, we designed a series of 4-phthalimidobenzenesulfonamide derivatives as potent cholinesterase inhibitors, in which two pharmacophores (phthalimide and sulfonamide) were combined. Accordingly, the synthesis, AChE and BuChE inhibitory activities and molecular docking studies of designed compounds are reported.

Materials and methods
Chemistry
All chemicals, reagents and solvents were high-grade commercial products and used without further purification. Reactions were checked by thin-layer chromatography (TLC) on precoated silica gel aluminum plates (Kieselgel 60, F254, E. Merck, Germany); spots were visualized by UV at 254 nm. Melting points were determined using a Stuart SMP30 (Staffordshire, ST15 OSA, United Kingdom) melting point apparatus and are not corrected. IR spectra of the compounds were recorded on a Perkin Elmer 100 Fourier transform FT-IR (ATR) spectrophotometer (Perkin Elmer Inc., MA). ¹H NMR spectra were recorded on a Varian AS 400 Mercury Plus NMR spectrometer (Varian, Palo Alto, CA) at 400 MHz using DMSO-d₆ and Aceton-d₆ as solvent. Chemical shifts were given in ppm (δ) with TMS as an internal standard. J values were given in Hertz. Abbreviations for ¹H NMR data quoted are as follows: s (singlet); d, (doublet); t, (triplet); q, (quartet); m, (multiplet); bs, (broad
4-(1,3-Dioxoisindolin-2-yl)-N-(2-methoxyphenyl)benzenesulfonamide (2) Yield 49%. mp 205 °C. 1H NMR (DMSO-d6): δ 9.57 (1H, bs, NH), 7.98–7.94 (2H, m, phthalimido-H), 7.92–7.89 (2H, m, phthalimido-H), 7.80 (2H, d, J = 9.2 Hz, benzene-H), 7.61 (2H, d, J = 7.6 Hz, benzene-H), 7.24 (1H, d, J = 6.8 Hz, anilide-H), 7.13 (1H, t, J = 7.8 Hz, anilide-H), 6.90 (2H, d, J = 7.6 Hz, anilide-H), 3.48 (3H, s, OCH3) ppm. IR (υmax cm⁻¹) (FT/ATR): 3465, 3298, 3100, 2963, 2837, 1786, 1707, 1337, 1166. Anal. calcd. for C23H20N2O4S: C, 64.27; H, 4.11; N, 7.14; S, 7.84. Found C, 62.15; H, 4.39; N, 7.10; S, 7.89. MS (APCI) m/z (%): 288 (100), 409 (M + H⁺, 75).

4-(1,3-Dioxoisindolin-2-yl)-N-(2-isopropylphenyl)benzenesulfonamide (3) Yield 66%. mp 186 °C. 1H NMR (DMSO-d6): δ 9.76 (1H, bs, NH), 7.98–7.93 (2H, m, phthalimido-H), 7.92–7.89 (2H, m, phthalimido-H), 7.79 (2H, d, J = 7.2 Hz, benzene-H), 7.65 (2H, d, J = 6.4 Hz, benzene-H), 7.26 (1H, d, J = 8.4 Hz, anilide-H), 7.19 (1H, t, J = 7.8 Hz, anilide-H), 7.07 (1H, t, J = 7.2 Hz, anilide-H), 6.94 (1H, d, J = 8.0 Hz, anilide-H), 3.15–3.10 (1H, m, CH), 0.92 (6H, d, J = 6.8 Hz, 2xCH3) ppm. IR (υmax cm⁻¹) (FT/ATR): 3474, 3249, 3201, 2978, 2966, 2929, 2821, 2749, 1787, 1721, 1335, 1162. Anal. calcd. for C23H22N2O4S: C, 65.53; H, 4.99; N, 7.07; S, 7.84. MS (APCI) m/z (%): 421 (M + H⁺, 100).

4-(1,3-Dioxoisindolin-2-yl)-N-(p-tolyl)benzenesulfonamide (4) Yield 52%. mp 212 °C; 224–226 °C. 1H NMR (DMSO-d6): δ 10.22 (1H, bs, NH), 7.98–7.94 (2H, m, phthalimido-H), 7.92–7.89 (2H, m, phthalimido-H), 7.86 (2H, d, J = 8.0 Hz, benzene-H), 7.62 (2H, d, J = 8.4 Hz, benzene-H), 7.03 (2H, d, J = 8.8 Hz, anilide-H), 6.99 (2H, d, J = 8.4 Hz, anilide-H), 2.17 (3H, s, CH3) ppm. IR (υmax cm⁻¹) (FT/ATR): 3282, 1786, 1713, 1594, 1509, 1340, 1161. Anal. calcd. for C21H19ClN2O4S: 0.3 C2H6O: C, 63.86; H, 4.42; N, 6.98; S, 7.89. Found C, 64.17; H, 4.64; N, 7.28; S, 7.72. MS (APCI) m/z (%): 379 (100), 393 (M + H⁺, 11).

4-(1,3-Dioxoisindolin-2-yl)-N-(4-methoxyphenyl)benzenesulfonamide (5) Yield 48%. mp 161 °C; 168–170 °C. 1H NMR (DMSO-d6): δ 10.04 (1H, bs, NH), 7.97–7.94 (2H, m, phthalimido-H), 7.92–7.89 (2H, m, phthalimido-H), 7.82 (2H, d, J = 8.4 Hz, benzene-H), 7.63 (2H, d, J = 9.2 Hz, benzene-H), 7.01 (2H, d, J = 8.8 Hz, anilide-H), 6.81 (2H, d, J = 8.8 Hz, anilide-H), 3.65 (3H, s, OCH3) ppm. IR (υmax cm⁻¹) (FT/ATR): 3243, 1790, 1713, 1592, 1508, 1334, 1172. Anal. calcd. for C21H17ClN2O4S: 0.01 C2H6O: C, 61.74; H, 3.96; N, 6.85; S, 7.84. Found C, 62.15; H, 4.39; N, 7.10; S, 7.70. MS (APCI) m/z (%): 288 (100), 409 (M + H⁺, 38).

4-(1,3-Dioxoisindolin-2-yl)-N-(4-chlorophenyl)benzenesulfonamide (6) Yield 59%. mp 212 °C; 212–214 °C. 1H NMR (DMSO-d6): δ 10.56 (1H, bs, NH), 7.98–7.94 (2H, m, phthalimido-H), 7.91–7.89 (2H, m, phthalimido-H), 7.89 (2H, d, J = 8.4 Hz, benzene-H), 7.76 (2H, d, J = 8.8 Hz, anilide-H), 7.30 (2H, d, J = 8.4 Hz, benzene-H), 7.13 (2H, d, J = 8.6 Hz, anilide-H) ppm. IR (υmax cm⁻¹) (FT/ATR): 3252, 1784, 1714, 1592, 1334, 1164, 712. Anal. calcd. for C21H15ClN2O4S: 0.9 C2H6O: C, 58.57; H, 3.95; N, 6.02; S, 6.88. Found C, 58.17; H, 3.55; N, 5.56; S, 6.88. MS (APCI) m/z (%): 222 (100), 413 (M + H⁺ 13, 415 (M + H⁺ 2⁺ , 4).

4-(1,3-Dioxoisindolin-2-yl)-N,N-diethylbenzenesulfonamide (7) Yield 68%. mp 181 °C; 178–180 °C. 1H NMR (DMSO-d6): δ 7.99–7.97 (2H, m, phthalimido-H), 7.92–7.90 (2H, m, phthalimido-H), 7.94 (2H, d, J = 8.4 Hz, benzene-H), 7.69 (2H, d, J = 8.4 Hz, benzene-H), 7.59 (2H, d, J = 8.4 Hz, benzene-H), 7.24 (1H, d, J = 8.4 Hz, benzene-H), 3.48 (3H, s, OCH3) ppm. IR (υmax cm⁻¹) (FT/ATR): 3408, 3312, 2977, 1785, 1717, 1592, 1501, 1327, 1161. Anal. calcd. for C23H22N2O4S: 0.01 C2H6O: C, 64.27; H, 4.28; N, 7.56; S, 8.04. MS (APCI) m/z (%): 393 (M + H⁺, 100).

Figure 1. Chemical structures of FDA approved AChE inhibitors.
benzene-H), 3.19 (4H, q, J = 7.2 Hz, 2xCH2), 1.06 (6H, t, J = 7.0 Hz, 2xCH3) ppm. IR (υ(naks cm⁻¹) (FT/ATR): 2976, 1782, 1711, 1593, 1349, 1290, 1180. Anal. calcd. for C₈H₁₅N₂O₄S·C₆H₃0.62H₂O; C, 50.62; N, 3.06; S, 7.82; S, 8.95. Found C, 50.40; H, 5.19; N, 7.35; S, 8.76. MS (APCI) m/z (%): 359 (M + H⁺, 100).

2-(4-(Pyrrolidin-1-ylsulfonyl)phenyl)isoindoline-1,3-dione (8) Yield 45%. mp 175 °C. 1H NMR (Acetone-d₆): δ 8.01–7.95 (4H, m, phthalimide-H), 7.92 (2H, d, J = 8.4 Hz, benzene-H), 7.83 (2H, d, J = 8.4 Hz, benzene-H), 7.30–3.60 (4H, m, piperedine-H), 1.68–1.62 (4H, m, piperedine-H), 1.50–1.47 (2H, m, piperedine-H) ppm. IR (υ(naks cm⁻¹) (FT/ATR): 3281, 2973, 2933, 1781, 1712, 1672, 1575, 1364, 1237, 1177. Anal. calcd. for C₁₅H₁₄N₂O₄S·0.25H₂O: C, 60.40; H, 5.19; N, 7.53; S, 8.76. MS (APCI) m/z (%): 375 (M + H⁺, 100).

2-(4-(Piperidin-1-ylsulfonyl)phenyl)isoindoline-1,3-dione (9) Yield 85%. mp 176 °C; 165–167°C°C. 1H NMR (Acetone-d₆): δ 8.01–7.95 (4H, m, phthalimide-H), 7.93 (2H, d, J = 8.4 Hz, benzene-H), 7.83 (2H, d, J = 8.4 Hz, benzene-H), 3.06–3.03 (4H, m, piperedine-H), 1.68–1.62 (4H, m, piperedine-H), 1.50–1.47 (2H, m, piperedine-H) ppm. IR (υ(naks cm⁻¹) (FT/ATR): 3281, 2973, 2933, 1781, 1712, 1672, 1575, 1354, 1237, 1177. Anal. calcd. for C₁₅H₁₄N₂O₄S·0.25H₂O: C, 60.87; H, 4.97; N, 7.47; S, 8.55. Found C, 60.53; H, 4.68; N, 7.37; S, 8.60. MS (APCI) m/z (%): 371 (M + H⁺, 100).

2-(4-(2-Methylpiperidin-1-yl)sulfonyl)phenyl)isoindoline-1,3-dione (11) Yield 18%. mp 176 °C; 176–177°C°C. 1H NMR (DMSO-d₆): δ 7.99–7.97 (2H, m, phthalimide-H), 7.94 (2H, d, J = 8.8 Hz, benzene-H), 7.92–7.90 (2H, m, phthalimide-H), 7.70 (2H, d, J = 8.0 Hz, benzene-H), 4.84–1.41 (2H, m, piperedine-H), 3.64–3.61 (2H, m, piperedine-H), 3.03–2.96 (2H, m, piperedine-H), 1.56–1.43 (5H, m, piperedine-H), 1.26–1.17 (2H, m, piperedine-H), 1.02 (2H, d, J = 6.4 Hz, CH₂) ppm. IR (υ(naks cm⁻¹) (FT/ATR): 2933, 2872, 1788, 1719, 1592, 1335, 1263, 1163. Anal. calcd. for C₂₀H₂₀N₂O₄S·H₂O: C, 59.69; H, 5.51; N, 6.96; S, 7.91. Found C, 59.27; H, 5.16; N, 6.88; S, 8.31. MS (APCI) m/z (%): 385 (M + H⁺, 100).

2-(4-(Morpholinosulfonyl)phenyl)isoindoline-1,3-dione (11) Yield 11%. mp 222 °C; 212°C°C. 1H NMR (DMSO-d₆): δ 8.01–7.98 (2H, m, phthalimide-H), 7.95–7.92 (2H, m, phthalimide-H), 7.90 (2H, d, J = 8.0 Hz, benzene-H), 7.77 (2H, d, J = 8.0 Hz, benzene-H), 3.63 (4H, t, J = 4.4 Hz, morpholine-H), 2.91 (4H, t, J = 4.6 Hz, morpholine-H) ppm. IR (υ(naks cm⁻¹) (FT/ATR): 2952, 2895, 2866, 2828, 1776, 1715, 1682, 1590, 1349, 1260, 1162. Anal. calcd. for C₁₉H₁₄N₂O₄S·0.3 C₄H₂O·O·C, 57.84; H, 4.65; N, 7.25; S, 8.30. Found C, 57.40; H, 4.73; N, 7.33; S, 7.91. MS (APCI) m/z (%): 373 (M + H⁺, 100).

Biological activity
AChE (EC 3.1.1.7., Type VI-S, from electric eel) and BuChE (EC 3.1.1.8., from equine serum) were purchased from Sigma-Aldrich (Steinheim, Germany). 5,5′-Dithiobis-(2-nitrobenzoic acid) (DTNB, Ellman's reagent) acetylthiocholine iodide (AChI) and butryrylthiocholine iodide (BChI) used as substrates were obtained from Fluka. Buffer compounds (potassium dihydrogen phosphate, potassium hydroxide) and sodium hydrogen carbonate were purchased from Merck (Darmstadt, Germany). Spectrophotometric measurements were performed on a Shimadzu 160-A UV-Vis spectrophotometer.

Acetylcholinesterase/butrylcholinesterase activity assay
The inhibitory effects of the synthesized compounds on AChE and BuChE were evaluated using a slightly modified colorimetric method of Ellman et al., with galantamine as the reference compound.† Prior to use, all solutions were adjusted to 20°C. Enzyme solution (100 μL) and inhibitor solution (100 μL) were added into a cuvette containing the phosphate buffer (3.0 mL, 0.1 M; pH 8.0). After 5-min incubation, required aliquots of the DTNB solution (100 μL) and of the AChl/BChl (20 μL) were added. After rapid and immediate mixing, the absorption was measured at 412 nm by UV spectroscopy. As a reference, an identical solution of the enzyme without the inhibitor is processed following the same protocol. The blank reading contained 3.0 mL buffer, 200 μL water, 100 μL DTNB and 20 μL substrate. The enzyme activity was determined in the presence of at least five different concentrations of an inhibitor. Each concentration was assayed immediately after preparation. The AChE/BuChE inhibitory activities of the title compounds are summarized in Table 1.

Molecular docking study
The crystal structures of donepezil in complex with AChE (PDB code 1EVE resolved at 2.5 Å) were taken from the Protein Data Bank. Heteroatoms and water molecules in the PDB file were removed and hydrogen atoms were added to the protein by using MOE 2014.09.1. Prior to the docking calculations, an energy minimization using the AMBER99 force field was performed on the enzyme. Compound 7 was built and protonated using the protonate 3D protocol and energy minimized using the MMFF94 force field via MOE 2014.09.1. Docking of the ligand was carried out using the GOLD 5.2.1 program with default settings. A sphere of 22 Å around the carbonyl group of Glu199 was defined as the binding site for the ligand docking and 250 conformations was allowed. The Chemscore and Goldscore standard precision (sp) were calculated and analyzed. The putative binding mode was carried out through visual inspection (Figure 2).

Results and discussion
Chemistry
As shown in Scheme 1, the synthesis of the title compounds was realized in three steps according to the procedure in the literature. Initially, phthalic anhydride and aniline were reacted to yield N-phenylphthalimide. Then, N-phenylphthalimide was treated with chlorosulfonic acid to give the 4-phenylamidobenzensulfonfyl chloride. Finally, 4-phenylamidobenzensulfonfyl chloride was
promptly converted to final sulfonamide derivatives by SN2 nucleophilic reaction with appropriate amine.

The synthesis of the compounds 1, 4–7, 9–11 were reported previously.36,38–40,49,50 Compound 8 is listed compound with registry number CASRN 898471–20-0, whereas corresponding scientific data are not available. The AChE and BuChE inhibitory activities of the all compounds have not been described in the literature, and were reported for the first time in this study.

The structures of the title compounds were confirmed by spectral and elemental analyses.

With regard to IR data, diagnostic vibrational bands were provided by sulfonamide and phthalimide moieties of the final compounds. SO2-stretching bands of sulfonamide chromophore were observed between 1327–1354 and 1161–1180 cm−1, in addition, NH-stretching bands for compounds 1–6 were detected in the range of 3243–3485 cm−1. Two characteristic absorption bands were appeared at around 1782–1792 and 1707–1721 cm−1 in spectra indicating the presence of phthalimide carbonyl groups.1 M NMR spectra of the compounds were consistent with expected resonance signals in terms of chemical shifts and integrations. In 1 H NMR, the NH proton of secondary sulfonamide group was seen as a broad singlet between at δ 9.57–10.56 ppm (for compounds 1–6). The protons of phthalimide ring were observed as multiplets in the range of δ 8.02–7.89 ppm. Aromatic protons of phenyl ring linked to phthalimide structure were detected at δ 7.61–7.98 ppm as two doublets with 2H integration according to the AA’BB’ pattern. On the other hand, resonance signals of all the aromatic and aliphatic protons were observed in the expected regions with expected multiplicities confirming the proposed structure.

The structures of the title compounds were further verified by APCI spectra where the m/z values of molecular ion peaks were in complete agreement with the calculated molecular weight for each compound.

The purity levels of the compounds were determined by elemental analyzes (C, H, N, S) and results were within 0.4% of the calculated values.

Biological activity

Inhibitory activities of the synthesized compounds against AChE and BuChE were evaluated by modified Ellman method, using galantamine as the reference compound.41–45 The AChE inhibitory activity was determined by using electric eel acetylcholinesterase and the BuChE inhibitory activity was tested by using equine serum butyrylcholinesterase. The I50 values for AChE and BuChE inhibitions are summarized in Table 1.

Figure 2. Proposed binding mode for compound 7 inside AChE (1EVE pdb code). The active compound is showed as green stick in AChE. The most involved residues are named and represented as brown sticks for AChE. Hydrogen bond interactions are represented as blue dashed lines.

Scheme 1. Synthesis of the final compounds 1–11.

a) Aniline, 30 min. b) ClSO3H, PCl5, 30 min. c) Amines, acetone, 2h

A= 2-methylaniline(1)
2-methoxyaniline(2)
2-isopropylaniline(3)
4-methylaniline(4)
4-methoxyaniline(5)
4-chloroaniline(6)
diethylamine(7)
pyrrolidine(8)
piperidine(9)
2-methylpiperidine(10)
morpholine(11)
According to the biological activity results, target compounds exhibited higher inhibitory activity against AChE than BuChE. In addition, all compounds displayed high selectivity against AChE. Among the tested compounds, compounds 1, 2 and 3 bearing the substituent at ortho position of N-phenyl ring on sulfonamide group showed slightly better AChE inhibitory activity compared to the para-substituted derivatives. Compound 7 with diethyl substituent on nitrogen atom of the sulfonamide is the most active compound with IC_{50} value of 1.35 μM against AChE. The conversion of sulfonanilide structure of the compounds 1–6 and cyclic sulfonamide structure of the compounds 8–11 to N,N-diethyl sulfonamide produced the most active compound 7 against AChE. This finding let us to consider that the characterization of amide nitrogen is important for AChE inhibitory activity.

Regarding BuChE activity results, generally, it is found that the tested compounds have moderate to weak inhibition potency. Compound 3 bearing isopropyl substituent at ortho position of N-phenyl ring on sulfonamide exhibited the highest inhibitory activity in the series. However, compound 7, the most active compound against AChE, did not exhibit any inhibition against BuChE. This situation possibly results from the differences of the amino acids in the active site of the both enzymes.

Based on these activity results, 4-phthalimidobenzenesulfonamide derivatives could be described as selective AChE inhibitors.

As a potential compound for treatment of AD, log p was thought as an important physicochemical parameter to evaluate or predict the ability to cross blood–brain barrier (BBB). It was reported that log p with the optimum central nervous system (CNS) penetration was around 2.0±2.7. The lipophilicities of the synthesized compounds were calculated using MOE 2011.10 (Molecular Operating Environment Chemical Computing Group). As shown in Table 1, log p values of synthesized compounds ranged from 1.51–4.41, which indicated that all the compounds are sufficiently lipophilic to pass the BBB.

Docking studies

To explore the possible binding mode of the phthalimide derivatives with AChE (PDB code 1EVE), docking studies were performed using Gold 5.2.1. for the most active compound 7 in the series. As shown in Figure 2, compound 7 exhibited two binding modes with AChE. In the bottom of the gorge, the phthalimide moiety interact with Trp84 via the π–π stacking interaction and the oxygen atom of sulfonamide group create a hydrogen bond with hydroxyl group of Tyr121. Summing up, it can be proposed that compound 7 can interact both with CAS and PAS of AChE.

Conclusion

In this study, eleven 4-phthalimidobenzenesulfonamide derivatives were synthesized and evaluated for their in vitro AChE and BuChE inhibition. Among the series, compound 7 and 3 showed the highest activity against AChE and BuChE, respectively. Generally, all the tested compounds displayed selectivity for AChE. Molecular modeling study of the most active compound 7 against AChE demonstrated binding interactions with both PAS and CAS of the enzyme. According to the calculated log p values, all the compounds might pass to the BBB. These sulfonamide derivatives could be considered as new lead compounds to develop more potent AChE and BuChE inhibitors.

Acknowledgements

The authors would like to thank the Pharmaceutical Sciences Research Center (FABAL) at Ege University Faculty of Pharmacy for spectral analyses of the compounds.

Disclosure statement

The authors declare no conflicts of interests.

Funding

This study was supported by research grants from Ege University (Project Number: 12/Ecz/016).

References

1. Fargo K, Bleiler L. Alzheimer's association report: 2014 Alzheimer’s disease facts and figures. Alzheimers Dement 2014;10:47–92.
2. Mucke L. Neuroscience: Alzheimer’s disease. Nature 2009;461:895–7.
3. Khan I, Ibrar A, Zaib S, et al. Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: Synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis. Bioorg Med Chem 2014;22:6163–73.
4. Khan I, Bakht SM, Ibrar A, et al. Exploration of a library of triazolothiadiazole and triazolothiadiazine compounds as a highly potent and selective family of cholinesterase and monoamine oxidase inhibitors: design, synthesis, X-ray diffraction analysis and molecular docking studies. RSC Adv 2015;5:21249–67.
5. Göcer H, Akincioglu A, Göksu S, et al. Carbonic anhydrase and acetylcholinesterase inhibitory effects of carbamates and sulfamoylcarbamates. J Enzyme Inhib Med Chem 2015;30:316–20.
6. Goedert M, Spillantini MG. A century of Alzheimer's disease. Science 2006;314:777–81.
7. Bolognesi ML, Andrisano V, Bartolini M, et al. Heterocyclic inhibitors of AChE acylation and peripheral sites. IL Farmaco 2005;60:465–73.
8. Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217:408–17.
9. Blennow K, Leon MJ, Zetterberg H. Alzheimer's disease. Lancet 2006;368:387–403.
10. Konrath EL, Passos CS, Klein-Jüniér LC, Henriques AT. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer's disease. J Pharm Pharmacol 2013;65:1701–25.
11. Shaikh S, Verma A, Siddiqui S, et al. Current acetylcholinesterase-inhibitors: A neuroinformatics perspective. CNS Neurol Disord Drug Targets 2014;13:391–401.
12. Toda N, Kaneko T, Kogen H. Development of an efficient therapeutic agent for Alzheimer’s disease: design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter. Chem Pharm Bull 2010;58:273–87.
13. Farina R, Pisani L, Catto M, et al. Structure-based design and optimization of multitarget-directed 2H-chromen-2-one derivatives as potent inhibitors of monoamine oxidase B and cholinesterases. J Med Chem 2015;58:5561–78.
46. Molecular Operating Environment (2014.09.1) Chemical Computing Group Inc. 1010 Sherbrooke Street West, Suite 91, Montreal H3A 2R7, Canada.

47. Jones G, Willett P, Glen RC, et al. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997;267:727–48.

48. Friesner RA, Banks JL, Murphy RB, et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004;47:1739–49.

49. Cremlyn RJ, Swinbourne FJ, Nunes RJ. Phthalimidebenzenesulphonyl derivatives. Quimica Nova 1985;8:61–2.

50. Arti SK, Pathak D. Synthesis and anticonvulsant screening of 4-phthalimide-N-(4′-substitutedphenyl)benzenesulphonamide,4-succinimide-N-(4′-substituted phenyl) benzenesulphonamide. Int J Pharm Tec Res 2011;3:2104–10.

51. Nakanishi K, Solomon PH. Infrared absorption spectroscopy. 2nd ed. San Francisco: Holden-Day Inc; 1977.

52. Hesse M, Meier H, Zeeh B. Spectroscopic methods in organic chemistry. In: Enders D, Noyori R, Trost BM, eds. Nuclear Magnetic Resonance. New York: Georg Thieme Verlag Stuttgart; 1997.

53. Glave WR, Hansch C. Relationship between lipophilic character and anesthetic activity. J Pharm Sci 1972;61:589–91.