Remote seeding diagnostics in the Chechen Republic

I M Bamatov¹,³, D M Bamatov² and M M Arsanov³

¹ FGBNU FIC “V. V. Dokuchaev Soil Science Institute” Pyzhevsky lane, 7s2, Moscow, 119017, Russia
² Head of the Centre Collective Usage, Grozny State Oil Technical University named after Academician M. D. Millionshchikov, Prospekt Kh. Isayeva, 100, Grozny, 364061, Russia
³ FGBOU VO “Chechen State University”, 32, Sheripova str., Grozny, 364024, Russia

E-mail: ibragim-1991@mail.ru

Abstract. This research work discusses and illustrates the development of theoretical concepts of remote diagnostics of soils and technical potentials for diagnosing the germination, growth, and development of potato seeding process on the territory of Ltd. Scientific production firm “Sady Chechni”. In addition, the issues considered in this research article allow us to create the technological methods and techniques that allow more efficiency determine the need for agricultural crops to optimize their macro – and micronutrients.

1. Introduction

The constantly increasing volume of introduction into the practice of agricultural production of precision technologies, ensuring the optimization of financial costs for growing crops and reducing the pesticide load on agroecosystems, determines the need to create modern information monitoring systems that associate the latest achievements of space and aviation information technologies, as well as systems of high – performance ground measurements. Nowadays, scientific and technological progress and, above all, the level of development of information technology allows implementing scientific and methodological developments in the form of digital platforms for managing the agro-industrial complex at different levels of its organization [1, 2, 3]. This applies to both the automated collection of natural-agronomic and production indicators, and the operational analysis of limiting factors and threats for the development of preventive response measures in accordance with the target function. Prototypes of such platforms (ANT, ExactFarming, Cropio, Agrivi, etc.) allow real-time monitoring of the state of crops, documentation, forecasting and planning of agricultural operations at the enterprise level [4, 5]. The functionality of such information systems currently does not provide an assessment and management of the seeding diagnostics and the needs of the crop under the influence of climate change and anthropogenesis. Only the services of actual weather and its short-term forecast are available for planning agro-technical operations, visualizing the results of agrochemical monitoring, monitoring crops and recording yields with the identification of fertility zones. The most developed information systems such as commercial products are in the USA, Canada, Denmark, Holland, Australia and New Zealand (table 1).
Table 1. Comparative analysis of commercial information systems (digital platforms) in the field of agricultural production management in terms of accounting for soil-agro-ecological and weather-climatic factors.

Information system	Accounting for soil-agro-ecological and weather-climatic factors
	Weather (W) and climatic (C)
	Agrodepletion
	Waterlogging or drought
	Compaction
Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model	W
The Agricultural Production Systems iMulator (APSIM)	W
STICS (Simulateur mulTI disciplinaire pour les Cultures Standard)	W
Soil Navigator Decision Support System	W
Cropio	W
LandCaRe Decision Support System [50]	W and C

In addition to the tasks of increasing the efficiency of management of an agricultural enterprise, information systems of the agro-industrial complex are being developed in the interests of executive authorities in the system of statistical accounting, remote seeding diagnostics, land supervision in the framework of state monitoring of lands, and the implementation of economic policy measures. The Ministry of Agriculture of the Russian Federation is developing the Unified Federal Information System of Agricultural Lands (UFI SAL) in order to ensure accounting of such lands, consolidate information on their qualitative characteristics and actual use under the state monitoring program [6,7].

2. **Methodology and results**

Unfortunately, the land and soil management in the digital transformation of agriculture in the Chechen Republic is developed very poor, therefore, in the Agricultural ministry there is a new program that works to digitalize the land and soil management information, where the soil relief map with soil types on the map was digitalized (figure 1).
Figure 1. The typical soil types of the Chechen Republic.

From the figure above (figure 1) the typical soil types of the Chechen Republic are demonstrated on the digitalized map, where Ltd. Scientific production firm “Chechen gardens” illustrated between “Grozny” and “Gudermes district” on the soil type – leached carbonate chernozems. The chemical soil tests showed that, the type of leached carbonate chernozems characteristically has poor nitrogen, surplus phosphorous and very little potassium.

In the Ltd. Scientific production firm “Sady Chechnya” potato seeds were sown in the field (figure 2) in the beginning march of 2020, however, after 90 days, from the figure bellow, (figure 2) within remote sensing data, the growing plants were diagnosed to be in the lack of nutrient, the plants were need for nitrogen (figure 3). The usage of the remote diagnostic programs minimizes risks of the crop failure, as the program helps to determine the needing of the sown crops in the field.

The first stage of the development of a software prototype for remote diagnostics of crops should include substantiation of organizational and methodological approaches to the creation, development and operation of an information system that provides access to analytical services for remote diagnostics for agribusiness entities in the target region of the Chechen Republic, taking into account different types of soil.
3. Conclusion

To sum up, the remote diagnostics of crops determines the relevance of creating information services for inventorying and monitoring the state of crops, crops under conditions of climate change and anthropogenic impacts, assessing the risks associated with soil degradation, lack of nutrients and scenario modeling of programmed measures. Such software products are of particular relevance both for agricultural farms and for the entire agro-industrial complex of Russia, where a strategy should be developed to counteract various processes that retard the growth and development of the planted material, including with the use of environmental and economic mechanisms.

Acknowledgement

This work was done with the financial support of the Ministry of Science and Education of the Russian Federation and experimental developments in the framework of the implementation of the Federal Targeted Program “Research and Development in Priority Areas of the Scientific and Technological Complex of Russia for 2014-2020”. (Agreement No. 075-15-2019-1939 of 10.12.2019) With a unique project identifier RFMEFI60719X0302.
References

[1] S V Lukin, V D Solovichenko, V I Melnikov 2019 Belgorod model of adaptive landscape agriculture: monograph ed Kiryshin V I (Belgorod: KONSTANTA) p 272
[2] Kiryushin V I, Ivanov A L, Kozubenko I S and Savin I Yu 2018 Digital farming Bulletin of Russian agricultural science 5 4-9 https://doi.org/10.30850/vrsn/2018/5/4-9
[3] Jones J W, Antle J M, Basso B et al. 2017 Toward a new generation of agricultural system data, models and knowledge products: State of agricultural systems science Agric Syst. 155 269-88 doi:10.1016/j.agsy.2016.09.021
[4] Adam U, Mentsiev Ali U, Mentsiev and Elmira F Amirova 2020 IoT and mechanization in agriculture: problems, solutions, and prospects IOP Conference Series Earth and Environmental Science 548 032035 1-5
[5] Adam U, Mentsiev E F, Amirova, N V and Afanasev 2020 Digitalization and mechanization in agriculture industry IOP Conference Series Earth and Environmental Science 548 032031 1-4
[6] Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh U, Gijsman A J and Ritchie J T 2003 The DSSAT cropping system model Eur. J. Agron. 18(3-4) 235-65
[7] Ibragim M Bamatov and Ismail L Daudov 2020 IOP Conf. Ser.: Mater. Sci. Eng. 919 032031