OPEN MANIFOLDS WITH ASYMPTOTICALLY NONNEGATIVE RICCI CURVATURE AND LARGE VOLUME GROWTH

YUNTAO ZHANG

(Communicated by Lei Ni)

Abstract. In this paper, we study the topology of complete noncompact Riemannian manifolds with asymptotically nonnegative Ricci curvature and large volume growth. We prove that they have finite topological types under some curvature decay and volume growth conditions. We also generalize it to the manifolds with kth asymptotically nonnegative Ricci curvature by using extensions of Abresch-Gromoll’s excess function estimate.

1. Introduction

A complete noncompact Riemannian manifold is said to have an asymptotically nonnegative Ricci curvature if there exist a base point p and a positive nonincreasing function λ such that $\int_0^{+\infty} s\lambda(s)ds < +\infty$, and the Ricci curvature of M at any point x satisfies

$$\text{Ric}(x) \geq -(n-1)\lambda(d_p(x)),$$

where d_p is the distance to p. Abresch and Gromoll were the first to study this class, and they proved that such manifolds have finite topological type if the sectional curvatures are uniformly bounded and the diameter growth has order $o(s^{1/n})$ with respect to the base point p. Recall that a manifold is said to have finite topological type if there exists a compact domain Ω with boundary such that $M \setminus \Omega$ is homeomorphic to $\partial \Omega \times [0,\infty]$. In order to complete their theorems, Abresch and Gromoll established important excess function estimates, which are also used by Hu, Xu and by Mahaman to prove some topological rigidity results for manifolds with asymptotically nonnegative Ricci curvature. They are also used as important tools for many geometers to study manifolds with nonnegative Ricci curvature; see, etc.

Let $B(x,r)$ denote the geodesic ball of radius r and center x in M and let $B(\overline{p},r)$ denote the similar metric ball in the simply connected noncompact complete manifold with sectional curvature $-\lambda(d_{\overline{p}}(\overline{p}))$ at the point \overline{p}, where $d_{\overline{p}}(\overline{p}) = d(\overline{p},\overline{p})$ is the distance from \overline{p} to \overline{p}. From the volume comparison theorem, which was proved by Zhu for the base point and by Mahaman for any point, we know that the function $r \mapsto \frac{\text{vol}B(x,r)}{\text{vol}B(\overline{p},r)}$ is monotone decreasing. Define

$$\alpha_x = \lim_{r \to +\infty} \frac{\text{vol}B(x,r)}{\text{vol}B(\overline{p},r)}$$

and $\alpha_M = \inf_{x \in M} \alpha_x$.

Received by the editors August 14, 2014 and, in revised form, August 15, 2014.

2010 Mathematics Subject Classification. Primary 53C20; Secondary 53C21.

Key words and phrases. Ricci curvature, finite topological type, volume growth.

This work was supported by PAPD of Jiangsu Higher Education Institutions.
We say M is large volume growth if $\alpha_M > 0$.

For any $r > 0$, let

$$k_x(r) = \inf_{M \setminus B(x, r)} K,$$

where K is the sectional curvature of M, and the infimum is taken over all the sections at all points on $M \setminus B(x, r)$. It is easy to see that $k_x(r)$ is a monotone function of r.

For a complete open Riemannian manifold with nonnegative Ricci curvature and large volume growth $\alpha_M > 0$, assume that $k_x(r) \geq -\frac{C}{(1+r)^{\alpha}}$ for some $x \in M$ and all r, where $C > 0$ and $\alpha \in [0, 2]$ are constants. Xia \cite{Xia} proved that M has finite topological type if there is a constant $\epsilon = \epsilon(n, C, \alpha) > 0$, such that

$$\limsup_{r \to +\infty} \left\{ \left(\frac{\text{vol} B(x, r)}{\omega_n r^n} - \alpha_M \right) r^{(n-2+\frac{\alpha}{n})(1-\frac{2}{n})} \right\} \leq \epsilon_0 M.$$

The main purpose of this note is to extend the above result to manifolds with asymptotically nonnegative Ricci curvature. We have the following:

Theorem 1.1. Let M be an n-dimensional $(n \geq 3)$ complete noncompact Riemannian manifold with

$$\text{Ric}(x) \geq -(n-1)\lambda(d_p(x))$$

and $K(x) \geq -\frac{C}{d_p(x)^\alpha}$,

where $C(\lambda) = \int_0^{+\infty} s\lambda(s)ds < +\infty$ and $C > 0$, $0 \leq \alpha \leq 2$. If $\alpha_p > 0$, then there exists a constant $\epsilon = \epsilon(n, \lambda, C, \alpha) > 0$, such that M has finite topological type, provided that

$$\limsup_{r \to +\infty} \left\{ \left(\frac{\text{vol} B(x, r)}{\text{vol} B(\bar{x}, r)} - \alpha_p \right) r^{(n-2+\frac{1}{n})(1-\frac{2}{n})} \right\} \leq \epsilon_0.$$

On the other hand, Shen-Wei \cite{ShenWei} studied manifolds with nonnegative kth Ricci curvature outside a geodesic ball $B(p, D)$ and weak bounded geometry, i.e. $K = \inf K > -\infty$, $v = \inf \text{vol} B(x, 1) > 0$. They proved that there is a constant $c = c(n, k, K, v, D) > 0$ such that M has finite topological type, if the volume growth at a point $x \in M$ satisfies

$$\limsup_{r \to +\infty} \frac{\text{vol} B(p, r)}{r^1 \pi^{1/(k+1)}} < c.$$

Here we say the kth Ricci curvature of M, for some $1 \leq k \leq n-1$, satisfies $\text{Ric}(k)(x) \geq H$, at a point $x \in M$ if for all $(k+1)$-dimensional subspaces $V \subset T_xM$,

$$\sum_{i=1}^{k+1} \langle R(e_i, v)e_i \rangle \geq H$$

for all $v \in V$,

where $\{e_1, \cdots, e_{k+1}\}$ is any orthonormal basis for V. Stimulated by their methods, we can extend Theorem 1.1 to the case of kth asymptotically nonnegative Ricci curvature.

Theorem 1.2. Let M be an n-dimensional $(n \geq 3)$ complete noncompact Riemannian manifold with

$$\text{Ric}(k)(x) \geq -k\lambda(d_p(x)),$$

for $2 \leq k \leq n-1$,
and

\[K(x) \geq -\frac{C}{d_p(x)^\alpha}, \]

where \(C(\lambda) = \int_0^{+\infty} s\lambda(s)ds < +\infty \) and \(C > 0, \ 0 \leq \alpha \leq 2 \). If \(\alpha_p > 0 \), then there exists a constant \(\epsilon = \epsilon(n, k, \lambda, C, \alpha) > 0 \), such that \(M \) has finite topological type, provided that

\[
\limsup_{r \to +\infty} \left\{ \frac{\text{vol}B(x, r)}{\text{vol}B(\bar{x}, r)} - \alpha_p \right\} \leq \epsilon \alpha_p.
\]

Remark 1.3. For \(k = n - 1 \), Theorem 1.2 is just the same as Theorem 1.1, while for \(k = 1 \), \(M \) has asymptotically nonnegative sectional curvature. It was proved by Abresch [1] that \(M \) always has finite topological type without any additional conditions.

Denote by \(\text{crit}_p \) the criticality radius of \(M \) at \(p \), i.e. \(\text{crit}_p \) is the smallest critical value for the distance function \(d_p(\cdot) \). Recall that a point \(x \neq p \) is called the critical point of \(d_p \), if for any \(v \) in the tangent space \(T_xM \) there is minimal geodesic \(\gamma \) from \(x \) to \(p \) forming an angle less than or equal to \(\pi/2 \) with \(\gamma'(0) \) (see [1]). In [12] Wang and Xia proved the following theorem.

Theorem 1.4. Given \(\beta \in [0, 2] \), positive numbers \(r_0 \) and \(C \), and an integer \(n \geq 2 \), there is an \(\epsilon = \epsilon(n, r_0, C, \beta) > 0 \) such that any complete Riemannian \(n \)-manifold \(M \) with Ricci curvature \(\text{Ric}_{M} \geq 0 \), \(\alpha_M > 0 \), \(\text{crit}_p \geq r_0 \), and

\[
k_p(r) \geq -\frac{C}{(1 + r)^\beta} \frac{\text{vol}B(p, r)}{\omega_n r^n} \leq \left(1 + \frac{\epsilon}{r^{n(2+\frac{1}{n}) (1-\frac{\alpha}{2})}} \right) \alpha_M,
\]

for some \(p \in M \) and all \(r \geq r_0 \) is diffeomorphic to \(\mathbb{R}^n \).

In order to remove the condition of criticality radius, let us define the function

\[
\phi_\alpha(r) = \begin{cases} r^\alpha, & \text{for } r \geq 1, \\ r, & \text{for } r < 1. \end{cases}
\]

We will prove a more general result.

Theorem 1.5. Let \(M \) be an \(n \)-dimensional \((n \geq 3) \) complete noncompact Riemannian manifold with

\[
\text{Ric}(k)(x) \geq -k\lambda(d_p(x)), \text{ for } 2 \leq k \leq n - 1,
\]

and

\[
K(x) \geq -\frac{C}{d_p(x)^\alpha},
\]

where \(C(\lambda) = \int_0^{+\infty} s\lambda(s)ds < +\infty \) and \(C > 0, \ 0 \leq \alpha \leq 2 \). If \(\alpha_p > 0 \), then there exists a constant \(\epsilon = \epsilon(n, k, \lambda, C, \alpha) > 0 \), such that \(M \) is diffeomorphic to \(\mathbb{R}^n \), provided that

\[
\frac{\text{vol}B(p, r)}{\text{vol}B(\bar{p}, r)} \leq \left(1 + \frac{\epsilon (\phi \frac{1}{\pi n} (\frac{n}{n-1} + 1))^{\frac{n-1}{n}} r^n}{\omega_n} \right) \alpha_p, \text{ for all } r > 0.
\]
In Section 2, we will give some Abresch-Gromoll excess function estimates for manifolds with kth asymptotically nonnegative Ricci curvature. In Section 3, we will show that manifolds with suitable ray density growth conditions and curvature decay conditions are diffeomorphic to \mathbb{R}^n or have finite topological type, and then use this to prove Theorem 1.2 and Theorem 1.5.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold. For $p, q \in M$, the excess function e_{pq} is defined by

$$e_{pq}(x) = d_p(x) + d_q(x) - d(p, q).$$

Let γ be a minimal geodesic from p to q. If $Ric_{(k)}(x) \geq 0$ on all x of M, Abresch-Gromoll [2] (for $k = n - 1$) and Shen [8] (for any k) proved that

$$e_{pq}(x) \leq S \left(\frac{s^{k+1}}{r} \right)^{1/k},$$

where $s = d(x, \gamma), r = \min\{d(p, x), d(q, x)\}$.

For a manifold with kth asymptotically nonnegative Ricci curvature, we will also give an estimate for $e_{pq}(x)$. First we need

Lemma 2.1. Let M be complete and $q, x \in M$. Suppose that x is not on the cut locus of q, and

$$Ric_{(k)}(x) \geq -k\lambda(d_p(x)), \text{ with } C_0 = \int_0^{+\infty} s\lambda(s)ds < +\infty$$

along the minimal geodesic γ from x to q. Then for any orthonormal set $\{e_1, \cdots, e_{k+1}\}$ in T_xM with $\gamma(0) \in \text{span}\{e_i\}$,

$$\sum_{i=1}^{k+1} \nabla^2 d_q(e_i, e_i) \leq \left\{ \begin{array}{ll}
\frac{1+\sqrt{1+8C_0}}{2} \cdot \frac{k}{d(p, x)}, & \text{for } q = p, \\
\frac{k\sqrt{C_0}}{d(p, q) - d(q, x)} + \frac{k}{d(q, x)}, & \text{for } q \neq p, d(q, x) < d(p, q).
\end{array} \right.$$

Proof. For $q = p$, let $\gamma(s) : [0, r] \to \mathbb{R}$ be the minimal normal geodesic from x to p. Since $\gamma(0) \in \text{span}\{e_i\}$, without loss of generality, we may assume that $\text{grad}_{dd_p}(x) = \gamma(0) = e_1$ and along $\gamma(t)$ have an orthonormal frame such that $e_i(r) = e_i$, for $i = 1, \cdots, k + 1$. Put $N = \text{grad}_{dd_p}$; from [3], we have

$$\sum_{i=1}^{k+1} \langle R(e_i, N)N, e_i \rangle = \sum_{i=2}^{k+1} \langle (\nabla e_i \nabla N - \nabla N \nabla e_i - \nabla_{[e_i, N]}N)N, e_i \rangle = -\sum_{i=2}^{k+1} N \langle \nabla e_i, e_i \rangle - \sum_{i=2}^{k+1} \sum_{j=2}^{n} \langle \nabla e_i, N, e_j \rangle \langle \nabla e_j, N, e_i \rangle = -\left(\sum_{i=2}^{k+1} h_{ii} \right) - \sum_{i=2}^{k+1} \sum_{j=2}^{n} h_{ij}^2,$$
where $h_{ij} = \langle \nabla e_i, N, e_j \rangle$ is the second fundamental form of the distance sphere from p. From the Schwarz inequality and kth asymptotically nonnegative Ricci curvature condition, we have

$$-k(s) \lambda(s) \leq -\left(\sum_{i=2}^{k+1} h_{ii} \right)' - \frac{1}{k} \left(\sum_{i=2}^{k+1} h_{ii} \right)^2.$$

Note that

$$\sum_{i=2}^{k+1} h_{ii}(s) \sim \frac{k}{s}, \quad \text{as } s \to 0.$$

Consider the Riccati equation

$$v'(s) + v^2(s) - \lambda(s) = 0,$$

satisfying

$$v(s) \to \frac{1}{s}, \quad \text{as } s \to 0.$$

A standard comparison argument yields

$$\frac{1}{k} \sum_{i=2}^{k+1} h_{ii}(s) \leq v(s).$$

From Lemma 3.4 in [2], we get

$$v(r) \leq \frac{1 + \sqrt{1 + 8C_0}}{2r},$$

so we have

$$\sum_{i=1}^{k+1} \nabla^2 d_q(e_i, e_i) = \sum_{i=2}^{k+1} h_{ii}(r) \leq \frac{1 + \sqrt{1 + 8C_0}}{2} \cdot \frac{k}{d(p, x)}.$$

For $q \neq p$ and $d(q, x) < d(p, q)$, using a similar argument and Lemmas 3.2, 3.3 in [2], we have

$$\sum_{i=1}^{k+1} \nabla^2 d_q(e_i, e_i) \leq \frac{k \sqrt{2C_0}}{d(p, q) - d(q, x)} + \frac{k}{d(q, x)}.$$

\[\square\]

Lemma 2.2. Let M be an n-dimensional ($n \geq 3$) complete Riemannian manifold and let γ be a minimal geodesic joining the base point p and another point $q \in M$; $x \in M$ is a third point such that $s < \min\{d(p, x), d(q, x), d(p, q) - d(q, x)\}$, where $s = d(x, \gamma)$. Suppose $C_0 = \int_0^{+\infty} s \lambda(s) ds < +\infty$ and

$$\text{Ric}(k)(x) \geq -k \lambda(d_p(x)), \quad \text{for } 2 \leq k \leq n - 1.$$

Then

$$e_{pq}(x) \leq \frac{2k}{k-1} \frac{d(p, x) - s}{\sqrt{2C_0}s} \sinh \frac{\sqrt{2C_0}s}{d(p, x) - s} \left(\frac{C_2(s)}{2(k+1)} \right)^{1/k}.$$

where $C_2(s) = \frac{1 + \sqrt{1 + 8C_0}}{2} \cdot \frac{k}{d(p, x) - s} + \frac{k \sqrt{2C_0}}{d(p, q) - d(q, x) - s} + \frac{k}{d(q, x) - s}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. The argument uses modification methods of \([2]\) and \([10]\). Denote \(S_\kappa(t) = \frac{\sinh\sqrt{-\kappa t}}{\sqrt{-\kappa}}\) for \(\kappa < 0\). Take any \(s < R < \min\{d(p, x), d(q, x), d(p, q) - d(q, x)\}\) and \(C > C_2(R)\). Define \(f : \overline{B(x, R)} \to \mathbb{R}\) as

\[
f(y) = C \Phi_R(d_x(y)) - e_{pq}(y), y \in \overline{B(x, R)},
\]

where

\[
\Phi_R(\rho) = \int \int_{\rho \leq t \leq R} \left(\frac{\dot{S}_\kappa(\tau)}{S_\kappa(t)} \right)^k d\tau dt.
\]

Notice that from Lemma 3.3 in \([2]\), the lower bound \(\kappa\) on the Ricci curvature in the ball \(B(x, R)\) can be controlled by

\[
\text{Ric}(y) \geq -(n - 1) \frac{2C_0}{(d(p, x) - R)^2}, \quad \forall y \in B(x, R).
\]

Following the proof of Proposition 2.3 in \([2]\) and using Lemma 2.1, we can show that for any \(y \in \overline{B(x, R)} \setminus \{x\}\), there is an orthonormal set \(\{e_1, \cdots, e_{k+1}\}\) in \(T_yM\) such that the following inequality holds in a generalized sense:

\[
\sum_{i=1}^{k+1} \nabla^2 f(e_i, e_i) = C \left(\Phi_R^k \sum_{i=1}^{k+1} |\nabla e_i| d_x^2 + \Phi_R^k \sum_{i=1}^{k+1} \nabla^2 d_x(e_i, e_i) \right)
\]

\[
- \sum_{i=1}^{k+1} \nabla^2 d_p(e_i, e_i) - \sum_{i=1}^{k+1} \nabla^2 d_q(e_i, e_i)
\]

\[
\geq C - C_2(R) > 0.
\]

Thus \(f\) has no locally maximal point in \(B(x, R)\). Since \(f|_{S(x, R)} \leq 0\) and \(f|_{\overline{B(x, s)} \cap \gamma} > 0\), we know that

\[
e_{pq}(x) \leq \min_{0 \leq \rho \leq R} \left\{ \min_{y \in S(x, \rho)} e_{pq}(y) + 2\rho \right\}
\]

\[
\leq \min_{0 \leq \rho \leq R} \left\{ C \Phi_R(\rho) + 2\rho \right\}
\]

\[
\leq \min_{0 \leq \rho \leq R} \left\{ 2\rho + C(S_0R^2(1))^{k} \left[\frac{2R^{k+1}}{k-1} \left(\rho^{1-k} - R^{1-k} \right) + \rho^2 - R^2 \right] \right\}
\]

\[
\leq \frac{2k}{k-1} \frac{d(p, x) - R}{\sinh \frac{\sqrt{2C_0R}}{d(p, x) - R} \left(\frac{CR^{k+1}}{2(k+1)} \right)^{1/k}}.
\]

Letting \(R \to s\) and \(C \to C_2(s)\), we get (2.4). \(\square\)

Using Lemma 2.2 and an easy argument, we can get an excess estimate for a manifold with \(k\)th asymptotically nonnegative Ricci curvature, which can be considered as an extended estimate of Abresch-Gromoll and Shen.

Lemma 2.3. Suppose

\[
\text{Ric}_{(k)}(x) \geq -k\lambda(d_p(x)), \quad \text{for } 2 \leq k \leq n - 1.
\]

Then

\[
e_{pq}(x) \leq 8(1 + 8C_0)^{\frac{1+k}{2k}} \left(\frac{s^{k+1}}{r} \right)^{\frac{1}{k}}.
\]

where \(s = d(x, \gamma), r = \min\{d(p, x), d(q, x)\}\).
3. Proof of the Theorems

Let R_p denote the set of all rays issuing from p and let

$$H(p,r) = \max_{x \in S(p,r)} d(x, R_p).$$

For a manifold with quadratic sectional curvature decay, Wang and Xia [12] proved that there exists a constant ϵ such that if $H(p,r) < \epsilon r$, then it is diffeomorphic to \mathbb{R}^n. We will extend it to the following.

Theorem 3.1. Given $C > 0$ and $\alpha \in [0, 2]$, suppose that M is an n-dimensional complete noncompact Riemannian manifold with $K(x) \geq -\frac{C}{d^2(x)^\alpha}$. Then there exists a positive constant $\epsilon = \epsilon(\alpha, C)$ such that if $H(p,r) < \epsilon \phi_\omega^2(r)$, then M is diffeomorphic to \mathbb{R}^n.

Proof. Let δ be a solution of the inequality $\cosh(2^{2+\alpha} \sqrt{C} \epsilon) - \cosh^2(\frac{3}{2} 2^{2+\alpha} \sqrt{C} \epsilon) < 0$ and take $\epsilon = \min\{\frac{1}{2} \delta, \frac{3}{2} \delta \}$. From the Disk Theorem (cf. [4]), it suffices to show that d_p has no critical point other than p. Take an arbitrary point $x(\neq p) \in M$ and let $r = d(p, x)$. Since R_p is closed, there exists a ray γ issuing from p such that $s = d(x, \gamma)$. From our condition, we have

$$s \leq \epsilon \phi_\omega^2(r).$$

(3.1)

Let $q = \gamma(2r)$ and let σ_1 and σ_2 be geodesics joining x to p and q respectively. Set $\tilde{p} = \sigma_1(4\epsilon \phi_\omega^2(r)); \tilde{q} = \sigma_2(4\epsilon \phi_\omega^2(r))$. Consider the triangle $\Delta(x, \tilde{p}, \tilde{q})$. If y is a point on this triangle, then

$$d(p, y) \geq d(p, x) - d(x, y) \geq d(p, x) - d(\tilde{p}, x) - d(\tilde{p}, y)$$

and

$$d(p, y) \geq d(p, x) - d(x, y) \geq d(p, x) - d(\tilde{q}, x) - d(\tilde{q}, y),$$

which means $d(p, y) \geq r - 8\epsilon \phi_\omega^2(r) > \frac{r}{2}$. Hence the triangle $\Delta(x, \tilde{p}, \tilde{q}) \subset M \setminus B(p, \frac{r}{4})$. Applying the Toponogov Theorem to the triangle $\Delta(x, \tilde{p}, \tilde{q})$ we have

$$\cosh\left(2^{2+\alpha} \sqrt{C} \frac{d(\tilde{p}, \tilde{q})}{r^\frac{\alpha}{2}}\right) \leq \cosh^2\left(2^{2+\alpha} \sqrt{C} \frac{d(\tilde{p}, x)}{r^\frac{\alpha}{2}}\right) - \sinh^2\left(2^{2+\alpha} \sqrt{C} \frac{d(\tilde{p}, x)}{r^\frac{\alpha}{2}}\right) \cos \theta,$$

where $\theta = \angle \sigma_1^0(0), \sigma_2^0(0)$. Since $e_{pq}(x) \leq 2s \leq 2\epsilon \phi_\omega^2(r)$, from triangle inequality, we have

$$d(\tilde{p}, \tilde{q}) \geq d(p, q) - d(p, x) + d(\tilde{p}, x) - d(x, q) + d(\tilde{q}, x)$$

$$\geq 8\epsilon \phi_\omega^2(r) - e_{pq}(x)$$

$$\geq 6\epsilon \phi_\omega^2(r).$$

(3.3)

From (3.2), (3.3), and (3.1) we have

$$\sinh^2\left(2^{2+\alpha} \sqrt{C} \frac{d(\tilde{p}, x)}{r^\frac{\alpha}{2}}\right) \cos \theta \leq \cosh^2\left(2^{2+\alpha} \sqrt{C} \frac{e \phi_\omega^2(r)}{r^\frac{\alpha}{2}}\right) - \cosh\left(2^{2+\alpha} \sqrt{C} \frac{3\epsilon \phi_\omega^2(r)}{2r^\frac{\alpha}{2}}\right)$$

$$\leq \cosh^2\left(2^{2+\alpha} \sqrt{C} \epsilon\right) - \cosh\left(\frac{3}{2} 2^{2+\alpha} \sqrt{C} \epsilon\right)$$

$$< 0,$$
so
\[\theta > \frac{\pi}{2}, \]
which shows that \(x \) is not a critical point of \(d_p \) and Theorem 3.1 follows. \(\square \)

Before proving Theorem 1.2, we need the following lemma, which can be considered as a generalization of Lemma 3.1 in [13].

Lemma 3.2. Let \(M \) be an \(n \)-dimensional \((n \geq 3) \) complete noncompact Riemannian manifold with
\[
\text{Ric}_{(k)}(x) \geq -k\lambda(d_p(x)), \quad \text{for} \quad 2 \leq k \leq n - 1,
\]
and
\[
K(x) \geq -\frac{C}{d_p(x)^{\alpha}},
\]
where \(C(\lambda) = \int_0^{+\infty} s\lambda(s)ds < +\infty \) and \(C > 0, \quad 0 \leq \alpha \leq 2 \). There exists a constant \(\epsilon' = \epsilon'(k, \lambda, C, \alpha) > 0 \), such that \(M \) has finite topological type, provided that
\[
\text{(3.4)} \quad \limsup_{r \to +\infty} \frac{H(p, r)}{r^{\frac{k}{k+1} + 1}} \leq \epsilon.
\]

Proof. Let \(\delta \) be the solution of the inequality
\[
\text{(3.5)} \quad \cosh^2 \left(2^\alpha \sqrt{C}\delta \right) - \cosh \left(\frac{3}{2} 2^\alpha \sqrt{C}\delta \right) < 0,
\]
and take \(\epsilon' \) to be
\[
\epsilon' = \left(\frac{\delta}{16(1 + 8C_0)^{\frac{k+\alpha}{2}}} \right)^{\frac{k}{k+1}}.
\]
From (3.4), we can find a constant \(r_0 > 1 \) such that
\[
\text{(3.7)} \quad H(p, r) \leq \epsilon' r^{\frac{k}{k+1} + 1}, \quad \forall r \geq r_0.
\]

It suffices to show that \(d_p \) has no critical point in \(M \setminus B(p, r_0) \). To show this, take an arbitrary point \(x \in M \setminus B(p, r_0) \) and let \(r = d(p, x) \). From our condition, there exists a ray \(\gamma \) issuing from \(p \) such that \(s = d(x, \gamma) \) and
\[
\text{(3.8)} \quad s \leq \epsilon' r^{\frac{k}{k+1} + 1} < r.
\]
Let \(q = \gamma(2r) \) and let \(\sigma_1 \) and \(\sigma_2 \) be geodesics joining \(x \) to \(p \) and \(q \) respectively. Set \(p' = \sigma_1(\delta r^{\frac{k}{2}}); \quad q' = \sigma_2(\delta r^{\frac{k}{2}}) \). As in the proof of Theorem 3.1, we know that the triangle \(\Delta(x, p', q') \subset M \setminus B(p, \frac{r}{2}) \) and
\[
\text{(3.9)} \quad d(p', q') \geq 2\delta r^{\frac{k}{2}} - e_{pq}(x).
\]
Using (2.5), (3.6), and (3.8) we have
\[
e_{pq}(x) \leq 8(1 + 8C_0)^{\frac{k}{2}} \left(\frac{s^{k+1}}{r} \right)^{\frac{k}{k+1}} \leq 8(1 + 8C_0)^{\frac{k}{2}} \left(\frac{(\epsilon')^{k+1} r^{k\alpha/2+1}}{r} \right)^{\frac{k}{k+1}} = \delta r^{\frac{k}{2}}.
\]
So we have

\begin{equation}
(3.10) \quad d(p', q') \geq 2\delta r^\frac{\alpha}{2} - \frac{1}{2}\delta r^\frac{\alpha}{2} = \frac{3}{2}\delta r^\frac{\alpha}{2}.
\end{equation}

Applying the Toponogov Theorem to the triangle $\Delta(x, p', q')$, we have

\begin{align*}
\sinh^2 \left(\frac{2\alpha \sqrt{C}}{r^\frac{\alpha}{2}} d(p', x) \right) \cos \theta & \leq \cosh^2 \left(\frac{2\alpha \sqrt{C}}{r^\frac{\alpha}{2}} d(p', x) \right) - \cosh \left(\frac{2\alpha \sqrt{C}}{r^\frac{\alpha}{2}} d(p', q') \right) \\
& \leq \cosh^2 \left(2\alpha \sqrt{C} \delta \right) - \cosh \left(\frac{3}{2} 2\alpha \sqrt{C} \delta \right) \\
& < 0,
\end{align*}

so

\[\theta > \frac{\pi}{2}, \]

which shows that x is not a critical point of d_p and Lemma 3.2 follows. \hfill \Box

Proof of Theorem 1.2. Take the number ϵ in Theorem 1.2 to be

\begin{equation}
(3.11) \quad \epsilon = \left(\epsilon' \right)^{n-1} \frac{1}{18n e^{3(n-1)C_0}},
\end{equation}

where $\epsilon' = \epsilon'(k, \lambda, C, \alpha)$ is as in Lemma 3.2. From (1.4), we can find a constant $r_0 > 1$ such that

\begin{equation}
(3.12) \quad \frac{\text{vol} B(x, r)}{\text{vol} B(\bar{x}, r)} - \alpha_p \leq \epsilon \alpha_p r^{-(\frac{n-1}{k+1})(1-\frac{\alpha}{2})}, \quad \forall r \geq r_0.
\end{equation}

From Lemma 3.2, we only need to show that for any arbitrary point $x \in M \setminus B(p, r_0)$ and a ray γ issuing from p, set $r = d(p, x)$ and $s = d(x, \gamma)$.

Then

\begin{equation}
(3.13) \quad s \leq \epsilon' r^{\frac{1}{k+1}} \left(\frac{k}{2} + 1 \right).
\end{equation}

To prove this, let $\Sigma_p(\infty)$ be the set of unit vectors $v \in S_p M$ such that the geodesic $\gamma(t) = \exp_p(tv)$ is a ray and $\Sigma_p^c(\infty) = S_p \setminus \Sigma_p(\infty)$. We have

\[B(x, s) \subset B_{\Sigma_p(\infty)}(p, r + s) \setminus B(p, r - s), \]

which means

\begin{equation}
(3.14) \quad \text{vol} B(x, s) \leq \text{vol} B_{\Sigma_p(\infty)}(p, r + s) - \text{vol} B(p, r - s).
\end{equation}
By the Relative Comparison Theorem for asymptotically nonnegative Ricci curvature (see [6]), we have

\[
volB(x, \frac{s}{2}) \leq volB_{\Sigma_p(\infty)}(p, r + \frac{s}{2}) - volB_{\Sigma_\bar{p}(\infty)}(p, r - \frac{s}{2}) = \frac{volB_{\Sigma_p(\infty)}(p, r + \frac{s}{2})}{volB_{\Sigma_\bar{p}(\infty)}(p, r - \frac{s}{2})} - 1 \\
\leq volB_{\Sigma_p(\infty)}(p, r - \frac{s}{2}) \frac{volB(\bar{p}, r + \frac{s}{2})}{volB(\bar{p}, r - \frac{s}{2})} - 1 \\
\leq e^{(n-1)C_0} \left(\left(\frac{r + \frac{s}{2}}{r - \frac{s}{2}} \right)^n - 1 \right) volB_{\Sigma_p(\infty)}(p, r - \frac{s}{2})
\]

(3.15)

\[
\leq (3^n - 1) e^{(n-1)C_0} \frac{s}{r} volB_{\Sigma_p(\infty)}(p, r - \frac{s}{2})
\]

(3.16)

where the last two inequalities are in fact due to Mahaman by using the volume element estimate \(dv(t) \leq e^{(n-1)C_0} t^{n-1} dt \wedge dS_{n-1}\) in polar coordinates.

Now, from (3.14), Lemma 3.10 in [6], and (3.12), we have

\[
volB_{\Sigma_p(\infty)}(p, r - \frac{s}{2}) = volB(p, r - \frac{s}{2}) - \alpha_p volB(\bar{p}, r - \frac{s}{2}) \\
\leq volB(p, r - \frac{s}{2}) - \alpha_p volB(\bar{p}, r - \frac{s}{2}) \\
\leq \epsilon \alpha_p r^{-\frac{(n-1)k}{k+1}}(1 - \frac{a}{2}) volB(\bar{p}, r - \frac{s}{2}) \\
\leq \epsilon \omega_n \alpha_p e^{(n-1)C_0} r^{-\frac{(n-1)k}{k+1}}(1 - \frac{a}{2}) r^n.
\]

(3.17)

Substituting (3.17) in (3.14), we get

\[
volB(x, \frac{s}{2}) \leq (3^n - 1) \epsilon \omega_n \alpha_p e^{2(n-1)C_0 s r^{n-1} - \frac{(n-1)k}{k+1} (1 - \frac{a}{2})}.
\]

On the other hand, using (15) in [6], we know that

\[
volB(x, \frac{s}{2}) \geq \frac{\omega_n}{3^n} \alpha_p e^{-(n-1)C_0} \left(\frac{s}{2} \right)^n.
\]

(3.18)

From these two inequalities, we have

\[
s^{n-1} \leq \epsilon 18^n e^{3(n-1)C_0} r^{\frac{n-1}{k+1}}(1 - \frac{a}{2} + 1).
\]

Using (3.12), we obtain

\[
s \leq (\epsilon 18^n e^{3(n-1)C_0})^{-\frac{1}{n-1}} r^{\frac{n-1}{k+1}}(1 - \frac{a}{2} + 1) = \epsilon' r^{\frac{n-1}{k+1}}(1 - \frac{a}{2} + 1),
\]

which satisfies (3.13) and completes the proof of Theorem 1.2. \(\square\)

Proof of Theorem 1.5. We choose the number \(\epsilon\) in Theorem 1.5 to be

\[
\epsilon = \frac{(\epsilon')^{n-1}}{18^n e^{3(n-1)C_0}},
\]

where \(\epsilon' = \epsilon(k, \lambda, C, \alpha)\) is as in Lemma 3.2. Take any arbitrary point \(x \in M \setminus \{p\}\) and a ray \(\gamma\) issuing from \(p\), and set \(r = d(p, x)\) and \(s = d(x, \gamma)\). Using similar methods as in the proof of Theorem 1.2 and our condition,

\[
volB(x, \frac{s}{2}) \leq (3^n - 1) \epsilon \omega_n \alpha_p e^{2(n-1)C_0 s} \left(\phi_{\frac{1}{k+1}}(\frac{k+1}{k}(1 + r)) \right)^{n-1}.
\]

(3.22)
From (3.19) and (3.22), we obtain
\begin{equation}
(3.23) \quad s \leq \epsilon \phi_{\frac{1}{1+r}}(k\alpha^2 + 1)(r).
\end{equation}

Repeating the argument as in the proof of Theorem 3.1 and Lemma 3.2, we can show that \(x \) is not a critical point of \(d_p \) and Theorem 1.5 follows.

ACKNOWLEDGEMENTS

The author would like to thank the referees for their valuable suggestions and remarks.

REFERENCES

[1] Uwe Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 4, 651–670. MR839689 (87j:53058)
[2] Uwe Abresch and Detlef Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990), no. 2, 355–374, DOI 10.2307/1990957. MR1030656 (91a:53071)
[3] Jeff Cheeger, Critical points of distance functions and applications to geometry, Geometric topology: recent developments (Montecatini Terme, 1990), Lecture Notes in Math., vol. 1504, Springer, Berlin, 1991, pp. 1–38, DOI 10.1007/BFb0094288. MR1168042 (94a:53075)
[4] Karsten Grove, Critical point theory for distance functions, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 357–385. MR1216630 (94f:53065)
[5] Zisheng Hu and Senlin Xu, Complete manifolds with asymptotically nonnegative Ricci curvature and weak bounded geometry, Arch. Math. (Basel) 88 (2007), no. 5, 455–467, DOI 10.1007/s00013-006-1151-x. MR2316891 (2008b:53044)
[6] Mahaman Bazarfari, Open manifolds with asymptotically nonnegative curvature, Illinois J. Math. 49 (2005), no. 3, 705–717 (electronic). MR2210255 (2006m:53049)
[7] B. Mahaman, Topology of Manifolds with Asymptotically Nonnegative Ricci Curvature. arXiv:0809.4558, 2008
[8] Zhong Min Shen, On complete manifolds of nonnegative kth-Ricci curvature, Trans. Amer. Math. Soc. 338 (1993), no. 1, 289–310, DOI 10.2307/2154457. MR1112548 (93j:53054)
[9] Zhongmin Shen, Complete manifolds with nonnegative Ricci curvature and large volume growth, Invent. Math. 125 (1996), no. 3, 393–404, DOI 10.1007/s002220050080. MR1400311 (97d:53045)
[10] Zhong Min Shen and Guofang Wei, Volume growth and finite topological type, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 539–549. MR1216645 (94f:53036)
[11] Christina Sormani, Nonnegative Ricci curvature, small linear diameter growth and finite generation of fundamental groups, J. Differential Geom. 54 (2000), no. 3, 547–559. MR1823314 (2003a:53047)
[12] Qiaoling Wang and Changyu Xia, Topological rigidity theorems for open Riemannian manifolds, Math. Nachr. 279 (2006), no. 7, 805–811, DOI 10.1002/mana.200310395. MR2226414 (2007b:53087)
[13] Changyu Xia, Large volume growth and the topology of open manifolds, Math. Z. 239 (2002), no. 3, 515–526, DOI 10.1007/s002090100322. MR1893850 (2003a:53041)
[14] Senlin Xu and Xu Xu, Excess functions of rays on complete noncompact manifolds, Acta Math. Sci. Ser. B Engl. Ed. 23 (2003), no. 3, 339–344. MR1991946 (2004g:53048)
[15] Shun-Hui Zhu, A volume comparison theorem for manifolds with asymptotically nonnegative curvature and its applications, Amer. J. Math. 116 (1994), no. 3, 669–682, DOI 10.2307/2374996. MR1277451 (95c:53049)

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, People’s Republic of China

E-mail address: yuntaozhang@jsnu.edu.cn