Risk of developing gallbladder cancer in patients with gallbladder polyps detected on transabdominal ultrasound: a systematic review and meta-analysis

KIERAN G FOLEY, ZENA RIDDELL, BERNADETTE COLES, ASHLEY ROBERTS and BRIAN H WILLIS

1Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
2National Imaging Academy of Wales (NIAW), Pencoed, UK
3Velindre University NHS Trust Library & Knowledge Service, Cardiff, UK
4Department of Clinical Radiology, University Hospital of Wales, Cardiff, UK
5Institute of Applied Health Research, University of Birmingham, Birmingham, UK

Address correspondence to: Kieran G Foley
E-mail: foleykg@cardiff.ac.uk

Objective: To estimate the risk of malignancy in gallbladder polyps of incremental sizes detected during transabdominal ultrasound (TAUS).

Methods: We searched databases including MEDLINE, Embase, and Cochrane Library for eligible studies recording the polyp size from which gallbladder malignancy developed, confirmed following cholecystectomy, or by subsequent follow-up. Primary outcome was the risk of gallbladder cancer in patients with polyps. Secondary outcome was the effect of polyp size as a prognostic factor for cancer. Risk of bias was assessed using the Quality in Prognostic Factor Studies (QUIPS) tool. Bayesian meta-analysis estimated the median cancer risk according to polyp size. This study is registered with PROSPERO (CRD42020223629).

Results: 82 studies published since 1990 reported primary data for 67,837 patients. 67,774 gallbladder polyps and 889 cancers were reported. The cumulative median cancer risk of a polyp measuring 10 mm or less was 0.60% (99% credible range 0.30–1.16%). Substantial heterogeneity existed between studies (I² = 99.95%, 95% credible interval 99.86–99.98%). Risk of bias was generally high and overall confidence in evidence was low. 13 studies (15.6%) were graded with very low certainty, 56 studies (68.3%) with low certainty, and 13 studies (15.6%) with moderate certainty. In studies considered moderate quality, TAUS monitoring detected 4.6 cancers per 10,000 patients with polyps less than 10 mm.

Conclusion: Malignant risk in gallbladder polyps is low, particularly in polyps less than 10 mm, however the data are heterogeneous and generally low quality. International guidelines, which have not previously modelled size data, should be informed by these findings.

Advances in knowledge: This large systematic review and meta-analysis has shown that the mean cumulative risk of small gallbladder polyps is low, but heterogeneity and missing data in larger polyp sizes (>10 mm) means the risk is uncertain and may be higher than estimated. Studies considered to have better methodological quality suggest that previous estimates of risk are likely to be inflated.

INTRODUCTION

Gallbladder polyps are commonly detected in adults during transabdominal ultrasound examination (TAUS).1 Gallbladder polyps can be separated into two categories; true polyps, or adenomas, that have malignant potential, and pseudopolyps consisting predominately of cholesterol, which have no malignant potential at all. The latter group is estimated to constitute 70% of all reported gallbladder polyps.2

Gallbladder cancer has been shown to develop from polypoid adenomas.3,4 More than 200,000 patients are diagnosed with gallbladder cancer each year worldwide.5 Gallbladder cancer carries a poor prognosis (15–20% 5-year survival) because patients commonly present at an advanced stage of disease and are unsuitable for radical therapy.6 The risk of malignant transformation of polyps to cancer is thought to be small, however accurate estimates of risk are unknown. Predicting which of the many patients with gallbladder polyps will develop gallbladder cancer is extremely difficult, but clinically important.
The assessment and monitoring of gallbladder polyps represent an ongoing clinical challenge that requires considerable resources from radiology departments around the world. Several international societies have attempted to provide evidence-based clinical guidance, based on size thresholds for intervention. Generally, it is recommended that patients with gallbladder polyps measuring 10 mm or more should undergo cholecystectomy. Recently updated European guidelines recommend ultrasound monitoring for up to 2 years in patients with polyps measuring 6 mm or more, provided polyp size is stable, or for polyps 5 mm or less if risk factors are present. In contrast, the Canadian Association of Radiologists recently endorsed the American College of Radiology recommendations that surveillance of polyps measuring 7 mm or more should be performed for up to 2 years, with polyps less than 7 mm not requiring follow-up. The available evidence is largely considered to be low quality, and international guidance has never modelled polyp size for malignant risk to justify their recommendations for appropriate intervention. Additional limitations include strong selection, detection, and reporting bias which significantly hinders confidence in any current estimated malignant risk.

Therefore, to address this gap, a systematic review and meta-analysis was conducted to establish the overall risk of gallbladder cancer in patients with polyps detected by TAUS. We examined TAUS measured polyp size as a prognostic factor for gallbladder cancer and explored other potentially important clinical co-variates for their associated malignant risk.

METHODS AND MATERIALS

This study was prospectively registered with PROSPERO (CRD42020223629) and results were reported following the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines.12

Search strategy

A comprehensive search strategy using Medical Subject Headings (MeSH) and free-text terms was designed for this systematic review using MEDLINE. This strategy was adapted to run in the following electronic databases: MEDLINE, Embase, Cochrane Library, Cumulative Index of Nursing and Allied Health Literature (CINAHL), Scopus, Web of Science, and ClinicalTrials.gov. (Supplementary Material 1) The initial search was performed on October 28, 2020, and updated on December 4, 2020. The search was limited to English language.

Study selection

The systematic review included randomised control trials, observational cohort, cross-sectional and case–control studies published since 1990. We included studies that reported consecutive or random primary data in adult participants (18 years or older), diagnosed with a gallbladder polyp on TAUS, that recorded the size of polyp from which a gallbladder malignancy occurred, confirmed either following cholecystectomy, or by monitoring the polyp to determine its natural history. A monitoring period of at least 12 months was required. A polyp is often termed a mass once it measures 30 mm, however, to maximise the capture of continuous data, sizes of polypoid lesions more than 30 mm were also recorded. Studies were excluded that did not contain any primary data or did not provide polyp or cancer measurements. Attempt was made to discover translations of any non-English language article that was inadvertently retrieved. Reference lists of all eligible studies were checked and underwent citation tracking for additional eligible studies. Search of the grey literature was not performed.

Outcomes

The pre-specified primary outcome was the risk of gallbladder cancer in adult patients with polyps detected by TAUS. The secondary outcome was the effect of polyp size as a prognostic factor for gallbladder cancer. Additional secondary outcomes were the malignant risk of associated clinical co-variates: age at diagnosis, gender, presence of gallstones, presence of symptoms, and the presence of single or multiple polyps.

Data extraction

Two investigators (KGF/ZR) independently screened all titles and abstracts, assessed full texts for eligibility, and extracted data based on the CHARMS13 and CHARMS-PF14 checklists. Disagreements were resolved after review by a third investigator (SAR). Data extracted (Supplementary Material 1) included study identifiers, study design, setting and population characteristics, sample size, polyp and cancer size, and follow-up. Where an included study reported missing data, the corresponding author was contacted inviting them to share the complete data set.

Quality assessment

Risk of bias was assessed using the Quality in Prognostic Factor Studies (QUIPS) tool for each study.15 The strength of the overall weight of evidence for both primary and secondary outcomes was judged using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group methodology.16 (Supplementary Material 1)

Data analysis

A Bayesian meta-analysis model which incorporated the effects of polyp size and other covariates on the risk of cancer was developed. This was a random intercept and random gradient model to allow the effects of polyp size on the risk of cancer to vary across studies. The model was expanded to account for extensive missing data amongst the response and the predictor variables. The data were modelled by assuming separate multinomial distributions for the number of cancers and polyps at different sizes and imputing new data for each iteration of the Bayesian model. As a result, all eligible studies could be included in the analysis. The model was supplemented with individual patient data, where available. The Bayesian meta-analysis model was developed in JAGS19 interfacing with R20 via the rjags package. (Supplementary Material 1) Between-study heterogeneity was assessed by inspection of prediction plots, and the I² statistic.22,23 To assess the effects of the GRADE rating on the Bayesian model, sensitivity analyses were conducted where studies rated with very low certainty were first excluded, followed by the exclusion of low and very low certainty studies.
RESULTS
The initial search identified 3067 studies, of which 1615 were duplicates. Four additional studies were identified through other sources. The titles and abstracts of 1456 studies were screened and after screening, 1322 records were excluded for being irrelevant to this systematic review, leaving 134 full-text articles for review. Both reviewers identified 122 of the 134 full-text articles (91.0%) and the remaining 12 were included after agreement by the third reviewer. Of the 134 full-text articles, 52 were excluded (agreed by both reviewers) leaving 82 articles published since 1990 for inclusion (Figure 1). Important characteristics of the 82 included studies are detailed in Table 1.

Overall, 67,837 patients were included for evidence synthesis. In total, 67,774 gallbladder polyps and 889 gallbladder cancers were reported. The median age ranged between 40 and 62, and 57,670 were male (73.7%). All patients had gallbladder polyps detected by TAUS. In total, 20,543 were evaluated following cholecystectomy. More than half of all polyps (n = 41,041, 53.1%) were monitored with TAUS to determine their natural history. The two largest studies provided 46,782 patients, but only 38 cancers.

There were 82 studies which provided data on the number of gallbladder polyps and cancers. Sixty studies provided data on at least one polyp size and the associated number of gallbladder cancers that developed in polyp sizes up to 15 mm. Size measurements could be extracted in 59,225 polyps and 425 malignant polyps, respectively, from these studies. In one study, the authors provided individual patient data on 558 patients. 16 studies (19.5%) reported cohorts with zero cancer events within the first year of follow-up. 44 studies reported non-zero cancer events in one or more polyp
Author	Year	Country	Design	Sites	Start date	End date	Patients	Median age (months)	Female	Polyps	Cancers	Malignancy rate	Cholecystectomy	Monitoring
Abdullah et al.	2019	UK	Retrospective	1	2011	2013	244	NR	160	100	43 (21.4%)	0.1%	36	36
Ahmadi et al.	2016	USA	Retrospective	1	1988	1995	294	57	125	125	24 (19.2%)	0.8%	182	182
Akyurek et al.	2013	Turkey	Retrospective	1	2000	2004	112	50	56	56	20 (35.7%)	0.0%	96	96
Akyurek et al.	2018	Turkey	Retrospective	1	2014	2018	202	70	272	272	70 (34.7%)	0.0%	180	180
Aldouri et al.	2010	Jordan	Retrospective	1	2002	2016	457	NR	2429	2429	10 (0.4%)	0.0%	2429	2429
Aliyazicioglu et al.	2017	Turkey	Retrospective	1	2004	2015	185	44	94	94	2 (1.1%)	0.0%	185	185
Ansari et al.	2009	Bangladesh	Prospective	1	2002	2004	57	NR	57	57	1 (1.8%)	0.0%	57	57
Azuma et al.	2001	Japan	Retrospective	1	1989	1998	118	NR	118	118	4 (3.4%)	0.0%	118	118
Cairns et al.	2012	UK	Retrospective	1	2000	2011	986	57	986	986	134 (13.6%)	0.0%	986	986
Cha et al.	2011	South Korea	Retrospective	1	2003	2009	210	40	210	210	40 (19.0%)	0.0%	210	210
Channa et al.	2009	Pakistan	Retrospective	1	1999	2008	30	NR	30	30	1 (3.3%)	0.0%	30	30
Chattopadhyay et al.	2005	UK	Retrospective	1	1993	2002	23	56.8	16 (69.6%)	23	23 (100.0%)	0.0%	16	16
Cheon et al.	2009	South Korea	Retrospective	1	1996	2006	94	NR	94	94	94 (100.0%)	0.0%	94	94
Chijiiwa et al.	1994	Japan	Retrospective	1	1982	1990	44	NR	24	24	12 (50.0%)	0.0%	24	24
Choi et al.	2008	South Korea	Retrospective	1	2006	2007	59	NR	59	59	16 (27.1%)	0.0%	59	59
Chou et al.	2017	Taiwan	Retrospective	1	2004	2013	1204	51.8	527	527	111 (9.3%)	0.0%	1204	1204
Colecchia et al.	2009	Italy	Prospective	1	1999	2001	56	48.3	22	22	0 (0.0%)	0.0%	0	0
Collett et al.	1998	New Zealand	Prospective	1	1989	1994	38	NR	38	38	0 (0.0%)	0.0%	0	0
Corwin et al.	2011	USA	Prospective	1	1999	2001	346	NR	346	346	10 (2.9%)	0.0%	346	346
Csendes et al.	2001	Chile	Prospective	1	1987	1996	111	NR	111	111	27 (24.3%)	0.0%	111	111
Dacka et al.	2004	Poland	Retrospective	1	1998	2002	25	NR	25	25	9 (36.0%)	0.0%	9	9
Damore et al.	2001	USA	Retrospective	1	1988	1995	41	47.4	18	18	4 (22.2%)	0.0%	18	18
Donald et al.	2013	USA	Retrospective	1	2002	2011	27	NR	27	27	5 (18.5%)	0.0%	5	5
Drews et al.	2005	Poland	Retrospective	1	1993	2003	39	NR	39	39	17 (43.6%)	0.0%	17	17
Escalona et al.	2006	Chile	Retrospective	1	1991	2004	123	NR	123	123	95 (77.2%)	0.0%	95	95
French et al.	2013	Canada	Retrospective	1	2000	2010	262	49	157	157	10 (3.8%)	0.0%	10	10
Fujiwara et al.	2020	Japan	Retrospective	1	2003	2019	227	NR	99	99	23 (10.1%)	0.0%	23	23
Guo et al.	2015	China	Retrospective	1	1999	2012	160	NR	90	90	60 (37.5%)	0.0%	60	60
Heitz et al.	2019	Germany	Prospective Multi	2002	2013	2019	262	59	59	59	20 (7.6%)	0.0%	20	20
Huang et al.	2001	Taiwan	Retrospective	1	1990	1998	153	NR	76	76	62 (40.5%)	0.0%	62	62
(Continued)														
Table 1. (Continued)

Author	Year	Country	Design	Sites	Start date	End date	Patients	Median age (months)	Female	Pseudops	Cancers	Malignancy rate	Cholecystectomy	Monitoring	Median follow-up (months)
Isozaki et al.	1995	Japan	Retrospective	1	1978	1992	62	NR	31 (50.0%)	144	29	14.5%	62 (43.1%)	0 (0.0%)	NR
Ito et al.	2009	USA	Retrospective	1	2007	2007	144	NR	576 (7.0%)	126	8	20.1%	144 (100.0%)	0 (0.0%)	143 (43.4%)
Jang et al.	2009	South Korea	Prospective	1	2008	2012	26	19 (73.1%)	20	26	1	3.0%	26 (100.0%)	0 (0.0%)	NR
Jeong et al.	2010	South Korea	Retrospective	1	2007	2011	53	NR	576 (7.0%)	126	8	15.1%	144 (100.0%)	0 (0.0%)	NR
Kamali Polat et al.	2010	Turkey	Retrospective	1	Missing	Missing	34	NR	672 (1.4%)	34	1	2.9%	3 (91.2%)	0 (0.0%)	NR
Khan et al.	2012	South Korea	Retrospective	1	2008	2012	26	19 (73.1%)	20	26	1	3.0%	26 (100.0%)	0 (0.0%)	NR
Kim et al.	2016	South Korea	Retrospective	1	2007	2011	53	NR	576 (7.0%)	126	8	15.1%	144 (100.0%)	0 (0.0%)	NR
Koundouris et al.	2012	USA	Retrospective	1	2000	2010	213	NR	147 (69.0%)	213	6	2.9%	213 (100.0%)	0 (0.0%)	15.5
Kowal et al.	1995	Japan	Retrospective	1	1994	1994	72	NR	32 (44.4%)	72	16	22.2%	72 (100.0%)	12 (16.7%)	12
Kwon et al.	2016	South Korea	Retrospective	1	2002	2016	126	NR	66 (52.4%)	516	24	6.3%	126 (24.4%)	0 (0.0%)	NR
Kwon et al.	2019	South Korea	Retrospective	1	2005	2014	516	NR	219 (42.4%)	109	1	4.7%	516 (100.0%)	109 (21.1%)	60
Liu et al.	2015	China	Retrospective	1	2013	2017	109	NR	60 (55.0%)	109	23	21.1%	109 (100.0%)	0 (0.0%)	NR
Maciejewski et al.	2014	Poland	Retrospective	1	2010	2013	64	NR	529 (82.6%)	64	1	1.6%	64 (100.0%)	0 (0.0%)	NR
Mainprize et al.	2010	UK	Retrospective	1	1993	1997	36	NR	19 (50.0%)	18	2	11.1%	3 (16.7%)	0 (0.0%)	NR
Matlok et al.	2013	Poland	Retrospective	1	1997	2012	152	NR	94 (64.9%)	152	1	0.7%	152 (100.0%)	8 (5.3%)	NR
Matsuz et al.	2010	Portugal	Retrospective	1	2003	2007	95	NR	62 (66.7%)	95	2	2.2%	86 (92.9%)	0 (0.0%)	NR
Meroxan et al.	2013	Poland	Retrospective	1	1988	1998	109	NR	58 (53.2%)	20	1	0.9%	109 (100.0%)	3 (3.0%)	37.2
Ondu et al.	1999	Japan	Retrospective	1	1993	1993	95	NR	1,092 (1.0%)	1,092	19	0.2%	133 (12.2%)	0 (0.0%)	37.2
Ondu et al.	2020	South Korea	Retrospective	1	2009	2014	139	NR	53 (39.0%)	139	16	11.5%	139 (100.0%)	80 (57.6%)	NR
Ondu et al.	2020	South Korea	Retrospective	1	2014	2019	98	NR	98 (0.0%)	98	0	0.0%	98 (100.0%)	0 (0.0%)	NR
Ondu et al.	2018	South Korea	Retrospective	1	2008	2008	689	NR	1,092 (1.0%)	689	25	3.6%	109 (25.1%)	0.09 (100.0%)	60
Ondu et al.	2019	South Korea	Retrospective	1	1995	2005	1,558	NR	725 (46.4%)	1,558	34	3.6%	0 (0.0%)	1,508 (100.0%)	37.2
Park et al.	2015	South Korea	Retrospective	1	1997	2012	836	47	198 (26.3%)	836	56	6.7%	836 (100.0%)	184 (22.0%)	NR
Patel et al.	2019	UK	Retrospective	1	2008	2013	558	52	297 (53.2%)	558	3	0.3%	89 (15.9%)	168 (30.1%)	23.5
Author	Year	Country	Design	Sites	Start date	End date	Patients	Median age (months)	Female	Polyps	Cancers	Malignancy rate	Cholecystectomy	Monitoring	Median follow-up (months)
--------------	------	---------	--------------	-------	------------	----------	----------	------------------	--------	--------	---------	-----------------	----------------	------------	-----------------------------
Pedersen et al	2012	Denmark	Retrospective	1	2008	2009	203	54	114	6	0	0.0%	13 (6.4%)	31 (15.3%)	24
Pickering et al	2020	Ireland	Retrospective	4	2013	2018	134	53	74	6	4.5%	134 (100.0%)	0 (0.0%)	NR	
Rafaelson 18	2020	Denmark	Prospective	1	2007	2009	154	62	100	6	0.0%	0 (0.0%)	154 (100.0%)	120	
Salmeron et al	2018	Turkey	Retrospective	1	2008	2013	159	NR	NR	8	5.0%	96 (60.4%)	0 (0.0%)	NR	
Sans et al	2017	Turkey	Retrospective	1	2005	2015	109	45	69	15	2.2%	109 (100.0%)	60 (50.0%)	22.2	
Sach et al	2013	Turkey	Retrospective	1	1996	2012	138	55	91	21	15.2%	138 (100.0%)	0 (0.0%)	NR	
Shah 60	2010	Nepal	Retrospective	1	2004	2009	32	40	23	2	6.3%	32 (100.0%)	0 (0.0%)	NR	
Shan et al	2019	China	Retrospective	1	2011	2018	38	53	23	10	26.3%	38 (100.0%)	0 (0.0%)	NR	
Shinkai et al	2008	Japan	Retrospective	1	1990	1995	60	NR	23	1	13.8%	19 (31.7%)	0 (0.0%)	NR	
Spaziani et al	2019	Italy	Retrospective	1	2006	2018	278	83	52	10	5.7%	278 (100.0%)	0 (0.0%)	NR	
Sugiyama et al	2020	Japan	Retrospective	1	1988	1997	194	NR	100	11	5.7%	194 (100.0%)	0 (0.0%)	NR	
Sun et al	2018	Turkey	Retrospective	1	2004	2012	145	NR	105	19	13%	145 (100.0%)	91 (62.0%)	NR	
Sun et al	2019	China	Retrospective	1	2013	2016	686	NR	383	60	26.3%	686 (100.0%)	686 (100.0%)	24	
Sung et al	2014	South Korea	Retrospective	1	2009	2011	516	NR	133	250	5.7%	250 (100.0%)	0 (0.0%)	NR	
Szpakowski et al	2020	USA	Retrospective	Multi	1995	2014	3,995	50	1,964	53	0.0%	19 (31.7%)	0 (0.0%)	NR	
Tari et al	2010	Turkey	Retrospective	1	1998	1998	100	NR	74	26	26.0%	100 (100.0%)	0 (0.0%)	NR	
Tertoglu et al	2017	Turkey	Retrospective	1	2010	2016	278	NR	187	279	7.1%	279 (100.0%)	0 (0.0%)	NR	
Ungaravittayana et al	2018	Thailand	Retrospective	1	2017	2017	85	NR	47	85	2.9%	85 (100.0%)	0 (0.0%)	NR	
Veledavudi et al	2017	Turkey	Retrospective	1	2011	2012	82	NR	48	82	0.0%	82 (100.0%)	0 (0.0%)	NR	
Wu et al	2019	China	Retrospective	1	2011	2017	1,561	495	925	1561	5.9%	1561 (100.0%)	0 (0.0%)	NR	
Xie et al	2017	China	Retrospective	1	2008	2015	1,468	NR	74	1468	0.2%	1468 (98.5%)	0 (0.0%)	NR	
Yang et al	1992	China	Retrospective	1	1982	1990	172	443	734	172	7.6%	172 (100.0%)	0 (0.0%)	NR	
Yeh 39	2011	Taiwan	Retrospective	1	1991	1999	123	NR	63	123	1.6%	123 (100.0%)	0 (0.0%)	NR	
Zielinski et al	2019	USA	Retrospective	1	1996	2007	130	NR	85	130	7.7%	130 (100.0%)	25 (19.2%)	32	

* NR not reported. Total percentages of patients treated with cholecystectomy and monitoring may not add up to 100% (total can include patients followed-up before or after cholecystectomy and patients lost to follow-up).
Risk of Malignancy in Gallbladder Polyps: a Systematic Review

Substantial heterogeneity was measured between studies (I² = 99.95%, 95% credible interval 99.86–99.98%). The distribution of included studies at different size thresholds is shown in Figure 2 and demonstrates the heterogeneity across studies, although most studies were concentrated in a region with a probability of cancer of less than 0.03. Data reported at subsequent time points were limited, so malignant risk over time could not be determined.

A Bayesian meta-analysis model was developed to accommodate substantial missing data across the studies. As a result, it was possible to include all 82 studies in the analysis. The model demonstrated an increased risk of cancer as polyp size increased (Figure 3a). For example, a mean polyp size of 13.9 mm had a mean risk of 1 in 100. However, there was considerable uncertainty with this estimate due to study heterogeneity and this uncertainty increased with threshold size, illustrated by the widening credible ranges, which may be explained by increased missing data at higher polyp sizes. Figure 3b shows the 95% prediction region for the predicted risk from the model. This demonstrates the effects of between-study heterogeneity on the uncertainty of the risk estimates. The prediction region is wide and increases with polyp size to around 60% suggesting substantial uncertainty in the model estimates. The addition of associated co-variates (age, gender, presence of gallstones, symptoms, and single or multiple polyps) to the model did not substantially change the Deviance Information Criterion (DIC) of the Bayesian model and therefore were excluded (Supplementary Material 1).

The median cancer risk of polyps measuring 5 mm and 10 mm across all studies was 0.14% (99% credible range 0.08–0.26%) and 0.60% (0.30–1.16%), respectively. Thus, the number of patients with polyps measuring 5 mm and 10 mm or less needed to detect one cancer is 714.3 and 166.7, respectively, equating to 13.2 and 64.4 cancers per 10,000 patients. The point estimates and cumulative cancer risk with 99% credible intervals for incremental polyp size is provided in Table 2. A probability matrix, showing incremental sizes of polyps with corresponding cancer risk, is included in Supplementary Material 1.

Risk of bias assessment

The majority of studies (n = 68, 82.9%) were assessed as having high risk of bias due to their observational nature, and the remaining 14 (17.1%) as moderate risk of bias (Supplementary Material 1). According to the GRADE working group methodology,16 13 studies (15.6%) were graded with very low certainty, 56 studies (68.3%) with low certainty, and 13 studies (15.6%) with moderate certainty (Supplementary Material 1). The overall confidence in the result of the quantitative synthesis was summarised as low.

Sensitivity analysis

The effect of methodological quality on the median cancer risk was tested in sensitivity analysis (Figure 4). Compared with the overall median curve, excluding studies with a very low certainty rating had little effect on the estimated risk. However, confining the analyses to those studies with moderate certainty or higher (13 studies) substantially lowered the median risk curve. This is due to the two largest studies, which reported only 38 cancers in 46,782 patients (0.08%), having substantially lower cancer rates than the other studies in the meta-analysis.
In studies considered moderate quality, the median cancer risk of polyps measuring 5 mm and 10 mm or less reduced considerably to 0.03 and 0.04%, respectively. This increased the number of patients needed to detect one cancer to 2754.8 and 2167.8, equating to 3.6 and 4.6 cancers per 10,000 patients with polyps measuring 5 mm and 10 mm or less, respectively.

DISCUSSION

This systematic review and meta-analysis of more than 67,000 patients is the first comprehensive meta-analysis to model the risk of malignancy in gallbladder polyps. The study has shown that the estimated risk of malignancy in patients with gallbladder polyps is lower than previously reported and is extremely low in polyps measuring less than 10 mm.

Presently, studies are mostly low quality which affects the estimates of malignant risk presented in this meta-analysis, however the risk of cancer reported in the two largest and higher quality studies was far lower than the remainder of small, low-quality studies, which were likely to report inflated risk. The findings of this meta-analysis suggest that the risk of malignancy in gallbladder polyps is very low, suggesting that the monitoring of gallbladder polyps, particularly small polyps, may not be clinically or cost-effective in some healthcare systems. However, given the uncertainty introduced by the low quality studies, the clinical and cost effectiveness of monitoring small polyps requires further investigation.

Previous work has attempted to estimate the risk of malignancy in ultrasound detected gallbladder polyps. A large recent study hypothesised that the true risk of gallbladder polyps may not be as great as previously reported. A retrospective study reported outcomes of gallbladder polyps over a 20-year period in a population of more than 600,000. The unadjusted gallbladder cancer
rate per 100,000 person-years was 11.3 (95% confidence intervals 6.2–16.3) and increased with greater polyp size, from 1.3 (95% confidence intervals 0.7–6.5) in polyps less than 6 mm to 128.2 (95% confidence intervals 9.4–217.0) in polyps 10 mm or greater. Additionally, gallbladder cancer rates in this cohort study were similar in patients with and without polyps on initial TAUS (0.053% vs 0.054%, respectively). These data were collected retrospectively, and the proportion of pseudopolyps was not reported. The study demonstrated the apparent benign natural history and slow growth of most polyps, but firm estimates of median cancer risk cannot be extrapolated from this study due to its limitations.

Further, we have confirmed that increasing polyp size is an important prognostic factor for the development of malignancy, but an optimal size threshold for intervention remains uncertain. Gallbladder polyp size is commonly reported at TAUS because the reliability and reproducibility of size measurements is excellent. The decision to intervene in patients with gallbladder polyps is contentious, but important, as many patients undergo cholecystectomy every year for gallbladder polyps. An arbitrary threshold of 10 mm is commonly cited for intervention in the literature, although larger size thresholds have been reported to be more accurate at differentiating benign from malignant polyps. Compliance with existing guidelines may have contributed to the increased detection of cancer above 10 mm in this meta-analysis, as findings were predominately derived from retrospective data, although the results demonstrated a clear continuous association with incremental polyp size without any significant step-change in risk at a particular threshold. Large-scale, prospective, multicentre registries are required to increase statistical power and provide better quality data to improve treatment and monitoring decisions in these patients. Randomised data would improve confidence in specific size thresholds.

There is also conflicting data regarding the cost-effectiveness of monitoring gallbladder polyps. Such analysis is dependent on accurate estimates of median cancer risk to provide meaningful analysis, which this meta-analysis can facilitate. Patel et al have suggested that compliance with polyp monitoring guidelines may be cost-effective. However, it is worthy of further research. We included historical data using older ultrasound technology because this review was designed to assess risk rather than technology evaluation and we wanted to capture as much follow-up data as possible. Whilst measurement error is likely to be present in older cohorts, we suggest a greater number of small polyps with less risk are likely to be detected incidentally using newer ultrasound technology, and thus contribute to a further reduction in overall malignant risk. The methodological quality of the included studies was generally considered low. Suboptimal reporting of duration and frequency of follow-up in many studies prevented meaningful modelling of cancer risk in the subsequent years after detection, which would have better informed guideline recommendations for duration of follow-up. Often, patient and polyp characteristics, including proportions of true vs pseudopolyps, were inadequately reported, meaning sensitivity analyses could not be performed to explore variations on our estimated median cancer risk statistics. We had planned to include high-risk patients with primary sclerosing cholangitis (PSC) as a co-variate, however there were insufficient data to allow this. Only eight patients from two included studies were reported.

Many studies have investigated the risk of malignancy in PSC cohorts, but these can inflate the estimates in general populations and hence were excluded. Attempts were made to gather individual patient data. We received individual data from 558 patients, but the overall response rate was poor, so personalised prediction of which patients eventually developed gallbladder cancer could not be attempted. Potentially important clinical co-variates (including patient age, ethnicity, and sessile morphology) were also sporadically reported in many included studies, but addition of available co-variates in the model did not identify any factors of prognostic significance. Furthermore, any predictions are contingent on the accuracy of the model and whilst the parameter estimates were in the right direction, new trial data may refine or even challenge these. Finally, we found significant heterogeneity between studies which affected our overall confidence in the results of the meta-analysis. Publication bias could not be assessed due to the presence of intra- and inter-study heterogeneity.

However, this study also has limitations. The analysis provides an estimate for the overall cumulative risk of cancer for different polyp sizes and the uncertainty associated with this risk. However, a clinical question not answered here is that of the conditional risk of cancer for a polyp of size greater than 10 mm, for example. This would require a far more complex model and is beyond the scope of this analysis. However, for the same reasons given in the above analysis, it is likely that any estimates of the conditional risk would also be shrouded with considerable uncertainty. As such, there is a need for further research.

There is also conflicting data regarding the cost-effectiveness of monitoring gallbladder polyps. Such analysis is dependent on accurate estimates of median cancer risk to provide meaningful analysis, which this meta-analysis can facilitate. Patel et al have suggested that compliance with polyp monitoring guidelines may be cost-effective. However, it is worthy of further research. We included historical data using older ultrasound technology because this review was designed to assess risk rather than technology evaluation and we wanted to capture as much follow-up data as possible. Whilst measurement error is likely to be present in older cohorts, we suggest a greater number of small polyps with less risk are likely to be detected incidentally using newer ultrasound technology, and thus contribute to a further reduction in overall malignant risk. The methodological quality of the included studies was generally considered low. Suboptimal reporting of duration and frequency of follow-up in many studies prevented meaningful modelling of cancer risk in the subsequent years after detection, which would have better informed guideline recommendations for duration of follow-up. Often, patient and polyp characteristics, including proportions of true vs pseudopolyps, were inadequately reported, meaning sensitivity analyses could not be performed to explore variations on our estimated median cancer risk statistics. We had planned to include high-risk patients with primary sclerosing cholangitis (PSC) as a co-variate, however there were insufficient data to allow this. Only eight patients from two included studies were reported.

Many studies have investigated the risk of malignancy in PSC cohorts, but these can inflate the estimates in general populations and hence were excluded. Attempts were made to gather individual patient data. We received individual data from 558 patients, but the overall response rate was poor, so personalised prediction of which patients eventually developed gallbladder cancer could not be attempted. Potentially important clinical co-variates (including patient age, ethnicity, and sessile morphology) were also sporadically reported in many included studies, but addition of available co-variates in the model did not identify any factors of prognostic significance. Furthermore, any predictions are contingent on the accuracy of the model and whilst the parameter estimates were in the right direction, new trial data may refine or even challenge these. Finally, we found significant heterogeneity between studies which affected our overall confidence in the results of the meta-analysis. Publication bias could not be assessed due to the presence of intra- and inter-study heterogeneity.
CONCLUSION
This review is the first comprehensive meta-analysis investigating the risk of malignancy in gallbladder polyps. Here, based on the data from 67,837 patients across 82 studies, a de novo Bayesian model was developed to establish the best available estimates concerning the development of cancer risk with polyp size. Malignant risk was extremely low, particularly in polyps measuring less than 10 mm. For polyps greater than 10 mm, estimates of the actual risk were hampered by recommended intervention in this group. However, a step increase of risk in polyps measuring larger than 10 mm is neither likely, nor supported, by the data. This suggests research efforts should be directed at obtaining the full articles for review.

ACKNOWLEDGEMENTS
The authors wish to acknowledge Mrs Anne Cleves for her effort in providing the full articles for review.

FUNDING
No direct funding was received. KGF receives research funding from the Moondance Foundation at Velindre Cancer Centre and Health and Care Research Wales (HCRW). ZCR is supported by the Wales Cancer Research Centre and Advancing Radiotherapy Fund at Velindre Cancer Centre. BHW receives research funding from the Medical Research Council (MRC).

REFERENCES
1. Wiles R, Thoeni RF, Barbu ST, Vashist YK, Rafaei SR, Dewhurst C, et al. Management and follow-up of gallbladder polyps: joint guidelines between the European society of gastrointestinal and abdominal radiology (ESGAR), EAE, EFISDS, ESGE. European Radiology 2017; 27: 3856–66.
2. Elmasry M, Lindop D, Dunne DFJ, Malik H, Poston GJ, Fenwick SW. The risk of malignancy in ultrasound detected gallbladder polyps: A systematic review. Int J Surg 2016; 33 Pt A: 28–35. https://doi.org/10.1016/j.ijsu.2016.07.001.
3. Aldridge MC, Bismuth H. Gallbladder cancer: the polyp-cancer sequence. Br J Surg 1990; 77: 363–64. https://doi.org/10.1002/bjs.1800770403.
4. Kozuku S, Tsubone N, Yasui A, Hachisuka K. Relation of adenoma to carcinoma in the gallbladder. Cancer 1982; 50: 2226–34. https://doi.org/10.1002/1097-0142(19821115)50:10<2226::aid-cnrc2820501043>3.0.co;2-3.
5. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209–49. https://doi.org/10.3322/caac.21660.
6. Smith GCS, Parks RW, Madhavan KK, Garden OJ. A 10-year experience in the management of gallbladder cancer. HPB (Oxford) 2003; 5: 159–66. https://doi.org/10.1080/1365182031000037.
7. Foley KG, Lahaye MJ, Thoeni RF, Soltes M, Dewhurst C, Barbu ST, et al. Management and follow-up of gallbladder polyps: updated joint guidelines between the ESGAR, EAE, EFISDS and ESGE. Eur Radiol 2022; 32: 3338–68. https://doi.org/10.1007/s00330-021-08384-w.
8. Bird JR, Braham GL, Fung C, Sebastian S, Kirkpatrick IDC. Recommendations for the management of incidental hepatobiliary findings in adults: endorsement and adaptation of the 2017 and 2013 ACR incidental findings committee white papers by the Canadian association of radiologists incidental findings working group. Can Assoc Radiol J 2020; 71: 437–47. https://doi.org/10.1177/0846537120928349.
9. Babu BI, Dennison AR, Garcea G. Management and diagnosis of gallbladder polyps: a systematic review. Langenbecks Arch Surg 2015; 400: 455–62. https://doi.org/10.1007/s00423-015-1302-2.
10. Bhatt NR, Gillis A, Smoothey CO, Awan FN, Ridgway PF. Evidence based management of polyps of the gall bladder: A systematic review of the risk factors of malignancy. Surgeon 2016; 14: 278–86. https://doi.org/10.1016/j.surge.2015.12.001.
11. Sebastian S, Araujo C, Neitlich JD, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med 2013; 158: 280–86. https://doi.org/10.7326/0003-4819-158-4-201302190-00009.
12. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336: 924–26. https://doi.org/10.1136/bmj.39489.703477.AD.
13. Moons KG, de Groot JAH, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med 2014; 11. https://doi.org/10.1371/journal. pmed.1001744.
14. Riley RD, Moons KG, Snell KIE, Ensor J, Hooft L, Altman DG, et al. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ 2019; 364. https://doi.org/10.1136/bmj.k4597.
15. Hayden J, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med 2013; 158: 280–86. https://doi.org/10.7326/0003-4819-158-4-201302190-00009.
16. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336: 924–26. https://doi.org/10.1136/bmj.39489.703477.AD.
17. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit. J Royal Statistical Soc B 2002; 64: 583–639. https://doi.org/10.1111/1467-9868.00353.
18. Vichlbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw 2010; 36: 1–48.
19. Plummer M. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling. In: Hornik K, Leisch F, Zeileis A, Eds. Data Mining and Machine Learning with R. Use R. Springer Berlin Heidelberg, 2009: 339–355. https://doi.org/10.1007/978-3-540-97867-0_19.
Risk of Malignancy in Gallbladder Polyps: a Systematic Review

A, eds. 3rd International Workshop on Distributed Statistical Computing. Vienna, Austria; 2003.

20. Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2020. Available from: https://www.R-project.org.

21. rjags PM. Bayesian Graphical Models Using MCMC. R package version 4-6. 2016. Available from: https://CRAN.R-project.org/package=rjags

22. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–60.

23. Johnson PCD. Extension of nakagawa & schielzeth’s R2 GLMM to random slopes models. Methods Ecol Evol 2014; 5: 944–46.

24. Abdullah AAN, Rangaraj A, Rashid M, Puw-Jones R, Rasheed A. Gallbladder polypoid lesions are inaccurately reported and undermanaged: a retrospective study of the management of gallbladder polypoid lesions detected at ultrasound in symptomatic patients during a 36-month period. Clin Radiol 2019; 74: 489. https://doi.org/10.1016/j.crad.2019.02.009

25. Ahmed M, Diggory R. The correlation between ultrasonography and histopathology in the management of gallbladder polyps. Acta Chir Belg 2013; 113: 208–12. https://doi.org/10.5378/acb.113.11680913

26. Akşürek N, Salman B, Izkırıcıć O, Sare M, Tallicioğlu E. Ultrasoundography in the diagnosis of true gallbladder polyps: the contradiction in the literature. HPB (Oxford) 2005; 7: 155–58. https://doi.org/10.1080/13656891.2001003762

27. Al manasra AR, Qandeel H, Al Hurani M, Mazahreh TS, Hamouri S. Gallbladder polyps between ultrasound and histopathology. AMJ 2018; 11: 37–41. https://doi.org/10.21767/AMJ.2017.3300

28. Aldouri AQ, Malik HZ, Waytt I, Khan S, Ranganathan K, Kummaraganti S, et al. The risk of gallbladder cancer from polyps in a large multietnic series. Eur J Surg Oncol 2009; 35: 48–51. https://doi.org/10.1016/j.ejso.2008.01.036

29. Alyazicioglu T, Carilli S, Emre A, Kaya A, Bugra D, Bilge O, et al. Contribution of gallbladder polyp surgery to treatment. Eur Surg 2016; 49: 23–26. https://doi.org/10.1007/s10353-016-0422-4

30. Ansari SM, Banu S, Awal MA, Siddique AB, Alam MM. Gallbladder polypoid lesion: is it necessary for immediate surgery? Bangladesh Med Res Coun Bull 2007; 33: 44-47. https://doi.org/10.3329/bmrcb.v33i2.1203

31. Azuma T, Yoshikawa T, Araida T, Takasaki K. Differential diagnosis of polypoid lesions of the gallbladder by endoscopic ultrasonography. Am J Surg 2001; 181: 65–70. https://doi.org/10.1016/s0002-9610(00)00526-2

32. Cairns V, Neal CP, Dennison AR, Garcea G. Risk and cost-effectiveness of surveillance followed by cholecystectomy for gallbladder polyps. Arch Surg 2012; 147: 1078–83. https://doi.org/10.1001/archsurg.2012.1948

33. Cha BH, Hwang J-H, Lee SH, Kim JE, Cho JY, Kim H, et al. Pre-operative factors that can predict neoplastic polypoid lesions of the gallbladder. World J Gastroenterol 2011; 17: 2216–22. https://doi.org/10.3748/wjg.v17.i17.2216

34. Channa MA, Zabair M, Mumtaz TA, Urooj R, Khan S, Oonwala Z. Management of polypoid lesions of the gallbladder. Journal of Surgery Pakistan (International) 2009; 14: 77–79.

35. Chattopadhyay D, Lochan R, Balupuri S, Gopinath BR, Wynne KS. Outcome of gall bladder polypoid lesions detected by transabdominal ultrasound scanning: a nine year experience. World J Gastroenterol 2005; 11: 2171–73. https://doi.org/10.3748/wjg.v11.i14.2171

36. Cheon YK, Cho WY, Lee TH, Cho YD, Moon JH, Lee JS, et al. Endoscopic ultrasonography does not differentiate neoplastic from non-neoplastic small gallbladder polyps. World J Gastroenterol 2009; 15: 2361–66. https://doi.org/10.3748/wjg.v15.i2361

37. Chijiwa K, Tanaka M. Polypoid lesion of the gallbladder: indications of carcinoma and outcome after surgery for malignant polypoid lesion. Int Surg 1994; 79: 106–9.

38. Choi J-H, Yun J-W, Kim Y-S, Lee E-A, Hwang S-T, Cho Y-K, et al. Pre-operative predictive factors for gallbladder cholesterol polyps using conventional diagnostic imaging. World J Gastroenterol 2008; 14: 6831–34. https://doi.org/10.3748/wjg.v14.i14.6831

39. Chou SC, Chen SC, Shyr YM, Wang SE. Polypoid lesions of the gallbladder: analysis of 1204 patients with long-term follow-up. Surg Endosc 2017; 31: 2776–82. https://doi.org/10.1007/s00464-016-5286-y

40. Colecchia A, Larocca A, Scaioni E, Bacchi-Reggiani ML, Di Biase AR, Azzaroli F, et al. Natural history of small gallbladder polyps is benign: evidence from a clinical and pathogenetic study. Am J Gastroenterol 2009; 104: 624–29. https://doi.org/10.1038/ajg.2009.99

41. Collett JA, Allan RB, Chisholm RJ, Wilson IR, Burt MJ, Chapman BA. Gallbladder polyps: prospective study. J Ultrasound Med 1996; 17: 207–11. https://doi.org/10.7863/jum.1998.17.4.207

42. Corwin MT, Siewert B, Sheiman RG, Kane RA. Incidentally detected gallbladder polyps: is follow-up necessary? – long-term clinical and US analysis of 346 patients. Radiology 2011; 258: 277–82. https://doi.org/10.1148/radiol.10100273

43. Csendes A, Burgos AM, Csendes P, Smok G, Rojas J. Late follow-up of polypoid lesions of the gallbladder smaller than 10 mm. Ann Surg 2001; 234: 657–60. https://doi.org/10.1097/00000658-200111000-00011

44. Dacka E, Makosa W. Gallbladder polyps. Gastroenterol Pol 2004; 11: 339–41.

45. Damore LJ, Cook CH, Fernandez KL, Cunningham J, Ellison EC, Melvin WS. Ultrasonography incorrectly diagnoses gallbladder polyps. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques 2001; 11: 88–91. https://doi.org/10.1097/00129689-200104000-00004

46. Donald G, Sunjaya D, Donahue T, Hines OJ. Polyp on ultrasound: now what? the association between gallbladder polyps and cancer. Am Surg 2013; 79: 1005–8.

47. Drews M, Herrmann J, Iwanik K, Grochowalski M, Lolabandowska-Wasowicz I, Wejman A. Polypoid lesions of the gallbladder – indications for surgery. Gastroenterol Pol 2005; 12: 33–38.

48. Escalona A, León E, Bellolio F, Pimentel I, Guajardo M, Gennero R, et al. Gallbladder polyps: correlation between ultrasonographic and histopathological findings. Rev Med Chil 2006; 134: 1237–42. https://doi.org/10.4067/s0034-98872006001000004

49. French DG, Allen PD, Ellsmere JC. The diagnostic accuracy of transabdominal ultrasonography needs to be considered when managing gallbladder polyps. Surg Endosc 2013; 27: 4021–25. https://doi.org/10.1007/s00464-013-3033-1

50. Fujikawa K, Abe A, Masatsugu T, Hirano T, Sada M. Effect of gallbladder polyp size on the prediction and detection of gallbladder cancer. Surg Endosc 2021; 35: 5179–85. https://doi.org/10.1007/s00464-020-08010-8

51. Guo J, Wu G, Zhou Z. Polypoid lesions of the gallbladder: report of 160 cases with special reference to diagnosis and treatment in china. Int J Clin Exp Pathol 2015; 8: 11569–78.

52. Heitz L, Kratzer W, Gräter S, Schmidsberger J, EML study group. Gallbladder polyps - A follow-up study after 11 years. BMC Gastroenterol 2019; 19(1): 42. https://doi.org/10.1186/s12876-019-0959-3
53. Huang CS, Lien HH, Jeng JY, Huang SH. Role of laparoscopic cholecystectomy in the management of polypoid lesions of the gallbladder. Surg Laparosc Endosc Percutan Tech 2001; 11: 242–47. doi:https://doi.org/10.1097/00012968-200108000-00003

54. Isozaki H, Okajima K, Ishibashi T, Morita S, Takeda Y, Hara H, et al. Diagnosis and surgical indications for polypoid lesions of the gallbladder. Dig Surg 1995; 12: 215–19. https://doi.org/10.11159/000172353

55. Ito H, Hann LE, D’Angelica M, Allen P, Fong Y, Dematteo RP, et al. Polypoid lesions of the gallbladder: diagnosis and followup. J Am Coll Surg 2009; 208: 570–75. https://doi.org/10.1016/j.jamcollsurg.2009.01.011

56. Jang J-Y, Lee S-W, Hwang DW, Kim E-J, Lee JY, et al. Differential diagnostic and staging accuracies of high resolution ultrasonography, endoscopic ultrasonography, and multidetector computed tomography for gallbladder polypoid lesions and gallbladder cancer. Ann Surg 2009: 250: 943–49. https://doi.org/10.1097/SLA.0b013e3181b5d5fc

57. Jeong Y, Kim JH, Chae H-D, Park S-J, Bae JS, Joo I, et al. Deep learning-based decision support system for the diagnosis of neoplastic gallbladder polyps on ultrasonography: preliminary results. Sci Rep 2020; 10(1): 7700. https://doi.org/10.1038/s41598-020-62405-y

58. Kamali Polat A, Gungor B, Seren D, Polat AV, Erzurumlu K, Polat C. Polypoid lesions of gallbladder: is accurate diagnosis possible preoperatively. Chirurgia (Bucur) 2010; 23: 227–30.

59. Khan MR, Al Ghamdi S, Nasser MFM. Polypoid lesions of the gallbladder: is accurate diagnosis possible preoperatively. Chirurgia (Bucur) 2010; 23: 227–30.

60. Kim JS, Lee JK, Kim Y, Lee SM, et al. US characteristics for the prediction of neoplasm in gallbladder polyps 10 mm or larger. Eur Radiol 2016; 26: 1134–40. https://doi.org/10.1007/s00330-015-3910-1

61. Konstantinidis IT, Baijai S, Kambadakone AR, Tanabe KK, Berger DL, Zheng H, et al. Gallbladder lesions identified on ultrasound. lessons from the last 10 years. J Gastrointest Surg 2012; 16: 549–53.

62. Koundouris C, Tzorgis P, Zikos N, Karaitianos IG. Polypoid lesions of the gallbladder: absolute indications for surgical treatment. Journal of BUON: Official Journal of the Balkan Union of Oncology 2001; 6: 155–58.

63. Kratzer W, Haenle MM, Voegtle A, Mason RA, Akinli AS, Hirschbuehl K, et al. Ultrasonomographically detected gallbladder polyps: A reason for concern? A seven-year follow-up study. BMC Gastroenterol 2008; 8: 41. https://doi.org/10.1186/1471-230X-8-41

64. Kubota K, Banday Y, Noize T, Ishizaki Y, Teruya M, Mukusuki M. How should polypoid lesions of the gallbladder be treated in the era of laparoscopic cholecystectomy? Surgery 1995; 117: 481–87. https://doi.org/10.1016/s0033-6004(05)80245-4

65. Kwon W, Jang J-Y, Lee SE, Hwang DW, Kim S-W. Clinicopathologic features of polypoid lesions of the gallbladder and risk factors of gallbladder cancer. J Korean Med Sci 2009; 24: 481–87. https://doi.org/10.3346/jkms.2009.24.3.481

66. Lee H, Kim K, Park I, Cho H, Gwak G, Yang K, et al. Preoperative predictive factors for gallbladder cholesterol polyp diagnosed after laparoscopic cholecystectomy for polypoid lesions of the gallbladder. Ann Hepatol Pancreat Surg 2016; 20: 180–86. https://doi.org/10.14701/ahbps.2016.20.4.180

67. Lee SR, Kim HO, Shin JH. Reasonable cholecystectomy of gallbladder polyp - 10 years of experience. Asian J Surg 2019; 42: 332–37. https://doi.org/10.1016/j.ajssur.2018.03.005

68. Liu X-S, Chen T, Gu L-H, Guo Y-F, Li C-Y, Li F-H, et al. Ultrasound-based scoring system for differential diagnosis of polypoid lesions of the gallbladder. J Gastroenterol Hepatol 2018; 33: 1295–99. https://doi.org/10.1111/jgh.14080

69. Maciejewski P, Strzaleczyk J. Is gall-bladder polyp equivalent to cancer? an analysis of material from 1196 cholecystectomies- a comparison of the ultrasound and histopathological results. Pol Przegl Chir 2014; 86: 218–22. https://doi.org/10.2478/pps-2014-0045

70. Mainprize KS, Gould SW, Gilbert JM. Surgical management of polypoid lesions of the gallbladder. Br J Surg 2000; 87: 414–17. https://doi.org/10.1046/j.1365-2168.2000.01363.x

71. Matlokh M, Miączewski M, Major P, Pyzdziwiat M, Budyński P, Winimirski M, et al. Laparoscopic cholecystectomy in the treatment of gallbladder polypoid lesions–15 years of experience. Pol Przegl Chir 2013; 85: 625–29. https://doi.org/10.2478/pps-2013-0094

72. Matos A de, Baptista HN, Pinheiro C, Martinho F. Gallbladder polyps: how should they be treated and when? Rev Assoc Med Bras (1992) 2010; 56: 318–21. https://doi.org/10.1590/s0104-4230201000030017

73. Metman MJH, Oltihof PB, van der Wal JBC, van Gulik TM, Roos D, Dekker JWT. Clinical relevance of gallbladder polyps; is cholecystectomy always necessary? HPB (Oxford) 2020; 22: 506–10. https://doi.org/10.1016/j.jsp.2019.08.006

74. Moriguchi H, Tazawa J, Hayashi Y, Takenawa H, Nakayama E, Marumo F, et al. Natural history of polypoid lesions in the gall bladder. Gut 1996; 39: 860–62. https://doi.org/10.1136/gut.39.6.860

75. Okamoto M, Okamoto H, Kitahara F, Kobayashi K, Karikome K, Miura K, et al. Ultrasonographic evidence of association of polyps and stones with gallbladder cancer. Am J Gastroenterol 1999; 94: 446–50. https://doi.org/10.1111/j.1572-0241.1999.875_d.x

76. Onda S, Futagawa Y, Gocho T, Shiba H, Ishida Y, Okamoto T, et al. A preoperative scoring system to predict carcinoma in patients with gallbladder polyps. Dig Surg 2020; 37: 275–81. https://doi.org/10.1159/000503100

77. Ostapenko A, Liechty S, Kim M, Kleiner D. Accuracy of ultrasound in diagnosing gallbladder polyps at a community hospital. JSLS 2020; 24(4). https://doi.org/10.4293/JSLS.2020.000503100

78. Park J, Yoon YB, Kim Y-T, Ryu JK, Yoon WJ, Lee SH, et al. Management strategies for gallbladder polyps: is it possible to predict malignant gallbladder polyps? Gut Liver 2008; 2: 88–94. https://doi.org/10.5009/gnl.2008.2.2.88

79. Park JY, Hong SP, Kim YL, Kim HJ, Kim HM, Cho JH, et al. Long-term follow up of gallbladder polyps. Journal of Gastroenterology and Hepatology 2009; 24: 219–22. https://doi.org/10.1111/j.1440-1746.2008.05689.x

80. Park HY, Oh SH, Lee KH, Lee JK, Lee KT. Is cholecystectomy a reasonable treatment option for simple gallbladder polyps larger than 10 mm? World J Gastroenterol 2015; 21: 4248–54. https://doi.org/10.3748/wjg.v21.i44.4248

81. Patel K, Dajani K, Vickramarajah S, Huguet E. Five year experience of gallbladder polyp surveillance and cost effective analysis against new european consensus guidelines. HPB (Oxford) 2019; 21: 636–42. https://doi.org/10.1016/j.jspb.2018.10.008

82. Pedersen MRV, Dam C, Rafelsen SR. Ultrasonographic follow-up for gallbladder polyps less than 6 mm may not be necessary. Dan Med J 2012; 59: 10.

83. Pickering O, Pucher PH, Toale C, Hand F, Anand E, Cassidy S, et al. Prevalence and sonographic detection of gallbladder polyps in a western European population. J Surg Res
Risk of Malignancy in Gallbladder Polyps: a Systematic Review

85. Şahiner İT, Dolapçı M. When should treatment strategy for gallbladder polyps be recommended for polyps smaller than 10 mm? Am J Surg 2015; 81: 101–3.

106. Andrén-Sandberg A. Diagnosis and management of gallbladder polyps. N Am J Med Sci 2012; 4: 203–11. https://doi.org/10.4137/1947-2714.95897

116. Xu A, Hu H. The gallbladder polypoid-lesions conundrum: moving forward with controversy by looking back. Expert Rev Gastroenterol Hepatol 2017; 11: 1071–80. https://doi.org/10.1080/17474124.2017.1372188

138. Martin E, Gill R, Debru E. Diagnostic accuracy of transabdominal ultrasonography for gallbladder polyps: systematic review. Can J Surg 2018; 61: 200–207. https://doi.org/10.1503/cjs.011617

2018; 79: 256–61. https://doi.org/10.1002/14651858.CD007052.pub2

2019; 43: 865–68. https://doi.org/10.1097/MCG.0b013e318193595a

2020; 250: 226–31. https://doi.org/10.1016/j.jss.2020.01.003

84. Rafaelsen SR, Otto PO, Pedersen MRV. Long-term ultrasound follow-up in patients with small gallbladder polyps. Dan Med J 2020; 67: 1–7.

83. Şahiner İT, Dolapçı M. When should treatment strategy for gallbladder polyps be recommended for polyps smaller than 10 mm? Am J Surg 2015; 81: 101–3. https://doi.org/10.1016/j.ajg.2017.09.003

82. Shah JN. Postoperative histopathology findings of ultrasonographically diagnosed gallbladder polyp in 32 patients. J TWM 2010; 9(1). https://doi.org/10.5580/5be

113. Myers RP, Shaffer EA, Beck PL. Gallbladder polyps: epidemiology, natural history and management. Can J Gastroenterol 2002; 16: 187–94. https://doi.org/10.1155/2002/787598

114. Puneet R, Ragini R, Gupta SK, Singh S, Shukla VK. Management of polypoidal lesions of the gallbladder: does size matter? Ann Surg 2008; 248: 1110–11. https://doi.org/10.1097/SLA.0b013e3181817fcb

115. Lee KF, Wong J, Li JCM, Lai PBS. Polypoid lesions of the gallbladder. Am J Surg 2004; 188: 186–90. https://doi.org/10.1016/j.amjsurg.2003.11.043

116. Xu A, Hu H. The gallbladder polypoid-lesions conundrum: moving forward with controversy by looking back. Expert Rev Gastroenterol Hepatol 2017; 11: 1071–80. https://doi.org/10.1080/17474124.2017.1372188

117. Gurusamy KS, Abu-Amara M, Farouk M, Davidson BR. Cholecystectomy for gallbladder polyps. Cochrane Database Syst Rev 2009. https://doi.org/10.1002/14651858.CD007052.pub2

118. Martin E, Gill R, Debru E. Diagnostic accuracy of transabdominal ultrasonography for gallbladder polyps: systematic review. Can J Surg 2018; 61: 200–207. https://doi.org/10.1503/cjs.011617
119. Wennmacker SZ, Lamberts MP, Di Martino M, Drenth JP, Gurusamy KS, van Laarhoven CJ. Transabdominal ultrasound and endoscopic ultrasound for diagnosis of gallbladder polyps. Cochrane Database Syst Rev 2018; 8. https://doi.org/10.1002/14651858.CD012233.pub2

120. Wiles R, Varadpande M, Muly S, Webb J. Growth rate and malignant potential of small gallbladder polyps--systematic review of evidence. Surgeon 2014; 12: 221–26. https://doi.org/10.1016/j.surge.2014.01.003

121. BORGERSON RJ, DELBECCARO EJ, CALLAGHAN PJ. Polypoid lesions of the gallbladder. Arch Surg 1962; 85: 234–37. https://doi.org/10.1001/archsurg.1962.0130020064014

122. Ishikawa O, Ohhigashi H, Sasaki T, Sasaki Y, et al. The difference in malignancy between pedunculated and sessile polypoid lesions of the gallbladder. Am J Gastroenterol 1989; 84: 1386–90.

123. Koga A, Watanabe K, Fukuyama T, Imaoka S, BORGERSON RJ, DELBECCARO EJ, CALLAGHAN PJ. Polypoid lesions of the gallbladder. Arch Surg 1988; 123: 26–29. https://doi.org/10.1001/archsurg.1988.014002500020083

124. Kubota K, Bandai Y, Sano K, Teruya M, Ishizaki Y, Makiuchi M. Appraisal of intraoperative ultrasonography during laparoscopic cholecystectomy. Surgery 1995; 118: 555–61. https://doi.org/10.1016/s0039-6060(05)8373-3

125. Taskin OC, Basturk O, Reid MD, Dursun N, Bagci P, Saka B, et al. Gallbladder polyps: correlation of size and clinicopathologic characteristics based on updated definitions. PLoS ONE 2020; 15(9). https://doi.org/10.1371/journal.pone.0233979

126. Wennmacker SZ, van Dijken AH, Raessens JH, van Laarhoven C, Drenth JPH, de Reuver PR, et al. Polypl size of 1 cm is insufficient to discriminate neoplastic and non-neoplastic gallbladder polyps. Surg Endosc 2019; 33: 1564–71. https://doi.org/10.1007/s00464-018-6444-1

127. Wu A, Li Y, Du L. Relationship between cholecystolithiasis and polypoid gallbladder polyps. J Zhejiang Univ Sci 2003; 4: 620–22. https://doi.org/10.1631/jzus.2003.0620

128. Arikanoglu Z, Taskesen F, Alisanoglu I, Gul M, Gumus H, Celik Y, et al. Continuing diagnostic and therapeutic challenges in gallbladder polyps. Am J Surg 2013; 193: 446–48.

129. Boulton RA, Adams DH. Gallbladder polyps: when to wait and when to act. Lancet 1997; 349: 9055. https://doi.org/10.1016/s0140-6736(05)6744-8

130. Gouria DJ. When are gallbladder polyps malignant? HPB Surg 2000; 11: 428–30. https://doi.org/10.1155/2000/34201

131. Kai K. Organ-specific concept and controversy for premalignant lesions and carcinogenesis of gallbladder cancer. Hepatobiliary Surgery & Nutrition 2016; 5: 85–87.

132. Ochsner SF. Polypoid lesions of the gallbladder. American Journal of Roentgenology, Radium Therapy & Nuclear Medicine 1962; 87: 788–89.

133. Saleh H, Walz D, Ehrnpreis M. Polypoid lesions of the gallbladder: diagnostic and management challenges. J Gastrointestin Liver Dis 2008; 17: 251–53.

134. Shirai Y, Ohishi Y, Hatakeyama K. Is laparoscopic cholecystectomy recommended for large polypoid lesions of the gallbladder? Surg Laparosc Endosc Endosc 1997; 7: 435–36.

135. Farinon AM, Pacella A, Cetta F, Sianesi M. Adenomatous polyps of the gallbladder. HPB Surg 1991; 3: 251–58.

136. Jones-Monahan KS, Grunenberg JC, Finger JE, Tong GK. Isolated small gallbladder polyps: an indication for cholecystectomy in symptomatic patients. Am J Surg 2000; 66: 716–19.

137. Lodhi A, Wächter A, Altmann J. The accuracy of ultrasonography for diagnosis of gallbladder polyps. Radiology (Lond) 2020; 26: e52-55. https://doi.org/10.1016/j.radi.2019.10.010

138. Xu H-X, Yin X-Y, Liu M-D, Liu L, Yue D-C, Liu G-I. Comparison of three- and two-dimensional sonography in diagnosis of gallbladder diseases: preliminary experience. J Ultrasound Med 2003; 22: 181–91. https://doi.org/10.1002/jum.20033.22.2.181

139. Kubota K, Bandai Y, Otomo Y, Ito A, Watanabe M, Toyoda H, et al. Role of laparoscopic cholecystectomy in treating gallbladder polyps. Surg Endosc 1994; 8: 42–46. https://doi.org/10.1007/BF02909492

140. Li Y, Teijirian T, Collins JC. Gallbladder polyps: real or imagined? Am Surg 2018; 84: 1670–74.

141. Sugiyama M, Xie XY, Atomi Y, Saito M. Differential diagnosis of small polypoid lesions of the gallbladder: the value of endoscopic ultrasonography. Ann Surg 1999; 229: 498–504. https://doi.org/10.1097/00000658-199904000-00008

142. Yang J-I, Lee JK, Ahn DG, Park JK, Lee KH, Lee KT, et al. Predictive model for nonneoplastic potential of gallbladder polyp. J Clin Gastroenterol 2018; 52: 273–76. https://doi.org/10.1097/MCG.0000000000000900

143. Ersoz N, Oztas M, Ozerhan IH, Can MF, Yagci G, Kozak O, et al. Gallbladder polyps: sixty patients and literature review. Erzyes Med J 2013; 35: 198–201. https://doi.org/10.5152/edt.2013.58

144. He Z-M, Hu X-Q, Zhou Z-X. Considerations on indications for surgery in patients with polypoid lesion of the gallbladder. Di Yi Jun Yi Da Xue Xue Bao 2002; 22: 951–52.

145. Ichinohe R, Tamano M, Takizawa Y, Suda T, Yatsuka C, Shibazaki M, et al. Clinical analysis of the elevated lesion of gallbladder detected by ultrasonography. Dokkyo Journal of Medical Sciences 2013; 40: 61–67.

146. Zhang Y, Zhang J-H, Yuan M, Zheng S-F, Wang Z-B. Correlation between clinicopathological and ultrasonic diagnosis of small protuberant lesions of the gallbladder. WCJD 2010; 18: 2707. https://doi.org/10.11569/wcjrd.v18.i18.2707

147. Canturk Z, Senturk O, Canturk NZ, Anik YA. Prevalence and risk factors for gall bladder polyps. East Afr Med J 2007; 83: 336–41. https://doi.org/10.4314/eamj.v83i7.9589

148. Pandey M, Khatri AK, Sood BP, Shukla RC, Shukla VK. Cholecystosonographic evaluation of the prevalence of gallbladder diseases. A university hospital experience. Clin Imaging 1996; 20: 269–72. https://doi.org/10.1016/1089-7719(95)00034-8

149. Thammaroj J, Ungarrevittaya P, Jenwitheesuk K. Does gallbladder polyp size as measured using radiographic modalities predict pathological size in all types of polyps? Reports in Medical Imaging 2018; 11: 27–30. https://doi.org/10.2147/RMI.S171215

150. Lee JS, Kim JH, Kim YJ, Ryu JK, Kim Y-T, Lee JY, et al. Diagnostic accuracy of transabdominal high-resolution US for staging gallbladder cancer and differential diagnosis of neoplastic polyps compared with EUS. Eur Radiol 2017; 27: 3097–3103. https://doi.org/10.1007/s00330-016-4646-2

151. Ono Y, Ogawa M, Arakawa Y, Abe M. A study on elevated lesions of the gallbladder. Ultrasound International 1999; 5: 120–26.

152. Bullingham R, Baker C. The management of gallbladder polyps found on ultrasound examination; A review of the guidelines and current practice. Br J Surg 2019; 106: 152.

153. Yoon DS. C-066 staging for GB cancer - the role of EUS and PET scanning. HPB (Oxford) 2011; 13: 5–6.

154. Lee SB, Lee Y, Kim SJ, Yoon JH, Kim SH, Kim SJ, et al. Intraobserver and interobserver reliability in sonographic size measurements of gallbladder polyps. Eur Radiol 2020; 30: 206–12.