Yong-Fu Qiu#, Bin Lu#, Yi-Yu Yan, Jin Zhou and Jin Wang*

Simple and convenient two step synthesis of 5-bromo-2,3-dimethoxy-6-methyl-1,4-benzoquinone

https://doi.org/10.1515/gps-2019-0052
Received January 25, 2019; accepted June 02, 2019.

Abstract: 5-bromo-2,3-dimethoxy-6-methyl-1,4-benzoquinone 3, a key intermediate for preparing coenzyme Q compounds, was readily synthesized in two steps by a reaction sequence starting from the commercially available 3,4,5-trimethoxytoluene 1 via bromination and oxidation reactions. Persulfate salts were first employed as oxidants to synthesize 1,4-benzoquinone, the overall yield of title compound 3 was 65%.

Keywords: coenzyme Q; 1,4-benzoquinone; bromination; persulfate

1 Introduction

In synthetic chemistry, researchers are always seeking new methods for synthesising a specific compound that are important in many areas such as pharmaceutical industry. 5-bromo-2,3-dimethoxy-6-methyl-1,4-benzoquinone (3) [1], is an important coenzyme Q compound [2], which facilitates electron-transfer activity [3] and radical properties in mitochondria [4]. In addition, compound 3 is also a key intermediate [5] in the preparation of other biologically active coenzyme Q analogues [6]. In 2000, Jung and co-workers [7] reported that coupling of compound 3 with isoprenylstannanes could efficiently produce coenzyme Q_{10} and its analogues, as shown in Scheme 1. CoQ_{10} is a lipid-soluble benzoquinone with a side-chain of 10 isoprenoid units (Scheme 1), acts as a free radical scavenging antioxidant [3]. CoQ_{10} has been widely used in the treatment of mitochondria disorders [8].

To date, methods for the synthesis of compound 3 are limited [9]. Most of the methods used CoQ as starting material, compound 3 was obtained by reaction with toxic bromine [10], and few syntheses leading to compound 3 have been disclosed [11]. Hence, based on our previous work on the synthesis of CoQ analogues [12-16], we now report an efficient synthetic path for compound 3 as shown in Scheme 2. The reaction is operationally simple and could be used in the preparation of other coenzyme Q analogues.

2 Experimental

All reactions were monitored by TLC (SiO_{2}, petrol ether/EtOAc 5:1). Melting points were measured on Melting Point M-565 (BuChi). NMR and mass spectra were recorded on a Bruker Avance III-HD 400 NMR and TripleTOF mass spectrometers, respectively. GC-Mass spectra were recorded on Triple Quadrupole GC/MS of Agilent 7890B-7000C. All reagents: e.g. NaBr, Na_{2}S_{2}O_{3}, K_{2}S_{2}O_{8}, (NH_{4})_{2}S_{2}O_{8} were purchased from Adamas, P. R. China, and used without further purification.

2.1 Synthetic procedure for 2-bromo-3,4,5-trimethoxytoluene (2)

A mixture of 3,4,5-trimethoxytoluene 1 (0.72 g, 4 mmol) and NaBr (0.62 g, 4 mmol) were dissolved in acetic acid (4 mL). A solution of 30% H_{2}O_{2} (2 mL, 18 mmol) was added dropwise at 40°C over a period of 1 h. The resulting mixture
was quenched with water and extracted with petroleum ether. Combined the organic layers and evaporated in vacuo to afford a yellow oil 2 (1.04 g) in 100% yield.

\[\text{1H NMR (400MHz, CDCl}_3): \delta 6.61 (s, 1H, ArH), 3.89 (s, 3H, OCH\textsubscript{3}), 3.84 (s, 3H, OCH\textsubscript{3}), 2.37 (s, 3H, CH\textsubscript{3}) \]

\[\text{13C NMR (101MHz, CDCl}_3): \delta 152.2, 150.8, 141.1, 133.4, 110.8, 109.5, 61.1 (OCH\textsubscript{3}), 60.9 (OCH\textsubscript{3}), 56.1 (OCH\textsubscript{3}), 23.2 (CH\textsubscript{3}). \]

The data is consistent with the literature [13].

2.2 Synthesis of compound 3

Method (1): Compound 2 (0.44 g, 1.7 mmol) was dissolved in a mixture solvent of acetic acid (2.5 mL) and H\textsubscript{2}SO\textsubscript{4} (0.25 mL), then a solution of Na\textsubscript{2}SO\textsubscript{4} (0.80 g, 3.4 mmol) in H\textsubscript{2}O (5 mL) was added dropwise over 5 min. The mixture was stirred and heated at 80°C for another 2 h and extracted with dichloromethane. Combined organic layers, and washed with H\textsubscript{2}O and NaHCO\textsubscript{3}, dried over Na\textsubscript{2}SO\textsubscript{4}, and evaporated in vacuo. The residue oil was purified by a flash column to give red solid 3 (0.17 g, 40% yield).

Method (2): A solution of K\textsubscript{2}SO\textsubscript{4} (3.4 mmol) in H\textsubscript{2}O (8 mL) was added dropwise to a mixture of compound 2 (0.44 g, 1.7 mmol) in acetic acid (2.5 mL) and H\textsubscript{2}SO\textsubscript{4} (0.25 mL). The reaction mixture was heated at 80°C for 2 h, quenched with water and extracted with dichloromethane. The organic phases were washed with H\textsubscript{2}O and Brine, dried over anhydrous Na\textsubscript{2}SO\textsubscript{4}, and evaporated in vacuo. The residue oil was purified by a flash column to give red solid 3 (0.26 g, 65% yield).

Method (3): To a mixture of Compound 2 (0.44 g, 1.7 mmol) in HOAc (2.5 mL) and H\textsubscript{2}SO\textsubscript{4} (0.25 mL) was added dropwise by a solution of (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} (3.4 mmol) in H\textsubscript{2}O (6 mL) over 5 min. The reaction mixture was heated at 80°C for 2 h and extracted with dichloromethane. The combined organic phases were washed with H\textsubscript{2}O and NaHCO\textsubscript{3}, dried over Na\textsubscript{2}SO\textsubscript{4}, and evaporated in vacuo. The residue oil was purified by a flash column to give red solid 3 (0.17 g, 40% yield).

m.p. 68 - 69°C (lit. 67-69°C [10]). 96% purity by HPLC.

\[\text{1H NMR (400 MHz, CDCl}_3): \delta 4.04 (s, 3H, OCH=O), 181.0 (C=O), 176.7, 145.2, 144.1, 143.8, 133.6, 61.58 (OCH\textsubscript{3}), 61.33 (OCH\textsubscript{3}), 16.75 (CH\textsubscript{3}). \]

\[\text{13C NMR (101 MHz, CDCl}_3): \delta 144.1, 143.8, 133.6, 61.58 (OCH\textsubscript{3}). \]

GC-MS (EI): m/z = 260.

The data is consistent with the literature [4].

3 Results and discussion

As shown in Scheme 2, treatment of 3,4,5-trimethoxytoluene (I) with NaBr and 30% in acetic acid at 40°C gave compound 2 in 100% yield. Finally, compound 2 was oxidized with a persulfate compound in HOAc-H\textsubscript{2}SO\textsubscript{4} mixed solvent (v/v = 10:1) to afford compound 3 (Table 1). The reaction is conducted without using any metal catalyst. This environmentally friendly procedure is based on the persulfate oxidant as an oxygen atom donor, and the HOAc-H\textsubscript{2}SO\textsubscript{4} solvent as proton atom in this transformation [2]. The use of (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} as oxidant in HOAc-H\textsubscript{2}SO\textsubscript{4} (10:1) mixed solvent gave 3 in a yield of 40% (entry 3, Table 1). When utilized K\textsubscript{2}SO\textsubscript{4} as oxidant in the same mixed solvent HOAc-H\textsubscript{2}SO\textsubscript{4} (10:1) can improve the reaction yield to 60% (entry 2, Table 1). The best yield was obtained using Na\textsubscript{2}SO\textsubscript{4} as oxidant in HOAc-H\textsubscript{2}SO\textsubscript{4} (10:1) solvent system, which gave the desired compound 3 in 65% yield (entry 1, Table 1).

Table 1: Synthesis of compound 3 under different persulfate.

Entry	Oxidant	Time (h)	Temp (°C)	Yield (%)
1	Na\textsubscript{2}SO\textsubscript{4}	2	80	65
2	K\textsubscript{2}SO\textsubscript{4}	2	80	60
3	(NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}	2	80	40

Conditions: 2 (1.7 mmol), persulfate (3.4 mmol), HOAc-H\textsubscript{2}SO\textsubscript{4} (v/v = 10:1).
4 Conclusion

In summary, we developed a two-step synthetic protocol for the preparation of 5-bromo-2,3-dimethoxy-6-methyl-1,4-benzoquinone (3) from the cheap and readily available 3,4,5-trimethoxytoluene (1). The bromination reaction utilized NaBr–H₂O₂ system as a green brominating agent instead of bromine and NBS, the reaction is clean and easy work up without purification. Persulfate salts were first employed as oxidants to synthesize 1,4-benzoquinone under mild conditions, the chemistry was clean and easy work up. This method is potentially applicable for the synthesis of a wide variety of coenzyme Q compounds.

Acknowledgments: We thank the National Natural Science Foundation of China (Nos. 31600740 and 81803353), the Natural Science Foundation of Jiangsu Province (BK20160443), the Six Talent Peaks Project in Jiangsu Province (SWYY-094), the Jiangsu Provincial Key Laboratory for Bioresources of Saline Soils (Nos. JKLBS2016013 and JKLBS2017010) for financial support.

References

[1] Pei Z., Gustavsson T., Roth R., Frejd T., Hägerhäll C., Photolabile ubinone analogues for identification and characterization of ubinone binding sites in proteins. Bioorg. Med. Chem., 2010, 18(10), 3457-3466.
[2] Wang J., Hu X., Yang J., Two-Step Synthesis of 2-(9-Hydroxynonyl)-5,6-dimethoxy-3-methyl-1,4-ubinone. Synthesis-Stuttgart, 2014, 46(17), 2371-2375.
[3] Wang J., Li S., Yang T., Yang J., Single-step synthesis of idebenone from coenzyme Q0 via free-radical alkylation under silver catalysis. Tetrahedron, 2014, 70(47), 9029-9032.
[4] Ma W., Zhou H., Ying Y.L., Li D.W., Chen G.R., Long Y.T., In situ spectroelectrochemistry and cytotoxic activities of natural ubinone analogues. Tetrahedron, 2011, 67(33), 5990-6000.
[5] Lu S., Li W.W., Rotem D., Mikhailova E., Bayley H., A primary hydrogen–deuterium isotope effect observed at the single-molecule level. Nat. Chem., 2010, 2(11), 921-922.
[6] Liu X.Y., Long Y.T., Tian H., New insight into photo-induced electron transfer with a simple ubinone-based triphenylamine model. RSC Adv., 2015, 5(71), 57263-57266.
[7] Jung Y.S., Joe B.Y., Seong C.M., Park N.S., Synthesis of ubinones utilizing Pd(0)-catalyzed Stille coupling. B. Kor. Chem. Soc., 2000, 21(5), 463-464.
[8] Wang J., Li S., Yang T., Yang J., Synthesis and antioxidant activities of coenzyme Q analogues. Eur. J. Med. Chem., 2014, 86, 710-713.
[9] Davis B.M., Tian K., Pahlitzsch M., Brenton J., Ravindran N., Butt G., et al., Topical coenzyme Q10 demonstrates mitochondria-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion, 2017, 36, 114-123.
[10] Lu L., Chen F., A novel and convenient synthesis of coenzyme Q1. Synthetic Commun., 2004, 34(22), 4049-4053.
[11] Düz B., Yüksel D., Ece A., Sevin F., The first example of tungsten-based carbene generation from WCl₆ and atomic carbon and its use in olefin metathesis. Tetrahedron Lett., 2006, 47(29), 5167-5170.
[12] Hu X., Qiu Q., Wang W.L., Wang J., Practical synthesis of 2-(4-benzyl-piperazin-1-ylmethyl)-5,6-dimethoxy-3-methyl-[1,4]benzoquinone hydrochloride. Res. Chem. Intermediat., 2017, 43(1), 57-61.
[13] Wang J., Li S., Hu X., Yang J., A Convenient Synthesis of N-Benzylpiperazine, 1-Aralyl-4-benzylpiperazines and an Isostere of Idebenone. Org. Prep. Proced. Int., 2014, 46(5), 469-474.
[14] Wang J., Yang J., Yang B., Hu X., Yang T., A green and efficient synthesis of 1-chloromethyl-2,3,4,5-tetramethoxy-6-methylbenzene. J. Chem. Res., 2010, 34(12), 717-718.
[15] Hu X., Chen H., Wu W.J., Wang W.L., Wang J., A convenient synthesis of 1-aralkyl-4-benzylpiperazine derivatives. J. Chem. Res., 2016, 40(9), 519-529.
[16] Wang J., Xia F., Jin W.B., Guan J.Y., Zhao H., Efficient synthesis and antioxidant activities of N-heterocyclyl substituted coenzyme Q analogues. Bioorg. Chem., 2016, 68, 214-218.