Antibiotic Resistance Pattern of *Pseudomonas aeruginosa* Strains Isolated from Blood Cultures-Batec/Alert3D in a Tertiary Care Centre Narayana Hospital and Medical College Nellore AP, India

Nadakuduru Premanadham*, K. Jitendra, Munilaxmi, Siva Prasad Reddi, Ramya and Charan Kumar

Department of microbiology, NMC and Hospital Nellore-524002, AP, India

*Corresponding author

A B S T R A C T

Determination of the susceptibility profile of *Pseudomonas aeruginosa* strains by detecting their anti-microbial resistance patterns is necessary with regards to a current empirical treatment in bloodstream infections. The aim of this study was to detect the antimicrobial susceptibility pattern of *P. aeruginosa* strains isolated from blood cultures between August 2015 to August 2016 at the Narayana Hospital and Medical College Nellore AP. Blood cultures were processed by automatized BACT/Alert 3D system. *P. aeruginosa* strains were identified by conventional methods. Antimicrobial susceptibility tests were performed by Kirby-Bauer disc diffusion method in accordance with the recommendations of Clinical and Laboratory Standards Institute (CLSI). One twenty six *P. aeruginosa* strains were isolated during the study period. It comprises 96 male (76.19%) and 30 female (23.81%) between the age group less than 10 to more than 60 year. Antimicrobial resistance pattern of the *P. aeruginosa* strains isolated from blood cultures were found. High resistance- Amoxicillin 102 (80.95%), Ticarcilline plus clavulanic acid 94 (74.60%), Cefepime 78 (61.90%), Cefexime 76 (60.32%), Dorepenenum 70 (55.56%), Polymixin B 68 (53.9%), Imipenem 94 (74.60%), Tigycyclin 88 (69.84%), Cefotaxim 88 (69.84%), PIPCillin 102 (80.95%), Tazobactum 102 (80.95%), Ofloxacin 96 (76.19%), and Ceipaxillin 96 (76.19%).

Keywords

Pseudomonas aeruginosa, resistance, antibiotic sensitivity.

Article Info

Accepted: 12 October 2016
Available Online: 10 November 2016

Introduction

Antibiotics when first introduced were considered as a magic bullet. A single injection of penicillin could eradicate life threatening infections. Unfortunately, with time due to malpractices of natural causes, most of the cheaper antibiotics have lost their efficacy and more and more expensive complicated antibiotics were introduced and marketed to combat simple infection (ref 2). Microbial pathogens, as well as, their antimicrobial susceptibility pattern may change from time to time and place to place. Therefore knowledge of current antimicrobial resistance pattern of pseudomonas in particular region is useful in clinical practice *Pseudomonas aeruginosa*.
is a gram-negative bacteria responsible for a wide range of clinical conditions. It is resistant to many commonly use antimicrobials (Anti pseudomonas activity). Life threatening infections caused by *P.aeruginosa* continue to cause hospital acquired infections.

P.aeruginosa recognized as opportunistic pathogen particularly immunocompromised predisposing conditions including malignancies (Martino et al.,) Jugo et al., 2002; Charif et al., 2003; diabetes, burns, HIV/AIDS, ICUS (Edgeworth et al., 1990). But *Pseudomonas aeruginosa* bacterimia has mortality of 30% ref 1 (Osman et al., 2004) Epidemiological study indicate resistance is increasing in clinical isolates (ref3). Nowadays more and more resistance of pseudomonas are encounter in clinical practice a serious problem increasing mortality and morbidity and also cost of treatment. It is the one of the important gram-negative bacteraemia and there is an increase f 30 to 60% of bacteraemia in recent years& increasing mortality and morbidity with *Pseudomonas* bacteraemia. So it is need to conduct studies on pseudomonas drug sensitivity pattern that would help clinician to choose correct antibiotic for treatment to reduce morbidity and mortality.

Materials and Methods

This study was conducted in central laboratory microbiology Narayana Hospital and Medical College Nellore AP a tertiary care centre ,referral and teaching hospital (UG250 students per year) having bed strength of more than 1200,with broad specialties and super specialties- cardiology, cardio-thoracic surgery, nephrology, urology; neurosurgery, surgical gastro-enterology and endocrinology.

Sample processing

Sample collected from patient in blood culture bottle the blood culture bottles were processed in BAC/Alet 3D System. Growth seen in 8-12 hours are subcultured on routine MaC Conkey. Nutrient media and blood agar plates. pigment producing and non lactose, oxidase positive strain are identified as *Pseudomonas* accounts for 126 positives. These are further processed for biochemical properties TSI, Citrate, urease peptone water incubating at 37c. TSI-Alkaline slant/no change on but, Indole negative, urease negative and positive citrate and glucose utilized oxidative form acid and are conformed *Pseudomonas aeruginosa*.

Antimicrobial susceptibility test

Application of antibiotic discs to the inoculated agar plates- Antimicrobial susceptibility of all the isolates was performed by disc diffusion method (modified Kirby-Bauer disc diffusion method) accordingly Clinical Laboratory Standards Institute (CLSI) guide lines.

The anti biotics tested are Amoxicillin (30mg) cefexime (30) ceftriaxone (30mg) ceftepime (30mg) cotrimoxazole (30mg) ciproflaxacin (10mg) oflaxacin (10mg) amikacin (30mg) tygicycline (75mg) plynixin-B, cefazidene and calsbactem (30mg) tecarcellin and clavalanic acid (75mg) Piperacillin and tazobactum (100/10mg) imepenem (10mg) dorepenem (0mg).

Results and Discussion

The study comprises of of 126 pseudomonas aeruginosa strains isolated from blood samples from August 2015 to 2016 .In total of 126 isolates 96(76.19%) are male and 30(23.81%) are female as sex wise distribution as shown in table.1.
Age wise distribution of the isolates shown in table no 2 High incidences are seen in the age group 20 to 29 and 30 to 39 22 (17.46%), 22 (17.46%) followed by above sixty years age 20 (15.%) 40 to 49 age group 12 (9.25 %), 50 to 59 age group 10 (7.94%) 1 to 19 age 8 (6.35%) in case of male and in case of female 50to 59 age group 10(7.94%), followed by 6 (4.76%)-20 to 29 age group 6(4.76%)-age group 40 to 49 and 20 to 29 4(3.17%) in case f female

Highest sensitivity to ciprofloxacin 108 (85.71%) follows piperacillin plus tazobactum 102 (80.95%), oflaxacillin 96 (76.19%), imipenem 94(74.60%), cotrimaxazole 88 (69.84%), tygicyclin 88 (69.84%) ceftazidine 74 (58.13%), amikacin 72(57.14%)

Highest resistance with amoxicillin 102 (80.95%) followed by tycarcillin and clavaniciacid 84 (74.60%), cefepime 78 (61.90%), cefexime 76(60.32%) polymixin-B68 (53.97%) as shown in table 3

P. aeruginosa emergencing an important pathogen and responsible for noscomial infections it is the one of the important cause of mortality and morbidity among hospital patients. The pre eminent of pseudomonas aeruginosa in hospital infections is due to its resistance to common antibiotics and antiseptics and its ability to establish itself widely in hospitals.

Being a high adoptable organism survive and multiply even with minor nutrients if moisture is available

As pseudomonas aeruginosa causes serious infections and is one of the leading cause of hospital acquired infections Several studies were carried out to detect antibiotic sensitivity pattern for various drugs. Such studies help to clinician for better management and appropriate antibiotic treatment is associated with better prognosis (Leibouici et al., 1997) rapid diagnosis has clinical impact (Doen et al., 1994).

So the present study was conduced to determine the antibiotic sensitivity pattern of *P. aeruginosa* isolated from blood samples

In this study sex wise prevalence of clinical isolates shows that infections caused by *P. aeruginosa* are more common in males 76.19% compared to females. This is comparable with study of Javia et al., ref5, Jamshaid Ali Khan et al., (ref 5),and Rashid et al., (ref 7).

In the present study age wise prevalence shows that most patients were 20 to 29 and 30 to 39 which is more or less comparable with study of Rashid et al., (ref 6).

The unique feature of *P. aeruginosa* isolates is the resistance to variety of antibiotics, primarily attributed to low permeability of cell wall production of usable cephalosporin age active efflux and poor effinity for the target (DNA gyrase) REF(22) Lim KT, Yasmin Yeo et al.

In this study quinolines family exhibits highest susceptible pattern ciproflaxacin 85.71% followed by oflaxacillin 76.19% combination of piperacillin with tazobactum also have high sensitivity 80.95 %.Raja and singh showed 90.6% with pipercillin and tazobactum, 2007, imipenium 74.60% comparatively low similar studies like AL Jasser and ELPlhizzi (2004) (ref20) showed 91.6%

Penicillins are narrow spectrum antibiotics therefore high resistance pattern observed in this study.
Table.1 Sex Wise Distribution

	MALE	FEMALE	TOTAL
MALE	96	76.19%	
FEMALE	30	23.81%	
TOTAL	126	100.00%	

Table.2 Age wise distribution of isolates

AGE	MALE	FEMALE	TOTAL			
<10	2	1.59%	2	1.59%	4	3.17%
10 TO 19	8	6.35%	4	3.17%	12	9.52%
20 TO 29	22	17.46%	6	4.76%	28	22.22%
30 TO 39	22	17.46%	4	3.17%	26	20.63%
40 TO 49	12	9.52%	6	4.76%	18	14.29%
50 TO 59	10	7.94%	10	7.94%	20	15.87%
ABOVE 60	20	15.87%	2	1.59%	22	17.46%

Table.3 Antibiotics susceptibility pattern of isolates

ANTIBIOTICS	RESISTANCE (%)	SENSITIVITY (%)	TOTAL		
AMOXICILLIN	102	80.95%	24	19.05%	126
CEFIXIME	76	60.32%	50	39.68%	126
CEFTAZIDIME	52	61.27%	74	58.73%	126
CEFIPIME	78	61.90%	48	38.10%	126
CO-TRIMOXAZOLE	38	30.16%	88	69.84%	126
CIPROFLOXACIN	18	14.29%	108	85.71%	126
OFLOXACIN	30	33.33%	96	66.67%	126
AMIKACIN	54	42.86%	72	57.14%	126
TEGICYCINE	38	30.16%	88	69.84%	126
POLYMYXIN-B	68	83.33%	11	16.67%	126
CEFOPERRAZONE+SULBACTAM	54	62.50%	32	37.50%	126
TICARICILNA+CLAVULANIC ACID	94	74.60%	32	25.40%	126
PIPERACILLIN+TAZOBACTAM	24	19.05%	102	80.95%	126
IMIPENEM	32	25.40%	94	74.60%	126
DOREPENEM	70	55.56%	56	44.44%	126

High resistance seen to amoxicillin 80.95% similar pattern has been reported in studies in Nigeria (ref14), FAmadi ES Uzoaru PN rji I, Nwaziri AA, Malasia (ref15), Jmbo GTA JohnhP Ayeni J A, cephalosprines cefexime 60.32% ceftepime 61.90% ceftriaxone.

Most disturbing pattern observed in this study was the the multidrug resistance exhibited by most of the isolates. Although, similar pattern had been reported in studies conducted in Zaira ref Olayinka, Onile BA, and in Jamaica (ref18), BrownPD, Izundi A. In conclusion the multi drug
resistance by \textit{P. aeruginosa} isolated strains from blood culture pose direct clinical consequences in terms of patient management and controlling infection in order to prevent mortality.

In conclusion, \textit{P. aeruginosa} is the one of the causative agent of gram-negative bacterimias indiscriminate use of antimicrobials led emerging multidrug resistance. in this study ciproflaxillin, oflaxacilline and piperacilline and tazobactum are most effective drugs.

Regular monitoring of antimicrobial susceptibility pattern essential in blood stream infections to guide physician in prescribing proper drug and reducing multidrug resistance strains of \textit{P. aeruginosa} and thereby mortality.

\textbf{References}

Al–Jasser, A.M., Eikhizzi, N.A. 2004. Antimicrobial susceptibility pattern of clinical isolates of \textit{P. aeruginosa}, \textit{Saudi med. J.}, 25(6): 780-784.

Al–Jasser, A.M., Eikhizzi, N.A. 2004. Antimicrobial susceptibility pattern of clinical isolates of \textit{Pseudomonas aeruginosa}. \textit{Saudi Med. J.}, 25(6):780-784.

Amadi, E.S., Uzoaru, P.N., Orji, I., Nwaziri, A.A. 2009. Antibiotic resistance in clinical isolates of \textit{P. aeruginosa} in Enugu and Abakaliliki, Nigeria. \textit{The Internet J. Infect. Dis.}, 7(1).

Arshi syed, Manzoor thakur, Syed Shafiq, Assad Ullah sheik. 2007. In vitro sensitivity patterns of \textit{Pseudomonas aeruginosa} strains isolated from patients at skims-role of antimicrobials in the emergence of multiple resistant strains. jK-Practitioner.

Betty, A.F., Daniel, F.S. and Alice, S.W. Bailey 8: Scott’s Diagnostic Microbiology, Twelfth edition, 2007, Pseudomonas, Burkholderia and similar organisms, 340350, mosby Elsex 1er St. Louis, Missouri.

Brown, P.D., Izundu, A. 2004. Antibiotic resistance in clinical isolates of \textit{Pseudomonas aeruginosa} in Jamaica. \textit{Rev Panam Salud Publica}, 16(2): 125-130.

Henwood, C., Livermore, D.M., James, D., Warner, M. 2001. and the \textit{Pseudomonas} study group Antimicrobial susceptibility of \textit{Pseudomonas aeruginosa} results of a UK survey and evaluation of the British society for Antimicrobial chemotherapy disc susceptibility test. \textit{J. Antimicrobial chemother.}, 47:789-799.

Jamshaid, A.K., Zafar, L., Saeed, U.R., K. Farzana, Abbas, K. 2012. Prevalence and resistance patterns of \textit{Pseudomonas aeruginosa} against various antibiotics. \textit{Pak. J. Pharm. Sci.}, V0121, No. 3114515.

Javiya, V.A., ghatak, S.B., Patel, K.R., Patel, A. 2008. Antibiotic susceptibility patterns of \textit{Pseudomonas aeruginosa} in a tertiary care hospital in Gujarat, India. \textit{Indian Pharmacol.}, g401230.

Javiya, V.A., Ghatak, S.B., Patel, K.R., Patel, J.A. 2008. Antibiotic susceptibility patters of \textit{Pseudomonas aeruginosa} in a tertiary care hospital in Gujarat, India, 40(5):230-234.

Jombo, G.T.A., Jonah, P., Ayeni, J.A. 2008. Multidrug Resistant \textit{Pseudomonas aeruginosa} in Contemporary Medical Practice: Findings From Urinary Isolates At A Nigerian University Teaching Hospital. \textit{Nigerian J. Physiol. Sci.}, 23(1-2):105-109.

Kpneman, Koncman’s color Atlas and textbook of diagnostic Microbiology, Sixth Edition, 2006, The
Nonfermentative Gram-Negative Bacilli, 303-391, Lippincott Wimams 8t. Wilkins.

Lim, K.T., Yasin, R.Y., Yeo, C.C. et al. 2009. genetic finger printing and antimicrobial susceptibility profile of P. aeruginosa hospital isolates in Malaysia, 42: 197-209.

Munsc, M., Miyamoto, H., Ilanda, 'I', Sahaki, S. and Takenchi. 1995. Acévity of antipseudomonal agent against clinical isolates of Pseudomonas aeruginosa. Jpn. Antibiot., 48(10): 1581.

Ogundipeju, O.O., Nwobu, R.A.U. 2004. Occurrence of Pseudomonas aeruginosa in post-operative wound infection. Pakistan J. Med., 20: 1 87-191.

Ogunledun, A., Adebiyi, D.E., Daini, O.A., Terr, A.O. 2008. Antibiotic sensitivity pattern of Pseudomonas aeruginosa to available anti-pseudomonal drugs in Ibadan, Nigeria. African J. Med. Med. Sci., 37(3): 339-344.

Oni, A.A., Nwaorgu, O.G.B., Bakare, R.A., Ogunkunle, M.O., Toki, R.A. 2002. The discharging ears in Adults in Ibadan, Nigeria; causative agents and antimicrobial sensitivity pattern. African J. Clin. Experimental Microbiol., 3:3-5.

Osman, Sward, S., Fraser, V.J. & Koller, M.H. 2004. Hospital mortality for patients with bactearimia due to pseudomonas aeruginosa, Chest, 125: 607-616

Pagani, L., Mantengoli, E., Migliavacca, R. et al. 2004. Multifocal detection of multidrug resistant Pseudomonas aeruginosa producing the PER-1 extended spectrum U-lactamase in northern Italy. Antimicrobial Agents and Chemotherapy, 42:2523-2529.

Pellegrino, F.L., Teixeira, M., Carvalho, M.D. et al. 2002. Occurrence of a multi drug resistant Pseudomonas aeruginosa clone in different hOSpitals in Rio de J aneiro, Brazil. J. Clin. Microbiol., 40: 2420-2424.

Rashid, A., chowdhury, A., Sufi, H.Z.R., Shahin, A.B., Naima, M. 2007. infections by Pseudomonas and antibiotic resistance pattern of the isolates from Dhaka Medical college Hospital. Bangladesh Med. Microbiol., 01(02):48-51

Shenoy, S., baliga, S., Saldanha, D.R., Prashanth, I.I.V. 2002. Antibiotic sensitivity patterns of Pseudomonas aeruginosa strains isolated from various clinical specimens. Indian Med. Sci., 56(9): 427-30.

Stark, R.P., Maki, Dg. 1984. Bacteriuria in the catheterized patient. New Engl. Med., 311: 560-564.

How to cite this article:

Nadakuduru PREMANADHAM, K. Jitendra, Munilaxmi, Siva Prasad Reddi, Ramya and Charan Kumar. 2016. Antibiotic Resistance Pattern of Pseudomonas aeruginosa Strains Isolated from Blood Cultures-Batec/Alert3D in a Tertiary Care Centre Narayana Hospital & Medical College Nellore AP, India. Int.J.Curr.Microbiol.App.Sci. 5(11): 263-268.
doi: http://dx.doi.org/10.20546/ijcemas.2016.511.028