Pseudo-High Affinity Interleukin 2 (IL-2) Receptor Lacks the Third Component That Is Essential for Functional IL-2 Binding and Signaling

By Nobuyoshi Arima,*§ Masanori Kamio,*§ Kazunori Imada,*§ Toshiyuki Hori,§ Toshio Hattori,§ Mitsuru Tsudo,* Minoru Okuma,* and Takashi Uchiyama§

*From the First Division of Internal Medicine, Faculty of Medicine, Kyoto University, Sakyo, Kyoto 606; the §Department of Internal Medicine, Unitika Central Hospital, Uji, Kyoto 606; and the §Institute for Virus Research, Kyoto University, Sakyo, Kyoto 606, Japan

Summary

Functional studies of the interleukin 2 receptor (IL-2R) of two (ED515-D and Kit225) IL-2-dependent and three (ED515-I, 3T3-αβ11, and Hut102) IL-2-independent cell lines were done. All of these cell lines appeared to express high as well as low affinity IL-2R. However, ED515-I and 3T3-αβ11, which expressed the IL-2Ra chain, did not bind IL-2 at all when IL-2 binding to their IL-2Ra chain was blocked with anti-Tac monoclonal antibody, whereas the intermediate affinity binding in ED515-D, Kit225, and Hut102 cells remained. We tentatively called the high affinity IL-2R of the former cells pseudo-high affinity IL-2R. The dissociation constant of pseudo-high affinity IL-2R was higher than that of ordinary high affinity IL-2R. Internalization of cell-bound 125I-IL-2 into ED515-I and 3T3-αβ11 cells was less efficient than that into ED515-D cells. The addition of IL-2 neither promoted cell growth nor upregulated IL-2Ra chain expression in ED515-I and 3T3-αβ11 cells. Furthermore, tyrosine phosphorylation of the cellular proteins (p120, p98, p96, p54, and p38) was induced or enhanced in response to the addition of IL-2 in ED515-D and Kit225 cells, but not in the cell lines expressing pseudo-high affinity IL-2R.

Finally, 125I-IL-2 crosslinking followed by SDS-PAGE analysis showed an 80-kD band corresponding to p65 + IL-2, in addition to bands corresponding to IL-2Ra + IL-2 + p65 and IL-2Ra + p68 + IL-2 in cells bearing ordinary high affinity IL-2R but not in cells with pseudo-high affinity IL-2R. Taken together, we consider that another protein whose molecular mass is approximately 65 kD is functionally important in IL-2 binding and subsequent signal transduction and may be the third component of IL-2R.

IL-2 is a lymphokine produced by T cells that induces proliferation and differentiation of T, B, and NK cells, as well as thymocytes and monocytes. Cells bind IL-2 with three different affinities, designated as low (Kd = 10^-8 M), intermediate (Kd = 10^-9 M), and high (Kd = 10^-11 M) (1-9). Studies using mAbs and affinity crosslinking with radiolabeled IL-2 have identified and characterized the heterodimeric structure of IL-2R (6-15). A low affinity IL-2R consists of an α chain (p55, Tac) (2, 12), and association and dissociation of IL-2 for the low affinity IL-2R are very rapid (t1/2 = 5 and 6 s, respectively) (16, 17). The IL-2Rα chain with a short intracytoplasmic portion does not solely transduce a growth signal (3, 4, 18). In contrast, the IL-2Rβ chain binds IL-2 with an intermediate affinity when expressed solely and appears to be more important in IL-2 signal transduction. The association and dissociation of IL-2 for the intermediate affinity IL-2R are much slower (t1/2 = 45 and 290 min, respectively). Because IL-2 binding to the high affinity IL-2R takes on the characteristics of the low affinity IL-2R for its association and of the intermediate affinity IL-2R for its dissociation (t1/2 = 37 s and 285 min, respectively), IL-2/high affinity IL-2R complexes are most stable (16, 17). In cell lines that bind IL-2 with only intermediate affinity, doublet bands corresponding to p68 + IL-2 and p75 + IL-2 were detected by crosslinking with radiolabeled IL-2 (19, 20). Hermann et al. (21) and we (22) reported that these two bands differ not only in relative mobility in gel but also in the reactivity with anti-IL-2Rβ chain Ab, although these two bands had been considered to be due to the degradation of receptor-IL-2 complex or to a different posttranslational modification.

The cDNA cloning of the IL-2Rβ chain using Mik-β1 mAb (13) revealed that the IL-2Rβ chain contains no kinase domains, although it mediates IL-2 internalization and growth signal transduction when expressed on lymphocytes (23). However, transfected fibroblasts expressing the IL-2Rβ chain did not bind IL-2 (23-25), suggesting that the β chain must
be modified or associated with another chain for IL-2 binding. This possibility is supported by the fact that human NK cells obtained after in vivo IL-2 therapy expressed less IL-2 binding sites than the number of cell surface β chain (26). Saito et al. (27) also showed that the β chain expressed on a nonlymphoid cell line transfected with its cDNA can bind IL-2 when mixed with detergent-solubilized cell membrane of lymphocytes that cannot bind IL-2. A number of investigations have been done in an attempt to identify the third molecule of the IL-2R by chemical crosslinking or immunoprecipitation, and several candidate proteins have been reported (28–33). Although it is presumed to be close to the β chain or to the high affinity IL-2R, the function of the third molecule of IL-2R remains almost unknown.

In the present study, we identified a nontransfected cell line that seemed to lack the third component of IL-2R, and studied the characteristics of its IL-2R to know the role of the third component in IL-2 binding and subsequent signal transduction.

Materials and Methods

Cells and Antibodies. ED515-D is an IL-2-dependent leukemic T cell line established from an adult T cell leukemia patient (34). Kit225 is a human IL-2-dependent cell line derived from a chronic T lymphocytic leukemia patient (35). They were cultured in growth medium containing RPMI 1640, 10% FCS (Gibco Laboratories, Grand Island, NY), 60 mM tobramycin, 2 mM l-glutamine, and 0.5 mM rIL-2 (a gift from Shionogi Research Laboratories, Osaka, Japan), and incubated in IL-2-free medium for 24–48 h before use. ED515-I is a subclone of ED515-D and proliferates independently of IL-2. The 3T3-αβI1 cell line was established by transfecting cDNA for both human IL-2R α and β chains into NIH-3T3 cells (24). Hut102, ED515-I, and 3T3-αβI1 cells were cultured in growth medium without IL-2. Single cell suspensions of 3T3-αβI1 cells were made by treatment with PBS containing 1 mg/ml BSA and 5 mM EDTA, and then cells were resuspended in medium for each examination.

Binding Assay. The binding of 125I-IL-2 to various types of cell lines at 4°C was measured as described (36). Human IL-2 (Takeda, Osaka, Japan) was radiiodinated with Enzymobeads (Bio-Rad Laboratories, Richmond, CA) and the specific activity was 35,000 cpm/ng.

Association and Dissociation Kinetics of IL-2 Binding. To study the association kinetics, 4 × 105 cells were incubated with 50 pM of 125I-IL-2 in 200 μl of the binding medium containing 10 mg/ml BSA, 1 mg/ml sodium azide, and 25 mM Hepes in RPMI 1640 (pH 7.4) at 4°C. At selected times, cells were centrifuged through a layer of a mixture of 20% olive oil and 80% di-n-butylphthalate, and the radioactivity of the cell pellet was counted by a gamma counter. To study dissociation kinetics, 4 × 105 cells were incubated with 50 pM of 125I-IL-2 for 60 min at 4°C in 200 μl of the binding medium. After centrifugation, cells were resuspended in 200 μl of the binding medium supplemented with 10 nM cold rIL-2. At various times, the cell-associated radioactivity was measured as indicated.

Internalization of 125I-IL-2. Cells (105 cells/ml for ED515-D and ED515-I, 5 × 105 cells/ml for 3T3-αβI1) were first incubated at 4°C for 20 min with 200 pM 125I-IL-2 in RPMI 1640, 25 mM Hepes, pH 7.4, containing 10 mg/ml BSA, and 100 μM chloroquine (37), then quickly warmed to 37°C in a water bath. At selected times, 200-μl aliquots of the cell suspension were centrifuged, and the radioactivity of the supernatant was measured to determine the level of free IL-2. The cell pellets were resuspended in 200 μl of 0.14 M NaCl, 20 mM glycine-HCl, pH 3.0, containing 1 mg/ml BSA. After 30 s, the cells were centrifuged through a layer of a mixture of 20% olive oil and 80% di-n-butylphthalate, and the radioactivity of the supernatant and the cell pellet was counted to determine the level of internalized or cell surface-bound IL-2 that was resistant or sensitive to the treatment with acidic (pH 3.0) buffer. Nonspecific binding was determined by adding a 1,000-fold excess of unlabelled IL-2.

Western Blotting of Tyrosine-phosphorylated Protein. Tyrosine-phosphorylated proteins were detected by immunoblotting as previously described with minor modifications (38). In brief, aliquots of 105 cells per sample were stimulated with rIL-2 (5 nM) and lysed at the indicated times. Whole cell lysates were loaded on to 7.5% SDS-polyacrylamide gels and subjected to electrophoresis. The proteins were transferred to a 0.45-μm Immobilon–polyvinylidene fluoride membrane (Millipore Corp., Bedford, MA) using a semi-dry transfer apparatus. The PVDF blots were blocked with 5% BSA in blotting buffer (20 mM Tris-HCl buffer, pH 7.4, 150 mM NaCl, 0.05% Tween 20) for 24 h, then incubated with purified rabbit antiphosphotyrosine Ab (Zymed Laboratories, Inc., San Francisco, CA) for 60 min followed by incubation with horse-radish peroxidase–conjugated anti–rabbit IgG (Tago, Inc., Burlingame, CA) for 60 min. The membrane was washed in blotting buffer containing 1% BSA, then immunoblots were developed using the ECL System (Amersham Corp., Arlington Heights, IL).

Flow Cytometric Analysis of the Regulation of IL-2R α Chain Expression by IL-2. After preincubation in IL-2-free medium for 48 h, if necessary, cells were cultured at a density of 105 cells/ml in 200 μl growth medium for 48 h with serially diluted IL-2. Proliferation was measured by the incorporation of 150 kBq of [3H]TdR (DuPont/NEN Research Products, Boston, MA) per well for the last 4 h of the culture. ED515-I cells in growth medium containing 0.5% FCS were examined in the same manner.

Results

125I-IL-2 Binding Studies in the Presence of Anti-Tac mAb. 3T3-αβI1 cells bear both high and low affinity IL-2R. However, as reported by Tsudo et al. (24), 3T3-αβI1 cells do not bind IL-2 in the presence of anti-Tac mAb. We examined 125I-IL-2 binding to various cell lines in the presence of anti-Tac mAb. ED515-D, Kit225, and Hut102 cells bound IL-2 with an intermediate affinity (Kd = 1.2–1.6 nM) in the presence of anti-Tac mAb (Table 1). The number of the 125I-IL-2

Abbreviation used in this paper: MFI, mean fluorescence intensity.
binding sites detectable in the presence of anti-Tac mAb on ED515-D and Kit225 cells was almost equal to that of high affinity IL-2R. Intermediate affinity IL-2 binding in the presence of anti-Tac mAb was also detected on Hut102 cells, although the number of binding sites was unexpectedly smaller. On the other hand, anti-Tac mAb completely abolished IL-2 binding to ED515-I cells. These data indicate that ED515-I and 3T3-αβ11 cells appear to have a similar defect in IL-2 binding of the IL-2R β chain. We tentatively called the high affinity IL-2R of these cells (ED515-I and 3T3-αβ11) pseudo–high affinity IL-2R to distinguish from the ordinary high affinity IL-2R of ED515-D and Kit225 cells in this paper.

The Association and Dissociation Kinetics of 125I-IL2. The dissociation constant value of the IL-2 binding to the high affinity IL-2R (K_d = 4–5 pM) of ED515-D and Kit225 cells is apparently smaller than that of the pseudo–high affinity IL-2R (K_d = 20–30 pM) (Table 1). Since these results were reproducible, we studied the association and dissociation kinetics of IL-2 for these cell lines. When 50 pM 125I-IL2 was added to 4 x 10^5 cells, the amount of radioactivity bound to Kit225 cells was the lowest among the four cell lines, since the number of high affinity IL-2R of Kit225 cells was two- to fourfold smaller than those of other cell lines. The association time courses of the IL-2 binding to the high affinity IL-2R were equal among four cell lines (t_{1/2 association} = 1 min) (Fig. 1, A and C). However, IL-2 dissociated rapidly from the pseudo–high affinity IL-2R (t_{1/2 dissociation} = 1 min) (Fig. 1 B). Though ~10% of IL-2 dissociated from the high affinity IL-2R in the first 5 min, the remaining bound IL-2 hardly dissociated during a further 240 min (Fig. 1 D). These data indicate that the higher dissociation constant value of pseudo–high affinity IL-2R is due to the faster dissociation of bound IL-2.

![Figure 1](image_url)

Figure 1. Time courses of association (A and C) and dissociation (B and D) of 125I-IL2 in each cell line. Kinetics were studied as described in Materials and Methods on ED515-I cells (○) and 3T3-αβ11 cells (●) (A and B), or ED515-D cells (▲) and Kit225 cells (△) (C and D).

Cell line	Types of receptor	Without mAb	With anti-Tac mAb		
		K_d (pM)	Sites/cell	K_d (pM)	Sites/cell
Kit225	High	5	7,000	-	-
	Intermediate	-	-	1,200	6,000
	Low	12,000	300,000	-	-
ED515-D	High	4	25,000	-	-
	Intermediate	-	-	1,600	27,000
	Low	13,000	530,000	-	-
ED515-I	High	25	16,000	-	-
	Intermediate	-	-	-	-
	Low	10,000	240,000	-	-
3T3-αβ11	High	30	15,000	-	-
	Intermediate	-	-	-	-
	Low	9,000	640,000	-	-
Hut102	High	12	4,600	-	-
	Intermediate	-	-	1,200	870
	Low	13,000	260,000	-	-

* - , not detected.
IL-2 Internalization and IL-2-induced Tyrosine Phosphorylation of the Cellular Proteins. We examined whether cell-bound IL-2 was internalized into the cells after binding to pseudo-high affinity IL-2R. As shown in Fig. 2 A, IL-2 associated with the high affinity IL-2R of ED515-D cells was gradually internalized, and 41% of the total bound IL-2 was internalized at 40 min. Significant internalization of IL-2 was also detected in ED515-I and 3T3-αβ11 cells, but only 14–18% of total bound IL-2 was internalized at 40 min (Fig. 2, B and C). The total cell-bound IL-2 decreased in ED515-I and 3T3-αβ11 cells with increasing incubation time, because the dissociation constant value of pseudo-high affinity IL-2R is higher at 37°C than at 4°C (data not shown).

Next, we performed Western blotting using antiphosphotyrosine Ab to investigate whether IL-2 would increase tyrosine phosphorylation in the cells bearing pseudo-high affinity IL-2R. We consistently observed that IL-2 induced or enhanced tyrosine phosphorylation of proteins expressed as five bands on gels with molecular masses of 120, 98, 96, 54, and 38 kD in ED515-D and Kit225 cells (Fig. 3, lanes 3–8). Similar induction or enhancement of tyrosine phosphorylation of proteins with apparent molecular masses of 98, 96, and 38 kD by IL-2 was detected in Hut102 cells (Fig. 3, lanes 11–13). Tyrosine phosphorylation was detected within 1 min after the addition of IL-2, and the maximal increase was observed 10 min later. IL-2 was reported to induce the tyrosine phosphorylation of the IL-2R β chain (39, 40). The broad and vague band at ~84 kD in ED515-D and Hut102 cells may include the IL-2R β chain. On the other hand, IL-2 induced no increase in tyrosine phosphorylation in ED515-I cells (Fig. 3, lanes 1 and 2). We observed several bands that were constitutively tyrosine phosphorylated in 3T3-αβ11 cells, but IL-2 induced no increase (Fig. 3, lanes 9–10).

The Proliferative Response to IL-2 and the Upregulation of the IL-2R α Chain Expression by IL-2. As shown in Fig. 4 B, ED515-D and Kit225 cells displayed a proliferative response to rIL-2 as measured by [3H]TdR uptake, whereas IL-2 did not enhance [3H]TdR uptake by 3T3-αβ11 and ED515-I cells (Fig. 4 A). Since we supposed that ED515-I cells proliferated at their maximum in medium with 10% FCS and that...
the addition of IL-2 no longer induced further thymidine incorporation into ED515-I, cell growth-promoting activity of IL-2 in these cells was examined in medium containing a low concentration of FCS (0.5%). However, ED515-I cells also did not respond to IL-2 in this culture condition. In contrast, Hut102 cells, which can be maintained without IL-2, showed IL-2-inducible [3H]TdR uptake in addition to the relatively high basic [3H]TdR uptake (Fig. 4 C).

It was reported that IL-2 upregulates the expression of the IL-2R α chain on T cells (41, 42), and we examined the upregulation of the IL-2R α chain expression by IL-2 stimulation in the cells bearing pseudo-high affinity IL2R. In ED515-D and Kit225 cells, the addition of IL-2 resulted in a ~1.4–1.6-fold greater expression of the IL-2R α chain as measured by flowcytometric analysis (Table 2). In ED515-I cells, however, the upregulation of IL-2R α chain expression was not found.

125I-IL-2 Crosslinking Studies. To explore the molecular properties of the two different types of high affinity IL-2R, a 125I-IL-2 crosslinking study with chemical crosslinkers was performed in these cells. Three bands, 72, 80, and 89 kD, were detected in ED515-D and Kit225 cells (Fig. 5, lanes 1 and 2). However, the middle p65 + IL-2 (15-kD) band was not detected in ED515-I and 3T3-αβ11 cells, although both the upper and lower bands corresponding to the IL-2R α and β chains were detected (Fig. 5, lanes 3 and 4).

Discussion

We demonstrated in the present study that ED515-I and 3T3-αβ11 cells have the following characteristics. (a) The IL-2R β chains of the cell lines were not fully functional as intermediate affinity IL-2R, because the anti-Tac mAb completely abolished IL-2 binding to these cell lines. (b) Their high affinity IL2Rs had higher dissociation constants than those of ED515-D and Kit225. (c) IL-2 bound to them dissociated much faster than that bound to ED515-D and Kit225 cells, although the rate of IL-2 association was similar. (d) IL-2 bound to their high affinity IL-2R was internalized more slowly and to a less extent than in ED515-D and Kit225 cells. (e) IL-2 did not induce or enhance tyrosine phosphorylation of cellular proteins, which was demonstrated in ED515-D, Kit225, and Hut102 cells. (f) IL-2 neither promoted cell growth nor upregulated the IL-2R α chain expression. (g) The protein with a presumed molecular mass of 65 kD and crosslinked with IL-2 was not detected, unlike ED515-D and Kit225 cells.

In this paper we called the high affinity IL-2R of ED515-I and 3T3-αβ11 cells “pseudo–high affinity IL-2R” in comparison with ordinary high affinity IL-2Rs of ED515-D and Kit225 cells. However, we have no evidence that ED515-D and Kit225 cells have exclusively ordinary high affinity IL-2R.

The IL-2 dissociation kinetics of high affinity IL2Rs appeared to be biphasic in ED515-D and Kit225 cells (Fig. 1 D). About 10% of total cell-bound IL-2 that dissociated from the high affinity IL2Rs of ED515-D and Kit225 cells in the first 5 min may have bound to the pseudo–high affinity IL2Rs, if any, of these cell lines. Furthermore, Hut102 cells have a smaller number of the intermediate affinity IL-2-binding sites in the presence of anti-Tac mAb than that of high affinity IL-2-binding sites (Table 1). This result may indicate that Hut102 cells bear

Table 2. The Upregulation of the IL-2R α Chain by IL-2

Cell line	− IL-2	+ IL-2
Kit225	81.8	133.9 (164)†
ED515-D	341.4	486.1 (142)
ED515-I	64.0	60.9 (95)

* Cells were stained with FITC-conjugated anti-Tac mAb or control mAb followed by FACScan® analysis, and the difference between MFI of cells stained with anti-Tac mAb and that with control mAb was calculated as the quantity of IL-2R α chain expression.

† MFI of each cell line cultured with IL-2 is also shown as the percentage of that cultured without IL-2.
a smaller number of the third components necessary for functional intermediate affinity IL-2R than that of the IL-2R β chain.

It has been controversial whether IL-2 can be internalized into fibroblasts transfected with cDNA of human IL-2R α and β chains (24, 25). Minamoto et al. (25) reported that L929αβ, a mouse fibroblast transfected with human IL-2R α and β chains, lacks IL-2 internalization. They, however, removed unbound 125I-IL2 after the initial incubation of cells and ligand. Considering our IL-2 dissociation kinetics data, 125I-IL2 may have dissociated from L929cio cells during cell washing or the incubation steps in their studies. Slower and less internalization of cell-bound IL-2 in ED515-I and 3T3-αβ11 cells demonstrated in the present study may suggest the different internalization mechanism or pathway in such cells bearing pseudo–high affinity IL-2R.

The signal transduction pathway of IL-2/IL-2R remains ill defined. The early activation of a tyrosine kinase occurring in response to IL-2 stimulation has been considered to be one of the key events in IL-2 signal transduction (39, 40, 43–45). Although the IL-2R β chain is phosphorylated on tyrosine and serine/threonine residues, the cytoplasmic portion of the IL-2R β chain lacks an obvious kinase domain. Fung et al. (45) reported that some tyrosine kinase physically associated with the IL-2R β chain. It was also reported that several proteins with molecular masses ranging from 38 to 180 kD were phosphorylated on tyrosine upon IL-2 stimulation. We showed that cellular proteins expressed as five bands on gels with molecular masses of 120, 98, 96, 54, and 38 kD were tyrosine phosphorylated upon IL-2 stimulation in ED515-D and Kit225 cells. Since such IL-2-induced tyrosine phosphorylation was undetectable in ED515-I and 3T3-αβ11 cells, the pseudo–high affinity IL-2R may be defective in some receptor-associated protein that is indispensable for not only the complete IL-2 binding but also IL-2 signaling. It is noteworthy that Hut102 cells, IL-2 independent in their cell growth and retaining intermediate affinity IL-2 binding in the presence of anti-Tac mAb, showed IL-2-inducible [3H]TdR uptake and tyrosine phosphorylation in contrast to no response of ED515-I and 3T3-αβ11 cells lacking for p65. It is, therefore, unlikely that the loss or absence of p65 is closely associated with the acquisition of IL-2 independence in cell growth and that no response of ED515-I and 3T3-αβ11 cells is simply due to the loss of IL-2 dependency.

Hatakeyama et al. (46) reported that an IL-1R β chain mutant with a restricted cytoplasmic serine-rich region (amino acids 267–322) bound IL-2 with coexpression of the IL-2R α chain, followed by internalization, but its growth was not affected by IL-2. The similarity of the biological response between this IL-2R β chain mutant cell and pseudo–high affinity IL-2R-bearing cells as we reported here may show the importance of the serine-rich region (amino acids 267–322) of the IL-2R β chain for the interaction between the IL-2R β chain and the third component of IL-2R.

Studies using radiolabeled IL-2 and crosslinking reagents have indicated that a series of additional proteins of 22, 35–40, 90, 100, and 115 kD are associated with the IL-2R α and β chains in the murine cells (28–30). However, it was difficult to detect them reproducibly. The 80–90-kD non-Tac band easily detectable in the affinity crosslinking was not a single band, but a doublet (19, 20). As we recently reported, the lower band of the doublet appears not to be the IL-2R β chain, because polyclonal anti-IL-2R β chain Ab cannot react with it (22). By using limited proteolysis, Hermann and Diamantstein also reported that this lower doublet band differs from the upper one, although they both displayed a high homology. As shown in Fig. 5, the lower band of the doublet was not detected in either ED515-I or 3T3-αβ11 cells, suggesting that the key molecule for functional IL-2R is the 65-kD molecule (p65). This is supported by the recent report by Takeshita et al. (33). They showed that the amount of p64 coprecipitated with the IL-2R β chain in the presence of IL-2 was proportional to the number of the IL-2 binding sites, but not to that of the IL-2R β chain. Our observation that p65 could be crosslinked with IL-2 in cells bearing high affinity IL-2R but not in cells bearing pseudo–high affinity IL-2R leads to two possible explanations with respect to the role of p65 in IL-2 binding. One is that p65 directly binds IL-2 as the supporter of the IL-2R β chain, and the other is that p65, located close to the IL-2R β chain, exerts a steric effect on the β chain without directly binding IL-2. The latter seems likely because the MT-β7 cell, which is MT-1 cell transfected with the human IL-2R β chain (47), bound IL-2 with an intermediate affinity when examined in the presence of anti-Tac mAb (data not shown), suggesting that MT-β7 cells have the third component of IL-2R. Parental MT-1 cells, however, bind IL-2 with only low affinity and IL-2 cannot be crosslinked with p65 in MT-1 cells (22). These data suggest that the third component cannot bind IL-2 without the help of the IL-2R β chain.

Finally, it would be of interest to determine whether there exist such cells having pseudo–high affinity IL-2R in vivo and which biological responses they, if present, are involved in.
References

1. Robb, R.J., A. Munck, and K.A. Smith. 1981. T cell growth factor receptors: quantitation, specificity, and biological relevance. J. Exp. Med. 154:1455.

2. Leonard, W.J., J.M. Depper, T. Uchiyama, K.A. Smith, T.A. Waldmann, and W.C. Greene. 1982. A monoclonal antibody that appears to recognize the receptor for human T cell growth factor; partial characterization of the receptor. Nature (Lond.). 300:267.

3. Nikaido, T., A. Shimizu, N. Ishida, H. Sabe, K. Teshigawara, M. Maeda, T. Uchiyama, J. Yodoi, and T. Honjo. 1984. Molecular cloning of cDNA encoding human interleukin-2 receptor. Nature (Lond.). 311:631.

4. Leonard, W.J., J.M. Depper, G.R. Crabtree, S. Rudikoff, J. Pumphrey, R.J. Robb, M. Kronke, P.B. Svetlik, N.J. Peffer, T.A. Waldmann, and W.C. Greene. 1984. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature (Lond.). 311:626.

5. Robb, R.J., W.C. Greene, and C.M. Rusk. 1984. Low and high affinity cellular receptors for interleukin 2: implications for the level of Tac antigen. J. Exp. Med. 160:1126.

6. Sharon, M., R.D. Klausner, B.R. Cullen, R. Chizzonite, and W.J. Leonard. 1986. Novel interleukin-2 receptor subunit detected by cross-linking under high affinity conditions. Science (Wash. DC). 234:859.

7. Tsudo, M., R.W. Kozak, C.K. Goldman, and T.A. Waldmann. 1986. Demonstration of a non-Tac peptide that binds interleukin 2: a potential participant in a multichain interleukin 2 receptor complex. Proc. Natl. Acad. Sci. USA. 83:9694.

8. Teshigawara, K., H. Wang, K. Kato, and K.A. Smith. 1987. Interleukin 2 high-affinity receptor expression requires two distinct binding proteins. J. Exp. Med. 165:223.

9. Robb, R.J., C.M. Rusk, J. Yodoi, and W.C. Greene. 1987. Interleukin 2 binding molecule distinct from Tac protein: analysis of its role in formation of high-affinity receptors. Proc. Natl. Acad. Sci. USA. 84:2002.

10. Herrmann, T., and T. Diamantstein. 1988. The human intermediate-affinity interleukin 2 receptor consists of two distinct, partially homologous glycoproteins. Eur. J. Immunol. 18:1051.

11. Lowenthal, J.W., and W.C. Greene. 1987. Contribution of a p75 interleukin 2 binding peptide to a high-affinity interleukin 2 receptor complex. Proc. Natl. Acad. Sci. USA. 84:4215.

12. Uchiyama, T., S. Broder, and T.A. Waldmann. 1981. A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. J. Immunol. 126:1393.

13. Tsudo, M., F. Kitamura, and M. Miyasaka. 1989. Characterization of the interleukin 2 receptor β chain using three distinct monoclonal antibodies. Proc. Natl. Acad. Sci. USA. 86:1392.

14. Takeshita, T., Y. Goto, K. Tada, K. Nagata, H. Asao, and K. Sugamura. 1989. Monoclonal antibody defining a molecule possibly identical to the p75 subunit of interleukin 2 receptor. J. Exp. Med. 169:1323.

15. Kamio, M., T. Uchiyama, N. Arima, K. Itoh, T. Ishikawa, T. Hori, and H. Uchino. 1990. Role of α chain-IL-2 complex in the formation of the ternary complex of IL-2 and high-affinity IL-2 receptor. Int. Immunol. 2:521.

16. Wang, H.M., and K.A. Smith. 1987. The interleukin 2 receptor: functional consequences of its bimolecular structure. J. Exp. Med. 166:1055.

17. Lowenthal, J.W., and W.C. Greene. 1987. Contrasting interleukin 2 binding properties of the α (p55) and β (p70) protein subunits of the human high-affinity interleukin 2 receptor. J. Exp. Med. 166:1156.

18. Greene, W.C., R.J. Robb, P.B. Svetlik, C.M. Rusk, J.M. Depper, and W.J. Leonard. 1985. Stable expression of cDNA encoding the human interleukin 2 receptor in eukaryotic cells. J. Exp. Med. 162:363.

19. Robb, R.J., C.M. Rusk, J. Yodoi, and W.C. Greene. 1987. Interleukin 2 binding molecule distinct from the Tac protein: Analysis of its role in formation of high-affinity receptors. Proc. Natl. Acad. Sci. USA. 84:2002.

20. Sharon, M., J.P. Siegel, G. Tosato, J. Yodoi, T.L. Gerrard, and W.J. Leonard. 1988. The human interleukin 2 receptor β chain (p70): direct identification, partial purification, and patterns of expression on peripheral blood mononuclear cells. J. Exp. Med. 167:1265.

21. Hermann, T., and T. Diamantstein. 1988. The human intermediate-affinity interleukin 2 receptor consists of two distinct, partially homologous glycoproteins. Eur. J. Immunol. 18:1051.

22. Kamio, M., N. Arima, M. Tsudo, K. Imada, M. Okuma, and T. Uchiyama. 1992. The third molecule associated with interleukin 2 receptor α and β chain. Biochem. Biophys. Res. Commun. 184:1288.

23. Hatakeyama, M., M. Tsudo, S. Minamoto, T. Kono, T. Doi, T. Miyata, M. Miyasaka, and T. Taniguchi. 1989. Interleukin-2 receptor β chain gene: generation of three receptor forms by cloned human α and β chain cDNAs. Science (Wash. DC). 244:551.

24. Tsudo, M., H. Karasuyama, F. Kitamura, T. Tanaka, S. Kubo, Y. Yamamura, T. Tamatani, M. Hatakeyama, T. Taniguchi, and M. Miyasaka. 1990. The IL-2 receptor β chain (p70): ligand binding ability of the cDNA-encoding membrane and secreted forms. J. Immunol. 145:599.

25. Minamoto, S., H. Mori, M. Hatakeyama, T. Kono, T. Doi, T. Ide, T. Uede, and T. Tanaguchi. 1990. Characterization of the heterodimeric complex of human IL-2 receptor α-β chains reconstituted in a mouse fibroblast cell line, L929. J. Immunol. 145:2177.

26. Voss, S.D., R.J. Robb, G. Weil-Hillman, J.A. Hank, K. Sugamura, M. Tsudo, and P.M. Sondel. 1990. Increased expression of the interleukin 2 (IL-2) receptor β chain (p70) on CD56+ natural killer cells after in vivo IL-2 therapy: p70 expression does not alone predict the level of intermediate affinity IL-2 binding. J. Exp. Med. 172:1101.

27. Saito, Y., H. Tada, H. Sabe, and T. Honjo. 1991. Biochemical evidence for a third chain of the interleukin-2 receptor. J. Biol. Chem. 266:22186.

28. Hermann, T., and T. Diamantstein. 1988. The high affinity interleukin 2 receptor: evidence for three distinct polypeptide
chains comprising the high affinity interleukin 2 receptor. Mol. Immunol. 25:1201.

29. Saragovi, H., and T.R. Malek. 1990. Evidence for additional subunits associated to the mouse interleukin 2 receptor p55/p75 complex. Proc. Natl. Acad. Sci. USA. 87:11.

30. Sharon, M., J.R. Gnarra, and W.J. Leonard. 1990. A 100-kilodalton protein is associated with the murine interleukin 2 receptor: biochemical evidence that p100 is distinct from the α and β chains. Proc. Natl. Acad. Sci. USA. 87:4869.

31. Colamone, O.R., L.M. Necker, and A. Rosolen. 1990. Putative γ-subunit of the IL-2 receptor is detected in low, intermediate, and high affinity IL-2 receptor-bearing cells. J. Immunol. 145:155.

32. Takeshita, T., H. Asao, J. Suzuki, and K. Sugamura. 1990. An associated molecule, p64, with high-affinity interleukin 2 receptor. Int. Immunol. 2:477.

33. Takeshita, T., K. Ohtani, H. Asao, S. Kumaki, M. Nakamura, and K. Sugamura. 1992. An associated molecule, p64, with IL-2 receptor β chain: its possible involvement in the formation of the functional intermediate-affinity IL-2 receptor complex. J. Immunol. 148:2154.

34. Maeda, M., A. Shimizu, K. Ikuta, H. Okamoto, M. Kasahara, T. Uchiyama, T. Honjo, and J. Yodoi. 1987. Origin of human T-lymphotropic virus I-positive T cell lines in adult T cell leukemia: Analysis of T cell receptor gene rearrangement. J. Exp. Med. 162:2169.

35. Hori, T., T. Uchiyama, M. Tsudo, H. Umadome, H. Ohno, S. Fukuhara, K. Kita, and H. Uchin. 1987. Establishment of an interleukin 2-dependent human T cell line from a patient with T cell chronic lymphocytic leukemia who is not infected with human T cell leukemia/lymphoma virus. Blood. 70:1069.

36. Arima, N., M. Kamio, M. Okuma, G. Ju, and T. Uchiyama. 1991. The IL-2 receptor α-chain alters the binding of IL-2 to the β-chain. J. Immunol. 147:3396.

37. Robb, R.J., and W.C. Greene. 1987. Internalization of interleukin 2 is mediated by the β chain of the high-affinity interleukin 2 receptor. J. Exp. Med. 165:1201.

38. Dibirdik, I., M.C. Langlie, J.A. Ledbetter, L. Tiel-Ahlgren, V. Obuz, K.G. Waddick, K. Gajj-Peczalska, G.L. Scieven, and F.M. Uckun. 1991. Engagement of interleukin-7 receptor stimulates tyrosine phosphorylation, phosphoinositide turnover, and clonal proliferation of human T-lineage acute lymphoblastic leukemia cells. Blood. 78:564.

39. Asao, H., T. Takeshita, M. Nakamura, K. Nagata, and K. Sugamura. 1990. Interleukin-2 (IL-2)-induced tyrosine phosphorylation of IL-2 receptor p75. J. Exp. Med. 171:637.

40. Mills, G.B., C. May, M. McGill, M. Baker, R. Sutherland, and W.C. Greene. 1990. Interleukin 2-induced tyrosine phosphorylation: interleukin 2 receptor β is tyrosine phosphorylated. J. Biol. Chem. 265:3561.

41. Reem, G.H., and N.H. Yeh. 1984. Interleukin 2 regulates expression of its receptor and synthesis of gamma interferon by human T lymphocytes. Science (Wash. DC). 225:429.

42. Smith, K.A., and D.A. Cantrell. 1985. Interleukin 2 regulates its own receptors. Proc. Natl. Acad. Sci. USA. 82:864.

43. Saltzmann, E.M., R.R. Thor, and J.E. Casnellie. 1988. Activation of a tyrosine protein kinase is an early event in the stimulation of T lymphocytes by interleukin-2. J. Biol. Chem. 263:6956.

44. Farrar, W.L., and D.K. Ferris. 1989. Two-dimensional analysis of interleukin 2-regulated tyrosine kinase activation mediated by the p70-75 β subunit of the interleukin 2 receptor. J. Biol. Chem. 264:12562.

45. Fung, M.R., R.M. Scearce, J.A. Hoffman, N.J. Peffer, S.K. Hammes, J.B. Hosking, R. Schmandt, W.A. Kuziel, B.F. Haynes, G.B. Mills, and W.C. Greene. 1991. A tyrosine kinase physically associates with the β-subunit of the human IL-2 receptor. J. Immunol. 147:1253.

46. Hatakeyama, M., H. Mori, T. Doi, and T. Taniguchi. 1989. A restricted cytoplasmic region of IL-2 receptor β chain is essential for growth signal transduction but not for ligand binding and internalization. Cell. 59:837.

47. Tsudo, M., H. Karasuyama, F. Kitamura, Y. Nagasaka, T. Tanaka, and M. Miyasaka. 1989. Reconstitution of a functional IL-2 receptor by the β chain cDNA: a newly acquired receptor transduces negative signal. J. Immunol. 143:4039.