Treatment of Bipolar Disorder according to a Neural Network

Felix-Martin Werner1,2,* and Rafael Coveñas2

1Higher Vocational School of Elderly Care and Occupational Therapy, Euro Academy Pößneck, Pößneck, Thuringia, 07381, Germany
2Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, Salamanca, Castilla-León, 37007, Spain

Abstract

Here, we describe the alterations of excitatory neurotransmitters (dopamine, serotonin, noradrenaline, acetylcholine), glutamate and GABA (a presynaptic inhibitory neurotransmitter) in the brain areas (brainstem, hypothalamus, hippocampus) involved in bipolar disorder. The coherence between the pituitary hypothalamic-adrenocortical axis and the existing neurotransmitter alterations is pointed out. Neural networks are described in the concerned brain areas, including the neurotransmitters and the depending subreceptors, on which the prophylactic drugs exert their effects. A survey of the commonly used prophylactic drugs is also given.

Keywords: Bipolar disorder; Mania; Depressive state; Dopamine; Noradrenaline; Serotonin; Acetylcholine; GABA; Glutamate; Second-generation antipsychotic drug; Mood-stabilizing drug

Introduction

Bipolar disorder is an affective psychosis with alternating depressive, manic or mixed symptoms. In the depressive phase, in patients suffering from bipolar disorder, a hypofunction of noradrenaline and serotonin occurs in the brainstem as well as in the hippocampus for dopamine [1]. Moreover, alterations in the brainstem and hippocampus of the presynaptic inhibitory neurotransmitter GABA and glutamate, which mainly is an excitatory neurotransmitter and partly a presynaptic inhibitory neurotransmitter, can be observed [2]. In manic symptoms, both D$_1$ dopamine hyperactivity and 5-HT$_2A$ serotonin dysfunction were found in the hippocampus. The presynaptic neurotransmitter GABA and glutamate are also involved in the pathophysiology of manic symptoms. The dysfunction of the hypothalamic-pituitary-adrenocortical (HPA) axis will be described [3]. Neural networks in the brainstem, hypothalamus and hippocampus will be also pointed out and the dysfunctions of the HPA axis will be deduced [3]. Bipolar disorder is mainly treated by mood-stabilizing drugs such as lithium, valproate and lamotrigine or second-generation antipsychotic drugs such as risperidone, olanzapine, quetiapine or aripiprazole.

The Pituitary-Hypothalamic-Adrenocortical Axis in Affective Symptoms

Depressive and manic symptoms are associated with a dysfunction of the HPA axis [3]. In depressive symptoms, reduction of cortisol levels and an increase of corticotropin-releasing hormone (CRH) levels were found, and an enhanced response in the dexamethasone (DEX)/CRH test was also observed [4]. In first-episode depressive patients, the thickness of the lateral orbitofrontal cortex was significantly reduced and it was associated with increased cortisol levels, which occurred in 50% of the patients [5]. Leonard [6] reported the coherence between the HPA axis and the serotonergic system [6]. In the section about the neural networks, it will be pointed out that CRH-containing neurons located in the hypothalamus transmit via CRH$_{receptors}$ a strong activating impulse to glutaminergic neurons, which strongly inhibit, via metabotropic 5 glutaminergic (m5Glu) receptors, 5-HT$_{1A}$ serotonergic neurons located in the brainstem [4]. CRH$_{receptors}$ containing neurons located in the hypothalamus also activate GABAergic neurons which presynaptically inhibit, via GABA$_{receptors}$, D$_1$ dopaminergic neurons located in the hippocampus [7]. Depressive or manic symptoms only occur when the susceptibility genes are present. The serotonin transporter gene can induce serotonin hypoactivity in the brainstem, which is correlated with depressive symptoms [7]. The glutamic acid decarboxylase (GAD) 67, which encodes GABA hypofunction, and the monoamine oxidase A/B gene, which encodes dopamine hyperactivity through a decreased breakdown, can lead to manic symptoms.

Alterations of Classical Neurotransmitters and Neuropeptides in the Brain Regions Involved in Bipolar Disorder

In bipolar disorder, a few brain regions (brainstem, hypothalamus, hippocampus) are involved in depressive and manic symptoms. Bielau et al. [8] examined the volumes of the striato-pallidal nuclei, hypothalamus, thalamus, amygdala, hippocampus and basal limbic forebrain of patients with major depression and bipolar disorder and they found volume differences in all the investigated regions with strong volume differences contributed by the hypothalamus, external pallidum, putamen and thalamus [8]. These regions show alterations in classical neurotransmitters and neuropeptides [1,7]. Thus, the hypo- or hyper-activity of postsynaptic excitatory neurotransmitters (noradrenaline, serotonin, dopamine, acetylcholine) and the actions of glutamate and GABA (a presynaptic inhibitory neurotransmitter) acting at specific subreceptors, will be pointed out [1,7].

Noradrenaline

In the depressive symptoms of the bipolar disorder, a hypoactivity of noradrenaline occurs in the brainstem. Hereby, a reduced activation of the noradrenergic alpha1 receptor, starting from the locus coeruleus, can be observed [9]. In depressive states, a serotonin and noradrenaline

*Corresponding author: Felix-Martin Werner, Felix-Martin Werner, Felix-Martin Werner, Felix-Martin Werner, Neurological and Psychiatric Diseases, University of Salamanca, Instituto de Neurociencias de Castilla y León (INCYL), Laboratorio de Neuroanatomía de los Sistemas Peptidérgicos (Lab. 14), c/ Pintor Fernando Gallego, 1, 37007-Salamanca, Spain, Tel: +34/923/29 44 00, Extension 1856; Fax: +34/923/29 45 49; E-mail: felixm-werner@versanet.de

Received July 29, 2015; Accepted September 14, 2015; Published September 16, 2015.

Citation: Werner F, Coveñas R (2015) Treatment of Bipolar Disorder according to a Neural Network. J Cytol Histol 6: 368. doi:10.4172/2157-7099.1000368

Copyright: © 2015 Werner F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
reuptake inhibitor, for example venlafaxine, can be administered but the dosage must be chosen carefully, because an activation of the noradrenergic neurotransmission can induce noradrenaline hyperactivity and may promote hypomanic symptoms [10].

Dopamine

In the hippocampus and the extrapyramidal system, dopamine, acting mainly at D_2 receptors, shows hypoactivity in depressive symptoms and hyperactivity in manic symptoms [4]. The noradrenaline and dopamine reuptake inhibitor, bupropion, which is used to treat the "decreased positive effect", i.e. loss of energy, interest and pleasure in symptoms and hyperactivity in manic symptoms [4]. The noradrenaline and dopamine reuptake inhibitor, bupropion, is used to treat the "decreased positive effect", i.e. loss of energy, interest and pleasure in symptoms and hyperactivity in manic symptoms [4]. The noradrenaline and dopamine reuptake inhibitor, bupropion, which is used to treat the "decreased positive effect", i.e. loss of energy, interest and pleasure in symptoms and hyperactivity in manic symptoms [4]. The noradrenaline and dopamine reuptake inhibitor, bupropion, which is used to treat the "decreased positive effect", i.e. loss of energy, interest and pleasure in symptoms and hyperactivity in manic symptoms [4]. The noradrenaline and dopamine reuptake inhibitor, bupropion, which is used to treat the "decreased positive effect", i.e. loss of energy, interest and pleasure in symptoms and hyperactivity in manic symptoms [4].

Serotonin

Serotonin transporter genes linked polymorphic regions, also called 5HTTLPR, are supposed to encode symptoms in bipolar disorder type 1 [12]. In depressive symptoms, hypoactivity of serotonin, acting at 5-HT_1A receptors, occurs in the brainstem. However, other subreceptors also play an important role in the pathogenesis of bipolar disorder. In the hippocampus, the dysfunction of 5-HT_1A receptors is involved in depressive and manic symptoms [13]. The American society of clinical psychopharmacology asked participating psychopharmacologists about their treatments of major depression in bipolar disorder [14]. When the patients were treatment-resistant to selective serotonin reuptake inhibitors (SSRIs), the psychopharmacologists chose bupropion, a nicotinic cholinergic neurons activate D_2 dopaminergic neurons via alpha4beta2 receptors [17]. In manic symptoms, GABAergic neurons via GABA A receptors, alpha1 noradrenergic neurons located in the "mood center" of the brainstem, serotonergic neurons strongly presynaptically inhibit brainstem alpha1 noradrenergic neurons [16]. In depressive symptoms, GABAergic neurons via GABA A receptors could weakly inhibit D_2 dopaminergic neurons located in the hippocampus, inducing dopamine hyperactivity [18].

Glutamate

In bipolar disorder, a glutamate dysfunction via N-methyl-D-aspartate (NMDA) and metabotropic glutaminergic receptors occurs in the brainstem and hippocampus [19]. Glutaminergic neurons weakly inhibit, via mGlu receptors, 5-HT_1A serotonergic neurons located in the "mood center" of the brainstem. Consequently, mGlu receptor antagonists could exert antidepressant properties [20]. In the hippocampus, glutaminergic neurons weakly or strongly inhibit 5-HT_1A serotonergic neurons and can induce depressive symptoms, with glutamate hyperactivity and serotonin hypoactivity, or manic symptoms with serotonin hyperactivity through a reduced presynaptic glutaminergic inhibition [18].

Galanin

In depressive symptoms, galanin levels were found to be decreased in the hypothalamus. After treatment with a SSRI, galanin levels increased [21].

Neuropeptide Y

In the cerebrospinal fluid (CSF), neuropeptide Y levels decreased in depressive states and increased after an antidepressant treatment [4]. Neuropeptide Y-containing neurons located in the dentate gyrus weakly inhibit, via NPY receptors, hippocampal GABAergic neurons [22].

Substance P

In the CSF, substance P levels increased in patients showing depressive symptoms but decreased after an antidepressant treatment. Antagonists of the subreceptor of the substance P, the NK1 receptor, only have a weak antidepressant effect. Substance P-containing neurons weakly activate, via NK receptors, hippocampal GABAergic neurons [22].

Neural Networks in the Brain Regions Involved in Bipolar Disorder

The neural networks in the brain areas involved in bipolar disorder, namely brainstem, hypothalamus and hippocampus, can be described as follows: in the "mood center" of the brainstem, serotonergic neurons from the dorsal raphe nucleus transmit a weak activating impulse via 5-HT_1A receptors to GABAergic neurons, which inhibit via GABA_B receptors noradrenergic neurons located in the locus coeruleus. The latter neurons activate, via alpha1 receptors, glutaminergic neurons which inhibit, via mGlu receptors, 5-HT_1A serotonergic neurons. GABAergic neurons inhibit, via GABA_A receptors, other GABAergic neurons located in the center of the circadian rhythm which inhibit, via GABA_B receptors, alpha1 noradrenergic neurons located in the locus coeruleus. The latter neurons activate glutaminergic neurons, which are inhibited via mGlu receptors by the glutaminergic neurons of the "mood center", and they also inhibit via NMDA receptors 5-HT_1A serotonergic neurons located in the medial raphe nucleus. Serotonergic neurons activate GABAergic neurons, which inhibit via GABA_A receptors alpha1 noradrenergic neurons, which activate glutaminergic neurons. In the center of the circadian rhythm, noradrenaline and serotonin have alternating levels during the course of the day: serotonin is preponderant during the night and noradrenaline during the day [23]. In the hypothalamus, CRH-containing neurons with a high activity transmit a strong activating impulse via CRH receptors to glutaminergic neurons, which in depressive states, strongly inhibit via mGlu receptors 5-HT_1A serotonergic neurons located in the brainstem "mood center" [23]. CRH-containing neurons located in the hypothalamus also activate GABAergic neurons, which inhibit...
via GABA\textsubscript{A} receptors, hippocampal D\textsubscript{2} dopaminergic neurons. D\textsubscript{2} dopaminergic neurons, with a high activity in mania and with a weak activity in depression, activate glutaminergic neurons which inhibit via NMDA receptors 5-HT\textsubscript{1A} serotonergic neurons [18]. The latter neurons activate, via 5-HT\textsubscript{2A} receptors, hippocampal GABAergic neurons (Figure 1). Nicotinic cholinergic neurons, via alpha4beta2 nAch receptors, activate D\textsubscript{2} dopaminergic neurons. Neuropeptide Y-containing neurons located in the dentate gyrus inhibit, via NPY\textsubscript{1} receptors, GABAergic neurons, and substance P-containing neurons activate via NK\textsubscript{1} receptors GABAergic neurons. Finally, hippocampal GABAergic neurons inhibit alpha1 noradrenergic neurons located in the brainstem center of the circadian rhythm, and hippocampal glutaminergic neurons inhibit 5-HT\textsubscript{1A} serotonergic neurons located in the brainstem center of the circadian rhythm [23] (Table 1).

Treatment of Bipolar Disorder

For the treatment of bipolar disorder, second-generation antipsychotic drugs such as risperidone, olanzapine, quetiapine or aripiprazole or mood-stabilizing drugs are available [24]. Among the mood-stabilizing drugs, lithium can prevent the recurrence of depressive or manic symptoms in 30% of patients. Besides, the newer mood-stabilizing drugs valproate and lamotrigine exert a good

Figure 1: Neuronal pathways, classical neurotransmitters and neuropeptides involved in bipolar disorder. 5-HT: Serotonin; Ach: Acetylcholine; DA: Dopamine; CRH: Corticotropin-Releasing Hormone; GABA: Gamma-Aminobutyric Acid; Gal: Galanin; Glu: Glutamate; NA: Noradrenaline; NPY: Neuropeptide Y; SP: Substance P. The following subreceptors are indicated: alpha4beta2 nAch: alpha4beta2 nAch, a subreceptor of the nicotinic cholinergic receptor; CRH\textsubscript{1}: the CRH\textsubscript{1} receptor, a subreceptor of the corticotropin-releasing hormone receptor; GABA\textsubscript{A}: GABA\textsubscript{A} receptor, a subreceptor of the GABA receptor; GABA\textsubscript{B}: GABA\textsubscript{B} receptor, a subreceptor of the GABA receptor; GABA\textsubscript{A}: GABA\textsubscript{A} receptor, a subreceptor of the dopamine receptor; GABA\textsubscript{B}: GABA\textsubscript{B} receptor, a subreceptor of the serotonergic receptor; GABA\textsubscript{A}: GABA\textsubscript{A} receptor, a subreceptor of the metabotropic glutaminergic receptor; NPY\textsubscript{1}: NPY\textsubscript{1} receptor, a subreceptor of the neuropeptide Y receptor.
Second-generation antipsychotic drugs

Among the second-generation antipsychotic drugs, risperidone has a D2 and 5-HT2A antagonistic effect with a higher affinity for the D2 receptor than olanzapine [26]. Risperidone can improve manic symptoms and partly depressive symptoms. Olanzapine has as well a D2 and 5-HT2A antagonistic effect with a greater affinity for the 5-HT2A receptor than risperidone. It improves as well affective symptoms. Quetiapine also exerts a D2 and 5-HT2A antagonistic effect with an even greater affinity for the 5-HT2A receptor than olanzapine. It improves manic and depressive symptoms [26]. Aripiprazole has a partial agonism at the D2 receptor, and also exerts a 5-HT2A antagonistic and a 5-HT1A agonistic effect. It improves well maniac symptoms and affective symptoms. Bipolar disorder should be treated with monotherapy, although a combination of mood-stabilizing drugs with antipsychotic drugs is given. In bipolar mania, lithium or antipsychotic drugs should be administered, while lithium should be given preferentially. In bipolar depression, quetiapine should be given [27].

Mood-stabilizing drugs

Lithium has been used as a mood-stabilizing drug for more than half a century, and it has a secure prophylactic effect [25]. Its mechanism of action can be described as follows: it reduces the activity of the excitatory neurotransmitters dopamine and glutamate, increases the inhibitory effect of GABA, reduces the oxidative stress and has a neuroprotective effect [25]. Among the mood-stabilizing antiepileptic drugs, valproate and lamotrigine will be pointed out [28]. Valproate is a mood stabilizer in bipolar disorder and mania. It inhibits GABA channels, enhances the presynaptic inhibitory effect of GABA and thus stabilizes dopaminergic neurons in the hippocampus [28]. Lamotrigine blocks voltage-gated sodium channels and alpha-beta2 nAch receptors and hence stabilizes dopaminergic neurons. Besides, it blocks NMDA receptors and weakly AMPA receptors [28].

Conclusion

In this review, we describe the alterations of neurotransmitters and neuropeptides, acting at specific subreceptors in the brain regions (brainstem, hypothalamus, and hippocampus) involved in bipolar disorder. The coherence between the pituitary-hypothalamic-adrenocortical axis and the brainstem and hippocampus is described. In bipolar disorder, if the susceptibility genes are present, stress can enhance depressive or manic symptoms. Neural networks in the above-mentioned brain areas are described. The main and secure treatments for bipolar disorder are lithium, mood-stabilizing drugs and second-generation antipsychotic drugs. The neurotransmitters involved and the subreceptors, on which these prophylactic drugs interfere, are indicated in the neural networks described.

References

1. Jeong JH, Lee JG, Kim MD, Sohn I, Shim SH, et al. (2015) Korean Medication Algorithm for Bipolar Disorder 2014: comparisons with other treatment guidelines. Neuropsychiatr Dis Treat 11: 1561-1571.
2. Demontis F, Falconi M, Canu D, Serra G (2015) Memantine prevents “bipolar-like” behavior induced by chronic treatment with imipramine in rats. Eur J Pharmacol 752: 49-54.
3. Schweitzer I, Tuckwell V, Maguire K, Tiller J (2001) Personality pathology, depression and HPA axis functioning. Hum Psychopharmacol 16: 303-308.
4. Nikisch G, Agren H, Eap CB, Czernik A, Baumann P, et al. (2005) Neuropeptide Y and corticotropin-releasing hormone in CSF mark response to antidepressive treatment with citalopram. Int J Neuropsychopharmacol 8: 403-410.
5. Liu X, Kakeda S, Watanabe K, Yoshimura R, Abe O, et al. (2015) Relationship between the cortical thickness and serum cortisol levels in drug-naïve, first-episode patients with major depressive disorder: a surface-based morphometric study. Depress Anxiety 32: 702-708.
6. Leonard BE (2005) The HPA and immune axes in stress: the involvement of the serotonergic system. Eur Psychiatry 20 Suppl 3: S302-306.
7. Werner FM, Coveñas R (2013) Classical neurotransmitters and neuropeptides involved in major depression in a multi-neurotransmitter system: a focus on antidepressant drugs. Curr Med Chem 20: 4853-4858.
8. Biellau H, Trübben K, Krell D, Ageleen MW, Bernstein HG, et al. (2005) Volume deficits of subcortical nuclei in mood disorders A postmortem study. Eur Arch Psychiatry Clin Neurosci 255: 401-412.
9. Natt D, Demyttenaere K, Janka Z, Aare T, Bourin M, et al. (2007) The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J Psychopharmacol 21: 461-471.
10. Werner FM, Coveñas R (2011) The different brain centres involved in major depression and the derived pharmacological options. Klin Neurophysiol 42: 61.
11. Werner FM, Coveñas R (2014) Efficacy of novel antidepressant drugs in comparison to conventional antidepressant drugs. J Clin Case Rep 4: 11.
12. Ghadiri M, Nourmohammadi I, Fashi Ramandi M, Moazen Zadeh E (2015)

Table 1: Neural networks in the brainstem, hypothalamus and hippocampus in bipolar disorder.
Association involving serotonin transporter gene linked polymorphic region and bipolar disorder type 1 in Iranian population. Asia Pac Psychiatry.

13. Bonaventure P, Kelly L, Aluisio L, Shellon J, Lord B, et al. (2007) Selective blockade of 5-hydroxytryptamine (5-HT)7 receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents. J Pharmacol Exp Ther 321: 690-698.

14. Goldberg JF, Freeman MP, Balton R, Citrome L, Thase ME, et al. (2015) The american society of clinical psychopharmacology survey of psychopharmacologists’ practice patterns for the treatment of mood disorders. Depress Anxiety 32: 605-613.

15. van Enkhuizen J, Janowsky DS, Olivier B, Minassian A, Perry W, et al. (2015) The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited. Eur J Pharmacol 753: 114-126.

16. Schubert KO, Föcking M, Cotter DR (2015) Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: Potential roles in GABAergic interneuron pathology. Schizophr Res.

17. Ghose S, Winter MK, McCarson KE, Tamminga CA, Enna SJ (2011) The GABAβ receptor as a target for antidepressant drug action. Br J Pharmacol 162: 1-17.

18. Werner FM, Coveñas R (2012) Treatment of the schizoaffective disorder according to a neuronal network. Klin Neurophysiol 43: 103-104.

19. Chitty KM, Lagopoulos J, Hickie IB, Hermens DF (2015) Hippocampal glutamatergic/NMDA-receptor functioning in bipolar disorder: A study combining mismatch negativity and proton magnetic resonance spectroscopy. Psychiatry Res 233: 88-94.

20. Pomierny-Chamioło L, Poleszak E, Plić A, Nowak G (2010) NMDA but not AMPA glutamatergic receptors are involved in the antidepressant-like activity of MTEP during the forced swim test in mice. Pharmacol Rep 62: 1186-1190.

21. Lu X, Barr AM, Kinney JW, Sanna P, Conti B, et al. (2005) A role for galanin in antidepressant actions with a focus on the dorsal raphe nucleus. Proc Natl Acad Sci U S A 102: 874-879.

22. Werner FM, Coveñas R (2014) The different brain centres involved in major depression and the derived pharmacological options. Klin Neurophysiol 54: 01.

23. Werner FM, Coveñas R (2014) Klassische Neurotransmitter und Neuropeptide bei der Regulation des Schlaf-Wach-Rhythmus – wie werden neuronale Netzwerke entwickelt? Somnologie Suppl 1: 64-65.

24. Bumb JM, Enning F, Leweke FM (2013) Repurposed drugs for the treatment of schizophrenia and bipolar disorders. Curr Top Med Chem 13: 2364-2385.

25. Mathi GS, Tanious M, Das P, Coulston CM, Berk M (2013) Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs 27: 135-153.

26. Werner FM, Coveñas R (2014) Classical neurotransmitter and neuropeptides involved in schizophrenia: how to improve the therapeutic effect of the antipsychotic drugs. J Pharm Pharmacol 2: 571-581.

27. Pfennig A, Bschor T, Falkai P, Bauer M (2013) The diagnosis and treatment of bipolar disorder: recommendations from the current s3 guideline. Dtsch Arztebl Int 110: 92-100.

28. Werner FM, Coveñas R (2015) Review: Classical neurotransmitters and neuropeptides involved in generalized epilepsy in a multi-neurotransmitter system: How to improve the antiepileptic effect? Epilepsy Behav.