Phylogenetic Relationships of the Sweetpotato

[Ipomoea batatas (L.) Lam.]

R.L. Jarret1, N. Gawel1, and A. Whittemore3

U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Plant Introduction Station, 1109 Experiment Street, Griffin, GA 30223

Additional index words. RFLP, evolution, germplasm, molecular systematic, related species

Abstract. Twenty-four accessions of Ipomoea, representing 13 species of section Batatas and the outgroup species I. gracilis and I. per-caprae were analyzed for restriction fragment length polymorphisms. Polymorphisms were detected by probing Southern blots of restriction enzyme-digested genomic DNA with 20 low or moderate copy number sequences isolated from an I. batatas cv. Georgia Red genomic library. Data were analyzed cladistically and phenetically.

Ipomoea trifida, I. tabascana, and collection K233 are, of the materials examined, the most closely related to sweetpotato (I. batatas). Ipomoea littoralis, the only Old World species in the section, is a sister species to I. tilaea. Ipomoea littoralis, I. umbratica, I. peruviana, I. cynanchifolia, and I. gracilis are shown to be diploid (2n = 2x = 30). In contrast, I. tabascana is tetraploid (2n = 4x = 60). The intrasectional relationships of section Batatas species and the role of tetraploid related species in the evolution of the cultivated I. batatas are discussed.

Sweetpotato production worldwide exceeded 1.3 x 10^6 t in 1989 (Food and Agriculture Organization, 1990), and the enormous potential of this crop as a carbohydrate source is widely recognized. To increase current production levels, new genes for resistance to various biotic and abiotic factors must be identified. Resistance to many important diseases and insects does not appear to be present in the I. batatas gene pool, which has focused attention on the use of exotic germplasm for sweetpotato improvement (Iwanaga, 1988; Orjeda et al., 1990). Nishiyama and Teramura (1962) were the first to use exotic germplasm in the form of the feral sweetpotato segregate K123 (Jones, 1967). Resistance to sweetpotato weevil (Cylas spp.), scab [Elsinoe batatas (Saw.) Viegas and Jenkins], and black rot (Cerato cystis fimbriata Ell. et Halst.) have been identified in plants reported as I. trifida and I. littoralis (Iwanaga, 1988). While the potential for the use of most section Batatas species in sweetpotato improvement has yet to be ascertained, other distantly related species contribute indirectly; I. setosa L. and I. carnea ssp. fistulosa Mart., ex Choisy are used as virus-indicator and flower-inducing rootstock, respectively. Increased awareness of the potential contribution of Ipomoea spp. to sweetpotato improvement is reflected in the recent efforts to collect and establish gene banks of these materials (de la Puente, 1988; Jarret et al., 1989).

Until recently, species boundaries in Ipomoea sect. Batatas were poorly understood. As a result, many species names have been misapplied in the taxonomic and agronomic literature, and different workers have often described similar and/or identical materials under different names, or material of distinct species under the same name. Austin (1978) provided a taxonomic revision of section Batatas based on the study of several hundred specimens, including type specimens of most of the species. He recognized 11 species and three other taxa believed to be of recent hybrid origin. This revision provides a soundly based outline of the taxonomy and nomenclature of Ipomoea sect. Batatas. Since 1978, three additional species have been recognized in the section [I. peruviana, formerly considered a synonym of I. batatas; I. umbratica, formerly placed in sect. Eriopsernum; and I. tabascana], a recently described endangered species from Mexico (Austin, 1988; Austin et al., 1991; McDonald and Austin, 1990)]

One unresolved taxonomic problem that is particularly relevant to the understanding of sweetpotato evolution involves the relationship of I. batatas to a series of wild tetraploid plants that closely resemble cultivated sweetpotato in the structure of their leaves, flowers, and fruits. Mexican accessions of such tetraploids have been identified in the literature as I. gracilis (Jones, 1970), I. littoralis (Nishiyama et al., 1975), I. trifida (Shiotani and Kawase, 1987), I. batatas (Austin, 1988), or descendants of recent hybrids between cultivated sweetpotatoes and wild diploid weeds such as I. trifida (Austin, 1977). K233 is representative of one form of this latter group of plants.

To understand the origins of the cultivated sweetpotato, the relationships of the wild species with one another and with the cultivated sweetpotato must be more fully understood. However, little is known about the relationships of the species in this group. Austin (1988) has presented several phenetic analyses based on morphological characters. However, the morphological similarity of the species and the great plasticity of morphological characters in this group make it difficult to use morphological characters alone for phylogenetic reconstruction. We have, therefore, used restriction fragment length polymorphisms (RFLPs) for our phylogenetic study of this section. RFLPs can provide many genetic markers of high heritability. They have proven valuable for phylogenetic studies in several crop genera, including Lycopersicon (Miller and Tanksley, 1990), Brassica (Song et al., 1988), Solanum (Debener et al., 1990), Lens (Havey and Muehlbauer, 1989), and Glycine (Menacio et al., 1990).

Materials and Methods

Plant material

Plant material (Table 1) was, unless noted otherwise, obtained from the U.S. Sweetpotato Germplasm Repository (Jar-
Leaf tissue was collected from individual plants started from seed, frozen at –135°C, freeze-dried, ground to a fine powder in liquid N, and stored desiccated at –20°C until used. Accessions of *Ipomoea batatas* were obtained from an in vitro collection (Jarret, 1989), acclimated to soil in a quarantine greenhouse, and leaf tissue was harvested from individual plants. Leaf tissue of *I. littoralis* was harvested from a single accession of this species, collected in Queensland, Australia, in 1989, and maintained in quarantine in Griffin. Herbarium specimens of all plant material used in this study are available from the Southern Regional Plant Introduction Station.

DNA isolation, digestion, electrophoresis, and blotting

DNA was extracted from lyophilized leaf tissue following a procedure modified from that of Murray and Thompson (1980) and G. King (NPI, Salt Lake City, Utah, personal communication) as described by Gawel and Jarret (1991). Precipitated DNA was collected by centrifugation, resuspended in 400 µl of 1 M NaCl with heat (65°C for 30 min), and transferred to microtubes. Undissolved material was removed by centrifugation at 16,000 × g for 2 min, the supernatant was transferred to a new tube, and the DNA was ethanol-precipitated (Maniatis et al., 1982). DNA (3 to 5 µg) was digested with 9 to 15 U (U = unit of enzyme activity) of *Eco* RI, *Bam* HI, or *Msp* I for 8 h at 37°C. Fragments were separated on 0.8% agarose (BioRad) gels at 50 V for 20 h in TEA buffer. Following electrophoresis, the gels were denatured, neutralized, and Southern-blotted to nylon membrane following the membrane manufacturer’s recommendations (BioTrans-ICN, Irvine, Calif.). DNA was bound to the membranes by exposure to ultraviolet radiation (Stratagene, La Jolla, Calif.).

Library construction

Total genomic DNA, isolated as described above from ‘Georgia Red’, was further purified on cesium chloride (Maniatis et al., 1982), ethanol-precipitated, and digested with *Eco* RI. *Eco* RI-digested genomic DNA was ligated into dephosphorylated *Eco* RI-digested pUC 18 and used to transform *Escherichia coli* strain LL308. Recombinant plasmids were screened on X-gal and their insert size determined. Plasmids, with insert sizes from 0.5 to 1.0 kb, were cloned and their DNA isolated (Maniatis et al., 1982). Approximate copy number was determined by probing dot blots of plasmid DNA with *32*P-labeled *Ipomoea batatas* cv. Georgia Red genomic DNA. Inserts were isolated from 20 plasmids, bearing low copy number sequences, on low melting-point agarose and were random primer-labeled (BRL) with 50 µCi (1 Ci = 37 GBq) of *32*P-dCTP (NEN, Dupont, Wilmington, Del.). Unincorporated nucleotides were removed by chromatography on Sephadex G50 (Maniatis et al., 1982).

Hybridizations and autoradiography

Membranes were prehybridized for 4 to 6 h in a prehybridization solution containing 6 × SSC, 0.001% sonicated denatured salmon sperm (SS), 5 × Denhardt’s solution, and 0.1% SDS at 65°C. Hybridizations were carried out in 6 × SSC, 0.001% SS, 0.1% SDS, and denatured labeled plasmid DNA. Membranes were hybridized overnight at 65°C and washed successively in 2 × SSC, 0.1% SDS; 1 × SSC, 0.1% SDS; and 0.1 × SSC, 0.1% SDS for 30 min each at 65°C. Membranes were

Species	Identifier	Sample no.	Country of origin
Ipomoea batatas (L.) Lam. (2n = 90)	P1538295	97	Peru
	P1538300	98	Peru
	Q27990	99	New Guinea
I. cordato-triloba Dennstedt	P1518495	14	Mexico
	P1540710	43	Colombia
I. cynanchifolia Meinsh.	CIP460149	15	Brazil
I. gracios R. Brown	P1538370	01	Australia
I. lacunosa Blume	67.36º	11	United States
I. littoralis Blume	67.36º	22	Australia
I. peruviana O’Donell	CIP46025º	19	Peru
I. pes-caprae (L.) R. Brown	P1518492	21	Mexico
I. ramosissima (Poir.) Choisy	CIP460005º	18	Peru
	CIP460036º	41	Bolivia
Ipomoea sp.	K233º	24	Mexico
I. tabascana McDonald & Austin	P1518473	90	Mexico
I. tenuissima Choisy*	DLP2925º	12	Mexico
I. tilliae (Wild.) Choisy	P1530994	51	Dominican Republic
	P1540731	70	Colombia
	P1530998	53	Dominican Republic
	P1540722	17	Colombia
	P1540724	80	Colombia
	P1543818	81	Costa Rica
I. umbraticola House°	67.36º	74	Mexico

*°Material obtained from J.A. McDonald, Univ. of Texas at Austin.
*From D.F. Austin, Florida Atlantic Univ., Boca Raton.
*From A. Jones, U.S. Dept. of Agriculture, Agricultural Research Service, 2875 Savannah Highway, Charleston, S.C.
°International Potato Center, Lima, Peru.
Root-tip chromosome counts

Procedures for examination of somatic chromosomes were essentially as described by Jones and Kobayashi (1968). Fixed root tips were hydrolyzed in 0.2 N HCl for 30 min at 65°C, allowed to cool for 30 min at room temperature, and stained with aceticorcin. Chromosomes were counted in a minimum of 10 cells per species examined.

Data analysis

Data were compiled into a 0-1 matrix and subjected to cladistic analysis by Wagner parsimony using the SWAP= GLOBAL and MULPARS = ON options of PAUP version 2.4 (Swofford, 1985). To evaluate the strength of the resulting cladase, the data were analyzed by the bootstrap method of Felsenstein (1986). Using the BOOT routine in PHYLIP (version 3.4), 100 bootstrap samples were generated by random resampling of the data set (Felsenstein, 1985) and separately subjected to Wagner parsimony analysis. Since bands visualized using the same probe may not be genetically independent (Gawel et al., 1992), they were linked using the FACTOR option of BOOT. The confidence level of each clade (the bootstrap statistic) is equal to the percentage of bootstrap trees in which that clade appears. The bootstrap values are plotted on the majority-rule consensus tree that the statistical support for different clades varied from 29% to 100%. Three clades showed significant (95% or better) support (bootstrap statistic = 95%) (Fig. 1). This result supports the traditional view that I. trifida and the wild Mexican tetraploids are the most likely ancestors of cultivated sweetpotato (Austin, 1988) and indicates that the recently described species I. tabascana is also a very close relative of the crop plant. The species included in this group are classified genome B (Nishiyama et al., 1975). Other divisions within the section clearly transcend the boundaries of ploidy, compatibility, and genome type (Table 2).

The closest relatives of cultivated sweetpotato seem to be the wild Mexican tetraploids (bootstrap statistic = 96%). The most strongly supported clade in the tree (bootstrap statistic = 100%) consists of the cultivated sweetpotato, the tetraploid K233, and seven other species: I. cordata-triloba, I. cynanchifolia, I. lacunosa, I. tabascana, I. tenuissima, I. trifida, and I. triloba. This group contains all the closest relatives of the cultivated sweetpotato; all other taxa share fewer than half of the DNA fragments examined with I. batatas and must be considered more distantly related. Studies of the evolution of the sweetpotato should concentrate on a closer examination of the species in this group.

The closest relatives of cultivated sweetpotato seem to be the wild species I. trifida and I. tabascana, and the wild Mexican tetraploid represented by accession K233 (Fig. 2). The close relationship of these four taxa is strongly supported by our data (bootstrap statistic = 95%) (Fig. 1). This result supports the
accessions in our collection from Veracruz, Mexico, that are morphologically very similar to K233 and identical to accessions identified by McDonald as *I. batatas* var. *apiculata*. We suggest that K233 is a segregate of *I. batatas* var. *apiculata*, which explains its placement close to *I. batatas*. Chromosome counts (data not shown) indicate that *I. batatas* var. *apiculata* is tetraploid (2n = 4x = 60).

A role for the various tetraploid forms of *I. batatas* in the evolution of the cultivated hexaploid sweetpotato is unclear. Tetraploid materials examined to date, including *I. tabascana* (Table 2), have not demonstrated an ability to form storage roots. However, this failure has not yet been systematically examined. According to Martin et al. (1974), roots of their tetraploid accessions, when cut from the parent plant, were able to sprout. We have not verified this characteristic with K233 or *I. tabascana*. *Ipomoea trifida* (2n = 2x = 30) has a distinct perennial rooting habit (R.L.J. and A.W., unpublished data).

The hybrid members of the section, *I. × leucantha* Jacquin (Abel and Austin, 1973, 1980) and *I. × grandifolia* (Dammer O’Donnell (Austin, 1978), were not included in this analysis. Plant material of *I. × grandifolia* was not available. A hybrid origin for *I. × grandifolia* was proposed by Austin (1978). However, recent examination of newly acquired materials indicate that *I. × grandifolia* is a distinct species (D.F. Austin, personal communication) and should be included in future analyses.

Although less strongly supported by the bootstrap statistics, Figs. 1 and 2 illustrate a relationship between the North American species *I. lacunosa*, *I. tenuissima*, and *I. cordato-triloba*. Closely associated with these is *I. trifida* and, more distantly, *I. cynanchifolia*. *Ipomoea trifida*, endemic to the Caribbean and southern Florida, has also been suggested as a close relative to the sweetpotato (Austin, 1988). The South American species *I. peruviana*, *I. tiliacea*, and *I. ramosissima*; the Central American/Mexican species *I. umbraticola*, and the Old World species *I. littoralis* and *I. gracilis* appear to be more distantly related to *I. batatas* (Fig. 1).

Root-tip chromosome counts indicate that *I. peruviana*, *I. umbraticola*, *I. cynanchifolia*, *I. littoralis*, and *I. gracilis* are diploid, 2n = 2x = 30 (Table 2).

Although the three major clades in Fig. 1 are well supported, others parts of the cladogram are less well resolved (bootstrap statistics < 80%). These low bootstrap values reflect the relatively few unique character state changes supporting these clades. The level of within-species morphological and genetic (RFLP) variation in many of these species is high (A.W. and R.L.J., unpublished data on *I. trifida*; R.L.J., unpublished data on *I. batatas*). The topology of the cladogram is determined partly.

Table 2. Ploidy, compatibility, and genome group of *Ipomoea* spp. and accessions. Chromosome counts, unless noted otherwise, are from Jones (1974).

Species	Ploidy	Self-compatible	Genome
I. batatas	2n = 90	No	B
I. cordato-triloba	2n = 30	Yes	A
I. cyananchifolia	2n = 30	Yes	A
I. gracilis	2n = 30	No	B
I. lacunosa	2n = 30	Yes	A
I. littoralis	2n = 30	No	B
I. peruviana	2n = 30	No	B
I. pes-caprae	2n = 30	Yes	A
I. ramosissima	2n = 30	Yes	A
I. sp. (K233)	2n = 60	No	B
I. tabascana	2n = 60	No	B
I. tenuissima	2n = 30	Yes	A
I. tiliacea	2n = 60	No	B
I. trifida	2n = 60	No	B
I. triloba	2n = 60	Yes	A
I. umbraticola	2n = 60	Yes	A

* Nishiya et al. (1975).
* This paper.

J. Amer. Soc. Hort. Sci. 117(4):633-637. 1992.
by the chance selection of particular genotypes from the complex array of genotypes that comprise each species. Further, natural hybridization is known to occur between species of this group (Abel and Austin, 1980; Austin, 1978). Intrgressive gene flow between clades decreases the amount of genetic differentiation between species and weakens the historical association between the characters and the original phylogeny, thus decreasing the statistical confidence of the phylogenetic reconstruction. To improve the analysis, more individuals of these taxa, in combination with additional characters, are needed.

Literature Cited

Abel, W.E. and D.F. Austin. 1973. Natural hybridization in Ipomoea (Convolvulaceae). Amer. J. Bot. 60:33-34. (Abstr.)

Abel, W.E. and D.F. Austin. 1980. Intrgressive hybridization between *Ipomoea trichocarpa* and *I. lacunosa* (Convolvulaceae). Bull. Torrey Bot. Club 108:231-239.

Austin, D.F. 1977. Hybrid polyploids in *Ipomoea* section *batatas* (Convolvulaceae). J. Hered. 68:259-260.

Austin, D.F. 1978. The *Ipomoea Batatas* complex I. Taxonomy. Bul. Torrey Bot. Club 105:114-129.

Austin, D.F. 1982. Convolvulaceae vol. 15. In: G. Harling and B. Debener, T., F. Salamini, and C. Gebhardt. 1990. Phylogeny of wild *Ipomoea*. Proc. Amer. Soc. Hort. Sci. 93:497-501.

Austin, D.F. 1988. The taxonomy, evolution and genetic diversity of *Ipomoea*. Proc. Amer. Soc. Hort. Sci. 94:55-65.

Austin, D.F. 1990. Unreduced pollen in a wild tetraploid relative of sweet-potato. J. Amer. Soc. Hort. Sci. 117:201-205.

Austin, D.F., F. de la Puent, and J. Contreras. 1991. *Ipomoea littoralis* (Convolvulaceae) - Taxonomy, distribution, and ethnobotany. Econ. Bot. 45:251-256.

Austin, D.F., F. de la Puente, and J. Contreras. 1991. *Ipomoea tabascana*, an endangered tropical species. Econ. Bot. 45:435.

de la Puente, F. 1988. Progress in explorations and collections of sweet potato genetic resources-The IBPGR/CIP project, p. 75-100. In: P. Gregory (ed.). Exploration, maintenance, and utilization of sweet potato genetic resources. Intl. PotatoCtr., Lima, Peru.

Debener, T., F. Salamini, and C. Gebhardt. 1990. Phylogeny of wild and cultivated *Solanan* species based on nuclear restriction fragment length polymorphisms (RFLPs). Theor. Appl. Genet. 79:360-368.

Food and Agriculture Organization. 1990. Production yearbook 1989, vol. 43. Food and Agriculture Organization of the United Nations, Rome.

Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.

Felsenstein, J. 1986. PHYLP (Phylogenetic Inference Package) version 2.9. Washington State Univ., Pullman.

Gawel, N.J. and R.L. Jarret. 1991. Modified CTAB DNA extraction procedure for *Muss* and *Ipomoea*. Plant Molec. Biol. Rptr. 9:262-266.

Gawel, N.J., R.L. Jarret, and A. Whittemore. 1992. Restriction fragment length polymorphism (RFLP)-based phylogenetic analysis of *Muss*. Theor. Appl. Genet. (In press.)

Gower, J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325-338.

Haxe, M.J. and F.J. Muchelbauer. 1989. Variability for restriction fragment length polymorphies in lentil. Theor. Appl. Genet. 77:839-843.

Iwanaga, M. 1988. Use of wild germplasm for sweet potato breeding, p. 199-210. In: P. Gregory (ed.). Exploration, maintenance, and utilization of sweet potato genetic resources. Intl. Potato Ctr., Lima, Peru.

Jaccard, P. 1908. Nouvelles recherches sur la distribution florale. Bul. Soc. Vaudois. Sci. Natl. 44:223-270.

Jarret, R.L. 1989. A repository for sweet potato germplasm. Hort-Science 24:886.

Jarret, R.L., M. Spinks, G. Lovell, and A.G. Gillaspie. 1989. The S-9 Plant Germplasm Repository. Diversity 6:23-24.

Jones, A. 1967. Should Nishiyama’s K123 (*Ipomoea trifida*) be designated *I. batatas*? Econ. Bot. 21:163-166.

Jones, A. 1970. Asynapsis in *Ipomoea gracilis*. J. Hered. 61:151-152.

Jones, A. 1974. Chromosome numbers in the genus *Ipomoea*. J. Hered. 55:216-219.

Jones, A. 1990. Unreduced pollen in a wild tetraploid relative of sweet-potato. J. Amer. Soc. Hort. Sci. 115:512-516.

Jones, A. and M. Kobayashi. 1968. Derived polyploids of section *Batatas* genus *Ipomoea*. Proc. Amer. Soc. Hort. Sci. 93:497-501.

Maniatis, T., E.F. Fritsch, and J. Sambrook. 1982. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, N.Y.

Martin, F.W. 1968. The system of self-incompatibility in *Ipomoea*. J. Hered. 59:262-267.

Martin, F. and A. Jones. 1972. The species of *Ipomoea* related to sweet potato. Econ. Bot. 26:201-215.

Martin, F.W., A. Jones, and R.M. Ruberte. 1974. A wild *Ipomoea* closely related to the sweet potato. Econ. Bot. 28:287-292.

McDonald, J.A. and D.F. Austin. 1990. Changes and additions in *Ipomoea* section *Batatas* (Convolvulaceae). Brittonia 42:116-120.

Menacio, D.I., A.G. Hepburn, and T. Hymowitz. 1990. Restriction fragment length polymorphisms (RFLPs) of wild perennial relatives of soybean. Theor. Appl. Genet. 79:235-240.

Miller, J.C. and S.D. Tanksley. 1990. RFLP analysis of phylogenetic relationships and genetic variation in the genus *Lycopersicon*. Theor. Appl. Genet. 80:437-448.

Murray, M.G. and W.F. Thompson. 1980. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res. 8:4321-4325.

Nishiyama, I. 1963. The origin of the sweet potato plant, p. 119-128. In: J. Barrau (ed.). Plants and the Pacific migrations of Pacific peoples. Proc. 10th Pacific Sci. Conf., Honolulu.

Nishiyama, I. and T. Teramura. 1962. Mexican wild form of sweet-potato. Econ. Bot. 28:287-292.

Nishiyama, I. 1966. Use of wild germplasm for sweet potato breeding, p. 199-210. In: P. Gregory (ed.). Exploration, maintenance, and utilization of sweet potato genetic resources. Intl. Potato Ctr., Lima, Peru.

Orjeda, G., R. Freyre, and M. Iwanaga. 1990. Production of 2N pollen in diploid *Ipomoea trifida*, a putative wild ancestor of sweet potato. J. Hered. 81:462-467.

Rhoff, F.J. 1988. NT SYS-PC, numerical taxonomy and multivariate analysis system. Exeter Publ., New York.

Sanderson, M.J. 1990. Flexible phylogeny reconstruction: A review of phylogenetic inference packages using parsimony. Syst. Zool. 39:414-420.

Shiotani, I. and T. Kawase. 1987. Synthetic hexaploids derived from wild species related to sweet potato. Jpn. J. Breeding 37:367-376.

Shiotani, I. and T. Kawase. 1989. Genetic structure of the sweet potato and hexaploids in *Ipomoea trifida* (H.B.K.) Don. Jpn. J. Breeding 39:57-66.

Song, K.M., T.C. Osborn, and P.H. Williams. 1988. *Brassica* taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theor. Appl. Genet. 76:593-600.

Swofford, D.L. 1985. PAUP-Phylogenetic analysis using parsimony, version 4.2. Ill. Natural History Survey, Champaign.

Ting, Y.C., A.E. Kehr, and J.C. Miller. 1957. A cytological study of the sweet potato plant *Ipomoea batatas* (L.) Lam. and its related species. Amer. Naturalist 91:197-203.