OPEN WATER JALMAHALS OF KALAPARA UPAZILLA UNDER THE DISTRICT OF PATUAKHALI

Khandaker Anisul Huqa* and Mohammad Bodrul Munirb

aFisheries and Marine Resource Technology Discipline, Khulna University, Khulna 9208, Bangladesh
bFisheries Monitoring Officer, Patuakhali Barguna Aquaculture Extension Project, Patuakhali, Bangladesh

Abstract: The study was conducted to determine the present status of open water Jalmahals at Kalapara upazilla of Patuakhali district and their potentiality. The study identified a total of 296 Jalmahals (excluding major rivers) having a total area of 4754.14 acres and covering about 3.90\% of the Upazilla area. Among the 296 Jalmahals, 246 Jalmahals were smaller in size (<21 acre), 32 were moderately medium (21-50 acre), 11 were medium (51-100 acre) and the rest 7 were larger in size (>100 acre). According to category, 173 were canals, 114 were khas ponds and only 9 were dighis. Based on functional type, 41 were found to be open, 83 were semi-closed and 172 were closed. Of the 296 Jalmahals, 88 were found to be leased out of which 90 were under fish culture activities. Some legal aspects and water quality parameters of 15 Jalmahals selected randomly based on the functional type (i.e. Open, Semi-closed, Closed) and categories (i.e. Canal, Dighi, Ponds) were also investigated. Water quality parameters studied were water depth, secchi depth, water colour, water temperature, pH, dissolved oxygen, salinity, types and density of submerged plants and density of water hyacinth. The variation in water quality parameters was found to be significant. The study has also identified the local crafts and gears used at the study area. Many of the Jalmahals were found to be fully covered with water hyacinth and neither culture program nor major fishing activity, were found there. It is suggested that those Jalmahals, which are not leased out for management, should immediately be taken up by the Government and be given to the genuine fishermen through lease for proper management.

Key words: Open water; Jalmahal; Fisheries management

Introduction

Open water in Bangladesh has great ecological, economic, commercial and socioeconomic importance. The inland capture fishery is based on the vast fresh water resources comprising of some 270 species of fin fish and shell fish. It also supports a significant range of other activities such as extraction of reed, harvesting of edible aquatic vegetation and their products, medicinal herbs, shells, etc. During the monsoon season, large scale migration of fish and prawn takes place through the open waters. For example, sexually mature individuals of river breeding fish like the local major carps (Rui, Catla, Mrigal, Kalibaush) migrate from the beels to their breeding grounds in the rivers to breed through canals and flood plains (DOF, 1995).

* Corresponding author. Phone: PABX + 88-041-721791, 720171-3 (Ext-279); Fax: 88-041-731244; e-mail: <kul@khulna.bangla.net>
DOI: https://doi.org/10.53808/KUS.2000.2.2.9958-L
Considering the status and potential, a large number of water bodies are traditionally called haors, baors, beels, rivers, canals, khas ponds, and dighis. They are the potential fisheries resources, which are also called the Jalmahals. These Jalmahals may be either open or closed water bodies. These are the common water resources used by the people living around the Jalmahal for a variety of purposes. These Jalmahals are leased out to the people through auction or through invitation of tenders by the Ministry of Land (MoL) whose main interest is to obtain the revenue. As a result, the leaseholder tries to catch even the last fish before expiry of his lease period. This leads to threaten the open water fisheries resources. The coastal region of Bangladesh especially Patuakhali is very rich as open water fisheries, but they are not giving desired production due to lack of proper management system.

In view of the above, the present study is aimed at finding out the present status of the Jalmahals, assessment of the state of their fish resources, their management systems and also to identify the future potential of the Jalmahals belonging to Kalapara upazilla.

Materials and Methods

This study was carried out from January to July, 1999. A format was first developed to collect information about the present status of the Jalmahal resources and their management policy. The data and relevant information were collected from various sources such as Upazilla Fisheries Office, AC Land Office, Union and Zilla Parishad Offices, ADC (Rev.) Office of Patuakhali District and Water Development Board.

Length and width of the Jalmahals were recorded to the nearest m to estimate their area. Area of the rivers could not be estimated as it was difficult to measure their length and breadth. The Jalmahals were categorized after FAP 17 (1994) as river, baor, canal, dighi and pond. They were further categorized arbitrarily as (1) Open: having no sluice gate but some sort of tidal fluctuation, (2) Semi-closed: having a sluice gate or a very narrow inlet/outlet device and (3) Closed: stagnant water bodies having neither sluice gate nor inlet/outlet devices.

Fifteen of the surveyed Jalmahals (three each from open, semi-closed, closed, dighi and pond type) had been selected randomly for studying some water quality parameters such as water depth, secchi depth, water colour, water temperature, salinity, pH, dissolved oxygen (D.O.) and area covered by water hyacinth and submerged plants. The selected open Jalmahals were, Dhulashar-Mithagonj canal (J1), Arpangachia canal (J2), and Masuakhali canal (J3), situated in Mithagonj, Chakamuia and Dhankhali unions respectively. The selected semi-closed Jalmahals were Badurtali canal (J4), Pakhimara canal (J5), and Amtali canal (J6), situated in Tiakhali, Nilgonj and Mithagonj unions respectively. The selected closed Jalmahals were Khaprabhanga canal (J7), Tulatoli canal (J8) and Chinguria canal (J9) which were situated in Khaprabhanga, Latchapli and Lalua unions respectively. The three dighis selected were Kashem Mollah dighi (J10), Wazut Ali Khan dighi (J11) and Nasnapara dighi (J12). The first two were situated in Dhulashar union and the last one was in Tiakhali union while the three ponds selected were Kuakata
Results and Discussion

A total of 296 Jalmahals (excluding major rivers) having a total area of 4754.14 acres were recorded. Variation in number and area of Jalmahals were found in different unions of Kalapara upazilla (Table 1).

Table 1: Union-wise distribution and extent of the Jalmahals in Kalapara upazilla

Name of Union	Area of Union (acre)	Area Covered by Jalmahals	Number of Jalmahals	Area of Jalmahals (acre)	Average Size (acre)
Kalapara Sadar	1868.29	1.23	11	22.98	2.09
Tiakhali	7082.32	2.88	20	204.25	10.21
Chakamuia	9388.50	10.67	17	1002.00	58.94
Dhankhali	15111.77	2.41	29	363.94	12.55
Lalua	12870.02	1.94	35	250.00	7.14
Mithagonj	18981.64	5.58	31	1059.62	34.18
Nilgonj	16704.86	3.42	69	571.29	8.28
Dhulashar	10972.00	1.75	27	191.69	7.10
Khaprabhanga	14121.87	3.10	24	437.33	18.22
Latachapli	14906.18	3.74	33	557.99	16.91
Total	122007.6	3.90	296	4754.14	16.06

Kalapara upazilla covered an area of 1,22,007.6 acres of which the Jalmahals was 3.90%. But the scenario is different in different unions of the Kalapara upazilla (Table 1). The maximum number of (69) Jalmahals were recorded from Nilgonj union but they covered only 3.4% of the union area as they were comparatively smaller (average area was 8.28 acres) in size. The minimum number (only 11) was recorded from Kalapara sadar union which was followed by Chakamuia union which harbors 17 Jalmahals but they covered 10.67% of the union area as they were bigger (average size 58.94 acres) in size. The area covered by Jalmahals in different unions of the Kalapara upazilla is shown in Fig.1.

Most of the Jalmahals (173) were canals, followed by ponds (114) and dighis (9). The number of closed Jalmahals was 172, followed by semi-closed (83) and open (41). The size of Jalmahals was found to vary from 0.1 to 494 acre (Table 2).

It was noticed that the smaller Jalmahals (<21 acre) were more in comparison to the larger ones. An inverse relationship has been found to exist between size of the Jalmahals and the number of Jalmahals leased out as well as between size of the Jalmahals and the number of Jalmahals under fish cultivation (Table 2). Water quality parameters as recorded from the fifteen selected Jalmahals have been presented in Table 3. Parameter wise they are presented as follows:

Water Depth: Water depth of the open Jalmahals was higher than that of the other two functional types (Table 3). Variation is found to be statistically highly significant both in case of functional types and categories (Table 4). Water invades the Jalmahals in the
Table 2. Relationship between size, category and status of the surveyed *Jalmahals*.

Size class (acre)	Freq	Size (acre)	Mean	Category	Functional type	Leased out	Under fish cultivation
<21	246	0.1-20	30	123	Canal 0, Dighi 9, Pond 114	25 56	165 83 82
21-50	32	21-48	16	32	0 0	18 5 4	5
51-100	11	54-89	11	11	0 0	2 8 1	1 1 3
>100	7	197-494	7	7	0 0	5 1 1	0 0 0
Total	296	0.1-494	64	173	9 114	41 83	172 88 90

Table 3. Mean water quality parameters as recorded from the 15 selected *Jalmahals* during the period from June to July, 1999.

Jalmahals	Open	Semi-closed	Closed	Dighi	Ponds
W. depth (m)	72	72	73	25	26
S. depth (cm)	19	17	19	55	54
Colour	T	T	T	G	G
Temp. (°C)	21	21	20	22	22
Salinity (ppt)	11	11	12	1	1
pH	87	87	87	83	83
D.O. (mg/l)	5	5	43	44	43
% of water hyacinth	0	0	100	0	0
% of submerged plant	0	0	75	65	100

T= Turbid, G=Green and B=Brown; SD= Standard deviation; W. Depth= Water depth; S. depth= Secchi depth; Temp= Temperature; D.O= Dissolved oxygen

rainy season (May-June), and reaches the maximum level in September and thereafter starts dropping down sharply. Similar phenomenon was observed by Ehshan *et al.* (1997) in Chanda beel at the Faridpur-Madaripur belt of Bangladesh and by Hasanat *et al.* (1996) in the river of Old Brahmaputra. The study program was conducted in the month of June-July, so, water depth of all the surveyed *Jalmahals* was higher at that time. The water depth is very important for aquaculture in case of small water bodies it should be 2m, where there is arrangement of regular water supply (Rahman, 1992). When water depth is more, it affects the fish growth, but optimum water depth is very much helpful for fish growth. The results obtained in the present study are disappointing. So, for
implementation of the fishery management activities, such as aquaculture, cage culture, pen culture or establishment of sanctuary, this area will provide a good management environment.

Secchi Depth: Secchi depth as recorded from the open Jalmahals was lower than that of the other categories of Jalmahals (Table 3). Both month to month variation as well as category to category variation were found to be highly significant (Table 4). Recording of the lower secchi depth in the rainy season agrees with the findings of Bala (1997) who found it to vary only in open Jalmahals, but remain unchanged in closed Jalmahals. In semi-closed Jalmahal, the standard secchi depth should be 50 to 75 cm (Pillay, 1993). So all the semi-closed Jalmahals which were selected for the present study were good.

Water Colour: Water colour was found to be related to secchi depth reading. The secchi reading was lower in turbid water. In open Jalmahals, the water colour was turbid due to mixing of the silt (Table 3). Water colour of the semi-closed and closed Jalmahals was found to be almost green. Green and brownish green water colour is suitable for the growth of fish species (Bala, 1997). But in some closed Jalmahals, water colour was not greenish due to excess growth of water hyacinth as it was in case of Tulatoli canal which was 100% covered by water hyacinth.

Parameter	Treatment	Sum of squares	df	Mean square	F	Significance
Water depth	Between groups	71.438	4	17.86	23.213	*** .000
	Within groups	30.776	40	0.769	23.213	*** .000
	Total	102.214	44			
Secchi depth	Between groups	8799.867	4	2199.967	155.109	*** .000
	Within groups	567.333	40	14.183	155.109	*** .000
	Total	9367.2	44			
Temperature	Between groups	41.222	4	10.306	9.867	*** .000
	Within groups	41.778	40	1.044	9.867	*** .000
	Total	83	44			
Salinity	Between groups	560.356	4	140.089	138.549	*** .000
	Within groups	40.444	40	1.011	138.549	*** .000
	Total	600.8	44			
pH	Between groups	3.901	4	0.975	4.368	*** .005
	Within groups	8.931	40	0.223	4.368	*** .005
	Total	12.832	44			
DO	Between groups	6.812	4	1.703	4.731	*** .003
	Within groups	14.4	40	0.36	4.731	*** .003
	Total	21.212	44			

***Highly significant; ** Significant; * Not significant

Water Temperature: Water temperature of all the Jalmahals was found to be similar (Table 3). Water temperature is highly synergistic with the air temperature as also reported by Ismail et al. (1984) and Begum et al. (1989). Bangladesh is in the subtropical and tropical region, so, water temperature gradually decrease from June to December and increase from December to June within a range of 24 to 34°C (Munir and Huda, 1997).
Salinity: Saline water was found in the open and semi-closed Jalmahals as they had some connection with the Bay of Bengal (Table 3). A maximum of 12 ppt salinity was recorded from the open Jalmahals (Table 3). Variation in salinity was found to be highly significant (Table 4). Some of the fresh water fishes especially some Indian major carps such as *Labeo rohita*, *Catla catla* etc. can tolerate salinities up to 12 ppt and sometimes even grow better in salinities of about 5 ppt (Pillay, 1993). The salinity of closed Jalmahals was found to be zero (Table 3).

pH: pH of all the Jalmahals was to be found almost similar and it was in the alkaline range (Table 3). pH is considered to be an important factor in fish culture. Ruttner (1953) stated that a eutrophic lake normally maintains alkaline pH. Slightly alkaline water is good for fish species (Pillay, 1993).

Dissolved Oxygen: The amount of dissolved oxygen as recorded from the different Jalmahals was more or less similar and was in the desired range (Table 3). As oxygen regulates most of the processes of plants and animals, it is the most important factor in both aquatic and terrestrial environment (Rahman, 1992). DoE (1991) reported that the standard range of dissolved oxygen in any waterbody should be 4-5 ppm for fish survival.

Water Hyacinth: Water hyacinth was found in some closed Jalmahals only (Table 3). The water hyacinth is considered to reduce the productivity of water through uptake of nutrients, reduce amount of dissolved oxygen and pH value due to bacterial decomposition. However no water hyacinth was found in open and semi-closed Jalmahals, because they were nearer to saline water, probably the saline water is not suitable harmful for the growth of water hyacinth. Water hyacinth may provide shelter to the fish from excessive sunlight, assist in spawning of some species of fish. Bala (1997) reported that water hyacinth is also used for building the fish sanctuary. Water hyacinth is an excellent fertilizer as its ash contains potash and lime (Barret, 1989).

Submerged Plants: Submerged plants were found in all the surveyed closed Jalmahals (Table 13). The submerged plants as recorded were *Najas marina* (30%), *Ceratophyllum* (75%), *Hydrilla* (75%), *Najas indicus* (80%) and flagellum algae (15%). No submerged plant was found in the surveyed open and semi-closed Jalmahals. Bala (1997) reported that open and semi-closed Jalmahals may not contain the submerged plants. *Ceratophyllum* is good for grass carps (Pillay, 1993).

Management of the Jalmahals: Large Jalmahals (>20 acre) were under the administrative control of the MoL, Ministry leases them out to the local people through tender. As a result, it was found that suitable large productive Jalmahals were found to be controlled by the non-professional local elites and were not good management. Similar situation was reported by Talukdar (1993). A lot of Jalmahals was found beset with conflicts. The parties involved in conflict were village groups, local elites (influential), different communities, people from different localities etc. The root causes, of the conflicts were encroachment by the influential person(s), conflict between local and non-local people, improper leasing system etc.
Lease period appeared to be very short i.e. usually for 3 years, but for development may be extended up to 7 years. Increase of lease money by 10% per year was reported to be a great problem for the marginal fishermen. Lack of coordination was notice among the Government, Non-Government and Fisher Societies, especially in case of management of Jalmahals. So, following measures should be taken for development of the Jalmahals and for sustainability of their production:

Administrative control of all the Jalmahals should be transferred from the MoL to MoFL as early as possible. A new Jalmahal management policy should be adopted to ensure due to right of the poor fishermen in Jalmahal management. A good credit disbursement system should be adopted for marginal fishermen. Coordination among the Government, Non-Government and Fisher societies should be strengthened. Long term (15-20 years) leasing policy should be adopted. Lease should be given only to the genuine fishermen. Increase in lease value should be commensurate with the increase in production and market price of fish. A conceptual framework should be developed to designate all the people, who are living in the close vicinity of the Jalmahals, as fisher or fisheries people.

References

Bala, N., 1997. Baor Biological Studies. Annual Report (July ’96 – June ’97), Vol. 1, pp. 18-19.
Barret, S.C.H., 1989. Waterweed invasions. Scientific American, 260:10.
Begum, A.G., Ali, M.S. and Ahmed, K., 1989. Studied on limnology in minipond and growth of Tilapia. Bangladesh Journal of Zoology, 17(1): 35-45
DOE (Department of Environment), 1991. Environment Quality Standards (EQS) for Bangladesh. pp. 67-73.
DOF (Department of Fisheries), 1995. Project Proforma (revised), 3rd Fisheries Project, DOF, GOB, Bangladesh, 126 p.
Ehshan, A.M., Hossain, M.S. and Razzaque, A., 1997. Limnology of Chanda Beel. Bangladesh Journal of Fisheries Research, pp. 31-38.
FAP 17, 1994. Fisheries Studies and Pilot Project Village Studies. Supporting Volumes, Overseas Development Agency and the Government of Bangladesh, Dhaka, pp. 35-42.
Hasanat, M.A., Islam, M.A., Khair, M.A. and Alam, M.S., 1996. Studies on the plankton of the river old Brahmaputra. In: Souvenir on Tenth Zoological Conference of the Zoological Society of Bangladesh, May 28-30, 72 pp.
Ismail, M., Rahman, A., Ali, S. and Ahmed, K., 1984. Studies on limnology and some aspects of biology of Oreochromies niloticus (L) in a pond at Juran, Dhaka. Proceedings of the Fourth National Zoological Conference, Bangladesh, pp. 97-105.
Mazid, M.A., Hossain, M.S., Razzaque, A. and Rahman, S., 1996. Fishing Methods in the Floodplains and Measure to Control. FRI publication No. 13. Bangladesh Journal Fisheries Research, Mymensingh, Bangladesh: 15 pp.
Munir, M.B. and Huda, N., 1997. Impact of the Industrial Effluents of the Khulna Newsprint Mills Ltd. In the river Bhairab. Undergraduate Project-Thesis, Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh, p. 9.
Pillay, T.V.R., 1993. Aquaculture Principles and Practices. Fishing News Books Inc., Canada, pp. 283-311.
Huq, K.A. and Munir, M.B., 2000. Open water Jalmahals of Kalapara Upazilla under the district of Patuakhali.

Rahman, M.S., 1992. *Water Quality Management in Aquaculture*. BRAC Prokashana, Dhaka, Bangladesh, 71-72.

Ruttner, F., 1953. *Fundamentals of Limnology*. University of Toronto Press, Toronto, Canada, 242 pp.

Talukdar, J., 1983. Socio-Economic Issues in Management of Freshwater Wetlands in Bangladesh, In: A. Nishat, *Freshwater Wetlands of Bangladesh- Issues and Approach for Management*. IUCN, The world Conservation Union, Thailand, pp. 392-396.