Pharmacokinetics of Antituberculosis Drugs in HIV-Positive and HIV-Negative Adults in Malawi

J. J. van Oosterhout, a,b F. K. Dzinjalamala, a C. Dimba, d D. Waterhouse, e G. Davies, f,g E. E. Zijlstra, b M. E. Molyneux, a,f E. M. Molyneux, a S. Ward a

Diagnostics, International Medical and Research Department, Zomba, Malawi; Correlation of Medicine, Department of Medicine, Blantyre, Malawi; College of Medicine, Department of Pharmacy, Blantyre, Malawi; National Tuberculosis Control Program, Lilongwe, Malawi; Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi; University of Liverpool, United Kingdom; College of Medicine, University of Malawi, Department of Pediatrics, Blantyre, Malawi.

Limited data address the impact of HIV coinfection on the pharmacokinetics (PK) of antituberculosis drugs in sub-Saharan Africa. A total of 47 Malawian adults underwent rich pharmacokinetic sampling at 0, 0.5, 1, 2, 3, 4, 6, 8, and 24 h postdose. Of the subjects, 51% were male, their mean age was 34 years, and 65% were HIV-positive with a mean CD4 count of 268 cells/μL. Antituberculosis drugs were administered as fixed-dose combinations (150 mg rifampin, 75 mg isoniazid, 400 mg pyrazinamide, and 275 mg ethambutol) according to recommended weight bands. Plasma drug concentrations were determined by high-performance liquid chromatography (rifampin and pyrazinamide) or liquid chromatography-mass spectrometry (isoniazid and ethambutol). Data were analyzed by nonparametric methods and analysis of variance of log-transformed summary parameters. The pharmacokinetic parameters were as follows (median [interquartile range]): for rifampin, maximum concentration of drug in plasma (C_{max}) of 4.129 μg/ml (2.474 to 5.596 μg/ml), area under the curve from 0 to 24 h ($AUC_{0–24}$) of 21.32 μg/ml · h (13.57 to 28.60 μg/ml · h), and half-life of 2.45 h (1.86 to 3.08 h); for isoniazid, C_{max} of 3.97 μg/ml (2.979 to 4.544 μg/ml), $AUC_{0–24}$ of 22.5 (14.75 to 34.59 μg/ml · h), and half-life of 3.93 h (3.18 to 4.73 h); for pyrazinamide, C_{max} of 34.21 μg/ml (30.00 to 41.60 μg/ml), $AUC_{0–24}$ of 386.6 μg/ml · h (320.0 to 463.7 μg/ml · h), and half-life of 6.821 h (5.71 to 8.042 h); and for ethambutol, C_{max} of 2.278 μg/ml (1.694 to 3.098 μg/ml), $AUC_{0–24}$ of 20.41 μg/ml · h (16.18 to 26.27 μg/ml · h), and half-life of 7.507 (6.517 to 8.696 h). The isoniazid PK data analysis suggested that around two-thirds of the participants were slow acetylators. Dose, weight, and weight-adjusted dose were not significant predictors of PK exposure, probably due to weight-banded dosing. In this first pharmacokinetic study of antituberculosis drugs in Malawian adults, measures of pharmacokinetic exposure were comparable with those of other studies for all first-line drugs except for rifampin, for which the C_{max} and $AUC_{0–24}$ values were notably lower. Contrary to some earlier observations, HIV status did not significantly affect the AUC of any of the drugs. Increasing the dose of rifampin might be beneficial in African adults, irrespective of HIV status. Current co-trimoxazole prophylaxis was associated with an increase in the half-life of isoniazid of 41% ($P = 0.022$). Possible competitive interactions between isoniazid and sulfamethoxazole mediated by the N-acetyltransferase pathway should therefore be explored further.

Tuberculosis (TB) and HIV coinfection remains a challenging public health problem in sub-Saharan Africa. TB is the most common serious opportunistic infection in people living with HIV/AIDS, while a majority of individuals with TB are HIV seropositive. Treatment guidelines for TB do not recommend any adjustments in TB treatment in the presence of HIV coinfection, unless protease inhibitors are also being administered. Although a recent systematic review concluded that a longer duration of rifampin-based treatment reduces the recurrence rates of TB after treatment in HIV-positive people, this appeared not to be true when antiretroviral therapy (ART) was coadministered (1). Concern has nonetheless lingered as to the reliability of TB treatment in this context, with repeated reports of lower plasma concentrations of antituberculosis drugs, particularly rifampin, in HIV-coinfected TB patients (2–11) and the association of these findings with worse treatment outcomes in some studies (11, 12).

Due to their logistical complexity, however, few intensive pharmacokinetic (PK) studies of HIV-infected tuberculosis patients have been performed in the sub-Saharan region, with the bulk of the published data originating from South Africa (7, 9, 10, 13). Consequently, larger and more detailed field PK studies are required in order to obtain accurate estimates of key PK and pharmacodynamics parameters, define the full extent of the interindividual variability in PK, and evaluate the impact of important covariates such as HIV coinfection and coadministration of antiretroviral therapy. Such studies may also assist in determining the possible impact of local treatment practices, drug formulation, nutritional factors, and pharmacogenetic differences on PK parameters in these different settings.

In Malawi, the HIV infection prevalence in adults is around...
11%, and 70% of TB patients are HIV infected. HIV infection and TB treatment are provided according to a public health approach, using standardized combination regimens with generic drugs, which are provided free of charge in both programs. The TB treatment is provided through a well-established community directly observed treatment (DOT) system. Infrastructure to support therapeutic drug monitoring of TB drugs and PK data for antituberculosis drugs in Malawian adults are not available. The National TB Programme expressed a need to address concerns about the pharmacological robustness of TB treatment in the local context with the high rates of HIV coinfection and malnutrition. We therefore determined the PK profiles of the four drugs comprising the first-line TB treatment regimen in a representative cohort of Malawian TB patients to establish whether they attain optimal plasma TB drug concentrations and whether HIV status and other variables have an important impact on pharmacokinetics.

MATERIALS AND METHODS

Clinical protocol. The study took place at outpatient clinics and tuberculosis wards of Queen Elizabeth Central Hospital, a tertiary government hospital with around 1,000 beds in Blantyre, Malawi. Malawian adults (>16 years) who had a diagnosis of sputum microscopy acid-fast bacilli-positive pulmonary TB and who provided informed consent were enrolled in a pharmacokinetic study from January 2007 to February 2008. Sampling took place after a minimum of 2 weeks of TB treatment and before the end of the intensive treatment phase. Patients were eligible for enrollment irrespective of their current antiretroviral therapy (ART) for HIV infection. Patients with an unknown HIV status were encouraged to undergo HIV testing. Patients who were unwilling to be tested or have the HIV infection. Patients with an unknown HIV status were encouraged to

We determined the PK profiles of the four drugs comprising the first-line TB treatment regimen in a representative cohort of Malawian TB patients to establish whether they attain optimal plasma TB drug concentrations and whether HIV status and other variables have an important impact on pharmacokinetics.

Clinical protocol. The study took place at outpatient clinics and tuberculosis wards of Queen Elizabeth Central Hospital, a tertiary government hospital with around 1,000 beds in Blantyre, Malawi. Malawian adults (>16 years) who had a diagnosis of sputum microscopy acid-fast bacilli-positive pulmonary TB and who provided informed consent were enrolled in a pharmacokinetic study from January 2007 to February 2008. Sampling took place after a minimum of 2 weeks of TB treatment and before the end of the intensive treatment phase. Patients were eligible for enrollment irrespective of their current antiretroviral therapy (ART) for HIV infection. Patients with an unknown HIV status were encouraged to undergo HIV testing. Patients who were unwilling to be tested or have the HIV infection. Patients with an unknown HIV status were encouraged to

Clinical protocol. The study took place at outpatient clinics and tuberculosis wards of Queen Elizabeth Central Hospital, a tertiary government hospital with around 1,000 beds in Blantyre, Malawi. Malawian adults (>16 years) who had a diagnosis of sputum microscopy acid-fast bacilli-positive pulmonary TB and who provided informed consent were enrolled in a pharmacokinetic study from January 2007 to February 2008. Sampling took place after a minimum of 2 weeks of TB treatment and before the end of the intensive treatment phase. Patients were eligible for enrollment irrespective of their current antiretroviral therapy (ART) for HIV infection. Patients with an unknown HIV status were encouraged to undergo HIV testing. Patients who were unwilling to be tested or have the HIV infection. Patients with an unknown HIV status were encouraged to

MATERIALS AND METHODS

Clinical protocol. The study took place at outpatient clinics and tuberculosis wards of Queen Elizabeth Central Hospital, a tertiary government hospital with around 1,000 beds in Blantyre, Malawi. Malawian adults (>16 years) who had a diagnosis of sputum microscopy acid-fast bacilli-positive pulmonary TB and who provided informed consent were enrolled in a pharmacokinetic study from January 2007 to February 2008. Sampling took place after a minimum of 2 weeks of TB treatment and before the end of the intensive treatment phase. Patients were eligible for enrollment irrespective of their current antiretroviral therapy (ART) for HIV infection. Patients with an unknown HIV status were encouraged to undergo HIV testing. Patients who were unwilling to be tested or have the HIV infection. Patients with an unknown HIV status were encouraged to

We therefore determined the PK profiles of the four drugs comprising the first-line TB treatment regimen in a representative cohort of Malawian TB patients to establish whether they attain optimal plasma TB drug concentrations and whether HIV status and other variables have an important impact on pharmacokinetics.

RESULTS

Forty-seven patients were enrolled (Table 1). The mean age was 34 years, and 24 (51%) were male. Thirty (65%) were HIV-positive with a mean CD4 count of 268 cells/µl. Thirteen were receiving nevirapine-based and one was receiving efavirenz-based antiretroviral therapy. All HIV-positive participants received co-trimoxazole prophylaxis, and none had chronic diarrhea. The mean weight-adjusted dose received for each of the drugs was 10.03 mg/kg for rifampin, 5.01 mg/kg for pyrazinamide, 26.58 mg/kg for isoniazid, and 18.38 mg/kg for ethambutol. Plasma concentration curves for each of the drugs are shown in Fig. 1. The summary PK parameters derived from the noncompartmental analysis are presented in Table 2. The PK parameters for rifampin, isoniazid, pyrazinamide, and ethambutol could be computed for 41, 46, 46, and 47 participants, respectively, due to missing observations or a noncredible PK profile in some participants. Estimates of the apparent terminal elimination half-life (λ2) were based on at least three data points in all cases with a mean number of data points of 3.4, 3.9, 3.9, and 3.68 contributing to the analysis and a percent

RESULTS

Forty-seven patients were enrolled (Table 1). The mean age was 34 years, and 24 (51%) were male. Thirty (65%) were HIV-positive with a mean CD4 count of 268 cells/µl. Thirteen were receiving nevirapine-based and one was receiving efavirenz-based antiretroviral therapy. All HIV-positive participants received co-trimoxazole prophylaxis, and none had chronic diarrhea. The mean weight-adjusted dose received for each of the drugs was 10.03 mg/kg for rifampin, 5.01 mg/kg for pyrazinamide, 26.58 mg/kg for isoniazid, and 18.38 mg/kg for ethambutol. Plasma concentration curves for each of the drugs are shown in Fig. 1. The summary PK parameters derived from the noncompartmental analysis are presented in Table 2. The PK parameters for rifampin, isoniazid, pyrazinamide, and ethambutol could be computed for 41, 46, 46, and 47 participants, respectively, due to missing observations or a noncredible PK profile in some participants. Estimates of the apparent terminal elimination half-life (λ2) were based on at least three data points in all cases with a mean number of data points of 3.4, 3.9, 3.9, and 3.68 contributing to the analysis and a percent

TABLE 1 Patient characteristics (n = 47)

Characteristic	Value*
Age (yr)	34.4 (16–60)
Male sex	24 (52)
Weight (kg)	52.52 (35.80–74.30)
Height (m)	1.65 (1.51–1.81)
BMI (kg/m²)	19.29 (13.92–28.39)
Malnutrition (BMI <18.5 kg/m²)	19 (40)
TB retreatment regimen	6 (13)
HIV status	30 (65)
WHO stage 4	6 (13)
CD4 count (cells/µl)	268 (3–1,204)
Co-trimoxazole prophylaxis	19 (40)
Nevirapine-based ART	12 (26)
Efavirenz-based ART	1 (2)
Hb (g/dl)	11.39 (8.50–19.20)
Creatinine (mg/dl)	0.8 (0.4–1.9)
ALT (U/liter)	15.7 (5–44)

*Values are means (ranges) or no. (%).
extrapolation to infinity on the area under the curve (AUC\(_{0–\infty}\)) of 13.49, 5.31, 28.10, and 14.80 for the four drugs, respectively.

For rifampin, the median observed maximum concentration of drug in plasma (C\(_{\text{max}}\)) was 4.13 μg/ml (interquartile range [IQR], 2.47 to 5.60 μg/ml) and the AUC\(_{0–\infty}\) was 21.32 μg/ml · h (IQR, 13.57 to 28.60 μg/ml · h). In 14 of 47 (30%) participants, the C\(_{\text{max}}\) occurred at 4 h postdosing or later, representing delayed absorption, and in 4 of these cases the noncompartmental analysis failed to produce a meaningful estimate of the AUC. The C\(_{\text{max}}\) and AUC\(_{0–24}\) were not significantly associated with a weight-adjusted dose (P = 0.10 and 0.06), while the AUC\(_{0–\infty}\) was negatively correlated with an absolute dose (P = 0.048). On closer examination, this finding appeared to be driven by exposure in participants with the lowest body mass. As expected, both measures of volume of distribution (apparent volume of distribution during terminal phase [V\(_{z}/F\)] and volume of distribution at steady state [V\(_{ss}/F\)]) tended to scale positively with both linear and power functions of weight (P = 0.08 and 0.09).

For isoniazid, the median observed C\(_{\text{max}}\) was 3.97 μg/ml (IQR, 2.98 to 4.54 μg/ml) and the AUC\(_{0–\infty}\) was 22.5 μg/ml · h (IQR, 14.75 to 34.59 μg/ml · h). No relationship was observed between these parameters and the absolute or weight-adjusted dose. The

FIG 1 Semilogarithmic plots of the plasma concentrations of the four first-line drugs. The solid lines show the median concentrations, and the dashed lines show the upper and lower quartiles.

TABLE 2 Summary of pharmacokinetic parameters derived from noncompartmental analysis

Parameter*	Rifampin (n = 41)	Isoniazid (n = 46)	Pyrazinamide (n = 46)	Ethambutol (n = 47)
C\(_{\text{max}}\) (μg/ml)	4.13 (2.47–5.60)	3.970 (2.979–4.544)	34.21 (30.00–41.60)	2.278 (1.694–3.10)
T\(_{\text{max}}\) (h)	3.00 (2.00–4.00)	2.00 (1.00–3.00)	2.00 (1.00–3.00)	3.00 (2.00–4.00)
AUC\(_{0–\text{last}}\) (μg/ml · h)	16.62 (11.97–24.28)	21.83 (13.80–33.89)	273.10 (173.7–388.5)	16.72 (12.72–22.93)
AUC\(_{0–\infty}\) (μg/ml · h)	21.32 (13.57–28.60)	22.50 (14.75–34.59)	386.6 (320.0–463.7)	20.41 (16.18–26.27)
t\(_{1/2}\) (h)	2.45 (1.86–3.08)	3.93 (3.18–4.73)	6.821 (5.71–8.04)	7.507 (6.51–8.69)
CL/F (liters/h)	25.11 (16.62–39.41)	11.60 (7.179–18.42)	3.577 (2.66–4.75)	48.39 (34.31–62.73)
V\(_{z}/F\) (liters)	83.96 (67.21–113.70)	66.67 (48.25–92.37)	35.03 (28.24–43.51)	488.40 (376.80–630.70)
V\(_{ss}/F\) (liters)	130.20 (90.75–202.40)	72.35 (59.56–98.35)	38.74 (31.44–46.13)	498.90 (410.60–722.80)

*Abbreviations: C\(_{\text{max}}\), observed maximum concentration of drug in plasma; T\(_{\text{max}}\), time to maximum concentration of drug in plasma; AUC\(_{0–\text{last}}\), area under the curve to last observed plasma concentration; AUC\(_{0–\infty}\), area under the curve extrapolated to infinity; t\(_{1/2}\), apparent elimination half-life; CL/F, apparent clearance; V\(_{z}/F\), volume of distribution; V\(_{ss}/F\), volume of distribution at steady state.
median apparent terminal elimination half-life of isoniazid was 3.93 h (IQR, 3.18 to 4.73 h). Seven of 46 (15%) had a half-life of <130 min, suggesting that 84.8% of participants would conventionally be classified as the slow acetylator phenotype. However, since the semilogarithmic plot of the data suggested possible biphasic elimination with 38 of 46 participants (83%) showing detectable concentrations of isoniazid at 24 h, these parameters were reestimated with this data point omitted. The median elimination half-life was then 2.83 h (IQR, 2.010 to 3.729 h) with 67% classified as slow acetylators. These predictions of the proportion of slow acetylators were supported by finite normal mixture models of the distribution of the half-lives. For the data set with the 24-h data point excluded, the algorithm predicted two subpopulations with estimated mean half-lives of 1.84 and 3.64 h, comprising 36% (fast/intermediate acetylators) and 64% (slow acetylators) of the participants, respectively. A three-component mixture model did not convincingly discriminate between fast and intermediate acetylators. Similarly to the results for rifampin, V/F and V_{ps}/F tended to scale with a linear or power function of body mass ($P = 0.102$ and 0.053). Concomitant co-trimoxazole prophylaxis was associated with an increase in the half-life of isoniazid of 41% ($P = 0.022$).

For pyrazinamide, the median observed C_{max} was 34.21 $\mu g/ml$ (IQR, 30.00 to 41.60 $\mu g/ml$) and the $\text{AUC}_{0-\infty}$ was 386.6 $\mu g/ml \cdot h$ (320.0 to 463.7 $\mu g/ml \cdot h$). There was no consistent relationship between these parameters and the absolute or weight-adjusted dose. The C_{max} was reduced by 15% in HIV-positive participants, although neither the AUC_{last} nor $\text{AUC}_{0-\infty}$ was affected. V/F increased by 0.42 liters for each additional kilogram of body weight ($P < 0.001$), and this relationship accounted for an apparent univariate effect of sex on this parameter in multivariate analysis.

For ethambutol, the median observed C_{max} was 2.278 $\mu g/ml$ (IQR, 1.694 to 3.098 $\mu g/ml$) and the $\text{AUC}_{0-\infty}$ was 20.41 $\mu g/ml \cdot h$ (IQR, 16.18 to 26.27 $\mu g/ml \cdot h$). There was no observed relationship between these parameters and the absolute or weight-adjusted dose. V/F increased by 5.18 liters for each additional kilogram of body weight ($P = 0.009$), and this relationship accounted for an apparent univariate effect of sex on this parameter in multivariate analysis. Neither serum creatinine nor the glomerular filtration rate was related to the elimination half-life.

With the exception of the C_{max} of pyrazinamide, HIV coinfection did not significantly affect the PK parameters of any of the drugs studied. Age, gender, and antiretroviral therapy also had no effect (data not shown).

DISCUSSION

Since the early reports of altered plasma concentrations of antituberculosis drugs in HIV-positive patients, debate has continued as to the contribution of HIV coinfection to interpatient PK variability in the treatment of TB. While sub-Saharan Africa bears the brunt of HIV-associated tuberculosis and an increasing incidence of multidrug resistance, surprisingly few PK studies have been performed in the region and fewer still have been able to employ intensive blood sampling. Although logistically simpler, sparse sampling can systematically underestimate key measures of exposure such as the C_{max} and AUC and may not correctly define the characteristics of the elimination phase. Our comparatively intensive sampling allowed for parameter estimates with higher precision and less truncation of the AUC than some earlier studies. The values of the parameters from this first PK study of antituberculosis drugs in Malawian adults are broadly comparable with data from two sites in South Africa (7, 10), one site from Tanzania (15), and one from Botswana (8), although some differences are worthy of comment.

Contrary to some earlier observations (3, 4, 6), HIV infection did not significantly or consistently affect the pharmacokinetics of any of the four first-line antituberculosis drugs. The only exception was a small reduction in the C_{max} of pyrazinamide, which did not affect the overall plasma exposure as measured by the AUC. These findings are reassuring and in accordance with other research supporting similar efficacy of TB treatment in HIV-positive patients (16). Early studies focused on patients with advanced HIV disease and associated diarrhea prior to the introduction of highly active antiretroviral therapy. About half of the HIV-positive participants in our study were receiving ART according to national program guidelines, and all were receiving co-trimoxazole prophylaxis, which may have resulted in less advanced immunosuppression and fewer associated opportunistic infections. However, 50% had a CD4 level of <200 cells/mm³ with a median body mass of only 45 kg, 12 kg less than those whose CD4 counts were >200 cells/mm³. The cohort was thus representative of Malawian patients with HIV-TB coinfection in whom late presentation and advanced immunosuppression remain commonplace.

Thirty percent of subjects exhibited delayed absorption of rifampin defined as a time to maximum concentration of drug in plasma (T_{max}) of ≥4 h. While this phenomenon has been described previously (17), it also has practical consequences for sparse PK sampling strategies, which may produce falsely low or no estimates of AUC for these participants. This may be one reason why the PK parameters of rifampin have been reported as low in many studies. However, despite the intensive sampling used in our study, rifampin was the drug for which the AUC was lowest by comparison with other studies from the region. Although the PK-pharmacodynamic targets in TB are not currently widely agreed upon, with use of published sensitivity data (18), the median AUC/MIC achieved by patients in this study would be 85.3, which appears to be less than optimal on the basis of in vivo and human data (12, 19). Our findings therefore add support to the rationale for ongoing clinical trials in which higher doses of rifampin for treatment of tuberculosis are being evaluated.

Although the relationships expected between the measures of volume of distribution and body mass could be estimated in this data set, we did not find any clear relationship between the weight-adjusted dose and either the C_{max} or the AUC. This is reassuring and perhaps not surprising due to the weight-banded approach to dosing that is now commonly used for antituberculosis drugs and that is designed to achieve a narrow range of exposures irrespective of body weight. A larger and similarly intensive pharmacokinetic study in South Africa in which most patients received singly formulated drugs from different manufacturers rather than fixed-dose combinations reported that the weight-adjusted dose was a predictor of the AUC for all the first-line drugs (7). However, a second study using a high-quality weight-banded fixed quadruple-drug combination found that the weight-adjusted dose was a significant predictor of the AUC only for pyrazinamide and that there was an independent residual positive relationship with body mass alone (10). Other studies from the region used both singly formulated drugs and FDC tablets but did not present a detailed analysis of these covariates, so it remains unclear whether these findings relate to differences in formulation and dosing or to col-
linearity among the dose and weight variables in the existing data sets.

Due to the intensive sampling and sensitive bioanalytical method, it was possible to clearly demonstrate the biphasic elimination kinetics of isoniazid. This has been noted in some population PK studies (20) but is often not accounted for in noncompartamental analyses of sparse data and can result in inaccurate estimation of the terminal half-life and parameters derived from it. With use of a reduced data set, a distribution of half-lives and estimation of the terminal half-life and parameters derived from various compartments than in studies in the Western Cape (7,23), but the data dissociate from the effect of HIV coinfection itself in our data set, although a statistically significant effect on the key PK parameters that may be clinically relevant for drug dosing and drug resistance development cannot be ruled out. Given the low exposure to rifampin, increasing its dose could be beneficial in African adults, irrespective of HIV status.

ACKNOWLEDGMENTS

The study was funded by the National Tuberculosis Control Programme, Lilongwe, Malawi, and Liverpool University, United Kingdom. Drug analysis was supported through the Wellcome Trust-funded LOTLink initiative. We thank the staff of the tuberculosis department and the HIV clinic at Queen Elizabeth Central Hospital, especially Rosemay Sikwese and Moffo Phiri. We are also grateful to the patients who participated in this study.

REFERENCES

1. Ahmad Khan FA, Minion J, Al-Motairi A, Benedetti A, Harries AD, Menzies D. 2012. An updated systematic review and meta-analysis on the treatment of active tuberculosis in patients with HIV infection. Clin Infect Dis 55:1154–1163. http://dx.doi.org/10.1093/cid/cis630.

2. Peloquin C, Nitta A, Burman W, Brudney K, Miranda-Massari J, McGuinness M, Berning S, Gerena G. 1996. Low antituberculosis drug concentrations in patients with AIDS. Ann Pharmacother 30:919–925.

3. Sahai J, Galliano K, Swick L, Tailor S, Garber G, Seguin I, Oliveras L, Walker S, Rachlis A, Cameron D. 1997. Reduced plasma concentrations of antituberculosis drugs in patients with HIV infection. Ann Intern Med 127:289–293. http://dx.doi.org/10.7326/0003-4819-127-4-199708150-00006.

4. Choudhri SH, Hawken M, Gathua S, Minyiri GO, Watkins W, Sahai J, Sitar DS, Aoki FY, Long R. 1997. Pharmacokinetics of antitubercular drugs in patients with tuberculosis, AIDS, and diarrhea. Clin Infect Dis 25:104–111. http://dx.doi.org/10.1086/351453.

5. Kinserling ME, Phillips P, Patterson P, Hall M, Robinson CA, Dunlap NE. 1998. Low serum antimycobacterial drug levels in non-HIV-infected tuberculosis patients. Chest 113:1178–1183. http://dx.doi.org/10.1378/chest.113.5.1178.

6. Gurumurthy P, Ramachandran G, Hemanth Kumar AK, Rajasekar S, Padmapriyadarssini C, Swaminathan S, Bhagavathy S, Venkatesan P, Sekar L, Mahilmaran A, Ravichandran N, Paramesh P. 2004. Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency virus disease. Antimicrob Agents Chemother 48:4473–4475. http://dx.doi.org/10.1128/AAC.48.11.4473-4475.2004.

7. Wilkinson H, Wash P, Burger A, Norman J, Folb P, Smith P. 2006. Determinants of rifampicin, isoniazid, pyrazinamide and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother 50:1170–1177. http://dx.doi.org/10.1128/AAC.50.4.1170-1177.2006.

8. Chidera S, Winston CA, Peloquin CA, Bradford WZ, Hopewell PC, Wells CD, Reingold AL, Kenyon TA, Moeti TL, Tapper JW. 2009. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from Botswana. Clin Infect Dis 48:1685–1694. http://dx.doi.org/10.1086/590040.

9. Saleri N, Dembélé SM, Villani P, Carvalho ACC, Cusato M, Bonkoungou V, Nacanabo R, Kouanda S, Comelli M, Regazzi M, Matteelli A. 2012. Systemic exposure to rifampicin in patients with tuberculosis and advanced HIV disease during highly active antiretroviral therapy in Burkina Faso. J Antimicrob Chemother 67:469–472. http://dx.doi.org/10.1093/jac/dkr445.

10. McIlerson H, Rustomjee R, Vahedi M, Thiyane T, Denti P, Connolly C, Rida W, Pym A, Smith PJ, Onyebuohu PC. 2012. Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother 56:3323–3328. http://dx.doi.org/10.1128/AAC.00526-11.

11. Burhan E, Ruesen C, Rulami R, Ginanjar A, Mangunnegoho E, Aescobr P, Donders R, van Crevel R, Aarnoutse R. 2013. Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients. Antimicrob Agents Chemother 57:3614–3619. http://dx.doi.org/10.1128/AAC.02468-12.

12. Pasipanodya JG, McIlerson H, Burger A, Wash PA, Smith P, Gunnoo T. 2013. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis 208:1464–1473. http://dx.doi.org/10.1093/infdis/jit352.

13. Mlotha R, Waterhouse D, Dzinjalama F, Ardrey A, Molyneux E, Davies GR, Ward S. 2015. Pharmacokinetics of anti-tuberculosis drugs in children: reconsidering the role of ethambutol. J Antimicrob Chemother 70:1798–1803. http://dx.doi.org/10.1093/jac/dkv039.

14. Food and Drug Administration. 2001. Guidance for industry, bioanalytical method validation. US Department of Health and Human Services, Food and Drug Administration and Center for Drug Evaluation and Research. http://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf.

15. Tostmann A, Mtbaho CM, Semuva HH, van den Boogaard J, Kibiki GS, Boeree MJ, Aarnoutse RE. 2013. Pharmacokinetics of first-line antituberculosis drugs in Tanzanian patients. Antimicrob Agents Chemother 57:3208–3213. http://dx.doi.org/10.1128/AAC.02599-12.

16. Korenromp E, Scano F, Williams B, Dye C, Nunn P. 2003. Effects of human immunodeficiency virus infection on recurrence of tuberculosis after rifampin-based treatment: an analytical review. Clin Infect Dis 37:101–112. http://dx.doi.org/10.1086/375220.

17. Peloquin CA, Jaresko GS, Yong CL, Keung AC, Bulpitt AE, Jelliffe RW. 1997. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob Agents Chemother 41:2670–2679.

18. Schöhn T, Juréen P, Viske CG, Chyssanthou E, Storegård E, Werngren J, Kahimeter G, Hoffner SE, Angeby KA. 2009. Evaluation of wild-type MIC distributions as a tool for determination of clinical breakpoints for Mycobacterium tuberculosis. J Antimicrob Chemother 64:786–793. http://dx.doi.org/10.1093/jac/dkp262.

19. Jayaram R, Gaonkar S, Kaur P, Suresh B, Maresh B, Jayashree R, Nandi V, Bharat S, Sandhill R, Kantharaj E, Balasubramanian V. 2003. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother 47:2118–2124. http://dx.doi.org/10.1128/AAC.47.7.2118-2124.2003.

20. Wilkins J, Langdon G, McIlerson H, Pillai G, Smith PJ, Simonsson USH. 2011. Variability in the population pharmacokinetics of isoniazid in South African tuberculosis patients. Br J Clin Pharmacol 72:51–62. http://dx.doi.org/10.1111/j.1365-2125.2011.03940.x.

21. Dandara C, Masimirembwa CM, Magimba A, Kaaya S, Sayi J, Sommers DK, Snyman JR, Hasler JA. 2003. Arylamine N-acetyltransferase (NAT2) genotypes in Africans: the identification of a new allele with nucleotide
changes 481C>T and 590G>A. Pharmacogenetics 13:55–58. http://dx.doi.org/10.1097/00008571-200301000-00008.

22. Sabbagh A, Langaney A, Darlu P, Gérard N, Krishnamoorthy R, Poloni ES. 2008. Worldwide distribution of NAT2 diversity: implications for NAT2 evolutionary history. BMC Genet 9:21. http://dx.doi.org/10.1186/1471-2156-9-21.

23. Donald PR, Parkin DP, Seifert HI, Schaaf HS, van Helden PD, Werely CJ, Sirgel FA, Venter A, Maritz JS. 2007. The influence of dose and N-acetyltransferase-2 (NAT2) genotype and phenotype on the pharmacokinetics and pharmacodynamics of isoniazid. Eur J Clin Pharmacol 63:633–639. http://dx.doi.org/10.1007/s00228-007-0305-5.

24. McDonagh EM, Boukouvala S, Aklillu E, Hein DW, Altman RB, Klein TE. 2014. PharmGKB summary: very important pharmacogenetic information for N-acetyltransferase 2. Pharmacogenet Genomics 24:409–425.