Integrative Health Services in School Health Clinics

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Milosavljevic, Nada. 2015. “Integrative Health Services in School Health Clinics.” Adolescent Psychiatry (Hilversum, Netherlands) 5 (2): 132-139. doi:10.2174/221067660502150430154610. http://dx.doi.org/10.2174/221067660502150430154610.
Published Version	doi:10.2174/221067660502150430154610
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:33029755
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Integrative Health Services in School Health Clinics

Nada Milosavljevic*

Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA

Abstract: Objective: Mental health treatment today incorporates neurobiology, genetics, neuro-imaging, and pharmacologic mechanisms, offering more options to patients. For some, these modern approaches are not viable choices due to reasons such as limited access to care, cost, intolerable side effects, and, in the pediatric population, fears of potential long-term effects. With the growing prevalence of chronic health conditions, concerns for age of onset, (McGorry, Purcell, Goldstone, & Amminger, 2011) and a growing population of mental health patients, cost-effective and evidence-based treatment options should be evaluated. Integrative treatments, also known as complementary and alternative medicine (CAM), may offer interventions that meet today’s clinical needs.

Method: To evaluate evidence-based treatment options, we initiated the school-based integrative health program (IHP) in January 2011 at three high schools located in Massachusetts. Our goal was two-fold: first, to design a holistic treatment program and evaluate several integrative modalities, and; second, to determine the feasibility of providing a CAM health program through school clinics. Our protocol utilized three integrative treatments that addressed stress and anxiety conditions. Anxiety disorders are the most common mental illness affecting over 40 million adults in the US (Anxiety and Depression Association of America).

Results: The program has been successfully implemented. Preliminary results indicate that this intervention decreased anxiety in these youth.

Conclusion: Providing integrative techniques to students in the school setting has the potential to decrease barriers to accessing care, lowering treatment costs and decreasing school absenteeism by instituting care on-site. Offering a holistic approach to treatment in schools is feasible. Because utilizing these approaches involves their active participation, adolescents can acquire life-long skills that improve their ability to cope and confront inevitable life stressors.

Keywords: Complementary alternative medicine (CAM), integrative medicine, pediatric medicine, adolescent stress and anxiety.

INTRODUCTION

Integrative medicine recognizes the importance of using natural, effective, minimally-invasive interventions whenever possible, especially in the pediatric population where concerns of potential long-term effects are paramount. Delivering health services in schools has many advantages, and school-based health centers are well-established in many communities (see <http://www.hrsa.gov/ourstories/schoolhealthcenters/>). These centers provide many services, but most focus mainly on traditional medical care. This article describes a multi-site school-based integrative health program (IHP) implemented in Boston area public high schools, the first program of its kind in the US.

COMPLEMENTARY AND ALTERNATIVE MEDICINE (CAM)

Complementary medicine refers to the use of a non-conventional approach to treatment partnered with conventional medicine. CAM treatments have been implemented for hundreds of years and, in some cases, millennia. Alternative treatment modalities such as acupuncture and aromatherapy have been used since the third millennium BC. Other more modern interpretations of CAM, such as lifestyle interventions, (Nuwaha & Musinguzi, 2013) are able to provide considerable relief to patients; however, until recently, holistic therapies were not considered appropriate treatment choices due to a paucity of research to support their use. But, more recent medical literature includes a growing body of evidence that validates the efficacy and safety profile of numerous integrative therapies and the popularity of CAM continues to grow.

INTEGRATIVE MEDICINE

Integrative medicine “combines mainstream medical therapies and CAM therapies for which there is some high-quality scientific evidence of safety and effectiveness” (definition from the National Institute of Health; see <http://www.nlm.nih.gov/tsd/acquisitions/cdm/subjects24.html>). A growing body of research studies indicates that integrative medicine offers practical and feasible approaches that can be easily incorporated into pre-existing treatment plans or used as stand-alone techniques. Integrative medicine,
which takes into account the entire person—body, mind, and spirit, as well as individual lifestyle, underscores the therapeutic relationship and makes use of both conventional and alternative therapies.

The U.S. Department of Health and Human Services, National Center for Complementary and Alternative Medicine (NCCAM) at the National Institutes of Health (NIH) reported in 2007 that 40% of Americans use non-conventional approaches to achieve well-being. CAM approaches are considered to be a part of integrative medicine, which is becoming more prevalent. Many health care providers and systems are beginning to integrate various practices of non-conventional medicine like massage therapy and acupuncture into treatment and health promotion. The driving factors of this increase appear to come from consumers who perceive benefits to their health or well-being.

Since 2007, the NCCAM has developed the Third Strategic Plan for 2011-2015, Exploring the Science of Complementary and Alternative Medicine, (National Center for Complementary and Alternative Medicine, 2011) which emphasizes the importance of basic and clinical research to building evidence for CAM. This report further emphasizes the importance of translational research and bringing the methods of effectiveness and outcomes research to the real world. A strategic objective of the plan focuses on the benefits, risks, and cost-effectiveness of CAM use in the general public. One of the strategies will be to study the safety of adult and pediatric CAM.

SCHOOL-BASED INTEGRATIVE HEALTH PROGRAM

Background and Goals

The Integrative Health Program (IHP), launched in 2011, utilizes a multi-disciplinary approach to provide integrative services to high school students in a school-based clinical setting. The IHP implements mind and/or body techniques, sound therapy, aromatherapy, and acupuncture to address anxiety and stress-related disorders.

The initial goals of the IHP were: 1) to design a holistic treatment program and evaluate several integrative modalities, and; 2) to determine the feasibility of a complementary and alternative health program in a school clinic. We sought and received IRB approval from Massachusetts General Hospital for evaluating the efficacy of the program, and engaged in administrative negotiation with Chelsea High School, Chelsea, Massachusetts in December 2010 and January 2011. Subsequently, interest in the program grew and we expanded clinical sites into Revere High School located in Revere, Massachusetts and Rindge and Latin High School in Cambridge, Massachusetts. The Revere and Cambridge sites joined the program in February 2012 and September 2012, respectively (Helping Students Learn to Manage Anxiety 2013).

Description of the Program

The program utilizes three integrative treatments, all of which address stress and anxiety conditions by providing treatment, education, and self-help skills to its adolescent participants. While there are many integrative therapies, we focused on three: medical acupuncture, the use of clinical-grade aromatherapy essential oils, and sound therapy.

We determined our focus to be stress and/or anxiety conditions within an adolescent population. Anxiety disorders are the most prevalent mental illness and 25 percent of 13 to 18 year olds are estimated to suffer from an anxiety disorder at any given time. (Kessler, Chiu, Demler, & Walters, 2005). Furthermore, 75% of persons suffering from anxiety disorder experience their first episode around 21.5 years of age (Kessler, Berglund, Demler, Jin, & Walters, 2005).

The initial IHP program at Chelsea High School was a 10-week treatment course, which included two informational workshop sessions that provided an introduction to integrative treatments, and eight weekly, 30-minute appointments that included aromatherapy for relaxation, targeted acupuncture points, and sound therapy. The acupuncture points are supported by research data of known point locations that impact anxiety and stress symptoms. Although traditional allopathic medical interventions were available if needed, none of the students involved in this group required acute medical treatment and all participants completed the 10-week program. Further, there were no reported or observed side effects or adverse reactions.

Participants

For inclusion in the IHP program, students were referred from several sources: teachers, parents, counselors, mental health providers, and school nurses. After referral, students were evaluated by clinicians in the student health clinic to ensure they met Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria for an anxiety or stress condition. Although most students in the program were not taking any psychiatric medication, a number were in outpatient treatment and on medication. This was not an exclusion criteria. The protocol required that those taking psychiatric medication could continue to do so but not partake in dose changes during the course of the IHP program. Exclusion criteria included pregnancy, psychosis, and substance abuse.

Participants under the age of 18 required parental consent; however, students 18 and older could provide their own consent. In either case, student participants received informational sessions, handouts, and met with health care providers at the clinic to receive a full description of the IHP program, insuring students made an informed decision.

The student participants were placed on a list and randomly chosen to enter the IHP program. Those who were not in the treatment group were offered other outpatient services and some chose no treatment.

Participants engaged in the IHP program during normal school hours. Each 30-minute treatment session allowed students to excuse themselves from class but return during the course of the same subject or lesson, as compared to leaving school for an appointment at the hospital. This program design was most conducive to ensure minimal disruption of the school day for participants, allow easier access to care, and alleviate transportation concerns. The program design also promotes school attendance, decreasing absenteeism for off-site clinical appointments; this was well-received by both parents and the school system.
Therapies Utilized

The IHP program consisted of two informational presentations and eight, 30-minute, weekly sessions that included acupuncture; sound therapy with tuning forks, and aromatherapy with essential oils, which are the highly concentrated, volatile extracts of herbs, flowers, and plants. Students also learned about pressure points and other techniques to manage mood and modulate their anxiety and stress levels.

Medical acupuncture. For the purposes of the IHP protocol the same acupuncture points were used for each subject at every treatment session. The points were selected as locations, according to Traditional Chinese Medicine (TCM) practice, commonly used and associated with decreased anxiety and stress (Aung & Chen, 2007) All acupuncture points used in the IHP were located either on the head/facial area, lower arms, or lower legs. For this reason, participants were able to remain fully clothed for the session. In order to access the acupuncture points, students exposed the lower arm and leg areas by rolling up sleeves and pant legs. These points include: head and facial region - GV20, Yintang Fig. (1); lower arm - LI 11, HT 7 Fig. (2); ST 36, Sp 6, and LV3 Fig. (3). Once inserted, the needles remained in place for fifteen minutes prior to removal.

Aromatherapy. Lavender and grapefruit essential oils (EOs) were used in the IHP at the beginning and the end of the session. The IHP implemented Lavender (*Lavandula angustifolia*) EO utilizing the inhalation method. The EO was aromatized near the participant’s nasal passages for several minutes while they inhaled and exhaled normally. This EO was used at the initiation of the treatment prior to acu-
puncture. At the end of the session, the final step was the inhalation of grapefruit (Citrus Paradisi) EO.

Sound Therapy. Tuning forks were used for sound therapy. Tuning forks are steel tines in a U-shaped form that act as acoustic resonators. Once activated, which requires firmly tapping the instrument on a rubber mallet base, they produce a specific and constant musical pitch that endures for several minutes. Figure (4) depicts examples.

![Fig. (4). Tuning forks. From “Ohm Therapeutics” by Sound Universe, 2015. Retrieved from www.soundhealingtools.com> Reprinted with permission.](image)

The particular tuning forks used for the IHP were set to emit a pure musical tone at a frequency of 136.1 Hz. There are hundreds of tuning forks of various lengths and masses, each which produce different, precise sound frequencies. Often they are used to tune musical instruments and frequently applied in Indian temple music. The IHP chose the 136.1 Hz frequency due to its deeply resonant sound and long-term application in integrative treatments used to reduce stress, relieve body tension, and assist in meditative practices.

For the IHP session, the tuning forks were activated and held bilaterally and simultaneously approximately three to five inches from each ear for several minutes. As the sound and vibration ceased the tuning forks were re-activated and held in the same position for a total duration of approximately five minutes. This is illustrated in the following Fig. (5).

![Fig. (5). Tuning forks in bilateral ear position. From “Ohm Therapeutics” by Sound Universe, 2015. Retrieved from www.soundhealingtools.com> Reprinted with permission.](image)

eight interconnected aspects or parameters of life that affect health and wellness (i.e. mental, physical, financial, spiritual, family, relationships, career, and social). The WoW is a thought-provoking exercise that provides a strong visual aid to enforce the importance of a complete and balanced wellness model.

RESULTS

To date over 100 students have completed the 10-week IHP program and treatments. All students who participated in the program reported moderate to significant reduction in anxiety symptoms. Preliminary results as measured by the pre- and post-outcome measures described have shown significant reductions in symptoms of anxiety and stress. Scores on the BAI decreased and scores on the WoW increased following program completion. On average, symptoms were reduced by one-third and wellness increased. The treatments have been very well-tolerated and there have been no observed or reported adverse reactions or side effects among all cohorts.

We are optimistic that the program can expand throughout the state of Massachusetts where there are 41 school-based health centers where this program can be replicated.

DISCUSSION

Anxiety disorders, the most common mental illness in the U.S., are widespread and costly to society (Kessler & Greenberg, 2002) According to the most recent figures, anxiety disorders cost the U.S. more than $42 billion a year, almost one-third of the country’s $148 billion total mental health bill (Anxiety and Depression Association of America Facts & Statistics; http://www.adaa.org/about-adaa/press-room/facts-statistics). The adolescent years are the core risk phase for the development of anxiety symptoms and syndromes, ranging from transient, mild symptoms to severe anxiety disorders. A national survey of adolescent mental health reported that of the 18 percent of the U.S. population that is affected by this disorder, 8 percent are teens ages 13 to 18. Of these teens, only 18% receive mental health care (National Institute of Mental Health, n. d.).
For many teenagers, anxiety is part of adolescence, a stage of life rife with challenges. The physical and psychological changes that adolescents experience are a great deal to handle, particularly when coupled with mounting academic demands and familial pressures. Difficulty in school, trouble meeting and making new friends, and keeping up with fashion and trends, all can further contribute to stress and anxiety. Not having the resources to join in interests with others, the inability to participate in sports or other activities because an after school job is necessary can also be a contributing factor.

The students participating in the IHP program bear their share of anxiety and stress, but using the tools and techniques that we taught them, they developed newfound confidence and health. This is no mean feat in communities like Chelsea and Revere where other pressures can exacerbate emotional problems. Median household income in Chelsea, for example, is two thirds of the state average, with 27 percent of children living below the poverty line compared with the state average of 12.8 percent.

The objective of the IHP program is to empower high-school students to take an active role in their treatment and long-term health. With this experience, adolescents gain a deeper appreciation of their own physiology and become more cognoscente of their body’s ability to heal itself and maintain homeostasis. The adolescents who participate in the program develop an understanding of preventive health treatments and assume increased personal responsibility for their overall health and well-being. This shift from an external focus of control, (e.g. a medical professional administering a pill) to an internal focus of control that is patient centered can increase awareness and self-esteem, while decreasing anxiety.

We chose the three modalities we used because they have a good evidence base for efficacy in anxiety and it is feasible to administer them in a school clinic.
ACUPUNCTURE

Traditional Chinese medicine (TCM) includes acupuncture, which works on the principle of stimulating points in the body to correct imbalances in the flow of energy (Qi) through channels known as meridians (Ljubinovic, 2013). Acupuncture is a safe CAM modality for pediatric patients (Jindal, Ge, & Mansky, 2008).

Western medicine has made numerous attempts to explain acupuncture’s mechanism of action from an allopathic perspective. While it has yet to be fully elucidated, there are certain aspects that have gained general acceptance. First, many of the over 350 acupuncture points correspond to nerve bundles or muscle trigger points. Neuroimaging studies show that acupuncture can calm areas of the brain that register pain and activate those involved in down regulating the stress response (Dhond, Kettner, & Napadow, 2007). Doppler ultrasound has shown that acupuncture increases blood flow in treated areas (Lo, Lin, Wei, & Sun, 2013). Finally, thermal imaging shows that acupuncture can decrease inflammation (Santos et al., 2013; Stux, Berman, & Pomeranz, 2000).

Errington-Evans conducted an extensive literature review to evaluate the role of acupuncture in anxiety conditions (2012). Results showed statistically significant effects directly attributable to acupuncture treatment. It should be noted that the author discussed the need for improved study design, which lends influence and support to the use of acupuncture to significantly reduce the symptoms of anxiety disorders.

AROMATHERAPY

Aromatherapy is a holistic medicine which uses the volatile oils of aromatic plants for therapeutic applications. It is concerned with the psychological, physiological and pharmacological effects of essential oils (EO). Aromatherapy can be introduced by means of inhalation, through the olfactory system, and dermal application whereby the EO is absorbed through the skin and travels through the tissue to enter the circulation (van der Watt, Laugharne, & Janca, 2008).

The effects of aromatherapy are theorized to result from the binding of chemical components in the EO to olfactory bulb receptors in the limbic system (Buchbauer, Jirotetz, Jäger 1993). Current research has also focused on topical application of EO and found that it may exert antibacterial, anti-inflammatory, and analgesic effects (Herro E, Jacob, 2010; Stea, Beraudi, & De Pasquale, 2014).

Lavender, like all essential oils, it is not a pure compound. It is a complex mixture of naturally occurring phytochemicals, including linalool and linalyl acetate. The scent has a calming effect that may aid in anxiety and stress reduction as well as overall relaxation (Hongratanaworakit, 2011; Shiina et al., 2008). Further, it has been shown to reduce agitation and have sleep-promoting properties (Lewith, Godfrey, & Prescott, 2005; Lin, Chan, Ng, & Lam, 2007).

One of the major components of Lavender EO is linalool, which has been demonstrated to act postsynaptically. The possible mechanism is via the modulation of cyclic adenosine monophosphate (cAMP) activity (Lis-Balch & Hart 1999). Linalool has been found to inhibit the GABA_A binding receptor in the central nervous system of animal models and induce a relaxed state (Brum, Elisabetsky, & Souza 2001).

The grapefruit is the largest of the citrus fruits and a natural hybrid of the pummelo and sweet orange. The main chemical constituents are monoterpenic hydrocarbons (limonene and myrcene), sesquiterpenes, alcohols, aldehydes, esters, and flavonoid glycosides (Feger, 2006). These constituents work in concert and have shown various applications as olfactory stimulants. They have antibacterial properties, and apoptotic activity specific to human leukemia cells (Abulrob, Suller, Gumbleton, Simons, & Russell, 2004; Hata et al., 2003; Tanida et al., 2008).

SOUND THERAPY

Sound therapy has been used for centuries by many cultural, religious, and indigenous groups around the globe including, ancient Greek and Egyptian civilizations, Vedic Indian culture, Tibetan traditions, Aboriginal groups in Australia, and the American native Navajo tribes (Antrim, 2006; Cook, 1997; Gaynor, 2002).

The broad category of sound therapy includes music therapy. Fundamentally, music is organized sound and is a form of treatment well-known in allopathic medicine. Since the National Association of Music in Hospitals was created in 1926, many hospitals and clinics throughout the US have developed music therapy programs to support patient recovery (Edwards, 2008).

Early music therapy programs grew slowly, but rapid growth ensued following WWII. Soldiers returned home from the battlefields with emotional and psychological problems and music and soothing sounds provided relief and played a supportive role in their healing. In 1945, the U.S. War Department issued Technical Bulletin 187, which detailed a music therapy program created by the Office of the Surgeon General (American Music Therapy Association, 2014). It was considered supportive of occupational therapy and physical reconditioning.

The use of sound and music are non-invasive, simple and cost-effective therapeutic tools. This form of treatment has proven to reduce pain and anxiety for children undergoing medical or dental procedures. In addition, when music therapy is combined with other modalities it may be more effective than when implemented alone (Bekhuis, 2009). Sound and music have also been shown to reduce arousal during stress and support a state of calm (Pelletier, 2004). Further, a recent Cochrane review highlighted the physiologic effects of this modality and found that music may reduce the effects of coronary artery disease and decrease blood pressure, heart rate, and respiratory rate (Bradt & Dileo, 2009).

American adolescents listen to approximately 4.5 hours of music per day. The use of sound and music are processes with which they are familiar and easy to adopt (Campbell, Connell, & Beegle, 2007). In this population, music therapy has been shown to improve adolescent mood by reducing stress and lowering anxiety levels, which can help counteract or prevent depression (Misić, Arandjelović, Stanojković, Vladejic, & Mladenovic, 2010).
CONCLUSIONS

The IHP served as a model to evaluate the feasibility and efficacy of an integrative treatment program in a school-based clinical setting. The success of this program highlights the interest, need, and workability of integrative health services in school clinics. The IHP program ushers in a new paradigm for a school-based patient-centered service that involves the use of integrative modalities like acupuncture, sound therapy, and aromatherapy. These modalities are used to educate and help treat anxiety and stress-related disorders in adolescents. The IHP program offers many benefits to student participants including empowerment, education in self-care techniques, and personal responsibility for one’s own health. It has the potential to foster resiliency that prepares individuals for coping with life’s inevitable stressors. The overall benefits of the IHP program are decreased barriers to access to care, decreased school absenteeism for treatment appointments, cost-effectiveness, introduction to a holistic approach to treatment, and promotion of long-term preventive health care.

Even those new to integrative therapies can implement these services with relative ease. Other than medical acupuncture, clinical aromatherapy and sound therapy can be utilized with minimal training and a basic review of techniques. In lieu of acupuncture, acupressure points, which include the same point locations but stimulation of the area with manual finger pressure rather than needles can be used. These services are easy to implement, minimally to non-invasive, and cost-effective. Evidence supporting their efficacy continues to expand as well as a number of other alternative and complementary treatments. This holistic approach to patient care offers not only symptom relief but an educational component as they acquire new skills to enhance preventive health and self-care techniques.

Our hope is for similar programs to be offered in school health clinics. In addition to the three sites where the IHP was conducted, there are several other schools in Massachusetts that have meet with us and are in the planning phase of initiating integrative health services in their schools. We hope to facilitate similar programs and support efforts to offer CAM therapies to the vulnerable adolescent population.

ABOUT THE AUTHOR

Nada Milosavljevic, M.D., J.D. is Director of the Integrative Health Program at Massachusetts General Hospital and an Instructor at Harvard Medical School, Boston, MA USA.

CONFLICT OF INTEREST

Dr. Milosavljevic reports no biomedical or financial conflicts of interest.

ACKNOWLEDGEMENTS

Financial support for the launching of the IHP program was provided by an anonymous donor.

REFERENCES

Abulrob, A. N., Suller, M. T., Gumbleton, M., Simons, C., Russell, A. D. (2004). Identification and biological evaluation of grapefruit oil components as potential novel efflux pump modulators in methicillin-resistant Staphylococcus aureus bacterial strains. *Phytochemistry*, 65, 3021-3027.

Adams, D., Cheng, F., Jou, H., Aung, S., Yasui, Y., & Vohra, S. (2011). The safety of pediatric acupuncture: a systemic review. *Pediatrics*, 128, 1575-1587.

American Music Therapy Association (2014). A status report and recommendations on music therapy treatment, programs, research, and practice policy. *Music Therapy and Military Populations*, Silver Spring, MD: Author. Retrieved from http://www.musictherapy.org/assets/1/7/MusicTherapyMilitaryPops_2014.pdf

Antrim, D. K. (2006). Music therapy. *The Musical Quarterly*, 30, 409-420.

Aung, S. K. H., & Chen, W. P. D. (Eds.). (2007). *Clinical introduction to medical acupuncture*. New York: Thieme Medical Publishers.

Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety. *Journal of Consulting and Clinical Psychology*, 56, 893-897.

Bekhuis, T. (2009). Music therapy may reduce pain and anxiety in children undergoing medical and dental procedures. *Journal of Evidence Based Dental Practice*, 9, 213-214.

Bradt, J., & Dileo, C. (2009). Music for stress and anxiety reduction in coronary heart disease patients. *Cochrane Database of Systematic Reviews*, CD006577. doi:10.1002/14651858.CD006577.pub2.

Brum, L. F., Elisabet sky, E., & Souza, D. (2001). Effects of linalool on [3H]MK801 and [3H]muscimol binding in mouse cortical membranes. *Phytotherapy Research*, 15, 422-425.

Campbell, P. S., Connell, C., & Beegle, A. (2007). Adolescents’ expressed meanings of music in and out of school. *Journal of Research in Music Education*, 55, 220-236.

Cook, P. (1997). Sacred music therapy in North India. *The World of Music*, 39, 61-83.

Dhond, R. P., Ketter, N., & Napadow, V. (2007). Neuroimaging acupuncture effects in the human brain. *Journal of Alternative and Complementary Medicine*, 13, 603-616.

Edwards, J. (2008). The use of music in healthcare contexts: A select review of writings from the 1890s to the 1940s. *Voices*, 8. Retrieved from https://voices.no/index.php/voices/article/view/428

Errington-Evans, N. (2012). Acupuncture for anxiety. *CNS Neurosciences & Therapeutics*, 18, 277-284.

Feger, W. (2006). Nonvolatiles of commercial lime and grapefruit oils separated by high-speed countercurrent chromatography. *Journal of Agricultural and Food Chemistry*, 54, 2242-2252.

Gaynor, M. (2002). *The healing power of sound*. Boston, MA: Shambala Publications.

Hata, T., Sakaguchi, I., Mori, M., Ikeda, N., Kato, Y., Minamino, M., & Watabe, K. (2003). Induction of apoptosis by citrus paradise essential oil in human leukemic (HL-60) cells. *In Vivo*, 17, 553-559.

Helping Students Learn to Manage Anxiety (2013, Winter). *Mindscapes* p.3.

Hongratanaworakut, T. (2011). Aroma-therapeutic effects of massage blended essential oils on humans. *Natural Product Communications*, 6, 1199-1204.

Jindal, V., Ge, A., & Mansky, P. J. (2008). Safety and efficacy of acupuncture in children: A review of the evidence. *Journal of Pediatric Hematology and Oncology*, 30, 431-442.

Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of twelve-month DSM-IV disorders in the National Comorbidity Survey Replication (NCS-R). *Archives of General Psychiatry*, 62, 617-627.

Kessler, R. C., Berglund, P. A., Demler, O., Jin, R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication (NCS-R). *Archives of General Psychiatry*, 62, 593-602.

Kessler, R., & Greenberg, P. (2002). The economic burden of anxiety and stress disorders. In Davis, K. L., Charney, D., Coyle, J. T., & Newport, C. (Eds.) *Neuropsychopharmacology: The fifth generation of progress* (pp. 981-992). Philadelphia, PA: Lippincott, Williams, & Wilkins.

Lewith, G. T., Godfrey, A. D., & Prescott, P. (2005). A single-blinded, randomized pilot study evaluating the aroma of lavandula angustifolia as a treatment for mild insomnia. *Journal of Alternative and Complementary Medicine*, 11, 631-637.
Lin, P. W., Chan, W., Ng, B. F., & Lam, L. C. (2007). Efficacy of aromatherapy (Lavandula angustifolia) as an intervention for agitated behaviors in Chinese older persons with dementia: A cross-over randomized trial. *International Journal of Geriatric Psychiatry, 22*, 405-410.

Lis-Balchin, M., & Hart, S. (1999). Studies on the mode of action of the essential oil of lavender (lavandula angustifolia P. Miller). *Phytotherapy Research, 13*, 540-542.

Lo, M. Y., Lin, J., Wei Ong, M., & Sun, W. Z. (2013). Cerebral hemodynamic responses to acupuncture in migraine patients: a systemic review. *Journal of Traditional and Complementary Medicine, 3*, 213-220.

Ljubinovic, N. (2013). Acupuncture, anxiety & depression. *Psych Central*. Retrieved from <http://psychcentral.com/lib/acupuncture-anxiety-depression/00017321>

McGorry, P. D., Purcell, R., Goldstone, S., & Amminger, G. P. (2011). Age of onset and timing of treatment for mental and substance use disorders: Implications for preventive intervention strategies and models of care. *Current Opinion in Psychiatry, 24*, 30-306.

Misic, P., Arandjelovic, D., Stanojkovic, S., Vladejic, S., & Mladenovic, J. (2010). Music therapy. *European Psychiatry, 25* (Suppl. 1), 839.

National Institute of Mental Health (n. d.). Anxiety disorders. Retrieved from http://www.nimh.nih.gov/health/topics/anxiety-disorders/index.shtml.

National Institute of Mental Health (n. d.). Complementary, alternative, or integrative health: What’s in a name? Retrieved from <http://nccam.nih.gov/health/whatisncam>.

National Center for Complementary and Alternative Medicine (NCCAM) (n. d.). Complementary, alternative, or integrative health: What’s in a name? Retrieved from <http://nccam.nih.gov/health/whatisncam>.

National Center for Complementary and Alternative Medicine (2011). Third strategic plan for 2011-2015. Exploring the science of complementary and alternative medicine, NIH Publication No. 11 – 7643. Washington, DC: US Department of Health and Human Services, National Institutes of Health. Retrieved from <https://nccam.nih.gov/sites/nccam.nih.gov/files/NCCAM_SP_508.pdf>

Nuwaha, F., & Musinguzi, G. (2013). Use of alternative medicine for hypertension in Buikwe and Mukono districts of Uganda: A cross section study. *BMC Complementary and Alternative Medicine, 13*, 301.

Pelletier, C. L. (2004). The effect of music on decreasing arousal due to stress: A meta-analysis. *Journal of Music Therapy, 41*, 192–214.

Santos, E. L., Dias, B. H., Andrade, A. C., & Pascoal, A. M, Vasconcelos Filho, F. E., Medeiros, F. D., & Guimarães, S. B. (2013). Effects of acupuncture and electroacupuncture on estradiol-induced inflammation and oxidative stress in health rodents. *Acta Cirúrgica Brasileira, 28*, 582-588.

Shina, Y., Funabashi, N., Lee, K., Toyoda, T., Sekine, T., Honjo, S. . . Komuro, I. (2008). Relaxation effects of lavender aromatherapy improve coronary flow velocity reserve in healthy men evaluated by transthoracic Doppler echocardiography. *International Journal of Cardiology, 129*, 193-197.

Stea, S., Beraudi, A., & De Pasquale, D. (2014). Essential oils for complementary treatment of surgical patients: State of the art. *Evidence Based Complementary and Alternative Medicine, 726341* Epub 2014 Feb 24.

Stux, G., Berman, B., & Pomeranz, B. (Eds.). (2000). *Basics of acupuncture*, 5th Revised Edition. Heidelberg: Springer Publishing.

Tanida, M., Shen, J., Niijima, A., Yamatodani, A., Oishi, K., Ishida, N., & Nagal, K. (2008). Effects of olfactory stimulations with scents of grapefruit and lavender oils on renal sympathetic nerve and blood pressure in Clock mutant mice. *Autonomic Neuroscience, 139*, 1-8.

Van der Watt, G., Laugharne, J., & Janca, A. (2008). Complementary and alternative medicine in the treatment of anxiety and depression. *Current Opinion in Psychiatry, 21*, 37-42.
which takes into account the entire person—body, mind, and spirit, as well as individual lifestyle, underscores the therapeutic relationship and makes use of both conventional and alternative therapies.

The U.S. Department of Health and Human Services, National Center for Complementary and Alternative Medicine (NCCAM) at the National Institutes of Health (NIH) reported in 2007 that 40% of Americans use non-conventional approaches to achieve well-being. CAM approaches are considered to be a part of integrative medicine, which is becoming more prevalent. Many health care providers and systems are beginning to integrate various practices of non-conventional medicine like massage therapy and acupuncture into treatment and health promotion. The driving factors of this increase appear to come from consumers who perceive benefits to their health or well-being.

Since 2007, the NCCAM has developed the Third Strategic Plan for 2011-2015, Exploring the Science of Complementary and Alternative Medicine, (National Center for Complementary and Alternative Medicine, 2011) which emphasizes the importance of basic and clinical research to building evidence for CAM. This report further emphasizes the importance of translational research and bringing the methods of effectiveness and outcomes research to the real world. A strategic objective of the plan focuses on the benefits, risks, and cost-effectiveness of CAM use in the general public. One of the strategies will be to study the safety of adult and pediatric CAM.

SCHOOL-BASED INTEGRATIVE HEALTH PROGRAM

Background and Goals

The Integrative Health Program (IHP), launched in 2011, utilizes a multi-disciplinary approach to provide integrative services to high school students in a school-based clinical setting. The IHP implements mind and/or body techniques, sound therapy, aromatherapy, and acupuncture to address anxiety and stress-related disorders.

The initial goals of the IHP were: 1) to design a holistic treatment program and evaluate several integrative modalities, and; 2) to determine the feasibility of a complementary and alternative health program in a school clinic. We sought and received IRB approval from Massachusetts General Hospital for evaluating the efficacy of the program, and engaged in administrative negotiation with Chelsea High School, Chelsea, Massachusetts in December 2010 and January 2011. Subsequently, interest in the program grew and we expanded clinical sites into Revere High School located in Revere, Massachusetts and Rindge and Latin High School in Cambridge, Massachusetts. The Revere and Cambridge sites joined the program in February 2012 and September 2012, respectively (Helping Students Learn to Manage Anxiety 2013).

Description of the Program

The program utilizes three integrative treatments, all of which address stress and anxiety conditions by providing treatment, education, and self-help skills to its adolescent participants. While there are many integrative therapies, we focused on three: medical acupuncture, the use of clinical-grade aromatherapy essential oils, and sound therapy.

We determined our focus to be stress and/or anxiety conditions within an adolescent population. Anxiety disorders are the most prevalent mental illness and 25 percent of 13 to 18 year olds are estimated to suffer from an anxiety disorder at any given time. (Kessler, Chiu, Demler, & Walters, 2005). Furthermore, 75% of persons suffering from anxiety disorder experience their first episode around 21.5 years of age (Kessler, Berglund, Jin, & Walters, 2005).

The initial IHP program at Chelsea High School was a 10-week treatment course, which included two informational workshop sessions that provided an introduction to integrative treatments, and eight weekly, 30-minute appointments that included aromatherapy for relaxation, targeted acupuncture points, and sound therapy. The acupuncture points are supported by research data of known point locations that impact anxiety and stress symptoms. Although traditional allopathic medical interventions were available if needed, none of the students involved in this group required acute medical treatment and all participants completed the 10-week program. Further, there were no reported or observed side effects or adverse reactions.

Participants

For inclusion in the IHP program, students were referred from several sources: teachers, parents, counselors, mental health providers, and school nurses. After referral, students were evaluated by clinicians in the student health clinic to ensure they met Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria for an anxiety or stress condition. Although most students in the program were not taking any psychiatric medication, a number were in outpatient treatment and on medication. This was not an exclusion criteria. The protocol required that those taking psychiatric medication could continue to do so but not partake in dose changes during the course of the IHP program. Exclusion criteria included pregnancy, psychosis, and substance abuse.

Participants under the age of 18 required parental consent; however, students 18 and older could provide their own consent. In either case, student participants received informational sessions, handouts, and met with health care providers at the clinic to receive a full description of the IHP program, insuring students made an informed decision.

The student participants were placed on a list and randomly chosen to enter the IHP program. Those who were not in the treatment group were offered other outpatient services and some chose no treatment.

Participants engaged in the IHP program during normal school hours. Each 30-minute treatment session allowed students to excuse themselves from class but return during the course of the same subject or lesson, as compared to leaving school for an appointment at the hospital. This program design was most conducive to ensure minimal disruption of the school day for participants, allow easier access to care, and alleviate transportation concerns. The program design also promotes school attendance, decreasing absenteeism for off-site clinical appointments; this was well-received by both parents and the school system.
Therapies Utilized

The IHP program consisted of two informational presentations and eight, 30-minute, weekly sessions that included acupuncture; sound therapy with tuning forks, and aromatherapy with essential oils, which are the highly concentrated, volatile extracts of herbs, flowers, and plants. Students also learned about pressure points and other techniques to manage mood and modulate their anxiety and stress levels.

Medical acupuncture. For the purposes of the IHP protocol the same acupuncture points were used for each subject at every treatment session. The points were selected as locations, according to Traditional Chinese Medicine (TCM) practice, commonly used and associated with decreased anxiety and stress (Aung & Chen, 2007) All acupuncture points used in the IHP were located either on the head/facial area, lower arms, or lower legs. For this reason, participants were able to remain fully clothed for the session. In order to access the acupuncture points, students exposed the lower arm and leg areas by rolling up sleeves and pant legs. These points include: head and facial region - GV20, Yintang Fig. (1); lower arm - LI 11, HT 7 Fig. (2); ST 36, Sp 6, and LV3 Fig. (3). Once inserted, the needles remained in place for fifteen minutes prior to removal.

Aromatherapy. Lavender and grapefruit essential oils (EOs) were used in the IHP at the beginning and the end of the session. The IHP implemented Lavender (Lavandula angustifolia) EO utilizing the inhalation method. The EO was aromatized near the participant’s nasal passages for several minutes while they inhaled and exhaled normally. This EO was used at the initiation of the treatment prior to acu-

Fig. (1). Head acupuncture points Yintang and GV 20. From “Gross Anatomy and acupuncture: A comparative approach to reappraise the meridian system,” by S. Marcelli, 2015, retrieved from <www.geneticacupuncture.com>. Reprinted with permission.

Fig. (2). LI 11 and HT 7; From “Point Finder” by K. Boyd, 2002, Retrieved from <www.pointfinder.org>. Reprinted with permission.

Fig. (3). (Top left and clockwise) ST 36, SP 6; LV 3; From “Point Finder” by K. Boyd, 2002, Retrieved from <www.pointfinder.org>. Reprinted with permission.
puncture. At the end of the session, the final step was the inhalation of grapefruit (*Citrus Paradisi*) EO.

Sound Therapy. Tuning forks were used for sound therapy. Tuning forks are steel tines in a U-shaped form that act as acoustic resonators. Once activated, which requires firmly tapping the instrument on a rubber mallet base, they produce a specific and constant musical pitch that endures for several minutes. Figure (4) depicts examples.

![Tuning forks](Image1)

Fig. (4). Tuning forks. From “Ohm Therapeutics” by Sound Universe, 2015. Retrieved from www.soundhealingtools.com> Reprinted with permission.

The particular tuning forks used for the IHP were set to emit a pure musical tone at a frequency of 136.1 Hz. There are hundreds of tuning forks of various lengths and masses, each which produce different, precise sound frequencies. Often they are used to tune musical instruments and frequently applied in Indian temple music. The IHP chose the 136.1 Hz frequency due to its deeply resonant sound and long-term application in integrative treatments used to reduce stress, relieve body tension, and assist in meditative practices.

For the IHP session, the tuning forks were activated and held bilaterally and simultaneously approximately three to five inches from each ear for several minutes. As the sound and vibration ceased the tuning forks were re-activated and held in the same position for a total duration of approximately five minutes. This is illustrated in the following Fig. (5).

![Tuning forks in bilateral ear position](Image2)

Fig. (5). Tuning forks in bilateral ear position. From “Ohm Therapeutics” by Sound Universe, 2015. Retrieved from www.soundhealingtools.com> Reprinted with permission.

eight interconnected aspects or parameters of life that affect health and wellness (i.e. mental, physical, financial, spiritual, family, relationships, career, and social). The WoW is a thought-provoking exercise that provides a strong visual aid to enforce the importance of a complete and balanced wellness model.

RESULTS

To date over 100 students have completed the 10-week IHP program and treatments. All students who participated in the program reported moderate to significant reduction in anxiety symptoms. Preliminary results as measured by the pre- and post-outcome measures described have shown significant reductions in symptoms of anxiety and stress. Scores on the BAI decreased and scores on the WoW increased following program completion. On average, symptoms were reduced by one-third and wellness increased. The treatments have been very well-tolerated and there have been no observed or reported adverse reactions or side effects among all cohorts.

We are optimistic that the program can expand throughout the state of Massachusetts where there are 41 school-based health centers where this program can be replicated.

DISCUSSION

Anxiety disorders, the most common mental illness in the U.S., are widespread and costly to society (Kessler & Greenberg, 2002) According to the most recent figures, anxiety disorders cost the U.S. more than $42 billion a year, almost one-third of the country’s $148 billion total mental health bill (Anxiety and Depression Association of America Facts & Statistics; http://www.adda.org/about-adda/press-room/facts-statistics). The adolescent years are the core risk phase for the development of anxiety symptoms and syndromes, ranging from transient, mild symptoms to severe anxiety disorders. A national survey of adolescent mental health reported that of the 18 percent of the U.S. population that is affected by this disorder, 8 percent are teens ages 13 to 18. Of these teens, only 18% receive mental health care (National Institute of Mental Health, n. d.).
For many teenagers, anxiety is part of adolescence, a stage of life rife with challenges. The physical and psychological changes that adolescents experience are a great deal to handle, particularly when coupled with mounting academic demands and familial pressures. Difficulty in school, trouble meeting and making new friends, and keeping up with fashion and trends, all can further contribute to stress and anxiety. Not having the resources to join in interests with others, the inability to participate in sports or other activities because an after school job is necessary can also be a contributing factor.

The students participating in the IHP program bear their share of anxiety and stress, but using the tools and techniques that we taught them, they developed newfound confidence and health. This is no mean feat in communities like Chelsea and Revere where other pressures can exacerbate emotional problems. Median household income in Chelsea, for example, is two thirds of the state average, with 27 percent of children living below the poverty line compared with the state average of 12.8 percent.

The objective of the IHP program is to empower high school students to take an active role in their treatment and long-term health. With this experience, adolescents gain a deeper appreciation of their own physiology and become more cognizant of their body’s ability to heal itself and maintain homeostasis. The adolescents who participate in the program develop an understanding of preventive health treatments and assume increased personal responsibility for their overall health and well-being. This shift from an external focus of control, (e.g. a medical professional administering a pill) to an internal focus of control that is patient centered can increase awareness and self-esteem, while decreasing anxiety.

We chose the three modalities we used because they have a good evidence base for efficacy in anxiety and it is feasible to administer them in a school clinic.
ACUPUNCTURE

Traditional Chinese medicine (TCM) includes acupuncture, which works on the principle of stimulating points in the body to correct imbalances in the flow of energy (Qi) through channels known as meridians (Ljubinovic, 2013). Acupuncture is a safe CAM modality for pediatric patients (Jindal, Ge, & Mansky, 2008).

Western medicine has made numerous attempts to explain acupuncture’s mechanism of action from an allopathic perspective. While it has yet to be fully elucidated, there are certain aspects that have gained general acceptance. First, many of the over 350 acupuncture points correspond to nerve bundles or muscle trigger points. Neuroimaging studies show that acupuncture can calm areas of the brain that register pain and activate those involved in down regulating the stress response (Dhond, Kettner, & Napadow, 2007). Doppler ultrasound has shown that acupuncture increases blood flow in treated areas (Lo, Lin, Wei, & Sun, 2013). Finally, thermal imaging shows that acupuncture can decrease inflammation (Santos et al., 2013; Stux, Berman, & Pomeranz, 2000).

Errington-Evans conducted an extensive literature review to evaluate the role of acupuncture in anxiety conditions (2012). Results showed statistically significant effects directly attributable to acupuncture treatment. It should be noted that the author discussed the need for improved study design, which lends influence and support to the use of acupuncture to significantly reduce the symptoms of anxiety disorders.

AROMATHERAPY

Aromatherapy is a holistic medicine which uses the volatile oils of aromatic plants for therapeutic applications. It is concerned with the psychological, physiological and pharmacological effects of essential oils (EO). Aromatherapy can be introduced by means of inhalation, through the olfactory system, and dermal application whereby the EO is absorbed through the skin and travels through the tissue to enter the circulation (van der Watt, Laughter, & Janca, 2008).

The effects of aromatherapy are theorized to result from the binding of chemical components in the EO to olfactory bulb receptors in the limbic system (Buchbauer, Jirovetz, Jäger 1993). Current research has also focused on topical application of EO and found that it may exert antibacterial, anti-inflammatory, and analgesic effects (Herro E, Jacob, 2010; Stea, Beraudi, & De Pasquale, 2014).

Lavender, like all essential oils, it is not a pure compound. It is a complex mixture of naturally occurring phytochemicals, including linalool and linalyl acetate. The scent has a calming effect that may aid in anxiety and stress reduction as well as overall relaxation (Hongratanaworakit, 2011; Shina et al., 2008). Further, it has been shown to reduce agitation and have sleep-promoting properties (Lewith, Godfrey, & Prescott, 2005; Lin, Chan, Ng, & Lam, 2007).

One of the major components of Lavender EO is linalool, which has been demonstrated to act postsynaptically. The possible mechanism is via the modulation of cyclic adenosine monophosphate (cAMP) activity (Lis-Balchin & Hart 1999). Linalool has been found to inhibit the GABA_A binding receptor in the central nervous system of animal models and induce a relaxed state (Brum, Elisabetsky, & Souza 2001).

The grapefruit is the largest of the citrus fruits and a natural hybrid of the pummelo and sweet orange. The main chemical constituents are monoterpenic hydrocarbons (limonene and myrcene), sesquiterpenes, alcohols, aldehydes, esters, and flavonoid glycosides (Feger, 2006). These constituents work in concert and have shown various applications as olfactory stimulants. They have antibacterial properties, and apoptotic activity specific to human leukemia cells (Abulrob, Suller, Gumbleton, Simons, & Russell, 2004; Hata et al., 2003; Tanida et al., 2008).

SOUND THERAPY

Sound therapy has been used for centuries by many cultural, religious, and indigenous groups around the globe including, ancient Greek and Egyptian civilizations, Vedic Indian culture, Tibetan traditions, Aboriginal groups in Australia, and the American native Navajo tribes (Antrim, 2006; Cook, 1997; Gaynor, 2002).

The broad category of sound therapy includes music therapy. Fundamentally, music is organized sound and is a form of treatment well-known in allopathic medicine. Since the National Association of Music in Hospitals was created in 1926, many hospitals and clinics throughout the US have developed music therapy programs to support patient recovery (Edwards, 2008).

Early music therapy programs grew slowly, but rapid growth ensued following WWII. Soldiers returned home from the battlefields with emotional and psychological problems and music and soothing sounds provided relief and played a supportive role in their healing. In 1945, the U.S. War Department issued Technical Bulletin 187, which detailed a music therapy program created by the Office of the Surgeon General (American Music Therapy Association, 2014). It was considered supportive of occupational therapy and physical reconditioning.

The use of sound and music are non-invasive, simple and cost-effective therapeutic tools. This form of treatment has proven to reduce pain and anxiety for children undergoing medical or dental procedures. In addition, when music therapy is combined with other modalities it may be more effective than when implemented alone (Bekhuis, 2009). Sound and music have also been shown to reduce arousal during stress and support a state of calm (Pelletier, 2004). Further, a recent Cochrane review highlighted the physiologic effects of this modality and found that music may reduce the effects of coronary artery disease and decrease blood pressure, heart rate, and respiratory rate (Bradt & Dileo, 2009).

American adolescents listen to approximately 4.5 hours of music per day. The use of sound and music are processes with which they are familiar and easy to adopt (Campbell, Connell, & Beegle, 2007). In this population, music therapy has been shown to improve adolescent mood by reducing stress and lowering anxiety levels, which can help counteract or prevent depression (Misić, Arandjelovic, Stanojkovic, Vladejic, & Mladenovic, 2010).
CONCLUSIONS

The IHP served as a model to evaluate the feasibility and efficacy of an integrative treatment program in a school-based clinical setting. The success of this program highlights the interest, need, and workability of integrative health services in school clinics. The IHP program ushers in a new paradigm for a school-based patient-centered service that involves the use of integrative modalities like acupuncture, sound therapy, and aromatherapy. These modalities are used to educate and help treat anxiety and stress-related disorders in adolescents. The IHP program offers many benefits to student participants including empowerment, education in self-care techniques, and personal responsibility for one’s own health. It has the potential to foster resiliency that prepares individuals for coping with life’s inevitable stressors. The overall benefits of the IHP program are decreased barriers to access to care, decreased school absenteeism for treatment appointments, cost-effectiveness, introduction to a holistic approach to treatment, and promotion of long-term preventive health care.

Even those new to integrative therapies can implement these services with relative ease. Other than medical acupuncture, clinical aromatherapy and sound therapy can be utilized with minimal training and a basic review of techniques. In lieu of acupuncture, acupressure points, which include the same point locations but stimulation of the area with manual finger pressure rather than needles can be used. These services are easy to implement, minimally non-invasive, and cost-effective. Evidence supporting their efficacy continues to expand as well as a number of other alternative and complementary treatments. This holistic approach to patient care offers not only symptom relief but an educational component as they acquire new skills to enhance preventive health and self-care techniques.

Our hope is for similar programs to be offered in school health clinics. In addition to the three sites where the IHP was conducted, there are several other schools in Massachusetts that have meet with us and are in the planning phase of initiating integrative health services in their schools. We hope to facilitate similar programs and support efforts to offer CAM therapies to the vulnerable adolescent population.

ABOUT THE AUTHOR

Nada Milosavljevic, M.D., J.D. is Director of the Integrative Health Program at Massachusetts General Hospital and an Instructor at Harvard Medical School, Boston, MA USA.

CONFLICT OF INTEREST

Dr. Milosavljevic reports no biomedical or financial conflict of interest.

ACKNOWLEDGEMENTS

Financial support for the launching of the IHP program was provided by an anonymous donor.

REFERENCES

Abulrob, A. N., Suller, M. T., Gumbleton, M., Simons, C., Russell, A. D. (2004). Identification and biological evaluation of grapefruit oil components as potential novel efflux pump modulators in methicillin-resistant Staphylococcus aureus bacterial strains. Phytochemistry, 65, 3021-3027.

Adams, D., Cheng, F., Jou, H., Aung, S., Yasui, Y., & Vohra, S. (2011). The safety of pediatric acupuncture: a systemic review. Pediatrics, 128, 1575-1587.

American Music Therapy Association (2014). A status report and recommendations on music therapy treatment, programs, research, and practice policy. Music Therapy and Military Populations, Silver Spring, MD: Author. Retrieved from http://www.musictherapy.org/assets/1/7/MusicTherapyMilitaryPops_2014.pdf

Antrim, D. K. (2006). Music therapy. The Musical Quarterly, 30, 409-420.

Aung, S. K. H., & Chen, W. P. D. (Eds.). (2007). Clinical introduction to medical acupuncture. New York: Thieme Medical Publishers.

Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety. Journal of Consulting and Clinical Psychology, 56, 893-897.

Bekhuis, T. (2009). Music therapy may reduce pain and anxiety in children undergoing medical and dental procedures. Journal of Evidence Based Dental Practice, 9, 213-214.

Bradt, J., & Dileo, C. (2009). Music for stress and anxiety reduction in coronary heart disease patients. Cochrane Database of Systematic Reviews, CD006577. doi:10.1002/14651858.CD006577.pub2.

Brum, L. F., Elisabetsky, E., & Souza, D. (2001). Effects of linalool on [3H] MK801 and [3H] muscimol binding in mouse cortical membranes. Phytotherapy Research, 15, 422-425.

Campbell, P. S., Connell, C., & Begglo, A. (2007). Adolescents’ expressed meanings of music in and out of school. Journal of Research in Music Education, 55, 220-236.

Cook, P. (1997). Sacred music therapy in North India. The World of Music, 39, 61-83.

Dhond, R. P., Ketter, N., & Napadow, V. (2007). Neuroimaging acupuncture effects in the human brain. Journal of Alternative and Complementary Medicine, 13, 603-616.

Edwards, J. (2008). The use of music in healthcare contexts: A select review of writings from the 1890s to the 1940s. Voices, 8. Retrieved from <https://voices.no/index.php/voices/article/view/428>

Errington-Evans, N. (2012). Acupuncture for anxiety. CNS Neurosciences & Therapeutics, 18, 277-284.

Feger, W. (2006). Nonvolatiles of commercial lime and grapefruit oils separated by high-speed countercurrent chromatography. Journal of Agricultural and Food Chemistry, 54, 2242-2252.

Gaynor, M. (2002). The healing power of sound. Boston, MA: Shambhala Publications.

Hata, T., Sakaguchi, I., Mori, M., Ikeda, N., Kato, Y., Minamino, M., & Watabe, K. (2003). Induction of apoptosis by citrus paradise essential oil in human leukemia (HL-60) cells. In Vivo, 17, 553-559.

Helping Students Learn to Manage Anxiety (2013, Winter). Mindscapes p.3.

Hongratanaworakit, T. (2011). Aroma-therapeutic effects of massage blended essential oils on humans. Natural Product Communications, 6, 1199-1204.

Jindal, V., Ge, A., & Mansky, P. J. (2008). Safety and efficacy of acupuncture in children: A review of the evidence. Journal of Pediatric Hematology and Oncology, 30, 431-442.

Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E.E. (2005). Prevalence, severity, and comorbidity of twelve-month DSM-IV disorders in the National Comorbidity Survey Replication (NCS-R). Archives of General Psychiatry, 62, 617-627.

Kessler, R. C., Berglund, P. A., Demler, O., Jin, R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication (NCS-R). Archives of General Psychiatry, 62, 593-602.

Kessler, R., & Greenberg, P. (2002). The economic burden of anxiety and stress disorders. In Davis, K. L., Charnney, D., Coyle, J. T., & Nestoroff, C. (Eds.) Neuropsychopharmacology: The fifth generation of progress (pp. 981-992). Philadelphia, PA: Lippincott, Williams, & Wilkins.

Lewith, G. T., Godfrey, A. D., & Prescott, P. (2005). A single-blinded, randomized pilot study evaluating the aroma of lavandula augustifolia as a treatment for mild insomnia. Journal of Alternative and Complementary Medicine, 11, 631-637.
Lin, P. W., Chan, W., Ng, B. F., & Lam, L. C. (2007). Efficacy of aromatherapy (Lavandula angustifolia) as an intervention for agitated behaviors in Chinese older persons with dementia: A cross-over randomized trial. *International Journal of Geriatric Psychiatry, 22*, 405-410.

Lis-Balchin, M., & Hart, S. (1999). Studies on the mode of action of the essential oil of lavender (lavandula angustifolia P. Miller). *Phytotherapy Research, 13*, 540-542.

Lo, M. Y., Lin, J., Wei Ong, M., & Sun, W. Z. (2013). Cerebral hemodynamic responses to acupuncture in migraine patients: a systemic review. *Journal of Traditional and Complementary Medicine, 3*, 213-220.

Ljubinovic, N. (2013). Acupuncture, anxiety & depression. *Psych Central*. Retrieved from <http://psychcentral.com/lib/acupuncture-anxiety-depression/00017321>

McGorry, P. D., Purcell, R., Goldstone, S., & Amminger, G. P. (2011). Age of onset and timing of treatment for mental and substance use disorders: Implications for preventive intervention strategies and models of care. *Current Opinion in Psychiatry, 24*, 30-306.

Misic, P., Arandjelovic, D., Stanojkovic, S., Vladejic, S., & Mladenovic, J. (2010). Music therapy. *European Psychiatry, 25*(Suppl. 1), 839.

National Institute of Mental Health (n. d.). *Anxiety disorders*. Retrieved from <http://www.nimh.nih.gov/health/topics/anxiety-disorders/index.shtml>

National Center for Complementary and Alternative Medicine (NCCAM) (n. d.) *Complementary, alternative, or integrative health: What’s in a name?* Retrieved from <http://nccam.nih.gov/health/whatiscam>.

National Center for Complementary and Alternative Medicine (2011). *Third strategic plan for 2011-2015, Exploring the science of complementary and alternative medicine*, NIH Publication No. 11-7643. Washington, DC: US Department of Health and Human Services, National Institutes of Health. Retrieved from <https://nccam.nih.gov/sites/nccam.nih.gov/files/NCCAM_SP_508.pdf>

Nuwaha, F., & Musinguzi, G. (2013). Use of alternative medicine for hypertension in Buikwe and Mubungo districts of Uganda: A cross section study. *BMC Complementary and Alternative Medicine, 13*, 301.

Pelletier, C. L. (2004). The effect of music on decreasing arousal due to stress: A meta-analysis. *Journal of Music Therapy, 41*, 192–214.

Santos, E. L., Dias, B. H., Andrade, A. C., & Pascoal, A. M, Vasconcelos Filho, F. E., Medeiros, F. D., & Guimarães, S. B. (2013). Effects of acupuncture and electroacupuncture on estradiol-induced inflammation and oxidative stress in health rodents. *Acta Cirúrgica Brasileira, 28*, 582-588.

Shina, Y., Funabashi, N., Lee, K., Toyoda, T., Sekine, T., Honjo, S. . . Komuro, I. (2008). Relaxation effects of lavender aromatherapy improve coronary flow velocity reserve in healthy men evaluated by transthoracic Doppler echocardiography. *International Journal of Cardiology, 129*, 193-197.

Stea, S., Beraudi, A., & De Pasquale, D. (2014). Essential oils for complementary treatment of surgical patients: State of the art. *Evidence Based Complementary and Alternative Medicine, 726341 Epub 2014 Feb 24.*

Stux, G., Berman, B., & Pomeranz, B. (Eds.). (2000). *Basics of acupuncture*, 5th Revised Edition. Heidelberg: Springer Publishing.

Tanida, M., Shen, J., Niijima, A., Yamatodani, A., Oishi, K., Ishida, N., & Nagal, K. (2008). Effects of olfactory stimulations with scents of grapefruit and lavender oils on renal sympathetic nerve and blood pressure in Clock mutant mice. *Autonomic Neuroscience, 139*, 1-8.

Van der Watt, G., Laugharne, J., & Janca, A. (2008). Complementary and alternative medicine in the treatment of anxiety and depression. *Current Opinion in Psychiatry, 21*, 37-42.

Received: August 11, 2014 Revised: February 04, 2015 Accepted: February 06, 2015