Review Paper

The Effect of Aquatic and Land-Based Exercises on Pain Reduction, Muscle Strength and Kinetic/Kinematic Variables in People With Chronic Low Back Pain: A Review Study

*Behnaz Maleki1, Zahra Raisi2

1. Department of Pathology and Sport Biomechanics, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran.
2. Department of Sport Pathology and Sport Physiology, Faculty of Sport Sciences, Arak University, Arak, Iran.

Abstract

Objective: Chronic Low Back Pain (LBP) is one of the problems that afflicts most people in society. It can directly affect gait parameters. Changes in gait parameters increase the amount of pain in these individuals. The aim of this study was to review the effect of therapeutic interventions (aquatic and land-based exercises) on gait parameters in individuals with chronic LBP.

Methods: By searching for published papers related to kinetics, kinematics and therapeutic exercises in patients with chronic LBP in PubMed, Science Direct, Google Scholar databases, 34 articles were selected for review.

Results: Physical exercises are effective in reducing pain and improving gait parameters in this patients with chronic LBP, but there was a significant difference between physical exercises performed on land and water.

Conclusion: Exercises due to its unique characteristics, such as buoyancy, immersion and resistance, are a safe and proper environment for the patients with chronic LBP to perform therapeutic exercises and improve the gait parameters.

Extended Abstract

1. Introduction

Low Back Pain (LBP) is among the most prevalent health problems that affect both genders and all age groups [1]. It is the most significant factor affecting the health and functional ability of the elderly [2]. Among the studies on the LBP prevalence in men and women of all ages, Hoy et al. detected its highest prevalence among women aged 40-80 years [4]. In most cases, LBP is caused by poor posture and muscle weakness [7]. Because of the pain caused by disease, these patients suffer from back muscle distortion, decreased spinal function, and eventually physical inactivity and inability to use those muscles [8]. Numerous methods have been suggested to treat and reduce LBP. Aquatic exercise is a well-known exercise, i.e. used as an effective and safe measure for patients with LBP [21]. Water exercise reduces stress on the joints and the load on the spine [22]. This study aimed to review the effect of Aquatic Exercise (AQE) and Land-
based Exercise (LBE) on pain reduction, muscle strength, as well as kinetic and kinematic variables in people with chronic LBP.

2. Materials and Methods

For the review, we used the related papers published from 2005 to 2019 by searching in PubMed, ScienceDirect, and Google Scholar databases. We applied the following keywords: “Chronic low back pain, kinetic, kinematic, hydrotherapy, aquatic, training, gait, intervention, and physical exercise.” Initial search resulted in approximately 2000 articles related to the subject of the present study. After reviewing the title and abstracts of the gathered articles, 110 papers were selected for further review. Finally, by reviewing the full texts of the articles and taking considering factors, such as the effectiveness of therapeutic exercises on people with chronic LBP and the evaluation of walking parameters, 34 papers were selected for the analysis.

3. Results

Previous studies have revealed that LBP causes motor disorders in other body parts when performing motor tasks. For example, LBP has been reported to decrease the intensity of lower extremity muscle activity during gait [23]. It also reduces ground reaction force and loading rate while walking. This may indicate that these individuals have more significant asymmetry in the kinematics of their lower extremities during walking, compared to their healthy counterparts [25]; in turn, it causes lower extremity injuries [26].

Among the exercises suggested for patients with chronic LBP, a group of exercises are called William flexion exercises. These exercises are essential in the routine treatment of these patients [27]. Another view has suggested that appropriate treatment is selected based on the type of back pain and its cause. In this regard, McKenzie suggests exercises with emphasis on lumbar extensions, given the patient's history and symptoms [28]. Hydrotherapy research results have suggested that performing AQEs for 8 weeks, two sessions per week can reduce fatigue in this group; consequently, it improves pain, muscle spasms, and inability to perform daily tasks [31].

Studies have indicated that the lack of kinetic and kinematic coordination in the lumbar region, especially with sudden perturbations, may cause musculoskeletal injury [38]. Postural compensatory strategies may lead to a better understanding of spinal movement patterns; this could help to clarify the relationship between kinetic and kinematic changes in people with chronic LBP. According to Sung et al. the group with chronic LBP demonstrated kinetic stability [38].

Applying AQEs has become increasingly popular for the treatment and improvement of various complications and diseases. Meanwhile, the types of evaluated variables and the conditions of exercise in different studies were different. Sjogren et al. explored the effects of AQEs and LBEs on chronic LBP and concluded that AQEs are more effective than LBEs [9]. Dundar et al. [8] examined the effect of AQEs in patients with LBP. They reported that performing these exercises for two weeks affects the kinematics of the trunk and lower limbs [8].

4. Conclusion

AQE can significantly change pain, disability, as well as the kinetic and kinematic patterns of gait in patients with chronic LBP. The obtained data revealed that in some cases, these changes might modify the gait pattern and obtain a more optimal pattern. In this regard, AQE was associated with reducing traumatic risk factors. Furthermore, it could significantly reduce the risk of injuries caused by back pain. However, limited studies have addressed the ineffectiveness of these exercises. Thus, despite the previous study results, further studies are required to assess more diverse conditions using a larger sample size.

Ethical Considerations

Compliance with ethical guidelines

Since this work was a review study with no study subject, no informed consent was obtained and there was no need for ethical approval.

Funding

This study received no financial support from any organization.

Authors' contributions

Conceptualization, investigation, resources, and draft preparation: Behnaz Maleki; Review & editing: Behnaz Maleki and Zahra Raisi.

Conflicts of interest

The authors declare no conflict of interest.
تأثیر اجرای تمرینات در هوای معتدل آبی و خشکی بر کاهش درد، بهبود قدرت عضلانی و متغیرهای کینتیکی و کینماتیکی در افراد مبتلا به کمردرد مزمن: یک مطالعه توصیفی-موردی

*بهناز ملکی 1، زهرا رئیسی 2

1. گروه آسیب‌شناسی و پیش‌بینی‌گری، زبان و درمان پایداری، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران
2. گروه آسیب‌شناسی و فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه تبریز، تبریز، ایران

کلمات کلیدی: کمردرد مزمن، پارامترهای راه‌رفتن، تمرین درمانی، آب درمانی

مقدمه

بیماری کمردرد یکی از مشکلات زیادی است که عوامل مختلفی می‌تواند منجر به آن شود. این بیماری به دلیل ناراحتی و ضعف عضلانی است که به‌طور طبیعی در افراد مبتلا به کمردرد مزمن دیده می‌شود. در حقیقت، بیماری کمردرد مزمن می‌تواند منجر به ضعف عملکرد عضلات و مفاصل می‌شود.

در این مطالعه، اثرات تمرینات درمانی در محیط آبی و خشکی بر کاهش درد و بهبود قدرت و متغیرهای کینتیکی و کینماتیکی در افراد مبتلا به کمردرد مزمن بررسی شد.

هدف:

بررسی اثرات تمرینات درمانی در محیط آبی و خشکی بر کاهش درد، بهبود قدرت و متغیرهای کینتیکی و کینماتیکی در افراد مبتلا به کمردرد مزمن.

مکان‌ها:

کمربند، پارک‌های دویدنی، تیم‌های ورزشی، آب‌کریز

مقدمه:

بیماری کمردرد یکی از مشکلات مربوط به سلامتی است که افراد از هر جنس و سن و سطح فعالیت خود می‌گذرند. این بیماری به‌طور مستقیم بر پارامترهای راه‌رفتن است. تغییرات در پارامترهای راه‌رفتن در افراد با کمردرد مزمن میزان درد را افزایش می‌دهد. بر این بازه، هدف از مطالعات حاضر بررسی انواع تمرینات درمانی بر پارامترهای راه‌رفتن در افراد با کمردرد مزمن می‌باشد.

روش‌ها:

مروری حاضر انتخاب مقالاتی که در زمینه کینتیک، کینماتیک و تمرینات درمانی بر بیماران مبتلا به کمردرد مزمن در بانک‌های روش‌ها: تاریخ دریافت: 1397 مرداد 11، تاریخ پذیرش: 1397 آبان 10، تاریخ انتشار: 1397 آذر 10

یافته‌ها:

مروری بر مطالعات انجام شده نشان داد که انواع تمرینات فیزیکی بر بهبود درد و پارامترهای راه‌رفتن در افراد مبتلا به کمردرد مزمن اثرگذار بود. اما تفاوت قابل توجهی میان انواع تمرینات فیزیکی در خشکی و تمرینات در آب وجود داشت.

نتیجه‌گیری:

تمرینات در آب به دلیل ویژگی‌های منحصر به فرد آن‌ها از جمله شناوری، غوطه‌وری و مقاومت، محیط مناسب و ایمن برای بیماران جهت اجرای تمرینات درمانی و بهبود مطلوب‌تر پارامترهای راه‌رفتن است.

کلیدواژه‌ها:

کمردرد مزمن، پارامترهای راه‌رفتن، تمرین درمانی، آب درمانی
بکارگیری استفاده از وسایل جابجای همانند پریس است. از این این ابزار برای افزایش میزان و مشارکت در کنترل حرکت، چهره و همبستگی عملکرد درمانی راه‌حل‌های مطالعاتی است. این است که نتایجی در انجام تمرینات و تمرینات عاملی ایجاد می‌شود.

در این راستا، بسیاری از مطالعات در مورد میزان درد و کاهش توانایی حرکتی افراد مبتلا به کمردرد می‌گزارند. با ارزیابی نتایج تحقیقات و تمرینات باعث نتایجی مثبت می‌شود. در این راستا، بسیاری از مطالعات در مورد میزان درد و کاهش توانایی حرکتی افراد مبتلا به کمردرد می‌گزارند.

به‌طور کلی، نتایج این مطالعات نشان می‌دهد که بکارگیری وسایل جابجای همانند پریس برای درمان کمردرد می‌تواند بهبودی مثبتی در کاهش درد و بهبود توانایی حرکتی افراد مبتلا به کمردرد داشته باشد.

مطالعات مختلف در مورد استفاده از وسایل جابجای همانند پریس در درمان کمردرد می‌باشد. در این راستا، مطالعات مختلف در مورد استفاده از وسایل جابجای همانند پریس در درمان کمردرد می‌باشد.

1. GRF
2. Loading rate
3. ACL

فوت‌نویسی:

1. GRF
2. Loading rate
3. ACL
می‌توان به طور معمول در محیط آب در مقایسه با محیط خشکی از مزایای بیشتری سود برد. گرما و خاصیت بایونسی آب با اثری که بر گیرنده‌های حرارتی و مکانیکی دارد موجب مسدود شدن گیرنده‌های درد شده و علاوه بر این آب گرم جریان خون را افزایش می‌دهد و موجب تسریع دفع اسیدلاکتیک و آرامش عضلات می‌شود. همچنین، اثر هیدروستاتیک آب ممکن است با کاهش ورم ثانویه‌ای ناشی از درد و یا با کاهش فعالیت سیستم عصبی سمپاتیک کاهش درد شود.

گرچه بهبود ناتوانی مهم‌ترین عامل پیشگیری و موفقیت در درمان کمر درد است اما برخی از مطالعات نشان داده‌اند که شدت درد و مقاومت به ناتوانی خیلی به هم بستگی ندارند، و هر پژوهش دو ریسک فاکتور مختص به خود را دارد که ثابت می‌کند حرکت درمانی بهبود ناتوانی را در بیماران در مراحل اولیه روند مبتلا به کمر درد مزمن به دنبال دارد. توان بخشی استفاده از آب درمانی جهت بازگرداندن دامنه حرکتی به صورت خلاصه جدول شماره ۳ و انعطاف‌پذیری مفید است.

مطالعاتی که در مورد اثرات ورزش درمانی برای درمان درد کمر انجام شده‌اند را مرور می‌کند.

ویژگی‌های کینتیکی و کینماتیکی در افراد مبتلا به کمر درد: در ارتباط با بیماری کمر درد، اگرچه در مورد اثر مدت زمان انجام این تمرینات بر شاخص درد این افراد تحقیقاتی صورت گرفت، اما تحقیقاتی از معرفی تمرینات لازم مصرف می‌شود. در تمرین‌های مربوط به حرکات خود و استراحت نیز به بررسی برخی از آزمایشات و روش‌های درمانی از برخی ایرانیان نیز نتایجی حاصل نمود که این روش‌ها بهبودی در حالت آسیب ناشی از عضلات و نیروهای وارد شده از بیرون ارتباط مشترکی دارند و ممکن است نقش مهمی را در عملکرد ستون فقرات حین ایستادن و اجرای حرکات، همانند بخشی از زنجیره کینتیکی اجرا کنند. مطالعات قبلی نشان داده که کاهشی را در نیروی حاصل از عکس العمل در این افراد نشان داده و افزایش ثبات پاسچرال است. گرچه مقادیر کینماتیک را حین ایستادن تغییر می‌دهد، ثبات پاسچرال ممکن است ناشی از کاهش‌های حس عمقی در ناحیه ستون فقرات باشد. تفاوت‌هایی استراتژیکی در ایستاده فعالیت بر اساس ارزیابی تعادل، استفاده‌هایی است. در افراد مبتلا به کمر درد، عملکرد ثبات پاسچرال است. گرچه مقادیر کینماتیک را حین ایستادن تغییر می‌دهد، ثبات پاسچرال ممکن است ناشی از کاهش‌های حس عمقی در ناحیه ستون فقرات باشد. ارزیابی فیزیکی در این بیماران نباید تنها به ناحیه ستون فقرات محدود شود و باید همراه با ارزیابی دیگر قسمت‌ها خصوصاً اندام تحتانی توجه کند. نظریه سازگاری دقیق‌تری باید بیان می‌کنند که ارزیابی دیگر قسمت‌ها می‌تواند به کاهش درد مزمن کمک کند. همین‌طور ارزیابی ایستاده و حرکات ارتباطی با مطالعات فعلی متفاوت باشد. مطالعات جدید نشان داده که اختلال در یک ناحیه موجب ایجاد سازگاری در دیگر نواحی می‌شود. نظریه سازگاری افقی یک ناحیه می‌تواند به کاهش درد مزمن کمک کند.

نوع تداخل	آزمودنی‌ها	مطالعه
کاهش درد و پدیده‌های ناخوشایندی کمر	4 مرد و 3 زن	Franca (2010) [41]
کاهش درد و پدیده‌های ناخوشایندی کمر	6 مرد و 4 زن	Higl (2019) [62]
کاهش درد و پدیده‌های ناخوشایندی کمر	7 مرد و 7 زن	Bronfort (2011) [44]
کاهش درد و پدیده‌های ناخوشایندی کمر	12 مرد و 12 زن	Macedo (2012) [42]
کاهش درد و پدیده‌های ناخوشایندی کمر	20 مرد و 20 زن	Javadan (2015) [61]

5. Janda horizontal theory
سازگاری ممکن است به صورت ابتدا به انتها یا انتها به ابتدا باشد. بنابراین تغییر کینتیک و کینماتیک در یک ناحیه منجر به ایجاد تغییرات در نواحی دیگر می‌شوند. ثبات هر ناحیه از ستون مهره‌ها حین ایستادن می‌تواند یک عکس عملی از ثبات پاسچرال باشد. ثبات در ناحیه کمری به علاوه ناحیه مرکزی حین ایستادن تک پا ممکن است در جهت درک هماهنگی پاسچر افراد مبتلا به کمردرد مزمن مسئله‌ای مهم باشد.

مقایسه کنترل پاسچرال بر اساس اندازه‌گیری ثبات کینتیک و کینماتیک ممکن است با درک بهتر از تنظیم پاسچر در انواع وظایف حركتی مواجه شود. پاسچرال می‌تواند بخشی از تحقیقات ایستاده‌ای به منظور بهبود اندازه‌گیری پاسچرال کمر در بیماران مبتلا به کمردرد مزمن باشد.

مقایسه اثر تمرینات در آب و خشکی بر بیماران مبتلا به کمردرد مزمن: بیشتر مطالعات انجام شده در خصوص افراد مبتلا به کمردرد مزمن، کاهش معناداری را در درد و ناتوانی، تغییرات معناداری را در شاید خوراکی و ثبات اندازه‌گیری شده در پاسچرال نشان دادند. این نتایج نشان‌دهنده این است که تمرینات در آب و خشکی ممکن است سبب کاهش درد مزمن و بهبود اندازه‌گیری پاسچرال کمر در بیماران مبتلا به کمردرد مزمن شوند.

شاخص	نوع	میزان	تعداد	سن	شدت تمرین	منبع
بیماری‌های ریوی	کینتیک	70	10	10	0/7 m/s	Barela (2008) [47]
		61	5	8	8/5 m/s	Shono (2007) [57]
		62	5	8	22/3 m/s	Albion (2011) [59]
		61	5	8	90 m	Albion (2013) [46]
		60	5	8	80 m	de Britto Fontana (2012) [49]
		61	5	8	22/3 m/s	Colado (2010) [54]
		61	5	8	90 m	Ohnishi (2005) [60]
		61	5	8	22/3 m/s	Silver (2014) [56]
		61	5	8	22/3 m/s	Kaneda (2007) [58]
		61	5	8	22/3 m/s	Orselli (2011) [50]
		61	5	8	22/3 m/s	Chevutschi (2009) [52]
		61	5	8	22/3 m/s	Degani (2006) [51]
		61	5	8	22/3 m/s	Carneiro (2012) [53]
		61	5	8	22/3 m/s	Barela (2008) [47]

در مطالعات مختلف متفاوت بوده است.
بهناز ملکی و زهرا رییسی. تأثیر اجرای تمرینات در محیط آبی و خشکی بر کمردرد مزمن

تمرینات در محیط آبی و خشکی بر میزان کمردرد مزمن تأثیر مثبتی داشته است. نتایج مطالعات حاضر نشان می‌دهند که تمرینات در آب می‌توانند بهبود بیماری در نتیجه این تمرینات در بدن را بهبودی‌ای کمک‌آمیزی کنند. این را بیشتر از تمرینات در محیط خشکی می‌کنند. در آب، فشار هیدرواستاتیک بیشتر است و می‌تواند باعث کاهش پیکرهای باریک در بدن شود. این بررسی‌ها نشان دادند که تمرینات در آب می‌توانند بهبود بیماری در این راستا را بهبودی‌ای کمک‌آمیزی کنند. این را بیشتر از تمرینات در محیط خشکی می‌کنند.

نتیجه‌گیری‌ها

در جمع‌بندی نتایج مطالعاتی که تاکنون انجام شده است، نشان داده شده است که تمرینات در محیط آبی و خشکی می‌توانند بهبود بیماری در این راستا را بهبودی‌ای کمک‌آمیزی کنند. این را بیشتر از تمرینات در محیط خشکی می‌کنند. در آب، فشار هیدرواستاتیک بیشتر است و می‌تواند باعث کاهش پیکرهای باریک در بدن شود. این بررسی‌ها نشان دادند که تمرینات در آب می‌توانند بهبود بیماری در این راستا را بهبودی‌ای کمک‌آمیزی کنند. این را بیشتر از تمرینات در محیط خشکی می‌کنند.

ملاحظات اخلاقی

یکی از اصول اخلاقی پژوهش

پیروی از اصول اخلاقی پژوهش

رازنمایی‌ها و چالش‌های اخلاقی تمرینات در محیط آبی و خشکی بر کمردرد مزمن
December 2018. Vol 4. Issue 3

[29] Sami S, Hakimi M, Ali-Mohammadi M, Karimiyani N. [Comparing the effects of hydrotherapy, relaxation and McKenzie exercise on improvement of chronic low back pain in athletes (Persian)]. Anesthesiology and Pain. 2014; 4(2):11-21.

[30] Yafalani A, Ahmadnezhad L, Gholami B, Mayahi F. The effect of six-weeks aquatic exercise therapy on static balance, function of trunk and pelvic girdle muscles, pain, and disability in woman with chronic low back pain. Iranian Journal of Health Education and Health Promotion. 2017; 5(4):288-95. [DOI:10.30699/acadpub.jihehp.5.4.288]

[31] Pantoja PD, Alberton CL, Pilla C, Vendrusculo AP, Krue LF. Effect of resistive exercise on muscle damage in water and on land. Journal of Strength and Conditioning Research. 2009; 23(3):1051-4. [DOI:10.1519/JSC.0b013e3181a0045] [PMID]

[32] Pincus T, Burton AK, Vogel S, Field AP. A systematic review of psychological factors as predictors of chronicity/disability in prospective cohorts of low back pain. Spine. 2002; 27(5):E109-20. [DOI:10.1097/00007632-200203010-00017] [PMID]

[33] McGregor AH, Hukins DW. Lower limb involvement in spinal function and low back pain. Journal of Back and Musculoskeletal Rehabilitation. 2009; 22(4):219-22. [DOI:10.3233/BMR-2009-0239] [PMID]

[34] Sánchez-Zuriaga D, López-Pascual J, Garrido-Jaén D, de Moya MF, Pantoja PD, Alberton CL, Pilla C, Vendrusculo AP, Kruel LF. Effect of resistive exercise on muscle damage in water and on land. Journal of Strength and Conditioning Research. 2009; 23(3):1051-4. [DOI:10.1519/JSC.0b013e3181a0045] [PMID]

[35] Burnett DR, Campbell-Kyureghyan NH, Cerrito PB, Quesada PM. Symmetry of ground reaction forces and muscle activity in asymptomatic subjects during walking, sit-to-stand, and stand-to-sit tasks. Journal of Electromyography and Kinesiology. 2011; 21(4):610-5. [DOI:10.1016/j.jelekin.2011.03.006] [PMID]

[36] Karlsson A, Fryberg G. Correlations between force plate measures for assessment of balance. Clinical Biomechanics. 2000; 15(5):365-9. [DOI:10.1016/S0268-0033(99)00096-0] [PMID]

[37] Jo HL, Song SY, Lee KJ, Lee DC, Kim YH, Sung PS. A kinematic analysis of relative stability of the lower extremities between subjects with and without chronic low back pain. European Spine Journal. 2011; 20(8):1297-303. [DOI:10.1007/s00586-010-1686-1] [PMID] [PMCID]

[38] Sung PS, Ham YW. Comparing postural strategy changes following adapted versus non-adapted responses in subjects with and without spinal stenosis. Manual Therapy. 2010; 15(3):261-6. [DOI:10.1016/j.math.2010.01.004] [PMID]

[39] Page P, Frank C, Lardner R. Assessment and treatment of muscle imbalance: The Janda approach. Windsor, Ontario: Human Kinetics; 2009.

[40] Sung PS, Leininger PM. A kinematic and kinetic analysis of spinal region in subjects with and without recurrent low back pain during one leg standing. Clinical Biomechanics. 2015; 30(7):696-702. [DOI:10.1016/j.clinbiomech.2015.05.003] [PMID]

[41] Franco FB, Burke TN, Hanada ES, Marques AP. Segmental stabilization and muscular strengthening in chronic low back pain: A comparative study. Clinics. 2010; 65(10):1013-7. [DOI:10.1590/S1807-5932201001000015] [PMID] [PMCID]

[42] Macedo LG, Latimer J, Maher CG, Hodges PW, McAuley JH, Nicholas MK, et al. Effect of motor control exercises versus graded activity in patients with chronic nonspecific low back pain: A randomized controlled trial. Physical Therapy. 2012; 92(3):363-77. [DOI:10.2522/ptj.20110290] [PMID]

[43] Ungsgaard-Tøndel M, Fladmørk AM, Salvesen B, Vasselon O. Motor control exercises, sling exercises, and general exercises for patients with chronic low back pain: A randomized controlled trial with 1-year follow-up. Physical Therapy. 2010; 90(10):1426-40. [DOI:10.2522/ptj.20090421] [PMID]

[44] Bronfort G, Maires MJ, Evans RL, Schultz CA, Bracha Y, Svendsen KH, et al. Supervised exercise, spinal manipulation, and home exercise for chronic low back pain: A randomized clinical trial. The Spine Journal. 2011; 11(7):585-98. [DOI:10.1016/j.spinee.2011.01.036] [PMID]

[45] Pires D, Cruz EB, Caeiro C. Aquatic exercise and pain neurophysiology education versus aquatic exercise alone for patients with chronic low back pain: A randomized controlled trial. Clinical Rehabilitation. 2015; 29(6):538-47. [DOI:10.1177/0269215514549033] [PMID]

[46] Alberton CL, Finatto P, Pinto SS, Antunes AH, Cadore EL, Tartaruga MF, et al. Vertical ground reaction force responses to different head-out aquatic exercises performed in water and on dry land. Journal of Sports Sciences. 2015; 33(8):795-805. [DOI:10.1080/02640414.2014.964748] [PMID]

[47] Barela AM, Stolf SF, Duarte M. Biomechanical characteristics of adults walking in shallow water and on land. Journal of Electro myography and Kinesiology. 2006; 16(3):250-6. [DOI:10.1016/j.jele kin.2005.06.013] [PMID]

[48] Donoghue OA, Shimojo H, Takagi H. Impact forces of plyometric exercises performed on land and in water. Sports Health. 2011; 3(3):303-9. [DOI:10.1177/1941738111403872] [PMID] [PMCID]

[49] de Brito Fontana H, Haupenthal A, Ruschel C, Hubert M, Ridehalgh C, Roesler H. Effect of gender, cadence, and water immersion on ground reaction forces during stationary running. Journal of Orthopaedic & Sports Physical Therapy. 2012; 42(5):437-43. [DOI:10.2519/jospt.2012.3572] [PMID]

[50] Orseli MI, Duarte M. Joint forces and torques when walking in shallow water. Journal of Biomechanics. 2011; 44(6):1170-5. [DOI:10.1016/j.jbiomech.2011.01.017] [PMID]

[51] Degani A, Danna-dos-Santos A. Spatio-temporal parameters and interlimb coordination for older adults when walking in shallow water. Journal of Aquatic Physical Therapy. 2006; 14(1):2-7.

[52] Chevutsch A, Alberty M, Lensel G, Pardessus V, Thevenon A. Comparison of maximal and spontaneous speeds during walking on dry land and water. Gait & Posture. 2009; 29(3):403-7. [DOI:10.1016/j.gaitpost.2008.10.059] [PMID]

[53] Carneiro LC, Michaelsen SM, Roesler H, Haupenthal A, Hubert M, Mallmann E. Vertical reaction forces and kinematics of backward walking underwater. Gait & Posture. 2012; 35(2):225-30. [DOI:10.1016/j.gaitpost.2011.09.011] [PMID]

[54] Colado JC, Garcia-Masso X, González LM, Tripplett NT, Mayo C, Merce J. Two-leg squat jumps in water: An effective alternative to dry land jumps. International Journal of Sports Medicine. 2010; 31(2):118-22. [DOI:10.1055/s-0029-1242814] [PMID]

[55] Tripplett NT, Colado JC, Benavent J, Akalhdr Y, Madera JO, González LM, et al. Concentric and impact forces of single-leg jumps in an aquatic environment versus on land. Medicine & Science in Sports & Exercise. 2009; 41(9):1790-6. [DOI:10.1093/mss/mhp103] [PMID]

[56] Silvers WM, Bressel E, Dickin DC, Killorg G, Dolny DG. Lower-extremity muscle activity during aquatic and land treadmill running at the same speeds. Journal of Sport Rehabilitation. 2014; 23(2):107-22. [DOI:10.1123/JSR.2013-0003] [PMID]

Maleki B, Raisi Z. The Effect of Exercises in Two Water and dry Environments on Reduction Pain. J Sport Biomech. 2018; 4(3):2-13.
[57] Shono T, Masumoto K, Fujishima K, Hotta N, Ogaki T, Adachi T. Gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow. Journal of Physiological Anthropology. 2007; 26(6):579-86. [DOI:10.2114/jpa2.26.579] [PMID]

[58] Kaneda K, Wakabayashi H, Sato D, Nomura T. Lower extremity muscle activity during different types and speeds of underwater movement. Journal of Physiological Anthropology. 2007; 26(2):197-200. [DOI:10.2114/jpa2.26.197] [PMID]

[59] Alberton CL, Cadore EL, Pinto SS, Tartaruga MP, Da Silva EM, Kruel LF. Cardiorespiratory, neuromuscular and kinematic responses to stationary running performed in water and on dry land. European Journal of Applied Physiology. 2011; 111(6):1157-66. [DOI:10.1007/s00421-010-1747-5] [PMID]

[60] Miyoshi T, Shirota T, Yamamoto SI, Nakazawa K, Akai M. Functional roles of lower-limb joint moments while walking in water. Clinical Biomechanics. 2005; 20(2):194-201. [DOI:10.1016/j.clinbiomech.2004.10.006] [PMID]

[61] Javadian Y, Akbari M, Talebi G, Taghipour-Darzi M, Janmohammadi N. Influence of core stability exercise on lumbar vertebral instability in patients presented with chronic low back pain: A randomized clinical trial. Caspian Journal of Internal Medicine. 2015; 6(2):98-102. [PMID] [PMCID]

[62] Filiz MB, Firat SC. Effects of physical therapy on pain, functional status, sagittal spinal alignment, and spinal mobility in chronic non-specific low back pain. The Eurasian Journal of Medicine. 2019; 51(1):22-6. [DOI:10.5152/eurasianjmed.2018.18126] [PMID] [PMCID]

Maleki B, Raisi Z. The Effect of Exercises in Two Water and dry Environments on Reduction Pain. J Sport Biomech. 2018; 4(3):2-13.
