An *in-silico* study on selected organosulfur compounds as potential drugs for SARS-CoV-2 infection *via* binding multiple drug targets

Liya Thurakkal¹#, Satyam Singh²#, Sushabhan Sadhukhan¹*, Mintu Porel¹*

¹Discipline of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 557, India; ²Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India.

#Both authors contributed equally
*Corresponding author. *E-mail address: mintu@iitpkd.ac.in; sushabhan@iitpkd.ac.in

Abstract: The emerging paradigm shift from ‘one molecule, one target, for one disease’ towards ‘multi-targeted small molecules’ has paved an ingenious pathway in drug discovery in recent years. This idea has been extracted for the investigation of competent drug molecules for the unprecedented COVID-19 pandemic which became the greatest global health crisis now. Perceiving the importance of organosulfur compounds against SARS-CoV-2 from the drugs under clinical trials, a class of organosulfur compounds effective against SARS-CoV were selected and studied the interaction with multiple proteins of the SARS-CoV-2. One compound displayed inhibition against five proteins (both structural and non-structural) of the virus namely, main protease, papain-like protease, spike protein, helicase and RNA dependent RNA polymerase. Consequently, this compound emanates as a potential candidate for treating the virulent disease. The pharmacokinetics, ADMET properties and target prediction studies carried out in this work further inflamed the versatility of the compound and urge to execute *in-vitro* and *in-vivo* analysis on SARS-CoV-2 in the future.
1. Introduction

The deplorable situation of the present world aroused by the dreadful behavior of an RNA virus named the Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) is originated in the City of Wuhan, China in late 2019. The Corona Virus Disease (COVID-19) pandemic caused by the novel coronavirus (later named as SARS-CoV-2) massacred about four lakhs lives leaving more than eight million people in the infection with fever, dry cough, short breath and other respiratory ailments across 215 countries. Similar infections were reported in 2012 by the Middle East Respiratory Syndrome Corona Virus (MERS-CoV) and the Severe Acute Respiratory Syndrome Corona Virus (SARS-CoV) in 2003 but they were less contagious with 10,590 cases and 1632 fatalities collectively. According to the World Health Organization (WHO), there are no approved medicines or vaccines for COVID-19 as of now while extensive researches are undergoing to explore the treatment proceeding including the clinical trials of more than 300 compounds. The leading approach for the development of curative medication is drug repurposing as it allows for the rapid acceptance with a profit of low cost, known and optimized synthetic route and often facile to leapfrog the preliminary stages of clinical trial.

In hand the list of various known drugs for repurposing, the promising approach is to go down the line of SARS-CoV drugs. The phylogenetic analysis of SARS-CoV-2 revealed about 89.1% genomic similarity with SARS-CoV which is also a beta corona virus. Closely scrutinizing the proteins involved in the SARS-CoV-2 infection, the Spike Protein (Spro) promotes the entry of the virus into the human cell by binding with the type 1 transmembrane metallocarboxypeptidase known as Angiotensin Converting Enzyme-2 (ACE-2). The receptor binding motif of SARS-CoV and SARS-CoV-2 spike proteins are the same and they possess the sequence similarity of 76% by showcasing more similar adherence in the receptor binding domain. Spro is a structural protein located on the periphery of the virus and other main structural proteins are envelope protein, membrane proteins and nucleocapsid protein. The non-structural proteins are more in number, sixteen, and they are responsible for the viral multiplication and other specific purposes for infection. Once inside the cell, the viruses commence the synthesis of its RNA by the enzyme called RNA-dependent RNA polymerase (RdRp). Knowing the fact that SARS-CoV and SARS-CoV-2 share RdRp sequence with about 96% similarity, the inhibition of this protein is a prospective strategy of drug action. The other promising drug targets are Chymotrypsin Like Protease (3CLpro) otherwise called Main Protease (Mpro) and Papain Like Protease (PLpro) which help in virus replication. These two protease enzymes of the SARS-CoV-2 exhibit 96% and 83% percentage similarity respectively with that of SARS-CoV with similar active site sequences. Helicase is another target for antiviral drugs as it plays a vital role in replication and the central dogma of the virus. Spotlighting the structural similarity between SARS-CoV and SARS-CoV-2, we selected organosulfur compounds as drug candidates against SARS-CoV-2 which were previously found to be effective against SARS-CoV infection.

Organosulfur compounds are an important class of molecules with the sulfur-containing functional groups such as sulfones, sulfonamides, disulfides, sulfoxides, thiophene, thiazole
etc10. The impact of organosulfur compounds in the pharmaceutical sector is impeccable right from the example of penicillin. Clinical trial of a range of organosulfur compounds such as Ritonavir, arbidol11, baricitinib12 etc. is currently underway against SARS-CoV-2. Given the potential of organosulfur compounds as an antiviral drug, we selected eight organosulfur compounds (Figure 1) which are already reported to show antiviral activity against SARS-CoV, a very close analogue of SARS-CoV-2, and studied the inhibitory action against several druggable targets of SARS-CoV-2 to investigate the possibility of multiple targets binding of the selected candidates. As the mutation rate and thus evolution rate is more for RNA viruses13, multiple target binding increases the efficiency of the drug by reducing the effect of viral resistance against one protein14. Therefore, the molecular docking study of each compound is carried out with five different target proteins. The ADMET properties, target prediction and Lipinski’s rule are also predicted for the selected compounds to explore more about the pharmacokinetics and druggability.

![Figure 1](image-url)

Figure 1. Structure of the selected organosulfur compounds for the current study

2. **Materials and Methods**

2.1 **Ligand preparation**

The structure of all the organosulfur compounds was drawn in ChemDraw and the 3D structure was generated by UCSF Chimera15 from the SMILE string. The structures of all the reference compounds were obtained in UCSF Chimera through their PubChem ID. All the structures were energy minimized through the same software and converted the PDB structure to PDBQT format by using AutoDock Tools.

2.2 **Molecular docking**

Molecular docking study was carried out by using AutoDock Vina16 to explore the binding affinity and the involved interactions in between all eight organosulfur compounds and the five druggable protein targets of SARS-CoV-2 namely Main proteases (Mpro, Chain A), Papain-like proteases (PLpro, Chain A), Spike-protein (Spro, Chain B), Helicase protein, RNA dependent RNA polymerase (RdRp). The crystal structure of Mpro (PDB ID: 6Y84), PLpro
(PDB ID: 6W9C), Spro (PDB ID: 6LZG), RdRp (PDB ID: 6M71) and helicase (PDB ID: 6JYT) were retrieved from the protein databank (http://www.rcsb.org)17. The hydrogen atoms and gasteiger charges were added to each protein, subsequently, all the proteins were saved in PDBQT format by using the AutoDock v4.2 program18. For Mpro protein grid box (30 Å × 30 Å × 30 Å) centered at (X12, Y-8, Z20 Å), for PLpro grid box (30 Å × 30 Å × 30 Å) centered at (X-42, Y29, Z30 Å), SPro grid box (30 Å × 30 Å × 30 Å) centered at (X-36, Y33, Z12 Å), RdRp grid box (30 Å × 30 Å × 30 Å) centered at (X120, Y122, Z127 Å at 0.375 Å spacing) and for helicase protein grid box (42 Å x 30 Å x 86 Å) centered at (X424, Y29, Z25 Å at 0.375 Å spacing) were prepared and saved the output grid file in txt format. A docking run was given from the command prompt. Best docked conformation and minimum binding energy were considered for further analysis. UCSF chimera was used for the visualization of the docked conformation and results. The results and 2D interaction plots were analyzed by using Discovery studio visualizer19.

2.3 Physicochemical properties
The physicochemical properties according to Lipinski’s rule were calculated for all the selected organosulfur compounds to predict the pharmacokinetics property. SwissADME tool was used to calculate the properties from the SMILES structures of each compound. (http://www.swissadme.ch/)20.

2.4 ADMET studies
Predicting in-silico pharmacokinetic properties of a new drug is very crucial for further studies. ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) prediction provides some important information for new compounds. ADMET studies have been carried out by using the computational pkCSM tool (http://biosig.unimelb.edu.au/pkcsm/prediction)21.

2.5 Molecular target prediction
For the validation of targets, we used molecular target studies by using the Swiss Target Prediction tool (http://www.swisstargetprediction.ch/)22 which is a web server that predicts the putative targets of the given molecule by utilizing 2D and 3D similarity index with known ligands. The smile formats of the compounds were entered to obtain the targets.

3. Results and Discussion
In the current study, a set of organosulfur compounds known for targeting SARS-CoV Mpro were selected and to carry out the molecular docking studies to assess their potential against SARS-CoV-2. To examine the possibility of binding with multiple targets, we selected five SARS-CoV-2 proteins namely Mpro, PLpro, Spro, RdRp and helicase, and docked with the selected compounds along with their known inhibitors as the reference compounds such as indinavir for Mpro, darunavir for PLpro, arbidol for Spro, remdesivir for RdRp and ivermectin for helicase. Utilizing molecular docking study, the binding energy of the organosulfur compounds with the reference drug compounds is calculated and the results are tabulated in Table 1.
Table 1. Binding energy (kcal/mol) of the organosulfur compounds along with the reference compounds against various proteins of SARS-CoV-2 by molecular docking study

S. No.	Compound name	Binding energy (kcal/mol) against SARS-CoV-2 proteins				
		Mpro	PLpro	Spro	RdRp	Helicase
1	1	-8.6	-6.2	-7.2	-6.8	-7.7
2	2	-7.0	-5.8	-6.7	-6.5	-6.9
3	3	-7.3	-5.9	-6.8	-6.8	-7.2
4	4	-5.9	-5.1	-5.6	-5.4	-5.6
5	5	-5.6	-4.8	-5.3	-5.0	-5.2
6	6	-7.6	-6.1	-6.4	-6.3	-6.6
7	7	-7.2	-6.1	-6.7	-6.3	-6.3
8	8	-6.5	-5.2	-5.4	-5.8	-5.9
9	Indinavir	-7.7	-	-	-	-
10	Darunavir	-	-6.6	-	-	-
11	Arbidol	-	-	-6.1	-	-
12	Remdesivir	-	-	-	-7.4	-
13	Ivermectin	-	-	-	-	-8.5

3.1 Molecular docking study

3.1.1 Docking studies of the organosulfur compounds with the SARS-CoV-2 Mpro

Molecular docking study of the organosulfur compounds with the Mpro of SARS-CoV-2 exhibited promising results with several of them. Indinavir, a well-known drug that has already been reported to inhibit Mpro of the SARS-CoV-2\(^{23}\) was studied as a reference compound. Docking score of the organosulfur compounds along with the reference compound is tabulated in Table 1 and docking conformations of the reference compound and the organosulfur compound with the highest binding affinity \(i.e. 1\) is represented in Figure 2. All the compounds were found to bind in the active site of Mpro where Cys145 and His41 are the catalytic residues. Indinavir docked with a conformation that makes five hydrogen bonds with Thr26, Ser46, Asn142, Cys145 and Gln189 along with pi-alkyl interaction with Pro168, van der Waals interaction with His41 and other residues (see Figure 2b). When the lowest binding energy for the reference compound was observed to be -7.7 kcal/mol, the organosulfur compound, 1 docked with a minimum binding energy of -8.6 kcal/mol with three conventional hydrogen bonds with His41 (catalytic residue), Cys44 and Gly143. The interactions include two pi-sulfur interactions with Met49 and Met165; eight van der Waals interaction with Thr25, Thr45, Ser46, Leu141, Ser144, His164, Glu166 and Gln189; carbon-hydrogen bond with Asn142 and Cys145 which is also an active site residue (Figure 2d). The compound 6 binds with the binding energy -7.6 kcal/mol which is close to the binding energy of the reference compound with conventional hydrogen bond with both the active site residues His41 and Cys145 along with other van der Waals interaction. A pi-sulfur interaction is also observed with His41 making the binding stronger (Figure S1b in the Supplementary Information). Thus, 6 claims to be a fairly good candidate to inhibit Mpro of SARS-CoV-2. 3 docked with Mpro with a binding energy -7.3 kcal/mol even though hydrogen bonding with the catalytic dyad is absent. Nevertheless, 3 forms a pi-pi stacking interaction with His41, pi donor hydrogen bond with Cys145,
conventional hydrogen bond with Gly143, pi-sulfur bond with Met165, pi-sigma bond with Glu166 and van der Waals interaction with other residues (Figure S1d in the Supplementary Information). Based on these observations, 1, 6 and 3 can be a potential drug against the SARS-CoV-2 acting via Mpro inhibition.

Figure 2. Best-docked conformation and 2D diagram of amino acid interaction of the SARS-CoV-2 Mpro complexed with indinavir (a, b) and compound 1 (c, d)

3.1.2 Docking studies of the organosulfur compounds with the SARS-CoV-2 PLpro
The molecular docking study of organosulfur compounds with the SARS-CoV-2 PLpro revealed that the three compounds, namely 1, 6 and 7 exhibited reasonably strong interaction with binding energy in the range of the reference compound darunavir which is a known organosulfur drug for SARS-CoV-2. Darunavir docked into the binding pocket of the protein with catalytic triad Cys111, His272 and Asp286. Darunavir bound with the PLpro with the lowest binding energy of -6.6 kcal/mol when all the selected compounds could achieve
only higher energy than this. The interactions of Darunavir with the protein include four hydrogen bonds with Asn109, Gln269, Lys274 and Asp 286; two pi-sigma interactions with Trp106 and His272 besides the pi-alkyl and van der Waals interaction with other residues as depicted in the **Figure 3b**. Compounds 1, 6 and 7 showed the lowest binding energy of -6.2, -6.1 and -6.1 kcal/mol, respectively among the set. Out of the three potent molecules, 1 bound with protein by forming a hydrogen bond with the residues Trp106 and Ala288; pi-pi stacking with His272 and Trp106 and also van der Waals interaction with Asp286, Lys105, Gly287 and Leu289 (**Figure 3d**). Although 6 and 7 exhibited the same binding energy with PLpro, 6 made more interactions with the catalytic residues. The interactions are two hydrogen bonds with Trp106 and Cys111; pi-pi stacking interaction with Trp106, pi-alkyl interaction with Leu289 and also van der Waals interaction with His272 and other neighboring residues (**Figure S2b** in the Supplementary Information). Whereas 7 made no interaction with the catalytic triad but it exhibited hydrogen bonding with Asp37, Lys94 and Tyr97; amide pi stacked interaction with Gly142 along with few pi-alkyl and van der Waals interaction (**Figure S2d** in the Supplementary Information). Hence 1 and 6 found to be better candidates to inhibit PLpro of the SARS-CoV-2.
3.1.3 Docking studies of the organosulfur compounds with the SARS-CoV-2 Spike protein (Spro)

The docking scores of organosulfur compounds selected for the study of inhibition of Spro of the SARS-CoV-2 are shown in Table 1. Antiviral organosulfur drug for Influenza virus, arbidol, which has been repurposed against the SARS-CoV-2, is taken as the reference compound and is already in the clinical trial. The docking score of arbidol with Spro is -6.1 kcal/mol when five compounds namely 1, 2, 3, 6, and 7 in our list showed lower binding energy values than the reference compound. The active site of the protein comprised the amino acid residues Phe486, Gln493 and Asn501. Arbidol displayed one hydrogen bonding with Gly496, pi-pi interaction with Tyr449, van der Waals interaction with the catalytic residues Gln493, Asn501 and also with other residues (Figure 4b). Compound 1 interacted with Spro more strongly with the binding energy -7.2 kcal/mol by making a hydrogen bond with Gly496; pi-pi stacking with Tyr 505 along with the van der Waals interaction with Glu406, Tyr453, Tyr495, Asn501 and Gly502 (Figure 4d). 3 has the strongest interaction with the protein, after 1, by -6.8 kcal/mol. The compound made two hydrogen bonding with Gln498 and Tyr449; pi-sulfur and pi-pi T shaped interaction with Tyr505; the active site residue Gln493 and Asn501 interacted with the protein through van der Waals interaction (Figure S3d in the Supplementary Information). Compound 2 binds with the binding energy -6.7 kcal/mol and made pi-sulfur interaction with Tyr505; hydrogen bonding with Tyr449 and Gln498, and it managed to make a van der Waals interaction with the catalytic residue Asn501 and other residues (Figure S3d in the Supplementary Information). 7 is another compound that also showed good results with the docking score -6.7 kcal/mol. This compound is interacting with the catalytic residues Gln493 and Asn501 through van der Waals interaction by making the hydrogen bond with Glu406 (Figure S3f in the Supplementary Information). Analyzing these results, it can be observed that organosulfur compounds exhibited considerably low binding
energy with Spro of the SARS-CoV-2 warranting further *in vitro* and *in vivo* investigation to consider them as potential drugs for COVID-19.

Figure 4. Best-docked conformation and 2D diagram of amino acid interaction of the SARS-CoV-2 Spro complexed with arbidol (a, b) and compound 1 (c, d)

3.1.4 Docking studies of the organosulfur compound with the SARS-CoV Helicase

For this study, we have taken the crystal structure of SARS-CoV helicase protein which shares almost 99.83 % similarity over the complete length of sequences with the helicase protein of SARS-CoV-2 virus. The docking scores of the eight organosulfur compounds and the reference compound are represented in Table 1. The docked structure with the lowest binding energy and best conformation of the top-scoring organosulfur compound namely 1 along with one reference drug ivermectin, with their corresponding 2D interaction plots are shown in Figure 5. The docked conformation indicates that these molecules bind within the active site of the helicase protein of SARS-CoV. Figure 5b illustrates that the reference compound
ivermectin binds via two carbon-hydrogen bonds with residues Arg178, Asp534, four alkyl hydrophobic interactions with Pro408, Ala312, Ala313, Ala316 and van der Waals interactions and these conformation resulted in the lowest binding energy of -8.5 kcal/mol. Compound 1 binds with two conventional hydrogen bonds involving Lys202 and Arg178, two Pi-alkyl interactions with Lys202 and Ala520, one pi-anion interaction with Glu201, and van der Waals interactions as shown in Figure 5d giving -7.7 kcal/mol binding energy. Compound 2 stabilizes the complex through one hydrogen bond with Lys202, one pi-anion with Glu201, one carbon-hydrogen interaction with Asn177, pi-alkyl interaction with Lys202 and van der Waals interactions with other residues as represented in the 2D plot Figure S4b in Supplementary Information. Compound 2-helicase complex resulted in -6.9 kcal/mol binding energy. 3 was found to bind within the active site of the helicase through one hydrogen bond with Lys202, alkyl hydrophobic interaction with Arg178, pi-alkyl interaction with Lys202, pi-anion interaction with Glu201 and van der Waals interactions with other residues as shown in Figure S4d in Supplementary Information providing -7.2 kcal/mol binding energy. If we compare the values of the docking score, we can observe the reference compound ivermectin has the lowest binding energy with -8.5 kcal/mol followed by organosulfur compound 1, then 3 and finally 2. Three organosulfur compounds (1, 2 and 3) show good inhibitory activity towards the helicase protein of the SARS-CoV suggesting that these three organosulfur compounds might also be potent against helicase protein of the SARS-CoV-2.
Figure 5. Best-docked conformation and 2D diagram of amino acid interaction of SARS-CoV helicase complexed with ivermectin (a, b) and compound 1 (c, d).

3.1.5 Docking studies of the organosulfur compounds with the SARS-CoV-2 RdRp
Molecular docking studies of our organosulfur compound library against the RdRp protein of the SARS-CoV-2 revealed that the three organosulfur compounds, namely 1, 2 and 3 exhibited lowest binding energy along with the reference compound remdesivir\(^\text{26}\). The docked conformations of the RdRp-organosulfur compounds are depicted in Figure 6 and the docked scores are mentioned in Table 1. Remdesivir, a potent SARS-CoV-2 RdRp inhibitor binds in the active site (see Figure 6a) through hydrogen bonding with Tyr619 and Asp760, pi-sulfur interaction with Asp618, Asp761, pi-alkyl interactions with Lys621 and Pro620, alkyl hydrophobic interaction with Phe793, respectively, along with other interactions such as pi-sigma and van der Waals interactions with other residues as depicted in the 2D plot and this significant number of interactions resulted in the lowest binding energy of -7.4 kcal/mol. The docked structure showed that 1 formed four hydrogen bonds with Cys622, Arg553, Ser682, Asn691, and different non-covalent interaction such as pi-alkyl interaction with Lys621, pi-anion interaction with Asp623 and van der Waals interactions as shown in Figure 6d resulting lowest binding energy of -6.8 kcal/mol among all eight organosulfur compounds. 2 is involved in three hydrogen bond interaction with Trp800, Ser814, Cys813, two pi-anion interactions with Asp761, Glu811 and van der Waals interaction as represented in Figure S5b in the Supplementary Information consequently resulting -6.5 kcal/mol binding energy. Compound 3 formed two H-bond interactions with Lys621 and Ser795, one pi-alkyl interaction with Val166, one pi-sigma interaction with Pro620, two pi-cation interactions with Asp618, Lys798 and van der Waals interactions as depicted in Figure S5d eventually this complex resulted in minimum binding energy -6.8 kcal/mol. Here we observed that among the eight organosulfur compounds, three compounds namely 1, 2 and 3 showed promising binding activity with RdRp of the SARS-CoV-2. Based on these observations, the above mentioned three organosulfur compounds can be potential RdRp inhibitors to combat the SARS-CoV-2 infection.
In order to identify the potential inhibitors for the SARS-CoV-2, molecular docking studies were carried out over eight potential organosulfur compounds against multiple target proteins namely Mpro, PLpro, Spro, RdRp and helicase. Among these compounds, 1 exhibited the lowest binding energy against all five proteins, which suggests that 1 could be the potential drug candidate for treating COVID-19. Apart from 1, 3 and 6 exhibited promising binding affinities towards the above mentioned five proteins which suggests that these two organosulfur also can act as antiviral drugs against the SARS-CoV-2. We were keen to do further investigation on the physicochemical, pharmacokinetic properties and target prediction studies.
of 1 which showed the lowest binding energy among all the eight organosulfur compounds against five target proteins of SARS-CoV-2. The predicted pharmacokinetic properties of other organosulfur compounds are tabulated in Table S1-S5 in the Supplementary Information.

3.2 Physicochemical properties study based on the Lipinski’s rule
The physicochemical properties of the compounds were studied to predict the pharmacokinetics of the drug by the Lipinski’s rule. The guidelines for an orally active drug according to the Lipinski’s rule are (i) molecular weight (MW) <500 Daltons, (ii) octanol-water partition coefficient (clogP) <5, (iii) polar surface area (PSA) <150 Å², (iv) number of hydrogen bond donors (HBD) <5, (v) number of hydrogen bond acceptors (HBA) <5 and (vi) Number of rotatable bonds (RB) <10²⁷. The calculated values for the same for the selected organosulfur compounds are tabulated in Table 2 and the result shows that all the compounds strictly follow Lipinski’s rule with zero violation. This indicates that the compounds have the potential for drug-like activities.

Table 2. Physicochemical properties of the organosulfur compounds.

	1	2	3	4	5	6	7	8
MW	336.36	372.24	419.24	205.24	239.68	375.65	320.39	340.48
clogP	2.32	3.76	3.82	0.72	2.76	4.58	2.56	3.88
PSA (Å²)	108.71	65.62	65.62	118.42	67.43	71.61	129.90	57.64
No. of HBD	1	0	0	2	0	0	2	1
No. of HBA	3	2	2	3	3	4	2	
No. of RB	3	2	2	0	3	3	2	9
Violations	Zero	Zero	Zero	Zero	Zero	Zero	Zero	Zero

3.3 Prediction of the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile
We carried out ADMET property profiling to explore the drug likeliness of compound 1 which exhibited efficient binding energy among the eight organosulfur compounds against RdRp, PLpro, Mpro, Spro and helicase proteins of SARS-CoV_2 in the molecular docking study. In-silico pharmacological prediction of 1 was performed using the pkCSM server to assess the overall ADMET properties (see Table 3). A favorable ADMET profile is necessary for the molecules in drug discovery. 1 showed water solubility and high Caco-2 permeability, which indicates that this drug can be absorbed orally. 1 showed good human intestinal absorption and skin permeability. Compound 1 was predicted to be a substrate of P-glycoprotein as well as P-glycoprotein I and II inhibitor

The Volume of distribution at steady state (VDss) prediction indicates a low theoretical dose of 1 will be required to get it uniformly distributed in blood plasma. Blood-brain barrier (BBB) permeability prediction showed that 1 readily cross the BBB and drug can penetrate the central nervous system.

It is well known that cytochrome P450s can regulate the metabolism of various drugs. In that respect, it is worth noting that inhibitors of CYP2D6/CYP3A4 can hamper the
pharmacological properties of drugs. 1 inhibits neither CYP2D6 nor CYP3A4, whereas it is predicted to be a substrate of CYP3A4. Further, it was observed that 1 is not a substrate of ROCT-2 which means that this drug can be excreted through other routes such as bile, sweat and breathe.

We have also assessed the toxicity index of the organosulfur compound 1. The toxicity prediction from the Ames test (Salmonella typhimurium reverse mutation assay) revealed that 1 could be considered as a mutagenic agent. High toxicity was predicted in Tetrahymena pyriformis. 1 was shown to inhibit the human ether-a-go-go-related gene II (hERG II). However, 1 was found to be associated with hepatotoxicity. The maximum recommended tolerated dose (MRTD) in human prediction shows that 1 does not violate MRTD. 1 is predicted to be a high acute toxic compound as it falls under minnow toxicity. Additionally, compound 1 is not associated with skin sensitivity.

Table 3. Predicted ADMET properties of the compound 1

Properties	Model name	Predicted values	Unit
Absorption	Water solubility	-4.303	log mol/L
	Caco2 permeability	0.98	Log Papp in 10^{-6} cm/s
	Human intestinal absorption	94.882	% Absorbed
	Skin permeability	-2.76	log Kp
	P-glycoprotein substrate	Yes	Yes/No
	P-glycoprotein I inhibitor	Yes	Yes/No
	P-glycoprotein II inhibitor	Yes	Yes/No
Distribution	VDs	-0.009	log L/kg
	Fraction unbound (human)	0.078	Fu
	BBB permeability	-0.518	log BB
	CNS permeability	-2.189	log PS
Metabolism	CYP2D6 substrate	No	Yes/No
	CYP3A4 substrate	Yes	Yes/No
	CYP1A2 inhibitor	Yes	Yes/No
	CYP2C19 inhibitor	Yes	Yes/No
	CYP2C9 inhibitor	Yes	Yes/No
	CYP2D6 inhibitor	No	Yes/No
	CYP3A4 inhibitor	No	Yes/No
Excretion	Total clearance	-0.128	log ml/min/kg
	Renal OCT2 substrate	No	Yes/No
Toxicity	AMES toxicity	Yes	Yes/No
	Maximum tolerated dose (Human)	0	log mg/kg/day
	hERG I inhibitor	No	Yes/No
	hERG II inhibitor	Yes	Yes/No
	Oral rat acute toxicity (LD₅₀)	2.064	mol/kg
	Oral rat chronic toxicity (LOAEL)	1.114	log mg/kg_bw/day
	Hepatotoxicity	Yes	Yes/No
	Skin sensitivity	No	Yes/No
	T. pyriformis toxicity	0.834	µg/L
	Minnow toxicity	0.11	log mM
3.4 Identification of target class for compound 1 via target prediction studies

Most of the drug performs its mechanism of action by interacting with the proteins, enzymes and other biomacromolecules. However, many drugs have more than one target. *In-silico* predictions of drug targets based on resemblance with known drugs are very useful to find out the number of targets. Here we observed that 1 has 68% kinases as a target. As shown in Figure 7, compound 1 interacts with a broad range of proteins and enzymes. The detailed information on the target, common name, UniProt ID, ChEMBL ID, target class, probability and known actives in 2D/3D are shown in Table S6 in the Supplementary Information.

![Pie chart showing target classes for compound 1](image)

Figure 7. Molecular target predictions for compound 1 obtained from the Swiss target prediction report. The frequency of the target classes (top 25) is depicted in the pie chart.

4. Conclusion

When the entire world fight against the global pandemic of SARS-CoV-2, the major challenge towards the scientists is to annihilate the viral effect. This study is based on the identification of potential drug molecules against the deadly virus from the list of known drugs against SARS-CoV which has a very similar structure of SARS-CoV-2. As the viral drug targets are susceptible to mutations at higher rates, our aim was to investigate the compounds which could bind with multiple targets. From the list of selected organosulfur compounds, we could find compounds that interacted with multiple targets and surprisingly one compound, 1 found to be very efficient on inhibiting all the five SARS-CoV-2 targets namely RdRP, helicase, Mpro, PLpro and Spro with a significant binding affinity. Hence, this compound can be an effective candidate against SARS-CoV-2 for a longer term as it is capable of binding with multiple targets and inhibiting its activity, thus reducing the effect of drug resistance. The physicochemical properties of all the compounds are studied and found that all the compounds are druggable with zero violations from the Lipinski’s rule. The ADMET profile and the target prediction studies were also carried out for the most potential candidate 1 and observed that this can be a promising drug against the SARS-CoV-2. *In-silico* ADMET studies of 1 revealed that it has promising pharmacokinetic properties and does not fall under high-risk chemical
groups. Target prediction analysis also showed that compound 1 exhibits excellent drug-like properties. Based on the results obtained, we look forward to performing the in vitro and in vivo studies to evaluate the potency of compound 1 and other hits as plausible therapeutic agents for the pandemic COVID-19 through multi-target binding.

Acknowledgments. The authors acknowledge financial supports from the Indian Institute of Technology Palakkad and Indian Institute of Technology Indore. This work was supported by the Department of Science and Technology-Science & Engineering Research Board, Govt. of India (ECR/2017/002082 to S. Sadhukhan, and the Ramanujan Fellowship to M. Porel).

Conflicts of interest. The authors declare no conflict of interest.

5. References

(1) de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V. J. SARS and MERS: Recent Insights into Emerging Coronaviruses. Nat. Rev. Microbiol. 2016, 14 (8), 523-534.

(2) World Health Organisation. Coronavirus Disease (COVID-2019) Situation Reports. 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

(3) Senanayake, S. L. Drug Repurposing Strategies for COVID-19. Future Sci. 2020, DOI: 10.4155/fdd-2020-0010.

(4) Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A New Coronavirus Associated with Human Respiratory Disease in China. Nature 2020, 579 (7798), 265–269.

(5) Zhang, H.; Penninger, J. M.; Li, Y.; Zhong, N.; Slutsky, A. S. Angiotensin-Converting Enzyme 2 (ACE2) as a SARS-CoV-2 Receptor: Molecular Mechanisms and Potential Therapeutic Target. Intensive Care Med. 2020, 46, 586–590.

(6) Zhang, T.; Wu, Q.; Zhang, Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr. Biol. 2020, 30 (7), 1346-1351.

(7) Liu, W.; Morse, J. S.; Lalonde, T.; Xu, S. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-NCoV. ChemBioChem. 2020, 21 (5) 730-738.

(8) Liu, C.; Zhou, Q.; Li, Y.; Garner, L. V; Watkins, S. P.; Carter, L. J.; Smoot, J.; Gregg, A. C.; Daniels, A. D.; Jervey, S.; et al. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent. Sci. 2020, 6 (3) 315-331.

(9) Jang, K.-J.; Jeong, S.; Kang, D. Y.; Sp, N.; Yang, Y. M.; Kim, D.-E. A High ATP Concentration Enhances the Cooperative Translocation of the SARS Coronavirus Helicase NsP13 in the Unwinding of Duplex RNA. Sci. Rep. 2020, 10 (1), 1–13.

(10) Scott, K. A.; Njardarson, J. T. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Sulfur Chem. 2019, 376 (5), 1–34.
Sheahan, T. P.; Sims, A. C.; Leist, S. R.; Schäfer, A.; Won, J.; Brown, A. J.; Montgomery, S. A.; Hogg, A.; Babusis, D.; Clarke, M. O.; et al. Comparative Therapeutic Efficacy of Remdesivir and Combination Lopinavir, Ritonavir, and Interferon Beta against MERS-CoV. *Nat. Commun.* 2020, 11 (1), 1–14.

Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Stebbing, J. Baricitinib as Potential Treatment for 2019-NCov Acute Respiratory Disease. *Lancet (London, England)* 2020, 395 (10223), e30–e31.

Sun, J.; He, W.-T.; Wang, L.; Lai, A.; Ji, X.; Zhai, X.; Li, G.; Suchard, M. A.; Tian, J.; Zhou, J.; et al. COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. *Trends Mol. Med.* 2020, 26 (5) 483–495.

Joshi, R. S.; Jagdale, S. S.; Bansode, S. B.; Shankar, S. S.; Tellis, M. B.; Pandya, V. K.; Chugh, A.; Giri, A. P.; Kulkarni, M. J. Discovery of Potential Multi-Target-Directed Ligands by Targeting Host-Specific SARS-CoV-2 Structurally Conserved Main Protease. *J. Biomol. Struct. Dyn.* 2020, DOI: 10.1080/07391102.2020.1760137.

Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera—a Visualization System for Exploratory Research and Analysis. *J. Comput. Chem.* 2004, 25 (13), 1605–1612.

Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. *J. Comput. Chem.* 2010, 31 (2), 455–461.

Berman, H. M.; Bhat, T. N.; Bourne, P. E.; Feng, Z.; Gilliland, G.; Weissig, H.; Westbrook, J. The Protein Data Bank and the Challenge of Structural Genomics. *Nat. Struct. Biol.* 2000, 7 (11), 957–959.

Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. *J. Comput. Chem.* 2009, 30 (16), 2785–2791.

Biovia, D. S. Discovery Visualizer Studio. (https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/): San Diego Dassault Systèmes 2019.

Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. *Sci. Rep.* 2017, 7, 42717.

Pires, D. E. V; Blundell, T. L.; Ascher, D. B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. *J. Med. Chem.* 2015, 58 (9), 4066–4072.

Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A Web Server for Target Prediction of Bioactive Small Molecules. *Nucleic Acids Res.* 2014, 42 (W1), W32–W38.

Contini, A. Virtual Screening of an FDA Approved Drugs Database on Two COVID-19 Coronavirus Proteins. 2020, DOI: 10.26434/chemrxiv.11847381.v1

Dong, L.; Hu, S.; Gao, J. Discovering Drugs to Treat Coronavirus Disease 2019
(COVID-19). *Drug Discov. Ther.* **2020**, *14* (1), 58–60.

(25) Mirza, M. U.; Froeyen, M. Structural Elucidation of SARS-CoV-2 Vital Proteins: Computational Methods Reveal Potential Drug Candidates against Main Protease, Nsp12 Polymerase and Nsp13 Helicase. *J. Pharm. Anal.* **2020**, DOI: 10.1016/j.ipha.2020.04.008.

(26) Hendaus, M. A. Remdesivir in the Treatment of Coronavirus Disease 2019 (COVID-19): A Simplified Summary. *J. Biomol. Struct. Dyn.* **2020**, DOI: 10.1080/07391102.2020.1767691.

(27) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. *Adv. Drug Deliv. Rev.* **1997**, *23* (1–3), 3–26.
Supplementary Information

An in-silico study on selected organosulfur compounds as potential drugs for SARS-CoV-2 infection via binding multiple drug targets

Liya Thurakkal¹#, Satyam Singh²#, Sushabhan Sadhukhan¹*, Mintu Porel¹*

¹Discipline of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 557, India;
²Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India.

#Both authors contributed equally
*Corresponding author. E-mail address: mintu@iitpkd.ac.in; sushabhan@iitpkd.ac.in
Figure S1. Best docked conformation and 2D diagram amino acid interaction of SARS-CoV-2 Mpro complexed with the compound 6 (a, b) and 3 (c, d)
Figure S2. Best docked conformation and 2D diagram of amino acid interaction of SARS-CoV-2 PLpro complexed with the compound 6 (a, b) and 7 (c, d)
Figure S3. Best docked conformation and 2D diagram of amino acid interaction of SARS-CoV-2 Spro complexed with the compound 3 (a, b), 2 (c, d) and 7 (e, f)
Figure S4. Best docked conformation and 2D diagram of amino acid interaction of SARS-CoV helicase complexed with the compound 2 (a, b) and 3 (c, d)
Figure S5. Best docked conformation and 2D diagram of amino acid interaction of SARS-CoV-2 RdRp complexed with the compound 2 (a, b) and 3 (c, d)
Table S1. Predicted absorption properties of organosulfur compounds (2 to 8)

Properties	2	3	4	5	6	7	8
Water solubility log mol/L	-5.557	-5.56	-2.818	-3.092	-6.081	-3.646	-3.435
Caco2 permeability Log 10^6 cm/s	1.711	1.687	0.601	2.109	1.472	0.035	0.938
Human intestinal absorption (%)	93.522	94.461	77.867	94.285	92.593	65.186	89.533
Skin permeability log Kp	-2.522	-2.533	-3.113	-2.403	-2.638	-2.735	-2.806
P-glycoprotein substrate	Yes	Yes	No	No	No	No	Yes
P-glycoprotein I inhibitor	No	No	No	No	Yes	No	Yes
P-glycoprotein II inhibitor	Yes	Yes	No	No	No	No	Yes

Table S2. Predicted distribution properties of organosulfur compounds (2 to 8)

Properties	2	3	4	5	6	7	8
VDss (log L/kg)	0.326	0.345	-0.328	-0.344	0.387	-1.519	1.642
Fraction unbound (human) (Fu)	0.039	0.044	0.477	0.251	0	0.131	0.167
BBB permeability (log BB)	0.249	0.248	-0.479	0.257	0.264	-0.52	0.162
CNS permeability (log PS)	-1.252	-1.276	-3.045	-1.713	-2.014	-2.295	-0.715

Table S3. Predicted metabolism of organosulfur compounds (2 to 8)

Properties	2	3	4	5	6	7	8
CYP2D6 substrate	No	No	No	No	No	No	Yes
CYP3A4 substrate	Yes	Yes	No	Yes	No	Yes	No
CYP1A2 inhibitor	Yes	Yes	Yes	Yes	Yes	No	Yes
CYP2C19 inhibitor	Yes	Yes	No	Yes	Yes	No	No
CYP2C9 inhibitor	Yes	Yes	No	No	Yes	No	No
CYP2D6 inhibitor	No	No	No	No	No	No	Yes
CYP3A4 inhibitor	No						
Table S4. Predicted excretion of organosulfur compounds (2 to 8)

Properties	2	3	4	5	6	7	8
Total clearance log ml/min/kg	-0.096	-0.293	0.046	0.234	0.188	-0.055	0.92
Renal OCT2 substrate	No	No	No	No	Yes	No	Yes

Table S5. Predicted toxicity of organosulfur compounds (2 to 8)

Properties	2	3	4	5	6	7	8
AMES toxicity	Yes	Yes	Yes	No	No	No	Yes
Maximum tolerated dose (Human) (log mg/kg/day)	0.01	-0.007	0.372	0.732	0.318	0.973	0.596
hERG I inhibitor	No						
hERG II inhibitor	Yes	Yes	No	No	No	No	Yes
Oral rat acute toxicity (LD50) (mol/kg)	2.227	2.23	2.38	2.636	3.242	2.624	2.405
Oral rat chronic toxicity (LOAEL) (log mg/kg bw/day)	0.947	1.047	1.081	1.281	1.06	1.927	1.683
Hepatotoxicity	No	No	No	No	No	Yes	Yes
Skin sensitivity	No						
T. pyriformis toxicity (µg/L)	1.058	1.021	0.263	0.848	1.016	0.285	0.726
Minnow toxicity log mM	-0.803	-0.862	2.243	1.263	-2.785	-0.762	-0.213
Table S6. SwissTargetPrediction report obtained using compound 1 as the query molecule

Target Name	Common name	Uniprot ID	ChEMBL ID	Target Class	Probability*	Known activies (3D/2D)
Cyclin- dependent kinase 2/ cyclin A	CDK2/CCNA1/CCNA2	P24941/78396/20248	CHEMBL2094128	Other cytosolic protein	0.104671941128	176 / 0
Cyclin-dependent kinase 2	CDK2	P24941	CHEMBL301	Kinase	0.104671941128	237 / 0
Dual-specificity tyrosine-phosphorylation regulated kinase 1A	DYRK1A	Q13627	CHEMBL2292	Kinase	0.104671941128	145 / 0
Dual specificity protein kinase CLK4	CLK4	Q9HAZ1	CHEMBL4203	Kinase	0.104671941128	74 / 0
Dual specificity protein kinase CLK1	CLK1	P49759	CHEMBL4224	Kinase	0.104671941128	88 / 0
Dual specificity protein kinase CLK2	CLK2	P49760	CHEMBL4225	Kinase	0.104671941128	38 / 0
Dual specificity protein kinase CLK3	CLK3	P49761	CHEMBL4226	Kinase	0.104671941128	35 / 0
Dual specificity tyrosine-phosphorylation-regulated kinase 1B	DYRK1B	Q9Y463	CHEMBL5543	Kinase	0.104671941128	53 / 0
Serine/threonine-protein kinase PLK4	PLK4	O00444	CHEMBL3788	Kinase	0.104671941128	24 / 0
Mitogen-activated protein kinase kinase kinase kinase 4	MAP4K4	O95819	CHEMBL6166	Kinase	0.104671941128	16 / 0
P2X purinoceptor 7	P2RX7	Q99572	CHEMBL4805	Ligand-gated ion channel	0.104671941128	215 / 0
Tyrosine-protein kinase BTK	BTK	Q06187	CHEMBL5251	Kinase	0.104671941128	34 / 0
Mineralocorticoid receptor	NR3C2	P08235	CHEMBL1994	Nuclear receptor	0.104671941128	143 / 0
Ribosomal protein S6 kinase 1	RPS6KB1	P23443	CHEMBL4501	Kinase	0.104671941128	252 / 0
15-hydroxyprostaglandin dehydrogenase [NAD+]	HPGD	P15428	CHEMBL1293255	Enzyme	0.104671941128	59 / 0
Tyrosine-protein kinase receptor FLT3	FLT3	Q36888	CHEMBL1974	Kinase	0.104671941128	234 / 0
Ribosomal protein S6 kinase alpha 1	RPS6KA1	Q15418	CHEMBL2553	Kinase	0.104671941128	11 / 0
Rho-associated protein kinase 1	ROCK1	Q13464	CHEMBL3231	Kinase	0.104671941128	123 / 0
MAP kinase ERK2	MAPK1	P28482	CHEMBL4040	Kinase	0.104671941128	348 / 0
Melatonin receptor 1A	MTNR1A	P48039	CHEMBL1945	Family A G protein-coupled receptor	0.104671941128	506 / 0
Melatonin receptor 1B	MTNR1B	P49286	CHEMBL1946	Family A G protein-coupled receptor	0.104671941128	439 / 0
Quinone reductase 2	NQO2	P16083	CHEMBL3959	Enzyme	0.104671941128	67 / 0
Leucine-rich repeat serine/threonine-protein kinase 2	LRRK2	Q55007	CHEMBL1075104	Kinase	0.104671941128	114 / 0
Poly [ADP-ribose] polymerase 10	PARP10	Q53GL7	CHEMBL2429708	Enzyme	0.104671941128	7 / 0
Cyclin-dependent kinase 4	CDK4	P11802	CHEMBL331	Kinase	0.104671941128	56 / 0
Inosine-5’-monophosphosphate dehydrogenase 2	IMPDH2	P12268	CHEMBL2002	Oxidoreductase	0.104671941128	168 / 0
Potassium-transporting	ATP4B	P51164	CHEMBL2095173	Primary active	0.104671941128	14 / 0
Target	Common name	Uniprot ID	ChEMBL ID	Target Class	Probability*	Known actives (3D/2D)
--------	-------------	------------	-----------	--------------	--------------	-----------------------
ATPase	ATP4A	P20648	ChemBL2815	Transporter	0.104671941128 211 / 0	
Nerve growth factor receptor Trk-A	NTRK1	P04629	ChemBL3594	Kinase	0.104671941128 373 / 0	
Carbonic anhydrase IX	CA9	Q16790	ChemBL4158	Lyase	0.104671941128 27 / 0	
Fatty acid synthase	FASN	P49327	ChemBL1075166	Transferase	0.104671941128 15 / 0	
Beta-adrenergic receptor kinase 2	GRK3	P35626	ChemBL1075319	Voltage-gated ion channel	0.104671941128 36 / 0	
Transient receptor potential cation channel subfamily M member 8 (by homology)	TRPM8	Q7Z2W7	ChemBL2111377	Protease	0.104671941128 251 / 0	
Gamma-secretase	PSEN2	P49810	ChemBL2094135	Protease	0.104671941128 42 / 0	
CDC7/DBF4 (Cell division cycle 7-related protein kinase/Activator of S phase kinase)	DBF4	Q9UBU7	ChemBL2111377	Kinase	0.104671941128 251 / 0	
Myeloperoxidase	MPO	P05164	ChemBL2439	Enzyme	0.104671941128 20 / 0	
Dual specificity mitogen-activated protein kinase kinase 1	MAP2K1	Q02750	ChemBL3587	Kinase	0.104671941128 45 / 0	
G-protein coupled receptor kinase 2	GRK2	P25098	ChemBL4079	Kinase	0.104671941128 57 / 0	
Dopamine transporter (by homology)	SLC6A3	Q01959	ChemBL238	Electrochemical transporter	0.104671941128 91 / 0	
Phosphodiesterase 4B	PDE4B	Q07343	ChemBL275	Phosphodiesterase	0.104671941128 172 / 0	
Neuropeptide Y receptor type 5	NPY5R	Q15761	ChemBL4561	Family A G protein-coupled receptor	0.104671941128 165 / 0	
Dipeptidyl peptidase IV	DPP4	P27487	ChemBL284	Protease	0.104671941128 128 / 0	
Vanilloid receptor	TRPV1	Q8NER1	ChemBL4794	Voltage-gated ion channel	0.104671941128 370 / 0	
Protein kinase C gamma (by homology)	PRKCG	P05129	ChemBL2938	Kinase	0.104671941128 36 / 0	
MAP kinase signal-integrating kinase 2	MKNK2	Q9HBH9	ChemBL4204	Kinase	0.104671941128 39 / 0	
MAP kinase-interacting serine/threonine-protein kinase MNK1	MKNK1	Q9UBU5	ChemBL4718	Kinase	0.104671941128 22 / 0	
Glucocorticoid receptor	NR3C1	P04150	ChemBL2034	Nuclear receptor	0.104671941128 189 / 0	
Serine/threonine-protein kinase mTOR	MTOR	P42345	ChemBL2842	Kinase	0.104671941128 365 / 0	
Serine/threonine-protein kinase PLK2	PLK2	Q9NYY3	ChemBL5938	Kinase	0.104671941128 21 / 0	
Cyclin-dependent kinase 2/cyclin E1	CCNE1/CDK2	P24864	ChemBL1907605	Kinase	0.104671941128 80 / 0	
PI3-kinase p110-delta subunit	PIK3CD	O00329	ChemBL3130	Enzyme	0.104671941128 259 / 0	
PI3-kinase p110-beta subunit	PIK3CB	P42338	ChemBL3145	Enzyme	0.104671941128 189 / 0	
PI3-kinase p110-alpha subunit	PIK3CA	P42336	ChemBL4005	Enzyme	0.104671941128 562 / 0	
NAD-dependent deacetylase sirtuin 3	SIRT3	Q9NTG7	ChemBL4461	Eraser	0.104671941128 73 / 0	
Target Common name	Uniprot ID	ChEMBL ID	Target Class	Probability	Known actives (3D/2D)	
---------------------	------------	-----------	---------------	--------------	-----------------------	
NAD-dependent deacetylase sirtuin 2	SIRT2	Q8IXJ6	CHEMBL4462	Eraser	0.104671941128 148 / 0	
NAD-dependent deacetylase sirtuin 1	SIRT1	Q96EB6	CHEMBL4506	Eraser	0.104671941128 69 / 0	
Progesterone receptor	PGR	P06401	CHEMBL208	Nuclear receptor	0.104671941128 182 / 0	
Serine/threonine-protein kinase PIM1	PIM1	P11309	CHEMBL2147	Kinase	0.104671941128 179 / 0	
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3	PFKFB3	Q16875	CHEMBL2331053	Enzyme	0.104671941128 205 / 0	
Serine/threonine-protein kinase PIM2	PIM2	Q9P1W9	CHEMBL4523	Kinase	0.104671941128 97 / 0	
Purinergic receptor P2Y1	P2RY1	P47900	CHEMBL4315	Family A G protein-coupled receptor	0.104671941128 11 / 0	
Nitric oxide synthase, inducible	NOS2	P35228	CHEMBL4481	Enzyme	0.104671941128 105 / 0	
Epidermal growth factor receptor erbB1	EGFR	P00533	CHEMBL203	Kinase	0.104671941128 610 / 0	
ALK tyrosine kinase receptor	ALK	Q9UM73	CHEMBL4247	Kinase	0.104671941128 85 / 0	
Translocator protein (by homology)	TSPO	P30536	CHEMBL5742	Membrane receptor	0.104671941128 156 / 0	
Hepatocyte growth factor receptor	MET	P08581	CHEMBL3717	Kinase	0.104671941128 472 / 0	
Hydroxyacid oxidase 2 (by homology)	HAO2	Q9NYQ3	CHEMBL2169732	Enzyme	0.104671941128 1 / 0	
Neprilysin (by homology)	MME	P08473	CHEMBL1944	Protease	0.104671941128 44 / 0	
Cathepsin (B and K)	CTSB	P07858	CHEMBL4072	Protease	0.104671941128 121 / 0	
MAP kinase-activated protein kinase 2	MAPKAPK2	P49137	CHEMBL2208	Kinase	0.104671941128 114 / 0	
Glycogen synthase kinase-3 beta	GSK3B	P49841	CHEMBL262	Kinase	0.104671941128 521 / 0	
MAP kinase ERK1 (by homology)	MAPK3	P27361	CHEMBL3385	Kinase	0.104671941128 47 / 0	
Ribosomal protein S6 kinase alpha 5	RPS6KA5	O75582	CHEMBL4237	Kinase	0.104671941128 25 / 0	
CDC7/DBF4 (Cell division cycle 7-related protein kinase/Activator of S phase kinase)	CDC7	O00311	CHEMBL5443	Kinase	0.104671941128 132 / 0	
Heat shock factor protein 1	HSF1	Q00613	CHEMBL5869	Other cytosolic protein	0.104671941128 2 / 0	
Matrix metalloproteinase 9	MMP9	P14780	CHEMBL321	Protease	0.104671941128 362 / 0	
Branched-chain-amine transferase, mitochondrial	BCAT2	O15382	CHEMBL3616354	Transferase	0.104671941128 23 / 0	
Thyrotopin-releasing hormone receptor (by homology)	TRHR	P34981	CHEMBL1810	Family A G protein-coupled receptor	0.104671941128 29 / 0	
Tyrosine-protein kinase ABL	ABL1	P00519	CHEMBL1862	Kinase	0.104671941128 254 / 0	
Interleukin-8 receptor B	CXCR2	P25025	CHEMBL2434	Family A G protein-coupled receptor	0.104671941128 59 / 0	
Tyrosine-protein kinase SRC	SRC	P12931	CHEMBL267	Kinase	0.104671941128 301 / 0	
Protein kinase C alpha	PRKCA	P17252	CHEMBL299	Kinase	0.104671941128 38 / 0	
Target Common name	Uniprot ID	ChEMBL ID	Target Class	Probability	Known actives (3D/2D)	
-------------------	------------	-----------	--------------	-------------	-----------------------	
Cyclin-dependent kinase 1	CDK1	P06493	CHEMBL308	Kinase	0.104671941128	116 / 0
Vascular endothelial growth factor receptor 1	FLT1	P17948	CHEMBL1868	Kinase	0.104671941128	87 / 0
Androgen Receptor	AR	P10275	CHEMBL1871	Nuclear receptor	0.104671941128	185 / 0
Sodium/ glucose cotransporter 1	SLC5A1	P13866	CHEMBL4979	Electrochemical transporter	0.104671941128	145 / 0
Cyclin-dependent kinase 2/ cyclin E	CCNE2 CDK2 CCNE1	O96020 P24941 P24864	CHEMBL2094126	Other cytosolic protein	0.104671941128	103 / 0
Cyclin-dependent kinase 1/ cyclin B	CCNB3 CDK1 CCNB1 CCNB2	Q8WWL7 P06493 P14635 O95067	CHEMBL2094127	Other cytosolic protein	0.104671941128	72 / 0
Tyrosine- protein kinase JAK2	JAK2	O60674	CHEMBL2971	Kinase	0.104671941128	384 / 0
PI3-kinase p110-gamma subunit	PIK3CG	P48736	CHEMBL3267	Enzyme	0.104671941128	295 / 0
Matrix metalloproteinase 2	MMP2	P08253	CHEMBL333	Protease	0.104671941128	348 / 0
Serotonin 6 (5-HT6) receptor	HTR6	P50406	CHEMBL3371	Family A G protein-coupled receptor	0.104671941128	71 / 0
5-lipoxygenase activating protein	ALOX5AP	P20292	CHEMBL4550	Other cytosolic protein	0.104671941128	528 / 0
Tyrosine- protein kinase JAK3	JAK3	P52333	CHEMBL2148	Kinase	0.104671941128	203 / 0
Tyrosine- protein kinase JAK1	JAK1	P23458	CHEMBL2835	Kinase	0.104671941128	237 / 0
Serine/ threonine-protein kinase PLK1	PLK1	P53350	CHEMBL3024	Kinase	0.104671941128	102 / 0
Melanin-concentrating hormone receptor 1	MCHR1	Q99705	CHEMBL344	Family A G protein-coupled receptor	0.104671941128	24 / 0
ADAM17	ADAM17	P78536	CHEMBL3706	Protease	0.104671941128	168 / 0
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit	OGT	O15294	CHEMBL5955	Enzyme	0.104671941128	7 / 0
Phospholipase A-2-activating protein	PLAA	Q9Y263	CHEMBL6114	Unclassified protein	0.104671941128	11 / 0
Matrix metalloproteinase 13	MMP13	P45452	CHEMBL280	Protease	0.104671941128	263 / 0