A NOTE ON THE FROBENIUS-EULER NUMBERS AND POLYNOMIALS ASSOCIATED WITH BERNSTEIN POLYNOMIALS

SERKAN ARACI AND MEHMET ACIKGOZ

Abstract. The present paper deals with Bernstein polynomials and Frobenius-Euler numbers and polynomials. We apply the method of generating function and fermionic p-adic integral representation on \mathbb{Z}_p, which are exploited to derive further classes of Bernstein polynomials and Frobenius-Euler numbers and polynomials. To be more precise we summarize our results as follows, we obtain some combinatorial relations between Frobenius-Euler numbers and polynomials. Furthermore, we derive an integral representation of Bernstein polynomials of degree n on \mathbb{Z}_p. Also we deduce a fermionic p-adic integral representation of product Bernstein polynomials of different degrees n_1, n_2, \cdots on \mathbb{Z}_p and show that it can be written with Frobenius-Euler numbers which yields a deeper insight into the effectiveness of this type of generalizations. Our applications possess a number of interesting properties which we state in this paper.

1. Introduction and Notations

Let p be a fixed odd prime number. Throughout this paper we use the following notations. By \mathbb{Z}_p we denote the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{Q}_p denotes the field of p-adic rational numbers, and \mathbb{C}_p denotes the completion of algebraic closure of \mathbb{Q}_p. Let \mathbb{N} be the set of natural numbers and $\mathbb{N}^* = \mathbb{N} \cup \{0\}$. The p-adic absolute value is defined by

$$|p|_p = \frac{1}{p}.$$

In this paper, we assume $|q - 1|_p < 1$ as an indeterminate. In [17-19], let $UD(\mathbb{Z}_p)$ be the space of uniformly differentiable functions on \mathbb{Z}_p. For $f \in UD(\mathbb{Z}_p)$, the fermionic p-adic integral on \mathbb{Z}_p is defined by T. Kim:

$$I_{-1}(f) = \int_{\mathbb{Z}_p} f(\xi) \, d\mu_{-1}(\xi) = \lim_{N \to \infty} \sum_{\xi=0}^{p^N-1} f(\xi) (-1)^\xi.$$ (1.1)

From (1.1), we have well known the following equality:

$$I_{-1}(f_1) + I_{-1}(f) = 2f(0)$$ (1.2)

here $f_1(x) := f(x + 1)$ (for details, see[3-24]).
Let \(C ([0,1]) \) be the space of continuous functions on \([0,1]\). For \(C ([0,1]) \), the Bernstein operator for \(f \) is defined by

\[
B_n (f, x) = \sum_{k=0}^{n} f \left(\frac{k}{n} \right) B_k, n (x) = \sum_{k=0}^{n} f \left(\frac{k}{n} \right) \binom{n}{k} x^k (1-x)^{n-k}
\]

where \(n, k \in \mathbb{Z}^+ := \{0, 1, 2, 3, \ldots\} \). Here \(B_k, n (x) \) is called Bernstein polynomials, which are defined by

\[
B_k, n (x) = \binom{n}{k} x^k (1-x)^{n-k}, \quad x \in [0,1]
\]

(for more informations on this subject, see [1-6, 11, 14, 15, 17, 21-24]).

In [7], as is well known, Frobenius-Euler polynomials are defined by means of the following generating function:

\[
\sum_{n=0}^{\infty} H_n (u, x) t^n n! = e^{H(u,x)t} - 1 - u e^t - u e^{xt}.
\]

By (1.4) and (2.1), we easily see the following applications:

\[
e^{H(u)t} = \sum_{n=0}^{\infty} H_n (u) \frac{t^n}{n!} = \frac{1-u}{e^t-u}.
\]

After these applications, we derive the following Lemma.

Lemma 1. For \(|u| > 1\) and \(n \in \mathbb{Z}^+ := \mathbb{N} \cup \{0\}\), we have

\[
(H (u) + 1)^n - uH_n (u) = \begin{cases} 1-u, & \text{if } n = 0 \\ 0, & \text{if } n \neq 0 \end{cases}
\]

In this paper, we obtained some relations between the Frobenius-Euler numbers and polynomials and the Bernstein polynomials. From these relations, we derive some interesting identities on the Frobenius-Euler numbers.

2. **On the Frobenius-Euler numbers and polynomials**

Let us take \(f (x) = u^x e^{tx} \) in (1.1), by (1.2), we see that

\[
\int_{\mathbb{Z}^+} u^n e^{\eta t} d\mu_{-1} (\eta) = \frac{2}{1+u} H_n (-u^{-1}).
\]

By (1.4) and (2.1), we have the following theorem.

Theorem 1.

\[
\int_{\mathbb{Z}^+} u^n (x + \eta)^n d\mu_{-1} (\eta) = \frac{2}{u+1} H_n (-u^{-1}, x).
\]
By applying some combinatorial techniques in (2.2), we derive the following
\[\int_{\mathbb{Z}_p} u^n (x + \eta)^n \, d\mu_{-1} (\eta) = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} \left\{ \int_{\mathbb{Z}_p} u^n \eta^k \, d\mu_{-1} (\eta) \right\}. \]

So, from above, we have the well known identity
\[(2.3) \quad H_n (-u^{-1}, x) = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} H_k (-u^{-1}) = (H (-u^{-1} + x)^n. \]

by using the umbral(symbolic) convention \(H^n (u) := H_n (u). \)

The Frobenius-Euler polynomials have to symmetric properties, which is shown by Choi et al. in [7], as follows:
\[H_n (-u^{-1}, 1 - x) = (-1)^n H_n (-u^{-1}, x). \]

For \(n \in \mathbb{N} \), by (2.4), Choi et al. derived the following equality:
\[(2.4) \quad u^2 H_n (-u^{-1}, 2) = u^2 + u + H_n (-u^{-1}). \]

From (2.2) and (2.4), we easily see that
\[(2.5) \quad \int_{\mathbb{Z}_p} u^n (1 - \eta)^n \, d\mu_{-1} (\eta) = \begin{cases} (-1)^n \int_{\mathbb{Z}_p} u^n (\eta - 1)^n \, d\mu_{-1} (\eta) \\ \frac{2}{u+1} (-1)^n H_n (-u^{-1}, -1) \\ \frac{2}{u+1} H_n (-u^{-1}, 2). \end{cases} \]

Thus, we obtain the following Theorem.

Theorem 2. The following identity
\[(2.6) \quad \int_{\mathbb{Z}_p} u^n (1 - \eta)^n \, d\mu_{-1} (\eta) = \frac{2}{u+1} H_n (-u^{-1}, 2) \]

is true.

Let \(n \in \mathbb{N} \). By expression of (2.4) and (2.6), we get
\[(2.7) \quad \int_{\mathbb{Z}_p} u^n (1 - \eta)^n \, d\mu_{-1} (\eta) = \frac{2}{u+1} + \frac{2}{u^2 + u} + \frac{2}{u^3 + u} H_n (-u^{-1}). \]

From (2.7), we procure the following corollary.

Corollary 1. For \(n \in \mathbb{N} \), we have
\[\int_{\mathbb{Z}_p} u^n (1 - \eta)^n \, d\mu_{-1} (\eta) = \frac{2}{u+1} + \frac{2}{u^2 + u} + \frac{2}{u^3 + u} H_n (-u^{-1}). \]
3. Some identities on the Frobenius-Euler numbers

In this section, we develop Frobenius-Euler numbers, that is, we derive some interesting and worthwhile relations for studying in Theory of Analytic Numbers.

Now also, for \(x \in [0,1] \), we rewrite definition of Bernstein polynomials as follows:

\[
B_{k,n}(x) = \binom{n}{k} x^k (1-x)^{n-k}, \quad \text{where } n, k \in \mathbb{Z}_+.
\]

By expression of (3.1), we have the properties of symmetry of Bernstein polynomials as follows:

\[
B_{k,n}(x) = B_{n-k,n}(1-x), \quad \text{(for detail, see [21]).}
\]

Thus, from Corollary 1, (3.1) and (3.2), we see that

\[
\int_{\mathbb{Z}_p} B_{k,n}(\eta) u^d \, d\mu_{-1}(\eta) = \int_{\mathbb{Z}_p} B_{n-k,n}(1-\eta) u^d \, d\mu_{-1}(\eta)
\]

\[
= \left(\sum_{l=0}^{k} \binom{k}{l} \eta^l \right) \left(\frac{2}{u+1} + \frac{2}{u^2+u} + \frac{2}{u^3+u} H_{n-l}(-u^{-1}) \right)
\]

\[
= \begin{cases}
\frac{2}{u+1} + \frac{2}{u^2+u} + \frac{2}{u^3+u} H_n(-u^{-1}), & \text{if } k = 0, \\
\sum_{l=0}^{k} \binom{k}{l} (-1)^{k+l} \left(\frac{2}{u+1} + \frac{2}{u^2+u} + \frac{2}{u^3+u} H_{n-l}(-u^{-1}) \right), & \text{if } k > 0.
\end{cases}
\]

Let us take the fermionic \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) on the Bernstein polynomials of degree \(n \) as follows:

\[
\int_{\mathbb{Z}_p} B_{k,n}(\eta) u^d \, d\mu_{-1}(\eta) = \left(\sum_{l=0}^{k} \binom{k}{l} (-1)^{k+l} H_{l+k}(-u^{-1}) \right)
\]

Consequently, by expression of (3.3) and (3.4), we state the following Theorem:

Theorem 3. The following identity holds true:

\[
\sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^{l} H_{l+k}(-u^{-1}) = \begin{cases}
1 + u^{-1} + u^{-2} H_n(-u^{-1}), & \text{if } k = 0, \\
\sum_{l=0}^{k} \binom{k}{l} (-1)^{k+l} (1 + u^{-1} + u^{-2} H_{n-l}(-u^{-1})), & \text{if } k > 0.
\end{cases}
\]
Let \(n_1, n_2, k \in \mathbb{Z}_+ \) with \(n_1 + n_2 > 2k \). Then, we derive the followings

\[
\int_{\mathbb{Z}_p} B_{k, n_1} (\eta) B_{k, n_2} (\eta) u^n d\mu_{-1} (\eta)
\]

\[
= \binom{n_1}{k} \binom{n_2}{k} \sum_{l=0}^{2k} \binom{2k}{l} (-1)^{2k+l} \int_{\mathbb{Z}_p} (1 - \eta)^{n_1+n_2-l} u^n d\mu_{-1} (\eta)
\]

\[
= \left(\binom{n_1}{k} \binom{n_2}{k} \sum_{l=0}^{2k} \binom{2k}{l} (-1)^{2k+l} \left(\frac{2}{u+1} + \frac{2}{u^2+u} + \frac{2}{u^3+u} H_{n_1+n_2-l} (-u^{-1}) \right) \right)
\]

\[
= \begin{cases}
\frac{2}{u+1} + \frac{2}{u^2+u} + \frac{2}{u^3+u} H_{n_1+n_2} (-u^{-1}), & \text{if } k = 0, \\
\binom{n_1}{k} \binom{n_2}{k} \sum_{l=0}^{2k} \binom{2k}{l} (-1)^{2k+l} \left(\frac{2}{u+1} + \frac{2}{u^2+u} + \frac{2}{u^3+u} H_{n_1+n_2-l} (-u^{-1}) \right), & \text{if } k \neq 0.
\end{cases}
\]

Therefore, we obtain the following Theorem:

Theorem 4. For \(n_1, n_2, k \in \mathbb{Z}_+ \) with \(n_1 + n_2 > 2k \), we have

\[
\int_{\mathbb{Z}_p} B_{k, n_1} (\eta) B_{k, n_2} (\eta) u^n d\mu_{-1} (\eta)
\]

\[
= \begin{cases}
\frac{2}{u+1} + \frac{2}{u^2+u} + \frac{2}{u^3+u} H_{n_1+n_2} (-u^{-1}), & \text{if } k = 0, \\
\binom{n_1}{k} \binom{n_2}{k} \sum_{l=0}^{2k} \binom{2k}{l} (-1)^{2k+l} \left(\frac{2}{u+1} + \frac{2}{u^2+u} + \frac{2}{u^3+u} H_{n_1+n_2-l} (-u^{-1}) \right), & \text{if } k \neq 0.
\end{cases}
\]

By using the binomial theorem, we can derive the following equation.

(3.5) \[
\int_{\mathbb{Z}_p} B_{k, n_1} (\eta) B_{k, n_2} (\eta) u^n d\mu_{-1} (\eta)
\]

\[
= \prod_{i=1}^{2} \binom{n_i}{k} \sum_{l=0}^{n_1+n_2-2k} \binom{n_1+n_2-2k}{l} (n_1+n_2-2k-l)! \int_{\mathbb{Z}_p} \eta^{2k+l} u^n d\mu_{-1} (\eta)
\]

\[
= \prod_{i=1}^{2} \binom{n_i}{k} \sum_{l=0}^{n_1+n_2-2k} \binom{n_1+n_2-2k}{l} (n_1+n_2-2k-l)! H_{2k+l} (-u^{-1})
\]

Thus, we can obtain the following Corollary:

Corollary 2. For \(n_1, n_2, k \in \mathbb{Z}_+ \) with \(n_1 + n_2 > 2k \), we have

\[
\sum_{l=0}^{n_1+n_2-2k} \binom{n_1+n_2-2k}{l} (n_1+n_2-2k-l)! H_{2k+l} (-u^{-1})
\]

\[
= \begin{cases}
1 + u^{-1} + u^{-2} H_{n_1+n_2} (-u^{-1}), & \text{if } k = 0, \\
\sum_{l=0}^{2k} \binom{2k}{l} (-1)^{2k+l} (1 + u^{-1} + u^{-2} H_{n_1+n_2-l} (-u^{-1})), & \text{if } k \neq 0.
\end{cases}
\]

For \(\eta \in \mathbb{Z}_p \) and \(s \in \mathbb{N} \) with \(s \geq 2 \), let \(n_1, n_2, ..., n_s, k \in \mathbb{Z}_+ \) with \(\sum_{i=1}^{s} n_i > sk \). Then we take the fermionic \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) for the Bernstein polynomials.
of degree \(n \) as follows:

\[
\int_{\mathbb{Z}_p} B_{k,n_1} (\eta) B_{k,n_2} (\eta) ... B_{k,n_s} (\eta) u^n d\mu_{-1} (\eta)
\]

\[=
\sum_{i=1}^{s} \left(\frac{n_i}{k} \right) \int_{\mathbb{Z}_p} \eta^{sk} (1 - \eta)^{n_1 + n_2 + ... + n_s - sk} u^n d\mu_{-1} (\eta)
\]

\[=
\prod_{i=1}^{s} \left(\frac{n_i}{k} \right) \sum_{l=0}^{sk} \left(\frac{sk}{l} \right) (-1)^{l+sk} \int_{\mathbb{Z}_p} (1 - \xi)^{n_1 + n_2 + ... + n_s - l} u^n d\mu_{-1} (\eta)
\]

\[=
\begin{cases}
\frac{2}{u+1} + \frac{2}{u^2+u} + \frac{2}{u^3+u} H_{n_1+n_2+...+n_s} (-u^{-1}), & \text{if } k = 0, \\
\prod_{i=1}^{s} \left(\frac{n_i}{k} \right) \sum_{l=0}^{sk} \left(\frac{sk}{l} \right) (-1)^{sk+l} \left(\frac{2}{u+1} + \frac{2}{u^2+u} + \frac{2}{u^3+u} H_{n_1+n_2+...+n_s-l} (-u^{-1}) \right), & \text{if } k \neq 0.
\end{cases}
\]

So from above, we have the following Theorem:

Theorem 5. For \(s \in \mathbb{N} \) with \(s \geq 2 \), let \(n_1, n_2, ..., n_s, k \in \mathbb{Z}_+ \) with \(\sum_{l=1}^{s} n_l > sk \). Then we have

\[
\int_{\mathbb{Z}_p} u^n \prod_{i=1}^{s} B_{k,n_i} (\eta) u^n d\mu_{-1} (\eta)
\]

\[=
\begin{cases}
\frac{2}{u+1} + \frac{2}{u^2+u} + \frac{2}{u^3+u} H_{n_1+n_2+...+n_s} (-u^{-1}), & \text{if } k = 0, \\
\prod_{i=1}^{s} \left(\frac{n_i}{k} \right) \sum_{l=0}^{sk} \left(\frac{sk}{l} \right) (-1)^{sk+l} \left(\frac{2}{u+1} + \frac{2}{u^2+u} + \frac{2}{u^3+u} H_{n_1+n_2+...+n_s-l} (-u^{-1}) \right), & \text{if } k \neq 0.
\end{cases}
\]

From the definition of Bernstein polynomials and the binomial theorem, we easily get

\[
\int_{\mathbb{Z}_p} B_{k,n_1} (\eta) B_{k,n_2} (\eta) ... B_{k,n_s} (\eta) u^n d\mu_{-1} (\eta)
\]

\[=
\sum_{i=1}^{s} \left(\frac{n_i}{k} \right) \sum_{l=0}^{sk} \left(\sum_{d=1}^{s} \binom{n_d - k}{l} \right) (-1)^{l+sk} u^n d\mu_{-1} (\eta)
\]

\begin{equation}
(3.6) = \frac{2}{u+1} \sum_{i=1}^{s} \left(\frac{n_i}{k} \right) \sum_{l=0}^{sk} \left(\sum_{d=1}^{s} \binom{n_d - k}{l} \right) (-1)^{sk+l} H_{sk+l} (-u^{-1}).
\end{equation}

Therefore, by (3.6), we get novel properties of Frobenius-Euler numbers with the following corollary:

Corollary 3. For \(s \in \mathbb{N} \) with \(s \geq 2 \), let \(n_1, n_2, ..., n_s, k \in \mathbb{Z}_+ \) with \(\sum_{l=1}^{s} n_l > sk \). Then, we have

\[
\sum_{l=0}^{sk} \left(\sum_{d=1}^{s} \binom{n_d - k}{l} \right) \left(u^2 + u + H_{n_1+n_2+...+n_s} (-u^{-1}) \right)
\]

\[=
\begin{cases}
\sum_{l=0}^{sk} \binom{sk}{l} (-1)^{sk+l} \left(u^2 + u + H_{n_1+n_2+...+n_s-l} (-u^{-1}) \right), & \text{if } k \neq 0.
\end{cases}
\]
FROBENIUS-EULER NUMBERS AND POLYNOMIALS

References

[1] Açıkgoz, M. and Araci, S., A study on the integral of the product of several type Bernstein polynomials, IST Transaction of Applied Mathematics-Modeling and Simulation, vol.1, no. 1, pp. 10–14, 2010.

[2] Açıkgoz, M. and Şimşek, Y., A New generating function of \(q\)-Bernstein type polynomials and their interpolation function, Abstract and Applied Analysis, Article ID 769095, 12 pages, doi: 10.1155/2010/769095-01-313.

[3] Araci, S., Erdal, D., and Seo, J-J., A study on the Fermionic \(p\)-adic \(q\)-integral Representation on \(\mathbb{Z}_p\) Associated with Weighted \(q\)-Bernstein and \(q\)-Genocchi Polynomials, Abstract and Applied Analysis, Volume 2011, Article ID 649248, 10 pages.

[4] Araci, S. Erdal, D. and Kang, D-J., Some New Properties on the \(q\)-Genocchi numbers and Polynomials associated with \(q\)-Bernstein polynomials, Honam Mathematical J. 33 (2011) no. 2, pp. 261-270

[5] Araci, S., Acikgoz, M., Qi, F., On the \(q\)-Genocchi numbers and polynomials with weight 0 and their applications, http://arxiv.org/abs/1202.2643.

[6] A. Bayad, T. Kim, Identities involving values of Bernstein \(q\)-Bernoulli, and \(q\)-Euler polynomials, Russ. J. Math. Phys. 18 (2011), no. 2, 133-143.

[7] J. Choi, D. S. Kim, T. Kim and Y. H. Kim, A note on Some identities of Frobenius-Euler Numbers and Polynomials, International Journal of Mathematics and Mathematical Sciences, Volume 2012, Article ID 861797, 9 pages.

[8] T. Kim and B. Lee, Some Identities of the Frobenius-Euler polynomials, Abstract and Applied Analysis, Volume 2009, Article ID 639439, 7 pages.

[9] T. Kim, On the multiple \(q\)-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008) 481-486. arXiv:0801.0978v1 [math.NT]

[10] T. Kim, A Note on the \(q\)-Genocchi Numbers and Polynomials, Journal of Inequalities and Applications 2007 (2007) doi:10.1155/2007/71452. Article ID 71452, 8 pages.

[11] T. Kim, A note \(q\)-Bernstein polynomials, Russ. J. Math. Phys. 18 (2011), 41-50.

[12] T. Kim, \(q\)-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288-299.

[13] T. Kim, \(q\)-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. 15 (2008), 51-57.

[14] T. Kim, J. Choi, Y. H. Kim and C. S. Ryoo, On the fermionic \(p\)-adic integral representation of Bernstein polynomials associated with Euler numbers and polynomials, J. Inequal. Appl. 2010 (2010), Art ID 864247, 12pp.

[15] T. Kim, J. Choi and Y. H. Kim Some identities on the \(q\)-Bernstein polynomials, \(q\)-Stirling numbers and \(q\)-Bernoulli numbers, Adv. Stud. Contemp. Math. 20 (2010), 335-341.

[16] T. Kim, An invariant \(p\)-adic \(q\)-integrals on \(\mathbb{Z}_p\), Applied Mathematics Letters, vol. 21, pp. 105-108, 2008.

[17] T. Kim, J. Choi and Y. H. Kim \(q\)-Bernstein Polynomials Associated with \(q\)-Stirling Numbers and Carlitz’s \(q\)-Bernoulli Numbers, Abstract and Applied Analysis, Article ID 150975, 11 pages, doi:10.1155/2010/150975.

[18] T. Kim, \(q\)-Euler numbers and polynomials associated with \(p\)-adic \(q\)-integrals, J. Nonlinear Math. Phys., 14 (2007), no. 1, 15–27.

[19] T. Kim, New approach to \(q\)-Euler polynomials of higher order, Russ. J. Math. Phys., 17 (2010), no. 2, 218–225.

[20] T. Kim, Some identities on the \(q\)-Euler polynomials of higher order and \(q\)-Stirling numbers by the fermionic \(p\)-adic integral on \(\mathbb{Z}_p\), Russ. J. Math. Phys., 16 (2009), no.4, 484–491.

[21] T. Kim, A. Bayad, Y. H. Kim, A Study on the \(p\)-Adic \(q\)-Integrals Representation on \(\mathbb{Z}_p\) Associated with the weighted \(q\)-Bernstein and \(q\)-Bernoulli polynomials, Journal of Inequalities and Applications, Article ID 513821, 8 pages, doi:10.1155/2011/513821.

[22] C. S. Ryoo, A note on the weighted \(q\)-Euler numbers and polynomials, Adv. Stud. Contemp. Math. 21 (2011), 47-54.

[23] H. Y. Lee, N. S. Jung, and C. S. Ryoo, Some Identities of the Twisted \(q\)-Genocchi Numbers and Polynomials with weight \(\alpha\) and \(q\)-Bernstein Polynomials with weight \(\alpha\), Abstract and Applied Analysis, Volume 2011 (2011), Article ID 123483, 9 pages.

[24] N. S. Jung, H. Y. Lee and C. S. Ryoo, Some Relations between Twisted \((h,q)\)-Euler Numbers with Weight \(\alpha\) and \(q\)-Bernstein Polynomials with Weight \(\alpha\), Discrete Dynamics in Nature and Society, Volume 2011 (2011), Article ID 176296, 11 pages.
University of Gaziantep, Faculty of Science and Arts, Department of Mathematics, 27310 Gaziantep, TURKEY
E-mail address: mtsrkn@hotmail.com

University of Gaziantep, Faculty of Science and Arts, Department of Mathematics, 27310 Gaziantep, TURKEY
E-mail address: acikgoz@gantep.edu.tr