SUPPLEMENTAL TABLE S1

Table S1. Relative expression of 84 genes associated with the Wnt/β-catenin pathway in 7 AML samples

Gene	#5	#7	#8	#13	#11	#4	#10
AES	2.8998	1.5898	0.9912	0.433	0.4704	4.5859	1.6703
APC	17.8086	0.989	5.267	1.8938	1.3758	11.4686	18.3713
AXIN1	51.1383	3.7442	28.6748	16.7855	13.2442	39.0622	36.5263
BCL9	70.7628	2.0084	5.8987	1.8997	0.2516	30.1529	51.3225
BTRC	5.9205	0.7784	1.394	2.7281	0.7198	8.1209	7.3404
FZD5	4.8975	0.9386	2.9324	2.2406	0.7259	3.1861	3.4484
CCND1	9.1	0.1571	1.6025	0.0521	0.5063	4.5353	3.9255
CCND2	183.8635	7.8028	22.406	42.1507	58.3261	184.5835	17.0555
CCND3	6.7626	6.4422	3.2394	3.29	2.2237	10.8548	8.5251
CSNK1A1	7.4387	3.4525	6.9633	8.9675	5.2633	26.2932	8.793
CSNK1D	3.8233	1.2837	1.9419	1.1814	1.4012	4.2657	2.6599
Gene	Log2 Fold Change	p-value	Adjusted p-value				
----------	-----------------	---------	------------------				
CSNK1G1	0.0432	0.3583	4.0896				
CSNK2A1	4.3953	4.4195	4.1966				
CTPB1	16.7873	0.3264	5.5599				
CTPB2	2.1124	0.8748	1.0852				
β-CATENIN	36.0645	9.2593	7.2676				
ICAT	8.0081	3.409	7.5671				
CXXC4	409.8568	5.762	59.8331				
DAAM1	1.3661	1.4321	3.176				
DIXDC1	18.1481	4.5433	5.8863				
DKK1	101.2115	2.4893	12.8723				
DVL1	3.0158	0.358	0.7963				
DVL2	6.64	3.1661	3.3612				
EP300	5.0337	0.0842	12.3928				
FBXW11	11.2032	6.8249	6.581				
FBXW2	404.1948	5.762	48.3108				
FGF4	426.4595	5.762	49.3491				
FOSL1	5.3271	10.152	2.9571				
FOXN1	415.2983	5.762	47.057				
FRAT1	16.2531	6.0711	7.4109				
FRZB	86.6293	1.0482	10.0418				
FSHB	213.1607	5.762	22.3186				
FZD1	19.3745	2.2068	2.9182				
FZD2	78.0897	1.5973	80.0045				
FZD3	15.1735	0.2747	1.6384				
FZD4	0.6949	5.762	38.2819				
FZD6	10.5482	0.1993	17.0294				
FZD7	10.5236	2.8313	1.9019				
FZD8	26.5372	0.4726	7.2874				
GSK3A	2.5296	2.6627	2.6118				
GSK3B	1.141	1.0576	0.5835				
JUN	6.3492	33.4533	17.6869				
KREMEN1	62.4102	0.7607	7.9454				
LRP5	107.3384	5.762	14.5368				
LRP6	70.3742	0.9537	38.2035				
MYC	49.6587	2.0278	12.3073				
NKD1	173.9066	3.1704	20.8518				
NLK	9.9057	0.8448	1.2136				
PITX2	320.7459	5.762	37.9018				
PORCN	8.3153	2.3299	4.7181				
PPP2CA	3.3136	1.7577	2.8578				
PPP2R1A	3.5603	1.7463	2.754				
PYG1	510.1066	5.762	77.2113				
RHOU	15.5353	1.3147	5.696				
SENP2	18.0554	3.9076	13.9005				
SFRP1	452.3768	5.762	73.0385				
SFRP4	496.5303	5.762	47.1369				
FBXW4	0.4619	0.0686	0.3545				
SLC9A3R1/EGBP5	4.4566	24.9939	11.1519				
SOX17	291.2752	5.762	50.225				
TFF	439.9607	6.1646	75.723				
TCF1	743.3192	13.0184	58.3137				
TCF3	10.805	2.3921	1.7365				
TLE1	1.0202	0.0091	0.255				
TLE2	36.0036	0.5432	4.4913				
WIF1	225.8868	3.6185	28.4411				
WISP1	326.4782	4.2665	34.868				

30
mRNA levels data are expressed as fold changes versus NBM CD34+ levels. GAPDH expression was used for normalization and given the value 1.

SUPPLEMENTAL FIGURES LEGENDS

Figure S1. Absence of correlation between mRNA and protein levels of β-catenin in AML patients

17 AML patients’ samples (black squares, black triangle) were analyzed for their MFI of β-catenin, indicating protein expression, and for their relative β-catenin mRNA level normalized to that of CD34+ NBM and to GAPDH. Linear regression R² was 0.0026 (black line, p value of the slope being non-zero: 0.8457). No correlation was found either after exclusion of the outlier point (black triangle) (grey line, R²: 0.1388, p value of a non-zero slope: 0.1554).

Figure S2. Measurement of nuclear internalized β-catenin signal in patients #1 and #6

CD34-PE+ gated events from AML patients #1 (A) and #6 (B) were assessed for β-catenin FITC positivity and gated appropriately (left panel), nuclear internalization repartition (mid panels) and image analysis (right panels) of β-catenin positive cells within the CD34+ population (see also Supplemental Materials & Methods and Figure 2).

Figure S3. Differential mRNA expression of pro-apoptotic and anti-apoptotic genes after β-catenin silencing in HL60

HL60 cells were transduced at day 0 with sh47 lentivirus and qPCR were performed after sorting for GFP+ and control GFP- cells at day 8. β-actin was used as normalizing control.
Figure S4. Effective knockdown of β-catenin in AML ex vivo patients at week 1

qPCR were done for transduced patients’ samples #5, #9 and #1 on sh22 versus scramble control GFP+ sorted cells, after 1 week of co-culture with MS-5 stroma. β-actin was used as normalizing control.

Figure S5. β-catenin knockdown impairs human AML leukemic cells

Cells of patients #5 (left panel), #9 (middle panel), #1 (right panel) were plated in methylcellulose after shRNA transduction and counted at day 14. Data from three individual experiments are shown ± standard deviation. * p<0.05. Empty vector was used as control.

Figure S6. Maintenance of the percentage of GFP+ after primary transplant (12 weeks post-transplant)

Individual GFP fold changes were assessed as the ratio of the percentage of GFP+ engrafted cells from patients #5, #9 and #1 (within the bone marrow CD45+CD33+CD19− population) at week 12 to that of GFP+ cells at day 4. Control and sh β-catenin data are shown as pooled from several independent experiments (same animals as in Figure 5B). Means are shown ± SEM.

SUPPLEMENTAL MATERIAL & METHODS

Primers pairs used for qPCR

The sequences of the human primers used for qPCR, listed from 5’ to 3’, were:

Gene	Forward and reverse primers’ sequence
β-catenin	TCTGATAAAGGCTACTGTTGGATTGA TCA CGCA AAGG GTGCATGATT
Cyclin D1	AACTACCTGGACCGCTTCTT CC ACTT GAGGTTGGTTCACCA
Cyclin D2	TGGGGAAATTTGAAAGTTGAAC AT C AT C GACG TGGGTACAT
Cyclin D3	ATGCTTGCTTTACTGGATGCT TGCACAGTTTTCGATGCT
BCL2	AGTACCTGAACC GGCACCTG TTCAGAGACAGCCAGGAAAT
BAD	CCAGAGT TTTGAGCGAGCACTGTA CCATCCCTTTGC GTGCCTC
BAK	G TTTTCCGCAGCAGCTACGTTT TTCAGAGCAGCCAGGAAAT
BCL XL	TCG CATTTG TGGCCTTTTT TGCAT GCAGGTTGGTTCGCTC
TCF3	GAGGACGAGGAAGACACGT CAA GGCCAGCTGAGTCAC
SFRP4	CTGCCCC ATCAAGAT TT CT CGGTTGTTCTCTTCAGAG
DKK1	TCTCGAGG GAGAAATTGAGGA TA TCCGGAAGACAGACCTT
MYC	CCTACCCCTCTCAACGAGAGC C TCTGACCATTTGGCCAGGAG
β-actin	GGA CTGAGCAAGAGATG G AGC A C TGTGTTGGCGTGACAG
GAPDH	GGGAG GTGAGG CAGTGAGT GGG TCATTTAGGCAACAATA
Superarray analysis

The expression profile of 84 Wnt/ß-catenin pathway-related genes was determined using a 96-well format human Wnt signaling pathway RT² Profiler PCR array (SABiosciences, USA) according to the manufacturer’s instructions. The array also included 6 housekeeping genes and 3 RNA as internal controls. qPCR were run on an ABI 7900HT qPCR instrument equipped with SDS 2.3 software, using RT² SYBR Green/ROX qPCR master mix (Applied Biosystems, UK). Data analysis was done by the $2^{-\Delta\Delta Ct}$ method on the manufacturer’s Web portal http://www.SABiosciences.com/pcrarraydataanalysis.php (Applied Biosystems, UK).

Calculation of ß-catenin internalization equation using ImageStream and IDEAS 4.0 software

To best define the nuclear area within the cell, we eroded the DAPI channel default system mask by 2 pixels widths. This was a non-intensity based modification of the mask. We then instructed the IDEAS analysis software package to calculate the internalization score of the ß-catenin FITC signal within the stringently masked nuclear area. The internalization is defined by the following equation, where I is the constructed nuclear mask and B the area of original segmentation outside of the input mask I.

$$\text{Internalization} = \log \left(\frac{a}{1-a} \right) \times \frac{\pi}{p_b}, \text{ where } a = \frac{m_i}{m_i + m_B}$$

m_i = mean intensity of upper quartile pixels in I, m_B = mean intensity of upper quartile pixels in B, pi = peak intensity of upper quartile pixels in I, p_B = peak intensity of upper quartile pixels in B.

Increasingly positive values indicate that proportionally more of the given fluorescent signal is within the input mask, whereas increasingly negative values indicate the signal is without. Values of 0 are indicative of an equal apportionment. In all cases, we have quoted the median internalization score for the population of interest.