When conservative modalities including multi-modal oral analgesia, interventional pain clinic, physical therapy and complementary techniques were exhausted, an intrathecal (IT) morphine pump was inserted. His pain was well managed for 8 years at a steady and stable dose to such an extent that he could hold a part time light job. However, his back pain then gradually became unmanageable despite increasing doses of morphine. One year later he lost his part time job and was referred to local spinal surgeons, who were very reluctant to offer any surgical innervation given the complicated spinal surgery he previously had and the fact that he had been labelled with Failed Back Surgery Syndrome. As the pain became worse, in desperation and in search of a second opinion, the patient was referred to our spinal unit.

On presentation patient confessed and accepted the fact that he could never been pain free but stated on the top of his normal back and leg pain he had developed a much worse back pain just above his normal pain. He stated that the pain on his back had significantly worsened over the last 2 years as opposed to his leg symptoms that had remained unchanged. On examination, he was an obese gentleman with slightly positive sagittal balance and a long posterior lumbar surgical scar. There was also an intrathecal morphine pump in his left loin. Neurological examination was unremarkable apart from knee reflexes been diminished bilaterally. Plain x-rays confirmed the presence of intrathecal catheter and implants were remaining intact and in situ and also demonstrated some evidence of L4-S1 bony fusion.

When conservative modalities including multi-modal oral analgesia, interventional pain clinic, physical therapy and complementary techniques were exhausted, an intrathecal (IT) morphine pump was inserted. His pain was well managed for 8 years at a steady and stable dose to such an extent that he could hold a part time light job. However, his back pain then gradually became unmanageable despite increasing doses of morphine. One year later he lost his part time job and was referred to local spinal surgeons, who were very reluctant to offer any surgical innervation given the complicated spinal surgery he previously had and the fact that he had been labelled with Failed Back Surgery Syndrome. As the pain became worse, in desperation and in search of a second opinion, the patient was referred to our spinal unit.

On presentation patient confessed and accepted the fact that he could never been pain free but stated on the top of his normal back and leg pain he had developed a much worse back pain just above his normal pain. He stated that the pain on his back had significantly worsened over the last 2 years as opposed to his leg symptoms that had remained unchanged. On examination, he was an obese gentleman with slightly positive sagittal balance and a long posterior lumbar surgical scar. There was also an intrathecal morphine pump in his left loin. Neurological examination was unremarkable apart from knee reflexes been diminished bilaterally. Plain x-rays confirmed the presence of intrathecal catheter and implants were remaining intact and in situ and also demonstrated some evidence of L4-S1 bony fusion.
Is Once Failed Back Surgery, Always Failed Back Surgery? A Relative Success of Surgical Intervention in a Patient with Failed Back Surgery on Intrathecal Morphine Pump

Citation: Starantzis KA, Shafafy M (2014) Is Once Failed Back Surgery, Always Failed Back Surgery? A Relative Success of Surgical Intervention in a Patient with Failed Back Surgery on Intrathecal Morphine Pump. MOJ Orthop Rheumatol 1(3): 00018. DOI: 10.15406/mojor.2014.01.00018

This was clearly a surgical target correlated with the patient’s symptoms and clinical findings. However, there were significant concerns about revision surgery through previous posterior approach because of previous complications; in particular deep infection for which part of the implants had been removed, albeit many years previously. Anterior surgery was not without significant risks because of his size. A relatively new but established technique, using trans-psoas approach via a small incision through loin was exploited. Through this approach, both aforementioned concerns were circumvented whilst it allowed discectomy and indirect decompression and fusion. It restored the lateral recess and foraminal height, by restoring the disc height when an oversized cage packed with bone graft placed in the disc space after discectomy. This was then stabilised by a plate and two screws inserted parallel to endplates (Figure 3). The back pain significantly subsided soon after the surgery and the patient returned to his previous pain control regime. O.D.I. score decreased from 84 pre operatively to 46 six weeks post operatively and maintained at the same levels two years after this intervention. VAS back was 10 and 5 while VAS leg was 7 and 6 respectively. On the latest follow up, 2 years following surgery, he remained stable with regards of his symptoms with the IT morphine pump controlling the leg pain.

Discussion

Failed Back Surgery Syndrome, also known as “Failed Back” or “Post Laminectomy Syndrome”, refers to persistent neuropathic pain after spinal surgery [3,4]. Whether this is a misnomer or a redundant term, whether there are different types and causes of such clinical entity, requiring different types of treatment [3], is not going to be the subject of our debate. It is assumed that every patient that is on the chronic pain pathway does not have surgical target anymore and/or the surgical armamentarium has been tried and exhausted and failed. Such patients are assumed to have almost no potential to benefit from yet another operation hence non-surgical modalities are recruited [2]. Pain specialist input is playing a crucial role for management of such difficult to treat patients.
When final step in analgesic ladder is reached without a satisfactory pain control and all other interventions including physical therapy complementary techniques [5] are tried and failed, an ITP morphine pump implant may be considered [2,6]. Even in the presence of such device, co-medication with one or combination of different classes of analgesics may still be necessary. A favourable result and a satisfactory pain control is then expected for approximately 60-95% of these patients [6-10].

When a patient whose pain has been satisfactorily controlled with such regimen for many years, as in our patient, suddenly starts to experience more pain out of character for his/her normal pain, differential diagnosis should include device related problems, drug tolerance or disease progression [6,10-13]. Once the first two have been excluded, consideration for seeking spinal surgical opinion to investigate the third should seriously be considered. Disease progression in such circumstances, in general, includes development of post surgical instability, infection, mechanical failure of the implants or junctional problems. Junctional problems specifically can manifest themselves as accelerated disc and facet degeneration resulting in hyper-mobility of the motion segment or even instability with or without stenotic features. In our patient, the junctional problem presented itself with pain due to hypermobility as well as painful radicular symptoms due to lateral recess and foraminal stenosis. Both these pains in our patient were firstly different in character and location and secondly were over and above our patient’s normal pain for which he had had pain management and ITP.

Once this fact was established through taking a careful history thorough examination and appropriate investigation, surgical intervention was deemed reasonable. The patient was properly counselled about the potential risks and was warned about unrealistic expectation of being completely pain free afterwards. The aim was to get the patient’s pain to the level previously controlled with ITP.

Since the patient had undergone previous posterior lumbar procedures and had developed infection after one of them, going through the same surgical field was associated with high risk of infection and dural tear. Anterior lumbar surgery in this case was also not straightforward because of previous history of abdominal surgery and high BMI. To avoid that a more recent far lateral trans-psoas approach was therefore employed.

To the best of our knowledge this is the first case to be reported, who had previously been labelled with failed back surgery with ITP and yet successfully treated surgically through far lateral approach.

References

1. Koulousakis A, Kuchta J (2007) Intrathecal antispastic drug application with implantable pumps: results of a 10 year follow-up study. Acta Neurochir Suppl 97(1): 181-184.
2. Hussain A, Erdek M (2013) Interventional Pain Management for Failed Back Surgery Syndrome. Pain Pract 14(1): 64-78.
3. Slipman CW, Shin CH, Patel RK, Isaac Z, Huston CW, et al. (2002) Etiologies of failed back surgery syndrome. Pain Med 3(3): 200-214.
4. Bokov A, Isrelov A, Skorodumov A, Aleynik A, Simonov A, et al. (2011) An analysis of reasons for failed back surgery syndrome and partial results after different types of surgical lumbar nerve root decompression. Pain Physician 14(6): 545-557.
5. Boswell MV, Shah RV, Everett CR, Sehgal N, McKenzie Brown AM, et al. (2005) Interventional techniques in the management of chronic spinal pain: evidence-based practice guidelines. Pain Physician 8(1): 1-47.
6. Koulousakis A, Kuchta J, Bayarassou A, Sturm V (2007) Intrathecal opioids for intractable pain syndromes. Acta Neurochir Suppl 97(1): 43-48.
7. Anderson VC, Burchiel KJ (1999) A prospective study of long-term intrathecal morphine in the management of chronic nonmalignant pain. Neurosurgery 44(2): 289-300.
8. Nitescu P, Dahm P, Appelgren L, Curelaru I (1998) Continuous infusion of opioid and bupivacaine by externalized intrathecal catheters in long-term treatment of “refractory” nonmalignant pain. Clin J Pain 14(1): 17-28.
9. Rauck R, Deer T, Rosen S, Padda G, Barsa J, et al. (2013) Long-term follow-up of a novel implantable programmable infusion pump. Neurmodulation 16(2): 163-167.
10. Kumar K, Kelly M, Pirtot T (2001) Continuous intrathecal morphine treatment for chronic pain of nonmalignant etiology: long-term benefits and efficacy. Surg Neurol 55(2): 79-86.
11. Hassenberg SJ, Stanton-Hicks M, Covington EC, Walsh JG, Guthrey DS (1995) Long-term intraspinal infusions of opioids in the treatment of neuropathic pain. J Pain Symptom Manage 10(7): 527-543.
12. Duarte RV, Raphael JH, Haque MS, Southall JL, Ashford RL (2012) A predictive model for intrathecal opioid dose escalation for chronic non-cancer pain. Pain Physician 15(5): 363-369.
13. Atli A, Theodore BR, Turk DC, Loeser JD (2010) Intrathecal opioid therapy for chronic nonmalignant pain: a retrospective cohort study with 3-year follow-up. Pain Med 11(7): 1010-1016.