CHARACTERIZATION OF GLIAL-RESTRICTED PRECURSORS FROM RHESUS MONKEY EMBRYONIC STEM CELLS

Abstract

Glial-restricted precursor (GRP) cells, the earliest glial progenitors for both astrocytes and oligodendrocytes, have been derived from embryos and embryonic stem cells (ESC) in rodents. However, knowledge regarding the equivalent cell type in primates is limited due to restrictions imposed by ethics and resources. Here we report successful derivation and characterization of primate GRP cells from rhesus monkey ESC. The purified monkey GRP cells were A2B5-positive and FGF2-dependent for survival and proliferation. The differentiation assays indicated that they were tri-potential in vitro and bi-potential in vivo. These newly purified GRP cells will help to facilitate understanding of the molecular mechanism of glial development in primates as well as provide a source of therapeutic donor cells for use in neuroregenerative medicine.

Introduction

Neurons and glia originate from neuroepithelial stem/progenitor cells in the developing central nervous system [1]. The precise ancestor of both astrocytes and oligodendrocytes was unknown until tripotential glial-restricted precursor (GRP) cells were isolated from the developing central nervous system and embryonic stem cells (ESC) in rodents [2-4]. These GRP cells are capable of differentiating into astrocytes and oligodendrocytes both in vitro and in vivo [5, 6]. They can even promote functional recovery after spinal cord injury [7-10]. The equivalent cells in primates are less well characterized largely due to restrictions imposed by ethics and resources. Still less is understood about human GRP cells of which the only example so far isolated are A2B5-positive glial precursors derived from cryopreserved human fetal brain progenitors or gliomas [11, 12].

ESC provide a good model by which to study cell differentiation because of their ability to differentiate into all derivatives of the three embryonic germ layers that constitute the body [13-15]. Multiple types of neural lineage cells have been derived from ESC [16-18]. Unfortunately, the GRP cells had only been successfully derived from mouse ESC [4]. Thus, differentiation of rhesus ESC into GRP cells provides an alternative and superior method to study primate GRP because the rhesus monkey is more closely related both genetically and physiologically to humans [19].

In this study, successful derivation and characterization of GRP cells from rhesus monkey embryonic stem cells (rESC) was demonstrated. The results showed that rhesus A2B5-positive GRP cells are capable of differentiating into both oligodendrocytes and astrocytes in vitro and in vivo.

Experimental procedures

A diagram illustrating the procedures of derivation, purification and differentiation of GRP cells from rESC is shown in Supplemental Figure 1.

ES cell culture, embryoid body (EB) formation and differentiation

The procedures for culture of rESC R366.4 and EB making were described previously [18]. To induce glial precursor (GP) differentiation...
was performed according to the recommended protocol and immunofluorescence, as previously described [5].

Immunocytochemistry

For immunocytochemistry, cells were rinsed three times in phosphate-buffered saline (pH = 7.4) and fixed in 4% PFA for 15-20 min. After treatment with 0.4% Triton-X 100 for 10 min, the cells were blocked with 5-10% goat serum for half an hour at room temperature (20°C). Primary antibodies (Table 2) were used at room temperature for 1 h or at 4°C overnight. Secondary antibodies conjugated with fluorescein isothiocyanate, FITC (Santa Cruz, Santa Cruz, CA, USA) or Jackson ImmunoResearch, West Grove, PA, USA) or with PE/Texas Red (Santa Cruz / Jackson ImmunoResearch) were incubated with primary antibodies at room temperature for 1 h. Cell nuclei were stained with Hoechst 33342 or propidium iodide (PI, Sigma-Aldrich). The cells were examined using a confocal laser scanning system (LSM 510 META; Carl Zeiss, Jena, Germany).

RNA preparation and gene expression analysis

Total RNA was extracted from cells using a TRIzol RNA (Invitrogen) isolation kit according to the manufacturer’s instructions. The potential

Table 1. Cytokines and growth factors used to induce differentiation of GRP cells.

Cytokines/growth factors	Concentration	Promoted cellular phenotypes
BMP4; bFGF	10 ng/ml; 10 ng/ml	Type I astrocytes
CNTF; bFGF	10 ng/ml; 10 ng/ml	Type II astrocytes
LIF; bFGF	1000 U/ml; 10 ng/ml	Type II astrocytes
bFGF; PDGF-AB; TH	10 ng/ml; 10 ng/ml; 10 ng/ml	Oligodendrocytes
RA; NT-3	1 mM; 10 ng/ml	Neurons

Abbreviations: BMP4, bone morphogenetic protein 4; bFGF, basic fibroblast growth factor; CNTF, ciliary neurotrophic factor; LIF, leukemia inhibitory factor; PDGF-AB, platelet-derived growth factor-AB; TH, thyroid hormone; RA, retinoic acid; NT-3, neurotrophin-3.

1 from R&D Systems, Minneapolis, MN, USA; 2 from Sigma-Aldrich, St. Louis, MO, USA; 3 from PeproTech, Rocky Hill, NJ, USA; 4 from Chemicon Temecula, CA, USA.
contaminating genomic DNA was eliminated by DNase I digestion and cDNA was synthesized from 1 μg total RNA using AMV enzyme in a 20 μl reverse transcription (RT) system; 1 μl of RT product was used as a template for each 25 μl polymerase chain reaction (PCR) amplification. PCR included denaturation for 3 min at 94°C followed by repeated cycles of: 94°C for 30 s, annealing temperature for 30 s, 72°C for 30 s, and extension at 72°C for 5 min. PCR primers and reaction conditions used are shown in Table 3. PCR products were electrophoresed through a 2.0% agarose gel (Invitrogen) and stained with 0.1 μg/ml of ethidium bromide.

Statistical analysis
The results are presented as means ± standard deviation (SD). Statistical analysis was performed using the one-way analysis of variance (ANOVA) with statistical significance defined as P < 0.05.

Results
Direct differentiation of rESC into early glial progenitors (GP)
Using an efficient and reproducible system based on previously described EB differentiation method ([18], Fig. 1B), three distinct neuroectoderm populations including: pseudostratified neural rosettes (NR, Fig. 1C), neuronal precursors, and peripheral bipolar fibroblast-like cells (Fig. 1D-F) were differentiated from the undifferentiated rESC (Oct4+, Fig. 1A). Similar results were obtained in the work by Kuo et al. [20]. Characterization of the bipolar fibroblast-like cells showed that they expressed vimentin (Fig. 1E), a marker of ectoderm and radial glia. Further testing also indicated they were PDGFRα+ by immunostaining (Fig. 1F). Interestingly, some fibroblast-like cells started to express the glial progenitor marker A2B5 (Fig. 1F), implying these cells are early GP.

Purification and characterization of GRP cells
As PDGFRα and A2B5 are typically expressed in GRP cells [3, 6], the early vimentin+/PDGFRα- GP cells (Fig. 1E, F) were chosen for further expansion. After screening for two passages,

Table 2. Primary antibodies used for immunofluorescence.
Antigen

Oct-4
Nestin
Vimentin
PSA-NCAM
Tuj1
MAP2
A2B5
PDGFRα
O4
MBP
CD44
BrdU
Ki67

Abbreviations: GFAP, glial fibrillary acidic protein; MAP2, microtubule-associated-protein 2; MBP, myelin basic protein; PDGFRα, platelet-derived growth factor receptor α. Source not described elsewhere in the text: DAKO, Agilent Technologies, Santa Clara, CA, USA.

Table 3. PCR primers and condition for gene analysis.
Genes

BLBP
FGFR3
Nestin
OCT-4
Pax6
Pax7
PDGFRα
PDGFRβ
Sox2
Sox9
Sox10
Vimentin
GAPDH

Translational Neuroscience
nearly all cells had glial progenitor morphology, as described previously [3, 21], being bipolar (or tripolar) (Fig. 2B, C) and forming gliospheres (Fig. 2A). They expressed glial progenitor markers Aβ5, PDGFRα (Fig. 2B), and vimentin (Fig. 2C) but not astroglial (CD44, GFAP) or oligodendroglial (O4, myelin basic protein, MBP) markers. Neither NSC markers nor neuronal markers (Fig. 2D, E) were expressed in these purified cells.

The proliferation competence assay was performed to determine their mitogen by using BrdU and Ki67. The results revealed that the purified GP were proliferative (Fig. 2H), and numbers doubled over two-fold in the bFGF treatment group. In contrast, the cells in treatment groups with various concentrations (10, 20, 30 ng/ml) of PDGF-AA (Fig. 2G, I) did not divide and over half of them died. These results suggest that purified GP survive and proliferate only under bFGF but not PDGF-AA stimulation in precisely the same manner as do mouse GRP cells [6, 22]. These rhesus GRP cells were capable of self-renewal in adherent culture, without differentiation while maintaining a normal karyotype (42, XY) (Fig. 2F) for at least 10 passages.

Differentiation of GRP cells in vitro and in vivo

When the isolated GRP cells were induced to differentiate under appropriate conditions in vitro for one or two weeks (Table 1), three types of glial cells were generated: Aβ5+/GFAP+ type II astrocytes (Fig. 3A) bearing projections in the presence ofCNTF/bFGF or LIF/bFGF; flat Aβ5/ GFAP+ type I astrocytes (Fig. 3B) with BMP4/ bFGF, expressing FGFR3 by RT-PCR (data not shown); and MBP+ oligodendrocytes (Fig. 3C) under stimulation with bFGF/PDGF-AB/TH. None of the cells was labeled by neuronal lineage markers (MAP2 and TuJ1) in the presence of retinoic acid, a potent inducer of neuronal differentiation (Fig. 3D). Therefore, the purified GRP cells from rESC were tripotential in vitro.

To further investigate their differentiation ability in vivo, PHK-26 or GFP-labeled GRP cells were transplanted into the LV of SD rats. The results showed that transplanted GRP cells successfully migrated 1083.8 ± 84.4 μm away from the injection site and integrated into the ventricular/subventricular zone of host rat brains (Fig. 3E-H). Furthermore, 49.0 ± 13.3% of the transplanted GRP cells turned into oligodendrocytes (MBP+) (Fig. 3F, G) and 47.6 ± 6.4% of them into astrocytes (GFAP+) (Fig. 3E).

Neurons (MAP2+ or TuJ1+) were not detected (Fig. 3H). Additionally, no tumor was observed among all the host brain sections. Hence, rhesus GRP cells were bipotential in vivo.

Discussion

To the best of our knowledge, the present study represents the first report of a successful attempt at the derivation and characterization of rhesus monkey GRP cells from rESC. The rhesus GRP cells have similar features to mouse GRP cells in aspects of morphology, gene expression profile and differentiation potential (Figs. 2 and 3). Both of these cells are Aβ5, immunoreactive, and rely on FGF2 to self-renew as opposed to PDGF, which is the survival and proliferation factor of oligodendrocyte precursors (OP) [6]. Differentiation of the purified monkey GRP cells in vitro verified their tripotential differentiation capability (Fig. 3).

Transplantation in SD rats also showed their astrogenesis and oligodendrogenesis in vivo (Fig. 3), fulfilling a major criterion used to distinguish GRP cells from OP [5, 6]. Recently, much progress has been made regarding the application of mouse GRP cells or their derivatives in cell replacement therapies [5-10]. Most strikingly, Hu et al. showed that GRP cells could promote functional recovery after spinal cord injury [9]. Our purified monkey GRP cells are worthy of undergoing further testing in applications such as curing spinal cord injury in primate models.

Using the multi-step EB differentiation system, we observed three different neural progenitor populations, as already described by Kuo et al. [20]. We further purified and characterized GRP cells from peripheral migratory fibroblast-like cells (Fig. 1D-F, which in Kuo’s study were digested together with all the other neural progenitor cells) to track further lineage differentiation potential. The expression of radial glia (RG) marker vimentin [23] and Aβ5, a glial progenitor marker in mice and humans [3, 4, 6,11, 12], indicates that they
were not daughter cells of neural crest stem (NCS) cells, which could exist at the periphery of neural rosettes when ESC were induced to neural lineage differentiation [24]. The absence of Sox10 (Fig. 2E), a marker typically expressed by NCS cells further confirms their non-NCS identity [25].

In rodents, there are several controversial hypotheses of gliogenesis. Glial cells may originate from GRP, motor neuron-oligodendrocyte precursor or RG cells [26-28]. In primates the situation is even less clear. Our in vitro differentiation model supports the concept that both astrocytes and oligodendrocytes are the progeny of GPR cells. Thus, these newly purified GRP cells are valuable in determining the mechanism of glial lineage cell fate. Interestingly, the GRP cells also provide a good model to study cell migration in vitro [29].

In summary, GRP cells were successfully differentiated and characterized from rhesus ESC. This work has the potential to facilitate a better understanding of the molecular mechanism of glial development in primates as well as to provide a donor source for cell replacement therapy in neurodegenerative diseases.

Acknowledgments

Conflict of interest statement: The authors declare no conflict of interest. This work was supported by research grants from the National Basic Research Program 2006CB701505 and 2007CB947701, the Chinese Academy of
We acknowledge Professor Weizhi Ji for support and direction. We thank Drs. J. Wang and Z. Meng for assistance in cell transplantation, Dr. J. Guo for assistance in immunohistochemistry, and Dr. J. Yang for careful reading and helpful comments.

References

[1] Copp A.J., Greene N.D., Murdoch J.N., The genetic basis of mammalian neurulation, Nat. Rev. Genet., 2003, 4, 784-793
[2] Rao M.S., Mayer-Pröschel M., Glial-restricted precursors are derived from multipotent neuroepithelial stem cells, Dev. Biol., 1997, 188, 48-63
[3] Rao M.S., Noble M., Mayer-Pröschel M., A tripotential glial precursor cell is present in the developing spinal cord, Proc. Natl. Acad. Sci. USA, 1998, 95, 3996-4001
[4] Mujtaba T., Piper D.R., Kalyani A., Groves A.K., Lucero M.T., Rao M.S., Lineage-restricted neural precursors can be isolated from both the
mouse neural tube and cultured ES cells, Dev. Biol., 1999, 214, 113-127

[5] Herrera J., Yang H., Zhang S.C., Pröschel C., Tresco P., Duncan I.D., et al., Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo, Exp. Neurol., 2001, 171, 11-21

[6] Gregori N., Pröschel C., Noble M., Mayer-Pröschel M., The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: generation of bipotential oligodendrocyte-type-2 astrocyte progenitor cells and dorsal-ventral differences in GRP cell function, J. Neurosci., 2002, 22, 248-256

[7] Cao Q., Xu X.M., Devries W.H., Enzmann G.U., Ping P., Tsoulfas P., et al., Functional recovery in traumatic spinal cord injury after transplantation of multineuropotin-expressing glial-restricted precursor cells, J. Neurosci., 2005, 25, 6947-6957

[8] Nout Y.S., Culp E., Schmidt M.H., Tovar C.A., Pröschel C., Mayer-Pröschel M., et al., Glial-restricted precursor cell transplant with cyclic adenosine monophosphate improved some autonomic functions but resulted in a reduced graft size after spinal cord contusion injury in rats, Exp. Neurol., 2011, 227, 159-171

[9] Hu J.G., Wang X.F., Deng L.X., Liu N.K., Gao X., Chen J.H., et al., Co-transplantation of glial-restricted precursor cells and Schwann cells promotes functional recovery after spinal cord injury, Cell Transplant., 2013, 22, 2219-2236

[10] Fan C., Zheng Y., Cheng X., Qi X., Bu P., Luo X., et al., Transplantation of D15A-expressing glial-restricted-precursor-derived astrocytes improves anatomical and locomotor recovery after spinal cord injury, Int. J. Biol. Sci., 2013, 9, 78-93

[11] Dietrich J., Noble M., Mayer-Pröschel M., Characterization of A2BS+ glial precursor cells from cryopreserved human fetal brain progenitor cells, Glia, 2002, 40, 65-77

[12] Colin C., Baeza N., Tong S., Bouvier C., Quilichini B., Durbec P., et al., In vitro identification and functional characterization of glial precursor cells in human gliomas, Neuropathol. Appl. Neurobiol., 2006, 32, 189-202

[13] Evans M.J., Kaufman M.H., Establishment in culture of pluripotent cells from mouse embryos, Nature, 1981, 292, 154-156

[14] Thomson J.A., Kalishman J., Golos T.G., Durning M., Harris C.P., Becker R.A., et al., Isolation of a primate embryonic stem cell line, Proc. Natl. Acad. Sci. USA, 1995, 92, 7844-7848

[15] Chen H., Aksoy L., Gonzon F., Ostert P., Aubry M., Hamela C., et al., Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency, Nat. Commun., 2015, 6, 7095

[16] Cai C., Gabel L., Directing the differentiation of embryonic stem cells to neural stem cells, Dev. Dyn., 2007, 236, 3255-3266

[17] Dhara S.K., Stice S.L., Neural differentiation of human embryonic stem cells, J. Cell. Biochem., 2008, 105, 633-640

[18] Chen H., Wei Q., Zhang J., Tan T., Li R., Chen J., Neural lineage development in the rhesus monkey with embryonic stem cells, Transl. Neurosci., 2013, 4, 378-384

[19] Wolf D.P., Kuo H.C., Pau K.Y., Lester L., Progress with nonhuman primate embryonic stem cells, Biol. Reprod., 2004, 71, 1766-1771

[20] Kuo H.C., Pau K.Y., Yeaman R.R., Mitalipov S.M., Okano H., Wolf D.P., Differentiation of monkey embryonic stem cells into neural lineages, Biol. Reprod., 2003, 68, 1727-1735

[21] Brustle O., Jones K.N., Learish R.D., Karam K., Choudhary K., Wiestler O.D., et al., Embryonic stem cell-derived glial precursors: a source of myelinating transplants, Science, 1999, 285, 754-756

[22] Noble M., Pröschel C., Mayer-Pröschel M., Getting a GR(i)P on oligodendrocyte development, Dev. Biol., 2004, 265, 33-52

[23] Weissman T., Noctor S.C., Clinton B.K., Honig L.S., Kriegstein A.R., Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration, Cereb. Cortex, 2003, 13, 550-559

[24] Lee G., Chambers S.M., Tomishima M.J., Studer L., Derivation of neural crest cells from human pluripotent stem cells, Nat. Protoc., 2010, 5, 688-701

[25] Achilleos A., Trainor P.A., Neural crest stem cells: discovery, properties and potential for therapy, Cell Res., 2012, 222, 288-304

[26] Alvarez-Buylla A., Garcia-Verdugo J.M., Tramontin A.D., A unified hypothesis on the lineage of neural stem cells, Nat. Rev. Neurosci., 2001, 2, 287-293

[27] Delaunay D., Heydon K., Cumano A., Schwab M.H., Thomas J.L., Suter U., et al., Early neuronal and glial fate restriction of embryonic neural stem cells, J. Neurosci., 2008, 28, 2551-2562

[28] Sauer F.C., Mitosis in the neural tube, J. Comp. Neurol., 1935, 377-405

[29] Chen H., Wei Q., Zhang J., Xu C., Tan T., Ji W., Netrin-1 signaling mediates NO-induced glial precursor migration and accumulation, Cell Res., 2010, 20, 238-241
Supplemental Figure 1. Schematic diagram illustrating the procedure of derivation, purification, and differentiation glial-restricted precursor (GRP) cells from rhesus monkey embryonic stem cells. Abbreviation: MEF, mouse embryonic fibroblasts. See text for details.