LETTER TO THE EDITOR

Three planetary companions around M67 stars.

A. Brucalassi1,2, L. Pasquini3, R. Saglia1,2, M.T. Ruiz4, P. Bonifacio5, L. R. Bedin6, K. Biazzo7, C. Melo8, C. Lovis9, and S. Randich10

1 Max-Planck für extraterrestrische Physik, Garching bei München, Germany
2 University Observatory Munich, Ludwig Maximilian Universität, Scheinerstrasse 1, 81679 Munich, Germany
3 ESO – European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany
4 Astronomy Department, Universidad de Chile, Santiago, Chile
5 GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, Place Jules Janssen 92190 Meudon, France
6 Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Padova, Padova, Italy
7 Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Catania, Catania, Italy
8 ESO – European Southern Observatory, Santiago, Chile
9 Observatoire de Geneve, Sauverny, CH
10 Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri, Firenze, Italy

Received September 1, 2013; accepted December 13, 2013

ABSTRACT

For the past six years we have carried out a search for massive planets around main sequence and evolved stars in the open cluster (OC) M67, using radial velocity (RV) measurements obtained with HARPS at ESO (La Silla), SOPHIE at OHP and HRS at HET. Additional RV data come from CORALIE at the Euler Swiss Telescope. We aim to perform a long-term study on giant planet formation in open clusters and determine how it depends on stellar mass and chemical composition. We report the detection of three new extrasolar planets: two in orbit around the two G dwarfs YBP1194 and YBP1514, and one around the evolved star S364. The orbital solution for YBP1194 yields a period of 6.9 days, an eccentricity of 0.24, and a minimum mass of 0.34 M_{Jup}. YBP1514 shows periodic RV variations of 5.1 days, a minimum mass of 0.40 M_{Jup} and an eccentricity of 0.39. The best Keplerian solution for S364 yields a period of 121.7 days, an eccentricity of 0.35 and a minimum mass of 1.54 M_{Jup}. An analysis of Ha core flux measurements as well as of the line bisectors spans revealed no correlation with the RV periods, indicating that the RV variations are best explained by the presence of a planetary companion. Remarkably, YBP1194 is one of the best solar twins identified so far, and YBP1194b is the first planet found around a solar twin that belongs to a stellar cluster. In contrast with early reports and in agreement with recent findings, our results show that massive planets around stars of open clusters are as frequent as those around field stars.

Key words. Exoplanets – Open clusters and associations: individual: M67 – Stars: late-type – Techniques: radial velocities

1. Introduction

In 2008 we began monitoring radial velocities (RVs) of a sample of main sequence and giant stars in the open cluster (OC) M67, to detect signatures of giant planets around their parent stars. An overview of the sample and of our first results is reported in Pasquini et al. (2012). The goal of this campaign is to study the formation of giant planets in OCs to understand whether a different environment, such as a rich cluster like M67, might affect the planet formation process, the frequency, and the evolution of planetary systems with respect to field stars. In addition, searching for planets in OCs enables us to study the dependence of planet formation on stellar mass and to compare the chemical composition of stars with and without planets in detail. Stars in OCs share age and chemical composition (Randich et al., 2005), therefore it is possible to strictly control the sample and to limit the space of parameters in a better way than when studying field stars. To address these questions we started a search for planets around stars of the OC M67. This cluster has solar age (3.5-4.8 Gyr; Yadav et al. 2008) and solar metallicity ($[\text{Fe}/\text{H}] = +0.03\pm0.01$ dex; Randich et al. 2006). In this letter, we present the RV data obtained for the stars YBP1194, YBP1514, and S364 that reveal the presence of Jovian-mass companions.

2. Stellar characteristics

The three stars belong to the M67 sample presented in Pasquini et al. (2012) with a proper motion membership probability higher than 60% according to Yadav et al. (2008) and Sanders (1977) (see online material). The basic stellar parameters ($V, B-V, T_\text{eff}, \log g$ and [Fe/H]) with their uncertainties were adopted from the literature. Considering a distance modulus of 9.63 ± 0.05 (Pasquini et al. 2008) and a reddening of $E(B-V)=0.041\pm0.004$ (Taylor 2007), stellar masses and radii were estimated using the 4 Gyr theoretical isochrones from Pietrinferni et al. (2004) and Girardi et al. (2000). The parameters derived from isochrone fitting are comparable, within the errors, with the values adopted from the literature. The main characteristics of the three host stars are listed in Table 1. We note that the errors on these values do not include all potential systematics (see online material).

YBP1194 is a G5V star, described by Pasquini et al. (2008) as one of the five best solar analogs in their sample. A detailed spec-
variations of our target stars by computing the Lomb-Scargle spectra using eq.(1) in Santerne et al. (2012). We studied the RV change of the optical setup. For the second, we corrected our values of our stellar standard (HD32923) before and after the observations. For the first, we calculated the orbital solutions were independently checked using the Yorbit program (Segransan et al. 2013 in prep.). For each case we orbital solutions were independently checked using the Yorbit program (Segransan et al. 2013 in prep.). For each case we

We have acquired 23 RV measurements since 2008. Fifteen were obtained with HARPS with a typical S/N of 13 m s\(^{-1}\) including calibration errors. Eight additional RV measurements were obtained with SOPHIE and HRS with mean measurement uncertainty of 9.0 m s\(^{-1}\) and 26.0 m s\(^{-1}\). A clear 6.9-day periodic signal can be seen in the periodogram (Scargle 1982, Horne & Baliunas 1986) and by using a Levenberg-Marquardt analysis (Wright & Howard 2009, RVLIN) to fit Keplerian orbits to the radial velocity data. The orbital solutions were independently checked using the York program (Segransan et al. 2013 in prep.). For each case we verified that the RVs did not correlate with the bisector span of the CCF (calculated following Queloz et al. (2001)) or with the FWHM of the CCF. All the RV data for each star are available in the online material.

YBP1194

We have acquired 23 RV measurements since 2008. Fifteen were obtained with HARPS with a typical S/N of 10 (per pixel at 550 nm), leading to a mean measurement uncertainty of 13 m s\(^{-1}\) including calibration errors. Eight additional RV measurements were obtained with SOPHIE and HRS with mean measurement uncertainties of 9.0 m s\(^{-1}\) and 26.0 m s\(^{-1}\). A clear 6.9-day periodic signal can be seen in the periodogram (see

Parameters	YBP1194	YBP1514	SAND364
\(\alpha\) (J2000)	08:53:00.31	08:53:03.70	08:53:56.32
\(\delta\) (J2000)	+11:48:52.76	+11:53:11.51	+11:41:33.00
Spec.type	G5V	G5V	K3III
\(m_v\) [mag]	14.6\(^a\)	14.77\(^b\)	9.8\(^b\)
\(B - V\) [mag]	0.626\(^a\)	0.680\(^a\)	1.360\(^b\)
\(M^*\) \([M_\odot]\)	1.01±0.02\(^a\)	0.96±0.01\(^b\)	1.35±0.05\(^d\)
\(\text{log } g\) [cgs]	4.44±0.035\(^a\)	4.57±0.05\(^b\)	2.20±0.06\(^d\)
\(T_{\text{eff}}\) [K]	5780±27\(^a\)	5725±45\(^b\)	4284±9\(^d\)
\([\text{Fe}/\text{H}]\) [dex]	0.023±0.015\(^a\)	0.03±0.05\(^b\)	−0.02±0.04\(^d\)

Notes. (\(^a\)) Yadav et al. (2008). (\(^b\)) Montgomery et al. (1993). (\(^c\)) Onehag et al. (2011). (\(^d\)) Pietrinferni et al. (2004) and Girardi et al. (2000). (\(^e\)) Smolinski et al. (2011) and Lee et al. (2008). (\(^f\)) Wu et al. (2011).

Table 1. Stellar parameters of the three M67 stars hosting planets

Parameters	YBP1194	YBP1514	SAND364
\(P\) [days]	6.958±0.001	5.118±0.001	121.710±0.305
\(T\) [JD]	2455978.±0.5	2455986±0.3	2456240.9±3.7
\(e\)	0.24±0.08	0.39±0.17	0.35±0.08
\(\omega\) [deg]	98.62±25.68	372.49±16.05	273.51±12.81
\(K\) [m s\(^{-1}\)]	37.72±2.7	52.29±10.39	67.42±5.85
\(m\ sin i\) \([M_\odot]\)	0.34±0.05	0.40±0.11	1.54±0.24
\(\gamma\) [km s\(^{-1}\)]	34.18±0.006	34.057±0.017	33.217±0.018
\(\sigma\)(O-C) [m s\(^{-1}\)]	11.55	14.6	15.0

Table 2. Orbital parameters of the planetary companions. \(P\): period, \(T\): time at periastron passage, \(e\): eccentricity, \(\omega\): argument of periastron, \(K\): semi-amplitude of RV curve, \(m\ sin i\): planetary minimum mass, \(\gamma\): average radial velocity, \(\sigma\)(O-C): dispersion of Keplerian fit residuals.

![Fig. 1. Top: Lomb-Scargle periodogram for YBP1194. The dashed lines correspond to 5% and 1% false-alarm probabilities, calculated according to Horne & Baliunas (1986) and white noise simulations. Bottom: phased RV measurements and Keplerian best fit, best-fit residuals, and bisector variation for YBP1194. Black dots: HARPS measurements, red dots: SOPHIE measurements, green dots: HRS measurements.](image-url)
The typical S/N is ∼10 and the measurement uncertainty is ∼15 m s$^{-1}$ for HARPS, ∼25 m s$^{-1}$ for HRS, and ∼10 m s$^{-1}$ for SOPHIE. A significant peak is present in the periodogram at 5.11 days (fig. 2 top), together with its one-year alias at 5.04 days. We fitted a single-planet Keplerian orbit corresponding to the period P = 5.11 days (fig. 2 bottom). The orbital parameters resulting from this fit are listed in Table 2. Assuming a mass of 0.96 M$_\odot$ for the host star, we computed a minimum mass for the companion of 0.40±0.11 M$_{\text{Jup}}$. The residuals to the fitted orbit have a dispersion of σ(O-C) = 14.6 m s$^{-1}$, within the mean measurement uncertainty, and show no significant periodicity.

YBP1514

Twenty-five RV measurements have been obtained for YBP1514 since 2009: 19 with HARPS, the others with HRS and SOPHIE. The typical S/N is ∼10 and the measurement uncertainty is ∼15 m s$^{-1}$ for HARPS, ∼25 m s$^{-1}$ for HRS, and ∼10 m s$^{-1}$ for SOPHIE. A significant peak is present in the periodogram at 5.11 days (fig. 2 top), together with its one-year alias at 5.04 days. We fitted a single-planet Keplerian orbit corresponding to the period P = 5.11 days (fig. 2 bottom). The orbital parameters resulting from this fit are listed in Table 2. Assuming a mass of 0.96 M$_\odot$ for the host star, we computed a minimum mass for the companion of 0.40±0.11 M$_{\text{Jup}}$. The residuals to the fitted orbit have a dispersion of σ(O-C) = 14.6 m s$^{-1}$, within the mean measurement uncertainty, and show no significant periodicity.

S364

We collected 20 radial velocity measurements of S364 in about four years with HARPS, HRS, and SOPHIE. The average RV uncertainty is ∼3.0 m s$^{-1}$ for HARPS, ∼7.0 m s$^{-1}$ for SOPHIE and ∼20 m s$^{-1}$ for HRS. Seven additional RV measurements were obtained with CORALIE between 2003 and 2005, with a mean measurement uncertainty of ∼12 m s$^{-1}$. The periodogram of the observed data is shown in fig. 3 (top) and indicates an excess of power at ≈121.7 days. The other clearly visible peak at 182 days is the one-year alias of the planetary signal at P=121.7 days. It disappears in the periodogram of residuals, which no longer shows any signal. We fitted a single-planet Keplerian orbit to this signal (fig. 3 bottom) and found an orbital solution whose parameters are reported in Table 2. The residuals to the fitted orbit show a level of variation of σ = 16.0 m s$^{-1}$, higher than the estimated accuracy, but the periodogram of the residuals does not reveal significant peaks.

4. Discussion and prospects

We have presented new results from our planet-search campaign in the OC M67. Our measurements reveal that Y1194, Y1514, and S364 host planets.

To rule out activity-related rotational modulation as the cause of the RV variations in our object data, we investigated chromospheric activity in these stars by measuring the variations of the core of Hα with respect to the continuum. The low S/N ratio of our observations does not provide sufficient signal in the region of the more sensitive Ca II H and K lines. We followed a method similar to the one described in Pasquini & Pallavicini (1991). All the targets exhibit a very low level of activity: S364 shows a variability in Hα of 2%, YBP1514 and YBP1194 of 3% without significant periodicity. In addition, the M67 stars have a very low level of chromospheric activity (Pace & Pasquini 2004; < F$_{K}$ > ~ 0.5 · 106 erg cm$^{-2}$ s$^{-1}$ for M67 compared with < F$_{K}$ > ~ 2.1 · 106 erg cm$^{-2}$ s$^{-1}$ for the Hyades), which is not compatible with generating the high RV variations we observe. Therefore, rotationally modulated RV variations for the dwarfs in M67 are certainly not a concern. The remote possibility that these stars are short-period binaries seen pole-on can also be excluded, because they are very active, and will show enhanced Hα cores and strong X-ray emission, which has not been observed for these stars (van den Berg et al. 2004). The fact that these stars are of solar age and that our research is focused on finding giant
It is remarkable that Y1194 is one of the best-known solar twins. This star together with Y1514, S364, and the other M67 stars in the Orion Nebula Cluster (ONC), proposed that most mass distribution. Eisner et al. (2008), studying disks around main-sequence stars of the Hyades, or in several transit campaigns (Bramich et al. 2005; Mochejska et al. 2005, 2006; Smolinski, J. P., Lee, Y. S., Beers, T. C., et al. 2011, AJ, 141, 259). The recent results. Indeed, we can list the discovery of two hot-Jupiters in the Praesepe open cluster in 2012 (Quinn et al. 2012) and to a substellar-mass object in NGC2423 (Cumming et al. 2008; Mayor et al. 2011; Wright et al. 2012).

When we examine the current distribution of the Jupiter-mass planets for RV surveys around FGK stars we find an exoplanet host-rate higher than 10% for planets with a period of up to a few years and 1.20±0.38% at solar metallicity, for very close-in hot-Jupiters with a period shorter than ten days (Cumming et al. 2008, Mayor et al. 2011, Wright et al. 2012). This rate around field stars has been in contrast to the lack of detected planets in both open and globular cluster for several years. Before 2012, the detections were limited to a long-period giant planet around one of the Hyades clump giants (Sato et al. 2007) and to a sub-mass-star object in NGC2423 (Lovis & Mayor 2007). No evidence of short-period giant planets has been presented in the study of Paulson et al. (2004) around main-sequence stars of the Hyades, or in several transit campaigns (Bramich et al. 2005, Mochejska et al. 2005, 2006, Pepper et al. 2008, Hartman et al. 2009). These triggered the hypothesis that the frequency of planet-hosting stars in clusters is lower than in the field. To explain the dichotomy between field and cluster stars, it has been suggested that the cluster environment might have a significant impact on the disk mass distribution. Eisner et al. (2008), studying disks around stars in the Orion Nebula Cluster (ONC), proposed that most of these stars do not possess sufficient mass in the disk to form Jupiter-mass planets or to support an eventual inward migration. Other scenarios may be attributed to post-formation dynamics, in particular to the influence of close stellar encounters (Spurzem et al. 2009, Bonnell et al. 2001) or to tidal evolution of the hot-Jupiters (Debes & Jackson 2010) in the dense cluster environment. van Saders & Gaudi (2011), in contrast, found no evidence in support of a fundamental difference in the short-period planet population between clusters and field stars, and attributed the nondetection of planets in transit surveys to the inadequate number of stars surveyed. This seems to be confirmed by the recent results. Indeed, we can list the discovery of two hot-Jupiters in the Praesepe open cluster in 2012 (Quinn et al. 2012) and of two sub-Neptune planets in the cluster NGC6811 as part of The Kepler Cluster Study (Meibom et al. 2013, the new announcement of a hot-Jupiter in the Hyades (Quinn et al. 2013) and now the detection in M67 of three Jupiter-mass planets presented in this work. Quinn et al. (2012) obtained a lower limit on the hot-Jupiter frequency in Praesepe of 3.8±2.0%, which is consistent with that of field stars considering the enriched metallicity of this cluster. Meibom et al. (2013) have found the same properties and frequency of low-mass planets in open clusters as around field stars. In our case, for short-period giant planets we derived a frequency of 2.4±1.7% (errors computed according to Gehrels (1986)); which is slightly higher than the value for field stars. Adding giant planets with long periods, the rate becomes 3.4±1.7%, but this fraction is a lower limit that will increase with the follow-up of some other candidates (see Pasquini et al. 2012), which reveal suggestive signals for additional planetary companions. If these were confirmed, the frequency of giant planets would rise to 13.5±2.5%, in agreement with the rate of giant planets found by Mayor et al. (2011) for field stars.

Acknowledgements. LP acknowledges the Visiting Researcher program of the CNPq Brazilian Agency, at the Fed. Univ. of Rio Grande do Norte, Brazil. RPS thanks the FP7 EMPIR DGDF, the Hobby Eberly Telescope (HET) project, the PNP and PN of INSU - CNRS for allocating the observations. MTR received support from FPBF06 CATA (CONICYT). We are grateful to Gaspare Lo Curto and Michele Cappetta for the support in data reduction analysis and helpful discussions.

References
Baranne, A., Queloz, D., Mayor, M., et al. 1996, A&AS, 119, 373
Bonelli, G. A., Smith, K. W., et al. 2001, MNRAS, 322, 859
Bouchy, F. & Sophie Teixeira 2006, in Twentieth Anniversary of P1 Peg-b, ed. L. Arnold, F. Bouchy, & C. Moutou, 319–325
Bramich, D. M., Horne, D., Bond, I. A., et al. 2005, MNRAS, 359, 1096
Cappretta, M., Rigal, R. P., Burkey, J. L., et al. 2012, MNRAS, 427, 1877
Cumming, A. B., Butler, R. P., Marcy, G. W., et al. 2008, PASP, 120, 531
Debes, J. H. & Jackson, B. 2010, ApJ, 723, 1703
Eisner, J. A., Plambeck, R. L., Carpenter, J. M., et al. 2008, ApJ, 683, 304
Gehrels, N. 1986, ApJ, 303, 336
Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, A&AS, 141, 371
Hartman, J. D., Gaudi, B. S., Holman, M. J., et al. 2009, ApJ, 695, 336
Horne, J. H. & Balunian, S. L. 1986, ApJ, 302, 757
Lee, Y., Sears, T. C., Sivaram, T., et al. 2008, AJ, 136, 2050
Lovis, C. & Mayor, M. 2007, A&A, 472, 657
Mathieu, R. D., Latham, D. W., Griffin, R. F., & Gunn, J. E. 1986, AJ, 92, 1100
Mayor, M., Marmier, M., Lovis, C., et al. 2011, ArXiv e-prints
Mayor, M., Pepe, F., Queloz, D., et al. 2003, The Messenger, 114, 20
Meibom, S., Torres, G., Fressin, F., et al. 2013, Nature, 499, 55
Mermilliod, J.-C. & Mayor, M. 2007, A&A, 472, 917
Mochejska, B. J., Stanek, K. Z., Sasselov, D. D., et al. 2005, AJ, 131, 1090
Mochejska, B. J., Stanek, K. Z., Sasselov, D. D., et al. 2005, AJ, 129, 2856
Montgomery, K. A., Marschall, L. A., & Janes, K. A. 1993, AJ, 106, 181
Onehag, A., Korn, A., Gustafsson, B., et al. 2011, A&A, 528, 885
Pace, G. & Pasquini, L. 2004, A&A, 426, 1021
Perruchot, S., Bouchy, F., et al. 2011, in SPIE Conf. Series, Vol. 8151
Perruchot, S., Bouchy, F. et al. 2011, in SPIE Conf. Series, Vol. 8151
Perruchot, S., Bouchy, F., et al. 2011, in SPIE Conf. Series, Vol. 8151
Petit, A. P., van Belle, G. T., et al. 2010, ApJ, 719, 79
Quinn, S. N., White, R. J., Latham, D. W., et al. 2013, ArXiv e-prints
Randich, S., Bragaglia, A., Pasquini, L., et al. 2005, The Messenger, 121, 18
Randich, S., Sestito, P., Primas, F., et al. 2006, A&A, 450, 557
Sanders, W. L. 1977, A&AS, 27, 89
Santerne, A., Díaz, R. F., Moutou, C., et al. 2012, A&A, 454, A76
Sato, B., Izumiura, H., Toyota, E., et al. 2007, ApJ, 661, 527
Scargle, J. D. 1982, ApJ, 263, 835
Smolinski, J. P., Lee, Y. S., Beers, T. C., et al. 2011, AJ, 141, 89
Spurzem, R., Giersz, M., Heggie, D. C., & Lin, D. N. C. 2009, ApJ, 697, 458
Taylor, B. J. 2007, AJ, 133, 577
Tull, R. G. 1998, in SPIE Conf. Series, ed. S. D’Odorico, Vol. 3355, 387–398
van den Berg, M., Tagliaferri, G., et al. 2004, A&A, 418, 509
van Saders, J. L. & Gaudi, B. S. 2011, ApJ, 729, 63
Wright, J. T. & Howard, A. W. 2009, ApJS, 182, 5
Wright, J. T., Marcy, G. W., Howard, A. W., et al. 2012, ApJ, 753, 160
Wu, Y., Luo, A.-L., Li, H.-N., et al. 2011, RAA, 11, 924
Yadav, R. K. S., Belin, L. R., Poito, G., et al. 2008, A&A, 484, 609
Appendix A: CMD and membership probabilities

In this section we summarize the results presented in Pasquini et al. (2012), focusing in particular on the three stars discussed in the letter. YBP1194, YBP1514, and S364 belong to the M67 sample that includes a total of 88 stars. All targets have V mag. between 9 and 15, and a mass range between 0.9-1.4 M\(_\odot\).

We selected main-sequence stars (included YBP1194 and YBP1514) with a membership probability higher than 60% and a proper motion shorter than 6 mas/yr with respect to the average according to Yadav et al. (2008). For the giants we refer to Sanders (1977). The RV membership was established for the latter following the work of Mermilliod & Mayor (2007), who studied the membership and binarity of 123 red giants in six old open clusters, and of Mathieu et al. (1986), who made a very complete RV survey of the evolved stars of M67 with a precision of a few hundreds of m s\(^{-1}\). The majority of the other stars were selected according to Pasquini et al. (2008), who used several VLT-FLAMES exposures for each star to classify suspected binaries. We found that YBP1194, YBP1514, and S364 are probable RV members with a mean radial velocity within one-sigma from the average cluster RV. For the latter, we adopted the value of \(\langle RV_{M67}\rangle = 33.724\) km s\(^{-1}\) and the dispersion of \(\sigma = \pm 0.646\) km s\(^{-1}\) estimated in Pasquini et al. (2012).

Table A.1 shows proper motions and membership probability for the three stars discussed.

Details about selection criteria and motion errors can be found in the original Yadav et al. (2008) and Sanders (1977) works. In Figure A.1 we report the observed region of the color-magnitude diagram (CMD), indicating in different colors the the position of the stars considered in this letter and the solar analog, as determined in Pasquini et al. (2008). The three stars analyzed in this work lie quite well on the cluster sequence in the CMD. We superimposed the isochrones from Pietrinferni et al. (2004) with solar metallicity and age corresponding to 3.5 Gyr (black curve), 4.0 Gyr (dark-blue curve) and 4.5 Gyr (light-blue curve). We also included the 4.0 Gyr isochrone (red curve) with a slightly lower reddening (E(B-V)=0.02 instead of 0.041 (Taylor 2007)). This curve seems to match the colors of the turnoff better (see also the discussion in Pasquini et al. 2012). In the same figure, we report the Padova isochrone using E(B-V)=0.041\(\pm\)0.004, with solar metallicity, age 4.47 Gyr, and Y=0.26 (Girardi et al. 2000).

Given that the values of stellar parameters have influence on the estimation of the planet masses, we evaluated the effects on the host star masses and radii of using isochrones with different ages and slightly lower reddening. While for the two main-sequence stars YBP1194 and YBP1514 we found no significant incidence, for the giant S364, an age uncertainty of \(\pm 0.5\) Gyr and a lower reddening would induce an error on the star mass of 4% and on its radii of 3%. Therefore, we decided to include this effect in the uncertainties of S364 listed in Table A.1 and in the error of the planet mass.

Table A.1. Object ID, proper motions, and membership probability of the targets; reference.

Object	\(\mu_x \pm \Delta \mu_x\)	\(\mu_y \pm \Delta \mu_y\)	Prob\%	Reference
YBP1194	-0.30\(\pm\)1.01	-0.42\(\pm\)0.65	99	Yadav et al. (2008)
YBP1514	-0.12\(\pm\)1.13	1.73\(\pm\)1.37	98	Yadav et al. (2008)
S364	-0.088	0.164	82	Yadav et al. (2008)

In Figure A.1, we report the observed region of the color-magnitude diagram (CMD), indicating in different colors the the position of the stars considered in this letter and the solar analog, as determined in Pasquini et al. (2008). The three stars analyzed in this work lie quite well on the cluster sequence in the CMD. We superimposed the isochrones from Pietrinferni et al. (2004) with solar metallicity and age corresponding to 3.5 Gyr (black curve), 4.0 Gyr (dark-blue curve) and 4.5 Gyr (light-blue curve). We also included the 4.0 Gyr isochrone (red curve) with a slightly lower reddening (E(B-V)=0.02 instead of 0.041 (Taylor 2007)). This curve seems to match the colors of the turnoff better (see also the discussion in Pasquini et al. 2012). In the same figure, we report the Padova isochrone using E(B-V)=0.041\(\pm\)0.004, with solar metallicity, age 4.47 Gyr, and Y=0.26 (Girardi et al. 2000).

Very high-resolution images of the region in (B-V) color-magnitude diagram (CMD), indicating in different colors the the position of the stars considered in this letter and the solar analog, as determined in Pasquini et al. (2008). The three stars analyzed in this work lie quite well on the cluster sequence in the CMD. We superimposed the isochrones from Pietrinferni et al. (2004) with solar metallicity and age corresponding to 3.5 Gyr (black curve), 4.0 Gyr (dark-blue curve) and 4.5 Gyr (light-blue curve). We also included the 4.0 Gyr isochrone (red curve) with a slightly lower reddening (E(B-V)=0.02 instead of 0.041 (Taylor 2007)). This curve seems to match the colors of the turnoff better (see also the discussion in Pasquini et al. 2012). In the same figure, we report the Padova isochrone using E(B-V)=0.041\(\pm\)0.004, with solar metallicity, age 4.47 Gyr, and Y=0.26 (Girardi et al. 2000).

Given that the values of stellar parameters have influence on the estimation of the planet masses, we evaluated the effects on the host star masses and radii of using isochrones with different ages and slightly lower reddening. While for the two main-sequence stars YBP1194 and YBP1514 we found no significant incidence, for the giant S364, an age uncertainty of \(\pm 0.5\) Gyr and a lower reddening would induce an error on the star mass of 4% and on its radii of 3%. Therefore, we decided to include this effect in the uncertainties of S364 listed in Table A.1 and in the error of the planet mass.
Table A.2. Relative RV measurements, RV uncertainties, bisector span, and ratio of the Hα core with respect to the continuum (see Pasquini & Pallavicini 1991) for YBP1194. All the RV data points are corrected to the zero point of HARPS.

BJD (-2450000)	RV (km s⁻¹)	σRV (km s⁻¹)	BIS span (km s⁻¹)	Hα ratio instrument
4489.51193	-0.000	0.009	-0.021029	0.038294 Sophie
4491.50617	-0.030	0.010	-0.042000	0.038689 Sophie
4856.62544	0.013	0.012	-0.081895	0.038995 Harps
4862.59495	0.031	0.013	-0.099653	0.039465 Harps
5188.83049	0.002	0.010	-0.056037	0.039817 Harps
5189.82037	0.010	0.010	0.022874	0.039387 Harps
5190.79901	0.036	0.009	0.039774	0.038994 Harps
5214.85851	-0.030	0.013	0.008036	0.039872 Harps
5216.70466	-0.000	0.012	0.051777	0.037107 Harps
5594.79168	0.019	0.014	-0.021881	0.039218 Harps
5977.66236	0.037	0.010	-0.028000	0.037126 Harps
5986.51471	-0.034	0.009	-0.057833	0.038907 Sophie
6219.98852	0.049	0.027	-0.025204	0.037364 Het
6243.93406	-0.028	0.028	0.019138	0.036729 Harps
6245.81040	-0.007	0.017	-0.026488	0.041533 Harps
6270.77262	0.009	0.019	-0.053592	0.039405 Harps
6286.00446	-0.066	0.025	-0.042748	0.036126 Harps
6305.17913	0.017	0.014	-0.097277	0.038956 Harps
6316.76841	0.005	0.012	-0.021029	0.039405 Harps
6322.71086	-0.006	0.021	-0.028423	0.038896 Harps
6338.66079	0.034	0.026	-0.095893	0.037364 Het
6378.72343	0.002	0.026	0.024230	0.038289 Het

Table A.3. Relative RV measurements, RV uncertainties, bisector span, and ratio of the Hα core with respect to the continuum (see Pasquini & Pallavicini 1991) for YBP1514. All the RV data points are corrected to the zero point of HARPS.

BJD (-2450000)	RV (km s⁻¹)	σRV (km s⁻¹)	BIS span (km s⁻¹)	Hα ratio instrument
4858.72562	-0.037	0.017	-0.097357	0.040203 Harps
4861.71515	0.008	0.012	0.030042	0.039426 Harps
5214.87795	0.008	0.020	-0.056154	0.037161 Harps
5216.72426	-0.047	0.014	0.015647	0.042089 Harps
5260.70288	0.003	0.013	-0.042552	0.039905 Harps
5269.72337	0.059	0.014	0.035491	0.038077 Harps
5595.74177	-0.029	0.014	0.026610	0.039282 Harps
5626.15072	-0.039	0.014	-0.057171	0.039905 Harps
5948.93035	-0.037	0.013	0.015647	0.040103 Harps
5967.45833	0.008	0.023	-0.084845	0.039356 Harps
5968.59423	-0.031	0.014	-0.020833	0.039036 Harps
5977.68405	0.007	0.012	-0.051313	0.039475 Harps
5986.56139	0.068	0.010	-0.020833	0.039306 Sophie
6036.66109	-0.005	0.025	-0.054711	0.040201 Het
6245.83389	-0.037	0.015	0.025824	0.040109 Harps
6254.90496	-0.036	0.026	-0.035278	0.040001 Het
6270.81399	-0.068	0.019	0.014902	0.039345 Harps
6305.22499	-0.022	0.016	-0.031263	0.037032 Harps
6307.81028	-0.036	0.016	-0.016596	0.039764 Harps
6317.74917	-0.049	0.014	-0.071034	0.038687 Harps
6322.68946	0.016	0.019	-0.084845	0.040020 Harps
6332.68338	-0.021	0.016	-0.012640	0.039854 Harps
6335.68811	0.001	0.025	0.056131	0.041020 Het
6339.68307	0.066	0.025	-0.056937	0.042437 Het
6364.59175	0.007	0.024	0.011085	0.040285 Het
Table A.4. Relative RV measurements, RV uncertainties, bisector span, and ratio of the H\(_{\alpha}\) core with respect to the continuum (see Pasquini & Pallavicini [1991]) for S364. All the RV data points are corrected to the zero point of HARPS.

BJD	RV	\(\sigma_{RV}\)	BIS span	H\(_{\alpha}\) ratio	instrument
(-2450000)	(km s\(^{-1}\))	(km s\(^{-1}\))	(km s\(^{-1}\))		
2647.77191	-0.030	0.010	0.035310	-	Coralie
2682.68790	-0.070	0.010	-0.004670	-	Coralie
2695.70992	-0.077	0.011	0.022800	-	Coralie
3004.82521	0.009	0.012	0.046980	-	Coralie
3020.78490	-0.004	0.021	0.042690	-	Coralie
3046.73656	-0.016	0.010	-0.021670	-	Coralie
3055.71453	-0.039	0.012	0.010630	-	Coralie
4855.58011	-0.037	0.002	0.042682	0.038161	Harps
4860.32500	-0.036	0.008	0.042690	0.038048	Sophie
5216.82809	-0.012	0.002	0.071695	0.038278	Harps
5594.58582	-0.032	0.003	0.071762	0.038105	Harps
5977.55818	-0.071	0.002	0.064832	0.037733	Harps
5985.30291	-0.059	0.007	0.022666	0.038426	Sophie
6236.94284	0.004	0.018	0.050689	0.040027	Het
6245.76368	0.034	0.003	0.059181	0.038501	Harps
6245.86577	0.041	0.002	0.052050	0.038271	Harps
6269.71823	0.046	0.003	0.061007	0.041626	Harps
6270.75931	0.063	0.003	0.059963	0.038616	Harps
6302.68302	-0.006	0.003	0.057069	0.038056	Harps
6305.24544	-0.018	0.002	0.036772	0.037843	Harps
6309.75038	-0.010	0.002	0.056751	0.039626	Harps
6309.75141	-0.042	0.018	0.042921	0.039879	Het
6324.67965	-0.056	0.004	0.045385	0.038311	Harps
6331.69998	-0.051	0.020	0.043008	0.039356	Het
6332.69784	-0.038	0.003	0.045065	0.038067	Harps
6345.65885	-0.072	0.020	0.041555	0.039587	Het
6376.73341	0.072	0.021	0.022076	0.039445	Het