Supplementary material

This appendix is provided by the authors to give additional information about the research.

Ventricular arrhythmia in heart failure patients with reduced ejection fraction and central sleep apnoea

Christoph Fisser¹; Jannis Bureck¹; Lara Gall¹; Victoria Vaas¹; Jörg Priefert¹; Sabine Fredersdorf²; Florian Zeman²; Dominik Linz³,⁴,⁵,⁶; Holger Woehrle⁷; Renaud Tamisier⁸; Helmut Teschler⁹ Martin R Cowie¹⁰; Michael Arzt¹

¹ Department of Internal Medicine II, University Medical Centre Regensburg, Regensburg, Germany
² Center for Clinical Studies, University Hospital Regensburg, Regensburg, Germany
³ Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
⁴ Department of Cardiology, Radboud University Medical Centre, Nijmegen, the Netherlands
⁵ Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
⁶ Centre for Heart Rhythm Disorders, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
⁷ Sleep and Ventilation Center Blaubeuren, Lung Center Ulm, Ulm, Germany
⁸ HP2 Laboratory, INSERM U1042, Grenoble Alpes University, Sleep laboratory, Pole Thorax et Vaisseaux, Grenoble Alps University Hospital, Grenoble, France
⁹ Department of Pneumology, AFPR, Ruhrlandklinik, West German Lung Center, University Medicine Essen, Essen, Germany
Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, United Kingdom

Correspondence: Christoph Fisser, MD, Department of Internal Medicine II, University Medical Centre Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany. Tel: +49 941 944 17284. Fax: +49 941 944 7282. Email: Christoph.Fisser@ukr.de
METHODS

ECG analysis

Analysis of ventricular and atrial arrhythmias in nocturnal 1-lead-ECGs is an established method that has been used in multiple observational [1–5] and interventional studies [6, 7]. Cardiac rhythm was analysed and categorised into atrial, ventricular and pacemaker rhythm. Atrial rhythm was classified as sinus rhythm, atrial flutter, atrial fibrillation or atrial pacemaker stimulation. Ventricular rhythm was classified as regular or pacemaker stimulation [1, 2, 4, 8]. As previously described [1, 2, 4], arrhythmias were scored as ventricular premature or normal sinus beats. Ventricular arrhythmias consisted of singular ventricular premature beats, couplets and non-sustained ventricular tachycardia (NSVT). Ventricular premature beats were defined as previously described [4, 8]. NSVT were defined as ≥4 consecutive ventricular premature beats with an average heart rate of ≥100 beats/minute [4, 8]. Absolute and relative values for arrhythmias based on recording time were recorded. In addition, the total ECG recording time was documented. Premature ventricular complex (PVC) >10,000/24 hours were calculated by dividing the sum of nocturnal PVC by the ECG recording time and extrapolating to 24 hours.

Polysomnography core laboratory analyses

Sleep studies were all scored in a blinded fashion by HP2 Sleep CoreLab, Alpes University, Grenoble, France using standard criteria [9, 10]. Sleep was scored manually by at least two scorers, a third scorer (senior scorer) also evaluated the recording when discrepancies were present between scorers. Recordings were randomly selected and double-checked for scoring quality by senior scorers. For quality control, all data were entered twice, and indexes were recalculated after data entry into the database and checked with PSG reports for consistency.
Senior scorers had >20 years’ training in sleep study scoring and central reading, and have worked with international sleep centres to assess scoring agreement between centres [11]. An apnoea was defined as a complete cessation of airflow for at least 10 seconds and a hypopnoea as a reduction of at least 50% in the nasal pressure signal or a decrease of 30–50% associated with either oxygen desaturation of at least 3% or an EEG arousal defined according to the latest AASM recommendation [9], both lasting for at least 10 seconds. Apnoeas were classified as obstructive or central according to the presence or absence of respiratory efforts and the shape of the respiratory curve of nasal pressure (flow limited aspect or not). In particular, attention was focused on hypopnoeas, which were classified as obstructive or central according to the presence or absence of respiratory efforts and the shape of the respiratory curve of nasal pressure (flow limited aspect or not) and according to the further criteria of Randerath et al. (paradoxical breathing, termination, arousal, sleep stages) [12]. The apnoea-hypopnoea index (AHI) was calculated and defined as the number of apnoeas and hypopnoeas per hour of sleep. The percentage of central events was calculated and defined as the ratio between central events (apnoea and hypopnoea) and all events (apnoea and hypopnoea).

Subset analysis: occurrence of PVC/h in phases with CSR in sleep stage n2

The occurrence of PVC/h in sleep stage N2 was compared between episodes with and without CSR. Sleep stage N2 was chosen because it was the most common sleep stage in the current cohort (Table S2) and according to literature [13, 14]. Inclusion criteria according to previous literature [13, 14] were sinus rhythm and PVC >30/h of total recording time. Exclusion criteria were cardiac pacemaker rhythm, atrial fibrillation, missing sleep stages, no CSR or PVC in sleep stage N2, and no ECG recognition by automated ECG software (Custo Med, Ottobrunn, Germany; Figure S1).
ECG scoring: quality assurance and inter-observer variability

To control inter-observer variability, the four trained investigators (LG, JB, CF, MA) applied standardised quality criteria to identify difficult-to-interpret ECGs (Table S1). If no consensus was achieved, an experienced electrophysiologist-cardiologist (SF) was consulted for final arrhythmic event determination. All investigators were blinded with respect to clinical data and intervention.

To assess interobserver variability, 20 consecutive ECGs were independently examined by the two investigators (LG, JB), who scored the arrhythmias. The intraclass correlation coefficient (ICC) for a random sample of 20 sleep studies was 0.90 (0.75–0.96; p<0.001) for PVC, which is comparable with previous important analyses of nocturnal ECGs in cohorts with PSG [1–3].
Figure S1. Flow chart for the cross-sectional ancillary analysis of participants from the SERVE-HF major sub-study and for the temporal association between Cheyne-Stokes respiration (CSR) and ventricular arrhythmias in sleep stage N2.

AF, atrial fibrillation; ECG, electrocardiogram; PVC, premature ventricular complex.
Table S1. Quality criteria for ECG analysis

Quality	Definition	Problems	Solutions
0	No questionable cardiac events	No cardiac arrhythmic events with uncertain classification	--
1	Lots of artefacts, technical interference	Hard to classify cardiac events	Discuss questionable events in expert round, if necessary, classify ECG as not evaluable
2	Cardiac rhythm unclear	Hard to classify main cardiac rhythm	Discuss cardiac events in expert round
3	Hard to discriminate premature atrial complex (PAC) and premature ventricular complex (PVC)	PAC and PVC show untypical patterns	Discuss cardiac events in expert round
4	No consensus in expert round	Expert round was not able to analyse/classify all events with certainty	Discuss with external expert electrophysiologist/cardiologist
Table S2. Respiratory characteristics

	Total (n=239)	PVC ≤30/h (n=134)^a	PVC >30/h (n=105)^b	p-value
AHI [events/h TST]	39±15	40±16	38±12	0.180
Apnea Index [events/h TST]	23±18	23±19	23±16	0.780
Central AHI of total AHI [%]	78±16	78±17	79±16	0.855
Oxygen desaturation index [events/h TST]	34±19	35±20	33±18	0.372
Oxygen saturation [%]				
Mean	92.9±2.3	92.8±2.4	92.9±2.1	0.833
Minimum	80.6±7.2	80.9±6.6	80.2±7.8	0.372
Time with oxygen saturation <90%, TST [%]	18.6±27.7	20.9±32.6	15.7±19.4	0.131
Amount of CSR, n (%)				0.010
<20% of TRT	78 (33%)	53 (40%)	25 (24%)	
≥20% of TRT	161 (67%)	81 (60%)	80 (76%)	
Epworth Sleepiness Scale score†	7.0±4.6	7.3±4.8	6.7±4.2	0.323
Sleep stages TST [%]				
N1	28.7±19.8	29.6±20.5	27.4±19.0	0.415
N2	50.7±18.7	49.3±18.4	52.6±19.0	0.179
SWS	5.5±8.9	6.1±9.1	4.8±8.6	0.262
Rapid eye movement	15.1±8.0	15.1±8.1	15.2±8.0	0.892
TST [min]	296.2±81.4	301.3±81.1	289.8±81.7	0.284
Sleep efficiency [%]	67.2±21.8	67.4±17.7	67.0±27.0	0.895

Values are mean ± standard deviation, median (interquartile range) or number of patients (%). AHI, apnoea-hypopnoea index; CSR, Cheyne-Stokes respiration; ODI, oxygen desaturation index (3%); PVC, premature ventricular complex; REM, rapid eye movement; TRT, total recording time; TST, total sleep time; SWS, slow wave sleep.

†Scores on the Epworth Sleepiness Scale range from 0 to 24, with higher scores indicating more daytime sleepiness.

^aData available for 132/134 patients with PVC ≤30/h.

^bData available for 104/105 patients with PVC >30/h.
Table S3. Baseline characteristics for patients included in the subset analysis

	Patients (n=19)
Age, years	66.4±9.9
Male, n (%)	19 (100%)
Body mass index, kg/m²	28.5±4.4
Diabetes mellitus, n (%)	8 (42%)
NYHA class, n (%)	
I or II	8 (42%)
III	11 (58%)
IV	0 (0%)
BNP, pg/mL²	1718.5±1861.2
Six-minute walk distance, m	366.4±126.0
LVEF*, %	31.6±7.5
Heart failure aetiology, n (%)	
Ischaemic	12 (63%)
Other	7 (37%)
Blood pressure, mmHg	
Systolic	118.4±18.4
Diastolic	70.1±11.3
Implanted device, n (%)	
None	7 (37%)
Non-CRT pacemaker	0 (0%)
ICD	9 (47%)
CRT-P	0 (0%)
CRT-D	3 (16%)
Rhythm, n (%)	
Sinus rhythm	19 (100%)
Atrial fibrillation	0 (0%)
Other	0 (0%)
Diurnal heart rate, beats/min	67.0±13.2
Diurnal QRS duration, ms	123.8±26.8
Diurnal QRS >120 ms, n (%)	9 (47%)
Bundle branch block, n (%)	
Right	1 (5%)
Left	5 (26%)
Other	2 (11%)
Cardiac medication, n (%)
ACEI or ARB 17 (90%)
β-blocker 18 (95%)
Aldosterone antagonist 12 (63%)
Diuretic 17 (90%)
Cardiac glycoside 0 (0%)
Anti-arrhythmics 1 (5%)
Creatinine†, mg/dLb 1.3±0.4
eGFR, mL/min/1.73m2b 60.8±18.7
Hemoglobin, mg/dLb 14.7±1.3

Values are mean ± standard deviation, or number of patients (%).

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BNP, brain natriuretic peptide; CRT, cardiac resynchronisation therapy; CRT-D, CRT with defibrillator; CRT-P, CRT with pacemaker; eGFR, estimated glomerular filtration rate; ICD, implantable cardioverter-defibrillator; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association.

*Locally measured data, up to ≤3 months prior to the trial.
†Locally measured data after enrolment in the trial.
aData available for 14/19 patients.
bData available for 17/19 patients.
References

1 Monahan K, Storfer-Isser A, Mehra R, Shahar E, Mittleman M, Rottman J, Punjabi N, Sanders M, Quan SF, Resnick H, Redline S. Triggering of nocturnal arrhythmias by sleep-disordered breathing events. J Am Coll Cardiol 2009; 54: 1797–1804.

2 Mehra R, Stone KL, Varosy PD, Hoffman AR, Marcus GM, Blackwell T, Ibrahim OA, Salem R, Redline S. Nocturnal Arrhythmias across a spectrum of obstructive and central sleep-disordered breathing in older men, Outcomes of sleep disorders in older men (MrOS sleep) study. Arch Int Med 2009; 169: 1147–1155.

3 Mehra R, Benjamin EJ, Shahar E, Gottlieb DJ, Nawabit R, Kirchner HL, Sahadevan J, Redline S. Association of nocturnal arrhythmias with sleep-disordered breathing, The Sleep Heart Health Study. Am J Respir Crit Care Med 2006; 173: 910–916.

4 Priefert H-J, Hetzenecker A, Escourrou P, Luigart R, Series F, Lewis K, Benjamin A, Birner C, Pfeifer M, Arzt M. Effects of adaptive servo-ventilation on ventricular arrhythmias in patients with stable congestive heart failure and sleep-disordered breathing. Somnologie 2017; 21: 19–27.

5 Fisser C, Marcinek A, Hetzenecker A, Debl K, Luchner A, Sterz U, Priefert J, Zeman F, Kohler M, Maier LS, Buchner S, Arzt M. Association of sleep-disordered breathing and disturbed cardiac repolarization in patients with ST-segment elevation myocardial infarction. Sleep Med 2017; 33: 61–67.

6 Ryan CM, Usui K, Floras JS, Bradley TD. Effect of continuous positive airway pressure on ventricular ectopy in heart failure patients with obstructive sleep apnoea. Thorax 2005; 60: 781–785.

7 Javaheri S. Effects of continuous positive airway pressure on sleep apnea and ventricular irritability in patients with heart failure. Circulation 2000; 101: 392–397.
8 O'Keefe JH, Hammill SC, Freed MS. Complete guide to ECGs: A comprehensive study guide to improve ECG interpretation skills (4th edition). Jones & Bartlett, 2017. ISBN: 9781284066340.

9 Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson WSL, Tangredi MM. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med 2012; 8: 597–619.

10 EEG arousals: scoring rules and examples: a preliminary report from the Sleep Disorders Atlas Task Force of the American Sleep Disorders Association. Sleep 1992; 15: 173–184.

11 Magalang UJ, Chen N-H, Cistulli PA, Fedson AC, Gíslason T, Hillman D, Penzel T, Tamisier R, Tufik S, Phillips G, Pack AI. Agreement in the scoring of respiratory events and sleep among international sleep centers. Sleep 2013; 36: 591–596.

12 Randerath WJ, Treml M, Priegnitz C, Stieglitz S, Hagmeyer L, Morgenstern C. Evaluation of a noninvasive algorithm for differentiation of obstructive and central hypopneas. Sleep 2013; 36: 363–368.

13 Ryan CM, Juvet S, Leung R, Bradley TD. Timing of nocturnal ventricular ectopy in heart failure patients with sleep apnea. Chest 2008; 133: 934–940.

14 Leung RST, Diep TM, Bowman ME, Lorenzi-Filho G, Bradley TD. Provocation of ventricular ectopy by Cheyne-Stokes respiration in patients with heart failure. Sleep 2004; 27: 1337–1343.