Relationship Between Serum C-reactive protein Levels and Apolipoprotein E Gene Polymorphism: A Meta-Analysis

Lei Wang (✉ 15105233517@163.com)
Xuyi People's Hospital https://orcid.org/0000-0003-2880-2374

Xiaoyin He
Xuyi People's Hospital

Yuanyuan He
Xuyi People's Hospital

Lihua Zhang
Xuyi People's Hospital

Runkun Wang
Xuyi People's Hospital

Shaokui Shi
Xuyi People's Hospital

Research

Keywords: serum CRP, apolipoprotein E, gene polymorphism, meta-analysis

DOI: https://doi.org/10.21203/rs.3.rs-164103/v1

License: © Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background and Aim: Apolipoprotein E refers to a polymorphic protein involved in lipoprotein transport and metabolism. However, the relationship between Apo E gene polymorphism and serum CRP levels remains unclear. The present meta-analysis aimed to comprehensively assess the relationships between Apo E gene polymorphism and serum CRP levels.

Method: Comprehensive search of all relevant documents published in PubMed, EMBASE, Web of science, Cochrane Library before April 2020. Calculate the standard deviation of mean (SMD) and 95% confidence interval (CI) with a random effects model. Compare serum CRP levels between different Apo E genotypes and isoforms. Use funnel plots to assess publication bias of studies involved.

Results: On the whole, 9 studies including 173 different Apo E genotypes comparisons were involved in the present meta-analysis. Overall, the serum CRP level of the apo E ε3ε4 and ε4ε4 genotypes exhibit lower CRP levels as compared with ε3ε3 (OR= -0.21, 95% CI: -0.25, -0.16, P<0.00001; OR= -0.32, 95% CI: -0.39, -0.25, P<0.00001); Apo E ε2ε2 and ε2ε4 display higher CRP levels as compared with ε4ε4 (OR= 0.38, 95% CI: 0.16, 0.60, P=0.0006; OR= 0.38, 95% CI: 0.27, 0.49, P<0.00001). Moreover, Apo E E4 isoforms achieve lower CRP levels than E2 and E3 (OR= 0.22, 95% CI: 0.17, 0.26, P<0.00001; OR= 0.22, 95% CI: 0.15, 0.29, P<0.00001).

Conclusions: As revealed from the present meta-analysis, serum CRP levels are different between different Apo E gene polymorphism, and Apo E genotypes with a higher risk of atherosclerosis exhibit lower serum CRP levels.

Introduction

Atherosclerosis (AS) refers to a common and serious disease, and the main pathological basis of ischemic cardio-cerebrovascular disease (e.g., coronary heart disease, cerebrovascular disease and thromboembolic disease). As early as 1986, Professor Ross of the University of Washington School of Medicine first proposed AS to be an inflammatory disease as well as an excessive defense response to injury. Though the inflammatory mechanism of atherosclerotic thrombosis is unclear, whereas nowadays increasing studies [1–3] have reported that the inflammation response may critically impacts the formation of atherosclerosis, and several biomarkers of inflammation have become tools to predict future cardiovascular adverse events.

C-reactive protein (CRP) refers to a phylogenetically highly conserved plasma protein, which has been long considered an exquisitely sensitive systemic marker of inflammation and tissue damage. As indicated from extensive research, CRP could participate in the systemic response to inflammation [4] and has a wide range of promoting arteriosclerosis [5], capable of assessing the risk of atherosclerotic diseases (e.g., myocardial infarction, stroke and peripheral artery disease) [6, 7].

Apolipoprotein E (Apo E) refers to one of the major plasma polymorphic lipoproteins participate in lipoprotein synthesis, secretion, processing and metabolism. The synthesis of apo E is regulated by three alleles located at one locus, i.e., ε2, ε3 and ε4, with each allele corresponding to a major isomer produces three homozygotes (ε2ε2, ε3ε3 and ε4ε4) and three heterozygotes (ε2ε3, ε2ε4 and ε3ε4), a total of six common phenotypes, and lead to three isoforms, E2, E3 and E4. Apo E genotype displays a linear relationship to the risk of coronary heart disease and other diseases [8]. Moreover, several studies [9, 10] reported that the presence of apo E can affect the expression of inflammatory molecules.

A question is raised that whether CRP id causally related to apo E gene polymorphism, or it is CRP merely a marker of potential atherosclerosis. The biological mechanism between apo E genotype and atherosclerosis remains unclear. Given this, clarifying the relationship between apo E and CRP may help gain insights into the relationship between apo E and atherosclerosis.

Methods
Search strategy

The authors of this study searched all relevant studies assessing the association of apo E polymorphism and CRP in PubMed, EMBASE, Web of science, Cochrane Library by two independent investigators. All included studies were published before the end of April 2020. A combination of subject words and free words was adopted to determine the search strategy, the key terms used for searching included (“Apolipoproteins E” OR “Apo E” OR “Apolipoprotein E Isoproteins”) AND (“Polymorphism, Genetic” OR “Genetic Polymorphisms”) AND (“C-Reactive Protein” OR “Protein, C-Reactive”).

Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) Study related to apo E and CRP; (2) Case–control or cohort study; (3) With specific information presented on apo E genotype; (4) Provide the data of CRP; and (5) Studies with full-text. Specific to the exclusion criteria: (1) Review, case reports, animal studies, abstracts and repeated literature; (2) No specific apo E genotype information provided; (3) No CRP data provided.

Data Extraction and Quality Assessment

Two independent researchers (Wang and He) extracted the following data from each selected study, including first author, year of publication, country of region, apo E genotype distribution and genotype number, level of CRP. Disagreements are resolved by discussion and consensus.

The study involved in the evaluation was recommended with the evaluation items recommended by Agency for Healthcare Research and Quality (AHRQ). The evaluation criteria included 11 items, which were answered with "Yes", "No" and "Unclear". If the answer is "No" or "Unclear", then the item score is 0; if the answer is "Yes", the item score is 1. Quality evaluation: low quality = 0–3; medium quality = 4–7; high quality = 8–11.

Statistical Analysis

The relationships between apo E gene polymorphism and CRP was assessed by standard mean difference (SMD) and 95% confidence interval (CI). A P value of less than 0.05 was considered to exhibit significance. I² was adopted to test the heterogeneity among studies. The pooled statistic was counted with the random effect model. Moreover, Funnel plots were exploited to assess the publication bias by performing Begg test and Egger test. Furthermore, all statistical analyses were conducted by using Cochrane Review Manager (Rev Man, Version 5).

Results

Study characteristics

Figure 1 indicates that a total of 340 studies were initially retrieved, and 331 studies were excluded. Nine studies were involved into the present meta-analysis for the relationship between the level of CRP and apo E gene polymorphism. Five studies (including 12 comparisons) were recruited in $\varepsilon_2\varepsilon_2$ versus $\varepsilon_3\varepsilon_3$ comparison. Seven studies (covering 18 comparisons) recruited in $\varepsilon_3\varepsilon_3$ versus $\varepsilon_4\varepsilon_4$ comparison. Seven studies (including 18 comparisons) were employed in $\varepsilon_3\varepsilon_4$ versus $\varepsilon_3\varepsilon_3$ comparison. Nine [11–19] studies (with 20 comparisons involved) were recruited in E2 versus E3, E4 versus E3 and E2 versus E4 comparisons.

Quantitative synthesis
The Genotype analysis showed that apo E ε3ε4 and ε4ε4 genotypes exhibit lower CRP levels as compared with ε3ε3 genotypes (SMD = -0.21, 95% CI: -0.25, -0.16, P < 0.00001; SMD = -0.32, 95% CI: -0.39, -0.25, P < 0.00001), (Fig. 2C and D; Table 2). Apo E ε2ε4 genotype also exhibit lower CRP levels as compared with ε3ε3 genotypes, though there was no statistical difference (SMD = -0.03, 95% CI: -0.13, 0.06, P = -0.50), (Fig. 2B; Table 2). Meanwhile apo E ε2ε2 and ε2ε4 genotypes display higher CRP levels as compared with ε4ε4 genotypes (SMD = 0.38, 95% CI: 0.16, 0.60, P = 0.0006; SMD = 0.38, 95% CI: 0.27, 0.49, P < 0.00001), (Fig. 2E and F; Table 2). It seemed that apo E ε4 allele has lower CRP levels as compared with other genotypes.

Table 1
Characteristics of included studies

Study	Year	Country	Apo E Genotype	Apo E Isoforms	Quality Score	
Martiskainen et al	2018	Finland	-	3008 98 1474 219 416 3608 1966	7	
Martiskainen et al	2017	Czech	- 10 63	-	10 63 21 4	4
Martiskainen et al	2016	Taiwan	-	-	81 339 96 7	7
Wu et al	2015	South Korea	80 1980 13592 221 2879 173	2060 13813 3052	8	
Yun et al	2011	Germany	52 789 3835 135 1268 93 976 3835 136	7		
Grammer et al	2010	Australia	7 141 805 33 267 25 148 838 292	7		
Golledge et al	2010	Czech	42 708 4126 122 1155 77 750 4248 1232	6		
Judson et al	2004	USA	6 82 900 34 488 59 88 934 547	7		
Table 2
Meta-analysis of relationship between the level of CRP and apolipoprotein E gene polymorphism

Genotype comparison	Comparisons	p-value	SMD	95% CI	Model
ε2ε2 versus ε3ε3	12	0.91	-0.01	-0.15, 0.13	Random
ε2ε3 versus ε3ε3	17	0.91	-0.00	-0.04, 0.04	Random
ε2ε4 versus ε3ε3	18	0.50	-0.03	-0.13, 0.06	Random
ε2ε2 versus ε4ε4	12	0.0006	0.38	0.16, 0.60	Random
ε2ε4 versus ε4ε4	18	<0.00001	0.38	0.27, 0.49	Random
ε3ε4 versus ε3ε3	18	<0.00001	-0.21	-0.25, -0.16	Random
ε4ε4 versus ε3ε3	18	<0.00001	-0.32	-0.39, -0.16	Random
E2 versus E3	20	0.78	-0.01	-0.04, 0.03	Random
E3 versus E4	20	<0.00001	0.22	0.17, 0.26	Random
E2 versus E4	20	<0.00001	0.22	0.15, 0.29	Random

Abbreviations: SMD, standard deviation of mean; CI, confidence interval.

As also revealed from the analysis results, apo E E4 isoforms achieve lower CRP levels than E2 and E3 isoforms (SMD = 0.22, 95% CI: 0.17, 0.26, P < 0.00001; SMD = 0.22, 95% CI: 0.15, 0.29, P < 0.00001), (Fig. 3B and C; Table 2). No significant difference is identified in CRP level between Apo E E2 subtype and E3 subtype (SMD= -0.01, 95% CI: -0.04, 0.03), (Fig. 3A; Table 2). This further verifies that the CRP level of apo E ε4 allele is lower than that of other genotypes.

Discussion

Atherosclerosis refers to a spontaneous vascular embolism disease, highly correlated with the levels of plasma cholesterol and low-density lipoprotein cholesterol (LDL-C). It acts as the main cause of coronary heart disease, cerebral infarction, peripheral vascular disease and other diseases. Over the past few years, numerous studies [20] reported that apo E gene polymorphism is associated with atherosclerotic disease, Bennet et al.[8] suggested a linear relationship between apolipoprotein genotype and LDL-C level and coronary heart disease risk. Apolipoprotein E is recognized as a polymorphic protein, critically regulating the stable state of human cholesterol by regulating the intake of chylomicrons, significantly low density lipoproteins, medium density lipoproteins and several high density lipoproteins [21, 22]. The apo E gene has 3 alleles, i.e., ε2, ε3 and ε4, constituting a total of 6 different genotypes, including 3 homozygous types (ε2ε2, ε3ε3 and ε4ε4) and 3 heterozygous types (ε2ε4, ε3ε4 and ε2ε3). A compared with the ε3ε3 genotype, the most common genotype, the risk of coronary heart disease carrying the ε4 allele is higher, while the ε2 allele exhibits the neutral risk [23]. Over the past few years, the inflammatory response is considered a vital factor in the development of atherosclerosis, stimulating the formation of atherosclerosis, reducing the stability of damaged atherosclerotic plaques, and forming occlusive thrombi[24]. Alan R. Tall et al.[25] considered that hypercholesterolemia leads to the accumulation of cholesterol in macrophages, thereby promoting inflammation.

CRP, a marker of inflammation, has been shown in multiple prospective studies to have a risk prediction effect on atherosclerotic diseases (e.g., myocardial infarction, stroke, peripheral arterial disease)[7]. Treatment with statins therapy can effectively down-regulate LDL-C and CRP levels, thereby reducing cardiovascular events and mortality [26]. It is an
independent predictor of future cardiovascular events, though the causal relationship between serum CRP levels and atherosclerotic disease remains unclear. Apo E as a lipid transport protein has been suggested to be related to immune regulation and inflammation of the disease as well [27–29]. A question is raised that whether, there are any connections between them.

In comparison with other genotypes, apo E ε4 allele carriers have relatively high levels of TC, triglycerides, and LDL [30], and the risk of CHD in apo E E4 isoform is also higher than others [31]. Interestingly, in the present meta-analysis, we found that the apo E ε4 allele, as a high-risk genotype of atherosclerotic disease, has lower CRP levels than other carriers. Among the three isoforms of apo E, the CRP level of E4 is lower than that of the other two as well. As a high-risk factor for atherosclerotic disease, CRP is not positively correlated with apo E E4 genotype as expected. It is generally known that cholesterol is synthesized via the mevalonate pathway [32], and statins have been suggested to down-regulate CRP expression in liver cells by inhibiting the mevalonate pathway [33]. Chasman et al. [34] reported that the trend for plasma levels of apo E protein with apo E allele was more similar to that for CRP. Carriers of the apo E ε4 allele are capable of absorbing cholesterol more efficiently than those of other genotypes [35], so their cholesterol biosynthesis is hindered. Accordingly, this study speculates that in carriers of the apo E ε4 allele, CRP levels are lowered by inhibiting mevalonate pathway, suggesting that the mechanism of apo E genotype and CRP on atherosclerotic disease are different and independent. In other words, apo E gene polymorphism shows that association with plasma CRP levels, whereas no causal relationship is identified. Since apo E and CRP are both produced by the liver, the expression of the mentioned proteins may be derived from the regulation of similar factors, whereas there is currently no evidence to prove this.

Though CRP is an independent risk factor for atherosclerosis, numerous studies [36, 37] have doubted the predictive effect of CRP on atherosclerosis. There is no causal relationship between them, and it is not conclusively evidenced that lowering CRP levels can prevent atherosclerosis. CRP is of low negative predictive value and cannot be employed to exclude diseases for its sensitivity difference. Though CRP is still recommended as a routine test for patients with atherosclerosis [38], its effect in guiding treatment remains controversial. Moreover, this study considers that the predicting effect of the apo E E4 genotype on the risk of atherosclerosis may be masked by low CRP levels, and adopting CRP as a biomarker to assess the risk of atherosclerosis may underestimate the risk of carriers of ε4 alleles.

Conclusions

In brief, the results here demonstrate that serum CRP levels are different between different apo E gene polymorphism, apo E genotypes with a higher risk of atherosclerosis exhibit lower serum CRP levels, whereas the prediction of atherosclerosis risk by CRP for people with different apo E genotypes require in-depth studies.

Declarations

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Competing interests

All authors declare that they have no conflicts of interest.
Funding
Not applicable.

Authors' contribution
Lei Wang and Xiaoyin He conceived and designed the review. Lei Wang and Yuanyuan He performed Literature search and data collection. Rnkun Wang completed statistical analysis. Lihua Zhang was a major contributor in writing the manuscript. Shaokui Shi was responsible for critical revision of the manuscript for important intellectual content. All authors read and approved the final manuscript.

Acknowledgements
Not applicable.

Competing interests
All authors declare that they have no conflicts of interest.

References
1. Hansson GK: **Mechanisms of disease - Inflammation, atherosclerosis, and coronary artery disease.** *New England Journal of Medicine* 2005, 352(16):1685-1695.

2. Frangogiannis NG: **Regulation of the Inflammatory Response in Cardiac Repair.** *Circulation Research* 2012, 110(1):159-173.

3. Frangogiannis NG: **The inflammatory response in myocardial injury, repair, and remodelling.** *Nature Reviews Cardiology* 2014, 11(5):255-265.

4. Pepys MB, Hirschfield GM: **C-reactive protein: a critical update.** *Journal of Clinical Investigation* 2003, 111(12):1805-1812.

5. Bisoendial RJ, Boekholdt SM, Vergeer M, Stroes ES, Kastelein JJ: **C-reactive protein is a mediator of cardiovascular disease.** *Eur Heart J* 2010, 31(17):2087-2091.

6. Kaptoge S, Seshasai SR, Gao P, Freitag DF, Butterworth AS, Borglykke A, Di Angelantonio E, Gudnason V, Rumley A, Lowe GD et al: **Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis.** *Eur Heart J* 2014, 35(9):578-589.

7. Kaptoge S, Di Angelantonio E, Lowe G, Pepys MB, Thompson SG, Collins R, Danesh J, Tipping RW, Ford CE, Pressel SL et al: **C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis.** *Lancet* 2010, 375(9709):132-140.

8. Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A, Keavney B, Collins R, Wiman B, de Faire U et al: **Association of apolipoprotein E genotypes with lipid levels and coronary risk.** *Jama-Journal of the American Medical Association* 2007, 298(11):1300-1311.

9. Gaudreault N, Kumar N, Posada JM, Stephens KB, Reyes de Mochel NS, Eberlé D, Olivas VR, Kim RY, Harms MJ, Johnson S et al: **ApoE suppresses atherosclerosis by reducing lipid accumulation in circulating monocytes and the expression of inflammatory molecules on monocytes and vascular endothelium.** *Arteriosclerosis, thrombosis, and vascular biology* 2012, 32(2):264-272.
10. Li K, Ching D, Luk FS, Raffai RL: Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-κB-driven inflammation and atherosclerosis. Circ Res 2015, 117(1):e1-e11.
11. Golledge J, Biros E, Cooper M, Warrington N, Palmer LJ, Norman PE: Apolipoprotein E genotype is associated with serum C-reactive protein but not abdominal aortic aneurysm. Atherosclerosis 2010, 209(2):487-491.
12. Grammer TB, Hoffmann MM, Renner W, Kleber ME, Winkelmann BR, Bohm BO, Marz W: Apolipoprotein E genotypes, circulating C-reactive protein and angiographic coronary artery disease: The Ludwigshafen Risk and Cardiovascular Health Study. Atherosclerosis 2011, 215(2):487-493.
13. Grönroos P, Raitakari OT, Kähönen M, Hutri-Kähönen N, Marniemi J, Viikari J, Lehtimäki T: Association of high sensitive C-reactive protein with apolipoprotein E polymorphism in children and young adults: the Cardiovascular Risk in Young Finns Study. Clinical chemistry and laboratory medicine: CCLM / FESCC 2008, 46(2):179-186.
14. Hubacek JA, Peasey A, Pikhart H, Stavek P, Kubinova R, Marmot M, Bobak M: APOE polymorphism and its effect on plasma C-reactive protein levels in a large general population sample. Human Immunology 2010, 71(3):304-308.
15. Judson R, Brain C, Dain B, Windemuth A, Ruaño G, Reed C: New and confirmatory evidence of an association between APOE genotype and baseline C-reactive protein in dyslipidemic individuals. Atherosclerosis 2004, 177(2):345-351.
16. Martiskainen H, Takalo M, Solomon A, Stančáková A, Marttinen M, Natunen T, Haapasalo A, Herukka SK, Kuusisto J, Soininen H et al. Decreased plasma C-reactive protein levels in APOE ε4 allele carriers. Annals of Clinical and Translational Neurology 2018, 5(10):1229-1240.
17. Pleva L, Kusnierova P, Plevova P, Hilscherova S, Karpisek M, Zapletalova J, Faldynova L, Kovalova P, Kukla P: The APOE 2 allele is associated with increased plasma apolipoprotein E levels in patients with coronary artery disease. Cor et Vasa 2017, 59(3):e235-e239.
18. Wu S, Hsu LA, Teng MS, Lin JF, Chou HH, Lee MC, Wu YM, Su CW, Ko YL: Interactive effects of C-reactive protein levels on the association between APOE variants and triglyceride levels in a Taiwanese population. Lipids in Health and Disease 2016, 15(1).
19. Yun YW, Kweon SS, Choi JS, Rhee JA, Lee YH, Nam HS, Jeong SK, Park KS, Ryu SY, Choi SW et al. APOE Polymorphism Is Associated with C-reactive Protein Levels but Not with White Blood Cell Count: Dong-gu Study and Namwon Study. Journal of Korean medical science 2015, 30(7):860-865.
20. Marais AD: Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 2019, 51(2):165-176.
21. Mahley RW: Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science (New York, NY) 1988, 240(4852):622-630.
22. Mahley RW: Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. Journal of Molecular Medicine-Jmm 2016, 94(7):739-746.
23. Song Y, Stampfer MJ, Liu S: Meta-analysis: apolipoprotein E genotypes and risk for coronary heart disease. Ann Intern Med 2004, 141(2):137-147.
24. Koenig W: High-sensitivity C-reactive protein and atherosclerotic disease: From improved risk prediction to risk-guided therapy. International Journal of Cardiology 2013, 168(6):5126-5134.
25. Tall AR, Yvan-Charvet L: Cholesterol, inflammation and innate immunity. Nature Reviews Immunology 2015, 15(2):104-116.
26. Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG et al. Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. New England Journal of Medicine 2008, 359(21):2195-2207.
27. Baitsch D, Bock HH, Engel T, Telgmann R, Müller-Tidow C, Varga G, Bot M, Herz J, Robenek H, von Eckardstein A et al. Apolipoprotein E induces antiinflammatory phenotype in macrophages. Arteriosclerosis, thrombosis, and vascular biology 2011, 31(5):1160-1168.
28. Zhang H, Wu LM, Wu J: Cross-talk between apolipoprotein E and cytokines. Mediators Inflamm 2011, 2011:949072.
29. Jofre-Monseny L, Minihane AM, Rimbach G: Impact of apoE genotype on oxidative stress, inflammation and disease risk. Molecular Nutrition and Food Research 2008, 52(1):131-145.
30. Wang CW, Yan WL, Wang H, Zhu JK, Chen H: APOE polymorphism is associated with blood lipid and serum uric acid metabolism in hypertension or coronary heart disease in a Chinese population. Pharmacogenomics 2019, 20(14):1021-1031.
31. Yang Z, Zhu T, Ma G, Yin H, Qian W, Zhang F, Cao K, Ma W: Apolipoprotein E polymorphism in the early onset of coronary heart disease. Chin Med J (Engl) 2001, 114(9):983-985.
32. Espenshade PJ, Hughes AL: Regulation of sterol synthesis in eukaryotes. Annual review of genetics 2007, 41:401-427.
33. Liang YJ, Shyu KG, Wang BW, Lai LP: Simvastatin inhibits C-reactive protein-induced pro-inflammatory changes in endothelial cells by decreasing mevalonate pathway products. Cardiology 2008, 110(3):182-190.
34. Chasman DI, Kozlowski P, Zee RY, Kwiatkowski DJ, Ridker PM: Qualitative and quantitative effects of APOE genetic variation on plasma C-reactive protein, LDL-cholesterol, and apoE protein. Genes Immun 2006, 7(3):211-219.
35. Phillips MC: Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB life 2014, 66(9):616-623.
36. Blankstein R, Budoff MJ, Shaw LJ, Goff DC, Jr., Polak JF, Lima J, Blumenthal RS, Nasir K: Predictors of coronary heart disease events among asymptomatic persons with low low-density lipoprotein cholesterol MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2011, 58(4):364-374.
37. Waheed S, Pollack S, Roth M, Reichek N, Guerci A, Cao JJ: Collective impact of conventional cardiovascular risk factors and coronary calcium score on clinical outcomes with or without statin therapy: The St Francis Heart Study. Atherosclerosis 2016, 255:193-199.
38. Yousuf O, Mohanty BD, Martin SS, Joshi PH, Blaha MJ, Nasir K, Blumenthal RS, Budoff MJ: High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol 2013, 62(5):397-408.

Figures
Figure 1

Study Flowchart
Figure 2

(A) Forest plot of $\varepsilon_2\varepsilon_4$ vs $\varepsilon_3\varepsilon_3$. (B) Forest plot of $\varepsilon_2\varepsilon_4$ vs $\varepsilon_3\varepsilon_3$. (C) Forest plot of $\varepsilon_2\varepsilon_4$ vs $\varepsilon_3\varepsilon_3$. (D) Forest plot of $\varepsilon_2\varepsilon_4$ vs $\varepsilon_3\varepsilon_3$. (E) Forest plot of $\varepsilon_2\varepsilon_4$ vs $\varepsilon_3\varepsilon_3$. (F) Forest plot of $\varepsilon_2\varepsilon_4$ vs $\varepsilon_3\varepsilon_3$.

A

B

C
Figure 3

(A) Forest plot of E2 vs E3. (B) Forest plot of E2 vs E4. (C) Forest plot of E3 vs E4.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Figureoffunnelplot.pdf