Protein Anatomy: Functional Roles of Barnase Module*

(Rceived for publication, September 14, 1992)

Hiroshi Yanagawa‡§, Kenji Yoshida‡, Chikako Torigoe‡§, Jin-Sook Park†¶, Kazuki Sato‡,
Taiyoshi Shirai**, and Mitiko Gō**

From the ‡Mitsubishi Kasel Institute of Life Sciences, Machida, Tokyo 194, Japan and the **Department of Biology, Faculty of
Science, Nagoya University, Chikusa, Nagoya 464-01, Japan

Globular proteins are composed of several modules that are contiguous polypeptide segments of compact
conformation. Module boundaries are closely corre-
lated with the intron positions of genes that encode proteins. The modules may thus have a one-to-one correspondence with exons in primordial genes. They may also be vestiges of polypeptide segments that initially appeared as primordial proteins in prebiological evolution. Clarification as to whether modules disconnected from one another have functional potentiality may validate these possibilities. Thus, in this study, each module of a protein was synthesized and assessed for functional potentiality. For this purpose, barnase, a bacterial ribonuclease, was decomposed into six modules (M1-M6), which were examined to determine whether they have an affinity for RNA and RNase activity. M2, M3, and M6, all of which form a shallow but wide cavity for RNA binding in native barnase, were found to bind to RNA and to possess RNase activity. However, M1 and M5, which support the other modules from the back side, and M4 did not bind to RNA and had no RNase activity. Protein modules with catalytic functions are described in this paper for the first time. That some modules of barnase possess catalytic activity indicates that protein modules may possibly have functioned as primitive catalysts in prebiological evolution.

Globular proteins are made of several modules that are contiguous polypeptide segments of compact conformation. Module boundaries are closely correlated with the intron positions of genes that encode proteins. The modules may thus have a one-to-one correspondence with exons in primordial genes. They may also be vestiges of polypeptide segments that initially appeared as primordial proteins in prebiological evolution. Clarification as to whether modules disconnected from one another have functional potentiality may validate these possibilities. Thus, in this study, each module of a protein was synthesized and assessed for functional potentiality. For this purpose, barnase, a bacterial ribonuclease, was decomposed into six modules (M1-M6), which were examined to determine whether they have an affinity for RNA and RNase activity. M2, M3, and M6, all of which form a shallow but wide cavity for RNA binding in native barnase, were found to bind to RNA and to possess RNase activity. However, M1 and M5, which support the other modules from the back side, and M4 did not bind to RNA and had no RNase activity. Protein modules with catalytic functions are described in this paper for the first time. That some modules of barnase possess catalytic activity indicates that protein modules may possibly have functioned as primitive catalysts in prebiological evolution.

MATERIALS AND METHODS

The tertiary structure of barnase was decomposed into six modules (M1-M6) by compactness criterion introduced by distance calculation between Cα atoms (3). Module boundaries at residues 24, 52, 73, 88, and 98 were assigned quantitatively as the local minima of centripetal profiles calculated based on the distance between Cα atoms (2). Compactness of the six modules (M1, residues 1-24; M2, residues 25-52; M3, residues 53-73; M4, residues 74-88; M5, residues 89-98; and M6, residues 99-110) had been synthesized. The resulting peptides (each with an NH2-terminal amino group and a COOH-terminal carboxyl group) were cleaved from the resin with hydrogen fluoride by the Low-High procedure (13) and purified by successive chromatography on a gel filtration column (Sephadex G-50F or G-25F), ion-exchange column (CM52 or DE52, Whatman), reversed-phase column (Shim-pack ODS-PREP(H), Shimadzu), and desalting column (Sephadex G-10). The purity of each peptide thus obtained was confirmed by TLC, analytical high pressure liquid chromatography, and amino acid analysis; and peptide sequences were determined as follows.

To whom correspondence should be addressed.

‡ Present address: Dept. of Pharmaceutical Analytical Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya 467, Japan.

¶ Present address: Dept. of Microbiology, College of Science, Han Nam University, Ojung, Taejon, Korea.

* This work was supported in part by grant-in-aid for scientific research and on priority areas from the Ministry of Education, Science, and Culture of Japan. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1. W. Nobuti, H. Sakakibara, and M. Gō, submitted for publication.
The nucleotide sequence was determined by comparison of the degradation patterns of E. coli 5 S rRNA with those of partial alkaline digests on enzymatic sequencing gels. These bands can easily be recognized by the characteristic spacing they produce in the ladders.

Electrophoresis of barnase modules was carried out on SDS-polyacrylamide gel (16.5% T, 6% C; 13.5 x 15 x 0.1 cm) according to the method of Schagger and Von Jagow (14), except that yeast RNA (10 mg/15 ml) was added to the separation gel, and the gel was treated with 12.5% glutaraldehyde before staining with Coomassie Brilliant Blue.

Activity staining (15) was performed as follows. To remove SDS, after SDS-polyacrylamide gel electrophoresis, the gel was washed for 30 min at room temperature in 250 ml of 8 mM Tris-HCl, pH 8.0, containing 20% 2-propanol, followed by washing for 15 min in 150 ml of 10 mM Tris-HCl, pH 8.0. The gel was further incubated to cleave RNA for 2 h at 37 °C in 150 ml of 10 mM Tris-HCl, pH 8.0. The gel was washed for 30 min at room temperature in 200 ml of 10 mM Tris-HCl, pH 7.5, containing 0.2% toluidine blue O (Merek), and washed in 10 mM Tris-HCl, pH 7.5, to detect the activity bands.

Module-RNA binding was examined by membrane filter assay. A module (10 μM) was added to 0.1 M HEPES/NaOH, pH 7.5, containing 0–10 A600 units of E. coli MRE600 5 S RNA, incubated for 30 min at 4 °C, and then filtered through a Millipore Ultrafree C3LCC00 membrane filter (exclusion limit, M, 5000). An unbound module was recovered in the filtrate. No 5 S RNA was cleaved by modules under the conditions described above. The amount of an unbound module in the filtrate was determined by fluorometric assay of proteins (16). The amount of a bound module to 5 S RNA was calculated after subtracting that of an unbound module from the total amount of a module.

RESULTS AND DISCUSSION

The RNase activity of modules of barnase toward E. coli 5 S rRNA was assessed by polyacrylamide gel electrophoresis under denaturing conditions. A sample of 5 S rRNA was incubated with 140 μM barnase modules in 0.1 M Tris-HCl, pH 7.5, at 37 °C for 15 h. As shown in Fig. 1 (lanes 2, 3, and 6), 5 S rRNA was very prominent in the controls (lane 7) and was cleaved, and polynucleotide cleavage products were formed. It is thus evident that M2, M3, and M6 catalyze the cleavage of 5 S rRNA, whereas M1, M4, and M5 possess no detectable RNase activity (lanes 1, 4, and 5). Native barnase also catalyzed the cleavage of 5 S rRNA. The cleavage patterns of M2, M3, and M6 differed remarkably from that of native barnase. M3 showed the highest RNase activity of the three modules, followed by M2. Although M2, M3, and M6 are ribonucleolytic enzymes, their activity toward 5 S rRNA was considerably less than that of native barnase. Decomposition of barnase into modules lowered catalysis by 4 orders of magnitude. The RNase activity of M2, M3, and M6 was higher at 55 °C and pH 9.5 than at 37 °C and pH 7.5 (data not shown). No amino acid mixture corresponding to the amino acid composition of M2, M3, or M6 catalyzed the cleavage of 5 S rRNA under the identical conditions.

To determine whether the RNase activity associated with modules was due to contamination of enzymes with higher RNase activity, high molecular weight (M, >10,000) contaminants with RNase activity in the synthetic modules were removed by autoclaving and ultrafiltration. M2, M3, and M6 retained significant RNase activity after autoclaving at 120 °C for 10 min or after ultrafiltration with a Millipore Ultrafree C3LCC00 membrane filter (exclusion limit, M, 5000).

To exclude further the possibility of contamination of RNases, RNase activity was examined by cleavage of RNA embedded in SDS-polyacrylamide gels. Synthetic modules of barnase (M2, M3, and M6) were found to show significant RNase activity, whereas none could be detected for M1, M4, or M5 (Fig. 2b). The activity staining bands coincided well with the corresponding protein staining bands (Fig. 2a). This (together with the finding that RNase activity was retained following autoclaving and ultrafiltration) confirms that M2, M3, and M6 actually possess real RNase activity. M2 formed a dimer and a trimer also with RNase activity (Fig. 2, a and b).

The membrane filter assay for binding of modules of barnase with RNA has indicated that some modules possess RNA binding activity. M2, M3, and M6 bound to E. coli 5 S RNA; but M1, M4, and M5 lacked RNA binding activity (Fig. 3).
This is consistent with the experimental results for RNA cleavage. The RNA binding activity of modules of barnase was also measured with E. coli tRNA. M2, M3, and M6 were capable of binding to tRNA under conditions identical to those for 5 S rRNA, while M1, M4, and M5 were incapable of doing so (data not shown).

Glu-73, Arg-87, and His-102 were found to be the catalytic sites of barnase (17). M3 and M6, containing Glu-73 and His-102, respectively, showed RNase activity. Although M4 has two catalytic sites (Glu-73 and Arg-87), it possessed no RNase activity. M2, with no catalytic sites, showed catalytic function. It was quite recently suggested that the positive-charge side chains, Lys-27, Arg-59, and His-102 present on M2, M3, and M6, respectively, are clustered in the active site of barnase and that they are necessary for catalysis and binding of the negatively charged RNA substrate (18).

The use of excess basic amino acid residues (Arg and Lys), rather than acidic ones (Asp and Glu), in the modules may provide some indication of catalytic activity of the modules. M2 and both M3 and M6 have 1 and 2 extra basic amino acid residues, respectively; but M1 and M4 have 2 and 1 extra acidic amino acid residue, and M5 has the same number of acidic and basic residues. Basic amino acid residues have an important role in phosphate binding, and possibly the RNase activity of M2, M3, and M6 may be explained on the basis of the basic amino acid residues.

To estimate further the importance of the net charge on the barnase modules to RNA binding and RNase activities, we chose 22 control peptides possessing net charges of −3 to +5. Table I shows the sequences of the barnase modules and control peptides that are synthesized and that correspond to the short segments (15–26-mer) of different proteins. The control peptides with net charges of more than +3 bound to 5 S rRNA and catalyzed the cleavage of the RNA quite well, whereas this could not be detected for the control peptides possessing negative net charges. These data suggest that the net charges on the peptides are important in RNA binding and RNase activity. In the control peptides possessing net charges of 0 to +2, some had both RNA binding and RNase activities or only RNA binding activity, and others had no significant affinity for RNA and no RNase activity. This finding suggests that the peptides possessing net charges of 0 to +2, at least in the context of these peptides, are not sufficient for RNA binding or RNase activity. Since the net charges on M2, M3, and M6 are within the range of 0 to +2, there may be a different situation in the module itself.

Circular dichroism spectroscopy was used to estimate the level of secondary structure of the barnase modules and control peptides. The use of excess basic amino acid residues (Arg and Lys), rather than acidic ones (Asp and Glu), in the modules may provide some indication of catalytic activity of the modules. M2 and both M3 and M6 have 1 and 2 extra basic amino acid residues, respectively; but M1 and M4 have 2 and 1 extra acidic amino acid residue, and M5 has the same number of acidic and basic residues. Basic amino acid residues have an important role in phosphate binding, and possibly the RNase activity of M2, M3, and M6 may be explained on the basis of the basic amino acid residues.

Table 1

Barnase modules	Sequence	No. of amino acids	Net charge	RNA binding*	RNase activity*
M1	AQtTNTGFDGVADYLTQHYKLPDNY	24	−2		
M2	YITKSEQALGKVASKGNLADVAPGKSIG	29	+1	++	++
M3	GGGFNSRREGKLPKSGRTWRE	22	+2	++	++
M4	EADINYRTSFBNDR	16	−1		
M5	ILYSSDLWLYK	11	0		
M6	KTTTDHYQTFTKIR	13	+2	+	+
Control peptides*					
PKC1	NQREFKGFSGFYGEDLMP	17	−3	−	−
RGR2	ATSTINGDSENNENSSNGNN-NH2	20	3		+
PKC2	VNPWTPITISPNNPDES-NH2	15	−3	−	−
BRA5	IRDNPDVIKALGEA	15	1		
TAUS	DHGAEVYKSPVVG	15	−1	−	
CYT	ISAVHAAABINEARG	17	−1	−	
BRA4	AEGFSYTDANKNKGIT	16	0		
BRA3	QGQLPMFMHELK	15	0		
BRA2	PGLKESPLQIGAAGPLK	17	+1		
BRA1	LSQDSKEKAPITLPLLPG-NH2	17	+1	−	−
MGP	SSLNQERDLRYGG-NH2	15	1		
RBP	PCTRSPAGGWWQAPQGPAAPLFF	26	+1	ND	
CDC2	GKMALKHPTPDLDNQIKKM	20	+1	+	++
CKD2	AALAHPPGQVDTVPVPHLRL	20	+1	++	++
RGR1	ALKRNSEQQNGEQGQPV-NH2	18	+2	++	++
RGR3	LDTKRIGLETPVANPS-NH2	18	+2	++	++
OVA1	VMNEEKLKIVLPRM	15	0	++	++
TAU1	VAVTKRDPPPSIAAAK	15	0	++	++
BRA1	GYSIERVAYRPLGCRN-NH2	17	+4	++	++
PKC2	AMFPFTNRGSIQKQIK	17	+4	++	++
PKC3	GEDKSIYRRSRWRKL	17	+5	++	++

* RNA binding was measured by the membrane filter assay method as described under “Materials and Methods.”

* RNA binding activity was measured by the activity staining method as described under “Materials and Methods.”

PKC1, residues 721–737 of murine brain protein kinase C-α (19); RGR1–RGR3, residues 23–40, 320–340, and 1065–1082 of a protein required for glucose repression of Saccharomyces cerevisiae, respectively (20); PKK, a rat brain protein (Y. Arimatsu et al., unpublished data); BRA1–BRA3, residues 87–123, 123–159, and 291–307 of a BraD protein, respectively, BRA4, residues 403–417 of a BraF protein and BRA5, residues 241–255 of a BraF protein, which are proteins for a Pseudomonas aeruginosa branched-chain amino acid transport system (22); TAU1, residues 1–17 of a bovine brain tau protein (23); TA2 and TAU3, residues 168–182 and 298–312 of a human tau protein, respectively (24); CYT, residues 43–58 of a pigeon cytochrome c (25); OVA1 and OVA2, residues 271–285 and 323–339 of chicken ovalbumin, respectively (26); MGP, residues 137–151 of chicken myoglobin (27); RBP, residues 1–28 of a rat brain-related protein (T. Hoshide et al., unpublished data); CDC2, residues 279–289 of mouse CDC2 (29); CDC2, residues 279–299 of human p34 protein kinase (30); PKC2, residues 137–153 of rat brain protein kinase C-β (31); PKC3, residues 109–125 of protein kinase C-f (32).

* Not determined (because of lack of a primary amino group at the NH₂-terminus).
control peptides. It was clear from the spectra that the barnase modules (M2, M3, and M6) as well as the control peptides take predominantly a random coil in aqueous solution (data not shown). These data suggest that the differences in RNA binding and RNase activity for the different peptides are probably not due to differences in secondary structure.

Native barnase cleaved a phosphodiester bond of GpN in the loop and hinge regions (Fig. 4a). This result indicates that barnase has a strong preference for guanosine in partial digestion of E. coli 5 S rRNA. Barnase is well known to cleave after only guanosine when catalyzing the hydrolysis of the dinucleotide substrate GpN (33). With longer substrates, however, it preferentially cleaves after guanosine; but it cleaves after other bases, yielding a mixture of mono- and dinucleotides in a total RNA digest (34). Barnase shows the preference order $A > G > C \approx U$ (35).

On the other hand, barnase module (M2, M3, and M6)-induced cleavages in the E. coli 5 S rRNA (Fig. 1) were mostly located in the loop and hinge regions, but their cleavage sites were different from those of native barnase (Fig. 4b). In the loop regions, one strong cleavage occurred at positions 103 and 104. This result indicates that flexible and dynamic regions appear as preferred target sites for barnase module-induced cleavage. The barnase modules preferentially cleaved a phosphodiester bond of YpA. Therefore, the barnase modules are quite different from native barnase, but they resemble pyrimidine-specific bovine pancreatic RNase A (36) in their preference for nucleoside.

The 3'-labeled cleavage products (Fig. 1) from E. coli 5 S rRNA with native barnase and barnase modules showed the same migration as the limited alkaline cleavage product of the same length (data not shown). This indicates that the cleavage products bear a 3'-phosphate terminus on the 3'-terminal fragment.

The presence of a basic amino acid residue in a position favorable for catalysis may be essential for the RNase activity of barnase modules because basic amino acid residues are frequently found in the active site of hydrolytic enzymes. It appears that phosphate binding of native barnase is affected mainly by positively charged residues including His-102, Lys-27, and Arg-87 (18).

M6 with a net charge of +2 showed lower RNA binding and RNase activities than M2 and M3 with net charges of +1 and +2, respectively. Some factors may be responsible for RNA binding, RNase activity, and specificity of barnase modules. Among the factors, imbalance of positively charged amino acid residues and peptide chain length in barnase modules together with their net charge may be much more important. Positively charged residues were delocalized on barnase modules and control peptides possessing RNA binding and RNase activity (Table I). A basic polypeptide such as poly(Leu-Lys) with alternating basic and hydrophobic residues cleaves oligoadenylates more efficiently than poly(Lys) (38). This suggests the importance of imbalance of positively charged residues and hydrophobicity for more efficient cleavage activity. High salt concentration (1 M NaCl) strongly inhibited the RNA binding of M2, M3, and M6 (data not shown). Thus, the interaction between a peptide and RNA appears to be primarily ionic in nature and secondarily nonelectrostatic. M2, M3, and M6 consist of 29, 32, and 13 amino acid residues,
charged species such as substrate, metal ions, cofactors, or other ligands.

Acknowledgments—We thank Drs. G. Dodson and C. Hill for providing the x-ray atomic coordinates of barnase; Dr. A. Ohmori for assistance in amino acid analysis; Dr. R. W. Hartley for providing the native barnase; Dr. Y. Kikuchi for assistance in RNA sequence analysis; and Drs. W. Gilbert, S. Kawabata, and S. Iwanaga for critical review of the manuscript.

REFERENCES

1. Gö, M. (1980) Proc. Natl. Acad. Sci. U. S. A. 80, 1964-1968
2. Gö, M., and Nosaka, M. (1987) Cold Spring Harbor Symp. Quant. Biol. 52, 915-928
3. Gö, M. (1981) Nature 291, 90-92
4. Gilbert, W., Marchionni, M., and McKnight, G. (1986) Cell 46, 151-154
5. Jensen, E. O., Paludan, K., Hyldig-Nielsen, J., and Markert, K. A. (1981) Nature 291, 677-679
6. Bleke, C. C. F. (1978) Nature 273, 267
7. Yanagawa, H., Kojima, K., Ito, M., and Handa, N. (1990) J. Mol. Ecol. 31, 180-186
8. Ito, M., Handa, N., and Yanagawa, H. (1990) J. Mol. Biol. 31, 187-194
9. Nishimura, S., and Nonura, M. J. (1989) Biochemistry 28, 161-167
10. Hartley, R. W., and Barker, E. A. (1972) Nat. New Biol. 239, 15-16
11. Maunoury, Y., Hartley, R. W., Dodson, E. J., Dodson, G. G., Bricogne, G., Chothia, C., and Jack, A. (1982) Nature 297, 162-164
12. Merrifield, R. B. (1963) J. Am. Chem. Soc. 85, 2149-2154
13. Tam, J. P., Heath, W. F., and Merrifield, R. B. (1983) J. Am. Chem. Soc. 105, 6442-6455
14. Schagger, H., and Von Jagow, G. (1987) Anal. Biochem. 166, 268-279
15. Blank, A., Sugiyama, R. H., and Dekker, C. A. (1982) Anal. Biochem. 120, 267-275
16. Bohlen, P., Stein, S., Dairman, W., and Udenfriend, S. (1973) Arch. Biochem. Biophys. 155, 213-220
17. Hill, C., Dodson, G., Heinemann, U., Saenger, W., Mitsui, Y., Nakamura, K., Boriou, S., Tschallenko, G., Polyakov, K., and Pavlovsky, S. (1983) Trends Biochem. Sci. 8, 364-369
18. Menissier, F. M., Serrano, L., and Persh, A. R. (1992) J. Mol. Biol. 225, 585-589
19. Schap, D., Parker, D. J., Brisol, A., Kraiz, R., and Koop, J. (1989) FEBS Lett. 243, 351-357
20. Sakai, A., Shimizu, Y., Kondo, S., Chiba, E., and Nishimura, F. (1990) Mol. Cell. Biol. 10, 4130-4138
21. Darnell, J. R., and Doolittle, W. F. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 1271-1275
22. Hoshino, T., and Kose, K. (1990) J. Bacteriol. 172, 5531-5539
23. Ishibashi, K., Greco, L., Tung, W. Y., and Zaid, T. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 5646-5650
24. Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E., and Klug, A. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 4051-4055
25. Ohmori, R., Maloy, W. L., Beverly, B., and Schwartz, R. H. (1989) J. Immunol. 142, 1454-1456
26. McReynolds, L., O'Malley, B. W., Nisbet, A. D., Puterbaugh, J. E., Givol, D., Fleid, S., Robertson, M., and Brownlee, G. G. (1978) Nature 273, 732-733
27. Fujisawa-Sebara, A., Nabeshima, Y., Hosoda, Y., Obinata, N., and Nabeshima, Y. J. (1990) J. Biol. Chem. 265, 15219-15223
28. Gö, M. (1985) Adv. Biochem. 19, 91-122
29. Clew, L. J., and Corwin, J. L. (1989) Nature 339, 679-684
30. Elledge, S. J., and Spottwood, M. R. (1991) EMBO J. 10, 2653-2659
31. Ono, Y., Papii, T., Ogata, K., Kikawa, U., Igarashi, K., and Nishizawa, Y. (1988) J. Biol. Chem. 263, 6927-6932
32. Ono, Y., Papii, T., Ogata, K., Kikawa, U., Igarashi, K., and Nishizawa, Y. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 9099-9103
33. Day, A. G., Parmigiani, D., Ebel, S., Brown, T., Fersht, A. R. (1992) Biochemistry 31, 6590-6596
34. Ruszkiewicz, G. W., Greco, A. E., Hartley, R. W., and Soper, H. A. (1963) Biochemistry 2, 5775-5789
35. Osman, H. L., and Walz, E. G. Jr. (1978) Biochemistry 17, 4124-4130
36. Richards, F. M., and Wyckoff, H. W. (1971) in The Enzyme (Boyer, P. D., ed.), 3rd Ed. pp. 447-590, Academic Press, New York.
37. Eggert, J., Christiansen, J., Brown, R. S., Larsen, N., and Garrett, R. A. (1989) J. Mol. Biol. 206, 85-96
38. Barbacioru, C. G., and Brack, A. (1992) J. Am. Chem. Soc. 114, 3511-3515
39. Breslow, R., Huang, D.-L., and Anslyn, E. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 1746-1750
40. Paddon, C. J., and Hartley, R. W. (1986) Gene (Amst.) 40, 231-239