Tunable composition of dynamic non-viral vectors over the DNA polyplex formation mechanism and nucleic acid transfection

Lilia Clima*, Bogdan Florin Craciun, Gabriela Gavril and Mariana Pinteala*

Synthesis of PEGylated squalene

PEGylated squalene was synthesized in four steps as reported in previous papers [1-3]. Briefly, squalene was functionalized to 1,1',2-tris-nor-squalene aldehyde in three steps. In the first step 2-hydroxy-3-bromosqualene was synthesized from squalene with N-bromosuccinimide in tetrahydrofuran at 0 °C for 90 minutes, then, 2,3-oxidosqualene was obtained from 2-hydroxy-3-bromosqualene with potassium carbonate in methanol at room temperature (25 °C) for 2 hours. In the third step, 1,1',2-tris-nor-squalene aldehyde was obtained by reducing the epoxide with periodic acid in water-dioxane solution at room temperature (25 °C) for 2 hours. In the last step, PEGylated squalene was synthesized by mixing 1,1',2-tris-nor-squalene aldehyde (0.206 g, 0.54 mmol, 1 equiv.) with poly-(ethyleneglycol)-bis(3-aminopropyl) (1500 Da) (0.886 g, 0.59 mmol, 1.1 equiv.) in acetonitrile (20 mL) and magnetically stirred for 24h at room temperature (25 °C), under nitrogen atmosphere. The product was obtained in quantitative yield and used further without purification. PEGylated squalene was stored as solution in acetonitrile at 2-4 °C for further experiments. 1H-NMR (400 MHz, CDCl3, TMS) δ (ppm) = 7.64 (1H, t, J=4.8, CH=N), 5.15 - 5.08 (5H, m, CH=C), 3.70 - 3.64 (140 H, m, CH2-CH2-O), 3.19 (2H, t, J=6.4, CH2-NH2), 2.53 - 2.49 (2H, m, CH2), 2.33 - 2.30 (2H, m, CH2), 2.09 - 1.97 (16H, m, CH2-CH2), 1.88 - 1.83 (3H, m, CH3), 1.68 (3H, m, =C(CH3)-CH3), 1.61 (12H, m, =C(CH3)) (Fig 7S). 13C-NMR (101 MHz, CDCl3, TMS) δ (ppm) = 161.67 (C=N), 134.91 (CH3-C=C), 131.25 (C(CH3)=), 124.40 (CH3-C=CH), 124.26 (CH3-C=CH), 72.57 (OCH2-CH2), 70.58 (O-CH2-CH2-O), 70.35 (O-CH2), 70.12 (O-CH2), 69.97 (O-CH2), 61.71(NCH3), 39.73 (CH2-CH2), 39.58 (CH3-NH2), 31.85 (CH3), 28.25 (CH3), 26.77 (CH3), 26.55(CH3), 25.71 (CH3), 17.69 (CH3),16.06 (CH3), 16.01 (CH3).

![PEGylated Squalene](image1)

![PEGylated Squalene-TA](image2)

Figure S1. 1H-NMR spectra of PEGylated Squalene intermediates in CDC13.

Table S1. Compositions for dynamic frameworks libraries synthesis.
Sample	MW (Da)	Molar ratio (equiv)	m (mg)	n (nmol)	MW (Da)	Molar ratio (equiv)	m (mg)	n (nmol)	MW (Da)	Molar ratio (equiv)	m (mg)	n (nmol)	Final Volume (µL)
NV1	2008.58	1	12.5	6.20	1500	0.1	0.93	0.62	0.1	0.93	0.62	3000	
NV2						0.2	1.86	1.24	0.2	1.86	1.24	3000	
NV3						0.3	2.79	1.86	0.3	2.79	1.86	3000	
NV4						0.4	3.72	2.48	0.4	3.72	2.48	3000	
NV5						0.5	4.65	3.10	0.5	4.65	3.10	3000	
NV6						0.6	5.58	3.72	0.6	5.58	3.72	3000	
NV7						0.7	6.51	4.34	0.7	6.51	4.34	3000	
NV8						0.8	7.44	4.96	0.8	7.44	4.96	3000	
NV9						0.9	8.37	5.58	0.9	8.37	5.58	3000	
NV10						1	9.20	6.20	1	9.20	6.20	3000	
NV11					2000	0.1	1.23	0.62	0.1	1.23	0.62	2247	
NV12						0.2	2.47	1.24	0.2	2.47	1.24	2247	
NV13						0.3	3.70	1.86	0.3	3.70	1.86	2247	
NV14						0.4	4.93	2.48	0.4	4.93	2.48	2247	
NV15					3000	0.5	6.17	3.10	0.5	6.17	3.10	2247	
NV16						0.6	7.40	3.72	0.6	7.40	3.72	2247	
NV17						0.7	8.63	4.34	0.7	8.63	4.34	2247	
NV18						0.8	9.87	4.96	0.8	9.87	4.96	2247	
NV19						0.9	11.10	5.58	0.9	11.10	5.58	2247	
NV20						1	12.34	6.20	1	12.34	6.20	2247	
NV21						0.1	1.85	0.62	0.1	1.85	0.62	2247	
NV22						0.2	3.70	1.24	0.2	3.70	1.24	2247	
NV23						0.3	5.55	1.86	0.3	5.55	1.86	2247	
NV24						0.4	7.40	2.48	0.4	7.40	2.48	2247	
NV25						0.5	9.25	3.10	0.5	9.25	3.10	2247	
NV26						0.6	11.10	3.72	0.6	11.10	3.72	2247	
NV27						0.7	12.95	4.34	0.7	12.95	4.34	2247	
NV28						0.8	14.80	4.96	0.8	14.80	4.96	2247	
NV29						0.9	16.65	5.58	0.9	16.65	5.58	2247	
NV30						1	18.50	6.20	1	18.50	6.20	2247	
Figure S2. Electrophoretic mobility of plasmid DNA in the complexes between dynamic frameworks and pDNA at various N/P ratios. PEG-1500 Da: a.1-a.4, PEG-2000 Da: b.1-b.4 and PEG-3000 Da: c.1-c.4.

References

1. Ceruti, M.; Balliano, G.; Viola, F.; Cattel, L.; Gerst, N.; Schuber, F. Synthesis and biological activity of azasqualenes, bis-azasqualenes and derivatives. *European Journal of Medicinal Chemistry* **1987**, *22*, 199-208, doi:https://doi.org/10.1016/0223-5234(87)90050-X.

2. Craciun, B.F.; Vasiliu, T.; Marangoci, N.; Pinteala, M.; Clima, L. PEGYLATED SQUALENE: A BIOCOMPATIBLE POLYMER AS PRECURSOR FOR DRUG DELIVERY. *Rev Roum Chim* **2018**, *63*, 8.

3. Clima, L.; Peptanariu, D.; Pinteala, M.; Salic, A.; Barboiu, M. DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection. *Chem Commun* **2015**, *51*, 17529-17531, doi:10.1039/c5cc06715d.