Charge transport in amorphous Hf$_{0.5}$Zr$_{0.5}$O$_2$

D. R. Islamov,$^{1,2, a)}$ T. V. Perevalov,1,2 V. A. Gritsenko,$^{1,2, b)}$ C. H. Cheng,3 and A. Chin$^{4, c)}$

1Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
2Novosibirsk State University, Novosibirsk, 630090, Russian Federation
3Dept. of Mechatronic Engineering, National Taiwan Normal University, Taipei, 106, Taiwan ROC
4National Chiao Tung University, Hsincha, 300, Taiwan ROC

(Dated: March 5, 2015)

In this study, we demonstrated experimentally and theoretically that the charge transport mechanism in amorphous Hf$_{0.5}$Zr$_{0.5}$O$_2$ is phonon-assisted tunneling between traps like in HfO$_2$ and ZrO$_2$. The thermal trap energy of 1.25 eV and optical trap energy of 2.5 eV in Hf$_{0.5}$Zr$_{0.5}$O$_2$ were determined based on comparison of experimental data on transport with different theories of charge transfer in dielectrics. A hypothesis that oxygen vacancies are responsible for the charge transport in Hf$_{0.5}$Zr$_{0.5}$O$_2$ was discussed.

PACS numbers: 77.55.df, 77.84.−s, 72.20.−i, 72.20.Jv

Keywords: charge transport, Hf$_{0.5}$Zr$_{0.5}$O$_2$, traps, phonon-assisted tunneling

Knowledge about charge transport of high-κ dielectrics is very important for modern microelectronics. Previous transport studies were based on binary compound like HfO$_2$ and ZrO$_2$. It was shown, that charge transport mechanism in HfO$_2$ and ZrO$_2$ is phonon-assisted tunneling between traps. The charge transport mechanism of ternary high-κ solid solution Hf$_{0.5}$Zr$_{0.5}$O$_2$ still remains unknown.

In this letter, we investigate the charge transport mechanism in Hf$_{0.5}$Zr$_{0.5}$O$_2$ by comparison of experimental data with different theories of charge transfer in dielectrics.

Transport measurements were performed for structures Si/Hf$_{0.5}$Zr$_{0.5}$O$_2$/Ni. To fabricate these structures, we deposited the 20-nm-thick Hf$_{0.5}$Zr$_{0.5}$O$_2$ solid solution films on n- and p-type Si (100) wafers by physical vapor deposition (PVD). Pure HfO$_2$ and ZrO$_2$ targets were bombarded by electron beams in high vacuum chamber, and Hf$_{0.5}$Zr$_{0.5}$O$_2$ were deposited on the wafer forming Hf$_{0.5}$Zr$_{0.5}$O$_2$ films. A Zr/Hf ratio of ≃ 1 was used. We did not apply any post-deposition annealing to produce the most non-stoichiometric films. The structural properties of grown high-κ Hf$_{0.5}$Zr$_{0.5}$O$_2$ dielectric were examined by grazing incidence x-ray diffraction diffractogram (GI-XRD). The structural analysis showed that the resulting Hf$_{0.5}$Zr$_{0.5}$O$_2$ films were amorphous. All samples for transport measurements were equipped with round 50-nm-thick Ni gates with a radius of 70 μm. The measurements were performed using a Hewlett Packard 4155B semiconductor parameter analyzer and an Agilent E4980A precision LCR meter.

Optical (dynamic) permittivity ε_∞ of Hf$_{0.5}$Zr$_{0.5}$O$_2$ was calculated in the framework of density functional theory using the ab initio simulation code QUANTUM ESPRESSO5. Electronic structures and dielectric properties of monoclinic Hf$_{0.5}$Zr$_{0.5}$O$_2$ using 12-atom cell was simulated. The structure was obtained by replacement of a half hafnium atom to zirconium in monoclinic primitive cell of HfO$_2$ with following relaxation. The similar approach was described earlier6.

![Figure 1](image_url) Figure 1. Experimental (characters) and simulations (solid lines) current-voltage characteristics in n-Si/Hf$_{0.5}$Zr$_{0.5}$O$_2$/Ni structures at different temperatures. (a) Frenkel model (2), (b) Hill model of overlapped traps (3), (c) multiphonon trap ionization (4), (d) phonon-assisted tunneling between traps (5).

a)Electronic mail: damir@isp.nsc.ru
b)Electronic mail: grits@isp.nsc.ru
c)Electronic mail: albert_a.chin@hotmail.com
characteristics \((I-V)\) of \(n\text{-Si}/\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_{2}/\text{Ni}\) structures measured at different temperatures \(T\) by characters in various shapes and colors. Positive applied voltage corresponds to positive bias on the Ni contact. The leakage current through \(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_{2}\) grows exponentially with increasing of electric field (or applied voltage) and temperature in accumulation mode \((V > 0)\).

Experiment results were analyzed by using different models of charge transport in dielectrics:

\[
I = eSN^{2/3}P, \tag{1}
\]

where \(I\) is the full current through the sample, \(e\) is the elementary charge, \(S = \pi(70 \mu m)^2\) is the contact square, \(N\) is the bulk trap density, and \(P\) is the probability rate of charge carrier transfer between traps, which depends on the transport model. A mathematical model of well known Frenkel law was introduced in 1938 for isolated trap ionization\(^7\):

\[
P = \nu \exp \left(\frac{W - \beta_F \sqrt{F}}{kT} \right), \beta_F = \frac{e^3}{\pi \varepsilon_0 \varepsilon_\infty}, \tag{2}
\]

where \(\nu\) is the frequency factor which was defined as \(\nu \approx W/h\), \(W\) is thermal ionization energy of the trap, \(h = 2\pi h\) is the Planck constant, \(\beta_F\) is Frenkel coefficient, \(F = V/d\) is the electric field, \(d\) is the dielectric film thickness, \(k\) is the Boltzmann constant, \(\varepsilon_\infty\) is dynamic permittivity of the dielectric film, and \(\varepsilon_0\) is vacuum permittivity (electric constant). Results of simulations \((1)+(2)\) are shown in Fig. 1(a) by solid lines. One can see, that Frenkel model describes the experiment data qualitatively very good. However, quantitative fitting procedure returns underestimated fitting parameter values: the slopes of the fitting lines with Frenkel coefficient give the dynamic permittivity \(\varepsilon_\infty = 3.6 \pm 3.7\), which is lower than \(\varepsilon_\infty(\text{HfO}_2) = 4.48\), \(\varepsilon_\infty(\text{ZrO}_2) = 5.6\), and calculated from the first principals \(\varepsilon_\infty(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2) = 4.8 \pm 5.2\). Further fittings return \(N = 10^7 \text{ cm}^{-3}\) and \(W = 0.8\ eV\). Found values the charge trap density of \(N = 10^7 \text{ cm}^{-3}\) at \(\nu \sim W/h \approx 2 \times 10^{14} \text{ s}^{-1}\) corresponds to mean distance between traps \(s = N^{-1/3} \approx 50 \mu m\) that is comparable to Ni gate size. Taking all these facts into account one can conclude that there is no quantitative agreement between experiments and Frenkel model, despite that Frenkel model describes the experiment data qualitatively.

Simulating in terms of overlapped traps ionization (Hill model)\(^9\)

\[
P = \nu \exp \left(-\frac{W - e^2/(\pi \varepsilon_0 \varepsilon_\infty s)}{kT} \right) 2 \sinh \left(\frac{eFs}{2kT} \right), \tag{3}
\]

are in good quantitative agreement with experiments as well as Frenkel model (Fig. 1(b)). However, too low value of frequency factor of \(\nu \sim 10^7 \text{ s}^{-1}\) was obtained. All values of obtained filling parameters are collected in Table I.

Results of simulations by the model of multiphonon trap ionization\(^11\)

\[
P = \sum_{n=-\infty}^{+\infty} \exp \left(\frac{nWph - W_i - Wopt}{2kT} \right) \coth \left(\frac{W_i}{2kT} \right) \times I_n \left(\frac{Wopt - W_i}{\sinh(Wopt/2kT)} \right) P_i(W_i + nWph), \tag{4}
\]

\[
P_i(W) = \frac{eF_s}{2\sqrt{2me}\sqrt{W_i}} \exp \left(\frac{-2\sqrt{2mW_i}}{\hbar}\right) \times \frac{\sqrt{2\pi hW_i}}{m^* s^2 \sqrt{Wopt - W_i}} \exp \left(\frac{Wopt - W_i}{2kT} \right) \times \coth \left(\frac{W_i}{2kT} \right) \times \sinh \left(\frac{eFs}{2kT} \right), \tag{5}
\]

are shown in Fig. 1(c) by solid lines. Here \(W_{ph}\) is phonon energy, \(W_{opt}\) is optical energy of the trap, \(W_i\) is thermal trap energy, \(I_n\) are modified Bessel functions, \(m^*\) is the effective mass, and \(P_i(W)\) is probability of tunneling trough a triangle barrier of \(W\) height. Calculated set of \(I-V-T\) curves is very close to experimental data, obtained values of fitting parameters include low trap density of \(N = 2 \times 10^{13} \text{ cm}^{-3}\) which corresponds to \(s = 370 \text{ nm}\). This mean distance between traps is much greater than the film thickness of 20 nm (Table I). Thus, it can be concluded that multiphonon trap ionization does not adequately describe charge transfer in \(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2\).

To get complete vision on the charge transport in \(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2\) experiment data was simulated basing on phonon-assisted tunneling between traps\(^12\):

\[
P = \sum_{n=-\infty}^{+\infty} \exp \left(\frac{nWph - W_i - Wopt}{2kT} \right) \times \exp \left(\frac{-2\sqrt{2mW_i}}{\hbar}\right) \sinh \left(\frac{eFs}{2kT} \right), \tag{5}
\]

Results of this procedure are shown in Fig. 1(d). The experiment data were described quantitatively and qualitatively with the following values of fitting parameters (Table I): \(N = 3 \times 10^{19} \text{ cm}^{-3}\), \(W_i = 1.25\ eV\), \(W_{opt} = 2.5\ eV\), \(m^*/m_e = 0.23\) (\(m_e\) is a free electron mass). Fig. 2 shows the configuration diagram of a negatively charged electron trap. A vertical transition with a value of \(2.5\ eV\) corresponds to the optical trap excitation, transitions of \(1.25\ eV\) correspond to thermal trap energy.

The same measurements and simulations were performed for \(p\text{-Si}/\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2/\text{Ni}\) structures. Results are represented in Fig. 3. One can see that all model describe experimental curves qualitatively. Calculated values of fitting parameters are summarized in Table I. Models of isolated (2) and overlapped (3) charged traps

![Figure 2](image-url)
can describe experiments with inadequate parameters like for n-Si-based samples. Multiphonon ionization of neutral trap (4) has good agreement with experiments at \(N = 2 \times 10^{13} \text{ cm}^{-3} \), which is equal than one got for \(n\)-Si/\(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2/Ni \) structure by the same transport model. At the same time calculated curves in terms of phonon-assisted tunneling between traps (5) are close to experimental data with the same parameter values as that obtained for \(n\)-Si/\(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2/Ni \) samples.

Phonon-assisted tunneling between traps adequately describes charge transport in \(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2 \) films on n-Si and p-Si substrates. Taking these into account, we conclude that the model of phonon-assisted tunneling between traps describe charge transport in \(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2 \) films. Energy parameters of traps, such as the thermal trap energy of 1.25 eV and the optical trap energy of 2.5 eV, are similar to that in binary oxides \(\text{HfO}_2 \),\(^2,13\), and \(\text{ZrO}_2 \).\(^14\)

Capacitance-voltage (C-V) measurements (Fig. 4) show that increasing of voltage amplitude leads to shift of the hysteresis to negative voltages. This phenomenon might be caused by holes trapping on \(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2 \) interfaces or in the bulk of the dielectric. C-V shift allows us to valuate the density of the filled hole traps as \(n_{\text{athrmh}} \lesssim 3 \times 10^{18} \text{ cm}^{-3} \) in the bulk or \(n_{\text{athrmh}} \lesssim 6 \times 10^{12} \text{ cm}^{-2} \) on the surface states. It is not possible to separate percentage of the charge on the surface and in the bulk, unusual C-V behavior of reducing the maximum capacity with an increase in the voltage amplitude indicates that the the surface charge is significant. However, it should be noted that the number of filled bulk traps \(n_{\text{athrmh}} \lesssim 3 \times 10^{18} \text{ cm}^{-3} \) is much lower than total trap density of \(N = 3 \times 10^{10} \text{ cm}^{-3} \). The possible explanation of this difference is the Coulomb repulsion of the charged particles with forming of Wigner-glass-like structures\(^15\) in the bulk of \(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2 \).

It was shown that oxygen vacancies are responsible for charge transport via \(\text{HfO}_2 \) and \(\text{ZrO}_2 \).\(^2,13,14\) Thus, one can expect that oxygen vacancies are responsible for charge transport in \(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2 \). To confirm this hypothesis experiments on photoluminescence and quantum-chemical simulations are required.

Recently, it was reported that orthorhombic crystalline phase of high-\(\kappa \) \(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2 \) thin films can be ferroelectrics, being perspective material for application to ferroelectric random access memory (FeRAM)\(^16-18\). Despite that FeRAM has many advantages, retention characteristics of FeRAM devices much to be desired because of the depolarization effect\(^19\). A possible reason of the depolarization effect is charge leakage via traps of the dielectric. To confirm or refute this hypothesis, transport properties of \(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2 \) in amorphous and ferroelectric phases must be compared.

To summarize, we examined the transport mechanisms of amorphous solid solution \(\text{Hf}_{0.5}\text{Zr}_{0.5}\text{O}_2 \). It was demonstrated that all charge transport models such as Frenkel model, Hill model, multiphonon trap ionization, and phonon-assisted tunneling between traps describe experiment data formally, qualitatively, while only phonon-assisted tunneling between traps describes the charge transport.
transport in Hf$_{0.5}$Zr$_{0.5}$O$_2$ quantitatively. Comparing experimental current-voltage characteristics with results of simulations revealed energy parameters of the charge traps in Hf$_{0.5}$Zr$_{0.5}$O$_2$: the thermal trap energy of 1.25 eV and the optical trap energy of 2.5 eV, that are equal to that for HfO$_2$ and ZrO$_2$.

This work was particularly supported by Ministry of Science and Technology, Taiwan (grant No. NSC103-2923-E-009-002-MY3) (growing test structures, preparing samples, performing transport measurements), and by the Russian Science Foundation (grant No. 14-19-00192) (calculations, modeling).

REFERENCES

1. Y. N. Novikov, Journal of Applied Physics 113, 024109 (2013).
2. D. R. Islamov, V. A. Gritsenko, C. H. Cheng, and A. Chin, Applied Physics Letters 105, 222901 (2014), arXiv:1409.6887 [cond-mat.mtrl-sci].
3. G. Jegert, A. Kersch, W. Weinreich, and P. Lugli, Journal of Applied Physics 109, 014504 (2011), 10.1063/1.3531538.
4. D. R. Islamov, V. A. Gritsenko, C. H. Cheng, and A. Chin, (unpublished).
5. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzaire, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Schlauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, Journal of Physics: Condensed Matter 21, 395502 (2009).
6. G. Dutta, Journal of Applied Physics 105, 106103 (2009), 10.1063/1.3117829.
7. J. Frenkel, Physical Review 54, 647 (1948).
8. S. Kar, ed., High Permittivity Gate Dielectric Materials, Springer Series in Advanced Microelectronics, Vol. 43 (Springer, 2013).
9. G.-M. Rignanese, F. Detraux, X. Gonze, and A. Pasquarello, Physical Review B 64, 134301 (2001).
10. R. M. Hill, Philosophical Magazine 23, 59 (1971).
11. S. Makram-Ebeid and M. Lannoo, Physical Review B 25, 6406 (1982).
12. K. A. Nasyrov and V. A. Gritsenko, Journal of Applied Physics 109, 093705 (2011).
13. T. V. Perevalov, V. S. Aliev, V. A. Gritsenko, A. A. Saraev, V. V. Kaichev, E. V. Ivanova, and M. V. Zamoryanskaya, Applied Physics Letters 104, 071904 (2014), 10.1063/1.4865259.
14. T. V. Perevalov, D. V. Gulyaev, V. S. Aliev, K. S. Zhuravlev, V. A. Gritsenko, and A. P. Yeliseyev, Journal of Applied Physics 116, 244109 (2014).
15. S. S. Shaimeev, V. A. Gritsenko, and H. Wong, Applied Physics Letters 96, 263510 (2010), 10.1063/1.3458832.
16. J. Müller, T. S. Bösche, D. Bräuchlein, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, Applied Physics Letters 99, 112901 (2011).
17. M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, H. Kyeom Kim, and C. Seong Hwang, Applied Physics Letters 102, 112914 (2013).
18. M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, T. Moon, and C. Seong Hwang, Applied Physics Letters 102, 242905 (2013).
19. C.-H. Cheng and A. Chin, IEEE Electron Device Lett. 35, 138 (2014).