Stress-aging in the electron-glass

V. Orlyanchik, and Z. Ovadyahu

Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

Abstract

A new protocol for an aging experiment is studied in the electron-glass phase of indium-oxide films. In this protocol, the sample is exposed to a non-ohmic electric field \(F \) for a waiting time \(t_w \) during which the system attempts to reach a steady state (rather than relax towards equilibrium). The relaxation of the excess conductance \(\Delta G \) after ohmic conditions are restored exhibit simple aging as long as \(F \) is not too large.

PACS: 73.90.+f, 73.50.-h
Aging is a common phenomenon in non-equilibrium systems. The term ‘aging’ refers to a continuous change in the properties of the system when it is maintained in some fixed external conditions (such as temperature, pressure, etc.) for a waiting-time t_w. This change may be reflected in the dynamic response of the system due to an application of a post-aging disturbance. For example, the viscoelastic response of a polymer to a mechanical stress will depend on the time t_w it was ‘aged’ at a temperature T prior to applying the stress.

Systematic studies of various glassy systems revealed that aging might manifest itself in different measurements but all share a common feature: After the external conditions that affect a certain property P are changed, P relaxes towards its new equilibrium value in a way that reflects both the time t and the ‘aging’ time t_w, namely, $P(t) = P(t, t_w)$.

A more specific form of aging called ‘simple-aging’ has been recently reported to occur in several glasses where $P(t, t_w)$ could be described as a simple master function $P(t/t_w)$.

The experimental protocol usually employed in aging studies involves relaxation towards an equilibrium state during t_w. In this note, we report on a different protocol where the system is under a constant stress F and attempts to reach a steady state during t_w. It turns out that the relaxation that ensues after the stress is relieved exhibits simple aging as long as the stress is not too large. The master function $P(t/t_w)$ is affected by the particular magnitude of the stress, and above a certain field the relaxation curves fail to collapse. This is shown to correlate with the loss of memory in the system.

Our experiments were performed using thin films of crystalline $\text{In}_2\text{O}_{3-x}$ in the hopping regime. The response P is taken as the conductance G, and the stress F is the electric field applied along the film. Measurements were carried out at $T=4.11\text{K}$ with the samples immersed in liquid ^4He inside a storage dewar. This enabled high temperature stability over long times. A germanium thermometer mounted on the sample stage was used to correct for residual temperature fluctuations and drift. The conductance of the samples was measured using a two terminal configuration. For measurements with $F > 10 \text{ V/cm}$ G was measured by a dc technique, biasing the sample with a voltage source (Keithley’s K617) while measuring the resulting current (the voltage across a $10^5 \Omega$ series resistor). This procedure was used during the stress application. For smaller values of F, we used ac techniques employing a current pre-amplifier (ITHACO 1211) and a lock-in amplifier (PAR 124). This was also used to measure the conductance G before each run as well as for the relaxation after F was reset to the ohmic regime (F typically smaller than 1V/cm).
The steps performed in this series of experiments, and results for a typical case are illustrated in figure 1. The sample conductance and the accompanying stress-field F were monitored continuously versus time. Initially, $G(t)$ is recorded while keeping $F = F_0$ chosen to be in the ohmic regime (i.e., $\partial G / \partial F|_{F_0} \approx 0$) to establish a baseline ‘equilibrium-G’ = $G(F_0,0)$. Then, F was switched to $F_n \gg F_0$ which caused an appreciable increase in conductance (figure 1). Finally, having recorded $G(F_n,t)$ for a time $t = t_w$, F is switched back to its original value F_0. This results in an initial sharp decrease of G followed by a slow relaxation process where the conductance decreases and asymptotically approaches $G(F_0,0)$ (the dashed line in figure 1). The relaxation of the excess conductance $\Delta G(t) = G(t \geq t_w) - G(F_0,0)$ is plotted in figure 2a where the origin of the time scale $t = 0$ is the time when F_0 was re-established. The same $\Delta G(t)$ curves are plotted in figure 2b as function of t/t_w illustrating a near-perfect data collapse to a master function $\Delta G(t/t_w)$. It is emphasized that no free parameters are involved in this collapse; the only step taken to get the master function $\Delta G(t/t_w)$ is dividing each $\Delta G(t)$ curve by its measured t_w.

The master function that results from the present protocol (to be referred to as ‘F-protocol’) is quite similar to that of the aging protocol used by Vaknin et al [3] (‘V_g-protocol’). In both cases, $\Delta G(t/t_w) \propto -\log(t)$ for $t < t_w$ and both show equally good simple aging (compare figure 2b with figure 2 in reference 3). Note that these two protocols are fundamentally different. The V_g-protocol conforms to the commonly used procedure where during t_w the system is relaxing as manifested by the fact that $\Delta G(t)$ is logarithmically decreasing function of t. By contrast, the system is excited during t_w in the F-protocol, and the associated ΔG increases logarithmically with time (inset to figure 1). Note that the V_g-protocol is carried out under ohmic conditions throughout the entire process while strong non-ohmic conditions are used during t_w in the F-protocol. During this time, the electronic system absorbs energy from F and, as will be shown below, some memory of the system is impaired in result. It is therefore somewhat surprising that the F-protocol yields as good simple aging as the V_g protocol. In fact, the only feature in the master function that reflects the difference between the two protocols is the extrapolated value for t/t_w to $\Delta G(t/t_w) = 0$ (c.f., figures 2 and 3). In the V_g-protocol this happens at $t'/t_w \equiv t^*$ which is usually =1. This is due to a certain symmetry inherent to this protocol. When this symmetry is impaired e.g., by using large swings of gate voltages, this t^* becomes larger than unity [7, 8]. In the F-protocol t^* is consistently larger than unity and increases
systematically with F_n reaching a value of ≈ 10 (inset of figure 3) before the curves fail to collapse (figure 4). This incidentally means that over the range of fields where simple aging is observed, the master function carries a memory of both t_w and the specific value of F_n (namely, the value of t^* for a given sample). The inset to figure 3 may be interpreted as implying that when $F_n \to 0$, $t^* \to 1$, which in other words is just saying that the sample is under “symmetrical” (i.e., Ohmic) conditions both during t_w and throughout the subsequent relaxation process. Obviously, this situation cannot be realized in practice with the F-protocol.

When F_n exceeds a certain value the $\Delta G(t)$ curves fail to collapse upon normalization by t_w (figure 4). For still higher fields $\Delta G(t)$ becomes independent of t_w and assumes the ‘history-free’ law $\Delta G(t) \propto -\log(t)$. This presumably results from the fact that a large F_n has a similar (though not exactly equivalent) effect as that of raising the system temperature. Above some F_n, this effective temperature will bring the system to an ergodic state (above the ‘glass temperature’), and the ensuing relaxation upon the switch to F_0 should be similar to a quench-cool process. Namely, $\Delta G(t)$ should contain no memory of the past and aging behavior is lost as indeed observed.

The influence of the stress-field, and in particular, its detrimental effect on the memory of the electron glass, can be monitored in a field-effect experiment. This was performed using a sample configured as a FET structure by depositing a gate electrode (Au film) on the backside of the 100μm glass substrate. The sample was cooled to 4.11K holding its gate voltage V_g at 0V, and was allowed it to relax at this temperature for ≈ 12 hours. Then, while monitoring G (using ac techniques), V_g was swept to +100V, kept there for 15 seconds after which V_g was swept to -100V. The resulting $G(V_g)$ curve (figure 5) revealed a memory of the cool-down-V_g in the form of a minimum centered at $V_g=0$. After allowing the system to relax again under $V_g=0$, the procedure was repeated except that during 10 of the 15 seconds dwell-time at $V_g=0$, a non-ohmic dc field F_n was applied between the source and drain. The $G(V_g)|F_n$ traces resulting from this procedure exhibit a “memory-cusp” that has a progressively smaller magnitude when F_n is increased (c.f., figure 5). This illustrates the memory loss caused by the stress-field as alluded to above. Moreover, above a threshold F_n the anomalous cusp at $V_g=0$ completely disappears, and $G(V_g)$ reflects just the normal (anti-symmetric) form of the field-effect. It is in this range of fields that the aging behavior is washed out.
In summary, we have demonstrated that the conductance of an electron glass carries a memory of a non-ohmic electric field F applied in the past as well as its duration t_w. This information is reflected in the relaxation of the excess conductance $\Delta G(t)$ monitored following a switch of F (at $t=0$) to its ohmic regime. It was also shown that the non-ohmic fields degrade the memory in the system and that simple aging is obeyed only as long as this memory loss is small. Our experiments thus illustrate that 'simple-aging' and 'memory' are inter-related properties of the electron glass.

Finally, it is remarkable that simple-aging is observed in many different systems (electron-glass, spin-glass, polymers, viscous-fluids). That such a simple scaling scheme should so generally hold is a challenge for theory. This seems to imply the existence of a common feature, non-specific to the type of glass being studied [10]. To our knowledge, this common ingredient is yet to be identified.

The authors gratefully acknowledge useful discussions with M. Pollak. This research was supported by a grant administered by the US-Israel Science Foundation and a grant administered by the German-Israel Science Foundation.

[1] L.C.E. Struik, Physical aging in amorphous polymers and other materials (Elsevier, Amsterdam, 1978); L. M. Hodge, Science, 267, 1945 (1995).

[2] E. Marinari, G Parisi, and D. Rossetti, Eur. Phys. J., B2, 495 (1998); L. Cipelletti, S. Manley, R. C. Ball and D. A. Weitz, Phys. Rev. Lett. 84, 2275 (2000); M. Kroon, G. Wegdam and R. Sprik, Phys. Rev. E54, 1 (1996); D. Bonn, H. Tanaka, G. Wegdam, H. Kellay and J. Meunier, Europhys. Lett. 45, 52 (1999); F. Alberici-Kious, J.-P. Bouchaud, L. F. Cugliandolo, P. Doussineau, and A. Levelut, Phys. Rev. Lett. 81, 4987 (1998). E. Vincent, V. Dupuis, J. Hammann, and J.-P. Bouchaud, Europhys. Lett. 50, 674 (2000); E. V. Colla, L. K. Chao, M. B. Weissman, and D. D. Viehland, Phys. Rev. Lett. 85, 3033 (2000); J. B. Knight, C. G. Fandrich, C. N. Lau, H. M. Jaeger and S. R. Nagel, Phys. Rev. E51, 3957 (1995); C. Rossel, Y. Maeno and I. Morgenstern, Phys. Rev. Lett. 62, 681 (1989).

[3] M. Cloitre, R. Borrega and L. Leibler, Phys. Rev. Lett. 85, 4819 (2000); E. Vincent J. Hammann, M. Ocio, J.-P. Bouchaud, and L. F. Cugliandolo, in Complex Behavior of glassy Systems, Lecture notes in Physics, eds. Miguel Rubi, and Conrado Perez-Vicente, Springer,
Proceedings, Barcelona, Spain (1996).

[4] A. Vaknin, Z. Ovadyahu, and M. Pollak, Phys. Rev. Letters, 84, 3402 (2000).

[5] The relaxation process $\Delta G(t \geq 0)$ is measured under ohmic conditions in both protocols.

[6] V. Orlyanchik, A. Vaknin, and Z. Ovadyahu, Phys. Stat. Sol., b239, 67 (2002).

[7] A. Vaknin, Z. Ovadyahu, and M. Pollak, Phys. Rev. B63, 235403 (2002).

[8] Z. Ovadyahu, and M. Pollak, cond-mat/0307229.

[9] Note that this gate-sample separation is much larger than that usually employed in MOSFET structures. This prevents screening of the electron-electron interactions by the gate. The F-protocol results reported here were independent on whether or not the sample had a gate.

[10] Aging scenario, specific to spin glass, was suggested by: J. P. Bouchaud, J. Phys. I France, 2, 1705 (1992), and for binary glasses by: G. Parisi, Phil. Mag. B77, 257 (1998).

Figure captions

1. The sample conductance G versus time during a stress-aging experiment. $F_0=0.5V/cm$ is used except during t_w where $F_n=95V/cm$ is maintained. $R\Box=230M\Omega$ at $T=4.11K$. The inset illustrates the logarithmic law by which G increases under a constant F_n (for $t_w \approx 5$ days and under $F_n=315V/cm$ in this example).

2. Relaxation curves of the excess conductance after an excitation by $F_n=100V/cm$ for different values of t_w (a). Sample with $R\Box=57M\Omega$. The same data as in (a) is plotted in (b) versus t/t_w. The dashed line shows the extrapolated value of the logarithmic part of the master function to $\Delta G(t/t_w)=0$ to define t^*.

3. $\Delta G(t/t_w)$ for three different values of the stress-field F_n, measured on the same sample ($R\Box=57M\Omega$). Each master-function is labeled by its F_n (in units of V/cm). At least three different t_w were used in any such plot with t_w ranging between 10 to 1620 seconds. The inset shows t^* as a function of the stress-field for this sample (circles) and for two other samples ($R\Box=11M\Omega$-squares, $R\Box=40M\Omega$-triangles).

4. $\Delta G(t/t_w)$ for the same sample as in figure 3 ($R\Box=57M\Omega$) while using a sufficiently high stress-field such that simple aging is no longer obeyed.

5. Field effect $\Delta G(V_g)$ traces measured for the same sample as in figures 3 ($R\Box=57M\Omega$) illustrating the ‘loss of memory’ due to various stress fields. See text for the experi-
mental procedure. The trace taken with 10^{-1}V/cm is the “baseline-memory” for the series. Note that appreciable reduction in the anomalous cusp (dip around $V_g=0$, c.f., reference 7) for $F_n \geq 400\text{V/cm}$ that coincides with the demise of simple aging in this sample (c.f., figures 3 and 4).
Figure 1
Figure 2
$F_n = 400 \text{ V/cm}$

$\Delta G/G (\%)$

t/t_W

$t_w (\text{sec.})$

10^1

10^2

10^3

Figure 4
Figure 5