Polyphyly and hidden species among Hawai‘i's dominant mesophotic coral genera, *Leptoseris* and *Pavona* (Scleractinia: Agarciidae)

Widespread polyphyly in stony corals (order Scleractinia) has prompted efforts to revise their systematics through approaches that integrate molecular and micromorphological evidence. To date, these approaches have not been comprehensively applied to the dominant genera in mesophotic coral ecosystems (MCEs) because several species in these genera occur primarily at depths that are poorly explored and from which sample collections are limited. This study is the first integrated morphological and molecular systematic analysis of the genera *Leptoseris* and *Pavona* to examine material both from shallow-water reefs (< 30 m) and from mid- to lower-MCEs (> 60 m). Skeletal and tissue samples were collected throughout the Hawaiian Archipelago between 2-127 m. A novel mitochondrial marker (*cox*1-1-*rRNA* intron) was sequenced for 70 colonies, and the micromorphologies of 94 skeletons, plus selected type material, were analyzed. The *cox*1-1-*rRNA* intron resolved 8 clades, yet *Leptoseris* and *Pavona* were polyphyletic. Skeletal micromorphology, especially costal ornamentation, showed strong correspondence and discrete differences between mitochondrial groups. One putative new *Leptoseris* species was identified and the global depth range of the genus *Pavona* was extended to 89 m, suggesting that the diversity of mesophotic scleractinians has been underestimated. Examination of species’ depth distributions revealed a pattern of depth zonation: Species common in shallow-water were absent or rare > 40 m, whereas others occurred only > 60 m. These patterns emphasize the importance of integrated systematic analyses and more comprehensive sampling by depth in assessing the connectivity and diversity of MCEs.
Daniel G. Luck1*, Zac H. Forsman2, Robert J. Toonen2, Sarah J. Leicht1 and Samuel E. Kahng1

1Hawaiʻi Pacific University, Marine Science Program, Waimanalo, HI, USA
2University of Hawaiʻi, Hawaiʻi Institute of Marine Biology, Kaneʻohe, HI, USA

*Corresponding author: Daniel G. Luck, Hawaiʻi Pacific University, Marine Science Program Office, 41-202 Kalanianaʻole Highway, Waimanalo, HI 96795 USA. Email: dluck@my.hpu.edu. Phone: +1 (808) 931-0447
1. INTRODUCTION

Within the past two decades, molecular studies have shown that traditional classification systems for stony corals (Cnidaria: Anthozoa: Scleractinia), which are based on macromorphological characters, do not accurately reflect the evolutionary relationships of many taxa (Romano & Palumbi 1996; Romano & Cairns 2000; Fukami et al. 2004; Fukami et al. 2008; Huang et al. 2009; Budd et al. 2010; Kitahara et al. 2010). As recently as 2008, mitochondrial and nuclear DNA revealed that a majority of scleractinian families with reef-building genera are potentially polyphyletic (Fukami et al. 2008; Huang et al. 2009). The macromorphological characters that underpin traditional scleractinian taxonomy are notoriously variable between reef habitats and biogeographic regions (Veron 2000; Todd 2008), leading to phenotypic overlap between distantly related taxa (i.e. homoplasy) that confounds phylogenetic analyses. However, recent studies that have integrated molecular and micromorphological/structural evidence (hereafter referred to as integrated systematic studies) have found correspondence between molecular-based and morphologically-based taxa (Fukami et al. 2004; Benzoni et al. 2010; Budd et al. 2010; Benzoni et al. 2012; Kitahara et al. 2012). Integrated systematics have resolved outstanding problems in coral taxonomy from the family-level (Budd & Stolarski 2009) to the species-level (Forsman et al. 2010).

To date, most integrated systematic studies of hermatypic corals have focused on easily-accessible shallow-water (< 30 m) species. Few species that occur primarily in mesophotic coral ecosystems (MCEs), which are coral habitats from ~30-40 m to the deepest limits of obligate zooxanthellate corals (see Hinderstein et al. 2010), have been included in such studies. In particular, the agariciid genus Leptoseris Milne-Edwards & Haime, 1849, has not been comprehensively examined using an integrated approach despite the fact that it dominates many
Indo-Pacific MCEs (Wells 1954; Fricke & Knauer 1986; Kahng & Kelley 2007; Rooney et al. 2010). The most recent revision of *Leptoseris* by Dinesen (1980) was based largely on shallow-water material and occurred prior to the widespread use of molecular techniques in coral systematics. Since then, the genus has been included in several molecular studies (Romano & Cairns 2000; Cuif et al. 2003; Le Goff-Vitry, Rogers & Baglow 2004; Fukami et al. 2008; Kitahara et al. 2010), but in each case only one or two shallow-water species were used and just four of 18 described species have been studied genetically. The results of these studies have challenged the monophyly of the family Agariciidae Gray, 1847 (Fukami et al. 2008) and of the genus *Pavona* Lamarck, 1801 (Le Goff-Vitry, Rogers & Baglow 2004), but none have tested the monophyly of the genus *Leptoseris* using more than two species. While Benzoni et al. (2012) recently provided an integrated systematic treatment of *L. foliosa* Dinesen, 1980, no study has applied such an approach to multiple species within the genus. Moreover, none of the species with the deepest distributions (> 100 m, e.g. *L. fragilis* Milne-Edwards & Haime, 1849, *L. hawaiensis* Vaughan, 1907 and *L. scabra* Vaughan, 1907) have been examined using an integrated approach. These species are particularly interesting to marine ecologists because they may have unique adaptations for efficiently capturing light (Kahng et al. 2012), allowing them to survive deeper than other photoautotrophic corals (Maragos & Jokiel 1986; Kahng & Maragos 2006).

While MCEs are hypothesized refugia for some reef-building species (Riegl & Piller 2003; Bak, Nieuwland & Meesters 2005; Bongaerts et al. 2010a), there have been few integrated systematic studies comparing shallow and mesophotic reef-building corals. The lack of studies arises from the logistical difficulties of accessing MCEs, but such studies are essential for understanding the diversity and connectivity of MCEs and assessing their conservation value. The few studies that have collected samples from MCEs have found previously unknown
morphologies (Kahng & Maragos 2006), cryptic diversity (Chan et al. 2009) and high taxonomic richness (Bridge et al. 2012). These results suggest that the global diversity of mesophotic scleractinians has been underestimated and/or the biogeographic ranges of mesophotic species are not fully explored.

The purpose of this study is to provide an integrated systematic analysis for the agariciid genera that dominate Hawaiian MCEs, namely *Leptoseris* and *Pavona*. The monophyly of these genera is tested using molecular methods, and micromorphological characters with diagnostic value are identified and evaluated in terms of their correspondence to a molecular phylogeny and traditional taxonomic designations. More reliable diagnostic characters will facilitate identification of *Leptoseris* and *Pavona* spp. in Hawai‘i, which will enhance understanding of the ecological processes and biodiversity of Hawaiian MCEs. Accurate identification will help determine the degree of overlap between shallow-water and mesophotic species, which will facilitate investigations of the physiological adaptations that allow these corals to thrive in extreme low-light conditions.

Here, we focus on comparisons between a single novel, rapidly evolving mitochondrial marker (*cox*1-1-rRNA intron) and micromorphological traits. Although mitochondrial genes are often uninformative in reef-building corals (Shearer et al. 2002; Hellberg 2006; Shearer & Coffroth 2008), recently discovered, highly variable mitochondrial markers in Pocilloporidae (Flot & Tillier 2007) have revealed the strongest evolutionary and biogeographical patterns (e.g. Pinzon & LaJeunesse 2011; Keshavmurthy et al. 2013; Pinzón et al. 2013), while remaining consistent with other genetic markers. Although multiple molecular markers are often desirable in phylogenetic studies (Funk & Omland 2003), we show here that the *cox*1-1-rRNA intron provides high resolution for the genera *Leptoseris* and *Pavona* with strong concordance between mitochondrial groups and discrete micromorphological characters.
2. MATERIALS AND METHODS

(a) Sample collections

Skeletal and tissue samples of *Leptoseris* and *Pavona* spp. were collected throughout the Hawaiian Archipelago \((n = 109)\) and Line Islands \((n = 3)\) (Supplemental Table S1). Collections were authorized via special activity permits by the State of Hawai‘i Board of Land and Natural Resources. Although this study focused on species from mid- to lower MCEs (i.e., > 60 m), shallow-water samples (< 30 m) were also collected for comparative purposes. Most samples came from MCEs in the Au‘au Channel, located between Maui and Lana‘i, and along the nearshore shallow-water reefs off O‘ahu. Collections were made using the Hawai‘i Undersea Research Laboratory (HURL) *Pisces* submersibles, technical diving or traditional SCUBA, depending on the depth. This effort included 14 submersible dives and one remotely controlled vehicle dive ranging from 49-216 m, 14 technical dives from 40-78 m, and eight shore dives from 5-24 m. Collected samples included all six *Leptoseris* spp. known from Hawai‘i and ranged from 2-127 m depth, encompassing most of the accepted bathymetric range for the genus (Dinesen, 1980). (Vaughan’s (1907) record of *L. hawaiiensis* to 470 m is likely erroneous, see Kahng et al., 2010.) Some samples were too small for morphological analyses \((n = 18)\); others lacked preserved tissue and were not included in molecular analyses \((n = 42)\). The remaining 52 samples were included in both molecular and morphological analyses.

The *Leptoseris* type collections of the U.S. National History Museum (USNM) and the Natural History Museum, London, UK (BNHM) were also examined (Supplemental Table S2). Type specimens for a majority of *Leptoseris* spp. and all species previously known from Hawai‘i were analyzed morphologically (tissues for molecular analyses were unavailable). *Pavona* types
were not examined because at the time of museum visits *Pavona* was not thought to be abundant in Hawaiian MCEs.

(b) **Molecular analyses**

Phylogenetic relationships were determined by analyzing sequences from the *cox1-1-rRNA* intron, a novel, rapidly evolving mitochondrial intergenic spacer. Preliminary analyses of *cox1-1-rRNA* showed that it gave much higher resolution between *Leptoseris* spp. than either the NAD5 5’-intron or the ITS region (D.G. Luck, unpublished data).

Host genomic DNA was extracted using the E.Z.N.A.® Tissue DNA Kit (Omega Bio-tek, Norcross, GA, U.S.). The *cox1-1-rRNA* intron was amplified using Biomix Red (Bioline, Taunton, MA, U.S.), a high-density PCR reaction mix, and the following primers: ZFCOXIF (5’-TCT GGT GAG CTC TTT GGG CTC T-3’) and ZFtrnar (5’-CGA ACC CGC TTC TTC GGG GC-3’). Primers were designed based on *Agaricia* Lamarck, 1801 and *Pavona* mitochondrial genomes acquired from GenBank (NC_008160,5). Each PCR totaled 12.5 µl and included reagents in the following proportions: 7.5 µl Biomix Red; 6.51 µl nanopure® (Thermo Fisher Scientific) H₂O; 0.195 µl of each primer; and 0.6 µl extracted genomic DNA. The thermocycler protocol was as follows: one cycle at 95°C for 2 min; 35 cycles beginning with 95°C for 30 sec, followed by 52°C for 30 sec, followed by 72°C for 1 min; and one extension cycle at 72°C for 10 min. PCR products were cleaned using shrimp alkaline phosphatase and Sanger sequenced using the forward primer. Only the forward primer was necessary since it produced sufficiently long sequences (up to 900 bp) with many informative sites.

In order to provide higher resolution and to root the mtDNA phylogeny, *cox1-1-rRNA* sequences were obtained for *Agaricia humilis* Verrill, 1901, *Pavona clavus* (Dana, 1846) and *Siderastrea radians* (Pallas, 1766) from whole mitochondrial genomes available on GenBank.
(accession numbers: DQ643831, DQ643836, DQ643838). These three taxa were included in all phylogenetic analyses.

Sequence data were manually cleaned with BioEdit version 7.1.3 (Hall 1999) and imported into MEGA 5.10 for alignment (Tamura et al. 2011). Separate alignments were performed using ClustalW and Muscle algorithms, first using default settings and then with reduced gap opening and extension penalties. The ClustalW alignment (with default parameters) was chosen for final analysis because it produced trees with slightly higher bootstrap support.

Maximum Likelihood (ML) and Bayesian phylogenies were constructed using evolutionary models selected by jModelTest 2.1.1 (Darriba et al. 2012). ML analysis was performed in PhylML (Guindon & Gascuel 2003) using a transversional model with a gamma distribution of substitution rates across sites and 1000 bootstrap replicates. Bayesian analysis was performed in MrBayes 3.2.1 (Ronquist et al. 2012) using a three-parameter model with unequal base frequencies and a gamma distribution of substitution rates across sites. The Bayesian model was run over 1.75 million generations at which point the standard deviation of split frequencies fell below 0.01.

(c) **Taxonomy, sample identification, and morphological terminology**

With respect to the taxonomy of the genus *Leptoseris*, the synonymies of Dinesen (1980) were followed except that *L. tubulifera* Vaughan, 1907 was treated as a valid species based on molecular and micromorphological evidence. Following the suggestion of Dai & Lin (1992), *Pavona yabei* Pillai and Scheer, 1976 was kept in the genus *Pavona* (rather than reassigned to *Leptoseris* as proposed by Veron & Pichon 1980). The septal and corallite morphologies of *P. yabei* are more similar to those of other *Pavona* spp. (e.g. septocostae that always alternate in length, rows of granules rather than continuous meninae on the lateral faces of septocostae, high corallite density, predominance of radial collines, etc.) and there is no molecular evidence that it
should be grouped with *Leptoseris* spp. All samples included in this study were identified to the species-level by comparison to type material and by consultation with taxonomists Z.D. Dinesen and J.E. Maragos.

In reference to the features of the coral skeleton, the terminology of Dinesen (1980) was employed except that ‘meninaes’ (Gill & Russo 1980) was used rather than ‘lateral ridges’ for the paired lists or ridges along the lateral surfaces of septocostae. For detailed definitions of skeletal terms, consult Wells (1956) and Budd & Stolarski (2009).

(d) Morphological analyses

Skeletal morphological analyses were conducted on 94 samples (52 with paired tissue vouchers) in order to (1) provide additional support for molecular-based species groups (2) and to identify diagnostic characters for species identification when molecular analyses are not possible. Emphasis was placed on identifying discrete characters because they are easily mapped onto phylogenies.

Consistent with other integrated systematic studies of scleractinians (Budd & Stolarski 2009; Benzoni et al. 2010; Budd et al. 2010), morphological analyses focused on septocostal and costal micromorphology, although macromorphological observations of the corallum and corallites were also made. Where samples had free growth margins, costal ornamentation (‘costae’ being extensions of septocostae on the non-calicinal surface and ‘ornamentation’ being the granules/spines on costae) were also analyzed. Because of their small size (typically < 100 µm in diameter) and location on the non-photosynthetic side (i.e. the underside) of the corallum, costal granules/spines were selected for closer examination since they may be subject to reduced environmental selection and therefore show less ecotypic variation within a given species.

In order to identify diagnostic characters, skeletal samples were examined under a Nikon SMZ 800 light microscope. Skeletons were bleached with sodium hypochlorite to remove tissue,
rinsed and then air dried. Examinations were made first with each skeleton intact. Visible features were recorded and digital photographs of the corallites, septocostae and costae were taken using a Nikon P-6000 camera mounted to the microscope. When samples were large enough (n = 40), longitudinal sections were cut throughout the coenosteum using a Dremel® tool or wet saw to investigate the arrangement of meninaes. A subset of skeletons was also analyzed using scanning electron microscopy (SEM). Longitudinal sections or chips of these samples were mounted on metal stubs using carbon glue or tape, sputter-coated with gold-palladium for approximately 2 min, and then viewed with a Hitachi S-4800 SEM.

3. RESULTS

(a) Phylogenetic results
Sequence data from the cox1-1-rRNA intron were obtained from 70 coral colonies (Supplemental Table S1) and three sequences were obtained from previously published mitochondrial genomes. The final alignment of 73 sequences was 743 bp long and included 517 variable sites, 321 of which were parsimony informative. Bayesian and ML trees had similar topologies and placed most taxa in well-supported clades (Fig. 1; only Bayesian tree shown). Pairwise nucleotide distances between significant clades were always an order of magnitude higher than within group distances (mean uncorrected p-distance of 0.193 ± 0.025 vs. 0.015 ± 0.008).

The Bayesian phylogeny shows that the genus *Leptoseris*, as currently defined, is polyphyletic (Fig. 1). A majority of Hawaiian *Leptoseris* spp. belong to clades I-II including *L. hawaiiensis, L. incrustans* (Quelch, 1886), *L. papyracea* (Dana, 1846), *L. tubulifera* and *L. sp. 1*. However, *L. scabra*, which forms the sister clade (VII) to *Agaricia humilis*, is distantly related to clades I-II. The mean pairwise nucleotide distances between clade VII and clades I-II were among the highest distances between all groups compared (uncorrected p-distances: I vs. VII = 0.294 ± 0.018; II vs. VII = 0.284 ± 0.018). Three haplotypes of *L. mycetoseroides* Wells, 1954 are...
scattered throughout the phylogeny, but all three clearly fall outside the group formed by clades I-II.

The genus *Pavona* is also polyphyletic at the cox1-1-rRNA intron and consists of at least two clades (V and VIII). Clade V is sister to the group formed by *A. humilis* and *L. scabra*, whereas clade VIII is more closely related to the *Leptoseris* spp. of clades I-II.

(b) **Morphological results**

Morphological analyses revealed that most molecular-based species groups could be independently identified using skeletal characters (Fig. 2; Supplemental Table S3). Although no single character could distinguish between all *Leptoseris* or *Pavona* spp., combinations of discrete characters were effective in pairwise comparisons. Among the more important characters were the costal ornamentation, the shape and continuity of the upper septocostal margin, the development of meninaes, and species-specific macro-projections.

Several *Leptoseris* spp. had clear diagnostic characters. For example, *L. incrustans* consistently had meninaes four to five times wider than the upper septocostal margin, which was always a narrow and continuous ridge (Fig. 2B). This width ratio was constant throughout the corallum (mean = 0.19, standard deviation = 0.09) except in the vicinity of corallites or where insertions occurred. *L. tubulifera* was clearly diagnosed by the presence of corallites on tubes, a characteristic absent from *Pavona*? sp. 2, which may also form tubes.

In cases where a species lacked a single diagnostic character, it could usually be distinguished from species with similar gross morphologies by analyzing combinations of discrete micromorphological characters. For example, *L. hawaiiensis* and *L. scabra* both grow as thin plates in lower MCEs (Figs. 3D, J). The costal ornamentation of the two species, however, is clearly different (Figs. 2C-D). *L. hawaiiensis* has conical spines predominantly aligned in a single row down the center of each costa, whereas *L. scabra* has cylindrical or beady granulations in
three rows, one central row and one row on each margin. Similarly, *Pavona* sp.1 and *L.*
papyracea, both of which form branching colonies (Figs. 3E, H), are easily distinguished by their
costal ornamentation. *L. papyracea* has exsert, conical spines arranged in a single row down the
center of each costa while *P. sp.* 1 has triangular or bead-like granulations scattered along costae.
A final example is that of *L. scabra* versus *L. sp.* 1. Both species grow as crateriform vases with
irregular, bumpy surfaces in mid-mesophotic depths (~60-80 m), but the two differ in their
development of septal teeth (Figs. 2A, D). *L. scabra* has peg-like teeth formed by discontinuities
of the septocostae, including their meninae. In *L. sp.* 1, teeth are absent or visible only as
discontinuities of the upper septocostal margin above the meninae. *L. sp.* 1 also has septocostae
that form numerous abortive branches at proximal cushions, with some branches turning
antiparallel from their parent septocosta. In fact, *L. sp.* 1 is distinct from any species described in
the literature and is putatively a new species in need of formal description.

Some aspects of micromorphology were also concordant with generic differences at the
cox1-1-rRNA region. For example, members of the “*Leptoseris*” clades (I-II) had more or less
continuous meninae, whereas most *Pavona* spp. had granules arranged in rows along their lateral
surfaces but lacked continuous meninae. The position of *L. mycetoseroides* outside of the clades
I-II is also supported by micromorphology as all three haplotypes of *L. mycetoseroides* have rows
of granules rather than continuous meninae. Continuous meninae, however, are apparently not
synapomorphic as they are sometimes found in *L. scabra* (clade VII). In fact, while
morphological analyses revealed many useful characters, few synapomorphies were found. Most
of the patterns of costal ornamentation that differentiate between *Leptoseris* spp. can also be
found in *Pavona* spp. (Fig. 2: B vs. E) and *L. scabra* (Fig. 2: A vs. D).

(c) *Depth distribution of Hawaiian Leptoseris and Pavona*
Leptoseris and Pavona clades sorted into two major groups according to their depth distributions (Fig. 4). Most clades occurred in shallow-water (< 30 m) down to mid-mesophotic depths (60-80 m). Only clades Ib (L. hawaiiensis) and VII (L. scabra) were restricted to depths > 60 m. These two clades were observed deeper than any others, with colonies of L. hawaiiensis observed at 141 m and L. scabra observed to 127 m. One Leptoseris species, L. incrustans, was never observed in mesophotic depths but was among the more common agariciids observed in dimly-lit, shallow-water caves and undercuts. Of the nominal Pavona spp., only P. sp. 1 (clade V) was observed from lower MCEs (89 m); all other Pavona spp. were restricted to depths < 80 m.

4. DISCUSSION

Although a previous study found polyphyly with a few samples of Pavona and Leptoseris (Le Goff-Vitry, Rogers & Baglow 2004), this study confirms this finding with more adequate taxonomic sampling. This polyphyly can be attributed to the inclusion of L. mycetoseroides and L. scabra within the genus since both are distantly related to other Leptoseris spp. (Fig. 1) and probably in need of generic reassignment. The remaining Hawaiian Leptoseris spp. form a monophyletic group (clades I-II) that could potentially retain the name Leptoseris, depending on the phylogenetic position of the type species, L. fragilis.

This study is also the first to use the cox1-l-rRNA intron as a phylogenetic marker for scleractinians. In Leptoseris and Pavona, this intron is highly variable and capable of distinguishing between closely related species. Such variability is atypical of anthozoan mtDNA, which normally evolves too slowly to distinguish between congenerics (Shearer et al. 2002; Hellberg 2006). Since the cox1-l-rRNA intron gave high resolution across several agariciid genera, it may be useful for resolving species-level relationships throughout the family Agariciidae.
Because mtDNA-based trees may not accurately reflect phylogenetic descent (Funk & Omland 2003; McGuire et al. 2007), many phylogenetic studies use nuclear-DNA (nDNA) to corroborate mtDNA-based trees (Romano & Cairns 2000; van Oppen, Koolmes & Veron 2001; Fukami et al. 2008). However, analysis of several nuclear markers is often necessary to achieve the same level of confidence that gene and species trees are congruent that could be achieved with a single mitochondrial marker (Moore 1995). Morphological characters, provided they are rigorously defined (e.g. discrete), can provide an alternative data set for corroborating phylogenies inferred from mtDNA (Puerto et al. 2001; Wiens & Penkrot 2002; Rubinoff & Holland 2005). The strong correspondence found here between mitochondrial cox1-1-rRNA groups and discrete skeletal characters suggests that the mtDNA tree accurately reflects the species trees for these genera.

In *Leptoseris* and *Pavona*, micromorphology (sensu Budd & Stolarski 2009) generally showed higher correspondence with molecular data than macromorphology, which was highly convergent. The colony form of *L. scabra*, for instance, resembles that of both *L. hawaiiensis* and *L. sp. 1* at their respective depths yet *L. scabra* is not closely related to either species (Fig. 1). In both cases, *L. scabra* is easily distinguished using micromorphological characters. The correspondence between micromorphological and molecular evidence is consistent with the results of recent works in scleractinian systematics. Benzoni et al. (2012) found that *Craterastrea levis*, which had been synonymized with *L. foliosa* based on affinities in corallum morphology, differed from *L. foliosa* in micromorphology, microstructure and at several molecular markers. Kitahara et al. (2012) found that the microstructure of *Dactylotrochus cervicornis* (Moseley, 1881) agreed with cox1 data that had, surprisingly, placed it within the Agariciidae.

Of the micromorphological characters explored in this study, costal ornamentation is of particular diagnostic importance for *Leptoseris* and *Pavona* spp. Differences in septal
ornamentation (e.g. granule shape) have been found to be effective at distinguishing between
Atlantic and Pacific faviids and mussels (Budd & Stolarski 2009). The diagnostic utility of costal
ornamentation for unifacial agariciids is consistent with those results because costal and septal
ornamentation are homologous; like interspecific differences in septal ornamentation, differences
in costal ornamentation reflect differences in the development and arrangement of calcification
zones (i.e. rapid accretion front vs. thickening deposits, see Stolarski 2003). For corals growing in
the lower mesophotic where useable light is unidirectional (Kirk 1994), costal ornamentation (on
the shaded side of a colony) theoretically does not affect colony photophysiology and should
show less ecotypic variation than septal ornamentation (on the side of the colony exposed to
light), potentially enhancing the diagnostic value of costal relative to septal ornamentation.

In contrast to micromorphological characters, many macromorphological (i.e. gross,
colony-level appearance) characters in Leptoseris and Pavona are not concordant with molecular
results. The three haplotypes of L. mycetoseroides, for example, all have the collines (protuberant
ridges between corallites) that ostensibly define the species (Wells 1954; Dinesen 1980), yet these
haplotypes are scattered throughout the mtDNA phylogeny. Another example is that of Pavona
sp. 1 versus L. papyracea, two species that clearly differ in their costal ornamentation (see results
section). P. sp. 1 is common in museum collections but is almost always misidentified as L.
papyracea because it also has a branching growth form. Mitochondrial data, however, agree
with the observed differences in costal ornamentation and confirm that the two species are
distinct (Fig. 1).

The ambiguous boundaries between Leptoseris and Pavona in traditional taxonomic systems
may have contributed to the narrative that Leptoseris spp. dominate lower MCEs in the
Indo-Pacific (Vaughan 1907; Wells 1954; Rooney et al. 2010). The results of this study show that
in Hawai`i *Leptoseris* spp. coexist with *Pavona* spp. and at least one other clade (which contains *L. scabra*) at depths > 80 m. The collection of *P*. sp. 1 from 89 m surpasses the previous global depth record for the genus *Pavona* (73 m, Gardiner 1905), and the collection of *P. varians* from 73 m in the Au`au Channel extends the Hawaiian depth record for the species from a previous mark of 48-53 m (Vaughan 1907). These new depth records for *Pavona* spp., along with the discovery of one putative new *Leptoseris* sp. and several undescribed morphologies (Supplemental Table S3), indicate that scleractinian diversity in lower Hawaiian MCEs has been underestimated (e.g. Kahng & Kelley 2007; Rooney et al. 2010). As the most remote archipelago in the world, Hawai`i is characterized as a low diversity region and Hawaiian coral fauna are depauperate relative to that of the Indo-West Pacific (IWP) (Grigg 1983; Grigg 1988). The discovery of putative new species and expanded vertical distributions of Hawaiian mesophotic corals suggests that the diversity of IWP MCEs, which are relatively unexplored (Kahng et al. 2010) but occur in a region of high shallow-water diversity, may be substantially greater than previously estimated.

The zonation of *Leptoseris* and *Pavona* spp. from shallow (2 m) to deep-water (≥ 153 m, see Kahng & Maragos 2006) in Hawai`i offers the opportunity to study the processes of niche diversification, speciation and possibly adaptive radiation within a group of sympatric marine species. Adaptive radiations can occur when a group of organisms acquires a key innovation that allows them to use an underutilized set of resources (Schluter 2000). For some *Leptoseris* and *Pavona* spp., highly efficient light absorption (see Kahng et al. 2012) may have enabled colonization of deeper habitats (i.e. different niches) where lower levels of useable light previously prevented other species from surviving or competing for space. Divergent selection between habitats could have eventually led to reproductive isolation and then speciation (Schluter
Divergence in habitat depth seems to have driven speciation in Hawaiian limpets (*Cellana* spp.) (Bird et al. 2011) and in eastern Pacific rockfishes (Ingram 2011). In scleractinian corals, a growing number of studies have pointed to ecological divergence as an explanation for partitioning of species or genotypes by depth (Carlon & Budd 2002; Vermeij & Bak 2003; Bongaerts et al. 2010b). Divergent selection between shallow and mesophotic habitats may have contributed to the diversification of Hawaiian *Leptoseris* and *Pavona* and could explain their zonation along depth gradients.

Molecular data at two mitochondrial markers now suggest that taxonomic revisions of the genera *Leptoseris* and *Pavona* are warranted (Le Goff-Vitry, Rogers & Baglow 2004; this study). The strong correspondence between mtDNA and micromorphology found here suggests that these revisions should focus on micromorphological characters. The development of more reliable diagnostic characters for Hawaiian agariciids will enable comparative studies along depth gradients. Accurate species identification will facilitate comparisons between mesophotic communities in Hawai‘i versus other regions and help determine if the pattern of depth zonation observed in Hawai‘i exists in higher diversity systems such as the IWP.

ACKNOWLEDGEMENTS

Hawai‘i Undersea Research Laboratory provided the submersibles and crew used to collect a majority of samples; D. Wagner and J.E. Maragos provided additional material. S.D. Cairns supervised a visit to USNM to view the type collections stored there. BMNH loaned type material for examination. Z.D. Dinesen and J.E. Maragos gave taxonomic consultation on the genus *Leptoseris*. D. Wagner provided feedback on the manuscript. K. McClanahan and M.M. Mocaer helped collect morphometric data and analyze skeletons.

REFERENCES
Bak RPM, Nieuwland G, and Meesters EH. 2005. Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curaçao and Bonaire. Coral Reefs, 24: 475-479.

Benzoni F, Arrigoni R, Stefani F, and Stolarski J. 2012. Systematics of the coral genus *Craterastrea* (Cnidaria, Anthozoa, Scleractinia) and description of a new family through combined morphological and molecular analyses. Systemetics and Biodiversity, 10: 417-433.

Benzoni F, Stefani F, Pichon M, and Galli P. 2010. The name game: morpho-molecular species boundaries in the genus *Psammocora* (Cnidaria, Scleractinia). Zoological Journal of the Linnean Society, 160: 421-456.

Bird CE, Holland BS, Bowen BW, and Toonen RJ. 2011. Diversification of sympatric broadcast-spawning limpets (*Cellana* spp.) within the Hawaiian archipelago. Molecular Ecology, 20: 2128-2141.

Bongaerts P, Ridgway T, Sampayo EM, and Hoegh-Guldberg O. 2010a. Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs, 29: 309-327.

Bongaerts P, Riginos C, Ridgway T, Sampayo EM, van Oppen MJ, Englebert N, Vermeulen F, and Hoegh-Guldberg O. 2010b. Genetic divergence across habitats in the widespread coral *Seriatopora hystrix* and its associated *Symbiodinium*. PloS one, 5: e10871.

Bridge TCL, Fabricius KE, Bongaerts P, Wallace CC, Muir PR, Done TJ, and Webster JM. 2012. Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs, 31: 179-189.

Budd AF, Romano SL, Smith ND, and Barbeitos MS. 2010. Rethinking the phylogeny of scleractinian corals: a review of morphological and molecular data. Integrative and Comparative Biology, 50: 411-427.
Budd AF, and Stolarski J. 2009. Searching for new morphological characters in the systematics of scleractinian reef corals: comparison of septal teeth and granules between Atlantic and Pacific Mussidae. Acta Zoologica, 90: 142-165.

Carlon DB, and Budd AF. 2002. Incipient speciation across a depth gradient in a scleractinian coral? Evolution, 56: 2227-2242.

Chan YL, Pochon X, Fisher MA, Wagner D, Concepcion GT, Kahng SE, Toonen RJ, and Gates RD. 2009. Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths) coral Leptoseris. BMC ecology, 9: 21.

Cuif JP, Lecointre G, Perrin C, Tillier A, and Tillier S. 2003. Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zoologica Scripta, 32: 459-473.

Dai CF, and Lin CH. 1992. Scleractinia of Taiwan. Part III. Family Agariciidae. Acta Oceanographica Taiwanica, 28: 80-101.

Dana J. 1846. Zoophytes. US Exploring expeditions during the years 1838-1842, 7: 1-740.

Darriba D, Taboada GL, Doallo R, and Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9: 772-772.

Dinesen ZD. 1980. A revision of the coral genus Leptoseris (Scleractinia: Fungiina: Agariciidae). Memoirs of the Queensland Museum, 20: 181-235.

Flot J-F, and Tillier S. 2007. The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: The putative D-loop and a novel ORF of unknown function. Gene, 401: 80-87.

Forsman Z, Martinez JA, Maragos J, and Toonen RJ. 2010. Resurrection of Porites hawaiiensis Vaughan, 1907; a Hawaiian coral obscured by small size, cryptic habitat, and confused taxonomy. Zootaxa, 2624: 67-68.
Fricke HW, and Knauer B. 1986. Diversity and spatial pattern of coral communities in the Red Sea upper twilight zone. *Oecologia*, 71: 29-37.

Fukami H, Budd AF, Paulay G, Solé-Cava A, Chen CA, Iwao K, and Knowlton N. 2004. Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. *Nature*, 427: 832-835.

Fukami H, Chen CA, Budd AF, Collins A, Wallace C, Chuang YY, Chen C, Dai CF, Iwao K, and Sheppard C. 2008. Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). *PLoS One*, 3: e3222.

Funk DJ, and Omland KE. 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. *Annual Review of Ecology, Evolution, and Systematics*, 34: 397-423.

Gardiner J. 1905. Madreporaria. III Fungida. IV Turbinolidae. In: Gardiner JS, ed. *The fauna and geography of the Maldive and Laccadive Archipelagoes: being an account of the work carried on and of the collections made by an expedition during the years 1899 and 1900*. Cambridge: Cambridge University Press, 933-956.

Gill GA, and Russo A. 1980. Recognition of pennular structures typical of Mesozoic corals in *Discotrochus orbignyanus* from the Eocene of the Gulf States. *Journal of Paleontology*, 54: 1108-1112.

Gray J. 1847. An outline of an arrangement of stony corals. *The Annals and Magazine of Natural History*, 19: 120-128.

Grigg R. 1988. Paleoceanography of coral reefs in the Hawaiian-Emperor Chain. *Science*, 240: 1737-1743.
Grigg RW. 1983. Community structure, succession and development of coral reefs in. *Marine Ecological Progress Series*, 11: 1-14.

Guindon S, and Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Systematic biology*, 52: 696-704.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium*, 41: 95-98.

Hellberg ME. 2006. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. *BMC evolutionary biology*, 6: 24.

Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, and Appeldoorn R. 2010. Theme section on “Mesophotic Coral Ecosystems: Characterization, Ecology, and Management”. *Coral Reefs*, 29: 247-251.

Huang D, Meier R, Todd PA, and Chou LM. 2009. More evidence for pervasive paraphyly in scleractinian corals: systematic study of Southeast Asian Faviidae (Cnidaria; Scleractinia) based on molecular and morphological data. *Molecular Phylogenetics and Evolution*, 50: 102-116.

Ingram T. 2011. Speciation along a depth gradient in a marine adaptive radiation. *Proceedings of the Royal Society B*, 278: 613-618.

Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, and Toonen RJ. 2010. Community ecology of mesophotic coral reef ecosystems. *Coral Reefs*, 29: 255-275.

Kahng SE, Hochberg EJ, Apprill A, Wagner D, Luck DG, Perez D, and Bidigare RR. 2012. Efficient light harvesting in deep-water zooxanthellate corals. *Marine Ecological Progress Series*, 455: 65-77.
Taxonomy and Ecology of Hawaiian Leptoseris

Kahng SE, and Kelley CD. 2007. Vertical zonation of megabenthic taxa on deep photosynthetic reef (50-140 m) in the Au'au Channel, Hawaii. Coral Reefs, 26: 679-687.

Kahng SE, and Maragos JE. 2006. The deepest, zooxanthellate scleractinian corals in the world? Coral Reefs, 25: 254-254.

Keshavmurthy S, Yang S-Y, Alamaru A, Chuang Y-Y, Pichon M, Obura D, Fontana S, De Palmas S, Stefani F, and Benzioni F. 2013. DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities. Scientific reports, 3.

Kirk J. 1994. Light and photosynthesis in aquatic ecosystems. New York: Cambridge Univ Press.

Kitahara MV, Cairns SD, Stolarski J, Blair D, and Miller DJ. 2010. A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PloS one, 5: e11490.

Kitahara MV, Stolarski J, Cairns SD, Benzioni F, Stake JL, and Miller DJ. 2012. The first modern solitary Agariciidae (Anthozoa, Scleractinia) revealed by molecular and microstructural analysis. Invertebrate Systematics, 26: 303-315.

Lamarck J-B. 1801. Système des animaux sans vertèbres. Paris: Deterville.

Le Goff-Vitry MC, Rogers AD, and Baglow D. 2004. A deep-sea slant on the molecular phylogeny of the Scleractinia. Molecular Phylogenetics and Evolution, 30: 167-177.

Maragos JE, and Jokiel PL. 1986. Reef corals of Johnston Atoll: one of the world's most isolated reefs. Coral Reefs, 4: 141-150.

McGuire JA, Linkem CW, Koo MS, Hutchison DW, Lappin AK, Orange DI, Lemos-Espinal J, Riddle BR, and Jaeger JR. 2007. Mitochondrial introgression and incomplete lineage sorting through space and time: phylogenetics of crotaphytid lizards. Evolution, 61: 2879-2897.

Milne-Edwards H, and Haime J. 1849. Mémoire sur les polypiérs appartenant à la famille des oculinides, au groupe intermédiaire des Pseudoastréides et à la famille des Fongides.
Moore WS. 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. *Evolution*, 49: 718-726.

Moseley HN. 1881. Report on certain hydroid, alcyonarian and madreporarian corals procured during the voyage of H.M.S. Challenger, in the years 1873-1876. *Report on the scientific results of the voyage of the HMS Challenger during the years 1873-76, Zoology 2*.

Pallas P. 1766. *Miscellanea zoologica*. Hague Comitum.

Pillai CG, and Scheer G. 1976. Report on the stony corals from the Maldive Archipelago. *Zoologica*, 126: 1-83.

Pinzón JH, and LaJeunesse T. 2011. Species delimitation of common reef corals in the genus *Pocillopora* using nucleotide sequence phylogenies, population genetics and symbiosis ecology. *Molecular Ecology*, 20: 311-325.

Pinzón JH, Sampayo E, Cox E, Chauka LJ, Chen CA, Voolstra CR, and LaJeunesse TC. 2013. Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (*Pocillopora*, Scleractinia). *Journal of Biogeography*, 40: 1595-1608.

Puorto G, da Graça Salomão M, Theakston RDG, Thorpe RS, Warrell DA, and Wüster W. 2001. Combining mitochondrial DNA sequences and morphological data to infer species boundaries: phylogeography of lanceheaded pitvipers in the Brazilian Atlantic forest, and the status of *Bothrops pradoi* (Squamata: Serpentes: Viperidae). *Journal of Evolutionary Biology*, 14: 527-538.
Quelch JJ. 1886. Report on the reef corals collected by the H.M.S. Challenger during the years 1873-76. *Report on the scientific results of the voyage of HMS Challenger during the years 1873-76, Zoology*.

Riegl B, and Piller WE. 2003. Possible refugia for reefs in times of environmental stress. *International Journal of Earth Sciences*, 92: 520-531.

Romano SL, and Cairns SD. 2000. Molecular and phylogenetic hypotheses for the evolution of scleractinian corals. *Bulletin of Marine Science*, 67: 1043-1068.

Romano SL, and Palumbi SR. 1996. Evolution of scleractinian corals inferred from molecular systematics. *Science*, 271: 640-642.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, and Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic biology*, 61: 539-542.

Rooney J, Donham E, Montgomery A, Spalding H, Parrish F, Boland R, Fenner D, Gove J, and Vetter O. 2010. Mesophotic coral ecosystems in the Hawaiian Archipelago. *Coral Reefs*, 29: 361-367.

Rubinoff D, and Holland BS. 2005. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. *Systematic biology*, 54: 952-961.

Schluter D. 2000. *The ecology of adaptive radiation*. New York: Oxford University Press.

Shearer T, and Coffroth M. 2008. DNA BARCODING: Barcoding corals: limited by interspecific divergence, not intraspecific variation. *Molecular Ecology Resources*, 8: 247-255.

Shearer TL, Van Oppen MJH, Romano SL, and Wörheide G. 2002. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). *Molecular Ecology*, 11: 2475-2487.
Stolarski J. 2003. Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. *Acta Palaeontologica Polonica*, 48: 497-530.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology and Evolution*, 28: 2731-2739.

Todd PA. 2008. Morphological plasticity in scleractinian corals. *Biological Reviews*, 83: 315-337.

van Oppen MJH, Koolmes EM, and Veron J. 2001. The evolutionary history of the coral genus *Acropora* (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? *Molecular Biology and Evolution*, 18: 1315-1329.

Vaughan TW. 1907. Recent Madreporaria of the Hawaiian Islands and Laysan. *United States National Museum Bulletin*, 59: 1-427.

Vermeij M, and Bak R. 2003. Species-specific population structure of closely related coral morphospecies along a depth gradient (5-60 M) over a Caribbean reef slope. *Bulletin of Marine Science*, 73: 725-744.

Veron JEN. 2000. *Corals of the World*. Townsville: Australian Institute of Marine Science.

Veron JEN, and Pichon MM. 1980. *Scleractinia of Eastern Australia. Part III. Families Agariciidae, Siderastreidae, Fungiidae, Oculinidae, Merulinidae, Mussidae, Pectiniidae, Caryophylliidae, Dendrophylliidae*. Townsville, Queensland: Australian Institute of Marine Science.

Verrill AE. 1901. Variations and nomenclature of Bermudian, West Indian, and Brazilian reef corals: with notes on various Indo-Pacific corals. *Transactions of the Connecticut Academy of Arts and Sciences*, 11: 631-668.
Wells JW. 1954. Recent corals of the Marshall Islands. *US Geological Survey Professional Paper*, 260: 285-186.

Wells JW. 1956. Scleractinia. In *Treatise on Invertebrate Paleontology*, part F: Coelenterata. In: Moore RC, ed. Lawrence: University of Kansas Press, F328-F444.

Wiens JJ, and Penkrot TA. 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (*Sceloporus*). *Systematic biology*, 51: 69-91.
Figure 1

Bayesian phylogeny of Hawaiian *Leptoseris* and *Pavona* spp. using the mitochondrial cox1-1-rRNA intron.

Bayesian posterior probabilities (> 70%) followed by maximum likelihood (ML) bootstrap support (> 50%, ML tree not shown) are given at the nodes. Dashes (-) indicate statistically unsupported nodes. Roman numerals indicate clade numbers. Taxa with letters in parentheses have their micromorphologies pictured in Fig. 2.
Figure 2

Scanning electron micrographs showing representative septocostal and costal micromorphologies for selected *Leptoseris* and *Pavona* spp.

The left-hand column gives a top-down view of the septocostae while the right-hand column shows the arrangement of the costal granulations and spines. The micrographs correspond to the taxa labeled in Fig. 1: (A) *Leptoseris* sp. 1; (B) *L. incrustans*; (C) *L. hawaiiensis*; (D) *L. scabra*; (E) *Pavona?* sp. 2. Scale bars are 500 µm.
Figure 3

In situ images of *Leptoseris* and *Pavona* spp. from Hawai‘i.

Species are presented in the order they appear (from top to bottom) in Fig. 1: (A) *Leptoseris* sp. 1; (B) *L. tubulifera*; (C) *L. incrustans*; (D) *L. hawaiensis*; (E) *L. papyracea*; (F) *Pavona?* sp. 2; (G) *L. mycetoseroides* (haplotype III); (H) *P. sp. 1*; (I) *P. varians*; (J) *L. scabra*; (K) *P. maldivensis*; (L) *L. mycetoseroides* (haplotype I). Photo credits: D. Francke (B, F, K); Hawai‘i Undersea Research Laboratory Archives, P.I. S.E. Kahng (A, D, H, J); R. Knapstein (I); J.E. Maragos (C,E,G,L).
Figure 4

Depth distributions of major clades of the genera *Leptoseris* and *Pavona* in Hawai‘i.

Clade coloring corresponds to that shown in Fig. 1.