Transformation From SDSS Photometric System to Johnson-Morgan-Cousins System in HK Survey

Chongshan Zhao & Heidi Jo Newberg

Department of Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180

newbeh@rpi.edu

ABSTRACT

We calculate the transformation from the Sloan Digital Sky Survey (SDSS) photometric system to the Johnson-Morgan-Cousins System in the HK Survey. This research was done in late 2001, so the SDSS photometry was taken from the databases prior to the release of DR1. This paper is being posted because it is referenced in other papers in the literature, but will not be submitted to a refereed journal because it uses unpublished versions of the catalogs.

1. Introduction

The Sloan Digital Sky Survey (SDSS) photometric catalogs are an important source of stellar photometry, and must be understood in the context of decades of stellar research using different filter standards. In this paper a transformation is computed between the available SDSS photometry in October 2001 and stars of the HK objective prism survey as provided by T. Beers, private communication. A description of the HK survey and an earlier version of the catalog can be found at Preston, Schectman & Beers (1991). The overlaps between the catalogs are relatively few because the faint limit of the HK survey is at approximately the same magnitude as the saturation limit of the SDSS. Neither of the catalogs compared here are standard versions, but were the only comparables available at the time. Technical SDSS details can be found in Gunn et al., 1998; Hogg et al., 2001; Pier et al., 2003; Smith et al., 2002; and York et al., 2000. More recent transformation equations can be obtained from Jester et al., 2005; Karaali, Bilir & Tuncel, 2005; Bilir, Karaali & Tuncel, 2005; and West, Walkowicz & Hawley, 2005; and two other unpublished determinations that can be found in the documentation for the SDSS DR4 at:

http://www.sdss.org/dr4/algorithms/sdssUBVRITransform.html.
2. Query Consideration and Data Reduction

Table 1 lists the stars that were common to the HK survey and the SDSS survey in October 2001. Generation of both catalogs was a work in progress at that time. We selected from the HK catalog all stars whose J2000 coordinates matched SDSS catalog entries within:

\[\Delta(RA) < 7.2''(0.002^\circ) \quad \Delta(Dec) < 7.2'' \]

We rejected any matches in which the SDSS star was saturated by checking the catalog flags:

\[(objFlags \& OBJECT_SATUR) == 0\]

We use the magnitude calculated from a fit of modeled stellar profile (point-spread-function, or PSF magnitude) to each object. Because these stars are too bright for sky noise affect the quality of the photometry, the use of aperture magnitudes would have made little difference.

All photometry in Table 1 has been corrected for interstellar reddening using the \(E_{B-V} \) determined from the HK survey. Corrections for the SDSS photometry are determined from the standard extinction curve of Cardelli, Claydon, & Mathis (1989), which for SDSS filters yields:

\[
\begin{align*}
A_u^* &= 5.2E_{B-V}; \quad A_g^* = 3.2E_{B-V}; \quad A_r^* = 2.8E_{B-V}; \\
A_i^* &= 2.1E_{B-V}; \quad A_z^* = 1.5E_{B-V}
\end{align*}
\]

We noticed that the value of \((U - B)\) is -9.990 for some stars in the original HK list. They were replaced by “···” in the Table 1. When we calculate the transformation which requires \(U\) band, these stars were not included. Three stars were removed from the original matched list because their SDSS photometry was suspicious: \((RA, dec) = (199.9265, 3.9129), (224.7835, -0.2537), (200.7934, 4.6075)\). Two of the stars were close to other bright starts which may have confused the SDSS object delender.

3. Comparison of derived transformation to Fukugita et al. 1996

Figure 1 shows the color-color plots for the SDSS PSF magnitude against the HK survey U-B-V magnitudes of these stars. The coefficients in the equations, plotted as the lines, are derived using the Method of Least Squares. We notice that one star, \((221.5996, -0.1158)\) is half a magnitude brighter in SDSS filters than we expect (though the colors are the same). It is labeled using a bold font in Table 1. There is no reason to remove it from the catalog but we ignore it in all fits for filter transformations.

Fukugita et al. (1996) described SDSS photometric system and gave the approximate color transformation equations from the Johnson-Morgan-Cousins system to the SDSS system. A comparison of our transformations to theirs is given below:
Fig. 1.— Color-Color plots of UBV system against SDSS PSF magnitude. The solid line is the least squares fit to the data. The dashed line indicates the transformation equation of Fukugita et al. (1996).
\[F u k u g i t a ' s \ p a p e r \quad O u r \ R e s u l t \]
\[
g^* = V + 0.56(B - V) - 0.12 \quad g^* = V + 0.592(B - V) - 0.102
\]
\[
r^* = V - 0.49(B - V) + 0.11 \quad r^* = V - 0.451(B - V) + 0.082
\]
\[
u^* - g^* = 1.38(U - B) + 1.14 \quad u^* - g^* = 1.210(U - B) + 1.103
\]
\[
g^* - r^* = 1.05(B - V) + 1.14 \quad g^* - r^* = 1.043(B - V) - 0.185
\]

For the blue stars from which our transformation was derived, our transformations are similar to Fukugita’s. The \((u^* - g^*)\) transformation is the only one that is significantly discrepant. This is because the actual \(u^*\) filter response is different from the theoretical curve used by Fukugita et al.(1996).

4. Inverse Transformation Equations

We will discuss the inverse transformation from SDSS PSF magnitude to UBV system in this section. Magnitudes in the \(g^*\) filter and \(g^* - r^*\) color are used as the primary parameters in the equations since the noise in \(u^*\) is typically higher. We also considered other combinations of filters. Figures 2 and 3 show the results; the transformation is summarized below:

\[
U = g^* + 0.883(u^* - g^*) - 0.717 \quad U = u^* - 0.117(u^* - g^*) - 0.717
\]
\[
B = g^* + 0.348(g^* - r^*) + 0.175 \quad B = g^* + 0.162(u^* - g^*) + 0.094
\]
\[
V = g^* - 0.561(g^* - r^*) - 0.004 \quad V = r^* + 0.439(g^* - r^*) - 0.004
\]
\[
(U - B) = 0.754(u^* - g^*) + 0.835
\]
\[
(B - V) = 0.916(g^* - r^*) + 0.187
\]

5. Conclusion

We have derived transformation equations between HK catalog photometry and SDSS photometry.

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/
Fig. 2.— Transformation plot from SDSS photometric system to UBV system.
Fig. 3.— Transformation plot from SDSS photometric system to UBV system.
The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

REFERENCES

Bilir, S., Karaali, S., & Tuncel, S. 2005, Astronomische Nachrichten, 326, 321

Cardelli, J.A., Clayton, G.C., & Mathis, J.S. 1989, ApJ, 345, 245

Fukugita, M. et al. 1996, AJ, 111, 1748

Gunn, J. E., et al. 1998, AJ, 116, 3040

Hogg, D. W., et al. 2001, AJ, 122, 2129

Jester, S. et al. 2005, AJ, 130, 873

Karaali, S., Bilir, S., & Tuncel, S. 2005, Proc. Astr. Soc. Australia, 22, 24

Mihalas, D. & Binney, J. 1981, Galactic Astronomy, Structure and Kinematics, Second Edition, published by W.H. Freeman and Company

Pier, J. R., et al. 2003, AJ, , 1559

Preston, G. W., Shectman, S. A., & Beers, T. C. 1991, ApJS, 76, 1001

Schlegel, D.J., Finkbeiner, D.P., & Davis, M. 1998, ApJ, 500, 525

Smith, J. A. et al. 2002, AJ, 123, 2121

West, A. A., Walkowicz, L. M., & Hawley, S. L. 2005, PASP, 117, 706

York, D. G. et al. 2000, AJ, 120, 1579

This preprint was prepared with the AAS TeX macros v5.2.
Table 1. Catalog of HK Survey Cross-correlated with SDSS non-EDR Database

HK Coord	GSC Coords	SDSS Coords	UBV system	SDSS PSF magnitude
	RA Dec	RA Dec	U B V	u* g* r* i* z*
1	303110077	198.6167 3.4511	198.6159 3.4523	15.591 15.358 14.688 16.384 14.974 14.456 14.305 14.252
2	303110073	198.6225 5.5703	198.6217 5.5714	14.930 14.950 14.640 15.847 14.716 14.573 14.572 14.604
3	303110061	198.7546 3.4669	198.7540 3.4681	15.451 15.338 14.708 16.271 15.015 14.551 14.404 14.289
4	303110056	199.4292 2.9122	199.4284 2.9136	15.090 15.180 15.080 16.271 15.015 14.551 14.404 14.289
5	303110040	199.7233 3.5876	199.7230 3.5878	15.320 15.340 15.770 16.205 15.046 14.633 14.534 14.485
6	303110048	199.9633 5.8553	199.9626 5.8556	15.160 15.350 15.080 16.205 15.046 14.633 14.534 14.485
7	303110046	199.9279 3.9136	199.9281 3.9145	15.401 15.348 15.080 16.205 15.046 14.633 14.534 14.485
8	303110031	200.2954 5.5717	200.2956 5.5726	14.880 15.050 14.580 16.020 14.716 14.573 14.572 14.604
9	303110022	200.6808 3.6442	200.6812 3.6434	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
10	303110026	200.7858 3.5906	200.7862 3.5917	14.840 15.020 14.580 16.020 14.716 14.573 14.572 14.604
11	303110019	200.9633 2.1536	200.9627 2.1530	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
12	303110020	201.0854 3.4172	201.0859 3.4179	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
13	303110015	201.5829 3.9639	201.5831 3.9651	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
14	303110004	202.0821 3.3917	202.0821 3.3920	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
15	164770013	219.0267 3.6642	219.0262 3.6641	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
16	164770026	219.9288 2.9500	219.9286 2.9489	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
17	164770031	219.7417 4.0964	219.7411 4.0969	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
18	164770028	219.9288 2.9500	219.9286 2.9489	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
19	303170034	220.3283 4.6239	220.3291 4.6244	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
20	164770057	220.8487 4.8675	220.8486 4.8677	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
21	164770054	221.0037 3.9639	221.0035 3.9651	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
22	169810101	221.1496 -0.9181	221.1499 -0.9187	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
23	169810110	221.5996 -0.1158	221.5997 -0.1159	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
24	164770069	221.6121 3.9639	221.6126 3.9646	15.210 15.350 15.080 16.020 14.716 14.573 14.572 14.604
Table 1—Continued

HK Coord	GSC Coords	SDSS Coords	UBV system	SDSS PSF magnitude									
	RA Dec	RA Dec	U B V	u^* g^* r^* i^* z^*									
25	303170014	221.7533 4.9250	221.7531 4.9256	14.392 14.566 14.116 15.253 14.371 14.122 14.066 14.050									
26	169810119	222.4554 2.0433	222.4559 2.0423	15.232 15.104 14.524 15.888 14.674 14.239 14.152 14.053									
27	303010160	222.8217 0.7903	222.8224 0.7917	15.082 15.114 14.774 15.809 14.860 14.772 14.769 14.801									
28	164770095	223.0192 3.3558	223.0181 3.3569	13.952 13.994 13.634 14.733 13.708 13.514 13.489 13.562									
29	303250103	223.2250 3.0119	223.2244 3.0126	15.082 15.114 14.774 15.809 14.860 14.772 14.769 14.801									
30	303010147	223.4338 1.6775	223.4338 1.6780	15.033 15.072 14.372 15.811 14.639 14.199 14.092 14.002									
31	303010122	224.1288 1.5625	224.1288 1.5633	14.482 14.362 15.393 14.210 14.277 14.522 14.522									
32	164720014	224.1600 1.0669	224.1595 1.0662	14.894 14.364 15.593 14.477 14.148 14.032 14.013									
33	303010119	224.1821 2.0694	224.1822 2.0694	15.573 15.652 15.112 16.347 15.345 14.988 14.846 14.804									
34	303250074	224.3604 2.9856	224.3599 2.9851	14.603 14.792 14.422 15.447 14.543 14.297 14.202 14.214									
35	303010098	224.7829 -0.2539	224.7820 -0.2537	15.573 15.652 15.112 16.347 15.345 14.988 14.846 14.804									
36	303010099	225.2812 1.9531	225.2810 1.9540	15.422 15.564 15.064 16.214 15.255 14.907 14.792 14.761									
37	164720041	225.4275 1.2161	225.4274 1.2165	14.172 13.802 14.928 13.828 13.637 13.597 13.646									
38	303010084	225.5146 1.0722	225.5137 1.0718	14.523 14.422 13.792 15.354 14.074 13.591 13.429 13.431									
39	303010099	227.4396 -0.9191	227.4394 -0.9195	14.893 14.932 14.322 15.604 14.534 14.040 13.860 13.756									
40	228940007	353.0421 0.0939	353.0421 0.0937	13.840 13.699 13.534 14.669 13.511 13.584 13.688 13.902									
41	228940006	353.0750 -0.0731	353.0752 -0.0736	15.663 15.506 15.444 16.574 15.368 15.507 15.644 15.707									
42	228940004	353.1646 -0.9369	353.1648 -0.9368	14.260 14.456 14.074 15.028 14.232 13.980 13.903 13.837									
43	228940009	353.3700 0.9594	353.3702 0.9591	14.407 14.538 14.044 15.276 14.270 13.920 13.730 13.703									
44	228940005	353.4475 -0.5358	353.4482 -0.5360	14.698 14.859 14.414 15.528 14.617 14.290 14.154 14.132									
45	228940003	353.4846 -1.2039	353.4847 -1.2041	14.806 14.646 14.544 15.755 14.610 14.664 14.744 14.811									
46	228940014	353.9450 0.8819	353.9454 0.8817	14.645 14.526 14.434 15.621 14.362 14.484 14.578 14.661									
47	228940017	354.0967 0.0700	354.0973 0.0702	14.321 14.487 14.034 15.116 14.283 13.928 13.752 13.841									
48	228940020	354.5200 -0.4206	354.5199 -0.4203	15.000 15.069 14.764 15.911 14.852 14.712 14.683 14.731									
HK Coord	GSC Coords RA	GSC Coords Dec	SDSS Coords RA	SDSS Coords Dec	U	B	V	U*	g*	r*	i*	z*	
----------	---------------	----------------	----------------	----------------	---	---	---	----	----	----	----	----	
49	228940019	354.8287	0.0617	354.8294	0.0616	14.014	14.271	13.856	14.794	14.044	13.769	13.616	13.675
50	228940030	354.9933	-0.8097	354.9939	-0.8094	15.034	14.974	14.586	15.908	14.767	14.530	14.428	14.432
51	228940031	355.0013	-0.5106	355.0020	-0.5109	14.290	14.162	14.116	15.255	14.073	14.229	14.352	14.506
52	228940033	355.0225	-0.3222	355.0226	-0.3219	15.183	15.032	14.926	16.069	14.890	15.046	15.161	15.198
53	228940034	355.4050	0.0236	355.4052	0.0231	14.988	14.865	14.696	15.889	14.634	14.679	14.748	14.886
54	228940036	355.5304	0.5481	355.5305	0.5480	15.011	14.955	14.696	15.840	14.767	14.662	14.638	14.606
55	228940029	355.5604	-0.8592	355.5609	-0.8591	14.453	14.533	14.274	15.407	14.348	14.227	14.275	14.311
56	228940028	355.8275	-1.1953	355.8280	-1.1952	14.862	15.064	14.634	15.669	14.713	14.505	14.332	14.364
57	228940046	356.1296	-0.4364	356.1294	-0.4363	15.252	15.214	14.766	16.197	14.945	14.607	14.521	14.477
58	228940054	357.1179	0.4003	357.1192	0.3994	14.361	14.486	14.116	15.246	14.182	13.980	13.981	13.906