Constraints on the generalized Chaplygin gas model including gamma-ray bursts via a Markov Chain Monte Carlo approach

Nan Liang\textsuperscript{1}, Lixin Xu\textsuperscript{2,3} and Zong-Hong Zhu\textsuperscript{1}

\textsuperscript{1} Department of Astronomy, Beijing Normal University, Beijing 100875, China
\textsuperscript{2} School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
\textsuperscript{3} College of Advanced Science & Technology, Dalian University of Technology, Dalian, 116024, P. R. China

e-mail: liangn@bnu.edu.cn, lxxu@dlut.edu.cn, zhuzh@bnu.edu.cn

Preprint online version: June 2, 2011

ABSTRACT

\textbf{Aims.} We investigate observational constraints on the generalized Chaplygin gas (GCG) model including the gamma-ray bursts (GRBs) at high redshift obtained directly from the Union2 type Ia supernovae (SNe Ia) set.

\textbf{Methods.} By using the Markov Chain Monte Carlo method, we constrain the GCG model with the cosmology-independent GRBs, as well as the Union2 set, the cosmic microwave background (CMB) observation from the Wilkinson Microwave Anisotropy Probe (WMAP7) result, and the baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey (SDSS) data release 7 (DR7) galaxy sample.

\textbf{Results.} The best-fit values of the GCG model parameters are $A_0 = 0.747^{+0.0596}_{-0.0590} (1 \sigma)$, $\alpha = 0.0794 (2 \sigma)$, $\alpha = -0.0256^{+0.0746}_{-0.0748} (1 \sigma)$, $\alpha = -0.0236^{+0.0745}_{-0.0748} (2 \sigma)$, and the effective matter density $\Omega_m = 0.2629^{+0.0155}_{-0.0153} (1 \sigma)$, which are more stringent than previous results for constraining GCG model parameters.

\textbf{Key words.} Gamma rays — galaxies — Cosmology : cosmological parameters

1. Introduction

The original Chaplygin gas (CG, Kamenshchik et al. 2001) and generalized Chaplygin gas models (GCG, Bento et al. 2002) have been proposed as possible explanations of the acceleration of the current universe, with the equation of state as follows

$$p_{GCG} = -\frac{\rho_{GCG}}{3},$$

where $A$ and $\alpha$ are two parameters to be determined. For the case $\alpha = 1$, it corresponds to the original Chaplygin gas (Kamenshchik et al. 2001); if $\alpha = 0$, it acts as the cosmological constant ($\Lambda$). Considering the relativistic energy conservation equation in the framework of Friedmann-Robertson-Walker (FRW) metric, we obtain

$$\rho_{GCG} = \rho_{GCG,0} \left[ A_0 + (1 - A_0) \alpha^{-3(1+\alpha)} \right]^{1/\alpha},$$

where $A_0 \equiv A/\rho_{GCG,0}$. $\rho_{GCG,0}$ is the energy densities of the GCG at present, and the scale factor is related to the redshift by $a = 1/(1+z)$. From Equation (2), the striking property of the GCG can be found that the energy density behaves as dust like matter at early times; while it behaves like a cosmological constant at late times. Therefore, the GCG model can be regarded as a derivative of the unified dark matter/energy (UDME) scenario (Bento et al. 2004). Until now, the GCG model has been constrained using many different types of observational data, such as Type Ia supernovae (SNe Ia) (Fabris et al. 2002; Makler et al. 2003a; Colistete et al. 2003; Silva and Bertolami 2003; Cunha et al. 2004; Bertolami et al. 2004; Bento et al. 2006; Wu and Yu 2007a, cosmic microwave background (CMB) anisotropy (Bento et al. 2003a, 2003b; Bean and Dore 2003; Amendola et al. 2003), the angular size of the compact radio sources (Zhu et al. 2004), the X-ray gas mass fraction of clusters (Cunha et al. 2004; Makler et al. 2003b), the Hubble parameter versus redshift data (Wu and Yu 2007b), large-scale structure (Bilic et al. 2002; Multamaki et al. 2004), gravitational lensing surveys (Dev et al. 2003, 2004; Chen 2003a, 2003b), age measurements of high-$z$ objects (Alcaniz et al. 2003) and lookback time of galaxy clusters (Li, Wu and Yu 2009); as well as various combinations of data (Wu and Yu 2007c; Davis et al. 2007; Li, Li and Zhang 2010; Xu and Lu 2010).

Gamma-ray burst (GRBs) have been proposed as distance indicators and regarded as a complementary cosmological probe of the universe at high redshift (Schaefer 2003; Dai et al. 2004; Ghirlanda et al. 2004; Firmani et al. 2005, 2006; Liang and Zhang 2005; Ghirlanda et al. 2006; Schaefer 2007; Wang et al. 2007; Wright 2007; Amati 2008; Basilakos and Perivolaropoulos 2008; Mosquera Cuesta et al. 2008a, 2008b; Daly et al. 2008). Owing to the lack of a low-redshift sample, the empirical luminosity relations of GRBs had been usually calibrated by assuming a certain cosmological model with particular model parameters. Liang et al. (2008) presented a completely cosmology-independent method to calibrate GRB luminosity relations with the luminosity distances of GRBs at low redshift interpolated directly from SNe Ia or by other similar approaches (Liang and Zhang 2008; Kodama et al. 2008; Cardone et al. 2009; Gao et al. 2010; Capozziello and Izzo 2010). Following the cosmology-independent calibration method, the derived GRB data at high redshift can be used to constrain cosmological models by using the standard Hubble diagram method (Capozziello and Izzo 2008; Izzo et al. 2009; Wei and Zhang 2009; Wei 2009; Qi et al. 2009; Wang et al. 2009a, 2009b; Liang, Wu and Zhang 2010; Wang and Liang 2010; Liang, Wu and Zhu 2010).
2. Observational Data Analysis

The Union2 compilation consists of data for 557 SNe Ia (Amanullah et al. 2010), and we use the 69 GRBs data compiled by Schaefer (2007). Following Liang, Wu and Zhu (2010), we use the updated distance moduli of the GRBs at redshift greater than 1.4, which calibrated with the sample at $z \leq 1.4$ by using the linear interpolation method from the Union2 set. For more details for the calculations for GRBs, we refer to Liang et al. (2008) and Liang, Wu and Zhang (2010). Constraints from SNe Ia and GRB data can be obtained by fitting the distance module $\mu(z)$. A distance modulus can be calculated as

$$\mu = 5 \log \frac{d_L}{\text{Mpc}} + 25 = 5 \log_{10} D_L - \mu_0, \quad (3)$$

where $\mu_0 = 5 \log_{10} H_0/(100 \text{km/s/Mpc}) + 42.38$, and the luminosity distance $D_L$ can be calculated using

$$D_L \equiv H_0 d_L = (1 + z) \Omega_k^{1/2} \sinh \left[ \Omega_k^{1/2} \int_0^z \frac{dz'}{E(z')} \right] \quad \text{(4)}$$

where $\sinh(x)$ is sinh for $\Omega_k > 0$, sin for $\Omega_k < 0$, and $x$ for $\Omega_k = 0$, and $E(z) = H/H_0$, which is determined by the choice of the specific cosmological model. The $\chi^2$ value of the observed distance modulus can be calculated by

$$\chi^2_\mu = \sum_{i=1}^{N} \frac{[\mu_{\text{obs}}(z_i) - \mu(z_i)]^2}{\sigma^2_{\mu z}}, \quad (5)$$

where $\mu_{\text{obs}}(z_i)$ are the observed distance modulus for the SNe Ia and/or GRBs at redshift $z_i$ with its error $\sigma_{\mu z}$; $\mu(z)$ are the theoretical value of the distance modulus from cosmological models. Following the effective approach (Nesseris and Perivolaropoulos 2005), we marginalize the nuisance parameter $\mu_0$ by minimizing $\chi^2 = C - B^2/A$, where $A = \sum 1/\sigma^2_{\mu z}$; $B = \sum [\mu_{\text{obs}}(z_i) - 5 \log_{10} D_L]/\sigma^2_{\mu z}$; and $C = \sum [\mu_{\text{obs}}(z_i) - 5 \log_{10} D_L]/\sigma^2_{\mu z}$.

For the CMB observation, we use the data set including the acoustic scale ($l_0$), the shift parameter ($R$), and the redshift of recombination ($z_\ast$), which provides an efficient summary of CMB data as far as cosmological constraints go. The acoustic scale can be expressed as

$$l_0 = \pi \sqrt{\frac{\Omega_k^{1/2} \sinh \left[ \Omega_k^{1/2} \int_0^\infty \frac{dz'}{E(z')} \right]}{\Omega_M^{1/2} \sinh \left[ \Omega_M^{1/2} \int_0^\infty \frac{dz'}{E(z')} \right]}} / H_0, \quad (6)$$

where $r_\ast(z_\ast) = H_0^{-1} \int_0^{z_\ast} c(z)/E(z)dz$ is the comoving sound horizon at photo-decoupling epoch. The shift parameters can be expressed as

$$R = \Omega_M^{1/2} \Omega_k^{1/2} \sinh \left[ \Omega_k^{1/2} \int_0^\infty \frac{dz}{E(z')} \right] / \Omega_M^{1/2} \sinh \left[ \Omega_M^{1/2} \int_0^\infty \frac{dz}{E(z')} \right]. \quad (7)$$

The redshift of recombination can be given by (Hu and Sugiyama 1996)

$$z_\ast = 1048[1 + 0.00124(\Omega_M h^2)^{-0.738} (1 + g_1(\Omega_M h^2)^{1/2})], \quad (8)$$

where $g_1 = 0.0783(\Omega_M h^2)^{-0.238} + 1.395(\Omega_M h^2)^{-0.763} - 1$ and $g_2 = 0.560(1 + 21.1(\Omega_M h^2)^{1/2})^{-1}$. From the WMAP7 measurement, the best-fit values of the data set ($l_0$, $R$, $z_\ast$) are (Komatsu et al. 2010)

$$P_{\text{CMB}} = \left( \begin{array}{c} l_0 \\ R \\ z_\ast \end{array} \right) = \left( \begin{array}{c} 302.09 \pm 0.76 \\ 1.725 \pm 0.018 \\ 1091.3 \pm 0.91 \end{array} \right). \quad (9)$$

The $\chi^2$ value of the CMB observation can be expressed as (Komatsu et al. 2010)

$$\chi^2_{\text{CMB}} = \Delta P_{\text{CMB}} C^{-1} \Delta P_{\text{CMB}}, \quad (10)$$

where $\Delta P_{\text{CMB}} = P_{\text{CMB}} - P_{\text{CMB}}$, and the corresponding inverse covariance matrix is

$$C_{\text{CMB}}^{-1} = \left( \begin{array}{ccc} 2.305 & 29.698 & -1.333 \\ 29.698 & 6825.270 & -113.180 \\ -1.333 & -113.180 & 3.414 \end{array} \right). \quad (11)$$

For the BAO observation, we use the measurement of the BAO distance ratio ($d_s$) at $z = 0.2$ and $z = 0.35$ (Percival et al. 2010), which can be expressed as

$$d_s = \frac{r_\ast(z_\ast)}{D_V(z_\ast)}, \quad (12)$$

where the distance scale $D_V$ is given by (Eisenstein et al. 2005)

$$D_V(z_\ast) = \frac{1}{H_0} \left| \frac{z_\ast}{E(z_\ast)} \right|^{1/3} \int_0^{z_\ast} \frac{dz}{E(z)}, \quad (13)$$

and $r_\ast(z_\ast)$ is the comoving sound horizon at the drag epoch at which baryons were released from photons, $z_d$ can be given by (Eisenstein & Hu 1998)

$$z_d = \frac{1291(\Omega_M h^2)^{0.251}}{[1 + 0.659(\Omega_M h^2)^{0.228}] + [1 + b_1(\Omega_M h^2)^{0.199}]}, \quad (14)$$

where $b_1 = 0.313(\Omega_M h^2)^{0.419} + 1.607(\Omega_M h^2)^{0.674}$ and $b_2 = 0.238(\Omega_M h^2)^{0.233}$. From SDSS data release 7 (DR7) galaxy sample, the best-fit values of the data set ($d_{02}, d_{035}$) are (Percival et al. 2010)

$$P_{\text{BAO}} = \left( \begin{array}{c} d_{0.2} \\ d_{0.35} \end{array} \right) = \left( \begin{array}{c} 0.1905 \pm 0.0061 \\ 0.1097 \pm 0.0036 \end{array} \right). \quad (15)$$

The $\chi^2$ value of the BAO observation from SDSS DR7 can be expressed as (Percival et al. 2010)

$$\chi^2_{\text{BAO}} = \Delta P_{\text{BAO}} C_{\text{BAO}}^{-1} \Delta P_{\text{BAO}}, \quad (16)$$

where the corresponding inverse covariance matrix is

$$C_{\text{BAO}}^{-1} = \left( \begin{array}{cc} 30124 & -17227 \\ -17227 & 86977 \end{array} \right). \quad (17)$$
3. CONSTRAINTS ON THE GCG MODEL VIA MCMC METHOD

We consider a flat universe filled with the GCG component and the baryon matter component. From the Friedmann equation $H^2 = (8\pi G/3)[\rho_h + \rho_{GCG}]$, we find that

$$E^2(z; A_s, \alpha) \equiv \frac{H^2}{H_0^2} = \Omega_b(1+z)^3(1-\Omega_b) \times [A_s + (1-A_s)(1+z)^{3(1+\alpha)}],$$

(18)

where $\Omega_b$ represents the fractional contribution of baryon matter. The effective matter density in the GCG model can be given by (Bento et al. 2004; Wu and Yu 2007c)

$$\Omega_m = \Omega_b + (1-\Omega_b)(1-A_s).$$

(19)

To combine GRB data with the SNe Ia data and constrain cosmological models, we follow the simple method of avoiding any correlation between the SNe Ia data and the GRB data: the 40 SNe points used in the interpolating procedure are excluded from the Union2 SNe Ia sample used to derive the joint constraints (Liang, Wu and Zhang 2010; Liang, Wu and Zhu 2010). The 42 GRBs and the reduced 517 SNe Ia, CMB, BAO are all effectively independent, therefore we can combine the results by simply multiplying the likelihood functions. The total $\chi^2$ with the SNe + GRBs + CMB + BAO dataset is

$$\chi^2 = \chi^2_{\text{SNe,GRBs}} + \chi^2_{\text{CMB}} + \chi^2_{\text{BAO}}.$$  

(20)

We perform a global fitting to determine the cosmological parameters using the Markov chain Monte Carlo (MCMC) method. In adopting the MCMC approach, we generate using Monte Carlo methods a chain of sample points distributed in the parameter space according to the posterior probability, using the Metropolis-Hastings algorithm with uniform prior probability distribution. In the parameter space formed by the constraint cosmological parameters, a random set of initial values of the model parameters is chosen to calculate the $\chi^2$ or the likelihood. Whether the set of parameters can be accepted as an effective Markov chain or not is determined by the Metropolis-Hastings algorithm. The accepted set not only forms a Markov chain, but also provides a starting point for the next process. We then repeat this process until the established convergence accuracy can be satisfied. The convergence is tested by checking the so-called worst e-values [the variance(mean)/mean(variance) of 1/2 chains] $R < 1 < 0.005$.

Our MCMC code is based on the publicly available CosmoMC package (Lewis & Bridle 2002), and we generated eight chains after setting $R = 1 = 0.001$ to guarantee the accuracy of this work. We show the 1-D probability distribution of each parameter in the MCMC method ($\Omega_b h^2$, $A_s$, $\alpha$, $\Omega_e$, Age/Gyr, $\Omega_m$, $H_0$) and 2-D plots for parameters between each other for the GCG model with SNe + GRBs + CMB + BAO in figure 1 (Age/Gyr is the cosmic age, in units of Gyr). The best-fit values of the GCG model parameters with the joint observational data are $A_s = 0.7475 \pm 0.0550(1\sigma) = 0.0794(2\sigma)$, $\alpha = 0.0256 \pm 0.1706(1\sigma) = 0.2730(2\sigma)$, and the effective matter density $\Omega_m = 0.2629 \pm 0.0153(1\sigma) = 0.0226(2\sigma)$. For comparison, fitting results from the joint data of 557 SNe Ia, the CMB and BAO without GRBs and 42 GRBs, the CMB and BAO without SNe Ia are given in Figs 2 and 3. We present the best-fit values of each parameter with the 1-$\sigma$ and 2-$\sigma$ uncertainties, as well as $\chi^2_{\text{min}}$, in Table 1.

From Figs. 1-3 and Table 1, it is shown that the cosmological constant ($\alpha = 0$) is allowed at the 1-$\sigma$ confidence level, and the original Chaplygin gas model ($\alpha = 1$) is ruled out at 95.4% confidence level, which are both consistent with that obtained in Wu and Yu (2007c), and Li, Wu and Yu (2009). We can find that GRBs can provide strong constraints when combined with CMB and BAO data without SNe Ia, which has been also noted by Liang, Wu and Zhu (2010), Liang and Zhu (2010), and Gao et al. (2010). In addition, the constraining results in this work with the joint observational data including GRBs are more stringent than previous results for constraining GCG model parameters with GRBs and/or other combined observations (e.g. Wang et al. 2009a, 2009b; Freitas et al. 2010; Davis et al. 2007; Wu and Yu 2007c; Li, Wu and Yu 2009; Li, Li and Zhang 2010; Xu and Lu 2010).
Table 1. The best-fit values of parameters $\Omega_0 h^2$, $A_S$, $\alpha$, $\Omega_\Lambda$, Age/Gyr, $\Omega_m$, and $H_0$ for the GCG model with the 1-$\sigma$ and 2-$\sigma$ uncertainties, as well as $\chi^2_{min}$ for the data sets SNe+CMB+BAO, SNe+GRBs+CMB+BAO, and GRBs+SNe+CMB+BAO, respectively.

| Parameter | SNe+GRBs+CMB+BAO | SNe+CMB+BAO | GRBs+CMB+BAO |
|-----------|-------------------|-------------|--------------|
| $\Omega_0 h^2$ | $0.0222^{+0.0083}_{-0.0084}(2\sigma)$ | $0.0232^{+0.0085}_{-0.0087}(2\sigma)$ | $0.0232^{+0.0085}_{-0.0087}(2\sigma)$ |
| $A_S$ | $0.7475^{+0.1074}_{-0.1076}(2\sigma)$ | $0.7668^{+0.1074}_{-0.1076}(2\sigma)$ | $0.7766^{+0.1074}_{-0.1076}(2\sigma)$ |
| $\alpha$ | $-0.0256^{+0.1764}_{-0.1767}(2\sigma)$ | $0.0198^{+0.1758}_{-0.1760}(2\sigma)$ | $0.0184^{+0.1758}_{-0.1760}(2\sigma)$ |
| $\Omega_\Lambda$ | $0.7371^{+0.0154}_{-0.0154}(2\sigma)$ | $0.7425^{+0.0154}_{-0.0154}(2\sigma)$ | $0.7425^{+0.0154}_{-0.0154}(2\sigma)$ |
| Age/Gyr | $13.79^{+0.005}_{-0.005}(2\sigma)$ | $13.77^{+0.005}_{-0.005}(2\sigma)$ | $13.75^{+0.005}_{-0.005}(2\sigma)$ |
| $\Omega_m$ | $0.2629^{+0.005}_{-0.005}(2\sigma)$ | $0.2575^{+0.005}_{-0.005}(2\sigma)$ | $0.2575^{+0.005}_{-0.005}(2\sigma)$ |
| $H_0$ | $69.56^{+0.241}_{-0.241}(2\sigma)$ | $70.29^{+0.241}_{-0.241}(2\sigma)$ | $70.29^{+0.241}_{-0.241}(2\sigma)$ |

4. CONCLUSIONS

By using the Markov Chain Monte Carlo method, we have constrained on the generalized Chaplygin gas (GCG) model with the cosmology-independent GRBs, as well as with the cosmology-independent GRBs, as well as the Union2 SNe Ia set, the CMB observation from WMAP7 result, and the BAO observation from SDSS DR7 galaxy sample. With the joint observational data, the best-fit values of the GCG model parameters are $A_S=0.7475^{+0.1074}_{-0.1076}(2\sigma)$, $\alpha=-0.0256^{+0.1764}_{-0.1767}(2\sigma)$, and the effective matter density $\Omega_m = 0.2629^{+0.005}_{-0.005}(2\sigma)$, which are more stringent than previous results for constraining the GCG model parameters obtained using data of GRBs and/or other combinations of observations.

Acknowledgements

We thank Yun Chen, Shuo Cao, Hao Wang, Yan Dai, Chunhua Mao, Fang Huang, Yu Pan, Jing Ming, Kai Liao and Dr. Yi Zhang for discussions. This work was supported by the National Science Foundation of China under the Distinguished Young Scholar Grant 10825313, the Key Project Grants 10533010, and by the Ministry of Science and Technology national basic science Program (Project 973) under grant No. 2007CB815401.
Liang, N., Xiao, W. K., Liu, Y., and Zhang, S. N. 2008, ApJ, 685, 354
Liang, N. and Zhang, S. N. 2008, AIP Conf. Proc., 1065, 367
Liang, N., Wu, P. and Zhang, S. N. 2010, Phys. Rev. D, 81, 083518
Liang, N., Wu, P. and Zhu, Z.-H. 2010, arXiv:1006.1105
Liang, N. and Zhu, Z.-H. 2010, arXiv:1010.3684
Makler, M., Oliveira, S. Q., and Waga, I. 2003a, Phys. Lett. B, 555, 1
Makler, M., Oliveira, S. Q., and Waga, I. 2003b, Phys. Rev. D, 68, 123521
Mosquera Cuesta, H. J. et al. 2008a, JCAP, 07, 04
Mosquera Cuesta, H. J. et al. 2008b, A&A, 487, 47
Multam¨ aki, T., Manera, M. and Gazta˜ naga, E. 2004, Phys. Rev. D, 69, 023004
Nesseris, S. and Perivolaropoulos, L. 2005, Phys. Rev. D, 72, 123519
Percival, W. J. et al. 2010, MNRAS, 401, 2148
Qi, S., Lu, T., and Wang, F. Y. 2009, MNRAS, 398, L78
Schaefer, B. E. 2003, ApJ, 583, L67
Schaefer, B. E. 2007, ApJ, 660, 16
Silva, P. T. and Bertolami, O. 2003, ApJ, 599, 829
Wang, F. Y., Dai, Z. G., and Zhu, Z.-H. 2007, ApJ, 667, 1
Wang, F. Y., Dai, Z. G., and Qi, S. 2009a, A&A, 507, 53
Wang, F. Y., Dai, Z. G., and Qi, S. 2009b, RAA, 9, 547
Wang, T. S. and Liang, N. 2010, ScChG, 53, 1720
Wei, H. and Zhang, S. N. 2009, EPJC, 63, 139
Wei, H. 2009, EPJC, 60, 449
Wei, H. 2010a, JCAP, 08, 020
Wei, H. 2010b, Phys. Lett. B, 692, 167
Wright, E. L. 2007, ApJ, 664, 633
Wu, P. and Yu, H. 2007a, ApJ, 658, 663
Wu, P. and Yu, H. 2007b, Phys. Lett. B, 644, 16
Wu, P. and Yu, H. 2007c, JCAP, 03, 015
Xu, L. and Lu, J. 2010, JCAP, 03, 025
Zhu, Z.-H. 2004, A&A, 423, 421