Basic results in combinatorial mathematics provide the foundation for a theory and calculus for reasoning about sequential behavior. A key concept of the theory is a generalization of Boolean implicant which deals with statements of the form:

\[A \text{ sequence of Boolean expressions } \alpha \text{ is an implicant of } \]
\[a \text{ set of sequences of Boolean expressions } A \]

This notion of a generalized implicant takes on special significance when each of the sequences in the set \(A \) describes a disallowed pattern of behavior. That’s because a disallowed sequence of Boolean expressions represents a logical/temporal dependency, and because the implicants of a set of disallowed Boolean sequences \(A \) are themselves disallowed and represent precisely those dependencies that follow as a logical consequence from the dependencies represented by \(A \). The main result of the theory is a necessary and sufficient condition for a sequence of Boolean expressions to be an implicant of a regular set of sequences of Boolean expressions. This result is the foundation for two new proof methods. Sequential resolution is a generalization of Boolean resolution which allows new logical/temporal dependencies to be inferred from existing dependencies. Normalization starts with a model (system) and a set of logical/temporal dependencies and determines which of those dependencies are satisfied by the model.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic - Temporal logic; Proof theory; D.2.4 [Software]: Software/Program Verification - Formal methods; G.2.1 [Discrete Mathematics]: Combinatorics - Combinatorial algorithms

General Terms: Theory, Formal Methods, Verification
Additional Key Words and Phrases: Regular sets, regular expressions, finite state automata, Kripke structures, implicants, inference, resolution, De Morgan algebras

1. INTRODUCTION

Reasoning about sequential behavior is fundamental to the design of computing machinery. Hardware designers reason about sequential behavior in order to determine the input/output behavior of a system from the individual behaviors of the system’s components. Software programmers reason about sequential behavior in order to determine the input/output behavior of a program from the individual behaviors of the program’s instructions.

But, of course, the reasoning powers of designers and programmers are limited, and those limitations become apparent in the design of discrete-time systems with complex logical/temporal dependencies. The diversity and intricacy of those dependencies are hinted at in the following examples, where \(P, Q \) and \(R \) each represent a Boolean expression that holds (is true) in a subset of system states.

\[\text{If } P, \text{ then } Q \text{ in the next state} \]
\[\text{If } P, \text{ then } Q \text{ five states later} \]
If \(P \), then \(Q \) within five states

If \(P \), then \(Q \) thereafter

If \(P \), then \(Q \) until \(R \)

If \(P \), then \(Q \) three states later and every fourth state thereafter

Not only must a designer/programmer deal with an initial set of such dependencies describing the components of a design or instructions of a program, the designer/programmer must also infer new dependencies in order to achieve the ultimate goal of determining how a system’s outputs depend upon the system’s inputs.

The present work is intended as a contribution towards ultimately replacing the error-prone mental models of designers and programmers with a mathematical framework for reasoning about sequential behavior and for reasoning about different mathematical domains – like integers and complex numbers. This contribution does not presume to solve the entire problem, but instead focuses on a theory and calculus for reasoning about sequential behavior. The theory has elements of Boolean logic and automata theory, but at its core are fundamental results in combinatorial mathematics. These results at the combinatorics level provide the foundation for results at the logic level, which, in turn, provide the foundation for the calculus. The calculus consists of two new proof methods, sequential resolution and normalization. Sequential resolution is a generalization of Boolean resolution which allows new logical/temporal dependencies to be inferred from existing dependencies. Normalization starts with a model (system) and a set of logical/temporal dependencies and determines which of those dependencies are satisfied by the model.

The following subsections provide an informal introduction to both the theory and calculus.

1.1 Allowed and Disallowed Behaviors

In order to make more precise the notion of a logical/temporal dependency, we must first understand the distinction between allowed and disallowed system behaviors.

A sequence of states of a discrete-time system \(K \) is an allowed behavior of \(K \) if and only if it is possible for \(K \) to traverse that sequence of consecutive states. A sequence of states of \(K \) is a disallowed behavior of \(K \) if and only if it is impossible for \(K \) to traverse that sequence of consecutive states. (\(K \) stands for generalized Kripke structure, the formal
counterpart to our informal notion of discrete-time system. A GKS is defined in Section 4.1.

Now suppose that \(\omega \) is a sequence of states of System \(K \) and that \(\omega_{ss} \) is an arbitrary subsequence of \(\omega \). (A subsequence of a sequence \(\alpha \) is a sequence of consecutive elements appearing in \(\alpha \).) Assume that \(\omega \) is an allowed behavior of \(K \). Because \(\omega \) is allowed, we know that it is possible for the system to traverse \(\omega \). But if it is possible for the system to traverse \(\omega \), then it must be possible for the system to traverse \(\omega_{ss} \), since in the process of traversing \(\omega \), the system must traverse \(\omega_{ss} \). \(\omega_{ss} \) is therefore also an allowed behavior of \(K \). So if \(\omega \) is allowed, then so must be \(\omega_{ss} \). And, of course, there is the contrapositive of this statement: If \(\omega_{ss} \) is disallowed, then so must be \(\omega \). These two equivalent properties are expressed as the following axiom.

AXIOM 1. (a) Every subsequence of an allowed behavior of a discrete-time system (generalized Kripke structure) \(K \) is also an allowed behavior of \(K \). (b) Every sequence of states of a discrete-time system (generalized Kripke structure) \(K \) having a disallowed behavior of \(K \) as a subsequence is also a disallowed behavior of \(K \).

From this single axiom – and a body of combinatorial mathematics – there follows a theory for reasoning about sequential behavior. That theory begins with the two closely related notions of *logical/temporal dependency* and *sequential constraint*.

1.2 Sequential Constraints

A logical/temporal dependency is a property of a discrete-time system (generalized Kripke structure) that constrains, or reduces, the set of allowed system behaviors. But a property that reduces the set of allowed behaviors must expand the set of disallowed behaviors. That means that a logical/temporal dependency can be identified with the set of behaviors disallowed (prohibited, forbidden) by that dependency. Furthermore, from Axiom 1(b) we know that prepending and appending arbitrary state sequences to a disallowed state sequence must yield another disallowed state sequence. A logical/temporal dependency, or set of dependencies, is therefore completely characterized by a set of disallowed state sequences if and only if that set contains all minimal state sequences prohibited by the dependency(ies) – that is, all state sequences that cannot be shortened at either end without yielding a state sequence that is not prohibited by the dependency.
In what follows, we use a regular set of sequential constraints to describe such a set of disallowed state sequences. (See Sipser [1] or Hopcroft [2] for definitions of regular language (regular set), regular expression and finite state automaton. Note especially the equivalence of regular expressions and finite-state automata in defining regular sets of sequences.)

A sequential constraint is defined with the aid of the holds tightly relation [3,4].

Definition 1.1. A sequence of Boolean expressions \(\alpha \) holds tightly on a state sequence \(\omega \) if and only if \(\alpha \) and \(\omega \) are the same length and each Boolean expression of \(\alpha \) holds in the corresponding state of \(\omega \). A set of sequences of Boolean expressions \(A \) holds tightly on a state sequence \(\omega \) if and only if there exists a sequence of Boolean expressions in \(A \) that holds tightly on \(\omega \).

Definition 1.2. A sequential constraint of a discrete-time system (generalized Kripke structure) \(K \) is a finite sequence of Boolean expressions \(\alpha \) such that all sequences of states of \(K \) on which \(\alpha \) holds tightly are disallowed behaviors of \(K \).

A sequential constraint thus describes a disallowed pattern of behavior. Moreover, when we declare that a sequence of Boolean expressions \(\alpha \) is a sequential constraint of a system \(K \), we are declaring not only that the state sequences on which \(\alpha \) holds tightly are disallowed behaviors of \(K \) but that all state sequences containing a subsequence on which \(\alpha \) holds tightly are disallowed behaviors of \(K \).

To illustrate these ideas, we return to the six logical/temporal dependences listed above. They are represented in disallowed form by the following six regular expressions, with each regular expression defining a regular set of sequential constraints and each sequential constraint defining a set of disallowed state sequences via the holds-tightly relation.

\[
\langle P, \neg Q \rangle \\
\langle P, true, true, true, true, \neg Q \rangle \\
\langle P, \neg Q, \neg Q, \neg Q, \neg Q, \neg Q \rangle \\
\langle P, true^*, \neg Q \rangle \\
\langle P, (\neg R)^*, (\neg R \land \neg Q) \rangle \\
\langle P, true, true, \langle true, true, true, true \rangle^*, \neg Q \rangle
\]
Consider, for example, the logical/temporal dependency *If P, then Q five states later*. It is represented by the sequential constraint \(\langle P, \text{true}, \text{true}, \text{true}, \text{true}, \neg Q \rangle\), which asserts that in a sequence of six consecutive states \(\langle s_0, s_1, s_2, s_3, s_4, s_5 \rangle\), it is never the case that \(P\) holds in \(s_0\), true holds in each of \(s_1, s_2, s_3, s_4\) and \(\neg Q\) holds in \(s_5\). But since true holds (is true) in every state, the constraint actually asserts that it is never the case that \(P\) holds in \(s_0\) and \(\neg Q\) holds in \(s_5\). So if \(P\) holds in \(s_0\), then \(Q\) must hold in \(s_5\). Consider also the logical/temporal dependency *If P, then Q thereafter*. It is represented by the regular expression \(\langle P, \text{true}^*, \neg Q \rangle\), which defines the infinite set of sequential constraints:

\[
\langle P, \neg Q \rangle \\
\langle P, \text{true}, \neg Q \rangle \\
\langle P, \text{true}, \text{true}, \neg Q \rangle \\
\vdots \\
\vdots \\
\vdots
\]

This set of sequential constraints asserts that for all positive integers \(n\), a state in which \(P\) holds cannot be followed \(n\) states later by a state in which \(\neg Q\) holds.

Comment: Ours is not the only approach to use regular expressions over a set of Boolean expressions to express logical/temporal dependencies. Both PSL, the industry-standard property specification language [4], and its predecessor, the temporal logic Sugar [3], have such constructs.

Consider now the following question, which is the central issue addressed by the present theory:

How do we know whether a logical/temporal dependency follows as a logical consequence from a given set of logical/temporal dependencies?

It is equivalent to the following question expressed in terms of sequential constraints:

How do we know whether a sequence of Boolean expressions is a sequential constraint as a consequence of a given set of sequential constraints?

A generalization of the notion of Boolean implicant provides the key to answering this question.
1.3 Implicants

Suppose that α is a finite sequence of Boolean expressions and that A is a set of sequential constraints of a system K. Suppose further that for every state sequence ω on which α holds tightly, there exists a subsequence ω_{ss} of ω on which A holds tightly. Because A is a set of sequential constraints of K and A holds tightly on ω_{ss}, ω_{ss} must be a disallowed behavior of K. From Axiom 1(b), we know that because ω_{ss} is disallowed, ω must also be disallowed. α is therefore a sequential constraint of System K.

Now suppose – in contrast to the preceding supposition – that there exists a state sequence ω on which α holds tightly such that there is no subsequence of ω on which A holds tightly. Then there is no basis on which to conclude that ω is a disallowed behavior of System K, and there is therefore no basis on which to conclude that α is a sequential constraint of K. Thus,

$$A \text{ finite sequence of Boolean expressions } \alpha \text{ is a sequential constraint of a system } K \text{ as a consequence of a set } A \text{ of sequential constraints of } K$$

$$\text{if and only if}$$

For every sequence of states ω of K on which α holds tightly, there exists a subsequence of ω on which A holds tightly.

So we see that the original question posed above – How do we know whether a logical/temporal dependency follows as a logical consequence from a given set of logical/temporal dependencies? – reduces to the existence of a specific relationship between a sequence of Boolean expressions α and a set of such sequences A.

Consider now the purely Boolean case in which α and all of the sequences in A are of length 1 – that is, each sequence consists of a single Boolean expression. Let α_{BE} be the Boolean expression appearing in α and let A_{BE} be the disjunction (OR) of the Boolean expressions appearing in A. The above relationship between α and A can then be simplified to:

$$\text{The set of states in which } \alpha_{BE} \text{ holds is a subset of the set of states in which } A_{BE} \text{ holds}$$
Now suppose that this property is valid not just for a particular discrete-time system (generalized Kripke structure) K but for all possible discrete-time systems (generalized Kripke structures) K. But that means that

$$\alpha_{BE} \text{ implies } A_{BE}$$

Moreover, when α_{BE} is a product of literals – a quite common case – the relationship between α_{BE} and A_{BE} can be re-expressed using the terminology of Boolean algebra [5]:

$$\alpha_{BE} \text{ is an implicant of } A_{BE}$$

This observation for the purely Boolean case leads us to generalize the notion of Boolean implicant to the realm of sequential behavior as follows.

Definition 1.3. An implicant of a set of sequences of Boolean expressions A is a finite sequence of Boolean expressions α such that for all discrete-time systems (generalized Kripke structures) K, for all sequences of states ω of K on which α holds tightly, there exists a subsequence of ω on which A holds tightly.

It follows that

For all systems K, a finite sequence of Boolean expressions α is a sequential constraint of K as a consequence of a set A of sequential constraints of $K

if and only if

* α is an implicant of A

1.4 An Example

To illustrate the preceding ideas, consider the following set of logical/temporal dependencies:

* If P, then Q in the next state
* If R, then S in the next state
* If $(Q \land S)$, then T in the next state

Let A be the set of sequential constraints corresponding to this set of dependencies. Thus

$$A = \{ \langle P, \neg Q \rangle, \langle R, \neg S \rangle, \langle (Q \land S), \neg T \rangle \}$$

Now let

$$\alpha = \langle (P \land R), \text{ true, } \neg T \rangle$$
and let $\langle s_0, s_1, s_2 \rangle$ be an arbitrary state sequence on which α holds tightly. From the definition of holds tightly, we know that $(P \land R)$ holds in s_0 and that $\neg T$ holds in s_2. Now consider state s_1 and the truth values of Q and S in that state. There are four possibilities:

1. Q and S hold in s_1. Then $\langle (Q \land S), \neg T \rangle$ holds tightly on $\langle s_1, s_2 \rangle$.

2. $\neg Q$ and S hold in s_1. Then $\langle P, \neg Q \rangle$ holds tightly on $\langle s_0, s_1 \rangle$.

3. Q and $\neg S$ hold in s_1. Then $\langle R, \neg S \rangle$ holds tightly on $\langle s_0, s_1 \rangle$.

4. $\neg Q$ and $\neg S$ hold in s_1. Then both $\langle P, \neg Q \rangle$ and $\langle R, \neg S \rangle$ hold tightly on $\langle s_0, s_1 \rangle$.

Notice that in all four cases, there exists a subsequence of $\langle s_0, s_1, s_2 \rangle$ on which A holds tightly. α is therefore an implicant of A, which by our argument above means that α is a sequential constraint. It is equivalent to the logical/temporal dependency

\[\text{If } (P \land R), \text{ then } T \text{ two states later} \quad (2) \]

So our reasoning using sequential constraints has shown that Statement 2 follows as a logical consequence from Statements 1a, 1b and 1c. In our reasoning, furthermore, we have deduced that α is an implicant of A with no assumptions whatsoever about the underlying state space. So this result is applicable to all discrete-time systems (generalized Kripke structures) as required by the definition of an implicant. (Section 5.4 shows how to deduce α from A using sequential resolution.)

1.5 Combinatorics and Logic

The central problem addressed by the present theory is determining the implicants of a regular set of sequences of Boolean expressions. The main result of the theory is a necessary and sufficient condition for a sequence of Boolean expressions to be an implicant of such a regular set. Arriving at this result entails the proof of theorems at two levels, the combinatorics level (discussed in Section 3) and the logic level (discussed in Section 4), with results at the combinatorics level providing the foundation for results at the logic level.

At both levels, a directed graph with labeled arcs serves as a finite state automaton which accepts a regular set of sequences – sequences of sets at the combinatorics level and sequences of Boolean expressions at the logic level. Also at both levels, there is the notion of an implicant of a regular set of sequences – or, equivalently, of a directed graph with labeled arcs defining such a set.

At the combinatorics level, the objects of study are:
Sequences of sets

Set graphs: Directed graphs in which each arc is labeled with a set

Links of a set graph G: Ordered triples $\langle \text{aft}, \alpha, \text{fore} \rangle$ satisfying special properties, where aft and fore are each a set of sets of vertices of G and α is a sequence of sets

Elaborations of a set graph G: Set graphs in which each vertex is an ordered pair $\langle \text{aft}, \text{fore} \rangle$ satisfying special properties, where aft and fore are each a set of sets of vertices of G

The main result at the combinatorics level (Theorem 3.6) is a necessary and sufficient condition for a sequence of sets to be an implicant of a set graph:

A sequence of sets α is an implicant of a set graph G

if and only if

a subsequence of α is accepted by an elaboration of G

At the logic level, the objects of study are:

Sequences of Boolean expressions

Boolean graphs: Directed graphs in which each arc is labeled with a Boolean expression

Links of a Boolean graph G: Ordered triples $\langle \text{aft}, \alpha, \text{fore} \rangle$ satisfying special properties, where aft and fore are each a set of sets of vertices of G and α is a sequence of Boolean expressions

Elaborations of a Boolean graph G: Boolean graphs in which each vertex is an ordered pair $\langle \text{aft}, \text{fore} \rangle$ satisfying special properties, where aft and fore are each a set of sets of vertices of G

The connection between these four constructs and their counterparts at the combinatorics level is provided by the function L associated with a generalized Kripke structure (S, B, L) over a set of atomic propositions AP (see Sections 4.1 and 4.2). L maps an atomic proposition into the set of states in which the proposition holds (is true), while extension of L map: (a) a Boolean expression into the set of states in which the Boolean expression holds, (b) a sequence of Boolean expressions into a sequence of sets of states and (c) a Boolean graph into a set(-of-states) graph.
The main result at the logic level, and of the theory, (Theorem 4.10) is a necessary and sufficient condition for a sequence of Boolean expressions to be an implicant of a Boolean graph:

A sequence of Boolean expressions α is an implicant of a Boolean graph G if and only if a subsequence of α is accepted by an elaboration of G

So the problem of determining whether a sequence of Boolean expressions α is an implicant of a regular set of sequences of Boolean expressions defined by a Boolean graph G reduces to the problem of constructing an elaboration of G that accepts a subsequence of α. Sections 5 and 6 describe two different methods, sequential resolution and normalization, for constructing such elaborations.

1.6 Resolution and Normalization

Boolean resolution is a powerful inference rule in Boolean logic. It comes in two forms. The *disjunctive* form [6,7] – which is sometimes called *consensus* [8] – is applied to a sum of products, while the *conjunctive* form [9] is applied to a product of sums. *Sequential resolution*, a generalization of the disjunctive form, is applied to a succession of elaborations of a Boolean graph G starting with an *initial elaboration* that is isomorphic to G. Each resolution is performed on two equal-length paths in an elaboration, and yields a new path that is the same length as the two resolved paths. This *inferred path* is added to the existing elaboration to create a new elaboration which accepts an expanded set of sequences of Boolean expressions. These added sequences represent logical/temporal dependencies that are inferred from the dependencies associated with the previous elaboration.

Normalization, the second method for constructing elaborations, starts with two Boolean graphs: (1) a graph representing a set of *known* logical/temporal dependencies and (2) a graph representing a set of *conjectured* logical/temporal dependencies. The first graph typically represents a system (model), while the second represents properties that one conjectures about the behavior of the system. Normalization determines which of those conjectured properties are satisfied by the system. The process involves transforming the conjectured graph, using arcs from the system graph, into an elaboration of the system graph. The resulting *verified* graph satisfies two properties:
1. Each sequence of Boolean expressions accepted by the verified graph is (a) an
implicant of the system graph and (b) a subsequence of a sequence accepted by the
conjectured graph.

2. For each sequence of Boolean expressions α that is (a) an implicant of the system
graph and (b) accepted by the conjectured graph, there exists a subsequence of α
that is accepted by the verified graph.

The process of normalization is thus able to extract from a set of conjectured
logical/temporal dependencies those dependencies that follow from a set of known
dependencies. This capability means that someone who is unsure about a system’s exact
behavior can make an overly broad conjecture about that behavior – a conjecture known
to be false – in order to find a version of the conjecture that is true.

1.7 Related Work
The need for mathematical/formal techniques for verifying the behavior of digital
systems has long been recognized in the research community. Three approaches to formal
verification are most relevant here: (1) the early work on sequential constraints, (2) model
checking [10,11] and (3) theorem proving [12,13].

The very earliest work with sequential constraints sought to provide mathematical
foundations for secure computation [14,15]. Later work broadened the scope to
specifying and verifying the behavior of distributed systems [16,17]. The present work is
an expansion of the theory developed at that time [18,19].

Model checking is an automatic verification technique for finite state concurrent
systems. In this approach to verification, temporal logic specifications are checked by an
exhaustive search of the state space of the concurrent system [20]. There are similarities,
but also significant differences, between model checking and the present approach.

1. In both approaches, finite state automata play a central role. In the case of model
checking, a finite state automaton describes a system’s state space – that is, the set of
all allowed system state sequences. In the present approach, a finite state automaton
describes a set of disallowed system state sequences – but not necessarily all
disallowed state sequences. This last difference is significant. In model checking, all
allowed system behaviors must be represented in the finite state automaton because to
ignore any allowed behaviors would jeopardize the soundness of proofs. The
methodology described here, however, relies on deductive reasoning (see next point),
and therefore ignoring disallowed behaviors affects what is provable but does not affect the soundness of proofs (unless one is trying to prove the absence of certain sequential constraints. See Point 6.).

2. In model checking, verification entails an exhaustive search of a system’s state space. In the present approach, verification is accomplished through deductive reasoning – entirely within the realm of logical/temporal dependencies – using either sequential resolution or normalization. No attempt is made to model a system’s state-transition function (nor is such a function even assumed to exist), and no attempt is made to explore, traverse or enumerate a system’s state space.

3. A basic assumption (axiom) of model checking is that a system state is total – that is, a system state completely determines, through the system’s state-transition function, the set of all possible next-states. But there are situations where it is useful to reason about partial states, and in these circumstances it is a sequence of partial states that determines a system’s possible next-states. For example, in analyzing a system’s behavior we may want to distinguish between those state variables that are hidden and those that are visible (typically the input/output variables), and we may wish to reason about the behavior of just the visible state variables. In the present approach, the assumption that a state is total is replaced by a more basic assumption, Axiom 1. The increased generality afforded by this axiom means that we can derive and reason about the sequences of partial states that define a system’s visible (black box) behavior.

4. Because model checking involves an exhaustive search of a system’s state space, it must deal with the exponential growth in the size of that space. In fact, the main challenge in model checking is dealing with the state space explosion problem [20]. In the present approach, there is no state space explosion problem because when a new component or instruction is added to a system, the sequential constraints associated with that component or instruction are added to the set of sequential constraints defining the system. The regular expression or finite-state automaton for the set of sequential constraints defining a system thus grows linearly, not exponentially, with the size of a system. However, although a combinatorial explosion does not occur in the mere act of modeling a system, as it does in model checking, an explosion is still possible – although not inevitable – through repeated applications of sequential resolution or in the normalization process.

5. In model checking, there are two types of constructs: finite-state automata for describing systems and temporal logic specifications for describing logical/temporal
properties. In the present approach, there is only one type of construct for describing both systems and properties: a regular set of sequential constraints equivalently defined by either a regular expression or finite state automaton.

6. The expressive power of the temporal logics commonly used in model checking and the expressive power of sequential constraints differ in two fundamental respects: (1) The temporal logics of model checking are able to reason not only about properties involving finite behaviors but also infinite behaviors. So, for example, they can express the property *If P, then eventually Q*. Sequential constraints cannot express these properties since each constraint is restricted to being finite (although a set of constraints may be infinite). (2) The temporal logics of model checking can express properties involving allowed (permitted, possible) patterns of behavior. So, for example, these temporal logics can express the property *If P, then Q is possible in the next state*. Sequential constraints cannot express such properties directly since sequential constraints describe disallowed behavior. These properties can only be expressed indirectly by the absence of sequential constraints. The property *If P, then Q is possible in the next state*, for example, is expressed by the absence of sequential constraints of the form \((R, Q) \), where \(R \) is a Boolean expression such that \(P \land R \) is satisfiable.

Theorem proving employs higher-order logic, predefined theories and a variety of inference procedures to provide exceptionally powerful and expressive proof systems. As with model checking, there are similarities, but also significant differences, between theorem proving and the present approach.

1. Like theorem proving, the present approach supports *deductive reasoning* by which new properties are inferred from existing properties using *inference rules*. Sequential resolution is just such a rule, and although normalization does not fit the definition of an inference rule, embedded within the algorithm are *micro inferences* in which new links are inferred from existing links.

2. Unlike theorem proving, which is largely symbolic and requires considerable human guidance, the present approach is based on a body of combinatorial mathematics, and that mathematics supports algorithmic proof systems employing either normalization or sequential resolution.

3. The theory described here is essentially an extension of propositional logic to handle sequential behavior. Although this logic has been further extended with *uninterpreted*
functions (to be described in a future paper), it will be necessary to incorporate
techniques from theorem proving in order to achieve the power and expressiveness of
theorem proving together with the algorithmic techniques of the present approach.

2. PRELIMINARIES
Sections 2.1, 2.2, 2.3 and 2.4 provide notations and terminology for the familiar concepts
of ordered pair, sequence, Cartesian product and directed graph with labeled arcs,
respectively. Sections 2.5 and 2.6 introduce some less-familiar concepts: De Morgan
algebras and a particular class of such algebras in which the elements are sets of sets.

2.1 Ordered Pairs
For an ordered pair \((x, y)\),
\[
aft((x, y)) = x \\
fore((x, y)) = y
\]

2.2 Sequences
A sequence is a finite ordered list of elements, written \(\langle x_0, x_1, \ldots, x_{n-1} \rangle\). The set of all
sequences over a set of elements \(E\) is denoted \(E^*\). A subsequence of sequence \(\alpha\) is a
sequence of consecutive elements appearing in \(\alpha\). A sequence \(\alpha_P\) is a prefix of sequence
\(\alpha\) if and only if \(\alpha\) begins with the sequence \(\alpha_P\). A sequence \(\alpha_S\) is a suffix of sequence \(\alpha\) if
and only if \(\alpha\) ends with the sequence \(\alpha_S\). The concatenation of sequences \(\alpha_1\) and \(\alpha_2\) is
denoted \(\alpha_1 \cdot \alpha_2\). The length of sequence \(\alpha\) is denoted \(|\alpha|\). Thus,
\[
\langle b, c, d \rangle \text{ is a subsequence of } \langle a, b, c, d, e \rangle \\
\langle a, b, c \rangle \text{ is a prefix of } \langle a, b, c, d, e \rangle \\
\langle c, d, e \rangle \text{ is a suffix of } \langle a, b, c, d, e \rangle \\
\langle a, b \rangle \cdot \langle c, d, e \rangle = \langle a, b, c, d, e \rangle \\
|\langle a, b, c, d, e \rangle| = 5
\]

2.3 Cartesian Products
The Cartesian product (cross product) of sets \(A\) and \(B\), written \(A \times B\), is the set of all
ordered pairs \(\langle a, b \rangle\) such that \(a \in A\) and \(b \in B\). If \(\alpha = \langle \alpha_0, \alpha_1, \ldots, \alpha_m \rangle\) is a sequence of
sets, then $\times\alpha$ denotes the set of all sequences $\langle x_0, x_1, \ldots, x_{n-1} \rangle$ such that $x_i \in \alpha_i$ for $0 \leq i < n$. Thus

$$\times\langle \{a, b, c\}, \{d\}, \{e, f\} \rangle = \{\langle a, d, e \rangle, \langle a, d, f \rangle, \langle b, d, e \rangle, \langle b, d, f \rangle, \langle c, d, e \rangle, \langle c, d, f \rangle\}$$

2.4 Directed Graphs with Labeled Arcs

Set graphs and Boolean graphs play a central role in the theory that follows, and although their structures differ, they are both directed graphs with labeled arcs. Associated with such a graph are a finite set of vertices V, a set of labels L and a finite set of arcs $A \subseteq V \times L \times V$. Each arc is therefore of the form $\langle v_i, l, v_j \rangle$, where v_i and v_j are vertices and l is a label.

We adopt the following notation and terminology for a directed graph with labeled arcs G. For an arc $\langle v_i, l, v_j \rangle$ of G,

$$\text{tail}(\langle v_i, l, v_j \rangle) = v_i$$
$$\text{label}(\langle v_i, l, v_j \rangle) = l$$
$$\text{head}(\langle v_i, l, v_j \rangle) = v_j$$

A path in G is a non-null sequence of arcs $\langle a_0, a_1, \ldots, a_{n-1} \rangle$ such that for every pair of successive arcs a_i and a_{i+1} in $\langle a_0, a_1, \ldots, a_{n-1} \rangle$, $\text{head}(a_i) = \text{tail}(a_{i+1})$. For a path $\langle a_0, a_1, \ldots, a_{n-1} \rangle$ in G,

$$\text{tail}(\langle a_0, a_1, \ldots, a_{n-1} \rangle) = \text{tail}(a_0)$$
$$\text{label}(\langle a_0, a_1, \ldots, a_{n-1} \rangle) = \langle \text{label}(a_0), \text{label}(a_1), \ldots, \text{label}(a_{n-1}) \rangle$$
$$\text{head}(\langle a_0, a_1, \ldots, a_{n-1} \rangle) = \text{head}(a_{n-1})$$

An initial vertex of G is a vertex of G with no incoming arcs – that is, a vertex v for which there does not exist an arc a of G such that $\text{head}(a) = v$. A terminal vertex of G is a vertex of G with no outgoing arcs – that is, a vertex v for which there does not exist an arc a of G such that $\text{tail}(a) = v$. An interior vertex of G is a vertex of G that is neither an initial vertex of G nor a terminal vertex of G. The set of interior vertices of G is denoted $\text{IV}(G)$. G accepts a sequence of labels α if and only if there exists a path μ in G such that the following three properties hold: (1) $\text{tail}(\mu)$ is an initial vertex of G, (2) $\alpha = \text{label}(\mu)$ and (3) $\text{head}(\mu)$ is a terminal vertex of G.

Comment: Restricting initial vertices to just those vertices with no incoming arcs and terminal vertices to just those vertices with no outgoing arcs does not limit the generality
of directed graphs with labeled arcs in defining sets of disallowed sequences. That’s because prepending or appending arbitrary sequences to a disallowed sequence of Boolean expressions or disallowed sequence of sets of states only yields another, weaker, disallowed sequence.

2.5 De Morgan Algebras

Boolean algebra is well-known in both logic and computer science, but there is another algebra, not so well-known, that satisfies most – but not all – of the familiar properties of a Boolean algebra. It is a De Morgan algebra [Białynicki-Birula & Rasiowa 1957; Białynicki-Birula 1957; Kalman 1958; Balbes & Dwinger 1974; Cignoli 1975; Reed 1979; Sankappanavar 1980; Figallo & Monteiro 1981].

Definition 2.1. A De Morgan algebra is a 4-tuple \((A, \wedge, \vee, \sim)\), where \(A\) is a set of elements, \(\wedge\) and \(\vee\) are binary operations on \(A\) and \(\sim\) is a unary operation on \(A\) such that for all \(a, b \in A\), the following three axioms hold:

1. \((A, \wedge, \vee)\) forms a distributive lattice
2. \(\neg(a \wedge b) = (\neg a) \vee (\neg b)\) and \(\neg(a \vee b) = (\neg a) \wedge (\neg b)\) \hspace{1cm} (De Morgan’s laws)
3. \(\neg\neg a = a\) \hspace{1cm} (involution)

Notably absent from these axioms is the law of the excluded middle: \((a \vee \neg a) = 1\) or, equivalently, \((a \wedge \neg a) = 0\). The absence of this law is what distinguishes a De Morgan algebra from a Boolean algebra.

Definition 2.2. Let \((A, \wedge, \vee)\) be a lattice. Then the partial order \(\leq\) on \(A\) is defined such that: \(a \leq b\) if and only if \(a = a \wedge b\) (or, equivalently, \(b = a \vee b\)).

Property 2.1. If \((A, \wedge, \vee, \neg)\) is a De Morgan algebra, then for all \(a, b \in A\):

(a) \(\neg a \leq b \iff \neg b \leq a\)
(b) \(\neg a \leq c\) and \(\neg b \leq d\) \(\implies \neg(a \wedge b) \leq (c \vee d)\)
(c) \(\neg a \leq c\) and \(\neg b \leq d\) \(\implies \neg(a \vee b) \leq (c \wedge d)\)

2.6 Sets of Sets

Sets of sets of vertices – together with are two binary operations and a unary operation defined on them – play a key role in characterizing the implicants of both set graphs and Boolean graphs.
Definition 2.3. For a set V,

$$\text{SoS}(V) = \{ \text{sos} \subseteq 2^V \mid \text{For all } \text{set}_i, \text{set}_j \in \text{sos}: (\text{set}_i \subseteq \text{set}_j) \Rightarrow (\text{set}_i = \text{set}_j) \}$$

The elements of $\text{SoS}(V)$ are thus those sets of subsets of V whose member sets are pairwise incomparable with respect to set inclusion (\subseteq). For example,

$$\text{SoS}({\{v_0, v_1, v_2\}}) = \{ \{},
\{\{v_0, v_1, v_2\}\},
\{\{v_0, v_1\}\},
\{\{v_0, v_2\}\},
\{\{v_1, v_2\}\},
\{\{v_0, v_1\}, \{v_0, v_2\}\},
\{\{v_0, v_1\}, \{v_1, v_2\}\},
\{\{v_0, v_2\}, \{v_1, v_2\}\},
\{\{v_0\}\},
\{\{v_1\}\},
\{\{v_2\}\},
\{\{v_0, v_1\}, \{v_0, v_2\}, \{v_1, v_2\}\},
\{\{v_0\}, \{v_1, v_2\}\},
\{\{v_1\}, \{v_0, v_2\}\},
\{\{v_2\}, \{v_0, v_1\}\},
\{\{v_0\}, \{v_1\}\},
\{\{v_0\}, \{v_2\}\},
\{\{v_1\}, \{v_2\}\},
\{\{v_0\}, \{v_1\}, \{v_2\}\},
\{\{}\}
\} \}$$

Two binary operations, \land and \lor, and a unary operation, \sim, are now defined on $\text{SoS}(V)$. All three operations make use of the min_{\subseteq} function which selects those member sets of a set of sets that are minimal with respect to set inclusion.

Definition 2.4. For a set of sets sos,

$$\text{min}_{\subseteq}(\text{sos}) = \{ \text{set}_j \in \text{sos} \mid \text{For all } \text{set}_i \in \text{sos}: (\text{set}_i \subseteq \text{set}_j) \Rightarrow (\text{set}_i = \text{set}_j) \}$$

PROPERTY 2.2 If V is a set and sos $\subseteq 2^V$, then $\text{min}_{\subseteq}(\text{sos}) \in \text{SoS}(V)$.

Definition 2.5. For a finite set of elements V and for sos$_i$, sos$_j \in \text{SoS}(V)$,
$sosi \lor sosj = \min_{\subseteq}(sosi \cup sosj)$

$sosi \land sosj = \min_{\subseteq}\{\text{set}_i \cup \text{set}_j \mid \text{set}_i \in sosi \text{ and } \text{set}_j \in sosj\}$

$\sim sosi = \min_{\subseteq}\{\text{set}_j \subseteq V \mid \text{For all } \text{set}_i \in sosi, \text{ set}_i \cap \text{set}_j \neq \emptyset\}$

$sosi \lor sosj$ is thus the union of $sosi$ and $sosj$ with all but the minimal sets (with respect to set inclusion) discarded. $sosi \land sosj$ is the set of pairwise unions of sets set_i from $sosi$ and sets set_j from $sosj$ with all but the minimal sets discarded. $\sim sosi$ is the set of minimal sets set_j such that for all set_i in $sosi$, the intersection of set_i and set_j is nonempty.

PROPERTY 2.3. If V is a finite set, then $(SoS(V), \land, \lor, \sim)$ is a De Morgan algebra.

PROPERTY 2.4. If V is a finite set, then for the lattice $(SoS(V), \land, \lor)$ and $sosi, sosj \in SoS(V)$,

$$sosi \leq sosj$$

if and only if

For all $\text{set}_i \in sosi$, there exists $\text{set}_j \in sosj$ such that $\text{set}_j \subseteq \text{set}_i$

PROPERTY 2.5. If V is a finite set, then

(a) $\emptyset \in SoS(V)$ and $\{\emptyset\} \in SoS(V)$

(b) $\sim\emptyset = \{\emptyset\}$ and $\sim\{\emptyset\} = \emptyset$

(c) For all $sosi \in SoS(V)$, $\emptyset \leq sosi \leq \{\emptyset\}$

(d) For all $sosi, sosj \in SoS(V)$, $(sosi \land sosj = \{\emptyset\}) \iff (sosi = \{\emptyset\} \text{ or } sosj = \{\emptyset\})$

(e) For all $sosi, sosj \in SoS(V)$, $(sosi \lor sosj = \{\emptyset\}) \iff (sosi = \{\emptyset\} \text{ or } sosj = \{\emptyset\})$

These ideas are illustrated in Figure 1 and Table 1 for $(SoS(\{v_0, v_1, v_2\}), \land, \lor, \sim)$. In the lattice of Figure 1, $sosi \lor sosj$ is the least upper bound (join) of $sosi$ and $sosj$, while $sosi \land sosj$ is the greatest lower bound (meet) of $sosi$ and $sosj$.
FIG. 1. Distributive Lattice for $(\text{SoS}(\{v_0, v_1, v_2\}), \land, \lor)$

TABLE 1. Inverses of Elements in $\text{SoS}(\{v_0, v_1, v_2\})$

Inverse	Result
$\sim\{}$	$\{\{}\}$
$\sim\{v_0, v_1, v_2\}$	$\{v_0, \{v_1, v_2\}\}$
$\sim\{v_0, v_1\}$	$\{v_0\}, \{v_1\}$
$\sim\{v_0, v_2\}$	$\{v_0\}, \{v_2\}$
$\sim\{v_1, v_2\}$	$\{v_1\}, \{v_2\}$
$\sim\{v_0, v_1\}, \{v_0, v_2\}$	$\{v_0\}, \{v_1, v_2\}$
$\sim\{v_0, v_1\}, \{v_1, v_2\}$	$\{v_1\}, \{v_0, v_2\}$
$\sim\{v_1, v_2\}$	$\{v_2\}, \{v_0, v_1\}$
$\sim\{v_0\}$	$\{v_0\}$
$\sim\{v_1\}$	$\{v_1\}$
$\sim\{v_2\}$	$\{v_2\}$
$\sim\{v_0, v_1\}, \{v_0, v_2\}, \{v_1, v_2\}$	$\{v_0, v_1\}, \{v_0, v_2\}, \{v_1, v_2\}$

Comment: The definition and properties of $(\text{SoS}(\mathcal{V}), \land, \lor, \sim)$ can be more easily understood when each set of sets in $\text{SoS}(\mathcal{V})$ is interpreted as a reduced, negation-free Boolean sum of products. In this interpretation, $\{\}$ corresponds to $false$, $\{\{}\}$ corresponds to $true$, \leq corresponds to \Rightarrow (implication) and the operations \land, \lor and \sim correspond,
respectively, to conjunction (AND), disjunction (OR) and Boolean dual (the interchange of true and false and AND and OR). This interpretation is significant – aside from its pedagogical value – because it means that in algorithms based on the present theory, the two-level sets of sets in SoS(V) can be replaced by arbitrarily nested constructs, and techniques for Boolean minimization and equivalence can then be applied to these structures.

3. COMBINATORICS

The main results of this paper are in Section 4, where the objects of study are sequences of Boolean expressions and directed graphs in which each arc is labeled with a Boolean expression. This section provides the mathematical foundations for those results. Here, the objects of study are sequences of sets of elements and directed graphs in which each arc is labeled with a set of elements. At the logic level, each such set of elements will be interpreted as the set of states in which a Boolean expression holds (is true).

The theory at the combinatorics level proceeds as follows:

− Section 3.1 presents the fundamental theorem (Theorem 3.1), a basic result in combinatorial mathematics which provides a necessary and sufficient condition for a product (composite) relation to be total. This result is the foundation upon which the subsequent theory rests.

− Section 3.2 introduces set graphs, directed graphs in which each arc is labeled with a set of elements. A set graph plays the role of a finite state automaton and defines a regular set of sequences of sets. An implicant of a set of sequences of sets – or of a set graph defining a regular set of such sequences – is the combinatorial counterpart to the notion of sequential implicant defined above.

− Section 3.3 defines a link of a set graph G as an ordered triple \(\langle aft, \alpha, fore \rangle \) satisfying special properties, where aft and fore are each a set of sets of interior vertices of G and \(\alpha \) is a sequence of sets. The links of a set graph G are the key to characterizing the implicants of G since a sequence of sets \(\alpha \) is an implicant of G if and only if \(\langle \{ \{ \} \}, \alpha, \{ \{ \} \} \rangle \) is a link of G (Lemma 3.1). Theorem 3.2 provides a sufficient condition for two links to be concatenated: If \(\langle aft_1, \alpha_1, fore_1 \rangle \) and \(\langle aft_2, \alpha_2, fore_2 \rangle \) are links of set graph G such that \(\sim fore_1 \leq aft_2 \), then \(\langle aft_1, \alpha_1 \bullet \alpha_2, fore_2 \rangle \) is a link of G.
Section 3.4 describes the special properties of those links $\langle aft, \alpha, fore \rangle$ such that $|\alpha| = 1$. These links of length 1 are of interest because elaborations are defined in Section 3.6 solely in terms of such links and because the manipulations used in sequential resolution (described in Section 5) and the process of normalization (described in Section 6) involve only links of length 1. The initial links of length 1 of a set graph G are derived from the arcs of G via Theorem 3.3. Additional links of length 1 of G are derived from existing links of length 1 through the micro inferences described in Theorem 3.4.

Section 3.5 defines a forwards- (backwards-) maximal link as a link $\langle aft, \alpha, fore \rangle$ such that $fore (aft)$ is the maximum set of sets of interior vertices of the set graph G – with respect to the partial order \leq – such that $\langle aft, \alpha, fore \rangle$ is a link of G. A key result involving such links (Theorem 3.5) allows us to construct for any implicant of G an elaboration that accepts a subsequence of that implicant.

Section 3.6 defines an elaboration of a set graph G as another set graph E in which each vertex is an ordered pair $\langle aft, fore \rangle$ satisfying special properties, where aft and $fore$ are each a set of sets of interior vertices of G. The main result at the combinatorics level is Theorem 3.6 which states that a sequence of sets α is an implicant of a set graph G if and only if a subsequence of α is accepted by an elaboration of G.

3.1 The Fundamental Theorem

Let A, B and C be sets with B finite, and let $R_{AB} \subseteq A \times B$ and $R_{BC} \subseteq B \times C$ be binary relations. The product (composite) relation $R_{AB} \circ R_{BC}$ is the relation

$$\{(a, c) \in A \times C \mid \text{There exists } b \in B \text{ such that } aR_{AB}b \text{ and } bR_{BC}c\}$$

Question: Under what circumstances is $R_{AB} \circ R_{BC}$ total – that is, under what circumstances does $R_{AB} \circ R_{BC} = A \times C$? For example, the product of the relations in Figure 1(a) is not total because there does not exist $b \in B$ such that $aR_{AB}b$ and $bR_{BC}c_1$, but the product in Figure 1(b) is total. The answer is provided by Theorem 3.1.
THEOREM 3.1. (Furtek 1984). Let A, B and C be sets with B finite, and let $R_{AB} \subseteq (A \times B)$ and $R_{BC} \subseteq (B \times C)$ be binary relations. Then

$$R_{AB} \circ R_{BC} = A \times C$$

if and only if

$$\sim\text{min}_\subseteq(\{B_i \subseteq B \mid R_{AB}^{-1}(B_i) = A\}) \leq \text{min}_\subseteq(\{B_j \subseteq B \mid R_{BC}(B_j) = C\})$$

So we see that $R_{AB} \circ R_{BC}$ is total if and only if a certain relationship exists between two sets of subsets of B. From the definition of \sim and Property 2.4, we see that that relationship can be restated as follows: For each minimal subset B_k of B that intersects each set in

$$\text{min}_\subseteq(\{B_i \subseteq B \mid R_{AB}^{-1}(B_i) = A\})$$

there exists a subset of B_k in

$$\text{min}_\subseteq(\{B_j \subseteq B \mid R_{BC}(B_j) = C\}).$$

But what is the significance of these two sets of subsets of B? We observe first that $\{B_i \subseteq B \mid R_{AB}^{-1}(B_i) = A\}$ is the set of subsets B_i of B whose image under the inverse relation R_{AB}^{-1} is A. In other words, for all $a \in A$, there exists $b \in B_i$ such that $bR_{AB}^{-1}a$ or, equivalently $aR_{AB}b$. Thus

$$\text{min}_\subseteq(\{B_i \subseteq B \mid R_{AB}^{-1}(B_i) = A\})$$

is the set of minimal subsets (with respect to set inclusion) B_i of B such that for all $a \in A$, there exists $b \in B_i$ such that $aR_{AB}b$. Similarly,

$$\text{min}_\subseteq(\{B_j \subseteq B \mid R_{BC}(B_j) = C\})$$

22
is the set of minimal subsets (with respect to set inclusion) B_j of B such that for all $c \in C$, there exists $b \in B_j$ such that $bR_{BC}c$.

Comment: The asymmetry between R_{AB} and R_{BC} in the property

$$\sim \min_{\subseteq} \{ B_j \subseteq B \mid R_{AB}^{-1}(B_j) = A \} \leq \min_{\subseteq} \{ B_j \subseteq B \mid R_{BC}(B_j) = C \}$$

may appear incongruous with the symmetry between R_{AB} and R_{BC} in the property $R_{AB} \circ R_{BC} = A \times C$. But that asymmetry is only apparent since by Property 2.1(a) the above property is equivalent to:

$$\sim \min_{\subseteq} \{ B_j \subseteq B \mid R_{BC}(B_j) = C \} \leq \min_{\subseteq} \{ B_j \subseteq B \mid R_{AB}^{-1}(B_j) = A \}$$

To illustrate the above ideas, consider again the two binary relations in Figure 2(a). Their product is not total, and the property in Theorem 3.1 is not satisfied (see the partial order in Figure 1):

$$\min_{\subseteq} \{ B_j \subseteq B \mid R_{AB}^{-1}(B_j) = A \} = \{ \{ b_0, b_2 \}, \{ b_1, b_2 \} \}$$

$$\sim \min_{\subseteq} \{ B_j \subseteq B \mid R_{BC}(B_j) = C \} = \{ \{ b_0, b_1 \}, \{ b_0, b_2 \}, \{ b_1, b_2 \} \}$$

Now consider the two binary relations Figure 2(b). Their product is total, and the property in Theorem 3.1 is satisfied:

$$\min_{\subseteq} \{ B_j \subseteq B \mid R_{AB}^{-1}(B_j) = A \} = \{ \{ b_0, b_1 \}, \{ b_0, b_2 \}, \{ b_1, b_2 \} \}$$

$$\sim \min_{\subseteq} \{ B_j \subseteq B \mid R_{BC}(B_j) = C \} = \{ \{ b_0, b_1 \}, \{ b_0, b_2 \}, \{ b_1, b_2 \} \}$$

3.2 Set Graphs

A set graph – the combinatorial counterpart to a Boolean graph – defines a regular set of sequences of sets as described in Section 2.3.

Definition 3.1. A set graph is a triple (V, S, A), where

1. V is a finite set of vertices
2. S is a set of elements
3. $A \subseteq (V \times 2^S \times V)$ is a finite set of labeled arcs

The labels on the arcs of a set graph are thus subsets of S, which at the combinatorics level is just a set of arbitrary elements. At the logic level, S will be interpreted as the set of states associated with a generalized Kripke structure.
Example: Figure 3 depicts a set graph in which the set of elements is \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{14}, s_{15}\}. (This set graph corresponds to the Boolean graph in Section 4.2.) The initial vertices of the graph are \(v_0, v_2, v_5, v_6, v_{11}, v_{14}\) and \(v_{16}\); the terminal vertices are \(v_1, v_4, v_7, v_{10}, v_{13}, v_{15}\) and \(v_{17}\); and the interior vertices are \(v_3, v_6, v_9\) and \(v_{12}\).

![Set Graph](image)

The sequences of sets accepted by the graph are:

\[
\begin{align*}
&\langle \{s_0, s_{10}, s_{11}, s_{13}, s_{14}, s_{15}\} \rangle \\
&\langle \{s_2, s_3, s_6, s_7, s_{10}, s_{11}, s_{14}, s_{15}\} \rangle \\
&\langle \{s_0, s_1, s_4, s_5, s_8, s_9, s_{12}, s_{13}\} \rangle \\
&\langle \{s_0, s_2, s_4, s_6, s_8, s_{10}, s_{12}, s_{14}\} \rangle \\
&\langle \{s_1, s_2, s_5, s_6, s_9, s_{10}, s_{13}, s_{14}\} \rangle \\
&\langle \{s_1, s_3, s_5, s_7, s_9, s_{11}, s_{13}, s_{15}\} \rangle \\
&\langle \{s_1, s_3, s_5, s_7, s_9, s_{11}\} \rangle \\
&\langle \{s_4, s_5, s_7, s_9, s_{11}\} \rangle \\
&\langle \{s_2, s_{14}\} \rangle
\end{align*}
\]

An implicant of a set of sequences of sets is the combinatorial counterpart to an implicant of a set of sequences of Boolean expressions (see Definition 1.3).

Definition 3.2. An implicant of a set of sequences of sets \(A\) is a sequence of sets \(\alpha\) such that for all \(\omega \in \times \alpha\), there exists a subsequence \(\omega'\) of \(\omega\) and a sequence of sets \(\alpha'\) in \(A\)
such that \(\omega' \in \times \alpha' \). An implicant of a set graph \(G = (V, S, A) \) is a sequence \(\alpha \) of subsets of \(S \) such that \(\alpha \) is an implicant of the set of sequences of sets accepted by \(G \).

3.3 Links

The links of a set graph are the key to characterizing the implicants of the set graph. (Recall that \(IV(G) \) is the set of interior vertices of \(G \) and that \(SoS(V) \) is the set of sets of subsets of \(V \) as defined in Section 2.6.)

Definition 3.3. A link of the set graph \(G = (V, S, A) \) is a triple \(\langle aft, \alpha, fore \rangle \), where \(aft \) and \(fore \) are elements of \(SoS(IV(G)) \) and \(\alpha \) is a sequence of subsets of \(S \), such that for all \(set_a \in aft \), for all \(\omega \in \times \alpha \), for all \(set_f \in fore \), there exists a path \(\mu \) in \(G \) such that at least one of the following four properties holds:

1. (a) \(\times label(\mu) \) contains a subsequence of \(\omega \) and
 (b) \(tail(\mu) \) is an initial vertex of \(G \) and
 (c) \(head(\mu) \) is a terminal vertex of \(G \)

2. (a) \(\times label(\mu) \) contains a prefix of \(\omega \) and
 (b) \(tail(\mu) \in set_a \) and
 (c) \(head(\mu) \) is a terminal vertex of \(G \)

3. (a) \(\times label(\mu) \) contains a suffix of \(\omega \) and
 (b) \(tail(\mu) \) is an initial vertex of \(G \) and
 (c) \(head(\mu) \in set_f \)

4. (a) \(\times label(\mu) \) contains \(\omega \) and
 (b) \(tail(\mu) \in set_a \) and
 (c) \(head(\mu) \in set_f \)

Example: Let \(G \) be the set graph in Figure 3. Now consider the triple \(\langle aft, \alpha, fore \rangle \), where

\[
\begin{align*}
aft &= \{ \{ v_3, v_{12} \} \} \\
\alpha &= \langle \{ s_1, s_6, s_{12} \}, \{ s_3 \}, \{ s_1, s_6 \} \rangle \\
fore &= \{ \{ v_6 \}, \{ v_9 \} \}
\end{align*}
\]

Table 2 shows that for each combination of \(\omega \in \times \alpha \), \(set_a \in aft \) and \(set_f \in fore \), there exists a path \(\mu \) in \(G \) such that at least one of the four properties in Definition 3.3 holds. Those elements in \(label(\mu) \) forming a subsequence, prefix or suffix of \(\omega \) are indicated in \textbf{red bold}. For those cases where Property 2 holds, the tail of \(\mu \), which is in \(\in set_a \), is indicated
in **blue bold**. For those cases where Property 3 holds, the head of \(\mu \), which is in \(\in \text{set}_f \), is also indicated in **blue bold**.

\[
\langle \{ v_3, v_{12} \}, \langle \{ s_{1}, s_{6}, s_{12} \}, \{ s_3 \}, \{ s_{1}, s_6 \}, \{ v_6 \}, \{ v_9 \} \rangle
\]
is therefore a link of \(G \). (Note: This exhaustive enumeration of \(\omega \in \times \alpha \), set_a \(\in \text{aft} \) and set_f \(\in \text{fore} \) is for illustrative purposes only. None of the techniques described below rely on such an enumeration.)

The connection between links and implicants is provided by Lemma 3.1.

Lemma 3.1. Let \(G = (V, S, A) \) be a set graph and let \(\alpha \) be a sequence of subsets of \(S \). Then \(\alpha \) is an implicant of \(G \) if and only if \(\langle \{ \}, \alpha, \{ \} \rangle \) is a link of \(G \).

Proof. Suppose that \(\langle \{ \}, \alpha, \{ \} \rangle \) is a link of \(G \). Then in Definition 3.3, \(\text{aft} = \{ \} \) and \(\text{fore} = \{ \} \). Thus for all \(\omega \in \times \alpha \), for \(\text{set}_a = \{ \} \) and for \(\text{set}_f = \{ \} \), there exists a path \(\mu \) in \(G \) such that at least one of Properties 1 – 4 in Definition 3.3 holds. But Properties 2 – 4 cannot hold since \(\text{set}_a \) and \(\text{set}_f \) are both empty. So Property 1 must hold. That means for all \(\omega \in \times \alpha \), there exists a path \(\mu \) in \(G \) such that (a) \(\times \)\!label\!(\mu) contains a subsequence of \(\omega \), (b) tail\!(\mu) is an initial vertex of \(G \) and (c) head\!(\mu) is a terminal vertex of \(G \). There thus exists a subsequence \(\omega' \) of \(\omega \) and a sequence of sets \(\alpha' \) (namely, label\!(\mu)) accepted by \(G \) such that \(\omega' \in \times \alpha' \). \(\alpha \) is therefore an implicant of \(G \). A reverse argument shows that if \(\alpha \) is an implicant of \(G \), then \(\langle \{ \}, \alpha, \{ \} \rangle \) is a link of \(G \).

The next property states, in effect, that weakening any, or all, of the components of a link yields another link.

Property 3.1. Let \(\langle \text{aft}_1, \alpha_1, \text{fore}_1 \rangle \) be a link of the set graph \(G = (V, S, A) \), let \(\text{aft}_2 \) and \(\text{fore}_2 \) be elements of SoS(IV\!(G)) and let \(\alpha_2 \) be a sequence of subsets of \(S \) such that \(|\alpha_2| = |\alpha_1| \). If each of the following three properties holds

1. \(\text{aft}_2 \leq \text{aft}_1 \)
2. \(\alpha_2(i) \subseteq \alpha_1(i) \) for \(0 \leq i < |\alpha_1| \)
3. \(\text{fore}_2 \leq \text{fore}_1 \)

then \(\langle \text{aft}_2, \alpha_2, \text{fore}_2 \rangle \) is a link of \(G \).

As an illustration of this property, consider the set graph in Figure 3 and the triple

\[
\langle \{ v_3, v_{12} \}, \langle \{ s_{1}, s_{6}, s_{12} \}, \{ s_3 \}, \{ s_{1}, s_6 \}, \{ v_6 \}, \{ v_9 \} \rangle
\]

It is a weaker version of

\[
\langle \{ v_3, v_{12} \}, \langle \{ s_{1}, s_{6}, s_{12} \}, \{ s_3 \}, \{ s_{1}, s_6 \}, \{ v_6 \}, \{ v_9 \} \rangle
\]
Table 2. Properties Satisfied by $\{\{v_3,v_{12}\}\}$, $\{\{s_3,s_{12}\}\}$, $\{s_3,s_6\}$, $\{v_6\}$, $\{v_9\}$

$\omega \in \times$	$s_{3r} \in$ \textit{set}_r	$s_{3l} \in$ \textit{set}_l	Path μ in Set Graph G	Prop.
$\langle s_1,s_3,s_1 \rangle$	$\{v_3,v_{12}\}$	$\{v_6\}$	$\langle\langle \langle \langle \langle \langle v_{11},\{s_1,s_3,s_5,s_7,s_9,s_{11},s_{13},s_{15}\},v_{12}\rangle,\langle v_{12},\{s_0,s_3,s_5,s_7,s_9,s_{11},s_{12},s_{15}\},v_{11}\rangle\rangle\rangle\rangle\rangle\rangle\rangle\rangle$	1
$\langle s_1,s_3,s_6 \rangle$	$\{v_3,v_{12}\}$	$\{v_6\}$	$\langle\langle \langle \langle \langle \langle v_{11},\{s_1,s_3,s_5,s_7,s_9,s_{11},s_{13},s_{15}\},v_{12}\rangle,\langle v_{12},\{s_0,s_3,s_5,s_7,s_9,s_{11},s_{12},s_{15}\},v_{11}\rangle\rangle\rangle\rangle\rangle\rangle$	1
$\langle s_6,s_3,s_1 \rangle$	$\{v_3,v_{12}\}$	$\{v_6\}$	$\langle\langle \langle \langle \langle \langle v_{12},\{s_2,s_3,s_6,s_7,s_{10},s_{11},s_{13},s_{15}\},v_{12}\rangle,\langle v_{12},\{s_0,s_2,s_3,s_6,s_7,s_{10},s_{11},s_{12},s_{15}\},v_{13}\rangle\rangle\rangle\rangle\rangle\rangle$	2
$\langle s_6,s_3,s_6 \rangle$	$\{v_3,v_{12}\}$	$\{v_6\}$	$\langle\langle \langle \langle \langle \langle v_{12},\{s_2,s_3,s_6,s_7,s_{10},s_{11},s_{13},s_{15}\},v_{12}\rangle,\langle v_{12},\{s_0,s_2,s_3,s_6,s_7,s_{10},s_{11},s_{12},s_{15}\},v_{13}\rangle\rangle\rangle\rangle\rangle\rangle$	2
$\langle s_{12},s_3,s_1 \rangle$	$\{v_3,v_{12}\}$	$\{v_6\}$	$\langle\langle \langle \langle \langle \langle v_{12},\{s_2,s_3,s_6,s_7,s_{10},s_{11},s_{13},s_{15}\},v_{12}\rangle,\langle v_{12},\{s_0,s_2,s_3,s_6,s_7,s_{10},s_{11},s_{13},s_{15}\},v_{13}\rangle\rangle\rangle\rangle\rangle\rangle$	2
$\langle s_{12},s_3,s_6 \rangle$	$\{v_3,v_{12}\}$	$\{v_6\}$	$\langle\langle \langle \langle \langle \langle v_{12},\{s_2,s_3,s_6,s_7,s_{10},s_{11},s_{13},s_{15}\},v_{12}\rangle,\langle v_{12},\{s_0,s_2,s_3,s_6,s_7,s_{10},s_{11},s_{12},s_{15}\},v_{13}\rangle\rangle\rangle\rangle\rangle\rangle$	2
which we’ve already seen is a link of the set graph in Figure 3. It follows from Property 3.1 that \(\langle \{ v_3, v_{12} \} \rangle \), \(\langle \{ s_1, s_{12} \}, \{ s_3 \}, \{ s_1, s_6 \} \rangle \), \(\{ v_9 \} \rangle \text{ is also a link of the set graph in Figure 3.}

The next result, together with Theorem 3.5 below, are crucial. They both depend directly on the Fundamental Theorem and are the two supporting pillars for Theorem 3.6, the main result at the combinatorics level.

THEOREM 3.2. If \(\langle \text{aft}_1, \alpha_1, \text{fore}_1 \rangle \text{ and } \langle \text{aft}_2, \alpha_2, \text{fore}_2 \rangle \text{ are links of the set graph } G \text{ such that } \sim \text{fore}_1 \leq \text{aft}_2, \text{ then } \langle \text{aft}_1, \alpha_1 \bullet \alpha_2, \text{fore}_2 \rangle \text{ is a link of } G. \)

PROOF. See Appendix A.

Example: Let \(G \) be the set graph in Figure 3 and let

\[
\begin{align*}
\text{aft}_1 & = \{ v_3, v_{12} \} \\
\alpha_1 & = \langle \{ s_1, s_6, s_{12} \} \rangle \\
\text{fore}_1 & = \{ v_6 \}, \{ v_{12} \} \\
\text{aft}_2 & = \{ v_6, v_{12} \} \\
\alpha_2 & = \langle \{ s_3 \} \rangle \\
\text{fore}_2 & = \{ v_3 \}, \{ v_9 \} \\
\text{aft}_3 & = \{ v_3, v_9 \} \\
\alpha_3 & = \langle \{ s_1, s_6 \} \rangle \\
\text{fore}_3 & = \{ v_6 \}, \{ v_9 \} \\
\end{align*}
\]

\(\langle \text{aft}_1, \alpha_1, \text{fore}_1 \rangle \), \(\langle \text{aft}_2, \alpha_2, \text{fore}_2 \rangle \) and \(\langle \text{aft}_3, \alpha_3, \text{fore}_3 \rangle \) are links of \(G \) as can be verified by exhaustively enumerating all \(\omega \in \times \alpha, \text{set}_a \in \text{aft} \text{ and set}_f \in \text{fore}, \) as was done in Table 2, for each of these three new cases. Since \(\sim \text{fore}_1 = \{ v_6, v_{12} \} = \text{aft}_2, \) it follows from Theorem 3.2 that \(\langle \text{aft}_1, \alpha_1 \bullet \alpha_2, \text{fore}_2 \rangle \) is a link of \(G. \) Furthermore, since \(\sim \text{fore}_2 = \{ v_3, v_9 \} \rangle = \text{aft}_3, \) it follows – again from Theorem 3.2 – that \(\langle \text{aft}_1, \alpha_1 \bullet \alpha_2 \bullet \alpha_3, \text{fore}_3 \rangle \) is a link of \(G. \)

Now notice an important property of links \(\langle \text{aft}_1, \alpha_1, \text{fore}_1 \rangle, \langle \text{aft}_2, \alpha_2, \text{fore}_2 \rangle \) and \(\langle \text{aft}_3, \alpha_3, \text{fore}_3 \rangle \). They are all links of length 1 – that is, \(|\alpha_1| = |\alpha_2| = |\alpha_3| = 1. \) Notice also that \(\langle \text{aft}_1, \alpha_1 \bullet \alpha_2 \bullet \alpha_3, \text{fore}_3 \rangle \) is the same link considered in Table 2. So we have established that \(\langle \text{aft}_1, \alpha_1 \bullet \alpha_2 \bullet \alpha_3, \text{fore}_3 \rangle \) is a link of \(G \) without having to exhaustively enumerate all \(\omega \in \times (\alpha_1 \bullet \alpha_2 \bullet \alpha_3), \text{set}_a \in \text{aft}_1 \text{ and set}_f \in \text{fore}_3 \) as was done in Table 2. We instead relied on the **concatenation** of links of length 1, a technique that is key to constructing links – and ultimately implicants – of a set graph.
3.4 Links of Length 1

Although the general notion of a link in Definition 3.3 is needed to prove that a sequence of sets is an implicant of a set graph if and only if it is accepted by an elaboration of that set graph, the actual definition of an elaboration is in terms of links of length 1. Moreover, the manipulations used in sequential resolution (described in Section 5) and the process of normalization (described in Section 6) also involve only links of length 1. For these reasons, we provide a separate definition for this special class of links. The definition is much simpler than for the general case.

Definition 3.4. A link of length 1 of a set graph $G = (V, S, A)$ is a triple $\langle aft, D, fore \rangle$, where aft and fore are elements of $\text{SoS}(IV(G))$ and D is a subset of S, such that for all $set_a \in aft$, for all elements $e \in D$, for all $set_f \in fore$, there exists an arc $a \in A$ such that each of the following properties holds:

1. $\text{tail}(a)$ is an initial vertex of G or is in set_a
2. $e \in \text{label}(a)$
3. $\text{head}(a)$ is a terminal vertex of G or is in set_f

The question now arises: Where do links of length 1 come from? The answer is twofold: (1) the initial links of length 1 of set graph G are derived from the arcs of G via Theorem 3.3; (2) additional links of length 1 of G are derived from existing links of length 1 through micro inferences as described in Theorem 3.4.

THEOREM 3.3. Let $\langle v_i, D, v_j \rangle$ be an arc of set graph G.

(a) If v_i is an initial vertex of G and v_j is a terminal vertex of G, then $\langle \{\}\{\}\, D, \{\}\{\} \rangle$ is a link of length 1 of G

(b) If v_i is an initial vertex of G and v_j is an interior vertex of G, then $\langle \{\}\{\} \, D, \{\}v_j\{\} \rangle$ is a link of length 1 of G

(c) If v_i is an interior vertex of G and v_j is a terminal vertex of G, then $\langle \{\}v_i\{\} \, D, \{\}\{\} \rangle$ is a link of length 1 of G

(d) If v_i and v_j are interior vertices of G, then $\langle \{\}v_i\{\}, D, \{\}v_j\{\} \rangle$ is a link of length 1 of G

PROOF. (a) If v_i is an initial vertex of G and v_j is a terminal vertex of G, then for all $set_a \in \{\}\{\}$, for all $set_f \in \{\}\{\}$ and for all $e \in D$, there exists arc a of G – namely, $\langle v_i, D, v_j \rangle$ – such that: (1) $\text{tail}(a)$ is an initial vertex of G or is in set_a, (2) $e \in \text{label}(a)$ and (3)
$head(a)$ is a terminal vertex of G or is in set_f. It follows from Definition 3.4 that $\langle \{\{\}\}, D, \{\{\}\} \rangle$ is a link of length 1 of G. Similar arguments apply to (b), (c) and (d).

The application of this theorem to the set graph of Figure 3 is illustrated in Table 3. Column (a) lists the arcs of the set graph, while Column (b) lists for each arc the corresponding link of length 1.

TABLE 3. Links of Length 1 Derived From the Arcs in Figure 3

(a) Arc	(b) Link of Length 1
$\langle v_0, \{s_9, s_{10}, s_{11}, s_{13}, s_{14}, s_{15}\}, v_1 \rangle$	$\langle \{\{\}\}, \{s_9, s_{10}, s_{11}, s_{13}, s_{14}, s_{15}\}, \{\{\}\} \rangle$
$\langle v_2, \{s_2, s_3, s_6, s_7, s_{10}, s_{11}, s_{14}, s_{15}\}, v_3 \rangle$	$\langle \{\{\}\}, \{s_2, s_3, s_6, s_7, s_{10}, s_{11}, s_{14}, s_{15}\}, \{v_3\}\rangle$
$\langle v_3, \{s_2, s_3, s_6, s_7, s_{10}, s_{11}, s_{14}, s_{15}\}, v_4 \rangle$	$\langle \{\{\}\}, \{s_2, s_3, s_6, s_7, s_{10}, s_{11}, s_{14}, s_{15}\}, \{v_3\}\rangle$
$\langle v_5, \{s_0, s_1, s_2, s_5, s_6, s_9, s_{12}, s_{13}\}, v_6 \rangle$	$\langle \{\{\}\}, \{s_0, s_1, s_2, s_5, s_6, s_9, s_{12}, s_{13}\}, \{\{\}\} \rangle$
$\langle v_6, \{s_0, s_1, s_2, s_5, s_6, s_9, s_{12}, s_{13}\}, v_7 \rangle$	$\langle \{\{\}\}, \{s_0, s_1, s_2, s_5, s_6, s_9, s_{12}, s_{13}\}, \{\{\}\} \rangle$
$\langle v_8, \{s_0, s_2, s_4, s_6, s_8, s_{10}, s_{12}, s_{14}\}, v_9 \rangle$	$\langle \{\{\}\}, \{s_0, s_2, s_4, s_6, s_8, s_{10}, s_{12}, s_{14}\}, \{\{\}\} \rangle$
$\langle v_9, \{s_1, s_2, s_5, s_6, s_9, s_{10}, s_{13}, s_{14}\}, v_{10} \rangle$	$\langle \{\{\}\}, \{s_1, s_2, s_5, s_6, s_9, s_{10}, s_{13}, s_{14}\}, \{\{\}\} \rangle$
$\langle v_{11}, \{s_1, s_3, s_4, s_5, s_7, s_9, s_{11}, s_{13}, s_{14}\}, v_{12} \rangle$	$\langle \{\{\}\}, \{s_1, s_3, s_4, s_5, s_7, s_9, s_{11}, s_{13}, s_{14}\}, \{\{\}\} \rangle$
$\langle v_{12}, \{s_0, s_3, s_4, s_7, s_8, s_{11}, s_{12}, s_{14}\}, v_{13} \rangle$	$\langle \{\{\}\}, \{s_0, s_3, s_4, s_7, s_8, s_{11}, s_{12}, s_{14}\}, \{\{\}\} \rangle$
$\langle v_{14}, \{s_4, s_5, s_6, s_9, s_{11}\}, v_{15} \rangle$	$\langle \{\{\}\}, \{s_4, s_5, s_6, s_9, s_{11}\}, \{\{\}\} \rangle$
$\langle v_{16}, \{s_2, s_{14}\}, v_7 \rangle$	$\langle \{\{\}\}, \{s_2, s_{14}\}, \{\{\}\} \rangle$

THEOREM 3.4. If $\langle aft_1, D_1, fore_1 \rangle$ and $\langle aft_2, D_2, fore_2 \rangle$ are links of length 1 of the set graph G, then each of the following are links of length 1 of G:

(a) $\langle aft_1 \cup aft_2, D_1 \cap D_2, fore_1 \wedge fore_2 \rangle$

(b) $\langle aft_1 \wedge aft_2, D_1 \cup D_2, fore_1 \wedge fore_2 \rangle$

(c) $\langle aft_1 \wedge aft_2, D_1 \cap D_2, fore_1 \vee fore_2 \rangle$

PROOF. (a) Suppose that $set_a \in (aft_1 \cup aft_2)$, $e \in (D_1 \cap D_2)$ and $set_f \in (fore_1 \wedge fore_2)$. From Definition 2.5, we know that either $set_a \in aft_1$ or $set_a \in aft_2$ and that there exist $set_{f1} \in fore_1$ and $set_{f2} \in fore_2$ such that $set_f = set_{f1} \cup set_{f2}$. We also know that $e \in D_1$ and $e \in D_2$. So either: (1) $set_a \in aft_1$, $e \in D_1$ and there exists $set_{f1} \in fore_1$ such that $set_{f1} \subseteq set_f$ or (2) $set_a \in aft_2$, $e \in D_2$ and there exists $set_{f2} \in fore_2$ such that $set_{f2} \subseteq set_f$. Since $\langle aft_1, a, fore_1 \rangle$ is a link of length 1 of G, there must exist an arc a of G such that $tail(a)$ is an initial vertex of G or is in set_a, $e \in label(a)$ and $head(a)$ is a terminal vertex of G or is in set_f. 30
But if head(a) is in set₁, it must also be in set₂ since set₁ ⊆ set₂. It follows for Case 1 that
\langle aft₁ \lor aft₂, D₁ \cap D₂, fore₁ \land fore₂ \rangle is a link of length 1 of G. A similar argument holds for Case 2. Hence \langle aft₁ \land aft₂, D₁ \cup D₂, fore₁ \land fore₂ \rangle is a link of length 1 of G. Similar proofs apply to \langle aft₁ \land aft₂, D₁ \cup D₂, fore₁ \lor fore₂ \rangle.

This theorem is illustrated by applying each of the three forms of micro inference to links of length 1 from Table 3. The following is an example of a micro inference according to Theorem 3.4(a):

\langle \{\{v₆\}\}, \{s₀, s₁, s₄, s₅, s₉, s₁₂, s₁₃\}, \{\}\}\rangle
\langle \{\{v₆\}\}, \{s₀, s₁, s₄, s₅, s₉, s₁₀, s₁₃, s₁₄\}, \{\}\}\rangle
\langle \{\{v₆\}\}, \{v₉\}\}, \{s₁, s₂, s₉, s₁₃\}, \{\}\}\rangle

The following is an example of a micro inference according to Theorem 3.4(b):

\langle \{\}\}, \{s₂, s₃, s₆, s₇, s₁₀, s₁₁, s₁₄, s₁₅\}, \{v₃\}\rangle
\langle \{\{v₆\}\}, \{s₀, s₁, s₄, s₅, s₉, s₁₂, s₁₃\}, \{\}\}\rangle
\langle \{\{v₆\}\}, \{s₀, s₁, s₂, s₃, s₄, s₅, s₆, s₇, s₉, s₁₀, s₁₁, s₁₂, s₁₃, s₁₄, s₁₅\}, \{v₃\}\}\rangle

The following is an example of a micro inference according to Theorem 3.4(c):

\langle \{\}\}, \{s₂, s₃, s₆, s₇, s₁₀, s₁₁, s₁₄, s₁₅\}, \{v₃\}\rangle
\langle \{\}\}, \{s₁, s₃, s₅, s₇, s₉, s₁₁, s₁₃, s₁₅\}, \{v₁₂\}\rangle
\langle \{\}\}, \{s₃, s₅, s₁₁, s₁₅\}, \{v₃, v₁₂\}\rangle

3.5 Maximal Links
Theorem 3.6 below, the main result at the combinatorics level, states that a sequence of sets is an implicant of a set graph if and only if it is accepted by an elaboration of that set graph. Theorem 3.2 above is sufficient to prove the if part of the theorem. To prove the only if part, we need the concept of a maximal link, which allows us to construct an elaboration of set graph G from an implicant of G. (Maximal links are also used in the normalization process described in Section 6.)
Definition 3.5. Let $G = (V, S, A)$ be a set graph, let aft and fore be elements of $SoS(IV(G))$ and let α be a sequence of subsets of S. Then

$$
\text{max}^+(G, \text{aft}, \alpha) = \min_{\alpha \in \alpha}(\{U \subseteq IV(G) \mid \langle \text{aft}, \alpha, \{U\} \rangle \text{ is a link of } G\})
$$

$$
\text{max}^-(G, \text{fore}, \alpha) = \min_{\alpha \in \alpha}(\{U \subseteq IV(G) \mid \langle \{U\}, \alpha, \text{fore} \rangle \text{ is a link of } G\})
$$

Property 3.2. If $G = (V, S, A)$ is a set graph, aft and fore are each elements of $SoS(IV(G))$ and α is a sequence of subsets of S, then the following three properties are equivalent:

1. $\langle \text{aft}, \alpha, \text{fore} \rangle$ is a link of G
2. $\text{fore} \leq \text{max}^+(G, \text{aft}, \alpha)$
3. $\text{aft} \leq \text{max}^-(G, \text{fore}, \alpha)$

From Property 3.2, we see that $\text{max}^+(G, \text{aft}, \alpha)$ is the maximum element sos_i of $SoS(IV(G))$ such that $\langle \text{aft}, \alpha, sos_i \rangle$ is a link of G. Similarly, $\text{max}^-(G, \text{fore}, \alpha)$ is the maximum element sos_i of $SoS(IV(G))$ such that $\langle sos_i, \alpha, \text{fore} \rangle$ is a link of G. Accordingly, we say that $\langle \text{aft}, \alpha, \text{max}^+(G, \text{aft}, \alpha) \rangle$ is a forwards-maximal link of G, and that $\langle \text{max}^-(G, \text{fore}, \alpha), \alpha, \text{fore} \rangle$ is a backwards-maximal link of G.

Comment: Although max^+ and max^- are symmetrical, our emphasis is on max^+ since it is more intuitive to work with forwards-maximal links. Note, however, that all of the results and procedures described in this paper – including the normalization process of Section 6 – can be just as easily expressed in terms of max^-.

Example: Let G be the set graph in Figure 3, let $\text{aft} = \{v_3, v_{12}\}$ and let $\alpha = \langle \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{14}, s_{15}\} \rangle$. Notice that α is of length 1. In this special case, we can calculate $\text{max}^+(G, \text{aft}, \alpha)$ using the micro inferences of Theorem 3.4. (A detailed algorithm will be described in a future paper.) Starting with initial links of G from Table 3, we can generate a forwards-maximal link of G as follows. Apply Theorem 3.4(b) to two initial links of G:

$$
\langle \{v_5\}, \{s_2, s_3, s_6, s_7, s_{10}, s_{11}, s_{14}, s_{15}\}, \{\{\}\} \rangle
$$

$$
\langle \{\{\}\}, \{s_0, s_1, s_4, s_5, s_8, s_{12}, s_{13}\}, \{v_6\} \rangle
$$

Apply Theorem 3.4(b) twice to three initial links of G:
From this result, we see that determining \max such an examination reveals that there is indeed no such α.

Apply Theorem 3.4(c) to the two just-inferred links:

That this last link is a forwards-maximal link can be verified by considering those sos \in $\text{SoS}(IV(G))$ such that $\{v_6\}, \{v_{12}\} < \text{sos}$, and determining if $(\text{aft}, \alpha, \text{sos})$ is a link of G.

In the preceding example, we have sketched a method for calculating $\max^+(G, \text{aft}, \alpha)$ and $\max^+(G, \text{fore}, \alpha)$ when the length of α is 1. The next result allows us to calculate $\max^+(G, \text{aft}, \alpha)$ and $\max^+(G, \text{fore}, \alpha)$ when the length of α is greater than 1.

THEOREM 3.5. Let $G = (V, S, A)$ be a set graph, let aft and fore be elements of $\text{SoS}(IV(G))$ and let α_1 and α_2 each be a non-null sequence of subsets of S. Then

$$\max^+(G, \text{aft}, \alpha_1\bullet\alpha_2) = \max^+(G, \neg\max^+(G, \text{aft}, \alpha_1), \alpha_2)$$

$$\max^+(G, \text{fore}, \alpha_1\bullet\alpha_2) = \max^+(G, \neg\max^+(G, \text{fore}, \alpha_2), \alpha_1)$$

PROOF. See Appendix B.

From this result, we see that determining $\max^+(G, \text{aft}, \alpha_1\bullet\alpha_2)$ can be reduced to the problem of calculating $\max^+(G, \text{aft}, \alpha_1)$ and then calculating $\max^+(G, \text{aft}_2, \alpha_2)$, where $\text{aft}_2 = \neg\max^+(G, \text{aft}, \alpha_1)$.

Example: Let G be the set graph in Figure 3 and let

$$aft = \{v_3, v_{12}\}$$

$$\alpha_1 = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{14}, s_{15}\}$$

$$\alpha_2 = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{14}, s_{15}\}$$
In order to determine \(\max^+(G, \text{aft}, \alpha_1 \cdot \alpha_2) \), we must first calculate \(\max^+(G, \text{aft}, \alpha_1) \). But from the preceding example, we know that \(\max^+(G, \text{aft}, \alpha_1) = \{ \{ v_6 \}, \{ v_{12} \} \} \). Therefore, \(\max^+(G, \text{aft}, \alpha_1 \cdot \alpha_2) = \max^+(G, \{ \{ v_6, v_{12} \} \}, \alpha_2) \). Now since \(\alpha_2 \), like \(\alpha_1 \), is of length 1, we can use the micro inferences of Theorem 3.4 to calculate \(\max^+(G, \{ \{ v_6, v_{12} \} \}, \alpha_2) \). When we perform those inferences, we find that

\[\max^+(G, \{ \{ v_3, v_{12} \} \}, \alpha_1 \cdot \alpha_2) = \max^+(G, \{ \{ v_6, v_{12} \} \}, \alpha_2) = \{ \{ v_3 \}, \{ v_9 \} \} \]

3.6 Elaborations

We are now ready for the main result at the combinatorics level, a necessary and sufficient condition for a sequence of sets to be an implicant of a set graph. It builds on the machinery developed in the preceding subsections.

Definition 3.6. An elaboration of a set graph \(G = (V_G, S, A_G) \) is a set graph \(E = (V_E, S, A_E) \) such that

1. For all \(v \in V_E \), \(v \) is an ordered pair \(\langle \text{aft}, \text{fore} \rangle \) where \(\text{aft}, \text{fore} \in \text{SoS}(IV(G)) \)
2. For all \(v \in V_E \), \(v \) is an initial vertex of \(E \) if and only if \(\text{aft}(v) = \{ \} \)
3. For all \(v \in V_E \), \(v \) is a terminal vertex of \(E \) if and only if \(\text{fore}(v) = \{ \} \)
4. For all \(v \in V_E \), \(\neg \text{aft}(v) \leq \text{fore}(v) \)
5. For all \(a \in A_E \), \(\langle \text{fore}(\text{tail}(a)), \text{label}(a), \text{aft}(\text{head}(a)) \rangle \) is a link of length 1 of \(G \)

The following property follows from Property 2.5 and Conditions 1 – 4 in Definition 3.6.

PROPERTY 3.3. If \(E \) is an elaboration of a set graph, then the unique initial vertex of \(E \) is \(\langle \{ \}, \{ \{ \} \} \rangle \) and the unique terminal vertex of \(E \) is \(\langle \{ \{ \} \}, \{ \} \rangle \).

Example: Let \(G \) be the set graph in Figure 3 and let \(E \) be the set graph in Figure 4. We see that each vertex of \(E \) is an ordered pair \(\langle \text{aft}, \text{fore} \rangle \), where \(\text{aft}, \text{fore} \in \text{SoS}(IV(G)) \). Those ordered pairs are:

\[
\begin{align*}
&\langle \{ \}, \{ \{ \} \} \rangle \\
&\langle \{ \{ v_6 \}, \{ v_9 \} \}, \{ \{ v_6, v_9 \} \} \rangle \\
&\langle \{ \{ v_3 \}, \{ v_{12} \} \}, \{ \{ v_3, v_{12} \} \} \rangle \\
&\langle \{ \{ v_6 \}, \{ v_{12} \} \}, \{ \{ v_6, v_{12} \} \} \rangle \\
&\langle \{ \{ v_3 \}, \{ v_9 \} \}, \{ \{ v_3, v_9 \} \} \rangle \\
&\langle \{ \{ \} \}, \{ \} \rangle
\end{align*}
\]
We also observe that the unique initial vertex of E is $\langle \{ \}, \{ \} \rangle$, the unique terminal vertex of E is $\langle \{ \}, \{ \} \rangle$ and for each vertex $\langle \text{aft}, \text{fore} \rangle$ in E, $\neg \text{aft} \leq \text{fore}$. Finally, we note that for each arc a in E, $\langle \text{fore}(\text{tail}(a)), \text{label}(a), \text{aft}(\text{head}(a)) \rangle$ is a link of length 1 of G. Those links of length 1 are:

\[
\langle \{ \}, \{ v_6, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{14}, s_{15} \} \rangle, \langle \{ v_9 \} \rangle, \langle \{ v_5, v_{12} \} \rangle, \langle \{ v_6, v_{12} \} \rangle, \langle \{ v_6, v_{12}, v_9 \} \rangle, \langle \{ v_3, v_5 \} \rangle, \langle \{ v_6, v_{12}, v_9 \} \rangle
\]

(That these are indeed links of length 1 of G can be confirmed using the micro inferences of Theorem 3.4. Or, alternatively, we can check that each triple satisfies the properties in Definition 3.4.) From these observations, we conclude that E satisfies the five properties listed in Definition 3.6, and that E is therefore an elaboration of G.

Of particular interest are the sequences of sets accepted by E. In this case, because E contains a (directed) cycle, E accepts an infinite number of sequences. They are all of the form $\langle X, Y_{n+1}, Z \rangle$, where n is a non-negative integer and

\[
X = \{ s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{14}, s_{15} \} \\
Y = \{ s_6, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{14}, s_{15} \} \\
Z = \{ s_6, s_1, s_2, s_3, s_{12}, s_{13}, s_{14}, s_{15} \}
\]

We now turn our attention to characterizing the sequences of sets accepted by an elaboration of a set graph. That characterization is provided by Theorem 3.6, which relies, in part, on Lemmas 3.2 and 3.3. (The wording of Lemma 3.3 was chosen so that the lemma could be used both here and in Section 6.)
LEMMA 3.2. If E is an elaboration of the set graph G and μ is a path in E, then $(\text{fore}(\text{tail}(\mu)), \text{label}(\mu), \text{aft}(\text{head}(\mu)))$ is a link of G.

PROOF. By induction on the length of μ. For paths of length 1 (i.e., arcs), the lemma follows from the definition of an elaboration. Now assume that the lemma is true for all paths of length n. Let μ be an arbitrary path in E of length $n+1$, let μ_n be the prefix of μ of length n and let a be the $n+1$'st (and final) arc of μ. By our hypothesis, $(\text{fore}(\text{tail}(\mu_n)), \text{label}(\mu_n), \text{aft}(\text{head}(\mu_n)))$ is a link of G, and from the definition of an elaboration $(\text{fore}(\text{tail}(a)), \text{label}(a), \text{aft}(\text{head}(a)))$ is a link of G. Since $\text{head}(\mu_n) = \text{tail}(a)$, it follows from the definition of an elaboration that $\neg\text{aft}(\text{head}(\mu_n)) \leq \text{fore}(\text{tail}(a))$, and from Theorem 3.2 that $(\text{fore}(\text{tail}(\mu_n)), \text{label}(\mu_n) \blacklozenge \text{label}(a), \text{aft}(\text{head}(a)))$ is a link of G, or equivalently that $(\text{fore}(\text{tail}(\mu_n)), \text{label}(\mu_n \bullet a), \text{aft}(\text{head}(a)))$ is a link of G. But $\mu_n \bullet a = \mu$. Hence $(\text{fore}(\text{tail}(\mu)), \text{label}(\mu), \text{aft}(\text{head}(\mu)))$ is a link of G.

LEMMA 3.3. If G and E are set graphs over the same set of elements and μ is a path in E such that

1. All vertices on μ are ordered pairs $(\text{aft}, \text{fore})$, where $\text{aft}, \text{fore} \in \text{SoS}(IV(G))$
2. For all vertices v on μ, $\neg\text{aft}(v) = \text{fore}(v)$
3. For all arcs a on μ, $\text{aft}(\text{head}(a)) = \max^\prec(G, \text{fore}(\text{tail}(a)), \text{label}(a))$

then $\text{aft}(\text{head}(\mu)) = \max^\prec(G, \text{fore}(\text{tail}(\mu)), \text{label}(\mu))$.

PROOF. By induction on the length of μ. For paths of length 1 (i.e., arcs), the lemma follows immediately from Property 5 in the definition of a forwards-maximal elaboration. Now assume that the lemma is true for all paths of length n. Let μ be an arbitrary path in E of length $n+1$, let μ_n be the prefix of μ of length n and let a be the $n+1$'st (and final) arc of μ. By Property 5 in the definition of a forwards-maximal elaboration,

$$\text{aft}(\text{head}(a)) = \max^\prec(G, \text{fore}(\text{tail}(a)), \text{label}(a))$$

By construction, $\text{head}(\mu_n) = \text{tail}(a)$. It follows from Property 4 in the definition of a forwards-maximal elaboration that $\neg\text{aft}(\text{head}(\mu_n)) = \text{fore}(\text{tail}(a))$. Hence,

$$\max^\prec(G, \text{fore}(\text{tail}(a)), \text{label}(a)) = \max^\prec(G, \neg\text{aft}(\text{head}(\mu_n)), \text{label}(a))$$

By our induction hypothesis, $\text{aft}(\text{head}(\mu_n)) = \max^\prec(G, \text{fore}(\text{tail}(\mu_n)), \text{label}(\mu_n))$. Thus,
Finally, by Theorem 3.5,
\[
\max^x(G, \sim \max^x(G, \text{fore}(\mu_n)), \text{label}(\mu_n), \text{label}(a)) = \\
\max^x(G, \text{fore}(\mu), \text{label}(\mu))
\]

THEOREM 3.6. Let \(G = (V, S, A) \) be a set graph and let \(\alpha \) be a sequence of subsets of \(S \). Then \(\alpha \) is an implicant of \(G \) if and only if a subsequence of \(\alpha \) is accepted by an elaboration of \(G \).

PROOF. Suppose that \(\alpha \) is accepted by an elaboration \(E \) of \(G \). Then there must be a path \(\mu \) in \(E \) leading from an initial vertex of \(E \) to a terminal vertex of \(E \) such that \(\alpha = \text{label}(\mu) \). From the definition of an elaboration, we know that \(\text{tail}(\mu) = \langle \{\}, \{\} \rangle \) and that \(\text{head}(\mu) = \langle \{\{\}, \{\} \rangle \}. Thus \text{fore}(\text{tail}(\mu)) = \text{aft}(\text{head}(\mu)) = \{\} \), and by Lemma 3.2, \(\langle \{\}, \{\}, \alpha, \{\} \rangle \) is a link of \(G \). It follows from Lemma 3.1 that \(\alpha \) is an implicant of \(G \).

Suppose that \(\alpha \) is an implicant of \(G \). Let \(\alpha' \) be a minimal-length (non-null) subsequence of \(\alpha \) such that \(\alpha' \) is an implicant of \(G \), and let \(E \) consist of a single path \(\mu \) such that (a) \(\text{tail}(\mu) = \langle \{\}, \{\} \rangle \), (b) \(\text{label}(\mu) = \alpha' \) and (c) for each arc \(a \) in \(\mu \),
\[
\text{head}(a) = \langle \max^x(G, \text{fore}(\text{tail}(a)), \text{label}(a)), \sim \max^x(G, \text{fore}(\text{tail}(a)), \text{label}(a)) \rangle
\]

By construction, \(E \) satisfies Properties 1, 2, 4 and 5 in Definition 3.6 and Properties 1–3 in Lemma 3.3. By Lemma 3.3, \(\text{aft}(\text{head}(\mu)) = \max^x(G, \text{fore}(\mu), \text{label}(\mu)) = \max^x(G, \{\}, \text{label}(\mu)) \). But since \(\text{label}(\mu) = \alpha' \) and \(\alpha' \) is an implicant of \(G \), it follows from Lemma 3.1 that \(\text{aft}(\text{head}(\mu)) = \{\} \) and that \(\text{head}(\mu) = \langle \{\}, \{\} \rangle \). Now assume that there exists an interior vertex \(v \) of \(\mu \) such that \(v = \langle \{\}, \{\} \rangle \). By Lemma 3.3, it follows that there is a proper prefix \(\mu_p \) of \(\mu \) such that \(\max^x(G, \{\}, \text{label}(\mu)) = \{\} \). Lemma 3.1 then requires that \(\text{label}(\mu_p) \) be an implicant of \(G \), but that contradicts our assumption that \(\alpha' = \text{label}(\mu) \) is a minimal-length subsequence of \(\alpha \) such that \(\alpha' \) is an implicant of \(G \). We are forced to conclude that no such interior vertex of \(\mu \) exists and that Property 3 in Definition 3.6 is satisfied.

Let us consider in detail the meaning of this last result. From Definitions 3.2 and 3.6, we see that Theorem 3.6 can be restated as follows:
Condition 1: For each sequence of elements \(\omega \) in the Cartesian product \(\times \alpha \), there exists a subsequence \(\omega' \) of \(\omega \) and a sequence of sets \(\alpha' \) accepted by \(G \) such that \(\omega' \) is in the Cartesian product \(\times \alpha' \)
is equivalent to

Condition 2: A subsequence of \(\alpha \) is accepted by a set graph \(E \) satisfying the five properties:

1. Each vertex of \(E \) is an ordered pair \(\langle \text{aft}, \text{fore} \rangle \), where \(\text{aft}, \text{fore} \in \text{SoS}(IV(G)) \)
2. For each vertex \(v \) in \(E \), \(v \) is an initial vertex of \(E \) if and only if \(\text{aft}(v) = \{\} \)
3. For each vertex \(v \) in \(E \), \(v \) is a terminal vertex of \(E \) if and only if \(\text{fore}(v) = \{\} \)
4. For each vertex \(v \) in \(E \), \(\neg \text{aft}(v) \leq \text{fore}(v) \)
5. For each arc \(a \) in \(E \), \(\langle \text{fore}((\text{tail}(a))), \text{label}(a), \text{aft}((\text{head}(a))) \rangle \) is a link of length 1 of \(G \)

Notice that Condition 1 involves Cartesian products and sequences of elements, while Condition 2 involves neither. Condition 2 deals only with sets of sets of vertices of the set graph \(G \) and certain structural properties of the set graph \(E \). So we have converted the problem of determining whether \(\alpha \) is an implicant of \(G \) from one that entails exhaustively checking all the sequences in the Cartesian product \(\times \alpha \) into one that entails constructing a set graph satisfying certain structural properties.

To make these ideas concrete, consider the set graph \(G \) in Figure 3 and the set graph \(E \) in Figure 4 which is an elaboration of \(G \). Notice that although \(G \) accepts only a finite number of sequences – seven, to be exact – \(E \) accepts an infinite number of sequences. Nevertheless, it follows from Theorem 3.6 that each of these infinitely many sequences is an implicant of \(G \) and that each of these sequences therefore satisfies Condition 1 in addition to Condition 2. So we have determined that all of the sequences accepted by \(E \) are implicants of \(G \) without having to exhaustively verify that each of these sequences satisfies the requirements of Condition 1, which, of course, is an impossible task since there are infinitely many such sequences.

In Section 4, Theorem 3.6 is recast in terms of Boolean graphs, and Sections 5 and 6 provide two different methods for constructing elaborations of such graphs.

4. LOGIC LEVEL
The mathematical concepts and results of Section 3 are now reinterpreted in the language of formal logic. Instead of dealing with sets, sequences of sets and set graphs, we will
now be dealing with Boolean expressions, sequences of Boolean expressions and Boolean graphs. The theory at the logic level proceeds as follows:

- Section 4.1 introduces the notion of a *generalized Kripke structure* \((S, B, L)\) over a set of *atomic propositions* \(AP\), where \(S\) is a set of *states*, \(B\) is a set of *allowed state sequences* (allowed behaviors) and \(L\) is a function that maps each atomic proposition to the set of states in which that proposition is *true*. Through the mapping \(L\), each state in \(S\) defines an *assignment of truth values* to the atomic propositions in \(AP\). A *fully populated* Kripke structure is a Kripke structure \((S, B, L)\) such that for each of the \(2^{|AP|}\) possible assignments of truth values to the atomic propositions in \(AP\), there exists a state in \(S\) for that assignment of truth values.

- Although Kripke structures are our model of system behavior, the theory at the logic level does not deal directly with such structures. Instead, manipulations on *Boolean expressions*, sequences of Boolean expressions (Boolean sequences) and directed graphs in which each arc is labeled with a Boolean expression (Boolean graphs) are used to reason about the disallowed behaviors of *infinitely many* Kripke structures. Section 4.2 defines these concepts and shows how the function \(L\) maps each of these constructs into its counterpart at the combinatorics level. A *sequential constraint* of a Kripke structure \((S, B, L)\) represents a disallowed pattern of behavior and is defined as a Boolean sequence \(\alpha\) such that \(\times L(\alpha) \cap B\) is empty.

- Section 1.2 defined the notion of an *implicant* of a set of sequences of Boolean expressions \(A\). Section 4.3 provides an equivalent definition in the context of a Boolean graph \(G\) over a set of atomic propositions \(AP\): An *implicant* of \(G\) is a Boolean sequence \(\alpha\) such that for all Kripke structures \((S, B, L)\) over \(AP\), \(L(\alpha)\) is an implicant of \(L(G)\).

- In Section 4.4, a *link* of a Boolean graph \(G\) is defined as a triple \(\langle aft, \alpha, fore \rangle\), where \(aft\) and \(fore\) are elements of \(SoS(IV(G))\) and \(\alpha\) is a Boolean sequence over \(AP\), such that for all Kripke structures \((S, B, L)\) over \(AP\), \(\langle aft, L(\alpha), fore \rangle\) is a link of \(L(G)\). The links of a Boolean graph \(G\) are the key to characterizing the implicants of \(G\) since a Boolean sequence \(\alpha\) is an implicant of \(G\) if and only if \(\langle \{\}\,\{\}\;\alpha\,\{\}\,\{\}\rangle\) is a link of \(G\) (Lemma 4.1). Theorem 4.4, the counterpart to Theorem 3.2, provides a sufficient condition for two links to be *concatenated*: If \(\langle aft_1, \alpha_1, fore_1 \rangle\) and \(\langle aft_2, \alpha_2, fore_2 \rangle\) are links of Boolean graph \(G\) such that \(~fore_1 \leq aft_2\), then \(\langle aft_1, \alpha_1 \bullet \alpha_2, fore_2 \rangle\) is a link of \(G\).
Section 4.5 describes the special properties of those links \(\langle \text{aft}, \alpha, \text{fore} \rangle \) such that \(|\alpha| = 1 \). But, in contrast to the combinatorics level, two alternate definitions are provided. A link of length 1 at the logic level is defined in terms of a link of length 1 at the combinatorics level. A logical link of the Boolean graph \(G \) – which is also of the form \(\langle \text{aft}, \alpha, \text{fore} \rangle \), where \(|\alpha| = 1 \) – is completely equivalent to a link of length 1 at the logic level, but its definition involves only logical and structural properties of \(\text{aft}, \alpha, \text{fore} \) and \(G \) – there is no reference to either states or Kripke structures. Logical links permit elaborations (Section 4.7), sequential resolution (Section 5) and normalization (Section 6) to be defined entirely in logical/structural terms. The initial logical links of a Boolean graph \(G \) are derived from the arcs of \(G \) via Theorem 4.6. Additional logical links are derived from existing logical links through the micro inferences described in Theorem 4.7.

Section 4.6 defines a forwards- (backwards-) maximal link of a Boolean graph \(G \) as a link \(\langle \text{aft}, \alpha, \text{fore} \rangle \) such that \(\text{fore} \) (\(\text{aft} \)) is the maximum element of \(\text{SoS}(IV(G)) \) – with respect to the partial order \(\leq \) – such that \(\langle \text{aft}, \alpha, \text{fore} \rangle \) is a link of \(G \). A key result involving such links (Theorem 4.9) allows us to construct for any implicant of \(G \) an elaboration that accepts a subsequence of that implicant.

Section 4.7 defines an elaboration of a Boolean graph \(G \) as another Boolean graph \(E \) in which each vertex is an ordered pair \(\langle \text{aft}, \text{fore} \rangle \) satisfying special properties, where \(\text{aft} \) and \(\text{fore} \) are each elements of \(\text{SoS}(IV(G)) \). The main result at the logic level, and the main result of the paper, is Theorem 4.10 which states that a Boolean sequence \(\alpha \) is an implicant of a Boolean graph \(G \) if and only if a subsequence of \(\alpha \) is accepted by an elaboration of \(G \).

4.1 Kripke Structures

Kripke structures are the model of system behavior used in model checking [Clarke et. al. 2000], and they are also the model of system behavior used in the theory at the logic level that follows. However, we make three modifications to the standard Kripke model, the first two of which are designed to increase the generality of the model while the third, minor, modification simplifies formulation of the theory.

In the standard model, a Kripke structure is a nondeterministic finite state machine whose states are labeled with Boolean variables. More formally, a (standard) Kripke structure over a set of atomic propositions \(AP \) is a 3-tuple \((S, R, L) \), where
1. S is a finite set of states

2. $R \subseteq S \times S$ is a transition relation that must be total – that is, for every state $s \in S$, there must exist a $s' \in S$ such that $s R s'$

3. $L: S \rightarrow 2^{AP}$ is a function that labels each state with the set of atomic propositions true in that state

An allowed state sequence (allowed behavior) of a standard Kripke structure (S, R, L) is a sequence of states ω such that for all pairs of successive states $\omega(i)$ and $\omega(i+1)$ in ω, $\omega(i) R \omega(i+1)$. It follows that every subsequence of an allowed behavior of a standard Kripke structure is itself an allowed behavior of that Kripke structure.

Comment: Kripke structures can be defined either with or without a set of initial states (see [Clarke et. al. 2000]). We choose to omit initial states because it greatly simplifies the theory. There is no loss of generality, however, since we can still introduce a state variable whose assertion causes the system to be initialized. For example, in the counter example described below, asserting Reset initializes the counter to a state in which all the bits of the counter are 0.

In a generalized Kripke structure, we make the following three modifications to the standard model:

- The requirement that the set of states S be finite is eliminated since there is nothing at the logic level that requires S to be finite, nor is there any requirement for the set of elements S of a set graph – the counterpart of S at the combinatorics level – to be finite.

- In a standard Kripke structure, the set of allowed system behaviors is defined indirectly using the state-transition relation R. In the generalized model, the state-transition relation is replaced by the set of allowed behaviors itself, and this set satisfies the only property we need of allowed behaviors: Every subsequence of an allowed behavior is itself allowed. In other words, the set of allowed behaviors satisfies Axiom 1(a).

- The third modification, though minor, helps to simplify the theory that follows. Instead of defining L as a function that labels each state with the set of atomic propositions true in that state, we define L as a function that labels each atomic proposition with the set of states in which that proposition is true.

Taken together, these modifications give us the following generalized model of system behavior.
Definition 4.1. A (generalized) Kripke structure over a set of atomic propositions \(AP\) is a 3-tuple \((S, B, L)\), where

1. \(S\) is a set of states
2. \(B \subseteq S^*\) is a set of allowed state sequences (allowed behaviors) such that if \(\omega\) is in \(B\), then every subsequence of \(\omega\) is in \(B\)
3. \(L : AP \rightarrow 2^S\) is a function that labels each atomic proposition with the set of states in which that proposition is true

Consider now the function \(L\) in this definition. It tells us the set of states in which each atomic proposition is \(true\). There is, however, an equivalent way of conveying the same information, and that is by defining for each state an assignment of truth values to the atomic propositions in \(AP\). This notion, in turn, allows us to introduce the concept of a fully populated Kripke structure. As we see in later sections, a fully populated Kripke structure has special properties that make it representative of an entire class of Kripke structures.

Definition 4.2. Let \(K = (S, B, L)\) be a Kripke structure over a set of atomic propositions \(AP\). For each state \(s \in S\), \(\pi_s : AP \rightarrow \{true, false\}\) is an assignment of truth values to the atomic propositions in \(AP\) such that \(ap \in AP\) is assigned the value \(true\) if \(s \in L(ap)\) and the value \(false\) otherwise. \(K\) is said to be fully populated if and only if for each of the \(2^{|AP|}\) assignments of truth values to the atomic propositions in \(AP\), there exists a state in \(S\) that defines that assignment of truth values.

The following property, which applies to both standard and generalized Kripke structures, is the key to the theory that follows. It is equivalent to Axiom 1(b).

PROPERTY 4.1. If \(\omega\) is a disallowed state sequence of the Kripke structure \(K\), then every state sequence of \(K\) containing \(\omega\) as a subsequence is a disallowed state sequence of \(K\).

4.2 Boolean Expressions, Sequences and Graphs

Although Kripke structures are our model of system behavior, the theory at the logic level does not deal directly with such structures. Instead, manipulations on Boolean expressions, sequences of Boolean expressions (Boolean sequences) and directed graphs in which each arc is labeled with a Boolean expression (Boolean graphs) are used to reason about the disallowed behaviors of infinitely many Kripke structures. To understand
how these manipulations allow us to reason simultaneously about the disallowed behavior infinitely many Kripke structures, we must first understand the connections between these three constructs at the logic level and their counterparts at the combinatorics level.

For a particular Kripke structure (S, B, L), the function L is the bridge between the logic level and the combinatorics level. Not only does L map an atomic proposition into a set of states, but extensions of L map: a Boolean expression into a set of states, a Boolean sequence into a sequence of sets of states and a Boolean graph into a set graph in which each arc is labeled with a set of states.

While we need not concern ourselves with the exact syntax of Boolean expressions, certain manipulations in the theory – in particular, the three forms of micro inference and sequential resolution – do assume that Boolean conjunction, denoted by \land, and Boolean disjunction, denoted by \lor, are among the Boolean operations used to construct Boolean expressions. Additionally, sequential resolution assumes that Boolean negation, denoted by \neg, is among the Boolean operations used to construct Boolean expressions.

With these points in mind, we define Boolean expressions, Boolean sequences and Boolean graphs.

Definition 4.3. A Boolean expression over a set of atomic propositions AP is either an atomic proposition in AP or is an expression constructed from Boolean expressions over AP using a Boolean operation. $\text{BooleanExpressions}(AP)$ denotes the set of Boolean expressions over AP. If (S, B, L) is a Kripke structure over AP and BE a Boolean expression over AP, then $L(BE)$ is the set of $s \in S$ such that the assignment of truth values to the atomic propositions in AP defined by s causes BE to evaluate to true. For the Boolean operations \land (AND), \lor (OR) and \neg (NOT),

$$L(BE_1 \land BE_2) = L(BE_1) \cap L(BE_2)$$
$$L(BE_1 \lor BE_2) = L(BE_1) \cup L(BE_2)$$
$$L(\neg BE_1) = S - L(BE_1)$$

Definition 4.4. A Boolean sequence over a set of atomic propositions AP is a sequence of Boolean expressions over AP. If $K = (S, B, L)$ is a Kripke structure over AP and α a Boolean sequence over AP, then $L(\alpha)$ is the sequence of subsets of S obtained from α by replacing each Boolean expression BE in α with $L(BE)$. If T is a set of Boolean sequences over AP, then $L(T) = \{L(\alpha) \mid \alpha \in T\}$. A (sequential) constraint of K is a Boolean sequence α over AP such that $\times L(\alpha) \cap B$ is empty.
Definition 4.5. A Boolean graph over a set of atomic propositions AP is an ordered pair $G = (V, A)$, where

1. V is a finite set of vertices
2. $A \subseteq V \times \text{BooleanExpressions}(AP) \times V$ is a finite set of labeled arcs

If $K = (S, B, L)$ is a Kripke structure over AP, then $L(G)$ is the set graph (V, S, A_S) where A_S is obtained from A by replacing each arc $\langle v_1, BE, v_2 \rangle$ in A with $\langle v_1, L(BE), v_2 \rangle$. A constraint graph of K is a Boolean graph over AP that accepts only sequential constraints of K.

To see how manipulations on these three types of structures allow us to reason about the disallowed behavior of infinitely many Kripke structures, consider an arbitrary Kripke structure K over a set of atomic propositions AP such that G is a constraint graph of K. In subsequent sections, we will see that reasoning about the disallowed behavior of K entails constructing an elaboration of G. But the process of constructing an elaboration of G is applicable not only to K but also to all Kripke structures over AP for which G is a constraint graph, of which there are infinitely many. In other words, in reasoning about the disallowed behavior of K, we are also reasoning about the disallowed behavior of K’s brethren who share with K the property that G is a constraint graph.

Comment: A constraint graph G used to describe the behavior of the Kripke structure $K = (S, B, L)$ is not required to characterize all of the disallowed behaviors of K. More precisely, it is not necessary that for each disallowed state sequence ω of K – each state sequence not in B – there exist a subsequence ω' of ω and a Boolean sequence α accepted by G such that $\omega' \in \times L(\alpha)$. This characteristic of constraint graphs gives a programmer or designer the flexibility to specify just those aspects of a system’s excluded behavior that are needed to solve the problem at hand.

Example: Consider a 2-bit counter with binary state variables $Q0$, $Q1$, Reset and Carry, where: $Q0$ is the least-significant bit and $Q1$ the most significant bit of the counter, Reset is an input that, when asserted, causes both $Q0$ and $Q1$ to be reset to 0 and Carry is the carry output from the counter. Let AP be the set of atomic propositions $\{Q0 = 1, Q1 = 1, \text{Reset} = 1, \text{Carry} = 1\}$, which we abbreviate as simply $\{Q0, Q1, \text{Reset}, \text{Carry}\}$. Let S be the set of states $\{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{14}, s_{15}\}$ and let $L: AP \rightarrow 2^S$ be defined such that

$$L(Q0) = \{s_2, s_3, s_6, s_7, s_{10}, s_{11}, s_{14}, s_{15}\}$$
\[
L(Q1) = \{s_1, s_2, s_5, s_6, s_9, s_{10}, s_{13}, s_{14}\}
\]
\[
L(Reset) = \{s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{14}, s_{15}\}
\]
\[
L(Carry) = \{s_4, s_5, s_6, s_7, s_8, s_9, s_{10}, s_{11}\}
\]

From \(L\) we derive the assignment of truth values to the atomic propositions in \(AP\) listed in Table 4. An examination of this table reveals that for each of the \(2^4 = 16\) possible assignments of truth values to the atomic propositions in \(AP\), there exists a state in \(S\) that defines that assignment of truth values. Any Kripke structure over \(AP\) that has \(S\) as its state set and \(L\) as its mapping from \(AP\) to \(2^S\) is therefore fully populated.

Table 4. Assignments of Truth Values to the Atomic Propositions in \(AP\)

State	\(Q0\)	\(Q1\)	Reset	Carry
\(s_0\)	false	false	false	false
\(s_1\)	false	true	false	false
\(s_2\)	true	true	false	false
\(s_3\)	true	false	false	false
\(s_4\)	false	false	false	true
\(s_5\)	false	true	false	true
\(s_6\)	true	true	false	true
\(s_7\)	true	false	false	true
\(s_8\)	false	false	true	true
\(s_9\)	false	true	true	true
\(s_{10}\)	true	true	true	true
\(s_{11}\)	true	false	true	true
\(s_{12}\)	false	false	true	false
\(s_{13}\)	false	true	true	false
\(s_{14}\)	true	true	true	false
\(s_{15}\)	true	false	true	false

To complete the definition of a (generalized) Kripke structure \((S, B, L)\) over \(AP\), we need only specify a set of allowed behaviors \(B\) for the counter. But we forego specifying \(B\) directly, and instead specify a set of disallowed behaviors for the counter using the constraint graph \(G\) in Figure 5, and we reason in later sections about the behavior of the counter based on the sequential constraints accepted by \(G\). So although we may not be
specifying B directly (or even completely), we are declaring that none of the state sequences on which G holds tightly is in B and we are declaring that no supersequences of these disallowed state sequences are in B. (Boolean graph G holds tightly on a state sequence ω if and only if the set of Boolean sequences accepted by G holds tightly on ω.)

![Constraint Graph for a 2-Bit Counter](image)

FIG. 5. Constraint Graph for a 2-Bit Counter

To understand what G says about the counter’s behavior, we consider the meaning of the seven sequential constraints accepted by G. The constraint

$$\langle \text{Reset} \land (Q0 \lor Q1) \rangle$$

says that neither $Q0 = 1$ nor $Q1 = 1$ in the same state in which $\text{Reset} = 1$. In other words, if $\text{Reset} = 1$, then both $Q0 = 0$ and $Q1 = 0$. The two constraints

$$\langle Q0, Q0 \rangle$$

$$\langle \neg Q0, \neg Q0 \rangle$$

say that $Q0$ cannot have the same value in successive states. In other words, $Q0$ toggles in successive states. The two constraints

$$\langle ((\neg Q0 \land \neg Q1) \lor (Q0 \land Q1)), Q1 \rangle$$

$$\langle ((\neg Q0 \land Q1) \lor (Q0 \land \neg Q1)), \neg Q1 \rangle$$

say, in effect, that the value of $Q1$ in a state is the exclusive OR (XOR) of the values of $Q0$ and $Q1$ in the preceding state. Lastly, the two constraints
\((\neg Q_0 \vee \neg Q_1) \land \text{Carry}\)\\
\((Q_0 \land Q_1 \land \neg \text{Carry})\)
say that \(\text{Carry} = (Q_0 \land Q_1)\), where \(\text{Carry}, Q_0\) and \(Q_1\) are all evaluated in the same state.
(The theory can also describe this counter using functional notation, but functions, formal variables and temporal offsets are advanced topics and are deferred to a future paper.)

To see the parallels between the logic level and combinatorics level as we reason in later sections about the behavior of this counter, we first must determine \(L(G)\), the set-graph counterpart to \(G\). That is accomplished using an extension to the function \(L : \text{AP} \rightarrow 2^S\) defined above. When this function, as extended in Definition 4.3, is applied to the Boolean expressions labeling the arcs of \(G\), we find that \(L(G)\) is, in fact, the set graph in Figure 3.

4.3 Implicants

In Section 1.1, we posed the question:

\(\text{How do we know whether a logical/temporal dependency follows as a logical consequence from a set of logical/temporal dependencies?}\)

We saw that this question is equivalent to the following question expressed in terms of sequential constraints:

\(\text{How do we know whether a sequence of Boolean expressions is a sequential constraint as a result of a set of sequential constraints?}\)

In Section 1.2, we answered this question in terms of a generalization of Boolean implicant:

\(\text{A sequence of Boolean expressions } \alpha \text{ is a sequential constraint as a consequence of a set of sequential constraints } A\)

\(\text{if and only if}\)

\(\alpha \text{ is an implicant of } A\)

This notion of a sequential implicant is now recast in the context of Kripke structures.

\(\text{Definition 4.6. An implicant of a set } T \text{ of Boolean sequences over a set of atomic propositions } \text{AP is a Boolean sequence } \alpha \text{ over } \text{AP such that for all Kripke structures } (S, B, L) \text{ over } \text{AP, } L(\alpha) \text{ is an implicant of } L(T). \text{ An implicant of a Boolean graph } G \text{ over } \text{AP is a Boolean sequence } \alpha \text{ over } \text{AP such that for all Kripke structures } (S, B, L) \text{ over } \text{AP, } L(\alpha) \text{ is an implicant of } L(G).}\)
From the definition of implicant at the combinatorics level (Definition 3.2), we see that an implicant of a set \(T \) of Boolean sequences over a set of atomic propositions \(AP \) is a Boolean sequence \(\alpha \) over \(AP \) such that for all Kripke structures \((S, B, L)\) over \(AP \), for all state sequences \(\omega \) in the Cartesian product \(\times L(\alpha) \), there exists a subsequence \(\omega' \) of \(\omega \) and a Boolean sequence \(\alpha' \) in \(T \) such that \(\omega' \) is in the Cartesian product \(\times L(\alpha') \).

This definition may seem unsatisfying since it is expressed in terms of an infinite number of Kripke structures. There is, however, an equivalent definition expressed in terms of a single, fully populated Kripke structure.

THEOREM 4.1. Let \(G \) be a Boolean graph over a set of atomic propositions \(AP \), let \(\alpha \) be a Boolean sequence over \(AP \) and let \((S, B, L)\) be a fully populated Kripke structure over \(AP \). Then \(\alpha \) is an implicant of \(G \) if and only if \(L(\alpha) \) is an implicant of \(L(G) \).

PROOF. See Appendix C.

The next theorem captures the relationship between Kripke structures, implicants and sequential constraints.

THEOREM 4.2. If \(G \) is a constraint graph of the Kripke structure \(K \), then the implicants of \(G \) are sequential constraints of \(K \).

PROOF. Suppose that \(G \) is a constraint graph of the Kripke structure \(K \). Let \(\alpha \) be an arbitrary implicant of \(G \). It follows that for all state sequences \(\omega \in \times L(\alpha) \), there exists a subsequence \(\omega' \) of \(\omega \) and a Boolean sequence \(\alpha' \) accepted by \(G \) such that \(\omega' \in \times L(\alpha') \). Since \(\alpha' \) is accepted by \(G \) and \(G \) is a constraint graph of \(K \), \(\alpha' \) must be a constraint of \(K \), which means that all state sequences in \(\times L(\alpha') \) are disallowed state sequences of \(K \). Hence \(\omega' \) is a disallowed state sequence of \(K \). From Property 4.1, it follows that \(\omega \) is also a disallowed state sequence of \(K \), which means that all of the states sequences in \(\times L(\alpha) \) are disallowed state sequences of \(K \). \(\alpha \) is therefore a constraint of \(K \).

4.4 Links

At the combinatorics level, links are the key to characterizing the implicants of a set graph. At the logic level, the logic counterparts to combinatorial links are the key to characterizing the implicants of a Boolean graph. We begin with the counterparts to (general) links (Definition 3.3) in this section, and then in the next section discuss the counterparts to links of length 1 (Definition 3.4).
Definition 4.7. A link of a Boolean graph G over a set of atomic propositions AP is a triple $\langle aft, \alpha, fore \rangle$, where aft and $fore$ are elements of $SoS(IV(G))$ and α is a Boolean sequence over AP, such that for all Kripke structures (S, B, L) over AP, $\langle aft, L(\alpha), fore \rangle$ is a link of $L(G)$.

Links at the logic level – like implicants at the logic level – are thus defined in terms of all Kripke structures over a set of atomic propositions. But as with implicants, there is an equivalent definition involving just a single, fully populated Kripke structure.

THEOREM 4.3. Let G be a Boolean graph over a set of atomic propositions AP, let aft and $fore$ be elements of $SoS(IV(G))$, let α be a Boolean sequence over AP and let (S, B, L) be a fully populated Kripke structure over AP. Then $\langle aft, \alpha, fore \rangle$ is a link of G if and only if $\langle aft, L(\alpha), fore \rangle$ is a link of $L(G)$.

PROOF. See Appendix D.

The following results for logic links parallel those for combinatorial links. The first result is the counterpart to Lemma 3.1.

LEMMA 4.1. Let G be a Boolean graph over a set of atomic propositions AP and let α be a Boolean sequence over AP. Then α is an implicant of G if and only if $\langle \{\} \rangle$, α, $\{\} \rangle$ is a link of G.

PROOF. Suppose that $\langle \{\} \rangle$, α, $\{\} \rangle$ is a link of G. Then for all for all Kripke structures (S, B, L) over AP, $\langle \{\} \rangle$, $L(\alpha)$, $\{\} \rangle$ is a link of $L(G)$. By Lemma 3.1, $L(\alpha)$ is an implicant of $L(G)$, and by the definition of an implicant at the logic level (Definition 4.6), α is an implicant of G. A reverse argument shows that if α is an implicant of G, then $\langle \{\} \rangle$, α, $\{\} \rangle$ is a link of G.

The next property, the counterpart to Property 3.1, states, in effect, that weakening any, or all, of the components of a link yields another link.
PROPERTY 4.2. Let G be a Boolean graph over the set of atomic propositions AP, let $\langle aft_1, \alpha_1, fore_1 \rangle$ be a link of G, let aft_2 and $fore_2$ be elements of $SoS(IV(G))$ and let α_2 be a Boolean sequence over AP such that $|\alpha_2| = |\alpha_1|$. If each of the following three properties holds

1. $aft_2 \leq aft_1$
2. For all Kripke structures (S, B, L) over AP: $L(\alpha_2(i)) \subseteq L(\alpha_1(i))$ for $0 \leq i < |\alpha_1|$
3. $fore_2 \leq fore_1$

then $\langle aft_2, \alpha_2, fore_2 \rangle$ is a link of G.

Theorem 4.4, the counterpart to Theorem 3.2, is the main result for links.

THEOREM 4.4. If $\langle aft_1, \alpha_1, fore_1 \rangle$ and $\langle aft_2, \alpha_2, fore_2 \rangle$ are links of a Boolean graph G over a set of atomic propositions AP such that $\sim fore_1 \leq aft_2$, then $\langle aft_1, \alpha_1 \cdot \alpha_2, fore_2 \rangle$ is a link of G.

PROOF. Suppose that $\langle aft_1, \alpha_1, fore_1 \rangle$ and $\langle aft_2, \alpha_2, fore_2 \rangle$ are links of G and that $\sim fore_1 \leq aft_2$. From Definition 4.7, it follows that for all Kripke structures (S, B, L) over AP, $\langle aft_1, L(\alpha_1), fore_1 \rangle$ and $\langle aft_2, L(\alpha_2), fore_2 \rangle$ are links of $L(G)$. From Theorem 3.2, it then follows that $\langle aft_1, L(\alpha_1) \cdot L(\alpha_2), fore_2 \rangle$ is a link of $L(G)$. But $L(\alpha_1) \cdot L(\alpha_2) = L(\alpha_1 \cdot \alpha_2)$. Hence, $\langle aft_1, L(\alpha_1 \cdot \alpha_2), fore_2 \rangle$ is a link of $L(G)$. Thus for all Kripke structures (S, B, L) over AP, $\langle aft_1, L(\alpha_1 \cdot \alpha_2), fore_2 \rangle$ is a link of $L(G)$. Theorem 4.4 follows.

4.5 Links of Length 1

We now describe the special properties of those links $\langle aft, \alpha, fore \rangle$ such that $|\alpha| = 1$. But, in contrast to the combinatorics level, two alternate definitions are provided. A link of length 1 at the logic level is defined in terms of a link of length 1 at the combinatorics level. A logical link of the Boolean graph G – which is also of the form $\langle aft, \alpha, fore \rangle$, where $|\alpha| = 1$ – is completely equivalent to a link of length 1 at the logic level, but its definition involves only logical and structural properties of aft, α, $fore$ and G – there is no reference, either directly or indirectly, to either states or Kripke structures. Logical links permit elaborations (Section 4.7), sequential resolution (Section 5) and normalization (Section 6) to be defined entirely in logical/structural terms.

Definition 4.8. A link of length 1 of a Boolean graph G over a set of atomic propositions AP is a triple $\langle aft, BE, fore \rangle$, where aft and $fore$ are elements of $SoS(IV(G))$.

50
and BE is a Boolean expression over AP, such that for all Kripke structures (S, B, L) over AP, $(aft, L(BE), fore)$ is a link of length 1 of $L(G)$.

Definition 4.9. A **logical link** of a Boolean graph $G = (V, A)$ over a set of atomic propositions AP is a triple $\langle aft, BE, fore \rangle$, where aft and $fore$ are elements of $SoS_IV(G)$ and BE is a Boolean expression over AP, such that for all $set_a \in aft$, for all $set_f \in fore$,

$$BE \rightarrow \bigvee_{a \in A} label(a)$$

where $tail(a)$ is an initial vertex of G or is in set_a and $head(a)$ is a terminal vertex of G or is in set_f.

A logical link is thus a triple $\langle aft, BE, fore \rangle$ such that for all $set_a \in aft$, for all $set_f \in fore$, the Boolean expression BE implies the disjunction (OR) of those Boolean expressions labeling arcs a in G such that: (1) $tail(a)$ is an initial vertex of G or is in set_a and (2) $head(a)$ is a terminal vertex of G or is in set_f.

Theorem 4.5. Let G be a Boolean graph over a set of atomic propositions AP, let aft and $fore$ be elements of $SoS_IV(G)$ and let α be a Boolean sequence over AP. Then $\langle aft, BE, fore \rangle$ is a link of length 1 of G if and only if $\langle aft, BE, fore \rangle$ is a logical link of G.

Proof. Suppose that $\langle aft, BE, fore \rangle$ is a link of length 1 of G. Let $G = (V, A)$ and let (S, B, L) be a fully populated Kripke structure over AP. By Theorem 4.3 and Definition 4.8, $\langle aft, L(BE), fore \rangle$ is a link of length 1 of $L(G)$. It follows that for all $set_a \in aft$, for all $set_f \in fore$, for all $s \in L(BE)$, there exists $a \in A$ such that (1) $tail(a)$ is an initial vertex of G or is in set_a, (2) $head(a)$ is a terminal vertex of G or is in set_f and (3) $s \in L(label(a))$. But since $L(BE)$ is the set of states in which BE evaluates to $true$ and $L(label(a))$ is the set of states in which $label(a)$ evaluates to $true$ (Definition 4.3), it must be that for all $set_a \in aft$, for all $set_f \in fore$, the set of states in which BE evaluates to $true$ is a subset of the set of states in which $\bigvee_{a \in A} label(a)$ evaluates to true. Hence for all $set_a \in aft$, for all $set_f \in fore$,
In other words, \(\langle aft, BE, fore \rangle \) is a logical link of \(G \).

A reverse argument shows that if \(\langle aft, BE, fore \rangle \) is a logical link of \(G \), then \(\langle aft, BE, fore \rangle \) is a link of length 1 of \(G \).

The question now arises, as it did at the combinatorics level: Where do links of length 1 – and their identical twins, logical links – come from? The answer, as before, is twofold: (1) the initial links of length 1 and initial logical links of a Boolean graph \(G \) are derived from the arcs of \(G \) via Theorem 4.6; (2) additional links of length 1 and logical links of \(G \) are derived from existing links of length 1 through micro inferences as described in Theorem 4.7.

THEOREM 4.6. Let \(G \) be a Boolean graph over a set of atomic propositions and let \(\langle v_i, BE, v_j \rangle \) be an arc of \(G \).

(a) If \(v_i \) is an initial vertex of \(G \) and \(v_j \) is a terminal vertex of \(G \), then \(\langle \{\} \}, BE, \{\} \rangle \) is both a link of length 1 and logical link of \(G \)

(b) If \(v_i \) is an initial vertex of \(G \) and \(v_j \) is an interior vertex of \(G \), then \(\langle \{\} \}, BE, \{v_j\} \rangle \) is both a link of length 1 and logical link of \(G \)

(c) If \(v_i \) is an interior vertex of \(G \) and \(v_j \) is a terminal vertex of \(G \), then \(\langle \{v_i\} \}, BE, \{\} \rangle \) is both a link of length 1 and logical link of \(G \)

(d) If \(v_i \) and \(v_j \) are interior vertices of \(G \), then \(\langle \{v_i\} \}, BE, \{v_j\} \rangle \) is both a link of length 1 and logical link of \(G \)

PROOF. (a) Let \(G \) be a Boolean graph over the set of atomic propositions \(AP \), let \(\langle v_i, BE, v_j \rangle \) be an arc of \(G \) such that \(v_i \) is an initial vertex of \(G \) and \(v_j \) is a terminal vertex of \(G \) and let \((S, B, L) \) be an arbitrary Kripke structure over \(AP \). From Theorem 3.3, if follows that \(\langle \{\} \}, L(BE), \{\} \rangle \) is a link of length 1 of the set graph \(L(G) \), and from Definition 4.8, it follows that \(\langle \{\} \}, BE, \{\} \rangle \) is a link of length 1 of the Boolean graph \(G \). Similar arguments apply to (b), (c) and (d).
Table 5. Links of length 1 / Logical links derived from the arcs in Figure 5

(a) Arc	(b) Link of Length 1 / Logical link
\langle v_0, (\text{Reset} \land (Q0 \lor Q1)), v_1 \rangle	\langle \{\{\}, \{\}, \{\}, \{\} \}, (\text{Reset} \land (Q0 \lor Q1)), \{\{\}, \{\} \} \rangle
\langle v_2, Q0, v_3 \rangle	\langle \{\{\}, \{\}, \{\}, \{\} \}, Q0, \{\{\} \} \rangle
\langle v_3, Q0, v_4 \rangle	\langle \{\{\} \}, \{\}, \{\} \rangle
\langle v_5, \neg Q0, v_6 \rangle	\langle \{\{\}, \neg Q0, \{\} \} \rangle
\langle v_6, \neg Q0, v_7 \rangle	\langle \{\{\}, \neg Q0, \{\} \} \rangle
\langle v_8, ((\neg Q0 \land \neg Q1) \lor (Q0 \land Q1)), v_9 \rangle	\langle \{\{\}, ((\neg Q0 \land \neg Q1) \lor (Q0 \land Q1)), \{\} \} \rangle
\langle v_9, Q1, v_{10} \rangle	\langle \{\{\}, Q1, \{\} \} \rangle
\langle v_{11}, ((\neg Q0 \land Q1) \lor (Q0 \land \neg Q1)), v_{12} \rangle	\langle \{\{\}, ((\neg Q0 \land Q1) \lor (Q0 \land \neg Q1)), \{\} \} \rangle
\langle v_{12}, \neg Q1, v_{13} \rangle	\langle \{\{\}, \neg Q1, \{\} \} \rangle
\langle v_{14}, ((\neg Q0 \lor \neg Q1) \land \text{Carry}), v_{15} \rangle	\langle \{\{\}, ((\neg Q0 \lor \neg Q1) \land \text{Carry}), \{\} \} \rangle
\langle v_{16}, (Q0 \land Q1 \land \neg \text{Carry}), v_{17} \rangle	\langle \{\{\}, (Q0 \land Q1 \land \neg \text{Carry}), \{\} \} \rangle

Theorem 4.7. If \(G \) is a Boolean graph over a set of atomic propositions and \(\langle \text{aft}_1, BE_1, \text{fore}_1 \rangle \) and \(\langle \text{aft}_2, BE_2, \text{fore}_2 \rangle \) are logical links of \(G \), then each of the following is both a link of length 1 and logical link of \(G \):

(a) \(\langle \text{aft}_1 \lor \text{aft}_2, BE_1 \land BE_2, \text{fore}_1 \land \text{fore}_2 \rangle \)

(b) \(\langle \text{aft}_1 \land \text{aft}_2, BE_1 \lor BE_2, \text{fore}_1 \land \text{fore}_2 \rangle \)

(c) \(\langle \text{aft}_1 \land \text{aft}_2, BE_1 \land BE_2, \text{fore}_1 \lor \text{fore}_2 \rangle \)

Proof. (a) Let \(G \) be a Boolean graph over the set of atomic propositions \(AP \), let \(\langle \text{aft}_1, BE_1, \text{fore}_1 \rangle \) and \(\langle \text{aft}_2, BE_2, \text{fore}_2 \rangle \) be links of length 1 of \(G \) and let \((S, B, L) \) be an arbitrary Kripke structure over \(AP \). From Definition 4.8, it follows that \(\langle \text{aft}_1, L(BE_1), \text{fore}_1 \rangle \) and \(\langle \text{aft}_2, L(BE_2), \text{fore}_2 \rangle \) are links of length 1 of the set graph \(L(G) \), and from Theorem 3.4, it follows that \(\langle \text{aft}_1 \lor \text{aft}_2, L(BE_1) \cap L(BE_2), \text{fore}_1 \land \text{fore}_2 \rangle \) is a link of length 1 of \(L(G) \). But from Definition 4.3, we know that \(L(BE_1 \land BE_2) = L(BE_1) \cap L(BE_2) \). Hence, \(\langle \text{aft}_1 \lor \text{aft}_2, L(BE_1 \land BE_2), \text{fore}_1 \land \text{fore}_2 \rangle \) is a link of length 1 of \(L(G) \), and by
Definition 4.8, \(<af_{t_1} \lor af_{t_2}, BE_{t_1} \land BE_{t_2}, fore_{t_1} \land fore_{t_2}> \) is a link of length 1 of \(G \). (b) and (c) are proved in a similar fashion.

This theorem is illustrated by applying each of the three forms of micro inference to links of length 1 / logical links from Table 5. The following is an example of a micro inference according to Theorem 4.7(a):

\[
\langle \{v_6\}, \neg Q_0, \{\}\rangle \\
\langle \{v_9\}, Q_1, \{\}\rangle \\
\langle \{v_6\}, \{v_9\}, (\neg Q_0 \land Q_1), \{\}\rangle
\]

The following is an example of a micro inference according to Theorem 4.7(b):

\[
\langle \{\}, Q_0, \{v_3\}\rangle \\
\langle \{v_6\}, \neg Q_0, \{\}\rangle \\
\langle \{v_6\}, true, \{v_3\}\rangle
\]

The following is an example of a micro inference according to Theorem 4.7(c):

\[
\langle \{\}, Q_0, \{v_3\}\rangle \\
\langle \{\}, (\neg Q_0 \land Q_1) \lor (Q_0 \land \neg Q_1), \{v_{12}\}\rangle \\
\langle \{\}, Q_0 \land \neg Q_1, \{v_3\}, \{v_{12}\}\rangle
\]

4.6 Maximal Links

The \(max \) function – the counterpart to the \(max \) function defined at the combinatorics level (Definition 3.5) – is used in the normalization process described in Section 6.

Definition 4.10. Let \(G \) be a Boolean graph over a set of atomic propositions \(AP \), let \(aft \) and \(fore \) be elements of \(SoS(I(V(G))) \) and let \(\alpha \) be a Boolean sequence over \(AP \). Then

\[
max^+(G, aft, \alpha) = \bigwedge max^+(L(G), aft, L(\alpha))
\]

For all Kripke structures \((S, B, L) \) over \(AP \)

\[
max^-(G, fore, \alpha) = \bigwedge max^-(L(G), fore, L(\alpha))
\]

For all Kripke structures \((S, B, L) \) over \(AP \)

54
max°(G, aft, α) is thus the greatest lower bound for all Kripke structures (S, B, L) over AP of max°(L(G), aft, L(α)). Similarly, max°(G, fore, α) is the greatest lower bound for all Kripke structures (S, B, L) over AP of max°(L(G), fore, L(α)).

So we see that the max function, like the notions of implicant and link above, is defined in terms of all Kripke structures over a set of atomic propositions. But as with implicants and links, there is an equivalent definition involving just a single, fully populated Kripke structure.

THEOREM 4.8. Let G be a Boolean graph over a set of atomic propositions AP, let aft and fore be elements of SoS(IV(G)), let α be a Boolean sequence over AP and let (S, B, L) be a fully populated Kripke structure over AP. Then

\[\text{max}^+(G, \text{aft}, \alpha) = \text{max}^+(L(G), \text{aft}, L(\alpha)) \]
\[\text{max}^-(G, \text{fore}, \alpha) = \text{max}^-(L(G), \text{fore}, L(\alpha)) \]

PROOF. See Appendix E.

The next result is the counterpart to Property 3.2.

PROPERTY 4.3. Let G be a Boolean graph over a set of atomic propositions AP, let aft and fore be elements of SoS(IV(G)) and let α be a Boolean sequence over AP. Then the following three properties are equivalent:

1. \(\langle \text{aft}, \alpha, \text{fore} \rangle \) is a link of G
2. fore \(\leq \text{max}^+(G, \text{aft}, \alpha) \)
3. aft \(\leq \text{max}^-(G, \text{fore}, \alpha) \)

From Property 4.3, we see that \(\text{max}^+(G, \text{aft}, \alpha) \) is the maximum element sos_i of SoS(IV(G)) such that \(\langle \text{aft}, \alpha, \text{sos}_i \rangle \) is a link of G. Similarly, \(\text{max}^-(G, \text{fore}, \alpha) \) is the maximum element sos_i of SoS(IV(G)) such that \(\langle \text{sos}_i, \alpha, \text{fore} \rangle \) is a link of G. Accordingly, we say that \(\langle \text{aft}, \alpha, \text{max}^+(G, \text{aft}, \alpha) \rangle \) is a forwards-maximal link of G, and that \(\langle \text{max}^-(G, \text{fore}, \alpha), \alpha, \text{fore} \rangle \) is a backwards-maximal link of G.

Comment: Although max° and max° are symmetrical, our emphasis is on max° since it is more intuitive to work with forwards-maximal links. Note, however, that all of the results and procedures described in this paper – including the normalization process of Section 6 – can be just as easily expressed in terms of max°.
Example: Let G be the Boolean graph in Figure 5, let $aft = \{v_3, v_{12}\}$ and let $BE = true$. We can calculate $max^+(G, aft, BE)$ using the micro inferences of Theorem 4.7. (A detailed algorithm will be described in a future paper.) Starting with initial links of G from Table 5, we can generate a forwards-maximal link of G as follows. Apply Theorem 4.7(b) to two initial links of G:

\[
\langle \{v_3\}, Q_0, \{\} \rangle
\]
\[
\langle \{\}, -Q_0, \{v_6\} \rangle
\]
\[
\downarrow
\]
\[
\langle \{v_3\}, true, \{v_6\} \rangle
\]

Apply Theorem 4.7(b) twice to three initial links of G:

\[
\langle \{v_3\}, Q_0, \{\} \rangle
\]
\[
\langle \{\}, ((-Q_0 \land Q_1) \lor (Q_0 \land -Q_1)), \{v_{12}\} \rangle
\]
\[
\downarrow
\]
\[
\langle \{v_{12}\}, -Q_1, \{\} \rangle
\]

Apply Theorem 4.7(c) to the two just-inferred links:

\[
\langle \{v_3\}, true, \{v_6\} \rangle
\]
\[
\langle \{v_3, v_{12}\}, true, \{v_{12}\} \rangle
\]
\[
\downarrow
\]
\[
\langle \{v_3, v_{12}\}, true, \{v_6, \{v_{12}\} \rangle
\]

That this last link is a forwards-maximal link can be verified by considering those $sos \in SoS(IV(G))$ such that $\{v_6, \{v_{12}\} \} < sos$, and determining, via Theorem 4.3, if $\langle aft, \alpha, sos \rangle$ is a link of G. Such an examination reveals that there is indeed no such sos, and therefore $max^+(G, aft, \alpha) = \{v_6, \{v_{12}\} \}$.

In the preceding example, we have sketched a method for calculating $max^+(G, aft, \alpha)$ and $max^-(G, fore, \alpha)$ when the length of α is 1. The next result allows us to calculate $max^+(G, aft, \alpha)$ and $max^-(G, fore, \alpha)$ when the length of α is greater than 1.
THEOREM 4.9. Let G be a Boolean graph over a set of atomic propositions AP, let aft and $fore$ be elements of $\text{SoS}(IV(G))$ and let α_1 and α_2 each be a Boolean sequence over AP. Then

$$
\max^+(G, aft, \alpha_1\alpha_2) = \max^+(L(G), aft, L(\alpha_1\alpha_2))
$$

$$
\max^-(G, fore, \alpha_1\alpha_2) = \max^-(L(G), fore, L(\alpha_1\alpha_2))
$$

PROOF. Let (S, B, L) be an arbitrary fully populated Kripke structure over AP. From Theorem 4.8, we know that

$$
\max^+(L(G), aft, L(\alpha_1\alpha_2)) = \max^+(L(G), aft, L(\alpha_1))
$$

But from Definition 4.4, it follows that $L(\alpha_1\alpha_2) = L(\alpha_1)\cdot L(\alpha_2)$. Thus

$$
\max^+(L(G), aft, L(\alpha_1\alpha_2)) = \max^+(L(G), aft, L(\alpha_1))
$$

By Theorem 3.5,

$$
\max^+(L(G), aft, L(\alpha_1\alpha_2)) = \max^+(L(G), aft, L(\alpha_1))
$$

And by Theorem 4.8,

$$
\max^+(L(G), aft, L(\alpha_1\alpha_2)) = \max^+(L(G), aft, L(\alpha_1))
$$

Hence $\max^+(G, aft, \alpha_1\alpha_2) = \max^+(G, \sim \max^+(G, aft, \alpha_1), \alpha_2)$. A similar proof applies to \max^-. From this result, we see that determining $\max^+(G, aft, \alpha_1\alpha_2)$ can be reduced to the problem of calculating $\max^+(G, aft, \alpha_1)$ and then calculating $\max^+(G, aft_2, \alpha_2)$, where $aft_2 = \sim \max^+(G, aft, \alpha_1)$.

4.7 Elaborations

The main result at the logic level, and the main result of the paper, is a necessary and sufficient condition for a sequence of Boolean expressions to be an implicant of a Boolean graph. It builds on the machinery developed in Section 3 and the preceding subsections.

Definition 4.11. An *elaboration* of a Boolean graph G over a set of atomic propositions AP is a Boolean graph $E = (V_E, A_E)$ over AP such that

1. For all $v \in V_E$, v is an ordered pair $(aft, fore)$ where $aft, fore \in \text{SoS}(IV(G))$
2. For all $v \in V_E$, v is an initial vertex of E if and only if $aft(v) = \emptyset$
3. For all $v \in V_E$, v is a terminal vertex of E if and only if $fore(v) = \emptyset$
4. For all $v \in V_E$, $\neg \text{aft}(v) \leq \text{fore}(v)$

5. For all $a \in A_E$, $(\text{fore}(\text{tail}(a)), \text{label}(a), \text{aft}(\text{head}(a)))$ is a logical link of G

The following property follows from Property 2.5 and Conditions 1 – 4 in Definition 4.11.

PROPERTY 4.4. If E is an elaboration of a Boolean graph, then the unique initial vertex of E is $<\{\},\{\}>$ and the unique terminal vertex of E is $<\{\},\{\}>)$.

The next property follows from the definitions of an elaboration at the combinatorics level (Definition 3.6) and at the logic level (Definition 4.11). It simply states that if E is an elaboration of a Boolean graph G over a set of atomic propositions AP and if (S, B, L) is a Kripke structure over AP, then replacing each Boolean expression BE appearing in G and in E with the set of states $L(BE)$ yields two structures, the set graphs $L(G)$ and $L(E)$, with the property that $L(E)$ is an elaboration of $L(G)$.

PROPERTY 4.5. If E is an elaboration of a Boolean graph G over a set of atomic propositions AP and if (S, B, L) is a Kripke structure over AP, then $L(E)$ is an elaboration of the set graph $L(G)$.

The following result – the logic counterpart to Theorem 3.6 – is the main result at the logic level, and the main result of the paper.

THEOREM 4.10. A Boolean sequence α over a set of atomic propositions AP is an implicant of a Boolean graph G over AP if and only if a subsequence of α is accepted by an elaboration of G.

PROOF. Suppose that a subsequence α' of α is accepted by an elaboration E of G. Let (S, B, L) be an arbitrary Kripke structure over AP. From the definitions of $L(\alpha')$ (Definition 4.4) and $L(E)$ (Definition 4.5), it follows that the sequence of sets $L(\alpha')$ is accepted by $L(E)$, and from Property 4.5, we know that $L(E)$ is an elaboration of the set graph $L(G)$. From Theorem 3.6, it follows that $L(\alpha')$ is an implicant of $L(G)$, but that means that α', and also α, are implicants of G (Definition 4.6).

Suppose that α is an implicant of G. Let (S, B, L) be an arbitrary fully populated Kripke structure over AP. By Definition 4.6, the sequence of sets of states $L(\alpha)$ is an implicant of the set graph $L(G)$. It follows from Theorem 3.6 that a subsequence of $L(\alpha)$ is accepted by an elaboration of $L(G)$. Let α' be the subsequence of α that corresponds to such a subsequence of $L(\alpha)$, and let $E_L = (V, S, A_L)$ be a minimal elaboration of $L(G)$ that
accepts $L(\alpha')$. This means that all of the vertices in V and arcs in A_L are on a path μ in the set graph E_L such that: (1) $\text{tail}(\mu)$ is an initial vertex of E_L, (2) $\text{label}(\mu) = L(\alpha')$ and (3) $\text{head}(\mu)$ is a terminal vertex of E_L. Finally, let A be obtained from A_L by replacing the set of states labeling each arc in A with the Boolean expression in α corresponding to that set of states. Now consider the structure $E = (V, A)$. By construction, E is a Boolean graph over AP that accepts a subsequence of α. Moreover, because E_L is an elaboration of $L(G)$, it follows immediately that E satisfies Properties 1 – 4 in Definition 4.11. Property 5 follows with assistance from Theorem 4.3. E is therefore an elaboration of G that accepts a subsequence of α.

COROLLARY 4.1. An elaboration of Boolean graph G accepts only implicants of G.

PROOF. Suppose that a Boolean sequence α is accepted by an elaboration of G. Since α is a subsequence of itself, it follows from Theorem 4.10 that α is an implicant of G.

COROLLARY 4.2. An elaboration of a constraint graph of Kripke structure K is itself a constraint graph of K.

PROOF. Suppose that G is a constraint graph of K and that E is an elaboration of G. By Corollary 4.1, we know that E accepts only implicants of G. It follows from Theorem 4.2, that E accepts only sequential constraints of G. E is therefore a constraint graph of K.

Example: Let G be the constraint graph in Figure 5, and let E be the elaboration of G in Figure 6. To see that E is indeed an elaboration of G, we observe first that each vertex of E is an ordered pair (aft, fore), where $\text{aft, fore} \in \text{SoS}(IV(G))$. Those ordered pairs are:

- $\langle \{\}, \{\} \rangle$
- $\langle \{v_6\}, \{v_9\} \rangle, \{v_6, v_9\} \rangle$
- $\langle \{v_3\}, \{v_{12}\} \rangle, \{v_3, v_{12}\} \rangle$
- $\langle \{v_6\}, \{v_{12}\} \rangle, \{v_6, v_{12}\} \rangle$
- $\langle \{v_3\}, \{v_9\} \rangle, \{v_3, v_9\} \rangle$
- $\langle \{\}, \{\} \rangle$
We also observe that the unique initial vertex of E is $\langle \{\},\{\}\rangle$, the unique terminal vertex of E is $\langle \{\},\{\}\rangle$ and for each vertex $\langle aft,fore\rangle$ in E, $\neg aft \leq fore$. Finally, we note that for each arc a in E, $\langle fore(tail(a)),label(a),aft(head(a))\rangle$ is a logical link of G. Those logical links are:

$\langle \{\},\{\}$, Reset, $\{v_6\}$, $\{v_9\} \rangle$

$\langle \{v_6, v_9\}$, true, $\{v_3\}$, $\{v_12\} \rangle$

$\langle \{v_3, v_12\}$, true, $\{v_6\}$, $\{v_12\} \rangle$

$\langle \{v_6, v_12\}$, true, $\{v_3\}$, $\{v_9\} \rangle$

$\langle \{v_3, v_9\}$, true, $\{v_6\}$, $\{v_9\} \rangle$

$\langle \{v_6, v_12\}$, $\neg \text{Carry}$, $\{\}$ \rangle

(That these are indeed logical links of G can be confirmed using the micro inferences of Theorem 4.7.) From these observations, we conclude that E satisfies all the properties listed in Definition 4.11, and that E is therefore an elaboration of G. And from Corollary 4.2, we conclude that E, like G, is a constraint graph of the Kripke structure described in Section 4.2.

Now consider the Boolean sequences accepted by E. Because E contains a (directed) cycle, E accepts an infinite number of sequences – each of the form $\langle \text{Reset, true}^{4n+2}$, $\neg \text{Carry} \rangle$, where n is a non-negative integer. But since E is a constraint graph, each of these Boolean sequences must be a sequential constraint of the Kripke structure in Section 4.2. This set of sequential constraints tells us that

A Carry occurs 3 states following Reset and every 4th state thereafter

Let us now consider in detail the meaning of Theorem 4.10. From Definitions 3.2, 4.6 and 4.11, we see that Theorem 4.10 can be restated as follows:
Condition 1: For all Kripke structures (S, B, L) over AP and for each state sequence ω in the Cartesian product $\times L(\alpha)$, there exists a subsequence ω' of ω and a Boolean sequence α' accepted by G such that ω' is in the Cartesian product $\times L(\alpha')$

is equivalent to

Condition 2: A subsequence of α is accepted by a Boolean graph E

satisfying the five properties:

1. Each vertex of E is an ordered pair \langle aft, fore \rangle, where aft, fore \in SoS($IV(G)$)
2. For each vertex v of E, v is an initial vertex of E if and only if aft(v) = $\{}$
3. For each vertex v of E, v is a terminal vertex of E if and only if fore(v) = $\{}$
4. For each vertex v of E, \neg aft(v) \leq fore(v)
5. For each arc a of E, \langle fore(tail(a)), label(a), aft(head(a)) \rangle is a logical link of G

Notice that Condition 1 involves states, sequences of states, Kripke structures and Cartesian products, while Condition 2 involves none of these. Condition 2 deals only with logical/structural properties of the Boolean graphs G and E. So we have converted the problem of determining whether α is an implicant of G from one that entails exhaustively checking all the sequences in the Cartesian product $\times L(\alpha)$ into one that entails constructing a Boolean graph satisfying certain logical/structural properties.

To make these ideas concrete, consider the Boolean graph G in Figure 5 and the Boolean graph E in Figure 6 which is an elaboration of G. Notice that although G accepts only a finite number of sequences – seven, to be exact – E accepts an infinite number of sequences. Nevertheless, it follows from Theorem 4.10 that each of these infinitely many sequences is an implicant of G and that each of these sequences therefore satisfies Condition 1 in addition to Condition 2. So we have determined that all of the sequences accepted by E are implicants of G without having to exhaustively verify that each of these sequences satisfies the requirements of Condition 1, which, of course, is an impossible task since there are infinitely many such sequences.

The next two sections describe two methods – sequential resolution and normalization – for constructing elaborations of a Boolean graph.

5. SEQUENTIAL RESOLUTION

Boolean resolution is a powerful inference rule in Boolean logic, and comes in two forms. The disjunctive form [Blake 1937; Quine 1952] – which is sometimes called
consensus [Tison 1967] – is applied to a sum of products of literals, while the conjunctive form [Robinson 1965] is applied to a product of sums of literals.

In the disjunction form, if \(C_1 \) and \(C_2 \) are conjunctions of literals such that exactly one Boolean variable \(x \) appears negated in one conjunction and not negated in the other, then the conjunction obtained from \(C_1 \) and \(C_2 \) by deleting \(x \) and \(\neg x \) and omitting repetitions of any other literals is called the resolvent of \(C_1 \) and \(C_2 \). For example, the resolvant of the conjunctions \(a \land x \) and \(b \land \neg x \) is the conjunction \(a \land b \). Depending on the objective of the resolution, the resolvant may be either added to the sum of products, or it may replace the conjunctions \(C_1 \) and \(C_2 \) in that sum.

Sequential resolution is a generalization of the disjunctive form of Boolean resolution. It is applied to a succession of elaborations of a Boolean graph \(G \) starting with an initial elaboration that is isomorphic to \(G \). Each instance of sequential resolution is performed on two equal-length paths in an elaboration, and yields a new path that is the same length as the two resolved paths. This inferred path is added to the existing elaboration to create a new elaboration which accepts an expanded set of sequences of Boolean expressions. These added sequences represent logical/temporal dependencies that are inferred from the dependencies associated with the previous elaboration.

5.1 The Initial Elaboration

In order for sequential resolution to be applied, there must first be an elaboration. The function \(\text{elaboration}(G) \) provides the initial elaboration for a Boolean graph \(G \). It is defined with the aid of the function \(e \) which maps each vertex and each arc of a Boolean graph into its counterpart in this initial elaboration.

Definition 5.1. Let \(G = (V, A) \) be a Boolean graph over a set of atomic propositions. For \(v \in V \) and \((v_i, BE, v_j) \in A \),

\[
e(G, v) = \begin{cases}
\{\{\}, \{\}\} & \text{if } v \text{ is an initial vertex of } G \\
\{\{\}\}, \{\}\} & \text{if } v \text{ is a terminal vertex of } G \\
\{\{v\}\}, \{\{v\}\} & \text{if } v \text{ is an interior vertex of } G
\end{cases}
\]

\[
e(G, (v_i, BE, v_j)) = \langle e(G, v_i), BE, e(G, v_j) \rangle
\]
Definition 5.2. Let $G = (V, A)$ be a Boolean graph over a set of atomic propositions. Then \(\text{elaboration}(G) = (V_E, A_E) \), where

\[
V_E = \{ e(G, v) \mid v \in V \}
\]
\[
A_E = \{ e(G, a) \mid a \in A \}
\]

THEOREM 5.1. If G is a Boolean graph over a set of atomic propositions, then \(\text{elaboration}(G) \) is an elaboration of G.

PROOF. By construction, \(\text{elaboration}(G) \) satisfies Properties 1 – 4 of Definition 4.10. Property 5 follows from Theorem 3.3.

5.2 Sequential Resolution

Sequential resolution is illustrated in Figure 7. Figure 7(a) shows two equal-length paths – the two upper paths – in an existing elaboration that are resolved to produce (infer) a resolvent path – the lower path – which is added to the existing elaboration to create a new elaboration. This resolvent path consists of a (possibly null) sequence of predecessor arcs, followed by a single resolvant arc, followed by a (possibly null) sequence of successor arcs. Figure 7(b), 7(c) and 7(d) show, respectively, how predecessor arcs, the single resolvant arc and successor arcs are created.

In Figures 7(b) and 7(d), we see that the Boolean expression labeling either a predecessor arc or successor arc is the conjunction (\(\land \)) of the Boolean expressions labeling the corresponding arcs in the two resolved paths. While in Figure 7(c), we see that the Boolean expression labeling the resolvant arc is the disjunction (\(\lor \)) of the Boolean expressions labeling the corresponding arcs in the two resolved paths. We also observe that the vertices in the resolvant path are created by two different methods. Both the head and the tail of each predecessor arc is of the form

\[
\langle \text{aft}(v_1) \lor \text{aft}(v_2), \ \text{fore}(v_1) \land \text{fore}(v_2) \rangle
\]

where \(v_1 \) and \(v_2 \) are the corresponding vertices in the two resolved paths, while both the head and the tail of each successor arc is of the form

\[
\langle \text{aft}(v_1) \land \text{aft}(v_2), \ \text{fore}(v_1) \lor \text{fore}(v_2) \rangle
\]

where, as before, \(v_1 \) and \(v_2 \) are the corresponding vertices in the two resolved paths.
This construction is formalized as follows.
Definition 5.3. For a finite set of elements V and for $\text{aft}_1, \text{fore}_1, \text{aft}_2, \text{fore}_2 \in \text{SoS}(V)$,

$$\text{pre}((\text{aft}_1, \text{fore}_1), (\text{aft}_2, \text{fore}_2)) = ((\text{aft}_1 \lor \text{aft}_2), (\text{fore}_1 \land \text{fore}_2))$$

$$\text{post}((\text{aft}_1, \text{fore}_1), (\text{aft}_2, \text{fore}_2)) = ((\text{aft}_1 \land \text{aft}_2), (\text{fore}_1 \lor \text{fore}_2))$$

Definition 5.4. Let E be an elaboration of a Boolean graph, and let a_1 and a_2 be arcs in E. Then

$$\text{predecessor}(a_1, a_2) = \langle v_i, (\text{label}(a_1) \land \text{label}(a_2)), v_h \rangle$$

where $v_i = \text{pre}((\text{tail}(a_1), \text{tail}(a_2))$ and $v_h = \text{pre}((\text{head}(a_1), \text{head}(a_2))$,

$$\text{resolvant}(a_1, a_2) = \langle v_i, (\text{label}(a_1) \lor \text{label}(a_2)), v_h \rangle$$

where $v_i = \text{pre}((\text{tail}(a_1), \text{tail}(a_2))$ and $v_h = \text{post}((\text{head}(a_1), \text{head}(a_2))$,

$$\text{successor}(a_1, a_2) = \langle v_i, (\text{label}(a_1) \land \text{label}(a_2)), v_h \rangle$$

where $v_i = \text{post}((\text{tail}(a_1), \text{tail}(a_2))$ and $v_h = \text{post}((\text{head}(a_1), \text{head}(a_2))$.

Definition 5.5. Let E be an elaboration of a Boolean graph, let μ_1 and μ_2 be equal-length paths in E and let k be an integer such that $0 \leq k < |\mu_1|$. Then $\text{resolve}(E, \mu_1, \mu_2, k)$ is the Boolean graph obtained by adding to E the following arcs and associated vertices. For each $0 \leq i < k$, add the arc

$$\text{predecessor}(\mu_1(i), \mu_2(i))$$

Add the arc

$$\text{resolvant}(\mu_1(k), \mu_2(k))$$

For each $k < j < |\mu_1|$, add the arc

$$\text{successor}(\mu_1(j), \mu_2(j))$$

THEOREM 5.2. If E is an elaboration of Boolean graph G, μ_1 and μ_2 are equal-length paths in E such that $\text{pre}((\text{tail}(\mu_1), \text{tail}(\mu_2))$ and $\text{post}((\text{head}(\mu_1), \text{head}(\mu_2))$ are vertices of E and k is an integer such that $0 \leq k < |\mu_1|$, then $\text{resolve}(E, \mu_1, \mu_2, k)$ is an elaboration of G.

PROOF. By construction, each newly created arc in $\text{resolve}(E, \mu_1, \mu_2, k)$ is labeled with a Boolean expression over AP. $\text{resolve}(E, \mu_1, \mu_2, k)$ is therefore a Boolean graph over AP. We now show that all five properties required for $\text{resolve}(E, \mu_1, \mu_2, k)$ to be an elaboration of G are satisfied by each newly created vertex and each newly created arc in $\text{resolve}(E, \mu_1, \mu_2, k)$. 65
1. Each vertex is an ordered pair \((aft, fore)\) where \(aft, fore \in \SoS(IV(G))\) – Each newly created vertex is either of the form \(\langle (aft_1 \lor aft_2), (fore_1 \land fore_2) \rangle\) or of the form \(\langle (aft_1 \land aft_2), (fore_1 \lor fore_2) \rangle\) where \(aft_1, fore_1, aft_2, fore_2 \in \SoS(IV(G))\). In both cases, the required property is satisfied.

2. Each vertex \(v\) is an initial vertex of \(E\) if and only if \(\text{aft}(v) = \emptyset\) – By construction, the newly created arcs in \(\text{resolve}(E, \mu_1, \mu_2, k)\) form a path with \(\text{pre}(\text{tail}(\mu_1), \text{tail}(\mu_2))\) as its tail. By assumption, this vertex is a pre-existing vertex in \(E\), and therefore no new initial vertices are created by the resolution operation. Furthermore, since \(\mu_1\) and \(\mu_2\) are paths in \(E\) and \(E\) is an elaboration of \(G\), for each arc \(a\) in \(\mu_1\) and \(\mu_2\), \(\text{aft}(\text{head}(a)) \neq \emptyset\). It follows from Property 2.5(d) that for each newly created arc \(a\), \(\text{aft}(\text{head}(a)) \neq \emptyset\). Hence no newly created arc is incident on the initial vertex of \(E\), and the initial vertex of \(E\) remains an initial vertex in \(\text{resolve}(E, \mu_1, \mu_2, k)\).

3. Each vertex \(v\) is a terminal vertex of \(E\) if and only if \(\text{fore}(v) = \emptyset\) – Argument is similar to that for Property 2.

4. For each vertex \(v\), \(\neg \text{aft}(v) \leq \text{fore}(v)\) – Each newly created vertex is either of the form \(\langle (aft_1 \lor aft_2), (fore_1 \land fore_2) \rangle\) or of the form \(\langle (aft_1 \land aft_2), (fore_1 \lor fore_2) \rangle\) where \(\langle aft_1, fore_1 \rangle\) and \(\langle aft_2, fore_2 \rangle\) are pre-existing vertices in \(E\). Since \(E\) is an elaboration, it must be that \(\neg \text{aft}_1(v) \leq \text{fore}_1(v)\) and \(\neg \text{aft}_2(v) \leq \text{fore}_2(v)\). It follows from Property 2.1(b) that \(\neg (aft_1 \land aft_2) \leq (fore_1 \lor fore_2)\) and from Property 2.1(c) that \(\neg (aft_1 \lor aft_2) \leq (fore_1 \land fore_2)\).

5. For each arc \(a\), \(\langle \text{fore}(\text{tail}(a)), \text{label}(a), \text{aft}(\text{head}(a)) \rangle\) is a logical link of \(G\) – By construction, each newly created predecessor arc \(a\) is of the form \(\langle v_i, (\text{label}(a_1) \land \text{label}(a_2)), v_h \rangle\), where \(v_i = \text{pre}(\text{tail}(a_1), \text{tail}(a_2))\), \(v_h = \text{pre}(\text{head}(a_1), \text{head}(a_2))\) and \(a_1\) and \(a_2\) are pre-existing arcs in \(E\). That means that \(v_i = \langle (\text{aft}(\text{tail}(a_1)) \lor \text{aft}(\text{tail}(a_2))\rangle, (\text{fore}(\text{tail}(a_1)) \land \text{fore}(\text{tail}(a_2))\rangle\) and \(v_h = \langle (\text{aft}(\text{head}(a_1)) \lor \text{aft}(\text{head}(a_2))\rangle, (\text{fore}(\text{head}(a_1)) \land \text{fore}(\text{head}(a_2))\rangle\). Since \(a_1\) and \(a_2\) are arcs in \(E\) and \(E\) is an elaboration of \(G\), we know that \(\langle \text{fore}(\text{tail}(a_1)), \text{label}(a_1), \text{aft}(\text{head}(a_1)) \rangle\) and \(\langle \text{fore}(\text{tail}(a_2)), \text{label}(a_2), \text{aft}(\text{head}(a_2)) \rangle\) are both logical links of \(G\). From Theorem 4.7(c), it follows that \(\langle (\text{fore}(\text{tail}(a_1)) \land \text{fore}(\text{tail}(a_2))), (\text{label}(a_1) \lor \text{label}(a_2)), (\text{aft}(\text{head}(a_1)) \lor \text{aft}(\text{head}(a_2)) \rangle\) is a logical link of \(G\). But that means that \(\langle \text{fore}(\text{tail}(a)), \text{label}(a), \text{aft}(\text{head}(a)) \rangle\) is a logical link of \(G\). A similar argument, relying on Theorem 4.7(b), shows that the property is satisfied for the newly created resolvent.
arc. And an argument, relying on Theorem 4.7(a), shows that the property is satisfied for each newly created successor arc.

5.3 Combining Sequential Resolution and Boolean Resolution
The definition of sequential resolution in Section 5.2 may seem at odds with the notion of Boolean resolution. Specifically, there is nothing in the definition of sequential resolution corresponding to the elimination of a Boolean variable that appears negated in one term of a Boolean sum of products and not negated in another term.

But consider the special case where the Boolean expression labeling Arc a in an elaboration of Boolean graph G is of the form $(C_1 \land P) \lor (C_2 \land \neg P)$ where P is a Boolean variable and C_1 and C_2 are conjunctions of literals such that no Boolean variable appears negated in C_1 and not negated in C_2, or vice versa. Recall that in the definition of an elaboration (Definition 4.10), the only requirement on the Boolean expression labeling Arc a is that $\langle \text{fore}(\text{tail}(a)), \text{label}(a), \text{aft}(\text{head}(a)) \rangle$ be a logical link of G. It follows from Property 4.2 that $(C_1 \land P) \lor (C_2 \land \neg P)$ can be replaced by $C_1 \land C_2$

since this replacement serves only to weaken the link $\langle \text{fore}(\text{tail}(a)), \text{label}(a), \text{aft}(\text{head}(a)) \rangle$).

This result provides the foundation for a variant of sequential resolution that is used when the Boolean expressions labeling the arcs of an elaboration are all products of literals. This variation is identical to sequential resolution except for the Boolean expression labeling the resolvant arc. In contrast to Figure 7(c), there are now requirements on the Boolean expressions labeling the two arcs used to create the resolvant arc. One must be of the form $(C_1 \land P)$ and the other of the form $(C_2 \land \neg P)$, where P, C_1 and C_2 are as described above. The construction of the label for the resolvant arc from these two expressions is illustrated in Figure 8 as a two-step process (although in practice, these two steps are combined into one.) In the first step, sequential resolution is applied to $(C_1 \land P)$ and $(C_2 \land \neg P)$ to obtain $(C_1 \land P) \lor (C_2 \land \neg P)$, while in the second step, Boolean resolution is applied to $(C_1 \land P) \lor (C_2 \land \neg P)$ to obtain the label for the resolvant arc, $C_1 \land C_2$. The resulting operation on equal-length paths in an elaboration is a generalization of Boolean resolution in which conjunctions in space are replaced with
conjunctions in both space and time. Sections 5.4 and 5.5 provide examples of this new form of resolution.

\[
\begin{align*}
C_1 \land P & \quad \langle w_1, x_1 \rangle \quad \langle y_1, z_1 \rangle \\
C_2 \land \neg P & \quad \langle w_2, x_2 \rangle \quad \langle y_2, z_2 \rangle
\end{align*}
\]

By Sequential Resolution

\[
\langle w_1 \lor w_2, x_1 \land x_2 \rangle \quad \langle y_1 \land y_2, z_1 \lor z_2 \rangle
\]

By Boolean Resolution

\[
\begin{align*}
C_1 \lor C_2 & \quad \langle w_1 \lor w_2, x_1 \land x_2 \rangle \quad \langle y_1 \land y_2, z_1 \lor z_2 \rangle
\end{align*}
\]

FIG. 8. Combining Sequential Resolution and Boolean Resolution

5.4 A Simple Example

In Section 1.2, we showed through an ad hoc argument that the sequence of Boolean expressions

\[
\alpha = \langle (P \land R), \text{true}, \neg T \rangle
\]

is an implicant of the set of Boolean sequences

\[
A = \{ \langle P, \neg Q \rangle, \langle R, \neg S \rangle, \langle (Q \land S), \neg T \rangle \}
\]

We now show how to achieve the same result using the variant of sequential resolution described in Section 5.3. First, we convert the set of sequences \(A\) into the Boolean graph shown in Figure 9, and then construct from this graph the initial elaboration shown in Figure 10. (For graphical convenience, an elaboration is often depicted with multiple initial and terminal vertices even though there is just one initial vertex, \(\langle \{\}, \{\} \rangle\), and one terminal vertex, \(\langle \{\}, \{\} \rangle\).) Two sequential resolutions are then performed. The first resolution, shown in Figure 11(a), is performed on the initial elaboration and causes a single arc from vertex \(\langle \{v_1\}, \{v_1\} \rangle\) to vertex \(\langle \{v_7\}, \{v_7\} \rangle\) and labeled with the expression \(S\) to be added to the initial elaboration thereby yielding the elaboration of Figure 11(b). The second resolution, shown in Figure 12(a), is performed on the elaboration of Figure 11(b) and causes a path containing a predecessor arc and a resolvant arc to be added to this elaboration. The predecessor arc leads from vertex \(\langle \{\}, \{\} \rangle\) to vertex \(\langle \{v_1\}, \{v_4\}, \{v_1, v_4\} \rangle\) and is labeled with \(P \land R\), while the
resolvant arc leads from vertex $\langle\{v_1\},\{v_4\}\rangle$ to vertex $\langle\{v_7\},\{v_7\}\rangle$ and is labeled with $true$.

FIG. 9. Boolean Graph G

FIG. 10. Initial Elaboration of G

(a) Inferring a New Path

(b) Resulting Elaboration

FIG. 11. First Resolution
Now notice that the resulting elaboration in Figure 12(b) contains the path shown in Figure 13 which begins at the initial vertex of the elaboration, ends at the terminal vertex and is labeled with \(\langle (P \land R), \text{true}, \neg T \rangle \). The elaboration therefore accepts \(\langle (P \land R), \text{true}, \neg T \rangle \), and by Theorems 4.9 and 5.2 it follows that this sequence is an implicant of the Boolean graph in Figure 9. But since this graph accepts the set of sequences \(\{ \langle P, \neg Q \rangle, \langle R, \neg S \rangle, \langle (Q \land S), \neg T \rangle \} \), it must be the case that

\[
\langle (P \land R), \text{true}, \neg T \rangle
\]

is an implicant of

\[
\{ \langle P, \neg Q \rangle, \langle R, \neg S \rangle, \langle (Q \land S), \neg T \rangle \}
\]

(a) Inferring a New Path

(b) Resulting Elaboration

FIG. 12. Second Resolution

FIG. 13. Path from the Initial Vertex to the Terminal Vertex in the Final Elaboration
5.5 An Example of Induction

Mathematical induction is a method of mathematical proof used to establish that a given statement is true for all natural numbers n. It consists of two steps:

1. **Basis step**: Showing that the statement holds for $n = 0$

2. **Inductive step**: Showing that if the statement holds for $n = m$, where m is any natural number, then the same statement also holds for $n = m + 1$

We now apply the induction principle to the following problem. We are given the logical/temporal dependency

If P and Q hold in a state, then Q holds in the next state

and wish to prove that the dependency

For all natural numbers n,

if P and Q hold in a state and P holds in the next n states,

then Q holds in the state following this sequence of n states

follows as a logical consequence. The proof by induction is as follows:

1. **Basis step**: For $n = 0$, the two statements are identical, and so the second statement follows trivially from the first.

2. **Inductive step**: Assume that the second statement is true for $n = m$. Suppose that P and Q hold in State 0 and that P holds in States 1 to m. By our assumption, Q must hold in State $m + 1$. Suppose, furthermore, that P also holds in State $m + 1$. It then follows from the first statement that Q holds in State $m + 2$. We have thus shown that if that P and Q hold in State 0 and that P holds in States 1 to $m + 1$, then Q holds in State $m + 2$. So the second statement is proved for the case where $n = m + 1$.

Let us now consider an alternative approach to proving that the second dependency follows from the first, one based on sequential resolution. We begin by converting the first statement into the sequential constraint $\langle P \land Q, \neg Q \rangle$. Next, we construct a Boolean graph that accepts just that sequence (Figure 14), and then construct an initial elaboration from this graph (Figure 15). We then perform the sequential resolution shown in Figure 16(a) which produces a path consisting of a single arc, an arc that both begins and ends at the vertex $\langle \{v_1\}, \{v_1\} \rangle$. Figure 16(b) shows the graph that results when this arc is added to the initial elaboration in Figure 15. Notice that the infinite set of sequential
constraints accepted by this elaboration correspond exactly to the second dependency. So we have achieved the same result as the induction argument above through a single sequential resolution.

![Diagram](https://via.placeholder.com/150)

FIG. 14. Boolean Graph G

![Diagram](https://via.placeholder.com/150)

FIG. 15. Initial Elaboration of G

![Diagram](https://via.placeholder.com/150)

FIG. 16. Induction Example

This example illustrates the principle that sequential resolution can deal with situations that require proving that a logical/temporal dependency spanning an unbounded number of states follows as a logical consequence from dependencies spanning a strictly bounded number of states. And sequential resolution does so without resorting to a classical, two-step induction argument.
6. NORMALIZATION

Normalization, the second method for constructing elaborations, starts with two Boolean graphs: (1) a graph representing a regular set of known sequential constraints and (2) a graph representing a set of conjectured sequential constraints. The first graph typically represents a system (model), while the second represents logical/temporal dependencies that one conjectures about the behavior of the system. Normalization determines which of those conjectured dependencies are satisfied by the system (model). The process involves transforming the conjectured graph, using the max^+ function defined above, into an elaboration of the system graph. The resulting verified graph satisfies two properties:

1. The verified graph is an elaboration of the system graph
2. For each sequence of Boolean expressions α that is (a) an implicant of the system graph and (b) accepted by the conjectured graph, there exists a subsequence of α that is accepted by the verified graph

The process of normalization is thus able to extract from a regular set of Boolean sequences those sequences that are sequential constraints as a consequence of a set of known sequential constraints. This capability means that someone who is unsure about a system’s exact behavior can make an overly broad conjecture about that behavior – a conjecture known to be false – in order to find a version of the conjecture that is true.

6.1 Forwards-Maximal Elaborations

In the proof of Theorem 3.6, the max^+ function was used to construct a special type of elaboration of the set graph G from an implicant of G. Normalization applies the same principle to construct a special type of elaboration of the Boolean graph G from the set of implicants of G accepted by a Boolean graph E. That special type of elaboration is called a forwards-maximal elaboration.

Definition 6.1. A forwards-maximal elaboration of a Boolean graph G over a set of atomic propositions is an elaboration (V, A) of G such that

1. For all $v \in V$, $\neg\text{aft}(v) = \text{fore}(v)$
2. For all $a \in A$, $\text{aft}((\text{head}(a)) = \text{max}^+(G, \text{fore}(\text{tail}(a)), \text{label}(a))$

Lemma 6.1. Let G and E be Boolean graphs over the same set of atomic propositions and let μ be a path in E such that

1. All vertices on μ are ordered pairs $\langle \text{aft}, \text{fore} \rangle$, where $\text{aft}, \text{fore} \in \text{SoS}(IV(G))$
2. For all vertices v on μ, $\lnot \text{aft}(v) = \text{fore}(v)$

3. For all arcs a on μ, $\text{aft}(*a) = \max^*(\text{G}, \text{fore}(\text{tail}(a)), \text{label}(a))$

Then $\text{aft}(\text{head}(\mu)) = \max^*(\text{G}, \text{fore}(\text{tail}(\mu)), \text{label}(\mu))$.

PROOF. Let (S, B, L) be a fully populated Kripke structure over the same set of atomic propositions as G and E, and let μ_L be the image of μ under the mapping L. μ_L is thus a path in $L(G)$ such that

1. $\text{tail}(\mu_L) = \text{tail}(\mu)$
2. $\text{label}(\mu_L) = L(\text{label}(\mu))$
3. $\text{head}(\mu_L) = \text{head}(\mu)$
4. All vertices on μ_L are ordered pairs $(\text{aft}, \text{fore})$, where $\text{aft}, \text{fore} \in \text{SoS}(IV(G))$
5. For all vertices v on μ_L, $\lnot \text{aft}(v) = \text{fore}(v)$
6. For all arcs a on μ_L, $\text{aft}(\text{head}(a)) = \max^*(L(G), \text{fore}(\text{tail}(a)), \text{label}(a))$ (by Theorem 4.8)

Since $\text{head}(\mu_L) = \text{head}(\mu)$, $\text{aft}(\text{head}(\mu)) = \text{aft}(\text{head}(\mu_L))$. By Lemma 3.3,

$$\text{aft}(\text{head}(\mu_L)) = \max^*(L(G), \text{fore}(\text{tail}(\mu_L)), \text{label}(\mu_L))$$

Since $\text{tail}(\mu_L) = \text{tail}(\mu)$ and $\text{label}(\mu_L) = L(\text{label}(\mu))$,

$$\max^*(L(G), \text{fore}(\text{tail}(\mu_L)), \text{label}(\mu_L)) = \max^*(L(G), \text{fore}(\text{tail}(\mu)), L(\text{label}(\mu)))$$

Finally, by Theorem 4.8,

$$\max^*(L(G), \text{fore}(\text{tail}(\mu)), L(\text{label}(\mu))) = \max^*(G, \text{fore}(\text{tail}(\mu)), \text{label}(\mu))$$

COROLLARY 6.1. If E is a forwards-maximal elaboration of the Boolean graph G and μ is a path in E, then $\text{aft}(\text{head}(\mu)) = \max^*(G, \text{fore}(\text{tail}(\mu)), \text{label}(\mu))$.

6.2 Normalization

The normalization process begins with two Boolean graphs, G and E, with E satisfying the requirement that none of the vertices of E be of the form $(\text{aft}, \text{fore})$, where $\text{aft}, \text{fore} \in \text{SoS}(IV(G))$. In the first step of the process, all initial vertices of E are merged into the initial vertex $\{\},\{\}$. That step is followed by the main phase of normalization, the updating of arcs a in E such that

$$\text{tail}(a) \in (\text{SoS}(IV(G)) \times \text{SoS}(IV(G))) \text{ and } \text{head}(a) \not\in (\text{SoS}(IV(G)) \times \text{SoS}(IV(G)))$$

Each such update involves splitting the head of arc a from its current location and merging it with the vertex
In addition, if the new location of $head(a)$ is not $\langle\{{}\},\{{}\}\rangle$, then those arcs emerging from the former location of $head(a)$ are copied and the tails of the copied arcs are merged with the new location of $head(a)$. The requirement that $head(a) \neq \langle\{{}\},\{{}\}\rangle$ guarantees that no arcs are created emerging from the terminal vertex $\langle\{{}\},\{{}\}\rangle$.

If, during the course of updating arcs, an arc a is encountered such that each of the following properties holds

- $tail(a) \in (SoS(IV(G)) \times SoS(IV(G)))$
- $head(a)$ is a terminal vertex of E
- $max'(G, fore(tail(a)), label(a)) \neq \{{}\}$

then that arc is deleted since it cannot ever be on a path leading to the terminal vertex $\langle\{{}\},\{{}\}\rangle$.

When there are no further arcs to update, the cleanup phase begins. In the first part of this phase, all arcs a in E such that such that $head(a) = \langle\{{}\},\{{}\}\rangle$ are deleted, and in the second part, all arcs and vertices not on a path in E from the initial vertex $\langle\{{}\},\{{}\}\rangle$ to the terminal vertex $\langle\{{}\},\{{}\}\rangle$ are deleted.

These ideas are formalized in Definition 6.3. The following two abbreviations help simplify that definition.

Definition 6.2. Let G be a Boolean graph over a set of atomic propositions AP, $aft \in SoS(IV(G))$ and BE a Boolean expression over AP. Then

- $vertices(G) = SoS(IV(G)) \times SoS(IV(G))$
- $vertex'(G, aft, BE) = \langle max'(G, aft, BE), \sim max'(G, aft, BE) \rangle$

Definition 6.3. Let G and $E = (V_E, A_E)$ be Boolean graphs over the same set of atomic propositions such that $V_E \cap vertices(G)$ is empty. $normalize(G, E)$ is the Boolean graph E after it has been transformed by the following algorithm.

1. Add $\langle\{{}\},\{{}\}\rangle$ to V_E
2. For each arc $\langle v_i, BE, v_h \rangle \in A_E$ such that v_i is an initial vertex of E, replace that arc in A_E with $\langle\langle\{{}\},\{{}\}\rangle, BE, v_h \rangle$
3. While there exists an arc $\langle v_i, BE, v_h \rangle \in A_E$ such that $v_i \in vertices(G)$ and $v_h \notin vertices(G)$,
(a) If \(v_h \) is a terminal vertex of \(E \) and \(\text{vertex}^* (G, \text{fore}(v_i), BE) \neq (\{\},\{\}) \),

i. Delete \(\langle v_i, BE, v_h \rangle \)

(b) Else

i. Add \(\text{vertex}^* (G, \text{fore}(v_i), BE) \) to \(V_E \)

ii. Replace \(\langle v_i, BE, v_h \rangle \) in \(A_E \) with \(\langle v_i, BE, \text{vertex}^* (G, \text{fore}(v_i), BE) \rangle \)

iii. If \(\text{vertex}^* (G, \text{fore}(v_i), BE) \neq (\{\},\{\}) \), then for each arc \(\langle u_i, BE', u_h \rangle \in A_E \)

such that \(u_i = v_h \), add \(\langle \text{vertex}^* (G, \text{fore}(v_i), BE), BE', u_h \rangle \) to \(A_E \) if it has not been previously added to \(A_E \)

4. Delete all arcs \(a \in A_E \) such that \(\text{head}(a) = (\{\},\{\}) \)

5. Delete all arcs in \(A_E \) and vertices in \(V_E \) that are not on a path in \(E \) from the vertex \(\langle \{\},\{\} \rangle \) to the vertex \(\langle \{\},\{\} \rangle \)

LEMMA 6.2. Let \(G \) and \(E = (V_E, A_E) \) be Boolean graphs over the same set of atomic propositions such that \(V_E \cap \text{vertices}(G) \) is empty. Then \(\text{normalize}(G, E) \) produces a result in a finite number of steps.

PROOF. To prove the lemma, we need to show that there can only be a finite number of iterations of the \(\text{while} \) loop in Step 3 of Definition 6.3. To accomplish that, we first observe that each such iteration requires an arc \(\langle v_i, BE, v_h \rangle \in A_E \) such that \(v_i \in \text{vertices}(G) \) and \(v_i \neq (\{\},\{\}) \) and \(v_h \notin \text{vertices}(G) \). Since (the pre-normalized) \(E \) is a finite, there can only be a finite number of such arcs at the beginning of the algorithm. Additional arcs satisfying these conditions are created only via Step 3(b)(iii), but the requirement that any new arc must not have been previously added to \(A_E \) means that only a finite number of such arcs can be added to \(A_E \). Therefore, there can only be a finite number of iterations of the \(\text{while} \) loop in Step 3.

LEMMA 6.3. Let \(G \) and \(E = (V_E, A_E) \) be Boolean graphs over the same set of atomic propositions such that \(V_E \cap \text{vertices}(G) \) is empty and let \(\mu \) be a path in \(E \) such that

1. \(\text{tail}(\mu) \) is an initial vertex of \(E \)

2. For all proper prefixes \(\mu_P \) of \(\mu \), \(\text{max}^*(G, \{\}, \text{label}(\mu_P)) \neq \{\} \)

3. \(\text{head}(\mu) \) is not a terminal vertex of \(E \) or \(\text{max}^*(G, \{\}, \text{label}(\mu)) = \{\} \)

Then in Steps 1, 2 and 3 of Definition 6.3, \(\mu \) is transformed into a new path \(\mu_T \) in \(E \) such that
4. \(\text{label}(\mu_T) = \text{label}(\mu) \)

5. For all vertices \(v \) on \(\mu_T, v \in \text{vertices}(G) \)

6. \(\text{tail}(\mu_T) = \langle \{\}, \{\{\} \} \rangle \)

7. For all interior vertices \(v \) on \(\mu_T, v \neq \langle \{\{\}, \{\} \} \rangle \)

PROOF. See Appendix F.

LEMMA 6.4. Let \(G \) and \(E = (V_E, A_E) \) be Boolean graphs over the same set of atomic propositions such that \(V_E \cap \text{vertices}(G) \) is empty. Then \(\text{normalize}(G, E) \) produces a unique result.

PROOF. To prove the lemma, we must show that \(\text{normalize}(G, E) \) produces the same result regardless of the order in which arcs are processed in Step 3 of Definition 6.3. To that end, let \(M \) be the set of paths in (the pre-normalized) \(E \) satisfying Properties 1 – 3 in Lemma 6.3. By Lemma 6.3, the paths in \(M \) are transformed in Steps 1, 2 and 3 of Definition 6.3 into a set of paths \(N \) satisfying Properties 4 – 7 in Lemma 6.3. Let \(V \) be the set of vertices appearing on a path in \(N \) and let \(A \) be the set of arcs appearing on a path in \(N \). Notice that both \(V \) and \(A \) are independent of the order in which arcs are processed in Step 3 of Definition 6.3. Moreover, it follows from Definition 6.3 that at the end of Step 3 the only vertices \(v \) of \(E \) such that \(v \in \text{vertices}(G) \) are those in \(V \) and the only arcs \(a \) of \(E \) such that \(\text{tail}(a) \in \text{vertices}(G) \) and \(\text{head}(a) \in \text{vertices}(G) \) are those in \(A \). Since these are the only types of vertices and arcs remaining after the deletions of Steps 4 and 5, we conclude that \(\text{normalize}(G, E) \) produces the same result regardless of the order in which the heads of arcs are updated in Step 3 of Definition 6.3.

THEOREM 6.1. Let \(G \) and \(E = (V_E, A_E) \) be Boolean graphs over the same set of atomic propositions such that \(V_E \cap \text{vertices}(G) \) is empty. Then \(\text{normalize}(G, E) \) is well defined.

PROOF. A consequence of Lemmas 6.2 and 6.4.

THEOREM 6.2. Let \(G \) and \(E = (V_E, A_E) \) be Boolean graphs over the same set of atomic propositions such that \(V_E \cap \text{vertices}(G) \) is empty. Then \(\text{normalize}(G, E) \) is a forwards-maximal elaboration of \(G \).

PROOF. By construction, each newly created arc in \(\text{normalize}(G, E) \) is labeled with a Boolean expression over \(AP \). \(\text{normalize}(G, E) \) is therefore a Boolean graph over \(AP \). We
now show that all five properties required for \(\text{normalize}(G, E) \) to be an elaboration of \(G \) are satisfied.

1. Each vertex is an ordered pair \(\langle \text{aft}, \text{fore} \rangle \) where \(\text{aft}, \text{fore} \in \text{SoS}(IV(G)) \) – The deletions in Step 5 of Definition 6.3 ensure that only updated vertices – those vertices that are of the form \(\langle \text{aft}, \text{fore} \rangle \), where \(\text{aft}, \text{fore} \in \text{SoS}(IV(G)) \) – remain at the completion of the algorithm.

2. Each vertex \(v \) is an initial vertex of \(E \) if and only if \(\text{aft}(v) = \{\} \) – Step 4 in Definition 6.3 ensures that \(\langle \{\}, \{\} \rangle \), if it exists, is an initial vertex of \(E \). Step 5 ensures that there are no other initial vertices of \(E \).

3. Each vertex \(v \) is a terminal vertex of \(E \) if and only if \(\text{fore}(v) = \{\} \) – For each arc \(a \) created in the normalization process, \(\text{tail}(a) \neq \langle \{\}, \{\} \rangle \). So \(\langle \{\}, \{\} \rangle \), if it exists, is a terminal vertex. Step 5 in Definition 6.3 ensures that there are no terminal vertices other than \(\langle \{\}, \{\} \rangle \).

4. For each vertex \(v \), \(\sim\text{aft}(v) = \text{fore}(v) \) – Each updated vertex is either the initial vertex \(\langle \{\}, \{\} \rangle \) or is of the form \(\langle \max^+(G, \text{fore}(v)), \text{BE} \rangle, \sim \max^+(G, \text{fore}(v)), \text{BE} \rangle \).

5. For each arc \(a \), \(\text{aft}(\text{head}(a)) = \max^+(G, \text{fore}(\text{tail}(a)), \text{label}(a)) \) – Each arc created in the normalization process is of the form \(\langle v_s, \text{BE}, \text{vertex}^+(G, \text{fore}(v)), \text{BE} \rangle \). The required property follows.

THEOREM 6.3. Let \(G \) and \(E = (V_E, A_E) \) be Boolean graphs over the same set of atomic propositions such that \(V_E \cap \text{vertices}(G) \) is empty. Then for each sequence of Boolean expressions \(\alpha \) that is accepted by \(E \) and is an implicant of \(G \), there exists a subsequence of \(\alpha \) that is accepted by \(\text{normalize}(G, E) \).

PROOF. Suppose that the sequence of Boolean expressions \(\alpha \) is accepted by \(E \) and is an implicant of \(G \). Because \(\alpha \) is accepted by \(E \), there exists a path \(\mu \) in \(E \) such that \(\text{tail}(\mu) \) is an initial vertex of \(E \), \(\text{label}(\mu) = \alpha \) and \(\text{head}(\mu) \) is a terminal vertex of \(E \). Because \(\alpha \) is an implicant of \(G \), it follows from Lemma 4.1 and Property 4.3 that \(\max^+(G, \{\}, \alpha) = \{\} \). Therefore \(\max^+(G, \{\}, \text{label}(\mu)) = \{\} \). Let \(\mu_p \) be the minimum-length prefix of \(\mu \) such that \(\max^+(G, \{\}, \text{label}(\mu_p)) = \{\} \). Thus for all proper prefixes \(\mu_{pp} \) of \(\mu_p \), \(\max^+(G, \{\}, \text{label}(\mu_{pp})) \neq \{\} \). It follows from Lemma 6.3 that \(\mu_p \) is transformed into a new path \(\mu_{pt} \) in \(E \) such that

1. \(\text{label}(\mu_{pt}) = \text{label}(\mu_p) \)
2. For all vertices \(v \) on \(\mu_{PT} \), \(v \in \text{vertices}(G) \)

3. \(\text{tail}(\mu_{PT}) = \langle \{\}, \{\} \rangle \)

4. For all interior vertices \(v \) of \(\mu_{PT} \), \(v \neq \langle \{\}, \{\} \rangle \)

Furthermore, since \(\text{max}^+(G, \{\}, \text{label}(\mu)) = \{\} \), it must be that \(\text{max}^+(G, \{\}, \text{label}(\mu_{PT})) = \{\} \). It follows from Lemma 6.1 that \(\text{head}(\mu_{PT}) = \langle \{\}, \{\} \rangle \). Now consider Step 4 of Definition 6.3. In this step, all arcs \(a \) in \(\mu_{PT} \) such that \(\text{head}(a) = \langle \{\}, \{\} \rangle \) are deleted. But that still leaves a suffix \(\mu_{PTS} \) of \(\mu_{PT} \) – containing, at a minimum, the last arc of \(\mu_{PT} \) – such that

1. \(\text{tail}(\mu_{PTS}) = \langle \{\}, \{\} \rangle \)

2. For all interior vertices \(v \) of \(\mu_{PTS} \), \(v \neq \langle \{\}, \{\} \rangle \) and \(v \neq \langle \{\}, \{\} \rangle \)

3. \(\text{head}(\mu_{PTS}) = \langle \{\}, \{\} \rangle \)

Finally, consider Step 5 of Definition 6.3. Since all the vertices and arcs of \(\mu_{PTS} \) are on a path in \(E \) from \(\langle \{\}, \{\} \rangle \) to \(\langle \{\}, \{\} \rangle \), \(\mu_{PTS} \) is left untouched. So we have shown that there exists a subsequence of \(\alpha \) – namely, \(\text{label}(\mu_{PTS}) \) – that is accepted by \(\text{normalize}(G, E) \).

6.2 An Example

In Section 4, we illustrated the concept of a constraint graph with the 2-bit-counter example in Figure 5, and illustrated the concept of an elaboration with the Boolean graph in Figure 6. But there was no explanation in Section 4 of how the elaboration in Figure 6 was obtained from the constraint graph in Figure 5. Figures 17(a) – 17(h) show how that was accomplished by normalizing the Boolean graph \(E = (V_E, A_E) \) in Figure 17(a) using the Boolean graph \(G \) in Figure 5.

(a) Figure 17(a) depicts the initial version of Boolean graph \(E \). When interpreted as a constraint graph, it says that \(\text{Carry} = 1 \) in all future states following \(\text{Reset} \). But this statement is clearly false; \(\text{Carry} = 1 \) only in certain states following \(\text{Reset} \). The Boolean graph obtained by normalizing \(E \) using \(G \) tells us exactly what those states are.

(b) Figure 17(b) shows the Boolean graph \(E \) after all initial vertices of \(E \) (there is only one in this example) are merged into the single vertex \(\langle \{\}, \{\} \rangle \).

(c) Figure 17(c) shows the outcome from updating the head of arc \(\langle \{\}, \{\} \rangle, \text{Reset}, u_1 \rangle \) in Step 3(b). The outcome is three new arcs. The arc \(\langle \{\}, \{\} \rangle, \text{Reset},
\langle\{v_6\}, \{v_9\}\rangle \text{ replaces the arc } \langle\{\}, \{\}\rangle, \text{ Reset, } u_1 \rangle \text{ in Step 3(b)(ii). The two arcs } \langle\{v_6\}, \{v_9\}\rangle, \text{ true, } u_1 \rangle \text{ and } \langle\{v_6\}, \{v_9\}\rangle, \{-\text{Carry}\}, \text{ } u_2 \rangle \text{ are created in Step 3(b)(iii). The second of these two arcs, however, is ultimately deleted in a future Step 3(a), and that fact is indicated with an X through the arc.}

(d) Figure 17(d) shows the result of updating the head of arc \langle\{v_6\}, \{v_9\}\rangle, \text{ true, } u_1 \rangle \text{ in Step 3(b). The outcome is similar to that of Figure 17(c).}

(e) Figure 17(e) shows the result of updating the head of arc \langle\{v_3\}, \{v_{12}\}\rangle, \text{ true, } u_1 \rangle \text{ in Step 3(b). The outcome is similar to that of Figures 17(c) and 17(d).}

(f) Figure 17(f) shows the result of updating the heads of two arcs, \langle\{v_6\}, \{v_{12}\}\rangle, \text{ true, } u_1 \rangle \text{ and } \langle\{v_6\}, \{v_{12}\}\rangle, \{-\text{Carry}\}, \text{ } u_2 \rangle, \text{ in two iterations of Step 3(b). The outcome is similar to that of Figures 17(c)−17(e), except that the arc } \langle\{v_6\}, \{v_{12}\}\rangle, \{-\text{Carry}\}, \langle\{\}, \{\}\rangle \text{ is not deleted in a future Step 3(a) since it does not satisfy the condition in that step.}

(g) Figure 17(g) shows the result of updating the head of arc \langle\{v_3\}, \{v_9\}\rangle, \text{ true, } u_1 \rangle \text{ in Step 3(b), but unlike all previous updates, there are no arcs created in Step 3(b)(iii). That’s because the two arcs } \langle\{v_6\}, \{v_9\}\rangle, \text{ true, } u_1 \rangle \text{ and } \langle\{v_6\}, \{v_9\}\rangle, \{-\text{Carry}\}, \text{ } u_2 \rangle \text{ were previously added to } A_E \text{ in Figure 17(c).}

(h) Finally, Figure 17(h) shows the result of deleting in Step 4 all arcs incident on the vertex \langle\{\}, \{\}\rangle \text{ (there are none) and deleting in Step 5 all vertices } v \in V_E \text{ and arcs } a \in A_E \text{ that are not on a path in } E \text{ from the vertex } \langle\{\}, \{\}\rangle \text{ to the vertex } \langle\{\}, \{\}\rangle. \text{ These final deletions eliminate the subgraph indicated in Figure 17(g). Notice that the resulting graph is identical to the one in Figure 6. When interpreted as a constraint graph, it tells us that a Carry occurs 3 states following Reset and every 4th state thereafter.}

\[\text{(a) Initial Boolean Graph } E \]
(b) After Step 2

(c) After First Arc Update (X Indicates Arc to be Eventually Deleted in Step 3(a))

(d) After Second Arc Update (X Indicates Arc to be Eventually Deleted in Step 3(a))
(e) After Third Arc Update

(f) After Fourth and Fifth Arc Updates (X Indicates Arc to be Eventually Deleted in Step 3(a))
7. CONCLUSIONS
Reasoning about sequential behavior is a fundamental and inescapable part of digital design, but for too long, this reasoning has been guided by informal, and highly error-prone, mental models. The mathematical theory and calculus described in the preceding sections hopefully contribute towards an eventual design methodology that is both mathematically rigorous and accessible to the average designer/programmer.
7.1 Distinguishing Characteristics of the Theory

The theory is distinguished from other approaches to formal verification by the following characteristics:

- The theory is primarily \textit{mathematical}, with the formal/symbolic aspects of the theory playing a relatively minor role.

- The theory has only one type of construct for describing both systems and logical/temporal dependencies: a \textit{regular set of sequential constraints} represented by either a regular expression or finite state automaton.

- Proofs are obtained through \textit{deductive reasoning} entirely within the realm of logical/temporal dependencies. No attempt is made to model a system’s state-transition function, and no attempt is made to explore, traverse or enumerate a system’s state space.

- There are two proof methods: \textit{Sequential resolution}, a generalization of Boolean resolution, allows new logical/temporal dependencies to be inferred from existing dependencies. \textit{Normalization} starts with a model (system) and a set of logical/temporal dependencies and determines which of those dependencies are satisfied by the model.

- \textit{Finite state automata} play a central role in the theory, but, in contrast to the usual practice, each FSA describes a set of \textit{disallowed} system state sequences – but not necessarily \textit{all} disallowed state sequences. This last point is significant. Because the theory relies on deductive reasoning, ignoring disallowed behaviors affects what is provable but does not affect the soundness of proofs obtained via either of the two proof methods.

- When a new component or instruction is added to a system, the sequential constraints associated with that component or instruction are added to the set of sequential constraints defining the system. The set of sequential constraints defining a system thus grows \textit{linearly}, not \textit{exponentially}, with the size of a system. A combinatorial explosion is still possible, but if it occurs, it is only through repeated applications of sequential resolution or in the normalization process.

- The assumption that a system state is \textit{total} – that is, the current state completely determines the set of possible next states – is replaced by a more fundamental assumption (axiom): \textit{every subsequence of an allowed state sequence is allowed}. The increased generality afforded by this axiom means that the theory can describe and
reason about the *partial states* associated with the *visible (black box) behavior* of a system.

- Through the normalization process, someone who is unsure about a system’s exact behavior can make an overly broad conjecture about that behavior – a conjecture known to be *false* – in order to find a version of the conjecture that is *true*.

7.2 Topics Not Covered

Although a lot of ground has been covered in this paper, a number of topics have been deferred to future articles.

- Boolean expressions with *uninterpreted functions*
- *Temporal offsets* appearing as arguments of uninterpreted functions which permits the concise representation of non-recursive dependencies
- *Formal variables* appearing as arguments of uninterpreted functions which permits the representation of recursive dependencies
- *Prime (sequential) implicants*, the sequential counterpart to prime implicants in Boolean logic
- A *completeness* theorem for sequential resolution that mirrors the completeness theorem for Boolean resolution
- *Self-normalization*, whereby a Boolean graph is normalized with itself to produce a graph in *canonical/normal form*
- Algorithms for computing *\(\text{max}^+ \)* and *\(\text{max}^- \)*
- An algorithm for deriving the *input/output (black-box) behavior* of a system
- *Heuristics* that reduce the chances for a combinatorial explosion in sequential resolution and in normalization
- A *constraint-based simulator* that behaves like a conventional cycle-accurate simulator except that it provides visibility into *cause and effect* by allowing a user to determine why Signal *S* has Value *V* at Time *T*.

7.3 Future Research

The following are suggestions for future research.

- While we may have solved the *state-space-explosion problem*, we have not completely solved the *combinatorial-explosion problem*. Using sequential resolution
to generate the implicants of a Boolean graph, in particular, is prone to such an explosion. But that should not come as a surprise since using Boolean resolution – a special form of sequential resolution – to generate the implicants of a Boolean sum of products is also prone to such an explosion. Fortunately, there are a host of techniques for dealing with the Boolean problem, and many of these should be applicable to the sequential case. In fact, several heuristics – including the pruning of extraneous arcs – have already been incorporated into the sequential resolution algorithm. More work needs to be done in this area.

- **Hierarchy** has historically played an important role in managing complexity. The theory described here needs to be extended to encompass both different granularities of time and different levels of abstraction.

- Since the output of sequential resolution and normalization is ultimately intended for human consumption, there needs to more work done in making the output of these algorithms more readable. Temporal logics, like PSL [Accellera 2004], and languages for describing regular expressions can play an important role here.

- Currently, only sequential resolution can deal with uninterpreted functions. Normalization also needs to be made compatible with uninterpreted functions.

- Proving properties about allowed (permitted) behavior has been mentioned in passing, but this is an important area that deserves considerably more attention.

- The theory described here deals only with regular sets of disallowed sequences, but what interesting results are there for context-free, context-sensitive and recursively-enumerable sets of disallowed sequences? And what role do uninterpreted functions play in the expressiveness of the theory?

- A basic assumption of our theory – and many other theories in computer science – is that it is meaningful and productive to represent system behavior in terms of total orderings of states, but Petri [1962, 1986], Holt [1968, 1971] and others have stressed the fundamental nature of concurrency. In their models of system behavior, total orderings of states are replaced by partial orderings on either condition holdings or event occurrences. How do we extend the theory of sequential constraints to deal with such partial orderings?

- The theory described here is essentially an extension of propositional logic to handle sequential behavior, and although this logic has been further extended with uninterpreted functions, it will be necessary to incorporate techniques from theorem
proving [Owre et. al. 1992; Owre et. al. 1998] in order to achieve the power and expressiveness of theorem proving together with the automated deduction supported by the present approach.
Appendix A: Proof of Theorem 3.2

THEOREM 3.2. If \(\langle aft_1, \alpha_1, fore_1 \rangle \) and \(\langle aft_2, \alpha_2, fore_2 \rangle \) are links of the set graph \(G \) such that \(\sim fore_1 \leq aft_2 \), then \(\langle aft_1, \alpha_1 \alpha_2, fore_2 \rangle \) is a link of \(G \).

PROOF. Suppose that \(\langle aft_1, \alpha_1, fore_1 \rangle \) and \(\langle aft_2, \alpha_2, fore_2 \rangle \) are links of the set graph \(G \) such that \(\sim fore_1 \leq aft_2 \). Let \(A \) be the set of ordered pairs \(\langle aset_1, \omega_1 \rangle \), where \(aset_1 \in aft_1 \) and \(\omega_1 \in \times \alpha_1 \), such that there does NOT exist a path \(\mu \) in \(G \) such that at least one of the following two properties holds:

1. (a) \(\times \text{label}(\mu) \) contains a subsequence of \(\omega_1 \) and (b) \(\text{tail}(\mu) \) is an initial vertex of \(G \) and (c) \(\text{head}(\mu) \) is a terminal vertex of \(G \)

2. (a) \(\times \text{label}(\mu) \) contains a prefix of \(\omega_1 \) and (b) \(\text{tail}(\mu) \in aset_1 \) and (c) \(\text{head}(\mu) \) is a terminal vertex of \(G \)

Let \(B \) denote the interior vertices of \(G \). Let \(C \) be the set of ordered pairs \(\langle \omega_2, fset_2 \rangle \), where \(\omega_2 \in \times \alpha_2 \) and \(fset_2 \in fore_2 \), such that there does NOT exist a path \(\mu \) in \(G \) such that at least one of the following two properties holds:

3. (a) \(\times \text{label}(\mu) \) contains a subsequence of \(\omega_2 \) and (b) \(\text{tail}(\mu) \) is an initial vertex of \(G \) and (c) \(\text{head}(\mu) \) is a terminal vertex of \(G \)

4. (a) \(\times \text{label}(\mu) \) contains a suffix of \(\omega_2 \) and (b) \(\text{tail}(\mu) \) is an initial vertex of \(G \) and (c) \(\text{head}(\mu) \in fset_2 \)

Let the relation \(R_{AB} \subseteq A \times B \) be defined such that \(\langle aset_1, \omega_1 \rangle \ R_{AB} v \) if and only if there exists a path \(\mu \) in \(G \) such that at least one of the following two properties holds:

5. (a) \(\times \text{label}(\mu) \) contains a suffix of \(\omega_1 \) and (b) \(\text{tail}(\mu) \) is an initial vertex of \(G \) and (c) \(\text{head}(\mu) = v \)

6. (a) \(\times \text{label}(\mu) \) contains \(\omega_1 \) and (b) \(\text{tail}(\mu) \in aset_1 \) and (c) \(\text{head}(\mu) = v \)

Let the relation \(R_{BC} \subseteq B \times C \) be defined such that \(v R_{BC} \langle \omega_2, fset_2 \rangle \) if and only if there exists a path \(\mu \) in \(G \) such that at least one of the following two properties holds:

7. (a) \(\times \text{label}(\mu) \) contains a prefix of \(\omega_2 \) and (b) \(\text{tail}(\mu) = v \) and (c) \(\text{head}(\mu) \) is a terminal vertex of \(G \)

8. (a) \(\times \text{label}(\mu) \) contains \(\omega_2 \) and (b) \(\text{tail}(\mu) = v \) and (c) \(\text{head}(\mu) \in fset_2 \)

Now consider an arbitrary ordered pair \(\langle aset_1, \omega_1 \rangle \) in \(A \) and an arbitrary \(fset_1 \) in \(fore_1 \). Because \(\langle aft_1, \alpha_1, fore_1 \rangle \) is a link of \(G \), we know that there exists a path \(\mu \) in \(G \) such that at least one of the following four properties holds:
9. (a) $\times \text{label}(\mu)$ contains a subsequence of ω_1 and (b) tail(μ) is an initial vertex of G and (c) head(μ) is a terminal vertex of G

10. (a) $\times \text{label}(\mu)$ contains a prefix of ω_1 and (b) tail$(\mu) \in \text{aset}_1$ and (c) head(μ) is a terminal vertex of G

11. (a) $\times \text{label}(\mu)$ contains a suffix of ω_1 and (b) tail(μ) is an initial vertex of G and (c) head$(\mu) \in \text{fset}_1$

12. (a) $\times \text{label}(\mu)$ contains ω_1 and (b) tail$(\mu) \in \text{aset}_1$ and (c) head$(\mu) \in \text{fset}_1$

However, because of the way in which A is defined, neither Property 9 nor Property 10 can hold. Therefore, either Property 11 or Property 12 must hold. But that means that there exists $v \in \text{fset}_1$ – namely, head(μ) – such that for all $\langle \text{aset}_1, \omega_1 \rangle \in A$: $\langle \text{aset}_1, \omega_1 \rangle R_{AB} v$. Hence, for all $\text{fset}_1 \in \text{fore}_1$: $R_{AB}^{-1}(\text{fset}_1) = A$. Thus, $\text{fore}_1 \subseteq \{ P \subseteq B \mid R_{AB}^{-1}(P) = A \}$.

Using a similar argument, we have $\text{aft}_2 \subseteq \{ Q \subseteq B \mid R_{BC}(Q) = C \}$. From Property 2.4, it follows that

$$\text{fore}_1 \leq \min_{=}(\{ P \subseteq B \mid R_{AB}^{-1}(P) = A \})$$

$$\text{aft}_2 \leq \min_{=}(\{ Q \subseteq B \mid R_{BC}(Q) = C \})$$

and from Property 2.1(a) and the fact that $\sim \text{fore}_1 \leq \text{aft}_2$, it follows that

$$\sim \min_{=}(\{ P \subseteq B \mid R_{AB}^{-1}(P) = A \}) \leq \min_{=}(\{ Q \subseteq B \mid R_{BC}(Q) = C \})$$

Applying the Fundamental Theorem (Theorem 3.1), we see that for all $\langle \text{aset}_1, \omega_1 \rangle \in A$ and for all $\langle \omega_2, \text{fset}_2 \rangle \in C$, there exists $v \in B$ such that $\langle \text{aset}_1, \omega_1 \rangle R_{AB} v$ and $v R_{BC} \langle \omega_2, \text{fset}_2 \rangle$. It follows that if none of Properties 1 – 4 holds, there must exist a path μ in G such that at least one of the following four properties holds:

13. (a) $\times \text{label}(\mu)$ contains a subsequence of $\omega_1 \cdot \omega_2$ and (b) tail(μ) is an initial vertex of G and (c) head(μ) is a terminal vertex of G

14. (a) $\times \text{label}(\mu)$ contains a prefix of $\omega_1 \cdot \omega_2$ and (b) tail$(\mu) \in \text{aset}$ and (c) head(μ) is a terminal vertex of G

15. (a) $\times \text{label}(\mu)$ contains a suffix of $\omega_1 \cdot \omega_2$ and (b) tail(μ) is an initial vertex of G and (c) head$(\mu) \in \text{fset}$

16. (a) $\times \text{label}(\mu)$ contains $\omega_1 \cdot \omega_2$ and (b) tail$(\mu) \in \text{aset}$ and (c) head$(\mu) \in \text{fset}$

So either: one of Properties 1 – 4 holds or one of Properties 13 – 16 holds. It follows from Definition 3.3 that $\langle \text{aft}_1, \alpha_1 \cdot \alpha_2, \text{fore}_2 \rangle$ is a link of G. QED
Appendix B: Proof of Theorem 3.5

THEOREM 3.5. Let $G = (V, S, A)$ be a set graph, let aft and fore be elements of $\text{SoS}(IV(G))$ and let α_1 and α_2 each be a non-null sequence of subsets of S. Then

$$\max^\ast(G, \text{aft}, \alpha_1 \cdot \alpha_2) = \max^\ast(G, \text{aft}, \alpha_1, \alpha_2)$$

$$\max^\ast(G, \text{fore}, \alpha_1 \cdot \alpha_2) = \max^\ast(G, \text{fore}, \alpha_2, \alpha_1)$$

PROOF. Let B denote the interior vertices of G. Suppose that $P \subseteq B$ and that $\langle \text{aft}, \alpha_1, \alpha_2, \{P\} \rangle$ is a link of G. From Property 3.2, we know that $\langle \text{aft}, \alpha_1, \max^\ast(G, \text{aft}, \alpha_1) \rangle$ is a link of G. It follows from Theorem 3.2 that $\langle \text{aft}, \alpha_1 \cdot \alpha_2, \{P\} \rangle$ is a link of G. Therefore

$$\{P \subseteq B \mid \langle \text{aft}, \alpha_1 \cdot \alpha_2, \{P\} \rangle \text{ is a link of } G\} \subseteq \{P \subseteq B \mid \langle \text{aft}, \alpha_1, \max^\ast(G, \text{aft}, \alpha_1) \rangle \text{ is a link of } G\}$$

From Property 2.4, it follows that

$$\min_{\subseteq}(\{P \subseteq B \mid \langle \text{aft}, \alpha_1, \max^\ast(G, \text{aft}, \alpha_1) \rangle \text{ is a link of } G\}) \leq \min_{\subseteq}(\{P \subseteq B \mid \langle \text{aft}, \alpha_1 \cdot \alpha_2, \{P\} \rangle \text{ is a link of } G\})$$

We now use the Fundamental Theorem (Theorem 3.1) to show that

$$\min_{\subseteq}(\{P \subseteq B \mid \langle \text{fore}, \alpha_2, \max^\ast(G, \text{fore}, \alpha_2) \rangle \text{ is a link of } G\}) \leq \min_{\subseteq}(\{P \subseteq B \mid \langle \text{aft}, \alpha_1 \cdot \alpha_2, \{P\} \rangle \text{ is a link of } G\})$$

Suppose that $P \subseteq B$ and that $\langle \text{aft}, \alpha_1 \cdot \alpha_2, \{P\} \rangle$ is a link of G.

Let A be the set of ordered pairs $\langle \text{aset}, \omega_0 \rangle$, where $\text{aset} \in \text{aft}$ and $\omega_0 \in \times \alpha_1$, such that there does NOT exist a path μ in G such that at least one of the following two properties holds:

1. (a) $\times \text{label}(\mu)$ contains a subsequence of ω_0 and (b) $\text{tail}(\mu)$ is an initial vertex of G and (c) $\text{head}(\mu)$ is a terminal vertex of G

2. (a) $\times \text{label}(\mu)$ contains a prefix of ω_0 and (b) $\text{tail}(\mu) \in \text{aset}$ and (c) $\text{head}(\mu)$ is a terminal vertex of G

Let C be the set of ordered pairs $\langle \omega_2, P \rangle$, where $\omega_2 \in \times \alpha_2$, such that there does NOT exist a path μ in G such that at least one of the following two properties holds:

3. (a) $\times \text{label}(\mu)$ contains a subsequence of ω_2 and (b) $\text{tail}(\mu)$ is an initial vertex of G and (c) $\text{head}(\mu)$ is a terminal vertex of $G
4. (a) $\times \text{label}(\mu)$ contains a suffix of ω_2 and (b) $\text{tail}(\mu)$ is an initial vertex of G and (c) $\text{head}(\mu) \in P$

Let the relation $R_{AB} \subseteq A \times B$ be defined such that $\langle \text{aset}, \omega_1 \rangle R_{AB} v$ if and only if there exists a path μ in G such that at least one of the following two properties holds:

5. (a) $\times \text{label}(\mu)$ contains a suffix of ω_1 and (b) $\text{tail}(\mu)$ is an initial vertex of G and (c) $\text{head}(\mu) = v$

6. (a) $\times \text{label}(\mu)$ contains ω_1 and (b) $\text{tail}(\mu) \in \text{aset}$ and (c) $\text{head}(\mu) = v$

Let the relation $R_{BC} \subseteq B \times C$ be defined such that $v R_{BC} \langle \omega_2, P \rangle$ if and only if there exists a path μ in G such that at least one of the following two properties holds:

7. (a) $\times \text{label}(\mu)$ contains a prefix of ω_2 and (b) $\text{tail}(\mu) = v$ and (c) $\text{head}(\mu)$ is a terminal vertex of G

8. (a) $\times \text{label}(\mu)$ contains ω_2 and (b) $\text{tail}(\mu) = v$ and (c) $\text{head}(\mu) \in P$

Now consider an arbitrary ordered pair $\langle \text{aset}, \omega_1 \rangle$ in A and an arbitrary ordered pair $\langle \omega_2, P \rangle$ in C. From our assumption that $\langle \text{aft}, \alpha_1 \alpha_2, \{P\} \rangle$ is a link of G and from the fact that $\text{aset} \in \text{aft}$, $\omega_1 \in \times \alpha_1$, $\omega_2 \in \times \alpha_2$, we know that there exists a path μ in G such that at least one of the following four properties must hold:

9. (a) $\times \text{label}(\mu)$ contains a subsequence of $\omega_1 \cdot \omega_2$ and (b) $\text{tail}(\mu)$ is an initial vertex of G and (c) $\text{head}(\mu)$ is a terminal vertex of G

10. (a) $\times \text{label}(\mu)$ contains a prefix of $\omega_1 \cdot \omega_2$ and (b) $\text{tail}(\mu) \in \text{aset}$ and (c) $\text{head}(\mu)$ is a terminal vertex of G

11. (a) $\times \text{label}(\mu)$ contains a suffix of $\omega_1 \cdot \omega_2$ and (b) $\text{tail}(\mu)$ is an initial vertex of G and (c) $\text{head}(\mu) \in P$

12. (a) $\times \text{label}(\mu)$ contains $\omega_1 \cdot \omega_2$ and (b) $\text{tail}(\mu) \in \text{aset}$ and (c) $\text{head}(\mu) \in P$

However, because of the way in which A and C are defined, the path μ in Properties 9 – 12 must overlap both ω_1 and ω_2. That is, μ must be partitionable into two subpaths μ_1 and μ_2 such that $\text{head}(\mu_1) = \text{tail}(\mu_2)$ and at least one of the following four properties holds:

13. (a) $\times \text{label}(\mu_1)$ contains a suffix of ω_1 and (b) $\times \text{label}(\mu_2)$ contains a prefix of ω_2 and (c) $\text{tail}(\mu_1)$ is an initial vertex of G and (d) $\text{head}(\mu_2)$ is a terminal vertex of G

14. (a) $\times \text{label}(\mu_1)$ contains ω_1 and (b) $\times \text{label}(\mu_2)$ contains a prefix of ω_2 and (c) $\text{tail}(\mu_1) \in \text{aset}$ and (d) $\text{head}(\mu_2)$ is a terminal vertex of G
15. (a) \(\times \text{label}(\mu_1) \) contains a suffix of \(\omega_1 \) and (b) \(\times \text{label}(\mu_2) \) contains \(\omega_2 \) and (c) \(\text{tail}(\mu_1) \) is an initial vertex of \(G \) and (d) \(\text{head}(\mu_2) \in P \)

16. (a) \(\times \text{label}(\mu_1) \) contains \(\omega_1 \) and (b) \(\times \text{label}(\mu_2) \) contains \(\omega_2 \) and (c) \(\text{tail}(\mu_1) \in \text{aset} \) and (d) \(\text{head}(\mu_2) \in P \)

But this fact means that for all \(\langle \text{aset}, \omega_1 \rangle \in A \), for all \(\langle \omega_2, P \rangle \in C \), there exists a vertex \(v \) in \(B \) – namely, \(\text{head}(\mu_1) \) and \(\text{tail}(\mu_2) \) – such that \(\langle \text{aset}, \omega_1 \rangle \circ R_{AB} v \) and \(v \circ R_{BC} \langle \omega_2, P \rangle \). Applying the Fundamental Theorem, we see that:

\[
\sim \min_{\subseteq} \langle \{ Q \subseteq B \mid R_{AB}^{-1}(Q) = A \} \rangle \leq \min_{\subseteq} \langle \{ Q \subseteq B \mid R_{BC}(Q) = C \} \rangle \quad (C)
\]

Now consider all \(Q \subseteq B \) such that \(R_{AB}^{-1}(Q) = A \), and consider all ordered pairs \(\langle \text{aset}, \omega_1 \rangle \) such that \(\text{aset} \in \text{aft} \) and \(\omega_1 \in \times \alpha_1 \). Either \(\langle \text{aset}, \omega_1 \rangle \in A \) or \(\langle \text{aset}, \omega_1 \rangle \notin A \). If \(\langle \text{aset}, \omega_1 \rangle \in A \), then because \(R_{AB}^{-1}(Q) = A \) there exists a path \(\mu \) in \(G \) such that at least one of the following two properties holds:

17. (a) \(\times \text{label}(\mu) \) contains a suffix of \(\omega_1 \) and (b) \(\text{tail}(\mu) \) is an initial vertex of \(G \) and (c) \(\text{head}(\mu) \in Q \)

18. (a) \(\times \text{label}(\mu) \) contains \(\omega_1 \) and (b) \(\text{tail}(\mu) \in \text{aset} \) and (c) \(\text{head}(\mu) \in Q \)

If \(\langle \text{aset}, \omega_1 \rangle \notin A \), then there must exist a path \(\mu \) in \(G \) such that at least one of Property 1 or Property 2 holds. Thus for all \(\omega_1 \in \times \alpha_1 \), for all \(\text{aset} \in \text{aft} \), there exists a path \(\mu \) in \(G \) such that at least one of the following four properties holds:

19. (a) \(\times \text{label}(\mu) \) contains a subsequence of \(\omega_1 \) and (b) \(\text{tail}(\mu) \) is an initial vertex of \(G \) and (c) \(\text{head}(\mu) \) is a terminal vertex of \(G \)

20. (a) \(\times \text{label}(\mu) \) contains a prefix of \(\omega_1 \) and (b) \(\text{tail}(\mu) \in \text{aset} \) and (c) \(\text{head}(\mu) \) is a terminal vertex of \(G \)

21. (a) \(\times \text{label}(\mu) \) contains a suffix of \(\omega_1 \) and (b) \(\text{tail}(\mu) \) is an initial vertex of \(G \) and (c) \(\text{head}(\mu) \in Q \)

22. (a) \(\times \text{label}(\mu) \) contains \(\omega_1 \) and (b) \(\text{tail}(\mu) \in \text{aset} \) and (c) \(\text{head}(\mu) \in Q \)

In other words, \(\langle \text{aft}, \alpha_1, \{ Q \} \rangle \) is a link of \(G \). Thus

\[
\{ Q \subseteq B \mid R_{AB}^{-1}(Q) = A \} \subseteq \max^*(G, \text{aft}, \alpha_1)
\]

and

\[
\min_{\subseteq} \langle \{ Q \subseteq B \mid R_{AB}^{-1}(Q) = A \} \rangle \leq \max^*(G, \text{aft}, \alpha_1)
\quad (D)
\]

A similar argument shows that
\{Q \subseteq B \mid R_{sc}(Q) = C\} \subseteq max^{-}(G, \{P\}, \alpha_2)

and

\(\min_{\subseteq}(\{Q \subseteq B \mid R_{sc}(Q) = C\}) \leq max^{-}(G, \{P\}, \alpha_2)\) \tag{E}

From Property D and Property 2.1(a), it follows that

\(~max^{-}(G, \text{aft}, \alpha_1) \leq \~min_{\subseteq}(\{Q \subseteq B \mid R_{a8}^{-1}(Q) = A\})\) \tag{F}

From Properties C, E and F, it follows that

\(~max^{-}(G, \text{aft}, \alpha_1) \leq max^{-}(G, \{P\}, \alpha_2)\) \tag{G}

However, from Property 3.2 we know that \(\langle max^{-}(G, \{P\}, \alpha_2), \alpha_2, \{P\} \rangle\) is a link of \(G\), and therefore from Property G and Property 3.1 it follows that

\(\langle \~max^{-}(G, \text{aft}, \alpha_1), \alpha_2, \{P\} \rangle\) is a link of \(G\) \tag{H}

We have thus shown that Property B implies Property H. Therefore

\(\{P \subseteq B \mid \langle \text{aft}, \alpha_1 \bullet \alpha_2, \{P\} \rangle\) is a link of \(G\} \subseteq \{P \subseteq B \mid \langle \~max^{-}(G, \text{aft}, \alpha_1), \alpha_2, \{P\} \rangle\) is a link of \(G\}

and

\(\min_{\subseteq}(\{P \subseteq B \mid \langle \text{aft}, \alpha_1 \bullet \alpha_2, \{P\} \rangle\) is a link of \(G\}) \leq \min_{\subseteq}(\{P \subseteq B \mid \langle \~max^{-}(G, \text{aft}, \alpha_1), \alpha_2, \{P\} \rangle\) is a link of \(G\})\) \tag{I}

From Properties A and I it then follows that

\(\min_{\subseteq}(\{P \subseteq B \mid \langle \text{aft}, \alpha_1 \bullet \alpha_2, \{P\} \rangle\) is a link of \(G\}) = \min_{\subseteq}(\{P \subseteq B \mid \langle \~max^{-}(G, \text{aft}, \alpha_1), \alpha_2, \{P\} \rangle\) is a link of \(G\})\)

But this means that

\(max^{-}(G, \text{aft}, \alpha_1 \bullet \alpha_2) = max^{-}(G, \~max^{-}(G, \text{aft}, \alpha_1), \alpha_2)\)

A similar argument shows that

\(max^{-}(G, \text{fore}, \alpha_1 \bullet \alpha_2) = max^{-}(G, \~max^{-}(G, \text{fore}, \alpha_2), \alpha_1)\) \quad \text{QED}

93
Appendix C: Proof of Theorem 4.1

THEOREM 4.1. Let G be a Boolean graph over a set of atomic propositions AP, let α be a Boolean sequence over AP and let (S, B, L) be a fully populated Kripke structure over AP. Then α is an implicant of G if and only if $L(\alpha)$ is an implicant of $L(G)$.

PROOF. Suppose that α is an implicant of G. By Definition 4.6, $L(\alpha)$ is an implicant of $L(G)$.

Suppose that $L(\alpha)$ is an implicant of $L(G)$. To show that α is an implicant of G, we need to show that for an arbitrary Kripke structure (S', B', L') over AP, $L'(\alpha)$ is an implicant of $L'(G)$. To that end, assume that $\omega' \in \times L'(\alpha)$ and consider an arbitrary state $\omega'(i)$ in ω'. It follows from Definition 4.3 that

The assignment of truth values to the atomic propositions in AP

defined by $\omega'(i)$ causes $\alpha(i)$ to evaluate to true

Now observe that because (S, B, L) is fully populated, each state $s' \in S'$ can be mapped to a state $s \in S$ that has the same assignment of truth values to the atomic propositions in AP as s'. Let $\phi : S' \rightarrow S$ be such a mapping, and let ϕ be extended to sequences of states in the obvious way. Now consider $\omega = \phi(\omega')$. By construction,

$\omega(i)$ and $\omega'(i)$ define the same assignment of truth values

to the atomic propositions in AP

From (1) and (2), we see that

The assignment of truth values to the atomic propositions in AP

defined by $\omega(i)$ causes $\alpha(i)$ to evaluate to true

From (3) and Definition 4.3, it follows that $\omega(i) \in L(\alpha(i))$ and that $\omega \in \times L(\alpha)$. But because $L(\alpha)$ is an implicant of $L(G)$,

There exists a subsequence ψ of ω and

a sequence of sets σ accepted by $L(G)$ such that $\psi \in \times \sigma$

Since ψ is a subsequence of ω and $\omega = \phi(\omega')$,

There exists a subsequence ψ' of ω' such that $\psi = \phi(\psi')$

From (2) and (5), it follows that

$\psi(i)$ and $\psi'(i)$ define the same assignment of truth values

to the atomic propositions in AP
Moreover, because σ is accepted by $L(G)$,

There exists a Boolean sequence β accepted by G such that $\sigma = L(\beta)$ \hspace{1cm} (7)

And from (4) and (7), we see that

$$\psi \in \times L(\beta)$$ \hspace{1cm} (8)

From (6) and (8) and Definitions 4.3 and 4.4, it follows that

$$\psi' \in \times L'(\beta)$$ \hspace{1cm} (9)

Now consider $L'(\beta)$. Because β accepted by G, it must be that

$L'(\beta)$ is accepted by $L'(G)$ \hspace{1cm} (10)

From (9) and (10) it follows that for all $\omega' \in \times L'(\alpha)$, there exists a subsequence ψ' of ω' and a sequence of sets $L'(\beta)$ that is accepted by $L'(G)$ such that $\psi' \in \times L'(\beta)$. $L'(\alpha)$ is therefore an implicant of $L'(G)$.

95
Appendix D: Proof of Theorem 4.3

THEOREM 4.3. Let G be a Boolean graph over a set of atomic propositions AP, let aft and $fore$ be elements of $SoS(I(V(G)))$, let α be a Boolean sequence over AP and let (S, B, L) be a fully populated Kripke structure over AP. Then $\langle aft, \alpha, fore \rangle$ is a link of G if and only if $\langle aft, L(\alpha), fore \rangle$ is a link of $L(G)$.

PROOF. Suppose that $\langle aft, \alpha, fore \rangle$ is a link of G. By Definition 4.7, $\langle aft, L(\alpha), fore \rangle$ is a link of $L(G)$.

Suppose that $\langle aft, L(\alpha), fore \rangle$ is a link of $L(G)$. To show that $\langle aft, \alpha, fore \rangle$ is a link of G, we need to show that for an arbitrary Kripke structure (S', B', L') over AP, $\langle aft, L'(\alpha), fore \rangle$ is a link of $L'(G)$. That means showing that for each set $a \in aft$, for each $\omega' \in L'(\alpha)$, for each set $f \in fore$, there exists a path μ' in $L'(G)$ such that at least one of the four properties listed in Definition 3.3 holds. To see that this is the case, we first observe that for each state $\omega'(i)$ in ω', $\omega'(i) \in L'(\alpha(i))$. It follows from Definition 4.3 that

The assignment of truth values to the atomic propositions in AP

defined by $\omega(i)$ causes $\alpha(i)$ to evaluate to true

(1)

Now observe that because (S, B, L) is fully populated, each state $s' \in S'$ can be mapped to a state $s \in S$ that has the same assignment of truth values to the atomic propositions in AP as s'. Let $\phi: S' \rightarrow S$ be such a mapping, and let ϕ be extended to sequences of states in the obvious way. Now consider $\omega = \phi(\omega')$. By construction,

$\omega(i)$ and $\omega'(i)$ define the same assignment of truth values

to the atomic propositions in AP

(2)

From (1) and (2), it follows that

The assignment of truth values to the atomic propositions in AP

defined by $\omega(i)$ causes $\alpha(i)$ to evaluate to true

(3)

That means that $\omega(i) \in L(\alpha(i))$ and that $\omega \in \times L(\alpha)$. But because $\langle aft, L(\alpha), fore \rangle$ is a link of $L(G)$,

There exists a path μ in $L(G)$ and $\psi \in \times label(\mu)$ such that ψ is a subsequence

defined by ω that satisfies at least one of the four properties listed in Definition 3.3

(4)

Since ψ is a subsequence of ω and $\omega = \phi(\omega')$,
There must exist a subsequence ψ' of ω' such that $\psi = \phi(\psi')$
and ψ' is in the same position of ω' that ψ is in ω \hfill (5)

Moreover from (2), it follows that

$\psi(i)$ and $\psi'(i)$ define the same assignment of truth values
to the atomic propositions in AP \hfill (6)

Now since μ is a path in $L(G)$, it must be the image under L of a path ν in G. Let $\beta = \text{label}(\nu)$. β is thus the sequence of Boolean expressions labeling ν. From Definitions 4.3 and 4.4, it follows that

$\psi(i)$ causes $\beta(i)$ to evaluate to true \hfill (7)

From (6) and (7), it follows that

$\psi'(i)$ causes $\beta(i)$ to evaluate to true \hfill (8)

From (8) and Definitions 4.3 and 4.4, we see that

$\psi'(i) \in L'(\beta(i))$ \hfill (9)

Now let μ' be the path in $L'(G)$ that is the image under L' of ν. That means that

$L'(\beta(i)) = \text{label}(\mu'(i))$ \hfill (10)

From (9) and (10), we have

$\psi' \in \times \text{label}(\mu')$ \hfill (11)

Finally, from (4), (5) and (11), it follows that

There exists a path μ' in $L'(G)$ and $\psi' \in \times \text{label}(\mu')$ such that ψ' is a subsequence
of ω' that satisfies at least one of the four properties listed in Definition 3.3

So we have shown that for an arbitrary Kripke structure (S', B', L') over AP, $\langle \text{aft}, L'(\alpha), \text{fore} \rangle$ is a link of $L'(G)$. $\langle \text{aft}, \alpha, \text{fore} \rangle$ is therefore a link of G.

97
Appendix E: Proof of Theorem 4.8

THEOREM 4.8. Let G be a Boolean graph over a set of atomic propositions AP, let aft and $fore$ be elements of $SoS(IV(G))$, let α be a Boolean sequence over AP and let (S, B, L) be a fully populated Kripke structure over AP. Then

$$\max^+(G, aft, \alpha) = \max^+(L(G), aft, L(\alpha))$$

$$\max^-(G, fore, \alpha) = \max^-(L(G), fore, L(\alpha))$$

PROOF. By Definition 4.9,

$$\max^+(G, aft, \alpha) = \bigwedge \max^+(L(G), aft, L(\alpha))$$

For all Kripke structures (S, B, L) over AP

By Definition 3.5,

$$\max^+(L(G), aft, L(\alpha)) = \min_{\subseteq} \{ U \subseteq IV(G) \mid \langle aft, L(\alpha), \{U\} \rangle \text{ is a link of } L(G) \}$$

From these two equalities and the definition of \bigwedge (Definition 2.5), it follows that $\max^+(G, aft, \alpha)$ is the set of minimal $U \subseteq IV(G)$, with respect to set inclusion, such that

$$\langle aft, L(\alpha), \{U\} \rangle \text{ is a link of } L(G) \text{ for all Kripke structures } (S, B, L) \text{ over } AP$$

But from the definition of a link at the logic level (Definition 4.7), we see that this last property is equivalent to

$$\langle aft, \alpha, \{U\} \rangle \text{ is a link of } G$$

Thus

$$\max^+(G, aft, \alpha) = \min_{\subseteq} \{ U \subseteq IV(G) \mid \langle aft, \alpha, \{U\} \rangle \text{ is a link of } G \}$$

From Theorem 4.3, we know that $\langle aft, \alpha, \{U\} \rangle$ is a link of G if and only if $\langle aft, L(\alpha), \{U\} \rangle$ is a link of $L(G)$. Therefore

$$\max^+(G, aft, \alpha) = \min_{\subseteq} \{ U \subseteq IV(G) \mid \langle aft, L(\alpha), \{U\} \rangle \text{ is a link of } L(G) \}$$

But by Definition 3.5,

$$\max^+(L(G), aft, L(\alpha)) = \min_{\subseteq} \{ U \subseteq IV(G) \mid \langle aft, L(\alpha), \{U\} \rangle \text{ is a link of } L(G) \}$$

Hence $\max^+(G, aft, \alpha) = \max^+(L(G), aft, L(\alpha))$. A similar proof applies to \max^-.

98
Appendix F: Proof of Lemma 6.3

LEMMA 6.3. Let G and $E = (V_E, A_E)$ be Boolean graphs over the same set of atomic propositions such that $V_E \cap \text{vertices}(G)$ is empty and let μ be a path in E such that

1. $\text{tail}(\mu)$ is an initial vertex of E
2. For all proper prefixes μ_P of μ, $\max^+ (G, \{\{}\}, \text{label}(\mu_P)) \neq \{\{}\}$
3. $\text{head}(\mu)$ is not a terminal vertex of E or $\max^+ (G, \{\{}\}, \text{label}(\mu)) = \{\{}\}$

Then in Steps 1, 2 and 3 of Definition 6.3, μ is transformed into a new path μ_T in E such that

4. $\text{label}(\mu_T) = \text{label}(\mu)$
5. For all vertices v on μ_T, $v \in \text{vertices}(G)$
6. $\text{tail}(\mu_T) = \langle \{\{}\}, \{\{}\} \rangle$
7. For all interior vertices v on μ_T, $v \neq \langle \{\{}\}, \{\} \rangle$

PROOF. By induction on the length of μ. Let μ be a path in E of length 1 (i.e., an arc) satisfying Properties 1 – 3 in the lemma. Since $\text{tail}(\mu)$ is an initial vertex of E, the tail of μ is replaced with $\langle \{\{}\}, \{\{}\} \rangle$ in Step 2 of Definition 6.3. Then since $\text{tail}(\mu) \in \text{vertices}(G)$ and $\text{head}(\mu) \notin \text{vertices}(G)$ and either $\text{head}(\mu)$ is not a terminal vertex of E or $\max^+ (G, \{\{}\}, \text{label}(\mu)) = \{\{}\}$, it follows that the head of μ is eventually updated in Step 3(b) (Lemma 6.2). The resulting arc/path satisfies Properties 4 – 7 in the lemma.

Now assume that the lemma is true for all paths of length n. Let μ be a path in E of length $n+1$ satisfying Properties 1 – 3 in the lemma, let μ_n be the prefix of μ of length n and let a be the $n+1$st (and final) arc of μ. By our hypothesis, μ_n is transformed into a path μ_{nT} in E satisfying Properties 4 – 7. Upon completion of that transformation, we know that since μ satisfies Property 2, $\max^+ (G, \{\{}\}, \text{label}(\mu_{nT})) \neq \{\{}\}$. It follows from Lemma 6.1 that $\text{head}(\mu_{nT}) \neq \langle \{\} \}, \{\} \rangle$, and therefore it must have been the case that when the last arc $\langle v, BE, v_h \rangle$ in μ_{nT} was updated in Step 3 of Definition 6.3, $\text{vertex}^+ (G, \text{fore}(v), BE) \neq \langle \{\} \}, \{\} \rangle$. It follows that the arc

$$\langle \text{head}(\mu_{nT}), \text{label}(a), \text{head}(a) \rangle$$

must have been added to A_E in Step 3(b)(iii) if it had not been previously added, and, as a result, this arc is eventually processed in Step 3. In that processing, since $\text{head}(a) = \text{head}(\mu)$ and μ satisfies Property 3, either $\text{head}(a)$ is not a terminal vertex of E or $\max^+ (G,$
\{\{\}\}, label(\mu) = \{\{\}\}. If head(\mu) is not a terminal vertex of \(E\), then the condition in Step 3(a) evaluates to false and the head of \(\langle head(\mu_nT), label(a), head(\mu) \rangle\) is updated in Step 3(b). If \(\max^+(G, \{\{\}\}, label(\mu)) = \{\{\}\}\), then by Lemma 6.1, \(vertex^+(G, fore(head(\mu_nT)), label(a)) = \langle \{\{\}\}, \{\}\\rangle\). And again the condition in Step 3(a) evaluates to false and the head of \(\langle head(\mu_nT), label(a), head(\mu) \rangle\) is updated in Step 3(b). Now consider the transformed path \(\mu_T\) and Properties 4 – 7 in the lemma.

4. By construction, \(\mu_T\) is the concatenation of \(\mu_nT\) and the arc \(\langle head(\mu_nT), label(a), vertex^+(G, fore(head(\mu_nT)), label(a)) \rangle\). Since \(\mu_n\) is a path of length \(n\), it follows by hypothesis (Property 4) that \(label(\mu_nT) = label(\mu_n)\). Thus \(label(\mu_T) = label(\mu_nT) \cup \langle label(a) \rangle = label(\mu_n) \cup \langle label(a) \rangle = label(\mu)\).

5. By construction in Step 2, \(tail(\mu_T) = \langle \{\}, \{\{\}\}\rangle\). The remaining vertices on \(\mu_T\) are created in Step 3(b)(ii) and each is of the form \(vertex^+(G, fore(v_t), BE)\). It follows that for all vertices \(v\) on \(\mu_T\), \(v \in vertices(G)\).

6. By construction in Step 2, \(tail(\mu_T) = \langle \{\}, \{\{\}\}\rangle\).

7. By hypothesis, \(\mu_nT\) satisfies Property 7. The sole remaining interior vertex of \(\mu_T\) is \(head(\mu_nT)\), but we have already established that \(head(\mu_nT) \neq \langle \{\}, \{\}\rangle\). Thus for all interior vertices \(v\) on \(\mu_T\), \(v \neq \langle \{\}, \{\}\rangle\).
REFERENCES

ACCELLERA 2004. Property Specification Language Reference Manual, Version 1.1. Accellera Organization (www.accellera.org), Napa, CA.

BALBES, R. AND DWINGER, P. 1974. Distributive Lattices. University of Missouri Press, Columbia, MO.

BEER, I., BEN-DAVID, S., EISNER, C., FISMAN, D., GRINGAUZE, A. AND RODEH, Y. 2001. The temporal logic Sugar. In Proceedings of the 13th International Conference on Computer-Aided Verification (CAV 2001), Paris, France, July 2001, Lecture Notes in Computer Science, Vol. 2102, G. BERRY, H. COMON AND A. FINKEL, Eds. Springer-Verlag, Berlin Heidelberg New York 363-367.

BIALYNICKI-BIRULA, A. AND RASIOWA, H. 1957. On the representation of quasi-Boolean algebras. Bulletin de l'Academie Polonaise des Sciences, 5, 259-261.

BIALYNICKI-BIRULA, A. 1957. Remarks on quasi-Boolean algebras. Bulletin de l'Academie Polonaise des Sciences, 5, 615-619.

BLAKE, A. 1937. Canonical expressions in Boolean algebra. PhD thesis, University of Chicago, 1937.

CIGNOLI, R. 1975. Injective De Morgan and Kleene algebras. Proceedings of the American Mathematical Society, Vol. 47, No. 2 (February 1975), 269-278.

CLARKE, E.M., EMERSON, E.A. AND SISTLA, A.P. 1986. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems (TOPLAS 1986), Volume 8, Issue 2 (April 1986), 244-263.

CLARKE, E.M., GRUMBERG, O. AND PELED, D.A. 2000. Model Checking. The MIT Press, Cambridge, MA.

CLARKE, E.M., GRUMBERG, O., JHA S., LU Y. AND VEITH, H. 2001. Progress on the state explosion problem in model checking. In Informatics: 10 Years Back, 10 Years Ahead, Lecture Notes in Computer Science, Vol. 2000, R. WILHELM, Ed. Springer-Verlag, Berlin Heidelberg New York 176-194.

FIGALLO, A. AND MONTEIRO, L. 1981. The determinant system for the free De Morgan algebra over a finite ordered set. Journal of Symbolic Logic, Volume 46, (1), 185-185.

FURTEK, F.C. 1978. Constraints and compromise. In Foundations of Secure Computation, R.A. DEMILLO, D.P. DOBarkin, A.K. JONES AND R.J. LIPTON, Eds. Academic Press, New York, 189-204.

FURTEK, F.C. 1980. Specification and verification of real-time, distributed systems using the theory of constraints. In Proceedings of the 5th Conference on Automated Deduction (CADE 1980), Les Arcs, France, July 1980, Lecture Notes in Computer Science, Volume 87, W. BIBEL AND R. KOWALSKI Eds. Springer-Verlag, Berlin Heidelberg New York, 110-125.

FURTEK, F.C. 1982a. The Theory of Constraints. Report CSDL-P-1564, May 4, 1982, The Charles Stark Draper Laboratory, Cambridge, MA.

FURTEK, F.C. 1982b. Verifying ongoing behavior: a case study. In Proceedings of the 6th Annual International Computer Software and Applications Conference (COMPSAC 1982), Chicago, USA, November 1982. IEEE, 634-639.

FURTEK, F.C. 1984. A necessary and sufficient condition for a product relation to be total. Journal of Combinatorial Theory, Series A, Vol. 37, No. 3, November 1984, 320–326.

HOLT, A.W. 1968. Information System Theory Project: Final Report. Report RADC-TR-68-305, Applied Data Research, Inc., Princeton, NJ, February 1968. Available from the Department of Commerce Clearinghouse, Springfield, VA. as Report AD 676-972, September 1968.

HOLT, A.W. 1971. Introduction to Occurrence Systems. In Associative Information Techniques, L. Jacks, Ed. American Elsevier, New York, 175-203.

HOPCROFT, J.E., MOTWANI, R. AND ULLMAN J.D. 2006. Introduction to Automata Theory, Languages, and Computation (3rd Edition). Addison Wesley, Boston, USA.

KALMAN, J.A. 1958. Lattices with involution. Transactions of the American Mathematical Society, Vol. 87, No. 2 (Mar. 1958), pp. 485-491.

MCCLUSKEY, E.J. 1956. Minimization of Boolean functions. Bell System Technical Journal, Vol. 35, November 1956, 1417-1444.
MILLEN, J. 1978. Constraints and multilevel security. In *Foundations of Secure Computation*, R.A. DE MILLO, D.P. DOBKIN, A.K. JONES AND R.J. LIPTON, Eds. Academic Press, New York, 205-222.

OWRE, S., RUSHBY, J.M., SHANKAR, N. 1992. PVS: A prototype verification system. In *Proceedings of the 11th International Conference on Automated Deduction (CADE 1992)*, Saratoga Springs, NY, June 1992, Lecture Notes in Artificial Intelligence, Volume 607, D. KAPUR, Ed. Springer-Verlag, Berlin Heidelberg New York, 748-752.

OWRE, S., RUSHBY, J., SHANKAR, N. AND STRINGER-CALVERT, D. 1998. PVS: An experience report. In *Applied Formal Methods - FM-Trends 98*, Boppard, Germany, October 1998, Lecture Notes in Computer Science, Volume 1641, D. HUTTER, W. STEPHAN, P. TRAVERSO and M. ULLMAN Eds. Springer-Verlag, Berlin Heidelberg New York, 338-345.

PETRI, C.A. 1962. *Kommunikation mit Automaten*. PhD Thesis, Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2, 1962, Second Edition, Bonn (In German). Also in Griffiss Air Force Base, Technical Report RADC-TR-65--377, Vol. 1, New York, 1966 (English translation).

PETRI, C.A. 1986. Concurrency Theory. In *Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part I, Proceedings of an Advanced Course*, Bad Honnef, Germany, September 1986, Lecture Notes in Computer Science, Vol. 254, W. BRAUER, W. REISIG, G. ROZENBERG, Eds. Springer-Verlag, Berlin Heidelberg New York 4-24.

QUINE, W.V. 1952. The problem of simplifying truth functions. *American Mathematical Monthly*, Volume 59, Number 8 (1952), pp. 521-531.

REED, T.J. 1979. APL modeling of DeMorgan algebras. In *Proceedings of the International Conference on APL*, New York, New York, 1979. ACM Press, New York, NY, 302-305.

ROBINSON, J.A. 1965. A machine-oriented logic based on the resolution principle. *Journal of the ACM*, Volume 12, Issue 1 (January 1965), 23-41.

SANKAPPANAVAR, H.P. 1980. A characterization of principal congruences of De Morgan algebras and its applications. In *Mathematical Logic in Latin America*. North-Holland, Amsterdam, 341-349.

SIPSER, M. 2005. *Introduction to the Theory of Computation, Second Edition*. Thomson Course Technology, Boston, MA.

TISON, P. 1967. Generalized consensus theory and application to the minimization of Boolean functions. *IEEE Transactions on Electronic Computers*, Vol. EC-16, No. 4, 446-456.