ABP maximum principles for fully nonlinear integro-differential equations with unbounded inhomogeneous terms

Shuhei Kitano

Published online: 2 July 2020
© Springer Nature Switzerland AG 2020

Abstract
Aleksandrov–Bakelman–Pucci maximum principles are studied for a class of fully nonlinear integro-differential equations of order $\sigma \in [2 - \varepsilon_0, 2)$, where ε_0 is a small constant depending only on given parameters. The goal of this paper is to improve an estimate of Guillen and Schwab (Arch Ration Mech Anal 206(1):111–157, 2012) in order to avoid the dependence on L^1 norm of the inhomogeneous term.

Mathematics Subject Classification 35R09 · 47G20

1 Introduction
In this paper, we study the fully nonlinear nonlocal equation of the form:

$$
\begin{cases}
\mathcal{M}^- u(x) \leq f(x) & \text{in } B_1, \\
u(x) \geq 0 & \text{in } \mathbb{R}^n \setminus B_1,
\end{cases}
$$

where by setting

$$
\delta(u, x, y) := u(x + y) + u(x - y) - 2u(x),
$$

we define the minimal fractional Pucci operator:

$$
\mathcal{M}^- u(x) := \inf\left\{ (2 - \sigma) \int_{\mathbb{R}^n} \frac{\delta(u, x, y) y^T A y}{|y|^{n+\sigma+2}} dy \right\},
$$

This article is part of the topical collection “Viscosity solutions – Dedicated to Hitoshi Ishii on the award of the 1st Kodaira Kunihiko Prize” edited by Kazuhiro Ishige, Shigeaki Koike, Tohru Ozawa and Senjo Shimizu.

Shuhei Kitano
sk.koryo@moegi.waseda.jp

1 Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan
Throughout this paper, we suppose that
\[n \geq 2, \quad 0 < \lambda \leq n \Lambda, \]
and define \(B_r := \{ y \in \mathbb{R}^n : |y| < r \} \). Furthermore, \(Q_r \subset \mathbb{R}^n \) denotes the open cube with its center at 0 and its side-length \(r \). We also set \(B_r(x) := x + B_r \) and \(Q_r(x) := x + Q_r \).

We will also use the maximal Pucci operator defined by
\[
\mathcal{M}^+ u(x) := \sup_{\lambda \leq \text{Tr}(A) \text{ and } O \leq \Lambda \leq \text{Id}} \left\{ (2 - \sigma) \int_{\mathbb{R}^n} \delta(u, x, y) \frac{y^T A y}{|y|^{n+\sigma+2}} \, dy \right\}.
\]

The main purpose of this paper is to show the Aleksandrov–Bakelman–Pucci (ABP for short) maximum principle depending only on \(L^n \) norm of \(f^+ := \max\{f, 0\} \).

Theorem 1.1 There exist constants \(\hat{C} > 0 \) and \(\epsilon_0 \in (0, 1) \) depending only on \(n, \lambda \) and \(\Lambda \) such that if \(u \in L^\infty(\mathbb{R}^n) \cap \text{LSC}(\mathbb{R}^n) \) is a viscosity supersolution of (1) with \(\sigma \in [2 - \epsilon_0, 2) \) and \(f \in C(\overline{B}_1) \), then it follows that
\[
- \inf_{B_1} u \leq \hat{C} \| f^+ \|_{L^n(\{u \leq 0\})}.
\]

The ABP maximum principle plays a fundamental role in the regularity theory of fully nonlinear equations (see [1, 2] for instance). The ABP maximum principle for the second order equation presents a bound for the infimum of supersolutions by \(L^n \) norm of inhomogeneous terms. In the case of nonlocal equations, the ABP maximum principle is investigated in [3, 5, 7] and references therein. More precisely, for viscosity solutions, Caffarelli and Silvestre prove that the maximum is estimated from above by Riemann sums of \(f \) instead of their \(L^n \) norms in [3]. A more quantitative version of the ABP maximum principle is established by Guillen and Schwab in [5]. For an application of results in [5], \(W^{\sigma, \lambda} \)-estimate is obtained by Yu [8], which was inspired by earlier works by [4, 6]. The ABP maximum principle for strong solutions of second order equations with integral terms is obtained by Mou and Świech although the nonlocal part is regarded as a lower order term in [7].

We shall recall the estimate shown by Guillen and Schwab from [5]:

Theorem 1.2 There exists a constant \(C_0 = C_0(n, \lambda) \) such that if \(u \in L^\infty(\mathbb{R}^n) \cap \text{LSC}(\mathbb{R}^n) \) is a viscosity supersolution of (1) with \(\sigma \in (0, 2) \) and \(f \in C(\overline{B}_1) \), then it follows that
\[
- \inf_{B_1} u \leq C_0 \| f^+ \|_{L^\infty(\{u \leq 0\})}^{(2-\sigma)/2} \| f^+ \|_{L^n(\{u \leq 0\})}^{\sigma/2},
\]
where \(\Gamma_\sigma \) is defined in Sect. 2.

Here, we shall briefly explain our proof of Theorem 1.1. In [5], Guillen and Schwab introduce the fractional order envelope \(\Gamma_\sigma \) and its Riesz potential \(P \), which interprets the fractional order equation as a second order partial differential equation. Applying the ABP maximum principle for second order equations, they show that \(P \) is bounded from below by \(L^n \) norm of \(f \) as follow:
\[
- \inf P \leq \overline{C} \| f \|_{L^n(\{u \leq \Gamma_\sigma\})}.
\]
A more precise statement of the above is presented in Lemma 2.3. In order to estimate
\(\inf \Gamma_\sigma \) by \(\inf P \), they obtain the lower bound of
\[
|\{ \Gamma_\sigma \leq \inf \Gamma_\sigma/2 \} \cap (B_r(x_0) \setminus B_{r/2}(x_0))|,
\]
which is derived from a simple property of the equation. Here, \(x_0 \) is a point such that
\(\inf \Gamma_\sigma = \Gamma_\sigma(x_0) < 0 \), and \(r \in (0, -\Gamma(x_0)/(2f(x_0))) \). Hence it follows from the estimate that
\[
-\inf \Gamma_\sigma \leq C\|f^+\|_\infty^{(2-\sigma)/2}(\inf P)^{\sigma/2}.
\]

Theorem 1.2 follows from above two inequalities.

In our proof of Theorem 1.1, we introduce a new iteration procedure, which is based on
an argument to show the weak Harnack inequality in the regularity theory for fully non-
linear PDE originated by Caffarelli in [1], in order to obtain the bound of
\[
|\{ \Gamma_\sigma \leq \inf \Gamma_\sigma/2 \} \cap (Q_r(x_0) \setminus Q_{r/4}\sigma(x_0))|
\]
from the ABP maximum principle. Using this bound, one can show a new ABP maximum
principle from the original one. We inductively obtain a sequence of constants in ABP
maximum principles, which yields (2) by taking the limit of this sequence.

We notice that \{ \(u = \Gamma_\sigma \) \} is replaced by \{ \(u \leq 0 \) \} in (2) while \{ \(u = \Gamma_\sigma \) \} \subset \{ \(u \leq 0 \) \}. However (2) has enough information to prove Hölder continuity estimates.

Remark 1.3 Although we will prove Theorem 1.1 under the assumption that \(f \in C(\overline{B_1}) \),
it remains to hold if we assume \(f \in C(B_1) \cap L^\infty(B_1) \). Indeed, this is observed as follows:
Since we may suppose that \(\inf_{B_1} u < 0 \), we can find \(x_0 \in B_1 \) such that \(\inf_{B_1} u = u(x_0) \). We
choose small \(\eta > 0 \) such that \(x_0 \in B_{1-\eta} \). Notice that \(f \in C(B_1) \cap L^\infty(B_1) \subset C(\overline{B_{1-\eta}}) \).
Applying Theorem 1.1 to \(u(x) - \inf_{\mathbb{R}^n \setminus B_{1-\eta}} u \), we have
\[
u(x_0) \leq -\inf_{\mathbb{R}^n \setminus B_{1-\eta}} u + \tilde{C}(1-\eta)^{\sigma-1}\|f\|_{L^\infty([u \geq 0] \cap B_{1-\eta})}.
\]

Letting \(\eta \to 0 \), we obtain (2).

2 Preliminaries

Throughout this paper, we let \(|\cdot| \) be the Euclidean norm.

For a measurable subset \(A \) of \(\mathbb{R}^n \), \(|A| \) is its Lebesgue measure, and \(\chi_A \) is its indicator
function. We denote by \(S^{n-1} \) the \(n-1 \) dimensional unit sphere. We write \(u^- := \max\{-u, 0\} \). We say \(Q \subset Q_1 \) is a dyadic cube if there exists \(m \in \mathbb{N} \) such that \(Q \) is
obtained by dividing \(Q_1 \) to \(2^mn \) cubes, and \(\tilde{Q} \) is the predecessor of \(Q \) if \(Q \) is one of \(2^n \) cubes
constructed from dividing \(\tilde{Q} \). We recall a lemma named the Calderón–Zygmund cube
decomposition.

Lemma 2.1 (Lemma 4.2 in [2]) Let \(A \subset B \subset Q_1 \) be measurable sets and \(0 < \delta < 1 \) such that

(a) \(|A| \leq \delta \),

(b) if \(Q \) is a dyadic cube such that \(|A \cap Q| > \delta|Q| \), then \(\tilde{Q} \subset B \), where
\(\tilde{Q} \) is the predecessor of \(Q \).
Then, $|A| \leq \delta |B|$.

We recall the definition of viscosity solutions. We say that φ touches u from below at x in a neighborhood U whenever

$$u(x) = \varphi(x) \quad \text{and} \quad u(y) \geq \varphi(y) \quad \text{for } y \in U.$$

Definition 2.2

$u \in LSC(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$ is a viscosity supersolution of $\mathcal{M}^-u = f$ in B_1 if whenever φ touches u from below at $x \in B_1$ in some neighborhood U for $\varphi \in C^2(U)$,

$$v := \begin{cases}
\varphi & \text{in } U \\
u & \text{in } \mathbb{R}^n \setminus U
\end{cases}$$

satisfies that $\mathcal{M}^-v(x) \leq f(x)$.

Hereafter we often use the following convention: “u satisfies $\mathcal{M}^-u \leq f$” means “u is a viscosity supersolution of $\mathcal{M}^-u = f$”.

We introduce some notations from [5]: for $\alpha \in (0, 2)$,

$$\mathcal{A}(\alpha) := \pi^{\alpha/2} \frac{\Gamma((n - \alpha)/2)}{\Gamma(\alpha/2)},$$

we note that $\mathcal{A}(\alpha)/\alpha$ converges to a positive constant as $\alpha \to 0$. Hence, we can find a constant $c_0 = c_0(n) > 0$ such that

$$\left(\frac{\sqrt{n}}{2}\right)^{n+2-\alpha} \cdot \frac{\mathcal{A}(2 - \sigma)}{8(1 - 4^{(2-\sigma)/n})} \geq c_0 \quad (\forall \sigma \in (0, 2)). \quad (4)$$

Let v be a bounded function satisfying

$$\int_{\mathbb{R}^n} \frac{|\delta(v, x, y)|}{|y|^{n+\sigma}} \, dy < \infty \quad (x \in \mathbb{R}^n).$$

We define its fractional order hessian by

$$D^\sigma v(x) := \frac{(n + \sigma - 2)(n + \sigma)}{2} \mathcal{A}(2 - \sigma) \int_{\mathbb{R}^n} \frac{y \otimes y}{|y|^{n+\sigma+2}} \delta(v, x, y) \, dy,$$

which is a real symmetric $n \times n$ matrices valued function in \mathbb{R}^n. The first eigenvalue of $D^\sigma v$ is defined by

$$E_\sigma v(x) := \inf_{\tau \in S^{n-1}} \{(D^\sigma v(x)\tau) \cdot \tau\}.$$

We consider the fractional order envelope Γ_σ of u, which is an analogue of the classical convex envelope, defined by

$$\Gamma_\sigma(x) := \sup\{v(x) : E_\sigma(v) \geq 0 \text{ in } B_3, \text{ and } v \leq -u^- \text{ in } \mathbb{R}^n\}.$$

We can see that Γ_σ is the unique viscosity solution of the obstacle problem:
\[
\begin{aligned}
\begin{cases}
\min\{E_{\sigma}(\Gamma_{\sigma}), -u - \Gamma_{\sigma}\} = 0 & \text{in } B_3, \\
\Gamma_{\sigma} = 0 & \text{in } \mathbb{R}^n \setminus B_3.
\end{cases}
\end{aligned}
\]

We also consider the Riesz potential \(P \) of \(\Gamma_{\sigma} \),
\[
P(x) := A(2 - \sigma) \int_{\mathbb{R}^n} \frac{\Gamma_{\sigma}(y)}{|x - y|^{n-(2-\sigma)}} \, dy, \quad (x \in \mathbb{R}^n).
\]

The following estimate is proved in (6.1) in [5].

Lemma 2.3 There exist \(C, R > 1 \) depending only on \(n \) and \(\lambda \) such that if \(u \) satisfies (1) with \(\sigma \in (0, 2) \) and \(f \in C(B_1^\lambda) \), then it follows that
\[
-\inf_{B_R} P \leq C\|f\|_{L^\infty(u=\Gamma_{\sigma})},
\]

where
\[
\begin{aligned}
\supp \eta & \subset B_{2/\sqrt{n}}, \\
\eta & \leq -2 \text{ in } Q_3 \text{ and } \|\eta\|_{\infty} \leq M_1, \\
\text{for every } \sigma \in (1, 2), \text{ we have } \mathcal{M}^+ \eta(x) & \leq M_2 \xi(x) \text{ in } \mathbb{R}^n,
\end{aligned}
\]

where \(\xi \) is a continuous function with support inside \(B_{1/4} \) and such that \(0 \leq \xi \leq 1 \).

3 Proof of Theorem 1.1

Set
\[
\mu := \frac{1}{(64M_2^2\sqrt{n})^\pi}, \tag{6}
\]

where \(M_2 \) is the constant in Proposition 2.4. We then freeze small \(\varepsilon_0 \in (0, 1) \) such that for \(\sigma \in (1, 2) \),
\[
C_0 M_2^{2-\sigma/2} \leq \varepsilon_0^{-\sigma/(2n)}, \tag{7}
\]
\[
(256 \sqrt{n} \varepsilon_0^{-1/n})^\mu (\varepsilon_0^{-1/2})^{-\sigma-1} M_1^{1+\mu^{-1}\log 2} \leq \varepsilon_0^{-1/n}, \tag{8}
\]
\[
\varepsilon_0^{-1} \leq \varepsilon_0^{-1/n}, \tag{9}
\]
\[
2^\mu (\varepsilon_0^{-1/2} M_1^{1+\mu^{-1}\log 2} \varepsilon_0^{1/2n}) \leq 2^{-1}. \tag{10}
\]
where \(C_0, c_0 \) and \(\overline{C} \) are constants from Theorem 1.2, (4) and Lemma 2.3, respectively, and \(M_1 \) and \(M_2 \) are those from Proposition 2.4.

We will see that Theorem 1.1 holds true when
\[
\hat{C} := \frac{c_0^{1/n}}{C_0}
\]
in view of Lemma 3.1 below, by sending \(i \to \infty \) in (11).

Throughout this paper, we remind that this \(e_0 \in (0,1) \) satisfies (7)–(10) in the above.

Lemma 3.1 For any \(i = 0, 1, \ldots \) and \(u \) satisfying (1) with \(\sigma \in [2 - e_0, 2) \) and \(f \in C(\bar{B}_1) \), it follows that
\[
-\inf_{B_1} u \leq C_i \|f^+\|^{(2-\sigma)/2}_{L^{\infty}([u \leq 0])} \|f^+\|^{\sigma/2}_{L^\infty([u \leq 0])} + \epsilon_0^{1/n} \|f^+\|_{L^\infty([u \leq 0])},
\]
where \(C_0 \) is from Theorem 1.2, and \(C_{i+1} := 2^{-1} C_i = 2^{-(i+1)} C_0 \).

In the case of \(i = 0 \), (11) follows directly from (3).

Assuming (11) for all viscosity supersolutions of (1) when \(i = \tilde{i} - 1 \), we shall show (11) for those when \(i = \tilde{i} \).

First, we prove the following lemma:

Lemma 3.2 For \(h \in C(\bar{B}_{2\sqrt{n}}) \), we assume
\[
\|h\|_{L^{\infty}(B_{2\sqrt{n}})} \leq (C_{i-1} e_0^{\sigma/2n})^{-2/(2-\sigma)} =: L_{i-1},
\]
and
\[
\|h\|_{L^s(B_{2\sqrt{n}})} \leq \frac{\epsilon_0^{1/n}}{64\sqrt{n}} =: M_3.
\]

Let \(v \in L^\infty(\mathbb{R}^n) \cap LSC(\mathbb{R}^n) \) be any nonnegative viscosity supersolution of
\[
\mathcal{M}^- v(x) \leq h(x) \quad \text{in } B_{2\sqrt{n}}.
\]
If \(v \) satisfies
\[
\inf_{Q_1} v \leq 1,
\]
then it follows that
\[
|\{v \leq M_1\} \cap Q_1| > \mu_0,
\]
where \(M_1 \) is the constant in Proposition 2.4, and \(\mu \) is defined by (6).

Proof Let \(\eta \) be the function in Proposition 2.4. We observe that \(w := v + \eta \) satisfies
\[
\begin{align*}
\mathcal{M}^- w(x) &\leq h(x) + M_2 \xi(x) =: g(x) \quad \text{in } B_{2\sqrt{n}}, \\
w(x) &\geq 0 \quad \text{in } \mathbb{R}^n \setminus B_{2\sqrt{n}}.
\end{align*}
\]
Since \(\eta \leq -2 \) in \(Q_3 \), and (14), we obtain \(-\inf_{B_{2\sqrt{n}}} w \geq 1 \).

From the definition of \(\tilde{i} \), we can apply (11) with \(i = \tilde{i} - 1 \) to \(w(2\sqrt{n}x) \), to derive
Let \(v \) be as in Lemma 3.2. Although the next lemma is rather standard, we give a proof for the reader’s convenience.

By recalling that

\[
\text{supp } \xi \subset B_{1/4},
\]

we obtain

\[
\inf_{B_{2n}} w \leq C_{i-1} (2\sqrt{n})^{\sigma/2} \|g\|_{L^\infty(v \leq 0)}^{(2-\sigma)/2} \|g\|_{L^\infty(v \leq 0)}^{\sigma/2} + \frac{(2\sqrt{n})^{\sigma-1}}{\epsilon_0^{1/n}} \|g\|_{L^\infty(v \leq 0)}.
\]

Since \(C_{i-1} = 2^{-i+1} C_0 \leq C_0 \), by hypotheses (12) and (7), we have

\[
C_{i-1} (2\sqrt{n})^{\sigma/2} \|g\|_{L^\infty(v \leq 0)}^{(2-\sigma)/2} \leq C_{i-1} (2\sqrt{n})^{\sigma/2} (\|f\|_{L^\infty(v \leq 0)} + M_2^{2-\sigma/2})
\]

\[
\leq (2\sqrt{n})^{\sigma/2} (\epsilon_0^{-\sigma/2n} + C_0 M_2^{2-\sigma/2})
\]

\[
\leq 2(2\sqrt{n})^{\sigma/2} \epsilon_0^{-\sigma/2n}
\]

Hence, we have

\[
1 \leq 2 \left((2\sqrt{n})^{\sigma/2} \epsilon_0^{-1/n} \|g\|_{L^\infty(v \leq 0)} \right)^{\sigma/2} + (2\sqrt{n})^{\sigma-1} \epsilon_0^{-1/n} \|g\|_{L^\infty(v \leq 0)}.
\]

(16)

Now, we claim

\[
\|g\|_{L^\infty(v \leq 0)} > \frac{\epsilon_0^{1/n}}{32\sqrt{n}}.
\]

Indeed, if not, we have a contradiction because it follows from (16) that

\[
1 \leq 2 \left(\frac{2\sqrt{n}}{32\sqrt{n}} \right)^{\sigma/2} + \frac{(2\sqrt{n})^{\sigma-1}}{32\sqrt{n}} \leq \frac{9}{16}.
\]

Hence, since \(0 \leq \xi \leq 1 \), \(\text{supp } \xi \subset B_{1/4} \), by assumption (13), we have

\[
\frac{\epsilon_0^{1/n}}{64\sqrt{n}} < \|g\|_{L^\infty(v \leq 0)} \leq \|f\|_{L^\infty(B_1)} + M_2 \|\xi\|_{L^\infty(v \leq 0)}
\]

\[
\leq \frac{\epsilon_0^{1/n}}{64\sqrt{n}} + M_2 |\{v \leq 0\} \cap B_{1/4}|^{1/n}.
\]

Therefore, we obtain

\[
\frac{\epsilon_0}{(64M_2\sqrt{n})^{n}} < |\{v \leq 0\} \cap B_{1/4}| \leq |\{u \leq M_1\} \cap Q_1|.
\]

By recalling that \(\mu = (64M_2\sqrt{n})^{-n} \) is given in (6), (15) is now proved.

Although the next lemma is rather standard, we give a proof for the reader’s convenience.

Lemma 3.3 Let \(v \) be as in Lemma 3.2. Then

\[
|\{v > M^k\} \cap Q_1| \leq (1 - \mu_0)^k
\]

for \(k = 1, 2, \ldots \), where \(M_1 \) and \(\mu \) are constants from Proposition 2.4 and (6), respectively.

Proof For \(k = 1 \), (17) is trivial due to (15). Suppose that (17) holds for \(k - 1 \). Let

\[
A := \{v > M^k\} \cap Q_1, \quad B := \{v > M^{k-1}\} \cap Q_1.
\]

(17) will be proved if we show that
Proof of Lemma 3.1.
We will prove (11) with μ_0. Hence
\[
|A| \leq (1 - \mu_0)|B| \tag{18}
\]
and (18) will be deduced by applying Lemma 2.1. We need to check conditions there. Clearly $A \subset B \subset Q_1$ and $|A| \leq |\{v > M\} \cap Q_1| \leq (1 - \mu_0)$. We now prove that if Q is a dyadic cube such that
\[
|A \cap Q| \geq (1 - \mu_0)|Q|, \tag{19}
\]
then $\tilde{Q} \subset B$, where \tilde{Q} is the predecessor of Q. If not, there exists some $Q = Q_{1/2^j}(x^*)$ satisfying (19), and $\tilde{Q} \not\subset B$. We then find $\tilde{x} \in \tilde{Q}$ such that $v(\tilde{x}) \leq M_1^{k-1}$.

Setting functions
\[
\tilde{v}(x) := \frac{v(x^* + 2^{-j}x)}{M_1^{k-1}} \quad \text{and} \quad \tilde{h}(x) := \frac{h(x^* + 2^{-j}x)}{2^j M_1^{k-1}},
\]
we observe that \tilde{v} satisfies $\mathcal{M}^{-}\tilde{v} \leq \tilde{h}$ in $B_{2\sqrt{n}}$. Notice $\tilde{v} \geq 0$ by definition. Since $\tilde{x} \in Q_{3/2^j}(x^*)$, we have $\inf_{\tilde{Q}} \tilde{v} \leq 1$. Moreover, we have
\[
\|\tilde{h}\|_{L^{\infty}(B_{2\sqrt{n}})} \leq \frac{\|h\|_{L^{\infty}(B_{2\sqrt{n}})}}{2^j M_1^{k-1}} \leq \|h\|_{L^{\infty}(B_{2\sqrt{n}})} \leq L_1^{-1}
\]
and
\[
\|\tilde{h}\|_{L^q(B_{2\sqrt{n}})} \leq \frac{2\|h\|_{L^q(B_{2\sqrt{n}})}}{2^j M_1^{k-1}} \leq \|h\|_{L^q(B_{2\sqrt{n}})} \leq M_3.
\]
Since \tilde{v} satisfies the hypotheses of Lemma 3.2, it follows that
\[
\mu_0 \leq |\{\tilde{v} \leq M_1\} \cap Q_1| = 2^n |\{v \leq M_1^k\} \cap Q_{1/2^j}(x^*)|
\]
Hence $|Q \setminus A| > \mu_0 |Q|$, which contradicts (19). \qed

Proof of Lemma 3.1
We will prove (11) with \tilde{i} for any viscosity supersolution u of (1). Let $\tilde{g} \in C_0(\mathbb{R}^n)$ be an arbitrary function satisfying $\tilde{g} \geq f^+ \chi_{\{u \leq 0\}} \cap B_1$ in \mathbb{R}^n. Without loss of generality, we can assume that u satisfies
\[
\mathcal{M}^{-} u \leq f^+ \chi_{\{u \leq 0\}} \cap B_1 \leq \tilde{g} \quad \text{in} \; \mathbb{R}^n,
\]
because $-u^-$ satisfies the above, instead of u. We shall show
\[
-\inf_{B_1} u \leq C_i \|\tilde{g}\|_{L^\infty(\mathbb{R}^n)} \|\tilde{g}\|_{L^q(\mathbb{R}^n)} \|\tilde{g}\|_{L^p(\mathbb{R}^n)} \|\tilde{g}\|_{L^q(\mathbb{R}^n)} + \varepsilon_0 \|\tilde{g}\|_{L^q(\mathbb{R}^n)},
\]
where $\|\tilde{g}\|_{L^\infty(\mathbb{R}^n)} := \|\tilde{g}\|_{L^\infty(\mathbb{R}^n)}$ and $\|\tilde{g}\|_{L^p(\mathbb{R}^n)} := \|\tilde{g}\|_{L^p(\mathbb{R}^n)}$. By taking the infimum of \tilde{g} so that $f^+ \chi_{\{u \leq 0\}} \leq \tilde{g}$, this inequality implies (11) when $i = \tilde{i}$ for u.

Since we may suppose $\inf_{B_1} u < 0$, we can find $x_0 \in B_1$ such that
\[
\inf_{B_1} u = u(x_0) < 0 \quad (x_0 \in B_1).
\]
For $r \in (0, 1)$, setting
\[N_0 := \frac{r^\alpha}{L_{i-1}} \| \tilde{g} \|_\infty + \frac{r^{\alpha-1}}{M_3} \| \tilde{g} \|_n, \]

where \(L_{i-1} \) and \(M_3 \) are constants from Lemma 3.2, we apply Lemma 3.3 to

\[
u_r(x) := \frac{u(x_0 + rx) - u(x_0)}{N_0} \quad \text{and} \quad h_r(x) := \frac{r^\alpha \tilde{g}(x_0 + rx)}{N_0}
\]

to obtain that for \(k = 1, 2, \ldots, \)

\[(1 - \mu \xi_0)^k r^\nu \geq r^n \{ u_r > M_1^k \} \cap Q_1
\]

\[= \{ u > u(x_0) + M_1^k N_0 \} \cap Q_r(x_0). \quad (20)\]

We choose a large \(k_0 \in \mathbb{N} \) such that

\[(1 - \mu \xi_0)^{k_0} \leq \frac{1}{2} < (1 - \mu \xi_0)^{k_0-1}. \quad (21)\]

Next, setting \(r_0 := \min\{s_1, s_2, 1\} \), where

\[s_1 := \left(\frac{-u(x_0)M_3}{4M_1^{k_0} \| g \|_n} \right)^{1/(\sigma-1)} \quad \text{and} \quad s_2 := \left(\frac{-u(x_0)L_{i-1}}{4M_1^{k_0} \| \tilde{g} \|_\infty} \right)^{1/\sigma},
\]

we easily observe that for any \(0 < r \leq r_0, \)

\[M_1^{k_0} N_0 \leq M_1^{k_0} \left(\frac{s_2^2 \| g \|_\infty}{L_{i-1}} + \frac{s_1^{\sigma-1} \| \tilde{g} \|_n}{M_3} \right) = - \frac{u(x_0)}{2}.
\]

Thus, (20) together with (21) yields

\[\frac{r^n}{2} \geq \left\{ \left\{ u > \frac{u(x_0)}{2} \right\} \cap Q_r(x_0) \right\} \quad (0 < r \leq r_0). \quad (22)\]

Therefore, we have

\[\left\{ \left\{ u \leq \frac{u(x_0)}{2} \right\} \cap Q_r(x_0) \right\} \geq \frac{r^n}{2}.
\]

Let \(r_l := 4^{-1/n} r_0 \). For each \(l = 0, 1, \ldots, \), we have

\[\left\{ \left\{ u \leq \frac{u(x_0)}{2} \right\} \cap Q_r(x_0) \right\} \geq \frac{r^n}{2} - |Q_{l+1}| = \frac{r^n}{4}.
\]

Note that \(\Gamma_\sigma \leq u \) in \(\mathbb{R}^n \) and \(\Gamma_\sigma(x_0) = u(x_0) \). Hence, setting

\[A_l := \left\{ \Gamma_\sigma \leq \frac{\Gamma_\sigma(x_0)}{2} \right\} \cap \left(Q_r(x_0) \setminus Q_{l+1}(x_0) \right),
\]

we see that \(|A_l| \geq r^n/4 \) for \(l = 0, 1, \ldots \). Noting \(|y| \leq 2^{-1/\sqrt{n r_l}} \) for \(y \in Q_n \), we thus calculate as follows:
\[-P(x_0) = \mathcal{A}(2 - \sigma) \int_{\mathbb{R}^n} -\Gamma_\sigma(x_0 + y) |y|^{-n+2-\sigma} dy\]
\[\geq \mathcal{A}(2 - \sigma) \sum_{l=0}^{\infty} \int_{\{x_0+y\in A_l\}} \frac{1}{2} \Gamma_\sigma(x_0) |y|^{-n+2-\sigma} dy\]
\[\geq \mathcal{A}(2 - \sigma) \left(\frac{\sqrt{n}}{2} \right)^{-n+2-\sigma} \sum_{l=0}^{\infty} |A_l| r_l^{-n+2-\sigma} / 8\]
\[\geq \left(\frac{\sqrt{n}}{2} \right)^{-n+2-\sigma} \frac{-\Gamma_\sigma(x_0) A(2 - \sigma) r_0^{-2-\sigma}}{8 (1 - 4^{-2-\sigma}) / n}\]
\[\geq - c_0 \Gamma_\sigma(x_0) r_0^{-2-\sigma},\]

where \(c_0\) is from (4). Using (5) and (23), we obtain
\[- \inf_{B_1} u = -\Gamma_\sigma(x_0) \leq - c_0^{-1} r_0^{-2-\sigma} P(x_0) \leq c_0^{-1} \mathcal{C} r_0^{-2-\sigma} \|f^+\|_{L^\infty(u=\Gamma_\sigma)} \]
\[\leq c_0^{-1} \mathcal{C} r_0^{-2-\sigma} \|\hat{g}\|_n.\]

We shall consider three cases of \(r_0 > 0\). If we suppose \(r_0 = 1\), then (2) holds true for \(\hat{C} = c_0^{-1} \mathcal{C}\). Thus, due to (9), we conclude the proof.

We next assume \(r_0 = s_1\). In this case, it follows that
\[- \inf_{B_1} u \leq c_0^{-1} \mathcal{C} \left(\frac{4M_1^{k_0} \|\hat{g}\|_n}{-M_3 \inf_{B_1} u} \right)^{(2-\sigma)(\sigma-1)-1} \|\hat{g}\|_n,\]
which implies
\[- \inf_{B_1} u \leq (c_0^{-1} \mathcal{C})^{\sigma-1} (4M_1^{k_0} M_3^{-1})^{2-\sigma} \|\hat{g}\|_n.\]

Because of \(\varepsilon_0 \geq 2 - \sigma\) and (21), we have
\[k_0(2 - \sigma) \leq k_0 \varepsilon_0 \leq \varepsilon_0 - \frac{\varepsilon_0 \log 2}{\log(1 - \mu \varepsilon_0)} \leq \varepsilon_0 + \frac{\log 2}{\mu},\]
where the last inequality is valid because \(z \leq - \log(1 - z)\) for \(0 \leq z < 1\).

Recalling that \(M_3 = (64 \sqrt{n})^{-1} \varepsilon_0^{1/n}\), by (8), we conclude that
\[- \inf_{B_1} u \leq (256 \sqrt{n})^{-1} \varepsilon_0^{1/n} (c_0^{-1} \mathcal{C})^{\sigma-1} M_1^{1 + \mu^{-1} \log \varepsilon_0} \|\hat{g}\|_n \leq \varepsilon_0^{-1/n} \|\hat{g}\|_n.\]
(24)

In the case of \(r_0 = s_2\), we have
\[- \inf_{B_1} u \leq c_0^{-1} \mathcal{C} \left(\frac{4M_1^{k_0} \|\hat{g}\|_\infty}{-L_{-1} \inf_{B_1} u} \right)^{(2-\sigma)/\sigma} \|\hat{g}\|_n.\]

Hence
\[- \inf_{B_1} u \leq (c_0^{-1} \mathcal{C})^{\sigma/2} (4M_1^{k_0} L_{-1}^{-1})^{(2-\sigma)/2} \|\hat{g}\|_\infty \|\hat{g}\|_n.\]
Recall that $L_{i-1} = (C_{i-1}e_0^{2/2n})^{-2/(2-\sigma)}$. It follows from (10) that

$$-\inf_{B_1} u \leq 2^{i_0} (e_0^{-1} C)^{\sigma/2} M_{i+1}^{\sigma/2} \log^2 2e_0^{\sigma/2n} C_{i-1} \|\tilde{g}\|_{L^{\infty}}^{(2-\sigma)/2} \|\tilde{g}\|_{L^{n}}^{\sigma/2}$$

$$\leq 2^{i_0} C_{i-1} \|\tilde{g}\|_{L^{\infty}}^{(2-\sigma)/2} \|\tilde{g}\|_{L^{n}}^{\sigma/2}$$

$$= C_i \|\tilde{g}\|_{L^{\infty}}^{(2-\sigma)/2} \|\tilde{g}\|_{L^{n}}^{\sigma/2}. \quad (25)$$

In any case, from (24) and (25), we have

$$-\inf_{B_1} u \leq C_i \|\tilde{g}\|_{L^{\infty}}^{(2-\sigma)/2} \|\tilde{g}\|_{L^{n}}^{\sigma/2} + e_0^{-1/n} \|\tilde{g}\|_{L^{n}}.$$

Taking the infimum of \tilde{g} satisfying $\tilde{g} \geq f^+ \chi_{\{u \leq 0\} \cap B_1}$ in \mathbb{R}^n, (11) is proved with i. \hfill \Box

Acknowledgements The author wishes to express his thanks to Prof. Shigeaki Koike for many stimulating conversations and careful reading of the first draft.

References

1. Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. (2) **130**(1), 189–213 (1989)
2. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence (1995)
3. Caffarelli, L.A., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. **62**(5), 597–638 (2009)
4. Evans, L.C.: Some estimates for nondivergence structure, second order elliptic equations. Trans. Am. Math. Soc. **287**(2), 701–712 (1985)
5. Guillen, N., Schwab, R.W.: Aleksandrov–Bakelman–Pucci type estimates for integro-differential equations. Arch. Ration. Mech. Anal. **206**(1), 111–157 (2012)
6. Lin, F.-H.: Second derivative L^p-estimates for elliptic equations of nondivergent type. Proc. Am. Math. Soc. **96**(3), 447–451 (1986)
7. Mou, C., Święch, A.: Aleksandrov–Bakelman–Pucci maximum principles for a class of uniformly elliptic and parabolic integro-PDE. J. Differ. Equ. **264**(4), 2708–2736 (2018)
8. Yu, H.: $W^{\sigma,\epsilon}$-estimates for nonlocal elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire **34**(5), 1141–1153 (2017)