Case report

Congenital geniculate quadruple sectoranopia with occipital heterotopia

Kaori Hanai a,⁎, Masato Hashimoto b, Futoshi Ishikawa b, Hirohiko Nakamura c

a Department of Ophthalmology, Nakamura Memorial Hospital, S-1, W-14, Chuo-ku, Sapporo, Japan
b Pushiminishisen Ishikawa Eye Clinic, S-20, W-14, Chuo-ku, Sapporo, Japan
c Department of Neurosurgery, Nakamura Memorial Hospital, S-1, W-14, Chuo-ku, Sapporo, Japan

ARTICLE INFO

Keywords:
Geniculate hemianopia
lateral geniculate nucleus
Quadruple sectoranopia
Incongruous homonymous hemianopia
heterotopia

ABSTRACT

Purpose: To report a case of congenital geniculate quadruple sectoranopia associated with occipital heterotopia.

Observations: A 51-year-old healthy woman was incidentally found to have a left incongruous quadruple sectoranopia. Analysis of the macular ganglion cell complex (GCC) revealed homonymous hemianopic thinning of the inner layer of the retina. Brain magnetic resonance imaging (MRI) showed congenital occipital heterotopia, characterized by hypertrophy of the right parahippocampal gyrus, lingual gyrus, and isthmus of the cingulate gyrus, with shrinkage of the white matter. In addition, serial coronal images on a short tau inversion recovery (STIR) sequence demonstrated an atrophic right optic tract.

Conclusion and importance: Congenital geniculate quadruple sectoranopia is extremely rare and may be caused by congenital occipital heterotopia.

1. Introduction

Geniculate hemianopia is characterized by either a wedge-shaped homonymous hemianopia or a quadruple sectoranopia. The former visual field defect is produced by a lesion in the dorsal crest of the lateral geniculate nucleus (LGN) supplied by the lateral posterior choroidal artery, while the latter is produced by lesions of the medial and lateral horns of the LGN supplied by the distal anterior choroidal artery. In most cases the etiology of geniculate hemianopia is acquired, usually through arterial occlusion or hemorrhage. 1, 2 Congenital geniculate hemianopia is extremely rare. We report a case of congenital geniculate quadruple sectoranopia associated with congenital occipital heterotopia.

2. Case report

A 51-year-old healthy woman was referred to the ophthalmology section of our hospital with a chief complaint of myodesopsia in both eyes. On examination, visual acuity was 20/20 in each eye and there was no relative afferent pupillary defect. Intraocular pressure was 14 mm Hg in both eyes. Slit-lamp examinations showed no abnormalities. Funduscopic examinations showed large optic cups (Fig. 1A). Using spectral-domain optical coherence tomography (SD-OCT) (Cirrus 4000 HD-OCT; Carl Zeiss Meditec, Dublin, CA), retinal nerve fiber layer (RNFL) analysis showed slight nasal and temporal thinning on the left and normal thickness on the right (Fig. 1B). By contrast, the ganglion cell complex (GCC), consisting of the ganglion cell layer (GCL) combined with inner plexiform layer (IPL), revealed thinning of the temporal hemimacula in the right eye and nasal hemimacula in the left eye, indicating homonymous hemianopic thinning (Fig. 1C). A 30–20 Humphrey visual field examination showed left superior and inferior sectorial visual field defects, sparing the horizontal fields. The scotomas were larger in the left eye, consistent with an incongruous quadruple sectoranopia (Fig. 2). The patient had never noticed her visual field defects. Brain MRI revealed nodular hypertrophy of the right parahippocampal and lingual gyri and isthmus of the cingulate gyrus. There was shrinkage of the white matter surrounding the right lateral ventricle trigone toward the posterior horn, signifying occipital heterotopia (Fig. 3A). Additionally, serial coronal images (thickness, 2.5 mm) anterior to the LGN on a STIR sequence revealed an atrophic right optic tract compared to left optic tract (Fig. 3B).

3. Discussion

Based on the clinical findings, the quadruple sectoranopia in our case appears to have arisen from a geniculate lesion associated with occipital heterotopia. Congenital heterotopia is a cortical malformation in which neurons do not migrate properly during the early development of the fetal brain, from about the 6th to the 24th week of pregnancy. 3 In most

⁎ Corresponding author.
E-mail address: khanai@numh.or.jp (K. Hanai).

https://doi.org/10.1016/j.ajoc.2020.100929
Received 19 June 2020; Accepted 13 September 2020
Available online 17 September 2020
2451-9936/© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cases, heterotopia usually becomes evident when seizures first appear, often during adolescence. Affected individuals usually have normal intelligence, although some display mild intellectual disability. Our patient was asymptomatic.

There have been numerous previous reports of patients with geniculate quadruple sectoranopia. Most cases were caused by acquired vascular diseases, such as cerebral infarction or hemorrhage of the distal part of the anterior choroidal artery. No case reports appear to have described congenital geniculate quadruple sectoranopia. Hoyt described four patients with incongruous geniculate hemianopia and reported that in one case the patient was totally unaware of any visual field defect. That patient might have had a congenital hemianopia. Moreover, Hoyt highlighted the incongruity of homonymous hemianopic thinning of the inner layers of the retina. The lesion in our patient involved the external portion of the lateral horn of the LGN, which mainly comprises lamina 6 receiving crossed projections from the contralateral lower peripheral retina and a large area of the medial horn of the nucleus receiving projections from the upper hemiretinas of both eyes. The postulated lesion may produce a left incongruous quadruple sectoranopia consisting of a larger visual field defect in the contralateral eye and inferior visual field defect larger than superior one in both eyes (Fig. 4).

Analysis of the macular GCC in our case demonstrated more strikingly homonymous hemianopic thinning of the inner layer of the retina as compared to a less prominent reduction in the thickness of the RNFL on OCT. Meier et al. reported a patient with acquired transsynaptic retrograde retinal degeneration due to occipital lobe abscess in which GCC of the macula on OCT demonstrated marked homonymous neuronal loss in contrast with slight bilateral temporal loss of the RNFL.
Ronnbäck et al. indicated that the analysis of the macular GCC was more sensitive than RNFL thickness for detecting structural loss in a cohort of patients with autosomal-dominant optic atrophy. Ganglion cell atrophy is more localized to the affected halves of the retina, whereas RNFL is contaminated by mixture with healthy fibers from the spared halves of the retina. As a result, differences between macular GCC analysis and RNFL thickness may occur.

Serial STIR coronal images demonstrated the atrophy of the right optic tract anterior to the LGN. These findings suggest retrograde retinal degeneration. Horton imaged the LGN using MRI, first in brain specimens obtained at autopsy, and subsequently in living humans and determined the optimal imaging plane for precise depiction of the LGN.
on MRI. Rispoli et al.\(^{16}\) reported a patient with congenital occipital hemianopia due to closed-lip schizencephaly with associated polymicrogyria and showed an abnormality of the retrochiasmal visual pathway on diffusion tensor imaging. If we had performed MRI for our patient using these special techniques, we might have been able to demonstrate the LGN lesion or atrophic fibers in greater detail.

In conclusion, congenital geniculate hemianopia is extremely rare and may be produced by congenital occipital heterotopia.

Patient consent

Consent to publish the case reports was not obtained. This report does not contain any personal information that could lead to the identification of the patient.

Acknowledgements and disclosures

The authors thank Prof. Dr. Jonathan C, Horton for advising the present case.

Funding

No funding or grant support.

References

1. Frisén L. Sectorial optic atrophy and homonymous, horizontal sectoranopia: a lateral choroidal artery syndrome. J Neurol Neurosurg Psychiatry. 1979;41(4):374–380.
2. Frisén L. Quadruple sectoranopia and sectoral optic atrophy: a syndrome of the distal anterior choroidal artery. J Neurol Neurosurg Psychiatry. 1979;42(7):590–594.
3. Helgason C, Caplan LR, Goodwin J, et al. Anterior choroidal artery-territory infarction: report of cases and review. Arch Neurol. 1986;43(7):681–686.
4. Luco C, Hoppe A, Schweitzer M, et al. Visual field defects in vascular lesions of the lateral geniculate body. J Neurol Neurosurg Psychiatry. 1992;55(1):12–15.
5. Kossorsky G, Lancione Jr RR. When fighting makes you see black holes instead of stars. J Neuro Ophthalmol. 1998;18(4):255–257.
6. Denon E, Defoort-Dhellemmes S, Amdt CF, et al. Partially reversible quadruple sectoranopia caused by vascular steal due to an arteriovenous malformation. Graefes Arch Clin Exp Ophthalmol. 2005;243(1):63–67.
7. Osborn BJ, Liu GT, Enevoldson TP. Quadruple sectoranopia due to lateral geniculate nucleus infarct. Pract Neurol. 2010;10(3):167–168.
8. Wong SH, Briggs MC, Enevoldson TP. Quadruple sectoranopia due to lateral geniculate nucleus infarct. Pract Neurol. 2010;10(3):167–168.
9. Lu J, Sheen V. Periventricular heterotopia. Epilepsy Behav. 2005;7(2):143–149.
10. Hoyt WF. Geniculate hemianopia: incongruous visual defects from partial involvement of the lateral geniculate nucleus. Proc Aust Assoc Neurol. 1975;12:7–16.
11. Goldberg JE, Horoupian DS. Demyelination of the lateral geniculate nucleus in central pontine myelinolysis. Ann Neurol. 1981;9(2):185–189.
12. Donahue SP, Kardon RH, Thompson HS. Hourglass-shaped visual fields as a sign of bilateral lateral geniculate myelinolysis. Am J Ophthalmol. 1995;119(3):378–380.
13. Meier PG, Maeder P, Kardon RH, et al. Homonymous ganglion cell layer thinning after isolated occipital lesion: macular OCT demonstrates trans-synaptic retrograde degeneration. J Neuro Ophthalmol. 2015;35(2):112–116.
14. Rozenthal C, Milea D, Larsen M. Imaging of the macula indicates early completion of structural deficit in autosomal dominant optic atrophy. Ophthalmology. 2013;120(12):2672–2677.
15. Horton JC, Landau K, Maeder P, et al. Magnetic resonance imaging of the human lateral geniculate body. Ann Neurol. 1990;37(1):120–1206.
16. Rispoli J, Seye M, Sum M, et al. Clinical and diffusion tensor MRI findings in congenital homonymous hemianopia. J Neuro Ophthalmol. 2019;39(3):401–404.