Transcriptional and translational expression of calbindin-D9k in the duodenum, kidney and uterus of a female canine model

Ji-Young Sim, Eui-Man Jung, Yeong-Min Yoo, Kyung-Chul Choi*, Eui-Bae Jeung

Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Korea

Calbindin-D9k (CaBP-9k) is a cytosolic calcium-binding protein expressed in tissues in the intestine, uterus, placenta, kidney, pituitary gland and bone. Its exact function is unknown, but it is considered to regulate intracytoplasmic concentration and transport of free ions (Ca\(^{2+}\)). CaBP-9k protein is involved in intestinal calcium absorption in the intestine and in the regulation of myometrial activity by intracellular calcium in the uterus. Renal CaBP-9k protein is expressed at the site of calcium re-absorption in the kidney and expressed in distal convoluted tubules, where it is thought to facilitate calcium re-absorption. Expression of the CaBP-9k gene has been explored in most mammalians except in a canine model. Presently, we elucidated the expression of CaBP-9k mRNA and protein in the duodenum, kidney and uterus in a canine model involving two adult (2.5-year-old) female beagles. To collect tissues, the dogs were euthanized and then the abdominal cavity was exposed by midline incision. The proximal duodenum, cortex of kidney and uterine horn were collected. Expression of CaBP-9k mRNA was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. CaBP-9k protein expression and localization were ascertained by Western blot analysis and immunohistochemistry, respectively. CaBP-9k mRNA was detected in the duodenum, but not in the kidney and uterus. Its protein was expressed only in the enterocytes of the duodenum. Taken together, the results indicate that CaBP-9k mRNA and protein are highly expressed in the enterocytes of the duodenum of a canine model, consistent with findings in other mammalian species.

Keywords: calbindin-D9k, canine model, duodenum, kidney, uterus

Introduction

Calcium (Ca\(^{2+}\)) elicits activation of complex intracellular signaling cascades and intracellular messengers. Cytosolic-free Ca\(^{2+}\) is crucial role in maintaining living organs and tissues, however, the mechanisms that couple membrane receptor activation to Ca\(^{2+}\) signaling, and the pathways of Ca\(^{2+}\) entry into the cytosol are only partly understood [6,28]. A 9-kilodalton cytosolic calcium-binding protein termed calbindin-D9k (CaBP-9k), which has two Ca\(^{2+}\) binding domains, belongs to a family of intracellular proteins that display high affinities for Ca\(^{2+}\) [8]. Full-length cDNA encoding human CaBP-9k has been cloned using reverse transcription-polymerase chain reaction (RT-PCR), which includes a coding region of 79 amino acids, a non-coding region comprising 57 5´ nucleotides and 159 3´ nucleotides, and a poly(A) tail, for a total length of 600 nucleotides [17]. Furthermore, the latter report revealed that this gene spans about 5.5-kb and is localized on the X-chromosome, consists of three exons, and carries four Alu repeats [18]. CaBP-9k is expressed in a variety of mammalian tissues, including tissues in the uterus, placenta, intestine, kidney, pituitary gland, and bone [1,2,26,33]. Research concerning the function of the calbindins suggests that calbindins participate in the process of Ca\(^{2+}\) transport across cellular barriers [38].

In the duodenum, the functional role of CaBP-9k appears to be involved in intestinal calcium absorption and its gene is regulated at the transcriptional or post-transcriptional level by 1, 25-dihydroxyvitamin D3 (1.25-(OH)2D3), a hormonal form of vitamin D [10,39]. They represent 2-3% of the total proteins in enterocytes (the major epithelial cell type of the duodenal mucosa), where active Ca\(^{2+}\) transport occurs [39]. In the kidney, CaBP-9k is expressed in the distal convoluted tubules, where it is thought to facilitate calcium re-absorption [30]. In addition, uterine CaBP-9k may be involved in controlling myometrial activity related with intracellular Ca\(^{2+}\) level [26], but its exact role is still unclear.
Uterine CaBP-9k is mainly expressed in myometrial and endometrial stromal cells in nonpregnant rats, but not in the luminal epithelial cells, while CaBP-9k expression is detected predominantly in luminal uterine epithelial cells in pregnant rats [4, 10, 11, 29]. Interestingly, uterine CaBP-9k is not regulated by vitamin D despite the presence of vitamin D receptors in this tissue. Rather, regulation of CaBP-9k may be under the control of sex steroid hormones [9, 11, 20-22].

The expression of the CaBP-9k gene has been explored in most mammalians except canines. The present study was undertaken to elucidate the expression of CaBP-9k mRNA in the uterus, duodenum, and kidney of beagles by RT-PCR and real-time PCR. In addition, the protein expression and localization of CaBP-9k were examined in these tissues by Western blot analysis and immunohistochemistry, respectively.

Materials and Methods

Experimental animals and treatments
The experiments were performed using two 2.5-year-old female beagle dogs. Both dogs were individually housed in a polycarbonate cage with alternating 12 h light/dark cycles in an environmentally controlled room (temperature: 23 ± 2°C relative humidity: 50 ± 10%, frequent ventilation). During the acclimation period, they were fed with a commercial diet (Proplan; Nestle Purina Petcare, Korea) and tap water. To collect tissues, the dogs were euthanized and then the abdominal cavity was exposed by midline incision. The proximal duodenum, cortex of kidney and uterine horn were collected. All animal experimental procedures were approved by the Ethics Committee of the Chungbuk National University.

Total RNA extraction and RT-PCR
The collected duodenum, kidney and uterus were rapidly excised and washed in cold sterile saline (0.9% NaCl). Total RNA was prepared with TRIzol reagent (Invitrogen, USA) according to the manufacturer’s protocol and the RNA concentration was determined by measurement at 260 nm. RT-PCR was performed and the obtained products were visualized by agarose gel electrophoresis. In brief, total RNA (1 μg) was reverse transcribed to first standard complementary DNA (cDNA) using mMLV reverse transcriptase (Invitrogen, USA) and random primers (9 mers; TaKaRa Bio, Japan). CaBP-9k and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), as a housekeeping gene, were amplified in a 20 μL reaction containing 10 μL of SYBR premix Ex Taq (TaKaRa Bio, Japan) using a 7300 Real-time PCR system (Applied Biosystems, USA), following the manufacturer’s recommendations. The oligonucleotide sequences for real-time PCR to detect CaBP-9k and GAPDH were identical as shown by RT-PCR.

Real-time PCR analysis
Real-time PCR was performed in 20 μL reaction volumes containing 10 μL of SYBR premix Ex Taq (TaKaRa Bio, Japan) using a 7300 Real-time PCR system (Applied Biosystems, USA). The oligonucleotide sequences for real-time PCR to detect CaBP-9k and GAPDH were quantified after 27 cycles. PCR products (10 μL) were separated on a 2% agarose gel, stained with ethidium bromide, and photographed under ultraviolet illumination. Photographs were taken using a Gel Doc EQ (Bio-Rad, USA).

Western blot analysis
Protein was extracted using Proprep (iNtRON Bio, Korea), according to the manufacturer’s protocol. Protein (180 μg per lane) was resolved by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the resolved proteins were transferred to a polyvinylidene fluoride membrane (PerkinElmer Life Sciences, USA). The membrane was blocked 1 h with 5% bovine serum albumin (BSA) in Tris-buffered saline-Tween 20 (TBS-T). The membrane was incubated in primary antibodies diluted in 5% BSA for 5 h at room temperature. A 1 : 200 dilution of CaBP-9k Swant, Switzerland and 1 : 500 dilution of β-Actin (Santa Cruz Biotechnology, USA) were used as primary antibody. A 1 : 3,000 dilution of horseradish peroxidase-conjugated anti-rabbit IgG (Santa Cruz Biotechnology, USA) was used as secondary antibody. Immunoreactive proteins were visualized using Western blot detection system (West-one; iNtRON Bio, Korea), according to the manufacturer’s instructions. Signals were detected with Chemi Doc EQ (Bio-Rad, USA) and analyzed by Quantity One Program (Bio-Rad, USA).

Immunohistochemistry
Tissue localization of CaBP-9k protein was examined by immunohistochemistry. The duodenum, kidney and uterus tissue were individually fixed in 10% formalin overnight and then processed. Briefly, the tissues were dehydrated and embedded in paraffin, after which serial sections (7 μm) were cut with a microtome. Sections were deparaffinized in xylene and hydrated in descending grades of ethanol. Endogenous peroxidase activity was blocked with 3% hydrogen peroxide in PBS-Tween 20 for 30 min, and then sections were incubated in 10% normal goat serum (NGS) for 2 h at room temperature to block nonspecific binding. Sections were incubated with a 1 : 200 dilution of polyclonal rabbit antibody specific to CaBP-9k (Swant, Switzerland) dissolved in 10% NGS and incubated at 4°C overnight. After washing with PBS-T, the sections were
Expression of CaBP-9k in a canine model

---

Results

Expression of CaBP-9k mRNA in the duodenum, kidney and uterus

To examine the expression level of CaBP-9k mRNA, RT-PCR and real-time PCR were carried out. A 148 bp CaBP-9k transcript was observed in the canine duodenum. However, its expression in the kidney and uterus was undetectable as seen in Fig. 1. The expression of CaBP-9k mRNA as determined by RT-PCR (Fig. 1A) was consistent with the real-time PCR data expressed as a percentage of CaBP-9k/GAPDH mRNA (Fig. 1B).

Expression of CaBP-9k protein in the duodenum, kidney and uterus

The expression of CaBP-9k protein was measured by Western blot analysis. In parallel with its mRNA level, the protein level of CaBP-9k was highly expressed in the duodenum, whereas its level was not detected in the canine kidney and uterus (Fig. 2).

Localization of CaBP-9k protein in the duodenum

Immunohistochemistry for CaBP-9k protein in the duodenum revealed moderate staining along the surface of the villi, especially on the cytoplasm of the enterocytes, the major epithelial cells of the duodenal mucosa (Fig. 3).

Discussion

CaBP-9k is a small intracellular calcium-binding protein with two high-affinity Ca\(^{2+}\) binding domains [37]. It was originally isolated from the rat intestine as a vitamin D-dependent gene and was subsequently found to be expressed in mammalian intestine, kidney, placenta and uterus [2, 12, 25]. The cytosolic calcium-binding proteins, CaBP-9k and CaBP-28k, play an important role in shuttling Ca\(^{2+}\) ions from the apical Ca\(^{2+}\) influx channels to the basolateral membrane [19, 23], while the Na\(^+\)/Ca\(^{2+}\) exchanger (NCX1) and plasma membrane Ca\(^{2+}\)-ATPase 1b function in Ca\(^{2+}\)...
extraction [31]. In the current paradigm of Ca\(^{2+}\) transport, CaBP-9k and CaBP-28k play an essential role in intestinal and renal calcium (re)absorption [13]. Expression of CaBP-9k has been explored in most mammalian except in a canine model [5-7]. Thus, in this study, we elucidated the expression of CaBP-9k mRNA and protein in the duodenum, kidney and uterus in a canine model.

RT-PCR and real-time PCR analysis revealed that expression level of CaBP-9k mRNA was abundant in the duodenum, but was undetectable in the kidney and uterus of the two beagle dogs under the present experimental conditions. In parallel with its mRNA level, the expression of CaBP-9k protein was detected solely in the duodenum.

There were differences in the regulation of CaBP-9k gene expression among different species [6,7]. For instance, CaBP-9k is expressed in the mouse, but not in the rat kidney [24,32]. In parallel with the absence of CaBP-9k in the rat kidney, renal CaBP-9k was not observed in the two canines studied presently. Renal CaBP-9k is expressed in the distal convoluted tubule, where it is thought to facilitate calcium re-absorption [30]. Appropriately, we surmise that CaBP-9k in the kidney may be not essential for the proper function of this tissue, or that another and as yet unidentified intracellular calcium-binding protein exists. Although CaBP-9k was not detected in canine kidney and uterine tissues, other calcium-binding proteins such as CaBP-28k may play a role in Ca\(^{2+}\) transport in these tissues.

Uterine CaBP-9k expression has been detected in most mammalian species, including rat [3,11], mouse [29,34], cow [14], pig [16] and human [27]. But its expression levels in the uterus considerably differ among these species by estrous cycle or pregnancy. For example, the expression of CaBP-9k in the rat uterus is not detectable at diestrus, is increased at proestrus and reaches its zenith at estrus, thereafter decreasing as animals enter metestrus [6]. In addition, CaBP-9k is expressed mainly in the endometrial stroma and myometrial of the uterus in non-pregnant rats [3,11], whereas in pregnant rats it is expressed in uterine epithelial tissue [36].

Bovine CaBP-9k is expressed only in the luminal and glandular epithelium of the endometrium, and not in the myometrium or stromal cells of the endometrium in non-pregnant animals [14]. Therefore, a plausible reason why CaBP-9k was not detected in the canine uterus in the present study is that the two beagle dogs were in diestrous period. Alternatively, the protein may be completely absent, akin to the baboon uterus [15]. To identify the localization of the CaBP-9k protein in the duodenum, immunohistochemistry was performed. CaBP-9k was localized to enterocytes, the major epithelial cells of the duodenal mucosa [35], especially on the cytoplasm of the duodenocyte and along the surface of the villi.

In summary, the present study demonstrates the expression of CaBP-9k in the canine duodenum, but not kidney and uterine tissue. Whether the function of renal and uterine CaBP-9k is substituted by another intracellular calcium-binding protein or is not essential for proper functioning of these tissues remains to be determined. Further study is also needed to determine whether alteration of the estrous cycle is associated with CaBP-9k expression in the canine uterus.

Acknowledgments

This work was supported by the research grant of the Chungbuk National University in 2009.

References

1. Armbrecht HJ, Boltz M, Strong R, Richardson A, Bruns ME, Christakos S. Expression of calbindin-D decreases with age in intestine and kidney. Endocrinology 1989, 125, 2950-2956.
2. Bruns ME, Fausto A, Avioli LV. Placental calcium binding protein in rats. Apparent identity with vitamin D-dependent calcium binding protein from rat intestine. J Biol Chem 1978, 253, 3186-3190.
3. Bruns ME, Kleeman E, Mills SE, Bruns DE, Herr JC. Immunochemical localization of vitamin D-dependent calcium-binding protein in mouse placenta and yolk sac. Anat Rec 1985, 213, 514-517.
4. Bruns ME, Overpeck JG, Smith GC, Hirsch GN, Mills SE, Bruns DE. Vitamin D-dependent calcium binding protein in rat uterus: differential effects of estrogen, tamoxifen, progesterone, and pregnancy on accumulation and cellular localization. Endocrinology 1988, 122, 2371-2378.
5. Choi KC, Jeung EB. The biomarker and endocrine disruptors in mammals. J Reprod Dev 2003, 49, 337-345.
6. Choi KC, Jeung EB. Molecular mechanism of regulation of the calcium-binding protein calbindin-D9k, and its physiological role(s) in mammals: a review of current research. J Cell Mol Med 2008, 12, 409-420.
7. Choi KC, Leung PC, Jeung EB. Biology and physiology of Calbindin-D9k in female reproductive tissues: involvement of steroids and endocrine disruptors. Reprod Biol Endocrinol 2005, 3, 66.
8. Christakos S, Gabrieldes C, Rhoten WB. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. Endocr Rev 1989, 10, 3-26.
9. Darwish H, Krisinger J, Furlow JD, Smith C, Murdoch FE, DeLuca HF. An estrogen-responsive element mediates the transcriptional regulation of calbindin D-9K gene in rat uterus. J Biol Chem 1991, 266, 551-558.
10. Darwish HM, DeLuca HF. Identification of a 1,25-dihydroxyvitamin D3-response element in the 5'-flanking region of the rat calbindin D-9K gene. Proc Natl Acad Sci USA 1992, 89, 603-607.
11. Delorme AC, Danan JL, Acker MG, Ripoche MA, Mathieu H. In rat uterus 17 beta-estradiol stimulates a calcium-binding protein similar to the duodenal vitamin
D-dependent calcium-binding protein. Endocrinology 1983, 113, 1340-1347.
12. Delomne AV, Cassier P, Geny B, Mathieu H. Immunocytochemical localization of vitamin D-dependent calcium-binding protein in the yolk sac of the rat. Placenta 1983, 4, 263-270.
13. Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev 2005, 85, 373-422.
14. Inpanbutr N, Miller EK, Petroff BK, Iacopino AM. CaBP9k levels during the luteal and follicular phases of the estrous cycle in the bovine uterus. Biol Reprod 1994, 50, 561-571.
15. Jeung EB, Fan NC, Leung PC, Herr JC, Freemerman A, Krisinger J. The baboon expresses the calbindin-D9k gene in intestine but not in uterus and placenta: implication for conservation of the gene in primates. Mol Reprod Dev 1995, 40, 400-407.
16. Jeung EB, Krisinger J, Dann JL, Leung PC. Cloning of the porcine Calbindin-D9k complementary deoxyribonucleic acid by anchored polymerase chain reaction technique. Biol Reprod 1992, 47, 503-508.
17. Jeung EB, Krisinger J, Dann JL, Leung PC. Molecular cloning of the full-length cDNA encoding the human calbindin-D9k. FEBS Lett 1992, 307, 224-228.
18. Jeung EB, Leung PC, Krisinger J. The human calbindin-D9k gene. Complete structure and implications on steroid hormone regulation. J Mol Biol 1994, 235, 1231-1238.
19. Kutuzova GD, Akhter S, Christakos S, Vanhooke J, Kimmel-Jehan C, Deluca HF. Calbindin D(9k) knockout mouse. Proc Natl Acad Sci USA 2000, 97, 503-508.
20. L’Horset F, Blin C, Brehier A, Thomasset M, Perret C. Estrogen-induced calbindin-D 9k gene expression in the rat uterus during the estrous cycle: late antagonistic effect of progesterone. Endocrinology 1993, 132, 489-495.
21. L’Horset F, Blin C, Colnot S, Lambert M, Thomasset M, Perret C. Calbindin-D9k gene expression in the uterus: study of the two messenger ribonucleic acid species and analysis of an imperfect estrogen-responsive element. Endocrinology 1994, 134, 11-18.
22. L’Horset F, Perret C, Brehier A, Thomasset M. 17 beta-estradiol stimulates the calbindin-D9k (CaBP9k) gene expression at the transcriptional and posttranscriptional levels in the rat uterus. Endocrinology 1990, 127, 2891-2897.
23. Lee GS, Lee KY, Choi KC, Ryu YH, Paik SG, Oh GT, Jeung EB. Phenotype of a calbindin-D9k gene knockout is compensated for by the induction of other calcium transporter genes in a mouse model. J Bone Miner Res 2007, 22, 1968-1978.
24. Li H, Christakos S. Differential regulation by 1,25-dihydroxyvitamin D3 of calbindin-D9k and calbindin-D28k gene expression in mouse kidney. Endocrinology 1991, 128, 2844-2852.
25. Mathieu CL, Burnett SH, Mills SE, Overpeck JG, Bruns DE, Bruns ME. Gestational changes in calbindin-D9k in rat uterus, yolk sac, and placenta: implications for maternal-fetal calcium transport and uterine muscle function. Proc Natl Acad Sci USA 1989, 86, 3433-3437.
26. Mathieu CL, Mills SE, Burnett SH, Cloney DL, Bruns DE, Bruns ME. The presence and estrogen control of immunoreactive calbindin-D9k in the fallopian tube of the rat. Endocrinology 1989, 125, 2745-2750.
27. Miller EK, Word RA, Goodall CA, Iacopino AM. Calbindin-D9k gene expression in human myometrium during pregnancy and labor. J Clin Endocrinol Metab 1994, 79, 609-615.
28. Munaron L, Antoniotti S, Lovisolo D. Intracellular calcium signals and control of cell proliferation: how many mechanisms? J Cell Mol Med 2004, 8, 161-168.
29. Nie GY, Li Y, Wang J, Minoura H, Findlay JK, Salamonsen LA. Complex regulation of calcium-binding protein D9k (calbindin-D9k) in the mouse uterus during early pregnancy and at the site of embryo implantation. Biol Reprod 2000, 62, 27-36.
30. Peng JB, Chen XZ, Berger UV, Vassilev PM, Brown EM, Hediger MA. A rat kidney-specific calcium transporter in the distal nephron. J Biol Chem 2000, 275, 28186-28194.
31. Poburko D, Potter K, van Bremen E, Fameli N, Liao CH, Bassot O, Ruegg UT, van Bremen C. Mitochondria buffer NCX-mediated Ca2+-entry and limit its diffusion into vascular smooth muscle cells. Cell Calcium 2006, 40, 359-371.
32. Schreiner DS, Jande SS, Parkes CO, Lawson DE, Thomasset M. Immunocytochemical demonstration of two vitamin D-dependent calcium-binding proteins in mammalian kidney. Acta Anat (Basel) 1983, 117, 1-14.
33. Seifert MF, Gray RW, Bruns ME. Elevated levels of vitamin D-dependent calcium-binding protein (calbindin-D9k) in the osteosclerotic (oc) mouse. Endocrinology 1988, 122, 1067-1073.
34. Tatsumi K, Higuchi T, Fujiwara H, Nakayama T, Itoh K, Mori T, Fujii S, Fujita J. Expression of calcium binding protein D-9k messenger RNA in the mouse uterine endometrium during implantation. Mol Hum Reprod 1999, 5, 153-161.
35. Walters JR, Howard A, Lowery LJ, Mawer EB, Legon S. Expression of genes involved in calcium absorption in human duodenum. Eur J Clin Invest 1999, 29, 214-219.
36. Warembourg M, Perret C, Thomasset M. Analysis and in situ detection of cholecalcifer messenger RNA (9000 Mr CaBP) in the uterus of the pregnant rat. Cell Tissue Res 1987, 247, 51-57.
37. Wasserman RH, Corradino RA, Taylor AN. Vitamin D-dependent calcium-binding protein. Purification and some properties. J Biol Chem 1968, 243, 3978-3986.
38. Wasserman RH, Fullmer CS. Calcium transport proteins, calcium absorption, and vitamin D. Annu Rev Physiol 1983, 45, 375-390.
39. Wasserman RH, Fullmer CS. On the molecular mechanism of intestinal calcium transport. Adv Exp Med Biol 1989, 249, 45-65.