Sound Generation under Rotary-Screw Propulsion Unit Base Cylinder Bending

I.A. Erasov¹, I.G. Kuklina¹, Y.I. Molev¹, D.S. Mokerov² and T.G. Skrebneva¹

¹ Nizhny Novgorod State Technical University after R.E. Alekseev, 603950 m N.Novgorod, Minina Str. 24
² Kozma Minin Nizhny Novgorod State Pedagogical University, 603005, N.Novgorod, Ulyanova Str. 1

E-mail: erasoff2013@yandex.ru

Abstract: Theoretical results of sound generation parameters under rotary-screw propulsion unit base cylinder bending are dealt with in this article. Base cylinder parameters impact such as diameter, wall thickness, length as well as such vehicle movement parameters impact as speed and mass on noise level appearing at rotary-screw propulsion unit passing a single obstacle are analyzed in the paper. Sound vibrations onset conditions are shown. Research results allow one to conclude that a considerable sound level generated by rotary-screw propulsion units can appear only when the vehicle mass to rotor diameter ratio is greater than 25. The model produced and the results obtained might be useful when designing cross-country vehicles.

Key words: rotary-screw propulsion unit, bending, noise level

Introduction
Cross-country vehicles providing transport accessibility for all Russia’s regions are the only possible way of underpopulated regions development where road building and maintenance is economically impractical. Herewith, one of the basic problems of cross-country vehicles is a high-level noise impact on the operator and passengers which appears when vehicles and road machinery are moving over uneven or rough terrain. Thus, modelling noise level generated by different types of propulsion units in general and especially by rotary-screw propulsion unit, as well as finding ways to lower the noise level are acute research tasks.

Previous papers review
Nowadays only rotary-screw propulsion unit is considered relevant in transporting people and cargoes over water surface and frozen-over rivers [1,2,3,4,5,6,7]. However, due to the fact that not a single vehicle of this type has been produced in series up to now, a number of issues arise when making such vehicles, one of them being noise generation of this or that type.

Methods
The existing models of rotary-screw vehicles movement suggest no rotor base cylinder distortion [1,2,3,4,5,6]. Meanwhile, in operation and forcing an obstacle, the object is impacted by considerable forces (before the vehicle total mass) due to which the rotor will be bent and the vehicle forward movement will turn this bend into a wave process. Beam bending energy is conventionally described by equation [5,6,7,8,9]:

\[W = \frac{m_p \omega^2 A_m^2}{2} \]

where \(m_p \) – rotary mass, \(A_m \) – bending amplitude, \(\omega \) - oscillation frequency equal to the vehicle travel speed \(V \) (m/s) to deflection length ratio \(l \) (m). At this the maximum deflection length is limited by the base
cylinder length. As soon as work is equal to the difference of energy conversion, base cylinder bending capacity can be presented as follows:

\[
N = \frac{A}{r} = \frac{W}{r} = \frac{m_p V^2 (A_m^2 - A_0^2)}{2l^2} = \frac{m_p V^3 (A_m^3 - A_0^3)}{2l^3}
\]

(2)

Thus, to determine rotor bending capacity it is necessary to specify the deflection amplitude under a given loading pattern. In this case transverse load causes rotor shaft bending in the plane of load with rotor cross-sections displacement. The bent beam axis is called defected axis or deflection curve. New positions of cross-sections are characterized by linear and angular displacements shown in Fig. 1.

Figure 1. Calculation model to determine rotor bowing value

Deflection curve approximate differential equation has the form of [5,6,9,16,17,18,19]:

\[
EI \frac{d^2 A_m}{d l^2} = M
\]

(3)

where \(EI \) – rotor cross-section rigidity under bending, \(A_m \) - the deflection value second derivative, \(M \) – bending moment value, equal to:

\[
M = F (1 - \frac{l}{L}) \cdot l
\]

(4)

Substituting \(l \) as part of \(L \), that is \(l = \frac{mL}{12} \) we obtain:

\[
A_m^\prime = \frac{F L (\sigma - \sigma_0^2)}{EI}
\]

(5)

where \(L \)- total rotor length, \(l \) – a span between force application point and front rotor support. Integrating equation 5 rotor shaft rotation angle equation is obtained first time:

\[
\theta = \int \frac{F L (\sigma - \sigma_0^2) \cdot d\sigma}{EI} = \frac{F L}{EI} \left(\int \sigma d\sigma - \int \sigma^2 d\sigma \right) = \frac{F L}{EI} \left(\frac{\sigma^2}{2} - \frac{\sigma^3}{3} + C \right)
\]

(6)

taking into account, that in case the load is applied to point \(l = L/2 \) exactly in the middle of the rotor, angle \(\theta \) must be equal to 0 we obtain:

\[
\theta = A_m^\prime = \frac{F L}{12 EI} (6\sigma^2 - 4\sigma^3 - 1)
\]

(7)

integrating equation 7 for the second time, considering that at the rotor fixturing point (at points \(\sigma = 1 \) and \(\sigma = 0 \)) axle travel \(A_m \) must be equal to 0, the required rotor shaft deflection equation is obtained:

\[
A_m = \frac{F L}{12 EI} (2\sigma^3 - \sigma^4 - \sigma^2)
\]

(8)

Simultaneously solving equations 2 and 8, considering that a single rotor maximum load is equal to a half of total vehicle mass we obtain:
\[N = \frac{m_p V^3 (FL \alpha (2\sigma^2 - \sigma^3 - 1))^2}{12 E I \frac{2L^3}{\sigma^3}} = \frac{m_p V^3 G^2 (2\sigma^2 - \sigma^3 - 1)^2}{1152 E I L \alpha} \] (9)

Taking into account that rotor resisting moment is conventionally estimated by value [5,6,9]:

\[I = \frac{D^4(1 - C^4)}{2}, \quad \delta = \frac{d - D}{D} \] (10)

where \(D \) – base cylinder diameter, \(\delta \) - wall thickness. Taking into account that rotary mass is equal to its volume multiplied by material density \(m_p = \rho L \pi D \delta m \) the maximum radiated sound power appearing at the base cylinder bending is determined by equation:

\[L_p = 10 \lg \left(\frac{\rho L V^3 G^2}{2350 ED^3(1 - C^4)} \right) \] (11)

Solution of equation 14 is shown in Fig. 2

Results

The results obtained indicate that for actual vehicles with the mass of over 2 tons and the base cylinder diameter 0.3 m, the generated noise level under rotor bending will not exceed 5 dB. For light cross-country vehicles with the mass of up to 1 ton, base cylinders with diameter of over 0.2 m completely exclude noise generation under bending. Thus, the necessary dependences have been obtained to design rotary-screw propulsion units of cross-country vehicles completely meeting normative noise requirements [11,12,13,14,15].

![Figure 2. Generated noise level change, appearing under base cylinder bending, of its diameter; 1- For 2.5 ton vehicle; 2 – for 750 kg vehicle](image)

Acknowledgement

This work was carried out at the NNSTU named after R.E. Alekseev, with financial support from the government in the face of the Russian Ministry of Education under the agreement 14.577.21.0222 of 03.10.2016. The unique identifier of the project: RFMEFI57716X0222. Theme: “Development an experimental model of an amphibious autonomous transport-technological complex with an intelligent control and navigation system for year-round exploration and drilling on the Arctic shelf”.
References

[1] Krasheninnikov M., Kulashov A., Shapkin V., Koshurina A. The concept and methodology of creating the universal life-saver with rotary-screw mover // Lecture Notes in Electrical Engineering. 2013. – T. 195 LNEE. – № VOL. 7 «Proceedings of the FISITA 2012 World Automotive Congress».

[2] Krasheninnikov M., Koshurina A., Vasilyev I., Smirnova E. Use mobile robots groups for rescue missions in extreme climatic conditions // Procedia Engineering, Volume 100, 2015, Pages 1242–1246 doi: 10.1016/j.proeng.2015.01.489.

[3] Korushova J.V., Krasheninnikov M.S., Koshurina A.A., Lyakhmanov, D.A. Multifunctional mobile complex of transport-technological machines for the Arctic // IOP Conference Series: Materials Science and Engineering 2018 IOP Conf. Ser.: Mater. Sci. Eng. 393 012119

[4] Koshurina A.A., Krasheninnikov M.S., Dorofeev R.A. Strength Calculation and Analysis of Equalizer Beam Embodiments for the Operated Equalizing Beam Suspension of the Universal Rotor-screw Rescue Vehicle for the Arctic// Procedia Engineering, Volume 150, 2016, Pages 1263-1269

[5] Ice loads dynamics for model scale cylinders of various diameters Zvyagin, P., Dobrodeev, A., Sazonov, K. 2017 Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, POAC

[6] Kulyashov A.P., Kuklina I.G. Oscillations estimate of a rotary-screw vehicle considering its suspension parameters and propulsion units-and-soil linear contact // Journal «Construction and road machinery». 2011. № 7. P. 45.

[7] Transport and technological vehicles roadbed: college textbook[eds. V.V. Belyakov, A.A. Kurkin]; NNSTU n.a. R.E.Alekseev – N.Novgorod, 2014. – 447p.

[8] Cross-country transport and technological vehicles. Fundamentals of the theory of motion /under the general editorship of V.V. Belyakov and A.P. Kulyashov – N.Novgorod: publishing house TJAM, 2004. -961p.

[9] Vakhidov U.Sh., Kitov A.G., Sogin A.V., Shapkin V.A., Shapkina Y.V. Noise and vibration parameters of transport and technological vehicles // International Journal of applied and fundamental research. 2014. № 7. P. 8-11.

[10] Dynamics, critical speeds and balancing of thermoelastic rotors Yeliseyev, V.V. 2015 Lecture Notes in Mechanical Engineering 22, e. 129-136

[11] ISO 2041:2009 Mechanical vibration, shock and condition monitoring — Vocabulary - Third Edition

[12] Mechanical vibration - Testing of mobile machinery in order to determine the vibration emission value; German version EN 1032:2003

[13] ISO 2631-1:1997 Mechanical vibration and shock — Evaluation of human exposure to whole-body vibration — Part 1: General requirements (MOD).

[14] ISO 5349-1:2001 Vibration. Measurement and evaluation of human exposure to hand-transmitted vibration. Part 1. General requirements

[15] ISO 5349-2:2001 Vibration. Measurement and evaluation of human exposure to hand-transmitted vibration. Part 2.Requirements for measurement at the workplace/

[16] V Klubnichkin, E Klubnichkin, G Kotiev, S Beketov and V Makarov Interaction between elements of the track ground contacting area with the soil at curvilinear motion of the timber harvesting machine/ IOP Conference Series: Materials Science and Engineering Volume 386, 2018, Pages 012016

[17] A Papunin,V Belyakov,V Makarov,A Anikin and U Vahidov A dynamic model of unsupported pit traversal by a vehicle with 6×6 wheel arrangement/ IOP Conference Series: Materials Science and Engineering Volume 386, 2018, Pages 012001

[18] E Klubnichkin,V Klubnichkin and G Kotiev Theoretical research of soil packing by timber harvester running gear IOP Conference Series: Materials Science and Engineering Volume 386, 2018, Pages 012025

[19] A Lipin, Y Molev, D Mokerov, A. Strizhak,Khudyakov Ways of decreasing noise impact on operator by changing ro-tary-screw propulsion units natural frequency of vibration IOP Conference Series: Journal of Physics: Conf. Series 1177 (2019) Pages 012040
[20] I Erasov, Yu Molev, D Mokerov, T Shetulova Determining friction coefficient between the base cylinder of rotary screw propulsion unit and various ice types in different daylight surface IOP Conf. Series: Materials Science and Engineering 386 (2018) 012006
[21] Y Molev, D Mokerov, S Ivanov, M Saushkina, Y Palutin Sound power spectra modelling of the vehicle in motion equipped with rotary-screw propulsion unit IOP Conf. Series: Journal of Physics: Conf. Series 1177 (2019) 012034