How to embed ‘open’ Lie superalgebras into affine Kac-Moody superalgebras

Claudia Daboul, Jamil Daboul, Marc de Montigny

1. Introduction

Recently, we examined the concepts of open Lie superalgebras and their closure, and some applications [1]. In order to introduce these concepts, consider the dynamical symmetry algebra of the 3-dimensional non-relativistic hydrogen atom, which is spanned by the conserved angular momentum \(\vec{L} \) and the Runge-Lenz vector \(\vec{A} \). The components of \(\vec{L} \) and \(\vec{A} \) satisfy the following commutation relations (or Poisson brackets, in the classical treatment) [2, 3, 4]:

\[
\begin{align*}
[\hat{L}_i, \hat{L}_j] &= i\varepsilon_{ijk} \hat{L}_k, \quad i, j, k = 1, 2, 3, \\
[\hat{L}_i, \hat{A}_j] &= i\varepsilon_{ijk} \hat{A}_k, \\
[\hat{A}_i, \hat{A}_j] &= i\varepsilon_{ijk} h \hat{L}_k, \quad \text{where } h := -2mH, \\
[h, \hat{L}_i] &= [h, \hat{A}_i] = 0,
\end{align*}
\] (1)

where \(m \) is the reduced mass, and \(H \) is the Hamiltonian. It is the appearance of \(H \) which leads to an open algebra and its closure through embedding into an infinite-dimensional algebra.

The appearance of the factor \(H \) in (1c), which can be either an operator (or a function), but not a constant, together with the commutation relations (1), makes the following set

\[
\mathfrak{h}_3 := \{\vec{L}, \vec{A}; h\} \equiv \{\hat{L}_i, \hat{A}_i ; h \mid i = 1, 2, 3\},
\] (2)

a Lie algebra which is not closed. For this reason, we shall call such algebras open Lie (super) algebras. The usual way to deal with this dilemma is to replace the Hamiltonian \(H \) by its energy eigenvalues \(E \), and then to rescale the Runge-Lenz vector. This procedure yields three closed (real) Lie algebras, \(\mathfrak{so}(4), \mathfrak{so}(3, 1) \) and \(\mathfrak{e}(3) \), depending on the sign of the energy: \(E < 0, E > 0 \) and \(E = 0 \), respectively (see references in [1]-[4]).

Published under licence by IOP Publishing Ltd
Instead, if we iterate the commutation relations of \(\{ \vec{L}, \vec{A}; h \} \), we generate the following closed infinite-dimensional Lie algebra, which we call the closure of \(\{ \vec{L}, \vec{A}; h \} \):

\[
\mathbb{H}_3 := \{ \vec{L}, \vec{A}; h \} = \langle h^n L_i, h^n A_i \mid n \geq 0 \rangle_{\mathbb{R}}.
\]

(3)

Daboul and Slodowy identified \(\mathbb{H}_3^* \) as the positive part of a twisted Kac-Moody algebra (KMA) \(D_2^{(2)+} \) [4]. Later Daboul and Daboul noted that \(D_2^{(2)+} \) is isomorphic to \(A_1^{(1)+} \) [5, 1]. In other words,

\[
\mathbb{H}_3^* \cong \mathbb{H}_3 := \langle \hat{L}_i^{2n}, \hat{A}_i^{2n+1} \mid n \geq 0 \rangle_{\mathbb{R}} \cong D_2^{(2)+} \cong A_1^{(1)+},
\]

(4)

where the notation \(s^{(m)} \) will be defined in (11), and

\[
\hat{L}_i^{2n} := \chi(h^n L_i) \quad \text{and} \quad \hat{A}_i^{2n+1} := \chi(h^n A_i),
\]

where \(\chi \) is a homomorphism, which we shall explain in (22) below.

The dynamical algebras for the \(N \)-dimensional hydrogen atoms were later identified in [5]: they were denoted as \(\mathbb{H}_N \) and called hydrogen algebras. We review this identification in Sec. 4.3 below.

The purpose of this paper is to show how the above procedure can be generalized to embeddings of open superalgebras into loop superalgebras. The proofs of the relevant theorems can be found in our article [1].

2. Affine Lie superalgebras

In this section, we briefly review the concepts associated with affine Lie superalgebras that pertain to our discussion.

2.1. Lie superalgebras

A Lie superalgebra (over a field \(K \) either \(\mathbb{R} \) or \(\mathbb{C} \)), \(\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \), is a superalgebra if its product \([\cdot, \cdot]\), called supercommutator, satisfies the following three conditions among its homogeneous elements:

1. algebraic grading:

\[
[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}, \quad (i, j \in \mathbb{Z}_2),
\]

2. super skew-symmetry:

\[
[x, y] = -(-1)^{|x||y|}[y, x],
\]

3. super Jacobi-identity:

\[
(-1)^{|x||y|}[x, [y, z]] + (-1)^{|x||y|}[y, [z, x]] + (-1)^{|y||z|}[z, [x, y]] = 0.
\]

where to an element \(x \in \mathfrak{g}_i \), one assigns a parity, by \(|x| = i \in \mathbb{Z}_2 \) [6, §1.5]. The elements with \(|x| = 0 \) and \(|x| = 1 \) are called even and odd, respectively.

Example: An interesting example of simple finite-dimensional superalgebras, which also illustrates the even-odd grading, is given by the \((m + n) \) square matrices over \(\mathbb{C} \):

\[
\mathfrak{gl}(m|n) = \mathfrak{gl}(m|n)_0 \oplus \mathfrak{gl}(m|n)_1 := \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \right\} + \left\{ \begin{pmatrix} 0 & b \\ 0 & c \end{pmatrix} \right\},
\]

(5)

where the matrices \(a \) and \(d \) are \(m \) and \(n \) square matrices, respectively.
The matrices in (5) become a Lie superalgebra, called the \textit{general linear Lie superalgebra}, if we define its supercommutator by
\[
\frac{[X, Y]}{[X, Y]} := XY - (-1)^{|X||Y|} YX, \quad \text{for} \quad X \in \mathfrak{gl}(m|n)_{|X|}.
\]
Hence, the supercommutator is related to the ordinary commutator, \([X, Y] := XY - YX\), as follows:
\[
[X_1, X_2] = [X_1, X_2] + 2\begin{pmatrix}b_2c_1 & 0 \\ 0 & c_2b_1\end{pmatrix}, \quad \text{where} \quad X_i = \begin{pmatrix}a_i \\ b_i \\ c_i \\ d_i\end{pmatrix}.
\]
In particular, Eq. (6) shows that supercommutators and commutators become equal, if both \(X_1\) and \(X_2\) have diagonal form, \(i.e.\) either \(b_1 = b_2 = 0\) or \(c_1 = c_2 = 0\).

2.2. **Affine untwisted Kac-Moody superalgebras**

A \textit{loop superalgebra} \(\mathcal{L}(\mathfrak{s})\) can be defined from any finite-dimensional Lie superalgebra \(\mathfrak{s}\) as follows:
\[
\mathcal{L}(\mathfrak{s}) = \mathcal{K}[t, t^{-1}] \otimes_{\mathcal{K}} \mathfrak{s} \simeq \langle x^n \mid x \in \mathfrak{s}, n \in \mathcal{Z} \rangle_{\mathcal{K}},
\]
where \(\mathcal{K}[t, t^{-1}]\) denotes the algebra of Laurent polynomials in the variable \(t\), and \(x^n := t^n x\). The generators of \(\mathcal{L}(\mathfrak{s})\) satisfy the \textit{supercommutation relations}
\[
[x^m, y^n] = [x, y]^{m+n}.
\]

Note that, hereafter, we only deal with loop superalgebras, not with genuine affine Kac-Moody algebras (which have central terms). Nevertheless, we shall use the terminology and notations of Kac-Moody-algebras to describe these algebras. In particular, we will use the notation \(\mathfrak{s}^{(1)}\) for \(\mathcal{L}(\mathfrak{s})\).

2.3. **Affine twisted Kac-Moody superalgebras**

Definition 1. Let \(\mathfrak{s}\) be a finite-dimensional Lie superalgebra with a \(\mathcal{Z}_m\)-grading that commutes with the parity grading on \(\mathfrak{s}\),
\[
\mathfrak{s} = \bigoplus_{k=0}^{m-1} \mathfrak{s}_k, \quad m \geq 2,
\]
such that
\[
[\mathfrak{s}_i, \mathfrak{s}_j] \subset \mathfrak{s}_{i+j}, \quad i, j, i + j \ (\text{mod} \ m).
\]
and such that
\[
\mathfrak{s}_k = (\mathfrak{s}_k)^0 \oplus (\mathfrak{s}_k)^1, \quad (\mathfrak{s}_k)^\bar{p} = \mathfrak{s}_k \cap \mathfrak{s}_{\bar{p}}, \quad k \in \mathcal{Z}_m, \bar{p} \in \mathcal{Z}_2.
\]

Then a \textit{Lie super subalgebra} \(\mathfrak{s}^{(m)}\) of \(\mathfrak{s}^{(1)}\), is defined as follows:
\[
\mathfrak{s}^{(m)} := \bigoplus_{n \in \mathcal{Z}, k=0}^{m-1} t^{2m+k} \otimes \mathfrak{s}_k = \mathfrak{s}_0^{(m)} \oplus \mathfrak{s}_1^{(m)},
\]
where
\[
\mathfrak{s}_0^{(m)} = \bigoplus_{n \in \mathcal{Z}, k=0}^{m-1} t^{2m+k} \otimes (\mathfrak{s}_k)^0.
\]

Note that \(\mathfrak{s}_0^{(m)}\) is a normal (not super) subalgebra of \(\mathfrak{s}^{(m)}\).

Any \(\mathfrak{s}^{(m)}\) of the form (11) will be called \textit{twisted-like KMA}, since it may still be isomorphic to an untwisted KMA. Only when this is not the case, we will refer to it as a \textit{twisted KMA} or “genuinely twisted KMA”. We shall also call such \(\mathfrak{s}^{(m)}\) \textit{twisted KM subalgebra}, if its connection to \(\mathfrak{s}^{(1)}\) is relevant.
2.4. Level-grading and positive subalgebras of KM superalgebras

Eq. (8) yields the natural grading for the (twisted or untwisted) loop superalgebras \(s(m) \)

\[
[s^{[m]}, s^{[n]}] \subseteq s^{[m+n]},
\]

where the homogeneous subspaces

\[
s^{[n]} := s^{(m)} \cap \langle x^n | x \in s \rangle_K
\]

will be called levels. To their elements, we assign a grade, which we call level-grade (or \(l \)-grade), and denote it by

\[
\lfloor x^n \rfloor = \lfloor t^n x \rfloor = n.
\]

We define the positive subalgebra \(s^{(m)+} \) as the subalgebra of a (twisted or untwisted) KMA \(s^{(m)} \) which is the sum of all its non-negative levels,

\[
s^{(m)+} := \langle x^n \in s^{(m)} | n \geq 0 \rangle_K = \bigoplus_{n=0}^{\infty} s^{[n]}.
\]

3. Open algebras and their closures

Equipped with the previous definitions, we now turn to the concepts of open algebras, their closures and their embedding.

We shall also show in this section that by simply solving the system of linear equations (23) (which depends only on the integer coefficients \(r_{kj} \) in the definition (18) of open algebras), we can determine in general whether an open algebra leads to a twisted-like or to an untwisted KMA. We apply this formalism first to the hydrogen algebras, \(\mathbb{H}_N \), which were mentioned in the introduction, and then to the dynamical symmetry algebra of the Dirac-Taub-NUT (DTN) model [7]. It turns out that the hydrogen algebras lead to twisted-like KM algebras while the DTN model leads to an untwisted KM algebra. Furthermore we will see how both systems are closely connected.

3.1. Definitions and notation

Consider a finite-dimensional Lie superalgebra,

\[
s := \langle x_1, \ldots, x_N \rangle_K,
\]

with \([x_i, x_j] = \sum_{k=1}^{N} c_{ij}^k x_k, \ i, j = 1, \ldots, N,\)

over the field \(K \), with \(x_i \) homogeneous with respect to the inherent \(\mathbb{Z}_2 \)-grading of the superalgebra.

Definition 2. Let

\[
\tilde{s} = \{X_1, \ldots, X_N; v\}
\]

be a set of generators \(X_i \) and \(v \) a variable or an operator of infinite order (analogous to \(h \) in Eq. (2)) that commutes with all the \(X_i \), and such that

\[
[X_i, X_j] = \sum_{k=1}^{N} c_{ij}^k v^{r_{ij}} X_k, \ \text{for} \ i, j = 1, \ldots, N,
\]

where the powers \(r_{ij} \in \mathbb{N}_0 \) are such that the supercommutators in (18) satisfy the super-grading, the super-skew-symmetry and the super-Jacobi identity, and with the parity of the generators defined by

\[
|v^n x_i| := |x_i|.
\]
We call \mathfrak{s} an open algebra if at least one of the r^k_{ij} in (18) is greater than zero, and the finite-dimensional Lie superalgebra \mathfrak{s} in (16) is its underlying algebra.

By commuting the generators on the r.h.s. of Eq. (18) with each other and with the original X_i, we generate higher powers of v, such as

$$[v^{r_{ij}^k}X_k, v^{r_{ij}^l}X_l] = \sum_p c_{kl}^p v^{r^p_{ij} + r^p_{ij} + r^p_{ij}} X_p.$$ We refer to this procedure as repeated iterations.

Definition 3. The closure of \mathfrak{s} is defined as the smallest Lie superalgebra which can be generated from \mathfrak{s} by repeated iterations of its commutation relations. It is denoted by $\overline{\mathfrak{s}}$ or, more explicitly, by $\{\mathfrak{s}; v\}$.

Note that we do not include the operator v itself as a generator. Therefore the closure $\{\mathfrak{s}; v\}$ of an open algebra does not have to include all the powers $v^n X_i$ with $n \geq 0, i = 1, \ldots, N$. Note that if the underlying finite-dimensional algebra \mathfrak{s} is nilpotent, then $\{\mathfrak{s}; v\}$ is finite dimensional. See another counter-example in Eq.(31). Thus, $\{\mathfrak{s}; v\} \subseteq \mathcal{L}(\mathfrak{s}) := \langle v^n X_i, n \in \mathbb{Z}, i = 1, \ldots, N \rangle$.

Lemma 1. The following mapping

$$\varphi(vX_i) = \varphi(X_i) = x_i, \quad \forall X_i \in \mathfrak{s}, \quad (21)$$

of $\{\mathfrak{s}; v\}$ onto the superalgebra \mathfrak{s} in (16), is a homomorphism [1, Lemma 2].

3.2. Embedding and identification of open algebras into affine Kac-Moody algebras

An embedding is an injective and structure-preserving map, denoted by $f : A \hookrightarrow B$. This map defines an isomorphism between a Lie algebra A and its image $f(A) \subseteq B$. Thus, we shall say that A can be identified with B if $f(A) \simeq B$.

In this section, we study the embedding of the closure of an open algebra \mathfrak{s} into the loop algebra $\mathfrak{s}^{(1)} \equiv \mathcal{L}(\mathfrak{s})$ in (7), which is generated by the s of (16).

Theorem 1. The closure $\overline{\mathfrak{s}}$ of an open algebra \mathfrak{s} of the form (18) can be embedded into the affine KM algebra $\mathfrak{s}^{(1)}$, $\overline{\mathfrak{s}} \hookrightarrow \mathfrak{s}^{(1)}$, by the following homomorphism:

$$\chi(v^n X_i) = \nu p^{[n]+[X_i]} x_i =: x_i^{p^{[n]+[X_i]}}, \quad i = 1, \ldots, N, \quad X_i \in \mathfrak{s}, \quad (22)$$

if and only if the homogeneous system of linear equations

$$[X_i] + [X_j] - [X_k] - r^k_{ij} [v] = 0, \quad \forall c^k_{ij} \neq 0 \quad i, j, k = 1, \ldots, N, \quad (23)$$

has a solution, which can always be chosen such that $[X_i] \in \mathbb{Z}, [v] \in \mathbb{N}$ and such that the greatest common divisor (GCD) of the $[X_k]$ and $[v]$ is 1.

As in (14) we call the integers $[X_i]$ and $[v]$ level grades or l-grades of the X_i and v respectively.

Theorem 2. Let \mathfrak{g} be an ordinary (i.e. not super) Lie algebra, with all its structure constants totally antisymmetric, $r^k_{ij} = c_{ijk}$. Then all the generators $X_i \in \mathfrak{g}$ must have non-negative l-grades, i.e. $[X_i] \geq 0$.

5
An example: Let us apply the above theorem to the open algebra of the 3-dimensional hydrogen atom, discussed in the introduction. From Eq. (1a), we obtain $[L] + [L] = [L]$, so that $[L] = 0$. Eq. (1b) leads to $[L] + [A] = [A]$, which yields no conditions. From Eq. (1c), we find $2[A] = [h] + [L]$. Under the restrictions of the theorem this has the unique solution $[L] = 0$, $[A] = 1$, $[h] = 2$. (24)

3.3. Twisted and untwisted open Lie algebras

Our motivation to undertake the work presented in Ref. [1] was the observation that, despite the claim in Ref. [7] that the open superalgebra obtained therein was of twisted type, that superalgebra is actually untwisted (More in Section 4).

Hereafter, we derive more results which will enable us to distinguish between the two types of open algebras.

Lemma 2. If an open Lie algebra $\tilde{\mathfrak{s}}$ has a solution with $[v] = m$, then the underlying finite-dimensional Lie algebra $\mathfrak{s} = \langle x_1, \ldots, x_N \rangle_K = \varphi(\tilde{\mathfrak{s}})$ admits a \mathbb{Z}_m-grading, defined by the subspaces

$$\mathfrak{g}_k = \langle x_i = \varphi(X_i) \mid [X_i] \equiv k (m) \rangle_K \quad \text{where} \quad 0 \leq k \leq m - 1,$$

(25)

where the map φ is defined in Eq. (21) [1, Lemma 5].

This result is important, because it enables us to define a twisted-like KMSA $\mathfrak{s}([v])$, according to the definition 1. This in turn allows us to embed $\tilde{\mathfrak{s}}$ into twisted-like KMSA:

Theorem 3. The embedding χ in (22) maps the closure $\tilde{\mathfrak{s}}$ into the KMA $\mathfrak{s}([v])$.

Corollary 1. If \mathfrak{g} satisfies the conditions of theorem 4, then $\tilde{\mathfrak{g}}$ can be embedded into a positive twisted-like subalgebras, as defined in (15):

$$\tilde{\mathfrak{g}} \hookrightarrow \mathfrak{g}^{([v])}.$$

Since $\mathfrak{s}^{([v])}$ for $v \geq 2$ is a subalgebra of the untwisted KMA $\mathfrak{s}^{(1)}$, the embedding χ can be extended naturally to an embedding of the loop algebra $L(\tilde{\mathfrak{s}})$ of the open algebra $\tilde{\mathfrak{s}}$

$$L(\tilde{\mathfrak{s}}) := \langle v^n X_i, n \in \mathbb{Z}, i = 1, \ldots, N \rangle$$

into $\mathfrak{s}^{(1)}$ by

$$\chi(v^n X_i) := t^n [v] \chi(X_i).$$

(26)

Corollary 2: The loop algebra $L(\tilde{\mathfrak{s}})$ is isomorphic to $\mathfrak{s}^{([v])}$ by the following natural extension of the embedding χ in (26):

$$\chi(L(\tilde{\mathfrak{s}})) = \mathfrak{s}^{([v])}.$$
3.4. Identification of \mathbb{H}_N

As in (24) for \mathbb{H}_3, the linear system of equations (23) yields unique solutions with $|h| = 2$ also for the hydrogen algebras \mathbb{H}_N. Thus, according to the above corollary, the closure \mathbb{H}_N^* of \mathbb{H}_N, which is the dynamical algebra of the N-dimensional hydrogen atom, has a characteristic embedding which extends to an isomorphism of its loop algebra with the twisted-like subalgebra $\mathfrak{so}(N+1)^{(2)}$ of $\mathfrak{so}(N+1)^{(1)}$. This enabled us to identify \mathbb{H}_N^* with the twisted-like $\mathfrak{so}(N+1)^{(2)}$ [5]. These are real KMA, which are isomorphic to the following real affine KMA:

$$
\mathbb{H}_{2l-1}^* \simeq \mathbb{H}_{2l-1} \simeq D_l^{(2)+}, \quad l \geq 2, \\
\mathbb{H}_{2l}^* \simeq \mathbb{H}_{2l} \simeq B_l^{(2)+} \subseteq B_l^{(1)+}, \quad l \geq 2,
$$

where

$$
\mathbb{H}_N^* := \{L_{ij}, A_i|1 \leq i, j \leq N\} = \langle h^n L_{ij}, h^n A_i |n \in \mathbb{N}_0\rangle_R, \\
\mathbb{H}_N := \{\tilde{L}_{ij}^{2n}, \tilde{A}_i^{2n+1}|1 \leq i, j \leq N; n \in \mathbb{N}_0\rangle_R.
$$

For a more details see eqn. (36) in [5].

Note also that $D_l^{(2)}$ for $l \geq 3$ are genuinely twisted. In contrast, $B_l^{(2)}$ are not genuine; they can be untwisted, i.e. $B_l^{(2)} \simeq B_l^{(1)}$.

An interesting exception is the algebra $D_2^{(2)}$, since $D_2^{(2)} \simeq A_1^{(1)}$, as we proved in the appendix of [1]. This is because D_2 is not a simple Lie algebra.

4. Open superalgebra of DTN model

In Ref. [7], Cotăescu and Visinescu examined a relativistic Dirac theory on manifolds carrying the Gross-Perry-Sorkin monopole defined on the Euclidean Taub-NUT space. This ‘Dirac-Taub-NUT’ (DTN) model has the following dynamical algebra,

$$
S_0 = \{J_i, K_i, \tilde{I}, M, Q, Q_i; b\}, \quad i = 1, 2, 3,
$$

where, by definition, all the generators in (28) commute with the relativistic operator b, where b^2 is defined by

$$
b^2 := P_{4}^{2} \tilde{I} - H_D^{2},
$$

where H_D in Eq. (29) is a Dirac Hamiltonian and $P_{4} := -i \frac{\partial}{\partial x_4}$ [7]. Moreover, the operators \tilde{I} and M in Eq. (28) are Casimir-type bosonic operators, which commute with all the operators in S_0.

The generators in (28) satisfy the following supercommutation relations:

$[J_i, J_j] = i \varepsilon_{ijk} J_k$, \hspace{1cm} (30a)

$[J_i, K_j] = i \varepsilon_{ijk} K_k$, \hspace{1cm} (30b)

$[K_i, K_j] = i \varepsilon_{ijk} b^2 J_k$, \hspace{1cm} (30c)

$[J_i, Q_j] = i \varepsilon_{ijk} Q_k$, \hspace{1cm} (30d)

$[K_i, Q_j] = i \varepsilon_{ijk} b Q_k$, \hspace{1cm} (30e)

$\{Q_i, Q_j\} = 2\delta_{ij} \tilde{I}$, \hspace{1cm} (30f)

$[J_i, Q] = [J_i, \tilde{Q}] = 0$, \hspace{1cm} (30g)

$\{Q, Q_i\} = 2(bJ_i + K_i)$, \hspace{1cm} (30h)

$\{Q, Q\} = 2b^2 M$, \hspace{1cm} (30i)
so that according to our definition the S_0 is an open superalgebra.

According to our definition in Sec. 3.2, the closure \overline{S}_0 is the subalgebra of $\mathcal{L}(S_0)$ generated by S_0. Hence,
\[
\overline{S}_0 = \langle b^n J_i, b^n K_i, b^n \tilde{I}, b^n Q_i \mid n \geq 0 \rangle_K + \langle Q, M, b^2 M \rangle_K,
\]
(31) is a genuine subalgebra of $\mathcal{L}(S_0)^+$, since instead of $\langle b^n Q, b^n M \mid n \geq 0 \rangle_K$ we can only generate the three elements Q, M and $b^2 M$.

4.1. Embedding of \overline{S}_0

The linear system (23) in Theorem 1 has a unique solution with integer values, positive level grade of b and $\gcd(0) := 0$. Hence, the associated embedding χ maps the closure \overline{S}_0 into the affine untwisted KM algebra $W^{(1)}_0$, but not into a twisted-like subalgebra $W^{(m)}_0, m > 1$.

5. Summary and insight

We showed that S_0 cannot be embedded into a twisted KMSA, in contradiction to the conclusion of CV in Ref [7].

The relativistic DTN provides us with an intuitive explanation of why $[h] = 2$, and consequently explains why \mathbb{H}_N must be twisted-like. We ask as follows: Eqs. (30a)-(30c) are similar to Eqs. (1a)-(1c). Hence, the operator b^2 in (30c) corresponds to the non-relativistic Hamiltonian operator h in Eq. (1c). But since the variable b also appears linearly (in Eqs. (30e) and (30h)), a $[h] = [b^2] = 1$ would yield $[b] = 1/2$, which contradicts the condition $[b] \in \mathbb{N}$.

We can summarize the embedding procedure by the following algorithm:

(i) Map the open algebra $\{\tilde{s}, v\}$ onto s by the map φ in (21).
(ii) Find $[v]$ by solving the system of linear equation in (23).
(iii) Determine the associated $\mathbb{Z}_{[v]}$-grading of s.
(iv) Construct the twisted-like KMSA $s^{(v)}$.
(v) Finally, map $\{\tilde{s}, v\}$ into $s^{(v)}$ by using the map χ in (26).

The above algorithm is illustrated in the following diagram:
References

[1] Daboul C, Daboul J and de Montigny M 2010 Embedding of “open” superalgebras into affine Kac-Moody superalgebras J. Math. Phys. 51 053521(15pp)

[2] Schiff L I 1968 Quantum Mechanics, 3rd edition (New York: McGraw-Hill); Sudbery A 1986 Quantum Mechanics and the Particles of Nature (Cambridge: Cambridge University Press)

[3] Goldstein H 1980 Classical Mechanics (Reading: Addison-Wesley)

[4] Daboul J, Slodowy P and Daboul C 1993 The hydrogen algebra as centerless twisted Kac-Moody algebra Phys. Lett. B 317 321-328; Daboul C, Daboul J and Slodowy P 1995 The dynamical algebra of the hydrogen atom as a twisted loop algebra, in Group Theoretical Methods in Physics, Proceedings of the 20th International Colloquium, Eds. A. Arima, T. Eguchi, N. Nakanishi (Singapore: World Scientific) e-print ArXiv: hep-th/9408080

[5] Daboul C and Daboul J 1998 From hydrogen atom to generalized Dynkin diagrams Phys. Lett. B 425 135-144

[6] M. Wakimoto, Infinite-Dimensional Lie Algebras, (Translations of Mathematical Monographs, Vol. 195) (American Mathematical Society, New York, 2001)

[7] Cotăescu I I and Visinescu M 2007 Infinite loop superalgebras of the Dirac theory on the Euclidian Taub-NUT space J. Phys. A: Math. Theor. 40 11987-99