Effects of transcranial direct current stimulation on working memory and negative symptoms in schizophrenia: a phase II randomized sham-controlled trial

J.S. Gomes, A.P. Trevizol, D.V. Duco, A. Gadelha, B.B. Ortiz, A.O. Fonseca, H.T. Akiba, C.C. Azevedo, L.S.P. Guimaraes, P. Shiozawa, Q. Cordeiro, A. Lacerda, A.M. Dias

ARTICLE INFO

Keywords:
Schizophrenia
Transcranial direct current stimulation
tDCS
Working memory
Negative symptoms

ABSTRACT

Background: The lack of efficacy of pharmacological treatments for cognitive and negative symptoms in schizophrenia highlights the need for new interventions. We investigated the effects of tDCS on working memory and negative symptoms in patients with schizophrenia.

Method: Double-blinded, randomized, sham-controlled clinical trial, investigating the effects of 10 sessions of tDCS in schizophrenia subjects. Stimulation used 2 mA, for 20 min, with electrodes of 25 cm² wrapped in cotton material soaked in saline solution. Anode was positioned over the left DLPFC and the cathode in the contralateral area. Twenty-four participants were assessed at baseline, after intervention and in a three-months follow-up. The primary outcome was the working memory score from MATRICS and the secondary outcome the negative score from PANSS. Data were analyzed using generalized estimating equations.

Results: We did not find group × time interaction for the working memory (p = 0.720) score or any other cognitive variable (p > 0.05). We found a significant group × time interaction for PANSS negative (p < 0.001, d = 0.23, CI: 0.59–1.02), general (p = 0.011) and total scores (p < 0.001). Exploratory analysis of PANSS 5 factors suggests tDCS effect on PANSS negative (p = 0.012), cognitive (p = 0.016) and depression factors (p = 0.029).

Conclusion: The results from this trial highlight the therapeutic effects of tDCS for treatment of persistent symptoms in schizophrenia, with reduction of negative symptoms. We were not able to confirm the superiority of active tDCS over sham to improve working memory performance. Larger sample size studies are needed to confirm these findings.

1. Introduction

Schizophrenia is a heterogeneous disorder with symptoms classified into four domains: positive symptoms, negative and affective symptoms and cognitive impairments. One of the most used instrument to verify the intensity of the symptoms in this population is the Positive and Negative Scale (PANSS) and principal component analysis of PANSS suggests that the disorder is better understood through 5 factors: negative, disorganization/cognitive, excitement, positive and depressive/anxiety (Higuchi et al., 2014). Although antipsychotic medications are moderately effective for the treatment of the positive symptoms (Leucht et al., 2009), including disorganization, delusions and hallucinations, they have small-to-no effect for the cognitive and negative symptoms (Fusar-Poli et al., 2015; Green and Harvey, 2014).

The negative symptoms are associated with a reduction of the expected functioning and behavior. Symptoms include flattened affect, poverty of speech, apathy, avolition, anhedonia and asociality (American Psychiatric Association, 2013). Both cognitive and negative
symptoms may persist even after stabilization of the illness (Brissos et al., 2011; Haro et al., 2015). In addition, they are strongly correlated to poor functional outcome and low recovery rates, evidencing the need for alternatives in treatment (Fusar-Poli et al., 2013; Fusar-Poli et al., 2015; Green and Harvey, 2014; Grimes et al., 2017; Haro et al., 2015).

The cognitive impairments can be observed ten years before the first psychotic episode (Goff et al., 2011; Kahn and Keefe, 2013) and have been reported in first-degree relatives (Cella et al., 2015). Among the most impaired abilities, the speed of processing, executive functioning, attention, working memory (WM) and cognitive control deficits have been associated with prefrontal cortex (PFC) dysfunction, which has been described as a consequence of illness (Lewis and Glausier, 2016; Sakurai et al., 2015).

Resting-state and task-related activation of the dorsolateral prefrontal (DLPFC) cortex have been a topic of research in schizophrenia. The DLPFC is crucial for mental representation and abstraction and its dysfunction account for WM deficits (Arnsten, 2013). In schizophrenia, DLPFC shows smaller gray matter volume (Arnsten, 2013) and reduced activation (Hill et al., 2004), which reflects a decrease in resting-state blood flow (Andreasen et al., 1997). These abnormalities account for the impairment in cognition and the pathophysiology of the disorder as well. Regardless of the specificity of the deficits in the DLPFC, PFC dysconnectivity to other brain regions is well documented and associated with both cognitive deficits and psychotic symptoms (Zhou et al., 2015). Recently, orbitofrontal cortex thickness in the left hemisphere was associated with negative symptoms severity (Walton et al., 2017).

The lack of efficacy of pharmacological treatments for the cognitive and negative symptoms, in addition to the recent findings of neuropsychological studies, boosted the research on non-invasive brain stimulation techniques (NIBS), such as transcranial direct current stimulation (tDCS) (Hasan et al., 2012, 2013). Following the interesting results from previous studies, we hereby present a double-blinded, randomized, sham-controlled clinical trial investigating the effects of 10 sessions of tDCS over the DLPFC in schizophrenia subjects. We hypothesize that anodal tDCS applied over the left DLPFC, with the cathode at the right contralateral area, will improve both working memory and negative symptoms. Despite their differences regarding clinical characteristic, they have been associated in the literature, and share similar brain substrates. In this context, we believe that increasing excitability of the left DLPFC may lead to an improvement of both issues.

2. Method

2.1. Trial design

This is a parallel randomized, double-blinded sham-controlled clinical trial with two arms and 1:1 allocation ratio. The study was conducted following the principles of the Declaration of Helsinki and guidelines of Good Clinical Practice and was approved by the Ethics Committee of the Federal University of Sao Paulo (UNIFESP) and is registered in the Brazilian Clinical Trial platform under number RBR-69g952. It also follows the Consolidated Standards of Reporting Trials (CONSORT) (Turner et al., 2012).

2.2. Participants

Assessments and stimulation sessions were conducted at one of the two recruitment centers enrolled in the study: Schizophrenia Program from the Federal University of Sao Paulo (PROESQ – UNIFESP) or at outpatient unity from Santa Casa School of Medical Sciences. Two trained psychiatrists performed the diagnosis of schizophrenia by using the Structured Clinical Interview of the DSM-IV (SCID-I) (American Psychiatric Association, 1994). Patients eligibility criteria included: (a) Subjects between 18 and 65 years old diagnosed with DSM-IV schizophrenia; (b) No history of substance abuse/dependence, in exception to tobacco and/or caffeine; (c) No diagnosis of any neurological conditions affecting central nervous system(e.g. Parkinson’s disease); (d) No history of seizures; (e) No unexplained loss of consciousness; (f) Stability of pharmacological treatment for at least 6 weeks; (g) No contraindications to tDCS, such as metal in the head or implanted brain medical devices; (h) No pregnancy at enrollment; (i) acceptance to participate in the study and provide the written informed consent, given in the first interview. Dropout was considered after the absence in two consecutive tDCS sessions or declined consent to participate. Sixty patients were initially contacted, 16 did not meet the eligibility criteria, and 20 patients refused to participate. Twenty-four patients were included and randomized to either sham or active tDCS treatment (Fig. 1).

2.3. Interventions

A total of ten sessions of either sham or active tDCS was performed, with the anode placed over the left DLPFC, and the cathode in the contralateral area, following the 10/20 EEG system (Beam et al., 2009; Saletu et al., 2010). The stimulation was performed over two consecutive weeks (Monday to Friday) and was initiated immediately after the baseline assessment. For the active stimulation, the following parameters were used: 2 mA of tDCS applied for 20 min with electrodes of 25 cm² wrapped in cotton material soaked in saline solution. For the sham stimulation, the stimulation procedures were the same, with the exception that the current remained active for the first 30 s of the session only. This is a suitable method of blinding for this technique (Brunoni and Fregni, 2011).

2.4. Outcomes

The primary outcome was the performance on working memory task. As a secondary outcome, we investigated the effects on negative symptomatology, based on PANSS negative subscale score. Other cognitive and clinical measures were analyzed as exploratory outcomes. Measures were obtained at three-time points: baseline (T0), after intervention (T1) and after a 3-month follow up (FU) (T2).

2.4.1. Clinical assessments

Patients were assessed at baseline and after the last session of tDCS using the Positive and Negative Syndrome Scale (Higuchi et al., 2014; Kay et al., 1988), the Calgary Depression Scale (CDS) (Addington et al., 1993) and the Global Assessment of Functioning Scale (GAF) (Endicott et al., 1976).

2.4.2. Cognitive assessments

The Brazilian version of the Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MATRICS) (Fonseca et al., 2017) was used to assess changes in cognition. The MATRICS is a standardized cognitive assessment for patients with schizophrenia composed by cognitive tasks with normative data (Green et al., 2004; Lezak et al., 2004; Strauss et al., 2006). Ten tests from the MATRICS were used, in order to evaluate the following domains (Fonseca et al., 2017; Green et al., 2004):

(1) Speed of processing: Trail Making Test: Part A (TMTA), Brief Assessment of Cognition in Schizophrenia (BACS): Symbol Coding and Category Fluency Test: Animal naming (Fluency);
(2) Attention: Continuous Performance Test—Identical Pairs (CPT-IP);
(3) Working memory: Wechsler Memory Scale—Third Edition (WMS-III): Spatial Span (SS) and Letter-Number Span Test (LNS);
(4) Verbal learning: Hopkins Verbal Learning Test—Revised (HVLT-R);
(5) Visual learning: Brief Visuospatial Memory Test—Revised (BVMT-R);
(6) Reasoning and problems solving: Neuropsychological Assessment Battery (NAB): Mazes;
In this study, we excluded the MSCEIT subtest from the MATRICS given its low-reliability coefficient in Brazilian versions (Fonseca et al., 2017). The outcome analyzed from MATRICS was the T-scores of the six remaining domains (Kern et al., 2011; McCleery et al., 2015). Intelligence coefficient (IQ) was estimated by the composite score of the subtests Vocabulary and Matrix Reasoning from the Brazilian Version of the Wechsler Adult Intelligence Scale – 3rd edition (Nascimento, 2005).

2.5. Randomization

Subjects were assigned to the active or sham stimulation in a 1:1 ratio using blocked randomization with randomly permuted blocks of four and six. A researcher not involved in the execution of the trial performed the randomization at randomization.com. Randomization was performed using www.randomizer.org.

2.6. Blinding

Both the subjects receiving the interventions and the researchers performing the assessments were blinded. The researcher administering the stimulation protocols was not blinded.

3. Statistical analysis

Data were analyzed following the intention-to-treat approach, and the missing data were inputted based on the last observation carried forward (LOCF), using IBM SPSS v.21 software. For analysis of the clinical and sociodemographic data, Fisher’s exact test was used for categorical data (gender) and the t-test for independent samples for numeric data (age, duration of the illness an IQ, PANSS positive score, PANSS negative score, PANSS general score, PANSS total scale score, CDS and GAF).

The primary outcome was to investigate the effects of tDCS on working memory; as a secondary outcome, we analyzed the changes in negative symptoms. Analyses of the other cognitive measures (speed of processing, attention, verbal learning, visual learning, and problem-solving) and clinical variables (GAF, PANSS positive score, PANSS general score and PANSS total scale score, PANSS negative factor, PANSS disorganization/cognitive factor, PANSS excitement factor, PANSS positive factor and PANSS depressive/anxiety factor) were exploratory.

The main analysis consisted of a series of generalized estimating equations (GEE) (using normal distribution, a robust estimator as covariance matrix and exchangeable correlation matrix structure) comparing the effects of the intervention on tDCS and sham groups. It included three main factors: time (baseline, after intervention and FU), group (SCH and sham) and the interaction of time and group. Post-hoc pairwise comparisons were run using Bonferroni adjustment for
4. Results

Participant flow is described in the Flow diagram (Fig. 1). Twenty-four patients were included in the analysis. Fifteen were recruited from outpatient unity Santa Casa School of Medical Sciences and nine from the Schizophrenia Program at the Federal University of Sao Paulo (PROESQ - UNIFESP).

4.1. Baseline data

The groups were matched for age, gender, duration of the illness and IQ. Baseline scores for GAF and PANSS scores (negative, general and total), except for PANSS positive score, with the tDCS group showing higher scores (t(22) = 2.332, p < 0.029) (for demographic data, see Table 1).

4.2. Outcomes

4.2.1. Cognitive assessments

There was no group x time interaction for any of the cognitive variables, as shown in Table 2. A time effect was found for WM, the speed of processing, visual learning and problem solving. Further analysis with Bonferroni test was not able to identify a significant difference between the three-time points for WM and visual learning. Total mean of the speed of processing t-score significantly increased from baseline to FU, with a mean difference for tDCS group of 2.42 and of 1.6 for sham group. Problem solving also had a significant total mean increase from baseline to FU, with a mean difference for tDCS group of 2.08 and of 3.0 for sham group.

4.2.2. Clinical assessments

There was a significant group x time interaction for negative symptoms. Bonferroni analysis suggests a significant reduction of 3.83 points from baseline to after intervention for tDCS group versus 0.17 points for the sham group (Fig. 2). Cohen's d suggests a small effect size for the mean differences from sham and tDCS groups (d = 0.23, CI.95 = 0.59-1.02). The differences were maintained in the FU (mean change for tDCS = 3.42 and sham = 0.25).

Table 1
Clinical and demographic information of the participants, and baseline statistics between groups.

	tDCS	Sham	p value
Participant N	12	12	
Age (years)	39.17, SD 9.34	33.75, SD 12.08	0.232
Gender (N female)	2	5	0.371
Duration of the illness (years)	16.00, SD 11.62	10.00, SD 7.32	0.191
IQ (Mean score)	95.15, SD 13.01	93.32, SD 11.30	0.738
PANSS positive (mean score)	16.25, SD 3.12	13.25, SD 3.19	0.029*
PANSS negative score (mean score)	23.75, SD 5.56	21.67, SD 8.40	0.481
PANSS general scores (mean score)	41.58, SD 9.68	36.08, SD 9.48	0.174
PANSS total scale score (mean score)	81.58, SD 16.04	71.00, SD 19.91	0.166
Total mean of the speed of processing	3.08, SD 2.97	1.17, SD 1.99	0.077
GAF (mean score)	43.83, SD 14.14	50.58, SD 18.17	0.321

* p < 0.05.

Table 2
Cognitive measures of the participants and statistics between different time-points derived from repeated measures GEE.

	Time	Groups	Total	Group	Time	Group x time
	Mean	SE	Mean	SE	Mean	SE
Time						
Working memory						
Baseline	45.75	1.78	40.25	2.45	43.00*	1.68
After	45.08	1.86	39.08	2.01	41.03*	1.49
FU	46.08	2.30	41.25	3.00	43.67*	2.09
Total	44.97	1.74	40.19	2.40		
Speed of processing						
Baseline	43.00	2.70	39.9	3.18	41.46A	2.09
After	46.17	1.98	40.50	2.95	43.33AB	1.78
FU	45.42	2.41	41.50	2.97	43.46B	1.91
Total	44.86	2.28	40.64	2.30		
Attention						
Baseline	42.42	2.99	37.25	4.22	39.83	2.59
After	43.66	3.35	38.50	4.24	41.08	2.70
FU	45.91	2.77	38.08	4.47	42.00	2.63
Total	44.00	2.90	37.94	4.01		
Verbal learning						
Baseline	35.17	2.94	40.33	2.41	37.75	1.90
After	35.00	3.71	39.33	4.60	37.17	2.58
FU	38.50	3.69	40.42	5.68	39.46	2.98
Total	36.22	3.13	40.02	3.30		
Visual learning						
Baseline	29.42	3.87	28.66	3.27	29.04*	2.54
After	34.67	4.54	32.00	4.23	33.33*	3.10
FU	30.42	3.27	28.92	3.24	29.67*	2.30
Total	31.50	3.49	29.86	3.15		
Problem solving						
Baseline	42.17	2.06	37.67	2.29	39.91A	1.54
After	42.25	1.77	39.83	2.23	41.04AB	1.42
FU	44.25	1.96	40.67	2.53	42.46B	1.60
Total	42.89	1.83	39.39	2.56		

Distinct lowercase letters represent statistically significant differences between groups.
Distinct capital letters represent statistically significant differences within groups. i.e. over time.

* p < 0.05.

Bonferroni test did not show significant difference.
The total and general PANSS scores also presented group × time interaction, with greater reduction from baseline to after stimulation and to FU in the active group: 10.75 and 6 points for tDCS group compared to 0.83 and 0.59 points for the sham group, respectively. There was no interaction for PANSS positive scale. Table 3 summarizes analyses of clinical variables. Analysis of PANSS five factors showed a group × time interaction for the negative, the disorganization/cognitive and for the depressive/anxiety factors. From baseline to after stimulation they reduced, respectively: 4.42, 3.58 and 3.83 points. From baseline to FU, they maintained the statistically significant reduction: 3.92, 3.42, 4.75 points. Factor analysis is presented on Table 4.

4.2.3. Safety
Two participants from the sham group dropped out after the first stimulation session. Both declared to have felt uncomfortable with the sensations from the stimulation. No subject in the intervention group dropped out.

5. Discussion
The main aim of this randomized controlled trial was to evaluate the efficacy of tDCS, a non-pharmacological intervention, for the treatment of cognitive deficits in chronic patients with schizophrenia. From our data, we are not able to confirm the superiority of applying real stimulation over sham stimulation to achieve this goal. As a secondary outcome, we also investigated the efficacy for the treatment of negative symptoms. The notable improvement in the psychopathology scores, including negative symptoms, highlights the effects of tDCS as a potential intervention to treat persistent symptoms that affect functioning and quality of life of schizophrenia subjects.

The hypothesis about passing direct current through the scalp is that it may induce spontaneous electric activity of the neurons, increasing or inhibiting excitability on the target brain area and, consequently, producing neuroplasticity effects (Brunoni et al., 2012; Zhao et al., 2017).

PFC is a critical region involved in coordinating cognition (Lewis and Glausier, 2016), planned and motivated behaviors (Horan et al., 2014).
and negative symptoms (Haro et al., 2015), and inducing excitability through different NIBS techniques seems to have an intuitive rationale to improve PFC related manifestations in schizophrenia.

The most common finding associated to improvement of symptomatology in schizophrenia is the normalization of the frontal cortex functional activation, including those from pharmacology and NIBS (Kani et al., 2017). Our choice for stimulating the left DLPFC and inhibiting the right contralateral area took into account the described under activation of the prefrontal area, called hypofrontality (Hill et al., 2004), the frequently reported deficits in hemisphere lateralization in schizophrenia (Núñez et al., 2017; Oertel-Knöchel and Linden, 2011), and the association of those brain abnormalities to cognitive deficits (Oertel-Knöchel and Linden, 2011) and to negative symptomatology in schizophrenia (Núñez et al., 2017; Shaffer et al., 2015; Walton et al., 2017; Wiblé et al., 2001).

Emergent research on non-pharmacological approaches have highlighted the effects of noninvasive brain stimulation (NIBS) on brain functioning (Farzan et al., 2012; Gomes et al., 2016; Hoffmann et al., 2000; Zhao et al., 2017) and in the improvement of refractory symptoms (Brunelin et al., 2012; Cordes et al., 2016; Hoffmann et al., 2000; Holi et al., 2004; Lee et al., 2005; Mondino et al., 2015). Transcranial magnetic stimulation (TMS) in the temporoparietal cortex has been investigated through different NIBS techniques seems to be an intuitive rationale to improve PFC related manifestations in schizophrenia.

Emergent research on non-pharmacological approaches have highlighted the effects of noninvasive brain stimulation (NIBS) on brain functioning (Farzan et al., 2012; Gomes et al., 2016; Hoffmann et al., 2000; Zhao et al., 2017) and in the improvement of refractory symptoms (Brunelin et al., 2012; Cordes et al., 2016; Hoffmann et al., 2000; Holi et al., 2004; Lee et al., 2005; Mondino et al., 2015). Transcranial magnetic stimulation (TMS) in the temporoparietal cortex has been investigated through different NIBS techniques seems to be an intuitive rationale to improve PFC related manifestations in schizophrenia.

Table 4
Sensitivity analysis of 5 PANSS factors and statistics between different time-points derived from repeated measures GEE.

Time	Group	Total	Group	Time	Group + time						
	TDCS	SHAM									
PANSS											
Negative factor	Baseline	29.92A	1.99	27.58A	3.08	28.75	1.84				
	After	25.50B	1.95	26.92A	3.03	26.21	1.80				
	FU	26.00B	2.02	26.83A	3.07	26.42	1.84				
	Total	27.14	1.94	27.11	3.01	27.11	3.01				
PANSS	Cognition factor	Baseline	24.92A	1.49	22.50A	2.20	23.71	1.33	0.840	0.001_{***}	0.016¹
	After	21.33B	1.54	21.92A	2.18	21.62	1.34				
	FU	21.50B	1.67	21.75A	2.15	21.62	1.36				
	Total	22.58	1.48	22.05	2.16	22.05	2.16				
PANSS	Excitement factor	Baseline	17.08	1.37	16.41	1.37	16.75	1.19	0.851	0.389	0.574
	After	16.33	1.29	15.67	1.29	16.00	0.95				
	FU	15.42	1.29	15.67	1.29	15.54	0.98				
	Total	16.28	1.43	15.92	1.28						
PANSS	Positive factor	Baseline	23.33	1.24	17.83	1.28	20.58	0.89	0.023¹	0.258	0.662
	After	21.58	1.69	17.75	1.58	19.67	1.16				
	FU	21.00	1.77	17.00	1.69	19.00	1.23				
	Total	21.97	1.34	17.55b	1.42						
PANSS	Depression factor	Baseline	22.92A	1.81	19.67A	1.26	21.04	1.10	0.778	0.092	0.029¹
	After	19.08B	1.79	19.67A	1.43	19.37	1.15				
	FU	18.16B	1.75	19.58A	1.52	18.87	1.16				
	Total	20.05	1.58	19.47	1.33						

Distinct lowercase letters represent statistically significant differences between groups.
Distinct capital letters represent statistically significant differences within groups, i.e. over time.

¹ p < 0.05.
^{***} p < 0.001.
The effects of tDCS on cognition in clinical population seems to be challenged by inter-individual variability, which may include from baseline cognitive characteristics and background, being affected by practice effect affecting both active and sham groups (Hasan et al., 2016), to genetic variables (Wiegand et al., 2016). The neuroplasticity effect of NIBS has been reinforced by investigation about their effects on neurotransmitters levels in the brain. Anodal tDCS is associated with reduction in gamma-aminobutyric acid (GABA) neurotransmitters in young (Bachtar et al., 2015) and older healthy adults (Antonenko et al., 2017) although its mechanism of action is still unclear. Moreover, the role of GABA in negative and cognitive symptoms of schizophrenia has been discussed (Wassell et al., 2003) and reducing glutamatergic neurotransmission is suggested as a promising intervention (Merritt et al., 2016) for persistent symptoms. From our data, we may speculate that the sustained reduction of the negative symptoms may be associated to neuroplasticity effects of the neuromodulation.

Although the cognitive tests did not improve with the intervention, the disorganized/cognitive dimension of the PANSS has shown a significant improvement. Two explanations can be offered. First, the disorganized dimension of the PANSS and cognitive function are not the same construct. In a meta-analysis of 104 studies (n = 80,150) conducted by others (Ventura et al., 2010), disorganized symptoms were more strongly linked to neurocognitive deficits than positive symptoms. However, the relationship between disorganization and neurocognition were at most moderate ($r = -0.23; p < 0.01$). Despite the considerable overlap between disorganization and cognitive impairment, they might represent different symptom dimensions (Klingberg et al., 2006). Moreover, the roles of specific disorganized symptoms in the neurocognition, such as social cognition relationship, were less clear (Minor et al., 2015). Interestingly, their findings suggested that disorganized symptoms seemed to respond to treatment interventions differently than cognitive dysfunction. However, improvement in disorganization could affect cognitive impairments, hence being an important treatment consideration when aiming to improve cognitive impairments. Another explanation is the possible relationship between disorganization symptoms and functioning of the dorsolateral prefrontal cortex. A review of literature suggests that disorganization is more associated with dorsolateral prefrontal cortex than negative symptoms (Goghi et al., 2010).

In this trial, we verified that negative symptoms have improved after left DLPFC anodal stimulation, but we could not confirm the effect on cognition. These results should be interpreted with caution, since different limitations were present. The small sample size have prevented the detection of cognitive changes, leading to a type II error. Moreover, although Brazilian version of the MATRICS battery has small and non-significant practice effects for repeated measures assessment (Fonseca et al., 2017), the effect of being observed induces changes in behavior (McCambridge et al., 2014). Larger sample sizes warranted to confirm or refute the hypothesis that tDCS facilitate the cognitive process in patients with schizophrenia.

A selection bias may exist considering that we recruited chronic patients from two ambulatories, by convenience. It may represent only a part of the population suffering from schizophrenia. Sample characteristics, as the duration of the disease, level of functioning and baseline clinical and cognitive profile, should be explored in further investigations. Moreover, we did not control for the levels of caffeine neither to nicotine intake, which may be considered as intervenent variables for cognitive performance. Another limitation accounts to the fact that the investigator performing the stimulation protocol was not blinded. Moreover, we did not assess the effectiveness of the blinding directly.

In conclusion, although major advances have been registered in treatment of schizophrenia in last decades, treatment of negative symptoms and cognitive deficits still represents a major unmet need in the care of this population. The present results suggest the efficacy of tDCS for treatment of negative symptoms in schizophrenia. Further investigations of tDCS as an adjunct treatment should be done, including the association with other remediation approaches, as cognitive training.

Funding

JSG received scholarship from CAPES-PROEX during her PhD.

Author contributions

Gomes, J.S.: contributed with definitions of the study design and protocol procedures; she also contributed collecting data and analyzing the results; she contributed writing the first draft of the manuscript and in the final version.

Trevizol, A.P.: contributed to the clinical assessment and interpretation of results; he also contributed to the first draft and the final version of the manuscript.

Ducos, D.V.: contributed with definitions of the neuropsychological evaluation procedures; she also contributed collecting data. She reviewed and contributed to the final version of the manuscript.

Gadelha, A.: contributed with definitions of the study design, with psychiatric evaluation procedures and selecting patients; he also contributed collecting data. He reviewed and contributed to the final version of the manuscript.

Ortiz, B.B.: contributed with definitions regarding the psychiatric evaluation procedures and collecting data; He contributed to the interpretation of results and also reviewed the final version of the manuscript.

Fonseca, A.O.: contributed selecting the patients and collecting data. She reviewed and contributed to the final version of the manuscript.

Azevedo, C.C.: contributed collecting and organizing the data. She reviewed and contributed to the final version of the manuscript.

Guimaraes, L.S.P.: contributed to the statistical analysis and description of the results. He also reviewed and contributed to the final version of the manuscript.

Shiozawa, P.: contributed with definitions regarding the psychiatric evaluation procedures and collecting data; he reviewed the final version of the manuscript.

Cordeiro, Q: contributed with definitions of the study. He reviewed and contributed to the final version of the manuscript.

Lacerda, A: contributed to study design. He contributed to interpretation of results and in the final version of the manuscript.

Dias, AM: contributed with definitions of the study design and protocol procedures. He contributed to interpretation of results and the final version of the manuscript.

Acknowledgements

We would like to thank all the patients enrolled in this study. Special acknowledgments to the neuropsychologists who supported the assessment: Valquiria Oliveira Barbosa e Ana Luiza Franco.

References

Addington, D., Addington, J., Matica-Tyndale, E., 1993. Assessing depression in schizophrenia: the Calgary Depression Scale. The British journal of psychiatry. American Psychiatric Association, 2013. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub.

Andreasen, N.C., O’Leary, D.S., Flann, M., Nopoulos, P., Watkins, G.L., Boles Ponte, L.L., Hichwa, R.D., 1997. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 349, 1750–1754. http://dx.doi.org/10.1016/S0140-6736(96)08258-X.

Antonenko, D., Schubert, F., Bohm, F., Ittermann, B., Aydin, S., Hayek, D., Gritter, U., Floel, A., 2017. tDCS-induced modulation of GABA levels and resting-state functional connectivity in older adults. J. Neurosci. 79–17. http://dx.doi.org/10.1523/
