Non self-adjoint correct restrictions and extensions with real spectrum

B.N. Biyarov, Z.A. Zakarieva, G.K. Abdrasheva

February 2, 2021

Key words: maximal (minimal) operator, correct restriction, correct extension, real spectrum, non self-adjoint operator.

AMS Mathematics Subject Classification: 35B25, 47A55.

Abstract. The work is devoted to the study of the similarity of a correct restriction to some self-adjoint operator in the case when the minimal operator is symmetric. The resulting theorem was applied to the Sturm-Liouville operator and the Laplace operator. It is shown that the spectrum of a non self-adjoint singularly perturbed operator is real and the corresponding system of eigenvectors forms a Riesz basis.

1 Introduction

Let a linear operator \(L \) be given in a Hilbert space \(H \). The linear equation

\[Lu = f \]

(1.1)

is said to be correctly solvable on \(R(L) \) if \(\|u\| \leq C\|Lu\| \) for all \(u \in D(L) \) (where \(C > 0 \) does not depend on \(u \)) and everywhere solvable if \(R(L) = H \). If (1.1) is simultaneously correct and solvable everywhere, then we say that \(\hat{L} \) is a correct operator. A correctly solvable operator \(L_0 \) is said to be minimal if \(R(L_0) \neq H \). A closed operator \(\hat{L} \) is called a maximal operator if \(R(\hat{L}) = H \) and \(\text{Ker} \hat{L} \neq \{0\} \). An operator \(A \) is called a restriction of an operator \(B \) and \(B \) is said to be an extension of \(A \) if \(D(A) \subset D(B) \) and \(Au = Bu \) for all \(u \in D(A) \).

Note that if a correct restriction \(L \) of a maximal operator \(\hat{L} \) is known, then the inverses of all correct restrictions of \(\hat{L} \) have in the form

\[L^{-1}_K f = L^{-1} f + Kf, \]

(1.2)

where \(K \) is an arbitrary bounded linear operator from \(H \) into \(\text{Ker} \hat{L} \).

Let \(L_0 \) be some minimal operator, and let \(M_0 \) be another minimal operator related to \(L_0 \) by the equation \((L_0u,v) = (u,M_0v) \) for all \(u \in D(L_0) \) and \(v \in D(M_0) \). Then
\(\hat{L} = M_0^* \) and \(\hat{M} = L_0^* \) are maximal operators such that \(L_0 \subset \hat{L} \) and \(M_0 \subset \hat{M} \). A correct restriction \(L \) of a maximal operator \(\hat{L} \) such that \(L \) is simultaneously a correct extension of the minimal operator \(L_0 \) is called a boundary correct extension. The existence of at least one boundary correct extension \(L \) was proved by Vishik in [2], that is, \(L_0 \subset L \subset \hat{L} \).

The inverse operators to all possible correct restrictions \(L_K \) of the maximal operator \(\hat{L} \) have the form (1.2), then \(D(L_K) \) is dense in \(H \) if and only if \(\text{Ker}(I + K^*L^*) = \{0\} \).

All possible correct extensions \(M_K \) of \(M_0 \) have inverses of the form

\[
M_K^{-1} f = (L_K^*)^{-1} f = (L^*)^{-1} f + K^* f,
\]

where \(K \) is an arbitrary bounded linear operator in \(H \) with \(R(K) \subset \text{Ker} \hat{L} \) such that

\[
\text{Ker}(I + K^*L^*) = \{0\}.
\]

Lemma 1.1 (Hamburger [3, p. 269]). Let \(A \) be a bounded linear transformation in \(H \) and \(N \) a linear manifold. If we write \(A(N) = M \) then

\[
A^*(M^\perp) = N^\perp \cap R(A^*).
\]

Proposition 1.1 ([4, p. 1863]). A correct restrictions \(L_K \) of the maximal operator \(\hat{L} \) are correct extensions of the minimal operator \(L_0 \) if and only if \(R(K) \subset \text{Ker} \hat{L} \) and \(R(M_0) \subset \text{Ker} K^* \).

The main result of this work is the following.

Theorem 1.2. Let \(L_0 \) be symmetric minimal operator in a Hilbert space \(H \), \(L \) be self-adjoint correct extension of the \(L_0 \), and \(L_K \) be correct restriction of the maximal operator \(\hat{L}(\hat{L} = L_0^*) \). If

\[
R(K^*) \subset D(L), \quad I + KL \geq 0,
\]

and \(I + KL \) is invertible, where \(L \) and \(K \) are the operators in representation (1.2), then \(L_K \) similar to a self-adjoint operator.

Corollary 1.1. If \(K \) satisfies the assumptions of Theorem 1.2 then the spectrum of \(L_K \) is real, that is, \(\sigma(L_K) \subset \mathbb{R} \).

Corollary 1.2. If \(K \) satisfies the assumptions of Theorem 1.2 and \(L^{-1} \) is the compact operator, then the system of eigenvectors of \(L_K \) forms a Riesz basis in \(H \).

Corollary 1.3. The results of Theorem 1.2 are also valid if conditions “\(I + KL \geq 0 \) and \(I + KL \) is invertible” replase to condition “\(KL \geq 0 \)”.

Corollary 1.4. The results of Theorem 1.2, Corollary 1.1-1.3 are also valid for the \(L_{K}^* \).
2 Preliminaries

In this section, we present some results for correct restrictions and extensions which are used in Section 3.

If \(A \) is bounded linear transformation from a complex Hilbert space \(H \) into itself, then the numerical range of \(A \) is by definition the set

\[
W(A) = \{(Ax, x) : x \in H, \|x\| = 1\}.
\]

It is well known and easy to prove that if \(\sigma(A) \) denotes the spectrum of \(A \), then

\[
\sigma_p(A) \subset W(A), \quad \sigma(A) \subset \overline{W(A)},
\]

for the point spectrum \(\sigma_p(A) \) and the spectrum \(\sigma(A) \) of \(A \), where the bar indicates closure. The numerical range of an unbounded operator \(A \) in a Hilbert space \(H \) is defined as

\[
W(A) = \{(Ax, x) : x \in D(A), \|x\| = 1\},
\]

and similarly to the bounded case, \(W(A) \) is convex and satisfies \(\sigma_p(A) \subset W(A) \). In general, the conclusion \(\sigma(A) \subset \overline{W(A)} \) does not surely hold for unbounded operators \(A \) (see [5]).

Theorem 2.1 (Theorem 2 in [6, p.181]). The following are equivalent conditions on an operator \(T \):

1. \(T \) is similar to a self-adjoint operator.
2. \(T = PA \), where \(P \) is positive and invertible and \(A \) is self-adjoint.
3. \(S^{-1}TS = T^* \) and \(0 \not\in W(S) \).

Theorem 2.2 (Theorem 1 in [7, p.215]). Let \(A \) and \(B \) operators on the complex Hilbert space \(H \). If \(0 \not\in W(A) \) then

\[
\sigma(A^{-1}B) \subset \overline{W(B)/W(A)}.
\]

Corollary 2.1 (Corollary in [7, p.218]). If \(A > 0 \), \(B \geq 0 \) and \(C = C^* \), then \(\sigma(AB) \) is positive and \(\sigma(AC) \) is real.

Theorem 2.3 (Theorem A in [8, p.508]). The numerical range \(W(T) \) of \(T \) is convex and \(W(aT + b) = aW(T) + b \) for all complex numbers \(a \) and \(b \).

3 Proof of Theorem 1.2

We transform (1.2) to the form

\[
L_K^{-1} = L^{-1} + K = (I + KL)L^{-1}.
\]

(3.1)

Then \(L_K \) is defined as the restriction of the maximal operator \(\hat{L} \) on the domain

\[
D(L_K) = \{u \in D(\hat{L}) : (I - K\hat{L})u \in D(L)\}.
\]
Now let us prove Theorem 1.2. It was proved in [9, p. 27] that KL is bounded on $D(L)$ (that is, $KL \in B(H)$) if and only if

$$R(K^*) \subset D(L^*).$$

It follows from $D(L) = H$ that KL is bounded on H. In the future, instead of KL, we will write KL. Then, by virtue of Theorem 2.1 and taking into account the conditions of Theorem 1.2 that $I + KL \geq 0$ and $I + KL$ is invertible, we obtain proof of Theorem 1.2.

The proof of Corollary 1.1 follows from Corollary 2.1. Corollary 1.2 is easy to obtain from the fact that the operator

$$C = (I + KL)^{1/2}L^{-1}(I + KL)^{1/2}$$

is self-adjoint and

$$L^{-1}_K = (I + KL)^{1/2}C(I + KL)^{-1/2} = (I + KL)L^{-1}. \quad (3.2)$$

Let us proof Corollary 1.3. By Theorem 2.3, we get that $0 \notin W(I + KL)$. Then $I + KL \geq 0$ and $I + KL$ is invertible.

The proof of Corollary 1.4 follows from (3.2), since C is a self-adjoint operator and in the case Corollary 1.2 the self-adjoint operator C is compact.

4 Non self-adjoint perturbations for some differential operators

Example 1. We consider the Sturm-Liouville equation on the interval $(0, 1)$

$$\hat{L}y = -y'' + q(x)y = f, \quad (4.1)$$

where $q(x)$ is the real-valued function of $L^2(0, 1)$. We denote by L_0 the minimal operator and by \hat{L} the maximal operator generated by the differential equation (4.1) in the space $L_2(0, 1)$. It’s clear that

$$D(L_0) = \hat{W}_2^2(0, 1)$$

and

$$D(\hat{L}) = \{y \in L^2(0, 1) : y, y' \in AC[0, 1], y'' - q(x)y \in L^2(0, 1)\}.$$

Then $\text{Ker} \hat{L} = \{a_{11}c(x) + a_{12}s(x)\}$, where a_{11}, a_{12} are arbitrary constants, and the functions $c(x)$ and $s(x)$ are defined as follows

$$c(x) = 1 + \int_0^x \mathcal{K}(x, t; 0) \, dt, \quad s(x) = x + \int_0^x \mathcal{K}(x, t; \infty) \, t \, dt,$$

where

$$\mathcal{K}(x, t; 0) = \mathcal{K}(x, t) + \mathcal{K}(x, -t), \quad \mathcal{K}(x, t; \infty) = \mathcal{K}(x, t) - \mathcal{K}(x, -t),$$

and

$$\mathcal{K}(x, t; \infty) = \begin{cases} \mathcal{K}(x, t) & \text{if } x > t, \\ 0 & \text{if } x < t, \end{cases} \quad \mathcal{K}(x, -t; \infty) = \begin{cases} 0 & \text{if } x > -t, \\ \mathcal{K}(x, t) & \text{if } x < -t. \end{cases}$$
and \(\mathcal{K}(x, t) \) is the solution of the following Goursat problem

\[
\begin{align*}
\left\{ \begin{array}{l}
\frac{\partial^2 \mathcal{K}(x, t)}{\partial x^2} - \frac{\partial^2 \mathcal{K}(x, t)}{\partial t^2} = q(x)\mathcal{K}(x, t), \\
\mathcal{K}(x, -x) = 0, \quad \mathcal{K}(x, x) = \frac{1}{2} \int_0^x q(t)dt,
\end{array} \right.
\end{align*}
\]

in the domain

\[
\Omega = \{(x, t) : 0 < x < 1, \ -x < t < x\}.
\]

Note that \(c(0) = s'(0) = 1, \ c'(0) = s(0) = 0 \) and Wronskian

\[
W(c, s) \equiv c(x)s'(x) - c'(x)s(x) = 1.
\]

As a fixed boundary correct extension \(L \) we take the operator corresponding to the Dirichlet problem for equation (4.1) on \((0, 1)\). Then

\[
D(L) = \{ y \in W^2_2(0, 1) : y(0) = 0, \ y(1) = 0 \}.
\]

Therefore the description of the inverse of all correct restrictions \(L_K \) of the maximal operator \(\hat{L} \) has the form

\[
y \equiv L_K^{-1} f = \int_0^x \left[c(x)s(t) - s(x)c(t) \right] f(t) dt
\]

\[
- \frac{s(x)}{s(1)} \int_0^1 \left[c(1)s(t) - s(1)c(t) \right] f(t) dt
\]

\[
+ c(x) \int_0^1 f(t)\sigma_1(t)dt + s(x) \int_0^1 f(t)\sigma_2(t) dt,
\]

where \(\sigma_1(x), \ \sigma_2(x) \in L_2(0, 1) \) which uniquely determine the operator \(K \) from (1.2) in the following form

\[
Kf = c(x) \int_0^1 f(t)\sigma_1(t)dt + s(x) \int_0^1 f(t)\sigma_2(t) dt, \quad \text{for all} \ f \in L_2(0, 1).
\]

\(K \) is a bounded operator in \(L_2(0, 1) \) acting from \(L_2(0, 1) \) to \(\text{Ker} \ \hat{L} \). The operator \(L_K \) is the restriction of \(\hat{L} \) on the domain

\[
D(L_K) = \left\{ y \in W^2_2(0, 1) : y(0) = \int_0^1 \left[-y''(t) + q(t)y(t) \right]\sigma_1(t)dt; \right. \]

\[
y(1) = c(1)y(0) + s(1) \int_0^1 \left[-y''(t) + q(t)y(t) \right]\sigma_2(t) dt \left. \right\}.
\]

From the condition

\[
R(K^*) \subset D(L^*) = D(L)
\]

we have that

\[
KLy = c(x) \int_0^1 y(t)\left[-\sigma_1''(t) + q(t)\sigma_1(t) \right] dt + s(x) \int_0^1 y(t)\left[-\sigma_2''(t) + q(t)\sigma_2(t) \right] dt,
\]
where

\[y \in D(L), \quad \sigma_1, \sigma_2 \in W_2^2(0, 1), \quad \sigma_1(0) = \sigma_1(1) = \sigma_2(0) = \sigma_2(1) = 0. \]

If \(I + KL \geq 0 \) and \(I + KL \) is invertible, then the spectrum of the operator \(L_K \) consists only of real eigenvalues \(\{\lambda_k\}_{k=1}^\infty \) and the corresponding eigenfunctions \(\{\varphi_k\}_{k=1}^\infty \) forms a Riesz basis in \(L^2(0,1) \), since \(L^{-1} \) is a compact self-adjoint positive operator. In particular, if

\[\sigma_1(x) = \alpha(L^{-1}c)(x), \quad \sigma_2(x) = \beta(L^{-1}s)(x), \quad \alpha, \beta \geq 0, \]

then \(KL \geq 0 \). Therefore, by Corollary 1.3, the results of Theorem 1.2 are valid for \(L_K \). In this case, \(L_K^{-1} \) has the form

\[y = L_K^{-1}f = L^{-1}f + c(x) \int_0^1 f(t)(L^{-1}c)(t)dt + s(x) \int_0^1 f(t)(L^{-1}s)(t)dt. \]

Then \((L_K^{-1})^* = (L_K^*)^{-1} \) has form

\[v(x) = (L^{-1}f)(x) + \alpha(L^{-1}c)(x) \int_0^1 f(t)c(t)dt + \beta(L^{-1}s)(x) \int_0^1 f(t)s(t)dt. \]

Thus, we have

\[(L_K^*v)(x) = -v''(x) + q(x)v(x) + a(x)v'(0) + b(x)v'(1) = f(x), \]

\[D(L_K^*) = \{ v \in W_2^2(0,1) : v(0) = v(1) = 0 \}; \]

where

\[a(x) = \frac{\alpha \beta(c,s)s(x) - \alpha(1 + \beta\|s\|^2)c(x)}{(1 + \alpha \|c\|^2)(1 + \beta\|s\|^2) - \alpha \beta \|c,s\|^2}, \]

\[b(x) = \frac{\alpha[1](1 + \beta\|s\|^2) - \beta s(1)(c,s)c(x) - \beta[\alpha c(1)(c,s) - s(1)(1 + \alpha\|c\|^2)]s(x)}{(1 + \alpha \|c\|^2)(1 + \beta\|s\|^2) - \alpha \beta \|c,s\|^2}, \]

\(a(x), b(x) \in \text{Ker} \hat{L} \) and \((\cdot,\cdot)\) is scalar product in \(L^2(0,1) \). The operator \(L_K^* \) acts as

\[L_K^* = L^* + Q, \]

where

\[L^* = -\frac{d^2}{dx^2} + q(x), \]

\[(Qv)(x) = a(x) < \delta'(x), v(x) > + b(x) < \delta'(x - 1), v(x) > = a(x)v'(0) + b(x)v'(1), \]

which is, the function \(Q \in W_2^{-2}(0,1) \). Thus, we have constructed an example of a non self-adjoint singularly perturbed Sturm-Liouville operator with a real spectrum and the system of eigenvectors that forms a Riesz basis in \(L^2(0,1) \).
Example 2. In the Hilbert space $L^2(\Omega)$, where Ω is a bounded domain in \mathbb{R}^m with an infinitely smooth boundary $\partial \Omega$, let us consider the minimal L_0 and maximal \hat{L} operators generated by the Laplace operator
\[-\Delta u = -\left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \cdots + \frac{\partial^2 u}{\partial x_m^2} \right). \] (4.2)

The closure L_0, in the space $L^2(\Omega)$ of Laplace operator (4.2) with the domain $C^\infty_0(\Omega)$, is the minimal operator corresponding to the Laplace operator. The operator \hat{L}, adjoint to the minimal operator L_0 corresponding to Laplace operator, is the maximal operator corresponding to the Laplace operator. Then
\[D(\hat{L}) = \{ u \in L^2(\Omega) : \hat{L}u = -\Delta u \in L^2(\Omega) \}. \]

Denote by L the operator, corresponding to the Dirichlet problem with the domain
\[D(L) = \{ u \in W^2_2(\Omega) : u|_{\partial \Omega} = 0 \}. \]

We have (1.2), where K is an arbitrary linear operator bounded in $L^2(\Omega)$ with $R(K) \subset \ker \hat{L} = \{ u \in L^2(\Omega) : -\Delta u = 0 \}$.

Then the operator L_K is defined by
\[\hat{L}u = -\Delta u, \]
on
\[D(L_K) = \{ u \in D(\hat{L}) : [(I-K\hat{L})u]|_{\partial \Omega} = 0 \}, \]
where I is the identity operator in $L^2(\Omega)$. Note that L^{-1} is a self-adjoint compact operator. If K satisfies the conditions of Theorem 1.2 then L_K is non self-adjoint operator with a real positive spectrum (i.e., $\sigma(L_K) \subset \mathbb{R}^+$), and the system of eigenvectors L_K forms a Riesz basis in $L^2(\Omega)$. In particular, if
\[Kf = \varphi(x) \int_{\Omega} f(t) \psi(t) dt, \]
where $\varphi \in W^2_{2,loc}(\Omega) \cap L^2(\Omega)$ is a harmonic function and $\psi \in L^2(\Omega)$, then $K \in B(L^2(\Omega))$ and $R(K) \subset \ker \hat{L}$. From $R(K^*) \subset D(L)$ it follows that $\psi \in W^2_2(\Omega)$ and $\psi|_{\partial \Omega} = 0$. From the condition $KL \geq 0$ we have that $\psi(x) = \alpha(L^{-1}\varphi)(x), \ \alpha \in \mathbb{R}^+$. Hence the operator L_K is the restriction of \hat{L} to the domain
\[D(L_K) = \{ u \in D(\hat{L}) : \left(u - \frac{\varphi}{1 + \|\varphi\|^2} \int_{\Omega} u(y)\varphi(y)dy \right)|_{\partial \Omega} = 0 \}. \]

The inverse of L^{-1}_K has the form
\[u = L^{-1}_K f = L^{-1} f + \varphi \int_{\Omega} f(y)(L^{-1}\varphi)(y) dy. \] (4.3)
We find the adjoint operator \(L^*_K \). From (4.3) we have
\[
v = (L^{-1}_K)^* g = L^{-1} g + L^{-1} \varphi \int_{\Omega} g(y) \varphi(y) dy, \quad \text{for all } g \in L^2(\Omega).
\]
Then
\[
L^*_K v = -\Delta v + \frac{\varphi}{1 + \|\varphi\|^2} \int_{\Omega} (\Delta v)(y) \varphi(y) dy = g,
\]
\[
D(L^*_K) = D(L) = \{ v \in W^2_2(\Omega) : v |_{\partial \Omega} = 0 \}.
\]
By virtue of Corollary 1.4, the spectrum of the operator \(L^*_K \) consists only of real positive eigenvalues and the corresponding eigenfunctions forms a Riesz basis in \(L^2(\Omega) \). Note that
\[
(L^*_K v)(x) = -(\Delta v)(x) + \frac{\varphi(x)}{1 + \|\varphi\|^2} F(u) = g(x),
\]
where \(F \in W^{-2}_2(\Omega) \), since
\[
F(u) = \int_{\Omega} (\Delta v)(y) \varphi(y) dy.
\]
This is understood in the sense of the definition of the space \(H^{-s}(\Omega), \ s > 0 \) as in Theorem 12.1 (see [10, p. 71]).

Thus, we have shown the examples of a non self-adjoint singularly perturbed operator with a real spectrum. Moreover, the corresponding eigenvectors forms a Riesz basis in \(L^2(\Omega) \).

References

[1] B.K. Kokebaev, M. Otelbaev, A.N. Shynibekov, About expansions and restrictions of operators in Banach space. Uspekhi Matem. Nauk 37 (1982), no. 4, 116–123 (in Russian).

[2] M.I. Vishik, On general boundary problems for elliptic differential equations. Tr. Mosk. Matem. Obs. 1 (1952), 187–246 (in Russian). English transl.: Am. Math. Soc., Transl., II, 24 (1963), 107–172.

[3] H.L. Hamburger, Five notes on a generalization of quasi-nilpotent transformations in Hilbert space, Proc. London Math. Soc. 3, 1 (1951), 494–512.

[4] B.N. Biyarov, Spectral properties of correct restrictions and extensions of the Sturm-Liouville operator. Differenisial’nye Uravneniya 30 (1994), no. 12, 2027–2032 (in Russian). English transl.: Differ. Equations 30 (1994), no. 12, 1863–1868.

[5] D.Y. Wu and A. Chen, Spectral inclusion properties of the numerical range in a space with an indefinite metric, Linear Algebra Appl. 435 (2011), 1131–1136.
[6] H. Radjavi and J.P. Williams, *Products of self-adjoint operators*, Michigan Math. J. **16** (1969), 177–185.

[7] J.P. Williams, *Spectra of products and numerical ranges*, J. Math. Anal. Appl. **17** (1967), 214–220.

[8] M. Radjabalipour and H. Radjavi, *On the geometry of numerical ranges*, Pacific J. Math. **61** (1975), No. 2, 507–511.

[9] B.N. Biyarov, D.A. Svistunov, G.K. Abdrasheva, *Correct singular perturbations of the Laplace operator*, Eurasian Math. J. **11** (2020), No. 4, 25–34.

[10] J.L. Lions, E. Magenes *Non-Homogeneous Boundary Value Problems and Applications I*. Springer-Verlag, Berlin, 1972.

Bazarkan Nuroldinovich Biyarov,
Zaruet Almazovna Zakarieva,
Gulnara Kaparovna Abdrasheva,
Faculty of Mechanics and Mathematics
L.N. Gumilyov Eurasian National University
13 Munaitpasov St,
010008 Nur-Sultan, Kazakhstan
E-mail: bbiyarov@gmail.com,
zaruet.zakarieva@mail.ru,
gulnara.abdrash@gmail.com