Review Article

Suresh Sagadevan*, Shahla Imteyaz, Baranya Murugan, Jayasingh Anita Lett, Nanthini Sridewi, Getu Kassegn Weldegebrieal, Is Fatimah, and Won-Chun Oh*

A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications

https://doi.org/10.1515/gps-2022-0005
received August 06, 2021; accepted November 29, 2021

Abstract: Metal oxide nanoparticles (NPs) have found a variety of applications in numerous industrial, medical, and environmental fields, attributable to recent advances in the nanotechnology field. Titanium dioxide nanoparticles (TiO₂-NPs) have gained importance as metal oxide NPs due to their potential in various fields, particularly nanomedicine and other biomedicine fields. Several studies have confirmed that NPs produced via the biosynthesis route using natural resources have significant advantages such as fewer toxic contaminants, less subsequent complex chemical synthesis, environmental friendliness, cost-effectiveness, and stability when compared to NPs produced by conventional methods, and its production with controlled shapes and sizes. Therefore, considerable effort is being expended to implement biological synthesis methods with these proven advantages. TiO₂-NPs can be made using a variety of biological, chemical, and physical methods. Physicochemical methods are costly, emit high levels of toxic chemicals into the atmosphere, and consume a lot of energy. On the other hand, the biological approach is an environmentally safe, cost-effective, dependable, convenient, and easy way to synthesize TiO₂-NPs. In this review, the bio-mediated synthesis, as well as various biomedical applications of TiO₂-NPs, were discussed.

Keywords: bio-mediated synthesis, green fabrication, TiO₂ nanoparticles

1 Introduction

The emerging field of nanotechnology mainly focuses on materials that have a particle size in the range of 1–100 nm, and these particles are known as nanoparticles (NPs). These NPs have remarkable physical and chemical properties, different from their bulkier counterparts [1–3], owing to the increase in the surface-to-volume ratio. The unique properties of NPs have been summarized in terms of optical, electrical, thermal, photochemical, energy, biomedical science, and catalytic properties [4–6]; these can be well channelized in “nano industries” for better and sustainable industrial applications to protect the biological life [7]. In this regard, transition metals have gained a lot of attention due to (i) the incomplete d-orbitals in their atomic electronic configuration and (ii) their tendency to undergo variable oxidation states. Thus, the physical and chemical properties of these metals can be tailored for a vast range of applications in the areas of physics, chemistry, and materials science [8–11]. These metal elements can also form diversified oxide compounds, which serve as a promising candidate to broaden the horizon of research in the exploding fields of environment, agriculture, medicine, cosmetics, energy storage, fuel cells, semiconducting devices, sensors, and catalysts [12–17].
For any material, particle size plays a very crucial role in determining its basic properties:
(a) Structural properties: bulk oxides are robust and have low phase stability, whereas NP oxides can well undergo structural transformations and have low surface free energy because of their reduced particle size [18,19].
(b) Electronic properties: bulk oxide surfaces are the long-range effects of the Madelung field, which are limited in a nanostructured oxide [20,21]
(c) Physical and chemical properties: bulk oxides have a wide band gap and low reactivity, whereas the NP oxides have a low band gap and thus show good conductivity and chemical reactivity [17,22].

Thus, oxide NPs being limited in size and having a high density of corner surface sites can exhibit unique physical and chemical properties [17].

Titanium oxide (TiO\textsubscript{2}) NPs are among the most versatile and prominent oxides with an annual production of more than 10,000 tons in 2011 [23] due to their low cost, good chemical stability, high refractive index, strong oxidation properties, and oxygen vacancies in their lattice [2]. The wide band gap of titanium dioxide nanoparticles (TiO\textsubscript{2}-NPs) is one of the critical properties to be used as semiconductors in optical industrial applications [24,25]. Owing to the unique electrical or ionic properties of TiO\textsubscript{2}-NPs, they can be further tailored to find their application in the field of sensors and electronic devices [17]. They are white in color, water-insoluble powder with a very high refractive index, \(n = 2.4\), and can be used as a pigment in paint industries [26]. TiO\textsubscript{2} naturally exists in three polymorphic forms, namely rutile, anatase, and brookite having crystalline structures and are extensively used in gemstone industries [17]. TiO\textsubscript{2}-NPs also have enormous and successful applications in various fields of sensors [27], as photocatalysts for decomposing the wastewater pollutants [28,29], as anti-microbial and antibacterial agents [30,31], as food additives [32], and in cosmetics [14,33].

Thus, a facile mediated synthesis is a crucial step to control the morphology and structure of NPs compared to bulk powders. So, in this review, we discuss an environmentally safe, non-toxic green chemistry approach for the synthesis of TiO\textsubscript{2}-NPs, which has an advantage over the conventional industrial approach in terms of reagents handling and safety process [2,34]. To the best of our knowledge, we have also tried to summarize the different green synthesis research approaches for TiO\textsubscript{2}-NPs. Simultaneously, their various applications in biomedical (i.e. antibacterial, anticancer, antifungal, and antiviral) and environment have been discussed, which may clear our thoughts in this field and lead us to intrigue toward more sophisticated nanostructures in the coming years.

2 Synthesis of TiO\textsubscript{2}-NPs

2.1 Background

The conventional methods for the synthesis of metal oxides can be broadly classified in two different approaches, i.e. top-down and bottom-up (Figure 1). In the top-down approach, the bulk macroscopic particles are broken down into nanoscopic particles through various physical methods such as milling, etching, sputtering, pulse laser ablation, evaporation–condensation methods, etc. [34,35]. However, in a bottom-up approach, the atomic nuclei are joined together by a self-assembly process and nanosized particles are formed using several techniques and processes like chemical vapor deposition, sol–gel process, hydrothermal, sonochemical, flame spraying, spinning, green synthesis, etc. [35–37].

The bottom-up approach has gained interest due to its advantage of size and structural control in the synthesis of NPs. However, the chemical methods are cost-effective, mass production is limited, requires high energy, high temperature and pressure, uses toxic and volatile reagents that cause a hazard to the environment and human life. So, the scientific community has explored a new method of synthesis of NPs that is a biological method, which is environmentally benign, non-toxic, uses less expensive chemicals, and requires low energy for cost-effective production [38,39].

![Figure 1: Nanoparticle synthesis methods (bottom-up and top-down approaches).](image-url)
2.2 Biological methods for TiO$_2$-NP synthesis

In a broader perspective, the biological methods incorporate the “green synthesis” [40] of metal oxides that can be further divided into (a) photosynthesis (where the synthesis can be carried out using plant and its extracts) and (b) biosynthesis (synthesis from bacteria, algae, fungi, and actinomycetes extracts). Green synthesis is the most competent, naturally versatile, ecologically sound, and cost-effective method for the synthesis of NPs on a large scale [26,41]. A green solvent, good reducing agent, and environmentally safe material for stabilization are the prerequisite components for the green synthesis of NPs. The following sections deal with these components in detail.

2.2.1 Plant-assisted synthesis

Plant-mediated synthesis of NPs is found to be more stable than microbe-mediated synthesis [42]. Phytochemical synthesis of NPs was found to be simple, easy, cost-effective, and give high yield while maintaining sustainable developments [43]. Plant extracts can be generally obtained from any part of the plants, namely flowers, roots, seeds, and leaves. The desired part of the plant from where the extract has to be obtained is thoroughly washed and then boiled in solvent (ethanol or distilled water) for a few minutes followed by filtration. The resultant filtrate is the plant extract to be used as a reducing agent to which a suitable metallic precursor (titanium tetra isopropoxide, titanium tetra chloride, and titanyl hydroxide are generally used [2]) is added with constant stirring to obtain NPs [6,7,26,43–45]. The flow chart representation of the synthesis of plant-mediated NPs is shown in Figure 2.

Leaves are more widely utilized for extracts as they contain a rich source of metabolites. They are more feasible to derive extract without producing any toxic agents. Most of the above-listed extractions (Table 1) are simple, low cost, non-toxic, facile, and have shown their compatibility in various industrial and environmental applications without damaging the ecosystem.

Table 1: Different plant extracts obtained from various plant parts for the synthesis of TiO$_2$-NPs

S.No.	Plant name	Precursor	Size (nm)	Morphology	References
(A)	Stabilizing agent – leaves				
1.	*Psidium guajava* (Guava)	TiO(OH)$_2$	32.58	Spherical	[46]
2.	*Annona squamosa* (sugar apple)	TiO(OH)$_2$	23	Rutile, spherical	[47,48]
3.	*Nuytanthus arbor-tristis* L. (night flowering jasmine)	TTIP	100–150	Spherical	[49]
4.	*Catharanthus roseus* (Rosey periwinkle)	TiO$_2$ powder	25	Clustered	[50]
5.	*Ledebouria revolute* (African hyacinth)	TiO$_2$ powder	47	Tetragonal	[51]
6.	*Azadirachta indica* A. (neem)	TTIP	124	Spherical	[52]
7.	*Solanum trilobatum* (purple fruited pea eggplant)	TiO$_2$	70	Oval	[53]
8.	*Syzygium cumini* (jaman)	TiO$_2$	11	Spherical	[54]
9.	*Moring olivera* (drumstick)	TiO$_2$	100	Spherical	[55]
10.	*Eclipta prostrata* (false daisy)	TiO(OH)$_2$	36–68	Spherical, polydispersed	[56]
11.	*Murraya koenigii* (curry tree)	TTIP	2–15	Spherical	[57]
12.	*Cinnamomum tamala* (bay leaf)	TiO$_2$	8–20		[58]
13.	*Jatropha curcas* (jalam ghota)	TiCl$_4$	13	Spherical	[59]
14.	*Piper betle* (betel)	TNB	7	Spherical	[60]
(B)	Stabilizing agent – flowers				
15.	*Calotropis gigantea* (Crown flower)	TiO(OH)$_2$	160–220	Spherical, oval	[61]
16.	*Hibiscus rosa-sinensis*	Titanium oxysulphate	7	Spherical	[44]
(C)	Stabilizing agent – root				
17.	*Acanthophyllum laxiusculum*	TTIP	20–25	Spherical	[62]
18.	*Euphorbia heterodana jaub*	TiO(OH)$_2$	20	Spherical, rutile	[63]
(D)	Stabilizing agent – seeds				
19.	*Cucurbita pepo*	TiCl$_3$	—	—	[64]
20.	*Cicer arietinum* L.	TiCl$_4$	14	Spherical	[65]
2.2.2 Microbe-assisted synthesis (fungi and bacteria)

Fungal extract for the synthesis of NPs has a major advantage over bacterial extracts as they are economically viable, large-scale production, easy extraction, eco-friendly, and have a large surface area [66]. Fungi have been reported as a good source of metabolites and enzymes that can reduce bulk salts into elemental ions that are necessary for the synthesis of NPs. One of the studies done on *Aspergillus flavus* fungus explored that it was most useful for the synthesis of TiO$_2$-NPs because of its biodegradable nature [67]. The synthesis of NPs from *Saccharomyces cerevisiae* fungi is yet another approach toward eco-friendly products along with the benefits of downstream processing [68]. Various shapes and sizes of TiO$_2$-NPs can be obtained through fungal-mediated synthesis. Green synthesis of NPs through microbe-mediated approach is illustrated in Figure 3.

Bacterial-assisted synthesis of NPs can be done through two approaches: intercellular and extracellular approaches. The intercellular approach is time-consuming, so the extracellular approach is widely used because it takes less time as it does not need any downstream process for the collection of NPs from the organisms [42]. Thus, in recent years, TiO$_2$-NP$_5$ of different morphologies have been obtained through microbes as listed in Table 2.

3 Biological applications

With the recent advancements in nanotechnology, vast research and growth have been observed in the biomedical application of NPs, such as pharmaceuticals, diagnostics, cosmetics, electronics, etc. Nanomaterials possess unique physiochemical characteristics, which make them...

Table 2: Various microbial species with different morphologies for the synthesis of TiO$_2$-NPs

S.No.	Microbial species	Shape	Size (nm)	References
1.	*Bacillus mycoides*	Polydispersed	40–60	[69]
2.	*Bacillus subtilis*	Spherical	10–30	[70]
3.	*Bacillus subtilis*	Spherical	66–77	[71]
4.	*Lactobacillus*	Spherical	40–60	[72]
5.	*Planomicrobium* sp.	Spherical	100	[73]
6.	*Aspergillus niger*	Spherical	73.58	[74]
7.	*Aspergillus flavus*	Spherical	62–74	[67]
8.	*Fusarium oxysporum*	Quasi-spherical	9.8	[75]
9.	*Aspergillus niger, Rhizoctonia bataticola, Aspergillus fumigatus, and Aspergillus oryzae*	—	—	[76]

Figure 3: Pictorial representation of microbe-mediated NP synthesis.
interesting and useful in different fields of research. Their small size (1–100 nm), reactivity, and high surface area ease the entry inside the cells and help them to interact with biomolecular and cellular pathways that render them useful in drug therapeutics [77]. The mechanical and photochemical properties of TiO₂, make it more desirable for its use in cosmetics (sunscreens) [78], electronic devices (solar cells) [79], and medicine (dental and bone implants, vascular stents) [80–82]. Therefore, in the following subsections, we discuss in detail the biomedical applications of TiO₂-NPs as shown in Figure 4.

3.1 Antibacterial applications of TiO₂-NPs

Various metallic NPs have been studied toward different strains of bacteria. Titanium NPs displayed an eco-friendly biocidal property, which was ascribed to their powerful oxidizing potential. Titanium NPs are broadly utilized toward an extensive range of infectious microbes comprising several bacterial strains, endospores, fungi, algae, protozoa, viruses, microbial toxins, and prions [83]. A biological approach has also been used for the synthesis of TiO₂-NPs for their antibacterial applications [84]. Titanium NPs activate the creation of reactive oxygen species (ROS) during the attack of microbial cells [85]. Furthermore, the ROS terminates the microbes by disturbing the cell wall’s integrity, predominantly by phospholipids oxidation, consequently by lowering adhesion and change in ionic balance. Once it goes into the cytosol, it tends to prevent the respiratory cytosolic enzymes and alters macromolecules structures, constructing a significant result on cellular integrity and gene expression. Furthermore, it reduces phosphate uptake and communication between cells [86]. A schematic representation of the TiO₂-NP effect on bacterial cells is shown in Figure 5.

Titanium NPs destroy the microbes in an identical method. But, the biologically procured titanium NPs showed better antibacterial activity as compared with the green and chemically synthesized NPs. The significant factors that affect the antibacterial activity are morphology, size, and shape of the NPs, membrane composition, and type of bacteria. Green synthesized titanium NPs effectively impede both Gram-positive and Gram-negative bacteria; they are more effective toward Gram-positive bacteria owing to the structural complexity of Gram-negative bacterial cell walls [87]. The antimicrobial property of bio-interfered titanium NPs could be more efficient when exposed to UV fluorescence light irradiation [88]. TiO₂ nanocomposites showed magnified antileishmanial activity, and at the same time green synthesized TiO₂-NPs were exposed to Leishmanial cultures; it showed the reduction in cell viability and small-sized growth, and DNA fragmentation was noticed [89]. Green synthesis of TiO₂-NPs using the leaf extract of Euphorbia prosstrata worked as an antileishmanial agent to induce cell death [90]. Titanium NPs also displayed an enhanced antimicrobial activity in contrast to the standard antibiotic disks [91]. Hence, the improved antibacterial activity of titanium NPs significantly decreases the event for the development of antibiotic combat of pathogenic stains.

3.2 Toxicity of TiO₂-NPs

An in vitro cytotoxicity study has been completed using the (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
demonstrated that bio
tropisms compared with pure titanium NPs.

to bio
cancer activity of the plain and bio
testing KB oral cancer cells for the evaluation of the anti
cancer cells. The other group also studied MTS activity
which showed higher e
A549 cell lines using green synthesized titanium NPs,

Researchers have also studied the cytotoxicity assay of
form. Titanium NPs appear as agglomerated platelet-like
pared to the highly active, high refractive index anatase
lines. This is because of the transformation of anatase to
resulted in the transformation of anatase to
of the important methods of targeting viruses. TiO2-NPs
interact with the viral envelope via an unknown mechanism
and inactivation by photocatalytic oxidation, which is one
of these results demonstrated that bio-modified samples have greater activi-
ties compared with pure titanium NPs [94].

3.3 Antiviral properties of TiO2-NPs

The antiviral properties established in many of the NPs
such as Ag, TiO2, and carbon nanotubes are used to illust-
strate the antiviral mechanisms such as cell binding inhibi-
tion and capsid degradation. Antiviral properties of the
nanoparticle unordered to bring a variety of factors including
air and water in vitro. TiO2-NPs exhibited superior antiviral
activities at 6.25–100 μg·mL−1 doses as compared to the
Newcastle disease virus (NDV). Titanium NPs could destroy
the lipids through the viral envelope via the G-sol because
the glycoprotein spikes are harmful and are restricted by the
adjunct, which would not allow infections. Hence, titanium
NPs would be a potential platform for the treatment of New
castle disease virus infections and also an ideal candidate
for the evolution of new antiviral drugs in the near future
[95]. Titanium oxide nanostructures were used to act
against the broad bean stain virus (BBSV) in faba bean
plants. The faba bean treated with titanium oxide nano-
structures exhibited a superior reduction in the disease in
the following two weeks of infection with the broad bean
stain virus in contrast to untreated plants [96].

The virus is composed of genetic material (DNA or RNA)
and a protein coat named capsid. Viruses are a major threat
to mankind among infectious diseases, such as influenza
viruses, hepatitis virus B and C, HIV, herpes, and the current
chaotic coronavirus. Advancements in nanotechnology have
offered us effective combating therapeutic strategies against
various diseases, including antiviral infections. Nano-
conjugates such as silver, TiO2, and carbon have been shown
to target viruses by direct contact via different
methods. Nanomaterials destroy the viral protein coat by
physical destruction or photocatalytic oxidation, which is one
of the important methods of targeting viruses. TiO2-NPs
interact with the viral envelope via an unknown mechanism
and inactivation by photocatalytic oxidation. Examples of this type of destruction are reported in
influenza and MS2 bacteriophage viruses [97–99].

In another study, TiO2 nanoconjugates exhibited anti-
viral effects against the influenza virus (H3N2) via a direct
interaction mechanism [100]. TiO2 NPs have also demon-
strated antiviral activity against the avian influenza virus
(H9N2). Besides influenza virus, replication of H5N1 and
H1N1 viruses was inhibited by the use of DNA-tagged
TiNPs [101]. During the current hard times of pandemic,
a disinfecting solution composed of TiO2 and silver ions
was used in the streets of Milan, Italy. Nanocolloids of TiO2
have also antiviral activity against NDV at a minimum
concentration of 6.25 μg·mL−1, which could be due to the
lipid disruption of the viral coat [102].

A study was carried out to determine the antiviral
activity of TiO2 nanostructures on BBSV, which affects
the faba bean plant [103]. The study showed that after
the application of TiO2 nanostructures, the PRI gene
(pathogenesis-related gene 1), i.e. the defensive regula-
tory gene in the salicylic acid signaling pathway was
highly expressed, decreasing the disease intensity. This
was most likely achieved by the interaction of TiO2-NPs
with viral particles due to their nanosize and zeta poten-
tial. A different study reported that the application of
nanostructures of TiO2 led to improved germination and
growth in plants [104]. The suggested mechanism
includes the increased stimulation of the production of carbohydrates and elevated photosynthesis, as it has light-absorbing properties [105]. Enzymes of nitrogen metabolism (such as glutamate dehydrogenase, nitrate reductase, glutamine synthase, and glutamic–pyruvic transaminase) can also be regulated by TiO₂ by increasing the absorption of nitrates. The function of these enzymes is to convert inorganic nitrogen to chlorophyll and proteins [106–108]. Different modes of the action of TiO₂-NPs are shown in Figure 6.

3.4 Anticancer activity of TiO₂-NPs

TiO₂, an inorganic compound, can produce ROS after it is being illuminated by UV light in aqueous media. Production of ROS leading to cell death makes TiO₂ the successful candidate in the use of photodynamic therapy (PDT) for the treatment of various diseases. TiO₂-NPs, their nanocomposites, and hybrid biomolecules have been studied as photosensitizing agents for the treatment of cancers and resistant bacterial infections. TiO₂-NPs can be used as drug carriers for targeted delivery such as those reported for doxorubicin, cisplatin, and temozolomide [78]. A study was carried out by Chen et al. [109] to enhance the therapeutic potential and to reduce the adverse effects of doxorubicin. TiO₂-NPs were synthesized, and doxorubicin was loaded onto them, followed by the evaluation of their anticancer potential. The cytotoxic activity of DOX-TiO₂ NPs, evaluated by MTT assay, was increased against the SMMC-7721 hepatocarcinoma cell line. Western blot analysis revealed that the Bax/Bcl-2 protein ratio was increased significantly after the treatment with DOX-TiO₂-NPs, suggesting the enhanced accumulation of DOX in cancer cells via endocytosis [110], leading to the induction of apoptosis by caspase-dependent pathway. It is to be noted that TiO₂-NPs alone (10 μg·mL⁻¹) had a cell viability of 95% making it non-toxic [109]. A similar study by Ren et al. [111] showed that resistant breast cancer cells had more drug accumulation and internalization when delivered via nanocomposites, evading the P-glycoprotein-mediated pumping system for doxorubicin. Liu et al. [112] modified TiO₂-NPs with hyaluronic acid (HA), loaded cisplatin onto it as a chemotherapeutic agent for ovarian cancer, making it a pH-responsive drug release system. The accumulation of cisplatin was found to be increased in A2780 cells via endocytosis, exhibiting significant anticancer activity.

Murugan et al. in 2016 [113] evaluated the possible mechanism of action of synthesized TiO₂-NPs as an

Figure 6: Different modes of action of TiO₂-NPs.
anticancer agent against MCF-7 breast cancer cells. MTT assay results demonstrated dose-dependent cytotoxic effects against MCF-7 cells with the IC₅₀ of 60 μg·mL⁻¹, supported by the data of the previous studies [114,115]. Furthermore, AO/EtBr staining through fluorescence microscopy was done for the determination of apoptosis. Morphological data by 4',6-diamidino-2-phenylindole (DAPI) staining showed nuclear fragmentation, which is a marker of apoptosis. Western blot analysis of TiO₂-NP-treated cells showed that expression of cytochrome c was activated, suggesting the trigger of apoptosis via mitochondria-mediated pathway [116,113].

It is reported that the surface modification of nanocarriers through targeting moieties enhances the specificity of drug delivery [117,118]. Venkatasubbu et al. [119] modified TiO₂-NPs by polyethylene glycol (PEG) followed by folic acid (FA) and then attached Paclitaxel (PAC) (standard anticancer drug) to it. The anticancer effects of all nanocomposites were evaluated in DEN-induced hepatocellular cancer animal models. The results demonstrated that surface-modified PAC attached to TiO₂-NPs showed higher anticancer activity as compared to PAC alone. The surface modification of TiO₂ with FA (TiO₂-PEG-FA-PAC) helps in the targeting of overexpressed FA receptors in liver cancer cells, resulting in the increased targeted accumulation of PAC-NPs to the site of cancer cells, reducing the toxicity of the drug. TiO₂-PEG-FA-PAC also showed a concentration-dependent decrease in cell viability of HepG2 cells after treatment. The higher anticancer activity of TiO₂-PEG-FA-PAC was also demonstrated by biochemical (such as serum levels of alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase, total bilirubin, direct bilirubin, total protein, albumin, gamma-glutamyl transferase, α fetoprotein) and hematological (such as red blood corpuscles, white blood corpuscles, hemoglobin, platelets, packed cell volume, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, red cell distribution width, mean platelet volume, platelet distribution width) parameters.

Another study reports the anticancer effect of FA-modified TiO₂-NPs against MG63 osteosarcoma cells. A 2-fold reduction in IC₅₀ values against cancer cells was observed after treatment with conjugated FA-TiO₂-NPs. Apoptotic markers were also exhibited by the FA-TiO₂-NPs treated cells, for instance, chromatin condensation, membrane blebbing, cytoplasmic cell shrinkage. Annexin V/PI apoptotic assay exhibited 38% of FA-TiO₂-NP-treated cells in early and late apoptotic phases as compared to 16% of cells treated with only TiO₂-NPs. Moreover, cell cycle analysis showed that FA-TiO₂-NP-treated cells had a great sub-G1 cell population, which is indicative of an amplified generation of ROS inducing higher apoptosis. TiO₂-NPs have been reported to produce ROS, which acts as downstream signaling molecules of the p53-dependent apoptotic pathway. Increased expression of Cyt c, cleaved caspase-3, and PARP on the western blot also indicated the induction of caspase-dependent cellular death mechanism, showing the anticancer therapeutic potential of surface-modified TiO₂-NPs. The ROS generation damages the mitochondrial membrane and its potential, which in turn initiates the release of cytochrome c into the cytoplasm, triggering the intrinsic apoptotic cascade [120]. Other scientific studies have also shown promising anticancer effects by TiO₂-NPs against prostate cancer cells [121], liver cancer cells (HepG2) [122], and colon cancer cells [99,123]. Figure 7 illustrates the mechanism of action of TiO₂-NPs.

![Figure 7](image-url)
against cancer cells, whereas Table 3 provides the summary of the studies showing anticancer activity by TiO₂-NPs discussed above.

3.5 Antifungal activity of TiO₂-NPs

TiO₂-NPs have also shown antifungal activity against different species of fungus [125]. In a study by Irshad et al. [108], TiO₂-NPs were synthesized via sol–gel and green synthesis method, and their antifungal activity was evaluated against pathogenic plant fungus of wheat rust, *Ustilago tritici*. This fungus, which is one of the major causes of serious loss in wheat crops, was inhibited at different concentrations by TiO₂-NPs. The use of fungicides and pesticides is hazardous to health, therefore, the use of NPs is a safer option due to their less adverse effects and safe therapeutic index [126]. Antifungal activity has also been reported by TiO₂-NPs in *Fusarium oxysporum* [127], *Fusarium graminearum* [128], *Candida albicans* [129], *Macrophomina phaseolina* [130], *Coniophora puteana*, and *Poria placenta* [131]. The application of TiO₂-NPs has also been proposed as a protective material on buildings having cultural heritage value to prevent the biodeterioration of mortars [132]. The data from both, laboratories and on the heritage, building exhibited that the use of TiO₂ has shown to be an effective biocidal (lichens and phototropic microbes) and preventive material against building deterioration [131]. The antifungal activity exhibited by TiO₂-NPs is much weaker due to the difference in the structure of the cellular envelope when compared to its antibacterial action [133]. Chen et al. [134] evaluated the effects of TiO₂-NPs against the fungal mold *A. niger* on the surface of *Paulownia* wood and the fungal growth was suppressed by the treatment. In another study, De Filpo et al. [125] evaluated the antifungal effects of TiO₂-NPs against the wood-decaying species of fungus: brown (*Mucor circinelloides*) and white rot (*Hypocrea lixii*) fungi, and it was found that photocatalytic activity of coated TiO₂ protects the wood from fast decay as compared to the uncoated wood samples. The synthesized nanocomposites of polyvinyl alcohol (PVA) and TiO₂ were tested against two fungal strains (*Candida albicans* (ATCC 14053) and *Penicillium chrysogenum* (MTCC 5108)), as shown in Figure 8. The PVA-TiO₂-NP biofilms exhibited significantly more effective antifungal activity, as compared to PVA alone [135].

3.6 Antioxidant activity of TiO₂-NPs

In contrast to having the potential of inducing oxidative stress as a killing mechanism, TiO₂-NPs have also been studied for their effective antioxidant activity. Nanomaterials synthesized via plant-mediated synthesis methods have shown greater biocompatibility, stability, and controlled release of antioxidant functional groups. 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-Diphenyl-1-(2,4,6-trinitrophenyl)hydrazin-1-yl(DPPH) free radicals were scavenged by TiO₂-NPs in a reduced time. TiO₂-NPs are also reported to have protective effects against ROS. Plant-mediated synthesized TiO₂-NPs have functional groups like phenols and tannins, which help in the stabilization of TiO₂-NPs and their increased antioxidant potential [121]. In a study, green synthesis of TiO₂-NPs via *Psidium guajava*, displayed more antioxidant activity in comparison to ascorbic acid due to the phenolic content present in the leaf aqueous extract (85.4 mg·g⁻¹) and TiO₂-NPs (18.3 mg·g⁻¹) [136]. Similarly, the *Artemisia haussknechtii* leaf aqueous extract mediated green synthesis of TiO₂-NPs showed antioxidant effects via different assays. The experimental assays included DPPH scavenging assay, reducing power assay, metal ion chelating activity, total phenolic, and flavonoid content. The results demonstrated that TiO₂-NPs showed higher DPPH scavenging activity (68.43%)

![Table 3: Studies showing anticancer activity of TiO₂-NPs alone, modified TiO₂-NPs, and drug-loaded TiO₂-NPs against different cancer types](attachment:table3.png)
at 500 μg·mL⁻¹ concentration). The property of an antioxidant to donate an electron was determined by reducing power assay, and the reducing power of TiO₂-NPs was found to be greater than ascorbic acid (control). Ajmal et al. [137] also reported the antioxidant potential of TiO₂-NPs, synthesized by using fruit peel agrowaste. The scavenging assays used were DPPH free radical, hydrogen peroxide free radical, and nitric oxide along with the reducing power assay. Dose-dependent antioxidant effects were observed by TiO₂-NPs as compared to the ascorbic acid used as a control.

3.6.1 Theranostics

The combination of diagnosis and therapeutics has given rise to a new branch of medicine known as theranostics. The use of theranostics help scientists and medical practitioners to specifically target the signaling pathways at a molecular level. This is a part of anticancer PDT. Nanocomposites of zinc(ii) phthalocyanine (MCZnPc) and MCZnPc anchored onto TiO₂-NPs labeled with I were synthesized to evaluate their anticancer potential. MCZnPc and MCZnPc-TiO₂-NPs were against HeLa cells (human cervical cancer) and EMT6 cells (mouse mammary cancer). The cells were irradiated with light (684 nm) after 3 h incubation (in dark) and demonstrated higher cellular uptake of labeled nanocomposites. Hence, this study showed the theranostic potential of TiO₂-NPs against cancer [138].

In a recent study carried by Nakayama et al. [139], it was demonstrated that doping of samarium with TiO₂-NPs increased radiosensitivity and cytotoxic effects in cancer cells. The X-ray absorbance was increased leading to the generation of more ROS upon irradiation when compared to TiO₂-NPs alone. TiO₂ platforms have also been used to detect small biomolecules, cancer cells, and pathogens in blood via label-free microfluidic immunoassays, photoelectrochemical biosensors, field-effect transistors, and amperometry [140–144]. Nanoconjugates of TiO₂, polyethyleneimine (PEI), and FA have been reported to build a controlled (NIR laser-controlled) drug delivery system [145]. The triggered and sustained release of TiO₂-NPs by X-ray illumination can create electron–hole pairs structurally by degradation of organic linkers [146,147].

3.6.2 Toxicological evidence

Although TiO₂-NPs have low toxicity and are generally considered nonhazardous to humans, the studies have shown its toxicological data, arising concerns toward its safe applications. TiO₂-NPs have been declared as group 2B carcinogen, as they can be possibly carcinogenic to humans subjected to their administered dosage [148]. Considering the progressive applications of nanobiotechnology in the energy sector, agriculture, biomedicine, and pharmaceuticals, nanotoxicity is one of the major concerns. In different studies, a high dosage of TiO₂-NPs
has been reported to induce toxic effects in microorganisms, fungi, plants, and vertebrates including mice and humans. TiO₂-NPs are reported as a potential cause of induction of DNA damage in mice and humans (epidermal cells, bone marrow cells). Both biocompatibility and toxicity of nanomaterials depend upon their different attributes including shape, size, dosage, route of administration, cell type, in vivo model, and biochemical properties. However, the current methods of green synthesis of TiO₂-NPs and other nanomaterials have provided an advantage of slow ion release into the colloidal mixture, in comparison to the chemical and physical synthesis methods. A study was conducted to check the lethal effects of TiO₂-NPs in zebrafish and it was observed that a concentration higher than 2.5 mg·L⁻¹ induced various physical malformations (curved tail, egg coagulation, spinal curvature, delay in hatching of the embryos). Other elicited toxic effects were behavioral alterations, organ toxicity, and even mortality [149]. In 2009, Trouiller et al. [150] reported that TiO₂-NPs induced inflammation, oxidative DNA damage, and genotoxicity in mice. In a comprehensive approach, the toxic effects by administration of TiO₂-NPs via drinking water were observed by conducting comet assay, micronuclei assay, measurement of inflammatory markers, and in vivo DNA deletion assay. It was found that TiO₂-NPs induced both single- and double-strand breaks, chromosomal damage along with the formation of micronuclei, and initiated proinflammatory response (TNF α, INF γ, and IL-8). Yamashita et al. [151] showed that TiO₂-NPs were able to reach the placenta, fetal organs (brain and liver), and caused pregnancy complications in mice. TiO₂-NPs (35 nm in diameter) were administered through the intravenous route and instigated detrimental effects to both mother mouse and fetus. In addition, the higher dosage of TiO₂-NPs (100 µg·mL⁻¹) has also shown cell accumulation, nuclear condensation, and cytoplasmic shrinkage in vitro in healthy cell lines [152–154]. However, due to the unique physicochemical properties of TiO₂-NPs and recent studies on its use in the field of biomedical research, TiO₂ NPs hold great therapeutic potential against various diseases. Modification of TiO₂-NPs via different materials, drug loading, targeted delivery, high absorption, and different methods of synthesis impart diversity toward its use and aptitude [121].

3.7 Drug delivery systems using TiO₂-NPs

The foremost goal of the drug delivery systems is to maximize the therapeutic activity, reducing the adverse events, an appropriate encapsulation of drug. The drug release profile has been constructed into different shapes of drug delivery system, like spherical, capsule, and porous structures. Hence, the drug can be located on the surface of TiO₂-NPs, which could result in a controlled and sustained release pattern. TiO₂-NPs are being modified with any specific molecules that have control toward the targeted cells and get localized in the tissue-specific cells to enhance the efficiency [155]. Titanium NPs have been used as the nanocarrier for loading different types of drugs, namely sodium phenytoin, valproic acid, temozolomide, and daunorubicin. At first, it showed a burst release rate, and controlled release was observed for hours. Therefore, titanium NPs could deliver a drug with enhanced efficacy, dose optimization, controlled and sustained drug release pattern, and also a decrease in toxicity levels [156]. A schematic representation of the drug delivery system using TiO₂-NPs is shown in Figure 9.

3.7.1 Stimuli-responsive release systems

A stimuli-responsive system releases a drug in response to the signal. There are two types of stimuli such as internal and external stimuli. The advantages of these stimuli-responsive systems are to minimize the adverse

Figure 9: Schematic sketch of the drug delivery system, using TiO₂-NPs. NPs are conjugated with the desired drug, and they are taken by the cell, cause DNA damage, and induce an apoptotic pathway.
effects and improve biocompatibility for cancer therapy applications with terms of controlled and tissue-specific release of the drug [157].

Researchers developed a multifunctional porous structure, titanium oxide nanoparticle, surface-functionalized with poly ethyl imine to promote the photocatalytic activity of titanium oxide nanoparticles, for ultraviolet triggered drug delivery systems. It was further encapsulated with an anticancer agent and tightly packed by PEI tagging of titanium oxide nanoparticles to prevent the drug leakage or release into the nonspecific tissues. FA was covalently tagged on the surface of titanium NPs, which over express the folate receptor, to target the cancer cells [158]. A schematic sketch of stimuli drug loading and release are shown in Figure 10.

3.7.2 PDT of TiO₂-NPs

PDT for cancer involves using a photosensitizing agent upon the exposure of laser light of a specific wavelength to destroy the cancer cells. Apart from the other treatments like surgical, radiological, and chemotherapeutic treatments, PDT is being used and named as a secondary and very encouraging noninvasive treatment used for cancer therapy [159]. When TiO₂-NPs were exposed to UV light with a wavelength below 385 nm, photoinfluenced electrons and holes might be created. Further, these photoinfluenced electrons and holes would react with hydroxyl ions or water to form oxidative radicals, which can destroy the microorganisms and tumor cells. On account of the increasing prevalence of cancer and also by considering the advantages of PDT, researchers focussed on titanium oxide, which can be used as a photosensitizer for the treatment of cancer because of its increased photocatalytic capability, low toxicity, and photostability [160].

3.7.3 Radiotherapy

Radiotherapy is most commonly used for the treatment of cancer as compared to other conventional treatments. In radiotherapy, ionizing radiation is used to kill cancer cells. The development of new techniques and methods is to circumvent destroying neighbor healthy tissues surrounding the tumors. The effectiveness caused by the radiation to the tumor cells is a vital factor for determining appropriate and required dosage to target cells and not to injure the normal cells. Radio sensitizing agents such as gemcitabine and fluorouracil are used to kill the cancer cells [161].

Disadvantages of radiotherapy:
- A dosage formulated and injected into the tumor tissues could also harm the normal cells
- In contrast-enhanced radiotherapy, the contrast agents that have high atomic numbers are capable to deliver to the target tumor cells

Figure 10: (a) Schematic sketch of stimuli drug loading and release. (b) The photocatalytic degradation of the FA-PEI on the surface of modified porous TiO₂ nanoparticles (MTNP). Reproduced from ref. [145] with permission of Elsevier.
An increased atomic number of contrast agents has divergent absorbance properties; therefore, they will not harm the normal healthy cells.

In general, the gold nanoparticle is used as a contrast agent in contrast-enhanced radiotherapy due to its biocompatibility, high Z atomic number, and it could pass the cell membrane (smaller size of around 100 nm particle) and get localized with the cells. A research group of Youkhana [162] worked with TiO$_2$-NPs as radiosensitizers to treat the two different cultured mammalian cell lines, human keratinocyte (HaCaT) and prostate cancer (DU145) cells. An accurate radiation dosage of anatase TiO$_2$ was formulated. The cytotoxicity results indicated that cells were nontoxic till 4 mM and further at increased concentrations the cells remained constant without any changes. In summary, TiO$_2$-NPs could be used for for imaging applications. Hence, TiO$_2$ would be a better platform for theragnostic applications [162]. The schematic view of PDT and radio therapy (Sonodynamic therapy [SDT]) is shown in Figure 11.

3.8 Biosensor applications of TiO$_2$ applications

At present, nanotechnology has paid very good attention in the research area of biosensors because of its potential advantages like the small size and higher surface-area-to-volume ratio. Nanoparticle-dependent biosensors come up with sensitive and rapid biological detection. As various types of nanomaterials have been utilized in nanotechnology biosensors, this article is completely on nano biosensors with TiO$_2$-NPs [163]. A schematic sketch of TiO$_2$-based photoelectrochemical cell (PEC) biosensor is shown in Figure 12.

Figure 11: The schematic view of PDT and radio therapy (SDT).

Figure 12: Schematic sketch of TiO$_2$-based PEC biosensors.
4 Conclusions and recommendations for future research

TiO₂-NPs have gained a lot of attention because of their numerous applications. It has antibacterial, antifungal, antiviral, anticancer, antioxidant, drug delivery, and several other biomedical applications. TiO₂-NPs have been created using a variety of methods, including chemical, physical, and biological methods. Physical and chemical methods besides being costly also use a dangerous chemical that may have a harmful impact. The biological approach, on the other hand, is an environmentally sustainable, cost-effective, efficient, safe, low-energy consuming, and simple method. This review summarized the synthesis of TiO₂-NPs using various biological methods, as well as their properties, mechanism of action, and various biomedical applications.

To achieve the sustainability of NP biosynthesis and improve nanoparticle stability, further research is needed to explore the potential local and common natural resources that are available even though they are still in the early stages, and significant research is needed in this direction. The use of local resources reduces development costs, making them economically competitive with conventional methods as an alternative to large-scale nanoparticle production. Understanding the biomolecule binding mechanisms involved is a prerequisite for the success of this new technology, which has significant benefits for the biomedical field. However, there is no clear description of the mechanism of biosynthesis, so there is a need to investigate the phytochemistry behind the biosynthesis. The lack of understanding of the underlying mechanisms, chemical components responsible for nanoparticle synthesis, and nanoparticle stabilization remains an open challenge in utilizing natural resources such as plants for nanoparticle synthesis.

The most difficult challenge in the biosynthesis of NPs is the separation of NPs from the biological material and contamination from biological cells, which could have an adverse effect in biomedical applications. Therefore, it is important to consider the active groups that are involved and how functional groups from natural resources are attached to the nanoparticle surface to produce NPs with greater efficacy, particularly in terms of biocompatibility and bioavailability. In conclusion, green technology through biosynthesis, as described in this article, provides outstanding findings that may encourage researchers and newcomers to continue and extend their exploration of nature’s possibilities, as well as the design of innovative and safer methodologies for the synthesis of nanomaterials with desired features and valuable properties that can be exploited in a number of fields.

Funding information: Authors state no funding involved.

Author contributions: Suresh Sagadevan: formal analysis, conceptualization, methodology, data curation, validation, original draft preparation; Shaula Imteyaz: formal analysis, investigation, data curation, visualization, validation; Baranya Murugan: data curation, visualization, validation; J. Anita Lett: formal analysis, data curation, visualization; Nanthini Sridewi: formal analysis, visualization, investigation; Getu Kassegn Weldegebrial: data curation, visualization, validation; Is Fatimah: data curation, visualization, validation; Won-Chun Oh: funding acquisition. All authors have read and agreed to the published version of the manuscript.

Conflict of interest: One of the corresponding authors (Suresh Sagadevan) is a member of the Editorial Board of Green Processing and Synthesis.

Data availability statement: All relevant data are within the paper.

References

[1] Roopan SM, Khan MA. MoS₂ based ternary composites: review on heterogeneous materials as catalyst for photocatalytic degradation. Catal Rev. 2021. doi: 10.1080/01614940.2021.1962493.

[2] Aslam M, Abdullah AZ, Rafatullah M. Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. J Ind Eng Chem. 2021;98:1–16. doi: 10.1016/j.jiec.2021.04.010.

[3] Dinesh M, Roopan SM, Selvaraj CI, Arunachalam P. Phyllanthus emblica seed extract mediated synthesis of PdNPs against antibacterial, haemolytic and cytotoxic studies. J Photochemistry Photobiology B: Biol. 2017;167:64–71. doi: 10.1016/j.jphotobiol.2016.12.012.

[4] Hemalatha K, Madhumitha G, Kajbafvāla A, Anupama N, Sompalle R, Roopan SM. Function of nanocatalyst in chemistry of organic compounds revolution: an overview. J Nanomaterials. 2013. doi: 10.1155/2013/341015.

[5] Singh T, Singh A, Wang W, Yadav D, Kumar A, Singh PK. Biosynthesized nanoparticles and its implications in agriculture. In Biological synthesis of nanoparticles and their applications. New York: CRC Press; 2019. p. 257–74. ISBN:13-978-0-367-21069-4.

[6] Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett. 2021;19:355–74. doi: 10.1007/s10311-020-01074-x.
Drummer S, Madzimbamuto T, Chowdhury M. Green synthesis of transition-metal nanoparticles and their oxides: a review. Materials. 2021;14:2700. doi: 10.3390/ma14112700.

Gleiter H. Nanostructured materials: state of the art and perspectives. Nanostruct Mater. 1995;6(1):3–14. doi: 10.1016/0965-9773(95)90025-9.

Valden M, Lai X, Goodman DW. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science. 1998;281:1647–50. doi: 10.1126/science.281.5383.1647.

Rodriguez JA, Liu G, Jirsa T, Hrbek J, Chang Z, Dvorak J, et al. Activation of gold on titania: adsorption and reaction of SO2 on Au/TiO2(110). J Am Chem Soc. 2002;18:5242–50. doi: 10.1021/ja020155y.

Trudeau ML, Ying JY. Nanocrystalline materials in catalysis and electrocatalysis: Structure tailoring and surface reactivity. Nanostruct Mater. 1996;7:245–58. doi: 10.1016/0965-9773(95)90038-8.

Santos CS, Gabriel B, Blanchy M, Menes O, García D, Blanco M, et al. Industrial applications of nanoparticles—a prospective overview. Mater Today. 2015;2:456–65. doi: 10.1016/j.matpr.2015.04.056.

Dizaj SM, Lotfipour F, B-Jalali M. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C. 2014;44:278–84. doi: 10.1016/j.msec.2014.08.031.

Nohynek GJ, Lademann J, Ribaud C, Roberts MS. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. 2014;44:278–84. doi: 10.1016/j.matpr.2015.04.056.

Zou BS, Volkov VV, Wang ZL. Optical properties of amorphous ZnO, CdO, and PbO nanoclusters in solution. Chem Mater. 1999;11:3037. doi: 10.1021/cm9810990.

Guo Y, Ma L, Mao K, Ju M, Bai Y, Zhao J, et al. Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility. Nanoscale. 2019;4:592–600. doi: 10.1039/C8NH00273H.

García MF, Rodriguez JA. Metal oxide nanoparticles, “Nanomaterials: inorganic and bioinorganic perspectives,” Brookham National Laboratory, BNL-79479-2007 BC; 2007.

Zhang H, Banfield JF. Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem. 1998;8:2073–6. doi: 10.1039/A802619J.

Samsonov VM, Sdobnyakov NY, Bazulev AN. On thermodynamic stability conditions for nanosized particles. Surf Sci. 2003;532:526–30. doi: 10.1016/S0039-6028(03)00906-0.

Pacchioni G, Ferrari AM, Bagus PS. Cluster and band structure ab initio calculations on the adsorption of CO on bulk surfaces of the TiO2 (110) surface. Surf Sci. 1996;1:159–75. doi: 10.1016/0039-6028(95)01057-2.

Mejias JA, Marquez AM, Sanz JF, Fernandez-Garcia M, Ricart JM, Sousa C, et al. On modelling the interaction of CO on the MgO (100) surface. Surf Sci. 1995;327:59–73. doi: 10.1016/0039-6028(94)00831-0.

Hoffmann R. Solids and surfaces: a chemist’s view of bonding in extended structures. New York: VCH; 1988.

Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res. 2012;14:1109. doi: 10.1007/s11051-012-1109-9.

Ahmed AA, Afzal N, Devarajan M, Subramani S. Structural, morphological, optical and electrical properties of NiO films prepared on Si (100) and glass substrates at different thicknesses. Mater Res Express. 2016;3:116405. doi: 10.1088/2053-1591/3/11/116405.

Medhi R, Marquez MD, Lee TR. Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications. ACS Appl Nano Mater. 2020;3(7):6156–85. doi: 10.1021/acsnano.0c01035.

Nabi G, Aain Q, Khalid NR, Tahir MB, Rafique M, Rizwan M, et al. A review on novel eco-friendly green approach to synthesis TiO2 nanoparticles using different extracts. J Inorg Organomet Polym Mater. 2018;28:1552–64. doi: 10.1007/s10904-018-0812-0.

Sheveglieri G, editor. Gas sensors. Dordrecht: Kluwer; 1992.

Lazar MA, Varghese S, Nair SS. Photocatalytic water treatment by Titanium dioxide: recent updates. Catalysts. 2012;2:572–601. doi: 10.3390/catal2040572.

Zhang W, Li Y, Su Y, Mao K, Wang Q. Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent. J Hazard Mater. 2012;215:252–8. doi: 10.1016/j.jhazmat.2012.02.060.

Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces. 2010;79:5–18. doi: 10.1016/j.colsurfb.2010.03.029.

Kubacka A, Diez M, Rojo D. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep. 2014;4:4134. doi: 10.1038/srep04134.

Blecher K, Nasir A, Friedman A. The growing role of nano-technology in combating infectious disease. Virulence. 2011;2:95–401. doi: 10.4161/viru.2.5.17035.

Selhofer H. Titanium oxides for optical-interference coatings. Vac Thin Films. 1999;2:20–4.

Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–50. doi: 10.1039/C1GC15386B.

Rao CNR, Müller A, Cheetham AK, editors. Nanomaterials chemistry: recent developments and new directions. Weinheim: Wiley; 2007.

Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31(2):346–56. doi: 10.1016/j.biotechadv.2013.01.003.

Wang Z, Haidry AA, Xie L, Zavabeti A, Li Z, Yin W, et al. Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method. Appl Surf Sci. 2020;533:147383. doi: 10.1016/j.apsusc.2020.147383.

Nadeem M, Tungmunithum D, Hano C, Abbasi BH, Hashmi SS, Ahmad W. The current trends in the green synthesis of titanium oxide nanoparticles and their applications. Green Chem Lett Rev. 2018;11(4):492–502. doi: 10.1080/17518947.2018.1538430.

Subhapiiya S, Gomathipriya P. Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog. 2018;116:215–20. doi: 10.1016/j.micpath.2018.01.027.
[40] Buazzer F, Baghlani-Nejazd MH, Badri M, Kashisaz M, Khaledi-Nasab A, Kroushawi F. Facile one-pot phytosynthesis of magnetic nanoparticles using potato extract and their catalytic activity. Starch/Stärke. 2016;68:1–9.

[41] Khade GV, Suwankar MB, Gavade NL, Garadkar KM. Green synthesis of TiO$_2$ and its photocatalytic activity. J Mater Sci: Mater Electron. 2015;26(5):3309–15. doi: 10.1007/s10854-015-2832-7.

[42] Singh P, Kim Y-J, Zhang D, Yang D-C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34:588–99. doi: 10.1016/j.tibtech.2016.02.006.

[43] Irshad MA, Nawaz R, Rehman MZ, Adrees M, Rizwan M, Ali S, et al. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: a review. Ecotoxicol Environ Saf. 2021;212:111978. doi: 10.1016/j.ecoenv.2021.111978.

[44] Azwani A. A review on the extraction methods used in medicinal plants, principle, strength and limitation. Med Aromat Plants. 2015;4(196):2167–412. doi: 10.4172/2167-0412.1000196.

[45] Devasena T, Kumar PSM, Francis AP. Biosynthesized and chemically synthesized titanita nanoparticles: comparative analysis of antibacterial activity. J Env Nanotechnol. 2014;3:73–81. doi: 10.13074/jent.2014.0143098.

[46] Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, et al. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med. 2014;7(12):968. doi: 10.1016/S1995-7645(14)60171-1.

[47] Roopan SM, Bharathri A, Prabhakara A, Rahuman AA, Velayutham K, Rajakumar G, et al. Efficient phyto-synthesis and structural characterization of rutile TiO$_2$ nanoparticles using anonna squamosa peel extract. Spectrochim Acta A. 2012;98:86–90. doi: 10.1016/j.saa.2012.08.055.

[48] Bharathi A, Roopan SM, Kajibafvala A, Padmaja RD, Darsana MS, Kumari GN. Catalytic activity of TiO$_2$ nanoparticles in the synthesis of some 2,3-disubstituted dihydroquinazolin-4(1H)-ones. Chin Chem Lett. 2014;25:324–6. doi: 10.1016/j.ccl.2013.11.040.

[49] Sundraranjan M, Gowri S. Green synthesis of titanium dioxide nanoparticles by Nyctanthes Arbor-Tristis leaves extract. Chalcogenide Lett. 2011;8(8):447–51.

[50] Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C, et al. Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola Ovis Elango. Parasitol Res. 2012;111:2329. doi: 10.1007/s00436-011-2676-x.

[51] Aswini R, Murugesan S, Kanna K. Bio-engineered TiO$_2$ nanoparticles using Ledebouria revoluta extract: larvicidal, histopathological, antibacterial and anticancer activity. Int J Env Anal Chem. 2020;100(15):2926–36. doi: 10.1080/03067319.2020.1718668.

[52] Sankar R, Rizwana K, Shivashanagi KS, Ravikumar V. Ultra-rapid Photocatalytic activity of Azadirachta indica engi engineered colloidal titanium dioxide nanoparticles. Appl Nanosci. 2015;5(6):731–6. doi: 10.1007/s13204-016-0369-3.

[53] Rajakumar G, Rahuman AA, Jayaseelan C, Santhoshkumar T, Marimuthu S, Kamaraj C, et al. Solanum trifolatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus. Parasitol Res. 2014;113:469. doi: 10.1007/s00436-013-3676-9.

[54] Sethy NK, Arif Z, Mishra PK, Kumar P. Green synthesis of TiO$_2$ nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Process Synth. 2020;9:171–81. doi: 10.1515/gps-2020-0018.

[55] Sivarajanani V, Pheliminathan P. Synthesize of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Med. 2016;12:1–5. doi: 10.1016/j.wmdm.2015.11.002.

[56] Rajakumar G, Rahuman AA, Priyamvada B, Khanna VG, Kumar DK, Sujine P. Euphoria prestra leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater Lett. 2012;68:115–7. doi: 10.1016/j.matlet.2011.10.038.

[57] Shimp G, Mishra S, Shirole SD. Efficient green synthesis of TiO$_2$ nanoparticles using Murraya koenigii leaf extract. J Nanosci Nanoeng Appl. 2016;6(1):29–38.

[58] Naik GK, Mishra PM, Parida K. Green synthesis of Au/TiO$_2$ for effective dye degradation in aqueous system. Chem Eng J. 2013;229:492–7. doi: 10.1016/j.cej.2013.06.053.

[59] Goutam SP, Saxena G, Singh V, Yadav AK, Bhargava RN, Thapa K. Green synthesis of nanoparticles and their applications in water and wastewater treatment. Chem Eng J. 2017;336:386. doi: 10.1016/j.cej.2017.12.029.

[60] Hunagund SM, Desai VR, Kadavevarmath JS, Barretto DA, Vootia S, Sidarai AH. Biogenic and chemogenic synthesis of TiO$_2$ NPs via hydrothermal route and their antibacterial activities. RSC Adv. 2016;6(99):97438–44. doi: 10.1039/C6RA22163G.

[61] Marimuthu S, Rahuman AA, Jayaseelan C, Kirthi AV, Santhoshkumar T, Velayutham K, et al. Aracicalid activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhhipcephalus microplus and Haemaphysalis bipinosa. Asian Pac J Trop Med. 2013;6:682. doi: 10.1016/S1995-7645(13)60118-2.

[62] Madadi Z, Loftabadi TB. Aqueous extract of Acanthophyllum laxiusculum roots as a renewable resource for green synthesis of nano-sized titanium dioxide using Sol gel method. ACER Vol. 2016;2:26–31. doi: 10.30501/acp.2016.70015.

[63] Nasrollahzadeh M, Sajadi SM. Synthesis and characterization of titanium dioxide nanoparticles using Euphorbia heteradenia faub root extract and evaluation of their stability. Ceram Int. 2019;45:14435. doi: 10.1016/j.ceramint.2019.07.079.

[64] Abisharani JM, Devikala S, Kumar RD. Green synthesis of TiO$_2$ nanoparticles using Cucurbita pepo seeds extract. Mater Today Proc. 2019;14:302–7. doi: 10.1016/j.matpr.2019.04.151.

[65] Kashale AA, Gattu KP, Ghule K, Ingle VH, Dhanayat S, Bhargava RN, et al. Biomediated green synthesis of TiO$_2$ nanoparticles for lithium-ion battery application. Compos B Eng. 2016;99:297. doi: 10.1016/j.compositesb.2016.06.015.

[66] Pantidos N, Horsfall LE. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol. 2016;5(5):1. doi: 10.4172/2157-7439.1000233.

[67] Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C, et al. Fungusmediated biosynthesis and
characterization of TiO$_2$ nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A. 2012;91:23–9. doi: 10.1016/j.saa.2012.01.011.

[68] Jha AK, Prasad K, Kulkarni AR. Synthesis of TiO$_2$ nanoparticles using microorganisms. Colloids Surf B Biointerf. 2009;71:226–9. doi: 10.1016/j.colsurfb.2009.02.007.

[69] Ordones-Aneshanslys NA, Saona LA, Durán-Toro VM, Monrás JP, Bravo DM, Pérez-Donoso JM. Use of titanium dioxide nanoparticles biosynthesized by Bacillus Mycoides in quantum dot sensitized solar cells. Microb Cell Fact. 2014;13(1):90. doi: 10.1186/s12934-014-0090-7.

[70] Dhandapani P, Maruthamuthu S, Rajagopalan G. Biomediated synthesis of TiO$_2$ nanoparticles and its photocatalytic effect on aquatic biofilm. J Photochem Photobiol B. 2012;110:43–9. doi: 10.1016/j.jphotobiol.2012.03.003.

[71] Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, et al. Biosynthesis of Titanium dioxide nanoparticles using bacterium Bacillus Subtilis. Mater Lett. 2011;65(17):2745–7. doi: 10.1016/j.matlet.2011.05.077.

[72] Prasad K, Jha AK, Kulkarni A. Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett. 2007;2(5):248. doi: 10.1007/s11671-007-9060-x.

[73] Malarkodi C, Chitra K, Rajeshkumar S, Gnanajothi B, Paulkumar K, Vanaja M. Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planimicrobium sp. and its antimicrobial evaluation. Der Pharm Sin. 2013;4(3):59–66. https://www.imedpub.com/abstract/novel-ecofriendly-synthesis-of-titanium-oxide-nanoparticles-by-using-planimicrobium-sp-and-its-antimicrobial-evaluation-12809.html.

[74] Durairaj B, Xavier T, Muthu S. Research article fungal generated titanium dioxide nanoparticles: a potent mosquito (Aedes aegypti) larvicidal agent. Sch Acad J Biosci. 2014;2(9):651–8. ISSN 2321-6883 (Online).

[75] Bansal V, Rautaray D, Bhaarde A, Ahire K, Sanyal A, Ahmad A, et al. Fungus-mediated Biosynthesis of Silica and Titania Particles. J Mater Chem. 2005;15(26):2583–9. doi: 10.1039/B503008K.

[76] Raliya R, Tarafdar J. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett. 2014;4(1):93. doi: 10.1007/s40089-014-0093-8.

[77] He F, Yu W, Fan X, Jin B. In vitro cytotoxicity of biosynthesized titanium dioxide nanoparticles in human prostate cancer cell lines. Tropical J Pharm Res. 2017;16(12):2793–9.

[78] Behnam MA, Emami F, Sobhani Z, Dehghanian AR. The application of titanium dioxide (TiO$_2$) nanoparticles in the photo-thermal therapy of melanoma cancer model. Iran J Basic Med Sci. 2018;21(11):1133.

[79] Luceño-Sánchez JA, Díez-Pascual AM, Peña Capilla R. Materials for photovoltaics: state of art and recent developments. Int J Mol Sci. 2019;20(4):976.

[80] Wright C, Iyer AKV, Wang L, Wu N, Yakissch JS, Rojanasakul Y, et al. Effects of titanium dioxide nanoparticles on human keratinocytes. Drug Chem Toxicol. 2017;40(1):90–100.

[81] Liu W, Liu S, Wang L. Surface modification of biomedical titanium alloy: micromorphology, microstructure evolution and biomedical applications. Coatings. 2019;9(4):249.

[82] Özcan M, Hämmerle C. Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. Materials. 2012;5(9):1528–45.

[83] Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GE. Green synthesis of metallic nanoparticles via biological entities. Mater (Basel). 2015 Nov;8(11):2787–308.

[84] Jayaseelan C, Rahuman AA, Roopan SM, Kirthi AV, Venkatesan J, Kim S-K, et al. Biological approach to synthesis TiO$_2$ nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochimica Acta A Mol Biomol Spectrosc. 2013;107:82–9. doi: 10.1016/j.saa.2012.12.083.

[85] Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S. Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci. 2018 Dec;19(12):4100.

[86] Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016;15:71.

[87] Wang L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227–49.

[88] Ripolles-Avila C, Martinez-Garcia M, Hascoët AS, Rodriguez-Jerez JJ. Bactericidal efficacy of UV activated TiO$_2$ nanoparticles against Gram-positive and Gram-negative bacteria on suspension. CyTA J Food. 2017(1):408–18. doi: 10.1080/19476337.2019.1590461.

[89] Allahverdiyev AM. Investigation of antileishmanial activities of TiO2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Exp Parasitol. 2013 Sep;135(1):55–63.

[90] Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G, Shankar J, et al. Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrobial Agents Chemotherapy. 2015;59(8):4782–99. doi: 10.1128/AAC.00998-15.

[91] Ahmed FY. Comparative study of antibacterial effects of Titanium dioxide nanoparticles alone and in combination with antibiotics on MDR Pseudomonas aeruginosa strains. Int J Nanomed. 2020;15:3393–404.

[92] Benov L. Effect of growth media on the MTI colorimetric assay in bacteria. PLOS One. 2019;14(8):e0219713.

[93] Pinkerton KE. Health effects of inhaled engineered and incidental nanoparticles. Crit Rev Toxicol. 2009;39(8):629–58.

[94] Maheswari P. Bio-modified TiO$_2$ nanoparticles with Witheria somnifera, Eclipta prostrata and Glycyrrhiza glabra for anticancer and antibacterial applications. Mater Sci Eng C Mater Biol Appl. 2020 Mar;108:110457.

[95] Akhtar S. Antibacterial and antiviral potential of colloidal Titanium dioxide (TiO$_2$) nanoparticles suitable for biological applications. Mater Res Exp. 2019;6(10):105409.

[96] Avila-Juarez L. Nanoparticles as potential antivirals in agriculture. Agriculture. 2020;10(10):444.

[97] Nakano R, Ishiguro H, Yao Y, Kajoka J, Fujishima A, Sunada K, et al. Photocatalytic inactivation of influenza virus by titanium dioxide thin film. Photochem Photobiol Sci. 2012;11(8):1293–8.

[98] Syngouna V, Chrysikopoulos CV. Inactivation of MS2 bacteriophage by titanium dioxide nanoparticles in the
Titanium dioxide nanoparticles and their diverse biomedical applications

presence of quartz sand with and without ambient light. J Colloid Interface Sci. 2017;497:117–25.

[99] Li W, Jia MX, Deng J, Wang JH, Zuberi Z, Yang S, et al. MicroRNA response and toxicity of potential pathways in human colon cancer cells exposed to titanium dioxide nanoparticles. Cancers (Basel). 2020;12(5):1236.

[100] Mazarukova NA, Spitsyna YE, Shikina NV, Ismagilov ZR, Zagrebel’nyi SN, Ryabchikova EI. Interaction of titanium dioxide nanoparticles with influenza virus. Nanotechnol Russia. 2010;5(5):417–20.

[101] Fouad GI. A proposed insight into the anti-viral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19). Bull Natl Res Cent. 2021;45(1):1–22.

[102] Akhtar S, Shahzad K, Mushtaq S, Ali I, Rafe MH, Fazal-ul-Karim SM. Antibacterial and antiviral potential of colloidal Titanium dioxide (TiO2) nanoparticles suitable for biological applications. Mater Res Express. 2019;6(10):105409.

[103] Elsharkawy MM, Derbalah A. Antiviral activity of titanium dioxide nanostructures as a control strategy for broad bean strain virus in faba bean. Pest Manag Sci. 2019;75(3):828–34.

[104] Mahmoodzadeh H, Aghili R. Effect on germination and early growth characteristics in wheat plants (Triticum aestivum L.) seeds exposed to TiO2 nanoparticles. J Chem Health Risks. 2014;4(1):29–36.

[105] Owolade O, Ogunleiti D. Effects of titanium dioxide on the diseases, development and yield of edible cowpea. J Plant Prot Res. 2008;48(3):329–35.

[106] Yang F, Hong F, You W, Liu C, Gao F, Wu C, et al. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res. 2006;110(2):179–90.

[107] Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Botanicae Horti Agrobotanici Cluj-Napoca. 2013;41(1):201–7.

[108] Irshad MA, Nawaz R, ur Rehman ZM, Imran M, Ahmad J, Ahmad S, et al. Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust. Chemosphere. 2020;258:127352.

[109] Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z. Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomed. 2011;6:2321–6.

[110] Yoo HS, Lee KH, Oh JE, Park TG. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin–PLGA conjugates. J Controlled Rel. 2000;68(3):419–31.

[111] Ren W, Zeng L, Shen Z, Xiang L, Gong A, Zhang J, et al. Enhanced doxorubicin transport to multidrug resistant breast cancer cells via TiO2 nanocarriers. RSC Adv. 2013;3(43):20855–61.

[112] Liu E, Zhou Y, Liu Z, Li J, Zhang D, Chen J, et al. Cisplatin loaded hyaluronic acid modified TiO2 nanoparticles for neoadjuvant chemotherapy of ovarian cancer. J Nanomaterials. 2015;2015:390358.

[113] Murugan K, Dinesh D, Kavithaa K, Paulpandi M, Ponraj T, Alsalhi MS, et al. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitology Res. 2016;115(3):1085–96.

[114] Sukirtha R, Priyanka K, Antony JJ, Kamalakannan S, Thangam R, Gunasekaran P. Cytotoxic effect of green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem. 2012;47:273–9.

[115] Murugan K, Aruna P, Panneerselvam C, Madhiyazhagan P, Paulpandi M, Subramaniam J, et al. Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol Res. 2016;115(3):1085–96. doi: 10.1007/s00436-015-4783-6.

[116] Shanthi K, Vimala K, Gopi D, Kannan S. Fabrication of pH responsive DOX conjugated PEGylated palladium nano-particle mediated drug delivery system: an in vitro and in vivo evaluation. RSC Adv. 2015;5:44998–5014.

[117] Desai NP, Hubbell JA. Surface physical interpenetrating networks of poly (ethylene terephthalate) and poly (ethylene oxide) with biomedical applications. Macromolecules. 1992;25(1):226–32.

[118] Gutman RL, Peacock G, Lu DR. Targeted drug delivery for brain cancer treatment. J Controlled Rel. 2000;65(1–2):31–41.

[119] Venkatassubbu GD, Ramasamy S, Reddy GP, Kumar J. In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles. Biomed Microdevices. 2013;15(4):711–26.

[120] Al JW, Liu B, Liu WD. Folic acid-tagged titanium dioxide nanoparticles for enhanced anticancer effect in osteosarcoma cells. Mater Sci Eng C. 2017;76:1181–7.

[121] Ikram M, Javed B, Hassan SWU, Satti SH, Sarwer A, Raja NI, et al. Therapeutic potential of biogenic titanium dioxide nanoparticles: a review on mechanistic approaches. Nanomedicine. 2021;16(16):1429–46.

[122] He F, Yu W, Fan X, Jin B. In vitro cytotoxicity of biosynthesized titanium dioxide nanoparticles in human prostate cancer cell lines. Trop J Pharm Res. 2018;16(12):2793.

[123] Ranjan S, Dasgupta N, Mishra D, Ramalingam C. Involvement of Bcl-2 activation and G1 cell cycle arrest in colon cancer cells induced by titanium dioxide nanoparticles synthesized by microwave-assisted hybrid approach. Front Bioeng Biotechnol. 2020;8:1–12.

[124] Xia Z, He J, Li B, He K, Yang W, Chen X, et al. Titanium dioxide nanoparticles induce mitochondria-associated apoptosis in HepG2 cells. RSC Adv. 2018;8(55):31764–76.

[125] De Filipo G., Palermo AM, Rachiele F, Nicoletta FP. Preventing fungal growth in wood by titanium dioxide nanoparticles. Int Biodeterior Biodegrad. 2015;85:217–22.

[126] Ahmad B, Shabbir A, Jaleel H, Khan MMA, Sadiq Y. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, cell structure and essential oil production and quality in Mentha piperita L. Curr. Plant Biol. 2018;13:6–15.

[127] Mukherjee K, Acharya K, Biswas A, Jana NR. TiO2 nanoparticles Co-doped with nitrogen and fluoride as visible-light activated antifungal agents. ACS Appl Nano Mater. 2020;3(2):2016–25.

[128] Raghad DH, Jalill A, Nuanman RS, Abd AN. Biological synthesis of Titanium Dioxide nanoparticles by Curcuma longa plant
extract and study its biological properties. World Sci. N. 2016;49(2):204–22.

[129] Ahmad NS, Abdullah N, Yasin FM. Antifungal activity of Titanium oxide nanoparticles against Candida albicans. BioResources. 2019;14(4):8866–78.

[130] Shyila K, Natarajan N, Nakkeeran S. Antifungal activity of zinc oxide, silver and Titanium Dioxide nanoparticles against macrophomina phaseolina. J Mycol Plant Pathol. 2014;44(3):269–74.

[131] Shabir Mahr M, Hübert T, Stephan I, Militz H. Decay protection of wood against brown-rot fungi by titanium alkoxide impregnations. Int Biodeterior Biodegrad. 2013;75:56–62.

[132] Maury-Ramirez A, De Muynck W, Stevens R, Demeestere K, De Belie N. Titanium dioxide-based strategies to prevent algae fouling on cementitious materials. Cem Concr Compos. 2013;36:93–100.

[133] Seven OZ, Dindar Bİ, Aydemir SA, Metin Dİ, Ozinel MA, İclı S. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. J Photochemistry Photobiology A Chem. 2004;165(1–3):103–7.

[134] Chen F, Yang X, Wu Q. Antifungal capability of TiO2 coated film on moist wood. Build Environ. 2009;44(5):1088–93.

[135] Chougale R, Kasai D, Nayak S, Masti S, Nasalapure A, Raghu AV. Design of eco-friendly PVA/TiO2-based nanocomposites and their antifungal activity study. Green. Materials. 2019;8(1):40–8.

[136] Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, et al. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Tropical Med. 2014;7(12):968–76.

[137] Ajmal N, Sarawat K, Bakht MA, Riadi Y, Ahsan MJ, Noursad M. Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, anti-oxidant activities. Green Chem Letters Rev. 2019;12:244–54.

[138] Ziental D, Czarzynska-Goslin ska B, Mlynczak DY, Glowacka-Sobotta A, Stanisz B, Goslin ski T, et al. Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials. 2020;10(2):387.

[139] Nakayama M, Smith CL, Felts BN, Piva TJ, Tabatabaei F, Harty PD, et al. Samarium doped titanium dioxide nanoparticles as theranostic agents in radiation therapy. Phys Medica. 2020;75:69–76.

[140] Zangheli F, Frias IA, Rêgo MJ, Pitta MG, Sacilli to M, Oliveira MD, et al. Biosensing breast cancer cells based on a three-dimensional TiO2 nanomembrane transducer. Biosens Bioelectron. 2017;92:313–20.

[141] Ali MA, Mondal K, Jiao Y, Oren S, Xu Z, Sharma A, et al. Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl Mater Interfaces. 2016;8(32):20570–82.

[142] Shen H, Wang J, Liu H, Li Z, Jiang F, Wang FB, et al. Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition. ACS Appl Mater Interf. 2016;8(30):19371–8.

[143] Zhang H, Chen G. Potent antibacterial activities of Ag/TiO2 nano-composite powders synthesized by a one-potsol-gel method. Env Sci Technol. 2009;34(8):2905–10.

[144] Mun KS, Alvarez SD, Choi WY, Sailor MJ. A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. Acs Nano. 2010;4(4):2070–6.

[145] Wang T, Jiang H, Wan L, Zhao Q, Jiang T, Wang B, et al. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomaterial. 2015;13:354–63.

[146] Schmidt-Stein F, Hahn R, Gniechwitz JF, Song YY, Shrestha NK, Hirsch A, et al. X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: degradation of organics and drug release. Electrochem Commun. 2009;11(11):2077–80.

[147] Kafshgari MH, Goldmann WH. Insights into theranostic properties of titanium dioxide for nanomedicine. Nano-Micro Lett. 2020;12(1):1–35.

[148] Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. 2013;10(1):1–33.

[149] Srinivasan M, Venkatesan M, Arumugam V, Natesan G, Saravanan N, Murugesan S, et al. Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem. 2019;80:197–202.

[150] Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009;69(22):8784–9.

[151] Yamashita K, Yoshiy oka Y, Higashik sa K, Mimura K, Morishita Y, Nozaki M, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6(5):321–8.

[152] Nasr R, Hasanazadeh H, Khaleghian A, Moshtaghian A, Emadi A, Moshef g A. Induction of apoptosis and inhibition of invasion in gastric cancer cells by titanium dioxide nanoparticles. Oman Med J. 2018;33(2):111.

[153] Thurn KT, Arora H, Paunesku T, Wu A, Brown EM, Doty C, et al. Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomed Nanotechnol Biol Med. 2011;7(2):123–30.

[154] Ninomiya K, Fukuda A, Ogino C, Shimizu N. Targeted sonocatalytic cancer cell injury using avidin-conjugated titanium dioxide nanoparticles. Ultrason Sonochem. 2014;21(5):1624–8.

[155] Hua Su Y. Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys. 2013;15:4844–58.

[156] Singh L, Kruger HG, Maguire GE, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Therapeutic Adv Infect Dis. 2017;4(4):105–31. doi: 10.1177/2049936117715593.

[157] Choi J. Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery. Pharmaceutics. 2020;12(7):630.

[158] Wang S. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater. 2015 Feb;13:354–63.

[159] Baptista MS. Photodynamic therapy in cancer treatment - an update review. J Cancer Metastasis Treat. 2019;5:25.
[160] Gouma P. A brief overview of TiO₂ photocatalyst for organic dye remediation: case study of reaction mechanisms involved in Ce-TiO₂ photocatalysts system. J Nanomaterials. 2018;2018:5953609. 13 pages.

[161] Yeoh K-W. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–9.

[162] Youkhana EQ. Titanium dioxide nanoparticles as radiosensitisers: an in vitro and phantom-based study. Int J Med Sci. 2017 May 15;14(6):602–14.

[163] Naresh V. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Basel). 2021 Feb 5;21(4):1109.

[164] Radecka M. TiO₂ nanostructures for photoelectrochemical cells (PECs). Int J Hydrog Energy. 2015;40(14):4936–44.

[165] Pan D. Colorimetric integrated PCR protocol for rapid detection of Vibrio parahaemolyticus. Sensors. 2016;16(10):1600. doi: 10.3390/s16101600.