Concurrent use of alcohol interactive medications and alcohol in older adults: a systematic review of prevalence and associated adverse outcomes

Alice E. Holton1*, Paul Gallagher1, Tom Fahey2 and Gráinne Cousins1

Abstract

Background: Older adults are susceptible to adverse effects from the concurrent use of medications and alcohol. The aim of this study was to systematically review the prevalence of concurrent use of alcohol and alcohol-interactive (AI) medicines in older adults and associated adverse outcomes.

Methods: A systematic search was performed using MEDLINE (PubMed), Embase, Scopus and Web of Science (January 1990 to June 2016), and hand searching references of retrieved articles. Observational studies reporting on the concurrent use of alcohol and AI medicines in the same or overlapping recall periods in older adults were included. Two independent reviewers verified that studies met the inclusion criteria, critically appraised included studies and extracted relevant data. A narrative synthesis is provided.

Results: Twenty studies, all cross-sectional, were included. Nine studies classified a wide range of medicines as AI using different medication compendia, thus resulting in heterogeneity across studies. Three studies investigated any medication use and eight focused on psychotropic medications. Based on the quality assessment of included studies, the most reliable estimate of concurrent use in older adults ranges between 21 and 35%. The most reliable estimate of concurrent use of psychotropic medications and alcohol ranges between 7.4 and 7.75%. No study examined longitudinal associations with adverse outcomes. Three cross-sectional studies reported on falls with mixed findings, while one study reported on the association between moderate alcohol consumption and adverse drug reactions at hospital admission.

Conclusions: While there appears to be a high propensity for alcohol-medication interactions in older adults, there is a lack of consensus regarding what constitutes an AI medication. An explicit list of AI medications needs to be derived and validated prospectively to quantify the magnitude of risk posed by the concurrent use of alcohol for adverse outcomes in older adults. This will allow for risk stratification of older adults at the point of prescribing, and prioritise alcohol screening and brief alcohol interventions in high-risk groups.

Keywords: Alcohol, Drug interaction, Alcohol interactive, Older adult, Psychotropic medicines, Adverse outcomes

* Correspondence: aliceholton@rcsi.ie
1School of Pharmacy, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

By 2050, older adults aged ≥60 years are expected to account for 34% of the population in Europe [1]. While alcohol consumption changes over the life-course, with a decline in consumption in older age, recent evidence from nine UK based prospective cohort studies, have shown that drinking occasions tend to become more frequent among older adults [2]. There is also evidence of a cohort effect, with successive birth cohorts reporting an increase in alcohol consumption across all age-groups, including among older adults [3].

Even at relatively low levels of alcohol consumption, older adults can be vulnerable to harm, with physiological changes exacerbating these harms [4, 5]. Furthermore, older adults experience a disproportionate burden of alcohol-related-harm; in England between 2009 and 2010, adults aged ≥65 years accounted for approximately 44% (461,400) of alcohol-related hospital admissions yet comprised of only 17% of the population [6, 7]. Alcohol-related deaths were also highest among those aged 55 to 74 years [4].

Furthermore, the use of multiple medicines is increasing in older adults [8–11]. A recent Irish study reported an increase in polypharmacy from 17.8 to 60.4% between the years 1997–2012 in older adults aged ≥65 years [11]. Certain medications have the potential to interact with alcohol; these medications are referred to as alcohol interactive (AI) medications [12]. They may interact with alcohol by altering the metabolism (pharmacokinetic) or effects (pharmacodynamic) of alcohol and/or the medication [12]. Certain interactions may occur with any alcohol consumption, whereas other interactions may follow a dose response, with the risk or severity of an interaction increasing with increasing levels of alcohol [13]. AI medications, when combined with alcohol, increase the risk of medical complications such as hypoglycaemia, hypotension, sedation, gastrointestinal bleeds and liver damage, in older adults [5, 12]. For example, older adults are vulnerable to the sedating effects of alcohol and when combined with central nervous system (CNS) agents, such as psychotropic medications, older adults have an increased risk of sedation and drowsiness [5]. Psychotropic medicines include antidepressants, sedatives/hypnotics, stimulants and neuroleptics, all of which act on the CNS and are commonly prescribed to older adults [14]. Similarly, concurrent use of alcohol with cardiovascular agents, such as vasodilatory agents, increases the risk of hypotension in older adults [5], with concurrent use of non-steroidal anti-inflammatory drugs (NSAIDs) increasing the risk of gastrointestinal bleeds [12].

While a recent systematic review has assessed the prevalence of concurrent alcohol use and prescription sedative-hypnotic medicines in middle-aged and older adults, [15] there have been no systematic reviews on the prevalence of concurrent use of alcohol and alcohol interactive medications beyond psychotropic medications and associated adverse outcomes in older adults. An older review did investigate the potential risk of combining alcohol with medications in older adults however the focus of the review was on the pharmacology and mechanism of action involved in alcohol-medication interactions and potential clinical implications of these interactions [5]. Therefore this study aims to systematically review the prevalence of concurrent use of alcohol and alcohol interactive medications in older adults and associated adverse outcomes.

Methods

This systematic review was performed according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines [16].

Search strategy

A comprehensive systematic search was performed using MEDLINE (PubMed), Embase, Scopus and Web of Science. A combination of the following keywords and MeSH terms were used: “ethanol”, “alcohol”, “drug interactions”, “drug alcohol interaction” and “aged”. This search was supplemented by a search in Google Scholar and by hand searching references of retrieved articles. The search was restricted to English language articles and articles published since January 1990 to June 2016.

Study selection and data extraction

Studies were included if they met the following eligibility criteria: Observational studies reporting on the concurrent use of alcohol and alcohol interactive (AI) medicines in the same or overlapping recall periods in older adults. Studies also had to report on the quantity or frequency of alcohol consumption. We excluded studies which exclusively sampled patients with specific illnesses, or those seeking treatment for alcohol use disorders (AUD) or illicit drug use.

Title and abstracts of identified studies were reviewed by one reviewer (AH) to determine potential eligibility. Full text articles were then reviewed by two reviewers (AH/GC) for those studies considered eligible from title/abstract, or when it was unclear whether a study met the inclusion criteria. The following data were extracted by two reviewers (AH/GC): year of publication, country, study sample, study design, measurement and definition of alcohol interactive (AI) medications, measurement of alcohol consumption, prevalence of alcohol use and AI medication use and prevalence of concurrent alcohol and AI medication use. Adverse outcomes associated with concurrent use of alcohol and AI medications were also extracted if reported. Any uncertainty in relation to
study eligibility and data extraction was resolved through discussion between two reviewers (GC/AH).

Critical appraisal
The risk of bias was evaluated, by two reviewers (AH/GC), using an adapted form of the Newcastle Ottawa cohort scale (NOS) [17]. This amended NOS scale allowed for the evaluation of cross-sectional studies, focusing on the risk of selection bias and information bias, specifically misclassification bias of both exposures (alcohol and AI medications) and the outcome (concurrent use of alcohol and AI medications) across included studies.

Results
Of the 546 citations identified from this search strategy, 108 full text articles were assessed for eligibility, with 20 studies meeting the inclusion criteria [14, 18–36] (Fig. 1).

Study characteristics
Ten of the included studies were conducted in Europe [14, 19, 21–23, 25, 27–29, 36], eight in North America [18, 20, 24, 30–32, 34, 35] and two in Australia [26, 33]. (Table 1) All studies were cross-sectional [14, 18–36]. Study settings varied across studies with; community-dwelling [14, 19, 21–27, 31, 34–36], both community-dwelling or living independently in care facilities [32], general populations [20, 28, 33], hospital setting [29], retirement communities [18] and participants signed up to a pharmaceutical assistance contract for the elderly [30].

Sample sizes varied from 311 to 83,321 participants [18, 30]. Men and women were included in all studies, with the exception of one Australian study which only included men [26]. Nine studies reported on a wide range of prescription and/or over the counter (OTC) medicines with potential to interact with alcohol [18–21, 24, 27, 29–31]. Three studies investigated any medication use during the recall period [23, 33, 35], and a further eight focused on psychotropic medications [14, 22, 25, 26, 28, 32, 34, 36]. Of the eight studies focusing on psychotropic medications, five investigated psychotropic medications alone [22, 25, 26, 34, 36] and three studies also included analgesics [14, 28, 32].

Of the nine studies focusing on a wide range of AI medications, all studies classified central nervous system (CNS) agents as AI medications (Table 1). Consistent with those studies investigating psychotropic medications [14, 22, 25, 26, 28, 32, 34, 36], the following drug classes were classified as AI medications, sedatives/hypnotics [18–21, 24, 27, 30, 31], antidepressants [18–21, 27, 30, 31], opioids/narcotics [18–21, 27, 30, 31], anticonvulsants [19–21, 24, 27, 30, 31] and antipsychotics [19–21, 27, 29, 30]. After CNS agents, cardiovascular medicines (CVS) were the most common AI medicines [18–21, 24, 27, 29–31], followed by antidiabetic drugs [18, 20, 21, 24, 27, 29–31], warfarin [18–21, 24, 27, 30, 31], gastrointestinal agents [18–21, 24, 30, 31], non-steroidal anti-inflammatory drugs (NSAIDs) [18–21, 29–31], antibiotics/anti-infectives [21, 24, 27, 29–31] and anti-histamines [19–21, 30].

Quality assessment
The methodological quality of the included studies is detailed in Table 2. The external validity was high in 4 studies, as they reported on random population samples of community dwelling older adults aged ≥60 or ≥65 years [21, 24, 27] or in the case of Breslow et al., a random population sample with oversampling of older adults aged ≥60 years [20]. Ten studies were considered to have moderate external validity; five studies sampled random community dwelling older adults but with age restrictions which may have introduced selection bias [14, 19, 25, 26, 31] such as including adults aged between 53 and 75 years [25] or only including adults ≥75 years [19]. A further five studies reported on random population samples of community dwelling adults with subgroup analysis of older adults, however they did not report oversampling of older adults [22, 23, 28, 33, 34].

The six remaining studies were considered to have poor external validity, as the risk of selection bias is considered to be high [18, 29, 30, 32, 35, 36]. For example, Pringle et al. recruited enrollees in the Pennsylvania pharmaceutical assistance contract for the elderly, which may not be representative of all older adults as the members are older (mean age 78.8 years) and more likely to be female and white with multiple chronic conditions [30].

Internal validity was assessed by evaluating the potential risk of misclassification bias for both exposure and outcome across studies. Ten studies were considered to have a low risk of misclassifying exposure to medications which have the potential to interact with alcohol, as they used prescription claims data or in house inventories where they recorded details from the labels of medication containers or prescriptions and provided references supporting the inclusion of medicines as potentially alcohol interactive (Table 2) [14, 20, 21, 25, 26, 28, 30–32, 34]. The potential for misclassification bias was considered high in the remaining studies as they relied on self-report for medication exposure [18, 22, 23, 27, 29, 33, 35, 36] and/or did not provide references supporting the inclusion of medicines as potentially alcohol interactive [19, 23, 24, 29, 33, 35].

While all studies relied on self-reported alcohol consumption, thus introducing potential biases in recall and reporting, 11 studies were considered to have a lower risk of bias as they reported on both quantity and frequency of alcohol consumption within a specified recall period, ranging from 1 week to 12 months (Table 2) [14, 18–23, 25, 26, 31, 34]. The risk of misclassification bias, specifically underestimating exposure to alcohol, was
considered to be higher in the remaining studies as they used quantity or frequency measures alone [24, 32, 35], did not specify the recall period [24, 27, 30, 35], restricted measurements to wine consumption [29, 36] and used a very narrow recall period “last working day or last weekend” [28]. Ascertainment of exposure to alcohol was unclear in one study [33].

In relation to outcome assessment, no study directly measured the concurrent use of alcohol and AI medications, rather all studies inferred concurrent use. Although possible for all studies, the risk of misclassifying the outcome of concurrent use was considered lowest in those studies identified as having a low risk of misclassifying exposure, who used the same recall period for both exposures or inferred concurrent use based on alcohol consumption within a specific recall period, ranging between 1 week and 12 months, and current or regular medication use (Table 2) [14, 20, 21, 25, 26, 31, 34].

Summary of findings
As noted in Table 1, all estimates relate to studies from North America, Europe and Australia.

Alcohol consumption
The prevalence of alcohol consumption ranged between 57 and 63% in studies reporting on nationally representative
Table 1 Characteristics of included studies

Reference	Setting	Participants: N, sex, mean age (±sd), range	Study design (survey mode)	Measurement &Definition:	Alcohol Consumption Quantity/Frequency: thresholds applied
Adams 1995	United States (US), retirement community residents	N = 311 23% men 83 (± 6 years) NR	Cross sectional (Mailed self-reported survey)	Regular or occasional use of “high risk” meds in last 6 months: NSAIDS, aspirin, sedatives, narcotics, antidepressants, anti-hypertensives, antacids, \(\text{H}_2 \) blockers, warfarin & meds for congestive heart failure, glaucoma or diabetes. Reference source not reported.	Khavari questionnaire: quantity – frequency, last 6 months. None, 1–6 drinks/week or \(\geq 7 \) drinks/week. 1 drink = 12 oz. of beer, 5 oz. of wine, 3 oz. of fortified wine or 1.5 oz of hard liquor.
Aira 2005	Finland, community dwelling older adults	N = 521 27% men 81 (± 4.4 years) Range: 75–95.7 years	Cross sectional (Nurse interview; prescriptions & containers)	Current use of medications having potential interactions with alcohol: Acetaminophen (Paracetamol), anticonvulsants, antidepressants, TCAs, antihistamines, benzodiazepines, \(\text{H}_2 \) receptor antagonists, neuroleptics, nitrates, NSAIDs, opiates & warfarin. Reference source not reported.	Beverage specific quantity-frequency, last 12 months: None; 1–7 units/week; >7 units/week. 1 unit = 11-12 g of alcohol.
Breslow 2015	US, general population \(\geq 20 \) years	\(\geq 65 \) years N = 7183 20 years N = 26657 51% men NR	Cross sectional (Interviews in-home; medication containers)	Use of AI prescription medication, past month; identified using (i) Drugs.com, (ii) Caremark.com, (iii) Healthline.com, (iv) DailyMed databases & (v) references from 3 publications [12, 43, 44] including: cardiovascular agents, CNS agents, coagulation modifiers, GI, metabolic, psychotherapeutic & respiratory agents	Quantity – frequency in last 12 months: None, for women of all ages & men \(\geq 65 \) years moderate consumption: \(> 0 \)–7 drinks/week & heavier drinkers (\(> 7 \) drinks/week). For men \(\geq 20 \)–64 years moderate: \(> 0 \)–14 drinks/week & heavier \(> 14 \) drinks/week.
Cousins 2013	Ireland, community dwelling older adults \(\geq 60 \) years	N = 3815 46.6% males 69.7 (±7.3 years) Range: 60–99 years	Cross sectional (Nurse led interviews in-home; medications reviewed & self-completed questionnaire)	Current or regular use of medications with potential to interact with alcohol identified using Stockley’s Drug Interactions, British National Formulary and Irish Medicines Formulary; cardiovascular agents, CNS agents, coagulation modifiers, GI, metabolic, psychotherapeutic & respiratory agents	Quantity-frequency, past 6 months: None, Light/moderate (\(\leq 4 \) drinks/day or 10 drinks / week) and heavy drinkers (\(> 4 \) drinks/day or 10 drinks / week). 1 drink = 10 g of alcohol.
Del Rio 1996	Spain, community dwelling adults \(\geq 16 \) years	\(\geq 66 \) years N = 3003 \(\geq 16 \) years N = 21,084 48% men NR	Cross sectional (survey with interview)	Medication use, past 2 weeks. No reference source reported.	Beverage specific quantity-frequency, past 2 weeks.
Del Rio 2002	Spain, community dwelling adults \(\geq 16 \) years	\(\geq 66 \) years N = 1025 \(\geq 16 \) years N = 6396 48% men NR	Cross sectional (survey with interview)	Benzodiazepine use, past 2 weeks	Beverage specific quantity-frequency past 2 weeks: Low (men: \(\leq 21 \) units/week, women: \(\leq 14 \) units/week), moderate (men: \(22–50 \) units/week, women: \(15–35 \) units/week) & high consumption (men: \(> 50 \) units/week & women: \(> 35 \) units/week). 1 unit = 10 g of alcohol.
Du 2008	Germany, community dwelling older adults	N = 1605 45.2% men NR Range: 60–79 years	Cross sectional (survey & interview; prescriptions or original containers)	Any psychotropic medication use in past 7 days: ATC nervous system drugs coded N00. (Excluded drugs coded N02B aspirin & paracetamol, except for N02BA71) Opiate codeines used as antitussives were	Beverage specific quantity-frequency, past 12 months: Problem use (risky drinking): daily consumption \(\geq 10 \) g for women & \(\geq 20 \) g for men
Table 1 Characteristics of included studies (Continued)

Study	Country	Setting	N	Gender	Age	Design	Data Source	Medications	Alcohol Use	Interactions		
Forster 1993 [24]	US, community dwelling older adults	N=667	39.9% men	74.1 (±6.6 years)	Cross sectional (survey & interview; medication containers)	Prescription or OTC medications currently or past month: AI drugs defined by study clinical team; OTC painkillers, anti-hypertensives, diuretics, OTC cold preparations, arthritis medications, heart medications, antibiotics, mind altering medications, chest pain medications, pain medications, diabetes medications, ulcer medications, sleeping pills, OTC nasal sprays, steroids, blood agents, insulin, seizure medications & OTC asthma medication	Frequency: never, rarely, sometimes & regularly					
Ilomaki 2008 [25]	Finland, community dwelling older adults	N=1,774	48.1% men	63 years (NR)	Cross sectional (mailed survey & interview; prescriptions brought if any problems)	Regular use of psychotropic drugs at time of interview: antipsychotics, anxiolytics, hypnotics, sedatives, antidepressants & combinations		Beverage specific quantity-frequency past 12 months: frequent ≥ 2 times/week, binge (men ≥ 5 units/occasion; women ≥ 4 units/occasion) & heavy drinking (men: >14 units/week; women > 7 units/week). 1 unit = 12 g of alcohol				
Ilomaki 2013 [26]	Austria, community dwelling older men	≥70 years N=1,705	100% men	78.7 years (NR)	Cross sectional (Interview; medications brought)	Antidepressants (including SSRIS, TCAs, MAOIs and others) & SADs (including benzodiazepines and benzodiazepine-like hypnotics)		Beverage specific quantity-frequency past 12 months: daily (≥ 7 drinks/week), binge (≥ 5 drinks at least once/month), heavy (> 2 drinks/day) & problem drinkers (CAGE score ≥ 2). Nondrinkers: former or never drinkers 1 drink = 10 g of alcohol				
Immonen 2012 [27]	Finland, community dwelling older adults	≥ 65 years N=1,395	35.5% men	78.7 years (NR)	Cross sectional (mailed survey)	Current prescribed medications: Swedish, Finnish Interaction X-referencing (SFINX) interaction database identified significant drug-alcohol interactions: metronidazole, tinidazole, disulfiram, griseofulvin, prazosin, metformin & tacrolimus. CNS agents, hypoglycaemics and warfarin		Beverage specific quantity-frequency: At risk (>7 drinks/week or ≥ 5 drinks on a typical drinking day or ≥ 3 drinks several times/week), moderate drinkers (at least 1 drink/month but < 7 drinks/week) & minimal/non-users (<1 drink/month). 1 drink = 12 g of alcohol				
John 2007 [28]	Germany, general population	≥ 20 years N= 4290	49% men	20-79 years (NR)	Cross sectional; (Interview; container or participant provided information on current medications)	Use of sedative, hypnotics or anxiolytics (SHA) medicines including: barbiturates (& derivatives), benzodiazepines (& derivatives), carbamates, piperidinedione derivatives, hypnotics or anxiolytics & combinations of sedatives and hypnotics. SO group: included SHA and opioid, past 7 days		Quantity of beverage specific alcohol consumed on last working day and last weekend: Risk drinking (men: >30 g/day & women > 20 g/day)				
Lagnaoui 2001 [36]	France, community dwelling older adults	≥65 years N=3767	41.7% men	20-79 years (NR)	Cross sectional; (Interview at home adhoc questionnaire; visual inspection)	Benzodiazepine use						
Onder 2002 [29]	Italy, hospital admissions among older adults	N = 22,778	45% men	70.3 (± 16 years)	Cross sectional (questionnaire at admissions)	Mediations taken prior to admission, during hospital stay & prescribed at discharge: drugs classified according to risk of causing adverse drug reactions using Naranjo algorithm		Quantity of daily consumption prior to hospital admission: (daily wine units). Non-drinkers & moderate drinkers only, heavy alcohol users were excluded				
Pringle 2005 [30]	US, Pennsylvania Pharmaceutical	N = 83,321	19% men	20-79 years (NR)	Cross sectional (survey & prescription claims data)	Filled prescriptions, past 45 days: drugs with potential for alcohol interactions using First		Current quantity-frequency: Light: 1-7 drinks/month				
Study Source	Study Details	N	Percentage (%)	Age (Mean ± Standard Deviation)	Range	Study Design	Data Collection	Medication Categorisation	Interaction Categorisation	Interaction Details	Alcohol Consumption Categorisation	Quantity-Frequency Details
--------------	---------------	---	----------------	---------------------------------	-------	--------------	-----------------	-----------------------	-------------------------	------------------	-------------------------------	-------------------------------
Qato 2015	US, community dwelling older adults	2975	48.6%	78.8 (± 6.9 years)	Range: 65-106 years	Cross sectional (In house interviews & observation medication bottles)	Current or regular use (daily or weekly) with potential to interact with alcohol (Thomson Micromedex database). Drugs categorised according to severity of interaction: 1. Contraindicated: Drugs contraindicated for use with alcohol 2. Major: may be life-threatening or require medical intervention to prevent serious adverse events 3. Moderate: may result in exacerbation of individual's condition or require alternative therapy 4. Minor: limited clinical effects	Databank Inc. Drugs with one of the following warnings considered AI: 1. May cause drowsiness; alcohol may intensify this effect 2. Do not drink alcohol when taking this medication 3. May cause drowsiness and dizziness; alcohol may intensify this effect 4. Limit alcohol while taking this medication; daily use of alcohol may increase risk of stomach bleeds	Moderate: 8-30 drinks/month Heavy: >30 drinks/month	Quantity-frequency last 3 months: Non-regular drinkers: (none or <1 drink/week) Light –regular: (≥ 1 drink/week & 1 drink/day) Heavy-regular: (≥ 1 drink/week & 2-3 drinks/day) Binge-regular: (≥ 1 drink/week & ≥4 drinks/day)		
Sheahan 1995	US, community dwelling & independent living congregate care facility older residents	1028	26.9%	73.5 (± 9.47 years)	Range: 57-85 years	Cross sectional (In house interviews & medication container labels)	Psychotropic medications in past year: sedatives/hypnotics, anxiolytics/tranquilizers, antidepressants & prescription pain medications	Frequency, past year. Average number of times/week, month or year consumed alcohol. Number of drinking days in past year calculated	Quantity-frequency on each of the previous 7 days among those drinking in past year: No drinking, moderate & heavy drinking (>14 drinks/week for men/ >9 drinks/week for women) or binge drinking (>4 drinks/day for women or 5 drinks/day for men) 1 drink= 1 bottle or can of beer/ glass of draft, 1 glass of wine/cooler or 1 ½ oz of liquor			
Veldhuizen 2009	Canada, community dwelling ≥ 15 years	36,984	49%	≥ 15 years: N=36,984	49% men N	Cross sectional study (Survey with interview, medication containers)	Use of benzodiazepines (N03AE, N05BA and N05CD), non-benzodiazepine hypnotics (zopiclone, eszopiclone, zolpidem and zaleplon) during past 2 days among those who reported use in past 12 months	Frequency, past year. Average number of times/week, month or year consumed alcohol. Number of drinking days in past year calculated				
Wong 2016	America, community dwelling older adults	2444	33%	76.84 (±8.13 years)	Range: 60-103 years	Cross sectional (Face to face interviews)	Prescriptions and OTC medications taken daily. Number of medications: low ≤ 1, moderate 2-4 & high ≥5		Quantity-frequency Abstainers: no to alcohol & 0 drinkers/ month, Light: yes to alcohol & <29 drinks/ month, Moderate: yes to alcohol & 30 drinks/month, Heavy: yes to alcohol & >31 drinks/month 1 drink= 14g of alcohol			
samples of community dwelling older adults (Table 3) [21, 24, 27]. Prevalence estimates of alcohol consumption were generally lower in studies sampling restricted age-groups, for example estimates ranged between 33.7 and 44% for studies restricted to older adults aged >70 years [26] and >75 years [19]. Similarly, prevalence estimates of alcohol consumption were generally lower in those studies considered to have a high risk of selection bias [18, 29, 30, 32, 35]. For example, 20% of older adults registered on the Pennsylvania pharmaceutical assistance contract for the elderly reported alcohol consumption [30]. All studies reporting on gender differences identified a higher prevalence of alcohol consumption in men [19–21, 25, 29, 31, 36].

Alcohol interactive (AI) medicines
Exposure to alcohol interactive medications varied across studies; nationally representative studies of community dwelling older adults using objective measures of AI exposure estimate exposure at between 72 and 79% among the total study samples (Table 3) [20, 21]. Studies with objective measures of exposure to psychotropic medications in community dwelling older adults reported prevalence estimates of between 11.5–20% among the total study samples [14, 25, 26]. In contrast to alcohol consumption, use of psychotropic medications was significantly higher in women than men [14, 22, 25, 28, 32].

Table 2 Results of the critical appraisal of included studies

Study	Representativeness of sample	Ascertainment of alcohol consumption	Ascertainment of AI medications (classified)	Ascertainment of AI medications (measured)	Assessment of the outcome (concurrent use)	Study total:
a) Cross Sectional Studies Outcome of Interest Concurrent use of alcohol and medications:						
Adams et al. 1995 [18]	++	+	++	++	+++	++
Aira et al. 2005 [19]	+	+	++	++	+++	++
Breslow et al. 2015 [20]	++	+	++	++	++	+++
Cousins et al. 2014 [21]	++	+	++	++	++	+++
Del Rio et al. 1996 [23]	+	+	++	++	++	+++
Del Rio et al. 2002 [22]	+	++	++	++	++	+++
Du et al. 2008 [14]	+	++	++	++	++	+++
Forster et al. 1995 [24]	++	+	++	++	++	+++
Ilomaki et al. 2008 [25]	+	+	++	++	++	+++
Ilomaki et al. 2013 [26]	+	+	++	++	++	+++
Immonen et al. 2012 [27]	++	+	++	++	++	+++
John et al. 2007 [28]	+	+	++	++	++	+++
Lagnaoui et al. 2001 [36]	+	+	++	++	++	+++
Qato et al. 2015 [31]	+	+	++	++	++	+++
Swift et al. 2007 [33]	+	+	++	++	++	+++
Veldhuizen et al. 2009 [34]	+	++	++	++	++	+++
Wong et al. 2016 [35]	+	+	++	++	++	+++

Concurrent use of alcohol and AI medications among older adults
Eleven studies reported on the concurrent use of alcohol and alcohol interactive medications among the total study samples (Table 3) [14, 18–20, 23, 24, 31–33, 35, 36]. Eight of the 11 studies reported on alcohol consumption and a wide range of medicines with potential to interact with alcohol, with the prevalence of concurrent use ranging between 18 and 39% among the total study samples [18–20, 23, 24, 31, 33, 35]. Only two of these studies were considered to have a low risk of misclassification bias for concurrent use [20, 31]. Breslow et al. estimated the prevalence of concurrent use among older adults at 35% [20]. Concurrent use was highest for cardiovascular agents (28%) followed by metabolic agents (17%), CNS agents (10%) and coagulation modifiers (10%). Approximately 7.75% of all older adults were identified as concurrent users of alcohol and psychotropic medications [20]. Qato et al. reported a prevalence estimate of 21%, with potential alcohol-medicine interactions in older adults aged between 57 and 84 years being significantly more
Study	Prevalence of alcohol consumption in older adults (gender); Heavy/Problem drinking (gender)	Prevalence of alcohol interactive medication use:	Concurrent use reported among: Total sample of older adults	Concurrent use reported among: AI medication users	Concurrent use reported among: Current drinkers
Adams 1995 [18]	47% drank alcohol in previous 6 months; Heavy (>7 drinks/week): 8%	80% used one or more of the following in the last 6 months: NSAIDs, aspirin, sedatives, narcotics, antidepressants, anti-hypertensives, antacids, H2 blockers, warfarin & meds for congestive heart failure, gout or diabetes	38% reported concurrent use of alcohol and AI medications, 6% reported concurrent heavy alcohol consumption and AI medications	39% reported concurrent use of alcohol and AI medications, 3% reported concurrent heavy alcohol consumption and AI medications	Overall drinkers: 80% used an AI medication (50% used anti-hypertensives, 27% used aspirin, 20% used NSAIDs, 18% used chronic heart failure drugs, 11% used sedatives, 5% used narcotics, 5% used warfarin, 4% used diabetic drugs, 3% used antidepressants, 3% used drugs for gout) Heavy drinkers: 80% used an AI medication (48% used anti-hypertensives, 28% used aspirin, 16% used NSAIDs, 16% used chronic heart failure drugs, 4% used sedatives, 4% used narcotics, 4% used warfarin, 8% used diabetic drugs, 12% used antidepressants, 4% used drugs for gout)
Aira 2005 [19]	44% drank alcohol in previous 12 months (66% of men & 37% of women); Heavy (>7 units/week): 7% of men & 0% of women	90% used one or more of the following regularly or as needed: acetaminophen, anticonvulsants, antidepressants, antihistamines, benzodiazepines, histamine H2 receptor agonist, neuroleptics, nitrates, NSAIDs, opiates or warfarin	35% reported concurrent use of alcohol and AI medications	Overall AI medication users: 44% drank alcohol (36% acetaminophen users, 17% anticonvulsants users, 40% antidepressants users, 21% antihistamines users, 38% benzodiazepine users, 43% histamine H2 receptor agonist users, 25% neuroleptic users, 43% nitrates users, 46% NSAID users, 38% opiate users & 40% warfarin users)	Overall drinkers: 88% used AI medications
Breslow 2015 [20]	47% drank alcohol in previous 12 months (55% of men & 39% of women)	78.6% used one or more of the following: cardiovascular agents, CNS agents, coagulation modifiers, GI agents, metabolic agents, psychotherapeutic agents, respiratory agents	35% reported concurrent use of alcohol and AI medications	Overall AI medication users: 45% drank alcohol (44% cardiovascular agents users, 40% CNS agent users (34% anticonvulsants, 40% cardiovascular agents, 10%)}	Overall drinkers: 77.8% took AI medications (61.3% used cardiovascular agents, 22% used CNS agent, 3.9% used anticonvulsants, 4.6% used anxiolytic/sedative/hypnotic, 4.8%
Table 3: Summary of results; prevalence of alcohol consumption, alcohol interactive medication use and concurrent use among older adults (Continued)

Study	Prevalence	Alcohol Consumption	Medication Use	Concurrent Use		
Cousins 2013 [21]	62.8% drank alcohol previous 6 months (72% of men & 59% of women)	CNS agents (1.8% anticonvulsants, 2% anxiolytic/sedative/hypnotic, 2% narcotics, 2.2% NSAIDs), 3% coagulation modifiers, 2.2% GI agents, 16.9% metabolic agents, 39% psychotherapeutic agents (3.8% antidepressants), 2.1% respiratory agents	Overall AI medication users concurrent use of alcohol: 60% drank alcohol (60% cardiovascular agent users, 53.5% CNS agent users (59% of NSAID users, 54% hypnotic users, 44% anxiolytic users, 52.9% antidepressant users), 66.9% antihistamine users, 58.5% blood medication users, 54% anti-diabetic agent users, 47% anti-infective users, 50% GI agent users, 51% immunomodulator users & 80.3% muscle relaxant users)	Heavy (>4 drinks/day or >10 drinks/week): 20% (32% of men & 11% of women)	CAGE: 8% (12.2% of men & 4% of women)	CNS agents (1.8% anticonvulsants, 2% anxiolytic/sedative/hypnotic, 2% narcotics, 2.2% NSAIDs), 44% coagulation modifier users, 43% GI agent users, 43% metabolic agent users, 41% psychotherapeutic agent users (42% antidepressants), 48% respiratory agent users)
Del Rio 1996 [23]	Approximately 20% drank alcohol at least once per day in the past 2 weeks	72% took one or more of the following: cardiovascular agents, CNS agents, antihistamines, Blood, anti-diabetic agents, anti-infectives, GI agents, immunomodulators or muscle relaxants	18% reported concurrent use of alcohol and AI medications	18% reported concurrent use of alcohol and AI medications	Not Reported	CNS agents (1.8% anticonvulsants, 2% anxiolytic/sedative/hypnotic, 2% narcotics, 2.2% NSAIDs), 44% coagulation modifier users, 43% GI agent users, 43% metabolic agent users, 41% psychotherapeutic agent users (42% antidepressants), 48% respiratory agent users)
Forster 1993 [24]	57.1% reported using alcohol 16.9% admitted to drinking enough to become “lightheaded”	75–80% took one or more medication in previous 2 weeks	25% reported concurrent use of alcohol and AI medications. Concurrent alcohol consumption.	25% reported concurrent use of alcohol and AI medications. Concurrent alcohol consumption.	Not Reported	CNS agents (1.8% anticonvulsants, 2% anxiolytic/sedative/hypnotic, 2% narcotics, 2.2% NSAIDs), 44% coagulation modifier users, 43% GI agent users, 43% metabolic agent users, 41% psychotherapeutic agent users (42% antidepressants), 48% respiratory agent users)
Study	Alcohol Consumption	Alcohol Interactive Medications Use	Concurrent Use of Alcohol and AI Medications			
---------------	---------------------	-------------------------------------	---			
Immonen 2013	62.6% drank alcohol	27% took one or more of the following: metronidazole, tinidazole, disulfiram, griseofulvin, prazosin, metformin & tacrolimus. CNS agents, hypoglycaemics and warfarin	Overall Al medication users: 62.2% drank alcohol			
Immonen 2013	At risk drinking (>7 drinks/week, or ≥5 drinks on typical drinking day, or ≥3 drinks several times/week): 7.9%		Heavy or at risk drinkers: 42.2% took AI medications (2.2% used antipsychotics, 4.4% used antidepressant, 6.7% used anxioiytics, 11.1% used hypnotics/sedatives, 5.6% used anti-epileptics, 3.3% used opioids, 11.1% used warfarin & 13.3% used metformin)			
Onder 2002	54.2% drank ≤40 g of wine/day prior to hospital admission (68.1% of men & 42.8% of women)	27% used diuretics, 23% digoxin, 17.7% calcium channel blockers, 16% ACE inhibitors, 15% aspirin & anti-platelets, 9% oral hypoglycaemic agents, 6% NSAIDs, 6% antibiotics, 5% nitrates, 5% insulin, 4% steroids & 3.2% antipsychotics	Overall wine drinkers: 26% used diuretics, 3.8% oral hypoglycaemic agents, 2.6% antipsychotics & 1.8% insulin			
Pringle 2005	20.3% drank alcohol	77.4% used on or more Al medication	Overall AI medication users concurrent use of alcohol: 19% drank alcohol (18.4% cardiovascular agent users, 18% CNS agent users (20% of NSAID users, 16.8% anxioiytic/hypnotic/sedative users & 16% antidepressant users), 20% antihistamine users, 14% blood medication users, 13% antidiabetic agent users, 16% anti-infective users, 14% GI agent users & 16% muscle relaxant users)			
Qato 2015	41% were regular drinkers in the past 3 months (59.3% of men & 40.7% of women) Heavy (2–3 drinks/day): 19.7%	57.7% used at least one AI medication	21% reported concurrent use of alcohol and AI medications			
Qato 2015	Overall drinkers (Regular drinkers): 51% used AI medications (8.4% used antidiabetic agents, 66% used analgesics, 24% used narcotics, 5.3% used acetaminophen, 26.7% used...					
Studies reporting on psychotropic medicines (n = 8 studies)	Del Rio 2002 [22]	Overall benzodiazepine users concurrent use of alcohol: 23% (56–66 years), approx. 15% (66–75 years) & approx. 10% (>75 years)	13.4% used benzodiazepines in previous 2 weeks			
---	---	---	---			
	Du 2008 [14]	Overall psychotropic medication users concurrent use of alcohol: 37.5%	47.3% drank alcohol at least once in the last-week			
			Heavy drinking (210 g/day for women/ 2 / 20 g/day for men): 14.8%			
	Ilomaki 2008 [25]	Overall psychotropic medication users concurrent use of alcohol: 38.9% of male users & 14.7% of female users were frequent drinkers, 25.9% of male users & 8.3% of female users were heavy drinkers	76.7% drank alcohol in previous year (87.5% of men & 68.9% of women)			
	Heavy drinking (>14 units/week men & >7 units/week women): 12.6% (166% of men & 7.9% of women)	11.5% reported use of at least one psychotropic medication	11.5% reported use of at least one psychotropic medication			
	Ilomaki 2013 [26]	Overall antidepressant users: 27.1% consumed alcohol daily & 15% heavy drinkers Sedative or hypnotic users: 42.7% consumed alcohol daily & 26% heavy drinkers	33.7% drank alcohol daily in the past 12 months			
	Heavy drinking (>2 drinks/day): 19.2% Problem drinkers (CAGE): 11%		13.6% reported use of at least one psychotropic medication (8% reported antidepressant use, 5.7% sedative or anxiolytics use & 1.6% both drug classes)			
	John 2007 [28]	Men: Risk drinkers (non-smoker) use of sedative, hypnotic or anxiolytic: 43% of 60–79 year olds	Prevalence not reported			
	Risky drinking (>20 g/day women & >30 g/day men): 15.1% of men & 3.2% of women (excludes users	Men: 3.8% used sedative, hypnotic, anxiolytic; 1% used opioids	3.8% used sedative, hypnotic, anxiolytic; 1% used opioids			
		Women: 68% used sedative, hypnotic, anxiolytic: 1.6% used opioids	68% used sedative, hypnotic, anxiolytic: 1.6% used opioids			

Table 3 Summary of results: prevalence of alcohol consumption, alcohol interactive medication use and concurrent use among older adults (Continued)
Study	Alcohol Consumption	Medication Use	Concurrent Use	Notes
Lagnaoui 2001 [36]	56.3% drank wine (77.2% of men & 41.1% of women)	32% used benzodiazepines	15.7% reported concurrent use of alcohol (wine) and benzodiazepines & 2.9% reported concurrent heavy alcohol consumption (wine) and benzodiazepine use	Men: Risk drinkers (smokers) use of sedative, hypnotic or anxiolytic: 0% of 60–79 year olds. Women: Risk drinker (non-smoker) use of sedative, hypnotic or anxiolytic: 13% of 60–79 year olds. Women: Risk drinkers (smokers) use of sedative, hypnotic or anxiolytic: 0% of 60–79 year olds. Overall benzodiazepine users: 49% consumed wine & 9.2% heavy drinkers. Overall wine drinkers: 28.1% used benzodiazepines & heavy wine drinkers: 5.3% used benzodiazepines.
Sheahan 1995 [32]	38% drank alcohol in the past 12 months	28% reported use of at least one psychotropic medication	2% reported concurrent use of alcohol and psychotropic medication	Overall benzodiazepine users: 33.9% consumed alcohol & 5.1% were heavy drinkers.
Veldhuizen 2009 [34]	Not reported	Not reported		
likely among men, white respondents, wealthier respondents, and those with higher education levels and greater comorbidities [31]. The prevalence of concurrent use was lower in studies which focused on psychotropic medications, ranging between 2 and 15.7% [14, 32, 36]. Only one study was identified as having a low risk of misclassifying concurrent use in older adults [14], with an estimated prevalence of 7.4% among the total study sample and 2.4% for concurrent heavy alcohol consumption and psychotropic medications. Older age (70–79 years), residing in rural or small town areas, living alone, higher social status, polypharmacy and a poor social network were independently associated with concurrent use of alcohol and psychotropic medications [14]. While a higher proportion (15.7%) of older adults in a French study [36] were identified as concurrent users of wine and benzodiazepines, the methods of ascertaining exposure to benzodiazepines was unclear, as was the assessment of concurrent use. Similarly, the lower estimate of 2% for concurrent use of alcohol and psychotropic medications in Sheahan et al. [32] is likely an artefact of their sample including patients in congregate care facilities.

Five studies assessed the prevalence of alcohol consumption among users of a broad range of alcohol interactive medications (Table 3) [19–21, 26, 29]. Breslow [20] and Cousins [21] were identified as having a low risk of misclassifying concurrent use, and reported prevalence estimates of 45 and 60% respectively. Cousins et al. [21] found that older adults using AI medications were significantly less likely to report alcohol consumption compared to those unexposed to AI medications. Younger age (60–64 years), men, urban dwelling, higher levels of education and a history of smoking were independently associated with concurrent use of alcohol and AI medications [21]. A further six studies focused on psychotropic medication users [14, 22, 25, 26, 34, 36], four of which were identified as having a low risk of misclassification bias [14, 25, 26, 34]. Du et al. estimated the prevalence of alcohol consumption among users of psychotropic medications at 37.5% [14]. Similarly, Ilomaki et al. [25] reported that 38.9% of male psychotropic medication users, and 14.7% of their female users, consumed alcohol, with 26% of male and 8.3% of female users identified as heavy drinkers. Male psychotropic medication users consumed greater quantities of alcohol, and more often, than non-users. This pattern was not observed among women [25]. Between one-third and a half of all sedative or hypnotic users (34–54%) have been shown to consume alcohol [20, 21, 26, 34] with between 5 and 13% drinking heavily [21, 34]. Consistent with these findings, Ilomaki et al. [15] found that 26% of men aged greater than 70 years who use sedatives or hypnotics drink heavily; heavy drinking and daily drinking was significantly higher among male sedative or hypnotic users compared to non-users [26]. Concurrent use of alcohol among older adults taking antidepressants ranged between 42 and 53%, [20, 21] with 27% of male users aged greater than 70 years reporting concurrent use [26].

Adverse outcomes associated with concurrent use of alcohol and alcohol interactive medications

Only four studies reported on adverse outcomes. Three studies reported on falls, all three studies were cross-sectional [27, 32, 35]. A study by Immonen et al. [27] of 2100 older adults in Finland found that falls and injuries when a person has consumed alcohol in the past 12 months were more common among at risk drinkers (>7 drinks/week, or ≥5 drinks drinking days or ≥3 drinks several times/week) using AI medications (13.8%) compared to AI medication-users who were not considered as at risk drinkers (4.1%) (p < 0.001) [27]. In contrast to these findings, Sheahan et al.’s [32] study of older adults in America, which included patients in congregate care facilities, found that although the number of psychotropic drugs was associated with an increased odds of falling, the concurrent use of alcohol and psychotropic drugs was not. Similar non-significant associations were reported in Wong et al.’s [35] convenience sample of older adults in the US. One study examined the association between moderate alcohol consumption (≤ 40 g of wine per day) and adverse drug reactions among older adults at the point of admission to one of 81 acute care hospitals in Italy [29]. Among 22,778 participants, 3.9% were identified as having one or more adverse drug reactions. Moderate alcohol consumption was associated with a 24% increase in the odds of having an adverse drug reaction [29].

Discussion

Overall, the results of this review suggest that between one-in-five and one-in-three older adults are potentially susceptible to alcohol-medication interactions, with more than half of AI medication users reporting alcohol consumption [20, 21, 31]. However, these estimates need to be interpreted with caution as studies differed in their classification of AI medications. In the absence of an explicit list of alcohol-interactive medications, multiple drug reference sources were used across studies [20, 21, 27, 30, 31]. Use of different medication compendia led to a lack of consistency in the inclusion of AI medications across studies and may have led to the over or under inclusion of medications [31, 37], resulting in an over-or-under estimate of concurrent use. There was however consensus with regards to CNS agents; all studies that reported on AI medicines classified CNS...
agents as alcohol interactive, specifically psychotropic medications [14, 18–22, 24–32, 34, 36]. Based on the quality assessment of studies, the most reliable estimates for the concurrent use of psychotropic medications and alcohol ranged between 7.4% [14] and 7.75% [20].

Despite the high prevalence of concurrent use among older adults, no study examined longitudinal associations with adverse outcomes. Three cross-sectional studies reported on falls with mixed findings [27, 32, 35]; with one study reporting on an association between moderate alcohol consumption and adverse drug reactions among older adults at the point of admission to hospital [29]. An evidence based list of medications which have a significant risk of harm to older patients when combined with alcohol would be useful in a clinical setting, allowing for the identification of older adults whose alcohol consumption places them at increased risk and who would benefit from a preventative intervention. While recent studies have shown that clinicians rarely undertake screening and brief interventions to reduce alcohol consumption [38–40], flagging patients at the point of prescribing an alcohol-interactive medication may facilitate targeted screening and interventions to reduce harm. Brief alcohol interventions in primary care are effective in significantly reducing weekly alcohol consumption [41]. Additionally, educating older adults in relation to the risks associated with concurrent use of alcohol and medications has been shown to increase older adults’ awareness of potential risks [42]. However, whether this intervention results in a behaviour change for those at risk is unclear [42].

This is the first systematic review to examine the prevalence of concurrent use of alcohol and alcohol interactive medications and associated adverse outcomes in older adults. An explicit and robust methodology was applied to identify, critically appraise and synthesise the study findings. However, the findings of the review need to be interpreted in the context of the study limitations. The risk of misclassification bias for both alcohol and AI medications was high across many studies, undermining internal validity. Furthermore, no study directly measured the concurrent use of alcohol and AI medications, rather all studies inferred concurrent use. Finally, heterogeneity across studies in relation to classifying medications as alcohol interactive and in the methods used to quantify alcohol consumption, prevent statistical pooling of data from existing studies. Variation in study setting and age restrictions, also make it difficult to compare prevalence of concurrent use across studies. Furthermore, due to the current gap in the literature, the available evidence for this review was restricted to three continents, Europe, North America and Australia.

Conclusions
While there appears to be a high propensity for alcohol-medication interactions in community dwelling older adults, there is a lack of consensus regarding what constitutes an alcohol interactive medication. An explicit list of alcohol interactive medications needs to be derived, and validated prospectively to quantify the magnitude of risk posed by the concurrent use of alcohol and alcohol interactive medications for adverse outcomes in older adults. This will allow for risk stratification of older adults at the point of prescribing, and prioritise alcohol screening and brief alcohol interventions in high-risk groups.

Additional files

Additional file 1: Database search: this document describes the retrieval process of studies for the systematic review. (DOCX 14 kb)

Additional file 2: Search strategy: This file describes the search strategies used in Embase, PubMed, Web of Science and Scopus in order to identify studies for this systematic review. (DOCX 15 kb)

Additional file 3: Newcastle-Ottawa Scale (NOS) adapted for cross-sectional studies. (DOC 35 kb)

Additional file 4: Table S1: Most common alcohol interactive (AI) medicines across included studies. (DOCX 281 kb)

Abbreviations
ADRs: Adverse drug reactions; AI: Alcohol interactive; AUD: Alcohol use disorder; NSAIDs: Nonsteroidal anti-inflammatory drugs; OTC: Over the counter

Acknowledgements
Not applicable.

Funding
This study was funded by the Royal College of Surgeons in Ireland (RCSI), School of Pharmacy. The funder had no role in the design of the study and collection, analysis, and interpretation of data or in writing the manuscript.

Availability of data and materials
All data generated or analysed during this study are reported in the manuscript (and its Additional files 1, 2, 3 and 4).

Authors’ contributions
AP defined the research question and the methodology including the search strategy, performed the literature search, and reviewed all included studies, extracted data, performed quality assessment and drafting of the manuscript. GC conceived the research study, defined the research question and methodology and reviewed full text articles, extracted data, and performed quality assessment. GC was also involved in writing of the paper and approved the final manuscript. TF defined the research question, and the methodology, reviewed the manuscript and approved this manuscript to be published. PG defined the research question, and the methodology, reviewed the manuscript and approved the manuscript to be published. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1School of Pharmacy, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland. 2HHR Centre for Primary Care Research, Department of General Practice, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland.

Received: 18 January 2017 Accepted: 4 July 2017
Published online: 17 July 2017

References
1. United Nations, Department of Economic and Social Affairs PD. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. New York: 2015.
2. Britton A, Ben-Shlomo Y, Beral V, Chinn S, Davey Smith G. Life course trajectories of alcohol consumption in the United Kingdom using longitudinal data from nine cohort studies. BMJ Med. 2015;13:47.
3. Meng Y, Holmes J, Hill-McManus D, Brennan A, Meier PS. Trend analysis and modelling of gender-specific age, period and birth cohort effects on alcohol abstention and consumption level for drinkers in great Britain using the general lifestyle survey 1984–2009. Addiction. 2014;109.
4. Wadd S, Papadopoulos C. Drinking behaviour and alcohol-related harm amongst older adults: analysis of existing UK datasets. BMC Res. Notes. 2014;7:741.
5. Moore AA, Whiteman EA, Ward KT. Risks of combined alcohol/medication use in older adults. Am J Geriatr Pharmacother. 2007;5(1):164–74.
6. NHS Information Centre: Statistics for Alcohol : England 2010. 2011.
7. Meng Y, Holmes J, Hill McManus D, Brennan A, Meier PS. Trend analysis and modelling of gender-specific age, period and birth cohort effects on alcohol abstention and consumption level for drinkers in great Britain using the general lifestyle survey 1984–2009. Addiction. 2014;109.
8. Wadd S, Papadopoulos C. Drinking behaviour and alcohol-related harm amongst older adults: analysis of existing UK datasets. BMC Res. Notes. 2014;7:741.
9. Moore AA, Whiteman EA, Ward KT. Risks of combined alcohol/medication use in older adults. Am J Geriatr Pharmacother. 2007;5(1):164–74.
10. Meng Y, Holmes J, Hill McManus D, Brennan A, Meier PS. Trend analysis and modelling of gender-specific age, period and birth cohort effects on alcohol abstention and consumption level for drinkers in great Britain using the general lifestyle survey 1984–2009. Addiction. 2014;109.
11. Sturnakida D, McMurdo ME, Mangoni AA, Guthrie B. Temporal trends in antihypertensive medication prescription in older people: repeated cross-sectional analysis of population prescribing data. Age Ageing. 2014;43(4):515–21.
12. Richardson K, Moore P, Peklar J, Galvin R, Bennett K, RA. K. Polypharmacy in adults over 50 in Ireland: Opportunities for cost saving and improved healthcare. A report from The Irish Longitudinal Study on Ageing (TILDA). TILDA Trinity College Dublin 2012 December 2012. Report No.
13. Moriarty F, Hardy J, Bennett K, Smith SM, Fahey T. Trends and interaction of polypharmacy and potentially inappropriate prescribing in primary care over 15 years in Ireland: a repeated cross-sectional study. BMJ Open. 2015;5(5):e006656.
14. Wehmonen R, Crabb DW. Alcohol and medication interactions. Alcohol Res Health. 1999;23(1):40–54.
15. Adams WL. Interactions between alcohol and other drugs. Int J Addict. 1995;30(13–14):1903–25.
16. Du Y, Scheitl-Nave C, Knoff H. Use of psychotropic drugs and alcohol among non-institutionalised elderly adults in Germany. Pharmacopsychiatry. 2008;41(6):242–51.
17. Ilomaki J, Paljarv T, Korhonen MJ, Enlund H, Alpern EM, C. A. K. K. A. Prevalence of concomitant use of alcohol and sedative-hypnotic drugs in middle and older aged persons: a systematic review. Am J Geriatr Pharmacother. 2013;47(2):257–68.
18. Meror D, Liberati A, Tetzlaff J, Altman ED. Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9. W64.
19. Hozog R, Alvarez-Pasquin MJ, Díaz C, Del Barrio JL, Estrada JM, Gil A. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health. 2013;13:154.
20. Adams WL. Potential for adverse drug-alcohol interactions among retirement community residents. J Am Geriatr Soc. 1995;43(3):1021–5.
21. Sirinck I, Hartkainen S, Sulkava R. Community prevalence of alcohol use and concomitant use of medication – a source of possible risk in the elderly aged 75 and older. Int J Geriatr Psychiatry. 2005;20(7):680–5.
22. Breidow RA, Dworkin C, White A. Prevalence of alcohol-interaction prescription medication use among current drinkers: United States: 1999 to 2010. Alcohol Clin Exp Res. 2015;39(2):371–9.
23. Cousin G, Galvin R, Flood M, Kennedy M-C, Motterlini N, Henman MC, et al. Potential for alcohol and drug interactions in older adults: evidence from the Irish longitudinal study on ageing. BMC Geriatr. 2014;14.
24. Del Rio MC, Prada C, Alvarez FJ. Do Spanish patients drink alcohol while undergoing treatment with benzodiazepines? Alcohol. 2002;26(1):31–4.
25. Del Rio MC, Prada C, Alvarez FJ. The use of medication and alcohol among the Spanish population. Br J Clin Pharmacol. 1996;41(3):253–5.
26. Forster LE, Pellow R, Stoller EP. Alcohol use and potential risk for alcohol-related adverse drug reactions among community-based elderly. J Community Health. 1993;18(4):225–39.
27. Iломаки J, Korhonen MJ, Enlund H, Hartzema AG, Kauhanen J. Risk drinking behavior among psychotropic drug users in an aging Finnish population: the FinDrink study. Alcohol. 2008;42(4):261–7.
28. Ilomaki J, Grzyck D, Hillmer SN, Le Couture DG, Naganathan V, Cumming R, et al. Psychotropic drug use and alcohol drinking in community-dwelling older Australian men: the CHAMP study. Drug Alcohol Rev. 2013;32(2):218–22.
29. Immonen S, Pitkälä K. The prevalence of potential alcohol-drug interactions in older adults. Eur Geriatr Med. 2012;3:5134.
30. John U, Beumeister SE, Vold F, Meyer C, Ulbricht S, Alte D. Sedative, hypnotic, anxiolytic and opioid medication use and its co-occurrence with tobacco smoking and alcohol risk drinking in a community sample. BMC Public Health. 2007;7:337.
31. Onder G, Landi F, Delia Vedova C, Atkinson H, Pedone C, Cesari M, et al. Moderate alcohol consumption and adverse drug reactions among older adults. Pharmacoepidemiol Drug Safety. 2002;11(5):385–92.
32. Pöring KE, Ahern FM, Heister DA, Gold CH, Brown TV. Potential for alcohol and prescription drug interactions in older people. J Am Geriatr Soc. 2005;53(11):1930–6.
33. Qato DM, Manzoor BS, Lee TA. Drug-alcohol interactions in older US adults. J Am Geriatr Soc. 2015;63(11):2324–31.
34. Sheahan SL, Coons SJ, Robbins CA, Martin SS, Hendricks J, Latimer M. Psychoactive medication, alcohol use, and falls among older adults. J Behav Med. 1995;18(2):127–40.
35. Swift W, Stolllow N, Pirotta M. The use of alcohol and medicines among Australian adults. Aust N Z J Public Health. 2007;31(6):529–32.
36. Veldhuizen S, Wade T, Calmej J. Alcohol consumption among Canadians taking benzodiazepines and related drugs. Pharmacoepidemiol Drug Saf. 2009;18(3):203–10.
37. Wong H, Heubengiter R, Logomarsino J, Hewlings S. Associations between alcohol use, polypharmacy and falls in older adults. Nurs Older People. 2016;28(1):30–6.
38. Lagnoaule R, Moore N, Darrigue JF, Fourier A, Begaud B. Benzodiazepine use and wine consumption in the French elderly. Br J Clin Pharmacol. 2001; 52(4):455–6.
39. Vitry AI. Comparative assessment of four drug interaction compendia. Br J Clin Pharmacol. 2007;63(3):709–14.
40. Brown J, West R, Angus C, Bead E, Brennap A, Drummond C, et al. Comparison of brief interventions in primary care on smoking and excessive alcohol consumption: a population survey in England. Br J Gen Pract. 2016;66(642):e1–9.
41. Hamilton FL, Laverty AA, Gluvajic D, Huckvale K, Car J, Majaee A, et al. Effect of financial incentives on delivery of alcohol screening and brief intervention (ASBI) in primary care longitudinal study. J Public Health. 2014;36(3):450–9.
42. Deehan A, Templeton L, Taylor C, Drummond C, Strang J. Low detection rates, negative attitudes and the failure to meet the “health of the nation” alcohol targets: findings from a national survey of GPs in England and Wales. Drug Alcohol Rev. 1998;17(3):249–58.
43. Kaner E, Beyer F, Dickinson HO, Penear A, Campbell F, Schlesinger C, et al. Effectiveness of brief alcohol interventions in primary care populations. Cochrane Database Syst Rev. 2007;2:CD004148.
44. Benza AT, Calvert S, McQueen CB. Prevention BINGO: reducing medication and alcohol use risks for older adults. Aging Ment Health. 2007;11(8):1008–14.
45. National Consumers League (2013). Avoid Food Drug Interactions Food and Medicines National Institutes of Health, US Department of Health and Human Services 2014.