Systemic insecticides used in dogs: potential candidates for phlebotomine vector control?

Sonia Ares Gomez and Albert Picado
Barcelona Institute for Global Health, Barcelona, Spain

Summary
Zoonotic visceral leishmaniasis (ZVL) is a public health problem endemic in some countries. Current control measures, in particular culling infected dogs, have not reduced ZVL incidence in humans. We evaluated the use of five systemic insecticides (spinosad, fluralaner, afoxolaner, sarolaner and moxidectin) currently used in dogs for other purposes (e.g. tick, flea control) in controlling ZVL transmission. The anti-phlebotomine capacity of these compounds confirmed in experimental studies makes their use in ZVL control programmes very promising. Limitations and benefits of using this new control tool are compared to current practices.

keywords phlebotomine vectors, dogs, systemic insecticides, zoonotic visceral leishmanias

Introduction
Zoonotic visceral leishmaniasis (ZVL) is a vector-borne disease in humans and dogs caused by the protozoa Leishmania infantum. The disease is transmitted from infected dogs to humans through the bite of some species of blood-sucking dipteran, colloquially known as phlebotomine sand flies. Dogs are the main reservoir and therefore essential to the persistence of L. infantum transmission. The parasitic infection induces an inflammatory reaction in the viscera. Signs and symptoms of human ZVL include hypergammaglobulinemia, immunosuppression, hepatosplenomegaly, pancytopenia, weight loss, fever and death if left untreated [1, 2].

In the old world, the principal endemic areas are in the Mediterranean region where ZVL is mainly a veterinarian problem and human cases occur sporadically [1, 3]. In the new world, ZVL is considered to be a human health problem with an estimated annual incidence of 6800 cases. Endemic countries are Brazil, Colombia, Paraguay, Venezuela, Guatemala, Argentina, Mexico and Honduras [3].

Brazil, with >3000 human cases per year, is the country with the highest incidence of ZVL in the world. Brazilian authorities recognised ZVL as a public health problem and have put a series of control measures in place since the 1980s [4, 5]. Those measures aim at reducing the incidence of ZVL and target people (e.g. diagnosis and treatment of cases [4]); dogs, the reservoir (e.g. culling of seropositive dogs [5]); and vectors (e.g. insecticide spraying [6, 7]).

The interventions targeting dogs have been controversial. L. infantum-infected dogs in Brazil that could not be treated [8] have been culled for over 20 years [9, 10]. This strategy, aimed at reducing the L. infantum reservoir, has not resulted in a significant decrease of the incidence in human cases [11]. Several reasons may explain this failure, including the poor sensitivity of screening tests used, the lack of compliance and the replacement with susceptible dogs [12, 13].

Application of insecticide-impregnated dog collars has been suggested as a cost-effective alternative to dog culling for controlling ZVL in Brazil [13–15]. These collars interrupt the transmission of L. infantum by killing the vector biting on dogs before it can transmit the disease [14]. One study showed reduction in the incidence of L. infantum infection in children in villages where deltamethrin-impregnated collars on dogs were used [15]. However, the use of deltamethrin-impregnated collars as part of the national or regional control programmes in endemic countries presents challenges: collars are expensive, they need to be worn by 80% of the dog population to have an impact on human cases and they need to be replaced every 6 months or earlier if they are lost [16, 17].

The use of systemic insecticides in dogs may overcome some of the limitations posed by current control methods and may be an alternative or complement to those in endemic countries. Because of their distribution throughout the body, systemic insecticides should kill sand flies that feed on dog’s blood, thus interrupting ZVL transmission in endemic areas. Similar to the application success of collars, the coverage of systemic insecticides needs to
be high (e.g. 80%) [18]. In order to achieve adequate coverage and guarantee maximum adherence to the treatment, systemic insecticides should be easy to apply and have a long-lasting effect, ideally 3–6 months [19].

Insecticides provided orally to animals using treated baits have been used to control zoonotic cutaneous leishmaniasis (ZCL) vectors. ZCL, caused by *L. tropica*, is also transmitted by phlebotomine sand flies but rodents are the main reservoir. Different systemic insecticides (imidacloprid, fipronil, novaluron and ivermectin) have been evaluated with promising results, both in the laboratory and in the field. Oral administration of systemic insecticides to rodents showed mortalities >80% within 29 days in sand flies feeding on treated animals in the laboratory [20–22]. In field studies sand fly density was reduced by 80% within 6 weeks [23]. Even when the animal targeted is not a reservoir (e.g. cows), systemic insecticides may have an impact on transmission by reducing sand fly density [24]. A similar approach is being used as tool to control malaria. A number of trials are evaluating if mass administration of ivermectin to people can contribute to malaria elimination by reducing the mosquito-transmitted in endemic areas [25, 26].

Systemic insecticides currently used in dogs to control flea and tick infestations or to treat heartworm are the same or have similar properties as those shown to kill ZCL vectors when used in rodents. Those insecticides could potentially be used as a new ZVL control tool in endemic areas. The goal of this study was to identify all systemic insecticides that can be safely administered to dogs and have the potential to exert an anti-phlebotomine effect. These drugs could potentially be used to control ZVL transmission.

Methods

To select suitable compounds, we first listed all systemic insecticides for dogs currently on the market. We then gathered information on their pharmacological characteristics and anti-phlebotomine activity. These data were used to identify the compounds with higher potential use for controlling ZVL.

List of systemic insecticides for dogs

We used veterinary reference documents, such as the British Small Animal Veterinary Association (BSAVA) Small Animal Formulary (2016) [27], Vademecum Gutiérrez (2016) [28] and the website Parasitipedia [29], to list all systemic insecticides registered for their use in dogs in Europe, North, Central and South America. Systemic insecticides are drugs whose active ingredient is distributed by blood circulation regardless of the route of administration. The pharmacological characteristics of the drugs identified were gathered from the web pages of the European Medicines Agency (EMA) (2016) [30] and the U.S. Food and Drug Administration (FDA) (2016) [31]. The following properties were recorded for each insecticide: mode of action, pharmacokinetics, safety and efficacy against targeted insects.

Anti-phlebotomine activity

We conducted a literature review to identify the compounds with highest anti-phlebotomine activity. Three databases were screened: Scopus (access to academic journals articles and patent databases), PubMed (access to MEDLINE database) and Cochrane library (access to systematic reviews, meta-analysis and controlled trials). The search terms used were as follows: (i) (phlebotomine vectors OR phlebotomine sand flies OR phlebotomine sandflies OR sand flies OR sandflies) AND (systemic insecticides OR each of the drugs identified); (ii) dogs AND each of the drugs identified. From search (i) we looked for information about the use of systemic insecticides in mammals targeting phlebotomine vectors control. For search (ii), we looked for information about pharmacodynamics of the drugs and their effectiveness at controlling insects in dogs.

Selection of the compounds with higher potential for ZVL control

To be used as a tool to control ZVL, the systemic insecticides should be able to kill female sand flies feeding on dogs (adulticides) and easy to administer so they can be distributed to large populations of dogs. They should also be effective for a maximum period of time to avoid repeated treatments. We selected the systemic insecticides based on the following criteria: (i) evidence about anti-phlebotomine capacity, (ii) optimal plasma drug concentration to kill blood-fed phlebotomine vectors, (iii) time of expected efficacy (ideally over 3 months after a single administration of the drug product) and (iv) route of administration (ideally oral).

Results

List of systemic insecticides for dogs and anti-phlebotomine activity

Thirteen systemic insecticides currently being used in dogs were identified (Table 1). Nine of them are oral treatments, one had an oral and a topical presentation.
and another one had a subcutaneous and a topical presentation. Ten of the treatments contained only one active ingredient, and three of the treatments were combinations of two active ingredients. The latter were used for heartworms, hookworms, whipworms, roundworms and fleas. From the other nine, two were used for heartworm control and seven were indicated for the control of fleas, of which three included tick control and one included tick and mite control. The mode of action of these drugs, summarised in Table 1, is described in detail in the Appendix S1.

The pharmacokinetics (PK), duration of action (Table 1), safety and anti-phlebotomine capacity (Table 2) of the insecticides are summarised below.

Table 1 List of drugs including the active ingredients and pharmaceutical characteristics of 13 systemic insecticides drugs commercialised for their use in dogs

Drugs	Indications	Administration	Dose	Duration of action	Mechanism of action
Ivermectin	Heartworms	PO	0.012 mg/kg BW	4 weeks	Agonist of glutamate-gated chloride channels and agonist of GABA
Moxidectin	Heartworms	SC	0.17 mg/kg BW	6 months	Agonist of glutamate-gated chloride channels and agonist of GABA
Moxidectin/imidacloprid	Fleas, mites, heartworms, microfilariae and roundworms	Topical	2.5–6.25 mg/kg/10–25 mg/kg	4 weeks	Agonist of GABA and agonist glutamate-gated chloride channels/antagonist of the nicotinic acetylcholine receptors
Spinosad	Fleas and ticks	PO	45–70 mg/kg BW	4 weeks	Agonist of the nicotinic acetylcholine receptors
Milbemycin oxime/Spinosad	Heartworms, hookworms, roundworms, whipworms and fleas	PO	0.75–1.18 mg/kg BW/45–70 mg/kg BW	4 weeks	Agonist of the nicotinic acetylcholine receptors
Fluralaner	Fleas and ticks	PO	25 mg/kg BW	12 weeks	Antagonist GABA-gated chloride channels
Fluralaner	Fleas and ticks	Topical	25–50 mg/kg BW	12 weeks	Antagonist GABA-gated chloride channels
Afoxolaner	Fleas and ticks	PO	2.5 mg/kg BW	5 weeks	Antagonist GABA-gated chloride channels
Sarolaner	Fleas, ticks and mites	PO	3 mg/kg BW	5 weeks	Antagonist GABA-gated chloride channels
Lufenuron	Fleas (eggs)	PO	10–30 mg/kg BW	4 weeks	Interference with chitin synthesis
Milbemycin oxime/Lufenuron	Heartworms, hookworms, roundworms, whipworms and fleas	PO	0.5–1.2 mg/kg BW/10–46 mg/kg BW	4 weeks	Agonist of GABA/Interference with chitin synthesis
Nitenpyram	Adult fleas	PO	11.4 mg (1–13 kg BW)	24 h	Agonist of the nicotinic acetylcholine receptors
Imidacloprid	Adult fleas	PO	0.75 mg/kg BW	24 h	Agonist of the nicotinic acetylcholine receptors

PO, oral; BW, body weight; SC, subcutaneous; GABA, gamma-aminobutyric acid.

Ivermectin, given orally to control heartworm (Dirofilaria immitis) in dogs at the dose range of 6–12 mcg/kg body weight (BW), reaches peak plasma concentration (C_{max}) of about 3 ng/ml 8 h after ingestion (t_{max}). The plasma mean elimination half-life ($t_{1/2}$) is 80 ± 29 h after ingestion with no events of toxicity even in ivermectin-sensitive collies [32, 33]. Ivermectin has shown to be effective against phlebotomine sand flies that fed on treated rodents. However, the dose used was 20 mg/kg BW, significantly higher than 6–12 mcg/kg BW. At this dose, 100% of the adult sand flies were killed for up to 7 days [21, 34, 35].

Moxidectin, given subcutaneously, also used for heartworm control, has a significantly broader and longer half-life distribution into tissues than ivermectin [36].
Studies about safety and PK at the recommended dose of 0.17 mg/kg BW reported no events of toxicity. The maximum blood levels \(C_{\text{max}} = 5.1 \text{ ng/ml} \) are reached \((t_{\text{max}}) \) at 7–10 days post-treatment, and plasma mean elimination half-life \((t_{1/2}) \) is approximately 35 days [37]. Efficacy studies reported 90% control of heartworm infection for 6 months [38, 39]. There are no reports of the anti-phlebotomine activity of moxidectin.

A formulation of topical moxidectin in combination with imidacloprid for dogs at dose 2.5 mg/kg BW has the following PK parameters: \(C_{\text{max}} = 15.3 \text{ ng/ml} \), \(t_{\text{max}} = 9 \) days and \(t_{1/2} = 35 \) days. Efficacy studies with one dose administration reported at least 97% reduction of flea infestation over 4 weeks and 99% microfilaricidal efficacy [40, 41].

In dogs, spinosad has rapid absorption and extensive distribution after oral administration of the recommended dose to control flea infestations: 45–70 mg/kg BW. Bioavailability is approximately 70%, reaching maximum concentration \(C_{\text{max}} = 5500 \text{ ng/ml} \) between 2 and 4 h post-treatment. The plasma mean elimination half-life ranges from 127.5 to 162.6 h [42, 43]. Efficacy and safety studies reported no adverse reactions in dogs after treatment at the recommended dose, and more than 95% reduction of flea infestation during 4 weeks post-treatment [42, 43]. Oral treatment of rodents with diets

Table 2 Active ingredients and characteristics for potential use in phlebotomine vector control of 11 systemic insecticides drugs commercialised for their use in dogs

Ingredients	Safety*	PROS	CONS	Supporting literature
Ivermectin 2 mg/kg		Proven effect on adult sand flies and on larvae	Experiments performed in rodents used 1 mg/kg body weight and the label dose for dogs is 0.012 mg/kg. Dogs should be tested for existing heartworms.	[21, 32, 33, 34]
Moxidectin 1.12 mg/kg		Higher safety and longer half-life elimination comparing with Ivermectin	There is no literature about the killing effect of moxidectin on adult sand flies. Dogs should be tested for existing heartworms.	[37–39], 90
Spinosad 3600 mg/kg		Proven efficacy killing adults and larvae. It has no residual effect.	The literature including the actual ingredient showed only effectiveness with dose twice that recommended for dogs	[40–44, 47–50]
Milbemycin oxime/Spinosad 980 mg/kg		Well tolerated by dogs. Increased odds of effectiveness on sand flies with the action of both drugs together	No literature regarding its anti-phlebotomine effect and dogs should be tested for existing heartworms	[41, 48–90]
Milbemycin oxime/Spinosad 3600 mg/kg		Well tolerated by dogs. Increased odds of effectiveness on sand flies with the action of both drugs together	No literature regarding its anti-phlebotomine effect and dogs should be tested for existing heartworms	[41, 88–90]
Milbemycin oxime/Lufenuron 980 mg/kg		Well tolerated by dogs and efficacy in killing flea larvae	No effect in adult fleas and no literature regarding its effectiveness of killing sand flies	[65–67]
Milbemycin oxime/Lufenuron 2000 mg/kg		Well tolerated by dogs and efficacy in killing flea larvae	No effect in adult fleas and no literature regarding its effectiveness of killing sand flies.	[65–67]
Nitenpyram 1680 mg/kg		Proven efficacy in killing flea adults and larvae with no residual effect.	No literature regarding its effectiveness of killing sand flies. Only active during 24 h	[68–71]
Nitenpyram 1680 mg/kg		Proven efficacy in killing flea adults and larvae with no residual effect.	No literature regarding its effectiveness of killing sand flies. Only active during 24 h	[20, 23, 42, 72]
Imidacloprid 1680 mg/kg		Proven efficacy in killing sand fly adults and larvae with no residual effect.	Not in the market yet. Only active for 24 h	[20, 23, 42, 72]

*Safety in dogs with oral administration except for moxidectin is subcutaneous administration.
containing about 120 mg/kg BW caused 100% mortality of blood-fed sand flies for 1 week [44].

The combination of spinosad and milbemycin oxime (MO) oral treatment at the recommended dose for fleas and ticks control provides greater systemic exposure of MO than when administered alone and the PK of spinosad is unaltered [43]. Efficacy and safety studies in dogs at the recommended dose reported treatment effectiveness greater than 90% for at least one month in flea infestations, reductions of about 95% for nematode infection and no adverse reaction. There is no literature on the anti-phlebotomine activity of this combination.

Fluralaner’s PK studies reported that after a single oral treatment of the recommended dose for fleas and ticks control (25 mg/kg BW), maximum concentration of 3000 ng/ml is reached at 24 h, \(t_{1/2} \) is about 12 days and quantifiable concentrations in plasma are found for up to 112 days. In addition, the ingestion of food before treatment has no effect on its bioavailability [45, 46]. A topically administered formulation that contains the same dose of fluralaner (25 mg/kg BW) obtained much lower plasma concentrations \((C_{\text{max}} = 727 \pm 191 \text{ ng/ml}, \ t_{\text{max}} = 25 \text{ h, and } t_{1/2} = 21 \text{ days}) \) [47]. Safety studies including adult dogs, MDR-1 deficient dogs, breeding animals and puppies reported no adverse effects. Efficacy studies confirmed the safety of fluralaner and reported flea and tick control greater than 95% over 12 weeks [47–50].

Studies with oral afoxolaner in dogs at the recommended dose of 2.5 mg/kg BW reported the following PK parameters: \(C_{\text{max}} = 1655 \pm 332 \text{ ng/ml, } t_{\text{max}} = 2–6 \text{ h and } t_{1/2} = 15.5 \pm 7.8 \text{ days.} \) In addition, plasma concentrations above 100–200 ng/ml, the requirement for efficacy in flea control, were detected for more than one month [51, 52]. Safety and efficacy studies reported no adverse effects in adult dogs or puppies and greater than 90% efficacy at controlling fleas and ticks infestations up to 35 days post-treatment [51, 53–55].

Sarolaner is used in dogs at the recommended dose of 3 mg/kg BW to control fleas, ticks and mites infestations. Maximum plasma concentration of 1100 ng/ml is observed within the first 24 h after treatment and \(t_{1/2} \) is 11–12 days. The plasma concentration required for flea control, 100 ng/ml, remains for more than 30 days post-treatment [56]. Efficacy and safety studies reported no adverse events in dogs after oral administration of the recommended dose and 90% efficacy at controlling fleas, ticks and mites infestations up to 35 days post-treatment [57–59]. There is no literature about the anti-phlebotomine activity of fluralaner, afoxolaner or sarolaner.

Lufenuron orally administered to dogs at the recommended dose of 10–30 mg/kg BW for flea control has maximum absorption after 6 h, and drug concentration at the skin is 10-fold that of blood concentration [60]. Maximum plasma concentration \((C_{\text{max}} = 800 \text{ ng/ml}) \) is reached about 8 h after treatment, and plasma mean elimination half-life is 20 days. Lufenuron is an ovicidal and larvicidal drug. Adult fleas transfer lufenuron to the growing eggs through their blood and to the larvae through their excrement [61]. Efficacy and safety studies reported no adverse effects in dogs after oral treatment at the recommended dose, and a reduction in flea infestation of 97% in the subsequent generations [62–64].

Lufenuron in combination with Milbemycin oxime does not alter the PK compared to when administered alone. Safety studies of this combination at the recommended dose showed no adverse effect when orally administered [65]. Efficacy studies showed reductions in fleas, toxocara canis and Trichuris vulpis infections greater than 90% [66, 67]. There is no literature about the anti-phlebotomine activity of lufenuron alone or in this combination.

Nitenpyram absorption from the gastrointestinal tract occurs in rapidly \((t_{\text{max}} = 1.21 \pm 0.65 \text{ h, } C_{\text{max}} = 4787 \pm 782 \text{ ng/ml and } t_{1/2} = 2.8 \pm 0.7 \text{ h}) \) and complete excretion in urine happens within 48 h post-treatment [68]. Studies on safety and efficacy on flea control reported no adverse effects when orally administered to dogs at the recommended dose. These studies also reported 95% efficacy at controlling fleas infestation between 30 min and 48 h post-treatment [69–71]. No literature was found about its anti-phlebotomine activity.

One formulation of oral imidacloprid indicated for flea control in dogs was approved for commercialisation in 2015, but soon after was removed for commercial reasons. The only study published about this commercial product used dogs from different clinics and different breeds. At the oral dose of 0.75 mg/kg BW, the study reported no adverse effect in the 118 dogs treated, and 95% efficacy at controlling fleas infestations [72]. Studies of rodents fed on diets with imidacloprid concentrations of 250 mg/kg reported sand fly mortality after blood fed on treated rodents > 85% for at least 3 days post-treatment [20, 23, 42]. One of these studies also followed larval development and reported mortality > 90% for all larval stages [20].

Selection of the compounds with higher potential for ZVL control

Compounds that did not match the selection criteria were excluded. Ivermectin was excluded because standard tablets of ivermectin formulations commercialised for dogs reach plasma concentration fivefold lower than that
needed to kill sand flies (13 ng/ml). Subcutaneous moxidectin was excluded because the plasma concentration is much lower than with the topical presentation. The topical formulation of fluralaner was also excluded because has lower plasma concentration and shorter lasting effect than the oral formulation. Milbemycin oxime was excluded because it has no capability to kill insects in dogs. The combination with spinosad was also excluded because it has lower concentration than the product with spinosad alone. Lufenuron was excluded because its lack of adulticide effect as it is only effective at killing flea eggs and larvae but ineffective at killing adult fleas. Nitenpyram and imidacloprid were excluded because their action period is short (only 24 h).

The compounds that matched the selection criteria and were selected as potential control tools for ZVL transmission were as follows: spinosad, fluralaner (oral), afloxolane, sarolaner and moxidectin (topical). Those five systemic insecticides are popular among veterinary practitioners and dog owners as they are easy to administer (four oral and one topical). Fluralaner was the only compound that met the ideal criteria of at least 3 months of lasting effect against the targeted parasites.

Discussion

Our review found five systemic insecticides already commercialised in dogs that have potential use as a control tool for ZVL transmission. These insecticides are safe and readily available to use in dogs in contrast to other compounds or formulations under development, for example, slow release ivermectin, for which safety is still being developed [73]. However, there is limited evidence on their anti-phlebotomine activity. Laboratory and field studies should be conducted to evaluate whether the phlebotomine sand flies feeding on dogs treated with these compounds are killed [74]. Some of the compounds selected (e.g. flularaner) are effective against fleas and ticks for up to 3 months, so it is possible that they may also have a prolonged anti-phlebotomine effect, but this should also be proven.

Even if their anti-phlebotomine activity is demonstrated, these systemic insecticides should comply with other requirements to be used as a ZVL control tool. They should be administered to a large number of dogs in endemic villages to have an effect on *L. infantum* transmission. Thus, they need to be safe, in case one dog gets more than on dose, and easy to administer. Four of the selected compounds can be administered orally. As shown in field studies with rodents, treated baits can be used to treat large populations [21, 75]. Treated baits were also found to work well with oral vaccination of wild life to control rabies in West Europe and USA [76]. A similar approach could be used in dogs to reduce costs and ensure high coverage.

The mass administration of systemic insecticides to dogs will not immediately protect the treated dogs directly against ZVL, but it will reduce phlebotomine sand fly density in the intervention area (e.g. village) [25]. If the number of treated dogs is large enough and the treatment is sustained, the reduction on vector density will interrupt the transmission of *L. infantum* to humans. Dogs, both treated and untreated as it happens in vaccination programs [77], will also be protected against *L. infantum* infection. Furthermore, treated dogs will be protected against fleas and ticks infestations [19].

The use of systemic insecticides may be used as a complement or alternative to other ZVL control tools but it has some limitations. The mass use of insecticides may result on the development of insecticide resistance in *L. infantum* vectors and other ectoparasites feeding on dogs. The use of two systemic insecticides (e.g. in combination or in rotation) with different modes of action may limit this risk [78]. The selected compounds are expensive as they were developed to treat individual dogs thus treating thousands of dogs would be costly. However, the cost of some of these drugs can be significantly reduced (e.g. ivermectin) and new formulations could be developed to reduce the number of treatments (e.g. slow release) [73]. In any case, mass treating dogs, in particular if oral drugs are used, would be much less demanding than the current alternatives: dog culling, insecticide-impregnated collars and canine vaccines. Dog culling and insecticide-impregnated collars requires important logistics and accessing to each dog. Culling dogs require obtaining a blood sample, conducting the laboratory analysis, re-tracing the positive dogs and culling them [12, 17, 18, 79, 80]. Finally, the canine vaccines could be a very useful tool, but they also require manipulating the dogs, they are expensive and so far none of the three available vaccines in Brazil has proved to reduce ZVL transmission [81].

Cluster randomised clinical trials should be used to demonstrate that mass administration of systemic insecticides to dogs significantly decreases human incidence of ZVL in endemic areas [15]. But these clinical trials are complex and costly. Mathematical modelling may allow generating preliminary data on the impact of this control measure on *L. infantum* transmission. Modelling transmission dynamics has been used to predict the impact of control measures on a number of diseases, including leishmaniasis. For example, mathematical modelling was use comparing insecticide-impregnated collars with dog culling in preventing ZVL transmission [18, 82, 83].
Systemic insecticides in dogs for vector control

References

1. Ready PD. Epidemiology of visceral leishmaniasis. Clin Epidemiol 2014: 6: 147–154.
2. Jeronimo SMB, Teixeira MJ, de Queiroz Sousa A, Thielking P, Pearson RD, Evans TG. Natural History of Leishmania (Leishmania) chagasi infection in Northeastern Brazil: long-term follow-up. Clin Infect Dis 2000: 30: 608–609.
3. Alvar J, Vélez ID, Bern C et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 2012: 7: e35671.
4. Lacerda MM. The Brazilian leishmaniasis control program. Mem Inst Oswaldo Cruz 1994: 89: 489–495.
5. Palatnik-de-Sousa CB, dos Santos WR, França-Silva JC et al. Impact of canine control on the epidemiology of canine and human visceral leishmaniasis in Brazil. Am J Trop Med Hyg 2001: 65: 510–517.
6. Alexander B, Maroli M. Control of phlebotomine sandflies. Med Vet Entomol 2003: 17: 1–18.
7. Dantas-Torres F, Brandão-Filho SP. Visceral leishmaniasis in Brazil: revisiting paradigms of epidemiology and control. Rev. Inst. Med. Trop. São Paulo. 2006: 48: 151–156.
8. Ministério da Saúde. Interministerial ordinance ANVISA-MAPA 1426 of 07/11/2008 (Internet). [Available from: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2008/pr1426_11_07_2008.html] [18 Oct 2016]
9. Gontijo CMF, Melo MN. Visceral Leishmaniasis in Brazil: current status, challenges and prospects. Rev. Bras. Epidemiol. 2004: 7: 338–349.
10. Quinnell RJ, Courtenay O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology 2009: 136: 1915–1934.
11. von Zuben APB, Donaliso MR. [Difficulties in implementing the guidelines of the Brazilian Leishmaniasis Control Program in large cities]. Cad. Saúde Pública 2016: 32: n. 6.
12. Courtenay O, Quinnell RJ, Gacrez LM, Shaw JJ, Dye C. Infectiousness in a cohort of Brazilian dogs: why culling fails to control visceral leishmaniasis in areas of high transmission. J Infect Dis 2002: 186: 1314–1320.
13. Costa DNCC, Codeco CT, Silva MA, Werneck GL. Culling dogs in scenarios of imperfect control: realistic impact on the prevalence of canine visceral leishmaniasis. Ghdien E, ed. PLoS Negl Trop Dis 2013: 7: e2355. doi:10.1371/journal.pntd.0002355.
14. Dye C. The logic of visceral leishmaniasis control. Am J Trop Med Hyg 1996: 55: 125–130.
15. Gavagni ASM, Hodjati MH, Mohite H, Davies CR. Effect of insecticide-impregnated dog collars on incidence of zoonotic visceral leishmaniasis in Iranian children: a matched-cluster randomised trial. Lancet Lond. Engl. 2002: 360: 374–379.
16. Maroli M, Mizzon V, Siragusa C, D’Orazzi A, Gradoni L. Evidence for an impact on the incidence of canine leishmaniasis by the mass use of deltamethrin-impregnated dog collars in southern Italy. Med Vet Entomol 2001: 15: 358–363.
17. Foglia Manzillo V, Oliva G, Pagano A, Mannal L, Maroli M, Gradoni L. Deltamethrin-impregnated collars for the control of canine leishmaniasis: evaluation of the protective effect and influence on the clinical outcome of Leishmania infection in kennelled stray dogs. Vet Parasitol 2006: 142: 142–145.
18. Reithinger R, Coleman PG, Alexander B, Vieira EP, Assis G, Davies CR. Are insecticide-impregnated dog collars a feasible alternative to dog culling as a strategy for controlling canine visceral leishmaniasis in Brazil? Int J Parasitol 2004: 34: 55–62.
19. Pfister K, Armstrong R. Systemically and cutaneously distributed ectoparasitides: a review of the efficacy against ticks and fleas on dogs. Parasit Vectors 2016: 9: 436. doi:10.1186/s13071-016-1719-7.
20. Wasserberg G, Poché R, Miller D, Chenault M, Zollner G, Rowton ED. Imidacloprid as a potential agent for the systemic control of sand flies. J. Vector Ecol. 2011: 36: S148–S156.
21. Mascari TM., Clark J, Gordon S et al. Oral treatment of rodents with insecticides for control of sand flies (Diptera: Psychodidae) and the fluorescent tracer technique (FTT) as a tool to evaluate potential sand fly control methods. J. Vector Ecol. 2011: 36: S132–S137.
22. Ingenloff K, Garlapati R, Poché D, Singh MI, Remmers JL, Poché RM. Feed-through insecticides for the control of the sand fly Phlebotomus argentipes. Med Vet Entomol 2013: 27: 10–18.
23. Derbali M, Chelbi I, Chermi S et al. Laboratory and field evaluation of an imidacloprid treated rodent oral bait for a systemic control of Phlebotomus papatasi Scopoli, 1786 (Diptera: Psychodidae). Bull. Société Pathol. Exot. 1990: 106: 54–58.

24. Poché RM, Garlapati R, Singh MI, Poché DM. Evaluation of ivermectin oral dosing to cattle for control of adult and larval sand flies under controlled conditions. J Med Entomol 2013: 50: 833–837.

25. Chaccour CJ, Rabinovich NR, Slater H et al. Establishment of the Ivermectin Research for Malaria Elimination Network: updating the research agenda. Malar. J. 2015: 14: 243.

26. Sampaio VS, Beltrán TP, Kobylinski KC et al. Filling gaps on ivermectin knowledge: effects on the survival and reproduction of Anopheles aquasalis, a Latin American malaria vector. Malar. J. 2016: 15: 491.

27. BSAVA Small Animal Formulary, 8th edition (P00138) | BSAVA Small Animal Formulary [Internet]. (Available from: http://www.bsava.com/Publications/Membershippublications/BSAVASmallAnimalFormulary.aspx) [25 Apr 2016]

28. Medicamentos | Búsquedas | Guiavet [Internet]. (Available from: http://www.guiavet.com/busquedas/medicamentos/) [25 Apr 2016].

29. PARASITIPEDIA [Internet]. (Available from: http://parasitipedia.net/) [25 Apr 2016].

30. European Medicines Agency – Veterinary regulatory – Veterinary medicines: regulatory information [Internet]. (Available from: http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/landing/veterinary_medicines_regulatory.jsp&mid=) [16 Nov 2016].

31. Medicine C for V. Animal & Veterinary [Internet]. (Available from: http://www.fda.gov/AnimalVeterinary/default.htm) [16 Nov 2016].

32. Fassler PE, Tranquilli WJ, Paul AJ, Soll MD, DiPietro JA, Todd KS. Evaluation of the safety of ivermectin administered in a beef-based formulation to ivermectin-sensitive Collies. J Am Vet Med Assoc 1991: 199: 457–460.

33. Daurio CP, Cheung EN, Jeffcoat AR, Skelly BJ. Bioavailability of ivermectin administered orally to dogs. Vet Res Commun 1992: 16: 125–130.

34. Mascari TM, Mitchell MA, Rowton ED, Foil LD. Ivermectin as a rodent feed-through insecticide for control of immature sand flies (Diptera: Psychodidae). J. Am. Mosq. Control Assoc. 2008: 24: 323–326.

35. Mascari TM, Stout RW, Foil LD. Laboratory evaluation of oral treatment of rodents with systemic insecticides for control of bloodfeeding sand flies (Diptera: Psychodidae). Vector Borne Zoonotic Dis 2012: 12: 699–704.

36. Al-Azzam SI, Fleckenstein L, Cheng K-J, Dzimianski MT, McCall JW. Comparison of the pharmacokinetics of moxidectin and ivermectin after oral administration to beagle dogs. Biopharm Drug Dispos 2007: 28: 431–438.

37. Bowman DD. Heartworms, macrocyclic lactones, and the specter of resistance to prevention in the United States. Parasit Vectors 2012: 5: 138. doi:10.1186/1756-3305-5-138.

38. Lok J, Knight DH, Wang GT et al. Activity of an injectable, sustained-release formulation of moxidectin administered prophylactically to mixed-breed dogs to prevent infection with Dirofilaria immitis. Am J Vet Res 2001: 62: 1721–1726.

39. Genchi C, Poglayen G, Kramer LH, Venco L, Agostini A. Efficacy of moxidectin for the prevention of adult heartworm (Dirofilaria immitis) infection in dogs. Parasitologia 2001: 43: 139–141.

40. Dunn ST, Hedges L, Sampson KE et al. Pharmacokinetic interaction of the antiparasitic agents ivermectin and spinosad in dogs. Drug Metab Dispos 2011: 39: 789–795.

41. Holmstrom SD, Totten ML, Newhall KB, Qiao M, Riggs KL. Pharmacokinetics of spinosad and milbemycin oxime administered in combination and separately per os to dogs. J Vet Pharmacol Ther 2012: 35: 351–364.

42. Beugnet F, Doyle V, Murray M, Chalvet-Monfray K. Comparative efficacy on dogs of a single topical treatment with the pioneer fipronil/(S)-methoprene and an oral treatment with spinosad against Ctenocephalides felis. Parasite 2011: 18: 325–331.

43. Blagburn BL, Young DR, Moran C et al. Effects of orally administered spinosad (Comfortis®) in dogs on adult and immature stages of the cat flea (Ctenocephalides felis). Vet Parasitol 2010: 168: 312–317.

44. Mascari TM, Stout RW, Foil LD. Laboratory evaluation of oral treatment of rodents with systemic insecticides for control of bloodfeeding sand flies (Diptera: Psychodidae). Vector-Borne Zoonotic Dis. 2012: 12: 699–704.

45. Kilp S, Ramirez D, Allan MJ, Roepke RK, Nuenberger MC. Pharmacokinetics of fluralaner in dogs following a single oral or intravenous administration. Parasit. Vectors 2014: 7: 85.

46. Walther FM, Allan MJ, Roepke RK, Nuenberger MC. The effect of food on the pharmacokinetics of oral fluralaner in dogs. Parasit Vectors 2014: 7: 84. doi:10.1186/1756-3305-7-84.

47. Dryden MW, Smith V, Bennett T et al. Efficacy of fluralaner flavored chews (Bravecto®) administered to dogs against the adult cat flea, Ctenocephalides felis felis and egg production. Parasit Vectors 2015: 8: 364. doi:10.1186/s13071-015-0965-4.

48. Walther FM, Allan MJ, Roepke RK, Nuenberger MC. Safety of fluralaner chewable tablets (BravectoTM), a novel systemic antiparasitic drug, in dogs after oral administration. Parasit Vectors 2014: 7: 87. doi:10.1186/1756-3305-7-87.

49. Rohdich N, Roepke RK, Zschiesche E. A randomized, blinded, controlled and multi-centered field study comparing the efficacy and safety of BravectoTM (fluralaner) against FrontlineTM (fipronil) in flea- and tick-infested dogs. Parasit Vectors 2014: 7: 83. doi:10.1186/1756-3305-7-83.

50. Crouzet O, Chapelle E, Cochet-Fairen N, Ka D, Hubinois C, Guillot J. Open field study on the efficacy of oral fluralaner for long-term control of flea allergy dermatitis in client-owned dogs in Ile-de-France region. Parasit Vectors 2016: 9: 174. doi:10.1186/s13071-016-1463-z.
51. Letendre L, Huang R, Kvaternick V, Harriman J, Drag M, Soll M. The intravenous and oral pharmacokinetics of afoxolaner used as a monthly chewable antiparasitic for dogs. *Vet Parasitol* 2014: 201: 190–197.

52. Shoop WL, Hartline EJ, Gould BR et al. Discovery and mode of action of afoxolaner, a new isoxazoline parasiticide for dogs. *Vet Parasitol* 2014: 201: 179–189.

53. Beugnet F, deVos C, Liebenberg J, Halos L, Fourie J. Afoxolaner against fleas: immediate efficacy and resultant mortality after short exposure on dogs. *Parasite.* 2014: 21: 42. doi:10.1051/parasite/2014045.

54. Mitchell EB, McCall JW, Theodore Chester S, Larsen D. Efficacy of afoxolaner against *Ixodes scapularis* ticks in dogs. *Vet Parasitol* 2014: 201: 223–225.

55. Hunter JS, Dumont P, Chester TS, Young DR, Fourie JJ, Larsen DL. Evaluation of the curative and preventive efficacy of a single oral administration of afoxolaner against cat flea *Ctenocephalides felis* infestations on dogs. *Vet Parasitol* 2014: 201: 207–211.

56. McTier TL, Chubb N, Curtis MP et al. Discovery of sarolaner: a novel, orally administered, broad-spectrum, Isxazoline ectoparasiticide for dogs. *Vet Parasitol* 2016: 222: 3–11.

57. Geurden T, Becskei C, Grace S et al. Efficacy of a novel oral formulation of sarolaner (Simparica™) against four common tick species infesting dogs in Europe. *Vet Parasitol* 2016: 222: 33–36.

58. Becskei C, De Bock F, Illamas J, Mahabir SP, Farkas R, Six RH. Efficacy and safety of a novel oral isoxazoline, sarolaner (Simparica™) in the treatment of naturally occurring flea and tick infestations in dogs presented as veterinary patients in Europe. *Vet Parasitol* 2016: 222: 56–61.

59. Six RH, Everett WR, Chapin S, Mahabir SP. Comparative speed of kill of sarolaner (SimparicaTM) and afoxolaner (NexGard®) against induced infestations of *Amblyomma americanum* on dogs. *Parasit Vectors.* 2016: 9: 98. doi:10.1186/s13071-016-1378-8.

60. Schwassmann M, Kunke GA, Hepler DI, Lewis DT. Use of lufenuron for treatment of generalized demodicosis in dogs. *Vet Dermatol* 1997: 8: 11–18.

61. Dean SR, Meola RW, Meola SM, Sittertz-Bhatkar H, Schenker R. Mode of action of lufenuron on larval cat fleas (Siphonaptera: Pulicidae). *J Med Entomol* 1998: 35: 720–724.

62. Nishida Y, Haga C, Oda K, Hayama T. Disinestation of experimentally infected cat fleas, *Ctenocephalides felis*, on cats and dogs by oral lufenuron. *J Vet Med. Sci. Jpn. Soc. Vet. Sci.* 1995: 57: 655–658.

63. Blagburn BL, Hendrix CM, Vaughan JL, Lindsay DS, Barnett SH. Efficacy of lufenuron against developmental stages of fleas (*Ctenocephalides felis felis*) in dogs housed in simulated home environments. *Am J Vet Res* 1995: 56: 464–467.

64. Smith RD, Paul AJ, Kitron UD et al. Impact of an orally administered insect growth regulator (lufenuron) on flea infestations of dogs in a controlled simulated home environment. *Am J Vet Res* 1996: 57: 502–504.

65. Ritzhauspt LK, Rowan TG, Jones RL, Cracknell VC, Murphy MG, Shanks DJ. Evaluation of the comparative efficacy of selamectin against flea (*Ctenocephalides felis felis*) infestations on dogs and cats in simulated home environments. *Vet Parasitol* 2002: 106: 165–175.

66. Bowman DD, Legg W, Stansfield D et al. Efficacy of moxidectin 6-month injectable and milbemycin oxime/lufenuron tablets against naturally acquired toxocara canis infections in dogs. *Vet. Ther.* 2002: 3: 281–285.

67. Schenker R, Cody R, Strehlau G, Alexander D, Junquera P. Comparative effects of milbemycin oxime-based and fentanyl-tyramine embotane-based anthelminthic tablets on *Toxocara canis* egg shedding in naturally infected pups. *Vet Parasitol* 2006: 137: 369–373.

68. Vo DT, Hsu WH, Martin RJ. Insect nicotinic receptor agonists as flea adulticides in small animals. *J Vet Pharmacol Ther* 2010: 33: 315–322.

69. Dobson P, Tinembart O, Fisch RD, Junquera P. Efficacy of nitenpyram as a systemic flea adulticide in dogs and cats. *Vet. Rec.* 2000: 147: 709–713.

70. Schenker R, Tinembart O, Humbert-Droz E, Cavaliero T, Yerly B. Comparative speed of kill between nitenpyram, fipronil, imidacloprid, selamectin and cythioate against adult *Ctenocephalides felis* (Bouché) on cats and dogs. *Vet Parasitol* 2003: 112: 249–254.

71. Correia TR, Scott FB, Verocai GG et al. Larvicidal efficacy of nitenpyram on the treatment of myiasis caused by *Coeliochrysaia hominivorax* (Diptera: Calliphoridae) in dogs. *Vet Parasitol* 2010: 173: 169–172.

72. Qureshi T, Everett WR, Palma KG. Development of advantus™ (imidacloprid) soft chewable tablets for the treatment of *Ctenocephalides felis* infestations on dogs. *Parasit. Vectors.* 2015: 8: 407.

73. Chaccour C, Barrio ÁI, Royo AGG et al. Screening for an ivermectin slow-release formulation suitable for malaria vector control. *Malaria J.* 2015: 14: 102. doi:10.1186/s12936-015-0618-2.

74. Killick-Kendrick R. The biology and control of phlebotomine sand flies. *Clin Dermatol* 1999: 17: 279–289.

75. Borchart JN, Davis RM, Poché RM. Field efficacy of rodent bait containing the systemic insecticide imidacloprid against the fleas of California ground squirrels. *J. Vector Ecol.* 2009: 34: 92–98.

76. Rupperprecht CE, Hanlon CA, Slate D. Oral vaccination of wildlife against rabies: opportunities and challenges in prevention and control. *Dev Biol* 2004: 119: 173–184.

77. Metcalf CJF, Ferrari M, Graham AL, Grenfell BT. Understanding Herd Immunity. *Trends Immunol* 2015: 36: 753–755.

78. Raghavendra K, Barik TK, Reddy BPN, Sharma P, Dash AP. Malaria vector control: from past to future. *Parasitol Res* 2011: 108: 757–779.

79. de Camargo-Neves VLF, Spinola R, Lage L. A Leishmaniose Visceral Americana no estado de São Paulo: situação epidemiológica em 2001-2002. *Rev Soc Bras Med Trop* 2003: 36: 27–29.

80. Davoust B, Roqueplo C, Parzy D, Watier-Grillot S, Marié J-L. A twenty-year follow-up of canine leishmaniosis in three military kennels in southeastern France. *Parasit. Vectors.* 2013: 6: 323.
S. A. Gomez & A. Picado **Systemic insecticides in dogs for vector control**

81. Wylie CE, Carbonell-Antonanzas M, Aiassa E et al. A systematic review of the efficacy of prophylactic control measures for naturally-occurring canine leishmaniosis, part I: vaccinations. *Prev. Vet. Med.* 2014: 117: 7–18.

82. Ribas LM, Zaher VL, Shimozako HJ et al. Estimating the optimal control of zoonotic visceral leishmaniasis by the use of a mathematical model. *Sci. World J.* 2013: 2013: e810380.

83. Sevà AP, Ovallos FG, Amaku M et al. Canine-Based Strategies for Prevention and Control of Visceral Leishmaniasis in Brazil. *PLoS ONE* 2016: http://dx.doi.org/10.1371/journal.pone.0160058.

84. Chapman LAC, Dyson L, Courtenay O et al. Quantification of the natural history of visceral leishmaniasis and consequences for control. *Parasit.Vectors*. 2015: 8: 521.

85. Rock KS, le Rutte EA, de Vlas SJ, Adams ER, Medley GF, Hollingsworth TD. Uniting mathematics and biology for control of visceral leishmaniasis. *Trends Parasitol* 2015: 31: 251–259.

86. Slater HC, Walker PGT, Bousema T, Okell LC, Ghani AC. The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. *J Infect Dis* 2014: 210: 1972–1980.

87. Wolken S, Franc M, Bousira E et al. Evaluation of spinosad for the oral treatment and control of flea infestations on dogs in Europe. *Vet. Rec.* 2012: 170: 99.

88. Snyder DE, Wiseman S. Dose confirmation and non-interference evaluations of the oral efficacy of a combination of milbemycin oxime and spinosad against the dose limiting parasites, adult cat flea (*Ctenocephalides felis*) and hookworm (*Ancylostoma caninum*), in dogs. *Vet Parasitol* 2012: 184: 284–290.

89. Dryden MW, Payne PA, Smith V, Berg TC, Lane M. Efficacy of selamectin, spinosad, and spinosad/milbemycin oxime against the KS1 *Ctenocephalides felis* flea strain infesting dogs. *Parasit. Vectors* 2013: 6: 80.

90. Hayes B, Schnitzer B, Wiseman S, Snyder DE. Field evaluation of the efficacy and safety of a combination of spinosad and milbemycin oxime in the treatment and prevention of naturally acquired flea infestations and treatment of intestinal nematode infections in dogs in Europe. *Vet Parasitol* 2015: 207: 99–106.

91. Al-Azzam SI, Fleckenstein L, Cheng K-J, Dzimianski MT, McCall JW. Comparison of the pharmacokinetics of moxidectin and ivermectin after oral administration to beagle dogs. *Biopharm Drug Dispos* 2007: 28: 431–438.

92. Six RH, Everett WR, Myers MR, Mahabir SP. Comparative speed of kill of sarolaner (Simparica™) and spinosad plus milbemycin oxime (Trifexis®) against induced infestations of *Ctenocephalides felis* on dogs. *Parasit. Vectors* 2016: 9: Article number 93.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Systemic insecticides mode of action.

Corresponding Author Sonia Ares Gomez, Hospital Clinic – Universitat de Barcelona, Roselló 132, 4ª, 08036 Barcelona, Spain.
Tel.: +34 932275400 (ext. 4112); E-mail: sonia.ares@isglobal.org