Introduction

According to Torre LA et al, it was estimated that 14.1 million new cancer cases occurred, and 8.2 million cancer died from cancer worldwide in 2012. Even today, surgical resection is one of the important methods for treating cancer, and management of postoperative morbidity is essential. However, the rate of postoperative morbidity has been reported to range from 20% to 65%.

Recently, some studies have shown that the development of postoperative complications can reduce a patient’s survival or increase the incidence of recurrence in various malignancies. Among the various postoperative complications, delirium is a common morbidity after surgery. When postoperative delirium occurs, patient management becomes much more difficult, leading to increased costs and severe discomfort for the patient.

Delirium is also associated with increased postoperative mortality and morbidity and with a delayed functional recovery.

However, despite the fact that numerous studies have been performed to investigate postoperative delirium in patients with various types of malignancies, most previous studies have used and evaluated retrospectively collected data with a relatively small sample size. Retrospective studies have many limitations, such as unspecified indications for surgery, heterogeneous patient selection, heterogeneous treatment, and a description bias regarding “delirium”. To overcome the limitations associated with retrospective studies, we focused on cases that were enrolled in randomized clinical trial to evaluate TJ-54 (Yokukansan: a traditional Japanese medicine) for the prevention and/or treatment of postoperative delirium (UMIN000005423). The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) was used to diagnose postoperative delirium.

The aim of this study was to evaluate the incidence of postoperative delirium and the predictors of postoperative delirium after surgery for gastrointestinal malignancies using the data from a phase II clinical trial.

Clinical research article

Risk factors for postoperative delirium after gastrointestinal surgery - using randomized Phase II trial data

Mariko Kamiya, Toru Aoyama, Kazuki Kano, Masaaki Murakawa, Keisuke Kazama, Yosuke Atsumi, Yukio Maezawa, Sho Sawazaki, Masakatsu Numata, Masataka Taguri, Hiroshi Tamagawa, Nobuhiro Sugano, Tsutomu Sato, Hiroyuki Mushiake, Norio Yukawa, Takashi Oshima, Munetaka Masuda, Yasushi Rino

1) Department of Surgery, Yokohama City University, 2) Department of Biostatistics, Yokohama City University

Abstract

Background/Aim: Postoperative delirium is a common complication which is associated with increased postoperative mortality and morbidity. The aim of this study was to evaluate the incidence and predictors of postoperative delirium using data from a phase II clinical trial.

Patients and Methods: We analyzed the cases that were enrolled in randomized clinical trial to evaluate TJ-54 (Yokukansan, a traditional Japanese medicine [Kampo]) for the prevention and/or treatment of postoperative delirium (UMIN000005423). The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) was used to diagnose postoperative delirium.

Results: A total of 167 patients were registered, delirium was observed in 9% of them. High age over 80 and low MMSE less than 27 were identified as significant independent risk factors.

Conclusion: Surgeon should pay attention to the possible development of postoperative delirium in patients aged over 80 with a low MMSE less than 27 in performing surgery for gastrointestinal malignancies.

Keywords: postoperative delirium, risk factors, gastrointestinal malignancy, MMSE

(Received September 25, 2018; Accepted October 25, 2018)
Patients and Methods

The patients who underwent a protocol treatment in a randomized phase II trial were examined in this study. This randomized phase II trial had been described in our previous report. Briefly, the key eligibility criteria included patients of ≥70 years of age who had received surgery for gastrointestinal malignancies. All participants were required to have a performance status of ≤2; to undergo a Mini-Mental State Examination (MMSE) before enrollment, and to have adequate hepatic, renal, and bone marrow functions. Eligible patients were randomly assigned at a 1:1 ratio to receive either TJ-54 or control during their perioperative care. The study medication, Yokukansan (Tsumura Yokukansan Extract Granules for Ethical Use; TJ-54 [Tsumura, Japan]), was administered 3 times a day (2.5 g each time, 7.5 g/day). The amount of TJ-54 could be reduced depending on the participant’s condition or adverse reactions. A total sample size of 200 was required to achieve a statistical power of approximately 0.8.

Assessment of postoperative delirium

The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) was used to assess patients with suspected postoperative delirium. DSM-IV lists key features that characterize delirium as follows: disturbance of consciousness and a change in cognition or the development of a perceptual disturbance that develops over a short period of time and which tends to fluctuate during the course of the day. When the investigator found evidence that these symptoms were caused by the surgery and its postoperative course, the patient was diagnosed with postoperative delirium.

Statistical analysis

In this study, comparisons between the two groups were analyzed by a chi-squared test. Uni and multivariate logistic regression analyses were performed to identify risk factors for delirium. Backward elimination was used to select a model. All statistical tests were two-sided, and P values of <0.05 were considered to indicate statistical significance. The SPSS software program (v11.0 J Win, SPSS, Chicago, IL) was used for all of the statistical analyses.

Ethical review

The present phase II trial and the exploratory analysis were conducted in accordance with the Declaration of Helsinki, and the study protocol was approved by the Yokohama City University Research Ethics Committee. The consent of the study was fully explained with written consent form, and voluntary written consent was obtained from all patients before participating.

Results

Patient characteristics

A total of 186 patients (male, n=105; female, n=62) were registered in the TJ-54 trial between October 2009 and July 2011. Among them, 167 patients received surgery for gastrointestinal malignancy and were eligible for inclusion in the present study, while remaining 19 patients received surgery for lung malignancy and were excluded. The median age was 77 years (range, 70–89 years). The median MMSE score was 29.0 (range, 9–30). The diagnoses of the patients were as follows: gastric cancer (n=87), colorectal cancer (n=72), and other gastrointestinal cancer (n=8). The backgrounds of the 167 patients are shown in Table 1.

Incidence of postoperative delirium

The incidence of postoperative delirium was 9.0% (n=15) and delirium was the most common postoperative complication in the present study (Table 1). The comparison of the characteristics of the patients with and without postoperative delirium revealed significant differences in age (p=0.004) and MMSE score (p=0.027) (Table 2). The median age and MMSE score were 81 years (range, 71 to 88 years) and 26 (range, 20 to 30), respectively, in the patients who developed postoperative delirium, and 76 years (range, 70 to 89 years) and 29 (range, 9 to 30) in the patients who did not.

Risk factors for postoperative delirium

The risk factors for postoperative delirium were analyzed by uni and multivariate analyses using clinical factors that were assessed before enrollment and perioperative period. The results are summarized in Table 3. Among these, a high age over 80 and a low MMSE less than 27 were identified as significant risk factors for postoperative delirium (odds ratio, 3.90; 95% CI, 1.25–12.16; p=0.013 and odds ratio, 0.24; 95% CI, 0.08–0.73; p=0.013, respectively). Gender, BMI, ECOG-PS, type of malignancy, comorbidities (hypertension, diabetes mellitus, respiratory dysfunction, heart disease, cerebrovascular disorder), type of surgery, duration of operation, amount of blood loss and surgical complications were not associated with the risk of postoperative delirium in this study. In the original paper, since TJ-54 did not demonstrate the contribution to prevention of occurring postoperative delirium as a whole, it was not described in Table 3 of this paper.

Discussion

This study evaluated the incidence and predictors of postoperative delirium in elderly patients undergoing surgery for gastrointestinal malignancies using prospectively
Table 1. The patient characteristics of all cases (n=167)

Factors	n(%)
Sex	
Male	105(62.9%)
Female	62(37.1%)
Age	77.0(70.0 – 89.0)
BMI	22.3(14.6 – 35.6)
PS	
0 – 1	149(89.2%)
2	18(10.8%)
Type of malignancy	
Gastric	87(52.1%)
Colorectal	72(43.1%)
Other	8(4.8%)
MMSE score, Median(Range)	29.0(9.0 – 30.0)
Comorbidity	
Hypertension	92(55.1%)
Diabetes mellitus	38(22.8%)
Respiratory dysfunction	14(8.4%)
Heart disease	36(21.6%)
Cerebrovascular disorder	10(6.0%)
Approach	
Open	80(47.9%)
Laparoscopic	87(52.1%)
Operation time, Median(Range)	245.0(83.0 – 594.0)
Blood loss, Median(Range)	120.0(5.0 – 3100.0)
Surgical complication	43(25.7%)
First oral intake, Median(Range)	4.0(2.0 – 81.0)
Length of hospital stay, Median(Range)	16.0(9.0 – 267.0)

PS: Performance status
MMSE: Mini-Mental State Examination

Table 2. Comparison of the patients with and without postoperative delirium

Delirium	p-value		
Sex			
Male	95(62.5%)	10(66.7%)	1.000
Female	57(37.5%)	5(33.3%)	
Age	76.0(70.0 – 89.0)	81.0(71.0 – 88.0)	0.004
BMI	22.3(14.6 – 35.6)	22.4(17.0 – 29.0)	0.812
PS	134(88.2%)	15(100.0%)	0.375
0 – 1	18(11.8%)	0(0.0%)	
2	79(52.0%)	8(53.3%)	
Type of malignancy	66(43.4%)	6(40.0%)	
Gastric	9(5.9%)	1(6.7%)	
Colorectal	143(94.1%)	14(93.3%)	
Other	7(4.6%)	1(6.7%)	
MMSE score Median(Range)	29.0(9.0 – 30.0)	26.0(20.0 – 30.0)	0.027
Hypertension	84(55.3%)	8(53.3%)	1.000
Yes	68(44.7%)	7(46.7%)	
No	34(22.4%)	4(26.7%)	
Diabetes mellitus	118(77.6%)	11(73.3%)	0.748
Yes	139(91.4%)	14(93.3%)	
No	30(19.7%)	6(40.0%)	
Respiratory dysfunction	122(80.3%)	9(60.0%)	
Yes	9(5.9%)	1(6.7%)	
No	143(94.1%)	14(93.3%)	
Heart disease	72(47.4%)	8(53.3%)	0.788
Yes	80(52.6%)	7(46.7%)	
No	118(77.6%)	11(73.3%)	
Cerebrovascular disorder	119(70.0 – 300.0)	120.0(5.0 – 1481.0)	0.373
Yes	112(70.0 – 300.0)	120.0(5.0 – 1481.0)	0.223
No	43(25.7%)	12(80.0%)	
Approach	124(74.3%)	3(20.0%)	
Open	80(52.6%)	7(46.7%)	
Laparoscopic	119(70.0 – 300.0)	120.0(5.0 – 1481.0)	0.373
Operation time, Median(Range)	244.0(83.0 – 496.0)	284.0(83.0 – 594.0)	0.095
Blood loss, Median(Range)	119(70.0 – 300.0)	120.0(5.0 – 1481.0)	0.373
Surgical complication	43(25.7%)	12(80.0%)	
Yes	124(74.3%)	3(20.0%)	
No	4.0(2.0 – 81.0)	5(3.0 – 11.0)	0.907
First oral intake, Median(Range)	15.5(9.0 – 267.0)	16.0(10.0 – 101.0)	0.384
Length of hospital stay, Median(Range)	15.5(9.0 – 267.0)	16.0(10.0 – 101.0)	0.384
collected clinical trial data. The incidence of postoperative delirium was 9.0% (n=15) and delirium was the most common postoperative complication. The major finding was that a high patient age and a low MMSE score were significant independent risk factors for postoperative delirium. When surgeons perform surgery for gastrointestinal malignancies, careful attention is required to detect the development of postoperative delirium in patients aged over 80 with low MMSE less than 27.

Previous studies have shown that the incidence of delirium after gastrointestinal surgery ranged from 10–30%\(^{16-20}\). The incidence of postoperative delirium in the present study was lower in comparison to previous reports. The previously reported risk factors for postoperative delirium include increased blood loss and an increased operative time\(^{21, 22}\). Furthermore, 50% of the patients received laparoscopic surgery. Generally, the surgical stress of laparoscopic surgery is lower in comparison to conventional procedures\(^{23, 24}\). These differences might have affected for the results.

In the present study, we found that the high age over 80 was a significant independent risk factor for postoperative delirium. Previous studies demonstrated similar results. For example, Van der Sluis et al evaluated 436 patients who underwent colorectal cancer surgery and reported that age was a risk factor for postoperative delirium (odds ratio, 4.01; 95% CI, 1.55–10.37; \(p=0.004\))\(^{19}\). A systematic review by Scholz, which included 11 studies (1427 patients), assessed the incidence of delirium after gastrointestinal surgery and found a statistically significant association between age and postoperative delirium (odds ratio, 4.83; 95% CI, 3.14–6.52; \(p<0.001\))\(^{18}\). Various mechanisms have been suggested to contribute to delirium, including neurotransmitters, inflammation, physiological stressors, metabolic disorders, electrolyte disorders, and genetic factors\(^{9, 25, 26}\). In elderly patients in

Characteristics	Number(%)	Univariate analysis	Multivariate analysis				
		odds	95% CI	P value	odds	95% CI	P value
Sex							
Male	105(62.9)	1.20	0.39 – 3.69	0.750	1.20	0.39 – 3.69	0.750
Female	62(37.1%)	1.20	0.39 – 3.69	0.750	1.20	0.39 – 3.69	0.750
Age							
< 80 years	48(28.7%)	4.35	1.45 – 12.99	0.009	4.47	1.38 – 14.45	0.013
≥ 80 years	119(71.3%)	4.35	1.45 – 12.99	0.009	4.47	1.38 – 14.45	0.013
Type of malignancy							
Gastric	87(52.1%)	0.71	0.08 – 6.51	0.863			
Colorectal	72(43.1%)	0.64	0.07 – 6.07	0.693	0.64	0.07 – 6.07	0.693
Other	8(4.8%)	0.64	0.07 – 6.07	0.693	0.64	0.07 – 6.07	0.693
MMSE score							
≥ 27	103(71.0%)	0.23	0.08 – 0.69	0.009	0.23	0.07 – 0.73	0.013
< 27	42(29.0%)	0.23	0.08 – 0.69	0.009	0.23	0.07 – 0.73	0.013
Heart Disease							
Yes	36(21.6%)	2.71	0.90 – 8.21	0.078			
No	131(78.4%)	2.71	0.90 – 8.21	0.078			
Operation time							
≥ median(245)	85(50.9%)	1.50	0.51 – 4.42	0.462			
< median(245)	82(49.1%)	1.50	0.51 – 4.42	0.462			
Blood loss							
≥ median(120)	84(50.3%)	1.14	0.39 – 3.31	0.806			
< median(120)	83(49.7%)	1.14	0.39 – 3.31	0.806			
Type of approach							
Open	80(47.9%)	1.27	0.44 – 3.68	0.660			
Laparoscopic	87(52.1%)	1.27	0.44 – 3.68	0.660			
First oral intake							
≥ median(4)	105(62.9%)	4.24	0.92 – 19.46	0.063			
< median(4)	62(37.1%)	4.24	0.92 – 19.46	0.063			
Surgical complications							
Yes	43(25.7%)	2.82	0.96 – 8.31	0.060			
No	124(74.3%)	2.82	0.96 – 8.31	0.060			
particular, the high risk of age-related organ dysfunction and comorbidities after major surgery are considered to influence the incidence of postoperative delirium. Another study mentioned that elderly patients have both a reduced ability to respond to stress and to adapt to an abnormal metabolism, a dysfunctional state that is accompanied by the loss of central cholinergic neurons. In the presence of acute stressors such as gastrointestinal malignancy and surgical procedures, disturbances to a wide variety of neurotransmitter systems appear to make elderly individuals more prone to postoperative delirium. However, this point has not been sufficiently evaluated.

We found that a low MMSE score was one of the factors associated with postoperative delirium (hazard ratio, 0.67; 95% CI, 0.50–0.89; p=0.002). Saczynski et al. used the MMSE score to investigate the cognitive trajectories after postoperative delirium among 225 patients who underwent cardiovascular surgery. The preoperative MMSE scores of the patients who developed postoperative delirium were lower than the scores of those who did not (median: 26 and 28, p<0.001). It is not yet known why a low MMSE score contributes to postoperative delirium. Price et al. focused on the 5 domains of the MMSE (delayed recall, working memory, orientation, language and visuoconstruction) and found that delayed recall and working memory were significantly impaired in patients who developed postoperative delirium. The working memory functions are commonly associated with the frontal cortex and subcortical nuclei. These neuroanatomical areas and cognitive domains, as well as memory and executive domains, are considered to be critical areas for the development of postoperative cognitive dysfunction.

The present study is associated with several potential limitations; thus special attention is required when interpreting our results. First, the sample size was relatively small, despite the fact that patient data were prospectively collected at multiple institutions. Second, the cutoff levels of the age and MMSE score for predicting postoperative delirium have not been sufficiently evaluated. The cutoff ages differ between studies, and the traditional cutoff MMSE score for diagnosing dementia is 24 (27 is considered more accurate for college-educated individuals); thus, further investigation is necessary. Third, we could not deny the possibility that the elderly people in the present study might have been selected and fit for surgery. Moreover, the surgical operations were heterogeneous.

The major finding of this study was that a high patient age and a low MMSE score were significant independent risk factors for postoperative delirium. When surgeons perform surgery for gastrointestinal malignancies, careful attention is required to detect the development of postoperative delirium in patients aged over 80 with low MMSE score less than 27.

Acknowledgements
This work was supported, in part, by Non-governmental organizations: the Yokohama Surgical Research Group.

Consent to Publish
Not applicable.

Competing interests
The authors declare no competing interests in association with the present study.

Funding
None.

Authors’ Contributions
MK and TA: collected all references and wrote the draft. MK, TA, JM, YM, SA, SS, MN, MT, HT, NS, TS, HM, NY, TO, MM and YR: collected all data of the clinical. MK and TA: offered the conception and design, revised and discussed the meaning of the manuscript. All authors read and approved the final manuscript.

References
1) Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin 65(2): 87-108, 2015.
2) Sasaki M, Sano T, Yamamoto S, Kurokawa Y, Nashimoto A, Kurita A, Hiratsuka M, Tsujinaka T, Kimoshita T, Arai K, Yamamura Y and Okajima K: D2 lymphadenectomy alone or with para-aortic nodal dissection for gastric cancer. N Engl J Med 359(5): 453-462, 2008.
3) Yeo CJ, Cameron JL, Lillemoe KD, Sohn TA, Campbell KA, Sauter PK, Coleman J, Abrams RA and Hruban RH: Pancreatoduodenectomy with or without distal gastrectomy and extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma, part 2: Randomized controlled trial evaluating survival, morbidity, and mortality. Ann Surg 236(3): 355-366; discussion 366-358, 2002.
4) Yamamoto S, Inomata M, Katayama H, Mizusawa J, Etoh T, Konishi F, Sugihara K, Watanabe M, Moriya Y and Kitano S: Short-term surgical outcomes from a randomized controlled trial to evaluate laparoscopic and open D3 dissection for stage II/III colon cancer: Japan Clinical Oncology Group Study JCOG 0404. Ann Surg 260(1): 23-30, 2014.
5) Breugjom AJ, van Dongen DT, Bastiaanen ET, Dekker FW, van der Geest LG, Liefers GJ, Marinelli AW, Mesker WE, Portielje JE, Steup WH, Tseng LN, van de Velde CJ and Dekker JW: Association between the most frequent complications after surgery for stage I-III colon cancer and short-term survival, long-term survival, and recurrences. Ann Surg Oncol 23(9): 2858-2865, 2016.
6) Tokunaga M, Tanizawa Y, Bando E, Kawamura T and Terashima M: Poor survival rate in patients with postoperative intra-abdominal infectious complications following curative gastrectomy for gastric cancer. Ann Surg Oncol 20(5): 1575-1583, 2013.
100 Annals of Cancer Research and Therapy Vol. 26 No. 2, 2018

7) Hirai T, Yamashita Y, Mukaida H, Kuwahara M, Inoue H and Toge T: Poor prognosis in esophageal cancer patients with postoperative complications. Surg Today 28(6): 576-579, 1998.

8) Rizk NP, Bach PB, Schrag D, Bains MS, Turnbull AD, Karpeh M, Brennan MF and Rusch VW: The impact of complications on outcomes after resection for esophageal and gastroesophageal junction carcinoma. J Am Coll Surg 198(1): 42-50, 2004.

9) Inouye SK, Westendorp RG and Saczynski JS: Delirium in elderly people. Lancet 383(9920): 911-922, 2014.

10) Marcantonio ER, Goldman L, Mangione CM, Ludwig LE, Muraca B, Haslauer CM, Donaldson MC, Whittemore AD, Sugarbaker DI, Poss R and et al.: A clinical prediction rule for delirium after elective noncardiac surgery. JAMA 271(2): 134-139, 1994.

11) Takeuchi M, Takeuchi H, Fujisawa D, Miyajima K, Yoshimura K, Hashiguchi S, Ozawa S, Ando N, Shirahase J, Kitagawa Y and Mimura M: Incidence and risk factors of postoperative delirium in patients with esophageal cancer. Ann Surg Oncol 19(12): 3963-3970, 2012.

12) Inouye SK, van Dyck CH, Alessi CA, Balkin S, Siegal AP and Horwitz RI: Clarifying confusion: The confusion assessment method. A new method for detection of delirium. Ann Intern Med 113(12): 941-948, 1990.

13) Witlox J, Eurelings LS, de Jonghe JF, Kalisvaart KJ, Eikelenboom P and van Gool WA: Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: A meta-analysis. JAMA 304(4): 443-451, 2010.

14) Furukawa K, Tomita N, Uematsu D, Okahara K, Shimada H, Ikeda M, Matsui T, Kozaki K, Fuji M, Ogawa T, Umemaki H, Urakami K, Nomura H, Kobayashi N, Nanashima A, Washimi Y, Yonezawa H, Takahashi S, Kubota M, Waku Y, Ito D, Sasaki T, Matsuura E, Uno K, Ishiki A, Yahagi Y, Sato H, Terayama Y, Kuzuya M, Araki N, Kodama M, Yamaguchi T and Ari H: Randomized double-blind placebo-controlled multicenter trial of Yokukansan for neuropsychiatric symptoms in Alzheimer's disease. Geriatr Gerontol Int 19(12): 941-948, 1990.

15) Sugano N, Aoyama T, Sato T, Kamiya M, Amano S, Yamamoto N, Nagashima T, Ishikawa Y, Masudo K, Taguri M, Yamanaka T, Yamamoto M, Matsukawa H, Shiraisi R, Oshima T, Yukawa N, Rino Y and Masuda M: Randomized phase II study of TJ-54 (Yokukansan) for postoperative delirium in gastrointestinal and lung malignancy patients. Mol Clin Oncol 7(4): 569-573, 2017.

16) Yamamoto M, Yamasaki M, Sugimoto K, Maekawa Y, Miyazaki Y, Makino T, Takahashi T, Kurokawa Y, Nakajima K, Takiguchi S, Rakugi H, Mori M and Doki Y: Risk evaluation of postoperative delirium using comprehensive geriatric assessment in elderly patients with esophageal cancer. World J Surg 40(11): 2705-2712, 2016.

17) Raats JW, Steunenberg SL, Crolla RM, Wijman BH, van der Sluis FJ, Schrap PL, Meerdink M, Aan de Stegge WB, van Etten B, de Bock GH, van Leeuwen BL and Pol RA: Risk factors for postoperative delirium after colorectal operation. Surgery 163(1): 704-711, 2017.

18) Scholz AF, Oldroyd C, McCarthy K, Quinn TJ and Hewitt J: Systematic review and meta-analysis of risk factors for postoperative delirium among older patients undergoing gastrointestinal surgery. Br J Surg 103(2): e21-28, 2016.

19) van der Sluis FJ, Schrap PL, Meerdink M, Aan de Stegge WB, van Etten B, de Bock GH, van Leeuwen BL and Pol RA: Risk factors for postoperative delirium after colorectal operation. Surgery 163(1): 704-711, 2017.

20) Maekawa Y, Sugimoto K, Yamasaki M, Takeya Y, Yamamoto K, Oshishi M, Ogihara T, Shintani A, Doki Y, Mori M and Rakugi H: Comprehensive geriatric assessment is a useful predictive tool for postoperative delirium after gastrointestinal surgery in old-old adults. Geriatr Gerontol Int 16(9): 1036-1042, 2016.

21) Raats JW, Steunenberg SL, de Lange DC and van der Laan L: Risk factors of post-operative delirium after elective vascular surgery in the elderly: A systematic review. Int J Surg 35: 1-6, 2016.

22) Zhu Y, Wang G, Liu S, Zhou S, Yuan Y, Zhang C and Yang W: Risk factors for postoperative delirium in patients undergoing major head and neck cancer surgery: A meta-analysis. Ip J Clin Oncol 47(6): 505-511, 2017.

23) Zeng YK, Yang ZL, Peng JS, Lin HS and Cai L: Laparoscopy-assisted versus open distal gastrectomy for early gastric cancer: Evidence from randomized and nonrandomized clinical trials. Ann Surg 256(1): 39-52, 2012.

24) Deng Y, Zhang Y and Guo TK: Laparoscopy-assisted versus open distal gastrectomy for early gastric cancer: A meta-analysis based on seven randomized controlled trials. Surg Oncol 24(2): 71-77, 2015.

25) Maldonado JR: Neuropathogenesis of delirium: Review of current etiologic theories and common pathways. Am J Geriatr Psychiatry 21(12): 1190-1222, 2013.

26) Wang LH, Xu DJ, Wei XJ, Chang HT and Xu GH: Electrolyte disorders and aging: Risk factors for delirium in patients undergoing orthopedic surgeries. BMC Psychiatry 16(1): 418, 2016.

27) Guo Y, Jia P, Zhang J, Wang X, Jiang H and Jiang W: Prevalence and risk factors of postoperative delirium in elderly hip fracture patients. J Int Med Res 44(2): 317-327, 2016.

28) Saczynski JS, Marcantonio ER, Quach L, Fong TG, Gross A, Inouye SK and Jones RN: Cognitive trajectories after postoperative delirium. N Engl J Med 367(1): 30-39, 2012.

29) Price CC, Garvan C, Hizel LP, Lopez MG and Billings FT: Delayed recall and working memory MMSE domains predict delirium following cardiac surgery. J Alzheimers Dis 59(3): 1027-1035, 2017.

30) Sperling CC, Hobson V, Lucas JA, Menon CV, Hall JR and O'Bryant SE: Diagnostic accuracy of the MMSE in detecting probable and possible Alzheimer’s disease in ethnically diverse highly educated individuals: An analysis of the NACC database. J Gerontol A Biol Sci Med Sci 67(8): 890-896, 2012.