In vivo It is estimated that over

Introduction: Cancer stem cells (CSCs) drive the initiation, maintenance, and therapy response of breast tumors. CD49f is expressed in breast CSCs and functions in the maintenance of stemness. Thus, blockade of CD49f is a potential therapeutic approach for targeting breast CSCs. In the present study, we aimed to repurpose drugs as CD49f antagonists.

Materials and Methods: We performed consensus molecular docking using a subdomain of CD49f that is critical for heterodimerization and a collection of pharmochemicals clinically tested. Molecular dynamics simulations were employed to further characterize drug-target binding. Using MDA-MB-231 cells, we evaluated the effects of potential CD49f antagonists on 1) cell adhesion to laminin; 2) mammosphere formation; and 3) cell viability. We analyzed the effects of the drug with better CSC-selectivity on the activation of CD49f-downstream signaling by Western blot (WB) and co-immunoprecipitation. Expressions of the stem cell markers CD44 and SOX2 were analyzed by flow cytometry and WB, respectively. Transactivation of SOX2 promoter was evaluated by luciferase reporter assays. Changes in the number of CSCs were assessed by limiting-dilution xenotransplantation.

Results: Pranlukast, a drug used to treat asthma, bound to CD49f in silico and inhibited the adhesion of CD49f+ MDA-MB-231 cells to laminin, indicating that it antagonizes CD49f-containing integrins. Molecular dynamics analysis showed that pranlukast binding induces conformational changes in CD49f that affect its interaction with β1-integrin subunit and constrained the conformational dynamics of the heterodimer. Pranlukast decreased the clonogenicity of breast cancer cells on mammosphere formation assay but had no impact on the viability of bulk tumor cells. Brief exposure of MDA-MB-231 cells to pranlukast altered CD49f-dependent signaling, reducing focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K) activation. Further, pranlukast-treated cells showed decreased CD44 and SOX2 expression, SOX2 promoter transactivation, and in vivo tumorigenicity, supporting that this drug reduces the frequency of CSC.

Conclusion: Our results support the function of pranlukast as a CD49f antagonist that reduces the CSC population in triple-negative breast cancer cells. The pharmacokinetics and toxicology of this drug have already been established, rendering a potential adjuvant therapy for breast cancer patients.

Keywords: CD49f, alpha6 integrin, breast cancer stem cells, pranlukast, drug repositioning, triple-negative breast cancer cells

Introduction

Breast cancer has the highest global incidence in women.1 It is estimated that over 1,670,000 new breast cancer patients are diagnosed worldwide each year.2 Despite the implementation of new targeted therapies and treatments, a high percentage of breast cancer patients still die due to tumor resistance, recurrence, and metastasis.3 In vivo data have demonstrated that cancer stem cells (CSCs), a small subset of tumor cells,
have tumor-initiating and self-renewal capacities. Accordingly, CSCs mediate the resistance to conventional therapies, metastasis, and tumor recurrence, rendering them excellent targets for new anticancer treatments.

CD49f (α6 integrin; ITGA6) is a cell surface protein that forms heterodimers with β1 or β4 integrins, and the resulting complexes act as laminin-binding receptors. Hence, CD49f-containing integrins regulate communication between cancer cells and the microenvironment. CD49f expression in human breast tumors correlates with reduced overall and recurrence-free survival rates. Accordingly, its inhibition reduces the migration, invasion, and metastatic potential of breast cancer cells.

CD49f plays a key role in stemness promotion and maintenance in breast cancer. CD49f blockade with antibodies or CD49f knockdown decreases the in vitro clonogenicity and in vivo tumorigenicity of breast cancer cells. On the other hand, CD49f is either not expressed in non-stem breast cancer cells or expressed but not essential for their survival.

The key role of CD49f in stemness indicates that it can be targeted to reduce the breast CSC pool and slow up breast cancer progression. However, CD49f has not been clinically targeted, despite the fact that integrin-blocking antibodies, peptides, or small molecules are used to treat various pathologies, such as thrombosis, osteoporosis, fibrosis, and cancer.

To repurpose drugs as CD49f antagonists, herein we performed consensus molecular docking between the β-subunits of CD49f and a collection of structures that are enriched in FDA-approved drugs. Five in silico-selected drugs effectively blocked CD49f, inhibiting the adhesion of breast cancer cells to laminin. Pranlukast, a reported cysteinyl leukotriene receptor 1 (CysLTR) antagonist, decreased the adherence of breast cancer cells to laminin. While pranlukast does not block CD49f, it reduces CD49f expression on the cell surface, decreasing the number of CSCs. Thus, pranlukast antagonizes CD49f impairing CSC-associated functions.

Materials and Methods

Molecular Docking

The primary sequences of CD49f and β1 integrin were obtained from the Uniprot database (P23229 and P05556, respectively).

Human CD49f 3D model was generated by homology modeling with Modeller 9.11 using crystallography data from Protein Data Bank 4G1M, 4WJK, 4WK0, and 3IJE as templates. The drugability of the protein pockets was assessed using the DoGSiteScorer server tool (Hamburg University, Germany). A library of 11,421 molecules (FDA-approved, withdrawn, and experimental drugs) were retrieved from the ZINC InMan subset of the ZINC database (University of California, San Francisco). AutoDockTools was used to add Gasteiger charges (donated by Dr. Richard Pestell, Baruch S. Blumberg Institute, PA, USA) or expressed in non-stem breast cancer cells with Modeller 9.11.

Compounds

Solutions of pranlukast hemihydrate (Sigma, catalog No P0080), montelukast sodium hydrate (Sigma, catalog No SML0101), imatinib mesylate (Selleckchem, catalog No ST1571), and zosuquidar (Sigma, catalog No B2134)—dissolved in DMSO—and zosuquidar (Selleckchem, catalog No S1481)—dissolved in PBS—were filter-sterilized and stored at 4°C (montelukast, zosuquidar) or -20°C (pranlukast, imatinib, and zosuquidar) under light-protected conditions until use.

Cell Culture

The MDA-MB-231 cell line was purchased from ATCC and grown in Leibovitz’s L-15 medium (Gibco, catalog No 41300021), supplemented with 10% fetal bovine serum (FBS), in a carbon dioxide (CO2)-free system. We employed cells from passage 8 to 14. Sublines that stably expressed firefly luciferase (Luc) under the SOX2 promoter were generated by cotransfection of SOX2-Luc plasmid (donated by Dr. Richard Pestell, Baruch S. Blumberg Institute, PA, USA) and pNEGPG04. The sequence of the promoter was verified using RVprimer3. Sublines were maintained in RPMI-1640 (Gibco, catalog No 31800014) that was supplemented with 10% FBS and 0.5 μg/mL puromycin. The MCF-7 cell line (passage 7–9), obtained from ATCC, was grown in EMEM (ATCC, catalog No 302003), supplemented with 10% FBS and 0.01 mg/mL insulin (Sigma-Aldrich, catalog I3536).

Immunophenotyping

Cells were harvested with TrypLE Select Enzyme (Gibco, catalog No 12563011), and 10^5 cells were stained...
The calculation of counterions to neutralize the systems. Ca
Brie
In some
562473).
submit your manuscript
isotype control (BD
The system was solvated using the TIP4P
integrin subunits were determined by the
fl
562473) was included. The
μ
α
and
o
ions were also included in the simulation as they are
o
cells from cultures after 12 h of serum
fl
Velázquez-Quesada et al
30
05620). The
557857) or Alexa Fluor
23017-
Cell adhesion assays were performed as reported.30,31
Briefly, 96-well microplates were coated with 20 μg/mL
cold natural mouse laminin (Invitrogen, catalog N° 23017-015) and incubated overnight at 4°C. The wells were
fi
31-
were determined by the implementation of the
H-bond search module of Pytraj library (https://amber-md.
github.io/pytraj). Interacting residues of the interface
between α and β integrin subunits were determined by the
Residue Interaction Network Generator (RING) server.36
The binding-free energy (ΔG) was calculated on the last
40 ns of the MD simulation using the MM-GBSA method
as implemented in AmberTools 12.37 The calculation of
entropy was not included in our protocol because it is time-
consuming and exhibits a high degree of uncertainty.

Molecular Dynamics
MD simulations were performed with a heterodimeric model
containing the seven-bladed beta-propeller domain of
CD49f and the I-like and hybrid domains of β1 integrin,
using Amber ff99SB force fields and the Amber 12
package.34 The system was solvated using the TIP4P
water model in a periodic box, followed by the addition of
Na+ and Cl− counterions to neutralize the systems. Ca2+
and Mg2+ ions were also included in the simulation as they are
required for the proper function of this protein. The best
pranukast pose on CD49f was selected by clustering analy-
sis of AutoDock4 data and used as a starting pose. Before
the MD simulations, energy minimization and equilibration
of the system were performed at constant temperature (300
K) and pressure (1 atm) using AmberTools. The MD simu-
lations proceeded for 500 ns at the specified pressures and
temperatures. Trajectory snapshots were taken every 10 ps
for analysis. Root-mean-square deviation (RMSD) and
Root-mean-square fluctuation (RMSF) of the backbone in
the docked complex were analyzed in AmberTools 12. The
hydrogen-bond formation between pranukast and CD49f
resides was determined by the implementation of the
H-bond search module of Pytraj library (https://amber-md.
github.io/pytraj). Interacting residues of the interface
between α and β integrin subunits were determined by the
Residue Interaction Network Generator (RING) server.36
The binding-free energy (ΔG) was calculated on the last
40 ns of the MD simulation using the MM-GBSA method
as implemented in AmberTools 12.37 The calculation of
entropy was not included in our protocol because it is time-
consuming and exhibits a high degree of uncertainty.

Western Blot and
Co-Immunoprecipitation
Cells were lysed in RIPA buffer (50 mM Tris-HCl, 0.1%
SDS, 150 mM NaCl) supplemented with phosphatase inhibi-
tors (2 mM EDTA, 15 mM NaF, 5 mM Na3VO4) and
protease inhibitors (5 μg/mL leupeptin, 1 μg/mL pepstatin,
2 μg/mL aprotinin). Protein concentrations in the lysates
were determined using the Pierce BCA Protein Assay Kit
(Thermo Fisher Scientific, catalog N° 23225). Samples
containing 30 μg of total protein were separated by SDS-
PAGE and electroblotted onto PVDF membranes. After
being blocked, the membranes were incubated with anti-
phospho-FAK (Tyr397; Millipore, catalog No MAB1144), anti-phospho-AKT (Cell Signaling, catalog No 92755), or anti-SOX2 (Abcam, catalog No 97959), followed by an HRP-conjugated secondary antibody. To correct for differences in the amount of total protein loaded, the same membranes were stripped and reprobed with anti-FAK (Santa Cruz Biotechnology, catalog No sc-1688), anti-AKT (Cell Signaling, catalog No 92725), anti-β-actin (Santa Cruz Biotechnology, catalog No sc-47778) or anti-α-tubulin (Santa Cruz Biotechnology, catalog No sc-398103).

For co-immunoprecipitation assays, samples containing 1 mg of protein were incubated overnight at 4°C and constant agitation with anti-FAK and Protein A-agarose. After rinsing, the immune complexes were denatured with Laemmli buffer, subjected to SDS-PAGE, and electroblotted. Membranes were sequentially probed with anti-P38 p110α (Santa Cruz Biotechnology, catalog No SC-293172) and anti-FAK.

Protein bands were detected using SuperSignal West Femto Maximum Sensitivity Substrate Pierce ECL Western Blotting Substrate (Thermo Fisher Scientific, catalog No 34095). Band intensities were measured in ImageJ and data were normalized against the vehicle (DMSO).

SOX2 Promoter Transactivation
MDA-MB-231 cells that stably expressed Luc under the SOX2 promoter were seeded into 24-well plates and incubated with drugs for 24 h. Then, the medium was removed, and the cells were lysed with 1% Triton X-100, 1 mM DTT in GME buffer for 10 min (room temperature). The homogenates were transferred to Eppendorf tubes, and 3 volumes of assay buffer (17 mM K₃PO₄, 1 mM DTT, and 2 mM ATP in GME buffer) were added. After the addition of luciferin (GOLDBIO, catalog No 34095), Luc activity was quantified as reported29 (GloMax® 20/20; Promega). Data were normalized to the fraction of viable cells at each drug concentration.

Limiting-Dilution Xenotransplantation (LDT)
MDA-MB-231 cells expressing Luc2-eGFP38 were treated with pranlukast (50 μM) or the corresponding vehicle for 24 h. Cells were detached, suspended in Dulbecco’s PBS, mixed 1:1 with Matrigel® matrix (Corning, catalog No 35621), and injected immediately into the thoracic mammary fat pad of 7–8-week-old female nu/nu mice (Cinvestav, Mexico). The tumor formation was examined by palpation at the injection site and by in vivo bioluminescence imaging as reported38 on an IVIS XR system (Caliper Life Sciences). Bioluminescence data were analyzed using Living Image 3.0 (Caliper Life Sciences). At day 36 after injection, the mice were euthanized and necropsied to corroborate the presence of tumors.

Animal procedures were performed per Mexican guidelines for the production, care, and use of laboratory animals (NOM-062-ZOO-1999) and the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The animal experiments were approved by the IACUC of the School of Medicine, UNAM (FMED/CI/JMO/102/2012).

Statistical Analyses
Half-maximal inhibitory concentration (IC₅₀) values were calculated by non-linear regression. Statistical significance was determined by one-way ANOVA or Kruskal–Wallis test. P values ≤0.05 are reported. GraphPad Prism (v6.0) was used to perform analyses. The estimation of CSC frequency was performed using ELDA software.39

Results
In silico Selection of CD49f Antagonists
We performed molecular docking using the β1-interacting domain of CD49f and 11,421 molecules from the InMan subset of the ZINC database. The docking scores obtained with AutoDock Vina (Suppl. Figure 1A), Autodock (Suppl. Figure 1B), and their re-evaluation with DSX_089 (Suppl. Figure 1C-D), were normalized and used to generate a consensus Z-score (Suppl. Figure 1E). Of the compounds with lower consensus Z-scores, we selected five drugs with different reported targets (Suppl. Figure 1F): bromocriptine, montelukast, pranlukast, zosuquidar, and imatinib.

CD49f Antagonists Decrease Cell Adhesion to Laminin
For biological validation of our in silico findings, we analyzed the function of laminin receptors in breast cancer cells exposed to the drugs. We employed the triple-negative MDA-MB-231 cell line, which highly expresses CD49f (Suppl. Figure 2) and can efficiently adhere to laminin.40 We found that >99% of MDA-MB-231 cells have high levels of membrane CD49f (Figure 1A), as reported.41 We observed that all selected drugs dose-dependently decreased the MDA-MB-231 cell adhesion to laminin (Figure 1B–F). Montelukast, zosuquidar, and pranlukast had IC₅₀ values between 10 and 30 μM, whereas those of imatinib and bromocriptine exceeded 50 μM. In these experiments, the
treatment of cells with a CD49f-blocking monoclonal antibody (clone GoH3) abolished cell adhesion (open circles in Figure 1B–F), demonstrating that laminin adhesion of MDA-MB-231 cells depends on CD49f-containing integrins.

Pranlukast Impairs Mammosphere Formation Independently of Its Cytotoxic Effect

To determine the impact of CD49f antagonists on the fraction of stem/progenitor cells, we performed mammosphere assays. Continuous exposure of cells to bromocriptine, montelukast, pranlukast, zosuquidar, or imatinib significantly reduced the number of mammospheres formed by MDA-MB-231 cells (Figure 2A and Suppl. Figure 3). For comparison, we analyzed the cytotoxic effect of the drugs on tumor-bulk cells by performing cell viability assays in 2D cultures (Figure 2B). In these assays, only zosuquidar had an IC\textsubscript{50} < 10 \mu M, and thus, only this drug should be classified as cytotoxic per NCI guidelines.\cite{42}

The best candidate for further analysis was chosen by calculating a ratio between the IC\textsubscript{50} values from both assays (Table 1). The concentration of pranlukast that was required to reduce the viability of 2D cultures was 10 times higher than what was needed to reduce clonogenicity, suggesting that this drug selectively affects breast CSCs.

Pranlukast Binding Induces Destabilization of α6β1 Heterodimer

To analyze the mechanism involved in pranlukast effects, we performed molecular dynamics (MD) simulations studying the drug’s interaction with a heterodimeric model composed of the seven-bladed beta-propeller domain of CD49f and the I-like and hybrid domains of β1 integrin. Root-mean-square deviation (RMSD) analysis showed that the heterodimeric complexes, with and without drug, reached equilibrium at \sim 150 ns (Figure 3A). Therefore, further analyses were performed with the 150 to 500 ns time frame. Pranlukast binding to CD49f was stable during the MD simulation. The drug–CD49f interaction was mediated by hydrophobic contacts, pi-pi stacking (Figure 3B), and hydrogen bonds (Figure 3C). We identified up to two simultaneous hydrogen bonds that involved Asn681, His702 or Ile703 in our model, which correspond to Asn300, His321 and Ile322 in the primary sequence of CD49f. The analysis of the root-mean-square fluctuation (RMSF) of backbone alpha carbons showed that pranlukast restricted the main backbone fluctuations of the propeller domain of CD49f (Figure 3D). Pranlukast induced conformational changes in the CD49f-binding site, reducing the fluctuations of the loop connecting C and D sheets of blade 5, but also in other regions of the protein that participate in the binding to the β subunit, such as in blades 2 and 3 (Figure 3E). Analysis of the α/β interface showed changes in the contacting

Figure 1 Effects of CD49f antagonists on CD49f adhesion to laminin. (A) Expression of CD49f in MDA-MB-231 cell line (gray histogram), assessed by FACS, versus its isotype control (white histogram). (B–F) Impact of selected compounds on MDA-MB-231 cell line adhesion to laminin. Graphs show the mean ± SEM of three independent experiments for bromocriptine (B), montelukast (C), pranlukast (D), zosuquidar (E), and imatinib (F). Half-maximal inhibitory concentration (IC\textsubscript{50}) values were calculated by nonlinear regression and reported in Table 1. Statistical significance was determined by Dunnett’s test; P value <0.05 (*), <0.01 (**), <0.0001 (****).
residues. For example, the surface on the I-like domain of β1 integrin had a different pattern of contacting residues in the presence of pranlukast (Figure 3F). Furthermore, the binding-free energy between the propeller domain of CD49f and the β1 subunit increases in presence of pranlukast (Figure 3G), indicating that the drug decreases the affinity between the subunits. This observation is consistent with the restricted conformational dynamics of the complex induced by pranlukast.

Pranlukast Effect on Other Laminin Receptors

To assess the specificity of pranlukast on CD49f, we performed laminin adhesion assays using MCF-7 breast cancer cells. Despite their low CD49f expression, the cells efficiently adhered to laminin (Suppl. Figure 4A) as previously reported.43,44 The addition of pranlukast (50 µM) did not affect the adhesion of MCF-7 cells to laminin (Suppl. Figure 4C), suggesting that the drug does not change the activity of other laminin receptors.

Pranlukast Affects CD49f-Downstream Signaling

The effects of pranlukast on CD49f-mediated signaling were evaluated using adherent cultures of MDA-MB-231 cells exposed for 24 h. Subtoxic concentrations of pranlukast (<50 µM; Suppl. Figure 5) decreased the integrin-dependent autophosphorylation of FAK at Tyr397. Pranlukast 12.5 µM reduced FAK phosphorylation without changes in total FAK, but 50 µM reduced both FAK phosphorylation as well as FAK expression (Figure 4A). Most importantly, blockage of CD49f with a specific monoclonal antibody only decreased FAK phosphorylation to 40% of control, indicating that in MDA-MB-231 cells, FAK activation is also mediated by other integrins, as reported.45

CD49f enhances radioresistance in breast cancer cells through the activation of the FAK-PI3K-AKT signaling pathway.41 Thus, we studied the effect of pranlukast on the activation of FAK-downstream effectors. Pranlukast impaired the activity of PI3K, as demonstrated by the reduced phosphorylation of the PI3K-target AKT in cells treated with the drug (Figure 4B). The treatment also reduced the association of PI3K with FAK in co-immunoprecipitation assays (Figure 4C). Together, these results demonstrate that pranlukast affects the FAK/PI3K signal transduction pathway, supporting the idea that the drug impairs the function of CD49f-containing integrins.

Table 1: Calculated IC₅₀ Values from Viability or Mammosphere Assays and Ratio Between These Values

Compound	IC₅₀ Mammosphere	IC₅₀ Cell Viability	IC₅₀ Cell Viability/IC₅₀ Mammosphere
Bromocriptine	61.1 µM	34.9 µM	0.57
Montelukast	48.4 µM	52.6 µM	1.09
Pranlukast	9.5 µM	>100 µM	>10.53
Zosuquidar	4.7 µM	9.1 µM	1.96
Imatinib	7.5 µM	36.5 µM	4.86

Note: Drug with higher ratio (bold) was selected for further studies.
Pranlukast Affects Stemness and Reduces the CSC Frequency

The effects of pranlukast on stemness were evaluated after exposing adherent cultures of MDA-MB-231 cells for 24 h to the drug (Figure 5A). Preincubation of MDA-MB-231 cells with 50 μM of pranlukast significantly reduced the mammosphere-forming efficiency under drug-free conditions (Figure 5B). Further, pranlukast significantly reduced the expression of the CSC marker CD44 (Figure 5C) and the pluripotency protein SOX2 (Figure 5D), as well as SOX2 promoter transactivation (Figure 5E).

The effect of pranlukast on tumor onset was assessed by limiting dilution xenotransplantation. We injected groups of nu/nu mice with different numbers of vehicle- or pranlukast-treated cells. The bioluminescence at time 0 showed that paired groups were homogeneously injected (P>0.05; Student’s t-test). The fraction of tumor-free mice in each group was quantified 5 weeks later (Figure 5F). For example, the injection of 2000 pranlukast-treated cells generated tumors in 3 out of 8 mice, compared with 6 out of 8 tumors produced by vehicle-treated cells (Figure 5G). The limiting dilution
analysis of pooled results showed a significant 3.7-fold reduction in the frequency of tumor-initiating cells after pranlukast treatment (Figure 5H). Thus, pranlukast reduced stemness signaling and impaired cellular functions that define CSC, demonstrating that it declines the CSC population.

Discussion

Integrin dimerization is crucial for the generation of its ligand-binding domain and, consequently, for integrin activation and clustering.\(^{20,21}\) Disruption of dimerization by peptides or monoclonal antibodies blocks integrin clustering and integrin-mediated adhesion.\(^{46-48}\) Targeting protein–protein interactions (PPIs) with small compounds has emerged as a novel and viable approach in modern drug discovery.\(^{49}\) Thus, we hypothesized that altering PPIs in CD49f-containing integrins by using pharmochemicals would impair their activity.

By molecular docking, we identified 20 compounds with high binding potential to a druggable pocket within the seven-bladed beta-propeller domain of CD49f. Of these potential antagonists, we focused on five drugs with known pharmacokinetics and pharmacodynamics. Analyzing new biological activities of drugs with reported therapeutic use (drug repurposing) is a strategy that reduces the time between the discovery of a new application and clinical translation.\(^{50,51}\) Our team used a similar strategy to identify etoposide as an antagonist of CD44.\(^{28}\)

The five selected drugs – bromocriptine, montelukast, pranlukast, zosuquidar, and imatinib – inhibited the adhesion of CD49f\(^+\) breast cancer cells to laminin with various potencies. Our data showed that the adhesion of MDA-MB-231 cells highly depends on CD49f, as demonstrated by the use of a monoclonal anti-CD49f. These results indicate that the selected pocket has functional relevance and could be used to design new antagonists for CD49f or other homologous integrins.

CD49f is central in maintaining the stemness but is dispensable for the survival of non-CSCs in vitro.\(^{9,10}\) Consequently, CD49f blockade is expected to affect clonogenicity with a minor impact on global cell viability. Hence, our subsequent screening compared the effect of...
Figure 5 Effect of pranlukast on breast cancer cell stemness. (A) Experimental strategy. (B) Viable MDA-MB-231 cells previously exposed to pranlukast for 24 h were seeded to test their capacity to form mammospheres in the absence of the drug. Graphs show the mean number of mammospheres ± SD from three independent experiments. (C) Analysis of CD44 expression by flow cytometry. The annotated percentages correspond to CD44^hi population. A representative experiment from 2 is shown. (D) Representative Western blot analyzing SOX2 expression. Graph represents the mean ± SEM from three independent experiments. (E) Analysis of SOX2 promoter transactivation by luciferase assay. Values are mean ± SEM from four independent experiments. Scheme above graph shows the promoter size in the construct. Statistical significance in (B), (D), and (E) was determined by Dunnett’s test; P value <0.05 (*), <0.01 (**). AU: arbitrary units. (F) Tumor formation in nude mice injected with 2000 cells in the vehicle (upper row) or pranlukast (lower row) groups. The presence of tumors was evaluated 36 days postinjection by bioluminescence quantification and dissection. Insets show the dissected tumors; scale bar = 3 mm. (G) Tumor incidence in groups of mice xenotransplanted with vehicle- or pranlukast-treated cells. (H) Log-fraction plot of the limiting dilution model fitted to the data shown in (E). The CSC frequency and the corresponding 95% confidence intervals (dotted lines and fractions in parenthesis) were calculated using ELDA software. The CSC frequency was significantly different among treatments (P=0.0044; chi-square test).
each drug on mammosphere formation, a functional estimation of the number of CSCs, versus its effect on the viability of adherent cultures, which are enriched in non-stem cells. Pranlukast decreased the number of mammospheres with limited cytotoxicity to adherent cultures, supporting that it selectively targets the CSC pool.

Pranlukast binding mode to CD49f was further characterized by MD simulations. Those experiments were performed with a heterodimeric model that included key domains for the ligand-binding activity of integrins. Pranlukast stably bound to CD49f in a region that includes residues that participate in or lie near the reported β-subunit interaction site in homologous proteins. In the αV integrin, the template used for our CD49f model, the contacting residues with the β3 subunit reside primarily in blades 3–5 of the seven-bladed beta-propeller domain. Accordingly, pranlukast binding to CD49f reduced the affinity for the β subunit. Furthermore, our results suggest that pranlukast constrains the conformational dynamics of the protein, which is crucial to regulate the activation state of the heterodimer.

We also analyzed the effect of pranlukast in CD49f-downstream signaling using MDA-MB-231 cells. FAK, a non-receptor tyrosine kinase, mediates signal transduction by CD49f and has been associated with aggressiveness in triple-negative breast tumors. FAK ablation in mammary epithelial cells delays tumorigenesis and reduces the pool of CSC in mammary tumors. Fittingly, FAK inhibition blocks metastatic ability and stemness in triple-negative breast cancer cells. We found that pranlukast decreased the integrin-dependent autophosphorylation of FAK at Tyr397, which is a surrogate measurement of FAK activation. CD49f-FAK activity stimulates the PI3K/AKT pathway leading to its hyperactivation in triple-negative tumors and in breast CSCs. We showed that pranlukast reduced FAK-PI3K interaction and AKT phosphorylation, corroborating that CD49f-activated signaling was impaired by the drug.

Previous studies have demonstrated that PI3K/AKT blockage induces CSC-differentiation in breast cancer cells. Thus, we studied whether pranlukast effects on CSC were reversible using an experimental design reported by Gupta and colleagues. Short-term exposure to pranlukast reduced the fraction of mammosphere-initiating cells in drug-free cultures as well as the number of tumor-initiating cells in vivo. These changes in the CSC pool were corroborated by quantifying the expression of two proteins that participate in the maintenance of stemness, expression of EMT markers, invasiveness, and metastatic capability: SOX2 and CD44. SOX2 is a target of CD49f-activated signaling and its downregulation is sufficient to diminish the pool of breast CSCs. Pranlukast reduced SOX2 protein level with a modest decrease in SOX2 promoter transactivation, suggesting that the drug affects the post-translational modifications and the stability of the protein. SOX2 expression positively correlates with that of CD44 in clinical samples; accordingly, we found a reduction of the CD44+ population in pranlukast-treated cells. Since SOX2 and CD44 expression induce chemoresistance in MDA-MB-231 cells, future studies would analyze the effect of pranlukast in the response to cytotoxic drugs.

Pranlukast, like montelukast and zafirlukast, belongs to the group of CysLTR antagonists, which are used to treat chronic bronchial asthma. Although pranlukast and montelukast were selected as potential CD49f antagonists by our in silico screen, our results show that they have dissimilar pharmacological behaviors, as described. For example, both drugs inhibit CysLTR1-mediated lung colonization by cancer cells, but only pranlukast impairs capillary permeability and cancer cell extravasation in the brain. Further, pranlukast was recently reported to act as an agonist of Raf1 kinase inhibitory protein, which is usually absent in metastatic cancer cells and is considered a metastasis suppressor. These data suggest that pranlukast can target multiple proteins, and we hereby report that CD49f should be considered one of such targets.

Conclusions

Our results identified pranlukast, a drug that is administered to asthmatic patients, as a CD49f-blocking agent with functional effects on the breast CSC pool, likely caused by altered FAK- and SOX2-signaling. Because the pharmacokinetics and toxicology of this drug are known, we recommend evaluating pranlukast as an adjuvant therapy for breast cancer patients to reduce drug resistance and tumor recurrence.

Abbreviations

CSC, cancer stem cell; CysLTR, cysteinyl leukotriene receptor 1; DMSO, dimethyl sulfoxide; FAK, focal adhesion kinase; FDA, Food and Drug Administration, USA; IC50, half-maximal inhibitory concentration; MD, molecular dynamics; NCI, National Cancer Institute, USA; PI3K, phosphatidylinositol 3-kinase; RMSD, root-mean-square deviation; RMSF, root-mean-square fluctuation; AU, arbitrary units.

Ethics Approval

Animal procedures were performed per Mexican guidelines for the production, care, and use of laboratory animals for the production, care, and use of laboratory...
animals (NOM-062-ZOO-1999) and the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23, revised 1978). The animal experiments were approved by the IACUC of “Facultad de Medicina, UNAM” (FMED/CI/ JMO/102/2012).

Acknowledgments
This work was partially carried out with the equipment of the National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological products, LANSEIDI-FarBiotec-CONACyT, which is part of the Research and Development in Bioprocess Unit (UDIBI)-IPN. We thank Andrea Rodríguez-Moreno, Sandra Guerrero-Rodriguez, Mireya Velázquez-Paniagua, Homero Gómez-Velasco, Luis A. Valencia-Flores, and Israel Castro-Cruz for technical assistance and Ms. Josefina Bolado, Head of the Scientific Paper Translation Department from the Research Division, School of Medicine, UNAM, for language editing. We also thank the support of “Programa de Becas Posdoctorales, DGAPA-UNAM”. Charmina Aguirre-Alvarado is currently affiliated with the Unit for Research in Immunology and Infectology, CMN “La Raza”, Instituto Mexicano del Seguro Social, Mexico City, Mexico.

Author Contributions
All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

Funding
This work was supported by CONACyT 221103 and INFR-2014-01-225313, PAPIIT UNAM IN228616 and IN219719 (M.A.V-V.), UDIMEB (S.M.P-T.), and POSDOC DGAPA-UNAM (D.C-A.). A.J.R-M. and F.C-M. are recipients of graduate scholarships from CONACyT.

Disclosure
This paper was presented at the 2018 NCRI Conference as a poster presentation with interim findings. The poster’s abstract was published in “Selected Abstracts from the 2018 NCRI Cancer Conference of National Cancer Research Institute” in British Journal of Cancer; 2018;119;46; https://doi.org/10.1038/s41416-018-0299-z. Dr Inés Velázquez-Quesada reports a patent for pranlukast as an antagonist of CD49f and derived uses pending. Dr Alicesha González-Arenas reports a patent pending: Mx/a/2018/014001. Dr Marco A Velasco-Velázquez reports grants from CONACYT, and PAPIIT UNAM and Dr. Diana Casique-Aguirre reports personal fees from POSDOC DGAPA-UNAM during the conduct of the study; in addition, they have a patent pending: MX/a/2018/014001. Sonia M Pérez-Tapia was employed by the National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products, LANSEIDI-FarBiotec-CONACyT, during the study. The authors report no other conflicts of interest in this work.

References
1. Stewart B, Wild CP World Cancer Report 2014. Lyon, France: International Agency for Research on Cancer; 2014.
2. Population Reference Bureau. 2012 World Population Data Sheet. Population Reference Bureau. ed. Washington, DC: Population Reference Bureau; 2012.
3. Ahmad A. Pathways to breast cancer recurrence. ISRN Oncol. 2013;2013:290568. doi:10.1155/2013/290568
4. Velasco-Velázquez MA, Homsi N, De La Fuente M, Pestell RG. Breast cancer stem cells. Int J Biochem Cell Biol. 2012;44 (4):573–577. doi:10.1016/j.biocel.2011.12.020
5. Jiang FX, Georges-Labouesse E, Harrison LC. Regulation of laminin 1-induced pancreatic beta-cell differentiation by alpha6 integrin and alpha-dystroglycan. Mol Med. 2001;7(2):107–114. doi:10.1007/BF0341944
6. Nishiuchi R, Takagi J, Hayashi M, et al. Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6-beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol. 2006;25 (3):189–197. doi:10.1016/j.mathbio.2005.12.001
7. Brooks DLP, Schwab LP, Krutula R, et al. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer. 2016;15:26. doi:10.1186/s12943-016-0510-x
8. Shaw LM, Chao C, Wewer UM, Mercurio AM. Function of the integrin alpha 6 beta 1 in metastatic breast cancer cell lines assessed by expression of a dominant-negative receptor. Cancer Res. 1996;56(5):959–963.
9. Wewer UM, Shaw LM, Albrechtsen R, Mercurio AM. The integrin alpha 6 beta 1 promotes the survival of metastatic human breast carcinoma cells in mice. Am J Pathol. 1997;151(5):1191–1198.
10. Vassilopoulos A, Chisholm C, Lallsen T, Zheng H, Deng CX. A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brea1-associated mouse model of breast cancer. Oncogene. 2014;33(47):5477–5482. doi:10.1038/onc.2013.516
11. Yu K-R, Yang S-R, Jung J-W, et al. CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4 and maintains stemness through the direct regulation of OCT4. Breast Cancer Res. 2010;12:R34. doi:10.1186/bcr2570
12. Goel HL, Pursell B, Chang C, et al. GLUL regulates a novel neuropilin-2/alpha6beta1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med. 2013;5(4):488–508. doi:10.1002/emmm.201202078
13. To K, Fotovati A, Reips KM, et al. Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance. Cancer Res. 2010;70 (7):2840–2851. doi:10.1158/0008-5472.CAN-09-3155
22. Irwin JJ, Sterling T, Mysinger MM, et al. ZINC: a free database of commercially available chemical compounds for virtual screening. J Chem Inf Model. 2012;52(2):360–372. doi:10.1021/ci200454v

23. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815. doi:10.1006/jmbi.1993.1626

24. Volkamer A, Kuhn D, Grombach T, Rippmann F, Ravery M. Combining global and local measures for structure-based druggability predictions. J Chem Inf Model. 2012;52(7):1757–1768. doi:10.1021/ci3001277

25. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. doi:10.1002/jcc.21334

26. Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791. doi:10.1002/jcc.21256

27. Neudert G, Klebe G. DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes. J Chem Inf Model. 2011;51(10):2731–2745. doi:10.1021/ci200274q

28. Aguine-Alvarado C, Segura-Cabrera A, Velázquez-Quesada I, et al. Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells. Oncotarget. 2016;7(17):23772–23784. doi:10.18632/oncotarget.8180

29. Wu K, Jiao X, Li Z, et al. Cell fate determination factor Dachshund reprograms breast cancer stem cell function. J Biol Chem. 2013;288(3):2132–2142. doi:10.1074/jbc.M112.438395

30. Humphries MJ. Cell adhesion assays. MB. 2001;18(1):57–62. doi:10.1385/MB:18:1:57

31. Velasco-Velázquez MA, Agramonte-Hevia J, Barrera D, et al. 4-Hydroxycoumarin disorganizes the actin cytoskeleton in B16-F10 melanoma cells but not in BR2 fibroblasts, decreasing their adhesion to extracellular matrix proteins and motility. Cancer Lett. 2003;198(2):179–186. doi:10.1016/s0304-3835(03)00333-1

32. Lombardo Y, de Giorgio A, Coombes CR, Stebbing J, Castellano L. Mammmosphere formation assay from human breast cancer tissues and cell lines. J Vis Exp. 2015;(97). doi:10.3791/52671

33. Schneider CA, Rasband WS, Eliceiri KW. NIH image to imaged: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi:10.1038/nmeth.2089
54. Zhang X, Li F, Zheng Y, et al. Propofol reduced mammosphere formation of breast cancer stem cells via PD-L1/nanog in vitro. Oxid Med Cell Longev. 2019;2019:9078209. doi:10.1155/2019/9078209

55. Xiong JP, Stehle T, Diefenbach B, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science. 2001;294(5541):339–345. doi:10.1126/science.1064535

56. Golubovskaya VM, Ylagan L, Miller A, et al. High focal adhesion kinase expression in breast carcinoma is associated with lymphovascular invasion and triple-negative phenotype. BMC Cancer. 2014;14:769. doi:10.1186/1417-2407-14-769

57. Luo M, Fan H, Nagy T, et al. Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res. 2009;69(2):466–474. doi:10.1158/0008-5472.CAN-08-3078

58. Kolev VN, Tam WF, Wright QG, et al. Inhibition of FAK kinase activity preferentially targets cancer stem cells. Oncotarget. 2017;8(31):51733–51747. doi:10.18632/oncotarget.18517

59. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol. 1994;14(3):1680–1688. doi:10.1128/mcb.14.3.1680

60. López-Knowles E, O’Toole SA, McNeil CM, et al. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer. 2010;126(5):1121–1131. doi:10.1002/ijc.24831

61. Hardt O, Wild S, Oerlecke I, et al. Highly sensitive profiling of CD44+/CD24- breast cancer stem cells by combining global mRNA amplification and next generation sequencing: evidence for a hyperactive PI3K pathway. Cancer Lett. 2012;325(2):165–174. doi:10.1016/j.canlet.2012.06.010

62. Kim H, Lin Q, Glazer PM, Yun Z. The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Res. 2018;20(1):16. doi:10.1186/s13058-018-0944-8

63. Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–659. doi:10.1016/j.cell.2009.06.034

64. Weinan K, Utkal J. SOX2 and cancer: current research and its implications in the clinic. Clin Transl Med. 2014;3:19. doi:10.1186/2001-1326-3-19

65. Liu K, Xie F, Gao A, et al. SOX2 regulates multiple malignant processes of breast cancer development through the SOX2/miR-181a-5p, miR-30c-5p/TUSC3 axis. Mol Cancer. 2017;16(1):62. doi:10.1186/s12943-017-0632-9

66. Mukherjee P, Gupta A, Chattopadhyay D, Chatterji U. Modulation of SOX2 expression delineates an end-point for paclitaxel-effectiveness in breast cancer stem cells. Sci Rep. 2017;7(1):9170. doi:10.1038/s41598-017-08971-2

67. Channec T, Ontong P, Kintan K, Itano N. Key roles of hyaluronan and its CD44 receptor in the stemness and survival of cancer stem cells. Front Oncol. 2015;5:180. doi:10.3389/fonc.2015.00180

68. Stolzenburg S, Rots MG, Beltran AS, et al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res. 2012;40(14):6752–6760. doi:10.1093/nar/gks360

69. Piva M, Domenici G, Iriondo O, et al. Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med. 2014;6(1):66–79. doi:10.1002/emmm.201303411

70. Xu H, Tian Y, Yuan X, et al. Enrichment of CD44 in basal-type breast cancer correlates with EMT, cancer stem cell gene profile, and prognosis. Onco Targets Ther. 2016;9:431–444. doi:10.2147/OTT.S97192

71. Liu P, Kumar IS, Brown S, et al. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br J Cancer. 2013;109(7):1876–1885. doi:10.1038/bjc.2013.534

72. Matsuse H, Kohno S. Leukotriene receptor antagonists pranlukast and montelukast for treating asthma. Expert Opin Pharmacother. 2014;15(3):353–363. doi:10.1517/14656566.2014.872241

73. Nozaki M, Yoshikawa M, Ishitani K, et al. Cysteinyl leukotriene receptor antagonists inhibit tumor metastasis by inhibiting capillary permeability. Keio J Med. 2010;59(1):10–18. doi:10.2302/kjm.59.10

74. Sun T, Wu Z, Luo M, Lin D, Guo C. Pranlukast, a novel binding ligand of human Raf1 kinase inhibitory protein. Br J Cancer. 2013;109(7):1876–1885. doi:10.1038/bjc.2013.534

75. Escara-Wilke J, Yeung K, Keller ET. Raf kinase inhibitor protein (RKIP) in cancer. Cancer Metastasis Rev. 2012;31(3–4):615–620. doi:10.1007/s10555-012-9365-9