Two methods for the determination of beam energy spread near $\Lambda_c^+\Lambda_c^-$ production threshold

D. Liu, a W.P. Wang, a R. Baldini Ferroli b, c and G.S. Huang a, 1

a State Key Laboratory of Particle Detection and Electronics, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
c INFN — National Laboratory of Frascati, Frascati, Italy

E-mail: hgs@ustc.edu.cn

Abstract: Two techniques are introduced to measure the beam energy spread in collision experiments of high energy physics, based on the threshold truncation effect and the beam-constrained mass spectra resolution, respectively. Both techniques are verified by Monte Carlo simulation, and take advantage of the BESIII collected data near the $\Lambda_c^+\Lambda_c^-$ production threshold. The measured results are consistent with each other, and also accord with the extrapolation from the value measured at the J/ψ resonance.

Keywords: Beam dynamics; Spectrometers; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)
Contents

1 Introduction 1

2 Measurement of center-of-mass energy spread based on threshold truncation effect 2
 2.1 Method description 2
 2.2 Application with data taken at BESIII 2

3 Measurement of beam energy spread based on the resolution of beam-constrained mass spectrum 4
 3.1 Method description 4
 3.2 Determination of beam energy spread 5

4 Discussion and summary 7

1 Introduction

Precision measurement is crucial for the continuous progress in high-energy, nuclear, and accelerator physics. Particularly for experiments based on accelerator, the precise knowledge of the beam energy E_{beam} is extremely important in order to achieve the highest possible accuracy of the desired physical results. The accuracy of beam energy is the result of intrinsic and external effects on the collision beam, e.g. quantum emission, space charge effect, Touschek effect, synchrotron radiation, etc. Beam energy spread σ_B is one of the features reflecting the property of E_{beam}, which should be addressed in electron-positron collision experiments. For example, exactly-known σ_B can help to obtain more reliable initial-state radiation (ISR) factors and detection efficiencies in the cross section measurement of hadron pair production process, especially when the center-of-mass (c.m.) energy is close to the production threshold of the final state hadrons [1, 2].

In principle, any observable quantity sensitive to σ_B can be used to measure the energy spread, although not all of them are equally suitable. There are several methods to measure σ_B. In accelerator, chromaticity of storage ring causes synchrotron sideband peaks in a spectrum of beam betatron oscillation, where the amplitudes of the peaks are related to energy spread and thus can be used to measure σ_B [3]. The energy spread can also be extracted by comparing the measured beam betatron motion with the theoretical curve [4, 5]. Compton back scattering is another way to measure the beam energy spread [6]. Since the maximal energy of scattered photons is strictly coupled with the beam energy, the width of the maximal energy edge is determined by the energy spread.

The Beijing Spectrometer (BESIII) is a general composite detector operating at the Beijing Electron Positron Collider (BEPCII) [7, 8], whose physical goals involve charmonium physics, D-physics, spectroscopy of light hadrons and τ-physics. Accurate beam energy is essential to the control of systematic uncertainties for precise measurements at BESIII, e.g. τ mass measurement [9].
At BEPCII, σ_B is usually measured by scanning the width of narrow resonances, typically J/ψ and $\psi(2S)$. Once measured at one energy, σ_B can be extrapolated to other c.m. energy \sqrt{s}, assuming it is proportional to s, i.e. $\sigma_B \propto s$ [10]. However, the extrapolation may not be suitable due to changes of accelerator status at different energies and data taking periods, therefore development of new methods for energy spread measurement is necessary. Here, we introduce two techniques to measure the energy spread via the $e^+e^- \rightarrow \Lambda_c^+\bar{\Lambda}_c^-$ process utilizing the data collected at BESIII. One of them measures the center-of-mass energy spread σ_E based on threshold truncation effect, while another one estimates beam energy spread σ_B using beam-constrained mass (M_{BC}) spectra resolution. The center-of-mass energy is twice as the beam energy at a symmetric collider, and therefore the spread of \sqrt{s} is larger than the beam energy spread by a factor of $\sqrt{2}$, i.e. $\sigma_E = \sqrt{2}\sigma_B$.

2 Measurement of center-of-mass energy spread based on threshold truncation effect

2.1 Method description

According to the energy and momentum conservation, the c.m. energy \sqrt{s} is equal to the invariant mass of final states X in the process $e^+e^- \rightarrow X$, i.e. $\sqrt{s} = M(X)$. In BESIII collaboration, the $e^+e^- \rightarrow \mu^+\mu^-$ process has been used to calibrate the \sqrt{s} of the collected data samples [11], here $X = \mu^+\mu^-$. However, if the production threshold of X is close to the c.m. energy \sqrt{s}, e.g. $X = \Lambda_c^+\bar{\Lambda}_c^-$ discussed here, the reconstructed invariant mass tends be higher than \sqrt{s} on the average, due to the absence of some collisions below the production threshold caused by the energy spread. The observed invariant mass is expected to increase as the energy spread getting larger.

Therefore, σ_E could be determined if its relation with the deviation between \sqrt{s} and $M(X)$ is established. It is difficult to find a general analytical dependence, since plenty of factors can impact on it, including the calibration of \sqrt{s}, the energy spread σ_E, the behaviour of cross section line shape near the threshold, initial state radiation, final state radiation (FSR), the resolution of the detector and the like. Considering above effects, we utilize Monte Carlo (MC) simulation to reveal the dependency relation. After the simulation, the average $M(X)$ is not equal to the energy \sqrt{s} as expected, i.e. the energy deviation $\Delta_E = M(X) - \sqrt{s} \neq 0$, due to the energy spread and the threshold truncation effect.

2.2 Application with data taken at BESIII

At BESIII, \sqrt{s} measured with $\mu^+\mu^-$ events [11] is used as the standard value. The nominal energy of 4575 MeV is measured to be $\sqrt{s_0} = 4574.50 \pm 0.18 \pm 0.70$ MeV, where the first uncertainty is the statistical one and the second is the systematics. The uncertainty is simply summed as 0.72 MeV in the following texts, noting that the 0.72 MeV cited here is the uncertainty of the average \sqrt{s}, which is originated from the limited statistic of the data sample and imperfect calibration method, rather than the energy spread value. The $e^+e^- \rightarrow \Lambda_c^+\bar{\Lambda}_c^-$ process is chosen to measure the energy spread, since the c.m. energy we are interested in is close to the $\Lambda_c^+\bar{\Lambda}_c^-$ production threshold, which is 4572.92 \pm 0.28 MeV [12]. The Λ_c^+ and $\bar{\Lambda}_c^-$ baryons are unstable particles which decay with an average lifetime of 0.2 ps. The so-called Golden decay $\Lambda_c^+ \rightarrow pK^-\pi^+$ and its charge conjugate (c.c) decay are utilized to reconstruct the Λ_c^+ and $\bar{\Lambda}_c^-$, respectively. To improve the statistics, only
one \(\Lambda_c^+ \) or \(\bar{\Lambda}_c^- \) is required in the reconstruction of the \(e^+e^- \rightarrow \Lambda_c^+\bar{\Lambda}_c^- \) process, and another one is obtained from the recoiling momentum of the reconstructed one in \(e^+e^- \) center of mass system with its mass constrained to the mass of \(\Lambda_c \) from Particle Data Group (PDG) [12]. Then the c.m. energy estimated from \(\Lambda_c^+\bar{\Lambda}_c^- \) pair is calculated with the invariant mass of total four-momentum, which is found to deviate from the mean value of collision energy \(\sqrt{s} \) as discussed above.

To estimate \(\sigma_E \) for the data, a toy MC is generated implementing the following features:

- The cross section has a sharp step at the \(\Lambda_c^+\bar{\Lambda}_c^- \) threshold [2] pursuant to the Coulomb enhancement factor, \(\pi \alpha / \beta \) [13], which cancels the phase space \(\beta \) and produces a nonvanishing cross section.
- Center-of-mass energy is subject to the Gaussian distribution with the mean value to be the nominal energy \(\sqrt{s} \) and the resolution \(\sigma_E \).
- ISR photon is simulated according to a probability density:
 \[
P(k) \sim \beta k^{\beta-1}(1-k^{1-\beta}+0.5k^{2-\beta}),
\]
 where \(k \) is the energy fraction taken by the photon and \(\beta = (4\alpha / \pi)[\ln(2E_{\text{beam}}/m_e) - 0.5] \) is the Touschek Bond factor [14].
- After the ISR, the residual effective collision energy \(\sqrt{s} \) is sampled according to a Crystal Ball function reflecting the detector effect, where the parameters of the function are extracted from experimental data in case of \(\Lambda_c^+\bar{\Lambda}_c^- \) pair production with \(\Lambda_c^+ \) and \(\bar{\Lambda}_c^- \) decaying to their Golden decay modes.

Based on above considerations, two MC samples are generated setting \(\sigma_E \) to 2.2 MeV with and without threshold truncation effect, respectively. The comparisons of the \(M(\Lambda_c^+\bar{\Lambda}_c^-) \) distributions are shown in figure 1, including the original distributions and the reconstructed ones considering the smear of the detector. In the threshold truncation case, the reconstructed invariant mass \(M(\Lambda_c^+\bar{\Lambda}_c^-) \) is slightly shifted with respect to the one without the truncation. The deviation \(\Delta_E \) can be quantitatively described by the difference of the mean values or the peak positions.
Figure 2. The relation of σ_E and ΔE from toy MC at $\sqrt{s} = 4574.50 \pm 0.72$ MeV. Dashed lines show the invariant mass deviation of data and the corresponding energy spread.

The numerical relation between the energy spread σ_E and the deviation ΔE is extracted via a series of toy MC generated with assigning σ_E from 1 to 4 MeV, 0.2 MeV step per MC sample. The relationship between σ_E and ΔE is illustrated in figure 2 and turns out to be almost linear in a low order approximation. Figure 2 also shows that magnitudes of σ_E and ΔE are in the same order in the case that \sqrt{s} is 1.58 MeV above the production threshold of $\Lambda_c^+\bar{\Lambda}_c^-$. To measure the energy spread of the data sample at 4575 MeV, we should determine the deviation ΔE of experimental data. The invariant mass of $\Lambda_c^+\bar{\Lambda}_c^-$ is obtained by singly reconstructing the Λ_c^+ or $\bar{\Lambda}_c^-$, as shown in figure 3. The average invariant mass is measured to be $M(\Lambda_c^+\bar{\Lambda}_c^-) = 4575.28 \pm 0.55$ MeV by fitting it with a Crystal-Ball function, thus the ΔE is determined to be 0.78 MeV. Utilizing the relationship shown in figure 2, it is found $\sigma_E = 2.2 \pm 1.1$ MeV, where the uncertainty is obtained by fluctuating the measured $M(\Lambda_c^+\bar{\Lambda}_c^-)$ with its uncertainty. Here we only consider the statistical uncertainty, which is mainly originated from the determination of $M(\Lambda_c^+\bar{\Lambda}_c^-)$. If the systematical one is considered, the value of ΔE can fluctuate to a value close to or smaller than zero, where the relation between σ_E and ΔE is nonlinear. This increases the difficulty in estimating the uncertainty of σ_E, and has to be carefully considered in a real measurement. The energy spread obtained here is consistent with the value estimated from the extrapolation of the spread at J/ψ mass using the proportional relation between σ_E and s, which is $\sigma_E \approx 0.9$ MeV at J/ψ mass \[15\] and thus $\sigma_E \approx 2$ MeV at 4575 MeV.

BESIII has also taken data at $\sqrt{s} = 4600$ MeV, which is a little far away from the threshold of $\Lambda_c^+\bar{\Lambda}_c^-$. The invariant mass of $\Lambda_c^+\bar{\Lambda}_c^-$ is extracted with the same method as used at $\sqrt{s} = 4575$ MeV, which is $M(\Lambda_c^+\bar{\Lambda}_c^-) = 4599.3 \pm 0.2$ MeV as shown in figure 3. The value is consistent with that measured with $\mu^+\mu^-$ event in ref. [11], which is 4599.53 \pm 0.07 \pm 0.74 MeV. There is no significant deviation of $M(\Lambda_c^+\bar{\Lambda}_c^-)$ at \sqrt{s} far away from threshold as expected.

3 Measurement of beam energy spread based on the resolution of beam-constrained mass spectrum

3.1 Method description

In high-energy physics experiments, Monte Carlo simulations are required to describe the experimental data as well as possible to determine reliable detection efficiencies and extract correct
signal shapes. However, the incorrect beam energy spread σ_B assigned in the simulations will lead discrepancies between the experimental data and the MC samples. In this case, if we vary the σ_B in the simulations to accomplish best consistency between data and MC, then corresponding σ_B should be regarded as the actual value of the beam energy spread. To achieve this, an observable quantity which is sensitive to σ_B should be proposed and its difference between data and MC can be quantitatively reflected. In this procedure, the hypothesis is held that the discrepancy between data and MC is completely originated from the incorrect input σ_B in simulation. This is reasonable since the simulations are performed based on the geant4-based simulation package used in the BESIII experiment [16, 17], since geant4 is widely used to describe the interactions between final state particles and the detector materials.

3.2 Determination of beam energy spread

The $e^+e^- \rightarrow \Lambda_c^+\bar{\Lambda}_c^-$ process is chosen to perform the beam energy spread measurement, and the beam-constrained mass M_{BC} is used to reflect the difference between data and MC simulations. The M_{BC} is defined by replacing the particle energy by the beam energy in definition of the invariant mass, i.e. $M_{BC} \equiv \sqrt{E_{\text{beam}}^2/c^4 - |p|^2/c^2}$, where p is the momentum of the Λ_c^+ or $\bar{\Lambda}_c^-$ which is reconstructed from final state particles using the Golden decay channel. Thus, the M_{BC} spectrum is sensitive to the σ_B due to the containing of the constant variable E_{beam} instead of the reconstructed energy of Λ_c^+ or $\bar{\Lambda}_c^-$ by definition. On the other hand, since the final states of the $e^+e^- \rightarrow \Lambda_c^+\bar{\Lambda}_c^-$ process consists of two symmetric particles, the E_{beam} should be equal to the energy of Λ_c^+ or $\bar{\Lambda}_c^-$. Therefore, the M_{BC} spectrum is expected to peak at the nominal mass of Λ_c^+. Figure 4 shows M_{BC} distribution in data and MC with different beam energy spread σ_B. In the figure, the smooth curves are the MC shapes of M_{BC} distributions, which is actually the probability density functions extracted from the M_{BC} spectra of corresponding MC samples. According to the figure, different assignments of σ_B in MC simulations will obviously result in different MC shapes of M_{BC}. Since the reconstruction of Λ_c^+ is based on a few final particles, the resolution of M_{BC} is also a mixture of several resolutions and a combination effect. It is out of this paper’s scope to evaluate the difference between MC simulation and experimental result which is originated from to imperfect description.
of the detector behaviour. In the following text, the uncertainties are the pure statistical ones, and no evaluation of systematic uncertainties is performed.

To determine the beam energy spread σ_B, a series of MC samples are generated with the σ_B increasing from 0.5 to 2.5 MeV by a step of 0.2 MeV. After that, the MC shapes of M_{BC} spectra extracted from the MC samples are utilized to perform the unbinned maximum likelihood fits on the M_{BC} distributions of experimental data. It is anticipated that the fit quality will become better when the σ_B goes closer to the actual value. Naturally, the χ^2 of the fit is regarded as the indicator of the σ_B discrepancy between MC sample and experimental data. The resulting χ^2 of each likelihood fit at 4575 MeV are shown in figure 5. To find the reasonable beam energy spread value, a simple fit using the quadratic function is performed on the χ^2 distribution with respect to the σ_B, in which the fit function takes the form

$$\chi^2 = p_0 \cdot (x - p_1)^2 + p_2,$$

where x denotes the value of beam energy spread and p_1 is expected to be the actual value of the σ_B. The fit results are shown in figure 5. Note that the χ^2 values are not true data, since there are no uncertainties in them. Therefore the nominal uncertainty of p_1, which is output by the fit, is not reliable. Accordingly, we assign the deviation of the beam energy spread value, which enlarges corresponding χ^2 by 1.0, to be the uncertainty. The fit result from the Λ_c^+ decay is $p_1^+ = 1.65 \pm 0.69$ MeV while the $\bar{\Lambda}_c^-$ decay gives that $p_1^- = 1.51 \pm 0.69$ MeV. The final beam energy spread value is obtained from weighting average of the resulted p_1^+ and p_1^-, i.e. $\sigma_B = \bar{p}_1 = 1.58 \pm 0.49$ MeV. The corresponding c.m. energy spread is $\sigma_E = \sqrt{2} \sigma_B = 2.23 \pm 0.69$ MeV, which is consistent with the first method.

The method is also applied to the data sample collected at 4600 MeV, where the beam energy spread is fitted to be $p_1^+ = 1.63 \pm 0.24$ MeV for the Λ_c^+ decay and $p_1^- = 1.50 \pm 0.24$ MeV for the $\bar{\Lambda}_c^-$ decay. The average beam energy spread at this energy point is $\sigma_B = 1.57 \pm 0.17$ MeV, corresponding to $\sigma_E = 2.22 \pm 0.24$ MeV. Since 4600 MeV is very close to 4575 MeV, the energy spread almost shares the extrapolation from the J/ψ mass, $\sigma_E = 2$ MeV, which is also consistent with the value measured using current method.

![Figure 4. M_{BC} distribution fitted with signal shape obtained from pure signal simulation with (red dashed line) and without (blue solid line) beam energy spread at 4575 MeV. The shapes are scaled by the number of events.](image-url)
Figure 5. The fit to χ^2 values at $\sqrt{s} = 4575$ MeV (left) and 4600 MeV (right). The fit to χ^2 values at $\sqrt{s} = 4575$ MeV via the function $p_0 \cdot (x - p_1)^2 + p_2$, where χ^2 value is from fitting M_{BC} distribution of data with MC shape under different beam energy spread, and the x represents the value of beam energy spread and p_1 is expected to be the nominal value of beam energy spread. The red (blue) solid lines represent the fit functions for the $\Lambda_c^+ (\bar{\Lambda}_c^-)$ decay.

4 Discussion and summary

Two methods are introduced to determine the center-of-mass energy spread in the symmetric electron-positron collider based on the threshold truncation effect and the beam-constrained mass spectrum. The results of σ_E at 4575 MeV are determined to be 2.20 ± 1.10 MeV and 2.23 ± 0.69 MeV, respectively. These two results are consistent with each other and also accord with the extrapolation from the energy spread measured at the J/ψ resonance. Since the first method is motivated by the threshold truncation effect, it only works well for the data samples close to the production threshold of specific two-body final states. The beam-constrained mass distributions make the second method valid in a relative broad c.m. energy region. In this method, the simulation quality of the interaction between final state particles and the detector materials will directly affect the determination of the energy spread, and may limit its application. Although only the process $e^+ e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ is utilized to perform the measurement, these two methods can be generalized to other two-body production processes, such as the production of Ξ_c and Ω_c, as long as corresponding near threshold data samples are collected. The methods described in this paper provide new techniques in the measurement of the energy spread for near threshold data samples, which will be helpful for the production behavior study of corresponding baryon pair.

Acknowledgments

We thank the staff of BEPCII, the IHEP computing center and the supercomputing center of USTC for their strong support on behalf of the BESIII collaboration. The work is supported by National Natural Science Foundation of China (NSFC) under Contracts Nos. 11322544, 11335008, 11375170, 11275189, 11475164, 11475169, 11625523, 11605196, 11605198; Joint Large- Scale Scientific Facility Funds of the NSFC and the Chinese Academy of Sciences (CAS) under Contracts No. U1532102.
References

[1] BESIII collaboration, M. Ablikim, et al., Observation of a cross-section enhancement near mass threshold in $e^+e^- \rightarrow \Lambda\bar{\Lambda}$, Phys. Rev. D 97 (2018) 032013.

[2] BESIII collaboration, M. Ablikim et al., Precision measurement of the $e^+e^- \rightarrow \Lambda^+_c\bar{\Lambda}^-_c$ cross section near threshold, Phys. Rev. Lett. 120 (2018) 132001 [arXiv:1710.00150].

[3] T. Nakamura et al., Chromaticity for energy spread measurement and for cure of transverse multi-bunch instability in the SPRING-8 storage ring, in the proceedings of the 2001 Particle Accelerator Conference, June 18–22, Chicago, U.S.A. (2001).

[4] V.V. Danilov, I.N. Nesterenko and E.A. Perevedentsev, Measurement of betatron coherent tune shifts and collective damping rates in BEP storage ring with the optical technique, Int. J. Mod. Phys. A2A (1993) 230.

[5] N.A. Vinokurov et al., The influence of chromaticity and cubic nonlinearity on kinematic of betatron oscillations (in Russian), Preprint BINP 76-87, Novosibirsk, Russia (1976).

[6] V.A. Kiselev et al., Beam energy spread measurement at the VEPP-4M Electron-Positron Collider, 2007 JINST 2 P06001.

[7] BEPCII Group, BEPCII Design Report, in the proceedings of IHEP, September 17–21, Beijing, China (2001).

[8] BESIII collaboration, M. Ablikim et al., Design and construction of the BESIII detector, Nucl. Instrum. Meth. A 614 (2010) 345 [arXiv:0911.4960].

[9] X.H. Mo, Study of high precision τ mass measurement at BESIII, Nucl. Phys. B 169 (2007) 132.

[10] M. Sands, The physics of electron positron storage rings, SLAC-121 (1979).

[11] BESIII collaboration, M. Ablikim et al., Measurements of the center-of-mass energies at BESIII via the di-muon process, Chin. Phys. C 40 (2016) 063001.

[12] Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001.

[13] R. Baldini, S. Pacetti, A. Zallo and A. Zichichi, Unexpected features of $e^+e^- \rightarrow p\bar{p}$ and $e^+e^- \rightarrow \Lambda\bar{\Lambda}$ cross sections near threshold, Eur. Phys. J. A 39 (2009) 315 [arXiv:0711.1725].

[14] K. Yu. Todyshev, The application Breit-Wigner form with radiative corrections to the resonance fitting, arXiv:0902.4100.

[15] X.Y. Zhou, Measurement of J/ψ resonance parameters through energy scan, BESIII internal document.

[16] GEANT4 collaboration, S. Agostinelli et al., GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.

[17] Z.Y. Deng et al., Object oriented BESIII detector simulation system (in Chinese), High Energy Phys. Nucl. Phys. 30 (2006) 371.