Supporting Information

Consecutive Non-Natural PZ Nucleobase Pairs in DNA Impact Helical Structure as Seen in 50 μs Molecular Dynamics Simulations

Robert W. Molt, Jr., Millie M. Georgiadis, and Nigel G. J. Richards

School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom, Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States, Department of Chemistry & Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, United States, and ENSCO, Inc., 4849 North Wickham Road, Melbourne, FL 32940, United States,
Table S1. Time convergence (μs) of all parameters for the GC-containing oligonucleotide.

	0.5	5	25	50
Shear				
G-C	-0.15	-0.15	-0.15	-0.15
G-C	-0.16	-0.16	-0.16	-0.16
G-C	-0.13	-0.13	-0.13	-0.13
C-G	0.13	0.13	0.13	0.13
C-G	0.16	0.16	0.16	0.16
C-G	0.16	0.16	0.15	0.16

Stretch	0.5	5	25	50
G-C	-0.07	-0.07	-0.07	-0.07
G-C	-0.07	-0.07	-0.07	-0.07
G-C	-0.06	-0.06	-0.06	-0.06
C-G	-0.06	-0.06	-0.06	-0.06
C-G	-0.07	-0.07	-0.07	-0.07

Stagger	0.5	5	25	50
G-C	0.01	0.01	0.01	0.01
G-C	-0.11	-0.11	-0.12	-0.12
G-C	-0.13	-0.13	-0.13	-0.13
C-G	-0.11	-0.11	-0.12	-0.12
C-G	0.01	0.01	0.01	0.01

Buckle	0.5	5	25	50
G-C	3.45	3.52	3.56	3.55
G-C	-0.88	-0.72	-0.79	-0.81
G-C	-4.50	-4.30	-4.27	-4.30
C-G	4.26	4.26	4.33	4.29
C-G	0.77	0.77	0.83	0.83
C-G	-3.65	-3.47	-3.53	-3.52

Propeller	0.5	5	25	50
G-C	-5.52	-5.44	-5.48	-5.49
G-C	-8.86	-8.77	-8.84	-8.84
G-C	-6.22	-6.17	-6.15	-6.16
C-G	-6.13	-6.13	-6.16	-6.14
C-G	-8.99	-8.83	-8.85	-8.83
C-G	-5.57	-5.44	-5.48	-5.47

Opening	0.5	5	25	50	
G-C	-0.53	-0.53	-0.52	-0.52	
G-C	0.07	0.06	0.07	0.07	
G-C	-0.48	-0.48	-0.49	-0.49	
C-G	-0.51	-0.49	-0.49	-0.49	
	0.5	5	25	50	
-------	-----	-----	-----	-----	
C-G	0.12	0.08	0.08	0.07	
C-G	-0.51	-0.51	-0.52	-0.52	
Shift	0.5	5	25	50	
TG/CA	0.19	0.18	0.17	0.17	
GG/CC	0.22	0.23	0.23	0.23	
GG/CC	-0.11	-0.11	-0.11	-0.11	
GC/GC	-0.01	0.00	0.00	0.00	
CC/GG	0.12	0.11	0.11	0.11	
CC/GG	-0.24	-0.24	-0.23	-0.23	
CA/TG	-0.15	-0.17	-0.17	-0.17	
Slide	0.5	5	25	50	
TG/CA	-0.54	-0.54	-0.54	-0.54	
GG/CC	-1.27	-1.25	-1.26	-1.26	
GG/CC	-1.34	-1.34	-1.33	-1.33	
GC/GC	-0.77	-0.78	-0.78	-0.78	
CC/GG	-1.33	-1.33	-1.33	-1.33	
CC/GG	-1.26	-1.26	-1.26	-1.26	
CA/TG	-0.56	-0.54	-0.54	-0.54	
Rise	0.5	5	25	50	
TG/CA	3.26	3.26	3.25	3.25	
GG/CC	3.46	3.45	3.46	3.46	
GG/CC	3.42	3.42	3.42	3.42	
GC/GC	3.19	3.19	3.19	3.19	
CC/GG	3.42	3.42	3.42	3.42	
CC/GG	3.46	3.45	3.46	3.46	
CA/TG	3.25	3.25	3.25	3.25	
Tilt	0.5	5	25	50	
TG/CA	-0.65	-0.61	-0.55	-0.57	
GG/CC	0.53	0.53	0.55	0.55	
GG/CC	0.15	0.14	0.09	0.10	
GC/GC	-0.01	-0.02	0.00	0.00	
CC/GG	-0.08	-0.13	-0.10	-0.10	
CC/GG	-0.53	-0.57	-0.56	-0.56	
CA/TG	0.47	0.54	0.57	0.58	
Roll	0.5	5	25	50	
TG/CA	9.61	9.62	9.56	9.59	
GG/CC	5.20	5.14	5.22	5.21	
GG/CC	4.90	4.80	4.89	4.88	
GC/GC	2.93	2.81	2.88	2.87	
CC/GG	4.93	4.85	4.89	4.88	
CC/GG	5.37	5.24	5.24	5.23	
CA/TG	9.53	9.62	9.62	9.63	
	Twist	t/100	t/10	t/2	t
-------	--------	-------	------	------	-----
TG/CA	30.42	30.35	30.32	30.32	
GG/CC	30.20	30.24	30.20	30.21	
GG/CC	29.94	29.99	29.98	29.98	
GC/GC	33.61	33.60	33.55	33.56	
CC/GG	29.94	29.99	29.97	29.97	
CC/GG	30.16	30.13	30.18	30.19	
CA/TG	30.31	30.25	30.28	30.30	

	H-Rise	0.5	5	25	50
TG/CA	2.85	2.84	2.83	2.83	
GG/CC	3.12	3.12	3.12	3.12	
GG/CC	3.09	3.10	3.09	3.09	
GC/GC	3.08	3.08	3.08	3.08	
CC/GG	3.08	3.10	3.09	3.09	
CC/GG	3.11	3.12	3.12	3.12	
CA/TG	2.83	2.83	2.83	2.83	

	Inclination	0.5	5	25	50
TG/CA	17.87	17.91	17.81	17.86	
GG/CC	10.07	9.96	10.11	10.09	
GG/CC	9.47	9.28	9.46	9.43	
GC/GC	5.19	4.98	5.11	5.09	
CC/GG	9.56	9.37	9.45	9.43	
CC/GG	10.41	10.17	10.15	10.13	
CA/TG	17.78	17.93	17.94	17.94	

	Tip	0.5	5	25	50
TG/CA	1.19	1.14	1.03	1.06	
GG/CC	-1.09	-1.09	-1.11	-1.12	
GG/CC	-0.31	-0.28	-0.18	-0.21	
GC/GC	0.01	0.03	0.00	0.00	
CC/GG	0.17	0.25	0.19	0.20	
CC/GG	1.09	1.16	1.14	1.13	
CA/TG	-0.87	-1.00	-1.07	-1.08	

	H-Twist	0.5	5	25	50
TG/CA	32.90	32.83	32.78	32.78	
GG/CC	31.41	31.44	31.42	31.42	
GG/CC	31.05	31.09	31.09	31.09	
GC/GC	34.32	34.30	34.26	34.27	
CC/GG	31.06	31.09	31.08	31.08	
CC/GG	31.40	31.35	31.40	31.40	
CA/TG	32.78	32.74	32.76	32.78	
	0.5	5	25	50	
--------	-----	-----	-----	-----	
Major Groove Refined					
TG/CA	20	20	20	20	
GG/CC	20	20	20	20	
GG/CC	21	21	21	21	
GC/GC	21	21	21	21	
CC/GG	21	21	21	21	
CC/GG	20	20	20	20	
CA/TG	20	20	20	20	
Minor Groove Refined					
TG/CA	14	14	14	14	
GG/CC	13	13	13	13	
GG/CC	13	13	13	13	
GC/GC	13	13	13	13	
CC/GG	13	13	13	13	
CC/GG	13	13	13	13	
CA/TG	14	14	14	14	
Major Groove Unrefined					
TG/CA	21	21	21	21	
GG/CC	21	21	21	21	
GG/CC	22	22	22	22	
GC/GC	22	22	22	22	
CC/GG	21	21	21	21	
CC/GG	21	21	21	21	
CA/TG	21	21	21	21	
Minor Groove Unrefined					
TG/CA	14	14	14	14	
GG/CC	14	14	14	14	
GG/CC	14	14	14	14	
GC/GC	13	13	13	13	
CC/GG	14	14	14	14	
CC/GG	14	14	14	14	
CA/TG	14	14	14	14	

Table S2. Time convergence (μs) of all parameters for the PZ-containing oligonucleotide.

Shear	0.5	5	25	50	
6=27	P-Z	-0.06	-0.05	-0.06	-0.05
7=26	P-Z	-0.04	-0.04	-0.04	-0.04
8=25	P-Z	0.04	-0.39	-0.21	-0.22
9=24	Z-P	-0.05	0.01	0.00	0.10
10=23	Z-P	0.04	0.04	0.04	0.04
11=22	Z-P	0.05	0.06	0.06	0.06
	0.5	5	25	50	
------	-----	-----	-----	-----	
Stretch	0.5	5	25	50	
6=27	P-Z	-0.04	-0.04	-0.04	-0.04
7=26	P-Z	-0.03	-0.03	-0.03	-0.03
8=25	P-Z	-0.04	-0.11	-0.06	-0.05
9=24	Z-P	-0.04	-0.04	-0.04	-0.04
10=23	Z-P	-0.03	-0.03	-0.03	-0.03
11=22	Z-P	-0.04	-0.04	-0.04	-0.04
Stagger	0.5	5	25	50	
6=27	P-Z	-0.23	-0.23	-0.24	-0.24
7=26	P-Z	-0.11	-0.10	-0.11	-0.11
8=25	P-Z	-0.22	-0.21	-0.20	-0.21
9=24	Z-P	-0.22	-0.19	-0.20	-0.21
10=23	Z-P	-0.14	-0.11	-0.12	-0.11
11=22	Z-P	-0.23	-0.24	-0.24	-0.24
Buckle	0.5	5	25	50	
6=27	P-Z	-5.96	-6.17	-6.15	-6.20
7=26	P-Z	-3.34	-3.65	-3.68	-3.71
8=25	P-Z	-3.18	-2.85	-2.93	-3.13
9=24	Z-P	3.29	2.90	3.22	3.13
10=23	Z-P	4.24	3.61	3.72	3.70
11=22	Z-P	5.58	6.26	6.29	6.29
Propeller	0.5	5	25	50	
6=27	P-Z	-6.60	-6.72	-6.68	-6.70
7=26	P-Z	-3.31	-3.36	-3.27	-3.31
8=25	P-Z	-0.20	0.97	0.53	0.51
9=24	Z-P	-0.35	-0.66	-0.57	-0.03
10=23	Z-P	-3.15	-3.32	-3.28	-3.32
11=22	Z-P	-6.90	-6.67	-6.69	-6.69
Opening	0.5	5	25	50	
6=27	P-Z	-2.25	-2.30	-2.27	-2.28
7=26	P-Z	-3.37	-3.39	-3.35	-3.35
8=25	P-Z	-3.57	-1.72	-2.21	-2.21
9=24	Z-P	-3.59	-3.46	-3.49	-2.77
10=23	Z-P	-3.21	-3.35	-3.33	-3.33
11=22	Z-P	-2.44	-2.26	-2.26	-2.25
Shift		0.5	5	25	50
5=28/6=27	TP/ZA	0.60	0.60	0.59	0.59
6=27/7=26	PP/ZZ	0.56	0.56	0.57	0.57
7=26/8=25	PP/ZZ	1.02	1.26	1.17	1.16
8=25/9=24	PZ/PZ	-0.01	-0.17	-0.10	-0.04
9=24/10=23	ZZ/PP	-1.00	-0.98	-1.02	-1.09
10=23/11=22	ZZ/PP	-0.54	-0.58	-0.58	-0.57
-------	-------	-------	-------	-------	
11=22/12=21	ZA/TP	-0.61	-0.59	-0.59	-0.59
Slide					
5=28/6=27	TP/ZA	-1.73	-1.72	-1.72	-1.72
6=27/7=26	PP/ZZ	-1.99	-1.98	-1.99	-1.98
7=26/8=25	PP/ZZ	-2.46	-2.64	-2.55	-2.55
8=25/9=24	PZ/PZ	-2.83	-2.98	-2.88	-2.86
9=24/10=23	ZZ/PP	-2.36	-2.40	-2.42	-2.48
10=23/11=22	ZZ/PP	-1.96	-1.98	-1.98	-1.98
11=22/12=21	ZA/TP	-1.68	-1.72	-1.72	-1.72
Rise					
5=28/6=27	TP/ZA	3.77	3.77	3.77	3.77
6=27/7=26	PP/ZZ	3.32	3.33	3.33	3.33
7=26/8=25	PP/ZZ	3.46	3.46	3.45	3.45
8=25/9=24	PZ/PZ	3.31	3.30	3.30	3.29
9=24/10=23	ZZ/PP	3.44	3.44	3.45	3.45
10=23/11=22	ZZ/PP	3.36	3.33	3.33	3.33
11=22/12=21	ZA/TP	3.77	3.78	3.78	3.78
Tilt					
5=28/6=27	TP/ZA	1.56	1.63	1.66	1.68
6=27/7=26	PP/ZZ	-0.19	-0.11	-0.07	-0.05
7=26/8=25	PP/ZZ	1.57	0.80	1.15	1.19
8=25/9=24	PZ/PZ	0.00	0.58	0.21	0.15
9=24/10=23	ZZ/PP	-1.30	-1.18	-1.44	-1.31
10=23/11=22	ZZ/PP	-0.05	0.06	0.03	0.04
11=22/12=21	ZA/TP	-1.56	-1.59	-1.60	-1.63
Roll					
5=28/6=27	TP/ZA	5.38	5.36	5.30	5.33
6=27/7=26	PP/ZZ	5.24	5.08	5.14	5.16
7=26/8=25	PP/ZZ	3.92	2.91	3.55	3.60
8=25/9=24	PZ/PZ	2.76	3.67	3.19	3.24
9=24/10=23	ZZ/PP	4.48	3.85	4.01	3.81
10=23/11=22	ZZ/PP	5.08	5.18	5.22	5.22
11=22/12=21	ZA/TP	5.20	5.38	5.40	5.39
Twist					
5=28/6=27	TP/ZA	28.62	28.74	28.75	28.76
6=27/7=26	PP/ZZ	26.60	26.52	26.43	26.41
7=26/8=25	PP/ZZ	24.27	21.91	22.70	22.65
8=25/9=24	PZ/PZ	21.35	19.91	21.11	21.63
9=24/10=23	ZZ/PP	24.31	24.60	24.24	23.45
10=23/11=22	ZZ/PP	26.85	26.33	26.35	26.36
11=22/12=21	ZA/TP	28.28	28.81	28.79	28.80
		0.5	5	25	50
-------	-------	-----	-----	------	-----
H-Rise					
5=28/6=27	TP/ZA	3.31	3.31	3.31	3.31
6=27/7=26	PP/ZZ	2.82	2.84	2.84	2.84
7=26/8=25	PP/ZZ	3.01	2.96	2.99	2.97
8=25/9=24	PZ/PZ	3.16	3.14	3.13	3.11
9=24/10=23	ZZ/PP	2.94	2.98	2.99	2.98
10=23/11=22	ZZ/PP	2.88	2.83	2.83	2.83
11=22/12=21	ZA/TP	3.32	3.32	3.32	3.32

Inclination					
5=28/6=27	TP/ZA	10.57	10.49	10.37	10.43
6=27/7=26	PP/ZZ	11.23	10.89	11.02	11.08
7=26/8=25	PP/ZZ	8.95	8.93	9.01	9.21
8=25/9=24	PZ/PZ	2.59	2.09	2.73	2.98
9=24/10=23	ZZ/PP	10.11	8.94	8.94	9.16
10=23/11=22	ZZ/PP	10.76	11.14	11.21	11.20
11=22/12=21	ZA/TP	10.30	10.52	10.56	10.53

Tip		0.5	5	25	50
5=28/6=27	TP/ZA	-3.12	-3.26	-3.32	-3.34
6=27/7=26	PP/ZZ	0.00	-0.23	-0.37	-0.42
7=26/8=25	PP/ZZ	-5.10	-4.87	-5.07	-5.02
8=25/9=24	PZ/PZ	-0.03	-0.10	-0.06	-0.05
9=24/10=23	ZZ/PP	4.34	3.92	4.47	4.70
10=23/11=22	ZZ/PP	0.56	0.39	0.47	0.44
11=22/12=21	ZA/TP	3.13	3.17	3.20	3.24

H-Twist		0.5	5	25	50
5=28/6=27	TP/ZA	30.19	30.30	30.32	30.33
6=27/7=26	PP/ZZ	28.08	28.01	27.95	27.94
7=26/8=25	PP/ZZ	26.34	23.76	24.64	24.58
8=25/9=24	PZ/PZ	21.70	20.24	21.53	22.11
9=24/10=23	ZZ/PP	26.42	26.52	26.30	25.42
10=23/11=22	ZZ/PP	28.31	27.85	27.89	27.90
11=22/12=21	ZA/TP	29.82	30.37	30.36	30.37

Major_Groove_Refined		0.5	5	25	50
TP/ZA	21.5	21.4	21.4	21.4	
PP/ZZ	23.6	23.5	23.5	23.5	
PZ/PZ	26.8	26.8	26.7	26.7	
ZZ/PP	26.9	26.9	26.9	26.8	
ZA/TP	23.6	23.5	23.5	23.5	

Minor_Groove_Refined		0.5	5	25	50
TP/ZA	13.4	13.4	13.4	13.4	
Pair	0.5	5	25	50	
------------	-------	------	------	------	
Major Groove Unrefined					
TP/ZA	22.4	22.3	22.3	22.3	
PP/ZZ	24.5	24.7	24.6	24.6	
PP/ZZ	28.3	28.8	28.5	28.5	
PZ/PZ	29.5	30.0	29.7	29.8	
ZZ/PP	28.1	28.5	28.4	28.4	
ZZ/PP	24.4	24.5	24.4	24.5	

Minor Groove Unrefined				
TP/ZA	14.3	14.4	14.3	14.3
PP/ZZ	15.0	15.1	15.0	15.0
PP/ZZ	14.7	14.7	14.7	14.7
PZ/PZ	14.1	14.1	14.1	14.1
ZZ/PP	14.7	14.8	14.7	14.7
ZZ/PP	14.9	15.0	15.0	15.0
ZA/TP	14.2	14.3	14.3	14.3
Table S3. Confidence intervals for selected helical parameters of the PZ-containing oligonucleotide.

Average values of local parameters

Shear	Average	SEM	Interval	
1=32	C-G	0.02	0.04	0.077
2=31	T-A	0.02	0.01	0.021
3=30	T-A	0.01	0.01	0.022
4=29	A-T	0.00	0.00	0.001
5=28	T-A	-0.03	0.00	0.001
6=27	P-Z	-0.05	0.00	0.001
7=26	P-Z	-0.04	0.00	0.002
8=25	P-Z	-0.22	0.09	0.170
9=24	Z-P	0.10	0.07	0.143
10=23	Z-P	0.04	0.00	0.002
11=22	Z-P	0.06	0.00	0.003
12=21	A-T	0.03	0.00	0.001
13=20	T-A	0.00	0.00	0.001
14=19	A-T	0.00	0.02	0.033
15=18	A-T	-0.03	0.02	0.041
16=17	G-C	-0.09	0.05	0.089
1=32	C-G	-0.37	0.06	0.117
2=31	T-A	-0.06	0.03	0.058
3=30	T-A	-0.02	0.01	0.025
4=29	A-T	0.01	0.00	0.000
5=28	T-A	0.02	0.00	0.000
6=27	P-Z	-0.04	0.00	0.001
7=26	P-Z	-0.03	0.00	0.001
8=25	P-Z	-0.05	0.01	0.017
9=24	Z-P	-0.04	0.00	0.006
10=23	Z-P	-0.03	0.00	0.001
11=22	Z-P	-0.04	0.00	0.001
12=21	A-T	0.02	0.00	0.000
13=20	T-A	0.01	0.00	0.000
14=19	A-T	0.01	0.03	0.063
15=18	A-T	-0.03	0.06	0.110
16=17	G-C	0.24	0.07	0.130
1=32	C-G	0.18	0.04	0.071
2=31	T-A	0.14	0.02	0.030
3=30	T-A	-0.18	0.01	0.015
4=29	A-T	-0.05	0.00	0.002
5=28	T-A	-0.08	0.00	0.002
6=27	P-Z	-0.24	0.00	0.002
	Column	Column1	Column2	Column3
----	----------	---------	---------	---------
7	P-Z	-0.11	0.00	0.005
8	P-Z	-0.21	0.01	0.016
9	Z-P	-0.21	0.01	0.013
10	Z-P	-0.11	0.00	0.004
11	Z-P	-0.24	0.00	0.002
12	A-T	-0.09	0.00	0.002
13	T-A	-0.06	0.00	0.003
14	A-T	-0.22	0.03	0.066
15	A-T	0.13	0.04	0.080
16	G-C	0.08	0.06	0.111

Buckle
	Column	Column1	Column2	Column3
1	C-G	-1.32	0.23	0.453
2	T-A	-4.69	0.07	0.136
3	T-A	-0.44	0.13	0.260
4	A-T	-7.71	0.07	0.134
5	T-A	9.73	0.02	0.046
6	P-Z	-6.20	0.06	0.126
7	P-Z	-3.71	0.04	0.081
8	P-Z	-3.13	0.14	0.273
9	Z-P	3.13	0.09	0.185
10	Z-P	3.70	0.04	0.070
11	Z-P	6.29	0.07	0.134
12	A-T	-9.95	0.03	0.058
13	T-A	7.14	0.09	0.170
14	A-T	0.72	0.23	0.448
15	A-T	5.42	0.21	0.419
16	G-C	0.69	0.16	0.323

Propeller
	Column	Column1	Column2	Column3	
1	C-G	-10.51	0.28	0.542	
2	T-A	-12.59	0.14	0.266	
3	T-A	-11.34	0.06	0.125	
4	A-T	-6.97	0.06	0.116	
5	T-A	-8.40	0.05	0.098	
6	P-Z	-6.70	0.02	0.045	
7	P-Z	-3.31	0.05	0.094	
8	P-Z	0.51	0.32	0.634	
9	Z-P	-0.03	0.32	0.620	
10	Z-P	-3.32	0.05	0.101	
11	Z-P	-6.69	0.03	0.051	
12	A-T	-8.62	0.06	0.119	
13	T-A	-7.02	0.09	0.176	
14	A-T	-10.25	0.24	0.478	
15	A-T	-12.49	0.20	0.393	
16	G-C	-11.71	0.27	0.534	
Opening	1=32	C-G	0.26	0.50	0.987
---------	------	-----	------	------	-------
	2=31	T-A	0.45	0.08	0.164
	3=30	T-A	0.61	0.22	0.429
	4=29	A-T	0.73	0.01	0.023
	5=28	T-A	-0.14	0.01	0.025
	6=27	P-Z	-2.28	0.01	0.019
	7=26	P-Z	-3.35	0.01	0.018
	8=25	P-Z	-2.21	0.55	1.070
	9=24	Z-P	-2.77	0.48	0.941
	10=23	Z-P	-3.33	0.01	0.018
	11=22	Z-P	-2.25	0.01	0.029
	12=21	A-T	-0.12	0.01	0.027
	13=20	T-A	0.62	0.01	0.029
	14=19	A-T	0.53	0.30	0.583
	15=18	A-T	1.22	0.45	0.880
	16=17	G-C	-7.88	0.98	1.923

Average values of dinucleotide step parameters

Shift	Average	SEM	Interval	
1=32/2=31	CT/AG	0.09	0.02	0.03
2=31/3=30	TT/AA	0.14	0.01	0.01
3=30/4=29	TA/TA	0.06	0.02	0.04
4=29/5=28	AT/AT	0.06	0.00	0.00
5=28/6=27	TP/ZA	0.59	0.00	0.00
6=27/7=26	PP/ZZ	0.57	0.00	0.01
7=26/8=25	PP/ZZ	1.16	0.05	0.10
8=25/9=24	PZ/PZ	-0.04	0.05	0.09
9=24/10=23	ZZ/PP	-1.09	0.05	0.09
10=23/11=22	ZZ/PP	-0.57	0.00	0.01
11=22/12=21	ZZ/PP	-1.09	0.00	0.00
12=21/13=20	AT/AT	-0.09	0.00	0.00
13=20/14=19	TA/TA	0.03	0.04	0.08
14=19/15=18	AA/TT	-0.17	0.02	0.04
15=18/16=17	AG/CT	-0.04	0.02	0.05

Slide

Shift	Average	SEM	Interval	
1=32/2=31	CT/AG	-0.77	0.02	0.05
3=30/4=29	TA/TA	-0.21	0.01	0.01
4=29/5=28	AT/AT	-0.68	0.00	0.00
5=28/6=27	TP/ZA	-1.72	0.00	0.00
6=27/7=26	PP/ZZ	-1.98	0.00	0.00
7=26/8=25	PP/ZZ	-2.55	0.05	0.09
8=25/9=24	PZ/PZ	-2.86	0.03	0.07
9=24/10=23	ZZ/PP	-2.48	0.04	0.08
Position	Sequence	Rise	Tilt	Roll
----------	----------	--------	--------	--------
10=23/11=22	ZZ/PP	-1.98	0.00	0.00
11=22/12=21	ZA/TP	-1.72	0.00	0.01
12=21/13=20	AT/AT	-0.68	0.00	0.00
13=20/14=19	TA/TA	-0.14	0.02	0.03
14=19/15=18	AA/TT	-0.31	0.03	0.05
15=18/16=17	AG/CT	-1.02	0.03	0.07
1=32/2=31	CT/AG	3.22	0.05	0.10
2=31/3=30	TT/AA	3.24	0.01	0.01
3=30/4=29	TA/TA	3.48	0.02	0.04
4=29/5=28	AT/AT	3.00	0.00	0.00
5=28/6=27	TP/ZA	3.77	0.00	0.00
6=27/7=26	PP/ZZ	3.33	0.00	0.00
7=26/8=25	PP/ZZ	3.45	0.01	0.01
8=25/9=24	PZ/PZ	3.29	0.01	0.02
9=24/10=23	ZZ/PP	3.45	0.00	0.01
10=23/11=22	ZZ/PP	3.33	0.00	0.00
11=22/12=21	ZA/TP	3.78	0.00	0.00
12=21/13=20	AT/AT	3.00	0.00	0.00
13=20/14=19	TA/TA	3.48	0.02	0.05
14=19/15=18	AA/TT	3.23	0.03	0.06
15=18/16=17	AG/CT	3.23	0.05	0.10
1=32/2=31	CT/AG	0.75	0.26	0.51
2=31/3=30	TT/AA	1.93	0.27	0.52
3=30/4=29	TA/TA	-0.83	0.37	0.73
4=29/5=28	AT/AT	-0.04	0.01	0.02
5=28/6=27	TP/ZA	1.68	0.01	0.02
6=27/7=26	PP/ZZ	-0.05	0.02	0.05
7=26/8=25	PP/ZZ	1.19	0.13	0.25
8=25/9=24	PZ/PZ	0.147	0.06	0.11
9=24/10=23	ZZ/PP	-1.31	0.10	0.20
10=23/11=22	ZZ/PP	0.04	0.02	0.04
11=22/12=21	ZA/TP	-1.63	0.01	0.02
12=21/13=20	AT/AT	0.07	0.01	0.03
13=20/14=19	TA/TA	1.63	0.23	0.45
14=19/15=18	AA/TT	-2.64	0.31	0.62
15=18/16=17	AG/CT	-0.56	0.28	0.55
Average values of helix parameters

H-Rise	Pairing	H-Rise	Stagger	Skew
1=32/2=31	CT/AG	3.13	0.05	0.10
2=31/3=30	TT/AA	3.17	0.01	0.02
3=30/4=29	TA/TA	3.25	0.02	0.03
4=29/5=28	AT/AT	2.90	0.00	0.00
5=28/6=27	TP/ZA	3.31	0.00	0.00
6=27/7=26	PP/ZZ	2.84	0.00	0.01
7=26/8=25	PP/ZZ	2.97	0.01	0.02
8=25/9=24	PZ/PZ	3.11	0.02	0.04
9=24/10=23	ZZ/PP	2.98	0.01	0.02
10=23/11=22	ZZ/PP	2.83	0.00	0.01
11=22/12=21	ZA/TP	3.32	0.00	0.00
12=21/13=20	AT/AT	2.91	0.00	0.00
13=20/14=19	TA/TA	3.28	0.02	0.03
14=19/15=18	AA/TT	3.15	0.03	0.05
15=18/16=17	AG/CT	3.08	0.05	0.10
Inclination	Tip	H-Twist		
------------	-----	---------		
1=32/2=31	CT/AG	1.52		
2=31/3=30	TT/AA	0.13		
3=30/4=29	TA/TA	9.35		
4=29/5=28	AT/AT	3.01		
5=28/6=27	TP/ZA	10.43		
6=27/7=26	PP/ZZ	11.08		
7=26/8=25	PP/ZZ	9.21		
8=25/9=24	PZ/PZ	2.98		
9=24/10=23	ZZ/PP	9.16		
10=23/11=22	ZZ/PP	11.20		
11=22/12=21	ZA/TP	10.53		
12=21/13=20	AT/AT	2.86		
13=20/14=19	TA/TA	8.81		
14=19/15=18	AA/TT	1.22		
15=18/16=17	AG/CT	2.16		
1=32/2=31	-1.71	0.24		
2=31/3=30	-3.52	0.23		
3=30/4=29	1.94	0.15		
4=29/5=28	0.04	0.02		
5=28/6=27	-3.34	0.02		
6=27/7=26	-0.42	0.05		
7=26/8=25	-5.02	0.15		
8=25/9=24	-0.05	0.04		
9=24/10=23	4.70	0.14		
10=23/11=22	0.44	0.05		
11=22/12=21	3.24	0.02		
12=21/13=20	-0.10	0.03		
13=20/14=19	-2.27	0.17		
14=19/15=18	4.04	0.24		
15=18/16=17	1.70	0.15		
1=32/2=31	33.47	0.51		
2=31/3=30	35.02	0.10		
3=30/4=29	35.59	0.18		
4=29/5=28	31.86	0.03		
5=28/6=27	30.33	0.02		
6=27/7=26	27.94	0.03		
7=26/8=25	24.58	0.66		
8=25/9=24	22.11	0.58		
9=24/10=23	25.42	0.59		
10=23/11=22	27.90	0.03		
11=22/12=21	30.37	0.02		
12=21/13=20	31.93	0.03		
	AT/TA	TA/TA	AA/TT	AG/CT
-------	-------	-------	-------	-------
13=20/14=19	35.67	0.29	0.57	
14=19/15=18	34.39	0.24	0.47	
15=18/16=17	39.01	0.70	1.38	

Average values of groove widths

Major_Groove_Refined

	AT/AT	TP/ZA	PP/ZZ	PP/ZZ	PZ/PZ	ZZ/PP	ZZ/PP	ZA/TP
AT/AT	20.4	0.02	0.04					
TP/ZA	21.4	0.02	0.04					
PP/ZZ	23.5	0.02	0.04					
PP/ZZ	26.7	0.04	0.07					
PZ/PZ	26.8	0.03	0.05					
ZZ/PP	26.6	0.04	0.08					
ZZ/PP	23.5	0.02	0.04					
ZA/TP	21.3	0.03	0.05					
AT/AT	20.4	0.04	0.08					

Minor_Groove_Refined

	AT/AT	TP/ZA	PP/ZZ	PP/ZZ	PZ/PZ	ZZ/PP	ZZ/PP	ZA/TP
AT/AT	12.9	0.01	0.02					
TP/ZA	13.4	0.01	0.02					
PP/ZZ	14.2	0.01	0.01					
PP/ZZ	14.0	0.01	0.02					
PZ/PZ	13.4	0.02	0.03					
ZZ/PP	14.0	0.01	0.02					
ZZ/PP	14.1	0.01	0.01					
ZA/TP	13.4	0.01	0.02					
AT/AT	12.9	0.01	0.03					

Major_Groove_Unrefined

	AT/AT	TP/ZA	PP/ZZ	PP/ZZ	PZ/PZ	ZZ/PP	ZZ/PP	ZA/TP
TA/TA	19.7	0.02	0.03					
AT/AT	21.1	0.01	0.03					
TP/ZA	22.3	0.02	0.03					
PP/ZZ	24.6	0.05	0.10					
PP/ZZ	28.5	0.07	0.14					
PZ/PZ	29.8	0.06	0.12					
ZZ/PP	28.4	0.07	0.13					
ZZ/PP	24.5	0.05	0.09					
ZA/TP	22.2	0.02	0.04					
AT/AT	21.1	0.02	0.04					
TA/TA	19.7	0.02	0.05					

Minor_Groove_Unrefined

	AT/AT	TP/ZA	PP/ZZ	PP/ZZ
TA/TA	13.2	0.01	0.02	
AT/AT	13.6	0.01	0.02	
TP/ZA	14.3	0.01	0.02	
PP/ZZ	15.0	0.01	0.01	
PP/ZZ	14.7	0.01	0.02	
Table S4: Statistical Agreement for GC parameters

	Pasi et. al.	Our Work
Mean		
Shift	0	0.03969±0.00035
Slide	-0.9	-1.12290±0.00036
Rise	3.4	3.35531±0.000089
Tilt	0	0.2169±0.0011
Roll	0	4.3210±0.0019
Twist	35	31.2487±0.0026
Σ		
Shift	0.6	0.6118±0.0015
Slide	0.5	0.6389±0.0024
Rise	0.3	0.3173±0.00090
Tilt	4	4.16333±0.0025
Roll	5	5.1268±0.0068
Twist	5	4.662±0.031

The most comprehensive study on natural nucleic acid helix parameters was conducted by Pasi et. al. (Pasi, M., Maddocks, J.H., Beveridge, D., Bishop, T.C., Case, D.A., Cheatham, T.E.I., Dans, P.D., Jayaram, B., Lankas, F., Laughton, C., et al. (2014) μABC: a systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA. *Nucl. Acids Res.*, **42**, 12272–12283.); they studied natural nucleic acids for a full microsecond. Our study followed the same protocols as theirs within the following exceptions: They filtered out structures in which the Watson-Crick hydrogen bonds are broken from their statistics; we performed no filtering of the data. We used a cutoff of 8.5Å for non-bonded interactions, they had 9.0Å. Our calculation ran for 50 μs whereas they ran for 1 μs. All other aspects of simulation of the GC simulations are identical to their work. We did not elect to perform the filtering of non-Watson-Crick base pairs for the sake of comparison to experiments in the future. They noted a desire to convey more numerically realistic/stable helix parameters for this filtering; we wish to compare
to experiment (and true base pairs do occasionally lose their hydrogen bonds within the helix, as rare events, albeit on the ms time scale). We believe the difference in non-bonded interaction cutoff to be trivially different. The authors did not report their SEM values, and thus we cannot perform a fair comparison of statistical agreement (we do not know their uncertainty windows). We can assume that their values are the “known” values of benchmark against which to compare (although our increased sampling might argue our numbers are a better benchmark). We opt to use a 95% confidence interval for our two-sided t-test for our 150 samples (there were 150 independent trajectories run and analyzed individually), giving t=1.96. We follow the 2 significant figure convention in intervals. I here discuss the logic of digits assigned in the main paper text. In the vast majority of cases, the precision of each number (as judged by the 95% confidence interval t-test) is far greater than the accuracy of these numbers could possibly be. Consequently, I have arbitrarily truncated all lengths to 0.01Å and 0.1 degrees. We list the full precision of our numbers here to give proper statistical due diligence, but numbers in the main text

The left-hand column gives the Watson-Crick pair as well as its rung position in the DNA helix; each rung in the helix is given twice, once for variable PZ pair, once for the control GC helix. Each table entry gives the mean value of the parameter in question as well as its standard deviation, reflecting the range of the distribution of the parameter over time. For emphasis, this is not precision error; this is the distributional variation. The precision errors are based on a 95% confidence interval with respect to the standard error of the mean; this is true for all data analyzed in this paper. In each case, the standard error of this mean is at most 1° for angular quantities and at most 0.2Å for length quantities. Additionally, we note that there is a symmetry to all data. Helix rung position 6 is equivalent to position 11, as 7 is to 10 and 8 is to 9. When discussing the data, we will restrict analysis to at most 0.2Å for length quantities. Additionally, we note that true base pairs do occasionally lose their hydrogen bonds within the helix, as rare events. For emphasis, this is trivially different.

Table S5. Comparison of all local parameters for the PZ- and GC-containing oligonucleotides.

The left-hand column gives the Watson-Crick pair as well as its rung position in the DNA helix; each rung in the helix is given twice, once for variable PZ pair, once for the control GC helix. Each table entry gives the mean value of the parameter in question as well as its standard deviation, reflecting the range of the distribution of the parameter over time. For emphasis, this is not precision error; this is the distributional variation. The precision errors are based on a 95% confidence interval with respect to the standard error of the mean; this is true for all data analyzed in this paper. In each case, the standard error of this mean is at most 1° for angular quantities and at most 0.2Å for length quantities. Additionally, we note that there is a symmetry to all data. Helix rung position 6 is equivalent to position 11, as 7 is to 10 and 8 is to 9. When discussing the data, we will restrict analysis to discussing positions 6-8 for simplicity, since the same conclusions apply to the symmetry counterparts. The fact that the calculated data matches so perfectly to even as small as ±0.1° speaks to the precision of the data due to complete phase space sampling. We emphasize that the act of reporting a mean and standard deviation is not to imply a Gaussian distribution, merely as a descriptor of the data set. It is also of interest to note that the middle values in the helix are always slower to converge than the outer rung values (i.e., position 8 converges in all parameters, not just locally, more slowly than positions 7 and 6). It is of interest to see the particular influence of the helix rung position on each nucleotide/parameter; as there are at least 5 nucleotides before the helix end, this is not interpreted to be an edge effect.

Parameter	Shear (Å)	Stretch (Å)	Stagger (Å)	Buckle (°)	Propeller (°)	Opening (°)
P-Z(6)	-0.05±0.31	-0.04±0.12	-0.24±0.39	-6.2±10.1	-6.7±7.6	-2.5±3.2
G-C (6)	-0.15±0.30	-0.07±0.11	0.01±0.38	3.5±10.0	-5.5±7.8	-0.5±3.1
P-Z(7)	-0.04±0.32	-0.03±0.11	-0.11±0.37	-3.7±9.1	-3.3±7.7	-3.3±3.2
G-C (7)	-0.16±0.31	-0.07±0.11	-0.12±0.38	-0.8±10.0	-8.8±8.0	0.1±3.3
P-Z(8)	-0.22±0.59	-0.05±0.20	-0.21±0.48	-3.1±10.2	-0.5±9.9	-2.2±5.4
G-C (8)	-0.13±0.30	-0.06±0.11	-0.13±0.36	-4.3±10.9	-6.2±8.0	-0.5±3.2
Z-P(9)	0.10±0.42	-0.04±0.15	-0.21±0.45	3.1±9.9	0.0±9.4	-2.8±4.2
C-G (9)	0.13±0.30	-0.06±0.11	-0.13±0.36	4.3±10.9	-6.1±8.0	-0.5±3.2
Z-P(10)	0.04±0.32	-0.03±0.11	-0.11±0.37	3.7±9.1	-3.3±7.7	-3.3±3.2
Table S6. Comparison of all step parameters for the PZ- and GC-containing oligonucleotides.

Parameter	Shift (Å)	Slide (Å)	Rise (Å)	Tilt (°)	Roll (°)	Twist (°)
TP/ZA	0.59±0.53	-1.72±0.52	3.77±0.41	1.7±4.9	5.3±6.2	28.8±4.0
TG/CA	0.17±0.67	-0.54±0.61	3.25±0.35	-0.6±4.7	9.6±6.4	30.3±5.2
PP/ZZ	0.57±0.60	-1.98±0.54	3.33±0.36	-0.1±4.7	5.2±5.6	26.4±5.2
GG/CC	0.23±0.67	-1.26±0.69	3.46±0.32	0.6±4.3	5.2±5.3	30.2±5.1
PP/ZZ	1.16±0.91	-2.55±0.92	3.45±0.44	1.2±5.9	3.6±7.5	22.6±8.5
GG/CC	-0.11±0.61	-1.33±0.66	3.42±0.33	0.1±4.3	4.9±5.1	30.0±4.6
PZ/PZ	-0.04±0.82	-2.86±1.32	3.29±0.32	0.1±4.6	3.2±5.9	21.6±15.3
GC/GC	0.00±0.55	-0.78±0.57	3.19±0.30	0.0±3.9	2.9±5.0	33.6±4.3
ZZ/PP	-1.09±0.84	-2.48±0.84	3.45±0.43	-1.3±5.7	3.8±7.2	23.4±7.4
CC/GG	0.11±0.61	1.33±0.66	3.42±0.33	-0.1±4.3	4.9±5.1	30.0±4.6
ZZ/PP	-0.57±0.60	-1.98±0.53	3.33±0.36	0.0±4.7	5.2±5.6	26.4±5.2
CC/GG	-0.23±0.67	-1.26±0.69	3.46±0.32	-0.6±4.3	5.2±5.3	30.2±5.1
ZA/TP	-0.59±0.53	-1.72±0.52	3.78±0.41	-1.6±4.9	5.4±6.2	28.8±4.1
CA/TG	-0.17±0.67	-0.54±0.61	3.25±0.35	0.6±4.7	9.6±6.4	30.3±5.2

Table S7. Comparison of all helix parameters for the PZ- and GC-containing oligonucleotides.

Parameter	H-Rise (Å)	Inclination (°)	Tip (°)	H-Twist (°)
TP/ZA	3.31±0.63	10.4±12.0	-3.3±9.7	30.3±4.0
TG/CA	2.83±0.50	17.9±12.2	1.1±8.6	32.8±4.8
PP/ZZ	2.84±0.73	11.1±12.5	-0.4±11.1	28.0±4.8
GG/CC	3.12±0.49	10.1±10.3	-1.1±8.3	31.4±4.9
PP/ZZ	2.97±1.17	9.2±17.8	-5.0±15.9	24.6±8.1
GG/CC	3.09±0.47	9.4±9.9	-0.2±8.2	31.1±4.5
PZ/PZ	3.11±1.15	3.0±16.6	0.0±12.0	22.1±16.4
GC/GC	3.08±0.36	5.1±8.6	0.0±6.8	34.3±4.2
ZZ/PP	2.98±1.14	9.2±17.7	4.7±15.5	25.4±6.8
CC/GG	3.09±0.47	9.4±9.9	0.2±8.2	31.1±4.5
ZZ/PP	2.83±0.72	11.2±12.5	0.4±11.1	27.9±4.8
CC/GG	3.12±0.49	10.1±10.3	1.1±8.3	31.4±4.9
Parameter	Major Groove Refined (Å)	Minor Groove Refined (Å)		
-----------	--------------------------	--------------------------		
TP/ZA	21.4±2.5	13.4±1.1		
TG/CA	20.2±2.1	13.7±1.0		
PP/ZZ	23.5±2.2	14.2±1.0		
GG/CC	20.3±2.1	13.4±1.0		
PP/ZZ	26.7±1.8	14.0±1.1		
GG/CC	20.9±2.3	13.0±1.1		
PZ/PZ	26.8±1.7	13.4±1.3		
GC/GC	21.0±2.4	12.9±1.1		
ZZ/PP	26.6±1.8	14.0±1.1		
CC/GG	20.9±2.3	13.0±1.1		
ZZ/PP	23.5±2.2	14.1±1.0		
CC/GG	20.3±2.1	13.4±1.0		
ZA/TP	21.3±2.5	13.4±1.1		
CA/TG	20.2±2.1	13.7±1.0		

Table S8. Comparison of all groove widths for the PZ- and GC-containing oligonucleotides.
Figure S1. Representative histograms for selected helical parameters for the PZ-containing (blue) and the control (red) oligonucleotide in the MD simulations. Density of state is defined as the number of structures for which the parameter falls in a defined range divided by the total number of structures sampled in each trajectory.
Opening distribution

Propeller distribution

Rise distribution

Roll distribution

Shear distribution

Shift distribution
Figure S2. RMSD fluctuations over a 400 ns period in the MD trajectories computed for the (top) PZ and (bottom) GC duplexes. RMSD values are computed relative to an equilibrated structure at the beginning of the production part of the simulation. These data show that there is substantial interconversion between members of the two populations observed in the bimodal distributions for slide, twist, and h-twist in PZ (see main text). In each of these plots, values for the specified parameters in the PZ helix rapidly oscillate between two extreme values rather than staying in one extreme or the other for any given length of time. The tendency of the GC-rich duplex to adopt similar conformations is also evident in these data.
Figure S3. Representative PZ and GC structures from MD simulations. Stick models are shown for ZP in an extended conformation (far left), ZP in an A-like conformation (center), and GC in a B-like conformation. Views are shown parallel (upper panels) and perpendicular (lower panels) to the helical axes.
AMBER Parameters for the Z Nucleobase

MASS
CA 12.010 0.360 same as c2
C 12.010 0.616 same as c
HA 1.008 0.135 same as hc
CT 12.010 0.878 same as c3
H1 1.008 0.135 same as hc
HC 1.008 0.135 same as hc
OS 16.000 0.465 same as os
P 30.970 1.538 same as p4
O2 16.000 0.434 Made up atom type for nitro oxygens; GAFF o parameters
NO 14.100 0.530 Pulled from GAFF atom types
OD 16.000 0.434 Made up atom type for nitro oxygens; GAFF o parameters
O 16.000 0.434 same as o
N2 14.010 0.530 same as n3
H 1.008 0.161 same as hn
NA 14.010 0.530 same as na
OH 16.000 0.465 same as oh
HO 1.008 0.135 same as ho

BOND
CA-C 449.90 1.406 same as c -c2
CA-CA 478.40 1.387 same as ca-ca
CA-CT 328.30 1.508 same as c2-c3
C -O 648.00 1.214 same as c -o
C -NA 478.20 1.345 Pulled from GAFF c-n parameters
CA-N2 449.00 1.364 same as ca-nh
CA-NA 411.10 1.391 same as c2-na
CA-NO 367.40 1.426 Pulled from GAFF cd-no parameters
CA-HA 344.30 1.087 same as c2-hc
CT-H1 337.30 1.092 same as c3-hc
CT-CT 303.10 1.535 same as c3-c3
CT-OS 301.50 1.439 same as c3-os
CT-HC 337.30 1.092 same as c3-hc
OS-P 311.60 1.636 same as os-p4
P -O2 456.40 1.503 same as o -p4
NO-OD 761.20 1.219 Pulled from GAFF no-o parameters
N2-H 394.10 1.018 same as hn-n3
NA-H 406.60 1.011 same as hn-na
P -OH 307.40 1.641 same as oh-p4
OH-HO 369.60 0.974 same as ho-ho

ANGLE
CA-C -O 72.770 119.120 same as c2-c -o
CA-C -NA 70.190 111.860 Pulled from cc-c-n parameters from GAFF
CA-CA-CA 67.180 119.970 same as ca-ca-ca
CA-CA-HA 50.300 119.700 same as c2-c2-hc
CA-CT-H1 47.030 110.490 same as c2-c3-hc
CA-CT-CT 63.530 111.440 same as c2-c3-c3
CA-CT-OS 68.450 108.480 same as c2-c3-os
C -CA-CA 67.930 120.700 same as c -c2-c2
C -CA-CT 63.870 119.700 same as c -c2-c3
C -NA-CA 65.240 124.190 Pulled from c-n-cc parameters from GAFF
C -NA-H 49.210 118.460 Pulled from c-n-hn parameters from GAFF
CA-CA-NO 65.780 128.950 Pulled from cc-cd-no parameters from GAFF
CA-N2-H 49.110 119.380 same as c2-n3-hn
CA-NA-H 47.620 119.280 same as c2-na-hn
CA-CA-N2 69.340 120.130 same as ca-ca-nh
CA-CA-NA 69.830 121.380 same as c2-c2-na
CA-NO-OD 70.340 117.520 Pulled cd-no-o parameters from GAFF
CA-CA-CT 64.330 123.420 same as c2-c2-c3
CT-CT-HC 46.370 110.050 same as c3-c3-hc
CT-CT-CT 63.210 110.630 same as c3-c3-c3
CT-OS-CT 62.390 112.450 same as c3-os-c3
H1-CT-CT 46.370 110.050 same as c3-c3-hc
H1-CT-OS 50.870 108.700 same as hc-c3-os
CT-CT-OS 67.780 108.420 same as c3-c3-os
HC-CT-HC 39.430 108.350 same as hc-c3-hc
CT-OS-P 77.590 117.480 same as c3-os-p4
OS-P -O2 43.100 116.670 same as o -p4-os
OS-P -OH 72.236 98.025 Calculated with empirical approach
H1-CT-H1 39.430 108.350 same as hc-c3-hc
OS-P -OS 44.740 100.340 same as os-p4-os
O2-P -O2 45.060 117.220 same as o -p4-o
OD-NO-OD 77.150 125.130 Pulled from o-no-o parameters from GAFF
O -C -NA 75.830 122.030 Pulled from o-c-n parameters from GAFF
N2-CA-NA 73.455 113.900 Calculated with empirical approach
H -N2-H 41.300 107.130 same as hn-n3-hn
P -OH-HO 55.270 110.190 same as ho-oh-p4
O2-P -OH 42.880 117.390 same as o -p4-oh

DIHE
CA-C -NA-CA 1 1.450 180.000 -2.000 same as X -c -na-X
CA-C -NA-CA 1 0.350 180.000 4.000 same as X -c -na-X
CA-C -NA-H 1 1.450 180.000 -2.000 same as X -c -na-X
CA-C -NA-H 1 0.350 180.000 4.000 same as X -c -na-X
CA-CA-CA-CA 1 3.625 180.000 2.000 same as X -ca-ca-X
CA-CA-CA-NO 1 4.000 180.000 2.000 Pulled from cc-cd-cd-no

GAFF param
CA-CT-CT-HC 1 0.156 0.000 3.000 same as X -c3-c3-x
CA-CT-CT-CT 1 0.156 0.000 3.000 same as X -c3-c3-x
CA-CT-OS-CT 1 0.383 0.000 3.000 same as X -c3-os-x
C -CA-CA-CA 1 6.650 180.000 2.000 same as X -c2-c2-x
C -CA-CA-HA 1 6.650 180.000 2.000 same as X -c2-c2-x
C -CA-CT-H1 1 0.000 0.000 2.000 same as X -c2-c3-x
C -CA-CT-CT 1 0.000 0.000 2.000 same as X -c2-c3-x
C -CA-CT-OS 1 0.000 0.000 2.000 same as X -c2-c3-x
C -NA-CA-CA 1 0.625 180.000 2.000 same as X -c2-na-x
C -NA-CA-N2 1 0.625 180.000 2.000 same as X -c2-na-x
CA-CA-CA-HA 1 6.650 180.000 2.000 same as X -c2-c2-x
CA-CA-NO-OD 1 0.750 180.000 2.000 Pulled from cc-cd-no-o

GAFF param
CA-NA-C -O 1 1.450 180.000 -2.000 same as X -c -na-X
CA-NA-C -O 1 0.350 180.000 4.000 same as X -c -na-X
CA-CA-N2-H 1 0.300 180.000 2.000 same as X -c2-n3-x
CA-CA-NA-H 1 0.625 180.000 2.000 same as X -c2-na-x
CA-CA-CA-CT 1 6.650 180.000 2.000 same as X -c2-c2-x
CA-CA-C -O 1 2.175 180.000 -2.000 same as c2-c2-c -o
CA-CA-C -O 1 0.300 0.000 3.000 same as c2-c2-c -o
CA-CA-C -NA 1 2.175 180.000 2.000 same as X -c -c2-x
CA-CA-CT-H1 1 0.380 180.000 -3.000 same as hc-c3-c2-c2
CA-CA-CT-H1 1 1.150 0.000 1.000 same as hc-c3-c2-c2
CA-CA-CT-CT 1 0.000 0.000 2.000 same as X -c2-c3-x
CA-CA-CT-OS 1 0.000 0.000 2.000 same as X -c2-c3-x
CA-CA-CA-N2 1 3.625 180.000 2.000 same as X -ca-ca-x
CA-CA-CA-NA 1 6.650 180.000 2.000 same as X -c2-c2-x
HA-CA-CA-CT 1 6.650 180.000 2.000 same as X -c2-c2-x
HA-CA-CA-NO 1 4.000 180.000 2.000 Pulled from ha-cd-cd-no

GAFF param
CT-CA-C -O 1 2.175 180.000 2.000 same as X -c -c2-x
CT-CA-C -NA 1 2.175 180.000 2.000 same as X -c -c2-x
CT-CT-CT-H1 1 0.160 0.000 3.000 same as hc-c3-c3-c3
CT-CT-CT-CT 1 0.180 0.000 -3.000 same as c3-c3-c3-c3
CT-CT-CT-CT 1 0.250 180.000 -2.000 same as c3-c3-c3-c3
CT-CT-CT-CT 1 0.200 180.000 1.000 same as c3-c3-c3-c3
CT-CT-CT-OS 1 0.156 0.000 3.000 same as X -c3-c3-c3
CT-OS-CT-CT 1 0.383 0.000 -3.000 same as c3-c3-os-c3
CT-OS-CT-CT 1 0.100 180.000 2.000 same as c3-c3-os-c3
CT-OS-CT-H1 1 0.383 0.000 3.000 same as X -c3-os-X
H1-CT-CT-HC 1 0.150 0.000 3.000 same as hc-c3-c3-hc
CT-CT-OS-P 1 0.383 0.000 3.000 same as X -c3-os-X
HC-CT-CT-OS 1 0.000 0.000 -3.000 same as hc-c3-c3-os
HC-CT-CT-OS 1 0.250 0.000 1.000 same as hc-c3-c3-os
HC-CT-CT-CT 1 0.160 0.000 3.000 same as hc-c3-c3-c3
CT-OS-P -O2 1 1.050 180.000 2.000 same as X -os-p4-X
CT-OS-P -OH 1 1.050 180.000 2.000 same as X -os-p4-X
H1-CT-CT-H1 1 0.150 0.000 3.000 same as hc-c3-c3-hc
H1-CT-CT-OS 1 0.000 0.000 -3.000 same as hc-c3-c3-os
H1-CT-CT-OS 1 0.250 0.000 1.000 same as hc-c3-c3-os
H1-CT-OS-P 1 0.383 0.000 3.000 same as X -c3-os-X
OS-CT-CT-OS 1 0.144 0.000 -3.000 same as os-c3-c3-os
OS-CT-CT-OS 1 1.175 0.000 2.000 same as os-c3-c3-os
OS-P -OH-HO 1 0.700 0.000 1.000 same as X -oh-p4-X
CT-OS-P -OS 1 1.050 180.000 2.000 same as X -os-p4-X
NO-CA-CA-N2 1 4.000 180.000 2.000 Pulled from no-cd-cc-nh
GAFF param
NO-CA-CA-NA 1 4.000 180.000 2.000 Pulled from no-cd-cc-n
GAFF param
O -C -NA-H 1 1.450 180.000 -2.000 same as X -c -na-X
O -C -NA-H 1 0.350 180.000 4.000 same as X -c -na-X
N2-CA-NA-H 1 0.625 180.000 2.000 same as X -c2-na-X
H -N2-CA-NA 1 0.300 180.000 2.000 same as X -c2-n3-X
O2-P -OH-HO 1 0.700 0.000 1.000 same as X -oh-p4-X
IMPROPER
C -CA-CA-CT 5.6 180.0 2.0 Using default value
CA-NA-C -O 5.6 180.0 2.0 Using default value
CA-N2-CA-NA 5.6 180.0 2.0 Using default value
CA-CA-CA-NO 5.6 180.0 2.0 Using default value
CA-CA-CA-HA 5.6 180.0 2.0 Using default value
CA-H -N2-H 5.6 180.0 2.0 Using default value
C -CA-NA-H 5.6 180.0 2.0 Using default value
NONBON
CA 1.9080 0.0860 same as ca
C 1.9080 0.0860 same as c
HA 1.4870 0.0157 same as hc
CT 1.9080 0.1094 same as c3
H1 1.4870 0.0157 same as hc
HC 1.4870 0.0157 same as hc
OS 1.6837 0.1700 same as os
P 2.1000 0.2000 same as p4
O2 1.6612 0.2100 same as o
NO 1.8240 0.1700 Pulled from no GAFF parameters
OD 1.6612 0.2100 Pulled from o GAFF parameters
O 1.6612 0.2100 same as o
N2 1.8240 0.1700 same as nh
H 0.6000 0.0157 same as hn
NA 1.8240 0.1700 same as na
OH 1.7210 0.2104 same as oh
HO 0.0000 0.0000 same as ho
AMBER Parameters for the P Nucleobase

MASS

Symbol	Mass (u)	Charge	Remarks
CQ	12.010	0.360	same as c2
CB	12.010	0.360	same as c2
C	12.010	0.616	same as c
CA	12.010	0.360	same as c2
H4	1.008	0.135	same as ha
NC	14.010	0.530	same as n2
N*	14.010	0.530	same as na
N2	14.010	0.530	same as n3
H	1.008	0.161	same as hn
O	16.000	0.434	same as o
CT	12.010	0.878	same as c3
H2	1.008	0.135	same as hc
HC	1.008	0.135	same as hc
H1	1.008	0.135	same as hc
OS	16.000	0.465	same as os
O2	16.000	0.434	same as o
P	30.970	1.538	same as p4
OH	16.000	0.465	same as oh
HO	1.008	0.135	same as ho

BOND

Bond	Length (Å)	Angle (°)	Remarks
CQ-NC	431.60	1.376	same as cc-nc
CQ-N2	449.00	1.364	same as cc-nh
CB-NC	431.60	1.376	same as cc-nc
CB-N*	411.10	1.391	same as c2-na
C-NC	374.60	1.420	same as c-n2
C-N*	438.80	1.371	my particular choice
C-O	648.00	1.214	same as c-o
CA-H4	344.30	1.087	same as c2-ha
CA-CA	478.40	1.387	same as ca-ca
CA-N*	411.10	1.391	same as c2-na
N*-CT	334.70	1.456	same as c3-na
N2-H	394.10	1.018	same as hn-n3
CT-H2	337.30	1.092	same as c3-hc
CT-CT	303.10	1.535	same as c3-c3
CT-OS	301.50	1.439	same as c3-os
CT-HC	337.30	1.092	same as c3-hc
CT-H1	337.30	1.092	same as c3-hc
OS-P	311.60	1.636	same as os-p4
O2-P	456.40	1.503	same as o-p4
P-OH	307.40	1.641	same as oh-p4
OH-HO	369.60	0.974	same as ho-ho

ANGLE

Angle	Length (Å)	Remarks			
CQ-NC-CB	70.500	104.340	same as cc-nc-cc		
CQ-NC-C	66.220	120.970	same as c-n2-c2		
CQ-N2-H	49.110	119.380	same as c2-n3-hn		
CB-N*-C	68.940	109.900	Pulled from GAFF cd-na-cd parameter		
CB-N*-CA	67.800	110.370	same as c2-na-c2		
CB-N*-CT	64.230	117.200	same as c2-na-c3		
C-N*-CA	65.240	124.190	Pulled from GAFF c-n-cc parameter		
CA-CA-H4	50.040	120.940	same as c2-c2-ha		
CA-CA-N*	69.830	121.380	same as c2-c2-na		
H4-CA-N*	51.180	112.420	same as ha-c2-na		
CA-N*-CT	64.230	117.200	same as c2-na-c3		
NC-CQ-NC	69.470	125.580	same as nc-cc-nc		
NC-CQ-N2	72.330	116.850	same as nc-cc-nh		
NC-CB-N*	71.710	123.620	same as n2-c2-na		
NC-C-N*	72.350	117.050	Pulled from GAFF nd-c-n parameter		
NC-C-O	73.020	122.500	same as n2-c-o		
Compound	DIHE			Same as	
-----------------	-------------	---	---	---------	----------
N*-CB-N*	73.650	109.330	same as na-c2-na		
N*-C -O	75.830	122.030	Pulled from GAFF n-c-o parameter		
N*-CT-H2	49.900	109.500	same as hc-c3-na		
N*-CT-CT	65.730	112.810	same as c3-c3-na		
N*-CT-OS	71.270	109.060	same as na-c3-os		
H -N2-H	41.300	107.130	same as hn-n3-hn		
CT-CT-HC	46.370	110.050	same as c3-c3-hc		
CT-CT-CT	63.210	110.630	same as c3-c3-c3		
CT-OS-CT	62.390	112.450	same as c3-os-c3		
H2-CT-CT	46.370	110.050	same as c3-c3-hc		
H2-CT-OS	50.870	108.700	same as hc-c3-os		
CT-CT-OS	67.780	108.420	same as c3-c3-os		
CT-CT-H1	46.370	110.050	same as c3-c3-hc		
HC-CT-HC	39.430	108.350	same as hc-c3-hc		
CT-OS-P	77.590	117.480	same as c3-os-p4		
H1-N-CT-OS	50.870	108.700	same as hc-c3-os		
OS-P -OH	72.236	98.025	Calculated with empirical approach		
OS-P -O2	43.100	116.670	same as o -p4-0s		
H1-CT-H1	39.430	108.350	same as hc-c3-hc		
OS-P -OS	44.740	100.340	same as os-p4-0s		
O2-P -O2	45.060	117.220	same as o -p4-o		
P -OH-HO	55.270	110.190	same as ho-oh-p4		
OH-P -O2	42.880	117.390	same as o -p4-oh		

DIHE

Compound	DIHE			Same as	
CQ-NC-CB-N*	1 4.150	180.000	2.000	same as X -c2-n2-X	
CQ-NC-N*	1 4.150	180.000	2.000	same as X -c -n2-X	
CQ-NC-NC	1 4.150	180.000	2.000	same as X -c -c-X	
CB-NC-CQ-NC	1 4.750	180.000	2.000	same as X -c2-c2-X	
CB-NC-CQ-N2	1 4.750	180.000	2.000	same as X -c2-c2-X	
CB-N*-C -NC	1 1.450	180.000	-2.000	same as X -c -c-NX	
CB-N*-C -NC	1 0.350	180.000	4.000	same as X -c -c-NX	
CB-N*-C -O	1 1.450	180.000	-2.000	same as X -c -c-NX	
CB-N*-C -O	1 0.350	180.000	4.000	same as X -c -c-NX	
CB-N*-CA-H4	1 0.625	180.000	2.000	same as X -c2-na-X	
CB-N*-CA-CA	1 0.625	180.000	2.000	same as X -c2-na-X	
CB-N*-CT-H2	1 0.000	0.000	2.000	same as X -c -c-NX	
CB-N*-CT-CT	1 0.000	0.000	2.000	same as X -c -c-NX	
CB-N*-CT-OS	1 0.000	0.000	-2.000	same as os-c3-na-c2	
CB-N*-CT-OS	1 2.500	0.000	1.000	same as os-c3-na-c2	
C -NC-CQ-NC	1 4.150	180.000	2.000	same as X -c2-n2-X	
C -NC-CQ-N2	1 4.150	180.000	2.000	same as X -c2-n2-X	
C -N*-CB-NC	1 0.625	180.000	2.000	same as X -c2-na-X	
C -N*-CB-N*	1 0.625	180.000	2.000	same as X -c2-na-X	
C -N*-CA-H4	1 0.625	180.000	2.000	same as X -c2-na-X	
C -N*-CA-CA	1 0.625	180.000	2.000	same as X -c2-na-X	
CA-CA-N*-CT	1 0.625	180.000	2.000	same as X -c2-na-X	
CA-N*-CB-NC	1 0.625	180.000	2.000	same as X -c2-na-X	
CA-N*-CB-N*	1 0.625	180.000	2.000	same as X -c2-na-X	
CA-N*-C -NC	1 1.450	180.000	-2.000	same as X -c -c-NX	
CA-N*-C -NC	1 0.350	180.000	4.000	same as X -c -c-NX	
CA-N*-C -O	1 1.450	180.000	-2.000	same as X -c -c-NX	
CA-N*-C -O	1 0.350	180.000	4.000	same as X -c -c-NX	
H4-CA-CA-H4	1 3.625	180.000	2.000	same as X -c2-c2-X	
H4-CA-CA-N*	1 6.650	180.000	2.000	same as X -c2-c2-X	
CA-N*-CT-H2	1 0.000	0.000	2.000	same as X -c -c-NX	
CA-N*-CT-CT	1 0.000	0.000	2.000	same as X -c -c-NX	
CA-N*-CT-OS	1 0.000	0.000	-2.000	same as os-c3-na-c2	
CA-N*-CT-OS	1 2.500	0.000	1.000	same as os-c3-na-c2	
H4-CA-N*-CT	1 0.625	180.000	2.000	same as X -c2-na-X	
NC-CQ-N2-H	1 0.300	180.000	2.000	same as X -c2-n3-X	
NC-CB-N*-CT	1 0.625	180.000	2.000	same as X -c2-na-X	
N*-CB-N*-CT 1 0.625 180.000 2.000 same as X -c2-na-X
N*-CA-CA-N* 1 6.650 180.000 2.000 same as X -c2-c2-X
N*-CT-CT-HC 1 0.156 0.000 3.000 same as X -c3-c3-X
N*-CT-CT-CT 1 0.156 0.000 3.000 same as X -c3-c3-X
N*-CT-OS-CT 1 0.383 0.000 -3.000 same as c3-os-c3-na
N*-CT-OS-CT 1 0.650 0.000 2.000 same as c3-os-c3-na
CT-CT-CT-H1 1 0.160 0.000 3.000 same as hc-c3-c3-c3
CT-CT-CT-CT 1 0.250 180.000 -2.000 same as c3-c3-c3-c3
CT-CT-CT-CT 1 0.200 180.000 1.000 same as c3-c3-c3-c3
CT-CT-CT-OS 1 0.156 0.000 3.000 same as X -c3-c3-X
CT-OS-CT-CT 1 0.383 0.000 -3.000 same as c3-c3-os-c3
CT-OS-CT-CT 1 0.100 180.000 2.000 same as c3-c3-os-c3
CT-OS-CT-H1 1 0.383 0.000 3.000 same as X -c3-os-X
H2-CT-CT-HC 1 0.150 0.000 3.000 same as hc-c3-c3-hc
H2-CT-CT-CT 1 0.160 0.000 3.000 same as hc-c3-c3-c3
H2-CT-OS-CT 1 0.383 0.000 3.000 same as X -c3-os-X
CT-CT-OS-P 1 0.383 0.000 3.000 same as X -c3-os-X
HC-CT-CT-OS 1 0.000 0.000 -3.000 same as hc-c3-c3-os
HC-CT-CT-OS 1 0.250 0.000 1.000 same as hc-c3-c3-os
HC-CT-CT-H1 1 0.150 0.000 3.000 same as hc-c3-c3-hc
HC-CT-CT-CT 1 0.160 0.000 3.000 same as hc-c3-c3-c3
CT-OS-P -OH 1 1.050 180.000 2.000 same as X -os-p4-X
CT-OS-P -O2 1 1.050 180.000 2.000 same as X -os-p4-X
H1-CT-CT-H1 1 0.150 0.000 3.000 same as hc-c3-c3-hc
H1-CT-CT-OS 1 0.000 0.000 -3.000 same as hc-c3-c3-os
H1-CT-CT-OS 1 0.250 0.000 1.000 same as hc-c3-c3-os
H1-CT-OS-P 1 0.383 0.000 3.000 same as X -c3-os-X
OS-CT-CT-OS 1 0.144 0.000 -3.000 same as os-c3-c3-os
OS-CT-CT-OS 1 1.175 0.000 2.000 same as os-c3-c3-os
OS-P -OH-HO 1 0.700 0.000 1.000 same as X -oh-p4-X
CT-OS-P -OS 1 1.050 180.000 2.000 same as X -os-p4-X
HO-OH-P -O2 1 0.700 0.000 1.000 same as X -oh-p4-X

IMPROPER
N2-NC-CQ-NC 5.6 180.0 2.0 Using default value
N*-NC-C -O 5.6 180.0 2.0 Using default value
CA-H4-CA-N* 5.6 180.0 2.0 Using default value
C -CA-N* -CB 5.6 180.0 2.0 Using default value
CA-CB-N*-CT 5.6 180.0 2.0 Using default value
CQ-H -N2-H 5.6 180.0 2.0 Using default value

NONBON
CQ 1.9080 0.0860 same as cc
CB 1.9080 0.0860 same as cc
C 1.9080 0.0860 same as c
CA 1.9080 0.0860 same as ca
H4 1.4870 0.0157 same as hc
NC 1.8240 0.1700 same as nc
N* 1.8240 0.1700 same as na
N2 1.8240 0.1700 same as nh
H 0.6000 0.0157 same as hn
O 1.6612 0.2100 same as o
CT 1.9080 0.1094 same as c3
H2 1.4870 0.0157 same as hc
HC 1.4870 0.0157 same as hc
H1 1.4870 0.0157 same as hc
OS 1.6837 0.1700 same as os
O2 1.6612 0.2100 same as o
P 2.1000 0.2000 same as p4
OH 1.7210 0.2104 same as oh
HO 0.0000 0.0000 same as ho
Coordinates of the gas-phase optimized structure of a P:Z base pair

C	3.556037	-5.347020	0.000000
H	4.260240	-4.520289	0.000000
N	2.219498	-4.786451	0.000000
C	1.018948	-5.493076	0.000000
H	1.008113	-6.567515	0.000000
C	-0.012368	-2.066098	0.000000
O	-1.231170	-1.998735	0.000000
N	0.845886	-1.040655	0.000000
C	2.175471	-1.257273	0.000000
C	2.549735	0.754435	0.000000
H	4.260240	-4.520289	0.000000
N	2.219498	-5.493076	0.000000
C	1.018948	-6.567515	0.000000
H	1.008113	-7.641954	0.000000
C	-0.012368	-3.146098	0.000000
O	-1.231170	-2.198735	0.000000
N	0.845886	-3.040655	0.000000
C	2.175471	-3.257273	0.000000
C	2.549735	-0.754435	0.000000
H	4.260240	-7.520289	0.000000
N	2.219498	-6.493076	0.000000
C	1.018948	-7.567515	0.000000
H	1.008113	-8.641954	0.000000
C	-0.012368	-4.146098	0.000000
O	-1.231170	-3.198735	0.000000
N	0.845886	-4.040655	0.000000
C	2.175471	-5.257273	0.000000
C	2.549735	-3.754435	0.000000
H	4.260240	-8.520289	0.000000

Coordinates of the gas-phase optimized structure of a G:C base pair

C	1.025032	-5.623477	0.000000
H	1.648721	-5.509622	0.884596
N	0.028175	-4.633623	0.000000
C	1.391384	-4.837179	0.000000
H	1.799593	-5.835858	0.000000
N	2.078233	-3.736467	0.000000
C	1.125839	-2.741529	0.000000
C	1.242631	-1.320495	0.000000
O	2.256522	-0.628083	0.000000
N	-0.014757	-0.708730	0.000000
H	0.000000	0.320102	0.000000
C	-1.221674	-1.350315	0.000000
N	-2.312530	-0.564564	0.000000
H	-2.256133	0.451173	0.000000
H	-3.203326	-1.025249	0.000000
N	-1.345141	-2.658255	0.000000
C	-0.151276	-3.283730	0.000000
H	-0.572235	-6.611744	0.000000
H	-1.648721	-5.509622	-0.884596
Coordinates of the gas-phase optimized structure of a P nucleobase

Element	X	Y	Z
C	-2.626708	-1.704608	-0.00008
H	-1.917752	-2.527492	0.000180
N	-1.867840	-0.471772	0.00008
C	-2.378076	0.824382	-0.000331
H	-3.437458	1.003780	-0.000632
C	1.186555	1.327653	0.000530
O	1.416194	2.512318	-0.000354
N	2.061683	0.302816	-0.000085
C	1.622488	-0.949269	0.000175
N	2.563250	-1.915281	-0.000066
H	3.529924	-1.647884	-0.000075
H	2.286369	-2.878393	0.000100
N	0.341297	-1.392758	0.000088
C	-0.518724	-0.401312	0.000104
H	-3.251451	-1.762793	0.889557
H	-3.251141	-1.762925	-0.889780
C	-1.342696	1.683145	0.000214
H	-1.286888	2.755348	0.000420
N	-0.192418	0.911550	0.000205

Coordinates of the gas-phase optimized structure of a P nucleobase

Element	X	Y	Z
C	0.790830	-0.231673	0.000230
C	-0.276967	-1.171695	0.000214
C	-1.578813	-0.813725	0.000001
C	-1.911213	0.598615	-0.000171
C	0.508828	1.132727	0.000156
H	0.003295	-2.215883	0.000328
O	-3.025361	1.076666	-0.000158
N	-0.804410	1.470706	-0.000282
H	-1.066161	2.447130	0.000544
N	1.401839	2.129122	0.001091
H	2.379078	1.879344	-0.001099
H	1.104667	3.087557	-0.003837
N	2.128976	-0.711219	-0.000064
O	3.053241	0.104803	-0.001169
O	2.313162	-1.911526	-0.000255
C	-2.724827	-1.772697	0.000081
H	-3.356623	-1.613876	-0.874256
H	-2.367624	-2.799945	0.000407
H	-3.356831	-1.613453	0.874197
Coordinates of the gas-phase optimized structure of a G nucleobase

	x	y	z
C	-0.004890	3.152616	0.000000
H	0.616994	3.267289	0.885258
N	-0.640366	1.853149	0.000000
C	-1.986037	1.564931	0.000000
H	-2.720822	2.354480	0.000000
N	-2.239261	0.290866	0.000000
C	-1.000551	-0.303379	0.000000
C	-0.623116	-1.687596	0.000000
O	-1.287307	-2.695609	0.000000
N	0.799878	-1.795119	0.000000
H	1.128739	-2.749690	0.000000
C	1.694457	-0.765009	0.000000
N	3.010976	-1.094617	0.000000
H	3.330462	-2.043473	0.000000
H	3.678117	-0.345677	0.000000
N	1.346998	0.490345	0.000000
C	0.000000	0.652877	0.000000
H	-0.778775	3.915651	0.000000
H	0.616994	3.267289	-0.885258

Coordinates of the gas-phase optimized structure of a C nucleobase

	x	y	z
C	1.280266	-0.846519	0.000000
C	0.131913	-1.699031	0.000000
C	-1.065814	-1.075083	0.000000
C	0.000000	1.089484	0.000000
H	0.209748	-2.773638	0.000000
H	-2.001018	-1.618643	0.000000
O	-0.157256	2.292353	0.000000
N	-1.160599	0.268280	0.000000
N	1.210213	0.460922	0.000000
N	2.513847	-1.401569	0.000000
H	3.309949	-0.788709	0.000000
H	2.645915	-2.394277	0.000000
C	-2.442011	0.955463	0.000000
H	-2.519557	1.590940	0.879161
H	-2.519557	1.590940	-0.879161
H	-3.237782	0.215243	0.000000
Coordinates of the “shift” conformer for two stacked P:Z nucleobase pairs (Fig. 9 in the main text)

Atom	X	Y	Z
C	5.354	1.046	2.116
H	5.217	1.772	1.304
N	4.281	0.072	2.054
C	4.365	-1.310	2.241
H	5.318	-1.793	2.418
C	0.864	-0.734	1.679
O	0.255	-1.797	1.710
N	0.342	0.485	1.470
C	1.135	1.580	1.464
N	0.539	2.751	1.254
H	-0.475	2.799	1.092
H	1.117	3.576	1.214
N	2.484	1.603	1.660
C	2.982	0.403	1.854
C	-4.704	-0.446	1.101
C	-5.263	0.851	0.969
C	-4.506	1.986	0.958
C	-3.071	1.846	1.063
C	-3.312	-0.593	1.253
H	-6.348	0.904	0.880
H	5.348	1.575	3.079
H	6.308	0.520	1.993
O	-2.272	2.791	1.015
N	-2.579	0.557	1.228
H	-1.549	0.494	1.311
N	-2.643	-1.737	1.411
H	-3.184	-2.592	1.384
H	-1.624	-1.748	1.494
C	3.120	-1.831	2.130
H	2.737	-2.843	2.175
N	2.271	-0.757	1.890
N	-5.581	-1.571	1.105
O	-5.097	-2.698	1.228
O	-6.780	-1.374	0.992
C	-5.065	3.373	0.856
H	-4.661	3.901	-0.019
H	-6.160	3.345	0.780
H	-4.786	3.968	1.738
C	7.316	0.728	-0.990
H	6.870	1.728	-0.972
N	6.237	-0.240	-0.905
C	6.365	-1.628	-0.794
H	7.337	-2.094	-0.689
C	2.819	-1.113	-1.091
O	2.232	-2.182	-0.978
N	2.263	0.096	-1.272
C	3.034	1.205	-1.340
N	2.405	2.356	-1.570
H	1.377	2.379	-1.661
H	2.959	3.197	-1.613
N	4.389	1.254	-1.215
C	4.925	0.064	-1.057
C	-2.765	-0.929	-1.793
C	-3.328	0.353	-2.032
C	-2.583	1.494	-2.062
C	-1.159	1.384	-1.834
C	-1.379	-1.050	-1.570
H	-4.408	0.390	-2.182
H	7.996	0.609	-0.136
H	7.877	0.599	-1.926
Coordinates of the “slide” conformer for two stacked P:Z nucleobase pairs (Fig. 8 in the main text)

C -7.26028100 0.98336400 -0.73886000
H -6.93912900 1.78050100 -0.05920100
N -6.08573400 0.21689600 -1.11256600
C -6.06190600 0.97577500 -1.84199400
H -6.97998100 1.48026200 -2.12028200
C -2.58630300 -0.13435100 -1.45845600
O -1.88770400 -1.02641100 -1.92336500
N -2.16461400 1.00213400 -0.88215000
C -3.05066600 1.87876700 -0.35958400
N -2.54679200 2.98543600 -0.31509000
H -1.53232000 3.16815600 -0.03322800
H -3.19257900 3.66911800 0.54730300
N -4.40505000 1.73731000 -0.33150900
C -4.81079400 0.63996800 -0.93300500
C -2.91777600 0.91941700 -1.58626100
C -3.33192700 2.21066500 -1.15687400
C -2.47722800 3.11427800 -0.60306900
C -1.08949400 2.73447100 -0.44779000
C -1.56972200 0.53754500 -1.44005700
H -4.38847800 2.44773700 -1.28404700
H -7.72776300 1.43305500 -1.62544500
H -7.98532400 0.33291500 -0.23274800
O -0.21421000 3.46663100 0.03322800
N -7.73986600 1.46278200 -0.88076600
H -0.26237800 1.23040800 -0.79414300
N -1.03053800 -0.63726900 -1.76950100
H -1.64471400 -1.32150300 -2.19226400
H -0.02379500 -0.79508400 -1.70866900
C -4.77054300 -1.29979800 -2.08173100
H -4.30398500 -2.13377200 -2.59132300
H -4.00262100 -0.29322600 -1.50721200
N -3.88985900 0.03081000 -2.11763900
O -3.53513100 -1.09636600 -2.48340400
O -5.05086600 0.40597800 -2.18217100
C -2.87504100 4.46864000 -0.10434000
H -2.68926500 4.54297700 0.97812900
H -3.93836600 4.65886100 -0.29896000
H -2.27674900 5.25566600 -0.58583100
C -5.43207100 -0.37974700 2.21993500
H -5.19229800 0.66948500 2.00478400
N -4.39733100 -1.21599000 1.64019400
C -4.54486300 -2.47208000 1.04997500
H -5.52223300 -2.92655000 0.93921600
Atom	X	Y	Z
C	-1.00514200	-1.87632200	0.90506100
O	-0.43977400	-2.84028700	0.40397900
N	-0.43203200	-0.74587400	1.34770900
C	-0.53968600	1.33448800	0.80506100
H	0.48257800	1.40433000	0.80506100
H	-1.08210600	2.09360800	2.66632300
C	-3.08002300	-0.89364500	1.64900300
C	4.56656100	-1.52471300	0.50951900
C	5.16394300	-0.31676200	1.29570000
C	4.44801200	0.69641600	1.51825800
C	3.01961800	0.52791000	2.65386000
C	3.17779300	-1.70842100	0.64939200
H	6.23971100	-0.22501000	1.76092700
H	-6.39256400	-0.64478400	3.30691400
O	2.25535500	1.39501900	2.10280800
N	2.48999200	-0.68487900	1.23329800
H	1.45885600	-0.75512800	1.29570000
N	2.47280400	-2.77631000	0.27300300
H	2.98486100	-3.51367400	-0.19371500
H	1.45316200	-2.78503700	0.33965900
C	-3.32044500	-2.91330000	0.67592200
H	-2.98061100	-3.81355700	0.17941700
N	-2.42060000	-1.92472500	1.05312300
N	5.39564900	-2.52189100	-0.08388300
O	4.87752300	-3.57236100	-0.47202000
O	6.59248300	-2.30441000	-0.17352100
C	5.03572200	1.99226100	1.98644000
H	4.85803000	2.13584700	3.06265700
H	6.11594400	2.02062700	1.79664400
H	4.55723400	2.84080100	1.47462200
Comment on X- and Y-displacement distributions for the ZP-containing oligonucleotide. Although we find very narrowly peaked distributions for X- and Y-displacement values of the ZP-containing oligonucleotide during the trajectory (shown below), we find structures that exhibit very large values resulting from definitions of the standard helix reference frame.

The following coordinates for one structure in which the X-displacement of the central dinucleotide step is measured to be 66 Å.
ATOM	Atom	C/ H/ O	X	Y	Z	Temperature	Pressure	Error
01	H	C	0	0	0	30.820	1.00	0.00
02	H	C	0	0	0	30.820	1.00	0.00
03	H	C	0	0	0	30.820	1.00	0.00
04	H	C	0	0	0	30.820	1.00	0.00
05	H	C	0	0	0	30.820	1.00	0.00

Notes:
- The table above contains atomic coordinates and other relevant data for various atoms in a molecular structure.
- The coordinates (X, Y, Z) are in angstroms (Å).
- The temperature and pressure are given in Kelvin (K) and megapascals (MPa), respectively.
- The error is in percent (‰).
ATOM 1002 O5' DG3 32 27.984 59.036 19.789 1.00 0.00 O
ATOM 1003 C5' DG3 32 28.461 59.047 21.118 1.00 0.00 C
ATOM 1004 H5' DG3 32 28.210 58.139 21.649 1.00 0.00 H
ATOM 1005 H5'' DG3 32 28.093 59.925 21.649 1.00 0.00 H
ATOM 1006 C4' DG3 32 29.977 58.972 21.112 1.00 0.00 C
ATOM 1007 C6 DG3 32 34.173 53.949 18.672 1.00 0.00 C
ATOM 1008 O6 DG3 32 34.379 52.923 18.060 1.00 0.00 O
ATOM 1009 N9 DG3 32 35.189 54.375 19.467 1.00 0.00 N
ATOM 1010 C8 DG3 32 35.961 55.615 21.227 1.00 0.00 C
ATOM 1011 N7 DG3 32 36.911 55.075 21.304 1.00 0.00 H
ATOM 1012 C7 DG3 32 37.947 56.358 21.915 1.00 0.00 H
ATOM 1013 C6 DG3 32 38.163 56.351 20.279 1.00 0.00 N
ATOM 1014 H21 DG3 32 33.165 56.017 19.401 1.00 0.00 C
ATOM 1015 C5 DG3 32 30.632 60.030 20.164 1.00 0.00 C
ATOM 1016 C4 DG3 32 29.900 60.670 19.668 1.00 0.00 H
ATOM 1017 C3' DG3 32 31.371 59.198 19.122 1.00 0.00 C
ATOM 1018 C2' DG3 32 30.656 59.000 18.321 1.00 0.00 H
ATOM 1019 C1' DG3 32 32.280 59.682 18.760 1.00 0.00 H
ATOM 1020 O3' DG3 32 31.581 60.917 20.835 1.00 0.00 O
ATOM 1021 HO3' DG3 32 31.124 61.267 21.620 1.00 0.00 H
END