Kirillov–Reshetikhin crystals for nonexceptional types

Anne Schilling

Department of Mathematics
University of California at Davis

University of Ottawa, July 2, 2009
Outline

Affine crystals

KR crystals

Perfectness

Affine Schubert calculus
Goals

1. Report on recent progress on KR crystals for nonexceptional types
2. Ground work for Brant Jones’ talk (after this one!)
3. Relation to affine Schubert calculus
Progress on Kirillov-Reshetikhin crystals ...

- **Existence of KR crystals**
 - Existence of KR crystals for nonexceptional types
 → joint with **Masato Okado** (arXiv:0706.2224)
 - **Combinatorial models for KR crystals**
 - Types $D_n^{(1)}$, $B_n^{(1)}$, $A_{2n-1}^{(2)}$
 → **AS** (arXiv:0704.2046)
 - Types $C_n^{(1)}$, $A_{2n}^{(2)}$, $D_{n+1}^{(2)}$
 → joint with **Ghislain Fourier and Masato Okado**
 (arXiv:0810.5067)
 - Type $E_6^{(1)}$, ...
 → joint with **Brant Jones**
 - **Perfectness**
 - Perfectness of all nonexceptional KR crystals
 → joint with **Ghislain Fourier and Masato Okado**
 (arXiv:0811.1604)
Progress on Kirillov-Reshetikhin crystals ...

- **Existence of KR crystals**
 - Existence of KR crystals for nonexceptional types
 → joint with Masato Okado (arXiv:0706.2224)
 - **Combinatorial models for KR crystals**
 - Types $D_n^{(1)}, B_n^{(1)}, A_{2n-1}^{(2)}$
 → AS (arXiv:0704.2046)
 - Types $C_n^{(1)}, A_{2n}^{(2)}, D_{n+1}^{(2)}$
 → joint with Ghislain Fourier and Masato Okado (arXiv:0810.5067)
 - Type $E_6^{(1)}, \ldots$
 → joint with Brant Jones

- **Perfectness**
 - Perfectness of all nonexceptional KR crystals
 → joint with Ghislain Fourier and Masato Okado (arXiv:0811.1604)
Progress on Kirillov-Reshetikhin crystals ...

- **Existence of KR crystals**
 - Existence of KR crystals for nonexceptional types
 → joint with Masato Okado (arXiv:0706.2224)

- **Combinatorial models for KR crystals**
 - Types $D_n^{(1)}, B_n^{(1)}, A_{2n-1}^{(2)}$
 → AS (arXiv:0704.2046)
 - Types $C_n^{(1)}, A_{2n}^{(2)}, D_{n+1}^{(2)}$
 → joint with Ghislain Fourier and Masato Okado
 (arXiv:0810.5067)
 - Type $E_6^{(1)}, ...$
 → joint with Brant Jones

- **Perfectness**
 - Perfectness of all nonexceptional KR crystals
 → joint with Ghislain Fourier and Masato Okado
 (arXiv:0811.1604)
... and relation to affine Schubert calculus

- **Symmetric functions and geometry:**
 - k-Schur functions, affine Stanley symmetric functions
 → joint with Thomas Lam and Mark Shimozono for type C
 (arXiv:0710.2720)
 - K-theory of the affine Grassmannian, stable affine
 Grothendieck polynomials
 → joint with Thomas Lam and Mark Shimozono
 (arXiv:0901.1506)
Outline

Affine crystals

KR crystals

Perfectness

Affine Schubert calculus
Motivation

\(\mathfrak{g} \) Lie algebra/Kac–Moody Lie algebra

- **Crystal bases** are combinatorial bases for \(U_q(\mathfrak{g}) \) as \(q \to 0 \)
- Affine finite crystals:
 - appear in 1d sums of exactly solvable lattice models
 - path realization of integrable highest weight \(U_q(\mathfrak{g}) \)-modules
 - fermionic formulas, generalized Kostka polynomials, symmetric functions
 - fusion/quantum cohomology structure constants
- Irreducible finite-dimensional affine \(U_q(\mathfrak{g}) \)-modules classified by Chari-Pressley via Drinfeld polynomials
- HKOTY conjectured that the Kirillov-Reshetikhin modules \(W^{r,s} \) have crystal bases
Motivation

\(\mathfrak{g} \) Lie algebra/Kac–Moody Lie algebra

- **Crystal bases** are combinatorial bases for \(U_q(\mathfrak{g}) \) as \(q \to 0 \)
- **Affine finite crystals**:
 - appear in 1d sums of exactly solvable lattice models
 - path realization of integrable highest weight \(U_q(\mathfrak{g}) \)-modules
 - fermionic formulas, generalized Kostka polynomials, symmetric functions
 - fusion/quantum cohomology structure constants

- Irreducible finite-dimensional affine \(U_q(\mathfrak{g}) \)-modules classified by Chari-Pressley via Drinfeld polynomials
- HKOTY conjectured that the Kirillov-Reshetikhin modules \(W_{r,s} \) have crystal bases
Motivation

\(\mathfrak{g} \) Lie algebra/Kac–Moody Lie algebra

- **Crystal bases** are combinatorial bases for \(U_q(\mathfrak{g}) \) as \(q \to 0 \)
- **Affine finite crystals**:
 - appear in 1d sums of exactly solvable lattice models
 - path realization of integrable highest weight \(U_q(\mathfrak{g}) \)-modules
 - fermionic formulas, generalized Kostka polynomials, symmetric functions
 - fusion/quantum cohomology structure constants
- **Irreducible** finite-dimensional affine \(U_q(\mathfrak{g}) \)-modules classified by Chari-Pressley via Drinfeld polynomials
 - HKOTY conjectured that the Kirillov-Reshetikhin modules \(W^{r,s} \) have crystal bases
Motivation

\(\mathfrak{g} \) Lie algebra/Kac–Moody Lie algebra

- **Crystal bases** are combinatorial bases for \(U_q(\mathfrak{g}) \) as \(q \to 0 \)
- **Affine finite crystals**:
 - appear in 1d sums of exactly solvable lattice models
 - path realization of integrable highest weight \(U_q(\mathfrak{g}) \)-modules
 - fermionic formulas, generalized Kostka polynomials, symmetric functions
 - fusion/quantum cohomology structure constants
- Irreducible **finite-dimensional affine** \(U_q(\mathfrak{g}) \)-modules classified by Chari-Pressley via Drinfeld polynomials
- HKOTY conjectured that the **Kirillov-Reshetikhin** modules \(W^r,s \) have crystal bases
Crystal graph
Axiomatic Crystals

A $U_q(g)$-crystal is a nonempty set B with maps

$$\text{wt}: B \to P$$

$$e_i, f_i: B \to B \cup \{\emptyset\} \quad \text{for all } i \in I$$

satisfying

$$f_i(b) = b' \iff e_i(b') = b$$

if $b, b' \in B$

$$\text{wt}(f_i(b)) = \text{wt}(b) - \alpha_i$$

if $f_i(b) \in B$

$$\langle h_i, \text{wt}(b) \rangle = \varphi_i(b) - \varepsilon_i(b)$$

Write $\bullet \quad i \quad \bullet$ for $b' = f_i(b)$
Tensor products

Definition

Let B, B' be crystals. The tensor product $B \otimes B'$ is defined as $B \times B'$ as sets with

$$\text{wt}(b \otimes b') = \text{wt}(b) + \text{wt}(b')$$

$$f_i(b \otimes b') = \begin{cases} f_i(b) \otimes b' & \text{if } \varepsilon_i(b) \geq \varphi_i(b') \\ b \otimes f_i(b') & \text{otherwise} \end{cases}$$
Tensor products

Definition

B, B' crystals

$B \otimes B'$ is $B \times B'$ as sets with

\[
\begin{align*}
\text{wt}(b \otimes b') &= \text{wt}(b) + \text{wt}(b') \\
\epsilon_i(b \otimes b') &= \begin{cases}
\epsilon_i(b) \otimes b' & \text{if } \epsilon_i(b) \geq \varphi_i(b') \\
\phi_i(b') & \text{otherwise}
\end{cases}
\end{align*}
\]
Tensor products

Definition

B, B' crystals

$B \otimes B'$ is $B \times B'$ as sets with

$$\text{wt}(b \otimes b') = \text{wt}(b) + \text{wt}(b')$$

$$f_i(b \otimes b') = \begin{cases}
 f_i(b) \otimes b' & \text{if } \varepsilon_i(b) \geq \varphi_i(b') \\
 b \otimes f_i(b') & \text{otherwise}
\end{cases}$$
Tensor products

Definition

\(B, B' \) crystals

\(B \otimes B' \) is \(B \times B' \) as sets with

\[
\text{wt}(b \otimes b') = \text{wt}(b) + \text{wt}(b')
\]

\[
f_i(b \otimes b') = \begin{cases}
 f_i(b) \otimes b' & \text{if } \varepsilon_i(b) \geq \varphi_i(b') \\
 b \otimes f_i(b') & \text{otherwise}
\end{cases}
\]
Outline

Affine crystals

KR crystals

Perfectness

Affine Schubert calculus
Existence of Kirillov-Reshetikhin crystals

Theorem (OS 07)

The Kirillov-Reshetikhin crystals $B^{r,s}$ *exist for nonexceptional types.*

Proof uses results on characters by Nakajima and Hernandez. Combinatorial models for these crystals can be constructed using the classical decompositions

$$B^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$

and the automorphism σ (i special node $\sigma(i) = 0$)

$$f_0 = \sigma^{-1} \circ f_i \circ \sigma$$
$$e_0 = \sigma^{-1} \circ e_i \circ \sigma$$

or using the virtual crystal construction.
Existence of Kirillov-Reshetikhin crystals

Theorem (OS 07)

The Kirillov-Reshetikhin crystals $B_{r,s}$ exist for nonexceptional types.

Combinatorial models for these crystals can be constructed using the classical decompositions

$$B_{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$

and the automorphism σ (i special node $\sigma(i) = 0$)

$$f_0 = \sigma^{-1} \circ f_i \circ \sigma$$

$$e_0 = \sigma^{-1} \circ e_i \circ \sigma$$

or using the virtual crystal construction
Dynkin diagrams

Type	Dynkin diagram
$A_5^{(1)}$![Dynkin Diagram]
$B_5^{(1)}$![Dynkin Diagram]
$A_9^{(2)}$![Dynkin Diagram]
$D_5^{(1)}$![Dynkin Diagram]
$C_5^{(1)}$![Dynkin Diagram]
$D_5^{(2)}$![Dynkin Diagram]
$A_{10}^{(2)}$![Dynkin Diagram]
Type $A_{n-1}^{(1)}$

KMN² proved existence of crystals $B^{r,s}$ for Kirillov-Reshetikhin modules $W^{r,s}$

$$B^{r,s} \cong B(s^r) \quad \text{as } \{1, 2, \ldots, n-1\}-\text{crystal}$$

Promotion operator pr uniquely defined by Shimozono

$$\langle h_{a+1} , \text{wt}(\text{pr}(b)) \rangle = \langle h_a , \text{wt}(b) \rangle$$
Type $A_{n-1}^{(1)}$

KMN proved existence of crystals $B^{r,s}$ for Kirillov-Reshetikhin modules $W^{r,s}$

$$B^{r,s} \cong B(s^r) \text{ as } \{1, 2, \ldots, n-1\}\text{-crystal}$$

Promotion operator pr uniquely defined by Shimozono

$$\langle h_{a+1}, \text{wt(pr}(b)) \rangle = \langle h_a, \text{wt}(b) \rangle$$
Type $A_{n-1}^{(1)}$

KMN proved existence of crystals $B^{r,s}$ for Kirillov-Reshetikhin modules $W^{r,s}$

$$B^{r,s} \cong B(s^r)$$ as $\{1, 2, \ldots, n-1\}$-crystal

Promotion operator pr uniquely defined by Shimozono

$$B^{r,s} \xrightarrow{\text{pr}} B^{r,s}$$

$$f_a \downarrow \quad \downarrow f_{a+1}$$

$$B^{r,s} \xrightarrow{\text{pr}} B^{r,s}$$

$$\langle h_{a+1}, \text{wt(pr}(b)) \rangle = \langle h_a, \text{wt}(b) \rangle$$
Type $A_{n-1}^{(1)}$

KMNN proved existence of crystals $B^{r,s}$ for Kirillov-Reshetikhin modules $W^{r,s}$

$$B^{r,s} \cong B(s^r) \quad \text{as } \{1, 2, \ldots, n-1\}-\text{crystal}$$

Promotion operator pr uniquely defined by Shimozono

$$B^{r,s} \xrightarrow{\text{pr}} B^{r,s}$$

$$f_a \downarrow \quad \downarrow f_{a+1}$$

$$B^{r,s} \xrightarrow{\text{pr}} B^{r,s}$$

$$\langle h_{a+1}, \text{wt}(\text{pr}(b)) \rangle = \langle h_a, \text{wt}(b) \rangle$$

Then $e_0 = \text{pr}^{-1} \circ e_1 \circ \text{pr} \quad f_0 = \text{pr}^{-1} \circ f_1 \circ \text{pr}$
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, \ldots, n\}$

Promotion:

- Remove rightmost n, play jeu de taquin and repeat.
- Increase all entries by one and place 1’s in the empty spaces.
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, \ldots, n\}$

Promotion:
- Remove rightmost n, play jeu de taquin and repeat.
- Increase all entries by one and place 1’s in the empty spaces.

Example

```
  3 4 4
  2 3 3
  1 2 2
```
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, \ldots, n\}$

Promotion:
- Remove rightmost n, play jeu de taquin and repeat.
- Increase all entries by one and place 1’s in the empty spaces.

Example

\[
\begin{array}{c c c}
3 & 4 & \bullet \\
2 & 3 & 3 \\
1 & 2 & 2 \\
\end{array}
\]
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, \ldots, n\}$

Promotion:
- Remove rightmost n, play jeu de taquin and repeat.
- Increase all entries by one and place 1’s in the empty spaces.

Example

```
3  •  4
2  3  3
1  2  2
```
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of *Young tableaux* of shape (s^r) over alphabet $\{1, 2, \ldots, n\}$

Promotion:
- Remove rightmost n, play *jeu de taquin* and repeat.
- Increase all entries by one and place 1’s in the empty spaces.

Example

```
\[
\begin{array}{ccc}
3 & 3 & 4 \\
2 & \bullet & 3 \\
1 & 2 & 2 \\
\end{array}
\]
```
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, \ldots, n\}$

Promotion:
- Remove rightmost n, play jeu de taquin and repeat.
- Increase all entries by one and place 1’s in the empty spaces.

Example

\[
\begin{array}{ccc}
3 & 3 & 4 \\
2 & 2 & 3 \\
1 & \bullet & 2 \\
\end{array}
\]
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, \ldots, n\}$

Promotion:
- Remove rightmost n, play jeu de taquin and repeat.
- Increase all entries by one and place 1’s in the empty spaces.

Example

```
3 3 4
2 2 3
• 1 2
```
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, \ldots, n\}$

Promotion:
- Remove rightmost n, play jeu de taquin and repeat.
- Increase all entries by one and place 1’s in the empty spaces.

Example

```
3 3 ●
2 2 3
● 1 2
```
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, \ldots, n\}$

Promotion:
- Remove rightmost n, play *jeu de taquin* and repeat.
- Increase all entries by one and place 1’s in the empty spaces.

Example

```
3 3 3
2 2 •
• 1 2
```
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet \{1, 2, \ldots, n\}

Promotion:
- Remove rightmost n, play *jeu de taquin* and repeat.
- Increase all entries by one and place 1’s in the empty spaces.

Example

```
  3 3 3
  2 2 2
  • 1 •
```
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, \ldots, n\}$

Promotion:
- Remove rightmost n, play jeu de taquin and repeat.
- Increase all entries by one and place 1’s in the empty spaces.

Example

```
3 3 3
2 2 2
• • 1
```
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, \ldots, n\}$

Promotion:
- Remove rightmost n, play jeu de taquin and repeat.
- Increase all entries by one and place 1’s in the empty spaces.

Example

$$
\begin{array}{ccc}
4 & 4 & 4 \\
3 & 3 & 3 \\
\bullet & \bullet & 2 \\
\end{array}
$$
Promotion for type A_{n-1}

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, \ldots, n\}$

Promotion:
- Remove rightmost n, play jeu de taquin and repeat.
- Increase all entries by one and place 1’s in the empty spaces.

Example

\[
\begin{array}{ccc}
4 & 4 & 4 \\
3 & 3 & 3 \\
1 & 1 & 2 \\
\end{array}
\]
Types $B^{(1)}_n, D^{(1)}_n, A^{(2)}_{2n-1}$

$B^{r,s}_r \cong V^{r,s}_r \cong \bigoplus_{\Lambda} B(\Lambda)$ as $\{1, 2, \ldots, n\}$-crystal

where Λ is obtained from $s\Lambda_r$ by removing

 Dynkin diagram automorphism σ interchanging 0 and 1

$f_0 = \sigma \circ f_1 \circ \sigma$

$e_0 = \sigma \circ e_1 \circ \sigma$

Theorem (OS 07)

$V^{r,s}_r \cong B^{r,s}_r$ as a $\{0, 1, \ldots, n\}$-crystal
Types $B^{(1)}_n, D^{(1)}_n, A^{(2)}_{2n-1}$

$$B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$ as \{1, 2, \ldots, n\}-crystal

where Λ is obtained from $s\Lambda_r$ by removing \square

Dynkin diagram automorphism σ interchanging 0 and 1

$$f_0 = \sigma \circ f_1 \circ \sigma$$

$$e_0 = \sigma \circ e_1 \circ \sigma$$

Theorem (OS 07)

$V^{r,s} \cong B^{r,s}$ as a \{0, 1, \ldots, n\}-crystal
Types $B_n^{(1)}, D_n^{(1)}, A_{2n-1}^{(2)}$

$$B^{r,s}_r \cong V^{r,s}_r \cong \bigoplus_{\Lambda} B(\Lambda)$$ \hspace{1cm} as \{1, 2, \ldots, n\}-crystal

where Λ is obtained from $s\Lambda_r$ by removing \square

Dynkin diagram automorphism σ interchanging 0 and 1

$$f_0 = \sigma \circ f_1 \circ \sigma$$

$$e_0 = \sigma \circ e_1 \circ \sigma$$

Theorem (OS 07)

$V^{r,s}_r \cong B^{r,s}_r$ as a \{0, 1, \ldots, n\}-crystal
Classical decomposition

By construction

\[V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda) \]

as \(X_n = D_n, B_n, C_n \) crystals

\[\Rightarrow \text{crystal arrows } f_i, e_i \text{ are fixed for } i = 1, 2, \ldots, n \text{ using Kashiwara-Nakashima tableaux} \]
Definition of σ

$X_n \rightarrow X_{n-1}$ branching

$$B_{X_n}(\Lambda) \cong \bigoplus \begin{cases} B_{X_{n-1}}(\text{inner}(P)) \\ \pm \text{diagrams } P \\
\text{outer}(P) = \Lambda \end{cases}$$

$\pm \text{diagrams}$

$$\begin{array}{|c|c|c|}
\hline
- & + & - \\
\hline
+ & + & + \\
\hline
\end{array}$$

Λ/μ horizontal strip filled with $-$
μ/λ horizontal strip filled with $+$
Definition of σ

X_{n-1} highest weight vectors
are in bijection with \pm diagrams via Φ

\[
\Phi: \begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & + & + \\
\end{array} \quad \mapsto \quad \begin{array}{ccc}
4 & 4 & 4 \\
2 & 3 & 3 \\
1 & 1 & 2 \\
\end{array}
\]

$\vec{a} = (1, 2, 1, 2, 3, 4, 5, 6, 4, 1, 2, 3, 4, 5, 6, 4, 3, 2)$

$\Phi(P) = f_{\vec{a}}$

\[
\begin{array}{cccc}
4 & 3 & 2 & 1 \\
4 & 2 & 2 & 1 \\
\end{array}
\]
Definition of σ

X_{n-1} highest weight vectors are in bijection with \pm diagrams via Φ

$-$	$+$
$+$	

$\Phi: \bar{\sigma} \mapsto \begin{array}{ccc}
4 & 4 & \\
2 & 3 & 3 \\
1 & 1 & 2 \\
\end{array}$

$\bar{\sigma} = (1, 2, 1, 2, 3, 4, 5, 6, 4, 1, 2, 3, 4, 5, 6, 4, 3, 2)$

$\Phi(P) = f_{\bar{\sigma}}$

4
3
2
1
2
2
1
1
1

Affine crystals

KR crystals

Perfectness

Affine Schubert calculus
Definition of σ

σ on \pm diagrams

$P \pm$ diagram of shape λ/λ
columns of height h in λ

$h \not\equiv r \mod 2$: interchange number of $+$ and $-$ above λ
$h \equiv r \mod 2$: interchange number of \mp and empty above λ

$$P = \begin{array}{c|c|c} + & - & + \\ \hline & + & \\ + & - & \\ \hline & & + \end{array}$$

$$\mathcal{G}(P) = \begin{array}{c|c|c} - & & \\ \hline & - & - \\ & & + \end{array}$$

$r \geq 6$
$s = 5$
Definition of σ

σ on tableaux

$b \in V^{r,s}$

$e_{\to a} := e_{a_1} \cdots e_{a_{\ell}}$ such that $e_{\to a}(b)$ is X_{n-1} highest weight vector

$f_{\leftarrow a} := f_{a_\ell} \cdots f_{a_1}$

Then

$\sigma(b) = f_{\leftarrow a} \circ \Phi \circ \mathcal{S} \circ \Phi^{-1} \circ e_{\to a}(b)$
Example

$V^{4,5}$ of type $D^{(1)}_6$

\[b = \begin{array}{ccc}
4 & 4 \\
3 & 4 \\
2 & 3 & 1 & 1 \\
1 & 1 & 2 & 3 \\
\end{array} \begin{array}{ccc}
4 & 4 \\
3 & 4 \\
2 & 3 & 1 & 1 \\
1 & 1 & 2 & 2 \\
\end{array} \]

$\phi^{-1} \rightarrow \begin{array}{ccc}
+ & - \\
+ & - & - \\
+ & + \\
\end{array} \begin{array}{ccc}
- \\
+ & - \\
+ \\
\end{array} \quad \sigma \rightarrow \begin{array}{ccc}
3 \\
4 \\
3 & 3 & 3 & 1 \\
1 & 2 & 2 & 2 \\
\end{array} \begin{array}{ccc}
\bar{2} \\
\bar{4} \\
3 & 3 & 3 & 1 \\
1 & 2 & 2 & 2 \\
\end{array} = \sigma(b)
Example

$V^{4,5}$ of type $D_6^{(1)}$

$b = \begin{array}{ccc}
4 & 4 & \\
3 & 4 & \\
2 & 3 & 1 & 1 \\
1 & 1 & 2 & 3
\end{array}$

$\Phi^{-1} \rightarrow$

$\begin{array}{ccc}
+ & - & \\
+ & - & \\
- & - & \\
- & + & \\
\end{array}$

$e_4 e_6 e_5 e_4 e_2 \rightarrow$

$\begin{array}{ccc}
4 & 4 & \\
3 & 4 & \\
2 & 3 & 1 & 1 \\
1 & 1 & 2 & 2
\end{array}$

$\Phi \rightarrow$

$\begin{array}{ccc}
3 & \\
4 & \\
3 & 3 & 3 & 1 \\
1 & 2 & 2 & 2
\end{array}$

$= \sigma(b)$

$f_2 f_4 f_5 f_6 f_4 \rightarrow$

$\begin{array}{ccc}
2 & \\
4 & \\
3 & 3 & 3 & 1 \\
1 & 2 & 2 & 2
\end{array}$
Example

$V^{4,5}$ of type $D_{6}^{(1)}$

$$V^{4,5} \text{ of type } D_{6}^{(1)}$$

4	4		
3	4		
2	3	1	1
1	1	2	3

Φ^{-1}

+	-
+	

Φ

| 3 |
| 4 |
| 3 | 3 | 3 | 1 |
| 1 | 2 | 2 | 2 |

$b = \begin{array}{cccc}
4 & 4 \\
3 & 4 \\
2 & 3 & 1 & 1 \\
1 & 1 & 2 & 3 \\
\end{array}$

$e_4 e_6 e_5 e_4 e_2$ $\begin{array}{cccc}
4 & 4 \\
3 & 4 \\
2 & 3 & 1 & 1 \\
1 & 1 & 2 & 2 \\
\end{array}$

Φ^{-1}

+	-

Φ

| 3 |

$f_2 f_4 f_5 f_6 f_4$ $\begin{array}{cccc}
2 & 4 \\
3 & 3 & 3 & 1 \\
1 & 2 & 2 & 2 \\
\end{array}$

$= \sigma(b)$
Type $C_n^{(1)}$

\[B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda) \]

as \(\{1, 2, \ldots, n\}\)-crystal

where \(\Lambda\) is obtained from \(s\Lambda_r\) by removing \(\square\)

Virtual crystal: ambient crystal \(\hat{V}^{r,s} = B^{r,s}\) of type \(A_{2n+1}^{(2)}\)

Definition

\(V^{r,s}\) is the subset of \(b \in \hat{V}^{r,s}\) such that \(\sigma(b) = b\) such that

\[e_i = \begin{cases} \hat{e}_0 \hat{e}_1 & \text{for } i = 0 \\ \hat{e}_{i+1} & \text{for } 1 \leq i \leq n \end{cases} \]

Theorem (FOS 08)

\(V^{r,s} \cong B^{r,s}\) as a \(\{0, 1, \ldots, n\}\)-crystal
Type $C_n^{(1)}$

$$B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$ as $\{1, 2, \ldots, n\}$-crystal

where Λ is obtained from $s\Lambda_r$ by removing □

Virtual crystal: ambient crystal $\hat{V}^{r,s} = B^{r,s}$ of type $A_{2n+1}^{(2)}$

Definition

$V^{r,s}$ is the subset of $b \in \hat{V}^{r,s}$ such that $\sigma(b) = b$ such that

$$e_i = \begin{cases} \hat{e}_0 \hat{e}_1 & \text{for } i = 0 \\ \hat{e}_{i+1} & \text{for } 1 \leq i \leq n \end{cases}$$

Theorem (FOS 08)

$V^{r,s} \cong B^{r,s}$ as a $\{0, 1, \ldots, n\}$-crystal
Type $C_n^{(1)}$

$$B^{r,s} \simeq V^{r,s} \simeq \bigoplus_{\Lambda} B(\Lambda)$$

as $\{1, 2, \ldots, n\}$-crystal

where Λ is obtained from $s\Lambda_r$ by removing \square

Virtual crystal: ambient crystal $\hat{V}^{r,s} = B^{r,s}$ of type $A_{2n+1}^{(2)}$

Definition

$V^{r,s}$ is the subset of $b \in \hat{V}^{r,s}$ such that $\sigma(b) = b$ such that

$$e_i = \begin{cases} \hat{e}_0 \hat{e}_1 & \text{for } i = 0 \\ \hat{e}_{i+1} & \text{for } 1 \leq i \leq n \end{cases}$$

Theorem (FOS 08)

$V^{r,s} \simeq B^{r,s}$ as a $\{0, 1, \ldots, n\}$-crystal
Type $C_n^{(1)}$

\[B^{r,s} \cong V^{r,s} \cong \bigoplus \Lambda B(\Lambda) \quad \text{as } \{1, 2, \ldots, n\}\text{-crystal} \]

where Λ is obtained from $s\Lambda_r$ by removing \[\square \]

Virtual crystal: ambient crystal $\hat{V}^{r,s} = B^{r,s}$ of type $A_{2n+1}^{(2)}$

Definition

$V^{r,s}$ is the subset of $b \in \hat{V}^{r,s}$ such that $\sigma(b) = b$ such that

\[e_i = \begin{cases} \hat{e}_0\hat{e}_1 & \text{for } i = 0 \\ \hat{e}_{i+1} & \text{for } 1 \leq i \leq n \end{cases} \]

Theorem (FOS 08)

$V^{r,s} \cong B^{r,s}$ as a $\{0, 1, \ldots, n\}$-crystal
Types $D_{n+1}^{(2)}, A_{2n}^{(2)}$

$B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$ as $\{1, 2, \ldots, n\}$-crystal

where Λ is obtained from $s\Lambda$ by removing \square

Virtual crystal: ambient crystal $\hat{V}^{r,s} = B^{r,2s}$ of type $C_n^{(1)}$

Definition

$V^{r,s} \subset \hat{V}^{r,s}$ is given by $e_i = \hat{e}_i^{m_i}$ where

$$(m_0, \ldots, m_n) = \begin{cases} (1, 2, \ldots, 2, 2) & \text{for } A_{2n}^{(2)} \\ (1, 2, \ldots, 2, 1) & \text{for } D_{n+1}^{(2)} \end{cases}$$

Theorem (FOS 08)

$V^{r,s} \cong B^{r,s}$ as a $\{0, 1, \ldots, n\}$-crystal
Types $D^{(2)}_{n+1}, A^{(2)}_{2n}$

$$B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$

as $\{1, 2, \ldots, n\}$-crystal

where Λ is obtained from $s\Lambda_r$ by removing \square

Virtual crystal: ambient crystal $\hat{V}^{r,s} = B^{r,2s}$ of type $C^{(1)}_n$

Definition

$V^{r,s} \subset \hat{V}^{r,s}$ is given by $e_i = \hat{e}^{m_i}_i$ where

$$(m_0, \ldots, m_n) = \begin{cases} (1, 2, \ldots, 2, 2) & \text{for } A^{(2)}_{2n} \\ (1, 2, \ldots, 2, 1) & \text{for } D^{(2)}_{n+1} \end{cases}$$

Theorem (FOS 08)

$V^{r,s} \cong B^{r,s}$ as a $\{0, 1, \ldots, n\}$-crystal
Types $D^{(2)}_{n+1}, A^{(2)}_{2n}$

\[B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda) \quad \text{as } \{1, 2, \ldots, n\}-\text{crystal} \]

where Λ is obtained from $s\Lambda_r$ by removing \Box

Virtual crystal: ambient crystal $\hat{V}^{r,s} = B^{r,2s}$ of type $C^{(1)}_n$

Definition

$V^{r,s} \subset \hat{V}^{r,s}$ is given by $e_i = \hat{e}^{m_i}_i$ where

\[
(m_0, \ldots, m_n) = \begin{cases}
(1, 2, \ldots, 2, 2) & \text{for } A^{(2)}_{2n} \\
(1, 2, \ldots, 2, 1) & \text{for } D^{(2)}_{n+1}
\end{cases}
\]

Theorem (FOS 08)

$V^{r,s} \cong B^{r,s}$ as a $\{0, 1, \ldots, n\}$-crystal
Types $D^{(2)}_{n+1}, A^{(2)}_{2n}$

$$B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$

as $\{1, 2, \ldots, n\}$-crystal

where Λ is obtained from $s\Lambda r$ by removing □

Virtual crystal: ambient crystal $\hat{V}^{r,s} = B^{r,2s}$ of type $C^{(1)}_n$

Definition

$V^{r,s} \subset \hat{V}^{r,s}$ is given by $e_i = \hat{e}_i^{m_i}$ where

$$(m_0, \ldots, m_n) = \begin{cases} (1, 2, \ldots, 2, 2) & \text{for } A^{(2)}_{2n} \\ (1, 2, \ldots, 2, 1) & \text{for } D^{(2)}_{n+1} \end{cases}$$

Theorem (FOS 08)

$V^{r,s} \cong B^{r,s}$ as a $\{0, 1, \ldots, n\}$-crystal
Outline

Affine crystals

KR crystals

Perfectness

Affine Schubert calculus
Perfectness of KR crystals

Conjecture (HKOTT)

The KR crystal $B_{r,s}$ is perfect if and only if $\frac{s}{cr}$ is an integer. If $B_{r,s}$ is perfect, its level is $\frac{s}{cr}$.

$B_n^{(1)}$	$(1, \ldots, 1, 2)$
$C_n^{(1)}$	$(2, \ldots, 2, 1)$
other nonexceptional	$(1, \ldots, 1)$

Theorem (FOS 08)

If g is of nonexceptional type, the Conjecture is true.
Perfectness of KR crystals

Conjecture (HKOTT)

The KR crystal $B^{r,s}$ is perfect if and only if $\frac{s}{cr}$ is an integer. If $B^{r,s}$ is perfect, its level is $\frac{s}{cr}$.

	(c_1, \ldots, c_n)
$B_n^{(1)}$	$(1, \ldots, 1, 2)$
$C_n^{(1)}$	$(2, \ldots, 2, 1)$
other nonexceptional	$(1, \ldots, 1)$

Theorem (FOS 08)

If \mathfrak{g} is of nonexceptional type, the Conjecture is true.
Definition of perfectness

\[P = \bigoplus_{i \in I} \mathbb{Z} \Lambda_i \] weight lattice of \(g \), \(P^+ \) set of dominant weights.

\[P^*_\ell = \{ \Lambda \in P^+ \mid \text{lev}(\Lambda) = \ell \} \] level \(\ell \) dominant weights

\[
\varepsilon(b) = \sum_{i \in I} \varepsilon_i(b) \Lambda_i \quad \text{and} \quad \varphi(b) = \sum_{i \in I} \varphi_i(b) \Lambda_i
\]

Definition

The crystal \(B \) is perfect of level \(\ell \) if:

1. \(B \cong \) crystal graph of a finite-dimensional \(U'_q(g) \)-module.
2. \(B \otimes B \) is connected.
3. \(\exists \lambda \in P_0 \) such that \(wt(B) \subseteq \lambda + \sum_{i \in I} \mathbb{Z} \alpha_i \) and \(\exists \) unique element in \(B \) of classical weight \(\lambda \).
4. \(\forall b \in B, \ \text{lev}(\varepsilon(b)) \geq \ell \).
5. \(\forall \Lambda \in P^*_\ell, \exists \) unique elements \(b_\Lambda, b^\Lambda \in B \), such that \(\varepsilon(b_\Lambda) = \lambda = \varphi(b^\Lambda) \).
Definition of perfectness

\[P = \bigoplus_{i \in I} \mathbb{Z} \Lambda_i \] weight lattice of \(g \), \(P^+ \) set of dominant weights.

\[P^+_\ell = \{ \Lambda \in P^+ \mid \text{lev}(\Lambda) = \ell \} \] level \(\ell \) dominant weights

\[\varepsilon(b) = \sum_{i \in I} \varepsilon_i(b) \Lambda_i \quad \text{and} \quad \varphi(b) = \sum_{i \in I} \varphi_i(b) \Lambda_i \]

Definition

The crystal \(B \) is perfect of level \(\ell \) if:

1. \(B \cong \) crystal graph of a finite-dimensional \(U'_q(g) \)-module.
2. \(B \otimes B \) is connected.
3. \(\exists \lambda \in P_0 \) such that \(\text{wt}(B) \subset \lambda + \sum_{i \in I \setminus \{0\}} \mathbb{Z}_{\leq 0} \alpha_i \) and \(\exists \) unique element in \(B \) of classical weight \(\lambda \).
4. \(\forall b \in B, \ \text{lev}(\varepsilon(b)) \geq \ell \).
5. \(\forall \Lambda \in P^+_\ell, \exists \) unique elements \(b_\Lambda, b^\Lambda \in B \), such that

\[\varepsilon(b_\Lambda) = \Lambda = \varphi(b^\Lambda) \]
Definition of perfectness

\[P = \bigoplus_{i \in I} \mathbb{Z} \Lambda_i \] weight lattice of \(g \), \(P^+ \) set of dominant weights.

\[P^+_\ell = \{ \Lambda \in P^+ \mid \text{lev}(\Lambda) = \ell \} \] level \(\ell \) dominant weights

\[\varepsilon(b) = \sum_{i \in I} \varepsilon_i(b) \Lambda_i \] and \[\varphi(b) = \sum_{i \in I} \varphi_i(b) \Lambda_i \]

Definition

The crystal \(B \) is perfect of level \(\ell \) if:

1. \(B \cong \) crystal graph of a finite-dimensional \(U'_q(g) \)-module.
2. \(B \otimes B \) is connected.
3. \(\exists \lambda \in P_0 \) such that \(\text{wt}(B) \subset \lambda + \sum_{i \in I \setminus \{0\}} \mathbb{Z}_{\leq 0} \alpha_i \) and \(\exists \) unique element in \(B \) of classical weight \(\lambda \).
4. \(\forall b \in B, \ \text{lev}(\varepsilon(b)) \geq \ell \).
5. \(\forall \Lambda \in P^+_\ell, \exists \) unique elements \(b_\Lambda, b^\Lambda \in B \), such that

\[\varepsilon(b_\Lambda) = \Lambda = \varphi(b^\Lambda) \]
Definition of perfectness

\[P = \bigoplus_{i \in I} \mathbb{Z}\Lambda_i \text{ weight lattice of } g, \quad P^+ \text{ set of dominant weights.} \]
\[P^+_\ell = \{ \Lambda \in P^+ | \text{lev}(\Lambda) = \ell \} \text{ level } \ell \text{ dominant weights} \]

\[\varepsilon(b) = \sum_{i \in I} \varepsilon_i(b)\Lambda_i \quad \text{and} \quad \varphi(b) = \sum_{i \in I} \varphi_i(b)\Lambda_i \]

Definition

The crystal \(B \) is perfect of level \(\ell \) if:

1. \(B \cong \) crystal graph of a finite-dimensional \(U'_q(g) \)-module.
2. \(B \otimes B \) is connected.
3. \(\exists \lambda \in P_0 \) such that \(\text{wt}(B) \subset \lambda + \sum_{i \in I \setminus \{0\}} \mathbb{Z}_{\leq 0} \alpha_i \) and \(\exists \) unique element in \(B \) of classical weight \(\lambda \).
4. \(\forall b \in B, \text{lev}(\varepsilon(b)) \geq \ell. \)
5. \(\forall \Lambda \in P^+_\ell, \exists \) unique elements \(b_\Lambda, b^\Lambda \in B \), such that

\[\varepsilon(b_\Lambda) = \Lambda = \varphi(b^\Lambda) \]
Definition of perfectness

\[P = \bigoplus_{i \in I} \mathbb{Z} \Lambda_i \] weight lattice of \(g \), \quad \(P^+ \) set of dominant weights.

\[P^+_\ell = \{ \Lambda \in P^+ \mid \text{lev}(\Lambda) = \ell \} \] level \(\ell \) dominant weights

\[\varepsilon(b) = \sum_{i \in I} \varepsilon_i(b) \Lambda_i \quad \text{and} \quad \varphi(b) = \sum_{i \in I} \varphi_i(b) \Lambda_i \]

Definition

The crystal \(\mathcal{B} \) is perfect of level \(\ell \) if:

1. \(\mathcal{B} \cong \) crystal graph of a finite-dimensional \(U'_q(g) \)-module.
2. \(\mathcal{B} \otimes \mathcal{B} \) is connected.
3. \(\exists \lambda \in P_0 \) such that \(\text{wt}(\mathcal{B}) \subset \lambda + \sum_{i \in I \setminus \{0\}} \mathbb{Z}_{\leq 0} \alpha_i \) and
 \(\exists \) unique element in \(\mathcal{B} \) of classical weight \(\lambda \).
4. \(\forall b \in \mathcal{B}, \ \text{lev}(\varepsilon(b)) \geq \ell \).
5. \(\forall \Lambda \in P^+_\ell, \exists \) unique elements \(b_\Lambda, b^\Lambda \in \mathcal{B} \), such that

\[\varepsilon(b_\Lambda) = \Lambda = \varphi(b^\Lambda) \]
Definition of perfectness

\[P = \bigoplus_{i \in I} \mathbb{Z} \Lambda_i \] weight lattice of \(g \), \(P^+ \) set of dominant weights.

\[P_\ell^+ = \{ \Lambda \in P^+ \mid \text{lev}(\Lambda) = \ell \} \] level \(\ell \) dominant weights

\[\varepsilon(b) = \sum_{i \in I} \varepsilon_i(b) \Lambda_i \quad \text{and} \quad \varphi(b) = \sum_{i \in I} \varphi_i(b) \Lambda_i \]

Definition

The crystal \(B \) is perfect of level \(\ell \) if:

1. \(B \cong \) crystal graph of a finite-dimensional \(\mathcal{U}_q'(g) \)-module.
2. \(B \otimes B \) is connected.
3. \(\exists \lambda \in P_0 \) such that \(\text{wt}(B) \subset \lambda + \sum_{i \in I \setminus \{0\}} \mathbb{Z}_{\leq 0} \alpha_i \) and \(\exists \) unique element in \(B \) of classical weight \(\lambda \).
4. \(\forall b \in B, \ \text{lev}(\varepsilon(b)) \geq \ell. \)
5. \(\forall \Lambda \in P_\ell^+, \exists \) unique elements \(b_\Lambda, b^\Lambda \in B \), such that

\[\varepsilon(b_\Lambda) = \Lambda = \varphi(b^\Lambda) \]
Example: $B^{2,2}$ of type $C_3^{(1)}$

$$B^{2,2} \cong B(2\Lambda_2) \oplus B(2\Lambda_1) \oplus B(0).$$

Bijection $\varepsilon : B_{\min}^{2,2} \rightarrow P_1^+$ given by:

b	$\varepsilon(b) = \varphi(b)$
\emptyset	Λ_0
$1 \bar{1}$	Λ_1
$2 \bar{1}$	Λ_2
$1 \bar{2}$	Λ_3
$3 \bar{2}$	Λ_3
$2 \bar{3}$	Λ_3
Example: $B^{2,2}$ of type $C_3^{(1)}$

\[B^{2,2} \cong B(2\Lambda_2) \oplus B(2\Lambda_1) \oplus B(0). \]

Bijection $\varepsilon : B^{2,2}_{\text{min}} \to P_1^+$ given by:

b	$\varepsilon(b) = \varphi(b)$
\emptyset	Λ_0
$\begin{array}{c} 1 \\ \bar{1} \end{array}$	Λ_1
$\begin{array}{c} 2 \\ 1 \\ \bar{1} \\ 1 \\ 2 \\ \bar{2} \\ 3 \\ 2 \\ 3 \end{array}$	Λ_2
$\bar{1}$	Λ_3
Example: \(B^{2,1} \) of type \(C_3^{(1)} \)

\[B^{2,1} \cong B(\Lambda_2). \]

\(B^{2,1} \) is not perfect. \(\varepsilon \) is not a bijection:

\(b \)	\(\varepsilon(b) \)
2 \ 1	\(\Lambda_0 \)
3 \ 2 \ 2	\(\Lambda_1 \)
3 \ 3	\(\Lambda_2 \)
2 \ 3	\(\Lambda_3 \)
Example: $B^{2,1}$ of type $C_3^{(1)}$

\[
B^{2,1} \cong B(\Lambda_2).
\]

$B^{2,1}$ is not perfect. ε is not a bijection:

b	$\varepsilon(b)$
2 1	Λ_0
3 2	Λ_1
3 3	Λ_2
2 3	Λ_3

$\bar{2} 2$
Kyoto path model

$B(\Lambda)$ highest weight infinite-dimensional crystal of type \mathfrak{g}
$u_\Lambda \in B(\Lambda)$ highest weight vector

Theorem (KMN2)

$\Lambda \in P^+_s$
$B^{r_1,s}, B^{r_2,s}, \ldots$ perfect of level-s

$\Phi: B(\Lambda) \cong \cdots \otimes B^{r_2,s} \otimes B^{r_1,s} \otimes B(\tilde{\Lambda})$

B perfect
$B_{\text{min}} = \{ b \in B \mid \text{lev}(\varepsilon(b)) = s \}$
$\varepsilon, \varphi: B_{\text{min}} \to P^+_s$ are bijections
Induced automorphism $\tau = \varphi \circ \varepsilon^{-1}$ on P^+_s
Ground state $\Phi(u_\Lambda) = \cdots \otimes b_{\tau^2(\Lambda)} \otimes b_{\tau(\Lambda)} \otimes b_\Lambda$
Kyoto path model

$B(\Lambda)$ highest weight infinite-dimensional crystal of type \mathfrak{g}

$u_\Lambda \in B(\Lambda)$ highest weight vector

Theorem (KMN2)

$\Lambda \in P_+^s$

$B_{r_1,s}, B_{r_2,s}, \ldots$ perfect of level-s

$$\Phi : B(\Lambda) \cong \cdots \otimes B_{r_2,s} \otimes B_{r_1,s} \otimes B(\tilde{\Lambda})$$

\mathcal{B} perfect

$\mathcal{B}_{\text{min}} = \{ b \in \mathcal{B} \mid \text{lev}(\varepsilon(b)) = s \}$

$\varepsilon, \varphi : \mathcal{B}_{\text{min}} \to P_+^s$ are bijections

Induced automorphism $\tau = \varphi \circ \varepsilon^{-1}$ on P_+^s

Ground state $\Phi(u_\Lambda) = \cdots \otimes b_{\tau^{-2}(\Lambda)} \otimes b_{\tau(\Lambda)} \otimes b_\Lambda$
Kyoto path model

\(B(\Lambda) \) highest weight infinite-dimensional crystal of type \(\mathfrak{g} \)
\(u_\Lambda \in B(\Lambda) \) highest weight vector

Theorem (KMN\(^2\))

\[\Lambda \in P_+^s \]
\[B_{r_1, s}, B_{r_2, s}, \ldots \text{ perfect of level-} s \]

\[\Phi : B(\Lambda) \cong \cdots \otimes B_{r_2, s} \otimes B_{r_1, s} \otimes B(\tilde{\Lambda}) \]

\(\mathcal{B} \) perfect
\(\mathcal{B}_{\text{min}} = \{ b \in \mathcal{B} \mid \text{lev}(\varepsilon(b)) = s \} \)
\(\varepsilon, \varphi : \mathcal{B}_{\text{min}} \to P_+^s \) are bijections

Induced automorphism \(\tau = \varphi \circ \varepsilon^{-1} \) on \(P_+^s \)

Ground state \(\Phi(u_\Lambda) = \cdots \otimes b_{\tau^{-2}(\Lambda)} \otimes b_{\tau(\Lambda)} \otimes b_\Lambda \)
Level-s adjoint KR crystals

Adjoint KR crystals:
Take r to correspond to highest root θ.
Classical decomposition [Chari]:

$$B^{r,s} \cong \bigoplus_{0 \leq k \leq s} B(k \Lambda_r)$$

Question: Can we find level-s KR crystals of all types?

Answer:

- Benkart et al. gave a uniform construction of level-1 perfect crystals for all types
- Exceptional types:
 - Yamane type $G_2^{(1)}$
 - Kashiwara, Misra, Okada, Yamada type $D_4^{(3)}$
 - see Brant Jones’ talk for level-s type $E_6^{(1)}, \ldots$
Level-s adjoint KR crystals

Adjoint KR crystals:
Take r to correspond to highest root θ.
Classical decomposition [Chari]:

$$B^{r,s} \cong \bigoplus_{0 \leq k \leq s} B(\Lambda^r_k)$$

Question: Can we find level-s KR crystals of all types?

Answer:

- Benkart et al. gave a uniform construction of level-1 perfect crystals for all types.
- Exceptional types:
 - Yamane type $G_2^{(1)}$
 - Kashiwara, Misra, Okada, Yamada type $D_4^{(3)}$
 - see Brant Jones’ talk for level-s type $E_6^{(1)}$, ...
Level-s adjoint KR crystals

Adjoint KR crystals:
Take r to correspond to highest root θ.
Classical decomposition [Chari]:
\[
B^{r,s} \cong \bigoplus_{0 \leq k \leq s} B(k\Lambda_r)
\]

Question: Can we find level-s KR crystals of all types?

Answer:
- Benkart et al. gave a uniform construction of level-1 perfect crystals for all types
- Exceptional types:
 - Yamane type $G_2^{(1)}$
 - Kashiwara, Misra, Okada, Yamada type $D_4^{(3)}$
 - see Brant Jones’ talk for level-s type $E_6^{(1)}$, ...
| Outline |
|-------------------------|
| Affine crystals |
| KR crystals |
| Perfectness |
| **Affine Schubert calculus** |
Schubert calculus

- **Enumerative Geometry**: counting subspaces satisfying certain intersection conditions (Hilbert’s 15th problem) Schubert, Pieri, Giambelli,... 1874

- **Cohomology**: computations in cohomology ring of the Grassmannian $H^*(G/P)$ with $G = SL_n(\mathbb{C})$ and $P \subset G$ maximal parabolic 1950’s

- **Symmetric Functions**: cohomology ring of Grassmannian (with its natural Schubert basis) same as the algebra of symmetric functions (with Schur basis) 1950’s

- **Combinatorics**: multiplication of Schubert basis governed by Littlewood-Richardson rule 1970’s
Schubert calculus

- **Enumerative Geometry**: counting subspaces satisfying certain intersection conditions (Hilbert’s 15th problem) Schubert, Pieri, Giambelli,... 1874
- **Cohomology**: computations in cohomology ring of the Grassmannian $H^*(G/P)$ with $G = SL_n(\mathbb{C})$ and $P \subset G$ maximal parabolic 1950’s
- **Symmetric Functions**: cohomology ring of Grassmannian (with its natural Schubert basis) same as the algebra of symmetric functions (with Schur basis) 1950’s
- **Combinatorics**: multiplication of Schubert basis governed by Littlewood-Richardson rule 1970’s
Schubert calculus

- **Enumerative Geometry:** counting subspaces satisfying certain intersection conditions (Hilbert’s 15th problem) Schubert, Pieri, Giambelli,... 1874

- **Cohomology:** computations in cohomology ring of the Grassmannian $H^*(G/P)$ with $G = SL_n(\mathbb{C})$ and $P \subset G$ maximal parabolic 1950’s

- **Symmetric Functions:** cohomology ring of Grassmannian (with its natural Schubert basis) same as the algebra of symmetric functions (with Schur basis) 1950’s

- **Combinatorics:** multiplication of Schubert basis governed by Littlewood-Richardson rule 1970’s
Schubert calculus

- **Enumerative Geometry**: counting subspaces satisfying certain intersection conditions (Hilbert’s 15th problem) Schubert, Pieri, Giambelli,... 1874
- **Cohomology**: computations in cohomology ring of the Grassmannian $H^*(G/P)$ with $G = SL_n(\mathbb{C})$ and $P \subset G$ maximal parabolic 1950’s
- **Symmetric Functions**: cohomology ring of Grassmannian (with its natural Schubert basis) same as the algebra of symmetric functions (with Schur basis) 1950’s
- **Combinatorics**: multiplication of Schubert basis governed by Littlewood-Richardson rule 1970’s
Affine Schubert calculus

Definition

- G affine Kac–Moody group
- $P \subset G$ maximal parabolic subgroup
- G/P affine Grassmannian Gr

Example: $K = \mathbb{C}((t))$, $O = \mathbb{C}[[t]]$
affine Grassmannian $Gr = SL_{k+1}(K)/SL_{k+1}(O)$

Theorem (Lam)

Schubert bases of $H_*(Gr)$ and $H^*(Gr)$ are given by k-Schur functions and affine Stanley symmetric functions of Lascoux, Lapointe, Morse

Structure constants include genus zero Gromov-Witten invariants or fusion coefficients
Affine Schubert calculus

Definition

\(G \) affine Kac–Moody group
\(P \subset G \) maximal parabolic subgroup
\(G/P \) affine Grassmannian \(Gr \)

Example: \(\mathcal{K} = \mathbb{C}((t)), \mathcal{O} = \mathbb{C}[[t]] \)
affine Grassmannian \(Gr = SL_{k+1}(\mathcal{K})/SL_{k+1}(\mathcal{O}) \)

Theorem (Lam)

Schubert bases of \(H^*(Gr) \) and \(H^*(Gr) \) are given by \(k \)-Schur functions and affine Stanley symmetric functions of Lascoux, Lapointe, Morse

Structure constants include genus zero Gromov-Witten invariants or fusion coefficients
Affine Schubert calculus

Definition

G affine Kac–Moody group
$P \subset G$ maximal parabolic subgroup
G/P affine Grassmannian Gr

Example:

$\mathcal{K} = \mathbb{C}((t))$, $\mathcal{O} = \mathbb{C}[[t]]$
affine Grassmannian $Gr = SL_{k+1}(\mathcal{K})/SL_{k+1}(\mathcal{O})$

Theorem (Lam)

Schubert bases of $H_*(Gr)$ and $H^*(Gr)$ are given by k-Schur functions and affine Stanley symmetric functions of Lascoux, Lapointe, Morse

Structure constants include genus zero Gromov-Witten invariants or fusion coefficients
Affine Schubert calculus

Definition

\(G \) affine Kac–Moody group
\(P \subset G \) maximal parabolic subgroup
\(G/P \) affine Grassmannian \(Gr \)

Example: \(K = \mathbb{C}((t)), O = \mathbb{C}[[t]] \)
affine Grassmannian \(Gr = SL_{k+1}(K)/SL_{k+1}(O) \)

Theorem (Lam)

Schubert bases of \(H_*(Gr) \) and \(H^*(Gr) \) are given by \(k \)-Schur functions and affine Stanley symmetric functions of Lascoux, Lapointe, Morse

Structure constants include genus zero Gromov-Witten invariants or fusion coefficients
nilHecke algebra

Definition (nilHecke algebra)
The nilHecke algebra
• generators A_1, \ldots, A_{n-1}
• relations

\[
A_iA_j = A_jA_i \quad \text{for } |i - j| \geq 2 \\
A_iA_{i+1}A_i = A_{i+1}A_iA_{i+1} \\
A_i^2 = 0
\]
Stanley symmetric functions for other types

- For each Weyl group W one can construct a new nilHecke algebra by taking the associated graded $\mathbb{C}[W]$.
- Finding Stanley symmetric functions for each W is equivalent to finding a particular commutative subalgebra of the nilHecke algebra.

Theorem (Lam; LSS 07)

Schubert bases of $H_*(Gr)$ and $H^*(Gr)$ are given by k-Schur functions and affine Stanley symmetric functions for type $A_n^{(1)}$ and $C_n^{(1)}$.

Theorem (LSS 09)

Schubert bases of $K_*(Gr)$ and $K^*(Gr)$ are given by K-k-Schur functions and affine stable Grothendieck polynomials.
Stanley symmetric functions for other types

- For each Weyl group W one can construct a new nilHecke algebra by taking the associated graded $\mathbb{C}[W]$.
- Finding Stanley symmetric functions for each W is equivalent to finding a particular commutative subalgebra of the nilHecke algebra.

Theorem (Lam; LSS 07)

Schubert bases of $H_\ast(Gr)$ and $H^\ast(Gr)$ are given by k-Schur functions and affine Stanley symmetric functions for type $A_n^{(1)}$ and $C_n^{(1)}$.

Theorem (LSS 09)

Schubert bases of $K_\ast(Gr)$ and $K^\ast(Gr)$ are given by K-k-Schur functions and affine stable Grothendieck polynomials.
Stanley symmetric functions for other types

- For each Weyl group W one can construct a new nilHecke algebra by taking the associated graded $\mathbb{C}[W]$.
- Finding Stanley symmetric functions for each W is equivalent to finding a particular commutative subalgebra of the nilHecke algebra.

Theorem (Lam; LSS 07)

Schubert bases of $H_(Gr)$ and $H^*(Gr)$ are given by k-Schur functions and affine Stanley symmetric functions for type $A_n^{(1)}$ and $C_n^{(1)}$.*

Theorem (LSS 09)

Schubert bases of $K_(Gr)$ and $K^*(Gr)$ are given by K-k-Schur functions and affine stable Grothendieck polynomials.*
Stanley symmetric functions for other types

- For each Weyl group \(W \) one can construct a new \(\text{nilHecke algebra} \) by taking the associated graded \(\mathbb{C}[W] \).
- Finding Stanley symmetric functions for each \(W \) is equivalent to finding a particular \(\text{commutative subalgebra} \) of the nilHecke algebra.

Theorem (Lam; LSS 07)

Schubert bases of \(H^*(\text{Gr}) \) and \(H^*(\text{Gr}) \) are given by \(k \)-Schur functions and affine Stanley symmetric functions for type \(A_n^{(1)} \) and \(C_n^{(1)} \).

Theorem (LSS 09)

Schubert bases of \(K^*(\text{Gr}) \) and \(K^*(\text{Gr}) \) are given by \(K \)-\(k \)-Schur functions and affine stable Grothendieck polynomials.
Relation to KR crystals

\[s^{(k)}_{\lambda} \]

- Structure coefficients

\[s^{(k)}_{\lambda}(k) s^{(k)}_{\mu}(k) = \sum_{\nu} c^{k}_{\lambda\mu} s^{(k)}_{\nu}(k) \]

Observation: (inspired by Postnikov and Stroppel/Korff)

- \(s_{\lambda} \) evaluated at crystal operators acting on \(B^{1,k} \) of type \(A^{(1)}_{n-1} \) yields fusion coefficients
- \(s_{\lambda} \) evaluated at crystal operators acting on \(B^{n,1} \) of type \(A^{(1)}_{n+k-1} \) yields quantum cohomology structure coefficients
Relation to KR crystals

\[k\text{-Schur functions} \quad s^{(k)}_{\lambda} \]

\[\text{Structure coefficients} \quad s^{(k)}_{\lambda} s^{(k)}_{\mu} = \sum_{\nu} c^{k}_{\lambda \mu} s^{(k)}_{\nu} \]

Observation: (inspired by Postnikov and Stroppel/Korff)

- \(s_{\lambda} \) evaluated at crystal operators acting on \(B^{1,k} \) of type \(A^{(1)}_{n-1} \) yields fusion coefficients
- \(s_{\lambda} \) evaluated at crystal operators acting on \(B^{n,1} \) of type \(A^{(1)}_{n+k-1} \) yields quantum cohomology structure coefficients
Relation to KR crystals

\[s^{(k)}_\lambda \]

Structure coefficients

\[s^{(k)}_\lambda s^{(k)}_\mu = \sum_\nu c^{k,\nu}_{\lambda,\mu} s^{(k)}_\nu \]

Observation: (inspired by Postnikov and Stroppel/Korff)

• \(s_\lambda \) evaluated at crystal operators acting on \(B^{1,k} \) of type \(A^{(1)}_{n-1} \) yields fusion coefficients

• \(s_\lambda \) evaluated at crystal operators acting on \(B^{n,1} \) of type \(A^{(1)}_{n+k-1} \) yields quantum cohomology structure coefficients
Relation to KR crystals

\[s^{(k)}_\lambda \]

Structure coefficients

\[s^{(k)}_\lambda s^{(k)}_\mu = \sum_\nu c^{k,\nu}_{\lambda,\mu} s^{(k)}_\nu \]

Observation: (inspired by Postnikov and Stroppel/Korff)

- \(s_\lambda \) evaluated at crystal operators acting on \(B^{1,k}_1 \) of type \(A^{(1)}_{n-1} \) yields fusion coefficients
- \(s_\lambda \) evaluated at crystal operators acting on \(B^{n,1}_1 \) of type \(A^{(1)}_{n+k-1} \) yields quantum cohomology structure coefficients