МЕТОДЫ ЭКСПРЕСС-ИДЕНТИФИКАЦИИ КЕТОРОЛАКА ТРОМЕТАМИНА

А.С. ВОЛОДИНА¹, М.А. КОПАНИЦА², Л.Ю. КУЛЕШОВА²

ООО «Медилон-Фармимэкс», ул. Соколова-Соколенка, 31, 600035, г. Владимир, Российская Федерация (1)
Рязанский государственный медицинский университет имени академика И.П. Павлова, ул. Высоковольтная, 9, 390026, г. Рязань, Российская Федерация (2)

В настоящее время нестероидные противовоспалительные средства (НПВС) являются одной из самых востребованных групп лекарственных препаратов, используемых в терапии боли различной этиологии, а также в качестве компонента дооперационной и постоперационной анальгезии. Почти 50% всех продаж аптечных учреждений составляют НПВС, отпускаемые как по рецепту врача, так и без него. Бесконтрольное применение их приводит к развитию тяжелых побочных эффектов и отравлений. Кроме того, в связи с широким использованием НПВС в лечебной практике, в последнее время участились случаи фальсификации этой группы препаратов. Целью нашей работы являлась разработка условий экспресс-идентификации кеторолакатрометамина (кеторолака), как одного из наиболее применяемых в группе НПВС производных гетероарилуксусной кислоты, поскольку данных об этом в литературных источниках не найдено.

Материалы и методы
Объектами исследования являлись лекарственные препараты, содержащие кеторолакатрометамин, в различных формах. Нами предложено проведение идентификации кеторолакатрометамина исходя из различия в его структуре функциональных групп. Для подтверждения присутствия фенильного радикала в структуре препарата использована реакция нитрования. Присутствие кетогруппы в структуре препарата подтверждено конденсацией с аминопроизводными. Наличие третичного атома азота установлено реакциями с общеалкалоидными реактивами, а карбоксильной группы – по реакциям соле- и комплексообразования. Результаты использования метода микрокристаллоскопии с его простотой и быстротой выполнения в сочетании с высокой чувствительностью позволили наглядно представить присутствие лекарственного средства в анализируемых образцах.

Заключение
Применение дорогостоящей аппаратуры, которая используется в настоящее время для идентификации кеторолакатрометамина, является нерентабельной в условиях аптеки. Использование минимальных объемов реагентов при проведении капельных реакций с общеалкалоидными реактивами в сочетании с методом микрокристаллоскопии позволяет наглядно представить присутствие (или отсутствие) лекарственного средства в анализируемых образцах различных производителей, представленных в виде таблеток, глазных капель, растворов для инъекций или геля для наружного применения. Это способствует быстрой идентификации токсиканта для оказания пострадавшему своевременной неотложной медицинской помощи.
В настоящее время нестероидные противовоспалительные средства (НПВС) являются одной из самых востребованных групп лекарственных препаратов. Они используются в терапии боли различной этиологии, а также в качестве компонента дооперационной и постоперационной аналгезии [1,2]. Почти 50% всех продаж аптечных учреждений составляют НПВС, отпускаемые как по рецепту врача, так и без него [3,4]. Бесконтрольное применение их приводит к развитию тяжелых побочных эффектов и отравлений, клиническая картина которых сходна с отравлениями наркосодержащими лекарственными средствами [5]. Кроме того, в связи с широким использованием НПВС в лечебной практике, в последнее время участились случаи фальсификации этой группы препаратов. Применение капельных реакций в соответствии с методом микрокристаллоскопии с использованием минимальных объемов позволяет наглядно представить присутствие (или отсутствие) лекарственного средства в анализируемом образце, а также быстро провести идентификацию токсиканта для оказания пострадавшему своевременной неотложной медицинской помощи.

Цель исследования
Разработка условий экспресс-идентификации кеторолакотротаметина (кеторолака), как одного из наиболее применяемых в группе НПВС производных гетероарилуксусной кислоты, поскольку данных об этом в литературных источниках не найдено.

Материалы и методы
Согласно статье государственной фармакопеи Российской Федерации XII издания (часть I) подлинность кеторолака подтверждают методами ИК- и УФ-спектроскопии, а также методом хроматографии в тонком слое сорбента [6]. Для их выполнения необходимо иметь дорогую аппаратуре, что является нерентабельным в условиях аптеки. Поэтому при сомнении в качестве анализируемого образца нами предложено проводить идентификацию кеторолака исходя из наличия в его структуре функциональных групп [7]. Объектами исследования являлись лекарственные препараты, содержащие кеторолакотротаметин, в различных формах (таблетки, глазные капли, растворы для инъекций, гель для наружного применения), нескольких производителей. Для извлечения действующего вещества из таблеток «Кетанов» и «Кеторол» проводили растирание их в ступке, предварительно сняв пленочное покрытие, 0,3г (точная навеска) полученной массы помещали в пробирку, добавляли 2мл воды очищенной и интенсивно взбалтывали в течение 5 минут, полученный раствор фильтровали через бумажный фильтр. Полученные растворы распределяли по 5-7 пробиркам и капельно выполняли реакции для экспресс-идентификации кеторолакотротаметина.

Для подтверждения присутствия фенильного радикала в кеторолаке нитрование было осуществлено раствором нитрата аммония в 85% серной кислоте с образованием нитропродуктов, имеющих желтоватую окраску, которая, в свою очередь, идентифицируется по образованию аци-соли крас-
ного цвета при действии растворов гидроксида натрия или калия. Присутствие кетогруппы в структуре кеторолака подтверждено реакциями с аминопроизводными, в частности, с 2,4-дINITрофенилгидразином, сопровождающегося образованием соответствующего гидразона жёлто-оранжевой окраски с характерной температурой плавления. Для подтверждения присутствия третичного атома азота в кеторолаке были использованы общехимические реактивы. Положительный результат получен при взаимодействии с раствором нитрата меди (II), солей которых отличались более рельефной структурой (рис. 5). При использовании в качестве реактивов растворов сульфата и ацетата меди получены сростки кристаллов удлиненных призм синего цвета, иногда с зелёными вкраплениями, но с раствором сульфата меди кристаллы отличались более рельефной структурой (рис. 6, 7). Следует отметить, что с увеличением сроков наблюдения за продуктами реакции с общехимическими реактивами и солями меди (II) отмечен рост числа центров кристаллизации, что, в свою очередь, увеличивает количество и размер кристаллов. Представленные реакции легко воспроизводимы, кристаллы образующихся продуктов имеют однозначную характерную структуру и сохраняют ее при анализе всех лекарственных препаратов, содержащих кеторолакатрометамин после соответствующей пробоподготовки.

**Выводы**

Таким образом, были разработаны и апробированы методы экспресс-идентификации одного из наиболее часто применяемых НПВС – кеторолакатрометамин с использованием реакции на функциональные группы, содержащиеся в его структуре. Последующее применение метода микрокристаллоскопии с использованием минимальных объемов позволяет наглядно представить с высокой точно
Рис. 1. Кристаллы продукта реакции кеторолака с пикриновой кислотой

Рис. 2. Кристаллы продукта реакции кеторолака с реактивом Шейблера

Рис. 3. Кристаллы продукта реакции кеторолака с реактивом Зонненштейна
Рис. 4. Кристаллы продукта реакции кеторолака с реактивом Драгendorфа

Рис. 5. Кристаллы продукта реакции кеторолака с нитратом меди (II)

Рис. 6. Кристаллы продукта реакции кеторолака с сульфатом меди (II)

Рис. 7. Кристаллы продукта реакции кеторолака с ацетатом меди (II)

Конфликт интересов отсутствует.
Литература
1. Орзиев З.М., Исамитдинова Н.Ш., Гиёсова Н.О. Особенности клинико-эндоскопических проявлений гастроуденопатий индуцированных приемом нестероидных противовоспалительных средств // Наука молодых (Eruditio Juvenium). 2016. №1. С. 64-67.
2. Зотова Л.А., Петров В.С. Нестероидные противовоспалительные препараты в современной практике: фокус на безопасность // Наука молодых (Eruditio Juvenium). 2015. №1. С. 25-30.
3. Каратеев А.Е. Рациональное применение нестероидных противовоспалительных препаратов (НПВП) в клинической практике. Клинические рекомендации // Современная ревматология. 2015. Т. 9, №1. С. 4-23.
4. Борисевич С.Н. Применение метода микрокристаллоскопии при химикотоксикологическом исследовании препаратов группы НПВС // Здоровье и окружающая среда: сборник научных трудов. Минск, 2012. С. 554-558.
5. Карпеня Л.И. Изучение общетоксического действия мази ибупрофена // Химико-фармацевтический журнал. 2004. №4. С. 37-39.
6. ОФС.1.1.006.15, ФС 42. Кеторолак Трометамин. Доступно по: http://pharmacopoeia.ru/fs-2-1-0022-15-ketorolak-trometamol.
7. Чекулаева Г.Ю., Платонова Н.А. Руководство к практическим занятиям и самостоятельной работе по фармацевтической химии для студентов 3 курса (6 семестр) фармацевтического факультета. Рязань: РязГМУ, 2014. С. 11-23.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Володина А.С. – провизор. ООО «Медилон-Фармимэкс», ул. Соколова-Соколенка, г. Владимир, Российская Федерация; SPIN 6443-2271, ORCID ID 0000-0002-1124-5762.

Копаница М.А. – студент 4 курса фармацевтического факультета, ФГБОУ ВО РязГМУ Минздрава России, г. Рязань, Российская Федерация; SPIN 8147-5006, ORCID ID 0000-0001-7476-4538.

Кулешова Л.Ю. – ассистент, к.фарм.н., ФГБОУ ВО РязГМУ Минздрава России, г. Рязань, Российская Федерация; SPIN 4039-5626, ORCID ID 0000-0002-9885-2839.

METHODS OF EXPRESS IDENTIFICATION OF KETOROLAC TROMETHAMINE

A.S. VOLODINA¹, M.A. KOPANITSA², L.Yu. KULESHOVA²

OOO «Medilon-Farmimeks», 31, Sokolov-Falcon str., 600035, Vladimir, Russian Federation (1)
Ryazan State Medical University, 9, Vysokovoltlnaya str., 390026, Ryazan, Russian Federation (2)

Currently, non-steroid anti-inflammatory drugs (NSAIDs) are one of the most popular groups of medical drugs used in therapy of pain of different etiology, as well as a component of preoperative and postoperative analgesia. NSAIDs account for almost 50% of sales in pharmacies both by prescription and over-the-counter. Their uncontrolled use leads to serious side effects and intoxications. Besides, due to widespread use of NSAIDs in
medical practice, cases of their falsification have recently become more frequent. **Aim** of our work was to develop methods of rapid identification of ketorolac tromethamine (ketorolac) as one of the most widely used derivatives of heteroarylacetic acid in the NSAID group, since no data on this problem have been found in literature. **Materials and Methods.** The objects of the study were drugs of various pharmaceutical forms containing ketorolac tromethamine. We proposed a method of identification of ketorolac tromethamine based on the presence of functional groups in its structure. The presence of a phenyl radical in the structure of the preparation was confirmed by nitration reaction. The presence of a keto group in the structure of the preparation was determined by condensation with amine derivatives. The presence of a tertiary nitrogen atom was identified by reactions with common alkaloid reagents, and of carboxylic group – by reactions of salt- and complex-formation. **Results.** Use of method of crystalline microchemical analysis with its simplicity and rapid implementation combined with high sensitivity permitted to visualize the presence of the medical drug in the analyzed samples. **Conclusion.** Use of expensive equipment for identification of ketorolac tromethamine is unprofitable in conditions of a pharmacy. Use of minimal volumes of reagents in drop reactions with common alkaloid reagents in a combination with the crystalline microchemical analysis makes it possible to visualize the presence (or absence) of the drug in the analyzed samples of various manufacturers, in the form tablets, eye drops, injectable solutions or gel for external use. This permits to rapidly identify a toxicant and render timely and urgent medical assistance in case of intoxication.

**Keywords:** express identification, crystalline microchemical analysis, ketorolac tromethamine.

Current, non-steroid anti-inflammatory drugs (NSAIDs) are one of the most popular groups of medical drugs. They are used in therapy of pain of different etiology and as a component of preoperative and postoperative analgesia [1,2]. NSAIDs account for almost 50% of sales of medical drugs both by prescription and over-the-counter [3,4]. Their uncontrolled use leads to serious side effects and intoxications. Besides, due to the widespread use of NSAIDs in medical practice, cases of falsification of this group of drugs have recently become more frequent. Use of drop reactions in accordance with a method of crystalline microchemical analysis with minimal volumes of preparation permits to visualize the presence (or absence) of the medical drug in the analyzed samples and to rapidly identify the toxicant to render timely and urgent medical help to a patient.

The aim of the work was to develop a method of express identification of ketorolac tromethamine (ketorolac) as one of the most common NSAIDs – derivatives of heteroarylacetic acid, since no data on this issue has been found in the literature.

**Materials and Methods**

According to the Article of State Pharmacopoeia of the Russian Federation of XII edition (part I) ketorolac is authenticated by methods of IR and UV spectroscopy and by a method of chromatography in a thin layer of sorbent [6]. These methods require expensive apparatus unprofitable in conditions of a pharmacy. Therefore, in case of doubts in the quality of an analyzed sample we proposed identification of ketorolac on the basis of presence of functional groups in its structure [7].

Objects of study were medical drugs of different forms (tablets, eye drops, solutions for injections, gel for external use) containing ketorolac tromethamine, of several manufacturers. To extract the active substance from Ketanov and Keterol tablets, they were ground in a stamp mortar with preliminarily removed coating, after that 0.3g (precisely weighed amount) of the obtained mass were placed into a test tube, 2 ml of purified water were added and the mixture was intensely shaken within 5 minutes, after that the obtained solution was filtered across a filter paper. Extraction of ketorolac from gel for ex-
ternal use was obtained by use of hot purified water and 0.3g of the substance (precisely weighed amount) with subsequent filtration across paper filter. The obtained solutions were distributed among 5-7 test tube, and drop tests were performed for express identification of ketorolac tromethamine.

The presence of phenyl radical in the structure of the drug was confirmed in nitration reaction. The presence of keto group in the structure of the drug was confirmed by condensation with amine derivatives. The presence of a tertiary nitrogen atom was determined in reactions with common alkaloid reagents, and of carboxyl group – in salt- and complex-forming reactions.

Results and Discussion

The presence of phenyl radical in ketorolac was identified by nitration in ammonium nitrate solution in 85% hydrochloric acid with production of nitro compounds having yellow coloration which, in turn, was identified by formation of aci-salt of red color under action of sodium or potassium hydroxide solution. The presence of keto group in the structure of ketorolac was confirmed in reaction with amine derivative, in particular, with 2,4-dinitrophenylhydrazine, by formation of the respective hydrazone of yellow-orange color with the characteristic melting temperature. To confirm the presence of tertiary nitrogen atom in ketorolac, common alkaloid reagents were used. A positive result in the interaction with Scheibler’s reagent was appearance of white flake-like precipitate, with Sonnenstein’s reagent – of light-green precipitate, with Dragendorff’s reagent – by brown staining of the solution. In the interaction of the tested sample with picric acid formation of yellow crystalline precipitate was observed. The presence of carboxyl group in ketorolac was confirmed by salt- and complex-forming reactions with heavy metal salts: orange-brown precipitate with ferric (III) chloride solution, green-blue precipitate with copper salts, with cobalt salts no precipitate with characteristic coloration was observed.

Subsequent use of crystalline microchemical analysis with its simplicity, fast implementation combined with high sensitivity permitted to visualize the presence of the medical drug in the analyzed samples. Observation was conducted extempore, after 20 and 40 minutes, 1 hour and 24 hours. In cases when the distinct structure of crystals was discernible, the results were fixed on a photo camera, followed by a detailed description of the image. Thus, the result of interaction of preparations of ketorolac with picric acid solution was formation of single needle-like crystals with prismatic base which after some time turned into branching clusters resembling branches of arborvitae (thuya) (Fig. 1). Interaction of ketorolac preparations with Scheibler’s reagents resulted in formation of transparent V-shaped crystals resembling dragonfly’s wings (Fig. 2). Interaction of ketorolac with Sonnenstein’s reagent produced crystals in the form of elongated needles which rapidly fused into druses (Fig. 3). In the interaction with Dragendorff’s reagent the tested sample of ketorolac produced multifaceted prismatic crystals of yellow-brown color growing into small druses that increased in size with time (Fig. 4). Interaction of ketorolac with copper salts (nitrate, sulfate and acetate) gave precipitates with coloration depending in each separate case on several factors: the amount of added reagent, anion of salt and kind of pharmaceutical form from which the active substance was extracted. The product of interaction of ketorolac with copper nitrate solutions was dirty-green plates of cubic or rhombic shape (Fig. 5). Use of copper sulfate and acetate solutions as reagents produced cluster crystals in the form of elongated prisms of blue color sometimes with green inclusions, with structure of crystals more prominent with copper sulfate solution (Figs. 6, 7). It should be noted that prolongation of observation of the reaction with common alkaloid reagent and copper salts (II), showed increase in the number of crystallization centers with subsequent increase in the number and size of crystals. The
Fig. 1. Crystals of the product of reaction of ketorolac with picric acid

Fig. 2. Crystals of the product of reaction of ketorolac with Scheibler’s reagent

Fig. 3. Crystals of the product of reaction of ketorolac with Sonnenstiein’s reagent
Fig. 4. Crystals of the product of reaction of ketorolac with Dragendorff’s reagent

Fig. 5. Crystals of the product of reaction of ketorolac with copper nitrate (II)

Fig. 6. Crystals of the product of reaction of ketorolac with copper sulfate (II)

Fig. 7. Crystals of the product of reaction of ketorolac with copper acetate (II)
described reactions were easily reproducible, crystals of the formed products had a straightforward characteristic structure and exhibited it in analysis of all medical drugs containing ketorolac tromethamine (after the appropriate preparation of samples).

Conclusions
Thus, methods of express identification of one of the most common NSAIDs – ketorolac tromethamine were developed and tested with use of reactions to functional groups present in the structure of this drug. The subsequent use of crystalline microchemical analysis with minimal volumes of the drug will permit to precisely visualize the presence (or absence) of ketorolac tromethamine in the analyzed samples, and also to rapidly identify a toxicant for rendering urgent medical assistance to a patient.

No conflict of interests.

References
1. Orziev ZM, Isamtitdina NSh, Giyosova NO. Clinical and endoscopic characteristics of nonsteroidal anti-inflammatory drug gastroduodenopathy. Nauka molodykh (Eruditio Juvenium). 2016; 1:64-7(In Russ).
2. Zotova LA, Petrov VS. Nonsteroidal anti-inflammatory drugs in modern clinical practice: focus on safety. Nauka molodykh (Eruditio Juvenium). 2015; 1:25-30(In Russ).
3. Karateev AE. Rational use of nonsteroidal anti-inflammatory drugs (NSAIDs) in clinical practice. Clinical guidelines. Modern Rheumatology Journal. 2015; 9(1):4-23(In Russ). doi:10.14412/1996-7012-2015-1-4-23.
4. Borisevich SN. Microcrystallos copical method for chemical and toxicological studies of NSAID preparations. In: Zdorov’ye i okruzhayushaya sreda: sb. nauch. tr. Minsk, 2012. P. 554-8(In Russ).
5. Karpenya LI. General toxicity of ibuprofen ointment. Pharmaceutical Chemistry Journal. 2004; 4:37-39(In Russ).
6. OFS. 1.1.006.15, FS 42. Ketorolac Trometamin. Available at: http://pharmacopeia.ru/fs-2-1-0022-15-ketorolak-trometamol. Accessed: 9 Feb 2018(In Russ).
7. Chekulayeva GYu, Platonova NA. Guide to practical studies and independent work on pharmaceutical chemistry for 3rd year students (6 semesters) of the faculty of Pharmacy. Ryazan: RyazGMU; 2014. P. 11-23(In Russ).

INFORMATION ABOUT THE AUTHORS
Volodina A.S. – A pharmacist. OOO «Medilon-Farmimeks», Vladimir, Russian Federation; ORCID ID 0000-0002-1124-5762.

Kopanitsa M.A. – A 4th year student of Faculty of Pharmacy, Ryazan State Medical University, Ryazan, Russian Federation; ORCID ID 0000-0001-7476-4538.

Kuleshova L.Y. – PhD, Assistant, Ryazan State Medical University, Ryazan, Russian Federation; ORCID ID 0000-0002-9885-2839.