SOME REMARKS ON THE CLASSICAL PRIME SPECTRUM OF MODULES

Alireza Abbasi and Mohammad Hasan Naderi

Faculty of Science, Department of Mathematics, University of Qom, Qom, Iran, P.O. Box 37161-46611

Abstract. Let R be a commutative ring with identity and let M be an R-module. A proper submodule P of M is called a classical prime submodule if $abm \in P$, for $a, b \in R$, and $m \in M$, implies that $am \in P$ or $bm \in P$. The classical prime spectrum of M, $\text{ClSpec}(M)$, is defined to be the set of all classical prime submodules of M. We say M is classical primeful if $M = 0$, or the map ψ from $\text{ClSpec}(M)$ to $\text{Spec}(R/\text{Ann}(M))$, defined by $\psi(P) = (P : M)/\text{Ann}(M)$ for all $P \in \text{ClSpec}(M)$, is surjective. In this paper, we study classical primeful modules as a generalization of primeful modules. Also, we investigate some properties of a topology that is defined on $\text{ClSpec}(M)$, named the Zariski topology.

Keywords: Classical prime, Classical primeful, Classical top module

1. Introduction

Throughout the paper all rings are commutative with identity and all modules are unital. Let M be an R-module. If N is a submodule of M, then we write $N \leq M$. For any two submodules N and K of an R-module M, the residual of N by K is denoted by $(N : K) = \{ r \in R : rK \subseteq N \}$. A proper submodule P of M is called a prime submodule if $am \in P$, for $a \in R$ and $m \in M$, implies that $m \in P$ or $a \in (P : M)$. Also, a proper submodule P of M is called a classical prime submodule if $abm \in P$, for $a, b \in R$ and $m \in M$, implies that $am \in P$ or $bm \in P$ (see for example [5]). The set of prime (resp. classical prime) submodules of M is denoted by $\text{Spec}(M)$ (resp. $\text{ClSpec}(M)$). The class of prime submodules of modules was introduced and studied in 1992 as a generalization of...
the class of prime ideals of rings. Then, many generalizations of prime submodules were studied such as primary, classical prime, classical primary and classical quasi primary submodules, see [1, 8, 16, 4] and [7].

For a proper submodule \(N \) of an \(R \)-module \(M \), the prime radical of \(N \) is
\[
\sqrt{N} = \bigcap \{ P \mid P \in \mathcal{V}(N) \},
\]
where \(\mathcal{V}(N) = \{ P \in \text{Spec}(M) \mid N \subseteq P \} \). Also the classical prime radical of \(N \) is
\[
\sqrt{N} = \bigcap \{ P \mid P \in \mathcal{V}(N) \}, \quad \mathcal{V}(N) = \{ P \in \text{Cl.Spec}(M) \mid N \subseteq P \}. \]
If there are no such prime (resp. classical prime) submodules, \(\sqrt{N} \) (resp. \(\sqrt{N} \)) is \(M \). We say \(N \) is a radical (resp. classical radical) submodule, if \(\sqrt{N} = \emptyset \)(resp. \(\sqrt{N} = N \)).

The set of all maximal submodules of \(M \) is denoted by \(\text{Max}(M) \). A Noetherian module \(M \) is called a semi-local (resp. a local) module if \(\text{Max}(M) \) is a non-empty finite (resp. a singleton) set. A non-Noetherian commutative ring \(R \) is called a quasisemilocal (resp. a quasilocal) ring if \(R \) has only a finite number (resp. a singleton) of maximal ideals. An \(R \)-module \(M \) is called a multiplication (resp. weak multiplication) module if for every submodule (resp. prime submodule) of \(M \), there exists an ideal \(I \) of \(R \) such that \(N = IM \)(see [14] and [2]). If \(N \) is a prime submodule of a multiplication \(R \)-module \(M \), then \(N_1 \cap N_2 \subseteq N \), where \(N_1, N_2 \subseteq M \), implies that \(N_1 \subseteq N \) or \(N_2 \subseteq N \) (see for more detail [11] and [19]). An \(R \)-module \(M \) is called compatible if its classical prime submodules and its prime submodules coincide. All commutative rings and multiplicative modules are examples of compatible modules, (see for more detail [8]). A submodule \(N \) of \(M \) is said to be strongly irreducible if for submodules \(N_1 \) and \(N_2 \) of \(M \), the inclusion \(N_1 \cap N_2 \subseteq N \) implies that either \(N_1 \subseteq N \) or \(N_2 \subseteq N \). Strongly irreducible submodules have been characterized in [13].

Let \(M \) be an \(R \)-module. For any subset \(E \) of \(M \), we consider classical varieties denoted by \(\mathcal{V}(E) \). We define \(\mathcal{V}(E) = \{ P \in \text{Cl.Spec}(M) \mid E \subseteq P \} \). Then

(a) If \(N \) is a submodule generated by \(E \), then \(\mathcal{V}(E) = \mathcal{V}(N) \).
(b) \(\mathcal{V}(0_M) = \text{Cl.Spec}(M) \) and \(\mathcal{V}(M) = \emptyset \).
(c) \(\bigcap_{i \in J} \mathcal{V}(N_i) = \mathcal{V}(\sum_{i \in J} N_i) \), where \(N_i \leq M \)
(d) \(\mathcal{V}(N) \cup \mathcal{V}(L) \subseteq \mathcal{V}(N \cap L) \), where \(N, L \leq M \).

Now, we assume that \(\mathcal{C}(M) \) denotes the collection of all subsets \(\mathcal{V}(N) \) of \(\text{Cl.Spec}(M) \). Then, \(\mathcal{C}(M) \) contains the empty set and \(\text{Cl.Spec}(M) \), and also \(\mathcal{C}(M) \) are closed under arbitrary intersections. However, in general, \(\mathcal{C}(M) \) is not closed under finite union. An \(R \)-module \(M \) is called a classical top module if \(\mathcal{C}(M) \) is closed under finite unions, i.e., for every submodules \(N \) and \(L \) of \(M \), there exists a submodule \(K \) of \(M \) such that \(\mathcal{V}(N) \cup \mathcal{V}(L) = \mathcal{V}(K) \), for in this case, \(\mathcal{C}(M) \) satisfies the axioms for the closed subsets of a topological space, then in this case, \(\mathcal{C}(M) \) induce a topology on \(\text{Cl.Spec}(M) \). We call the induced topology the classical quasi-Zariski topology (see [9]).

In this paper, we introduce the notion of classical primeful modules and also we investigate some properties of classical quasi-Zariski topology of \(\text{Cl.Spec}(M) \). In Section 2, we introduce the notion of classical primeful modules as a generalization of primeful modules. In particular, in Proposition 2.3, it is proved that if \(M \) is
a classical primeful R-module, then $\text{Supp}(M) = \text{V}(\text{Ann}(M))$. Then we get some properties of classical top modules. In Section 3, we get some properties of classical quasi-Zariski topology of $\text{Cl.Spec}(M)$ and also we get some properties of classical top modules.

2. Classical primeful module

The notion of primeful modules was introduced by Chin P. Lu in [18] as follows:

Definition 2.1. An R-module M is primeful if either $M = (0)$, or $M \neq (0)$ and the map $\phi : \text{Spec}(M) \rightarrow \text{Spec}(R/\text{Ann}(M))$, defined by $\phi(P) = (P : M)/\text{Ann}(M)$ for all $P \in \text{Spec}(M)$, is surjective.

Now, we extend the notion of primeful modules to classical primeful modules.

Definition 2.2. Suppose $\text{Cl.Spec}(M) \neq \emptyset$, then the map ψ from $\text{Cl.Spec}(M)$ to $\text{Spec}(R/\text{Ann}(M))$ defined by $\psi(P) = (P : M)/\text{Ann}(M)$ for all $P \in \text{Cl.Spec}(M)$, will be called the natural map of $\text{Cl.Spec}(M)$.

An R-module M is classical primeful if either

(i) $M = (0)$, or

(ii) $M \neq (0)$ and the map $\psi : \text{Cl.Spec}(M) \rightarrow \text{Spec}(R/\text{Ann}(M))$ from above is surjective.

Lemma 2.1. Let M be a classical top R-module. Then the natural map $\psi : \text{Cl.Spec}(M) \rightarrow \text{Spec}(R/\text{Ann}(M))$ is injective.

Proof. Let $P, Q \in \text{Cl.Spec}(M)$. If $\psi(P) = \psi(Q)$, then

$$(P : M)/\text{Ann}(M) = (Q : M)/\text{Ann}(M).$$

So $(P : M) = (Q : M)$ and then $P = Q$. □

Theorem 2.1. Let M be a classical top R-module. Then, If R satisfies ACC on prime ideals, then M satisfies ACC on classical prime submodules.

Proof. Let $N_1 \subseteq N_2 \subseteq \ldots$ be an ascending chain of classical prime submodules of M. This induces the following chain of prime ideals, $\psi(N_1) \subseteq \psi(N_2) \subseteq \ldots$, where ψ is the natural map

$$\psi : \text{Cl.Spec}(M) \rightarrow \text{Spec}(R/\text{Ann}(M)).$$

Since R satisfies ACC on prime ideals, there exists a positive integer k such that for each $i \in \mathbb{N}$, $\psi(N_k) = \psi(N_{k+i})$. Now by Lemma 2.1, we have $N_k = N_{k+i}$ as required. □
Remark 2.1. ([8, Proposition 5.3]) Let S be a multiplicatively closed subset of R, p a prime ideal of R such that $p \cap S = \emptyset$ and let M be an R-module. If P is a classical p-prime submodule of M with $P \neq M$, then P_s is also a classical p_s-prime submodule of M_s. Moreover if Q is a prime R_s-submodule of M_s, then $Q^c = \{ m \in M : f(m) \in Q \}$ is a classical prime submodule of M.

Let p be a prime ideal of a ring R, M an R-module and $N \subseteq M$. By the saturation of N with respect to p, we mean the contraction of N_p in M and designate it by $S_p(N)$. It is also known that

$$S_p(N) = \{ e \in M | es \in N \text{ for some } s \in R \setminus p \}.$$

Saturations of submodules were investigated in detail in [17].

Proposition 2.1. For any nonzero R-module M, the following are equivalent:

1. The natural map $\psi : ClSpec(M) \rightarrow Spec(R/Ann(M))$ is surjective;
2. For every $p \in V(Ann(M))$, there exists $P \in ClSpec(M)$ such that $(P : M) = p$;
3. $pM_p \neq M_p$, for every $p \in V(Ann(M))$;
4. $S_p(pM)$, the contraction of pM_p in M, is a classical p-prime submodule of M for every $p \in V(Ann(M))$;
5. $ClSpec_p(M) \neq \emptyset$; for every $p \in V(Ann(M))$.

Proof. (1)\iff(2): It is clear by Definition 2.2.

(2)\implies(3): Let $p \in V(Ann(M))$ and let N be a classical p-prime submodule of M. Then N_p is a classical pR_p-prime submodule of M_p by Remark 2.1. Now, since $pM_p \subseteq N_p \subseteq M_p$, we conclude that $pM_p \neq M_p$.

(3)\implies(4): Since pR_p is the maximal ideal of R_p and $pM_p \neq M_p$, $pM_p = (pR_p)M_p$ is a pR_p-prime, and therefore classical pR_p-prime, submodule of M_p. Then $S_p(pM) = (pM_p)^c$, the contraction of pM_p in M, is a classical p-prime submodule of M by Remark 2.1.

(4)\implies(5) and (5)\implies(2) are easy. □

Proposition 2.2. Every finitely generated R-module M is classical primeful.

Proof. If $M = 0$, evidently the results is true. Now, let M be a nonzero finitely generated R-module. Then $\text{Supp}(M) = V(Ann(M))$, so for every $p \in V(Ann(M))$, M_p is a nonzero finitely generated module over the local ring R_p. Then by virtue
of Nakayama’s Lemma, \(pM_p \neq M_p \), for every \(p \in V(\text{Ann}(M)) \). Therefore by Proposition 2.1, \(M \) is classical primeful. \(\Box \)

For every finitely generated module \(M \), \(\text{Supp}(M) = V(\text{Ann}(M)) \). The next proposition proves that the equality holds even if \(M \) is only a classical primeful module.

Proposition 2.3. (see [18, Proposition 3.4]) If \(M \) is a classical primeful \(R \)-module, then \(\text{Supp}(M) = V(\text{Ann}(M)) \).

Proof. If \(M = (0) \), then \(\text{Supp}(M) = V(\text{Ann}(M)) = \emptyset \). Now let \(M \) be a nonzero classical primeful \(R \)-module, so \(V(\text{Ann}(M)) \neq \emptyset \). By Proposition 2.1, if \(p \in V(\text{Ann}(M)) \), then \(S_p(pM) \) is a classical \(p \)-prime submodule of \(M \), so \(S_p(pM) \neq M \). Since \(S_p(0) \subseteq S_p(pM) \), then \(M \neq S_p(0) \), from which we can see that \(M_p \neq (0) \). Thus \(V(\text{Ann}(M)) \subseteq \text{Supp}(M) \). The other inclusion is always true.

For every prime, ideal \(p \) of \(R \), \(R_p \) is always a quasilocal ring. However, for an arbitrary \(R \)-module \(M \), \(M_p \) is not necessarily a local \(R_p \)-module. But by the next proposition, if \(M \) is a nonzero classical top classical primeful \(R \)-module, then \(R/\text{Ann}(M) \) is a quasilocal ring.

Proposition 2.4. Let \(M \) be a nonzero classical top classical primeful \(R \)-module. If \(M \) is a semi-local (resp. local) module, then \(R/\text{Ann}(M) \) is a quasisemilocal (resp. a quasilocal) ring.

Proof. Let \(M \) be a local module with unique maximal submodule \(P \). Then \(p := (P : M) \in \text{Max}(R) \). Now let \(\text{Ann}(M) \subseteq q \in \text{Max}(R) \). It is enough to prove \(q = p \). To prove this, we note that \(S_q(qM) \) is a classical \(q \)-prime submodule of \(M \) by Proposition 2.1. Now we show that \(S_q(qM) \in \text{Max}(M) \). Let \(S_q(qM) \subseteq K \) for some submodule \(K \) of \(M \). Then we have \(q = (S_q(qM) : M) = (K : M) \). Hence \(S_q(qM) = K \) by Lemma 2.1. This implies that \(S_q(qM) = P \) and therefore \(q = p \). For the semi-local case we argue similarly. \(\Box \)

In the rest of this section, we get some properties of classical top modules. First note that every classical top module is a top module ([9, Proposition 2.4]). In the next theorem, we introduce some modules that they are classical top modules.

Theorem 2.2. Let \(M \) be an \(R \)-module. Then \(M \) is a classical top module in each of the following cases:

1. \(M \) is a multiplication \(R \)-module.

2. \(M \) be a module that every classical prime submodule of \(M \) is strongly irreducible.
(3) \(M \) is an \(R \)-module with the property that for any two submodules \(N \) and \(L \) of \(M \), \((N : M)\) and \((L : M)\) are comaximal.

Proof. (1). Let \(P \in \mathcal{V}(N_1 \cap N_2) \) and so \(N_1 \cap N_2 \subseteq P \). Since \(M \) is compatible, then \((N_1 \cap N_2 : M) \subseteq (P : M)\), so \(N_1 \subseteq P \) or \(N_2 \subseteq P \). Therefore \(P \in \mathcal{V}(N_1) \) or \(P \in \mathcal{V}(N_2) \). This implies that \(M \) is a classical top module.

(2). Let \(P \in \mathcal{V}(N \cap L) \). Since \(\mathcal{V}(N) \cup \mathcal{V}(L) \subseteq \mathcal{V}(N \cap L) \), for each submodules \(N \) and \(L \) of \(M \), then \(N \cap L \subseteq P \). Now, since \(P \) is strongly irreducible, then \(N \subseteq P \) or \(L \subseteq P \). Therefore \(P \in \mathcal{V}(N) \cup \mathcal{V}(L) \). Thus \(\mathcal{C}(M) \) is closed under finite unions. Hence \(M \) is a classical top module.

(3). Let \(P \) be a classical prime submodule of \(M \) with \(N \cap L \subseteq P \). Then \((N : M) \cap (L : M) \subseteq (P : M) \in Spec(R) \). We may assume that \((N : M) \subseteq (P : M)\). Then clearly \((L : M) \nsubseteq (P : M)\) by assumption. Hence \(N \subseteq P \). Therefore \(P \) is strongly irreducible. This implies that \(M \) is a classical top module by (2). \(\square \)

If \(Y \) is a nonempty subset of \(\text{Cl.Spec}(M) \), then the intersection of the members of \(Y \) is denoted by \(\mathfrak{S}(Y) \). Thus, if \(Y_1 \) and \(Y_2 \) are subsets of \(\text{Cl.Spec}(M) \), then \(\mathfrak{S}(Y_1 \cup Y_2) = \mathfrak{S}(Y_1) \cap \mathfrak{S}(Y_2) \). An \(R \)-module \(M \) is said to be distributive if \((A+B) \cap C = (A \cap C) + (B \cap C)\), for all submodules \(A \), \(B \) and \(C \) of \(M \)(see for example [12]).

Theorem 2.3. Let \(M \) is a classical top module and \(\sqrt[\mathfrak{S}]{E} = E \) for each submodule \(E \) of \(M \). Then \(M \) is a distributive module.

Proof. Let \(A, B \) and \(C \) be any submodules of \(M \). Then,
\[
(A+B) \cap C = \sqrt[\mathfrak{S}]{(A+B) \cap C} \\
= \cap \{P \in \text{Cl.Spec}(M)|(A+B) \cap C \subseteq P\} \\
= \cap \{P|P \in \mathcal{V}((A+B) \cap C)\} \\
= \mathfrak{S}(\mathcal{V}((A+B) \cap C)) \\
= \mathfrak{S}(\mathcal{V}(A+B) \cup \mathcal{V}(C)) \\
= \mathfrak{S}((\mathcal{V}(A) \cap \mathcal{V}(B)) \cup \mathcal{V}(C)) \\
= \mathfrak{S}((\mathcal{V}(A) \cup \mathcal{V}(B)) \cap \mathcal{V}(C)) \\
= \mathfrak{S}((\mathcal{V}(A \cap C)) \cap (\mathcal{V}(B \cap C))) \\
= \sqrt[\mathfrak{S}]{(A \cap C) \cap (B \cap C)} \\
= (A \cap C) + (B \cap C)
\]

Hence \(M \) is a distributive module. \(\square \)

Proposition 2.5. Let \(M \) be a classical top module. Then for every two submodules \(A \) and \(B \) of \(M \) the equality \(\sqrt[\mathfrak{S}]{A \cap B} = \sqrt[\mathfrak{S}]{A} \cap \sqrt[\mathfrak{S}]{B} \) holds.

Proof. By definition, \(\sqrt[\mathfrak{S}]{A \cap B} = \mathfrak{S}(\mathcal{V}(A \cap B)) = \mathfrak{S}(\mathcal{V}(A) \cup \mathcal{V}(B)) \\
= \mathfrak{S}(\mathcal{V}(A)) \cap \mathfrak{S}(\mathcal{V}(B)) = \sqrt[\mathfrak{S}]{A} \cap \sqrt[\mathfrak{S}]{B} \). \(\square \)
3. Some properties of topological space \(\text{ClSpec}(M) \)

In this section, we study some properties of topological space \(\text{ClSpec}(M) \). The closure of \(Y \) in \(\text{ClSpec}(M) \) with respect to the classical quasi-Zariski topology denoted by \(\overline{Y} \).

Lemma 3.1. Let \(M \) be a classical top module and let \(Y \) be a nonempty subset of \(\text{ClSpec}(M) \). Then \(\overline{Y} = \mathcal{V}(\overline{Y}) \). Hence, for every \(N \leq M \), \(\mathcal{V}(\mathcal{V}(N)) = \mathcal{V}(N) \).

Proof. Suppose \(\mathcal{V}(E) \) is a closed set of \(\text{ClSpec}(M) \) containing \(Y \). Then for every classical prime submodule \(P \) in \(Y \), \(E \subseteq P \). Therefore \(E \subseteq \overline{Y} \) and so \(\mathcal{V}(\overline{Y}) \subseteq \mathcal{V}(E) \). Since \(Y \subseteq \mathcal{V}(\overline{Y}) \), then \(\mathcal{V}(\overline{Y}) \) is the smallest closed subset of \(\text{ClSpec}(M) \) containing \(Y \). Thus \(\overline{Y} = \mathcal{V}(\overline{Y}) \).

Finally, since \(\mathcal{V}(\overline{\mathcal{V}(N)}) = \overline{\mathcal{V}(N)} \), and since \(\mathcal{V}(N) \) is a closed subset of \(\text{ClSpec}(M) \), then \(\overline{\mathcal{V}(N)} = \mathcal{V}(N) \). Consequently \(\mathcal{V}(\overline{\mathcal{V}(N)}) = \mathcal{V}(N) \). \(\square \)

Let \(X \) be a topological space and let \(x \) and \(y \) be two points of \(X \). We say that \(x \) and \(y \) can be separated if each lies in an open set which does not contain the other point. \(X \) is a \(T_1 \)-space if any two distinct points in \(X \) can be separated. A topological space \(X \) is a \(T_1 \)-space if and only if the singleton set \(\{x\} \) is a closed set, for any \(x \) in \(X \).

Theorem 3.1. Let \(M \) be an \(R \)-module. Then \(\text{ClSpec}(M) \) is \(T_1 \)-space if and only if each classical prime submodule is maximal in the family of all classical prime submodules of \(M \). i.e, \(\text{Max}(M) = \text{ClSpec}(M) \).

Proof. Let \(P \) be maximal in \(\text{ClSpec}(M) \) with respect inclusion. Then \(\{P\} = \mathcal{V}(\{P\}) = \mathcal{V}(P) \), but \(P \) is maximal in \(\text{ClSpec}(M) \), so \(\{P\} = \{P\} \). Then \(\{P\} \) is a closed set in \(\text{ClSpec}(M) \). Thus \(\text{ClSpec}(M) \) is a \(T_1 \)-space, and vice versa. \(\square \)

Definition 3.1. Let \(X \) be a topological space and \(Y \subseteq X \). Then:

1. \(X \) is irreducible if \(X \neq \emptyset \) and for every decomposition \(X = A_1 \cup A_2 \) with closed subsets \(A_i \subseteq X, i = 1, 2 \), we have \(A_1 = X \) or \(A_2 = X \).

2. \(Y \) is irreducible if \(Y \) is irreducible as a space with the relative topology. For this to be so, it is necessary and sufficient that, for every pair of sets \(F \), \(G \) which are closed in \(X \) and satisfy \(Y \subseteq F \cup G \), then \(Y \subseteq F \) or \(Y \subseteq G \)[10, Ch. II, p. 119].

Lemma 3.2. Let \(M \) be an \(R \)-module. Then for every \(P \in \text{ClSpec}(M) \), \(\mathcal{V}(P) \) is irreducible.

Proof. Let \(\mathcal{V}(P) \subseteq Y_1 \cup Y_2 \), for some closed sets \(Y_1 \) and \(Y_2 \). Since \(P \in \mathcal{V}(P) \), either \(P \in Y_1 \) or \(P \in Y_2 \). Suppose that \(P \in Y_1 \). Then \(Y_1 = \bigcap_{i \in I} \bigcup_{j=1}^{n_i} \mathcal{V}(N_{ij}) \), for some \(I \), \(n_i (i \in I) \) and \(N_{ij} \leq M \). Then for all \(i \in I \), \(P \in \bigcup_{j=1}^{n_i} \mathcal{V}(N_{ij}) \). Thus for all \(i \in I \), \(\mathcal{V}(P) \subseteq \bigcup_{j=1}^{n_i} \mathcal{V}(N_{ij}) \), so \(\mathcal{V}(P) \subseteq Y_1 \). Thus \(\mathcal{V}(P) \) is irreducible. \(\square \)
M. Behboodi and M. R. Haddadi show that if \(Y \subseteq \text{Spec}(M) \) and \(\mathfrak{T}(Y) \) is a prime submodule of \(M \) and \(\mathfrak{T}(Y) \in \mathcal{Y} \), then \(Y \) is irreducible[6, Theorem 3.4]. In the next proposition, we extend this fact to classical prime submodules.

Proposition 3.1. Let \(M \) be a classical top module and \(Y \subseteq \text{ClSpec}(M) \). Then \(\mathfrak{T}(Y) \) is a classical prime submodule of \(M \) if and only if \(Y \) is an irreducible space.

Proof. Let \(P = \mathfrak{T}(Y) \) be a classical prime submodule of \(M \) and \(P \in Y \), so \(\mathcal{Y} \subseteq \mathcal{Y}(P) \). If \(Y \subseteq Y_1 \cup Y_2 \), for closed sets \(Y_1 \) and \(Y_2 \), then \(\mathcal{Y} \subseteq Y_1 \cup Y_2 \). Since \(\mathcal{Y}(P) \subseteq Y_1 \cup Y_2 \) and by Lemma 3.2, \(\mathcal{Y}(P) \) is irreducible, then \(\mathcal{Y}(P) \subseteq Y_1 \) or \(\mathcal{Y}(P) \subseteq Y_2 \). Now, since \(Y \subseteq \mathcal{Y}(P) \), then either \(Y \subseteq Y_1 \) or \(Y \subseteq Y_2 \). Thus \(Y \) is irreducible. For the converse, we can apply [6, Theorem 3.4]. \(\square \)

Corollary 3.1. Let \(M \) be a classical top module. Then for every classical prime submodule \(P \), \(\mathcal{Y}(P) \) is an irreducible subspace of \(C\text{lSpec}(M) \). Consequently, \(\mathcal{Y}(N) \) is irreducible if and only if \(\sqrt[\mathfrak{T}]{N} \) is a classical prime submodule.

Proof. First note that \(\mathfrak{T}(\mathcal{Y}(P)) = \bigcap\{P|P \in \mathcal{Y}(P)\} = \sqrt[\mathfrak{T}]{P} = P \). Then \(\mathcal{Y}(P) \) is an irreducible subspace of \(\text{ClSpec}(M) \), by Proposition 3.1. Finally, it is enough to note that \(\sqrt[\mathfrak{T}]{\mathcal{Y}(N)} = \mathfrak{T}(\mathcal{Y}(N)) \). \(\square \)

Proposition 3.2. Let \(M \) be a classical top \(R \)-module, \(\mathcal{R} = R/\text{Ann}(M) \) and let \(\psi: \text{ClSpec}(M) \rightarrow \text{Spec}(\mathcal{R} \text{Ann}(M)) \) be the natural map of \(\text{ClSpec}(M) \). Then \(\psi \) is continuous in the classical quasi-Zariski topology.

Proof. It suffices to prove that \(\psi^{-1}(\mathcal{V}(\mathcal{T})) = \mathcal{V}(IM) \), for every \(I \in \mathcal{V}(\text{Ann}(M)) \). Let \(P \in \text{ClSpec}(M) \), then \(P \in \psi^{-1}(\mathcal{V}((\mathcal{T})) \), so \(\psi(P) \in \mathcal{V}(\mathcal{T}) \), therefore \((P : M) \in \mathcal{V}(\mathcal{T}) \). Then \((P : M) \in \text{Spec}(\mathcal{R}) \) and \(I \subseteq (P : M) \), so \((P : M) \in \text{Spec}(\mathcal{R}) \) and \(I/\text{Ann}(M) \subseteq (P : M)/\text{Ann}(M) \). Hence \((P : M) \in \text{Spec}(\mathcal{R}) \) and \(\text{Ann}(M) \subseteq I \subseteq (P : M) \). Now, since \(IM \subseteq (P : M)M \subseteq P \), then \(P \in \mathcal{V}(IM) \), which it shows that \(\psi^{-1}(\mathcal{V}(\mathcal{T})) \subseteq \mathcal{V}(IM) \). In similar way, we can show \(\mathcal{V}(IM) \subseteq \psi^{-1}(\mathcal{V}(\mathcal{T})) \) and hence \(\psi^{-1}(\mathcal{V}(\mathcal{T})) = \mathcal{V}(IM) \). \(\square \)

Lemma 3.3. Let \(M \) be a classical top \(R \)-module, \(\mathcal{R} = R/\text{Ann}(M) \) and let \(\psi \) be the natural map of \(\text{ClSpec}(M) \). If \(M \) is classical primeful, then \(\psi \) is both closed and open; more precisely, for every submodule \(N \) of \(M \), \(\psi(\mathcal{V}(N)) = \mathcal{V}((N : M)) \) and \(\psi(\text{ClSpec}(M) \setminus \mathcal{V}(N)) = \text{ClSpec}(\mathcal{R}/\text{Ann}(M)) \setminus (\mathcal{V}(N : M)) \).

Proof. First we show that \(\psi(\mathcal{V}(N)) = \mathcal{V}((N : M)) \), for every \(N \subseteq M \), whenever \(M \) is classical primeful. Since \(\psi \) is continuous, as we have seen in Proposition 3.2, \(\psi^{-1}(\mathcal{V}(N : M)) = \mathcal{V}((N : M)M) = \mathcal{V}(N) \). Hence, \(\psi(\mathcal{V}(N)) = \psi \circ \psi^{-1}(\mathcal{V}(N : M)) = \mathcal{V}(N : M) \), since \(\psi \) is surjective and \(M \) is classical primeful. Consequently: \(\psi(\text{ClSpec}(M) \setminus \mathcal{V}(N)) = \text{Spec}(\mathcal{R}/\text{Ann}(M)) \setminus (\mathcal{V}(N : M)) \). \(\square \)
Corollary 3.2. Let M be a classical top R-module, $\overline{R} = R/\text{Ann}(M)$ and let ψ be the natural map of $\text{ClSpec}(M)$. Then ψ is bijective if and only if it is a homeomorphism.

Proof. This follows from Proposition 3.2 and Lemma 3.3. □

Proposition 3.3. Let M be a classical top R-module and let Y be a subset of $\text{ClSpec}(M)$. If Y is irreducible, then $T = \{(P : M) | P \in Y\}$ is an irreducible subset of $\text{Spec}(R)$, with respect to Zariski topology.

Proof. Let $\overline{R} = R/\text{Ann}(M)$, ψ the natural map of $\text{ClSpec}(M)$ and let Y be a subset of $\text{ClSpec}(M)$. Since ψ is continuous by proposition 3.2, then $\psi(Y) = Y$ is an irreducible subset of $\text{Spec}(R/\text{Ann}(M))$. Therefore

$$
\exists(Y) = (\exists(Y) : M)\text{Ann}(M) \in \text{Spec}(R/\text{Ann}(M)).
$$

Therefore $\exists(T) = (\exists(Y) : M)$ is a prime ideal of R, then by Proposition 3.1, T is an irreducible subset of $\text{Spec}(R)$. □

Clearly the next lemma is true (see for example [8], page 10).

Lemma 3.4. If $\{P_i\}_{i \in I}$ is a chain of classical prime submodules of an R-module M, then $\bigcap_{i \in I} P_i$ is a classical prime submodule of M.

Let Y be a closed subset of a topological space. An element $y \in Y$ is called a generic point of Y if $Y = \text{Cl}(|\{y\}|)$, where $\text{Cl}(|\{y\}|)$ is the closure of $\{y\}$ in Y. Note that a generic point of a closed subset Y of a topological space is unique if the topological space is a T_0-space.

Theorem 3.2. Let M be a classical primeful R-module. If M is a classical top module, then a subset Y of $\text{ClSpec}(M)$ is an irreducible closed subset if and only if $Y = \mathcal{V}(P)$, for some $P \in \text{ClSpec}(M)$. Thus every irreducible closed subset of $\text{ClSpec}(M)$ has a generic point.

Proof. By Corollary 3.1, for every $P \in \text{ClSpec}(M)$, $Y = \mathcal{V}(P)$ is an irreducible closed subset of $\text{ClSpec}(M)$. Conversely, if Y is an irreducible closed subset of $\text{ClSpec}(M)$, then $Y = \mathcal{V}(N)$, for some $N \leq M$. Now, since $Y = \mathcal{V}(N) = \mathcal{V}(\sqrt{N})$, then $\exists(Y) = \exists(\mathcal{V}(N)) = \sqrt{\exists(N)}$ is a classical prime submodule of M by Lemma 3.4. Then $\mathcal{V}(\exists(Y)) = \mathcal{V}(\exists(\mathcal{V}(N))) = \mathcal{V}(\sqrt{\exists(N)})$, so by Theorem 3.1, $Y = \mathcal{V}(N) = \mathcal{V}(\sqrt{\exists(N)})$, with $\sqrt{\exists(N)} \in \text{ClSpec}(M)$. □

A maximal irreducible subset Y of X is called an irreducible component of X and it is always closed. In the next theorem, we show that there exists a bijection map from the set of irreducible components of $\text{ClSpec}(M)$ to the set of minimal classical prime submodules of M.

Theorem 3.3. Let M be a classical top R-module. Then the map $\mathcal{V}(P) \mapsto P$ is a bijection from the set of irreducible components of $\text{ClSpec}(M)$ to the set of minimal classical prime submodules of M.

Proof. Let Y be an irreducible component of $\text{ClSpec}(M)$. By Theorem 3.2, each irreducible component of $\text{ClSpec}(M)$ is a maximal element of the set $\{\mathcal{V}(Q) | Q \in \text{ClSpec}(M)\}$, so for some $P \in \text{ClSpec}(M)$, $Y = \mathcal{V}(P)$. Obviously, P is a minimal classical prime submodule of M. Suppose T is a classical prime submodule of M that $T \subseteq P$, then $\mathcal{V}(P) \subseteq \mathcal{V}(T)$, so $P = T$. Now, let P be a minimal classical prime submodule of M, so for every $Q \in \text{ClSpec}(M)$, $P \subseteq Q$. Then for all $Q \in \text{ClSpec}(M)$, $\mathcal{V}(Q) \subseteq \mathcal{V}(P)$. Thus $\mathcal{V}(P)$ is a maximal irreducible subset of $\text{ClSpec}(M)$. \square

Theorem 3.4. Consider the following statements for a nonzero classical top primeful R-module M:

1. $\text{ClSpec}(M)$ is an irreducible space.
2. $\text{Supp}(M)$ is an irreducible space.
3. $\sqrt{\text{Ann}(M)}$ is a prime ideal of R.
4. $\text{ClSpec}(M) = \mathcal{V}(pM)$, for some $p \in \text{Supp}(M)$.

Then $(1) \implies (2) \implies (3) \implies (4)$. In addition, if M is a multiplication module, then all of the four statements are equivalent.

Proof. $(1) \implies (2)$: By Proposition 3.2, the natural map ψ is continuous and by assumption ψ is surjective. Therefore $\text{Im}(\psi) = \text{Spec}(R/\text{Ann}(M))$ is also irreducible. Now by Proposition 2.3, $\text{Supp}(M) = \mathcal{V}(\text{Ann}(M))$ is homeomorphic to $\text{Spec}(R/\text{Ann}(M))$. Therefore $\text{Supp}(M)$ is an irreducible space.

$(2) \implies (3)$: By Proposition 3.1, $\mathfrak{S}(\text{Supp}(M))$ is a prime ideal of R. Then $\mathfrak{S}(\text{Supp}(M)) = \mathfrak{S}(\mathcal{V}(\text{Ann}(M))) = \sqrt{\text{Ann}(M)}$ is a prime ideal of R.

$(3) \implies (4)$: Let $a \in \sqrt{\text{Ann}(M)}$. So for some integer $n \in N$, $a^nM = 0$. Therefore for every classical prime submodule P of M, $a \in (P : M)$. Then for each $P \in \text{ClSpec}(M)$, $\text{Ann}(M) \subseteq \sqrt{\text{Ann}(M)} \subseteq (P : M)$. Since M is classical primeful, there exists a classical prime submodule Q of M such that $(Q : M) = \sqrt{\text{Ann}(M)}$. Then,

\[\text{ClSpec}(M) = \{ P \in \text{ClSpec}(M) | (Q : M) \subseteq (P : M) \} = \mathcal{V}((Q : M)M) = \mathcal{V}(\sqrt{\text{Ann}(M)}M). \]

It is clear that $p := \sqrt{\text{Ann}(M)} \in \text{Supp}(M)$. Therefore $\text{ClSpec}(M) = \mathcal{V}(pM)$.

Now, let M be a multiplication module and let $\text{ClSpec}(M) = \mathcal{V}(pM)$, for some $p \in \text{Supp}(M)$. Since M is classical primeful, there exists $P \in \text{ClSpec}(M)$, such that $(P : M) = p$. Since M is multiplication, we have $\text{ClSpec}(M) = \mathcal{V}(pM) = \mathcal{V}((P : M)M) = \mathcal{V}(P)$. This implies that $\text{ClSpec}(M)$ is an irreducible space by Corollary 3.1. \square
Let \(M \) be an \(R \)-module. For each subset \(N \) of \(M \), we denote \(\text{ClSpec}(M) - V(N) \) by \(\mathcal{U}(N) \). Further for each element \(m \in M \), \(\mathcal{U}(\{m\}) \) is denoted by \(\mathcal{U}(m) \). Hence

\[
\mathcal{U}(m) = \text{ClSpec}(M) - V(\{m\}).
\]

Moreover, for any family \(\{N_i\}_{i \in I} \) of submodules of \(M \), we have

\[
\mathcal{U}(\sum_{i \in I} N_i) = \mathcal{U}(\bigcup_{i \in I} N_i).
\]

Theorem 3.5. Let \(M \) be a classical top module. Then for every \(m \in M \), the sets \(\mathcal{U}(m) \) form a base for \(\text{ClSpec}(M) \).

Proof. Let \(\mathcal{U}(N) \) be an open set in \(\text{ClSpec}(M) \), where \(N \) is a submodule of \(M \). Then:

\[
\mathcal{U}(N) = \mathcal{U}(\bigcup_{n \in N} \{n\}) = \text{ClSpec}(M) - V\left(\bigcup_{n \in N} \{n\}\right)
\]

\[
= \text{ClSpec}(M) - \bigcap_{n \in N} V(\{n\})
\]

\[
= \bigcup_{n \in N} \left(\text{ClSpec}(M) - V(\{n\})\right)
\]

\[
= \bigcup_{n \in N} \mathcal{U}(n).
\]

Then for every \(m \in M \), the sets \(\mathcal{U}(m) \) form a base of \(\text{ClSpec}(M) \). \(\square \)

For a submodule \(N \) of an \(R \)-module \(M \), we put:

\[
\mathcal{F}(N) := \{L|L \subseteq N \text{ and } L \text{ is finitely generated}\}
\]

Lemma 3.5. Let \(M \) be an \(R \)-module and \(N \) be a submodule of \(M \). Then \(V(N) = \bigcap_{L \in \mathcal{F}(N)} V(L) \) and \(\mathcal{U}(N) = \bigcup_{L \in \mathcal{F}(N)} \mathcal{U}(L) \).

Proof. Suppose that \(P \in V(N) \). If \(L \in \mathcal{F}(N) \), then \(L \subseteq N \subseteq P \). Then \(P \in V(L) \), and \(V(N) \subseteq \bigcap_{L \in \mathcal{F}(N)} V(L) \). Now, let for every \(L \in \mathcal{F}(N) \), \(P \in V(L) \) and \(P \not\in V(N) \). Since \(N \not\subseteq P \), there exists \(x \in N \setminus P \). Then \(Rx \subseteq N \) and \(Rx \) is finitely generated, hence \(Rx \in \mathcal{F}(N) \). Therefore \(x \in Rx \subseteq P \), a contradiction. Thus \(\bigcap_{L \in \mathcal{F}(N)} V(L) \subseteq V(N) \). \(\square \)

Theorem 3.6. Let \(M \) be a classical top \(R \)-module. Then every quasi-compact open subset of \(\text{ClSpec}(M) \) is of the form \(\mathcal{U}(N) \), for some finitely generated submodule \(N \) of \(M \).
Proof. Suppose $U(B) = \text{Cl}(\text{Spec}(M)) \setminus \text{V}(B)$ is a quasi-compact open subset of $\text{Cl}(\text{Spec}(M))$. Then by Lemma 3.5, $U(B) = \bigcup_{L \in \mathcal{P}(B)} U(L)$. Now, since $U(B)$ is quasi-compact, then every open covering of $U(B)$ has a finite subcovering, therefore $U(B) = U(L_1) \cup \ldots \cup U(L_n) = U(\bigcap_{i=1}^{n} L_i)$. □

Proposition 3.4. Let M be a classical top R-module. If $\text{Spec}(R)$ is a T_1-space, then $\text{Cl}(\text{Spec}(M))$ is also a T_1-space.

Proof. Suppose Q is a classical prime submodule of M. Then $\text{Cl}(\{Q\}) = \text{V}(Q)$. If $P \in \text{V}(Q)$, then by Theorem 3.1, every prime ideal of R is a maximal ideal, so $(Q : M) = (P : M)$, then by Lemma 2.1, $Q = P$. Therefore $\text{Cl}(\{Q\}) = \{Q\}$ and this implies that $\text{Cl}(\text{Spec}(M))$ is a T_1-space. □

Definition 3.2. A topological space X is Noetherian provided that the open (respectively, closed) subsets of X satisfy the ascending (respectively, descending) chain condition (see for example [3], page 79 or [10], §4.2).

Theorem 3.7. An R-module M has Noetherian classical spectrum if and only if the ACC for classical radical submodules of M holds.

Proof. Let $N_1 \subseteq N_2 \subseteq N_3 \subseteq \ldots$ be an ascending chain of classical radical submodules of M. Since for all $i \in \mathbb{N}$, $\sqrt{N_i} = N_i$, then equivalently

$$\sqrt{N_1} \subseteq \sqrt{N_2} \subseteq \sqrt{N_3} \subseteq \ldots$$

is an ascending chain of classical radical submodules of M. Then equivalently

$$\mathcal{V}(\mathcal{V}(N_1)) \subseteq \mathcal{V}(\mathcal{V}(N_2)) \subseteq \mathcal{V}(\mathcal{V}(N_3)) \subseteq \ldots$$

is an ascending chain of classical radical submodules of M. Therefore

$$\mathcal{V}(N_1) \supseteq \mathcal{V}(N_2) \supseteq \mathcal{V}(N_3) \supseteq \ldots$$

is a descending chain of closed sets $\mathcal{V}(N_i)$ of $\text{Cl}(\text{Spec}(M))$. Now, R-module M has Noetherian spectrum if and only if $\text{Cl}(\text{Spec}(M))$ is a Noetherian topological space if and only if there exists a positive integer k such that $\mathcal{V}(N_k) = \mathcal{V}(N_{k+n})$ for each $n = 1, 2, \ldots$ if and only if $\sqrt{N_k} = \sqrt{N_{k+n}}$ if and only if $N_k = N_{k+n}$ if and only if the ACC for classical radical submodules of M holds. □

Theorem 3.8. Let M be a classical top R-module such that $\text{Cl}(\text{Spec}(M))$ is a Noetherian space. Then the following statements are true.

1. Every ascending chain of classical prime submodules of M is stationary.

2. The set of minimal classical prime submodules of M is finite. In particular, $\text{Cl}(\text{Spec}(M)) = \bigcup_{i=1}^{n} \mathcal{V}(P_i)$, where P_i are all minimal classical prime submodules of M.
Proof. (1). Suppose $N_1 \subseteq N_2 \subseteq N_3 \subseteq \ldots$ is an ascending chain of classical prime submodules of M. Therefore $V(N_1) \supseteq V(N_2) \supseteq \ldots$ is a descending chain of closed subsets of Cl.Spec(M), which is stationary by assumption. There exists an integer $k \in \mathbb{N}$ such that $V(N_k) = V(N_{k+i})$, for each $i \in \mathbb{N}$. Then for each $i \in \mathbb{N}$, $N_k = N_{k+i}$.

(2). This follows from Theorem 3.3 and the fact that if X is a Noetherian space, then the set of irreducible components of X is finite (see for example [10, Proposition 10]). □

Recall that if M is a Noetherian module, then each open subset of Spec(M) is quasi-compact (see for example [15, Theorem 3.3]). The next theorem shows that the same result is true for Cl.Spec(M) in Noetherian classical top modules.

Theorem 3.9. Let M be a Noetherian classical top module. Then each open subset of Cl.Spec(M) is quasi-compact.

Proof. Let for every submodule N of M, $U(N)$ be an open subset of Cl.Spec(M). Also, let $\{U(n_i)\}_{n_i \in N}$ be a basic open cover for $U(N)$. We show that there exist a finite subfamily of $\{U(n_i)\}_{n_i \in N}$ which covers Cl.Spec(M). Since $U(N) \subseteq \bigcup_{n_i \in N} U(n_i) = U(\bigcup_{n_i \in N} n_i)$, then for every submodule K of M that is generated by the set $A = \{n_i\}_{i \in I}$, $U(N) \subseteq U(K)$. Since M is a Noetherian module, then $K = \langle k_1, k_2, \ldots, k_n \rangle$, for some $k_i \in K$, therefore $b_i = \sum_{j=1}^{n} r_{ij} n_{ij}$, where $i = 1, \ldots, n$ and $n_{ij} \in A$. Thus there exists the subset $\{n_1, \ldots, n_m\} \subseteq A$ such that $K = \langle n_1, \ldots, n_m \rangle$. So $U(N) \subseteq U(K) = U(\langle n_1, \ldots, n_m \rangle)$. Then

$$U(N) \subseteq U(\bigcup_{i=1}^{n} n_i) = \bigcup_{i=1}^{n} U(n_i).$$

consequently, $U(N)$ is quasi-compact. □

Recall that a function Φ between two topological spaces X and Y is called an open map if, for any open set U in X, the image $\Phi(U)$ is open in Y. Also, Φ is called a homeomorphism if it has the following properties

(i) Φ is a bijection;
(ii) Φ is continuous;
(iii) Φ is an open map

A spectral space is a topological space homeomorphic to the prime spectrum of a commutative ring equipped with the Zariski topology. By Hochster’s characterization [15], a topology τ on a set X is spectral if and only if the following axioms hold:

(i) X is a T_0-space.
(ii) X is quasi-compact and has a basis of quasi-compact open subsets.
(iii) The family of quasi-compact open subsets of X is closed under finite intersections.

(iv) X is a sober space; i.e., every irreducible closed subset of X has a generic point.

For any ring R, it is is well-known that $\text{Spec}(R)$ satisfies these conditions (cf. [10], Chap. II, 4.1 - 4.3). We show that $\text{ClSpec}(M)$ is necessarily a spectral space in the classical quasi-Zariski topology for every module M.

We remark that any closed subset of a spectral space is spectral for the induced topology.

Theorem 3.10. Let M be a classical top primful R-module, $\overline{R} = R/\text{Ann}(M)$ and let ψ be the natural map of $\text{ClSpec}(M)$. Then ψ is a homeomorphism.

Proof. It is clear by Lemma 2.1, Proposition 3.2, Lemma 3.3 and Corollary 3.2. □

Corollary 3.3. Let M be a classical top primful R-module. Then $\text{ClSpec}(M)$ with classical quasi-Zariski topology is a spectral space.

Lemma 3.6. Let M be a classical top R-module. Then the following statements are equivalent:

(a) the natural map $\psi : \text{ClSpec}(M) \rightarrow \text{Spec}(R/\text{Ann}(M))$ is injective.

(b) $\text{ClSpec}(M)$ is a T_0-space.

Proof. We recall that a topological space is T_0 if and only if the closures of distinct points are distinct. Now, the result follows from

$$ P = Q \iff V(P) = V(Q), \quad \forall P, Q \in \text{ClSpec}(M). $$

Corollary 3.4. Let M be a Noetherian classical primeful top module. Then the following statements are holed:

(i) $\text{ClSpec}(M)$ is a T_0-space.

(ii) $\text{ClSpec}(M)$ is quasi-compact and has a basis of quasi-compact open subsets.

(iii) The family of quasi-compact open subsets of $\text{ClSpec}(M)$ is closed under finite intersections.

(iv) $\text{ClSpec}(M)$ is a sober space; i.e., every irreducible closed subset of $\text{ClSpec}(M)$ has a generic point.

Proof. It is clear by Lemma 3.6, Theorem 3.5, Theorem 3.9, Theorem 3.2. □

Acknowledgment

The authors would like to thank the referee for his/her helpful comments.
1. M. Ali: *Multiplication modules and homogeneous idealization II*. Beitr Algebra Geo-

m. 48 (2007), 321–343.

2. A. Azizi: *Weak multiplication modules*. Czechoslovak Math. J. 53 (2003), no. 128, 529–534.

3. M. F. Atiyah and I. Macdonald: *Introduction to commutative algebra*. Long-
mans Higher Education, New York, 1969.

4. M. Baziar and M. Behboodi: *Classical primary submodules and decomposition of modules*. J. Algebra Appl. 8 (3) (2009), 351–362.

5. M. Behboodi: *A generalization of Bear’s lower nilradical for modules*. J. Algebra and its Appl. 6(2) (2007), 337-353.

6. M. Behboodi and M. R. Haddadi: *Classical Zariski topology of modules and spectral spaces*. I. International Electronic Journal of Algebra. 4 (2008), 104–130.

7. M. Behboodi, R. Jahani-Nezhad, and M.H. Naderi, Classical quasi-primary sub-

modules, *Bull. Iranian Math. Soc*. 37 (4) (2011), 51–71.

8. M. Behboodi and H. Koohey: *Weakly prime modules*. Vietnam J. Math. 32(2) (2004), 185–195.

9. M. Behboodi and M. J. Noori: *Zariski-like topology on the classical prime

spectrum*. Bulletin of the Iranian Mathematical Society. 35 (1)(2009), 253–269.

10. N. Bourbaki: *Algebra commutative*. Chap. 1, 2, Hermann, Paris, 1961.

11. F. Callialp and U. Teki: *On unions of prime submodules*. Southeast Asian

Bull. Math. 28(2004), no.2, 213–218.

12. V. Camillo : *Distributive modules*. Journal of Algebra 36(1975), 16-25.

13. S. Ebrahimi Atani: *Strongly irreducible submodules*. Bull. Korean Math. Soc.

42 (2005), no. 1, 121–131.

14. Z. A. EL-Bast and P. F. Smith: *Multiplication modules*. Comm. Algebra. 16

(1988), 755–779.

15. M. Hochster: *Prime ideal structure in commutative rings*. Trans. Amer. math.

Soc. 137 (1969), 43–60.

16. C. P. Lu: *Prime submodules of modules*. Comment Math Univ St Paul. 33 (1)

(1984), 61–69.

17. C. P. Lu: *Saturations of submodules*. Comm. Algebra. 31 (6) (2003), 2655-2673.

18. C. P. Lu: *A module whose prime spectrum has the surjective natural map*. Houston J. Math. 31 (1) (2007), 125-143.

19. A. A. Tuganbaev: *Flat multiplication modules*, (Russian) Uspekhi Mat. Nauk.

60 (361)(2005), no.1, 173 – 174, translation in Russian Math. Surveys. 60 (2005)

no.1, 171–172.