Knockout of p53 leads to a significant increase in ALV-J replication

Hui Zhang,*,† Huixia Zhang,†† Shengliang Cao,‡ Chao Sui,§ Yinuo Song,* Yiran Zhao,* and Sidang Liu*,‡

*College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China; †School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China; ‡College of Agriculture, Liaocheng University, Liaocheng, Shandong 252000, China; and §Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China

ABSTRACT Avian leukemia is a common malignant disease, and its regulatory mechanism is complex. As the most extensive tumor suppressor gene in cancer research, p53 can control multiple functions such as that of DNA repair, induction of apoptosis, cell cycle arrest and so on. In view of the diversity associated with varied function of p53, this study analyzed the possible effect of gene on ALV-J replication and its regulatory mechanism. We successfully constructed a p53 knockout DF-1 cell line (p53-KO-DF-1 cells) by using CRISPR-Cas9 system. When ALV-J was co-infected with DF-1 and p53-KO-DF-1 cells, it was found that compared with wild-type DF-1 cells, the viral copy number of p53-KO-DF-1 cells infected with ALV-J increased significantly 48 h after infection, whereas the expression of innate immune factors such as IL-2, TNF-α, IFN-γ and MX1 decreased significantly. Detection of p53-related tumor genes indicated that after p53 deletion, the expression of c-myc, bcl-2, and bak increased significantly, while the expression of p21 and p27 was noted to be decreased. The cell cycle distribution and apoptosis of the 2 cell lines was detected by flow cytometry analysis. The results showed that p53 knockout prevented G0/G1 and G2 M phase arrest induced by ALV-J, and substantially decreased the rate of apoptosis. Overall, the results indicated that p53 gene can effectively inhibits ALV-J replication by regulating important cellular processes, and p53 gene related proteins involved in cell cycle activity may function as the key targets for the prevention and treatment of ALV-J.

Key words: ALV-J, p53, CRISPR-Cas9, cytokines, cell cycle and apoptosis

INTRODUCTION Avian leukemia is among one of the 3 most common tumor diseases found in the birds, which can spread horizontally and vertically in chickens. There are 7 different kinds of avian leukemia virus subgroups that have been identified in infected chickens (A-E/J/K). Among them, avian leukosis virus subgroup J (ALV-J) is a recombinant virus derived from endogenous and exogenous virus, which primarily induces hemangioma and myelocytoma, and its pathogenicity and transmission ability has been reported to be significantly higher than those of other subgroups (Li et al., 2017, 2018; Su et al., 2018). ALV-J can promote the development of extensive tumors in the multiple organs of diseased chickens, thus resulting in severe immunosuppression and high mortality.

p53 is an ubiquitous tumor suppressor gene found in various organisms, which is responsible for regulating body homeostasis, and can exhibit diverse functions associated with DNA repair and senescence, regulation of cell cycle, promoting apoptosis and inhibiting tumorigenesis (Laptenko and Prives, 2006). In healthy cells, p53 has been found to be negatively regulated by Mdm2 and other genes, thus maintaining a low level in vivo and also exhibiting minimal activity (Michael and Oren, 2003). However, when tumor invasion occurs, p53 is rapidly activated and p53 protein has been found to be highly expressed in the nucleus. It can exhibit a change in the conformation from monomeric to tetrameric form and can play a role as a potential tumor suppressor after activation by acetylation and phosphorylation (Kamada et al., 2016). The main role of p53 as a putative transcription factor, is to control the activation of downstream target genes (such as p21, PUMA, Bcl-2 family genes) to cause cell cycle arrest,
apoptosis and thus leading to significant tumor inhibition (Valente et al., 2013; Kim et al., 2017). At the same time, p53 protein can also effectively interact with other proteins directly or indirectly. For example, under the influence of stress signals, cytoplasmic p53 can translocate into the mitochondria and competitively interact with antiapoptotic proteins such as Bcl-xL and Bcl-2, thereby releasing various pro-apoptotic proteins such as Bax and Bak to activate the mitochondrial apoptosis pathway (Estaquier et al., 2012). Reactivation of p53-mediated p21 expression can inhibit the occurrence of the breast cancer (Morrison et al., 2016). Additionally, activation of p53-mediated mitochondrial apoptosis pathway can reduce the invasive potential of metastatic pancreatic cancer (Cheng et al., 2019); and enhancement of p53 phosphorylation as well as acetylation can significantly retard the tumor growth (Cordani et al., 2020).

Therefore, in the process of tumor development, p53 inactivation serves as a common phenomenon that can promote aberrant tumor transformation and unlimited proliferation. A number of previous studies have shown that when ALV-J occurs, p53 gene will be accompanied by mutation or deletion and other abnormal modifications (Takagi et al., 2006; Yue et al., 2015), thereby suggesting that there may be a possible relationship between p53 as well as the occurrence and development of ALV-J. However, in the exact role of p53 in controlling ALV-J-induced tumor has not been reported in the literature. In this study, the CRISPR-Cas9 system was used to knock out p53 from DF-1 cells and successfully construct a p53 knockout cell line (P53-KO-DF-1). By infecting normal DF-1 cells and p53-KO-DF-1 cells with ALV-J, the possible effects on ALV-J replication and innate immunity, cell cycle regulation and apoptosis of DF-1 cells were also compared and analyzed. Our results confirm the antiviral activity of p53 gene against ALV-J infection and has elucidated the regulatory mechanisms by which p53 can potentially play an inhibitory role in tumorigenesis.

Materials and Methods

Cells, Virus, and Antibodies

DF-1 cells (chicken embryo fibroblast cell) were cultured and maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% (v/v) fetal bovine serum (FBS, Gibco, Grand Island, NY), 1% (v/v) penicillin-streptomycin (Solarbio life science, Beijing, China) in a humidified incubator with 5% CO2 at 37°C. ALV-J strain (GenBank:DQ115805) was propagated and titrated in DF-1 cells and stored at −80°C. The virus was kindly provided by Professor Zhizhong Cui of Shandong Agricultural University. The various antibodies used were purchased from the following companies: anti-P53 (1:1000, 610183, BD, Franklin Lakes, NJ), anti-GAPDH (1:5000, AT0002, CMCTAG, San Diego, CA), horseradish-peroxidase-conjugated anti-rabbit (1:10000, West Grove, PA).

Knockout of p53 in DF-1 Cell Lines Using the CRISPR-Cas9 System

For p53 knockout, 2 different pairs of sgRNA were designed according to the conservative region of chicken p53 exon by using an online CRISPR Design Tool (http://crispr.mit.edu/). The primer P53-KO-312-Fwd (Forward) and P53-KO-312-Rev (Reverse) were phosphorylated and annealed to form P53-KO-312, and then inserted into Px459M (PX459 sPspCas9-2A-Puro-MCS) vector at BbsI site. P53-KO-625-Fwd and P53-KO-625-Rev were phosphorylated and annealed to form P53-KO-625, and then inserted into EZ-Guide-XH vector at BbsI site. Therafter, the EZ-Guide-XH-P53-KO-625 was inserted into PX459M-P53-KO-312 vector at XhoI and HindIII sites from EZ-Guide-XH vector to form PX459M-P53-KO. The plasmids were then sequenced to confirm the correct insertion.

DF-1 cells were transfected with the plasmid PX459M-P53-KO. After 48-h transfection, the cells were treated with puromycin at a concentration of 1 µg/mL for 4 d. Then, the single cell suspension was seeded into 96-well plates to continue the culture in DMEM with 20% (v/v) FBS, 1% (v/v) penicillin-streptomycin and puromycin (1 µg/mL), and culture in 24-well plates. DNA sequencing of p53 protein was used for confirmation by PCR and sequencing, and knockout of p53 protein was evaluated by western blot analysis. The RT-PCR primers used in this study have been listed in Table 1.

Real-Time PCR Analysis

Total RNA was extracted from cells using Trizol (Takara, Tokyo, Japan) and reverse transcription was performed using ReverTra Ace qPCR RT Kit (Toyobo, FSQ-101, Osaka, Japan). The samples were amplified by SYBR Green Realtime PCR Master Mix (Toyobo, QPK-201, QPK-201T, Osaka, Japan) and Real-time PCR quantitative analysis was carried on Roche real-time PCR software (LightCycler96). The experiment was repeated for three times and three different groups of repeated samples were used each time. The virus copy number of ALV-J was quantified using a standard curve. The relative transcriptional levels of the various genes were determined by 2−ΔΔCT (in which CT is threshold period) method analysis. The details of various amplification primers used have been listed in Table 2.

Western Blot Analysis

The cells were washed with PBS for 3 times, scraped and the cell lysates were prepared after lysing the cells

Table 1. Primers used in p53 knockout experiment.

Name	Primer sequence (5’-3’)
p53-KO-312-Fwd	CACCGATCCACGGGAGATTATGGGG
p53-KO-312-Rev	AAACCCCCATAATCCTCGTGGATC
p55-KO-625-Fwd	CACCGAGCCCGGTTAACCGAAGCA
p55-KO-625-Rev	AAATCGTFCGTGGTACGCCGCTTC
with lysis buffer containing PMSF, and the whole process was carried on ice. The proteins in the sample were separated by SDS-PAGE and followed by blotting onto a PVDF membrane. The membrane was incubated with p53 specific antibodies overnight at 4°C, then co-incubated with secondary antibody at room temperature for 1 h, and chemiluminescence detection reagents were used to observe the signal bands.

Table 2. Primers used for Real-time PCR assay.

Name	Primer sequence (5'-3')
pol-Fwd	CTAACGAGGCAGAGGCAATG
pol-Rev	TTGGTGGTGGGTGGTGGAGA
p24-Fwd	CTGTCGTCAGAAGACAGT
p24-Rev	TCCCTGTTGCCTTTCAGT
c-myc-Fwd	TTCTTTGCGCTCGTGACCC
c-myc-Rev	GCCCTCACTCTCTTTCTCTGC
mdm2-Fwd	TGATGTTCCTGACTGTAAGA
mdm2-Rev	CTTCTCGTCGAGGAAATATC
p35-Fwd	TGTTTGTTGTTGGGCTCTT
p35-Rev	TTCTTGGTGGTGCTCTT
bel-2-Fwd	CGCTGTCGACACATTG
bel-2-Rev	GGCTCAAGTTGGTCTCTCA
bak-Fwd	ACCGGGAGATCATGGGAGA
bak-Rev	GATGCTGCCGCTGAGAGC
β-actin-Fwd	GAGAAATTCGCTGTCGACATCA
β-actin-Rev	CCTGAAACCTCTCATTGCA
IL-2-Fwd	GCTTATGAGGACATCTCTATCATCA
IL-2-Rev	GGTGCACCTCCTGGGCTCT
IL-6-Fwd	AGGCCAGTGAGTAGCAAGAGTTC
IL-6-Rev	TTGGGAGCTTTGGGTTGTT
TNF-α-Fwd	GACACGCTATGCCAACACGTA
TNF-α-Rev	TTAACGGAAGGGCAACCTAC
IFN-y-Fwd	ACATGCAACAAGCTCAAGCCGC
IFN-y-Rev	AGTGCTGTCATCAGGGGAGGT
IFN-β-Fwd	CATGTGTCCTCAGCCACAAA
IFN-β-Rev	TGCATGCTGTTATGGTGTCGAT
MXI-Fwd	AAGCGTCTCAGGTCGCAAAT
MXI-Rev	GTGAAAGCATCATAAAAAGCA

the virus was discarded and replaced with a cell culture medium containing 1% FBS. The supernatant of ALV-J P27 group specific antigen was detected by using a Subgroup J ALV Antibody Test Kit (IDEXX, China) at 0, 24, 36, 48, 60, 72 h, respectively. The assay was conducted in accordance with the manufacturer’s instructions, and the absorbance (OD) of each sample was measured with a Bio-Tek Instruments EL310 Microplate Autoreader at a wavelength of 450 nm. At the same time, Trizol was used to extract the RNA, and real-time RCR was performed to detect the viral load of the 2 cell lines.

Attachment and Internalization of ALV-J

The kinetics of ALV-J attachment was studied by adding the virus at 1000TCID50 to DF-1 and p53-KO-DF-1 cells. After incubation for 4 h at 4°C, the cells were washed extensively with chilled PBS and then lysed. To allow internalization of the attached viruses, the cells were washed extensively with chilled PBS following attachment for 4 h and the temperature was shifted to 37°C. At 48 and 72 h postinternalization, the cells were washed with acidic PBS (pH 2.5) and then lysed. The samples were counted before cell lysis.

Flow Cytometric Analysis of Cell Cycle and Apoptosis

The percentages of cell cycle distribution were evaluated by PI staining. The cells were washed with precooled PBS and fixed overnight with 70% ethanol at 4°C. After rinsing with precooled PBS, 5% propidium iodide (Beyotime, China) was used for labelling the cells and incubated at 37°C in dark for 30 min. The cell cycle was then analyzed by flow cytometer. Apotosis detected using an Annexin V fluorescein isothiocyanate kit according to the protocol. The cells were resuspended with 100 µL 1× binding buffer, and the cell concentration was kept at about 1 × 10^6 cells/mL. Annexin V-PE and 7-AAD staining (BD) were added to the 1× binding buffer to prepare the cell staining solution (Annexin V-PE: 7-AAD: 1× binding buffer = 1:1:20). The cells were thereafter stained in the dark for 15 min, and analyzed by flow cytometry within 1 h. All samples were analyzed employing FACSCalibur (BD) with appropriate software (ModFit LT; BD, Topsham, ME) and the FlowJo (Ashland, OR) software were used for data analysis.

Statistical Analysis

Three different biological repeats were set up in each group of experiments. The data has been represented as mean ± SD. The data was compared and the differences were determined by one-way analysis of variance and least significance difference (LSD). The differences were considered as statistically significant when P < 0.05.
RESULTS

Establishment of p53 Knockout Cell Line

In order to study the possible role of p53 protein in ALV-J infection, 2 guide RNAs of p53 protein were inserted into px459M and EZ-Guide-XH vectors (Figure 1A), respectively. The double knock out plasmid Px459M-p53-KO was constructed and transfected into DF-1 cells. The positive clone cells were then screened by puromycin selection. Moreover, upon using p53 specific primers to verify knockout efficiency, the results showed that the size of p53 sequence in the normal cells was 1104bp, but that in knockout cell lines was 589bp (Figure 1B). However, after DNA sequencing, it was proved that the deletion fragment was located at site 115-630 bases (Figure 1C). At the same time, western blot analysis was also used to detect the expression of p53 protein. The results clearly indicated that as compared with the normal DF-1 cells, p53 protein was not expressed in knockout cell line at all (Figure 1D).

p53 Inhibits ALV-J Infection and Replication

DF-1 and p53-KO-DF-1 cell lines were seeded in 96-well plates respectively. The growth activity of these two cell lines was then measured by CCK-8 every 24 h for 168 h. The results showed that p53 knockout significantly promoted the growth of p53-KO-DF-1 cell line (Figure 2A). In order to verify the potential effect of p53 on ALV-J infection and replication, DF-1 and p53-KO-DF-1 cell lines were simultaneously inoculated with ALV-J to analyze and compare the virus replication. Thereafter, RNA was extracted from cells at then different time points and then reverse transcribed as a template to amplify the pol gene of ALV-J virus by qPCR.
The results indicated that the replication peak began to appear in both the cell lines 24 h after ALV-J infection, but the replication efficiency of ALV-J in p53-KO-DF-1 was significantly higher than that in DF-1 cells, and it also increased with time (Figure 2B). The P27 antigen of ALV-J was detected using ELISA and the results were consistent to that obtained by qPCR. The expression of P27 antigen in p53-KO-DF-1 was observed to be significantly higher than that in DF-1 cells (Figure 2C). Next, we investigated whether p53 affected the adsorption and internalization of ALV-J. The DF-1 cell line and p53-KO-DF-1 cell line infected with ALV-J were placed at 4°C for 4 h for virus adsorption, at 37°C for 48 and 72 h for virus internalization. As shown in Figure 2D, the copy number of virus in p53-KO-DF-1 cells was 2 times higher than that in DF-1 cells after low temperature adsorption. At the same time, p53 knockout increased the percentage of internalized ALV-J by 5 to 10 times. These results indicate that P53 is involved in the adsorption and internalization of ALV-J, and plays a certain inhibitory role on the replication of ALV-J.

P53 Inhibits ALV-J Infection and Replication Through Affecting Innate Immune Factors

A number of previous studies have confirmed that ALV-J can primarily target the macrophages during the process of infection, and induce host innate
immune response by interacting with the macrophages to establish latent infection within the macrophages to evade host immune response. In order to explore whether p53 can potentially inhibit ALV-J replication by affecting related innate immune factors, the 2 cell lines were infected with ALV-J virus and the expression of multiple innate immune factors was detected (Figure 3). The results of qPCR showed that the expression of innate immune factors was relatively low 72 h before ALV-J infection, but with an increased rate of virus replication, the expression of various immune factors also increased significantly after 72 h, and was found to be positively correlated with the virus replication rate. At the same time, it was observed that after knockout of p53, the expression of IL-2, TNF-α, and MX1 stimulated by ALV-J decreased by 5.8 to 7.8 times, whereas the expression of IFN-γ and IRF-7 decreased by 1.4 to 3.2 times, and that of the tumor promoting factor IL-6 increased by 1.26 times. In summary, these results indicate that ALV-J can induce a wide range of innate immune responses, and the presence of p53 can prevent ALV-J from antagonizing innate immunity.

p53 Can Affect ALV-J Replication by Regulating the Expression of Tumor-Related Genes

As a tumor suppressor gene, plays a critical role as a transcription factor in regulating the expression of various downstream target genes (Riley et al., 2008). The common tumor-related genes regulated by p53 include cell cycle genes such as p21, p27 and apoptotic-related gene bcl-2, bak (Deng et al., 2006; Morrison et al., 2016). We examined the expression of these genes (Figure 4). When DF-1 cells and p53-KO-DF-1 cells were co-infected with ALV-J, it was noticed that the presence of p53 could promote the expression of p21 and p27, predominantly in the peak period of virus replication (72 −120 h). The expression trend of Bcl-2 and Bak was basically positively correlated, and both of them increased after the deletion of p53, which may be related to the properties of the complex formed by both of them to inhibit cell apoptosis.

We also examined the role of Mdm2 and c-myc genes in affecting ALV-J infection and replication. The main function of upstream gene Mdm2 is to potentially degrade p53 protein by ubiquitination mediated by

Figure 3. p53 inhibits the replication of ALV-J through natural immune factors. DF-1 and P53-KO-DF-1 cells were seeded in 6-well plates. 1000 TCID₅₀ ALV-J was used to infect the cells for 24, 48, 72, 96, and 120 h. The transcript levels of IL-2, TNF-α, IFN-γ, MX1, IRF-7, and IL-6 was analyzed by qPCR. *P < 0.05; **P < 0.01; ***P < 0.00. Abbreviation: ALV-J, avian leukemia virus subgroup J.
proteasome and thus maintain the dynamic balance of level in vivo. Oncogene c-myc can affect the genomic stability and thus promote tumorigenesis (Wu et al., 2020). The results showed that when p53 was knocked out, the expression of Mdm2 decreased significantly, indicating that there was a feedback regulation system between p53 and mdm2. The expression of c-myc increased significantly when p53 was knocked out both during the early stage of ALV-J replication (0−48 h) and at the peak time period of 72 h. Thus, in the presence of p53, c-myc was maintained at a low level, which indicated that p53 could possibly prevent ALV-J replication by inhibiting the expression of other oncogenes.

p53 Inhibits ALV-J Infection and Replication by Causing G0/G1, G2/M Phase Arrest, and Promoting Apoptosis

When the cells are damaged by stress, p53 as a tumor suppressor gene can generally protect the cells by halting the cell cycle and inducing cell apoptosis (Lane, 1994). In order to verify whether p53 can potentially affect the infection and replication of ALV-J by regulating the processes of cell cycle and apoptosis, the cells were collected at 0 to 120 h after inoculation with ALV-J, and analyzed for the cell cycle progression and apoptosis by flow cytometry. The results showed that most of the p53-KO-DF-1 cells were in S phase initially with an increase in virus concentration. While DF-1 cells in the early stage of viral replication (0−48 h) were mostly distributed in G0/G1 phase, and that in the late stage of viral replication (72−120 h) were found in G2/M phase (Figures 5A and 5B). Figure 5B depicts the quantitative analysis of Figure 5A. We also analyzed the apoptosis of cells from 0 to 96 h and found that p53 knockout significantly inhibited the apoptosis induced by ALV-J infection and thereby reduced the apoptosis rate by up to 20% (Figures 5C and 5D).

DISCUSSION

p53 is a well-known tumor suppressor gene, which primarily acts as a potential transcription factor to induce...
cell protective responses by blocking the progression of the cell cycle and causing apoptosis in the cells exposed to the stress signals (such as DNA damage, hypoxia, oncogene activation, etc.) (Kastan, 1996; Meek, 2015).

An abnormal expression of \(p53 \) is often used as an indicator of carcinogenesis in human diseases (Duffy et al., 2017). For instance, it has been reported that about 50% of cervical cancer cases are accompanied by \(p53 \) cell protective responses by blocking the progression of the cell cycle and causing apoptosis in the cells exposed to the stress signals (such as DNA damage, hypoxia, oncogene activation, etc.) (Kastan, 1996; Meek, 2015).

An abnormal expression of \(p53 \) is often used as an indicator of carcinogenesis in human diseases (Duffy et al., 2017). For instance, it has been reported that about 50% of cervical cancer cases are accompanied by \(p53 \).
overexpression, which may promote both the occurrence and development of cancer (Sahu et al., 2002). In view of the important role of p53 in the development of various malignancies, the possible effect of p53 pathway on ALV-J replication in infected DF-1 cells was explored in this study. Firstly, a p53 knockdown cell line (P53-KO-DF-1) using CRISPR-Cas9 system was successfully established, and expression of p53 was verified both at mRNA and protein level. Subsequently, the replication rate of ALV-J in normal DF-1 cell lines and p53 knockdown cell lines was compared, and it was found that knocking down this gene could significantly increase the replication rate and the adsorption and internalization of ALV-J, thus suggesting that p53 could effectively inhibit the replication of ALV-J in DF-1 cells.

To understand the possible mechanism(s) through which p53 could act as a tumor suppressor in the process of ALV-J infection additional experiments were performed. Innate immunity plays an important role in the host's defense against viral infections, which mainly depends on orchestration of response mediated by the various cytokines (Kabelitz and Medzhitov, 2007). Since avian leukemia caused by ALV-J is an immunosuppressive disease, the expression of several cytokines related to tumorigenesis was analyzed. For example, IL-2 can induce T cell proliferation, differentiation and activation (Choudhry et al., 2018). IL-6 is a typical tumor-promoting cytokine, which can promote tumorigenesis by regulating a variety of signaling pathways (Kumari et al., 2016). TNF-α is a proinflammatory cytokine produced by macrophages/monocytes during acute inflammation, resulting in cell necrosis or apoptosis (Sung et al., 2001). IFN-γ can resist viral infections, inhibit cell proliferation, participate in immune regulation and also exhibit diverse proinflammatory activities (Kak et al., 2018). Additionally, both IRF-7 and MX1 are gene products related to the expression of interferon (Engelhardt et al., 2001; Honda et al., 2005). Upon comparing the levels of various cytokines in two cell lines after exposure to p53, it was found that the expression of IL-2, TNF-α, IFN-γ, and MX1 was significantly increased under the action of p53, while the expression of tumor-promoting factor IL-6 was significantly decreased. However, the opposite trend appeared after the deletion of p53. This indicates that in the immune response caused by ALV-J infection, p53 can prevent ALV-J from inhibiting the innate immunity, maintain a high level of immune response, and reduce the damage of ALV-J to the host.

The level of p53 in normal body is low and does not generally exert its activity (Blagosklonny, 1997). However, when the cells are stressed, p53 is converted into an active tetrameric conformation and can be activated by acetylation and phosphorylation. p53 activation plays a tumor inhibitory role by regulating the expression of various downstream target genes through its transcriptional activity (Feng et al., 2019; Lucchesi et al., 2016). It has been reported that when DNA is damaged or subjected to other types of stress, the tumor suppressor p53 is activated, which causes the transient expression of p21 gene to suppress cell cycle in the G1/S phase (Xiao et al., 2020), and p53 can also inhibit the activation of bcl-2 promoter by Brn-3a, thus inducing neuronal apoptosis (Budhram-Mahadeo et al., 1999). In the course of our study, we found that after infection with ALV-J, p53 can effectively regulate the expression of various target genes. p53 upregulates p21 and p27 to cause cell cycle arrest, downregulates the levels of bcl-2 and bak to induce cell apoptosis, and simultaneously induces the overexpression of oncogene c-myc, thus may play a certain inhibitory role in tumors. In the following experiments, cell cycle and apoptosis were detected and analyzed by flow cytometry. G1 phase has been generally considered as the checkpoint of cell cycle, which is responsible for controlling the cells from entering into the S phase (Nojima, 2004). Most tumor cells lose G1/S phase, which can facilitate the cells to enter S phase under abnormal circumstances, carry out DNA replication, and thus resulting in DNA damage (Benedict et al., 2018). We found that when p53 was present, along with an increase in the cycle blocking genes p21 and p27, the cells in the early stage of viral replication (0–48 h) were mostly distributed in G0/G1 phase, while that in the late stage of viral replication (72–120 h) were found in G2/M phase, which significantly reduced the S phase of cells thereby significantly reducing the risk of accumulating mutations.

Apoptosis plays a protective role in the process of tumorigenesis. The important step in this process is mitochondrial apoptosis, which primarily depends on the changes in the mitochondrial membrane permeability and can be regulated by Bcl-2 family complex (Dashzeveg and Yoshida, 2015). Under normal circumstances, p53 competitively interacts with the antiapoptotic protein Bcl-2, destroys the heterodimer complex composed of Bcl-2 and Bax/Bak, activates the mitochondrial membrane space to release various apoptotic protein factors, and induces apoptosis (Czabotar et al., 2014). In our study, with the replication of ALV-J, the expression of bcl-2 after deletion of p53 was significantly increased, which was positively correlated with the expression of bax, and the apoptosis rate of cells decreased. It suggests that p53 may regulate the process of apoptosis by regulating the generation of Bcl-2/Bak, but the detailed mechanism(s) need to be deciphered in the future studies.

CONCLUSIONS

We have provided substantial evidence in this study that p53 could effectively inhibit the replication of ALV-J in DF-1 cells. We found that p53 can prevent the inhibition of ALV-J on the innate immune response in DF-1 cells when stimulated upon ALV-J infection, and can induce the expression of the key downstream target gene of p53, such as c-myc, p21, p27, bcl-2 and bak. We have also proved that p53 can inhibit ALV-J replication by promoting the expression of oncogene c-myc, inducing cycle gene p21 to cause G1 and G2 phase arrest, and
affecting apoptosis-related gene \textit{bcl-2} and \textit{bak} to promote apoptosis.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation project under Grant [grant number 31672518].

DISCLOSURES

Authors declare no conflict of interest.

REFERENCES

Benedict, B., T. van Harn, M. Dekker, S. Hermsen, A. Kucukosmanoglu, W. Pieters, E. Delzenne-Goette, J. C. Dorsman, E. Petermann, F. Fojer, and R. H. Te. 2018. Loss of p53 suppresses replication-stress-induced DNA breakage in G1/S checkpoint deficient cells. Elife. 7:e37686.

Blagosklonny, M. V. 1997. Loss of function and p53 protein stabilization. Oncogene. 15:1889–1893.

Budhran-Mahadeo, V., P. J. Morris, M. D. Smith, C. A. Midgley, L. M. Boxer, and D. S. Latchman. 1999. p53 suppresses the activation of the Bcl-2 promoter by the Brn-3a POU family transcription factor. J. Biol. Chem. 274:15237–15244.

Cheng, J., K. J. Okolotowicz, D. Ryan, E. Mose, A. M. Lowy, and J. R. Cashman. 2019. Inhibition of invasive pancreatic cancer: restoring cell apoptosis by activating mitochondrial p53. Am. J. Cancer Res. 9:390–405.

Choudhry, H., N. Helmi, W. H. Abdulhal, M. Zeyadi, M. A. Zamzami, W. Wu, M. M. Mahmoud, M. K. Warsi, M. Rasool, and M. S. Jamal. 2018. Prospects of IL-2 in cancer immunotherapy. Biomed. Res. Int. 2018:9056173.

Cordani, M., G. Butera, R. Pacchiana, F. Masetto, N. Mullapilly, C. Riganti, and M. Donadelli. 2020. Mutant p53-associated molecular mechanisms of ROS regulation in cancer cells. Biomolecules. 10:361.

Czabotar, P. E., G. Lessene, A. Strasser, and J. M. Adams. 2014. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15:49–63.

Dashzeveg, N., and K. Yoshida. 2015. Cell death decision by p53 via activating mitochondrial pathway and apoptosis. J. Biol. Chem. 290:25–265.

Duffy, M. J., N. C. Synnott, and J. Crown. 2017. Mutant p53 as a target for cancer treatment. Eur. J. Cancer. 83:258–265.

Engelhardt, O. G., E. Ulrich, G. Kochs, and O. Haller. 2001. Interferon-induced antiviral Mx1 GTPase is associated with components of the SUMO-1 system and promyelocytic leukemia protein nuclear bodies. Exp. Cell Res. 271:286–295.

Estaquier, J., F. Vallette, J. L. Vaysiere, and B. Mignotte. 2012. The mitochondrial pathways of apoptosis. Adv. Exp. Med. Biol. 942:157–183.

Feng, M., T. Xie, Y. Li, N. Zhang, Q. Lu, Y. Zhou, M. Shi, J. Sun, and X. Zhang. 2019. A balanced game: chicken macrophage response to ALV-J infection. Vet. Res. 50:20.

Honda, K., H. Yanai, H. Negishi, M. Asagiri, M. Sato, T. Mizutani, N. Shimada, Y. Ohba, A. Takaoka, N. Yoshida, and T. Taniguchi. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature. 434:772–777.

Kabelitz, D, and R. Medzhitov. 2007. Innate immunity—cross-talk with adaptive immunity through pattern recognition receptors and cytokines. Curr. Opin. Immunol. 19:1–3.

Kak, G., M. Raza, and D. K. Tiwari. 2018. Interferon-gamma (IFN-\gamma): exploring its implications in infectious diseases. Biomol. Concepts. 9:64–79.

Kim, E. M., C. H. Jung, J. Kim, S. G. Hwang, J. K. Park, and H. D. Um. 2017. The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting Bcl-2 family proteins. Cancer Res. 77:3962–3970.

Kumari, N., B. S. Dwarakanath, A. Das, and A. N. Bhatt. 2016. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour. Biol. 37:11553–11572.

Lane, D. P. 1994. p53 and human cancers. Br. Med. Bull. 50:582–599.

Laptenko, O., and C. Prives. 2006. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13:51–61.

Li, Y., S. Cui, W. Li, Y. Wang, Z. Cui, P. Zhao, and S. Chang. 2017. Vertical transmission of avian leukaemia virus subgroup J (ALV-J) from hens infected through artificial insemination with ALV-J infected semen. BMC Vet. Res. 13:204.

Li, J., F. Meng, W. Li, Y. Wang, S. Chang, P. Zhao, and Z. Cui. 2018. Characterization of avian leukaemia virus subgroup J isolated between 1999 and 2013 in China. Poult. Sci. 97:3532–3539.

Lucchesi, C., J. Zhang, and X. Chen. 2016. Modulation of the p53 family network by RNA-binding proteins. Transl. Cancer Res. 5:676–684.

Meek, D. W. 2015. Regulation of the p53 response and its relationship to cancer. Biochem. J. 469:325–346.

Michael, D., and M. Oren. 2003. The p53-Mdm2 module and the ubiquitin system. Semin. Cancer Biol. 13:49–58.

Morrison, C. D., T. M. Allington, C. L. Thompson, H. L. Gilmore, J. R. Cashman. 2019. Inhibition of invasive pancreatic cancer: restoring cell apoptosis by activating mitochondrial p53. Am. J. Cancer Res. 9:10–20.

Nojima, H. 2004. G1 and S-phase checkpoints, chromosome instability, and cancer. Methods Mol. Biol. 280:3–49.

Riley, T., E. Sontag, P Chen, and A. Levine. 2008. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 9:402–412.

Sahu, G. R., B. K. Nayak, S. Patnaik, T. Parija, and B. R. Das. 2002. Rearrangement of p53 gene with overexpressed p53 protein in primary cervical cancer. Oncol. Rep. 9:433–437.

Su, Q., Y. Li, W. Li, S. Cui, S. Tian, Z. Cui, P. Zhao, and S. Chang. 2018. Molecular characteristics of avian leukaemia viruses isolated from indigenous chicken breeds in China. Poult. Sci. 97:2917–2925.

Sung, R. S., L. Qin, and J. S. Bromberg. 2001. TNFalpha and IFN-gamma induce beta2 integrin anti-adenoviral immune responses inhibit adenovirus-mediated transgene expression. Mol. Ther. 3:757–767.

Takagi, M., T. Takeda, Y. Asada, C. Sugimoto, M. Onuma, and K. Ohashi. 2006. The presence of a short form of p53 in chicken lymphoblastoid cell lines during apoptosis. J. Vet. Med. Sci. 68:561–566.

Valente, L. J., D. H. Gray, E. M. Michalak, J. Pinon-Hofbauer, A. Egle, C. L. Scott, A. Janic, and A. Strasser. 2013. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep. 3:1339–1345.

Wu, H., T. Y. Yang, Y. Li, W. L. Ye, F. Liu, X. S. He, J. R. Wang, W. J. Gan, X. M. Li, S. Zhang, Y. Y. Zhao, and J. M. Li. 2020. Tumor Necrosis Factor Receptor-Associated Factor 6 Promotes Hepatocarcinogenesis by Interacting With Histone Deacetylase 3 to Enhance c-Myc Gene Expression and Protein Stability. Hepatology. 71:148–163.

Xiao, B. D., Y. J. Zhao, X. Y. Jia, J. Wu, Y. G. Wang, and F. Huag. 2020. Multifaceted p21 in carcinogenesis, stemness of tumor and tumor therapy. World J. Stem. Cells. 12:481–487.

Yue, Q., G. Yulong, Q. Liting, Y. Shuai, L. Delong, L. Yubao, J. Lili, L. Sidang, and W. Xiaomei. 2015. Mutations in and expression of the tumor suppressor gene p53 in egg-type chickens infected with subgroup J Avian Leukosis Virus. Vet. Pathol. 52:1052–1056.