Correlations between the structure and superconducting properties of MT-YBaCuO

T A Prikhna¹, V E Moshchilov¹, J Rabier², X Chaud³, A Joulain², A V Pan⁴, D Litskendorf⁵, T. Habisreuther⁵

¹ V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 2, Avtozavodskaya Str., Kiev 07074, Ukraine
² DPMM, Institut P⁴, UPR CNRS 3346, Université de Poitiers, ISAE ENSMA, SP2MI BP30179, 86962 Futuroscope Chasseneuil Cedex, France
³ Laboratoire National des Champs Magnétiques Intenses (LNCMI/CNRS), 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9, France
⁴ Institute for Superconducting and Electronic Materials, University of Wollongong, Northfields Avenue, Wollongong, 2522 NSW, Australia.
⁵ Leibniz Institute of Photonic Technology, Reg. Assoc., Albert-Einstein-Str. 9, 07745 Jena, Germany
⁶ Author to whom any correspondence should be addressed, e-mail: prikhna@ukr.net

Abstract. Comprehensive experimental results of fully oxidized (up to YBa₂Cu₃O₆.₉₋₇) melt-textured YBaCuO materials with different microstructures are presented. These microstructures are built respectively: (1) with a high dislocations density but almost without twins (after high temperature treatment at 2 GPa) and (2) with a high twin density, but practically free from dislocations and stacking faults (after high temperature oxygenation at 10-16 MPa). It is shown that for attaining high critical current densities and fields of irreversibility \(j_c(H_{||}c, 0 T) = 9 \times 10^4 \text{ A/cm}^2, H_{irr}=9.7 \text{ T at 77 K} \), a high twin density in YBa₂Cu₃O₆.₉₋₇ matrix of MT-YBCO is required. The density of twins in fully oxidized materials depends on the distances between Y₂BaCuO₅ inclusions, larger twin densities are related to shorter distances between inclusions. The influence of phase composition of the initial powder mixtures on the distances between Y₂BaCuO₅ inclusions have been characterized and discussed.

1. Introduction
Melt-textured YBa₂Cu₃O₅₋₇ or Y123 (MT-YBaCuO) can operate at 77 K in magnetic bearings, MAGLEV transport, superconducting electric motors, fault current limiters, fly-wheel energy storage devices, contactless mixers for medical and biological purposes etc. To warrant these applications, the critical current density and vortex pinning should be further enhanced.

The coherence length of YBa₂Cu₃O₅₋₇ is in the range of 0.6-3.1 nm [1]. Such short coherence length leads to easily reduced transparency for the supercurrent flow through various grain boundaries [2, 3], including twinning planes. The grain boundary with large angles of misorientation pos sess significant obstacles to the superconducting current flow. Their presence leads to low critical current density, \(j_c \). To avoid high-angle boundaries the material is textured using seed crystal. In parallel with the texturing (for the further increase of critical current density) small inclusions of Y₂BaCuO₅ (or
Y211) phase are formed in the almost single-domain Y123 matrix [4-8]. After texturing the Y123 matrix has deficit of oxygen and its composition is about YBa2Cu3O6.3-6.4 (the material is nonsuperconducting). For the further increase of the oxygen content in Y123 matrix in order to make it superconducting, the oxygenation process can be performed in oxygen atmosphere under the ambient (0.1 MPa) or elevated (10-16 MPa) pressures [1, 9, 10].

When oxygen introduced into the basal planes of Y123 lattice the c-parameter is decreased [11] and cracking results from the associated stress. The micro-cracks parallel to ab-planes are usually formed. The difference in the expansion coefficients of Y123 and Y211 phases leads to cracks formation as well [12]. Macro-cracks are seeing after mechanical polishing of the sample surface, while micro-cracks after etching process. Besides, during oxygenation process different defects (dislocations, stacking faults, twin planes) around Y211 inclusions are formed [13].

Structural defects in superconductors are considered as pinning centers. Stacking faults and Y$_2$BaCuO$_5$ (Y211) inclusions according to [1, 14] are likely to be the more efficient in MT-YBaCuO as compared to twin planes. Dislocations are considered favorable defects for pinning as soon as there density is very high [1, 2, 3, 14, 15], and in [13] dislocations are asserted as the most important defect for pinning in MT-YBaCuO. According to [16], the smaller Y211 inclusions are, the higher numbers of dislocations are nucleated around them, the advantage of small Y211 grains in the structure of Y123. For the refinement of the Y211 inclusions some amount of platinum or cerium oxide is usually added to the initial powdered mixtures while the mechanisms of their positive effect are not clear yet.

Using the phenomenological deformation criterion of superconductivity, it have been confirmed [17] that the energy of twin boundaries and the size of the twin colonies are important factors for constructing twin morphology, which is necessary requirement for strong pinning and high critical currents. They compared the pinning forces of different types of twin structures. The ability of a crystalline defect to pin a vortex obviously depends on the size of the non-superconducting region surrounding the defect [2, 3]. Since pinning at twin boundaries in YBaCuO is highly anisotropic, it is considered that anisotropy and average pinning force make pinning at twin boundaries, unlikely to be important. After comparison of pinning abilities of a twin boundary, an intersection of twin boundary with a twin dislocation, and an intersection of twin planes, it was concluded [17, 18] that for attaining high critical currents in high magnetic fields, it is necessary to decrease the energy of twin boundaries, decrease the sizes of twin colonies and increase the area of intersections of twins.

In this work, we present the results of microstructural, superconducting and mechanical properties of two types of melt-textured YBaCuO materials (with in-situ formed Y211 inclusions and with additions of ex-situ formed Y211) oxygenated at ambient pressure (0.1 MPa, 440 °C), elevated pressure (16 MPa and 800 °C) and of high pressure-high temperature treated (at 2 GPa, 800 °C) previously oxygenated MT-YBCO, which allow us to create MT-YBaCuO structures with different concentrations of twins, stacking faults, dislocations, micro- and macro-cracks.

2. Experimental
In the present study two differently prepared MT-YBaCuO materials were used. Type 1 MT-YBaCuO was produced from precompacted YBa2Cu3O7-δ (manufactured by Solvay), Y2O3 and CeO2, powders which were taken in the ratio Y1.5Ba2Cu3O7-δ+1% CeO2 and then textured in air using SmBa2Cu3Ox seed crystal in quasi-isothermal conditions (provided for each 40×40×17 mm sample of the batch from 16 pieces) [4]. In the temperature range where the Y123 texture growth occurred, the temperature was lowered at a rate of 0.2-1.0 K/h and then cooled at 50 K/h. Type 2 MT-YBaCuO (16-30 mm in diameter 10-15 mm in height) was produced from precompacted 70 wt. % YBa2Cu3O7-δ, 30 wt. % Y2BaCuO5 and 0.15 wt. % PtO2 powdered mixtures according to the technology described in [7, 8]. The additions of 1% CeO2 or 0.15 wt. % PtO2 were added to obtain finer grains of Y2BaCuO5 in YBa2Cu3O7-δ matrix during melt-texturing. After melt-texturing the sample of Type 2 had practically no macro-cracks. The absence of macro-cracks in its structure is relevant to the special technological approach: after finishing of texturing process in air the material starting from about 940 °C was cooled down in nitrogen atmosphere to prevent the oxygenation during cooling and avoid cracks formation.
The MT-YBaCuO ceramic blocks without holes are named ‘bulk’ and that with set of holes (formed by drilled or pressing perpendicular to the ab-planes of Y123 domain) are named “thin-walled”.

The principal difference between Types 1 and 2 materials is the following. In Type 1 MT-YBaCuO, the Y2BaCuO5 (Y211) inclusions were formed \textit{in-situ} while in Type 2 the inclusions were formed using previously synthesized Y2BaCuO5 powder \textit{ex-situ}. The difference in the materials structures can be seen in figure 1. The structure of Type 1 material contains in general finer Y211 inclusions, but they are inhomogeneously distributed. In some areas rather coarse Y211 inclusions can be found (figure 1a). In Type 2 material the Y211 inclusions are coarser, but distributed more homogeneous. There is no big difference between sizes of these inclusions. It should be mentioned that the distances between the Y211 inclusions in Y123 of Type 2 material are somewhat smaller than that in Type 1.

The oxygenation has been performed in oxygen flow at 0.1 MPa at 440 K for 270 h and at 16 MPa oxygen pressure and at 800 °C for 72 h. The heating process in the case of oxygenation at 16 MPa was started in nitrogen atmosphere at 0.1 MPa pressure, which was gradually replaced by oxygen upon rising temperature (to prevent oxygenation at low temperature and cracks formation). After reaching the highest temperature the oxygen pressure was gradually increased up to 16 MPa [9]. The YBa2Cu3O7-δ matrices of all the materials were oxygenated up to 7-δ=6.9-7 as confirmed by the X-ray structural studies of the lattice parameters.

The phase composition and the crystallographic structures (amount of oxygen in Y123) were studied at room temperature by X-ray powder diffraction using a Philips X’pert® and a DRON-3 diffractometer. The X-ray patterns were taken in an angular range of 2Θ = 20–70° at a rate of 5 deg/min. The samples structures were studied using polarized light and transmission electron microscopes (figures 1-4). The Vickers microhardness and fracture toughness was estimated by indentation on ab-plane and in perpendicular direction (Table 1).

After texturing but before oxygenation, small rectangular bars with dimensions of about 2×2×5-7 mm were cut from both types of blocks with such orientation that longer sides of the bars were parallel to the c-axis of Y123 matrix and perpendicular to its ab-planes. It was possible because the position and orientation of seed crystal, which was used for manufacturing of melt-textured quasi-single-domain block was known. All samples were oxygenated in the same conditions simultaneously. The small rectangular bars (without cut them) were used for all characterizations presented in this work except for TEM. To estimate the critical current density, \(j_c \), after oxygenation magnetization curves were obtained using small rectangular samples in VSM (vibrating sample magnetometer) for two orientations with magnetic field parallel and perpendicular to ab-planes. The trapped fields were studied by scanning of surfaces of the original large blocks oxygenated together with small rectangular bars using Hall probe after field cooling [10].

The amount of cracks was calculated for the entire samples using polarized microscopy. The linear densities of cracks were calculated using 10-15 separate images collected together, which demonstrated amount of cracks on the entire surfaces of the rectangular bars. After polishing macro-cracks became visible and after etching (by acid) the micro-cracks became visible as well. The amount of macro-cracks crossing 1 mm and amount of micro-cracks crossing 1 micron lengths were estimated. Usually cracks were parallel to ab-planes (because of c-parameter reduction during oxygenation) and thus they were perpendicular to the long sides of the rectangular bars. The twins
were observed perpendicular to \(ab\)-plane surfaces and to micro-cracks (figures 4a, b). On \(ab\)-planes the colonies of twins appeared exactly perpendicular to each other (figure 3d). To minimize the effect of the materials inhomogeneity the same small sample of each material was used to estimate critical current density, amount of cracks, hardness, fracture toughness, c-parameter and amount of oxygen in superconducting phase, twin density in polarized light and then was cut to prepare probes for TEM.

3. Results and discussions

Table 1 summarises characteristics of the MT-YBaCuO (with YBa\(_2\)Cu\(_3\)O\(_{7-\delta}\), \(7-\delta=6.9-7\)) oxygenated at different conditions and after being exposed to high-pressure treatment. Figure 2 shows the distribution of twins in MT-YBaCuO of Type 1 after high pressure-high temperature treatment and figure 3 shows the distribution of twins in Types 1 and 2 oxygenated by different ways. Figure 4 demonstrates the difference in the density of micro-cracks in Type 1 sample oxygenated under different conditions. Figure 5 shows the dependences of critical current density and pinning forces vs. magnetic fields of the materials under the study, noting possible issues in pinning force determinations [22, 23].

Analyzing the data given in figures 2-4 and Table 1, the density of twins correlates with distances between Y211 inclusions and critical current densities. As it was mentioned above, according to X-ray structural analysis the YBa\(_2\)Cu\(_3\)O\(_{7-\delta}\) matrices of all the materials investigated in this paper were fully oxygenated with \(7-\delta=6.9-7\). Despite the density of dislocations after high pressure-high temperature treatment was increased by about 4 orders of magnitude and reached \(10^{12}\) cm\(^{-2}\) and high amount of stacking faults were present, the parallel detwinning leads to low critical currents (figure 5g). The microstructure shown in figure 2b was obtained with \(g=020\) (after treatment at 800 °C, \(P=2\) GPa). Two types of dislocations are observed. Partial dislocations parallel to \([010]\) originated from the 211 particles and bounded stacking faults (are out of contrast). These dislocations are elongated along the screw direction. Perfect dislocations are also observed. Their main direction is parallel to [010] direction but they present some steps parallel to [110] and [1-10] directions. Some of these steps correspond exactly to the twin domain and some are not associated to the presence of a twin boundary but bear witness of a memory effect after the detwinning process [24]. Thus, MT-YBaCuO material with high concentration of dislocations in YBa\(_2\)Cu\(_3\)O\(_7\) phase but with very low twin density demonstrates critical current density essentially lower than that without dislocations and stacking faults, but with high concentration of twins (figures 3a-c, 5e, f and Table 1).

The shorter distances between Y211 grains (even in the same material, comparing figures 3a and 3b) result in a higher density of twins. The comparison of density of twins in Type 1 (inhomogeneous
Table 1. Characteristics of MT-YBaCuO of Types 1 and 2 after oxygenation at different conditions (in all the cases the materials YBa$_2$Cu$_3$O$_{7-\delta}$ matrices were fully oxygenated: 7-\delta=6.9-7)

Characteristics and conditions of oxygenation	Type 1	Type 2	Type 1 detwinned			
Density of microcracks, mm$^{-1}$	890	200	1500	270		
Density of twins, \(\mu\)m$^{-1}$	0.5-15	7-20	12-16	20-35	0-1	
Density of macrocracks, mm$^{-1}$	1.5	0.4	1.3	absent		
Critical current density at 0 T field, kA/cm2	$H\|c$	58.0	83.0	60.0	81.0	9.2
	$H\|ab$	16.5	30.0	17.5	34.0	4.2
Field of irreversibility, T, $H\|c$	6.3	5.8	8.7	9.7	5.7	
Maximal pinning force, N/cm2	$H\|c$	574.34	697.42	473.34	119.54	23.47
	$H\|ab$	262.27	301.94	108.78	242.65	47.15
Magnetic field which corresponds to maximum pinning force, T	$H\|c$	2.12	1.82	2.76	2.6	2.2
	$H\|ab$	8.56	7.74	9.02	>10	8.6
Microhardness, \(H_m\), GPa, P=4.9 N on ab	4.3±1.1	6.3±0.5	6.8±0.9	7.3±0.2	-	
	6.6±0.5	7.5±0.6	7.6±0.1	7.6±0.3	-	
Fracture toughness, K_{1c}, MPa\cdotm$^{0.5}$, P=4.9 N on ab	0.7±0.2	3.31±1.05	1.9±1.4	4.37±0.77	-	
	-	1.95	1.73±0.13	2.8±0.24	-	

distribution of Y211) and Type 2 (more homogeneous distribution of Y211 and somewhat shorter distances between the inclusions) prove the statement as well. The increase in twin density correlates with the increase of pinning force maximum (Table 1). The figure 3d shows the twins in Type 1 material in polarized light. The magnification of optical microscope was not enough to resolve twins between small Y211 inclusions located from each other on short distances in Type 1 material. We did not succeed to see clearly twins in Type 2 materials (with high density of Y211 inclusions and short distances between them) using polarized light microscope, but TEM observations showed that the twin density was very high (20-35 \(\mu\)m$^{-1}$) and that dislocations were practically absent (5 probes from the
same sample were studied by TEM). It seems that pinning occurred in the places where twin walls meet Y211 inclusions.

The figure 4 demonstrates difference in micro-cracking of Type 1 material oxygenated under high and low temperatures. The essential reduction of density of micro-cracks has been observed for Type 2 material as well (when oxygenation was performed under high temperature, see Table 1). The reduction in density of micro-cracks can be the reason of \(j_c \) increase in \(c \) direction (\(H || ab \)) in the materials oxygenated under high temperatures what leads to the decrease of anisotropy of \(j_c \) and to the improvement of mechanical characteristics (microhardness and fracture toughness, Table 1).

The shorter distances between Y211 inclusions results in higher density of micro-cracks. Likely it is the reason for \(j_c \) in \(c \) direction (\(H || ab \)) for Type 2 material to be is somewhat lower than that for Type 1 (Figures 4a and 4b, 4e and 4f). The elevated pressure (10-16 MPa) is necessary to keep oxygen in Y123 structure at high (800 °C) temperature. Since the diffusion rate increases at high temperatures, and the oscillations of atoms around their positions in crystal lattice increase, oxygen under enhanced pressure can enter the \(\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta} \) tetragonal structure with lower resistance. This leads to the disappearance of macro-cracks and a significant decrease in micro-cracks density and to the reduction of the time of oxygenation. The trapped field of MT-YBaCuO thin-walled block (16 mm in diameter, 10 mm in height with 0.8 mm holes) oxygenated at 16 MPa, 800 °C for 72 h was 0.54 T. It was 2 times higher than that of long-term oxygenated block at 0.1 MPa and 440 °C of the same sizes.
4. Conclusions

In MT-YBaCuO twins have been experimentally proved to play a more significant contribution than dislocations and stacking faults in achieving high critical current densities. We also showed that the densities of twins and micro-cracks (parallel to the ab-planes) in the YBa$_2$Cu$_3$O$_7$ matrix correlate with the distances between Y$_2$BaCuO$_5$ inclusions, usually the density of twins and micro-cracks are higher if
distances between Y$_2$BaCuO$_5$ inclusions located in YBa$_2$Cu$_3$O$_7$ matrix are smaller. The oxygenation under high temperature (800 °C) under elevated oxygen pressure leads to the high twin density, reduction of micro-cracks, dislocations and stacking faults. The high temperature oxygenation under oxygen pressure result in an j_c increase and a decrease in its anisotropy, as well as in an increase of the materials mechanical characteristics (hardness and fracture toughness). Larger trapped fields and a reduced time of oxygenation result also from this process treatment.

Acknowledgments
The investigations were performed in the frame of project III-3-18 (0776) supported by the National Academy of Sciences of Ukraine.

5. References
[1] Murakami M 1993 Melt processed high-temperature superconductors, ed. M Murakami (World Scientific: Singapore-New Jersey – London - Hon-Kong 380 p)
[2] Pan V M and Pan A V 2001 Fiz. Niz. Temp. 27 (Russ.) 991 [2001 Low. Temp. Phys. 27, 732]
[3] Pan V, Cherpak Y, Komashko S, Pozigun S, Tretiatchenko C, Semenov A, Pashitskii E, and Pan A V 2006 Phys. Rev. B 73, 054508
[4] Murakami M, S. Gotoh, H. Fujimoto et al. 1991 Superconductor Science and Technology 4. S43–S49
[5] Cardwell D A, Ginley D S 2003 Handbook of Superconducting Materials, Volume 1: Superconductivity, Materials and Processes, ed. Cardwell D A, Ginley D S (Institute of Physics Publishing, Bristol and Philadelphia) 927 – 1075
[6] Gawalek W, Habisreuther T, Zeisberger M, Litzkendorf D, Surzhenko O, Kacunovska S, Prikhna T A, Oswald B, Koval'ev L K, Canders W 2004 Supercond. Sci. Techn. 17, 1185–1188
[7] Chaud X, Isfort D, Beaunignon E, Tournier R 2000 Physica C 341 – 348, 2413–2416
[8] Chaud X, Bourgault D, Chatigeiner D, Diko P, Porcar L, Villaume A, Sulpice A, and Tournier R, 2006 Supercond. Sci. Technol. 19, 590–600
[9] Prikhna T, Chaud X, Gawalek W, Moschil' V, Rabier J, Savchuk Y, Joulin A, Vlasenko A, Sergienko N, Dub S, Melnikov V, Litzkendorf D, Habisreuther T, Sverdun V 2007 Physica C 460-462, 392–394
[10] Chaud X, Noudem J, Prikhna T, Savchuk Y, Haanappel E, Diko P, Zhang C P 2009, Physica C 469, Issues 15–20, 1200–1206
[11] Assmus W, Schmidbauer W 1993 Supercond. Sci. Techn. 8, 555–566
[12] Diko P, 2004 Supercond. Sci. Techn. 17, 45–58
[13] Plain J, Puig T, Sandiumenge F, Rabier J 2002 J Physical Review B 65, 104526–1 – 10
[14] Editors T, Takizawa M, Murakami M 2005 Critical Currents in Superconductors (Tokyo : Nihon University College of Humanities and Sciences, 148 p)
[15] Golovchanskiy I A, Pan A V, Fedoseev S A, Higgins M 2014 Appl. Surf. Sci. 311 549
[16] Salama K., Lee O F 1994 Supercond. Sci. Techn. 7, 177–193
[17] Boyko V S, Chan S-W 2007 Physica C 466, 56–60
[18] Linfeng M, Chan S-W 2005 J. Appl.Phys., 98, 033908–1 – 9
[19] Prikhna T A Melnikov V S, Kovylyaev V V, Moschil' V E 1995 J. Mat. Sci., 30, 3662–3667
[20] Prikhna T, Rabier J, Proult A, Chaud X, Gawalek W, Vlasenko A, Soubeyroux J, Tournier R, Sandiumenge F, Savchuk Ya, Moschil' V, Nagorny P, Sergienko N, Melnikov V, Kračunovska S, Litzkendorf D, Dub S 2004 Supercond. Sci. Technol. 17, S515-S519
[21] Prikhna T A, Gawalek W, Sandiumenge F, Moschil' V E, Melnikov V S, Dub S N, Habisreuther T, Surzhenko A B, Nagorny P A 2000, J. Mat. Sci., 35, 1607-1613
[22] Pan A V, Golovchanskiy I A, Fedoseev S A 2013 Europhys. Lett., 103, 17006. Doi: 10.1209/0295-5075/103/17006
[23] Prikhna T A, Moschil' V E, Dub S N, Sverdun V B, Joulin A, Rabier J, Chaud X, Gawalek W, Litzkendorf D, Habisreuther T 2012 Journal of Superhard Materials 34, № 5, 283-298
[24] Rabier J, Denanot M-F 1990, J. Less-Com. Met. 223, 164-165