Optimal Design of Biodiesel Production Process from Waste Cooking Palm Oil - DTU Orbit

Optimal Design of Biodiesel Production Process from Waste Cooking Palm Oil
A design methodology for biodiesel production from waste cooking palm oil is proposed. The proposed method is flexible to the biodiesel process using various catalyst types: alkali and acid catalyst in homogenous and heterogeneous forms, and different process: enzyme process and supercritical process. A two-step approach of hydrolysis and esterification processes is also considered. Waste cooking palm oil consists of a mixture of triglyceride (e.g., trilaurin, tripalmitin, triolein, tristearin, trilinolein and trilinolenin) and free fatty acids (e.g., lauric acid, palmitic acid, stearic acid, oleic acid, linoleic and linolenic acid). A driving force approach and thermodynamic insight are employed to design separation units (e.g., flash separator and distillation) minimizing the energy consumption. Steady-state simulations of the developed biodiesel processes are performed and economic analysis is used to find a suitable biodiesel process. The results show that based on a net present value, the heterogeneous acid catalyzed process is the best process for biodiesel production. With the design methodology, the proposed biodiesel process can save the energy requirement of 41.5%, compared with a conventional process.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, Computer Aided Process Engineering Center, Chulalongkorn University
Authors: Simasatitkul, L. (Ekstern), Gani, R. (Intern), Arpornwichanop, A. (Ekstern), Dr Petr Kluson (Ekstern)
Pages: 1292-1301
Publication date: 2012
Conference: CHISA 2012, Prague, Czech Republic, 25/08/2012 - 25/08/2012
Main Research Area: Technical/natural sciences

Publication information
Journal: Procedia Engineering
Volume: 42
ISSN (Print): 1877-7058
Ratings:
Scopus rating (2016): CiteScore 0.74
Scopus rating (2015): CiteScore 0.56
Scopus rating (2014): CiteScore 0.53
Scopus rating (2013): CiteScore 0.4
ISI indexed (2013): ISI indexed no
Scopus rating (2012): CiteScore 0.28
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 0.45
ISI indexed (2011): ISI indexed no
Web of Science (2010): Indexed yes
Original language: English
Process design, biodiesel production, waste cooking palm oil, superstructure
Electronic versions:
http://dtu.dtic.cvt.dk/cgi_bin_fulltext_elsevier_pi_1877_7058_0042000c_12029281.pdf_key_368233681_rfr_id_info_sid_dlib.dtu.pdf
DOIs:
10.1016/j.proeng.2012.07.521
Source: dtu
Source-ID: n:oat:DTIC-ART:elsevier/368233681::27104
Publication: Research - peer-review › Conference article – Annual report year: 2012