Secondary skin neoplasms in patients after autologous and allogeneic hematopoietic stem cell transplantation procedures

Anastazja Szlauer-Stefańska¹, Grażyna Kamińska-Winciorek¹, Sebastian Giebel¹, Maciej Bagłaj²

¹ Department of Bone Marrow Transplantation and Oncohematology, Maria Skłodowska-Curie Institute – Oncology Center Gliwice Branch, Poland
² Department of Pediatric Surgery and Urology, Wroclaw Medical University, Poland

A — research concept and design; B — collection and/or assembly of data; C — data analysis and interpretation; D — writing the article; E — critical revision of the article; F — final approval of the article

Abstract

The increasing number of hematopoietic stem cell transplantation (HSCT) procedures and lower transplant-related mortality has led to a growing population of survivors facing long-term increased risk of secondary malignancy, including cutaneous neoplasms. In this review, we aim to discuss the incidence, risk factors and preventive strategies for secondary skin neoplasms after autologous and allogeneic HSCT. Cutaneous neoplasms, such as basal cell carcinoma, squamous cell carcinoma and melanoma, are among the most common solid cancers arising in patients after HSCT. Besides risk factors established in the general population, primary disease, chronic graft-versus-host disease (CGvHD), prolonged immunosuppression, especially with the use of cyclosporine and azathioprine, radiation exposure, light skin color, male sex, and young age at transplantation play a role in the development of cutaneous neoplasms in HSCT recipients. Skin cancer development after HSCT may be explained by cumulative effects of chemotherapy and radiotherapy-induced DNA damage, prolonged immunosuppressive conditions and chronic mucosal inflammation, particularly after allogeneic HSCT. Delayed immune recovery and persistent immunodeficiency in patients with graft-versus-host disease (GVHD) may also contribute to carcinogenesis. Regular dermatological surveillance and prompt recognition of precancerous and cancerous lesions is crucial for patient’s prognosis and management.

Key words: hematopoietic stem cell transplantation, skin neoplasms, graft-versus-host disease, basal cell carcinoma, squamous cell carcinoma
Introduction

Hematopoietic stem cell transplantation (HSCT) is potentially curative for malignant hematological neoplasms and other non-malignant conditions. The introduction of new protocols has led to the improvement of survival, but challenges connected with long-term health problems of patients have emerged. Secondary neoplasms are divided into 3 types: post-transplant lymphoproliferative disease (PTLD), hematologic malignancies and solid cancers. Post-transplant lymphoproliferative and hematologic diseases occur earlier after a transplant and their incidence stabilizes after 10 years, whereas solid malignancies are characterized by long latency period and no plateau even after 15 years.

In this review, we aim to discuss the incidence, risk factors and preventive strategies for secondary skin neoplasms after autologous (autoHSCT) and allogeneic hematopoietic stem cell transplantation (alloHSCT). Additionally, we present clinical and dermoscopic aspects of secondary skin malignancy in patients hospitalized in our Bone Marrow Transplantation Department (Fig. 1–5).

Incidence of secondary skin neoplasms

Studies usually reported incidence rate and a standardized incidence ratio (SIR) (observed cancer cases in a HSCT cohort to expected cancer cases in the general population of similar age and gender). Table 1 shows data on secondary solid neoplasms including skin neoplasms reported in analyzed studies. Secondary solid tumors have been reported to appear at twice the rate expected in the general population, although some reports cited over 11-fold heightened risk. Cumulative incidence of secondary solid cancers varies from 1% to 15.9% at 10 years, reaching 17.6% at 30 years.

Cutaneous malignant neoplasms are among the most common neoplasms, accounting for 0–58.5% of secondary neoplasms. Twenty-year cumulative incidence is 6.5% for basal cell carcinoma (BCC) and 3.4% for cutaneous squamous cell carcinoma (SCC). The median time from HSCT to diagnosis is 7.3–9.4 years for BCC and 2.1–7.0 years for SCC. Half of the reported melanomas occurred after 1–4 years and SIRs of melanoma are between 3.5–8.3.

Risk factors

There are conflicting results on the impact of age at transplantation. Younger patients were reported to be at risk, especially when irradiation-based conditioning was used. Old age entailed higher risk, especially in the setting of autoHSCT.

Notable difference in skin cancer incidence was noted in the Asian population; some of the studies did not report on skin cancer after auto- or alloHSCT, despite high incidence of other solid cancers, including SCC in oral cavity. However, in other studies SIRs for skin cancers were reported as high as 7.2–40.2. Those discrepancies are consistent with low background incidence of skin malignancies in local cancer epidemiology and may be partly explained by gene–environment interaction.

Genetically determined skin pigmentation plays an important role in BCC susceptibility and light complexion was reported as a risk factor in some of the analyzed studies. Male sex was also shown to be a risk factor in some studies.

Primary disease-related factors

Diagnosis of Fanconi anemia, dyskeratosis congenita or Li-Fraumeni syndrome confers an increased risk of secondary cancers, also in the setting of HSCT. In malignant hematologic neoplasms patients, acute myeloid leukemia/myelodysplastic syndrome patients were found to have a tendency towards the development of secondary
Fig. 2. Dermoscopy in non-polarized light of the monitored melanocytic nevus located on the abdominal skin in a 20-year-old female patient (III phototype of the skin according to the Fitzpatrick scale), treated with alloHSCT procedure for myelodysplastic syndrome (videodermoscopy, non-polarized light, ×50 magnification). A. Just before alloHSCT: during skin examination the melanocytic nevus 7 mm in diameter was found on the abdominal region. The nevus was included in the close short-time follow-up because of the presence of atypical network: sharply cut-off, with thickening of the pigmented network and presence of irregularly distributed grayish globules. B–D. Dynamic changes observed after the alloHSCT procedure (days +50, +72, +95): pigmented network has become darker, irregularly thickened, forming peripheral short streaks and structureless irregularly distributed areas. In adhesive tape test, the black lamella was not torn off. The complete excision was postponed due to immunosuppression, agranulocytosis and thrombocytopenia. Finally, histopathologic examination revealed the diagnosis of compound nevus.

Fig. 3. Macroscopic (A, C) and dermoscopic (B, D) images of melanoma simulators—synchronously appearing multiple, small dark nevi in male 21-year-old patient with the IV phototype according to Fitzpatrick as a symptom of the aggravated nevogenesis after alloHSCT (day +184) for ALL. Dermoscopy in non-polarized light revealed multiple, small dark nevi with structureless dermoscopic pattern.

Fig. 4. Clinical and dermoscopic aspect of histopathologically confirmed squamous cell carcinoma in situ in a 54-year-old patient with cutaneous chronic GvHD after alloHSCT for myelofibrosis (day +750). A. Suspicious erythematous, velvety solitary skin lesion. B. Dermoscopy in polarized light showed the presence of central scaling with prominent brownish dots distributed linearly at the periphery of the lesion. Background consisted of multiple linear curved vessels forming a pseudonetwork, suggesting the diagnosis of actinic keratosis.
Table 1. Outline of the studies analyzed

Study (first author, date)	Years	Type of HSCT	Population and country	Number of points	Number of secondary neoplasms (solid and skin cancer given if reported)	Increased risk compared with general population	Cumulative incidence	Risk factors	Time from transplantation-diagnosis; median (range)
Curtis 1997	1964–1992	allo	IBMTR registry	19229	80 solid, 71 NMSC (not included in analysis), 8 invasive SCC, 9 melanomas	SIR 2.7 (all), 5 (melanoma), 8.3 for those who survived >10 years after HSCT	2.2% at 10 years, 6.7% at 15 years	younger age (<10 years RR 36.6, 10–29 years RR 46 compared with >30 years), cGvHD (invasive SCC RR 22.6), male sex (all invasive skin SCC occurred in men), higher doses of TBI (≥10 Gy single-dose, ≥13 fractionated; melanoma RR 8.2), T-cell depletion (melanoma RR 4.5)	not reported
Kolb 1999	before 1986–1996	auto and allo	EBMT registry	1036	53 solid, 14 skin (8 BCC, 4 SCC, 2 melanoma)	SIR 3.8	3.5% at 10 years, 11.5% at 15 years	older age, treatment of GvHD with CsA (RR 2.5), thalidomide (RR 3.4)	not reported
Kulkarni 2000	1973–1997	allo	UK	725	12 solid, 2 BCC	SIR 10.0 (all), skin 130 (skin)	0.4% at 2 years, 1.7% at 5 years, 6.4% at 10 years and 6.6% at 15 years	use of additional cranial or cranio-spinal irradiation, ALL, cGvHD (all patients with SCC)	7 years (2–17 years)
Bhatia 2001	1997–1998	auto and allo	USA	2129	29 solid, 9 NMSC, (3 SCC and 6 BCC)	SIR 5.3 (excluding BCC and SCC)	1.6% at 5 years, 6.1% at 10 years (all)	TBI, cGvHD (all SCC patients had GvHD), age <34 years	not reported
Baker 2003	1974–2001	auto and allo	USA	3372	147 all, 62 solid, 19 SCC and BCC, 8 melanoma	SIR 8.1 (all), 2.8 (solid tumors), 8.3 (melanoma)	6.9% (all), 3.8% (solid) at 20 years	older age ≥20 years (solid, RR 2.0)	not reported
Curtis 2005	1964–1996	allo	CIBMTR registry	24011	58 SCC (19 skin SCC, 22 melanoma, 103 BCC (excluded form analysis))	SIR 2.8	1.1% at 20 years	long duration of cGvHD therapy, azathioprine, particularly when combined with cyclosporine and steroids, severe GvHD	not reported
Shimada 2005	1981–2000	auto and allo	Japan	809	19 solid, 0 skin	SIR 2.8	1.9% at 5 years, 4.2% at 10 years	extensive cGvHD, older age	range: 12–139 months
Hasegawa 2005	1970–1993	allo	Canada	557	additional 31 (all), 4 SCC, 5 BCC	SIR 5.13 (all)	4.2% at 10 years, 6.17% at 15 years (all)	older age	6.8 years (0.5–21.9 years)
Brown 2005	1982–1997	auto	USA	605	42 solid, 39 NMSC, 26 BCC, 13 SCC, 5 melanoma	SIR 5.9 melanoma (calculated)	2.1% at 10 years (all), 10% at 10 years (excluding MDS/AML)	older age	not reported
Leisenring 2006	1969–2003	allo	USA	4810	237 with at least 1 NMSC (158 BCC, 95 SCC)	not reported	6.2% (BCC, 3.4% (SCC) at 20 years	TBI (most strongly if <18 years), light skin color (BCC), aGvHD (SCC), cGvHD (both BCC and SCC)	BCC 7.9 years (0.5–32.0 years), SCC 6.3 years (0.3–24.8 years)
Cavalier 2006	not reported	allo	USA	49	6 patients (14 SCC, 2 BCC, 2 melanoma), 1 patient had 10 recurrent SCC	not reported	not reported	not reported	2–26 months
Gallagher 2007	1985–2003	allo	Canada	926	30 solid, 4 SCC, 8 BCC	SIR 1.85	3.1% at 10 years	older age at HSCT, female donor	6.8 years (BCC 7.6 years, SCC 2.1 years)
Schwartz 2009	1969–2006	auto and allo	USA	6306	282 BCC	not reported	not reported	TBI, younger age at HSCT, whites, cGvHD (non-irradiated patients)	not reported
Study (first author, date)	Years	Type of HSCT	Population and country	Number of points	Number of secondary neoplasms (solid and skin cancer given if reported)	Increased risk compared with general population	Cumulative incidence	Risk factors	Time from transplantation-diagnosis; median (range)
---------------------------	-------	--------------	------------------------	-----------------	---	---	----------------------	-------------	---
Rizzo 2009²⁹	1964–1996	allo	CIBMTR registry	28874	189 solid, 18 melanoma, 19 invasive skin SCC (BCC excluded from analysis)	SIR 2.09 (all), 3.5 (melanoma), 4.2 (skin)	2.5% at 10 years, 5.8% at 15 years, 8.8% at 20 years (all neoplasms), 1% at 10 years, 2.2% at 15 years, and 3.3% at 20 years (solid cancers)	cGvHD (skin RR 11.0), male sex (skin RR 11.9), irradiation – TBI (non-SCC tumors RR 2.3), T-cell depletion	not reported
Abou-Mourad 2010²²	1981–2002	allo	Canada	429	20 solid, 11 skin	not reported	not reported	not reported	6.3 years (0.12–17.3 years)
Chen 2011⁴¹	1984–2004	allo	Taiwan	170	8 solid, 0 skin	not reported	2.89% at 10 years, 3.82% at 15 years	cGvHD, age >40 years	10 years (5.2–20.8 years)
Majhail 2011²⁵	1986–2005	allo	CIBMTR registry	4318	66 solid, 4 melanoma	SIR 1.4 (all), 1.38 (melanoma)	1.2% at 10 years (AML), 2.4% at 10 years (CML)	cGvHD	6 years
Yokota 2011²⁵	1984–2005	allo	Japan	2062	30 solid, 6 skin (1 SCC, 3 BCC, 1 melanoma, 1 myxofibrosarcoma)	SIR 2.16 (all), 40.23 (skin)	0.9% at 5 years, 2.4% at 10 years, 6.7% at 15 years	cGvHD, lymphoma	56 years
Shimoni 2013³⁴	1999–2012	allo	Israel	931	27 patients, 8 skin (7 SCC, 1 melanoma)	SIR (excluding skin SCC) 2.0 (all)	5.6% at 10 years (all), 1.5% at 10 years (skin)	fludarabine-based conditioning, moderate and severe GvHD, diagnosis of chronic myeloproliferative or non-malignant disease	43 months (7 months–11.5 years)
Krishnan 2013³³	1989–2009	auto	USA	841	53 solid, 13 BCC, 14 SCC, 4 melanoma	not reported	7.4% at 5 years, 15.9% at 10 years (all), 1.9% at 5 years, 4.7% at 10 years (only NMSC, calculated)	age >55 years, non-Hispanic white race	not reported
Bilmon 2014⁴⁰	1992–2007	auto	Australia	7765	298 all, 56 melanoma (BCC and SCC excluded)	SIR 1.4 (all), 2.6 (melanoma)	5.28% at 10 years (all), 4.22% at 10 years (solid)	age >45 years, male	3.0 years (0.1–14.6 years)
Atsuta 2014⁴⁷	1990–2007	allo	Japan	17545	269 solid, 13 skin	SIR 1.8 (solid), 7.2 (skin)	0.7% at 5 years, 1.7% at 10 years, 2.9% at 15 years	cGvHD, older age >30 years	not reported
Omland 2016³⁰	1999–2014	auto and allo*	Denmark	3302	11 melanoma, 8 SCC, 53 BCC allo: SIR 3.1 (BCC), 18.3 (SCC), 5.5 (MM), auto: SIR 1.4 (BCC)	allo: 53% at 10 years, auto: 47% at 10 years (BCC)	3.9 years	TBI (BCC RR 3.9)	not reported
Michelis 2017³⁰	1970–2015	allo	Canada	2415	209 all, 32 BCC, 26 non-metastatic SCC, 5 SCC with meta, 10 melanoma	SIR 2.07 (excluding non-metastatic NMSC)	6.3% at 10 years, 13.5% at 20 years, 17.6% at 30 years	older age >55 years compared to ≤40 years, RIC	not reported
Song 2017³¹	1994–2013	allo	USA	85	1 BCC, 4 SCC	not reported	not reported	not reported	5.9 years (1.0–23.0 years)
Inamoto 2018³¹	1990–2013	auto and allo	Japan	31867	713 all, 28 skin	not reported	not reported	not reported	6.3 years (0.12–17.3 years)
Secondary skin neoplasms after HSCT

A. Szlauer-Stefanska et al.

1226

neoplasms. Multiple myeloma was also linked with secondary neoplasms. Rizzo et al. reported lower risk for patient with chronic myeloid leukemia compared to acute leukemia, but this claim was not confirmed in other studies.

Transplantation-related factors

Initially, in the HSCT procedure myeloablative conditioning using total body irradiation (TBI) or high-dose alkylating agents was performed. Presently, non-myeloablative conditioning that utilizes transient intensive immunosuppression enabling engraftment of allogeneic material without myeloablation is frequently used. Reduced intensity and toxicity conditioning (RIC/RTC) were also developed. The incidence of secondary neoplasms is not lower in the setting of non-myeloablative or RIC; in some reports, the incidence was even higher. Presently, the widespread use of haploidentical transplantation with post-transplant cyclophosphamide is noted, but there is scarce data on secondary neoplasms in this population.

All alkylating agents are considered carcinogenic, and the effect varies among the drugs in this group. There is concern regarding the high neogenic potential of melphalan; however, its use in conditioning was not associated with a higher risk of second malignancies than cyclophosphamide and TBL. Also, neither cyclophosphamide, busulfan conditioning, cyclophosphamide-based mobilizing therapy, nor epipodophyllotoxins were found to increase the risk of secondary neoplasms in autoHSCT recipients treated for multiple myeloma. Fludarabine is associated with the risk of secondary malignancies, as its active anti-metabolite incorporates into DNA, resulting in the inactivation and inhibition of DNA repair. It is speculated that the combination of fludarabine with alkylating agents as given in RIC/RTC may have a synergistic carcinogenic effect.

Radiation

The impact of radiation seems to depend on the age of exposure; younger people were reported to have almost a ten-fold higher risk of secondary neoplasms, while for older patients it was only slightly elevated. In a study focusing on BCC, TBI was reported as a risk factor, especially in patients <18 years, with relative risk exceeding 20 for those <10 years and with light complexion; however, the impact declined with age and there was no increased BCC risk after TBI conditioning in patients over the age of 40.

The risk of radiation-related malignancies and other long-term adverse effects, particularly in children, has led from fractionation and reduction of doses to the development of non-radiation-based regimens. A study involving a population of patients without TBI exposition, utilizing busulfan/cyclophosphamide, reported lower rates of secondary cancers, although still 1.4-fold higher than general population. However, the role of TBI remains unresolved, with some publications providing strong evidence of increased risk from TBI exposure and others failing to identify this association.

Immunosuppression and graft-versus-host disease

After auto- and alloHSCT, a period of lymphopenia and cell-mediated immune deficiency occurs and can persist for months. Adequate numbers of CD4+ T-lymphocytes have been postulated to inhibit malignant transformation of precursor skin lesions, and their lack is reflected in the most common cancer related with AIDS – Kaposi sarcoma. There are also reports of telomere shortening after alloHSCT, which can cause significant genomic instability, leading to malignant transformation. What is more, low-grade inflammation may not be clinically perceived; in a study by Vasallo et al., “normal-looking...
Hematopoietic stem cell transplantation and nevi

In a recent study comprising pediatric patients, the patients after HSCT had significantly more nevi and 16.5% of HSCT recipients developed cancerous or precancerous lesions. The majority of nevogenesis occurs in childhood; in a study of adult and pediatric HSCT recipients, an increase in the nevus count was found only among those aged <20 years at HSCT. In addition, children may be at a higher risk of thymic dysfunction after HSCT, with impaired immunosurveillance, possibly contributing to the development of secondary malignancies and nevogenesis. In another study, the number of nevi was not significantly increased after HSCT, although a group of patients who were conditioned with a combination of 2 alkylating drugs at high doses and younger patients tended to have a higher count of nevi. Conversely, there was a trend in favor of a lower count of nevi in patients presenting with cutaneous cGVHD. Alloimmunity, chronic skin inflammation with overproduction of pro-inflammatory cytokines or pigmentation, areas of depigmentation, leukoderma, and fibrosis in cGVHD may be responsible for the perceivable decreased number of nevi, although this observation requires further investigation.

Differences between primary and secondary skin cancers

Risk factors for the development of skin cancer in the general population, including fair skin type, advanced age, exposure to UV radiation, and genetic predisposition, seem to play a role in the initiation and progression of carcinogenesis in skin of HSCT recipients. Risk factors; in an evaluation of SCC of the buccal cavity, no differences between primary and secondary skin cancers were found except for alcohol or tobacco use. Secondary malignancies after alloHSCT tend to behave more aggressively in these patients than in immunocompetent individuals, and they have a higher risk of metastasis and are often multiple. Adjusted overall survival probabilities were lower in patients with subsequent cancer compared with those with primary cancer in the general population for colon, central nervous system and bone/soft tissue cancers after allogeneic HSCT. Michelis et al. found that 40 of 209 patients (19%) with secondary malignancy developed another one, including 13 patients with local skin cancers recurrences and 12 patients presenting with SCC or BCC before other solid malignancy. In the study, 22% of long-term survivors’ deaths were attributable to secondary neoplasms. Of note, 4 out of 5 metastatic cutaneous SCC carcinomas in this study were reported to be a cause of death.

In a study by Inamoto et al., secondary cancers occurred in alloHSCT recipients at a younger age than primary cancers in the general population (median 55 compared to 67 years).

Oncogenic viruses

Oncogenic viruses in the context of prolonged immunosuppression also participate in pathogenesis of tumors after HSCT. Human papillomavirus (HPV) infection was suggested to be involved in the development of non-melanoma skin cancer. Vaccines associated with oncogenic viruses express oncoproteins inactivation p53, which is associated with the development of BCC and SCC. HPV DNA, especially types 5 and 8, was detected more frequently in SCC of transplant recipients than in non-immunosuppressed patients. However, in 1 study, none of the oral SCCs showed evidence of HPV infection.
Differences between solid organ transplantation and HSCT

The risk of secondary skin malignancies is high in solid-organ transplant recipients and has been extensively studied. The incidence of cutaneous SCC in solid-organ transplant recipients is 65- to 250-fold greater than in the general population, and this cancer has greater morbidity and mortality in solid-organ recipients than in the general population. The risk factors include cumulative ultraviolet radiation exposure, long-term use of immunosuppressive agents and infections by human papillomaviruses. Several guidelines and risk prediction tools have been established for this population of patients. Recent research observed a reduction in cumulative incidence of secondary cancers when sirolimus was used instead of cyclosporine. For solid-organ transplant recipients, the duration of immunosuppressive therapy is usually lifelong, whereas in HSCT recipients, it may be discontinued after transplantation if they do not develop GvHD. Thus, prolonged immunosuppression and GvHD are usually linked. On the other hand, solid organ recipients rarely develop GvHD, which itself causes processes of tissue destruction and possible tumor development. Omland et al. compared HSCT recipients with renal transplant patients; allo-HSCT recipients had a three-fold higher risk of melanoma, similar risk of BCC and lower risk of SCC.

Limitations of the studies

There are several limitations in the published studies. Reports with long follow-up reflect the then used transplantation strategies, which have since greatly changed. In older reports, bone marrow as a source of stem cells and HLA identical matched sibling donor with myeloablative conditioning were predominantly used. Presently, peripheral blood cells are dominant as a graft source, and alternative conditioning regimens – RIC and haploidentical transplantations – are commonly utilized. Furthermore, immunosuppression strategies and treatment of GvHD have changed. Some studies reported combined results of allo- and auto-HSCT, and others included a considerable number of pediatric patients among the adults, resulting in heterogeneity of population. Most established diagnoses of second neoplasms from hospital records or from patient’s self-reports potentially underestimate risk, particularly in patients without other post-transplant complications. What is more, there is a lack of information on cancer stage at diagnosis, localization of lesions and treatment details.

National cancer registries rarely include information on non-melanoma skin cancer. Only some of the studies included an assessment of the risk in comparison to the general population. The majority of studies did not include non-melanoma skin cancers in the analysis, citing low mortality and unknown incidence of BCC and SCC, so it was not possible to assess excess risk, SIR or specific factors for development of secondary skin cancers. Retrospective studies lack assessment of Fitzpatrick’s skin phototype and detailed patient history. No prospective study with pre-transplant skin assessment focusing on risk of skin neoplasms have been published. Other issues are long latency period necessary for the occurrence of these complications and a relatively low numbers of events. Follow-up of some of the studies may be too short to predict the actual incidence of skin cancer.

Additional studies with systematic data collection and comprehensive reporting with extended follow-up are needed to characterize the incidence and actual risk for developing skin cancer.

Screening and preventive measure recommendations

Patients after HSCT should follow the general population recommendations: avoidance of carcinogenic agents such as tobacco and alcohol, and use of sun-protection measures. Specific guidelines for prophylaxis are consensus-based and include whole skin and mucous membranes assessment by dermatologist every 12 months. Patients after HSCT should follow the general population recommendations: avoidance of carcinogenic agents such as tobacco and alcohol, and use of sun-protection measures. Specific guidelines for prophylaxis are consensus-based and include whole skin and mucous membranes assessment by dermatologist every 12 months.

In patients with a history of cutaneous malignancies or GvHD, screening interval should be shortened to at least 6 months. Patients should be educated about prevention and recognition of skin cancers. The role of the dermatologist in the care of HSCT recipients is important and includes also diagnosis and treatment of cutaneous GvHD; thus, the development of dedicated dermatology service for allogeneic HSCT was proposed. Efforts to prevent GvHD and to improve immune reconstitution after transplantation may be an effective strategy of preventing secondary tumors. During the assessment of skin lesions in HSCT recipients, it is important to consider a possible differential diagnosis that includes a plethora of GvHD manifestations, cutaneous manifestation of primary neoplasms, infectious lesions, and others.

Heightened awareness and more vigilant skin surveillance are warranted for patients with GvHD who received TBI-based conditioning, and those with hereditary disorders associated with cancer risk, such as Fanconi anemia. Discontinuation of voriconazole may be considered in patients experiencing chronic phototoxicity. Suspicious lesions should be addressed promptly, with management complying with standard practice, but the treatment plans should include previous history. There are no studies on specific skin cancer preventative measure in the population of patients after HSCT. It would be valuable to find whether preference of mTOR inhibitors, such as...
as sirolimus, is protective, as was shown in solid-organ transplant recipients.

Studies on HSCT recipients have reported generally high adherence rate to cancer screening; however, it was reported that autoHSCT survivors were less likely than alloHSCT to have a skin examination in the previous year.

Physicians should have lower thresholds to investigate new concerning signs or symptoms of malignancy in patients after HSCT than for the general population. Many transplantation centers expect to receive notification if their survivors develop second cancers.

Regular dermatological surveillance and prompt recognition of precancerous and cancerous lesions is crucial for a patient’s prognosis and management.

References

1. Gooley TA, Chien JW, Pergam SA, et al. Reduced mortality after autologous hematopoietic cell transplantation. *N Engl J Med*. 2010;363(22):2091–2091. doi:10.1056/NEJMoa1004383

2. Mothy B, Mothy M. Long-term complications and side effects after autologous hematopoietic stem cell transplantation: An update. *Blood Cancer J*. 2011;1(4):e16–e25. doi:10.1038/bcj.2011.14

3. Morton LM, Saber W, Baker KS, et al. National Institutes of Health Hematopoietic Cell Transplantation Late Effects Initiative: The Subsequent Neoplasms Working Group report. *Biol Blood Marrow Transplant*. 2017;23(3):367–378. doi:10.1016/j.bjmt.2016.09.005

4. Baker KS, DeFor TE, Burns LJ, Ramsay NKC, Neglia JP, Robison LL. New malignancies after blood or marrow stem cell transplantation in children and adults: Incidence and risk factors. *J Clin Oncol*. 2003;21(7):1352–1358. doi:10.1200/JCO.2003.05.108

5. Curtis RE, Rowlings PA, Deeg HJ, et al. Solid cancers after bone marrow transpl.

6. Mohy B, Mohy M. Long-term complications and side effects after autologous hematopoietic stem cell transplantation: An update. *Blood Cancer J*. 2011;1(4):e16–e25. doi:10.1038/bcj.2011.14

7. Morton LM, Saber W, Baker KS, et al. National Institutes of Health Hematopoietic Cell Transplantation Late Effects Initiative: The Subsequent Neoplasms Working Group report. *Biol Blood Marrow Transplant*. 2017;23(3):367–378. doi:10.1016/j.bjmt.2016.09.005

8. Baker KS, DeFor TE, Burns LJ, Ramsay NKC, Neglia JP, Robison LL. New malignancies after blood or marrow stem cell transplantation in children and adults: Incidence and risk factors. *J Clin Oncol*. 2003;21(7):1352–1358. doi:10.1200/JCO.2003.05.108

9. Curtis RE, Rowlings PA, Deeg HJ, et al. Solid cancers after bone marrow transpl.

10. Mothy B, Mothy M. Long-term complications and side effects after autologous hematopoietic stem cell transplantation: An update. *Blood Cancer J*. 2011;1(4):e16–e25. doi:10.1038/bcj.2011.14

11. Morton LM, Saber W, Baker KS, et al. National Institutes of Health Hematopoietic Cell Transplantation Late Effects Initiative: The Subsequent Neoplasms Working Group report. *Biol Blood Marrow Transplant*. 2017;23(3):367–378. doi:10.1016/j.bjmt.2016.09.005

12. Hasegawa W, Pond GR, Rifkind JT, et al. Long-term follow-up of secondary malignancies in adults after allogeneic bone marrow transplantation. *Bone Marrow Transplant*. 2005;35(1):51–55. doi:10.1038/ sj.bmt.1704706

13. Hasegawa W, Pond GR, Rifkind JT, et al. Long-term follow-up of secondary malignancies in adults after allogeneic bone marrow transplantation. *Bone Marrow Transplant*. 2005;35(1):51–55. doi:10.1038/sj.bmt.1704706

14. Brown JR, Yeckes H, Friedberg JW, et al. Increasing incidence of late second malignancies after conditioning with cyclophosphamide and total-body irradiation and autologous bone marrow transplantation for non-Hodgkin’s lymphoma. *J Clin Oncol*. 2005;23(10):2208–2214. doi:10.1200/JCO.2005.05.158

15. Leisenring W, Friedman DL, Flowers MED, Schwartz JL, Deeg HJ. Non-melanoma skin and mucosal cancers after hematopoietic stem cell transplantation. *J Clin Oncol*. 2006;24(7):1119–1126. doi:10.1200/JCO.2005.05.17052

16. Cavalier M, Shmalo JA, Yu M, Billings SB, Dodson R, Nelson RP. Skin cancer after nonmyeloablative hematopoietic cell transplantation. *Bone Marrow Transplant*. 2006;37(12):1103–1108. doi:10.1038/sj.bmt.1705362

17. Gallagher G, Forrest DL. Second solid cancers after allogeneic hematopoietic stem cell transplantation. *Cancer*. 2007;109(1):84–92. doi:10.1002/cncr.22373

18. Schwartz JL, Kopecky KJ, Mathews RW, Leisenring WM, Friedman DL, Deeg HJ. Basal cell skin cancer after total-body irradiation and hematopoietic cell transplantation. *Radiat Res*. 2009;171(2):155–163. doi:10.1667/RRI1469.1

19. Rizzo JD, Curtis RE, Sobocinski KA, et al. Solid cancers after allogeneic hematopoietic cell transplantation. *Blood*. 2009;113(11):1175–1183. doi:10.1182/blood-2008-05-158782

20. Abou-Mourad YR, Lau BC, Barnett MJ, et al. Long-term outcome after allo-SCT: Close follow-up on a large cohort treated with myeloablative regimens. *Bone Marrow Transplant*. 2010;45(2):295–302. doi:10.1038/bmt.2009.128

21. Chen MH, Chang PM, Li WT, et al. High incidence of oral squamous cell carcinoma independent of HIV infection after allogeneic hematopoietic SCT in Taiwan. *Bone Marrow Transplant*. 2011;46(4):567–572. doi:10.1038/bmt.2010.163

22. Majhail NS, Brazauskas R, Rizzo JD, et al. Secondary solid cancers after autologous hematopoietic cell transplantation using busulfan-cyclophosphamide conditioning. *Blood*. 2011;117(1):316–322. doi:10.1182/blood-2010-07-294629

23. Yokota A, Ozawa S, Masanori T, et al. Kanto Study Group for Cell Therapy (KSGCT). Secondary solid tumors after allogeneic hematopoietic SCT in Japan. *Bone Marrow Transplant*. 2012;47(1):95–100. doi:10.1038/bmt.2011.23

24. Shimoni A, Shem-Tov N, Chetrit A, et al. Secondary malignancies after autologous stem-cell transplantation in the era of reduced-intensity conditioning: The incidence is not reduced. *Leukemia*. 2013;27(4):829–835. doi:10.1038/leu.2012.299

25. Krishnan AY, Mei M, Sun CL, et al. Second primary malignancies after autologous hematopoietic cell transplantation for multiple myeloma. *Blood Marrow Transplant*. 2013;19(2):260–265. doi:10.1038/bmt.2012.902

26. Bilmon IA, Ashton LJ, Le Marsney RE, et al; CAST Study Group. Second cancer risk in adults receiving autologous haematopoietic SCT for cancer: A population-based cohort study. *Bone Marrow Transplant*. 2014;49(5):691–698. doi:10.1038/bmt.2014.13

27. Atsuta Y, Suzuki R, Yamashita T, et al.; Japan Society for Hematopoietic Cell Transplantation. Continuing increased risk of oral/esophageal cancer after autologous hematopoietic stem cell transplantation in adults in association with chronic graft-versus-host disease. *Ann Oncol*. 2014;25(2):435–441. doi:10.1093/annonc/mdt558

28. Omland SH, Gniadecki R, Hædersdal M, Helweg-Larsen J, Omland LH. Skin cancer risk in hematopoietic stem cell transplantation recipients compared with background population and renal transplant recipients. *JAMA Dermatol*. 2016;152(2):177–183. doi:10.1001/jamadermatol.2015.3902

29. Michels FV, Kotchetkov R, Grunwald RM, et al. Long-term incidence of secondary malignancies after allogeneic hematopoietic cell transplantation: A single-center experience. *Blood Marrow Transplant*. 2017;23(6):945–951. doi:10.1038/bmmt.2017.02.015

30. Song JS, London WB, Hawryluk EB, et al. Risk of melanocytic nevi and nonmelanoma skin cancer in children after autologous hematopoietic stem cell transplantation. *Bone Marrow Transplant*. 2017;52(7):989–997. doi:10.1038/bmt.2017.57

31. Inamoto Y, Matsuda T, Tabuchi K, et al.; Japan Society for Hematopoietic Cell Transplantation Late Effects and Quality of Life Working Group. Outcomes of patients who developed subsequent solid cancer after hematopoietic cell transplantation. *Blood Adv*. 2018;2(15):1901–1913. doi:10.1182/bloodadvances.2018029966
