Development and Characterization of 15 Microsatellite Loci for *Rhododendron delavayi* Franch. (Ericaceae)

Nian Wang
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, China; and Graduate School of the Chinese Academy of Sciences, Beijing 100049, China

Zhang Chang Qin¹ and Jun-bo Yang
Kunming Botanical Garden, Lanhei Road 132, Kunming Institute of Botany, Chinese Academy of Sciences, 65 China, Kunming, Yunnan, China

Jing-li Zhang
Yunnan Agricultural University, Kunming 650201, Yunnan, China

Additional index words. *Rhododendron delavayi*, microsatellite, SSR markers

Abstract. *Rhododendron delavayi* Franch. is an important ornamental plant and often plays a role in natural hybridization with other sympatric species in *Rhododendron* subgenus *Hymenanthes*. Fifteen microsatellite loci were developed and characterized in this species. The average allele number of these microsatellites was four per locus, ranging from three to six. The ranges of expected (*H*) and observed (*H*) heterozygosities were 0.0365 to 0.7091 and 0.0263 to 0.9512, respectively. Cross-species amplification in *R. agastum* and *R. decorum* showed that a subset of these markers holds promise for congeneric species study. These sets of markers are potentially useful to investigate the genetic structure and gene flow of *R. delavayi* and other congeneric species.

Rhododendron, renowned for its ornamental value, is one of the largest and most widespread woody plant genera with over 1000 species distributed from the northern temperate zone, throughout tropical southeast Asia to northeastern Australia (Chamberlain, 2003; Cox, 1994; Ng and Corlett, 2000). There are nine subgenera in *Rhododendron* (Fang et al., 2005), and many species have been introduced and cultivated for ornamental and landscape purposes. Over 1000 rhododendron cultivars have been bred or selected in the world, especially for species from *Rhododendron* subgenus *Hymenanthes* (Chamberlain, 1982). *Rhododendron delavayi* Franch. is an important ornamental tree species with red flowers; it belongs to *Rhododendron* subgenus *Hymenanthes*. It distributes from southwest China to southeast Asia, especially in the Himalayan region, and it is often involved in natural hybridization with other sympatric *Rhododendron* species such as *R. agastum* Balf.f. & W.W.Sm., *R. irroratum* Franch., *R. cyanocarpum* Franch. & W.W.Sm., and *R. decorum* Franch. (Zha et al., 2008; Zhang et al., 2007). Actually, the true extent of hybridization is certainly much greater in areas where species boundaries appear incomplete (Milne et al., 1999). More recently, some natural hybrid individuals have been selected from *R. cyanocarpum* and *R. delavayi* (Zhang et al., unpublished data). We believe that selecting new hybrids from nature may be a good way toward sustainable use for *Rhododendron*.

Simple sequence repeats (SSRs; microsatellites) are the favored type of molecular marker for identifying plant germplasm (Dikshit et al., 2007). From a horticultural perspective, *R. delavayi* provides abundant genetic resources for breeding new cultivars. However, until now, little research has been conducted on this species. Therefore, it is urgent to investigate the genetic structure and gene flow of *R. delavayi*.

We sampled 34 *R. delavayi* individuals among five populations (two populations were from Yangbi and the remaining three from Kunming, Zhanyi, and Shizong), four *R. agastum* and *R. decorum* individuals among three populations, respectively (the three populations of *R. agastum* and *R. decorum* were from Zhanyi, Shizong, and Yangbi), across Yunnan province, southwest China. Genomic DNA of *R. delavayi* was used for the construction of all genomic libraries. In total, 42 *Rhododendron* individuals were used to detect SSR loci polymorphism and to test the transferability of microsatellite markers. A microsatellite enriched library was conducted by using a modified biotin–streptavidin capture method (Chen et al., 2008). Briefly, the genomic DNA (≥500 to 800 bp) was completely digested with *Mse*I restriction enzyme (NEB) and then the digested fragments were ligated to a *Mse*I amplified fragment length polymorphism adaptor followed by amplification with adapter-specific primers ([5′-GAT GAG TCC TGA GTA AN-3′]) (Hu et al., 2009). For enrichment of the fragments (≥300 to 800 bp) containing SSR, the polymerase chain reaction (PCR) products were hybridized to a mixture of biotinylated probes [(AAG)]₁₀/(AC)]₁₀/(AG)]₁₀ and SP6/T7 vector primers, respectively. A total of 462 clones were chosen for sequencing with an ABI PRISM 3730XL SEQUENCER (Shanghai, China). In all, 240 clones (52%) were found to contain microsatellite sequences. Finally, 90 pairs of SSR primers were selected for primer designing using Primer Premier 5.0 software (Premier, Canada) (Clarke and Gorley, 2001). Primer pairs were assessed in 34 wild *R. delavayi* individual samples from southeast to southwest Yunnan, China. Microsatellite loci were amplified in a final volume of a 15-μL reaction containing 7.5 μL 29 Taq PCR MasterMix [Tiangen; 0.1 U Taq polymerase/μL, 0.5 mM dNTP each, 20 μM Tris-HCl (pH 8.3), 100 mM KCl, 3 mM MgCl₂], 0.6 μM of each primer, and ≥50 ng genomic DNA. The amplification profiles included initial denaturation at 94 °C for 3 min followed by 35 to 40 cycles of 30 s at 94 °C, 30 s at 54 to 68 °C, and 1 min at 72 °C and then final extension.
Table 1. Characteristics of 15 microsatellite loci developed for Rhododendron delavayi, R. decorum and R. agastum.

Locus	Primer sequence (5′-3′)	R. decorum	R. agastum
R-111	F5′ AGCTGATGGCTGGTGGGAG 3′	M	P
R-112	F5′ TACTGTTCTTCTTCCTTC 3′	P	P
R-140	F5′ GTAACAGGAGGCTGCTTG 3′	W	M
R-147	R5′ TAACTTGTTCTTCCTTC 3′	W	P
R-163	R5′ CGTGAGAATCTGCTCAA 3′	P	P
R-166	R5′ AACGAAACCAAGAACT 3′	P	P
R-172	R5′ GCTGTGTTATTTCCCTAA 3′	P	M
R-210	R5′ TTTCTGGCCAAAGGGG 3′	M	P
R-299	R5′ CACCTGCTGATAAAGGG 3′	M	M
R-318	R5′ ACTACTCAAGCTGGAGGTC 3′	P	P
R-320	R5′ GCTGACGACTGCTTCTGA 3′	W	M
R-335	R5′ TACAGACCAATGCTCAG 3′	W	P
R-432	R5′ CCCTGGCTCTACCAAGGG 3′	P	M
R-544	R5′ TCTGAGCTCTCAAGACCA 3′	P	P
R-557	R5′ CAGAACTCAGAACCTCCG 3′	P	P

Table 2. Cross-species amplification of two congeneric species, R. decorum and R. agastum. weak amplification (W), monomorphic amplification (M), polymorphic amplification (P).

Locus	Primer sequence (5′-3′)	R. decorum	R. agastum
R-111	F5′ AGCTGATGGCTGGTGGGAG 3′	M	P
R-112	F5′ TACTGTTCTTCTTCCTTC 3′	P	P
R-140	F5′ GTAACAGGAGGCTGCTTG 3′	W	M
R-147	R5′ TAACTTGTTCTTCCTTC 3′	W	P
R-163	R5′ CGTGAGAATCTGCTCAA 3′	P	P
R-166	R5′ AACGAAACCAAGAACT 3′	P	P
R-172	R5′ GCTGTGTTATTTCCCTAA 3′	P	M
R-210	R5′ TTTCTGGCCAAAGGGG 3′	M	P
R-299	R5′ CACCTGCTGATAAAGGG 3′	M	M
R-318	R5′ ACTACTCAAGCTGGAGGTC 3′	P	P
R-320	R5′ GCTGACGACTGCTTCTGA 3′	W	M
R-335	R5′ TACAGACCAATGCTCAG 3′	W	P
R-432	R5′ CCCTGGCTCTACCAAGGG 3′	P	M
R-544	R5′ TCTGAGCTCTCAAGACCA 3′	P	P
R-557	R5′ CAGAACTCAGAACCTCCG 3′	P	P

Prime sequence, polymerase chain reaction (PCR) annealing temperature (Ta), expected and observed size range of PCR products, number of observed alleles (A), observed heterozygosity (Hd), and expected heterozygosity (He). *The observed heterozygosity is significantly different from the expected heterozygosity under Hardy-Weinberg equilibrium (P < 0.01).
Literature Cited

Chamberlain, D.F. 1982. A revision of Rhododendron II. Subgenus Hymenanthes. Notes from the Royal Botanic Garden Edinburgh 39:209–486.

Chamberlain, D.F. 2003. Rhododendrons in the wild: A taxonomist’s view, p. 42–52. In: Argent, G. and M. McFarlane (eds.). Rhododendrons in horticulture and science. The Royal Botanic Garden Press, Edinburgh, UK.

Chen, T., R.C. Zhou, X.J. Ge, and S.H. Shi. 2008. Development and characterization of microsatellite markers for a mangrove tree species Sonneratia caseolaris (L.) Egler (Lythraceae sensu lato). Conserv. Genet. 9:957–959.

Clarke, K.R. and R.N. Gorley. 2001. PRIMER v5: User manual/tutorial. PRIMER-E Ltd., Plymouth, UK, p. 91.

Cox, P.A. 1994. Note of natural hybrids and intraspecific variation of Rhododendron in China, p. 132–133. In: Duan, C.Z., S.C. Liao, Q.L. Li, and X.W. Li (eds.). Scientific investigation of the plants on Cangshan Mountain.

Dikshit, H.K., T. Jhang, N.K. Singh, K.R. Koundal, K.C. Bansal, N. Chandra, J.L. Tickoo, and T.R. Sharma. 2007. Genetic differentiation of Vigna species by RAPD, URP and SSR markers. Biol. Plant. 51:451–457.

Fang, M.Y., R.Z. Fang, M.Y. He, L.Z. Hu, H.B. Yang, H.N. Qin, T.L. Min, F.D. Chamberlain, P. Stevens, G.D. Wallace, and A. Anderberg. 2005. Rhododendron (Ericaceae), p. 260–455. In: Wu, Z.Y. and P.H. Raven (eds.). Flora of China. Vol. 14. Science Press, Beijing, China; Missouri Botanical Garden Press, St. Louis, MO.

Huang, Y., Y. Li, X. Hu, X.J. Ge, C.Q. Zhang, and C.L. Long. 2009. Development of twelve polymorphic microsatellite loci in polyploid endangered Omphalogramma vincetoflora Franch. (Primulaceae). Conserv. Genet. 10:515–517.

Milne, R.I., R.J. Abbott, K. Wolff, and D.F. Chamberlain. 1999. Hybridization among sympatric species of Rhododendron (Ericaceae) in Turkey: Morphological and molecular evidence. Amer. J. Bot. 86:1776–1785.

Ng, S.C. and R.T. Corlett. 2000. Genetic variation and structure in six Rhododendron species (Ericaceae) with contrasting local distribution patterns in Hong-Kong, China. Mol. Ecol. 9:959–969.

Raymond, M. and F. Rousset. 1995. GENEPOP, v. 1.2: Population genetics software for exact tests and ecumenicism. J. Hered. 86:248–249.

Zane, L., L. Bargellont, and T. Patarnello. 2002. Strategies for microsatellite isolation: A review. Mol. Ecol. 1:1–16.

Zha, H.G., R.I. Milne, and H. Sunday. 2008. Morphological and molecular evidence of natural hybridization between two distantly related Rhododendron species from the Sino-Himalaya. Bot. J. Linn. Soc. 156:119–129.

Zhang, J.L., C.Q. Zhang, L.M. Gao, J.B. Yang, and H.T. Li. 2007. Natural hybridization origin of Rhododendron agastum (Ericaceae) in Yunnan, China: Inferred from morphological and molecular evidence. J. Plant Res. 120:457–463.