On Pebbling Graphs by their Blocks

Dawn Curtis, Taylor Hines, Glenn Hurlbert, Tatiana Moyer

Department of Mathematics and Statistics
Arizona State University, Tempe, AZ 85287-1804

November 19, 2008

*dawn.curtis@asu.edu
†taylor.hines@asu.edu
‡hurlbert@asu.edu
§tatiana.moyer@asu.edu
Abstract

Graph pebbling is a game played on a connected graph G. A player purchases pebbles at a dollar a piece, and hands them to an adversary who distributes them among the vertices of G (called a configuration) and chooses a target vertex r. The player may make a pebbling move by taking two pebbles off of one vertex and moving one pebble to a neighboring vertex. The player wins the game if he can move k pebbles to r. The value of the game (G, k), called the k-pebbling number of G and denoted $\pi_k(G)$, is the minimum cost to the player to guarantee a win. That is, it is the smallest positive integer m of pebbles so that, from every configuration of size m, one can move k pebbles to any target. In this paper, we use the block structure of graphs to investigate pebbling numbers, and we present the exact pebbling number of the graphs whose blocks are complete. We also provide an upper bound for the k-pebbling number of diameter-two graphs, which can be the basis for further investigation into the pebbling numbers of graphs with blocks that have diameter at most two.
1 Introduction

Graph pebbling is a game played on a connected graph $G = (V, E)$.\footnote{We assume the notation and terminology of [11] throughout.} A player purchases pebbles at a dollar a piece, and hands them to an adversary who distributes them among the vertices of G (called a configuration) and chooses a target, or root vertex r. The player may make a pebbling move by taking two pebbles off of one vertex and moving one pebble to a neighboring vertex. The player wins the game if he can move k pebbles to r, in which case we say that r is k-pebbled. Another common terminology calls the configuration k-fold r-solvable. The value of the game (G, k), called the k-pebbling number of G and denoted $\pi_k(G)$, is the minimum cost to the player to guarantee a win. That is, it is the smallest positive integer m of pebbles so that, from every configuration of size m, one can move k pebbles to any root. If k is not specified, it is assumed to be one.

For example, by the pigeonhole principle we have $\pi(K_n) = n$, where K_n is the complete graph on n vertices. From there, induction shows that $\pi_k(K_n) = n + 2(k - 1)$. Induction also proves that $\pi_k(P_n) = k2^{n-1}$, where P_n is the path on n vertices. These two graphs illustrate the tightness of the two main lower bounds $\pi(G) \geq \max\{n(G), 2^{\text{diam}(G)}\}$, where $\text{diam}(G)$ is the diameter of G, the number of edges in a maximum induced path. Another fundamental result uses the path fact and induction to calculate the k-pebbling number of trees (see [2]). The survey [7] contains a wealth of information regarding pebbling results and variations.

Complete graphs and paths are examples of greedy graphs. That is, the most efficient pebbling moves are directed towards the root. More formally, a
pebbling move from \(u \) to \(v \) is greedy if \(\text{dist}(v, r) < \text{dist}(u, r) \), where \(\text{dist}(x, y) \) denotes the distance between \(x \) and \(y \). A greedy solution uses only greedy moves. A graph \(G \) is greedy if every configuration of size \(\pi(G) \) can be greedily solved. If a graph is greedy, then we can assume every pebbling move is directed towards the root. The greedy property of trees follows from the No-Cycle Lemma of [9] (see also [4, 8]), which states that the digraph whose arcs represent the pebbling moves of a minimal solution contains no directed cycles. A cut vertex of a graph is a vertex that, if removed, disconnects the graph. The connectivity \(\kappa \) of a graph is the minimum number of vertices whose deletion disconnects the graph or reduces it to only one vertex.

Two important results relate diameter and connectivity to pebbling numbers. Pachter, Snevily, and Voxman proved the first.

Result 1 [10]. If \(G \) is a connected graph on \(n \) vertices with \(\text{diam}(G) \leq 2 \) then \(\pi(G) \leq n + 1 \).

Clarke, Hochberg, and Hurlbert [3] characterized which diameter two graphs have pebbling number \(n \) and which have pebbling number \(n + 1 \). We will use the graphs that describe that characterization in Section 3. Motivated by the characterization, Czygrinow, Hurlbert, Kierstead, and Trotter proved the second.

Result 2 [5]. If \(G \) is a connected graph on \(n \) vertices with \(\text{diam}(G) \leq d \) and \(\kappa(G) \geq 2^{2d+3} \) then \(\pi(G) = n \).

This result states that high connectivity compensates for large diameter in keeping the pebbling number to a minimum. In this paper we exploit
A block of a graph G is a maximal subgraph of G with no cut vertex. Let \mathcal{B} be the set of all blocks of G and \mathcal{C} be the set of all cut vertices of G. Then the block-cutpoint graph of G, denoted $B(G)$, has vertices $\mathcal{B} \cup \mathcal{C}$, with edges (B, C) whenever $C \in V(B)$. Note that $B(G)$ is always a tree (see [11]). Figure 1 shows an example.

Here we instigate a line of research into using the k-pebbling numbers of $B(G)$ and of the blocks of G to give upper bounds on $\pi_k(G)$. To begin, we generalize Chung’s tree result to weighted trees in Section 2. We then present the exact k-pebbling number of G when every block of G is complete.
in Section 3. Also in Section 3, we prove the following theorem, and show that there is a diameter-2 graph G on $n \geq 6$ vertices with $\pi_k(G) = n + 4k - 3$ for all k (Theorem 11). Thus Theorem 3 is not known to be tight.

Theorem 3 If G is a graph on n vertices with $\text{diam}(G) \leq 2$ then $\pi_k(G) \leq n + 7k - 6$.

Section 4 provides some further conjectures, questions, and possibilities for future research.

2 Trees and General Pebbling

A *tree* is a connected, acyclic graph, and a *forest* is a union of pairwise vertex-disjoint trees. A *leaf* of a tree is a vertex of degree one. An *r-path partition* of a particular tree T is a partition of the edges of T into paths, constructed by carrying out the following algorithm. Construct the sequence of pairs (T_i, F_i), where each T_i is a tree and each F_i is a forest, with $E(T_i) \cup E(F_i) = E(T)$, and $E(T_i) \cap E(F_i) = \emptyset$. Begin with $T_0 = r$, $F_0 = T$ and end with $T_t = T$, and $F_t = \emptyset$. At each stage, for some path P_i we have $P_i = T_i - T_{i-1} = F_{i-1} - F_i$, with the property that for each i, the intersection $V(P_i) \cap V(T_{i-1})$ is a leaf of P_i. The path partition is *r-maximal* if each P_i is the longest such path in F_{i-1}. An *r-maximal* path partition is *maximal* if r is one of the leaves of the longest path in T. An r-path partition of a tree is depicted in Figure 2, and a maximal path partition of a tree is depicted in Figure 3.

Define x_i to be the leaf of P_i in T_{i-1} and y_i to be the leaf of P_i not in T_{i-1}, and let $a_i = |E(P_i)|$.
Figure 2: A non-maximal \(r\)-path partition of a tree, with its corresponding unsolvable configuration

Lemma 4. The configuration \(C\) on \(T\) defined by each \(C(y_i) = 2^{a_i} - 1\) and \(C(v) = 0\) for all other \(v\) is \(r\)-unsolvable.

Proof. We use induction. Let \(C_i\) be the restriction of \(C\) to \(T_i\). The case in which \(i = 0\) is trivial since the root has no pebbles. Now, assume that \(C_k\) is \(r\)-unsolvable on \(T_k\). We know that the configuration on \(P_{k+1}\) is \(x_{k+1}\)-unsolvable because the pebbling number of a path of length \(l\) is \(2^l\). Thus, no pebbles can be moved to from \(P_{k+1}\) to \(T_k\) since \(V(T_k) \cap V(T_{k+1}) = x_{k+1}\). Since we already know \(T_k\) is unsolvable, \(T_{k+1}\) is unsolvable also. Thus, by induction, the configuration \(C\) on \(T\) is \(r\)-unsolvable. \(\square\)

Chung’s result generalizes this idea for \(k\)-pebbling.
Figure 3: An r-maximal path partition of a tree, with its corresponding unsolvable configuration

Result 5 [2]. If T is a tree and a_1, a_2, \ldots, a_t is the sequence of the path size (i.e. the number of vertices in the path) in a maximum path partition of T, then $\pi_k(T) = k2^{a_1} + \sum_{i=2}^{t} 2^{a_i} - t + 1$.

Chung’s proof of this result uses induction performed on the vertices of T by fixing and then removing the root, thus dividing T into subtrees in order to use induction. We give a different proof of the more general Theorem 6, relying on the fact that trees are greedy.

First we consider a more general form of pebbling. For each edge e of a graph G we can assign a weight w_e. The weight is intended to signify that it takes w_e pebbles at one end of e to place 1 pebble at its other end. Hence the pebbling considered to this point has $w_e = 2$ for all e. We define the
weighted pebbling number $\pi^w_k(G, r)$ to be the minimum number m so that every configuration of size m can k-pebble r by using w-weighted pebbling moves on G.

Given a weight function $w : E(G) \rightarrow \mathbb{N}$, we extrapolate to a weight function on the set of all paths of G, where $w(P)$ is the product of edge weights over all edges of the path P. Now when constructing maximal path partitions, we replace the condition “longest path” by “heaviest path” (greatest weight). This is equivalent for constant weight 2 pebbling. Nothing in the proof of Chung’s theorem changes for weighted trees, but we introduce a new proof of the pebbling number of a weighted tree.

Let P_1, \ldots, P_t be an r-maximal path partition of T, with $w(P_1) \geq \ldots \geq w(P_t)$. Let $f^w_k(T, r) = kw(P_1) + \sum_{i=2}^{t} w(P_i) - t + 1$. For vertices x and y on a path P, denote by $P[x, y]$ the subpath of P from x to y.

Figure 4: An edge-weighted tree
Theorem 6 Every weighted tree T satisfies $\pi_k^w(T, r) \leq f_k^w(T, r)$.

Proof. The theorem is trivially true when $t = 1$ since T is a path.

For $t \geq 1$, define $T' = T - P_t$. Then $f_k(T, r) = f_k(T', r) + w(P_t) - 1$. Let P_j be a path containing the non-leaf endpoint x_t of P_t, and let vertex y_j be the leaf of T on P_j. Define $W = w(P_j[x_t, y_j])$. Thus we know from the maximal r-path construction that $W \geq w(P_t)$.

Let C be an unsolvable configuration on T with $|C| = f_k(T, r)$. Without loss of generality, we can assume that all the pebbles are on the leaves of a tree because the maximum sized unsolvable configuration sits on the leaves only. Let $s \geq 0$ be the number of pebbles P_t contributes to the vertex x_t, so we have $sw(P_t) \leq |C(P_t)| < (s + 1)w(P_t)$.

Now define the configuration C' on T' by $C'(y_j) = C(y_j) + sW$ and $C'(v) = C(v)$ otherwise. Then,

$$|C'| = |C| - [(s + 1)w(P_t) - 1] + sW$$

$$\geq f_k(T, r) - w(P_t) + 1$$

$$= f_k(T', r).$$

Hence C' is k-fold solvable on T'. Now define C^* on T' by $C^*(x_t) = C(x_t) + s$ and $C^*(v) = C(v)$ otherwise. In particular, because of greediness, C^* is k-fold r-solvable on T' because moving at most $sw(P_t)$ pebbles from y_j to x_t converts C' to a solvable subconfiguration of C^*. Now, since $C(P_t) \geq sw(P_t)$, the base case says we can move s pebbles from P_t to x_t, and in doing so we arrive again at C^* on T'. Hence C is k-fold r-solvable. □

We will use Theorem 6 to upper bound the pebbling number of graphs composed of blocks. The technique utilizes the block-cutpoint graph.
For a graph G and its block-cutpoint graph $B(G)$, let b_i denote the vertex of $B(G)$ that corresponds to the block B_i in G. For each block B_i, let x_i denote the cut vertex of G in B_i that is closest to the root (it is possible that some $x_i = x_j$). Let e_i denote the edge of $B(G)$ between b_i and x_i, and define its weight by $w(e_i) = \pi(B_i, x_i)$. Let all other edges have weight 1. For a root r of G, let B denote the block containing it, represented by the vertex b in $B(G)$. Let $B'(G)$ be the graph obtained from $B(G)$ by adjoining to b by an edge of weight 1 a new vertex r'. Then we arrive at the following theorem.

Theorem 7 Every graph G satisfies $\pi_k(G, r) \leq \pi_k^w(B'(G), r')$

Proof. For a set U of vertices, denote by $C(U)$ the sum $\sum_{v \in U} C(v)$. Let $x(B_i)$ denote all the cut vertices of G in the block B_i. Given a configuration C on G, define C' on $B'(G)$ by

- $C'(x_i) = C(x_i)$ for all cut vertices x_i, and
- $C'(b_i) = C(B_i) - C(x(B_i))$ for all blocks B_i.

Given an r'-solution S' of C' on $B'(G)$, which exists because $|C'| = |C| = \pi_k^w(B'(G), r')$, define the r-solution S of C on G by the following: replace every pebbling step along e_i in S' by some x_i-solution of some $\pi(B_i)$ of the pebbles in B_i. Then S is an r-solution. \(\square\)

3 Larger Blocks

In this section we consider the cases in which all blocks are cliques or all have bounded diameters. The following proposition is well known.
Proposition 8 If H is a connected spanning subgraph of G then $\pi_k(G, r) \leq \pi_k(H, r)$ for every root r.

Proposition 8 holds because r-solutions in H are r-solutions in G. In particular, this holds when H is a breadth-first search spanning tree of G that is rooted at r and thus preserves distances to r in G. This allows us to prove the following.

Result 9 Let G be a connected graph in which every block is a clique. Let T be a breadth-first search spanning tree of G. Then $\pi_k(G) = \pi_k(T)$.

Proof. The fact that $\pi_k(G) \leq \pi_k(T)$ follows from Proposition 8. The fact that $\pi_k(G) \geq \pi_k(T)$ follows from showing that every r-solvable configuration C on G is r-solvable on T. Indeed, let S be an r-solution in G, and for a
block B of G, denote by $x = x(B)$ the cut vertex of B that is closest to r. If the sequence is greedy, then all its edges are in T. If the sequence is not greedy, then S contains an edge from some vertex a to some vertex $b \neq x$. Replace this edge by the edge from a to x. The resulting sequence is an r-solution on T. Thus $\pi_k(G) = \pi_k(T)$. \hfill \Box$

Corollary 10 Let G be a connected graph in which every block is a clique. Let T be a breadth-first search spanning tree of G. Let a_1, \ldots, a_t denote the path lengths in a maximal path partition of T rooted at r. Then $\pi_k(G, r) = n + 2^{a_1}(k - 1) + \sum_{i=1}^{t}(2^{a_i} - a_i - 1)$.

Note that the formula in Corollary 10 is of the form $n + c_1 k + c_2$, which is also the form of the formula in Theorem 3. Also, the fractional pebbling number, defined as $\hat{\pi}(G) = \lim_{k \to \infty} \pi_k(G)/k$ is seen to be $\hat{\pi}(G) = 2^{\text{diam}(G)}$ for such G. This is an instance of the Fractional Pebbling Conjecture of [7], recently proven in [6].

Now we provide the upper and lower bounds on diameter-two graphs. To show a lower bound, we will display an unsolvable configuration on an extremal graph G. This is the graph that Clarke, et al. [3] used to characterize the diameter two graphs with pebbling number $n + 1$. The vertices of G are $\{a, b, c, p, q, r\} \cup_{z \in \{p, q, r, c\}} V(H_z)$, where H_p, H_q, H_r, and H_c are any graphs with the following properties.

- Every component of H_p, H_q, and H_r has some vertex adjacent to p, q, and r, respectively.

- Every vertex of H_p, H_q, and H_r is adjacent to a and c, b and c, a and b, respectively.
Figure 6: The extremal graph \mathcal{G}

- Every vertex of H_c is adjacent to $a, b,$ and c.

Furthermore, (a, r, b, q, c, p) forms a 6-cycle, (a, b, c) forms a triangle, as shown in Figure 6, and no other edges than previously mentioned are included. Note that the diameter of \mathcal{G} is 2.

Theorem 11 For all $n \geq 6$, there is a graph G on n vertices with $\pi_k(G) \geq n + 4k - 3$ for all k.

Proof. As suggested above, we show that \mathcal{G} is such a graph. Distribute the following configuration of size $n + 4k - 4$ on the \mathcal{G}:

- Place $4k - 1$ pebbles on p
- Place 3 pebbles on q
Figure 7: Cheap solutions of cost 7 or less

- Place 1 pebble on every vertex in $\bigcup_{z \in \{p,q,r,c\}} H_z$ and 0 elsewhere.

The configuration is r-unsolvable since every solution costs at least 4 pebbles (because the pebbles are at distance 2 from r, and so after $k = 1$ solutions at most n pebbles remain). In fact, the remaining configuration is a subconfiguration of the one defined above for $k = 1$, which was shown to be r-unsolvable in [10]. Hence $\pi_k(G) > n + 4k - 4$. □

To prove Theorem 3 we consider the eight cheap configurations shown in Figure 7. We call them cheap because they lose a small number (at most 7) of pebbles in the process of moving one pebble to the root. In particular, their names indicate their cost (number of pebbles used). For example, in C_7, C_6, and C_5, one moves an extra pebble onto where 3 sits to create C_4A. Then one can reach C_2 from C_4B, C_4A, and C_3. Of course, C_2 results in C_1. There are more cheap solutions than these, but we do not need them in our argument.

We show by contradiction that a cheap solution must exist, and thus a pebble can be moved to the root with the loss of at most 7 pebbles. The
remaining \(k - 1 \) solutions will be found by induction.

Proof of Theorem 3. Assume that the configuration \(C \) of pebbles on \(G \) is of size \(n + 7k - 6 \) and has no cheap solutions of cost 7 or less. We will derive a contradiction to show that a cheap solution exists. Then after using a cheap solution we apply induction to get the remaining \(k - 1 \) solutions. The theorem is already true for \(k = 1 \) by Result 1. Define the following notation.

- \(N_i \) is the set of vertices with \(i \) pebbles.
- \(N_{i,r} \) is the set of common neighbors of \(N_i \) and root \(r \).
- \(N_{i,j} \) is the set of common neighbors of pairs of vertices from \(N_i \) and \(N_j \).
- \(n_i = |N_i|, n_{i,j} = |N_{i,j}|, n_{i,r} = |N_{i,r}|, \) and \(n'_0 = |N'_0| \).
- \(N'_0 = N_0 - N_{3,r} - N_{3,3} - N_{2,r} \).

Claim 12 If \(C \) is a configuration on a diameter-2 graph \(G \) with no cheap solutions, then

\[\begin{align*}
S1. \ N_{i,r} & \subseteq N_0 \text{ for } i \in \{2, 3\}, \\
S2. \ N_{3,3} & \subseteq N_0, \\
S3. \ n_{i,r} & \geq n_i \text{ for } i \in \{2, 3\}, \\
S4. \ |C| & = 3n_3 + 2n_2 + n_1, \\
S5. \ n & = n_3 + n_2 + n_1 + (n_{3,r} + n_{3,3} + n_{2,r} + n'_0), \text{ and} \\
S6. \ n_{3,3} & \geq \binom{n_3}{2}.
\end{align*}\]
Proof of Claim 12. We refer to Figure 7. Statement S1 follows from the nonexistence of C3 because a pebble adjacent to the root and a vertex with at least two pebbles is a C3 configuration. Likewise, S2, S3, and S4 follow from the nonexistence of C6, C4B, and C4A respectively. Next, S5 simply partitions the vertices according to their number of pebbles, then uses the definition of N'_0. Finally, since C has no C5, no two vertices of N_3 are adjacent. However, because G has diameter two, every such x and y have a common neighbor. Now the nonexistence of C7 implies that such common neighbors are distinct, which implies S6.

Next we use S4 and S5 to count $|C|$ in two ways:

$$3n_3 + 2n_2 + n_1 = n_3 + n_2 + n_1 + (n_{3,r} + n_{3,3} + n_{2,r} + n'_0) + 7k - 6.$$

Then S3 and S6 imply

$$0 = -2n_3 - n_2 + n_{3,r} + n_{3,3} + n_{2,r} + n'_0 + 7k - 6$$

$$\geq -n_3 + \left(\frac{n_3}{2}\right) + n'_0 + 7k - 6.$$

Finally, by completing the square and using $n'_0 \geq 1$ (since $r \in N'_0$) and $k \geq 1$, we have

$$0 < (n_3 - 3/2)^2 + (4 - 9/4)$$

$$= 2 \left[\left(\frac{n_3}{2}\right) - n_3 + 2\right]$$

$$\leq 2 \left[\left(\frac{n_3}{2}\right) - n_3 + n'_0 + 7k - 6\right]$$

$$\leq 0,$$
which is a contradiction. Hence, C must contain a solution of cost at most 7, after which at least $n + 7(k - 1) - 6$ pebbles remain, from which we obtain $k - 1$ more solutions.

\[\square\]

4 Remarks

We believe that the upper bound of Theorem 3 can be tightened by reducing the coefficient of k. Doing this requires restricting cheap solutions to lesser cost, which necessitates considering more of them. For example, there are one cost-4, one cost-5, and four cost-6 solutions that were not used in our argument. Our lower bound has inspired the next conjecture.

Conjecture 13 If G is a graph on n vertices with $\text{diam}(G) \leq 2$ then $\pi_k(G) \leq n + 4k - 3$.

Of course, the Fractional Pebbling Theorem implies that the coefficient of k is 4 in the limit; in fact, its proof is based on the pigeonhole principle — for large enough k, C_{4A} exists. Also, Theorem 3 suggests the following problem.

Problem 14 Find upper bounds for the k-pebbling numbers of graphs of diameter d.

Along these lines, only the following result is known, proved by Bukh [1].

Theorem 15 If the $\text{diam}(G) = 3$, then $\pi(G) \leq (3/2)n + O(1)$.

In addition, the following question is still open.
Question 16 Is it possible to lower the connectivity requirement in Result 2?

The construction in [7] shows that $\kappa \geq 2^d/d$ is necessary.

References

[1] B. Bukh, Maximum pebbling number of graphs of diameter three, J. Graph Th. 52 (2006), 353-357.

[2] F. R. K. Chung, Pebbling in hypercubes, SIAM J. Disc. Math. 2 (89), 467–472.

[3] T. Clarke, R. Hochberg, and G. Hurlbert, Pebbling in diameter two graphs and products of paths, J. Graph Th. 25 (1997), 119–128.

[4] B. Crull, T. Cundiff, P. Feltman, G. Hurlbert, L. Pudwell, Z. Szaniszlo, and Z. Tuza, The cover pebbling number of graphs, Discrete Math 296 (2005), 15–23.

[5] A. Czygrinow, G. Hurlbert, H. Kierstead, and W. T. Trotter, A note on graph pebbling, Graphs and Combinatorics 18 (2002), 219–225.

[6] D. Herscovici, personal communication (2007).

[7] G. Hurlbert, Recent progress in graph pebbling, Graph Theory Notes 49 (2005), 25–37.

[8] K. Milans and B. Clark, The complexity of graph pebbling, SIAM J. Disc. Math. 20(2005), 769-798.
[9] D. Moews, *Pebbling graphs*, J. Combin. Theory (B) **55** (1992), 244–252.

[10] L. Pachter, H. Snevily, and B. Voxman, *On pebbling graphs*, Congr. Numer. **107** (1995), 65–80.

[11] D. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 1996.