ON THE STRONG CONTINUITY OF GENERALISED SEMIGROPS

RAJ DAHYA

Abstract. It is well known that weakly continuous semigroups defined over \(\mathbb{R}_+ \) are automatically strongly continuous. We extend this result to more generally defined semigroups, including multiparameter semigroups.

1. Introduction

By a well-known result, under certain basic conditions, semigroups over Banach spaces are automatically continuous wrt. the strong operator topology (sot). Engel und Nagel proved this in [2, Theorem 5.8] under the assumption of continuity wrt. the weak operator topology (wot). In that reference and here, semigroups are ordinarily defined over \(\mathbb{R}_+ \). Specifically, one considers operator-valued functions,

\[T : \mathbb{R}_+ \to \mathcal{L}(E), \]

where \(E \) is a Banach space, and \(T \) satisfies \(T(0) = I \) and \(T(s + t) = T(s)T(t) \) for all \(s, t \in \mathbb{R}_+ \). In other words, semigroups are nothing other than morphisms between the monoids \((\mathbb{R}_+, +, 0) \) and \((\mathcal{L}(E), \circ, I) \).

Now, for our purposes, there is no particular reason to focus on semigroups over \(\mathbb{R}_+ \), also known as one-parameter semigroups. A natural abstraction is to define semigroups over topological monoids. In this note, we shall define a broad class of semigroups, including ones defined over \(\mathbb{R}^d_+ \) for \(d \geq 1 \), i.e. multiparameter semigroups, and to which we generalise the automatic continuity proof in [2].

Our generalisation may also be of interest to other fields. For example, multiparameter semigroups occur in the study of diffusion equations in space-time dynamics (see e.g. [10]) and the approximation of periodic functions in multiple variables (see e.g. [9]).

2. Definitions

Note that no assumptions about commutativity shall be made, and hence monoids and groups shall be expressed multiplicatively. We define generalised semigroups as follows.

Definition 2.1 A semigroup over a Banach space, \(E \), defined over a monoid, \(M \), shall mean any operator-valued function, \(T : M \to \mathcal{L}(E) \), satisfying \(T(1) = I \) and \(T(st) = T(s)T(t) \) for \(s, t \in M \).

We now define a large class of monoids to which the classical continuity result shall be generalised.

Definition 2.2 Let \(M \) be a locally compact Hausdorff topological monoid. We shall call \(M \) extendible, if there exists a locally compact Hausdorff topological group, \(G \), such that \(M \) is topologically and algebraically isomorphic to a closed subset of \(G \).

If \(M \) is extendible to \(G \) via the above definition, then one can assume without loss of generality that \(M \subseteq G \).

Definition 2.3 Let \(G \) be a locally compact Hausdorff group. We shall call a subset \(A \subseteq G \) positive in the identity, if for all neighbourhoods, \(U \subseteq G \), of the group identity, \(U \cap A \) has non-empty interior within \(G \).

Example 2.4 (The non-negative reals). Consider \(M := \mathbb{R}_+ \) viewed under addition. Since \(M \subseteq \mathbb{R} \) is closed, we have that \(M \) is an extendible locally compact Hausdorff monoid. For
any open neighbourhood, \(U \subseteq \mathbb{R} \), of the identity, there exists an \(\varepsilon > 0 \), such that \((-\varepsilon, \varepsilon) \subseteq U \) and thus \(U \cap M \supseteq (0, \varepsilon) \neq \emptyset \). Hence \(M \) is positive in the identity.

Example 2.5 (The \(p \)-adic integers). Consider \(M := \mathbb{Z}_p \) with \(p \in \mathbb{P} \), viewed under addition with the topology generated by the \(p \)-adic norm. Since \(M \subseteq \mathbb{Q}_p \) is clopen, we have that \(M \) is an extendible locally compact Hausdorff monoid. Since \(M \) is clopen, it is clearly positive in the identity.

Example 2.6 (Discrete cases). Let \(G \) be a discrete group, and let \(M \subseteq G \) contain the identity and be closed under group multiplication. Clearly, \(M \) is a locally compact Hausdorff monoid, extendible to \(G \) and positive in the identity. For example one can take the free-group \(\mathbb{F}_2 \) with generators \(\{a, b\} \), and \(M \) to be the closure of \(\{1, a, b\} \) under multiplication.

Example 2.7 (Non-discrete, non-commutative cases). Let \(d \in \mathbb{N} \) with \(d > 1 \) and consider the space, \(X \), of \(\mathbb{R} \)-valued \(d \times d \) matrices. Topologised with any matrix norm (equivalently the strong or the weak operator topologies), this space is homeomorphic to \(\mathbb{R}^{d^2} \) and thus locally compact Hausdorff. Since the determinant map \(X \ni T \mapsto \det(T) \in \mathbb{R} \) is continuous, the subspace of invertible matrices \(\{T \in X \mid \det(T) \neq 0\} \) is open and thus a locally compact Hausdorff topological group. Now the subspace, \(G \), of upper triangular matrices with positive diagonal entries, is a closed subgroup and thus locally compact Hausdorff. Letting

\[
G_0 := \{T \in G \mid \det(T) = 1\},
\]

\[
G_+ := \{T \in G \mid \det(T) > 1\},
\]

\[
G_- := \{T \in G \mid \det(T) < 1\},
\]

it is easy to see that \(M := G_0 \cup G_+ \) is a topologically closed subspace containing the identity and is closed under multiplication. Moreover \(M \) is a proper monoid, since the inverses of the elements in \(G_+ \) are clearly in \(G \setminus M \). Consider now an open neighbourhood, \(U \subseteq G \), of the identity. Since inversion is continuous, \(U^{-1} \) is also an open neighbourhood of the identity. Since, as a locally compact Hausdorff space, \(G \) satisfies the Baire category theorem, and since \(G_+ \cup G_- \) is clearly dense (and open) in \(G \), and thus comeagre, we clearly have \((U \cap U^{-1}) \cap (G_+ \cup G_-) \neq \emptyset \). So either \(U \cap G_+ \neq \emptyset \) or else \(U^{-1} \cap G_- \neq \emptyset \), from which it follows that \(U \cap G_+ = (U^{-1} \cap G_-)^{-1} \neq \emptyset \). Hence in each case \(U \cap M \) contains a non-empty open subset, viz. \(U \cap G_+ \). So \(M \) is extendible to \(G \) and positive in the identity.

Next, consider the subgroup, \(G_h \subseteq G \), consisting of matrices of the form \(T = I + E \) where \(E \) is a strictly upper triangular matrix with at most non-zero entries on the top row and right hand column. That is, \(G_h \) is the continuous Heisenberg group, \(H_{2d-3}(\mathbb{R}) \), of order \(2d - 3 \). The elements of the Heisenberg group occur in the study of Kirillov’s orbit method (cf. [4]) and have important applications in physics (see e.g. [5]). Clearly, \(G_h \) is topologically closed within \(G \) and thus locally compact Hausdorff. Now consider the subspace,

\[
M_h := \{T \in G_h \mid \forall i, j \in \{1, 2, \ldots, d\} : T_{ij} \geq 0\},
\]

of matrices with only non-negative entries. This is clearly a topologically closed subspace of \(G_h \) containing the identity and closed under multiplication. Moreover, if \(S, T \in M_h \setminus \{I\} \) we clearly have

\[
ST = I + ((S - I) + (T - I) + (S - I)(T - I)) \in M_h \setminus \{I\},
\]

which implies that no non-trivial element in \(M_h \) has its inverse in \(M_h \), making \(M_h \) a proper monoid. Consider now an open neighbourhood, \(U \subseteq G_h \), of the identity. Since \(G_h \) is homeomorphic to \(\mathbb{R}^{2d-3} \), there exists some \(\varepsilon > 0 \), such that

\[
U = \{T \in G_h \mid \forall (i, j) \in \mathcal{I} : T_{ij} \in (-\varepsilon, \varepsilon)\},
\]

where \(\mathcal{I} := \{(1, 2), (1, 3), \ldots, (1, d), (2, d), \ldots, (d - 1, d)\} \). Hence

\[
U \cap M_h \supseteq \{T \in G_h \mid \forall (i, j) \in \mathcal{I} : T_{ij} \in (0, \varepsilon)\} =: V,
\]

where \(V \) is clearly a non-empty open subset of \(G_h \), since the \(2d - 3 \) entries in the matrices can be freely and independently chosen. Thus \(M_h \) is extendible to \(G_h \) and positive in the identity.

Finally, we may consider the subgroup, \(G_u := U_{\mathbb{T}}(d) \), of upper triangular matrices over \(\mathbb{R} \) with unit diagonal. The elements of \(U_{\mathbb{T}}(d) \) have important applications in image analysis (see e.g. [5] and [6, §5.5.2]) and representations of the group have been studied in [8, Chapter 6].
Proof. First note that the principle of uniform boundedness applied twice to the
space coincide (cf. [1, Theorem 5.98]), it follows that the convex hull, $co(D)$, is strongly dense in E.

Now, to prove the sot-continuity of T, we need to show that
\[t \in M \mapsto T(t)x \in E \tag{3.2} \]
is strongly continuous for all $x \in E$. Since M is locally compact and T is norm-bounded on compact subsets of M, the set of $x \in E$ such that (3.2) is strongly continuous, is itself a strongly closed convex subset of E. So, since $co(D)$ is strongly dense in E, it suffices to prove the strong continuity of (3.2) for each $x \in D$.

3. MAIN RESULT

We can now state and prove the generalisation. Our argumentation builds on [2, Theorem 5.8].

Theorem 3.1 Let M be a locally compact Hausdorff monoid and E a Banach space. Assume that M is extendible to a locally compact Hausdorff group, G, and that M is positive in the identity. Then all wot-continuous semigroups, $T : M \to \Sigma(E)$, are automatically sot-continuous.

Proof. First note that the principle of uniform boundedness applied twice to the wot-continuous function, T, ensures that T is norm-bounded on all compact subsets of M. Fix now a left-invariant Haar measure, λ, on G and set
\[S := \{ F \subseteq G \mid F \text{ a compact neighbourhood of the identity} \}. \]

Consider arbitrary $F \subseteq S$ and $x \in E$. By the closure of M in G as well as positivity in the identity, $M \cap F$ is compact and contains a non-empty open subset of G. It follows that $0 < \lambda(M \cap F) < \infty$. The wot-continuity of T, the compactness (and thus measurability) of $M \cap F$, and the norm-boundedness of T on compact subsets ensure that
\[\langle x_F, \varphi \rangle := \frac{1}{\lambda(M \cap F)} \int_{t \in M \cap F} \langle T(t)x, \varphi \rangle \, dt, \quad \text{for } \varphi \in E' \tag{3.1} \]
describes a well-defined element $x_F \in E''$. Exactly as in [2, Theorem 5.8], one may now argue by the wot-continuity of T and compactness of $M \cap F$ that in fact $x_F \in E$ for each $x \in E$ and $F \in S$. Moreover, since M is locally compact, one can readily see that each $x \in E$ can be weakly approximated by the net, $(x_F)_{F \in S}$, ordered by inverse inclusion. So
\[D := \{ x_F \mid x \in E, F \in S \} \]
is weakly dense in E. Since the weak and strong closures of any convex subset in a Banach space coincide (cf. [1, Theorem 5.98]), it follows that the convex hull, $co(D)$, is strongly dense in E.

Now, to prove the sot-continuity of T, we need to show that
\[t \in M \mapsto T(t)x \in E \tag{3.2} \]
is strongly continuous for all $x \in E$. Since M is locally compact and T is norm-bounded on compact subsets of M, the set of $x \in E$ such that (3.2) is strongly continuous, is itself a strongly closed convex subset of E. So, since $co(D)$ is strongly dense in E, it suffices to prove the strong continuity of (3.2) for each $x \in D$.

3
To this end, fix arbitrary $x \in E$, $F \in S$ and $t \in M$. We need to show that $T(t')x_F \rightarrow T(t)x_F$ strongly for $t' \in M$ as $t' \rightarrow t$.

First recall, that by basic harmonic analysis, the canonical left-shift, $L : G \rightarrow \mathcal{L}(L^1(G))$, defined via $(L_t f)(s) = f(t^{-1}s)$ for $s, t \in G$ and $f \in L^1(G)$, is an sot-continuous morphism (cf. [7, Proposition 3.5.6 ($\lambda_1 - \lambda_4$)]. Now, by compactness, $f := 1_{M \cap F} \in L^1(G)$ and it is easy to see that $\|L_t f - L_{t'} f\|_1 = \lambda(t'(M \cap F) \Delta t(M \cap F))$ for $t' \in M$. The sot-continuity of L thus yields

$$\lambda(t'(M \cap F) \Delta t(M \cap F)) \rightarrow 0 \quad (3.3)$$

for $t' \in M$ as $t' \rightarrow t$.

Fix now a compact neighbourhood, $K \subseteq G$, of t. For $t' \in M \cap K$ and $\varphi \in E'$ one obtains

$$|\langle T(t')x_F - T(t)x_F, \varphi \rangle| = \left| \langle x_F, (T(t')^* \varphi) - \langle x_F, T(t)^* \varphi \rangle \right|$$

$$= \frac{1}{\lambda(M \cap F)} \left| \int_{s \in M \cap F} \langle T(s)x, T(t')^* \varphi \rangle \, ds - \int_{s \in M \cap F} \langle T(s)x, T(t)^* \varphi \rangle \, ds \right|$$

by construction of x_F in (3.1)

$$= \frac{1}{\lambda(M \cap F)} \left| \int_{s \in M \cap F} \langle T(t's)x, \varphi \rangle \, ds - \int_{s \in M \cap F} \langle T(ts)x, \varphi \rangle \, ds \right|$$

since T is a semigroup

$$\leq \frac{1}{\lambda(M \cap F)} \left| \int_{s \in M \cap F} \langle T(s)x, \varphi \rangle \, ds \right|$$

by left-invariance

$$\leq \frac{1}{\lambda(M \cap F)} \sup_{s \in (M \cap K)(M \cap F)} \|T(s)\| \cdot \|x\| \cdot \|\varphi\| \cdot \lambda(t'(M \cap F) \Delta t(M \cap F))$$

since $t, t' \in M \cap K$.

Since $K' := (M \cap K)(M \cap F)$ is compact, and T is uniformly bounded on compact sets (see above), it holds that $C := \sup_{s \in K'} \|T(s)\| < \infty$. The above calculation thus yields

$$\|T(t')x_F - T(t)x_F\| = \sup_{\varphi \in E', \|\varphi\| \leq 1} |\langle T(s)x_F - T(t)x_F, \varphi \rangle| \leq \frac{1}{\lambda(M \cap F)} \cdot C \cdot \|x\| \cdot \lambda(t'(M \cap F) \Delta t(M \cap F)) \quad (3.4)$$

for all $t' \in M$ sufficiently close to t.

By (3.3), the right-hand side of (3.4) converges to 0 and hence $T(t')x_F \rightarrow T(t)x_F$ strongly as $t' \rightarrow t$. This completes the proof.

Theorem 3.1 applied to Corollary 2.9 immediately yields:

Corollary 3.2 Let $d \in \mathbb{N}$ and let E be a Banach space. Then all wot-continuous semigroups, $T : \mathbb{R}_+^d \rightarrow \mathcal{L}(E)$, are automatically sot-continuous.

Remark 3.3 In the proof of Theorem 3.1, weak continuity only played a role in obtaining the boundedness of T on compact sets, as well as the well-definedness of the elements in D. Now, another proof of the classical result exists under weaker conditions, viz. weak measurability, provided the semigroups are almost separably valued (cf. [3, Theorem 9.3.1 and Theorem 10.2.1–3]). It remains open, whether the approach in [3] can be adapted to our context, to yield the result under weaker assumptions.

Acknowledgement. The author is grateful to Konrad Zimmermann for his helpful comments on a preliminary version.

References

[1] Aliprantis, C. D., and Border, K. C. *Infinite Dimensional Analysis, a Hitchhiker’s Guide*, 3rd ed. Springer-Verlag, 2005.
[2] Engel, K.-J., and Nagel, R. *One-Parameter Semigroups for Linear Evolution Equations*. Graduate Texts in Mathematics. Springer-Verlag, 1999.

[3] Hille, E., and Phillips, R. S. *Functional analysis and semi-groups*, vol. 31. American Mathematical Society, 2008.

[4] Kirillov, A. A. Unitary representations of nilpotent Lie groups. *Russian Mathematical Surveys* 17, 4 (1962), 53–104.

[5] Kirillov, A. A. Two more variations on the triangular theme. In *The Orbit Method in Geometry and Physics*. Birkhäuser Boston, 2003, pp. 243–258.

[6] Penne, X., and Lorenzi, M. Beyond Riemannian geometry: The affine connection setting for transformation groups. In *Riemannian Geometric Statistics in Medical Image Analysis*, X. Pennec, S. Sommer, and T. Fletcher, Eds. Academic Press, 2020, pp. 169–229.

[7] Reiter, H., and Stegeman, J. D. *Classical Harmonic Analysis and Locally Compact Groups*, 2nd ed. Oxford University Press, 2000.

[8] Samoilenko, Y. S. *Spectral Theory of Families of Self-Adjoint Operators*. Springer Netherlands, Dordrecht, 1991, pp. 124–144.

[9] Terehin, A. P. A multiparameter semigroup of operators, mixed moduli and approximation. *Mathematics of the USSR-Izvestiya* 9, 4 (1975), 887–910.

[10] Zelik, S. Multiparameter semigroups and attractors of reaction-diffusion equations in \mathbb{R}^n. *Transactions of the Moscow Mathematical Society* 65 (2004), 105–160.

Email address: raj.dahya@web.de

Fakultät für Mathematik und Informatik
Universität Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany