Phase II Study to Evaluate the Efficacy and Safety of Rilotumumab and Bevacizumab in Subjects with Recurrent Malignant Glioma

MARY LOU AFFRONTI, a JENNIFER GAMBOA JACKMAN, a FRANCES MCSHERRY, b JAMES E. HERNDON II, b ELWOOD C. MASSEY, JR., a ERIC LIPP, a ANNICK DESJARDINS, a HENRY S. FRIEDMAN, a GORDANA VLAHOVIC, c JAMES VREDENBURGH, d KATHERINE B. PETERS a

aDuke University Medical Center, Durham, North Carolina, USA; bDuke University, Durham, North Carolina, USA; cAstraZeneca, Gaithersburg, Maryland, USA; dSaint Francis Hospital, Hartford, Connecticut, USA

ABSTRACT

Background. Recurrent malignant glioma (rMG) prognosis is poor, with a median patient survival of 3–11 months with bevacizumab (BEV)-containing regimens. BEV in rMG has 6-month progression free survival (PFS-6) of ~40% and an objective response rate of 21.2%. BEV-containing regimens improve PFS-6 to 42.6%–50.3%, indicating that BEV combination therapies may be superior to single agent. Rilotumumab, a hepatocyte growth factor (HGF) antibody, inhibits angiogenesis and expression of angiogenic autocrine factors (e.g., vascular endothelial growth factor [VEGF]) by c-Met inhibition. Combination of rilotumumab with BEV to block vascular invasion and tumor proliferation may synergistically inhibit tumor growth.

Methods. Thirty-six BEV-naive rMG subjects received rilotumumab (20 mg/kg and BEV (10 mg/kg) every 2 weeks. Endpoints included objective response rate (using Response Assessment in Neuro-Oncology [RANO] criteria), PFS-6, overall survival (OS), and toxicity.

Results. Median patient follow-up was 65.0 months. Objective response rate was 27.8% (95% confidence interval [CI]: 15.7%–44.1%). Median OS was 11.2 months (95% CI: 7–17.5). PFS-6 was 41.7% (95% CI: 25.6%–57.0%). Most frequent treatment-related grade ≤2 events included weight gain, fatigue, allergic rhinitis, and voice alteration; grade ≥3 events included venous thromboembolism (four patients), including one death from pulmonary embolism.

Conclusion. Rilotumumab with BEV did not significantly improve objective response compared with BEV alone, and toxicity may preclude the use of rilotumumab in combination BEV regimens. The Oncologist 2018;23:889–e98

DISCUSSION

This study’s hypothesis was that rilotumumab plus BEV, a humanized anti-VEGF-A antibody, would work synergistically to block vascular invasion and tumor proliferation causing tumor growth inhibition. Previous studies demonstrate a positive association between HGF and glioma grade. Additionally, abnormal expression of HGF contributes to glioma progression, showing the importance of the HGF mechanism in malignant glioma. Rilotumumab is an antibody that blocks the interaction of HGF with the c-Met receptor, resulting in reduced tumor cell proliferation and migration. This study was designed to differentiate between a 20% and 40% radiographic response rate using RANO criteria. This study combination resulted in an objective response of 27.8% (complete response: 2.8% plus partial response: 25%), therefore not meeting the threshold for concluding that the regimen merits further investigation.
A previous study treating rMG patients with rilotumumab alone demonstrated a median OS of 6.5 months and a median PFS of 4.1 weeks. The statistical comparator study of single-agent BEV in rMG showed a median OS of 7.8 months (95% CI: 5.3–13.5) and a median PFS of 4 months (95% CI: 3–6). In the present study, BEV plus rilotumumab modestly increased the median OS to 11.2 months (95% CI: 7.0–17.5) and the median PFS to 4.8 months (95% CI: 2.7–7.1), see Figures 1 and 2, respectively. Although BEV plus rilotumumab showed a 3–4-month improvement in median survival over the individual agents, it did not increase the PFS of BEV alone. The improvement in median OS should be balanced with the toxicity of the combination regimen. Occurrences of grade (GR) ≥2 central nervous system (CNS) hemorrhage or GR4/5 nonhematologic treatment-related toxicity were determined unacceptable, a priori. “Unacceptable” toxicity rates of ≤5% were desirable, whereas rates ≥20% were undesirable. There were no GR2 CNS hemorrhages, although 6% of patients had GR4/5 nonhematologic treatment-related toxicity (one GR4 prolonged QTc; one GR4 pulmonary embolism [PE]; one lethal PE). Although venous thromboembolic events are expected in gliomas, and the combination did not exceed unacceptable toxicity, four patients (11%) had grade >3 PE, which is clinically significant.

TRIAL INFORMATION

Disease	World Health Organization (WHO) grade IV malignant glioma
Stage of Disease/Treatment	Adjuvant
Prior Therapy	No designated number of regimens
Type of Study - 1	Phase II
Type of Study - 2	Single arm
Primary Endpoint	Overall response rate
Secondary Endpoint	Overall survival
Secondary Endpoint	Progression-free survival
Additional Details of Endpoints or Study Design	Primary endpoint: radiological response rate as determined by RANO criteria. Secondary endpoints: overall survival and 6-month progression-free survival. Incidence and severity of CNS hemorrhage and systemic hemorrhage. Incidence of grade ≥4 hematologic and grade >3 nonhematologic toxicities. Sample size justification: A minimax two-stage design was used to assess the radiographic response rate (i.e., complete response [CR] + partial response [PR]) of rilotumumab and Avastin in the treatment of patients with advanced malignant glioma [1]. The randomized phase II trial, AVF3708g, investigating Avastin versus Avastin plus irinotecan demonstrated a radiographic response rate to Avastin of approximately 20%. Hence, the current study was designed to differentiate between a 20% (null hypothesis) and a 40% (alternative hypothesis) response rate, assuming type I and II error rates of 0.10. If 10 or fewer of the total 36 patients had a radiographic response, the AMG 102 and Avastin treatment combination was to be considered not worthy of further research.
Analytic methods: The primary endpoint, radiographic response rate, was assessed using RANO criteria. Brain magnetic resonance imaging scans were obtained on patients after each 4-week treatment cycle, and complete and partial responses were confirmed at least 4 weeks later. The response rate was calculated with Wald confidence intervals. Secondary endpoints of OS and PFS were estimated using Kaplan-Meier methods; corresponding 95% confidence intervals were calculated using Greenwood's formula. OS was defined as the time between the initiation of study treatment and death or last follow-up, if alive at the time of analysis; PFS was defined as the time between the initiation of study treatment and the first occurrence of disease progression or death. Patients alive and progression free at the time of analysis were censored as of the date of last follow-up. Common Terminology Criteria for Adverse Events version 4.0 was used to assess adverse events for safety endpoints. SAS 9.4 (SAS Institute, Inc., Cary, NC) was used for all analyses.

Investigator’s Analysis
Active but results overtaken by other developments

DRUG INFORMATION

Drug 1	Generic/Working Name	Bevacizumab
Trade Name	Avastin	
Company Name	Genentech	
Drug Type	Antibody	
Drug Class	Angiogenesis—VEGF	
Dose	10 mg/kg	
Route	IV	
Schedule of Administration	Every 2 weeks for up to 12 cycles. Each cycle was 6 weeks, which included three infusions of Avastin every 2 weeks.	

Drug 2	Generic/Working Name	Rilotumumab
Trade Name	AMG102	
Company Name	Amgen, Inc.	
Drug Type	Antibody	
Drug Class	MET—cMET	
Dose	20 mg/kg	
Route	IV	
Schedule of Administration	Rilotumumab was administered every 2 weeks following the administration of Avastin for up to 12 cycles. Each cycle was 6 weeks and included three administrations of Avastin at 10 mg/kg followed by rilotumumab at 20 mg/kg.	

PATIENT CHARACTERISTICS

Number of Patients, Male	22
Number of Patients, Female	14
Age	Median (range): 55.5 (27–74)
Number of Prior Systemic Therapies	Median (range): 1 (1–3)
Performance Status: ECOG	0 — 0
	1 — 33
	2 — 3
	3 — 0
	Unknown — 0
Cancer Types or Histologic Subtypes	Recurrent malignant glioma WHO grade IV

PRIMARY ASSESSMENT METHOD

Title	Total patient population
Number of Patients Screened	42
Number of Patients Enrolled	36
Number of Patients Evaluable for Toxicity	36
Number of Patients Evaluated for Efficacy	36
Evaluation Method	RANO
Response Assessment
- **CR**: 1 (2.8%)
- **PR**: 9 (25.0%)
- **SD**: 17 (47.2%)
- **PD**: 6 (16.7%)
- **OTHER**: 3 (8.3%)

(Median) Duration Assessments
- **PFS**: 4.8 months, CI: 95%
- **OS**: 11.2 months, CI: 95%

Adverse Events

Name	NC/NA	1	2	3	4	5	All grades
Alanine aminotransferase increased	80%	17%	3%	0%	0%	0%	20%
Alkaline phosphatase increased	86%	14%	0%	0%	0%	0%	14%
Allergic rhinitis	69%	28%	3%	0%	0%	0%	31%
Anal hemorrhage	89%	11%	0%	0%	0%	0%	11%
Arthralgia	81%	11%	8%	0%	0%	0%	19%
Aspartate aminotransferase increased	83%	17%	0%	0%	0%	0%	17%
Blood bilirubin increased	94%	6%	0%	0%	0%	0%	6%
Cough	92%	8%	0%	0%	0%	0%	8%
Diarrhea	91%	6%	3%	0%	0%	0%	9%
Dry mouth	92%	8%	0%	0%	0%	0%	8%
Dyspnea	89%	11%	0%	0%	0%	0%	11%
Edema limbs	70%	19%	8%	3%	0%	0%	30%
Edema trunk	94%	3%	3%	0%	0%	0%	6%
Electrocardiogram QT corrected interval prolonged	89%	8%	0%	0%	3%	0%	11%
Epistaxis	89%	11%	0%	0%	0%	0%	11%
Fatigue	42%	36%	19%	3%	0%	0%	58%
Flushing	94%	6%	0%	0%	0%	0%	6%
Hypertension	77%	14%	6%	3%	0%	0%	23%
Hypoalbuminemia	67%	22%	8%	3%	0%	0%	33%
Hypocalcemia	92%	8%	0%	0%	0%	0%	8%
Hypokalemia	91%	6%	0%	3%	0%	0%	9%
Myalgia	89%	11%	0%	0%	0%	0%	11%
Nausea	92%	8%	0%	0%	0%	0%	8%
Pain in extremity	94%	3%	0%	3%	0%	0%	6%
Platelet count decreased	91%	6%	3%	0%	0%	0%	9%
Proteinuria	88%	6%	6%	0%	0%	0%	12%
Seizure	94%	3%	3%	0%	0%	0%	6%
Thromboembolic event	85%	0%	3%	6%	3%	3%	15%
Urinary frequency	91%	6%	3%	0%	0%	0%	9%
Vascular disorders—Other, specify	94%	6%	0%	0%	0%	0%	6%
Voice alteration	63%	31%	3%	3%	0%	0%	37%
Vomiting	94%	3%	3%	0%	0%	0%	6%
Weight gain	64%	25%	11%	0%	0%	0%	36%

Adverse events possibly, probably, or definitely related to the study drug regimen (bevacizumab and/or rilotumumab) that occurred in >5% of the patients at any time during treatment on the study.

Abbreviation: NC/NA, no change from baseline/no adverse event.
Patients with recurrent malignant glioma (rMG) have improved progression-free survival (PFS) with bevacizumab (BEV), a humanized monoclonal antibody that inhibits vascular endothelial growth factor-A (VEGF-A). In a 2009 study, single-agent BEV, followed by BEV plus irinotecan, in rMG resulted in a median overall survival (OS) of 7.8 months (95% confidence interval [CI]: 5.3–13.5) and a median PFS of 4 months (95% CI: 3–6) [2]. The BELOB trial showed single-agent BEV to have a similar median OS of 8 months (95% CI: 6–9) but showed an increase in median OS to 12 months (95% CI: 8–13) when combined with lomustine [3]. However, overall survival benefits were not seen in a phase III study of BEV combined with lomustine compared with single-agent lomustine (median OS 9.1 months vs. 8.6 months, respectively), although the combination improved PFS by 2.7 months over lomustine alone [4]. Observations from other phase II studies show improved PFS with BEV-containing regimens, with no significant impact on OS [2, 5]. Even with such increases in PFS, the prognosis of rMG remains poor with low survival outcomes.

Numerous studies are testing BEV combination therapies in attempts to increase survival [6–8]. One component that may provide synergy with BEV is rilotumumab, a hepatocyte growth factor (HGF)-inhibiting antibody that blocks HGF, which prevents activation of the c-Met receptor, resulting in downstream prevention of tumor cell growth and survival. In addition to the effect on cell growth, HGF is also associated with tumor grade in gliomas [9–11], and abnormal expression of HGF contributes to glioma progression, showing the importance of the HGF activation mechanism in malignant glioma [12–15]. By itself, rilotumammb is not as effective as BEV, with phase II study results of single-agent rilotumumab in rMG patients demonstrating a median OS of 6.5 months and a median PFS of 4.1 weeks [16]. With rilotumumab’s ability to inhibit a molecule that is associated with malignant glioma and BEV’s impact on PFS in rMG, it was suspected that these two drugs may work synergistically to improve survival outcomes of rMG patients through multi-pathway tumor growth inhibition.

This clinical trial enrolled 36 rMG subjects to receive rilotumumab (20 mg/kg) and BEV (10 mg/kg) every 2 weeks. Of the 36 subjects, 27 (75%) were at their first recurrence and 33 (91.7%) had a Karnofsky Performance Status ≥80. Based on an earlier BEV-alone study in rMG, the current study was designed to differentiate between a 20% and 40% response rate. Overall best responses included 1 (2.8%) complete response, 9 (25.0%) partial responses, 17 (47.2%) patients with stable disease, and 6 (16.7%) with progressive disease. The resulting objective response rate (complete or partial response) of 27.8% did not meet the study threshold needed to deem the BEV/rilotumumab combination worthy of further investigation. However, objective response is not a robust measure of efficacy due to the intricacies and evolving criteria for analyzing magnetic resonance images of brain tumor patients who have received BEV. Future studies in this patient population would benefit from using OS as the primary outcome instead of the response rate.

The BEV plus rilotumumab study regimen resulted in a median OS of 11.2 months (95% CI: 7.0–17.5). This is a small, nonsignificant improvement in OS over recently published results by Wick and colleagues, which showed the median OS for BEV with lomustine (9.1 months [95% CI: 8.1–10.1]) was not superior to single-agent lomustine (8.6 months [95% CI: 7.6–10.4]) [4]. With a median PFS of 4.8 months (95% CI: 2.7–7.1), our study of BEV plus rilotumumab did not show any improvement in PFS over BEV alone. In this study, it is difficult to attribute the extended OS exclusively to the BEV plus rilotumumab regimen given that many subjects progressed quickly and proceeded to receive other therapies that could influence OS. Additionally, the small increase in median OS should be balanced with the toxicity caused by the regimen. Occurrences of grade (GR) ≥2 central nervous system (CNS) hemorrhage or GR4/5 nonhematologic treatment-related toxicity were determined unacceptable, a priori. “Unacceptable” toxicity rates of ≤5% were desirable, whereas rates ≥20% were undesirable. There were no GR2 CNS hemorrhages, although 6% of patients had a GR4/5 nonhematologic-related toxicity (one GR4 prolonged

Serious Adverse Events	Grade	Attribution
Death not otherwise specified	5	Unrelated
Electrocardiogram QT corrected interval prolonged	4	Probable
Fracture	3	Unrelated
Hypotension	3	Possible
Musculoskeletal and connective tissue disorder—Fall	3	Unrelated
Seizure	3	Probable
Venous thromboembolic event	3	Probable
Venous thromboembolic event	4	Probable
Venous thromboembolic event	5	Probable

All serious adverse events that occurred in patients treated on study.
electrocardiogram QT corrected interval; one GR4 pulmonary embolism [PE]; one GR5 PE). Although venous thromboembolic events are expected in gliomas, and the combination did not exceed unacceptable toxicity, four patients (11%) had ≥GR3 PE, which is clinically significant. Other common treatment-related side effects experienced by ≥20% of patients were fatigue (58%), voice alteration (37%), weight gain (36%), hypoalbuminemia (33%), and allergic rhinitis (31%). Overall, BEV plus rilotumumab resulted in an increase of side effects, both expected and new. Ultimately, the BEV plus rilotumumab combination was not further explored in rMG due to a decision made by the Principal Investigator after an ongoing clinical trial in gastric cancer (RILOMET-1) was terminated early due to an increased number of deaths on the rilotumumab arm compared with the placebo-controlled arm [17, 18]. Although the BEV plus rilotumumab regimen was not excessively toxic in the rMG patients in this study, there was concern for the safety of the patients due to the number of venous thromboembolisms that occurred in the rMG patients on this study and the increased number of deaths on the rilotumumab arm in the RILOMET-1 study. No further studies of rilotumumab alone or in combination with BEV have been done in rMG patients.

In conclusion, rilotumumab in combination with BEV did not significantly improve objective response, OS, or PFS compared with BEV alone. Nonetheless, given the improvement of OS (although statistical significance was not evaluated), rilotumumab plus BEV was an active treatment regimen in rMG patients. The toxicity profile of rilotumumab in combination with BEV precludes this regimen from being used in rMG patients.

ACKNOWLEDGMENTS

We acknowledge Amgen for their support of this investigator-initiated trial.

REFERENCES

1. Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials 1989;10:1–10.
2. Kreisl TN, Kim L, Moore K et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009;27:740–745.
3. Taal W, Oosterkamp HM, Walenkamp AM et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): A randomised controlled phase 2 trial. Lancet Oncol 2014;15:943–953.
4. Wick W, Gorlia T, Bendszus M et al. Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med 2017;377:1954–1963.
5. Friedman HS, Prados MD, Wen PY et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009;27:4733–4740.
6. Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007;13:1253.
7. Reardon DA, Desjardins A, Vredenburgh JJ et al. Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: A phase II study. Br J Cancer 2009;101:1986–1994.
8. Sathornsumetee S, Desjardins A, Vredenburgh JJ et al. Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol 2010;12:1300–1310.
9. Koochekpour S, Jeffers M, Rulong S et al. Met and hepatocyte growth factor scatter factor expression in human gliomas. Cancer Res 1997;57:5391–5398.
10. Moriyama T, Kataoka H, Hamasuna R et al. Up-regulation of vascular endothelial growth factor induced by hepatocyte growth factor/scatter factor stimulation in human glioma cells. Biochem Biophys Res Commun 1998;249:73–77.
11. Rosen EM, Laterra J, Joseph A et al. Scatter factor/hepatocyte growth factor content and function in human gliomas. Int J Cancer 1999;84:10–18.
12. Moriyama T, Kataoka H, Hamasuna R et al. Up-regulation of vascular endothelial growth factor induced by hepatocyte growth factor/scatter factor stimulation in human glioma cells. Biochem Biophys Res Commun 1998;249:73–77.
13. Rosen EM, Laterra J, Joseph A et al. Scatter factor/hepatocyte growth factor expression in human glioblastoma. J Neurosurg 2000;93:1–10.
14. Schmidt NO, Westphal M, Haga C et al. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 1999;84:10–18.
15. Lamszus K, Laterra J, Westphal M et al. Scatter factor/hepatocyte growth factor (5F/HGF) content and function in human gliomas. Int J Dev Neurosci 1999;17:517–530.
16. Wen PY, Schiff D, Cloughesy TF et al. A phase II study evaluating the efficacy and safety of AMG 102 (rilometumab) in patients with recurrent glioblastoma. Neuro Oncol 2011;13:437–446.
17. Lazar DC, Taban S, Cornianu M et al. New advances in targeted gastric cancer treatment. World J Gastroenterol 2016;22:6776–6799.
18. Cunningham D, Tebbutt NC, Davidenko I et al. Phase III, randomized, double-blind, multicenter, placebo (P)-controlled trial of rilotumumab (R) plus epirubicin, cisplatin and capecitabine (ECX) as first-line therapy in patients (pts) with advanced MET-positive (pos) gastric or gastroesophageal junction (G/GJ) cancer: RILOMET-1 study. J Clin Oncol 2015; 33(suppl 15):4000a.