Dalitz analysis of the three-body charmed decays

$B^+ \rightarrow K^+\pi^+\pi^-$ and $B^+ \rightarrow K^+K^+K^-$

A. Garmash, K. Abe, H. Aihara, M. Akatsu, Y. Asano, V. Aulchenko, T. Aushev, T. Aziz, S. Bahinipati, A. M. Bakich, Y. Ban, I. Bedny, U. Bitenc, I. Bizjak, S. Blyth, A. Bondar, A. Bračko, M. Bračko, J. Brodzicka, P. Chang, Y. Chao, A. Chen, K.-F. Chen, B. G. Cheon, R. Chistov, S.-K. Choi, Y. Choi, Y. K. Choi, A. Chuvikov, J. Dalseno, M. Daniilov, M. Dash, L. Y. Dong, J. Dragic, A. Drutskoy, S. Eidelman, V. Eiges, Y. Enari, S. Fratina, G. Galyshev, T. Gershon, G. Gokhroo, J. Haba, T. Hara, N. C. Hastings, K. Hayasaka, H. Hayasii, M. Hazumi, T. Higuchi, L. Hinz, T. Hokue, Y. Hoshi, S. Hou, W.-S. Hou, T. Iijima, A. Imoto, K. Inami, A. Ishikawa, R. Itoh, M. Iwasaki, Y. Iwasaki, J. H. Kang, J. S. Kang, K. Kataoka, N. Katayama, H. Kawai, T. Kawasaki, H. R. Khan, H. Kichimi, H. J. Kim, J. H. Kim, S. K. Kim, S. M. Kim, K. Kinoshita, P. Koppenburg, S. Korpar, P. Križan, P. Krokovny, R. Kulasiri, C. C. Kuo, A. Kuzmin, J. Y.-J. Kwon, T. Lesiak, J. L., S.-W. Lin, D. Laventsev, G. Majumder, F. Manell, D. Marlow, T. Matsumoto, A. Matyja, W. Mitaroff, H. Miyake, H. Miyata, R. Mizuk, M. Mohapatra, T. Mori, T. Nagamine, Y. Nagasaka, E. Nakano, M. Nakao, H. Nakazawa, Z. Natkaniec, S. Nishida, O. Nito, S. Ogawa, T. Ohshima, T. Okabe, S. Okuno, S. L. Olsen, W. Ostrowicz, H. Ozaki, P. Pakhlov, H. Palka, H. Park, N. Parslow, L. S. Peak, R. Pestotnik, L. E. Pilonen, A. Poluektov, M. Rozanska, H. Sagawa, Y. Sakai, N. Sato, T. Schietinger, O. Schneider, P. Schönmeier, J. Schümann, C. Schwanda, A. J. Schwartz, S. Semenov, K. Senyo, H. Shibuya, B. Shwartz, J. B. Singh, A. Somov, N. Soni, R. Stamen, S. Stanić, M. Starić, T. Sumiyoshi, S. Suzuki, Y. Suzuki, O. Tajima, F. Takasaki, K. Tamai, N. Tamura, T. Tanaka, Y. Teramoto, X. C. Tian, K. Trabelsi, T. Tsukamoto, S. Uehara, T. Uglov, K. Ueno, S. Uno, Y. Ushiroda, G. Varner, K. E. Varvell, S. Villa, C. C. Wang, C. H. Wang, M.-Z. Wang, M. Watanabe, Y. Watanabe, A. Yamaguchi, H. Yamamoto, Y. Yamashita, J. Ying, Y. Yusa, C. C. Zhang, L. M. Zhang, Z. P. Zhang, V. Zhilich, D. Žontar,
We report results on the Dalitz analysis of three-body charmless $B^+ \to K^+\pi^+\pi^-$ and $B^+ \to K^+K^+K^-$ decays based on a 140 fb$^{-1}$ data sample collected with the Belle detector. Measurements of branching fractions for quasi-two-body decays to scalar-pseudoscalar states: $B^+ \to f_0(980)K^+$, $B^+ \to K^*_0(1430)^0\pi^+$, and to vector-pseudoscalar states: $B^+ \to K^*(892)^0\pi^+$, $B^+ \to \rho(770)^0K^+$, $B^+ \to \phi K^+$ are presented. Upper limits on decays to some pseudoscalar-tensor final states are reported. We also report the measurement of the $B^+ \to \chi_{c0}K^+$ branching fraction in two χ_{c0} decays channels: $\chi_{c0} \to \pi^+\pi^-$ and $\chi_{c0} \to K^+K^-$.

PACS numbers: 13.20.He, 13.25.Hw, 13.30.Eg, 14.40.Nd
I. INTRODUCTION

Studies of B meson decays to three-body charmless hadronic final states are a natural extension of studies of decays to two-body charmless final states. Some of the final states considered so far as two-body (for example $\rho \pi$, $K^* \pi$, etc.) proceed via quasi-two-body processes involving a wide resonance state that immediately decays in the simplest case to two particles, thereby producing a three-body final state. Multiple resonances occurring nearby in phase space will interfere and a full amplitude analysis is required to extract correct branching fractions for the intermediate quasi-two-body states. B meson decays to three-body charmless hadronic final states may provide new possibilities for CP violation searches [1, 2, 3].

Observations of B meson decays to various three-body charmless hadronic final states have already been reported by the Belle [2, 4, 5], CLEO [6] and BaBar [7] collaborations. First results on the distribution of signal events over the Dalitz plot in the three-body $B^+ \rightarrow K^+ \pi^+ \pi^-$ and $B^+ \rightarrow K^+ K^+ K^-$ decays are described in Ref. [5]. With a data sample of 29.1 fb$^{-1}$ a simplified analysis technique was used due to lack of statistics. Using a similar technique, the BaBar collaboration has reported results of their analysis of the Dalitz plot for the decay $B^+ \rightarrow K^+ \pi^+ \pi^-$ with a 56.4 fb$^{-1}$ data sample [8]. With the large data sample that is now available, we can perform a full amplitude analysis. The analysis described in this paper is based on a 140 fb$^{-1}$ data sample containing 152 million $\bar{B}B$ pairs, collected with the Belle detector operating at the KEKB asymmetric-energy e^+e^- collider [9] with a center-of-mass (c.m.) energy at the $\Upsilon(4S)$ resonance (on-resonance data). The beam energies are 3.5 GeV for positrons and 8.0 GeV for electrons. For the study of the $e^+e^- \rightarrow q\bar{q}$ continuum background, we use 8.3 fb$^{-1}$ of data taken 60 MeV below the $\Upsilon(4S)$ resonance (off-resonance data).

The paper is organized as follows: Section II gives a brief description of the Belle detector; the event reconstruction procedure and background suppression techniques are described in Sections III and IV respectively; Section V describes results on the three-body signal yields measurement and qualitative analysis of the two-particle mass spectra, while Section VI is devoted to the amplitude analysis of the observed three-body signals; final results of the analysis are given in Section VII and discussed in Section VIII.

II. THE BELLE DETECTOR

The Belle detector [10] is a large-solid-angle magnetic spectrometer based on a 1.5 T superconducting solenoid magnet. Charged particle tracking is provided by a three-layer silicon vertex detector and a 50-layer central drift chamber (CDC) that surround the interaction point. The charged particle acceptance covers laboratory polar angles between $\theta = 17^\circ$ and 150°, corresponding to about 92% of the total solid angle in the c.m. frame. The momentum resolution is determined from cosmic rays and $e^+e^- \rightarrow \mu^+\mu^-$ events to be $\sigma_{p_t}/p_t = (0.30 \oplus 0.19p_t)\%$, where p_t is the transverse momentum in GeV/c.

Charged hadron identification is provided by dE/dx measurements in the CDC, an array of 1188 aerogel Čerenkov counters (ACC), and a barrel-like array of 128 time-of-flight scintillation counters (TOF); information from the three subdetectors is combined to form a single likelihood ratio, which is then used for pion, kaon and proton discrimination. At large momenta (> 2.5 GeV/c) only the ACC and CDC are used to separate charged pions and kaons since here the TOF provides no additional discrimination. Electromagnetic showering particles are detected in an array of 8736 CsI(Tl) crystals (ECL) that covers the same solid angle as the charged particle tracking system. The energy resolution for electromagnetic showers is $\sigma_E/E = (1.3 \oplus 0.07/E \oplus 0.8/E^{1/4})\%$, where E is in GeV. Electron identification in Belle is based on a combination of dE/dx measurements
in the CDC, the response of the ACC, and the position, shape and total energy deposition (i.e.,
\(E/p\)) of the shower detected in the ECL. The electron identification efficiency is greater than 92%
for tracks with \(p_{\text{lab}} > 1.0 \ \text{GeV}/c\) and the hadron misidentification probability is below 0.3%. The
magnetic field is returned via an iron yoke that is instrumented to detect muons and \(K_0^*\) mesons.
We use a GEANT-based Monte Carlo (MC) simulation to model the response of the detector and
determine its acceptance \([11]\).

III. EVENT RECONSTRUCTION

Charged tracks are selected with a set of track quality requirements based on the number of
CDC hits and on the distances of closest approach to the interaction point (IP). We also require
that the track momenta transverse to the beam be greater than 0.1 GeV/c to reduce the low
momentum combinatorial background. For charged kaon identification, we impose a requirement
on the particle identification variable that has 86% efficiency and a 7% fake rate from misidentified
pions. Charged tracks that are positively identified as electrons or protons are excluded. Since the
muon identification efficiency and fake rate vary significantly with the track momentum, we do not
veto muons to avoid additional systematic errors.

We identify \(B\) candidates using two variables: the energy difference \(\Delta E\) and the beam-energy
constrained mass \(M_{bc}\). \(\Delta E\) is calculated as
\[
\Delta E = E_B - E_{\text{beam}}^* = \left(\sum_i \sqrt{c^2 p_i^2 + c^4 m_i^2} \right) - E_{\text{beam}}^*,
\]
where the summation is over all particles from a \(B\) candidate; and \(p_i\) and \(m_i\) are their c.m.
three-momenta and masses, respectively. Since the \(\Upsilon(4S)\) decays to a pair of \(B\) mesons with no additional
particles, each \(B\) meson carries half of the c.m. energy \(\sqrt{s}/2 = E_{\text{beam}}^* = 5.29 \ \text{GeV}\), where \(E_{\text{beam}}^*\)
is the beam energy in the c.m. frame. The \(\Delta E\) distribution for the \(B^+ \rightarrow K^+\pi^+\pi^-\) signal MC
events is shown in Fig. 1(a). Since there are only charged particles in final states considered in
this analysis, the \(\Delta E\) width is governed by the track momentum resolution. A typical value of
the \(\Delta E\) resolution is 15 MeV. The beam energy spread is about 3 MeV and gives a negligible
contribution to the total \(\Delta E\) width. The signal \(\Delta E\) shape is fitted by a sum of two Gaussian
functions with a common mean. In fits to the experimental data, we fix the width and fraction
of the second Gaussian function from MC simulation. The width of the main Gaussian is floated.
For comparison, the \(\Delta E\) distribution for the off-resonance data is also shown in Fig. 1(a), where
the background is parametrized by a linear function.

The beam-energy constrained mass variable \(M_{bc}\) is equivalent to the \(B\) invariant mass with the
measured \(B\) candidate energy \(E_B\) replaced by the beam energy \(E_{\text{beam}}^*\):
\[
M_{bc} = \frac{1}{c^2} \sqrt{E_{\text{beam}}^{*2} - c^2 \mathbf{P}_B^2} = \frac{1}{c^2} \sqrt{E_{\text{beam}}^* - c^2 (\sum_i p_i)^2},
\]
where \(\mathbf{P}_B\) is the \(B\) candidate momentum in the c.m. frame. The average
\(B\) meson momentum in the c.m. frame is about 0.34 GeV/c which is much smaller than its total
energy. Thus, the uncertainty in the measured \(\mathbf{P}_B\) gives a small contribution to the \(M_{bc}\) width,
which is dominated by the beam energy spread. The \(M_{bc}\) width is about 3 MeV/c^2 and is nearly
independent of the final state unless photons are included. The \(M_{bc}\) distribution for the signal
\(B^+ \rightarrow K^+\pi^+\pi^-\) MC events and for the off-resonance data are shown in Fig. 1(b). The signal
\(M_{bc}\) shape is well described by a Gaussian function. The background shape is parametrized with
an empirical function \(f(M_{bc}) \propto x \sqrt{1 - x^2} \exp[-\lambda(1 - x^2)]\), where \(x = M_{bc}/E_{\text{beam}}^*\) and \(\lambda\) is a
parameter \([12]\).
IV. BACKGROUND SUPPRESSION

There are two sources of the background: the dominant one is due to $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s$ and c quarks) continuum events that have a cross-section about three times larger than that for the $e^+e^- \rightarrow \Upsilon(4S) \rightarrow BB$; the other one originates from other B meson decays. The background from continuum events is suppressed using variables that characterize the event topology. Since the two B mesons produced from an $\Upsilon(4S)$ decay are nearly at rest in the c.m. frame, their decay products are uncorrelated and the event tends to be spherical. In contrast, hadrons from continuum $q\bar{q}$ events tend to exhibit a two-jet structure. We use θ_{thr}, which is the angle between the thrust axis of the B candidate and that of the rest of the event, to discriminate between the two cases. The distribution of $|\cos \theta_{\text{thr}}|$ is strongly peaked near $|\cos \theta_{\text{thr}}| = 1.0$ for $q\bar{q}$ events and is nearly flat for BB events. A Fisher discriminant is utilized for the further suppression of the continuum background. When combined, these two variables reject about 98% (92%) of the signal. (As the continuum background in the three-kaon final state is much smaller a looser requirement on the Fisher discriminant is imposed to retain the efficiency.) A detailed description of the continuum suppression technique can be found in [3] and references therein.

The understanding of the background that originates from other B meson decays is of great importance in the study of charmless B decays. We study the BB related background using a large sample (about 2.5 times the experimental dataset) of MC generated BB generic events. We use the CLEO generator [13] to simulate B decays. Note that charmless hadronic B decays are not included in the QQ98 generator and are generated separately. We find that the dominant BB background in the $K^+\pi^+\pi^-$ final state that peaks in the signal region is due to $B^+ \rightarrow D^0\pi^+$, $\bar{D}^0 \rightarrow K^+\pi^-$ and also $B^+ \rightarrow J/\psi(\psi(2S))K^+$, $J/\psi(\psi(2S)) \rightarrow \mu^+\mu^-$ decays. We veto $B^+ \rightarrow \bar{D}^0\pi^+$ events by requiring $|M(K\pi) - M_D| > 0.10$ GeV/c^2. The $B^+ \rightarrow \bar{D}^0K^+$, $\bar{D}^0 \rightarrow \pi^+\pi^-$ signal is removed by requirement $|M(\pi^+\pi^-) - M_D| > 15$ MeV/c^2 ($\sim 2.5\sigma$). To suppress the background due to π/K misidentification, we also exclude candidates if the invariant mass of any pair of oppositely charged tracks from the B candidate is consistent with the $\bar{D}^0 \rightarrow K^+\pi^-$ hypothesis within 15 MeV/c^2, regardless of the particle identification information. Modes with $J/\psi(\psi(2S))$ in the final state contribute due to muon-pion misidentification; the contribution from

![FIG. 1: (a) Energy difference ΔE and (b) beam constrained mass M_{bc} distributions for $B^+ \rightarrow K^+\pi^+\pi^-$ signal MC events (histograms) and $q\bar{q}$ background in off-resonance data (points). Curves represent the results of the fits.](image-url)
the $J/\psi(\psi(2S)) \rightarrow e^+e^-$ submode is found to be negligible after the electron veto requirement. We exclude $J/\psi(\psi(2S))$ background by requiring $|M(\pi^+\pi^-)_{\mu^+\mu^-} - M_{J/\psi}| > 0.07$ GeV/c^2 and $|M(\pi^+\pi^-)_{\mu^+\mu^-} - M_{\psi(2S)}| > 0.05$ GeV/c^2, where subscript $\mu^+\mu^-$ indicates that the muon mass assignment was used for charged tracks to calculate the two-particle invariant mass. Yet another small but clearly visible background associated with $B^+ \rightarrow J/\psi K^+$, $J/\psi \rightarrow \mu^+\mu^-$ decays is due to a somewhat complicated particle misidentification pattern: the charged kaon is misidentified as a pion, the μ^+ is misidentified as a kaon and the μ^- as another pion. This background is excluded by applying a veto: $|M(K^+\pi^-)_{\mu^+\mu^-} - M_{J/\psi}| > 0.020$ GeV/c^2. The most significant background from charmless B decays is found to originate from $B^+ \rightarrow \eta' K^+$ followed by $\eta' \rightarrow \pi^+\pi^-\gamma$. Another contribution comes from $B^+ \rightarrow \rho^0\pi^+$ decay, where one of the final state pions is misidentified as a kaon. We take these contributions into account when determining the signal yield.

The dominant background to the $K^+K^+K^-$ final state from other B decays is found to come from the process $B \rightarrow Dh$, where h stands for a charged pion or kaon. To suppress this background, we reject events where any two-particle invariant mass is consistent with $D^0 \rightarrow K^+K^-$ or $D^0 \rightarrow K^-\pi^+$ within 15 MeV/c^2 regardless of the particle identification information. We find no charmless B decay modes that produce a significant background to the $K^+K^+K^-$ final state.

V. THREE-BODY SIGNAL YIELDS

The ΔE distributions for $B^+ \rightarrow K^+\pi^+\pi^-$ and $B^+ \rightarrow K^+K^+K^-$ candidates that pass all the selection requirements and with $|M_{bc} - M_B| < 9$ MeV/c^2 are shown in Fig. 2 where clear peaks in the signal regions are observed. In the fit to the ΔE distribution for the $K^+\pi^+\pi^-$ final state, we fix the shape and normalization of the charmless $B\bar{B}$ background components from the measured branching fractions [14] and known number of produced $B\bar{B}$ events. For the $B\bar{B}$ generic component, we fix only the shape and let the normalization float. The slope and normalization of the $q\bar{q}$ background component are free parameters. Results of the fit are shown in Fig. 2 where different components of the background are shown separately for comparison. There is a large increase in the level of the $B\bar{B}$ related background in the $\Delta E < -0.15$ GeV region for the $K^+\pi^+\pi^-$ final state. This is mainly due to the decay $B \rightarrow D\pi$, $D \rightarrow K\pi\pi$. This decay mode produces the same final state as the studied process plus one extra pion that is not included in the energy difference calculation. The decay $B \rightarrow D\pi$, $D \rightarrow K\mu\nu\mu$ also contributes due to muon-pion misidentification. The shape of this background is described well by the MC simulation. In the fit to the ΔE distribution for the $K^+K^+K^-$ final state, we fix not only the shape but also the normalization of the $B\bar{B}$ background. This is done because the $B\bar{B}$ background in this final state is found to be much smaller than the dominant $q\bar{q}$ background, thus the relative fraction of these two contributions is poorly determined from the fit. The signal yields obtained from fits are given in Table I.

To examine possible quasi-two-body intermediate states in the observed $B^+ \rightarrow K^+\pi^+\pi^-$ and $B^+ \rightarrow K^+K^+K^-$ signals, we analyze two-particle invariant mass spectra. To determine the distribution of the background we use events in the M_{bc} and ΔE sidebands. The definition of the

Final state	σ_1 (MeV)	σ_2 (MeV)	Fraction of the main Gaussian	Signal Yield (events)
$K^+\pi^+\pi^-$	17.5 ± 0.9	35.0 (fixed)	0.84 (fixed)	1533 ± 69
$K^+K^+K^-$	14.0 ± 1.0	40.0 (fixed)	0.85 (fixed)	1089 ± 41
signal and sideband regions is illustrated in Fig. 3. Defined in this way, the $M_{bc} - \Delta E$ sidebands are equivalent to the following sidebands in terms of the three-particle invariant mass $M(Khh)$ and three-particle momentum $P(Khh)$ in the c.m. frame:

$$0.05 \text{ GeV}/c^2 < |M(Khh) - M_B| < 0.10 \text{ GeV}/c^2; \quad P(Khh) < 0.48 \text{ GeV}/c$$

and

$$|M(Khh) - M_B| < 0.10 \text{ GeV}/c^2; \quad 0.48 \text{ GeV}/c < P(Khh) < 0.65 \text{ GeV}/c.$$

The signal region is defined as an ellipse around the M_{bc} and ΔE mean values:

$$\frac{(M_{bc} - M_B)^2}{(n\sigma_{M_{bc}})^2} + \frac{\Delta E^2}{(n\sigma_{\Delta E})^2} < 1,$$

where $\sigma_{M_{bc}} = 3 \text{ MeV}/c^2$ and $\sigma_{\Delta E}$ is equivalent to σ_1 in Table I. We define two signal regions: with loose ($n = 3$) and tight ($n = 2$) requirements. Tight requirements reduce (compared to the loose requirements) the background fraction in the data sample by about 65% while retaining about 85% of the signal. The efficiency of the loose (tight) requirements that define the signal region is 0.923 (0.767) for the $K^+\pi^+\pi^-$ final state and 0.948 (0.804) for the $K^+K^+K^-$ final state. The total number of events in the signal region is 2584 (1809) for the $K^+\pi^+\pi^-$ and 1400 (1078) for the $K^+K^+K^-$ final state. To determine the relative fraction of signal and background events in these samples, we use the results of the fits to the ΔE distributions (see Table II). We find 1533 ± 69 signal $B^+ \rightarrow K^+\pi^+\pi^-$ events and 1089 ± 41 signal $B^+ \rightarrow K^+K^+K^-$ events. The relative fraction of signal events in the signal region with loose (tight) requirements is then determined to be 0.548 ± 0.025 (0.650 ± 0.032) for the $K^+\pi^+\pi^-$ and 0.738 ± 0.028 (0.828 ± 0.033) for the $K^+K^+K^-$ final state. All final results are obtained from fits to events in the signal region with loose ΔE and M_{bc} requirements. The subsample with tight requirements is used for a cross-check only.

The $K^+\pi^-$ and $\pi^+\pi^-$ invariant mass spectra for $B^+ \rightarrow K^+\pi^+\pi^-$ candidate events in the $M_{bc} - \Delta E$ loose signal region are shown as open histograms in Fig. 4. The hatched histograms show the corresponding spectra for background events in the $M_{bc} - \Delta E$ sidebands, normalized to the estimated number of background events. To suppress the feed-through between the $\pi^+\pi^-$ and $K^+\pi^-$ resonance states, we require the $K^+\pi^-(\pi^+\pi^-)$ invariant mass to be larger than 2.0

FIG. 2: ΔE distributions for (a) $B^+ \rightarrow K^+\pi^+\pi^-$ and (b) $B^+ \rightarrow K^+K^+K^-$ candidate events. Points with error bars are data; the curve is the fit result; the hatched area is the background.
(1.5) GeV/c² when making the π⁺π⁻ (K⁺π⁻) projection. The K⁺π⁻ invariant mass spectrum is characterized by a narrow peak around 0.9 GeV/c², which is identified as the K*(892)⁰, and a broad enhancement around 1.4 GeV/c². Possible candidates for this enhancement are the scalar K⁰(1430) and tensor K²⁺(1430) resonances. In the π⁺π⁻ invariant mass spectrum two distinct structures in the low mass region are observed. One is slightly below 1.0 GeV/c² and is consistent with the f⁰(980) and the other is between 1.0 GeV/c² and 1.5 GeV/c². We cannot identify unambiguously the resonant state that is responsible for such a structure. Possible candidates for a resonant state in this mass region might be f⁰(1370), f⁰(1500) or f₂⁺(1525) [14]. In what follows, we refer to this structure as fX(1500).

The K⁺K⁻ invariant mass spectra for B⁺ → K⁺K⁺K⁻ candidate events in the M_bc − ΔE signal region with loose requirements are shown as open histograms in Fig. 5. Since there are two same-charge kaons in the B⁺ → K⁺K⁺K⁻ decay, we distinguish the K⁺K⁻ combinations with smaller, M(K⁺K⁻)_{min}, and larger, M(K⁺K⁻)_{max}, invariant masses. The M(K⁺K⁻)_{min} spectrum, shown in Fig. 5(a), is characterized by a narrow peak at 1.02 GeV/c² corresponding to the φ(1020) meson and a broad structure around 1.5 GeV/c², shown in Fig. 5(b). Possible candidates for a resonant state in this mass region are the f₀(1370), f₀(1500) or f₂⁺(1525) [14]. In what follows, we refer to this structure as fX(1500).

As a result of the interference between these two amplitudes, the lineshape of the χ_c⁰ resonance can be distorted. In our previous analysis of B meson decays to three-body charmless hadronic final states [2, 5], we imposed a requirement on the invariant mass of the π⁺π⁻ and K⁺K⁻ combination to veto the B⁺ → χ_c⁰K⁺ signal. In this analysis we do not apply such a requirement.

From these qualitative considerations it is apparent that an amplitude analysis is required for
In the preceding Section we found that a significant fraction of the signals observed in $B^+ \rightarrow K^+\pi^+\pi^-$ candidates in the B signal region (open histograms) and for background events in the $\Delta E - M_{bc}$ sidebands (hatched histograms). (a) $M(K^+\pi^-)$ spectrum with $M(\pi^+\pi^-) > 1.5 \text{ GeV}/c^2$; (b) $M(\pi^+\pi^-)$ with $M(K^+\pi^-) > 2.0 \text{ GeV}/c^2$ and (c) $M(\pi^+\pi^-)$ in the χ_{c0} mass region with $M(K^+\pi^-) > 2.0 \text{ GeV}/c^2$.

![Two-particle invariant mass spectra for $B^+ \rightarrow K^+\pi^+\pi^-$ candidates](image)

FIG. 4: Two-particle invariant mass spectra for $B^+ \rightarrow K^+\pi^+\pi^-$ candidates in the B signal region (open histograms) and for background events in the $\Delta E - M_{bc}$ sidebands (hatched histograms). (a) $M(K^+K^-)_{\text{min}}$ invariant mass spectrum near the $\phi(1020)$ mass region; (b) $M(K^+K^-)_{\text{min}}$ spectrum in the full range; (c) $M(K^+K^-)_{\text{max}}$ in the χ_{c0} mass region with $2.0 \text{ GeV}/c^2 < M(K^+K^-)_{\text{min}} < 3.4 \text{ GeV}/c^2$.

![Two-particle invariant mass spectra for $B^+ \rightarrow K^+K^+K^-$ candidates](image)

FIG. 5: Two-particle invariant mass spectra for $B^+ \rightarrow K^+K^+K^-$ candidates in the B signal region (open histograms) and for background events in the $\Delta E - M_{bc}$ sidebands (hatched histograms). (a) $M(K^+K^-)_{\text{min}}$ invariant mass spectrum near the $\phi(1020)$ mass region; (b) $M(K^+K^-)_{\text{min}}$ spectrum in the full range; (c) $M(K^+K^-)_{\text{max}}$ in the χ_{c0} mass region with $2.0 \text{ GeV}/c^2 < M(K^+K^-)_{\text{min}} < 3.4 \text{ GeV}/c^2$.

A more complete understanding of the individual quasi-two-body channels that contribute to the observed three-body $B^+ \rightarrow K^+\pi^+\pi^-$ and $B^+ \rightarrow K^+K^+K^-$ signals.

VI. AMPLITUDE ANALYSIS

In the preceding Section we found that a significant fraction of the signals observed in $B^+ \rightarrow K^+\pi^+\pi^-$ and $B^+ \rightarrow K^+K^+K^-$ decays can be assigned to quasi-two-body intermediate states. These resonances will cause a non-uniform distribution of events in phase space that can be analyzed using the technique pioneered by Dalitz [15]. Multiple resonances that occur nearby in phase space will interfere and provide an opportunity to measure both the amplitudes and relative phases of the intermediate states. This in turn allows us to deduce their relative branching fractions. Amplitude analyses of various three-body D meson decays have been successfully performed by a number of groups [16]. From their results we can learn that this kind of analysis requires, in general, high statistics (of the order of a few thousand signal events, at least). In contrast to the analysis of D meson three-body decays, where the level of the combinatorial background is usually quite small, the signal and background levels in charmless three-body decays of B mesons are comparable. This complicates the analysis, requiring careful study of the distribution of background events over the phase space. Finally, independent of the statistics, the choice of the model (that is the set of quasi-two-body intermediate states) to fit the data is often not unique. This unavoidably introduces some model dependence into the determination of quasi-two-body branching fractions.
TABLE II: Blatt-Weisskopf penetration form factors. \(p_r \) is the momentum of either daughter in the meson rest frame. \(p_s \) is the momentum of either daughter in the candidate rest frame (same as \(p_r \) except the parent mass used is the two-track invariant mass of the candidate rather than the mass of the meson). \(R \) is the meson radial parameter.

Spin \(J \)	Form Factor \(F_{B}^{(J)} \)
0	1
1	\(\frac{\sqrt{1+R^2p_r^2}}{\sqrt{1+R^2p_r^2}} \)
2	\(\frac{\sqrt{9+3R^2p_r^2+R^4p_r^4}}{\sqrt{9+3R^2p_r^2+R^4p_r^4}} \)

This is especially true for three-body charmless decays of \(B \) mesons where experimental statistics is quite limited while the available phase space is large.

A. Formalism

Since we are studying the decay of a spin-zero particle to three spin-zero daughters \(B \to h_1h_2h_3 \), only two degrees of freedom are required to completely describe the kinematics. There are three invariant masses that can be formed by considering all possible pairs of final state particles: \(s_{12} = M^2(h_1h_2) \), \(s_{13} = M^2(h_1h_3) \) and \(s_{23} = M^2(h_2h_3) \). Only two of them are independent, however, since energy and momentum conservation results in the additional constraint

\[
M^2 + m_1^2 + m_2^2 + m_3^2 = s_{12} + s_{13} + s_{23}, \tag{1}
\]

where \(M^2 \) is the mass of the initial particle, and \(m_i \) are masses of the daughter particles. In what follows we use \(s_{13} \) and \(s_{23} \) as the two independent variables.

The density of signal events on the Dalitz plot is described by the matrix element \(\mathcal{M} \) as

\[
d\Gamma = \frac{|\mathcal{M}|^2}{256\pi^3 M^3} ds_{13}ds_{23}, \tag{2}
\]

which in turn depends on the decay dynamics.

The amplitude for \(B \) decay to a three-body final state via an intermediate resonance state \(R \) is given by

\[
A_J = F_B F_R^{(J)} BW_J T_J, \tag{3}
\]

where \(F_B \) and \(F_R^{(J)} \) are form factors which, in general, are unknown functions. For \(F_R^{(J)} \) we use the Blatt-Weisskopf penetration factors \(^{[17]}\) given in Table II. These factors depend on a single parameter, \(R \), which is the “radius” of the meson. For all intermediate resonances we set this parameter to \(R = 1.5 \text{ GeV}^{-1} \). Form factors are normalized to unity at the nominal meson mass. \(F_B \) is parametrized in a single pole approximation \(^{[18]}\)

\[
F_B = \frac{1}{1 - \frac{M^2}{M_{\text{pole}}^2}}, \tag{4}
\]

where we use the mass of the \(B^* \) meson \(^{[14]}\) as a pole mass \(M_{\text{pole}} \).

The Breit-Wigner function \(BW_J \) in Eq. (3) is given by the expression

\[
BW_J(s) = \frac{1}{M_{\text{pole}}^2 - s - iM_{\text{pole}}F_R^{(J)}(s)}, \tag{5}
\]
where M_R is the nominal mass of the resonance, and $\Gamma_R^{(J)}(s)$ is the “mass dependent width”. In the general case, $\Gamma_R^{(J)}(s)$ is expressed as:

$$\Gamma_R^{(J)}(s) = \Gamma_R \left(\frac{p_s}{p_r} \right)^{2J+1} \left(\frac{M_R}{s^{1/2}} \right) F_R^2,$$

where p_r is the momentum of either daughter in the resonance rest frame, calculated with the resonance mass equal to the nominal M_R value, p_s is the momentum of either daughter in the resonance rest frame when the resonance mass is equal to $s^{1/2}$, J is the spin of the resonance, and Γ_R is the width of the resonance.

The function T_J in Eq. (3) describes the angular correlations between the B decay products. We distinguish the following three cases:

1) **Scalar-Pseudoscalar ($J = 0$) decay**

If R is a scalar state, the decay amplitude Eq. (3) takes the simplest form with $T_0 \equiv 1$. We treat the scalar $f_0(980)$ as a special case, for which we try two parametrizations for the s-dependent width $\Gamma_{f_0}(s)$: by Eq. (6), and following the parametrization by Flatté [21].

$$\Gamma_{f_0}(s) = \Gamma_\pi(s) + \Gamma_K(s),$$

where

$$\Gamma_\pi(s) = g_\pi \sqrt{s/4 - m_\pi^2}, \quad \Gamma_K(s) = \frac{g_K}{2} \left(\sqrt{s/4 - m_{K^*}^2} + \sqrt{s/4 - m_{K^0}^2} \right),$$

and g_π and g_K are coupling constants for $f_0(980) \to \pi\pi$ and $f_0(980) \to KK$, respectively.

2) **Vector-Pseudoscalar ($J = 1$) decay**

In the case of a pseudoscalar-vector decay of the B meson, the Lorentz-invariant expression for T_1 is given by

$$T_1(h_1h_2h_3|R_{23}) = s_{12} - s_{13} + \frac{(M^2 - m_1^2)(m_3^2 - m_2^2)}{s_{23}},$$

where R_{23} is an intermediate resonance state decaying to h_2h_3 final state.

3) **Tensor-Pseudoscalar ($J = 2$) decay**

For a pseudoscalar-tensor decay, T_2 takes the form

$$T_2(h_1h_2h_3|R_{23}) = \left(s_{13} - s_{12} + \frac{(M_{B_0}^2 - m_1^2)(m_2^2 - m_3^2)}{s_{23}} \right)^2$$

$$- \frac{1}{3} \left(s_{23} - 2M_{B_0}^2 - 2m_1^2 + \frac{(M_{B_0}^2 - m_1^2)^2}{s_{23}} \right) \left(s_{23} - 2m_2^2 - 2m_3^2 + \frac{(m_2^2 - m_3^2)^2}{s_{23}} \right).$$

We do not consider resonant states of higher spin in our analysis.

There is also the possibility of a so-called “non-resonant” amplitude. In the Dalitz analysis of D meson decays to three-body final states the non-resonant amplitude is often parametrized as a complex constant. In the case of B meson decays, where the available phase space is much larger, it is rather unlikely that the non-resonant amplitude will have a constant value over the entire phase space; some form factors should be introduced. Unfortunately, at the moment there is no theoretical consensus on the properties of non-resonant B meson decays. In our analysis we use an empirical parametrization that in the case of the $K^+\pi^+\pi^-$ final state is

$$A_{nr}(K^+\pi^+\pi^-) = a_1^{nr} e^{-\alpha_{s13} e^{i\delta_1}} + a_2^{nr} e^{-\alpha_{s23} e^{i\delta_2}},$$
where \(s_{13} \equiv M^2(K^+\pi^-) \), \(s_{23} \equiv M^2(\pi^+\pi^-) \), and \(a_{23}^\text{nr} \), and \(\delta_{12}^\text{nr} \) and \(\alpha \) are fit parameters. In a certain limit this parametrization is equivalent to a constant. Several alternative parametrizations (mentioned below) are also considered to estimate the model dependence.

An important feature that should be taken into account in the construction of the matrix element for the decay \(B^+ \rightarrow K^+K^+K^- \) is the presence of the two identical kaons in the final state. This is achieved by symmetrizing the matrix element with respect to the interchange of the two kaons of the same charge, that is \(s_{13} \leftrightarrow s_{23} \). Due to symmetrization the non-resonant amplitude for the \(K^+K^+K^- \) final state becomes

\[
A_{\text{nr}}(K^+K^+K^-) = a_{23}^\text{nr}(e^{-\alpha s_{13}} + e^{-\alpha s_{23}})e^{i\delta_{23}} ,
\]

where \(s_{13} \equiv M^2(K_1^+K^-) \), \(s_{23} \equiv M^2(K_2^+K^-) \).

Given the amplitude for each decay type, the overall matrix elements can be written as a coherent sum

\[
\mathcal{M} = \sum_j a_j e^{i\delta_j} A^j + A_{\text{nr}},
\]

where the index \(j \) denotes the quasi-two-body intermediate state, \(a_j \) and \(\delta_j \) are the amplitude and relative phase of the \(j \)-th component. Since we are sensitive only to the relative phases and amplitudes, we are free to fix one phase and one amplitude in Eq. (13). The fraction \(f_l \) of the total three-body signal attributed to a particular quasi-two-body intermediate state can be calculated as

\[
f_l = \frac{\int |a_l A^l|^2 \, ds_{13} \, ds_{23}}{\int |\mathcal{M}|^2 \, ds_{13} \, ds_{23}}.
\]

The sum of the fit fractions for all components is not necessarily unity because of interference.

The amplitude analysis of \(B \) meson three-body decays reported here is performed by means of an unbinned maximum likelihood fit which minimizes the function

\[
\mathcal{F} = -2 \sum_{\text{events}} \ln P(s_{13}, s_{23}; \xi),
\]

where the function \(P(s_{13}, s_{23}; \xi) \) describes the density of experimental events over the Dalitz plot; \(\xi \) is a vector of parameters.

An important question that arises in an unbinned analysis is the estimation of the goodness-of-fit. As the unbinned maximum likelihood fitting method does not provide a direct way to estimate the quality of the fit, we need a measure to assess how well any given fit represents the data. To do so the following procedure is applied. We first subdivide the entire Dalitz plot into \(1 \text{(GeV}/c^2)^2 \times 1 \text{(GeV}/c^2)^2 \) bins. If the number of events in the bin is smaller than \(N_{\text{min}} = 16 \) it is combined with the adjacent bins until the number of events exceeds \(N_{\text{min}} \). After completing this procedure, the entire Dalitz plot is divided into a set of bins of varying size, and a \(\chi^2 \) variable for the multinomial distribution can be calculated as

\[
\chi^2 = -2 \sum_{i=1}^{N_{\text{bins}}} n_i \ln \left(\frac{p_i}{n_i} \right),
\]

where \(n_i \) is the number of events observed in the \(i \)-th bin, and \(p_i \) is the number of predicted events from the fit. For a large number of events this formulation becomes equivalent to the usual one. Since we are minimizing the unbinned likelihood function, our “\(\chi^2 \)” variable does not asymptotically follow a \(\chi^2 \) distribution but it is bounded by a \(\chi^2 \) variable with \((N_{\text{bins}} - 1) \) degrees of freedom and a \(\chi^2 \) variable with \((N_{\text{bins}} - k - 1) \) degrees of freedom [21], where \(k \) is the number of fit parameters. Because it is bounded by two \(\chi^2 \) variables, it should be a useful statistic for comparing the relative goodness of fits for different models.
B. Efficiency, Detector Resolution and Background

Several effects should be taken into account when fitting the experimental data. The reconstruction efficiency can vary significantly over the Dalitz plot area and distort the initial distribution of signal events. In addition, there is also some fraction of background that fakes the signal. As is evident in Fig. 2, the background level in the signal region is comparable to that of the signal. Thus, understanding the distribution of background events over the Dalitz plot is important for an amplitude analysis. Finally, the detector resolution produces some smearing of the Dalitz plot. To correct for this effect, three-body combinations are kinematically fit to the nominal B mass. As the intermediate resonances in general have large widths, we neglect the effect of detector resolution on the resonance shapes in most cases. In the case of narrow resonant states (for example, the ϕ meson in the $K^+K^-K^-$ final state or the χ_{c0} in both $K^+K^-K^-$ and $K^+\pi^+\pi^-$ final states), we take the detector resolution into account by convolving the signal probability density function with a two-dimensional Gaussian resolution function. The widths of the two-dimensional resolution function depend on the position in the Dalitz plot and are determined from the MC simulation.

To account for the background events and non-uniform reconstruction efficiency the event density function, $P(s_{13}, s_{23}; \xi)$ can be written as

$$P(s_{13}, s_{23}; \xi) = \frac{N_s \varepsilon(s_{13}, s_{23}) S(s_{13}, s_{23}; \xi) + n_b b(s_{13}, s_{23})}{N_s \int \varepsilon(s_{13}, s_{23}) S(s_{13}, s_{23}; \xi) ds_{13} ds_{23} + n_b}, \quad (17)$$

where N_s is the initial number of signal events distributed over the Dalitz plot, $S(s_{13}, s_{23}, \xi)$ is the reconstruction efficiency as a function of the position on the Dalitz plot, n_b is the expected number of the observed background events distributed with the density $b(s_{13}, s_{23})$, and a vector of parameters ξ (masses, widths and relative amplitudes and phases) is to be determined from the minimization. Equation (17) can be written in terms of the expected number of the observed signal events $n_s = N_s \varepsilon_s = N_s \int \varepsilon(s_{13}, s_{23}) S(s_{13}, s_{23}, \xi) ds_{13} ds_{23}$ and the background density function $B(s_{13}, s_{23}) = \varepsilon_b b(s_{13}, s_{23})/\varepsilon(s_{13}, s_{23})$:

$$P(s_{13}, s_{23}, \xi) = \frac{\varepsilon(s_{13}, s_{23}) n_s S(s_{13}, s_{23}, \xi)/\varepsilon_s + n_b B(s_{13}, s_{23})/\varepsilon_b}{n_s + n_b}, \quad (18)$$

where the overall efficiencies ε_s and ε_b are determined from the MC simulation:

$$\varepsilon_s = \int \varepsilon(s_{13}, s_{23}) S(s_{13}, s_{23}, \xi) ds_{13} ds_{23} = \frac{\Delta}{N_{\text{gen}} \sum_{MC} S(s_{13}, s_{23}, \xi)}; \quad (19)$$

$$\varepsilon_b = \int \varepsilon(s_{13}, s_{23}) B(s_{13}, s_{23}) ds_{13} ds_{23} = \frac{\Delta}{N_{\text{gen}} \sum_{MC} B(s_{13}, s_{23})}. \quad (20)$$

The sum \sum_{MC} is calculated from a set of MC events generated with a uniform distribution over the Dalitz plot, passed through the full detector simulation and subjected to all the event selection requirements; N_{gen} is the number of generated events; Δ is the Dalitz plot area.

The likelihood function to be minimized can be written as

$$F = - \sum_{\text{events}} 2 \ln \left(F \frac{S(s_{13}, s_{23}, \xi)}{\sum_{MC} S(s_{13}, s_{23}, \xi)} + (1 - F) \frac{B(s_{13}, s_{23})}{\sum_{MC} B(s_{13}, s_{23})} \right) + \frac{(F - F_0)^2}{\sigma^2_F}, \quad (21)$$
where signal and background density functions are normalized to satisfy the requirement
\[\int S(s_{13}, s_{23}, \xi) ds_{13} ds_{23} = 1; \quad \int B(s_{13}, s_{23}) ds_{13} ds_{23} = 1, \]
(22)

\[F = n_s / (n_s + n_b) \] is the relative fraction of signal events in the data sample and \(F_0 \) is the estimated fraction from the fit to the \(\Delta E \) distribution. The third term takes into account the uncertainty in our knowledge of the background contribution. As the second term in Eq. (21) does not depend on the fit parameters \(\xi \), it is constant for a given set of experimental events and, thus, can be omitted. In Eq. (21) we assume there is no interference between signal and background processes.

The background density function \(B(s_{13}, s_{23}) \) is determined from the unbinned likelihood fit to the experimental events in the \(M_{bc} - \Delta E \) sidebands.

\[B_{K\pi\pi}(s_{13}, s_{23}) = \alpha_1 e^{-\beta_1 s_{13}} + \alpha_2 e^{-\beta_2 s_{23}} + \alpha_3 e^{-\beta_3 s_{12}}
+ \alpha_4 e^{-\beta_4 (s_{13} + s_{23})} + \alpha_5 e^{-\beta_5 (s_{13} + s_{12})} + \alpha_6 e^{-\beta_6 (s_{23} + s_{12})}
+ \gamma_1 |BW_1(K^*(892))|^2 + \gamma_2 |BW_1(\rho(770))|^2, \]
(23)

where \(s_{13} \equiv M^2(K^+\pi^-) \), \(s_{23} \equiv M^2(\pi^+\pi^-) \) and \(\alpha_i \) (\(\alpha_1 \equiv 1.0 \)), \(\beta_i \) and \(\gamma_i \) are fit parameters. The first three terms in Eq. (23) are introduced to describe the background enhancement in the two-particle low invariant mass regions. This enhancement originates mainly from \(e^+e^- \rightarrow q\bar{q} \).
FIG. 7: Results of the best fit to the $K^+\pi^+\pi^-$ (left column) and $K^+K^+K^-$ (right column) events in the $\Delta E - M_{bc}$ sidebands shown as projections onto two-particle invariant mass variables. Points with error bars are data; histograms are fit results. The inset in (e) shows the $\phi(1020)$ mass region in 2 MeV/c^2 bins.

continuum events. Due to the jet-like structure of this background, all three particles in a three-body combination have almost collinear momenta. Hence, the invariant mass of at least one pair of particles is in the low mass region. In addition, it is often the case that two high momentum particles are combined with a low momentum particle to form a B candidate. In this case there are two pairs with low invariant masses and one pair with high invariant mass. This results in even stronger enhancement of the background in the corners of the Dalitz plot. This is taken into
account by terms 4−6 in Eq. (23). To account for the contribution from real \(K^* (892)^0 \) and \(\rho (770)^0 \) mesons, we introduce two more terms in Eq. (23), that are (non-interfering) squared Breit-Wigner amplitudes (as in Eq. (5)), with masses and widths fixed at world average values [14].

For the \(K^+ K^+ K^- \) final state the following, somewhat more complicated, parametrization is used

\[
B_{KKK}(s_{13}, s_{23}) = \alpha_1 (1 - \alpha_2 (s_{23} - \delta)^2) e^{-\beta_1 (\sqrt{s_{13}} - \sqrt{s_{12}})} + \alpha_3 (1 - \alpha_4 (s_{23} - \delta)^2) e^{-\beta_3 (\sqrt{s_{13}} - \sqrt{s_{12}})} + \alpha_5 e^{-\beta_5 (\sqrt{s_{13}} + \sqrt{s_{12}})} + \alpha_6 e^{-\beta_6 (\sqrt{s_{13}} + \sqrt{s_{23}})} + \gamma_1 |BW(\phi)|^2, \tag{24}
\]

where \(s_{13} \equiv \min\{M^2(K_1^+ K^-), M^2(K_2^+ K^-)\} \), \(s_{23} \equiv \max\{M^2(K_1^+ K^-), M^2(K_2^+ K^-)\} \), \(s_{12} \equiv M^2(K_1^+ K^-) \) and \(s_{013}^0, s_{012}^0 \) is the minimal possible value (determined by phase space) for \(s_{13} (s_{12}) \), given the value of \(s_{23} \).

The projections of the data and fits for the background events are shown in Fig. 7. The numerical values of the fit parameters are given in Table III. The \(\chi^2/N_{\text{bins}} \) values of the fits to the Dalitz plots are 213.7/195 for the \(K^+ \pi^+ \pi^- \) and 57.6/66 for the \(K^+ K^+ K^- \) final state, respectively.

D. Fitting the \(B^+ \to K^+ \pi^+ \pi^- \) Signal

The Dalitz plot for \(K^+ \pi^+ \pi^- \) events in the signal region is shown in Fig. 8(a). There are 2584 events in the signal region that satisfy all the selection requirements. In an attempt to describe all the features of the \(K^+ \pi^- \) and \(\pi^+ \pi^- \) mass spectra mentioned in Section VI, we start with the following minimal matrix element for the \(B^+ \to K^+ \pi^+ \pi^- \) decay (referred to as model \(K \pi \pi - A_J \)):

\[
S_{A_J}(K^+ \pi^+ \pi^-) = a_{K^*} e^{i\delta_{K^*}} A_1(\pi^+ \pi^+ \pi^+ |K^*(892)^0) + a_{K_0} e^{i\delta_{K_0}} A_0(\pi^+ \pi^+ \pi^- |K_0^0(1430)^0) + a_{\rho} e^{i\delta_{\rho}} A_1(\pi^+ \pi^+ \pi^- |\rho(770)^0) + a_{\rho_0} e^{i\delta_{\rho_0}} A_0(\pi^+ \pi^+ \pi^- |f_0(980)) + a_{f_X} e^{i\delta_{f_X}} A_J(\pi^+ \pi^+ \pi^- |f_X) + a_{\chi_\omega} e^{i\delta_{\chi_\omega}} A_0(\pi^+ \pi^+ \pi^- |\chi_\omega), \tag{25}
\]

where the subscript \(J \) denotes the unknown spin of the \(f_X(1300) \) resonance; amplitudes \(a_i \), relative phases \(\delta_i \), masses and widths of the \(f_0(980) \) and \(f_X(1300) \) resonances are fit parameters. The masses and widths of all other resonances are fixed at their world average values [14]. While fitting the data, we choose the \(K^*(892)^0 \) signal as our reference by fixing its amplitude and phase...
consistent with those for the $f_0(1370)$ state (model $K\pi\pi$), the fit finds $M(f_X(1300)) = 1.377 \pm 0.038$ GeV/c^2 and $\Gamma(f_X(1300)) = 0.085 \pm 0.031$ GeV/c^2 ($-2\log L = -4013.0$; $\chi^2/N_{\text{bin}} = 103.8/106$), which disagree with the world average $f_2(1270)$ parameters [14]. In the case of a vector amplitude (model $K\pi\pi-C_1$),
TABLE IV: Summary of fit results to $K^+\pi^+\pi^-$ events in the signal region. The two values given for model $K\pi\pi-C_0$ correspond to two solutions (see text for details).

Parameter	Model		
	$K\pi\pi-A_0$	$K\pi\pi-B_0$	$K\pi\pi-C_0$
$K^*(892)^0\pi^+$	18.0 ± 1.4	14.1 ± 1.3	13.7 ± 1.1/12.6 ± 1.3
fraction, %			
phase, °	0 (fixed)		
$K_0^*(1430)^0\pi^+$	42.1 ± 3.7	48.6 ± 3.4	58.4 ± 2.7/10.7 ± 2.8
fraction, %			
phase, °	11 ± 8	73 ± 9	36 ± 7/−11 ± 9
$\rho(770)^0K^+$	11.2 ± 1.4	9.85 ± 1.20	10.0 ± 1.5/8.18 ± 0.92
fraction, %			
phase, °	−17 ± 18	25 ± 25	−52 ± 18/47 ± 25
$f_0(980)K^+$	16.5 ± 1.5	17.4 ± 1.7	15.8 ± 2.5/14.0 ± 1.4
fraction, %			
phase, °	33 ± 19	74 ± 23	20 ± 16/94 ± 17
Mass, GeV/c²	0.975 ± 0.004	0.976 ± 0.004	0.976 ± 0.004/0.975 ± 0.003
Width, GeV/c²	0.063 ± 0.009	0.065 ± 0.009	0.061 ± 0.009/0.053 ± 0.009
$\chi_{c0}K^+$	3.56 ± 0.93	3.09 ± 0.87	2.86 ± 0.58/2.13 ± 0.67
fraction, %			
phase, °	−124 ± 16	−37 ± 24	−29 ± 23/−15 ± 22
$f_X(1300)K^+$	6.70 ± 1.42	6.14 ± 1.50	5.47 ± 2.47/3.75 ± 1.70
fraction, %			
phase, °	160 ± 18	185 ± 21	158 ± 18/−134 ± 22
Mass, GeV/c²	1.369 ± 0.026	1.344 ± 0.026	1.369 ± 0.026/1.400 ± 0.028
Width, GeV/c²	0.220 ± 0.063	0.227 ± 0.070	0.185 ± 0.052/0.165 ± 0.048
$\kappa\pi^+$	–	20.3 ± 0.0	–
fraction, %			
phase, °	–	−139 ± 6	–
Mass, GeV/c²	–	0.797 (fixed)	–
Width, GeV/c²	–	0.410 (fixed)	–
Non-Resonant	–	–	36.2 ± 3.2/40.1 ± 5.2
fraction, %			
$a_{\pi\pi}^0/a_{\pi\pi}^{2}$	–	–	0.34 ± 0.09/0.42 ± 0.09
$\delta_{\pi\pi}$, °	–	–	−25 ± 7/8 ± 8
$\delta_{2\pi}$, °	–	–	140 ± 16/−146 ± 13
α	–	–	0.102 ± 0.023/0.106 ± 0.022
Charmless Totala	97.7 ± 0.6	96.6 ± 0.8	97.5 ± 0.7/97.6 ± 0.6
fraction, %			
$-2\ln \mathcal{L}$	−3845.3	−3966.6	−4041.8/−4024.4
χ^2	227.8	129.0	104.2/107.1
N_{bins}	106	106	106
$N_{\text{fit, var.}}$	14	16	19

a Here “Charmless Total” refers to the total three-body $B^+ \rightarrow K^+\pi^+\pi^-$ signal excluding the contribution from $B^+ \rightarrow \chi_{c0}K^+$.

FIG. 9: Results of the fit to $K^+\pi^+\pi^-$ events in the signal region with model $K\pi\pi-A_0$ (left column) and model $K\pi\pi-C_0$ (right column). Points with error bars are data, the open histograms are the fit result and hatched histograms are the background components. Insets in (a) and (d) show the $K^*(892)-K^*_0(1430)$ mass region in 20 MeV/c^2 bins. Insets in (b) and (e) show the χ_{c0} mass region in 25 MeV/c^2 bins. Note that for plots (a) and (d) ((b) and (e)) an additional requirement $M(\pi^+\pi^-) > 1.5$ GeV/c^2 ($M(K^-\pi^-) > 1.5$ GeV/c^2) is imposed.

The fit gives $M(f_X(1300)) = 1.330 \pm 0.019$ GeV/c^2 and $\Gamma(f_X(1300)) = 0.210 \pm 0.048$ GeV/c^2 ($-2\log \mathcal{L} = -4048.1; \chi^2/N_{\text{bin}} = 105.5/106$). Based on this study, we choose model $K\pi\pi-C_0$ as our default and obtain all the final results for the $B^+ \to K^+\pi^+\pi^-$ decay using this model. Figure [11] shows the $M(K^+\pi^-)$ ($M(\pi^+\pi^-)$) distributions in slices of $M^2(\pi^+\pi^-)$ ($M^2(K^+\pi^-)$) to allow a more detailed comparison of the data and fit results with model $K\pi\pi-C_0$.

In addition to the two-particle invariant mass distributions shown in Figs. 9 and 11, the helicity
angle distributions for several regions are shown in Fig. 12. (For the $\pi^+\pi^−$ combination the helicity angle is defined in a similar way as for $K^+\pi^-$ combination.) All plots shown in Fig. 12 demonstrate good agreement between data and the fit.

To test for the contribution of other possible quasi-two-body intermediate states such as $K^*(1410)^0\pi^+$, $K^*(1680)^0\pi^+$, $K^*_2(1430)^0\pi^+$ or $f_2(1270)K^+$, we include an additional amplitude of each of these channels in model $K\pi\pi-C_0$ and repeat the fit to data. None of these channels have a statistically significant signal.

To estimate the model dependent uncertainty in the branching fractions for individual quasi-two-body channels, we use the results of fits obtained with models $K\pi\pi-B_J$ and $K\pi\pi-C_J + R$, where R is one of an additional resonances mentioned above. We also use different parametrizations of the non-resonant amplitude to estimate the related uncertainty. We try the following alternative parametrizations:

- $A_{\text{nr}}(K^+\pi^+\pi^-) = a_1^s e^{-\alpha s_{13}} e^{i\delta_{13}} + a_2^s e^{-\alpha s_{23}} e^{i\delta_{23}} + a_3^s e^{-\alpha s_{12}} e^{i\delta_{12}}$;
- $A_{\text{nr}}(K^+\pi^+\pi^-) = \frac{a_{\text{nr}}}{s_{13}} e^{i\delta_{13}} + \frac{a_{\text{nr}}}{s_{23}} e^{i\delta_{23}}$;
- $A_{\text{nr}}(K^+\pi^+\pi^-) = a_{\text{nr}} e^{i\delta_{\text{nr}}}$.

While fitting the data with model $K\pi\pi-C_0$, we found that two solutions with very similar likelihood values exist. The comparison between the two solutions and the data are shown in Fig. 111. The main difference between these two solutions is the relative fractions of the total $B^+ \to K^+\pi^+\pi^-$ signal ascribed to the $B^+ \to K_0^*(1430)^0\pi^+$ decay: the fraction of this channel changes by a factor of about five. The reason for the existence of the second solution is similar behavior of the two amplitudes (the non-resonant component parametrized by Eq. (11) and the scalar $K_0^*(1430)^0\pi^+$ amplitude) as functions of $M^2(K^+\pi^-)$. Due to the large width of the $K_0^*(1430)^0$ resonance, these two amplitudes can be, to a large extent, interchanged providing a nearly identical description of the data. An even stronger effect is observed in the case of model $K\pi\pi-B_0$ when the mass and width of the “κ” resonance is allowed to float. In this case the two amplitudes are almost identical. A similar behavior is observed for all the parametrizations used to describe the non-resonant amplitude. The existence of secondary maxima of the likelihood function is confirmed with MC simulation (see Section VIII for the more detailed discussion).
FIG. 11: $M(K^+\pi^-)$ ($M(\pi^+\pi^-)$) distributions in slices of $M(\pi^+\pi^-)$ ($M(K^+\pi^-)$). Points with error bars are data, the open histograms are the fit results with model $K\pi\pi - C_0$ and the hatched histogram is the background component. Solid and dotted histograms correspond to Solution 1 and Solution 2, respectively (see Table IV and text for details).
FIG. 12: Helicity angle distributions for $K^+\pi^+\pi^-$ events in different regions: (a) $K^*(892) (0.82 \text{ GeV}/c^2 < M(K^+\pi^-) < 0.97 \text{ GeV}/c^2)$; (b) $K_0^*(1430) (1.0 \text{ GeV}/c^2 < M(K^+\pi^-) < 1.76 \text{ GeV}/c^2)$; (c) $\rho(770) (M(\pi^+\pi^-) < 0.90 \text{ GeV}/c^2)$ and (d) $f_0(980) (0.90 \text{ GeV}/c^2 < M(\pi^+\pi^-) < 1.06 \text{ GeV}/c^2)$. Points with error bars are data, the open histogram is the fit result with model $K\pi\pi-C_0$ and the hatched histogram is the background component. Visible irregularities are due to vetoes applied on invariant masses of two-particle combinations.

E. Fitting the $B^+ \rightarrow K^+K^+K^-$ Signal

The Dalitz plot for $K^+K^+K^-$ events in the signal region is shown in Fig. 8(b). There are 1400 events in the signal region. In the analysis of the $K^+K^+K^-$ final state we follow the same strategy as in the case of the $K^+\pi^+\pi^-$ state. In an attempt to describe all the features in the K^+K^- mass spectrum mentioned in Section IV we start with the following minimal matrix element of the $B^+ \rightarrow K^+K^+K^-$ decay (referred to as model $KKK-A_J$):

$$S_A(K^+K^+K^-) = a_\phi e^{i\delta_\phi} (A_1(K_1^+K_2^+K^-|\phi) + A_1(K_2^+K_1^+K^-|\phi))$$

$$+ a_{X,\alpha} e^{i\delta_{X,\alpha}} (A_0(K_1^+K_2^+K^-|\chi_{\alpha}) + A_0(K_2^+K_1^+K^-|\chi_{\alpha}))$$

$$+ a_{fX} e^{i\delta_{fX}} (A_J(K_1^+K_2^+K^-|f_X) + A_J(K_2^+K_1^+K^-|f_X)),$$

where the subscript J denotes the unknown spin of the $f_X(1500)$ resonance; amplitudes a_i, relative phases δ_i, mass and width of the $f_X(1500)$ resonance are fit parameters. As there are two identical kaons in the final state, the amplitude in Eq. (26) is symmetrized with respect to $K_1^+ \leftrightarrow K_2^+$.

interchange. When fitting the data, we choose the \(f_X(1500)K^+ \) signal as our reference by fixing its amplitude and phase \((a_{f_X} \equiv 1) \) and \(\delta_{f_X} \equiv 0 \). Figures 13(a,b,c) show the two-kaon invariant mass projections for model \(KKK-A_0 \) and the data. The numerical values of the fit parameters are given in Table V. Although the data are described relatively well even with this simple matrix element, there is a region where the agreement is not satisfactory. The enhancement of signal events in the higher \(K^+K^- \) mass range visible in Fig. 13(a) causes the width of the \(f_X(1500) \) state determined from the fit with model \(KKK-A_0 \) to be very large. This results in a poor description of the data in the \(M(K^+K^-) \approx 1.5 \text{ GeV}/c^2 \) region, where the peaking structure is significantly narrower. On the other hand, as for \(B^+ \rightarrow K^+\pi^+\pi^- \), the excess of signal events at high \(M(K^+K^-) \) may be evidence for non-resonant \(B^+ \rightarrow K^+K^-K^- \) decay. To test this hypothesis, we extend model \(KKK-A_J \) to include a non-resonant amplitude (model \(KKK-B_J \)) parametrized by Eq. (12). Results of the fit with model \(KKK-B_0 \) are shown in Figs. 13(d,e,f); numerical values of the fit parameters are given in Table V. The agreement with data is significantly improved compared to model \(KKK-A_0 \). In order to check the sensitivity of the data to the spin of the \(f_X(1500) \) state, we replace the scalar amplitude by a vector (model \(KKK-B_1 \)) or a tensor (model \(KKK-B_2 \)) amplitude for the \(f_X(1500) \) with its mass and width as free parameters. The scalar hypothesis gives the best fit. Figure 14 shows a detailed comparison of the fit and the \(M(K^+K^-)_{\text{min}}(M(K^+K^-)_{\text{max}}) \) distributions for different slices of \(M^2(K^+K^-)_{\text{max}} \). Finally, Fig. 15 shows the helicity angle distributions for the \(\phi \) and \(f_X(1500) \) regions. Based on these results, we choose model \(KKK-B_0 \) as the default. All of the final results for the decay \(B^+ \rightarrow K^+K^+K^- \) are based on this model.

\[
\begin{array}{cccc}
\text{Parameter} & \text{Model} & \text{KKK–A}_0 & \text{KKK–B}_0 \\
\hline
\phi(1020)K^+ & \text{fraction, \%} & 14.0 \pm 1.2 & 14.7 \pm 1.3/15.2 \pm 1.3 \\
& \text{phase, °} & -17 \pm 11 & -123 \pm 10/200 \pm 10 \\
f_X(1500)K^+ & \text{fraction, \%} & 83.3 \pm 2.5 & 63.4 \pm 6.9/8.21 \pm 1.94 \\
& \text{phase, °} & 0 & (\text{fixed}) \\
& \text{Mass, GeV}/c^2 & 1.373 \pm 0.025 & 1.524 \pm 0.014/1.491 \pm 0.018 \\
& \text{Width, GeV}/c^2 & 0.720 \pm 0.058 & 0.136 \pm 0.023/0.145 \pm 0.029 \\
\chi_{0}K^+ & \text{fraction, \%} & 4.48 \pm 1.4 & 2.67 \pm 0.82/8.01 \pm 1.35 \\
& \text{phase, °} & 165 \pm 15 & -118 \pm 15/127 \pm 10 \\
\text{Non-Resonant} & \text{fraction, \%} & - & 74.8 \pm 3.6/65.1 \pm 5.1 \\
& \text{phase, °} & - & -68 \pm 9/61 \pm 10 \\
& \alpha & - & 0.121 \pm 0.014/0.116 \pm 0.015 \\
\text{Charmless Total}^a & \text{fraction, \%} & 96.0 \pm 0.7 & 95.2 \pm 1.0/95.6 \pm 0.9 \\
-2\ln\mathcal{L} & & -2140.4 & -2218.2/-2177.4 \\
\chi^2 & & 65.0 & 43.3/57.1 \\
N_{\text{bins}} & & 53 & 53 \\
N_{\text{fit,var.}} & & 6 & 9 \\
\end{array}
\]

\(^a\) Here “Charmless Total” refers to the total three-body \(B^+ \rightarrow K^+K^+K^- \) signal excluding the contribution from \(B^+ \rightarrow \chi_{0}K^+ \).
FIG. 13: Results of the fit with the model $KKK-A_0$ (left column) and $KKK-B_0$ (right column) to events in the signal region. Points with error bars are data, the open histogram is the fit result and hatched histogram is the background component. Insets in (a) and (d) show the $\phi(1020)$ mass region in 2 MeV/c^2 bins. Insets in (b) and (e) show the χ_{c0} mass region in 25 MeV/c^2 bins with an additional requirement $2.0 \text{ GeV}/c^2 < M(K^+K^-)_{\text{min}} < 3.4 \text{ GeV}/c^2$.
FIG. 14: $M(K^+K^-)_{\text{min}}$ ($M(K^+K^-)_{\text{max}}$) distributions in slices of $M(K^+K^-)_{\text{max}}$ ($M(K^+K^-)_{\text{min}}$). Points with error bars are data, the open histograms are the fit results with model $KK\bar{K} - B_0$ and the hatched histogram is the background component. Solid and dotted histograms correspond to Solution 1 and Solution 2, respectively (see Table V and text for details).
To estimate the model dependent uncertainty in the relative fractions of individual quasi-two-body intermediate states and determine the contribution of other possible quasi-two-body intermediate states, we modify model KKK^-B_0 to include an additional decay channel and repeat the fit to the data. In particular we test the $\phi (1680)K^+$, $f_2' (1525)K^+$ and $a_2 (1320)K^+$ channels. In all cases the fit finds no statistically significant signal for the newly added channel. Since we observe a clear $f_0 (980)K^+$ signal in the $K^+\pi^+\pi^-$ final state, we try to include the $f_0 (980)K^+$ amplitude in the $B^+\rightarrow K^+K^+K^-$ matrix element as well: no statistically significant contribution from this channel is found. As the dominant model uncertainty is related to the parametrization of the non-resonant amplitude, we use several alternative, yet also arbitrary, parametrizations to estimate the relevant uncertainty:

- $A_{nr}(K^+K^+K^-) = a_{nr}^1 \left(e^{-\alpha_{s13}} + e^{-\alpha_{s23}} \right) e^{i\delta_{nr}} + a_{nr}^2 e^{-\alpha_{s12}} e^{i\delta_{nr}}$;
- $A_{nr}(K^+K^-) = a_{nr}^1 (s_{13} + s_{23}) e^{i\delta_{nr}}$;
- $A_{nr}(K^+K^-) = a_{nr} e^{i\delta_{nr}}$.

As in the case of $B^+\rightarrow K^+\pi^+\pi^-$, we find two solutions in the fit to $K^+K^+K^-$ events with model KKK^-B_0. The comparison between the two solutions and the data are shown in Fig. 14. The main difference in these two solutions is in the fraction of the $B^+\rightarrow f_X (1500)K^+$ signal which changes by about an order of magnitude. Results for both solutions of the KKK^-B_0 model are given in Table V.

F. MC pseudo-experiments

The parameters that are directly determined from the fit to data are the amplitudes and phases with their statistical errors. However, while the relative fraction for a particular quasi-two-body channel depends only on the corresponding amplitude in the matrix element, its statistical error depends on the statistical errors of all amplitudes and phases. To determine the statistical errors for quasi-two-body channels, we use a MC pseudo-experiment technique.
MC pseudo-experiments are MC generated samples which are the proper mixture of “signal” and “background” events distributed according to density functions determined from the fit to experimental events. For each model we generate 100 statistically independent MC pseudo-experiments with numbers of signal and background events equal to those found in the experiment, fit these MC samples, and determine the relative fractions f_l of quasi-two-body channels for each sample. The f_l distributions are then fit by a Gaussian function; the sigma of the Gaussian determined from the fit is assigned as the statistical error.

VII. BRANCHING FRACTION RESULTS & SYSTEMATIC UNCERTAINTIES

In previous sections we determined the relative fractions of various quasi-two-body intermediate states in three-body $B^+ \to K^+\pi^+\pi^-$ and $B^+ \to K^+K^+K^-$ decays. To translate those values into absolute branching fractions, we first need to determine the branching fractions for the three-body decays. To determine the reconstruction efficiency for the $B^+ \to K^+\pi^+\pi^-$ and $B^+ \to K^+K^+K^-$ decays, we use a MC simulation where events are distributed over phase space according to the matrix elements of model $K\pi\pi-C_0$ and model $KKK-B_0$, respectively. The corresponding reconstruction efficiencies are 21.1±0.2% and 22.3±0.2%. Results of the branching fraction calculations for the total three-body charmless $B^+ \to K^+\pi^+\pi^-$ and $B^+ \to K^+K^+K^-$ decays are summarized in Table VII where all the quasi-two-body intermediate channels are used for model error estimation. As the interpretation of the model uncertainty we determine the resonance’s contribution with different parameterizations of the non-resonant amplitude and use the largest value to evaluate the upper limit. To account for the systematic uncertainty we decrease the branching fraction by one standard deviation.

For most of the quasi-two-body channels the difference in branching fractions from the two solutions is relatively small and treated as model error. However values for the $B^+ \to K^0_s(1430)^0\pi^+$ branching fraction are substantially different for the two solutions and we quote both values in Table VII. For the $B^+ \to \chi_{c0}K^+$ decay we present both solutions for the $\chi_{c0} \to K^+K^-$ channel; for the final result we calculate the central value combining measurements in $\chi_{c0} \to \pi^+\pi^-$ channel and the best fit in $\chi_{c0} \to K^+K^-$ channel, the second solution in $\chi_{c0} \to K^+K^-$ channel is used for model error estimation. As the interpretation of the $f_X(1300)$ and $f_X(1500)$ states is uncertain, we do not quote the corresponding branching fractions.

For quasi-two-body channels where no significant signal is observed, we calculate 90% confidence level upper limits f_{90} for their fractions. To determine the upper limit we use the following formula

$$0.90 = \frac{\int_0^{f_{90}} G(a, \sigma; x) dx}{\int_0^{\infty} G(a, \sigma; x) dx},$$

(27)

where $G(a, \sigma; x)$ is a Gaussian function with the measured mean value a for the signal fraction and its statistical error σ. To account for the model uncertainty we determine the resonance’s contribution with different parameterizations of the non-resonant amplitude and use the largest value to evaluate the upper limit. To account for the systematic uncertainty we decrease the reconstruction efficiency by one standard deviation.

The dominant sources of systematic error are listed in Table VII. For the branching fractions of three-body $B^+ \to K^+\pi^+\pi^-$ and $B^+ \to K^+K^+K^-$ decays, we estimate the systematic uncertainty due to variations of the reconstruction efficiency over the Dalitz plot by varying the relative phases and amplitudes of the quasi-two-body states within their errors. The systematic uncertainty due to requirements on event shape variables is estimated from a comparison of their distributions for signal MC events and $B^+ \to D^0\pi^+$ events in the data. We estimate the uncertainty in the signal yield extraction from the fit to the ΔE distribution by varying the parameters of the fitting function within their errors. The uncertainty due to background parametrization is estimated by varying the relative fraction of the BB background component and the slope of the $q\bar{q}$ background.
function within their errors. The uncertainty from the particle identification efficiency is estimated using pure samples of kaons and pions from $D^0 \to K^-\pi^+$ decays, where the D^0 flavor is tagged using $D^{*+} \to D^0\pi^+$. The systematic uncertainty in charged track reconstruction is estimated using partially reconstructed $D^* \to D\pi$ events and from comparison of the ratio of $\eta \to \pi^+\pi^-\pi^0$ to $\eta \to \gamma\gamma$ events in data and MC. The overall systematic uncertainty for the three-body branching fraction is estimated to be $\pm 9.2\%$ and $\pm 7.4\%$ for the $K^+\pi^+\pi^-$ and $K^+K^+K^-$ final states, respectively.

VIII. DISCUSSION & CONCLUSION

With a 140 fb$^{-1}$ data sample collected with the Belle detector, we have performed the first amplitude analysis of B meson decays to three-body charmless $K^+\pi^+\pi^-$ and $K^+K^+K^-$ final states. Clear signals are observed in the $B^+ \to K^*(892)^0\pi^+$, $B^+ \to \rho(770)^0K^+$, $B^+ \to f_0(980)K^+$ and $B^+ \to \phi K^+$ decay channels [25]. The model uncertainty for these channels is relatively small due to the narrow width of the intermediate resonances and (in vector-pseudoscalar decays) due to vector meson polarization which provides clear signal signatures.

The branching fraction measured for the decay $B^+ \to K^*(892)^0\pi^+$ is significantly lower than
is enhanced compared to the previous measurements [29]. The obtained value is in good agreement with the branching fraction measured in [27] is consistent with zero, we also make a fit to data with g_K fixed at zero. Finally we repeat the fit with both g_π and g_K floated. In all cases we obtain consistent results. The sensitivity to the $B^+ \to f_0(980)K^+$ decay in the $K^+K^-\pi^+$ final state is greatly reduced by the large $B^+ \to \phi K^+$ amplitude and by the scalar non-resonant amplitude. No statistically significant contribution from this channel to the $K^+K^-\pi^+$ three-body final state is observed, thus only a 90% confidence level upper limit for the corresponding branching fractions product is reported.

We report the first observation of the decay $B^+ \to \rho(770)^0K^+$. The statistical significance [28] of the signal exceeds 6σ with all the models used to fit the $B^+ \to K^+\pi^+\pi^-$ signal. The measured branching fraction for this channel agrees well with the theoretical prediction in QCD factorization [26]. This is one of the channels where large direct CP violation is expected [26].

Due to the very narrow width of the ϕ meson, the branching fraction for the decay $B^+ \to \phi K^+$ is determined with a small model uncertainty. The obtained value is in good agreement with previous measurements [29].

A clear signal is also observed for the decay $B^+ \to \chi_{c0}K^+$ in both $\chi_{c0} \to \pi^+\pi^-$ and $\chi_{c0} \to K^+K^-$ channels. Although quite significant statistically, the $B^+ \to \chi_{c0}K^+$ signal constitutes only a small fraction of the total three-body signal and thus suffers from a large model error, especially in the $K^+K^-\pi^+$ final state, where the charmless non-resonant amplitude in the χ_{c0} mass region is enhanced compared to the $K^+\pi^+\pi^-$ final state due to the interference caused by the presence of the two identical kaons.

We also check possible contributions from $B^+ \to K_2^*(1430)^0\pi^+$, $B^+ \to K^*(1410)^0\pi^+$, $B^+ \to
$K^*(1680)^0 \pi^+$ and $B^+ \to f_2(1270)K^+$ decays. In the $K^+K^+K^-$ final states we check for the $B^+ \to f_2^*(1525)K^+$, $B^+ \to a_2(1320)K^+$ and $B^+ \to \phi(1680)K^+$ signals. We find no statistically significant signal in any of these channels. As a result, we set 90% confidence level upper limits for their branching fractions. In the factorization approximation, charmless B decays to pseudoscalar-tensor final states are expected to occur at the level of 10^{-6} or less.

For other quasi-two-body channels the interpretation of fit results is less certain. Although a signal for $B^+ \to K_0^*(1430)^0 \pi^+$ is observed with a high statistical significance, its branching fraction is determined with a large model error. Two solutions with significantly different fractions of the $B^+ \to K_0^*(1430)^0 \pi^+$ channel but similar likelihood values are obtained from the fit to $K^+\pi^+\pi^-$ events. Study with MC simulation confirms the presence of the second solution. We prepare MC pseudo-experiments where the $B^+ \to K^+\pi^+\pi^-$ signal is generated with the matrix element of model $K\pi\pi-C_0$ with parameters corresponding to one of the solutions. In both cases the second solution is found in the fit to MC samples. It is also worth mentioning that the two solutions exist with all the parameterizations of the non-resonant amplitudes we tested. This may indicate that in order to choose a unique solution additional external information is required. In this sense, the useful piece of information seems to be the phenomenological estimation of the branching fraction. The analysis of B meson decays to scalar-pseudoscalar final states described in Ref. [31] suggests that the branching fraction for the $B^+ \to K_0^*(1430)^0 \pi^+$ decay can be as large as 40×10^{-6}. Unfortunately, the predicted value suffers from a large uncertainty that is mainly due to uncertainty in calculation of the $K_0^*(1430)$ decay constant $f_{K_0^*}$. Different methods used to estimate $f_{K_0^*}$ [31, 32] give significantly different results. We may also try to resolve the ambiguity by employing independent information from other experiments. For example, analysis of the real and imaginary parts of the amplitude separately may provide additional useful information. Following the idea by BaBar Collaboration [25] (see also discussion below), we employ LASS results on the partial wave analysis of the elastic $K-\pi$ scattering [33]. We compare the total scalar $K-\pi$ amplitude (which is a sum of the $B^+ \to K_0^*(1430)^0 \pi^+$ amplitude and the $K-\pi$ component of the non-resonant amplitude Eq. [31]) with that measured by LASS. From this comparison, we find that results of the best fit (model $K\pi\pi-C_0$, solution I) to the $K^+\pi^+\pi^-$ signal events are in good qualitative agreement with the LASS data.

We cannot identify unambiguously the broad structures observed in the $M(\pi^+\pi^-) \simeq 1.3$ GeV/c^2 mass region in the $B^+ \to K^+\pi^+\pi^-$ decay denoted in our analysis as $f_X(1300)$ and at $M(K^+K^-) \simeq 1.5$ GeV/c^2 in the $B^+ \to K^+K^+K^-$ decay denoted as $f_X(1500)$. If approximated by a single resonant state, $f_X(1300)$ is equally well described by a scalar or vector amplitude. Analysis with higher statistics might allow a more definite conclusion. The best description of the $f_X(1500)$ is achieved with a scalar amplitude with mass and width determined from the fit consistent with $f_0(1500)$ states.

Amplitude analysis often suffers from uncertainties related to the non-unique parametrization of the decay amplitude. In our case such an uncertainty originates mainly from the parametrization of the non-resonant amplitude. In this analysis, we use a rather simplified empirical parametrization with a single parameter. In the study of the $B^+ \to K^+\pi^+\pi^-$ decay by the BaBar Collaboration [25] a different approach is used. In their analysis, an attempt is made to parametrize $K_0^*(1430)^0 \pi^+$ and the non-resonant component by a single amplitude suggested by the LASS collaboration to describe the scalar amplitude in elastic $K\pi$ scattering [33]. Although this approach is experimentally motivated, the use of the LASS parametrization is limited to the elastic region of $M(K\pi) \lesssim 2.0$ GeV/c^2. Besides, an additional amplitude (a complex constant) is still required for a satisfactory description of the data [25].

It is worth noting that fractions of the non-resonant decay in both $B^+ \to K^+\pi^+\pi^-$ and $B^+ \to K^+K^+K^-$ decays are comparable in size and comprise a significant fraction of the total three-body signals. Moreover, in the parametrization used in this analysis the numerical values of the
parameter (parameter α in Eqs. (11) and (12)) for the $B^+ \to K^+\pi^+\pi^-$ and $B^+ \to K^+K^+K^-$ are very close. This may indicate that the non-resonant amplitudes in both final states have a common nature, and simultaneous analysis of these two decay modes may impose additional constraints. An attempt for such an analysis has been made in [34]. However, the proposed model considers only the $\pi-\pi$ component (a^{nr}_2 in Eq. (11)) of the non-resonant amplitude and does not account for the $K-\pi$ component (a^{nr}_1 in Eq. (11)), while in our analysis we find that the $K-\pi$ component dominates (see Table IV).

In some cases the uncertainty in the parametrization of the non-resonant amplitude significantly affects the extraction of relative fractions of other quasi-two-body channels. Further theoretical progress in this field might allow reduction of this uncertainty.

Results of the $B^+ \to K^+K^+K^-$ Dalitz analysis can be also useful in connection with the measurement of CP violation in $B^0 \to K^0_S K^+K^-$ decay reported recently by the Belle [35] and BaBar [36] collaborations. An isospin analysis of B decays to three-kaon final states by Belle [2] and independent analysis with moments technique [37] by BaBar suggest the dominance of the CP-even component in the $B^0 \to K^0_S K^+K^-$ decay (after the $B^0 \to \phi K^0_S$ signal is excluded). This conclusion can be checked independently by an amplitude analysis of the $K^0_S K^+K^-$ final state, where the fraction of CP-odd states can be obtained as a fraction of states with odd orbital momenta. Unfortunately, such an analysis is not feasible with the current experimental data set. Nevertheless, the fact that we do not observe any significant vector amplitude other than $B^+ \to \phi K^+$ in the decay $B^+ \to K^+K^+K^-$ supports the conclusion.

Acknowledgments

We thank the KEKB group for the excellent operation of the accelerator, the KEK Cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the National Institute of Informatics for valuable computing and Super-SINET network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Education, Science and Training; the National Science Foundation of China under contract No. 10175071; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation; the Polish State Committee for Scientific Research under contract No. 2P03B 01324; the Ministry of Science and Technology of the Russian Federation; the Ministry of Education, Science and Sport of the Republic of Slovenia; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.

[1] N.G. Deshpande, N. Sinha and R. Sinha, Phys. Rev. Lett. 90, 061802 (2003).
[2] A. Garmash et al. (Belle Collaboration), Phys. Rev. D69, 012001 (2004).
[3] T. Gershon and M. Hazumi, Phys. Lett. B596, 163 (2004).
[4] K. Abe et al. (Belle Collaboration), BELLE-CONF-0317, 2003.
[5] A. Garmash et al. (Belle Collaboration), Phys. Rev. D65, 092005 (2002).
[6] E. Eckhart et al. (CLEO Collaboration), Phys. Rev. Lett. 89, 251801 (2002).
[7] B. Aubert et al. (BaBar Collaboration), hep-ex/0206004 B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 91, 051801 (2003).
[8] B. Aubert et al. (BaBar Collaboration), hep-ex/0303022.
[9] S. Kurokawa, Nucl. Instr. and Meth. A499, 1 (2003).
[10] A. Abashian et al., Nucl. Instr. and Meth. A479, 117 (2002).
[11] R. Brun et al., GEANT 3.21, CERN Report DD/EE/84-1, 1984.
[12] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B229, 304 (1989).
[13] Events are generated with the CLEO group’s QQ program
(http://www.lns.cornell.edu/public/CLEO/soft/QQ).
[14] K. Hagiwara et al. (Particle Data Group), Phys. Rev. D66, 10001 (2002) and 2003 off-year partial
update for the 2004 edition (http://pdg.lbl.gov).
[15] R.H. Dalitz, Phil. Mag. 44, 1068 (1953).
[16] See “Review of Charm Dalitz-Plot Analyses” by D. Asner in [14] and references therein.
[17] J. Blatt and V. Weisskopf, Theoretical Nuclear Physics. New York: John Wiley & Sons (1952).
[18] M. Wirbel, B. Stech, M. Bauer Zeit. Phys. C29, 637 (1985).
[19] H. Pilkuhn, The Interactions of Hadrons. Amsterdam: North-Holland (1967).
[20] S.M. Flatté, Phys. Lett. B63, 224 (1976).
[21] M.G. Kendall and A. Stuart, The Advanced Theory of Statistics, 2nd ed. (Hafner Publishing, New
York, 1968).
[22] In Dalitz analysis of D meson three-body decays it is common to visualize results of the fit as projections
on mass squared variables. Because of the large mass of the B meson, we find that visualization is more
convenient in terms of mass variables.
[23] E.M. Aitala et al. (E791 Collaboration), Phys. Rev. Lett. 89, 121801 (2002).
[24] Note that $B^+ \to \chi_{c0} K^+$ channel is excluded while calculating branching fraction for the total $B^+ \to
K^+\pi^+\pi^-$ and $B^+ \to K^+K^+K^-$ three-body charmless decays.
[25] At the time of the preparation of this manuscript for publication, preliminary results on amplitude
analysis of $B^+ \to K^+\pi^+\pi^-$ decay have been reported by BaBar Collaboration: hep-ex/0408032. All
the quasi-two-body branching fraction results from Belle and BaBar analyses are in good agreement.
The comparison of relative phases is more uncertain due to differences in signal parametrizations and
limited statistics.
[36] B. Aubert et al. (BaBar Collaboration), hep-ex/0408076.