Development of high workability grout on semi rigid wearing course

Abstract

A composite pavement known as semi rigid wearing course is made by incorporating high workability fluid grout into a high porosity of porous asphalt skeleton. This fluid grout is particularly designed to have the consistency workability of water with high early and 28-day strength. It is critical to maintain its high fluidity so it can flow through air voids while simultaneously generate high compressive strength with minimal porosity. The aim of this study is to investigate the influence of a known pozzolanic material towards the properties of fluid grout. A wide range of mix trials was formulated with various proportions of chemical and mineral admixtures. The fresh and hardened grout underwent flow cone and compressive test for its workability and strength determination respectively. The results obtained show that the combination of a known pozzolanic material and a known chemical admixture is possible to improve the fluidity of grout and strength when suitable and conducive mix proportions attained. © Published under licence by IOP Publishing Ltd.

Indexed keywords

Engineering controlled terms: Curricula, Fluidity, Grouting, Mortar, Porosity, Roads and streets, Wear of materials

Engineering uncontrolled terms: Chemical admixture, Composite pavements, Compressive tests, High workability, Mineral admixtures, Mix proportions, Porous asphalts, Pozzolanic materials

Engineering main heading: Compressive strength
Dumne, S.
Effect of superplasticizer on fresh and hardened properties of self-compacting concrete containing fly ash
(2014) American Journal of Engineering Research, pp. 205-211. Cited 8 times.

Domone, P.
Preface
(2010) Construction Materials: Their Nature and Behaviour, Fourth Edition, pp. xiii-xvi.
http://www.tandfebooks.com/doi/book/10.4324/9780203927571
ISBN: 978-020392757-1; 978-041546515-1
doi: 10.4324/9780203927571
View at Publisher

Fosroc
(2011) Conplast SP2000 (M) High Performance Super Plasticizing Admixture
(Shah Alam: Technical Service)

Alsadey, S.
Effects of super plasticizing and retarding admixtures on properties of concrete
(2012) International Conf. on Innovations in Engineering and Technology, pp. 25-26. Cited 5 times.

Suhana, K., Karim, M.R., Mahmud, H., Mashaan, N.S., Ibrahim, M.R., Katman, H., Md Husain, N.
Effects of Using Silica Fume and Polycarboxylate-Type Superplasticizer on Physical Properties of Cementitious Grout Mixtures for Semi Flexible Pavement Surfacing
(2014) The Scientific World Journal, pp. 1-5.

Chandra, S., Björnström, J.
Influence of cement and superplasticizers type and dosage on the fluidity of cement mortars - Part I
(2002) Cement and Concrete Research, 32 (10), pp. 1605-1611. Cited 103 times.
doi: 10.1016/S0008-8846(02)00839-6
View at Publisher

Bentz, D.P., Stutzman, P.E.
Evolution of porosity and calcium hydroxide in laboratory concretes containing silica fume
(1994) Cement and Concrete Research, 24 (6), pp. 1044-1050. Cited 60 times.
doi: 10.1016/0008-8846(94)90027-2
View at Publisher