3’ untranslated region 1630 C>T polymorphism of prohibitin increases risk of breast cancer

Lin Tang1,∗ Yunzhao Zhao2,∗ Weiwei Nie1 Zexing Wang1 Xiaoxiang Guan1

1Department of Medical Oncology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
2Department of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
∗These authors contributed equally to this work

Background: Prohibitin 3’ untranslated region 1630 C>T (rs6917) polymorphism creates a variant T allele that lacks the antiproliferative activity of the more common functional C allele. Previous studies indicate that women carrying the prohibitin T allele have an increased susceptibility to breast cancer. However, the role of 1630 C>T polymorphism in mRNA expression of prohibitin and its contribution to carcinogenesis in the breast remains controversial.

Methods: Using mRNA expression data from the HapMap online database, we sought an association between prohibitin 1630 C>T polymorphism and its mRNA expression, then conducted a meta-analysis of prohibitin 1630 C>T polymorphism and risk of breast cancer.

Results: Although no significant association was found between prohibitin 1630 C>T polymorphism and mRNA expression in lymphoblastoid cell lines from the HapMap database (Ptrend = 0.543), the present meta-analysis involving 5072 cases and 4796 controls demonstrated that prohibitin 1630 C>T polymorphism was significantly correlated with breast cancer risk in allele contrast model T versus C (odds ratio [OR] 1.09, 95% confidence interval [CI] 1.01–1.18), the homozygote codominant model TT versus CC (OR 1.47, 95% CI 1.12–1.92), and the recessive model TT versus CC/CT (OR 1.45, 95% CI 1.10–1.89).

Conclusion: Our study indicates that minor allele T of prohibitin 1630 C>T polymorphism is associated with increased susceptibility to breast cancer.

Keywords: prohibitin, breast cancer, genetic, polymorphisms, risk

Introduction

Prohibitin is a candidate tumor suppressor gene encoding a 30 kDa intracellular protein which regulates cell cycle progression in multiple cell types. It interacts with the retinoblastoma tumor suppressor protein and its family members to suppress E2F-mediated transcription, and binds to p53 protein, increasing p53 transcriptional activity via increased DNA binding.1,2 The human prohibitin gene is located on chromosome 17q21, a region of frequent loss of heterozygosity in breast cancers, spanning approximately 11 kb and consisting of seven exons.3 In total, 217 single nucleotide polymorphisms have been identified in the prohibitin gene region, and 38 nucleotide polymorphisms in the coding region (http://www.ncbi.nlm.nih.gov/SNP/). Of these, 14 nucleotide polymorphisms have been reported in the 3’-untranslated region, as shown in Table 1, only five nucleotide polymorphisms (rs6917, rs9893420, rs111398671, rs112294663, rs73324369) have minor allele frequencies available, and the potential microRNA binding sites are summarized in Table 1. The most extensively studied nucleotide polymorphism of prohibitin is a C-to-T transition at position 1630 in
the 3′-untranslated region, that creates a variant with hsa-
miR-1292 and hsa-miR-886-5p as potential binding sites
(http://snpinfo.niehs.nih.gov/cgi-bin/snpinfo/snpfunc.cgi).
This variant lacks antiproliferative activity and significantly
reduces cell motility.4–6

Recent studies have evaluated the potential role of
prohibitin in development of breast cancer and risk
modification associated with prohibitin 1630 C>T polymorphism, but there are still no consistent data to indicate
the molecular mechanism of 1630 C>T polymorphism in
the regulation of prohibitin mRNA expression and its role
in carcinogenesis. Although the T allele has been associated
with an increased risk of breast cancer in women aged
younger than 50 years who have a first-degree relative with
breast cancer,7 there are other studies that have not found
an association between this polymorphism and breast
cancer. In order to evaluate this potential association more
precisely, we identified all published case-control studies,
amounting to 5072 cases and 4796 controls, and undertook
a quantitative analysis to identify evidence of an association
between prohibitin 1630 C>T polymorphism and breast
cancer risk.

Materials and methods
Genotype and mRNA expression
data in lymphoblastoid cell lines
We used additional data on prohibitin genotypes and mRNA
levels available online (http://app3.titan.uio.no/biotools/help
.php?app=snpexp) for analysis of the genotype-phenotype
relationship.8 We analyzed the variation in gene expression
using genome-wide expression arrays (47,294 transcripts)
from Epstein-Barr virus-transformed lymphoblastoid
cell lines from the same 270 HapMap individuals.8 The
genotyping data were from the HapMap Phase II release
23 data set consisting of 3.96 million single nucleotide
polymorphism genotypes from 270 individuals in four
populations.10

Publication search and data extraction
Eligible studies were identified by searching in the PubMed,
ISI Web of Knowledge, and Embase databases for relevant
reports (last search update, August 2012), using the search
terms “PHB” or “prohibitin”, “polymorphism”, and “breast
cancer”. We did not define any minimum number of patients
to be included for meta-analysis. When multiple studies of
the same patient population were identified, we included the
published report with the largest sample size.

Inclusion criteria were: evaluation of prohibitin 1630
C>T polymorphism and breast cancer risk, case-control
study design, and sufficient published data for estimating
an odds ratio (OR) with a 95% confidence interval (CI).
Only the most recent or complete study was used if the same
study subjects were included in more than one publication.
The main exclusion criteria were: no control population, no
available genotype frequency, and overlapping data.

Two authors reviewed the articles separately and extracted
the data from all eligible publications according to the criteria
listed above. Any discrepancies between investigators were
resolved by discussion and consultation with a third reviewer.
The first author’s surname, year of publication, country of
original ethnicity, study design, genotyping method, and
numbers of genotyped cases and controls (CC, CT, and TT
genotypes) were recorded for each study.

Statistical methods
The genotype and phenotype relationship analysis was
performed using SAS software (version 9.1, SAS Institute,
Cary, NC). A pooled OR and 95% CI were calculated to
estimate the risk of breast cancer associated with prohibitin
1630 C>T. For all studies, we estimated the association
under five different types of OR, namely the allele con-
trast model (T versus C), homozygote codominant model
(TT versus CC), heterozygote codominant model (CT versus
CC), dominant model (TT/CT versus CC), and recessive
model (TT versus CC/CT). Hardy-Weinberg equilibrium

Table 1 The SNPs of prohibitin 3′UTR and MicroRNA binding sites

Name	Chr position	Alleles	MAF	Potential MicroRNA binding sites
rs6917	44836542	C/T	0.1924	hsa-miR-886-5p,hsa-miR-1292
rs9893420	44836887	A/G	0.0151	hsa-miR-15a,hsa-miR-15b,hsa-miR-16
rs11398671	47481589	C/T	0.0064	hsa-miR-103,hsa-miR-107,hsa-miR-195
rs11229463	47481625	A/G	0.0172	hsa-miR-220c,hsa-miR-217,hsa-miR-424
rs73324369	47481676	C/T	0.0115	hsa-miR-497,hsa-miR-873,hsa-miR-933

Abbreviations: Chr, chromosome; MAF, Minor Alleles Frequency; Mi, micro; NA, not available; RNA, ribonucleic acid; SNP, single nucleotide polymorphism; UTR, untranslated region.
was investigated using the χ^2 test. The Q-statistic and P test were used to investigate the degree of heterogeneity between studies. When $P \geq 0.1$ or $F \leq 50\%$ indicated a lack of heterogeneity, the fixed-effects model (Mantel-Haenszel method) was used. Otherwise, the random-effects model (DerSimonian-Laird method) was chosen. Egger’s test and inverted Begg’s funnel plots were used to detect any publication bias. A sensitivity analysis was also performed by repeating the meta-analysis and omitting each study at each iteration. The data were analyzed using Revman 5.0 software (http://ims.cochrane.org/revman).

Results

Prohibitin mRNA expression by genotype in lymphoblastoid cell lines

We used the available HapMap-cDNA expression database for correlation analysis of prohibitin genotype and mRNA expression in 270 HapMap lymphoblastoid cell lines. Except for nine cell lines with no available values, 180 (68.9%) cell lines had the CC genotype, 71 (27.3%) had the CT genotype, and 10 (3.8%) had the TT genotype. Figure 1 shows *prohibitin* mRNA expression according to 1630 C>T genotype for the lymphoblastoid cell lines. There was no significant difference in *prohibitin* mRNA expression level between cell lines carrying the TT genotype (9.05 ± 0.31), TC genotype (9.04 ± 0.33), or CC genotype (8.96 ± 0.29, $P_{\text{trend}} = 0.543$, Figure 1).

Study characteristics

After careful examination according to the inclusion criteria, six publications on polymorphisms of *prohibitin* 1630 C>T and breast cancer risk were eligible, 4,7,13–16 of which the study by Jakubowska et al 14 was reported twice. For the overlapping studies, only the one with the largest sample numbers was included. Jupe et al 17 only provided information on C/T or T/T versus C/C. Hence, a total of five publications including 5072 cases and 4796 controls were used in the present meta-analysis. Table 2 lists the main characteristics of these studies. All cases were histologically confirmed as breast cancer, and controls were cancer-free and hospital-based populations matched for age and gender. The genotype distribution of the controls was in Hardy-Weinberg equilibrium, except for one study. 18

Meta-analysis results

The results of the meta-analysis are shown in Table 3. Because the between-study heterogeneity of each study included in our meta-analysis was not statistically significant, all pooled ORs were derived from fixed-effects models. We observed that the *prohibitin* 1630 C>T polymorphism was significantly correlated with risk of breast cancer in the allele contrast model T versus C (OR 1.09, 95% CI 1.01–1.18, Figure 2), the homozygote codominant model TT versus CC (OR 1.47, 95% CI 1.12–1.92, Figure 3), and the recessive model TT versus CC/CT (OR 1.45, 95% CI 1.10–1.89, Figure 4). However, no significant association was detected for the heterozygote codominant model CT versus CC (OR 1.04, 95% CI 0.95–1.14, Figure 5) or the dominant model TT/CT versus CC (OR 1.08, 95% CI 0.99–1.18, Figure 6).

Publication bias

Funnel plots and Egger’s test were used to assess publication bias in the literature. There was no evidence of publication bias in the present meta-analysis.

![Figure 1](https://example.com/figure1.png) mRNA expression level of the prohibitin gene in Epstein Barr virus-transformed lymphoblastoid cell lines.

Table 2 Characteristics of the studies included in the meta-analysis

First author	Year	Country	Genotyping method	Source	Genotypes distribution (cases/controls)	HWE
Jupe et al 7	2001	USA	PCR-RFLP	PB	CC 128 / 77*, CT 709 / 337*, TT 0.543	NA
Spurdle et al 13	2002	Australia	PCR-RFLP	PB	CC 992 / 416, CT 533 / 235, TT 18	0.18
Campbell et al 6	2003	UK	PCR-RFLP	PB	CC 188 / 93, CT 10 / 70, TT 61 / 7	0.59
Karakus et al 15	2008	Turkey	PCR-RFLP	PB	CC 67 / 36, CT 101 / 3, TT 6 / 47	0.86
Jakubowska et al 14	2012	Poland	iPLEX PCR-RFLP	PB	CC 2029 / 891, CT 104 / 1771, TT 747 / 54	0.02

*Note: *For these just presenting the information for genotypes of CC and CT + TT, dominant model is calculated only.**

Abbreviations: HWE, Hardy–Weinberg equilibrium; NA, not available; PB, population-based study; PCR, polymerase chain reaction.
bias for prohibitin 1630 C>T polymorphism, and the results of the Egger's test suggested no publication bias for the allele contrast model (P = 0.685), homozygote codominant model (P = 0.810), heterozygote codominant model (P = 0.926), dominant model (P = 0.639), or recessive model (P = 0.846).

Discussion

The 3′ untranslated region of the prohibitin gene which encodes a transacting regulatory RNA molecule arrests cell proliferation between the G1 and S phases of the cell cycle.17 Jupe et al confirmed the antiproliferative activity of prohibitin by microinjection of prohibitin mRNA and protein into normal and immortalized cancer cell lines.18 The protein-encoding region of the prohibitin gene was not found to be mutated, but the 3′-untranslated region of prohibitin mutations inhibited cell cycle progression in loss of human cancer cell lines.5 The investigators confirmed that a single nucleotide polymorphism (C-T transition) in the prohibitin 3′-untranslated region creates a null (T) allele whereby the RNA product has lost its antiproliferative activity.17 The results of our study are consistent with the functional prohibitin 3′-untranslated region 1630 C>T polymorphism resulting in increased risk of breast cancer, although there was no significant association between prohibitin 1630 C>T polymorphism and mRNA expression in lymphoblastoid cell lines from the HapMap database. Data being collected from different studies without stratification/adjustment for differences between studies and inconsistent use of selection criteria are possible explanations for this. Further investigations should be done in breast cancer tissue or cells to determine if a correlation exists between genotype and mRNA expression.

In this study, we investigated 5072 cases and 4796 controls, the allele contrast model, the homozygote codominant and the recessive model of prohibitin 1630 C>T polymorphism were found to be significantly associated with influencing the risk of breast cancer. Heterogeneity and publication bias were not observed in this study. Our findings suggest that prohibitin 1630 C>T polymorphism increases the risk of breast cancer.

Some limitations of this meta-analysis need to be acknowledged when interpreting its findings. First, we presumed that ethnicity status and family history play diverse roles in the risk of breast cancer. In our study, we considered the possibility that the effect of prohibitin 1630 C>T polymorphism might be ethnicity-specific in mixed populations, but we did not perform subgroup analysis to detect an association between this polymorphism and ethnicity. Second, our results were based on unadjusted estimates, so a more precise analysis should be done when more detailed individual data become available. A recent study evaluated the association between genetic variants of prohibitin and breast cancer risk in BRCA1 or BRCA2 mutation carriers, and the findings showed that the prohibitin 1630TT genotype may modify breast cancer risk in these women.16 Third, as we all know, cancer is a complicated disease, different genetic backgrounds may contribute to the discrepancy, and it is still

Study or subgroup	Experimental Events	Control Events	Total Weight	Odds ratio M-H, fixed, 95% CI	Odds ratio M-H, fixed, 95% CI
Campbell, et al.⁴	113 582	75 476	5.8%	1.29 [0.93, 1.78]	
Jakubowska, et al.¹⁶	1099 6048	855 5144	65.6%	1.11 [1.01, 1.23]	
Karakus, et al.¹⁵	42 212	59 308	3.3%	1.04 [0.67, 1.62]	
Spurdle, et al.¹⁵	492 2892	271 1572	25.3%	0.98 [0.84, 1.16]	
Total (95% CI)	9734 7500	100.0%	1.09 [1.01, 1.18]		
Total events	1746 1260				
Heterogeneity: Chi² = 2.78, df = 3 (P = 0.43); I² = 0%					
Test for overall effect: Z = 2.08 (P = 0.04)					

Figure 2 Forest plot for the association between the prohibitin 1630 C>T polymorphism and breast cancer risk (for T versus C) in a fixed-effects model.

Abbreviations: CI, Confidence Interval; M-H, Mantel-Haenszel.
Table 1

Study or subgroup	Experimental					Control				
	Events	Total	Events	Total	Weight	M-H, fixed, 95% CI	Odds ratio	M-H, fixed, 95% CI		
Campbell, et al.	10	291	7	238	8.1%	1.17 [0.44, 3.13]	1.17	8.1%	1.17 [0.44, 3.13]	
Jakubowska, et al.	104	3024	54	2572	61.8%	1.66 [1.19, 2.32]	1.66	61.8%	1.66 [1.19, 2.32]	
Karakus, et al.	3	106	6	154	5.2%	0.72 [0.18, 2.94]	0.72	5.2%	0.72 [0.18, 2.94]	
Spurdle, et al.	38	1446	18	786	24.9%	1.15 [0.65, 2.03]	1.15	24.9%	1.15 [0.65, 2.03]	
Total (95% CI)	4867	3750	100.0%	1.45 [1.10, 1.89]	1.45	100.0%	1.45 [1.10, 1.89]			
Total events	155	85	100.0%	1.01 [0.95, 1.14]	1.01	100.0%	1.01 [0.95, 1.14]			

Figure 3 Forest plot for the association between the prohibitin 1630 C>T polymorphism and breast cancer risk (for TT versus CC) in a fixed-effects model. Abbreviations: CI, Confidence Interval; M-H, Mantel-Haenszel.

Table 2

Study or subgroup	Experimental					Control				
	Events	Total	Events	Total	Weight	M-H, fixed, 95% CI	Odds ratio	M-H, fixed, 95% CI		
Campbell, et al.	10	291	7	238	8.1%	1.17 [0.44, 3.13]	1.17	8.1%	1.17 [0.44, 3.13]	
Jakubowska, et al.	104	3024	54	2572	61.8%	1.66 [1.19, 2.32]	1.66	61.8%	1.66 [1.19, 2.32]	
Karakus, et al.	3	106	6	154	5.2%	0.72 [0.18, 2.94]	0.72	5.2%	0.72 [0.18, 2.94]	
Spurdle, et al.	38	1446	18	786	24.9%	1.15 [0.65, 2.03]	1.15	24.9%	1.15 [0.65, 2.03]	
Total (95% CI)	4712	3665	100.0%	1.01 [0.95, 1.14]	1.01	100.0%	1.01 [0.95, 1.14]			
Total events	1436	1090	100.0%	1.01 [0.95, 1.14]	1.01	100.0%	1.01 [0.95, 1.14]			

Figure 4 Forest plot for the association between the prohibitin 1630 C>T polymorphism and breast cancer risk (for TT versus CC/CT) in a fixed-effects model. Abbreviations: CI, Confidence Interval; M-H, Mantel-Haenszel.

Table 3

Study or subgroup	Experimental					Control				
	Events	Total	Events	Total	Weight	M-H, fixed, 95% CI	Odds ratio	M-H, fixed, 95% CI		
Campbell, et al.	10	291	7	238	8.1%	1.17 [0.44, 3.13]	1.17	8.1%	1.17 [0.44, 3.13]	
Jakubowska, et al.	104	3024	54	2572	61.8%	1.66 [1.19, 2.32]	1.66	61.8%	1.66 [1.19, 2.32]	
Karakus, et al.	3	106	6	154	5.2%	0.72 [0.18, 2.94]	0.72	5.2%	0.72 [0.18, 2.94]	
Spurdle, et al.	38	1446	18	786	24.9%	1.15 [0.65, 2.03]	1.15	24.9%	1.15 [0.65, 2.03]	
Total (95% CI)	5072	4796	100.0%	1.08 [0.99, 1.18]	1.08	100.0%	1.08 [0.99, 1.18]			
Total events	1668	1512	100.0%	1.08 [0.99, 1.18]	1.08	100.0%	1.08 [0.99, 1.18]			

Figure 5 Forest plot for the association between the prohibitin 1630 C>T polymorphism and breast cancer risk (for TT/CT versus CC) in a fixed-effects model. Abbreviations: CI, Confidence Interval; M-H, Mantel-Haenszel.

Table 4

Study or subgroup	Experimental					Control				
	Events	Total	Events	Total	Weight	M-H, fixed, 95% CI	Odds ratio	M-H, fixed, 95% CI		
Campbell, et al.	10	291	7	238	8.1%	1.17 [0.44, 3.13]	1.17	8.1%	1.17 [0.44, 3.13]	
Jakubowska, et al.	104	3024	54	2572	61.8%	1.66 [1.19, 2.32]	1.66	61.8%	1.66 [1.19, 2.32]	
Karakus, et al.	3	106	6	154	5.2%	0.72 [0.18, 2.94]	0.72	5.2%	0.72 [0.18, 2.94]	
Spurdle, et al.	38	1446	18	786	24.9%	1.15 [0.65, 2.03]	1.15	24.9%	1.15 [0.65, 2.03]	
Total (95% CI)	5072	4796	100.0%	1.08 [0.99, 1.18]	1.08	100.0%	1.08 [0.99, 1.18]			
Total events	1668	1512	100.0%	1.08 [0.99, 1.18]	1.08	100.0%	1.08 [0.99, 1.18]			

Figure 6 Forest plot for the association between the prohibitin 1630 C>T polymorphism and breast cancer risk (for TT/CT versus CC) in a fixed-effects model. Abbreviations: CI, Confidence Interval; M-H, Mantel-Haenszel.
necessary to conduct larger sample studies considering gene-gene and gene-environment interactions, which may be an important component of the association between prohibitin 1630 C>T polymorphism and risk of breast cancer. In conclusion, the results of this meta-analysis suggest that the prohibitin 1630 C>T variant was associated with a significant increase in the risk of breast cancer.

Acknowledgments
This project was supported by grants from the National Natural Science Foundation of China (81272252, 81141094 to XG) and the Natural Science Foundation of Jiangsu Province (BK2011656 to XG). The authors thank Hongliang Liu, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, for assistance with data analysis.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Wang S, Nath N, Adlam M, Chellappan S. Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function. Oncogene. 1999;18(23):3501–3510.
2. Fusaro G, Dasgupta P, Rastogi S, et al. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem. 2003;278(48):47853–47861.
3. White JJ, Ledbetter DH, Eddy RL, et al. Assignment of the human prohibitin gene (PHB) to chromosome-17q21. Cytogenet Cell Genet. 1991;58(3–4):2011–2011.
4. Campbell IG, Allen J, Eccles DM. Prohibitin 3’ untranslated region polymorphism and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2003;12(11):1273–1274.
5. Jupe ER, Liu XT, Kiehlbauch JL, et al. Prohibitin in breast cancer cell lines: loss of antiproliferative activity is linked to 3’ untranslated region mutations. Cell Growth Differ. 1996;7(7):871–878.
6. Manjeshwar S, Lerner MR, Zang XP, et al. Expression of prohibitin 3’ untranslated region suppressor RNA alters morphology and inhibits motility of breast cancer cells. J Mol Histol. 2004;35(6):639–646.
7. Jupe ER, Badgett AA, Neas BR, et al. Single nucleotide polymorphism in prohibitin 3’ untranslated region and breast-cancer susceptibility. Lancet. 2001;357(9268):1588–1589.
8. Holm K, Melum E, Franke A, Karlsen TH. SNPrex – a web tool for calculating and visualizing correlation between HapMap genotypes and gene expression levels. BMC Bioinformatics. 2010;11:600.
9. Stranger BE, Forrest MS, Dunning M, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science. 2007;315(5813):848–853.
10. Gibbs RA, Belmont JW, Hardenbol P, et al. The International HapMap Project. Nature. 2003;426(6968):789–796.
11. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560.
12. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–634.
13. Spurdle AB, Hopper JL, Chen XQ, et al. Prohibitin 3’ untranslated region polymorphism and breast cancer risk in Australian women. Lancet. 2002;360(9337):925–926.
14. Jakubowska A, Gronwald J, Gorski B, et al. Association of PHB polymorphism and breast cancer risk in a Turkish population. J Mol Histol. 2003;35(8):623–626.
15. Karakus N, Kara N, Ulusoy AN. Lack of association between prohibitin 3’ untranslated region C>T polymorphism and breast cancer in a Turkish population. DNA Cell Biol. 2008;27(8):449–452.
16. Jakubowska A, Rozkut D, Antoniou A, et al. Association of PHB 1630C>T and MTHFR 677C>T polymorphisms with breast and ovarian cancer risk in BRCA1/2 mutation carriers: results from a multicenter study. Br J Cancer. 2012;106(12):2016–2024.
17. Manjeshwar S, Branam DE, Lerner MR, et al. Tumor suppression by the prohibitin gene 3’ untranslated region RNA in human breast cancer. Cancer Res. 2003;63(17):5251–5256.
18. Jupe ER, Liu XT, Kiehlbauch JL, et al. The 3’ untranslated region of prohibitin and cellular immortalization. Exp Cell Res. 1996;224(1):128–135.