Prevalence of Metastasis and Involvement of Level IV and V in Oral Squamous Cell Carcinoma: A Systematic Review

Ahmad A. Altuwaijri 1, 2, Turki M. Aldrees 3, Mohammed A. Alessa 1

1. Department of Otolaryngology-Head and Neck Surgery, College of Medicine, King Saud University, Riyadh, SAU 2. Department of Otolaryngology-Head and Neck Surgery, Security Forces Hospital, Riyadh, SAU 3. Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Prince Sattam Bin Abdulaziz University, Alkhafji, SAU

Corresponding author: Ahmad A. Altuwaijri, aamu22@gmail.com

Abstract

The occurrence of occult metastases in oral cavity squamous cell carcinoma (OSCC) to lower levels in the neck (levels IV and V) or development of skip metastases that bypass the upper neck levels (levels I to III) and go directly to level IV or V is common. This challenges the efficacy of conventional neck dissection approaches in the treatment of OSCC. Therefore, the decision to include lower cervical levels during elective neck dissection of OSCC remains controversial.

This systematic review was designed to assess the prevalence of level IV and/or V involvement or skip metastases in patients with the clinically negative neck (cN0) or positive (cN+) oral squamous cell carcinoma (OSCC). We searched for studies published between December 2000 and December 2020. Potentially relevant abstracts and full-text articles were screened, and data from the studies were extracted. Quality was rated using the Newcastle Ottawa Scale (NOS) criteria.

In total, 802 abstracts and 227 full-text articles were screened, and 32 studies were included in this analysis. The prevalence of metastasis ranged from 1.8% to 66.0%. The incidence for skip metastasis to level IV or V was low, reaching 8.5%. Evidence favored elective neck dissection, including levels I to III, in selected patients with OSCC and patients with cN0 or cN+ neck. The literature was non-conclusive on the recommendation for inclusion of lower levels.

Introduction And Background

Oral squamous cell carcinoma (OSCC), constituted by a broad range of tumors with diverse etiologies, is a life-threatening malignant tumor that ranks as the sixth most common cancer by incidence, with 500,000 new cases reported worldwide annually, accounting for 32%-40% of all head and neck cancers [1,2]. It can metastasize to cervical lymph nodes via lymphatic vessels [2,3], with neck metastasis being the most important prognostic factor which affected survival by a nearly 50% decline [4]. The incidence of clinical cervical metastases from OSCC has been found to occur in as many as 40% of cases [5]. Moreover, occult regional lymph node metastases incidence detected using histopathological and immunohistochemical methods was found to range between 15% and 54% [6] among patients without clinical or radiologic evidence of lymph node metastases preoperatively.

Selective neck dissection (SN D), which removes lymph node groups at designated anatomic levels (I-III), is accepted as the standard of care for the management of regional disease in OSCC patients with clinically positive node (cN+) involvement [7,8], as well as the standard elective procedure for clinically node-negative (cN0) patients or those with microscopic disease [9,10], resulting in improved quality of life and a lower likelihood of orofacial complication or shoulder dysfunction compared to other modalities, including comprehensive neck dissection such as modified radical neck dissection (MRND) or radical neck dissection (RND) [11,12]. However, several studies have concluded that supraomohyoid neck dissection (SOHND) and selective neck dissection (SN D) are inadequate in patients with OSCC, owing to occult metastasis to level IV and that this level should be routinely dissected [13,14].

In view of the controversies surrounding the inclusion of lower levels for dissection, the present study was designed with the objectives of conducting a systematic review of all relevant published literature: (i) to study the prevalence and distribution of metastasis levels and related adverse outcomes in clinically N0 and N+ OSCC; and (ii) to determine the frequency of involvement of levels IV and V, as well as skip metastasis to level IV in patients diagnosed with OSCC without preoperative evidence of neck involvement. We aimed to summarize the recommendations for routine dissection of lower levels of nodes in patients with OSCC.

Review Methodology

Search Strategy

A comprehensive search for all relevant articles published in English between January 2000 and December 2020 was performed using the electronic databases PubMed, Embase, Ovid, Google Scholar, and Science Direct. We included retrospective, prospective, clinical trials, and cross-sectional studies. The key search terms used either alone or in combination were neck dissection, radical neck dissection, cN0 neck, cN+ neck, oral squamous cell carcinoma, skip metastasis, occult metastasis, lymph node management, neck metastasis, oral cavity cancer, and tongue cancer. The references of articles and citations were also searched.

Citation

Altuwaijri A A, Aldrees T M, Alessa M A (December 07, 2021) Prevalence of Metastasis and Involvement of Level IV and V in Oral Squamous Cell Carcinoma: A Systematic Review. Cureus 13(12): e20255. DOI 10.7759/cureus.20255
Study Eligibility Criteria

All studies that included patients who underwent a neck dissection (ND) of at least levels I through III or I-IV and presented information on clinically node-negative (cN0) and/or clinically node-positive (cN+) necks were eligible for inclusion. The inclusion criteria were as follows: (1) any prospective or retrospective cohort, (2) a study population with the histopathologic diagnosis of OSCC, and (3) full text available in the English language. In addition, studies that reported skip metastasis (metastasis solely at neck level IV or V) were also eligible for inclusion. Exclusion criteria were as follows: (1) studies on patients who underwent treatment other than surgery as primary treatment, such as preoperative radiotherapy and chemotherapy, and (2) studies on recurrent tumors or tumors other than SCC.

Data Extraction

Information regarding patient characteristics, primary tumor site, treatment, sample size, metastasis, authors, publication year, and the country was retrieved from the selected articles. Data were initially extracted and evaluated by two authors (AA, TA). The distributions of the T category, the extent of ND, the subsite of the primary tumor, and nodal metastasis were recorded. A skip metastasis was defined as a positive level IV (or lower) node on final pathology without the involvement of higher levels (i.e., levels I-III). A level IV nodal metastasis coexisting with nodes at other neck levels was assessed separately. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting the included observational studies [15].

Quality Evaluation

The quality of literature was evaluated according to the Newcastle Ottawa Scale (NOS) evaluation criteria [16]. By quality evaluation, 21 references were ranked high, seven references were medium, and only four were ranked low (Table 1).
Author	Year	NOS quality rating
Silverman [17]	2003	8
Anderson [18]	2002	7
Jena [19]	2013	7
Liao [20]	2011	6
Jayasuriya [21]	2020	8
Haranadha [22]	2018	7
Chheda [23]	2014	7
Kakai [24]	2020	8
Marchiano [25]	2016	4
Givi [26]	2012	5
Pandey [27]	2018	7
Agarwal [28]	2018	3
Mishra [29]	2010	6
Shimura [30]	2019	7
Parikh [31]	2013	6
Jerjes [32]	2010	6
Caristi [33]	2018	7
Patel [34]	2019	5
Lodder [35]	2008	5
Lim [36]	2006	6
Kowalski [37]	2002	7
Feng [38]	2013	8
Sivanandan [39]	2004	7
Crean [40]	2003	4
Khaff [41]	2001	6
Balasubramanian [42]	2012	7
Köhler [43]	2018	8
Deo [44]	2007	7
de Vicente [45]	2015	7
Rani [46]	2015	3
Chatterjee [47]	2019	6
Vishak [48]	2014	7

TABLE 1: The quality rating of included studies using the Newcastle Ottawa Scale (NOS)

Results

The search and selection process of the articles is presented in Figure 1. A total of 1482 articles were identified via the database search based on the selection criteria, and two additional articles were later found through reviewing articles and reference lists of retrieved articles. After removing duplicates, 453 articles were screened by their titles and abstracts, and 61 were retained. After full-text revision, 31 articles were excluded (Figure 1). Thus, 32 studies [17-48], all published in English, were included for further analysis.
FIGURE 1: PRISMA flowchart: selection of studies for systematic review

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Description of the Studies

Data of 12,309 patients included in the 32 studies were analyzed. In all studies, cases of level IV or V metastasis and cervical IIb metastasis were confirmed by pathologic examination or other technologies. All studies did not, however, have consistent inclusion criteria and exclusion criteria. Five studies [19,23,28,30,40] reported data from only OSCC patients with cN0, while three [18,21,24] had only data on cN+; five studies [17,29,31,33,35] had mixed data of clinical N0 and N+ cases. The details of the studies included are summarized in Table 2.

Author	Year	Region	n	Male %	Primary site	Clinical staging	Metastasis prevalence %	Metastasis level	Treatment given	Recurrence/Survival	Other risk factors
Silverman [17]	2003	US	74	55%	HNSCC	TNM	4.40%	N0- 1.6% (in level IIb)	SND Level II	Recurrence- 5.6%	NA
Anderson [18]	2002	US	106	71.70%	Oral cavity- 39.6%	TNM	all N+ve	N1- 54.7%	SOHNID I-III	5 year-DSS- 68.8%	NA
Jena [19]	2013	India	218	15.60%	Oral cavity- 31.1%	cN0- 31.1%	LN metastasis 30.27%	II- 50 Pts	SOHNID	NA	Alcohol
Liao [20]	2011	Taiwan	255	94.10%	Tongue-34%	OSCC	33% (Distant)	T1-T4	IV/V-8.2%	Local recurrence- 16%	Alcohol

2021 Altuwaijri et al. Cureus 13(12): e20255. DOI 10.7759/cureus.20255
Location	Year	Country	Stage	LN Metastasis	LN Type	LN Management
Lip	2020	Sri Lanka	I- 1%	SOHND I-III 3%	Tobacco	
Buccal			I- 37%	Neck/distant metastasis 14%		
Gum			I- 15%	locoregional/distant - 7%		
RMT			I- 6%	Tobacco		
Jayasuriya	[21]	2020				
		Sri Lanka	187	72%		
OSSC			I- 58.3%			
Anterior			II- 56%			Neck dissection
			III- 40%			NA
			IV- 27.3%			NA
			V- 6.4%			NA
Buccal						
Buccal						
Buccal						
Buccal						
RMT						
Haranadh	[22]	2018				
		India	199	45%		
OSSC			I- 55%			
Anterior			II- 56%			Neck dissection
			III- 40%			NA
			IV- 27.3%			NA
			V- 6.4%			NA
Buccal						
Buccal						
Buccal						
Buccal						
RMT						
Chheda	[23]	2014				
		India	210	74.2%		
OSSC			I- 52%			
Anterior			II- 56%			Neck dissection
			III- 40%			NA
			IV- 27.3%			NA
			V- 6.4%			NA
Buccal						
Buccal						
Buccal						
Buccal						
RMT						
Kakei	[24]	2020				
		Japan	100	58%		
OSSC			I- 57%			
Anterior			II- 56%			Neck dissection
			III- 40%			NA
			IV- 27.3%			NA
			V- 6.4%			NA
Buccal						
Buccal						
Buccal						
Buccal						
RMT						

Notes:
- OS = Oral Squamous Cell Carcinoma
- LN = Lymph Node
- SOHND = Supraomohyoid Neck Dissection
- SND = Supraomohyoid Neck Dissection
- RMT = Routine MRND (Modified Neck Dissection)
- Level V dissection recommended when nodal stages >N2b & metastasis to level III and IV
- Level IV to be considered with Ca tongue and clinical LN metastasis at level II or III
- Level V to be excluded
- Modified neck dissection-120 Pts
- Level IIB involvement when IIA involved by 2 or more LN - 40%;
- pN1-74
- pN0 - 125
- IA-4%
- IA-14%
- IB-3%
- III-5%
- IV-1%
- V-3%
- Level III involved nodes >2, frozen section can help in the decision.
| Authors | Year | Country | Total | Percentage | OSCC | TNM | N+ve | DSS | Neck dissection | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Marchiano [25] | 2016 | USA | 8281 | 62.30% | OSCC | T1-8 Pts | II-10 Pts | III-8 Pts | IV-2 Pts | V-0 | 5 year DSS: with Level I, II, or III involvement - 42% |
| Givi [26] | 2012 | Canada | 108 | 64% | OSCC | N+ve (24.1%) | in T1: level IV (3.1%) level V (1.1%) | in T2: level IV (6.5%) level V (3.1%) | Neck dissection |
| Pandey [27] | 2018 | India | 32 | 87.50% | OSCC | N+ve - 108 (all Pts) | I-II: (11.1%) | I-IV: (79.6%) | SND |
| Agarwal [28] | 2018 | India | 231 | 82.75% | OSCC | LN mets 30.73% | I-III: 30 | I-IV: 2 | IB preserving super-selective neck dissection (SSND), SOHND |
| Mishra [29] | 2010 | India | 81 | NA | OSCC | T1-2N2M0 | N0 Cases: Levels I, II, III (26%) | Level IV/ No metastasis | local recurrence 2 Pts |
| Shimura [30] | 2019 | Japan | 131 | 59% | OSCC | T1-4N1M0 | N+ Cases: Level IV-9% | Level V- 0 | Skip metastasis-0 |

Notes:
- **Upper gingiva:** 8 Pts
- **V-0**
- **IIB-8 Pts**
- **II-10 Pts**
- **III-8 Pts**
- **IV-2 Pts**
- **V-0**
- **OSCC:** Oral squamous cell carcinoma
- **FOM:** Floor of mouth
- **mets:** Metastasis
- **SOHND:** Super-selective neck dissection
- **MRND-I:** Modified radical neck dissection
- **DSS:** Disease-specific survival
- **ECE:** Extracapsular extension
- **SND:** Selective neck dissection
- **DSS if level V- 26.4%**
- **DSS- 30.6%**
- **DSS if level V:** 26.4%
- **DSS- 76.9%**
- **DSS- 30.6%**
- **DSS if level V:** 26.4%
- **DSS- 30.6%**
- **DSS if level V:** 26.4%
- **DSS- 30.6%**
- **DSS if level V:** 26.4%
- **DSS- 30.6%**
- **DSS if level V:** 26.4%
- **DSS- 30.6%**
- **DSS if level V:** 26.4%
- **DSS- 30.6%**
- **DSS if level V:** 26.4%
- **DSS- 30.6%**
- **DSS if level V:** 26.4%
- **DSS- 30.6%**
| Author | Year | Country | Cases | Stage/Extent | LN Metastasis | Primary Resection + Neck Dissection | 5-Year Survival | Recurrence | |
|---|---|---|---|---|---|---|---|---|---|
| Parikh [31] | 2013 | India | 210 155 | Tongue/FOM- 31% | T1-2N1-2M0 | NA | NA | 72.2% |
| Jerjes [32] | 2010 | UK | 115 56.5% | OSCC | T1-2N1-2M0 | NA | NA | 69.8% |
| Cariati [33] | 2018 | Spain | 53 29 | OSCC | T1-T4 | NA | NA | 69.8% |
| Patel [34] | 2019 | India | 30 24 Pts | oral and oropharyngeal carcinoma | T1-T4 / N0, N1 | NA | NA | 60% | 6% |
| Lodder [35] | 2008 | Netherlands | 291 | oral and oropharyngeal carcinoma | T1-T4 / N0, N1 | NA | NA | 69% | 1% |
| Lim [36] | 2006 | Korea | 93 80 Pts | oral oropharyngeal SCC | N+ve | NA | NA | 60% | 10% |
Kowalski [37] 2002 Brazil 164 86.60% oral cavity ca Tongue- 43.9% Floor of the mouth- 23.8% retromolar - 16.5% bucoalveolar sulci- 3.7% lower gum - 12.2% T1-T4 levels I-N1, cN2a LN mets 57.9% Level I - 8.5% Level II 35.4% Level III - 2.4% Level IV - 0.6% Level V - 0% multi-levels- 11.6% I- 55.1% III- 38.2% Skip metastasis Level IV- 0% SOHND, RND/ MRND neck recurrence- 8.5% RND regional recurrence- 8.5% NA Shirajaj N

Feng [38] 2013 China 637 55.40% OSCC N0, N+ve occult metastasis 28.4% Level I- 55.1% Level II- 35.4% Level III- 6.7% Skip metastasis Level IV/V- 0% N2A3 neck disease- 59 Pts SOHND, RND/ MRND neck recurrence- 9.2% SOHND appropriate for OSCC N0, ESOND also an alternative in N+ II- 38.2% III- 6.7% Skip metastasis Level IV/V- 0%NA Shirajaj O E

Sivanandan [39] 2004 USA 100 74 Pts oropharynx & oral cavity- 80% N0-N3 LN 25% Level II 35.4% Floor of the mouth- 23.8% level III - 2.4% Skip metastasis Level IV- 0.6% SOHND, RND/ MRND neck recurrence- 9.2% SOHND appropriate for N1, N2a Shirajaj N

Cream [40] 2003 UK 49 24 Pts FOM 16 Pts Tongue 14 Pts oral cavity Level IV occult metastasis- 10% Level IV occult metastasis- 10% Level I-V occult metastasis- 10% SOHND neck recurrence- 8.2% SOHND recommended for N0 necks Shirajaj E Shirajaj E

Khaff [41] 2001 USA 51 NA Oral Tongue T1-T3/ N0 occult metastasis 26% Level IV mets 4% Level IV mets 4% Neck dissection I-III, and IV 16% neck recurrence NA Shirajaj E Shirajaj E

Balasubramanian [42] 2012 India 52 43 Pts Oral Tongue T1-T4, N0-N2 LN mets 39.5% (17 Pts) Level III skip mets- 3.8% Level IV skip mets- 1.9% Neck dissection Recurrence- 3 Pts (1 in neck) NA Shirajaj E Shirajaj E

Köhler [43] 2018 Brazil 163 89.57% tonsillar SCC T1-T4 6% (levels IV-V) Level III skip mets- 3.8% Level IV skip mets- 1.9% Neck dissection 6 Combos present for levels SND neck recurrence -12 Pts Tobacco In con H II le V le Alveolo- buccal-18.73% skip metastasis Level IV- 2% SOHND Deaths-61 Pts Alcohol Tobacco chewing Shirajaj E Shirajaj E

Deo [44] 2019 India 945 77.57% oral cavity Alveolar- buccal-18.73% Alveolus- 11.01% Central arch and FOM- 9.52% RMT- 8.71% Lip- 5.08% LN mets- 39.7% skip metastasis Level V-0.5% SOHND NA Shirajaj E Shirajaj E

de Vicente [45] 2015 Spain 56 75% Gum- 23.2% TMN LN mets 51.8% Tongue- 35.7% Floor of the mouth-23.2% Gum- 23.2% LN mets- 51.8% Survival (without disease) 2021 Altuwaijri et al. Cureus 13(12): e20255. DOI 10.7759/cureus.20255 8 of 12
The prevalence of metastasis ranged from 1.8% to 66.0% [24]. Among 23 studies reporting metastasis level up to level V, 13 studies [19-22,24,29,34,35,37,40-43] reported level IV involvement, and eight reported level V involvement [19-22,31,34,36,43]. The rate of involvement of level IV among the patients with cN0 was up to 10.4% [19], with four studies [23,28,29,33] reporting no involvement.

Six articles [19,29,31,34,38,48] illustrated the characteristics of cervical skip metastasis patients, which gave details of sites, T stages, isolated IIb metastases [45], and associated metastatic lymph nodes. The incidence for skip metastasis to level IV or V was low, reaching up to 8.5% [29,31,34,48]. However, not all the information was complete for each study. The most common primary site for level IIb metastases was the tongue [22-24,45,47], reported between 2% and 28% [23,47]. The rate of skip metastasis among cN0 was also low, reaching 1.8% [19,29,31].

Studies Recommending Dissection of Lower Levels

Five studies [17,21,24,45,48] recommended dissection of lower neck levels. Three of these studies [21,24,48] reported metastasis to level IV, while one [17] reported metastasis to level V. None of them were on patients with cN0. Both [21,24] had data on N+, while three [17,45,48] had mixed data. One study reported metastasis to level IIb in tongue carcinoma [45].

Studies Not Recommending Dissection of Lower Levels

Thirteen studies [21,22,24,28-31,35,37] did not recommend dissection of lower neck levels because of the low prevalence of metastasis to these levels. Only six of these studies [28-31,35,37] reported metastasis to level IV, while five studies [21,22,24,35,36] reported metastasis to level V. Four of them were on patients with cN0 [23,28,29,31], while six [21,24,29,31] presented data on N+ patients. Three studies [22,35,37] reported mixed nodal status, and one study [23] was on level IIb involvement for oral tongue carcinoma.

Studies With Inconclusive Results on Dissection of Lower Levels

Few studies [18,19,34,39,41,47] were inconclusive in recommending whether lower-level dissections should be undertaken or not, with routine neck dissections. These studies reported no metastasis at level IV or V.

TABLE 2: Study characteristics and pattern of lymph node metastasis in oral cavity squamous cell carcinoma

Study	Year	Country	No.	Percentage	Primary Site	TNM	LN mets	Stage	Recurrence	Tumor Th	Tumor Bud	Pattern of Invasion
Palate	3.6%	RND	Recurrence	80.4%	Retromolar	10.7%	Lower alveolar	50%	Survival	70%	NA	Regional recurrence 20%
Buccal	3.6%	SND	II-III	6 Pts	Suniva	20%	Upper alveolar	10%	NTM	4 Pts	Regional recurrence 20%	
Retromolar	10.7%	MRND	4 Pts	Recurrence 2 (2/48)	Buccal mucosa	10%	Tongue	20%	Died	8 (8/48)	NA	Tumor budding and pattern of invasion are associated with a higher risk of cervical LN metastasis
Oral Tongue	52.2%	MRND	4 Pts	Recurrence 2 (2/48)	Buccal mucosa	36.2%	Oral Tongue	36.8%	I- 10.5%	NA	Tumor budding and pattern of invasion are associated with a higher risk of cervical LN metastasis	
Anterior two-thirds of tongue	52.2%	MRND	4 Pts	Recurrence 2 (2/48)	Others	11.6%	Oral Tongue	36.8%	II- 10%	NA	Tumor budding and pattern of invasion are associated with a higher risk of cervical LN metastasis	
Buccal mucosa	36.2%	MRND	4 Pts	Recurrence 2 (2/48)	Others	11.6%	Oral Tongue	36.8%	III-IV	8.5%	NA	Tumor budding and pattern of invasion are associated with a higher risk of cervical LN metastasis
Buccal mucosa	36.2%	MRND	4 Pts	Recurrence 2 (2/48)	Others	11.6%	Oral Tongue	36.8%	IV	1.75%	NA	Tumor budding and pattern of invasion are associated with a higher risk of cervical LN metastasis

SCC, squamous cell carcinoma; HNSCC, head and neck SCC; OSCC, oral cavity SCC; TNM, tumor-node-metastasis staging system; SND, selective neck dissection; SOHND, supraomohyoid neck dissection; SSND, super-selective neck dissection; ESOND, extended supraomohyoid neck dissection; MRND, modified radical neck dissection; RND, radical neck dissection; cN/pN, clinical lymph node status/pathological lymph node status; FOM, floor of mouth; RMT, retromolar trigone; DSS, disease-specific survival; LN, lymph nodes; Ca, cancer; mets, metastasis; Pts, patients.

2021 Altuwaijri et al. Cureus 13(12): e20255. DOI 10.7759/cureus.20255
and concluded that SND I-III was sufficient in most cases. However, these studies also went on to recommend dissection of levels IV and V based on the surgeons’ clinical decisions during surgery. Of these, one [19] reported data on cN0 neck, one [18] on N+ neck, and four [34,39,41,47] only on N+ neck. In addition, twelve studies [20,25-27,32,33,38,40,42-44,46] did not make any clear recommendation on inclusion or non-inclusion of lower levels for neck dissections for lack of such data. A study by Jayasuriya et al. [21] presented ambiguous results wherein the authors did not recommend routine neck dissection for level V; however, they went on to recommend level V dissection when nodal stages N2b and metastasis to level II and IV were observed in a case.

Discussion

This review revealed that the available literature favored either selective neck dissection, including only the upper levels (I-III), or was inconclusive. Most studies support the view that primary neck dissections should be limited to upper levels only, owing to the low rates of lower level (level IV and beyond) metastasis and the difficulty as well as the damage incurred (thereby introducing complications) of dissection of these levels. Through independent studies, most authors have supported that high efficacy and minor morbidity for selecting pN+ OSCC patients may be achievable using SND (I-III) [38,49,50]. In a meta-analysis that compared SND with MBND/RND in OSCC patients with cN+ disease, authors [31] suggested that cN+ OSCC patients treated with SND (I, I-III, or I-IV) or those treated with MBND/RND had comparable clinical outcomes measured by no significant difference for regional recurrence, overall survival (OS), or disease-specific survival (DSS) between any of the dissection treatment types. The meta-analysis was, however, limited by the inclusion of studies where the extent and selection of the SND levels differed between studies other than levels I-II. The result of this meta-analysis supports our claim that even with variable surgical methods, it is not advisable to routinely include lower-level dissections. Contrary to the findings of the present study, independent studies, such as one by Shah et al. [52], have reported that 15%-16% of oral cancer with clinically detected lymph node(s) (cLN(+) had pathological lymph node(s) (pLN(+) to level IV, thereby recommending extended SOHND, which includes dissecting level IV.

Skip metastasis, described by Byers et al. [14], refers to the condition in which OSCC bypasses levels I, II, or both and goes directly to levels III or IV. In the risk of skip metastasis, the original study was reported as 15.8%, thereby recommending routine dissection at neck level IV. Later analysis, however, revealed that among cN0 patients, only 5.5% had skip metastasis to level IV, making the recommendations controversial. Later, Crean et al. [40] similarly demonstrated that 10% of patients had involvement of neck level IV despite having been preoperatively diagnosed with a cN0 neck, with only 2% having a true skip metastasis to level IV. In a recent meta-analysis, the authors found the risk of skip metastasis to be low (overall involvement rate of 2.53% and skip metastasis rate of 0.50%), even with advanced tumor stages, wherein the final recommendation was not to include dissection of lower levels routinely [55]. A meta-analysis was conducted in 2020 to investigate the prevalence of level IV involvement and skip metastases in patients with clinically negative neck (cN0) oral tongue squamous cell carcinoma. It also recommended elective neck dissection that includes levels I to III because of the low rates of level IV involvement and skip metastasis [54]. Our review also supports the view for non-inclusion of lower levels in ND for suspicion of skip metastases.

Some arguments may be made in terms of benefits archived in ipsilateral, contralateral, or bilateral node infiltration. Although we did not study the laterality of recurrence, the available literature [50] suggested that SND (I-III) could achieve good regional control and had a favorable prognosis for cN+ OSCC. In a study with ipsilateral neck recurrence rates ranging from 11%-14%, similar conclusions were drawn for the pN+ cohort [39].

Some studies reported data on oral tongue SCC, which is the most common primary site for OSCC, with most studies suggesting metastasis to level IIb [53,56], leading scholars to recommend level IIb dissection routinely in tongue SCC. Few studies [57,58] found no statistical significance between site and metastasis, which makes a contrary view due to the difficulty of approach, questionable benefits, and avoidance of postoperative shoulder disability [8]. Even with regards to level IV metastasis, most studies present a removed view to include lower-level dissection as an exception for tongue metastasis [54]. Our study, however, supported that all included literature for oral tongue carcinoma recommended lower-level dissection, probably owing to the tendency of tongue cancer toward early metastasis, the possible reason being that the tongue possesses an extensive lymphatic network.

Strengths and limitations

The present review included studies that reported varied study groups and regions, thereby introducing heterogeneity. The heterogeneity of study groups is considered an important confounder. In our case, it resulted in the lack of appropriate data stratification by T stage, subsites, and involvement of other neck levels that we could not address. The retrospective nature of the included studies also introduced bias, which could not be addressed. However, we exercised caution in including studies with primary neck dissection data only. We excluded all studies with patients with revision NDs and omitted all groups lacking this information to eliminate bias from combining the results of the primary neck surgery with those of revision surgeries for neck recurrences, which may falsely inflate the rate of level IV or lower-level involvement. While most studies presented mixed data for cN0 and cN+ necks, we segregated data wherever possible to report the differences according to nodal status. Lastly, the decision for SND or MBND to nodal status is widely debated due to the lack of universally accepted guidelines for the anatomical limits for the variety of SND procedures available. The exact anatomic boundaries for an SND are also thought to vary among institutions and even among surgeons within an institution [59]. The analysis of these differences could not be accounted for in the present review.

Conclusions

OSCC is constituted by a broad range of tumors with diverse etiologies. It can metastasize to cervical lymph nodes via lymphatic vessels. SND is considered a standard of care for most subsites, even in early-stage disease. Based on the evidence reviewed in the present study, the frequency of lower-level metastasis (level IV or V), as well as skip metastasis in OSCC, was low. Hence, routine dissection of these levels in cN0 and cN+ necks may be avoided except for tongue cancer. Since dissection of level IV/V is a burden with extra
time and might expose patients to more complications, dissection might be selected for specific subsites and neck dissections, while some were inconclusive.

Additional Information

Disclosures

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Kamangar F, Dores GM, Anderson WF: Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006, 24:2157-50. 10.1200/JCO.2005.05.2508.

2. Massanet J, Regueiro F, Januario G, Ferreira A: Oral squamous cell carcinoma: review of prognostic and predictive factors. Oral Surg Oral Pathol Oral Radiol Endod. 2006, 102:67-76. 10.1016/j.tripleo.2006.04.020.

3. Kumar T, Patel MD: Pattern of lymphatic metastasis in relation to the depth of tumor in oral tongue cancers: a clinical pathologic correlation. Indian J Otolaryngol Head Neck Surg. 2015, 65:59-63. 10.1007/s10147-012-0549-y.

4. Amit M, Yen TC, Liao CT, et al.: Clinical nodal stage is a significant predictor of outcome in patients with oral cavity squamous cell carcinoma and pathologically negative neck metastases: results of the international consortium for outcome research. Ann Surg Oncol. 2013, 20:5375-81. 10.1245/s10434-013-3044-9.

5. Okura M, Akita T, Sasou NY, Ido S, Kogo M: Decision analysis and treatment threshold in a management for the N0 neck of the oral cavity carcinoma. Oral Oncol. 2009, 45:908-11. 10.1016/j.enoral.2009.05.016.

6. Noguti J, De Moura CF, De Jesus GF, Du Silva VH, Hossuaka TA, Otsuka CT, Ribeiro DA.: Metastasis from oral cancer: an overview. Cancer Genomics Proteomics. 2012, 9:329-35.

7. Fertita A, Rinaldo A: Is radical neck dissection a current option for neck disease? Laryngoscope. 2008, 118:1717-8. 10.1097/EUL.0b013e3181709f45.

8. Pantuvaia GH, Pal P, Vaddya AH, Pai PS, D'Cruz AK: Prospective study of 583 neck dissections in oral cancers: implications for clinical practice. Head Neck. 2014, 36:1505-7. 10.1002/hed.23494.

9. Mani J, van den Hoen FJ: Supraomohyoid neck dissection with frozen section biopsy as a staging procedure in the clinically node-negative neck in carcinoma of the oral cavity. Am J Surg. 1991, 163:375-6. 10.1002/0002-9610(199109)191:9<375::AID-ASA609>3.0.CO;2-y.

10. Brazilian Head and Neck Cancer Study Group: Results of a prospective trial on elective modified radical classical versus supraomohyoid neck dissection in the management of oral squamous carcinoma. Am J Surg. 1998, 176:422-7. 10.1016/s0002-9610(98)00210-9.

11. Spalthoff S, Zimmerer R, Jehn P, Gehrlich NC, Handschl J, Kiwitkemper G: Neck dissection’s burden on the patient: functional and psychosocial aspects in 1,652 patients with oral squamous cell carcinomas. J Oral Maxillofac Surg. 2017, 75:839-49. 10.1016/j.joms.2016.09.037.

12. Chepeha DB, Taylor BJ, Chepeha JC, et al.: Functional assessment using Constant’s Shoulder Scale after modified radical and selective neck dissection. Head Neck. 2002, 24:432-6. 10.1002/hed.10036.

13. De Zinis LO, Bolzoni A, Piazza C, Nicolai P: Prevalence and localization of nodal metastases in squamous cell carcinoma of the oral cavity: role and extension of neck dissection. Eur Arch Otorhinolaryngol. 2006, 263:1311-8. 10.1007/s00405-006-0128-5.

14. Byers RM, Weber RS, Andrews T, McGill D, Kari R, Wolf P: Frequency and therapeutic implications of “skip metastases” in the neck from squamous carcinoma of the oral tongue. Head Neck. 1997, 19:14-9. 10.1002/hed.200130.

15. Moher D, Liberati A, Tetzlaff J, Altman DG: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009, 6:e1000097. 10.1371/journal.pmed.1000097.

16. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses -. (2021). http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

17. Silverman DA, El-Hajj M, Stone M, Esclamado RM: Prevalence of nodal metastases in the submaxillary region (level IIb) during selective neck dissection. Arch Otolaryngol Head Neck Surg. 2005, 131:724-8. 10.1001/archotolar.2005.7724.

18. Andersen PE, Warren F, Spiro J, et al.: Results of selective neck dissection in management of the node-positive neck. Arch Otolaryngol Head Neck Surg. 2002, 128:1180-4. 10.1001/archotolar.128.11.1180.

19. Iro A, Patranyuk Y, Yannah RN, Reddy BK, Rancho M: Surgical management of the neck in oral cancers: a single institute experience from South India. Arch Int Surg. 2013, 5:106-11. 10.4103/2278-9596.122928.

20. Liao CT, Lee LY, Huang SF, et al.: Outcome analysis of patients with oral cavity cancer and extracapsular spread in neck lymph nodes. Int J Radiat Oncol Biol Phys. 2011, 81:950-7. 10.1016/j.ijrobp.2010.07.1985.

21. Jeyasuriya NS, Manneperuma NT, Siriwandana S, et al.: Incidence of metastasis to level V lymph nodes in clinically positive necks among Sri Lankan patients with oral squamous cell carcinoma. Br J Oral Maxillofac Surg. 2021, 59:771-8. 10.1016/j.bjoms.2020.09.027.

22. Harunath S, Sundalata V, Bodagala V, Hulikal N: A prospective analysis of prevalence of metastasis in levels IIB and V neck nodes in patients with operable oral squamous cell carcinoma. Oral Oncol. 2018, 83:115-9. 10.1016/j.enoral.2018.06.030.

23. Chheda YP, Pillaik SK, Parikh DD, Dipuem N, Shah SV, Alaikanda G: A prospective study of level IIb nodal metastasis (supraomohyoid) in clinically N0 oral squamous cell carcinoma in Indian population. Indian J Surg Oncol. 2017, 8:105-8. 10.1007/s13193-014-0159-7.

24. Kakki Y, Kumara H, Minamikawa T, et al.: Extent of neck dissection for patients with clinical N1 oral cancer. Int J Clin Oncol. 2020, 25:1067-71. 10.1007/s10147-020-01635-8.

25. Marchiano E, Patel TD, Eloy JA, Baredes S, Park RC: Impact of nodal level distribution on survival in oral cavity squamous cell carcinoma: a population-based study. Otolaryngol Head Neck Surg. 2016, 155:99-105. 10.1016/j.otohns.2016.03.056.

26. Givi B, Linkov G, Gandy I, et al.: Selective neck dissection in node-positive squamous cell carcinoma of the head and neck. Otolaryngol Head Neck Surg. 2012, 147:707-13. 10.1016/j.otohns.2012.04.052.

27. Pandey M, Kotharikeyan S, Joshi D, Kumar M, Shukla M: Results of a randomized controlled trial of level IIb
modified radical neck dissection for elective treatment of the clinically negative neck in patients with squamous cell carcinoma of the oral cavity. World J Surg Oncol. 2015, 13:1076-81. 10.1007/s12070-015-1519-z

28. Aragaw SR, Akali NB, Srinin D: Prospective analysis of 231 elective neck dissections in oral squamous cell carcinoma with node negative neck— to decide the extent of neck dissection. Auris Nasus Larynx. 2018, 45:156-61. 10.1016/j.anl.2017.05.019

29. Mitha P, Sharma AK: A 5-year study of supraomohyoid neck dissection and modified radical neck dissection type I in oral cancer: with special reference to involvement of level IV node metastasis. Eur Arch Otorhinolaryngol. 2010, 267:933-8. 10.1007/s00405-009-1155-9

30. Shimura S, Ogi K, Miyazaki A, et al.: Selective neck dissection and survival in pathologically node-positive oral squamous cell carcinoma. Cancer (Basel). 2019, 11:269-76. 10.3390/cancers11070269

31. Parikh DG, Chheda VP, Shah IV, Patel AM, Sharma MR: Significance of level V lymph node dissection in clinically node positive oral cavity squamous cell carcinoma and evaluation of potential risk factors for level V lymph node metastasis. Indian J Surg Oncol. 2013, 4:275-9. 10.1007/s13193-013-0421-x

32. Jorjes W, Ugle T, Patel A, et al.: Clinico pathological parameters, recurrence, locoregional and distant metastasis in 115 T1-T2 oral squamous cell carcinoma patients. Head Neck Oncol. 2010, 2:9. 10.1186/1757-2219-2-9

33. Cariati P, Cabello Serrano A, Marin Fernandez A, Julia Martinez MA, Fernandez Solis J, Martinez Lara I: Behavior of buccal mucosal squamous cell carcinoma: a retrospective study of 53 carcinomas of this anatomical region. CranioMaxillofac Trauma Reconstr. 2019, 12:8-13. 10.1055/s-0038-1668585

34. Patel S, Singh I, Gulari A, Khurana N: A study on neck nodes in oral cancers, with special reference to skip metastasis. Indian J Otolaryngol Head Neck Surg. 2019, 71:474-81. 10.1007/s10751-018-1560-1

35. Lodder WL, Sewnial A, den Bakker MA, Mesoukas CA, Kerrebijn JD: Selective neck dissection for N0 and N1 oral cavity and oropharyngeal cancer: are neck metastases a real danger?. Clin Otolaryngol. 2008, 33:450-7. 10.1111/j.1749-4486.2008.07818.x

36. Lim YC, Koo BS, Lee IS, Choi EC: Level V lymph node dissection in oral and oropharyngeal carcinoma patients with clinically node-negative neck: is it absolutely necessary?. Laryngoscope. 2006, 116:1252-5. 10.1097/01.mlg.0000224363.04459.0b

37. Koswalski LP, Carvalho AL: Feasibility of supraomohyoid neck dissection in N1 and N2a oral cancer patients . Head Neck. 2002, 24:921-4. 10.1002/hed.10127

38. Feng Z, Li LN, Liu ZX, Guo CB: Supraomohyoid neck dissection in the management of oral squamous cell carcinoma: special consideration for skip metastases at level IV or V. J Oral Maxillofac Surg. 2014, 72:1203-11. 10.1016/j.joms.2013.12.008

39. Sivananand R, Kaplan MJ, Lee KJ, et al.: Long-term results of 100 consecutive comprehensive neck dissections: implications for selective neck dissections. Arch Otolaryngol Head Neck Surg. 2004, 130:1369-73. 10.1001/archotol.130.12.1369

40. Crean SJ, Hoffman A, Potts J, Fardy MJ: Reduction of occult metastatic disease by extension of the supraomohyoid neck dissection to include level IV. Head Neck. 2005, 27:558-62. 10.1002/hed.20182

41. Khafif A, Lopez-Garza JR, Medina FE: Is dissection of level IV necessary in patients with T1-T2 NO tongue cancer?. Laryngoscope. 2001, 111:1088-90. 10.1097/00005537-200106000-00029

42. Balasubramanian D, Thakapiran R, Battoo AJ, Rajaparkash M, Kuriakose MA, Iyer S: Isolated skip nodal metastasis is rare in T1 and T2 oral tongue squamous cell carcinoma. Otolaryngology Head Neck Surg. 2012, 147:275-7. 10.1177/0194599812439664

43. Köhler HF, Franzi SA, Soares FA, Torckel K, Koswalski LP: Distribution of metastatic nodes in N0-1 patients with tonsillar squamous cell carcinoma and its implications for selective neck dissection. Turk Arch Otorhinolaryngol. 2018, 16:139-44. 10.5125/tar.2018.16429

44. Deo S, Singh V, Mehguprai PH, Shukla NK, Dwivedi SN, Sharma A, Biswas A: Clinical spectrum, pattern, and level-wise nodal involvement among oral squamous cell carcinoma patients - audit of 945 oral cancer patient data. Indian J Surg Oncol. 2020, 11:86-91. 10.1007/s13195-019-01011-7

45. de Vicente J, Rodríguez-Santamarta T, Peña I, Villalain L, Fernández Valtiel, Valle Á, González-Garcia M: Relevance of level IIIb neck dissection in oral squamous cell carcinoma . Med Oral Patol Oral Cir Bucal. 2015, 20:e56-58. 10.4317/medoral.20150491

46. Rani P, Bhardwaj Y, Das PK, Gupta M, Malhotra D, Ghezta NK: Neck dissection for oral squamous cell carcinoma: our experience and a review of the literature. J Oral Maxillofac Surg. 2013, 71:106-11. 10.1016/j.joms.2012.06.008

47. Chartropij DS, Banerji V, Math V, et al.: Tumor budding and worse pattern of invasion can predict nodal metastasis in oral cancers and associated with poor survival in early-stage tumors. Ear Nose Throat J. 2019, 98:E112-9. 10.1043/ent.2019.1984869

48. SF Y, Rohan V: Cervical node metastasis in T1 squamous cell carcinoma of oral tongue - pattern and the predictive factors. Indian J Surg Oncol. 2014, 5:104-8. 10.1007/s13193-014-0301-x

49. Shin YS, Koh YW, Kim SH, Choi EC: Selective neck dissection for clinically node-positive oral cavity squamous cell carcinoma. Yonsei Med J. 2013, 54:139-44. 10.5398/ymj.2013.54.1.139

50. Elsheikh MN, Mafhouz ME, Elsheikh E: Level IIIb lymph nodes metastasis in elective supraomohyoid neck dissection for oral cavity squamous cell carcinoma: a molecular-based study. Laryngoscope. 2005, 115:1636-40. 10.1097/01.mlg.0000176540.33486.c3

51. Hazarack SG, Moskowitz IS: Elective neck dissection for primary oral cavity squamous cell carcinoma involving the tongue should include sublevel IIIb. J Oral Maxillofac Surg. 2014, 72:2335-45. 10.1016/j.joms.2014.05.022

52. Bhattacharya A, Adibani D, Adibani N, Sharma V: Is it worthwhile! Removal of level IIIb nodes during selective neck dissection (I-II) for oral carcinomas. Ann Maxillofac Surg. 2015, 8:20-5. 10.4103/2231-0746.140029

53. Dabholkar K, Kapre NM: Level IIIb neck dissection in oral cavity cancers— when should one address it? . Indian J Surg Oncol. 2016, 7:303-6. 10.1007/s13193-015-0461-5

54. Clayman GL, Frank DR: Selective neck dissection of anatomically appropriate levels is as efficacious as modified radical neck dissection for elective treatment of the clinically negative neck in patients with squamous cell carcinoma of the upper respiratory and digestive tracts. Arch Otolaryngol Head Neck Surg.
