Postprandial Fatty Acid Profile, but Not Cardiometabolic Risk Markers, Is Modulated by Dairy Fat Manipulation in Adults with Moderate Cardiovascular Disease Risk: The Randomized Controlled REplacement of Saturated fat in dairy on Total cholesterol (RESET) Study

Oonagh Markey,1 Dafni Vasilopoulou,1 Kirsty E Kliem,2,3 Colette C Fagan,1,3 Alistair S Grandison,1 Rachel Sutton,1 David J Humphries,2,3 Susan Todd,4 Kim G Jackson,1,3 David I Givens,3 and Julie A Lovegrove1,3

1Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom; 2Animal, Dairy, and Food Chain Sciences, University of Reading, Reading, United Kingdom; 3Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom; and 4Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom

ABSTRACT

Background: Chronic consumption of dairy products with an SFA-reduced, MUFA-enriched content was shown to impact favorably on brachial artery flow-mediated dilatation (FMD). However, their acute effect on postprandial cardiometabolic risk biomarkers requires investigation.

Objective: The effects of sequential high-fat mixed meals rich in fatty acid (FA)–modified or conventional (control) dairy products on postprandial FMD (primary outcome) and systemic cardiometabolic biomarkers in adults with moderate cardiovascular risk (≥50% above the population mean) were compared.

Methods: In a randomized crossover trial, 52 participants [mean ± SEM age: 53 ± 2 y; BMI (kg/m²) 25.9 ± 0.5] consumed a high-dairy-fat breakfast (0 min; ∼50 g total fat: modified: 25 g SFAs, 20 g MUFAs; control: 32 g SFAs, 12 g MUFAs) and lunch (330 min; ∼30 g total fat; modified: 15 g SFAs, 12 g MUFAs; control: 19 g SFAs, 7 g MUFAs). Blood samples were obtained before and until 480 min after breakfast, with FMD assessed at 0, 180, 300, and 420 min. Data were analyzed by linear mixed models.

Results: Postprandial changes in cardiometabolic biomarkers were comparable between the different dairy meals, with the exception of a tendency for a 4% higher AUC for the %FMD response following the modified-dairy-fat meals (P = 0.075). Plasma total lipid FA analysis revealed that incremental AUC responses were 53% lower for total SFAs, 214% and 258% higher for total cis-MUFAs (predominantly cis-9 18:1), and trans-18:1, respectively, following the modified relative to the control dairy meals (all P < 0.0001).

Conclusions: In adults at moderate cardiovascular risk, acute consumption of sequential high-fat meals containing FA-modified dairy products had little impact on postprandial endothelial function or systemic cardiometabolic biomarkers, but a differential effect on the plasma total lipid FA profile, relative to conventional dairy fat meals. This trial was registered at clinicaltrials.gov as NCT02089035. J Nutr 2021;151:1755–1768.

Keywords: endothelial function, monounsaturated fatty acids, postprandial lipemia, saturated fatty acids, sequential test meal protocol

Introduction

The replacement of dietary SFAs with unsaturated fatty acids (FAs) is advised as a key public health strategy for cardiovascular disease (CVD) risk reduction (1, 2). Milk and dairy products are a major source of SFAs in the diet (3). However, it is known that the food matrix can influence the nutritional properties, nutrient absorption, and associated...
health effects of an SFA-rich food (e.g., cheese) (4). Indeed, evidence from prospective studies and meta-analyses indicates that full-fat dairy products are not linked to increased CVD risk, except for butter fat (4). As dairy products play a substantial role in meeting essential nutrient requirements, limiting their consumption to reduce SFA intake may inadvertently affect public health (5–7).

Exaggerated postprandial triacylglycerol (TG) is an independent CVD risk factor, with high-fat meals known to lead to a transient increase in TG-rich lipoproteins during the postprandial phase (8, 9). A meta-analysis of postprandial lipemic responses to single high-fat meals highlighted that, over an 8-h period, there was a benefit or a tendency towards a beneficial effect of replacing SFAs (mainly butter) by either PUFA- or MUFA-rich oils, respectively (10). Additionally, the type of dairy product incorporated into fat- and FA-matched meals has been shown to differently affect the postprandial TG response, with sour cream inducing a larger TG incremental AUC (iAUC) over 6 h compared with whipped cream, butter, and cheese (11). However, little is known about how manipulating the FA composition of high-dairy-fat load affects postprandial lipemia, particularly using a sequential 2-meal protocol that contains a combination of commonly consumed dairy products and, thus, more closely reflects real-life eating patterns.

Postprandial TG may trigger a cascade of proinflammatory events that lead to endothelial dysfunction, an early event in the pathogenesis of atherosclerosis (12, 13). Although single high-fat meals (36–80 g total fat) are known to impair postprandial endothelial function, including flow-mediated dilatation (FMD) (14), evidence regarding the comparative effects of test meals rich in unsaturated FAs with SFAs or different dairy products on postprandial FMD or biomarkers of endothelial function is inconclusive (14, 15).

In a proof-of-concept study, we recently reported that 12-wk intake of SFA-reduced, MUFA-enriched milk, cheese, and butter (~41 g dairy fat/d) that were FA-modified via a dairy-cow feeding strategy (16), attenuated the rise in fasting LDL-cholesterol concentrations and had a beneficial effect on FMD, relative to conventional dairy product consumption (17). As individuals spend up to 18 h/d in the nonfasting state (9, 18), there is a clear need to gain an understanding of the postprandial cardiometabolic responses to FA-modified dairy products (5).

Therefore, we investigated the acute effect of sequential high-fat mixed meals containing FA-modified dairy products on the postprandial %FMD response, systemic cardiometabolic risk biomarkers, and plasma total lipid FA responses in adults with moderate CVD risk. We hypothesized that meals rich in FA-modified milk, cheese, and butter would beneficially impact on the postprandial %FMD response (primary outcome) and other cardiometabolic risk biomarkers compared with matched meals containing dairy foods with an FA profile typical of conventional retail products (control).

Methods

Participants

The REplacement of SaturatEd fat in dairy on Total cholesterol (RESET) Study was performed at the Hugh Sinclair Unit of Human Nutrition, University of Reading (Berkshire, UK). Men and women [aged 25–70 y; BMI (kg/m²)19–32] at moderate CVD risk were recruited from the Berkshire area between February 2014 and September 2015. To assist with participant recruitment, the study upper age limit was extended from 65 y to 70 y in May 2014. Details of the participant recruitment strategy, inclusion and exclusion criteria, and dietary interventions are presented in detail elsewhere (17, 19). In brief, a modified Framingham CVD risk score identified individuals at moderate risk of developing CVD (≥50% greater CVD risk compared with the population mean) (19). Eligible participants were nonsmokers with mild/moderate hypercholesterolemia (fasting total cholesterol ≥5.2–8.0 mmol/L); not diagnosed with CVD and diabetes (and fasting glucose concentration <7 mmol/L); not taking medication for hyperlipidemia, hypertension, hypercoagulation, or inflammation; not pregnant or lactating; not consuming excessive amounts of alcohol (<14 and 21 units/wk for women and men, respectively); not regularly engaging in vigorous-intensity aerobic activities (>3 times × 20 min/wk); and presenting with normal biochemistry for liver and kidney function (19). The study was given a favorable ethical opinion for conduct by the University of Reading’s Research Ethics Committee (project 13/43), registered with clinicaltrials.gov (NCT02089035), and carried out in accordance with the Declaration of Helsinki of 1975, as revised in 1983. Participants provided written informed consent before enrollment.

Study design

This trial was an acute randomized, double-blind, sequential-meal, crossover dietary study nested within the larger RESET proof-of-concept chronic intervention study, which examined the impact of long-term consumption of FA-modified dairy products on novel and traditional markers of CVD risk (17). The chronic intervention study consisted of two 12-wk dietary periods where FA-modified or control dairy products were consumed in a randomized crossover manner, separated by an 8-wk washout period (17). As outlined in Supplemental Figure 1, the 2 baseline acute study visits were performed prior to commencing each 12-wk dietary intervention period. With the addition of the 8-wk washout period, the duration between the acute study visits examined in the present trial was 20 wk. None of the results reported here for our subcohort have been previously published. Minimization was used to randomly allocate participants to their first treatment (17, 19). The researchers responsible for conducting and/or analyzing measurements (OM, DV, KEK and RS) and the participants were blinded to treatment allocations.

Postprandial 2-meal protocol

A sequential 2-meal protocol was used to examine the effect of dairy FA manipulation on postprandial endothelial function and cardiometabolic responses. The details of our high-oleic sunflower oil (HOS) dairy-cow feeding strategy, as well as the production, FA profile, and consumer acceptance of the FA-modified milk and dairy products, are published elsewhere (16, 20).
The energy, macronutrient, and FA compositions of the sequential high-fat mixed meals consumed at breakfast and lunch are presented in Table 1. Nutritional analysis (energy and macronutrient content) of modified and control dairy samples was conducted in duplicate by SGS United Kingdom Ltd. (Ealing, London; ISO 17,025 accredited laboratory), as described elsewhere (16, 20). In brief, total fat content was determined by low-resolution proton magnetic resonance. Protein content was calculated by multiplying the total nitrogen, based on the Dumas method, using a standard nitrogen conversion factor of 6.25 to account for the fraction of nonprotein nitrogen in each sample (21). Carbohydrate content was calculated by difference using the Atwater general system (22). Using a standardized procedure (16), lipids extracted from the modified and control dairy products were analyzed in triplicate for FA composition by GC–flame ionization detection.

	Breakfast	Lunch	Total	Breakfast	Lunch	Total
Energy, MJ	4.3	2.6	6.9	4.1	2.5	6.6
Total fat, g	50.6	30.6	81.2	48.9	30.3	80.2
SFAs, g	24.5	14.8	39.3	31.7	19.1	50.8
MUFA, g	20.0	12.1	32.1	12.3	7.4	19.7
PUFA, g	2.9	1.8	4.7	2.8	1.8	4.6
TFAs, g	3.9	2.6	6.5	2.2	1.4	3.6
Protein, g	36.1	20.9	57.0	39.7	18.6	58.3
CHO, g	105.9	64.6	170.5	101.4	63.3	164.7
Free sugars, g	16.5	22.3	38.8	15.0	21.5	36.5

1Values are total energy and macronutrient quantities of each test meal according to modified and control diet. CHO, carbohydrate; FA, fatty acid; TFA, trans fatty acid.
2Measurement of energy, total fat, protein, and carbohydrate content of the dairy product samples was conducted in duplicate by SGS UK Ltd. (Ealing, London; ISO 17025 accredited laboratory).
3Lipids extracted from the dairy product samples were analyzed in triplicate for FA composition by GC–flame ionization detection using a standardized procedure, as described previously (16).

Assessment of endothelial function

Three-lead electrocardiogram-gated brachial artery FMD measurements were conducted in a standardized manner using a CX50 CompactXtreme Ultrasound System (Philips HealthCare, UK), as previously reported (17, 23). For each participant, the initial baseline scan image (visit 1) was used as a visual aid to help position the probe on a similar section of the artery for subsequent FMD measurements. Image sequences were assessed in a blinded manner using automated wall-tracking software (Vascular Research Tools 5; Medical Imaging Applications LLC). The %FMD response was calculated at each time point as the relative increase in brachial artery diameter from baseline to maximum dilation, expressed as a percentage.

Biochemical analyses

Plasma/serum separation was carried out, as previously detailed (17), and samples were subsequently stored at −80 °C until analysis. For determination of serum TG, nonesterified fatty acids (NEFAs), insulin, and glucose, blood was drawn at all time points. Samples for serum apoB were collected at 0, 60, 120, 180, 240, 300, 360, 390, 420, and 480 min. At 180, 300, and 420 min (i.e., the designated FMD time points), blood samples were also collected for the assessment of plasma nitrite, nitrate, markers of endothelial activation, total lipid FA responses, as well as whole blood culture for determination of LPS-stimulated cytokine production.

Serum TG, apoB, NEFA, and glucose concentrations were quantified on an ILAB 600 autoanalyzer (Instrumentation Laboratory Ltd.) with the use of colorimetric assay kits (TG and glucose reagents: Instrumentation Laboratory Ltd.; NEFA reagent: Alpha Laboratories Ltd.) and the use of an immunoturbidimetric assay (apoB reagent: Randox Laboratories Ltd.). Serum insulin concentrations were determined by ELISA (Dakocytomation Ltd.). Plasma nitrite and nitrate concentrations were measured by HPLC (ENO-30; Eicom Corporation) with online reduction of nitrate to nitrite and subsequent post-column derivatization with the Griess reagent (ENO-30 Analyzer; Eicom Corporation) (17). Plasma soluble vascular cell adhesion molecule 1 (sVCAM-1), soluble intercellular adhesion molecule 1 (sICAM-1), E-selectin, and...
P-selectin concentrations were quantified by the Human Adhesion Molecule Magnetic Luminex Performance Assay 4-Plex kit (R&D Systems Europe Ltd.) with the use of Luminex 200 (Invitrogen) and xPONENT software 3.1 (Luminex). All samples for each participant were analyzed within a single run or kit to reduce interbatch variations. Mean inter-assay CVs were <5% for the ILAB automated assays and <10% for all other analyses.

LPS-stimulated cytokine analyses
For the determination of whole blood culture LPS-stimulated cytokines, blood samples collected into K$_2$-EDTA tubes were not centrifuged and stored at 4°C until processing as previously described (24). Briefly, whole-blood samples were diluted 1:9 with Roswell Park Memorial Institute 1640 medium (Sigma) supplemented with 1% antibiotics, 1% l-glutamine, and 1% nonessential amino acids (Bioscience). Diluted blood samples were cultured in 12-well plates (Greiner Bio-one) with 0.5 μg bacterial LPS/mL (Escherichia coli 026:B6; Sigma), at a final concentration of 0.05 μg/mL. Whole blood cultures were subsequently incubated at 37°C for 24 h before centrifugation at 700 x g (1000 rpm) for 5 min at room temperature to isolate the supernatant, which was stored at −20°C until analysis. Measurement of the monocyte count of each sample was performed by the Pathology Department at the Royal Berkshire Hospital (Reading, UK). A human cytokine premixed 5-Plex Panel (TNF-α, IL-6, IL-8, IL-1β, IL-10; R&D Systems Europe Ltd.) and a Luminex 200 with xPONENT software 3.1 was used to measure the concentrations of cytokines in the whole blood culture supernatant in a 1:2 dilution. Cytokine production was corrected for secondary outcomes variables, which included lipid metabolism LPS-stimulated cytokines, and total lipid FA responses and 480 min for serum TG, apoB, glucose, and insulin responses. Due to the shape of the postprandial NEFA time-course profile, AUC and iAUC for this outcome were calculated from 120 min (approximate time of NEFA minimum concentration) to 480 min postprandially (i.e., 360-min interval) (32).

For postprandial variables with 13 (TG, NEFA, glucose, and insulin) or 10 (apoB) time points, maximum (peak) concentration reached after the test meal (Cmax) and time to reach maximum concentration (Tmax) were also calculated. Additional outcome measures for NEFAs included minimum concentration reached after the first test meal (Cmin), time to reach minimum concentration (Tmin), and percentage of NEFA suppression from fasting (32). A participant’s study visit data were excluded from biochemical analyses if ≥40% of data or 3 consecutive blood time points were missing. Since ingestion of sequential meals leads to biphasic lipid and glycemic control responses (33, 34), AUC and iAUC were also calculated for the time period between breakfast and lunch (0–330 min) and post-lunch (330–480 min) for serum TG, apoB, glucose, and insulin responses (i.e., variables with ≥10 time points). As NEFA AUC and iAUC responses were calculated from 120 to 480 min post-breakfast, it was not considered physiologically relevant to calculate before and after the lunch for this outcome.

Before analysis, suitable checks for normality were conducted on all variables and the ln transformation was used for skewed outcomes. Statistical analyses were performed with the use of SAS 9.4 University edition statistical software (SAS Institute, Inc.). The baseline characteristics prior to the modified and control study visits were assessed by paired t tests and chi-square test for continuous and categorical variables, respectively. For all primary and secondary outcomes, linear mixed-model analyses (PROC MIXED) were used to evaluate fasting and treatment effects of meal dairy FA composition on postprandial summary data. Postprandial time-course responses to the meal dairy FA composition were also assessed using linear mixed models. Treatment × time interaction effects were initially included in the model and retained where found to be significant. In the absence of a significant interaction, the interaction term was removed from the model so that the overall treatment effect could be assessed. Fixed (period, time, treatment, gender, age, and BMI) and random (participant) effects were retained in all linear mixed models, regardless of their degrees of significance.

Results
Study participation
A total of 52 participants successfully completed the study (see Figure 1 for flowchart). There were no large biases in the sex and age of individuals who were randomly assigned to the intervention (n = 76) and those who completed the intervention (n = 52; data not shown). Baseline characteristics of participants

Figure 1

1.758 Markey et al.
at the beginning of each acute study visit are presented in Table 2. The mean CVD risk score of participants at screening, as assessed with the use of a modified Framingham risk score, was 3.0 ± 0.2. As outlined in Table 2, there were no differences in the baseline characteristics or the habitual dietary intake of participants prior to the modified and control study visits (P > 0.01). Similarly, physical activity scores (as assessed by IPAQ) did not significantly differ prior to the study visits (data not shown). The sequential test meals were fully consumed and well tolerated by all participants, without side effects.

Postprandial endothelial function response

The fasting %FMD response was comparable between study days. There was no difference in the postprandial %FMD iAUC or time-course profile (overall treatment) response following consumption of the FA-modified and control sequential test meals (Table 3; Supplemental Figure 2). However, there was a tendency for an effect of meal dairy FA composition on the AUC for the %FMD response, with a 4% higher response observed after consumption of the FA-modified relative to the control meals (P = 0.075).

Postprandial lipid, glucose, and insulin responses

Fasting serum concentrations of TGs, apoB, NEFAs, glucose, and insulin were comparable between study days. There was no differential impact of meal dairy FA composition on the postprandial lipid (TGs and NEFAs), apoB, glucose, and insulin summary measures (Table 4) or time-course responses (0–480 min) (data not shown).

As outlined in Supplemental Table 1, subanalyses of AUC and iAUC responses for the time period between the breakfast and lunch meals (0–330 min) and after the lunch meal (330–480 min) revealed differences in the TG and glucose responses between the modified and control dairy fat meals. For the TG response, there was a 2.8% higher iAUC after the modified dairy compared with the control breakfast meal (0–330 min) (P = 0.009). No other pre- or post-lunch differences in AUC or iAUC were evident between the modified and control dairy meals (i.e., P > 0.01).

Postprandial response for circulating markers of endothelial activation and inflammation

Baseline (fasting) concentrations of all plasma markers of endothelial activation and inflammation were comparable between study days. Meal dairy FA composition had no effect on postprandial endothelial activation or whole blood culture LPS-stimulated cytokine summary measures (Table 3) or time-course profile responses (data not shown), with the exception of a tendency towards a 76% lower iAUC for the LPS-stimulated whole-blood IL-1β response after consumption of the modified, relative to the control, dairy fat meals (P = 0.024).

Postprandial plasma total lipid FA responses

As outlined in Table 5, baseline (fasting) abundance of all plasma total lipid FAs was comparable between treatments. The abundance of total SFAs, 14:0 (myristic acid), 15:0 (pentadecanoic acid), and 16:0 (palmitic acid) was significantly lower following the FA-modified dairy compared with the
TABLE 2 Baseline characteristics of participants at the beginning of each acute study visit

Characteristics	Modified	Control
Sex, n(%)		
Men	31 (59.6)	
Women	21 (40.4)	
Age, y	53 ± 2	
Ethnicity, n(%)		
White	46 (88)	
Black	2 (4)	
Chinese/Far Eastern	2 (4)	
Asian	2 (4)	
Body weight, kg	77.6 ± 1.9	77.8 ± 1.9
BMI, kg/m²	25.9 ± 0.5	25.9 ± 0.5
Waist circumference, cm	90.1 ± 1.5	89.2 ± 1.4
Blood pressure, mm Hg		
Systolic	120 ± 7	120 ± 2
Diastolic	69 ± 1	70 ± 1
Fasting serum lipid profile, mmol/L		
TG	5.55 ± 0.14	5.48 ± 0.12
LDL-C	3.46 ± 0.11	3.44 ± 0.10
HDL-C	1.52 ± 0.05	1.52 ± 0.04
Habitual dietary intake		
Energy, MJ/d	8.3 ± 0.3	8.5 ± 0.4
Total fat, %TE	35.9 ± 0.8	36.5 ± 0.9
SFAs, %TE	14.1 ± 0.5	13.3 ± 0.5
MUFA, %TE	11.8 ± 0.4	11.9 ± 0.4
n–6 PUFAs, %TE	4.0 ± 0.2	4.6 ± 0.2
n–3 PUFAs, %TE	0.7 ± 0.0	0.8 ± 0.1
Total PUFAs, %TE	4.6 ± 0.2	5.3 ± 0.3
TFAs, %TE	0.9 ± 0.1	1.0 ± 0.1
Protein, %TE	17.0 ± 0.5	16.3 ± 0.5
Carbohydrates, %TE	46.7 ± 1.1	46.4 ± 1.0
Alcohol, %TE	2.9 ± 0.5	3.0 ± 0.5
Dietary fiber (ADACI), g/d	20.5 ± 1.0	20.2 ± 1.2
Sodium, g/d	2.6 ± 0.2	2.7 ± 0.2

1Values are given as untransformed and unadjusted means ± SEMs or n (%); n = 52 (overall group). Ethnicity was determined by self-report. No significant differences were observed between the baseline characteristics of participants prior to modified and control study visits, as assessed by paired t-tests (continuous variables) and chi-square test (categorical variable). ADACI, Association of Analytical Chemists; HDL-C, HDL cholesterol; LDL-C, LDL cholesterol; TC, total cholesterol; TFA, trans fatty acid; %TE, percentage of total energy intake.

2Assessed by 4-d weighed food diet diaries in the 1-wk run-in period to each study visit.

control dairy fat meals (all P < 0.0001 for the AUC, iAUC, and the time-course interaction effect) (Table 5; Figure 2). The abundance of 18:0 (stearic acid) over the postprandial period was higher following the FA-modified compared with the control dairy meals (P = 0.0002 and P = 0.001 for the AUC response and the time-course interaction effect, respectively).

The abundance of total cis-MUFAs (predominantly cis-9 18:1 (oleic acid)), total trans-18:1 (including trans-9 18:1 (elaidic acid) and trans-10 18:1 (octadecenoic acid)), and total trans-MUFAs increased in the plasma total lipid FA pool following the consumption of the FA-modified dairy fat meals compared with control (P < 0.0001 for the AUC, iAUC, and the time-course interaction effect) (Table 5; Figure 3). The increase in the proportion of trans-11 18:1 (vaccenic acid) was similar between control and FA-modified dairy meals (AUC, iAUC, and time-course overall treatment effect: P > 0.05). The abundance of conjugated linoleic acids also increased following consumption of the modified, relative to the control, dairy products (iAUC: P = 0.001; and the time-course overall treatment effect: P = 0.006).

Discussion

This study highlights that, in adults at moderate CVD risk, acute consumption of high-fat mixed meals rich in modified (SFA-reduced, MUFA-rich) dairy products did not differentially affect postprandial endothelial function or systemic biomarkers of cardiometabolic health, relative to meals that contained control (conventional) dairy products. Postprandial abundance of total lipid FAs in the plasma following sequential FA-modified meal consumption largely reflected the partial replacement of SFAs with MUFA in our dairy-rich test meals.

Endothelial dysfunction in the postprandial state has been attributed to a progressive detrimental effect on CVD risk (12, 13). Here we demonstrate that acute consumption of dairy meals varying in FA composition did not lead to different postprandial endothelial function responses, although there was a tendency for a beneficial increase in the AUC (but not iAUC) for the %FMD response following consumption of the modified dairy meals. This observation largely agrees with previous acute investigations, which found that consumption of high-fat mixed meals containing specific dietary fats (SFAs, MUFA, and n–6 PUFAs) did not differentially influence impairments observed in postprandial endothelial function, as assessed by FMD (35–37). In contrast, the parallel LIPGENE postprandial study by Perez-Martinez et al. (38) found that patients with the metabolic syndrome assigned to an MUFA-rich test breakfast (65% total fat: 12% SFAs, 43% MUFA) had a significantly higher postprandial FMD response compared with those assigned to other test meal conditions, including a fat-matched SFA-rich breakfast (38% SFAs, 21% MUFA) (38). This study also highlighted that the availability of postprandial NO synthase was greater and plasma sICAM-1 responses were lower following the ingestion of a high-MUFA, relative to the SFA-rich, meal, which contained predominantly butter (38). Rundblad and colleagues (39) demonstrated that a high-fat meal containing butter, but not fermented dairy products (such as cheese), increased postprandial sICAM-1 and sVCAM-1 concentrations. As our modified and control test meals contained a combination of dairy products varying in foods matrix and fermentation, this may partly explain why we did not have differential postprandial endothelial activation in response to our high-fat dairy products. However, it is difficult to draw meaningful comparisons between our study and the findings of Perez-Martinez et al. (38), as the postprandial test meal in the latter study was administered at the end of a 12-wk period of dietary FA manipulation. However, another plausible explanation for contrasting endothelial function outcomes could be that our FA-modified and control sequential test meals only had relatively modest difference (~12 g) in both the content of total SFAs and cis-MUFAs, compared with the LIPGENE postprandial study where test-meal FA modification was not limited specifically to dairy products (38).

Elevated systemic inflammation in the postprandial period is linked to increased risk for atherosclerosis and insulin resistance, with a single high-fat meal known to increase proinflammatory cytokine concentrations, particularly IL-6 (40). Our study findings suggested that the FA composition of the dairy products affected postprandial systemic inflammatory responses to a similar extent, apart from a tendency for

	Modified	Control	P
%FMD response			
Fasting, %	4.50 ± 0.27	4.66 ± 0.28	0.112
AUC, % × min	2040 ± 108	1960 ± 111	0.075
iAUC, % × min	146 ± 78	5 ± 81	0.315
Plasma nitrite			
Fasting, μmol/L	0.14 ± 0.02	0.16 ± 0.02	0.570
AUC, μmol/L × min	64.6 ± 7.9	65.5 ± 8.5	0.980
iAUC, μmol/L × min	4.3 ± 4.9	-0.8 ± 4.7	0.480
Plasma nitrate			
Fasting, μmol/L	16.1 ± 0.9	16.6 ± 1.0	0.970
AUC, μmol/L × min	5280 ± 285	5290 ± 271	0.990
iAUC, μmol/L × min	-1480 ± 249	-1700 ± 248	0.730
Adhesion molecules			
Plasma sVCAM-1			
Fasting, ng/mL	540 ± 32	554 ± 31	0.623
AUC, ng/mL × min	226 ± 12	237 ± 13	0.180
iAUC, ng/mL × min	-0.8 ± 3.4	3.7 ± 4.5	0.489
Plasma sICAM-1			
Fasting, ng/mL	88.2 ± 6.9	84.2 ± 7.3	0.534
AUC, ng/mL × min	37.8 ± 3.0	36.4 ± 3.1	0.461
iAUC, ng/mL × min	0.7 ± 1.2	1.0 ± 1.5	0.959
Plasma E-selectin			
Fasting, ng/mL	25.2 ± 2.0	25.2 ± 1.7	0.953
AUC, ng/mL × min	10.3 ± 0.8	10.3 ± 0.7	0.992
iAUC, ng/mL × min	-0.28 ± 0.2	-0.27 ± 0.1	0.304
Plasma P-selectin			
Fasting, ng/mL	25.7 ± 1.4	26.7 ± 1.5	0.257
AUC, ng/mL × min	10.7 ± 0.6	10.7 ± 0.6	0.912
iAUC, ng/mL × min	-0.05 ± 0.2	-0.51 ± 0.2	0.090
Whole blood culture LPS-stimulated cytokines (per 10³ monocytes)			
TNF-α			
Fasting, μg	12.3 ± 0.9	11.5 ± 0.6	0.729
AUC, mg × min	5.00 ± 0.3	4.99 ± 0.3	0.250
iAUC, mg × min	-0.18 ± 0.2	0.16 ± 0.2	0.319
IL-6			
Fasting, μg	82.6 ± 4.3	79.1 ± 4.2	0.869
AUC, mg × min	32.8 ± 1.7	33.2 ± 1.7	0.453
iAUC, mg × min	-1.88 ± 1.0	0.03 ± 1.2	0.343
IL-1β			
Fasting, μg	27.4 ± 1.5	26.2 ± 1.3	0.516
AUC, mg × min	11.9 ± 0.6	12.5 ± 0.6	0.181
iAUC, mg × min	0.36 ± 0.4	1.50 ± 0.4	0.024
IL-8			
Fasting, μg	124 ± 10	130 ± 10	0.653
AUC, mg × min	48.6 ± 4.1	51.3 ± 6.0	0.502
iAUC, mg × min	-3.35 ± 2.4	-3.13 ± 4.4	0.921
IL-10			
Fasting, μg	0.77 ± 0.08	0.91 ± 0.09	0.060
AUC, mg × min	0.28 ± 0.02	0.35 ± 0.04	0.083
iAUC, mg × min	-0.04 ± 0.02	-0.03 ± 0.02	0.645

1 Values are untransformed and unadjusted means ± SEMs. For all variables, n = 50, except for nitrite and nitrate, n = 49; TNF-α, IL-1β, IL-6, IL-10, n = 48; %FMD response, n = 45; and IL-8, n = 43. The time interval for AUC and iAUC: 420 min for all variables. Linear mixed-model analyses were used to calculate overall treatment effect in postprandial summary measures, with adjustments made for fixed effects of period, treatment, gender, age, and BMI. Participant was included as a random effect. Postprandial endothelial function response intercellular adhesion molecule 1; sVCAM-1, soluble vascular adhesion molecule 1; %FMD, percentage of flow-mediated dilatation.

2 Indicates data were log-transformed prior to analysis.
TABLE 4 Fasting and postprandial serum lipids, glucose, and insulin responses following sequential high-fat mixed-meal challenges rich in fatty acid–modified or conventional (control) dairy products in adults with moderate cardiovascular disease risk1

	Modified	Control	P
Tg(s)			
Fasting, mmol/L	1.25 ± 0.08	1.15 ± 0.06	0.163
Cmax, mmol/L	2.83 ± 0.15	2.58 ± 0.12	0.080
Tmax, min	355 ± 9	334 ± 8	0.045
AUC, mmol/L × min	950 ± 53	879 ± 41	0.163
iAUC, mmol/L × min	351 ± 26	325 ± 23	0.651
apoB			
Fasting, mg/mL	1.01 ± 0.03	1.00 ± 0.03	0.324
Cmax, mg/mL	1.03 ± 0.03	1.04 ± 0.03	0.725
Tmax, min	212 ± 24	207 ± 22	0.790
AUC, mg/mL × min	472 ± 14	470 ± 14	0.477
iAUC, mg/mL × min	-14 ± 3	-11 ± 2	0.284
NEFAs			
Fasting, μmol/L	557 ± 25	554 ± 31	0.412
Cmin10–330, μmol/L	113 ± 5	111 ± 6	0.212
Tmax10–330, min	142 ± 6	135 ± 7	0.394
Suppression10–330, %	79 ± 1	77 ± 2	0.318
Cmax10–480, μmol/L	436 ± 19	461 ± 21	0.083
Tmax10–480, min	361 ± 5	360 ± 6	0.806
AUC10–480, mmol/L × min	91 ± 3	97 ± 4	0.192
iAUC10–480, mmol/L × min	45 ± 3	51 ± 4	0.223
Glucose			
Fasting, mmol/L	5.41 ± 0.11	5.39 ± 0.10	0.870
Cmax, mmol/L	8.27 ± 0.22	7.99 ± 0.21	0.086
Tmax, min	230 ± 25	243 ± 25	0.620
AUC, mmol/L × min	2940 ± 64	2870 ± 64	0.095
iAUC, mmol/L × min	347 ± 41	286 ± 40	0.145
Insulin			
Fasting, pmol/L	41.2 ± 3.8	41.3 ± 4.0	0.948
Cmax, pmol/L	551 ± 51	509 ± 42	0.108
Tmax, min	170 ± 25	222 ± 25	0.062
AUC, μmol/L × min	121 ± 11	114 ± 9	0.204
iAUC, μmol/L × min	102 ± 9	95 ± 8	0.151

1Values are untransformed and unadjusted means ± SEMs. For all variables, n = 46, except n = 49 for apoB and n = 43 for NEFAs.
2Time interval for AUC and iAUC: 480 min for all variables, except for 360 min NEFA. Linear mixed-model analyses were used to calculate overall treatment effect in postprandial summary measures, with adjustments made for fixed effects of period, treatment, gender, age, and BMI. Participant was included as a random effect. For all outcome measures, P ≤ 0.01 was deemed significant to acknowledge multiplicity. Cmax, maximum concentration; Cmin, minimum concentration; iAUC, incremental AUC; NEFA, nonesterified fatty acid; TG, triacylglycerol; Tmax, time to reach maximum concentration; Tmin, time to reach minimum concentration.

a potentially favorable reduction in the whole blood culture LPS-stimulated IL-1β iAUC response following modified dairy meals. This finding may be related to higher MUFA content of these dairy products since a study conducted in insulin-resistant patients found the fasting plasma FA concentration of oleic acid (cis-9 18:1) to be negatively associated with systemic IL-1β concentrations (41). Although not directly comparable, our study agrees with a previous observation highlighting that the dairy content of high-fat meals did not differently affect postprandial IL-6 and TNF-α responses in healthy men (42). Similarly, the FA quality of high-fat meals did not elicit differences in postprandial IL-6 concentrations in metabolic syndrome patients (43) or obese and lean women (44).

We observed no differential effect of our sequential dairy test meal challenge on postprandial lipid, glucose, or insulin concentrations. This finding is largely in agreement with previous acute studies that compared the metabolic effects of sequential high-fat meals rich in SFAs, MUFAs, and n–6 PUFAs among postmenopausal women (35) and single high-fat meals (40 g total fat) containing different proportions of MUFAs (12%, 17%, and 24% of energy) in healthy men (45). In subanalyses, we found a higher TG iAUC response following the modified breakfast meal (0–330 min), relative to the control meal. In line with this, Tholstrup et al. (46) observed higher postprandial plasma and chylomicron TG responses to a high-fat meal containing FA-modified butter at 4 h postprandially in healthy young men, when compared with a conventional Danish butter. However, postprandial responses were assessed after a 4-wk isoenergetic dietary intervention (with 16% of 12:0–16:0 replaced mainly with cis-9 18:1 and 18:0 in the FA-modified butter diet) (46).
TABLE 5 Fasting and postprandial summary responses of selected plasma total lipid fatty acids following sequential high-fat mixed-meal challenges rich in fatty acid–modified or conventional (control) dairy products in adults with moderate cardiovascular disease risk1

SFAs	Modified	Control	P
Fasting, g/100 g total FAs	0.09 ± 0.01	0.09 ± 0.01	0.489
AUC, g/100 g total FAs × min	47 ± 7	68 ± 13	0.446
iAUC, g/100 g total FAs × min	7 ± 7	29 ± 14	0.446

Fasting, g/100 g total FAs	0.98 ± 0.05	0.98 ± 0.05	0.861
AUC, g/100 g total FAs × min	689 ± 24	835 ± 28	<0.0001
iAUC, g/100 g total FAs × min	279 ± 15	424 ± 25	<0.0001

Fasting, g/100 g total FAs	0.23 ± 0.01	0.24 ± 0.01	0.488
AUC, g/100 g total FAs × min	119 ± 2	138 ± 3	<0.0001
iAUC, g/100 g total FAs × min	22 ± 1	39 ± 2	<0.0001

Fasting, g/100 g total FAs	22.89 ± 0.25	22.67 ± 0.19	0.451
AUC, g/100 g total FAs × min	9760 ± 91	10,400 ± 73	<0.0001
iAUC, g/100 g total FAs × min	142 ± 33	837 ± 48	<0.0001

Fasting, g/100 g total FAs	0.28 ± 0.01	0.28 ± 0.01	0.537
AUC, g/100 g total FAs × min	117 ± 3	128 ± 3	0.603
iAUC, g/100 g total FAs × min	1 ± 3	12 ± 4	0.458

Fasting, g/100 g total FAs	7.50 ± 0.13	7.33 ± 0.12	0.103
AUC, g/100 g total FAs × min	3410 ± 42	3260 ± 45	0.0002
iAUC, g/100 g total FAs × min	255 ± 38	181 ± 43	0.132

Total SFAs	22.89 ± 0.25	22.67 ± 0.19	0.451
AUC, g/100 g total FAs × min	9760 ± 91	10,400 ± 73	<0.0001
iAUC, g/100 g total FAs × min	142 ± 33	837 ± 48	<0.0001

Fasting, cis-9 18:1	21.75 ± 0.38	21.56 ± 0.35	0.923
AUC, g/100 g total FAs × min	9350 ± 161	8730 ± 146	<0.0001
iAUC, g/100 g total FAs × min	219 ± 76	-323 ± 67	<0.0001

Total cis-18:1	23.53 ± 0.32	23.36 ± 0.30	0.975
AUC, g/100 g total FAs × min	10,100 ± 133	9460 ± 124	<0.0001
iAUC, g/100 g total FAs × min	204 ± 63	-353 ± 56	<0.0001

Fasting, cis-MUFAs	25.19 ± 0.36	24.99 ± 0.32	0.996
AUC, g/100 g total FAs × min	10,800 ± 150	10,300 ± 139	<0.0001
iAUC, g/100 g total FAs × min	272 ± 67	-238 ± 59	<0.0001

trans-9 18:1	0.12 ± 0.01	0.12 ± 0.01	0.309
AUC, g/100 g total FAs × min	85 ± 3	53 ± 2	<0.0001
iAUC, g/100 g total FAs × min	33 ± 5	4 ± 4	<0.0001

trans-10 18:1	0.09 ± 0.01	0.10 ± 0.01	0.239
AUC, g/100 g total FAs × min	222 ± 9	57 ± 2	<0.0001
iAUC, g/100 g total FAs × min	184 ± 9	16 ± 3	<0.0001

trans-11 18:1	0.14 ± 0.01	0.15 ± 0.01	0.421
AUC, g/100 g total FAs × min	100 ± 3	102 ± 2	0.198
iAUC, g/100 g total FAs × min	41 ± 3	41 ± 3	0.811

Total trans-18:1	0.56 ± 0.03	0.57 ± 0.03	0.679
AUC, g/100 g total FAs × min	657 ± 19	358 ± 7	<0.0001
iAUC, g/100 g total FAs × min	422 ± 22	118 ± 12	<0.0001

(Continued)
Supplementation of the dairy-cow diet with unprotected HOS oil by our group led to a proportion of milk SFAs being replaced by cis-MUFAs, as well as trans-MUFAs through the process of biohydrogenation of unsaturated FAs by rumen bacteria (16). Consequently, our FA-modified, 2-meal challenge process of biohydrogenation of unsaturated FAs by rumen oil by our group led to a proportion of milk SFAs being greater proportion of trans-18:1 isomer profile, with a shift from the formation of trans-18:1 isomers in the plasma lipid pool, largely resembled that of the ingested dairy fats (16). We observed a reduction in total SFAs (including 14:0, 15:0, and 16:0) and an increase in the abundance of 18:0, total cis-MUFAs (primarily cis-9 18:1), and total trans-MUFAs (particularly trans-9 and trans-10 18:1 isomers) in the plasma total lipid pool following consumption of the sequential modified dairy, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considered that the higher total trans-18:1 content of our FA-modified dairy meals, relative to the control, meals. It may be considere...
FIGURE 2 Time-course profiles of postprandial plasma total lipid FAs in response to sequential high-fat mixed-meal challenges (breakfast at 0 min and lunch at 330 min) rich in FA-modified or conventional dairy products (control) in adults at moderate cardiovascular risk for total SFAs (A), 14:0 (B), 15:0 (C), 16:0 (D), and 18:0 (E). Values are untransformed and unadjusted means ± SEMs, n = 47–48. The dotted lines represent the timing of the second meal (330 min). Linear mixed-model analysis was used to explore the effects of treatment and time, with an adjustment made in all cases for fixed effects of period, time, treatment, gender, age, and BMI. Participant was included as a random effect. *P* ≤ 0.01 was deemed significant to acknowledge multiplicity. FA, fatty acid.

TNF-α receptor 2 in women (49). In support of differences in biological mechanisms between trans-18:1 isomers, Iwata et al. (50) reported that a 180-min treatment of human endothelial cells with increasing concentrations (≤0.1 mM) of trans-9 18:1 was associated with increased NF-κB activation and impaired NO production, whereas trans-vaccenic acid (trans-11 18:1) was not related to either of these responses. Taking into consideration that the concentrations of total plasma trans FAs in humans have been shown to be as high as 0.6 mM in the fasted state (51), the FA concentrations used in the aforementioned in vitro study could be deemed physiological (52).

Strengths of the current study include the double-blinded, randomized design and use of a sequential high-fat mixed-meal challenge, which provided a more accurate reflection of Western dietary patterns (32). We studied adults at moderate CVD risk but acknowledge that our findings may not be generalizable across different groups, including young, healthy populations. Our modified foods largely reflected the natural FA profile of milk produced by an HOS-oil bovine feeding strategy (16) but our strategy increased the concentration of trans-18:1 isomers in milk, which were incorporated into the plasma total lipid pool following acute consumption. Further research is warranted to examine the cardiometabolic health effects of FA-reformulated dairy foods that are produced following rumen-protected bovine supplementation strategies, and thus contain a reduced formation of trans-18:1 intermediates.

In conclusion, consumption of sequential high-fat meals rich in FA-modified dairy products led to a lower abundance of total SFAs (including 14:0, 15:0, and 16:0) and higher abundance of 18:0 and total cis- and trans-MUFAs (predominantly trans-18:1 isomers) in the postprandial plasma total lipid pool, when compared with control dairy meals. Meal dairy FA consumption did not elicit significant differences in postprandial endothelial function or systemic cardiometabolic risk markers in our cohort of adults at moderate CVD risk. Previous work has shown that chronic consumption of FA-modified dairy products may have a beneficial impact on the fasting cholesterol profile (17, 53) and endothelial function (17). As the FA composition of the background diet may be of greater health importance than isolated acute differences in FA intake (54), the postprandial effects of long-term FA-modified dairy product consumption need further investigation.

Acknowledgments
We acknowledge S Hargreaves for assistance with participant recruitment, the research nurses (R Mihaylova and K Jenkins) for their assistance with cannulation, the technical staff (V Bines, C Humphrey), and research assistants/students (C Brilley, L Bula, Y Chatzidiakou, V Clifton, H Dong, A Garcimartin, C Holland, J Guo, A Kanneganti, P Loughman, E Mertens, J Ryan, L Sellel, T Staff, and H Zhang) for their assistance with data collection, preparation of test meals, data entry, or food diary analysis. We are also grateful to G Kuhnle and V Sagi-Kiss for technical assistance during the NO analysis. The authors’ responsibilities were as follows—KGJ, DIG, and JAL: designed the human study; OM, KGJ, and JAL: designed the test meal protocol; OM, DV, KEK, CCF, ASG, DJH, and DIG: designed and produced the modified dairy products; OM and DV: conducted the research; OM, DV, KEK, and RS:
FIGURE 3 Time-course profiles of postprandial plasma total lipid FAs in response to sequential high-fat mixed-meal challenges (breakfast at 0 min and lunch at 330 min) rich in FA-modified or conventional dairy products (control) in adults at moderate cardiovascular risk for cis-MUFAs (A), cis-9 18:1 (B), trans-MUFAs (C), trans-9 18:1 (D), trans-10 18:1 (E), and trans-11 18:1 (F). Values are untransformed and unadjusted means ± SE Ms, n = 49. The dotted lines represent the timing of the second meal (330 min). Linear mixed-model analysis was used to explore the effects of treatment and time, with an adjustment made in all cases for fixed effects of period, time, treatment, gender, age, and BMI. Participant was included as a random effect. P ≤ 0.01 was deemed significant to acknowledge multiplicity. FA, fatty acid.

analyzed the data; OM: performed the statistical analysis; ST: provided statistical advice; OM: drafted the manuscript, which was modified by all co-authors; JAL: had primary responsibility for final content; and all authors: read and approved the final manuscript.

References

1. Scientific Advisory Committee on Nutrition. Saturated fats and health [Internet]. 2019. [cited 2020 Apr 29]. Available from: https://www.gov.uk/government/publications/saturated-fats-and-health-sacn-report.

2. World Health Organization. Draft guidelines on saturated fatty acid and trans-fatty acid intake for adults and children [Internet]. 2018 [cited 2019 Apr 29]. Available from: https://extranet.who.int/dataform/upload/surveys/666752/files/Draft WHO SFA-TFA guidelines_04052018 Public Consultation(1).pdf.

3. Roberts C, Steer T, Mapletonhe N, Cox L, Meadows S, Nicholson S, Page P, Swan G. National Diet and Nutrition Survey. Results from years 7–8 (combined) of the Rolling Programme (2014/15-2015/16). London: Public Health England; 2018.

4. Thorming TK, Bertram HC, Bonjour J-P, de Groot I, Dupont D, Feeney E, Ipen R, Lecerf JM, Mackie A, McKinley MC, et al. Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. Am J Clin Nutr 2017;105:1033–45.

5. Markey O, Vasilopoulou D, Givens DI, Lovegrove JA. Dairy and cardiovascular health: Friend or foe? Nutr Bull 2014;39(2):161–71.

6. Astrup A, Magkos F, Bier DM, Brenna JT, de Oliveira Otto MC, Hill JO, King JC, Mente A, Orlovsky JM, Volek JS, et al. Saturated fats and health: a reassessment and proposal for food-based recommendations. J Am Coll Cardiol 2020;76:844–57.

7. Krauss RM, Kris-Etherton PM. Public health guidelines should recommend reducing saturated fat consumption as much as possible: debate consensus. Am J Clin Nutr 2020;112:25–6.

8. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007;298(3):299–308.

9. Lopez-Miranda J, Williams C, Lairon D. Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr 2007;98(3):458–73.

10. Monfort-Pires M, Delgado-Listra J, Gomez-Delgado F, Lopez-Miranda J, Perez-Martinez P, Ferreira SR. Impact of content of fatty acids from different dairy products in postprandial responses in healthy adults: a randomized controlled cross-over trial. J Nutr 2019;149(3):422–31.

11. Hansson P, Holven KB, Oyri LKL, Brekke HK, Bongos AS, Gjevestad GO, Raza GS, Herzig K-H, Thoresen M, Ulven SM. Meals with similar fat content from different dairy products induce different postprandial triglyceride responses in healthy adults: a randomized controlled cross-over trial. J Nutr 2019;149(3):422–31.

12. Norata GD, Grigore L, Raselli S, Radaelli L, Hamsten A, Maggi F, Eriksson P, Catapano AL. Post-prandial endothelial dysfunction in hypertriuglyceridemic subjects: molecular mechanisms and gene expression studies. Atherosclerosis 2017;193(2):321–7.

13. van Oostrom AJ, Simonsma TP, Verseyden C, Jansen EH, de Koning EJ, Bier DM, Brenna JT, Castro Cabezas M. Postprandial triglyceride concentrations from different dairy products induce different postprandial responses in healthy adults: a randomized controlled cross-over trial. J Nutr 2019;149(3):422–31.

14. Vafeiadou K, Weech M, Sharma V, Yaqoob P, Todd S, Williams CM, Jackson KG, Lovegrove JA. A review of the evidence for the effects of total dietary fat, saturated, monounsaturated and n-6 polyunsaturated fatty acids on vascular function, endothelial progenitor cells and microparticles. Br J Nutr 2012;107(3):303–24.

15. Drouin-Chartier J-P, Côté JA, Labonté M-E, Brassard D, Tessier-Grenier EJ, Rabelink TJ, Castro Cabezas M. Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J Lipid Res 2003;44(3):576–83.

16. Krauss RM, Kris-Etherton PM. Public health guidelines should recommend reducing saturated fat consumption as much as possible: debate consensus. Am J Clin Nutr 2020;112:25–6.
to lowering saturated fat in milk and dairy products: the RESET study. Int J Dairy Technol 2019;72:100–9.

17. Vasiliopoulou D, Markey O, Kliem KE, Koulman A, Fagan CC, Grandison AS, Humphries DJ, Todd S, Jackson KG, Givens DI, Lovegrove JA. Reformulation initiative for partial replacement of saturated with unsaturated fatty acids in dairy foods attenuates the increase in LDL cholesterol and improves flow-mediated dilatation compared with conventional dairy: the randomized, controlled REPLacement of SaturatEd fat in dairy on Total cholesterol (RESET) study. Am J Clin Nutr 2020;111(4):739–48.

18. Jackson KG, Poppitt SD, Minihane AM. Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological and genetic determinants. Atherosclerosis 2012;220(1):122–33.

19. Markey O, O’Neill PM, Clarke DT, Murray P, Lovegrove JA, O’Malley B, Minihane AM, Williams CM. Introduction to the DISRUPT postprandial database: subjects, studies and methodologies. Genes Nutr 2010;5(1):39–48.

20. Markey O, Sourioula K, Fagan CC, Kliem KE, Vasiliopoulou D, Jackson KG, Humphries DJ, Grandison AS, Givens DI, Lovegrove JA. Consumer acceptance of dairy products with a saturated fat-acid-reduced, monounsaturated fatty acid-enriched content. J Dairy Sci 2017;100(10):7953–66.

21. Sriperm N, Pesti GM, Tillman PB. Evaluation of the fixed nitrogen-to-protein (N:P) conversion factor (6.25) versus ingredient specific N:P conversion factors in feedstuffs. J Sci Food Agric 2011;91(7):1182–6.

22. Merrill AL, Watt BK. Energy value of foods: basis and derivation. In: Agriculture handbook 74. Washington (DC): US Department of Agriculture, Agricultural Research Service; 1973.

23. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, et al. Guidelines for the ultrasound assessment of endothelium-dependent flow-mediated vasoilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 2002;39(2):257–65.

24. Burdge GC, Tricon S, Morgan R, Kliem KE, Chids C, Jones E, Russell JJ, Grime RF, Williams CM, Yaqoob P. Incorporation of cis-9, trans-11 conjugated linoleic acid and vaccenic acid (trans-11 18:1) into plasma and leucocyte lipids in healthy men consuming dairy products naturally enriched in these fatty acids. British Journal of Nutrition 2005;94(2):237–43.

25. Glaser C, Demmelhair H, Koletzko B. High-throughput analysis of total plasma fatty acid composition with direct in situ transesterification. PLoS One 2010;5(8):e212045.

26. Kliem KE, Reynolds CK, Humphries DJ, Kirkland RM, Barratt CES, Livingstone KM, Givens DI. Incremental effect of a calcium salt of cis-monounsaturated fatty acids supplement on milk fatty acid composition in cows fed maize silage-based diets. J Dairy Sci 2013;96(5):3211–21.

27. Kliem KE, Shingfield KJ, Livingstone KM, Givens DI. Seasonal variation in the fatty acid composition of milk available at retail in the United Kingdom and implications for dietary intake. Food Chem 2013;141(1):274–81.

28. Ulberth F, Gabernig RG, Schrammel F. Flame-ionization detector response to methyl, ethyl, propyl, and butyl esters of fatty acids. J Am Oil Chem Soc 1999;76(2):263–6.

29. De Roos NM, Bots ML, Schouten EG, Katan MB. Within-subject variability of flow-mediated vasoilation of the brachial artery in healthy men and women: implications for experimental studies. Ultrasound Med Biol 2003;29(3):401–6.

30. Welch RW, Antoine JM, Berta JL, Bub A, de Vries J, Guarnier F, Hasselwander O, Hendriks H, Jitkel M, Koletzko BV, et al. Guidelines for the design, conduct and reporting of human intervention studies to evaluate the health benefits of foods. Br J Nutr 2011;106(Suppl 2):S3–15.

31. Carstensen M, Thomsen C, Hermansen K. Incremental area under response curve more accurately describes the triglyceride response to an oral fat load in both healthy and type 2 diabetic subjects. Metabolism 2003;52(8):1034–7.

32. Jackson KG, Clarke DT, Murray P, Lovegrove JA, O’Malley B, Minihane AM, Williams CM. Introduction to the DISRUPT postprandial database: subjects, studies and methodologies. Genes Nutr 2010;5(1):39–48.

33. Burdge GC, Jones AE, F Frye SM, Goodson L, Wootton SA. Effect of meal sequence on postprandial lipid, glucose and insulin responses in young men. Eur J Clin Nutr 2003;57(12):1356–44.

34. Jackson KG, Walden CM, Murray P, Smith AM, Lovegrove JA, Minihane AM, Williams CM. A sequential two meal challenge reveals substantial abnormalities in postprandial TAG but not glucose in men with increasing numbers of metabolic syndrome components. Atherosclerosis 2012;220(1):237–43.

35. Rathnayake K, Weech M, Jackson KG, Lovegrove JA. Meal fatty acids have differential effects on postprandial blood pressure and biomarkers of endothelial function but not vascular reactivity in postmenopausal women in the randomized, controlled DIVAS-2 study. J Nutr 2018;148:348–57.

36. Raitakari OT, Lai N, Griffiths K, McCredie R, Sullivan D, Celermaja DS. Enhanced peripheral vasoilation in humans after a fatty meal. J Am Coll Cardiol 2000;36(2):417–22.

37. Nicholls SJ, Lundman P, Harmer JA, Curi B, Griffiths KA, Rye KA, Barter PJ, Celermaja DS. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J Am Coll Cardiol 2006;48(4):715–20.

38. Perez-Martinez P, Moreno-Conde M, Cruz-Teno C, Ruano J, Fuentes F, Delgado-Listo J, Garcia-Rios A, Marín C, Gomez-Luna MJ, Perez-Jimenez F. Dietary fat differentially influences regulatory endothelial function during the postprandial state in patients with metabolic syndrome: from the LIPGENE study. Atherosclerosis 2010;209(2):533–8.

39. Rundblad A, Holven KB, Øyri LK, Hansson P, Ivan IH, Gjevestad GO, Thoresen M, Ulven SM. Intake of fermented dairy products induces a less proinflammatory postprandial peripheral blood mononuclear cell gene expression response than non-fermented dairy products: a randomized controlled cross-over trial. Mol Nutr Food Res 2020;64(2):2000319.

40. Emerson SR, Kurtt S, Harms CA, Haub MD, Melgarejo T, Logan C, Rosenkranz SK. Magnitude and timing of the postprandial inflammatory response to a high-fat meal in healthy adults: a systematic review. Adv Nutr 2017;8(2):213–25.

41. Bérsch-Ferreira AC, Sampiao GR, Gehringr M, Torres EAFO, Ross-Fernandes MB, da Silva JT, Torreglosa CR, Kovacs C, Alves R, Magnoni CD, et al. Association between plasma fatty acids and inflammatory markers in patients with and without insulin resistance and in secondary prevention of cardiovascular disease, a cross-sectional study. Nutr J 2018;17(1):26.

42. Schmid A, Petry N, Walther B, Büttikofer U, Luginbühl W, Gille D, Chollet M, McTernan PG, Guis MAM, Violett N, et al. Inflammatory and metabolic responses to high-fat meals with and without dairy products in men. Br J Nutr 2015;113(12):1853–61.

43. Meneses ME, Camargo A, Perez-Martinez P, Delgado-Listo J, Cruz-Teno C, Jimenez-Gomez Y, Paniagua JA, Gutierrez-Mariscal FM, Tinahones FJ, Vidal-Puig A, et al. Postprandial inflammatory response in obese peripheral tissue of patients with metabolic syndrome after the intake of different dietary models. Mol Nutr Food Res 2011;55(12):1759–70.

44. Manning PJ, Sutherland WHF, McGrath MM, De Jong SA, Walker RJ, Williams MJ. Postprandial cytokine concentrations and meal protein in obese and lean women. Obesity 2008;16(9):2046–52.

45. Roche HM, Zampelas A, Jackson KG, Williams CM, Gibney MJ. The effect of test meal monounsaturated fatty acid: saturated fatty acid ratio on postprandial lipid metabolism. Br J Nutr 1998;79(5):419–24.

46. Tholstrup T, Sandström B, Hermansen JE, Hølmer G. Effect of modified dairy fat on postprandial and fasting plasma lipids and lipoproteins in healthy young men. Lipids 1998;33(11):11–21.

47. Kuhn K, Baehr M, Rohrer C, Jahreis G. Trans fatty acid isomers and the trans-9trans-11 index in fat containing foods. Eur J Lipid Sci Technol 2002;104(2):57–64.

48. de Souza RJ, Mente A, Marooleanu A, Cozma AL, Ha V, Kishibe T, Ulyerek E, Budylowski P, Schünemann H, Beyene J, et al. Intake of saturated and unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. Br Med J 2015;351:h3978.

49. Lopez-Garcia E, Schulze MB, Meigs JB, Manson JE, Rifai N, Stampfer MJ, Willett WC, Hu FB. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 2005;135(3):562–6.
50. Iwata NG, Pham M, Rizzo NO, Cheng AM, Maloney E, Kim F. Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells. PLoS One 2011;6(12):e29600.
51. Yang Q, Zhang Z, Loustalot F, Vesper H, Caudill SP, Ritchey M, Gillespie C, Merrit R, Hong Y, Bowman BA. Plasma trans-fatty acid concentrations continue to be associated with serum lipid and lipoprotein concentrations among US adults after reductions in trans-fatty acid intake. J Nutr 2017;147(5):896–907.
52. Oteng A-B, Kersten S. Mechanisms of action of trans fatty acids. Adv Nutr 2020;11(3):697–708.
53. Markey O, Kliem KE. Does modifying dairy fat composition by changing the diet of the dairy cow provide health benefits? In: Givens DI, editor. Milk and dairy foods: Academic Press, London; 2020. p. 51–86.
54. Burdge GC, Powell J, Calder PC. Lack of effect of meal fatty acid composition on postprandial lipid, glucose and insulin responses in men and women aged 50–65 years consuming their habitual diets. Br J Nutr 2006;96(3):489–500.