Research article

Outage and throughput analysis of power-beacon assisted nonlinear energy harvesting NOMA multi-user relay system over Nakagami-\(m\) fading channels

Tran Manh Hoang\(^a\), Ba Cao Nguyen\(^b\), Tran Thanh Trung\(^b\), Le The Dung\(^bc,\)*

\(^a\) Telecommunications University, Khanh Hoa Province, Viet Nam
\(^b\) Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
\(^c\) Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam

A R T I C L E I N F O

Keywords:
Electrical engineering
Algebra
Statistics
Probability theory
Signal processing
Wireless network
Communication system
Non-orthogonal multiple access
Power beacon
Nonlinear energy harvesting
Successive interference cancellation
Outage probability
Throughput

A B S T R A C T

This paper considers a non-orthogonal multiple access (NOMA) multi-user relay system where both source and relay harvest the energy from a power beacon (PB) equipped with multiple antennas and use this harvested energy to transmit signals to several users. Realistic nonlinear energy harvesting models are applied, and time switching protocols are adopted at source and relay. We successfully derive the exact closed-form expressions of the outage probability and throughput of the system over Nakagami-\(m\) fading channels. Then, we use Monte-Carlo simulations to validate the correctness of these derived mathematical expressions. Numerical results show that a higher saturated power threshold of the nonlinear energy harvester results in lower outage probability and higher throughput. Moreover, the optimal time switching ratio that maximizes the throughput is smaller than the optimal time switching ratio that minimizes the outage probability.

1. Introduction

Electronic devices may not be powered by electricity mesh in some circumstances. Therefore, using radio frequency (RF) energy harvesting (EH) to support the operations of low-power communication devices in small-cell and sensor networks is considered as a promising research direction \([1, 2]\). On the other hand, due to the increase in the amount of data traffic, the number of wireless devices and communications in wireless networks, there is increasing spectrum demand. Fortunately, the non-orthogonal multiple access (NOMA) was proposed to replace the traditional multiple access thanks to its capability of high efficient spectrum usage \([3, 4]\). Therefore, combining SWIPT with NOMA can solve the problem of energy and spectrum efficiency in the fifth-generation (5G) and beyond wireless networks \([5, 6, 7]\).

The RF-EH can be classified into three different types: simultaneous wireless information and power transfer (SWIPT), ambient RF source-assisted wireless power supply, and dedicated power beacon (PB)-assisted wireless power supply. Among these RF-EH techniques, the advantages of PB-assisted wireless power supply is fully controllable, providing various applications with high quality-of-service (QoS) requirements \([8, 9]\). The PB-assisted wireless-powered communication was investigated in \([10]\). However, the authors only considered the linear EH model and studied the optimal power allocation in a point-to-point conventional wireless communication system instead of deriving the closed-form expressions of the outage probability and throughput of a NOMA relay system. Non-linear (NL)-EH point-to-point cognitive radio systems were considered in \([11]\) and \([12]\). The authors studied the resource optimization problem and the transmission power minimization problem, respectively.

With regard to the research works on EH-NOMA systems in the literature, the authors in \([13]\) formulated a power optimization problem to maximize the energy efficiency of a NOMA-based cloud radio access network. Simulation results indicated that their proposed

\(^\ast\) Corresponding author at: Institute for Computational Science, Ton Duc Thang University, No. 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Viet Nam.

*E-mail address: lethedung@tdtu.edu.vn (L.T. Dung).

https://doi.org/10.1016/j.heliyon.2020.e05440
Received 6 August 2020; Received in revised form 3 October 2020; Accepted 2 November 2020

2405-8440/© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
NOMA scheme could obtain higher energy efficiency and throughput than the orthogonal multiple-access (OMA) method. Joint power allocation and splitting control for SWIPT-enabled NOMA systems was proposed in [14], with an aim to optimize the total transmission rate and harvested energy simultaneously while satisfying the minimum rate and the harvested energy requirements of each user. Numerical results demonstrated that significant performance gain over the traditional rate maximization scheme could be achieved. The authors of [15] mathematically evaluated the impact of partial relay selection on the performance of a downlink EH-NOMA relay system. Notably, they found that the undecodable probability and ergodic capacity were significantly influenced by the efficiency of successive interference cancellation (SIC) and the number of relays. The application of SWIPT to NOMA networks with spatial randomly located users was investigated in [16]. It was shown that the opportunistic use of node locations for user selection could result in low outage probability and provide much better throughput compared to the random selection scheme. In [17], the authors considered a cooperative NOMA system where a source communicates with two users through an EH relay. They proposed two types of NOMA power allocation policies, i.e., NOMA with fixed power allocation (F-NOMA) and cognitive radio inspired NOMA (CR-NOMA), and investigated the impacts of these two power allocation policies on the considered cooperative SWIPT-NOMA system. It was indicated that the two proposed NOMA schemes could effectively reduce the outage probability while realizing the same diversity gain. In [18], the SWIPT-enable relay exploited the RF energy supplied by the two NOMA user groups to recharge itself. Meanwhile, in [19], the source was powered by an external source, whereas the relay employs power splitting SWIPT-based EH to harvest the energy from the source before transmitting signals to two users. As mentioned earlier, the EH techniques considered in [18] and [19] were SWIPT. Furthermore, linear EH models were used at the relays.

Unlike previous works that considered only linear EH-NOMA systems, the papers [11] and [12] investigated the point-to-point EH-NOMA systems with nonlinear EH at only secondary user or both primary user and secondary user. Moreover, the power was transferred from a primary base station (PBS) or a cognitive base station (CBS). The most related work to our paper is [20]. However, the authors considered the information source harvests the energy from the power source over Rayleigh fading channels by using the non-linear energy harvester. Therefore, in this paper, we propose and analyze a power-domain NOMA system where source and relay harvest the energy from multi-antenna power beacon by using non-linear EH over Nakagami–m fading channels. Moreover, instead of studying the resource allocation problem for sum rate maximization, we derive the closed-form expressions of the system’s outage probability and throughput.

The rest of this paper is organized as follows. Section 2 describes the system model of the considered PB-assisted NEH-NOMA multi-user relay system. Section 3 presents the detailed derivations of the exact closed-form expression of the outage probability and capacity used to analyze the performance of the considered system. Numerical results and discussions are given in Section 4. Finally, Section 5 concludes the paper.

2. System model

The system considered in this paper comprises a source (S), a relay (R), and N users (Dn, n ∈ [1,...,N]) as illustrated in Fig. 1. R employs decode-and-forward (DF) protocol and operates in half-duplex (HD) mode to forward signals from S to Dn. It is assumed that Dn uses fixed power supply while S and R harvest the RF energy transmitted from K antennas of a PBS.

Let us denote \(\sqrt{d_1^\beta} \) as the large-scale fading with \(d_1 \) being the distance between the endpoints of these links and \(\beta \) is the path loss coefficient; \(f_{\ell,k} \) (\(\ell \in [1,2] \), \(k \in [1,...,K] \)) and \(h_1 \) as the small-scale fading coefficients of PB–S, PB–R, and S–R links, respectively. Since RF-EH wireless networks often involve in short-range communications, the channel coefficients \(f_{1,k} = f_{1,k} \sqrt{d_1^\beta} \), \(f_{2,k} = f_{2,k} \sqrt{d_1^\beta} \) and \(h_1 = h_1 \sqrt{d_1^\beta} \) follow Nakagami distributions, i.e., \(f_{1,k} \sim G(m_1, \frac{m_1}{\Gamma(1)} \), \(f_{2,k} \sim G(m_2, \frac{m_2}{\Gamma(1)} \), and \(h_1 \sim G(m_1, \frac{m_1}{\Gamma(1)} \), respectively, as the large-scale fading and small-scale fading coefficients of K – Dn channel, where \(d_n \) represents the distance between R and Dn. \(g_n = g_n \sqrt{d_n^\beta} \) also follow Nakagami distribution, i.e., \(g_n \sim G(m_n, \frac{m_n}{\Gamma(1)} \), where \(\Omega_{Dn} = E[|g_n|^2] \) and \(n \in [1,...,N] \). Similar to [20], it is assumed that \(d_1 > d_2, ..., > d_N \). Thus, the channel gains are in an ascending order, i.e., \(0 < |g_1|^2 < ..., < |g_N|^2 \).

In this system, S and R use time switching (TS) protocol to harvest the RF energy from the PB. Notably, within a transmission block time \(T \), the first time duration \(aT \), \(0 \leq a < 1 \), is used to harvest the RF energy from PB and the remaining time duration \((1-a)T\) is used to transmit signals.

3. Performance analysis

We employ the maximal ratio transmission (MRT) scheme at the PB to improve the amount of harvested energy at S and R. Specially, for the same transmission power of the PB, the total transmission power is equally divided and then assigned to all antennas in the case of using MRT scheme. Meanwhile, the total transmission power is assigned to one selected antenna in the case of using transmit antenna selection (TAS) scheme. Thanks to the diversity gain of MRT schemes, the end-to-end signal-to-noise ratios (SNRs) of PB – S and PB – R channels are better than that of TAS scheme. As the result, the amount of received energy at S and R is higher.

Because of the usage of MRT scheme, the elements of channel vector \(f_{1,k} \) are distributed (i.i.d) [21], i.e.,

\[
|g_{1,k}|^2(a) = \left(\frac{m_p}{\Omega_1} \right) K m_k \exp \left(-\frac{m_p a}{\Omega_1} \right). \tag{1}
\]

The signal vector transmitted by PB with a size of \(K \times 1 \) is expressed as

\[
X = w_{x_{\ell}} s_{x_{\ell}}, \tag{2}
\]

where \(w_{x_{\ell}} \), \(\| w_{x_{\ell}} \|^2 = 1 \), refers to the beamforming vectors from PB to S and R, \(s_{x_{\ell}} \) is the symbol with \(\| s_{x_{\ell}} \|^2 = 1 \).

It is easy to observe that the optimal beamforming vector is given by [22]
\[w_r = \|f_r\|/\|f_s\|. \]

Then, the signals received at S and R in the EH phase are, respectively, presented as [23, 24]

\[y_s = \sqrt{P_b} f_s + w_s, \]

\[y_r = \sqrt{P_b} f_r + w_r, \]

where \(w_s \sim \mathcal{CN}(0, \sigma_s^2) \) and \(w_r \sim \mathcal{CN}(0, \sigma_r^2) \) are the additive white Gaussian noises (AWGNs) at S and R, respectively, \(\sigma_s^2 = E\{w_s^2\} \) is the variance of AWGN with \(x \in \{S, R\} \), \(P_b \) is the transmission power of PB, and \(E\{x^2\} = 1 \).

In practice, the output power of an energy harvester reaches a constant maximum value, which depends on the nonlinear EH circuit components such as inductors, capacitors, and diodes [23]. The nonlinear EH model’s characteristic can be modeled by the relationship between the input power and the output power of an energy harvester. Similar to [25, 26], a nonlinear EH model is also considered in this paper to reflect the operations of realistic systems. As a result, the transmission power of S and R can be given by

\begin{align*}
P_s &= \sum_{j=1}^{m_1} \frac{m_1 P_{th} \|f_j\|^2}{m_1 P_{th} + \|f_s\|^2}, \quad P_s \|f_s\|^2 \leq P_{th}, \\
P_k &= \sum_{j=1}^{m_1} \frac{m_1 P_{th} \|f_j\|^2}{m_1 P_{th} + \|f_s\|^2}, \quad P_k \|f_s\|^2 > P_{th},
\end{align*}

where \(P_{th} \) is the saturation power threshold and \(\eta, \; 0 < \eta < 1 \), is the energy conversion efficiency.

As shown in Fig. 2, when the transmission power of PB is greater than 100 W, the output power of the energy receiver is saturated. The distances from PB to EH nodes (S and R) significantly influence the amount of harvested power. In summary, the harvested power in the case of nonlinear EH cannot exceed a saturated value. This feature is contrary to linear EH, where the harvested power always increases with the transmission power of PB.

Next, S and R use all harvested energy to transmit signals to R and \(D_n \), respectively. Therefore, the signals received at R and \(D_n \) are expressed as

\[\begin{align*}
y_r &= h_1 \sqrt{\alpha_k} P_k x_s + h_1 \sum_{j=1}^{m_1} \sqrt{\alpha_k} P_k x_j + w_r, \\
y_{D_n} &= h_2 \sqrt{\alpha_k} P_k x_s + h_2 \sum_{j=1}^{m_1} \sqrt{\alpha_k} P_k x_j + w_{D_n},
\end{align*} \]

From (7) and (8), the SINRs of S − R and R − \(D_n \) links in the case of nonlinear EH are, respectively, given by

\[\psi_{\text{S−R}}^{\text{lin}} = \begin{cases} \frac{a_{\text{S−R}} P_k \|f_s\|^2}{a_{\text{S−R}} P_k \|f_s\|^2 + s_{\text{S−R}}}, & \text{if } P_k \|f_s\|^2 \leq P_{th} \\ \frac{a_{\text{S−R}} P_k \|f_s\|^2}{a_{\text{S−R}} P_k \|f_s\|^2 + s_{\text{S−R}}}, & \text{if } P_k \|f_s\|^2 > P_{th}. \end{cases} \]

\[\psi_{\text{R−D_n}}^{\text{lin}} = \begin{cases} \frac{a_{\text{R−D_n}} P_k \|f_s\|^2}{a_{\text{R−D_n}} P_k \|f_s\|^2 + s_{\text{R−D_n}}}, & \text{if } P_k \|f_s\|^2 \leq P_{th} \\ \frac{a_{\text{R−D_n}} P_k \|f_s\|^2}{a_{\text{R−D_n}} P_k \|f_s\|^2 + s_{\text{R−D_n}}}, & \text{if } P_k \|f_s\|^2 > P_{th}. \end{cases} \]

where \(a_{\text{S−R}} \) is the power allocation coefficient for \(D_n \). We have assumed the channel gains are ascend order, i.e., \(0 < |g_{\text{S−R}}|^2 < \ldots < |g_{\text{S−R}}| \). Following the principle of power domain NOMA, thus, \(a_1 > a_2 \ldots > a_N \) and \(\sum_{j=1}^{N} a_j = 1, \; \bar{a}_j = \sum_{i=j}^{N} a_i \), and \(\kappa = \frac{a_{\text{S−R}}}{a_{\text{S−R}}} \).

Let \(\text{OP} = \text{Pr}(\gamma_{\text{S−R}} < \gamma_{\text{R−D_n}}) \) be the outage probability (OP) of the system, where \(\gamma_{\text{S−R}} = \min(\psi_{\text{S−R}}^{\text{lin}}, \psi_{\text{R−D_n}}^{\text{lin}}) \), \(\gamma_{\text{R−D_n}} = 2^{x/n-1} - 1 \) with \(x \) is the threshold data rate of \(D_n \). When the events \(\gamma_{\text{S−R}} < \gamma_{\text{R−D_n}} \) and \(\gamma_{\text{S−R}} < \gamma_{\text{R−D_n}} \) occur, it means that R cannot decode the signal of D_n and D_n cannot decode the signal of S or its own signal. Thus, the OP of D_n is calculated as

\[\text{OP}_n = 1 - \text{Pr}(\gamma_{\text{S−R}} < \gamma_{\text{R−D_n}}) \text{Pr}(\gamma_{\text{S−R}} < \gamma_{\text{R−D_n}}). \]

In the case that \(j \neq N \), we denote \(\bar{\theta}_j = \max(\gamma_{\text{S−R}}, \gamma_{\text{R−D_n}}, \ldots \gamma_{\text{R−D_n}}) \). Then, the OP of \(D_n \) can be expressed as

\[\text{OP}_n = 1 - \text{Pr}(\psi_{\text{S−R}}^{\text{lin}} > \bar{\theta}_j) \text{Pr}(\psi_{\text{R−D_n}}^{\text{lin}} > \bar{\theta}_j). \]

The closed-form expressions of \(\Omega_1 \) and \(\Omega_2 \) are, respectively, given in (13) and (14). Detailed derivations of these equations are provided in the Appendix.
where \(\chi = \frac{\gamma_1}{\gamma_{th} - \gamma_1} \), \(\Gamma(\cdot, \cdot) \) is incomplete Gamma function, and \(K_n(\cdot) \) is the \(n \)th order modified Bessel function of the second kind [27].

It is worth noticing that the condition \(a_n > \theta^* \sum_{i=1}^{N} a_i \) should be satisfied to ensure \(\chi > 0 \). On the other hand, this condition indicates that SIC is performed from a high-power signal to a low-power signal. Otherwise, \(OP = 1 \), i.e., disconnected communication system.

From the OP expression, the throughput of each user in the system is calculated as

\[
\tau = \frac{(1-\alpha)r_n}{2}(1-OP_n).
\]

(15)

4. Numerical results

This section, the analysis and Monte-Carlo simulation results of the OP and throughput of the considered PB-assisted NL-EH-NOMA multi-user relay system in various evaluating scenarios are provided. PB is equipped with two antennas while S, R, and D\(_1\) have only one antenna. There are three users in the considered system, denoted as D\(_1\), D\(_2\), and D\(_3\). The threshold data transmission rates of all users are equal, i.e., \(r_1 = r_2 = r_3 = 1 \) b/s/Hz. The average channel gains are set as \(\Omega_1 = \Omega_2 = 1 \), \(\Omega_4 = \Omega_{D1} = 1 \), \(\Omega_{D2} = 2 \), and \(\Omega_{D3} = 4 \). The power allocation coefficient for D\(_1\) is \(a_n = (N-n+1)/\mu \) where \(\mu \) is selected so that \(\sum_{i=1}^{N} a_i = 1 \).

Fig. 3 plots the OP of D\(_1\) versus the average SNR in dB for different saturated power threshold \(P_{th} \). We can see that the OPs for all cases of \(P_{th} \) decreases as the SNR increases. Also, smaller \(P_{th} \) results in a higher outage floor. It is because small \(P_{th} \) makes the amount of harvested energy at S and R low, leading to high OP. Another feature is that, when \(P_{th} \) is small, there is a significant gap between the OPs of linear and nonlinear EH-NOMA systems. However, as \(P_{th} \) increases, this gap is reduced because higher \(P_{th} \) means nonlinear EH gradually becomes linear EH.

Fig. 4 depicts the OP of each user versus the average in dB for two settings of \(m \), i.e., \(m_1 = m_2 = m_3 = m_4 = 1.5 \) and 2.5. As observed in Fig. 4, the OPs of all users decrease as the SNR increases and reach different outage floors when the SNR exceeds certain values. In particular, larger \(m \) results in a higher outage floor. The reason for this feature is that the saturated power threshold \(P_{th} \) of nonlinear energy harvester closely influences the transmission power of S and R.

Fig. 5 and Fig. 6 show the OP and throughput of D\(_1\) versus the time switching ratio \(\alpha \) for different \(P_{th} \), respectively. As observed from Fig. 5, the OP remarkably reduces as \(\alpha \) gets higher, then sharply increases to

1 These values are based on the IEEE 802.11a/g standards.
1 when a is larger than a certain value, e.g., $a = 0.8$ for $P_{th} = 15$ dB. In contrast, the throughput in Fig. 6 rapidly increases with a and then quickly decreases to 0 when a exceeds a specific value, e.g., $a = 0.1$ for $P_{th} = 15$ dB. In other words, there exist different optimal values of a that minimizes the OP and maximizes the throughput. Moreover, the a at which the OP is the smallest increases with P_{th}. In contrast, the a at which the throughput is highest decreases when P_{th} increases. The reason behind this feature is that the OP is affected by the harvested power, while the throughput is influenced by the coherent time of the wireless channel.

5. Conclusion

In this paper, we have investigated a NOMA relay system where the single-antenna source and relay are equipped with nonlinear energy harvesters to receive the energy from a multiple-antenna power beacon by using TS protocol. Source and relay then utilize all harvested energy to transmit signals to several destinations. We derived the closed-form expressions of the OP and throughput of the considered PB-assisted NL-EH-NOMA multi-user relay system over Nakagami-m fading channels and used Monte-Carlo simulations to validate these derived expressions. Numerical results show that a higher saturated power threshold of the nonlinear energy harvester results in the lower OP and higher throughput. The OP reaches outage floor as the average SNR exceeds a specific value. This outage floor is lower when the nonlinear energy harvester’s saturated power threshold is larger, and the fading is more severe. Additionally, the optimal time switching ratio that maximizes the throughput is smaller than the optimal time switching ratio that minimizes the outage probability.

Declarations

Author contribution statement

Tran Manh Hoang: Conceived and designed the experiments; Performed the experiments; Wrote the paper.
Ba Cao Nguyen & Tran Thanh Trung: Performed the experiments; Analyzed and interpreted the data.
Le The Dung: Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published online at https://doi.org/10.1016/j.helyon.2020.e05440.

References

[1] J. Tang, J. Lao, J. Ou, X. Zhang, N. Zhao, D.K.C. So, K.-K. Wong, Decoupling or learning: joint power splitting and allocation in MC-NOMA with SWIPT, IEEE Trans. Commun. 68 (9) (2020) 5834–5848.

[2] M.M. Salim, D. Wang, H.A.E. Elsayed, Y. Liu, M. Abd Elaziz, Joint optimization of energy harvesting-powered two-way relaying D2D communication for IoT: a rate-energy efficiency tradeoff, IEEE Int. Things J. (2020).

[3] T. S reform, M.G. Shayesteh, H. Kalbkhani, Energy-efficient power allocation and user selection for mmWave-NOMA transmission in MM2 communications underlying cellular heterogeneous networks, IEEE Trans. Veh. Technol. 69 (9) (2020) 9866–9881.

[4] L. Qian, Y. Wu, F. Jiang, N. Yu, W. Lu, B. Lin, NOMA assisted multi-task multi-access mobile edge computing via deep reinforcement learning for industrial Internet of things, IEEE Trans. Ind. Inform. (2020).

[5] T.D.P. Perera, D.N.K. Jayakody, S.K. Sharma, S. Chatzinotas, J. Li, Simultaneous Wireless Information and Power Transfer (SWIPT): recent advances and future challenges, IEEE Commun. Surv. Tutor. 20 (1) (2017) 264–302.

[6] M. Moltafet, P. Azmi, N. Mokari, M.R. Javan, A. Mokdad, Optimal and fair energy-efficient resource allocation for energy harvesting-enabled PD-NOMA-based HetNets, IEEE Trans. Commun. 73 (13) (2018) 2054–2067.

[7] C. Li, K.-W. Chin, C. Yang, On complete targets coverage in RF-harvesting Internet of things networks, IEEE Commun. Lett. 23 (5) (2019) 922–925.

[8] X. Li, M. Liu, D. Deng, J. Li, C. Deng, Q. Yu, Power beacon assisted wireless power cooperative relaying using NOMA with hardware impairments and imperfect CSI, AEÜ, Int. J. Electron. Commun. 108 (2019) 275–286.

[9] J. Guo, X. Zhou, S. Durraz, Wireless power transfer via mmWave power beacons with directional beamforming, IEEE Commun. Lett. 8 (1) (2018) 17–20.

[10] Y. Ma, H. Chen, Z. Lin, Y. Li, B. Vucetic, Distributed and optimal resource allocation for power beacon-assisted wireless-powered communications, IEEE Trans. Commun. 63 (10) (Oct. 2015) 3569–3583.

[11] X. Zhang, Y. Wang, F. Zhou, N. Al-Dhahir, X. Deng, Robust resource allocation for MISO cognitive radio networks under two practical non-linear energy harvesting models, IEEE Commun. Lett. 22 (9) (2018) 1874–1877.

[12] F. Zhou, Z. Chu, H. Sun, R.Q. Hu, L. Hanzo, Artificial noise aidied secure cognitive beamforming for cooperative MISO-NOMA using SWIPT, IEEE J. Sel. Areas Commun. 36 (4) (2018) 918–931.

[13] W. Hao, G. Muta, H. Gacanin, Price-based resource allocation in massive MIMO-H-CRANs with limited fronthaul capacity, IEEE Commun. 17 (11) (2018) 7691–7703.

[14] J. Tang, Y. Yu, M. Liu, D. So, X. Zhang, Z. Li, K.-K. Wong, Joint power allocation and splitting control for SWIPT-enabled NOMA systems, IEEE Trans. Wirel. Commun. 19 (1) (2020) 120–133.

[15] T.M. Hoang, N.T. Tan, N.H. Hoang, P.T. Hiep, Performance analysis of decode-and-forward partial relay selection in NOMA systems with RF energy harvesting, Wirel. Netw. (2018) 1–11.

[16] G. Li, D. Mishra, Y. Hu, S. Atapattu, Optimal designs for relay-assisted NOMA networks with hybrid SWIPT scheme, IEEE Trans. Commun. 68 (6) (2020) 3588–3601.

[17] A. Rauniyar, P.E. Engelstad, O.N. Østerbo, Performance analysis of RF energy harvesting and information transmission based on NOMA with interfering signal for IoT relay systems, IEEE Sens. J. 19 (17) (2019) 7668–7682.

[18] A. Rauniyar, P. Engelstad, O.N. Østerbo, On the performance of bidirectional NOMA-SWIPT enabled IoT relay networks, IEEE Sens. J. (Aug. 2020) 1–16.

[19] A. Agarwal, A.K. Jagannanthan, L. Hanzo, Finite blocklength non-orthogonal cooperative communication relying on SWIPT-enabled energy harvesting relays, IEEE Trans. Commun. 68 (6) (Jun. 2020) 3326–3341.

[20] J.A. de Carvalho, D.B. da Costa, F.R.M. Lima, R. Oliveira, U.S. Dias, Non-orthogonal multiple access in two-hop wireless powered communication networks, IEEE Wirel. Commun. Lett. 9 (Sep. 2020) 1398–1402.

[21] H.M. Tran, C.B. Nguyen, P.T. Tran, D.T. Le, Outage analysis of RF energy harvesting cooperative communication systems over Nakagami-m fading channels with integer and non-integer m, IEEE Trans. Veh. Technol. 69 (3) (2020) 2785–2801.

[22] Q. Wang, Y. Jing, Performance analysis and scaling law of MRC/MRT relaying with CSI error in multi-pair massive MIMO systems, IEEE Trans. Commun. 16 (9) (2017) 5882–5896.

[23] L. Ni, X. Da, H. Hu, Y. Yuan, Z. Zhu, Y. Pan, Outage-constrained secrecy energy efficiency optimization for CRNs with non-linear energy harvesting, IEEE Access 7 (2019) 175215–175221.

[24] M. Babaei, U. Ayyagiri, M. Bajaran, L. Durak-Ata, BER performance of full-duplex cognitive radio network with nonlinear energy harvesting, IEEE Trans. Green Commun. Netw. 4 (2) (2020) 448–460.

[25] Y. Dong, M.J. Hessain, J. Cheng, Performance of wireless powered amplify and forward relaying over Nakagami-m fading channels with nonlinear energy harvester, IEEE Commun. Lett. 20 (4) (2016) 672–675.

[26] S. Pejzski, Z. Hadzi-Velkov, R. Scholer, Optimal power and time allocation for WPCNs with piece-wise linear EH model, IEEE Commun. Lett. 7 (3) (2017) 364–367.

[27] I.S. Gradishnien, I.M. Ryzhik, Table of Integrals, Series, and Products, 2014.