Comment on "Emergence of a Superconducting State from an Antiferromagnetic Phase in Single Crystals of the Heavy Fermion Compound Ce$_2$PdIn$_8$"

K. Uhlírová, J. Prokleška, and V. Sechovský
Charles University, DCMP, Ke Karlovu 5, Praha 2, 121 16, Czech Republic

A recently published Letter [1] has reported on the antiferromagnetism (AF) and ambient-pressure superconductivity (SC) in a Ce$_2$PdIn$_8$ single crystal with $T_N \sim 10$ K and $T_c = 0.68$ K, respectively. Although we very much appreciate the effort exerted to prepare and characterize this new heavy fermion (HF) superconductor (SC), we would like to add a cautionary note that the reported Néel temperature coincides remarkably with $T_N = 10.2$ K of CeIn$_3$ [2]. It therefore leads us to consider the possible presence of CeIn$_3$ in the samples that were investigated. In other Ce$_n$TIn$_{3n+2}$($n = 1, 2$) compounds [3–5] the AF is either absent (T=Co, Ir) or remarkably limited to much lower temperatures (T=Rh). These compounds form a quasi-two-dimensional tetragonal structure with the CeIn$_3$ and TIn$_2$ layers alternating along the (001) direction. Hence one might expect that the AF correlations develop within the CeIn$_3$ layers while the interaction between the layers will be weaker as reported for CeRhIn$_5$, an incommensurate AF ($T_N = 3.8$ K) [6]. The remarkable agreement of the T_N values in the reported Ce$_2$PdIn$_8$ with the well-known CeIn$_3$ is not discussed in the Letter [1]. Neither the striking discrepancy between their own results on single crystals [1] and polycrystals (reported paramagnetic down to 0.35K [7]) has been explained. The absence of SC in the polycrystalline sample is explained by an unconventional coupling sensitive to structural planar defects, which were also observed in Ce$_2$RhIn$_8$ [10]. In agreement with [1], the SC has a HF character and it is a bulk property of the compound but it does not emerge out of a long-range AF state below the Néel temperature of 10 K because the reported AF was due to presence of an impurity phase.

[1] D. Kaczorowski et al., Phys. Rev. Lett. 103, 027003 (2009).
[2] J. M. Lawrence et al., Phys. Rev. B 22, 4379 (1980).
[3] G. F. Chen et al., J. Phys. Soc. Jpn 71, 2836 (2002).

* Electronic address: klara@mag.mff.cuni.cz

FIG. 1: EDX element mapping (Ce-red, Pd-green, In-blue) of a typical polished sample. CeIn$_3$ (red region) is covered by a layer of Ce$_2$PdIn$_8$ and Ce$_{1.5}$Pd$_{1.5}$In$_7$ (thin dark green).
[4] J. S. Kim et al., Phys. Rev. B 69, 024402 (2004).
[5] R. Movshovich et al., Phys. Rev. Lett. 86, 5152 (2001).
[6] W. Bao et al., Phys. Rev. B 62, R14621 (2000).
[7] D. Kaczorowski et al., Phys. B 404, 2975 (2009).
[8] I. R. Harris et al., J. Less Comm. Met. 9, 7 (1965).
[9] D. V. Shtepa et al., Mow. Univ. Chem. Bull. 63, 162 (2008).
[10] E. G. Moshopoulou et al., Acta Crystallogr. Sect. B 62, 173 (2006).
[11] K. Uhlířová et al., Intermetallics, To Be Published (2010).