PARTIAL CLASSICALITY OF HILBERT MODULAR FORMS

CHI-YUN HSU

ABSTRACT. Let F be a totally real field and p a rational prime unramified in F. We prove a partial classicality theorem for overconvergent Hilbert modular forms: when the slope is small compared to a subset of weights, an overconvergent form is partially classical. We use the method of analytic continuation.

CONTENTS

1. Introduction 1
 Notations 3
2. Partially classical overconvergent forms 3
 2.1. Hilbert modular varieties 3
 2.2. Directional degrees 3
 2.3. Hilbert modular forms 6
 2.4. U_p-operators 6
3. Partial classicality 7
 3.1. Automatic analytic continuation 8
 3.2. Analytic continuation near vertices 9
 3.3. Norm estimates 12
 3.4. Finishing the proof of Theorem 3.1 14
References 15

1. INTRODUCTION

Coleman [Col96] proved that a p-adic overconvergent modular form of weight $k \in \mathbb{Z}$ must be classical if its slope, i.e., the p-adic valuation of the U_p-eigenvalue, is less than $k - 1$. His proof involves analyzing the rigid cohomology of modular curves. On the other hand, Buzzard [Buz03] and Kassaei [Kas06] developed the alternate method of analytic continuation to prove classicality theorems. The key is to understand the dynamic of the U_p Hecke operator.

Let F be a totally real field of degree g over \mathbb{Q}. In the situation of Hilbert modular forms associated to F, many results about classicality are also known. Coleman’s cohomological method was developed by Tian–Xiao [TX16] to prove a classicality theorem, assuming p is unramified in F. The method of analytic continuation was worked out first in the case when p splits completely in F by Sasaki [Sas10], then in the case when p is unramified by Kassaei [Kas16] and Pilloni–Stroh [PS17], and finally when p is allowed to be ramified by Bijakowski [Bij16].

Let Σ be the set of archimedean embeddings of F, which we identify with the set of p-adic embeddings of F through some fixed isomorphism $\mathbb{C} \cong \mathbb{C}_p$. For each prime \mathfrak{p} of F above p, denote by $\Sigma_{\mathfrak{p}} \subseteq \Sigma$ the subset of p-adic embeddings inducing \mathfrak{p}. Let $e_{\mathfrak{p}}$ be the ramification index, and $f_{\mathfrak{p}}$ the residue degree of \mathfrak{p}. Then the classicality theorem for overconvergent Hilbert modular forms proved by analytic continuation is as follows.

Date: May 31, 2022.
Theorem 1 (Bijakowski). Let f be an overconvergent Hilbert modular form of weight $k \in \mathbb{Z}^\Sigma \cong \mathbb{Z}^g$. Assume that for all $p \mid p$, $U_p(f) = a_p f$ such that

$$\text{val}_p(a_p) < \frac{1}{e_p} \inf_{\tau \in \Sigma_p} \{k_\tau\} - f_p,$$

where val_p is the p-adic valuation normalized so that $\text{val}_p(p) = 1$. Then f is classical.

Remark 1.1. When p is unramified in F, namely $e_p = 1$ for all $p \mid p$, Tian–Xiao proved the classicality theorem with weaker slope assumption: $\text{val}_p(a_p) < \inf_{\tau \in \Sigma_p} \{k_\tau\} - 1$. This slope bound is believed to be optimal [Bre10, Proposition 4.3].

In this paper, we prove some “partial” classicality theorems for overconvergent Hilbert modular forms. Let I be a subset of Σ. Breuil defined the notion of I-classical overconvergent Hilbert modular forms (see [Bre10, p. 3] or Definition 2.4). When $I = \emptyset$, they are the usual overconvergent forms; when $I = \Sigma$, they are the classical forms.

Theorem 2 (Theorem 3.1). Assume that p is unramified in F. Let f be an overconvergent Hilbert modular form of weight $k \in \mathbb{Z}^\Sigma$. Let $I \subseteq \Sigma$. Assume that for all $p \mid p$, $U_p(f) = a_p f$ such that

$$\text{val}_p(a_p) < \inf_{\tau \in I \cap \Sigma_p} \{k_\tau\} - f_p.$$

Then f is I-classical.

We use the method of analytic continuation to prove Theorem 2. In the situation when $I = \Sigma$, this recovers the classicality theorem proven by Kassaei or Pilloni–Stroh, who assumed p is unramified. Although when $I = \Sigma$, Bijakowski proved a classicality theorem not assuming p is unramified, it is Kassaei’s approach that is more suitable for partial classicality. Indeed, when studying the dynamic of U_p-operators, it has been proven to be successful to use degree to parametrize regions on the Hilbert modular variety, and analyze how U_p-operators influence degrees. Kassaei made efforts to analyze how U_p-operators affect the more refined direction degrees, but only when p is unramified. On the other hand, Bijakowski was able to use only the degree function to prove a classicality theorem allowing p to be ramified. In the situation of partial classicality, the weight k_τ with $\tau \in \Sigma$ in the slope condition is independent of each other, while the U_p-operator intertwines all directional degrees inducing p. As a result, we cannot avoid analyzing the direction degrees like Bijakowski did.

We mention some related work on partial classicality theorems. Barrera Salazar and Williams [BSW21] took the perspective of overconvergent cohomology for a general quasi-split reductive group G over \mathbb{Q} with respect to a parabolic subgroup Q of $G = G/\mathbb{Q}_p$. Applying their work to the situation of Hilbert modular forms (i.e., $G = \text{Res}_{F/\mathbb{Q}} \text{GL}_2$), we would recover Theorem 2 in the restrictive case of $I \subseteq \Sigma$ such that $I \cap \Sigma_p$ is either Σ_p or \emptyset for each $p \mid p$. In [Bre10, Proposition 4.3(i)] for the special case $S > 1 = S$, Breuil gave a conjecture about partial classicality: In the restrictive case when I is either Σ_p or \emptyset for each $p \mid p$, if f satisfies the weaker assumption $\text{val}_p(a_p) < \inf_{\tau \in \Sigma_p} \{k_\tau\} - 1$ for all $p \mid p$ such that $I \cap \Sigma_p \neq \emptyset$, then f is I-classical. Yiwen Ding [Din17, Appendix A] studied partial classicality from the perspective of Galois representations. He also did not restrict to the case when $I \cap \Sigma_p$ is either Σ_p or \emptyset. Namely, let ρ_f: $\text{Gal}_F \to \text{GL}_2(L)$ be the Galois representation associated to an overconvergent Hilbert Hecke eigenform f, where L is a finite extension of \mathbb{Q}_p. If $\text{val}_p(a_p) < \inf_{\tau \in I \cap \Sigma_p} \{k_\tau\} - 1$, then $\rho_f|_{\text{Gal}_{F_p}}$ is $(I \cap \Sigma_p)$-de Rham.

There are many interesting questions related to I-classical overconvergent forms. In the direction of classicality, can we prove Theorem 2 not assuming k_τ is an integer for $\tau \notin I$? If f is I-classical and $\text{val}_p(a_p) < \inf_{\tau \in I \cap \Sigma_p} \{k_\tau\} - f_p$, will f be $I \cup J$-classical (see [Bre10, Conjecture 3.2 (ii)])? Relating to Galois representations, if f is an I-classical Hilbert Hecke eigenform, does the Galois representation ρ_f satisfy the condition that $\rho_f|_{\text{Gal}_{F_p}}$ is $(I \cap \Sigma_p)$-de Rham for all $p \mid p$? If this is true, one can further...
ask in the flavor of Kisin’s interpretation of Fontaine–Mazur conjecture: if \(f \) is overconvergent and \(\rho_f|_{{\text{Gal}}_{\mathbb{Q}_p}} \) is \((I \cap \Sigma_p)\)-de Rham for all \(p \mid p \), is \(f \) \(I \)-classical?

For the organization of this paper: In Section 2, we define the degree function and partially classical overconvergent forms. In Section 3, we prove Theorem 2.

Notations. Fix a totally real field \(F \) of degree \(g \) over \(\mathbb{Q} \). Let \(\Sigma \) denote the set of archimedean places of \(F \); in particular \(\# \Sigma = g \). Fix a rational prime \(p \) which is unramified in \(F \) and \((p) = p_1 \cdots p_r \) in \(F \).

For each prime \(p \) of \(F \) above \(p \), let \(f_p \) be the residue degree of \(p \). Fix an isomorphism \(\iota_p: \mathbb{C} \cong \overline{\mathbb{Q}}_p \), and identify archimedean embeddings \(\tau: F \to \mathbb{C} \) with \(p \)-adic embeddings \(\iota_p \circ \tau: F \to \overline{\mathbb{Q}}_p \). For each prime \(p \) of \(F \) above \(p \), let \(\Sigma_p \subseteq \Sigma \) be the subset of \(p \)-adic embeddings inducing \(p \). Hence \(\# \Sigma_p = f_p \).

Let \(L \) be a finite extension of \(\mathbb{Q}_p \), containing the image of all \(p \)-adic embeddings \(\iota \circ \tau \) of \(F \). Since \(p \) is assumed to be unramified in \(F \), we may also assume that \(L \) is an unramified extension of \(\mathbb{Q}_p \).

Let \(k_L \) denote the residue field of \(L \). Let \(\delta_F \) be the different ideal of \(F \).

2. Partially classical overconvergent forms

2.1. Hilbert modular varieties.

Let \(N \geq 4 \) be an integer, and \(p \nmid N \). Let \(\mathfrak{c} \) be a fractional ideal of \(F \). Denote by \(\mathfrak{c}^+ \subseteq \mathfrak{c} \) the cone of totally positive elements, i.e., the elements in \(\mathfrak{c} \) which are positive under every embedding \(\tau: F \to \mathbb{R} \). Let \(Y_\mathfrak{c} \to \text{Spec} \mathcal{O}_L \) be the Hilbert modular scheme classifying \((A, H) = (A/S, i, \lambda, \alpha, H) \) where

- \(A \) is an abelian scheme of relative dimension \(g \) over an \(\mathcal{O}_L \)-scheme \(S \),
- \(i: \mathcal{O}_F \to \text{End}_S(A) \) is a ring homomorphism. Here \(i \) is called a real multiplication on \(A \),
- \(\lambda: (\mathcal{P}_A; \mathcal{P}_A^+) \to (\mathfrak{c}, \mathfrak{c}^+) \) is an isomorphism of \(\mathcal{O}_F \)-modules identifying the positive elements, and inducing an isomorphism \(A \otimes \mathcal{O}_F \mathfrak{c} \cong A' \). Here \(\mathcal{P}_A = \text{Hom}_{\mathcal{O}_F}(A, A')^{\text{sym}} \) is the projective \(\mathcal{O}_F \)-module of rank \(1 \) consisting of symmetric morphisms from \(A \) to its dual abelian scheme \(A' \), and \(\mathcal{P}_A^+ \subseteq \mathcal{P}_A \) is the cone of polarizations. Here \(\lambda \) is called a \(\mathfrak{c} \)-polarization of \(A \),
- \(\alpha: \mu_N \otimes \delta_F^{-1} \to A \) is a closed immersion of \(\mathcal{O}_F \)-group schemes. Here \(\alpha \) is called a \(\Gamma_1(N) \)-level structure, and
- \(H \subseteq A[p] \) is a finite flat \(\mathcal{O}_F \)-subgroup scheme of rank \(p^\beta \) which is isotropic with respect to the \(\mu \)-Weil pairing for some polarization \(\mu \in \mathcal{P}_A^+ \) of degree prime to \(p \).

Let \(\text{Cl}(F)^+ \) be the narrow class group of \(F \), namely the quotient of the abelian group of fractional ideals of \(F \) by the subgroup of principal ideals generated by totally positive elements. Let \(\{c_i\} \) be a set of representatives of \(\text{Cl}(F)^+ \). Define \(Y = \prod_i Y_{c_i} \), which is independent of the choice of the representatives \(\{c_i\} \). Denote by \(\mathcal{Y} \) the completion of \(Y \) along its special fiber, and by \(\mathcal{Y} \) the rigid generic fiber of the formal scheme \(\mathcal{Y} \). We also use this convention of letter styles for other schemes: when \(K/\mathbb{Q}_p \) is a finite extension and \(S \) is a scheme over \(\mathcal{O}_K \), we denote by \(\mathcal{S} \) the associated formal scheme and by \(\mathcal{S} \) the rigid generic fiber of \(\mathcal{S} \).

2.2. Directional degrees.

We first recall the definition of the degree for a commutative finite flat group scheme. See [Far10] for more detailed studies of the concept.

Let \(S \) be a scheme and \(G \) a commutative finite flat group scheme over \(S \). Let \(\omega_G \) be the sheaf of invariant differentials on \(G \). Define

\[
\delta_G := \text{Fitt}_0 \omega_G
\]

as the 0-th Fitting ideal of \(\omega_G \). This is an invertible ideal sheaf in \(\mathcal{O}_S \).

Now let \(K/\mathbb{Q}_p \) be a finite extension and \(S = \text{Spec} \mathcal{O}_K \). Then the degree of \(G \) is defined as [Far10, Définition 4] the rational number

\[
\deg G = \deg \omega_G := \text{val}_p(\delta_G).
\]

Writing \(\omega_G = \bigoplus_i \mathcal{O}_K/x_i \mathcal{O}_K \), then \(\deg G = \sum_i \text{val}_p(x_i) \). Equivalently, \(\deg G = \ell(\omega_G)/e_K \), where \(\ell(\omega_G) \) is the length of the \(\mathcal{O}_K \)-module \(\omega_G \), and \(e_K \) is the ramification index of \(K \). Recall that the
height $\text{ht} G$ of G is such that $|G| = p^{\text{ht} G}$. Hence G is étale if and only if $\deg G = 0$, and G is multiplicative if and only if $\deg G = \text{ht} G$.

More generally, let S be a scheme over \mathcal{O}_K. Each closed point s in the rigid analytic space S is defined over the ring of integer of a finite extension of K [BLR95, Section 8.3, Lemma 6]. Hence we obtain the degree function

$$\deg: S \to [0, \infty) \cap \mathbb{Q} \quad s \mapsto \deg G_s.$$

The inverse image of a (open, closed, or half-open) interval in $[0, \infty)$ is an admissible open of S. Moreover, when the interval is closed and its end points $a \leq b$ are rational numbers, then the inverse image is quasi-compact.

We record some properties of \deg which we will constantly use for computation.

Lemma 2.1. [Far10, lemme 4] Let $0 \to G' \to G \to G'' \to 0$ be a short exact sequence of finite flat group schemes over S. Then $\deg G = \deg G' + \deg G''$.

Lemma 2.2. [Far10, p. 2] Let $\lambda: A \to B$ be an isogeny of p-power degree between abelian schemes over S. Let $G := \ker \lambda$. Let $\omega_{A/S}$ and $\omega_{B/S}$ be the sheaves of invariant differentials of A and B, respectively. Let $\lambda^*: \omega_{B/S} \to \omega_{A/S}$ be the induced pullback map. Then

$$\deg G = \text{val}_p(\det \lambda^*).$$

In particular, if A is of dimension g, then $\deg A[p] = g$.

When G has an \mathcal{O}_F-module structure, we can define directional degree functions on S. Instead of a general exposition, we only explain this for $S = \mathcal{Y}$, the Hilbert modular variety over L. See also [PS17, Section 4.2] or [Kas16, Section 2.9]. Let $(\mathcal{A}^{\text{univ}}, H^{\text{univ}})$ be the universal abelian scheme over the Hilbert modular variety \mathcal{Y}. Let $\omega_{H^{\text{univ}}}$ be the sheaf of invariant differentials of H^{univ}, which is an $\mathcal{O}_F/p\mathcal{O}_F$-module. Since p is unramified in F, Σ is in bijection with the embeddings $\mathcal{O}_F/p\mathcal{O}_F \hookrightarrow k_L$.

We decompose $\omega_{H^{\text{univ}}}$ according to the embeddings $\mathcal{O}_F/p\mathcal{O}_F \hookrightarrow k_L$ to obtain

$$\omega_{H^{\text{univ}}} = \bigoplus_{\tau \in \Sigma} \omega_{H^{\text{univ}}, \tau}.$$

For each $\tau \in \Sigma$, define $\delta_\tau := \text{Fit}_{\delta}(\omega_{H^{\text{univ}, \tau}})$, which is an invertible ideal sheaf in \mathcal{O}_Y.

Let $y = (\mathcal{A}, H)$ be a closed point of \mathcal{Y}. Let K be the finite extension of L over which y is defined. Then we have the rational number $\deg_{\omega_{H, \tau}}$. In addition, $\deg_{\omega_{H, \tau}} \in [0, 1]$. Indeed, for each $p | p_\tau$, the subgroup scheme $H[p]$ of H is a Raynaud group scheme over $\text{Spec} \mathcal{O}_K$, namely a $k_p = \mathcal{O}_F/p\mathcal{O}_F$-vector space scheme of dimension 1. For each tuple $(d_{\tau})_{\tau \in \Sigma_p}$ of elements of \mathcal{O}_K with $\text{val}_p(d_{\tau}) \leq 1$, Raynaud associates a k_p-vector space scheme of dimension 1

$$H_{(d_{\tau})} := \text{Spec} \mathcal{O}_K[X_{\tau}, \tau \in \Sigma_p]/(X_{\sigma-1 \tau}^p - d_{\tau} X_{\tau}),$$

where σ is the Frobenius automorphism of L over \mathbb{Q}_p lifting $x \mapsto x^p$ modulo p, and the k_p-action on X_{τ} is given by the character $k_p^* \to \mathcal{O}_K^*$ induced by $\tau: F \to L$. Moreover, each k_p-vector space scheme of dimension 1 over \mathcal{O}_K is isomorphic to some $H_{(d_{\tau})}$ [Ray74, THÉORÈME 1.4.1]. Since $\omega_{H_{(d_{\tau})}, \tau} = \mathcal{O}_K/d_{\tau} \mathcal{O}_K$, we have $\deg_{\omega_{H, \tau}} = \deg_{\omega_{H_{(d_{\tau})}, \tau}} = \text{val}_p(d_{\tau}) \in [0, 1]$.

Hence for each $\tau \in \Sigma$, we can define the directional degree function

$$\deg_{\tau}: \mathcal{Y} \to [0, 1] \cap \mathbb{Q}, \quad y = (\mathcal{A}, H) \mapsto \deg_{\omega_{H, \tau}},$$

as well as

$$\deg: \mathcal{Y} \to [(0, 1] \cap \mathbb{Q})^\Sigma, \quad y \mapsto (\deg_{\tau} y).$$

As before, the inverse image of \deg_{τ} (resp. \deg) of a subset of $[0, 1]$ (resp. $[0, 1])^\Sigma$ defined by a finite number of affine inequalities is an admissible open of \mathcal{Y}. Moreover, when the inequalities are all non-strict and the coefficients are all rational numbers, then the inverse image is quasi-compact.
Given $I \subseteq \Sigma$, we define
\[
\mathcal{F}_I := \prod_{\tau \in \Sigma} \mathcal{F}_{I, \tau}, \quad \text{where } \mathcal{F}_{I, \tau} = \begin{cases}
[0, 1], & \tau \in I \\
[1, 1], & \tau \notin I.
\end{cases}
\]
Then \mathcal{F}_I is a closed $|I|$-dimensional hypercube in $([0, 1] \cap \mathbb{Q})^\Sigma = \mathcal{F}_\Sigma$. We also define $x_I \in [0, 1]^\Sigma$ to be the vertex
\[
x_{I, \tau} = \begin{cases}
0, & \tau \in I \\
1, & \tau \notin I.
\end{cases}
\]
Hence the vertices of \mathcal{F}_I are exactly the x_J’s with $J \subseteq I$. Denote by \mathcal{Y}_I the quasi-compact admissible open $\deg^{-1}\mathcal{F}_I$ of \mathcal{Y}.

Definition 2.3. Let $p \mid p$ be a prime of F. For $\tau \in \Sigma_p$, define the *twisted directional degree*
\[
\tilde{\deg}_\tau : \mathcal{Y} \to [0, \frac{p^f - 1}{p - 1}] \cap \mathbb{Q}
\]
by
\[
\tilde{\deg}_\tau := \sum_{j=0}^{f_p - 1} p^{f_p - 1 - j} \deg_{\sigma_j \circ \tau} = p^{f_p - 1} \deg_\tau + p^{f_p - 2} \deg_{\sigma_0 \circ \tau} + \cdots + \deg_{\sigma_{f_p - 1} \circ \tau}.
\]
Here σ is the Frobenius automorphism of the unramified extension L over \mathbb{Q}_p, lifting $x \mapsto x^p$ mod p. We also define
\[
\tilde{\deg} : \mathcal{Y} \to ([0, \frac{p^f - 1}{p - 1}] \cap \mathbb{Q})^\Sigma \quad y \mapsto (\tilde{\deg}_\tau y)_{\tau}.
\]
We use the overhead tilde notation ($\tilde{\cdot}$) to denote the image under the linear transformation
\[
\mathbb{R}^\Sigma \to \mathbb{R}^\Sigma \quad (x_\tau)_{\tau} \mapsto (\tilde{x}_\tau)_{\tau}, \quad \text{where } \tilde{x}_\tau = \sum_{j=0}^{f_p - 1} p^{f_p - 1 - j} x_{\sigma_j \circ \tau} \text{ for } \tau \in \Sigma_p.
\]
In particular, if $(x_\tau)_{\tau} = \deg y$ for some $y \in \mathcal{Y}$, then $(\tilde{x}_\tau)_{\tau} = \tilde{\deg} y$. For example, \tilde{x}_I is the vertex of $\tilde{\mathcal{F}}_\Sigma$ given by
\[
\tilde{x}_I, \tau = \sum_{j=0}^{f_p - 1} p^{f_p - 1 - j} x_{I, \sigma_j \circ \tau} \text{ for } \tau \in \Sigma_p.
\]
See Figures 1 and 2 for an example of \mathcal{F}_Σ and $\tilde{\mathcal{F}}_\Sigma$.
2.3. Hilbert modular forms. Let $\omega = \omega_{\text{Am}}$ be the sheaf of relative differentials of the universal abelian scheme over Y. The sheaf ω is an $\mathcal{O}_F \otimes_\mathbb{Z} \mathcal{O}_Y$-module, locally free of rank 1. The \mathcal{O}_F-module structure on ω provides the decomposition with respect to embeddings $\tau : F \to L$

$$\omega = \bigoplus_{\tau \in \Sigma} \omega_\tau,$$

where each ω_τ is an \mathcal{O}_Y-module, locally free of rank 1. Given $k = (k_\tau)_{\tau \in \Sigma} \in \mathbb{Z}^\Sigma$, we define an invertible sheaf on Y

$$\omega^k = \bigotimes_{\tau \in \Sigma} \omega_\tau^{k_\tau}.$$

We use the same notation ω^k for the invertible sheaf on \mathcal{Y} coming from analytifying ω^k.

The space of *Hilbert modular forms of level $\Gamma_1(N) \cap \Gamma_0(p)$ and weight k* is defined to be $H^0(Y, \omega^k)$. By GAGA and Koecher principle, it is the same as $H^0(\mathcal{Y}, \omega^k)$ [PS17, Proposition 5.1.2].

Definition 2.4. Let $I \subseteq \Sigma$. The space of *I-classical overconvergent* Hilbert modular forms of level $\Gamma_1(N) \cap \Gamma_0(p)$ and weight k is

$$H^0(I, \omega^k) := \varprojlim_{\mathcal{V}} H^0(\mathcal{V}, \omega^k),$$

where \mathcal{V} runs through strict neighborhoods of $\mathcal{Y}_{\mathcal{F}_I}$ in \mathcal{Y}.

When $I = \varnothing$, I-classical simply means overconvergent, and when $I = \Sigma$, I-classical means classical. Whenever $J \subseteq I$, we have a map

$$H^0(I, \omega^k) \to H^0(J, \omega^k)$$

given by restriction. This is an injective map.

2.4. *U_p-operators.* Let $p \mid p$ be a prime of F above p and f_p the residue degree of p.

Let $Y(p) \to \text{Spec } L$ be the moduli space whose S-points consist of (A, H, H_1), where $(A, H) \in Y(S)$ and $H_1 \subseteq A[p]$ is a finite flat isotropic \mathcal{O}_F-subgroup scheme of rank p^{f_p} and $H_1 \neq H[p]$. We have the U_p-correspondence of $Y \otimes_{\mathcal{O}_L} L$:

$$\begin{array}{ccc}
Y(p) & \xleftarrow{p_1} & Y \otimes_{\mathcal{O}_L} L \\
Y \otimes_{\mathcal{O}_L} L & \xrightarrow{p_2} & Y \otimes_{\mathcal{O}_L} L
\end{array}$$
Here the projections are
\[p_1: (\overline{A}, H, H_1) \mapsto (A, H), \]
and
\[p_2: (\overline{A}, H, H_1) \mapsto (A/H_1, \tilde{H}), \]
where \(\tilde{H} \) is the image of \(H \) under \(A \to A/H_1 \).

Let \(Y(p)^{an} \) be the rigid analytification of \(Y(p) \) \cite[Section 5.4, Corollary 5]{BLR95}, which is a rigid analytic space over \(L \). We have the induced \(U_p \)-correspondence, \(p_1 \) and \(p_2 \) over \((Y \otimes L)^{an} \). Note that \((Y \otimes L)^{an} \) contains \(Y \). Let \(\mathcal{Y}(p) := Y(p)^{an} \times_{(Y \otimes L)^{an}, p_1} Y \). We then have the \(U_p \)-correspondence, \(p_1 \) and \(p_2 \) over \(\mathcal{Y} \).

Given a subset \(U \) of \(\mathcal{Y} \), we then obtain a subset of \(\mathcal{Y} \)
\[U_p(U) := p_2 p_1^{-1}(U). \]
Given two admissible opens \(U, V \subseteq \mathcal{Y} \) such that \(U_p(V) \subseteq U \), we have \(U_p: \omega^{\tilde{L}}(U) \to \omega^{\tilde{L}}(V) \) defined by
\[(U_p f)(A, H) = \frac{1}{p_1(L)} \sum_{(A/H_1, H) \in U_p(A, H)} \text{pr}^* f(A/H_1, \tilde{H}), \]
where \(\text{pr}: A \to A/H_1 \) is the natural projection.

We record the dynamic of \(U_p \) with respect to the (twisted) directional degrees. See \cite[Proposition 5.1.4, 5.1.14]{Kas16} or \cite[Proposition 4.4.1, 4.4.2]{PS17}.

Proposition 2.5. Let \(y = (\overline{A}, H) \in \mathcal{Y} \). Let \(p \mid p \) be a prime of \(F \) above \(p \), and \(y' = (A/H_1, \tilde{H}) \in U_p(y) \). Then
1. \(\deg_{\tau}(y') \geq \deg_{\tau}(y) \) for all \(\tau \in \Sigma_p \), and
2. if
 \[\sum_{\tau \in \Sigma_p} \deg_{\tau} y' = \sum_{\tau \in \Sigma_p} \deg_{\tau} y, \]
equivalently, \(\sum_{\tau \in \Sigma_p} \deg_{\tau} y' = \sum_{\tau \in \Sigma_p} \deg_{\tau} y \), then \(\deg_{\tau} y \in \{0, 1\} \) for all \(\tau \in \Sigma_p \).

3. **Partial classicality**

The content of this section is to prove the following partial classicality theorem.

Theorem 3.1. Let \(f \) be an overconvergent Hilbert modular form of weight \(k \). Let \(I \subseteq \Sigma \). Assume that for all \(p \mid p \), \(U_p(f) = a_p f \) such that
\[\text{val}_p(a_p) < \inf_{\tau \in I \cap \Sigma_p} \{k_{\tau}\} - f_p. \]
Then \(f \) is \(I \)-classical.

Remark 3.2. In the case of \(I = \Sigma \), this is a theorem of Kassaei \cite{Kas16} or Pilloni–Stroh \cite{PS17}. Although when \(I = \Sigma \), Bijakowski \cite{Bij16} proved a classicality theorem not assuming \(p \) is unramified, it is Kassaei’s approach that is more suitable for partial classicality. Both use the idea of analytic continuation. Kassaei made efforts to analyze how \(U_p \)-operators affect \(\deg_{\tau} \) for all \(\tau \in \Sigma_p \), but only when \(p \) is unramified. On the other hand, Bijakowski was able to use only \(\deg H[p] \) to prove the classicality even when \(p \) is ramified. In the situation of partial classicality, the weight \(k_{\tau} \) with \(\tau \in \Sigma \) in the slope condition is independent of each other, while the \(U_p \)-operator intertwines all directional degrees inducing \(p \), so we do need to understand the directional degrees.
Throughout the section, we will assume that \(p \) is inert in \(F \). To prove Theorem 3.1 for a general unramified \(p \), we can apply the same argument to each prime \(p \mid p \). For example, see [Sas10] and [PS17, Lemma 7.4.2].

Now we begin to prove Theorem 3.1 assuming \(p \) is inert in \(F \); in particular, \(f_p = g \). We will show that if \(U_p(f) = a_p f \) such that \(\text{val}_p(a_p) < \inf_{\tau \in I} k_{\tau} - g \), then \(f \) is \(J \)-classical for all \(J \subseteq I \), and hence \(f \) is \(I \)-classical. We do this by induction on \(|J| \).

3.1. Automatic analytic continuation. In the subsection, with the assumption that the slope of \(f \) is finite (but not necessarily small), we can already show that \(f \) can be analytically continued to a large region in \(\mathcal{Y} \).

Let \(I \subseteq \Sigma \) and \(\epsilon > 0 \). Define

\[
U_I(\epsilon) = \{ y \in \mathcal{Y} : \sum_{\tau \in I} \hat{\deg}_\tau y \geq \sum_{\tau \in I} \hat{x}_{I,\tau} + \epsilon, \hat{\deg}_\tau y \geq p^{g-2} + \cdots + 1 + \epsilon, \forall \tau \notin I \}.
\]

See Figures 3 and 4 for examples of the image of \(U_I(\epsilon) \) under \(\deg \), and Figures 5 and 6 for examples of the image of \(U_I(\epsilon) \) under \(\tilde{\deg} \).

Because \(U_I(\epsilon) \) is defined by a finite number of affine inequalities with \(\hat{\deg}_\tau \) (equivalently, with \(\deg \)), we know that \(U_I(\epsilon) \) is an admissible open of \(\mathcal{Y} \). Note that whenever \(\epsilon' < \epsilon \), we have \(U_I(\epsilon') \supseteq U_I(\epsilon) \).

Let \(f \) be an overconvergent Hilbert modular form of weight \(k \). Assume that \(U_p(f) = a_p f \) with \(\text{val}_p(a_p) < \infty \).

Lemma 3.3. Let \(I \subseteq \Sigma \). Suppose that \(f \) is defined on a strict neighborhood of \(\deg^{-1} x_J = \tilde{\deg}^{-1} \tilde{x}_J \) for all \(J \subseteq I \). Then \(f \) can be extended to \(U_I(\epsilon) \) for any rational number \(\epsilon > 0 \).

Proof. First of all, note that \(U_I(\epsilon) \) is \(U_p \)-stable because \(U_p \) increases twisted directional degrees (Proposition 2.5(1)).
By Proposition 2.5(2), U_p strictly increases $\sum_{\tau \in \Sigma} \tilde{d}_{\tau}$ except at points $y \in \mathcal{Y}$ such that $\deg y \in \{0, 1\}^g$, i.e., $\deg y = x_J$ for some $J \subseteq \Sigma$. Suppose that $y \in \mathcal{U}_i(\varepsilon)$ satisfies $\deg y = x_J$. We claim that $J \subseteq I$. Indeed, for $\tau \in J$, $\deg_{\tau} y \leq p^{g-2} + \cdots + 1$. Hence the second condition of $\mathcal{U}_i(\varepsilon)$

$$\deg_{\tau} y \geq p^{g-2} + \cdots + 1 + \varepsilon, \forall \tau \notin I$$

says that $\tau \notin I$ implies $\tau \notin J$, i.e., $J \subseteq I$. The first condition of $\mathcal{U}_i(\varepsilon)$

$$\sum_{\tau \in I} \tilde{d}_{\tau} y \geq \sum_{\tau \in I} x_{I, \tau} + \varepsilon$$

then says that $J \neq I$.

For each $J \subseteq I$, let \mathcal{V}_J be a strict neighborhood of $\deg^{-1} x_J$ on which f is defined. Moreover we can choose \mathcal{V}_J in the form

$$\mathcal{V}_J = \{ y \in \mathcal{Y} : \deg_{\tau} y \leq \varepsilon_{\tau} \text{ if } \tau \in J, \deg_{\tau} y \geq 1 - \varepsilon_{\tau}, \text{ if } \tau \notin J \},$$

for some rational $\varepsilon_{\tau} > 0$. On the other hand, let $\varepsilon_{\tau}' < \varepsilon_{\tau}$ be a rational number, and define

$$\mathcal{V} = \left\{ y \in \mathcal{Y} : \begin{array}{l}
\deg_{\tau} y \geq \varepsilon_{\tau}' \text{ if } \tau \in I, \deg_{\tau} y \leq 1 - \varepsilon_{\tau}', \text{ if } \tau \notin I; \\
\sum_{\tau \in I} \deg_{\tau} y \geq \sum_{\tau \in I} x_{I, \tau} + \varepsilon, \deg_{\tau} y \geq p^{g-2} + \cdots + 1 + \varepsilon, \forall \tau \notin I
\end{array} \right\}.$$

Because \mathcal{V}_J’s and \mathcal{V} are defined by a finite number of affine non-strict inequalities with rational coefficients, they are quasi-compact admissible opens of $\mathcal{U}_i(\varepsilon)$. We hence have an admissible cover $\mathcal{U}_i(\varepsilon) = \bigcup_{J \subseteq I} \mathcal{V}_J \cup \mathcal{V}$.

Since \mathcal{V} is disjoint from $\deg^{-1} x_J$ for any $J \subseteq I$ from its definition, U_p strictly increases $\sum_{\tau \in \Sigma} \tilde{d}_{\tau}$ on \mathcal{V}. Using the Maximum Modulus Principle, the quasi-compactness of \mathcal{V} implies that there is a positive lower bound for the increase of $\sum_{\tau \in \Sigma} \deg_{\tau}$ under U_p on \mathcal{V}. Because $\mathcal{U}_i(\varepsilon)$ is U_p-stable, there exists $M > 0$ such that $U_p^M \mathcal{V} \subseteq \bigcup_{J \subseteq I} \mathcal{V}_J$. Since f is defined on $\bigcup_{J \subseteq I} \mathcal{V}_J$, we may define f on \mathcal{V} by $(U_p^{\varepsilon})^M f$. On the intersection $(\bigcup_{J \subseteq I} \mathcal{V}_J) \cap \mathcal{V}$, the definitions of f coincide since a_p is the U_p-eigenvalue of f. We can then define f on the whole $\mathcal{U}_i(\varepsilon)$ through the admissible cover $\mathcal{U}_i(\varepsilon) = \bigcup_{J \subseteq I} \mathcal{V}_J \cup \mathcal{V}$.

3.2. Analytic continuation near vertices

In this subsection, we will make use of the small slope assumption (1) to extend f to a strict neighborhood of $\deg^{-1} x_J$.

Let’s first give an outline of the strategy. By (1), for any small enough $\varepsilon > 0$ we have

$$\val_p(a_p) \leq \inf_{\tau \in I} k_{\tau} - g - \varepsilon \sum_{\tau \in I} k_{\tau}.$$

Possibly making it smaller, we will first fix such a rational number ε. Then we will choose a rational number $\delta > 0$ based on ε, and define a sequence of strict neighborhoods

$$S_{I,0}(\delta) \supseteq S_{I,1}(\delta) \supseteq \cdots$$

of $\deg^{-1} x_J$. When $\delta' < \delta$ we will show that $S_{I,0}(\delta') \subseteq S_{I,0}(\delta)$. We have extended f to $\mathcal{U}_i(\delta)$ by Lemma 3.3. Further applying some power of U_p^{ε}, we will be able to extend f to $S_{I,0}(\delta) \setminus S_{I,0}(\delta')$, named f_m. We will also define F_m on $S_{I,0}(\delta)$. With the help of the estimates in Section 3.3, we will show that when $m \to \infty$, f_m and F_m glue to define an extension of f on $S_{I,0}(\delta)$.

To begin, we prove the following lemma regarding the twisted directional degrees of points in the set $U_p(y)$, when $y \in \mathcal{Y}$ satisfies $\deg y = x_J$. The lemma will be used to decompose the U_p-correspondence $\mathcal{Y}(p)$ over $S_{I,0}(\delta)$ into the special part $\mathcal{Y}(p)^{sp}$ and the non-special part $\mathcal{Y}(p)^{nsp}$, and so the U_p-operator becomes $U_p^{sp} + U_p^{nsp}$.

Lemma 3.4. Let $y = (A/H) \in \mathcal{Y}$. Let $y_1 = (A/H_1, \bar{H} = A[p]/H_1)$ and $y_2 = (A/H_2, \bar{H} = A[p]/H_2)$ be in $U_p(y)$ and $y_1 \neq y_2$.

ii. There exists arbitrarily small positive rational number \(\epsilon \) so that if \(|\text{deg}_\tau(y) - \bar{x}_{1,\tau}| \leq \epsilon \) and \(|\text{deg}_\tau(y_1) - \bar{x}_{1,\tau}| \leq \epsilon \) for some \(I \subseteq \Sigma \), then

\[
\text{deg}_\tau H_2 = \inf(\text{deg}_\tau H, \text{deg}_\tau H_1), \quad \text{for all } \tau \in \Sigma.
\]

In particular, \(y_2 \in U_\phi(\epsilon) \).

Proof. For the proof of \(i. \), see \cite[Lemma 5.1.5 2(a)]{Kas16}. The first statement of \(ii. \) follows from \cite[Lemma 5.1.5 2(a)]{Kas16}.

The only statement remained to be proved is the one after “In particular”. By assumption,

\[
\text{deg}_\tau H_2 = \inf(\text{deg}_\tau H, \text{deg}_\tau H_1) = \begin{cases}
\text{deg}_\tau H & \text{if } \tau \in I \\
\text{deg}_\tau H_1 & \text{if } \tau \not\in I
\end{cases}
\]

and

\[
\text{deg}_\tau y_2 = (p^{g-1} + \cdots + 1) - \text{deg}_\tau H_2 = \begin{cases}
(p^{g-1} + \cdots + 1) - \text{deg}_\tau H & \tau \in I \\
(p^{g-1} + \cdots + 1) - \text{deg}_\tau H_1 & \tau \not\in I.
\end{cases}
\]

If we further require that \(\epsilon < \frac{1}{2}(p^{g-1} - p^{g-2} - \cdots - 1) \), then \(\text{deg}_\tau y_2 \geq p^{g-2} + \cdots + 1 + \epsilon \), i.e., \(y_2 \in U_\phi(\epsilon) \).

\[\square \]

Corollary 3.5. Let \(I \subseteq \Sigma \) and \(I \neq \emptyset \). Let \(\epsilon \) be a rational number as in Lemma 3.4 \(ii. \) such that \(\epsilon < \frac{1}{2}(p^{g-1} - p^{g-2} - \cdots - 1) \). Let \(y \in \mathcal{Y} \) be such that \(|\text{deg}_\tau(y) - \bar{x}_{1,\tau}| \leq \epsilon \) for all \(\tau \in \Sigma \). Then there exists at most one point \(y_1 \in U_p(y) \) such that \(|\text{deg}_\tau(y_1) - \bar{x}_{1,\tau}| \leq \epsilon \) for all \(\tau \in \Sigma \).

Proof. By the proof of Lemma 3.4 \(ii. \), if \(y_2 \in U_p(y) \) and \(y_2 \neq y_1 \), then \(\text{deg}_\tau(y_2) \geq p^{g-1} - \epsilon \) for all \(\tau \in \Sigma \). Since \(I \neq \emptyset \), we pick an arbitrary \(\tau_0 \in I \). Then

\[
\text{deg}_{\tau_0}(y_2) - \bar{x}_{1,\tau_0} \geq (p^{g-1} - \epsilon) - (p^{g-2} + \cdots + 1) > \epsilon.
\]

\[\square \]

For any rational number \(\delta > 0 \), consider the strict neighborhood of \(\text{deg}_\tau^{-1}x_I \):

\[
S_{I,0}(\delta) := \left\{ y \in \mathcal{Y} : \sum_{\tau \in I} \text{deg}_\tau y \leq \sum_{\tau \in I} \bar{x}_{1,\tau} + \delta, \text{deg}_\tau y \geq \bar{x}_{1,\tau} - \delta, \forall \tau \not\in I \right\},
\]

which is a quasi-compact admissible open. Recall from Section 2.4 that the \(U_p \)-correspondence is given by \(p_1 : \mathcal{Y}(p) \to \mathcal{Y}, (A, H, H_1) \mapsto (A, H) \) and \(p_2 : \mathcal{Y}(p) \to \mathcal{Y}, (A, H, H_1) \mapsto (A/H_1, \bar{H}) \). Define

\[
S_{I,1}(\delta) := p_1(p_1^{-1}S_{I,0}(\delta) \cap p_2^{-1}S_{I,0}(\delta)),
\]

which is a quasi-compact admissible open of \(\mathcal{Y} \) because it is the pushforward of a quasi-compact admissible open by the finite étale morphism \(p_1 \). Note that

\[
S_{I,1}(\delta) = \{ y \in S_{I,0}(\delta) : \exists y_1 \in U_p(y) \text{ also in } S_{I,0}(\delta) \},
\]

so \(S_{I,1}(\delta) \) is called the special locus of order 1 in \(S_{I,0}(\delta) \).
Let ϵ be a small enough rational number as in Lemma 3.4 ii. such that $\epsilon < \frac{1}{2}(p^{g-1} - p^{g-2} - \cdots - 1)$, and that the small slope condition (2) is satisfied. Note that the $S_{I,0}(\delta)$’s contain a fundamental system of strict neighborhoods of $\deg^{-1} \omega x_1$. Hence we choose a rational number $\delta > 0$ so that $S_{I,0}(\delta) \subseteq \{ y \in \mathcal{Y}: |\deg_{\tau} y - \tilde{x}_{I,\tau}| < \epsilon \}$ and $S_{I,0}(\delta) \subseteq \{ y \in \mathcal{Y}: |\deg_{\tau} y - x_{I,\tau}| < \epsilon \}$. With this choice of δ, we see by Corollary 3.5 that the y_{1} in the definition of $S_{I,1}(\delta)$ is unique.

Hence we have a correspondence $\mathcal{Y}(p)^{sp} := p_{1}^{-1}S_{I,0}(\delta) \cap p_{2}^{-1}S_{I,0}(\delta) \subseteq \mathcal{Y}(p)$

\[\begin{array}{c}
\mathcal{Y}(p)^{sp} \\
S_{I,1}(\delta) \\
p_{1}^{sp} \\
p_{2}^{sp}
\end{array} \]

where p_{i}^{sp} is the restriction of p_{i} to $\mathcal{Y}(p)^{sp}$, and p_{1}^{sp} is an isomorphism. Then as before in Section 2.4, for any subset $\mathcal{U} \subseteq S_{I,1}(\delta)$, let $U_{p}^{sp}(\mathcal{U}) := p_{2}^{sp}(p_{1}^{sp})^{-1}(\mathcal{U})$. If $\mathcal{U} \subseteq S_{I,0}(\delta)$ is an admissible open, then $(U_{p}^{sp})^{-1} \mathcal{U} = p_{1}^{sp}(p_{2}^{sp})^{-1} \mathcal{U}$ is also an admissible open because p_{1}^{sp} is finite étale (indeed an isomorphism). For $f \in \omega^{k}(\mathcal{U})$, let $U_{p}^{sp} f \in \omega^{k}(U_{p}^{sp})^{-1} \mathcal{U}$ be $(U_{p}^{sp} f)(A, H) := \frac{1}{p_{1}^{sp}} p_{1}^{sp} f(A/H_{1}, H)$, where H_{1} is such that $p_{1}^{sp}(A, H, H_{1}) = (A, H)$.

We also define $\mathcal{Y}(p)^{nsp} := (\mathcal{Y}(p) \times_{\mathcal{Y}, p_{1}} S_{I,1}(\delta)) \setminus \mathcal{Y}(p)^{sp}$. By Lemma 3.4 ii., we have $p_{2}(\mathcal{Y}(p)^{nsp}) \subseteq U_{\varnothing}(\epsilon)$. Hence

\[\begin{array}{c}
\mathcal{Y}(p)^{nsp} \\
S_{I,1}(\delta) \\
p_{1}^{nsp} \\
p_{2}^{nsp}
\end{array} \]

where p_{i}^{nsp} is again the restriction of p_{i}. We similarly define U_{p}^{nsp} on subsets $\mathcal{U} \subseteq S_{I,1}(\delta)$ and on $f \in \omega^{k}(\mathcal{U})$ when $\mathcal{U} \subseteq S_{I,0}(\delta)$ is an admissible open.

Define the quasi-compact admissible open

\[\mathcal{V}_{I}(\delta) = \{ y \in \mathcal{Y}: \sum_{\tau \in I} \deg_{\tau} y \geq \sum_{\tau \in I} \tilde{x}_{I,\tau} + \delta, \deg_{\tau} y \geq \tilde{x}_{I,\tau} - \delta, \forall \tau \notin I \} \]

Then $S_{I,0}(\delta) \cup \mathcal{V}_{I}(\delta)$ is U_{p}-stable because U_{p} increases twisted directional degrees (Proposition 2.5(1)). Hence we have

\[U_{p}(S_{I,0}(\delta) \setminus S_{I,1}(\delta)) \subseteq \mathcal{V}_{I}(\delta) \]

Note that $\mathcal{V}_{I}(\delta) \subseteq \mathcal{U}_{I}(\delta)$, and the latter was defined in Section 3.1.

Lemma 3.6. Let $\delta' < \delta$ be two positive rational numbers. Then $S_{I,1}(\delta)$ is a strict neighborhood of $S_{I,1}(\delta')$.

Proof. Because $S_{I,0}(\delta)$ is defined by inequalities of twisted directional degrees, when $\delta' < \delta$ are two positive rational numbers, then $S_{I,0}(\delta)$ is a strict neighborhood of $S_{I,0}(\delta')$. By definition, $S_{I,1}(\delta) = p_{1}^{-1}S_{I,0}(\delta) \cap p_{2}^{-1}S_{I,0}(\delta))$. Since p_{1} is finite étale, pushforward by p_{1} preserves quasi-compact admissible opens, and hence $S_{I,1}(\delta)$ is a strict neighborhood of $S_{I,1}(\delta')$. \qed

As explained above, for any admissible open $\mathcal{U} \subseteq S_{I,0}(\delta)$, $(U_{p}^{sp})^{-1} \mathcal{U}$ is also an admissible open. Define the admissible open

\[S_{I,m}(\delta) = (U_{p}^{sp})^{-m}S_{I,0}(\delta), \]

which is quasi-compact because $S_{I,0}(\delta)$ is. Lemma 3.6 says that if $\delta < \epsilon$ are two positive rational numbers, then $S_{I,1}(\delta)$ and $S_{I,0}(\delta) \setminus S_{I,1}(\delta')$ form an admissible covering of $S_{I,0}(\delta)$. Then $S_{I,m}(\delta)$ and $S_{I,0}(\delta) \setminus S_{I,m}(\delta')$ also form an admissible covering of $S_{I,0}(\delta)$.

Now we are ready to prove analytic continuation near vertices.
Proposition 3.7. Let \(f \) be an overconvergent Hilbert modular form of weight \(k \). Let \(I \subseteq \Sigma \). Suppose that \(f \) is defined on a strict neighborhood of \(\deg^{-1}x_J \) for all \(J \subseteq I \). Let \(\epsilon \) be a small enough rational number as in Lemma 3.4 ii. such that \(\epsilon < \frac{1}{2}(p^{q-1} - p^{q-2} - \cdots - 1) \), and that
\[
\text{val}_p(a_p) \leq \inf_{\tau \in I} k_\tau - g - \epsilon \sum_{\tau \in I} k_\tau.
\]

Let \(\delta > 0 \) be a rational number so that \(S_{I,0}(\delta) \subseteq \{ y \in Y : |\deg_\tau y - \bar{x}_{I,\tau}| < \epsilon \} \) and \(S_{I,0}(\delta) \subseteq \{ y \in Y : |\deg_\tau y - x_{I,\tau}| < \epsilon \} \). Then \(f \) can be extended to \(S_{I,0}(\delta) \), which is a strict neighborhood of \(\deg^{-1}x_I \).

Proof. By definition, \(S_{I,m-1}(\delta) \supseteq S_{I,m}(\delta) \). In addition, \(U_p^m(S_{I,0}(\delta) \setminus S_{I,m}(\delta)) \subseteq V_I(\delta) \). By Lemma 3.3, we can extend \(f \) to \(V_I(\delta) \subseteq U_I(\delta) \). Then we can further extend \(f \) by \((\frac{U_I}{a_p})^m f \) to \((U_p)^{m}V_I(\delta) \supseteq S_{I,m}(\delta) \). Similarly, for any other rational number \(\delta' < \delta \), we can extend \(f \) by \((\frac{U_I}{a_p})^m f \) to \((U_p)^{m}V_I(\delta') \supseteq S_{I,0}(\delta') \setminus S_{I,m}(\delta') \). Because \(S_{I,0}(\delta) \setminus S_{I,m}(\delta) \) and \(S_{I,0}(\delta') \setminus S_{I,m}(\delta') \) form an admissible covering of \(S_{I,0}(\delta) \setminus S_{I,m}(\delta') \), we can actually extend \(f \) to \(S_{I,0}(\delta) \setminus S_{I,m}(\delta') \).

We denote by \(f_m \) the extension of \(f \) to \(S_{I,0}(\delta) \setminus S_{I,m}(\delta') \).

On the other hand, by Lemma 3.3, we can extend \(f \) to \(U_\omega(\epsilon) \). Then
\[
F_m := \sum_{j=0}^{m-1} (\frac{U_I}{a_p})^{j+1}(U_p)^{j} f
\]
can be defined on \((U_p)^{-m}U_\omega(\epsilon) \supseteq S_{I,m}(\delta) \).

Assume the norm estimates in Proposition 3.8 in the next subsection. By (2), we can choose a subsequence so that \(F_m \mod p^m \) and \(f_m \mod p^m \) glue as \(h_m \) (only defined modulo \(p^m \)) under the admissible covering \(S_{I,0}(\delta) \setminus S_{I,m}(\delta') \) and \(S_{I,m}(\delta) \) of \(S_{I,0}(\delta) \). We have \(h_m \equiv f \mod p^m \) on \(S_{I,0}(\delta) \setminus S_{I,m}(\delta') \). By (3), we can further choose a subsequence so that \(h_{m+1} \mod p^m \) agrees with \(h_m \mod p^m \) on \(S_{I,m+1}(\delta) \). Hence \(h = \lim_{m \to \infty} h_m \) is defined on \(S_{I,0}(\delta) \), and \(h = f \) on \(S_{I,0}(\delta) \setminus \bigcap_m S_{I,m}(\delta') \). Hence \(h \) is the desired extension of \(f \) to \(S_{I,0}(\delta) \). \(\Box \)

3.3. Norm estimates. Assume that \(\text{val}_p(a_p) \leq \inf_{\tau \in I} k_\tau - g - \epsilon \sum_{\tau \in I} k_\tau \). Choose a rational number \(\delta > 0 \) so that \(S_{I,0}(\delta) \subseteq \{ y \in Y : |\deg_\tau y - \bar{x}_{I,\tau}| < \epsilon \} \) and \(S_{I,0}(\delta) \subseteq \{ y \in Y : |\deg_\tau y - x_{I,\tau}| < \epsilon \} \). Also let \(\delta' < \delta \) be another positive rational number.

Let \(f_m \) defined on \(S_{I,0}(\delta) \) and \(F_m \) defined on \(S_{I,0}(\delta) \setminus S_{I,m}(\delta') \) as in the previous section. The following proposition records the norm estimates used to glue \(f_m \) and \(F_m \) in the previous section.

Proposition 3.8.

(1) \(|F_m|_{S_{I,m}(\delta)} \) and \(|f_m|_{S_{I,0}(\delta) \setminus S_{I,m}(\delta')} \) are bounded.

(2) \(|F_m - f_m|_{S_{I,m}(\delta) \setminus S_{I,m}(\delta')} \to 0 \).

(3) \(|F_{m+1} - F_m|_{S_{I,m+1}(\delta)} \to 0 \).

We need the following two lemmas to prove Proposition 3.8.

Lemma 3.9. Let \(V \subseteq S_{I,1}(\delta) \) and \(h \in \omega V(U_p^p(V)) \). Then
\[
|U_p^p(h)|_V \leq p^g - \sum_{\tau \in I} k_\tau (1 - \epsilon)|h|_{U_p^p(V)}.
\]
In particular, if \(\text{val}_p(a_p) < \inf_{\tau \in I} k_\tau - g - \epsilon \sum_{\tau \in I} k_\tau \), then
\[
\frac{U_p^p(h)}{a_p}|_V \leq p^{-\mu}|h|_{U_p^p(V)}
\]
for some small enough \(\mu > 0 \).
Lemma 3.10. For $1 \leq j \leq m$, $f_m - \frac{U_p^{sp}}{a_p} \delta f_m = F_j$ on $S_{I,j}(\delta) \setminus S_{I,m}(\delta')$.

Proof. Recall that we have fixed $\delta' < \delta$, and f_m is defined on $S_{I,0}(\delta) \setminus S_{I,m}(\delta')$. In particular, $(\frac{U_p^{sp}}{a_p})^j f_m$ is defined on $(U_p^{sp})^{-j} S_{I,0}(\delta) \setminus S_{I,m}(\delta') = S_{I,j}(\delta) \setminus S_{I,j+m}(\delta')$. By definition, $F_j = \sum_{\ell=0}^{j-1} (\frac{1}{a_p})^{\ell+1} U_p^{nsp} (U_p^{sp})^\ell f$ on $S_{I,j}(\delta)$. Hence $F_j + (\frac{U_p^{sp}}{a_p})^j f_m$ is defined on $S_{I,j}(\delta) \setminus S_{I,m}(\delta')$. A simple calculation using the fact that $U_p = U_p^{sp} + U_p^{sp}$ yields the claimed equality $F_j + (\frac{U_p^{sp}}{a_p})^j f_m = f_m$. □

Proof of Proposition 3.8.

(1) Because f is defined on the quasi-compact open $V_I(\delta)$, $|f|_{V_I(\delta)}$ is bounded. Since U_p is a compact operator, $|f_1|_{S_{I,0}(\delta) \setminus S_{I,1}(\delta)} \leq \frac{U_p}{a_p} |f|_{V_I(\delta)}$ is also bounded. Similarly, $|f_1|_{S_{I,0}(\delta') \setminus S_{I,1}(\delta')}$ is bounded, and hence $|f_1|_{S_{I,0}(\delta) \setminus S_{I,1}(\delta')}$ is bounded.

We will show that $|f_m|_{S_{I,0}(\delta) \setminus S_{I,m}(\delta')} \leq \sup(|f_1|_{S_{I,0}(\delta) \setminus S_{I,1}(\delta')}, |F_1|_{S_{I,m}(\delta)})$ for all $m \geq 1$. Because f_m's are compatible, it suffices to show that $|f_m|_{S_{I,0}(\delta) \setminus S_{I,m}(\delta')} \leq \sup(|f_1|_{S_{I,0}(\delta) \setminus S_{I,1}(\delta')}, |F_1|_{S_{I,m}(\delta)})$ for all $m \geq 1$. We do this by induction on m. By Lemma 3.10, $f_m - \frac{U_p^{sp}}{a_p} f_m = F_1$ on $S_{I,1}(\delta) \setminus S_{I,m}(\delta')$. Then it suffices to show that $\frac{U_p^{sp}}{a_p} f_m|_{S_{I,0}(\delta) \setminus S_{I,m}(\delta')} \leq \sup(|f_1|_{S_{I,0}(\delta) \setminus S_{I,1}(\delta')}, |F_1|_{S_{I,m}(\delta)})$.

By Lemma 3.9,

$$\frac{U_p^{sp}}{a_p} f_m|_{S_{I,0}(\delta) \setminus S_{I,m+1}(\delta')} \leq |f_m|_{S_{I,m-1}(\delta) \setminus S_{I,m}(\delta')} = |f_{m-1}|_{S_{I,m-1}(\delta) \setminus S_{I,m}(\delta')}$$

Hence

$$\frac{U_p^{sp}}{a_p} f_m|_{S_{I,0}(\delta) \setminus S_{I,m+1}(\delta')} \leq \sup(|f_1|_{S_{I,0}(\delta) \setminus S_{I,1}(\delta')}, |F_1|_{S_{I,m}(\delta)})$$

by induction hypothesis.
As for \(|F_m|_{S_{I,m}(\delta)} \), by Lemma 3.9,
\[
|F_m|_{S_{I,m}(\delta)} \leq \sup_{0 \leq j \leq m-1} \left| \left(\frac{1}{a_p} \right)^{j+1} U_p^{nsp} (U_p^{sp})^j f \right|_{S_{I,m}(\delta)}
\]
\[
= \sup_{0 \leq j \leq m-1} \left| \left(\frac{U_p^{sp}}{a_p} \right)^j F_1 \right|_{S_{I,m}(\delta)}
\]
\[
\leq \sup_{0 \leq j \leq m-1} |F_1|_{S_{I,m-j}(\delta)}
\]
\[
= |F_1|_{S_{I,1}(\delta)}.
\]

(2) By Lemma 3.10 and Lemma 3.9,
\[
|F_m - f_m|_{S_{I,m}(\delta) \setminus S_{I,m}(\delta')} = \left| \left(\frac{U_p^{sp}}{a_p} \right)^m f_m \right|_{S_{I,m}(\delta) \setminus S_{I,m}(\delta')}
\]
\[
\leq p^{- \mu} |f_m|_{S_{I,0}(\delta) \setminus S_{I,0}(\delta')}
\]
\[
= p^{- \mu} |f_0|_{S_{I,0}(\delta) \setminus S_{I,0}(\delta')}
\]
\[
\to 0 \text{ as } m \to \infty.
\]

(3) By Lemma 3.9,
\[
|F_{m+1} - F_m|_{S_{I,m+1}(\delta)} = \left| \left(\frac{1}{a_p} \right)^{m+1} U_p^{nsp} (U_p^{sp})^m f \right|_{S_{I,m+1}(\delta)}
\]
\[
= \left| \left(\frac{U_p^{sp}}{a_p} \right)^m F_1 \right|_{S_{I,m+1}(\delta)}
\]
\[
\leq p^{- \mu} |F_1|_{S_{I,1}(\delta)}
\]
\[
\to 0 \text{ as } m \to \infty.
\]

\[\square \]

3.4. Finishing the proof of Theorem 3.1. Following the paragraph just before Section 3.1, we assume that the overconvergent form \(f \) is defined on a strict neighborhood of \(\overline{\deg^{-1} x_J} \) for all \(J \subseteq I \). We also assume that \(f \) satisfies the small slope condition (1). Let \(\varepsilon \) be a small enough rational number as in Lemma 3.4 ii. such that \(\varepsilon < \frac{1}{2} (p^{d-1} - p^{d-2} - \cdots - 1) \), and that
\[
\text{val}_p(a_p) \leq \inf_{\tau \in \mathcal{I}} k_\tau - g - \varepsilon \sum_{\tau \in \mathcal{I}} k_\tau.
\]
By Proposition 3.7 we can extend \(f \) to a strict neighborhood \(S_{I,0}(\delta) \) of \(\overline{\deg^{-1} x_I} \) for any small enough rational number \(\delta > 0 \).

Note that the vertices in \(\mathcal{F}_I \) are exactly the \(x_J \)'s with \(J \subseteq I \), so we have extended \(f \) to a strict neighborhood of the inverse image of \(\text{deg} \) of all the vertices of \(\mathcal{F}_I \). We will show that \(f \) can be extended to a strict neighborhood \(\mathcal{U} \) of \(\overline{\mathcal{Y} \mathcal{F}_I} \), again using the argument in Lemma 3.3 that \(U_p \) strictly increases the sum of twisted directional degrees when the \(\text{deg} \) is not one of the vertices of \([0,1]^g \).

Define a quasi-compact admissible open
\[
\mathcal{U} = \{ y \in \mathcal{Y} : \deg_\tau y \geq p^{g-2} + \cdots + 1 + \varepsilon, \forall \tau \not\in I \}.
\]
Recall that \(\mathcal{Y} \mathcal{F}_I = \{ y \in \mathcal{Y} : \deg_\tau y = 1, \forall \tau \not\in I \} \). If \(y \in \mathcal{Y} \mathcal{F}_I \), then for \(\tau \not\in I \),
\[
\deg_\tau y \geq p^{g-1} > p^{g-2} + \cdots + 1 + \varepsilon.
\]
Hence \mathcal{U} is a strict neighborhood of $\mathcal{V}F_I$. We have shown in the proof of Lemma 3.3 that the condition of \mathcal{U} implies that if $y \in \mathcal{U}$ is such that $\deg(y) = x_J$ for some $J \subseteq \Sigma$, then $J \subseteq I$. Moreover, \mathcal{U} is U_p-stable because U_p increases twisted directional degrees (Proposition 2.5(1)).

For each $J \subseteq I$, let \mathcal{V}_J be a strict neighborhood of $\deg^{-1}x_J$ on which f is defined, and we explicitly choose \mathcal{V}_J in the form

$$\mathcal{V}_J = \{ y \in \mathcal{V} : \deg_{\tau} y \leq \epsilon_\tau \text{ if } \tau \in J, \deg_{\tau} y \geq 1 - \epsilon_\tau \text{, if } \tau \not\in J \},$$

for some rational $\epsilon_\tau > 0$. Let $\epsilon'_\tau < \epsilon_\tau$ be a rational number, and define the quasi-compact admissible open

$$\mathcal{V} = \left\{ y \in \mathcal{V} : \begin{array}{l}
\deg_{\tau} y \geq \epsilon'_\tau \text{ if } \tau \in I, \\
\deg_{\tau} y \leq 1 - \epsilon'_\tau \text{, if } \tau \not\in I; \\
\deg_{\tau} y \geq p^{\delta-2} + \cdots + 1 + \epsilon, \forall \tau \not\in I
\end{array} \right\}.$$

We have an admissible cover $\mathcal{U} = \bigcup_{J \subseteq I} \mathcal{V}_J \cup \mathcal{V}$.

Since \mathcal{V} is disjoint from $\deg^{-1}x_J$ for any $J \subseteq I$ from its definition, U_p strictly increases $\sum_{\tau \in \Sigma} \deg_{\tau}$ on \mathcal{V} by Proposition 2.5(2). Using the Maximum Modulus Principle, the quasi-compactness of \mathcal{V} implies that there is a positive lower bound for the increase of $\sum_{\tau \in \Sigma} \deg_{\tau}$ under U_p on \mathcal{V}. Because \mathcal{U} is U_p-stable, there exists $M > 0$ such that $U_p^M \mathcal{V} \subseteq \bigcup_{J \subseteq I} \mathcal{V}_J$. Since f is defined on $\bigcup_{J \subseteq I} \mathcal{V}_J$, we may define f on \mathcal{V} by $(\frac{L}{a_\tau})^M f$. On the intersection $(\bigcup_{J \subseteq I} \mathcal{V}_J) \cap \mathcal{V}$, the definitions of f coincide since a_τ is the U_p-eigenvalue of f. We can then define \tilde{f} on the whole \mathcal{U} through the admissible cover $\mathcal{U} = \bigcup_{J \subseteq I} \mathcal{V}_J \cup \mathcal{V}$.

REFERENCES

[Bij16] Stéphane Bijakowski, Classicalité de formes modulaires de Hilbert, Astérisque (2016), no. 382, 49–71. MR 3581175

[BLR95] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Formal and rigid geometry. III. The relative maximum principle, Math. Ann. 302 (1995), no. 1, 1–29. MR 1329445

[Bre10] Christophe Breuil, Conjectures de classiﬁcité sur les formes de hilbert surconvergentes de pente ﬁnie, https://www.imo.universite-paris-saclay.fr/ breuil/PUBLICATIONS/classicHilbert.pdf, March 2010.

[BSW21] Daniel Barrera Salazar and Chris Williams, Parabolic eigenvarieties via overconvergent cohomology, Math. Z. 299 (2021), no. 1-2, 961–995. MR 4311626

[Buz03] Kevin Buzzard, Analytic continuation of overconvergent eigenforms, J. Amer. Math. Soc. 16 (2003), no. 1, 29–55. MR 1937198

[Col96] Robert F. Coleman, Classical and overconvergent modular forms, Invent. Math. 124 (1996), no. 1-3, 215–241. MR 1369416

[Din17] Yiwen Ding, L-invariants, partially de Rham families, and local-global compatibility, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 4, 1457–1519. MR 3711132

[Far10] Laurent Fargues, La filtration de Harder-Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math. 645 (2010), 1–39. MR 2673421

[Kas06] Payman L. Kassaei, A gluing lemma and overconvergent modular forms, Duke Math. J. 132 (2006), no. 3, 509–529. MR 2219265

[Kas16] Payman L. Kassaei, Analytic continuation of overconvergent Hilbert modular forms, Astérisque (2016), no. 382, 1–48. MR 3581174

[PS17] Vincent Pilloni and Benoît Stroh, Surconvergence et classicité: le cas Hilbert, J. Ramanujan Math. Soc. 32 (2017), no. 4, 355–396. MR 3733761

[Ray74] Michel Raynaud, Schémas en groupes de type (p, . . . , p), Bull. Soc. Math. France 102 (1974), 241–280. MR 491467

[Sas10] Shu Sasaki, Analytic continuation of overconvergent Hilbert eigenforms in the totally split case, Compos. Math. 146 (2010), no. 3, 541–560. MR 2644926

[TX16] Yichao Tian and Liang Xiao, p-adic cohomology and classicity of overconvergent Hilbert modular forms, Astérisque (2016), no. 382, 73–162. MR 3581176

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, LOS ANGELES, CA 90095, USA

Email address: cyhsu@math.ucla.edu