The profile of hematinic deficiencies in patients with oral lichen planus: a case-control study

CURRENT STATUS: UNDER REVIEW

BMC Oral Health □ BMC Series

Zhe-xuan Bao
Shanxi Provincial Peoples Hospital

Xiao-wen Yang
Shanxi Provincial Peoples Hospital

Jing Shi
Shanxi Provincial Peoples Hospital

Yufeng Wang
Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University

Corresponding Author
wangyf1701@sjtu.edu.cn

ORCiD: https://orcid.org/0000-0003-1417-1460

DOI: 10.21203/rs.3.rs-18880/v1

SUBJECT AREAS
Head & Neck Surgery Dentistry

KEYWORDS
Oral lichen planus, Hematinic deficiencies, iron, folate, vitamin B12, correlation
Abstract

Background

Oral lichen planus (OLP) is a relatively common mucocutaneous disorder, its causative factors and pathogenesis still remain obscure. The existing studies on the association between hematinic deficiencies and OLP are limited and inconsistent. The aim of this study was to assess the hematinic deficiencies in a cohort of OLP patients and evaluate the correlation between hematinic deficiencies and OLP.

Methods

236 OLP patients and 226 age-and gender-matched healthy controls were enrolled in this study. The levels of hemoglobin (Hb), serum folate, vitamin B12 and ferritin were measured and compared between OLP patients and healthy controls. REU (reticular/hyperkeratotic, erosive/erythematous, ulcerative) scoring system was adopted and compared between the OLP patients with and without hematinic deficiencies. The correlation between hematinic deficiencies and OLP was analyzed.

Results

The frequencies of serum ferritin and vitamin B12 deficiency in OLP patients were both significantly higher than those of the healthy controls. According to gender and age, the profiles of hematinic deficiencies in OLP patients were significantly different. As for REU score, no significant difference existed between OLP patients with and without hematinic deficiencies. Both serum ferritin deficiency and serum vitamin B12 deficiency were significantly correlated with OLP.

Conclusions

The present study suggested a significant association between hematinic deficiencies and OLP. Iron, folate, and vitamin B12 levels in OLP patients should be monitored routinely. In the case of hematinic deficiencies, appropriate supplementation therapy is necessary. Further studies are warranted to explore the interactions between OLP and hematinic deficiencies.

Background

Oral lichen planus (OLP) is a relatively common mucocutaneous disorder that affects 1%-2% of the population, mainly middle-aged adults, with a female predilection [1, 2]. It is widely accepted that
OLP is an immune-related disorder, in which aberrant T lymphocytes might play a vital role in the pathogenesis of this autoimmune disease [1, 3]. Although abundant studies have been carried out, the exact causative factors and underlying pathogenesis of OLP still remain obscure and require further investigation [1-3].

Iron, folate and vitamin B12 deficiency are the most common hematinic deficiencies, which have been closely associated to some common oral mucosal diseases, such as recurrent aphthous stomatitis (RAS) and atrophic glossitis (AG) [4, 5]. However, the existing studies on the association between hematinic deficiencies and oral lichen planus (OLP) have been lacking and inconsistent [6-9]. Wu et al proposed that OLP was one of the leading oral manifestations for iron deficiency anemia patients and could be diagnosed in one-third patients with IDA in their oral mucosal disease clinic [10]. In another study, the same team reported that the frequencies of serum vitamin B12, iron deficiencies and anemia in OLP patients were significantly greater than that in controls [9]. By contrast, an earlier study showed the comparable frequencies of hematinic deficiencies and anemia between the OLP patients and the healthy controls, suggesting that hematinic deficiencies may not be a predisposing factor for OLP [7]. Therefore, further determination on the association between hematinic deficiencies and OLP are required, which would provide the foundation for nutritional supplements in the treatment of OLP and also give a new insight into the possible interaction between hematinic deficiencies and OLP.

The current study was undertaken to assess the hematinic deficiencies in a cohort of OLP patients and evaluate the association between hematinic deficiencies and OLP. Furthermore, whether the severity of OLP is related to the hematinic deficiencies was also analyzed.

Methods
A total of 236 OLP patients (41 males and 195 females, mean age 51.70±13.99 years) and 226 gender- and age-matched healthy controls (52 males and 174 females, mean age 49.46±17.27 years) were enrolled in this study. All participants were evaluated from July 2015 to March 2019 at the Department of Oral Medicine, Shanxi Provincial People’s Hospital, China. The diagnosis of OLP was established according to the recommended diagnostic criteria [2,3,11,12]. The characteristic clinical
manifestations alone, such as bilateral grayish-white Wickham striae or papules may allow diagnosis, especially if classic skin or other extraoral lesions exist concomitantly. Besides the clinical examination, the biopsy for histopathological examination was routinely performed. When necessary, direct immunofluorescence (DIF) was employed to differentiate from autoimmune blistering diseases, such as pemphigus and pemphigoid. Specifically, any patient suspected of having oral lichenoid lesions, including contact hypersensitivity reactions, drug-induced reactions, paraneoplastic pemphigus and chronic graft-vs.-host disease, was not enrolled in the present study. Those who were diagnosed as having other oral mucosal lesions, such as leukoplakia, mucosal hyperkeratosis, erythema multiforme and discoid lupus erythematosus were also excluded. In addition, patients who have concomitant systemic diseases, including benign or malignant tumors, HIV, rheumatic or autoimmune diseases, gastrointestinal diseases, liver and kidney diseases were equally excluded from this study. None of the healthy controls exhibited any oral mucosal lesions and had relevant systemic diseases. None of the participants had taken any nutritional supplements, including (but not limited to) folate, vitamin B12 or iron supplements, at least 3 months prior to this study. This study was approved by the ethics committee of Shanxi Provincial People’s hospital and informed consent was obtained from each of the participants.

Laboratory methods

Blood samples were obtained from all participants after 12 hours of overnight fasting, the levels of hemoglobin (Hb), serum folate, vitamin B12, and ferritin were measured by the routine tests in the department of clinical laboratory of Shanxi Provincial People’s Hospital. Meanwhile, a thorough medical history was obtained from each participant and standard clinical examination of the oral cavity was also performed. The duration of OLP, which was estimated from the first time noticing oral discomfort, was recorded for each patient.

The accepted normal serum folate level and serum vitamin B12 level is 4.0–18.7 ng/mL and 180–914 ng/L, respectively. Serum ferritin level was used to assess iron status with a normal level of 11.0–306.8 ng/mL for females and 15–336.2 ng/ml for males. Serum vitamin B12, folate, and ferritin deficiency was defined as a serum level below its lower cutoff value, respectively. Anemia was
diagnosed when the Hb level was lower than the lower cut-off value (male < 13 g/dL and female < 12 g/dL).

Clinical examination and scoring

REU (reticular/hyperkeratotic, erosive/erythematous, ulcerative) scoring system was adopted to evaluate the severity of OLP as previously reported [13,14]. Briefly, the oral cavity of each OLP patients was divided into 10 sites and the severity of the mucosal lesions in each site was scored according to the presence of reticular/hyperkeratotic, erosive/erythematous, and ulcerative lesions.

Data analysis

Statistical analyses were performed with SPSS software version 22.0 (SPSS Inc, Chicago, IL). The frequencies of hematinic deficiencies and anemia between OLP patients and health controls were compared using chi-square test. When the observed frequency was less than 1, the Fisher’s exact test was applied. Wilcoxon-Mann-Whitney rank sum test (U test) was used for the statistical comparison of REU scores between the OLP patients with and without hematinic deficiencies. Logistic regression analysis was conducted to assess whether the age and gender are the significant factors related to the presence of hematinic deficiencies (ferritin, folate and vitamin B12 deficiency) in the OLP patients and healthy controls, respectively. Spearman’s correlation coefficient was applied to evaluate the association between OLP and hematinic deficiencies. A p-value < 0.05 was accepted as statistically significant.

Results

1. **Hematinic deficiencies in OLP patients compared with healthy controls**

Here, the overall frequency of hematinic deficiencies means the frequency of the subjects who have one or more (two or three) deficiencies in serum folate, ferritin and vitamin B12 in the OLP patients or health controls. The overall frequency of hematinic deficiencies was 43.64% (103/236) in the OLP patients versus 12.39% (28/226) in the healthy controls. There was a statistically significant difference between two groups (P<0.001, Table 1). Similarly, the frequencies of serum ferritin deficiency and serum vitamin B12 deficiency in OLP patients were both significantly higher than those of the healthy controls (both P<0.001, Table 1). However, no statistically significant difference was
found in the frequency of serum folate deficiency between OLP patients and healthy controls (4.24% vs 1.33%, \(P=0.059 \)). Compared to the health controls, anemia was much more common in OLP patients (9.75% vs 3.98%, \(P=0.015 \)).

2. Hematinic deficiencies in OLP patients according to gender and age

Compared to the male OLP patients, female OLP patients had a significantly higher frequency of serum ferritin deficiency (4.88% vs 24.62%, \(P=0.005 \), Table 2). On the contrary, serum folate deficiency was more common in male OLP patients (\(P<0.001 \)). No significant differences in serum vitamin B12 deficiency and anemia were found between male and female OLP patients (\(P=0.511 \) and \(P=0.148 \), respectively).

The frequencies of hematinic deficiencies were also compared among age subgroups of the OLP patients. Significant differences in serum ferritin deficiency and anemia were revealed among age subgroups of OLP patients (\(P<0.001 \), \(P=0.029 \) respectively, Table 2). However, there was no significant difference among age subgroups in either serum folate or vitamin B12 deficiency (\(P=0.220 \) and \(P=0.367 \), respectively).

3. The correlation between two factors (age and gender) and presence of hematinic deficiencies in the OLP patients

Both age and gender were significantly correlated with the presence of serum ferritin deficiency in the OLP patients (Table 3). However, neither age nor gender was significantly correlated with serum vitamin B12 deficiency in the OLP patients (\(P=0.413 \) and \(P=0.623 \), respectively, Table 3). The gender was significantly associated with serum folate deficiency in OLP patients (\(P<0.001 \)). Such significant correlation was also observed between age and anemia (\(P=0.021 \), Table 3). For comparison, the same logistic regression analysis was conducted in the healthy controls and no significant correlation was found between two factors and the presence of hematinic deficiencies in the healthy controls (Table 3).

4. The analysis of disease duration in OLP patients

In this study, 63.56% of OLP patients (150/236) had not experienced oral symptoms more than 6
months. Among these patients, serum folate deficiency was detected in 6 patients, serum vitamin B12 deficiency in 44 patients and serum ferritin deficiency in 23 patients. A shorter duration, 1 month or less, was found in 30 OLP patients. Among these, 7 patients, 5 patients and no patient had serum vitamin B12 deficiency, serum ferritin deficiency and serum folate deficiency, respectively.

5. The comparison of REU scores between the OLP patients with and without hematinic deficiencies

The REU score (median ± IQR) of the OLP patients with one or more (two or three) deficiencies in serum folate, ferritin and vitamin B12 was 5±3. For the OLP patients without any deficiency, the REU score was 5±3.75. The rank sum test revealed that no significant difference between them (P=0.824, Table 4). Separate analysis also showed that no significant difference existed between OLP patients with and without serum ferritin deficiency (P=0.783), folate deficiency (P=0.173), vitamin B12 deficiency (P=0.493), anemia (P=0.723, Table 4).

6. The statistical analysis of the association between hematinic deficiencies and OLP.

Spearman's correlation coefficient revealed that both serum ferritin deficiency and serum vitamin B12 deficiency were significantly correlated with OLP (R= -0.189, P<0.001; R=-0.262, P<0.001; respectively). A borderline, but not statistically significant correlation was observed between serum folate deficiency and OLP (R= -0.088, P=0.059). Moreover, anemia was not significantly associated with OLP (R=-0.05, P=0.284).

Discussion

Consistent with the previous studies [9], the present study exhibited a significantly higher frequency of hematinic deficiencies in OLP patients than in healthy controls. Moreover, the significant association between hematinic deficiencies and OLP was also demonstrated. However, this association should be interpreted with caution. Since OLP is a chronic condition with periods of exacerbation and remission, can usually cause discomfort or pain and difficulties in eating and drinking [15, 16]. A published study on the dietary changes in 48 patients with oral vesiculoulcerative diseases, of whom most were diagnosed with OLP, showed that even patients with mild forms of the disease would change their eating habits for extended periods, which might affect negatively on the
patients’ nutritional status [16]. From this point of view, it seems reasonable to conclude that the hematinic deficiencies might be the result of OLP. Nevertheless, it should be noted that the occurrence of hematinic deficiencies usually takes several months to years [17, 18]. For example, due to the important hepatic stores and enterohepatic circulation, vitamin B12 deficiency would occur only if the daily intake has been insufficient for years [17]. In this study, we found that hematinic deficiencies had already been existed in many of the enrolled patients, which were unlikely caused by OLP because of the rather short duration. Hence, we could speculate that, at least for some OLP patients, the hematinic deficiencies occur earlier than the onset of OLP.

On the other hand, there are as yet no direct evidence suggesting that hematinic deficiencies were involved in the pathogenesis of OLP. Previous studies have showed that inadequate iron, folate and vitamin B12 can significantly alter the immune response and affect cell-mediated immunity [19–22]. Considering the OLP is a T-cell-mediated inflammatory disorder, it seems plausible to speculate that hematinic deficiencies might be risk factors for OLP. However, the question remains to be elucidated since more than half of the OLP patients didn’t have hematinic deficiencies in the present study. Prospective studies on the incidence of OLP in patients with hematinic deficiencies, with large-sample and long-term follow-up, are needed to provide more clinical evidence. Meanwhile, the possible immune-related mechanisms linking OLP with hematinic deficiencies should be investigated and clarified.

The REU scoring system is a semiquantitative method with less subjectivity and good reproducibility and has been validated to be much more accurate for comparing the severity of oral lichenoid lesions [13, 14, 23]. To the best of our knowledge, this is the first report of using disease scoring system (DSS) in investigating the association between the severity of OLP and hematinic deficiencies. In this study, no significant difference in REU scores was found between OLP patients with and without hematinic deficiencies, suggesting that the hematinic deficiencies may not directly correlate to the severity of OLP. This finding might be due to the well-recognized phenomenon that the clinical character of OLP can alleviate or aggravate even in a short time, especially when there are local irritations and trauma in the oral cavity [2, 3]. However, the levels of serum ferritin, folate and
vitamin B12 in the human body could not fluctuate so rapidly. The biomarkers that can sensitively reflect the severity of OLP still warrant further investigations.

Our findings of the present study highly suggested that the hematological screening for hematinic deficiencies should be included in routine laboratory examination of OLP patients. Several studies have proposed that vitamin replacement may improve the general health state of OLP patients and increase their healing ability [6, 24]. Therefore, compensation of hematinic deficiencies with adequate nutritional supplements, or in combination with other drugs, is supposed to produce improved therapeutic effects on OLP patients [6, 24]. In addition, dietary assessment and guidance to maintain adequate nutrition and optimal quality of life should be considered as a component of OLP management [16].

Conclusion
In conclusion, the present study suggested a significant association between hematinic deficiencies and OLP. Folate, vitamin B12 and iron levels in OLP patients should be monitored routinely. In the case of hematinic deficiencies, appropriate supplementation therapy is necessary. Further studies are warranted to explore the interactions between OLP and hematinic deficiencies.

Abbreviations
AG: atrophic glossitis; DIF: direct immunofluorescence; DSS: disease scoring system; Hb: hemoglobin; OLP: Oral lichen planus; RAS: recurrent aphthous stomatitis; REU: reticular/hyperkeratotic, erosive/erythematous, ulcerative

Declarations

Acknowledgements
We thank the clinical laboratory of Shanxi Provincial People's Hospital for providing the data.

Authors’ contributions
BZX, YXW and SJ collected the data of participants. BZX drafted the manuscript. YXW analyzed and interpreted the patient data. WYF conceived the idea and corrected the manuscript. All authors read and approved the final manuscript

Funding
This study was partly supported in part by Shanxi Province soft science research program
Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

This study was approved by the ethics committee of Shanxi Provincial People’s hospital and written consent was obtained from each of the participants.

Consent for publication

Consent was obtained from each of the participants.

Competing interests

The authors declare that they have no competing interests related to this study.

Author details

1 Department of Oral Medicine, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China;

2 Department of Hospital Infection Control, Shanxi Provincial People’s Hospital; Taiyuan, Shanxi, China;

3 Department of Oral Medicine, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

References

1. Roopashree MR, Gondhalekar RV, Shashikanth MC, George J, Thippeswamy SH, Shukla A. Pathogenesis of oral lichen planus—a review. J Oral Pathol Med. 2010; 39:729-734

2. Carrozzo M, Porter S, Mercadante V, Fedele S. Oral lichen planus: A disease or a spectrum of tissue reactions? Types, causes, diagnostic algorithms, prognosis, management strategies. Periodontol 2000. 2019;80:105-125.

3. Scully C, Carrozzo M. Oral mucosal disease: Lichen planus. Br J Oral Maxillofac Surg. 2008;46:15-21.

4. Chi AC, Neville BW, Krayer JW, Gonsalves WC. Oral manifestations of systemic disease. Am Fam Physician. 2010;82:1381-1388.
5. Bao ZX, Shi J, Yang XW, Liu LX. Hematinic deficiencies in patients with recurrent aphthous stomatitis: variations by gender and age. Med Oral Patol Oral Cir Bucal. 2018;23:e161-e167.

6. Jolly M, Nobile S. Vitamin status of patients with oral lichen planus. Aust Dent J. 1977; 22:446-50.

7. Challacombe SJ. Haematological abnormalities in oral lichen planus, candidiasis, leukoplakia and non-specific stomatitis. Int J Oral Maxillofac Surg. 1986;15:72-80.

8. Thongprasom K, Yougnak P, Aneksuk V. Folate and vitamin B12 levels in patients with oral lichen planus, stomatitis or glossitis. Southeast Asian J Trop Med Public Health. 2001;32:643-647.

9. Chen HM, Wang YP, Chang JY, Wu YC, Cheng SJ, Sun A. Significant association of deficiencies of hemoglobin, iron, folic acid, and vitamin B12 and high homocysteine level with oral lichen planus. J Formos Med Assoc. 2015;114:124-129.

10. Wu YC, Wang YP, Chang JY, Cheng SJ, Chen HM, Sun A. Oral manifestations and blood profile in patients with iron deficiency anemia. J Formos Med Assoc. 2014;113:83-87.

11. Le Cleach L, Chosidow O. Clinical practice. Lichen planus. N Engl J Med. 2012;366:723-732.

12. Al-Hashimi I, Schifter M, Lockhart PB, et al. Oral lichen planus and oral lichenoid lesions: diagnostic and therapeutic considerations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103 Suppl:S25.e1-12.

13. Piboonniyom SO, Treister N, Pitiphat W, Woo SB. Scoring system for monitoring oral lichenoid lesions: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:696-703.

14. Wang J, van der Waal I. Disease scoring systems for oral lichen planus; a critical appraisal. Med Oral Patol Oral Cir Bucal. 2015;20:e199-204.
15. Bidarra M, Buchanan JA, Scully C, Moles DR, Porter SR. Oral lichen planus: a condition with more persistence and extra-oral involvement than suspected? J Oral Pathol Med. 2008;37:582-586.

16. Czerninski R, Zadik Y, Kartin-Gabbay T, Zini A, Touger-Decker R. Dietary alterations in patients with oral vesiculoulcerative diseases. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117:319-323.

17. Dali-Youcef N, Andrès E. An update on cobalamin deficiency in adults. QJM. 2009;102:17-28.

18. R Moll, B Davis. Iron, vitamin B12 and folate. Medicine. 2017;45:198-203.

19. Bowlus The role of iron in T cell development and autoimmunity. Autoimmun Rev. 2003;2:73-78.

20. Maggini S, Wintergerst ES, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr. 2007;98 Suppl 1:S29-35.

21. Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab. 2007;51:301-323.

22. Musallam KM, Taher AT. Iron deficiency beyond erythropoiesis: should we be concerned? Curr Med Res Opin. 2018;34:81-93.

23. Gobbo M, Rupel K, Zoi V, Perinetti G, Ottaviani G, Di Lenarda R, et al. Scoring systems for Oral Lichen Planus used by differently experienced raters. Med Oral Patol Oral Cir Bucal. 2017;22:e562-e571.

24. Lin HP, Wang YP, Chia JS, Chiang CP, Sun A. Modulation of serum gastric parietal cell antibody level by levamisole and vitamin B12 in oral lichen planus. Oral Dis. 2011;17:95-101.

Tables
Table 1. Hematinic deficiencies in the OLP patients compared with the healthy controls

Hematinic deficiencies	OLP patients group	Healthy controls group	c^2
Overall hematinic deficiencies	43.64% (103/236)	12.39% (28/226)	52.366
Serum ferritin deficiency	21.19% (50/236)	7.52% (17/226)	16.147
Serum folate deficiency	4.24% (10/236)	1.33% (3/226)	3.574
Serum vitamin B12 deficiency	27.54% (65/236)	7.52% (17/226)	31.696
Anemia	9.75% (23/236)	3.98% (9/226)	5.949

Table 2. The statistical analysis of hematinic deficiencies in OLP patients according to gender and age

Hematinic deficiencies	OLP patients group	Healthy controls group	c^2	P	≤40
	Gender				
	Male	Female	c^2	P	≤40
Serum ferritin deficiency	4.88% (2/41)	24.62% (48/195)	7.904	0.005	29.16% (14/48)
Serum folate deficiency	17.07% (7/41)	1.54% (3/195)	16.501	<0.001	8.33% (4/48)
Serum vitamin B12 deficiency	31.71% (13/41)	26.67% (52/195)	0.431	0.511	22.92% (11/48)
Anemia	2.44% (1/41)	11.28% (22/195)	2.090	0.148	10.42% (5/48)

Table 3. Logistic regression analysis on the correlation between the two factors (age and gender) and the presence of hematinic deficiencies.
Factor	OLP patients			
	β	OR	95%CI	
Serum ferritin deficiency				
Age	0.074	1.077	1.045-1.109	<
Gender	-2.798	0.061	0.012-0.300	(
Serum folate deficiency				
Age	0.002	1.002	0.962-1.043	(
Gender	2.567	13.028	3.130-54.222	<
Serum vitamin B12 deficiency				
Age	0.009	1.009	0.988-1.030	(
Gender	0.187	1.205	0.572-2.541	(
Anemia				
Age	0.040	1.041	1.006-1.077	(
Gender	-2.010	0.134	0.017-1.079	(

Table 4. The comparison of REU scores between the OLP patients with and without hematinic deficiencies

OLP patients	REU scores (median ± IQR)	P	
Overall hematinic deficiencies	5±3	0.824	
Serum ferritin deficiency	with	5.25±3.5	0.783
Serum folate deficiency	with	4.5±1.75	0.173
Serum vitamin B12 deficiency	with	5±3.25	0.493
Anemia	with	6±4	0.723

REU (reticular/hyperkeratotic, erosive/erythematous, ulcerative), IQR (Interquartile range).