Indicator Plants of Perennial Streams: Ecological Approach for the Wildlife Management in Mining Areas

Sanath Kumar N. a, Sinu Aradhana b, Sugimani Marndi b and Sanjeet Kumar b*

a Office of Divisional Forest Officer, Bonai Forest Division, Bonaigarh, Odisha, India.

b Biodiversity and Conservation Lab., Ambika Prasad Research Foundation, Odisha, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/APRJ/2022/v9i130194

Received 12 January 2022
Accepted 26 January 2022
Published 27 January 2022

ABSTRACT

Mining activities create lot of ecological imbalance, including destruction of wildlife habitat. It also gives a negative impact on perennial stream. In near future, we have to restore them using ecological keys. Bio – indicator of perennial stream is very important for restoration and act like ecological keys. Keeping this in view, an attempt has been made to enumerate the plant species growing in and around perennial stream of Koira range, Bonai Forest Division, Odisha, India. Koira range comes under mining impacted areas. Results revealed that about 21 plant species are commonly available in 10 streams of Koira range. Enumerated species could be the indicators of perennial streams which would be fruitful for future restoration strategies.

Keywords: Mining activities; perennial streams; bio- indicator; wildlife management.

1. INTRODUCTION

Perennial stream is a stream or channel of water which flow throughout the year. Usually, it is observed in mountainous area, in forest and near the Snow belt. They are very important for environment, wildlife and local communities [1]. They play an important role in providing clean drinking water, recharging ground water, reduction of pollution, protection from flood &
erosion and providing habitat for wildlife. These perennial streams in mining areas are going to be dried lead to the destruction of wildlife habitat and reduction of clean drinking water [2]. Drying and extinction of perennial streams creating imbalance in ecological niche which further lead to the negative changes in climate, vegetation destruction and allowing to naturalize the invasive species. Mining activities are also important and can’t be stopped, therefore need sound strategies for wildlife management and restoration [3]. In near future, we need to identify some keys as indicator for the restoration of perennial stream in mining areas. Therefore an attempt has been made to enumerate the species mostly available in an around the perennial stream of Koira range, Bonai forest division, Odisha, India. Study area comes under Bonai forest division and enjoy moist and dry deciduous vegetation. The forested areas of Koira range are home of numbers of perennial stream and wildlife like Asian elephant, Sloth bear, Barking deer etc [4]. The present study highlights the importance of the bio-indicator plants in restoration of perennial streams.

2. METHODOLOGY

The study was conducted in Koira range of Bonai forest division, Odisha, India during the year 2021-2022. Line transect method is used to enumerate the plant species. Plant enumeration was done through floristic survey in and around perennial stream and identified by Dr. Sanjeet Kumar, CEO, Ambika Prasad Research Foundation, Odisha, India. The enumerated plants were arranged alphabetically. The plants grow near moist areas as well as in & around perennial stream were classified as partial-indicator.

3. RESULTS AND DISCUSSION

Survey works revealed that about 21 plant species belonging to 17 families like Rutaceae, Rubiaceae, Eriocaulaceae, Euphorbiaceae, Acanthaceae, Verbenaceae, Melastomataceae, Lamiaceae, Polygonaceae, Poaceae, Symplocaceae etc were enumerated. It was observed that Eriocaulon breviscapum, Homonon ripari and Polygonum barbatum growing inside, rocky surface and bank of the perennial streams. It was also noticed that Melastoma malabaricum and Osbeckia stellata observed at the edges of the streams (Table 1; Plate 1). Very less or few reports are available on indicators as a plant species for perennial streams. Researchers identified the indicators of perennial streams in some areas. The most common indicators are micro invertebrates which found in the bottom and surface of streams, like caddisflies, damselflies, stoneflies and some aquatic worms;

Plate 1: Water indicator plants in Koira range, a) Eriocaulon breviscapum, b) Homonoia riparia, c) Lepidagathis fasciculata, d) Polygonum barbatum, e) Pogostemon quadrifolius, f) Psydrax diococcus, g) Symplocos racemosa, h) Stachytarpheta cayennensis
Table 1. Indicator plants of perennial streams in study areas

Botanical name	Local name	Family	Habit	Indicator	Partial-indicator
Acronychia pedunculata	Pani nimba	Rutaceae	Small evergreen tree		✓
Ardisia solanacea	Hada Kankali	Primulaceae	Shrub		
Cyathocline purpurea	Gangotri phul	Asteraceae	Herb		✓
Diospyros malabarica	Mankada Kendu	Ebenaceae	Large tree		✓
Eriocaulon breviscapum	Pani gend	Eriocaulaeceae	Aquatic herb		
Homonoia riparia	Pani begunia	Euphorbiaceae	Shrub		✓
Lepidagathis fasciculata	Pani rasna	Acanthaceae	Herb		
Lippia javanica	Nagdabana	Verbenaceae	Herb		✓
Melastoma malabathricum	Korali	Melastomataceae	Shrub		✓
Murraya paniculata	Ban mallika	Rutaceae	Shrub		✓
Osbeckia stellata	Rato fula	Melastomataceae	Herb		✓
Pogostemon quadrifolius	Pathra fula	Lamiaceae	Shrub		✓
Polygonum barbatum	Bekh ful	Polygonaceae	Herb		
Psydrax dicocus	Karuna	Rubiaceae	Small evergreen tree		✓
Saccharum spontaneum	Kashatandi	Poaceae	Grass		✓
Schefflera venulosa	Takua	Araliaceae	Climbing shrub		
Stachyapheta cayennensis	Sapura	Verbenaceae	Herb		✓
Symlocos racemosa	Lodha	Symplocaceae	Small tree		✓
Syzygium cumini	Jamun	Myrtaceae	Large tree		✓
Terminalia arjuna	Arjun	Combretaceae	Large tree		✓
Thunbergia fragrans	Chakrakedar	Acanthaceae	Climber		
Survey works in Koira range, Bonai Forest Division, Odisha, India

fish and amphibians including tadpole, salamanders, newts etc are also indicators; the particle size of sand also help to identify the source of perennial streams [5]. It can also identify using the evidences of iron-oxidizing bacteria just after about 48 hours of a storm [6]. Some botanical reports are also available. In the year 1988, Kovaichik et al. reported number of shrub like Vine maple, Yellow willow, forbs likes Monk-shood, Queen cup; grasses like Blue wildrie; sages like Green fruited sage etc. from the riparian zone of National Forests of Central Oregon [7]. In the year 2017, Mligo reported 261 plant species of 68 families in Wami river system, Tanzania [8]. In the year of 2020, Gomes et al. reported 24 herbs in ephemeral and perennial stream of Subaragamuwa Province of Sri Lanka and Hong Kong of China [9]. Some other documentation on the plants related to the perennial streams [10-11] are available but less reports are available on indicators.

4. CONCLUSION

Mining activities are major reason of distraction of wildlife habitat and drying of perennial streams. In very near future, we will have to restore them throughout the world. For restoration, need the ecological keys. Abiotic & biotic components could be the keys. The present work’s aim was to identify the plants under biotic components to make them strong ecological keys for future restoration works. The results revealed that about 21 species are commonly available in & around the perennial streams in study areas. Further need the restoration of enumerated plants near the streams and have to monitor all possible components related to the negative impacts of mining on perennial streams.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Meinzer OE. Outline of ground-water hydrology with definitions. US Geological Survey, Washington DC. 1923; 1-494.
2. Younger PL and Wolkersdorfer C. Mining Impacts on the Fresh Water Environment: Technical and Managerial Guidelines for Catchment Scale Management. International Journal of Mine Water. 2004; 23:S2-S80.
3. Sonter LJ, Ali SH, Watson JEM. Mining and biodiversity: key issues and research needs in conservation science. Proc. R. Soc. B. 2019; 285:20181926. Available: http://dx.doi.org/10.1098/rspb.2018.1926.
4. Kumar SN, Mishra S and Kumar S. Documentation of Indigenous Traditional Knowledge (ITK) on commonly available
plants in Koira Range, Bonai Forest Division, Sundargarh, Odisha, India. Asian Plant Research Journal. 2021;8(4):83-95.

5. NC Division of Water Quality. Methodology for Identification of Intermittent and Perennial Streams and their Origins, Version 4.11. North Carolina Department of Environment and Natural Resources, Division of Water Quality. Raleigh, NC;2010.

6. Technical guidance for identification of perennial stream for the purpose of jurisdictional determinations under 10 VSA Section 1021(a) and 1002(10);2018.

7. Kovaichik BL, Hopkins WE and Brunsfeld SJ. Major Indicator Shrubs and Herbs in Riparian Zone on National Forests of Central Oregon. United States Department of Agriculture Forest Service Pacific Northwest Region. 1988;1-163.

8. Mligo C. Diversity and distribution pattern of riparian plant species in the Wami River system, Tanzania. Journal of Plant Ecology. 2017;(2):259-270.

9. Gomes PIA, Wai OWH, Dehini GK. Vegetation dynamics of ephemeral and perennial streams in mountainous headwater catchments. Journal of Mountain Sciences. 2021;17:1684-1695.

10. Stromberg JC, Hazelton FA and White MS. Plant species richness in ephemeral and perennial reaches of a dryland river. Biodiversity Conservation. 2009;18:663-677.

11. Yang XD, Wang J, Xu MS, Ali A, Xu Y, Lamb D et al. Effects of the ephemeral stream on plant species diversity and distribution in an alluvial fan of arid desert region: An application of a low altitude UAV. PLoS ONE. 2019;14(2):e0212057.

© 2022 Aradhana et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.