Mid-infrared period–luminosity relations for globular cluster RR Lyrae

A. K. Dambis,1⋆ A. S. Rastorguev1,2 and M. V. Zabolotskikh1

1Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskii pr. 13, Moscow 119992, Russia
2Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia

Abstract

The period–metallicity–WISE W1- and W2-band luminosity relations are derived for RR Lyrae stars based on WISE epoch photometry for 360 and 275 stars in 15 and 9 Galactic globular clusters, respectively. Our final relations have the form ⟨MW⟩ = γW1 − (2.381 ± 0.097) log Pf + (0.096 ± 0.021)[Fe/H] and ⟨MW⟩ = γW2 − (2.269 ± 0.127) log Pf + (0.108 ± 0.021)[Fe/H], where [Fe/H] values are on the scale of Carretta et al. We obtained two appreciably discrepant estimates for the zero-points γW1 and γW2 of both relations: one based on a statistical-parallax analysis − γW1 = −0.829 ± 0.093 and γW2 = −0.776 ± 0.093 and another, significantly brighter one, based on Hubble Space Telescope (HST) Fine Guidance Sensor (FGS) trigonometric parallaxes − γW1,hst = −1.150 ± 0.077 and γW2,hst = −1.105 ± 0.077. The period–metallicity–luminosity relations in the two bands yield highly consistent distance moduli for the calibrator clusters and the distance moduli computed using the W1- and W2-band relations with the HST zero-points agree well with those computed by Sollima, Cacciari & Valenti based on their derived period–metallicity–K-band luminosity relation whose zero-point is tied to the HST trigonometric parallax of RR Lyrae itself (ΔDM0 = 0.04 and 0.06, respectively, with a scatter of only 0.06).

Key words: stars: distances – stars: variables: RR Lyrae – globular clusters: general – infrared: stars.

1 Introduction

RR Lyrae variables are known to obey rather tight period–metallicity–luminosity (PML) relations of the form

⟨MX⟩ = αX log Pf + βX[Fe/H] + γX,

(1)

where ⟨MX⟩ is the intensity-mean absolute magnitude in the photometric band X and Pf are the fundamental-mode period (equal to the variability period) for RRab type variables, which pulsate in the fundamental mode and log Pf = log P + 0.127 or Pf = P/0.746 – for RRc-type variables, which pulsate in the first overtone) in various photometric bands X (Catelan, Pritzl & Smith 2004). The above first-overtone to fundamental period ratio dates back to theoretical estimates by Iben (1974) and is commonly used by most of the authors to fundamentalize the periods of RRc type variables – see, e.g. Frolov & Samus (1998), Sollima et al. (2006) and Feast et al. (2008).

Earlier model-based estimates yield a period conversion factor corresponding to log Pf = log P + 0.130 (van Albada & Baker 1973). More recent stellar models corroborate these results and, as Castellani, Caputo & Castellani (1997) point out, show that the adopted procedure yields fundamentalized periods with an uncertainty no larger than δlog Pf = ±0.005 (Bono et al. 1997; Marconi et al. 2003). Further support for the small uncertainty is provided by the observed period ratios of double-mode RR Lyrae type stars (RRd) – as is evident from the Petersen diagram for Galactic and LMC RRd-type stars shown in fig. 2 in Poleski (2013), the period ratios in all these objects are constrained to the narrow interval from 0.742 to 0.748 corresponding to the interval of logarithmic corrections from +0.126 to +0.130. It is these relations that make RR Lyraes very popular standard candles used extensively to estimate distances to stellar systems harbouring old populations. Recently, mid-infrared light curves have been acquired for several thousand RR Lyraes as a result of space-borne WISE all-sky photometric survey (Wright et al. 2010), and hence establishing the PML relations for these stars at least in some of the WISE bands has become a task of prime importance. The progress so far achieved in this direction includes (1) a study by Klein et al. (2011, 2012), who found αW1 = (1.681 ± 0.147) with no evidence for metallicity term βW1 by computing posterior distances of 76 well-observed RR Lyrae based on the optically constructed prior distances; (2) a conclusion by Dambis et al. (2013) that the period and metallicity slopes of the W1-band PML relation are practically identical to those of the Ks-band PML relation (αK = αW1 = −2.33 and βK = βW1 = +0.088) based on the small scatter of the estimated ⟨Ks⟩ – (W1) intrinsic colour indices of Galactic field RR Lyrae with known metallicities, and (3) the study of Madore et al. (2013), who derived WISE W1, W2, and W3-band RR Lyrae PL relations based on the trigonometric parallaxes of four Galactic field RR Lyraes. The problem with the results of Klein et al. (2011, 2012) is that these authors do not fundamentalize
the periods of c-type RR Lyraes, which is evidently a bad idea given that RC-type stars form a well-defined $\Delta \log(P) = -0.127$ period-shifted branch of the PL relation in the K band ($\lambda_{\text{eff}} \sim 2.2 \mu$m) and there are no reasons for RC stars to behave differently in the $W1$ band ($\lambda_{\text{eff}} \sim 3.4 \mu$m). The conclusion of Dambis et al. (2013) might not be entirely correct, because the small scatter of computed ($\langle K_s \rangle - \langle W1 \rangle$) intrinsic colour indices may be a result of the star-to-star variations of the period and metallicity terms cancelling each other because of the appreciable correlation between log P and [Fe/H]. Finally, the slopes of the $W1$, $W2$, and $W3$-band PL relations estimated by Madore et al. (2013) have large errors because of the very small number of stars involved (four). It therefore makes sense to try to estimate the period slopes of the RR Lyrae PML relation in some of the WISE bands in a way that would eliminate the effect of metallicity term.

In this study, we follow the footsteps of Sollima et al. (2006) and use photometric data for RR Lyrae variables in globular clusters to derive the period slopes (α) for the RR Lyrae PML relation in the WISE $W1$ and $W2$ bands, because, as the above authors point out, “the advantage of using GCs in constraining the coefficients α, β and γ lies in the fact that all the stars in a given cluster are at the same distance, and can be considered to share the same metal content and be subject to the same extinction effect”. We then estimate the corresponding metallicity slopes (β) of these relations based on photometric data for field RR Lyrae type variables with known [Fe/H], and, finally, infer the zero-points (γ) of the corresponding relations based on (1) results of statistical-parallax analysis by Dambis et al. (2013) and (2) Hubble Space Telescope (HST) FSG trigonometric parallaxes.

2 THE DATA

Last year, the WISE All-Sky Data Release (Cutri et al. 2012) was made public, mapping the entire sky in four mid-infrared bands $W1$, $W2$, $W3$ and $W4$ with the effective wavelengths of 3.368, 4.618, 12.082 and 22.194 μm, respectively (Wright et al. 2010). We cross-correlated the WISE single-exposure data base with the Catalogue of Galactic globular-cluster variables by Clement et al. (2001), the Catalogue of Accurate Equatorial Coordinates for Variable Stars in Globular Clusters by Samus et al. (2009) and the catalogue of Sawyer Hogg (1973) (for ω Cen, NGC 6723 and NGC 6934) to compute (via Fourier fits) the intensity-mean average $W1$- and $W2$-band magnitudes, $\langle W1 \rangle$ and $\langle W2 \rangle$, for a total of 357 and 272 RR Lyrae type variables in 15 and 9 Galactic globular clusters, respectively. Figs 1 and 2 show examples of $W1$- and $W2$-band light curves of different quality. As is evident from these samples, the phase coverage is more or less satisfactory in most of the cases, although the quality of the light curves differs greatly. The order of the Fourier fit naturally depends on the light-curve quality with only the constant term left for the poorest curves.

The list of 360 globular-cluster RR Lyrae type stars used in this study is presented in Table 1 (its full version will be available from the CDS). The columns of this table provide the following information: (1) NGC designation of the cluster; (2) other commonly used name of the cluster; (3) name of the variable; (4) variability period in days; (5) $W1$-band intensity-mean magnitude with (6) its standard error; (7) $W2$-band intensity-mean magnitude with (8) its standard error; (9) variability type (RR0, RR1 and RR2 indicate type ab, c and d variables, respectively, and RR9 indicates variables...
Figure 2. Examples of RR Lyrae type star W2-band light curves of various quality in four globular clusters.

Table 1. The data for RR Lyraes in the calibrator GCs. This is a sample of the full version, which is available in the online version of the article (see Supporting Information).

Cluster name	Alternative cluster name	Variable name	Period (d)	\(\langle W_1 \rangle \)	\(\sigma (W_1) \)	\(\langle W_2 \rangle \)	\(\sigma (W_2) \)	Type	Use/Reject
NGC 3201	V003		0.5994	12.3083	0.0201	12.3628	0.0239	RR0	0
NGC 3201	V004		0.6300	12.6777	0.0145	12.6880	0.0235	RR0	1
NGC 3201	V006		0.5253	12.8124	0.0286	12.8956	0.0269	RR0	1
NGC 3201	V007		0.6303	12.6029	0.0090	12.6673	0.0230	RR0	1
NGC 3201	V008		0.6287	12.5628	0.0333	12.5852	0.0581	RR0	1
NGC 3201	V009		0.5255	12.6367	0.0150	12.6491	0.0253	RR0	1
NGC 3201	V010		0.5352	12.7077	0.0203	12.6578	0.0242	RR0	1
NGC 3201	V011		0.2990	11.4651	0.0118	11.5245	0.0304	RR1	0
NGC 3201	V012		0.4956	12.7398	0.0199	12.8645	0.0361	RR0	1
NGC 3201	V013		0.5752	12.4619	0.0219	12.4421	0.0234	RR0	0

A potential source of error is the Blazhko effect – long-period variations of the form and amplitude of the light curve – exhibited by some RR Lyraes. There are known Blazhko stars in five clusters of our list: M3, M5, M15, NGC 3201 and NGC 5466. The Blazhko effect should not introduce appreciable errors in the computed intensity-mean magnitudes for stars in M15 and NGC 3201 because the time span covered by WISE observations in these clusters (~1.1 and 3.9 d, respectively) is short compared to typical Blazhko periods, which are of the order of several dozen days. Each of our RR Lyr star in M3 has 14 WISE measurements including 12 observations concentrated within an ~1.4-d interval (MJD 55375.074090–55376.463216) and two observations near MJD 55203.412309. However, we found that the inclusion/exclusion of the two ‘outlying’ observations has no appreciable effect on the computed intensity-mean averages in either W1 or W2 with the differences not exceeding 0.009 and 0.046 mag, respectively (the standard errors of the computed intensity means are greater than 0.012 and 0.042 mag in W1 and W2, respectively, for all the stars concerned). WISE observations of RR Lyraes in M5 were made within two epoch intervals (MJD 55411.716751–55412.708967 and 55231.073846–55243.315989) including 12 and 22 measurements, respectively. The light curves for the two intervals differ appreciably, and the computed intensity means differ by less than 0.067 and 0.130 mag in W1 and W2, respectively. The intensity means based on all observations and computed ignoring with unknown subtypes) and (10) a flag indicating whether the particular variable was used in the final PL relation fit (1 – used and 0 – rejected).
the variation of the light-curve shape and amplitude differ from the intensity-means based on each of the ‘quasi-simultaneous’ light curves by less than 0.041 and 0.075 mag in W₁ and W₂, respectively. However, the averages of the intensity means computed separately for the two epoch intervals practically coincide with the corresponding intensity means computed based on all available observations ignoring the Blazhko variations: the differences do not exceed 0.015 and 0.010 mag in W₁ and W₂, respectively. In NGC 5466, each star has only two ‘outlying’ measurements (about MJD 55203.080975), while the bulk of observations (15 measurements) are concentrated within a ∼1.1-d long interval (MJD 55380.630970–55381.755488).

The inclusion/exclusion of the two ‘rogue’ measurements has negligible effect on the final intensity means with the differences not exceeding 0.009 and 0.050 mag in W₁ and W₂, respectively (the standard errors are greater than 0.037 and 0.074 mag in W₁ and W₂, respectively, for all the stars concerned). Given the smallness of the Blazhko-variation due effect on the inferred intensity means and the small fraction of Blazhko stars in our sample (15 out of 73–74 stars in M3, 3 out of 36 stars in M5, 6 out of 28 stars in M15, 1 out of 58 stars in NGC 3201 and 2 out of 9 stars in NGC 5466 with no Blazhko stars in other clusters) hereafter we adopt the intensity-mean W₁- and W₂-band magnitudes computed based on all available WISE observations for all stars ignoring eventual light-curve variations. Fig. 3 shows several examples of Blazhko star light curves in three clusters.

Table 2 lists the data for our calibrator GCs including the number of RR Lyrae found with adopted WISE W₁- and W₂-band light curves as well as the metallicity in the scale of Carretta et al. (2009) and the reddening $E(B - V)$, both adopted from the updated version of the globular-cluster catalogue by Harris (1996) (Harris 2010).

Table 2. The sample of calibrator GCs. Metallicities are in the CG scale.

Name	[Fe/H]	$E(B - V)$	Number of RR Lyr
M3	−1.50	0.01	74
M4	−1.16	0.35	31
M5	−1.29	0.03	36
M15	−2.37	0.10	28
M53	−2.10	0.02	22
M55	−1.94	0.08	6
M92	−2.31	0.02	7
M107	−1.02	0.33	9
NGC 3201	−1.59	0.24	58
NGC 5053	−2.27	0.01	8
NGC 5466	−1.98	0.00	9
NGC 6362	−0.99	0.09	17
NGC 6723	−1.10	0.05	9
NGC 6934	−1.47	0.10	8
ω Cen	−1.75	0.12	38

Because of the well-known metallicity spread among RR Lyrae stars in this cluster (Sollima et al. 2006 and reference therein), we took into account only the metal poor ([Fe/H] < −1.4).

Figure 3. Examples of W₁-(left) and W₂-band (right) light curves of some Blazhko RR Lyrae variables in M3, M5 and NGC 5466. The crosses and dots show the measurements corresponding to the ‘first’ and ‘second’ epoch intervals, respectively. The dotted and dashed curves show the light-curve fits based on the ‘first’ and ‘second’ epoch intervals, respectively, and the solid curves, the light-curve fits based on all available measurements.
Table 3. Published determinations of the parameters of the RR Lyrae PML relations in WISE photometric bands.

Ref.	Filter	α	β	γ
K11	W1	-1.681	+0.083	
K11	W2	-1.715	+0.092	
K11	W3	-1.688	+0.013	
D13	W1	-2.33	0.088	-0.825
M13	W1	-2.44	-1.26	
M13	W2	-2.55	-1.29	
M13	W3	-2.58	-1.32	

References: K11: Klein et al. (2011, 2012); D13: Dambis et al. (2013); M13: Madore et al. (2013).

3 Calibration of the PML Relation

So far, three studies involved the estimation of the parameters of the PML relation in the form of equation (1) for WISE mid-infrared photometric bands, all of them based on field stars. We summarize the corresponding results in Table 3. Given equation (1), the apparent X-band magnitude of a particular star is equal to

$$\langle X \rangle = \alpha_X \log P_X + \beta_X \langle \text{Fe/H} \rangle + \gamma_X + (m - M)_0 + A_X,$$

(2)

where $\langle X \rangle$ is the intensity-mean X-band magnitude; $(m - M)_0$, the true distance modulus, and A_X, the total extinction in the X band.

We now proceed to determine the three parameters (coefficients) α_X, β_X and γ_X of equation (1) for the two shortest-wavelengths WISE passbands $X = W1$ and $X = W2$ from observational data.

3.1 The period slopes (α_X)

All stars in a particular cluster can be considered to be at the same distance (which is much greater than the size of the cluster and hence the line-of-sight extent of the system can be neglected) and (in most cases) to have the same metallicity and the same amount of interstellar extinction [anyway, intraccluster extinction variations in all WISE photometric bands are at least about a factor of 17 smaller than the corresponding variations in the V-band extinction (Yuan, Liu & Xiang 2013) and therefore negligible]. Equation (2) for stars of a given cluster then acquires the form

$$\langle X \rangle - \alpha_X \log P_X + 0.25 = C_X,$$

(3)

where $C_X = \beta_X \langle \text{Fe/H} \rangle + \gamma_X + (m - M)_0 + A_X - 0.25\alpha_X$ can be considered to be a constant. Hereafter, we add the +0.25 term to $\log P_X$ in order to centre the solution at $\log P_X = -0.25$, which is close to the average value of this parameter, so as to make the C_X constant more representative of the cluster distance modulus and minimize the effect of differences in the inferred α_X values between different clusters. We use the following heuristic procedure to estimate the constant C_X for some assumed slope α_X. We compute the left-hand side of equation (3) $c_{ij} \equiv \langle X \rangle - \alpha_X (\log P_{Xj} + 0.25)$ for each star. We then sort the c_{ij} values in the ascending order and seek the subset $\mu = \{j_1, j_2, \ldots, j_{N_1} - 1\}$ containing $N_1 = N \times q$ values with $q = 0.68$ (where N is the total number of RR Lyraes in the given cluster for which we determined the corresponding X-band intensity-mean magnitudes) having the smallest dispersion of computed C_{ij} values, $C_{\alpha_X,\mu}$ (we adopt $q = 0.8$ for NGC 5053 and M92 and $q = 1.0$ for NGC 6934). We then try α values from -1.0 to -5.0 in increments of 0.01 to find the one yielding the smallest $\sigma_{\alpha_X,\mu}$. If the modal ‘core’ distribution (i.e. the part of the distribution corresponding to stars whose data points outline the purported linear $\log P_X - \langle X \rangle$ relation of C_X values were normal, our subset would roughly consist at least of all stars with C_X between the $(C_X - \sigma C)$ and $(C_X + \sigma C)$, where $(C_X$ and σC are the mean and dispersion of C values for the subset of stars defining the linear $\log P_X - \langle X \rangle$ relation, respectively. The mean C value averaged over the subset stars, (C_X), should then be close to the mean $(C_X$ and the (truncated) dispersion σC should be roughly equal to $\sigma C_{\text{subset}} = 0.54\sigma C$ and hence $3\sigma C = 5.56\sigma C_{\text{subset}}$). We therefore determine the final estimate of C and α_X by least-squares solving the equation set

$$\alpha_X (\log P_X + 0.25) + C = \langle X \rangle,$$

(4)

(it is just a rewritten form of equation 3) for stars with C_X values in the interval $(C_X - \sigma C) \leq C \leq (C_X + \sigma C)$. The resulting solutions (i.e. the α_X and C_X values, their standard errors and the standard error of (X), where $X = W1$ or $W2$) for all globular clusters, where such solutions could be reasonably derived, are listed in Table 4. Like Sollima et al. (2006), we plot the scaled $W1$ and $W2$ magnitudes $(W1 - C_{W1})$ and $(W2 - C_{W2})$ for our calibrating clusters as a function of fundamentalized periods in Figs 4 and 5, respectively.

Figs 6 and 7 show the individual cluster slopes α_{W1} and α_{W2} as a function of metallicity. Linear least-squares analysis yields the following results concerning the possible metallicity dependence of the slopes α_{W1} and α_{W2}:

$$\alpha_{W1} = -2.441 \pm 0.101 - (0.46 \pm 0.21)((\text{Fe/H}) + 1.5),$$

(5)

and

$$\alpha_{W2} = -2.311 \pm 0.127 - (0.23 \pm 0.31)((\text{Fe/H}) + 1.5).$$

(6)

The slope α_{W2} appears to be independent of metallicity, whereas there seems to be hint of a dependence in the case of α_{W1}. However, even in the latter case the slope differs from zero by less than 2.2σ, and we therefore derive the combined solutions for both photometric bands (see Figs 8 and 9), yielding the final slopes of $\alpha_{W1} = -2.381 \pm 0.098$ and $\alpha_{W2} = -2.269 \pm 0.127$. Table 5 lists the resulting C_{W1} and C_{W2} values obtained in terms of these solutions (i.e. by forcing the same slope for all clusters).

3.2 The metallicity slopes (β_X)

We now follow the procedure employed by Dambis et al. (2013) to estimate the metallicity slopes β_{W1} and β_{W2} of the $W1$- and $W2$-band PML relations for RR Lyrae. The following analysis is to a large degree based on our previous paper (Dambis et al. 2013), where we use the metallicity scale of Zinn & West (1984), and we therefore use metallicities on this scale throughout this subsection. We make the necessary transformation to the modern scale of Carretta et al. (2009) in the next subsection. We first compute the $(V - (W1))$ and $(V - (W2))$ intrinsic colour indices of 265 field RR Lyraes with $|b| > 25$ from table 2 of Dambis et al. (2013) by dereddening the corresponding observed $(V - (W1))$ and $(V - (W2))$ colours using the A_V values from the above paper (computed using the 3D extinction map by Drimmel, Cabrera-Lavers & Lopez-Corredoira 2003) and the reddening law by Yuan et al. (2013) ($R_V = A_V/E_{B-V} = 3.1, R_{W1} = A_W/E_{B-V} = 0.18$ and $R_{W2} = A_W/E_{B-V} = 0.16$). We adopt the (V) and $(W1)$ intensity-mean magnitudes from the above paper and compute the $(W2)$ intensity-mean magnitudes from WISE epoch photometry. Like in our previous work, we proceed based on the following established facts. First, the absolute V-band magnitude of RR Lyrae variables depends on metallicity [Fe/H] and, for a
Table 4. Parameters of the \((W_1) = \alpha_{W_1}(\log P_V + 0.25) + C_{W_1} \) and \((W_2) = \alpha_{W_2}(\log P_V + 0.25) + C_{W_2} \) fits for the globular clusters of our sample.

Name	\(\alpha_{W_1} \)	\(C_{W_1} \)	\(\sigma(W_1) \)	\(\alpha_{W_2} \)	\(C_{W_2} \)	\(\sigma(W_2) \)
M3	-2.235 ± 0.256	14.410 ± 0.016	0.124	-1.642 ± 0.332	14.383 ± 0.021	0.161
M4	-2.694 ± 0.213	10.818 ± 0.020	0.082	-2.540 ± 0.248	10.817 ± 0.024	0.096
M5	-2.343 ± 0.236	13.770 ± 0.020	0.098	-2.225 ± 0.321	13.824 ± 0.027	0.134
M15	-2.013 ± 0.445	14.382 ± 0.036	0.156			
M55	-2.388 ± 0.580	15.542 ± 0.044	0.193			
M92	-1.817 ± 0.207	13.004 ± 0.013	0.025	-2.294 ± 0.553	12.997 ± 0.036	0.068
M107	-2.158 ± 0.319	13.214 ± 0.035	0.083	-2.210 ± 0.314	13.196 ± 0.035	0.082
NGC 3201	-2.284 ± 0.306	12.791 ± 0.016	0.106	-2.112 ± 0.343	12.797 ± 0.018	0.118
NGC 5053	-2.071 ± 0.495	15.512 ± 0.038	0.089			
NGC 5466	-1.729 ± 0.531	15.409 ± 0.045	0.103			
NGC 6362	-3.167 ± 0.384	13.742 ± 0.051	0.138	-3.034 ± 0.544	13.803 ± 0.072	0.195
NGC 6723	-2.894 ± 0.583	14.012 ± 0.055	0.105			
NGC 6934	-2.990 ± 0.898	15.459 ± 0.047	0.100			
ω Cen	-2.158 ± 0.197	13.115 ± 0.018	0.087	-2.409 ± 0.222	13.152 ± 0.020	0.098

Figure 4. The PL\(_{W1}\) relation for the RR Lyrae in 15 calibrator globular clusters. The filled and open circles are the RRab- and RRc-type variables with fundamentalized periods, respectively. The W1 magnitudes are scaled to the same distance, extinction, and metallicity by subtracting the parameter \(C_{W1} \) for each cluster.

given metallicity, is independent of period. A consensus appears to have emerged concerning the slope of the [Fe/H]–\(M_V \) relation for RR Lyraes. Thus, Baade–Wesselink analyses yield \(\beta_V = 0.20 \) (Cacciari, Clementini & Fernley 1992), \(\beta_V = 0.21 \pm 0.05 \) (Skillen et al 1993) and \(\beta_V = 0.20 \pm 0.04 \) (Fernley et al. 1998), whereas Gratton et al. (2004) and Federici et al. (2012) estimate the slope to be \(\beta_V = 0.214 \pm 0.047 \) and \(\beta_V = 0.25 \pm 0.02 \), respectively, based on observations of RR Lyraes in the LMC and horizontal branch stars in M31 globular clusters, respectively. Like in our previous study, we try to remain as ‘empiric’ as possible and therefore we adopt the simple (unweighted) average of the latter two estimates

\[
\langle M_V \rangle = \gamma_V + 0.232(\pm0.020)[\text{Fe/H}]_{ZW}. \tag{7}
\]

because they are based on the sole geometric assumption that the stars involved in both cases are practically at the same distance from us. Secondly, given the \(\alpha_{W1} = -2.381 \pm 0.097 \) and \(\alpha_{W2} = -2.269 \pm 0.127 \) slopes derived above, the W1- and W2-band PML relations for RR Lyraes have the form:

\[
\langle M_{W_1} \rangle = \gamma_{W_1} + \beta_{W1}[\text{Fe/H}]_{ZW} - 2.381 \log P_V \tag{8}
\]

and

\[
\langle M_{W_2} \rangle = \gamma_{W_2} + \beta_{W2}[\text{Fe/H}]_{ZW} - 2.269 \log P_V. \tag{9}
\]

respectively. We then subtract equations (8) and (9) from equation (7) to obtain

\[
\langle V \rangle - \langle W_1 \rangle = \langle M_V \rangle - \langle M_{W_1} \rangle = (\gamma_V - \gamma_{W1}) + 0.232 - \beta_{W1}[\text{Fe/H}]_{ZW} + 2.381 \log P_V \tag{10}
\]
Figure 5. The PL$_{W2}$ relation for the RR Lyrae in 9 calibrator globular clusters. The filled and open circles are the RRab- and RRc-type variables with fundamentalized periods, respectively. The W2 magnitudes are scaled to the same distance, extinction and metallicity by subtracting the parameter C$_{W2}$ for each cluster.

Figure 6. The parameter $\alpha_{W1} = \delta M_{W1}/\delta \log P$ for RR Lyrae stars as a function of the cluster metallicity. The dashed line shows the relation defined by equation (5).

and

\[
(V - W1)_0 = (M_V) - (M_{W1})
\]

\[
= (\gamma_V - \gamma_{W1}) + (0.232 - \beta_{W1})[Fe/H]_{ZW} + 2.269 \log P_F,
\]

respectively. We finally subtract the terms 2.381 log P_F and 2.269 log P_F from both sides of equations (10) and (11) to obtain

\[
(V - W1)_0 - 2.381 \log P_F
\]

\[
= (\gamma_V - \gamma_{W1}) + (0.232 - \beta_{W1})[Fe/H]_{ZW}
\]

\[
(12)
\]

and

\[
(V - W2)_0 - 2.269 \log P_F
\]

\[
= (\gamma_V - \gamma_{W2}) + (0.232 - \beta_{W2})[Fe/H]_{ZW}.
\]

\[
(13)
\]

Figure 7. The parameter $\alpha_{W2} = \delta M_{W2}/\delta \log P$ for RR Lyrae stars as a function of the cluster metallicity. The dashed line shows the relation defined by equation (6).

Our calibrating stars now are 265 field RR Lyraes from table 2 from Dambis et al. (2013) located at Galactic latitudes $|b| \geq +25^\circ$ and with known V-, W1- and W2-band intensity-mean magnitudes. We finally solve equations (12) and (13) for parameters $(\gamma_V - \gamma_{W1})$, $(0.232 - \beta_{W1})$ and $(\gamma_V - \gamma_{W2})$, $(0.232 - \beta_{W2})$, respectively, to find

\[
(V - W1)_0 = 1.908(\pm0.019) + 0.126(\pm0.012)[Fe/H]_{ZW} + 2.381 \log P_F,
\]

(14)

with a scatter of 0.087, and

\[
(V - W2)_0 = 1.853(\pm0.018) + 0.113(\pm0.012)[Fe/H]_{ZW} + 2.269 \log P_F,
\]

(15)
A. K. Dambis, A. S. Rastorguev and M. V. Zabolotskikh

Figure 8. The PL_{W1} relation for the 360 RR Lyrae of our sample. The solid line shows the resulting fit. Filled circles are the RRab variables, open circles are the RRc variables whose periods have been fundamentalized. The grey symbols are the 3σ-rejected data points.

Figure 9. The PL_{W2} relation for the 275 RR Lyrae of our sample. The solid line shows the resulting fit. Filled circles are the RRab variables, open circles are the RRc variables whose periods have been fundamentalized. The grey symbols are the 3σ-rejected data points.

with a scatter of 0.083, implying β_{W1} = 0.106 ± 0.023 and β_{W2} = 0.119 ± 0.023, respectively.

3.3 The zero-points (γ, ω)

Given our recent statistical-parallax calibration of the [Fe/H]–⟨Mv⟩ relation (Dambis et al. 2013):

$$⟨M_v⟩ = +1.094(±0.091) + 0.232(±0.020)[Fe/H]_{ZW}$$ \hspace{1cm} (16)

we immediately obtain the following RR Lyrae PML relations in the W1 and W2 bands:

$$⟨M_{W1}⟩ = −0.814(±0.093) − 2.381(±0.097)\log P_F + 0.106(±0.023)[Fe/H]_{ZW}$$ \hspace{1cm} (17)

and

$$⟨M_{W2}⟩ = −0.759(±0.093) − 2.269(±0.127)\log P_F + 0.119(±0.023)[Fe/H]_{ZW}.$$ \hspace{1cm} (18)

A transformation to the modern metallicity scale via equation

$$[Fe/H]_{Carretta} = 1.105[Fe/H]_{ZW} + 0.160$$ \hspace{1cm} (19)

(Carretta et al. 2009) yields

$$⟨M_{W1}⟩ = −0.829(±0.093) − 2.381(±0.097)\log P_F + 0.096(±0.021)[Fe/H]_{Carretta}$$ \hspace{1cm} (20)

and

$$⟨M_{W2}⟩ = −0.776(±0.093) − 2.269(±0.127)\log P_F + 0.108(±0.021)[Fe/H]_{Carretta}.$$ \hspace{1cm} (21)

We perform another calibration of the zero-points γ_{W1} and γ_{W2} based on intensity-mean W1- and W2-band magnitudes and HST FSG trigonometric parallaxes of four RR Lyraes adopted from Madore et al. (2013) and Benedict et al. (2011), respectively, γ_{W1,HST} = −1.135 ± 0.077 and γ_{W2,HST} = −1.088 ± 0.077 for the metallicity scale of Zinn & West (1984) and γ_{W1,HST} = −1.150 ± 0.077 and γ_{W2,HST} = −1.105 ± 0.077 for the metallicity scale of Carretta et al. (2009). Hence, the HST trigonometric-parallax based calibrations are

$$⟨M_{W1,HST}⟩ = −1.135(±0.077) − 2.381(±0.097)\log P_F + 0.106(±0.023)[Fe/H]_{ZW}$$ \hspace{1cm} (22)

and

$$⟨M_{W2,HST}⟩ = −1.088(±0.077) − 2.269(±0.127)\log P_F + 0.117(±0.023)[Fe/H]_{ZW}.$$ \hspace{1cm} (23)

Or, for the metallicity scale of Carretta et al. (2009)

$$⟨M_{W1,HST}⟩ = −1.150(±0.077) − 2.381(±0.097)\log P_F + 0.096(±0.021)[Fe/H]_{Carretta}$$ \hspace{1cm} (24)

and

$$⟨M_{W2,HST}⟩ = −1.105(±0.077) − 2.269(±0.127)\log P_F + 0.108(±0.021)[Fe/H]_{Carretta}.$$ \hspace{1cm} (25)

The HST-based distance scales can be seen to be longer than the statistical-parallax based ones by 0.321 and 0.329 in terms of distance moduli for the PML_{W1} and PML_{W2} relations, respectively.

Table 5. Parameters C_{W1} and C_{W2} of the combined (W1) = α_{W1}(log P_F + 0.25) + C_{W1} and (W2) = α_{W2}(log P_F + 0.25) + C_{W2} single-slope fits for the globular clusters of our sample (α_{W1} = −2.381 ± 0.098 and α_{W2} = −2.269 ± 0.127).

Name	C_{W1}	C_{W2}
M3	14.407 ± 0.015	13.369 ± 0.027
M4	10.836 ± 0.024	10.834 ± 0.027
M5	13.768 ± 0.022	13.822 ± 0.025
M15	14.373 ± 0.027	14.389 ± 0.027
M55	15.544 ± 0.027	15.571 ± 0.027
M92	13.766 ± 0.061	13.792 ± 0.069
M107	13.200 ± 0.041	13.192 ± 0.046
NGC 3201	12.789 ± 0.017	12.794 ± 0.020
NGC 5053	15.518 ± 0.046	15.534 ± 0.046
NGC 5466	15.425 ± 0.046	15.441 ± 0.046
NGC 6362	13.817 ± 0.032	13.876 ± 0.036
NGC 6723	14.035 ± 0.050	14.051 ± 0.050
NGC 6934	15.466 ± 0.050	15.482 ± 0.050
ω Cen	13.124 ± 0.022	13.146 ± 0.025

\Rightarrow
Table 6. Estimated distances to the calibrator clusters.

Name	DM_{0} (PML_{W1})	DM_{0} (PML_{W2})	DM_{0} (PML_{K})
	statistical parallax zero-point	\(HST\) trigonometric parallax zero-point	\(Sollima et al. 2006\)
M3	14.78 ± 0.02	14.74 ± 0.03	15.10 ± 0.02
M4	11.12 ± 0.02	11.11 ± 0.03	11.44 ± 0.02
M5	14.12 ± 0.02	14.17 ± 0.03	14.44 ± 0.02
M15	14.82 ± 0.03	14.17 ± 0.03	14.40 ± 0.03
M53	15.98 ± 0.03	13.40 ± 0.05	13.73 ± 0.05
M92	14.22 ± 0.06	14.25 ± 0.07	14.55 ± 0.06
M107	13.47 ± 0.04	13.45 ± 0.05	13.79 ± 0.04
NGC 3201	13.13 ± 0.02	13.14 ± 0.02	13.45 ± 0.02
NGC 5053	15.97 ± 0.04	12.69 ± 0.04	16.29 ± 0.04
NGC 5466	15.85 ± 0.04	15.85 ± 0.04	16.17 ± 0.04
NGC 6362	14.13 ± 0.03	14.18 ± 0.04	14.45 ± 0.03
NGC 6723	14.37 ± 0.05	14.69 ± 0.05	14.44
NGC 6934	15.82 ± 0.05	16.14 ± 0.05	13.72
\(\omega\) Cen	13.50 ± 0.02	13.52 ± 0.03	13.82 ± 0.02

4 THE DISTANCES TO THE CALIBRATOR CLUSTERS

We estimate the distance moduli of the calibrating clusters using the above PML relations with the zero-points based both on the statistical-parallax solution (equations 20 and 21) and on \(HST\) trigonometric parallaxes (equations 24 and 25). The results are listed in Table 6, where the last column gives the distance moduli estimated by Sollima et al. (2006) based on the PML\(_K\) relation. We find our cluster distance moduli based on the PML\(_{W1}\) and PML\(_{W2}\) relations to be highly consistent with each other with the \(\Delta D^0_0(\text{PML}_{W1}) - D^0_0(\text{PML}_{W2}) = -0.01 ± 0.03\) and \(\Delta D^0_0(\text{PML}_{W1}) - D^0_0(\text{PML}_{W2}) = -0.02 ± 0.03\) if computed with the zero-points tied to our statistical-parallax solution and \(HST\) FSG trigonometric parallaxes, respectively. Furthermore, our cluster distance estimates computed with \(HST\)-based zero-points agree well with those found by Sollima et al. (2006) using their derived the PML\(_K\) relation with the average distance-modulus differences [this paper minus Sollima et al. (2006)] of +0.04 and +0.06 and a scatter of 0.06.

5 CONCLUSIONS

Our analysis of \textit{WISE} W1- and W2-band epoch photometry for 372 RR Lyrae type variables in 15 Galactic globular clusters combined with \(V\)-band and \textit{WISE} W1- and W2-band photometry of 265 field RR Lyraes at Galactic latitudes \(|b| > 25\degree\) allowed us to derive the PML relations in the W1 and W2 bands. We derive two sets of appreciably discrepant zero-points with one based on our recent statistical-parallax analysis (Dambis et al. 2013) and another one tied to the trigonometric parallaxes of four RR Lyraes measured with the \textit{HST} Fine Guidance Sensor (FGS; Benedict et al. 2011). The statistical-parallax-based calibration yields zero-points that are 0.32 mag (W1) and 0.33 mag (W2) shorter than those calibrated with \textit{HST} FGS parallaxes. The ~0.3 mag difference in the zero-points given by two geometric methods is by no means trivial, but this is long-standing issue, which still remains unresolved. A more detailed discussion can be found in section 6.1 of our previous paper (Dambis et al. 2013). Let us hope that \textit{GAIA} will soon resolve the controversy.

We use our calibrations to estimate the distance moduli to 15 calibrator globular clusters of which nine have distance determined using both PML\(_{W1}\) and PML\(_{W2}\) relations. Our distances based on \(HST\) zero-points agree well with the results of Sollima et al. (2006) with +0.04 and +0.06 distance-modulus differences both for PML\(_{W1}\) and PML\(_{W2}\) and the scatter of 0.06 for the W1- and W2-based estimates, respectively.

ACKNOWLEDGEMENTS

We thank the anonymous reviewer for the valuable comments, which greatly improved the final version of the paper. This publication makes use of data products from the \textit{Wide-field Infrared Survey Explorer}, which is a joint project of the University of California, Los Angeles and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research has made use of NASA’s Astrophysics Data System. This work is supported by the Russian Foundation for Basic Research (projects nos. 13-02-00203-a, 14-02-00472-a and 11-02-00608-a).
REFERENCES

Benedict G. F. et al., 2011, AJ, 142, 187
Bono G., Caputo F., Castellani V., Marconi M., 1997, A&AS, 121, 327
Cacciari C., Clementini G., Fernley J. A., 1992, ApJ, 396, 219
Castellani M., Caputo F., Castellani V., 2003, A&A, 410, 871
Carretta E., Bragaglia A., Gratton R., D’Orazi V., Lucatello S., 2009, A&A, 508, 695
Catelan M., Pritzl B. J., Smith H. A., 2004, ApJS, 154, 633
Clement C. et al., 2001, AJ, 122, 2587
Cutri R. M. et al., 2012, VizieR Online Data Catalog, II/311
Dambis A. K., Berdnikov L. N., Kniazev A. Y., Kravtsov V. V., Rastorguev A. S., Sefako R., Vozya kova O. V., 2013, MNRAS, 435, 3206
Drimmel R., Cabrera-Lavers A., Lopez-Corredoira M., 2003, A&A, 409, 205
Feast M. W., Laney C. D., Kinnman Th. D., van Leeuwen F., Whitelock P. A., 2008, MNRAS, 386, 2115
Federici L., Cacciari C., Bellazzini M., Fusi Pecci F., Galleti S., Perina S., 2012, A&A, 544, 1459
Fernley J., Skillen I., Carney B. W., Cacciari C., Janes K., 1998, MNRAS, 293, L61
Frolov M. S., Samus N. N., 1998, Pis’ma Astron. Zh., 24, 509
Gratton R. G., Bragaglia A., Clementini G., Carretta E., Di Fabrizio L., Maio M., Taribello E., 2004, A&A, 421, 937
Harris W. E., 1996, AJ, 112, 1487
Harris W. E., 2010, preprint (arXiv:1012.3224)
Iben I., 1973, Publ. David Dunlap Observ., Univ., Toronto, 3, 6
Iben I., Jr, 1974, ARA&A, 12, 215
Klein Ch. R., Richards J. W., Butler N. R., Bloom J. S., 2011, ApJ, 738, 185
Klein Ch. R., Richards J. W., Butler N. R., Bloom J. S., 2012, Ap&SS, 341, 83
Kollmeier J. A. et al., 2013, ApJ, 775, 57
Madore B. F. et al., 2013, ApJ, 776, 135
Marconi M., Caputo F., Di Criscienzo M., Castellani M., 2003, ApJ, 596, 299
Poleski R., 2013, preprint (arXiv:1309.1168)
Samus N. N., Kazarovets E. V., Pastukhova E. N., Tsvet kova T. M., Durlevich O. V., 2009, PASP, 121, 1378
Skillen I., Fernley J. A., Stobie R. S., Jameson R. F., 1993, MNRAS, 265, 301
Sollima A., Cacciari C., Valenti E., 2006, MNRAS, 372, 1672
van Albada T. S., Baker N., 1973, ApJ, 185, 477
Wright E. L. et al., 2010, AJ, 140, 1868
Yuan H. B., Liu X. W., Xiang M. S., 2013, MNRAS, 430, 2188
Zinn R., West M. J., 1984, ApJS, 55, 45

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Table 1. The data for RR Lyraes in the calibrator GCs (http://mnras.oxfordjournals.org/lookup/suppl/doi:10.1093/mnras/stu226/-/DC1).

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

This paper has been typeset from a TeX/LATEX file prepared by the author.