The Nitrate-Nitrite-Nitric Oxide Pathway: Findings from 20 Years of the Tehran Lipid and Glucose Study

Zahra Bahadoran 1, Parvin Mirmiran 2, Sajad Jeddi 3, Amir Abbas Momenan 4, Fereidoun Azizi 5 and Asghar Ghasemi 3, *

1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Department of Clinical Nutrition and Diet Therapy, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

*Corresponding author: Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email: ghasemi@endocrine.ac.ir

Received 2018 September 01; Revised 2018 October 02; Accepted 2018 October 07.

Abstract

Context: We describe here the contributions of the Tehran lipid and glucose study (TLGS) to understanding different aspects of the nitrate (NO3)-nitrite (NO2)-nitric oxide (NO) pathway in health and disease.

Evidence Acquisition: All English-language documents from the TLGS, focused on NO pathway were searched using the PubMed, Scopus, and Embase databases.

Results: Reference values of serum concentrations of NO metabolites (nitrate+nitrite or NOx) were 11.5 - 76.4, 10.1 - 65.6, and 10.3 - 66.8 µmol/L in men, women, and the total population, respectively. Circulating NOx was affected by age, smoking habits, menopause status, thyroid hormones, and various pathologic conditions. Elevated serum NOx was related to increased incidence of metabolic syndrome (odds ratio (OR) = 1.75, 95% confidence interval (CI) = 1.19 - 2.59), hypertenriglyceridemic-waist phenotype (OR = 1.39, 95% CI = 1.05 - 1.83), chronic kidney disease (OR = 1.86, 95% CI = 1.30 - 2.64) in women, and cardiovascular disease (hazard ratio (HR) = 1.35, 95% CI = 1.01 - 1.80) in the total population. In participants with low vitamin C intake, higher intakes of NO2 (≥ 8.77 mg/d) were accompanied with increased risk of diabetes (HR = 2.43, 95% CI = 1.45 - 4.05). A decreased risk of hypertension (OR = 0.58, 95% CI = 0.33 - 0.98) and chronic kidney disease (OR = 0.50, 95% CI = 0.24 - 0.89) was observed in response to higher intakes of NO2.

Conclusions: Circulating NOx is associated with and could predict the risk of metabolic disorders in a general population. Moreover, dietary NO3/NO2 exposure from usual diets seems to contribute to development of noncommunicable diseases.

Keywords: Nitric Oxide, Nitrate, Nitrite, Diabetes, Obesity, Metabolic Syndrome, Cardiovascular Disease

1. Context

Nitric oxide (NO), a simple ubiquitous signaling molecule, is suggested to be linked with several physiological processes including regulation of vascular homeostasis and blood pressure, inhibition of platelet activation, regulation of energy and lipid metabolism, mitochondrial biogenesis, and the modification of various physiological pathways (1-3). Interrupted NO metabolism, including either reduced or elevated production of NO, as well as its decreased bioavailability, has been reported as a risk factor and/or prognostic biomarker for development of chronic disorders especially cardiovascular disease (CVD), renal dysfunction, diabetes, hypertension (HTN), and different types of cancer (4-9).
tracted.

1.1. NOx Measurement in TLGS

TLGS is an ongoing community-based prospective study being conducted to investigate and prevent non-communicable diseases (NCDs), in a representative sample in the district 13 of Tehran, the capital city of Iran (10).

In the third phase of TLGS (2006 - 2008), in a sub-sample of participants (n = 4407), serum NOx levels were measured by a rapid and simple spectrophotometric method, validated in our laboratory (11, 12). Inter- and intra-assay coefficients of variations of measurements were 5.2% and 4.4%, respectively; the sensitivity of the assay was 2.0 µmol/L and its recovery was 93% ± 1.5% (13).

The mean (± SE) of serum NOx concentrations in normal subjects were 24.8 ± 0.02 and 24.4 ± 0.01 µmol/L in the TLGS men and women, respectively (14). In our adults, the reference values of serum NOX concentration were 11.5 - 76.4, 10.1 - 65.6, and 10.3 - 66.8 µmol/L in men, women, and total population, respectively (15). In the TLGS pediatric population (189 boys and 212 girls, aged 4 - 19 years), reference values for serum NOX concentrations were 13.6 - 69.2, 11.4 - 66.0, and 12.2 - 69.4 µmol/L in boys, girls, and total population, respectively (16).

1.2. Factors Affecting Circulating NOx

In our population, a higher NOx levels was observed in men, compared to women aged 20 - 29 years (25.1 ± 0.03 vs. 22.7 ± 0.02 µmol/L), and serum NOx concentration showed a peak at 50 - 59 years in both genders; increased NOx levels between 50 and 59 years of age, declined after 60 years in men but not in women (14). Overall, there was also a significant increasing trend in circulating NOx across age groups, only in women (14). Our study conducted on 1209 middle-aged (40 - 60 years) TLGS participants indicated higher serum NOx values in postmenopausal women (median = 29, IQR = 21 - 43 µmol/L), compared to women with regular cycles (25.5 µmol/L, IQR = 19 - 39) or men (26 µmol/L, IQR = 20 - 37) (17). Serum NOx levels also show considerable elevation across pre-menopause to post-menopause transition (18); in a conditional fixed-effect logistic regression model, the chance of “transition to menopause” and “menopause” increased by 2.44 (95% CI = 1.17 - 5.08) and 2.27 (95% CI = 1.23 - 4.18) per 1 standard deviation increase in circulating NOx levels (18).

In a cross-sectional analysis, conducted on 1974 adult participants of the Tehran thyroid study, serum NOx levels were negatively associated with free thyroxin (T4) in men and anti-thyroperoxidase (TPO) levels in women (19). Insulin is another physiological factor that may affect serum NOx concentration. In our population, a higher circulating NOx was observed in the highest compared to the lowest quartile of fasting serum insulin, an association that was statistically significant only in women (28.5 vs. 25.4 µmol/L) (20). NOx concentration was also weakly correlated with a homeostatic model assessment of insulin resistance and quantitative insulin sensitivity check index in women (20).

Effects of lifestyle factors, like dietary habits and smoking, as potential moderators of circulating NOx, have been less documented. The possible adverse effects of passive cigarette and water pipe (qalyan) smoking on serum NOx concentration were documented following the first report in 2010 from the TLGS data (21). Serum NOx was significantly higher in the healthy active smokers (28.9 vs. 24.1 µmol/L), compared to nonsmokers; the number of cigarette smoked was also positively correlated with serum NOx concentrations. Qalyan smokers had higher serum NOx levels, compared to the non-smoker controls (34.3 vs. 22.5 µmol/L); serum NOx values were comparable between passive smokers and non-smokers (21).

Alterations of circulating NOx in relation to dietary factors or eating behaviors seem to be a neglected area in the field of NO metabolism. In a cross-sectional analysis in the TLGS population, we found a significant positive association between L-arginine intake from usual diet and serum NOx concentrations (22); this association was affected by sex, age, body mass index (BMI) and HTN, and a greater association was observed in women, middle-aged and older adults, overweight and obese subjects, as well as non-hypertensive compared to hypertensive subjects (22). Regular dietary intakes of NO2/NOx were correlated with their urinary excretion levels (r = 0.59, 95% CI = 0.49 - 0.67, and r = 0.29, 95% CI = 0.17 - 0.41, for NOx and NO2, respectively) in a sub-sample analysis of our population; fasting serum NOx was not related to NO3/NOx exposure (r = 0.19, 95% CI = 0.07, 0.32 and r = 0.09, 95% CI = -0.03, 0.23, for NO3 and NO2, respectively) (23).

Other potential factors affecting circulating NOx, like physical activity, have not been assessed in the setting of the TLGS.

2. Association Between NCDs and Circulating NOx

2.1. Obesity

Reports from a cross-sectional analysis, using the TLGS data by our group showed positive associations between serum NOx concentrations and anthropometric measures including BMI, waist circumference (WC) and waist to hip ratio (WHR) in women (13), results that remained only for
2.2. Dysglycemia and Diabetes

In an earlier study in the TLGS population, we observed higher serum NOx values in diabetic subjects compared to their corresponding controls (34.6 μmol/L, 95% CI = 31.3 - 38.2 vs. 30.2 μmol/L, 95% CI = 27.9 - 32.6) (29).

The first investigation addressing potential association of serum NOx and diabetes was conducted on the TLGS population (15); a remarkable result to emerge from this cross-sectional analysis was that circulating NOx above reference values (65.6 μmol/L) increased chances of having type 2 diabetes in women (OR = 1.67, 95% CI = 1.10 - 2.55) (15).

2.3. Hypertension, Chronic Kidney Disease, and Cardiovascular Events

Limited number of studies have investigated NO-blood pressure relationship in the framework of a population-based setting. In the TLGS population, compared to controls, serum NOx levels were higher in both men and women with stage 1 HTN (14% and 23%, respectively); conversely, circulating NOx was significantly reduced in men with stage 2 HTN (30). In both stages, treated-hypertensive men had a higher serum NOx concentration, whereas in women, increased circulating NOx was observed just in stage 1 HTN (30). Considering serum NOx as an independent variable in the analysis, we observed that elevated serum NOx was not related to chances of having HTN (OR = 0.91, 95% CI = 0.49 - 1.70, and OR = 1.38, 95% CI = 0.95 - 2.01, in men and women, respectively) (15).

In a cross-sectional setting of 3462 TLGS participants, the odds of having chronic kidney disease (CKD) in both men and women, in the highest compared to the lowest tertile of serum NOx (≥ 32 vs. < 21 μmol/L), were significantly higher (OR = 1.61, 95% CI = 1.05 - 2.64 and OR = 2.64, 95% CI = 1.91 - 3.66); following adjustment for diabetes, CVD, HTN, medications and triglycerides (TG)-to-high density lipoprotein-cholesterol (HDL-C) ratio, elevated serum NOx was related to the likelihoods of CKD only in women (OR = 2.48, 95% CI = 1.76 - 3.49) (27) (Table 1). Our prospective design within the TLGS indicated that, in the presence of the well-known risk factors, serum NOx values ≥ 32 μmol/L may predict 3-year risk of CKD in women (OR = 1.86, 95% CI = 1.10 - 3.14) (27). In a 3-year follow-up of adult (aged ≥ 30 years) men and women participated in the third phase of TLGS, results indicated that compared to the lowest quartiles of serum NOx, the incidence of CVD (10.1 vs. 4.4%, P = 0.002) was higher in the highest quartile and the risk of CVD events increased by 35% (HR = 1.35, 95% CI = 1.01 - 1.80) for each 1 unit of increase in Ln-transformed serum NOx concentrations (28) (Table 1); in this analysis, incorporating circulating NOx into the traditional CVD risk model appropriately reclassified over 6% of individuals at risk (28).

2.4. Metabolic Syndrome

Only a few population-based studies have documented the importance of circulating NOx as a novel biomarker of MetS. In a study of 851 children and adolescents, aged 4 - 19 years, a higher prevalence of MetS (13.2% vs. 6.1%) was observed in the highest compared to the lowest quartile of serum NOx concentrations (≥ 33.0 vs. < 19.0 μmol/L) (31); age-and sex adjusted odds ratio of having MetS was significantly higher in the subjects with highest levels of NOx (OR = 2.2, 95% CI = 1.1 - 4.7) (31). Furthermore, co-clustering of NOx with other MetS components indicated that circulating NOx can be considered as a component of MetS (31).

In a short-term follow-up of the TLGS participants, risk of developing MetS was significantly higher (OR = 1.75, 95% CI = 1.19 - 2.59) in women who had higher basal serum NOx values (≥ 35 μmol/L) (26) (Table 1); serum NOx-to-creatinine ratio, a marker of endogenous NO production, was also related to developing MetS in women (26).

3. Dietary Intake of NOx and NO2 in Relation to Cardio-Metabolic-Renal Disease

Considering the importance of NOx/NO2 exposure in NO homeostasis and its possible role in pathogenesis of NCDs, we recently developed a comprehensive database of the NOx/NO2 content of commonly consumed food items (32). Following estimation of NOx/NO2 exposure from usual diet in the TLGS population, we reported, for the first
Table 1. Associations Between Serum NOx Levels and the Incidence of Non-Communicable Diseases in the TLGS Population

Author	Study Population	Years of Follow-Up	Outcomes	Levels of Serum NOx (µmol/L)	Adjusted OR (95% CI) or HR (95% CI)
Ghasemi et al. [26]	Adult men (n = 644)	3.3	Metabolic syndrome	≤ 75th percentile	1.00
				> 75th percentile	0.93 (0.58 - 1.49)
	Adult women (n = 1137)	3.3	Metabolic syndrome	≤ 35.0	1.00
				> 35.0	1.75 (1.19 - 2.59)
Bahadoran et al. [27]	Adult men (n = 1063)	3	Chronic kidney disease	< 21.0	1.00
				21.0 - 32.0	1.44 (0.67 - 3.23)
				≥ 32.0	0.98 (0.44 - 2.20)
	Adult women (n = 1441)	3	Chronic kidney disease	< 21.0	1.00
				21.0 - 32.0	1.53 (0.89 - 2.63)
				≥ 32.0	1.86 (1.10 - 3.14)
Hadaegh et al. [28]	Adult men and women (n = 2443)	3.1	Cardiovascular events	Ln-transformed NOx as a continuous variable	1.35 (1.01 - 1.80)
Bahadoran et al. [24]	Adult men (n = 762)	6	Hypertriglyceridemic-waist phenotype	< 20.9	1.00
				20.9 - 29.9	1.41 (0.95 - 2.07)
				≥ 29.9	1.16 (0.78 - 1.72)
	Adult women (n = 1172)	6	Hypertriglyceridemic-waist phenotype	< 19.9	1.00
				19.9 - 39.9	1.69 (0.86 - 1.64)
				≥ 30.9	1.39 (1.05 - 1.93)

Abbreviations: HR, hazard ratio; NOx, nitric oxide metabolites (nitrate+nitrite); OR, odds ratio.

* Indicates OR.

b Indicates HR.

time, the hazards of diabetes, HTN, CKD and CVD in response to different levels of dietary NO$_3$/NO$_2$ (Table 2). Our findings indicate that incidence of diabetes was increased (HR = 2.43, 95% CI = 1.45 - 4.05, HR = 1.88, 95% CI = 1.12 - 3.15, respectively) in participants with low-vitamin C diets and higher intakes of total (≥ 8.77 mg/d) and animal-based (≥ 3.24 mg/d) NO$_2$; we found no significant association between NO$_3$ in overall, and plant- or animal sources and the risk of diabetes (33). The highest compared to the lowest NO$_2$ intake (≥ 10.7 vs. < 7.6 mg/d) was accompanied with a significant reduced risk of HTN (OR = 0.58, 95% CI = 0.33 - 0.98) and CKD (OR = 0.50, 95% CI = 0.24 - 0.89) (34). We also observed that in subjects with lower dietary total antioxidant capacity (TAC), higher intakes of NO$_3$ (≥ 430 mg/d) were accompanied with an increased risk of CVD (HR = 3.28, 95% CI = 1.54 - 6.99); no evidence was documented in relation to NO$_2$ and the occurrence of CVD events during 6.7 years of follow-up (35).

4. Conclusions

Our observations imply that NO may play an independent role in predicting the CVD, CKD and obesity phenotypes, beyond the known classical indices. Higher NO$_2$ exposure alongside with a low-vitamin C intake may increase the risk of diabetes whereas high-NO$_3$ diet may decrease the risk of HTN and CKD. Furthermore, higher NO$_3$ intakes in the context of low-TAC diet contributes to development of CVD events. In our view, these findings make a major contribution towards enhancing current understanding of potential health outcomes in response to long-term exposure of NO$_3$/NO$_2$.

Acknowledgments

The authors wish to acknowledge Ms Nilofar Shiva for critical editing of English grammar and syntax of the manuscript.
Table 2. Association Between Dietary Intakes of NO\textsubscript{3} and NO\textsubscript{2} and the Incidence of Non-Communicable Diseases in the TLGS Population

Author et al. (33)	Study Population	Years of Follow-Up	Outcomes	Levels of Dietary Intakes of NO\textsubscript{3} or NO\textsubscript{2}	Adjusted OR (95% CI) or HR (95% CI)
Adult men and women (n = 2139)	5.8	T2DM	\(> 410\) mg/d NO\textsubscript{3}	1.38 (0.90 - 2.11)^a	
Adult men and women (n = 2139)	5.8	T2DM	\(> 8.77\) mg/d NO\textsubscript{2} alongside with a low-vitamin C diet	2.43 (1.45 - 4.05)^b	
Adult men and women (n = 2139)	5.8	T2DM	\(> 8.77\) mg/d NO\textsubscript{2} alongside with a high-vitamin C diet	0.91 (0.47 - 1.73)^b	
Bahadoran et al. (34)	Adult men and women (n = 1780)	5.8	CKD	\(< 365\) mg/d NO\textsubscript{3}	1.00
				\(365 - 510\) mg/d NO\textsubscript{3}	1.04 (0.68 - 1.57)^b
				\(\geq 510\) mg/d NO\textsubscript{3}	0.76 (0.43 - 1.24)^b
				\(< 7.6\) mg/d NO\textsubscript{2}	1.00
				\(7.6 - 10.7\) mg/d NO\textsubscript{2}	0.76 (0.50 - 1.13)^b
				\(\geq 10.7\) mg/d NO\textsubscript{2}	0.50 (0.24 - 0.89)^b
Bahadoran et al. (34)	Adult men and women (n = 1878)	5.8	HTN	\(< 259\) mg/d NO\textsubscript{3}	1.00
				\(259 - 505\) mg/d NO\textsubscript{3}	0.76 (0.44 - 1.00)^b
				\(\geq 505\) mg/d NO\textsubscript{3}	0.58 (0.33 - 0.98)^b
				\(< 7.5\) mg/d NO\textsubscript{2}	1.00
				\(7.5 - 10.6\) mg/d NO\textsubscript{2}	0.66 (0.44 - 1.00)^b
				\(\geq 10.6\) mg/d NO\textsubscript{2}	0.58 (0.33 - 0.98)^b
Bahadoran et al. (35)	Adult men and women (n = 2369)	6.7	CVD	\(< 430\) mg/d NO\textsubscript{3} alongside with a high-TAC diet	1.10 (0.46 - 2.60)^a
				\(\geq 430\) mg/d NO\textsubscript{3} alongside with a low-TAC diet	3.28 (1.54 - 6.99)^a
				\(< 8.9\) mg/d NO\textsubscript{2} alongside with a high-TAC diet	1.10 (0.46 - 2.60)^a
				\(\geq 8.9\) mg/d NO\textsubscript{2} alongside with a low-TAC diet	2.14 (0.84 - 5.45)^a

Abbreviations: CKD, chronic kidney disease; CVD, cardiovascular disease; HR, hazard ratio; HTN, hypertension; NO\textsubscript{2}, nitrite; NO\textsubscript{3}, nitrate; OR, odds ratio; T2DM, type 2 diabetes; TAC, total antioxidant capacity.

^a Indicates HR.

^b Indicates OR.

Footnotes

Authors’ Contribution: The study was designed and implemented by Zahra Bahadoran and Asghar Ghasemi. Zahra Bahadoran, Sajad Jeddi, Parvin Mirmiran, Amir Abbas Momenan, Fereidoun Azizi and Asghar Ghasemi prepared the manuscript. Asghar Ghasemi revised and supervised overall project. All authors read and approved the final version of manuscript.

Funding/Support: This study was supported by Shahid Beheshti University of Medical Sciences (grant no. 5-1396/D/101865).

References

1. Ghasemi A, Zahediasl S. Is nitric oxide a hormone? *Iran Biomed J*. 2011;15(3):59-65. [PubMed: 21987101]. [PubMed Central: PMC3639748].

2. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. *Nat Rev Drug Discov*. 2008;7(2):156-67. doi: 10.1038/nrd2466. [PubMed: 18167491].

3. Knott AB, Bossy-Wetzel E. Impact of nitric oxide on metabolism in health and age-related disease. *Diabetes Obes Metab*. 2010;12 Suppl 2:S126-33. doi: 10.1111/j.1463-1326.2010.01267.x. [PubMed: 21029309]. [PubMed Central: PMC3898980].

4. Baylis C. Nitric oxide deficiency in chronic kidney disease. *Am J Physiol Renal Physiol*. 2008;294(1):F1-9. doi: 10.1152/ajprenal.00424.2007. [PubMed: 17928410].

5. Masha A, Dinatale S, Allasia S, Martina V. Role of the decreased nitric oxide bioavailability in the vascular complications of diabetes mellitus. *Curr Pharm Biotechnol*. 2011;2(9):3354-63. [PubMed: 21235455].

6. Stoclet JC, Muller B, Andriantsitohaina R, Kleschyov A. Overproduction of nitric oxide in pathophysiology of blood vessels. *Biochemistry (Mosc)*. 1998;63(7):826-32. [PubMed: 9721335].

7. Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. *Nat Med*. 2001;7(10):1138-43. doi: 10.1038/nm1001-1138. [PubMed: 11590438].

Int J Endocrinol Metab. 2018;16(4 (Suppl)):e84775.
8. Hewala TI, Abd El-Moneim NA, Ebsd SA, Sheta MI, Soliman K, Abu-Elenean A. Diagnostic and prognostic value of serum nitric oxide, tumor necrosis factor-alpha, basic fibroblast growth factor and copper as angiogenic markers in premenopausal breast cancer patients: A case-control study. Br J Biomed Sci. 2010;67(4):167-76. doi: 10.1097/BMA.2010.07.0015R. [PubMed: 229442].

9. Muto S, Takagi H, Owada Y, Inoue T, Watanabe Y, Yamaura T, et al. Serum nitric oxide as a predictive biomarker for bevacizumab in non-small cell lung cancer patients. Anticancer Res. 2017;37(6):3169-74. doi: 10.2187/anticancerres.1067. [PubMed: 28554660].

10. Azizi F, Rahmani M, Emami H, Mirmiran P, Hadijangir R, Madjid M, et al. Cardiovascular risk factors in an Iranian urban population: Tehran lipid and glucose study (phase I). Soz Praventivmed. 2012;47(6):408-26. [PubMed: 21284010].

11. Ghasemi A, Hedayat M, Bibani H. Protein precipitation methods evaluated for determination of serum nitric oxide end products by the Griess assay. Jm. 2007;2(15):29-32.

12. Ghasemi A, Zahediasl S. Preanalytical and analytical considerations for measuring nitric oxide metabolites in serum or plasma using the Griess method. Clin Lab. 2012;58(7-8):615-24. [PubMed: 22997952].

13. Ghasemi A, Zahediasl S, Azizi F. Elevated nitric oxide metabolites are associated with obesity in women. Arch Iran Med. 2013;16(9):521-5. [PubMed: 239815].

14. Ghasemi A, Zahedi Asl S, Mehrabi Y, Saadat N, Azizi F. Serum nitric oxide metabolite levels in a general healthy population: Relation to sex and age. Life Sci. 2008;83(9-10):326-31. doi: 10.1016/j.lfs.2008.06.010. [PubMed: 18662705].

15. Ghasemi A, Zahediasl S, Azizi F. Reference values for serum nitric oxide metabolites in an adult population. Clin Biochem. 2010;43(1-2):2389-94. doi: 10.1016/j.clinbiochem.2009.09.001. [PubMed: 19782059].

16. Ghasemi A, Zahediasl S, Azizi F. Reference values for serum nitric oxide metabolites in pediatrics. Nitric Oxide. 2010;23(4):264-8. doi: 10.1016/j.niox.2010.07.007. [PubMed: 2066749].

17. Tehranifar PR, Behboudi-Gandevani S, Ghasemi A, Azizi F. Menopause status as the main factor explaining the gender differences of serum nitric oxide concentrations in middle-aged population. Arch Gynecol Obstet. 2015;291(1):159-63. doi: 10.1007/s00404-014-3338-x. [PubMed: 25047269].

18. Ramezani Tehranifar F, Behboudi-Gandevani S, Ghasemi A, Azizi F. Association between serum concentrations of nitric oxide and transition to menopause. Acta Obstet Gynecol Scand. 2015;94(7):708-14. doi: 10.1111/aogs.12655. [PubMed: 2588760].

19. Raghberpou F, Gharibzadeh S, Ghanbari M, Amouzegar A, Tohidi M, Azizi F, et al. Association between serum nitric oxide metabolites and thyroid hormones in a general population: Tehran thyroid study. Endocr Res. 2016;41(3):193-9. doi: 10.3109/07435800.2015.128644. [PubMed: 2689274].

20. Makhzani P, Afghani M, Tohidi M, Bagheripour F, Azizi F, Ghasemi A. Are serum nitric oxide metabolites associated with fasting insulin among Iran adults? (Tehran lipid and glucose study). Endocr Res. 2017;42(2):196-101. doi: 10.1080/07435800.2016.1197933. [PubMed: 27356206].

21. Ghasemi A, Syedmoradi L, Momenn AA, Zahediasl S, Azizi F. The influence of cigarette and qalyan (hookah) smoking on serum nitric oxide metabolite concentration. Scand J Clin Lab Invest. 2010;70(2):216-21. doi: 10.3109/00365513.2010.481282. [PubMed: 20956035].

22. Mirmiran P, Bahadoran Z, Ghasemi A, Azizi F. The association of dietary l-arginine intake and serum nitric oxide metabolites in adults: A population-based study. Nutrients. 2016;8(5). doi: 10.3390/nu80503031. [PubMed: 27214441].

23. Bahadoran Z, Ghasemi A, Mirmiran P, Mehrabi Y, Azizi F, Hadaegh F. Estimation and validation of dietary nitrate and nitrite intake in Iranian population. Iran J Public Health. 2018.

24. Bahadoran Z, Mirmiran P, Ghasemi A, Azizi F. Serum nitric oxide metabolites are associated with the risk of hypertriglyceridemic-waist phenotype in women: Tehran lipid and glucose study. Nitric Oxide. 2015;30:52-7. doi: 10.1016/j.niox.2015.08.002. [PubMed: 26284018].

25. Babahadaran ZM, Ghasemi A, Azizi F. The association of serum nitric oxide metabolites and 6-year changes of visceral fat accumulation in adults: Tehran lipid and glucose study. 5th World Congress on Controversies to Consensus in Diabetes, Obesity and Hypertension (CODHy). Istanbul, Turkey; 2015.

26. Ghasemi A, Zahediasl S, Azizi F. High serum nitric oxide metabolites and incident metabolic syndrome. Scand J Clin Lab Invest. 2012;72(7):523-30. doi: 10.3109/00365513.2012.701322. [PubMed: 23950497].

27. Babahadaran Z, Mirmiran P, Tahmasebi Najad Z, Ghasemi A, Azizi F. Serum nitric oxide is associated with the risk of chronic kidney disease in women: Tehran lipid and glucose study. Scand J Clin Lab Invest. 2017;76(4):304-8. doi: 10.3109/00365513.2016.1149880. [PubMed: 26956540].

28. Hadeghi F, Asgari S, Bozorgmanesh M, Jedd S, Azizi F, Ghasemi A. Added value of total serum nitrate/nitrite for prediction of cardiovascular disease in middle east caucasian residents in Tehran. Nitric Oxide. 2016;54:60-6. doi: 10.1016/j.niox.2016.02.004. [PubMed: 26923497].

29. Zahedi Asl S, Ghasemi A, Azizi F. Serum nitric oxide metabolites in subjects with metabolic syndrome. Clin Biochem. 2008;41(6-7):324-7. doi: 10.1016/j.clinbiochem.2008.04.076. [PubMed: 19793828].

30. Ghasemi A, Zahediasl S, Syedmoradi L, Azizi F. Association between serum nitric oxide metabolites and hypertension in a general population. Int Angiol. 2011;30(4):380-7. doi: 10.21111/ia.2011.30.4.380. [PubMed: 21743715].

31. Ghasemi A, Zahediasl S, Azizi F. Nitric oxide and clustering of metabolic syndrome components in pediatrics. Eur J Epidemiol. 2010;25(1):45-51. doi: 10.1007/s10654-009-9382-3. [PubMed: 19706868].

32. Babahadaran Z, Mirmiran P, Jedd S, Azizi F, Ghasemi A, Hadaegh F. Nitrate and nitrite content of vegetables, fruits, grains, legumes, dairy products, meats and processed meats. J Food Compos Anal. 2016;51:93-105. doi: 10.1016/j.jfca.2016.06.008. [PubMed: 27191563].

33. Babahadaran Z, Mirmiran P, Ghasemi A, Carlstrom M, Azizi F, Hadaegh F. Vitamin C intake modify the impact of dietary nitrite on the incidence of type 2 diabetes: A 6-year follow-up in Tehran lipid and glucose study. Nutric Oxide. 2017;62:24-31. doi: 10.1016/j.niox.2017.01.005. [PubMed: 27916563].

34. Babahadaran Z, Mirmiran P, Ghasemi A, Carlstrom M, Azizi F, Hadaegh F. Association between dietary intakes of nitrate and nitrite and the risk of hypertension and chronic kidney disease: Tehran lipid and glucose study. Nutrients. 2016;8(12). doi: 10.3390/nu8120818. [PubMed: 2800989]. [PubMed Central: PMC588486].

35. Babahadaran Z, Carlstrom M, Ghasemi A, Mirmiran P, Azizi F, Hadaegh F. Total antioxidant capacity of the diet modulates the association between habitual nitrate intake and cardiovascular events: A longitudinal follow-up in Tehran lipid and glucose study. Nutr Metab (Lond). 2018;15:19. doi: 10.1186/s12986-018-0254-2. [PubMed: 28942096]. [PubMed Central: PMC5828061].