Fe$^{3+}$-dependent epistasis between the CpxR-activated loci and the PmrA-activated LPS modification loci in *Salmonella enterica*

(Received February 10, 2016; Accepted May 19, 2016; J-STAGE Advance publication date: November 8, 2016)

Akinori Kato,* Nami Higashino, and Ryutaro Utsumi

Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Nara 631-8505, Japan

Bacteria utilize varying combinations of two-component regulatory systems, many of which respond and adapt closely to stress conditions, thus expanding their niche steadily. While mechanisms of recognition and avoidance of the specific Fe$^{3+}$ signal by the PmrA/PmrB system is well understood, those of the CpxR/CpxA system are more complex because they can be induced by various stress conditions, which, in turn, expresses a variety of phenotypes. Here, we highlight another aspect of the CpxR/CpxA system; mutations in degP and yqjA genes, which are under the control of the system, exhibit an iron sensitive phenotype in the mutant background defective in the PmrA-dependent gene products that alter the pyrophosphate status of the lipid A moiety of lipopolysaccharide in *Salmonella enterica*. Therefore, after the PmrA/PmrB-mediated Fe$^{3+}$-dependent control of the pyrophosphate status on the cell surface, the CpxR/CpxA system is one of the second layers of envelope stress response that allows adaptation to high Fe$^{3+}$ conditions in this bacterium.

Key Words: Cpx; genetic interaction; lipopolysaccharide (LPS); metal; PmrR; reactive oxygen species (ROS); *Salmonella enterica*; two-component system

Introduction

The PmrA/PmrB two-component regulatory system confers *Salmonella* resistance to cationic peptide polymyxin B and ferric iron by modifying the phosphoryl groups of lipopolysaccharide (LPS) (Chen and Groisman, 2013), the major component of the outer membrane of Gram-negative bacteria. The regulator protein PmrA activation status responds not only to extracellular Fe$^{3+}$, a signal of the sensor histidine kinase PmrB (Wösten et al., 2000), but also to low Mg$^{2+}$, an activation signal of another two-component regulatory system PhoP/PhoQ (García Véscovi et al., 1996), in a PmrD-dependent manner (Kato and Groisman, 2004; Kox et al., 2000). Thus, under high Fe$^{3+}$, or low Mg$^{2+}$, conditions, the PmrA/PmrB system activates genes such as *ugd*/pbgPE, *pmrC*, and *pmrR*, which together change the chemical structure of the lipid A anchor of LPS (Fig. 1). Ugd/PbgPE modifies phosphates of lipid A with L-4-aminoarabinose (L-Ara4N) at the 1 and 4' positions (Gunn et al., 1998), whereas PmrC adds phosphoethanolamine (pEtN) primarily to phosphate at the 1 position of lipid A (Lee et al., 2004). The PmrC-mediated pEtN modification at position 1 of lipid A requires the concomitant action of a novel membrane peptide PmrR (Kato et al., 2012), which inhibits the formation of the LpxT-mediated pyrophosphate at position 1 (1-PP) (Herrera et al., 2010; Touze et al., 2008). In addition, in the presence of both high Fe$^{3+}$, and low Mg$^{2+}$, signals, phospho-PmrA binds to the pmrD promoter to exert partial inhibition of PhoP-dependent transcriptional initiation (Kato et al., 2003). Previous studies have demonstrated that the iron sensitivity of the pmrAB mutant was equivalent to that of a triple mutant at loci encoding for the PmrA-activated proteins, Ugd/PbgPE, PmrC, and PmrG, the last of which is a phosphatase that targets the Hep(II) phosphate in the core region of the LPS (Nishino et al., 2006), while polymyxin B sensitivity of the pmrA mutant was equivalent to that of a double mutant at loci encoding for the PmrA-activated Ugd/PbgPE and PmrC proteins (Lee et al., 2004). One of the above three pathways was sufficient for exhibiting wild-type level iron resistance on solid media (Nishino et al., 2006).
The predominant lipid A species is hexa-acylated and phosphorylated at the 1 and 4′ positions. LpxT adds a second phosphate group to the 1-position resulting in a 1-pprophosphorylated (1-PP) species. While the lipid A phosphates can also be modified with 1-4-aminoarabinosyl (4-Ara4N) by Ugd and PbgPE, a PmrC-mediated phosphoethanolamine (PEtN) modification can occur rather preferentially at the 1-position of the lipid A phosphate in inducing conditions of the PmrA/PmrB system (i.e., low Mg2+ and high Fe3+). The LpxT-dependent 1-PP modification is predominant (>1) over the PmrC-dependent 1-PEtN modification (Herrera et al., 2010), unless PmrR inhibits LpxT (Kato et al., 2012).

Fig. 1. Schematic drawing structures of the lipid A moiety of lipopolysaccharide (LPS) and of the lipid A modifications in Salmonella.

Our group has reported the reciprocal control of the PmrA/PmrB system and the LPS modification status where, together with the Ugd/PbgPE-mediated positively charged 1-Ara4N modification at the 1 and 4′ positions of lipid A, the PmrC-mediated PEtN modification at the 1 position and the PmrR dependent inhibition of the 1-PP lipid A formation, which is catalyzed by LpxT, decreases the net negative charge of the LPS and, in turn, hinders the accessibility of Fe3+ to the cell surface as well as to the Fe3+ sensor PmrB (Kato et al., 2012). Moreover, we have demonstrated that the formation of 1-PP lipid A is essential to the reciprocal control phenomenon and iron binding to the cell surface because they are completely abolished by mutating the lpxT gene (Kato et al., 2012).

Additionally, while attempting to identify the PmrR peptide target, a pull-down with GST-PmrR resulted in the identification of several proteins, including DegP that is essential to the reciprocal control phenomenon and iron accessibility in the D. radiodurans outer membrane. The CpxR/CpxA system, which encodes a putative osmosensing transporter that is required for growth at alkaline pH (Kumar and Doerrler, 2015) and a putative cytochrome (Raivio et al., 2013), respectively, is upregulated by the CpxR/CpxA system in E. coli. In this report, we have tested the effects of the cpxR, degP, and yqjA mutations on Salmonella cell growth in the presence of high Fe3+ in mutant backgrounds defective in the Ugd-mediated positively charged 1-Ara4N modification at the 1 and 4′ positions of lipid A, as well as the action of the PmrR peptide that inhibits the 1-PP lipid A synthetase LpxT.

Materials and Methods

Bacterial strains, plasmids, and growth conditions. Bacterial strains and plasmids used in this study are listed in Table 1. All Salmonella enterica serovar Typhimurium strains are derived from wild-type 14028s and were constructed by phage P22-mediated transductions as described (Davis et al., 1980). Bacteria were grown at 37°C in an N-minimal media (Snively et al., 1991) buffered with 50 mM Bis-Tris, pH 7.7, and supplemented with 0.1% casamino acids, 38 mM glycerol and 10 μM or 10 mM MgCl2. Ampicillin and kanamycin were used at 50 μg/ml, chloramphenicol at 20 μg/ml, and gentamicin at 10 μg/ml. Primers used in this study are listed in Table 2.

Construction of chromosomal gene deletion mutants. Strain AK1570, which has a deletion of the yqjA gene and a CmR cassette, was constructed by the one-step inactivation method (Datsenko and Wanner, 2000) using primers A209 and A210 with pKD3 as the template.

Strain AK1571, which has a deletion of the copR gene and a CmR cassette, was constructed by the same method using primers A250 and A251 with pKD3 as the template.

Our group has reported the reciprocal control of the PmrA/PmrB system and the LPS modification status where, together with the Ugd/PbgPE-mediated positively charged 1-Ara4N modification at the 1 and 4′ positions of lipid A, the PmrC-mediated PEtN modification at the 1 position and the PmrR dependent inhibition of the 1-PP lipid A formation, which is catalyzed by LpxT, decreases the net negative charge of the LPS and, in turn, hinders the accessibility of Fe3+ to the cell surface as well as to the Fe3+ sensor PmrB (Kato et al., 2012). Moreover, we have demonstrated that the formation of 1-PP lipid A is essential to the reciprocal control phenomenon and iron binding to the cell surface because they are completely abolished by mutating the lpxT gene (Kato et al., 2012).

Additionally, while attempting to identify the PmrR peptide target, a pull-down with GST-PmrR resulted in the identification of several proteins, including DegP that is under the control of the CpxR/CpxA system in E. coli and S. enterica, as co-purified proteins (Kato, A., unpubl.). Thus, we have assumed possible relationships between the PmrA/PmrB and CpxR/CpxA systems under high ferric iron conditions.

The CpxR/CpxA system is responsive to envelope stress, such as misfolded proteins, alkaline pH, altered membrane phospholipid composition, perturbation in lipoprotein composition, adhesion, indole, ethanol, copper, EDTA, and high osmolality, in many gamma proteobacteria, including E. coli and S. enterica (Raivio, 2014). The CpxR/CpxA system is required for antibiotic resistance, including aminoglycosides, novobiocin, and β-lactams, survival in deoxycholate (Hirakawa et al., 2003a, b) and cationic antimicrobial peptides, such as protamine, magainin 2, and melitin (Shi et al., 2004; Weatherspoon-Griffin et al., 2011), as well as copper resistance (Yamamoto and Ishihama, 2006). Some of the sensitive phenotypes observed in the Cpx mutants in the presence of these agents are, at least in part, likely due to changes in the outer membrane permeability (Raivio, 2014), as a deficiency in the CpxR-activated DegP protease activity resulted in altered levels in the outer membrane proteins (OMPs) OmpC, OmpF, OmpW, OmpX, and OmpA, as well as FkpA, a key quality control factor for the biogenesis of outer membrane proteins in E. coli (Ge et al., 2014). The CpxR/CpxA-induced cell wall amidases AmiA and AmiC elevated cationic antimicrobial peptide resistance in S. enterica (Weatherspoon-Griffin et al., 2011). Activation of the CpxR/CpxA system leads to a decrease or alteration in the proton motive force (PMF), which would, in turn, increase antibiotic resistance (Raivio, 2014). It has been suggested that the aminoglycoside resistance phenotype is caused by decreased levels of PMF-dependent uptake in E. coli (Ezraty et al., 2013). PMF is essential for efflux systems, including the CpxR-activated AcrD as well as MdtABC RND efflux pumps. However, currently, explicit links between sources of altered PMF and its related phenotypes upon Cpx induction or its mutations are not well understood. On the one hand, many gene products, such as Sdh, Nuo, Cyo, NhaB, DctA, and TppB, which may contribute to PMF generation, are downregulated by CpxR/CpxA at the transcriptional or post-transcriptional levels in E. coli (Raivio, 2014). On the other hand, for a possible PMF contribution, at least transcription of yqjA and yceJ, which encodes a putative osmosensing transporter that is required for growth at alkaline pH (Kumar and Doerrler, 2015) and a putative cytochrome (Raivio et al., 2013), respectively, is upregulated by the CpxR/CpxA system in E. coli. In this report, we have tested the effects of the cpxR, degP, and yqjA mutations on Salmonella cell growth in the presence of high Fe3+ in mutant backgrounds defective in the Ugd-mediated positively charged 1-Ara4N modification at the 1 and 4′ positions of lipid A, as well as the action of the PmrR peptide that inhibits the 1-PP lipid A synthetase LpxT.
Plasmid construction. Plasmid pLUX1097-\(p_{cpxP}\) harboring the \(cpxP\) promoter in front of the \(luxCDABE\) reporter genes was constructed by cloning a PCR fragment amplified using primers A1085 and A1086 and 14028s genomic DNA as a template between the SalI and \(PstI\) sites of pRU1097, the \(gfp\) reporter plasmid (Karunakaran et al., 2005), which was followed by the replacement of \(gfp\) at the \(PstI\) and \(SacI\) sites with a PCR fragment generated using primers A2412 and A2413 and DNA of pAKlux2.1, the \(luxCDABE\) reporter plasmid, (Karsi and Lawrence, 2007) as a template.

Cell growth analysis. A cell growth assay in a liquid media containing various concentrations of metals was performed as previously described (Kato et al., 2012). The relative

Strain or plasmid	Description	Reference or source
S. enterica		
14028s	Wild type	ATCC
pRU1097		
pBBR1		Karunakaran et al. (2005)
pAKlux2.1		Karsi and Lawrence (2007)
pLUX1097-\(p_{cpxP}\)		This work

Table 1. Bacterial strains and plasmids used in this study.
growth rate was obtained by dividing the OD_{595} values from each of the strains grown in the presence of various concentrations of metals, FeCl₃, CuSO₄, and ZnSO₄ by the OD_{595} values from corresponding strains grown in the absence of these metals.

Luminescence assay. Bacterial cells, containing pLUX1097-p_{pLUX}, from overnight cultures grown in an N-minimal medium at pH 7.7 with 10 μM MgCl₂ and gentamycin, were added to 200 μl of fresh media without gentamycin in the presence of various concentrations of metals with a 1:50 dilution in a 96-well round-bottom tissue culture test plate (TPP) and shaken at 37°C for 8 h. After the OD_{595} was measured directly from the plate using a Model 680 microplate reader (BioRad), 100 μl of culture were transferred to OptiPlate-96, White Opaque 96-well Microplate (PerkinElmer) and the luminescence was measured by Plate CHAMELEON V (Hidex). The luminescence values were divided by the corresponding OD_{595} values and multiplied by 2 to obtain a relative luminescence value. The induction ratio was obtained by dividing the relative luminescence values from wild-type and pmrR mutant cells harboring pLUX1097-p_{pLUX} grown in the presence of various concentrations of metals, FeCl₃, CuSO₄, and ZnSO₄, by that from wild-type cells pLUX1097-p_{pLUX} grown in the absence of these metals.

Isolation and TLC analysis of lipid A species from ³²P-labeled cell. Bacteria were grown and ³²P-labeled lipid A was isolated as described (Herrera et al., 2010) with the following modifications: ³²P-labeled lipid A species (~200 cpm per lane) were analyzed using TLC in a solvent system of chloroform, pyridine, 88% formic acid, and water (50:50:16:5, v/v), for ~3 h. The plate was exposed to a BAS-MS2040 imaging plate for several days and visualized using an FLA-7000 imaging system (Fujifilm). For the analysis of the Fe³⁺-dependent loss of the 1-PP moiety of lipid A, 100 μM FeCl₃ was added to the LPS sample that had been prepared from wild-type cells grown in 5 ml of an N-minimal medium, pH 7.7, with 10 mM MgCl₂ (i.e., non-inducing conditions), immediately before the non-enzymatic cleavage reaction of glycoside linkage between KDO and lipid A at 100°C, in 0.45 ml of 12.5 mM sodium acetate, pH 4.5, containing 1% SDS. The ³²P-labeled lipid A species (~200 cpm per lane) were analyzed using TLC as described above.

Results and Discussion

Fe³⁺-dependent epistasis within and between regulon members

To test the genetic determinants contributing to permissive growth of *S. enterica* under high iron conditions, a cell growth analysis in a liquid N-minimal media, pH 7.7, with 10 μM MgCl₂ and various concentrations of FeCl₃, was performed as previously described (Kato et al., 2012). A single mutation in the LPS modification gene *ugd*, but not pmrR, exhibited a significant impairment in cell growth under high ferric iron conditions (Figs. 2B and 3), but not in the same media without the addition of iron (Fig. 2A). However, the pmrR promoter mutation also became severe for cell growth under the same conditions when it was combined with the *ugd* mutant, exhibiting an epistasis in the growth inhibition phenotype in the presence of Fe³⁺ (Figs. 2B and 3), which is somewhat different from Fe³⁺ signal accessibility-dependent redundant reciprocal controls independently closed by both the *ugd* and pmrR.
gene products, respectively (Kato et al., 2012). (Because pmrR is encoded closely to the 3′ end of the pmrB-coding region in its opposite strand, we chose the pmrR promoter mutant, which does not express the PmrR peptide and is expected to retain an intact 3′ structure in pmrB mRNA, rather than a ΔpmrR mutant.) Likewise, mutations in cpxR and/or degP also became severe when they were combined with the ugd pmrR mutant (Fig. 2B), which permits the LpxT-mediated formation of 1-PP lipid A efficiently (Kato et al., 2012). Thus, these results confirmed that the PmrA-activated LPS modifications are the first layer of cell defense against excess ferric iron. Because the role of Cpx to Salmonella growth under high ferric iron conditions was not observed until the first layer of iron response was hampered, these results suggests that Cpx is one of the second layers of envelope stress response that can adapt to high Fe³⁺.

Next, for the cell growth assay in the presence of various concentrations of ferric iron, we included a mutant of the yqiA gene (Fig. 3) that is also under the control of the pmrR promoter. Therefore, the yqiA mutant (AK1570) and its combination mutants with deletions in the genes mentioned above were used to determine their growth rates. Bacterial growth (OD₅₉₅) was determined in wild-type (14028s), pmrR promoter mutant (EG15437), ugd mutant (EG9524), ugd pmrR promoter mutant (EG17203), degP mutant (AK1011), degP pmrR promoter mutant (AK1013), degP ugd mutant (AK1015), degP ugd pmrR promoter mutant (AK1017), cpxR mutant (AK1007), cpxR pmrR promoter mutant (AK1018), cpxR ugd mutant (AK1020), cpxR ugd pmrR promoter mutant (AK1022), cpxR degP mutant (AK1024), cpxR degP pmrR promoter mutant (AK1026), cpxR degP ugd mutant (AK1028), and cpxR degP ugd pmrR promoter mutant (AK1030) strains. The growth rate shown by the y-axis corresponds to relative OD₅₉₅ values obtained from each of the strains grown in the presence of respective concentrations of FeCl₃ to the OD₅₉₅ values of corresponding strains grown in the absence of FeCl₃. Data correspond to the mean of three independent experiments performed in triplicate and error bars represent standard deviations.
CpxR/CpxA system in *E. coli* (Yamamoto and Ishihama, 2006) and *S. enterica* (Fig. S1). Note that the cis elements recognized by the CpxR protein and RNA polymerase are conserved among *E. coli, S. enterica*, and their closely related bacteria (Fig. S1) and that the location of the copper responsive CpxR-dependent transcription start site (TSS) at the *yqjA* promoter in *E. coli* (Yamamoto and Ishihama, 2006) matches well with one of two TSSs determined at the corresponding promoter on the *S. enterica* genome (Fig. S1) (Kim et al., 2012; Ramachandran et al., 2012). The growth rate of the quadratic mutant *ugd pmrR degP yqjA* was similar to that of the quadratic mutant in the presence of all the concentrations of Fe\(^{3+}\) *ugd pmrR degP cpxR* (Fig. 3), suggesting that, in addition to DegP, the most important contributor under the control of CpxR for the permissive growth of the *ugd pmrR* mutant (Figs. 2B and 3) was YqjA. In contrast, growth defects in the double mutants, *degP yqjA* and *degP cpxR*, were comparable to that of the wild-type under those high iron conditions (Figs. 2B and 3). This also supports the hypothesis that Cpx is a second layer that can tolerate high iron toxicity after the PmrA/PmrB system layer. A mutation in the *copR* (*yedW*) gene encoding the cognate response regulator of the sensor CopS (YedV) (Wood et al., 1998; Yamamoto and Ishihama, 2005) was combined with the *ugd pmrR* double mutant and the *ugd pmrR degP* triple mutant strains to assess its involvement in the permissive iron growth phenotype (Fig. 3). However, the effect of the *copR* mutation was rather silent to those epistatic growth patterns in the presence of Fe\(^{3+}\) (Fig. 3).

Distinct epistatic patterns observed in the growth of the strains defective in PmrA- and CpxR-regulated loci in the presence of various concentrations of Fe\(^{3+}\), Cu\(^{2+}\), and Zn\(^{2+}\)

Because high concentrations of Cu\(^{2+}\) or Zn\(^{2+}\) sensitize
the cpxR-null mutant in E. coli (Yamamoto and Ishihama, 2006), we compared the epistatic interactions that were exhibited in the growth of strains with combinations of the pmrR, ugd, degP, cpxR, yqjA, and copR mutations in the presence of various concentrations of these metals in addition to Fe$^{3+}$. First of all, the generally toxic metals to organisms, Cu$^{2+}$ and Zn$^{2+}$, partially inhibited the growth of wild-type at concentrations of 400 μM and 100 μM, respectively (Figs. 3B and 4D), although Fe$^{3+}$ rather promoted the growth of wild-type over a wide range of concentrations (100 μM to 3 mM; Fig. 3). In agreement with that reported in the case of E. coli (Yamamoto and Ishihama, 2006), cpxR was crucial for Salmonella cell growth, also in the presence of the inhibitory concentration (i.e., 400 μM) of Cu$^{2+}$, independently to the function of ugd- and pmrR-dependent lipid A modification (i.e., prevention of 1-PP formation), while the ugd and pmrR gene products somewhat contribute to bacterial cell growth in the mutant background of cpxR, but not degP, yqjA or copR (Fig. 4B). Thus, it is likely that the cpxR gene (or an unknown CpxR-regulated gene other than degP and yqjA) is predominant over the ugd and pmrR genes to permit better cell growth in the presence of Cu$^{2+}$ (Fig. 4B). This is in contrast to the patterns observed in the presence of Fe$^{3+}$, where the effect of the cpxR mutation was not evident until the pmrR and/or ugd mutants were combined (Figs. 2 and 3). Then, the epistatic growth patterns of respective mutants in the presence of Zn$^{2+}$ seem to be rather less reproducible and less valid than those in the presence of Fe$^{3+}$, and sort of inbetween those with Fe$^{3+}$ and Cu$^{2+}$: mutations in ugd, pmrR, degP, cpxR, yqjA tend to accelerate a mutually inhibitory action of Zn$^{2+}$ on Salmonella cell growth, while only a single mutation in cpxR (or yqjA) rendered cells more sensitive to Zn$^{2+}$ than wild-type, independently to the roles of ugd and pmrR genes (Figs. 3C and 4D). In contrast to the action of Fe$^{3+}$ and Cu$^{2+}$, Zn$^{2+}$ somewhat sensitized the strain with a single mutation in copR (Fig. 4D), which has been shown to be involved in the response and adaptation to reactive oxygen species (ROS), hypochlorous acid, and H$_2$O$_2$, in E. coli (Gennaris et al., 2015; Urano et al., 2015). This may suggest that Zn$^{2+}$, but not Fe$^{3+}$ and Cu$^{2+}$, produce a significant amount of ROS such as H$_2$O$_2$, which may, in turn, solely produce cellular toxicity, including DNA damage and induced mutations, a variable for our assay, when mixed with growing bacterial cells. However, this does not necessarily mean that ROS is the only factor inhibiting cell growth of the copR mutant in the presence of Zn$^{2+}$, and that ROS does not contribute at all to the inhibitory effects of Fe$^{3+}$ and Cu$^{2+}$ on the cell growth of strains with multiple mutations in those genes under the controls of Pmr and CpxR. Overall, the Fe$^{3+}$-dependent epistasis phenomena between the PmrA-dependent loci and the CpxR-dependent loci limit the kind of metal species by definition.

CpxR-activated cpxP promoter is induced by Cu$^{2+}$ and Zn$^{2+}$, but not by Fe$^{3+}$

Because the cpxR gene contributes cell growth in the presence of Cu$^{2+}$, Zn$^{2+}$, and Fe$^{3+}$ to some extent, we hypothesized that Fe$^{3+}$, as well as Cu$^{2+}$ and Zn$^{2+}$, induce the CpxR/CpxA system in S. enterica. To monitor the status of the CpxR/CpxA system, we selected the promoter of the cpxP gene and cloned it in front of the luxCDABE reporter genes in the pLUX1097 plasmid. The choice of this promoter was because it is likely to be directly regulated only by CpxR as a transcriptional regulator. The luminescence induction ratio of wild-type harboring the plasmid construct with luxCDABE under the control of the cpxP promoter, pLUX1097-::p$_{cpxP}$, was 1.6 × 103 fold higher than that of the cpxR mutant harboring pLUX1097-::p$_{cpxP}$ (Fig. 5), suggesting that the CpxR/CpxA system is highly active in an N-minimal media, pH 7.7, with 10 μM MgCl$_2$, even in the absence of those metals. Then, the relative luminescence levels of wild-type harboring pLUX1097-::p$_{cpxP}$ were induced 3.8 and 3.2 fold (when growth rates were decreased from 1 to 0.28 and 0.33, respectively) in the presence of 1 mM Cu$^{2+}$ and 0.2 mM Zn$^{2+}$, respectively (Fig. 5). However, such an increase was abolished in the cpxR mutant, therefore indicating that the Cu$^{2+}$- and Zn$^{2+}$-mediated induction of the cpxP promoter is CpxR-dependent. By contrast, in the presence of 3 mM Fe$^{3+}$, the relative luminescence was decreased to approximately half (0.56 fold) the level of that in the absence of Fe$^{3+}$ (Fig. 5). Even in the cpxR mutant, 3 mM of Fe$^{3+}$ repressed the relative luminescence to 0.51 fold levels, which was 0.57 × 10$^{-3}$ fold of levels in wild-type in the presence of 3 mM of Fe$^{3+}$. Namely, the repressive effect of Fe$^{3+}$ was Cpx-independent. These results suggest that the CpxR/CpxA system is already active enough to contribute to Salmonella cell growth in the presence of high Fe$^{3+}$ although it cannot be an inducing stress of the system of wild-type cells, at least in these assay conditions. We attempted to measure the effect of Fe$^{3+}$ on the activity of the cpxP pro-
Fig. 6. The crucial role of the 1-PP moiety of lipid A in Fe$^{3+}$ binding and the Fe$^{3+}$-dependent epistatic growth phenotype.

(A) Relative growth rate of isogenic pmrR$^{+}$ and pmrR promoter mutants with deletions in the ugd, degP, cpxR, or lpxT genes (or a combination of these genes) following growth for 12 h in an N-minimal medium at pH 7.7 with 10 µM Mg$^{2+}$ in the presence of 0.4 mM FeCl$_3$, 0.4 mM CuSO$_4$, or 0.1 mM ZnSO$_4$. The bacterial growth (OD$_{600}$) was determined in ΔdegP ugd mutant (AK1015), ΔdegP ugd pmrR promoter mutant (AK1017), ΔlpxT ΔdegP ugd mutant (AK1590), ΔlpxT ΔdegP ugd pmrR promoter mutant (AK1591), ΔcpxR ΔdegP ugd mutant (AK1029), and ΔcpxR ΔdegP ugd pmrR promoter mutant (AK1031), ΔlpxT ΔcpxR ΔdegP ugd mutant (AK1036), and ΔlpxT ΔcpxR ΔdegP ugd pmrR promoter mutant (AK1037) strains. The growth rate was determined as described in Fig. 3. Data correspond to the mean of three independent experiments performed in triplicate and error bars represent standard deviations. (B) Thin layer chromatograph (TLC) analysis of 32P-labeled lipid A from wild-type (14028s) and pmrR promoter mutant (EG15437) Salmonella. Bacteria were grown in an N-minimal medium at pH 7.7 containing 10 mM Mg$^{2+}$ and 32P-orthophosphate to OD$_{600}$ ~ 0.4, shifted to a medium containing 10 µM Mg$^{2+}$, 100 µM Fe$^{3+}$ and 32P-orthophosphate, and harvested at the designated times to isolate 32P-labeled lipid A. The identity of the lipid A species is based on data in Herrera et al. (2010) and Kato et al. (2012). (C) TLC analysis of Fe$^{3+}$-dependent loss of the 1-PP moiety during the process of the cleavage of glycosidic linkage between KDO and in 32P-labeled lipid A of LPS, which was isolated from wild-type (14028s) cells that had been grown for 10 h in an N-minimal medium, pH 7.7, with 10 mM Mg$^{2+}$. A non-enzymatic reaction was performed at 100°C for 30 min in the presence, or absence, of 100 µM FeCl$_3$.

Epistasis in cell surface components

293
Predominance of the 1-PP status of the lipid A moiety of LPS on the cell surface in the Fe^{3+}-dependent growth inhibition

Lipid A is highly decorated by various combinations of the PhoP/PhoQ-dependent modifications and the PhoP/PhoQ-, PmrD-, and PmrA/PmrB-dependent modifications under low Mg^{2+} and high Fe^{3+} conditions in *S. enterica* (Chen and Groisman, 2013) (Figs. 1 and 6B, 120 min). Therefore, direct observation of the minor lipid A species that possess the 1-PP moiety in these inducing conditions is challenging, even if cpxR-regulated loci somewhat altered the relative quantity of 1-PP moiety per lipid A. Yet, as described above, the role of the PmrA-regulated *ugd* and *pmrR* gene products, which together inhibit the 1-PP formation, are robust and predominant over the action of the CpxR-regulated loci under a wide range of Fe^{3+} concentrations (Fig. 3) because they mask the contribution of Cpx. Especially, at 3 mM Fe^{3+}, the presence or absence of *ugd* and *pmrR* gene products is the only matter to the growth phenotype because essentially DegP, YqjA, and/or CpxR no longer support bacterial cell growth conditions of the *ugd* and *pmrR* promoter mutant (Fig. 3D). In line with these observations, the growth defect of the quadratic mutant of *ugd pmrR degP* *cpxR* in the presence of 0.4 mM Fe^{3+}, but not 0.4 mM CuSO₄ or 0.1 mM ZnSO₄, was completely suppressed by mutating the *lpxT* gene (Fig. 6A). (Unlike Fe^{3+}, Cu^{2+} (and Zn^{2+}) may associate with moieties of 1-P and 1-PP of lipid A equally because mutation in the *lpxT* gene did not alter the cell growth patterns.) Therefore, the predominance of *ugd* and *pmrR* gene products was also a reflection of a predominance of the LpXT-dependent 1-PP role over the CpxR roles in the Fe^{3+}-dependent growth phenotype. In addition, current analyses, together with our previous report, demonstrate that 1-PP moiety of lipid A was not only essential for the initial binding of iron to the cell surface, as well as the reciprocal control between the LPS modification status and the iron responsive PmrA/PmrB system (Kato et al., 2012), but also for iron entry into the periplasmic space of the *S. enterica* *ugd pmrR* mutant and its derivatives to be evident for the growth phenotype under high iron conditions. This is because the sensor PmrB detects more Fe^{3+} at periplasm in the absence of the *ugd* and *pmrR* gene products in a *lpxT*-dependent manner (Kato et al., 2012) and because the absence of the periplasmic protease DegP and the inner membrane YqjA protein becomes significant only when the outer membrane permeability barrier is defective in hindering the formation of 1-PP moiety, which appears to bind Fe^{3+} more tightly than the moiety 1-P or 4'-P of lipid A does, as described below.

Chemical property of the 1-PP moiety of lipid A in the presence of Fe^{3+}

In time course experiments of the lipid A profiling in wild-type (Kato et al., 2012) (Fig. 6B) and the *pmrR* promoter mutant (Fig. 6B), we realized that the 1-PP moiety of the lipid A structure is liable to be rapidly converted to the 1-OH moiety in samples obtained immediately (20 min) after switching the growth conditions from high Mg^{2+} to low Mg^{2+} and high Fe^{3+} before a variety of lipid A modifications appears (at time 120 min). We hypothesized that this rapid loss of 1-PP moiety from lipid A was an artifact of non-enzymatic reaction at 100°C for 30 min during lipid A preparation in the presence of contaminated Fe^{3+} from the media and that the 1-PP moiety of lipid A is chemically reactive to Fe^{3+}, or vice versa. To test these hypotheses, Fe^{3+} was added to an LPS sample that had been isolated from wild-type *Salmonella* cells grown under high Mg^{2+} conditions when the glycosidic linkage between KDO and lipid A was cleaved off at 100°C during the preparation of lipid A (Fig. 6C). As expected, the 1-PP moiety was almost completely converted to 1-OH moiety while the 1-P moiety still remained in the presence of 100 μM Fe^{3+} (Fig. 6C). This provides a strong evidence of a preferred interaction between the 1-PP moiety of lipid A and Fe^{3+}. In addition, it may suggest an alternative mode of Fe^{3+} entry into the periplasm in which the Fe^{3+/}pyrophosphate complex tears off slowly under an aerobic condition in the presence of a reducing power from an unknown resource at a physiological temperature. Note that chelated iron in the presence of oxygen and a reducing agent can lead to repetitive cleavage of macromolecules such as DNA (Enright et al., 1992; Molina and Anchordoquy, 2007) and that an Fe^{3+}/ADP chelate complex can cause lipid peroxidation of a mitochondrial lipid in a reducing agent-dependent manner in Eucaryotes (Takeshige et al., 1980). However, it is also true that Fe^{3+}-mediated bacterial cell killing of the pmrA mutant can still occur even under anaerobic conditions in a growth-dependent manner (Chammongpol et al., 2002). Anyhow, because the LPS of the outer membrane is the first barrier to various toxic agents in Gram-negative bacteria, it makes sense that the controlling system of Fe^{3+} accessibility to the 1-PP moiety of lipid A in *S. enterica* is genetically predominant over cellular adaptive responses occurring more inside the bacterial cell envelope (i.e., the periplasm and inner membrane) to be resistant to high Fe^{3+}.

Conclusions

We have demonstrated the epistatic nature of mutant strains that are defective in bacterial signal transduction systems that respond to various stress conditions, including metals and in the genes under the control of them, in *S. enterica*. Some overlapping roles exist in genes under these different systems, while the genes under the control of the one system predominates over the genes regulated by another system, depending on which specific stress signals exist. More specifically, the CpxR/CpxA system independently contributes to *Salmonella* cell growth in the presence of a considerably toxic concentration of Cu^{2+} and Zn^{2+} (even for wild-type), exhibiting predominance over the PmrA-regulated *ugd* and *pmrR* genes. Then, the CpxR-activated degP and yqiA genes, as well as the cpxR gene, are contributors to *Salmonella* growth in the presence of a wide range of concentrations (100 μM to 1 mM) of Fe^{3+}, which are not toxic to wild-type cells at all, only when the outer membrane permeability barrier is defective in the
Ugd-mediated l-Ara4N modification of lipid A and the action of PmrR peptide, which together inhibit the LpxT-dependent generation of 1-PP lipid A (Kato et al., 2012). This epistatic phenomenon in *S. enterica* is absolutely dependent on the LpxT-catalyzed 1-PP moiety formation of lipid A as well as Fe^{3+}, but not on Cu^{2+} and Zn^{2+}. Interestingly, it has been reported that limited ferrous iron conditions induce the CpxR/CpxA system and that high concentrations of other metal ions, such as Cu^{2+} and Mg^{2+}, which may potentially compete with cations like Fe^{2+} and Fe^{3+} on anionic surfaces, also induce transcription of the CpxR-activated cpxF gene in *Vibrio cholera* (Acosta et al., 2015) where orthologs of the PmrA/PmrB system and the PmrA-activated LPS modification enzymes are absent. It is also interesting to wonder whether *V. cholera* lost the pmrAB genes and the PmrA-regulated LPS modification genes, such as ugdg, pbgPE, pmrC, and pmrR, or whether a common ancestral bacterium acquired them becoming *S. enterica* during the long-term evolution of Gram-negative bacteria. *S. enterica* may have adapted to a high Fe^{3+} environment better. In conclusion, Cpx is one of the second layers of the envelope stress response that can adapt to high Fe^{3+} conditions in *S. enterica*.

Acknowledgments

This work was supported, in part, by Grant-in-Aid for Young Scientists (A) 23688013 from the Japan Society for the Promotion of Science (JSPS), the Kato Memorial Bioscience Foundation, the Uehara Memorial Foundation, the Inamori Foundation, the Noda Institute for Scientific Research, and a Grant for Scientific Research from the Faculty of Agriculture, Kindai University to AK.

Supplementary Materials

Supplementary figure is available in our J-STAGE site (http://www.jstage.jst.go.jp/browse/gjam).

References

Acosta, N., Pakatzki, S., and Raivio, T. L. (2015) The *Vibrio cholerae* Cpx envelope stress response senses and mediates adaptation to low iron. *J. Bacteriol.*, 197, 262–276.
Chammongkol, S., Dodson, W., Cromie, M. J., Harris, Z. L., and Groisman, E. A. (2002) Fe(III)-mediated cellular toxicity. *Mol. Microbiol.*, 43, 711–719.

Chen, H. D. and Groisman, E. A. (2013) The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. *Annu. Rev. Microbiol.*, 67, 83–112.

Datsenko, K. A. and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. USA*, 97, 6640–6645.

Davis, R. W., Bolstein, D., and Roth, J. R. (1980) Advanced Bacterial Genetics, Cold Spring Harbor Lab., Cold Spring Harbor, N.Y.

Enright, H. U., Miller, W. J., and Hebel, R. P. (1992) Nucleosomal histone protein protects DNA from iron-mediated damage. *Nucleic Acids Res.*, 20, 3341–3346.

Erzatry, B., Vergnes, A., Banzhaf, M., Duverger, Y., Huguonnet, A. et al. (2015) Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. *Science*, 340, 1583–1587.

García Vescovi, E., Soncini, F. C., and Groisman, E. A. (1996) Mg^{2+} as an extracellular signal: environmental regulation of *Salmonella* virulence. *Cell*, 84, 165–174.

Ge, X., Wang, R., Ma, J., Liu, Y., Ezemaduka, A. N. et al. (2014) DegP primarily functions as a protease for the biogenesis of beta-barrel outer membrane proteins in the Gram-negative bacterium *Escherichia coli*. *FERS J.*, 281, 1226–1240.

Gennaris, A., Erzatry, B., Henry, C., Agrebi, R., Vergnes, A. et al. (2015) Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. *Nature*, 528, 409–412.

Gunn, J. S., Lim, K. B., Krueger, J., Kim, K., Guo, L. et al. (1998) PmrA-PmrB-regulated genes necessary for 4-aminoarobinose lipid A modification and polymyxin resistance. *Mol. Microbiol.*, 27, 1171–1182.

Hanahan, D. (1983) Studies on transformation of *Escherichia coli* with plasmids. *J. Mol. Biol.*, 166, 557–580.

Herrera, C. M., Hanks, J. V., and Trent, M. S. (2010) Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. *Mol. Microbiol.*, 76, 1444–1450.

Hirakawa, H., Nishino, K., Hirata, T., and Yamaguchi, A. (2003a) Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in *Escherichia coli*. *J. Bacteriol.*, 185, 1851–1856.

Hirakawa, H., Nishino, K., Yamada, J., Hirata, T., and Yamaguchi, A. (2003b) Beta-lactam resistance modulated by the overexpression of response regulators of two-component signal transduction systems in *Escherichia coli*. *J. Antimicrob. Chemother.*, 52, 576–582.

Kars, A. and Lawrence, M. L. (2007) Broad host range fluorescence and bioluminescence expression vectors for Gram-negative bacteria. *Plasmid*, 57, 286–295.

Karunakaran, R., Mauchline, T. H., Hosie, A. H., and Poole, P. S. (2005) A family of promoter probe vectors incorporating autofluorescent and chromogenic reporter proteins for studying gene expression in Gram-negative bacteria. *Microbiology (Reading, England)*, 151, 3249–3256.

Kato, A. and Groisman, E. A. (2004) Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. *Genes Dev.*, 18, 2302–2313.

Kato, A., Latify, T., and Groisman, E. A. (2003) Closing the loop: the PmrA/PmrB two-component system negatively controls expression of its posttranscriptional activator PmrD. *Proc. Natl. Acad. Sci. USA*, 100, 4706–4711.

Kato, A., Chen, H. D., Latifi, T., and Groisman, E. A. (2012) Reciprocal control between a bacterium’s regulatory system and the modification status of its lipopolysaccharide. *Mol. Cell.*, 47, 897–908.

Kim, D., Hong, J. S., Qiu, Y., Nagarajan, H., Seo, J. H. et al. (2012) Comparative analysis of regulatory elements between *Escherichia coli* and *Klebsiella pneumoniae* by genome-wide transcription start site profiling. *PLoS Genet.*, 8, e1002867.

Koäl, L. F., Westen, M. M., and Groisman, E. A. (2000) A small protein that mediates the activation of a two-component system by another two-component system. *EMBO J.*, 19, 1861–1872.

Kumar, S. and Doerrler, W. T. (2015) *Escherichia coli* YjuA, a member of the conserved DedA/Tvp38 membrane protein family, is a putative osmosensing transporter required for growth at alkaline pH. *J. Bacteriol.*, 197, 2292–2300.

Lee, H., Hsu, F. F., Turk, J., and Groisman, E. A. (2004) The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in *Salmonella enterica*. *J. Bacteriol.*, 186, 4124–4133.

Molina, M. and Anchordoquy, T. J. (2007) Metal contaminants promote degradation of lipid/DNA complexes during lyophilization. *Biochim. Biophys. Acta*, 1768, 669–677.

Nishino, K., Hsu, F. F., Turk, J., Cromie, M. J., Westen, M. M. et al. (2006) Identification of the lipopolysaccharide modifications controlled by the *Salmonella* PmrA/PmrB system mediating resistance to Fe(III) and Al(III). *Mol. Microbiol.*, 61, 645–654.

Raivio, T. L. (2014) Everything old is new again: an update on current research on the Cpx envelope stress response. *Biochim. Biophys. Acta*, 1843, 1529–1541.

Raivio, T. L., Leblanc, S. K., and Price, N. L. (2013) The *Escherichia coli* Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity. *J. Bacteriol.*, 195, 2755–2767.

Ramachandran, V. K., Shearer, N., Jacob, J. J., Sharma, C. M., and Thompson, A. (2012) The architecture and ppGpp-dependent expression of the primary transcriptional of *Salmonella typhimurium* during invasion gene expression. *BMC Genomics*, 13, 25.

Shi, Y., Cromie, M. J., Hsu, F. F., Turk, J., and Groisman, E. A. (2004)
PhoP-regulated *Salmonella* resistance to the antimicrobial peptides magainin 2 and polymyxin B. *Mol. Microbiol.*, **53**, 229–241.

Snavely, M. D., Miller, C. G., and Maguire, M. E. (1991) The mgtB Mg^{2+} transport locus of *Salmonella typhimurium* encodes a P-type ATPase. *J. Biol. Chem.*, **266**, 815–823.

Takeshige, K., Takayanagi, R., and Minakami, S. (1980) Lipid peroxidation and the reduction of ADP-Fe^{3+} chelate by NADH-ubiquinone reductase preparation from bovine heart mitochondria. *Biochem. J.*, **192**, 861–866.

Touze, T., Tran, A. X., Hankins, J. V., Mengin-Lecreulx, D., and Trent, M. S. (2008) Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. *Mol. Microbiol.*, **67**, 264–277.

Urano, H., Umezawa, Y., Yamamoto, K., Ishihama, A., and Ogasawara, H. (2015) Cooperative regulation of the common target genes between H(2)O(2)-sensing YedVW and Cu(2)(+)sensing CusSR in *Escherichia coli*. *Microbiology (Reading, England)*, **161**, 729–738.

Weatherspoon-Griffin, N., Zhao, G., Kong, W., Kong, Y., Morigen et al. (2011) The CpxR/CpxA two-component system up-regulates two Tat-dependent peptidoglycan amidases to confer bacterial resistance to antimicrobial peptide. *J. Biol. Chem.*, **286**, 5529–5539.

Wood, M. W., Jones, M. A., Watson, P. R., Hedges, S., Wallis, T. S. et al. (1998) Identification of a pathogenicity island required for *Salmonella* enteropathogenicity. *Mol. Microbiol.*, **29**, 883–891.

Wosten, M. M., Kox, L. F., Chammongpol, S., Soncini, F. C., and Groisman, E. A. (2000) A signal transduction system that responds to extracellular iron. *Cell*, **103**, 113–125.

Yamamoto, K. and Ishihama, A. (2005) Transcriptional response of *Escherichia coli* to external copper. *Mol. Microbiol.*, **56**, 215–227.

Yamamoto, K. and Ishihama, A. (2006) Characterization of copper-inducible promoters regulated by CpxA/CpxR in *Escherichia coli*. *Biosci. Biotechnol. Biochem.*, **70**, 1688–1695.