NOTES ON PLANAR SEMIMODULAR LATTICES. IX.
\[\mathcal{C}_1\text{-DIAGRAMS} \]

GEORGE GRÄTZER

Abstract. A planar semimodular lattice \(L \) is slim if \(M_3 \) is not a sublattice of \(L \). In a recent paper, G. Czédli introduced a very powerful diagram type for slim, planar, semimodular lattices, the \(\mathcal{C}_1 \)-diagrams. This short note proves the existence of such diagrams.

Background. The basic concepts and notation not defined in this note are available in Part I of the book [10], see arXiv:2104.06539 it is freely available. We will reference it, for instance, as [CFL2, p. 4]. In particular, a planar semimodular lattice \(L \) is slim if \(M_3 \) is not a sublattice of \(L \) and a grid \(G \) is a direct product of two nontrivial chains. For the lattice \(S_7 \), see Figure 1 and [10, pages xxi, 34]. Following my paper [15] with E. Knapp, a semimodular lattice \(L \) is rectangular if the left and right boundary chains have exactly one doubly-irreducible element each and these elements are complementary.

In my paper [10] with H. Lakser, and E. T. Schmidt, we prove that every finite distributive lattice \(D \) can be represented as the congruence lattice of a (planar) semimodular lattice \(L \). Since \(M_3 \) sublattices play a crucial role in the construction of \(L \), it was natural to raise the question what can be said about congruence lattices of slim, planar, semimodular (SPS) lattices (see [CFL2, Problem 24.1], originally raised in my paper [11]). The papers in the References list some contributions to this topic. In particular, my presentation [13] gently reviews the background of this topic.

\(\mathcal{C}_1 \)-diagrams. This research tool played an important role in some recent papers, see G. Czédli [3] and [4], G. Czédli and G. Grätzer [6], and G. Grätzer [13]; for the definition, see G. Czédli [3 Definition 5.3], G. Czédli [4 Definition 2.1], and G. Czédli and G. Grätzer [6 Definition 3.1].

In the diagram of an SPS lattice \(K \), a normal edge (line) has a slope of 45° or 135°. If it is the first, we call the edge (line) normal-up, otherwise, normal-down. Any edge (line) of slope strictly between 45° and 135° is steep.

A cover-preserving \(S_7 \) of a lattice \(L \) is a sublattice isomorphic to \(S_7 \) such that the covers in the sublattice are covers in the lattice \(L \).

Definition 1. A diagram of an SPS lattice \(L \) is a \(\mathcal{C}_1 \)-diagram if the middle edge of any cover-preserving \(S_7 \) is steep and all other edges are normal.

G. Czédli [3 Definition 5.11] also defines the much smaller class of \(\mathcal{C}_2 \)-diagrams.

Date: June 15, 2021.
2020 Mathematics Subject Classification. 06C10.
Key words and phrases. \(\mathcal{C}_1 \)-diagrams, slim planar semimodular lattice.
This note presents a short and direct proof of the existence theorem of C_1-diagrams, see G. Czédli [3, Theorem 5.5], utilizing only Theorem 3 the Structure Theorem of Slim Rectangular Lattices.

Theorem 2. Every slim, planar, semimodular lattice L has a C_1-diagram.

For an SPS lattice K and 4-cell C in K, we denote the fork extension of K at C by $K[C]$, see G. Czédli and E. T. Schmidt [7] (see also [CFL2, Section 4.2]), illustrated by Figure 2.

Theorem 3 (Structure Theorem of Slim Rectangular Lattices). For every slim rectangular lattice K, there is a grid G and sequences

(1) \[G = K_1, K_2, \ldots, K_{n-1}, K_n = K \]

of slim rectangular lattices and

(2) \[C_1 = \{o_1, c_1, d_1, i_1\}, C_2 = \{o_2, c_2, d_2, i_2\}, \ldots, C_{n-1} = \{o_{n-1}, c_{n-1}, d_{n-1}, i_{n-1}\} \]

of 4-cells in the appropriate lattices such that

(3) \[G = K_1^K[1] = K_2, \ldots, K_{n−1}[C_{n−1}] = K_n = K. \]

Moreover, the principal ideals $\downarrow c_{n−1}$ and $\downarrow d_{n−1}$ are distributive.

Proof of Theorem 3 for rectangular lattices. Let the rectangular lattice K be represented as in (3). We prove the Theorem by induction on n. For $n = 1$, the statement is trivial. Let us assume that the statement holds for $n-1$ and so K_{n-1} has C_1-diagrams; we fix one. By the induction hypothesis, the 4-cell $C = C_{n-1}$ with $0_C = o$ and $1_C = i$ has (at least) two normal edges: $[o, c]$ and $[o, d]$, see Figure 2(i) and by the last clause of Theorem 3 the principal ideals $\downarrow c$ and $\downarrow d$ are distributive.

Utilizing that $\downarrow c$ is distributive, we place the element a inside the edge $[o, c]$ so that the area bounded by the (dotted) normal-up line through a and the normal-up
line through \(o \) contains no element below \(a \); we place the element \(b \) symmetrically on the other side, as in Figure 2(ii). The two dotted lines meet inside \(C \) since the two lower edges of \(C \) are normal and the upper edges are normal or steep. We place the third element of the fork at their intersection and connect it with a steep edge to the element \(i \). We add more elements to the lower left and lower right of \(C \) as part of the fork construction, see Figure 2(iii). We can use normal edges for this because of the way \(a \) and \(b \) were placed. The diagram we obtain is a \(C_1 \)-diagram of \(K \). □

Now let \(K \) be an SPS lattice. G. Czédli and E. T. Schmidt define in [7] a corner element \(a \) of \(K \) as a doubly irreducible element on the boundary of \(K \) such that \(a^* \) is meet-reducible, \(a^* \) is join-reducible, and \(a^* \) has exactly two lower covers.

By G. Czédli and E. T. Schmidt [7], \(K \) is obtained from a slim rectangular lattice \(K \) with a fixed \(C_1 \)-diagram by removing corners. In a cover-preserving sublattice \(S_7 \) of \(K \), there are only two doubly irreducible elements but neither is a corner (since the upper cover of a corner has at most two lower covers). Hence, when \(S_7 \) is a cover-preserving sublattice (of \(K \) or any other SPS lattice), then this \(S_7 \) contains no corner of \(K \). So the \(S_7 \)'s remain \(S_7 \)'s, the steep edges remain the “legitimately” steep edges of these remaining \(S_7 \)'s. All other edges that are left after removing corners remain of normal slopes. Thus, \(K \) is a \(C_1 \)-diagram, as required.

References

[1] G. Czédli, Patch extensions and trajectory colorings of slim rectangular lattices. Algebra Universalis 72 (2014), 125–154. DOI:10.1007/s00012-014-0294-z

[2] G. Czédli, A note on congruence lattices of slim semimodular lattices. Algebra Universalis 72 (2014), 225–230. DOI:10.1007/s00012-014-0286-z

[3] G. Czédli, Diagrams and rectangular extensions of planar semimodular lattices. Algebra Universalis 77 (2017), 443–498. DOI:10.1007/s00012-017-0437-0

[4] G. Czédli, Lamps in slim rectangular planar semimodular lattices. Acta Sci. Math. (Szeged). DOI:10.14232/actasm-021-865-y0

[5] G. Czédli, Non-finite axiomatizability of some finite structures. arXiv:2102.00526

[6] G. Czédli and G. Grätzer: A new property of congruence lattices of slim, planar, semimodular lattices. arXiv:2103.04558

[7] G. Czédli and E. T. Schmidt, Slim semimodular lattices. I. A visual approach. ORDER 29 (2012), 481–497. DOI:10.1007/s11083-011-9215-3

[8] G. Grätzer, Congruences in slim, planar, semimodular lattices: The Swing Lemma. Acta Sci. Math. (Szeged) 81 (2015), 381–397. DOI:10.1007/978-3-319-38798-2_25

[9] G. Grätzer, On a result of Gábor Czédli concerning congruence lattices of planar semimodular lattices. Acta Sci. Math. (Szeged) 81 (2015), 25–32. DOI:10.14232/actasm-014-024-1

[10] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach, second edition. Birkhäuser, 2016. xxxii+347. Part I is accessible at arXiv:2104.08539 DOI:10.1007/978-3-319-38798-7
[11] G. Grätzer, Congruences of fork extensions of slim, planar, semimodular lattices. Algebra Universalis 76 (2016), 139–154. DOI:10.1007/s00012-016-0394-z

[12] G. Grätzer, Notes on planar semimodular lattices. VIII. Congruence lattices of SPS lattices. Algebra Universalis 81 (2020). DOI:10.1007/s00012-020-0641-1

[13] G. Grätzer, Applying the Swing Lemma and Czédli diagrams to congruences of planar semimodular lattices. arXiv:214.13444

[14] G. Grätzer, A gentle introduction to congruences of planar semimodular lattices. Presentation at the meeting AAA 101, Novi Sad, 2021. Researchgate:351328722_AAA_101_Novi_Sad

[15] G. Grätzer and E. Knapp, Notes on planar semimodular lattices. III. Rectangular lattices. Acta Sci. Math. (Szeged) 75 (2009), 29–48.

[16] G. Grätzer, H. Lakser, and E. T. Schmidt, Congruence lattices of finite semimodular lattices. Canad. Math. Bull. 41 (1998), 290–297. DOI:10.4153/cmb-1998-041-7

Email address: gratzer@me.com
URL: http://server.maths.umanitoba.ca/homepages/gratzer/

University of Manitoba