Review of emerging biomarkers in head and neck squamous cell carcinoma in the era of immunotherapy and targeted therapy

Jason Chia-Hsun Hsieh MD, PhD1 | Hung-Ming Wang MD1 | Min-Hsien Wu, PhD1,2,3 | Kai-Ping Chang MD, PhD4 | Pei-Hung Chang MD5,6 | Chun-Ta Liao MD4 | Chi-Ting Liau MD1

1Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan
2Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
3Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
4Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
5Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan and Chang Gung University, Taoyuan, Taiwan
6Cancer Center, Chang Gung Memorial Hospital, Keelung, and Chang Gung University, Taoyuan, Taiwan

Correspondence
Jason Chia-Hsun Hsieh, Division of Medical Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
Email: wisdom5000@gmail.com

Funding information
Ministry of Health and Welfare, Grant/Award Number: PMRPG3H0071-74; Chang Gung Memorial Hospital, Grant/Award Numbers: CMRPG3D1071-1073, CMRPG3D1061-1063, CMRPG3H0871-73, CMRPG3G1131-33, CMRPG2J0061, CMRPG2G0681-83, CMRPG3E1631-33, CORPG3F0791, CORPG3F0731, CMRPG3G0591-93; Ministry of Science and Technology, Grant/Award Numbers: MOST-104-2314-B-182A-073-MY3, MOST-104-2314-B-182-031-MY3, MOST-107-2314-B-182-053, MOST-107-2628-B-182A-001-

Abstract
Background: Biomarkers in head and neck squamous cell carcinoma (HNSCC) emerge rapidly in recent years, especially for new targeted therapies and immunotherapies.

Methods: Recent, relevant peer-reviewed evidence were critically reviewed and summarized.

Results: This review article briefly introduces essential biomarker concepts, including purposes and classifications (predictive, prognostic, and diagnostic markers), and the phases of biomarker development. We summarize current biomarkers in order of clinical utility; p16 and human papillomavirus status remain the most important and validated biomarkers in HNSCC. The rationale for biomarker study design continues to evolve with technological advances, especially whole-exome or whole-genomic sequencing. Noninvasive body fluid and liquid biopsy biomarkers appear to hold strong potential for development as tools for early cancer detection, cancer diagnosis, monitoring of disease recurrence, and outcome prediction. In light of discrepancies among different technologies, standardized approaches are needed.

Conclusion: Biomarkers from cancer tissue or blood in HNSCC could direct new anticancer therapies.

KEYWORDS
biomarker, cisplatin, head and neck cancer, immunotherapy, liquid biopsy, targeted therapy
1 | INTRODUCTION

Head and neck squamous cell carcinoma (HNSCCC) is a heterogeneous disease characterized by malignant and uncontrolled growth of cells in various sites within the head and neck areas, such as the oral cavity, larynx, oropharynx, hypopharynx, paranasal sinuses, and nasal cavity. For the purposes of this review, discussion on nonsquamous cell cancers originating in the head and neck, including nasopharyngeal carcinoma, differentiated or undifferentiated thyroid cancer, and salivary gland cancer, are outside the scope of this work. While these cancers are conventionally defined as members of the family of head and neck cancers, they are generally thought of as different entities from HNSCC. The main reasons for this distinction are due to their different behaviors with regard to tumor development and progression, patterns of relapse, sensitivity to chemotherapy and radiotherapy, and patient outcomes.

According to the National Cancer Institute (NCI), a biomarker is defined as “a biological molecule found in blood, other body fluids, or tissues, that is a sign of a normal or abnormal process, or a condition or disease. A biomarker may be used to see how well the body responds to a treatment for a disease or condition.” In the field of cancer treatment, biomarkers have at least 4 key roles in clinical application, including (a) assisting in the diagnosis of cancer; (b) indicating likely clinical outcomes (prognostic role); (c) aiding in patient selection for a specific treatment, based on which patients are most likely to respond (predictive role), and (d) deciding at what dosage the drug might be most effective (pharmacodynamic role). The latter 3 roles are generally applicable for newer chemotherapies, targeted therapies, and immunotherapy, including antiprogrammed death (PD)-1 or anti-PD-ligand 1 (L1) agents. While the use of many biomarkers is not yet routinely available in current clinical practice, biomarkers can provide critically useful and cost-effective information.

In this review, we highlight the clinical evidence and utility of established HNSCC biomarkers in clinical practice, along with several emerging biomarkers under development. Note that cell line investigations were not included in this review.

2 | OPPORTUNITIES AND CHALLENGES IN BIOMARKER DEVELOPMENT

Before a biomarker can be adopted into routine practice to aid in clinical decision making, a series of strict processes must be undertaken during bench-to-bedside development (Figure 1). First, a biomarker target is identified (discovery phase) and preliminarily confirmed through larger-scale, repeated laboratory experiments (confirmation phase). In subsequent clinical trials (validation and refinement phase), researchers attempt to set appropriate endpoints to validate preclinical findings in an independent patient cohort, before routine use of the biomarker is adopted (adoption phase).

However, a number of challenges exist in the biomarker development process (Figure 1). First, an appropriate target must be identified. In this rapidly evolving era of high-throughput omics technology, thousands of candidate molecules can be investigated easily without an a priori hypothesis. A more specific, targeted approach is a post hoc, data-driven investigational study design, rather than conventional pathway rationale-driven or hypothesis-driven designs. Setting a relevant, reproducible biomarker cutoff value to guide subsequent clinical measurement and validation can also be a difficult hurdle in biomarker test planning.

Furthermore, results of biomarker analyses can be notoriously inconsistent, making it difficult to draw robust conclusions. Some studies might show negative or discrepant results, while the same biomarker might clearly demonstrate positive associations in other studies—for example, CCND1, cMET, p16, EGFR, and ERCC1. Plausible reasons for such discrepancies might include (a) small sample sizes with inadequate controls; (b) differing study
populations with true clinical variability; (c) differing treatment modalities; (d) variations in the biomarker assay, for example, different technological platforms used for detection and measurement; (e) differences in the biomarker source, for example, tissue vs liquid biopsy, or fresh vs fixed tissue; (f) varied antibody specificities and binding affinities among different batches or vendors; (g) biomarker instability, with a risk of false positivity or false negativity; (h) differing statistical testing methods; and (i) other methodological differences between studies, for example, evaluation of mRNA vs protein expression.

It is important that test protocols mitigate the effects of such confounders in biomarker testing. For example, the use of standardized materials and methods should be used where possible. If the sample size is inadequate, investigators may need to apply cross-validation-based methods. Preselection of target populations can also be of key importance in biomarker study success, as nonpreselected populations could lead to a high trial cost and risk of failure.

Finally, many factors can impact the adoption of a biomarker among clinicians, including the high cost of routine testing, low power of evidence, accessibility of information, and lack of avenues for clinical feedback with regard to biomarker-directed therapies. Unfortunately, the high number of challenges around biomarker development means that very few markers (as low as 0.1%) achieve a substantial clinical role, limiting the use of biomarkers in routine practice.

3 PROGNOSTIC AND PREDICTIVE BIOMARKERS

In most studies, baseline biomarkers are evaluated for their prognostic role for disease outcomes (regardless of treatment), reflected by critical clinical trial endpoints. Key endpoints include overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), loco-regional (LR) control, and distant metastasis-free survival.

Some biomarkers have shown predictive value for outcomes with standard anticancer therapies, including platinum agents, cetuximab-based chemotherapy, panitumumab-based chemotherapy, afatinib, radiotherapy, concurrent chemoradiotherapy (CCRT), and immunotherapy. Such biomarkers are particularly important for clinical trial design, as they can aid in patient selection or stratification at randomization, serve as treatment-monitoring tools, and help predict which specific patient groups are likely to derive the greatest benefit from a particular treatment.

4 BIOMARKERS IN HNSCC TUMOR TISSUES

Several important tumor tissue markers with adequate clinical confirmation and/or validation have been identified as potentially robust biomarkers in HNSCC. To date, over 70 markers have been evaluated and reported. Table 1 summarizes the key biomarkers, their biological type (protein, messenger RNA [mRNA], mutations of DNA, single nucleotide polymorphisms [SNPs], microRNA, or epigenetic pathway and targets), and their clinical significance.

Among the key prognostic markers for survival, epidermal growth factor receptor (EGFR), cyclin D1(CCND1), ERCC1, p16, human papillomavirus (HPV), and B-cell lymphoma-extra large (Bcl-xL)/Bcl-2 as well as the amplification of genes including EMS1, FGFR1, and CCND1 have demonstrated some evidence in clinical trials. Others are slower to advance in clinical development because of unconvincing data and few published studies; for example, acetylcholinesterase (AchE), SNPs of specific genes, glutathione S-transferase (GST), CD44, amplification of specific genes, hypoxic markers, KLK-6, and MDA-7/IL-24; although, this does not preclude them from future investigations and clinical utility.

4.1 p16: an important prognostic and predictive tissue biomarker in HNSCC

Of the many biomarkers with a prognostic role in HNSCC, the most well established and validated is p16, which plays an essential role in HNSCC. Approximately one third of HNSCCs express p16. p16 is a widely used clinical biomarker for HPV—a well-known cause of HNSCC—and HPV status, in turn, is an important prognostic marker used for patient stratification in HNSCC. Notably, in the most recent American Joint Committee on Cancer (AJCC) cancer staging book (2017), a distinct staging system for HNSCC patients with positive p16 expression was recommended. The p16 protein is generally evaluated by immunohistochemistry (IHC), and HPV infection by DNA/mRNA polymerase chain reaction (PCR). HPV has been shown to be a significant diagnostic and prognostic biomarker in particular in the oropharynx and cancers with unknown primary (CUP) presenting with neck node squamous cell carcinoma. p16 as a surrogate for HPV demonstrated strong prognostic value in patients with oropharyngeal squamous cell carcinoma (OPSCC) in a phase III registration trial evaluating radiotherapy alone or in combination with cetuximab. One study has suggested that p16 status is an important prognosticator in both OPSCC and non-OPSCC, and that the p16 positive/HPV16
Biomarkers	Type	Case	Role	Therapy	Significance	Reference
AChE	mRNA (PCR)	47	Prognostic		Low AChE activity in HNSCC can be used to predict survival	Castillo-Gonzalez, A. C. et al.64
ATM	DNA SNPs (PCR)	210	Predictive (ORR)	RT	ATM IVS62 + 60G > A, TGFβ29C > T, TGFβ-509C > T, and BCL2-938C > A can function as biomarkers of tumor radiosensitivity	Agostini, L. P. et al.19
Bcl-2	DNA SNPs (PCR)	210	Predictive (ORR)	RT	ATM IVS62 + 60G > A, TGFβ29C > T, TGFβ-509C > T, and BCL2-938C > A can function as biomarkers of tumor radiosensitivity	Agostini, L. P. et al.19
Protein (tissue microarray)	196	Prognostic	CCRT	Bcl-2 (HR: 2.6; P = .08) for distant metastasis	Rasmussen, G. B. et al.51	
β-tubulin-1	Protein (tissue microarray)	196	Prognostic	CCRT	β-tubulin-1 (HR: 1.8; P = .08) for locoregional failure	Rasmussen, G. B. et al.51
Protein (tissue microarray)	196	Prognostic	CCRT	β-tubulin-2 (HR: 0.49; P = .06) for locoregional failure	Rasmussen, G. B. et al.51	
C4.4A	RNA (tissue microarry)	43	Prognostic		C4.4A was a marker for poor prognosis of HNSCC and participated in the EMT program	Liu, J. F. et al.20
CCND1	Mixed	1929a	Prognostic	Mixed	Cyclin D1 overexpression was significantly associated with lymph node metastasis (OR: 2.25; 95% CI: 1.76-2.87) and worse DFS (OR: 3.06; 95% CI 2.42-3.87)	Gioacchini, F. M. et al.48
Protein (IHC)	53	Prognostic			The prognostic significance of cyclin D1 expression was confirmed using a proportional hazard regression model	Higuchi, E. et al. (2007)65
Protein (IHC)	116	Prognostic			Multivariate Cox, proportional hazards testing, indicated that the hazard ratio of cyclin D1-positive margins for local recurrence was 4.58 (95% CI 1.14-21.69, P = .03)	Sakashita, T. et al.21
mRNA		104	No role		CCND1 amplification was not prognostic	Rodrigo, J. P. et al.9
Targeted NGS	122	Prognostic			Genomic alterations involving the cell cycle (TP53, CCND1, CDKN2A) are prognostic biomarkers	Dubot, C. et al.22
CD44	Protein (IHC)	165	Predictive (ORR)	RT	The negative effect of CD44 and EGFR and the positive effect of p16 on radiotherapy results were observed	Slavik, M. et al.64
CDKN2A	Targeted NGS	122	Prognostic		Genomic alterations involving the cell cycle (TP53, CCND1, CDKN2A) are prognostic biomarkers	Dubot, C. et al.22
CIAP1	Protein (IHC)	129	Prognostic		Coexpression of XIAP and CIAP1 prompted a worse prognosis	Yang, X. H. et al.45

(Continues)
Biomarkers	Type	Case N	Role	Therapy	Significance	Reference
c-MET	Protein (IHC)	112	No role		Expression of cMET and p16 revealed no impact on OS or PFS	da Costa, A. et al⁹
CXCR4	Protein (IFC)	141	Prognostic	CCRT	SDF-1 and CXCR4 expression for LR control and OS	De-Colle, C. et al (2017)²⁴
EGFR	DNA SNPs (PCR)	110	Predictive (AE)	Cetuximab	Genetic variation of EGFR (rs2227983), KRAS (rs61764370) and FCGR2A (rs180127) as useful biomarkers for predicting reduced skin toxicity	Fernandez-Mateos, J. et al²⁵
	DNA SNPs (PCR)	129	Association		The frequency of mutations was significantly associated with an advanced stage	Nagalakshmi, K. et al (2014)⁶⁶
	DNA(FISH)	75	Prognostic		High copy number of EGFR gene is a poor prognostic indicator	Chung, C. H. et al²⁶
	DNA(FISH)	204	Prognostic		EGFR is predictive of outcome in univariate analyses	Young, R. J. et al³⁸
Mixed	6781ᵃ	Prognostic			Increase of EGFR expression and gene copy number could predict poor survival	Zhu, X. et al²⁷
Protein (IHC)	130	No role			No evident association was observed between EGFR expression and DFS (HR:0.90, 95% CI 0.68-1.19)	Lundberg, M. et al¹²
Protein (IHC)	165	Predictive (ORR)	RT		The negative effect of CD44 and EGFR and the positive effect of p16 on radiotherapy results were observed	Slavik, M. et al⁶¹
Protein (IHC)	268	Prognostic			EGFR was a strong independent prognostic indicator for OS and DFS and a predictor for LR relapse but not for DM	Ang, K. K. et al²⁹
Protein (IHC)	102	Prognostic			EGFR protein levels assessed by AQUA strongly predict for patient outcome, whereas EGFR FISH status does not	Pectasides, E. et al (2011)⁶⁷
RNA	110c	Predictive (ORR)	Afatinib		p16-negative and EGFR amplified HNSCC, p16-negative and cetuximab naive HNSCC patients did better with afatinib	Galot, R. et al⁵⁸
EMS1	RNA	104	Prognostic		EMS1 amplification is an independent predictor of cancer death (P = .003)	Rodrigo, J. P. et al⁸
ERCC1	DNA SNPs (PCR)	122	Predictive (AE)	Platinum and RT	ERCC1 SNPs predicts RT-related toxicity	Borchelliini, D. et al²²
	DNA SNPs (PCR)	2055ᵃ	Prognostic		ERCC1 rs3212986 polymorphism in Asians may predict OS and rs11615 polymorphism may OS	Ding, Y. W. et al²⁸
	Protein (IHC)	48	Prognostic	Platinum	In the adjuvant setting, ERCC1 expression + high-risk category were the best predictors for relapse. ERCC1 expression was the only unfavorable independent determinant for OS	Ciaparrone, M. et al²⁹

(Continues)
Biomarkers	Type	Case N	Role	Therapy	Significance	Reference
Protein (IHC)	48	No role	ERCC1 expression failed to have a predictive value in head and neck carcinoma patients treated with RT	Bisof, V. et al⁶⁸		
Protein (IHC)	453	Prognostic	OS in OCSCC ($P = .01$)^b	Prochnow, S. et al³⁰		
Protein (IHC)	1288^a	Prognostic	Platinum	ERCC1 expression: unfavorable OS (HR: 1.95), PFS (HR: 2.39) and ORR (OR: 0.48); ERCC1 expression: OS in NPC (HR: 2.72)	Bisof, V. et al¹³	
Protein (IHC)	90 (Ph II)	Prognostic	Platinum	ERCC1-XPF protein expression by the specific FL297 and 4F9 antibodies is prognostic in patients undergoing CCRT	Bauman, J. E. et al³¹	
RNA (RT-PCR)	44	Predictive (ORR)	Platinum	Predict poor response to induction platinum-based therapy	Ameri, A. et al⁵³	
RNA (tissue microarray)	176	Prognostic	Oropharyngeal cancer and ERCC1 expression may have better outcomes despite HPV status	Patel, M. R. et al⁶⁹		
FGFR1	Protein (IHC) and FISH	492	Prognostic	High expression of FGFR1 as a candidate prognostic biomarker in HPV-negative HNSCC	Koole, K. et al³²	
RNA (Targeted NGS)	122	Prognostic	Genomic alterations involving the cell cycle (TP53, CCND1, CDKN2A), as well as FGFR1 amplification and tumor genomic alterations burden are prognostic biomarkers	Dubot, C. et al²²		
GST	Protein (tissue microarray)	56	Predictive (ORR)	Platinum	GST expression correlates well with response to platinum-based chemotherapy	Nishimura, T. et al²⁴
Heregulin	qRT-PCR	750	Diagnostic	Herregulin expression levels define a biologically distinct subset of HNSCC patients	Shames, D. S. et al (2013)⁷⁰	
HPV	Mixed	1149^a	Prognostic	Mixed	Prevalence of HPV among SCC of unknown primary in the head and neck patients were lower than in oropharyngeal SCC. The survival benefit of HPV-positive tumor was conferred	Ren, J. et al³³
mRNA+DNA (PCR)	109	Prognostic	HPV 16 infection showed a positive prognostic values. Methodology discussed	Bussu, F. et al³⁴		
Hypoxia markers	Protein (IHC)	2656^a	Prognostic	Mixed	Endogenous markers of hypoxia (HIF-1a, CA-IX, GLUT-1, and OPN) expression was negatively influenced prognosis	Swartz, J. E. et al³⁵
KLK-6	Protein (IHC)	162	Predictive (ORR)	RT	Low KLK6 expression in primary tumors represents a promising tool to stratify HNSCC patients with high risk for treatment failure	Schrader, C. H. et al⁴⁰

(Continues)
Biomarkers	Type	Case N	Role	Therapy	Significance	Reference
LOC541471	lncRNA (RNA-Seq)	487 (dataset)	Prognostic	Mixed	A negative association was revealed between lncRNA LOC541471 expression and overall survival in all subtypes of HNSCC	Wu, H. et al (2019)71
MDA-7/IL-24	Protein (IHC)	131	Prognostic		MDA-7/IL-24 can be a prognostic biomarker and an indicator of second primary malignancies (SPM) in HNSCC	Wang, L. et al72
mHsp70	mRNA (PCR)	21	Association		Soluble Hsp70 levels were significantly higher in HNSCC patients compared to healthy human volunteers and high mHsp70 expression levels on tumor cells were associated with high sHsp70 levels in the serum of patients	Gehrmann, M. et al (2014)73
miR-375	miRNA (PCR)	1340*	Prognostic	Mixed	The downexpression of miR-375 was correlated significantly with poor OS	Wang, P. et al36
miRNA	miRNA (PCR)	492c	Prognostic	Mixed	Six miRNA panel predicts poor outcomes. Multivariate Cox regression analysis, patients with high-risk factors had shorter OS (HR, 2.380, 95%CI, 1.361-4.303) than patients with low-risk scores in the total dataset	Shi, H. et al37
MRP2	Protein (IHC)	91	Prognostic		MRP2 and RB both were shown to be independently associated with poor local control in patients treated with CCRT	Van Den Broek, G. B. et al55
p16	Protein (IHC)	64	Predictive (ORR)	CCRT	High expression of p16 predicts a better response to chemoradiation in patients with stage IVa/b	Chen, Y. J. et al62
p16	Protein (IHC)	73	Prognostic		Among patients with CUP, p16-positive status is an independent predictor of DFS but not OS	Dixon, P. R. et al50
	Protein (IHC)	112	no role		cMET and p16 expression showed no impact on OS or PFS	da Costa, A. et al9
	Protein (IHC)	130	Prognostic		p16 overexpression was associated with an improved DFS (HR:0.39, 95% CI 0.19-0.78)	Lundberg, M. et al12
	Protein (IHC)	165	Predictive (ORR)	RT	The negative effect of CD44 and EGFR and the positive effect of p16 on radiotherapy results were observed	Slavik, M. et al61
	Protein (IHC)	166	no role		p16 expression is not associated with better survival	Satgunaseelan, L. et al10
	Protein (IHC)	204	Prognostic		p16(INK4A) remains independently predictive	Young, R. J. et al38

(Continues)
Biomarkers	Type	Case N	Role	Therapy	Significance	Reference
Protein (IHC)	568	Prognostic	Similar prognostication as the newly adopted 8th edition of the UICC staging in the p16-positive patient cohort was independently confirmed	Rasmussen, J. H. et al39		
Protein (IHC)	1448	Prognostic	p16 has a similar prognostic role in both nonoropharyngeal and oropharyngeal cancer	Bryant, A. K. et al40		
Protein (IHC)	110c	Predictive	Afatinib	p16-negative and EGFR amplified HNSCC, p16-negative and cetuximab naive HNSCC patients did better with afatinib	Galot, R. et al58	
Protein (IHC)	182 (ph III)	Prognostic	Mixed	p16 status was strongly prognostic for patients with OPC	Rosenthal, D. I. et al41	
Protein (IHC)	1929a	Predictive (PFS)	EGFRi plus chemo	A significant PFS benefit (HR: 0.58; P < .001) of adding an EGFR inhibitor to chemotherapy versus chemotherapy for p16-neg cancer while no PFS or OS benefit for p16-pos cancer	Su, Y. et al46	
Protein (IHC)	657 (ph III)	Predictive / prognostic	Panitumumab + PF	p16 status could be a prognostic and predictive marker in patients treated with panitumumab and chemotherapy	Vermorken, J. B. et al74	
Protein (IHC)/ genotyping	52	No role	p16/HPV16-positive patients with LA-HNSCC treated with RT + EGFR inhibitors showed better survival	Pajares, B. et al11		
p53	Protein(tissue microarray)	196	Prognostic	CCRT	A high p53 expression has opposite prognostic effects for increased risk of LR failure, but decreasing the risk of DM	Rasmussen, G. B. et al51
PI3K pathway mutations	Gene profiling sequencing	48 (Ph II)	Predictive (ORR)	Dacomitinib	PI3K pathway mutation and inflammatory cytokine expression help identify patients possibly gain benefit from dacomitinib	Kim, H. S. et al (2015)75
PITX2	DNA methylation	528c	Prognostic	Mixed	Multivariate Cox analysis showed PITX2 promoter methylation was confirmed as a prognostic factor	Sailer, V. et al42
PTEN	Protein (IHC)	112	Prognostic	Cetuximab, PF	A negative prognostic effect of PTEN loss was observed in the patients treated with cetuximab+ chemotherapy	da Costa, A. et al9
RB	Genomic profiling	1 + 279d	Prognostic	RB1 alterations have prognostic implications, particularly in high p16 expression	Beck, T. N. et al43	
Protein (IHC)	91	Prognostic	Platinum-CCRT	MRP2 and RB both were shown to be independently associated with poor local control in patients treated with CCRT	Van Den Broek, G. B. et al55	
SDF-1	Protein (IFC)	141	Prognostic	CCRT	SDF-1 and CXCR4 expression for LR control and OS	De-Colle, C. et al (2018)76

(Continues)
negative group is likely a distinct and important subgroup for future trials.100, 101

p16 also appears to be an important prognostic marker in cutaneous HNSCC, which commonly presents as cervical metastases secondary to CUP. High p16 expression has been shown to be indicative of primary HNSCC with better survivals10; however, p16 expression was not associated with improved survival in this specific subgroup of HNSCC.10 In theory, p16 positivity would not be exclusively associated with HPV infection, considering p53 and retinoblastoma (RB) gene involvement.102, 103 The virus contains two oncoproteins, E6 and E7, which, when expressed, inactivate p53 and RB, respectively. p53 is frequently inactivated in HNSCC, and dysregulation of the RB gene is increased by the expression of p16.97 When testing for p16 and HPV, the two tests are not always concordant with each other.
p16 also has predictive value with regard to HNSCC outcomes with various specific treatments.57,62 Patients positive for p16 have shown a greater response to, and improved overall outcomes with radiotherapy,61 as well as improved outcomes from CTC count during treatment (CCRT),62 vs those with p16 nonexpression. In addition, some studies indicate a predictive role for p16 status in patients receiving EGFR-targeted therapy for HNSCC, including cetuximab plus chemotherapy,46 panitumumab plus chemotherapy (vs chemotherapy alone57), and afatinib.58,59

As excellent outcomes, in general, can be achieved in HPV-positive HNSCC, the reasonable next step is to de-intensify therapy, especially radiotherapy, to minimize treatment-related toxicities and improve quality of life without compromising survival.110,111 One thing to be noticed is that the de-intensification needs to happen carefully and only within the confines of a clinical trial. Given the distinctive pathobiology of HPV-positive HNSCC, innovative approaches targeting viral oncogenes and the immune system, integrated with the use of both established and novel biomarkers, are warranted.3

4.2 Predictive tissue markers for platinum-based therapy

As early as 2000, the use of cisplatin or carboplatin in combination with radiotherapy has become a standard treatment approach for HNSCC.110,112 Several tissue biomarkers have shown a potential role in predicting response to platinum-based therapy. For example, ERCC1 protein expression may be a valuable marker for platinum chemoresistance,14,30,32,54,106 radiotherapy toxicity,52 and response113 in HNSCC. However, one study in 48 HNSCC patients68 showed no apparent role for mRNA amplification of the ERCC1 gene in terms of predicting platinum resistance, suggesting that such resistance might be attributable to non-ERCC1 pathways.114 This may be a unique phenomenon in HNSCC; in a prospective phase III trial in nonsmall lung cancer, ERCC1 mRNA expression was able to predict acquired resistance to platinum treatment.115

Bcl-2 is another example; evidence suggests that this marker may contribute to distant failure in HNSCC patients receiving platinum-based CCRT.19,51 In addition, GSTs— that appear to play an essential role in the cell's defense against toxic substances—may predict platinum resistance in HNSCC.54 MRP2 protein expression and RB protein expression were also found to be independently associated with reduced local control in patients who received CCRT.55 Another study evaluated stromal cell-derived factor 1 (SDF-1)/CXCR4 and demonstrated predictive ability with respect to locoregional control and survival in 141 patients who underwent surgery and adjuvant CCRT.24 It should be noted, however, that some of these studies failed to discriminate between resistance to RT vs chemoresistance.

4.3 Predictive tissue markers for EGFR-targeted therapy

The family of human epidermal growth factor receptor (HER/EGFR/ErbB) contains 4 subtypes of EGFR members (ErbB1 to 4/EGFR, HER2-4), which play essential roles in cancer cell proliferation, vessel angiogenesis, and dissemination through downstream oncogenic signaling pathways. EGFR is overexpressed in more than 90% of HNSCC, but the loci of mutations are not in common hotspots.49,116,117 Currently, there are two main types of EGFR-inhibition-mediated therapeutic agents, including (i) EGFR monoclonal antibodies (mAbs, that is, cetuximab and panitumumab) that target extracellular ligand binding domains; and (ii) EGFR-tyrosine kinase inhibitors (TKIs, that is, gefitinib and afatinib) that target intracellular ATP-binding pockets in tyrosine kinase domains.118,119 In 2008, addition of cetuximab to platinum-fluorouracil chemotherapy significantly improved OS compared with platinum-based chemotherapy alone as first-line treatment in patients with recurrent or metastatic HNSCC.57,120 Cetuximab alone has also shown efficacy in platinum-refractory cases th HNSCC.54 Interest in establishing accurate predictive markers of response to EGFR inhibitors continues to grow.

Increased EGFR gene copy number appears to be largely restricted to p16INK4A−negative oropharyngeal cancer.38 Biomarker studies evaluating the role of EGFR protein expression have shown inconsistent results.38 For example, as briefly described above, p16 status appears to influence response to EGFR-targeted therapies. Patients with p16-positive tumors responded well to cetuximab-based therapy,41,46 those with p16-negative tumors responded better to panitumumab-based therapy57,74 and afatinib.58,59 In the phase III LUX-Head&Neck 1 (LUX-H&N1) trial, 2nd line afatinib significantly improved PFS vs methotrexate in patients with recurrent/metastatic HNSCC.57 In subgroup analysis, patients who have benefited from afatinib were identified in those with p16neg, EGFRamplified, HER3low, PTENhigh status.59 That indicates that p16, HER3, and PTEN might serve as predictive markers in afatinib treatment. Also, in another study, high heregulin mRNA and high HER3 protein levels independently correlated with poor OS in oropharyngeal cancer patients, which indicates targeting HER3 as one of the potential treatment targets.121
It is reasonable to assume that biomarker signatures made up of combinations of established markers such as EGFR, RB, p53, CDK2, p16, p21, and HPV E6/E7 levels, may offer a more feasible approach to response prediction in HPV-positive HNSCC.

4.4 Predictive tissue markers for PD-1/PD-L1 inhibitors

Table 2 summarizes the available evidence for prognostic and predictive biomarkers in the era of immunotherapy, focusing on PD-1 and PD-L1 inhibitors. PD-1 and PD-L1 expression currently remain the most significant tissue biomarkers. PD-L1 expression has been associated with post-chemotherapy (docetaxel/platinum/5-fluorouracil regimen) status, co-occurrence with p16INK4 expression, and poorer OS (but improved RFS and OS). Among these studies, associations between high PD-L1 expression and favorable OS were all demonstrated in post-surgery HNSCC patients. It is possible that PD-L1 expression may differentially impact resectable and unresectable patients, which requires further investigation. In patients with HNSCC who underwent pulmonary metastasectomy, higher PD-L1 expression predicted poorer outcomes after palliative surgery.

Regarding studies of predictive markers for newer immunotherapies, PD-L1 expression was associated with a higher ORR and longer OS after nivolumab therapy, a favorable response to radiation (radiosensitivity), and an improved response to durvalumab. In addition to PD-L1 expression, microsatellite instability (MSI) predicted response to PD-L1 inhibitors in HNSCC. HPV status was predictive of improved response to durvalumab. Furthermore, a higher number of some subtypes of tumor-infiltrating lymphocytes (TILs), such as PD-1+TIM-3+CD8+TILs and PD-1+LAG-3+CD8+TILs, and higher tumor mutation burden (TMB) and CD8+TILs, all predicted improved response to anti-PD-1 or anti-PD-L1 therapies.

Several recent conference presentations have also highlighted novel data regarding predictive biomarkers in the era of immunotherapy (Table 2). For example, PD-1+ CD8+ effector T cells and PD-1+ Treg cells in tumor tissue predicted response to nivolumab, whereas mutational load and IFN-γ gene expression profile (GEP) predicted response to pembrolizumab. However, data on these and other emerging predictors of immunotherapy response remain inconclusive. An ongoing prospective trial, PRECISION-01 (NCT03917537; www.ClinicalTrials.gov), aims to resolve some of this uncertainty by evaluating biomarker signatures in cancer tissue via whole-genome/exome sequencing, in patients with platinum-refractory HNSCC receiving nivolumab monotherapy.

Clinical application uses current evidence of validated cutoff values of PD-L1 expression (Table 3). In brief, each clone of PD-L1 for an individual immunotherapy drug has its validated cutoffs, although these may vary between studies. To more fully elucidate the predictive role of PD-L1 expression, a study comparing HNSCC patient populations identified by different PD-L1 assays is now underway. However, PD-L1 expression on cancer tissue currently still has no bearing on the management of patients with HNSCC.

5 IMAGING BIOMARKERS IN HNSCC

In recent years, advances in diagnostic imaging technologies have not only aided cancer diagnosis and staging, but have also become an important tool in predicting disease outcomes, relapse patterns, and treatment outcomes. The most commonly utilized tool is functional magnetic resonance imaging (MRI), using diffusion-weighted imaging (DWI), blood oxygen level-dependent (BOLD), and dynamic contrast-enhanced (DCE) sequences.

Some studies have established multidimensional prognostic or predictive signatures by combining more than one type of biomarker. For example, one or more imaging parameters (eg, maximal standard uptake value, metabolic tumor volume, apparent diffusion coefficient, or gross tumor volume) may be combined with tissue protein expression markers, or liquid biopsy markers.

6 BIOMARKERS FROM LIQUID BIOPSIES

Some biomarkers can be isolated from body fluids, such as blood, urine, and saliva, and objectively measured. Important benefits of liquid biomarkers include their non-invasive nature, and convenience in terms of taking serial measurements. However, a number of factors have the potential to impact the dynamics and reliability of liquid markers, limiting their clinical utility. These may include the timing of collection, fluid viscosity, nutritional factors, inflammatory conditions, secretory gland injury, or other environmental factors. Table 4 summarizes some examples of liquid biopsy markers in HNSCC; however, it should be noted that some data lack proper validation.

Blood is a relatively stable body fluid; several serum protein markers have traditionally been used to help predict outcomes in HNSCC patients, including CDK4, midkines, tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), IL-2R, and VEGF-A. However, some are not always cancer-specific, giving rise to problems in
TABLE 2 Immunotherapy-associated tissue biomarkers

Biomarkers-clone	Type (method, cutoff)	Case N	Role	Therapy	Significance	Reference
Published data						
PD-L1-SP263	Protein (IHC, ≥25%)	111	Prognostic/Predictive	Durvalumab	Durvalumab demonstrated antitumor activity with acceptable safety in PD-L1-high patients with rmHNSCC	Zandberg, D. P. et al122
	Protein (IHC, ≥50%)	26	Predictive (surgery)	Pulmonary metastasectomy	High PD-L1 expression in pulmonary metastases could be an independent predictor of poor outcome in HNSCC patients undergoing pulmonary metastasectomy	Okada, S. et al (2018)123
PD-L1-SP142	Protein (IHC)	203	Prognostic		PD-L1 expression (≥ 50%) was an independent prognostic factor for poor OS in anti-PD1/PD-L1 untreated HNSCC patients	Ngamphaiboon, N. et al124
	Protein (IHC, ≥5%)	402	Prognostic		High PD-L1 expression on IC, but not TC, and high abundance of PD-1(+) T cells and Foxp3(+) Tregs are favorable prognostic factors	Kim, H. R. et al125
PD-L1-EPR1161	Protein (IHC)	293	Prognostic		Strong correlation between PD-L1 expression and reduced OS	Muller, T. et al126
PD-L1-E1L3N	Protein (IHC, ≥5%)	313	Association	TPF chemo	TPF induction chemotherapy in advanced HNSCC increases PD-L1 positivity on TIL ICs, as well as CD8+ lymphocytes density	Leduc, C. et al127
PD-L1-288	Protein (IHC, ≥1%)	361 (CM-141)	Predictive (ORR, OS)	Nivolumab	OS rate (16.9%) vs IC (6.0%), and	Ferris, R. L. et al63

(Continues)
Biomarkers-clone	Type (method, cutoff)	Case N	Role	Therapy	Significance	Reference
PD-L1/PD-L2	mRNA (tissue microarray)	33	Prognostic		OS was significantly worse in patients with higher levels of PD-L1 and PD-L2 score ($P < .05$)	Moratin, J. et al128
PD-L1	Protein (IHC)	112	Prognostic		PD-L1 expression in tumor cells or TILs predicts longer DFS	Roper, E. et al129
PD-L1	Protein (IHC)	161	Prognostic		PD-L1 expression constitutes an independent prognostic marker in patients received adjuvant CCRT	Balermpas, P. et al130
PD-L1	Protein (tissue array)	106	Association		Expression of PD-L1 was associated with $p16^{INK4A}$ expression ($P < .01$)	Chen, S. C. et al131
PD-1/PD-L1	DNA Gene signature	517	Predictive (ORR)	RT	High expression of PD-1/PD-L1 was strongly related to radio-sensitivity	Lyu, X. et al132
TMB	WES	126	Predictive (ORR)	anti-PD-1/PD-L1 Tx	Higher TMB and CD8+ T cell infiltrates predicted anti–PD-1/L1 benefit ($P < .01$, $P < .01$, respectively) among virus-negative tumors	Hanna, G. J. et al133
PD-1$^+$TIM-3$^+$CD8$^+$TILs	Protein (IHC)	126	Predictive (ORR)	anti-PD-1/PD-L1 Tx	TIM-3/LAG-3 coexpression with PD-1 was higher on T cells among nonresponders ($P = .03$ and .02, respectively)	Hanna, G. J. et al133
PD-1$^+$LAG-3$^+$CD8$^+$TILs	Protein (IHC)	126	Predictive (ORR)	anti-PD-1/PD-L1 Tx	TIM-3/LAG-3 coexpression with PD-1 was higher on	Hanna, G. J. et al133

(Continues)
Biomarkers-clone	Type (method, cutoff)	Case N	Role	Therapy	Significance	Reference
MSI	DNA (PCR)	NA	Predictive (durable CR)	PD-L1 inhibitor	MSI associated with durable complete response to PD-L1 inhibitor	Tardy, M. P. et al¹³⁰
HPV	Protein (IHC, positive)	Prognostic/predictive	Durvalumab	HPV-positive patients had a numerically higher response rate and survival than HPV-negative patients	Zandberg, D. P. et al¹²²	
Microbiota	NGS	NA	Predictive (ORR)	Ipilimumab	B. fragilis was associated with the efficacy of CTLA-4 blockade	Vetizou, M. et al¹³⁴

Oral conference presentations

Biomarkers-clone	Type (method, cutoff)	Case N	Role	Therapy	Significance	Reference
MDM2/MDM4	amplification (NGS)	5	Predictive (HPD)	anti-PD-1/PD-L1 Tx	The incidence of hyper-progression after checkpoint blockade in patients with MDM2/MDM4 amplification was as high as 66% (2/3)	Singavi, A. et al (2017)¹³⁵
Effector T cells	Flow cytometry	62 (CM-141)	Predictive (ORR)	Nivolumab	The percentage of PD-1+ CD8+ effector T cells was significantly lower in responders and TBP pts vs NTBP pts	Haddad, R. et al¹³⁶
PD-1+ Treg	Flow cytometry	62 (CM-141)	Predictive (ORR)	Nivolumab	At D1, TBP pts, similar to responders, had a significantly lower PD-1+ Treg percentage vs NTBP pts	Haddad, R. et al¹³⁶
Mutation Loads (ML)	WES	107 (KN-012)	Predictive (ORR)	Pembrolizumab	ML and GEP are independently predictive of response to pembrolizumab in HPV−/EBV− patients with HNSCC	Haddad, R. I. et al¹³⁷

(Continues)
More recently, markers from liquid biopsies that are directly related to cancer cells or cancer-produced molecules have been employed, including circulating tumor cells (CTCs),

cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA),
cell-free RNA (cfRNA), and exosomes. It is generally accepted that CTCs may play an important role in cancer metastasis. Data suggest that an elevated baseline CTC count is associated with advanced stage of HNSCC, risk of relapse, and a poor prognosis, while a declining CCRT could indicate an improved prognosis and treatment response. In some patients, an increased CTC count has been observed after HNSCC treatment by surgery and radiotherapy, which is thought to possibly reflect stimulation of tumor cell dissemination and a poorer prognosis; although, the exact reasons for this observation remain unclear. A subgroup of CTCs express podoplanin, a known prognostic factor for HNSCC. Evidence suggests that an elevated podoplanin:EpCAM ratio in CTCs may be associated with a poor prognosis and treatment failure.

In addition, PD-L1-positive CTCs may play a role in predicting response to immunotherapy. With regard to cfDNA, mitochondrial cfDNA content appears to be strongly associated with HNSCC in patients with lifestyle risk factors for the disease. Various other liquid biomarkers may provide additional diagnostic and prognostic information in HNSCC. Examples include elevated serum miR-21, circulating PD-L1+...
Biomarkers	Type	Case N	Role	Therapy	Significance	Author (Year)
CDK4	SPR + western	100	Diagnostic/prognostic		Elevated serum CDK4 levels were observed in HNSCC patients compared with controls. Higher CDK4 levels in HNSCC patients were associated with poorer survival outcomes	Banerjee, J. et al 154
cfdNA	DNA	50	Diagnostic		Mitochondrial cfDNA content is strongly associated with HNSCC in patients with lifestyle risk factors (eg, smoke and smokeless tobacco, betel quid chewing, and alcohol)	Kumar, M. et al 155
CRP + ARG	ELIZA	80	Diagnostic		Serum ARG and CRP together were diagnostic for HNSCC	Choudhury, B. et al (2014) 156
CRP + TNFα	ELIZA	100	Diagnostic/prognostic		Significantly elevated levels of CRP and TNFα were found in HNSCC patients. Combination of upregulated CRP and TNFα in plasma was significantly associated with shorter survival	Andersson, B. A. et al (2014) 157
CTC	CellSearch	110	Prognostic		DTCs and CTCs are independent prognostic markers for disease relapse. Positive correlation to T, N stages	Gröbe, A. et al 158
CellSearch	53		Prognostic		CTCs were significantly associated with patient characteristics and poor prognosis	Grisanti, S. et al 159
CellSearch	73		Prognostic		CTC absence after treatment associated with improved response and survival	Buglione, M. et al 160
CellSearch	15		Prognostic		CTCs associated with lung nodules and disease progression	Nichols, A. C. et al 161
CellSearch	40		Prognostic		Detection of CK20 mRNA in peripheral blood is prognostic in OSCC	Toyoshima, T. et al 162
CellSearch	100 (ongoing)		Prognostic		Combining CTC and structural information from MRI may provide more information than either modality alone	Ng, S. P. et al 147
Flow cytometry	144		Predictive (ORR)	Surgery + RT	Detection of CTC was useful to predict patients likely to benefit from therapy	Tinhofer, I. et al 163
Negative selection	47		Prognostic	CCRT	CTC decline status was an independent prognostic factor in PFS ($P = .03$) and OS ($P = .05$) in multivariate analyses	Wang, H. M. et al 164
Negative selection	53		Prognostic		The CTC ratio of podoplanin-positive/EpCAM-positive is a prognostic factor	Hsieh, J. C. et al 165

(Continues)
Biomarkers	Type	Case N	Role	Therapy	Significance	Author (Year)
Negative selection	48	Prognostic			Lack of CTCs associate with significantly longer DFS	Jatana, K. R. et al^166
Negative selection	36	Prognostic			Detection of CTCs pre- or intraoperatively indicates a high risk of local and distant recurrence and reduced survival	Partridge, M. et al^167
SERS	82	Prognostic			A liquid biopsy identified patients at higher risk of disease progression	Morgan, T. M. et al^168
ClearCell FX system	56	Prognostic			CTCs predicted of poorer outcomes	Kulasinghe, A. et al (2018)^169
Mixed	429^a	Prognostic			Presence of CTCs was not prognostic for OS, although it could reflect outcomes of loco-regional disease	Cho, J. K. et al^170
Mixed	909^a	Prognostic			CTCs used as a monitoring tool for early detection of tumor recurrence/progression, advanced disease, and nodal metastasis	Sun, T. et al^171
Negative selection	38	Association	Surgery		A statistically significant was found to increase in CTCs after surgery ($P = .02$)	Jatana, K. R. et al^153
Laser scanning cytometry	40 (ph II, TISOC-1)	Prognostic			Baseline CTCs and maximal CTCs during therapy both were strong prognostic markers for OSCC treated by chemotherapy, surgery, and CCRT	Inhestern, J. et al^172
Flow cytometry	31	Association	RT		Definitive radiotherapy regimens of locally advanced HNSCC can increase the number of CTCs	Tinhofer, I. et al^173
CellSearch	15	Prognostic			CTC count was significantly associated with lung nodules >1 cm. Improved survival was noted in CTC-negative patients	Nichols, A. C. et al^161
Flow cytometry	42	Association			Detection of CTCs correlated with regional metastasis in inoperable HNSCC	Hristozova, T. et al (2011)^174
Negative selection	48	Prognostic			CTCs per mL was negatively associated with DFS	Jatana, K. R. et al^166
DNA methylation patterns	Methylation (PCR)	46	Diagnostic		Methylation levels for the two identified CpG clusters were significantly different between healthy and HNSCC individuals	Ovchinnikov, D. A. et al (2014)^175

(Continues)
Biomarkers	Type	Case N	Role	Therapy	Significance	Author (Year)
Gycoprotein L-fucose	ELIZA	50	Diagnostic		Serum glycoprotein L-fucose levels can be used as a useful indicator in conjunction with clinical diagnostic procedures	Shetty, R. K. et al (2013)¹⁷⁶
LBC-RTF	Protein (ICC)	68	Prognostic	Surgery	LBC-RTF significantly improved the diagnostic accuracy of traditional intraoperative diagnosis	Kinoshita, Y. et al (2018)¹⁷⁷
midkine	ELIZA	103	Predictive (chemosensitivity)	Chemotherapy	Serum midkine levels in patients with HNSCC were associated with malignancy, chemosensitivity, and prognosis	Yamashita, T. et al¹⁷⁸
miR-21	mRNA (PCR)	15	Prognostic		miR-21 expression might be an essential tool for treatment planning and a prognostic tool for HNSCC patients undergoing organ preservation protocols	Arantes, L. M. et al¹⁷⁹
NK cells	Flow cytometry	70	Association		The population of circulating immunoregulatory CD56(bright) NK cells is lower in the peripheral blood of patients with HNSCC compared with that in healthy donors	Wulff, S. et al (2009)¹⁸⁰
PD-L1	Plasma exosome (PCR)	40	Prognostic		Circulating PD-L1(high) exosomes in plasma, but not soluble PD-L1 levels, were associated with disease progression	Theodoraki, M. N. et al¹⁸¹
PD-L1+CTC	Negative selection	30	Prognostic		CTCs can reflect the treatment effects of the use of immune checkpoint inhibitors	Tinhofer, I. et al¹⁸²
mRNA(RT-qPCR)	113		Prognostic/Predictive (CR)	Curative treatments	CTCs overexpressing PD-L1 may provide important prognostic information, and adjuvant PD-1 inhibitors may be useful in patients in whom PD-L1(+) CTCs are detected after curative treatment	Strati, A. et al¹⁸³
RAS	Mutation (NGS)	46	Association	Failure of EGFR-Tx	RAS mutations associated with acquired resistance to EGFR-targeted therapy in a substantial proportion of HNSCC patients	Braig, F. et al¹⁸⁴
RRM1	cfRNA (PCR)	60	Predictive (AE)	CCRT	RRM1 gene expression in cfRNA allows for estimation of the risk of severe oral mucositis in patients subjected to radiotherapy	Mikl, R. et al¹⁸⁵
Saliva CD44	ELIZA	26	Diagnostic		Salivary solCD44 was effectively detected in HNSCC at all stages	Franzmann, E. J. et al (2005)¹⁸⁵
Saliva miRNA	RT-qPCR	56	Diagnostic		Saliva-derived miRNAs miR-9, miR-134 and miR-191 may serve as novel biomarkers to reliably detect HNSCC	Salazar, C. et al¹⁸⁶
Several important advances have been achieved in recent years, that have improved the potential of liquid biopsy markers as robust clinical tools. Such advances include (a) estimation of tumor mutational burden through evaluation of plasma cfDNA; (b) more therapy-directed applications of CTCs, for example, PD-L1 expression in CTCs; (c) use of CTCs as a longitudinal monitoring tool to detect minimal residual disease after curative surgery; (d) CTC-derived xenografts used as surrogates to study tumor biology; and (e) three-dimensional CTC cultures and CTC-derived organoids to aid in individualized precision medicine.

7 | FUTURE PERSPECTIVES

The rapid evolution of the background understanding of cancer physiology and biology has affected every aspect of disease management and patient care. In this evolving era of precision medicine, there is an ever-building need, including in HNSCC, for novel prognostic and predictive biomarkers with robust clinical application.

Ideally, biomarker trials should be designed based on an actual clinical need; as such, peer review panels evaluating biomarker research proposals now pay close attention to the potential clinical utility of biomarker tests. Given the challenges of biomarker development discussed above, concerted efforts also need to be made to harmonize assays, methodologies, and cutoffs, to ensure consistency of results and allow accurate extrapolation of trial data to the clinical setting.

Identification of driver mutations relevant to specific targeted therapies remains an ongoing area of research. A number of genetic and histological markers under development may prove integral to patient selection for the testing of novel targeted therapies—for example, those being evaluated in the ongoing National Cancer Institute Molecular Analysis for Therapy CHoice (NCI-MATCH) Precision Medicine Clinical Trial. It is hoped that more purposeful patient selection will enable inhibition of specific aspects of oncogenic pathways, and optimize the applicability of trial data, with the goal of stabilizing disease and improving survival in the greatest number of patients possible.

Finally, future development of artificial intelligence technology may help predict clinical outcomes more precisely than current technology and traditional statistical analysis.

8 | CONCLUSION

This article critically reviewed more than 100 biomarkers reported in the literature, which were investigated and
expected to predict disease or treatment outcomes in patients with HNSCC. According to the level of current evidence, tissue p16 and HPV status remain the most robust biomarkers in HNSCC where the others still require large-scale, validation trials. Although some investigations on biomarker are still ongoing, it is becoming clear that liquid biopsies might have promising potential for clinical development as noninvasive data-gathering tools for HNSCC patient selection, prediction of disease course and treatment outcomes, and clinical decision making. In particular, targets such as PD-L1 expression on CTCs may provide important information to help predict outcomes with immunotherapy. In the near future, there is an urgent unmet need to further progress biomarker research through the critical phases of development and validation, to continually improve the care of patients with HNSCC.

ACKNOWLEDGMENTS

This work was sponsored by the Ministry of Science and Technology, R.O.C. (MOST-107-2628-B-182A-001-, MOST-107-2314-B-182-053, MOST-104-2314-B-182-031-MY3, MOST-104-2314-B-182A-073-MY3) and Chang Gung Memorial Hospital (CMRPG3G0591-93, CORPG3F0771, CORPG3F0791, CMRPG3E1631-33, CMRPG2G0868-83, CMRPG2J0061, CMRPG3G1131-33, CMRPG3H0871-73, CMRPG3D1061-1063, CMRPG3D1071-1073) and Ministry of Health and Welfare, R.O.C.(PMRPG3H0071-74).

ORCID

Jason Chia-Hsun Hsieh https://orcid.org/0000-0002-5547-409X

REFERENCES

1. Definition of Biomarker - Nci Dictionary of Cancer Terms, https://www.cancer.gov/publications/dictionaries/cancer-terms/def/biomarker. (n.d.).
2. Sawyers CL. The cancer biomarker problem. Nature. 2008;452 (7187):548-552.
3. Kang H, Kiess A, Chung CH. Emerging biomarkers in head and neck cancer in the era of genomics. Nat Rev Clin Oncol. 2015;12 (1):11-26.
4. Parkinson DR, McCormack RT, Keating SM, et al. Evidence of clinical utility: an unmet need in molecular diagnostics for patients with cancer. Clin Cancer Res. 2014;20(6):1428-1444.
5. Sawyers CL, Van’t veer LJ. Reliable and effective diagnostics are keys to accelerating personalized cancer medicine and transforming cancer care: a policy statement from the American Association for Cancer Research. Clin Cancer Res. 2014;20(19):4978-4981.
6. Simon R. Clinical trials for predictive medicine: new challenges and paradigms. Clin Trials. 2010;7(5):516-524.
7. Alterio D, Marvaso G, Maffini F, et al. Role of EGFR as prognostic factor in head and neck cancer patients treated with surgery and postoperative radiotherapy: proposal of a new approach behind the EGFR overexpression. Med Oncol. 2017;34(6):107.
8. Rodrigo JP, Garcia LA, Ramos S, Lazo PS, Suarez C. EMS1 gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck. Clin Cancer Res. 2000;6 (8):3177-3182.
9. da Costa A, Costa FD, Araujo DV, et al. The roles of PTEN, cMET, and p16 in resistance to cetuximab in head and neck squamous cell carcinoma. Med Oncol. 2018;36(1):8.
10. Satgunaseelan L, Chia N, Suh H, et al. p16 expression in cutaneous squamous cell carcinoma of the head and neck is not associated with integration of high risk HPV DNA or prognosis. Pathology. 2017;49(5):494-498.
11. Pajares B, Perez-Villa L, Trigo JM, et al. Concurrent radiotherapy plus epidermal growth factor receptor inhibitors in patients with human papillomavirus-related head and neck cancer. Clin Transl Oncol. 2014;16(4):418-424.
12. Lundberg M, Leivo I, Saarilahti K, Makitie AA, Mattila PS. Transforming growth factor beta 1 genotype and p16 as prognostic factors in head and neck squamous cell carcinoma. Acta Otolaryngol. 2012;132(9):1006-1012.
13. Bisov V, Zajc Petranovic M, Rakusic Z, Samardzic KR, Juretic A. The prognostic and predictive value of excision repair cross-complementation group 1 (ERCC1) protein in 1288 patients with head and neck squamous cell carcinoma treated with platinum-based therapy: a meta-analysis. Eur Arch Otorhinolaryngol. 2016;273(9):2305-2317.
14. Poste G. Bring on the biomarkers. Nature. 2011;469(7329): 156-157.
15. Kim KY, McShane LM, Conley BA. Designing biomarker studies for head and neck cancer. Head Neck. 2014;36(7):1069-1075.
16. Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4(3):256-269.
17. Ciardiello F, Adams R, Tabernero J, et al. Awareness, understanding, and adoption of precision medicine to deliver personalized treatment for patients with cancer: a multinational survey comparison of physicians and patients. Oncologist. 2016;21(3):292-300.
18. Chabner BA. Considerations about the use of biomarkers in cancer clinical trials. Clinical Pharmacology & Therapeutics. 2018; 103(1):25-27.
19. Agostini LP, Stur E, Garcia FM, et al. ATM, BCL2, and TGFbeta gene polymorphisms as radiotherapy outcome biomarkers in head and neck squamous cell carcinoma patients. Genet Test Mol Biomarkers. 2017;21(12):727-735.
20. Liu JF, Mao L, Bu LL, et al. C4.4A as a biomarker of head and neck squamous cell carcinoma. Eur J Cancer. 2013;49(9):984-991.
21. Dubot C, Bernard V, Sablin M, et al. Comprehensive genomic profiling of head and neck squamous cell carcinoma reveals FGFR1 amplifications and tumour genomic alterations burden as prognostic biomarkers of survival. Eur J Cancer. 2018;91:47-55.
23. Yang S-H, Lee T-Y, Ho CA, et al. Exposure to nicotine-derived nitrosamine ketone and arecoline synergistically facilitates tumor aggressiveness via overexpression of epidermal growth factor receptor and its downstream signaling in head and neck squamous cell carcinoma. *PloS One*. 2018;13(8):e0201267.

24. De-Colle C, Monnich D, Welz S, et al. SDF-1/CXCR4 expression in head and neck cancer and outcome after postoperative radiochemotherapy. *Clin Transl Radiat Oncol*. 2017;5:28-36.

25. Fernandez-Mateos J, Seijas-Tamayo R, Mesia R, et al. Epidermal growth factor receptor (EGFR) pathway polymorphisms as predictive markers of cetuximab toxicity in locally advanced head and neck squamous cell carcinoma (HNSCC) in a Spanish population. *Oncol Rep*. 2016;36:38-43.

26. Chung CH, Ely K, McGavran L, et al. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. *J Clin Oncol*. 2006;24(25):4170-4176.

27. Zhu X, Zhang F, Zhang W, He J, Zhao Y, Chen X. Prognostic role of epidermal growth factor receptor in head and neck cancer: a meta-analysis. *J Surg Oncol*. 2013;108(6):387-397.

28. Ding YW, Gao X, Ye DX, Liu W, Wu L, Sun HY. Association analysis of ERCC1 polymorphisms (rs3212986 and rs11615) with the risk of head and neck carcinomas based on case-control studies. *Clin Transl Oncol*. 2015;17(9):710-719.

29. Ciaparrone M, Caspiani O, Bicciolo G, et al. Predictive role of ERCC1 expression in head and neck squamous cell carcinoma patients treated with surgery and adjuvant cisplatin-based chemoradiation. *Oncology*. 2015;90(4):227-234.

30. Prochnow S, Wielczak W, Bosch V, Clauditz TS, Muenschner A. ERCC1, XPF and XPA-locoregional differences and prognostic value of DNA repair protein expression in patients with head and neck squamous cell carcinoma. *Clin Oral Investig*. 2019;23(8):3319-3329.

31. Bauman JE, Austin MC, Schmidt R, et al. ERCC1 is a prognostic biomarker in locally advanced head and neck cancer: results from a randomised, phase II trial. *Br J Cancer*. 2013;109(8):2096-2105.

32. Koole K, Brunen D, van Kempen PM, et al. FGFR1 is a potential prognostic biomarker and therapeutic target in head and neck squamous cell carcinoma. *Clin Cancer Res*. 2016;22(15):3884-3893.

33. Ren J, Yang W, Su J, et al. Human papillomavirus and p16 immunostaining, prevalence and prognosis of squamous carcinoma of unknown primary in the head and neck region. *Int J Cancer*. 2019;145:1465-1474.

34. Bussu F, Sali M, Gallus R, et al. HPV infection in squamous cell carcinomas arising from different mucosal sites of the head and neck region. Is p16 immunohistochemistry a reliable surrogate marker? *Br J Cancer*. 2013;108(5):1157-1162.

35. Swartz JE, Pothen AJ, Stegeman I, Willems SM, Grolman W. Clinical implications of hypoxia biomarker expression in head and neck squamous cell carcinoma: a systematic review. *Cancer Med*. 2015;4(7):1101-1116.

36. Wang P, Xu L, Li L, et al. The microRNA-375 as a potentially promising biomarker to predict the prognosis of patients with head and neck or esophageal squamous cell carcinoma: a meta-analysis. *Eur Arch Otorhinolaryngol*. 2019;276(4):957-968.

37. Shi H, Chen J, Li Y, et al. Identification of a six microRNA signature as a novel potential prognostic biomarker in patients with head and neck squamous cell carcinoma. *Oncotarget*. 2016;7(16):21579-21590.

38. Young RJ, Rischin D, Fisher R, et al. Relationship between epidermal growth factor receptor status, p16(INK4A), and outcome in head and neck squamous cell carcinoma. *Cancer Epidemiol Biomarkers Prev*. 2011;20(6):1230-1237.

39. Rasmussen JH, Hakansson K, Rasmussen GB, et al. A clinical prognostic model compared to the newly adopted UICC staging in an independent validation cohort of P16 negative/positive head and neck cancer patients. *Oral Oncol*. 2018;81:52-60.

40. Bryant AK, Sojourner EJ, Vitzthum LK, et al. Prognostic role of p16 in nonoropharyngeal head and neck cancer. *J Natl Cancer Inst*. 2018;110(12):1393-1399.

41. Rosenthal DI, Harari PM, Giralt J, et al. Association of human papillomavirus and p16 status with outcomes in the IMCL-9815 phase III registration trial for patients with locoregionally advanced Oropharyngeal squamous cell carcinoma of the head and neck treated with radiotherapy with or without cetuximab. *J Clin Oncol*. 2016;34(12):1300-1308.

42. Sailer V, Gevensleben H, Dietrich J, et al. Clinical performance validation of PITX2 DNA methylation as prognostic biomarker in patients with head and neck squamous cell carcinoma. *PLoS One*. 2017;12(6):e0179412.

43. Beck TN, Smith CH, Flieder DB, et al. Head and neck squamous cell carcinoma: ambiguous human papillomavirus status, elevated p16, and deleted retinoblastoma 1. *Head Neck*. 2017;39(3):E34-E39.

44. Matta A, DeSouza LV, Shukla NK, Gupta SD, Ralhan R, Siu KW. Prognostic significance of head-and-neck cancer biomarkers previously discovered and identified using iTRAQ-labeling and multidimensional liquid chromatography-tandem mass spectrometry. *J Proteome Res*. 2008;7(5):2078-2087.

45. Yang XH, Liu L, Hu YJ, Zhang P, Hu QG. Co-expression of epidermal growth factor receptor status, p16(INK4A), and deleted retinoblastoma 1.

46. Gioacchini FM, Alicandri-Ciufelli M, Kaleci S, Magliulo G, Presutti L, Re M. The prognostic value of cyclin D1 expression in head and neck squamous cell carcinoma. *Clin Oral Investig*. 2019;23(8):3319-3329.

47. Nanda SS, Gandhi AK, Rastogi M, et al. Evaluation of XRCC1 gene polymorphism as a biomarker in head and neck cancer patients undergoing chemoradiation therapy. *Int J Radiat Oncol Biol Phys*. 2018;101(3):593-601.

48. Gioacchini FM, Alicandri-Ciufelli M, Kaleci S, Magliulo G, Presutti L, Re M. The prognostic value of cyclin D1 expression in head and neck squamous cell carcinoma. *Eur Arch Otorhinolaryngol*. 2016;273(4):801-809.

49. Ang KK, Berkey BA, Tu X, et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. *Cancer Res*. 2002;62(24):7350-7356.

50. Dixon PR, Au M, Hosni A, et al. Impact of p16 expression, nodal status, and smoking on oncologic outcomes of patients with head and neck unknown primary squamous cell carcinoma. *Head Neck*. 2016;38(9):1347-1353.

51. Rasmussen GB, Hakansson KE, Vogelius IR, et al. Immunohistochemical and molecular imaging biomarker signature for the prediction of failure site after chemoradiation for head and neck squamous cell carcinoma. *Acta Oncol*. 2017;56(11):1562-1570.
52. Borchiellini D, Etienne-Grimaldi MC, Bensadoun RJ, et al. Candidate apoptotic and DNA repair gene approach confirms involvement of ERCC1, ERCC5, TP53 and MDM2 in radiation-induced toxicity in head and neck cancer. Oral Oncol. 2017;67:70-76.

53. Ameri A, Mortazavi N, Khoshbakht Ahmadi H, Novin K. ERCC1 expression can predict response to platinum-based induction chemotherapy in head and neck cancer cases. Asian Pac J Cancer Prev. 2016;17(3):87-91.

54. Nishimura T, Newkirk K, Sessions RB, et al. Immunohistochemical staining for glutathione S-transferase predicts response to platinum-based chemotherapy in head and neck cancer. Clin Cancer Res. 1996;2(11):1859-1865.

55. van den Broek GB, Wildeman M, Rasch CR, et al. Molecular markers predict outcome in squamous cell carcinoma of the head and neck after concomitant cisplatin-based chemoradiation. Int J Cancer. 2009;124(11):2643-2650.

56. Yang XH, Feng ZE, Yan M, et al. XIAP is a predictor of cisplatin-based chemotherapy response and prognosis for patients with advanced head and neck cancer. PLoS One. 2012;7(3):e31601.

57. Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116-1127.

58. Galot R, Le Tourneau C, Guigay J, et al. Personalized biomarker-based treatment strategy for patients with squamous cell carcinoma of the head and neck: EORTC position and approach. Ann Oncol. 2018;29(12):2313-2327.

59. Cohen EE, Licitra L, Burtness B, et al. Biomarkers predict enhanced clinical outcomes with afatinib versus methotrexate in patients with second-line recurrent and/or metastatic head and neck cancer. Ann Oncol. 2017;28(10):2526-2532.

60. Schrader CH, Kolb M, Zaouki K, et al. Kallikrein-related peptidase 6 regulates epithelial-to-mesenchymal transition and serves as prognostic biomarker for head and neck squamous cell carcinoma patients. Mol Cancer. 2015;14:107.

61. Slavik M, Shatkohina T, Sana J, et al. Expression of CD44, EGFR, p16, and their mutual combinations in patients with head and neck cancer: impact on outcomes of intensity-modulated radiation therapy. Head Neck. 2019;41(4):940-949.

62. Chen YJ, Rau KM, Chien CY, Fang FM, Huang TL, Chiu TJ. High p16 expression predicts a positive response to chemoradiotherapy in stage IVa/b head and neck squamous cell carcinoma. Asian Pac J Cancer Prev. 2011;12(3):649-655.

63. Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolubam vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol. 2018;81:45-51.

64. Castillo-Gonzalez AC, Nieto-Ceron S, Pelegrin-Hernandez JP, et al. Dysregulated cholinergic network as a novel biomarker of poor prognostic in patients with head and neck squamous cell carcinoma. BMC Cancer. 2015;15:385.

65. Hiniguchi E, Orihata N, Homma A, et al. Prognostic significance of cyclin D1 and p16 in patients with intermediate-risk head and neck squamous cell carcinoma treated with docetaxel and concurrent radiotherapy. Head Neck. 2007;29(10):940-947.

66. Nagalakshmi K, Jamil K, Pingali U, Reddy MV, Attilli SS. Epidermal growth factor receptor (EGFR) mutations as biomarker for head and neck squamous cell carcinomas (HNSCC). Biomarkers. 2014;19(3):198-206.

67. Pectasides E, Rampias T, Kountourakis P, et al. Comparative prognostic value of epidermal growth factor quantitative protein expression compared with FISH for head and neck squamous cell carcinoma. Clinical Cancer Research. 2011;17(9):2947-2954.

68. Bisof V, Jakovec A, Seiweth R, Rakusic Z, Gasparov S. Prognostic value of ERCC1 in head and neck carcinoma treated with definitive or adjuvant radiotherapy. J Cancer Res Clin Oncol. 2013;139(2):187-194.

69. Patel MR, Zhao N, Ang MK, et al. ERCC1 protein expression is associated with differential survival in oropharyngeal head and neck squamous cell carcinoma. Otolaryngol Head Neck Surg. 2013;149(4):587-595.

70. Shames DS, Carbon J, Walter K, et al. High heresulin expression is associated with activated HER3 and may define an actionable biomarker in patients with squamous cell carcinomas of the head and neck. PLoS One. 2013;8(2):e56765.

71. Wu H, Yu DH, Wu MH, Huang T. Long non-coding RNA LOC541471: A novel prognostic biomarker for head and neck squamous cell carcinoma. Oncol Lett. 2019;17(2):2457-2464.

72. Wang L, Feng Z, Wu H, et al. Melanoma differentiation-associated gene-7/Interleukin-24 as a potential prognostic biomarker and second primary malignancy indicator in head and neck squamous cell carcinoma patients. Tumour Biol. 2014;35(11):10977-10985.

73. Gehrmann M, Specht HM, Bayer C, et al. Hsp70–a biomarker for tumor detection and monitoring of outcome of radiation therapy in patients with squamous cell carcinoma of the head and neck. Radiat Oncol. 2014;9:131.

74. Vermorken JB, Stöhmacher-Williams J, Davidenko I, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. Lancet Oncol. 2013;14(8):697-710.

75. Jun HJ, Ahn MJ, Kim HS, et al. ERCC1 expression as a predictive marker of squamous cell carcinoma of the head and neck treated with cisplatin-based concurrent chemoradiation. Br J Cancer. 2008;99(1):167-172.

76. De-Colle C, Menegakis A, Männich D, et al. SDF-1/ CXCR4 expression is an independent negative prognostic biomarker in patients with head and neck cancer after primary radiochemotherapy. Radiother Oncol. 2018;126(1):125-131.

77. Leemans CR, Snijders PJ, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269.

78. Nicholson R, Gee J, Harper M. EGFR and cancer prognosis. Eur J Cancer. 2001;37:9-15.

79. Burtness B, Goldwasser MA, Flood W, Mattar B, Forastiere AA. Eastern cooperative oncology G. phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an eastern cooperative oncology group study. J Clin Oncol. 2005;23(34):8646-8654.

80. Kumar B, Cordell KG, Lee JS, et al. EGFR, p16, HPV Titer, Bcl-xL and p53, sex, and smoking as indicators of response to therapy and survival in oropharyngeal cancer. J Am Soc Clin Oncol. 2008;26(19):3128-3137.

81. Callender T, El-Naggar AK, Lee MS, Frankenthaler R, Luna MA, Batsakis JG. PRAD-1 (CCND1)/cyclin D1 oncogene
amplification in primary head and neck squamous cell carcinoma. Cancer. 1994;74(1):152-158.
82. Albers AE, Qian X, Kaufmann AM, Coorens A. Meta-analysis: HPV and p16 pattern determines survival in patients with HNSCC and identifies potential new biologic subtype. Sci Rep. 2017;7(1):16715.
83. Costa RL, Boroni M, Soares MA. Distinct co-expression networks using multi-omic data reveal novel interventional targets in HPV-positive and negative head-and-neck squamous cell cancer. Sci Rep. 2018;8(1):15254.
84. Bhattachai O, Thompson LDR, Schumacher AJ, Iganej S. Radiographic nodal prognostic factors in stage I HPV-related oropharyngeal squamous cell carcinoma. Head Neck. 2019;41(2):398-402.
85. Bussu R, Racin B, Boscolo-Rizzo P, et al. HPV as a marker for molecular characterization in head and neck oncology: looking for a standardization of clinical use and of detection method(s) in clinical practice. Head Neck. 2019;41(4):1104-1111.
86. Corpman DW, Rasmooor F, Carpenter DM, Nayak S, Gurushanthiaiah D, Wang KH. Posttreatment surveillance PET/CT for HPV-associated oropharyngeal cancer. Head Neck. 2019;41(2):456-462.
87. Pena JC, Thompson CB, Recant W, Vokes EE, Rudin CM. Bcl-XL and Bcl-2 expression in squamous cell carcinoma of the head and neck. Cancer. 1999;85(1):164-170.
88. Spafford MF, Koeppe J, Pan Z, Archer PG, Franklin WA. Correlation of tumor markers p53, bcl-2, CD34, CD44H, CD44v6, and Ki-67 with survival and metastasis in laryngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 1996;122(6):627-632.
89. Grey P, Chawla P, Friedman M, et al. Prognostic significance of Bcl-2 expression in localized squamous cell carcinoma of the head and neck. Ann Otol Rhinol Laryngol. 1997;106(6):445-450.
90. Gingerich MA, Smith JD, Michmerhuizen NL, et al. Comprehensive review of genetic factors contributing to head and neck squamous cell carcinoma development in low-risk, nontraditional patients. Head Neck. 2018;40(5):943-954.
91. Cho J, Johnson DE, Grandis JR. Therapeutic implications of the genetic landscape of head and neck cancer. Paper Presented at: Seminars in Radiation Oncology, 2018.
92. Baltaci E, Karaman E, Dalay N, Buyru N. Analysis of gene copy number changes in head and neck cancer. Clin Otolaryngol. 2018;43(4):1004-1009.
93. Karamboulas C, Bruce JP, Hope AJ, et al. Patient-derived xenografts for prognostication and personalized treatment for head and neck squamous cell carcinoma. Cell Reports. 2018;25(5):1318-1331, e1314.
94. Goesswein D, Habetemichael N, Gethold-Ay A, et al. Expressional analysis of disease-relevant signalling-pathways in primary tumours and metastasis of head and neck cancers. Sci Rep. 2018; 8(1):7326.
95. Lingen MW, Xiao W, Schmitt A, et al. Low etiologic fraction for high-risk human papillomavirus in oral cavity squamous cell carcinomas. Oral Oncol. 2013;49(1):1-8.
96. Lehner M, Chakravarty AR, Walter V, et al. Frequent HPV-independent p16/INK4A overexpression in head and neck cancer. Oral Oncol. 2018;83:32-37.
97. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9-22.
cancer: a prospective imaging biomarker study. *BMC Cancer.* 2017;17(1):475.

145. Schwartz DL, Harris J, Yao M, et al. Metabolic tumor volume as a prognostic imaging-based biomarker for head-and-neck cancer: pilot results from radiation therapy oncology group protocol 0522. *Int J Radiat Oncol Biol Phys.* 2015;91(4):721-729.

146. Matoba M, Tuji H, Shimode Y, et al. Fractional change in apparent diffusion coefficient as an imaging biomarker for predicting treatment response in head and neck cancer treated with chemoradiotherapy. *AJNR Am J Neuroradiol.* 2014;35(2):379-385.

147. Ng SP, Bahig H, Wang J, et al. Predicting treatment response based on dual assessment of magnetic resonance imaging kinetics and circulating tumor cells in patients with head and neck cancer (PREDICT-HN): matching ‘liquid biopsy’ and quantitative tumor modeling. *BMC Cancer.* 2018;18(1):903.

148. Lee J, Lee J, Baek S, et al. Soluble siglec-5 is a novel salivary biomarker for primary Sjogren’s syndrome. *J Autoimmun.* 2019;100:114-119.

149. Khurshid Z, Zafar MS, Khan RS, Najeeb S, Slowey PD, Rehman IU. Role of salivary biomarkers in oral cancer detection. *Adv Clin Chem.* 2018;86:23-70.

150. Chikamatsu K, Tada H, Takahashi H, et al. Expression of immune-regulatory molecules in circulating tumor cells derived from patients with head and neck squamous cell carcinoma. *Oral Oncol.* 2019;89:34-39.

151. Salazar C, Nagadia R, Pandit P, et al. A novel saliva-based microRNA biomarker panel to detect head and neck cancers. *Cell Oncol (Dordr).* 2014;37(5):331-338.

152. Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DT. Salivary biomarkers: toward future clinical and diagnostic utilities. *Clin Microbiol Rev.* 2013;26(4):781-791.

153. Batana KR, Balasubramanian P, McGullen KP, Lang JC, Teknos TN, Chalmers JJ. Effect of surgical intervention on circulating tumor cells in patients with squamous cell carcinoma of the head and neck using a negative enrichment technology. *Head Neck.* 2016;38(12):1799-1803.

154. Banerjee J, Pradhan R, Gupta A, et al. CDK4 in lung, and head and neck cancers in old age: evaluation as a biomarker. *Clin Transl Oncol.* 2017;19(5):571-578.

155. Kumar M, Srivastava S, Singh SA, et al. Cell-free mitochondrial DNA copy number variation in head and neck squamous cell carcinoma: a study of non-invasive biomarker from Northeast India. *Tumour Biol.* 2017;39(10):101428317736643.

156. Choudhury B, Srivastava S, Choudhury HH, Purkayastha A, DuttaGupta S, Ghosh SK. Arginase and C-reactive protein as potential serum-based biomarker of head and neck squamous cell carcinoma patients of north east India. *Tumour Biol.* 2014;35(7):6739-6748.

157. Andersson BA, Lewin F, Lundgren J, et al. Plasma tumor necrosis factor-alpha and C-reactive protein as biomarker for survival in head and neck squamous cell carcinoma. *J Cancer Res Clin Oncol.* 2014;140(3):515-519.

158. Gröbe A, Blessmann M, Hanken H, et al. Prognostic relevance of circulating tumor cells in blood and disseminated tumor cells in bone marrow of patients with squamous cell carcinoma of the oral cavity. *Clin Cancer Res.* 2014;20(2):425-433.

159. Grisanti S, Almici C, Consoli F, et al. Circulating tumor cells in patients with recurrent or metastatic head and neck carcinoma: prognostic and predictive significance. *PLoS One.* 2014;9(8):e103918.

160. Buglione M, Grisanti S, Almici C, et al. Circulating tumour cells in locally advanced head and neck cancer: preliminary report about their possible role in predicting response to non-surgical treatment and survival. *Eur J Cancer.* 2012;48(16):3019-3026.

161. Nichols AC, Lowes LE, Szeto CC, et al. Detection of circulating tumour cells in advanced head and neck cancer using the CellSearch system. *Head Neck.* 2012;34(10):1440-1444.

162. Toyoshima T, Vairaktaris E, Nkenke E, Schlegel KA, Neukam FW, Ries J. Hematogenous cytokeratin 20 mRNA detection has prognostic impact in oral squamous cell carcinoma: preliminary results. *Anticancer Res.* 2009;29(1):291-297.

163. Tinhofer I, Konschak R, Stromberger C, et al. Detection of circulating tumor cells for prediction of recurrence after adjuvant chemoradiation in locally advanced squamous cell carcinoma of the head and neck. *Ann Oncol.* 2014;25(10):2042-2047.

164. Wang HM, Wu MH, Chang PH, et al. The change in circulating tumor cells before and during concurrent chemoradiotherapy is associated with survival in patients with locally advanced head and neck cancer. *Head Neck.* 2019. https://onlinelibrary.wiley.com/doi/abs/10.1002/hed.25744.

165. Hsieh JC, Lin HC, Huang CY, et al. Prognostic value of circulating tumor cells with podoplanin expression in patients with locally advanced or metastatic head and neck squamous cell carcinoma. *Head Neck.* 2015;37(10):1448-1455.

166. Jatana KR, Balasubramanian P, Lang JC, et al. Significance of circulating tumor cells in patients with squamous cell carcinoma of the head and neck: initial results. *Arch Otolaryngol Head Neck Surg.* 2010;136(12):1274-1279.

167. Partridge M, Brakenhoff R, Phillips E, et al. Detection of rare disseminated tumor cells identifies head and neck cancer patients at risk of treatment failure. *Clin Cancer Res.* 2003;9(14):5287-5294.

168. Morgan TM, Wang X, Qian X, et al. Measurement of circulating tumor cells in squamous cell carcinoma of the head and neck and patient outcomes. *Clin Transl Oncol.* 2019;21(3):342-347.

169. Kulasinghe A, Kapeleris J, Kimberley R, et al. The prognostic significance of circulating tumor cells in head and neck and non-small-cell lung cancer. *Cancer Med.* 2018;7(12):5910-5919.

170. Cho JK, Lee GJ, Kim HD, et al. Differential impact of circulating tumor cells on disease recurrence and survivals in patients with head and neck squamous cell carcinomas: an updated meta-analysis. *PLoS One.* 2018;13(9):e0203758.

171. Sun T, Zou K, Yuan Z, Yang C, Lin X, Xiong B. Clinicopathological and prognostic significance of circulating tumor cells in patients with head and neck cancer: a meta-analysis. *Onco Targets Ther.* 2017;10:3907-3916.

172. Inhestern J, Oertel K, Stemmann V, et al. Prognostic role of circulating tumor cells during induction chemotherapy followed by curative surgery combined with postoperative radiotherapy in patients with locally advanced oral and oropharyngeal squamous cell cancer. *PLoS One.* 2015;10(7):e0132901.

173. Tinhofer I, Hristozova T, Stromberger C, Keilhoiz U, Budach V. Monitoring of circulating tumor cells and their expression of EGFR/phospho-EGFR during combined radiotherapy regimens in locally advanced squamous cell carcinoma of the
head and neck. *Int J Radiat Oncol Biol Phys.* 2012;83(5): e685-e690.

174. Hristozova T, Konschak R, Stromberger C, et al. The presence of circulating tumor cells (CTCs) correlates with lymph node metastasis in nonresectable squamous cell carcinoma of the head and neck region (SCCHN). *Ann Oncol.* 2011;22(8):1878-1885.

175. Ovchinnikov DA, Wan Y, Coman WB, et al. DNA Methylation at the Novel CpG Sites in the Promoter of MED15/PCQAP Gene as a Biomarker for Head and Neck Cancers. *Biomark Insights.* 2014;9:53-60.

176. Shetty RK, Bhandary SK, Kali A. Significance of Serum L-fucose Glycoprotein as Cancer Biomarker in Head and Neck Malignancies without Distant Metastasis. *J Clin Diagn Res.* 2013;7(12):2818-2820.

177. Kinoshita Y, Inaba M, Kobayashi TK, Murata SI. Intraoperative liquid-based cytology of rinsed tissue fragments from head and neck lesions. *Diagn Cytopathol.* 2019;47(5):389-393.

178. Yamashita T, Shimada H, Tanaka S, et al. Serum midkine as a biomarker for malignancy, prognosis, and chemosensitivity in head and neck squamous cell carcinoma. *Cancer Med.* 2016;5(3):415-425.

179. Arantes LM, Laus AC, Melendez ME, et al. MiR-21 as prognostic biomarker in head and neck squamous cell carcinoma patients undergoing an organ preservation protocol. *Oncotarget.* 2017;8(6):9911-9921.

180. Wulf S, Pries R, Borngen K, Trenkle T, Wollenberg B. Decreased levels of circulating regulatory NK cells in patients with head and neck cancer throughout all tumor stages. *Anticancer Res.* 2009;29(8):3035-3037.

181. Theodoraki MN, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients. *Clin Cancer Res.* 2018;24(4):896-905.

182. Strati A, Koutsodontis G, Papaxoinis G, et al. Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. *Ann Oncol.* 2017;28(8):1923-1933.

183. Braig F, Voigtlaender M, Schieferdecker A, et al. Liquid biopsy monitoring uncovers acquired RAS-mediated resistance to cetuximab in a substantial proportion of patients with head and neck squamous cell carcinoma. *Oncotarget.* 2016;7(28):42988-42995.

184. Milak R, Powrozek T, Brzozowska A, Homa-Milak I, Mazurek M, Malecka-Massalska T. RRM1 gene expression evaluated in the plasma of head and neck cancer patients. *Clin Cancer Res.* 2018;24(4):657-667.

185. Franzmann EL, Reategui EP, Carraway KL, Hamilton KL, Weed DT, Goodwin WJ. Salivary soluble CD44: a potential molecular marker for head and neck cancer. *Cancer Epidemiol Biomarkers Prev.* 2005;14(3):735-739.

186. Gross M, Metirovic A, Rachmut J, et al. The diagnostic and prognostic value of sIL-2R as an immune biomarker in head and neck cancers. *Anticancer Res.* 2016;36(8):4347-4352.

187. Terra X, Gomez D, Garcia-Lorenzo J, et al. External validation of sTWEAK as a prognostic noninvasive biomarker for head and neck squamous cell carcinoma. *Head Neck.* 2016;38(Suppl 1):E1358-E1363.

188. Srivastava VK, Gara RK, Rastogi N, et al. Serum vascular endothelial growth factor-A (VEGF-A) as a biomarker in squamous cell carcinoma of head and neck patients undergoing chemoradiotherapy. *Asian Pac J Cancer Prev.* 2014;15(7):3261-3265.

189. Scaldaferrì F, Vetranò S, Sans M, et al. VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. *Gastroenterology.* 2009;136(2):585-595. e585.

190. Boerriget D, Weickert TW, Lenroot R, et al. Using blood cytokine measures to define high inflammatory biotype of schizophrenia and schizoaffective disorder. *J Neuroinflammation.* 2017;14(1):188.

191. Xia L, Shen H, Xiao W, Lu J. Increased serum TWEAK levels in psoriatic arthritis: relationship with disease activity and matrix metalloproteinase-3 serum levels. *Cytokine.* 2011;53(3):289-291.

192. Tang B, Zhong Z, Qiu Z, et al. Serum soluble TWEAK levels in severe traumatic brain injury and its prognostic significance. *Clinica Chimica Acta.* 2019;495:227-232.

193. Kulasinghe A, Schmidt H, Perry C, et al. A collective route to head and neck cancer metastasis. *Sci Rep.* 2018;8(1):746.

194. Wu XL, Tu Q, Faure G, Gallet P, Kohler C, Bittencourt Mde C. Diagnostic and prognostic value of circulating tumor cells in head and neck squamous cell carcinoma: a systematic review and meta-analysis. *Sci Rep.* 2016;6:20210.

195. Schmidt H, Kulasinghe A, Perry C, Nelson C, Punyadeera C. A liquid biopsy for head and neck cancers. *Expert Rev Mol Diagn.* 2016;16(2):165-172.

196. Schmidt H, Kulasinghe A, Kenny L, Punyadeera C. The development of a liquid biopsy for head and neck cancers. *Oral Oncol.* 2016;61:8-11.

197. Swiecicki PL, Brennan JR, Mierzwa M, Spector ME, Brenner JC. Head and neck squamous cell carcinoma detection and surveillance: advances of liquid biomarkers. *Laryngoscope.* 2019;129(8):1836-1843.

198. Spector ME, Farlow JL, Haring CT, Brenner JC, Birkeland AC. The potential for liquid biopsies in head and neck cancer. *Discov Med.* 2018;25(139):251-257.

199. Liao CJ, Hsieh CH, Chiu TK, et al. An optically induced dielectrophoresis (ODEP)-based microfluidic system for the isolation of high-purity CD45(neg)/EpCAM(neg) cells from the blood samples of cancer patients—demonstration and initial exploration of the clinical significance of these cells. *Micromachines (Basel).* 2018;9(11):563.

200. Payne K, Spruce R, Beggs A, et al. Circulating tumor DNA as a biomarker and liquid biopsy in head and neck squamous cell carcinoma. *Head Neck.* 2018;40(7):1598-1604.

201. Kitz J, Lowes LE, Goodale D, Allan AL. Circulating tumor cell analysis in preclinical mouse models of metastasis. *Diagnostics (Basel).* 2018;8(2):30.

202. Lallo A, Schenk MW, Frese KK, Blackhall F, Dive C. Circulating tumor cells and CDX models as a tool for preclinical drug development. *Transl Lung Cancer Res.* 2017;6(4):397-408.

203. Wang R, Chu GGY, Mrdenovic S, et al. Cultured circulating tumor cells and their derived xenografts for personalized oncology. *Asian J Urol.* 2016;3(4):240-253.
204. Liao C-J, Hsieh C-H, Wang H-M, et al. Isolation of label-free and viable circulating tumour cells (CTCs) from blood samples of cancer patients through a two-step process: negative selection-type immunomagnetic beads and spheroid cell culture-based cell isolation. *RSC Adv.* 2017;7(47):29339-29349.

205. Praharaj PP, Bhutia SK, Nagrath S, Bitting RL, Deep G. Circulating tumor cell-derived organoids: current challenges and promises in medical research and precision medicine. *Biochim Biophys Acta Rev Cancer.* 2018;1869(2):117-127.

206. Zhavoronkov A. Artificial Intelligence for drug discovery, biomarker development, and generation of novel chemistry. *Mol. Pharmaceutics.* 2018;4311-4313.

207. Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. *Nature Biomed Eng.* 2018;2(10):719-731.

How to cite this article: Hsieh JC-H, Wang H-M, Wu, PhD M-H, et al. Review of emerging biomarkers in head and neck squamous cell carcinoma in the era of immunotherapy and targeted therapy. *Head & Neck.* 2019;41:19–45. https://doi.org/10.1002/hed.25932