Molecular Characterization of Gallbladder Cancer using Somatic Mutation Profiling

Milind Javle, M.D. *, Asif Rashid, M.D., Ph.D. *, Chaitanya Churi, M.B.B.S *, Siddhartha Kar, M.B.B.S, M.P.H. *, Mingxin Zuo, Ph.D. *, Agda Karina Eterovic, Ph.D. *, Graciela M. Nogueras-Gonzalez, M.P.H. *, Siraj Ali, M.D., Ph.D. **, Filip Janku, M.D., Ph.D. *, Rachna Shroff, M.D. *, Thomas A Aloia, M.D. *, Jean-Nicholas Vauthey, M.D. *, Steven Curley, M.D. *, Gordon Mills, M.D., Ph.D. *, and Ivan Roa, M.D. ***

*The University of Texas M.D. Anderson Cancer Center, Houston, USA, 77054
**Foundation Medicine, Boston, MA
***Creative Bioscience, Santiago, Chile

Abstract

Gallbladder cancer is relatively uncommon with high incidence in certain geographic locations, including Latin America, East and South Asia and Eastern Europe. Molecular characterization of this disease has been limited and targeted therapy options for advanced disease remain an open area of investigation. In the present study, surgical pathology obtained from resected gallbladder cancer cases (n=72) was examined for the presence of targetable, somatic mutations. All cases were formalin-fixed and paraffin-embedded (FFPE). Two approaches were used: a) mass spectroscopy-based profiling for 159 point (‘hot-spot’) mutations in 33 genes commonly involved in solid tumors and b) next-generation sequencing (NGS) platform that examined the complete coding sequence of in 182 cancer-related genes. Fifty-seven cases were analyzed for hotspot mutations and 15 for NGS. Fourteen hotspot mutations were identified in nine cases. Of these, KRAS mutation was significantly associated with poor survival on multivariate analysis. Other targetable mutations included PIK3CA (N=2) and ALK (N=1). On NGS, 26 mutations were noted in 15 cases. P53 and PI3 kinase pathway (STK11, RICTOR,TSC2) mutations were common. One case had FGF10 amplification while another had FGF3-TACC gene fusion, not previously described in gallbladder cancer. In conclusion, somatic mutation profiling using archival FFPE samples from gallbladder cancer is feasible. NGS, in particular may be a useful platform for identifying novel mutations for targeted therapy.
INTRODUCTION

Gallbladder cancer affects over 140,000 patients annually worldwide and over 100,000 will die each year from this disease.(1) Women are affected more than men and in the U.S.; Hispanic population and Alaskan natives have a disproportionately high incidence of gallbladder cancer.(2) There is a remarkable geographic variation with the highest incidence rates reported in India, Korea, Japan, Czech Republic, Slovakia, Spain, Columbia, Chile, Peru, Bolivia, and Ecuador. Etiologies include chronic cholelithiasis, *Salmonella* infections, toxin exposure, obesity and rarely due to genetic diseases like Hereditary Non-Polyposis Cancer Coli (HNPCC) and type 1 neurofibromatosis. Gallbladder cancer is thought to be at least partly the consequence of chronic inflammation-induced genetic changes.

The current molecular profiling data of gallbladder cancer are limited to small case series or case reports that include one or more oncogenes. High-throughput screening for targetable mutations in this disease is lacking. An understanding of the molecular characteristics and heterogeneity of gallbladder cancer is critical towards improving the treatment paradigm for this disease. An impetus for such characterization is the potential of targeted therapies directed against the products of these molecular aberrations including the tumor proteomic profile. Once the underlying molecular abnormalities of a cancer are identified, targeted inhibitors can be discovered and result in incremental benefit even in genetically heterogeneous malignancies. For instance, in lung cancer the identification of echinoderm microtubule associated protein like 4 - anaplastic lymphoma kinase (*EML4-ALK*) mutation has led to a targeted approach with crizotinib and tumors with epidermal growth factor receptor (*EGFR*) mutations to the development of erlotinib or gefitinib.(3) High-throughput technologies that can rapidly screen for somatic mutations in archival formalin-fixed, paraffin-embedded specimens are critical for this effort. The Sequenom Massarray™ system is ideally suited for the detection of low abundance mutations and can be customized towards targeted therapeutics.(4, 5) In the present study, we used the high-throughput Sequenom MassArray™ approach to investigate mutations in 33 genes in a cohort of gallbladder cancer cases to determine the frequency of genetic mutations in this population. We also explored next generation sequencing (NGS) to examine a wider panel of genetic aberrations in a limited number of gallbladder cancer cases.

MATERIAL AND METHODS

Tumor samples

Surgically resected, formalin fixed paraffin embedded (FFPE) specimens were obtained for 72 patients with gallbladder cancer. The paraffin embedded blocks were sectioned, and hematoxylin & eosin (H&E) stained slides were reviewed by surgical pathology to confirm the tumor content in each section. Ten serial sections (4µm) were cut from selected tissue
blocks and areas with tumor tissue were micro dissected from those slides using the H&E slides as templates. Approval for the study was obtained from the institutional review board at MD Anderson Cancer Center.

DNA Extraction

The samples were deparaffinized using xylene washes followed by ethanol (100%) washes. DNA extraction was performed using the QIAamp DNA Mini Kit (Qiagen, Valencia, CA) according to the manufacturer protocol. DNA was quantitated using the NanoQuant system (Tecan Group, Männedorf, Switzerland).

Sequenom MassArray

Hotspot mutational analysis was performed using the Sequenom MassARRAY™ using the iPLEX™ technology (Sequenom, Inc, San Diego, CA). This technology allows for parallel high-throughput screening while using minimal DNA obtained from FFPE specimens (6). Mutations were screened by using amplification through polymerase chain reaction (PCR) and single-base primer extension where the wild type or mutated base was identified by mass spectrometry. Briefly, for each mutation site, PCR and extension primers were designed using Sequenom, Inc. Assay Design. PCR reactions were run following manufacturer’s protocol. After PCR, amplicons were cleaned using EXO-SAP® kit (Sequenom) in a GeneAmp 9700 thermocycler (Applied Biosystems). Then the primer was then extended by iPLEX™ chemistry, desalted using Clean Resin (Sequenom), and spotted onto SpectroChip matrix chips (Sequenom) using a nanodispenser (Samsung). Chips were run in duplicate on a Sequenom MassArray Matrix-assisted laser desorption/ionization-Time of Flight (MALDI-TOF) MassArray system. We used Sequenom Typer Software for visual inspection and interpretation of mass spectra. Reactions where the mutant peak represented more than 10% of the wild type peak were scored as positive. The data analysis was performed using MassArray TYPER 4.0 genotyping software (Sequenom) where the SNP calls were divided in 3 groups: conservative, moderate and aggressive calls, depending on the level of confidence.

The Sequenom panel used here was previously designed by the Characterized Cell Line Core (Core Shared Resources – CCSG) at MD Anderson Cancer Center with the aim of detecting somatic DNA alterations in cancer samples. The Sequenom panel was designed based on data form the Catalogue of Somatic Mutations in Cancer (COSMIC) and the Cancer Genome Atlas (TCGA) that reported those alterations (and others in the panel) as somatic mutations previously. A total of 159 point mutations in 33 genes frequently mutated in solid tumors including were analyzed. The analytical sensitivity of the assay [limit of detection (LOD) 5%–10% of mutant DNA in total DNA] is higher than conventional Sanger sequencing (LOD: 10%–20%) and similar to pyrosequencing (LOD: 5%–10%). The advantages offered by the MassARRAY system include high-throughput screening for many hot-spot mutations in parallel, use of minimal DNA isolated from formalin-fixed paraffin-embedded tissues, ability to detect coexisting multiple mutations, and cost and time effectiveness. Appendix 1 lists the genes and mutations investigated in this study.
Next Generation Sequencing

The pathologic diagnosis of each case of gallbladder cancer was confirmed on routine hematoxylin- and eosin-stained slides. All samples sent for DNA extraction contained a minimum of 20% DNA derived from tumor cells. DNA was extracted from 40 mm of FFPE tissue using the Maxwell 16 FFPE Plus LEV DNA Purification kit (Promega™) and quantified using a standardized PicoGreen fluorescence assay (Invitrogen™). Library construction was performed as described previously, using 50–200 ng of DNA sheared by sonication to B100–400 bp before end-repair, dA addition and ligation of indexed, Illumina™ sequencing adaptors (7, 8). Enrichment of target sequences (3320 exons of 182 cancer-related genes and 37 introns from 14 genes recurrently rearranged in cancer representing approximately 1.1Mb of the human genome) was achieved by solution-based hybrid capture with a custom Agilent SureSelect™ biotinylated RNA baitset (8). The selected libraries were sequenced on an Illumina HiSeq 2000 platform using 49149 paired-end reads. Sequence data from genomic DNA was mapped to the reference human genome (hg19) using the Burrows-Wheeler Aligner™ and were processed using the publicly available Sequence Alignment/Map (SAMtools), Picard and Genome Analysis Toolkit (9, 10). Point mutations were identified by a Bayesian algorithm; short insertions and deletions determined by local assembly; gene copy number alterations (amplifications) by comparison to process matched normal controls; and gene fusions/rearrangements were detected by clustering chimeric reads mapped to targeted introns as described previously (11).

Statistical Analysis

Given the limited number of cases analyzed for NGS, only the cases analyzed for hotspot mutations (n=57) were analyzed for their association with survival. Overall survival (OS) was calculated as the number of months from surgery (or core biopsy) to death or last follow-up date. Patients who were alive at their last follow-up were censored on that date. Time to Progression (TTP) was calculated as the number of months from surgery (or core biopsy) to progression. Patients without tumor progression at their last follow-up were censored on that date. The Kaplan-Meier product limit method was used to estimate the median OS for each clinical/demographic factor. Multivariate Cox proportional hazards regression was used to model the association between potential predictors and OS. Multivariate Cox proportional hazards regression was used to model all the statistically significant variables in the univariate setting. Backwards selection method was used to remove variables that did not remain significant in the multivariate model. For each factor, medians, hazard ratios (HR), their 95% confidence intervals (CI), and proportional hazards regression p-values are presented in tables. Similar analyses were performed for time to progression. Statistical significance was considered at P-values of <0.05.

Statistical analysis was performed using STATA/SE version 12.1 statistical software (Stata Corp. LP, College Station, TX).

RESULTS

Fifty-seven cases of gallbladder cancer were analyzed for hotspot mutations and 15 for NGS. Patient demographics are described in Table 1. Fourteen hotspot mutations (Table 2)
were identified from eleven different tumors within this sample set, with three cases demonstrating more than 1 mutation. IDH1 mutations were the most frequent (n=4). The others identified included mutations of KRAS (n=3), NRAS (n=3), PIK3CA (n=2) and MET (n=1). Of these, IDH1 and MET may represent germline polymorphisms rather than somatic mutations as discussed below. Figure 1 demonstrates the PIK3CA, IDH1 and KRAS mutations. Figures 2A–2D depict the histologies (H&E) of four gallbladder cancer cases along with their corresponding mutations. A total of 36/57 (63.2%) patients enrolled in the study have expired to date. A univariate survival analysis on these data demonstrated a significant relationship of overall survival with six factors. The overall risk of mortality was associated with treatment with chemotherapy (HR: 2.84; 95%CI: 1.23–6.53; p=0.014), lymphatic infiltration (HR: 2.72; 95%CI: 1.22–6.04; p=0.014), venous infiltration (HR: 2.27; 95%CI: 1.08–4.79; p=0.031), perineural infiltration (HR: 2.14; 95%CI: 1.06–4.33; p=0.033), positive KRAS mutation (HR: 3.56; 95%CI: 1.06–11.92; p=0.040), and with a positive IDH1 mutation (HR: 4.04; 95%CI: 1.35–12.13; p=0.013) (Fig.3a). In addition, patients who had chemotherapy were at greater risk of progressing than non-treated patients (HR: 13.82; 95%CI: 1.84–103.84; p=0.011).

A multivariate analysis of overall survival was also performed using backward elimination methods. Overall survival was seen to be associated with patients age 62–79 (HR: 5.93; 95%CI: 1.76 – 20.00; p=0.004), and age ≥ 70 (HR: 3.84; 95%CI: 1.19 – 12.39; p=0.024), clinical stages 3a, 3b, 4a & 4b (HR: 2.60; 95%CI: 1.03–6.59; p=0.044), venous infiltration (HR: 3.42; 95%CI: 1.46–8.03; p=0.005) and KRAS (HR: 8.91; 95%CI: 1.99–39.94; p=0.004-Fig.3b).

On NGS, 26 mutations were noted in 15 cases (Tables 3). P53 was most common and there was relative preponderance of mutations involving the PI3 kinase pathway: STK11, RICTOR, TSC2. Two cases had FGF pathway aberrations: FGF10 amplification and one case of FGF3-TACC fusion gene (Fig 4). Two cases are illustrated wherein the mutational data were utilized for targeted therapeutics with success (Fig 5a; Fig 5b).

DISCUSSION

Gallbladder cancer has been referred to as an ‘orphan’ cancer, given its relative infrequency in the Western population. Molecular research in this disease has lagged behind the commoner gastrointestinal cancers, such as colorectal and gastric cancer. The known genetic alterations include mutations of K-RAS (in 3–40%, more likely in East Asia), PIK3CA (12%), p53 (40%) and BRAF (33%) oncogenes, and amplification of Her-2/ Neu (15%).(14, 15) Other genetic alterations described include loss of expression fragile histidine triad (FHIT) gene, microsatellite instability, overexpression of P13-K/Akt, VEGF and p21.(16, 17) Key limitations of the above data include the small number of cases tested, geographic and ethnic variation.

The present study, to our knowledge represents the largest number of surgically resected gallbladder cancer cases that had somatic mutation profiling. All of our specimens were FFPE and therefore we chose a platform that had non-fastidious DNA requirements and could detect low-abundance mutations. Sequenom Massarray technique is ideal in this
situation for profiling single nucleotide mutations and polymorphisms. A limitation of this retrospective study is that we did not have parallel blood or normal tissue to assess if the mutations we noted were germline or somatic. We have used preselected panels, which included targetable oncogenes from the COSMIC and TCGA database. While the plan was to include somatic mutations only, in these panels, subsequent studies have reported that at least two of the genetic alterations (IDH1 and met) were germline.

Sanger sequencing has been effectively used for somatic mutation discovery. However, when there is a heterogeneous mixture of cancerous and normal tissue, Sanger sequencing may be unable to detect low frequency mutations. In one published study, sequencing failed to detect EGFR (Epidermal Growth Factor Receptor) mutations in tumors with roughly 10% allele frequencies. (18) Clinical somatic mutation detection will require high degree of sensitivity than standard sequencing. The Massarray™ system combines PCR with matrix-assisted laser desorption/ ionization time of flight mass spectrometry for rapidly multiplexed nucleic acid analysis. Furthermore, this system can rapidly profile hundreds of mutations in FFPE samples with as little as 5% mutation abundance with a short turn-around time. However, the disadvantages of this approach is that these multiplex genomic tests only detect the expression of pre-selected hotspot mutations and do not lead to the discovery of novel targets. This limitation is particularly relevant to the less common tumors, such as gallbladder cancer.

Our findings indicated that IDH1_V178I was the commonest DNA variation on Sequenom Massarray. It is estimated that another mutation on IDH1_R132 occurs in up to 20% of high grade glioma and this mutation is associated with a better prognosis and response to therapy. (19) On the other hand, the same somatic mutation in acute myeloid leukemia is associated with a poor prognosis and lack of complete response, particularly in otherwise cytogenetically normal cases. (20) A poor prognosis was noted in our study with IDH1_V178I mutation. In a prior study, IDH1 mutations (IDH1_R132) were noted in cholangiocarcinoma, but none were noted in the 25 cases of gallbladder cancer studied. (21) Isocitrate dehydrogenase (IDH) catalyzes the conversion of isocitrate to α-ketoglutarate and mutations in this pathway is a relevant target for therapy given the development of IDH inhibitors. (22) These mutations also conferred an enzymatic gain-of-function: the novel NADPH-dependent reduction of α-ketoglutarate to the normally trace metabolite R(-)-2-hydroxyglutarate (2-HG), which is oncogenic. (23) Measurement of intracellular 2-HG can therefore be used to assess the functional impact of the mutation. In case of IDH1_V178I, no elevation of 2-HG was noted, which raises the question of whether this mutation represents a non-functional polymorphism or if the functional oncogenic effect includes a non 2-HG metabolic pathway. Several SNPs related to the lipid metabolism, estrogen receptor and DNA repair have been associated with survival in gallbladder cancer (24–26). One case had ALK mutation (ALK_F1174L_C3522AG), which has not yet been described in this disease and offers effective targeted therapy options.

The next generation sequencing approach offers several advantages over the traditional methods, including the ability to simultaneously sequence hundreds of genes in a single test, have a higher depth of coverage and thereby heightened sensitivity for mutation detection, ideal for ‘precision medicine’. (27) In addition, these technologies can detect deletions,
amplifications, translocations and base substitutions at a relatively rapid rate. The disadvantage includes cost, high computational requirements and high tissue requirement that make the technology unsuitable for smaller biopsies, circulating tumor cells and circulating plasma DNA. A notable finding in our study was the relatively common occurrence PI3-kinase pathway mutations (TCS2, STK11, RICTOR), which opens potential options for targeted therapies directed against these proteins. Deshpande et al, had noted the relative frequency of PI3KCA mutations in this population.(21) Other targetable mutations included AURKA and BAP, which may potentially be treated with aurora kinase inhibitors and DNA damaging agents [such as cisplatin and poly ADP ribose polymerase (PARP) inhibitors], respectively.

A novel finding in our study was the detection of fusion between Fibroblast Growth Factor Receptor (FGFR3) and Transforming Acidic Coiled-Coil (TACC) [in-frame fusion between exons 1–17 of FGFR3 (containing the kinase domain) and exons 11 to the C-terminus of TACC3 (containing the coiled coil TACC domain)]. The FGFR family plays an important role in cellular proliferation and angiogenesis and gain of function mutations in FGFRs have been reported in several malignancies.(28) FGFR3 mutation or amplification has not been reported in gallbladder cancer to our knowledge. Similar fusions between FGFR3 and TACC3 have recently been reported in a small percentage of glioblastomas.(29) These fusions have also recently been described in cholangiocarcinoma, are proven to be oncogenic and the resulting tumors may be susceptible to FGFR inhibitors.(30)

In conclusion, gallbladder cancer is amenable to precise interventions with targeted therapies and novel sequencing techniques may provide prognostic and therapeutic opportunities.

Acknowledgments

Funding Disclosures: Supported by a grant from Global Academic Programs, MD Anderson Cancer Center and Project Fondecyt 1120208.

References

1. Wistuba II, Gazdar AF. Gallbladder cancer: lessons from a rare tumour. Nature reviews Cancer. 2004; 4:695–706.
2. Zatonski WA, Lowenfels AB, Boyle P, Maisonneuve P, Bueno de Mesquita HB, Ghadirian P, Jain M, Przewozniak K, Baghurst P, Moerman CJ, Simard A, Howe GR, McMichael AJ, Hsieh CC, Walker AM. Epidemiologic aspects of gallbladder cancer: a case-control study of the SEARCH Program of the International Agency for Research on Cancer. J Natl Cancer Inst. 1997; 89:1132–1138. [PubMed: 9262251]
3. Trial watch: success for crizotinib in ALK-driven cancer. Nat Rev Drug Discov. 2010; 9:908.
4. Stemke-Hale K, Shipman K, Kitsou-Mylona I, de Castro DG, Hird V, Brown R, Flanagan J, Gabra H, Mills GB, Agarwal R, El-Bahrawy M. Frequency of mutations and polymorphisms in borderline ovarian tumors of known cancer genes. Mod Pathol. 2013; 26:544–552. [PubMed: 23174937]
5. Wang LE, Ma H, Hale KS, Yin M, Meyer LA, Liu H, Lu J, Lu KH, Hennessy BT, Li X, Spitz MR, Wei Q, Mills GB. Roles of genetic variants in the PI3K and RAS/RAF pathways in susceptibility to endometrial cancer and clinical outcomes. Journal of cancer research and clinical oncology. 2012; 138:377–385. [PubMed: 22146979]
6. Andreou A, Kopetz S, Maru DM, Chen SS, Zimmitti G, Brouquet A, Shindoh J, Curley SA, Garrett C, Overman MJ, Aloia TA, Vauthney J-N. Adjuvant chemotherapy with FOLFOX for primary
colorectal cancer is associated with increased somatic gene mutations and inferior survival in patients undergoing hepatectomy for metachronous liver metastases. Annals of Surgery. 2012; 256:642–650. [PubMed: 22968062]

7. Ross JS, Cronin M. Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol. 2011; 136:527–539. [PubMed: 21917674]

8. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C, Gabriel S, Jaffe DB, Lander ES, Nusbaum C. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009; 27:182–189. [PubMed: 19182786]

9. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078–2079. [PubMed: 19505943]

10. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20:1297–1303. [PubMed: 20644199]

11. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW, Donahue A, Downing SR, Frampton GM, Garcia L, Jaffe DB, Lander ES, Nusbaum C, White E, White J, Zwirko Z, Perez T, Nechushtan H, Soussan-Gutman L, Kim J, Sasaki H, HR, Park SI, Ercan D, Sheehan CE, Ross JS, Cronin MT, Janne PA, Stephens PJ. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012; 18:382–384. [PubMed: 22327622]

12. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association. 1958; 53:457–481.

13. Cox DR. Regression models and life tables (with discussion). Journal of the Royal Statistical Society B. 1972; 34:187–220.

14. Zhu AX, Hezel AF. Development of molecularly targeted therapies in biliary tract cancers: reassessing the challenges and opportunities. Hepatology. 2011; 53:695–704. [PubMed: 21274890]

15. Rashid A. Cellular and molecular biology of biliary tract cancers. Surg Oncol Clin N Am. 2002; 11:995–1009. [PubMed: 12607585]

16. Kawamoto T, Krishnamurthy S, Tarco E, Trivedi S, Wistuba II, Li D, Roa I, Roa JC, Thomas MB. HER Receptor Family: Novel Candidate for Targeted Therapy for Gallbladder and Extrahepatic Bile Duct Cancer. Gastrointest Cancer Res. 2007; 1:221–227. [PubMed: 19262900]

17. Roa JC, Anabalon L, Roa I, Melo A, Araya JC, Tapia O, de Aretxabala X, Munoz S, Schneider B. Promoter methylation profile in gallbladder cancer. J Gastroenterol. 2006; 41:269–275. [PubMed: 16699861]

18. Zhang HP, Ruan L, Zheng LM, Bai DY, Zhang HF, Liao YQ, Ding Y. Screening for EGFR mutations in lung cancer by a novel real-time PCR with double-loop probe and Sanger DNA sequencing. Zhonghua zhong liu za zhi [Chinese journal of oncology]. 2013; 35:28–32.

19. Labussiere M, Sanson M, Idhaiai A, Delattre JY. IDH1 gene mutations: a new paradigm in glioma prognosis and therapy? Oncologist. 2010; 15:196–199. [PubMed: 20133500]

20. Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrozek K, Margetson D, Holland KB, Whitman SP, Becker H, Schwind S, Metzeler KH, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Caligiuri MA, Larson RA, Bloomfield CD. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010; 28:2348–2355. [PubMed: 20368543]

21. Borger DR, Tanabe KK, Fan KC, Lopez HU, Fantin VR, Straley KS, Schenken DP, Hezel AF, Ancukiewicz M, Liebman HM, Kwak EL, Clark JW, Ryan DP, Deshpande V, Dias-Santagata D, Eilersen LW, Zhu AX, Iafrate AJ. Frequent mutation of isocitrate dehydrogenase (IDH1) and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012; 17:72–79. [PubMed: 22180306]
22. Yen KE, Bittinger MA, Su SM, Fantin VR. Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene. 2010; 29:6409–6417. [PubMed: 20972461]

23. Ward PS, Lu C, Cross JR, Abdel-Wahab O, Levine RL, Schwartz GK, Thompson CB. The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. The Journal of biological chemistry. 2013; 288:3804–3815. [PubMed: 23264629]

24. Andreotti G, Chen J, Gao YT, Rashid A, Chen BE, Rosenberg P, Sakoda LC, Deng J, Shen MC, Wang BS, Han TQ, Zhang BH, Yeager M, Welch R, Chanock S, Fraumeni JF Jr, Hsing AW. Polymorphisms of genes in the lipid metabolism pathway and risk of biliary tract cancers and stones: a population-based case-control study in Shanghai, China. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2008; 17:525–534.

25. Park SK, Andreotti G, Sakoda LC, Gao YT, Rashid A, Chen J, Chen BE, Rosenberg PS, Shen MC, Wang BS, Han TQ, Zhang BH, Yeager M, Chanock S, Hsing AW. Variants in hormone-related genes and the risk of biliary tract cancers and stones: a population-based study in China. Carcinogenesis. 2009; 30:606–614. [PubMed: 19168589]

26. Srivastava K, Srivastava A, Mittal B. Polymorphisms in ERCC2, MSH2, and OGG1 DNA repair genes and gallbladder cancer risk in a population of Northern India. Cancer. 2010; 116:3160–3169. [PubMed: 20564624]

27. Garraway LA, Verweij J, Ballman KV. Precision oncology: an overview. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013; 31:1803–1805. [PubMed: 23589545]

28. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005; 16:139–149. [PubMed: 15863030]

29. Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, Liu EM, Reichel J, Porrati P, Pellegratta S, Qiu K, Gao Z, Ceccarelli M, Riccardi R, Brat DJ, Guha A, Aldape K, Golfinos JG, Zaggag D, Mikkelsen T, Finocchiaro G, Lasorella A, Rabadian R, Iavarone A. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science. 2012; 337:1231–1235. [PubMed: 22837387]

30. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Zhao B, Vats P, Wang R, Lin SF, Cheng AJ, Kunju LP, Siddiqui J, Tomlins SA, Wyngaard P, Sadis S, Chinnaiyan AM. Identification of Targetable FGFR Gene Fusions in Diverse Cancers. Cancer Discov. 2013; 3:636–647. [PubMed: 23558953]

Appendix 1

GENES AND MUTATIONS INVESTIGATED

Mutation	Gene	Reference
AKT1_E17K_G49A	FGFR1_S125L_C374T	MET_Y1248C_A3743G
AKT2_E17K_G49A	FGFR2_N549KK_T1647GA	MET_Y1248HD_T3742CG
AKT3_E17K_G49A	FGFR2_S252W_C755G	MET_Y1253D_T3757G
ALK_F1174CS_T3521GC	FGFR3_G370C_G1108T	MGA_T1747N_C5421A
ALK_F1174L_C3522AG	FGFR3_G380R_G1138A	NRAS_A146T_G436A
ALK_F1174LV_T3520CAG	FGFR3_G697C_G2089T	NRAS_G12DAV_G35ACT
ALK_F1245C_T3734G	FGFR3_K650MT_A1949TC	NRAS_G12SRC_G34ACT
ALK_F1245L_C3735AG	FGFR3_R248C_C742T	NRAS_G13DAV_G38ACT
ALK_F1245V_I3733GA	FGFR3_S249C_C746G	NRAS_G13SRC_G37ACT
ALK_I1171N_T3512A	FGFR3_Y373C_A1118G	NRAS_Q61EKK_C181GAT

Hum Pathol. Author manuscript; available in PMC 2015 May 12.
Gene	Mutations	Protein Changes
ALK	R1275QL_G3824AT	FOXL2_C134W_C402G
BCOR	N1407STI_A4220GCT	GNA11_Q209IPL_A626TC
BRAF	D594GV_A1781GT	GNA11_R183C_C547T
BRAF	E586G_G1756A	GNAQ_Q209H_A627T
BRAF	G464EVA_G1391ATC	GNAQ_Q209LPR_A626TC
BRAF	G466EVA_G1397ATC	GNAS_R1407STI_A4220GCT
BRAF	G469EVA_G1406ATC	GNAS_R201HC_G602A
BRAF	G469R_G1405CA	GNAS_R201SC_G601AT
BRAF	K601E_A1801G	IDH1_G70D_G209A
BREF	L597RQ_T1790GA	IDH1_R132CGS_C394TGA
BREF	V600_G1800	IDH1_V178I_G532A
BREF	V600EAG_T1799ACG_F	IDH2_R140LQ_G419TA
BREF	V600EAG_T1799ACG_R	IDH2_R140W_C418T
BREF	V600LM_G1790TA	IDH2_R172GQ_A514GT
CC2D1A	L913V_C3036G	IDH2_R172MK_G515TA
CDK4	R24C_C70T	IDH2_R172S_G516T
CDK4	R24H_G71A	JAK2_V617F_G1849T
CSMD1	A409S_G1225T	KIT_D816GVA_A2447GTC
CSMD1	Q3005X_C9013T	KIT_D816HNY_G2446CAT
CTNNB1	D32AGV_A95CGT	KIT_K642E_A1924G
CTNNB1	D2HNY_G94CAT	KIT_L576P_T1727C
CTNNB1	G34EVA_G101ATC	KIT_N566D_A1696G
CTNNB1	H36PRY_A107CGT	KIT_N822KKNK_T2466GCA
CTNNB1	J35NST_T104AGC	KIT_N822YHD_A2464TCG
CTNNB1	S33APT_T97GCA	KIT_R634W_C1900T
CTNNB1	S37CFY_C110GTA	KIT_V559ADG_T1676CAG
CTNNB1	S45APT_T133GCA	KIT_V560DGA_T1679AGC
CTNNB1	S45CFY_C134GTA	KIT_V825A_T2474C
CTNNB1	T41APS_A121GCT	KIT_Y553N_T1657A
CTNNB1	T41INS_C122TAG	KRAS_A146PT_G436CA
EGFR	G191CS_G2155TA	KRAS_G10R_G28A
EGFR	K860I_A2579T	KRAS_G12DVA_G35ACT
EGFR	L858R_T2573G	KRAS_G12SRC_G34ACT
EGFR	L861Q_T2582AG	KRAS_G13DVA_G38ACT
EGFR	S720P_T2158C	KRAS_G13SRC_G37ACT
EGFR	T790M_C2369T	KRAS_G6KEK_C181GAT
EGFR	T854L_C2561T	KRAS_G6HHQ_A183CTG
EGFR	Y113C_A2438G	KRAS_G6FLPR_A182TCG
EPHA3	K761NN_G2283TC	MAP2K2_E207QK_G619AC
FOXL2	C134W_C402G	MAP2K2_E207QK_G619AC
GNA11	Q209IPL_A626TC	MAP2K2_E207QK_G619AC
GNAQ	Q209H_A627T	MAP2K2_E207QK_G619AC
GNAS	R1407STI_A4220GCT	MAP2K2_E207QK_G619AC
GNAS	R201HC_G602A	MAP2K2_E207QK_G619AC
GNAS	R201SC_G601AT	MAP2K2_E207QK_G619AC
Appendix 2

APPENDIX 2

GENETIC MUTATIONS SEQUENCED USING NGS

Gene	Gene	Gene	Gene
FBXO4	MAP2K7	RAF1	
L23Q	D290D	Q335H	
T68A	C870T	G1005C	
FBXO4	MAP2K7	RAF1	
P76T	R162H	Y340D	
C226A	G485A	T1018G	
MAP2K7	MAP2K7	RET	
S88R	S271T	M918T	
C24AG	T811A	T2753C	
FBXW7	MET	RPL22	
R465C	H1112R	K158T	
C1393T	A1333GT	A44CGT	
FBXW7	MET	SFRS9	
R479Q	H1112Y	Y192X	
G1514AT	C3334T	C722A	
FBXW7	MET	SMO	
S582L	M1268T	A324T	
C1745T	T3803C	G970A	
FGFR1	MET	TGM2	
P252T	R988C	S212P	
C754A	C2962T	T734C	

182 genes sequenced across entire coding sequence.
Gene					
BRCA2	ERBB3	JUN	PAK3	TGFR2	
CARD11	ERBB4	KDM6A	PAX5	TNFAIP3	
CBL	ERCC2	KDR	PDGFRA	TNKS	
CCND1	ERG	KIT	PDGFRA	TNKS2	
CCND2	ESR1	KRAS	PHLPP2	TOP1	
CCND3	EZH2	LRP1B	PIK3CA	TP53	
CCNE1	FANCA	LRP6	PIK3CG	TSC1	
CD79A	FBXW7	LTK	PIK3R1	TSC2	
CD79B	FGFR1	MAP2K1	PKHD1	USP9X	
CDH1	FGFR2	MAP2K2	PLCG1	VHL	
CDH2	FGFR3	MAP2K4	PRKDC	WT1	
CDH2O	FGFR4	MCL1	PTCH1		
CDH5	FLT1	MDM2	PTCH2		
CDK4	FLT3	MDM4	PTEN		

14 genes sequenced across selected introns
Figure 1.
Peaks for PIK3CA, IDH1 and KRAS mutations (Sequenom Massarray)
Figure 2.
2a) IDH1 mutation and association with overall survival.
2b) KRAS mutation and association with overall survival
Figure 3.
Schematic of FGFR3-TACC3 Fusion Gene in Gallbladder Cancer
Figure 4.
Illustrations of mutational data successfully utilized for targeted therapeutics.
4a) Erlotinib in combination with gemcitabine and oxaliplatin before therapy and 4 months post therapy.
4b) Trastuzumab in combination with 5-fluorouracil, leucovorin and oxaliplatin as second-line therapy before therapy and 3 months post-therapy.
Figure 5.
Representative histopathology of samples with corresponding mutations used for Sequenom analysis and NGS.
5A) KRAS
5B) TP53, ERBB2
5C) FGFR3-TACC3, CCNE1, MCL1, MYC, TP53
5D) ARID1A
Table 1
Summary Statistics of Patient Demographics and Tumor Characteristics

CHARACTERISTICS	Type of Analysis	Type of Analysis
	Hotspot Mutation Analysis	Next Generation Sequencing
	(N = 57)	(N=15)
Age (years)	MEDIAN (RANGE)	MEDIAN (RANGE)
	62 (30–84)	62 (48–78)
	N (%)	N (%)
Sex	Male	Female
	25 (44%)	5 (33%)
	32 (56%)	10 (67%)
Ethnicity	Asian	Hispanic
	1 (2%)	8 (14%)
	1 (7%)	1 (7%)
	Black	White
	5 (9%)	43 (75%)
	0 (0%)	13 (86%)
Type of Surgery	None	Simple (Laparoscopic)
	3 (5%)	31 (54%)
	23 (41%)	6 (40%)
	Radical	
	23 (41%)	5 (33%)
Adjuvant Therapy	Chemotherapy	Chemotherapy & Radiation
	25 (44%)	11 (19%)
	13 (87%)	2 (13%)
	None	
	21 (37%)	0 (0%)
Histological Type	Adenocarcinoma	Adenosquamous
	51 (90%)	4 (7%)
	15 (100%)	0 (0%)
	Carcinosarcoma	
	2 (3%)	0 (0%)
Degree of Differentiation	Poor	Moderate
	16 (28%)	38 (67%)
	7 (47%)	6 (40%)
	Well	
	2 (4%)	2 (13%)
	N/A	
	1 (2%)	0 (0%)
Lymphatic Infiltration	No	Yes
	21 (39%)	33 (61%)
	1 (10%)	9 (90%)

Hum Pathol. Author manuscript; available in PMC 2015 May 12.
CHARACTERISTICS

	Type of Analysis
	Hotspot Mutation Analysis (N = 57)
	Next Generation Sequencing (N=15)
Age (years)	MEDIAN (RANGE)
	62 (30–84)
	MEDIAN (RANGE)
	62 (48–78)
N (%)	N (%)
No	22 (41%)
Yes	32 (59%)
Perineural Infiltration *	
No	29 (54%)
Yes	25 (46%)

N=Patient numbers;

*Surgical samples only (Hotspot N=54, NGS N=10)
Table 2
Genetic Mutations identified through Hotspot Analysis

Sample ID	Histology	Mutations
13	Adenocarcinoma	IDH1_V178I_G532A PIK3CA_H1047RL_A3140GT
26	Adenosquamous	KRAS_G12DAV_G35ACT NRAS_Q61RPL_A182GCT
32	Adenocarcinoma	IDH1_V178I_G532A*
34	Adenocarcinoma	NRAS_G12DAV_G35ACT
42	Adenocarcinoma	IDH1_V178I_G532A*
44	Adenocarcinoma	KRAS_G12DAV_G35ACT MET_N375S_A1124G*
46	Adenocarcinoma	KRAS_G13DAV_G38ACT
47	Adenocarcinoma	IDH1_V178I_G532A*
49	Adenocarcinoma	PIK3CA_M1043I_G3129ATC
56	Adenocarcinoma	ALK_F1174L_C3522AG
57	Adenocarcinoma	NRAS_G12DAV_G35ACT

*Most likely to represent genomic variation (SNP)
GENE	Alterations (With allele frequency or copy number)
TP53	V274F (10%) R282G (50%) R213* (29%) Y220C (2%) R342* (24%) C141* (21%) Splice site 559+1G>T (21%) F109V (46%) V272L
STK11	R86* (11%) E120* (15%) K62fs*98 (6%)
CCNE1	Amplification (copy no 11x) Amplification (copy no 13x)
MDM2	Amplification (copy no 6x) Amplification (copy no 16x)
MYC	Amplification (copy no 12x) Amplification (copy no 7x)
RICTOR	Amplification (copy no 12x) Amplification (copy no 7x)
APC	S2113fs*25 (21%)
ARID1A	G284fs*78 (18%)
AURKA	S398L (48%)
CDKN2A	Truncation - exon 1
CDKN2A/B	Loss Loss
CRKL	Amplification (copy no 12x)
FGF10	Amplification (copy no 7x)
FGFR3-TACC	FGFR3-TACC3 fusion, Amplification (copy no 8x)
KRAS	G12C, 3%
MCL1	Amplification (copy no 8x) Amplification (copy no 8x)
PRKAR1A	R97* (33%)
SMAD4	Truncation
SMARCA4	D558fs*6 (26%)
TSC2	Loss
BAP1	splice site 438-1delGTTTTTCCCC AG, 10% 1delGTTTTTCCCC AG, 10%
ERBB2	Amplification (copy no 20x) Amplification (copy no 9x)
PIK3CA	Amplification (copy no 7x)
ZNF703	Amplification (copy no 7x)