Search of the Exotic State U(3100) in SELEX

A Blanco-Covarrubias, J Engelfried, for the SELEX Collaboration
Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, Zona Centro, San Luis Potosí, S.L.P. 78000, México
E-mail: ablanco@deci.ifisica.uaslp.mx

Abstract. Using data from the SELEX Experiment (Fermilab E781) [1] we searched for a previously reported exotic state at $3.100 \text{ GeV}/c^2$ decaying into $\Lambda^0 \bar{p} + n \pi^\pm$, ($n = 1, 2, 3$). No signal in any of the different charge modes is observed.

1. Introduction

Nearly 2 decades ago, two experiments, WA62 at CERN[2] and BIS-2 at Protvino[3], reported the observation of a state near 3100 MeV/c^2, with a width compatible with experimental resolution ($\sim 20 \text{ MeV}/c^2$). The resonance, named $U(3100)$, was observed in four different charge states (U^+, U^0, U^-, U^{--}), in the decay modes $U \rightarrow \Lambda^0 \bar{p} + n \pi^\pm$; also the corresponding anti-particles were observed.

The mode observed with the highest statistical significance, the $U^+ \rightarrow \Lambda^0 \bar{p} \pi^+ \pi^+$, has strangeness -1 and positive charge, an exotic combination of quantum numbers. Together with the number of different charge states and the small width, an interpretation as a isospin $3/2$ 2 quark–2-anti-quark Baryonium exotic resonance was suggested[4].

A quark is a SU(3) color anti-triplet. A diquark can be in a color triplet or sextet state. One diquark and one anti-diquark can only form a color singlet if both are in triplet or sextet states; mixed combinations are not possible. If both are in a triplet state, the resulting particle is called a True-Baryonium; a quark and an antiquark from a gluon-split can readily form two baryons together with the diquarks. The expected state should be broad. With the diquarks in sextet states (Mock-Baryonium), a single gluon exchange can not lead to the formation of a baryon - antibaryon pair, some higher order processes are necessary; this is a possible explanation for the small width of the observed states. For more details on this model please see[5, 6] and references therein.

In both experiments the antiproton in the decay was not unambiguously identified. The SELEX experiment has very good particle identification with the use of a Ring Imaging Cherenkov Detector (RICH)[7]. This, together with the available statistics, motivated us to search for these resonances in the SELEX data[8].

2. The SELEX Experiment

The SELEX experiment used the Fermilab charged hyperon beam at 600 GeV/c to produce charm particles in a set of thin foil targets of Cu or diamond. The negative beam composition was about 50% Σ^- and 50% π^-. The positive beam was 90% protons. A beam Transition
Table 1. Investigated decay modes and number of candidates after the first part of the analysis.

Investigated Decay Modes	SELEX Candidates
$U^+ \rightarrow \Lambda^0 \bar{p} \pi^+ \pi^+$	8,482,007
$U^0 \rightarrow \Lambda^0 \bar{p} \pi^+$	5,692,231
$U^0 \rightarrow \Lambda^0 \bar{p} \pi^+ \pi^- \pi^-$	12,203,717
$U^- \rightarrow \Lambda^0 \bar{p} \pi^+ \pi^-$	20,482,269
$U^{--} \rightarrow \Lambda^0 \bar{p} \pi^- \pi^-$	5,827,162
$U^{--} \rightarrow \Lambda^0 \bar{p} \pi^+ \pi^- \pi^-$	12,698,985

Radiation Detector identified each beam particle as meson or baryon with zero overlap. The three-stage magnetic spectrometer is shown elsewhere[9]. The most important features are the high-precision, highly redundant, vertex detector that provides an average proper time resolution of 20 fs for charm decays, a 10-m long Ring-Imaging Cerenkov (RICH) detector that separates π from p up to 340 GeV/c[7], and a high-resolution tracking system that has momentum resolution of $\sigma_P/P < 1\%$ for a 150 GeV/c proton.

The experiment selected usually charm candidate events using an online secondary vertex algorithm. A scintillator trigger demanded an inelastic collision with at least four charged tracks in the interaction scintillators and at least two hits in the positive particle hodoscope after the second analyzing magnet. Event selection in the online filter required full track reconstruction for measured fast tracks ($P \geq 15$ GeV/c^2). These tracks were extrapolated back into the vertex silicon planes and linked to silicon hits. The beam track was measured in upstream silicon detectors. A full three-dimensional vertex fit was then performed. An event was written to tape if any of the fast tracks in the event was inconsistent with having come from a single primary vertex. This filter passed 1/8 of all interaction triggers and had about 50% efficiency for otherwise accepted charm decays. The experiment recorded data from 15.2×10^9 inelastic interactions and wrote 1×10^9 events to tape using both positive and negative beams. The online filter was not suited directly for the search of short-lived resonances. Nevertheless, additional events were passed with an identified proton or kaon in the RICH detector. Also, most of the filtered events are inconsistent with coming from one vertex due to tracking errors related to the fast nature of the online filter.

3. Data Selection and Analysis

In the offline analysis only charged tracks with reconstructed momenta were used. Tracks which traversed the RICH ($P \geq 22$ GeV/c) were identified as protons or kaons if those hypotheses were more likely than the pion hypothesis. All other tracks were assumed to be pions. Λ^0 candidates were formed when a proton and a π^- originated from a common vertex within an invariant mass window $1070 \text{ MeV}/c^2 \leq M(\Lambda^0) \leq 1160 \text{ MeV}/c^2$. RICH identified anti-protons and charged pions from the interaction vertex were combined with the Λ^0 candidates, and the invariant mass of the $\Lambda^0 \bar{p} \pi^\pm$’s system was calculated. The number of combinations within the mass range $2.9 – 3.3\text{ GeV}/c^2$ is shown table I. No enhancement was observed over the full mass range in any of the decay modes.

Additional cuts applied to suppress possible backgrounds were a minimum momentum of the charged pions of $P > 8$ GeV/c and the invariant mass of the Λ^0 candidate had to be within $\pm 10 \text{ MeV}/c^2$ of the nominal mass[10]. We also required $P(\bar{p}) > 110$ GeV/c to allow for a perfect
Figure 1. Distribution of invariant masses for different channels $\Lambda^0 p \pi^\pm$, with the final cuts described in the text applied.
Table 2. Additional cuts for $U^+(3100) \rightarrow \Lambda^0 \bar{p} \pi^+ \pi^+$. Similar cuts were applied to the other modes.

Cut	Value
$P(\bar{p})$	$> 110 \text{GeV}/c.$
$P(\pi)$	$> 8 \text{GeV}/c.$
$P(U \text{ candidate})$	$> 300 \text{GeV}/c.$
$M(\Lambda^0 \text{ candidates})$	$\pm 10 \text{MeV}/c^2$
$P(\Lambda^0)/P(U)$	< 0.3
$P(\pi(\text{fast}))/P(U)$	> 0.1
$P(\pi(\text{slow}))/P(U)$	> 0.035

identification of the antiproton with the RICH. A Monte Carlo Simulation indicated that the expected resolution for the $U(3100)$ should be around $15 \text{MeV}/c^2$. We also followed a previous search for these particles[11] and developed with a detailed Monte Carlo simulation a set of cuts in the ratios of the momenta of the different particles involved, assuming phase space decay of the $U(3100)$[8]. The cuts used are detailed for the decay $U^+(3100) \rightarrow \Lambda^0 \bar{p} \pi^+ \pi^+$ in table II. Similar cuts were used for the other modes.

With the above cuts, we obtain the distributions shown in fig. 1. No significant enhancements have been observed.

Acknowledgments

This work was supported by CONACyT and UASLP. A.B.C. thanks CONACyT for the stipendium during his master thesis.

References

[1] The SELEX collaboration: Ball State University, Bogazici University, Carnegie-Mellon University, Centro Brasileiro de Pesquisas Fisicas, Fermilab, Institute For High Energy Physics (Protvino), Institute of High Energy Physics (Beijing), Institute of Theoretical and Experimental Physics (Moscow), Max-Planck-Institute for Nuclear Physics, Moscow State University, Petersburg Nuclear Physics Institute, Tel Aviv University, Universidad Autónoma de San Luis Potosí, Universidade Federal da Paraíba, H. H. Wills Physics Laboratory, University of Bristol, University of Iowa, University of Michigan-Flint, University of Rochester, University of Rome "La Sapienza" and INFN, University of So Paulo, University of Trieste and INFN.

[2] M. Bourquin et al., Evidence for narrow states decaying into $(\Lambda \bar{p} + \pi\text{ons})$ at $3.1 \text{GeV}/c^2$ with charges +1, 0 and -1. Phys. Lett. B172 (1986) 113.

[3] Observation of Narrow Baryonium in the experiment BIS-2. Proceedings XXIV International Conference on High Energy Physics, Germany, August 1988.

[4] Joachim Heintze, New’s on the U’s, Les Rencontres de Physique de la Vallée d’ Aoste "Results and Perspectives in Particle Physics", La Thuile, Aosta Valley, 1-7 March 1987.

[5] S. Ono, S. Furui, Properties of narrow $U(3.1)$ based on the M-diquonium (color $6\bar{6}$) interpretation. Z. Phys. C36 (1987) 651.

[6] Dieter Gromes, Sextet String Tension, Mock Baryonia and the $U(3.1)$ Resonance. Z. Phys. C41 (1988) 427-433.

[7] J. Engelfried et al., The SELEX Phototube RICH Detector. Nucl. Instr. and Meth. A431, 53-69 (1999).
[8] Ernesto Alejandro Blanco Covarrubias, Búsqueda del estado exótico $U(3100)$ en SELEX. Master Thesis, Instituto de Física, UASLP (2003). FERMILAB-MASTERS-2003-04

[9] SELEX Collaboration, J.S. Russ et al., in Proceedings of the 29th International Conference on High Energy Physics, 1998, edited by A. Astbury et al. (World Scientific, Singapore, 1998), Vol. II, p. 1259; hep-ex/9812031.

[10] K. Hagiwara et al. Particle Data Group, 2000.

[11] J. Engelfried, Einsatz eines Ringabbildenden Cherenkovzählers zur Suche nach dem exotischen Zustand $U(3100)$. Ph.D. Thesis, Heidelberg University, (1992).