Supplemental Information

Upregulation of OIP5-AS1 Predicts Poor Prognosis and Contributes to Thyroid Cancer Cell Proliferation and Migration

Qiuli Li, Weichao Chen, Rongzhen Luo, Zhiyi Zhang, Ming Song, Wenkuan Chen, Zhongyuan Yang, Yuanzhong Yang, Zhuming Guo, and Ankui Yang
Figure S1 (A) OIP5-AS1 expression in pcDNA3.1/OIP5-AS1 or sh-OIP5-AS1 cells was tested. (B-C) CCK-8 assay and EdU assay were used to evaluate cell proliferation in response to OIP5-AS1 silence or overexpression (scale bar = 100 μm). Histograms shown in C represent image quantification by Image J of three independent experiments for TPC-1 and BCPAP cell lines. (D) The employment of transwell assay assessed cell migration under OIP5-AS1 knockdown or overexpression. Histograms shown in D represent image quantification by Image J of three independent experiments for TPC-1 and BCPAP cell lines. **P < 0.01.
Figure S2 (A) The effect of OIP5-AS1 on the activity of Wnt/β-catenin signaling pathway was examined by TOP-FOP Flash assay. (B) β-catenin, cyclin D1 and c-myc proteins levels were detected upon OIP5-AS1 silence. (C) The bands of WB assays were quantified. (D) The effect of OIP5-AS1 silence on CTNNB1, cyclin D1 and c-myc mRNA levels was evaluated. (E) The role of OIP5-AS1 depletion in β-catenin nuclear translocation was assessed by Immunofluorescence assay. **P < 0.01.

Figure S3 (A) The binding capacity between OIP5-AS1 and FXR1 was
further confirmed via RIP assay. (B) The interaction capacity between OIP5-AS1 and FXR1 was detected using non-biotinylated OIP5-AS1. (C) The effect of OIP5-AS1 knockdown on the binding capacity between YY1 and FXR1 was further validated through RIP assay. (D-E) The data from GEPIA database exhibited the expression correlation between OIP5-AS1 and FXR1 or YY1. (F) Pearson correlation was applied to analyze correlation between OIP5-AS1 expression and β-catenin mRNA. **P < 0.01, ***P < 0.001.
Supplementary files

>hg19_dna range=chr15:41590189-41590452 5'pad=0 3'pad=0 strand=+
 repeatMasking=none
 TATGCAAAAGTGTTGCTCTAATCTTTCTGTTTTTATTTTTGTATTTCTAG
 GTGTCTCTATGTTGCTCTAGAGGTGATGCTGTTTTTACCCAG
 TTAATTTCCCCGTTTTTTGAATGTGCTATCATTCTCTACACATTACCTC
 CATGATTGGAAATGGAAAAAGGCCACCTTTTTTTGGCTGCCCTC
 TTCAACCAGAGGGCTCCTAGGAGTTTACCATCTGCTAACAATCTC
 GCCGAGAAAGAAGCA

Interaction probabilities
Prediction using RF classifier 0.7
Prediction using SVM classifier 0.93

>hg19_dna range=chr15:41590658-41590871 5'pad=0 3'pad=0 strand=+
 repeatMasking=none
 CACAGTTGAGACTGCAGCAGTAAATTCCAAATATGTGTTTCTAATTTG
 ACGTGAAAGATACTAAAATTTATTTATTTATTTAAATCCTGGCTC
 ATCTCTGACAGATATTATAGTAAATAGGAACCAGTTTGGAGGCCAAGGCAAATCACCTGAGGTTGGGAGTTTGAGACCAG
 CCTGACCAACATGGAGAACCCCATCTCTACTAAA

Interaction probabilities
Prediction using RF classifier 0.6
Prediction using SVM classifier 0.93

>hg19_dna range=chr15:41590701-41590935 5'pad=0 3'pad=0 strand=+
 repeatMasking=none
 ATTTTACGTGAAAGATACTAAAATTTATTTATTTATTTAAATCCTGG
 CTCATCCTGTGACATAGTTTACTGAATAGGAAACAAGGGCCCCAATTAAA
 ACAAAACCTAGGCGGGGTGTTGTTGCGCTACACCTGTAATCCCAACATT
 TGGGAGGCAAGGCAAGCACCACCATCACCTGAGGTTGGAGTTGAGACCAG
 CCTGACCAACATGGAGAACCCCATCTCTACTAAA

Interaction probabilities
Prediction using RF classifier 0.5
Prediction using SVM classifier 0.9

>hg19_dna range=chr15:41591571-41591810 5'pad=0 3'pad=0 strand=+
 repeatMasking=none
 GTTCCCCAAGAATTTGTGTTGCTCTAGGAAAAGAAACCTCAATAAGA
 AAAATAAATTACAAATAAAGAAATGGAATTTCATTTTCCTTTTTCCCCAACAACGTTATA
 CATTATAAGAAACAGACTGTCGTAGAAAAACTGCTTTGCTTCCAAATCAG
CAGAGGACCATTGTATGTATTGTCAGGTCTTTATATAAGAGTGAACCCTT
TATTTATGCTTCTTGTGAGTAGAGAATAAATTTAAAAC

Interaction probabilities
Prediction using RF classifier 0.55
Prediction using SVM classifier 0.96