Hypertension and its determinant factors in a Brazilian male working population

Hypertension in male workers

CURRENT STATUS: POSTED

Tamyres Araújo Andrade Donato
Universidade Federal da Bahia

tamyres_donato@hotmail.com

Corresponding Author
ORCID: https://orcid.org/0000-0003-0930-1101

Vanessa Moraes Bezerra
Universidade Federal da Bahia Instituto Multidisciplinar em Saude

Roberta Mendes Abreu Silva
Universidade Federal da Bahia Instituto Multidisciplinar em Saude

Márcio Galvão Guimarães de Oliveira
Universidade Federal da Bahia Instituto Multidisciplinar em Saude

Amanda Cristina de Souza Andrade
Universidade Federal de Mato Grosso

Clavdia Nicolaevna Kochergin
Universidade Federal da Bahia Instituto Multidisciplinar em Saude

Daniela Arruda Soares
Universidade Federal da Bahia Instituto Multidisciplinar em Saude

Danielle Souto de Medeiros
Universidade Federal da Bahia Instituto Multidisciplinar em Saude

José Andrade Louzado
Universidade Federal da Bahia Instituto Multidisciplinar em Saude

Kelle Oliveira Silva
Universidade Federal da Bahia Instituto Multidisciplinar em Saude

Matheus Lopes Cortes
Universidade Federal da Bahia Instituto Multidisciplinar em Saude
Sóstenes Mistro
Universidade Federal da Bahia Instituto Multidisciplinar emSaude

Welma Wildes Cunha Coelho Amorim
Universidade Estadual do Sudoeste da Bahia

DOI:
10.21203/rs.2.16610/v1

SUBJECT AREAS
Health Policy

KEYWORDS
hypertension, worker, men, epidemiological studies
Abstract
Among men, hypertension stands out as a specific public health problem, as this population has lower rates of treatment, knowledge, and disease control, and less adherence to medication. It was used baseline data from a longitudinal study, conducted with a sample of 1,024 male workers aged 18 years or older from a municipality in Northeast Brazil. Hypertension was defined as systolic blood pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg, and/or prior diagnosis of hypertension and/or use of antihypertensive drugs. Population attributable fractions (PAFs) were calculated for the associated lifestyle factors. The prevalence of hypertension in this population was of 28.6% (95% CI: 25.9-31.5); the distal factors were age, skin color/ethnicity, and household income; intermediate factors: alcohol abuse, tobacco consumption, perception of high salt intake, and physical inactivity; and the proximal factor body mass index were positively associated with hypertension in male workers. Higher PAFs were observed among workers with tobacco and alcohol abuse, perceived high salt intake, physically inactive, and overweight and obese. Is necessary to take specific actions geared to orientation, prevention, and health promotion in workplaces to reduce complications from hypertension and improve lifestyle among this male population.

Introduction
Hypertension is one of the significant risk factors for cardiovascular diseases (CVD) and affects one billion people worldwide, with a high impact on loss of work productivity and household income\(^1\). In all countries, men have a higher prevalence of hypertension when compared to women\(^2\). In Brazil, this scenario may still be underestimated since 4.3 million Brazilian adults have never assessed their blood pressure (BP), especially men\(^3\).

Among men, hypertension stands out as a specific public health problem, as this population has lower rates of treatment, knowledge, and disease control, and less adherence to medication\(^4\). Such behavior may be related to the fact that they only pursue medical care when symptoms and possible disease complications are set.

Individuals’ health condition is affected by the environment in which they are inserted, their social relationships, and their socioeconomic and cultural conditions. The work environment can be a risk
factor for worker’s health5, predisposing to the emergence of chronic diseases. Hypertension has been prominent in both male and workers’ population and both combined; this group’s lifestyle is characterized by inappropriate habits and behavior, such as tobacco consumption, alcohol intake, unbalanced diet, and sedentary routines at both home and work6-8. The life context of this group should be considered in the implementation of health actions by government agencies and workplace managers9.

Hypertension control has been associated with a lower level of stroke, myocardial infarction, and heart failure. Data from a cohort study involving male workers revealed that almost half had hypertension, and only 65% had their blood pressure levels controlled10. They list male concerns, which were focused on family support more than health care and less demand for health services. This contributes to late diagnosis of diseases that could be controlled or treated, leading to complications that are often irreversible11.

In 2013, the WHO established a global set of targets for relative hypertension prevalence reduction of 25\% by 202012. The achievement of these goals requires lifestyle interventions in order to eliminate or reduce modifiable risk factors, as well as to promote health situation screening and search to prevent, detect, and treat hypertensive patients9.

This work aims to identify the prevalence of hypertension and investigate the associated factors in Brazilian male workers.

Methods
This is a cross-sectional study that utilized data from the longitudinal project HealthRise Vitória da Conquista. Vitória da Conquista is the third largest city in Bahia State, Northeast Brazil13. The research was carried out with a population of workers attended at the Industry Social Service unit. The data are from the baseline conducted between August 2017 and July 2018.

All employees aged 18 years or older, residing in the city, who used to attend the unit for routine or periodic appointments with the occupational physician and who were not in a situation of dismissal were considered for the sample calculation, totaling 2,014 workers. A confidence level of 95\%, a
prevalence of 50% (due to several outcomes measured in the main project), and an error margin of 2% were applied. The final sample was 1,218 workers considering 10% of losses. Respondents totaled 1,275 workers, of which 1,024 were male, and that was the study population.

Data Collection

Individual interviews were conducted by adequately trained interviewers using tablets enabled with the KoboToolbox software (https://www.kobotoolbox.org/). The interview instrument used was a semi-structured form based on the questionnaire from the National Health Survey14, International Physical Activity Questionnaire (IPAQ)15 in its short version, and the EUROHIS quality of life scale16. Three blood pressure assessments (with a one-minute interval each) were performed using the internationally validated Omron digital sphygmomanometer HEM-711317. The measurements were carried out after the interviews to ensure that individuals were at rest, sitting with their legs uncrossed, their feet resting on the floor, their backs reclining on the chair and relaxed, their left arm resting on the table at the level of the heart. It was assured that they did not have a full bladder, had not exercised for at least 60 minutes, had not consumed alcohol, coffee, or food, and had not smoked in the last 30 minutes. The final value of blood pressure was obtained through the last two measurements18.

The weight was verified through a digital portable electronic scale of the brand SECA 813. Height was measured with the portable stadiometer NutriVida, consisting of an extensor with a numerical scale and base to support the feet. Waist circumference was gauged with a measuring tape, considering the midpoint between the lower edge of the last rib and the upper border of the iliac crest.

Variables

The dependent variable in this study was hypertension, classifying as hypertensive all those with a previous medical diagnosis of hypertension and/or, systolic blood pressure values ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg and/or used antihypertensives18.

The independent variables were structured in the following blocks: sociodemographic, lifestyle, and anthropometric indices.
Sociodemographic variables included age (18–29 years, 30–39 years, 40 years and over), skin color/ethnicity (white, black, yellow, brown, and indigenous), marital status (single, married or living with a partner, divorced/widow), household income (less than 2 minimum wages, from 2 wages to less than 3 minimum wages, or 3 wages and over), and years of schooling (0–8 years, 9–11 years, 12 years and over).

Work shifts were divided into day/night and day only. The position held was classified according to the Brazilian Classification of Occupations (CBO)19, and divided into manual laborer (industrial, civil construction, general services and diverse manual services workers) and non-manual laborer (administrative, health, and education workers)20.

Lifestyle classified alcohol abuse those men who reported ingesting five or more doses of alcoholic beverage in a single occasion in the last 30 days21. Positively classified tobacco users were those who reported smoking during the study period22.

Regarding dietary habits, weekly intake of fruits, salads and raw vegetables, in which each variable was categorized as appropriate if they consumed these foods five days per week or greater, and inappropriate if consumption was less than five days per week23. The intake of ultra-processed foods was rated as positive for those who reported replacing meals with these foods in at least one day of the week23. Perception of salt consumption was established with the following question: “Considering freshly prepared food and processed foods, do you think your salt intake is”, reclassified as “low/very low; appropriate; high/very high”24.

Physical activity (PA) was evaluated by the short version of IPAQ15, and was measured by multiplying the weekly frequency (days) by the mean duration (minutes) of the moderate and vigorous PA practice. The time spent on vigorous activities was multiplied by two. Only activities performed for at least 10 continuous minutes were validated. Those who practiced less than 150 minutes of PA per week were considered as inactive25,26.

Quality of life was assessed by EUROHIS16. The scale consists of eight items covering general health,
interpersonal, financial, and household relationships. Quality of life is calculated by adding the eight items, in which higher scores indicate a better quality of life16.

The Body Mass Index of the participants was described27 as follows: \textless18.5 Kg/m2 “lean or low weight”; 18.5–24.9 Kg/m2 “regular”; 25–29.9 Kg/m2 “Overweight”; and BMI > 30kg/m2 “Obesity”. Waist circumference was categorized as adequate (<94cm), increased (≥ 94cm), and greatly increased (≥ 102cm)28.

Statistical analysis

The prevalence of hypertension among male workers was measured, with confidence interval of 95%. The verification of factors associated with hypertension was performed with bivariate and multivariate analyses, with estimated prevalence ratios and calculation of the respective p-value and confidence interval through Poisson regression with robust variance.

Concerning the selection variables for modeling, those with a statistical significance of up to 20% (p <0.20) were used in the univariate analysis. The hierarchical input of variables in blocks was performed in the following order: sociodemographic variables, lifestyle, and anthropometric indices. A statistically significant association was considered when p-value ≤ 0.05, after adjusting for the factors of the same block and of the hierarchically upper blocks. The Akaike criterion (AIC) was applied to compare models.

The population attributable fraction (PAF) was calculated for some modifiable associated factors. It estimates the disease proportion or health-related event that would be prevented in the population if the risk factor were eliminated. The formula adopted for the calculation of PAF was as follows: \textit{PAF} = \frac{\text{Pe} (\text{RP} - 1)}{1 + \text{Pe} (\text{RP} - 1)}, where Pe is the proportion of population exposure, RP is the disease prevalence in the exposed individuals / disease prevalence among those not exposed29. The Stata program (version 14) was used in data analysis.

This research was approved by the Research Ethics Committee of the Multidisciplinary Health Institute of the Federal University of Bahia (CAEE 62259116.0.0000.5556) and the participants who agreed to participate gave their informed consent in writing.
Results
Among the 1,024 participants, 28.6% (95% CI: 25.9–31.5) were classified as hypertensive.

The population profile revealed a more significant proportion of males aged 30–39 years (40.3%), who self-declared brown (54.7%), married (65.1%), with a household income lower than 2 minimum wages (36.7%), nine to eleven schooling years (52.9%), were manual (62.0%) and day-shift workers (79.2%). Regarding lifestyle, 32.1% of the men were alcohol abusers and 10.1% consumed tobacco. Most of them had an inappropriate intake of fruits, salads, and raw vegetables. About 40% of the respondents used to replace the significant meals with ultra-processed foods, and most considered their salt intake as appropriate (65.2%). More than half was classified as physically active. Regarding nutritional status, more than 40% were overweight or obese (Table 1).

In the univariate analysis (Table 2), a higher prevalence of hypertension was observed among men aged 40 years and over, married or living with a partner, who consumed tobacco, reported high salt intake, were classified as physically inactive, and were overweight.

The mean quality of life perception of hypertensive patients was lower (30.9; SD: ± 3.50) than for non-hypertensive patients (31.2; SD: ± 3.51), but not in a statistically significant way (P-value = 0.14).

The hierarchical multivariate analysis (Table 3) evidenced an association between age of 40 years and over, black self-declared skin color, and income greater than or equal to three minimum wages with a higher prevalence of hypertension. Regarding lifestyle variables (model 2), alcohol abuse, tobacco consumption, perceived high salt intake, and being physically inactive were positively associated with hypertension. In model 3, it was observed that overweight and obese men had a higher prevalence of hypertension.

The PAFs (Table 4) were calculated for lifestyle and health variables through the adjusted prevalence ratios obtained in the multivariate analysis, which remained associated in the final model. Higher PAFs were observed among individuals with tobacco use, alcohol use, perceived high salt intake, who were physically inactive, overweight and obese.

Discussion
This research carried out with a population of Brazilian male workers revealed a high prevalence of hypertension. Sociodemographic, lifestyle, and anthropometric variables were associated with hypertension in this population. Age equal or higher than 40 years, black skin color, household income of three minimum wages or more, alcohol intake, tobacco consumption, perception of high salt intake, physical inactivity, and being overweight or obese were associated with a higher prevalence of hypertension.

High hypertension rates in men have also been noticed in national and international works. Africa recorded a prevalence of hypertension of 36.5%30, and India, 46.1%31. In Brazil, the prevalence of hypertension in men was 33%, 30.6% in Bahia, and 29.5% in Northeast region9. Concerning the specific population of male workers, a 42% incidence of hypertension in industrial workers in Spain10 was found in longitudinal studies, and 20.6% in workers in a car factory in Japan32. In Brazil, in a cross-sectional study involving public sector workers (n = 350), 37.8% had hypertension33.

In this work, the highest age category showed a higher prevalence of hypertension. The association between age and hypertension is already consolidated in literature3,9,11,32,33 and is explained by the physiological changes inherent to the aging process and associations with other comorbidities. Older people more often pursue health services, are more assisted, and much interested in identifying diseases that can be asymptomatic34. This study population consisted of adults (up to 59 years); thus, a possible manifestation of work-related adverse effects on the health condition is observed, such as the emergence of chronic diseases at earlier ages among them. Work organization-related aspects are potentially stressful and may be associated with a higher occurrence of hypertension32,35.

Regarding skin color/ethnicity variable, it was noticed that those who self-declared black showed a positive association with hypertension. Morbidity and mortality due to hypertension are more significant among black people34,36,37. Brazilian morbidity and mortality rates are strongly affected by social inequalities, causing an unequal distribution of chronic noncommunicable diseases, such as hypertension4,9. The Northeast region is historically identified as having a large contingent of black
and brown people and lower income, health, and education conditions, with several vulnerable population groups9,36. The context in which the population groups are inserted may be more related to hypertension than genetic differences observed between skin colors37,38. Reducing social inequalities can increase hypertension prevention and control in Brazil, especially in the regions most affected by uneven income distributions.

In this research, the category of higher household income was positively associated with hypertension. It is known that economic status is associated with other aspects such as educational level. Also, hypertensive individuals with higher income also had higher schooling (data not shown). Education promotes access to information and demands for health services34, and may increase opportunities for chronic diseases diagnosis.

Some lifestyle-related variables have been related to hypertension. Individuals who reported alcohol abuse had a higher prevalence of hypertension. Alcohol consumption increases blood pressure20–22. Among workers, this habit can be motivated by job insecurity, professional restrictions, job dissatisfaction, and stress6. This behavior may imply specific work-related injuries, and be a risk factor for health problems, such as an increased frequency of illnesses or functional limitations, besides being related to violent events20.

There was also a higher prevalence of hypertension among men with tobacco use. Studies indicate that the prevalence of smoking is higher among men when compared to women. The most vulnerable to smoking workers are those exposed to more significant stress in workplace39, and this behavior is often motivated by the need for relaxation6. The intake of psychoactive substances may lead to an increased absenteeism rates due to the higher possibility of disease40. Tobacco is associated with hypertension and its complications, such as coronary artery disease and stroke33. Reinforcing campaigns to stop this habit in the workplace can promote discontinuation of the practice and improve the workers’ lifestyle.

Regarding the dietary profile, the variable that assessed the perception of salt intake was associated
with the final model. Participants who declared to consume a high level of salt had a higher prevalence of hypertension. Higher sodium intake among male workers has already been shown in literature\(^7\). It is known that salt restriction has a favorable influence on BP control, and is a powerful tool in the prevention and control of hypertension.

High salt intake may be related to the profile of foods consumed by the study sample. Most of the sodium comes from processed foods and meals made outside the home, due to an intense routine, typical of this population. Unhealthy eating habits may favor the emergence of comorbidities, increase absenteeism rates, and consequently, decrease time in productive activities\(^7,24,40\). Due to this scenario, more considerable attention should be given to the common spaces in which workers have their meals and strategies regarding the provided food and the promotion of activities that sensitize workers about healthy eating should be adopted.

Again regarding lifestyle factors, hypertension was more prevalent among those classified as physically inactive. It is known that physical activity can contribute to the absence or reduced levels of hypertension\(^41\); however, there is low adherence to this practice among hypertensive individuals, especially workers, due to the extended work hours and physical fatigue\(^42\). There is a tendency to reduce energy expenditure at work and increase physical inactivity. Promoting interventions that encourage the reduction of sedentary lifestyle at the workplace will contribute to the promotion of health care for workers.

The workers who were classified as overweight or obese had a higher prevalence of hypertension. Increased body weight may be considered a risk factor for the development of hypertension, contributing in up to 30% of the cases\(^27\). Unhealthy lifestyles and intense work hours negatively affect workers’ health, resulting in increased body weight and consequent onset of chronic diseases\(^7,8,32\).

Considering the calculation of the PAFs, it is observed that if the exposures were modified, in other words, if the number of individuals with abusive alcohol and tobacco consumption and salt intake were reduced, the prevalence of the disease would be lowered by 20%. Reducing physical inactivity and overweight would curb the disease prevalence by 39.5%. Lifestyle changes are the most effective
method to reduce blood pressure, contribute to its control and decrease its complications. Calculating PAF provides essential information on the impact of modifiable behaviors on health, and public health intervention and prevention programs should focus on these aspects in order to curb disease complications.

The study has some limitations. The cross-sectional design prevents the establishment of cause and effect relationships. Comparability with other works was also hampered by the paucity of studies involving the male worker population. Also, the analyses were based on two PA measures collected at the same time. It is known that the clinical diagnosis recommends at least two collections at different times; however, data are cross-sectional from a baseline performed as a screening for hypertension.

The male working population of this study is vulnerable to modifiable risk factors. Encouraging the planning, execution, and assistance of health promotion programs in the workplace can contribute to the prevention of future complications, comorbidities and reduction of economic impacts on the health sector due to the disease.

This work is highly relevant as it evaluates hypertension in a specific population; therefore, it requires differentiated attention. Few studies address workers’ health issues, specifically men, as a population group with time constraints, reduced availability for participation in researches, and little interest in prioritizing their health.

Declarations

ACKNOWLEDGMENTS

We are grateful to all participating workers for the willingness to receive us.

FINANCING

This project was funded by Medtronic Foundation. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

INTEREST CONFLICTS

The authors declare that they have no conflicts of interest.

References
1. World Health Organization. A global brief on Hypertension - Silent killer, global public health crisis. Geneva: World Health Organization; 2013.

2. World Health Organization. Global status report on noncommunicable diseases 2010. Geneva: World Health Organization; 2010.

3. Malta DC, Stopa SR, Andrade SSCA, Szwarcwald CL, Silva Júnior JB, Reis AAC. Health care in adults with self-reported hypertension in Brazil according to the National Health Survey, 2013. *bras. epidemiol*. 2015; (2):109-122.

4. Barros MBA, Francisco PMSB, Zanchetta LM, César CLG. Tendências das desigualdades sociais e demográficas na prevalência de doenças crônicas no Brasil, PNAD: 2003- 2008. *Ciência & Saúde Coletiva*. 2011; 16: 3755-68.

5. Azizova T, Briks K, Bannikova M, Grigoryeva E. Hypertension Incidence Risk in a Cohort of Russian Workers Exposed to Radiation at the Mayak Production Association Over Prolonged Periods. *Hypertension*. 2019;73(6):1174-84.

6. Boeuf-Cazou O, Lapeyre-Mestre M, Niezboral M, Montastruc JL. Profile of psychoactive substances consumption in workplace. *Therapie*. 2011; 66(2):155-65.

7. Reinaldo JM, Resende AS, Sant Anna MSL. Prevalência de hipertensão arterial e avaliação da ingestão de sódio em uma Unidade de Alimentação e Nutrição do Estado de Sergipe/Brasil. *Revista da Associação Brasileira de Nutrição*. 2017; 8:58-63.

8. Peplonska B, Bukowska A, Sobala W. Association of Rotating Night Shift Work with BMI and Abdominal Obesity among Nurses and Midwives. *PLoS One*. 2015; 10(7):e0133761.

9. Malta DC, Gonçalves RPF, Machado ÎE, Freitas MIF, Azeredo C, Szwarcwald CL. Prevalence of arterial hypertension according to different diagnostic criteria, National Health Survey. *bras. Epidemiol*. 2018; 21: e180021.

10. Aguilar-Palacio I, Malo S, Feja C, Lallana M, Leon-Latre M, Casasnovas JA, et al. Risk
factors control for primary prevention of cardiovascular disease in men: Evidence from the Aragon Workers Health Study (AWHS). *PLoS One*. 2018; 13(2):e0193541.

11. Risso-Gill I, Balabanova D, Majid F, Ng KK, Yusoff K, Mustapha F, et al. Understanding the modifiable health systems barriers to hypertension management in Malaysia: a multi-method health systems appraisal approach. *BMC Health Serv Res*. 2015; 15:254.

12. World Health Organization. Global Action Plan for the Prevention and Control of NCDs 2013-2020. Geneva: World Health Organization; 2013.

13. IBGE - Instituto Brasileiro de Geografia e Estatística. Vitória da Conquista - Panorama. 2017; v4.3.

14. IBGE - Instituto Brasileiro de Geografia e Estatística. Questionário Pesquisa Nacional de Saúde. Rio de Janeiro, 2013.

15. Matsudo S, Araújo T, Marsudo V, Andrade D, Andrade E, Oliveira LC, et al. Questionário internacional de atividade física (IPAQ): estudo de validade e reprodutibilidade no Brasil. *brasil. ativ. fís. saúde*. 2001; 6(2):05-18.

16. Pereira, M., Melo, C., Gameiro, S., & Canavarro, M. C. Estudos psicométricos da versão em Português Europeu do índice de qualidade de vida EUROHIS-QOL-8. *Laboratório de Psicologia*. 2011; 9(2):109-123.

17. Topouchian JA, El Assaad MA, Orobinskaia LV, El Feghali RN, Asmar RG. Validation of two automatic devices for self-measurement of blood pressure according to the International Protocol of the European Society of Hypertension: the Omron M6 (HEM-7001-E) and the Omron R7 (HEM 637-IT). *Blood Press Monit*. 2006;11(3):165-71.

18. Sociedade Brasileira de Cardiologia. 7ª Diretriz Brasileira de Hipertensão Arterial. *Arq Bras Cardiol*. 2016; 107:1-83.

19. Brasil, Ministério do Trabalho. Classificação Brasileira de Ocupações. 2017.
20. Oliveira JL, Souza J. Factors associated with alcohol consumption among public maintenance workers. *Acta paul. enferm.* 2018; 31(1): 17-24.

21. World Health Organization. Global status report on alcohol and health 2014. Geneva: World Health Organization; 2014.

22. Ministério da Saúde. Vigitel Brasil 2015 Saúde Suplementar: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico / Ministério da Saúde, Agência Nacional de Saúde Suplementar. 2017; 170 p.: il.

23. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Guia alimentar para a População Brasileira / Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica. 2014; 2ed., 1. reimpr.

24. Oliveira MM, Malta DC, Santos MAS, Oliveira TP, Nilson EAF, Claro RM. Self-reported high salt intake in adults: data from the National Health Survey, Brazil, 2013. *Serv. Saúde.* 2015; 24(2): 249-256.

25. World Health Organization. Global recommendations on physical activity for health. Geneva: WHO; 2010.

26. Hallal PC, Victora CG, Wells JC, Lima RC. Physical inactivity: prevalence and associated variables in Brazilian adults. *Med Sci Sports Exerc.* 2003;35(11):1894-900.

27. Associação brasileira para o estudo da obesidade e da síndrome metabólica. Diretrizes brasileiras de obesidade 2016/ABESO - São Paulo. 2016; 4.ed.

28. World Health Organization. Consulation on Obesity. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization; 2000.

29. Camey SA, Agranonik M, Radaelli J, Hirakata VN. Fração atribuível populacional. *Rev HC - PA & Fac Med Univ Fed Rio Gd do Sul.* 2010; 30:77-85.

30. Nyuyki CK, Ngufor G, Mbeh G, Mbanya JC. Epidemiology of hypertension in Fulani indigenous populations-age, gender and drivers. *J Health Popul Nutr.* 2017; 36(1):35.
31. Tripathy JP, Thakur JS, Jeet G, Chawla S, Jain S. Alarmingly high prevalence of hypertension and pre-hypertension in North India-results from a large cross-sectional STEPS survey. *PLoS One*. 2017; 12:e0188619.

32. Itani O, Kaneita Y, Tokiya M, Jike M, Murata A, Nakagome S, et al. Short sleep duration, shift work, and actual days taken off work are predictive life-style risk factors for new-onset metabolic syndrome: a seven-year cohort study of 40,000 male workers. *Sleep Med*. 2017; 39:87-94.

33. Oshiro ML, Ferreira JS, Oshiro E. Hipertensão arterial em trabalhadores da estratégia saúde da família. *Revista Brasileira de Ciências da Saúde*. 2013; 11(36).

34. Malta DC, Santos NB, Perillo RD, Szwarcwald CL. Prevalence of high blood pressure measured in the Brazilian population, National Health Survey, 2013. *São Paulo Medical Journal*. 2016; 134(2):163-170.

35. Tucker P, Harma M, Ojajarvi A, Kivimaki M, Leineweber C, Oksanen T, et al. Associations between shift work and use of prescribed medications for the treatment of hypertension, diabetes, and dyslipidemia: a prospective cohort study. *Scand J Work Environ Health*. 2019.

36. Bezerra VM, Andrade ACS, César CC, Caiaffa WT. Quilombo communities in Vitória da Conquista, Bahia State, Brazil: hypertension and associated factors. *Saúde Pública*. 2013; 29(9):1889-1902.

37. Chor D, Pinho Ribeiro AL, M SC, Duncan BB, Andrade Lotufo P, Araújo Nobre A, et al. Prevalence, Awareness, Treatment and Influence of Socioeconomic Variables on Control of High Blood Pressure: Results of the ELSA-Brasil Study. *PLoS One*. 2015; 10 (6): e0127382.

38. Agyemang C, Addo J, Bhopal R, Aikins AG, Stronks K. Cardiovascular disease, diabetes and established risk factors among populations of sub-Saharan African
descent in Europe: a literature review. *Global Health*. 2009; 5-7.

39. Arias-Uriona AM, Ordonez JC. Factors involved in job insecurity and their relationship with the health of salaried workers and contract workers in Bolivia. *Rev Panam Salud Publica*. 2018;42:e98.

40. Fernandes C, Pereira A. Exposure to psychosocial risk factors in the context of work: a systematic review. *Saúde Pública*. 2016; 50:24.

41. Medina C, Janssen I, Barquera S, Bautista-Arredondo S, Gonzalez ME, Gonzalez C. Occupational and leisure time physical inactivity and the risk of type II diabetes and hypertension among Mexican adults: A prospective cohort study. *Sci Rep*. 2018;8(1):5399.

42. Edmunds S, Hurst L, Harvey Kate. Physical activity barriers in the workplace: An exploration of factors contributing to non-participation in a UK workplace physical activity intervention. *International Journal of Workplace Health Management*. 2013; 6: 227-240.

43. National Institutes of Health. The Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. *Arch Intern Med*. 1997;157(21):2413-46.

Tables
Table 1: Characteristics of the male working population of a municipality in the northeast of Brazil, 2017-2018.
Variables	*n	%
Sociodemographic		
Age (years)		
18-29	329	32.1
30-39	413	40.3
≥ 40	282	27.5
Race		
White	197	19.4
Black	217	21.4
Yellow	28	2.8
Brown	555	54.7
Indigenous	17	1.7
Marital Status		
Single	291	28.4
Married or with a partner	667	65.1
Separated/Widowed	66	6.5
Family income		
< 2 wages	367	36.7
2 wages to < 3 wages	280	28.0
≥ 3 wages	352	35.2
Years of study		
0-8	287	28.1
9-11	541	52.9
≥ 12	194	19.0
Work shift		
Daytime / Nocturnal	210	20.8
Daytime	799	79.2
Work positions		
Non-manual	389	38.0
Manual	635	62.0
Lifestyle		
Alcohol abuse		
No	693	67.9
Yes	328	32.1
Smoking		
No	920	89.9
Yes	103	10.1
Fruit consumption		
Inadequate	678	66.6
Adequate	340	33.4
Consumption of salad and raw vegetables		
Inadequate	589	57.6
Adequate	434	42.4
Ultra-processed food consumption		
No	620	60.6
Yes	403	39.4
Perception of salt consumption		
Low / Very low	186	18.2
Adequate	668	65.2
High / very high	170	16.6
Physical activity practice		
Active	646	63.2
Inactive	375	36.7

nn: absolute number (may vary in relation to losses and non-responders); **CI 95%**: 95%
Continuation table 1: Characteristics of the male working population of a municipality in the northeast of Brazil, 2017-2018.

Variables	*n	%
Health/disease		
Body Mass Index		
Underweight /Normal weight	523	51.1
Overweight	365	35.7
Obese	135	13.2
Waist circumference		
Adequate	744	72.7
Increased/greatly increased	280	27.3

*n : absolute number (may vary in relation to losses and non-responders); **CI 95%: 95% confidence interval.

Table 2: Bivariate analysis of hypertension in the male working population of a municipality in northeastern Brazil, 2017-2018.
Variables	Prevalence of hypertension (%)	*PR	**95% CI
Sociodemographic			
Age (years)			
18-29	20.4	1.00	
30-39	24.5	1.20	0.91-1.58
≥ 40	44.3	2.18	1.69-2.80
Race			
White	27.4	1.00	
Black	31.8	1.16	0.86-1.57
Yellow	7.1	0.26	0.06-1.01
Brown	28.1	1.03	0.79-1.33
Indigenous	41.2	1.50	0.81-2.77
Marital Status			
Single	22.3	1.00	
Married or with a partner	31.0	1.39	1.09-1.77
Separated/Widowed	31.8	1.42	0.94-2.15
Family income			
< 2 wages	25.9	1.00	
2 wages to < 3 wages	27.5	1.06	0.82-1.37
≥ 3 wages	31.8	1.23	0.98-1.55
Years of study			
≥ 12	26.8	1.00	
0-8	31.0	1.16	0.86-1.55
9-11	27.7	1.03	0.79-1.35
Work shift			
Daytime / Nocturnal	28.3	1.00	
Daytime	28.6	1.01	0.79-1.29
Work positions			
Non-manual	27.8	1.00	
Manual	29.1	1.05	0.86-1.28
Lifestyle			
Alcohol abuse			
No	26.8	1.00	
Yes	32.6	1.22	1.00-1.48
Smoking			
No	27.4	1.00	
Yes	39.8	1.45	1.12-1.88
Fruit consumption			
Adequate	26.2	1.00	
Inadequate	29.8	1.14	0.92-1.40
Consumption of salad and raw vegetables			
Adequate	29.7	1.00	
Inadequate	27.7	0.93	0.77-1.13
Ultra-processed food consumption			
No	28.1	1.00	
Yes	29.3	1.04	0.86-1.27
Perception of salt consumption			
Low / Very low	25.8	1.00	
Adequate	26.8	1.04	0.79-1.37
High / very high	38.8	1.50	1.11-2.04
Physical activity practice			
Active	26.0	1.00	
Inactive	33.1	1.27	1.05-1.54

*PR: prevalence ratio; **CI 95%: 95% confidence interval.

Continuation table 2: Bivariate analysis of hypertension in the male working population of a municipality in
northeastern Brazil, 2017-2018.

Variables	Health/disease	Prevalence of hypertension (%)	*PR	**95% CI
Body Mass Index				
Underweight /Normal weight	19.3	1.00	1.43-2.24	
Overweight	34.5	1.79		
Obese	48.9	2.53	1.98-3.24	
Waist circumference				
Adequate	22.9	1.00		
Increased/greatly increased	43.9	1.92	1.59-2.32	

*PR: prevalence ratio; **CI 95%: 95% confidence interval.

Table 3: Multivariate analysis of hypertension in the male population of a municipality in the northeast of Brazil, 2017-2018

Variables	Sociodemographic	Model 1	Model 2	Model 3	
Age (years)					
18-29	1.00	1.00	1.00		
30-39	1.12	0.85-1.47	1.09	0.83-1.44	1.00
≥ 40	2.01	1.56-2.60**	1.92	1.48-2.48**	1.59
Race					
White	1.00	1.00	1.00		
Black	1.36	1.01-1.83*	1.41	1.06-1.88*	1.37
Yellow	0.34	0.09-1.30	0.30	0.08-1.18	0.32
Brown	1.06	0.81-1.38	1.10	0.85-1.41	1.10
Indigenous	1.64	0.95-2.84	1.68	0.99-2.82	1.65
Family income					
< 2 wages	1.00	1.00	1.00		
2 wages to < 3 wages	1.14	0.88-1.47	1.12	0.86-1.44	1.03
≥ 3 wages	1.26	1.01-1.59*	1.22	0.97-1.54	1.08
Lifestyle					
Alcohol abuse					
No	1.00	1.00			
Yes	1.24	1.02-1.52*	1.13		
Smoking					
No	1.00	1.00			
Yes	1.34	1.04-1.72*	1.53		
Perception of salt consumption					
Low / Very low	1.00	1.00			
Adequate	1.18	0.89-1.57	1.19		
High / very	1.64	1.20-2.24***	1.53		
Physical activity practice

	Model 1	Model 2	Model 3
Active	1.00	1.00	1.23
Inactive	1.23	1.01-1.49*	1.23

Health/disease

Body Mass Index			
Underweight/Normal weight	1.00		
Overweight	1.64		
Obese	2.14		

Akaike information criterion (AIC)

	1247.599	1236.268	1218.612

CI 95%: 95% confidence interval; PR: prevalence ratio.
Model 1: Adjusted among sociodemographic variables
Model 2: Adjusted between sociodemographic and lifestyle variables
Model 3: Adjusted among sociodemographic variables, lifestyle, and health/disease.
* p < 0.05; ** p < 0.001; *** p < 0.01.

Table 4: Fractions attributable to modifiable associated factors among those exposed in a male working population of a municipality in northeastern Brazil, 2017-2018.

Variables	Attributable fraction (%)
Alcohol abuse	
Yes	7.15
Smoking	
Yes	3.32
Perception of salt consumption	
High / very high	9.60
Physical activity practice	
Inactive	7.78
Body Mass Index	
Overweight	18.60
Obese	13.08
Abbreviation List

Cardiovascular Diseases (CVD)
Blood Pressure (BP)
World Health Organization (WHO)
International Physical Activity Questionnaire (IPAQ)
Brazilian Classification of Occupations (CBO)
Physical Activity (PA)
Body Mass Index (BMI)
Akaike Criterion (AIC)
Attributable Fraction (PAF)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES)