A non-equilibrium equation-of-motion approach to quantum transport utilizing projection operators

Maicol A Ochoa1, Michael Galperin1 and Mark A Ratner2

1 Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
2 Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
E-mail: mochoadaza@ucsd.edu, migalperin@ucsd.edu and ratner@northwestern.edu

Received 19 June 2014, revised 15 September 2014
Accepted for publication 17 September 2014
Published 16 October 2014

Abstract
We consider a projection operator approach to the non-equilibrium Green function equation-of-motion (PO-NEGF EOM) method. The technique resolves problems of arbitrariness in truncation of an infinite chain of EOMs and prevents violation of symmetry relations resulting from the truncation (equivalence of left- and right-sided EOMs is shown and symmetry with respect to interchange of Fermi or Bose operators before truncation is preserved). The approach, originally developed by Tserkovnikov (1999 Theor. Math. Phys. 118 85) for equilibrium systems, is reformulated to be applicable to time-dependent non-equilibrium situations. We derive a canonical form of EOMs, thus explicitly demonstrating a proper result for the non-equilibrium atomic limit in junction problems. A simple practical scheme applicable to quantum transport simulations is formulated. We perform numerical simulations within simple models and compare results of the approach to other techniques and (where available) also to exact results.

Keywords: Hubbard operators, equation-of-motion, Green functions

1. Introduction

Since the first theoretical prediction of the possibility to utilize molecules as active elements in junctions [1], molecular electronics has been driven by developments in experimental abilities to fabricate and control molecular nanostructures. Inelastic electron tunneling spectroscopy (IETS) [2, 3], molecular optoelectronics [4], molecular nanoplasmics [5], and molecular spintronics [6–10] are branches of molecular electronics, where experimental data require development of an adequate theoretical techniques.

Resonant IETS with its strong electron-vibration coupling and anharmonic effects [11], as well as observation of breakdown of the Born–Oppenheimer approximation [12], requires formulation in the basis of vibronic states [13, 14]. Similarly, in optoelectronic devices, where covalent bonding between molecule and contacts results in hybridization between molecular excitation and plasmon resonances [15], separation into electronic and plasmonic degrees of freedom is inadequate [16]. Finally, physics of single molecule magnet devices is achieved most conveniently by diagonalizing the multi-spin Hamiltonian [17, 18].

Development of theoretical methods capable of describing transport in molecular junctions in the language of many-body states of an isolated system—the nonequilibrium atomic limit—is necessary for adequate description in the situations similar to those mentioned above [19]. Examples of such formulations include scattering theory methods [13, 20–23], quantum master equation approaches [24–31], pseudoparticle [14, 16, 32–36] and Hubbard [37–41] non-equilibrium Green function techniques.

A simple general alternative is the equation-of-motion (EOM) method [42, 43] formulated for transport problems on the Keldysh contour [44–53]. EOM permits working
with correlation functions of any operators to produce (in general) an infinite chain of equations of motion. The main drawback of the method is the necessity to make an uncontrolled approximation to close the chain of equations. Usually, a justification for such an approximation can be obtained only a posteriori. Moreover, uncontrolled decoupling of correlation functions may result in complications related to loss of proper commutation relations between the decoupled operators [42]. Violation of symmetry relations due to such an uncontrolled decoupling in quantum transport problems was discussed in [52, 53].

Projection operators are often employed to derive an exact quantum master equation (QME) for a system coupled to baths [54–62]. In the theory of equilibrium Green functions, projection techniques are sometimes utilized to close the chain of EOMs [63–66]. In particular, an approach developed by Tserkovnikov [67, 68] guarantees that truncating an infinite chain of equations at step \(n \) includes correlations between the originally chosen set of operators to order \(n \). The approach was shown to be equivalent to Mori’s method [69–71] employed in QME derivations.

Here we formulate the approach of [67, 68, 72] on the Keldysh contour and discuss its applicability to transport problems. In particular, we demonstrate that the approach permits a formulation of a symmetrized Dyson-type equation which by construction resolves symmetry violations discussed in [52, 53]. Also we argue that the approach resolves the problems of the first Hubbard (HIA) approximation related to Hermiticity of a resulting reduced density matrix [40, 73].

After introducing the generalization of the scheme in section 2.1, in section 2.2 we derive a Dyson-type EOM for effective canonical quasi-particles, which is crucial for construction of a proper diagrammatic expansion [74]. Then in section 2.3 we discuss application of the resulting scheme to transport in junctions. Section 3 presents numerical results. Section 4 concludes.

2. Method

We start by generalizing the scheme of [67, 68, 72] to the realm of open quantum systems far from equilibrium in section 2.1. General consideration follows by derivation of the EOM for canonical Green function in section 2.2. Finally, in section 2.3 we discuss application of the scheme to transport in junctions.

2.1. EOM for irreducible Green functions

Following [68] we start by introducing a column vector operator \(\hat{\mathbf{a}}_1 \). Both choice and number \(M_1 \) of its elements depend on the particular problem (see section 3 for examples). We note that the choice of the initial vector-operator is arbitrary and is governed solely by physical intuition. In this respect the scheme presented below is not very different from the standard EOM approaches, since the latter also requires physical intuition to judge which correlations to keep and which to disregard and to decide on the proper truncation of the infinite EOMs chain. The only difference is where the physical intuition has to be used: at the start of the EOM chain for the presented scheme versus during and at the end of the EOM chain for the standard EOM formulation. We note also that this flexibility of choice of the initial vector-operator is an advantage, allowing to greatly simplify solution once the initial vector-operator is taken according to the physics of a problem. At the same time a choice inconsistent with the physics of the problem does not invalidate the presented scheme, but makes it ineffective. The moment the original operator has been chosen the methodology provides a tool for taking account of correlations between the operators in an ordered fashion.

EOMs (in the Heisenberg picture) for this vector-operator and its Hermitian conjugate are (here and below \(\hbar = 1 \))

\[
\begin{align*}
\frac{i}{\partial \tau} \hat{a}_n(\tau) &= \left[\hat{H}_\text{eff}; \hat{a}_n \right](\tau) = \varepsilon_n(\tau) \hat{a}_n(\tau) + \nu_{n,n+1}(\tau) \hat{a}_{n+1}(\tau), \\
\frac{-i}{\partial \tau'} \hat{a}_{n}^\dagger(\tau') &= \left[\hat{H}^\dagger; \hat{a}_{n}^\dagger \right](\tau') = \varepsilon_n(\tau') \hat{a}_{n}^\dagger(\tau') + \nu_{n+1,n}(\tau').
\end{align*}
\]

(1)

(2)

where \(n = 1, 2, 3, \ldots \) is the index for the infinite sequence of operators defined by the EOMs (1) and (2), \(\tau \) and \(\tau' \) are contour variables and \(\hat{H} \) is the total Hamiltonian. \(\varepsilon_n \) and \(\nu_{n,n+1} \) are matrices of size \(M_n \times M_n \). Also we note that the approach resolves the problems of the first Hubbard (HIA) approximation related to Hermiticity of a resulting reduced density matrix [40, 73].

The scalar product of two arbitrary vector operators \(\hat{a} \) and \(\hat{b} \) is defined as an average over a non-equilibrium state of a commutator (if at least one of the vectors is of Bose type) or an anti-commutator (if both operators are of Fermi type)

\[
\mathbf{P}_{a,b} = \left[\left[\hat{a}; \hat{b}^\dagger \right] \right]_{\bar{\rho}}.
\]

(3)

Note that \(\mathbf{P}_{a,b} \) is a matrix of size \(M_a \times M_b \). Its \(ij \) matrix element is given by \(\left[\mathbf{P}_{a,b} \right]_{ij} = \left[\left[\hat{a}_i \hat{b}_j^\dagger \pm \hat{b}_j^\dagger \hat{a}_i \right] \right] \), where \(\hat{a}_i \) \((\hat{b}_j) \) is \(i \)th \((j \)th) operator of the vector-operator \(\hat{a} \) \((\hat{b}) \).

Utilizing this definition of scalar product, equation (3), we next introduce orthogonalized vector operators

\[
\hat{A}_n = \hat{a}_n - \sum_{i=1}^{n-1} \mathbf{P}_{a_i,A_i} \mathbf{P}_{A_i,A_i}^{-1} \hat{A}_i
\]

(4)

\[
\hat{A}_n^\dagger = \hat{a}_n^\dagger - \sum_{i=1}^{n-1} \hat{A}_i^\dagger \mathbf{P}_{A_i,A_i} \mathbf{P}_{A_i,A_i}^{-1}
\]

(5)

3 It is important to distinguish between \(i \) and \(j \) indicating position of an operator in vector-operator and \(n \) numbering different generations of vector-operators.
where $\hat{A}_1 \equiv \hat{a}_1$. Here and below we use capital letters for orthogonalized vector operators. Note that in equations (4) and (5), as well as below, we assume existence of inverse of the spectral weight matrix, equation (3). While this property cannot be guaranteed in general, it can be proven for linearly independent set of Fermi type excitations in a system held at finite temperature (see appendix A). These are the conditions of main interest for quantum transport problems in junctions and this is the situation we consider in the paper.

Our goal is to evaluate the non-equilibrium Green function of the operators of interest \hat{a}_1

$$G_{\hat{a}_1,\hat{a}_1}(\tau, \tau') \equiv -i \left\{ T_\circ \hat{a}_1(\tau) \hat{a}_1^\dagger(\tau') \right\}, \tag{6}$$

where T_\circ is the contour ordering operator and G is $M_1 \times M_1$ matrix. For future reference it is convenient to introduce irreducible Green functions

$$G_{\mu,\nu}^{(n)}(\tau, \tau') \equiv G_{\mu,\nu}^{(n-1)}(\tau, \tau') - \int d\tau_1 \int d\tau_2 G_{\mu,\nu}^{(n-1)}(\tau, \tau_1) G_{\nu,\mu}^{(n-1)}(\tau_1, \tau_2) G_{\nu,\mu}^{(n-1)}(\tau_2, \tau') \tag{7}$$

Here integration is over the Keldysh contour, $G_{\mu,\nu}^{(n)}(\tau, \tau') \equiv G_{\mu,\nu}^{(n-1)}(\tau, \tau')$ and $G_{\nu,\mu}^{(n-1)}(\tau_1, \tau_2)$ is the inverse operator for the irreducible Green function $G_{\mu,\nu}^{(n-1)}(\tau_1, \tau_2)$

$$\int d\tau_1 G_{\mu,\nu}^{(n-1)}(\tau, \tau_1) G_{\nu,\mu}^{(n-1)}(\tau_1, \tau') = \int d\tau_1 G_{\nu,\mu}^{(n-1)}(\tau_1, \tau_1) G_{\mu,\nu}^{(n-1)}(\tau, \tau'), \tag{8}$$

where I_ν is the $M_\nu \times M_\nu$ unit matrix. Considering equation (6) as a scalar product in an extended Hilbert space (the one including the contour variable as part of the index), definition of irreducible Green functions in equation (7) is similar to projection in equations (4) and (5), where each next generation of correlation functions is orthogonalized relative to the previous one. This definition provides properties which eventually lead to formulation of a canonical Dyson-type equation (see equation (14) below). Note that this result would be impossible without the orthogonalization introduced in equation (7).

In terms of the irreducible Green functions, equation (7), the chain of (left and right) EOMs for the Green function (6) is (see appendix B for derivation)

$$\begin{align*}
\left[i \frac{\partial}{\partial \tau} - \omega_n(\tau) \right] G_{\nu,\mu}^{(n-1)}(\tau, \tau') &= \delta(\tau, \tau') P_{\nu,\mu}(\tau) \\
+ \int d\tau_1 P_{\nu,\mu}(\tau) \Sigma_{\nu,\mu}^{(n-1)}(\tau, \tau_1) G_{\nu,\mu}^{(n-1)}(\tau_1, \tau') \\
&+ \int d\tau_1 G_{\nu,\mu}^{(n-1)}(\tau_1, \tau_1) \Sigma_{\nu,\mu}^{(n-1)}(\tau_1, \tau') P_{\nu,\mu}(\tau) \
&+ \int d\tau_1 G_{\nu,\mu}^{(n-1)}(\tau_1, \tau_1) \Sigma_{\nu,\mu}^{(n-1)}(\tau_1, \tau') P_{\nu,\mu}(\tau') \tag{9}
\end{align*}$$

and

$$\begin{align*}
\delta(\tau, \tau') P_{\nu,\mu}(\tau) \\
+ \int d\tau_1 G_{\nu,\mu}^{(n-1)}(\tau, \tau_1) \Sigma_{\nu,\mu}^{(n-1)}(\tau_1, \tau') P_{\nu,\mu}(\tau) \
&+ \int d\tau_1 G_{\nu,\mu}^{(n-1)}(\tau_1, \tau_1) \Sigma_{\nu,\mu}^{(n-1)}(\tau_1, \tau') P_{\nu,\mu}(\tau') \tag{10}
\end{align*}$$

where

$$\omega_n(\tau) \equiv \varepsilon_n(\tau) + \nu_{n,n+1}(\tau) P_{\nu,n+1}(\tau) P_{\nu,n}^{-1} \left(\tau \right) \nu_{n-1,n}(\tau) \tag{11}$$

is a normalized free evolution matrix, $\hat{\omega}_n(\tau) \equiv \omega_{n}^\dagger(\tau)$ and

$$\Sigma_{\nu,\mu}^{(n-1)}(\tau, \tau') \equiv P_{\nu,\mu}^{-1}(\tau) \nu_{n,n+1}(\tau) G_{\nu,n+1,n}(\tau, \tau') \nu_{n-1,n}(\tau') \tag{12}$$

is the irreducible self-energy of the Green function $G_{\nu,\mu}^{(n)}(\tau, \tau')$ due to higher order correlations. Equations (9) and (10) complete formulation of the EOM scheme of [67, 68] on the Keldysh contour. This generalization paves a way to application of the scheme to non-equilibrium systems. As expected, the chain of equations (9) and (10) is usually infinite. However, contrary to the standard EOM scheme, this normalized irreducible formulation guarantees that truncating the chain at step n is equivalent to neglecting higher order correlations only [67]. Note that structure of equations (9) and (10) for $n = 1$ is similar to that of the first Hubbard (HHA) approximation previously derived for the Hubbard non-equilibrium Green functions (see e.g. [39]).

Similar to usual EOM techniques each next step takes into account higher correlations induced in the system by coupling (in our case) to baths. Note however that in the standard EOM techniques each next step brings in addition to higher order processes also multiple correlations of the lower order. In the present methodology those are excluded by the orthogonalization procedure. A detailed discussion and graphic representation for equilibrium Green functions EOMs can be found in [68].

2.2. EOM for canonical Green functions

While the form of equations (9) and (10) is suggestive of a Dyson-type, the quasiparticles described by the corresponding Green functions are of a non-canonical nature due to spectral weight $P_{\mu,\nu}(\tau)$ in the right side of the equations [74]. Also left versus right symmetry is not obvious in the present form of the equations. A local gauge transformation with a space-time factor is needed to achieve canonical form of the expressions. To reveal canonical quasiparticles we choose the following scaling

$$G_{\nu,\mu}^{(n-1)}(\tau, \tau') \equiv P_{\nu,\mu}^{-1/2}(\tau) G_{\nu,\mu}^{(n-1)}(\tau, \tau') P_{\nu,\mu}^{-1/2}(\tau') \tag{13}$$

Applying transformation (13) to the left EOM, equation (9), leads to an EOM for the canonical Green function

$$\begin{align*}
\left[i \frac{\partial}{\partial \tau} - \hat{\omega}_n(\tau) \right] G_{\nu,\mu}^{(n)}(\tau, \tau') &= \delta(\tau, \tau') I_n \\
+ \int d\tau_1 G_{\nu,\mu}^{(n)}(\tau, \tau_1) \Sigma_{\nu,\mu}^{(n)}(\tau_1, \tau') G_{\nu,\mu}^{(n)}(\tau, \tau') \\
&+ \int d\tau_1 G_{\nu,\mu}^{(n)}(\tau_1, \tau_1) \Sigma_{\nu,\mu}^{(n)}(\tau_1, \tau') G_{\nu,\mu}^{(n)}(\tau, \tau') \tag{14}
\end{align*}$$

Here

$$\begin{align*}
\Sigma_{\nu,\mu}^{(n)}(\tau, \tau') &= P_{\nu,\mu}^{1/2}(\tau) \Sigma_{\nu,\mu}^{(n)}(\tau, \tau') P_{\nu,\mu}^{-1/2}(\tau') \\
&\equiv \hat{N}_{n,n+1}(\tau) \hat{G}_{n,n+1}(\tau, \tau', \nu_{n,n+1}(\tau)) \tag{15}
\end{align*}$$

with

$$\hat{N}_{n,n+1}(\tau) \equiv P_{\nu,n+1}(\tau) \nu_{n,n+1}(\tau) \nu_{n,n+1}(\tau) \tag{16}$$

and $\nu_{n,n+1}(\tau)$ is the canonical quasiparticle self-energy. To derive the second line in equation (15) we employed
equations (12) and (13). The free evolution matrix is (see appendix C for derivation)
\[
W_0(t) = \frac{i}{2} \frac{\partial}{\partial t} \left[P_{A_0,A_0}(t) \right] \left[P_{A_0,A_0}(t) \right]^{-1} \frac{1}{2} P_{A_0,A_0}(t) \times \omega(t) P_{A_0,A_0}(t) + h.c. \tag{17}
\]
Note that since the free evolution matrix is Hermitian, \(W_0(t) = W_0^\dagger(t)\) and the self-energy matrix \(S_{A_0,A_0}(t, t')\) is symmetric relative to normalization factors, equation (15), a similar derivation starting from right EOM, equation (10), leads to the same result. Thus equation (14) is of canonical Dyson form. This is the main exact result of our consideration.

Calculations based on the infinite chain of EOMs, equation (14), are truncated at some finite step \(n\) by an approximation performed on self-energy \(S_{A_n,A_n}(t, t')\) of the last equation in the chain. For example, one can completely neglect the self-energy, or assume a decoupling procedure, which will allow expressing the self-energy in terms of Green functions available in the chain. The resulting finite set of equations has to be solved self-consistently, since spectral weights (normalization factors), equation (3), can be expressed in terms of Green functions, which they also define (see equations (14)–(17)).

Note that while (similar to the standard EOM methods) truncation of the chain (14) cannot formally guarantee conserving character of the approximation, the methodology described here does resolve two important drawbacks of the usual EOM formulations: 1. Contrary to the usually employed truncation schemes it provides a way to make decoupling controllable in a sense that at each step one takes into account systematically the greater complexity of the correlations; 2. It resolves the symmetry-breaking problem in decoupling chain of Green function EOMs in the sense of left vs. right EOM incompatibility. The latter problem is relevant for EOM formulations for both usual [42, 52, 53] and Hubbard [37–40] Green functions and may lead to complications (for example, non-Hermiticity of the density matrix). In the presented formulation Hermiticity and positive definiteness of the density matrix is guaranteed by the canonical form of equation (14) (see appendix E). Note also that in the examples presented in section 3 the approach provides results which do not violate conservation laws. Finally, infinite chain of EOMs (14) is exact and can be viewed as a way to define proper quasiparticles for strongly interacting molecules in junctions. Note that these quasiparticles are not molecular or Kohn–Sham orbitals (even when the latter are obtained from an (unknown) exact pseudopotential).

2.3. Application to transport in junctions

Till now our considerations were exact. Direct application of the scheme described above to open systems leads to a set of hierarchical EOMs. Each subsequent step in the hierarchy accounts for additional correlations caused by system-bath coupling. The resulting multi-energy correlation functions are similar to those discussed in the literature [75] with the distinction that in the present consideration the hierarchy is formulated for Green functions rather than for a density matrix. While the scheme is well defined and in combination with TDDFT may be even practically applicable [76] (see section 3.1 below), rigorous many-body formulation quickly becomes prohibitively expensive.

A simple approximate practical alternative is based on substitution of the infinite chain of equations, equation (14), by the first equation in the chain (\(n = 1\)) with self-energy \(S_{A_1,A_1}(t, t')\) obtained from an approximate self-consistent formulation. We note that the self-energy \(S_{A_1,A_1}(t, t')\) is defined in terms of irreducible Green function \(G_{A_1,A_1}(t, t')\), equation (15). Then utilizing equations (4), (5), (7) and (8) after lengthy but straightforward transformations we get (see appendix D for derivation)
\[
S_{A_1,A_1}(t, t') = S(t, t') - R(t) \nu_{A_1,A_1} G_{A_1,A_1}(t, t') R_1(t') \tag{18}
\]
where
\[
S(t, t') \equiv P_{A_1,A_1}(t) \nu_{A_1,A_1} G_{A_1,A_1}(t, t') P_{A_1,A_1}(t') \tag{19}
\]
\[
R(t) \equiv P_{A_1,A_1}(t) \nu_{A_1,A_1} P_{A_1,A_1}(t) P_{A_1,A_1}(t') \tag{20}
\]
So far derivations are exact, that is the infinite chain of equations (14) can be exactly replaced by the first equation from the chain and equation (18). Note that the latter system of two equations should be solved self-consistently since Green function \(G_{A_1,A_1}(t, t')\) is defined by self-energy \(S_{A_1,A_1}(t, t')\), equation (14) with \(n = 1\), which in turn depends on the Green function, equation (18).

However, the resulting scheme cannot be rigorous due to the unknown term \(S(t, t')\) in the right side of equation (18). This term is defined with usual Green function \(G_{A_1,A_1}(t, t')\), equation (19), which cannot be expressed in terms of \(S_{A_1,A_1}(t, t')\) and \(S_{A_1,A_1}(t, t')\), so that an approximation representing it in terms of known quantities (for example, by separating system and bath coordinates) is required to complete the formulation of a simple practical scheme. After the approximation the self-energy \(S_{A_1,A_1}(t, t')\) can be obtained from equation (18), for example within a self-consistent procedure, which starts by substitution of \(S(t, t')\) in place of \(S_{A_1,A_1}(t, t')\) in the right side of the expression. We note that the approximations are related to the way of calculating the self-energy \(S_{A_1,A_1}(t, t')\) and do not modify the canonical form of the EOM (14). Thus Hermiticity and positive definiteness of the resulting density matrix are preserved.

Note that if initial vector \(\hat{\varepsilon}_1\) consists of all possible excitations in the system, the standard non-equilibrium Green function (correlation function of operators of elementary excitations) can be expressed as a combination of Green functions \(G_{A_1,A_1}(t, t')\). The latter can be used in the standard NEGF expression for current [77].
3. Numerical results

We apply the methodology described above to several models and compare results with those obtained within other techniques.

3.1. Non-interacting multi-level system

As a starting point we consider a non-interacting system of M levels (orbitals) coupled to contacts. The Hamiltonian of the model is
\[
\hat{H} = \sum_{m_1, m_2}^M H^{(M)}_{m_1 m_2} \hat{d}_{m_1} \hat{d}_{m_2} + \sum_k \epsilon_k \hat{c}_k^{\dagger} \hat{c}_k + \sum_{k, m} V_{mk} \hat{d}_{m}^{\dagger} \hat{c}_k + \text{h.c.}
\]

Here first and second terms represent free electrons in the system and baths, respectively. Third term is the bi-linear coupling between them.

Since we are interested in the properties of the system, it is natural to choose molecular quasiparticle excitations as the initial vector operator (here T is transpose operation)
\[
\hat{a}_1 \equiv \hat{A}_1 = \left(\hat{d}_{m} \right)^T
\]

With this choice we get
\[
\hat{A}_2 = \left(\left(\hat{c}_k \right)^T \right)^T \quad \hat{A}_3 = 0
\]

and the chain of equations closes exactly at the second step. Moreover, due to the standard commutation relations $[\hat{P}_{A_1 A_1}, \hat{P}_{A_2 A_1}] = 0$, so that the canonical quasiparticle Green functions, $G^{(0)}_{A_1 A_1}(\tau, \tau')$, coincide with the standard non-equilibrium Green function formulations and equation (14) (with $n = 1$) is the standard Dyson equation.

3.2. Coulomb blockade in QD

Next we turn to a quantum dot in a junction with paramagnetic levels. The model Hamiltonian is
\[
\hat{H} = \sum_{\sigma} \epsilon_\sigma \hat{n}_\sigma + U \hat{n}_\uparrow \hat{n}_\downarrow + \sum_{k, \sigma} \epsilon_k \hat{c}_k^{\dagger} \hat{c}_k + \sum_{k, \sigma} \left(V_{k0} \hat{d}_0^{\dagger} \hat{c}_k + \text{h.c.} \right)
\]

where $\epsilon_\sigma = \epsilon - \sigma g \mu_B B_{dc}/(2)$ (ϵ is the Lande factor, μ_B is the Bohr magneton, B_{dc} is the amplitude of dc magnetic field), $\hat{n}_\sigma = \hat{d}_\sigma^{\dagger} \hat{d}_\sigma$ and U is Coulomb repulsion term.

Elementary system excitations (as in section 3.1) are not the best choice for the initial vector operator. Such a starting point will lead to a Hartree-type treatment at the first step of the EOM chain. For strong U a more suitable choice is a non-equilibrium atomic limit, where state resolved system excitations (Hubbard operators) form \hat{a}_1
\[
\hat{a}_1 \equiv \hat{A}_1 = \left(\left(1 - \hat{n}_\downarrow \right) \hat{d}_\uparrow, \left(1 - \hat{n}_\uparrow \right) \hat{d}_\downarrow, \hat{n}_\downarrow \hat{d}_\uparrow, \hat{n}_\uparrow \hat{d}_\downarrow \right)^T
\]

where $(\ldots)^T$ is transpose operation. Its spectral weight and free evolution matrices are
\[
P_{A_1 A_1} = \text{diag} \left[1 - \hat{n}_{\downarrow}, 1 - \hat{n}_{\uparrow}, \hat{n}_{\downarrow}, \hat{n}_{\uparrow} \right]
\]

$[\epsilon_\sigma \equiv \text{diag} \left[\epsilon_\uparrow, \epsilon_\downarrow + U, \epsilon_\downarrow + U \right] \quad (27)$

Here we want to restrict consideration to the Coulomb blockade regime, i.e. all the bath-assisted spin–spin correlations can be neglected (these correlations are important for the Kondo effect, as discussed below in section 3.3). This leads to
\[
\hat{A}_2 = \left(\left(1 - \hat{n}_{\downarrow} \right) \hat{c}_{\uparrow}, \left(1 - \hat{n}_{\uparrow} \right) \hat{c}_{\downarrow}, \hat{n}_{\downarrow} \hat{c}_{\uparrow}, \hat{n}_{\uparrow} \hat{c}_{\downarrow} \right)^T
\]

$[\epsilon_\sigma \equiv \text{diag} \left[\epsilon_k, \epsilon_k + U, \epsilon_k + U \right] \quad (30)$

and $\mathcal{W}_1 \equiv \epsilon_\uparrow$.

Truncating the EOM chain (14) at the second step by neglecting self-energy $\mathcal{S}^{(0)}_{A_1 A_1}$ we get a Dyson equation for canonical Green function $G^{(0)}_{A_1, A_1}(\tau, \tau')$ with self-energy
\[
\mathcal{S}^{(0)}_{A_1, A_1}(\tau, \tau') = \text{diag} \left[\Sigma_\uparrow(\tau, \tau'), \Sigma_\downarrow(\tau, \tau'), \Sigma_\sigma(\tau, \tau'), \Sigma(\tau, \tau') \right]
\]

\[
\left[\frac{\partial}{\partial \tau} - \epsilon_\sigma \right] G(\tau, \tau') = \delta(\tau, \tau') + \int d\tau_1 \Sigma_\sigma(\tau, \tau_1) G(\tau_1, \tau')
\]

We note that equation (32) coincides with equation (21) of [48], where it was obtain from the standard EOM approach. However, while a special symmetrization procedure had to be implemented in the latter case (see equation (A23) of [48]) here the same expression is obtained in the symmetrized form automatically. This is an example of the built-in symmetrization property of the formulation, which otherwise should be obtained within a step-by-step approach [52, 53]. Note also that in the Coulomb blockade regime the EOM for the canonical Green function $G^{(0)}_{A_1, A_1}(\tau, \tau')$ can be solved directly (without a self-consistent procedure). This is reminiscent
of the similar observation in [48] (see discussion below equation (43) there).

The spectral weight $P_{A_{i}, A_{j}}$ is calculated from the lesser projections of the canonical Green function $G^{(0)}_{A_{i}, A_{j}}$ using

$$n_{\uparrow} = \frac{(1 - I_{3}) \, I_{1} + I_{2} \, I_{3}}{1 - (I_{1} - I_{3})(I_{2} - I_{4})} \quad (35)$$

$$n_{\downarrow} = \frac{(1 - I_{1}) \, I_{2} + I_{1} \, I_{4}}{1 - (I_{1} - I_{3})(I_{2} - I_{4})} \quad (36)$$

where $I_{m} = -iG^{(0)}_{A_{i}^{\downarrow}, A_{j}^{\uparrow}}(t, t)$ (A_{i}^{m} indicates mth operator of the vector A_{i}).

In addition to the level populations, probabilities of many-body states of the quantum dot, $|0\rangle$, $|\sigma\rangle$ and $|2\rangle$, can be evaluated from

$$P_{\uparrow} = -iG^{(0)}_{A_{i}^{\downarrow}, A_{j}^{\uparrow}}(t, t) \quad P_{\downarrow} = -iG^{(0)}_{A_{i}^{\uparrow}, A_{j}^{\uparrow}}(t, t)$$

$$P_{2} = -iG^{(0)}_{A_{i}^{\uparrow}, A_{j}^{\uparrow}}(t, t) = -iG^{(0)}_{A_{i}^{\uparrow}, A_{j}^{\uparrow}}(t, t) \quad (37)$$

and $P_{0} = 1 - P_{\uparrow} - P_{\downarrow} - P_{2}$.

Figure 1 shows results of calculations which employ EOM for the canonical Green function $G^{(0)}_{A_{i}, A_{j}}(t, t')$. Parameters are (in units of U): temperature $T = 10^{-3}$, quantum dot levels $\varepsilon_{\uparrow} = -0.4$ and $\varepsilon_{\downarrow} = -0.6$, electronic escape rate to contact $K = L, R, \Gamma_{K} \equiv 2\pi \sum_{k} |V_{k}|^{2} \delta(E - E_{k}) = 0.01$ (we assume the wide band limit, where the escape rate does not depend on energy E). The Fermi energy is taken at origin $E_{F} = 0$ and bias is applied symmetrically, $\mu_{L} = E_{F} + V_{sd}/2$ and $\mu_{R} = E_{F} - V_{sd}/2$. Gate potential shifts level positions $\varepsilon_{\sigma} \rightarrow \varepsilon_{\sigma} + V_{g}$. Calculations are performed on an energy grid spanning the region from -3 to 3 with step 10^{-4}. Probabilities of states $|\uparrow\rangle$ and $|\downarrow\rangle$ (see figures 1(a) and (b)) are seen to be equal in the blockaded and transition regions, but differ considerably at the borders of the two, where the probability of the state $|\downarrow\rangle$ is much higher due to the lower position of its energy level. Figure 1(c) shows a conductance map with spin sidebands. The result is in agreement with experimental observation [78].

3.3. Kondo in QD

We continue consideration of the QD model, equation (24). Note that any nonequilibrium atomic limit (by its construction taking all interactions in the system into account exactly, but treating system-bath coupling perturbatively) is not a proper starting point to describe effects of the Kondo type, where entanglement between the system and bath has to be taken into account in a non-perturbative manner. Thus it is not reasonable to expect that the results presented below reproduce Kondo features exactly. So we compare our treatment to standard EOM approaches in the literature [48, 79].

To obtain Kondo features, one has to truncate the EOM chain at least on the third step [48, 79]. Correspondingly, in the present approach one has to work with 3D energy grid. To avoid heavy computations we make the following simplifications: 1. Kondo is observed for $U \rightarrow \infty$, thus all Hubbard operators corresponding to double occupation of QD can be neglected; 2. The effect describes coherence between system and bath, thus excitations in both should be accounted for from the start; 3. Correlations responsible for appearance of a Kondo peak include bath-induced spin-spin correlations in the system, thus to simplify the consideration we include excitations of this type into the initial vector operator \hat{a}_{1}; 4. For simplicity we neglect system-induced spin–spin correlations in the bath.

With these approximations in mind an initial choice is

$$\hat{A}_{1} = \left(1 - \hat{n}_{\sigma}\right)\hat{d}_{\sigma}, \left(1 - \hat{n}_{\sigma}\right)\hat{c}_{\sigma}, \hat{d}_{\sigma}^{\dagger}\hat{c}_{\sigma}\hat{d}_{\sigma}^{\dagger} \right)^{T} \quad (38)$$

where $\sigma = \uparrow, \downarrow, \hat{n}_{\sigma} \equiv \hat{d}_{\sigma}^{\dagger}\hat{d}_{\sigma}$ and $\hat{c}_{\sigma} \equiv \hat{d}_{\sigma}^{\dagger}\hat{c}_{\sigma}$, $\hat{n}_{\sigma} = \hat{c}_{\sigma}\hat{c}_{\sigma}^{\dagger}$, $\hat{c}_{\sigma}^{\dagger} \equiv \hat{c}_{\sigma}\hat{c}_{\sigma}^{\dagger}$, $\hat{c}_{\sigma}^{\dagger} \equiv \hat{c}_{\sigma}\hat{c}_{\sigma}^{\dagger}$. Corresponding spectral weight and free evolution matrices have block spin...
structure

\[\mathbf{P}_{A_1, A_1}^{(s)} = \begin{bmatrix} \langle 1 - \hat{n}_\delta \rangle & (1 - \hat{n}_\sigma) c_{k_\delta}^{\dagger} \hat{a}_\delta \\ \langle 1 - \hat{n}_\sigma \rangle c_{k_\delta}^{\dagger} \hat{a}_\delta & \langle 1 - \hat{n}_\sigma \rangle c_{k_\delta}^{\dagger} \hat{a}_\delta \end{bmatrix} \]

Neglecting system-induced spin correlations in the bath we get

\[\hat{d}_2 = \left(\hat{\bar{n}}_\delta \hat{\sigma} \right) \]

\[\mathbf{P}_{A_2, A_1}^{(s)} = \begin{bmatrix} \langle 1 - \hat{n}_\delta \rangle & 0 \\ \langle 1 - \hat{n}_\sigma \rangle c_{k_\delta}^{\dagger} & 0 \end{bmatrix} \]

To allow for analytic derivation we make an additional approximation, decoupling system and bath degrees of freedom in \(\mathbf{P}_{A_1, A_1} \) and \(\mathbf{P}_{A_2, A_1} \). Note that this type of approximations should be done with care. In particular, derivation of the symmetrized version for free evolution presented in section 2.2 is not possible after the approximation, decoupling system and bath degrees of freedom in \(\mathbf{P}_{A_1, A_1} \) and \(\mathbf{P}_{A_2, A_1} \). In particular case the resulting EOM for the system part of the canonical Green function (canonical correlation function of the first operator in the vector \(A_1 \), equation (38)) is the same if derived from left or right EOM. Explicit expression for the EOM is

\[\left(\frac{i}{\hbar} \frac{\partial}{\partial \tau} - \varepsilon_\sigma \right) g_{A_1}^{(0)}(\tau, \tau') = \delta(\tau, \tau') + \int_\mathcal{D} d\tau_1 (\Sigma_\sigma(\tau, \tau_1) + \Sigma_\sigma^{(K)}(\tau, \tau_1), \tau_1) \]

where self-energy \(\Sigma_\sigma(\tau, \tau') \) is defined below equation (31) and

\[\Sigma_\sigma^{(K)}(\tau, \tau') \equiv \sum_k |V_k|^2 \hat{n}_{k_\sigma} g_{k_\sigma}^{(K)}(\tau, \tau') \]

with

\[\left(\frac{i}{\hbar} \frac{\partial}{\partial \tau} - \varepsilon_{k_\sigma} + \varepsilon_\delta - \varepsilon_\sigma \right) g_{k_\sigma}^{(K)}(\tau, \tau') = \delta(\tau, \tau') \]

defining the contact electron Green function. The latter self-energy is responsible for appearance of Kondo features. We note that the corresponding standard non-equilibrium Green function, \(G_\sigma(\tau, \tau') \equiv \langle 1 - \hat{n}_\delta \rangle w_{A_1}^{(0)}(\tau, \tau') \) coincides with the result obtained in our previous publication (see equation (55) in [48]). Note also that element \(\langle \hat{n}_{k_\delta} \rangle \) in equation (44), central for appearance of Kondo features, is obtained as a result of projection (orthogonalization), equations (4) and (5).

Figure 2 shows results of calculations that employ EOM for the canonical Green function \(G_\sigma^{(0)}(\tau, \tau') \), equation (43). Parameters are (in units of \(\Gamma \)): \(T = 0.005, \varepsilon_\sigma = -2 \) and \(\Gamma_\sigma = \Gamma_R = 0.5 \). Fermi energy is taken at origin, \(E_F = 0 \) and bias \(V_{sd} = 0.6 \). Calculations are performed on an energy grid spanning the region from –5 to 3 with step 10⁻⁴. The density of states (same for both spins) in equilibrium demonstrates a Kondo feature at \(E_F \). Under bias the feature splits into two peaks centered around each of the chemical potentials. This result was first reported in [79].

In addition to a static longitudinal field \(B_{dc} = B_{dc} \hat{\sigma}_r \), we now consider a rotating transverse magnetic field \(B_{ac} = B_{ac} \hat{\sigma}_r \sin \omega t \). In this case Hamiltonian (24) acquires an additional time-dependent term

\[-g \mu_B B_{ac} \left(\hat{d}_1^{\dagger} \hat{d}_1 e^{i\omega t} + \hat{d}_1^{\dagger} \hat{d}_1 e^{-i\omega t} \right) \]

Here \(B_{ac} \) is the amplitude and \(\omega \) is the frequency of the \(ac \) magnetic field. Transformation to the rotational frame of the field

\[\hat{H} = i \left(\frac{\partial}{\partial t} \hat{S}(t) \right) e^{-i\hat{S}(t)} + e^{i\hat{S}(t)} \hat{H}_c e^{i\hat{S}(t)} \]

\[\hat{S}(t) = -\frac{i}{2} \omega t \sum_\sigma \left(\hat{n}_\sigma + \hat{n}_{k_\sigma} \right) \]

allows us to formulate an effective time-independent problem. Finally, transformation into molecular eigenbasis leads to

\[\hat{H}_{eig} = \sum_\sigma \left[E_\sigma \hat{c}_\sigma \hat{c}_\sigma + U \hat{c}_{k_\sigma}^{\dagger} \hat{c}_{k_\sigma} \right] + \sum_{k, k, \sigma, \tau} \left(\hat{c}_{k_\sigma}^{\dagger} \hat{c}_{k_\tau} \right) \left(\hat{c}_{k_\tau}^{\dagger} \hat{c}_{k_\sigma} \right) + \sum_{k, \sigma} \left(\hat{c}_{k_\sigma}^{\dagger} \hat{v}_k \hat{c}_{k_\sigma} \right) \]

Figure 2. Kondo in QD. Density of states, \(-\text{Im} G_\sigma^\prime(E)/\pi\), in equilibrium (dashed line, blue) and biased (solid line, red) junction.

See text for parameters.
eventually leads to the presence of an magnetic field. Parameters of the calculation in the spirit of the non-equilibrium atomic limit) Hubbard Hamiltonian, we perform the analysis employing Figure 3. Kondo in QD in the presence of ac magnetic field with frequency \(\omega \). (a) Density of states,
\[\rho_\sigma(E, \omega) = -\Im \left[U G^{(0)}_{\sigma\sigma}(E) U \right]_{\sigma\sigma} / \pi \] for \(\omega = 0, \sigma = \uparrow \) (solid line, red), \(\omega = 0, \sigma = \downarrow \) (dotted line, blue) and \(\omega = 1 \) (dash–dotted line, black). (b) Map of \(\rho_\uparrow(E, \omega) \). See text for parameters. are (in units of \(\Gamma \)): \(\varepsilon_\uparrow = -2.5, \varepsilon_\downarrow = -1.5, g\mu_B B_{ac} = 0.2 \) and \(V_{sd} = 0 \). Other parameters are as in figure 2. In this case densities for spin up and down are in general different (see solid and dotted lines in figure 3(a)). They coincide at \(\omega = 1 \) (dash–dotted line in figure 3(a)), where the frequency of the field is in resonance with molecular excitation, \(\omega = |\varepsilon_\uparrow - \varepsilon_\downarrow| \). Figure 3(b) illustrates an avoided crossing demonstrated by Kondo peaks of the two densities when the frequency of the ac magnetic field approaches molecular resonance.

3.4. Two-level system

As a last example we consider a particular case of Hamiltonian (21) with \(M = 2 \). However instead of using quasiparticle excitation operators, \(\hat{a}_m \), we perform the analysis employing (in the spirit of the non-equilibrium atomic limit) Hubbard basis.
operators. The initial vector-operator is

$$\hat{A}_1 = \begin{pmatrix} \hat{X}_{0a}, \hat{X}_{0b}, \hat{X}_{b2}, \hat{X}_{a2} \end{pmatrix}^T$$ \hspace{1cm} (61)$$

where \(\hat{X}_{S_i,S_j} \equiv \left| S_i \right\rangle \left\langle S_j \right|\) are projection (Hubbard) operators and \([0], [a], [b], [2]\) are many-body states in the eigen-basis of molecular Hamiltonian \(H^{(M)}\). The choice (61) leads to

$$\begin{bmatrix} \langle \hat{X}_{0a} + \hat{X}_{0b} \rangle & \langle \hat{X}_{0b} \rangle & 0 & 0 \\ \langle \hat{X}_{ab} \rangle & \langle \hat{X}_{0a} + \hat{X}_{hb} \rangle & 0 & 0 \\ 0 & 0 & \langle \hat{X}_{hb} + \hat{X}_{22} \rangle & \langle \hat{X}_{hb} \rangle \\ 0 & 0 & \langle \hat{X}_{ab} \rangle & \langle \hat{X}_{a0} + \hat{X}_{22} \rangle \end{bmatrix}$$ \hspace{1cm} (62)$$

\(\epsilon_1 = \text{diag} [E_a, E_b, E_a, E_b]\) \hspace{1cm} (63)$$

We note that the First Hubbard Approximation (HIA), which was criticized in [73] with respect to its application to the model, partly misses renormalization of the free evolution matrix \(\omega_1\), equation (11) and completely neglects the self-energy \(\Sigma_{A1,A1}^{(0)}\), equation (12).

As discussed in section 2.3, direct application of the methodology to transport problems in general is prohibitively expensive due to necessity to work with multi-energy correlation functions. Here we implement an approximation, where canonical self-energy is provided by solving self-consistently equation (18) and decoupling between system and bath variables is assumed in the correlation function \(S(t, t')\).

This separation leads to the appearance of the canonical system Green functions \(G_{B1,B1}^{(0)}(t, t')\) generated by vector-operator

$$\hat{B}_1 = \begin{pmatrix} \hat{X}_{00}, \hat{X}_{aa}, \hat{X}_{bb}, \hat{X}_{ab}, \hat{X}_{ba}, \hat{X}_{02} \end{pmatrix}^T$$ \hspace{1cm} (64)$$

Writing EOMs for these Green functions is not straightforward, since \(P_{B1,B1}\) does not exist. Indeed, not every choice of operators yields a matrix which has an inverse. For example, commuting operators will provide a matrix without inverse. Two ways to proceed were suggested in [67, 68, 83]: 1. Complementing the original vector operator with time derivatives of the commuting operators (this approach will resolve the issue and corresponding formulation will be exact; however one has to work with big matrices); and 2. Formulations of an approximate practical scheme. To proceed we formulate such a scheme, where instead of single EOM for \(G_{B1,B1}^{(0)}(t, t')\), equation (B4), two equations \((s = \pm)\) are considered

$$\frac{\partial}{\partial t} G_{B1,B1}^{(0)}(t, t') = \delta(t, t') P_{B1,B1}(t) + G_{B1,B1}^{(0)}(t, t')$$ \hspace{1cm} (65)$$

such that \(P_{B1,B1}^{-1}\) exists, \(P_{B1,B1} = \sum_{s=\pm} P_{B1,B1}^{(s)}\) and

\(G_{B1,B1}^{(0)}(t, t') = \sum_{s=\pm} G_{B1,B1}^{(0)}(t, t')\). Equations (65) can be solved according to the standard procedure described above, however each chain has its own definition of the orthogonalized operators, \(\hat{A}_2^{(s)} \equiv \hat{a}_2 - P_{B1,B1}^{(s)} \left(P_{B1,B1}^{-1} \right)^{-1} \hat{A}_1\).

In particular, in the simulations below we chose \(P_{B1,B1}(t) = P_{B1,B1} \pm i \mathbf{e}\) where \(i\) is a small number and \(\mathbf{I}\) is the unit matrix and follow the formulation of section 2.3. In definitions of correlation functions \(S^{(s)}(t, t')\) (see equations (19) and (D5)) for small \(e\) we take approximately \(G_{B1,B1}^{(0)}(t, t') \approx G_{B1,B1}^{(0)}(t, t')\) through this time yields Green functions \(G_{B1,B1}^{(0)}(t, t')\), so that the two sets of equations have to be solved self-consistently. Similary to section 2.3, the approximations do not alter the canonical form of equation (14). Thus also here Hermicity and positive definiteness of the resulting density matrix is guaranteed. This statement is supported also by results of simulations presented below.

Figure 4 shows results of calculations which employ the approximate approach of section 2.3 and compares it to exact results provided by standard NEGF. Parameters of the calculation are \(T = 10 \text{ K}\), \(H^{(M)} = H_0^{(M)} = 0.4 \text{ eV}\), \(H_1^{(M)} = t_{12} = 0.2 \text{ eV}\), \(\Gamma_1^{L} = \Gamma_1^{R} = 0.1 \text{ eV}\) and \(\Gamma_2^{L} = \Gamma_2^{R} = 0\) (here \(K = L, R\) and \(t_{L,R}^{m,m_0} = 2\pi \sum_{k}\langle E_{m_0} | V_{km} | E_m \rangle\)). Fermi energy is chosen as the origin, \(E_F = 0\) and bias \(V_{sd}\) is applied on the left, \(\mu_L = V_{sd} + \mu_R = E_F\). Calculation is performed on an energy grid spanning the range from \(3 \text{ eV}\) to \(5 \text{ eV}\) with step \(10^{-4} \text{ eV}\). Tolerance for convergence in populations and coherences is \(10^{-4}\). One sees that probabilities of the many-body eigenstates of the system \((P_0 = \langle \hat{X}_{00} \rangle, P_a = \langle \hat{X}_{aa} \rangle, P_b = \langle \hat{X}_{hb} \rangle, P_2 = \langle \hat{X}_{22} \rangle,\) coherences \((\langle X_{ab} \rangle)\) and current–voltage characteristics of the junctions are accurately reproduced by the approximate procedure of section 2.3. Note that standard Redfield QME procedure, as an approach treating system-bath coupling to finite (second) order, misses broadening induced by hybridization.

Figure 5 shows probabilities and coherences of the many-body states as functions of the inter-level electron hopping parameter \(t_{12} \equiv H_{12}^{(M)}\). Calculation is performed at \(V_{sd} = 0.8 \text{ V}\), other parameters are as in figure 4. One sees that the approximate scheme of section 2.3 reproduces exact results pretty well while the description in terms of non-equilibrium atomic limit is meaningful, i.e. \(t > \Gamma\).

4. Conclusions

Quantum transport formulations utilizing many-body states of the system as a basis, the non-equilibrium atomic limit, is beneficial approach in many situations of practical importance [19]. A straightforward general methodology applicable in such situations is provided by the equation-of-motion technique. EOM formulated on the Keldysh contour has been used in the literature to describe transport in junctions by us [47, 48] and others [44, 45, 52, 53]. Two main weaknesses of the method are: 1. The necessity to make uncontrollable approximations in truncating the (in general infinite) chain of EOMs and 2. Loss of symmetry properties (proper commutation relations) as a result of decoupling.
Here we introduced a non-equilibrium version of the EOM approach which is formulated with the help of projection operators (similar to quantum master equation formulations) and choice of irreducible Green functions in the EOM chain (similar to the choice of irreducible diagrams in the standard quantum field theory methods). The approach, originally developed by Tserkovnikov \cite{67, 68} for description of systems at equilibrium, is reformulated to be applicable to (in general) time-dependent non-equilibrium situations (section 2.1). We derive an explicit canonical form for the chain of EOMs (see section 2.2), thus resolving concerns \cite{73} related to a way of proper construction for a non-equilibrium atomic limit. After a general formulation we discuss application of the procedure to transport in junctions. A simple practical approach is proposed in section 2.3.

This PO-NEGF EOM (PO meaning Projection Operator) formulation is illustrated within simple model calculations. In particular, we consider models of multi-level non-interacting system, quantum dots in the Coulomb blockade and Kondo regimes and a two-level system treated with Hubbard operators. The latter was the focus of \cite{73}, when concerns about formulations of a non-equilibrium atomic limit were raised. Results of numerical simulations are compared to other approximate techniques and (when available) to exact results. We show that proper symmetrization, as discussed in \cite{42, 52, 53}, is built into the scheme. We also show explicitly that projection (orthogonalization) is crucial for proper description of a system coupled to the bath. The latter is missed within the first Hubbard approximation, as discussed in \cite{40, 73} in connection with the Hubbard non-equilibrium Green function formulation and may be the reason for inconsistencies within the approximation.

In summary, the presented approach is a step forward in development of NEGF-EOM approaches. While the proposed truncation procedure (similar to the standard EOM methods)
cannot formally guarantee that the resulting approximation will be conserving in the sense of being derived from a Luttinger–Ward functional, it introduces two important features: 1. Controllability of the decoupling scheme and 2. Canonical form of the resulting EOM chain. The former is due to orthogonalization, equations (4), (5) and (7) and is discussed in detail in [68]. The latter, equation (14), is a new result, which guarantees Hermiticity and positive definiteness of the resulting density matrix. Moreover, it can be viewed as a way to introduce quasiparticles in the case of strong interactions localized on the molecule. Note that the quasiparticles are not molecular (or Kohn–Sham) orbitals of the isolated molecule. Application of the approach to problems, where standard NEGF methodology is not feasible, is the goal of future research.

Acknowledgments

MG gratefully acknowledges support by the Department of Energy (Early Career Award, DE-SC0006422). MR thanks the National Science Foundation for support (CHE-1058896).

Appendix A. Positivity of spectral weights for Fermi-type excitation at finite temperature

Here we prove that for vector operators $A_n(\tau) = \left\langle \hat{X}_1(\tau), \ldots, \hat{X}_M(\tau) \right\rangle$, where $\{\hat{X}_i(\tau)\}$ is a linearly independent set of Hubbard operators of Fermi type, the spectral weight $P_{A_n, A_n}(\tau)$, equation (3), is a positive definite matrix at finite temperature. The proof follows from observation that the spectral weight is the sum of two Gram matrices, the positive definite character of physical density matrix at finite temperature and properties of the trace4.

Let $A = (\hat{X}_1, \ldots, \hat{X}_M)$ be a vector operator such that \hat{X}_i is an operator of Fermi type for every i, then

$$P_{A_n, A_n} = M_1 + M_2$$ \hspace{1cm} (A1)

where

$$M_1 = \begin{bmatrix} \left\langle \hat{X}_1 \hat{X}_1^\dagger \right\rangle & \ldots & \left\langle \hat{X}_1 \hat{X}_M^\dagger \right\rangle \\ \vdots & \ddots & \vdots \\ \left\langle \hat{X}_M \hat{X}_1^\dagger \right\rangle & \ldots & \left\langle \hat{X}_M \hat{X}_M^\dagger \right\rangle \end{bmatrix},$$ \hspace{1cm} (A2)

with $\left\langle \hat{X}_i \hat{X}_j^\dagger \right\rangle = \text{Tr}(\hat{\rho} \hat{X}_i \hat{X}_j^\dagger)$. Similarly, matrix M_2 is composed by $\left\langle \hat{X}_i \hat{X}_i^\dagger \right\rangle$ elements.

For any nonzero M-dimensional complex column vector $y = (y_1, \ldots, y_M)^T$ we can write

$$y^\dagger \cdot P_{A_n, A_n} \cdot y = \sum_{i,j} y_i^\dagger \left\langle \hat{X}_i \hat{X}_j^\dagger \right\rangle y_j \equiv \left\langle \hat{C} \hat{C}^\dagger \right\rangle$$ \hspace{1cm} (A3)

where $\hat{C} \equiv \sum_{i,j} y_i^\dagger \hat{X}_i$, and we have used that trace is a linear function.

Since the operators \hat{X}_i are linearly independent, \hat{C} is not the zero matrix in any basis for any non-trivial choice of y. Let c_i be the i-th column vector in C. By invariance of the trace under cyclic permutations we get

$$\left\langle \hat{C} \hat{C}^\dagger \right\rangle = \text{Tr}(\hat{C}^\dagger \hat{C}) = \sum_i c_i^\dagger \cdot \hat{\rho} \cdot c_i$$ \hspace{1cm} (A4)

Sum on the right is strictly positive as at least one vector c_i is nonzero and the density matrix $\hat{\rho}$ is positive definite (the latter is always true for physical density matrix at finite temperature). This proves that matrix M_1 is positive definite.

Similarly we can find that M_2 is also positive definite matrix. Thus, for any non-zero complex vector y

$$y^\dagger \cdot P \cdot y = y^\dagger \cdot (M_1 + M_2) \cdot y > 0$$ \hspace{1cm} (A5)

which completes the proof.

Appendix B. Derivation of equations (9) and (10)

In the derivation below we follow [68]. We derive equation (9), derivation of equation (10) proceeds along the same lines.

Staring point is the definition of the non-equilibrium Green function for two arbitrary vector operators \hat{a} and \hat{b}

$$G_{\hat{a}, \hat{b}}(\tau, \tau') = -i \left\langle T_c \hat{a}(\tau) \hat{b}^\dagger(\tau') \right\rangle$$ \hspace{1cm} (B1)

Its left side EOM can be written as

$$i \frac{\partial}{\partial \tau} G_{\hat{a}, \hat{b}}(\tau, \tau') = \delta(\tau, \tau') P_{\hat{a}, \hat{b}}(\tau) + G_{\hat{a}, \hat{b}}(\tau, \tau')$$ \hspace{1cm} (B2)

where \hat{a} is the time derivative of the operator \hat{a} (in the Heisenberg picture) and $G_{\hat{a}, \hat{b}}(\tau, \tau')$ is the Green function defined by equation (B1) with $\hat{a} \rightarrow \hat{b}$. In particular, for orthogonalized operators, Equations (4) and (5), this becomes

$$i \frac{\partial}{\partial \tau} G_{\hat{a}, \hat{a}}(\tau, \tau') = \delta(\tau, \tau') P_{\hat{a}, \hat{a}}(\tau) + G_{\hat{a}, \hat{a}}(\tau, \tau') \quad (m < n)$$ \hspace{1cm} (B3)

since $P_{\hat{a}, \hat{a}}(\tau) = 0$ for $n \neq m$ by construction. Utilizing (B2) and (B3) in the definition of irreducible Green functions, equation (7), leads to

$$i \frac{\partial}{\partial \tau} G_{\hat{a}, \hat{a}}^{(n-1)}(\tau, \tau') = \delta(\tau, \tau') P_{\hat{a}, \hat{a}}(\tau) + G_{\hat{a}, \hat{a}}^{(n-1)}(\tau, \tau')$$ \hspace{1cm} (B4)

To find an expression for the last term in the right side of equation (B4) we consider irreducible Green function $G_{\hat{a}, \hat{a}}^{(n)}(\tau, \tau')$ (\hat{a} is an arbitrary vector operator), which by definition, equation (7), satisfies

$$G_{\hat{a}, \hat{a}}^{(n)}(\tau, \tau') = \sum_{\alpha} G_{\hat{a}, \hat{a}}^{(n-1)}(\tau, \tau') \int d\tau' \frac{\partial}{\partial \tau'} G_{\hat{a}, \hat{a}}^{(n-1)}(\tau, \tau') \cdot \int d\tau_1 \cdot \int d\tau_2 G_{\hat{a}, \hat{a}}^{(n-1)}(\tau_1, \tau_2) \cdot \int d\tau_3 G_{\hat{a}, \hat{a}}^{(n-1)}(\tau_1, \tau_3) \cdot \int d\tau_4 G_{\hat{a}, \hat{a}}^{(n-1)}(\tau_2, \tau_4)$$ \hspace{1cm} (B5)

Utilizing the right side analog of equation (B2) for the first and last Green functions in the right side of equation (B5) we get

$$\sum_{\alpha} G_{\hat{a}, \hat{a}}^{(n)}(\tau, \tau') = -\delta(\tau, \tau') P_{\hat{a}, \hat{a}}(\tau) + \frac{1}{\int d\tau_1 \cdot \int d\tau_2 G_{\hat{a}, \hat{a}}^{(n-1)}(\tau_1, \tau_2) \cdot \int d\tau_3 G_{\hat{a}, \hat{a}}^{(n-1)}(\tau_1, \tau_3) \cdot \int d\tau_4 G_{\hat{a}, \hat{a}}^{(n-1)}(\tau_2, \tau_4)}$$ \hspace{1cm} (B6)
If $P_{n,A_n}(τ) \equiv \delta_{m,n}P_{A_n}(τ)$ exists\(^5\), then equation (B6) can be rewritten in the form

$$G_{n,A_n}^{(n-1)}(τ, τ') = \int dτ_1 \left[δ(τ, τ_1) P_{n,A_n}(τ) + G_{A_n}^{(n)}(τ, τ_1) \right] \times P_{A_n,τ_1}(τ_1) G_{n,A_n}^{(n)}(τ_1, τ')$$

(B7)

Using (B7) with $δ \equiv \hat{A}_n$ in (B4) leads to

$$\frac{∂}{∂τ} G_{n,A_n}(τ, τ') = δ(τ, τ') P_{n,A_n}(τ) + \int dτ_1 \left[δ(τ, τ_1) P_{n,A_n}(τ) + G_{A_n}^{(n)}(τ, τ_1) \right] \times P_{A_n,τ_1}(τ_1) G_{n,A_n}^{(n)}(τ_1, τ')$$

(B8)

Employing vector operator EOMs, equations (1) and (2), in definitions of orthogonalized operators, equations (4) and (5), one gets EOMs for the orthogonalized vector operators

$$\frac{∂}{∂τ} \hat{A}_n(τ) = \hat{ω}_n(τ) \hat{A}_n(τ) + ν_{n,n+1}(τ) \hat{A}_n^{+1}(τ)$$

(B9)

$$-i\frac{∂}{∂τ} \bar{A}_n^{+1}(τ') = \bar{A}_n^{+1}(τ') \bar{ω}_n(τ') + \bar{A}_n^{+1}(τ') ν_{n,n+1}(τ')$$

(B10)

where $ω_n(τ)$ is defined in equation (11) ($\bar{ω}_n = ω_n^*$), $ν_{n,n+1}(τ)$ is defined in equation (1) ($ν_{n,n+1} = ν_{n,n+1}$), $\lambda_{n,n+1}(τ) \equiv P_{n,A_n}(τ) ν_{n-1,n}(τ) P_{n,A_n}^{−1}(τ)$

(B11)

and $\lambda_{n,n-1} = \lambda_{n-1,n}^*$.

Finally, substituting (B9) and (B10) into (B8) and utilizing properties of orthogonalized operators

$$P_{n,A_n}(τ) = \delta_{m,n}P_{A_n}(τ)$$

(B12)

and irreducible Green functions

$$G_{A_n}^{(n)}(τ, τ') = 0 \quad \text{for } m ≤ n \text{ or } k ≤ n$$

(B13)

leads to

$$\left[i\frac{∂}{∂τ} - ω_n(τ) \right] G_{n,A_n}(n-1) (τ, τ') = δ(τ, τ') P_{n,A_n}(τ)$$

$$+ \int dτ_1 ν_{n+1,n}(τ) G_{A_n}^{(n)}(τ, τ_1) ν_{n+1,n}(τ_1) \times P_{A_n,τ_1}(τ_1) G_{n,A_n}(n-1)(τ_1, τ')$$

(B14)

This completes derivation of equation (9).

Appendix C. Derivation of equation (17)

Taking the on-the-contour derivative with respect to variable $τ$ of the canonical Green function, equation (13) and employing the EOM for the irreducible Green function, equation (9), results in EOM (14) with the asymmetric free evolution term of the form

$$\mathcal{W}_n(τ) = i\frac{∂}{∂τ} \left[P_{A_n,1}(τ) \right] P_{A_n,1}^{−1}(τ)$$

$$+ P_{A_n,1}(τ) \hat{ω}_n(τ) P_{A_n,1}^{−1}(τ)$$

(C1)

Starting point of our consideration is the definition of the normalized free evolution matrix $ω_n(τ)$, equation (11). Our goal is to rewrite the second and third terms in right side of equation (11) such a way, that the canonical free evolution term, equation (C1), will be represented in a clear symmetrized form.

First, consider the second term in right side of equation (11). Using the definition of the scalar product, equation (13) and vector-operator EOM, equation (14), we can write (to save space below we drop dependence on contour variable $τ$; such dependence is assumed for every element in the following expressions)

$$\nu_{n,n+1} P_{n,A_n} P_{n,A_n}^{−1} = \left[i\nu_{n,n+1} d\bar{A}_n^{+1}; \bar{A}_n^{+1} \right] P_{A_n,1}^{−1}$$

$$= \left[\bar{ω}_n; \bar{A}_n^{+1} \right] P_{n,A_n} P_{n,A_n}^{−1} - ε_n \left[\hat{ω}_n + \bar{A}_n^{+1} \right] P_{n,A_n}^{−1}$$

(C2)

From the definition of orthogonalized operators, equation (4), it is easy to see that $P_{n,A_n} = P_{A_n,1}$. Thus the last term in equation (C2) becomes $ε_n$. The term preceding it can be evaluated as

$$\left(i\frac{∂}{∂τ} \left[P_{A_n,1} \right] + \left[\hat{ω}_n; \bar{A}_n^{+1} \right] \right) P_{n,A_n}^{−1}$$

(C3)

Employing in the latter expression EOM (B10) and combining the results in (C2) leads to

$$\nu_{n,n+1} P_{n,A_n} P_{n,A_n}^{−1} = \left[i\frac{∂}{∂τ} \left[P_{A_n,1} \right] \right]$$

$$+ P_{A_n,1} \bar{ω}_n + P_{n,A_n} \lambda_{n-1,n} P_{n,A_n}^{−1} - ε_n$$

(C4)

Now let us consider the third term in right side of equation (11). We rewrite it as

$$P_{n,A_n} P_{n,A_n}^{−1} = P_{A_n,1} \nu_{n-1,n} P_{n,A_n}^{−1}$$

(C5)

Utilizing the EOM (B9) and performing evaluations similar to those which yield equation (C4) leads to

$$P_{n,A_n} P_{n,A_n}^{−1} = P_{A_n,1} \lambda_{n-1,n} P_{n,A_n}^{−1}$$

(C6)

Substituting (C4) and (C6) into (11) yields

$$\omega_n(τ) = i\frac{∂}{∂τ} \left[P_{A_n,1}(τ) \right] P_{A_n,1}^{−1}(τ)$$

(P_{n,A_n} P_{n,A_n}^{−1} \nu_{n-1,n} = P_{A_n,1} \lambda_{n-1,n} P_{n,A_n}^{−1} (C7)

Finally, using (C7) in (C1) and employing the matrix relation

$$M^{−1/2}(x) \frac{d}{dx} \left[M^{−1/2}(x) \right] = − \frac{d}{dx} \left[M^{1/2}(x) \right] M^{−1/2}(x)$$

(C8)

leads to equation (17).

\(^5\) Here we assume this to be always true. In section 3.4 below equation (64) we shortly discuss a situation when this is not the case.
Appendix D. Derivation of equation (18)

We start from definition of the irreducible Green function, equation (7), which for \(\hat{a} = \hat{b} = \hat{A}_2 \) is

\[
G_{A_2,A_2}^{(1)}(\tau, \tau') = G_{A_2,A_2}^{(0)}(\tau, \tau') \nonumber - \int d\tau_2 \int d\tau_1 \left[G_{A_2,A_2}^{(0)}(\tau_1, \tau_1) G_{A_2,A_2}^{(0)}(\tau_2, \tau_2) G_{A_2,A_2}^{(0)}(\tau_2, \tau_1) \right] \nonumber \]

\[
\times \left[P_{A_2,A_2}(\tau_1) G_{A_2,A_2}^{(1)}(\tau_1, \tau') + P_{A_2,A_2}(\tau_2) G_{A_2,A_2}^{(1)}(\tau_2, \tau') \right] \tag{D1}
\]

Using (B7) with \(\hat{a} = \hat{A}_2 \) and \(n = 1 \) leads to

\[
G_{A_2,A_2}^{(1)}(\tau, \tau') = \int d\tau_1 G_{A_2,A_2}^{(0)}(\tau, \tau_1) \nu_{1,1}(\tau_1) \nonumber \]

\[
\times P_{A_2,A_2}^{-1}(\tau_1) G_{A_2,A_2}^{(1)}(\tau_1, \tau') \tag{D2}
\]

where we used the EOM (B9) and properties (B12) and (B13). Consideration similar to that which leads from equation (B5) to (B7) performed for Green function \(G_{A_2,B_2}(\tau, \tau') \), after taking \(\hat{b} = \hat{A}_2 \) leads to

\[
G_{A_2,B_2}^{(1)}(\tau, \tau') = \int d\tau_1 G_{A_2,B_2}^{(0)}(\tau, \tau_1) P_{A_2,B_2}^{-1}(\tau_1) \nonumber \]

\[
\times \nu_{1,1}(\tau_1) G_{A_2,B_2}^{(1)}(\tau_1, \tau') \tag{D3}
\]

Substituting (D2) and (D3) into (D1) yields

\[
G_{A_2,A_2}^{(1)}(\tau, \tau') = G_{A_2,A_2}^{(0)}(\tau, \tau') \nonumber - \int d\tau_1 \int d\tau_2 G_{A_2,A_2}^{(0)}(\tau_1, \tau_1) \nu_{1,1}(\tau_1) \nonumber \]

\[
\times G_{A_2,A_2}^{(0)}(\tau_2, \tau_2) P_{A_2,A_2}^{-1}(\tau_1) \nonumber \]

\[
\times G_{A_2,A_2}^{(1)}(\tau_2, \tau') \nonumber \]

\[
\times P_{A_2,A_2}^{-1}(\tau_1) G_{A_2,A_2}^{(1)}(\tau_1, \tau') \tag{D4}
\]

Finally, substituting definitions of orthogonalized operators, equations (4) and (5), into the irreducible Green function \(G_{A_2,B_2}^{(0)}(\tau, \tau') \) and performing transformations similar to those leading to equations (D2) and (D3) on Green functions \(G_{A_2,A_2}^{(0)}(\tau, \tau') \) and \(G_{A_2,A_2}^{(1)}(\tau, \tau') \) results in

\[
G_{A_2,A_2}^{(1)}(\tau, \tau') = G_{A_2,A_2}^{(0)}(\tau, \tau') - P_{A_2,A_2}(\tau) P_{A_2,A_2}^{-1}(\tau) \nonumber \]

\[
\times \left[G_{A_2,A_2}(\tau, \tau') P_{A_2,A_2}^{-1}(\tau) P_{A_2,A_2}(\tau') \right] \nonumber \]

\[
- \int d\tau_1 \left(P_{A_2,A_2}(\tau) P_{A_2,A_2}^{-1}(\tau) + \nu_{1,1}(\tau) G_{A_2,A_2}^{(0)}(\tau_1, \tau_1) \right. \nonumber \]

\[
\times + G_{A_2,A_2}(\tau_1, \tau') \nu_{1,1}(\tau_1) P_{A_2,A_2}^{-1}(\tau_1) G_{A_2,A_2}(\tau_1, \tau') \nonumber \]

\[
\left. \times P_{A_2,A_2}(\tau_1') P_{A_2,A_2}^{-1}(\tau_1') \right) \tag{D5}
\]

This completes the derivation. Equation (18) directly follows from (D5) when using the definition of the canonical self-energy, equation (15).

Appendix E. Hermiticity and positive definiteness of the calculated density matrix

Here we prove that calculated physical density matrix, which for Fermi type excitations in the system is given by lesser and greater projections of the physical Green function, equation (6), taken at equal times is a positive definite matrix at finite temperatures.

The proof follows from the Dyson type of EOM for the canonical Green function, equation (14), the connection between the physical and the canonical Green functions, equation (13) and the positivity at finite temperature of the spectral weight matrix (see appendix A).

First, truncating the infinite EOM chain, equation (14), at some step \(n \) in the hierarchy by neglecting self-energy \(S^{(n)} \), one gets free evolution Dyson equation for the canonical GF \(G^{(n)} \), projections of which have usual proper relations among themselves. This in turn means that projections of the self-energy of the previous step, equation (15), all fulfill all the usual relations. Going this way up in the chain of EOMs one arrives to the top, \(n = 1 \), Dyson equation, which by its canonical form guarantees positivity of \(iG^{-}(t, t) \), \(-iG^{-}(t, t) \) and the canonical density matrix.

Second, since canonical and physical GFs are related by the scaling, equation (13), defined by positive definite matrices, this implies that matrices \(iG^{-}(t, t) \) and \(-iG^{-}(t, t) \) are also positive definite\(^6\). Indeed, let \(x \) be any complex column vector of the same dimension as \(G_{A_\nu,A_\nu}(t, t) \). Then

\[
x^\dagger \cdot G_{A_\nu,A_\nu}(t, t) \cdot x = x^\dagger \cdot P_{A_\nu,A_\nu}^{-1} G_{A_\nu,A_\nu}^{-}(t, t) P_{A_\nu,A_\nu}^{1/2} \cdot x
\]

\[
y = y \cdot P_{A_\nu,A_\nu}^{-1/2} \cdot x \tag{E1}
\]

with \(y = P_{A_\nu,A_\nu}^{-1/2} \cdot x \). Thus \(x^\dagger \cdot G_{A_\nu,A_\nu}(t, t) \cdot x > 0 \) if and only if \(y^\dagger \cdot G_{A_\nu,A_\nu}(t, t) \cdot y > 0 \) as we can write \(x = P_{A_\nu,A_\nu}^{-1/2} \cdot y \) for arbitrary \(y \).

Finally, positivity of lesser and greater projection of the physical GF, \(iG^{-}(t, t) \) and \(-iG^{-}(t, t) \) implies positivity of the physical density matrix. This shows consistency of our truncation scheme.

References

[1] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
[2] Galperin M, Ratner M A, Nitzan A and Troisi A 2008 Science 319 1056
[3] Galperin M, Ratner M A and Nitzan A 2007 J. Phys.: Condens. Matter 19 103201
[4] Galperin M and Nitzan A 2012 Phys. Chem. Chem. Phys. 14 9421
[5] Chen H, Schatz G C and Ratner M A 2012 Rep. Prog. Phys. 75 096402
[6] Sanvito S and Rocha A 2006 J. Comput. Theor. Nanosci. 3 624
[7] Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179
[8] Wernsdorfer W 2010 Int. J. Nanotechnol. 7 497
[9] Sanvito S 2011 Chem. Soc. Rev. 40 3336
[10] Naaman R and Waldeck D H 2012 J. Phys. Chem. Lett. 3 2178
[11] Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L 2000 Nature 407 57
[12] Repp J, Liljeroth P and Meyer G 2010 Nat. Phys. 6 975
[13] Bonca J and Trugman S A 1995 Phys. Rev. Lett. 75 2566
[14] White A J and Galperin M 2012 Phys. Chem. Chem. Phys. 14 13809
[15] Esteban R, Borisov A G, Nordlander P and Aizpurua J 2012 Nat. Commun. 3 825

\(^6\) This statement is also discussed in chapter 6 of [84] (see discussion below equation (6.2) on p 201).
