A Generalization of Siegel’s Method to Jacobi’s ϑ_1 Function

Maher Mamah & Ali Saraeb

Abstract. We present a new proof of the transformation law of ϑ_1 under the action of the generator of the full modular group Γ using Siegel's method.

1. INTRODUCTION

Historically, the study of elliptic functions has taken many different directions, stemming from the great fathers of this theory like Abel, Weierstrass, Jacobi etc. However, Jacobi theta functions form an important study subject in this theory, for they are the building blocks of elliptic functions. The most substantial study of these theta functions is in the realm of the theory of modular forms, where these functions are studied under the action of the elements of the modular group Γ and its subgroups. And as the theory evolved with other branches of analysis, newer and lighter proofs were occasionally introduced as new ways to approach the laws of transformation of these theta functions. Define $H = \{x + iy : y > 0\}$ to be the upper half-plane. For $\tau \in H, z \in \mathbb{C}$, let $q = e^{\pi i \tau}$ and $w = e^{\pi iz}$, and we define

$$\vartheta_1(z, \tau) = -iwq^{1/4} \prod_{n=1}^{\infty} (1 - q^{2n})(1 - w^2 q^{2n})(1 - w^{-2} q^{2n-2}).$$

(1)

The transformation law of ϑ_1 under the action of the inversion matrix $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ is given by

$$\vartheta_1 \left(\frac{z}{\tau}, \frac{-1}{\tau} \right) = -i(-i\tau)^{1/2}e^{\pi i z^2/2} \vartheta_1(z, \tau),$$

(2)

and our main goal is to give a new proof of this property.

Using residue calculus, Siegel presented the transformation law of the Dedekind eta function under the action of the inversion matrix $[5]$. Several extensions of Siegel’s proof have been introduced, such as Raji’s extension $[4]$ and the extension by Me’Meh and Saraeb $[3]$. Inspired by Siegel, Raji proved in $[4]$ the transformation law for another one of the Jacobi theta functions, ϑ_3, under the inversion matrix. In this paper, we are complementing Raji’s paper by doing the same for ϑ_1. For the remaining theta functions ϑ_2 and ϑ_4 they are related to ϑ_1 and ϑ_3 via the following relations described in $[2]$, Chapter X

$$\vartheta_3 \left(z + \frac{1}{2}, \tau \right) = \vartheta_4(z, \tau) \quad \vartheta_2 \left(z + \frac{1}{2}, \tau \right) = -\vartheta_1(z, \tau),$$

so by applying a sequence of changes of variables we get similar results for ϑ_2 and ϑ_4. It is important to note that Raji in $[3]$ proved the behavior of ϑ_3 under the inversion since the behavior under the translation matrix is clear from the Fourier expansion. Similarly, the modularity of ϑ_1 with respect to the full group $SL_2(\mathbb{Z})$ will follow from $[2]$ and its Fourier Expansion.

2. THE TRANSFORMATION LAW FOR ϑ_1
Theorem 1. For $\tau \in \mathbb{H}, z \in \mathbb{C}$, the transformation formula for ϑ_1 is the one presented in equation (2), namely

$$\vartheta_1 (\frac{z}{\tau}, \frac{-1}{\tau}) = -i(-i\tau)^{1/2}e^{\pi iz^2} \vartheta_1 (z, \tau).$$

If $z \in \mathbb{C}\{0\}$ and $x \in \mathbb{C}$, we set $z^x = e^{x\log z}$ where $-\pi < \arg(z) \leq \pi$.

Definition 1. For $\tau \in \mathbb{H}$ and $z \in \mathbb{C}$, let $\phi(z, \tau) = \log(\vartheta_1(z, \tau)) - \log (\vartheta_1(\frac{z}{\tau}, \frac{-1}{\tau}))$.

Remark 1. ϕ takes the value infinity when ϑ_1 vanishes, namely when $z = m + n\tau$ for $m, n \in \mathbb{Z}$.

Lemma 1. Let $b < 0$, $0 < a < 1$, $y > |b|$, and $z = a + ib$. Then we have

$$\phi(z, iy) = \sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{1 - e^{2m\pi y}} + \sum_{m=1}^{\infty} \frac{e^{2m\pi iz}}{m} \frac{1}{1 - e^{2m\pi y}} + \sum_{m=1}^{\infty} \frac{e^{-2m\pi iz}}{m} \frac{e^{2m\pi y}}{1 - e^{2m\pi y}}$$

$$- \sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{1 - e^{2m\pi y}} - \sum_{m=1}^{\infty} \frac{e^{2m\pi iz}}{m} \frac{1}{1 - e^{2m\pi y}} - \sum_{m=1}^{\infty} \frac{e^{-2m\pi iz}}{m} \frac{e^{2m\pi y}}{1 - e^{2m\pi y}}$$

$$- \frac{\pi z}{v} + \pi iz - \frac{\pi}{4}(y - \frac{1}{y}).$$

Proof. We first observe that the logarithm of Equation (1) gives

$$\log(\vartheta_1 (z, \tau)) = \log(-iwq^{1/4}) + \sum_{n=1}^{\infty} \log(1 - q^{2n}) + \sum_{n=1}^{\infty} \log(1 - w^{2}q^{2n}) + \sum_{n=1}^{\infty} \log(1 - w^{-2}q^{2n-2}).$$

If $\tau = iy$, we get $|q^{2n}| = e^{-2\pi ny}$, $|w^{2}q^{2n}| = e^{-2\pi(ny+b)}$, $|w^{-2}q^{2n-2}| = e^{-2\pi((n-1)y+b)}$ for all $n \geq 1$, then under the assumptions $b < 0$, and $y > |b|$, we obtain the condition that all the latter quantities are strictly less than 1. Now, we expand the form of $\log(\vartheta_1 (z, \tau))$ in (3) by using the Taylor expansion of $\log(1 - t)$ for $|t| < 1$ as follows.
Similarly, if we work under the conditions \(y > |b| \) (particularly \(y > 0 \)) and \(0 < a < 1 \), we get that all of the real numbers \(e^{-2\pi \frac{a}{b}} \), \(e^{-2\pi \frac{a+b}{2}} \), and \(e^{-2\pi \frac{a+b}{y}} \) are strictly less than 1 for all \(n \geq 1 \). Thus, we can analogously determine the form of \(\log(\vartheta(\frac{z}{iy}, \frac{i}{y})) \) from (4) as follows

\[
\log \left(\vartheta_1 \left(\frac{z}{iy}, \frac{i}{y} \right) \right) = \log \left(-ie^{\pi \frac{y}{2}} e^{\pi \frac{y}{2}} \right) + \sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{1 - e^{2m\pi \frac{y}{2}}} + \sum_{m=1}^{\infty} \frac{e^{2m\pi \frac{y}{2}}}{m} \frac{1}{1 - e^{2m\pi \frac{y}{2}}}
\]

Subtracting (4) from (5), we obtain

\[
\phi(z, iy) = \log(\vartheta_1(z, iy)) - \log \left(\vartheta_1 \left(\frac{z}{iy}, \frac{i}{y} \right) \right)
\]

\[
= \sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{1 - e^{2m\pi \frac{y}{2}}} + \sum_{m=1}^{\infty} \frac{e^{2m\pi \frac{y}{2}}}{m} \frac{1}{1 - e^{2m\pi \frac{y}{2}}} - \sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{1 - e^{2m\pi \frac{y}{2}}} - \sum_{m=1}^{\infty} \frac{e^{2m\pi \frac{y}{2}}}{m} \frac{1}{1 - e^{2m\pi \frac{y}{2}}}
\]

\[
+ \log \left(-ie^{\pi \frac{y}{2}} e^{\pi \frac{y}{2}} \right) - \log \left(-ie^{\pi \frac{y}{2}} e^{\pi \frac{y}{2}} \right)
\]

\[
= \sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{1 - e^{2m\pi \frac{y}{2}}} + \sum_{m=1}^{\infty} \frac{e^{2m\pi \frac{y}{2}}}{m} \frac{1}{1 - e^{2m\pi \frac{y}{2}}} - \sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{1 - e^{2m\pi \frac{y}{2}}} - \sum_{m=1}^{\infty} \frac{e^{2m\pi \frac{y}{2}}}{m} \frac{1}{1 - e^{2m\pi \frac{y}{2}}}
\]

\[
- \frac{\pi z}{y} + \frac{\pi i z}{y} - \frac{\pi}{4} \left(y - \frac{1}{y} \right).
\]

This completes the proof of Lemma 1.

Remark 2. The conditions \(y > |b| \) with \(b < 0 < a < 1 \), where \(z = a + ib \) guarantee the convergence of the latter series.

Definition 2. Let \(n \) be a positive integer, set \(N = n + \frac{1}{2} \), \(y > |b| \) with \(b < 0 < a < 1 \), and \(z = a + ib \), we define a meromorphic function \(F_n \) as

\[
F_n(\zeta) = -\frac{1}{8\zeta} \cot(\pi i N \zeta) \cot \left(\pi N \frac{1}{y} \zeta \right) + \frac{1}{\zeta} \left(\frac{1}{1 - e^{2\pi N \zeta}} \right) \left(\frac{e^{-2\pi i(-\frac{zN}{y} + \frac{\zeta}{y})}}{1 - e^{-2\pi i \frac{\zeta}{y}}} \right),
\]

which exhibits a pole of order 3 at 0 and simple poles at \(\frac{ik}{N} \) and \(\frac{ky}{N} \) for \(k \in \mathbb{Z} \setminus \{0\} \).

Now, we define the contour \(C \) shown in Figure 1 for the residue theorem application. First, we analyze the residues enclosed by \(C \).
Lemma 2. The sum of the residues of F_n at its poles within the contour C, multiplied by $2\pi i$, yields the following expression:

$$2\pi i \cdot \text{Res}_C[F_n] = \sum_{k=1}^{n} \frac{1}{k} \frac{1}{1 - e^{2k\pi y}} + \sum_{k=1}^{n} \frac{e^{2k\pi iz}}{k} \frac{1}{1 - e^{2k\pi y}} + \sum_{k=1}^{n} \frac{e^{-2k\pi iz}}{k} \frac{e^{2k\pi y}}{1 - e^{2k\pi y}}$$

$$- \sum_{k=1}^{n} \frac{1}{k} \frac{1}{1 - e^{2k\pi z}} - \sum_{k=1}^{n} \frac{e^{2k\pi z}}{k} \frac{1}{1 - e^{2k\pi y}} - \sum_{k=1}^{n} \frac{e^{-2k\pi z}}{k} \frac{e^{2k\pi y}}{1 - e^{2k\pi y}}$$

$$- \frac{\pi}{4} \left(y - \frac{1}{y} \right) + \pi iz + \frac{\pi z^2}{y} - \frac{\pi z}{y} - \frac{\pi i}{y}.$$

where ϕ was defined in Definition 1, and

$$\text{Res}_C[F_n] = \text{Res}[F_n, 0] + \sum_{k \neq 0}^{n} \text{Res}[F_n, \frac{ik}{N}] + \text{Res}[F_n, \frac{ky}{N}].$$

Remark 3. To gain insight into the direction of this analysis, we encourage the reader to compare the results of Lemma 1 and Lemma 2.

Proof of Lemma 2.

We start by computing the residues of F_n at the poles $\zeta = 0$, $\zeta = \frac{ik}{N}$, and $\zeta = \frac{ky}{N}$ for $k \in \mathbb{Z}\{0\}$. Also note that the properties of the exponential and the cotangent imply that F_n has no poles except at the asserted points.

Using the Laurent expansions of $\cot(\zeta)$ and $\frac{1}{1 - e^{\zeta}}$ around zero, namely

$$\cot(\zeta) = \frac{1}{\zeta} - \frac{\zeta}{3} + O(\zeta^3)$$

and

$$\frac{1}{1 - e^{\zeta}} = -\frac{1}{\zeta} + \frac{1}{2} - \frac{\zeta}{12} + O(\zeta^3),$$

we obtain the Laurent expansions of the following terms

$$-\frac{1}{8\zeta} \cot(\pi i N \zeta) \cot \left(\pi N \frac{1}{y} \zeta \right) = \frac{iy}{8\pi^2 N^2} \frac{1}{\zeta^3} + \frac{i}{24} \left(y - \frac{1}{y} \right) \frac{1}{\zeta} + O(\zeta) \quad (R_1)$$
\[
\frac{1}{\zeta} \left(\frac{1}{1 - e^{2\pi N\zeta}} \right) \left(\frac{e^{-2\pi i(-\frac{2N}{y} + \frac{1}{y})\zeta}}{1 - e^{-2\pi i\frac{1}{y}\zeta}} \right) = \frac{i}{4\pi^2 n^2} \left(\frac{1}{\zeta^3} - \frac{1}{4\pi N (iz - 2y)} \right) \left(\frac{1}{2} \right) + \left(\frac{i}{12} \left(\frac{y - 1}{y} \right) + z - \frac{1}{2} \frac{iz^2}{2y} + \frac{zi}{2y} + \frac{1}{4} \right) \frac{1}{\zeta} + O(1)
\]

\((R_2)\)

- \(\zeta = 0\):

Adding the expressions \((R_1)\) and \((R_2)\), we get the residue at \(\zeta = 0\):

\[
\text{Res}[F_n, 0] = \frac{i}{8} \left(\frac{y - 1}{y} \right) + z - \frac{1}{2} \frac{iz^2}{2y} + \frac{zi}{2y} - \frac{1}{4}.
\]

- \(\zeta = \frac{ik}{N}\):

Using the cotangent formula,

\[
\cot(i\zeta) = \frac{1}{i} \left(1 - \frac{1}{1 - e^{2\pi i \zeta}} \right) = i \left(1 - \frac{1}{1 - e^{2\pi i \zeta}} \right),
\]

and by a simple calculation of the limit we obtain

\[
\text{Res}[F_n, \frac{ik}{N}] = \lim_{\zeta \to \frac{ik}{N}} \left(\zeta - \frac{ik}{N} \right) F_n(\zeta) = \frac{1}{8\pi k} \cot \left(\frac{\pi i k}{y} \right) - \frac{1}{2\pi i} \frac{e^{-2\pi k \frac{z}{y}} e^{2\pi k \frac{1}{y}}}{1 - e^{2\pi k \frac{1}{y}}} = \frac{1}{8\pi i k} \left(1 - \frac{2}{1 - e^{2\pi i k \frac{1}{y}}} \right) - \frac{1}{2\pi i} \frac{e^{-2\pi k \frac{1}{y}} e^{2\pi k \frac{1}{y}}}{1 - e^{2\pi k \frac{1}{y}}}.
\]

Since \(\frac{1}{k} \cot(\pi k / y)\) is an even expression, we obtain

\[
\sum_{k=-n}^{n} \text{Res}[F_n, \frac{ik}{N}] = \frac{2}{8\pi i} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{2}{k(1 - e^{2\pi k \frac{1}{y}})} \right) - \frac{1}{2\pi i} \sum_{k=1}^{n} \frac{e^{-2\pi k \frac{z}{y}} e^{2\pi k \frac{1}{y}}}{k(1 - e^{2\pi k \frac{1}{y}})} - \frac{1}{2\pi i} \sum_{k=1}^{n} \frac{e^{2\pi k \frac{1}{y}} e^{-2\pi k \frac{1}{y}}}{k(1 - e^{2\pi k \frac{1}{y}})} = \frac{1}{4\pi i} \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{2\pi i} \sum_{k=1}^{n} \frac{1}{k(1 - e^{2\pi k \frac{1}{y}})} - \frac{1}{2\pi i} \sum_{k=1}^{n} \frac{e^{-2\pi k \frac{z}{y}} e^{2\pi k \frac{1}{y}}}{k(1 - e^{2\pi k \frac{1}{y}})} - \frac{1}{2\pi i} \sum_{k=1}^{n} \frac{e^{2\pi k \frac{1}{y}} e^{-2\pi k \frac{1}{y}}}{k(1 - e^{2\pi k \frac{1}{y}})}.
\]

- \(\zeta = \frac{ky}{N}\):

Similarly, we utilize the form of the cotangent again, and compute the limit to get

\[
\text{Res}[F_n, \frac{ky}{N}] = \lim_{\zeta \to \frac{ky}{N}} \left(\zeta - \frac{ky}{N} \right) F_n(\zeta) = -\frac{1}{8\pi k} \cot(\pi ky) + \frac{1}{2\pi i k} \frac{e^{2\pi i k z}}{1 - e^{2\pi k y}} = -\frac{1}{8\pi i k} \left(1 - \frac{2}{1 - e^{2\pi k y}} \right) + \frac{1}{2\pi i k} \frac{e^{2\pi i k z}}{1 - e^{2\pi k y}}.
\]
Similarly,
\[
\sum_{k=-n}^{n} \text{Res}[F_n, \frac{ky}{N}] = -\frac{2}{8\pi i} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{2}{k(1 - e^{2\pi ky})} \right) + \frac{1}{2\pi i} \sum_{k=1}^{n} \frac{e^{2\pi iz}}{k(1 - e^{2\pi ky})} + \frac{1}{2\pi i} \sum_{k=1}^{n} \frac{e^{-2\pi iz}}{k(1 - e^{-2\pi ky})}
\]
\[
= -\frac{1}{4\pi i} \sum_{k=1}^{n} \frac{1}{k} + \frac{1}{2\pi i} \sum_{k=1}^{n} \frac{1}{k(1 - e^{2\pi ky})} + \frac{1}{2\pi i} \sum_{k=1}^{n} \frac{e^{2\pi iz}}{k(1 - e^{2\pi ky})} + \frac{1}{2\pi i} \sum_{k=1}^{n} \frac{e^{-2\pi iz} e^{2\pi ky}}{k(1 - e^{2\pi ky})}.
\]

Therefore,
\[
2\pi i \cdot \text{Res}_C[F_n] = 2\pi i \text{Res}[F_n, 0] + 2\pi i \sum_{k=-n \atop k \neq 0}^{n} \text{Res}[F_n, \frac{ik}{N}] + \text{Res}[F_n, \frac{ky}{N}]
\]
\[
= \sum_{k=1}^{n} \frac{1}{k - e^{2\pi iy}} + \sum_{k=1}^{n} \frac{e^{2\pi iz}}{k(1 - e^{2\pi y})} + \sum_{k=1}^{n} \frac{e^{-2\pi iz}}{k(1 - e^{2\pi y})}
\]
\[
- \sum_{k=1}^{n} \frac{1}{k - e^{2\pi iy}} - \sum_{k=1}^{n} \frac{e^{2\pi iz}}{k(1 - e^{2\pi y})} - \sum_{k=1}^{n} \frac{e^{-2\pi iz}}{k(1 - e^{2\pi y})}
\]
\[
- \frac{\pi}{4} \left(\frac{y - 1}{y} + \pi iz + \frac{\pi z^2}{y} - \frac{\pi z}{y} - \frac{\pi i}{2} \right).
\]

This completes the proof of Lemma 2.

Lemma 3. Let C be the contour in Figure 1. For the sequence of functions F_n, we have $\lim_{n \to \infty} \zeta F_n(\zeta) = \frac{1}{8}$ on the edges $(y, i), (-y, -i)$, and $\lim_{n \to \infty} \zeta F_n(\zeta) = -\frac{1}{8}$ on the other edges.

Proof.

We prove the $\lim_{n \to \infty} \zeta F_n(\zeta) = \frac{1}{8}$ on the edge (y, i).

First note that
\[
\zeta F_n(\zeta) = -\frac{1}{8} \cot(\pi i N \zeta) \cot(\pi N \frac{y}{1 - \zeta}) + \left(\frac{1}{1 - e^{2\pi \zeta}} \right) \left(\frac{e^{-2\pi i (-\frac{y}{N} + \frac{\zeta}{N}) \zeta}}{1 - e^{-2\pi i \frac{\zeta}{N} \zeta}} \right)
\]
\[
= -\left(1 - \frac{1}{1 - e^{-2\pi N \zeta}} \right) \left(1 - \frac{1}{1 - e^{2\pi N \frac{1}{N} \zeta}} \right) + \left(\frac{1}{1 - e^{2\pi N \zeta}} \right) \left(\frac{e^{-2\pi i (-\frac{y}{N} + \frac{\zeta}{N}) \zeta}}{1 - e^{-2\pi i \frac{\zeta}{N} \zeta}} \right).
\]

Now the points on the edge (y, i) have the form $y(1 - t) + ti$ for some $0 < t < 1$. Let ζ_0 be a point on the edge (y, i) and write $\zeta_0 = y(1 - t_0) + t_0 i$.

We hence get
\[
\zeta_0 F_n(\zeta_0) = -\frac{1}{8} \cot(\pi i N \zeta_0) \cot(\pi N \frac{1}{y} \zeta_0) + \left(\frac{1}{1 - e^{2\pi N \zeta_0}} \right) \left(\frac{e^{-2\pi i (-\frac{y}{N} + \frac{\zeta_0}{N}) \zeta_0}}{1 - e^{-2\pi i \frac{\zeta_0}{N} \zeta_0}} \right)
\]
\[
= \frac{1}{8} \left(1 - \frac{1}{1 - e^{-2\pi N y(1 - t_0)} e^{-2\pi i N t_0}} \right) \left(1 - \frac{1}{1 - e^{2\pi N (1 - t_0) e^{-2\pi N \frac{\zeta_0}{N} t_0}}} \right)
\]
\[
+ \left(\frac{1}{1 - e^{2\pi N y(1 - t_0)} e^{2\pi i N t_0}} \right) \left(e^{-2\pi i N (-a + 1 - ib)(1 - t_0)} e^{2\pi \frac{\zeta_0}{N} (-a + 1 + ib) t_0} \right) \left(1 - e^{-2\pi i N (1 - t_0) e^{2\pi \frac{\zeta_0}{N} t_0}} \right).
\]
However, given that $0 < t_0, 1 - t_0 < 1$, $y > |b| \geq 0$, $N = n + \frac{1}{2}$, and $0 < a, 1 - a < 1$, we get $\frac{1}{8}$ upon sending n to ∞.

The other limits are calculated similarly with respect to the other edges, and this completes the proof of Lemma 3.

We now return to the statement of the main theorem and employ Lemma 1, lemma 2, and Lemma 3 to complete the proof.

Proof of theorem 1.

We prove (2) for $\tau = iy$ and a fixed $z = a + ib$ where $y > |b|$ with $b < 0 < a < 1$ (i.e. z not a zero of ϑ_1), then we extend the result by analytic continuation.

For a fixed n, we use the residue theorem for F_n over the contour C in Figure 1 which yields

$$\int_C F_n d\zeta = 2\pi i \text{Res}_C[F_n].$$

Therefore, by Lemma 2, we have

$$\lim_{n \to \infty} \int_C F_n d\zeta = \lim_{n \to \infty} 2\pi i \text{Res}_C[F_n]$$

$$= \sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{1 - e^{2m\pi y}} + \sum_{m=1}^{\infty} e^{2m\pi iz} \frac{1}{m} \frac{1}{1 - e^{2m\pi y}} + \sum_{m=1}^{\infty} \frac{e^{-2m\pi iz}}{m} \frac{1}{1 - e^{2m\pi y}}$$

$$- \sum_{m=1}^{\infty} \frac{1}{m} \frac{1}{1 - e^{2m\pi \frac{1}{2}y}} - \sum_{m=1}^{\infty} e^{2m\pi \frac{i}{2}y} \frac{1}{m} \frac{1}{1 - e^{2m\pi \frac{1}{2}y}} - \sum_{m=1}^{\infty} \frac{e^{-2m\pi \frac{i}{2}y}}{m} \frac{1}{1 - e^{2m\pi \frac{1}{2}y}}$$

$$- \frac{\pi}{4} (y - \frac{1}{y}) + \pi iz + \frac{\pi z^2}{y} - \frac{\pi z}{y} - \frac{\pi i}{2}$$

$$= \phi(z, iy) + \frac{\pi z^2}{y} - \frac{\pi i}{2},$$

where the later series converge in view of Remark 2.

On the other hand, computing the limit of the integral over the contour C in Figure 1

$$\lim_{n \to \infty} \int_C F_n(\zeta) d\zeta = \lim_{n \to \infty} \int_C \zeta F_n d\zeta$$

$$= \int_C \lim_{n \to \infty} \zeta F_n d\zeta$$

$$= \frac{1}{8} \left(- \int_{-i}^{y} + \int_{-i}^{i} + \int_{i}^{y} - \int_{y}^{-i} \right) d\zeta$$

$$= \frac{1}{4} \left(- \int_{-i}^{y} + \int_{i}^{y} \right) d\zeta$$

$$= \frac{1}{4} \left(- \log(y) - \frac{\pi i}{2} + \frac{\pi i}{2} - \log(y) \right)$$

$$= - \log(y^{1/2}),$$

where in the second equality we make use of the fact that F_n is uniformly bounded on C hence by Arzela’s bounded convergence theorem we can interchange the limit with the integral, and in the third equality we
invoke Lemma 3 on each edge. This proves that
\[\phi(z, iy) + \frac{\pi z^2}{y} - \frac{\pi i}{2} = - \log(y^{1/2}). \]

Now using analytic continuation with a fixed \(z \) where \(\vartheta_1 \) does not vanish, we extend \(\tau \) to the whole upper half plane, once done we extend \(z \) via analytic continuation again to the whole complex plane \(\mathbb{C} \). Finally, using the definition of \(\phi \), we have
\[\log(\vartheta_1(z, \tau)) - \log \left(\vartheta_1 \left(\frac{z}{\tau}, \frac{-1}{\tau} \right) \right) = - \log(-i\tau)^{1/2} e^{\pi i z^2/4\tau}, \]
thus obtaining
\[\vartheta_1 \left(\frac{z}{\tau}, \frac{-1}{\tau} \right) = -i(-i\tau)^{1/2} e^{\pi i z^2/4\tau} \vartheta_1(z, \tau), \]
which completes the proof of the theorem.

Acknowledgment

We would like to express our deepest gratitude to our advisor Professor Wissam Raji. We also like to thank the Department of Mathematics and the Center of Advanced Mathematical Sciences (CAMS) at the American university of Beirut (AUB) for the guidance and support we received from the summer research camp (SRC). Additionally, we would like to thank the referee whose valuable comments helped us enhance the content and the structure of the paper.

References

[1] Apostol, T. Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, New York, 1989. MR1027834 (52-190)

[2] Rademacher, Hans. Topics in Analytic Number Theory. Vol. 169, Springer, 2012, https://go.exlibris.link/GnwGmSpv (180-184)

[3] Maher Me’Meh, Ali Saraeb. A Generalization of Iseki’s Formula and The Jacobi Theta Function. Hardy-Ramanujan Journal, 2023, Volume 45, pp. 130-139. DOI: 10.46298/hrj.2023.10912 https://hal.archives-ouvertes.fr/hal-03914261 Rademacher, Hans. Topics in Analytic Number Theory. Vol. 169, Springer, 2012, https://go.exlibris.link/GnwGmSpv, (180-184)

[4] Raji, Wissam. “A New Proof of the Transformation Law of Jacobi’s Theta Function \(\vartheta_3(w, \tau) \).” Proceedings of the American Mathematical Society, vol. 135, no. 10, 2007, pp. 3127–32. JSTOR, http://www.jstor.org/stable/20531492 (3127-3132)

[5] Siegel, C. A simple proof of the inversion transformation of the Dedekind eta function, J. Mathematika 1(1954), 4.

Department of Mathematics, American University of Beirut, Beirut, Lebanon

E-mail address: mmm133@mail.aub.edu
E-mail address: ays11@mail.aub.edu