Terahertz displacive excitation of a coherent Raman-active phonon in V_2O_3

Flavio Giorgianni1, Mattia Udina2, Tommaso Cea3, Eugenio Paris4, Marco Caputo5, Milan Radovic5, Larissa Boie6, Joe Sakai7, Christof W. Schneider8 and Steven Lee Johnson4,6

Nonlinear processes involving frequency-mixing of light fields set the basis for ultrafast coherent spectroscopy of collective modes in solids [1,2]. In certain semimetals and semiconductors, generation of coherent phonon modes can occur by a displacive force on the lattice at the difference-frequency mixing of a laser pulse excitation on the electronic system [3,4]. Here, as a low-frequency counterpart of this process, we demonstrate that coherent phonon excitations can be induced by the sum-frequency components of an intense terahertz light field, coupled to intraband electronic transitions [5]. This nonlinear process leads to charge coupled coherent dynamics of Raman-active phonon modes in the strongly correlated metal V_2O_3. Our results show an alternative up-conversion pathway for the optical control of Raman-active modes in solids mediated by terahertz-driven electronic excitation.

[1] Merlin, R. Generating coherent THz phonons with light pulses. Solid State Commun. 102, 207 (1997).
[2] Udina, M., Cea, T., and Benfatto, L. Theory of coherent-oscillations generation in terahertz pump-probe spectroscopy: From phonons to electronic collective modes. Phys. Rev. B, 100:165131 (2019).
[3] Zeiger, H. J. et al. Theory for displacive excitation of coherent phonons. Phys. Rev. B 45, 768 (1992).
[4] Stevens, T. E., Kuhl, J. & Merlin, R. Coherent phonon generation and the two stimulated Raman tensors. Phys. Rev. B 65, 144304 (2002).
[5] Giorgianni, F., Udina, M., et al. Terahertz displacive excitation of a coherent Raman-active phonon in V_2O_3. Commun. Phys. 5, 103 (2022)