The complete mitochondrial genome of Hemathlophorus brevigenatus Wei, 2005 (Hymenoptera: Tenthredinidae) with phylogenetic analysis

Jiafen Liu, Meicai Wei and Gengyun Niu

College of Life Sciences, Jiangxi Normal University, Nanchang, China

ABSTRACT

The mitochondrial genome of Hemathlophorus brevigenatus Wei, 2005 collected from Huanggang Mountain of China is described using the NGS approach. The length of the sequence is 15,452 bp containing 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region. The overall A + T content is 79.5%. tRNA rearrangements occur in the MQI cluster. Phylogenetic analysis of H. brevigenatus resolved it in a clade with Allantus togatus in Allantinae which provides new evidence for the phylogeny of Tenthredinidae.
terminal codon T—. Compared with the ancestral insect (Drosophila) mitochondrial genome (Boore 1999), the control region- trnI (+)- trnQ (-)- tmM (+) is rearranged to tmM (-)- trnQ (+)- control region- trnI (+) in H. brevigenatus. There are five gene overlapping regions that appeared among trnI-nad2 (1 bp), trnW-trnC (1 bp), atp6 - atp8 (7 bp), atp6 - cox3 (1 bp), and nad6-cob (1 bp). The mitogenome has nine intergenic spacers with a total length of 173 bp in 18 locations varying in size from 1 to 39 bp with the longest located between trnF and nad5.

Phylogenetic analysis of H. brevigenatus fully resolved it in a clade with Allantus togatus (MW464859) and Allantoides lucifer (K1713152) classified in the Allantinae as suggested by Wei and Nie (1998) and Taeger et al. (2010). Its placement was remote from the Siobla of Tenthredininae and clearly denied Lacourt’s system (Lacourt 1996). The phylogenetic relationships of Tenthredininae are inferred as (Athalia + ((Conaspida + Selandriinae) ((Hoplocampinae + Nematinae) (Tenthredininae + Allantinae) + (Fenusinae + Blennocampinae) + Caliroinae)))) (Figure 1). All related files are publicly available in figshare (https://figshare.com/account/home#/projects/114354).

Disclosure statement
No potential conflict of interest was reported by the authors. The authors alone are responsible for the content and writing of the article.

Funding
This work was supported by the National Natural Science Foundation of China [31970447].

ORCID
Jiafen Liu http://orcid.org/0000-0002-6599-2237
Meicai Wei http://orcid.org/0000-0002-6574-2000
Gengyun Niu http://orcid.org/0000-0003-0505-7180

Data availability statement
The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov under the accession number MW632125. The associated BioProject, SRA, and BioSample numbers are PRJNA714776, SRR14233978, and SAMN18397095 respectively.

References
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2): 313–319.
Boore JL. 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27(8): 1767–1780.
Cameron S. 2014. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst Entomol. 39(3): 400–411.
Lacourt J. 1996. Contribution à une révision mondiale de la sous-famille des Tenthredininae (Hymenoptera: Tenthredinidae). Annales de la Société Entomologique de France. N. S. 32(4): 363–402.
Ma Y, Zheng BY, Zhu JC, Acherberg C, Tang P, Chen XX. 2019. The first two mitochondrial genomes of wood wasps (Hymenoptera: Symphylta): Novel gene rearrangements and higher-level phylogeny of the basal hymenopterans. Int J Biol Macromol. 123: 1189–1196.
Malaise R. 1945. Tenthredinoidea of South-Eastern Asia with a general zoogeographical review. Opuscula Entomologica Suppl. 4: 1–288.
Meng G, Li Y, Yang C, Liu S. 2019. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47(11): e63.
Nguyen LT, Schmidt HA, von HA, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274.

Saini MS. 2006. Subfamilies Allantinae. In: Indian sawflies biodiversity. Keys, catalogue & illustrations. Vol. III. Dehra Dun: Bishen Singh Mahendra Pal Singh; p. 1–182.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22):4673–4680.

Taeger A, Blank SM, Liston AD. 2010. World catalog of Symphyta (Hymenoptera). Zootaxa. 2580(1):1–1064.

Vaidya G, Lohman DJ, Meier R. 2011. SequenceMatx: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 27(2):171–180.

Wei M. 2005. On the sawfly genus Hemathlophorus Malaise of China (Hymenoptera, Tenthredinidae, Allantinae). Acta Zootaxonomica Sinica. 30(4):822–827.

Wei M, Nie H. 1998. Generic list of Tenthredinoidea s. str. (Hymenoptera) in new systematic arrangement with synonyms and distribution data. J Central South For Univ. 18(3):23–31.