Nutritional status alterations after chimeric antigen receptor T cell therapy in patients with hematological malignancies: a retrospective study

Shuyi Ding1,2 · Lingxia Cai1,2 · Aiyun Jin1,2 · Xiaoyu Zhou1,2 · Jiali Yan1,2 · Linqin Wang2,3,4,5 · Houli Zhao2,3,4,5 · Tingting Wang6 · Yongxian Hu2,3,4,5

Received: 28 March 2021 / Accepted: 18 October 2021 / Published online: 5 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Purpose The influence of innovative chimeric antigen receptor T cell (CAR-T) therapy for hematological malignancies on nutritional status remains unknown. Therefore, we aim to explore the alterations of nutritional status after CAR-T cell therapy in patients with hematological malignancies.

Methods We retrospectively collected the data of patients with acute leukemia (AL), lymphoma, and multiple myeloma (MM), who underwent CAR-T therapy at our hospital from 2018 to 2020. The serum albumin, triglyceride, and cholesterol before and 7, 14, and 21 days after CAR-T cell infusion were compared and analyzed.

Result A total of 117 patients were enrolled, consisting of 39 AL, 23 lymphoma, and 55 MM patients. The baseline albumin, triglyceride, and cholesterol were 37.43 ± 5.08 mg/L, 1.63 ± 0.74 mmol/L, and 3.62 ± 1.03 mmol/L, respectively. The lowest albumin level was found at 7 days after CAR-T cell infusion compared with baseline (P < 0.001), while the levels of triglyceride increased at 14 and 21 days (P < 0.001, P = 0.036). The levels of cholesterol at 7, 14, and 21 days after CAR-T cell infusion were lower than baseline (all P < 0.05). Spearman’s correlation coefficient showed cytokine release syndrome grade was negatively correlated with the levels of albumin at 7 days and cholesterol at 21 days after CAR-T cell infusion (r = −0.353, P < 0.001; r = −0.395, P = 0.002).

Conclusion The alterations of different nutrition-related biochemical parameters varied after CAR-T cell therapy. The levels of albumin and total cholesterol after CAR-T cell infusion were negatively correlated with the grade of cytokine release syndrome. Specific screening and intervention for malnutrition in patients receiving CAR-T cell therapy need to be explored in further studies.

Keywords Nutritional status · CAR-T therapy · Hematological malignancies · Cytokine release syndrome

Introduction
Since the first batch of chimeric antigen receptor T (CAR-T) cells were approved by the Food and Drug Administration (FDA) in the USA in 2017 [1–3], CAR-T therapy has achieved great progress and became a promising approach for cancers, especially in relapsed or refractory (r/r) hematological malignancies [4, 5]. In July 2020, FDA approved another CAR-T cell drug named Tecartus for treatment of adult patients diagnosed with mantle cell lymphoma (MCL). Adverse events, such as cytokine release syndrome (CRS) and tumor lysis syndrome, still are the main challenges in the clinical application of CAR-T cell [6, 7]. Though CAR-T cell therapy as an innovative treatment has the potential to be a dominated alternative for patients with hematological
malignancies, the effectiveness and safety need to be determined in further studies [8].

Malnutrition may occur in 30 to 80% of patients with cancer [9, 10]. Nausea, diarrhea, constipation, and fatigue induced by chemotherapy or antineoplastic therapy and cachexia due to tumor-related metabolism abnormalities [11, 12] might eventually lead to malnutrition. It commonly manifested as weight loss, reduced muscle mass or body mass index (BMI), abnormalities in biochemical indices, or ongoing high activity of inflammation. Studies have validated the effectiveness of various nutrition-related indices, such as acute-phase reaction proteins (including albumin and immunoglobulin) [13], biochemical parameters (including blood lipids, glucose and blood glucose, and electrolytes), and calculated indices (including neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio) [14]. In addition, nutrition status evaluation scales, such as Patient-Generated Subjective Global Assessment [15], have been widely applied in clinical practice. As a key step in identifying cancer patients with malnutrition, nutrition screening provides the possibility of subsequent specific nutritional guidance or intervention.

Malnutrition in cancer patients has been proven to reduce response to treatment and increase treatment-associated side effects [16], as well as influence on the quality of life, infection, relapse rate, longer hospital stays, and higher healthcare costs [17–20]. Furthermore, being a major cause of cancer death, malnutrition could predict poor prognosis of patients [21]. Multiple studies have proven the relationships between malnutrition, metabolism, and immunity, especially concerning T cells [22, 23]. Regarding the crucial role of T cells in the effectiveness and safety of CAR-T therapy, the exploration of nutrition status alteration after CAR-T cell infusion is needed.

Since no studies have reported on the changes of nutrition status after CAR-T cell therapy, we aim to investigate the alterations of nutritional status after CAR-T cell therapy in patients with hematological malignancies in the present study and provide evidence for nutrition screening and intervention in such patients.

Methods

Study design and patients’ selection

We retrospectively reviewed 117 patients who enrolled in phase 1/2 CAR-T cell therapy clinical trials conducted at our center from 2018 to 2020. Thirty-nine patients with acute lymphoblastic leukemia (ALL) were enrolled in CAR-T cell therapy either targeting CD19 (ChiCTR-ORN-16008948) or CD19/CD22 (ChiCTR1800015575), and 23 patients with non-Hodgkin’s lymphoma (NHL) were treated with CD19-targeted CAR-T cell therapy (ChiCTR-OIC-17011310); moreover, 55 patients with multiple myeloma (MM) were administered with BCMA CAR-T cell (ChiCTR1800017404). These clinical trials were approved by the Medical Ethics Committee of the First Affiliated Hospital of Medical College, Zhejiang University, and performed according to the ethical principles of the Declaration of Helsinki.

The inclusion criteria were as follows: (1) age less than 75 years; (2) r/r B-cell hematological malignancies, including CD19 positive ALL, CD19 positive diffuse large B-cell lymphoma or follicular lymphoma, BCMA positive MM; (3) relapse after hematopoietic stem cell transplantation (HSCT) without evidence of graft-versus-host disease and not requiring immnosuppression therapy; (4) measurable disease. The exclusion criteria were as follows: (1) patients with inadequate hepatic and renal function; (2) patients with Eastern Cooperative Oncology Group performance status more than 2; (3) incomplete data. All patients were voluntarily participating in these trials and signed the informed consent form, and the informed consents were waived by the retrospective nature of this study.

Clinical protocol of CAR-T cell therapy

The protocol of CAR-T cell therapy was described previously [24]. Briefly, peripheral blood mononuclear cells were obtained from patients or donors by leukapheresis for CAR-T cell generation. T cells were transfected with CARs containing 4-1BB domain using lentivirus. Before CAR-T cell infusion, all patients received fludarabine- (30 mg/m² on days −4 to approximately −2) and Cy- (750 mg/m² on days −3 to approximately −2) based lymphodepletion regimen. The expansion and persistence of CAR-T cells were evaluated by flow cytometry and morphological analysis, and CAR DNA copy number was used as a complementary method.

Assessment of toxicities and efficacy

The grading of CRS was referred to a novel grading scale [25, 26], while other toxicities, including neurotoxicity and hematological toxicities, were assessed referring to the National Institutes of Health Common Terminology Criteria for Adverse Events Version 5.0 (http://ctep.cancer.gov/). On day 28, the response of CAR-T cell therapy would be evaluated.

Data collection

The baseline data, including age, gender, BMI, smoking history, hypertension, diabetes and HBV infection, residence, and care-giver, were collected. Nutritional status-related
parameters, including triglyceride, cholesterol, and albumin, were collected on the day of CAR-T cell transfusion and 7, 14, and 21 days after infusion.

Statistical analysis

SPSS 24.0 (SPSS Software Inc., Chicago, IL, USA) was used for statistical analyses, and GraphPad Prism 9.0.0 (San Diego, CA, USA) was used to draw the graphs. The continuous variables were presented as mean ± standard deviation and median (range). The categorical variables were presented as number (percentage). The parameters of multiple timepoints were compared by analysis of variance for repeated measurement. Mauchly’s test was used to determine whether the data were in line with the spherical hypothesis, and the Greenhouse–Geisser method was used for correction. Spearman’s correlation coefficient was used to analyze the correlation of serum albumin, triglyceride, and total cholesterol with CRS. \(P < 0.05 \) was considered significant.

Results

Patients’ characteristics

Among the 117 enrolled patients, the median age was 53 years (range, 14 to 74 years) with a BMI of 22.5 ± 2.8 kg/m², and the majority were male (56.4%). The patients were mostly married (91.5%) and half of them came from urban residence. Nearly 80% patients received cares from spouses during hospitalization. The baseline demographics characteristics are summarized in Table 1.

Thirty-nine patients (33.3%) were diagnosed with acute leukemia, 23 (19.7%) with lymphoma, and 55 (47.0%) with multiple myeloma, among which 33 (28.2%) had a history of hematopoietic stem cell transplantation (HSCT). Twenty-one patients complicated with hypertension and 14 with diabetes. Hepatitis B virus infection was found in 13 individuals (11.1%). The median length of hospital stay was 26 days (range, 7–90).

Alterations of serum albumin

The baseline albumin concentration was 37.43 ± 5.08 mg/L. The prevalence of hypoalbuminemia was 35.9% (42/117) at baseline. The level of albumin concentration was 34.12 ± 5.46 mg/L at 7 days after CAR-T cell infusion, which was significantly lower than baseline (mean difference: −3.84 mg/L, \(P < 0.001 \), Fig. 1). The prevalence of hypoalbuminemia (<35 mg/L) was 59.8% (70/117). Subsequently, it increased to 37.89 ± 4.99 and 38.45 ± 5.46 mg/L.

Table 1 Characteristics of patients	Total (n=117)
Age, years, median (range)	53 (14–74)
Male, n (%)	66 (56.4)
BMI, kg/m², mean ± SD	22.5 ± 2.8
Residence, n (%)	
Urban	59 (50.4)
Suburb	27 (23.1)
Rural	31 (26.5)
Married status, n (%)	
Unmarried	10 (8.5)
Married	107 (91.5)
Highest education, n (%)	
High school and below	89 (76.1)
College and above	26 (22.2)
Missing data	2 (1.7)
Care giver, n (%)	
Wife	62 (53.0)
Husband	36 (30.8)
Offspring	8 (6.8)
Parent	11 (9.4)
Diagnosis, n (%)	
Acute leukemia	39 (33.3)
Lymphoma	23 (19.7)
Multiple myeloma	55 (47.0)
Chemotherapy cycle, median (range)	7 (1–70)
History of HSCT, n (%)	
Yes	33 (28.2)
No	83 (70.9)
Missing data	1 (0.9)
Smoking history, n (%)	
Yes	20 (17.1)
No	97 (82.9)
Drinking history, n (%)	
Yes	20 (17.1)
No	97 (82.9)
Diabetes, n (%)	
Yes	14 (12.0)
No	102 (87.1)
Missing data	1 (0.9)
Hypertension, n (%)	
Yes	21 (17.9)
No	95 (81.2)
Missing data	1 (0.9)
HBV infection, n (%)	
Yes	13 (11.1)
No	104 (88.9)
Baseline ALB, mg/L, mean ± SD	37.43 ± 5.08
Baseline TG, mmol/L, mean ± SD	1.63 ± 0.74
Baseline TC, mmol/L, mean ± SD	3.62 ± 1.03
Hospital stay, days, median (range)	26 (7–90)

SD, standard deviation; HSCT, hematopoietic stem cell transplantation; HBV, hepatitis B virus; ALB, albumin; TG, triglycerides; TC, total cholesterol
Alterations of serum triglyceride

The level of triglyceride at 7 days after CAR-T therapy was 1.68 ± 1.23 mmol/L, which was similar with baseline (1.63 ± 0.74 mmol/L, P > 0.999). Nevertheless, it increased at 14 days (2.21 ± 0.98 mmol/L, mean difference: 0.67 mmol/L, P < 0.001, Fig. 2) and remained at a high level at 21 days after CAR-T cell infusion (2.14 ± 1.63 mmol/L, mean difference: 0.43 mmol/L, P = 0.036). The prevalence of hypertriglyceridemia (>1.81 mmol/L) was 53.8% (63/117) at 14 days after CAR-T cell infusion.

Alterations of serum total cholesterol

The baseline total cholesterol concentration was 3.62 ± 1.03 mmol/L. The lowest level was found at 7 days after CAR-T cell infusion (2.78 ± 0.91 mmol/L, mean difference: −0.85 mmol/L, P < 0.001, Fig. 3). The prevalence of hypocholesterolemia was 91.5% (107/117). The total cholesterol concentration slightly increased at 14 and 21 days (2.98 ± 0.84 mmol/L and 3.14 ± 1.00 mmol/L, respectively), although the differences compared with baseline remained significant (mean difference: −0.79 mmol/L, P < 0.001; mean difference: −0.47 mmol/L, P = 0.003).

Correlation of serum albumin, triglyceride, and total cholesterol with CRS

Thirty-five patients (30.0%) had grade 0 or grade 1 CRS, while 47 (40.1%) developed grade 2 CRS and 28 (23.9%)
developed grade 3 CRS. Notably, 6 patients (5.1%) experienced a grade 4 CRS but no death occurred.

Spearman’s correlation coefficient showed that CRS was negatively correlated with the level of serum albumin at 7 days ($r = -0.353, P < 0.001$) and 14 days ($r = -0.292, P = 0.003$), but not 21 days after CAR-T infusion ($r = -0.104, P = 0.421$). Moreover, the negative correlations were found between total cholesterol levels and CRS at 7, 14, and 21 days after CAR-T therapy ($r = -0.216, P = 0.025; r = -0.310, P = 0.002; r = -0.395, P = 0.002$, respectively). However, no correlations were between triglyceride and CRS (all $P > 0.05$). The details are presented in Table 2.

Discussion

In this retrospective study, the changes of nutritional status after CAR-T therapy were preliminarily explored. The finding showed the alterations vary across different indices, where serum albumin and total cholesterol decreased at the lowest level 7 days after CAR-T cell infusion, while the level of triglyceride increased at 14 and 21 days after CAR-T cell infusion.

The prevalence of hypoalbuminemia was 35.9% at baseline in this study, which was within the range of 30–45% in previous studies based on hematological malignancies population [27–29]. In addition, the prevalence of hypocholesterolemia was 91.5% in this study, even higher than a previous study reported [30]. Recently, a retrospective study including advanced hepatocellular carcinoma patients receiving anti-PD-1 immunotherapy reported that serum albumin concentration decreased distinctly after immunotherapy in disease progression patients [31]. In this study, the lowest level of serum albumin and TC concentration was found 7 days after CAR-T cell infusion and steadily climbed back. Meanwhile, the level of TG after chemotherapy increased compared with pre-therapy [32, 33], which is similar in the present study. Researchers have reported the influence of cytokines on the diet and metabolism of cancer patients [34, 35]. Cytokines such as interleukin (IL)-1, IL-6, and tumor necrosis factor alpha (TNF-α) together lead to decrease intake of food, increase glucose oxidation, increase synthesis of acute phase reactive proteins, decrease fatty acid uptake, and increase resting energy expenditure, meanwhile, affecting metabolism by altering insulin, glucagon, and corticosterone levels [35]. As studies revealed the onset-time of CRS was around 7–14 days [36], we supposed the decrease of albumin and TC to be correlated with CRS somehow. Subsequently, correlation analysis in this study showed negative correlations between serum albumin and total cholesterol with CRS, which preliminarily support the assumption. Further studies with larger sample size and concerning the mechanism of the influence of CRS on nutrition status are needed.

The effect of malnutrition on immunity remains appealing whether in cancer patients or healthy population. Relevant animal experiments proved that malnutrition could lead to a decrease in immune cells, especially T cells [22]. Similar findings were seen in human studies. Malnourished children had decreased CD4+ and CD8+ T cell numbers in whole blood compared to well-nourished children [37]. Yilmaz et al. [28] investigated the predictive performance of biochemical parameters in hematological malignancies patients and results suggested that serum albumin was a reliable index, which was supported by other studies [38, 39]. Moreover, an observation study reported that lower albumin concentration pre-treatment was associated with toxic induction deaths after chemotherapy in pediatric ALL patients [29]. Fang et al. [31] revealed the correlation between serum albumin and the efficacy of anti-PD-1 immunotherapy, though the correlation was partial due to the small sample size. Nevertheless, the significant association of the level of serum albumin concentration and the prognosis of patients receiving CAR-T cell therapy was not found in our studies. We considered the frequent screening and active intervention might eliminate the effect, not to mention the small sample size and short follow-up.

The study had several limitations. Firstly, due to its retrospective nature, the selected bias and incomplete data were inevitable. In addition, limited follow-up data lead to the difficulty in exploring the effect of malnutrition on the prognosis of patients. Secondly, the sample size was relatively small, which might result in the failure in the investigation of the risk factor of malnutrition. Finally, the evaluation of nutrition status

Table 2 Correlation of serum albumin, triglyceride, and total cholesterol with cytokine release syndrome

Parameter	r	P
Albumin		
Baseline	−0.184	0.049
7 days after CAR-T cell infusion	−0.353	<0.001
14 days after CAR-T cell infusion	−0.292	0.003
21 days after CAR-T cell infusion	−0.104	0.421
Triglyceride		
Baseline	0.014	0.884
7 days after CAR-T cell infusion	0.164	0.089
14 days after CAR-T cell infusion	−0.017	0.868
21 days after CAR-T cell infusion	−0.083	0.534
Total cholesterol		
Baseline	0.004	0.970
7 days after CAR-T cell infusion	−0.216	0.025
14 days after CAR-T cell infusion	−0.310	0.002
21 days after CAR-T cell infusion	−0.395	0.002

$P < 0.05$ was considered significant. Bold values were considered significant.
in this study was insufficient. The application of other nutrition screening methods, such as muscle mass index, Patient-Generated Subjective Global Assessment, and Nutrition Risk Index, should be explored in further studies.

In conclusion, the alterations of different nutrition-related biochemical parameters varied after CAR-T cell therapy. Our findings revealed that serum albumin and total cholesterol concentration decreased at the lowest level 7 days after CAR-T cell infusion, while triglyceride increased at 14 and 21 days after CAR-T cell infusion. The levels of albumin and total cholesterol after CAR-T cell infusion were negatively correlated with cytokine release syndrome. Specific screening and intervention for malnutrition in patients receiving CAR-T cell therapy need to be explored in further studies.

Author contribution Shuyi Ding, Lingxia Cai, Aiyun Jin, Xiaoyu Zhou, Jiali Yan, and Tingting Wang designed the study and collected the data. Linqin Wang and Houli Zhao analyzed the data and wrote the manuscript. Yongxian Hu proofread the manuscript.

Funding This work was supported by the Medical Science and Technology Project of Zhejiang Provincial Health Commission (grant no. 2021432523) and Department of Education of Zhejiang Province (grant no. Y202043556).

Availability of data and material Data is available on request.

Code availability Not applicable.

Declarations

Ethics approval These clinical trials were performed according to the ethical principles of the Declaration of Helsinki. Approval was granted by the Medical Ethics Committee of the First Affiliated Hospital of Medical College, Zhejiang University (ChiCTR-ORN-16008948, ChiCTR1800015575, ChiCTR-OIC-17011310, ChiCTR1800017404).

Consent for publication Obtained.

Conflict of interest The authors declare no competing interests.

References

1. Mullard A (2017) FDA approves first CAR T therapy. Nature Reviews Drug Discovery 16(10):669–669. https://doi.org/10.1038/nrd.2017.196
2. Mullard A (2017) Second anticancer CAR T therapy receives FDA approval. Nature Reviews Drug Discovery 16(12):818–818. https://doi.org/10.1038/nrd.2017.249
3. Ma S et al (2019) Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci 15(2):2548–2560
4. Lin WY et al (2020) Gene modified CAR-T cellular therapy for hematologic malignancies. Int J Mol Sci 21(22):8655
5. Park JH et al (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378(5):449–459
6. Brudno JN, Koczykowski JN (2019) Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev 34:45–55
7. Neelapu SS et al (2018) Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol 15(1):47–62
8. Skorka K et al (2020) The application of CAR-T cells in haematological malignancies. Arch Immunol Ther Exp (Warsz) 68(6):34
9. La Torre M et al (2013) Malnutrition and pancreatic surgery: prevalence and outcomes. J Surg Oncol 107(7):702–708
10. Lemos Pdós S, de Oliveira FL, Caran EM (2014) Nutritional status of children and adolescents at diagnosis of hematological and solid malignancies. Rev Bras Hematol Hemoter 36(6):420–3
11. von Meyenfeldt M (2005) Cancer-associated malnutrition: an introduction. Eur J Oncol Nurs 9(Suppl 2):S35–S38
12. Mondello P et al (2014) Emerging markers of cachexia predict survival in cancer patients. BMC Cancer 14:828
13. Fearon KC, Glass DJ, Guttridge DC (2012) Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 16(2):153–166
14. Xia LJ et al (2020) Significance of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio and prognostic nutritional index for predicting clinical outcomes in T1–2 rectal cancer. BMC Cancer 20(1):208
15. Jager-Wittenaar H, Ottery FD (2017) Assessing nutritional status in cancer: role of the Patient-Generated Subjective Global Assessment. Curr Opin Clin Nutr Metab Care 20(3):322–329
16. Cessot A et al (2011) Defining the clinical condition of cancer patients: it is time to switch from performance status to nutritional status. Support Care Cancer 19(7):869–870
17. Co-Reyes E et al (2012) Malnutrition and obesity in pediatric oncology patients: causes, consequences, and interventions. Pediatr Blood Cancer 59(7):1160–1167
18. Lange BJ et al (2005) Mortality in overweight and underweight children with acute myeloid leukemia. JAMA 293(2):203–211
19. Suzuki H et al (2013) Cancer cachexia–pathophysiology and management. J Gastroenterol 48(5):574–594
20. Planas M et al (2016) Prevalence of hospital malnutrition in cancer patients: a sub-analysis of the PREDiCES(R) study. Support Care Cancer 24(1):429–435
21. Sanford DE et al (2014) Severe nutritional risk predicts decreased long-term survival in geriatric patients undergoing pancreaticoduodenectomy for benign disease. J Am Coll Surg 219(6):1149–1156
22. Saucillo DC et al (2014) Leptin metabolically licenses T cells for activation to link nutrition and immunity. J Immunol 192(1):136–144
23. Wensveen FM et al (2015) Interactions between adipose tissue and the immune system in health and malnutrition. Semin Immunol 27(5):322–333
24. Hu Y et al (2017) Potent anti-leukemia activities of chimeric antigen receptor-modified T cells against CD19 in Chinese patients with relapsed/refractory acute lymphocytic leukemia. Clin Cancer Res 23(13):3297–3306
25. Porter DL et al (2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science Translational Medicine 7(303):303ra139–303ra139
26. Porter DL et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733
27. McLean TW et al (2020) Hypoalbuminemia in children with cancer treated with chemotherapy. Pediatr Blood Cancer 67(2):e28065
28. Yilmaz M et al (2020) The effect of malnutrition on mortality in hospitalized patients with hematologic malignancy. Support Care Cancer 28(3):1441–1448
29. Tandon S et al (2015) Effect of pre-treatment nutritional status, folate and vitamin B12 levels on induction chemotherapy
in children with acute lymphoblastic leukemia. Indian Pediatr 52(5):385–389
30. Marini A et al (1989) Serum cholesterol and triglycerides in hematological malignancies. Acta Haematol 81(2):75–79
31. Jiang Y et al (2020) Nutrition and metabolism status alteration in advanced hepatocellular carcinoma patients treated with anti-PD-1 immunotherapy. Support Care Cancer 28(11):5569–5579
32. Idogun SE, Omoti CE (2011) Effects of chemotherapy on plasma lipids and lipoproteins in Nigerian patients with hematological malignancy. Niger Postgrad Med J 18(1):16–19
33. Kuliszkiewicz-Janusz M, Malecki R, Mohamed AS (2008) Lipid changes occurring in the course of hematological cancers. Cell Mol Biol Lett 13(3):465–474
34. Alwarawrah Y, Kiernan K, MacIver NJ (2018) Changes in nutritional status impact immune cell metabolism and function. Front Immunol 9:1055
35. Argiles JM, Busquets S, Lopez-Soriano FJ (2003) Cytokines in the pathogenesis of cancer cachexia. Curr Opin Clin Nutr Metab Care 6(4):401–406
36. Shimabukuro-Vornhagen A et al (2018) Cytokine release syndrome. J Immunother Cancer 6(1):56
37. Najera O et al (2004) Flow cytometry study of lymphocyte subsets in malnourished and well-nourished children with bacterial infections. Clin Diagn Lab Immunol 11(3):577–580
38. Elmoamly S, Afif A (2018) Can biomarkers of coagulation, platelet activation, and inflammation predict mortality in patients with hematological malignancies? Hematology 23(2):89–95
39. Kharfan-Dabaja MA et al (2018) Hypoalbuminaemia segregates different prognostic subgroups within the refined standard risk acute graft-versus-host disease score. Br J Haematol 180(6):854–862

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.