A critical appraisal of the quality of adult dual-energy X-ray absorptiometry guidelines in osteoporosis using the AGREE II tool: An EuroAIM initiative

Carmelo Messina1 · Bianca Bignotti2 · Alberto Bazzocchi3 · Catherine M. Phan4 · Alberto Tagliafico5 · Giuseppe Guglielmi6 · Francesco Sardanelli7,8 · Luca Maria Sconfienza8,9

Abstract

Objectives Dual energy X-ray absorptiometry (DXA) is the most widely used technique to measure bone mineral density (BMD). Appropriate and accurate use of DXA is of great importance, and several guidelines have been developed in the last years. Our aim was to evaluate the quality of published guidelines on DXA for adults.

Methods Between June and July 2016 we conducted an online search for DXA guidelines, which were evaluated by four independent readers blinded to each other using the AGREE II instrument. A fifth independent reviewer calculated scores per each domain and agreement between reviewers’ scores.

Results Four out of 59 guidelines met inclusion criteria and were included. They were published between 2005 and 2014. Three out of four guidelines reached a high level of quality, having at least five domain scores higher than 60%. Domain 1 (Scope and Purpose) achieved the highest result (total score = 86.8 ± 3.7%). Domain 6 (Editorial Independence) had the lowest score (total score = 54.7 ± 12.5%). Interobserver agreement ranged from fair (0.230) to good (0.702).

Conclusions Overall, the quality of DXA guidelines is satisfactory when evaluated using the AGREE II instrument. The Editorial Independence domain was the most critical, thus deserving more attention when developing future guidelines.

Main messages

- Three of four guidelines on DXA had a high quality level (>60%).
- Scope/purpose had the highest score (86.8 ± 3.7%).
- Editorial Independence had the lowest score (54.7 ± 12.5%).
- Interobserver agreement ranged from fair (0.230) to good (0.702).

Keywords Dual-energy X-ray absorptiometry · DXA · Guidelines · Agree · Evidence based medicine

Introduction

Osteoporosis is defined as a systemic skeletal disease characterised by low bone mass and microarchitectural deterioration of bone tissue, with a subsequent increase in bone fragility and susceptibility to fracture [1]. Instrumental diagnosis of osteoporosis relies on bone mineral measurements,
which can be obtained in vivo using different densitometric

techniques. Among these, dual energy X-ray absorptiometry

(DXA) is the most widely used in clinical practice [2–4].

Advantages of DXA are the very low radiation dose adminis-
tered to patients, its very good reproducibility, and the capa-
tibility to provide bone mineral density (BMD) values at central

sites that relate to fracture risk [3, 5]. Other available techni-

cues include quantitative ultrasound (QUS) and quantitative

computed tomography (QCT) [6].

Appropriate and accurate use of densitometric techniques

is of great importance: bone mineral measurements provide

not only diagnostic criteria but also prognostic information on

fracture risk probability, and they are also used to monitor

treated or untreated patient [6]. For this reason, several guide-

lines have been developed in the last years with a number of

recommendations that include indications for BMD testing,

which skeletal site to measure, how to interpret and report

BMD results, and proper timing for follow-up [7–10]. These

guidelines, typically issued by relevant medical societies or

specialised working groups, play an important role in clinical

practice: they provide valuable suggestions based on the

different fields of diagnostic imaging. Regarding musculoskeletal

diseases, a conjoined project between EuroAIM and the

European Society of Musculoskeletal Radiology (ESSR) was

focused its attention on the evaluation of guidelines in

mainly containing recommendation on DXA, irrespective

of other densitometric techniques; guidelines must focus

mainly on the adult population (age >18 years).

The evaluation of guideline quality was made using the

AGREE II instrument through the official website dedicated on-

line platform [15]. The AGREE II protocol consists of 23 differ-

cent items organised in 6 domains: domain 1 = “Scope and

Purpose” (items 1–3); domain 2 = “Stakeholder Involvement”

(items 4–6); domain 3 = “Rigor of Development” (items 7–14);

domain 4 = “Clarity of Presentation” (items 15–17); domain

5 = “Applicability” (items 18–21); domain 6 = “Editorial

Independence”. These six domains are followed by two addi-
tional items (“Overall Assessment”), which includes “the rating

of the overall quality of the guideline and whether the guideline

would be recommended for use in practice”. Table 1 shows a
detailed description of all AGREE II items [15].

Four independent reviewers (CM, BB, AB, CMP) with 4 to

15 years’ experience in musculoskeletal radiology and scientif-
ic research scored each guideline. All reviewers were previously

trained to use AGREE II rating system by means of the user

manual that was available on the online platform; in addition,

reviewers were asked to complete two online training tools

specifically developed to assist users in effectively applying

the instrument. According to instruction tool, each item was

rated on a 7-point scale ranging from 1 (strongly disagree,

which means that no relevant information is provided) to 7

(strongly agree, which means that the quality of reporting is

exceptional). Final domain scores were calculated by summing

up all item scores within the domain and by scaling the total as a

percentage of the maximum possible score for that domain [15].

Data analysis

For analysis purposes, the evaluations performed by the four

reviewers were averaged, and the average of each domain is

reported in the results. Agreement between reviewers’ scores

was calculated using the intraclass correlation coefficient (ICC),
defined as follows: <0.20, poor; 0.21–0.40, fair; 0.41–0.60, mod-

erate; 0.61–0.80, good; 0.81–1.00, very good. As for previous

studies, the overall quality of each guidelines was evaluated

using a threshold of 60% for the final score of each domain

[17, 18]. High quality was defined when 5 or more domains

scored >60%, average quality when 3 or 4 domains scored

Materials and methods

Between June and July 2016 we searched for DXA
guidelines using PubMed, EMBASE, Google and the

Wiley Online Library, using the following keywords:

dual energy X-ray absorptiometry”, “DXA”, “DEXA”,

“bone densitometry”, “Guidelines”, “Official Positions”,

“Osteoporosis” and their expansions. Once guidelines

had been retrieved, their references were also screened

for further papers to include. We excluded from the

results of our search those papers that were not primar-

ily focused on DXA, such as national/international os-

teoporosis guidelines in which DXA was briefly men-

tioned in the context of a more comprehensive disease
evaluation. Inclusion criteria were as follows: guidelines

issued by national and international medical societies;

total manuscript available in English; guidelines must

mainly contain recommendation on DXA, irrespective

of other densitometric techniques; guidelines must focus

mainly on the adult population (age >18 years).

between reviewers’ scores was calculated using the intraclass correlation coefficient (ICC),
declared as follows: <0.20, poor; 0.21–0.40, fair; 0.41–0.60, moder-

erate; 0.61–0.80, good; 0.81–1.00, very good. As for previous

studies, the overall quality of each guidelines was evaluated

using a threshold of 60% for the final score of each domain

[17, 18]. High quality was defined when 5 or more domains

scored >60%, average quality when 3 or 4 domains scored
>60% and low-quality when ≤2 domains scored >60%. In addition, the total score (expressed as mean ± standard deviation, SD) of guidelines and domains was calculated. Domain scores were categorised as good (≥80%), acceptable (60–79%), low (40–59%) or very low (<40%), similar to a previous similar paper [19]. Data collection, extraction and scoring were performed by a fifth independent reviewer (LMS) with 12 years’ experience in musculoskeletal radiology and scientific research, using a Microsoft Excel® 2016 spreadsheet. ICC calculations were performed using the SPSS software (version 24, IBM, Armonk, NY).

Results

Our strategy of literature search identified 59 guidelines, 4 of which met our inclusion criteria [7–10]. Exclusion of guidelines was mainly based on the following criteria: guidelines

Table 1 Summary of AGREE II structure and detailed list of items within each domain (from reference 15)

Domain 1: Scope and Purpose	Item 1	The overall objective(s) of the guideline is (are) specifically described
Item 2	The health question(s) covered by the guideline is (are) specifically described	
Item 3	The population (patients, public, etc.) to whom the guideline is meant to apply is specifically described	

Domain 2: Stakeholder Involvement	Item 4	The guideline development group includes individuals from all the relevant professional groups
Item 5	The views and preferences of the target population (patients, public, etc.) have been sought	
Item 6	The target users of the guideline are clearly defined	

Domain 3: Rigor of Development	Item 7	Systematic methods were used to search for evidence
Item 8	The criteria for selecting the evidence are clearly described	
Item 9	The strengths and limitations of the body of evidence are clearly described	
Item 10	The methods for formulating the recommendations are clearly described	
Item 11	The health benefits, side effects and risks have been considered in formulating the recommendations	
Item 12	There is an explicit link between the recommendations and the supporting evidence	
Item 13	The guideline has been externally reviewed by experts prior to its publication	
Item 14	A procedure for updating the guideline is provided	

Domain 4: Clarity of Presentation	Item 15	The recommendations are specific and unambiguous
Item 16	The different options for management of the condition or health issue are clearly presented	
Item 17	Key recommendations are easily identifiable	

Domain 5: Applicability	Item 18	The guideline describes facilitators and barriers to its application
Item 19	The guideline provides advice and/or tools on how the recommendations can be put into practice	
Item 20	The potential resource implications of applying the recommendations have been considered	
Item 21	The guideline presents monitoring and/or auditing criteria	

Domain 6: Editorial Independence	Item 22	The views of the funding body have not influenced the content of the guideline
Item 23	Competing interests of guideline development group members have been recorded and addressed	
were primarily focused on a densitometric technique different from DXA, such as quantitative computed tomography; the main target was pediatric population; fracture risk assessment guidelines; body composition guidelines. The characteristics of DXA guidelines that were included in our study are presented in Table 2. Year of publication ranged from 2005 to 2014.

Table 2 summarises the total score for each domain as well as the final judgment of overall quality. Detailed scores and reviewers’ comments for each guideline are reported in Supplementary Tables 1, 2, 3 and 4. Three out of four guidelines reached a high level of quality, having at least five domain scores higher than 60%. Among these, “Adult and Pediatric Official Positions” issued by the International Society for Clinical Densitometry (ISCD) [7] achieved the highest total score (76.1%). The only guideline that reached an average level of quality was the one issued conjoinedly by the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR) and the Society of Skeletal Radiology (SSR) [9], with only four domains scoring >60% and a total score of 64.1% ±11.3% [mean ± standard deviation (SD)]. ISCD Official Position was the guideline with the more variable scores, with a SD of 18.1%, while the Canadian recommendation paper [8] had the lowest variability (SD = 9.5%). Supplementary Tables 1, 2, 3 and 4 show the detailed AGREE II domain scores for each guideline.

Domain scores ranged between 41.7% (lowest value, domain 1) and “Clarity of Presentations” (domain 4) achieved the highest results, with a total domain score of 86.8 ± 3.7% and 80.6 ± 9.3%, respectively. The domain with the lowest total score was “Editorial Independence” (domain 6), with a total mean score of 54.7 ± 12.5%.

Total mean score of domain 1 (“Scope and Purpose”) was 86.8% with low variability (SD = 3.7%). The guideline published by ISCD reached the highest score (91.7% = good), while ACR-SPR-SSR conjoined guideline achieved a score of 81.9%, which is still considered “good”.

For domain 2 (“Stakeholder Involvement”), the overall mean score was “acceptable” with a mean score of 71.5%. Quality scores variability was low (SD = 3.6%). Again, ISCD Official Positions was the guideline with the highest score (76.4% = acceptable), while both ACR and ACR-SPR-SSR guidelines scored the lowest value (68.1% = acceptable).

Domain 3 (“Rigor of Development”) had the second-lowest mean score (63.9%) with a slightly higher variability (SD = 6.8%) compared to domain 1 and 2. ISCD Official Positions was the guideline with the highest score (78.6% = acceptable), while Canadian Guideline had the lowest score (57.3% = low).

Domain 4 (“Clarity of Presentation”) had the second-highest mean quality score (80.6%), with 9.3% SD. Guideline scores ranged from 90.3% (good) of ISCD Official Positions to 66.7% (acceptable) of the ACR-SPR-SSR Guideline.

Total mean score of domain 5 (“Applicability”) was 70.6% with intermediate variability (SD = 6.8%). Within this domain, ISCD had the highest score (78.1% = acceptable) while the ACR-SPR-SSR Guideline had the lowest (61.5% = acceptable).

The lowest scores were obtained by domain 6 (“Editorial Independence”), with a total mean score of 54.7%; this domain had also the larger variability, with 12.5% SD. The guideline published by the Canadian Association of Radiologists reached the better score (75% = acceptable); differently from the previous domain, the ISCD Official Positions had the lowest domain score (41.7% = low).

Interobserver variability ranges were 0.702 (good; 95% confidence interval, 0.438–0.860) for the ISCD guidelines, 0.230 (fair; −0.454-0.639) for the ACR-SPR-SSR guideline, 0.451 (moderate; −0.037-0.743) for the Canadian Association of Radiologists guideline and 0.474 (moderate; −0.006-0.753) for the ACR guideline.

Discussion

Our main finding is that the AGREE II appraisal of the DXA guidelines showed satisfactory results as the overall quality was high in three out of four guidelines and that the domain...
Table 3 Summary of the average of domain scores of DXA Guidelines according to AGREE II

Guideline title	Domain 1	Domain 2	Domain 3	Domain 4	Domain 5	Domain 6	Total score mean (SD)	Overall quality
Recommendations for BMD Reporting in Canada [8]	84.7%* (good)	73.6%* (acceptable)	57.3% (low)	77.8%* (acceptable)	66.7%* (acceptable)	75.0%* (acceptable)	72.5% (9.5%)	High
ISCD 2007 Adult and Pediatric Official Positions [7]	91.7%* (good)	76.4%* (good)	78.6%* (acceptable)	90.3%* (good)	78.1%* (acceptable)	41.7% (low)	76.1% (18.1%)	High
ACR Appropriateness Criteria: Osteoporosis and BMD [10]	88.9%* (good)	68.1%* (acceptable)	60.9%* (low)	87.5%* (good)	61.5%* (acceptable)	76.0%* (good)	54.2% (low)	High
ACR-SPR-SSR Practice Parameter for the Performance of DXA [9]	81.9%* (good)	68.1%* (acceptable)	58.9% (low)	66.7%* (good)	70.6%* (low)	47.9% (low)	64.1% (11.3%)	Average
Total domain score; mean (SD)	86.8% (3.7%)	71.5% (3.6%)	63.9% (8.6%)	80.6% (9.3%)	70.6% (6.8%)	54.7% (12.5%)		

Domain 1 = scope and purpose; domain 2 = stakeholder involvement; domain 3 = rigor of development; domain 4 = clarity of presentation; domain 5 = applicability; domain 6 = editorial independence. Domain scores ≥80% = good; 60–79% = acceptable; 40–59% = low; <40% = very low. * = total score of domain >60%. BMD = Bone mineral density; ISCD = International Society for Clinical Densitometry; ACR = American College of Radiology; SPR = Society for Pediatric Radiology; SSR = Society of Skeletal Radiology; SD = standard deviation.
Acknowledgements This work has been conducted within the framework of the Network for Assessment of Imaging in Medicine (EuroAIM), research platform of the European Institute for Biomedical Research (http://www.eibir.org/scientific-activities/joint-initiatives/euroaim/). The Research Committee and the Osteoporosis Subcommittee of the European Society of Musculoskeletal Radiology (ESSR) were involved in this appraisal. Luca Maria Sconfienza was Chair of the Research Committee of the ESSR from 2013 to 2016. Alberto Tagliafico is current Chair of the Research Committee of the ESSR. Bianca Bignotti and Carmelo Messina are members of the Research Committee of the ESSR. Giuseppe Guglielmi, Carmelo Messina, and Catherine M. Phan are members of the Osteoporosis Subcommittee of the ESSR. In the EuroAIM working group, Francesco Sardanelli is the current chair and Bianca Bignotti, Carmelo Messina, Luca Maria Sconfienza and Alberto Tagliafico are members.

Compliance with ethical standards

Conflict of interest The authors have no conflict of interest to disclose.

Funding No funding was received for the present work.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–50
2. Blake GM, Fogelman I (2009) The clinical role of dual energy X-ray absorptiometry. Eur J Radiol 71:406–414
3. Adams JE (2013) Advances in bone imaging for osteoporosis. Nat Rev Endocrinol 9:28–42
4. Messina C, Sconfienza L, Bandirali M et al (2016) Adult dual-energy X-ray absorptiometry in clinical practice: how I report it. Semin Musculoskelet Radial 20:246–253
5. Messina C, Bandirali M, Sconfienza LM et al (2015) Prevalence and type of errors in dual-energy x-ray absorptiometry. Eur Radiol 25:1504–1511
6. Kanis JA, McCloskey EV, Johansson H et al (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57
7. Lewiecki EM, Gordon CM, Baim S et al (2008) International Society for clinical densitometry 2007 adult and pediatric official Positions. Bone 43:1115–1121
8. Siminoski K, Leslie WD, Frame H et al (2005) Recommendations for bone mineral density reporting in Canada. Can Assoc Radiol J 56:178–188
9. (2013) ACR-SPR-SSR PRACTICE PARAMETER FOR THE PERFORMANCE OF DUAL-ENERGY X-RAY ABSORPTIOMETRY (DXA). Available at: https://www.acr.org/~media/eb34da2f786d48e96a70b75ee035992.pdf. Accessed on 21 Mar 2017
10. (2010) ACR Appropriateness Criteria® Osteoporosis and Bone Mineral Density. Available at: https://acsearch.acr.org/docs/69358/ Narrative/ Accessed on 21 Mar 2017
11. Egger M, Smith GD, Altman DG (2001) Systematic reviews in health care: meta-analysis in context. BMJ Books, London
12. Sardanelli F, Bashir H, Berzaczky D et al (2014) The role of imaging specialists as authors of systematic reviews on diagnostic and interventional imaging and its impact on scientific quality: report from the EuroAIM evidence-based radiology working group. Radiology 272:533–540
13. Shaneyfelt TM, Mayo-Smith MF, Rothwangl J (1999) Are guidelines following guidelines? The methodological quality of clinical practice guidelines in the peer-reviewed medical literature. JAMA 281:1900–1905
14. Grilli R, Magrini N, Penna A et al (2000) Practice guidelines developed by specialty societies: the need for a critical appraisal. Lancet (London, England) 355:103–106
15. Brouwers MC, Kho ME, Browman GP et al (2010) AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ 182:E839–E842
16. EIBIR European Network for the Assessment of Imaging in Medicine. http://www.eibir.org/scientific-activities/joint-initiatives/euroaim/. Accessed 27 Dec 2016

17. Ou Y, Goldberg I, Migdal C, Lee PP (2011) A critical appraisal and comparison of the quality and recommendations of glaucoma clinical practice guidelines. Ophthalmology 118:1017–1023

18. Armstrong JJ, Rodrigues IB, Wasuata T, MacDermid JC (2016) Quality assessment of osteoporosis clinical practice guidelines for physical activity and safe movement: an AGREE II appraisal. Arch Osteoporos 11:6

19. Sekercioglu N, Al-Khalifah R, Ewusie JE et al (2017) A critical appraisal of chronic kidney disease mineral and bone disorders clinical practice guidelines using the AGREE II instrument. Int Urol Nephrol 49:273–284

20. Vasse E, Vernooij-Dassen M, Cantegreil I et al (2012) Guidelines for psychosocial interventions in dementia care: a European survey and comparison. Int J Geriatr Psychiatry 27:40–48

21. Zeng L, Zhang L, Hu Z et al (2014) Systematic review of evidence-based guidelines on medication therapy for upper respiratory tract infection in children with AGREE instrument. PLoS One 9:e87711

22. Holmer HK, Ogden LA, Burda BU, Norris SL (2013) Quality of clinical practice guidelines for glycemic control in type 2 diabetes mellitus. PLoS One 8:e58625

23. Zhang Z, Guo J, Su G et al (2014) Evaluation of the quality of guidelines for myasthenia gravis with the AGREE II instrument. PLoS One 9:e111796

24. Norris SL, Holmer HK, Ogden LA, Burda BU (2011) Conflict of interest in clinical practice guideline development: a systematic review. PLoS One 6:e25153

25. Norris SL, Holmer HK, Ogden LA et al (2012) Conflict of interest disclosures for clinical practice guidelines in the National Guideline Clearinghouse. PLoS One 7:e47343

26. Neuman J, Korenstein D, Ross JS, Keyhani S (2011) Prevalence of financial conflicts of interest among panel members producing clinical practice guidelines in Canada and United States: cross sectional study. BMJ 343:d5621–d5621

27. Kung J, Miller RR, Mackowiak PA (2012) Failure of clinical practice guidelines to meet institute of medicine standards: two more decades of little, if any, progress. Arch Intern Med 172:1628–1633

28. Vlayen J, Aertgeerts B, Hannes K et al (2005) A systematic review of appraisal tools for clinical practice guidelines: multiple similarities and one common deficit. Int J Qual Heal care J Int Soc Qual Heal Care 17:235–242