To Study the Vapour Liquid Equilibrium Data for Cellosolve Acetate and Toluene

VLE of Cellosolve and Toluene System

Uday Chavda, Shahnawaz Hala, Dhyey Savaliya, Milan Kathiriya
Chemical Engineering Department
Om Engineering College, Junagadh 362310
Gujarat Technological University Ahmedabad, Gujarat, India

Abstract – Isobaric vapour–liquid equilibrium data for pure components as well as binary mixtures of Cellosolve Acetate–Toluene was generated using a modified ebulliometer. Measurements are reported for four different pressures in the range of (61 to 101) kPa. Pure component vapor pressures were correlated using the Antoine correlation and compared with the literature data. Antoine constants are good match with literature and predicted data.

Keywords - Cellosolve Acetate; Toluene; VLE; Vapour-liquid

1. INTRODUCTION

PHASE EQUILIBRIA (VAPOUR LIQUID EQUILIBRIUM):

Distillation occupies a very important position in chemical engineering. Distillation and chemical reactors represent the backbone of what distinguishes chemical engineering from other engineering disciplines. Operations involving heat transfer and fluid mechanics are common to several disciplines. But distillation is uniquely under the purview of chemical engineers.

The basis of distillation is phase equilibrium, specifically, vapor–liquid (phase) equilibrium (VLE) and in some cases vapor–liquid–liquid (phase) equilibrium (VLLE). Distillation can effect a separation among chemical components only if the compositions of the vapor and liquid phases that are in phase equilibrium with each other are different. A reasonable understanding of VLE is essential for the analysis, design, and control of distillation columns.

Vapour liquid equilibrium (VLE) is a condition in which a liquid and vapour phase are in equilibrium with each other, a condition or state where the rate of evaporation equals the rate of condensation on molecular level such that there is no net vapour-liquid interconversion. A substance at vapour liquid equilibrium is generally referred to as a saturated fluid. For a pure chemical substance this implies that it is at its boiling point. Such VLE information is useful in designing columns for distillation, especially fractional distillation.

EXPERIMENTALLY INVESTIGATED EQUILIBRIUM IN BINARY SYSTEM (CELLOSOLE ACETATE-TOLUENE):

VLE data on binary mixture of organic compounds are of significant importance for the design of numerous Industrial chemical processes or for the purpose of environmental protection. In the plants of various branches of Industry, where organic solvents are used, spend mixtures from a flow of toxic liquid wastes whose discharge into the environmental is unacceptable. This makes necessary the development of technologies for recovering the starting solvents from the wastes and recycling them. For which phase equilibrium information is necessary. VLE studies of those systems are the goal of the present study. Following Systems have been studied,

- 2-Ethoxyethanol (Cellosolve) Acetate- Pure component
- Toluene-Pure component
- 2-Ethoxyethanol (Cellosolve) Acetate-Toluene – Binary System

This binary system finds application in Esterification Reaction and Reactive distillation. The Vapour Liquid Equilibrium (VLE) of this system is difficult to model especially due to High Boiling point and no data is available in the literature on this aspect to the best of my knowledge.

Experiment P-T-x data of 2-Ethoxyethanol (Cellosolve) Acetate -Toluene system are generated for eight different set of composition at five different pressure for each set of mixture and This Experimental data are used to regress Activity coefficient model parameters which are further used to generate P-T-x-y data. Results are compared with G² based Models (Margules 2-suffix, Margules 3-suffix, NRTL, Vanlaar, Wilson Model).

G² BASED MODELING

Isobaric VLE data for the binary mixture of 2-Ethanolethanol (Cellosolve) Acetate – Toluene have been generated. The experimental data were correlated by using G² based Models (Margules 2-suffix, Margules 3-suffix, NRTL, Vanlaar, Wilson Model).

Two vapour pressure models are used for the given system. For Cellosolve Acetate and for Toluene Antoine equation is used, whose constants are fitted to experimental Vapour pressure. By using regressed parameter BUBBLE T is found out.

Activity coefficient Model parameters are regressed using experimental P-T-x data. Then experimental binary P-T-x data modelled to find Vapour phase composition using regressed parameters and compared the vapour phase composition and temperature with BUBBLE T calculated data.
2. CHEMICALS

Component	M.W	B.P °C	Purity %
Cellosolve (AR)	132.16	156.2	99.0
(2-Ethoxyethanol) Acetate			
Toluene	92.14	110	99.0
IPA (Iso-propyl alcohol)	99.5	82.5	60.10

3. VLE DATA GENERATION

PURE COMPONENT:
1. Component Name: CELLOSOLVE ACETATE (AR)
 Molecular Weight : 132.16
 Boiling Point : 156
 Purity : 99 %
 Density @ 20 °C : 0.9
 Volume In : 55 ml
 Volume Out : 51 ml
 Average Time for equilibrium: 60 min
 Vaporizing rate : 165 drops/min

2. Component Name: Toluene
 Molecular Weight : 92.14
 Boiling Point : 110.4
 Purity : 99 %
 Density @ 20 °C : 0.865
 Volume In : 55 ml
 Volume Out : 51 ml
 Average Time for equilibrium: 60 min
 Vaporizing rate : 165 drops/min

PURE COPMONENT MODELING

GENERAL MODELS:
Vapour pressure is calculated by generally used models which are described here.

a) VAPOUR PRESSURE:
 Antoine Equation:
 \[\ln P = A - \frac{B}{T + C} \]
 Where:
 P = Vapour pressure KPa
 T = Temperature in K
 A, B, C = Antoine Constants

Cellosolve Acetate and Toluene Vapour Pressure is found by the Antoine Equation Literature Antoine Constant

Table : Cellosolve Acetate and Toluene Literature Antoine Constant

Component	A	B	C
Cellosolve (ref_2)	11.258	1620.024	-185.83
Toluene (ref_1)	14.0098	3100.01	-53.36

MIXTURE MODELING:

a) GENERAL EQUILIBRIUM MODEL:

\[\frac{Y_i}{\bar{Y}_i} = \frac{X_i}{\bar{X}_i} \bar{P} \]

Where:

\[\bar{Y}_i \] = Vapour and liquid mole fraction
\[\bar{X}_i \] = Saturated pressure
\[\bar{P} \] = Corrected total pressure
\[P \] = Total pressure
\[R \] = Universal gas constant
\[\bar{Y}_i \] = Activity Coefficient

b) G^B BASED MODELING:

Isobaric VLE data for the binary mixture of 2-Ethoxyethanol (Cellosolve) – Toluene have been generated. The experimental data were correlated by using G^B based models (Margules 2- suffix, Margules 3- suffix, Van laar, Wilson, and NRTL equations.) The experimental data were correlated by using the following G^B based models:

- Margules 2- suffix model
- Margules 3- suffix model
- Van Laar model
- NRTL model
- Uniquac model

Vapour Pressure was calculated using the Antoine Equation. Parameters were regressed using the above mentioned models for all the binary mixture data and using them, BUBBLE T or the bubble temperature was estimated. Experimental P-T-x data are modelled to find Vapour phase composition using G^B based models with regressed parameters. Activity coefficient model parameters are regressed using experimental P-T-x data. Then experimental P-T-x are modelled to find vapour phase composition and the comparison of the vapor phase composition and temperature with the calculated BUBBLE T data was made.

GC PARAMETERS

GC PARAMETERS	CONDITIONS
Column	Packed
Range	0-0
Injection Port Temperature	200 °C
Detector Temperature	210 °C
Oven Temperature	180 °C
Carrier Gas (N2) Pressure	0.8 bar
FID (+Ve)	0.1 μ liter

This work is licensed under a Creative Commons Attribution 4.0 International License.
4. RESULT AND DISCUSSION

Pure component and binary VLE data for Toluene – Cellosolve Acetate system have been generated using a differential Ebulliometer with a provision of drop counter. The parameters of the Antoine equation for pure components have been regressed from the experimental data. Similarly, the parameters of various G^E based models have been determined by regression using BUBL T calculations.

Experimental P-T-x data generated in this work are reported in chapter 3, the above system is modelled using various combinations of activity coefficient models and Table 5.1 shows pure component P–T data. Table 5.8 shows regressed parameters of Activity coefficient models. Parameters are regressed at experimental P-T-x data generated in this work. The compositions reported are in terms of mole fraction with components ‘1’ and ‘2’ being Toluene and Cellosolve acetate respectively. Activity coefficient model parameters of Margules 2-suffix, Margules 3-suffix, Vanlaar, NRTL, Wilson parameters are regressed at experimental P-T-x data generated. BUBBLE T calculations performed by G^E based models are reported in Table 5.4, 5.5, 5.6 and 5.7 and plotted in figure 5.4, 5.5, 5.6 and 5.7, %ADD of experimental and model predicted BUBBLE T is calculated and tabulated in Tables.

Table 5.1

P (KPa)	61.32	74.66	87.99	101.325	Toluene
	408.0	412.4	418.2	420.4	5
	399.0	406.0	410.2	415.4	15
	393.6	398.0	402.2	406.8	26
	381.2	387.0	393.4	400.0	38
	382.6	388.4	393.4	397.4	46

Table 5.8

P (KPa)	61.32	74.66	87.99	101.325	Cellosolve Acetate
	378.0	383.6	389.0	393.6	55
	374.6	378.4	383.2	390.6	69
	372.0	377.8	383.4	388.4	76
	369.4	375.0	380.4	385.2	92

P-T diagrams for Predicted, experimental and literature values for Cellosolve Acetate.

P-T diagrams for Predicted, experimental and literature values for Toluene.
Table: Toluene (1) - Cellosolve acetate (2) VLE by GE based models with regressed parameters at experimental P-T-x at P=61.32KPa

Experimental	Margules 2-suffix	Margules 3-suffix	Van Laar Model	NRTL Model	Wilson Model	Uniquac Model					
X₁	Texp (K)	Tcal (K)	Y₁cal								
0	412.8	411.8	0.0000	411.8	0.0000	411.8	0.0000	411.8	0.0000	411.8	0.0000
0.05	408.0	405.6	0.2187	407.9	0.1605	406.5	0.1970	406.5	0.1964	406.5	0.1963
0.15	399.0	396.7	0.4805	399.9	0.4321	397.8	0.4628	397.8	0.4634	397.8	0.4627
0.26	393.6	389.9	0.6413	391.7	0.6363	390.4	0.6408	390.3	0.6425	390.4	0.6414
0.38	381.2	384.4	0.7491	384.6	0.7702	384.1	0.7615	383.9	0.7632	384.1	0.7623
0.46	382.6	381.5	0.8005	380.8	0.8265	380.7	0.8168	380.5	0.8179	380.6	0.8175
0.55	378.0	378.6	0.8468	377.5	0.8707	377.4	0.8635	377.2	0.8638	377.4	0.8639
0.69	374.6	374.8	0.9039	373.7	0.9171	373.4	0.9151	373.3	0.9141	373.4	0.9150
0.76	372.0	373.1	0.9282	372.2	0.9352	371.8	0.9347	371.7	0.9332	371.8	0.9344
0.92	369.4	369.3	0.9774	369.1	0.9753	368.9	0.9738	368.9	0.9726	368.8	0.9734
1	368.0	367.543	1	367.54342	1	367.54342	1	367.54342	1	367.5	1.0000

Average Absolute Deviation of Equilibrium T

x	T K	% AD					
0	412.8	0.238	0.238	0.238	0.238	0.238	0.238
0.05	408.0	0.572	0.009	0.361	0.355	0.355	0.354
0.15	399.0	0.569	0.226	0.280	0.289	0.277	0.267
0.26	393.6	0.938	0.469	0.791	0.825	0.798	0.779
0.38	381.2	0.855	0.893	0.783	0.727	0.765	0.789
0.46	382.6	0.280	0.447	0.482	0.544	0.504	0.482
0.55	378.0	0.179	0.112	0.133	0.193	0.156	0.137
0.69	374.6	0.064	0.225	0.302	0.341	0.319	0.306
0.76	372.0	0.297	0.065	0.038	0.063	0.051	0.040
0.92	369.4	0.005	0.067	0.131	0.134	0.136	0.128
1	368.0	0.110	0.110	0.110	0.110	0.110	0.110

% AAD | 0.373 | 0.260 | 0.332 | 0.347 | 0.337 | 0.330
Table: Toluene (1) - Cellosolve acetate (2) VLE by GE based models with regressed parameters at experimental P-T-x at P=74.66 kPa.

X_i	Texp (K)	Tcal (K)	Y_{1cal}								
0	417.0	418.3	0.0000	418.3	0.0000	418.3	0.0000	418.3	0.0000	418.3	0.0000
0.05	412.4	412.1	0.2116	414.4	0.1552	412.9	0.1905	413.0	0.1893	413.0	0.1902
0.15	406.0	403.1	0.4682	406.3	0.4205	404.2	0.4507	404.3	0.4501	404.3	0.4504
0.26	398.0	396.2	0.6282	398.1	0.6235	396.8	0.6278	396.7	0.6283	396.8	0.6280
0.38	387.0	390.7	0.7372	390.9	0.7589	390.4	0.7499	390.3	0.7506	390.4	0.7504
0.46	388.4	387.7	0.8375	388.1	0.8167	387.0	0.8065	386.8	0.8069	386.9	0.8069
0.55	383.6	384.9	0.8757	383.8	0.8625	383.7	0.8549	383.5	0.8546	383.6	0.8551
0.69	378.4	381.0	0.8972	379.9	0.9111	379.6	0.9090	379.5	0.9077	379.6	0.9087
0.76	377.8	379.2	0.9299	378.4	0.9302	378.0	0.9297	377.9	0.9282	377.9	0.9293
0.92	375.0	375.5	0.9755	375.3	0.9733	375.0	0.9715	375.0	0.9708	375.0	0.9713
1	373.3	373.7	1	373.7	1	373.7	1	373.7	1	373.7	1.0000

Average Absolute Deviation of Equilibrium T

x	T*K	%AD	%AD	%AD	%AD	%AD	%AD
0	417.0	0.316	0.316	0.316	0.316	0.316	0.316
0.05	412.4	0.069	0.498	0.144	0.156	0.151	0.148
0.15	406.0	0.713	0.089	0.422	0.414	0.414	0.414
0.26	398.0	0.444	0.039	0.292	0.303	0.293	0.286
0.38	387.0	0.966	1.017	0.898	0.870	0.889	0.899
0.46	388.4	0.159	0.315	0.357	0.390	0.370	0.360
0.55	383.6	0.341	0.057	0.030	0.001	0.018	0.025
0.69	378.4	0.699	0.409	0.329	0.314	0.321	0.326
0.76	377.8	0.396	0.163	0.057	0.052	0.052	0.058
0.92	375.0	0.147	0.081	0.015	0.019	0.014	0.020
1	373.4	0.095	0.095	0.095	0.095	0.095	0.095

% AAD 0.395 0.280 0.260 0.266 0.267 0.268
Table: Toluene (1) - Cellosolve acetate (2) VLE by GE based models with regressed parameters at experimental P-T-x at P=87.99 kPa.

Experimental	Margules 2- suffix	Margules 3- suffix	Van Laar Model	NRTL Model	Wilson Model	Uniquac Model							
Xi	Texp (K)	Tcal (K)	Xcal	Tcal (K)	Ycal								
0	424.0	424.0	0.0000	424.0	0.0000	424.0	0.0000	424.0	0.0000	424.0	0.0000	424.0	0.0000
0.05	418.2	417.7	0.2063	420.1	0.1512	418.6	0.1857	418.7	0.1839	418.6	0.1848	418.6	0.1856
0.15	410.2	408.6	0.4586	412.0	0.4117	409.8	0.4415	409.9	0.4398	409.9	0.4407	409.8	0.4414
0.26	402.2	401.7	0.6180	403.7	0.6135	402.3	0.6177	402.3	0.6171	402.3	0.6175	402.3	0.6180
0.38	393.4	396.1	0.7277	396.4	0.7500	395.9	0.7407	395.9	0.7405	395.9	0.7408	395.9	0.7413
0.46	393.4	393.2	0.7811	392.6	0.8088	392.4	0.7983	392.4	0.7980	392.4	0.7984	392.4	0.7990
0.55	389.0	390.3	0.8301	389.2	0.8558	389.1	0.8480	389.0	0.8472	389.0	0.8479	389.0	0.8485
0.69	383.2	386.4	0.8918	385.3	0.9062	384.9	0.9039	385.0	0.9025	384.9	0.9036	384.9	0.9041
0.76	383.4	384.6	0.9185	383.7	0.9262	383.2	0.9256	383.3	0.9241	383.3	0.9252	383.3	0.9256
0.92	380.4	380.8	0.9740	380.6	0.9715	380.3	0.9697	380.4	0.9692	380.3	0.9696	380.3	0.9697
1	378.3	379.0	1	379.0	1	379.0	1	379.0	1	379.0	1	379.0	1

Average Absolute Deviation of Equilibrium T:

x	T K	%AD	%AD	%AD	%AD	%AD	%AD
0	424.0	0.008	0.008	0.008	0.008	0.008	0.008
0.05	418.2	0.105	0.466	0.110	0.127	0.118	0.111
0.15	410.2	0.374	0.439	0.079	0.057	0.068	0.076
0.26	402.2	0.117	0.379	0.039	0.048	0.044	0.040
0.38	393.4	0.708	0.769	0.645	0.640	0.643	0.642
0.46	393.4	0.049	0.197	0.245	0.253	0.249	0.250
0.55	389.0	0.336	0.057	0.027	0.021	0.023	0.022
0.69	383.2	0.839	0.550	0.467	0.473	0.467	0.466
0.76	383.4	0.327	0.094	0.014	0.001	0.011	0.011
0.92	380.4	0.130	0.061	0.007	0.004	0.005	0.001
1	378.4	0.182	0.182	0.182	0.182	0.182	0.182

% AAD | 0.289 | 0.291 | 0.149 | 0.165 | 0.165 | 0.164 |
Table: Toluene (1) - Cellosolve acetate (2) VLE by GE based models with regressed parameters at experimental P-T-x at P=101.325 KPa

Experimental	Margules 2- suffix	Margules 3- suffix	Van Laar Model	NRTL Model	Wilson Model	Uniquac Model
X₁	Texp (K)	Tcal (K)	Y₁cal	Tcal (K)	Y₁cal	Tcal (K) Y₁cal
0	429.2	429.1	0.0000	429.1	0.0000	429.1 0.0000
0.05	420.4	422.8	0.2021	425.2	0.1480	423.7 0.1797
0.15	415.4	413.6	0.4510	417.0	0.4047	414.8 0.4341
0.26	406.8	406.6	0.6097	408.6	0.6054	407.2 0.6095
0.38	400.0	401.0	0.7200	401.3	0.7426	400.7 0.7331
0.46	397.4	398.0	0.7741	397.4	0.8023	397.2 0.7916
0.55	393.6	395.0	0.8239	394.0	0.8503	393.8 0.8422
0.69	390.6	391.1	0.8872	390.0	0.9021	389.6 0.8997
0.76	388.4	389.4	0.9149	388.4	0.9228	388.0 0.9256
0.92	385.2	385.6	0.9726	385.3	0.9701	385.0 0.9697
1	384.15	383.7	1	383.7	1	383.7 1

Average Absolute Deviation of Equilibrium T

x	T K	%AD						
0	429.2	0.008	0.008	0.008	0.008	0.008	0.008	0.008
0.05	420.4	0.574	1.153	0.792	0.815	0.802	0.792	0.792
0.15	415.4	0.429	0.393	0.131	0.097	0.116	0.131	0.131
0.26	406.8	0.045	0.461	0.114	0.142	0.125	0.112	0.112
0.38	400.0	0.256	0.325	0.195	0.212	0.201	0.190	0.190
0.46	397.4	0.156	0.014	0.039	0.025	0.035	0.045	0.045
0.55	393.6	0.380	0.106	0.071	0.087	0.075	0.066	0.066
0.69	390.6	0.147	0.139	0.225	0.200	0.216	0.223	0.223
0.76	388.4	0.259	0.024	0.086	0.057	0.076	0.080	0.080
0.92	385.2	0.110	0.039	0.031	0.013	0.026	0.024	0.024
1	384.2	0.101	0.101	0.101	0.101	0.101	0.101	0.101

Average Absolute Deviation of Equilibrium T: 0.224 0.251 0.154 0.160 0.162 0.161
G^E BASED EQUATION FOR BINARY MIXTURES:

1. Margules 2 suffix model:
 Model parameter: A
 \[P = X_i \gamma_i P_{i}^{stat} + X_2 \gamma_2 P_{2}^{stat} \]
 \[Y_i = \frac{X_i \gamma_i P_{i}^{stat}}{P} \]
 \[\ln \gamma_1^\infty = \ln \gamma_2^\infty = A \]
 \[\frac{G^E}{RTX_1X_2} = A \]
 \[\ln \gamma_1 = AX_2^2 \]
 \[\ln \gamma_2 = AX_1^2 \]

2. Margules 3 suffix model:
 Model parameter: A_{12} and A_{21}
 \[P = X_i \gamma_i P_{i}^{stat} + X_2 \gamma_2 P_{2}^{stat} \]
 \[Y_i = \frac{X_i \gamma_i P_{i}^{stat}}{P} \]
 \[\ln \gamma_1 = X_2^2 \left[A_{12} + 2(A_{21} - A_{12})X_1 \right] \]
 \[\frac{G^E}{RTX_1X_2} = A_{21}X_1 + A_{12}X_2 \]
 \[\ln \gamma_2 = X_1^2 \left[A_{21} + 2(A_{12} - A_{21})X_2 \right] \]
 \[\ln \gamma_1^\infty = A_{12} \]
 \[\ln \gamma_2^\infty = A_{21} \]
Table: Regressed Activity Coefficient Model Parameters.

Model	Parameters	Best Value
Margules 2-suffix Model	A	0.41008394
Margules 3-suffix Model	A12	-0.068947524
	A21	0.64200984
Vanlaar Model	A12	0.250650104
	A21	0.887837473
NRTL Model	b12	-343
	b21	1089
	a	-2.961983475
Wilson Model	a12	-675.233481
	a21	4047.48825
Uniquac Model	Δu12	2160.261655
	Δu21	-1284.739473

Table: Final Result (% AAD) at different pressure for G^E Based Model

Models	Margules 2-suffix	Margules 3-suffix	Vanlaar	NRTL	Wilson	Uniquac	
P(kPa)	P(mm Hg)	Σ(ΔT)^2	RMSD T	% AAD T			
61.3283	460	38.854	20.869	28.325	29.571	28.596	28.006
74.6605	560	39.033	26.131	22.121	21.640	21.855	22.007
87.9928	660	24.913	24.273	11.385	11.480	11.402	11.354
101.3250	760	14.364	32.033	13.350	13.873	13.571	13.280
Average		29.291	25.826	18.795	19.141	18.856	18.662
61.3283	460	0.567	0.415	0.484	0.494	0.486	0.481
74.6605	560	0.568	0.465	0.032	0.423	0.425	0.426
87.9928	660	0.454	0.448	0.307	0.308	0.307	0.306
101.3250	760	0.345	0.515	0.332	0.339	0.035	0.306
Average		0.483	0.461	0.289	0.391	0.313	0.380
61.3283	460	0.373	0.260	0.332	0.347	0.337	0.330
74.6605	560	0.395	0.280	0.269	0.423	0.267	0.268
87.9928	660	0.289	0.291	0.166	0.165	0.165	0.164
101.3250	760	0.224	0.251	0.163	0.339	0.153	0.161
Average		0.320	0.271	0.232	0.318	0.231	0.231
Figure: Toluene-Cellosolve Acetate T-x-y diagram at P = 61.32 kPa.

Figure: Toluene-Cellosolve Acetate T-x-y diagram at P = 74.66 kPa.
Figure : Toluene-Cellosolve Acetate T-x-y diagram at P = 87.99 kPa.

Figure : Toluene-Cellosolve Acetate T-x-y diagram at P = 101.325 KPa
Figure: Toluene-Cellosolve Acetate X – Y (VLE) by G^E based models with regressed parameters at experimental P-T-x.
Figure: Toluene-Cellosolve Acetate X – Y (VLE) by G^E based models with regressed parameters at experimental P-T-x.
Figure: Toluene-Cellosolve Acetate T – X (VLE) by G² based models with regressed parameters at experimental P-T-x.
5. CONCLUSION

The experimental work in this project involved generating pure component and binary VLE data for Cellosolve Acetate (2-Ethoxyethyl Acetate) – Toluene. The purpose of taking up this work was that 2-ethoxyethyl acetate is synthesized by the esterification of 2-ethoxy ethanol and acetic acid using reactive distillation. To increase the yield of the product and minimize energy consumption toluene is added as an entrainer. This makes the knowledge of VLE of the species along with toluene also necessary. The data for the above-mentioned system was generated at four different pressures. The conclusions drawn from this study are given below:

1. Vapour pressure data for Toluene and Cellosolve Acetate were generated at four different pressures ranging 61.32 kPa to 101.325 kPa. Antoine constants for both the species were regressed using excel.
2. Experimental, predicted and literature values of Vapour pressure for Toluene and Cellosolve acetate match.

6. REFERENCES

[1] Rana BK, Bhave NV, Mahajani SM, Dabke SP. Vapor–Liquid Equilibrium for the 2-Ethoxyethanol-2 - Ethoxyethyl Acetate System. J. Chem. Eng. Data. 2012, 57:3483–3487.
[2] Smith JM, Van ness HM, Abbott MM. Introduction to chemical engineering thermodynamics. The McGraw-Hill Companies, Inc. New York; 2003:346.
[3] Cortinovis GF, Salvagnini WM, Tavares DT, Taqueda ME. Estimation of Activity Coefficients for the Pairs of the System 2-Ethoxyethanol + 2-Ethoxyethyl Acetate + 2-Butoxyethanol + 2-Butoxyethyl Acetate. J. Chem. Eng. Data. 2011, 56:4157–4163.
[4] Martin, MC, Cocero MJ, Mato RB. Vapour–liquid equilibrium data at 298.15 K for binary systems containing methyl acetate or methanol with 2-methoxyethanol or 2-ethoxyethanol. J. Chem. Eng. Data 1994, 39:535–537.
[5] Thomas EA, Newman BA, Nicolaides GL, Eckert CA. Limiting Activity Coefficients from Differential Ebuliometry. J. Chem. Eng. Data 1982, 27:233–240.
[6] Gorlova NN, Gredneva TM, Vasil’eva SA, Polyakova LV, Komarova LF. A study of liquid–vapor phase equilibrium in binary organic mixtures. Russ. J. Chem. 2001, 74:1285–1288.