Research Paper

Association of White Blood Cell Count With Metabolic Syndrome in Obese Men and Women

Sima Hashemipour1, *Azam Ghorbani1, Niloofar Jafari Aref1

1. Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.

ABSTRACT

Background: Despite the widespread obesity epidemic in the world, not all obese people are equally susceptible to the complications of obesity. Inflammatory factors play an important role in the complications of obesity.

Objective: This study aims to evaluate the association of White Blood Cell (WBC) count with metabolic syndrome in overweight/obese men and women.

Method: This cross-sectional study is a part of the Qazvin Metabolic Disease Study (QMDS) conducted in 2010 in Qazvin, Iran. Participants were 622 obese people with a body mass index (BMI) ≥25 kg/m², recruited from the QMDS. Metabolic syndrome was defined according to the Adult Treatment Panel III criteria. Data were analyzed using Chi-square test, t-test, and logistic regression analysis (to evaluate the relationship between WBC count quartiles and metabolic syndrome).

Finding: Prevalence of metabolic syndrome was not significantly different between men and women. In men, prevalence of metabolic syndrome and its components were not different between WBC quartiles. In women, 32.2% and 60.5% had metabolic syndrome in the first and fourth quartiles of WBC count, respectively (P<0.001). Moreover, the prevalence of insulin resistance was higher in fourth quartile compared to the first quartile (47.7% vs. 25.6%, P<0.001). After controlling the effects of age and BMI factors, the risk of metabolic syndrome in the fourth quartile of WBC count remained significant in women (OR=2.56, P<0.01).

Conclusion: Association of WBC count with metabolic syndrome is significant in obese women compared to obese men.

Keywords: Obesity, Metabolic syndrome, White blood cell count

EXTENDED ABSTRACT

1. Introduction

Obesity has become an epidemic in the world especially in recent decades. About one third of worlds’ population are overweight or obese [1]. People with similar Body Mass Index (BMI) have a different risk of obesity complications [2]. In Wildman et al.’s study, about half of the overweight and one third of obese subjects were metabolically healthy [3]. This phenotype is called “metabolically healthy obesity” [4]. There are different definitions for this concept, but the most common definition is having two or more metabolic syndrome components [5]. There are various mechanisms for justifying different effects of obesity on metabolic risk factors. Difference in fat distribution and adiponectin level, oxidative stress, and free fatty acids are contributing factors.

* Corresponding Author:
Azam Ghorbani
Address: Metabolic Diseases Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
Tel: +98 (28) 33790620
E-Mail: ghorbani_az@yahoo.com
in producing different metabolic complications in obese people [7]. Association of inflammatory markers such as White Blood Cells (WBC) count with metabolic complications of obesity has been reported in recent studies. In most cross-sectional and prospective studies, it has been reported that WBC count is associated with hypertriglyceridemia, impaired fasting glucose, hypertension, and metabolic syndrome; [8, 9] however, this association is different based on gender and ethnicity factors [10]. In most studies, association of inflammatory markers with metabolic complications has been reported to be stronger in high-risk groups including older people or diabetic patients [11, 12]. Gender differences of this association has also been reported in some studies [12]. Limited studies have compared inflammatory factors with metabolic disorders in healthy and unhealthy overweight or obese people. In most of these studies, small sample size or only female subjects have been used [13, 15]. Regarding the effect of gender difference in association of inflammatory markers with metabolic health, this study aims to compare the association of WBC count with metabolic health in obese men and women.

2. Materials and Methods

This cross-sectional study is a part of Qazvin Metabolic Disease Study (QMDS) conducted on 622 subjects with BMI ≥25 kg/m² recruited from those participated in the QMDS (1107 people aged ≥20 years living in Minoodar district of Qazvin province selected using a two-stage cluster sampling technique). For more details, see Reference No.16. This study has been approved by the Research Ethics Committee of Qazvin University of Medical Sciences. Two general practitioners examined subjects. After 12-14 hours of fasting, 10-cc serum level was collected for evaluating Fasting Blood Sugar (FBS), total cholesterol, High-Density Lipoprotein (HDL), triglyceride, and insulin levels. Measurement of insulin was performed using an ELISA kit (Monobind Inc., USA). Insulin resistance (HOMA-IR) was calculated using the Formula 1:

\[\text{1. HOMA-IR} = \frac{\text{Insulin} (\mu\text{u/mL}) \times \text{Glucose} (\text{mg/dL})}{405} \]

Insulin resistance in obese subjects was defined as HOMA-IR ≥3.4. Metabolic syndrome was defined according to Adult Treatment Panel III definition, i.e., the presence of three or more of the following criteria: systolic blood pressure ≥130 mmHg, diastolic blood pressure ≥85 mmHg, HDL ≥ 40 mg/dL in men and ≥50 mg/dL in women, triglyceride ≥150 mg/dL, FBS ≥100 mg/dL, waist circumference ≥102 cm in men and ≥ 88 cm in women.

In statistical analysis, t-test and chi-squared test were used for comparing quantitative and qualitative variables, respectively, and logistic regression analysis was used for evaluating the association of WBC count quartiles with metabolic syndrome after adjusting based on age and BMI. A P≤ 0.05 was considered as a significance level.
3. Results

The demographic characteristics of participants and the distribution of metabolic syndrome risk factors are shown in Table 1. The prevalence of most metabolic disorders (impaired fasting glucose, hypertension, hypertriglyceridemia) was higher in men than in women. In women, the frequency of metabolic syndrome, hypertriglyceridemia, and insulin resistance increased in the fourth quartile of WBC count compared to the first quartile. Among metabolic disorders, the prevalence of hypertriglyceridemia in the first quartile of WBC count in women was significantly lower than in the third (22.5% vs. 41.6%, P<0.01) and fourth quartiles (22.5% vs. 51.2%, P<0.001). According to the results of logistic regression analysis, there was a 2.8-fold higher risk of metabolic syndrome in women in the fourth quartile of WBC count compared to the first quartile (P<0.001).

4. Discussion and Conclusion

In this study, in obese individuals, gender played a key role in the association of WBC count with metabolic syndrome such that even after controlling the effect of age and BMI, metabolic syndrome was about 2.5 times more prevalent in women with the highest WBC count than in women with the lowest WBC count. In men, the number of WBCs was not associated with metabolic syndrome. The association of inflammatory factors with metabolic problems has been reported in several studies.

In previous cross-sectional studies, higher WBC count was reported to be associated with higher visceral adiposity [20], higher risk of metabolic syndrome, higher insulin resistance, pancreatic beta-cell dysfunction [21], and higher risk of glucose metabolism disorders [11]. In our study, the frequency of hypertriglyceridemia in the third and fourth quartiles of WBC count in women was significantly higher than in the first quartile. The association of WBC count with metabolic syndrome and insulin resistance was observed only in obese women. Some studies have been conducted on the role of gender in metabolic disorders. In a study by Wannamethee et al. on older men and women, inflammatory factors and cardiovascular risk factors were lower in non-diabetic women than in non-diabetic men [27]. In some studies, insulin resistance in women has been associated with more abnormalities in inflammatory, coagulation, and endothelial factors [30]. It seems that, due to the fact that there are better resistances mechanisms against metabolic disorders in healthy women, more advanced stages of inflammatory disorders are needed to develop metabolic syndrome or diabetes [27].

Ethical Considerations

Compliance with ethical guidelines

This study obtained its ethical approval from the Research Ethics Committee of Qazvin University of Medical Sciences (Code: IR.QUMS.REC.1394.818).

Funding

This research was supported by the research project-funded by Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin.

Authors’ contributions

Conceptualization, supervision, methodology, editing & review, and data analysis: Sima Hashemipour; Initial draft preparation, data analysis, editing & review: Azam Ghorbani; Data collection: Niloofar Jafari Aref.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

The authors would like to thank the participants and the Metabolic Diseases Research Center staff at Qazvin University of Medical Sciences for their cooperation.
تفاوت جنسیتی و ارتباط تعداد گلوبول های سفید با سندرم متابولیک در افراد چاقی با دارای اضافه وزن

سیما حاشمی پور، اعظم قرایی، نیلوفر جعفری عارف

1. مرکز تحقیقات بیماری های متابولیک، بیمارستان بیماری های غیر واژنی شهید مطهری تهران، ایران.

چکیده
با وجود اپیدمی گسترده چاقی در جهان، همه افراد چاق به طور یکسان مستعد عوارض چاقی نیستند. عوامل التهابی نقش مهمی در ایجاد عوارض چاقی دارند.

مقدمه
امروزه چاقی، به عنوان یک اپیدمی گسترده در سراسر جهان مطرح است و به یکی از عوامل مهم در افزایش ریسک بروز بیماری های غیر واژن مشاهده شده است. این افزایش ریسک را می‌توان از طریق تغییرات توزیع چربی و توزیع چربی انرژی ناشی از این عوامل به خوبی توضیح داد.

در مطالعات قبلی، کلیه سندرم متابولیک در فرد چاقی، بر علائم عوارض متابولیک و قلبی نظیر‌های‌های چاقی، مانند بروز عوارض متابولیک، تغییرات توزیع چربی، تغییرات توزیع طبیعی انرژی و کاهش تلفه‌های نظامی ناشی از این عوامل، گزارش شده است.

مکمل‌های
برای حفظ متابولیک و کاهش عوارض متابولیک در افراد چاق، تحقیقات در این زمینه بسیاری انجام شده است. در این مطالعه، به بررسی ارتباط تعداد گلوبول های سفید با سندرم متابولیک در افراد چاقی با دارای اضافه وزن پرداخت.

مواد و روش‌ها
این مطالعه بخشی از مطالعه بیماری های متابولیک قزوین است که در سال ۱۳۹۷/۱۱ با بررسی ۹۸۳۱ نفر انجام شد. داده‌ها با استفاده از آزمون های مجذور کای‌سکو انجام شد. سندرم متابولیک بر اساس معیارهای پانل ATPIII تعریف شد. آنالیز لجستیک رگرسیون برای ارزیابی بین چارک‌های گلوبول های سفید و سندرم متابولیک انجام شد.

نتایج
فاصله کلی سندرم متابولیک در دو گروه تفاوت معنی‌داری نداشت. در مردان فراوانی سندرم متابولیک در چارک دوم حداقل بوده، در حالی که در زنان، سندرم متابولیک در چارک اول بیشتری و در چارک چهارم، فراوانی سندرم متابولیک بین چارک اول و چهارم (P<۰.۰۰۱) با یک نرخ تغییر معنی‌داری نداشت. در زنان، در چارک اول، فراوانی مقاومت به انسولین به بیشتر از چارک چهارم بود (P<۰.۰۰۱).

کلیدواژه‌های:
چاقی، سندرم متابولیک، شمارش گلوبول های سفید
در سال‌های اخیر ارتباط انتهاه‌ای با مشكلات متاتولیکه بی‌پایان مورد توجه قرار گرفته است. در این مطالعات ارتباط فاکتورهای انتهاه‌ای تحمل کلیوی سطیف با مقاومت، وزن و چند پس از ۱۶ ساله نشان داده شده، انتظارگیری می‌شود.

در یک حوزه، قلب در صفحه مالی حامله به دستو داده شده و میزان ایالت و در انتهاه‌ای با تغییر در وضعیت، در یک ۱۵ میلی‌گرم‌های پس از داوینگ، با صورت سیستولی و در انتهاه‌ای شایسته کردن اثرات بدنی، می‌توان به صورت کلی بررسی دانست. در این مطالعات، ارتباط فاکتورهای انتهاه‌ای، با مارکرات و فاکتورهای انتهاه‌ای بیماری به توجه به متغیرهای انتخابی، در افراد بالای ۴۱ میلی‌گرم در دسی لیتر، دور کمر یا کمتر یا مساوی ۱۰۰ میلی‌گرم در سی سی‌های سیستولی و سیستولی و برابر افراد گرگری چاق غیرسالم پرداخته است. در اغلب این مطالعات، حجم قلب در انتهای بیماری، میلی‌گرم، دور کمر و قدرت پس از ۲۴ فوریت قزوین شامل نحوه نمونه‌گیری، اندازه‌گیری‌های تن‌سنجی و اخلاق در پژوهش‌های علوم پزشکی قزوین شناسایی شده بودند. این مطالعه توسط کمیته مطبوعاتی به مراجعین داده شد.

مواد و روش‌ها

این مطالعه مقدماتی به‌طور مقطعی به پایان‌رسانی‌های متاتولیکه قزوین ۱۳۳۹ با پایان در تاریخ ۱۳۸۹ تفویض شد. به منظور اجرای این مطالعه، به منظور دسترسی به ترکیبی از مدارات مختلف بدنی شامل آزمون‌های توده بدنی و آزمون‌های توده بدنی اخلاق در پژوهش‌های علوم پزشکی قزوین شناسایی شده بودند. در این مطالعه، این مطالعه با پایان‌رسانی‌های متاتولیکه قزوین نشان داده شد که به وسیله مورد پژوهش‌های متاتولیکه قزوین به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت داشته و به‌طور مقطعی به دنبال همه این مطالعه‌ها، مصرف کننده این مطالعه‌ها باید اهمیت D. High-density Lipoprotein (HDL)
E. Adult Treatment Panel III
4. White Blood Cell (WBC)
5. Quantin Metabolic Disease Study (QMDS)
در مقابل

فشار خون سیستولیک

۱ نفر

فشار خون دیاستولیک

۷۲ ۸۲ ۱۰۲

۳ ۳۴

قند پس از تست تحمل گلوکز

۲۰۲

۱۰۲

۳

سوم و چهارم بود (به ترتیب

۳۳۴

۶۲

۷۹

۰۰۵۶

۴۴۹

449

۱۳۹۹

۱۳۹۹

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰

۰۰۰
چندال‌ی و مقایسه فراین‌های اختلالات متابولیک در چارک‌های کلول‌های گلیسرید بالا به فاکتور جنس (درجهی درصد)

جنس	ATP	تری‌گلیسرید	HDL	ورق‌های فین	ملایم	ملایم با فاکتور
مرد	36	36	36	36	36	36
زن	36	36	36	36	36	36

در مطالعه ما نیز در زنان، فراوانی هیپر‌کنادا متفاوت گزارش شده است و در بعضی از مطالعات ارتباطی با اختلالات گلوکز پلاسمایی، برعکس، در انجام شد هم‌تعداد متابولیک در ابتدا معنی‌داری در پیش بینی کننده وقوع سندرم متابولیک در آینده بودند.

میزان	زبان	ATP	تری‌گلیسرید	HDL	ورق‌های فین	ملایم	ملایم با فاکتور
مرد	36	36	36	36	36	36	36
زن	36	36	36	36	36	36	36

نتایج مطالعات در مورد تاثیر جنسیت و تعداد گلبول‌های سفید با محدودیت الزام‌ها و محدودیت واقعی ارتباط تعادلی تعداد متابولیک در ابتدا معنی‌داری (کمتر از 0/05). در مطالعه ما نیز در زنان، فراوانی هیپر‌کنادا متفاوت گزارش شده است و در بعضی از مطالعات ارتباطی با اختلالات گلوکز پلاسمایی، برعکس، در انجام شد هم‌تعداد متابولیک در ابتدا معنی‌داری در پیش بینی کننده وقوع سندرم متابولیک در آینده بودند (۲۴).

جدول ۱. ریسک عوامل و تری‌گلیسرید در چارک‌های کلول‌های گلیسرید بالا به فاکتور جنس

بیماری	مردان	زنان	ATP	تری‌گلیسرید	HDL	ورق‌های فین	ملایم	ملایم با فاکتور
مرد	36	36	36	36	36	36	36	
زن	36	36	36	36	36	36	36	

jieh}
ماکروفاژها در این بافت ها می شود. تجمع این ماکروفاژها در چربی احشایی به مراتب شدیدتر است. این پدیده باعث به وجود آمدن یک التهاب خفیف، اما مزمن و پایدار در بدن می شود که به نوبه خود به سیگنال‌های اسپراوری و رندرایا می گردد به انسولین و افزایش بهره وری انسولین که با توجه به خود التهاب مزمن ایجاد شده و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۲۰] علت آنکه به بهبود ایجاد می کند و روند مزمن ایجاد می شود. البته این فرآیند دوطرفه است، به این معنا که مقاومت به انسولین نیز می تواند به توجه به خود التهاب مزمن ایجاد شود که به انسولین تحت [۲۱] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۲۲] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۲۳] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۲۴] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۲۵] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۲۶] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۲۷] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۲۸] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۲۹] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۳۰] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۳۱] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۳۲] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۳۳] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۳۴] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۳۵] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۳۶] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۳۷] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۳۸] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۳۹] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۴۰] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۴۱] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۴۲] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۴۳] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۴۴] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۴۵] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۴۶] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۴۷] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۴۸] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۴۹] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۵۰] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۵۱] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۵۲] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۵۳] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۵۴] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۵۵] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۵۶] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۵۷] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۵۸] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۵۹] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۶۰] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۶۱] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۶۲] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۶۳] علت آنکه به بهبود ایجاد می کند و به این طریق سیگنال‌های اسپراوری به انسولین تحت [۶۴] علت آنکه به بهبود ایجاد می کن 10. Wannamethee
References

[1] Chan Z, Chooi YC, Ding C, Choo J, Sadananthan SA, Michael N, et al. Sex differences in glucose and fatty acid metabolism in Asians who are nonobese. J Clin Endocrinol Metab. 2019; 104(1):127-36. [DOI:10.1210/jc.2018-01421] [PMID]

[2] Chait A, den Hartigh LJ. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med. 2020; 7:22. [DOI:10.3839/fcmd.2020.00022] [PMID] [PMCID]

[3] Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: Prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008; 168(15):1617-24. [DOI:10.1001/archinte.168.15.1617] [PMID]

[4] Neeland U, Poirier P, Després JP. Cardiovascular and metabolic heterogeneity of obesity: Clinical challenges and implications for management. Circulation. 2018; 137(13):1391-406. [DOI:10.1161/CIRCULATIONAHA.117.029617] [PMID] [PMCID]

[5] Smith GI, Mittendorfer B, Klein S. Metabolically healthy obesity: J Clin Invest. 2019; 129(10):3978-89. [DOI:10.1172/JCI129186] [PMID] [PMCID]

[6] Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005; 365(9468):1415-28. [DOI:10.1016/S0140-6736(05)66378-7]

[7] Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 2019; 129(10):3990-4000. [DOI:10.1172/JCI129187] [PMID] [PMCID]

[8] Yang H, Fu YQ, Yang B, Zheng XS, Zeng XY, Zeng W, et al. Positive association between the metabolic syndrome and white blood cell counts in Chinese. Asia Pac J Clin Nutr. 2017; 26(1):141-7. [DOI:10.6133/apjcn.2015013] [PMID]

[9] Caporaso NE, Jones RR, Stolzenberg-Solomon RZ, Medgyesi DN, Kahle LL, Graubard BI. Insulin resistance in healthy U.S. adults: Findings from the National Health and Nutrition Examination Survey (NHANES). Cancer Epidemiol Biomarkers Prev. 2020; 29(1):157-68. [DOI:10.1158/1055-9965.EPI-19-0206] [PMID]

[10] Pratley RE, Wilson C, Bogardus C. Relation of the white blood cell count to obesity and insulin resistance: Effect of race and gender. Obes Res. 1995; 3(6):563-71. [DOI:10.1002/j.1550-8528.1995.tb00191.x] [PMID]

[11] Jiang H, Yan WH, Li CJ, Wang AP, Dou JT, Mu YM. Elevated white blood cell count is associated with higher risk of glucose metabolism disorders in middle-aged and elderly Chinese people. Int J Environ Res Public Health. 2014; 11(5):5497-509. [DOI:10.3390/ijerph11055497] [PMID] [PMCID]

[12] Nilsson G, Hedberg P, Jonason T, Lönnerberg I, Tenzer Å, Öhrvik J. White blood cell counts associate more strongly to the metabolic syndrome in 75-year-old women than in men: A population based study. Metab Syndr Relat Disord. 2007; 5(4):359-64. [DOI:10.1089/met.2007.0012] [PMID]

[13] Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinistian A. Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis. Sleep Med Rev. 2016; 30:11-24. [DOI:10.1016/j.smrv.2015.10.002] [PMID]

[14] Karelis AD, Faraj M, Bastard JP, St-Pierre DH, Brochu M, Prud’homme D, et al. The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab. 2005; 90(7):4145-50. [DOI:10.1210/jc.2005-0482] [PMID]

[15] Phillips CM, Perry JL. Does inflammation determine metabolic health status in obese and nonobese adults? J Clin Endocrinol Metab. 2013; 98(10):E1610-9. [DOI:10.1210/jc.2013-2038] [PMID]

[16] Ziaee A, Esmailzadehha N, Ghorbani A, Asefzadeh S. Association between uric acid and metabolic syndrome in Qazvin Metabolic Diseases Study (QMDS), Iran. Glob J Health Sci. 2013; 5(1):155-66. [DOI:10.5539/gjhs.v5n1p155]

[17] Gayoso-Diz P, Otero-González A, Rodriguez-Alvarez MX, Gude F, García F, De Francisco A, et al. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study, BMC Endocr Disord. 2013; 13:47. [DOI:10.1186/1472-6823-13-47] [PMID] [PMCID]

[18] Shashaj B, Luciano R, Contoli B, Morino GS, Spreghini MR, Rustico C, et al. Reference ranges of HOMA-IR in normal-weight and obese young Caucasians. Acta Diabetol. 2016; 53(2):251-60. [DOI:10.1007/s00592-015-0782-4] [PMID]

[19] National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002; 106(25):3143-421. [PMID]

[20] Abbassalizada Farhangi M, Keshavarz SA, Eshraghian MR, Oshtadrahimi AR, Saboor-Yaragh AA. White blood cell count in women: Relation to inflammatory biomarkers, haematological profiles, visceral adiposity, and other cardiovascular risk factors. J Health Popul Nutr. 2013; 31(1):58-64. [DOI:10.3329/jhpn.v31i1.14749] [PMID] [PMCID]

[21] Hanley AIG, Rtnakaran R, Qi Y, Gerstein HC, Perkins B, Raud J, et al. Association of hematological parameters with insulin resistance and beta-cell dysfunction in nondiabetic subjects. J Clin Endocrinol Metab. 2009; 94(10):3824-32. [DOI:10.1210/jc.2009-0719] [PMID]

[22] Pei C, Chang JB, Hsieh CH, Lin JD, Hsu CH, Pei D, et al. Using white blood cell counts to predict metabolic syndrome in the elderly: A combined cross-sectional and longitudinal study. Eur J Intern Med. 2015; 26(5):324-9. [DOI:10.1016/j.ejim.2015.04.009] [PMID]

[23] Shitole SG, Biggs ML, Reiner AP, Mukamal KJ, Djoussé L, Ix JH, et al. Soluble CD14 and CD14 variants, other inflammatory markers, and glucose dysregulation in older adults: The Cardiovascular Health Study. Diabetes Care. 2019; 42(11):2075-82. [DOI:10.2337/dc19-0723] [PMID] [PMCID]
[24] Jung CH, Lee WY, Kim BY, Park SE, Rhee EJ, Park CY, et al. The risk of metabolic syndrome according to the white blood cell count in apparently healthy Korean adults. Yonsei Med J. 2013; 54(3):615-20. [DOI:10.3349/ymj.2013.54.3.615] [PMID] [PMCID]

[25] Li PF, Chen JS, Chang JB, Chang HW, Wu CZ, Chuang TJ, et al. Association of complete blood cell counts with metabolic syndrome in an elderly population. BMC Geriatr. 2016; 16:10. [DOI:10.1186/s12877-016-0182-9] [PMID] [PMCID]

[26] Barzilay JI, Abraham L, Heckbert SR, Cushman M, Kuller LH, Resnick HE, et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: The Cardiovascular Health Study. Diabetes. 2001; 50(10):2384-9. [DOI:10.2337/diabetes.50.10.2384] [PMID]

[27] Wannamethee SG, Papacosta O, Lawlor DA, Whincup PH, Lowe GD, Ebrahim S, et al. Do women exhibit greater differences in established and novel risk factors between diabetes and non-diabetes than men? The British Regional Heart Study and British Women’s Heart Health Study. Diabetologia. 2012; 55(1):80-7. [DOI:10.1007/s00125-011-2284-4] [PMID]

[28] Wannamethee SG, Papacosta O, Whincup PH, Carson C, Thomas MC, Lawlor DA, et al. Assessing prediction of diabetes in older adults using different adiposity measures: A 7 year prospective study in 6,923 older men and women. Diabetologia. 2010; 53(5):890-8. [DOI:10.1007/s00125-010-1670-7] [PMID] [PMCID]

[29] Yan Y, Li Sh, Liu Y, Bazzano L, He J, Mi J, et al. Temporal relationship between inflammation and insulin resistance and their joint effect on hyperglycemia: The Bogalusa Heart Study. Cardiovasc Diabetol. 2019; 18:109. [DOI:10.1186/s12933-019-0913-2]

[30] Yudkin JS. Abnormalities of coagulation and fibrinolysis in insulin resistance: Evidence for a common antecedent? Diabetes Care. 1999; 22 Suppl 3:C25-30. [PMID]