Research Article

Optimal Control Analysis of Treatment Strategies of the Dynamics of Cholera

Sani Fakai Abubakar and M. O. Ibrahim

1Kebbi State University of Science and Technology, Aliero, Nigeria
2Department of Mathematics, University of Ilorin, Ilorin, Nigeria

Correspondence should be addressed to Sani Fakai Abubakar; saniabufakai@hotmail.com

Received 25 January 2022; Revised 2 April 2022; Accepted 7 April 2022; Published 17 August 2022

1. Introduction

Cholera is a profuse diarrhoeal disease that can lead to death within short period of onset, if prompt treatment measures are not taken. It was estimated in [1], to be annually causing 21,000 to 143,000 deaths from 1,300,000 to 4,000,000 cholera cases worldwide, representing 1.62% to 3.58% of the reported cases. Natural disasters, climate change, social conflicts (terrorism), and economic meltdown usually force people to live in slums and refugee camps. The camps usually have very poor or insufficient infrastructures, especially good drinking water, and this serves as igniting factors of cholera outbreaks [2].

Severe cholera symptoms include vomiting, profuse rice-water stool, cramps, sunken eyes, high dehydration, and shock. Individuals that ingest incomplete cholera-causing dose do not usually manifest any cholera symptom and are usually referred as Vibrio cholerae carriers [3]. Severe cholera usually leads to death within short period of time that ranges between hours and three days. Chance of exposed susceptible individuals catching cholera will be half, if the concentration of Vibrio cholerae is 10^5 cells per millilitre (i.e., $B = k$) and the least daily consumption of untreated water peg is a minimum of 1 litre per day [4].

Pontryagin’s maximum principle is one of the few methods of obtaining analytical solutions to optimal control problems. [5] derived optimal control model SIB, with two controls, and [6] derived an optimal intervention strategies model. [7] presented and analysed optimal control model for cholera disease with three controls, and [8] derived $SEIRV_IV_E$ cholera model and
introduced an exposed individual compartment. They all used Pontryagin’s maximum principle to analyse their models.

Big risk in cholera disease and its outbreaks is that about 75% of Vibrio cholerae carriers do not have symptoms of the disease, but can spread the bacteria in the community through their faeces for one to two weeks after infection [9]. Cholera infection can be asymptomatic, mild or moderate, and severe; among the infected individuals that manifest symptoms, only 20% develop severe watery diarrhoea, while 80% have mild or moderate symptoms [10].

This calls for the formulation of cholera model that will analyse dynamics of Vibrio cholerae carriers during and after cholera outbreak, to optimise application of hygiene, vaccination, and cholera awareness programme controls. The paper is organised as follows: Section 2 describes the model formulation, which comprises the basic assumptions, description of state variables and parameters, system of differential equations, existence and uniqueness of solution, positivity of solution, and disease-free and endemic equilibria. Section 3 discusses the calculation of basic reproduction number and sensitivity of its parameters. Section 4 defines optimal control. Section 5 illustrates numerical simulation, and Section 6 explains summary, conclusion, and recommendations.

2. Model Formulation

We derive a mathematical model of the dynamics of cholera disease, with homogeneous total number of humans denoted by P_H representing combined human population at time t. This human population of the model is divided into eight mutually exclusive compartments and one nonhuman compartment.

2.1. Basic Assumptions of the Model

(i) Exposed individuals imply a very short period at which individuals have ingested Vibrio cholerae bacteria but yet to develop symptoms and cannot spread cholera pathogens

(ii) Infected individuals cannot be vaccinated

(iii) Infection can be as follows:

(a) Moderate cholera infection, individuals that have the pathogen in their system but did not develop into cholera disease

(b) Severe cholera infection, infected individuals that have manifested symptoms

(iv) Moderate infected individuals can recover without treatment

(v) Severe cholera infection must be treated before recovery

(vi) Recovered individuals have no permanent cholera immunity

2.2. State Variables and Parameters of the Model. Description of the model’s state variables and parameters is shown in Tables 1 and 2.

2.3. The Model’s Equations. Schematic diagram of the flow between different classes of the state variables S, V, E, I, U, C, C, and B of the model is shown in Figure 1.

A system of differential equations (1)–(9) was obtained from the model’s assumptions, descriptions of variables and parameters, and the compartmental flow diagram.

$$\frac{dS}{dt} = q - (v_1 - \chi)\phi S + (1 - \chi)(1 - h)\nu_2 SI + \omega V + \omega R - (\psi + \delta)S,$$

$$\frac{dV}{dt} = \psi S - \sigma V_2 VI - (\omega + \delta)V,$$

$$\frac{dE}{dt} = v_1 (1 - \chi)\phi S + (1 - \chi)(1 - h)\nu_2 SI + \sigma V_2 VI - (\xi + h + \delta)E,$$

$$\frac{dI}{dt} = \xi E - (\tau m + (1 - \tau)m + e + \delta)I,$$

$$\frac{dC}{dt} = hE - (f + \theta + \delta)C,$$

$$\frac{dU}{dt} = fC + (1 - \tau)mI + g_2 T - (g_1 + r_1 + \mu + \delta)U,$$

$$\frac{dT}{dt} = \tau mI + g_1 U - (g_1 + r_2 + g_2 + \alpha + \delta)T,$$

$$\frac{dR}{dt} = (g_1 + r_2)T + r_1 U + \theta C - (\omega + \delta)R,$$

$$\frac{dB}{dt} = (1 - h)\eta_1 I + (\eta_2 - \beta)B.$$

2.4. Properties of the Model. Properties that ensure the correctness of the system of equations of the model, such as existence, uniqueness, boundedness, positivity, and equilibria, are ascertained.

2.4.1. Existence and Uniqueness of Solution. The existence and uniqueness of solution in formulated mathematical models need to undergo surety test to ascertain whether the solution exists, and if it exists, it is unique. Using the Lipschitz criteria, it is established as follows.

Let
Table 1: State variables of the model.

Variable	Description
S	Susceptible individuals
V	The vaccinated individuals
E	Exposed individuals
I	Infected individuals
C	Hygiene conscious individuals
U	Untreated *Vibrio cholerae* carries
T	Infected individuals under treatment
R	Recovered individuals
B	Concentration of *Vibrio cholerae* bacteria in food and water consumed by the human population

Table 2: Description of parameters of the model, their values, units, and references (source).

Parameter Description	Parameter Symbol	Value	Unit	Source
Human recruitment rate	q	9.49	day$^{-1}$	Estimated
Non-cholera human death rate	δ	0.01177	day/1000	Calculated
Rate of ingesting *Vibrio cholerae* bacteria from contaminated food and water consumed by the human population	v₁	0.5	day$^{-1}$	[11]
Rate of getting *Vibrio cholerae* bacteria through human-to-human interactions	v₂	0.03	day$^{-1}$	[11]
Rate of recovery of hygiene conscious individuals	θ	0.38	day$^{-1}$	[11]
Rate of generating *Vibrio cholerae* bacteria in the environment	β	0.073	day$^{-1}$	[7]
Rate of freedom from *Vibrio cholerae* by the hygiene conscious individuals	f	0.65	day$^{-1}$	Estimated
Concentration of cholera pathogen that yields 50% chance of individual developing cholera disease	k	10^5 Cells/ml	[14]	
Progression of recovery of treated individuals to untreated *Vibrio cholerae* carriers	g₁	0.08	day$^{-1}$	Estimated
Rate of interruption of treatment	g₂	0.2	day$^{-1}$	[15]
Recovery rate of untreated *Vibrio cholerae* carriers	r₁	0.8	day$^{-1}$	Estimated
Recovery of treated cholera patients	r₂	0.63	day$^{-1}$	Estimated
Disease induced death rate for individuals in I class	ε	0.105	day$^{-1}$	Estimated
Disease induced death rate for individuals in U class	μ	0.1	day$^{-1}$	Estimated
Disease induced death rate for individuals in T class	α	0.08	day$^{-1}$	Estimated
Rate of movement of the infected class	m	0.24	day$^{-1}$	Estimated
Rate of vaccine	ψ	0.3	day$^{-1}$	[16]
Rate of waning out of the vaccine induced immunity	ω	0.5	day$^{-1}$	[16]
Rate at which the vaccine reduces infection	σ	0.2	day$^{-1}$	[16]
Cholera awareness programme	χ	0.66	day$^{-1}$	Estimated
Rate of exposure to infection	ξ	0.23	day$^{-1}$	Estimated
The fraction $B/(k + B)$	φ	0.000599	Dimensionless	Calculated
A fraction of early infected individuals	τ	0-1	Dimensionless	[15]

Figure 1: Flow diagram of the SVEICTRB dynamic model.
\[u_t = q - (v_1 - 1)(1 - \chi)\phi S + (1 - \chi)(1 - h)v_2SI \]
\[+ \omega V + \omega R - (\psi + \delta)S, \]
\[u_x = \psi S - \sigma v_1 VI - (\omega + \delta)V, \]
\[u_y = (1 - \chi)\phi S + (1 - \chi)(1 - h)v_2SI + \sigma v_2VI \]
\[- (\xi + h + \delta)E, \]
\[u_z = \xi E - (m + \varepsilon + \delta)I, \]
\[u_m = hE - (f + \theta + \delta)C, \]
\[u_k = f C + (1 - \tau)mI + g_2T - (g_1 + r_1 + \mu + \delta)U, \]
\[u_r = \tau mI + g_1U - (g_1 + r_2 + g_2 + \alpha + \delta)T, \]
\[u_u = (g_1 + r_2)T + r_1U + \delta C - (\omega + \delta)R, \]
\[u_0 = (1 - h)\eta_1 I + (\eta_2 - \beta)B. \]

Considering the region \(0 \leq P \leq R \), bounded solution of system of equations (1)–(9) will be looked for in the same region whose partial derivatives satisfy \(\delta_i \leq P \leq R \), where \(\delta_i \) and \(P \) are positive constants.

Theorem 1. Let the region \(0 \leq P \leq R \) be denoted by \(\Lambda \), and then, the system of equations (1)–(9) has a unique solution provided that it is established that

\[
\frac{\partial u_i}{\partial t} \quad i = 1, 2, 3, 4, 5, 6, 7, 8, 9, \tag{11}\]

is continuous and bounded in \(\Lambda \).

Proof. Partial derivatives with respect to each state variables of the system of equations (1)–(9) are obtained as follows: for \(u_1 \),

\[
\frac{\partial u_1}{\partial s} = -v_1 (1 - \chi)\phi - (1 - \chi)(1 - h)v_2I - \psi - \delta < \infty, \]

\[
\frac{\partial u_1}{\partial v} = |\omega| < \infty, \]

\[
\frac{\partial u_1}{\partial \tau} = -(1 - \chi)(1 - h)v_2S < \infty, \]

\[
\frac{\partial u_1}{\partial B} = \frac{v_1 (1 - \chi)BS}{(k + B)^2} - \frac{v_1 (1 - \chi)S}{k + B} < \infty, \]

\[
\frac{\partial u_1}{\partial R} = |\omega| < \infty, \]

\[
\frac{\partial u_1}{\partial E} = \frac{\partial u_1}{\partial C} - \frac{\partial u_1}{\partial U} - \frac{\partial u_1}{\partial T} = 0 < \infty. \]

Similarly, for \(u_2, u_3, u_4, u_5, u_7, u_8, \) and \(u_0 \), the system of equations (1)–(9) exists and has a unique solution in \(\mathbb{R}^9 \) since all the partial derivatives are \(< \infty \) and therefore bounded and defined.

2.5. **Positivity of Solutions.** Let equations (1)–(9) be subject to initial conditions:

\[
S(0), V(0), E(0), I(0), C(0), U(0), T(0), R(0), B(0). \tag{13}
\]

For the SVEICUTRB cholera model to be meaningfully epidemiological, it is mandatory to prove that all the state variables are nonnegative at time \(t > 0 \), since the population of human is non negative but positive. This implies that the solutions of the system of equations (1)–(9) have nonnegative initial values and will remain nonnegative for all time \(t > 0 \).

Let

\[
(S(t), V(t), E(t), I(t), C(t), U(t), T(t), R(t), B(t)). \tag{14}
\]

be solutions to the system of the equations (1)–(9).

Theorem 2. (a) Solution (11) is positive for all \(t > 0 \) if \(S(0) > 0, V(0) > 0, E(0) > 0, I(0) > 0, C(0) > 0, U(0) > 0, T(0) > 0, R(0) > 0, \) and \(B(0) > 0 \). (b) Solution (11) is nonnegative for all \(t > 0 \) with respect to initial conditions (10).

Proof. (a) Suppose that (11) is defined for all \(t \in [0, M] \), where \(M > 0 \), to prove that (11) is positive for all \(t \geq 0 \).

Considering (1), it is obvious that

\[
\frac{dS(t)}{dt} \geq -v_1 (1 - \chi)\phi + (1 - \chi)(1 - h)v_2I + \psi + \delta. \tag{15}
\]

Integrating both sides of (15) with respect to \(p \), with the range \(p = 0 \) to \(p = t \), and applying initial conditions, it gives

\[
S(t) = S(0)\exp \left(\int_0^t (-v_1 (1 - \chi)\phi + (1 - \chi)(1 - h)v_2I + \psi + \delta)dp \right). \tag{16}
\]

Since \(S(0) > 0, \forall t \in [0, M] \).

Therefore,

\[
S(0)\exp (-v_1 (1 - \chi)\phi + (1 - \chi)(1 - h)v_2I + \psi + \delta)t, \tag{17}
\]

must be greater than zero.

Also, from (2)

\[
\frac{dV(t)}{dt} \geq - (\sigma v_2I + \omega + \delta)V, \forall 0 \leq t < M. \tag{18}
\]

Integrating both sides within the interval \([0, t]\) and applying initial conditions, it gives

\[
V(t) = V(0)\exp (- (\sigma v_2I + \omega + \delta)t), \tag{19}
\]

and since \(V(0) > 0, V(0)\exp (- (\sigma v_2I + \omega + \delta)t) \) must be greater than zero.

Similarly, from equations (3)–(9), their respective results are as follows:

\[
E(t)\geq E(0)\exp (- (f + \theta + \delta)t)0, \forall 0 \leq t < M, \]

\[
I(t)\geq I(0)\exp (- (f + (1 - \tau)m + \varepsilon + \delta)t)0, \forall 0 \leq t < M, \]

\[
C(t)\geq C(0)\exp (- (f + \theta + \delta)t)0, \forall 0 \leq t \leq M < e, \]

\[
U(t)\geq U(0)\exp (- (g_1 + r_1 + \mu + \delta)t)0, \forall 0 \leq t < M, \]

\[
T(t)\geq T(0)\exp (- (g_1 + g_2 + r_2 + \alpha + \delta)t)0, \forall 0 \leq t < M, \]

\[
R(t)\geq R(0)\exp (- (\omega + \delta)t)0, \forall 0 \leq t < M, \]

\[
B(t)\geq B(0)\exp (- \beta t)0, \forall 0 \leq t < M. \tag{20}
\]
(b) With the aid of proof of (a) and since the solution of the system of equations (1)–(9) continuously depends on the respective initial conditions in neighbourhood of zero, obviously it implies that (14) is nonnegative for all \(0 \leq t < M \).

The model is dealing with population of living things, their number cannot be negative, and hence they are positive.

\[\square \]

Theorem 3. Solutions of cholera model SVEICUTRB are bounded in \(\mathbb{R}^5 \), with initial conditions (10), and hence, dynamics of the model is a dynamical system in the biologically feasible compact set.

Proof. Let \(\Lambda = (S, V, E, I, C, U, T, R, B) \in \mathbb{R}^5 \) be the solutions of the model with nonnegative initial conditions. Total human population is as follows:

\[P_H = S + V + E + I + C + U + T + R, \]

\[\frac{dP_H}{dt} = \frac{dS}{dt} + \frac{dV}{dt} + \frac{dE}{dt} + \frac{dI}{dt} + \frac{dC}{dt} + \frac{dU}{dt} + \frac{dT}{dt} + \frac{dR}{dt}, \]

\[\frac{dP_H}{dt} = q - \delta(S + V + E + I + C + U + T + R) - \epsilon I - \alpha T - \mu U. \]

Without cholera infection, all the cholera-related deaths will be zero; therefore, \(\epsilon I = \alpha T = \mu U = 0. \)

\[\frac{dP_H}{dt} = q - \delta P_H. \]

Using differential inequality theorem from [17] and the Birkhoff and Rota version as used in [11, 18],

\[\frac{dP_H}{dt} \leq q - \delta P_H. \]

Multiplying both sides of (23) by the integrating factor \(\exp(\delta t) \) and integrating, it gives

\[P_H \exp(\delta t) \leq \frac{q}{\delta} + C. \]

Substituting initial conditions are as follows: \(t = 0 \) and \(P_H(0) = P_0 \).

This further gives \(P_H \leq (q/\delta) + (P_0 - q/\delta) \exp(-\delta t) \) As \(t \to \infty \), \((P_0 - q/\delta) \exp(-\delta t) \to 0 \), which gives \(P_H \leq (q/\delta) \), but \(P_H \geq 0 \); therefore, for all \(t > 0 \),

\[0 \leq P_H(t) \leq \frac{q}{\delta} \]

Hence, \(P_H(t) \) is bounded.

The solution set of human population of the system of equations (1)–(9) belongs to the feasible region:

\[\Lambda_H = \left\{ (S, V, E, I, C, U, T, R) \in \mathbb{R}_+^8, \quad P_H \leq \frac{q}{\delta} \right\}. \]

Also, let

\[P_H(t) \leq P_H^* = \max \left\{ P_0, \frac{q}{\delta} \right\}. \]

On the other hand, the equation for the dynamics of the pathogen is (9) as follows:

\[\frac{dB(t)}{dt} = (1 - h)\eta_1I + (\eta_2 - \beta)B(t) \]

\[\leq (\eta_2 - \beta)B(t) + (1 - h)\eta_1P_H. \]

Since \(I \) can be less than \((q/\delta) \), then from (27),

\[\frac{dB(t)}{dt} \leq (\eta_2 - \beta)B(t) + (1 - h)\eta_1P_H^*. \]

Integrating (29) gives

\[P_B(t) \leq \frac{(1 - h)\eta_1P_H^*}{(\eta_2 - \beta)} \left[1 - \exp(-(\eta_2 - \beta)t) \right] + \frac{B(0)}{\exp((\eta_2 - \beta)t)}. \]

As \(t \to \infty \), then \(\exp(-(\eta_2 - \beta)t) \to 0 \).

The population of *Vibrio cholerae* bacteria is as follows:

\[P_B(t) \leq \frac{(1 - h)\eta_1P_H^*}{(\eta_2 - \beta)} \]

provided \(\eta_2 \neq \beta \). Hence, the feasible solution set of *Vibrio cholerae* population of (9) enters the region

\[\Lambda_B = \left\{ P_B(t) \in \mathbb{R}_+, 0 \leq P_B(t) \leq \frac{(1 - h)\eta_1P_H^*}{(\eta_2 - \beta)} \right\}. \]

This shows that the cholera model governed by the system of equations (1)–(9) is epidemiological well posed in a feasible region \(\Lambda \), defined by \(\Lambda \in \mathbb{R}^5 \) and \(\Lambda_H \cup \Lambda_B \subset \mathbb{R}_+^8 \times \mathbb{R}_+. \)

It then implies that the entire human and nonhuman population of the model enter the feasible region \(\Lambda \). Also, since \(P_H(t) > 0 \) and \(P_B(t) \geq 0 \), for all \(t \geq 0 \), then \(P_H(t) \) and \(P_B(t) \) cannot blow up to infinity in the finite time. Consequently, the model system is dissipative; that is, its solutions are bounded and exist for all \(t > 0 \) in the invariant and compact set \(\Lambda \).

\[\Lambda = \left\{ S, V, E, I, C, U, T, R \in \mathbb{R}_+^8, B \in \mathbb{R}_+^8, S, V, E, I, C, U, T, R, B \geq 0, P_H \leq \frac{q}{\delta}, P_H \leq P_H^*, P_B \leq \frac{(1 - h)\eta_1P_H^*}{(\eta_2 - \beta)} \right\}. \]

2.5.1. Disease-Free Equilibrium. Analysis of cholera model governed by a system of equations (1)–(9) is qualitatively carried out to obtain features of the dynamics and impact of
control strategies, spread, and transmission dynamics of the cholera causative bacteria.

Disease-free equilibrium of the model governed by system of equations (1)–(9) is algebraically calculated by setting \(\frac{dS}{dt} = \frac{dV}{dt} = \frac{dE}{dt} = \frac{dI}{dt} = \frac{dC}{dt} = \frac{dT}{dt} = \frac{dB}{dt} = 0 \).

In the absence of cholera disease, it is assumed that \(S = S_0, V = V_0, E = 0, I = 0, C = 0, U = 0, T = 0, R = 0 \), and \(B = 0 \).

\[
S_0 = \frac{q(\omega + \delta)}{(\psi + \delta)(\omega + \delta) - \omega \psi} \quad (34)
\]

\[
V_0 = \frac{q \psi}{(\psi + \delta)(\omega + \delta) - \omega \psi} \quad (35)
\]

The DFE point is as follows:

\[
Q_0 = (S_0, V_0, E, I, C, U, T, R, B)
\]

\[
= \left(\frac{q(\omega + \delta)}{(\psi + \delta)(\omega + \delta) - \omega \psi}, \frac{q \psi}{(\psi + \delta)(\omega + \delta) - \omega \psi}, 0, 0, 0, 0, 0, 0, 0 \right)
\]

2.5.2. Existence of Endemic Equilibrium State (EES) \(\Xi^* \).

This is a state where the disease cannot be completely eliminated, but stay in the concern region. The state variables of the model with exception of \(R^* \) are not zero.

Let \(\Xi^* = (S^*, V^*, E^*, I^*, C^*, U^*, T^*, R^*, B^*) \) be the endemic equilibrium point, and let

\[
Q_1 = \xi + h + \delta, \\
Q_2 = \mu + \varepsilon + \delta, \\
Q_3 = g_1 + r_1 + \mu + \delta, \\
Q_4 = g_1 + g_2 + r_2 + \alpha + \delta, \\
Q_5 = \psi + \delta, \\
Q_6 = 1 - \chi, \\
Q_7 = 1 - h, \\
Q_8 = \frac{B}{k + B}, \\
Q_9 = \omega + \delta, \\
Q_{10} = f + \theta + \delta, \\
Q_{11} = g_1 + r_2, \\
Q_{12} = \eta_2 - \beta.
\]

Substituting (37) into the system of equations (1)–(9), the following is obtained:

\[
q - v_1 Q_6 Q_8 S^* - Q_6 Q_7 v_2 S^* I^* + \omega V^* + \omega R^* - Q_3 S^* = 0, \quad (37)
\]

\[
\psi S^* - \sigma v_2 V^* I^* - Q_3 V^* = 0, \quad (38)
\]

\[
v_1 Q_6 Q_8 S^* + Q_6 Q_7 v_2 S^* I^* + \sigma v_2 V^* I^* - Q_4 E^* = 0, \quad (39)
\]

\[
\xi E^* - Q_4 I^* = 0, \quad (40)
\]

\[
h E^* - Q_10 C^* = 0, \quad (41)
\]

\[
f C^* + (1 - \tau) m l^* + g_1 T^* - Q_3 U^* = 0, \quad (42)
\]

\[
\tau m l^* + g_1 U^* - Q_4 T^* = 0, \quad (43)
\]

\[
Q_1 T^* + r_1 U^* + \theta C^* - Q_8 R^* = 0, \quad (44)
\]

\[
Q_7 \eta_1 I^* + Q_{12} B^* = 0, \quad (45)
\]

Adding (19) and (21),

\[
q + \omega R^* + (\omega + \delta v_2 I^*) V^* - Q_3 S^* - Q_4 E^* = 0, \quad (46)
\]

From (22),

\[
E^* = \frac{Q_2 I^*}{\xi}, \quad (47)
\]

and from (23),

\[
C^* = \frac{h E^*}{Q_{10}}, \quad (48)
\]

Putting (40) into (41),

\[
C^* = \frac{h Q_3 I^*}{\xi Q_{10}}, \quad (49)
\]

From (25),

\[
T^* = \frac{\tau m l^* + g_1 U^*}{Q_4}, \quad (50)
\]

Substituting (42) and (43) into (24) gives

\[
U^* = \frac{\tau h Q_7 I^* + \xi Q_7 Q_{10} (1 - \tau) m l^* + \xi Q_{10} g_2 \tau m l^*}{\xi Q_{10} (Q_3 Q_4 - g_1)}, \quad (51)
\]

Let
\(H_1 = f hQ_2Q_4, \)
\(H_2 = \xi Q_4Q_{10}(1 - \tau)m, \)
\(H_3 = \xi Q_{10}g_{1}m, \)
\(H_4 = \xi Q_{10}(Q_4 - g_1), \)
\(H_5 = Q_{10}Q_{11}Q_{6}(\tau mH_4 + g_1(H_1 + H_2 + H_3)), \)
\(H_6 = \xi r_{1}Q_{4}Q_{10}(H_1 + H_2 + H_3), \)
\(H_7 = \theta h_{2}Q_2H_4, \)
\(H_8 = \xi H_4Q_4Q_9Q_{10}. \)

Substituting related terms of (45) into (44) gives
\[U^* = \left(\frac{H_1 + H_2 + H_3}{H_4} \right) I^*, \]
and from (43),
\[I^* = \left(\frac{\tau mH_4 + g_1(H_1 + H_2 + H_3)}{H_4Q_4} \right) I^*. \]

From (20),
\[V^* = \frac{\psi S^*}{\sigma v_2 I^* - Q_6}. \]

Putting (31), (35), and (36) in (26), we obtain
\[R^* = \frac{(H_5 + H_6 + H_7)I^*}{H_8}. \]

Also let
\[H_10 = H_8\xi q + \xi \omega(H_5 + H_6 + H_7) - H_4Q_1Q_2, \]
\[H_{11} = \sigma v_2(Q_5 - \psi), \]
\[H_{12} = Q_5Q_9 - \psi \omega. \]

Substituting (29), (37), (38), and related terms of (50) in (39) gives
\[S^* = \frac{H_{10}I^*}{H_{11}I^* - H_{12}}. \]

Substituting (51) into (48) and simplifying, (48) becomes
\[V^* = \frac{\psi H_{10}I^*}{H_{11}I^* - H_{12}}. \]

Substituting (29), (40), and (41) into (21) gives the following:
\[\xi \psi Q_2h_{10}\sigma I^* + (\xi H_{10}v_1v_2Q_6 - \xi H_{10}v_1v_2Q_6 + \xi \psi H_{10}\sigma v_2 - Q_3Q_2H_{11})I^* = 0, \]
\[(H_{12}Q_2Q_3 - \xi H_{10}v_1v_2Q_6Q_9(I^* = 0. \]

setting
\[\begin{aligned}
B_1 &= \xi \psi Q_2h_{10}\sigma, \\
B_2 &= \xi H_{10}v_1v_2Q_6 - \xi H_{10}v_1v_2Q_6 + \xi \psi H_{10}\sigma v_2 - Q_3Q_2H_{11},
\end{aligned} \]

This gives
\[B_1I^3 + B_2I^2 + B_3I^* = 0, \]
\[(B_1I^2 + B_2I^* + B_3)I^* = 0, \]

which means either
\[B_1I^2 + B_2I^* + B_3 = 0, \]
or
\[I^* = 0. \]

For \(I^* = 0 \), it implies a disease-free equilibrium; when \(H_{12}Q_2Q_3 < \xi H_{10}v_1v_2Q_6Q_9 \), it implies \(B_1 > 0, \) and \(B_3 < 0 \); hence, product of the roots \(I_1^* I_2^* = (B_3/B_1) < 0 \), which means either \(I_1^* > 0 \) or \(I_2^* > 0 \), and the positive root will then be
\[I^* = \frac{-B_2 + \sqrt{B_2^2 - 4B_1B_3}}{2B_1}. \]

Therefore, there exists an endemic equilibrium state \(\mathbb{E}^* \) defined as follows:
\[\mathbb{E}^* = \left(\frac{H_{10}\sigma v_2\Delta^2 - H_{10}Q_9\Delta}{H_{11}\Delta - H_{12}}, \right. \]
\[\left. \frac{\psi H_{10}\Delta}{H_{11}\Delta - H_{12}}, \right. \]
\[\left. \frac{Q_3\Delta}{\xi Q_{10}}, \right. \]
\[\frac{\Delta}{\xi Q_{10}} \]
\[\frac{(H_5 + H_6 + H_7)\Delta}{H_4Q_4}, \]
\[\left. \frac{(H_5 + H_6 + H_7)\Delta}{H_8}. \right. \]

where
\[\Delta = \frac{-B_2 + \sqrt{B_2^2 - 4B_1B_3}}{2B_1}. \]

Note that \(\eta_2 - \beta \) must be negative for endemic.

3. Basic Reproduction Number \(R_0 \)

Basic reproduction number denoted by \(R_0 \) is the average number of secondary infections produced by a single infectious introduced into the whole susceptible population. \(R_0 \) is a threshold quantity that can be used to predict infection; when \(R_0 < 1 \), it implies that only less than one person can be infected, which means the disease dies out.
When $R_0 > 1$ implies that more than one person can be infected, this means the disease will persist.

There are many methods of obtaining R_0 for mathematical models, and “the next-generation matrix method,” a technique introduced by [19], which was also reported by [20], was used in this work, simply because the model is divided into compartments.

Taking F_i to be the rate of appearance of new infection in compartment i, V_i is the transfer of individuals out of compartment i by other means and substituting values of state variables at disease-free equilibrium point Q_0, R_0 will then be the spectral radius of

$$ R_0 = \lambda_\text{max} \left(\frac{\partial F_i(Q_0)}{\partial Q_j} \right) \left(\frac{\partial V_i(Q_0)}{\partial Q_j} \right)^{-1}. \quad (68) $$

Note that F is nonnegative, V is a nonsingular M matrix, V^{-1} is nonnegative, and FV^{-1} is also nonnegative as in [19]. The matrix FV^{-1} was referred as the next-generation matrix as in [20] that gave the method its name. Finally, $R_0 = \lambda_\text{max}(FV^{-1})$, which is the spectral radius of FV^{-1}, considered as maximum real part of the matrix FV^{-1}. Rearranging the equations of the model as $F(t)$, $V^+(t)$, and $V^-(t)$, the R_0 is calculated and obtained as follows:

$$ F(t) = \begin{bmatrix} v_1(1-\chi) \frac{B}{k+B} S + (1-\chi)(1-h)\nu_2 SI + \sigma \nu V I \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, $$

$$ V^+(t) = \begin{bmatrix} \xi E \\ fC + (1-\tau)m I + g_2 T \\ \tau ml + g_1 U \\ q + \omega V + \omega R \\ (1-h)\eta I + \eta B \end{bmatrix}, $$

$$ V^-(t) = \begin{bmatrix} (\tau m + (1-\tau)m + \epsilon + \delta)I \\ (g_1 + r_1 + \mu + \delta)U \\ (g_1 + g_2 + r_2 + \alpha + \delta)T \\ (\xi + h + \delta)E \\ v_1(1-\chi) \frac{B}{k+B} S + (1-\chi)(1-h)\nu_2 SI + (\psi + \delta)S + \beta B \end{bmatrix}, $$

with $V(t) = V^-(t) - V^+(t)$.

[51x720]
\[V(t) = \begin{bmatrix} (\tau m + (1 - \tau)m + \epsilon + \delta)I - \xi E \\ (g_1 + r_1 + \mu + \delta)U - fC - (1 - \tau)mI - g_2T \\ (g_1 + g_2 + r_2 + \alpha + \delta)T - \tau mI - g_1U \\ (\xi + h + \delta)E \\ v_1(1 - \chi) \frac{B}{k + B} S + (1 - \chi)(1 - h)v_2SI + (\psi + \delta)S - q - \omega V - \omega R \\ \beta B - (1 - h)\eta_1I - \eta_2B \end{bmatrix}. \]

Substituting terms given by (37), it gives

\[F(t) = \begin{bmatrix} v_1Q_6Q_3S + Q_6Q_7v_2SI + \sigma v_2V1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \]

\[V1(t) = \begin{bmatrix} \frac{Q_4I - \xi E}{Q_5U - fC - (1 - \tau)mI - g_2T} \\ \frac{Q_4T - \tau mI - g_1U}{Q_5E} \\ v_1Q_6Q_3S + Q_6Q_7v_2SI + Q_5S - q - \omega V - \omega R \\ \beta B - Q_7\eta_1I - \eta_2B \end{bmatrix}. \]

The Jacobian matrices of \(F(t) \) and \(V1(t) \) about the disease-free equilibrium point \(Q_0 \) are obtained by partially differentiating \(F(t) \) and \(V1(t) \) with respect to \(I, U, T, E, S, \) and \(B \) to get matrices \(F_J \) and \(V1_J \).

\[F_J = \begin{bmatrix} Q_6Q_7v_2S + \sigma v_2V 0 0 0 Q_6v_1S - \frac{Q_6v_1S}{k} \\ 0 0 0 0 0 \\ 0 0 0 0 0 \\ 0 0 0 0 0 \\ 0 0 0 0 0 \\ 0 0 0 0 0 \end{bmatrix}, \]

\[V1_J = \begin{bmatrix} Q_2 0 0 -\xi 0 0 \\ -(1 - \tau)m Q_3 - g_2 0 0 0 \\ -\tau m - g_1 Q_4 0 0 0 \\ 0 0 0 0 Q_1 0 0 \\ Q_6Q_7v_2S 0 0 0 Q_5 \frac{Q_6v_1S}{k} \\ -Q_7\eta_1 0 0 0 \beta - \eta_2 \end{bmatrix}. \]

Let \(F^{-1} = F_J^{-1} \) and \(V1^{-1} = V1_J^{-1} \).
where

\[
\begin{pmatrix}
\frac{1}{Q_2} & 0 & 0 & \frac{\xi}{Q_1 Q_2} & 0 & 0 \\
\frac{m(Q_2 r - g_2 r - Q_4)}{Q_2 (Q_3 Q_4 - g_1 g_2)} & \frac{Q_4}{Q_2 Q_4 - g_1 g_2} & \frac{g_2}{Q_2 Q_4 - g_1 g_2} & \frac{m(\xi (Q_2 r - g_2 r - Q_4))}{Q_2 Q_1 (Q_3 Q_4 - g_1 g_2)} & 0 & 0 \\
\frac{m(Q_2 r - g_1 r + g_1)}{Q_2 (Q_3 Q_4 - g_1 g_2)} & \frac{g_1}{Q_2 Q_4 - g_1 g_2} & \frac{Q_3}{Q_2 Q_4 - g_1 g_2} & \frac{m(\xi (Q_2 r - g_1 r + g_1))}{Q_2 Q_1 (Q_3 Q_4 - g_1 g_2)} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\frac{Q_5 Q_2 S (\beta k v_2 - \eta_2 k v_2 + \eta_1 v_1)}{k Q_2 (\beta - \eta_2) Q_5} & 0 & 0 & \frac{Q_5 Q_2 S (\beta k v_2 - \eta_2 k v_2 + \eta_1 v_1)}{k Q_2 Q_1 (\beta - \eta_2) Q_5} & 1 & \frac{-Q_5 v_1 S}{k Q_2 Q_1 (\beta - \eta_2) Q_5} \\
\frac{Q_5 \eta_1}{Q_2 (\beta - \eta_2)} & 0 & 0 & \frac{Q_5 \eta_1 \xi}{Q_2 Q_1 (\beta - \eta_2)} & 0 & \frac{1}{\beta - \eta_2}
\end{pmatrix}
\]

Let \(Z = FV_1^{-1} \) and \(R_0 = \rho(Z) \); hence, \(R_0 = \left(q Q_4 Q_2 Q_5 \beta k v_2 - Q_6 Q_4 Q_5 \eta_2 k v_2 + Q_6 Q_7 Q_9 \eta_1 v_1 + \beta k \psi \sigma v_2 - \eta_2 k \psi \sigma v_2 \right) / \left(Q_5 Q_9 - \omega \psi \right) k Q_2 (\beta - \eta_2). \)

\[
R_0 = q \left((1 - \chi) (1 - h) (\omega + \delta) \beta k v_2 - (1 - \chi) (1 - h) (\omega + \delta) \eta_2 k v_2 + (1 - \chi) (1 - h) (\omega + \delta) \eta_1 v_1 + \beta k \psi \sigma v_2 - \eta_2 k \psi \sigma v_2 \right) / \left((\psi + \delta) (\omega + \delta) - \omega \psi \right) k (m + \varepsilon + \delta) (\beta - \eta_2).
\]

3.1. **Sensitivity Analysis.** Sensitivity analysis is determining the level of effectiveness of parameters. The sensitivity analysis was carried out on model’s \(R_0 \). The most sensitive parameters in this model are \(h \) and \(v_2 \); increasing \(h \) reduces \(R_0 \), thereby reducing infection. On the other hand, increasing \(v_2 \) increases \(R_0 \), thereby increasing infection. The normalised forward sensitivity indexes were performed using the following formula:

\[
\xi_{(0)}^{R_0} = \frac{\Omega}{R_0} \cdot \frac{\partial R_0}{\partial \Omega}
\]

where \(\Omega = \{q, h, \delta, m, \varepsilon, v_1, v_2, \chi, \omega, \psi, \sigma, \beta, \eta_1, \eta_2, k \}. \)

Using (68), the level of sensitivity of the \(R_0 \) parameters was obtained as given in Table 3. Level of sensitivity of each parameter in the obtained \(R_0 \) is shown in Figure 2.

4. **Optimal Control Problem of the Model**

Minimising susceptible, exposed, and infected individuals through hygiene consciousness, vaccine coverage, and cholera awareness strategies is the goal set to achieve using optimisation. The objectives of optimizing the model are: to reduce as much as possible, cholera susceptible individuals, exposed individuals, and cholera infection through three controls, hygiene consciousness of human, vaccinating
Table 3: Level of sensitivity of R_0 parameters.

Parameter	Sensitivity value	Parameter	Sensitivity value
q	1.0000	ω	-0.0512
h	-0.8671	ψ	0.0524
δ	-1.0390	σ	0.4219
m	-0.6415	β	-0.0026
ϵ	-0.3208	η_1	0.0023
ν_1	0.0023	η_2	0.0004
ν_2	0.9978	k	-0.0023
χ	-0.8671		

Figure 2: Graph of sensitivity analysis of parameters in the model’s “Basic reproduction number” R_0.

Susceptible individuals and awareness of measures to be taken to avoid cholera infection. The model is reformulated to identify permissible time-dependent controls $\chi_1(t)$, $\chi_2(t)$, and $\chi_3(t)$, which are now functions of time t, and are, respectively, replacing parameters h, ψ, and χ of the system of equations (1)–(9) that is reformulated as follows:
\[
\frac{dS}{dt} = q - \left(v_1 (1 - \chi_3 (t)) \frac{B(t)}{k + B(t)} S(t) + (1 - \chi_1 (t)) (1 - \chi_3 (t)) v_2 S(t) I(t) \right) + \omega V(t) + \omega R(t) - (\chi_2 (t) + \delta) S(t),
\]

\[
\frac{dV}{dt} = \chi_2 (t) S(t) - \sigma v_2 V(t) I(t) - (\omega + \delta) V(t),
\]

\[
\frac{dE}{dt} = v_1 (1 - \chi_3 (t)) \frac{B(t)}{k + B(t)} S(t) + (1 - \chi_1 (t)) (1 - \chi_3 (t)) v_2 S(t) I(t) + \sigma v_2 V(t) I(t) - (\xi + \chi_1 (t) + \delta) E(t),
\]

\[
\frac{dI}{dt} = \xi E(t) - (m + e + \delta) I(t),
\]

\[
\frac{dC}{dt} = \chi_1 (t) E(t) - (f + \theta + \delta) C(t),
\]

\[
\frac{dU}{dt} = f C(t) + (1 - \tau) m I(t) + g_2 T(t) - (g_1 + r_1 + \mu + \delta) U(t),
\]

\[
\frac{dT}{dt} = \tau m I(t) + g_1 U(t) - (g_1 + r_2 + g_2 + \alpha + \delta) T(t),
\]

\[
\frac{dR}{dt} = (g_1 + r_2) T(t) + r_1 U(t) + \theta C(t) - (\omega + \delta) R(t),
\]

\[
\frac{dB}{dt} = (1 - \chi_1 (t)) \eta_1 I(t) + (\eta_2 - \beta) B(t).
\]

Considering biological reasons, initial conditions of the state variables are assumed to be as follows: let \(S(0) = S_0 \) similarly for the remaining state variables \(I(0), S(0), R(0), T(0), E(0), C(0), U(0), V(0), \) and \(B(0) \).

Let the terminal time be \(T_f \).

The objective functional or performance index of the model is as follows:

\[
J(\chi_1, \chi_2, \chi_3) = \int_0^{T_f} \left(M_1 S(t) + M_2 E(t) + M_3 I(t) \right. + \frac{1}{2} \left(N_1 \chi_1^2 + N_2 \chi_2^2 + N_3 \chi_3^2 \right) dt.
\]

The set of controls \(w = \{\chi_1 (t), \chi_2 (t), \chi_3 (t)\} \in L \) is Lebesgue measurable where

\[
L = \{(\chi_1, \chi_2, \chi_3)| [0, T_f] \rightarrow [0, 1], \forall \chi_1, \chi_2, \chi_3\},
\]

\[
M_1, M_2, \text{ and } M_3, \text{ respectively, denote the weight constant of susceptible, exposed, and infected, while } N_i, N_2, \text{ and } N_3, \text{ respectively, denote the constant relative cost weight of hygiene consciousness, rate of vaccine, and public awareness programme on cholera. The controls take their values in a closed interval } [0, 1].
\]

\[\chi_1 = 1 \text{ implies inhibition of cholera outbreak and spread, while } \chi_1 = 0 \text{ means no cholera outbreak and spread inhibition. } \chi_2 = 1 \text{ implies 100% vaccination coverage and effective cholera immune population. From general experience in vaccinations, as in [21], about 90% of susceptible is usually the maximum to be covered in vaccination programme. } \chi_2 = 0 \text{ means the susceptible have only natural cholera immunity (which might be weak) and are not complimented with vaccine, and this in turn increases chance of catching cholera. } \chi_3 = 1 \text{ implies full cholera awareness in the population, which is assumed to alert the community to observe preventive measures to contain and curtail cholera outbreak and spread. } \chi_3 = 0 \text{ will render the population unaware of the best ways to avoid and prevent the disease outbreak and spread.}
\]

The main aim is to minimise susceptible, exposed, and infected individuals to a level that will reduce cholera disease escalation through these three controls. \((\chi_1^*, \chi_2^*, \chi_3^*) \) such that

\[
J(\chi_1^*, \chi_2^*, \chi_3^*) = \min \{ J(\chi_1, \chi_2, \chi_3)| \chi_1, \chi_2, \chi_3 \in L \}.
\]

4.1. Existence of an Optimal Control Set. From (33), all feasible solutions of system (69) enter into the region \(\Lambda \). The system (69) can be written in the form

\[
\frac{dp}{dt} = Qp + Z(p),
\]

where
\[\rho(t) = (S(t), V(t), E(t), I(t), C(t), U(t), T(t), R(t), B(t))^T.\]
(81)

\[Q = \begin{bmatrix}
-B_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -B_2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -B_3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -B_4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -B_5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -B_6 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -B_7 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -B_8 \\
\end{bmatrix}, \]

\[Z(p) = \begin{bmatrix}
q - B_9 S(t) - B_{10} S(t) + \omega V(t) + \omega R(t) \\
\chi_1(t) S(t) - B_{11} \\
B_9 S(t) + B_{10} S(t) + B_{11} E(t) \\
f C(t) + (1 - r) ml(t) + g_2 T(t) \\
\text{ml}(t) + g_1 U(t) \\
(g_1 + r_2) T(t) + r_1 U(t) + \theta C(t) \\
(1 - \chi_1(t)) \eta_1 I(t) \\
\end{bmatrix}, \]

(82)

where

\[B_1 = \chi_1(t) + \delta, \]
\[B_2 = \omega + \delta, \]
\[B_3 = \xi + \chi_1(t) + \delta, \]
\[B_4 = m + \varepsilon + \delta, \]
\[B_5 = f + \theta + \delta, \]
\[B_6 = g_1 + r_1 + \mu + \delta, \]
\[B_7 = g_1 + r_2 + g_2 + \alpha + \delta, \]
\[B_8 = \eta_2 + \beta, \]
\[B_{10} = (1 - \chi_1(t))(1 - \chi_3(t)) \tau_1 I(t), \]
\[B_{11} = \sigma \tau_2 V(t) I(t). \]

\[Z(p) \text{ satisfies} \]

\[|Z(p_1) - Z(p_2)| \leq \rho_1|S_1(t) - S_2(t)| + \rho_2|V_1(t) - V_2(t)| + \rho_3|E_1(t) - E_2(t)| + \rho_4|I_1(t) - I_2(t)| + \rho_5|C_1(t) - C_2(t)| + \rho_6|U_1(t) - U_2(t)| + \rho_7|T_1(t) - T_2(t)| + \rho_8|R_1(t) - R_2(t)| + \rho_9|B_1(t) - B_2(t)| \]

(84)

with the positive constant \(\rho_1 = \max(\rho_i \text{ for } i = 1, 2, \ldots, 9),\) independent of the state variables \(S(t), V(t), E(t), I(t), C(t), U(t), T(t), R(t),\) and \(B(t).\)

It follows that optimality system and the optimal controls exist and the solution of system is bounded, since

\[|Z(p_1) - Z(p_2)| \leq \rho_1|Z_1 - Z_2|, \]

(85)

where

\[\rho_1 = \sum_{i=1}^{9} \rho_i + |K| < \infty. \]

(86)

This follows that the function \(Z\) is uniformly Lipchitz continuous. Hence, the control variables and nonnegative initial conditions reveal that a solution of the system (69) exists (see [22, 23]).

Theorem 4. Given the objective functional (48) with set \(L\) defined in (49) subject to the system (46) with initial conditions (47), then there exists an optimal control set \(w_1 = \{\chi_1^*, \chi_2^*, \chi_3^*\}\) such that (50) is true if the following conditions hold:

\[K(S, E, I, \chi_1^*, \chi_2^*, \chi_3^*) \leq \mu_2 - \mu_1 (|\chi_1^*(t)|^2 + |\chi_2^*(t)|^2 + |\chi_3^*(t)|^2)^{\alpha/2}; \]

(i) The set of controls and corresponding state variables is nonempty

(ii) The control set \(L\) is closed and convex

(iii) Each right-hand side of (46) is continuous bounded above by a sum of the bounded control and state and can be written as a linear function \(w\) with coefficients depending on \(t\) and \(s\)

(iv) The integrand of the objective functional is convex on \(L\)
(v) There exist nonnegative constants \(\mu_1 \) and \(\mu_2 \) and \(\alpha_1 > 1 \) satisfying the following expression

Proof. Using established approach as in [6, 24, 25], the existence of solution of (46) is satisfied, the bounded coefficients and all solutions are bounded on a finite time interval, and first condition is satisfied.

It suffices to state that \(L = L_a \times L_b \), where \(L_a \) and \(L_b \) are closed and convex sets defined as follows:

\[
L_a = L_b = \{ \omega \text{ measurable: } \chi_1(t) \in [0,1], \chi_2(t) \in [0,0.95], \chi_3(t) \in [0,1], \forall t \in [t_0,T_f]) \}
\]

Hence, by definition of convex, the control set is convex and closed, satisfying second condition.

By definition, each right-hand side of the system (69) is continuous and can be written as a linear function of \(\omega \) with coefficients depending on time and state. All variables \(S, V, E, I, C, U, T, R, B, \chi_1, \chi_2, \) and \(\chi_3 \) are bounded on \([t_0,T_f] \).

Using the boundedness of the solution and its positivity, as (69) is bilinear in \(\chi_1, \chi_2, \) and \(\chi_3 \), its right-hand side satisfies condition 3. The integrand in the objective functional (71) is convex on \(L \), and the fourth condition is satisfied.

Finally, it can be easily seen that there exist a constant \(\alpha_1 > 1 \) and positive numbers \(\mu_1 \) and \(\mu_2 \) satisfying

\[
K(S,E,I,X_1,X_2,X_3) \leq \mu_2 - \mu_1(x_1^2 + x_2^2 + x_3^3)^{3/2}.
\]

The Hamiltonian equation is formed accordingly by allowing each adjoint variable to correspond to each state variable, all combined with the objective functional.

Applying Pontryagin’s maximum principle, system (69) together with equations (48) and (49) is converted into problem of minimising the Hamiltonian \(H \) defined below.

Since necessary conditions that an optimal control and state must satisfy can be generated from Hamiltonian \(H \), see [26].

Hence, the Hamiltonian function \(H \) of the control problem of the model will be

\[
H(S,V,E,I,C,U,T,R,B,\chi_1,\chi_2,\chi_3,\lambda_S,\lambda_V,\lambda_E,\lambda_I,\lambda_C,\lambda_U,\lambda_T,\lambda_R,\lambda_B)
= \Theta + \lambda_S \frac{dS}{dt} + \lambda_V \frac{dV}{dt} + \lambda_E \frac{dE}{dt} + \lambda_I \frac{dI}{dt} + \lambda_C \frac{dC}{dt} + \lambda_U \frac{dU}{dt} + \lambda_T \frac{dT}{dt} + \lambda_R \frac{dB}{dt} + \lambda_B \frac{dB}{dt}
\]

where \(\lambda_S, \lambda_V, \lambda_E, \lambda_I, \lambda_C, \lambda_U, \lambda_T, \lambda_R, \) and \(\lambda_B \) are the adjoint functions, which can also be the co-state functions with respect to \(H \) and

\[
\Theta = M_1S(t) + M_2E(t) + M_3I(t) + \frac{1}{2} \left[N_1(\chi_1(t))^2 + N_2(\chi_2(t))^2 + N_3(\chi_3(t))^2 \right],
\]

\[
H = M_1S(t) + M_2E(t) + M_3I(t) + \frac{1}{2} \left[N_1(\chi_1(t))^2 + N_2(\chi_2(t))^2 + N_3(\chi_3(t))^2 \right]
+ \lambda_S \left[q - \left(v_1 (1 - \chi_3(t)) \right) \frac{B(t)}{K + B(t)} S(t) + (1 - \chi_1(t))(1 - \chi_3(t))v_2 S(t) I(t) \right] + \omega V(t) + \omega R(t)
- (\chi_3(t) + \delta) S(t) + \lambda_V (\chi_2(t) S(t) - \sigma v_2 V(t) I(t) - (\omega + \delta) V(t))
+ \lambda_E \left[v_1 (1 - \chi_3(t)) \frac{B(t)}{K + B(t)} S(t) + (1 - \chi_1(t))(1 - \chi_3(t))v_2 S(t) I(t) + \sigma v_2 V(t) I(t) - (\xi + \chi_1(t) + \delta) E(t) \right]
+ \lambda_I \left[\xi E(t) - (m + \epsilon + \delta) I(t) \right] + \lambda_C (\chi_1(t) E(t) - (f + \theta + \delta) C(t)) + \lambda_U \left(f C(t) + (1 - \tau)m I(t) + g_2 T(t) \right)
- (g_1 + r_1 + \mu + \delta) U(t) + \lambda_T (\tau m I(t) + g_1 U(t) - (g_1 + r_2 + g_2 + \alpha + \delta) T(t))
+ \lambda_R \left((g_1 + g_2) T(t) + r_1 U(t) + \Delta C(t) - (\omega + \delta) R(t) \right) + \lambda_B \left((1 - \chi_1(t)) \eta_1 I(t) + (\eta_2 - \beta) B(t) \right).
\]
Let $S^*, V^*, E^*, I^*, C^*, U^*, T^*, R^*$, and B^* be the optimal state solutions with associated optimal control variables $\chi_1^*, \chi_2^*, \chi_3^*$ for the optimal control of system (69).

4.2. Optimality Equations of the Model’s Controls. Partial derivative of the Hamiltonian with respect to each admissible control is all equal to zero, ease solving the optimal controls; thus,

\[
\frac{d\lambda_S}{dt} = -\lambda_S\left(-v_1 (1-\chi_1) B + \left(1-\chi_1\right)(1-\chi_3) v_2 I - \chi_2 - \delta\right) - \lambda_v \chi_2 - \lambda_E \left(\frac{v_1 (1-\chi_3) B}{k + B} + \left(1-\chi_1\right)(1-\chi_3) v_2 I\right),
\]

\[
\frac{d\lambda_V}{dt} = -\lambda_S \omega - \lambda_v \left(-\sigma v_2 I - \delta - \omega\right) - \lambda_E \sigma v_2 I,
\]

\[
\frac{d\lambda_E}{dt} = -M_z - \lambda_E \left(-\xi - \chi_1 - \delta\right) - \lambda_{I} \xi - \lambda_C \chi_1,
\]

\[
\frac{d\lambda_I}{dt} = -M_z - \lambda_S \left(1-\chi_1\right)(1-\chi_3) v_2 S + \lambda_v \sigma v_2 V - \lambda_E \left((1-\chi_1\right)(1-\chi_3) v_2 S + \sigma v_2 V
\]

\[-\lambda_I \left(-m - \epsilon - \delta\right) - \lambda_U \left(1-\tau\right)m - \lambda_T rm - \lambda_B \left(1-\chi_1\right)\eta_1,
\]

\[
\frac{d\lambda_C}{dt} = -\lambda_S \left(-f - \theta - \delta\right) - \lambda_U \left(-g_1 - r_1 - \mu - \delta\right) - \lambda_T g_1 - \lambda_R r_1,
\]

\[
\frac{d\lambda_U}{dt} = -\lambda_J \left(-g_1 - r_1 - \mu - \delta\right) - \lambda_T g_1 - \lambda_R r_1,
\]

\[
\frac{d\lambda_T}{dt} = -\lambda_J \left(-g_1 - r_1 - \mu - \delta\right) - \lambda_T g_1 - \lambda_R r_1,
\]

\[
\frac{d\lambda_R}{dt} = -\lambda_S \omega - \lambda_R \left(-\omega - \delta\right),
\]

\[
\frac{d\lambda_B}{dt} = -\lambda_S \left(-v_1 (1-\chi_3) S + \frac{v_1 (1-\chi_3) BS}{(k + B)^2}\right) - \lambda_E \left(\frac{v_1 (1-\chi_3) S}{k + B} - \frac{v_1 (1-\chi_3) BS}{(k + B)^2}\right) - \lambda_B \left(\eta_2 - \beta\right).
\]

To achieve optimal control, the adjoint or co-state functions $\lambda_S, \lambda_V, \lambda_E, \lambda_I, \lambda_C, \lambda_T, \lambda_R,$ and λ_B must satisfy
\[\frac{\partial H}{\partial x_1} = N_1 x_1 + \lambda S (1 - \chi) v_2 S I + \lambda E (-1 - \chi) v_2 S I - E) - \lambda B \eta I = 0, \]
\[x_1^* = \frac{\chi_1 \lambda S v_2 S^* I^* - \chi_1 \lambda E v_2 S^* I^* - \lambda_2 v_2 S^* I^* + \lambda_2 v_2 S^* I^* + \lambda_1 \eta \lambda I^* + \lambda_2 E I^*}{N_1}, \]
\[\frac{\partial H}{\partial x_2} = N_2 x_2 - \lambda S + \lambda V, \]
\[x_2^* = \frac{S^* (\lambda_S - \lambda_V)}{N_2}, \] \hfill (93)
\[\frac{\partial H}{\partial x_3} = N_3 x_3 + \lambda S \left(\frac{\nu B S}{k + B} + (1 - \chi) v_2 S I \right) + \lambda C E + \lambda E \left(\frac{-\nu B S}{k + B} - (1 - \chi) v_2 S I \right), \]
\[x_3^* = \frac{1}{(k + B) N_3} \left(\chi_3 k v_2 S^* I^* \lambda_S - \chi_1 k v_2 S^* I^* \lambda_S + \nu_2 S^* I^* B^* \lambda_S - \chi_1 v_2 S^* I^* B^* \lambda_S + \nu_2 S^* B^* \lambda_S + \nu_2 S^* \lambda_S - k E^* \lambda_C - E^* B^* \lambda_C \right). \]

Now, \(a_1 \leq \chi \leq b_1, a_1 \leq \chi \leq b_2, \) and \(a_3 \leq \chi \leq b_3, \)

The characterisation is as follows:
\[x_1^* = \begin{cases} a_1, & \text{when } \chi_1 \leq a_1, \\ a_1, & \text{when } a_1 < \chi_1 < b_1, \\ b_1, & \text{when } \chi_1 \geq b_1, \end{cases} \]
\[x_2^* = \begin{cases} a_2, & \text{when } \chi_2 \leq a_2, \\ a_2, & \text{when } a_2 < \chi_2 < b_2, \\ b_2, & \text{when } \chi_2 \geq b_2, \end{cases} \]
\[x_3^* = \begin{cases} a_3, & \text{when } \chi_3 \leq a_3, \\ a_3, & \text{when } a_3 < \chi_3 < b_3, \\ b_3, & \text{when } \chi_3 \geq b_3, \end{cases} \] \hfill (94)

\[\overline{\chi}_1 = \frac{(\chi_3 - 1) v_2 S^* I^* \lambda_S + (E^* - \chi_3 S^* I^* \lambda_S + v_2 S^* I^* \lambda_V + \eta_1 I^* \lambda_B)}{N_1}, \]
\[\overline{\chi}_2 = \frac{S^* (\lambda_S - \lambda_V)}{N_2}, \]
\[\overline{\chi}_3 = \frac{(\chi_3 k + \chi_1 B^* - k - B^*) v_2 S^* I^* - \nu_2 S^* B^*) \lambda_S + (B^* - \chi_1 k - \chi_1 B^* - k) v_2 S^* I^* \lambda_E}{(k + B^*) N_3}. \] \hfill (95)

5. Numerical Simulations of the Model

The numerical algorithm that simulates the optimal control of system (69) is presented below using a semi-implicit finite-difference method. This method is known as improved Gauss-Seidel-like implicit finite-difference method, and it was introduced by [27] and denoted it as GSS1. It was successfully applied by [5, 28].

\[\chi_1^*(t) = \max(0, \min(\overline{\chi}_1(t), 1)), \]
\[\chi_2^*(t) = \max(0, \min(\overline{\chi}_2(t), 0.95)), \]
\[\chi_3^*(t) = \max(0, \min(\overline{\chi}_3(t), 1)). \] \hfill (96)
Time interval \([t_0, T_f]\) where \(t_0 = 0\) is discretely calibrated into points \(t_i = ih + t_0\) \((i = 0, 1, \ldots, n)\), where \(h\) is the step. State and adjoint variables together with controls are defined in terms of nodal points.

State variables \(S(t), V(t), E(t), I(t), C(t), U(t), T(t), R(t)\), and \(B(t)\) have nodal points \(S_i, V_i, E_i, I_i, C_i, U_i, T_i, R_i,\) and \(B_i\).

Adjoint variables \(\lambda_1(t), \lambda_2(t), \lambda_3(t), \lambda_4(t), \lambda_5(t), \lambda_6(t), \lambda_7(t), \lambda_8(t),\) and \(\lambda_9(t)\) have nodal points \(\lambda_{1,i}, \lambda_{2,i}, \lambda_{3,i}, \lambda_{4,i}, \lambda_{5,i}, \lambda_{6,i}, \lambda_{7,i}, \lambda_{8,i},\) and \(\lambda_{9,i}\), and controls \(\chi_1(t), \chi_2(t),\) and \(\chi_3(t)\) have nodal points \(\chi_{1,i}, \chi_{2,i},\) and \(\chi_{3,i}\) with \(T_f\) as the final time. The approximation of first-order time derivative \(\frac{dS(t)}{dt}\) can be numerically given as follows:

\[
\frac{dS(t)}{dt} = \lim_{h \to \infty} \frac{S(t + h) - S(t)}{h}.
\]

Using the GSS1 method, the forward-difference approximation of this optimal control problem is as follows:

\[
S_{i+1} = \frac{S_i + h(q + \omega V_i + \omega R_i)}{1 + h((v_i (1 - \chi_3) R_i) / (k + B_i) - (1 - \chi_i) (1 - \chi_3) v_i I_i + \chi_3 + \delta)}
\]

\[
V_{i+1} = \frac{V_i + h \chi_2 S_{i+1}}{1 + h(\sigma v_i I_{i+1} + \omega + \delta)}
\]

\[
E_{i+1} = \frac{E_i + h((v_i (1 - \chi_3) R_i) / (k + B_i)) + (1 - \chi_i) (1 - \chi_3) v_i I_i S_{i+1} + \sigma v_i V_{i+1} I_i)}{1 + h(\xi + \chi_i + \delta)}
\]

\[
I_{i+1} = \frac{I_i + h \xi E_{i+1}}{1 + h(m + \xi + \delta)}
\]

\[
C_{i+1} = \frac{C_i + h(1 - \chi_1) E_{i+1}}{1 + h(f + \theta + \delta)}
\]

\[
U_{i+1} = \frac{U_i + h(fC_{i+1} + (1 - r) m I_{i+1}) + g_2 T_i)}{1 + h(g_1 + r_1 + \mu + \delta)}
\]

\[
T_{i+1} = \frac{T_i + h(r m I_{i+1} + g_1 U_{i+1})}{1 + h(g_1 + r_2 + g_2 + \alpha + \delta)}
\]

\[
R_{i+1} = \frac{R_i + h((g_1 + r_2) T_{i+1} + r_1 U_{i+1} + \theta C_{i+1})}{1 + h(\omega + \delta)}
\]

\[
B_{i+1} = \frac{B_i + h(1 - \chi_1) \eta_i I_{i+1}}{1 - h(\eta_2 - \beta)}
\]

The backward-difference is obtained using similar technique as follows:
Figure 3: Effect of application of vaccine and cholera awareness programme as controls on susceptible, exposed, infected, and *Vibrio cholerae* population.
Figure 4: Template of the optimised controls, a combination of the controls for cholera.

Figure 5: Effect of all the three controls on susceptible, exposed, infected, and *Vibrio cholerae* population.
Figure 6: Effect of application of only hygiene control on susceptible, exposed, infected, and *Vibrio cholerae* population.

Figure 7: Continued.
Figure 7: Effect of application of only vaccine control on susceptible, exposed, infected, and *Vibrio cholerae* population.

Figure 8: Effect of application of only cholera awareness programme as control on susceptible, exposed, infected, and *Vibrio cholerae* population.
Figure 9: Effect of application of hygiene and cholera awareness programme as controls on susceptible, exposed, infected, and *Vibrio cholerae* population.
Figure 10: Effect of application of hygiene and vaccine as controls on susceptible, exposed, infected, and *Vibrio cholerae* population.
The initial values of the state variables of system (46) used in the simulation are as follows: $S(0) = 0.3$, $V(0) = 0.3333$, $E(0) = 0.0833$, $I(0) = 0.0167$, $C(0) = 0.1667$, $U(0) = 0.0127$, $T(0) = 0.0037$, $R(0) = 0.0163$, $B(0) = 0.0006$.

Values of the parameters used in the simulations are in Table 2, with exception of the values of controls $\chi_1 = \hat{h}, \chi_2 = \psi, \chi_3 = \chi$. Time T_f used in the model is fixed at 35 days in the simulation of optimal control graphs except Figure 3(a), whose maximum value is 25 days. Values of weighting constants are as follows: $M_1 = 900$, $M_2 = 100$, $M_3 = 38$, $N_1 = 145$, $N_2 = -1$, and $N_3 = 32$. The graphs from simulations of the model of system of equation (69) here are used to display the impact of the control measures on four state variables: susceptible, exposed, infected, and population of Vibrio cholerae.

See Figure 4 shows the template of the three controls. Figure 5 displays impact of the three controls on susceptible, and it shows how the controls reduce population of susceptible to below 20 throughout the period of 35 days, but without the controls, population of the susceptible rise up to 900 in less than 10 days of the onset of the disease.

Figures 6–8 show how the three controls reduced population of the exposed, infected, and Vibrio cholerae population. On the other hand without controls, the population of the exposed, infected, and the Vibrio cholerae rises 150000, 60000, and 100000, respectively.

6. Summary and Conclusion

The study has succeeded in obtaining the model’s threshold R_0 and the most sensitive parameters in it; the interpretation of the figures and conclusion shows the final result.

6.1. Summary. The model’s basic reproduction number is as follows:

$$R_0 = \frac{q((1 - \chi)(1 - h)(\omega + \delta)k\psi v_2 - (1 - \chi)(1 - h)(\omega + \delta)\eta_1 v_1 + \beta k\psi v_2 - \eta_2 k\psi v_2)}{((\psi + \delta)(\omega + \delta) - \omega \psi)k(m + \varepsilon + \delta)(\beta - \eta_2)}$$

(100)
The most sensitive parameters in this obtained R_0 are h and v_2, increasing h, which denotes hygiene consciousness of individuals will definitely reduce the spread of *Vibrio cholerae*, which will in turn reduce rate of contracting cholera disease. Since reducing R_0 implies making it less than unity, this is interpreted as "the disease reduces and dies out." Increasing R_0 is increasing *Vibrio cholerae*, thereby spreading it to many individuals. On the other hand, v_2 denotes the rate of getting *Vibrio cholerae* through human-to-human interaction and its sensitivity index value is a positive, that is, 0.9978. Increasing it by 10% will increase R_0 by 9.978%. Literally increasing rate of ingesting *Vibrio cholerae* will definitely increase R_0, the increment that will make it greater than unity, which implies escalation of the disease and persistence.

Simulations of SVEICUTRB model displayed in graphs show the impact of the control measures on four state variables: susceptible, exposed, infected, and population of *Vibrio cholerae*. Though [29] suggested the need to eradicate epidemics and its spread using appropriate measures in approximately 40 days, Figure 4 shows a template of the three controls the model use: hygiene consciousness, cholera vaccine, and cholera awareness programme. Impact of the three controls on four of the nine state variables of the model was presented as follows. Figure 5(a) shows how the controls reduce population of susceptible to zero throughout the period of 35 days, but without the controls, population of the susceptible rises up to 900 in less than 10 days of the onset of the disease. Figures 5(b)−5(d) show how the three controls reduced population of the exposed, infected, and *Vibrio cholerae* population. On the other hand, without controls, the population of the exposed, infected, and the *Vibrio cholerae* bacteria rises infinitely.

Figures 6(a)−6(d) show results of applying only one control "hygiene consciousness," compared with when no control is used. The outcome shows that using the single control alone will increase the population of susceptible from 1000 when there is no control applied to 4000. Applying hygiene consciousness alone can suppress the population of the exposed, infected, and cholera pathogens (*Vibrio cholerae* bacteria).

Using single control "cholera vaccine" alone, results in Figures 7(a)−7(d) were obtained. Administering cholera vaccine as the only control for cholera can reduce the number of susceptible, exposed, rate of infection, and population of *Vibrio cholerae* bacteria to zero. It is hence an effective measure of eradicating cholera. Cholera awareness programme administered alone yields the results in Figures 8(a)−8(d). Application of single control 'cholera awareness' alone and not applying any control at all seem to give the same result. The graphs show that population of the susceptible, exposed, infected, and *Vibrio cholerae* bacteria will increase the same way, when no controls were adopted. The population of susceptible will even increase the more, because cholera awareness programme is a preventive measure, not curative.

Application of two controls, hygiene measures and cholera awareness programme, gives result in Figures 9(a)−9(d). Figure 9(a) shows how susceptible individuals increase up to 5000 individuals, which is five times more than when there is no administered control. Application of two controls generally reduced exposed and infected individuals and population of *Vibrio cholerae* bacteria. In particular, two controls, hygiene measures and cholera vaccine, as shown in Figures 10(a)−10(d) show how the two controls were able to reduce number of susceptible, exposed, and infected individuals and population of *Vibrio cholerae* bacteria to a very small rate that is less than when no control is administered. Figures 3(a)−3(d) also display two controls: cholera vaccine and awareness programme; they show how the two controls reduced number of susceptible, exposed, and infected individuals and reduced the number of *Vibrio cholerae* bacteria population.

6.2. Conclusion. Effects of the controls on susceptible, exposed, and infected individuals together with population of cholera pathogens were obtained and plotted. The effects show that the fastest way to control cholera quickly and effectively is application of all the three controls, at least above average rates.

6.3. Recommendations. After treatment measures, application of cholera vaccines, hygiene, and cholera awareness programmes are the best measures of preventing the spread of cholera and entire full control of the disease. Keeping hygiene consciousness rate always high and hindering ingestion of *Vibrio cholerae* bacteria by any means to keep its rate zero will surely prevent cholera disease. This has been justified by the model’s R_0.

Data Availability

The values of variables and parameters data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported in part of S. F. Abubakar’s Ph.D. thesis. The authors acknowledge the contribution of Kebbi State University of Science and Technology, Aliero, for sponsoring the Ph.D. course.

References

[1] D. Ganesan, S. S. Gupta, and D. Legros, “Cholera surveillance and estimation of burden of cholera,” *Vaccine*, vol. 38, 2020.
[2] P. E. Idoga, M. Toycan, and M. A. Zayyad, “Analysis of factors contributing to the spread of cholera in developing countries,” *The Eurasian Journal of Medicine*, vol. 51, no. 2, pp. 121−127, 2019.
[3] R. Llanes, L. Somarriba, G. Hernández, Y. Bardají, A. Aguilá, and R. N. Mazumder, “Low detection of vibrio cholerae carriage in healthcare workers returning to 12 Latin american
countries from Haiti,” *Epidemiology and Infection*, vol. 143, no. 5, pp. 1016–1019, 2015.

[4] M. Momba and M. Azab El-Liethy, *Vibrio cholerae and Cholera Biotypes*, Global Water Pathogen Project, Pretoria, South Africa, 2018.

[5] K. Hattaf, M. Rachik, S. Saadi, Y. Tabit, and N. Yousfi, “Optimal control of tuberculosis with exogenous reinfection,” *Applied Mathematical Sciences*, vol. 3, no. 5, pp. 231–240, 2009.

[6] R. L. Miller Neilan, E. Schaefer, H. Gaff, K. R. Fister, and S. Lenhart, “Modeling optimal intervention strategies for cholera,” *Bulletin of Mathematical Biology*, vol. 72, no. 8, pp. 2004–2018, 2010.

[7] H. Namawejje, E. Obuya, and L. S. Luboobi, “Modeling optimal control of cholera disease under the interventions of vaccination, treatment and education awareness,” *Journal of Mathematics Research*, vol. 10, no. 5, 2018.

[8] P. Panja, “Optimal control analysis of a cholera epidemic model,” *Biophysical Reviews and Letters*, vol. 14, no. 01, pp. 27–48, 2019.

[9] M. Javidi and B. Ahmad, “A study of a fractional-order cholera model,” *Applied Mathematics & Information Sciences*, vol. 8, no. 5, pp. 2195–2206, 2014.

[10] E. Lamo and J. Kinyanjui, *Cholera Outbreak Guidelines: Preparedness, Prevention and Control*, Oxford, United Kingdom, 2012.

[11] M. J. Ochoche, E. C. Madubueze, and T. B. Akaabo, “A mathematical model on the control of cholera: hygiene consciousness as a strategy,” *The Journal of Mathematics and Computer Science*, vol. 5, no. 2, pp. 172–187, 2015.

[12] J. Wu, R. Dhingra, M. Gambhir, and J. V. Remais, “Sensitivity analysis of infectious disease models: methods, advances and their application,” *Journal of The Royal Society Interface*, vol. 10, no. 86, 2013.

[13] A. O. Isere, J. E. Osomwenkhae, and D. Okuonoghae, “Optimal control model for the outbreak of cholera in Nigeria,” *African Journal of Mathematics and Computer Science Research*, vol. 7, no. 2, pp. 24–30, 2014.

[14] S. Edward and N. Nyerere, “A mathematical model for the dynamics of cholera with control measures,” *Applied and Computational Mathematics*, vol. 4, no. 2, p. 53, 2015.

[15] M. Elhia, A. Laaroussi, M. Rachik, Z. Rachik, and E. Labriji, “Global stability of a susceptible-infected-recovered (sir) epidemic model with two infectious stages and treatment,” *International Journal of Science and Research*, vol. 7, no. 8, pp. 403549, vol. 2013, 7 pages, 2013.

[16] W. H. Fleming and R. W. Rishel, “Deterministic and stochastic optimal control,” *Springer Science & Business Media*, vol. 1, 2012.

[17] S. Isaac Oke, M. B. Matadi, and S. S. Xulu, “Optimal control analysis of a mathematical model for breast cancer,” *Mathematical and Computational Applications*, vol. 23, no. 2, 2018.

[18] S. Lenhart and J. T. Workman, *Optimal Control Applied to Biological Models*, Chapman and Hall/CRC, London, UK, 2007.

[19] A. Gumel, P. Shivakumar, and B. Sahai, “A mathematical model for the dynamics of hiv-1 during the typical course of infection,” *Nonlinear Analysis: Theory, Methods & Applications*, vol. 47, no. 3, pp. 1773–1783, 2001.

[20] J. Karrakchou, M. Rachik, and S. Gourari, “Optimal control and infectiology: application to an hiv/aids model,” *Applied Mathematics and Computation*, vol. 177, no. 2, pp. 807–818, 2006.

[21] A. P. Lemos-Paião, C. J. Silva, D. F. M. Torres, and E. Venturino, “Optimal control of aquatic diseases: a case study of Yemen’s cholera outbreak,” *Journal of Optimization Theory and Applications*, vol. 185, no. 3, pp. 1008–1030, 2020.