REGIONS OF VARIABILITY FOR A CLASS OF ANALYTIC AND
LOCALLY UNIVALENT FUNCTIONS DEFINED BY
SUBORDINATION

BAPPADITYA BHOWMIK

ABSTRACT. In this article we consider a family $\mathcal{C}(A, B)$ of analytic and locally
univalent functions on the open unit disc $D = \{z : |z| < 1\}$ in the complex
plane that properly contains the well-known Janowski class of convex univalent
functions. In this article, we determine the exact set of variability of $\log(f'(z_0))$
with fixed $z_0 \in D$ and $f''(0)$ whenever f varies over the class $\mathcal{C}(A, B)$.

1. Introduction and Preliminary Results

Let \mathbb{C} be the complex plane. We use the following notations for open and closed
discs with center c and radius r in the complex plane: $D(c, r) := \{z \in \mathbb{C} : |z - c| < r\}$
and $\overline{D}(c, r) := \{z \in \mathbb{C} : |z - c| \leq r\}$. We also denote $D := D(0, 1)$ and $\overline{D} := \overline{D}(0, 1)$.
Let \mathcal{A} be the class of functions f that are analytic in D having the normalization
$f(0) = 0 = f'(0)$ and $\mathcal{S} := \{f \in \mathcal{A} : f \text{ is univalent in } D\}$. A function f
is said to be locally univalent in D if for any $z_0 \in D$, it is univalent in some neighborhood
of z_0. A necessary and sufficient condition for an analytic function to be locally
univalent in D is $f'(z) \neq 0$ in D. We now state the definition of subordination which
we need for our further discussion. Let h and g be analytic functions in D. We call
h is subordinate to g (abbreviated symbolically as $h \prec g$) if there exists an analytic
function $\xi : D \to D$ such that $1 + zf''(z)f'(z) = 1 + A\psi(z) + B\psi(z)$, where A and B
are real constants with $-1 \leq A < B \leq 1$. We now observe that

$$J_{A, B} := \{f \in \mathcal{A} : \text{ there exists a Schwarz function } \psi \text{ in } D \quad \text{such that } 1 + \frac{zf''(z)}{f'(z)} = \frac{1 + A\psi(z)}{1 + B\psi(z)}\},$$

where A and B are real constants with $-1 \leq A < B \leq 1$. We now observe that
for $f \in \mathcal{A}$ and $-1 \leq A < B < 1$, $f \in J_{A, B}$ if and only if the quantity $\left(1 + \frac{zf''(z)}{f'(z)}\right)$.

Date: August 09, 2014; File: Revised-Bhow-Janowski.tex.
2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Janowski class, Univalent functions, Variability regions.
The author of this article would like to thank ISIRD, SRIC, IIT Kharagpur
(Ref.No.- IIT/SRIC/MATH/GNP/2014-15/61) for its financial support.
belongs to the disk which has the line segment \([\frac{1+A}{1+B}, \frac{1-A}{1-B}]\) as a diameter, i.e.,

\[
1 + \frac{zf''(z)}{f'(z)} \in \mathbb{D}\left(1 - AB, \frac{B - A}{1 - B^2}, \frac{1 - B^2}{1 - B^2}\right) \quad \forall z \in \mathbb{D}.
\]

Since the above disk is contained in the right half plane, each \(f \in J_{A,B}\) is convex univalent in \(\mathbb{D}\). In case of \(-1 \leq A < B = 1\), we have \(\text{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0\) for \(z \in \mathbb{D}\), which again forces each \(f \in J_{A,B}\) to be convex univalent in \(\mathbb{D}\). In particular, we have \(J_{A,B} \subseteq S\). We refer to the articles [2, 4] for details and many more interesting results about the Janowski class. For a function \(f \in J_{A,B}\), there exists a Schwarz function \(\psi\) such that the following holds:

\[
1 + \frac{zf''(z)}{f'(z)} = \frac{1 + A\psi(z)}{1 + B\psi(z)} \quad \Rightarrow \quad 1 + \frac{zf''(z)}{f'(z)} < \frac{1 + Az}{1 + Bz}
\]

\[
\Rightarrow \quad \frac{zf''(z)}{f'(z)} < \frac{(A - B)z}{1 + Bz}.
\]

Now letting \(f'(z) = p(z)\), the last implication yields

\[
(1.1) \quad \frac{zp'(z)}{p(z)} < \frac{(A - B)z}{1 + Bz} =: \phi(z).
\]

We now apply the result stated in [3, Corollary 3.1.d, p. 76] to (1.1) and get

\[
f'(z) = p(z) < \exp\int_0^z \frac{\phi(t)}{t} \, dt =: q_{A,B}(z).
\]

A little computation reveals that

\[
q_{A,B}(z) = \begin{cases}
(1 + Bz)^{\frac{A}{B} - 1} & \text{for } B \neq 0, \\
\exp(Az) & \text{for } B = 0.
\end{cases}
\]

The above discussion motivates us to consider the family \(C(A, B)\) as defined below:

\[
C(A, B) = \{ f : f \text{ is analytic and locally univalent in } \mathbb{D} \text{ with } f(0) = f'(0) - 1 = 0 \}
\]

\[
\text{satisfying } \log f'(z) < \left(\frac{A}{B} - 1\right) \log(1 + Bz), \quad z \in \mathbb{D} \}
\]

where \(-1 \leq A < B \leq 1, B \neq 0\). Here we clarify that, since \(f'\) is a non-vanishing function on \(\mathbb{D}\), then \((f')^\lambda\) is well-defined and holomorphic once we choose the determination \((f'(0))^\lambda = 1\) for all \(\lambda \in \mathbb{R}\). In other words, we chose that branch of logarithm for which \(\log(f'(0)) = 0\). By definition we have \(J_{A,B} \subseteq C(A, B)\). At this point we only confirm that the class \(C(A, B)\) contains functions from \(S\). We can see this if we consider \(A = 0\) and \(0 < B \leq 1\). We then have from the definition of the class \(C(A, B)\),

\[
f'(z) = \frac{1}{1 + B\omega(z)}, \quad \text{where } \omega \text{ is a Schwarz function}.
\]
A little computation shows that
\[\text{Re } f'(z) = \text{Re } \left(\frac{1}{1 + B\omega(z)} \right) > \frac{1}{2} \text{ if } 0 < B \leq 1. \]

Therefore, an application of Noshiro-Warschawski theorem yields that \(f \) is univalent in \(\mathbb{D} \). Hence, if \(A = 0 \) and \(0 < B \leq 1 \), we see that \(\mathcal{C}(A, B) \subseteq \mathcal{S} \). We remark here that the class \(\mathcal{C}(A, B) \) defined above may or may not be a subclass of \(\mathcal{S} \) for all \(-1 \leq A < B \leq 1, \ B \neq 0\). We leave this problem open.

We next claim that \(J_{A,B} \subset \mathcal{C}(A, B) \). In order to establish our claim, we let \(f \in \mathcal{C}(A, B) \). Hence there exists a Schwarz function \(\psi \) such that
\[\log f'(z) = \left(\frac{A}{B} - 1 \right) \log(1 + B\psi(z)), \quad z \in \mathbb{D}. \]

We deduce the following after differentiating the above expression,
\[1 + \frac{zf''(z)}{f'(z)} = 1 + \frac{(A - B)z\psi'(z)}{1 + B\psi(z)}, \quad z \in \mathbb{D}. \]

In particular, letting \(\psi(z) = z^2 \), the above expression simplifies into
\[1 + \frac{zf''(z)}{f'(z)} = 1 + \frac{(2A - B)z^2}{1 + Bz^2}, \quad z \in \mathbb{D}. \]

The function \(\frac{1+(2A-B)z^2}{1+Bz^2} \) maps \(\mathbb{D} \) onto the disc that have the line segment \([\frac{1+2A-B}{1+B}, \frac{1-2A+B}{1-B}] \) as a diameter. Since \(\frac{1+2A-B}{1+B} < \frac{1+A}{1+B} \), it follows that \(f \not\in J_{A,B} \). Hence, in particular \(\mathcal{C}(A, B) \setminus J_{A,B} \neq \emptyset \).

Finally, for a function \(f \in \mathcal{C}(A, B) \), we have
\[f'(z) < (1 + Bz)^{\frac{A}{B} - 1}. \]

Hence there exists an analytic function \(\omega \), bounded by unity with \(\omega(0) = 0 \) such that
\[f'(z) = (1 + B\omega(z))^{\frac{A}{B} - 1}; \]

from which we have
\[\omega(z) = \frac{(f'(z))^{\frac{A}{B} - 1} - 1}{B}. \] (1.2)

Thereafter, we calculate
\[\omega'(0) = \frac{f''(0)}{A - B}. \]

Denoting \(\omega'(0) = \lambda \), we have \(|\lambda| \leq 1 \) by virtue of the Schwarz Lemma. Hence we fix the second Taylor coefficients for functions in \(\mathcal{C}(A, B) \) as
\[f''(0) = \lambda(A - B); \quad \lambda \in \overline{\mathbb{D}}. \]

We now define the following class
\[\mathcal{C}_\lambda(A, B) = \{ f \in \mathcal{C}(A, B) : f''(0) = \lambda(A - B) \}, \quad \text{and set} \]
\[V_\lambda(z_0, A, B) = \{ \log f'(z_0) : f \in \mathcal{C}_\lambda(A, B) \}; \]
where $\lambda \in \overline{\mathbb{D}}$ and $z_0 \in \mathbb{D}$ is an arbitrary but fixed complex number. In this paper, we wish to determine the regions of variability $V_{\lambda}(z_0, A, B)$ of $\log f'(z_0)$ when f ranges over the class $C_{\lambda}(A, B)$. Here we would like to mention that the similar problems on regions of variability for some subclasses of S have already been studied in the articles [1, 5, 6] and some references therein.

2. Discussion on the set $V_{\lambda}(z_0, A, B)$ and the Main Result

We start this section by listing some basic properties of the set $V_{\lambda}(z_0, A, B)$:

(1) We first note that $C_{\lambda}(A, B)$ is a compact subset of the class of analytic functions in \mathbb{D} endowed with the topology of uniform convergence on compact subsets of \mathbb{D}. As we know that for fixed $z_0 \in \mathbb{D}$, the map $C_{\lambda}(A, B) \ni f \mapsto \log(f'(z_0))$ is continuous, therefore we conclude that the set $V_{\lambda}(z_0, A, B)$ is a compact subset.

(2) If $|\lambda| = 1$, then by applying Schwarz Lemma, we have $\omega(z) = \lambda z$ and consequently we deduce from (1.2) that

$$V_{\lambda}(z_0, A, B) = \left\{ \left(\frac{A-B}{B} \right) \log(1 + B\lambda z_0) \right\}.$$

If $z_0 = 0$, then $V_{\lambda}(z_0, A, B) = \{0\}$. Now, for $\lambda \in \mathbb{D}$ and $a \in \overline{\mathbb{D}}$, we introduce the following functions

$$\delta(z, \lambda) = \frac{z + \lambda}{1 + \lambda z}, \quad z \in \mathbb{D}, \quad \text{and}$$

$$F_{a, \lambda}(z) = \int_{z_0}^{z} (1 + B\zeta \delta(a\zeta, \lambda))^{A-B} d\zeta.$$

(2.1)

The above integral equation yields

$$\log F'_{a, \lambda}(z) = \left(\frac{A-B}{B} \right) \log(1 + Bz \delta(az, \lambda)).$$

Thus we have

$$\log F'_{a, \lambda}(z) \prec \left(\frac{A}{B} - 1 \right) \log(1 + Bz)$$

and $F''_{a, \lambda}(0) = \lambda(A - B)$, showing that $F_{a, \lambda} \in C_{\lambda}(A, B)$. We observe that, for a fixed $\lambda \in \mathbb{D}$ and $z_0 \in \mathbb{D} \setminus \{0\}$, the function $a \mapsto \log F'_{a, \lambda}(z_0)$ is a non-constant analytic function and hence is an open mapping. From this, we see that

$$\log F'_{0, \lambda}(z_0) = \left(\frac{A-B}{B} \right) \log(1 + B\lambda z_0)$$

is an interior point of $\{ \log F'_{a, \lambda}(z_0) : a \in \mathbb{D} \} \subset V_{\lambda}(z_0, A, B)$.

(3) We claim that $V_{\lambda}(e^{i\theta}z_0, A, B) = V_{\lambda e^{i\theta}}(z_0, A, B)$ for $\theta \in \mathbb{R}$. This will be established if we can show that $f \in C_{\lambda}(A, B)$ if and only if $e^{-i\theta}f(e^{i\theta}z) \in C_{\lambda e^{i\theta}}(A, B)$. To prove this, let $f \in C_{\lambda}(A, B)$ and define

$$g(z) = e^{-i\theta}f(e^{i\theta}z), \quad z \in \mathbb{D}.$$
A little computation reveals that
\[g''(0) = e^{i\theta} f''(0) = (A - B)\lambda e^{i\theta} \text{ and } \]
\[\log g'(z) = \log f'(e^{i\theta}z) = \left(\frac{A - B}{B}\right) \log(1 + B\omega(e^{i\theta}z)). \]
Hence we have
\[\log g'(z) \prec \left(\frac{A - B}{B}\right) \log(1 + Bz), \]
proving \(g(z) \in C_{\lambda e^{i\theta}}(A, B) \). Conversely, let
\[g(z) = e^{-i\theta} f(e^{i\theta}z) \in C_{\lambda e^{i\theta}}(A, B). \]
Hence we have
\[g''(0) = \lambda e^{i\theta}(A - B) = e^{i\theta} f''(0), \]
resulting \(f''(0) = \lambda(A - B) \). Next we observe the following chain of implications:
\[\log g'(z) \prec \left(\frac{A - B}{B}\right) \log(1 + Bz) \]
\[\Rightarrow \log f'(e^{i\theta}z) \prec \left(\frac{A - B}{B}\right) \log(1 + Bz) \]
\[\Rightarrow \log f'(z) \prec \left(\frac{A - B}{B}\right) \log(1 + Bz). \]

This proves \(f \in C_{\lambda}(A, B) \).

In view of the aforementioned properties of the set \(V_\lambda(z_0, A, B) \), it is sufficient to determine \(V_\lambda(z_0, A, B) \) for \(\lambda \in [0, 1) \), as the case \(|\lambda| = 1 \) is completely described in the Item (2) above. We now state our main theorem of the paper.

Theorem 2.2. For \(\lambda \in [0, 1) \) and \(z_0 \in \mathbb{D} \setminus \{0\} \), we have
\[V_\lambda(z_0, A, B) = \left\{ \left(\frac{A - B}{B}\right) \log (c(z_0, \lambda) + ar(z_0, \lambda)) : |a| \leq 1 \right\}, \]
where
\[c(z_0, \lambda) = \frac{1 - \lambda^2|z_0|^2 + \lambda B(1 - |z_0|^2)z_0}{1 - \lambda^2|z_0|^2}, \text{ and } \]
\[r(z_0, \lambda) = \frac{|B|(1 - \lambda^2)|z_0|^2}{1 - \lambda^2|z_0|^2}. \]

The boundary \(\partial V_\lambda(z_0, A, B) \) of the above set is the Jordan curve given by
\[(2.3) \quad (-\pi, \pi] \ni \theta \mapsto \log F'_{e^{i\theta},\lambda}(z_0) = \left(\frac{A - B}{B}\right) \log (1 + Bz_0\delta(e^{i\theta}z_0, \lambda)). \]

If \(\log f'(z_0) = \log F'_{e^{i\theta},\lambda}(z_0) \) for some \(f \in C_{\lambda}(A, B) \) and \(\theta \in (-\pi, \pi] \), then \(f(z) = F'_{e^{i\theta},\lambda}(z) \). Here \(F'_{e^{i\theta},\lambda}(z) \) is given by \((2.1) \) with \(a = e^{i\theta} \).
We prove the Theorem 2.2 in the following Section.

3. Description of the set $V_{\lambda}(z_0, A, B)$

At the beginning, we establish the following result which will help us to achieve our main goal, i.e. to prove the Theorem 2.2.

Proposition 3.1. For $f \in C_{\lambda}(A, B)$ with $\lambda \in [0, 1)$, we have

\[
(f'(z)) \left(\frac{n_B}{n} \right) - c(z, \lambda) \leq r(z, \lambda), \quad z \in \mathbb{D},
\]

where

\[
c(z, \lambda) = \frac{1 - \lambda^2|z|^2 + \lambda B(1 - |z|^2)z}{1 - \lambda^2|z|^2}
\]

and

\[
r(z, \lambda) = \frac{|B|(1 - \lambda^2)|z|^2}{1 - \lambda^2|z|^2}.
\]

For each $z \in \mathbb{D} \setminus \{0\}$, equality holds in (3.2) if and only if $f = F_{e^{i\theta}, \lambda}$ for some $\theta \in \mathbb{R}$.

Proof. Let $f \in C_{\lambda}(A, B)$. Then, as stated in the introduction, there exists an ω such that

\[
\omega(z) = (f'(z)) \left(\frac{n_B}{n} \right) - 1, \quad z \in \mathbb{D}.
\]

Since ω is a Schwarz function that satisfies the condition $\omega'(0) = \lambda$, it follows from the Schwarz lemma that

\[
\left| \frac{\omega(z)}{z} - \lambda \right| \leq |z|, \quad z \in \mathbb{D}.
\]

Now we insert the above expression of $\omega(z)$ in the inequality (3.3) and we get

\[
\left| \frac{(f'(z)) \left(\frac{n_B}{n} \right) - M(z, \lambda)}{\lambda f'(z)) \left(\frac{n_B}{n} \right) - N(z, \lambda)} \right| \leq |z|, \quad z \in \mathbb{D},
\]

where

\[
\begin{cases}
M(z, \lambda) = 1 + \lambda Bz \\
N(z, \lambda) = \lambda + Bz.
\end{cases}
\]

A calculation shows that the inequality (3.4) is equivalent to the following inequality

\[
\left| (f'(z)) \left(\frac{n_B}{n} \right) - \frac{M - \lambda|z|^2 N}{1 - \lambda^2|z|^2} \right| \leq \frac{\lambda M - N||z|}{1 - \lambda^2|z|^2}, \quad z \in \mathbb{D}.
\]

We now simplify the following expressions using (3.5) as

\[
\frac{M - \lambda|z|^2 N}{1 - \lambda^2|z|^2} = \frac{1 - \lambda^2|z|^2 + \lambda B(1 - |z|^2)z}{1 - \lambda^2|z|^2}, \quad \text{and}
\]

\[
\frac{\lambda M - N||z|}{1 - \lambda^2|z|^2} = \frac{|B|(1 - \lambda^2)|z|^2}{1 - \lambda^2|z|^2}.
\]
Therefore, the inequality (3.2) follows from the last two equalities and (3.6). We now turn to the case of establishing sharpness of the inequality (3.2). Our first aim is to prove that the equality occurs for any \(z \in \mathbb{D} \) in (3.2) whenever \(f = F_{e^{i\theta},\lambda} \), for some \(\theta \in \mathbb{R} \). To this end, we first show that if \(f = F_{e^{i\theta},\lambda} \) then

\[
(F'_{e^{i\theta},\lambda}(z))^{\frac{B}{A-B}} = 1 + B \left(\frac{e^{i\theta}z + \lambda}{1 + \lambda ze^{i\theta}} \right) z, \quad \theta \in \mathbb{R}.
\]

A straightforward computation reveals that

\[
(F'_{e^{i\theta},\lambda}(z))^{\frac{B}{A-B}} - c(z, \lambda)
\]

\[
= 1 + B \left(\frac{e^{i\theta}z + \lambda}{1 + \lambda ze^{i\theta}} \right) z - \frac{1 - \lambda^2|z|^2 + \lambda B(1 - |z|^2)z}{1 - \lambda^2|z|^2}
\]

\[
= \frac{B(1 - \lambda^2)z^2}{1 - \lambda^2|z|^2} \left(\frac{e^{i\theta} + \lambda z}{1 + \lambda ze^{i\theta}} \right), \quad z \in \mathbb{D}.
\]

The first part of the case of equality follows from (3.7) by noting that

\[
\left| \frac{e^{i\theta} + \lambda z}{1 + \lambda ze^{i\theta}} \right| = 1, \quad z \in \mathbb{D};
\]

for the aforesaid range of values of \(\theta \) and \(\lambda \). Conversely, if the equality holds for some \(z \in \mathbb{D} \setminus \{0\} \) in (3.2), then the equality must hold in (3.3). Consequently from the Schwarz lemma, there exists \(\theta \in \mathbb{R} \) such that \(\omega(z) = z\delta(e^{i\theta} z, \lambda) \) for all \(z \in \mathbb{D} \), i.e. we have

\[
\frac{(f'(z))^{\frac{B}{A-B}} - 1}{B} = z \left(\frac{e^{i\theta}z + \lambda}{1 + \lambda ze^{i\theta}} \right),
\]

which after solving for \(f \) results \(f(z) = F_{e^{i\theta},\lambda}(z), \quad z \in \mathbb{D} \). This completes the proof of the Proposition. \(\square \)

Next, we get the following useful estimate in the case of \(\lambda = 0 \) that one may look for.

Corollary 3.8. Let \(f \in C_0(A,B) \). Then we have the following sharp inequality:

\[
\left| (f'(z))^{\frac{B}{A-B}} - 1 \right| \leq |B||z|^2, \quad z \in \mathbb{D}.
\]

We are now ready to deliver a proof of our main theorem after all these preparation.

Proof of the Theorem 2.2. We begin the proof by defining the following class of functions:

\[
H^\infty(\mathbb{D}) = \{ w : w \text{ is analytic in } \mathbb{D} \text{ with } |w(z)| \leq 1, \quad z \in \mathbb{D} \}.
\]

We observe that \(f \in C(A,B) \) if and only if there exists \(\varphi \in H^\infty(\mathbb{D}) \) such that

\[
f'(z) = (1 + Bz \varphi(z))^{\frac{A-B}{A}}, \quad z \in \mathbb{D}.
\]
Furthermore, \(f \in C_\lambda(A, B) \) if and only if there exists \(w \in H^\infty(\mathbb{D}) \) such that
\[
f'(z) = \left(1 + Bz \frac{zw(z) + \lambda}{1 + \lambda zw(z)}\right)^{\frac{A-B}{B}}.
\]
Therefore we get
\[
V_\lambda(z_0, A, B) = \{ \log f'(z_0) : f \in C_\lambda(A, B) \}
= \left\{ \left(\frac{A - B}{B} \right) \log (1 + Bz_0 \delta(z_0, \lambda)) : w \in H^\infty(\mathbb{D}) \right\}
= \left(\frac{A - B}{B} \right) \log (1 + Bz_0 \delta(z_0, \lambda))
.
\]
Combining the above and the relation
\[
1 + Bz_0 \delta(z_0 \overline{D}, \lambda) = \overline{D}(c(z_0, \lambda), r(z_0, \lambda)),
\]
which easily follows from the proof of the Proposition \[3.1\] we obtain
\[
V_\lambda(z_0, A, B) = \left\{ \left(\frac{A - B}{B} \right) \log \left(c(z_0, \lambda) + ar(z_0, \lambda) \right) : a \in \mathbb{D} \right\}.
\]
Since the function \(\log(1 + w) \) is convex univalent in \(\mathbb{D} \), the set in right hand side of the above equation is a convex closed Jordan domain and its boundary curve is given by
\[
(-\pi, \pi] \ni \theta \mapsto \left(\frac{A - B}{B} \right) \log \left(1 + Bz_0 \delta(z_0 e^{i\theta}, \lambda) \right) = \log F'_{e^{i\theta}, \lambda}(z_0).
\]
This completes the proof of the Theorem. \(\square \)

Acknowledgement: The author thanks K-J. Wirths for his suggestions. The author would also like to thank the referee for his careful reading of the paper and inputs in the proof of the Theorem \[2.2\]

References

1. B. Bhowmik and S. Ponnusamy: Region of variability for concave univalent functions, *Analysis (Munich)* 28 (2008), 333–344.
2. W. Janowski: Some extremal problems for certain families of analytic functions. I, *Ann. Polon. Math.* 28 (1973), 297–326.
3. S.S. Miller and P.T. Mocanu: *Differential Subordinations- Theory and Applications*, Marcel Dekker, New York, Basel, 2000.
4. H. Silverman and E.M. Silvia: Subclasses of starlike functions subordinate to convex functions, *Canad. J. Math.* 37 (1985), 48–61.
5. H. Yanagihara: Regions of variability for functions of bounded derivatives, *Kodai Math. J.* 28 (2005), 452–462.
6. H. Yanagihara: Regions of variability for convex functions, *Math. Nachr.* 279 (2006), 1723–1730.
Regions of variability

Bappaditya Bhowmik, Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India.

E-mail address: bappaditya @ maths.iitkgp.ernet.in