Július Rebo

THE DISCRETE PROCESS OF STORAGE WITH TWO PRIORITY CLASSES

Príspevok je venovaný špecifickému modelu diskrétneho procesu zhromažďovania elementov s dvoma triedami priorít. Každá trieda priorít je tvořená nezávislým vzťupným tokom elementov s Poissonovým rozdelením. Odvodené sú niektoré potrebné základné charakteristické hodnoty a metóda pridelenia optimálnych výstupných kapacít jednotlivým triedam priority a taktiež metóda optimalizácie dĺžky periódy minimalizujúca prevádzkové náklady systému.

1 Úvod

Nasledujúci model diskrétneho procesu zhromažďovania elementov s priorítami je zovšeobecnením modelu zhromažďovania s deterministickým časom obsluhy $T > 0$ a Poissonovým vzťupným tokom elementov s intenzitou $\lambda > 0$. Kapacitu zhromažďovacieho priestoru stotožníme s nekonečnou dĺžkou čakajúcej fronty a budeme predpokladať, že akumulácia elementov končí v každom okamžiku t_i, pričom $T = t_i - t_{i-1}$. Nezodpovedne po okamžiku t_i je obslužený buď celý front, keď jeho dĺžka je menšia ako M, alebo obsluhuje obsahujúca M elementov. Zvyšok elementov, ktoré nebol obslužené, čaká na ďalšiu obsluhu v nasledujúcom okamžiku t_{i+1}. Predpisanú dĺžku intervalu $T = t_i - t_{i-1}$ nazývame periódou zhromažďovania a jej dĺžka určuje trvanie akumulácie elementov, kladnú celočíslennú hodnotu M nazývame maximálna výstupná kapacita. Predpokladame, že vzťupný tok elementov má Poissonov rozdelenie s pravdepodobnosťami $\pi_r = \frac{(\lambda T)^r}{r!} e^{-\lambda T}$, že počas jednej periódy T vstúpi práve r elementov, so strednou hodnotou $\lambda T > 0$. Pomer strednej hodnoty a maximálnej výstupnej kapacity M budeme nazývať zaťaženie systému ρ, pre ktoré musí platí

$$\rho = \frac{\lambda T}{M} < 1. \quad (1.1.)$$

Množstvo zhromaždených elementov na konci n-tej periódy označujeme S_n a nazývame stavom na konci periódy. Hodnota stavu záleží na konci periódy závisí od počtu elementov X_T, ktoré vstúpili do systému počas trvania periódy a na zvyšku elementov Z_{n-1} z predchádzajúcej periódy. Náhodná premenná Z môžeme vyjadriť ako hodnotu $Z_n = S_n - M$, ak množstvo zhromaždených elementov S_n je závislé od počtu elementov X_T počas trvania periódy T a na zvyšku elementov Z_{n-1} z predchádzajúcej periódy. Náhodná premenná Z môžeme vyjadriť ako hodnotu $Z_n = S_n - M$, ak množstvo zhromaždených elementov S_n je závislé od počtu elementov X_T počas trvania periódy T a na zvyšku elementov Z_{n-1} z predchádzajúcej periódy.

This paper is devoted to a specific model of the discrete process of storage with two priority classes. Every priority class of the elements is formed by independent Poisson distributed incoming streams of the elements. There are derived some basic characteristic values, a method of assignment optimal outgoing capacities for the classes of priority and a costs minimising method for the length of the storage period as well.

1 Introduction

The following discrete process of priority storage is a generalisation of the storage process with a determining time of service $T > 0$ and the incoming stream of elements following the Poisson distribution with rate $\lambda > 0$. Capacity of a storage area will be identical with the infinite length of waiting line and we shall assume that the accumulation of the elements ends in each moment of time t_i, so that $T = t_i - t_{i-1}$. Either the group containing M elements or all waiting line, when its length is below M, is served immediately after the moment t_i. The rest of the elements which have not been served waits for their service at the next moment t_{i+1}. Exactly prescribed time T is called a storage period and its length defines a duration of the accumulation. The positive integer M is usually called a maximum out-going capacity. We assume that the incoming stream of elements follows the Poisson distribution, so the probability to enter exactly r elements during storage period T has a form $\pi_r = \frac{(\lambda T)^r}{r!} e^{-\lambda T}$ with a mean value $\lambda T > 0$ during period T. The ratio of the mean-value λT elements during a storage period and maximum out-going capacity M will be called utilisation factor ρ and it will satisfy

$$\rho = \frac{\lambda T}{M} < 1. \quad (1.1.)$$

We denote S_n the amount of accumulated elements at the moment when the nth period T ends, and it is called the state at the end of the period. Value of the state at the end of the period depends on the number of entered elements X_T during period T and on the rest of elements Z_{n-1} from the last period. We can express the stochastic variable Z by the form $Z_n = S_n - M$, if the
V prípade prebiehajúcej periódy je aspoň M, ak žižožmaždených elementov je menej ako M. Stavy S_k na konci periódy môžeme tak vyjadriť v nasledujúcom tvare

$$S_k = Z_{k-1} + X_T. \tag{1.2.}$$

kde výraz $Z_{k-1} = \max\{S_{k-1} - M, 0\}$ stručne vyjadruje zvyšok elementov z predchádzajúcej periódy.

Za podmienky (1.1) množstvo záťaže na konci periódy S_k vytvára Markovov retázač majúci stacionárne rozdelenie pravdepodobnosti stavov, pri ktorom stavy nezávisia od počtu periód a môžeme index periódy vynechať. Ak pravdepodobnosť, že stav na konci periódy je $S = k$ označíme $p_k = P(S = k)$ a pravdepodobnosť, že počas periódy vstúpi práve k elementov ako $\pi_k = e^{-\lambda T_k}$ môžeme pravdepodobnosti stavov na konci periódy vyjadriť nekonečnou sústavou rovníc

$$p_0 = (p_0 + p_1 + \ldots + p_M) \pi_0 \quad p_k = (p_0 + p_1 + \ldots + p_M) \pi_k + p_{M+1} \pi_{k-1} + \ldots + p_{M+k} \pi_0, \quad k = 1, 2, 3, 4, \ldots \tag{1.3.}$$

Základné riešenie sústavy (1.3.) predchádzajúceho modelu procesu zhromažďovania pomocou vytvárajúcich funkcií je popísané v [1] a podrobne ho doplníme zodpovedajúce výsledky z [2]. Strednú hodnotu stavu na konci periódy zvyčajne odvodíme zo zodpovedajúcej sústavy charakteristickej rovnice β_k a metóda ich výpočtu s ich vlastnosťami je opísaná v [2].

Under the condition (1.1) the amount of elements at the end of period S_k forms a random variable of the Markov chain having steady-state probabilities of states whereas those probabilities are not dependent on the number of period and we can leave out the index of period. If probabilities to have a state $S = k$ elements at the end of the period are denoted as $p_k = P(S = k)$ and

$$p_0 = (p_0 + p_1 + \ldots + p_M) \pi_0 \quad p_k = (p_0 + p_1 + \ldots + p_M) \pi_k + p_{M+1} \pi_{k-1} + \ldots + p_{M+k} \pi_0, \quad k = 1, 2, 3, 4, \ldots \tag{1.3.}$$

then we can express the probabilities at the end of period by infinite system of equations

$$E(S) = \frac{d(F(z))}{dz} \bigg|_{z = 1} = \frac{d}{dz} \left[\sum_{i=1}^{M-1} \left(z^M - e^{-\rho M(1 - z^M)} \right) p_i \right] = \frac{M - (M - \lambda T)^2}{2(M - \lambda T)} + \sum_{i=1}^{M-1} (1 - z_i)^{-1}, \tag{1.4a.}$$

where z_i are roots of the characteristic equation $z^M - e^{-\rho M(1 - z^M)} = 0$ for $M \geq 2$ and their computing method with characteristics is completely described in [2]. For $M = 1$ we have a special form

$$E(S) = \frac{\rho(2 - \rho)}{2(1 - \rho)}. \tag{1.4b.}$$

The mean-value of the rest of elements at the end of period is expressed with a help of (1.2.), leaving out indexes of periods, as

$$E(Z) = E(S) - \lambda T. \tag{1.5.}$$

In the next part of this paper we shall be interested in the storage system with the elements divided into the classes of service priority.

2 Model zhromažďovania s prioritami

2.1 Popis modelu a jeho riešenie

Predpokladajme, že máme daný diskretný proces zhromažďovania s predpisanou dĺžkou periódy T. Nech do systému vstupujú

amount of accumulated elements during previous period is at least as big as M, or by value 0, if the amount is below M. States S_k at the end of periods can be described in the following form

$$S_k = Z_{k-1} + X_T. \tag{1.2.}$$

where the term $Z_{k-1} = \max\{S_{k-1} - M, 0\}$ briefly expresses the rest of elements from the last period.

The basic solution of the system (1.3.) using generating functions is characterised in [1] and those results are completed in detail from [2]. We can derive the mean-value of the state at the end of period by a usual method of computing the first derivative of the corresponding generating function at point $z = 1$. So, we get

$$E(S) = \frac{d(F(z))}{dz} \bigg|_{z = 1} = \frac{d}{dz} \left[\sum_{i=1}^{M-1} \left(z^M - e^{-\rho M(1 - z^M)} \right) p_i \right] = \frac{M - (M - \lambda T)^2}{2(M - \lambda T)} + \sum_{i=1}^{M-1} (1 - z_i)^{-1}, \tag{1.4a.}$$

where z_i are roots of the characteristic equation $z^M - e^{-\rho M(1 - z^M)} = 0$ for $M \geq 2$ and their computing method with characteristics is completely described in [2]. For $M = 1$ we have a special form

$$E(S) = \frac{\rho(2 - \rho)}{2(1 - \rho)}. \tag{1.4b.}$$

The mean-value of the rest of elements at the end of period is expressed with a help of (1.2.), leaving out indexes of periods, as

$$E(Z) = E(S) - \lambda T. \tag{1.5.}$$

In the next part of this paper we shall be interested in the storage system with the elements divided into the classes of service priority.
elementy rozdelené do rôznych tried, napr. podľa dodávateľa. Pre jednoduchosť budeme predpokladať len dva nezávislé vstupné toky s Poissonovým rozdelením s intenzitami \(\lambda_1 > 0, \lambda_2 > 0 \). Akumulácia všetkých elementov prebieha v spoločnom zhrúžmaždovacom priestore. Obsluha sa vykonáva bezprostredne po ukončení periódy jedným spoločným obsluhovaným zariadením s celkovou maximálnou výstupnou kapacitou \(M \) elementov súčasne. Akumulácia a vlastná obsluha elementov môžeme vykonávať dvoma nasledujúcimi spôsobmi:

1. Každá trieda elementov disponuje vlastnou kapacitou obsluhy vyhradenou z celkovej maximálnej kapacity \(M \), t. j. elementy 1. triedy majú vyhradenú maximálnu výstupnú kapacitu \(M_1 \), elementy 2. triedy majú vyhradenú kapacitu \(M_2 \), pričom \(M_1 + M_2 = M \). Obsluha zhrúžmaždencových elementov vykonáva tak, že elementy každej triedy sú obsluhované samo-statne takým spôsobom, že ak ich je menej ako \(M_i \) obslužia sa všetky elementy. Ak ich je zhrúžmaždených viac než \(M_i \) obsluži sa plná kapacita každej triedy \(M_i \) a zvýšok čaká na ďalšiu obsluhu v nasledujúcej perióde. Pre tento model obsluhy bola riešená úloha nákladovej optimalizácie dĺžky periódy v [3].

2. Druhá možnosť je definovaná nasledovne: Nazvime každú triedu elementov ako triedu priority a ich obsluhu budeme organizovať podľa tried korestry priority. Je obyvákle, že nižšie číslo udáva vyššiu triedu priority a vyššie číslo nižšiu triedu. Označenie elementy prvej triedy budú maju všetky menší počet obsluhovaných vstupných tokov ako elementy druhej triedy a budú sa obsluhovávať prednostne. Vstupujúce elementy do systému sa zoradzujú podľa tried korestry priority do frontu. Zo zhrúžmaždených elementov najsťrepe obslužime elementy prvej triedy (vyššej priority). Podľa ich množstva je buď \(M \) elementov obslužených, ak ich je viac než \(M \) a zvýšok (spolu s elementmi druhej triedy) čaká na obsluhu v nasledujúcej perióde, alebo sú obslužené všetky, ak ich je menej ako \(M \) a zvýšok z celkovej výstupnej kapacity \(M_2 \) je doplnený elementmi 2. triedy nasledovne: Ak zhrúžmaždených elementov 2. triedy je menej ako zostatok z celkovej kapacity \(M_2 \) obsadené elementmi prvej triedy, sú obslužené všetky, inak zvýšok čaká na ďalšiu obsluhu v nasledujúcej perióde.

V nasledujúcich častiach sa budeme podrobné zaobstarajť druhou možnosťou. Dôležitou zmenou v druhom prípade je doplnenie volnej kapacity zhrúžmaždených elementov \(M \) a aktuálneho počtu obslužených elementov danej triedy. Deficitom \(D \) výstupnej kapacity názve

\[D = M - ANSE \]

rozdel celkovej výstupnej kapacity \(M \) a aktuálneho počtu obslužených elementov prvej triedy \(ANSE1 \) v príslušnej perióde, t. j. \(D = M - ANSE1 \). Pretože uvažujeme systém zhrúžmaždovania s ne-kereným zhrúžmaždovacím priestorom v stabilizovanom režime, je zrejme, že pre strednú hodnotu obslužených elementov prvej triedy \(E(ANSE1) \) a strednú hodnotu elementov prvej triedy, ktoré počas periody \(T \) do systému vstúpili \(E(X_2) \), platí \(E(ANSE1) = E(X_2) = = \lambda_i T \). Strednú hodnotu deficitu môžeme potom definovať ako

\[
E(D) = E(M - ANSE1) = M - E(ANSE1) = M - E(X_2) = M - \lambda_i T. \tag{21.1}
\]

Maximálna výstupná kapacita \(M \) pre elementy druhej triedy nemôže byť zrejme váčšia ako stanovená stredná hodnota deficitu

different classes enter the system e.g. according to a supplier. To make it simple, we shall discuss only two independent incoming streams with rates \(\lambda_1 > 0, \lambda_2 > 0 \) following the Poisson distribution. The accumulation of all elements performs at a common storage area. One common machine provides their service with a maximum outgoing capacity \(M \) at the same time, immediately when a period of storage is finished. We can organise their own accumulation and service in the following two ways:

1. Each class of elements disposing of a reserved self-capacity of the service from the total maximum out-going capacity \(M \) (i.e. the elements of the first class have a reserved maximum out-going capacity \(M_1 \), the elements of the second class have the maximum outgoing capacity \(M_2 \) where \(M_1 + M_2 = M \)). The service of accumulated elements is accomplished by serving the elements of each class separately as if there are fewer of them than \(M \), all of the elements are served. If there are accumulated more of them than \(M \), they are served to a full capacity \(M \) of each class and the rest waits for its service in the next period. For this model of service has been considered a cost method optimising length of period in [3].

2. The second case is defined as: Denote each class of elements as a class of priority and we shall organise their service according to their priority classes. It is usual that the smaller number denotes a higher class of priority and a higher number denotes a lower class of priority. The marked elements of the first class will have a higher priority than the elements of the second class and they will be preferred. Incoming elements are ordered to the waiting lines with respect to their priority class. Within the accumulated elements first are served the elements of the first class (higher priority). According to their amount either \(M \) of accumulated elements are served, if there are more elements than \(M \) and the rest of them (together with elements of the 2nd priority class) waits for the next service or if there are fewer of them than \(M \), they are served all and the rest of outgoing capacity \(M \) is completed with elements of the second class as follows: If the amount of the elements of the second class is smaller than the remaining capacity \(M_2 \) filled with the first class elements, they are served all, otherwise the rest of them waits for the service in the next period.

We shall be interested in detail in the second case in the following chapters. An important change in the second case is filling up of the idle capacity with the elements of the second class. We shall call a difference between the out-going capacity \(M \) and the actual number of served elements of the first class \(ANSE1 \) in a corresponding period as a deficit \(D = M - ANSE1 \). Since we reason a steady-state infinite storage area system, it is clear that the mean-value of the served elements of the first class \(E(ANSE1) \) and a mean-value of the entered elements \(E(X_2) \) the system of the same class during the period \(T \) will hold \(E(ANSE1) = E(X_2) = \lambda_i T \). We shall define the mean-value of the deficit as
$E(D) = M - \lambda_i T$ a tak položime $M_2 \leq [M - \lambda_i T]$, kde $[x]$ označuje celú časť čísla x, najväčšie celé číslo ≤ x. Pre elementy prvej triedy priority je teda vyhradená kapacita $M_1 = M - M_2$. Teda, obe vstupný kapacity M_1, M_2 sú diskretné závislé od dĺžky zhrumaždovacej periódy.

Predstavme si teraz, že nás systém zhrumaždzuje sa skladou $z dvoch rôznych časť (dvoch fiktívnych podsystémov), kde zhrumaždené elementy sú obsluhované v tom istom okamihu bez prostredie po ukončení periódy zhrumaždzuje spoločným zariadením s celkovou kapacitou M_2. Prvá časť disponuje výstupnou kapacitou M_1 a druhá kapacitou M_2 pri danej perióde T. Do každého podsystému za jednu periódu vstupuje nezávislé Poissoňov tok elementov so strednou hodnotou počtu elementov $\lambda_i T > 0$, $\lambda_i T > 0$, pozri Obr. 1. Predchádzajúce prispôsobenie vlastných výstupných kapacit pre triedy priorit dominujú dva súčasne operujúce elementy sú časťou i-tej triedy pri $M_i < M, i = 1, 2$. Koeficient zaťaženia $\rho^{(i)}$ pre každú fiktívnu podsystém triedy priority je dany nasledujúcim tvarom

$$\rho^{(i)} = \frac{\lambda_i T}{M_i} = \frac{\lambda_i T}{M - M_2},$$

(2.2.)

Stavy jednotlivých podsystémov definujeme ako počet zhrumaždených elementov jednotlivých tried priority a stavy celého systému budú definované ako ich súčet. Z nezávislosti vstupných tokov nie je odvodom vytvárajúce funkcii rozdelenia pravdepodobnosti stavov celého systému.

Nech $p_i^{(0)} = \frac{(\lambda_i T)^k}{k!} e^{-\lambda_i T}$ označuje pravdepodobnosť počas jednej periódy vstupu do systému práve k elementov i-tej triedy priority. Pravdepodobnosti stavu $S^{(i)}$ na konci periódy pre i-tu triedu priority môžeme potom definovať v súlade s kap. 1 ako pravdepodobnosti $p_i^{(j)} = P(S^{(i)} = k), i = 1, 2$, ktoré sú vyjadrené sústavou rovníc ekvivalentného sústave (1.3.). Nech $\psi^{(i)}(z) = \sum_{i=0}^{\infty} \pi_i^{(j)} z^i$, $F^{(i)}(z) = \sum_{i=0}^{\infty} p_i^{(j)} z^i$ označujú vytvárajúce funkcie pravdepodobnosti vstupu elementov do systému a stavov elementov i-tej triedy priority na konci periódy. Pravdepodobnosti stavov celého systému môžeme vyjadriť v tvaru

$$p_i = P(S = k) = \sum_{i=0}^{k} P(S^{(i)} = k - i; S^{(2)} = i) = \sum_{i=0}^{k} p_i^{(i)} p_i^{(2)},$$

(2.1.)

Imagine now that our system of storage is composed of two different parts (two fictive subsystems) when the accumulated elements are served at the same time immediately after the end of the storage period by a common machine with the total out-going capacity M. The first part disposes of the out-going capacity M_1 and the second part of capacity M_2 related to the existing period T. To each part of a system incomes independent stream of elements respecting Poisson distribution with the mean-value of entered elements $\lambda_i T > 0$, $\lambda_i T > 0$, see Fig. 1. Previous adaptation of the self-out-going capacities to the classes of priorities gives a feasible approximation for the system with priority classes and enables us to use a solving method from [3].

A stability condition of such an accumulation system is given by a requirement so that an equivalent condition to (1.1.) applied for entered elements of each class of priority. Thus, we have $\lambda_i T < M$, $i = 1, 2$. The utilisation factor $\rho^{(j)}$ for each fictive subsystem of the priority class is given by a following expression

$$\rho^{(i)} = \frac{\lambda_i T}{M_i} = \frac{\lambda_i T}{M - M_2},$$

and $\rho^{(2)} = \frac{\lambda_i T}{M_2}$. (2.2.)

States of single subsystems are defined as a number of accumulated elements of single priority classes and states of a whole system will be defined as their sum. From an independence of incoming streams we shall easily derive a probability generating function of the states of the whole system.

Let expression $p_i^{(j)} = \frac{(\lambda_i T)^k}{k!} e^{-\lambda_i T}$ denote probabilities of exactly k elements of the ith priority class. The probabilities of state $S^{(i)}$ at the end of the period for the ith priority class can be derived according to chapter 1 as the probabilities $p_i^{(j)} = P(S^{(i)} = k), i = 1, 2$, which are expressed by a system of equations equivalent to (1.3.). Let $\psi^{(j)}(z) = \sum_{i=0}^{\infty} p_i^{(j)} z^i$, $F^{(j)}(z) = \sum_{i=0}^{\infty} p_i^{(j)} z^i$ denote the probability generating functions of incoming elements of ith class and states at the end of the period respectively. The probabilities of the whole system states can be expressed by
a zodpovedajúcu vytvárajúcu funkciu

\[F(z) = \sum_{k=0}^{\infty} p_k z^k = \sum_{k=0}^{\infty} \left(\sum_{j=k}^{\infty} p_{1j}^{(1)} z^j \right) \sum_{j=k}^{\infty} p_{2j}^{(2)} z^j = F^{(1)}(z) F^{(2)}(z). \]

Strednú hodnotu stavu na konci periody získame obvyklým spôsobom. Vypočítame prvú deriváciu vytvárajúcej funkcie v bodе \(z = 1 \). Dostaneme

\[E(S) = \frac{dF(z)}{dz} \bigg|_{z=1} = \frac{d}{dz} F^{(1)}(z) F^{(2)}(z) \bigg|_{z=1} = E(S^{(1)}) + E(S^{(2)}), \tag{2.3.} \]

a čiastočné stredné hodnoty \(E(S^{(1)}) \) pre každú triedu priority dostaneme pomocou (1.4.).

Strednú hodnotu zvyšku na konci periody vyjadríme z (1.5.) pomocou (2.3.), Tak dostaneme

\[E(Z) = E(S) - \lambda_1 T - \lambda_2 T = E(S^{(1)}) - \lambda_1 T + E(S^{(2)}) - \lambda_2 T = E(Z^{(1)}) + E(Z^{(2)}). \]

Celková doba strávená v systéme je tvorená dobu, ktorú strává v systéme elementy každej triedy priority. Analogicky podľa [1] a pomocou (1.5.) môžeme túto dobu vyjadriť vo forme

\[w^{(1)} = \left(E(Z^{(1)}) + \frac{\lambda_1 T}{2} \right) \cdot T = \left(E(S^{(1)}) - \frac{\lambda_2 T}{2} \right) \cdot T. \tag{2.4.} \]

2.2 Optimalné rozdelenie celkovej výstupnej kapacity pre triedy priorít

V tejto časti sa budeme zaoberať úlohou rozdelenia celkovej výstupnej kapacity \(M \) pre jednotlivé triedy priority. Veľkost výstupných kapacit sú pre obe triedy priority diskretné závislé a podľa úvodného predpokladu zvázané vzťahom \(M = M_1 + M_2 \). Zo kritérium optimálneho rozdelenia zoberieme strednú hodnotu zvyšku elementov po ukončení periódy. Budeme teda minimalizovať účelovú funkciu

\[Z(T) = E(Z^{(1)}) + E(Z^{(2)}). \tag{2.5.} \]

pri danej dĺžke periódy zhromažďovania \(T \).

Vzhľadom na závislosť jednotlivých výstupných kapacit a stabilizačná podmienka (2.2.), nemôžeme hodnoty \(M_1, M_2 \) voliť šťastne. Zo stabilizačných podmienok pre obe triedy priority dostávame, že \(\lambda_1 T < M_1 \) a \(\lambda_2 T < M_2 \). Z prvej podmienky ďalej dostaneme \(\lambda_1 T < M - M_2 \) a po úprave \(M_2 < M - \lambda_1 T \). Z oboch podmienok ďalej dostaneme podmienku

\[\lambda_1 T < M_2 < M - \lambda_1 T, \tag{2.6.} \]

ktorá určuje konečný počet celocíselných hodnôt výstupnej kapacity \(M_2 \). Postupným prepočtom kritériálnej funkcie (2.5.) nájdeme takú kapacitu, pre ktorú (2.5.) nadobúda minimum. Hodnota \(M_2 \) výstupnej kapacity prej triedy priority je už potom určená jednoznačne.

Za strednú hodnotu zvyšku na konci periódy \(E(Z^{(1)}) \) do (2.5.) dosadíme zodpovedajúce vzťahy (1.4a., b.) upravené podľa (1.5.).

and a corresponding generating function

\[F(z) = \sum_{k=0}^{\infty} p_k z^k = \sum_{k=0}^{\infty} \sum_{j=k}^{\infty} p_{1j}^{(1)} z^j \sum_{j=k}^{\infty} p_{2j}^{(2)} z^j = F^{(1)}(z) F^{(2)}(z). \]

We can obtain a mean-value of the state at the end of period by a usual method. Compute the first derivative at point \(z = 1 \). So, we get

\[E(S) = \frac{dF(z)}{dz} \bigg|_{z=1} = \frac{d}{dz} F^{(1)}(z) F^{(2)}(z) \bigg|_{z=1} = E(S^{(1)}) + E(S^{(2)}), \tag{2.3.} \]

and partial mean values \(E(S^{(i)}) \) can be expressed by (1.4a., b.) for each class of priority.

The mean-value of the rest at the end of period is expressed again from (1.5.) by (2.3.). So, we can write

\[E(Z) = E(S) - \lambda_1 T - \lambda_2 T = E(S^{(1)}) - \lambda_1 T + E(S^{(2)}) - \lambda_2 T = E(Z^{(1)}) + E(Z^{(2)}). \]

Overall time spent in the system is formed by the time which elements of each class of priority spend in a system. According to [1] and (1.5.) we can express the time in the form

\[w^{(1)} = \left(E(Z^{(1)}) + \frac{\lambda_1 T}{2} \right) \cdot T = \left(E(S^{(1)}) - \frac{\lambda_2 T}{2} \right) \cdot T. \tag{2.4.} \]

2.2 Optimal decomposition of the total out-going capacity to the priority classes

In this part we shall deal with a problem of a decomposition of out-going capacity \(M \) for individual priority classes. Proportions of out-going capacities are for both priority classes discreetly dependent and they are joined by the following preliminary assumption \(M = M_1 + M_2 \). For the optimal decomposition criteria we can take the mean-value of the rest of the elements at the end of the period. We shall minimise the objective function

\[Z(T) = E(Z^{(1)}) + E(Z^{(2)}). \tag{2.5.} \]

at given length of the storage period \(T \).

According to the dependency of particular capacities and steady-state condition (2.2.), we cannot choose the values \(M_1, M_2 \) arbitrarily. The steady-state conditions for the both classes of priority yield \(\lambda_1 T < M - M_2 \) and after setting we have \(M_2 < M - \lambda_1 T \). From the both conditions we shall have the condition

\[\lambda_2 T < M_2 < M - \lambda_1 T, \tag{2.6.} \]

which determines a finite number of integers of out-going capacity \(M_2 \). By a sequential computing objective function (2.5.) we take such a capacity for which (2.5.) gets a minimal value. Value \(M_1 \) of out-going capacity of the first class of priority is then determined.

We substitute corresponding terms (1.4a., b.) modified according to (1.5.) for the mean-value of the rest at the end of period
Závažným problémom pri efektívnom riadení procesov zhromažďovania na nám pridali okamžikové ukončenia akumulácie kapacity, a ďalší náklady na pobyt v systéme a vo fronte pripadajúce na fixné náklady na prevádzku počas jednej periódy a čiastkové náklady za jednotku času. Počas jednej periódy 20n 10 0.525M 0.5114. (2.7.)

Optimal decomposition of the total out-going capacity M Tab. 1.

M₁	M₂	\(\rho^{(1)} \)	\(\rho^{(1')} \)	\(E(Z^{(1)}) \)	\(E(Z^{(1')}) \)	\(Z(1.2) \)
3	7	0.80	0.51	1.73	0.05	1.78
4	6	0.60	0.60	0.24	0.17	0.41
5	5	0.48	0.72	0.06	0.56	0.62
6	4	0.40	0.90	0.02	3.60	3.62

We can see from the Tab.1. that the optimal decomposition of total out-going capacity M = 10 el. for the both priority classes is as follows: for the first class \(M₁ = 6 el. \), for the second class \(M₂ = 4 el. \).

2.3 Optimal length of the storage period

A relevant problem within the effective time control of the storage processes is a setting of the moments when the accumulation of elements will end (i.e. the setting of the period duration). The optimising method of the length of period in [3] regards the costs of the storage system with two independent incoming streams of elements where each variety of elements has a reserved actual out-going capacity from the system. We can use that technique after substituting we shall obtain 2.4 < \(M₂ < 6.4 \). Necessary calculations will be assembled to the Tab. 1.

M₁	M₂	\(\rho^{(1)} \)	\(\rho^{(1')} \)	\(E(Z^{(1)}) \)	\(E(Z^{(1')}) \)	\(Z(1.2) \)
3	7	0.80	0.51	1.73	0.05	1.78
4	6	0.60	0.60	0.24	0.17	0.41
5	5	0.48	0.72	0.06	0.56	0.62
6	4	0.40	0.90	0.02	3.60	3.62

We show the overall previous procedure in the following example.

Example: Let us have given for the storage system with two priority classes as follows: the incoming rates \(\lambda₁ = 3 el./h., \lambda₂ = 2 el./h. \), a common storage period \(T = 1.2 h \) and the out-going capacity M = 10 el.

From (2.6.) after substituting we shall obtain 2.4 < \(M₂ < 6.4 \). Necessary calculations will be assembled to the Tab. 1.

2.3 Optimálna dĺžka periódy zhromažďovania

Závažným problémom pri efektívnom riadení procesov zhromažďovania na nám pridali okamžikové ukončenia akumulácie kapacity, t.j. stanovenie dĺžky periódy. Optimalizačná metóda dĺžky periódy uvedená v [3] bere do úvahy prevádzkové náklady systému zhromažďovania s dvoma nezávislými vstupnými tokmi elementov, z ktorých každý druh má rezervovanú maximálnu výstupnú kapacitu za systému. Po jednoduchej modifikácii, môžeme tento postup použiť pre uvažovaný model s prioritami.

Označme \(c^{(1)} > 0 \) náklady na obsluhu jedného elementu, \(c^{(2)} > 0 \) lineárne náklady na predvádzku počas jednej periódy a \(c^{(3)} > 0 \) náklady na pobyt v systéme a vo fronte pripadajúce na jeden element k-té triedy priemernej ďalšej triedy na jednotku času. Počas jednej periódy systém priemerne obsluží \(\lambda T \) elementov a čiastkové náklady na ich obsluhu budú \(C^{(k)}(T) = c^{(k)} \lambda T \) počasové jednotiek pred-pokladu lineárnej závislosti nákladov od množstva obsluženej
záťaže. Ak ich upravíme o fixné náklady, dostaneme

$$C_i^0(T) = c_i^0 \lambda_T + c_i^0.$$

Čiastkové náklady na dobu strávenú v systéme (2.4.) budú činit $C_i^0(T) = c_i^0 w^{(i)}$ peňažných jednotiek.

Celkové náklady v závislosti od dĺžky periódy môžeme potom vyjadriť funkciou celkových nákladov

$$C(T) = C_i^0(T) + C_i^1(T) = c_i^0 \lambda_T + c_i^1 + c_i^1 w^{(i)}$$

(2.8.)

združujúcou čiastkové náklady na obsluhu a pretoje v systéme.

Prie danyh nákladových súdBach môžeme celkové náklady znižiť tým spôsobom, že budeme minimalizovať fixné náklady $c_i^0 > 0$ rozložením na všetkých obslužených elementov tak, že vyjadrime pomerné časti celkových nákladov (2.8.) pripadajúc na jeden obslužný element výdelením hodnoty $C_i^0(T)$ priemerom počtom obslužených elementov zodpovedajúcej trédy priority za jednu periódu λ_T. Z nákladovej funkcie (2.8.) potom dostaneme

$$N_i^0(T) = \frac{C_i^0(T)}{\lambda_T} = c_i^0 + c_i^1 \frac{1}{\lambda_T} + c_i^1 w^{(i)} \frac{1}{\lambda_T}.$$

(2.9.)

Pre obe trédy priority vytvoríme združenú nákladovú funkciu

$$N(T) = N_i^0(T) + N_i^1(T) = c_i^0 + \frac{c_i^1}{\lambda_T} + c_i^1 w^{(i)} \frac{1}{\lambda_T}$$

$$+ \frac{c_i^1}{\lambda_T} E(Z^{(i)}) \frac{1}{\lambda_T} + c_i^1 w^{(i)} \frac{1}{\lambda_T}.$$

(2.10.)

Zo stabilizačných podmienok $\lambda_1 T < M_1$, $\lambda_2 T < M_2$ pre obe trédy priority nám neumožňuje analytické řešenie vo vzťahu (2.10.). Použijeme teda metódu postupných prepočtov pre vybrané dĺžky periódy aplikáciou podmienky (2.6.), z ktorých potom vyberejme optimálnu hodnotu.

Příklad: Pre systém zhromažďovania s dvoma triedami priorit majúme dané: intenzity vstupu $\lambda_1 = 0.42 \text{ el./h}$, $\lambda_2 = 0.24 \text{ el./h}$ a vstupná kapacita $M = 7 \text{ el.}$

Zo stabilizačných podmienok pre obe trédy zhromažďovania
dostaneme ohraničenie pre dĺžku periódy $T < \min \left(\frac{M_1}{\lambda_1}, \frac{M_2}{\lambda_2} \right)$.

Pre dané číselné hodnoty máme

$$T < \min \left(\frac{7}{0.42}, \frac{7}{0.24} \right) = 14.28.$$

Dále položme $T = 1$ a vypočtíme zostava do tab. 2. Z podmienky (2.6.) určíme zodpovedajúce hodnoty výstupnej kapacity

adjust them to fixed costs we shall get $C_i^0(T) = c_i^0 \lambda_T + c_i^1$. Partal costs for the time which the elements spent in the system (2.4.) will be $C_i^1(T) = c_i^1 w^{(i)}$ of the monetary units.

Total costs function of the length of the period T can be expressed

$$C(T) = C_i^0(T) + C_i^1(T) = c_i^0 \lambda_T + c_i^1 + c_i^1 w^{(i)}$$

(2.8.)

which joins the partial costs for service and the time spent in the system.

At given cost rates we can reduce the global costs if we minimize fixed costs $c_i^0 > 0$ by their distribution to a higher number of served elements by expressing a relative part of the total costs (2.8.) corresponding to one served element dividing the value $C_i^0(T)$ by the average number of served elements corresponding to the class of the priority per one period λ_T. From the costs function (2.8.) then we shall get

$$N_i^0(T) = \frac{C_i^0(T)}{\lambda_T} = c_i^0 + c_i^0 \frac{1}{\lambda_T} + c_i^1 w^{(i)} \frac{1}{\lambda_T}.$$

(2.9.)

We construct comprehensive costs function for both priority classes

$$N(T) = N_i^0(T) + N_i^1(T) = c_i^0 + c_i^0 \frac{1}{\lambda_T} + c_i^1 w^{(i)} \frac{1}{\lambda_T}$$

$$+ \frac{c_i^1}{\lambda_T} E(Z^{(i)}) \frac{1}{\lambda_T} + c_i^1 w^{(i)} \frac{1}{\lambda_T}.$$

(2.10.)

From the stability conditions $\lambda_i T < M_i$, $\lambda_1 T < M_2$ for the both priority classes we shall get the limitation for the length of

the period $T < \min \left(\frac{M_1}{\lambda_1}, \frac{M_2}{\lambda_2} \right)$.

For computing $E(Z^{(i)})$ to (2.10.) we again use corresponding approximation terms (2.7.) adapted according to (1.5.).

Dependence of the individual out-going capacities M_i, M_2 for the classes of priority does not allow us an analytical solution in (2.10.). Thus we use a method of consecutive calculations for the chosen lengths of period by application the condition (2.6.), from which we choose an optimal value.

Example: Let us have given for the system of storage with two priority classes as follows: the incoming rates $\lambda_1 = 0.42 \text{ el./h}$, $\lambda_2 = 0.24 \text{ el./h}$ and the out-going capacity $M = 7 \text{ el.}$

From the limitation for the length of the period

$$T < \min \left(\frac{M_1}{\lambda_1}, \frac{M_2}{\lambda_2} \right) \text{ for given numerical values we have}$$

$$T < \min \left(\frac{7}{0.42}, \frac{7}{0.24} \right) = 14.28.$$

The next step is to set $T = 1$ and assemble calculations to the tab. 2. We define corresponding values of the out-going capacity M_i from the condition (2.6.). We shall get $M_i \in \{1, 2, 3, 4, 5, 6\}$
Pre každú hodnotu možno určiť hodnotu výstupnej kapacity stĺpca \(f(2.10.) \). Optimálne náklady sú určené v tab. 3.

\(M_1 \)	\(M_2 \)	\(\mu^{(1)} \)	\(\mu^{(2)} \)	\(N(1) \)
6	1	0.07	0.24	2252.2
5	2	0.08	0.12	2252.1
4	3	0.11	0.08	2255.8
3	4	0.14	0.06	2259.6
2	5	0.21	0.05	2264.3
1	6	0.42	0.04	2300.8

Zvolme \(T = 3 \). Z podmienky (2.6.) dostaneme prípustné hodnoty výstupnej kapacity \(M_2 \) pre, ktoré sú výpočty zoradené v tab. 3.

Pre \(T = 5 \) a \(T = 9 \) sú výsledky zostavené v tab. 4. a tab. 5.

\(M_1 \)	\(M_2 \)	\(\mu^{(1)} \)	\(\mu^{(2)} \)	\(N(5) \)
5	2	0.42	0.6	1054.1
3	4	0.52	0.4	990.2
3	4	0.7	0.3	1066.0

Nasledujúci obr. 2 ukazuje závislosť nákladov vo funkcii (2.10.) od dĺžky periódy \(T \) pre vybrané parametre: \(\lambda_1 = 0.42, \lambda_2 = 0.24, M = 7 \).

Ako vidíme aj z obr. 2, podrobnéjšími prepočtami pre \(T \in [4; 5] \) zistíme, že funkcia (2.9.) nadobúda minimum pre periódu \(T = 4.5 \) s nasledujúcimi hodnotami: \(M_1 = 4, M_2 = 3 \) zaťaženiami \(\mu^{(1)} = 0.47, \mu^{(2)} = 0.36 \) a hodnotou \(N(4, 5) = 983 \).

3 Záver

V prvej časti príspevku sú definované a odvodene základné stredné hodnoty popisujúce efektívnosť činnosti uvažovaného systému zhrumádzovania s dvoma triedami priorit. K tomu dáva možnosť využiť tieto charakteristické stredné hodnoty pre odvodenie optimálnej dĺžky periódy zhrumáždzovania elementov. V druhej časti príspevku je analyzovaná metóda nákladovej optimalizácie dĺžky periódy minimalizujúca fixné náklady podľa počtu obslužených elementov.

Let us choose \(T = 3 \). From the condition (2.6.) \(0.72 < M_2 < 5.74 \) we shall obtain feasible values of the out-going capacity \(M_2 \) whose calculations are aligned in the Tab. 3.

\(M_1 \)	\(M_2 \)	\(\mu^{(1)} \)	\(\mu^{(2)} \)	\(N(3) \)
6	1	0.21	0.72	1317.8
5	2	0.25	0.36	1083.0
4	3	0.32	0.24	1076.1
3	4	0.42	0.18	1088.0
2	5	0.63	0.14	1153.4

Following Fig. 2, shows a dependency of the costs in the function (2.10.) on the length of period \(T \) for the selected parameters: \(\lambda_1 = 0.42, \lambda_2 = 0.24, M = 7 \).

As we can see in the Fig. 2, exact computing for \(T \in [4; 5] \) will show that the function (2.10.) get the minimum for the period \(T = 4.5 \) with following values: \(M_1 = 4, M_2 = 3 \) the utilisation factors \(\mu^{(1)} = 0.47, \mu^{(2)} = 0.36 \) and costs \(N(4, 5) = 983 \).

3 Conclusions

In the first part of the paper basic characteristic mean-values are defined and derived describing effective functioning of the considered storage system with two priority classes. It gives us a possibility to exploit those characteristic mean-values for deriving the optimal length period of element accumulation. In the second part of the paper is analysed the costs optimising method of the length of period minimising fixed costs according to the amount of served

\[M_2 > 0.24 < M_2 < M_2 < 7 - 0.42. \] We shall define a value of the out-going capacity \(M_2 \) for each value \(M_2 \) from \(M = 7 = M_1 + M_2 \). For a chosen length of the period and determined out-going capacities \(M_1, M_2 \) we shall compute values of the function (2.10.) in successive steps. We shall find out the optimal costs simply by searching the last column \(N(1) \).
Tov počas jednej periódy. Taktiež je navrhnutá možnosť optimál-
neho rozdelenia celkovej výstupnej kapacity pre triedy priorít mi-
nimalizujúca celkový zvyšok elementov bez ohľadu na triedu prio-
ritu.

Acknowledgement
This paper was supported by the Ministry of Education of the
Slovak Republic under grant No. 1/7211/20.

Literatúra – References
[1] ČERNÝ, J., KLUVÁNEK, P.: Základy matematickej teórie dopravy, Veda, Bratislava 1990
[2] REBO, J.: Discrete process of storage, Proceedings of International Conference On Mathematical Methods in Economics, pp. 171-178, University Of West Bohemia, Cheb 1998
[3] REBO, J.: Cost optimising of the length of period for the discrete process of storage with two incoming streams of elements, Proceedings of International Conference On Mathematical Methods in Economics, pp. 231-237, University Of Economics, J. Hradec 1999