研究紹介

高知コア研究所紹介

海洋研究開発機構 地球深部探査センター 科学支援部 木戸 ゆかり

1. はじめに

高知コア研究所（Kochi Core Center，以降KCCと略）は，2005年から高知大学農学部物部キャンパス内に設置された海底から採取された地質柱状試料の保管場所である（第1図）．世界に3箇所あるIODP(International Ocean Discovery Program:国際深海科学掘削計画)のコアレポジトリのアジア太平洋圏をカバーする拠点として，その役割は大きい．そして掘削コアの保管，管理だけでなく，最先端の分析・解析を行う機器が設置され，研究活動や研究者育成の拠点となっている．2017年9月の室戸冲航海では，IODP史上初めて船上処理と並行して，コア試料をヘリコプター輸送し，より高精度の微生物試料の採取および処理を行った実績がある．本稿では，KCCの施設紹介をし，その幅広い活用も採り，本学会員にも共同利用を勧めたい．

2. 沿革

IODPが開始された当初，日本で運用する地球深部探査船「ちきゅう」の建造はスタートしたが，これからの大量の掘削コアを保管・管理し，さらに分析を行う機能を国内で充実させるという課題があった．そのような中，すでに海洋コアセンターを有していた高知大学で，IODPの中核となる掘削コアの保管・管理機能を有する大型施設の建設が決まり，平成15（2003）年4月，同大学物部キャンパスに「高知大学海洋コア総合研究センター」が完成した（第1, 2, 3図）．平成16（2004）年4月には，高知大学とJAMSTECとの間で同施設の管理運営及び有効活用の協定を締結し，常駐スタッフも充実させて，IODP一次解析機器の本格的な整備が始まっ，平成17（2005）年10月，従来のコアの保管・管理・分析機能に加え，掘削コアを用いた研究といった一連のプロセスを推進する研究拠点：「JAMSTEC高知コア研究所」が設立した．2015年10月に10周年を迎え，その充実した保管実績，研究機器，研究成果については，ウェブサイトに紹介され，合わせて高知コア研究10年誌の資料が下記よりダウンロードできる．（http://www.jamstec.go.jp/kochi/j/aboutus/index.html）

3. 運用体制

KCCでは，高知大学と共同して，掘削コアを用いた研究，教育，人材育成の推進とコアを保管する施設や最先端の分析機器の運営を行う体制を構築している．この手法は，共同利用，共同研究拠点制度の先駆けとして，モデルケースとなっている．現在のKCCは，掘削コアの保管管理，提供，分析，解析などの研究支援を行う「科学支援グループ」，コアと最先端の研究設備を最大限利用して，巨大地震などの地震断層プロセスの解明を行う「断層物性研究グループ」，海底に広がる生命圏全体像の解明を行う「地球深部生命研究グループ」，尖銳的分析技術開発と地震・生命・環境変動や地球内部の物質循環の解明を行う「同位体地球化学研究グループ」で組織されている（第4, 5図）．
4. 研究設備

KCCでは、コアを劣化やカビの発生から守る4℃で制御された大型冷蔵保管庫（第2,4図）に、地球深部探査船「ちくゆう」や米国・ヨーロッパの掘削船により日本近海、フィリピン海、オーストラリア周辺海域からインド洋にかけでの海域（第3図）で得られた約138km（平成31(2019)年1月現在）に上るコアを保管するとともに、年間100～200件のコア請求に対し、科学評価を実施し、研究や教育・普及活動の目的で1万個を超える試料の提供がなされている。

また、海底下生命圏研究の重要性から微生物研究用のマイナス80℃以下の冷凍試料の保管・管理（DeepBIOS）にも取り組んでいる。

平成23(2011)年6月には、最初の凍結コアが研究者へ提供された。

さらに「ちくゆう」の船上やKCCのXCTで撮られた掘削コアの3次元解析画像データ（バーチャルコアライブラリー, http://www.kochi-core.jp/VCL）も含めたコアの情報をコンピュータ管理し、KCC Webサイト（http://www.kochi-core.jp）で公開している。

5. 共同利用研究拠点

KCCでは、「ちくゆう」船上とほぼ同等スペックの分析機器を整備しており、航海中に実施できなかった分析や航海後に必要な分析（ポスト・クルーズワーク）の支援活動（第6図）や、コア解析に必要な基礎的な手法などを学ぶコア解析スクール、高知大学や日本図書科学センターと連携した岩石磁気・古地磁気スクールを開催し、若手研究者・技術者の育成に取り組んでいる（第7図）。

コア管理の専門官のコアキュレーターチームとしてKCCおよび船上にも常駐しており、船上でのコア分析や分配作業の統括も行なっている。平成26(2014)年からは、科学技術振興機構「さくらサイエンスプラン」の一環として、中国・台湾・韓国・インドネシア・ベトナムから若手研究者を対象としたコア調査の基礎研修プログラムも始め、平成22・23(2010・2011)年度には、最先端研究基盤事業「海底下実環境ラボによる地球化学・生命化学融合拠点の強化」により、超高空間分解能型二次イオン質量分析装置（NanoSIMS）、スーパークリーンルーム等の導入とシングルセルラボの設置がなされ、従来の研究に加え、各研究グループの連携のもとで海の持続的な資源エネルギー循環システムの構築に向けた研究が新たに展開されることとなった（第8～11図）。

平成24(2012)年には、高精度大型二次イオン質量分析装置をはじめとする微細領域分析機器、地震断層研究用機器の導入により大幅な研究基盤の強化がなされた。これらの最先端の分析機器や科学支援協力については、JAMSTEC内だけではなく、広く国内外からの利用促進に努めている。合わせて国際シンポジウムの開催や海外の研究所との共同研究の推進などを通じて、中核的研究拠点としての役割を担っていくことを目指している。
第7図 コアキュレーションスタッフのみなさん

第8図 コアのサンプリングの様子

第9図 スーパークリーンルームの全貌。第370航海では、ここと「ちきゅう」船上のラボの2箇所で並行して分析を行なった。

第10図 スーパークリーンルームの様子

第11図 スーパークリーンルームでは、その単位体積あたりの埃の数値が極めて微小で、決して花粉症にならないということ。利用者がその数値の低さにびっくりしている様子。

サイト情報
JAMSTEC 高知コア研究所トップ：
http://www.kochi-core.jp/
http://www.jamstec.go.jp/kochi/j/index.html

高知コア研究所分析機器リストと共同利用案内：
http://www.kochi-core.jp/kyoyo/equipment/equipment.html
#magne06

JAMSTEC 高知コア研究所10年誌について：
http://www.jamstec.go.jp/kochi/j/aboutus/index.html
Research Introduction

Introduction of Geoinformatics research at Eduardo Mondlane University (Mozambique)

Luis André Magaia
Department of Geology, Faculty of Sciences, Eduardo Mondlane University, Mozambique

1. Introduction of Eduardo Mondlane University

Eduardo Mondlane University (Universidade Eduardo Mondlane – UEM) is the largest and the oldest public university in Mozambique. Located in the capital city, Maputo, it was established in 1962 under the name of “Sociedade de Estudos Gerais Universitários de Moçambique” and later in 1968 was elevated to University status and named “Universidade de Lourenço Marques”. On 1st May 1976, it was renamed “Universidade Eduardo Mondlane” (UEM), in honor of the important historical role represented by Dr. Eduardo Chivambo Mondlane in Mozambique. Currently, about 40,000 students are enrolled in different courses given at 11 Faculties and 6 Schools of UEM located over the country (Fig. 1) (http://www.uem.mz/).

2. Geoinformatics Researches at the Department of Geology

It is difficult to cover all ongoing researches of Geoinformatics at UEM in this short introduction article. Therefore, I focus only on some research activities at the Department of Geology (DG) in UEM (Fig. 2), where many types of researches on Geoinformatics have been conducted using Remote Sensing, Geographical Information System (GIS), Geostatistics and Geophysics mainly for mineral resources and groundwater explorations.

The staff development programme at DG initiated in 1988 with a support from different funding agencies, e.g., the Swedish Agency for Research Cooperation (SIDA-SAREC), Netherlands Organization for International Cooperation in Higher Education (Nuffic) and Japan International Cooperation Agency (JICA). To

Figure 1. Photos of the main campus of Eduardo Mondlane University (UEM) in Maputo City.

Figure 2. A garden of the Department of Geology ornamented with some rock samples and fossils found in Mozambique.
date the DG staff consists of 28 lecturers with PhD, MSc and BS honours levels and 2 researchers. In 2018, the total number of students enrolled at DG was around 250.

The DG has been cooperating with various institutions supporting the current researches in various fields. Some of them are governmental entities, such as National Directorate of Geology, National Institute of Petroleum, and non-governmental organizations like Schlumberger, SIDA-SAREC and JICA.

The DG offers BS honours courses in the field of Applied Geology and Geological Exploration and Cartography, and two Master Courses in Mineral Resources Management (MRM) and Geohydrology, both introduced in 2013. A part of the DG staff is getting MSc and PhD training under this program in MRM in Mozambique and Sweden, respectively, with a collaboration of Luleå University of Technology.

The conception of the program in MRM was motivated by the booming of mineral resources discoveries in Mozambique. The main goal of the program is to offer highly trained human resources for the mineral resources and extractive industry sector. Despite several companies having made discoveries that increased the resource base of coal, natural gas, gold, tantalite, heavy sands, semi-precious stones and construction materials as a result of intensive exploration programs in the country, some of the resources are underexploited or even unexplored. This situation opened an opportunity for the research and academic collaboration with different countries in the region and overseas. On the other hand, the program in Geohydrology was proposed to provide training to fill the gap of highly qualified human resources in the field of sustainable water exploration and integrated water resources management, particularly to groundwater resources.

The first works involving Geoinformatics at the DG date from the studies by Mondlane et al. (2000) and Mondlane (2003) who studied the artisanal and small scale mining in Mozambique. Another noteworthy work about the importance of Geoinformatics is by Prof. Vasconcelos who had dedicated his life to research in mineral resources, with more emphases to coal deposit occurrence in the Karro basin of Mozambique and Geoethics. His book "Apontamentos de Fotogeologia" (Vasconcelos, 2013), dedicated to students, here translated to English as "Notes on Photogeology", emphasizes the importance of remotely sensed images to geological interpretation.

Mozambique has one of the longest stretches of Indian Ocean coastline in Africa with arguably the most unspoiled beachfront (http://www.mozambique.co.za/). It extends along 2700 km from Tanzania to South Africa. Due to climate change, the coastal areas including islands, have been threatened by the sea-level rise. Various researches applying Geoinformatics are dedicated to this field by the DG staffs (e.g., Chemane et al., 1997; Sitoe et al., 2015; Massuanganhe et al., 2018) to understand the impact of climate change on the coastal areas of the country prone to flooding.

On the other hand, two third of the country are chiefly founded on crystalline basement complex rocks from the Mesoproterozoic and Neoproterozoic eras. Exploring groundwater resources in such areas has been hindered by complex geology and other factors such as topography and dense vegetation in some areas. Therefore, many researches have been conducted in such areas of the country for a better understanding of control factors of the groundwater occurrence using geophysical methods (e.g., Chirindja et al., 2016; 2017).

In general, basement aquifers are characterized by strong heterogeneities generated from crystalline rocks. Consequently, applying only geophysical methods for groundwater explorations is costlier in such environment. Accordingly, with the help of GIS, analysis of satellite images combined with geophysical field survey data provide a cost-effective way of mapping potential

![Figure 3. Groundwater potential map of an area in central western Mozambique produced from the integration of five factors: lineament density, proximity to lineament, slope angle, vegetation index, and lithology. Synthetic aperture radar (SAR) backscattering coefficient analysis were used as ancillary information for rating geological feature classes. Profile numbers coloured white signify the profiles with absence of moderately conductive layer around the lineament zone. Well locations are overlaid on the map to examine the correspondence between the groundwater potential yield and levels (Magaia et al., 2018a).](image-url)
zones for groundwater exploration and therefore, improving the success ratio of drilling in crystalline basements (Magaia et al., 2016; Magaia et al., 2018a). The study by Magaia et al. (2018a) demonstrated such effectiveness of combining topographic and vegetation greenness analysis, and near surface geophysical data for tracing fracture zones and evaluating the groundwater potential (Fig. 3). Another remarkable research in this field is by Magaia et al. (2018b), in which the authors demonstrated the effectiveness of combining both optical and synthetic aperture radar (SAR) data for remote sensing-based mapping of groundwater potential (Fig. 4).

3. Concluding Remarks

With the current trend of mineral exploration and hydrocarbons in the world, and particularly in Mozambique, the relevance of Geoinformatics for researches at UEM-DG becomes stronger. Recently, UEM has launched an ambitious ten-year Strategic Plan (2018 to 2028) which includes the creation and development of a Centre of Excellence in Groundwater Studies and a Centre of Excellence in Oil and Gas for the Eastern and Southern Africa (funded by the World Bank). Hence, Geoinformatics will continue being a key support for the success of all the coming researches at DG and UEM. Research collaborations including faculty members and students exchange with Japanese Universities are strongly desired and expected in the Geoinformatics field.

References

Chemane, D., Motta, H., and Achimo, M. (1997) Vulnerability of coastal resources to climate changes in Mozambique: a call for integrated coastal zone management. Ocean & Coastal Management, vol. 37, no. 1, pp. 63–83. doi:10.1016/S0964-5691(97)00073-2

Chirindja, F. J., Dahlin, T., and Juizo, D. (2017) Improving the groundwater-well siting approach in consolidated rock in Nampula Province, Mozambique. Hydrogeology Journal, vol. 25, no. 5, pp. 1423–1435. doi:10.1007/s10040-017-1540-1

Chirindja, F. J., Dahlin, T., Perttu, N., Steinbruch, F., and Owen, R. (2016) Combined electrical resistivity tomography and magnetic resonance sounding investigation of the surface-water/groundwater interaction in the Urema Graben, Mozambique. Hydrogeology Journal, vol. 24, no. 6, pp. 1583–1592. doi:10.1007/s10040-016-1422-y

Magaia, L. A., Goto, T., Masoud, A. A., and Koike, K. (2018a) Identifying groundwater potential in crystalline basement rocks using remote sensing and electromagnetic sounding techniques in central Western Mozambique. Natural Resources Research, vol. 27, no. 3, pp. 275–298. doi:10.1007/s11053-017-9360-5
Magaia, L. A., Koike, K., Goto, T., and Masoud, A. A. (2018b) Discriminating weathering degree by integrating optical sensor and SAR satellite images for potential mapping of groundwater resources in basement aquifers of semiarid regions. *Natural Resources Research*, doi:10.1007/s11053-018-9445-9

Magaia, L. A., Koike, K., and Masoud, A. A. (2016) Preliminary assessment of groundwater in crystalline basement in Mozambique through integration of remotely sensed data. *Geoinformatics*, vol.27, no.2, pp.96–97.

Massuanganhe, E. A., Berntsson, A., Risberg, J., Westerberg, L.-O., Christiansson, M., Preussner, F., *et al.* (2018) Palaeogeography and dynamics of the deltaic wetland of Save River, Mozambique. *Palaeogeography, Palaeoclimatology, Palaeoecology*, vol.489, pp.64–73. doi:10.1016/j.palaeo.2017.09.021

Mondlane, S. (2003) The use of a Geographic Information System to predict gold mineralisation potential in the Manica Mutare Odzi Greenstone Belt, Mozambique and Zimbabwe. In *7th International Geochemical Congress of the PALOPs*. Maputo.

Mondlane, S., Dirks, P., Jelsma, H., and Lupankwa, M. (2000) Is remote sensing and GIS a complementary or an alternative tool for gold exploration in the Archaean greenstone belts: Preliminary results of a study case in the Manica - Mutare-Odzi greenstone belt, West of Mozambique and East of Zimbabwe. In *Ed. International Conference Geoluanda 2000*. Luanda.

Sitoe, S. R., Risberg, J., Norström, E., Snowball, I., Holmgren, K., Achimo, M., and Mugabe, J. (2015) Paleo-environment and flooding of the Limpopo River-plain, Mozambique, between c. AD 1200–2000. *CATENA*, vol.126, pp.105–116. doi:10.1016/j.catena.2014.10.038

Vasconcelos, L. (2013) *Apontamentos de Fotogeologia*. Maputo: Eduardo Mondlane University. (Press Reg. No. 7732/RLINLD/2013)

Related Sites

http://www.uem.mz/
http://www.mozambique.co.za/