The future of astronomy with small satellites

Stephen Serjeant1,2, Martin Elvis2 and Giovanna Tinetti1,3

The number of small satellites has grown hugely in the past decade, from tens of satellites per year in the mid-2010s to a projection of tens of thousands in orbit by the mid-2020s. This presents both problems and opportunities for observational astronomy. Small satellites offer complementary cost-effective capabilities to both ground-based astronomy and larger space missions. Compared with ground-based astronomy, these advantages are not just in the accessibility of wavelength ranges where the Earth’s atmosphere is opaque, but also in stable, high-precision photometry, long-term monitoring and improved areal coverage. Astronomy has a long history of new observational parameter spaces leading to major discoveries. Here we discuss the potential for small satellites to explore new parameter spaces in astrophysics, drawing on examples from current and proposed missions, and spanning a wide range of science goals from binary stars, exoplanets and Solar System science to the early Universe and fundamental physics.

Astronomers tend towards wanting ever-larger telescopes to collect more light, so the utility of small satellites (or smallsats) is not always intuitive. Compared with ground facilities, space has many advantages. In the past, the main deterrent to building more space instrumentation has been the prohibitive cost. However, over the past two decades, the cost per kilogram of launches to low Earth orbit (LEO) has been reduced by factors of several with the entry of commercial operators1. Meanwhile, assembly lines offer the prospect of reducing the costs associated with satellite design and manufacture for a fleet of identical or near-identical spacecraft. These developments create new opportunities for astronomers to exploit creatively, despite their limitations of scale.

The economic demand for internet bandwidth has led to commercial operators such as OneWeb and SpaceX entering this domain. Can these developments also drive new mission concepts in astronomy and fundamental physics? This Perspective will mainly focus on orbits at 400–1,500 km, low masses (up to about 50 kg), small physical sizes (for example, 700 × 600 × 200 mm) and long lifetimes (say, 5 years); however, to allow for technical developments, some of the concepts may currently exceed one or more of these envelopes. This article follows in part from a symposium on this topic held at the Nature offices in London on 11 November 2019.

Our article would not be complete without at least a brief mention of the challenges posed to astronomy by constellations of these same small satellites (for more details see refs. 2–4 in this Focus). Tens of thousands of objects in LEO (for example, 550 km) are expected to cause satellite streaks in most twilight observations by the Rubin Observatory, while tens of thousands of satellites in higher orbits of about 1,100 km would be far more problematic for several reasons, including their all-night visibility5. Bright tracks from LEO satellites can cause complex cross-talk effects across the images. Nor is this problem restricted to wide-field optical astronomy. The Square Kilometre Array (SKA) is being built at sites protected by national facilities, space has many advantages. In the past, the main deterrent to building more space instrumentation has been the prohibitive cost. However, over the past two decades, the cost per kilogram of launches to low Earth orbit (LEO) has been reduced by factors of several with the entry of commercial operators1. Meanwhile, assembly lines offer the prospect of reducing the costs associated with satellite design and manufacture for a fleet of identical or near-identical spacecraft. These developments create new opportunities for astronomers to exploit creatively, despite their limitations of scale.

The economic demand for internet bandwidth has led to commercial operators such as OneWeb and SpaceX entering this domain. Can these developments also drive new mission concepts in astronomy and fundamental physics? This Perspective will mainly focus on orbits at 400–1,500 km, low masses (up to about 50 kg), small physical sizes (for example, 700 × 600 × 200 mm) and long lifetimes (say, 5 years); however, to allow for technical developments, some of the concepts may currently exceed one or more of these envelopes. This article follows in part from a symposium on this topic held at the Nature offices in London on 11 November 2019.

Our article would not be complete without at least a brief mention of the challenges posed to astronomy by constellations of these same small satellites (for more details see refs. 2–4 in this Focus). Tens of thousands of objects in LEO (for example, 550 km) are expected to cause satellite streaks in most twilight observations by the Rubin Observatory, while tens of thousands of satellites in higher orbits of about 1,100 km would be far more problematic for several reasons, including their all-night visibility5. Bright tracks from LEO satellites can cause complex cross-talk effects across the images. Nor is this problem restricted to wide-field optical astronomy. The Square Kilometre Array (SKA) is being built at sites protected by national facilities, space has many advantages. In the past, the main deterrent to building more space instrumentation has been the prohibitive cost. However, over the past two decades, the cost per kilogram of launches to low Earth orbit (LEO) has been reduced by factors of several with the entry of commercial operators1. Meanwhile, assembly lines offer the prospect of reducing the costs associated with satellite design and manufacture for a fleet of identical or near-identical spacecraft. These developments create new opportunities for astronomers to exploit creatively, despite their limitations of scale.

The motivation for space astronomy

Space has historically been expensive to reach, so there must be strong practical and technical drivers for preferring space platforms over terrestrial ones for some scientific uses. Indeed there are. The first driver is atmospheric opacity. This does not just mean temporary occlusion from clouds, although clouds are certainly a limiting factor to some ground-based observations. Astronomy is fundamentally a multi-wavelength discipline6, and to build a complete physical understanding of almost all objects and processes in astronomy, one usually needs the whole electromagnetic spectrum. Figure 1 shows the atmospheric transparency as a function of wavelength. The atmosphere is transparent in the optical and for a large part of the radio, and fairly transparent in a few mid-infrared windows. But if the science objective requires observations in the ultraviolet (UV), or X-rays, or gamma rays, or in most of the infrared, or at very long radio wavelengths, then the only way this can be achieved is to perform the data collection above the atmosphere. One approach to mitigating the limitations of terrestrial astronomy is to work at high altitudes, where the transparencies are better, especially in the infrared7. In the regions of partial transparency in the mid-infrared and submillimetre

NATURE ASTRONOMY | VOL 4 | NOVEMBER 2020 | 1031-1038 | www.nature.com/natureastronomy

1School of Physical Sciences, The Open University, Milton Keynes, UK. 2Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA. 3Centre for Space Exoplanet Data (CSED), University College London, London, UK. ✉ e-mail: stephen.serjeant@open.ac.uk
wavelengths, the opacities are dominated by absorption from water vapour, favouring dry, high-altitude observatories (Fig. 1), but even at these sites the weather fluctuations can cause transparencies to vary from tens of per cent to zero\(^1\). The improved water vapour transparency at high altitude is part of the reason for launching observatories on weather balloons\(^2\), and it is part of the reason why many ground-based observatories are at high altitudes. It is also one reason that a few astronomical observations are made from sounding rockets\(^3\), but observations can have much longer durations in orbit than the few minutes a sounding rocket can provide.

Another reason to go to space is atmospheric instability. The atmosphere is not just (selectively) opaque, it is also turbulent. This affects in real time the shape of the point-spread function (the apparent shape of a point-like object such as a star). This turbulence can be seen in real time even by some amateur telescopes trained on the Moon. For large telescopes, the distortion varies across the field of view, requiring adaptive optical technologies to measure the distortion in the incoming wavefront and correct for it in real time\(^4\). Such a correction can be achieved either by using a nearby reference star, or by using lasers to fluoresce in the upper atmosphere to obtain a reference, or by ‘lucky imaging’, that is, imaging with high time resolution and disregarding the bulk of the data to retain only the serendipitously least affected data\(^5\). Unaided, the angular resolution of ground-based optical and infrared astronomy is rarely better than 0.5 arcseconds (zenith, 500 nm/600 THz) at even the best observatory sites, with image quality degrading with both air mass and frequency\(^6\). Lucky imaging can improve image quality by factors of between 2.5 and 4 with bright guide stars (for example, I-band magnitude 16)\(^7\), while adaptive optics corrections can reduce the 50% encircled energy diameter to as little as tens of milliarcseconds\(^8\), but telescope diffraction limits are typically achievable only at wavelengths longer than visible light and only in relatively rare good seeing conditions. With space astronomy, imaging is much more stable (as well as being naturally diffraction-limited). This stability is critical, for example, when searching for subtle changes, such as exoplanets passing in front of their stars. Atmospheric stability is not just a problem for optical astronomy. In the radio, the distortions come from the ionosphere, which changes the apparent positions of objects in real time, as well as the sizes, the phases of the incoming waves and much else\(^9\). The ionosphere is the single biggest systematic uncertainty in some radio observations\(^10\).

A further reason to prefer space astronomy for some scientific applications is the presence of terrestrial emissions. This is particularly the case for infrared astronomy, because the Earth and its atmosphere are bright and radiate thermally with a peak around 10 μm. This emission spectrum in the near-infrared has ‘airglow’ emission lines mostly from the OH molecule, so ground-based infrared spectroscopy has additional problems. In the radio, there is the problem of terrestrial radio frequency interference\(^11\).

The following sections will provide examples of scientific applications of space astronomy in small satellite contexts, with particular regard to exploiting these advantages of space platforms.

Radio astronomy

Radio astronomy has one of the few probes of how the ‘dark age’ of the Universe — the time before any stars had ignited — ended. Before the epoch at which we see the cosmic microwave background, the Universe was an opaque and fully ionized plasma. As the Universe cooled and expanded, this plasma combined into neutral gas in a process known as ‘recombination’, despite it being the first formation of neutral atoms in the history of the Universe. At approximately the same time, the photon optical depth dropped below unity, the mean free path of photons tended to infinity and the Universe became transparent. This light from the epoch of last scattering is the cosmic microwave background\(^12,13\). With no further luminous sources, the Universe entered a dark age until, a few hundred million years after the Big Bang, the first stars formed, and they in turn reionized their surroundings. The bubbles of ionization (Strömgren spheres) around these stars create characteristic absorption and emission features against the cosmic microwave background in the spin-flip transition of the neutral hydrogen electron at a wavelength of 21 cm in the radio band\(^14\). These features are the signatures of the first ionizing sources of light in the Universe, and detection and characterization of this reionization process is
one of the principal science goals of the next generation of radio facilities such as the SKA17.

The next generation of infrared space observatories such as the James Webb Space Telescope (JWST)22, Euclid23 and the Nancy Grace Roman Space Telescope24 will attempt to detect the ionizing sources themselves, especially when aided by magnification from strong gravitational lensing25,26; these will be discussed in more detail in the next section. SKA precursor and pathfinder facilities such as the Low Frequency Array (LOFAR27) are also attempting to characterize this reionization signal. No detection has yet been made, and all the experiments are technically challenging28. The LOFAR antennas across Europe detect signals from most of the sky, and the varying astrophysical signal across the sky is separated from ionospheric foregrounds and reconstructed in an enormous computational effort. Avoiding the ionosphere therefore has obvious attractions.

There have been several proposals for small satellite swarms above the ionosphere to map the radio sky at ultra-low-frequencies29, such as the Space-Based Ultra Low Frequency Radio Observatory (SULFRO30), the Dark Ages Polarimeter Pathfinder (DAPPER31), the Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR32), the Distributed Aperture Array for Radio Astronomy In Space (DARIS33), the Formation-flying sub-Ionospheric Radio astronomy Science and Technology (FIRST34), the Space-based Ultra-long wavelength Radio Observatory (SURO35), the Discovering the Sky at the Longest Wavelengths mission (DSL36) and Nanosatellites pour un Observatoire Interferometrique Radio dans l’Espace (NOIRE37). In nearly all these potential dark-ages experiments, the satellites are located either at the second Earth–Sun Lagrange point or in lunar orbit. The reason for this is the radio frequency interference from the Earth. If one can eclipse the Earth by the Moon, one achieves a very radio-dark site. Low-Earth orbit would therefore present additional technical challenges, but the AERO/VISTA mission is a proposed microsatellite to investigate mitigation of radio frequency interference38. The objective is to test whether one can relax the requirement that space-based low-frequency interferometers must be placed far from the Earth, suggesting a tantalizing possibility that dark-ages radio experiments may eventually be achievable more easily and affordably in LEO.

Infrared astronomy

The simultaneous needs of minimizing foreground emissions and having access to spectral windows (see above) have led to a long history of space applications in infrared astronomy. (Optical astronomy, where the advantage of space is usually in diffraction-limited photometric stability rather than improved transparency or backgrounds, will be discussed mainly under ‘Exoplanets’ below.) Many landmark results have followed from very large (costly) missions, such as the Infrared Astronomy Satellite (IRAS39), the Infrared Space Observatory (ISO40), AKARI41, Spitzer42, the Wide-field Infrared Survey Explorer (WISE43), Herschel44 and in the future SPHEREx45, JWST46 and SPICA47. Costs for all these missions are in excess of US$100 million, with a few approaching the billion and one the 10 billion price tag. However, there are still many cases of scientific use for which the technical requirements can be fulfilled, in some cases uniquely, by much smaller missions. For example, the Infrared SmallSat for Cluster Evolution Astrophysics (ISCEA48) seeks to map selected galaxy clusters at the peak epoch of star formation (redshifts around 2) and their surrounding cosmic webs, through near-infrared imaging and spectroscopy (avoiding the terrestrial thermal background, OH airglow and restricted atmospheric transmission), and at a cost of <US$35 million without launch costs.

The radio missions in the previous section have reionization as a cosmic near-infrared extragalactic background (CNIRB). The principal difficulty is that scattered sunlight from zodiacal dust in our Solar System peaks at similar wavelengths and is several times brighter49. This dust is also not simply distributed throughout the Solar System but has several intricate features making the foreground signal time- and position-dependent49. Removal of zodiacal dust emission is the principal source of systematic errors in cosmic near-infrared background measurements, and in every CNIRB detection experiment there is considerable debate over the control of this systematic. Therefore, the CIBER49 sounding rocket experiment sought to measure the Fraunhofer absorption lines in the extended light. These lines are present in the Sun’s atmosphere, but there are no additional Fraunhofer absorption features from the dust scattering process, so one can obtain an estimate of the amount of scattered sunlight from the depths of these absorption lines. The CIBER experiment had only a 10-minute flight time, but a payload on a small satellite, or several small satellites, could have a much longer duration and could sample a much wider range of lines of sight and solar elongation angles.

High-energy astronomy

At first sight, high-energy astronomy is an unlikely regime in which to make breakthroughs with small satellites. High-energy astronomy refers to radiation reaching us anywhere in the eight-plus decades of photon energy (or equivalently frequency) that lie above the point at which hydrogen is ionized, the Lyman limit at 13 electronvolts (eV, corresponding to a wavelength of 91.2 nm). Traditionally, this broad band is divided into extreme ultraviolet (EUV, up to about 200 eV), X-ray (roughly 0.2 keV to 200 keV) and gamma-ray (roughly 200 keV to 2 GeV) astronomy. Across this entire band, the number of photons coming from all the individual sources in the sky is rarely more than 10 per second per square metre, requiring detectors larger than a small satellite can carry.

Luckily, that impression misses major developments in both astrophysics and technology that open up several strong contenders for doing great science on small space platforms. Astrophysically, the key point is that the sky is dynamic, particularly at high energies. High-energy sources can briefly be extremely bright, so that small detectors are sufficient. Lately, it has been recognized that there are large-amplitude changes occurring on virtually all timescales. The ubiquity of these transient events has led to a dynamic new sub-field called time-domain astronomy. These events range from the gamma-ray counterparts to gravitational wave chirps, to exoplanets transiting their host stars that, at high energies, can probe the loss of a planet’s atmosphere due to heating from its star, and so its habitability.

Many of these events occur at random over the whole sky at a low rate, and that pushes us to cover the whole sky continuously in order to build up large enough samples to study in a reasonable time. Constellations of small satellites in LEO are the technological response to the need to cover all the sky, all the time.

There are two approaches to covering the whole sky: timing and imaging. The Hermes50 mission makes use of 10-microsecond timing of gamma-ray bursts from a hundred or more ‘3U CubeSats’, a set of unit cubes (each referred to as 1U), 10 cm on each side, connected in a line of three. The precise timing of each gamma-ray burst is different on opposite sides of the Earth at this level. That difference pins down the location of the burst to 10 arcseconds, sufficient to identify the galaxy from which it originated. As emphasized in ref. 50, this precise timing can make tests of fundamental physics too, including the quantization of spacetime (assuming the effects
are first-order in v/c, where v is velocity and c is the speed of light) by determining microsecond differences in light travel times of billions of years. The alternative imaging approach uses a far smaller constellation, but with each satellite being larger. One contender is 4piXIO, the 4p X-Ray Imaging Observatory. This mission would use coded aperture imaging, sometimes called ‘shadow mask imaging’, to cover a huge field of view (some $45° \times 45°$) with each telescope, yet return similar arcsecond-level localizations.

Exoplanets, planets orbiting stars other than our own Sun, have become one of the biggest and most exciting fields within astronomy over the past 20 years, and will be covered more comprehensively in the next section. Counterintuitively, high-energy radiation is important for exoplanets both because the activity it tracks in the host star can be destructive to the planet’s atmosphere, and because X-ray transits can measure the rate at which the atmosphere is being lost. The prospects for life on exoplanets are poor if these effects are large. Fortunately, advances in compact, lightweight, X-ray optics now allow a search for the ionized atmospheres of planets around bright stars with a small satellite. Preliminary evidence from large X-ray observatories is that these are highly extended and may be being blown away. Small satellites have the advantage that they can be dedicated to a single programme, and so can observe eclipses for a modest number of stars many times in a year.

Observational opportunities in the UV and EUV are scarce. Only NASA’s Hubble and Neil Gehrels Swift observatories have UV capability at present, and none has EUV capability. An observation of an unexpected UV flare from the electromagnetic counterpart of a gravitational wave event was a major inspiration behind the Israeli ULTRASAT, a <1 cubic metre 250-kg mission with a 50-cm mirror, due for launch in 2022, and NASA’s 12U Gravitational-wave Ultraviolet Counterpart Imager (GUCI) mission. Similarly, interest in the EUV is growing again, after years of quiet. The lack of EUV facilities is largely due to the roughly 300-lightyear horizon in the EUV, due to absorption by interstellar hydrogen in the Milky Way, putting most astronomical objects out of reach. The discovery of exoplanets well within that horizon, and the realization that EUV radiation can be destructive to planet atmosphere, has made EUV observations of exoplanet host stars a priority. NASA has funded a study of one such small satellite mission, NExTUP, dedicated to this question, along with a larger — but still modest — explorer, Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution (ESCAPE).

Exoplanets

Exoplanets are still a young field, being driven by ideas and serendipity, so many discoveries can be made with modest facilities. The discovery of the first planet around a main-sequence star was rewarded in 2019 with the Nobel Prize for Physics. Interestingly, this discovery was made with a ~2-m telescope at the Observatoire de Haute-Provence. Another key example is the more recent exceptional discovery of a planetary system made of Earth- and sub-Earth-size planets around the ultracool dwarf TRAPPIST-1 enabled by two 60-cm telescopes at the La Silla Observatory in Chile and the Observatoire de l’Oukaimeden in Morocco.

The Canadian Microvariability and Oscillations of Stars telescope (MOST) was the first microsatellite in orbit. Launched in 2003, its primary goal was to monitor variations in starlight over long periods of time (up to 2 months). MOST made major astronomical discoveries, for example that the star Procyon does not oscillate, contradicting previous observations made from the ground. MOST also showed that some hot giant planets orbiting very close to their star have a very low albedo (<0.1 for HD 209458b), ruling out the presence of high-reflective clouds in their atmospheres. MOST’s cost was CA$10 million, including design, construction, launch and operations.

CNES-CoRoT (Convection, Rotations et Transits planétaire), launched in 2006, was the first space mission dedicated to detecting exoplanets. The spacecraft, based on a CNES-Alcatel PROTEUS LEO recurrent platform, was equipped with a 27-cm-diameter telescope. However, several sub-systems were upgraded, in particular to reach the stringent satellite pointing stability requirement of 0.5 arcseconds root mean square (r.m.s.). The mission’s cost amounted to €170 million. Among the notable discoveries was CoRoT-7b, which was the first exoplanet shown to have a rock-dominated interior.

The search for new worlds in our Galaxy in the past couple of decades has been highly successful, and the prospects for the coming decade are even brighter. Over 4,300 exoplanets are known today, a large majority of which were discovered by the NASA Kepler mission, launched in 2009 in a trailer orbit. The project’s life-cycle cost, including 3.5 years of operations and excluding launch, was approximately US$600 million. Kepler revealed the demographics of planets in our Galaxy. In the sample identified by Kepler, there is little resemblance with the Solar System paradigm. For instance, planets with radii between that of the Earth and Neptune are by far the most common, whereas our Solar System has no example of these intermediate planets. These unexpected results have prompted a great deal of effort in the community to increase the number of known extrasolar planets and overcome the limits of the current incomplete sample, which still show biases imposed by the detection techniques adopted.

Focusing on current space missions to detect new exoplanets, NASA’s TESS (Transiting Exoplanet Survey Satellite) mission was launched in 2018 into an inclined, elliptical, lunar-resonant orbit around the Earth to survey the whole sky and search for planets orbiting nearby stars. The ESA CHEOPS mission was launched in December 2019 with the scientific goal to search for transits of exoplanets around stars already known to host planets. CHEOPS operates at 700 km in a Sun-synchronous orbit. Both TESS and CHEOPS are relatively small satellites optimized to observe bright targets, which are the most favourable for follow-up observations of their masses and atmospheric characterization. Their costs are short of US$300 million for TESS and about €150 million for CHEOPS.

Further into the future (2026), the ESA PLATO mission will aim at finding small planets transiting in the habitable zone of solar-type stars, a goal that requires extremely high pointing stability and photometric precision and justifies the choice of a medium-size mission operating in L2 (the ESA budget for the M3 slot being €650 million plus payload costs).

Meanwhile, a new generation of CubeSats is generating exciting science in preparation for or in parallel to more ambitious missions. The ASTERIA mission is an example. ASTERIA is a 6U CubeSat capable of pointing with sub-arcsecond stability. ASTERIA measured the transit depth of a known planet, 55 Cancri e, only twice the size of the Earth and orbiting a very bright star (Fig. 2). As of February 2018, ASTERIA had met its primary mission requirements by demonstrating pointing stability better than 0.5 arcseconds r.m.s. over 20 minutes and pointing repeatability of 1 milliarcsecond r.m.s. from orbit to orbit. The mission also demonstrated thermal stability of ±0.01 K, as measured at a single point on the focal plane. ASTERIA serves as a demonstration of what a large constellation of such satellites could do.

What are these planets actually like, and — most importantly — why are they as they are? In the next decade, emphasis in the field of exoplanetary science will expand towards understanding the nature of the exoplanetary bodies and their formation and evolutionary history. This goal is achievable through the remote sensing observation of a large sample of exoplanetary atmospheres.

In the past 10 years, we have learned how to obtain the first spectra of exoplanetary atmospheres. With the high stability of Spitzer, Hubble and large ground-based telescopes, the spectra of close-in planets around bright stars were obtained. Key molecular, atomic and ionic species have been detected and the structure
and stability of those atmospheres have been sounded. About 50 gaseous planets’ atmospheres and the atmospheres of a few very interesting small planets (for example refs. \(^3\),\(^4\)) have been observed so far. Despite these successes, current exo-atmospheric observations are still sparse and give an incomplete picture of the planets studied. Additionally, flagship space observatories are heavily oversubscribed: the exoplanet oversubscription was a factor of 12 for Spitzer, while the Hubble Space Telescope is typically a factor 6.5 oversubscribed for exoplanets.

In the next decade, the launch of JWST\(^2\) will address many of the current instrumental limitations, and its sensitivity will offer the opportunity to increase the number of small planets analysed, including the ones in the habitable zone of cool stars, such as some of the TRAPPIST-1 planets. The ESA Ariel medium-size mission (the ESA budget for the M4 slot being €450 million plus payload costs), to be launched in L2 in 2028, has been designed to provide high-quality, optical to infrared spectra for a large sample (~1,000) of diverse exoplanetary atmospheres\(^5\).

While being transformational for exoplanet characterization, JWST and Ariel will not cover, for example, the UV spectral range. Their observing time will be precious: JWST is expected to be even more oversubscribed than the Hubble Space Telescope and Spitzer\(^6\). There is therefore a clear niche for small missions before or in parallel to the launch of JWST and Ariel to maximize their science return and complete the big picture. For instance, CUTE is a 6U CubeSat designed to observe, in the near-UV, about 12 giant planets for which atmospheric escape and interactions with the host star have the largest observable effects\(^7\). BSSL-Twinkle is a small satellite designed to provide spectroscopic measurements in the optical and infrared of exoplanets around very bright stars and Solar System objects. Twinkle will operate at 700 km in a Sun-synchronous orbit\(^8\); the data it records will be delivered to scientists through a membership access model similar to the one implemented today for many ground telescopes.

Solar System applications

There are also astrobiological applications for small-satellite technologies. The potential science questions here are both biological and chemical. The biological questions include, for example: can microbes survive transit from Mars to Earth, and survive re-entry? The context of this question is panspermia, the proposition that life originally started elsewhere such as on Mars, but then propagated to Earth via hypervelocity impacts\(^9\). Too little is known about how life started to be able to rule this out. The chemical questions include, for example: how do complex pre-biotic molecules\(^10\) form in space? Here the reactions are typically in the context of cryogenic surface chemistry on dust grains, in ultra-hard vacuum. Broadly speaking, there is little gas-phase chemistry in astronomy because the interstellar and interplanetary media are so sparse, but if atoms or molecules are adsorbed onto a dust grain, they can perform random walks across the surface and potentially interact. It is not easy to create analogues for space environments in terrestrial laboratories\(^11\), so there are several experiments to test whether bacteria can survive in the harsh radiation environment of space, and in the temperature variations and the ultra-hard vacuum, for example the EXPOSE experiment\(^12\) mounted on the International Space Station (ISS). However, the ISS is not an ideal location for this experiment, because of the environmental pollutants from rocket propellant and other local emission sources. Furthermore, the radiation environment of the ISS is by design more benign than some experiments seek to investigate. There are therefore several CubeSat experiments for astrobiology. If the satellite is placed in a polar orbit or similar, it can pass through the Van Allen belts and obtain a higher radiation dose. For example, the NASA O/OREOS 3U CubeSat achieved 15 times the ISS exposure.

There is still a large astrobiological parameter space to explore. Aspirations include in situ Raman or near-infrared spectroscopy, removing the need to recover the satellite; and exploring the effects on metabolically or reproductively active organisms\(^13\).

Microsatellite constellations may also be an appropriate technology for monitoring the Earth’s geomagnetic environment. The three LEO satellites of the SWARM mission\(^14\), launched in 2013, monitor the strength and structure of the Earth’s magnetic field and its effects on global positioning systems. Although microsatellite swarms would have reduced capacity for instrumentation compared with the SWARM mission, they could still increase the instantaneous three-dimensional coverage of the geomagnetic environment.

Another use case for monitoring the Earth’s environment is near-Earth asteroids. These are often located at low solar elongation angles, so are affected by scattered sunlight in ground-based observations during daytime or twilight. The Near Earth Object Surveillance Satellite (NEOSSat), launched in 2013, has therefore been monitoring for near-Earth asteroids from a microsatellite platform\(^15\); a microsatellite constellation could increase instantaneous areal coverage and improve completeness, as well as improving temporal coverage for light curves (variability due to rotation).

Finally, solar observations are not photon-starved so can be well suited to small satellite platforms. For example, the Miniature X-ray Solar Spectrometer (MinXSS) CubeSats\(^16\) aim to monitor the solar X-ray flux (0.5–30 keV), infer coronal element abundances, and determine the influence on the Earth’s ionosphere and thermosphere.

Technological challenges

Small satellites are often used to increase the technology readiness level of a satellite component by demonstrating capability in an operational environment, but some of the applications in this Perspective call for dedicated technological development.

The LEO environment is an extremely challenging one. LEO commercial platforms usually do not require stray-light control or pointing stability at the level of an astrophysical mission. They can be modified by careful studies of additional payload elements (Earth-shield, baffle, fine-guidance-system and so on) but clearly at an additional cost. For instance, in the case of CoRoT, at platform level the pointing was provided by star trackers, inertial wheels, magneto-torquers and gyrometers, giving an angular stability of 16 arcseconds\(^17\). Since CoRoT’s requirement was about 0.5 arcsec
r.m.s., to reach this value, it was necessary to include ecartometry computations in the control loop based on the position of two stars on the payload focal plane.

The performances demonstrated in 2018 by CubeSat ASTERIA in terms of pointing stability and repeatability are encouraging.

A LEO satellite presents a one-sided view to a 220-K blackbody with emissivity and temperature variations as the orbit is completed. This is not favourable to a thermally controlled environment or for potential telescope sidelobes, introducing additional unwanted radiation as well as that originating from the source in question. Satellite thermal control is well demonstrated on large missions with high technology readiness levels, but miniaturization is an additional obstacle for small satellites, and the cooling systems also need to satisfy the satellite’s mass and power budgets. Passive systems (those requiring no power) such as thermal coatings and sunshades require less additional development than active (that is, powered) systems such as cryogenic coolers, or cryocoolers. Miniaturized active cooling is needed for observations extending into the thermal infrared (longer than about 2 μm) and is under development64. For example, the Cryocube-1 mission65 was deployed from the ISS in February 2020. It is intended to reach 100 K through passive cooling alone and will perform cryogenic fluid management tests for future miniature active systems.

Deployable optics is another area where technological development would assist small–satellite applications for astronomy. The size of the telescope primary mirror determines not just the angular resolution but also the total light-gathering ability and hence the system signal-to-noise for any observation. There are therefore strong scientific drivers for maximizing the primary mirror size. Constraints on launch vehicle volume have driven the JWST design22 to have unfolding segmented mirrors; small satellites have their own volume constraints that also suggest deployable optics, particularly to the theoretical diffraction limit if possible. Several design studies have been conducted66, but so far only the PRISM mission27 is known to have made an in-flight demonstration, and then only to deploy lenses on an extending optical bench. Further work is merited.

Timing to microsecond accuracy is also critical for the high-energy use cases discussed in this article, and here the situation is slightly more developed. For example, the NASA Deep Space Atomic Clock66, launched in 2019, aims to maintain a timing precision of less than one microsecond per decade, in a 16-kg instrument less than 30 cm cubed.

Outlook

As the cost and technical barriers to small-satellite astronomy are reduced, one possible overarching consequence of increasing the numbers of principal investigator (PI)-led missions is the impact on and from Open Science. Observatory missions typically have proprietary lifetimes of 6–12 months for raw data, whereas PI missions and instruments sometimes have much more restrictive policies. Initiatives such as the European Open Science Cloud67 aim to make all data FAIR (findable, accessible, interoperable, reusable), which in astronomy usually involves, among other things, the integration of products into the Virtual Observatory. Meanwhile, data management and deposition plans are increasingly being required by funding bodies. Commissioning new instrumentation can sometimes be a sound justification for extended proprietary lifetimes, but existing software, data standards and data repositories can still represent a considerable cost saving to a small mission. The future small-satellite astronomy community could therefore do well to maintain the open data culture from observatories, not just for exploiting existing standards and repositories, but also for teams to be eligible for follow-on funding in the current climate of open data.

Commercial satellite swarms are a two-edged invention for astronomy. They are already known to pose many problems for ground-based and space astronomy, and industry–academia discussions are underway on mitigations; on the other hand, the technology in itself has many promising applications. Astronomy has a long track record of major discoveries following the opening of new observational parameter spaces68, in turn driven by technological advances. This Perspective shows that microsatellites and microsatellite constellations certainly have the capacity to open up new parameter spaces. The ingenuity of scientists virtually guarantees that there are many more potential astronomical applications to come.

Received: 16 July 2020; Accepted: 6 August 2020; Published online: 6 November 2020

References

1. Jones, H. W. The recent large reduction in space launch cost. In 48th Int. Conf. Environmental Systems, ICES-2018-81 (Texas Tech Univ, 2018).
2. Massey, R., Lucatello, S. & Benvenuti, P. The challenge of satellite megacalibration. Nat. Astron. https://doi.org/10.1038/s41550-020-01224-9 (2020).
3. Venkatesan, A., Lowenthal, J., Prem, P. & Vidaurri, M. The impact of satellite constellations on space as an ancestral global commons. Nat. Astron. https://doi.org/10.1038/s41550-020-01238-3 (2020).
4. Tyson, J. A. et al. Mitigation of LEO satellite brightness and trail effects on the Rubin Observatory LSST. Preprint at https://arxiv.org/abs/2006.12417 (2020).
5. Borncamp, F. &ilian Lim, P. Satellite detection in ACS/HST images. In Astronomical Data Analysis Software and Systems XXVI, 491–494 (Conference series no. 521, Astronomical Society of the Pacific, 2019).
6. Cutri, R. M. et al. Explanatory Supplement to the WISE All-Sky Data Release Products (IPAC, 2015); http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/
7. Megeath, S. T. et al. The legacy of the great observatories: panchromatic coverage as a strategic goal for NASA astrophysics. Bull. Am. Astron. Soc. 51, 184 (2019).
8. Pasian, F. et al. ASTERICS: addressing cross-cutting synergies and common challenges for the next decade astronomy facilities. In Astronomical Data Analysis Software and Systems XXV, 57–60 (Conference series no. 512, Astronomical Society of the Pacific, 2016).
9. Pardo, J. R., Cernicharo, J. & Serabyn, E. Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications. IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
10. Lord, S. D. A New Software Tool for Computing Earth’s Atmospheric Transmission of Near- and Far-Infrared Radiation. NASA Technical Memorandum 103957 (1992).
11. Israel, M. et al. NASA Stratospheric Balloons: Science at the Edge of Space. NASA Technical Report NP-2006-3-754-GSFC (NASA, 2010).
12. Seibert, G. The History of Sounding Rockets and their Contribution to European Space Research. ESA History Study Reports no. 38 (ESA, 2006).
13. Davies, R. & Kasper, M. Adaptive optics for astronomy. Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).
14. Law, N. M., Mackay, C. D. & Baldwin, J. E. Lucky imaging: high angular resolution imaging in the visible from the ground. Astron. Astrophys. 446, 739–745 (2006).
15. de Gasperin, F. et al. The effect of the ionosphere on ultra-low-frequency radio-interferometric observations. Astron. Astrophys. 615, A179 (2018).
16. Sokolowski, M. et al. The impact of the ionosphere on ground-based detection of the global epoch of reionization signal. Astrophys. J. 813, 18 (2015).
17. Koopmans, L. V. E. et al. The cosmic dawn and epoch of reionization with the Square Kilometre Array. Proc. Sci. 9-13-June-2014 (2014).
18. Thompson, A. R., Moran, J. M. & Swenson, G. W. in Interferometry and Synthesis in Radio Astronomy, 787–808 (Springer, 2017).
19. Dickey, R. H., Peebles, P. J., E., Roll, P. G. & Wilkinson, D. T. Cosmic black-body radiation. Astrophys. J. 142, 414–419 (1965).
20. Wilson, R. W. & Penzias, A. A. Isotropy of cosmic background radiation at 4080 megahertz. Science 156, 1100–1101 (1965).
21. Serjeant, S. Observational Cosmology (Cambridge Univ. Press, 2010).
22. Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).
23. Laureijs, R. et al. Euclid Definition Study Report. ESA Technical Report ESA/ SRE(2011)12 (2011).
24. Spiegel, D. et al. Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets. WFIRST-AFTA Final Report. Preprint at https://arxiv.org/abs/1305.5422 (2013).
25. Wyithe, J. S. B. et al. A distortion of very-high-redshift galaxy number counts by gravitational lensing. Nature 469, 181–184 (2011).

1036 NATURE ASTRONOMY | VOL 4 | NOVEMBER 2020 | 1031-1038 | www.nature.com/natureastronomy
94. Traub, W. A. & Stier, M. T. Theoretical atmospheric transmission in the mid- and far-infrared at four altitudes. *Appl. Opt.* **15**, 364–377 (1976).
95. Zatsepin, G. T. & Chudakov, A. E. Method of finding local sources of high-energy photons. *Sov. Phys. J. Exp. Theor. Phys.* **14**, 469–470 (1962).
96. Hinton, J. Ground-based gamma-ray astronomy with Cherenkov telescopes. *New J. Phys.* **11**, 055005 (2009).

Acknowledgements

We thank the participants of the Springer Nature symposium ‘Future of astronomy with small satellites’ organized in London, November 2019, for contributions and for inspiring some of this Perspective. S.S. also thanks K. Olsson-Francis and H. Dickinson for discussions, the UK Space Agency for support under grant ST/T003502/1, and the ESCAPE project. ESCAPE — The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement no. 824064.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence should be addressed to S.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© Springer Nature Limited 2020