Synthesis of \(\alpha,\gamma\)-Chiral Trifluoromethylated Amines through the Stereospecific Isomerization of \(\alpha\)-Chiral Allylic Amines

Víctor García-Vázquez,‡,a Pablo Martínez-Pardo,‡,a Alexandru Postole,‡,a A. Ken Ingeb and Belén Martín-Matute*,a

a Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
b Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
Table of Contents

General Methods
Optimization of reduction conditions
Control experiments
General procedures and substrates that did not work
Isomerization of allylic compounds and their possible products
General procedures
Characterization data of allylic amines 4 and 4’
Characterization data of amines 6 and 6’
NMR spectra and HPLC of compounds 4 and 4’
NMR spectra and HPLC of compounds 6 and 6’
Crystal structure determination of compounds 4d’ and (1R,3R)-6d’
General methods

All reagents were utilized without any further purification as obtained from commercial sources. Flash chromatography was performed with 60 Å (35-70 μm) silica gel (GC 60A 35-70 Micron, DAVISIL). Analytical TLC was performed on aluminum plates pre-coated (0-25 mm) with silica gel (Merck, Silica Gel 60 F254). Compounds were detected by exposure to UV light or by revealing the plates in a solution of 5% KMnO₄ in water. Melting points were recorded in metal block and are uncorrected. ¹H, ¹³C and ¹⁹F NMR spectra were recorded at 400 MHz, 100 MHz and 376 MHz respectively on a Bruker Advance spectrometer. Chemical shifts (d) are shown in ppm, using as a reference the residual peaks of CDCl₃ (dH 7.26 and dC 77.00). Coupling constants (J) are given in Hz. NMR yields were calculated using 1 equiv. of 1,2,4,5-tetrachloronitrobenzene as internal standard. High resolution mass spectra (HRMS) were recorded on Bruker microTOF mass spectrometer using APCI ionization. Herein, are reported the MS when they were possible to be detected. Enantiomeric excesses were determined using HPLC analysis on an Agilent 1200-series instrument with an autosampler and UV detection and using Chiralcel OD-H, Chiralpak AD-H and IF and Phenomenex Lux Cellulose 5 columns. Optical rotations were recorded on a RUDOLPH AUTOPOL IV with an automatic polarimeter. Microwave reactions were performed in an Initiator Classic microwave reactor from Biotage.

Allylic amines (compounds 4a-4q) decompose under HRMS conditions, we have identified the fragmentations of three of those compounds (4a, 4f, 4h). Although products 6a-6q could be identified by HRMS (6a, 6f, 6h), these compounds showed a higher stability when were Boc-protected. Therefore, we provide HRMS of all Boc-protected amines (both allylic amines 4’ and aliphatic amines 6’) and NMR (¹H NMR, ¹³C NMR and ¹⁹F NMR) data for non-protected amines

Instead, full characterization of boc-protected amines 4’ and 6’ are reported.
Optimization of reduction conditions

Table S1. Optimization of the one pot isomerization/diastereoselective synthesis of γ-trifluoromethylated aliphatic amines. a

Entry	Reducing agent	Temp. (°C)	Time (h)	Conversion (%) b	Yield (%) b	d.r. b
1 c	NaBH₄	25	2	99	99	50:50
2	DIBAL-H	25	2	99	99	58:42
3	BH₃·SMe	25	18	0	0	-
4	BH₃·THF	25	18	0	0	-
5	Et₃SiH/BCF₃	25	18	0	0	-
6	DIBAL-H	0	2	99	99	65:35
7	DIBAL-H	−78 °C	2	99	99	70:30
8	L-Selectride	−78 °C	2	99	13	92:8
9 d	L-Selectride	25	2	99	-	-
10	Super-hydride	−78 °C	2	99	81	56:44
11	DIBAL-H	−90 °C	2	99	99% (75%) c	75:25
12 f	DIBAL-H	−90 °C	2	99	10	-

a: Reactions were run using 4a (0.1 mmol) and 2 equiv. of reducing agent, 0.02M. b: Conversion and d.r. determined by ¹⁹F NMR spectroscopy. c: Toluene:MeOH (1:1) used as solvent. d: Decomposition of 4a was observed. e: Isolated yield in parenthesis. f: 1 equiv. of DIBAL-H used, ketone 5a observed as major product.
Control experiments performed on allylic amine 4a

\[
\text{Ph} \quad \text{NH}_2 \\ \text{Ph} \quad \text{NH}_2 \\ \text{F}_3\text{C} \quad \text{F}_3\text{C} \\
\begin{array}{c}
\text{H}_2 \text{(1 bar)} \\
Pd/C \text{(2 mol%)}
\end{array} \\
\begin{array}{c}
\text{MeOH}, 25 \degree C, 30 \text{ min}
\end{array}
\]

\[
\begin{array}{c}
\text{F}_3\text{C} \quad \text{Ph} \\
\text{NH}_2 \\
\text{Ph} \quad \text{NH}_2
\end{array} + \begin{array}{c}
\text{F}_3\text{C} \quad \text{Ph} \\
\text{NH}_2 \\
\text{Ph} \quad \text{NH}_2
\end{array}
\]

\[99\% \text{ NMR Yield} \quad \text{Not observed}\]

Scheme S1. Hydrogenation of 4a with Pd/C.

\[
\text{Ph} \quad \text{NH}_2 \\ \text{Ph} \quad \text{NH}_2 \\ \text{F}_3\text{C} \quad \text{F}_3\text{C} \\
\begin{array}{c}
\text{DIBAL-H} \text{(1 equiv.)}
\end{array} \\
\begin{array}{c}
\text{THF}, 0 \degree C, 2 \text{ h}
\end{array}
\]

\[
\begin{array}{c}
\text{Ph} \\
\text{NH}_2 \\
\text{Ph}
\end{array}
\]

\[0\% \text{ conversion}\]

Scheme S2. Reduction of 4a with DIBAL-H.

General procedure for the synthesis of enantioenriched allylic amines

\[
\begin{array}{c}
\text{Ph} \\
\text{O}
\end{array} \\
\begin{array}{c}
\text{F}_3\text{C} \quad \text{F}_3\text{C} \\
\text{Ph} \quad \text{Ph}
\end{array}
\]

\[
\begin{array}{c}
\text{H}_2\text{N}^+\text{S}^- \quad \text{Ti(OEt)}_4
\end{array}
\]

\[
\begin{array}{c}
\text{Ph} \\
\text{N}^+\text{S}^-
\end{array} \\
\begin{array}{c}
\text{F}_3\text{C} \quad \text{F}_3\text{C} \\
\text{Ph} \quad \text{Ph}
\end{array}
\]

\[
\begin{array}{c}
\text{1) DIBAL-H, 0 \degree C} \\
\text{2) HCl 3M}
\end{array} \\
\begin{array}{c}
\text{THF}
\end{array}
\]

\[
\begin{array}{c}
\text{Ph} \\
\text{NH}_2 \\
\text{Ph}
\end{array}
\]

Scheme S3. Synthetic route for the synthesis of allylic amines 4.

Allylic amines that could not be synthesized with this methodology

![Allylic amines not accessible with the enantioselective synthetic pathway.](image1)

Figure S1. Allylic amines not accessible with the enantioselective synthetic pathway.

Allylic amines that do not work under the isomerization reaction conditions

![Allylic amines that don’t undergo isomerization reaction.](image2)

Figure S2. Allylic amines that don’t undergo isomerization reaction.
Possible stereochemical outcome of the base-catalyzed isomerization of allylic amines

Scheme S4. Different stereoisomeric products accessible under the isomerization conditions.

Above is explained how the stereochemical information of the starting material affect the stereochemical outcome of the products. The stereospecificity of the isomerization reaction not only depends on the stereochemistry of the α-carbon of the allylic amine, but also on the stereochemistry of the alkene. Therefore, R amines lead to different stereoisomers than S amines, as well as Z alkenes lead to different stereoisomers than E alkenes.

As a result of this stereodivergency, those substrates containing higher amounts of Z alkenes result in lower ee of the final chiral aliphatic amines.
General procedures

A Synthesis of allylic amines 4

The corresponding enone (5 mmol, 1 equiv.) was placed on a sealed MW vial with (R)-(+)2-methyl-2-propanesulfinamide (7.5 mmol, 1.5 equiv.) and titanium(IV) ethoxide (10 mmol, 2 equiv.) and the reaction was stirred at 100 °C for 2 h under neat conditions in the MW reactor. After completion of the reaction, the resulting imine was purified with FCC (pentane:EtOAc 9:1) to afford the pure imine. The imine was dissolved in THF (1M), the organic layers were washed with brine and dried over MgSO₄. The solvent was evaporated under reduced pressure and the amine was purified by FCC (pentane:EtOAc 8:2 to 6:4) to afford the pure allylic amines.

(rac)-4 were obtained using the same protocol with (rac)-2-methyl-2-propanesulfinamide.

B Amine protection

To a solution of the corresponding amine (0.3 mmol, 1 equiv.) in CHCl₃ (3 mL, 0.1 M) at 0 °C a solution of di-tert-butyl dicarbonate (0.36 mmol, 1.2 equiv.) in CHCl₃ (3mL, 0.1 M) was added and the reaction was stirred overnight. Then, the protected amine was purified by FCC (pentane:EtOAc 97:3 to 9:1) to obtain the desired compounds.

C Isomerization and reduction of the allylic amines

The allylic amine (0.25 mmol, 1 equiv.) and TBD (0.012 or 0.025 mmol, 5 or 10 mol %) were charged on a pressure vial and purged with Ar. Dry Toluene (12.5 mL, 0.02 M) was added and the reaction mixture was stirred for 18 h at 60 or 120 °C on an oil bath. Then, the reaction mixture was allowed to reach room temperature and cooled to -90 °C. DIBAL-H (0.5 mmol, 2 equiv.) was added and stirred at that temperature for an additional 4 h. The reaction was allowed to reach room temperature and a solution of Rochelle’s salt was added and stirred for additional 30 min, the aqueous layer was extracted with EtOAc (3x15 mL), the organic layers were dried over MgSO₄, the solvent was removed under reduced pressure. The crude was then purified by FCC (pentane:EtOAc 7:3 to 0:1) to afford the pure amine.

Characterization of allylic amines 4 and 4'

(R,E)-4,4,4-Trifluoro-1,3-diphenylbut-2-en-1-amine (4a)

The title compound was obtained following GPA from (R,E)-4,4,4-trifluoro-1,3-diphenylbut-2-en-1-one (4.0 g, 14.5 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 42% yield over 3 steps (1.69 g, 6.1 mmol).

1H NMR (400 MHz. CDCl₃) δ 7.44 – 7.41 (m, 3H), 7.37 – 7.33 (m, 2H), 7.30 – 7.27 (m, 5H), 6.55 (dq, J = 9.5, 1.5 Hz, 1H), 4.48 (d, J = 9.5 Hz, 1H), 1.55 (bs, 2H).
13C NMR (100 MHz, CDCl$_3$) δ 142.8, 139.0 (Cq, $J_{CF} = 5.0$ Hz), 131.7, 130.5 (Cq, $J_{CF} = 30.0$ Hz), 129.6, 128.82, 128.80, 128.5, 127.6, 126.4, 123.3 (Cq, $J_{CF} = 273.5$ Hz), 53.0.

19F NMR (376 MHz, CDCl$_3$) δ −66.24 (s, CF$_3$).

HRMS (ESI) m/z: Fragmentation observed: 261.0906 [M − NH$_2$]$^+$ corresponding to C$_{16}$H$_{12}$F$_3^+$, C$_{16}$H$_{12}$F$_3$ requires 261.0886.

tert-Butyl (R,E)-(4,4,4-trifluoro-1,3-diphenylbut-2-en-1-yl)carbamate (4a')

\[
\text{Ph} \quad \text{NHBOC} \\
\text{F}_3\text{C} \quad \text{Ph}
\]

The title compound was obtained following GPB from (R,E)-4,4,4-trifluoro-1,3-diphenylbut-2-en-1-amine (100.0 mg, 0.36 mmol). The protected allylic amine was purified by FCC (pentane:EtOAc 95:5) as a yellow oil in 40% yield over 3 steps (0.52 g, 1.8 mmol).

The enantiomeric excess (minor isomer: nd, major isomer 95%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, (1R,E) (major diastereomer): minor enantiomer $t_r = 10.2$ min, major enantiomer, $t_r = 7.6$ min.

[α]$_D^{25}$: −55.2 (c 1.00, CHCl$_3$, for the diastereomer mixture, d.r.: 97:3).

1H NMR (400 MHz, CDCl$_3$) δ 7.41 − 7.39 (m, 3H), 7.33 − 7.27 (m, 5H), 7.17 − 7.15 (m, 2H), 6.54 (dd, $J = 9.5$, 2.0 Hz, 1H), 5.21 (bs, 1H), 4.96 (d, $J = 7.5$ Hz, 1H), 1.42 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 154.5, 140.2, 135.3 (Cq, $J_{CF} = 5.0$ Hz), 132.3, 131.1, 129.5, 128.92, 128.89, 128.5, 127.9, 126.6, 123.2 (Cq, $J_{CF} = 273.4$ Hz), 80.0, 52.6, 28.3.

19F NMR (376 MHz, CDCl$_3$) δ −66.28 (s, CF$_3$).

HRMS (ESI) m/z: 400.1474 [M+Na]$^+$, C$_{21}$H$_{22}$F$_3$NNaO$_2^+$ requires 400.1495.

(R,E)-4,4,4-Trifluoro-3-phenyl-1-(p-tolyl)but-2-en-1-amine (4b)

\[
\text{Ph} \quad \text{NH}_2 \\
\text{F}_3\text{C} \quad \text{Ph}
\]

The title compound was obtained following GPA from (R,E)-4,4,4-trifluoro-3-phenyl-1-(p-tolyl)but-2-en-1-one (1.3 g, 4.5 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 40% yield over 3 steps (0.52 g, 1.8 mmol).

1H NMR (400 MHz, CDCl$_3$) δ 7.43 − 7.40 (m, 3H), 7.34 − 7.32 (m, 1H), 7.28-7.25 (m, 2H); 7.16 (s, 3H), 6.53 (dq, $J = 10.0$, 1.5 Hz, 1H), 4.44 (d, $J = 10.0$ Hz, 1H), 2.35 (s, 3H), 1.51 (bs, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 139.9, 139.1 (Cq, $J_{CF} = 5.0$ Hz), 137.4, 131.7, 129.6, 129.5, 128.8, 128.5, 128.2, 126.6, 123.3 (Cq, $J_{CF} = 273.0$ Hz), 52.8, 21.0.

19F NMR (376 MHz, CDCl$_3$) δ −66.21 (s, CF$_3$).

tert-Butyl (R,E)-(4,4,4-trifluoro-3-phenyl-1-(p-tolyl)but-2-en-1-yl)carbamate (4b')
The title compound was obtained following GPB from (R,E)-4,4,4-trifluoro-3-phenyl-1-(p-tolyl)but-2-en-1-amine (58.3 mg, 0.20 mmol). The protected allylic amine was purified by FCC (pentane:EtOAc 95:5) as a white solid in 74% (57.9 mg, 0.15 mmol).

The enantiomeric excess (minor isomer: 96%, major isomer 90%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, (1R,Z) (minor diastereomer): minor enantiomer, t_r = 13.0 min, major enantiomer, t_r = 9.6 min, (1R,E) (major diastereomer): minor enantiomer t_r = 6.0 min, major enantiomer, t_r = 5.5 min.

[α]_D^25: –49.9 (c 0.85, CHCl₃, for the diastereomer mixture, d.r.: 84:16).

1H NMR (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 3H), 7.28 – 7.25 (m, 2H), 7.14 (d, J = 7.9 Hz, 2H), 7.05 (d, J = 7.9 Hz, 2H), 6.53 (dd, J = 9.5, 1.5 Hz, 1H), 5.16 (bs, 1H), 4.91 (d, J = 7.9 Hz, 1H), 2.34 (s, 3H), 1.42 (bs, 9H).

13C NMR (100 MHz, CDCl₃) δ 154.5, 137.7, 137.2, 135.5 (Cq, J_CF = 5.0 Hz), 131.2, 129.6, 129.57, 128.9, 128.5, 128.3, 126.5, 123.2 (Cq, J_CF = 273.5 Hz), 79.9, 52.4, 28.3, 21.0.

19F NMR (376 MHz, CDCl₃) δ –66.2 (s, CF₃).

HRMS (ESI) m/z: 414.1619 [M+Na]^+, C₂₂H₂₄F₃NaO₂ requires 414.1651.

(R,E)-4,4,4-Trifluoro-1-(4-methoxyphenyl)-3-phenylbut-2-en-1-amine (4c)

The title compound was obtained following GPA from (R,E)-4,4,4-trifluoro-1-(4-methoxyphenyl)-3-phenylbut-2-en-1-one (1.3 g, 4.2 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 31% yield over 3 steps (0.4 g, 1.3 mmol).

1H NMR (400 MHz, CDCl₃) δ 7.43 – 7.41 (m, 3H), 7.27 – 7.24 (m, 2H), 7.19 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.52 (dq, J = 9.6, 1.6 Hz, 1H), 4.42 (d, J = 9.6 Hz, 1H), 3.80 (s, 3H), 3.68 (s, 3H), 1.50 (bs, 2H).

13C NMR (100 MHz, CDCl₃) δ 159.0, 139.3 (Cq, J_CF = 5.0 Hz), 135.0, 131.8, 130.1 (J_CF = 30.0 Hz) 129.7, 128.8, 128.5, 127.5, 123.3 (Cq, J_CF = 273.5 Hz), 114.2, 55.3, 52.5.

19F NMR (376 MHz, CDCl₃) δ –66.2 (s, CF₃).

tert-Butyl (R,E)-(4,4,4-trifluoro-1-(4-methoxyphenyl)-3-phenylbut-2-en-1-yl)carbamate (4c‘)
The title compound was obtained following GPB from \((R,E)\)-4,4,4-trifluoro-1-(4-methoxyphenyl)-3-phenylbut-2-en-1-amine (61.5 mg, 0.20 mmol). The protected allylic amine was purified by FCC (pentane:EtOAc 95:5) as a white solid in 66% (53.8 mg, 0.13 mmol).

The enantiomeric excess (minor isomer: nd, major isomer 94%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, \((1R,E)\) (major diastereomer): minor enantiomer \(t_e = 8.4\) min, major enantiomer, \(t_e = 7.8\) min.

\([\alpha]_D^{25}\): – 74.6 (c 1.01, CHCl₃, for the diastereomer mixture, d.r.: 94:6).

\(^1\text{H} \text{NMR}\) (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 3H), 7.27 – 7.25 (m, 2H), 7.06 (d, \(J = 9.0\) Hz, 2H), 6.85 (d, \(J = 9.0\) Hz, 2H), 6.52 (dq, \(J = 9.5, 1.5\) Hz, 1H), 5.13 (bs, 1H), 4.88 (d, \(J = 7.5\) Hz, 1H), 3.79 (s, 3H), 1.41 (s, 9H).

\(^{13}\text{C} \text{NMR}\) (100 MHz, CDCl₃) δ 159.2, 154.5, 135.6 (Cq, \(J_{CF} = 5.5\) Hz), 132.3 131.2, 129.5, 128.9, 128.4, 127.8, 127.3, 123.2 (Cq, \(J_{CF} = 273.5\) Hz), 114.3, 79.9, 55.2, 52.1, 28.3.

\(^{19}\text{F} \text{NMR}\) (376 MHz, CDCl₃) δ – 66.20 (s, CF₃).

HRMS (ESI) m/z: 430.1606 [M+Na]^+ , C₂₃H₂₄F₃NNaO₃ \(^+\) requires 430.1600.

\((R,E)-1-(4\text{-Bromophenyl})-4,4,4\text{-trifluoro-3-phenylbut-2-en-1-amine (4d)}\)

\[\text{F}_3\text{C} = \text{Ph} = \text{NH}_2\]

\[\text{Br}\]

The title compound was obtained following GPA from \((R,E)-1-(4\text{-bromophenyl})\)-4,4,4-trifluoro-3-phenylbut-2-en-1-one (5.0 g, 14.1 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 55% yield over 3 steps (2.7 g, 7.7 mmol).

\(^1\text{H} \text{NMR}\) (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 5H), 7.26 – 7.23 (m, 2H), 7.14 (d, \(J = 8.4\) Hz, 2H), 6.47 (dd, \(J = 9.7, 1.7\) Hz, 1H), 4.44 (d, \(J = 9.7\) Hz, 1H), 1.51 (bs, 2H).

\(^{13}\text{C} \text{NMR}\) (100 MHz, CDCl₃) δ 141.8, 138.5 (Cq, \(J_{CF} = 5.5\) Hz), 131.9, 131.5, 129.5, 128.9, 128.6, 128.2, 127.2, 123.1 (Cq, \(J_{CF} = 273.5\) Hz), 119.0, 52.6.

\(^{19}\text{F} \text{NMR}\) (376 MHz, CDCl₃) δ – 66.37 (s, CF₃).

\textit{tert}-Butyl \((R,E)-1-(4\text{-bromophenyl})-4,4,4\text{-trifluoro-3-phenylbut-2-en-1-yl} \text{carbamate (4d’)}\)

\[\text{F}_3\text{C} = \text{Ph} \quad \text{NHBoc}\]

\[\text{Br}\]

The title compound was obtained following GPB from \((R,E)-1-(4\text{-bromophenyl})\)-4,4,4-trifluoro-3-phenylbut-2-en-1-amine (71.2 mg, 0.20 mmol). The protected allylic amine was purified by FCC (pentane:EtOAc 95:5) as a white solid in 90% (82.3 mg, 0.18 mmol) [m.p.: 110 – 112 °C].

The enantiomeric excess (minor isomer: 92, major isomer 97%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, \((1R,Z)\) (minor diastereomer): minor enantiomer,
The enantiomeric excess (minor isomer: purified by FCC (pentane:EtOAc 95:5) as a white solid in (trifluoromethyl)phenyl)but
The title compound was obtained following GPB from (4e')
19 Cq, (d, 1H), 5.15 (bs, 1H), 4.97 (bs, 1H), 1.40 (s, 9H).
13 Cq, (Cq, JCF = 5.5 Hz), 132.1, 132.0, 130.9, 129.4, 129.1, 128.6, 128.2, 123.0 (Cq, JCF = 273.6 Hz), 121.8, 80.2, 52.2, 28.2.
19 F NMR (376 MHz, CDCl3) δ – 66.38 (s, CF3).
HRMS (ESI) m/z: 480.0637 [M+Na]+, C21H21BrF3NaO2 requires 480.0580.
(R,E)-4,4,4-Trifluoro-3-phenyl-1-(4-(trifluoromethyl)phenyl)but-2-en-1-amine (4e)

The title compound was obtained following GPA from (E)-4,4,4-trifluoro-3-phenyl-1-(4-(trifluoromethyl)phenyl)but-2-en-1-one (3.7 g, 10.8 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 54% yield over 3 steps (2.0 g, 5.8 mmol).

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.0 Hz, 2H), 7.46 – 7.44 (m, 3H), 7.40 (d, J = 8.0 Hz, 2H), 7.28 – 7.27 (m, 2H), 6.50 (dd, J = 9.5, 1.5 Hz, 1H), 4.55 (d, J = 9.5 Hz, 1H), 1.56 (bs, 2H).

13 Cq, (Cq, JCF = 30.0 Hz), 131.4, 129.9 (JCF = 32.4 Hz), 129.5, 129.0, 128.7, 126.9, 125.7 (Cq, JCF = 4.0 Hz), 124.0 (Cq, JCF = 272.0 Hz), 123.1 (Cq, JCF = 273.5 Hz), 52.8.

19 F NMR (376 MHz, CDCl3) δ – 66.55 (s, CF3), – 66.46 (s, CF3).

tert-Butyl (R,E)-(4,4,4-trifluoro-3-phenyl-1-(4-(trifluoromethyl)phenyl)but-2-en-1-yl)carbamate (4e')

The title compound was obtained following GPB from (R,E)-4,4,4-trifluoro-3-phenyl-1-(4-(trifluoromethyl)phenyl)but-2-en-1-amine (86.3 mg, 0.25 mmol). The protected allylic amine was purified by FCC (pentane:EtOAc 95:5) as a white solid in 88% (98.1 mg, 0.22 mmol).

The enantiomeric excess (minor isomer: nd, major isomer 95%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, (1R,E) (major diastereomer): minor enantiomer tR = 7.7 min, major enantiomer, tR = 13.9 min.

[α]D25: – 63.1 (c 0.99, CHCl3, for the diastereomer mixture, d.r.: 91:9).
The enantiomeric excess (minor isomer: (pentane:EtOAc 95:5) as a white solid in phenylbutyl ether). The title compound was obtained following GPB from tert-butyl (E)-4,4,4-trifluoro-1-(naphthalen-2-yl)-3-phenylbut-2-en-1-yl)carbamate (4f) as a yellow oil in phenylbutyl ether. The title compound was obtained following GPA from tert-butyl (4f) as a yellow oil in phenylbutyl ether. The protected allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 35% yield over 3 steps (0.8 g, 2.4 mmol).

\[\text{HRMS (ESI) } m/z: 468.1336 [M+Na]^+ \text{ requires } 468.1369.\]

\[\text{(R,E)-4,4,4-Trifluoro-1-(naphthalen-2-yl)-3-phenylbut-2-en-1-amine (4f)}\]

The title compound was obtained following GPA from (E)-4,4,4-trifluoro-1-(naphthalen-2-yl)-3-phenylbut-2-en-1-one (2.3 g, 7.1 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 35% yield over 3 steps (0.8 g, 2.4 mmol).

\[\text{HRMS (ESI) } m/z: 468.1336 [M+Na]^+ \text{ corresponding to } C_{20}H_{13}F^+. \]

\[\text{C_{20}H_{13}F^+ requires } 468.1369.\]

\[\text{tert-Butyl (R,E)-(4,4,4-trifluoro-1-(naphthalen-2-yl)-3-phenylbut-2-en-1-yl)carbamate (4f)}\]

The title compound was obtained following GPB from (R,E)-4,4,4-trifluoro-1-(naphthalen-2-yl)-3-phenylbut-2-en-1-amine (60.0 mg, 0.18 mmol). The protected allylic amine was purified by FCC (pentane:EtOAc 95:5) as a white solid in 83% (65.2 mg, 0.15 mmol).

The enantiomeric excess (minor isomer: nd, major isomer 97%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, (1R,E) (major diastereomer): minor enantiomer \(t_r = 13.7 \text{ min}, \text{major enantiomer}, t_r = 9.6 \text{ min}.\)

\[\alpha]_{D}^{25} = -176.8 (c 1.00, CHCl_3, \text{for the diastereomer mixture, } d.r.: 97:3).\]

\[\text{HRMS (ESI) } m/z: 468.1336 [M+Na]^+ \text{ requires } 468.1369.\]
The enantiomeric excess (minor isomer: nd, major isomer 94%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, (R,E) (major diastereomer): minor enantiomer \(t_r = 8.0 \) min, major enantiomer, \(t_r = 6.6 \) min.

\[[\alpha]_D^{25} = -36.4 \text{ (c 0.77, CHCl}_3, \text{ for the diastereomer mixture, d.r.: 97:3).} \]

\[^{1}H\text{ NMR (400 MHz, CDCl}_3) \delta 7.40 - 7.35 (m, 3H), 7.28 - 7.22 (m, 3H), 6.81 (dd, J = 8.3, 2.5 Hz, 1H), 6.74 (d, J = 7.7 Hz, 1H), 6.67 (s, 1H), 6.50 (dd, J = 9.3, 1.9, 1H), 5.16 (bs, 1H), 4.93 (d, J = 7.4 Hz, 1H), 3.77 (s, 3H), 1.41 (s, 9H). \]

\[^{13}C\text{ NMR (100 MHz, CDCl}_3) \delta 159.9, 154.5, 141.7, 135.2 (\text{Cq, } J_{CF} = 5.3 \text{ Hz}), 131.1, 130.0, 129.6, 128.9, 128.5, 123.1 (\text{Cq, } J_{CF} = 273.6 \text{ Hz}), 119.1, 118.6, 113.2, 112.4, 79.9, 55.2, 52.6, 28.3. \]

\[^{19}F\text{ NMR (376 MHz, CDCl}_3) \delta - 66.28 \text{ (s, CF}_{3}). \]

HRMS (ESI) \text{m/z: 430.1595 [M+Na]+, } C_{22}H_{24}F_3N\text{NaO}_{3}^+ \text{ requires 430.1600.}
(R,E)-4,4,4-Trifluoro-3-phenyl-1-(3-(trifluoromethyl)phenyl)but-2-en-1-amine (4h)

The title compound was obtained following GPA from (E)-4,4,4-trifluoro-3-phenyl-1-(3-
(trifluoromethyl)phenyl)but-2-en-1-one (1.2 g, 3.5 mmol). The allylic amine was purified by FCC
(pentane:EtOAc 7:3) as a yellow oil in 66% yield over 3 steps (0.8 g, 2.3 mmol).

\[\text{HRMS (ESI)} m/z: \text{Fragmentation observed: 329.0884} \]

\[\text{HRMS (ESI)} m/z: \text{[M+Na]⁺ requires 468.1369.} \]

\[\text{(R,E)-4,4,4-Trifluoro-1-(2-methoxyphenyl)-3-phenylbut-2-en-1-amine (4i)} \]

\[\text{S14} \]
The title compound was obtained following GPA from \((E)\)-4,4,4-trifluoro-1-(2-methoxyphenyl)-3-phenylbut-2-en-1-one (2.7 g, 8.7 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 49% yield over 3 steps (1.3 g, 4.26 mmol).

\(^1\)H NMR (400 MHz. CDCl\(_3\)) \(\delta\) 7.41 – 7.39 (m, 3H), 7.24 – 7.23 (m, 3H), 7.07 (dd, \(J = 7.5, 1.3\) Hz, 1H), 6.91 (t, \(J = 7.8\) Hz, 1H), 6.87 (d, \(J = 8.3\) Hz, 1H), 6.76 (dd, \(J = 9.6, 1.2\) Hz, 1H), 4.54 (d, \(J = 9.7\) Hz, 1H), 3.79 (s, 3H), 1.77 (bs, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 156.9, 138.5 (Cq, \(J_{CF} = 5.3\) Hz), 132.0, 131.1, 130.1 (Cq, \(J_{CF} = 29.7\) Hz), 129.8, 128.63, 128.57, 128.3, 127.8, 123.5 (Cq, \(J_{CF} = 273.3\) Hz), 120.9, 110.9, 55.1, 50.7.

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -66.06 (S, CF\(_3\)).

tert-Butyl (\(R,E\))-(4,4,4-trifluoro-1-(2-methoxyphenyl)-3-phenylbut-2-en-1-yl)carbamate (4i')

The title compound was obtained following GPB from (\(R,E\))-4,4,4-trifluoro-1-(2-methoxyphenyl)-3-phenylbut-2-en-1-amine (76.8 mg, 0.25 mmol). The protected allylic amine was purified by FCC (pentane:EtOAc 95:5) as a white solid in 99% (100.5 mg, 0.25 mmol).

The enantiomeric excess (minor isomer: 94%, major isomer 75%) was determined by HPLC (CHIRACEL® IC), hexane/iPrOH 98/2, 1 mL/min, (1\(R,Z\)) (minor diastereomer): minor enantiomer, \(t_r = 12.8\) min, major enantiomer, \(t_r = 10.9\) min, (1\(R,E\)) (major diastereomer): minor enantiomer \(t_r = 9.3\) min, major enantiomer, \(t_r = 8.6\) min.

\([\alpha]_D^{25} = -24.3\) (c 0.76, CHCl\(_3\), for the diastereomer mixture, d.r.: 97:3).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.41 – 7.40 (m, 3H), 7.24 – 7.20 (m, 3H), 6.87 (d, \(J = 8.1\) Hz, 1H), 6.82 – 6.75 (m, 3H), 5.59 (bs, 1H), 5.30 (bs, 1H), 3.84 (s, 3H), 1.42 (s, 9H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 156.9, 154.4, 136.0, 131.4, 131.2 (Cq, \(J_{CF} = 30.1\) Hz), 129.8, 129.2, 128.7, 128.3, 127.9, 123.3 (Cq, \(J_{CF} = 273.3\) Hz), 120.9, 111.1, 79.5, 55.3, 51.5, 28.3.

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -66.40 (s, CF\(_3\)).

HRMS (ESI) m/z: 430.1595 [M+Na]\(^+\), \(C_{25}H_{24}F_3NNaO_3\)\(^+\) requires 430.1600.

(\(S,E\))-5,5,5-Trifluoro-4-phenylpent-3-en-2-amine (4j)
The title compound was obtained following GPB from (E)-5,5,5-trifluoro-4-phenylpent-3-en-2-one (2.0 g, 9.3 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 30% yield over 3 steps (0.6 g, 2.8 mmol).

\[^1H \text{NMR} \] (400 MHz. CDCl\(_3\)) \(\delta \) 7.41 – 7.37 (m, 3H), 7.24 – 7.22 (m, 2H), 6.26 (dq, \(J = 9.5, 1.6 \) Hz, 1H), 3.44 (dt, \(J = 13.1, 6.6 \) Hz, 1H), 1.31 (bs, 2H), 1.14 (d, \(J = 6.6 \) Hz, 3H).

\[^{13}C \text{NMR} \] (100 MHz, CDCl\(_3\)) \(\delta \) 141.3 (Cq, \(J_{CF} = 5.1 \) Hz), 131.9, 129.8 (Cq, \(J_{CF} = 29.9 \) Hz), 129.5, 128.6, 128.5, 123.3 (Cq, \(J_{CF} = 273.1 \) Hz), 44.8, 23.1.

\[^{19}F \text{NMR} \] (376 MHz, CDCl\(_3\)) \(\delta \) -66.30 (s, CF\(_3\)).

tert-Butyl (S,E)-(5,5,5-Trifluoro-4-phenylpent-3-en-2-yl)carbamate (4j')

The title compound was obtained following GPB from (S,E)-5,5,5-trifluoro-4-phenylpent-3-en-2-amine (53.8 mg, 0.25 mmol). The protected allylic amine was purified by FCC (pentane:EtOAc 95:5) as a white solid in 99% (69.4 mg, 0.22 mmol).

The enantiomeric excess (minor isomer: nd, major isomer 28%) was determined by HPLC (CHIRACEL® OD-H), hexane/iPrOH 98/2, 1 mL/min, (1S,E) (major diastereomer): minor enantiomer \(t_r = 9.17 \) min, major enantiomer, \(t_r = 6.85 \) min.

\[^1H \text{NMR} \] (400 MHz, CDCl\(_3\)) \(\delta \) 7.42 – 7.38 (m, 3H), 7.32 – 7.31 (m, 2H), 6.47 (t, \(J = 6.7 \) Hz, 1H), 4.47 (bs, 1H), 4.17 (bs, 1H), 1.25 (bs, 2H).

\[^{13}C \text{NMR} \] (100 MHz, CDCl\(_3\)) \(\delta \) 154.6, 137.9, 131.4, 129.5, 128.7, 128.5, 127.2, 123.2 (Cq, \(J_{CF} = 273.2 \) Hz), 44.9, 28.3, 21.0.

\[^{19}F \text{NMR} \] (376 MHz, CDCl\(_3\)) \(\delta \) -66.46 (s, CF\(_3\)).

HRMS (ESI) \(m/z \): 338.1360 [M+Na]\(^+\), \(C_{16}H_{20}F_{3}NNaO_{2} \) requires 338.1338.

(E)-4,4,4-Trifluoro-3-phenylbut-2-en-1-amine (4k)

The title compound was obtained following GPA from (E)-4,4,4-trifluoro-3-phenylbut-2-enal (0.7 g, 3.5 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 49% yield over 3 steps (0.35 g, 1.7 mmol).

\[^1H \text{NMR} \] (400 MHz, CDCl\(_3\)) \(\delta \) 7.42 – 7.38 (m, 3H), 7.24 – 7.22 (m, 2H), 6.47 (t, \(J = 6.7 \) Hz, 1H), 3.27 (dd, \(J = 6.9, 2.2 \) Hz, 2H), 1.25 (bs, 2H).

\[^{13}C \text{NMR} \] (100 MHz, CDCl\(_3\)) \(\delta \) 137.0 (Cq, \(J_{CF} = 5.3 \) Hz), 131.7, 131.3 (Cq, \(J_{CF} = 29.6 \) Hz), 129.4, 128.7, 128.5, 123.3 (Cq, \(J_{CF} = 273.1 \) Hz), 39.8.

\[^{19}F \text{NMR} \] (376 MHz, CDCl\(_3\)) \(\delta \) -66.01 (s, CF\(_3\)).
(R,E)-4,4,4-Trifluoro-1-phenyl-3-(p-tolyl)but-2-en-1-amine (4l)

\[
\begin{align*}
\text{Ph} & \quad \text{NH}_2 \\
\text{F}_3C & \quad \quad \quad \quad \\
\end{align*}
\]

The title compound was obtained following GPA from (E)-4,4,4-trifluoro-1-phenyl-3-(p-tolyl)but-2-en-1-one (1.6 g, 5.5 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 56% yield over 3 steps (0.9 g, 3.1 mmol).

\[\text{^1H NMR} \ (400 \text{ MHz, CDCl}_3) \delta 7.34 - 7.33 (m, 2H), 7.30 - 7.27 (m, 3H), 7.24 (d, J = 7.9 Hz, 2H), 7.16 (d, J = 7.9 Hz, 2H), 6.51 (dd, J = 9.8, 1.7 Hz, 1H), 4.50 (d, J = 9.8 Hz, 1H), 2.40 (s, 3H), 1.56 (bs, 2H).\]

\[\text{^13C NMR} \ (100 \text{ MHz, CDCl}_3) \delta 142.9, 138.8 (Cq, J_{CF} = 5.2 \text{ Hz}), 138.7, 130.5 (Cq, J_{CF} = 29.8 \text{ Hz}), 129.5, 129.2, 128.8, 128.7, 127.6, 126.4, 123.3 (Cq, J_{CF} = 273.3 \text{ Hz}), 53.0, 21.3.\]

\[\text{^19F NMR} \ (376 \text{ MHz, CDCl}_3) \delta -66.30 \text{ (s, CF}_3).\]

The enantiomeric excess (minor isomer: nd, major isomer 90%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, (1R,E) (major diastereomer): minor enantiomer \(t_r = 6.9 \text{ min, major enantiomer, } t_r = 5.4 \text{ min.}\)

\[[\alpha]_D^{25}: -53.1 \text{ (c 0.98, CHCl}_3, \text{ for the diastereomer mixture, d.r.: 87:13).}\]

\[\text{^1H NMR} \ (400 \text{ MHz, CDCl}_3) \delta 7.38 - 7.28 (m, 3H), 7.21 - 7.15 (m, 6H), 6.49 (dq, J = 9.4, 1.6 Hz, 1H), 5.22 (bs, 1H), 4.90 (d, J = 7.2 Hz, 1H), 2.38 (s, 3H), 1.41 (s, 9H).\]

\[\text{^13C NMR} \ (100 \text{ MHz, CDCl}_3) \delta 154.5, 140.3, 138.8, 134.9 (Cq, J_{CF} = 4.7 \text{ Hz}), 129.4, 129.2, 128.9, 128.1, 127.9, 126.5, 123.2 (Cq, J_{CF} = 273.6 \text{ Hz}), 80.0, 52.6, 28.3, 21.3.\]

\[\text{^19F NMR} \ (376 \text{ MHz, CDCl}_3) \delta -66.32 \text{ (s, CF}_3).\]

HRMS (ESI) \(m/z: 414.1623 \text{ [M+Na]}^+, \text{ C}_{28}\text{H}_{22}\text{F}_3\text{NaN}_2\text{O}_2^+ \text{ requires 414.1651.}\)

tert-Butyl (R,E)-(4,4,4-trifluoro-1-phenyl-3-(p-tolyl)but-2-en-1-yl)carbamate (4l')

\[
\begin{align*}
\text{Ph} & \quad \text{NHBOc} \\
\text{F}_3C & \quad \quad \quad \quad \\
\end{align*}
\]

The title compound was obtained following GPB from (R,E)-4,4,4-trifluoro-1-phenyl-3-(p-tolyl)but-2-en-1-amine (72.8 mg, 0.25 mmol). The protected allylic amine was purified by FCC (pentane:EtOAc 95:5) as a white solid in 99% (93.2 mg, 0.24 mmol).

The enantiomeric excess (minor isomer: nd, major isomer 90%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, (1R,E) (major diastereomer): minor enantiomer \(t_r = 6.9 \text{ min, major enantiomer, } t_r = 5.4 \text{ min.}\)

\[[\alpha]_D^{25}: -53.1 \text{ (c 0.98, CHCl}_3, \text{ for the diastereomer mixture, d.r.: 87:13).}\]

\[\text{^1H NMR} \ (400 \text{ MHz, CDCl}_3) \delta 7.38 - 7.28 (m, 3H), 7.21 - 7.15 (m, 6H), 6.49 (dq, J = 9.4, 1.6 Hz, 1H), 5.22 (bs, 1H), 4.90 (d, J = 7.2 Hz, 1H), 2.38 (s, 3H), 1.41 (s, 9H).\]

\[\text{^13C NMR} \ (100 \text{ MHz, CDCl}_3) \delta 154.5, 140.3, 138.8, 134.9 (Cq, J_{CF} = 4.7 \text{ Hz}), 129.4, 129.2, 128.9, 128.1, 127.9, 126.5, 123.2 (Cq, J_{CF} = 273.6 \text{ Hz}), 80.0, 52.6, 28.3, 21.3.\]

\[\text{^19F NMR} \ (376 \text{ MHz, CDCl}_3) \delta -66.32 \text{ (s, CF}_3).\]

HRMS (ESI) \(m/z: 414.1623 \text{ [M+Na]}^+, \text{ C}_{28}\text{H}_{22}\text{F}_3\text{NaN}_2\text{O}_2^+ \text{ requires 414.1651.}\)

(R,E)-4,4,4-Trifluoro-3-(4-methoxyphenyl)-1-phenylbut-2-en-1-amine (4m)
The title compound was obtained following GPA from (E)-4,4,4-trifluoro-3-(4-methoxyphenyl)-1-phenylbut-2-en-1-one (1.6 g, 5.5 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 56% yield over 3 steps (0.9 g, 3.1 mmol).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.37 – 7.33 (m, 2H), 7.29 – 7.27 (m, 3H), 7.19 (d, \(J = 8.6\) Hz, 1H), 6.94 (d, \(J = 8.6\) Hz, 1H), 6.51 (d, \(J = 9.7\) Hz, 1H), 4.50 (d, \(J = 9.7\) Hz, 1H), 3.85 (s, 3H), 1.55 (bs, 2H).

\(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 159.9, 143.0, 138.9 (Cq, \(J_{CF} = 5.1\) Hz), 130.9, 130.1 (Cq, \(J = 29.9\) Hz), 128.8, 127.6, 126.4, 123.7, 123.4 (Cq, \(J = 273.3\) Hz), 113.9, 55.2, 53.1.

\(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) – 66.40 (s, CF\(_3\)).

tert-Butyl (R,E)-(4,4,4-trifluoro-3-(4-methoxyphenyl)-1-phenylbut-2-en-1-yl)carbamate (4m)

The title compound was obtained following GPB from (R,E)-4,4,4-trifluoro-3-(4-methoxyphenyl)-1-phenylbut-2-en-1-amine (76.8 mg, 0.25 mmol). The protected allylic amine was purified by FCC (pentane:EtOAc 95:5) as a white solid in 99% (86.2 mg, 0.21 mmol).

The enantiomeric excess (minor isomer: 98%, major isomer 93%) was determined by HPLC (CHIRACEL \(^\text{®}\) OD-H), hexane/iPrOH 98/2, 1 mL/min, (1R,Z) (minor diastereomer): minor enantiomer, \(t_r = 19.5\) min, major enantiomer, \(t_r = 12.0\) min, (1R,E) (major diastereomer): minor enantiomer \(t_r = 8.4\) min, major enantiomer, \(t_r = 6.3\) min.

[\(\alpha\)]\(_{D}^{25}\) = – 60.0 (c 0.98, CHCl\(_3\), for the diastereomer mixture, d.r.: 88:12).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.38 – 7.27 (m, 4H), 7.21 – 7.17 (m, 3H), 6.92 (d, \(J = 8.7\) Hz, 2H), 6.50 (d, \(J = 9.2\) Hz, 1H), 5.24 (bs, 1H), 5.04 (bs, 1H), 3.82 (s, 3H), 1.42 (s, 9H).

\(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 159.9, 154.5, 140.3, 135.1 (Cq, \(J_{CF} = 5.5\) Hz), 130.8, 128.9, 127.8, 127.3, 126.5, 123.2 (Cq, \(J_{CF} = 273.5\) Hz), 123.2, 113.9, 79.9, 55.1, 52.6, 28.3.

\(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) – 66.36 (s, CF\(_3\)).

HRMS (ESI) \(m/z\): 430.1562 [M+Na]^+, \(C_{21}H_{22}F_{3}NaO_{2}\) requires 430.1600.

(R,E)-4,4,4-Trifluoro-1-phenyl-3-(4-(trifluoromethyl)phenyl)but-2-en-1-amine (4n)
The title compound was obtained following GPA from \((E)-4,4,4\text{-trifluoro-1-phenyl-3-(4-}
\text{(trifluoromethyl)phenyl})\text{but-2-en-1-one}
\) \((0.8 \text{ g, } 2.3 \text{ mmol})\). The allylic amine was purified by FCC
\((\text{pentane:EtOAc } 7:3)\) as a yellow oil in 52\% yield over 3 steps
\((0.4 \text{ g, } 1.2 \text{ mmol})\).

\(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta 7.60 \text{ (d, } J = 8.1 \text{ Hz, 2H), 7.45 – 7.44 \text{ (m, 3H), 7.40 \text{ (d, } J = 8.1 \text{ Hz, 2H), \)
\(7.27 – 7.26 \text{ (m, 2H), 6.50 \text{ (dd, } J = 9.7, 1.7 \text{ Hz, 1H), 4.55 \text{ (d, } J = 9.7 \text{ Hz, 1H), 1.56 \text{ (bs, 2H).}}\)

\(^{13}\text{C NMR (100 MHz, CDCl}_3\) \(\delta 146.7, 138.2 \text{ (Cq, } J_{\text{CF}} = 5.2 \text{ Hz), 131.5 \text{ (Cq, } J_{\text{CF}} = 30.2 \text{ Hz), 131.4 \text{, 129.9 \text{ (Cq, } J_{\text{CF}} = 32.5 \text{ Hz), 129.5 \text{, 129.0 \text{, 128.7, 126.9, 125.7 \text{ (Cq, } J_{\text{CF}} = 3.8 \text{ Hz), 124.0 \text{ (Cq, } J_{\text{CF}} = 272.0 \text{ Hz), \)
\(123.1 \text{ (Cq, } J_{\text{CF}} = 273.4 \text{ Hz), 52.8.}}\)

\(^{19}\text{F NMR (376 MHz, CDCl}_3\) \(\delta – 66.55 \text{ (s, CF}_3\), – 66.46 \text{ (s, CF}_3\)).

**tert-Butyl \((R,E)-(4,4,4\text{-trifluoro-1-phenyl-3-(4-}
\text{(trifluoromethyl)phenyl})\text{but-2-en-1-y1) carbamate (4n*)**

\(^{1}\text{H NMR (400 MHz, CDCl}_3\) \(\delta 7.66 \text{ (d, } J = 8.1 \text{ Hz, 2H), 7.41 \text{ (d, } J = 7.9 \text{ Hz, 2H), 7.36 – 7.30 \text{ (m, 3H), \)
\(7.15 – 7.12 \text{ (m, 2H), 6.61 \text{ (dd, } J = 9.4, 1.8 \text{ Hz, 1H), 5.13 \text{ (bs, 1H), 4.90 \text{ (d, } J = 7.4 \text{ Hz, 1H), 1.42 \text{ (s, 9H).}}\)

\(^{13}\text{C NMR (100 MHz, CDCl}_3\) \(\delta 154.5, 139.5, 136.6 \text{ (Cq, } J_{\text{CF}} = 4.4 \text{ Hz), 134.9, 131.13 \text{ (Cq, } J_{\text{CF}} = 32.5 \text{ Hz), 131.06 \text{ (Cq, } J_{\text{CF}} = 30.3 \text{ Hz), 130.2, 129.1, 128.2, 126.6, 125.5 \text{ (Cq, } J_{\text{CF}} = 3.8 \text{ Hz), 123.9 \text{ (Cq, } J_{\text{CF}} = 272.3 \text{ Hz), 122.8 \text{ (Cq, } J_{\text{CF}} = 273.5 \text{ Hz), 80.2, 52.7, 28.3.\)

\(^{19}\text{F NMR (376 MHz, CDCl}_3\) \(\delta – 62.85 \text{ (s, CF}_3\), – 66.14 \text{ (s, CF}_3\)).

HRMS (ESI) \(m/z: 468.1369 [M+Na]^+\), \(C_{22}H_{21}F_6\text{NNaO}_2^+\) requires 468.1369.

\((R,E)-4,4,4\text{-Trifluoro-1-phenyl-3-(m-tolyl})\text{but-2-en-1-amine (4o)}\)
The title compound was obtained following GPA from (E)-4,4,4-trifluoro-1-phenyl-3-(m-tolyl)but-2-en-1-one (2.0 g, 6.9 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 50% yield over 3 steps (1.0 g, 3.4 mmol).

\[^1H \text{NMR (400 MHz, CDCl}_3 \delta 7.38 - 7.27 \text{ (m, 6H), } 7.25 - 7.23 \text{ (m, 1H), } 7.08 - 7.06 \text{ (m, 2H), } 6.53 \text{ (dq, } J = 9.7, 1.6 \text{ Hz, 1H), } 4.49 \text{ (d, } J = 9.7 \text{ Hz, 1H), } 2.39 \text{ (s, 3H), } 1.56 \text{ (bs, 2H).} \]

\[^13C \text{NMR (100 MHz, CDCl}_3 \delta 142.9, 138.8 \text{ (Cq, } J_{CF} = 5.2 \text{ Hz), } 138.2, 131.6, 130.6 \text{ (Cq, } J_{CF} = 29.9 \text{ Hz), } 130.2, 129.6, 128.8, 128.4, 127.6, 126.7, 126.5, 123.3 \text{ (Cq, } J_{CF} = 273.3 \text{ Hz), } 53.0, 21.4. \]

\[^19F \text{NMR (376 MHz, CDCl}_3 \delta -66.18 \text{ (s, CF}_3). \]

tert-Butyl (R,E)-(4,4,4-trifluoro-1-phenyl-3-(m-tolyl)but-2-en-1-yl)carbamate (4o')

The title compound was obtained following GPB from (R,E)-4,4,4-trifluoro-1-phenyl-3-(4-(trifluoromethyl)phenyl)but-2-en-1-amine (72.8 mg, 0.25 mmol). The protected allylic amine was purified by FCC (pentane:EtOAc 95:5) as a white solid in 94% (92.3 mg, 0.24 mmol).

The enantiomeric excess (minor isomer: 93%, major isomer 89%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, (1R,Z) (minor diastereomer): minor enantiomer, t\(_r\) = 9.92 min, major enantiomer, t\(_r\) = 6.87 min, (1R,E) (major diastereomer): minor enantiomer t\(_r\) = 5.78 min, major enantiomer t\(_r\) = 4.93 min.

\[[\alpha]_{D}^{25.} = -54.2 \text{ (c 1.00, CDCl}_3, \text{ for the diastereomer mixture, d.r.: 89:11).} \]

\[^1H \text{NMR (400 MHz, CDCl}_3 \delta 7.38 - 7.27 \text{ (m, 4H), } 7.22 - 7.20 \text{ (m, 1H), } 7.17 - 7.15 \text{ (m, 2H), } 7.08 - 7.05 \text{ (m, 2H), } 6.52 \text{ (dd, } J = 9.3, 1.9 \text{ Hz, 1H), } 5.21 \text{ (bs, 1H), } 4.99 \text{ (d, } J = 7.6 \text{ Hz, 1H), } 2.35 \text{ (s, 3H), } 1.42 \text{ (s, 9H).} \]

\[^13C \text{NMR (100 MHz, CDCl}_3 \delta 154.4, 140.4, 138.1, 135.1, 132.4 \text{ (Cq, } J_{CF} = 29.7 \text{ Hz), } 131.0, 130.2, 129.7, 128.8, 128.3, 127.8, 126.6, 126.5, 123.2 \text{ (Cq, } J_{CF} = 273.5 \text{ Hz), } 80.0, 52.6, 28.3, 21.3. \]

\[^19F \text{NMR (376 MHz, CDCl}_3 \delta -66.16 \text{ (s, CF}_3). \]

HRMS (ESI) m/z: 414.1652 [M+Na]^+, C\(_{21}\)H\(_{22}\)F\(_3\)NNaO\(_2\)^+ requires 414.1651.

\((R,Z)-4,4,4\text{-Trifluoro-1-phenyl-3-(thiophen-2-yl)but-2-en-1-amine (4p)}\)
The title compound was obtained following GPA from (Z)-4,4,4-trifluoro-1-phenyl-3-(thiophen-2-yl)but-2-en-1-one (1.5 g, 5.3 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 47% yield over 3 steps (0.7 g, 2.5 mmol).

1H NMR (400 MHz. CDCl$_3$) δ 7.44 (d, $J = 4.8$ Hz, 1H), 7.40 – 7.29 (m, 5H), 7.11 – 7.09 (m, 2H), 6.62 (d, $J = 9.7$ Hz, 1H), 4.80 (d, $J = 9.7$ Hz, 1H), 1.60 (bs, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 142.4, 141.3 (Cq, $J_{CF} = 4.9$ Hz), 130.9, 129.5, 128.8, 127.7, 127.5, 127.2, 126.5, 123.7 (Cq, $J_{CF} = 31.2$ Hz), 122.7 (Cq, $J_{CF} = 273.5$ Hz), 53.1.

19F NMR (376 MHz, CDCl$_3$) δ -66.58 (s, CF$_3$).

** tert-Butyl (R,Z)-(4,4,4-trifluoro-1-phenyl-3-(thiophen-2-yl)but-2-en-1-yl)carbamate (4p')**

The title compound was obtained following GPB from (R,E)-4,4,4-trifluoro-1-phenyl-3-(4-(trifluoromethyl)phenyl)but-2-en-1-amine (70.8 mg, 0.25 mmol). The protected allylic amine was purified by FCC (pentane:EtOAc 95:5) as a white solid in 98% (94.4 mg, 0.24 mmol).

The enantiomeric excess (minor isomer: nd, major isomer 95%) was determined by HPLC (CHIRACEL R OD–H), hexane/iPrOH 98/2, 1 mL/min, (1R,E) (major diastereomer): minor enantiomer $t_r = 9.2$ min, major enantiomer, $t_r = 7.3$ min.

$[\alpha]_{D}^{25}$: -49.5 (c 1.00, CHCl$_3$, for the diastereomer mixture, d.r.: 96:4).

1H NMR (400 MHz, CDCl$_3$) δ 7.42 (dd, $J = 5.0$, 1.3 Hz, 1H), 7.38 – 7.28 (m, 3H), 7.24 – 7.23 (m, 2H), 7.09 (bs, 1H), 7.06 (dd, $J = 5.1$, 3.6 Hz, 1H), 6.58 (dd, $J = 9.2$, 0.8 Hz, 1H), 5.52 (bs, 1H), 4.95 (dd, $J = 7.7$ Hz, 1H), 1.42 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 154.5, 139.9, 137.0 (Cq, $J_{CF} = 5.5$ Hz), 130.4, 129.8, 129.0, 128.1, 127.8, 127.1, 126.7, 126.6, 122.7 (Cq, $J_{CF} = 273.9$ Hz), 80.2, 52.7, 28.3.

19F NMR (376 MHz, CDCl$_3$) δ -65.51 (s, CF$_3$).

HRMS (ESI) m/z: 406.1024 [M+Na]$^+$, C$_{19}$H$_{20}$F$_3$NNaO$_2$S$^+$ requires 406.1059.

** 4,4,4-Trifluoro-1-phenylbut-2-en-1-amine (4q)**

The title compound was obtained following GPA from (E)-4,4,4-trifluoro-1-phenylbut-2-en-1-one (0.7 g, 3.5 mmol). The allylic amine was purified by FCC (pentane:EtOAc 7:3) as a yellow oil in 33% yield over 3 steps (0.3 g, 1.2 mmol).

1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.36 (m, 2H), 7.32 – 7.29 (m, 3H), 6.55 (ddq, $J = 15.7$, 5.5, 2.1 Hz, 1H), 5.92 (dq, $J = 15.7$, 6.4, 1.7 Hz, 1H), 4.65 (dp, $J = 4.5$, 2.2 Hz, 1H), 1.59 (bs, 2H).
13C NMR (100 MHz, CDCl3) δ 143.3 (Cq, JCF = 6.1 Hz), 142.3, 128.9, 127.9, 126.7, 123.3 (Cq, JCF = 269.4 Hz), 117.6 (Cq, JCF = 33.4 Hz), 56.2.

19F NMR (376 MHz, CDCl3) δ −63.79 (dt, J = 6.4, 2.1 Hz, CF3).

Characterization of amines 6 and 6’

HRMS of 6a-6q could not be obtained due to decomposition of the compounds. Instead, the HRMS of the 6a’-6p’ (protected amines) are reported. 6q HRMS could not be given, a fragmentation is observed. HPLC analysis and α values of 6a-6p is not reported here. Instead, the HPLC analysis and α values of 6a’-6p’ is reported.

4,4,4-Trifluoro-1,3-diphenylbutan-1-amine (6a)

The titled compound was obtained following GPC from 4a (69.3 mg, 0.25 mmol) as a colourless oil (83% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 75:25 in 80% isolated yield. Minor diastereomer (1S,3R)-6a isolated 20 mg (0.07 mmol) 28% yield, major diastereomer (1R,3R)-6a isolated 36 mg (0.13 mmol) 52% yield.

Minor diastereomer (configuration 1S, 3R)-6a

\[
\text{Ph} \quad \text{NH}_2 \\
\text{CF}_3 \quad \text{Ph}
\]

1H NMR (400 MHz, CDCl3) δ 7.42 – 7.33 (m, 5H), 7.32 – 7.30 (m, 2H), 7.24 – 7.19 (m, 3H), 3.79 – 3.71 (m, 1H), 3.56 (t, J = 7.6 Hz, 1H), 2.24 – 2.50 (m, 2H), 1.40 (bs, 2H).

13C NMR (100 MHz, CDCl3) δ 146.4, 134.4 (Cq, JCF = 2,1 Hz), 129.2, 128.8, 128.7, 128.3, 127.2, 125.7, 124.3 (Cq, JCF = 272.8 Hz), 52.5, 47.3 (Cq, JCF = 26.7 Hz), 38.3 (Cq, JCF = 2.1 Hz).

19F NMR (376 MHz, CDCl3) δ −69.47 (d, J = 9.7 Hz, CF3).

Major diastereomer (configuration 1R, 3R)-6a

\[
\text{Ph} \quad \text{NH}_2 \\
\text{CF}_3 \quad \text{Ph}
\]

1H NMR (400 MHz, CDCl3) δ 7.41 – 7.34 (m, 5H), 7.32 – 7.28 (m, 1H), 7.24 – 7.22 (m, 2H), 7.19 – 7.17 (m, 2H), 3.65 – 3.61 (m, 1H), 3.04 – 2.93 (m, 1H), 2.39 – 2.32 (m, 2H), 1.52 (bs, 2H).

13C NMR (100 MHz, CDCl3) δ 144.4, 134.3 (Cq, JCF = 2.0 Hz), 129.2, 128.8, 128.7, 128.3, 127.7, 126.8 (Cq, JCF = 278.0 Hz), 126.6, 53.6, 47.4 (Cq, JCF = 26.7 Hz), 37.9.

19F NMR (376 MHz, CDCl3) δ −69.91 (d, J = 9.5 Hz, CF3).

HRMS (ESI) m/z: 280.1336 [M+H]+, C16H17F3N+ requires 280.1308.

tert-Butyl 4,4,4-trifluoro-1,3-diphenylbutylcarbamate (6a’)

The titled compound was obtained following GPB from 6a and purified by FCC using (pentane:EtOAc 95:5). Minor diastereomer (1S,3R)-6a’, isolated yield 57% (15.1 mg, 0.04 mmol) from 20 mg (0.07 mmol) of (1S,3R)-6a. Major diastereomer (1R,3R)-6a’, isolated yield 72% (34.1 mg, 0.09 mmol) from 36 mg (0.13 mmol) of (1R,3R)-6a.
The enantiomeric excess (minor isomer: 94%, major isomer 90%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, λ = 210 nm, 1S,3R (minor diastereomer): minor enantiomer, t_r = 7.2 min, major enantiomer, t_r = 5.9 min, 1R,3R (major diastereomer): minor enantiomer t_r = 6.1 min, major enantiomer, t_r = 7.8 min.

Minor diastereomer (configuration 1S, 3R)-6a’

![Structure]

[α]D 25: −5.4 (c 0.5, CHCl3, ee 94%).

^1H NMR (400 MHz, CDCl3) δ (Rotamers are observed) 7.38 – 7.29 (m, 8H), 7.16 – 7.14 (m, 2H), 4.99 – 4.76 (m, 1H), 4.50 – 4.28 (m, 1H), 3.47 (bs, 1H), 2.39 – 2.31 (m, 2H), 1.44 – 1.27 (m, 9H).

^13C NMR (100 MHz, CDCl3) δ 154.9, 142.2, 134.0, 129.1, 128.8, 128.7, 128.3, 127.5, 126.9 (Cq, JCF = 279.9 Hz), 125.9, 79.7, 51.5, 47.3 (Cq, JCF = 26.7 Hz), 36.8, 28.3.

^19F NMR (376 MHz, CDCl3) δ –69.31 (d, J = 9.7 Hz, CF3).

Major diastereomer (configuration 1R, 3R)-6a’

![Structure]

[α]D 25: −1.4 (c 0.71, CHCl3, ee 90%).

^1H NMR (400 MHz, CDCl3) δ 7.39 – 7.31 (m, 6H), 7.23 – 7.21 (m, 2H), 7.13 – 7.11 (m, 2H), 4.71 (d, J = 6.3 Hz, 1H), 4.36 (bs, 1H), 3.00 – 2.89 (m, 1H), 2.62 (bs, 1H), 2.35 (ddd, J = 13.7, 10.3, 3.6 Hz, 1H), 1.37 (bs, 9H).

^13C NMR (100 MHz, CDCl3) δ 154.6, 140.3, 133.3 (Cq, JCF = 2.1 Hz), 129.3, 129.0, 128.8, 128.5, 128.1, 126.6 (Cq, JCF = 278.0 Hz), 126.8, 79.6, 53.0, 47.2 (Cq, JCF = 27.9 Hz), 34.6, 28.3.

^19F NMR (376 MHz, CDCl3) δ –70.20 (bs, CF3).

HRMS (ESI) m/z: 402.1647 [M+Na]+, C21H24F3NNaO2+ requires 402.1651.

4,4,4-Trifluoro-3-phenyl-1-(p-tolyl)butan-1-amine (6b)

The titled compound was obtained following GPC from 4b (72.8 mg, 0.25 mmol) as a colourless oil (90% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 67:33 in 61% yield. Minor diastereomer could not be purified. Major diastereomer (1R,3R)-6b isolated 45 mg (0.15 mmol) 61% yield.

Major diastereomer (configuration 1R, 3R)-6b
1H NMR (400 MHz, CDCl$_3$) δ 7.38 – 7.35 (m, 3H), 7.23 – 7.22 (m, 2H), 7.16 (d, $J = 7.9$ Hz, 2H), 7.06 (d, $J = 7.9$ Hz, 2H), 3.57 (dd, $J = 8.7$, 6.4 Hz, 1H), 3.02 – 2.91 (m, 1H), 2.36 – 2.31 (m, 5H), 1.51 (bs, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 141.4, 137.3, 134.4 (q, $J = 2.1$ Hz), 129.5, 129.2, 128.7, 128.3, 126.8 (q, $J = 278.0$ Hz), 126.5, 53.3, 47.4 (Cq, $J_{CF} = 26.8$ Hz), 37.9, 21.1.

19F NMR (376 MHz, CDCl$_3$) δ – 69.91 (d, $J = 9.5$ Hz, CF$_3$).

tert-Butyl (4,4,4-trifluoro-3-phenyl-1-(p-tolyl)butyl)carbamate (6b’)

The titled compound was obtained following GPB from 6b and purified by FCC using (pentane:EtOAc 95:5). Major diastereomer (1R,3R)-6b’, isolated yield 56% (32.4 mg, 0.09 mmol) from 45 mg (0.15 mmol) of 6b.

The enantiomeric excess (minor isomer: nd, major isomer 67%) was determined by HPLC (CHIRALPAK® IF), hexane/iPrOH 98/2, 1 mL/min, $\lambda = 210$ nm, 1R,3R (major diastereomer): minor enantiomer tr = 7.1 min, major enantiomer, tr = 6.5 min.

Major diastereomer (configuration 1R, 3R)-6b’

[α]$_D^{25}$: – 7.8 (c 0.63, CHCl$_3$, ee 67%).

1H NMR (400 MHz, CDCl$_3$) δ 7.40 – 7.34 (m, 3H), 7.26 – 7.23 (m, 2H), 7.16 (d, $J = 7.8$ Hz, 2H), 7.00 (d, $J = 7.8$ Hz, 2H), 4.68 (bs, 1H), 4.31 (bs, 1H), 2.99 – 2.88 (m, 1H), 2.62 (bs, 1H), 2.36 – 2.29 (m, 4H), 1.37 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 154.7, 137.8, 137.3, 133.4, 130.8, 129.6, 129.3, 128.8, 128.4, 126.7, 126.65 (Cq, $J = 279.8$ Hz), 79.5, 52.7, 47.2 (Cq, $J = 26.9$ Hz), 34.6, 28.3, 21.1.

19F NMR (376 MHz, CDCl$_3$) δ – 70.18 (bs, CF$_3$).

HRMS (ESI) m/z: 416.1871 [M+Na]$^+$, C$_{22}$H$_{26}$F$_3$NNaO$_2$ requires 416.1871.

4,4,4-Trifluoro-1-(4-methoxyphenyl)-3-phenylbutan-1-amine (6c)

The titled compound was obtained following GPC from 4e (76.8 mg, 0.25 mmol) as a colourless oil (68% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 65:35 in 35% yield. Minor diastereomer could not be purified. Major diastereomer (1R,3R)-6c isolated 27 mg (0.09 mmol) 35% yield.

Major diastereomer (configuration 1R, 3R)-6c

S24
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.40 – 7.33 (m, 3H), 7.23 – 7.21 (m, 2H), 7.09 (d, \(J = 8.7\) Hz, 2H), 6.89 (d, \(J = 8.7\) Hz, 2H), 3.82 (s, 3H), 3.57 (dd, \(J = 9.6, 5.4\) Hz, 1H), 2.94 (ddq, \(J = 14.2, 9.6, 4.8\) Hz, 1H), 2.34 (m, 2H), 1.50 (bs, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 159.0, 136.3, 134.3 (Cq, \(J = 1.9\) Hz), 129.2, 128.7, 128.3, 127.7, 126.8 (Cq, \(J = 279.7\) Hz), 114.2, 55.3, 52.9, 47.4 (Cq, \(J = 26.8\) Hz), 38.0.

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) – 69.92 (d, \(J = 9.5\) Hz, CF\(_3\)).

tert-Butyl (4,4,4-trifluoro-1-(4-methoxyphenyl)-3-phenylbutyl)carbamate (6c’)

The titled compound was obtained following GPB from 6c and purified by FCC using (pentane:EtOAc 95:5). Major diastereomer (1R,3R)-6c’, isolated yield 85% (30.0 mg, 0.08 mmol) from 27 mg (0.15 mmol) of 6c.

The enantiomeric excess (minor isomer: nd, major isomer 90%) was determined by HPLC (CHIRACEL® OD-H), hexane/iPrOH 98/2, 1 mL/min, \(\lambda = 210\) nm, 1R,3R (major diastereomer): minor enantiomer \(t_r = 9.2\) min, major enantiomer, \(t_r = 10.4\) min.

Major diastereomer (configuration 1R, 3R)-6c’

1H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.40 – 7.33 (m, 3H), 7.22 – 7.02 (m, 2H), 7.03 (d, \(J = 8.5\) Hz, 2H), 6.88 7.03 (d, \(J = 8.5\) Hz, 2H), 4.65 (bs, 1H), 4.28 (bs, 1H), 3.82 (s, 3H), 2.97 – 2.87 (mm, 1H), 2.62 (bs, 1H), 2.30 (ddt, \(J = 13.6, 10.7, 3.3\) Hz, 1H), 1.37 (s, 9H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 159.3, 154.6, 133.3, 132.3, 129.3, 128.8, 128.4, 128.0, 126.7 (Cq, \(J = 279.6\) Hz), 114.3, 79.6, 55.3, 52.3, 47.2 (Cq, \(J = 26.4\) Hz), 34.5, 28.3.

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) – 70.18 (d, \(J = 9.3\) Hz, CF\(_3\)).

HRMS (ESI) \(m/z\): 432.1757 [M+Na]\(^+\), \(C_{22}H_{26}F_3\)NaO\(_3\)\(^+\) requires 432.1785.

1-(4-Bromophenyl)-4,4,4-trifluoro-3-phenylbutan-1-amine (6d)

The titled compound was obtained following GPC from 4d (89 mg, 0.25 mmol) as a colourless oil (67% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 74:26 in 67% yield. Minor diastereomer could not be purified. Major diastereomer (1R,3R)-6d isolated 39.6 mg (0.09 mmol) 44% yield.

Reaction 1g scale

The titled compound was obtained following GPC from 4d (1.0 g, 2.81 mmol) as a colourless oil (73% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 70:30 in 68% yield. Minor diastereomer could not be purified. Major diastereomer (1R,3R)-6d isolated 387.5 mg (1.08 mmol) 38% yield.

Major diastereomer (configuration 1R, 3R)-6d
The titled compound was obtained following GPB from 6d and purified by FCC using (pentane:EtOAc 95:5). Major diastereomer (1R,3R)-6d', isolated yield 91% (46.1 mg, 0.10 mmol) from 39.6 mg (0.11 mmol) of 6d.

The enantiomeric excess (minor isomer: nd, major isomer 86%) was determined by HPLC (CHIRACEL® OD-H), hexane/iPrOH 98/2, 1 mL/min, λ = 210 nm, 1R,3R (major diastereomer): minor enantiomer tᵣ = 9.0 min, major enantiomer, tᵣ = 12.4 min.

Major diastereomer (configuration 1R, 3R)-6d'

![Chemical Structure](image)

[α]D²⁵: −37.1 (c 0.93, CHCl₃, ee 86%).

1H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.4 Hz, 2H), 7.41 – 7.37 (m, 3H), 7.22 – 7.20 (m, 2H), 7.00 (d, J = 8.1 Hz, 2H), 4.70 (d, J = 7.4 Hz, 1H), 4.32 (bs, 1H), 2.92 (dt, J = 18.3, 9.2, 4.6 Hz, 1H), 2.55 (bs, 1H), 2.30 (ddd, J = 13.7, 10.2, 3.6 Hz, 1H), 1.36 (s, 9H).

13C NMR (100 MHz, CDCl₃) δ 154.5, 139.6, 133.1, 132.1, 129.2, 128.9, 128.6, 128.5, 126.5 (Cq, J = 279.8 Hz), 121.9, 79.9, 52.4, 47.15 (Cq, J = 29.4 Hz), 34.6, 28.3.

19F NMR (376 MHz, CDCl₃) δ −70.22 (d, J = 9.2 Hz, CF₃).

HRMS (ESI) m/z: 480.0733 [M+Na]^+. C₂₁H₂₃F₅BrNNaO₂⁺ requires 480.0756.

4,4,4-Trifluoro-3-phenyl-1-(4-(trifluoromethyl)phenyl)butan-1-amine (6e)

The titled compound was obtained following GPC from 4e (86.3 mg, 0.25 mmol) as a colourless oil (60% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained
in a ratio 65:35 in 54% yield. Minor diastereomer could not be purified. Major diastereomer (1R,3R)-6e isolated 28.0 mg (0.08 mmol) 32% yield.

Major diastereomer (configuration 1R, 3R)-6e

![Structure](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.61 (d, J = 8.0 Hz, 2H), 7.40 – 7.37 (m, 3H), 7.30 (d, J = 8.0 Hz, 2H), 7.23 – 7.21 (m, 2H), 3.75 (dd, J = 8.8, 6.1 Hz, 1H), 2.97 (pd, J = 9.4, 5.3 Hz, 1H), 2.42 – 2.30 (m, 2H), 1.54 (bs, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 148.4, 134.0 (Cq, J = 1.8 Hz), 130.0 (Cq, J = 32.4 Hz), 129.1, 128.9, 128.5, 127.0, 126.6, 125.8 (Cq, J = 3.7 Hz), 124.0 (d, J = 272.1 Hz), 53.3, 47.3 (d, J = 27.1 Hz), 37.9.

19F NMR (376 MHz, CDCl$_3$) δ – 62.51 (s, CF$_3$), – 70.00 (d, J = 9.2 Hz, CF$_3$).

tert-Butyl (4,4,4-trifluoro-3-phenyl-1-(4-(trifluoromethyl)phenyl)butyl)carbamate (6e')

The titled compound was obtained following GPB from 5e and purified by FCC using (pentane:EtOAc 95:5). Major diastereomer (1R,3R)-6e', isolated yield 78% (27.8 mg, 0.106 mmol) from 28.0 mg (0.08 mmol) of 6e.

The enantiomeric excess (minor isomer: nd, major isomer 87%) was determined by HPLC (CHIRACEL® OD-H), hexane/iPrOH 98/2, 1 mL/min, λ = 210 nm, 1R,3R (major diastereomer): minor enantiomer t_r = 10.8 min, major enantiomer, t_r = 7.8 min.

Major diastereomer (configuration 1R, 3R)-6e’

![Structure](image)

[α]$_D^{25}$: – 16.0 (c 0.45, CHCl$_3$, ee 87%).

1H NMR (400 MHz, CDCl$_3$) δ 7.62 (d, J = 8.0 Hz, 2H), 7.42 – 7.38 (m, 3H), 7.26 – 7.21 (m, 4H), 4.75 (d, J = 7.5 Hz, 1H), 4.46 (bs, 1H), 2.95 (dtd, J = 18.4, 9.2, 3.7 Hz, 1H), 2.56 (bs, 1H), 2.36 (ddd, J = 13.6, 9.7, 3.8 Hz, 1H), 1.36 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 154.6, 144.8, 133.2, 133.0 (Cq, J = 35.7 Hz), 129.1, 129.0, 128.7, 127.1, 126.4 (d, J = 279.8 Hz), 125.9 (Cq, J = 3.6 Hz), 123.9 (d, J = 272.1 Hz), 80.0, 52.7, 47.2 (Cq, J = 27.8 Hz), 34.8, 28.3.

19F NMR (376 MHz, CDCl$_3$) δ – 62.56 (s, CF$_3$), – 70.23 (bs, CF$_3$).

HRMS (ESI) m/z: 470.1551 [M+Na]$^+$, C$_{22}$H$_{23}$F$_6$NNaO$_2$$^+$ requires 470.1525.

4,4,4-Trifluoro-1-(naphthalen-2-yl)-3-phenylbutan-1-amine (6f)

The titled compound was obtained following GPC from 4f (81.8 mg, 0.25 mmol) as a colourless oil (86% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The
diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 75:25 in 87% yield. Minor diastereomer (1S,3R)-6f isolated 23 mg (0.07 mmol) 28 % yiled. Major diastereomer (1R,3R)-6f isolated 46.0 mg (0.14 mmol) 56% yield.

Minor diastereomer (configuration 1S, 3R)-6f

\[
\text{CF}_3 \quad \text{Ph} \quad \text{NH}_2
\]

\(^1\text{H} \text{NMR} \ (400 \text{ MHz, CDCl}_3) \ \delta \ 7.83 - 7.78 \ (m, 3H), 7.64 \ (s, 1H), 7.50 - 7.46 \ (m, 2H), 7.41 - 7.37 \ (m, 5H), 7.33 \ (dd, J = 8.6, 1.8 \text{ Hz, } 1H), 3.82 - 3.73 \ (m, 2H), 2.32 \ (dd, J = 8.2, 6.5 \text{ Hz, } 2H), 1.49 \ (bs, 2H).

\(^{13}\text{C} \text{NMR} \ (100 \text{ MHz, CDCl}_3) \ \delta \ 143.7, 134.5 \ (\text{Cq, } J = 2.0 \text{ Hz}), 133.4, 132.3, 129.2, 128.8, 128.5, 128.3, 127.7, 127.6, 126.2, 125.8, 124.2, 124.1, 52.6, 47.3 \ (\text{Cq, } J = 26.7 \text{ Hz}), 38.2.

\(^{19}\text{F} \text{NMR} \ (376 \text{ MHz, CDCl}_3) \ \delta \ -69.39 \ (d, J = 9.6 \text{ Hz, CF}_3).

Major diastereomer (configuration 1R, 3R)-6f

\[
\text{CF}_3 \quad \text{Ph} \quad \text{NH}_2
\]

\(^1\text{H} \text{NMR} \ (400 \text{ MHz, CDCl}_3) \ \delta \ 7.89 - 7.79 \ (m, 3H), 7.53 - 7.48 \ (m, 3H), 7.41 - 7.38 \ (m, 4H), 7.26 - 7.23 \ (m, 2H), 3.81 \ (t, J = 7.5 \text{ Hz, } 1H), 2.99 \ (pd, J = 9.3, 6.6 \text{ Hz, } 1H), 2.45 \ (dd, J = 8.4, 6.7 \text{ Hz, } 2H), 1.61 \ (bs, 2H).

\(^{13}\text{C} \text{NMR} \ (100 \text{ MHz, CDCl}_3) \ \delta \ 141.6, 134.3 \ (\text{Cq, } J = 1.9 \text{ Hz}), 133.3, 133.0, 129.2, 128.9, 128.7, 128.3, 127.8, 127.7, 126.7 \ (\text{Cq, } J = 279.8 \text{ Hz}), 126.3, 126.0, 125.8, 124.1, 53.7, 47.4 \ (\text{Cq, } J = 26.8 \text{ Hz}), 37.7.

\(^{19}\text{F} \text{NMR} \ (376 \text{ MHz, CDCl}_3) \ \delta \ -69.93 \ (d, J = 9.6 \text{ Hz, CF}_3).

HRMS (ESI) m/z: 330.1482 [M+H]^+, \text{C}_{20}\text{H}_{19}\text{F}_3\text{N}^+ \text{requires } 330.1464.

tert-Butyl (4,4,4-trifluoro-1-(naphthalen-2-yl)-3-phenylbutyl)carbamate (6f')

The titled compound was obtained following GPB from 5f and purified by FCC using (pentane:EtOAc 95:5). Minor diastereomer (1S,3R)-6f', isolated yield 25% (7.5 mg, 0.06 mmol) from 23.0 mg (0.08 mmol) of 5f. Major diastereomer (1R,3R)-6f', isolated yield 55% (33.1 mg, 0.08 mmol) from 46.0 mg (0.14 mmol) of 6f.

The enantiomeric excess (minor isomer: 93%, major isomer 95%) was determined by HPLC (CHIRACEL OD-H), hexane/iPrOH 98/2, 1 mL/min, \(\lambda = 210 \text{ nm} \), 1S,3R (minor diastereomer): minor enantiomer, \(t_r = 21.5 \text{ min}, \) major enantiomer, \(t_r = 16.7 \text{ min} \), 1R,3R (major diastereomer): minor enantiomer \(t_r = 13.2 \text{ min} \), major enantiomer, \(t_r = 10.9 \text{ min} \).

Minor diastereomer (configuration 1S, 3R)-6f'

\[
\text{CF}_3 \quad \text{Ph} \quad \text{NH}_{\text{Boc}}
\]
α_D^{25}: -21.0 (c 0.20, CHCl$_3$, ee 93%).

1H NMR (400 MHz, CDCl$_3$) δ 7.82 – 7.77 (m, 3H), 7.60 (s, 1H), 7.49 – 7.46 (m, 2H), 7.38 – 7.34 (m, 5H), 7.26 – 7.25 (m, 1H), 5.00 – 4.85 (m, 1H), 4.66 – 4.43 (m, 1H), 3.51 (bs, 1H), 2.46 – 2.40 (m, 2H), 1.44 – 1.27 (m, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 155.0, 139.5, 134.0, 133.3, 132.7, 129.1, 128.9, 128.6, 128.5, 127.8, 127.6, 126.9 (Cq, J = 278.0 Hz), 126.3, 126.0, 125.5, 124.5, 124.2, 79.8, 51.7, 47.4 (Cq, J = 27.0 Hz), 36.6, 28.3.

19F NMR (376 MHz, CDCl$_3$) δ -69.25 (d, J = 9.6 Hz, CF$_3$).

Major diastereomer (configuration 1R, 3R)-6f

![Diastereomer Structure]

α_D^{25}: -43.5 (c 1.00, CHCl$_3$, ee 95%).

1H NMR (400 MHz, CDCl$_3$) δ 7.89 – 7.84 (m, 2H), 7.80 – 7.78 (m, 1H), 7.52 – 7.50 (m, 3H), 7.40 – 7.39 (m, 3H), 7.28 (d, J = 8.4 Hz, 1H), 7.23 – 7.21 (m, 2H), 4.86 (d, J = 6.6 Hz, 1H), 4.54 (bs, 1H), 2.95 (ddt, J = 18.5, 12.7, 6.3 Hz, 1H), 2.68 (bs, 1H), 2.46 (ddd, J = 13.7, 10.2, 3.6 Hz, 1H), 1.37 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 154.7, 137.6, 133.3, 133.2, 133.0, 129.3, 129.0, 128.8, 128.5, 128.0, 127.9, 127.7, 126.6 (Cq, J = 279.9 Hz), 126.4, 126.2, 124.1, 79.6, 53.1, 47.2 (Cq, J = 26.7 Hz), 35.5, 28.3.

19F NMR (376 MHz, CDCl$_3$) δ -70.16 (s, CF$_3$).

HRMS (ESI) m/z: 452.1826 [M+Na]$^+$, C$_{25}$H$_{26}$F$_3$NNaO$_2$ requires 452.1808.

4,4,4-Trifluoro-1-(3-methoxyphenyl)-3-phenylbutan-1-amine (6g)

The titled compound was obtained following GPC from 4g (76.8 mg, 0.25 mmol) as a colourless oil (99% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 66:33 in 99% yield. Minor diastereomer (1S,3R)-6g isolated 24 mg (0.08 mmol) 31 % yield. Major diastereomer (1R,3R)-6g isolated 48.0 mg (0.16 mmol) 62% yield.

Minor diastereomer (configuration 1S, 3R)-6g

![Diastereomer Structure]

1H NMR (400 MHz, CDCl$_3$) δ 7.41 – 7.33 (m, 5H), 7.23 (t, J = 7.9 Hz, 1H), 6.80 – 6.73 (m, 3H), 3.80 (s, 3H), 3.75 – 3.51 (m, 1H), 2.23 – 2.19 (m, 2H), 1.49 (bs, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 159.9, 148.2, 134.4 (Cq, J = 1.9 Hz), 129.7, 129.2, 128.8, 128.3, 127.1 (Cq, J = 279.6 Hz), 118.0, 112.2, 111.7, 55.2, 52.5, 47.3 (Cq, J = 26.7 Hz), 38.2.
\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta - 69.47\) (d, \(J = 9.6\) Hz, CF\(_3\)).

Major diastereomer (configuration 1\(R\), 3\(R\))-6g

-\(\begin{array}{c}
\text{CF}_3 \\
\text{NH}_2 \\
\text{OMe}
\end{array}\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.40 - 7.36\) (m, 3H), 7.29 - 7.23 (m, 3H), 6.84 (dd, \(J = 8.3, 2.5\) Hz, 1H), 6.75 (d, \(J = 7.6\) Hz, 1H), 6.71 (bs, 1H), 3.81 (s, 3H), 3.61 - 3.58 (m, 1H), 3.06 - 2.95 (m, 1H), 2.36 - 2.32 (m, 2H), 1.68 (bs, 2H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 159.9, 146.0, 134.3\) (Cq, \(J = 1.9\) Hz), 129.9, 129.2, 128.7, 128.1, 126.7 (Cq, \(J = 279.7\) Hz), 118.8, 113.1, 112.1, 55.2, 53.6, 47.3 (Cq, \(J = 26.8\) Hz), 37.8.

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta - 69.47\) (d, \(J = 9.6\) Hz, CF\(_3\)).

\textit{tert}-Butyl (4,4,4-trifluoro-1-(3-methoxyphenyl)-3-phenylbutyl)carbamate (6g')

The titled compound was obtained following GPB from 6g and purified by FCC using (pentane:EtOAc 95:5). Minor diastereomer (1\(S\),3\(R\))-6g', isolated yield 60% (19.7 mg, 0.05 mmol) from 24.0 mg (0.08 mmol) of 6g. Major diastereomer (1\(R\),3\(R\))-6g', isolated yield 88% (57.7 mg, 0.14 mmol) from 48.0 mg (0.16 mmol) of 6g.

The enantiomeric excess (minor isomer: 86%, major isomer 89%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, \(\lambda = 210\) nm, 1\(R\),3\(R\) (major diastereomer): minor enantiomer \(t_r = 9.5\) min, major enantiomer, \(t_r = 7.7\) min.

Minor diastereomer (configuration 1\(S\), 3\(R\))-6g'

-\(\begin{array}{c}
\text{CF}_3 \\
\text{Ph} \\
\text{NHBOc} \\
\text{OMe}
\end{array}\)

\([\alpha]_D^{25}: - 43.5\) (c 1.00, CHCl\(_3\), ee 95%).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.41 - 7.37\) (m, 3H), 7.31 - 7.30 (m, 2H), 7.22 (t, \(J = 7.9\) Hz, 1H), 6.78 (dd, \(J = 8.3, 2.4\) Hz, 1H), 6.74 (d, \(J = 7.7\) Hz, 1H), 6.68 (s, 1H), 4.71 (d, \(J = 9.3\) Hz, 1H), 4.41 (bs, 1H), 3.77 (s, 3H), 3.46 (bs, 1H), 2.37 - 2.27 (m, 2H), 1.43 (s, 9H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 159.8, 154.9, 143.9, 134.0, 129.8, 129.1, 128.8, 128.5, 126.9\) (Cq, \(J = 279.3\) Hz), 118.1, 112.7, 112.0, 79.7, 55.2, 51.5, 47.3 (Cq, \(J = 27.0\) Hz), 36.7, 28.3.

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta - 69.31\) (d, \(J = 9.5\) Hz, CF\(_3\)).

Major diastereomer (configuration 1\(R\), 3\(R\))-6g'

-\(\begin{array}{c}
\text{CF}_3 \\
\text{Ph} \\
\text{NHBOc} \\
\text{OMe}
\end{array}\)
$[\alpha]_D^{25} - 0.8$ (c 1.00, CHCl$_3$, ee 89%).

1H NMR (400 MHz, CDCl$_3$) δ 7.41 – 7.36 (m, 3H), 7.29 – 7.23 (m, 3H), 6.85 (dd, $J = 8.3$, 2.4 Hz, 1H), 6.72 (d, $J = 7.5$ Hz, 1H), 6.63 (s, 1H), 4.74 (d, $J = 7.3$ Hz, 1H), 4.33 (bs, 1H), 3.78 (s, 3H), 2.97 (ddt, $J = 18.7$, 12.6, 6.3 Hz, 1H), 2.62 (bs, 1H), 2.33 (ddd, $J = 13.7$, 10.3, 3.5 Hz, 1H), 1.38 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 159.9, 154.7, 141.9, 133.3, 130.1, 129.3, 128.8, 128.5, 126.6 (Cq, $J = 279.8$ Hz), 118.8, 113.5, 112.5, 79.6, 55.2, 52.9, 47.1 (Cq, $J = 26.8$ Hz), 35.6, 28.3.

19F NMR (376 MHz, CDCl$_3$) δ –70.19 (s, CF$_3$), –69.54 (d, $J = 9.6$ Hz, CF$_3$).

HRMS (ESI) m/z: 432.1761 [M+Na]$^+$, C$_{22}$H$_{26}$F$_3$NaNaO$_3$ requires 432.1757.

4,4,4-Trifluoro-3-phenyl-1-(3-(trifluoromethyl)phenyl)butan-1-amine (6h)

The titled compound was obtained following GPC from 4h (86.3 mg, 0.25 mmol) as a colourless oil (80% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 75:25 in 80% yield. Minor diastereomer (1S,3R)-6h isolated 15 mg (0.04 mmol) 17 % yiled. Major diastereomer (1R,3R)-6h isolated 45.0 mg (0.13 mmol) 52% yield.

Minor diastereomer (configuration 1S, 3R)-6h

1H NMR (400 MHz, CDCl$_3$) δ 7.49 (d, $J = 7.6$ Hz, 1H), 7.45 – 7.33 (m, 8H), 3.77 – 3.67 (m, 1H), 3.65 – 3.61 (m, 1H), 2.24 – 2.20 (m, 2H), 1.51 (bs, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 147.3, 134.0 (Cq, $J = 1.9$ Hz), 131.0 (Cq, $J = 32.1$ Hz), 129.3, 129.1, 128.9, 128.6, 128.4, 127.0 (Cq, $J = 276.8$ Hz), 126.7 (Cq, $J = 279.6$ Hz), 124.1 (Cq, $J = 3.8$ Hz), 122.6 (Cq, $J = 3.8$ Hz), 52.4, 47.3 (Cq, $J = 26.9$ Hz), 38.2.

19F NMR (376 MHz, CDCl$_3$) δ –62.59 (s, CF$_3$), –69.54 (d, $J = 9.6$ Hz, CF$_3$).

HRMS (ESI) m/z: 348.1137 [M+H]$^+$, C$_{17}$H$_{16}$F$_6$N Na$^+$ requires 348.1181.

Major diastereomer (configuration 1R, 3R)-6h

1H NMR (400 MHz, CDCl$_3$) δ 7.56 (d, $J = 7.6$ Hz, 1H), 7.48 (t, $J = 7.7$ Hz, 1H), 7.42 – 7.36 (m, 5H), 7.22 – 7.20 (m, 2H), 3.76 (dd, $J = 9.2$, 5.6 Hz, 1H), 2.96 (pd, $J = 9.4$, 4.7 Hz, 1H), 2.42 – 2.29 (m, 2H), 1.56 (bs, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 145.4, 134.0 (Cq, $J = 1.9$ Hz), 131.0 (Cq, $J = 32.2$ Hz), 129.9, 129.3, 129.1, 128.9, 128.5, 126.6 (d, $J = 279.8$ Hz), 124.0 (Cq, $J = 272.3$ Hz), 124.6 (Cq, $J = 3.8$ Hz), 123.7 (Cq, $J = 3.8$ Hz), 53.4, 47.3 (Cq, $J = 26.9$ Hz), 38.0.
19F NMR (376 MHz, CDCl$_3$) δ = −62.67 (s, CF$_3$), −69.99 (d, J = 9.4 Hz, CF$_3$).

tert-Butyl (4,4,4-trifluoro-3-phenyl-1-(3-(trifluoromethyl)phenyl)butyl)carbamate (6h’)

The titled compound was obtained following GPB from 6h and purified by FCC using (pentane:EtOAc 95:5). Minor diastereomer (1S,3R)-6h’, isolated yield 96% (17.1 mg, 0.04 mmol) from 15.0 mg (0.04 mmol) of 6h. Major diastereomer (1R,3R)-6h’, isolated yield 93% (54.1 mg, 0.12 mmol) from 45.0 mg (0.13 mmol) of 6h.

The enantiomeric excess (minor isomer: 77%, major isomer 90%) was determined by HPLC (CHIRACEL® OD-H), hexane/iPrOH 98/2, 1 mL/min, λ = 210 nm, 1S,3R (minor diastereomer): minor enantiomer, t_r = 7.6 min, major enantiomer, t_r = 10.8 min, 1R,3R (major diastereomer): minor enantiomer t_r = 16.5 min, major enantiomer, t_r = 10.3 min.

Minor diastereomer (configuration 1S, 3R)-6h’

\[
\begin{align*}
\text{CF}_3 & \quad \text{NHBOc} \\
\text{Ph} & \\
\text{CF}_3
\end{align*}
\]

$[\alpha]_D^{25}$: −9.9 (c 0.63, CHCl$_3$, ee 77%).

1H NMR (400 MHz, CDCl$_3$) δ 7.50 (d, J = 7.7 Hz, 1H), 7.44 – 7.26 (m, 8H), 4.77 (bs, 1H), 4.51 (bs, 1H), 3.48 (bs, 1H), 2.37 – 2.27 (m, 2H), 1.43 – 1.26 (m, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 154.8, 143.4, 133.5, 131.1 (Cq, J = 27.6 Hz), 129.54, 129.47, 129.23, 129.16, 129.0, 128.7, 124.4 (Cq, J = 3.7 Hz), 122.6, 80.2, 51.3, 47.4 (Cq, J = 27.6 Hz), 36.5, 28.2.

19F NMR (376 MHz, CDCl$_3$) δ = −62.66 (s, CF$_3$), −69.38 (d, J = 9.5 Hz, CF$_3$).

Major diastereomer (configuration 1R, 3R)-6h’

\[
\begin{align*}
\text{CF}_3 & \quad \text{NHBOc} \\
\text{Ph} & \\
\text{CF}_3
\end{align*}
\]

$[\alpha]_D^{25}$: −7.8 (c 0.90, CHCl$_3$, ee 90%).

1H NMR (400 MHz, CDCl$_3$) δ 7.58 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.40 – 7.33 (m, 5H), 7.21 – 7.20 (m, 2H), 4.76 (d, J = 7.4 Hz, 1H), 4.46 (bs, 1H), 2.99 – 2.88 (m, 1H), 2.56 (bs, 1H), 2.35 (ddd, J = 13.6, 9.6, 3.9 Hz, 1H), 1.36 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 147.6, 141.8, 133.1, 131.18 (Cq, J = 32.3 Hz), 130.0, 129.5, 129.0, 128.7, 127.8, 126.44 (Cq, J = 279.9 Hz), 124.86 (Cq, J = 3.6 Hz), 123.9 (d, J = 272.5 Hz), 123.7, 80.0, 52.9, 47.2 (d, J = 25.8 Hz), 34.9, 28.2.

19F NMR (376 MHz, CDCl$_3$) δ = −62.70 (s, CF$_3$), 70.22 (s, CF$_3$).

HRMS (ESI) m/z: 470.1531 [M+Na]$^+$, C$_{22}$H$_{23}$F$_6$NNaO$_2^+$ requires 470.1525.

4,4,4-Trifluoro-1-(2-methoxyphenyl)-3-phenylbutan-1-amine (6i)
The titled compound was obtained following GPC from 4i (76.8 mg, 0.25 mmol) as a colourless oil (78% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 66:34 in 56% yield. Minor diastereomer (1S,3R)-6i isolated 18.6 mg (0.06 mmol) 24% yield. Major diastereomer (1R,3R)-6i isolated 20.2 mg (0.17 mmol) 26% yield.

Minor diastereomer (configuration 1S, 3R)-6i

\[
\begin{align*}
\text{Ph} & \quad \text{NH}_2 \\
\text{CF}_3 & \quad \text{MeO}
\end{align*}
\]

\[\text{H NMR} (400 MHz, CDCl}_3) \delta 7.40 - 7.33 (m, 5H), 7.20 (t, J = 7.8 Hz, 1H), 7.15 (d, J = 7.4 Hz, 1H), 6.91 (t, J = 7.4 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 3.85 - 3.73 (m, 5H), 2.32 - 2.19 (m, 2H), 1.59 (bs, 2H).
\]

\[\text{C NMR} (100 MHz, CDCl}_3) \delta 156.6, 134.5 (Cq, J = 1.9 Hz), 134.4, 129.5, 128.4, 128.0, 127.9, 127.3 (Cq, J = 277.6 Hz), 126.1, 120.6, 110.6, 55.0, 48.6, 47.3 (q, J = 26.5 Hz), 35.8.
\]

\[\text{F NMR} (376 MHz, CDCl}_3) \delta -69.58 (d, J = 9.7 Hz, CF}_3).
\]

Major diastereomer (configuration 1R, 3R)-6i

\[
\begin{align*}
\text{Ph} & \quad \text{NH}_2 \\
\text{CF}_3 & \quad \text{MeO}
\end{align*}
\]

\[\text{H NMR} (400 MHz, CDCl}_3) \delta 7.36 - 7.31 (m, 3H), 7.27 - 7.19 (m, 3H), 6.97 - 6.88 (m, 3H), 3.81 - 3.74 (m, 4H), 3.02 (pd, J = 9.8, 3.7 Hz, 1H), 2.63 (ddd, J = 13.6, 9.8, 3.8 Hz, 1H), 2.32 (ddd, J = 13.5, 11.1, 5.5 Hz, 1H), 1.83 (m, 2H).
\]

\[\text{C NMR} (100 MHz, CDCl}_3) \delta 157.3, 134.7 (Cq, J = 1.8 Hz), 131.9, 129.3, 128.5, 128.4, 128.1, 126.9 (Cq, J = 277.7 Hz), 120.7, 111.0, 55.1, 50.8, 47.8 (Cq, J = 26.6 Hz), 35.9.
\]

\[\text{F NMR} (376 MHz, CDCl}_3) \delta -69.84 (d, J = 9.4 Hz, CF}_3).
\]

tert-Butyl (4,4,4-trifluoro-1-(2-methoxyphenyl)-3-phenylbutyl)carbamate (6i')

The titled compound was obtained following GPB from 6i and purified by FCC using (pentane:EtOAc 95:5). Minor diastereomer (1S,3R)-6i', isolated yield 84% (20.6 mg, 0.05 mmol) from 18.6 mg (0.06 mmol) of 6i. Major diastereomer (1R,3R)-6i', isolated yield 89% (25.5 mg, 0.06 mmol) from 20.2 mg (0.07 mmol) of 6i.

The enantiomeric excess (minor isomer: 69%, major isomer 72%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, λ = 210 nm, 1S,3R (minor diastereomer): minor enantiomer, tr = 7.9 min, major enantiomer, tr = 7.3 min, 1R,3R (major diastereomer): minor enantiomer tr = 9.6 min, major enantiomer, tr = 8.6 min.

Minor diastereomer (configuration 1S, 3R)-6i'}
[α]D²⁵: −26.9 (c 0.70, CHCl₃, ee 69%).

1H NMR (400 MHz, CDCl₃) δ (Rotamers are observed) 7.40 – 7.28 (m, 5H), 7.20 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 7.2 Hz, 1H), 6.87 – 6.80 (m, 2H), 5.33 (d, J = 10.0 Hz, 1H), 4.59 (td, J = 10.2, 3.7 Hz, 1H), 3.78, 3.52 – 3.40 (m, 1H), 2.48 – 2.42 (m, 1H), 2.30 – 2.23 (m, 1H), 1.43 – 1.26 (m, 9H).

13C NMR (100 MHz, CDCl₃) δ 156.8. 155.0, 134.1, 129.8, 129.4, 128.6, 128.5, 128.2, 127.9, 120.7, 110.9, 79.3, 55.1, 47.5 (Cq, J = 28.2 Hz), 35.3, 28.4.

19F NMR (376 MHz, CDCl₃) δ – 69.43 (d, J = 9.8 Hz, CF₃).

Major diastereomer (configuration 1R, 3R)-6i’

[α]D²⁵: +8.7 (c 0.50, CHCl₃, ee 72%).

1H NMR (400 MHz, CDCl₃) δ (Rotamers are observed) 7.39 – 7.34 (m, 3H), 7.30 – 7.26 (m, 1H), 7.22 – 7.21 (m, 2H), 6.91 (d, J = 8.2 Hz, 1H), 6.86 (t, J = 7.4 Hz, 1H), 6.79 (d, J = 7.0 Hz, 1H), 5.42 (d, J = 8.7 Hz, 1H), 4.57 (q, J = 8.8 Hz, 1H), 3.86 (s, 3H), 2.95 – 2.86 (m, 1H), 2.65 – 2.59 (m, 1H), 2.60 – 2.42 (m, 1H), 1.39 (s, 9H).

13C NMR (100 MHz, CDCl₃) δ 157.3, 154.9, 133.6, 130.0, 129.4, 129.1, 128.6, 128.3, 127.4, 126.8 (Cq, J = 279.9 Hz), 120.7, 111.1, 79.2, 55.3, 51.7, 47.6 (q, J = 27.0 Hz), 33.1, 28.4.

19F NMR (376 MHz, CDCl₃) δ – 70.28 (d, J = 9.5 Hz, CF₃).

HRMS (ESI) m/z: 432.1736 [M+Na]⁺, C₂₂H₂₆F₃NNaO₃⁺ requires 432.1757.

5,5,5-Trifluoro-4-phenylpentan-2-amine (6j)

The final compound was not isolated due to low conversion. Conversion to the mixture of E and Z diastereomers was determined by integration of the CF₃ of both starting material and product by ¹⁹F NMR (Shown below). ¹⁹F NMR (376 MHz, CDCl₃) δ – 66.28 (s, CF₃, Allylic amine 4j), – 69.55 - – 70.01 (d, CF₃, diastereomeric mixture of 6j).
4,4,4-Trifluoro-3-phenylbutan-1-amine (6k)

The final compound could not be separated from the starting material. The conversion to the mixture of E and Z diastereomers was determined by integration of the CF₃ of both starting material and product by 19F NMR (Shown below). 19F NMR (376 MHz, CDCl₃) δ – 66.00 – 66.04 (s, CF₃, Allylic amine 4k), – 69.63 – 69.66 (s, CF₃, 6k).
The titled compound was obtained following GPC from 4l (72.8 mg, 0.25 mmol) as a colourless oil (90% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 67:33 in 90% yield. Minor diastereomer could not be isolated. Major diastereomer (1R,3R)-6l isolated 44.0 mg (0.15 mmol) 60% yield.

Major diastereomer (configuration 1R, 3R)-6l

\[\text{Ph} \quad \text{NH}_2 \]

\[\text{CF}_3 \]

\[\text{Ph} \quad \text{NH}_2 \]

1H NMR (400 MHz, CDCl$_3$) δ 7.37 – 7.27 (m, 3H), 7.19 – 7.17 (m, 4H), 7.11 (d, $J = 7.9$ Hz, 2H), 3.64 – 3.61 (m, 1H), 2.93 (dq, $J = 18.5$, 9.3 Hz, 1H), 2.37 (s, 3H), 2.35 – 2.31 (m, 2H), 1.55 (bs, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 144.5, 138.1, 131.22 (Cq, $J = 1.9$ Hz), 129.4, 129.0, 128.8, 127.7, 126.6, 126.8 (Cq, $J = 279.7$ Hz), 53.6, 47.0 (Cq, $J = 26.8$ Hz), 37.9, 21.1.

19F NMR (376 MHz, CDCl$_3$) δ – 70.09 (d, $J = 9.6$ Hz, CF$_3$).

tert-Butyl (4,4,4-trifluoro-1-phenyl-3-(p-tolyl)butyl)carbamate (6l')

The titled compound was obtained following GPB from 6l and purified by FCC using (pentane:EtOAc 95:5). Major diastereomer (1R,3R)-6l’, isolated yield 87% (51.3 mg, 0.13 mmol) from 44.0 mg (0.15 mmol) of 6l.
The enantiomeric excess (minor isomer: nd, major isomer 70%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, \(\lambda = 210 \) nm, 1\textit{R},3\textit{R} (major diastereomer): minor enantiomer \(t_r = 6.9 \) min, major enantiomer, \(t_r = 5.1 \) min.

Major diastereomer (configuration 1\textit{R}, 3\textit{R})-6l’

![diagram]

\([\alpha]_D^{25}: \) – 15.8 (c 0.70, CHCl\textsubscript{3}, ee 70%).

\(^1\text{H} \text{NMR} \) (400 MHz, CDCl\textsubscript{3}) \(\delta \) 7.37 – 7.29 (m, 3H), 7.19 (d, \(J = 7.8 \) Hz, 2H), 7.13 – 7.10 (m, 4H), 4.72 (d, \(J = 6.5 \) Hz, 1H), 4.35 (bs, 1H), 2.95 – 2.85 (m, 1H), 2.59 (bs, 1H), 2.37 – 2.29 (m, 4H), 1.38 (s, 9H).

\(^{13}\text{C} \text{NMR} \) (100 MHz, CDCl\textsubscript{3}) \(\delta \) 154.6, 140.4, 138.2, 130.2, 129.5, 129.1, 128.9, 128.0, 126.8, 126.7 (Cq, \(J = 279.7 \) Hz), 79.5, 52.9, 46.7 (Cq, \(J = 27.4 \) Hz), 34.7, 28.3, 21.1.

\(^{19}\text{F} \text{NMR} \) (376 MHz, CDCl\textsubscript{3}) \(\delta \) – 70.33 (d, \(J = 9.4 \) Hz, CF\textsubscript{3}).

HRMS (ESI) \(m/z \) 416.1871 [M+Na]+, C\textsubscript{22}H\textsubscript{26}F\textsubscript{3}NNaO\textsubscript{2}+ requires 416.1808.

4,4,4-Trifluoro-3-(4-methoxyphenyl)-1-phenylbutan-1-amine (6m)

The titled compound was obtained following GPC from 4m (76.8 mg, 0.25 mmol) as a colourless oil (73% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 65:35 in 73% yield. Minor diastereomer could not be isolated.

Major diastereomer (configuration 1\textit{R}, 3\textit{R})-6m

![diagram]

\(^1\text{H} \text{NMR} \) (400 MHz, CDCl\textsubscript{3}) \(\delta \) 7.38 – 7.33 (m, 2H), 7.31 – 7.27 (m, 1H), 7.18 – 7.13 (m, 4H), 6.90 (d, \(J = 8.8 \) Hz, 2H), 3.83 (s, 3H), 3.64 – 3.61 (m, 1H), 2.96 – 2.85 (m, 1H), 2.33 – 2.30 (m, 2H), 1.62 (bs, 2H).

\(^{13}\text{C} \text{NMR} \) (100 MHz, CDCl\textsubscript{3}) \(\delta \) 159.5, 144.4, 130.2, 128.8, 127.7, 126.8 (Cq, \(J = 278.0 \) Hz), 126.6, 126.2 (Cq, \(J = 2.2 \) Hz), 114.1, 55.2, 53.6, 46.6 (Cq, \(J = 26.9 \) Hz), 37.9.

\(^{19}\text{F} \text{NMR} \) (376 MHz, CDCl\textsubscript{3}) \(\delta \) – 70.34 (d, \(J = 9.4 \) Hz, CF\textsubscript{3}).

tet-Butyl (4,4,4-trifluoro-3-(4-methoxyphenyl)-1-phenylbutyl)carbamate (6m’)*
The titled compound was obtained following GPB from 6m and purified by FCC using (pentane:EtOAc 95:5). Major diastereomer (1R,3R)-6m’, isolated yield 64% (28.8 mg, 0.07 mmol) from 35.0 mg (0.11 mmol) of 6m.

The enantiomeric excess (minor isomer: nd, major isomer 81%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, λ = 210 nm, 1R,3R (major diastereomer): minor enantiomer t_r = 10.4 min, major enantiomer, t_r = 6.9 min.

Major diastereomer (configuration 1R, 3R)-6m’

\[
\text{OMe} \\
\text{CF}_3 \\
\text{NHBoc} \\
\text{Ph}
\]

([α]_D^{25} = -22.9 (c 0.85, CHCl₃, ee 81%).

^1H NMR (400 MHz, CDCl₃) δ 7.37 – 7.29 (m, 3H), 7.15 – 7.11 (m, 4H), 6.91 (d, J = 8.6 Hz, 2H), 4.72 (d, J = 4.8 Hz, 1H), 4.34 (bs, 1H), 3.83 (s, 3H), 2.92 – 2.28 (m, 1H), 2.59 (bs, 1H), 2.31 (ddd, J = 13.6, 10.6, 3.4 Hz, 1H), 1.38 (s, 9H).

^13C NMR (100 MHz, CDCl₃) δ 159.6, 154.7, 140.3, 130.3, 129.0, 128.1, 126.9, 126.7 (Cq, J = 279.7 Hz), 125.1, 114.2, 79.5, 55.2, 52.9, 46.3 (Cq, J = 26.4 Hz), 34.6, 28.3.

^19F NMR (376 MHz, CDCl₃) δ -70.58 (s, CF₃).

HRMS (ESI) m/z: 432.1764 [M+Na]^+ requires 432.1757.

4,4,4-Trifluoro-1-phenyl-3-(4-(trifluoromethyl)phenyl)butan-1-amine (6n)

The titled compound was obtained following GPC from 4n (86.3 mg, 0.25 mmol) as a colourless oil (55% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 85:15 in 55% yield. Minor diastereomer could not be isolated. Major diastereomer (1R,3R)-6n isolated 37.0 mg (0.11 mmol) 43% yield.

Major diastereomer (configuration 1R, 3R)-6n

\[
\text{CF}_3 \\
\text{CF}_3 \\
\text{NH}_2 \\
\text{Ph}
\]

^1H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 2H), 7.38 – 7.29 (m, 5H), 7.15 (d, J = 7.3 Hz, 2H), 3.60 (dd, J = 9.1, 6.0 Hz, 1H), 3.09 (pd, J = 9.4, 4.9 Hz, 1H), 2.43 – 2.31 (m, 2H), 1.56 (bs, 2H).

^13C NMR (100 MHz, CDCl₃) δ 148.4, 134.0, 130.0 (Cq, J = 32.4 Hz), 129.1, 128.9, 128.5, 127.0, 126.6 (Cq, J_CF = 279.8 Hz), 125.8 (Cq, J_CF = 3.7 Hz), 124.0 (Cq, J_CF = 272.0 Hz), 53.3, 47.3, 37.9.

^19F NMR (376 MHz, CDCl₃) δ -62.71 (s, CF₃), -69.73 (d, J = 9.1 Hz, CF₃).
tert-Butyl (4,4,4-trifluoro-1-phenyl-3-(4-(trifluoromethyl)phenyl)butyl)carbamate (6n’)

The titled compound was obtained following GPB from 6n and purified by FCC using (pentane:EtOAc 95:5). Major diastereomer (1R,3R)-6n’, isolated yield 82% (40.4 mg, 0.09 mmol) from 37.0 mg (0.11 mmol) of 6n.

The enantiomeric excess (minor isomer: nd, major isomer 70%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, λ = 210 nm, 1R,3R (major diastereomer): minor enantiomer t_r = 9.0 min, major enantiomer, t_r = 6.1 min.

Major diastereomer (configuration 1R, 3R)-6n’

![Diastereomer Structure](image)

[α]_D^{25} = −1.8 (c 0.55, CHCl₃, ee 70%).

1H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.1 Hz, 2H), 7.39 – 7.33 (m, 5H), 7.11 (dd, J = 7.8, 1.7 Hz, 2H), 4.68 (d, J = 7.0 Hz, 1H), 4.31 (bs, 1H), 3.02 (ddq, J = 18.2, 9.1, 4.5, 3.4 Hz, 1H), 2.69 (bs, 1H), 2.39 (ddd, J = 13.7, 10.3, 3.5 Hz, 1H), 1.38 (s, 9H).

13C NMR (100 MHz, CDCl₃) δ 154.7, 139.8, 137.4, 130.8 (Cq, J = 32.6 Hz), 129.8, 129.2, 128.4, 126.8, 126.2 (Cq, J = 278.0 Hz), 125.8 (Cq, J = 3.7 Hz), 123.9 (Cq, J = 272.2 Hz), 79.8, 53.0, 47.1 (Cq, J = 27.2 Hz), 34.2, 28.3.

19F NMR (376 MHz, CDCl₃) δ −62.73 (s, CF₃), −70.09 (d, J = 8.7 Hz, CF₃).

HRMS (ESI) m/z: 470.1548 [M+Na]⁺, C₂₂H₂₃F₈NNO₂⁺ requires 470.1525.

4,4,4-Trifluoro-1-phenyl-3-(m-tolyl)butan-1-amine (6o)

The titled compound was obtained following GPC from 4o (72.8 mg, 0.25 mmol) as a colourless oil (81% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 75:25 in 75% yield. Minor diastereomer could not be isolated.

Major diastereomer (configuration 1R, 3R)-6o isolated 39.0 mg (0.13 mmol) 53% yield.

Major diastereomer (configuration 1R, 3R)-6o

![Diastereomer Structure](image)

1H NMR (400 MHz, CDCl₃) δ 7.38 – 7.34 (m, 2H), 7.31 – 7.29 (m, 1H), 7.28 – 7.24 (m, 1H), 7.19 – 7.16 (m, 3H), 7.04 – 7.00 (m, 2H), 3.63 (dd, J = 8.2, 6.8 Hz, 1H), 2.95 (dq, J = 18.6, 9.4 Hz, 1H), 2.37 (s, 3H), 2.35 – 2.32 (m, 2H), 1.62 (bs, 2H).

13C NMR (100 MHz, CDCl₃) δ 144.5, 138.4, 134.3 (Cq, J = 1.9 Hz), 129.7, 129.0, 128.8, 128.5, 128.2, 127.7, 126.8 (Cq, J = 278.0 Hz), 126.6, 126.4, 53.6, 47.3 (Cq, J = 26.7 Hz), 38.0, 21.4.
19F NMR (376 MHz, CDCl₃) δ – 69.83 (d, J = 9.5 Hz, CF₃).

tert-Butyl (4,4,4-trifluoro-1-phenyl-3-(m-tolyl)butyl)carbamate (6o’)

The titled compound was obtained following GPB from 6o and purified by FCC using (pentane:EtOAc 95:5). Major diastereomer (1R,3R)-6o’, isolated yield 71% (36.3 mg, 0.09 mmol) from 39.0 mg (0.11 mmol) of 6o.

The enantiomeric excess (minor isomer: nd, major isomer 83%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, λ = 210 nm, 1R,3R (major diastereomer): minor enantiomer tᵣ = 6.8 min, major enantiomer, tᵣ = 5.2 min.

Major diastereomer (configuration 1R, 3R)-6o’

\[
\begin{align*}
\text{CF}_3 & \quad \text{NHBoc} \\
\text{Ph} &
\end{align*}
\]

[α]D²⁵: – 1.1 (c 0.90, CHCl₃, ee 70%).

1H NMR (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 3H), 7.27 – 7.25 (m, 1H), 7.18 – 7.13 (m, 3H), 7.03 (d, J = 7.7 Hz, 1H), 6.99 (s, 1H), 4.70 (bs, 1H), 4.38 (bs, 1H), 2.98 – 2.88 (m, 1H), 2.55 (bs, 1H), 2.37 – 2.31 (m, 4H), 1.37 (s, 9H).

13C NMR (100 MHz, CDCl₃) δ 154.7, 140.6, 138.4, 133.4, 130.0, 129.2, 128.7, 128.0, 126.8, 126.2, 79.5, 53.0, 47.0, 35.0, 28.3, 21.4.

19F NMR (376 MHz, CDCl₃) δ – 70.06 (s, CF₃).

HRMS (ESI) m/z: 416.1803 [M+Na]+, C₂₂H₂₆F₃NNaO₂⁺ requires 416.1808.

4,4,4-Trifluoro-1-phenyl-3-(thiophen-2-yl)butan-1-amine (6p)

The titled compound was obtained following GPC from 4p (72.8 mg, 0.25 mmol) as a colourless oil (99% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4). The diastereomers were obtained in a ratio 73:27 in 99% yield. Minor diastereomer (1S,3S)-6p isolated 19.0 mg (0.07 mmol) 27% yield. Major diastereomer (1R,3S)-6p isolated 46.0 mg (0.16 mmol) 64% yield.

Minor diastereomer (configuration 1S, 3S)-6p

\[
\begin{align*}
\text{CF}_3 & \quad \text{NH}_2 \\
\text{Ph} &
\end{align*}
\]

1H NMR (400 MHz, CDCl₃) δ 7.35 – 7.31 (m, 3H), 7.26 – 7.22 (m, 3H), 7.09 (d, J = 2.9 Hz, 1H), 7.05 (dd, J = 5.1, 3.5 Hz, 1H), 4.12 (dqd, J = 10.8, 9.2, 4.1 Hz, 1H), 3.67 (dd, J = 10.2, 4.1 Hz, 1H), 2.24 – 2.11 (m, 2H), 1.51 (bs, 2H).

13C NMR (100 MHz, CDCl₃) δ 146.3, 136.34 (Cq, J = 2.1 Hz), 128.7, 127.9, 127.2, 127.0, 126.3 (Cq, J = 279.5 Hz), 125.7, 125.6, 52.4, 42.8 (Cq, J = 28.4 Hz), 39.7.
19F NMR (376 MHz, CDCl$_3$) δ – 70.67 (d, J = 8.9 Hz, CF$_3$).

Major diastereomer (configuration 1R, 3S)-6p

![Diagram of 1R, 3S-6p]

1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.29 (m, 4H), 7.24 – 7.22 (m, 2H), 7.03 (dd, J = 5.1, 3.5 Hz, 1H), 6.96 (d, J = 3.3 Hz, 1H), 3.75 (dd, J = 10.0, 5.1 Hz, 1H), 3.28 (dt, J = 17.8, 8.9, 4.5 Hz, 1H), 2.40 – 2.25 (m, 2H), 1.58 (bs, 2H).

13C NMR (100 MHz, CDCl$_3$) δ 144.1, 136.4 (q, J = 2.0 Hz), 128.9, 127.8, 127.7, 127.3, 126.9, 125.9 (Cq, J = 279.7 Hz), 125.7, 53.6, 42.9 (q, J = 28.5 Hz), 39.3.

19F NMR (376 MHz, CDCl$_3$) δ – 71.09 (d, J = 8.9 Hz, CF$_3$).

tert-Butyl (4,4,4-trifluoro-1-phenyl-3-(thiophen-2-yl)butyl)carbamate (6p')

The titled compound was obtained following GPB from 6p and purified by FCC using (pentane:EtOAc 95:5). Minor diastereomer (1S,3R)-6p', isolated yield 99% (27.0 mg, 0.07 mmol) from 19.0 mg (0.07 mmol) of 6p. Major diastereomer (1R,3S)-6p', isolated yield 65% (40.1 mg, 0.10 mmol) from 46.0 mg (0.16 mmol) of 6p.

The enantiomeric excess (minor isomer: 86%, major isomer 90%) was determined by HPLC (CHIRACEL® OD–H), hexane/iPrOH 98/2, 1 mL/min, λ = 210 nm, 1S,3S (minor diastereomer): minor enantiomer, t_r = 6.1 min, major enantiomer, t_r = 7.5 min, 1R,3S (major diastereomer): minor enantiomer t_r = 8.3 min, major enantiomer, t_r = 6.1 min.

Minor diastereomer (configuration 1S, 3S)-6p’

![Diagram of 1S, 3S-6p]

[\[\alpha\]]$_D^{25}$ = – 37.0 (c 0.30, CHCl$_3$, ee 86%).

1H NMR (400 MHz, CDCl$_3$) δ 7.34 – 7.30 (m, 3H), 7.27 – 7.24 (m, 1H), 7.19 (d, J = 7.3 Hz, 1H), 7.06 – 7.04 (m, 2H), 4.77 (d, J = 9.4 Hz, 1H), 4.60 (bs, 1H), 3.83 (bs, 1H), 2.35 (t, J = 11.2 Hz, 1H), 2.25 (t, J = 11.5 Hz, 1H), 1.43 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 155.0, 142.1, 135.6 (Cq, J = 2.0 Hz), 128.8, 128.5, 127.5, 127.0, 126.0, 125.8, 79.8, 51.5, 42.9 (Cq, J = 28.3 Hz), 38.2, 28.3.

19F NMR (376 MHz, CDCl$_3$) δ – 70.63 (d, J = 9.0, CF$_3$).

Major diastereomer (configuration 1R, 3S)-6p’

S41
[α]D25: +5.3 (c 0.94, CHCl3, ee 90%).

1H NMR (400 MHz, CDCl3) δ 7.39 – 7.30 (m, 4H), 7.18 (d, J = 7.2 Hz, 2H), 7.05 – 7.00 (m, 2H), 4.75 (d, J = 4.8 H, 1H), 4.49 (bs, 1H), 3.24 (tt, J = 11.9, 8.8 Hz, 1H), 2.55 (bs, 1H), 2.37 (ddd, J = 13.5, 10.3, 3.3 Hz, 1H), 1.38 (s, 9H).

13C NMR (100 MHz, CDCl3) δ 154.6, 140.2, 135.2, 129.1, 128.2, 127.9, 127.2, 127.0, 126.8, 126.0, 125.8 (Cq, J = 279.8 Hz), 79.7, 53.0, 42.6 (Cq, J = 28.7 Hz), 36.0, 28.3.

19F NMR (376 MHz, CDCl3) δ – 71.25 (d, J = 8.9 Hz, CF3).

HRMS (ESI) m/z: 408.1197 [M+Na]+, C19H22F3NNaO2S requires 408.1216.

4,4,4-Trifluoro-1-phenylbutan-1-amine (6q)

The titled compound was obtained following GPC from 4q (50.3 mg, 0.25 mmol) as a colourless oil (99% NMR yield). The diastereomers were purified by FCC using (pentane:EtOAc 8:2 to 6:4).

\[
\text{CF}_3^{\text{NH}}_2^{\text{Ph}}
\]

Isolated yield 86% (40.1 mg, 0.22 mmol).

1H NMR (400 MHz, CDCl3) δ 7.38 – 7.34 (m, 2H), 7.29 – 7.25 (m, 3H), 3.94 (t, J = 6.8 Hz, 1H), 2.19 – 1.87 (m, 4H), 1.50 (bs, 2H).

13C NMR (100 MHz, CDCl3) δ 145.1, 128.8, 127.4, 127.2 (Cq, J = 274.3 Hz), 126.1, 55.1, 31.4 (Cq, J = 2.5 Hz), 30.86 (Cq, J = 28.7 Hz).

19F NMR (376 MHz, CDCl3) δ – 66.19 (t, J = 10.7 Hz, CF3).

HRMS (ESI) m/z: 187.0735 [M+H]+, C10H10F3+ requires 187.0729.
NMR of allylic amines 4 and 4’

\((R,E)-4,4,4\text{-Trifluoro-1,3-diphenylbut-2-en-1-amine (4a)}\)

\[
\begin{align*}
F_3C & \quad \text{Ph} & \quad \text{NH}_2 \\
\text{Ph} & &
\end{align*}
\]

\((R,E)-4a\)

\(^1\text{H NMR, CDCl}_3, 400 \text{ MHz}\)

\[
\begin{align*}
\text{H} & \quad \text{ppm} \\
7.48 & \quad 7.35 & \quad 7.33 & \quad 7.29 & \quad 6.88 & \quad 6.76 & \quad 6.74 & \quad 6.68 & \quad 4.49 & \quad 2.91
\end{align*}
\]

\[(R,E)-4a\]

\(^{13}\text{C NMR, CDCl}_3, 100 \text{ MHz}\)

\[
\begin{align*}
\text{C} & \quad \text{ppm} \\
150 & \quad 140 & \quad 130 & \quad 120 & \quad 110 & \quad 100 & \quad 90 & \quad 80 & \quad 70 & \quad 60 & \quad 50 & \quad 40 & \quad 30 & \quad 20 & \quad 10 & \quad 0
\end{align*}
\]
tert-Butyl \((R,E)-(4,4,4\text{-trifluoro-1,3-diphenylbut-2-en-1-yl})\) carbamate (4a’)

\[
\begin{align*}
\text{Ph} & \quad \text{NHBoc} \\
\text{F}_3\text{C} & \quad \text{Ph}
\end{align*}
\]

\((R,E)-4a’\)

\(^1\text{H NMR, CDCl}_3, 400\text{ MHz}\)

\[
\begin{align*}
\text{Ph} & \quad \text{NHBoc} \\
\text{F}_3\text{C} & \quad \text{Ph}
\end{align*}
\]

\((R,E)-4a’\)

\(^{13}\text{C NMR, CDCl}_3, 100\text{ MHz}\)
(R,E)-4,4,4-Trifluoro-3-phenyl-1-(p-tolyl)but-2-en-1-amine (4b)

\[
\text{F}_3\text{C} \begin{array}{c}
\text{NH}_2 \\
\text{Ph}
\end{array}
\]

(R,E)-4b

1H NMR, CDCl$_3$, 400 MHz

\[
\begin{array}{c}
\text{F}_3\text{C} \\
\text{NH}_2 \\
\text{Ph}
\end{array}
\]

(R,E)-4b

13C NMR, CDCl$_3$, 100 MHz
tert-Butyl (R,E)-(4,4,4-trifluoro-3-phenyl-1-(p-tolyl)but-2-en-1-yl)carbamate (4b')

(R,E)-4b

1H NMR, CDCl$_3$, 400 MHz

(R,E)-4b'

13C NMR, CDCl$_3$, 100 MHz
(R,E)-4,4,4-Trifluoro-1-(4-methoxyphenyl)-3-phenylbut-2-en-1-amine (4c)

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{NH}_2 \\
\text{Ph} & \quad \text{OMe}
\end{align*}
\]

(R,E)-4c

\(^1\)H NMR, CDCl\textsubscript{3}, 400 MHz

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{NH}_2 \\
\text{Ph} & \quad \text{OMe}
\end{align*}
\]

(R,E)-4c

\(^{13}\)C NMR, CDCl\textsubscript{3}, 100 MHz
tert-Butyl (R,E)-(4,4,4-trifluoro-1-(4-methoxyphenyl)-3-phenylbut-2-en-1-yl)carbamate (4c‘)

(R,E)-4c‘

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
(R,E)-1-(4-Bromophenyl)-4,4,4-trifluoro-3-phenylbut-2-en-1-amine 4d

$\text{F}_3\text{C}=\text{C}(Ph)\text{NH}_2\text{Ph}$

(R,E)-4d

1H NMR, CDCl$_3$, 400 MHz

$\text{F}_3\text{C}=\text{C}(Ph)\text{NH}_2\text{Ph}$

(R,E)-4d

13C NMR, CDCl$_3$, 100 MHz
tert-Butyl (R,E)-(1-(4-bromophenyl)-4,4,4-trifluoro-3-phenylbut-2-en-1-yl)carbamate (4d')

$\begin{align*}
\text{Ph} & \quad \text{NHBoc} \\
\text{F}_3\text{C} & \quad \text{Br}
\end{align*}$

(R,E)-4d'

^1H NMR, CDCl_3, 400 MHz

$\begin{align*}
\text{Ph} & \quad \text{NHBoc} \\
\text{F}_3\text{C} & \quad \text{Br}
\end{align*}$

(R,E)-4d'

^{13}C NMR, CDCl_3, 100 MHz

S53
(R,E)-4d'

Peak	RetTime	Type	Width	Area	Height	Area
1	6.907	MF	0.2355	4723.09619	334.29535	48.7371
2	7.718	FM	0.2738	3700.70605	225.22873	38.1872
3	12.835	MM	0.4564	690.65741	25.22265	7.1268
4	16.704	MM	0.6539	576.50079	14.69383	5.9489

Peak	RetTime	Type	Width	Area	Height	Area
1	6.791	MM	0.2388	1.73989e4	1214.15039	87.6811
2	7.607	MM	0.2176	290.86615	22.28024	1.4658
3	12.737	MM	0.4546	2072.23926	75.97820	10.4430
4	16.833	MM	0.8601	81.39301	1.57716	0.4102
(R,E)-4,4,4-Trifluoro-3-phenyl-1-(4-(trifluoromethyl)phenyl)but-2-en-1-amine (4e)

1^H NMR, CDCl₃, 400 MHz

13^C NMR, CDCl₃, 100 MHz
tert-Butyl \((R,E)-(4,4,4\text{-trifluoro-3-phenyl-1-}(4\text{-}(trifluoromethyl)phenyl)but-2-en-1-yl)\)carbamate (4e')

\[
\begin{align*}
\text{Ph} & \quad \text{NHBOc} \\
\text{CF}_3 & \quad \text{CF}_3
\end{align*}
\]

\((R,E)-4e'\)

\(^1\text{H NMR, CDCl}_3, 400 \text{ MHz}\)

\[
\begin{align*}
\text{Ph} & \quad \text{NHBOc} \\
\text{CF}_3 & \quad \text{CF}_3
\end{align*}
\]

\((R,E)-4e'\)

\(^{13}\text{C NMR, CDCl}_3, 100 \text{ MHz}\)
(R,E)-4,4,4-Trifluoro-1-(naphthalen-2-yl)-3-phenylbut-2-en-1-amine (4f)

$\text{Ph} \quad \text{NH}_2$

$\text{F}_3\text{C} \quad \text{NH}_2$

(R,E)-4f

1H NMR, CDCl$_3$, 400 MHz

13C NMR, CDCl$_3$, 100 MHz

S58
tert-Butyl (R,E)-(4,4,4-trifluoro-1-(naphthalen-2-yl)-3-phenylbut-2-en-1-yl)carbamate (4f')

1H NMR, CDCl3, 400 MHz

13C NMR, CDCl3, 100 MHz
(R,E)-4,4,4-Trifluoro-1-(3-methoxyphenyl)-3-phenylbut-2-en-1-amine (4g)

\[
\begin{align*}
\text{Ph} & \quad \text{NH}_2 \\
\text{F}_3\text{C} & \quad \text{\text{OMe}}
\end{align*}
\]

(R,E)-4g

\(^1\)H NMR, CDCl\(_3\), 400 MHz

\[
\begin{align*}
\text{Ph} & \quad \text{NH}_2 \\
\text{F}_3\text{C} & \quad \text{\text{OMe}}
\end{align*}
\]

(R,E)-4g

\(^{13}\)C NMR, CDCl\(_3\), 100 MHz
tert-Butyl (R,E)-(4,4,4-trifluoro-1-(3-methoxyphenyl)-3-phenylbut-2-en-1-yl)carbamate (4g')

\[
\begin{align*}
\text{Ph} & \quad \text{NHBOc} \\
\begin{array}{c}
\text{F}_3\text{C} \\
\end{array} & \begin{array}{c}
\text{Ph} \\
\end{array} & \begin{array}{c}
\text{OMe} \\
\end{array}
\end{align*}
\]

\((R,E)-4g'\)

\(^1\)H NMR, CDCl\(_3\), 400 MHz

\[
\begin{align*}
199.99 & \quad 154.48 \\
141.72 & \quad 135.78 \\
129.86 & \quad 128.22 \\
121.96 & \quad 121.96 \\
117.83 & \quad 118.08 \\
117.63 & \quad 117.63 \\
73.95 & \quad 73.95 \\
61.98 & \quad 61.98 \\
55.19 & \quad 55.19 \\
25.36 & \quad 25.36
\end{align*}
\]

\[
\begin{align*}
\text{Ph} & \quad \text{NHBOc} \\
\begin{array}{c}
\text{F}_3\text{C} \\
\end{array} & \begin{array}{c}
\text{Ph} \\
\end{array} & \begin{array}{c}
\text{OMe} \\
\end{array}
\end{align*}
\]

\((R,E)-4g'\)

\(^{13}\)C NMR, CDCl\(_3\), 100 MHz

\[
\begin{align*}
199.99 & \quad 154.48 \\
141.72 & \quad 135.78 \\
129.86 & \quad 128.22 \\
121.96 & \quad 121.96 \\
117.83 & \quad 118.08 \\
117.63 & \quad 117.63 \\
73.95 & \quad 73.95 \\
61.98 & \quad 61.98 \\
55.19 & \quad 55.19 \\
25.36 & \quad 25.36
\end{align*}
\]
(R,E)-4g

![Chemical Structure](image)

Chromatogram Data

Peak	RetTime	Type	Width	Area	Height	Area %
1	6.483	BB	0.2139	2.37795e4	1779.48376	50.3735
2	7.816	VB	0.2431	1.86578e4	1201.85327	39.5240
3	12.747	VV	0.3940	2637.63428	101.88622	5.5875
4	15.539	VV	0.4991	2131.39990	64.23135	4.5151

Chromatogram Data

Peak	RetTime	Type	Width	Area	Height	Area %
1	6.642	MM	0.2102	1.30041e4	1031.17188	97.0618
2	8.012	MM	0.2600	393.64725	25.23112	2.9382

S63
(R,E)-4,4,4-Trifluoro-3-phenyl-1-(3-(trifluoromethyl)phenyl)but-2-en-1-amine (4h)

\[
\begin{align*}
\text{Ph} & \quad \text{NH}_2 \\
\text{CF}_3 & \\
\end{align*}
\]

(R,E)-4h

\(^1\)H NMR, CDCl\(_3\), 400 MHz

\[
\begin{align*}
\text{Ph} & \quad \text{NH}_2 \\
\text{CF}_3 & \\
\end{align*}
\]

(R,E)-4h

\(^{13}\)C NMR, CDCl\(_3\), 100 MHz
tert-Butyl \((R,E)-(4,4,4\text{-trifluoro-3-phenyl-1-(3-(trifluoromethyl)phenyl)but-2-en-1-yl})carbamate\) (4h‘)

\[
\text{Ph} \quad \text{NHBoc} \quad \text{CF}_3
\]

\((R,E)-4h'\)

\(^1\text{H} \text{NMR, CDCl}_3, 400 \text{ MHz}\)

\[
\text{Ph} \quad \text{NHBoc} \quad \text{CF}_3
\]

\((R,E)-4h'\)

\(^{13}\text{C} \text{NMR, CDCl}_3, 100 \text{ MHz}\)
(R,E)-4,4,4-Trifluoro-1-(2-methoxyphenyl)-3-phenylbut-2-en-1-amine (4i)

\[
\begin{align*}
\text{Ph} & \quad \text{NH}_2 \\
\text{F}_3\text{C} & \quad \text{MeO}
\end{align*}
\]

\(\text{(R,E)-4i}\)

\(^1\text{H NMR, CDCl}_3, 400 \text{ MHz}\)

\[
\begin{align*}
&\text{13C NMR, CDCl}_3, 100 \text{ MHz}\n\end{align*}
\]

\(\text{(R,E)-4i}\)
tert-Butyl (R,E)-(4,4,4-trifluoro-1-(2-methoxyphenyl)-3-phenylbut-2-en-1-yl)carbamate (4i')

\[
\begin{align*}
\text{Ph} & \quad \text{NHBOC} \\
F_3C & \quad \text{MeO} \\
\end{align*}
\]

(R,E)-4i'

\[^1H\text{NMR, CDCl}_3, 400 \text{ MHz}\]

\[
\begin{align*}
\text{Ph} & \quad \text{NHBOC} \\
F_3C & \quad \text{MeO} \\
\end{align*}
\]

(R,E)-4i'

\[^{13}C\text{NMR, CDCl}_3, 100 \text{ MHz}\]
(S,E)-5,5,5-Trifluoro-4-phenylpent-3-en-2-amine (4j)

$\text{Ph} \quad \text{NH}_2$

(S,E)-4j

1H NMR, CDCl$_3$, 400 MHz

$\text{Ph} \quad \text{NH}_2$

(S,E)-4j

13C NMR, CDCl$_3$, 100 MHz
tert-Butyl (S,E)-(5,5,5-Trifluoro-4-phenylpent-3-en-2-yl)carbamate (4j')

\[
\begin{align*}
\text{Ph} & \quad \text{NHBOc} \\
F_3\text{C} & \quad \text{C} = \text{C} & \quad \text{C} = \text{C} & \quad \text{C} = \text{C} & \quad \text{C} = \text{C}
\end{align*}
\]

\[\textcolor{red}{(S,E)-4j'}\]

\[^1\text{H} \text{ NMR, CDCl}_3, 400 \text{ MHz}\]

\[
\begin{align*}
\text{Ph} & \quad \text{NHBOc} \\
F_3\text{C} & \quad \text{C} = \text{C} & \quad \text{C} = \text{C} & \quad \text{C} = \text{C} & \quad \text{C} = \text{C}
\end{align*}
\]

\[\textcolor{red}{(S,E)-4j'}\]

\[^{13}\text{C} \text{ NMR, CDCl}_3, 100 \text{ MHz}\]

S71
(E)-4,4,4-Trifluoro-3-phenylbut-2-en-1-amine (4k)

(\(\text{Ph}\))

\[
\text{F}_3\text{C} \equiv \text{NH}_2
\]

\((R,E)-4k\)

\(^1\text{H} \text{ NMR, CDCl}_3, 400 \text{ MHz}\)

(\(\text{Ph}\))

\[
\text{F}_3\text{C} \equiv \text{NH}_2
\]

\((R,E)-4k\)

\(^{13}\text{C} \text{ NMR, CDCl}_3, 100 \text{ MHz}\)
(\textit{R,E})-4,4,4-Trifluoro-1-phenyl-3-(\textit{p}-tolyl)but-2-en-1-amine (4l)

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\includegraphics[width=0.8\textwidth]{structure}};
\end{tikzpicture}
\end{center}

^{1}H NMR, CDCl$_3$, 400 MHz

^{13}C NMR, CDCl$_3$, 100 MHz
tert-Butyl (R,E)-(4,4,4-trifluoro-1-phenyl-3-(p-tolyl)but-2-en-1-yl)carbamate (4l')

(R,E)-4l'

1H NMR, CDCl$_3$, 400 MHz

(R,E)-4l'

13C NMR, CDCl$_3$, 100 MHz
\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{NHBoc} \\
\text{Ph} & \\
(R,E)-4\text{I}'
\end{align*}
\]

Peak	RetTime	Type	Width	Area	Height	Area %
1	5.458	MM	0.2300	8718.00586	631.83197	53.4617
2	7.029	MM	0.2578	7589.01953	490.53333	46.5383

Peak	RetTime	Type	Width	Area	Height	Area %
1	5.383	MM	0.2299	1.14998e4	833.57446	95.8861
2	6.915	MM	0.2567	493.38300	32.03526	4.1139
(R,E)-4,4,4-Trifluoro-3-(4-methoxyphenyl)-1-phenylbut-2-en-1-amine (4m)

\[\text{OMe} \quad \text{NH}_2 \quad \text{Ph} \]

(R,E)-4m

1H NMR, CDCl$_3$, 400 MHz

\[\text{OMe} \quad \text{NH}_2 \quad \text{Ph} \]

(R,E)-4m

1H NMR, CDCl$_3$, 400 MHz
tert-Butyl (R,E)-(4,4,4-trifluoro-3-(4-methoxyphenyl)-1-phenylbut-2-en-1-yl)carbamate (4m’)

\[
\begin{align*}
\text{OMe} & \\
\text{F}_3\text{C} & \text{NHBoc} \\
\text{Ph} & \\
\end{align*}
\]

(R,E)-4m’

\[\text{1H NMR, CDCl}_3, 400 MHz\]

\[
\begin{align*}
\text{OMe} & \\
\text{F}_3\text{C} & \text{NHBoc} \\
\text{Ph} & \\
\end{align*}
\]

(R,E)-4m’

\[\text{1H NMR, CDCl}_3, 400 MHz\]
(R,E)-4,4,4-Trifluoro-1-phenyl-3-(4-(trifluoromethyl)phenyl)but-2-en-1-amine (4n)

(R,E)-4n

^1H NMR, CDCl_3, 400 MHz

(R,E)-4n

^13C NMR, CDCl_3, 100 MHz
tert-Butyl \((R,E)-(4,4,4\text{-trifluoro-1-phenyl-3-(4-(trifluoromethyl)phenyl)but-2-en-1-yl})\)carbamate (4n’)

\[
\begin{align*}
\text{CF}_{3} & \quad \text{NHBoc} \\
\text{F}_{3}\text{C} & \quad \text{Ph}
\end{align*}
\]

\((R,E)-4n’\)

\(^1\)H NMR, CDCl\(_3\), 400 MHz

\[
\begin{align*}
\text{CF}_{3} & \quad \text{NHBoc} \\
\text{F}_{3}\text{C} & \quad \text{Ph}
\end{align*}
\]

\((R,E)-4n’\)

\(^{13}\)C NMR, CDCl\(_3\), 100 MHz
(R,E)-4n'

Peak RetTime Type Width Area Height Area %

#	[min]	[min]	[mAU*s]	[mAU]	%
1	5.024	0.2559	4523.22705	294.54364	58.0993
2	7.069	0.2803	3262.11377	193.94978	41.9007

Peak RetTime Type Width Area Height Area %

#	[min]	[min]	[mAU*s]	[mAU]	%
1	5.051	0.3152	3.81342e4	2016.45679	96.9799
2	6.914	0.2698	1187.57690	73.35021	3.0201

S82
(R,E)-4,4,4-Trifluoro-1-phenyl-3-(m-tolyl)but-2-en-1-amine (4o)

(R,E)-4o

1H NMR, CDCl$_3$, 400 MHz

13C NMR, CDCl$_3$, 100 MHz
tert-Butyl (R,E)-(4,4,4-trifluoro-1-phenyl-3-(m-tolyl)but-2-en-1-yl)carbamate (4o')

\[\text{(R,E)-4o'}\]

1H NMR, CDCl₃, 400 MHz

\[\text{13C NMR, CDCl₃, 100 MHz}\]

S84
(R,Z)-4,4,4-Trifluoro-1-phenyl-3-(thiophen-2-yl)but-2-en-1-amine (4p)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl (R,Z)-(4,4,4-trifluoro-1-phenyl-3-(thiophen-2-yl)but-2-en-1-yl)carbamate (4p')

(R,E)-4p'

1H NMR, CDCl$_3$, 400 MHz

(R,E)-4p'

13C NMR, CDCl$_3$, 100 MHz
NMR of compounds 6 and 6’

(1S,3R)-4,4,4-Trifluoro-1,3-diphenylbutan-1-amine – minor diastereomer (6a)

1H NMR, CDCl$_3$, 400 MHz

13C NMR, CDCl$_3$, 100 MHz

13C NMR, CDCl$_3$, 100 MHz
tert-Butyl ((1S,3R)-4,4,4-trifluoro-1,3-diphenylbutyl)carbamate – minor diastereomer (6a’)

\[\text{Ph} \quad \text{NHBoc} \]
\[\text{CF}_3 \]
\[\text{Ph} \]

1S,3R-6a’

\[^1\text{H NMR, CDCl}_3, 400 \text{ MHz} \]

\[^{13}\text{C NMR, CDCl}_3, 100 \text{ MHz} \]
(1R,3R)-4,4,4-Trifluoro-1,3-diphenylbutan-1-amine – major diastereomer (6a)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl ((1R,3R)-4,4,4-trifluoro-1,3-diphenylbutyl) carbamate – major diastereomer (6a’)

$1R,3R-6a'$

1H NMR, CDCl$_3$, 400 MHz

13^C NMR, CDCl$_3$, 100 MHz
1R,3R-6a’

---|-----|-----|------------------|------------------|-----|-----|
1 6.056 BV 0.1990 5949.37158 472.04483 55.5792
2 7.807 BV 0.2499 4754.93506 298.41345 44.4208

---|-----|-----|------------------|------------------|-----|-----|
1 6.056 MM 0.2069 1.63019e4 1313.05225 95.1749
2 7.848 MM 0.2527 826.45880 54.50021 4.8251
(1R,3R)-4,4,4-Trifluoro-3-phenyl-1-(p-tolyl)butan-1-amine – major diastereomer (6b)

13C NMR, CDCl3, 100 MHz
tert-Butyl ((1\text{R},3\text{R})-4,4,4-trifluoro-3-phenyl-1-(p-tolyl)butyl)carbamate – major diastereomer (6b')

\[
\begin{align*}
\text{Ph} & \quad \text{NHBoc} \\
\text{CF}_3 & \\
\end{align*}
\]

1\text{R},3\text{R}-6b'

\[\text{13C NMR, CDCl}_3, 100 \text{ MHz}\]

\[
\begin{align*}
\text{Ph} & \quad \text{NHBoc} \\
\text{CF}_3 & \\
\end{align*}
\]

1\text{R},3\text{R}-6b'

\[\text{13C NMR, CDCl}_3, 100 \text{ MHz}\]
Peak	RetTime	Type	Width	Area	Height	Area	%
1	6.610	BV	0.2083	1.05567e4	798.36798	54.4745	
2	7.258	VV	0.2353	8822.41699	587.30841	45.5255	

Peak	RetTime	Type	Width	Area	Height	Area	%
1	6.489	BV	0.2812	2.76891e4	1605.84692	83.4816	
2	7.102	VV	0.2719	5478.82080	319.71326	16.5184	
(1R,3R)-4,4,4-Trifluoro-1-(4-methoxyphenyl)-3-phenylbutan-1-amine – major diastereomer (6c)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl ((1R,3R)-4,4,4-trifluoro-1-(4-methoxyphenyl)-3-phenylbutyl)carbamate – major diastereomer (6c’)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
1R,3R-6c'

Peak RetTime Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.788 BV	0.2756	476.69098	56.0823
2	10.130 VB	0.3233	315.91843	43.9177

Peak RetTime Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.164 MM	0.2992	41.58955	5.2305
2	10.372 BV	0.3397	617.15686	94.7695
(1R,3R)-1-(4-Bromophenyl)-4,4,4-trifluoro-3-phenylbutan-1-amine – major diastereomer (6d)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl (1\(R\),3\(R\))-1-(4-bromophenyl)-4,4,4-trifluoro-3-phenylbutyl)carbamate – major diastereomer (6d’)

1\(R\),3\(R\)-6d’

\(^1\)H NMR, CDCl\(_3\), 400 MHz

1\(R\),3\(R\)-6d’

\(^{13}\)C NMR, CDCl\(_3\), 100 MHz
Peak	Ret Time	Type	Width	Area	Height	Area %
1	7.760	MM	0.2838	9609.80762	564.44696	57.2907
2	10.351	MM	0.3713	7163.97168	321.60458	42.7093

Peak	Ret Time	Type	Width	Area	Height	Area %
1	9.004	BV	0.3245	1.07869e4	518.95776	92.9500
2	12.432	BV	0.4319	818.16278	28.08563	7.0500
(1S,3R)-4,4,4-Trifluoro-3-phenyl-1-(4-(trifluoromethyl)phenyl)butan-1-amine – major diastereomer (6e)

\[\text{CF}_3 \text{Ph} \text{NH}_2 \text{CF}_3 \]

\(^1H \text{NMR, CDCl}_3, 400 \text{ MHz} \)

\[\text{CF}_3 \text{Ph} \text{NH}_2 \text{CF}_3 \]

\(^13C \text{NMR, CDCl}_3, 100 \text{ MHz} \)
tert-Butyl ((1R,3R)-4,4,4-trifluoro-3-phenyl-1-(4-(trifluoromethyl)phenyl)butyl)carbamate – major diastereomer (6e')

\[\text{Ph} \quad \text{NHBOc} \]

\[\text{CF}_3 \quad \text{CF}_3 \]

1H NMR, CDCl\textsubscript{3}, 400 MHz

\[\text{Ph} \quad \text{NHBOc} \]

\[\text{CF}_3 \quad \text{CF}_3 \]

13C NMR, CDCl\textsubscript{3}, 100 MHz
(1S,3R)-4,4,4-trifluoro-1-(naphthalen-2-yl)-3-phenylbutan-1-amine – minor diastereomer (6f)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl ((1S,3R)-4,4,4-trifluoro-1-(naphthalen-2-yl)-3-phenylbutyl)carbamate – minor diastereomer (6f')

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
1S,3R-6f'

![Chemical Structure](image)

Peak	RetTime	Type	Width	Area	Height	Area %
1	15.479	BV	0.5814	4568.28809	117.54218	64.8386
2	20.277	VV	0.6730	2477.34546	45.66288	35.1614

Peak	RetTime	Type	Width	Area	Height	Area %
1	16.749	MM	0.7586	1.46960e4	322.86279	96.7179
2	21.497	MM	1.0989	498.71426	7.56412	3.2821
(1R,3R)-4,4,4-Trifluoro-1-(naphthalen-2-yl)-3-phenylbutan-1-amine – major diastereomer (6f)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl ((1*R,3*R)-4,4,4-trifluoro-1-(naphthalen-2-yl)-3-phenylbutyl)carbamate – major diastereomer (6f')

$\text{Ph} \quad \text{NHBOC} \quad \text{CF}_3$

$\text{1}R,\text{3}R-6f'$

1H NMR, CDCl$_3$, 400 MHz

$\text{Ph} \quad \text{NHBOC} \quad \text{CF}_3$

$\text{1}R,\text{3}R-6f'$

13C NMR, CDCl$_3$, 100 MHz
Peak RetTime Type Width Area Height Area

#	RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.692	BV	0.3884	2.05084e4	812.80261	64.8635
2	12.735	VV	0.4781	1.11093e4	359.93011	35.1365

Peak RetTime Type Width Area Height Area

#	RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.871	MM	0.4292	2.85714e4	1109.36584	97.3738
2	13.162	MM	0.5435	770.59174	23.63230	2.6262
(1S,3R)-4,4,4-Trifluoro-1-(3-methoxyphenyl)-3-phenylbutan-1-amine – minor diastereomer (6g)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl ((1*S,3R)-4,4,4-trifluoro-1-(3-methoxyphenyl)-3-phenylbutyl)carbamate—minor diastereomer (6g')

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
1S,3R-6F

![Chemical Structure](image_url)

Peak RetTime	Width	Area [mAU*s]	Height [mAU]	Area [%]
1	12.399	3308.19751	55.91677	41.6459
2	19.691	4635.42969	61.59345	58.3541

Peak RetTime	Width	Area [mAU*s]	Height [mAU]	Area [%]
1	12.574	732.01520	12.49027	7.1791
2	19.859	9464.41211	128.07130	92.8209
(1R,3R)-4,4,4-Trifluoro-1-(3-methoxyphenyl)-3-phenylbutan-1-amine – major diastereomer (6g)

^{1}H NMR, CDCl$_3$, 400 MHz

13C NMR, CDCl$_3$, 100 MHz
tert-Butyl ((1R,3R)-4,4,4-trifluoro-1-(3-methoxyphenyl)-3-phenylbutyl)carbamate – major diastereomer (6g')

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
Peak	Ret Time	Type	Width	Area	Height	Area %
1	7.714	MM	0.2774	1.72279e4	1035.24622	56.0796
2	9.379	MM	0.3435	1.34925e4	654.59137	43.9204

Peak	Ret Time	Type	Width	Area	Height	Area %
1	7.743	MM	0.2611	8724.56250	557.00623	94.3413
2	9.464	MM	0.3294	523.30811	26.47727	5.6587

1R,3R-6g’
(1S,3R)-4,4,4-Trifluoro-3-phenyl-1-(3-(trifluoromethyl)phenyl)butan-1-amine – minor diastereomer (6h)

1H NMR, CDCl$_3$, 400 MHz

13C NMR, CDCl$_3$, 100 MHz
tert-Butyl (1S,3R)-4,4,4-trifluoro-3-phenyl-1-(3-(trifluoromethyl)phenyl)butyl)carbamate – minor diastereomer (6h’)

\[\text{1S,3R-6h'} \]

\(^1\)H NMR, CDCl\(_3\), 400 MHz

\[\text{1S,3R-6h'} \]

\(^{13}\)C NMR, CDCl\(_3\), 100 MHz
Peak RetTime Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	0.5645	4053.77100	97.22186	43.4633
2	0.6677	5273.12109	126.13394	56.5367

Peak RetTime Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	0.6001	4758.38721	113.26289	11.5296
2	0.6418	3.65128e4	910.68823	88.4704
(1R,3R)-4,4,4-Trifluoro-3-phenyl-1-(3-(trifluoromethyl)phenyl)butan-1-amine – major diastereomer (6h)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl (\((1R,3R)\)-4,4,4-trifluoro-3-phenyl-1-(3-(trifluoromethyl)phenyl)butyl)carbamate – major diastereomer \((6h')\)

\[\text{1H NMR, CDCl}_3, 400 MHz}\]

\[\text{13C NMR, CDCl}_3, 100 MHz]\]
1R,3R-6h

![Chemical Structure]

Peak RetTime Type Width Area Height Area

#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.622	VV	0.5197	5738.3750	176.31398	56.4385
2	16.094	VB	0.6646	4429.10303	102.00723	43.5615

Peak RetTime Type Width Area Height Area

#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.876	VB	0.0626	19.13806	4.59840	5.6458
2	10.256	BB	0.5126	319.83951	9.96070	94.3542
(1S,3R)-4,4,4-Trifluoro-1-(2-methoxyphenyl)-3-phenylbutan-1-amine - minor diastereomer (6i)

1H NMR, CDCl$_3$, 400 MHz

13C NMR, CDCl$_3$, 100 MHz
tert-Butyl ((1S,3R)-4,4,4-trifluoro-1-(2-methoxyphenyl)-3-phenylbutyl)carbamate – minor diastereomer (6i')

1H NMR, CDCl3, 400 MHz

13C NMR, CDCl3, 100 MHz

S126
1S,3R-6i'

Table 1

#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area [%]
1	7.129	VV	0.2209	3949.51587	279.38400	54.1906
2	7.730	VB	0.2418	3338.67139	211.86257	45.8094

Table 2

#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area [%]
1	7.229	VV	0.2236	1.24736e4	868.37579	84.5006
2	7.887	VB	0.2486	2287.95801	140.07599	15.4994
(1\textit{R},3\textit{R})-4,4,4-Trifluoro-1-(2-methoxyphenyl)-3-phenylbutan-1-amine – major diastereomer (6i)

\textbf{1H NMR, CDCl\textsubscript{3}, 400 MHz}

\textbf{13C NMR, CDCl\textsubscript{3}, 100 MHz}
tert-Butyl ((1R,3R)-4,4,4-trifluoro-1-(2-methoxyphenyl)-3-phenylbutyl)carbamate – major diastereomer (6i')

\[\text{Ph} \quad \text{CF}_3 \quad \text{NHBoc} \]

\[\text{MeO} \]

1H NMR, CDCl\textsubscript{3}, 400 MHz

\[\text{Ph} \quad \text{CF}_3 \quad \text{NHBoc} \]

\[\text{MeO} \]

13C NMR, CDCl\textsubscript{3}, 100 MHz
Peak	RetTime	Type	Width	Area	Height	Area	%
1	8.785	MF	0.3095	1.65488e4	891.15698	53.8248	
2	9.819	FM	0.3600	1.41969e4	657.23694	46.1752	

Peak	RetTime	Type	Width	Area	Height	Area	%
1	8.575	MF	0.2810	1.53710e4	911.81726	85.8995	
2	9.611	FM	0.3308	2.52316089	127.14045	14.1005	
(1R,3R)-4,4,4-Trifluoro-1-phenyl-3-(p-tolyl)butan-1-amine diastereomer 2 – major diastereomer (6l)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl ((1R,3R)-4,4,4-trifluoro-1-phenyl-3-(p-tolyl)butyl)carbamate – major diastereomer (6l')

\[\begin{align*}
\text{CF}_3 & \quad \text{NHBOc} \\
\text{Ph} & \\
\end{align*} \]

1R,3R-6l'

\(^1\)H NMR, CDCl\(_3\), 400 MHz

13C NMR, CDCl\(_3\), 100 MHz
$1R,3R-6l'$

Peak	RetTime	Type	Width	Area	Height	Area	%
1	5.124	MM	0.175	9509.138	904.209	54.644	
2	6.941	MM	0.235	7892.728	557.831	45.356	

Peak	RetTime	Type	Width	Area	Height	Area	%
1	5.116	VV	0.174	1.39353e4	1286.579	85.046	
2	6.940	VB	0.219	2450.124	173.172	14.953	
(1R,3R)-4,4,4-Trifluoro-3-(4-methoxyphenyl)-1-phenylbutan-1-amine – major diastereomer (6m)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl ((1R,3R)-4,4,4-trifluoro-3-(4-methoxyphenyl)-1-phenylbutyl)carbamate – major diastereomer (6m')

OMe

\[
\begin{align*}
\text{CF}_3 & \quad \text{NHBoc} \\
\text{Ph} &
\end{align*}
\]

1R,3R-6m'

1H NMR, CDCl$_3$, 400 MHz

13C NMR, CDCl_3, 100 MHz
(1R,3R)-4,4,4-Trifluoro-1-phenyl-3-(4-(trifluoromethyl)phenyl)butan-1-amine – major diastereomer (6n)

^{1}H NMR, CDCl$_3$, 400 MHz

^{13}C NMR, CDCl$_3$, 100 MHz
tert-Butyl ((1R,3R)-4,4,4-trifluoro-1-phenyl-3-(4-(trifluoromethyl)phenyl)butyl)carbamate – major diastereomer (6n’)

\[
\text{CF}_3 \\
\text{NHBoc} \\
\text{Ph}
\]

1\(R,3R\)-6n’

\(^1\text{H} \text{NMR, CDCl}_3, 400 \text{ MHz}\)

\[
\text{CF}_3 \\
\text{NHBoc} \\
\text{Ph}
\]

1\(R,3R\)-6n’

\(^{13}\text{C} \text{NMR, CDCl}_3, 100 \text{ MHz}\)
(1R,3R)-4,4,4-Trifluoro-1-phenyl-3-(m-tolyl)butan-1-amine – major diastereomer (6o)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl ((1R,3R)-4,4,4-trifluoro-1-phenyl-3-(m-tolyl)butyl)carbamate – major diastereomer (6o’)

\[\text{CF}_3 \text{NHBOc} \]

1R,3R-6o’

1H NMR, CDCl$_3$, 400 MHz

\[\text{CF}_3 \text{NHBOc} \]

1R,3R-6o’

13C NMR, CDCl$_3$, 100 MHz
Peak RetTime Type Width Area Height Area %

#	[min]	[min]	[mAU*s]	[mAU]	%	
1	5.231	MM	0.1792	3295.30908	306.51895	57.2553
2	6.772	MM	0.2319	2460.15430	176.84816	42.7447

Peak RetTime Type Width Area Height Area %

#	[min]	[min]	[mAU*s]	[mAU]	%	
1	5.241	MM	0.2149	2.05743e4	1595.82104	91.3214
2	6.813	MM	0.2309	1955.25659	141.10260	8.6786
(1S,3S)-4,4,4-Trifluoro-1-phenyl-3-(thiophen-2-yl)butan-1-amine – minor diastereomer (6p)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl ((1S,3S)-4,4,4-trifluoro-1-phenyl-3-(m-tolyl)butyl)carbamate – minor diastereomer (6p’)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
Peak	RetTime	Type	Width	Area	Height	Area %
1	6.100	MM	0.2064	4628.16504	373.68042	42.7449
2	7.528	MM	0.2559	6199.23682	403.77646	57.2551

Peak	RetTime	Type	Width	Area	Height	Area %
1	6.138	MM	0.1984	274.54715	23.06816	7.1650
2	7.534	MM	0.2583	3557.21191	229.51276	92.8350
(1R,3S)-4,4,4-Trifluoro-1-phenyl-3-(thiophen-2-yl)butan-1-amine – major diastereomer (6p)

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
tert-Butyl ((1R,3S)-4,4,4-trifluoro-1-phenyl-3-(thiophen-2-yl)butyl)carbamate – major diastereomer (6p')

1H NMR, CDCl₃, 400 MHz

13C NMR, CDCl₃, 100 MHz
1R,3S-6p'
4,4,4-Trifluoro-1-phenylbutan-1-amine (6q)

\[\text{F}_3 \text{C} \quad \text{NH}_2 \quad \text{Ph} \]

\[6q \]

1H NMR, CDCl$_3$, 400 MHz

13C NMR, CDCl$_3$, 100 MHz
Crystal structure determination

Single crystal X-ray diffraction data on suitable crystals of compounds 4d’ and (1R,3R)-6d’ were collected using Cu Kα radiation on a Bruker D8 VENTURE diffractometer equipped with a PHOTON 100 detector. The dataset was reduced and absorption correction was applied using the APEX3 suite. The crystal structures were solved and refined by SHELXT and SHELXL respectively. The crystal structures were refined using full-matrix least-squares based on \(F^2 \) with all non-hydrogen atoms anisotropically defined. All hydrogen atoms were either located in the difference Fourier maps or placed using a riding model. A summary of the crystallographic data and refinement parameters are provided in Tables S2 and S3.

CCDC 2129456-2129457 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/structures.

Compound 4d’ crystallizes in the Sohnecke space group \(P_2_1_2_1_2_1 \) with four molecules in the asymmetric unit and 16 molecules per unit cell. All molecules in the crystal had the same right-handed stereocenters (R configuration) and enantiopurity was confirmed by the low Flack parameter. Hydrogen-bonding occurs between the amine and carbonate groups on neighbouring molecules forming a 1D hydrogen-bonded network along the c-axis.

Compound (1R,3R)-6d’ also crystallizes in the same Sohnecke space group \(P_2_1_2_1_2_1 \) but with only one molecule per asymmetric unit and four per unit cell. All molecules in the crystal had the same right-handed stereocenters (R,R configuration) and enantiopurity was confirmed by the low Flack parameter.

Both crystals 4d’ and 6d’ were grown by diffusion crystallization using a mixture pentane:CH\(_2\)Cl\(_2\) (ca 97:3) as solvent system.

1. G. Sheldrick, Acta Cryst., 2008, A64, 112-122
Figure S1. Structure of 4d’ (CCDC 2129456) as determined by single crystal X-ray diffraction. Thermal ellipsoids are displayed with 50% probability. Atom are colored as the following: carbon (grey), oxygen (red), nitrogen (blue), fluorine (green), bromine (brown), hydrogen (white spheres).
Table S2: Crystallographic data and refinement details for compound 4d’

Property	Value
Empirical formula	C21 H21 Br F3 N O2
formula weight	456.30
temperature	296 K
wavelength	1.54178 Å
crystal system	orthorhombic
space group	P2₁2₁2₁ (No. 19)
unit cell dimensions	
a	13.2581 (3) Å
b	19.2734 (5) Å
c	34.5735 (9) Å
volume	8834.5 (4) Å³
Z	16
density (calculated)	1.372 g/cm³
absorption coefficient	2.893 mm⁻¹
F(000)	3712
θ range for data collection	2.556° to 70.344°
index ranges	-16 ≤ h ≤ 16, -22 ≤ k ≤ 23, -33 ≤ l ≤ 41
reflections collected	16766
independent reflections	8392 [R(int) = 0.1144]
absorption correction	multi-scan
data / restraints / parameters	16766 / 0 / 1038
goodness-of-fit on F²	1.014
final R indices [I>2σ(I)]	R1 = 0.0575, wR2 = 0.1270
largest diff. peak and hole	0.244 and −0.261 e/Å³
Flack parameter	0.126 (13)
Figure S2. Structure of (1R,3R)-6d’ (CCDC 2129457) as determined by single crystal X-ray diffraction. Thermal ellipsoids are displayed with 50% probability. Atom are colored as the following: carbon (grey), oxygen (red), nitrogen (blue), fluorine (green), bromine (brown), hydrogen (white spheres).
Table S3: Crystallographic data and refinement details for compound (1R,3R)-6d'

Property	Value
Empirical formula	C21 H22 Br F3 N O2
formula weight	457.30
temperature	296 K
wavelength	1.54178 Å
crystal system	orthorhombic
space group	\(P2_12_12_1\) (No. 19)
unit cell dimensions	\(a = 5.4631 \text{ Å}\)
	\(b = 17.5350 \text{ Å}\)
	\(c = 22.3359 \text{ Å}\)
volume	2139.7 (3) \text{ Å}³
\(Z\)	4
density (calculated)	1.420 g/cm³
absorption coefficient	2.987 mm\(^{-1}\)
\(F(000)\)	932
\(\theta\) range for data collection	3.204° to 68.471°
index ranges	\(-6 \leq h \leq 5, -20 \leq k \leq 21, -17 \leq l \leq 26\)
reflections collected	3795
independent reflections	1813 [\(R\text{(int)} = 0.2085\)]
absorption correction	multi-scan
data / restraints / parameters	3795 / 0 / 261
goodness-of-fit on \(F^2\)	0.983
final R indices \([I>2\sigma(I)]\)	\(R1 = 0.1083, \text{ wR}2 = 0.2572\)
largest diff. peak and hole	0.961 and \(-0.912 \text{ e/Å}³\)
Flack parameter	0.09 (6)