Piperazine and Pyrazine containing molecules and their diverse pharmacological activities

Mohammad Asif
Department of Pharmacy, GRD (PG) Institute of Management & Technology, 248009, Dehradun, (Uttarakhand), India

*Correspondence Info:
Mohammad Asif
Department of Pharmacy, GRD (PG) Institute of Management & Technology, 248009, Dehradun, (Uttarakhand), India
E-mail: asif321@gmail.com

Abstract
Efforts were made to synthesize different heterocyclic compounds and their derivatives and were found to possess promising pharmacological compounds. Although piperazine and pyrazine moiety is six membered heterocyclic compounds but is fascinated by scientists because of the diverse biological activities by not only piperazine and pyrazine but its various substituted derivatives as well and having diverse pharmacological activities such antitumor, anticonvulsant, antidepressant, analgesic, antimicrobial, anti-tubercular and anti diabetic, antihistamine, antiinflammatory and other activities. Some compounds also use as flavoring agent in foods. This review is focused on the piperazine and pyrazine derivatives due to its wider applications. They may replace many existing heterocyclic based pharmaceutical compounds. Many drug that containing piperazine and pyrazine moiety while several compounds are in clinical trials.

Keywords: Heterocyclic, antitumor, antidepressant, antipsychotic, anticonvulsant, antimicrobial, anti-tubercular and anti diabetic, biological activities

1. Introduction
The practice of medicinal chemistry is devoted to the discovery and development of new agents for treating diseases. The process of establishing a new drug is exceedingly complex and involves talents of people from variety of disciplines. An important aspect of medicinal chemistry has been to establish a relationship between chemical and biological activity. Although many natural products are used in pharmaceuticals in their original chemical structures, successful efforts have been made to improve their pharmacuetics and therapeutics property by structural modification. Another approach to improve therapeutic property is to identify that portion of a natural molecule responsible for biological activity and to synthesize new molecules, which are based on it. For more than a century heterocyclic compounds rank against the most important organic compounds. They participate in important biochemical processes, and are the constituents of main substances in live cells. It has been established that half of the therapeutic agents consist of heterocyclic compound. The heterocyclic ring comprises the core of the active moiety or pharmacophore. An especially big attention is given to nitrogen containing heterocyclic compounds, as they possess a broad spectrum of biological activities, and are used in various fields of pharmacy [1-4].

Medicinal chemistry is the important sector of pharmaceutical science concerned with determining the influence of chemical structure on biological activity and in the practice of medicinal chemistry developed from an empirical one involving organic synthesis of new compound based largely on the modification of structure and then identifies their biological activity. Pharmaceutical chemistry concerns with the discovery, development, interpretation and the identification of mechanism of action of biologically active compounds at the molecular level. Various biologically active synthetic compounds have six membered two nitrogen containing heterocyclic ring in their structures, two such important compound are piperazine and pyrazine. Structural frameworks have been described as privileged structures and in particular, Nitrogen
containing polycyclic structures has been reported to be connected with a wide range of biological activities. In the field of six membered heterocyclic structures piperazine and pyrazine nucleus shows various properties. Piperazine and pyrazine show numerous physiological effect such as antituberculosis, anthelmintics, antianginals, anticancer, analgesic, antidepressant, antipsychotic, antidiabetic, antihistamines, hypolipidemic and flavouring agent and these drugs have encouraged the medicinal chemists to synthesize a large number of novel chemotherapeutic agents [5].

2. Pharmacological activities of piperazine and pyrazine derivatives

Piperazine is a symmetrical organic compound that consists of a six-membered ring containing two nitrogen atoms at opposite positions in the ring with the chemical formula C₄H₁₀N₂. Piperazine exists as small alkaline deliquescent crystals with a saline taste. The piperazines are a broad class of chemical compounds, many with important pharmacological properties, which contain a core piperazine functional group. Given below is a brief account of various alterations conducted on piperazine ring containing few important marketed drug and their associated biological activities. Pyrazine is a heterocyclic symmetrical aromatic organic compound with the chemical formula C₄H₄N₂. Pyrazine derivatives such as phenazine are well known for their antitumor, antibiotic and diuretic activities. Pyrazine is less basic in nature than pyridine, pyridazine and pyrimidine. Tetramethylpyrazine (also known as ligustrazine) is reported to scavenge superoxide anion and decrease nitric oxide production in human polymorphonuclear leukocytes, and is a component of some herbs in traditional Chinese medicine. Some of the pyrazine derivatives contain various pharmacological effects [5].

3. Piperazine ring containing drugs

| Drugs Use and Reference | Ranolazine (antianginal) [6] |
|-------------------------|-----------------------------|
|                         | Amoxapine (antidepressant) [8] |
|                         | Buspirone (antidepressant) [10] |
|                         | Ipsapirone (antidepressant) [12] |

| Drugs Use and Reference | Trimetazidine (antianginals) [7] |
|-------------------------|----------------------------------|
|                         | Befuraline (antidepressant) [9] |
|                         | Flesinoxan (antidepressant) [11] |
|                         | Nefazodone (antidepressant) [13] |
Mohammad Asif/Piperazine and Pyrazine containing molecules and their diverse pharmacological activities

ON
ON
ON
ON

Piberaline (antidepressant) [14]

ON
ON
ON
ON

Tandospirone (antidepressant) [15]

ON
ON
ON
ON

Vilazodone (antidepressant) [17]

ON
ON
ON
ON

Meclozine (antihistamine) [19]

ON
ON
ON
ON

Hydroxyzine (antihistamine) [21]

ON
ON
ON
ON

Cetirizine (antihistamine) [22]

ON
ON
ON
ON

Levocetirizine (antihistamine) [23]

ON
ON
ON
ON

Fluphenazine (antipsychotic) [25]

ON
ON
ON
ON

Prochlorperazine (antipsychotic) [27]

ON
ON
ON
ON

Thiothixene (antipsychotic) [29]

ON
ON
ON
ON

Imatinib (treat certain cancers) [31]
Fipexide (nootropic drug) [32]

6-Nitroquipazine (selective serotonin reuptake inhibitor) [34]

meta-Chlorophenylpiperazine (psychoactive) [36]

Benzylpiperazine (euphoric, stimulant properties) [38]

Perospirone (atypical antipsychotic) [40]

4. Pyrazine ring containing drugs

Alkylpyrazine (Contribute to the taste and aroma of various foods) [42]

Pyrazinamide (Used in treatment of T.B) [44]

Isopropyl methoxy pyrazine (flavour compound in coffee) [46]

MK-212 (Promotes the secretion of serum prolactin and cortisol in humans) [48]

Antrafenine (analgesic and anti-inflammatory) [33]

para-Fluorophenylpiperazine (mildly psychedelic and euphoriant effects) [35]

2C-B-BZP (Psychoactive) [37]

Olanzapine (atypical antipsychotic) [39]

Ziprasidone (atypical antipsychotic) [41]

Bortezomib (Treating relapsed multiple myeloma) [43]

Glipizide (anti-diabetic drug) [45]

Methoxypyrazines (produce odors) [47]

Morinamide (Used in the treatment of tuberculosis) [49]
5. Discussion

The practice of medicinal chemistry is devoted to the discovery and development of new agents for treating diseases. The process of establishing a new drug is exceedingly complex and involves talents of people from variety of disciplines. An important aspect of medicinal chemistry has been to establish a relationship between chemical and biological activity. It has been established that half of the therapeutic agents consist of heterocyclic compound. The heterocyclic ring comprises the core of the active moiety or pharmacophore. An especially big attention is given to nitrogen containing heterocyclic compounds, as they possess a broad spectrum of biological activities, and are used in various fields of pharmacy. It is well known that a number of heterocyclic compounds containing nitrogen exhibited a wide variety of biological activities. Compounds carrying the piperazine and pyrazine ring have reported to demonstrate a wide range of pharmacological activities which include antimicrobial, antifungal, antitubercular, antihistamines, antitumor, antidiabetic, analgesic, antiinflammatory, antiallergic, anticonvulsant and other biological activities. Low choice of preparations, toxicities, and limited spectrum of action as well as risk of resistant strains prove the need of new effective medicines for systemic infectious and other diseases. Therefore, it is necessary to seek for new and less toxic compounds. Moreover, the emergence of resistance to currently available antimicrobials is of great concern and has led to susceptibility testing of new antimicrobial agents. To investigate the activity profiles of piperazine and pyrazine derivatives bearing different substituent position have been prepared for the useful diverse pharmacological activities [1-5].

6. Conclusion

The pyperazine and pyrazine moieties have shown a wide spectrum of biological activities. The various substituted pyperazine and pyrazine derivatives having significant antianginal, antidepressant, antipsychotic, antidiabetic, antihistamines, hypolipidemic, activities and some compounds are also used as flavouring agent. Some of the important marketed pyperazine and pyrazine nucleus containing drugs are having different types of pharmacological activities. The pyperazine and pyrazine based pharmaceuticals will be produced on a large scale by modern drug discovery companies by different research development processes and will become available commercially for therapeutic uses. In future therapeutic pyperazine and pyrazine drugs will play a vital role in the treatment of different diseases. The biological profiles of this new generation of pyperazine and pyrazine represent much progress with regard to the older compounds. The pyperazine and pyrazine nucleus based pharmaceuticals are rapidly becoming very important class of therapeutic agents and are likely to replace
many existing organic based pharmaceuticals in the very near future.

References

[1]. Katritzky, A.R., 1992. Heterocyclic Chemistry: An Academic Subject of Immense Industrial Importance. Chemistry of Heterocyclic Compounds, 28(3): 241-259.

[2]. Fan, W.Q. and A.R. Katritzky, 1996. In Comprehensive Heterocyclic Chemistry II.Katritzky, A.R., C.W. Rees and C.W.V. Scriven, Eds., Oxford, Elsevier, 4: 1.

[3]. Valverde, M.G. and T. Torroba, 2005. Sulfur-Nitrogen Heterocycles. Molecules, 10: 318-320.

[4]. Ghannoum M. Candida: A causative organism of an emerging infection. J. Invest. Dermatol. 2001; 6: 188-196.

[5]. Meher CP, Rao AM, Omar M. Piperazine-pyrazine and their multiple biological activities. Asian J Pharm Sci & Res, 2013, 3(1), 43-60.

[6]. Hale SL, Kloner RA. Ranolazine, an inhibitor of the late sodium channel current, reduces postischemic myocardial dysfunction in the rabbit. J Cardiovasc Pharmacol Ther, 2006; 11(4): 249-55.

[7]. Fragasso G, Pallossi A, Puccetti P, Silipigni C, Rossodivita A, Pala M, Culori G, Alfieri O, Mar gonato A. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J. Am. Coll. Cardiol., 2006; 48(5): 992–8.

[8]. Kinney JL, Evans RL. Evaluation of amoxapine. Clin Pharm, 1982; 1(5): 417–24.

[9]. Gastpar M, Gastpar G, Glisdorf U. Befuraline, its safety and efficacy in depressed inpatients. Pharmacopsychiatry, 1985; 18(6):351-5.

[10]. Trivedi MH, Fava M, Wisniewski SR, Thase ME, Quitkin F, Warden D, Ritz L, Nierenberg AA, Lebowitz BD, Biggs MM, Luther JF, Shores-Wilson K, Rush AJ. Medication augmentation after the failure of SSRIs for depression. N. Engl. J. Med, 2006, 354(12): 1243–52.

[11]. Schoeffter P, Hoyer D. Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus. Br J Pharmacol, 1988; 95 (3): 975-985.

[12]. Fanelli RJ, Schuurman T, Glaser T, Traber J. Ipsapirone: a novel anxiolytic and selective 5-HT1A receptor ligand. Prog Clin & Biol Res, 1990; 361: 461–464.

[13]. Cusack B, Nelson A, Richelson E. Binding of Antidepressants to Human Brain Receptors: Focus on Newer Generation Compounds. Psychopharmacol, 1994; 114 (4): 559–565.

[14]. Tekes K, Tothfalusi L, Malomvolgyi B, Herman F, Magyar K. Studies on the biochemical mode of action of EGYT-475, a new antidepressant. Polish J Pharmacol & Pharm, 1987; 39(2): 203-11.

[15]. Hamik; Oksenberg, D; Fischette, C; Peroutka, SJ. Analysis of tandospirone (SM-3997) interactions with neurotransmitter receptor binding sites. Biological Psychiatry, 1990, 28 (2): 99–109.

[16]. Haria M, Fitton A, McTavish D. Trazodone. A review of its pharmacology, therapeutic use in depression and therapeutic potential in other disorders. Drugs Aging, 1994; 4(4): 331–55.

[17]. De Paulis T. Drug evaluation: Vilazodone—a combined SSR1 and 5-HT1A partial agonist for the treatment of depression. IDrugs: The Inves Drugs J, 2007; 10 (3): 193–201.

[18]. Gleeson, S; Barrett, JE. 5-HT1A agonist effects on punished responding of squirrel monkeys. Pharmacol, Biochem & Behav, 1990; 37(2): 335-7.

[19]. Dahl E. Offer-Ohslen D, Lillevold PE, Sandvik L. Transdermal scopolamine, oral meclozine, and placebo in motion sickness. Clin Pharmacol Ther, 1984; 36(1), 116-20.

[20]. Nicholson, A.N., et al., Central effects of cinnarizine: restricted use in aircrew. Aviat Space Environ Med, 2002, 73(6): p. 570-4.

[21]. Simons FE, Simons KJ, Frith EM. The pharmacokinetics and antihistaminic of the H1 receptor antagonist hydroxyzine. The J Allergy & Clin Immunol, 1984; 73(1 Pt 1): 69–75.

[22]. Anderson, Philip; Knoben, James E.; Troutman, William G. Handbook of clinical drug data. New York: McGraw–Hill, 2002, p. 807.

[23]. Grant, JA; Riethuisen, JM; Moulaert, B; DeVos, C; Gamaler, C.; Descalzi, D.; Folli, C.; Passalacqua, G. et al. A double-blind, randomized, single-dose, crossover comparison of levocetirizine with ebastine, fexofenadine, loratadine, mizolastine, and placebo: suppression of histamine-induced wheal-and-flare response during 24 hours in healthy male subjects. Ann Allergy Asthma Immunol, 2002; 88(2): 190–197.

[24]. Bodiou C, Bavoux F. Niaprazine and side effects in pediatrics. Cooperative evaluation of French centers of pharmacovigilance. Thérapie, 1988; 43 (4): 307–11.

[25]. Davis’s Drug Guide for Nurses, Eighth Edition. F.A. Davis Company, 2005.

[26]. Rees L. Chlorpromazine and allied phenothiazine derivatives. British Med J, 1960; 2(5197): 522–5.

[27]. Tang L, Shukla PK, Wang ZJ. Trifluoperazine, an orally available clinically used drug, disrupts opioid antinociceptive tolerance. Neurosci Lett, 2006; 397(1-2): 1-4.

[28]. Benson AJ. Effect of diphenidol and prochlorperazine on semicircular canal function in man. Aerospace Med, 1969; 40(6): 589-95.

[29]. Vela JM, Buschmann H, Holenz J, Párraga A, Torrens A. Antidepressants, Antipsychotics, Anxiolytics: From Chemistry and Pharmacology to Clinical Application. Weinheim: Wiley-VCH. 2007; p. 520.

[30]. Smith RL, Barrett RJ, Sanders-Bush E. Neurochemical and behavioral evidence that quipazine-ketanserin discrimination is mediated
by serotonin2A receptor. J Pharmacol & Exp Therap, 1995; 275(2):1050-7.
[31]. Gambacorti-Passerini C. Part I: Milestones in personalised medicine--aminatinib. Lancet Oncol, 2008; 9 (600): 600.
[32]. Missale C, Pasinetti G, Govoni S, Spano PF, Trabucchi M. Fipexide: a new drug for the regulation of dopaminergic system at the macromolecular level. Bollettino Chimico Farmaceutico, 1983; 122(2):79-85.
[33]. Manoury PM, Dumas AP, Najer H, Branceni D, Prouteau M, Lefevre-Borg FM. Synthesis and alganesic activities of some (4-substituted phenyl-1-piperazinyl)alkyl 2-aminoenzoates and 2-aminonicotinates. J Med Chem, 1979; 22(5): 554-9.
[34]. Vaatstra WI, Deiman-Van Aalst WM, Eigeman L.Du 24565, a quipazine derivative, a potent selective serotonin uptake inhibitor. Eur J Pharmacol, 1981; 70(2): 195-202.
[35]. King LA. Forensic Chemistry of Substance Misuse. A Guide to Drug Control. Royal Soc Chem, 2009, p 100–102.
[36]. Bossong MG, Van Dijk JP, Niesink RJ. Methyline and nCPP, two new drugs of abuse?. Addiction Biol, 2005; 10(4): 321–3.
[37]. Westphal F, Junge T, Girreser U, Stobbe S, Pérez SB. Structure elucidation of a new designer benzylpiperazine: 4-bromo-2,5-dimethoxybenzylpiperazine. Forensic Sci Inter, 2009; 187 (1-3): 87–96.
[38]. Antia U, Lee HS, Kydd RR, Tingle MD, Russell BR. Pharmacokinetics of ‘party pill’ drug N-benzylpiperazine (BZP) in healthy human participants. Forensic Sci. Int. 2009; 186(1-3): 63-7.
[39]. Burton, Michael E. Shaw, Leslie M. Schentag, Jerome J.; Evans, William E. Applied Pharmacokinetics & Pharmacodynamics: Principles of Therapeutic Drug Monitoring. Lippincott Williams & Wilkins; Fourth Edition edition. pp. 815. 2005.
[40]. Onrust SV, McClellan K, Perospirone. CNS Drugs, 2001; 15 (4): 329–37.
[41]. Hagop S. Akiskal; Mauricio Tohen. Bipolar Psychopharmacotherapy: Caring for the Patient. John Wiley & Sons. 2011, p. 209.
[42]. Susan M. Fors and Bertil K. Olofsson. Alkylepyrazines, volatiles formed in the Maillard reaction. 1. Determination of odour detection thresholds and odour intensity functions by dynamic olfactometry. Chemical Senses, 1985; 10 (3): 287–296.
[43]. Adams J, Kauffman M. Development of the Proteasome Inhibitor Velcade (Bortezomib). Cancer Invest, 2004; 22(2): 304–11.
[44]. Chatwal G.R., Pharmaceutical organic chemistry. p-2.19.
[45]. Tripathy K. D. Pharmacology, 6th edition.
[46]. Czerny M, Grosch W. Potent Odorants of Raw Arabica Coffee. Their Changes during Roasting. J Agr & Food Chem, 2000: 48 (3): 868–872.
[47]. Marais J, Hunter JJ, Haasbroek PD. Effect of microclimate, season and region on Sauvignon blanc grape composition and wine quality. South Afr J Enol & Viticul, 1999; 20, 19-30.
[48]. Lowy, Martin T., Meltzer, Herbert Y. Stimulation of serum cortisol and prolactin secretion in humans by MK-212, a centrally active serotonin agonist. Biol Psychiatry, 1988; 23(8): 818–28.
[49]. Bonanni G, Cicciariello M, Mancini P, Pace V, Sagliasci G. Concomitant cecocappendicular and urinary tuberculosis. Description of two rare cases: physiopathological and diagnostic remarks. Riv Eur Sci Med Farmacol, 1993; 15(3-4): 171–4.
[50]. Iida K, Itoh K, Kumagai Y, et al. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res, 2004; 64(18): 6424–31.
[51]. Spaia S, Magoula I, Tsapas G, Vayonas G. Effect of pyrazinamide and probenecid on peritoneal ureate transport kinetics during continuous ambulatory peritoneal dialysis. Perit Dial Int, 2000; 20 (1): 47–52.
[52]. Revill, P., Serradell, N., Bolos, J., Rosa, E. Telaprevir. Drugs of the Future, 2007; 32(9): 788.
[53]. Mills EJ, Wu P, Spurden D, Ebbert JO, Wilson K. Efficacy of pharmacotherapies for short-term smoking abstinence: a systematic review and meta-analysis". Harm Reduct J, 2009; 6: 25.
[54]. Rosenzweig-Lipson, Sharon. Antiobesity-like effects of the 5-HT2C receptor agonist WAY-161503. Brain Res, 2006; 1073-1074: 240–251.
[55]. Schechter LE, Lin Q, Smith DL, et al. Neuropsychopharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmaco, 2008; 33 (6): 1323–35.
[56]. Trump DL, Payne H, Miller K, et al. Preliminary study of the specific endothelin a receptor antagonist zibotentan in combination with docetaxel in patients with metastatic castration-resistant prostate cancer. Prostate, 2011; 71(12): 1264–75.