Rhein inhibits endometriosis by targeting microRNA-135

Wang Dan¹, Zhang En Jing¹, Jiang Juan¹, Yang Yi¹ and Jiang Yi Ling²✉

¹Department of Obstetrics and Gynecology, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan, 430060, China; ²Department of Obstetrics and Gynecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430015, China

Endometriosis is a serious human gynecological disorder of women of reproductive age. The present study was designed to explore the therapeutic implications of rhein in the management of endometriosis. The results showed that rhein significantly (p<0.05) inhibited the proliferation of endometrial stroma cells in a dose-dependent fashion. Besides, the rhein treated endometrial stroma cells showed significantly (p<0.05) lower migration and invasion, in vitro. Transwell and wound healing assays showed that rhein also suppressed the migration and invasion of the endometrial stroma cells. Rhein was shown to target miR-135 at the molecular level to exert its anti-proliferative effects against the human endometrial stroma cells. Conversely, overexpression of miR-135 could nullify the anti-proliferative effects of rhein. Taken together, the findings of the present study highlight the therapeutic utility of rhein against human endometriosis. However, more in vivo studies are required.

Keywords: endometriosis, rhein, rhubarb, proliferation, micro-RNA, miR-135, invasion

Received: 29 September, 2021; revised: 08 November, 2021; accepted: 10 November, 2021; available on-line: 31 August, 2022

✉e-mail: jiangyiling96@gmail.com
These two authors contributed to this work equally

Abbreviations: DMEM, Dulbecco’s Modified Eagle Medium; DMSO, Dimethyl sulfoxide; EdU, 5-ethyl-2’-deoxyuridine; FBS, Fetal bovine serum; HESCs, human endometrial stromal cells; miR, Micro-RNAs; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-trtrazolium bromide; ROS, reactive oxygen species

INTRODUCTION

Endometriosis is characterized as the clinical condition in which endometrial glands and stroma grows ectopic to the uterine cavity at various locations and in particular within the ovaries (Foti et al., 2018). Endometriosis affects about 6–10% of women of reproductive age and is generally associated with secondary clinical manifestations, such as dysmenorrhea, pain in pelvic cavity, and infertility with severe impact on the overall health of the patient (Dekker et al., 2021; Renner et al., 2017). Although, the endometriosis is considered to be benign, its increased invasiveness is equivalent to tumorous growth (Lal et al., 2020; McCluggage, 2020). Therefore, it is crucial to explore potential preventive and curative measures against this disorder to mitigate the non-desirable clinical conditions and more importantly to preserve the fertility.

Rhein, a 4,5-dihydroxyanthraquinone-2-carboxylic acid, is one of the main anthraquinone derivatives present in the rhubarb root (Rheum palmatum) (Liu et al., 2017). The molecule is known for its anti-proliferative potential and has been in use for more than a thousand years in Chinese traditional medicine to treat inflammatory disorders like diabetic nephropathy and osteoarthritis (Henamayee et al., 2020; Hu et al., 2019). There is growing support that rhein has pro-apoptotic property through which it restricts the proliferation of malignant human cells like breast, lung, and colon cancer cells (Tang et al., 2017). There are also reports that rhein alleviates the levels of reactive oxygen species (ROS) (Zhou et al., 2017). In addition, rhein has been shown to inhibit the adenomyosis by targeting the NF-κB and β-Catenin signaling pathways (Feng et al., 2017). Considering this, rhein administration was hypothesized for its possible effect on the proliferation of endometrial stromal cells.

Micro-RNAs (miRs) are an important class of short length non-coding RNAs which regulate the expression of their target genes at post-transcriptional levels by binding to the untranslated regions of their mRNA transcripts (Selvarajan et al., 2019). MiRs regulate many essential cellular and biological processes including proliferation, apoptosis, and invasion. It has been reported that the progression of endometriosis is linked with the aberrant expression of several micro-RNAs (miRs) (Liu et al., 2018). The expression of microRNA-135 (miR-135) has been shown to be up-regulated in endometriosis and has been deduced to promote the proliferation and invasion of endometrial stroma cells (Petracco et al., 2019; Mibrutalebi et al., 2017). Therefore, the present work aimed at exploration of the effects of rhein on endometrial stroma cell proliferation with the focus on examination of the mechanism of its action at molecular level, primarily via miR-135.

MATERIALS AND METHODS

Cell culture and treatment

The viable human endometrial stromal cells (HESCs) were procured from the Cell Bank of Type Culture Collection of the Chinese Academy of Science. For their propagation and in vitro maintenance, the cells were cultured using 10% FBS (Gibco Inc.) supplemented DMEM (Thermo Fisher Scientific, Inc.) at 37°C with 5% CO₂.

Rhein was purchased from the M/s Sigma-Aldrich Inc. and its stock was made by dissolving it at a concentration of 100 mM in DMSO, which was then used to make final working treatment concentrations (in µM).

MTT proliferation assay

Cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-trtrazolium bromide (MTT) assay. In brief, the HESCs (2.5×10⁴ cells/well) were placed into the wells of a 96-well plate, treated with different treatment concentrations and incubated at 37°C for specific time durations of 0 h, 24 h, 48 or 72 h. At this
HESC migration and invasion

supplemented culture medium was added into the lower Matrigel coated membrane. Only serum free 10% FBS of each transwell insert (Corning, Cambridge, USA) with Herein, 2×10^5 assessed using the transwell chamber invasion assay.

Transwell chamber assay

Briefly, the cells were added into a six-well plate. The cells were then added with 0 µM or 10 µM rhein and incubated at 37°C for 15 days till the colonies became distinctly visible. Colonies were then ethanol fixed, stained with 0.1% crystal violet and photographed.

EdU incorporation assay

The 5-ethyl-2’-deoxyuridine (EdU) incorporation assay was performed to analyze the proliferative viability of HESCs with the help of a Click-iT EdU Alexa Fluor 488 Imaging Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. DAPI (Sigma-Aldrich) was used as a counter-stain.

Quantitative RT-PCR

TRIzol (Thermo Fisher Scientific) was used to perform the extraction of total RNA from HESCs as per the manufacturer’s protocol. RNA isolated was reverse transcribed to cDNA using RevertAid First strand cDNA synthesis kit (Thermo Fisher Scientific). MiR and mRNA expression analysis was performed with the help of a SYBR Green PCR Kit (Takara, Japan) on QuantStudio 5.0 RT-PCR System. β-actin was used as a reference control for normalization of Ki67, PCNA, and MMPs. The snRNA U6 was used as a reference for the normalization of miR-135 expression. The expression levels were quantified with 2^{-ΔΔCT} method. The RT primers used were: Ki-67, 5’-TCA GAC TCC ATG TGC CTC-3’ (Forward) and 5’-CAC CGG AGG GCA TCT TTA-3’ (Reverse); miR-135, 5’-GCC CGC TAT GGC CTG A-3’ (Forward) and 5’-AGG CAC GCC GTT CTC-3’ (Reverse); PCNA, 5’-GTC CGA GGT-3’ (Reverse); β-actin, 5’-CAC CAT TTT CAT TCC T-3’ (Forward) and 5’-CAG TGC AGG TTA-3’ (Reverse); miR-135, 5’-CAC CCG ACG GCA TCT TTA-3’ (Reverse); miR-135, 5’-GCC CGC TAT GGC CTG A-3’ (Forward) and 5’-AGG CAC GCC GTT CTC-3’ (Reverse); miR-135, 5’-GCC CGC TAT GGC CTG A-3’ (Forward) and 5’-CAG TGC AGG GTC CGA GTG T-3’ (Reverse); β-actin, 5’-CAG CAT TGG AAA TGA GCG GCA TTG CTT CAT TCC T-3’ (Forward) and 5’-5’-CAG TGC AGG GTC CGA GTG T-3’ (Reverse) and U6 5’-AAG CCTGGATTTCG GTATG CT-3’ (Forward) and 5’-AAG CCTGCGGTTGACTAA C -3’ (Reverse).

Rhein inhibits the proliferation of HESCs

To visualize the effects of rhein on the proliferation of HESCs, the latter were administered with increasing concentrations of rhein (0–80 µM) for 24 h. The MTT assay was then performed to examine the proliferation of differentially treated HESCs. It was seen that proliferation of HESCs decreased with increasing concentrations of rhein treatment and the IC_{50} of rhein against the HESCs was found to be 10 µM (Fig. 1A). Further, the 10 µM rhein treated HESCs showed significantly lower proliferation at 24, 48, and 72 h treatment durations with respect to control untreated cells (Fig. 1B). The anti-proliferative effects of rhein against HESCs cells were also evident in terms of significant decline in their clonogenicity (Fig. 1C). Again, the HESCs cells treated with 10 µM rhein showed markedly lower EdU incorporation (Fig. 1D). Moreover, the administration of rhein significantly repressed the expression of proliferation markers, Ki-67 and PCNA (Fig. 1E and 1F). The results are thus reflective of anti-proliferative action of rhein against HESCs.

Rhein restricts in vitro HESC migration and invasion

The effects of rhein administration were also analyzed on the migration and invasion of HESCs using scratch-heal and transwell chamber assays, respectively. HESCs cells treated with 10 µM rhein were shown to exhibit significantly lower migration, in vitro, in comparison to the untreated cells (Fig. 2A). The relative HESC migration decreased by more than 50 percent under rhein treatment. Similarly, the HESCs exhibited significantly lower invasion when administered with rhein, in vitro (Fig. 2B). Inhibitory potential of rhein against the migration and invasion of HESCs was besides evident from the significant down-regulation of MMP2 and MMP9 protein levels in rhein treated HESCs (Fig. 2E).

Rhein represses miR-135 to inhibit HESC growth, in vitro

The expression analysis of miR-135 from control and 10 µM rhein treated HESCs showed that rhein targets...
Rhein inhibits endometriosis by targeting microRNA-135

and represses miR-135 in HESCs (Fig. 3A). To assess whether rhein inhibited proliferation of HESCs via miR-135 down-regulation, miR-135 was transiently over-expressed in HESCs by transfecting the latter with miR-135 mimics and the same was confirmed with respect to miR-NC control transfected cells using qRT-PCR (Fig. 3B). MTT assay showed that the proliferation of miR-135 over-expressing HESCs was minimally affected by rhein (Fig. 4A). Similarly, the over-expression of miR-135 was shown to attenuate the effects of rhein administration on clonogenicity and proliferative viability of HESCs (Fig. 4B and 4C). The results indicate that rhein targets miR-135 in HESCs to inhibit their growth, in vitro.

DISCUSSION

Clinically manifested as growth of endometrial glands and stroma ectopic to uterine cavity, endometriosis is often linked with the devastating conditions of pelvic pain and infertility among human females of reproductive age (Foti et al., 2018). Although endometriosis is considered a benign pathological condition, endometrial stromal cells here exhibit profound invading capacity, which mimics the malignant behavior of human cancer cells (Mutter et al., 2007). Moreover, endometriosis and endometrial cancer are believed to possess numerous possible links (Painter et al., 2018; Kajiyama et al., 2019). Additionally, endometriosis has been shown to be associated with mutation in cancer causing genes (Koppolu et al., 2021).

Rhein has huge medicinal importance and exhibits nephroprotective, hepatoprotective, ROS-scavenging, anti-inflammatory, and anticancer properties (Zhou et al., 2015). Rhein is known for its anti-proliferative activity against several human cancer cells, which include cervical cancer, lung cancer, breast cancer, colon cancer and so on (Wu et al., 2017; Lin et al., 2009). Feng et al. in 2017 deduced that rhein could alleviate adenomyosis via the inhibition of NF-κB and β-catenin signaling pathways (Feng et al., 2017). Adenomyosis resembles endometriosis to a great extent and thus it suggests that rhein might exhibit similar inhibitory action against endometriosis. Exploring the same, the rhein administration was shown to inhibit the growth, migration, and invasion of endometrial cells.

Therefore, it becomes necessary to look for the possible measures to restrict the growth, migration, and invasion of endometrial cells.
to limit the proliferation of HESCs considerably in the present study. The anti-proliferative effects of rhein were also evident as significant decline in the colony formation by EdU incorporation of HESCs. The decline in cell proliferation by rhein can be attributed to its pro-apoptotic property and mitotic arrest (Chien et al., 2011, Han et al., 2018). The MMP2 and MMP9 proteins have been shown to be responsible for regulating the migration and invasion of different cells (Lin et al., 2010). Several cancers have been shown to be associated with the upregulation of MMP2 and MMP9 (Lv et al., 2018). Inhibition of these genes causes inhibition of cell migration and invasion (Chien et al., 2018). The HESCs also exhibited significant decline in migration and invasion, in vitro, once administered with rhein, which was evident as the fall in the expression of MMP2 and MMP9 proteins. Rhein has been shown to variously mediate its role by targeting specific micro-RNAs or long non-coding RNAs (Zhang et al., 2020). For instance, it was shown to inhibit the renal inflammatory injury of uric acid nephropathy through lncRNA ANRIL regulates the nephroprotective property of rhein in uric acid nephropathy rats. Cell Biochem Biophys 2020, 93: 11. https://doi.org/10.1007/s12012-019-0312-0

Han NN, Li X, Tao L, Zhou Q (2018) Doxorubicin and rhein loaded nanomicelles attenuates multidrug resistance in human ovarian cancer. Biochim Biophys Acta 2019: 1785–1815. https://doi.org/10.1016/j.bbamcr.2018.01.042

Kajiyama H, Suzuki S, Yoshihara M, Tamauchi S, Yoshikawa N, Niimi K, Shibata K, Kikkawa F (2019) Endometriosis and cancer. Biomed Pharmacother 2019: 105780. https://doi.org/10.1016/j.biopha.2019.105780

CONCLUSION

Rhein inhibits the growth, migration, and invasion of human endometrial stroma cells. At molecular level, rhein targets miR-135, which is over-expressed in endometrial stroma cells, to exert its anti-proliferative effects. The results are thus indicative of therapeutic potential of rhein against human endometriosis, which can be enhanced through semi-synthetic chemistry approaches. Additionally, more studies, especially in vivo, are required to confirm the therapeutic potential of rhein.

Conflict of interest

Authors declare that there are no conflicts of interest.

REFERENCES

Chang CY, Chan HL, Lin HY, Way TD, Kao MC, Song MZ, Lin YJ, Lin CW (2011) Rhein induces apoptosis in human breast cancer cells. Evid Based Complement Alternat Med 2012: 952504. https://doi.org/10.1155/2012/952504

Chien YC, Liu LC, Ye HY, Wu JY, Yu VL (2018) EZH2 promotes migration and invasion of triple-negative breast cancer cells via regulating TIMP2-MMP2/MMP9 signaling pathway. Am J Cancer Res 8: 422–434

Dekker J, Hooijer L, Ket JCF, Vejnović A, Benagiano G, Brosens I, Mijatovic V (2021) Neonatal uterine bleedings: an ignored sign but a possible cause of early-onset endometriosis – a systematic review. Biomed Hub 6: 6–16. https://doi.org/10.1159/000512663

Feng T, Wei S, Wang Y, Fu X, Shi L, Qu L, Fan X (2017) Rhein ameliorates adenosomyosis by inhibiting NF-kB and J-STAT3 signaling pathway. Biomed Pharmacother 94: 231–237. https://doi.org/10.1016/j.biopha.2017.07.089

Foti PV, Farinza R, Palmucci S, Vizzini LAA, Libertini N, Coronella M, Spadola S, Calabranio R, Iraci M, Basile A, Milone P, Gianei A, Torre GC (2018) Endometriosis: clinical features, MR imaging findings and pathologic correlation. Insights Imaging 9: 149–172. https://doi.org/10.1007/s13244-017-0951-4

Han NN, Li X, Tao L, Zhou Q (2018) Doxorubicin and rhein loaded nanomicelles attenuates multidrug resistance in human ovarian cancer. Biochim Biophys Acta 2019: 1785–1815. https://doi.org/10.1016/j.bbamcr.2018.01.042

Hennaayee S, Banik K, Sailo BL, Harsha C, Srilakshmi S, Vgm N, Baek SH, Ahn KS, Kunnunakkara AB (2020) Therapeutic emergence of rhein as a potential anticancer drug: a review of its molecular targets and anticancer properties. Molecules 25: 2278. https://doi.org/10.3390/molecules25102278

Hu F, Zhu D, Pei W, Lee I, Zhang X, Pan I, Xu J (2019) Rhein inhibits ATP-triggered inflammatory responses in rheumatoid rat fibroblasts-like synoviocytes. Int Immunopharmacol 75: 105780. https://doi.org/10.1016/j.intimp.2019.105780

Hu J, Wang D, Wu H, Yang Z, Yang N, Dong J (2019) Long non-coding RNA ANRIL-mediated inflammation response is involved in pro-tumorigenic effect of rhein in uterine leiomyoma cells. Cell Biochem Biophys 2019: 105780. https://doi.org/10.1007/s12012-019-0312-0

Kajiyama H, Suzuki S, Yoshihara M, Tamauchi S, Yoshikawa N, Niimi K, Shibata K, Kikkawa F (2019) Endometriosis and cancer. Free Radic Biol Med 133: 186–192. https://doi.org/10.1016/j.freeradbiomed.2018.12.015

Koppoda A, Maksym RB, Paskal V, Machnicki M, Rak B, Ppepek M, Garbicz F, Pelka K, Kustmierczyk Z, Jacko J, Rydzanicz M, Barzach-Orelowska M, Stoklosa T, Płoski R, Maleczyk J, Włodarski P, K (2020) Epithelial cells of deep infiltrating endometriosis harbor mutations in cancer driver genes. Cells 10: 749. https://doi.org/10.3390/cells10040749

Lal M, Sarhadi AH (2020) Obesity and clinical psychosomatic women’s health. In Obesity and Gynecology pp 293–312, Elsevier

Lin HJ, Su CC, Lu HF, Yang JS, Hsu CC, Ip SW, Wu JJ, Li YC, Ho PK (2010) Curcumin blocks migration and invasion of mouse-rat hybrid retina ganglion cells (N18) through the inhibition of MMP-2, 9, FAK, Rho A and Rock-1 gene expression. Oncol Rep 23: 665–670

Lin YJ, Zhen YS (2009) Rhein lysinatt suppresses the growth of breast cancer cells and potentiates the inhibitory effect of Taxol in athymic mice. Anticancer Drug 20: 65–72. https://doi.org/10.1097/CAD.0b013e3283182913

Liu Q, Zhu L, Cheng C, Hu YY, Feng Q (2017) Natural active compounds from plant food and chinese herbal medicine for nonalcoholic fatty liver disease. Curr Pharm Des 23: 5136–5162. https://doi.org/10.2174/138161282366170918120643

Liu Y, Chen J, Zhu X, Tang I, Luo X, Shi Y (2018) Role of miR-449b-3p in endometriosis via effects on endometrial stromal tissue.
Rhein inhibits endometriosis by targeting microRNA-135

cell proliferation and angiogenesis. *Mol Med Rep* 18: 3359–3365. https://doi.org/10.3892/mmr.2018.9341

Lu J, Wang Z, Li S, Xin Q, Yuan M, Li H, Song X, Gao H, Pervez N, Sun X, Lv W, Jing T, Zhu Y (2018) Quercetin inhibits the migration and invasion of HCCLM3 cells by suppressing the expression of p-Akt1, matrix metalloproteinase (MMP) MMP-2, and MMP-9. *Med Sci Monit* 24: 2583–2589. https://doi.org/10.12659/MSM.906172

McJuggsge WG (2020) Endometriosis-related pathology: a discussion of selected uncommon benign, premalignant and malignant lesions. *Histopathology* 76: 76–92. https://doi.org/10.1111/his.13970

Mirabsutalebi SH, Karami N, Montazeri F, Fesahat F, Sheikhha MH, Hajimaqsoodi E, Karimi Zarchi M, Kalantar SM (2018) The relationship between the expression levels of miR-135a and HOXA10 gene in the eutopic and ectopic endometrium. *Int J Reprod Biomed* 16: 501–506

Mutter GL, Zaino RJ, Baak JP, Bentley RC, Robboy SJ (2007) Benign endometrial hyperplasia sequence and endometrial intraepithelial neoplasia. *Int J Gynecol Pathol* 26: 103–114. https://doi.org/10.1097/PGP.0b013e31802e4696

Painter JN, O'Mara TA, Morris AP, Cheng TH, Gorman M, Martin L, Hodson S, Jones Å, Martin NG, Gordon S, Henders AK (2018) Genetic overlap between endometriosis and endometrial cancer: evidence from cross-disease genetic correlation and GWAS meta-analyses. *Cancer Med* 7: 1978–1987. https://doi.org/10.1002/cam4.1445

Petacco R, Dias ACO, Taylor H, Petacco Â, Badalotti M, Michelson JDR, Maronowice DR, Hentschke M, Azevedo PN, Zanirati G, Machado DC (2019) Evaluation of miR-135a/b expression in endometriosis lesions. *Biomolecules* 11: 181–187. https://doi.org/10.3892/br.2019.1237

Renner SP, Kessler H, Topal N, Proske K, Adler W, Burghaas S, Haupt W, Beckmann MW, Lermann J (2017) Major and minor complications after anterior rectal resection for deeply infiltrating endometriosis. *Arq Gynecol Obstet* 295: 1277–1285. https://doi.org/10.1016/j.afo.2017.4360.6

Selvarajan S, Vijayaraghavan J, Bobby Z, Ramalingam J, Porur C (2019) Micro RNAs – a review. *J Evolution Med Dent Sci* 8: 2918–2923. https://doi.org/10.14260/jemds/2019/634

Tang N, Chang J, Lu HC, Zhuang Z, Cheng HL, Shi JX, Rao J (2017) Rhein induces apoptosis and autophagy in human and rat glioma cells and mediates cell differentiation by ERK inhibition. *Microb Pathog* 113: 168–175. https://doi.org/10.1016/j.micpath.2017.10.031

Wu C, Cao H, Zhou H, Sun I, Xue J, Li J, Bian Y, Sun R, Dong S, Liu P, Sun M (2017) Research progress on the antitumor effects of Rhein: literature review. *Anticancer Agents Med Chem* 17: 1624–1632. https://doi.org/10.2174/1871520615666150930112631

Zhang R, Li Y, Wang H, Zhu K, Zhang G (2020) Rhein regulates the proliferation and apoptosis of human leukemia cells and its effects on the miR-27/CUL5 axis. *Archives of Med Sci* 16. https://doi.org/10.5114/ams.2020.96711

Zhou G, Peng F, Zhong Y, Chen Y, Tang M, Li D (2017) Rhein suppresses matrix metalloproteinase production by regulating the Rac1/ROS/MAPK/AP-1 pathway in human ovarian carcinoma cells. *Int J Onkol* 50: 933–941. https://doi.org/10.3892/ijo.2017.3853

Zhou YY, Xia W, Yue W, Peng C, Rahman K, Zhang H (2015) Rhein: a review of pharmacochemical activities. *Evid Based Complement Alternat Med* 2015: 578107. https://doi.org/10.1155/2015/578107