Fixed Point and Bregman Iterative Methods for Matrix Rank Minimization

Donald Goldfarb
Columbia University
Joint with Shiqian Ma and Lifeng Chen

Compressive Sensing Workshop
Duke University
25-26 February 2009
Affinely Constrained Matrix Rank Minimization (ACMRM) problem

\[
\begin{align*}
\min \quad & \text{rank}(X) \\
\text{s.t.} \quad & \mathcal{A}(X) = b,
\end{align*}
\]

where \(X \in \mathbb{R}^{m \times n} \), \(\mathcal{A} : \mathbb{R}^{m \times n} \to \mathbb{R}^p \), \(b \in \mathbb{R}^p \).

Special case: Matrix Completion (MC) problem

\[
\begin{align*}
\min \quad & \text{rank}(X) \\
\text{s.t.} \quad & X_{ij} = M_{ij}, (i, j) \in \Omega
\end{align*}
\]
Analogy to Compressed Sensing

- If x is square and diagonal, ACMRM becomes CS problem
 \[
 \min \|x\|_0 \\
 \text{s.t. } Ax = b,
 \]
 where $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $\|x\|_0 \equiv \text{card}\{x_i \neq 0\}$

- Basis Pursuit (BP):
 \[
 \min \|x\|_1 \\
 \text{s.t. } Ax = b.
 \]

Theorem (Candès and Tao 2006, Rudelson and Vershynin 2005) When A is Gaussian random and partial Fourier, with high probability, BP gives the optimal solution of the CS problem for b of a size of $m = O(k \log(n/k))$ and $O(k \log(n)^4)$, respectively.
NNM for Affinely Constrained MRM

Nuclear Norm Minimization (NNM):

\[
\begin{align*}
\text{min} & \quad \|X\|_* \\
\text{s.t.} & \quad A(X) = b,
\end{align*}
\]

where \(\|X\|_* = \sum_i \sigma_i\) and \(\sigma_i = i\text{th singular value of matrix } X\).
NNM for Affinely Constrained MRM

Nuclear Norm Minimization (NNM):

\[
\begin{align*}
\min \ & \|X\|_* \\
n\text{s.t.} \ & A(X) = b,
\end{align*}
\]

where \(\|X\|_* = \sum_i \sigma_i\) and \(\sigma_i = i\text{th singular value of matrix } X\).

Theorem (Recht, Fazel and Parrilo, 2007)

Rewrite \(A(X) = b\) as \(A \text{ vec}(X) = b\). If the entries of \(A \in \mathbb{R}^{p \times mn}\) are suitably random, e.g., i.i.d. Gaussian, then with very high probability, \(m \times n\) matrices of rank \(r\) can be recovered by solving the NNM problem whenever

\[p \geq Cr(m + n) \log(mn),\]

where \(C\) is a positive constant.
Theorem (Candès and Recht, 2008)

Let \(M \in \mathbb{R}^{n_1 \times n_2} \) have rank \(r \) with SVD \(M = \sum_{k=1}^{r} \sigma_k u_k v_k^\top \), where the families \(\{u_k\}_{1 \leq k \leq r} \) and \(\{v_k\}_{1 \leq k \leq r} \) are selected uniformly at random among all families of \(r \) orthonormal vectors. Let \(n = \max(n_1, n_2) \). Then \(\exists C, c \) s.t. if

\[
|\Omega| \equiv p \geq C n^{5/4} r \log n,
\]

the minimizer of the problem NNM is unique and equal to \(M \) with probability at least \(1 - cn^{-3} \). In addition, if \(r \leq n^{1/5} \), then the recovery is exact with probability at least \(1 - cn^{-3} \) provided that

\[
p \geq C n^{6/5} r \log n.
\]
Dual Problem of NNM:

\[
\begin{align*}
\text{max} & \quad b^\top z \\
\text{s.t.} & \quad \|A^*(z)\|_2 \leq 1.
\end{align*}
\]

SDP formulation of NNM:

\[
\begin{align*}
\min_{X,W_1,W_2} & \quad \frac{1}{2}(\text{Tr}(W_1) + \text{Tr}(W_2)) \\
\text{s.t.} & \quad \begin{bmatrix}
W_1 & X \\
X^\top & W_2
\end{bmatrix} \succeq 0 \\
A(X) & = b.
\end{align*}
\]

SDP formulation of Dual of NNM:

\[
\begin{align*}
\max_z & \quad b^\top z \\
\text{s.t.} & \quad \begin{bmatrix}
I_m & A^*(z) \\
A^*(z)^\top & I_n
\end{bmatrix} \succeq 0.
\end{align*}
\]
Optimality Conditions for Unconstrained NNM Problem

- Unconstrained Nuclear Norm Minimization (UNNM):

\[
\min \mu \|X\|_* + \frac{1}{2} \|A(X) - b\|_2^2.
\]

- Optimality condition:

\[
\begin{align*}
0 &\in \mu \partial \|X^*\|_* + A^*(A(X^*) - b) \\
\partial \|X\|_* &= \{UV^T + W : U^T W = 0, WV = 0, \|W\|_2 \leq 1\}.
\end{align*}
\]
Optimality Conditions for Unconstrained NNM Problem

- **Unconstrained Nuclear Norm Minimization (UNNM):**

\[
\min \mu \|X\|_* + \frac{1}{2} \|A(X) - b\|_2^2.
\]

- **Optimality condition:**

\[
0 \in \mu \partial \|X^*\|_* + A^*(A(X^*) - b).
\]

\[
\partial \|X\|_* = \{UV^T + W : U^T W = 0, WV = 0, \|W\|_2 \leq 1\}.
\]

Theorem: Let \(X \in \mathbb{R}^{m \times n} \) have SVD \(X = U\Sigma V^T \). Then \(X \) is optimal for UNNM iff \(\exists \) a matrix \(W \in \mathbb{R}^{m \times n} \) s.t.

\[
\mu(UV^T + W) + A^*(A(X) - b) = 0,
\]

\[
U^T W = 0, WV = 0, \|W\|_2 \leq 1.
\]
\[0 \in \mu \partial \| X^* \|_* + A^*(A(X^*) - b), \]

Let

\[Y^* = X^* - \tau A^*(A(X^*) - b), \]

then the optimality condition reduces to

\[0 \in \tau \mu \partial \| X^* \|_* + X^* - Y^*, \]

i.e., \(X^* \) is the optimal solution to

\[
\min_{X \in \mathbb{R}^{m \times n}} \tau \mu \| X \|_* + \frac{1}{2} \| X - Y^* \|_F^2
\]
Nonnegative Vector Shrinkage Operator. Assume $x \in \mathbb{R}^n_+$. $\forall \nu > 0$, $s_\nu(x) := \bar{x}$, with $\bar{x}_i = \begin{cases} x_i - \nu, & \text{if } x_i - \nu > 0 \\ 0, & \text{o.w.} \end{cases}$

Matrix Shrinkage Operator. Assume $X \in \mathbb{R}^{m \times n}$ and the SVD of X is $X = U \text{Diag}(\sigma)V^\top$, $U \in \mathbb{R}^{m \times r}$, $\sigma \in \mathbb{R}^r_+$, $V \in \mathbb{R}^{n \times r}$. $\forall \nu > 0$, $S_\nu(X) := U \text{Diag}(\bar{\sigma})V^\top$, with $\bar{\sigma} = s_\nu(\sigma)$.
Theorem: Given $Y \in \mathbb{R}^{m \times n}$, rank($Y$) = t and SVD $Y = U_Y \text{Diag}(\gamma) V_Y^\top$, where $U_Y \in \mathbb{R}^{m \times t}$, $\gamma \in \mathbb{R}^t$, $V_Y \in \mathbb{R}^{n \times t}$, and a scalar $\nu > 0$,

$$X := S_\nu(Y) = U_Y \text{Diag}(s_\nu(\gamma)) V_Y^\top$$

is an optimal solution of the problem

$$\min_{X \in \mathbb{R}^{m \times n}} f(X) := \nu \|X\|_* + \frac{1}{2} \|X - Y\|_F^2.$$
Fixed Point Method for UNNM

Fixed Point Iterative Scheme

\[
\begin{align*}
Y^k &= X^k - \tau A^*(A(X^k) - b) \\
X^{k+1} &= S_{\tau \mu}(Y^k).
\end{align*}
\]

Lemma: Matrix shrinkage operator is non-expansive. i.e.,

\[\|S_{\nu}(Y_1) - S_{\nu}(Y_2)\|_F \leq \|Y_1 - Y_2\|_F.\]

Theorem: The sequence \(\{X^k\}\) generated by the fixed point iterations converges to some \(X^* \in \mathcal{X}^*\) (the optimal set of UNNM).
Initialize: Given X_0, $\bar{\mu} > 0$. Select $\mu_1 > \mu_2 > \cdots > \mu_L = \bar{\mu} > 0$. Set $X = X_0$.

For $\mu = \mu_1, \mu_2, \ldots, \mu_L$, do

1. While NOT converged, do
 1. Select $\tau > 0$
 2. Compute $Y = X - \tau A^*(A(X) - b)$, and SVD of Y, $Y = U \text{Diag}(\sigma) V^\top$
 3. Compute $X = U \text{Diag}(s_{\tau \mu}(\sigma)) V^\top$

2. End while

End for
Bregman Iterative Method

- ℓ_1-regularized problem

$$\min_x J(x) + \frac{1}{2} \|Ax - b\|_2^2, \text{ where } J(x) = \mu \|x\|_1.$$

- Bregman distance:

$$D_p^J(u, v) := J(u) - J(v) - \langle p, u - v \rangle, \text{ where } p \in \partial J(v).$$

- Bregman iterative regularization procedure

$$x^{k+1} \leftarrow \min_x D_p^J(x, x^k) + \frac{1}{2} \|Ax - b\|_2^2$$
Bregman Iterative Scheme

Optimality condition: \(0 \in \partial J(x^{k+1}) - p^k + A^\top (Ax^{k+1} - b) \), thus

\[
p^{k+1} := p^k - A^\top (Ax^{k+1} - b).
\]

So the Bregman iterative scheme is

\[
\begin{align*}
x^{k+1} &\leftarrow \min_x D^p_j(x, x^k) + \frac{1}{2} \|Ax - b\|^2_2 \\
p^{k+1} &\leftarrow p^k - A^\top (Ax^{k+1} - b).
\end{align*}
\]

or equivalently,

\[
\begin{align*}
b^{k+1} &\leftarrow b + (b^k - Ax^k) \\
x^{k+1} &\leftarrow \min_x J(x) + \frac{1}{2} \|Ax - b^{k+1}\|^2_2.
\end{align*}
\]
Bregman Iterative Method

- $b^0 \leftarrow 0$, $X^0 \leftarrow 0$,
- for $k = 0, 1, \ldots$ do
 - $b^{k+1} \leftarrow b + (b^k - A(X^k))$,
 - $X^{k+1} \leftarrow \arg \min_X \mu \|X\|_* + \frac{1}{2} \|A(X) - b^{k+1}\|_2^2$.

Donald Goldfarb

Fixed Point and Bregman Iterative Methods for Matrix Rank Minimization
Approximate SVD Technique

Monte-Carlo approximate SVD (Drineas et.al.2006)

- Input: \(A \in \mathbb{R}^{m \times n}, 1 \leq k \leq c \leq n \).
- Output: \(U_k \in \mathbb{R}^{m \times k} \) and \(\Sigma_k \).
 - For \(j = 1 \) to \(c \),
 - Randomly choose a column \(A^{(i)} \) of \(A \)
 - Set \(C^{(j)} = A^{(i)} / \sqrt{c/n} \).
 - Compute SVD of \(C^\top C : \sum_{j=1}^{c} \sigma_j^2 y^j y^j^\top \).
 - Compute \(u^j = C y^j / \sigma_j \) for \(j = 1, \ldots, k \).
 - Return \(U_k \), where \(U_k^{(j)} = u^j \), and \(\Sigma_k = \text{diag}(\sigma_j, j = 1, \ldots, k) \).
Approximate SVD Technique

Monte-Carlo approximate SVD (Drineas et.al.2006)

- **Input:** $A \in \mathbb{R}^{m \times n}$, $1 \leq k \leq c \leq n$.
- **Output:** $U_k \in \mathbb{R}^{m \times k}$ and Σ_k.
 - For $j = 1$ to c,
 - Randomly choose a column $A^{(i)}$ of A
 - Set $C^{(j)} = A^{(i)}/\sqrt{c/n}$.
 - Compute SVD of $C^\top C$: $\sum_{j=1}^c \sigma_j^2 y_j y_j^\top$.
 - Compute $u_j = C y_j / \sigma_j$ for $j = 1, \ldots, k$.
 - Return U_k, where $U_k^{(j)} = u_j$, and $\Sigma_k = \text{diag}(\sigma_j, j = 1, \cdots, k)$.

Theorem: With high probability, the following estimate holds for both $\xi = 2$ and $\xi = F$:

$$\|A - A_{k_s}\|_\xi^2 \leq \min_{D: \text{rank}(D) \leq k_s} \|A - D\|_\xi^2 + \text{poly}(k_s, 1/c_s)\|A\|_F^2,$$

where $A_k = U_k \Sigma_k V_k^\top$, $V_k = A^\top U_k \Sigma_k^{-1}$.
Numerical Tests: Stopping Rules and Solvers

\[\|U_k V_k^T + g^k / \mu\|_2 - 1 < gtol, \]
\[\frac{\|X^{k+1} - X^k\|_F}{\max\{1, \|X^k\|_F\}} < xtol, \]

- FPC1. Exact SVD, stopping rule: (2).
- FPC2. Exact SVD, stopping rule: (1) and (2).
- FPC3. Exact SVD with debiasing, stopping rule: (2).
- FPCA. Approximate SVD, stopping rule: (2).
- Bregman. Bregman iterative method using FPC2 to solve the subproblems.
Numerical Tests Randomly Created MC Problems

- Generation: generate matrices $M_L \in \mathbb{R}^{m \times r}$ and $M_R \in \mathbb{R}^{n \times r}$ with i.i.d. Gaussian entries; set $M = M_L M_R^\top$.

- Sample a subset Ω of p entries of M uniformly at random.

Measures:

- $rel.\ err. := \frac{\|X_{opt} - M\|_F}{\|M\|_F}$; Claim recovery if $rel.\ err. < 1e - 3$.

- $SR = p/(mn)$ (sampling ratio)

- $FR = r(m + n - r)/p$ (Note if $FR > 1$, it is not possible to recover the matrix)

- $NS = \text{the number of problems successfully solved}$
Comparisons on small problems (m=n=40, p=800, SR=0.5)

r	FR	Solver	NS	avg. secs.	avg. rel.err.
1	0.0988	FPC1	50	1.81	1.67e-9
		FPC2	50	3.61	1.32e-9
		FPC3	50	16.81	1.06e-9
		SDPT3	50	1.81	6.30e-10
2	0.1950	FPC1	42	3.05	1.01e-6
		FPC2	42	17.97	1.01e-6
		FPC3	49	16.86	1.26e-5
		SDPT3	44	1.90	1.50e-9
3	0.2888	FPC1	35	5.50	9.72e-9
		FPC2	35	20.33	2.17e-9
		FPC3	42	16.87	3.58e-5
		SDPT3	37	1.95	2.66e-9
4	0.3800	FPC1	22	9.08	7.91e-5
		FPC2	22	18.43	7.91e-5
		FPC3	29	16.95	3.83e-5
		SDPT3	29	2.09	1.18e-8
5	0.4688	FPC1	1	10.41	2.10e-8
		FPC2	1	17.88	2.70e-9
		FPC3	5	16.70	1.78e-4
		SDPT3	8	2.26	1.83e-7
6	0.5550	FPC1	0	—	—
		FPC2	0	—	—
		FPC3	0	—	—
		SDPT3	1	2.87	6.58e-7
Comparison between FPC and Bregman (m=n=40, p=800, SR = 0.5)

Problem	FPC2	Bregman		
	max. rel.err	max. rel.err		
r	NIM (NS)			
1	0.0988	32 (50)	2.22e-9	1.87e-15
2	0.1950	29 (42)	5.01e-9	2.96e-15
3	0.2888	24 (35)	2.77e-9	2.93e-15
4	0.3800	10 (22)	5.51e-9	3.11e-15
Comparison of FPCA and SDPT3
\((m=n=40, p=800, SR=0.5)\)

Problems	FPCA	SDPT3					
	FR	NS	avg. sec.	avg. rel.err	NS	avg. secs.	avg. rel.err
1	0.0988	50	4.24	6.60e-7	50	1.84	6.30e-1
2	0.1950	50	4.35	1.08e-6	44	1.93	1.50e-9
3	0.2888	50	4.83	1.83e-6	37	1.99	2.66e-9
4	0.3800	50	4.92	2.56e-6	29	2.12	1.18e-8
5	0.4688	50	5.06	3.38e-6	8	2.30	1.83e-7
6	0.5550	50	5.48	3.72e-6	1	2.89	6.58e-7
7	0.6388	50	5.79	4.78e-6	0	—	—
8	0.7200	50	6.03	8.57e-6	0	—	—
9	0.7987	49	6.75	1.27e-5	0	—	—
10	0.8750	32	8.71	7.49e-5	0	—	—
11	0.9487	0	—	—	0	—	—

\[FR = r(m + n - r)/p \]
Medium sized matrices: \((m=n=100,p=2000,SR=0.2) \)

Problems	FPCA	SDPT3	
\(r \)	\(r(m + n - r)/p \)		
1	0.0995	50 7.94 6.11e-6	47 15.10 1.55e-9
2	0.1980	50 8.17 6.51e-6	31 16.02 7.95e-9
3	0.2955	50 9.09 7.36e-6	13 19.23 1.05e-4
4	0.3920	50 9.33 1.09e-5	0 — —
5	0.4875	49 9.91 2.99e-5	0 — —
6	0.5820	47 10.81 3.99e-5	0 — —
7	0.6755	44 12.63 8.87e-5	0 — —
8	0.7680	31 16.30 1.24e-4	0 — —
9	0.8595	2 17.88 6.19e-4	0 — —
10	0.9500	0 — —	0 — —
Medium sized matrices: \((m=n=100, p=3000, SR=0.3)\)

Problems	FPCA	SDPT3					
	FR	NS avg. secs.	avg. rel.err	NS avg. secs.	avg. rel.err		
r	FR	avg. secs.	avg. rel.err	avg. secs.	avg. rel.err		
1	0.0663	50	8.39	1.83e-6	50	36.68	2.01e-10
2	0.1320	50	8.53	1.86e-6	50	36.50	1.13e-9
3	0.1970	50	9.30	2.11e-6	46	38.50	1.28e-5
4	0.2613	50	9.72	2.88e-6	42	41.28	4.60e-6
5	0.3250	50	9.87	3.60e-6	32	43.92	7.82e-8
6	0.3880	50	9.96	3.93e-6	17	49.60	3.44e-7
7	0.4503	50	10.19	4.27e-6	3	59.18	1.43e-4
8	0.5120	50	10.65	4.38e-6	0	—	—
9	0.5730	50	11.74	5.01e-6	0	—	—
10	0.6333	50	11.76	6.30e-6	0	—	—
11	0.6930	50	12.08	8.29e-6	0	—	—
12	0.7520	50	13.67	2.64e-5	0	—	—
13	0.8103	48	16.00	2.95e-5	0	—	—
14	0.8680	40	20.51	1.35e-4	0	—	—
15	0.9250	0	—	—	0	—	—
16	0.9813	0	—	—	0	—	—

\[FR = r(m + n - r) / p \]

Donald Goldfarb

Fixed Point and Bregman Iterative Methods for Matrix Rank Minimization
Large matrices: \((m=n=1000, p=2e+5, SR=0.2) \)

Problems	FPCA			
\(r \)	FR	NS	avg. secs.	avg. rel.err
50	0.4875	10	1500.7	2.73e-6
51	0.4970	10	1510.2	2.75e-6
52	0.5065	10	1515.0	2.80e-6
53	0.5160	10	1520.6	2.79e-6
54	0.5254	10	1535.9	2.77e-6
55	0.5349	10	1543.6	2.80e-6
56	0.5443	10	1556.3	2.78e-6
57	0.5538	10	1567.3	2.74e-6
58	0.5632	10	1586.4	2.69e-6
59	0.5726	10	1576.1	2.66e-6
60	0.5820	10	1602.0	2.55e-6
Hold out 2 ratings for each user.

Mean Absolute Error (MAE)

\[MAE = \frac{1}{2N} \sum_{i=1}^{N} |\hat{r}_{i1} - r_{i1}| + |\hat{r}_{i2} - r_{i2}|. \]

Normalized Mean Absolute Error (NMAE)

\[NMAE = \frac{MAE}{r_{max} - r_{min}}. \]
Numerical Results

Table: Numerical results of FPC1 for Jester joke data set

num.user	num.samp	samp.ratio	rank	σ_{max}	σ_{min}	NMAE	Time
100	7172	0.7172	79	285.6520	3.4916e-004	0.1727	34.3
1000	71152	0.7115	100	786.3651	38.4326	0.1667	304.8125
2000	140691	0.7035	100	1.1242e+003	65.0607	0.1582	661.6563

Table: Numerical results of FPCA for Jester joke data set

num.user	num.samp	samp.ratio	ϵ_{k_s}	c_s	rank	σ_{max}	σ_{min}	NMAE	Time
100	7172	0.7172	1e-2	25	20	295.1449	32.6798	0.1627	26.7344
1000	71152	0.7115	1e-2	100	85	859.2710	48.0393	0.2008	808.5156
1000	71152	0.7115	1e-4	100	90	859.4588	44.6220	0.2101	778.5625
2000	140691	0.7035	1e-4	200	100	1.1518e+003	63.5244	0.1564	1.1345e+003