Optimal Green energy points on the circles in d-space

V.N. Dubinina,b* and E.G. Prilepkinab

aFar Eastern Federal University (FEFU), 8, Sukhanova Street, Vladivostok, 690950, Russia
bInstitute of Applied Mathematics, FEBRAS, 7, Radio Street, Vladivostok, 690041, Russia

Abstract

We give two precise estimates for the Green energy of a discrete charge, concentrated in the points on the circles, with respect to the concentric rotation domain in the d-dimensional Euclidean space, $d > 2$. The proof is based on the application of a dissymmetrization, extremal metrics approach and an asymptotic formula for the condenser capacities in the case when some of its plates contract to given points.

Keywords: Green energy, discrete charge, dissymmetrization, condenser capacities

MSC2010: 31A15

1 Introduction and statement of results

The Riesz s–energy ($s \neq 0$) of n points z_1, \ldots, z_n of the complex plane is defined by

$$\sum_{k=1}^{n} \sum_{l=1 \atop l \neq k}^{n} |z_k - z_l|^{-s}.$$

It can be shown using the classical Tóth’s result [6, p.155] and a convexity argument that for $s \geq -1$ and each $n \geq 2$, the n–th roots of unity $z_k^n = \exp\{2\pi i(k - 1)/n\}, k = 1, \ldots, n$, form minimal n–point s–energy configuration for the unit circle $|z| = 1$,

$$\sum_{k=1}^{n} \sum_{l=1 \atop l \neq k}^{n} |z_k - z_l|^{-s} \geq \sum_{k=1}^{n} \sum_{l=1 \atop l \neq k}^{n} |z_k^n - z_l^n|^{-s}. \quad (1)$$

Various sophisticated problems related to the optimality of the Riesz s-energy for different values of s and for the points z_k lying in the plane sets or in \mathbb{R}^d have been treated in a number of papers (see, for instance, [3]-[5], and references therein). In this note we consider

*Corresponding author. E-mail addresses: dubinin@iam.dvo.ru (V.N. Dubinin), pril-elena@yandex.ru (E.G. Prilepkina)
the Green energy with respect to a rotation domain in \mathbb{R}^d, $d \geq 3$, of a discrete charge concentrated in the points of certain circles. Limit cases of the optimal properties of this energy lead to inequalities for the Riesz s-energy for $s = d - 2$. Unlike previous works we study the precise formulations. In what follows \mathbb{R}^d is a d-dimensional Euclidean space with the usual norm $\|\cdot\|$, with points $x = (x_1, \ldots, x_d)$, $d \geq 3$. A domain B in \mathbb{R}^d is admissible if it has the Green function for the Laplace operator vanishing at the points of the boundary ∂B of the domain B. This Green function with pole at the point $x_0 \in B$ will be denoted by $g_B(x, x_0)$. In the neighborhood of x_0 the following expansion holds

$$g_B(x, x_0) = \lambda_d(\|x - x_0\|^{2-d} - (r(B, x_0))^{2-d} + o(1)), \quad x \to x_0,$$

where $\lambda_d = ((d - 2)\omega_{d-1})^{-1}$, $\omega_{d-1} = 2\pi^{d/2}/\Gamma(d/2)$ is the surface measure of the unit hypersphere. In all points of B different from the pole x_0, the Green function is harmonic, that is $\Delta g_B(x, x_0) = 0$. The quantity $r(B, x_0)$ is known as the harmonic radius of the domain B with respect to the points x_0.

Denote by J the $(d-2)$-dimensional plane $\{x \in \mathbb{R}^d : x = (0, 0, x_3, \ldots, x_d)\}$. We will need the cylindrical coordinates (r, θ, x') of the point $x = (x_1, \ldots, x_d)$ in \mathbb{R}^d, related to the Cartesian coordinates by $x_1 = r \cos \theta$, $x_2 = r \sin \theta$, $x' \in J$. A domain $B \subset \mathbb{R}^d$ will be called the rotation domain (with respect to the axis J), if for any point $(r, \theta, x') \in B$ and any φ the point (r, φ, x') belongs to B.

Suppose that B is an admissible rotation domain and let $\Omega = \{S\}$ be the collection comprising a finite number of distinct circles S of the form $S = \{(r_0, \theta, x_0') : 0 \leq \theta \leq 2\pi\}$ lying in the domain B (here $r_0 > 0$ and $x_0' \in J$ are assumed to be fixed). For arbitrary real numbers θ_j, $j = 0, \ldots, m - 1$,

$$0 \leq \theta_0 < \theta_1 < \ldots < \theta_{m-1} < 2\pi,$$

denote by $X = \{x_k\}_{k=1}^n$ the collection of all distinct points of B at which the circles from Ω intersect the half-planes

$$L_j = \{(r, \theta, x') : \theta = \theta_j\}, \quad j = 0, \ldots, m - 1.$$

Let $\Delta = \{\delta_k\}_{k=1}^n$ be an arbitrary discrete charge (a collection of real numbers), having the value δ_k at the point x_k, $k = 1, \ldots, n$. The Green energy of this charge with respect to the domain B is defined by

$$E(X, \Delta, B) = \sum_{k=1}^n \sum_{l=1}^n \delta_k \delta_l g_B(x_k, x_l).$$

Define also $X^* = \{x_k^*\}_{k=1}^n$ - the collection of points at which the circles from Ω intersect the half-planes

$$L_j^* = \{(r, \theta, x') : \theta = 2\pi j/m\}, \quad j = 0, \ldots, m - 1.$$

Theorem 1 Suppose that the charge $\Delta = \{\delta_k\}_{k=1}^n$ takes equal values $\delta_k = \delta_l$ at the points x_k and x_l from the collection X that lie on the same circle from Ω and, furthermore, that the points $x_k \in X$ and $x_k^* \in X^*$ lie on the same circle from Ω, $k = 1, \ldots, n$. Then

$$E(X, \Delta, B) \geq E(X^*, \Delta, B).$$
The following proposition asserts that under certain conditions the symmetric configuration has the maximal energy:

Theorem 2 Suppose that the domain B and the collections Ω, X and X^* are as defined above while m is an even number. Assume further that the charge $\Delta = \{\delta_k\}_{k=1}^n$ takes the values of equal moduli $|\delta_k| = |\delta_l|$ at the points x_k and x_l belonging to X and lying on the same circle from Ω and, moreover $\delta_k < 0$ if the point x_k belongs to one of the a half-planes L_{2p-1}, $1 \leq p \leq m/2$, otherwise $\delta_k > 0$, $k = 1, \ldots, n$. Then

$$E(X, \Delta, B) \leq E(X^*, \Delta, B),$$

where the points of the collection X^* are numbered as follows: if $x_k^* \in X^*$ lies at the intersection of a circle S from Ω and a half-plane L_j^*, then the corresponding point $x_k \in X$ must lie at the intersection of the circle S and the half-plane L_j, $k = 1, \ldots, n$, $0 \leq j \leq m - 1$.

Note that using the symmetry principle for harmonic functions it is not difficult to establish [2] that the Green function of the ball $B(0, t) = \{x \in \mathbb{R}^d : ||x|| < t\}$ with the pole at the point $x_0 \in B(0, t)$ takes the form

$$g_{B(0,t)}(x, x_0) = \lambda_d \left(||x - x_0||^{2-d} - \frac{||x_0||}{t} \frac{||x - x_0||}{||x_0||}^{2-d} \right).$$

Placing the points from X into a sufficiently large ball $B(0, t)$ and letting $t \to \infty$, from Theorem 1,2 we deduce inequalities for the Riesz $(d - 2)$–energy. In particular, Theorem 1 leads to inequality (11) for $s = d - 2$, while Theorem 2 yields

$$\sum_{k=1}^{2n} \sum_{l \neq k}^{2n} (-1)^{k+l} \vert z_k - z_l \vert^{d-2} \leq \sum_{k=1}^{2n} \sum_{l \neq k}^{2n} \vert z_k^* - z_l^* \vert^{d-2},$$

where $z_k, k = 1, \ldots, 2n$, are located on the circle $|z| = 1$ in the ascending order of the index k and $z_k^* = \exp\{\pi i (k - 1)/n\}, k = 1, \ldots, 2n$.

The proofs of Theorems 1,2 hinge on the theory of condenser capacity and dissymmetrization [7], [8]. These proofs are related conceptually with the solutions of the so-called extremal decomposition problems [9], [10], [14], [15]. In the recent paper [9], analogues of Theorems 1,2 for the case of the plane and one circle and a concentric ring have been presented. The proof of Theorem 1 of this paper follows the same line of argument as the one presented in [9] with modifications related to the use of dissymmetrization [7] and the asymptotic formula for the capacity of the spatial rather than plane condenser [10]. The proof of an analogue of Theorem 2 for the plane case [9] is based on the radial averaging transformation and conformal mapping. This method is not applicable in the Euclidean space due to absence of the suitable conformal mappings. Therefore in order to demonstrate Theorem 2 we resort to the moduli of the families of curves (see, for instance, [13], [1], [17]). The idea behind this approach goes back to the proof of Theorem 4 from [10]. Our results, as well as their proofs, can be carried over to the discrete energy with the Robin function kernel [11] (of the domain B with respect to a part of the boundary) in place of the Green function kernel. The next section is of an auxiliary nature.
2 Preliminaries

Suppose B is an admissible domain in the space \mathbb{R}^d, $d > 2$; $X = \{x_k\}_{k=1}^n$ is a collection of distinct points in B; $\Lambda = \{\sigma_k\}_{k=1}^n$ is a collection of non-vanishing real numbers; $\Psi = \{\mu_k\}_{k=1}^n$ is a collection of positive numbers μ_k. Denote by $E(a, t) = \{x \in \mathbb{R}^d : \|x - a\| \leq t\}$ the closed ball of radius t centered at a. For sufficiently small $t > 0$ introduce ”the generalized” condenser as the ordered collection

$$C(t; B, X, \Lambda, \Psi) = \{\mathbb{R}^d \setminus B, E(x_1, \mu_1t), ..., E(x_n, \mu_n t)\}$$

with pre-assigned values $0, \sigma_1, ..., \sigma_n$, respectively [10]. Similarly to the usual condensers, defined the capacity (or 2-capacity) of the condenser $C(t; B, X, \Lambda, \Psi)$ by

$$\text{cap } C(t; B, X, \Lambda, \Psi) = \inf \int_{\mathbb{R}^d} |\nabla v|^2 dx,$$

where the infimum is taken over all functions $v : \mathbb{R}^d \to \mathbb{R}$ from $C^\infty(\mathbb{R}^d)$, vanishing in a neighborhood of the set $\mathbb{R}^d \setminus B$ and equaling to σ_i in a neighborhood $E(x_i, \mu_i r)$, $l = 1, ..., n$. The condenser modulus $|C(t; B, X, \Lambda, \Psi)|$ is reciprocal to the capacity of $C(t; B, X, \Lambda, \Psi)$:

$$|C(t; B, X, \Lambda, \Psi)| = (\text{cap } C(t; B, X, \Lambda, \Psi))^{-1}.$$

Lemma 1 [10], Theorem 1]. The following asymptotic formula holds as $t \to 0$:

$$|C(t; B, X, \Lambda, \Psi)| = \nu \lambda_d t^{2-d} - \lambda_d \nu^2 \sum_{k=1}^n \nu_k^2 r(B, x_k)^{2-d} + \nu^2 \sum_{k=1}^n \sum_{l \neq k}^n \nu_\lambda g_B(x_l, x_k) + o(1), \quad (2)$$

where $\nu_k = \sigma_k \mu_k^{d-2}$, $\nu = \left(\sum_{k=1}^{n} \sigma_k^2 \mu_k^{d-2} \right)^{-1}$, $k = 1, ..., n$.

Let Γ be a family of curves in \mathbb{R}^d. We will assume that each curve $\gamma \in \Gamma$ is a union of a countable number of open arcs, closed arcs or closed curves and is locally rectifiable. 2-modulus or just modulus of the family Γ is defined as the quantity

$$M(\Gamma) = \inf \int_{\mathbb{R}^d} \rho^2 dx,$$

where infimum is taken over all Borel functions $\rho : \mathbb{R}^d \to [0, \infty]$ such that $\int_{\gamma} \rho ds \geq 1$ holds for each curve $\gamma \in \Gamma$ [17]. It is said that the family Γ_2 is minorized by the family Γ_1, if each curve $\gamma \in \Gamma_2$ has a sub-curve belonging to Γ_1. The families $\Gamma_1, \Gamma_2, ...$ are called separated if there exist disjoint Borel sets E_i in \mathbb{R}^d, such that $\int_{\gamma} \chi_i ds = 0$ for any curve $\gamma \in \Gamma_i$, where χ_i is the characteristic function of $\mathbb{R}^d \setminus E_i$. If $\Gamma_1, \Gamma_2, ...$ are separated families and Γ_i is minorized by Γ_i, $i = 1, 2, ..., \infty$, then

$$M(\Gamma) \geq \sum_{i=1}^{\infty} M(\Gamma_i). \quad (3)$$
If, on the contrary, Γ is minorized by Γ_i, $i = 1, 2, \ldots$, and $\Gamma_1, \Gamma_2, \ldots$ are separated families, then

$$M(\Gamma)^{-1} \geq \sum_{i=1}^{\infty} M(\Gamma_i)^{-1}.$$ \hfill (4)

It is easy to see that the capacity of the condenser $C(t; B, X, \Lambda, \Psi)$ under the choice $\sigma_k = 1$, $k = 1, \ldots, n$, coincides with the capacity of the condenser with two plates $E(x_1, \mu_1 t) \cup E(x_2, \mu_2 t) \ldots \cup E(x_n, \mu_n t)$ and $\mathbb{R}^d \setminus B$ (for the definition of the condenser capacity see, for instance, in [7], [12]). Therefore, the following lemma holds true.

Lemma 2 [12]. Let $\sigma_1 = \ldots = \sigma_n = 1$ or $\sigma_1 = \ldots = \sigma_n = -1$, $\Lambda = \{\sigma_k\}_{k=1}^n$, B, X, Ψ as defined above, $\Gamma(t; B, X, \Psi)$ is the family of continuous curves in B connecting the set $E(x_1, \mu_1 t) \cup E(x_2, \mu_2 t) \ldots \cup E(x_n, \mu_n t)$ with the boundary ∂B of the domain B. Then

$$\text{cap } C(t; B, X, \Lambda, \Psi) = M(\Gamma(t; B, X, \Psi)).$$

We will further need the definition of dissymmetrization in Euclidean space [7]. Denote by Φ the group of reflections in \mathbb{R}^d with respect hyper-planes of the form $\{(r, \theta, x') : \theta = \pi k/m, \text{ or } \theta = \pi + \pi k/m, \}$, $k = 1, \ldots, m$. Next we introduce a symmetric structure $\{P_i\}_{i=1}^N$ in \mathbb{R}^d as the collection of closed angles $P_i = \{(r, \theta, x') : \theta_i \leq \theta \leq \theta_{i+1}, 0 \leq r \leq \infty\}, i = 1, \ldots, N$, satisfying the conditions:

- aP) $\bigcup_{i=1}^N P_i = \mathbb{R}^d$, $\sum_{i=1}^N (\theta_{i+1} - \theta_i) = 2\pi$,
- bP) $\{\phi(P_i)\}_{i=1}^N = \{P_i\}_{i=1}^N$ for any isometry $\phi \in \Phi$.

The family of rotations $\{\lambda_i\}_{i=1}^N$ of the form $\lambda_i(r, \theta, x') = (r, \theta + \varphi, x')$, $i = 1, \ldots, N$, will be called the dissymmetrization of the symmetric structure $\{P_i\}_{i=1}^N$, if the images $S_i = \lambda_i(P_i)$ satisfy the following conditions:

- aS) $\bigcup_{i=1}^N S_i = \mathbb{R}^d$,
- bS) for any non-empty intersection $S_i \cap S_j$, $i, j = 1, \ldots, N$, there exists an isometry $\phi \in \Phi$, such that $\phi(\lambda_i^{-1}(S_i \cap S_j)) = \lambda_j^{-1}(S_i \cap S_j)$.

For an arbitrary set A in \mathbb{R}^d introduce the notation $\text{Dis } A = \bigcup_{i=1}^N \lambda_i(A \cap P_i)$. A characteristic feature of a rotation domain B is the fact that such domain is invariant with respect to any dissymmetrization $\text{Dis } B = B$.

Lemma 3 [7]. Let the numbers θ_j, $j = 0, \ldots, m$, satisfy $0 \leq \theta_0 < \theta_1 < \ldots < \theta_{m-1} < 2\pi$, $\theta_m = \theta_0 + 2\pi$, and suppose that $L_j = \{(r, \theta, x') : \theta = \theta_j\}$, $L_j^* = \{(r, \theta, x') : \theta = 2\pi j/m, \}$, $j = 0, \ldots, m - 1$. Then there exists a symmetric structure $\{P_i\}_{i=1}^N$, $N \geq m$, and a dissymmetrization $\{\lambda_i\}_{i=1}^N$, such that $\text{Dis } L_j^* = L_j$, $j = 0, \ldots, m - 1$, and each half-plane L_j^* is the bisector of a dihedral angle P_i of size ψ, where

$$\psi = \min_{i=1,\ldots,m} (\theta_i - \theta_{i-1}).$$
The condenser $C(t;B,X,\Lambda,\Psi)$ will be called symmetric with respect to the group Φ, if B is a rotation domain and for any k, $k = 1, \ldots, n$, and any isometry $\phi \in \Phi$ we have $\phi(x_k) \in X$ and $\sigma_k = \sigma_l$, $\mu_k = \mu_l$ in the case $\phi(x_k) = x_l$. The result of dissymmetrization of a symmetric condenser $C(t;B,X,\Lambda,\Psi)$ is defined to be the condenser $\text{Dis} \ C(t;B,X,\Lambda,\Psi) = C(t;B,\{\text{Dis} \ x_k\}_{k=1}^{n}, \Lambda,\Psi)$.

Lemma 4 If the condenser $C(t;B,X,\Lambda,\Psi)$ is symmetric with respect to the group Φ, then for sufficiently small t the following inequality holds

$$|C(t;B,X,\Lambda,\Psi)| \leq |\text{Dis} \ C(t;B,X,\Lambda,\Psi)|.$$

The proof of this claim is essentially the same as the proof of a similar statement in [3, Theorem 4.14]. A particular case has been considered in [7, Theorem 5].

3 Proofs of Theorems

We will start with the proof of Theorem 1. Suppose the domain B and the collection $X = \{x_k\}_{k=1}^{n}$, $X^* = \{x_k^*\}_{k=1}^{n}$, $\Delta = \{\delta_k\}_{k=1}^{n}$ as in Theorem 1. We can assume that $\delta_k \neq 0$, $k = 1, \ldots, n$. Put $\sigma_k = \text{sgn} \delta_k$, $\mu_k = |\delta_k|^{1/(d-2)}$, $k = 1, \ldots, n$, $\Lambda = \{\sigma_k\}_{k=1}^{n}$, $\Psi = \{\mu_k\}_{k=1}^{n}$. Note that the condenser $C(t;B,X^*,\Lambda,\Psi)$ is symmetric with respect to the group Φ. Apply dissymmetrization from Lemma 3 to the condenser $C(t;B,X^*,\Lambda,\Psi)$. The result of dissymmetrization of this condenser for small t is the condenser $C(t;B,X,\Lambda,\Psi)$. According to Lemma 4

$$|C(t;B,X^*,\Lambda,\Psi)| \leq |C(t;B,X,\Lambda,\Psi)|.$$

Applying the asymptotic formula (2), we obtain

$$\nu \lambda d t^{2-d} - \lambda d \nu^2 \sum_{k=1}^{n} \nu_k^2 r(B,x_k)^{2-d} + \nu^2 E(X^*,\Delta,B) + o(1) \leq$$

$$\nu \lambda d t^{2-d} - \lambda d \nu^2 \sum_{k=1}^{n} \nu_k^2 r(B,x_k)^{2-d} + \nu^2 E(X,\Delta,B) + o(1), \ t \to 0, \ (5)$$

where $\nu_k = \delta_k$, $\nu = \left(\sum_{k=1}^{n} |\delta_k| \right)^{-1}$, $k = 1, \ldots, n$. As B is the rotation domain, harmonic radii $r(B,x)$ take equal values at all points x, lying on one circle from Ω. Hence,

$$\sum_{k=1}^{n} \nu_k^2 r(B,x_k)^{2-d} = \sum_{k=1}^{n} \nu_k^2 r(B,x_k)^{2-d}$$

and it remains to take the limit as $t \to 0$ in (5) to complete the proof of Theorem 1.

Let the domain B and the collections $X = \{x_k\}_{k=1}^{n}$, $X^* = \{x_k^*\}_{k=1}^{n}$, $\Delta = \{\delta_k\}_{k=1}^{n}$ be as in Theorem 2. We can assume that the boundary ∂B represents a continuously differentiable surface in \mathbb{R}^d. Put $\sigma_k = \text{sgn} \delta_k$, $\mu_k = |\delta_k|^{1/(d-2)}$, $k = 1, \ldots, n$, $\Lambda = \{\sigma_k\}_{k=1}^{n}$, $\Psi = \{\mu_k\}_{k=1}^{n}$. The condenser $C(t;B,X,\Delta,\Psi)$ admits a potential function u, which is continuous in \overline{B}, harmonic
Denote by \(I \) the set of points in \(B \), where \(u = 0 \), and by \(D_l, l = 1, \ldots, q \), the connected components \(B \setminus I \). Suppose \(X_l \) is the set of all points from \(X \), lying in the domain \(D_l \).

For the collection of points \(X_l = \{ y_{sl} \}_{s=1}^{N_l} \) let us define \(\Lambda_l = \{ \sigma_{sl} \}_{s=1}^{N_l} \) and \(\Psi_l = \{ \mu_{sl} \}_{s=1}^{N_l} \) according to the rule \(\sigma_{sl} = \sigma_p, \ \mu_{sl} = \mu_p \), if \(y_{sl} = x_p, \ x_p \in X \). According to the Dirichlet principle \[18\]

\[
\text{cap} C(t; B, X, \Lambda, \Psi) = \int_B |\nabla u|^2 \, dx = \sum_{l=1}^{q} \int_{D_l} |\nabla u|^2 \, dx = \sum_{l=1}^{q} \text{cap} C(t; D_l, X_l, \Lambda_l, \Psi_l). \tag{6}
\]

Note that the points lying in the domain \(D_l \) have the same charge (either 1 or \(-1\)) so that according to Lemma 2 the following equality holds:

\[
\text{cap} C(t; B, X, \Lambda, \Psi) = \sum_{l=1}^{q} M_l, \tag{7}
\]

where \(M_l = M(\Gamma(t; D_l, X_l, \Psi_l)) \). Let \(n_l \) denote the number of half-planes \(L_j \), containing at least one point from \(X_l, 0 \leq j \leq m - 1 \). It is clear that \(\sum_{l=1}^{q} n_l \geq m \). Convexity of the function \(1/x \) implies that for any positive numbers \(v_l, \alpha_l, \sum_{l=1}^{q} \alpha_l = 1, \ l = 1, \ldots, q \), the following inequality holds:

\[
\left(\sum_{l=1}^{q} \alpha_l (\alpha_l^{-1} v_l) \right)^{-1} \leq \sum_{l=1}^{q} \alpha_l (\alpha_l^{-1} v_l)^{-1},
\]

or

\[
\left(\sum_{l=1}^{q} v_l \right)^{-1} \leq \sum_{l=1}^{q} \alpha_l^2 v_l^{-1}. \tag{8}
\]

Obviously, inequality (8) remains valid for any non-negative \(\alpha_l, \sum_{l=1}^{q} \alpha_l \geq 1 \) and, moreover,

\[
\left(\sum_{l=1}^{q} v_l \right)^{-1} \leq \frac{1}{q^2} \sum_{l=1}^{q} v_l^{-1}. \tag{9}
\]

Then it follows from (7) and (8) that

\[
|C(t; B, X, \Delta, \Psi)| = \left(\sum_{l=1}^{q} M_l \right)^{-1} \leq \sum_{l=1}^{q} \frac{n_l^2}{m^2} M_l^{-1}. \tag{10}
\]

Denote by \(\Gamma_{ij}^+ \) the family of curves from \(\Gamma(t; D_l, X_l, \Psi_l) \) lying in the dihedral angle \(\{(r, \theta, x') : \theta_j \leq \theta \leq \theta_{j+1} \} \) and by \(\Gamma_{ij} \) the family of curves from \(\Gamma(t; D_l, X_l, \Psi_l) \) lying in the dihedral angle \(\{(r, \theta, x') : \theta_j \leq \theta \leq \theta_{j+1} \} \).
the dihedral angle \((r, \theta, x') : \theta_{j-1} \leq \theta \leq \theta_j\), \(\theta_m = \theta_0 + 2\pi, \theta_{-1} = \theta_{m-1} - 2\pi, \ l = 1, \ldots, q, \ j = 0, \ldots, m - 1\). According to the property (3) we have

\[
M_l \geq \sum_{j=0}^{m-1} \left(M(\Gamma_{ij}^-) + M(\Gamma_{ij}^+) \right),
\]

where the prime at the summation sign means that the summation is taken over those indices \(j, j = 0, \ldots, m - 1\), for which the half-plane \(L_j\) contains at least one point from \(X_l\). Note that the total number of terms in this sum equals \(2n_l\). Inequalities (11) and (8) imply that

\[
\sum_{l=1}^{q} \frac{n_l^2}{m^2} M_l^{-1} \leq \sum_{l=1}^{q} \frac{4n_l^2}{4m^2} \left(\sum_{j=0}^{m-1} \left(M(\Gamma_{ij}) + M(\Gamma_{ij}^+)) \right) \right)^{-1} \leq \sum_{l=1}^{q} \frac{1}{4m^2} \sum_{j=0}^{m-1} \left(M(\Gamma_{ij})^{-1} + M(\Gamma_{ij}^+)^{-1} \right).
\]

Next, consider the symmetric configuration that is the condenser \(C(t; B, X^*, \Lambda, \Psi)\). Let \(X_0^*\) be the collection of points in \(X^*\), lying on the half-plane \(\{(r, \theta, x') : \theta = 0\}\). \(X_0^* = \{y_0^*\}_{s=1}^{K}\). If \(y_s^* = x_p^*, x_p^* \in X^*\), then we define \(\mu_s^*\) by the equality \(\mu_s^* = \mu_p\). In view of the symmetry of the condenser \(C(t; B, X^*, \Lambda, \Psi)\) we have

\[
cap C(t; B, X^*, \Lambda, \Psi) = m \cap C(t; B \cap P_0, X_0^*, \Lambda_0^*, \Psi_0^*),
\]

where \(P_0 = \{(r, \theta, x') : -\pi/m < \theta < \pi/m\}\), \(\Lambda_0^* = \{\sigma_s^*\}_{s=1}^{K}, \sigma_1^* = \ldots = \sigma_K^* = 1, \Psi_0^* = \{\mu_s^*\}_{s=1}^{K}\). Using the symmetry of the condenser \(C(t; B \cap P_0, X_0^*, \Lambda_0^*, \Psi_0^*)\) and Lemma 2 we conclude that

\[
cap C(t; B, X^*, \Lambda, \Psi) = 2mM(\Gamma_0^*),
\]

where \(\Gamma_0^*\) is the family of those curves from the family \(\Gamma(t; B \cap P_0, X_0^*, \Psi_0^*)\) that lie in the angle \(\{(r, \theta, x') : 0 \leq \theta \leq \pi/m\}\). Write \(\phi_k(x)\) for the reflection with respect to the hyper-plane \(\{(r, \theta, x') : \theta = \pi/m \text{ or } \theta = \pi + \pi/k/m\}\), \(k = 1, \ldots, 2m - 1\). For each curve \(\gamma_0^* \in \Gamma_0^*\) define \(\gamma_k^* = \phi_k(\gamma_{k-1}^*)\) and the curve \(\gamma^* = \cup_{k=0}^{2m-1} \gamma_k^*\). In other words, \(\gamma^*\) is the curve symmetric with respect to the group \(\Phi\) (see section 2) and comprising \(2m\) consecutive reflections \(\gamma_0^*\). Let \(\Gamma^*\) be the family of curves \(\gamma^*\). The composition principle and the symmetry of the family \(\Gamma^*\) [1], c.21, [13] c.178,179] imply that

\[
M(\Gamma_0^*) = 2mM(\Gamma^*).
\]

Hence,

\[
|C(t; B, X^*, \Lambda, \Psi)| = \frac{M(\Gamma^*)^{-1}}{4m^2}.
\]

We now apply dissymmetrization described in Lemma 3. As dissymmetrization induces a metric in each direction which preserves length and volume, we have

\[
M(\Gamma^*) = M(\text{Dis} \Gamma^*),
\]
where $\text{Dis} \Gamma^* = \{\text{Dis} \gamma^* : \gamma^* \in \Gamma^*\}$. It is easy to see from the construction of dissymmetrization (details can be found in [15, pp. 63-64]) that the family $\text{Dis} \Gamma^*$ is minorized by the separated Γ_{ij}^- and Γ_{ij}^+. Due to the property (4) and Lemma 4, we then have

$$\sum_{l=1}^{q} \frac{1}{4m^2} \sum_{j=0}^{m-1} (M(\Gamma_{ij}^-)^{-1} + M(\Gamma_{ij}^+)^{-1}) \leq \frac{1}{4m^2} M(\text{Dis} \Gamma^*)^{-1} = \frac{1}{4m^2} M(\Gamma^*)^{-1}. $$

In view of (10), (12), (13) the above inequality leads to

$$|C(t; B, X, \Lambda, \Psi)| \leq |C(t; B, X^*, \Lambda, \Psi)|.$$

It remains to apply the asymptotic formula (2) for the condenser modulus following the same line of argument as in the proof of Theorem 1. This completes the proof of Theorem 2.

Funding: This work was supported by the Russian Basic Research Fund [grant number 20-01-00018].

References

[1] L.V. Ahlfors, Lectures on Quasiconformal Mappings, Princeton, N.J., Van Nostrand, 1966.

[2] C. Bandle, M. Flucher, Harmonic radius and concentration of energy, hyperbolic radius and Liouville’s equations $\Delta U = 0$ and $\Delta U = U^{n+2}/(n+2)$, SIAM Review 38 (2) (1996) 191–238, https://doi.org/10.1137/1038039.

[3] J.S. Brauchart, D.P. Hardin, E.B. Saff, The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N, Bulletin of the London Mathematical Society, 41 (4) (2009) 621–633, https://doi.org/10.1112/blms/blp034.

[4] J.S. Brauchart, Optimal logarithmic energy points on the unit sphere, Math. Comp., 77(263) (2008) 1599–1613, https://doi.org/10.1090/S0025-5718-08-02085-1.

[5] J.S. Brauchart, D.P. Hardin, E.B. Saff, The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere, Contemp. Math, 578, (2012) 31 – 61, http://dx.doi.org/10.1090/conm/578.

[6] L. Fejes Tóth, Regular Figures, A Pergamon Press Book, The Macmillan Co., New York, 1964.

[7] V.N. Dubinin, Capacities and geometric transformations of subsets in n-space, Geom. Funct. Anal. 3 (1993) 342–369.

[8] V.N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Basel: Birkhäuser/ Springer, 2014, https://doi.org/10.1007/978-3-0348-0843-9.

[9] V.N. Dubinin, Green energy and extremal decompositions, Issues of Analysis 8 (26) (2019) 38–44, http://doi.org/10.15393/j3.art.2019.6730.
[10] V.N. Dubinin, E.G.Prilepkina, On extremal decomposition of n-space domains, J. Math. Sci. 105 (4) (2001) 2180-2189, https://doi.org/10.1023%2FA%3A1011329108587.

[11] P. Duren, J. Pfaltzgraff, Robin capacity and extremal length, J. Math. Anal. Appl., 179 (1993) 110–119.

[12] J. Hesse, A p-extremal length and p-capacity equality, Ark. mat. 13 (1) (1975) 131–144.

[13] B. Fuglede, Extremal length and functional completion, Acta Mathematica 98 (1) (1957) 171–219.

[14] K.A. Gulyaeva, S.I. Kalmykov, E.G. Prilepkina, Extremal decomposition problems in the Euclidean space, International Journal of Mathematical Analysis 9 (56) (2015) 2763–2773, http://dx.doi.org/10.12988/ijma.2015.510259.

[15] S. Kalmykov, E. Prilepkina, Extremal decomposition problems for p-harmonic radius, Analysis Mathematica, 43 (1) (2017) 49–65, http://dx.doi.org/10.1007/s10476-017-0103-y.

[16] N.S. Landkoff. Foundations of Modern Potential Theory, Springer-Verlag, Berlin, 1972.

[17] M. Ohtsuka, Extremal Length and Precise Functions, Gakkotsuo, 2003.

[18] S.L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, 3rd ed., Providence: Amer. Math. Soc., (Math. Monogr.; Vol. 90), 1991.