Regulatory T Cells Expanded from HIV-1-Infected Individuals Maintain Phenotype, TCR Repertoire and Suppressive Capacity

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Angin, M., P. L. Klarenbeek, M. King, S. M. Sharma, E. S. Moodley, A. Rezai, A. Piechocka-Trocha, et al. 2014. “Regulatory T Cells Expanded from HIV-1-Infected Individuals Maintain Phenotype, TCR Repertoire and Suppressive Capacity.” PLoS ONE 9 (2): e86920. doi:10.1371/journal.pone.0086920. http://dx.doi.org/10.1371/journal.pone.0086920.

Published Version
doi:10.1371/journal.pone.0086920

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879919

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Regulatory T Cells Expanded from HIV-1-Infected Individuals Maintain Phenotype, TCR Repertoire and Suppressive Capacity

Mathieu Angin1, Paul L. Klarenbeek2, Melanie King1, Siddhartha M. Sharma1, Eshia S. Moodley3, Ashley Rezai1, Alicia Piechocka-Trocha1, Ildiko Toth1, Andrew T. Chan4, Philip J. Goulder3,5, Thumi Ndungu1,3, Douglas S. Kwon1,6, Marylyn M. Addo1,6,7,*

1 Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America, 2 Department of Clinical Immunology and Rheumatology, Academic Medical Center, Amsterdam, The Netherlands, 3 HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV, University of KwaZulu-Natal, Durban, South Africa, 4 Massachusetts General Hospital, Gastrointestinal Unit, Boston, Massachusetts, United States of America, 5 Department of Paediatrics, University of Oxford, Oxford, United Kingdom, 6 Massachusetts General Hospital, Division of Infectious Diseases, Boston, Massachusetts, United States of America, 7 Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Abstract

While modulation of regulatory T cell (Treg) function and adoptive Treg transfer are being explored as therapeutic modalities in the context of autoimmune diseases, transplantation and cancer, their role in HIV-1 pathogenesis remains less well defined. Controversy persists regarding their beneficial or detrimental effects in HIV-1 disease, which warrants further detailed exploration. Our objectives were to investigate if functional CD4+ Tregs can be isolated and expanded from HIV-1-infected individuals for experimental or potential future therapeutic use and to determine phenotype and suppressive capacity of expanded Tregs from HIV-1 positive blood and tissue. Tregs and conventional T cell controls were isolated from blood and gut-associated lymphoid tissue of individuals with HIV-1 infection and healthy donors using flow-based cell-sorting. The phenotype of expanded Tregs was assessed by flow-cytometry and quantitative PCR. T-cell receptor ß-chain (TCR-ß) repertoire diversity was investigated by deep sequencing. Flow-based T-cell proliferation and chromium release cytotoxicity assays were used to determine Treg suppressive function. Tregs from HIV-1 positive individuals, including infants, were successfully expanded from PBMC and GALT. Expanded Tregs expressed high levels of FOXP3, CTLA4, CD39 and HELIOS and exhibited a highly demethylated TSDR (Treg-specific demethylated region), characteristic of Treg lineage. The TCRß repertoire was maintained following Treg expansion and expanded Tregs remained highly suppressive in vitro. Our data demonstrate that Tregs can be expanded from blood and tissue compartments of HIV-1+ donors with preservation of Treg phenotype, function and TCR repertoire. These results are highly relevant for the investigation of potential future therapeutic use, as currently investigated for other disease states and hold great promise for detailed studies on the role of Tregs in HIV-1 infection.

Introduction

CD4+ regulatory T cells (Tregs) have been shown to be essential for the development and the maintenance of peripheral tolerance and immune homeostasis [1]. Indeed, Treg dysfunction is associated with allergy, autoimmunity, cancer or early graft rejection [2]. In the context of infectious diseases, Tregs have the potential to limit excessive inflammatory immune responses, thereby reducing tissue damage, but can also suppress antimicrobial immune responses and promote pathogen persistence [3].

The role of Tregs during HIV-1 infection remains controversial [4,3,6]. During the course of HIV-1 disease progression, microbial translocation from the gut, viral factors and co-infections such as human cytomegalovirus (hCMV) have emerged as the major causes of persistent immune activation and have been associated with mortality and non-AIDS morbidity [7]. In this context, Treg activity could have a beneficial effect through suppression of generalized chronic immune activation, but also through inhibition of activated CD4+ T cells and subsequent control of viral replication, as demonstrated by Moreno-Fernandez et al. [8].
contrast, Tregs may play a detrimental role through inhibition of anti-HIV-1 immune responses [9,10,11,12], thus promoting HIV-1 persistence at the host’s expense. HIV-1 infection appears to directly and indirectly modulate Tregs in vivo, as suggested by data demonstrating that individuals with chronic HIV-1 infection have higher Treg frequencies than individuals who control HIV-1 infection and healthy control subjects [13,14]. This observation has not been fully elucidated to date, but could be explained by preferential survival, tissue redistribution, increased proliferation, or conversion of non-regulatory T cells into Tregs in chronic HIV-1 infection [4,15].

One of the main challenges for detailed functional analyses of Tregs in HIV-1 disease and their potential for future clinical application is the paucity of the natural Treg population in human peripheral blood, where thymus-derived Treg represent roughly 1–10% of the mature CD4+ T cell pool [16]. This poses an even greater challenge in progressive HIV-1 infection, where chronic viral replication and immune activation contribute to profound CD4+ T cell loss [17]. The functional characterization of Tregs in individuals with advanced HIV-1 disease, HIV-1-infected infants, for which only very small volume samples can be obtained, or from lymphoid or mucosal tissue sites where sample size is often limited, is therefore difficult. Based on our previous data demonstrating that ex vivo suppressive function of freshly isolated Tregs was preserved in HIV-1 positive individuals [13], we hypothesized that functional Tregs can be expanded in vitro from HIV-1-infected blood and tissue with preservation of phenotype and suppressive capacity.

We here describe the successful isolation and in vitro expansion of functional CD4+ Tregs from HIV-1-infected individuals, including HIV-1 controllers, individuals with progressive untreated HIV-1 infection, small volume specimen from HIV-1-infected infants and biopsies of gut-associated lymphoid tissue (GALT). Expanded Tregs were highly suppressive and exhibited an activated Treg phenotype with high expression of Treg markers and a demethylated TSDR, suggesting functional Treg lineage as opposed to activation-induced FOXP3 expression. We believe that our findings are of high relevance for potential future therapeutic exploration of Tregs and in addition will allow for more detailed investigations into the role and function of Tregs in HIV-1 disease.

Methods

Study subjects

The study was approved by the Institutional Review Board of the Massachusetts General Hospital (MGH, Boston, MA) and was conducted in accordance with the MGH human experimentation protocol.

Table 1. Summary of clinical data of the HIV-1-infected study subjects.

Patient type	PBMC/Gut Sample	HAART Treated	Age (years)	Gender	Plasma viral load (HIV RNA copies/ml)	CD4 count, (cells/μl)
Treated	Ileum	Yes	45	Female	<50	153
Controller	Duodenum, Colon	No	61	Male	<20	690
Controller	Colon	No	60	Male	<20	998
Controller	PBMC	No	50	Female	<50	425
Controller	PBMC	No	51	Female	<50	460
Controller	PBMC	No	59	Female	<50	1283
Controller	PBMC	No	56	Female	<50	1786
Controller	PBMC	No	62	Male	<50	618
Controller	PBMC	No	53	Male	<50	734
Controller	PBMC	No	62	Male	<50	825
Controller	PBMC	No	43	Male	<50	1018
Controller	PBMC	No	44	Male	164	1018
Controller	PBMC	No	61	Male	243	548
Viremic	PBMC	No	48	Male	2,274	533
Viremic	PBMC	No	57	Female	4,090	297
Viremic	PBMC	No	48	Male	4,100	271
Viremic	PBMC	No	42	Male	7,960	362
Viremic	PBMC	No	26	Male	11,349	699
Viremic	PBMC	No	39	Male	21,500	1047
Viremic	PBMC	No	51	Male	27,000	475
Viremic	PBMC	No	40	Male	41,800	898
Viremic	PBMC	No	49	Male	44,500	2
Viremic	PBMC	No	46	Male	45,700	756
Viremic	PBMC	No	49	Male	68,460	295
Viremic	PBMC	No	29	Male	169,000	369
Viremic	PBMC	No	34	Male	204,000	312
Viremic	PBMC	No	1	Male	1,977,540	757

doi:10.1371/journal.pone.0086920.t001
guidelines. Written informed consent was obtained for all study participants.

Blood samples were drawn from 10 HIV-1 controllers with asymptomatic HIV-1 infection who maintained a plasma viremia below 300 copies/ml (median CD4 count: 779 cells/µl, interquartile range [IQR]: 526–1,084) in the absence of antiretroviral therapy, 13 individuals with chronic untreated HIV-1 infection (median viral load: 41,800 RNA copies/ml, IQR: 6,030–118,730 and median CD4 count: 362 cells/µl, IQR: 283–616) (Table 1) and a vertically HIV-1-infected infant (age: 511 days, viral load: 1,977,540 RNA copies/ml, CD4 count: 757). Blood samples from 5 HIV-1 uninfected individuals were studied as control specimen. Gut biopsies from 1 HIV-1-negative and 3 HIV-1-infected individuals (1 on antiretroviral therapy, 2 elite controllers) were also used in this study.

Isolation of T cell subsets from peripheral blood and GALT

CD4⁺ T Cell-enriched PBMC were isolated from peripheral blood by density centrifugation using the RosetteSep enrichment kit (Ficoll-Histopaque; Sigma-Aldrich and STEMCELL Technologies) and labeled with anti-CD3-PE-Cy7 (BD Pharmingen), CD4-FITC (eBiocience), CD25-APC (eBiocience), CD127-PE (BD Pharmingen).

Cryopreserved PBMC samples were stained using the same panel as described above except for the addition of an exclusion channel to select for viable cells (Invitrogen).

Pinch biopsies from HIV-positive individuals were obtained by endoscopy and an Ileum biopsy from an HIV-negative individual was obtained from a laparoscopic small bowel resection. All gut samples were provided by the Ragon Institute tissue platform. After collection, biopsies underwent two rounds of collagenase type II (Sigma-Aldrich) digests followed by filtration [18] and were stained with the same panel as the fresh PBMC described above.

CD3⁺CD4⁺CD25⁺CD127low Treg and CD3⁺CD4⁺CD25⁻ CD127⁺ Tconv controls subsets were sorted on a FACS Aria cell sorter (BD Biosciences) equipped for handling biohazardous material.

Expansion of CD4⁺ Tregs and conventional T cells (Tconv)

Tregs and Tconvs were activated with anti-CD3/anti-CD28-coated microbeads (Invitrogen) at a 1:1 bead-to-cell-ratio. On day 2, media volume was doubled and exogenous IL-2 was added (300 U/ml, NIH Aids Research & Reference Reagent Program).

Figure 1. Cell sorting, FOXP3 TSDR and gene expression. A. Flow-cytometry gating strategy used to isolate CD25⁺CD127low regulatory T cells (Tregs) and CD25⁻CD127⁺ conventional T cells (Tconvs) from CD4⁺ T cells (Left Panel). Expansion fold change of Tregs isolated from HIV-1-infected (dark grey) (n = 8 controllers + 13 chronic untreated) and healthy (light grey) (n = 4) individuals during 7 days of cell culture (right Panel). B. Relative mRNA expression in arbitrary units (A.U.) of FOXP3 and IL-10 quantified by real time PCR in expanded Tregs (n = 3 controllers+2 chronic untreated) and Tconvs (n = 2 controllers+2 chronic untreated) isolated from HIV-1 infected individuals after 7 days of culture. C. Frequency of demethylation of the Treg Specific Demethylation (TSDR) region of the FOXP3 gene in expanded Tregs and Tconvs after 7 days of culture as assayed by real time PCR. Empty symbols represent HIV-1 controllers and solid symbols HIV-1 chronic untreated individuals.

doi:10.1371/journal.pone.0086920.g001

Tregs Expanded from HIV-1+ Donors Are Functional
Figure 2. Phenotyping of expanded Tregs by flow cytometry. A. Representative examples of gating strategy used for CD25+FOXP3+ staining by flow-cytometry of ex vivo PBMC (upper panel) isolated from a HIV-1 controller and matched expanded Tregs (lower panel) at day 7 of expansion. B. Expression of different Tregs markers quantified by flow-cytometry of expanded (day 7) and ex vivo unexpanded Tregs and Tconvs. MFI = Mean Fluorescence intensity. Empty symbols represent HIV-1 controllers and solid symbols HIV-1 chronic untreated individuals. C. Representative example of flow-cytometry gating strategy used to phenotype Tregs, Tconvs (n = 3 controllers+9 chronic untreated) and ex vivo CD4 T cells (n = 3 controllers+3 chronic untreated) isolated from HIV-1 positive individuals based on their CD45RA and FOXP3 expression profiles [41]. The left dot plot shows ex vivo
CD4+ T cells from PBMC, the middle dot plot represents an example of expanded Tregs (black dots) and Tconvs (light grey dots). The right histogram graph quantifies the different Treg subsets in HIV-1 positive individuals. Gate 1 and white columns represent “resting” CD45RA-FOXP3low Tregs, gate 2 and grey columns represent “non-suppressive cytokine-secreting” CD45RA-FOXP3low T cells and gate 3 and black columns represent “activated” CD45RA+ FOXP3high Tregs.

doi:10.1371 journal.pone.0086920.g002

[19]. On day 5, cells were counted and fresh media added. On day 7 expanded T cells were assayed for their suppressive function and the remaining cells were cryopreserved for further analysis.

Immunophenotyping of T cell subsets by flow-cytometry

Cryopreserved expanded Tregs and Tconvs were thawed and immunostained with anti-CD3-PE-Cy7, anti-CD4-qdot655 (Invitrogen), anti-CD25-PE-Cy5 (eBiosciences), anti-CD39-PE-Cy5 (eBiosciences), anti-CD45RA-horizon v450 (BD Pharmingen), anti-FOX3-PE (clone PCH101, eBiosciences), anti-CTLA4-APC (BD Pharmingen), anti-HELios-FITC (Biolegend). For intracellular staining, the eBioscence FOX3 staining buffer kit was used. Dead cells were eliminated using the LIVE/DEAD® Fixable Blue Dead Cell Stain Kit (Invitrogen). Flow-cytometry data were acquired on a LSR Fortessa (BD Biosciences).

RNA isolation and real-time RT-PCR

RNA was isolated using the RNeasy Plus Kit (Qiagen) and retro-transcribed using the SuperScript III Reverse Transcriptase (Invitrogen). Primers for FOX3 (forward: 5’-GCACTACA-TCCTCAAGATCTTCGCTGAG-3’ and reverse: 5’-GCTTGAGACCCAGGATGAGATG-3’) and IL10 (forward: 5’-GGCGCTGTCATGGATTITCCTG-3’ and reverse: 5’-ATAGATGTCGCCACCCGTAGT-3’) were designed using Primer3 [20] and chosen to span an exon-exon junction. Real-time PCR was performed in a Roche Applied Science LightCycler 400 using the SYBR Green I span an exon-exon junction. Real-time PCR was performed in a Roche Applied Science LightCycler 400 using the SYBR Green I kit (Qiagen) and cDNA was synthesized with SuperScript III Reverse Transcriptase and oligo-dT primers (Invitrogen) [23]. Linear amplification of the cDNA was performed on a T3000 thermocycler (Biometra). The amplified samples were analyzed by NGS on the Genome Sequencer FLX (Roche) using the titanium platform. After TCR sequencing, the VB-, Jα variants and the CDR3 were identified.

Epigenetic analysis and TCR sequencing

Genomic DNA was isolated from Tregs and Tconvs using the DNeasy Blood & Tissue Kit (Qiagen). Quantification of TSDR demethylation by real-time PCR was performed by Epiontis (Berlin, Germany) as previously described [22].

The TCR diversity of ex vivo unexpanded and in vitro expanded Tregs was analyzed using a next generation sequencing protocol (NGS) [23,24]. Briefly, RNA was isolated using the RNeasy plus kit (Qiagen) and cDNA was synthesized with SuperScript III Reverse Transcriptase and oligo-dT primers (Invitrogen) [25]. Linear amplification of the cDNA was performed on a T3000 thermocycler (Biometra). The amplified samples were analyzed by NGS on the Genome Sequencer FLX (Roche) using the titanium platform. After TCR sequencing, the VB-, Jα variants and the CDR3 were identified.

Assessment of Treg suppressive function using CFSE proliferation assays

Cryopreserved PBMC were labeled with CFSE (Invitrogen) and cultured in the presence of absence or presence autologous CD4+ Tregs or Tconvs at day 7 of expansion with anti-CD2/anti-CD3/anti-CD28 microbeads (Miltenyi Biotec) at a 1:1 bead-to-cell-ratio. After 4 days of co-culture, cells were stained with anti-CD3-PECy7, anti-CD4-APC (BD Pharmingen) and anti-CD8-AF700 (BD Pharmingen).

51Chromium release assay

Epstein-Barr virus (EBV) immortalized B-cell lines (BCL) were established and cytotoxicity assays were performed as previously described [26,27]. Briefly, BCL loaded with a peptide specific for the HLADB*5701-restricted HIV-Gag-epitope KF11 (KAFSPEVIPME) were used as target cells. Targets were incubated with KF11-specific cytotoxic T cell clones at a 1:1 ratio (Target:Effector) with or without expanded Tregs at a 1:1 ratio (Treg:Effector).

Statistical analysis

All statistical analyses were performed using Prism 5.0a (GraphPad Software). Non-parametric tests of significance were performed throughout all analyses, using Kruskal-Wallis and Mann-Whitney testing for intergroup comparisons. P values of less than 0.05 were considered significant (*:P<0.05; **: P<0.01; ***:P<0.001; ****:P<0.0001).

Results

Successful expansion of Tregs isolated from HIV-1 positive and negative blood donors

The combination of high expression CD25 and low expression of CD127 has been described as a reliable phenotype to identify and isolate CD4+ Tregs [28]. Furthermore, Tregs constitutively express FOXP3, a key regulator of their development and function [29,30], and we and others described a strong inverse correlation between CD127 and FOXP3 expression on CD4+CD25+ T cells, including in HIV-1 positive individuals [13,14,28,31]. Peripheral CD4+CD25+CD127low Tregs and CD4+CD25+CD127+ conventional T cells (Tconvs) controls were isolated from the peripheral blood of individuals with chronic untreated HIV-1 infection, HIV-1-infected individuals with spontaneous control of HIV-1 infection (HIV controllers) and non-infected healthy donors (gating scheme Figure 1A, left). Tconvs controls underwent identical culture conditions for comparison. Isolated Tregs and Tconvs were stimulated and cultured in the presence of IL-2 for 7 days [19]. Our data show that ex vivo sorted Tregs from HIV-1 positive donors were successfully expanded (Figure 1A, right), with a median fold change of 49 (interquartile range (IQR): 26.4–67.7) at day 7. Treg cultures could be extended at least 19 days (data not shown), demonstrating that Tregs could be successfully expanded beyond the 7 days studied here. No significant expansion differences between individuals with spontaneously controlled, chronic untreated HIV-1 infected and healthy control subjects were observed.

Expanded CD4+CD25+CD127low T cells exhibit an activated Treg phenotype

After successful expansion of Tregs from HIV-1-infected and uninfected individuals, we next investigated and quantified the expression of selected Treg markers. Real-time PCR showed that expanded Tregs expressed high levels of FOXP3 and the suppressive cytokine IL-10 [32] compared to Tconvs expanded as controls under the same conditions (Figure 1B). In humans FOXP3 does not represent an exclusive Treg marker and can transiently be expressed by activated conventional T cells [33] to negatively regulate their proliferation and cytokine production, therefore limiting their activation state [34]. Epigenetic analysis of
the FOXP3 TSDR (Treg-specific demethylated region) using a real-time PCR assay has recently been described as a reliable method to quantify and distinguish regulatory T cells from conventional activated T cells [22]. The DNA of this region is found to be methylated in activated and resting non-regulatory T cells, while the FOXP3 TSDR of T cells from the regulatory

Figure 3. The TCR repertoire is not altered after in vitro expansion of Tregs. A. Degree of expansion of the TCRß repertoire (i.e. number of TCRs in a sample that belongs to an individual clone and expressed as percentage of total reads) from 2×10^7 ex vivo sorted unexpanded (light grey) and 2×10^8 in vitro expanded (Day 14; dark grey) Tregs isolated from the same original PBMC specimen. B. Distribution of variable-gene (Vß-gene) variants from 2×10^7 ex vivo sorted unexpanded (light grey) and 2×10^8 in vitro expanded (Day 14; dark grey) Treg TCR-ß clones isolated from the same PBMC specimen. C. Distribution of joining-gene (Jß-gene) variants from 2×10^7 ex vivo sorted unexpanded (light grey) and 2×10^8 in vitro expanded (Day 14; dark grey) Treg TCR-ß clones isolated from the same PBMC specimen. doi:10.1371/journal.pone.0086920.g003
Tregs Expanded from HIV-1+ Donors Are Functional

A

\[
\begin{align*}
\% \text{CD8 T cell suppression} & \quad \text{ns} \quad \text{ns} \quad \ast \quad **** \\
\text{HIV-} & \quad \text{HIV+} \\
\% \text{CD4 T cell suppression} & \quad \text{ns} \quad \text{ns} \quad \ast \quad ****
\end{align*}
\]

B

PBMC + Tregs + Tconv

CD8\(^+\) T cells

CD4\(^+\) T cells

CFSE

C

\[
\text{\% lysis:}
\begin{align*}
\text{Target alone} & \quad \text{Target + CTL + Treg} \\
\text{Target + Treg} & \quad \text{Target + CTL + Treg}
\end{align*}
\]

D

\[
\begin{align*}
\text{CD25} & \quad \text{CD127} \\
3.66\% & \quad \text{days of expansion:}
\end{align*}
\]

E

\[
\begin{align*}
\text{CD25} & \quad \text{CD127} \\
7\% & \quad \text{days of expansion:}
\end{align*}
\]
lineage is constitutively demethylated in this region [35]. In our study the FOXP3 TSDR of expanded Tregs was highly demethylated, while it was found to be methylated in expanded Tconv (Figure 1B, left). Expanded Tregs therefore revealed high expression levels of stable FOXP3, suggesting their origin derived from true functional regulatory T cell lineage.

We next sought to carefully characterize the phenotype of expanded Tregs by comparing *ex vivo* unexpanded and expanded Tregs and Tconv using flow cytometry. Examples of CD25/FOXP3 coexpression in expanded and *ex vivo* unexpanded Tregs from HIV controllers are shown in Figure 2A. While mean fluorescence intensity of CD25 expression did not differ between expanded Tregs and Tconv (data not shown), as expected we found significantly higher FOXP3 expression in Tregs (Figure 2B).

CTLA4 can transmit inhibitory signals to antigen presenting cells and is important for Treg function [36,37]. The coenzyme CD99 was also shown to participate in the suppressive function of Tregs [38] and in HIV-1 infection, CD99 expression on Tregs was reported to correlate with disease progression [14]. Similarly to FOXP3, our data show higher CTLA4 and CD99 expression in expanded Tregs compared to conventional T cells (Figure 2B), suggesting that relative differences of CTLA4, CD99 and FOXP3 expression levels between Tconv and Tregs were maintained after expansion. The Treg marker HELIOS has recently been suggested as a more specific marker of thymic-derived Tregs [39] and in our study the frequency of cells expressing this molecule was high in both *ex vivo* unexpanded and in *ex vivo* expanded Tregs (median 72.5%, IQR: 57.1–100.6%, and median 64.8% IQR: 55.2–77.8%, respectively). HELIOS was not expressed in expanded Tconv (Figure 2B) and the decrease of HELIOS expression after stimulation in this culture is in line with the decreased of HELIOS-expressing FOXP3+ Treg cells described after *in vitro* stimulation in a previous study, suggesting that obtaining large numbers of FOXP3+HELIOS+ Tregs after several rounds of stimulation may require use of a stabilizing reagent [40].

In 2009, Miyara *et al.* proposed an elegant classification scheme for the functional delineation of human CD4+ T cells based on the expression of FOXP3 and CD45RA [41]. Using this classification and based on *ex vivo* CD4+ T cell comparison as a reference, expanded Tregs showed a high amount of CD45RA-FOXp3high activated Tregs, while expanded Tconv were mostly constituted of CD45RA-FOXp3low cytokine-secreting non-suppressive T cells (Figure 2C).

In summary, the high expression of FOXP3 bearing a demethylated TSDR, high CTLA4, CD99 and HELIOS as well as the CD45RA-FOXp3high phenotype suggest that after 7 days of expansion the CD4+CD25+CD127low T cells represent Tregs of an activated phenotype.

Treg expansion did not significantly alter the TCR repertoire

After determination of the phenotype of expanded Tregs, we next investigated if *in vitro* expansion would alter T cell receptor diversity and selectively expand specific Treg clones. The next generation sequencing analysis of the Vß-CDR3-Jß region allows for identification of unique T cell clones [23]. We sequenced the Vß, Jß variants and the CDR3 regions of the TCR of *ex vivo* unexpanded and *in vitro* expanded Tregs in a subset of HIV-1-infected individuals. No specific individual clones were preferentially expanded in our study sample (Figure 3A) and the TCR-ß V-(Figure 3B) and J-usage (Figure 3C) did not appear to significantly differ after expansion, suggesting that the use of anti-CD3/anti-CD28-coated beads did not significantly alter the breadth of the TCR-ß repertoire. These results support work by Hoffmann *et al.* who found that the TCR Vß-chain of Tregs in *in vitro* stimulated with artificial antigens-presenting cells proliferated polyclonally and did not lose clonotypes [42].

Expanded Tregs from HIV-1-infected individuals potently suppress T cell proliferation and HIV-1-specific cytotoxicity

Tregs are ultimately defined through their suppressive capacity. We therefore next explored if expanded Tregs isolated from HIV-1-infected individuals remained suppressive after expansion using standardized flow-based proliferation assays [13], where CFSE-labeled activated responder cells were cultured in the presence or absence of expanded Tregs (or Tconv controls). Our data demonstrate that expanded Tregs isolated from HIV-1-positive individuals have preserved potent suppressive capacity. In contrast, no significant suppression of proliferation was observed in the presence of expanded conventional T cells (Figure 4A,B). Expanded CD4+ Tregs isolated from HIV-1-positive and negative individuals did not show significantly different suppressive capacities (Figure 4A,B). Expanded Tregs isolated from controllers and chronic untreated HIV-1-infected individuals were also equal in their ability to suppress T cell proliferation in this experimental system (data not shown), in line with preserved *ex vivo* Treg function in these two patient populations, as previously described [13]. Moreover when compared to our previous study [13], the suppressive function of expanded Tregs and *ex vivo* unexpanded Tregs isolated from HIV-1 positive individuals were not significantly different.

Using expanded Tregs isolated from HIV-1 positive donors, we next tested their capacity to suppress the cytolytic function of HIV-1-specific cytotoxic T lymphocyte (CTL) clones in a 51Cr release assay. Figure 4C shows a representative example of potent suppression by expanded Tregs of the cytotoxic activity of an
HIV-1-specific CTL clone after 4 h of co-culture at a ratio of 1:1 CTL/Treg/BCL target. We here demonstrate that Tregs expanded from HIV-1-positive individuals retain their suppressive function in vitro, as shown by their capacity to suppress the proliferation of activated T cells and the cytolytic activity of HIV-1-specific CTL clones.

Expansion of Tregs from HIV-1-infected infant and gut-associated lymphoid tissue (GALT)

One of the major limitations in studying Treg biology in the context of HIV-1 infection is the limited amount of Tregs present in small volume samples. We therefore next investigated if functional Tregs can be expanded from tissue and small volume samples. Figures 4D and E show examples of Tregs isolated from the peripheral blood of an HIV-1-infected infant and from the colon of an HIV-1-infected adult. Using a flow-cytometry cell sorter we isolated 18×10^6 and 3.5×10^3 viable Tregs from 15×10^6 frozen PBMC and 110×10^6 cells isolated from fresh colonic tissue, respectively (gating is shown on Figure 4D and E, left). After 7 days, the cell number reached 2.9×10^6 (i.e. 161 fold-change) for the Tregs isolated from the infant specimen, whereas it reached 2.4×10^6 (i.e. 69 fold-change) after 9 days of culture of Tregs isolated from the adult GALT (Figure 4D and E, middle).

Suppressive function was quantified by flow-cytometry proliferation assays (Figure 4D and E, right) and showed that Tregs isolated from the peripheral blood of HIV-1-infected infants and the GALT of HIV-1-infected adults were functional and highly suppressive. In total Tregs from 5 gut samples (1 from a HIV-1-negative and 4 from HIV-1-positive individuals) were expanded and yielded similar results.

Discussion

Many unanswered questions related to Tregs in the context of HIV-1 immunopathogenesis remain and it is yet incompletely understood if this cell population contributes to promotion or prevention of disease progression. Studying Tregs in CD4$^+$ T cell-depleted individuals has proven to be difficult in the context of limiting cell numbers and it is unknown to date, if Tregs can be depleted individuals has proven to be difficult in the context of HIV-1 infection. Indeed, when comparing the expanded Tregs isolated from the peripheral blood of HIV-1-infected patients with preserved suppressive capacity suggests that these individuals retain their suppressive function during early HIV-1 events [63,64]. Difficult access to mucosal compartments could prove to be a useful tool to study the biology and impact of Tregs on HIV-1 infection, as the Treg TCR repertoire varies by anatomic location, presumably due to antigen encounter [60]. Tregs are important for maintenance of intestinal immune homeostasis by controlling inflammatory cytokines, oxidative stress, and viral replication. However, besides technical difficulties, a major risk and challenge of isolating and expanding Tregs from HIV-1 infected donors for potential cell therapy is the re-activation of replicating virus, which needs additional careful exploration, but could potentially be managed safely in the era of HAART. Future studies should aim to reach the highest degree of Treg purity (e.g. using rapamycin alone [19] or in combination with retinoic acid [43]) and stability possible (e.g. using Oligodeoxynucleotides [39]) as adoptive transfer of activated conventional CD4$^+$ T cells in the context of HIV-1 may add “fuel to the fire” in the form of new targets for the virus.

The Treg expansion approach may also be used to enrich or detect small Treg subsets such as antigen-specific Tregs [59]. Moreover, expanding functional Tregs from different tissue compartments could prove to be a useful tool to study the biology and impact of Tregs on HIV-1 infection, as the Treg TCR repertoire varies by anatomic location, presumably due to antigen encounter [60]. Tregs are important for maintenance of intestinal immune homeostasis by controlling inflammatory responses triggered by continuous antigen challenge in healthy individuals [61]. During the earliest days of HIV-1 infection, increased inflammation and immune activation occur in the gut associated lymphoid tissue [62], however little is known about the role and specificity of Tregs present in GALT and other mucosal tissues during early HIV-1 events [63,64]. Difficult access to mucosal samples and the scarcity of the Treg population, which contribute to the lack of data, are drawbacks that could be partially overcome by Treg expansion approaches such as outlined here.

We therefore believe that this study will greatly facilitate the investigation of the role of Tregs during HIV-1 infection. A more detailed understanding of this unique T cell subset and its influence on HIV pathogenesis, immune activation and HIV-1-specific immunity will be critical for the design of potential immunotherapeutic strategies targeting Tregs (both up regulation
and down regulation of Treg activity are under active investigation and consideration [46] and possibly in the context of HIV-1 eradication [65].

Acknowledgments

The authors would like to thank all individuals who participated in this study as well as the Ragon Institute Clinical Platform for critical support with cohort coordination and specimen acquisition.

References

1. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151–1164.
2. Sakaguchi S, Miyara M, Costantino CM, Halfer DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10: 490–500.
3. Bellard P, Rousse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6: 355–360.
4. Moreno-Fernandez ME, Presicce P, Chougnet CA (2012) Homostasis and function of regulatory T cells in HIV/SIV infection. J Virol.
5. Chevalier MF, Weiss L (2013) The split personality of regulatory T cells in HIV infection. Blood 121: 29–37.
6. Inamichi H, Lane HC (2012) Regulatory T cells in HIV infection: the good, the bad, and the ugly. J Infect Dis 205: 1479–1482.
7. Hunt PW (2012) HIV and inflammation: mechanisms and consequences. Curr HIV/AIDS Rep 9: 139–147.
8. Moreno-Fernandez ME, Rueda CM, Rusie JK, Chougnet CA (2011) Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism. Blood 117: 5372–5380.
9. Kinter A, McNally J, Riggin L, Roby G, et al. (2007) Suppression of HIV-specific T-cell activity by lymph node CD25+ regulatory T cells from HIV-infected individuals. Proc Natl Acad Sci U S A 104: 3390–3395.
10. Kinter AL, Horak R, Sion M, Riggin L, McNally J, et al. (2007) CD25+ regulatory T cells isolated from HIV-infected individuals suppress the cytolytic and nonspecific antiviral activity of HIV-specific CD4+ T cells in vitro. AIDS Res Hum Retroviruses 23: 438–450.
11. Weiss L, Donkova-Petrini V, Caccavelli L, Balbo M, Carbonneil C, et al. (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151–1164.
12. Sakaguchi S, Miyara M, Costantino CM, Halfer DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10: 1151–1164.
13. Angin M, Kwon DS, Streeck H, Wen F, Lee MR, et al. (2012) Preserved T-cell function of regulatory T cells from HIV-infected patients. Blood 119: 3249–3256.
14. Angin M, Kwon DS, Streeck H, Wen F, King M, et al. (2012) Protected Function of Regulatory T Cells in Chronic HIV-1 Infection Despite Decreased Numbers in Blood and Tissue. J Infect Dis 205: 1459–1500.
15. Schlueter N, Wernsdorfer HJ, Bopp H, Say B, Roth P, Frey T, Lehmann G, et al. (2011) Comprehensive analysis of frequency and phenotype of T regulatory cells in HIV infection: CD39 expression of Foxp3+ T regulatory cells correlates with progressive disease. J Virol 85: 1287–1297.
16. Presicce P, Shaw JM, Miller C, Shacklett BL, Chougnet CA (2012) Myeloid dendritic cells isolated from tissues of SIV-infected Rhesus macaques promote the induction of regulatory T cells. AIDS 26: 263–273.
17. Rafter-Allan C, Brown JA, Freeman GJ, Hafler DA (2001) CD4+CD25(high) regulatory T cells in human peripheral blood. J Immunol 167: 1245–1253.
18. Alimonti JB, Ball TB, Fowke KR (2003) Mechanisms of CD4+ regulatory T cells in human peripheral blood. J Immunol 167: 1245–1253.
19. Almoujini JB, Ball TB, Fowke KR (2003) Mechanisms of CD4+ T lymphocyte cell death in human immunodeficiency virus infection and AIDS. J Gen Virol 84: 1649–1661.
20. Shacklett BL, Yang O, Hausner MA, Elliott J, Hultin L, et al. (2003) Optimization of methods to assess human mucosal T-cell responses to HIV infection. J Immunol Methods 279: 17–31.
21. Putnam AL, Brusko TM, Lee MR, Liu W, Szot GL, et al. (2009) Expansion of regulatory and activated T cells. J Exp Med 203: 1701–1711.
22. Bakker CA, Blazer K (2001) Mechanisms of interleukin-10-mediated immunosuppression. Immunology 103: 131–136.
23. Wang J, Izumi-Furcos P, van der Voort EL, Huizinga TW, Toes RE (2007) Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 37: 129–138.
24. McMurphy AN, Gillies J, Giziuc MC, Raha M, Garcia-Manteiga JM, et al. (2013) A novel function for FOXP3 in humans: intrinsic regulation of conventional T cells. Blood 121: 1265–1275.
25. Baron U, Fleso S, Wierczorek C, Baumann K, Gruenau A, et al. (2007) DNA methylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur J Immunol 37: 2378–2389.
26. Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory T cells that control intestinal inflammation. J Exp Med 192: 395–397.
27. Takahashi T, Tagami A, Yamazaki S, Uede T, Shimizu J, et al. (2000) Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 190: 503–510.
28. Boncelli G, Kleinewefelder M, Di Minnì D, Sernjak A, Diamantini A, et al. (2007) Expression of ectonucleoside CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110: 1225–1232.
29. Thomson AM, Koty PE, Tran DQ, Wohlfert EA, Murray PE, et al. (2010) Expression of Helios, an apolipoprotein factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 184: 3433–3441.
30. Kim YC, Bharrava-Hoosa R, Yoon J, Golding A, Thomson AM, et al. (2012) Oligodeoxynucleotides stabilize Helios-expressing Foxp3+ human T regulatory cells during in vitro expansion. Blood 119: 2810–2818.
31. Miyara M, Yoshioka Y, Kitaoh A, Shimada T, Keng K, et al. (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the Foxp3 transcription factor. Immunity 30: 899–911.
32. Hoffmann P, Erder R, Kunze-Schughart LA, Andreassen R, Edlinger M (2004) Large-scale in vitro expansion of polyclonal human CD4+CD25(high) regulatory T cells. Blood 104: 895–903.
33. O'Brien M, Manches O, Bhardwaj N (2013) Plasmacytoid dendritic cells in HIV infection. Adv Exp Med Biol 762: 71–107.
34. Pion M, Jaramillo-Ruiz D, Martinez A, Munoz-Fernandez MA, Correa-Rocha R (2013) HIV infection of human regulatory T cells downregulates Foxp3 expression by increasing DNMT3b levels and DNA methylation in the Foxp3 gene. AIDS 27: 2019–2029.
35. Jenabian MA, Ancuta P, Gilmore N, Routy JP (2012) Regulatory T cells in HIV infection: can immunotherapy regulate the regulator? Clin Dev Immunol 2012: 490103.
36. Macatangay BJ, Rinaldo CR (2010) Regulatory T cells in HIV immunotherapy. HIV Ther 4: 639–647.

Author Contributions

Conceived and designed the experiments: MA PLK MMA. Performed the experiments: MA PLK MK SMS AR APT. Analyzed the data: MA PLK MMA. Contributed reagents/materials/analysis tools: ESM APT IT ATC PJG TN DSK. Wrote the paper: MA MMA.
47. Abrams D, Levy Y, Losso MH, Babiker A, Collins G, et al. (2009) Interleukin-2 therapy in patients with HIV infection. N Engl J Med 361: 1548–1559.
48. Weiss L, Letiniere FA, Carriere M, Maiefa S, Donkova-Petrini V, et al. (2010) In vivo expansion of naive and activated CD4+CD25+FOXP3+ regulatory T cell populations in interleukin-2-treated HIV patients. Proc Natl Acad Sci U S A 107: 10632–10637.
49. Barron L, Dooms H, Hoyer KK, Kuwanto W, Hofmann J, et al. (2010) Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J Immunol 185: 6426–6430.
50. Garibal J, Lafarge M, Silvestre R, Mouhamad S, Campillo-Gimenez L, et al. (2012) IL-2 immunotherapy in chronically SIV-infected Rhesus macaques. Virol J 9: 220.
51. Taylor PA, Lees CJ, Blazar BR (2002) The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99: 3493–3499.
52. Xia G, He J, Zhang Z, Levenhul JR (2006) Targeting acute allograft rejection by immunotherapy with ex vivo-expanded natural CD4+ CD25+ regulatory T cells. Transplantation 82: 1749–1755.
53. Guo X, Jie Y, Ren D, Zeng H, Zhang Y, et al. (2012) In vitro-expanded CD4(+CD25(high)Foxp3(+)) regulatory T cells controls corneal allograft rejection. Hum Immunol 73: 1061–1067.
54. Ma A, Qi S, Song I, Hu Y, Dun H, et al. (2011) Adoptive transfer of CD4+CD25+ regulatory cells combined with low-dose sirolimus and anti-thymocyte globulin delays acute rejection of renal allografts in Cynomolgus monkeys. Int Immunopharmacol 11: 616–629.
55. Lundsgaard D, Hohm TH, Hornum L, Markholm H (2003) In vivo control of diabetogenic T-cells by regulatory CD4+CD25+ T-cells expressing Foxp3. Diabetes 52: 1049–1047.
56. Aricha R, Feferman T, Fachs S, Souroujon MC (2008) Ex vivo generated regulatory T cells modulate experimental autoimmune myasthenia gravis. J Immunol 180: 2132–2139.
57. Lapierre P, Beland K, Yang R, Alvarez F (2013) Adoptive transfer of ex vivo expanded regulatory T cells in an autoimmune hepatitis murine model restores peripheral tolerance. Hepatology 57: 217–227.
58. Liu J, Gong N, Huang X, Reynolds AD, Mosley RL, et al. (2009) Neuromodulatory activities of CD4+CD25+ regulatory T cells in a murine model of HIV-1-associated neurodegeneration. J Immunol 182: 3855–3865.
59. Angin M, King M, Altfield M, Walker BD, Wucherpfennig KW, et al. (2012) Identification of HIV-1-specific regulatory T-cells using HLA class II tetramers. AIDS 26: 2112–2115.
60. Lathrop SK, Sauterius NA, Pham D, Luo J, Huach CS (2008) Antigen-specific peripheral shaping of the natural regulatory T cell population. J Exp Med 205: 3105–3117.
61. Mizrahi M, Iban Y (2009) The gut mucosa as a site for induction of regulatory T-cells. Curr Pharm Des 15: 1191–1202.
62. Sankaran S, George MD, Reay E, Guadahpe M, Flamm J, et al. (2008) Rapid onset of intestinal epithelial barrier dysfunction in primary human immunodeficiency virus infection is driven by an imbalance between immune response and mucosal repair and regeneration. J Virol 82: 530–545.
63. Favre D, Mold J, Hunt PW, Khanwur B, Loke P, et al. (2010) Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of Th17 to regulatory T cells in HIV disease. Sci Transl Med 2: 32ra36.
64. Shaw JM, Hunt PW, Crichtfield JW, McConnell DH, Garcia JC, et al. (2011) Increased frequency of regulatory T cells accompanies increased immune activation in rectal mucosal of HIV-positive noncontrollers. J Virol 85: 11422–11434.
65. Tran TA, de Goer de Herve MG, Hendel-Chavez H, Dembele B, Le Nevot E, et al. (2008) Resting regulatory CD4 T cells: a site of HIV persistence in patients on long-term effective antiretroviral therapy. PLoS One 3: e3365.