Serosurvey for selected pathogens in Iberian roe deer

Mariana Boadella1, Tania Carta1, Álvaro Oleaga1,4, Gerardo Pajares2, Marta Muñoz3, Christian Gortázar1*

Abstract

Background: The roe deer is the most abundant and widespread wild Eurasian cervid. Its populations are expanding and increasingly in contact with livestock. This may affect the distribution of infectious diseases shared with other wild and domestic ungulates.

Methods: We investigated the antibody seroprevalence against Pestivirus, Herpesvirus, Bluetongue (BT) virus, M. avium paratuberculosis (MAP), and Brucella sp. in 519 roe deer from different regions in Spain, south-western Europe.

Results: No antibodies were detected against BT and Brucella sp. However, antibodies were detected against Pestivirus (1.5%), Herpesvirus (0.2%) and MAP (9.2%). MAP antibodies were detected in seven of the eight populations (range 5-16.4%).

Conclusions: The detection of MAP antibodies in samples from most roe deer populations suggests that contact with MAP is widespread in this wildlife species. The highest prevalence was detected in sites with abundant dairy cattle and frequent use of liquid manure on pastures. Considering the results obtained regarding exposure to different pathogens, we suggest that antibody prevalences in this non-gregarious browser are largely determined by environmental factors, potentially modulating vector populations or pathogen survival in the environment.

Background

Interactions between domestic and wild ungulates represent a potential problem in epidemiology [1], but little is known about the role of roe deer (Capreolus capreolus) in some diseases of concern in livestock. The roe deer is a Eurasian wild cervid whose populations have been expanding during the last decades across Europe, both in density and in geographical range [2,3]. These demographic and geographic changes may increase the risk of acquiring new diseases through both increased contact rates with other species, and increased intra-specific contact and density-dependent impact on individual fitness at higher densities [4,5]. Expansion of roe deer may have an influence in the epidemiology of several infectious diseases potentially shared with other native wild ungulates, domestic ungulates, and even human beings [1].

In Europe, several serologic surveys have been carried out in order to investigate the sanitary status of roe deer in different countries and situations. These surveys have reported on Pestivirus and Herpesvirus, paratuberculosis and other bacterial diseases, and protozoa mainly including Toxoplasma gondii and Neospora caninum. However, only limited knowledge exists regarding diseases of roe deer from the Iberian Peninsula.

Infections with bovine viral diarrhea virus (BVDv), a Pestivirus, are widespread throughout the world. Although infection prevalence varies among surveys, the infection tends to be endemic in cattle, reaching a maximum level of 1% persistently infected (PI) and 60% antibody positive cattle. PI cattle are the main source for transmission of the virus [6]. In the US, white-tailed deer (Odocoileus virginianus) can get infected from cattle and give birth to PI fawns that may interfere with control programs [7]. In Europe, BVDv-like Pestivirus was isolated from two seronegative roe deer in Germany [8] and 12% seroprevalence was found in roe deer from Norway [9]. However, no Pestivirus seropositive roe deer were found in several recent surveys in Germany [10], Austria [11] and Italy [12,13]. Two studies carried out in the Spanish Pyrenees showed no antibody...
seroprevalence in 21 and 43 roe deer tested against these viruses [14,15].

Of the ruminant alpha-herpesvirus, Bovine Herpesvirus 1 (BHV-1) is the best characterized one and responsible for infectious bovine rhinotracheitis (IBR). However, other cross-serological related alpha-herpesviruses have been isolated from cervids [16]. Roe deer have been included in Bovine Herpesvirus serosurveys in Germany [10], Italy [12] and Norway [9], showing mean serum antibody prevalences of 10%, 0% and 3% respectively.

The possible role of wild ruminants, notably deer, in bluetongue epidemiology is a matter of increasing concern in Europe. Recent surveys reported low (≤ 5%) prevalence of bluetongue (BT) antibodies in roe deer from Spain [17], and from Belgium [18]. Despite this, the role of European wild ruminants in the epidemiology of BTV remains still unclear.

Regarding bacterial diseases, wild ruminants are susceptible to paratuberculosis, a disease caused by Mycobacterium avium paratuberculosis (MAP) [19,20]. Previous studies on MAP revealed an antibody seroprevalence up to 13% in roe deer from North-Western Italy and Norway [20,21]. In the Czech Republic, MAP infection was confirmed in 0.2% [19] and in Italy in 22% of roe deer examined [21]. A recent serosurvey on MAP antibodies, using the PPA3 antigen ELISA, revealed 3% antibodies were detected in seven of the eight populations. Local prevalence was up to 16.4% in population A (Coruña; Table 2). Only one animal was seropositive for more than one pathogen (MAP and Pestivirus). When analyzing MAP and Brucella sp. in roe deer from different areas of Spain in order to infer the role that this species can play in their epidemiology.

Methods

Animal sampling

Our study area was the Iberian Peninsula in south-western Europe. For the study, eight geographic sampled populations were defined (Figure 1). Sampling took place during an eight-year period, from hunting season 2000/2001 to 2008/2009, and was opportunistic and biased towards the main hunting season (summer). Blood from hunter-harvested animals was drawn from the heart or the thoracic cavity during field necropsies. Serum was obtained after centrifugation and stored at -20°C until analyzed. When possible, lymph nodes were collected and stored at -20°C for PCR testing. Sex and age were determined; the latter according to tooth eruption patterns [42]. Animals < 1 year of age were classified as calves, and those > 1 year of age as adults. Sex (n = 458) and age (n = 464) could be recorded for most animals. Due to hunting origin, the sample was biased towards adult males (n = 301).

Laboratory techniques

Serologic tests and techniques employed are summarized in Table 1. In some cases, insufficient volume of sera did not allow testing for antibodies against all pathogens (Table 2). In order to verify the presence of pathogens, 49 roe deer sera from seropositive areas were tested by means of a sandwich ELISA that detects the BVD/MD/BD p125/p80 protein. Lymph node samples from five PPA3 ELISA seropositive roe deer were tested for the repetitive insertion sequence IS900 of Mycobacterium avium paratuberculosis by PCR (Adiavet paraTB, Adiagene, Saint-Brieuc, France; [43]).

Statistics

We used Sterne's exact method to estimate prevalence confidence intervals. Prevalence comparisons among categories were done with homogeneity tests [44]. Data was analyzed using the SPSS statistical package, version 17.0 (SPSS Inc., Chicago, IL, USA).

Results

The frequencies of antibody response against different pathogens are summarized in Table 2. No antibodies were detected against BT and Brucella sp. However, antibodies were detected against Pestivirus (1.5%), Herpesvirus (0.2%) and MAP (9.2%). MAP antibodies were detected in seven of the eight populations. Local prevalence was up to 16.4% in population A (Coruña; Table 2). Only one animal was seropositive for more than one pathogen (MAP and Pestivirus). When analyzing MAP
seroprevalences by age and sex, no statistically significant differences were found (Fischer exact test, p > 0.05 in both cases). No MAP DNA was detected by PCR in the five PPA3 ELISA positive roe deer tested. Mean Pestivirus antigen prevalence in the seropositive areas was 16.3% (95% IC, 7.6-29.4).

Discussion
This is the first large-scale survey on infectious disease agents in Iberian roe deer. Results reported herein confirm our initial hypothesis that roe deer display lower prevalence of antibodies against viral and bacterial diseases [12], as compared to other wild ruminants [17,27,43]. One possible explanation could be that differences in social behaviour between roe deer and other Iberian wild ruminants, such as red and fallow deer, would lead to fewer intra-specific contacts. Roe deer are seasonally territorial, solitary, and have smaller home ranges than red and fallow deer. Differences in feeding behaviour (roe deer are concentrate selectors and

Table 1 Serologic tests employed for serological assay of roe deer sera sampled

Agent (group)	Test	Antigen	Conjugate	Reference
BVDv/BDv (Pestivirus)	ELISA; SERELISA® BVD/BD, p80 Ag. Mono Blocking, Symbiotics, Lyon, France.	protein p80/125	None (blocking test)	[9]
	ELISA; SERELISA® BVD/BD, p80 Ag. Mono Indirect, Symbiotics, Lyon, France.	None	Goat Ab anti-rabbit Ig/peroxidase	[15]
IBRv (Herpesvirus)	ELISA; SERELISA® IBR/IV, p80 Ag. Mono Indirect Synbiotics, Lyon, France.	glycoprotein gB	MAb anti-bovine IgG/peroxidase	[12]
Bluetongue virus	Ingezim BTV Compac 2.0 12BTVK3*, Ingenasa, Madrid, Spain.	recombinant VP7	None (blocking test)	[58]
M. avium paratuberculosis	ELISA; In-house modified including positive controls.	PPA-3 (Allied Monitor, Fayette, MO, USA)	Protein-G/peroxidase	[43]
Brucella sp.	Rose Bengal agglutination test	Rose Bengal Brucella Antigen	None	[59]
browsers) could lead to less indirect inter-specific contacts [18,38]. However, it must be taken into account that sampling was biased towards males, and may thus not represent the actual health situation of the roe deer population. Although serosurveys have proven to be a fundamental tool for disease surveillance, interpretation of antibody results in this study has to be approached with caution due to the lack of specific controls for roe deer [45]. Sensitivity and specificity for the different ELISA tests in roe deer were not determined in our study.

Pestivirus antibody prevalence was low, similar to results reported in other studies on European roe deer [11,13,14]. This suggests that roe deer have limited contact with common Pestivirus. In Spain, Pestivirus infection in domestic ruminants has frequently been reported, with prevalences reaching values up to 83% [14,46,47]. However, in our study a comparatively high antigen prevalence was found in the seropositive populations. This result contrasts with similar studies on wild ruminants, where antigen prevalence was always lower than antibody prevalence [48,49]. A possible explanation could be the presence of a new Pestivirus in this species not detectable by the antibody ELISA used [13]. New strains of Pestivirus have been described in the past in roe deer [50]. A second and more plausible explanation would be false positive results of the antigen ELISA due to unspecific cross-reactions. In order to clarify these findings, the samples will be further analyzed by PCR and serum neutralization.

The low antibody prevalence found against Herpesvirus was probably also a reflection of the relative isolation of roe deer from domestic animals. IBR is endemic among bovine livestock in Spain, with herd prevalence of 40-50% although vaccination programs are implemented (http://rasve.mapa.es, last access 16/06/2010).

Concerning BT, we expected some level of antibody detection based on prior data on wild ruminants from Spain [17,51] and Belgium [18], and because of being a vector borne disease, a priori less dependent on social behaviour and food habits. Few roe deer in our sample were harvested in BT areas (n = 65). The possible reasons for the marked difference in BT seropositivity between roe deer and sympatric red deer (Cervus elaphus) are open for further research [17,18].

Regarding brucellosis, results show that roe deer have no contact with Brucella sp. This confirms recent results from the Basque Country and Aragón, suggesting that roe deer constitute no reservoir host for livestock brucellosis in south-western Europe [25].

Table 2 Serologic prevalence of selected infectious diseases in roe deer sampled, according to the eight sampling populations
Population

A
B
C
D
E
F
G
H
Total

*positive sera/tested sera
MAP is the pathogen with the highest antibody seroprevalence detected in our study. Serum antibody prevalence in the northern populations was lower than those reported in northern Spain in fallow deer (Dama dama) [52,53] and in red deer [43], but similar to that found for Cantabrian chamois (Rupicapra pyrenaica parva) [54]. Roe deer from Galicia (population A) displayed the highest seroprevalence. One possible explanation could be the eventual infection of wild ruminants feeding on pastures irrigated with liquid manure from infected dairy cattle [55], combined with the prolonged environmental survival of mycobacteria at high humidity and limited sunshine [56]. Population A inhabits a humid region with high percentage of dairy cattle and frequent use of liquid manure in contrast to the rest of the sampled areas where dairy cattle and use of their manure is much less important. The detection of MAP antibodies in samples from 7 of 8 roe deer populations throughout Spain suggests that contact with MAP may be widespread in this wild ruminant. However, all 5 PCR tested seropositive roe deer showed to be negative for MAP DNA. Negative results in this low number of PCR-tested animals can not rule out some possible involvement of roe deer in the epidemiology of this disease, or at least some potential of the roe deer as an indicator of environmental contamination by MAP, as already suggested for toxoplasmosis [31]. If wild ruminants were able to excrete MAP in sufficient quantities, circulation of MAP in wildlife could eventually interfere with MAP eradication efforts in livestock [57].

In order to put together recent information regarding roe deer serosurveys in Spain, Figure 2 shows the prevalence reported by agent. The figure suggests that this species has little contact with viral disease agents and Brucella, but seroprevalence increases when dealing with other bacterial and protozoan diseases. Excepting BT, vector-borne diseases have medium to high seroprevalence in roe deer. We suggest that antibody prevalences in roe deer are largely determined by environmental factors, potentially modulating vector populations or pathogen survival in the environment.

Acknowledgements

We thank Paqui Talavera, Joaquín Vicente, Isabel G. Fernández-de-Mera, José Antonio Ortiz, Cristina San José (E.R. Corzo Andaluz, Junta de Andalucía), José Antonio Gamara and Fernando Horcajada for their help with field and laboratory work, Ezio Ferroglio for finding positive controls, Pelayo Acevedo for help with the figures and many hunters involved in getting the samples. This study is a contribution to grant AGL2008-03875 Plan Nacional MCINN and FEDER and the agreements with Ministerio de Medio Ambiente y Medio Rural y Marino (OAPN and SDGPP), Principado de Asturias, and Castilla-La Mancha. Mariana Boadella has a grant from the European Research Project 212417 “Strategies for the Eradication of Bovine Tuberculosis, Tb-Step”. The experiments and procedures included in this study comply with national and European laws. Sponsors had no role in the study design, in the collection, analysis and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

Author details

1IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain. 2Asociación del Corzo Español (UCM), Madrid, Spain. 3Conselleria do Medio Rural, Xunta de Galicia, Santiago de Compostela, Spain. 4SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Laboratorio de Sanidad Animal, Gijón, Spain.

Figure 2 Antibody prevalences found in 10 recent serosurveys of Spanish roe deer (2007-2010). Squares (■, □) indicate viruses, diamonds (♦, ◆) are for bacterial diseases and triangles (▲) for parasites. White backgrounds indicate vector-borne diseases. References for Pestivirus, [14,15], BTV, [17]; Neospora, [36,37]; Coxiella burnetii, [27]; C. abortus, [28], Toxoplasma, [31,36]; and Anaplasma, [29].
References

1. Gortazar C, Ferroglio E, Hofle U, Frolich K, Vicente J: Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 2009, 53(4):241-256.

2. Gortazar C, Herreo J, Villafuerte R, Marco J: Historical examination of the status of large mammals in Aragon, Spain, Mammalia 2000, 64(4):411-422.

3. Acevedo P, Deláza-Mateos M, Escudero MA, Vicente J, Marco J, Gortazar C: Environmental constraints in the colonization sequence of roe deer (Capreolus capreolus Linnaeus, 1758) across the Iberian Mountains, Spain. J Vegsci 2005, 16(5):1671-1680.

4. Oleaga A, Balseiro A, Gortazar C: Sarcopenic mange in two roe deer (Capreolus capreolus) from northern Spain. Eur J Wildl Res 2008, 54(1):134-137.

5. Balseiro A, Oleaga A, Orusa R, Robetto S, Zoppi S, Dondo A, Goria M, Gortazar C, Marin JFG, Domenis L: Serological and virologic investigations into pestivirus infection in wild and domestic ruminants in the Pyrenees (NE Spain). J Biogeogr 2000, 27(4):511-526.

6. Houe H: Epidemiological features and economical importance of bovine virus diarrhea virus (BVDV) infections. Vet Microbiol 1999, 64(2-3):89-107.

7. Pasierl T, Walz PH, Ditchhoff SS, Brock KV, Deyoung RW, Foley AM, Daniel Greens M: Cohabitation of pregnant white-tailed deer and cattle persistently infected with Bovine viral diarrhea virus results in persistently infected fawns. Vet Microbiol 2009, 134(3-4):362-367.

8. Frölich K, Hofmann I: Isolation of bovine viral diarrhea virus-like pestiviruses from roe deer (Capreolus capreolus). J Wildl Dis 1993, 29(1):243-246.

9. Lillehaug A, Vikoren T, Larsen IL, Akerstedt J, Tharaldsen J, Handeland K: Environmental examination of pestivirus in four species of alpine wild ungulates in the High Valley of Gran Paradiso national park in Western Italian Alps. J Wildl Dis 2006, 42(3):685-690.

10. Olde Riekerink RGM, Dominico A, Barkema HW, de Smit AJ: Seroprevalence of pestivirus in four species of alpine wild ungulates in the High Valley of Susa, Italy. Vet Microbiol 2005, 108(3-4):297-303.

11. Marco I, Rosell R, Cabezón O, Benítez M, Montaner G, Casas E, Hurtado A, López-Olvera JR, Lavín S: Serologic and virologic investigations into pestivirus infection in wild and domestic ruminants in the Pyrenees (NE Spain), Res Vet Sci 2009, 87(1):149-153.

12. Marco I, Cabezón O, Rosell R, Fernández-Sirera L, Allepuz A, Lavín S: Retrospective study of pestivirus infection in Pyrenean chamois (Rupicapra pyrenaica) and other ungulates in the Pyrenees (NE Spain). Vet Microbiol 2006, 122(3):168-174.

13. Thiry J, Widén F, Gregoire F, Linden A, Belák S, Thry E: Isolation and characterisation of a ruminant alphaherpesvirus closely related to bovine herpesvirus 1 in a free-ranging red deer. BMC Vet Res 2007, 3:26.

14. Ruiz-Fons F, Reyes-Garcia AR, Alcaide V, Gortazar C: Spatial and temporal evolution of bluetongue virus in wild ruminants, Spain. Emerg Infect Dis 2008, 14(9):151-153.

15. Linden A, Gregoire F, Nahayo A, Hanez D, Mousseau B, Massart A, De Leeuw I, Vandemeulebroecke E, Vandebussche F, De Cleer K: Bluetongue virus in wild deer, Belgium, 2005-2008. Emerg Infect Dis 2010, 16(5):833-836.
87(3-4) Vet Microbiol 6
Confidence intervals for the binomial parameter: some new
Wildlife and Emerging Zoonotic Diseases: The Biology,
Mycobacterium
Management of Disease in Wild Mammals. 54(4)
56(3)
38(3)
15(3)
et al
34(1)
71(11)
Epidemiology of Bluetongue Virus Serotype 8, Germany.
2007,
6
55(2)
Pestivirus infections in cervids from the
subsp.
subsp.
Appl Environ Microbiol
119(1)
Wildlife disease surveillance and
Efficacy of different rose-bengal and complement-fixation
2003,
134(16)
2010,
138(4)
J Comp
Vet Immunol Immunopathol
Diagnóstico de la enfermedad de Border en dos rebaños
Impediments to wildlife disease surveillance, research,
Bovine tuberculosis infection in wild mammals in the
paratuberculosis
Vet Rec
2005,
2006,
2008,
2009,
2010
Stat Med
2006,
2003, 481-485.
Large-scale ELISA testing of Spanish red deer for
paratuberculosis, Vet Immunol Immunopathol 2008, 124(1-2):75-81.
Rezagel J. Confidence intervals for the binomial parameter: some new
considerations. Stat Med 2003, 22(4):611-621.
Stallknecht DE. Impediments to wildlife disease surveillance, research,
and diagnostics. Wildlife and Emerging Zoonotic Diseases: The Biology,
Consequences and Consequences of Cross-Transmission 2007,
315:645-646.
García-Pérez AL, Barandika JF, Adurzg B, Barall M, Benedito L, Moreno B,
García J. Diagnóstico de la enfermedad de Border en dos rebaños
ovinos. Producción Ovina y Caprina 2000, 25:425-428.
Valdazo-González B, Alvarez-Martínez M, Greiser-Wilke I. Genetic typing and
prevalence of Border disease virus (BDV) in small ruminant flocks in
Spain, Vet Microbiol 2006, 117(2-4):141-153.
Pioz M, Loison A, Gibert P, Dubray D, Menaut P, Le Tallec B, Artois M, Giot-
Fromont E. Transmission of a pestivirus infection in a population of
Pyrenean chamois. Vet Microbiol 2007, 119(1):19-30.
Sedlak K, Grim T, Holejovsky J. Pestivirus infections in cervids from the
Czech Republic. Veterinarni Medicina 2009, 54(4):191-193.
Fischer S, Weiland E, Frölich K. Characterization of a bovine viral diarrhea
virus isolated from roe deer in Germany. J Wildl Dis 1998, 34(1):47-55.
García I, Napp S, Casal J, Perea A, Alpeuz A, Alba A, Carabonerò A, Arenas A.
Buetongue epidemiology in wild ruminants from Southern Spain. Eur J
Wildl Res 2009, 55(2):173-178.
Marco I, Ruiz M, Juste R, Garrido JM, Lavin S. Paratuberculosis in free-
ranging fallow deer in Spain. J Wildl Dis 2002, 38(3):629-632.
Balsero A, García Marín JF, Solano P, Garrido JM, Prieto JM.
Histopathological classification of lesions observed in natural cases of
paratuberculosis in free-ranging Fallow Deer (Dama dama). J Comp
Pathol 2008, 138(4):180-188.
Falcioni C, Oseaga A, López-Olvera JR, Casais R, Prieto M, Gontázar C.
Prevalence of antibodies against selected agents shared between
Cantabrian chamois (Rupicapra pyrenaica parva) and domestic goats. Eur J
Wildl Res 2010, 56(3):319-325.
Grewal SK, Rajeev S, Sreevatsan S, Michel FC Jr. Persistence of
Mycobacterium avium subspp. paratuberculosis and other zoonotic
pathogens during simulated composting, manure packing, and liquid
storage of dairy manure. Appl Environ Microbiol 2006, 72(1):565-574.
Katayama N, Suzuki T, Doitake M, Shibata M, Kamata S, Yokozawa Y.
Influence of ultraviolet-B (UV-B) on viability of
Mycobacterium avium subspp. paratuberculosis, Proceedings of the Seventh International Colloquium on Paratuberculosis 2003, 481-485.
Cam JL, Manning EB, Sreevatsan S, Fischer JR. Isolation of Mycobacterium
avium subspp. paratuberculosis from free-ranging birds and mammals on
livestock premises. Appl Environ Microbiol 2003, 71(11):6963-6967.
Connaths FJ, Gettmann JM, Staubach C, Mettenleiter TC, Beer M,
Hoffmann B. Epidemiology of Bluetongue Virus Serotype 8, Germany.
Emerg Infect Dis 2009, 15(3):433-435.
Bisaro JM, Garninabu J, Main C, Gerbier G, Fanlo J, Debagues MP,
Cao C. Efficacy of different rose-bengal and complement-fixation
antigens for the diagnosis of Brucella melitensis infection in sheep and
goats, Vet Rec 1994, 134(16):415-420.
Cite this article as: Boadella et al. Serosurvey for selected pathogens in
Iberian roe deer. BMC Veterinary Research 2010, 6:51.