Análise do Metabolismo do Ferro na Cardiomiopatia Chagásica Crônica

Analysis of Iron Metabolism in Chronic Chagasic Cardiomyopathy

Carla Paixão Miranda,1,2 Fernando Antônio Botoni,1 Maria do Carmo Pereira Nunes,2 Manoel Otávio da Costa Rocha1
Univerdade Federal de Minas Gerais,1 Belo Horizonte, MG – Brasil
Hospital das Clínicas - Universidade Federal de Minas Gerais,2 Belo Horizonte, MG – Brasil

Resumo
A alteração do metabolismo do ferro na insuficiência cardíaca (IC) tem sido descrita como um importante marcador prognóstico.

Verificar se os marcadores da cinética do ferro guardam relação com a morbidade e a etiologia da cardiomiopatia chagásica.

Pacientes com cardiomiopatia chagásica crônica (CCC, n = 40), com a forma indeterminada (IND, n = 40), além de cardiomiopatia não chagásica (NCh, n = 40).

A idade média foi de 50,98 ± 5,88 no CCC, 50% eram do sexo masculino, 49,68 ± 5,28 no IND, 52% eram do sexo masculino e 49,20 ± 10,09 no NCh, 12,5% eram do sexo masculino.

Os pacientes com CCC demonstraram maior alteração no metabolismo do ferro em relação a forma indeterminada e outras formas de miocardiopatias.

Introdução
A deficiência funcional do ferro (Fe) pode ser definida como o desequilíbrio entre a quantidade necessária de Fe para a síntese de hemoglobina e o seu suprimento.1 Ela ocorre na ausência de estoque de Fe, característica da anemia ferropênica (AF), e na presença de bloqueio da homeostasia do Fe, como na anemia da inflamação. Na AI, citocinas e células do sistema reticulo-endotelial induzem alterações que interferem em diferentes vias da eritropoiese levando à anemia.2

Acredita-se que citocinas pró- e anti-inflamatórias, derivadas de macrófagos ou de células T, além de proteínas de fase aguda, estão envolvidas nos distúrbios da homeostase do Fe da AI. A demonstração da importância da IL-1 e do TNF-α na homeostase do Fe ocorreu a partir de experimentos com ratos, onde a administração destas citocinas era associada a hipoferremia e indução da síntese de ferritina pelo SRW. Hoje se sabe que a IL-1 e a IL-6 são capazes de modular a tradução de ferritina atuando na porção 5’ não traduzida do RNA mensageiro da ferritina.3,4

A IL-6 parece ter papel fundamental no estímulo da transcrição do HAMP, embora a IL-1α e IL-1β também tenham ação na transcrição deste gene. A IL-6 tem a capacidade de se ligar à membrana celular através de receptores específicos e ativar o transdutor de sinal e ativador da transcrição 3 (Stat3), da via de sinalização JAK/STAT, que atua na região do SRE devido a inflamação; não se deve somente à produção excessiva de hepcidina ocorre em indivíduos com doenças inflamatórias e infecciosas, e pode desempenhar um importante papel na homeostase do Fe ocorreu a partir de experimentos com ratos, onde a administração destas citocinas era associada a hipoferremia e indução da síntese de ferritina pelo SRW. Hoje se sabe que a IL-1 e a IL-6 são capazes de modular a tradução de ferritina atuando na porção 5’ não traduzida do RNA mensageiro da ferritina.3,4

A expressão de ferroportina está diminuída nas células do SRE devido a inflamação; não se deve somente à alteração na produção e degradação da ferroportina pela ação da hepcidina, mas também por uma regulação negativa da sua expressão. Alterações na diferenciação e proliferação dos precursores eritroides (BFU-E e CFU-E): observa-se um bloqueio de sinalização do SRW.

A cardiomiopatia chagásica crônica (CCC) é a manifestação mais grave da doença de chagas (dCh), na qual se observa intensa e extensa ação inflamatória e fibrótica sobre o miocárdio,1 provoçando alterações estruturais e autonômicas que afetam cerca de 20% a 30% dos infectados.2,3 Além disso, a CCC apresenta, como substrato morfológico fundamental, uma miocardite crônica progressiva e fibrosante e, consequentemente, clínica, variando desde formas silenciosas até formas mais graves, como a insuficiência cardíaca (IC) refratária, arritmias complexas, aneurismas ventriculares e morte súbita.10
O comprometimento da função cardíaca, bem como a progressão dos mecanismos de compensação neuro-hormonal e inflamatórios, podem tanto alterar o metabolismo do ferro por simplesmente reduzir sua absorção intestinal, como modificar dinamicamente sua distribuição no sistema reticuloendotelial e hematopoietico.7,8,9,6,11,12

Sabidamente, a anemia é o último estágio compensatório quando ocorre comprometimento da biodisponibilidade do ferro para os processos eritropoiéticos em decorrência dos complexos mecanismos fisiopatológicos. Objetivou-se nesse estudo verificar se os marcadores da cinética do ferro guardam relação com o grau de disfunção ventricular da cardiomiopatia chagásica em relação à cardiomiopatia não chagásica (NCh).

Métodos

População do estudo

Foram selecionados consecutivamente, de acordo com os critérios de inclusão e exclusão, 40 pacientes com CCC, 40 pacientes chagásicos com a forma indeterminada (IND) e 40 pacientes com NCh. Os pacientes com CCC e com a forma indeterminada da doença de Chagas apresentaram sorologia confirmatória para T. cruzi. Este estudo foi aprovado pelo Comitê de Ética em Pesquisa da UFMG-COEP com número de identificação ETIC 359/04.

Desenho do estudo e procedimento

No momento da inclusão, todos os pacientes foram submetidos a exame clínico, exame laboratorial, ECG de 12 derivações, A capacidade funcional foi avaliada pelas escalas da New York Heart Association (NYHA). A gravidade do envolvimento cardíaco foi determinada pelos índices New York Heart Association (NYHA). A gravidade da doença de Chagas apresentou sorologia confirmatória para T. cruzi. Este estudo foi aprovado pelo Comitê de Ética em Pesquisa da UFMG-COEP com número de identificação ETIC 359/04.

Avaliação hematológica

Os soros para dosagens do ferro sérico (FeSe), índice de saturação de transferrina (IST), capacidade total de fixação do ferro (CTLF) e ferritina foram encaminhados ao Laboratório do Hospital das Clínicas. As quantificações dos ferro (CTLF) e ferritina foram encaminhados ao Laboratório de Hematologia do Hospital das Clínicas. As quantificações dos mesmos foram feitas pelos seguintes métodos:

- ferro sérico (cinético de dois pontos);
- índice de saturação da transferrina, ferritina (imunoturbidimetria), foram quantificados pelo cálculo do ferro sérico – capacidade total de ligação do ferro);
- capacidade total de fixação de ferro (cinético enzimático);
- dosagem de transferrina (imunoturbidimetria).

Cálculo do tamanho amostral

Tomou-se como base para o cálculo amostral o trabalho de Jankowska et al., (2012), no qual se estudaram pacientes com IC, classe funcional III e IV, verificando-se alteração no metabolismo do ferro e associação com o grau de disfunção ventricular sistólica e a morbidade. Calculou-se o tamanho amostral pelo Software BioStat 5.3, para o qual foi usada a média e o desvio [±] padrão de cada variável da cinética do ferro com poder de teste mínimo de 0,80, presumindo-se significância de 0,05% (>5%) e erro beta menor 20% (poder do teste); decidiu-se pela seleção de 40 pacientes em cada grupo IND, CCC e NCh.

Análise estatística

A análise estatística foi realizada utilizando-se o Software SPSS versão 22.0 (SPSS Inc., Chicago, Illinois, Estados Unidos). Foi realizada análise descritiva de variáveis contínuas e categóricas. Para presença ou ausência de distribuição normal das variáveis realizou-se o teste de Shapiro-Wilk. Para análise multivariada apresentada na Tabela 2, utilizou-se o modelo de regressão de Cox, sendo avaliada a associação de variáveis que se relacionaram em óbito, hazard ratio (HR) e IC 95%, presumindo-se significância estatística de 0,05%.

Critério de seleção aplicado ao modelo multivariado

Presença de disfunção ventricular sistólica esquerda (FEVE ≤ 35%). Diâmetro ventricular esquerdo (VED) < 55 mm. Ferro sérico FeSe < 31 µg/dL. Quando o IST for menor que 20%. CTLF < 250 µg/dL. Ferritina < 200 mg/dL.

Resultados

Nas características demográficas, clínicas, laboratoriais e ecocardiográficas apresentadas na Tabela 1 observa-se: predomínio do sexo masculino, e a maioria dos pacientes apresentou-se em classe funcional NYHA I, com Fe média do ventrículo esquerdo (VE) abaixo de 45%.

Na análise univariada, encontrou-se que as variáveis que se associaram com a disfunção ventricular sistólica esquerda abaixo de 35% foram IST, (OR = 0,89, p = 0,05), ferro, (OR = 0,97, p = 0,02), ferritina (OR = 1,27, p = 0,017), sexo (OR = 0,26, p = 0,05), etiologia da IC (OR = 2,40, p = 0,011) e anemia (OR = 8,97, p = 0,04). Na análise multivariada, verificou-se associação independente entre a disfunção ventricular esquerda baixa de 35% e o IST (OR = 1,12, p = 0,012), FeSe (OR = 1,02, p = 0,014), sexo (OR = 3,94, p = 0,038) e a etiologia da IC (OR = 2,6, p = 0,036); foram identificados 35 indivíduos com disfunção ventricular esquerda (87,5%), que apresentaram o desfecho na amostra.

Discussão

Verificou-se que os marcadores da cinética do ferro guardam relação com o grau de disfunção ventricular da cardiomiopatia chagásica em relação a NCh; alcançou-se como principais resultados as seguintes observações: (a) pacientes CCC, quando comparados com pacientes IND e NCh, apresentam menores níveis séricos de ferro, ferritina, IST e CTLF; (b) pacientes com CCC apresentam menores níveis séricos de ferro, IST, CTLF e ferritina em relação aos pacientes com cardiomiopatia chagásica e não Chagásica; (c) menores níveis séricos de ferro, IST, CTLF e ferritina associam-se com o grau de disfunção ventricular sistólica; (d) baixos níveis séricos de ferro, IST, CTLF e ferritina associam-se com o grau de morbidade cardíaca.
Tabela 1 – Características demográficas, clínicas, laboratoriais e ecocardiográficas dos grupos IND, CCC e NCh

Características	IND (n = 40)	CCC (n = 40)	NCh (n = 40)	p
Idade*	49,68 ± 5,28	50,98 ± 5,88	49,20 ± 10,09	0,929
Altura (cm)	1,68 ± 0,065	1,97 ± 0,158	1,94 ± 0,123	0,889
Peso (kg)*	79,100 ± 8,58	73,75 ± 10,15	71,88 ± 11,47	0,621
Masculino [n(%)]	21/40 (52,2%)	20/40 (50%)	5/40 (12,5%)	0,979
NYHA Classe funcional	-	-	-	-
I	40/40 (100%)	12/40 (30%)	32/40 (80%)	0,410
II	15/40 (37,5%)	6/40 (15%)	0,312	
III	8/40 (2,5%)	0,112		
IV	5/40 (12,5%)	1/40(2,5%)	0,112	
FeSe (μg/dL)*	125,30 ± 22,79	93,15 ± 36,53	114,77 ± 18,90	0,004
Hb (g/dL)*	14,84 ± 1,56	13,62 ± 1,23	14,02 ± 1,25	0,010
IST (%)	30,95 ± 7,06	29,48 ± 6,59	39,70 ± 8,54	0,001
CTLF (μg/dL)*	196,52 ± 56,95	297,30 ± 36,46	275,18 ± 33,48	0,001
Ferritina (ng/mL)**	156,25 (1,7-42,20)	134,5 (1,56-42,36)	112,95 (2,8-42,66)	0,004
VED (mm)*	46,38 ± 7,34	65,43 ± 7,70	46,38 ± 7,34	0,002
E/e ratio*	6,6 ± 2,82	14,9 ± 4,58	12,15 ± 12,06	0,001
FEVE**	65,85 ± 5,9	35,92 ± 8,59	34,95 ± 8,12	0,001

Análise de regressão logística univariada e multivariada. FeSe: ferro sérico; Hb: hemoglobina; IST: índice de saturação de transferrina; CTLF: capacidade total de ligação do ferro; VED: diâmetro do ventrículo esquerdo em diástole; E/e: Velocidade diastólica.

Como demonstrado pelos resultados apresentados, observamos que pacientes com CCC, quando comparados com pacientes chagásicos na forma indeterminada (IND) e com aqueles com NCh, apresentam menores níveis séricos de ferro, CTLF, IST e ferritina. Nos estudos especificamente relacionados a CCC e o metabolismo do ferro são até então inexistentes; assim, basearemos nossas hipóteses fisiopatológicas em estudos realizados com outras causas de cardiomiopatia. Apesar das peculiaridades da CCC, parece-nos haver similaridade na gênese das alterações do metabolismo do ferro observada em outras patologias e a CCC. Como possíveis mecanismos fisiopatológicos às alterações do metabolismo do ferro na IC, algumas teorias vêm sendo descritas, como inflamação crônica, edema de alças intestinais, hipoperfução do trato gastrointestinal (TGI).5,6,7 Estudo caso controle prospectivo acompanhando 499 pacientes com cardiomiopatia chagásica relatou a persistência do elemento parasitário (DNA) por meio de análise por PCR.7 Houve associação entre a carga parasitária e a gravidade da doença medidas a partir dos parâmetros clínicos.7

Em relação às análises feitas dos marcadores da cinética do ferro e às variáveis ecocardiográficas verificamos que, quanto maior o grau de disfunção ventricular sistólica, menores os níveis séricos de FeSe, IST, CTLF e ferritina. Este achado é interessante, pois reforça nossa hipótese de que os baixos níveis dos marcadores da cinética do ferro guardam relação com o grau de disfunção ventricular.
Na análise multivariada, encontraram-se baixos níveis de FeSe (p = 0,14) e de IST (p = 0,12), além de resultados estatisticamente significativos para sexo (p = 0,038) como marcadores independentes para disfunção ventricular sistólica esquerda. A queda de dez unidades de ferro associa-se com 23% maior chance de ocorrência de disfunção ventricular sistólica. Queda de 10 unidades no IST associa-se com 12% mais chance de ocorrência de disfunção ventricular sistólica.

Conclusão

Na população estudada, as análises do metabolismo do ferro nos pacientes com CCC evidenciaram que há associação com o grau de comprometimento miocárdico, sendo que quanto menores os níveis séricos de ferro, capacidade total de ligação do ferro, IST e ferritina, maior o grau de disfunção ventricular. Conclui-se que na cardiopatia chagásica há alteração no metabolismo do ferro e esta encontra-se mais pronunciada do que nas cardiopatias não chagásicas evidenciando, portanto, a sua natureza infecciosa.

Referências

1. Thomas C, Kirschbaum, A, Boehm, D, Thomas L. The diagnostic plot: a concept for identifying different states of iron deficiency and monitoring the response to epoetin therapy. Med Oncol. 2006;23(1):23-36.
2. Kluststein MW, Tzivoni D. Anaemia and heart failure: aetiology and treatment. Nephrol Dial Transplant. 2005;20(Suppl):7-10.
3. Ludwig H, Osterborg A. Pathogenesis and treatment of anemia. In: Berenson J (ed.). Biology and management of multiple myeloma. New York: Human Press; 2004. P.303-18.
4. Koike K, Matsuda K. Recent advances in the pathogenesis and management of juvenile myelomonocytic leukaemia. Br J Haematol. 2008;141(5):567-75.
5. Andrews N C. Forging a field: the golden age of iron biology." Blood. 2008;112(2):219-30.
6. Deicher R., Höf W H. New insights into the regulation of iron homeostasis." Eur J Clin Invest. 2006;36(5):301-9.
7. Nunes MC, Dones W, Morillo CA, Encina JJ, Ribeiro AL; Council on Chagas Disease of the Interamerican Society of Cardiology. Chagas disease: an overview of clinical and epidemiological aspects. J Am Coll Cardiol. 2013;62(9):767-76.
8. Rocha MO, Ribeiro AL, Teixeira MM. Clinical management of chronic Chagas cardiomyopathy. Front Biosci. 2003 Jan 1;8:e44-54.
9. Horta AL, Leite AL, Costa P G, Figueiredo VP, Talvani A. Potential role of carvedilol in the cardiac immune response induced by experimental infection with Trypanosoma cruzi. Biomed Res Int. 2017;2017:ID 9205062.
10. Botoni FA, Ribeiro AL, Marinho CC, Lima MM, Nunes M C, Rocha MO. Treatment of Chagas Cardiomyopathy. Biomed Res Int. 2013;2013:ID 849504.
11. Anand IS. Anemia and chronic heart failure implications and treatment options. J Am Coll Cardiol. 2008;52(7):501-11.
12. Higuchi ML. Endomyocardial biopsy in Chagas' heart disease: pathogenetic contributions. Sao Paulo Med J. 1995;113(2):821-5.