RAMIFICATION FILTRATION IN GALOIS MODULES

VICTOR ABRASHKIN

Abstract. Let \(K = k_0((t_0)) \) where \([k_0 : \mathbb{F}_p] < \infty \). Denote by \(K_{tr} \) the maximal tamely ramified extension of \(K \) in \(K_{sep} \) and let \(I \subset \Gamma_K = \text{Gal}(K_{sep}/K) \) be the wild inertia subgroup, i.e. \(K_{sep}^I = K_{tr} \). Introduce the category \(M^{\text{Lie}}_{\Gamma_K} \) of finite \(\mathbb{F}_p[\Gamma_K] \)-modules \(H \) such that the image \(I(H) \) of \(\Gamma_K \) in \(\text{Aut}_{\mathbb{F}_p}(H) \) such that \(L(H)^p = 0 \). We construct a differential form \(\omega(H) = F dt_0/t_0 \) on \(L(H) \) with coefficients in \(K_{rad} = K_p^{-\infty} \) satisfying the following condition. Suppose \(F = \sum_{r \in \mathbb{Q}} t_0^{-r} l_r \), where all \(l_r \in L(H) \otimes \mathbb{F}_p \). For \(v > 0 \), consider the minimal ideal \(L(H)^{(v)} \) in \(L(H) \) such that \(L(H)^{(v)} \otimes \mathbb{F}_p \) contains all \(l_r \) with \(r \geq v \). Then the image of the ramification subgroup in the upper numbering \(\Gamma_K^{(v)} \) of \(\Gamma_K \) in \(\text{Aut}_{\mathbb{F}_p}(H) \) coincides with \(\exp(L(H)^{(v)}) \). In particular, \(\Gamma_K^{(v)} \) acts trivially on \(H \) if \(v_0(F) > -v_0 \). The form \(\omega(H) \) is defined in terms of the matrices of Frobenius and connection on the \(\phi \)-module associated with \(H \).

In the end of paper we sketch how the same result can be obtained for arbitrary \(\mathbb{Z}_p[\Gamma_K] \)-modules.

Introduction

0.1. Basic notation. Let \(K \) be a complete discrete valuation field of characteristic \(p \) with finite residue field \(k_0 \), \(K_{sep} \) – a separable closure of \(K \) and \(\Gamma_K = \text{Gal}(K_{sep}/K) \). For any \(a \in K_{sep} \), we set \(\sigma(a) = a^p \).

If \(V \) is a vector space over a field \(E \), \(\text{End}_E(V) \) is the \(E \)-algebra of linear endomorphisms of \(V \). This \(E \)-algebra also can be considered as a Lie algebra over \(E \). Similarly, \(\text{Aut}_E(V) \) is a group of \(E \)-automorphisms of \(V \). If \(F/E \) is a field extension we use the notation \(V_F := V \otimes_E F \).

We set \(\mathbb{Z}^+(p) = \{ a \in \mathbb{N} \mid \gcd(a, p) = 1 \} \) and \(\mathbb{Z}^0(p) = \mathbb{Z}^+(p) \cup \{0\} \).

0.2. Basic categories. Consider the category \(M^{\text{Lie}}_{\Gamma_K} \) of finite \(\mathbb{F}_p[\Gamma_K] \)-modules. Its objects are finite dimensional \(\mathbb{F}_p \)-modules \(H \) provided with continuous action of \(\Gamma_K \). The objects of \(M^{\text{Lie}}_{\Gamma_K} \) carry out “arithmetic” information, say, about the fields of definition of \(h \in H \). Much more detailed information, cf. [4], can be obtained if we know how the ramification subgroups in upper numbering \(\Gamma_K^{(v)}, v > 0 \), of \(\Gamma_K \) act on...
H. For example, the knowledge of a rational number $v_0(H)$ such that the groups $\Gamma_K^{(v)}$ act trivially on H for all $v > v_0(H)$ will give upper estimates for the discriminants of the fields of definition of $h \in H$.

Let MF_K be the category of ϕ-modules. Its objects are finite dimensional K-vector spaces M together with a σ-linear morphism $\phi : M \rightarrow M$ such that its K-linear extension $\phi_K : M \rightarrow M \otimes_{K,\sigma} K$ is an isomorphism.

The categories $M \Gamma_K$ and MF_K are closely related. The correspondence $H \mapsto M(H) := (H \otimes_{F_p} K_{sep})^{\Gamma_K}$, where ϕ comes from the action of σ on K_{sep}, determines equivalence of these categories. The ϕ-module $M(H)$ carries out “analytic” information about H, e.g. it can be provided with a connection $\nabla : M(H)_K \rightarrow M(H)_K \otimes \Omega^1_{K}$. \cite{8}.

In this paper we describe explicitly the images of all ramification subgroups in upper numbering $\Gamma_K^{(v)}$, \cite{12}, of Γ_K in $\text{Aut}_{F_p}(H)$ in terms related to the ϕ-module $M(H)$. This description is done in terms of a specially constructed differential form $\omega(H)$ associated with the ϕ-module $M(H)$, and is obtained under the following assumption:

\textbf{(Lie)} the image $I(H) \subset \text{Aut}_{F_p}(H)$ of the wild inertia subgroup $I \subset \Gamma_K$ is of the "Lie type", i.e. there is a Lie subalgebra $L(H) \subset \text{End}_{F_p}(H)$ such that $L(H)^p = 0$ and $\exp(L(H)) = I(H)$.

\textbf{Remark.} a) $L(H)^p = \{l_1 \cdots l_p \mid l_1, \ldots, l_p \in L(H)\} \subset \text{End}_{F_p}(H)$;

b) For any $l \in L(H)$, $\exp(l) = \sum_{0 \leq i < p} l^i/i! \in \text{Aut}_{F_p}(H)$ (here and everywhere below \exp is the truncated exponential due to the assumption $L(H)^p = 0$);

c) The set $L(H)$ can be provided with the group composition law via the Campbell-Hausdorff formula (here and everywhere below log is the truncated logarithm)

$$(l_1, l_2) \mapsto l_1 \circ l_2 = \log(\exp(l_1) \cdot \exp(l_2)) = l_1 + l_2 + (1/2)[l_1, l_2] + \cdots$$

d) If $G(L(H))$ is the p-group from c) then $\exp : G(L(H)) \rightarrow I(H)$ is a group isomorphism.

e) If $\dim_{F_p} H \leq p$ then H is of the Lie type.

Denote by $M \Gamma_K^{\text{Lie}}$ the full subcategory in $M \Gamma_K$ consisting of $F_p[\Gamma_K]$-modules H which satisfy the \textbf{(Lie)} condition.

0.3. \textbf{Statement of the main result.} Denote by K_{tr} the maximal tamely ramified extension of K in K_{sep}. Then $I = \text{Gal}(K_{sep}/K_{tr})$ is the wild inertia subgroup of Γ_K.

Consider $H \in M \Gamma_K^{\text{Lie}}$ and suppose the group homomorphism $\pi_H : \Gamma_K \rightarrow \text{Aut}_{F_p} H$ determines the structure of the Γ_K-module on H. The main advantage of working with the objects of $M \Gamma_K^{\text{Lie}}$ is that the group $G(L(H))$ and its subgroups can be described in terms of the
Lie algebra $L(H)$ and its ideals. When studying the behaviour of the ramification filtration on H we need to determine the ideals $L(H)^{(v)}$, $v > 0$, of $L(H)$ such that $\pi_H(\Gamma^{(v)}_K) = \exp(G(\ell^v_H))$. (Note that all ramification subgroups $\Gamma^{(v)}_K$ with $v > 0$ are subgroups of I.)

Our main result, cf. below, describes the ideals $L(H)^{(v)}$ in terms related to an explicitly constructed differential form on $L(H)$. In particular, this allows us to obtain an explicit characterisation of the biggest upper ramification number $v_0(H)$.

Fix a choice of a uniformising element $t_0 \in K$. Now K appears as the field of formal Laurent series $k(t_0)$. Let $K_{rad} = K_{tr}^{\overline{p}-\infty} = K_{tr}\{[t_0^{\overline{p}-n} \mid n \in \mathbb{N}]\}$ be the radical closure of K.

Theorem 0.1. Suppose $H \in \text{MT}_K^{\text{lie}}$. Then there is $\omega_H = Fdt_0/t_0 \in L(H)_{K_{rad}} \otimes_K \Omega^1_K$ such that:

- if $F = \sum_{r \in \mathbb{Q}} t^{-r}l_r$, where $l_r \in L(H)_{F_p}$, then the ideal $L(H)^{(v)}$ appears as the minimal ideal in $L(H)$ such that its extension of scalars $L(H)_{F_p}$ contains all l_r with $r \geq v$.

Corollary 0.2. If the normalised t_0-adic valuation $v_{t_0}(F) > -v_0$ then the ramification subgroup $\Gamma^{(v_0)}_K$ acts trivially on H. In particular, the biggest upper ramification number $v_0(H) = -v_{t_0}(F)$.

Remark. Describe briefly the construction of $\omega(H)$. The group morphism $I \rightarrow I(H)$ admits an explicit description via the nilpotent version of Artin-Schreier theory from [1, 2, 5]. This allows us to specify a choice of a basis $\hat{m} = (m_1, \ldots, m_N)$ of $M(H)_K$, where $M(H)$ is the ϕ-module associated with H. Here K is some finite tamely ramified extension of K. This will give us the Frobenius matrix $A \in \text{Aut}_{H_K}$ such that $\phi(\hat{m}^t) = A\hat{m}^t$. Then we obtain the connection differential form $B = -A^{-1}dA \in I(H) \otimes \Omega^1_K$. Finally, if for $m \in \mathbb{N}$, $C_m = \sigma^{-1}A \cdots \sigma^{-m}(A)$ then $\omega(H) = \lim_{m \rightarrow \infty} C_m^{-1}BC_m$. The form is related to the behaviour of ramification subgroups under the map $\pi_H : I \rightarrow I(H)$ via explicit description of the ramification filtration from [1], cf. also [5].

1. **Ramification filtration modulo p-th commutators**

1.1. **Algebras L_k and L.** Let $K = k((t))$ be a complete discrete valuation field of characteristic p with finite residue field $k \simeq F_p^{N_0}$, $N_0 \in \mathbb{N}$, and fixed uniformiser t. Let $G = \text{Gal}(K_{sep}/K)$ and let $K_{<p}$ be the maximal p-extension of K in K_{sep} with the Galois group $\text{Gal}(K_{<p}/K) = \Gamma_K/\Gamma^{p}_{K}C_p(\Gamma_K) := G_{<p}$ of nilpotence class $< p$ and exponent p.

Consider the decreasing filtration by ramification subgroups in the upper numbering $\{G_{<p}^{(v)}\}_{v \geq 0}$ of $G_{<p}$.

Fix $\alpha_0 \in k$ such that $\text{Tr}_{K/F_p}(\alpha_0) = 1$.

RAMIFICATION FILTRATION IN GALOIS MODULES 3
Let \(\tilde{L}_k \) be a profinite free Lie \(\mathbb{F}_p \)-algebra with the set of topological generators \(\{D_0\} \cup \{D_{an} \mid a \in \mathbb{Z}^+ \langle p \rangle, n \in \mathbb{Z}/N_0 \} \).

Let \(L_k = \tilde{L}_k/C_p(\tilde{L}_k) \) where \(C_p(\tilde{L}_k) \) is the ideal of \(p \)-th commutators. Define the \(\sigma \)-linear action on \(L_k \) via \(D_{an} \mapsto D_{a,n+1} \) and set \(L = L_k|_{\sigma = \text{id}} \).

For any \(n \in \mathbb{Z}/N_0 \), set \(D_{0n} = (\sigma^n(\alpha_0))D_0 \).

1.2. **Equivalence of \(p \)-groups and Lie algebras.** [10]. Let \(L \) be a Lie \(\mathbb{F}_p \)-algebra of nilpotent class \(< p \), i.e. the ideal of \(p \)-th commutators \(C_p(L) = 0 \).

Let \(A \) be an enveloping algebra of \(L \), then the elements of \(L \subset A \) generate the augmentation ideal \(J \) of \(A \). There is a morphism of \(\Delta : A \to A \otimes A \) uniquely determined by the condition \(\Delta(l) = l \otimes 1 + 1 \otimes l \) for all \(l \in L \). Then the set \(\exp(L) \mod J^p \) is identified with the set of \(" \)diagonal elements modulo degree \(p \)" consisting of \(a \in 1 + J \mod J^p \) such that \(\Delta(a) \equiv a \otimes a \mod (J^2 + 1 \otimes J + J^2)^p \).

With the above notation the functor \(L \mapsto \exp(L) \mod J^p \) determines equivalence of the categories of \(p \)-periodic groups and \(\mathbb{F}_p \)-Lie algebras of nilpotence class \(< p \).

In particular, there is a natural embedding \(L \subset A/J \) and (as earlier) the Campbell-Hausdorff formula appears as

\[
(l_1, l_2) \mapsto l_1 \circ l_2 = l_1 + l_2 + \frac{1}{2} [l_1, l_2] + \ldots, \quad l_1, l_2 \in L,
\]

from the identity \(\exp(l_1) \cdot \exp(l_2) \equiv \exp(l_1 \circ l_2) \mod J^p \). This composition law provides the set \(L \) with a group structure and we denote this group by \(G(L) \). Clearly \(G(L) \simeq \exp(L) \mod J^p \). In addition, a subset \(I \subset L \) is an ideal in \(L \) iff \(G(I) \) is a normal subgroup in \(G(L) \).

1.3. **Identification** \(\eta_L : G_{\leq p} \simeq G(L) \). Let \(L \) be a finite Lie \(\mathbb{F}_p \)-algebra of nilpotent class \(< p \) and set \(L_{\text{sep}} := L_{K_{\text{sep}}} \). The elements of \(G = \text{Gal}(K_{\text{sep}}/K) \) and \(\sigma \) act on \(L_{\text{sep}} \) through the second factor, \(L_{\text{sep}}|_{\sigma = \text{id}} = L \) and \((L_{\text{sep}})^G = L_K \). The covariant nilpotent Artin-Schreier theory states that for any \(e \in G(L_K) \), the set

\[
\mathcal{F}(e) = \{ f \in G(L_{\text{sep}}) \mid \sigma(f) = e \circ f \}
\]

is not empty and for any fixed \(f \in \mathcal{F}(e) \), the map \(\tau \mapsto (-f) \circ \tau(f) \) is a continuous group homomorphism \(\pi_f(e) : G \to G(L) \). The correspondence \(e \mapsto \pi_f(e) \) has the following properties:

a) if \(f' \in \mathcal{F}(e) \) then \(f' = f \circ l \), where \(l \in G(L) \), and \(\pi_f(e) \) and \(\pi_{f'}(e) \) are conjugated via \(l \);

b) for any continuous group homomorphism \(\pi : G \to G(L) \), there are \(e \in G(L_K) \) and \(f \in \mathcal{F}(e) \) such that \(\pi_f(e) = \pi \);

c) for appropriate elements \(e, e' \in G(L_K) \) and \(f, f' \in G(L_{\text{sep}}) \), we have \(\pi_f(e) = \pi_{f'}(e') \) iff there is an \(x \in G(L_K) \) such that \(f' = x \circ f \) and, therefore, \(e' = \sigma(x) \circ e \circ (-x) \).
Now we apply a profinite version of this theory to the Lie algebra \mathcal{L} and the element $e_\mathcal{L} = \sum_{a \in \mathbb{Z}^0(p)} t^{-a} D_{a0}$. If we fix $f_\mathcal{L} \in \mathcal{F}(e_\mathcal{L})$ then the map $\pi_\mathcal{L}(f_\mathcal{L})$ induces the group isomorphism $\eta_\mathcal{L} : \mathcal{G}_{<p} \simeq G(\mathcal{L})$.

The above special choice of $e_\mathcal{L}$ appears at the finite level as follows.

Recall that we have already assumed that K has a fixed uniformiser t and chosen $\alpha_0 \in k$ such that $\text{Tr}_{k/F_p} \alpha_0 = 1$.

Definition. An element $e \in L_K$ is special if $e = \sum_{a \in \mathbb{Z}^0(p)} t^{-a} l_{a0}^t$, where $l_{00} \in \alpha_0 L$ and for all $a \in \mathbb{Z}^+(p)$, $l_{a0} \in L_k$.

Lemma 1.1. Suppose $e \in L_K$. Then there is $x \in G(L_K)$ such that $(\sigma x) \circ e \circ (-x)$ is special.

Proof. Use induction on s to prove lemma modulo the ideals of s-th commutators $C_s(\mathcal{L})_K$.

If $s = 1$ there is nothing to prove.

Suppose lemma is proved modulo $C_s(L_k)$.

Then there is $x \in L_K$ such that $(\sigma x) \circ e \circ (-x) = \sum_{a \in \mathbb{Z}^0(p)} t^{-a} l_{a0} + l$, where $l \in C_s(L_k)$. Using that

$$\mathcal{K} = (\sigma - \text{id}_K) \mathcal{K} \oplus (\mathbb{F}_p \alpha_0) \oplus \left(\sum_{a \in \mathbb{Z}^0(p)} kt^{-a} \right)$$

we obtain the existence of $\sigma x_s \in C(L_K)$ such that $l = \sigma(x_s) - x_s + \sum_{a \in \mathbb{Z}^0(p)} t^{-a} l_a$, where $l_0 \in \alpha_0 L$ and all remaining $l_a \in L_k$. Then we can take $x' = x - x_s$ to obtain the statement of our lemma modulo $C_{s+1}(L_K)$.

Lemma 1.2. Suppose $e \in L_K$ is special and $x \in L_K$. Then the element $(\sigma x) \circ e \circ (-x)$ is special iff $x \in L$ (or, equivalently, if $\sigma x = x$).

Proof. Use the relation cf. [2]

$$\exp(X) \exp(Y) \exp(-X) = \exp \left(\sum_{n \geq 0} \frac{1}{n!} \text{ad}^n(X)(Y) \right) \mod(\text{deg } p)$$

to prove the IF part. When proving the inverse statement we can use induction modulo the ideals $C_s(L)_K$ as follows.

Assume the lemma is proved modulo $C_s(L)_K$. Then using the IF part we can assume that $x \in C_s(L)_K$. Therefore, $e + \sigma(x) - x$ is special modulo $C_{s+1}(L)_K$, i.e. $\sigma(x) - x \in \alpha_0 C_s(L) + \sum_{a \in \mathbb{Z}^0(p)} t^{-a} C_s(L)_k$ modulo $C_{s+1}(K)$. By (1.1) it is possible only if $\sigma(x) \equiv x \mod C_{s+1}(L)_K$, i.e. $x \in C_s(L) \mod C_{s+1}(L)_K$. The lemma is proved.

The following property is obvious.

Proposition 1.3. Suppose $e \in L_K$ is special and given with notation of the above definition. Then the map $\pi_f(e) : \mathcal{G}_{<p} \hookrightarrow G(L)$ is given via the correspondences $D_{a0} \mapsto l_{a0}$, $a \in \mathbb{Z}^0(p)$.
1.4. The ramification ideal \(L^{(v_0)} \).

Definition. Let \(\vec{n} = (n_1, \ldots, n_s) \) with \(s \geq 1 \). Suppose there is a partition \(0 = i_0 < i_1 < \cdots < i_r = s \) such that if \(i_j < u \leq i_{j+1} \) then \(n_u = m_{j+1} \) and \(m_1 > m_2 > \cdots > m_r \). Then set

\[
\eta(\vec{n}) = \frac{1}{(i_1 - i_0) \cdots (i_r - i_{r-1})!}
\]

If such a partition does not exist we set \(\eta(\vec{n}) = 0 \).

For \(\vec{a} = (a_1, \ldots, a_s) \), \(\vec{n} = (n_1, \ldots, n_s) \), set

\[
[D_{\vec{a} \vec{n}}] = [\ldots [D_{a_1 n_1}, D_{a_2 n_2}], \ldots, D_{a_s n_s}] .
\]

For \(\alpha \geq 0 \) and \(N \in \mathbb{Z}_{\geq 0} \), introduce \(F^{0}_{\alpha, -N} \in L_k \) such that

\[
F^{0}_{\alpha, -N} = \sum_{1 \leq s < p} a_1 \eta(\vec{n})[D_{\vec{a} \vec{n}}].
\]

Here:

1. \(\vec{a} = (a_1, \ldots, a_s) \), \(n_1 = 0 \) and all \(n_i \geq -N \);
2. \(\gamma(\vec{a}, \vec{n}) = a_1 p^{n_1} + a_2 p^{n_2} + \cdots + a_s p^{n_s} \).

Note that non-zero terms in the above expression for \(F^{0}_{\alpha, -N} \) can appear only if \(0 = n_1 \geq n_2 \geq \ldots \geq n_s \) and \(\alpha \) has at least one presentation in the form \(\gamma(\vec{a}, \vec{n}) \).

Our result about explicit generators of the ideal \(L^{(v_0)} \) such that \(\eta_L(G_{<p}^{(v_0)}) = G(L^{(v_0)}) \) can be stated in the following form.

Theorem 1.4. There is \(\tilde{N}(v_0) \in \mathbb{N} \) such that if \(N \geq \tilde{N}(v_0) \) is fixed then \(L^{(v_0)} \) is the minimal ideal in \(L \) such that for all \(\alpha \geq v_0 \), \(F^{0}_{\alpha, -N} \in L^{(v_0)} \).

1.5. Ramification filtration \(\{L^{(v)}\}_{v \geq 1} \). The above Theorem describes the ramification ideal for one value \(v_0 \) and requires a choice of sufficiently large natural number \(\tilde{N}(v_0) \). The following result allows us to describe the whole filtration \(\{L^{(v)}\}_{v \geq 1} \) under the assumption that we know all ramification breaks.

Suppose \(1 = v_1 < v_2 < \ldots < v_r < \ldots \) are all jumps of the ramification filtration \(\{G_{<p}^{(v)}\}_{v \geq 1} \). (This set is discrete because the set of ramification jumps in any abelian \(p \)-extension is discrete.) Then:

- \(G_{<p}^{(v_1)} \not\supseteq \cdots \not\supseteq G_{<p}^{(v_r)} \not\supseteq \cdots \);
- \(G_{<p}^{(1)} \) is the ramification subgroup in \(G_{<p} \), \((G_{<p} : G_{<p}^{(1)}) = p \);
- if \(r \geq 2 \) and \(v_{r-1} < v \leq v_r \) then \(G_{<p}^{(v)} = G_{<p}^{(v_r)} \).

Use the above identification \(\eta_L : G_{<p} \cong G(L) \). Then the ramification filtration appears as the ideals \(L^{(v_1)} \not\supseteq L^{(v_2)} \not\supseteq \cdots \not\supseteq L^{(v_r)} \not\supseteq \cdots \) of \(L \), where \(L^{(1)} \) is generated by all \(D_{an} \), \(a \in \mathbb{Z}^+(p) \).
Suppose $u \geq 2$. Consider the elements $F_{v_u - M_u}$, where for each u, M_u satisfies the following inequality
\[p^{M_u + 1}(v_u - v_{u-1}) > (p - 1)v_{u-1}. \]

Theorem 1.5. For $r \geq 2$, $L^{(v_r)}$ is the minimal ideal in L such that $L_k^{(v_r)}$ contains all $F_{v_u - M_u}$ with $u \geq r$.

1.6. **Some relations.** Consider $e \in L_K$ from Sect. 1.3. Let $A(L)$ be the enveloping algebra of L and $\tilde{A}(L) = A(L)/J(L)^p$, where $J(L)$ is the augmentation ideal in $A(L)$.

Let $A_L = \exp(e_L) \in \tilde{A}(L)_K$. Use the element $f_L \in F(e_L)$ (chosen in Sect. 1.3 to fix the isomorphism η_L) to set $\exp(f_L) = M_L \in \tilde{A}(L)_{\text{sep}}$. Note that the relation $\sigma f_L = e_L \circ f_L$ implies $\sigma(M_L) = A_L \cdot M_L$.

We set $B_L = -\exp(-e_L) \cdot d(\exp(e_L))$

Proposition 1.6. For $m \in \mathbb{N}$, set $\sigma^{-1}A_L \cdot \ldots \cdot \sigma^{-m}A_L = C_m$. Then we have the following relations:

(1.2) $B_L = -\exp(-e_L) \cdot d(\exp(e_L)) = -\sum_{s \geq 1} a_1 \eta(\delta_s)[D_{\tilde{a}_s}t^{-\gamma(\tilde{a}_s)}](dt/t)$

(1.3) $C_m^{-1} \cdot B_L \cdot C_m = -\sum_{\alpha > 0} F_{\alpha^{-1}}^{(m)} t^{-\alpha}$

Proof. For (1.2) use, cf. [7], theorem 4.22, to obtain $d \exp(e_L) = \exp(e_L) \sum_{k \geq 1} \frac{1}{k!}(-\text{ad}e_L)^{k-1}(de_L)$.

and note that $(-\text{ad}e_L)^{k-1}(de_L) = (-1)^{k-1}[e_L, \ldots, [e_L, de_L], \ldots] = [\ldots [de_L, e_L], \ldots, e_L]$ $k - 1$ times

For (1.3) we need the following relation cf. [7], Sect. 4.4

$\exp(X) \cdot Y \cdot \exp(-X) = \sum_{n \geq 0} \frac{1}{n!} \text{ad}^n(X)(Y)$.

After applying this relation to the case with $m = 1$ we obtain $\exp(-\sigma^{-1}e_L) \cdot B_L \cdot \exp(\sigma^{-1}e_L) = \sum_{s \geq 0} \eta(-1, \ldots, -1)(-1)^s \text{ad}^s(\sigma^{-1}e_L)(B_L) = \sum_{\alpha > 0} F_{\alpha^{-1}}^{(m)} t^{-\alpha}$.

Repeating this procedure we obtain relation (1.3).
2. Proof of Theorem 0.1

Let $H \in \text{MF}_K^{\text{Lie}}$ and the structure of the Γ_K-module on H is given via $\pi_H : \Gamma_K \rightarrow \text{Aut}_F H$. Then $\pi_H(I) = I(H) \subset \text{Aut}_F H$, $I(H)$ is a finite group of period p and nilpotency class $< p$. In addition, there is a Lie algebra $L(H) \subset \text{End}_F H$ such that $\exp : G(L(H)) \rightarrow I(H)$ is a group isomorphism.

Let $\mathcal{K} \subset K_\nu$ be a finite extension of K such that $\pi_H(\Gamma_{\mathcal{K}}) = I(H)$. We can assume that $\mathcal{K} = k((t))$, where $k \cong \mathbb{F}_{p^{\nu_0}}$ and $t^{\nu_0} = t_0$. (Here e_0 is the ramification index for the field extension \mathcal{K}/K.)

By nilpotent Artin-Schreier theory for the homomorphism $\log(\pi_H) : \Gamma_{\mathcal{K}} \rightarrow G(L(H))$ there are elements $e_{\mathcal{K}} \in L(H)_\mathcal{K}$ and $f_{\mathcal{K}} \in L(H)_{\mathcal{K}}$ such that $\sigma f_{\mathcal{K}} = e_{\mathcal{K}} \circ f_{\mathcal{K}}$ and for any $\tau \in \Gamma_{\mathcal{K}}$, $\log(\pi_H(\tau)) = (f_{\mathcal{K}} \circ \tau)(f_{\mathcal{K}})$.

We can use these data to recover the ϕ-module $M(H)_{\mathcal{K}}$ associated with $H|_{\Gamma_{\mathcal{K}}}$. Indeed, let $M_{\mathcal{K}} = \exp(f_{\mathcal{K}})$ and $A_{\mathcal{K}} = \exp(e_{\mathcal{K}})$. Then $M_{\mathcal{K}} \in \exp(L(H)_{\mathcal{K}}) \subset \text{End}_{L_{\mathcal{K}}} H_{\mathcal{K}}$ and $A_{\mathcal{K}} \in \exp(L(H)_{\mathcal{K}}) \subset \text{End}_{L_{\mathcal{K}}} H_{\mathcal{K}}$. After choosing an \mathbb{F}_p-basis in H they both can be considered as non-degenerated matrices with coefficients in $K_{\mathcal{K}}$ and, resp., \mathcal{K}. Clearly, they satisfy the relations $\sigma(M_{\mathcal{K}}) = A_{\mathcal{K}} \cdot M_{\mathcal{K}}$ and for any $\tau \in \Gamma_{\mathcal{K}}$, $\tau(M_{\mathcal{K}}) = M_{\mathcal{K}} \cdot \pi_H(\tau)$. Therefore, the columns of $M_{\mathcal{K}}$ give a \mathcal{K}-basis of the ϕ-module $M(H)_{\mathcal{K}}$. In particular, $A_{\mathcal{K}}$ is the matrix of Frobenius and $B_{\mathcal{K}} = -A_{\mathcal{K}} \cdot dA_{\mathcal{K}}$ is the corresponding connection.

Now we can proceed with choosing a special basis for $M(H)_{\mathcal{K}}$.

By Lemma 1.1 we can assume that $e_{\mathcal{K}}$ is special, i.e., it can be presented in the form $\sum_{a \in \mathbb{Z}^+(p)} t^{-a} l^{a}_0$, where for all $a \in \mathbb{Z}^+(p)$, $l^{a}_0 \in L(H)_{\mathcal{K}}$ and $l^{a}_{00} \in \alpha_{00} L(H)$. In particular, if we use the identification $\eta_\mathcal{L}$ from Sect.1.3 then by Prop.1.3 $\log(\pi_H|_{\Gamma_{\mathcal{K}}}) : \Gamma_{\mathcal{K}} \rightarrow G(L(H))$ comes from the morphism of Lie algebras $L_k \rightarrow L(H)_k$ such that $D_{a0} \mapsto l^{a}_0$ (and for any $n \in \mathbb{Z}/N_0$, $D_{an} \mapsto l^{a}_n := \sigma^n(l^{a}_0)$).

This implies that $\log(\pi_H)$ transforms the elements $A_{\mathcal{K}}$ and $B_{\mathcal{K}}$ from Prop.1.6 to $A_{\mathcal{K}}$ and $B_{\mathcal{K}}$. As a result, $\log(\pi_H)$ transforms the differential form $C^{-1}_m B_m C_m$ from Prop.1.6 to $\omega_m(H) = -\sum_{r > 0} t^{(m)}_r t^{-r}$, where $l_r = \log \pi_H(F_{r, -m})$. If $m \gg 0$ the elements $t^{(m)}_r$ with $r \geq v$ can be taken as generators for the ideals $L(H)^{[(v)}$ and the corresponding differential form $\omega(H) := \omega_m(H)$ describes the images of the ramification subgroups $\Gamma_{\mathcal{K}}^{[(v)}$.

It remains to note that for any $v > 0$, $\Gamma_{\mathcal{K}}^{[e_0]} = \Gamma_{\mathcal{K}}^{[(v)}$ and $t^{e_0} = t_0$.

Theorem 0.1 is proved.

Remark. a) The conjugacy class of the differential form $\omega(H)$ does not depend on a presentation of $e_{\mathcal{K}}$ in the form $\sum_{a \in \mathbb{Z}^+(p)} D_{a0} t^{-a}$. This follows directly from Lemma 1.2.

b) The above exposition appears as an interpretation of the description of the image of ramification filtration in the quotient $\Gamma_{\mathcal{K}}/\Gamma_{\mathcal{K}}^{p} C(p)(\Gamma_{\mathcal{K}})$. The corresponding Galois modules are $\mathbb{F}_p[\Gamma_{\mathcal{K}}]$-modules which satisfy
quite restrictive condition (Lie). Our approach admits a generalisation to the case of \(\mathbb{Z}_p[\Gamma_K]\)-modules, which satisfy an analogue of the (Lie) condition. Essential ingredient of this generalisation is the description of the image of ramification filtration in \(\Gamma_K / \Gamma_K^{pM} C_p(\Gamma_K) \) in [9]. We sketch the proof in Sect. 3 below.

c) It would be very interesting to verify whether our results could be established in the case of \(\Gamma_K \)-modules which do not satisfy the (Lie) condition, e.g. for the \(\Gamma_K \)-module from [9] (the case \(n = p \) in the notation of that paper).

3. The case of \(\mathbb{Z}_p[\Gamma_K]\)-modules

This case generalises the case of \(\mathbb{F}_p[\Gamma_K]\)-modules and goes very closely to it. We agree to use the notation from Sect. 1 and 2 by explaining in due course their new meaning.

Our aim is to establish Theorem 0.1 in the context of \(\mathbb{Z}_p[\Gamma_K]\)-modules \(H \) if the satisfy an analogue of the condition (Lie).

3.1. The (Lie) condition. Recall that \(K = k_0((t_0)) \), \(I \subset \Gamma_K \) is the wild inertia, \(H \) will be now \(\mathbb{Z}_p[\Gamma_K]\)-module, we have a Lie algebra \(L = L(H) \subset \text{End}_{\mathbb{Z}_p} H \) such that \(L(H)^p = 0 \), i.e. we still have the (Lie) condition, and the group epimorphism \(\pi_H : I \longrightarrow I(H) := \exp L \subset \text{Aut}_{\mathbb{Z}_p} H \) determines the \(\Gamma_K \)-module structure on \(H \).

3.2. The lifts to characteristic 0. We use the uniformiser \(t_0 \) as a \(p \)-basis for any field extension \(E \) of \(K \) in \(K_{\text{sep}} \) to define a compatible system of lifts of the fields \(E \) to characteristic 0 as follows. This is a special case of the modulo \(p^M \)-lifts from [2], where we use the \(p \)-basis of \(K \) coming from the uniformizer \(t_0 \) of \(K \).

For all \(M \in \mathbb{N} \), set \(O_M(E) = W_M(\sigma^{M-1}E)[\tilde{t}_0] \), where \(\tilde{t}_0 = [t_0] \) is the Teichmuller representative of \(t_0 \) in the ring of Witt vectors \(W_M(E) \). The algebras \(O_M(E) \) are flat \(\mathbb{Z}/p^M \)-algebras and \(O(E) = \lim_{M} O_M(E) \) is the required lift of \(E \) to characteristic 0.

Note that \(O(K) = W(k)((t)) \) is a faithfully flat \(\mathbb{Z}_p \)-algebra of Laurent series in \(\tilde{t}_0 \) with coefficients in \(W(k) \). It is easy to see that \(O(K_{\text{sep}}) |_{\sigma = \text{id}} = W(k) \subset O(K) \) and \(O(K_{\text{sep}})^{G_K} = O(K) \).

3.3. The \(\phi \)-module \(M(H) \) and the differential form \(\omega(H) \). Choose \(\mathcal{K} \subset K_{\text{er}} \) such that \(\pi_H(\Gamma_K) = I(H) \), \(\mathcal{K} = k((t)) \) with \(\hat{t}^{o_0} = t_0 \). Note that \(O(K) = W(k)((\hat{t})) \), where \(\hat{t}^{o_0} = \tilde{t}_0 \).

Then the "modulo \(p^M \)" version of the nilpotent Artin-Schreier theory from [2] implies the existence of \(e_L \in L_{O(K)} \) and \(f_L \in L_{O(K_{\text{sep}})} \) such that \(\sigma(f_L) = e_L \circ f_L \) and for any \(\tau \in \Gamma_K \), \(\tau(f_L) = f_L \circ \log(\pi_H(\tau)) \).

As earlier, the relation \(\exp(f_L) = \exp(e_L) \cdot \exp(f_L) \) determines the \(\phi \)-module \(M(H)_{O(K)} \) associated with \(H |_{\Gamma_K} \).
The connection $\nabla : M(H)_{O(\mathcal{K})} \rightarrow M(H)_{O(\mathcal{K})} \otimes \Omega^1_{\mathcal{K}}$ is determined by the condition $\phi \cdot \nabla = \nabla \cdot (\phi \otimes \phi)$. If we set $\exp(e) = A_L$ then ∇ acts on $M(H)_{O(\mathcal{K})}$ via the operator B_L such that

$$B_L = (\text{id} - \text{Ad}(A_{L}^{-1})p\phi)^{-1}(D_L),$$

where $D_L = -A_{L}^{-1} \cdot dA_L$ and $\text{Ad}(X)(Y) = X \cdot Y \cdot X^{-1}$. More explicitly,

$$B_L = D_L + pA_{L}^{-1} \cdot \sigma(D_L) \cdot A_L + p^2 A_{L}^{-1} \cdot \sigma(A_L)^{-1} \cdot \sigma^2(D_L) \cdot \sigma(A_L) \cdot A_L + \ldots.$$

As earlier, set for $m \in \mathbb{N}$, $C_m = \sigma^{-1}(A_L) \cdots \sigma^{-m}(A_L)$ and

$$\omega(H) = \lim_{m \to \infty} C_m^{-1} \cdot B_L \cdot C_m.$$

3.4. Identification $\eta_L : \mathcal{G}_{<p} \simeq G(\mathcal{L})$. Recall $\mathcal{K} = k((t))$, $k = \mathbb{F}_p^{N_0}$ with $N_0 \in \mathbb{N}$. Consider a free pro-finite Lie algebra $\tilde{\mathcal{L}}'$ over $W(k)$ with the set of free (profinite) generators

$$\{D_{an} \mid a \in \mathbb{Z}^+(p), n \in \mathbb{Z}/N_0\} \cup \{D_0\}.$$

We agree to use the same symbol σ for its extension to an automorphism of $\tilde{\mathcal{L}}'$ such that $\sigma(D_{an}) = D_{a,n+1}$ and $\sigma D_0 = D_0$. Then $\tilde{\mathcal{L}} := \tilde{\mathcal{L}}' |_{\sigma = \text{id}}$ is a free Lie algebra over \mathbb{Z}_p and $\tilde{\mathcal{L}}_{W(k)} = \tilde{\mathcal{L}}'$.

Set $\mathcal{L} = \tilde{\mathcal{L}}/C_p(\tilde{\mathcal{L}})$.

Note that the images of D_{an} and D_0 in $\mathcal{L}_{W(k)}$ (they will be denoted by the same symbols) give a fixed system of (topological) generators of $\mathcal{L}_{W(k)}$. We also choose $\alpha_0 \in W(k)$ such that $\text{Tr} \alpha_0 = 1$ (the trace for the field extension $W(k)[1/p]/\mathbb{Q}_p$). Set for $n \in \mathbb{Z}/N_0$, $D_{0n} = \sigma^n(\alpha_0)D_0$.

Consider the element $e_L = \sum_{a \in \mathbb{Z}^+(p)} \xi^{-a} D_{an} \in \mathcal{L}_{O(\mathcal{K})}$.

Fix $f_L \in G(\mathcal{O}_{\mathcal{K}, sep})$ such that $\sigma f_L = e_L \circ f_L$ and consider the map η_L from $\Gamma_{\mathcal{K}}$ to $G(\mathcal{L})$ defined by $\eta_L : \tau \mapsto (-f_L) \circ \tau(f_L)$. Due to the nilpotent version of the Artin-Schreier theory from [2], the map η_L provides us with the induced identification $\eta_L : \mathcal{G}_{<p} \simeq G(\mathcal{L})$, where $\mathcal{G}_{<p} := \Gamma_{\mathcal{K}}/C_p(\Gamma_{\mathcal{K}})$.

3.5. The ramification ideals $\mathcal{L}^{(\upsilon)}$. Denote by $\mathcal{G}_{<p}^{(\upsilon)}$ the image of $\Gamma_{\mathcal{K}}^{(\upsilon)}$ in $\mathcal{G}_{<p}$. Then $\eta_L(\mathcal{G}_{<p}^{(\upsilon)}) = \mathcal{L}^{(\upsilon)}$ is an ideal in \mathcal{L}. The ideals $\mathcal{L}^{(\upsilon)}$ were explicitly described in [3] as follows.

For $\alpha > 0$ and $N \in \mathbb{N}$, introduce $\mathcal{F}_{\alpha,-N}^0 \in \mathcal{L}_k$ such that

$$\mathcal{F}_{\alpha,-N}^0 = \sum_{\begin{smallmatrix} 1 \leq s < p \\ \bar{a}, \bar{n} \end{smallmatrix}} a_1 p^{n_1} \eta(\bar{n})[D_{\bar{a} \bar{n}}].$$

Here:

- $\bar{a} = (a_1, \ldots, a_s)$, $\bar{n} = (n_1, \ldots, n_s) \in \mathbb{Z}^s$, $n_1 \geq 0$, all $n_i \geq -N$;

- $\alpha = \alpha(\bar{a}, \bar{n}) = a_1 p^{n_1} + a_2 p^{n_2} + \cdots + a_s p^{n_s}$.
Theorem 3.1. For any \(v \geq 0 \), there is \(\tilde{N}(v) \) such that if \(N \geq \tilde{N}(v) \) is fixed then the ideal \(\mathcal{L}^{(v)} \) is the minimal ideal in \(\mathcal{L} \) such that its extension of scalars \(\mathcal{L}^{(v)}_{W(k)} \) contains all \(F_{0,\alpha} \) with \(\alpha \geq v \).

3.6. Relation between \(\omega(H) \) and ramification ideals \(L(H)^{(v)} \).

Proceeding similarly to the proof of Prop. 1.6 we deduce:

1) if \(A = \exp(e_L) \) and \(D = -A^{-1} \cdot dA \) then
\[
B := D_L + pA_L^{-1} \cdot \sigma(D_L) \cdot A_L + p^2 A_L^{-1} \cdot \sigma(A_L)^{-1} \cdot \sigma^2(D_L) \sigma(A_L) \cdot A_L + \ldots
\]
\[
= \sum_{1 \leq s < p} a_1 p^{n_1} \eta(\bar{n}) \left[D_{\bar{a} \bar{n}} \right].
\]

Here:
- \(\bar{a} = (a_1, \ldots, a_s), \bar{n} = (n_1, \ldots, n_s) \in \mathbb{Z}_{\geq 0}^s; \)
- \(\alpha = \alpha(\bar{a}, \bar{n}) = a_1 p^{n_1} + a_2 p^{n_2} + \cdots + a_s p^{n_s}. \)

2) For any \(m \in \mathbb{N} \), let \(C_m = \sigma^{-1}(A_L) \ldots \sigma^{-m}(A_L) \). Then the second analogue of the calculation from Prop. 1.6 shows that
\[
C_m^{-1} B_{L} C_m = \sum_{r > 0} t^{-r} \frac{F^{0}_{\bar{a} \bar{n} - m}}{l}.
\]

As a result \(\eta_L \) maps \(\sum_r t^{-r} F^{0}_{\bar{a} \bar{n} - m} d\bar{l}/\bar{l} \) to \(\omega_m(H) = \sum_r t^{-r} l_r d\bar{l}/\bar{l} \).

It remains to note that \(\bar{t}_0 = \bar{t}^{e_0} \) and for any \(v > 0, \Gamma^{(v)}_K = \Gamma^{(e_0,v)}_K \).

Acknowledgements. The author would like to thank Prof. T. Tsuji and Prof. E. Khukhro for helpful discussions. In particular, T. Tsuji pointed out to the author that the differential form appeared in the study of ramification in \([9]\) is directly related to the connection of the corresponding \(\phi \)-module.

References

[1] V.A. Abrashkin, Ramification filtration of the Galois group of a local field, Proceedings of the St. Petersburg Mathematical Society, vol. III, 35-100, Amer. Math. Soc. Transl. Ser. 2, (1995) 166, Amer. Math. Soc., Providence, RI
[2] V.A. Abrashkin, Ramification filtration of the Galois group of a local field. II, Proceedings of Steklov Math. Inst. 208 (1995), 18-68
[3] V.A. Abrashkin, Ramification filtration of the Galois group of a local field. III, Izvestiya RAN: Ser. Mat., 62, no.5 (1998), 3-48; English transl. Izvestiya: Mathematics 62, no.5, 857–900
[4] V. Abrashkin, On a local analogue of the Grothendieck Conjecture, Int. J. Math. (2000) 11, no.1, 3–43
[5] V. Abrashkin, Ramification filtration via deformations, Sbornik: Mathematics (2017) 212, no. 2, 135-169
[6] P. Berthelot, W. Messing, *Théorie de Deuxonné Cristalline III: Théorèmes d’Équivalence et de Pleine Fidélité*, The Grothendieck Festschrift (P.Cartier etc., eds.), A Collection of Articles Written in Honor of 60th Birthday of Alexander Grothendieck, vol. 1, Birkhauser, 1990, p. 173-247.

[7] A. Bonfiglioli, R. Fulci, *Topics in Noncommutative Algebra*, Lecture Notes in Mathematics 2034, Springer-Verlag Berlin heidelberg 2012

[8] J.-M. Fontaine, *Représentations p-adiques des corps locaux (1-ère partie)*, The Grothendieck Festschrift A Collection of Articles Written in Honor of the 60th Birthday of Alexander Grothendieck vol.II, eds. P.Cartier etc. Birkhauser pp. 249-309, 1990

[9] K. Imai, *Ramification groups of some finite Galois extensions of maximal nilpotency class over local fields of positive characteristic*, arxiv: 2102.07928

[10] M. Lazard, *Sur les groupes nilpotentes et les anneaux de Lie*, Ann. Ecole Norm. Sup. (1954) 71, 101-190

[11] Sh. Mochizuki, *A version of the Grothendieck conjecture for p-adic local fields*, Int. J. Math., 8, no.4 (1997), 499-506

[12] J.-P. Serre, *Local Fields* Berlin, New York: Springer-Verlag, 1980

Department of Mathematical Sciences, Durham University, Science Laboratories, South Rd, Durham DH1 3LE, United Kingdom & Steklov Institute, Gubkina str. 8, 119991, Moscow, Russia

Email address: victor.abrashkin@durham.ac.uk