Ti/Ni co-doped perovskite cathode with excellent catalytic activity and CO2 chemisorption ability via nanocatalysts exsolution for solid oxide electrolysis cell

Shuying Zhen1, Lihong Zhang2, Chunming Xu2, Ding Zhang3, Qun Yi3*, Wang Sun2* and Kening Sun2

1State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, China, 2Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing, China, 3School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China

Carbon dioxide (CO2) gas is the main cause of global warming and has a significant effect on both climate change and human health. In this study, Ni/Ti co-doped Sr1.95Fe1.2Ni0.1Ti0.2Mo0.5O6-δ (SFNTM) double perovskite oxides were prepared and used as solid oxide electrolysis cell (SOEC) cathode materials for effective CO2 reduction. Ti-doping enhances the structural stability of the cathode material and increases the oxygen vacancy concentration. After treatment in 10% H2/Ar at 800°C, Ni nanoparticles were exsolved in situ on the SFNTM surface (Ni@SFNTM), thereby improving its chemisorption and activation capacity for CO2. Modified by the Ti-doping and the in situ exsolved Ni nanoparticles, the single cell with Ni@SFNTM cathode exhibits improved catalytic activity for CO2 reduction, exhibiting a current density of 2.54 A cm⁻² at 1.8 V and 800°C. Furthermore, the single cell shows excellent stability after 100 h at 1.4 V, indicating that Ni/Ti co-doping is an effective strategy for designing novel cathode material with high electrochemical performance for SOEC.

KEYWORDS
solid oxide electrolysis cells (SOECs), double perovskite oxide, cathode, in situ exsolution, CO2 reduction reaction

Introduction

Carbon dioxide (CO2), a greenhouse gas and the main cause of global warming, has a significant impact on both climate change and human health. (Armaroli and Balzani, 2011; Broecker, 2018; Hoegh-Guldberg et al., 2019). The capture and utilization of CO2 is a promising approach to effectively reduce CO2 concentration and emissions (Fu et al., 2019; Karanikolos et al., 2021). It is known that CO can be further converted to low-
carbon fuels and high value added chemicals through subsequent Fischer-Tropsch reactions (Zhang et al., 2002; Quadrelli et al., 2011). Therefore, converting CO₂ to CO is a feasible and important method for CO₂ utilization. Solid oxide electrolysis cells (SOEC) are high-efficiency electrochemical reactors that can convert CO₂ into CO using distributed renewable energy, with an efficiency close to 100% (Singh et al., 2015; Li et al., 2021). Normally, the CO₂ reduction reaction (CO₂-RR) occurs at the cathode of the SOEC, where CO₂ is electrochemically converted to CO and oxygen ions under an applied potential. The generated oxygen ions are transferred across the solid electrolyte to the anode and converted to O₂. The cathode is the core component in the SOEC, and dominates the electrochemical CO₂-RR process and the performance of the SOEC.

Presently, Ni-YSZ is the most widely used cathode in SOEC for CO₂-RR, owing to its good electrocatalytic activity and cost effectiveness (Song et al., 2018; Xu et al., 2019). However, certain inevitable issues hinder its further application, including Ni oxidation during the CO₂/CO redox reaction process in the absence of a safe gas (H₂/CO), carbon deposition at high CO concentrations, and Ni particle growth during long-term operation (Dong et al., 2017; Sciazko et al., 2021; Yang et al., 2022). Materials comprising perovskite oxide with mixed ionic-electronic conductivity, such as Sr₂Fe₁.₅Moₐ.₅O₆-δ (SFM), show promise for SOEC, and exhibit excellent redox stability, coke resistance, and long-term stability (Li et al., 2017a; Zhang et al., 2021). Nevertheless, compared with the Ni-YSZ cathode material, SFM oxide exhibits weak chemical CO₂ adsorption and inadequate catalytic activity for CO₂-RR, which limits the performance of CO₂ electrolysis. Recently, the in situ exsolation of transition metal nanoparticles on the surface of perovskite oxide substrates has attracted extensive research attention and is regarded as a promising strategy to enhance the electrocatalytic activity of perovskite oxides. (Wang et al., 2019; Xu et al., 2021)

Briefly, the exsolved metal nanocatalysts, uniformly dispersed on the surface, can effectively strengthen the adsorption capacity of CO₂ and improve the electrolysis activity for CO₂-RR. Abundant oxygen vacancies were created during the reduction process, thereby supplying more active reaction regions for the chemisorption and catalytic activation of CO₂ molecules on the electrode surface (Liu S. B. et al., 2016; Zheng et al., 2017). Furthermore, the metal nanoparticles were firmly anchored on the surface of the electrode material, restricting their aggregation. The strong interaction of the metal-oxide interface also exhibits exceptional electrocatalytic activity for the CO₂-RR. Chen et al. concluded that exsolved NiFe alloy nanoparticles in Sr₁.₅Fe₁.₅Mo₀.₅O₆₋δ enhanced the chemisorption capacity and reaction kinetics of CO₂ on the cathode surface (Wang et al., 2016). Bao et al. demonstrated that in situ exsolved FeNi₃ nanoparticles on the Sr₂Fe₂.₃Mo₀.₃Ni₀.₃O₆.₅ material strengthened CO₂ adsorption and facilitated subsequent CO₂-RR in SOEC (Lv et al., 2019). Luo et al. confirmed that in situ exsolved Fe-Ni nanospheres are evenly anchored on the perovskite oxide with oxygen defects, greatly enhancing the catalytic performance of the material as a highly stable and efficient catalyst (Liu S. et al., 2016). However, SFM-based double perovskite oxides tend to transform into Ruddlesden-Popper (RP)-type layer perovskite oxides during the in situ exsolution process in the reduction treatment, causing the initial perovskite structure to deform (Park et al., 2019; Park et al., 2020; Choi et al., 2021). The structural stability can be enhanced by employing stable valence state metalic elements, such as Ti⁴⁺, Zr⁴⁺, and Nb⁵⁺ in severe reducing atmospheres. For example, we introduced a stable valence Ti element to the B-site of SFM oxide, which notably improved its structural stability, produced abundant oxygen vacancies and increased the conductivity of the oxygen ions (Xu et al., 2022).

Herein, a Ti and Ni co-doped double perovskite oxide (Sr₁.₉₅Fe₁.₅Ni₀.₄Mo₀.₅O₆₋δ, SFNTM) was synthesized. After the reduction treatment, the oxide matrix maintained the original perovskite structure, while in situ exsolved Ni nanoparticles were uniformly anchored on its surface to form a metal-oxide heterostructure (Ni@SFNTM) as SOEC cathodes for CO₂-RR at high temperatures. Subsequently, the phase structure, CO₂ chemisorption and activation, and electrochemical properties of SFNTM and Ni@SFNTM samples were studied. The heterostructure formed by the in situ exsolved Ni nanoparticles and the SFNTM matrix can enhance the CO₂ adsorption activity and expand the abundant CO₂-RR active sites, thus further enhancing its performance.

Experimental section

Material preparation and cell fabrication

An Sr₁.₉₅Fe₁.₂Ni₀.₄Ti₀.ₒMo₀.₅O₆.₅ (SFNTM) sample was prepared using a modified sol-gel combustion method. The calculated stoichiometric ratios of Ni(NO₃)₂·6H₂O, Sr(NO₃)₂, Fe(NO₃)₃·9H₂O, and (NH₄)₆Mo₇O₂₄·4H₂O were added to deionized water and stirred at 80°C. C₁₆H₃₆O₄Ti was dissolved in ethanol, and the content was added dropwise into the abovementioned solution. Subsequently, citric acid and glycerine were added, and a gel was obtained via continuous mixing. A black precursor powder was obtained by heating the gel at 250°C followed by sintering at 1,100°C for 5 h to synthesize SFNTM oxide. The La₀.₈Sr₀.₂Co₀.₈Fe₀.₂O₃ (LSCF) cathode, Ce₀.₈Sm₀.₂O₂ (SDC), and La₀.₈Sr₀.₂Ga₀.₈Mg₀.₂O₃ (LSGM) electrolyte materials were purchased from Fuel Cell Co. The Ni@SFNTM sample was prepared by reducing the SFNTM in 5% H₂/Ar at 800°C for 5 h. An electrolyte-supported single cell (SFNTM/Ni@SFNTM) SDC/LSGM/LSCF) was used. Dense disk-shaped LSGM electrolyte flakes (~300 μm) were formed by dry-pressing and calcined at 1,450°C for 6 h. The SDC slurry was formulated by mixing SDC powder and a binder comprising a mixture of ethyl...
cellulose and α-terpineol, which was screen-printed onto the two sides of the LSGM electrolyte pellet and subsequently calcined at 1,350°C for 3 h. The LSCF and SFNTM/SFTM ink were formulated by combining the LSCF and SFNTM/SFTM powders with a binder. The LSCF anode and SFNTM/SFTM cathode ink were symmetrically screen-printed onto both sides of the electrolyte pellet and calcined at 1,100°C for 2 h. Silver ink and silver wires were used to cover the electrode surface and the electrode was fired at 750°C for 1 h to act as the current collector.

Characterization

The crystal structures of the as-synthesized and reduced SFNTM samples were investigated using X-ray diffraction (XRD, X’Pert Pro MPD diffractometer). The morphologies and microstructures of the reduced samples were observed using field-emission transmission electron microscopy (FETEM, JEM-2010F) and Scanning electron microscopy (SEM, FEI QUANTA-250). XPS (MULTILAB 2000) was conducted to characterize the surface valence compositions of the different elements. Temperature-programmed desorption of CO₂ (CO₂-TPD) measurements were performed using a Micromeritics 2000 instrument with an Ar carrier gas, and the temperature was increased from 50°C to 1,000°C at a rate of 10°C min⁻¹. The prepared materials were first treated under a He atmosphere at 300°C. The oxygen vacancy defects were detected by EPR (Bruker ELEXSYS E500). EPR tests were performed at 600 K with 10 mg sample and the sweep width is 1000G. The synthesized samples were tested by a four-probe direct current method. The Keithley 2,400 source meter was used to test on the dense bar shapes with a size of 2 mm × 4 mm×10 mm, which were prepared by dry pressing method and subsequently sintered at 1,200°C for 3 h, resulting in a density of over 95%. Electrical conductivity relaxation (ECR) measurement were performed under an abrupt switch of the atmosphere from 2:1 CO−CO₂ to 1:1 CO−CO₂. The variations in conductivity and test time were carried out until new equilibrium conditions are finally reached. Electrochemical impedance spectroscopy (EIS) of a single cell was performed using an

![Figure 1](https://example.com/figure1.png)

FIGURE 1
(A) XRD patterns of SFTM and Ni@SFNTM powders, (B) SEM image of Ni@SFNTM, inset is particle size distribution of Ni nanoparticles, (C) Schematic diagram of in situ exsolution of SFNTM under reducing conditions.
AutoLab 302N at an open circuit voltage (OCV) by passing pure CO₂ gas into the cathode at a flow rate of 50 ml min⁻¹ while directly exposing the anode side to ambient gas. The corresponding AC impedance was analyzed using ZSimpWin software. The composition of the exhaust gas was evaluated using the online gas chromatography.

Results and discussion

Material structural characterization

XRD was used to characterize the crystal structures of the SFNTM and Ni@SFNTM samples at room temperature. Figure 1A shows the XRD pattern of the SFNTM sample after calcination at 1,100°C for 5 h and the XRD pattern of the Ni@SFNTM sample after reducing SFNTM in 5% H₂/Ar at 800°C for 5 h. The SFNTM sample presents a pure cubic perovskite structure, which is consistent with that of the PDF card (PDF #34–0638) with no impurity phase; this result confirms that Ti and Ni were successfully co-doped into the perovskite structure. It should be noted that Ni@SFNTM maintains the cubic perovskite structure after the reducing treatment, which is consistent with the Rietveld refinement data (Supplementary Figure S1 and Supplementary Table S1). At the same time, there is an obvious Ni element peak in the XRD pattern of the Ni@SFNTM sample, which is consistent with that of the PDF card (PDF #34–0638), indicating that Ni can be exsolved in-situ from the SFNTM matrix under reducing conditions. Furthermore, the (110) peak of Ni@SFNTM shifts to a reduced angle, showing lattice expansion that results from the reduction of the B-site transition metal and the generation of oxygen vacancies. A small peak corresponding to Ni metal is observed for the Ni@SFNTM sample, showing that Ni can be exsolved in situ from the SFNTM matrix (Figure 1C). SEM analysis was used to observe the microstructures of the SFNTM and Ni@SFNTM particles. Figure 1B and Supplementary Figure S2 show that the SFNTM particles are

![HRTEM images and corresponding SEAD image patterns of SFNTM substrate, HRTEM images of Ni nanoparticles, STEM image and corresponding EDS maps of Ni@SFNTM](fig2.png)
interconnected with a smooth surface. After the reduction treatment, Ni@SFNTM presents a glossy surface, while spherical Ni nanoparticles with a mean size of 28 nm are uniformly distributed on the surface of the SFNTM perovskite substrate.

To further explore the composition and crystal structure of the synthesized samples, HRTEM characterization was performed on the Ni@SFNTM powder. As shown in Figure 2A, the SAED pattern comprises an image of the particles along the (111) crystal axis, which further confirms that the crystal structure of the SFNTM substrate is a cubic perovskite with a spatial group of Fm-3m. The observed lattice fringe distance of 0.283 nm corresponds to the (220) facet of the cubic SFNTM perovskite, which agrees with the XRD data.

Moreover, as shown in Figure 2B, the interplanar spacing (0.203 nm) of the nanoparticles is assigned to the (111) plane of the Ni metal. The spherical Ni nanoparticles are partially anchored in the SFNTM substrate, suggesting extended catalytic active sites and strong bonding between the nanoparticles and the substrate, which greatly enhances the chemical and thermal stability. EDS mapping was performed to further determine the elemental composition of the Ni@SFNTM (Figure 2C). All the elements in the SFNTM substrate are evenly distributed. Exsolved Ni nanoparticles are also found on the surface of the SFNTM substrate particle.

XPS was performed to determine the valence state changes of the surface elements in the as-prepared and reduced SFNTM samples. Figure 3A and Supplementary Table S2 show the Ni 2p spectra of the samples, before and after the reduction treatment. The figure shows a distinct Ni0 characteristic peak at ~852.2 eV in the Ni@SFNTM sample, further proving that Ni metal particles can be exsolved from the perovskite substrate under a reducing atmosphere. Ni$^{2+}$ peaks are also observed in the spectra, showing that only some Ni metal particles are exsolved from the substrate. Figures 3B,C show the XPS spectra of Fe 2p and Mo 3d for the Ni@SFNTM and SFNTM samples at room temperature. The peaks at 709.7, 711.3 and 713.0 eV belong to Fe$^{3+}$, Fe$^{2+}$, and Fe$^{4+}$, respectively (Zhang B.-W. et al., 2022). As shown in Supplementary Table S3, both the Fe$^{3+}$ and Fe$^{4+}$ contents decrease and the Fe$^{2+}$ content increases after reduction; the average valence of Fe decreases from 3.00 to 2.79. Moreover,
the Mo 3d spectrum presents a spin-orbit doublet structure, belonging to a mixed state of Mo$^{5+}$ and Mo$^{6+}$. It can also be seen in Supplementary Table S4 that the Mo$^{6+}$/Mo$^{5+}$ ratio decreases after the reduction treatment and the average valence decreases from 5.60 to 5.55, indicating the generation of oxygen vacancies in the SFNTM substrate. The elemental valence states of the Ni, Fe, and Mo transition metals strongly affect the electrocatalytic activity and ionic conductivity of the two samples. The binding energy distributions of the O 1s spectrum are shown in Figure 3D. There are three distinct peaks in the O 1s spectrum corresponding to lattice oxygen (O$_{\text{lat}}$), adsorbed oxygen species (O$_{\text{ads}}$), and hydroxyl or carbonate (OH$^{-}$/CO$_3^{2-}$) on the powder surface (Zhou et al., 2018; Liu et al., 2021). From the fitting results (Supplementary Table S5), it can be seen that the ratio of O$_{\text{ads}}$/O$_{\text{lat}}$ increases from 19.5% to 30.5% after reduction, indicating that the oxygen vacancy concentration and the adsorbed oxygen content on the sample surface are enhanced, promoting the electrochemical reaction process at the electrode.

Electron Paramagnetic Resonance (EPR) analysis was used to determine the relative peak intensities of the SFNTM and Ni@SFNTM samples, which correspond to the spin numbers of the lone electrons. Ni@SFNTM shows a higher relative peak intensity than that of SFNTM (Figure 4A), indicating that Ni@SFNTM has a higher concentration of oxygen vacancies; this result is consistent with the XPS results of the O 1s spectra (Figure 3D) (Xi et al., 2021). Moreover, the surface oxygen exchange and bulk diffusion properties of the two samples were evaluated using the ECR method, which can imply the kinetics of the surface CO$_2$-RR and bulk diffusion in a CO$_2$-rich atmosphere (Zhu et al., 2016; Li et al., 2019). Figure 4B shows that the oxygen exchange rate can reach equilibrium state with an increase in the CO$_2$ concentration. The shorter the relaxation time, the faster the oxygen exchange rate. The Ni@SFNTM sample presents a shorter relaxation time than the SFNTM sample at 800°C, implying that the Ni@SFNTM sample has a faster oxygen ion exchange rate due to the increased oxygen vacancies after reduction and can speed up the oxygen transfer process. Additionally, the calculated surface exchange coefficients (K_{chem}) of SFNTM and Ni@SFNTM are 2.42 \times 10$^{-5}$ cm s$^{-1}$ and 8.67 \times 10$^{-5}$ cm s$^{-1}$, respectively. The corresponding chemical bulk diffusion coefficients (D_{chem}) are 2.58 \times 10$^{-6}$ cm2 s$^{-1}$ for SFNTM and
7.85 \times 10^{-6} \text{ cm}^2 \text{s}^{-1} \) for Ni@SFNTM. In SOECs, the CO2 chemisorption process on the surface of the cathode is a rate-limiting step for CO2-RR, where the adsorption capacity of CO2 is crucial for the cathode materials of SOEC (Lv et al., 2021). The CO2 adsorption properties of Ni@SFNTM and SFNTM were determined using CO2-TPD measurements (Figure 4C). Two desorption peaks at ~400 and ~800°C can be clearly observed in the desorption process of CO2 corresponding to the physical desorption and the chemical desorption, respectively. At low temperatures, both samples exhibit similar physical desorption processes (Ye et al., 2017). However, both the chemical desorption peak and the corresponding peak area of Ni@SFNTM are higher than those of SFNTM at high temperatures, indicating an enhanced strong binding force for CO2 adsorption caused by the increased oxygen vacancy and exsolved Ni nano particles. Furthermore, thermogravimetric relaxation was used to investigate the weight changes of the Ni@SFNTM and SFNTM samples by rapidly switching the N2 atmosphere to a CO2 atmosphere at 600°C. Figure 4D shows that the weights of the two samples rapidly increase owing to the adsorption of CO2 and reach equilibrium when the adsorption of CO2 reached saturation. The Ni@SFNTM sample has a higher weight increase (0.68 %) and shorter adsorption time, indicating that Ni@SFNTM has more oxygen vacancies and stronger CO2 chemisorption. This result is in good agreement with the XPS and CO2-TPD results.

In order to study the electrochemical performance and analyze the CO2 electrolysis reaction of the two cathode materials, EIS was performed on the LSGM electrolyte-supported single cells with the configuration of SFNTM/Ni@SFNTM|SDC|LSGM|LSCF under a pure CO2 atmosphere at an OCV. Figure 5A shows the polarization resistance \(R_p \) of a single cell with Ni@SFNTM and SFNTM as cathodes at 800°C. The \(R_p \) value of Ni@SFNTM is 0.29 \(\Omega \text{ cm}^2 \), which is much lower than that of SFNTM (0.48 \(\Omega \text{ cm}^2 \)). The EIS data obtained at applied potential of 1.4 V and 800 °C were analyzed, as shown in Supplementary Figure S3. Clearly, the SOEC with the Ni@SFNTM cathode significantly reduces the \(R_p \) at 1.4 V, which is consistent with the OCV. Owing to the high catalytic activity of Ni metal and enhanced oxygen vacancies, the reduced \(R_p \) improves the CO2-RR activity of Ni@SFNTM. Figure 5B shows the distribution of the relaxation time (DRT) technology used to explore the separation of the pivotal electrode reaction processes and analyze the deconvolution of the EIS data to further understand the CO2-RR electrocatalysis process (Zhang et al., 2015; Zhang et al., 2016). There are three areas in the DRT curves of the Ni@SFNTM and SFNTM samples.
The peaks in the high-frequency area (HF) are primarily associated with the oxygen evolution reaction in the anode and the transportation of O^{2-} through the interface of the electrodes and electrolyte (Zhou et al., 2018; Jiang et al., 2019). The low-frequency (LF) area is likely attributed to gas adsorption and the dissociation processes on the cathode surface (Li et al., 2017b). Additionally, the intermediate frequency (IF) is between HF and LF, and represents reactant diffusion and surface processes (Chen et al., 2018; Tian et al., 2020). Both IF and LF exhibit kinetic processes on the electrode surface. It is worth noting that the IF and LF of the Ni@SFNTM cathode significantly decreases, demonstrating that the CO_2 adsorption and electrolysis reaction processes improved. The positions of the characteristic peaks related to IF and LF shift to higher frequencies, suggesting that the electrochemical reaction kinetics should be accelerated. In contrast, after the reduction treatment, the exsolved Ni metal and the increased oxygen vacancies supply more active reaction sites for CO_2 adsorption and activation, while the formed metal-oxide heterostructure with strong interaction enhances the surface exchange reactions (Lee et al., 2021; Zhang L. H. et al., 2022). This occurrence indicates that the CO_2-RR performance of the Ni@SFNTM...
Consequently, the current-voltage (I-V) curves of the single cells with SFNTM and Ni@SFNTM cathodes were measured at 650−800°C respectively, (Figures 6A,B). The CO2 electrolysis current density of the Ni@SFNTM cathode is 2.54 A cm−2 at 1.8 V and 800°C, outperforming the SFNTM cathode (1.86 A cm−2). Because of the anodes and electrolytes of the single cells are similar, the improved CO2-RR performance can be mainly ascribed to the excellent electrocatalytic activity of the Ni@SFNTM cathode. Moreover, the current densities of Ni@SFNTM are also comparable to those of other perovskite oxide cathodes (Supplementary Table S6). The short-term stability measurements of CO2-RR at various voltages are shown in Figure 6C; the Ni@SFNTM-based single cell exhibits an excellent CO2-RR performance at different electrolysis potentials. For instance, the current densities of the single cells with Ni@SFNTM cathode are 1.88 and 2.54 A cm−2 at 1.6 and 1.8 V, respectively, which is approximately 1.43 and 1.36 times than that of the single cell with the SFNTM cathode (1.31 and 1.87 A cm−2). Furthermore, gas chromatographic analysis was used to obtain the CO production rate and corresponding Faradaic efficiency by evaluating the exhaust gas collected at different applied potentials during short-time stability measurements. As shown in Figures 6D,E, both the CO production rate and Faradaic efficiency of the two cells increase with increasing applied potential; the Faradaic efficiency of both cells is close to 100%, demonstrating that CO is the primary product and there is no coke deposition during CO2 electrolysis. The CO generation rate of the Ni@SFNTM-based single cell is 12.5 ml min−1 cm−2 at 1.6 V, approximately 1.56 times that of the SFNTM-based single cell (8 ml min−1 cm−2). This further demonstrates that the formed metal-oxide heterostructure significantly enhances the CO2-RR performance. Additionally, the single cell with the Ni@SFNTM cathode exhibits excellent long-term operational stability. Figure 6F shows that a stable current density is maintained for 100 h under an applied potential of 1.4 V at 800°C in a pure CO2 atmosphere. These results indicate that Ni@SFNTM with a Ni metal and SFNTM oxide heterostructure is a potential SOEC cathode for highly efficient CO2 electrolysis.

Conclusion

In this study, Ti and Ni co-doped SFM perovskite oxides were prepared and used as cathodes for the direct electrolysis of CO2 in SOECs. A metal-oxide heterostructure was obtained after a reducing treatment in 5% H2/Ar at 800°C, providing more reactive sites for CO2-RR, enhancing the chemisorption and activation capacity of CO2, and significantly improving electrolysis performance. Moreover, the single cell with Ni@SFNTM cathode presented a large CO2 electrolysis current density of 2.54 A cm−2 at 1.8 V and 800°C, exceeding that of the cell comprising the SFNTM cathode (1.87 A cm−2 at 1.8 V); it also exhibits excellent long-term stability. This improved performance is primarily attributed to the metal-oxide heterostructure and abundant oxygen vacancies created by the reduction treatment and the strong interaction between the metal and oxide. These results indicate that Ni@SFNTM with the Ni metal and SFNTM oxide heterostructure is a potential SOEC cathode for the efficient electrolysis of CO2, and this method provides a common strategy for designing high performance electrode materials for SOECs.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding authors.

Author contributions

SZ, main experiment conduct and data curation, manuscript writing. LZ and CX, literature survey, characterization of materials and manuscript curation. DZ and QY, project supervision, financial support, critical review, and manuscript discussion. WS, Data analysis, drawing, manuscript writing and revision. KS, supervision and funding acquisition.

Funding

The work was financially supported by the National Natural Science Foundation of China (Grant Nos 22178023 and 22078022) and Fundamental Research Funds for the Central Universities (FRF-TP-19-077A1).

Acknowledgments

We also thank financial support from the Knowledge Innovation Program of Wuhan Basic Research (2022020801010354) and Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2022SX-TD015).
Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2022.1027713/full#supplementary-material
Xu, C. M., Sun, W., Ren, R. Z., Yang, X. X., Ma, M. J., Qiao, J. S., et al. (2021). A highly active and carbon-tolerant anode decorated with in situ grown cobalt nano-catalyst for intermediate-temperature solid oxide fuel cells. Appl. Catal. B-Environmental 282, 119553. doi:10.1016/j.apcatb.2020.119553

Xu, C. M., Zhang, L. H., Sun, W., Ren, R. Z., Yang, X. X., Ma, M. J., et al. (2022). Co-improving the electrocatalytic performance and H2S tolerance of a Sr2Fe1.5Mo0.5O6-δ based anode for solid oxide fuel cells. J. Mat. Chem. A Mat. 10, 16280–16289. doi:10.1039/d2ta03136a

Xu, C. M., Zhen, S. Y., Ren, R. Z., Chen, H. S., Song, W. L., Wang, Z. H., et al. (2019). Cu-Doped Sr2Fe1.5Mo0.5O6-δ as a highly active cathode for solid oxide electrolytic cells. Chem. Commun. 55, 8009–8012. doi:10.1039/c9cc03455b

Yang, C. C., Tian, Y. F., Pu, J., Chi, B. (2022). Anion fluoride-doped La0.6Sr0.4Fe0.8Ni0.2O3 perovskite cathodes with enhanced electrocatalytic activity for solid oxide electrolysis cell direct CO2 electrolysis. ACS Sustain. Chem. Eng. 10, 16280–16289. doi:10.1021/acssuschemeng.2c01121

Ye, L. T., Zhang, M. Y., Huang, P., Guo, G. C., Hong, M. C., Li, C. S., et al. (2017). Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 8, 14785. doi:10.1038/ncomms14785

Zhang, B.-W., Zhu, M.-N., Gao, M.-R., Xi, X., Duan, N., Chen, Z., et al. (2022). Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism. Nat. Commun. 13, 4618. doi:10.1038/s41467-022-32393-y

Zhang, L. H., Xu, C. M., Sun, W., Ren, R. Z., Yang, X. X., Luo, Y. Z., et al. (2022). Constructing perovskite/alkaline-earth metal composite heterostructure by infiltration to revitalize CO2 electrolysis. Sep. Purrif. Technol. 298, 121475. doi:10.1016/j.seppur.2022.121475

Zhang, S. W., Zhu, K., Hu, X. Y., Peng, R. R., Xia, C. R. (2021). Antimony doping to greatly enhance the electrocatalytic performance of Sr2Fe1.5Mo0.5O6-δ perovskite as a ceramic anode for solid oxide fuel cells. J. Mater. Chem. A. 9, 24336–24347. doi:10.1039/d1ta00619h

Zhang, X. M., Liu, L., Zhao, Z., Tu, B. F., Ou, D. R., Cui, D. A., et al. (2015). Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode. Nano Lett. 15, 1703–1709. doi:10.1021/nn5043566

Zhang, X. M., Wu, W. M., Zhao, Z., Tu, B. F., Ou, D. R., Cui, D. A., et al. (2016). Insight into the oxygen reduction reaction on the LSM/GDC interface of solid oxide fuel cells through impedance spectroscopy analysis. Catal. Sci. Technol. 6, 4945–4952. doi:10.1039/c5cy02232k

Zhang, Y. Q., Jacobs, G., Sparke, R., Dry, M. E., Davis, B. H. (2002). CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts. Catal. Today 71, 411–418. doi:10.1016/s0920-5861(01)00468-0

Zheng, Y., Wang, J. C., Zhou, Z. W., Liu, Z., Tu, B. F., Ou, D. R., Cui, D. A., et al. (2017). A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology. Chem. Soc. Rev. 46, 1427–1463. doi:10.1039/c6cs00403b

Zhou, Y. J., Zhou, Z. W., Song, Y. F., Zhang, X. M., Guan, F., Lv, H. F., et al. (2018). Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. Nano Energy 50, 43–51. doi:10.1016/j.nanoen.2018.05.054

Zhu, J. W., Liu, G. P., Liu, Z. K., Chu, Z. Y., Jin, W. Q., Xu, N. P. (2016). Unprecedented perovskite oxyfluoride membranes with high efficiency oxygen ion transport paths for low-temperature oxygen permeation. Adv. Mat. 28, 3511–3515. doi:10.1002/adma.201505959