Genome Sequence of a Lytic Staphylococcus aureus Bacteriophage Isolated from Breast Milk

Joshua J. Iszatt, Alexander N. Larcombe, Luke W. Garratt, Stephanie Trend, Stephen M. Stick, Patricia Agudelo-Romero, Anthony Kicic

Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia
Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, Western Australia, Australia
Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, Western Australia, Australia
Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
European Virus Bioinformatics Center, Jena, Thuringia, Germany

Patricia Agudelo-Romero and Anthony Kicic are co-senior authors. Author order was determined both on contribution and seniority.

ABSTRACT We identified a double-stranded DNA (dsDNA) bacteriophage appearing to belong to Herelleviridae, genus Kayvirus. The bacteriophage, Biyabeda-mokiny 1, was isolated from breast milk using a clinical isolate of Staphylococcus aureus. The genome is 141,091 bp in length and encodes 230 putative coding sequences.

Antimicrobial resistance (AMR) in bacteria is a growing concern for public health worldwide (1). One pathogen, Staphylococcus aureus (2), is known for its high rate of transient and persistent colonisation and its ability to develop resistance (3, 4). This has led to a resurgence of interest in bacteriophage therapy (BT) (5–7) and its therapeutic application (8, 9). Here, we report the genome sequence of Biyabeda-mokiny 1, a bacteriophage isolated using a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA).

Biyabeda-mokiny 1 was isolated from breast milk samples obtained from the COMET study (University of Western Australia [UWA], Perth, Western Australia, Australia), enriched using a MRSA clinical isolate, and propagated within an orbital shaker at 50 rpm and 37°C for 24 h. Phage were then purified by three rounds of single-plaque isolation and propagation on agar plates using its host as recommended in reference 10. Purified bacteriophage DNA was extracted from high-titer (1 × 10⁹) lysates using the DNeasy blood and tissue kit (Qiagen) and sent to the Australian Genome Research Facility (AGRF) for library preparation (Nextera XT). Illumina whole-genome sequencing using the NovaSeq 6000 platform (NovaSeq Control Software v1.7.5) was used to generate 3,690,362 150-bp paired-end (PE) reads for assembly. Adaptor trimming was done using Trimmomatic (v0.39) (11), and BBtools (v38.96) (12) was used to perform digital normalization to 500× and a minimum depth per read of 5×. Reads were then merged and assembled, de novo, using SPAdes Genome Assembly Algorithm (v3.15.4) (13). Draft assemblies were improved using Pilon (v1.24) with–drags parameter (14), and the polished assembly was then used to calculate depth coverage with both deduplicated and normalized reads using BBmap (12) to obtain the maximum and target coverage metrics. Annotations were performed using Prokka (v1.14.6) (15) in combination with the PHROG database (16). All tools were run with default parameters unless otherwise specified.

Editor Simon Roux, DOE Joint Genome Institute
Copyright © 2022 Iszatt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
Address correspondence to Anthony Kicic, Anthony.Kicic@telethonkids.org.au.
‡For WAERP, see https://walyanrespiratory.telethonkids.org.au/projects/WAERP/; for AREST CF, see https://arestcf.telethonkids.org.au/.
The authors declare no conflict of interest.
Received 27 September 2022
Accepted 4 November 2022
Published 23 November 2022

December 2022 Volume 11 Issue 12 10.1128/mra.00953-22
In addition, Basic Local Alignment Search Tools (BLASTn) (17) using the NCBI database (nucleotide) was used to obtain the genomes closest to Biyabeda-mokiny 1, and FastANI (v1.33) (18) was used for pairwise genome comparison by generating the average nucleotide identity (ANI) percentage (Table 1). Basic statistics such as length and GC content were calculated using Quast (v5.0.2) (19), and completeness was confirmed via CheckV (v0.9.0), identifying direct terminal repeats within the viral contig (20) (Table 1). All databases and software used were accessed on 29 July 2022 unless otherwise specified.

Based on the genomic features previously described, and the pairwise alignment scores in Table 1, Biyabeda-mokiny 1 is likely to belong to Herelleviridae, particularly the genus Kayvirus. Similarly classed bacteriophages have been previously isolated, characterized, and identified as therapeutic candidates (21–24). These criteria have been based on previously published taxonomic guidelines (25).

All samples were collected under approval from relevant ethics committees. We declare that they have no conflicts of interest. This article does not contain any studies involving animals performed by any author.

Data availability. The assembled and annotated genome is available through GenBank under accession number OP263967, BioProject number PRJNA862986, and BioSample accession number SAMN30202906 (Biyabeda-mokiny 1), as well as Sequence Read Archive number SRX17131995. All scripts used for the assembly and analysis of raw reads are contained within a git repository publicly available at https://github.com/JoshuaIszatt/Phanatic.

ACKNOWLEDGMENTS

Member institutions of the Western Australian Epithelial Research Program (WAERP) include the Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia, and St John of God Hospital, Subiaco, Western Australia, Australia. Member institutions of the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) include the Wal-Yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia; Murdoch Children’s Research Institute, Melbourne, Victoria, Australia; and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.

This study was supported by a Department of Health WACRF Project Grant, a Perpetual IMPACT Philanthropy Grant, and a Wesfarmers Centre of Vaccines and Infectious Diseases Seed Funding Grant. L.W.G. was supported by an NHMRC Early Career Fellowship (1142505). S.M.S. holds an NHMRC Investigator Grant, and A.K. is a Rothwell Family Fellow.

We acknowledge that this project was conducted on the traditional homelands of the Noongar people, with phages isolated from waters across Noongar Wadjak. Phage WA thanks Sharon Gregory, who named the phages in this study in Wadjak Noongar language. Biyabeda-mokiny bibi Wadjak (Biyadeda-mokiny) translates as “squid-like (from) breast Wadjak.” Breast milk samples were obtained from the COMET study and were collected by Tobias Strunk (UWA, Perth, Western Australia, Australia); that study was supported by the Women and Infants Research Foundation through a New Investigator Grant and Postgraduate Scholarship. The *Staphylococcus aureus* clinical isolate used to propagate Biyadeda-mokiny was generously provided by Scott Bell Queensland Institute of Medical Research (QIMR Berghofer, Queensland, Australia). We also thank Salman Atshan (Basrah University, Iraq) for helpful discussions around bacteriophage isolation.
REFERENCES

1. Antimicrobial Resistance Collaborators. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0.

2. Mulani MS, Kamble EE, Kumkar SN, Taware MS, Parsedi KR. 2019. Emerging strategies to combat ESRAKE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10:539. https://doi.org/10.3389/fmicb.2019.00539.

3. Foster TJ. 2005. Immune evasion by staphylococci. Nat Rev Microbiol 3: 948–958. https://doi.org/10.1038/nrmicro1289.

4. Foster TJ. 2017. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 41:430–449. https://doi.org/10.1093/femsre/fux007.

5. Petrovic Fabijan A, Lin RCY, Ho J, Maddock S, Ben Zakour NL, Iredell JR, Westmead Bacteriophage Therapy Team. 2020. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol 5: 465–472. https://doi.org/10.1038/s41556-019-0863-z.

6. Gainey AB, Burch AK, Brownstein MJ, Brown DE, Fackler J, Horne B, Biswas B, Bivens BN, Malagon F, Daniels R. 2020. Combining bacteriophages with cefiderocol and meropenem/vaborbactam to treat a pan-drug resistant Achromobacter species infection in a pediatric cystic fibrosis patient. Pediatr Pulmonol 55:2990–2994. https://doi.org/10.1002/ppul.24945.

7. Law N, Logan C, Yung G, Furr C-LL, Lehman SM, Morales S, Rosas F, Gaidamaka A, Bilinsky I, Grint P, Schooley RT, Aslam S. 2019. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infec tion 47:665–668. https://doi.org/10.1007/s11510-019-01319-0.

8. Bretaudue L, Tremblais K, Aubrit F, Meichenin M, Arnaud I. 2020. Good manufacturing practice (GMP) compliance for phage therapy medicinal products. Front Microbiol 11:1161. https://doi.org/10.3389/fmicb.2020.01161.

9. Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sonok R. 2018. Systematic discovery of antiphage defense systems in the microbial pan-genome. Science 359:eaar4120. https://doi.org/10.1126/science.aar4120.

10. Hyman P. 2019. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals (Basel) 12:35. https://doi.org/10.3390/ ph12010035.

11. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimming application for illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

12. Bushnell B, Rood J, Singer E. 2017. BBMerge—accurate paired shotgun read merging via overlap. PLoS One 12:e0185056. https://doi.org/10.1371/journal.pone.0185056.

13. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikonenko SI, Pham S, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0201.

14. Walker BJ, Abell T, Shea T, Priest M, Abouelliel A, Sakhikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. https://doi.org/10.1371/journal.pone.0112963.

15. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.

16. Terzian P, Olo Ndele E, Galiez C, Lossouarn J, Perez-Bucio RE, Mom R, Toussaint A, Petit MA, Enault F. 2021. PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR Genom Bioinform 3:agab067. https://doi.org/10.1093/nargab/lqab067.

17. NCBI Resource Coordinators. 2016. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44:D7–D19. https://doi.org/10.1093/nar/gkv1290.

18. Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput AHi analysis of 90k prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. https://doi.org/10.1038/s41467-018-07641-9.

19. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086.

20. Nayfach S, Camargo AP, Schulz F, Elso-Fadros E, Roux S, Kyrpides NC. 2021. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 39:578–585. https://doi.org/10.1038/s41558-020-00774-7.

21. Lehnman SM, Mearns G, Rankin D, Cole RA, Smrekar F, Branston SD, Morales S. 2019. Design and preclinical development of a phage product for the treatment of antibiotic-resistant Staphylococcus aureus infections. Viruses 11:88. https://doi.org/10.3390/v11010088.

22. Philipson CW, Voegtly LJ, Lueder MR, Long KA, Rice GK, Frey KG, Biswas B, Cer RZ, Hamilton T, Bishop-Lilly KA. 2018. Characterizing phage genomes for therapeutic applications. Viruses 10:188. https://doi.org/10.3390/v10040188.

23. Leskinen K, Tuomala H, Wicklund A, Horsma-Heikinen J, Kuusela F, Skurnik M, Klijunen S. 2017. Characterization of vB_SauM-RuSa02, a Twort-like bacteriophage isolated from a therapeutic phage cocktail. Viruses 9:258. https://doi.org/10.3390/v9040258.

24. Cui Z, Feng T, Gu F, Li Q, Dong K, Zhang Y, Zhu Y, Han L, Qin J, Guo X. 2017. Characterization and complete genome of the virulent Myoviridae phage JD07 active against a variety of Staphylococcus aureus isolates from different hospitals in Shanghai, China. Virol J 14:26. https://doi.org/10.1186/s12985-017-0701-0.

25. Turner D, Kropinski AM, Adriaenssens EM. 2021. A roadmap for genome-based phage taxonomy. Viruses 13:506. https://doi.org/10.3390/v13020506.