Noninferior Red Cell Concentrate Quality after Repeated Air Rescue Mission Transport for Prehospital Transfusion

Clemens Boecker¹, b Nicole Sitzmannb Jose Luis Halblaub Mirandaa
Hajo Suhr⁵ Philipp Wiedemannb Karen Biebackb Marcus Rudolphp⁶
Harald Klüterb

¹Department of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany; bInstitute of Transfusion Medicine and Immunology, German Red Cross Blood Service, Baden-Württemberg – Hessen, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; ⁵Department of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany; ⁶Scientific working group, DRF Stiftung Luftrettung gAG, Filderstadt, Germany

Keywords
Prehospital transfusion · Red blood cell morphology · Air rescue · Red cell concentrate storage · Flow morphometry · Emergency transfusion

Abstract
Background: Transfusion of red cell concentrates (RCCs) is an integral therapy after severe hemorrhage or trauma. Prehospital transfusion offers an immediate intervention in emergency cases. Air ambulance-based prehospital transfusion, already used in different countries, is currently established in Germany. Limited information is available for regulatory-compliant transport logistics of RCCs and their quality after repeated air rescue missions. Thus, the aim of this study was (i) to validate regulatory-compliant logistics and (ii) to assess product quality, analyzing biochemical parameters and RBC morphology. Study Design and Methods: Due to regulatory requirements, we adapted a rotation system of 1 day transport, 1 day quarantine storage and 1 day storage over the entire RCC shelf life. RCCs transported on air rescue missions (flight group) were compared against a control group, treated identically except for helicopter transport. RCCs were visually inspected, and their temperature was documented throughout the entire rotation cycles. RCCs at the end of shelf life (end point samples) were assessed for levels of hemoglobin, hematocrit, free hemoglobin, hemolysis, mean corpuscular volume, potassium and pH. In addition, morphological changes were assessed using flow morphometry. Results: In total 81 RCCs were assessed in the flight group and 50 in the control group. Within the flight group, 30 RCCs were transfused. RCCs were dispatched on average 11 times (7–13 times). The average flight time was 18.3 h (6.6–28.8 h). The rotation system ensured adherence to regulatory guidelines, especially compliance to storage conditions of +2 to +6°C of intermediate storage. Biochemical and morphological quality parameters did not exhibit any changes upon repeated air rescue missions. A correlation with respect to the flight time was not observed either. Discussion: The quality of RCCs after repeated air rescue missions is noninferior to control samples regarding biochemical and morphological parameters. The product quality is within German regulations for up to 42 days of storage. The logistics and maintenance of the thermal conditions are safe and feasible. Thus, a rotation system of RCCs offers a regulatory-compliant option to supply air rescue missions with RCCs to allow life-saving prehospital transfusions at the incident scene. © 2022 The Author(s)
Introduction

Hemorrhage is one of the most common causes of death after trauma [1–3]. Transfusion of blood components in hemorrhagic shock is an integral part of therapy in the hospital [4, 5]. Integrating clinical transfusion therapy already into prehospital care of severely injured patients was first implemented in the military [6] and recently also in the civilian sector in a few European and non-European countries [7–9]. Benefits of preclinical transfusions have been documented especially when patients need to be transported long distances [10–13]. Short transport distances are currently under investigation in certain countries [7, 11, 14].

For prehospital transfusion various aspects need to be taken into account: severity of trauma, high risk for hemorrhagic shock, urgency of immediate transfusion and limited availability of blood products [4]. Air ambulance appears particularly useful as it allows for long ranges and fast transport times. In order to implement air ambulance-based transport for prehospital transfusions in Germany, the requirements of the Transfusion Act, the Hemotherapy Guidelines and the Cross-Sectional Guidelines for Therapy with Blood Components and Plasma Derivatives of the Bundesärztekammer have to be followed [15, 16]. In particular, the specifications for transport and storage of red blood cell concentrates (RCCs) are crucial. Limited information is available for transport logistics of RCCs especially regarding repeated transport, total flight hours and reentry into regular blood bank storage and use. Current German pilot projects established a concept transporting RCCs for up to 3 days and reentering into regular blood bank storage and use [17, 18]. Due to regulatory requirements, we adapted a rotation system of 1 day transport, 1 day quarantine storage and 1 day storage over the entire RCC shelf life.

Previous studies already suggested that helicopter transport (e.g., large temperature fluctuations, changes in air pressure and vibrations) did not affect RCC quality compared to control groups [17, 19]. However, detailed analyses of RCC quality after repeated transport throughout the shelf life of blood components with different flight times are lacking. The aim of this study was (i) to establish a procedure complying to regulatory requirements regarding the logistics, packaging, transport, and storage of RCCs and (ii) to assess product quality, analyzing biochemical parameters and RBC morphology using our newly developed flow morphometry method [20]. To achieve this, RCCs transported on air rescue missions (flight group) were compared against a control group, treated identically except for the transport.

Materials and Methods

Storage and Transport Logistics

To provide patients suffering from vital threatening hemorrhage with blood components at an early stage, a system was implemented and validated which ensures transport and storage of RCCs to the flight center (DRF Luftrettung GmbH) and back to the blood bank of the Mannheim institute of the German Red Cross Blood Services (blood bank) on a daily routine basis. Due to regulatory requirements, a rotation system was established where RCCs as well as lyoplasma were transported every third day (Fig. 1). Every day, 2 RCCs with 2 lyoplasma units, 3 bedside tests, and a temperature data logger (ThermoScan Datenlogger™, TRANSMED, Nürnberg, Germany) were packed in a passively cooled Pelican Crēdo ProMed™ 4-L carry bag shipper (PELI Biothermal™, Plymouth, MN, USA) (suppl. Fig. 1; see www.karger.com/doi/10.1159/000520650 for all online suppl. material). These shippers are tested to ISTA7D profiles, as stated by the company. Before adding the blood products, the Crēdo box was equipped with coolants filled with phase change material and vacuum-insulated panels to assure a temperature range of +2 to +6°C (day 1). The cool box was transported to the DRF station and taken on each mission of the DRF rescue helicopter (Airbus EC 135 helicopter, Christoph 53 of the DRF Stiftung Luftrettung, base Mannheim). At the end of the mission day, the products were returned back from the DRF station to the blood bank in exchange for the next products packed within a Crēdo box (day 2). After return, the products underwent a first visual inspection, and their temperature was documented. The allowed transport temperature range is defined as +2 to +10°C. Regulatory specifications, however, require adherence to storage conditions, defined as +2 to +6°C (Guideline Hemotherapy Federal Medical Association [15]). After 1 day quarantine storage, defined release criteria were checked: visual inspection, compliance of temperature range and shelf life (day 3). Upon proof of compliance, the products reentered the rotation cycle. This process was repeated until emergency use of the blood components or until the end of the shelf life of the RCCs. The control samples were packed and unpacked in the same way as the flight samples. However, instead of being transported to the DRF station, the control samples were stored for the same time duration as the flight samples in Crēdo shippers, which were held at room temperature within the blood bank.

Operating times of the helicopter were from sunrise (7:00 a.m. at the earliest) to sunset. During this time, the products were carried on regular missions. Flight altitude was around 300 m. Flight time durations were documented for each RCC and total flight duration added up at the end of shelf life.

Rotation System and Sampling

From both control and flight RCCs, end point samples were taken (a) once the RCC reached the end of their shelf life or (b) after transfusion or (c) after not passing the compliance check according to visual inspection or temperature range (Fig. 1). For some units, initial samples were taken. Before sampling, the units were always rotated for 20 min at 0.1 rps (ACR Rotator, Lmb Technology GmbH, Schwag, Germany) and then samples taken from sterile welded off pouches or segments.

Biochemical Quality Control

End point samples (flight and control group) were assessed for levels of hemoglobin (Hb), hematocrit (Hct), free hemoglobin (fHb), hemolysis, mean corpuscular volume (MCV), potassium, and pH.

Hb, Hct, and MCV were measured from a 4-mL aliquot using a hematology analyzer (CELLDYN Ruby, Abbott GmbH & Co. KG, Wiesbaden, Germany). Potassium levels and pH values were measured using a blood gas analyzer (ABL 80 Flex, Radiometer). DOI: 10.1159/000520650
GmbH, Krefeld, Germany). For the fHb measurement, 2-mL aliquots were centrifuged at 4,000 rpm for 10 min (Rotina 38, Hettich GmbH & Co. KG, Tuttlingen, Germany). 50 μL of the supernatant were diluted in 500 μL buffer solution (fHb, Bioanalytic GmbH, Freiburg, Germany) and analyzed photometrically (DR 5000, Hach Lange GmbH, Düsseldorf, Germany). Hemolysis levels were calculated (equation 1):

\[
\text{hemolysis} \% = \frac{100 - \frac{\text{Hkt}\times(1/l)}{100\ \%}}{\text{Hb}\times g/l\times d/l\times 10}.
\]

Flow Morphometry
During storage, RBCs undergo progressive biochemical and morphological changes collectively termed as storage lesions. Healthy discocytes degrade via the echinocyte pathway and finally undergo apoptosis [21, 22]. During this process, the cells experience an expansion of the outer leaflet relative to the inner leaflet of their cell membrane [23] changing from discoid to spiculated echinocyte and finally into spherical morphologies [24] (Fig. 2). These spherical morphologies, spherocytosis and spherocytes, are less effective in oxygen delivery after transfusion [25]. Previous work showed a correlation between the proportion of spherical forms and hemolysis [20].

For flow morphometry, a 100-μL sample was diluted 1:400 in 0.9% NaCl. Erythrocytes were incubated for 10 min at room temperature before measurement to stabilize their shapes. Analysis was performed as published previously using a flow cell system (Ibidi GmbH, Martinsried, Germany) combined with an in situ suspension microscope [26, 27]. Approximately 3,000 microscopic images of erythrocytes were captured within the moving suspension of each sample. The detected sharp cells were classified using a convolutional neural network (Resnet50), which divides the RBCs into 6 classes representing different degrees of degradation (Fig. 2). Additionally, we calculated a morphological index (MI) to receive a single value for the quality of each RCC. The weighted values for the different morphologies were slightly modified as compared to the conventional definition of the MI [28]. This was done in order to align with our morphology classification: discocytes (weighted value 1), echinocytos1 (weighted value 0.8), echinocytos2 (weighted value 0.6), echinocytos3 (weighted value 0.4), and the spherical forms (weighted value 0.2).

Statistics
Statistical analysis was performed using GraphPad Prism 9.1.2 (GraphPad Software, San Diego, CA, USA). Data are depicted as scatter plots with mean value and 95% confidence intervals (95% CI). Flight and control groups were compared using unpaired two-sided Mann-Whitney U tests. A p value of 0.05 was regarded as statistically significant (α = 0.05). Possible effect sizes of the flight are plotted as Hodges-Lehmann estimates (medians of the computed difference between each value in the flight group and each value in the control group) with 95% CIs.

Simple linear regression was used to calculate the correlation between flight time duration and RBC quality parameters. The linear regression coefficient was used as a measure for goodness of fit in combination with p value for the slope’s difference to nonzero.

Results
A rotation system allows regulatory-compliant storage and transport logistics of RCC units for air rescue missions.
In total 81 blood group 0 rhesus D-negative RCCs were included in the flight group and 50 blood group AB rhesus D-positive RCCs in the control group. RCCs were dispatched on average 11 times (7–13 times) before they were excluded from the study (Fig. 3). The average flight time duration was 18.3 h (6.6–28.8 h).

The rotation system ensured adherence to regulatory guidelines, especially to defined transport temperature ranges. The project ran over an entire period of 12 months, thus encompassing all seasonal temperature ranges. Only 4 from in total 131 RCCs showed temperature deviation issues, 2 within each study group. We excluded 3 units from the study upon visual inspection – the suspicion of hemolysis, however, was not confirmed. The established rotation system was feasible, allowing for packaging, transport, and storage of RCC units with quality assurance in between the cycles.

Within the flight group, 30 RCCs were transfused [29].

Biochemical Parameters of RBC Quality Show Noninferiority of RCCs after Repeated Air Rescue Missions

The next step was to test whether repeated air rescue missions might affect quality attributes of RBCs. The German hemotherapy guidelines ask to document the intactness of RCC bags, and no hemolysis upon visual inspection and a hemolysis rate below 0.8% at the end of shelf life. All units were intact and had a hemolysis rate below the limit of 0.8%. There were no significant differences between flight and control samples with respect to any biochemical measurement (Fig. 4).

Flow Morphometric Analysis Supports Noninferiority of RCCs after Repeated Air Rescue Missions

Flow morphometry measurement combined with a convolutional neural network (Resnet50) analysis enabled us to classify the RBCs into 6 classes representing different degradation stages (Fig. 2). The spherical forms with reduced oxygen transport capacity are indicated in red [25] (Fig. 2a). Flight and control group showed no difference between the
Fig. 3. RCC subgroups in flight and control groups depicted separately with respect to different quality control measurements. Bold numbers indicate the number of RCCs included in the study and in analysis. Gray fields indicate the number of samples excluded from analysis due to temperature deviation or failure of visual inspection. Only samples stored longer than 30 days were analyzed.

Fig. 4. Biochemical parameters of RCCs in flight and control groups. The measured biochemical variables are depicted on the left y-axis, the Hodges-Lehmann estimate on the right y-axis. The sample groups (n = 45 flight and n = 48 control group) are depicted as scatter plot with mean values and confidence intervals (95% CI). The Hodges-Lehmann estimate with the requested range of the 95% CI displays the possible effect size of the flight. The effect sizes of the biochemical parameters with corresponding p values and 95% CI are shown.

- Hemolysis: 0.0% (p = 0.962, 95% CI = −0.03 to 0.03).
- Free hemoglobin: 0.059 g/L (p = 0.396, CI = −0.088 to 0.209).
- Hematocrit: 0.012 L/L (p = 0.053, CI = 0.0–0.025).
- Mean corpuscular volume (MCV): −0.6 fL (p = 0.542, CI = −2.6 to 1.4).
- Potassium: 0.6 mmol/L (p = 0.396, CI = −0.7 to 1.6).
- pH: 0.0 (p = 0.983, CI = −0.03 to 0.02).

Sample numbers	Flight group	Control group
Transfused	81	50
Morphology end-point measurement	6	45
Biochemical end-point measurements (Hb, Ht, free Hb, hematolysis, MCV, potassium, pH)	36	42
Morphology change rate measurement (end-point – initial)	1	35
Biochemical end-point measurements	1	48
Morphology change rate measurement (end-point – initial)	24	26
Only samples stored longer than 30 days were analyzed.		
percentages of spherical forms (Fig. 2b). Comparing initial and end point samples by calculating the change rate (i.e., their aging), likewise no significant differences were apparent. Besides the percentage of spherical forms in the RCCs we also calculated the MI (suppl. Fig. 2). It displays no significant differences between the two groups. We further verified that the mode of sampling from routine RCCs did not affect our measurement by comparing pouch and segments which yielded comparable results (suppl. Fig. 3).

RBC Quality Attributes Were Not Affected by the Flight Time Duration

Given the results above, the data documented the non-inferiority of RBC quality attributes after repeated air rescue missions related to the total flight time duration. By using simple linear regression models, the correlation between quality attributes and total flight time duration was calculated (Fig. 5a–h). This evaluation clearly indicates that flight time duration does not correlate with any of the biochemical and morphological parameters.

Discussion/Conclusion

To ensure regulatory-compliant storage and transport logistics of RCCs for emergency air rescue missions, we (i) established a rotation system for RCCs for repeated air rescue missions and (ii) verified the nonin-
劣等的RCCs在重复的空中救援任务后。

优化的运输和存储物流通过实施旋转系统来实现，该系统基于一个被动冷却箱[30,31]，该冷却箱确保血液在运输过程中的温度超过允许的范围。只有431单位中的4单位未达到温度要求。在这个过程中，只有431单位中的4单位未达到温度要求。只有431单位中的4单位未达到温度要求。这种机械应力远大于由直升机振动引起的应力。在不同飞行高度下的气压变化已被证明会影响RBC质量。因此，我们发现平均溶血率(0.18%)和控制RCCs(0.18%)低于平均溶血率(0.55%)。我们进一步发现，RCC质量属性在飞行和控制组没有显著差异。此外，RCC质量属性不受总累积飞行时间的影响。

溶血水平，设定为0.8%的最大值，是唯一生物化学质量参数，该参数定义在德国输液指南[15]中。先前的研究已经表明，溶血率在空中救援任务后并未增加[17,19]。我们进一步发现，飞行RCCs(0.18%)和控制RCCs(0.18%)的平均溶血率低于平均溶血率(0.55%)。考虑到需要记录非劣等质量的生物化学及形态参数，我们评估了其他生物化学及形态参数，所有这些参数都与储存损伤[21,22,37]密切相关。尽管不同RBC质量属性的差异在飞行组和控制组之间明显，表明在重复空中救援任务后，RCCs的非劣等质量。此外，与飞行时间的关联，与飞行组和控制组之间都未发现关联(6.6–28.8小时，7–13次任务)。

我们得出结论，RCCs在重复的空中救援任务中是优于对照组的。根据生物化学和形态学参数，在德国的规范中，RCCs可以在温度范围+2至+6°C的条件下储存42天。这项规定可以确保在空中救援任务期间的运输和存储。通过应用有效的冷却设备，物流和维护热条件的安全和可行。一个定义良好的旋转系统可以用于空中救援任务，该系统将所有RCCs的存储和运输记录。该新型概念能够提供资源节约的选择，并允许在不影响RCC质量的前提下提供RCCs。
RCC Quality Unaffected by Repeated Air Rescue Mission Transport

Transfus Med Hemontr 2022;49:172–179
DOI: 10.1159/000520650

References

1. Pfeifer R, Tarkin IS, Rocos B, Pape HC. Patterns of mortality and causes of death in polytrauma patients – has anything changed? Injury. 2009 Sep;40(9):907–11.

2. Klein C, Gieseker MT, Tsokos M, Haas NP, Buschmann CT. Trauma-related preventable deaths in Berlin 2010: need to change prehospital management strategies and trauma management education. World J Surg. 2013 May;37(5):1154–61.

3. Oyeniyi BT, Fox EE, Scerro M, Tomasek JS, Wade CE, Holcomb JB. Trends in 1,029 trauma deaths at a level 1 trauma center: impact of a bleeding control bundle of care. Injury. 2017 Jan;48(1):5–12.

4. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) – Ständige Kommission Leitlinien. AWMF-Regelwerk “Leitlinien.” ed 1. 2012 [cited 2021 Jul 19]. Available from: http://www.awmf.org/leitlinien/awmf-regelwerk.html.

5. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs 1:1:2 ratio and mortality in patients with severe trauma: the PROFPRP randomized clinical trial. JAMA. 2015 Feb;313(5):471–82.

6. Shackelford SA, Del Junco DJ, Powell-Dunford N, Mazuchowski EL, Howard JT, Kotwal RS, et al. Association of prehospital blood product transfusion during medical evacuation of combat casualties in Afghanistan with acute and 30-day survival. JAMA. 2017 Oct;318(16):1581–91.

7. Lockey DJ, Weaver AE, Davies GE. Practical translation of hemorrhage control techniques to the civilian trauma scene. Transfusion. 2013 Jan;53 Suppl 1:175–225.

8. Karl A, Pham T, Yanosky JD, Lubin J. Variability of uncrossmatched blood use by helicopter EMS programs in the United States. Prehosp Emerg Care. 2016 Nov-Dec;20(6):688–94.

9. Thies KC, Truhlár A, Keene D, Hinkelbein J, Rutzler K, Brazi L, et al. Pre-hospital blood transfusion – an ESA survey of European practice. Scand J Trauma Resusc Emerg Med. 2020 Aug;28(1):9.

10. Brown JB, Cohen MJ, Minne JP, Maier RV, West MA, Billiar TR, et al. Pretrauma center red blood cell transfusion is associated with reduced mortality and coagulopathy in severely injured patients with blunt trauma. Anesth Analg. 2015 May;120(5):997–1005.

11. Brown JB, Sperry JL, Fombona A, Billiar TR, Peitzman AB, Guyette FX. Pre-trauma center red blood cell transfusion is associated with improved early outcomes in air medical trauma patients. J Am Coll Surg. 2015 May;220(5):797–808.

12. Griggs JE, Jeyanthan J, Joy M, Russell MQ, Durge N, Bootland D, et al. Mortality of civilian patients with suspected traumatic haemorrhage receiving pre-hospital transfusion of packed red blood cells compared to pre-hospital crystalloid. Scand J Trauma Resusc Emerg Med. 2018 Nov;26(1):100.

13. Rehn M, Weaver A, Brohi K, Eshelby S, Green LJ, Roislien J, et al. Effect of prehospital red blood cell transfusion on mortality and time of death in civilian trauma patients. Shock. 2019 Mar;51(3):284–8.

14. Lyon RM, de Sausmarez E, McWhirter E, Wareham G, Nelson M, Matthies A, et al. Prehospital transfusion of packed red blood cells in 147 patients from a UK helicopter emergency medical service. Scand J Trauma Resusc Emerg Med. 2017 Feb;25(1):12.

15. Bundesärztekammer. Richtlinie zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Richtlinie Hämotherapie). 2017.

16. Bundesärztekammer. Querschnitts-Leitlinien (BÄK) zur Therapie mit Blutkomponenten und Plasma. 2020.

17. Brady MDJ, Zeiger S, Ohmann T, Figner C, Unnerstall B, Zeiler T, et al. Auswirkung von Hubschraubertransporten auf die Hämolysese von Erythrozytenkonzentrat bei deren Einsatz in der Luftrettung. Notarzt. 2020;36:151–9.

18. Selleng K. Der Blutungsnachfolg – Versorgungskonzepte für Patienten mit unbekannter Blutgruppe. Transfusionsmed Immunhämoto- tol Hämother Transplantationsimmunol Zellther. 2020;10(03):151–8.

19. Otani T, Oki K, Akino M, Tamura S, Naito Y, Homma C, et al. Effects of helicopter transport on red blood cell components. Blood Transfus. 2012 Jan;10(1):78–86.

20. Sierra FD, Melzak KA, Janetzo K, Kluter H, Suhr B, Bieback K, et al. Flow morphometry to assess the red blood cell storage lesion. Cytometry A. 2017 Sep;91(9):874–82.

21. D'Alessandro A, Liumbruno G, Grazzini G, Zolla L. Red blood cell storage: the story so far. Transfus Med Hemother. 2020;10(03):151–8.

22. Hess JR. Red cell changes during storage. Transfus Med Hemother. 2020;37(5):1154–61.

23. Roussel C, Dussiot M, Marin M, Morel A, Suhr H, Bieback K, et al. Flow morphometry during storage of erythrocytes and platelets: characterization of pathways during storage of erythrocytes and platelets. Transfus Apher Sci. 2010 Aug;43(1):51–9.

24. Frank SM, Abazyan B, Ono M, Hogue CW, Cohen DB, Berkowitz DE, et al. Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration. Anesth Analg. 2013 May;116(5):975–81.

25. Pinto RN, Sebastian JA, Parsons MJ, Chang TC, Turner TR, Acker JP, et al. Label-free analysis of red blood cell storage lesions using imaging flow cytometry. Cytometry A. 2019 Sep;95(9):976–84.

26. Wiedemann P, Guez JS, Wiegemann HB, Eger N, Quintana JC, Asanza-Maldonado D, et al. In situ microscopic cytometry enables noninvasive viability assessment of animal cells by measuring entropy states. Biotechnol Bioeng. 2011 Dec;108(12):2884–93.

27. Suhr HHAM. In situ microscopy using ad-justment-free optics. J Biomed Optics. 2015;20(11):110007.

28. Usry RT, Moore GL, Manalo FW. Morphology of stored, rejuvenated human erythrocytes. Vox Sang. 1975;28(3):176–83.

29. Rudolph MS, Braun J, Henkel B, Reifherscheidt F. Praktische Prämisse der Blutproben – das Projekt “HeiBlut” Prehospital Therapy with Blood Products – the “HeiBlut” Project. Notarzt. 2021.

30. Renas FJ, Macdonald VW, Houchens DM, Hinel PJ, Reid TJ. New insulation technology provides next-generation containers for ‘iceless’ and lightweight transport of RBCs at 1 to 10 degrees C in extreme temperatures for over 78 hours. Transfusion. 2004 Feb;44(2):210–6.

31. Klose T, Borchert HH, Pruss A, Roth WK, Bohnen HR, Putzker M. Current concepts for quality assured long-distance transport of temperature-sensitive red blood cell concentrates. Vox Sang. 2010 Jul 1;99(1):44–53.

32. Brunskill S, Thomas S, Whitmore E, McDon-ald CP, Doree C, Hopewell S, et al. What is the maximum time that a unit of red blood cells can be safely left out of controlled tempera-ture storage? Transfus Med Rev. 2012 Jul;26(3):209–23.e3.

33. Blaine KP, Cortes-Puch I, Sun J, Wang D, Sol-omon SB, Feng J, et al. Impact of different standard red blood cell storage temperatures on human and canine RBC hemolysis and chromium survival. Transfusion. 2019 Jan;59(1):347–58.

34. Almanza L, Latallade JJ, Almanza BA, Pats B, Joussemet M. [Erythrocyte concentrated and air transport: evaluation of quality]. Transfus Clin Biol. 1995;2(3):343–7. French.

35. Makroo RN, Raina V, Bhatia A, Gupta R, Maj-iad A, Thakur UK, et al. Evaluation of the red cell hemolysis in packed red cells during pro cessing and storage. Asian J Transfus Sci. 2011 Jan;5(1):15–7.

36. Glynn SA, Klein HG, Ness PM. The red blood cell storage lesion: the end of the beginning. Transfusion. 2016 Jun;56(6):1462–8.

37. Roussel C, Dussiot M, Marin M, Morel A, Ndour PA, Dzeu J, et al. Spherocytic shift of red blood cells during storage provides a quantitative whole cell-based marker of the storage lesion. Transfusion. 2017 Apr;57(4):1007–18.