Ammonium Di-Hydrogenocitrate and Mono-Hydrogenocitrate Synthesis by Citric Acid Neutralization with Ammonia Using Ethanol as Co-Solvent for the Crystallization – Swelling Test to Confirm Gases Emissions Capacity

Andry Tahina Rabeharitsara, Maheriniaina Andriamasinoro Andriamandroso, Nambinina Richard Randriana, Rijalalaina Rakotosaona, Edouard Andrianarison, André Razafimandefitra, Baholy Robijaona

Chemical Process Engineering Department (E. S. P. A), Antananarivo University, Antananarivo, Madagascar

Email address: rabeharitsara_andrytahina@yahoo.fr (A. T. Rabeharitsara), maheryandriam@gmail.com (M. A. Andriamasinoro), kotolala@gmail.com (R. Rakotoson), richardrandriana@yahoo.fr (N. R. Randriana), edoravali@yahoo.fr (E. Andrianarison), mndefitra@yahoo.fr (A. Razafimandefitra), holyrobi@yahoo.fr (B. Robijaona)

To cite this article:
Andry Tahina Rabeharitsara, Maheriniaina Andriamasinoro Andriamandroso, Nambinina Richard Randriana, Rijalalaina Rakotosaona, Edouard Andrianarison, André Razafimandefitra, Baholy Robijaona. Ammonium Di-Hydrogenocitrate and Mono-Hydrogenocitrate Synthesis by Citric Acid Neutralization with Ammonia Using Ethanol as Co-Solvent for the Crystallization – Swelling Test to Confirm Gases Emissions Capacity. American Journal of Applied Chemistry. Vol. 6, No. 1, 2018, pp. 6-14. doi: 10.11648/j.ajac.20180601.12

Received: September 11, 2017; Accepted: September 25, 2017; Published: December 23, 2017

Abstract: Citric acid is a α-hydroxylated tricarboxylic acid present in abundance in lemon. More than one million tons of citric acid are industrially produced throughout the year. Our objective in this manuscript was to increase the value of the citric acid to ammonium citric acid salts by crystallization such as ammonium Di-hydrogenocitrate and ammonium mono-hydrogenocitrate. Studies and tests were carried out in this direction but the characteristic of our last process was the use of a co-solvent ethanol which proved more effective and more economical. At the end, we tested the capacity of the ammonium Di-hydrogenocitrate and ammonium mono-hydrogenocitrate to swell a mixture and compared theirs capacities to the sodium bicarbonate. Results showed an excellent swelling capacity of the ammonium Di-hydrogenocitrate and ammonium mono-hydrogenocitrate to produce a uniformly very not much porous product’s texture.

Keywords: Citric Acid, Ammonia, Ethanol, Crystallization, Co-solvent Crystallization, Ammonium Di-hydrogenocitrate, Ammonium Mono-hydrogenocitrate, Sodium Bicarbonate, Swelling Test

1. Introduction

Citric acid which is a tricarboxylic acid was neutralized by ammonia. According to the solution’s pH, we obtained either ammonium Di-hydrogenocitrate either mono-hydrogenocitrate which are citric acid salts and have their future in agricultural, food and medicinal fields like calcium citrate and sodium citrate [1]. Studies on the effectiveness of the use of ethanol as co-solvent during the crystallization were made [2] and we have used this method. Immediately, ammonium salts were formed. They were treated then we tested their capacity to swell a mixture by following a cooking procedure. Uniformly very not much porous texture was obtained which confirmed not only ammonia and carbon dioxide gases emissions but also water and molecules formations by esterification between citric acids and starches molecules.
2. Citric Acid

2.1. Citric Acid Generalities

Citric acid $\text{C}_6\text{H}_8\text{O}_7$ is a tricarboxylic acid α-hydrolyzed. It contains three acids with pK_a such as $\text{pK}_a^1 = 3.14$, $\text{pK}_a^2 = 4.77$ and $\text{pK}_a^3 = 6.39$ and an α-alcohol function with $\text{pK}_a = 14.4$ [3, 4, 5, 6] “Figure 1”. By its reactivity, the citric acid was the object of several studies and was used in several fields like the cosmetics, the food one, the chemistry and others [7].

We noticed that the acid form is AH with $\text{pK}_a(\text{AH})$. It was shown that if the $\text{pH} \leq [\text{pK}_a(\text{AH}) – 2]$, the quantity of basic A^- associated to the acid/base couple AH/A^- is negligible in comparison with the AH quantity. And if the $\text{pH} \geq [\text{pK}_a(\text{AH}) + 2]$, the quantity of acid AH associated to the acid/base couple AH/A^- is negligible in comparison with the A^- quantity [8]. For $[\text{pK}_a(\text{AH}) – 2] \leq \text{pH} \leq [\text{pK}_a(\text{AH}) + 2]$, the basic A^- and the acid AH forms coexist but if $[\text{pK}_a(\text{AH}) – 2] \leq \text{pH} \leq [\text{pK}_a(\text{AH}) + 2]$ the acid form AH dominate and if $\text{pK}_a(\text{AH}) \leq \text{pH} \leq [\text{pK}_a(\text{AH}) + 2]$ the basic form A^- dominate [8]. Consequently, for the citric acid we noted in the following Table 1 the acids and bases forms according to the pK_a and pH.

![Figure 1. 3-hydroxypropane-1, 2, 3-tricarboxylic acid (Citric Acid).](image)

Table 1. Dominant Forms of “Citric Acid” According to the pH.

pH	Acid/base couple	pK_a	Acid/Base reactions	Dominant forms	Dominant molecule/Ions
$\text{pH} \leq 3.14$	AH/H^+	5.14	$\text{AH}^+ + \text{H}^+$	AH^+	Citric Acid
$3.14 \leq \text{pH} \leq 4.77$	AH/AH^+	4.77	$\text{AH}^+ + \text{H}^+$	AH^+	Di-Hydrogenocitrate
$4.77 \leq \text{pH} \leq 6.39$	AH/AH^+	6.39	$\text{AH}^+ + \text{H}^+$	AH^+	Mono-Hydrogenocitrate
$6.39 \leq \text{pH}$	AH/A^-	6.39	A^-	A^-	Citrate

2.2. Characteristics of Citric Acid

Citric acid is solid with monoclinic as crystal structure, white, odorless and excessively sour flavor (Table 2) [4]. Citric acid exists in hydrates forms, the monohydrate melts towards 343.15 °K and the anhydrous state melting point is 426.15°K. Citric acid is soluble in alcohol, ether, ethyl acetate and DMSO and insoluble in C_6H_6, CHCl$_3$, CS$_2$, and toluene. Its solubility in ethanol at 298.15°K is 62g/100g. Citric acid is very soluble in water and its solubility increases with the temperature as shown the following table (Table 3) [9].

Table 2. Citric Acid Physicochemical Properties.

Physicochemical Properties	CITRIC ACID - $\text{C}_6\text{H}_8\text{O}_7$
Appearance	Crystalline white solid
Crystal structure	Monoclinic
Molar mass	192.12 [g mol$^{-1}$]
Density	1.665 [g cm$^{-3}$] anhydrous
Melting point	343.15 K monohydrate
Boiling point	448.15°K
Solubility in ethanol	62g/100g
Solubility in water	59.20% at 293.15°K

Table 3. Evolution of the Citric Acid Solubility in Water (w/w) Following to the Temperature (°K).

°K	Solubility (% g/100mg)
283.15	54.0
293.15	59.2
303.15	64.3
313.15	68.6
323.15	70.9
333.15	73.5
343.15	76.2
353.15	78.8
363.15	81.4
373.15	84.0

3. Ammonia (Ammonium Hydroxide)

3.1. Ammonium Hydroxide Generalities

Ammonium hydroxide is a colorless aqueous solution obtained by the solubilization of ammonia in water [4, 11, 12] according to the reaction

$$\text{NH}_3 + \text{H}_2\text{O} \leftrightarrow \text{NH}_4^+ + \text{OH}^-$$

with pK_a (Dissociation constant of the couple Acid/Base $\text{NH}_4^+/\text{NH}_3) = 9.2$ [11].

We noticed again that the acid form is AH with $\text{pK}_a(\text{AH})$. It was shown that if the $\text{pH} \leq [\text{pK}_a(\text{AH}) – 2]$, the quantity of basic A^- associated to the acid/base couple AH/A^- is negligible in comparison with the AH quantity. And if the $\text{pH} \geq [\text{pK}_a(\text{AH}) + 2]$, the quantity of acid AH associated to the acid/base couple AH/A^- is negligible in comparison with the A^- quantity [8]. For $[\text{pK}_a(\text{AH}) – 2] \leq \text{pH} \leq [\text{pK}_a(\text{AH}) + 2]$, the basic A^- and the acid AH forms coexist but if $[\text{pK}_a(\text{AH}) – 2] \leq \text{pH} \leq [\text{pK}_a(\text{AH}) + 2]$ the acid form AH dominate and if $\text{pK}_a(\text{AH}) \leq \text{pH} \leq [\text{pK}_a(\text{AH}) + 2]$ the basic form A^- dominate [8]. Consequently, for the ammonia we noted in the following table 4 the acids and bases forms according to the pK_a and pH.

Table 4. Dominant Forms of Ammonia in Couple Acid/Base $\text{NH}_4^+/\text{NH}_3$ According to the pH.

pH	Acid/base couple	pK_a	Acid/Base reactions	Dominant forms	Dominant molecule/Ions
$\text{pH} \leq 9.2$	$\text{NH}_3^+/\text{NH}_3$	9.2	$\text{NH}_3^+ + \text{OH}^- \leftrightarrow \text{NH}_3^+ + \text{H}_2\text{O}$	NH_3^+	Ammonia Ion
$9.2 \leq \text{pH}$	$\text{NH}_3^+/\text{NH}_3$	9.2	$\text{NH}_3^+ + \text{OH}^- \leftrightarrow \text{NH}_3^+ + \text{H}_2\text{O}$	NH_3	Ammoniac (NH$_3$)
3.2. Characteristics of Ammonia (Ammonium Hydroxide)

The concentration of ammonia ranges up to approximately 30%. Its solution irritates eyes and suffocating odor confirms the presence of ammonium hydroxide which is relatively very volatile. The boiling point of ammonia 25% is 311.15°K [10].

Table 5. Ammonium Hydroxide Physicochemical Properties.

Physicochemical Properties	AMMONIUM HYDROXIDE – NH₄OH
Appearance	Colorless liquid
Odor	Intense, pungent, suffocating odor
Molar mass	35.037 [g.mol⁻¹]
Density	0.90 [g.cm⁻³] at 298.15°K
Melting point	215.15°K at 25%
Boiling point	311.15°K at 25%
Solubility in ethanol (95%)	Miscible
Solubility in water	Miscible

4. Ammonium Citrate, Ammonium Di-hydrogenocitrate, Ammonium Mono-hydrogenocitrate

4.1. Ammonium Citrate (Formula and Characteristics)

The Ammonium citrate or Triammonium citrate (Figure 2) was salt obtained by acid/base reaction between citric acid (C₆H₈O₇) as acid and ammonia (Ammonium Hydroxide - NH₄OH) as base. It was shown that the respect of the couple Citric acid (acid)/Ammonia (base) solution’s pH (cf. §2.1 - §3.1) (Table 1) and crystallization temperature controls led to the tri-ammonium citrate salt formation [13, 15]. We putted 150 [g] of citric acid with 234.23 [ml] of ammonium hydroxide (25%) in a baker, the solution’s pH is on 9.45. According to the table 1 and the table 4, the dominant form of ions are A³⁻ and NH₄⁺. Then, baker was carried in a 373.15 °K water bath during 60 mn to evaporate the water and to decrease the solubility of the tri-ammonium citrate formed. Then, the solution became tri-ammonium saturated and to increase the amount of this salt we brought this saturated solution to labile region which is over the metastable limit by cooling the baker on magnetic stirrer [14]. After filtration on filter paper, we obtained odorless white crystals of Ammonium Di-hydrogenocitrate (Figure 3) salts which taste acid [13].

4.2. Ammonium Di-hydrogenocitrate and Ammonium Mono-hydrogenocitrate

We synthesized the Ammonium Di-hydrogenocitrate (AH₂⁺/NH₄⁺) and mono-hydrogenocitrate (AH₂⁺/2NH₄⁺). We putted 250 [g] of citric acid with 39 [ml] of ammonium hydroxide (25%) in a baker, the solution’s pH is on 3.55. According to the table 1 and the table 4, the dominant form of ions is AH₂⁺ and NH₄⁺. Then, baker was carried in a 373.15 °K water bath during 60 mn to evaporate the water and to decrease the solubility of the Ammonium Di-hydrogenocitrate formed. Then, the solution became Ammonium Di-hydrogenocitrate saturated and to increase the amount of this salt we brought this saturated solution to labile region which is over the metastable limit by cooling the baker on magnetic stirrer [14]. After filtration on filter paper, we obtained odorless white crystals of Ammonium Di-hydrogenocitrate [Figure 3] salts which taste acid [13].

To obtain the mono-hydrogenocitrate [Figure 4] we brought the pH of solution between 4.77 and 6.39 by putting 9.6 [g] of citric acid with 20 [ml] of ammonium hydroxide (25%) in a baker. According to the table 1 and the table 4, the dominant form of ions are AH₂⁺ and NH₄⁺. Then, baker was carried in a 373.15 °K water bath during 60 mn to evaporate the water and to decrease the solubility of the mono-hydrogenocitrate formed. Then, the solution became mono-hydrogenocitrate saturated and to increase the amount of this salt we brought this saturated solution to labile region which is over the metastable limit by cooling the baker on magnetic stirrer [14]. After filtration on filter paper, we obtained odorless white crystals of mono-hydrogenocitrate (AH₂⁺/2NH₄⁺) salts which taste non-acid [13].

To summarize we put in the following figure (Figure 5) the
Ammonium citrate, Ammonium Di-hydrogenocitrate and Ammonium mono-hydrogenocitrate crystallization procedure [13]. The output of ammonium salts was all the time over 100% because of water presence (Hydrated salts – Figure 2). To limit the water presence and to improve the quality of the ammonium salts we elaborated a new procedure using a co-solvent [14] miscible with water, ammonium hydroxide, soluble in citric acid but practically insoluble in Ammonium Di-hydrogenocitrate and Ammonium mono-hydrogenocitrate: ethanol which is not only healthy but also an environmentally responsible solvent than methanol.

5. Procedure Used for Ammonium Di-hydrogenocitrate and Mono-hydrogenocitrate Synthesis: Salts Precipitation Using the Co-solvent Ethanol

5.1. Equipment and Chemicals

To synthesize the Ammonium Di-hydrogenocitrate (AH$_2^2$/NH$_4^+$) and the ammonium mono-hydrogenocitrate (AH$_2$/2NH$_4^+$) by precipitation using a co-solvent ethanol we used:
- Citric acid (C6H8O7)
- Ammonium Hydroxide 25% (NH4OH)
- Ethanol 97% (C2H5OH)
- Baker
- Spatula
- Precision scales
- Thermometer
- Magnetic Stirrer
- PH-meter
- Filter paper

- Funnel
- A drying oven
- Test tube

5.2. Procedure

We putted 62 [g] of citric acid with 9.8 [ml] of ammonium hydroxide (25%) in a baker, the solution’s pH is on 3.5. According to the table 1 and the table 4, the dominant form of ions are AH$_2^2$ and NH$_4^+$. Then, baker was carried in a 313.15 °K water bath during 15 mn. Critical nucleus of the new solid phase “Ammonium Di-hydrogenocitrate salt” is formed. We are on region between undersatureted regions and metastable limits. To accelerate the formation of the solid phase and to reduce its solubility in water, we cooled the baker and we used the co-solvent ethanol 97% which is not only miscible in water but also naturally cool [14, 15, 16]. It was shown that c*, the equilibrium saturation concentration value, is empirically correlated with the concentration of the co-solvent x like ln[C*] = A+Bx+Cx2. In this case, we used a quantity of ethanol which didn’t bring the pH of solution more than 4.77 and stirred the solution baker. Instantaneously, the Ammonium Di-hydrogenocitrate precipitation occurs, we are on the labile region [14]. After a few minutes, we filtered the Ammonium Di-hydrogenocitrate with a filter paper and dried it in a drying oven. Knowing that the ethanol boiling point is 351.39 [°K] [17] and it’s completely miscible in water with the possibility of having hydrogen bond connections with oxygens and hydrogens molecules of water and ammonium citric acid salts [18], drying with temperature higher than 358.15 [°K] is used to eliminate not only the rest of water molecules but also ethanol molecules. Then, we obtained odorless white crystals of Ammonium Di-hydrogenocitrate salts which taste acid.

To obtain the mono-hydrogenocitrate we brought the pH of solution at 5.5 (between 4.77 and 6.39 – cf. Table 1) by putting 62 [g] of citric acid with 15.8 [ml] of ammonium hydroxide (25%) in a baker. According to the table 1 and the table 4, the dominant form of ions are AH$_2^-$ and NH$_4^+$. Then, baker was carried in a 313.15 °K water bath during 15 mn. Critical nucleus of the new solid phase “Ammonium mono-hydrogenocitrate salt” is formed. We are on region between undersatureted regions and metastable limits. To accelerate the formation of the solid phase and to reduce its solubility in water, we cooled the baker and we used the co-solvent ethanol 97% which is not only miscible in water but also naturally cool [14, 15, 16]. In this case, we used a quantity of ethanol which didn’t bring the pH of solution more than 6.5 and stirred the solution baker. Instantaneously, the Ammonium Di-hydrogenocitrate precipitation occurs, we are on the labile region [14]. After a few minutes, we filtered the Ammonium mono-hydrogenocitrate with a filter paper and dried it in a drying oven. Knowing that the ethanol boiling point is 351.39 [°K] [17] and it’s completely miscible in water with the possibility of having hydrogen bond connections with oxygens and hydrogens molecules of water and ammonium citric acid salts [18], drying with temperature higher than 358.15 [°K] is used to eliminate not only the rest of water molecules but also ethanol molecules. Then, we obtained odorless white crystals of Ammonium Di-hydrogenocitrate salts which taste acid.
molecules but also ethanol molecules. Then we obtained odorless white crystals of Ammonium mono-hydrogenocitrate salts which taste non-acid.

To summarize we put in the following figure (Figure 6) the Ammonium Di-hydrogenocitrate and Ammonium mono-hydrogenocitrate precipitation procedure using a co-solvent ethanol.

Figure 6. Ammonium Di-hydrogenocitrate and Ammonium Mono-hydrogenocitrate Precipitation Procedure Using a Co-solvent Ethanol.

6. Results

6.1. Ammonium Di-hydrogenocitrate and Ammonium Mono-hydrogenocitrate Yields Using Co-solvent Ethanol Precipitation Procedure

Compared with the crystallization procedure (figure 2), the precipitation procedure using a co-solvent ethanol was not only rapid but also energetically profitable. In the following table, we show the yields of Ammonium Di-hydrogenocitrate and ammonium mono-hydrogenocitrate obtained by the precipitation procedure.

Citric acid (C₆H₈O₇) [g]	62 [g]	62 [g]
Ammonium Hydroxide 25% (NH₄OH) [ml]	9.8 [ml]	15.8 [ml]
+ Ethanol 97% (C₂H₅OH) (Co-solvent)	25 [ml] pH < 4.77	25 [ml] pH < 6.5
Solution pH	pH = 3.5 (< 4.77)	pH = 5.5 (< 6.5)
Yields (%)	77.42 [%]	82.26 [%]

6.2. Ethanol Solubility of the Ammonium Di-hydrogenocitrate and the Ammonium Mono-hydrogenocitrate Obtained by Co-solvent Ethanol Precipitation Procedure

Bibliography informs us that the ammonium mono-hydrogenocitrate is very slightly soluble in ethanol [19]. To confirm this solubility to our ammonium mono-hydrogenocitrate (Table 6), we used the oversaturated method. In this case, solid in excess of the amount required for saturation is added to the solvent and agitated until apparent equilibrium is reached [14]. At ambient temperature, we took 2 [g] of ammonium mono-hydrogenocitrate into 2 [ml] of ethanol (97%) using a test tube. After prolonged agitated contact, the weight of the rest of ammonium mono-hydrogenocitrate was 1.950 [g]. That is to say, only 0.05 [g] of ammonium mono-hydrogenocitrate was soluble in ethanol (97%) and considering that the solubility of the ammonium mono-hydrogenocitrate in water is 1mg/1mg [19], this solubility is exactly 0.0485 [g] in ethanol (100%); it correspond to 2.425% of the initial weight and confirm that the ammonium mono-hydrogenocitrate is very slightly soluble in ethanol.

We used the same method to determine the solubility of the ammonium Di-hydrogenocitrate in ethanol. At ambient temperature, we took 2 [g] of ammonium Di-hydrogenocitrate into 2 [ml] of ethanol (97%) using a test tube. After prolonged agitated contact, the weight of the rest of ammonium mono-hydrogenocitrate was 1.935 [g]. That is to say, only 0.065 [g] of ammonium mono-hydrogenocitrate was soluble in ethanol (97%); it correspond to 3.25% of the initial weight and confirm that also the ammonium Di-hydrogenocitrate is very slightly soluble in ethanol. But, after comparison we saw that, the ammonium Di-hydrogenocitrate was more soluble in ethanol (97%) than the ammonium mono-hydrogenocitrate at ambient temperature.

Citric acid (C₆H₈O₇) [g]	62 [g]	62 [g]
Ammonium Hydroxide 25% (NH₄OH) [ml]	9.8 [ml]	15.8 [ml]
+ Ethanol 97% (C₂H₅OH) (Co-solvent)	25 [ml] pH < 4.77	25 [ml] pH < 6.5
Solution pH	pH = 3.5 (< 4.77)	pH = 5.5 (< 6.5)
Yields (%)	77.42 [%]	82.26 [%]
7. Swelling Tests of the Ammonium Di-hydrogenocitrate and Mono-hydrogenocitrate Salts

The objective of this part was to test the capacity of the Ammonium Di-hydrogenocitrate and the Ammonium mono-hydrogenocitrate to swell a mixture. As we see, these salts contain ammonium function (from –ONH₄) (Figure 3 - Figure 4) which can generate the ammonia (NH₃) (Table 4 – Table 5) and acids functions (from the citric acid function) which catalyzed the ammonia reactions formation (Figure 7 – Figure 8) [20]. In addition, we noticed that according to the Van’t Hoff equation the pKa value was influenced by the temperature [21]. In the end, we compared these salts and the sodium bicarbonate baking powder (rising powder) capacity to swell a mixture.

With water, we noticed that the ammonia can formed NH₄OH according to the pH and the temperature (Table 4 – Table 5) [21].

7.1. Sodium Bicarbonate and Ammonium Bicarbonate Baking Powder Swelling Characteristics

Baking powders are white powders used to swell biscuits and pastry during cooking. According to their natures, they produced carbon dioxide (Sodium bicarbonate – Figure 9) and or ammonia (Ammonium bicarbonate – Figure 10) with water. The paste swelled and developed. Then, cavities and pores was been left by these gases and steams emission (Table 7) - [22].

According to the figure 7, figure 8 and figure 9 we showed in the following table 8 the theoretical swelling capacity of the ammonium Di-hydrogenocitrate, the ammonium mono-hydrogenocitrate and the sodium bicarbonate by respectively NH₃ and CO₂ gas emission with water.

![Figure 7. Ammonia and Citric Acid Formed by Ammonium Di-hydrogenocitrate Transformation.](image)

![Figure 8. Ammonia and Ammonium Mono-hydrogenocitrate Formed by Ammonium Mono-hydrogenocitrate Transformation.](image)

![Figure 9. Decomposition Reaction of the Sodium Bicarbonate.](image)

![Figure 10. Decomposition Reaction of the Ammonium Bicarbonate.](image)

Table 7. Dominant Forms of CO₂ in Couple Acid/Base H₂O, CO₂⁻/HCO₃⁻ According to the pH. [11].

pH	Acid/base couple	pKa	Acid/Base reactions	Dominant forms
pH ≤ 6.4	H₂O, CO₂⁻/HCO₃⁻	6.4	H₂O + CO₂ + H₂O ⇌ HCO₃⁻ + H⁺ + H₂O	H₂O, CO₂⁻
6.4 ≤ pH	H₂O, CO₂⁻/HCO₃⁻	6.4	H₂O + CO₂ + H₂O ⇌ HCO₃⁻ + H⁺ + H₂O	HCO₃⁻

Table 8. Theoretical Swelling Capacity of Salts.

SALTS	SALTS Quantity	NH₃ gas emission	CO₂ gas emission	Water		
(AH⁺/NH₄⁺)	1	4.782×10⁻³	8.13×10⁻³	-		
(AH⁺²/2 NH₄⁺)	1	4.422×10⁻³	15.04×10⁻²	-		
NaHCO₃	1	11.905×10⁻²	52.8×10⁻²	11.905×10⁻³	43.2×10⁻²	23.81×10⁻³
We noticed that at the same quantity 1 [g], the NaHCO₃ salt should have 2.5 times and 1.4 times capacity to swell than respectively the ammonium Di-hydrogenocitrate and the ammonium mono-hydrogenocitrate salts considering only the NH₃ and CO₂ gas emission. However, it was shown that water was not only the solvent which is the responsible of the ingredients repartition but its evaporation was also responsible of the porous formation [22]. Consequently, the ammonium Di-hydrogenocitrate and the ammonium mono-hydrogenocitrate salts should have respectively less 7.5 times and 4.1 times capacity to swell than the sodium carbonate. Discussions and explanations about the swelling salts capacities will be broached at the paragraph 7.3.

7.2. Cooking Procedure

During the swelling capacity tests of ammonium Di-hydrogenocitrate and ammonium mono-hydrogenocitrate in comparison with sodium bicarbonate [23]. We adopted the following cooking procedure: we preheated the oven at 423.15 [°K] and prepared the mixture in the cake pan. When the 423.15°C was stable we putted the mixture in the oven. We progressively increased the temperature at 473.15°C. The cooking at 473.15°C lasted 30 [mn] after which we took out the product obtained.

7.3. Tests Results and Comparisons, Discussions

About the swelling tests, we prepared cake pastries using respectively 3 [g] of ammonium Di-hydrogenocitrate, ammonium mono-hydrogenocitrate and sodium carbonate. Then, we adopted the cooking procedure previously described [23]. We noticed that flour is the pastry principal ingredient which is compound with starch (70%), water (16%), Gluten (11%), Sugar (2%) and fatty substance (1%) [4]. We noticed also that the pastry height in the cake pan before cooking was all the time equal to 15 [mm] and for each salts we read not only the pastry height after the cooking procedure but also its taste and texture to assess each salts swelling capacity. We showed in the following table (Table 9) the tests results and comparisons for all salts [23].

Table 9. Results of Swelling Capacity Salts Tests.

	Without salt	(AH⁺/NH₃⁺)₁₀₀%	(AH⁺²/2 NH₃⁺)₁₀₀%	NaHCO₃ 100%	(AH⁺/NH₃⁺) / 75% NaHCO₃ 25%	(AH⁺/NH₃⁺) / 50% NaHCO₃ 50%	(AH⁺²/2 NH₃⁺) / 50% NaHCO₃ 50%
Mixture height [mm]	15	15	15	15	15	15	15
Cake height [mm]	18	22	23	35	29	32	33
Height increase (HI) in comparison with	0	4	5	17	11	14	15
Without salt [mm]							
NaHCO₃ (HI) / Ammonium salts (HI)	-	4.25	3.4	1	1.55	1.21	1.13
Taste	Neutral	Acid	Acid	Neutral	Lightly Acid	Very Lightly Acid	Very Lightly Acid
Texture	Very compact	Uniformly Very	Uniformly Very	Porous	Uniformly Not much porous	Uniformly Not much porous	Uniformly Not much porous
		Not much porous	Not much porous				

According to the results in the table 9, the ammonium Di-hydrogenocitrate had 4.25 times less capacity to swell than the sodium carbonate but theoretically we was in a hurry for 7.5 times (cf. § 7.1). It was the same for the ammonium mono-hydrogenocitrate which had 3.4 times less capacity to swell than the sodium carbonate but theoretically we was in a hurry for 4.1 times (cf. § 7.1). These results was due to the water molecules and carbon dioxide CO₂ formations from the ammonium Di-hydrogenocitrate and the ammonium mono-hydrogenocitrate. Water molecules formed are solvent and responsible of the ingredients repartition until the ammonium salts evaporation to form porous particularly uniform (Table 9). For these ammonium Di-hydrogenocitrate and the ammonium mono-hydrogenocitrate, water and carbon dioxide molecules were formed either by their dehydration and decarboxylation like a citric acid [13-24-26], either by the dehydration and decarboxylation of citric acid molecules formed (figure 7) and either by the esterification reaction [24] between the acid of the citric acid formed and the starch’s alcohol functions [27-28] according to the figure 11. That explained the uniformly very not much porous of the ammonium Di-hydrogenocitrate and mono-hydrogenocitrate salts samples texture (table 9).
The swelling test capacity because in certain conditions like the cooking procedure that plays a significant role in biochemistry as metabolite of the Krebs’ cycle, a major metabolic way at all the aerobic organism, it’s possible in certain conditions to use these salts as fertilizer supplements.

8. Conclusion

The crystallization of the ammonium Di-hydrogenocitrate and the ammonium mono-hydrogenocitrate obtained by the ammonia and the citric acid reaction using an ethanol as co-solvent while respecting the pH rule was not only easier but also energetically economical. The swelling test capacity of these salts by following a cooking procedure informed us the gases emissions like ammonia, carbon dioxide, water vapor and consequently the real formation of water molecules by esterification between citric acids and starches molecules. The molecules formed by this esterification reaction like the one showed by the figure 11 was interesting because in certain conditions like the cooking procedure that we adopted on the paragraph §7.2, they are potential source of water molecules and carbon dioxide by dehydration and decarboxylation reactions (figure 12). Being given that the ammonium Di-hydrogenocitrate and the ammonium mono-hydrogenocitrate contains azote and citric acid which plays a significant role in biochemistry as metabolite of the Krebs’ cycle, a major metabolic way at all the aerobic organism, it’s possible in certain conditions to use these salts as fertilizer supplements.

Acknowledgements

We express our sincere thanks to E. S. P. A Polytechnics and Antananarivo University. Sincere gratitude also to GPCI department as well as Chemical Engineering Laboratory staff for its supports.

References

[1] OMRI, Citric acid and its salts, Technical Evaluation for the USDA National Organic Program February 17, 2015.
[2] Rawat A., BURGESS DJ. “Effect of ethanol as a processing co-solvent on the PLGA microsphere characteristics” Int. J. Pharm. 2010 Jul 15; 394(1-2): 99-105. Doj: 10.1016/j.ijpharm. 2010.05.013. Epub. 2010 May 22.
[3] M. Laffitte, F. Rouquerol La réaction chimique Tome 2. Aspects thermodynamiques (suite) et cinétiques, 1991, Eds. Masson p. 22.
[4] Wikipedia Encyclopedia on line.
[5] Silva AM, Kong X, Hider RC, Pharmaceutical Sciences Research Division, King’s College London, London, UK «Determination of the pKa of the hydroxyl group in the alpha-hydroxycarboxylates citrate, malate and lactate by 13C NMR: implications for metal coordination in biological systems» http://www.ncbi.nlm.nih.gov/pubmed/19288211.
[6] Gougerot-Schwartz A. “Cosmétologie et dermatologie esthétique” Encyclopédie Méd. Chr. (2000) 7p.
[7] Andry Tahina Rabeharitsara, Marie Nicole Rabemananjara, Nambinina Richard Randriana’ Haritiana Jeannelle Rakotonirina, Edouard Andrianarison’ André Razafimandefitra, Baholy Robijaona Chemical Process Engineering Department (E. S. P. A), Antananarivo University, Antananarivo, Madagascar «Auto-Inflammation Test of Black Citric Acid Polymer (PN) and Fuel Oil (FO) Mixes – Coke Formation » American Journal of Applied Chemistry, Vol. 5, Issue Number 3, June 2017.
[8] M. Laffitte, F. Rouquerol La réaction chimique Tome 2. Aspects thermodynamiques (suite) et cinétiques, 1991, Eds. Masson p. 30.
[9] O’Neil, M. J. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. Cambridge, UK: Royal Society of Chemistry, 2013,., p. 416.
[10] Budavari, S. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. Whitehouse Station, NJ: Merck and Co., Inc., 1996., p. 87 https://pubchem.ncbi.nlm.nih.gov/compound/14923#section
[11] M. Laffitte, f. Rouquerol La réaction chimique Tome 2. Aspects thermodynamiques (suite) et cinétiques, 1991, Eds. Masson annexe 24.
[12] Raymond C Rowe, Paul J Sheskey, Marian E Quinn, Handbook of Pharmaceutical Excipients, Pharmaceutical Press and American Pharmacists Association, 2009, 6e éd., 888 p. (ISBN 978 0 85369 792 3), p. 40.
[13] Sammy Eric andriamboluA Valorisation de l’acide citrique en polymères et en sels de mono- di- et tri-ammonium. Mémoire de fin d’étude en vue de l’obtention du diplôme d’Ingénieur en Génie Chimique. E. S. P. A. Université d’Antananarivo. 2013.
[14] A. G. Jones, Professor of Chemical Engineering, Department of Chemical Engineering, UCL (University College London), London, UK. Crystallization Process Systems.
[15] ethanol (anhydre) [archive], fiche de sécurité du Programme International sur la Sécurité des Substances Chimiques [archive].
[16] James E. Mark, Physical Properties of Polymer Handbook, Springer, 2007, 2e éd., 1076 p.(ISBN 0387690026, lire en ligne [archive]), p. 294.
[17] Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 3.246. ISBN 1439855110.
[18] E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H., Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, D. J. Nesbitt. Definition of the hydrogen bond (IUPAC Recommendations 2011) Pure Appl. Chem. 83, 1619 (2011).
Ammonium Di-Hydrogenocitrate and Mono-Hydrogenocitrate Synthesis by Citric Acid Neutralization with Ammonia Using Ethanol as Co-Solvent for the Crystallization – Swelling Test to Confirm Gases Emissions Capacity

[19] O’Neil, M. J. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition, Whitehouse Station, NJ: Merck and Co., Inc., 2001., p. 89.

[20] Setrarivo andriambalohery, Etude de la formation d’acide sulfurique et d’ammoniac à partir du sulfate d’ammonium par du catalyseur acide l’acide citrique. Mémoire de fin d’études en vue de l’obtention du diplôme d’ingénieur en génie chimique – 2011 - Ecole Supérieure Polytechnique d’Antananarivo (E.S.P.A) – Université d’Antananarivo.

[21] Atkins, P. W. (2006). Physical Chemistry. Oxford University Press. ISBN 0-19-870072-5. Section 7.4: The Response of Equilibria to Temperature.

[22] Franz HAAS, Handbook of wafer technologies – third revised and extended edition, October 2002.

[23] Maheriniaina Andriamasinoro andriamandroso, Valorisation du mono et di-hydrogenocitrate d’ammonium en levant. Mémoire en vue de l’obtention du diplôme de Licence Académique en génie des procédés chimiques et industriels - 2016 - Ecole Supérieure Polytechnique d’Antananarivo (E.S.P.A) – Université d’Antananarivo.

[24] Andry Tahina Rabehariatysara, Marie Nicole Rabemananjara, Nambinina Richard Randriana, Edouard Andrianarison, André Razafimandefitra, Baholy Robijaona (ESPA), Chemical Process Engineering Department, Antananarivo University, Antananarivo, Madagascar: Auto-Inflammation Test of Black Citric Acid Polymer (PN) and Fuel oil (FO) Mixes – Coke Formation. American Journal of Applied Chemistry in Vol. 5, Issue Number 3, June 2017.

[25] Marie Nicole Rabemananjara, Test d’auto-inflammation du mélange polymère noir (PN) et fuel-oil (FO), étude de formation de coke. Mémoire en vue de l’obtention du diplôme de Licence Académique en génie des procédés chimiques et industriels – 2016 - Ecole Supérieure Polytechnique d’Antananarivo (E.S.P.A) – Université d’Antananarivo.

[26] Thomas Fenohery, Contribution à la valorisation de l’huile de palme en ester et polyester par estérisation avec de l’acide citrique effet de l’acidité et du fer; Mémoire de fin d’étude en vue de l’obtention du diplôme d’Ingénieur en Génie Chimique. E.S.P.A. Université d’Antananarivo. 2013.

[27] Lalaina Sarah raholiarisoa, Auto-estérification de l’acide citrique en passant par une phase de chloration avec de l’acide chlorhydrique suivi d’une substitution électrophile, formation des monomères d’ester et éventuellement des polymères. Mémoire en vue de l’obtention du diplôme de Licence Académique en génie des procédés chimiques et industriels – 2014 - Ecole Supérieure Polytechnique d’Antananarivo (E.S.P.A) – Université d’Antananarivo.

[28] Wikipedia Encyclopedia on line. L’amidon.