A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans

Nicholas J. Timpson, Klaudia Walter, Josine L. Min, Ioanna Tachmazidou, Giovanni Malerba, So-Youn Shin, Lu Chen, Marta Futema, Lorraine Southam, Valentina Iotchkova, Massimiliano Cocca, Jie Huang, Yasin Memari, Shane McCarthy, Petr Danecek, Dawn Muddyman, Massimo Mangino, Cristina Menni, John R.B. Perry, Susan M. Ring, Amadou Gaye, George Dedoussis, Aliki-Eleni Farmaki, Paul Burton, Philippa J. Talmud, Giovanni Gambaro, Tim D. Spector, George Davey Smith, Richard Durbin, J. Brent Richards, Steve E. Humphries, Eleftheria Zeggini, Nicole Soranzo & UK10K Consortium

The analysis of rich catalogues of genetic variation from population-based sequencing provides an opportunity to screen for functional effects. Here we report a rare variant in APOC3 (rs138326449-A, minor allele frequency ~0.25% (UK)) associated with plasma triglyceride (TG) levels (−1.43 s.d. (s.e. = 0.27 per minor allele (P-value = 8.0 × 10−8)) discovered in 3,202 individuals with low read-depth, whole-genome sequence. We replicate this in 12,831 participants from five additional samples of Northern and Southern European origin (−1.0 s.d. (s.e. = 0.173), P-value = 7.32 × 10−9). This is consistent with an effect between 0.5 and 1.5 mmol l−1 dependent on population. We show that a single predicted splice donor variant is responsible for association signals and is independent of known common variants. Analyses suggest an independent relationship between rs138326449 and high-density lipoprotein (HDL) levels. This represents one of the first examples of a rare, large effect variant identified from whole-genome sequencing at a population scale.
lipid levels are heritable risk factors for coronary artery disease, and vascular outcomes and their therapeutic manipulation has well-characterized impacts on disease risk\(^1\). Genome-wide studies of common genetic variation and its contribution to commonly measured lipid moieties have been successful in identifying a large number of associated loci\(^2\); however, the aggregate contribution of all of these confirmed common variants accounts currently for only about 10–12% of the variation in low-density lipoprotein (LDL), high-density lipoprotein (HDL) and triglycerides (TGs)\(^3\). With current estimates of the heritability of these measures between 40% and 60\(^6\), this leaves a considerable portion of variance unexplained. This may be contributed to by smaller common variant effects, as-yet undiscovered rare and potentially functional genetic variation, gene-by-gene interaction (epistasis) or by overestimates of heritability\(^2\). The availability of rich collections of variants through whole-genome sequencing (WGS) of well-phenotyped collections affords the unique opportunity to discover novel and potentially functional genetic variation associated with phenotypes of clinical interest.

Rare and highly penetrant variants identified in 24 different human genes have been identified through sequencing studies in families with rare monogenic lipid disorders\(^5\–8\). Despite these studies, however, there has been little examination of these variants of low frequency (minor allele frequency (MAF) ≤ 5%) on lipid profile at the level of the population. Studies that focus currently on exome content alone and have included variants of intermediate and low frequency have, however, reported larger genetic effects at lower MAF\(^9\–11\). This type of work is relevant given that variants of large effect sizes have been suggested to segregate in populations at low frequencies under neutral or purifying models of evolution\(^12\). These genes and variants are likely to have considerable consequence on the health (expressed as odds ratios on the cardiovascular risk) for those who carry them, and may ultimately indicate novel therapeutic targets as already shown for PCSK9 (ref. 13).

The UK10K Cohorts project (http://www.uk10k.org/studiescohorts.html) uses WGS to study the contribution of low-frequency and rare variation on a broad range of complex quantitative endpoints. Here we applied low read-depth WGS in individuals from two deeply phenotyped British cohorts, TwinsUK\(^14\) and the Avon Longitudinal Study of Parents and Children (ALSPAC)\(^15\) to analyse TG levels. Analyses revealed replicable evidence of a rare, functional, variant in the APOC3 gene (rs138326449-A, MAF ~ 0.25% in the British population) strongly associated with plasma TG levels. This represents one of the first examples of a rare, large effect variant identified from WGS at a population based scale.

Results

Sequence data. A total of 3,910 individuals were sequenced to average 6.7 \(×\) mean read-depth using Illumina next-generation sequencing technology (Supplementary Methods ‘Low read-depth WGS (cohorts data set)’). After applying stringent sample quality control filters, a total of 3,621 unrelated individuals of European ancestry (1,754 from TwinsUK and 1,867 from ALSPAC) were available for association. TG measurements were available for 3,202 individuals with sequence data, including 1,497 ALSPAC children (mean age 10 years, 50% females) and 1,705 TwinsUK adults, respectively (mean year 56 years, all females, Supplementary Table 1).

Phenotypic association. To search the human genome for low-frequency and rare variants associated with TG levels, we first tested associations with 13,074,236 single-nucleotide variants (SNV) and 1,122,542 biallelic indels (MAF ≥ 0.1%) called from whole-genome-sequence data (Supplementary Table 2). Associations of TGs with genetic variation were tested in the ALSPAC and TwinsUK WGS data sets separately, and study-specific summary statistics were combined using inverse variance meta-analysis (Methods). There was no evidence for inflation of summary statistics in the combined sample (\(\hat{\lambda} (genomic control) = 0.99\), Supplementary Fig. 1).

No variants gave evidence of association at conventional levels of genome-wide significance. However, four variants reached a second more exploratory tier of evidence for discovery in tests of association with TG (\(P\)-value \(≤ 1 \times 10^{-5}\)) across the UK10K sample and were of interest as they mapped to a region around the APOC3 locus on chromosome 1. Two of the variants found are common, rs964184-C (estimated allele frequency (EAF) = 0.13%, \(P\)-value = 6.81 \(×\) 10\(^{-5}\) and rs66505542-T (EAF = 0.14%, \(P\) = 1.87 \(×\) 10\(^{-3}\)), in near-complete linkage disequilibrium (\(r^2 = 0.90\) in the UK10K sample) and have been previously associated with TG levels\(^2,3\).

A third association meeting the nominal discovery threshold is a novel variant with low MAF, also mapping to the APOC3 locus (Fig. 1). The rs138326449-A allele has an MAF of 0.25% and was associated with decreased TG levels corresponding to 1.43 (s.e. = 0.27) s.d. per allele (\(P\)-value = 8.02 \(×\) 10\(^{-8}\)) in the combined sample of 3,202 TwinsUK and ALSPAC participants with whole-genome sequence data (Fig. 2 and Table 1).

Signal validation and refinement. We first validated whole-genome sequence-derived rs138326449 genotypes using overlapping genotype calls and showed perfect concordance in both TwinsUK and ALSPAC (Methods). We then took forward the variant for replication in five additional cohorts (\(N = 12,831\), Supplementary Table 1), where the variant was imputed with high accuracy (defined by imputation info values ≥ 0.4) using a novel reference panel obtained from combining UK10K data with data from the 1000 Genomes Project (Supplementary Methods). The rs138326449-A allele had similar allele frequency in the five additional cohorts, with the highest value observed in a population isolate from Greece (MAF = 0.8%; Supplementary Table 1). The five cohorts provided independent replication of the association with decreased TG (\(-1.0\) (s.e. = 0.173) s.d., \(P\)-value = 7.32 \(×\) 10\(^{-9}\)), combined discovery and replication \(P\)-value = 6.92 \(×\) 10\(^{-15}\), suggesting that this variant contributes to decreasing TG levels in multiple populations of Northern and Southern European origin, with similar effect sizes and allelic frequency.

We further tested association of the splice variant with the other three main lipid sub-fractions HDL, LDL and total cholesterol (TC), and with very-low-density lipoprotein (VLDL). The A allele at rs138326449 was associated with decreased VLDL levels in a combined sample of 7,891 participants with available data (\(-1.312\) (s.e. = 0.199), \(P\)-value = 4.16 \(×\) 10\(^{-11}\)) and with a moderate increase in HDL in 16,062 study participants (0.624 s.e., \(P\)-value = 1.36 \(×\) 10\(^{-3}\)) and with a moderate increase in HDL in 16,062 study participants (0.624 s.e., \(P\)-value = 1.36 \(×\) 10\(^{-3}\)) (Table 1 and Fig. 2). Associations with LDL and TC were negligible (Supplementary Table 3 and Supplementary Fig. 2).

Analysis of the residual association between rs138326449 and TG levels conditional on other lipid-sub-fractions showed expected patterns in both children and adults when taking into account lipid-lowering drugs. Adjustment for VLDL removed the association between rs138326449 and TG levels. In the children of the ALSPAC study, there was also evidence of association between rs138326449 and HDL levels after adjustment for either TG or VLDL, which was also seen (although less strongly) in the 1958 British Cohort (Table 2).
Further analysis of rare genetic variation. We next analysed the joint ALSPAC and TwinsUK sample with whole-genome sequence data to explore the contribution of common and rare genetic variants to TG associations in the APOC3 region. We focused on a 640-kb recombination window containing the novel signal at rs138326449. Association between rs138326449 and TG was assessed conditioning simultaneously on known associated variants best tagging all previously published common variant signals at this locus (rs964184 and rs2075290 (refs 2,3)) and other potentially novel independent loci derived from region-specific conditional analysis in the UK10K data. Other than rs138326449 and positive controls from previous studies, the only other potential independent signal single-nucleotide polymorphism (SNP) in this region was rs193204541, and neither did

Figure 2 | Association of lipid levels with rs138326449 at APOC3. Boxplots of associations between rs138326449 and TG, VLDL and HDL levels are shown as a function of carriage of allele A. Plots for HDL and TC are shown in Supplementary Fig. 2. P values indicate evidence for a linear relationship between lipid sub-fraction level and genotype (assuming an additive model). Box edges indicate the interquartile range (IQR; central line indicating the 50th centile) with the whisker indicating the lowest and highest data still within 1.5 IQR of respective quartiles.

Figure 1 | Regional plot of association between genetic variation at the APOC3 locus and plasma TG levels. The figure is drawn using the UK10K Dalliance Browser. The tracks reported in a indicate (top to bottom): (i) P-value (on the –log10 scale) for association of SNPs in the APOC3 region with TG levels. Symbols are coloured corresponding to r² to indicate the extent of linkage disequilibrium of each SNP in the region with the index SNPs rs964184 (red square) and the splice variant rs138326449 (blue triangle) marked; (ii) GENCODE genes (from ftp://ngs.sanger.ac.uk/production/gencode/). (b) A cartoon illustrating the genic location of rs138326449 in the context of variable splicing of the APOC3 gene.
conditional analysis, including this variant, abolish evidence for association at rs138326449 (Supplementary Table 4) nor was this evident in a conditional analysis across the APOC3 region (Methods). Overall, seven windows had evidence for association at rs138326449 (Supplementary Table 4) and replication sample sets.

Table 1 | Summary of genetic associations between rs138326449 and levels of TG, VLDL and HDL in discovery and replication sample sets.

Sample	Metric	TG	VLDL	HDL
TwinsUK WGS	Beta (s.e.)	–0.60 (0.23)	0.328 (0.18)	
(EAF 0.23%)	P-value	7.7 x 10^-3	0.06	
	N	1,705	1,713	
	Info metric	0.78	0.78	
ALSPAC WGS	Beta (s.e.)	–0.52 (0.20)	0.33 (0.11)	
(EAF 0.28%)	P-value	9.3 x 10^-3	3.4 x 10^-3	
	N	1,497	1,497	
	Info metric	0.94	0.94	
Discovery combined	Beta (s.e.)	–1.43 (0.27)	0.84 (0.27)	
	P-value	8.0 x 10^-6	2.1 x 10^-3	
	N	3,202	3,210	
1958BC (EAF 0.15%)	Beta (s.e.)	–1.35 (0.33)	1.04 (0.32)	
	P-value	4.3 x 10^-5	1.2 x 10^-3	
	N	5,485	5,493	
	Info metric	0.55	0.55	
INCIEPE (EAF 0.26%)	Beta (s.e.)	–0.93 (0.43)	0.63 (0.42)	
	P-value	0.03	0.13	
	N	1,382	1,382	
	Info metric	0.78	0.78	
TwinsUK GWAS	Beta (s.e.)	–0.90 (0.36)	0.79 (0.34)	
(EAF 0.29%)	P-value	0.01	0.02	
	N	1,882	1,896	
	Info metric	0.75	0.75	
ALSPAC GWAS	Beta (s.e.)	–1.83 (0.56)	1.30 (0.55)	
(EAF 0.2%)	P-value	1.2 x 10^-3	0.02	
	N	2,820	2,820	
	Info metric	0.77	0.77	
HELIC M (EAF 0.78%)	Beta (s.e.)	–1.26 (0.36)	0.74 (0.36)	
	P-value	5.4 x 10^-4	0.04	
	N	1262	1264	
	Info metric	0.42	0.42	
Combined replication	Beta (s.e.)	–1.00 (0.17)	0.54 (0.17)	
	P-value	7.3 x 10^-9	1.3 x 10^-3	
	N	12,831	12,853	
Overall	Beta (s.e.)	–1.13 (0.15)	0.62 (0.14)	
	P-value	6.9 x 10^-15	1.4 x 10^-5	
	N	16,033	16,065	

ALSPAC, Avon Longitudinal Study of Parents and Children; EAF, estimated allele frequency; GWAS, genome-wide association study; HDL, high-density lipoprotein; TG, triglyceride; VLDL, very low-density lipoprotein.

Table 2 | Conditional associations between rs138326449 and lipid sub-fraction in the ALSPAC and the 1958BC.

Lipid Sub-Fraction	TG	VLDL	HDL
(A)			
TG	0.08	0.675	0.001
VLDL	–1.36	–1.10	–0.839
HDL	–0.84	0.070	–0.839
VLDL conditional	–0.001	0.688	0.575

Table 2 | Conditional associations between rs138326449 and lipid sub-fraction in the ALSPAC and the 1958BC.

Lipid Sub-Fraction	TG	VLDL	HDL
(B)			
TG	0.08	0.238	0.025
VLDL	–0.669	0.515	–0.413
HDL	–0.464	0.100	–0.251
VLDL conditional	–0.046	0.100	–0.251

1958BC, 1958 Birth Cohort; ALSPAC, Avon Longitudinal Study of Parents and Children; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TG, triglyceride; VLDL, very low-density lipoprotein.

Variance explained. Overall, in UK10K data across ALSPAC and TwinsUK, genetic variation in the APOC3 region accounted for 2.71% (s.e. = 1.39) of phenotypic variance in TG. This is in contrast to estimates of variance explained from the analysis of rs138326449 alone in children and adults not in the original discovery collections, which varied from 0.27 to 0.39% (Supplementary Table 6). Association results for known, TG-specific, positive controls are reported in Supplementary Table 7.

Discussion
Within the cohorts arm of the UK10K study, we have collected low read-depth, whole genome sequence data and used this with a validation and replication panel to describe a rare SNV (MAF ~ 0.2% in Europeans) strongly associated with plasma TG. The variant rs138326449 accounts for single point and sequence kernel-based association signals at the known Mendelian locus APOC3, independently of known associations at this locus. We have replicated the association in up to 12,852 study participants from 5 additional population samples of Northern and Southern European origin, confirming this association, albeit at a more modest level (difference in plasma TG levels -1.0 s.d. (s.e. = 0.173) per minor allele). The rare allele association with plasma TG level is consistent with an effect of between 0.5 and
1.5 mmol l\(^{-1}\) across children and adults dependent on population (Supplementary Fig. 6a). This is considerably larger than that reported in recent examinations of common variation and is one of the first of this nature to be reported from the use of population-based WGS. In context, the largest reported lipid effects from existing genome-wide association study (GWAS) are up to five times greater than that for the commonly recognized FTO rs9999609 variant and adult body mass index [which is \(\sim 0.01\) s.d. change in body mass index]; however, these are still more than 20 times lower than that seen here\(^{2,17}\). It is also notable that this effect is found in both children and adults, and in the presence or absence of lipid-altering interventions (Supplementary Fig. 6b).

The human APOC3 gene is located in a gene cluster together with the APOAI and APOA4 genes on the long arm of chromosome 11 (ref. 18). APOC3 is expressed in the liver and intestine, and is controlled by positive and negative regulatory elements that are spread throughout the gene cluster\(^{19-21}\). There is considerable evidence to support the genetic contribution of this locus to hyperlipidaemia and, in particular, there have been correlations between apoCIII levels, plasma TG and VLDL TG\(^{22,23}\). With this, the use of fibrates as a therapeutic intervention (known to reduce the apoCIII synthesis rate in humans\(^{23}\)) has suggested that there is an important role for APOC3 in TG metabolism. Moreover, transgenic mice expressing human apoCIII have shown that expression in the liver and intestine is correlated with elevated levels of VLDL TG, and where apoE is knocked out and APOC3 expressed, huge accumulations of TG-rich VLDL can occur\(^{24,25}\).

The splice donor site reported here lies in a region of chromosome 11 previously shown to contain both common and rare variants affecting plasma TG levels. Restriction fragment length polymorphism variation within the non-coding part of exon 4 at this locus, haplotypic characterization of variation in the region and a single change within exon 3 of APOC3 have all been related to either hypertriglyceridaemia or familial combined hypercholesterolaemia\(^{26-28}\). More recently, a functional variant site (R19X) adjacent to rs138326449 and resulting in APOC3 loss-of-function in homozygote carriers has been reported independently in two genetic isolates from the United States and Greece; however, this variant is very rare (EAF \(\sim 0.05\%\)) in the general European population and does not contribute to variance in TG in this study\(^{29,30}\). In each case, the impaired expression of APOC3 is associated with reduced plasma TG levels and a coincident increase in HDL, in agreement with the inhibiting action of apoCIII on lipoprotein lipase. In the data here from UK10K, the total variance in plasma TG explained by all genetic variation at this locus (down to and below 1% MAF) is \(\sim 2.7\%\). This is in comparison with this novel, low-frequency, genetic variant that accounts for somewhere between 0.27% and 0.39% of phenotypic variance.

The rs138326449 variant affects the essential di-nucleotide 5\'-splicing site (GT to AT) of the first protein-coding exon of the protein-coding gene APOC3. The rare, TG-decreasing A allele is predicted to disrupt the correct splicing of the first protein-coding exon of APOC3 (containing the Apo-CIII domain [PF05778] and a signal peptide (1–20 aa)), resulting in a marked change of the 5\'-splicing site score (from 4.37 (G) to \(-3.81\) (A))\(^{31}\) (Supplementary Fig. 7). Although it was not possible to validate the splicing event using existing liver expression atlas generated by the GTex project\(^{52}\) because of the lack of carriers in this data set, we note that this position is highly conserved (phastCons = 0.996, a measurement of evolutionary conservation based on multiple alignments of 100 vertebrates) through vertebrates\(^{33}\), supporting a probably potential, functional consequence for this site.

Recognized within the Adult Treatment Panel III and as part of the definition of the metabolic syndrome (https://www.nhlbi.nih.gov/health-pro/guidelines/current/cholesterol-guidelines/index.htm), TG and TG-rich remnants are probably risk factors in cardiovascular disease\(^{34}\). Meta-analysis of 17 prospective studies has suggested that TGs are independent contributors to coronary heart disease risk and data from both the Münster Heart and Caerphilly studies have supported this\(^{35,36}\). This effect appears to be present independent of LDL-cholesterol and HDL-cholesterol levels\(^{37,38}\); however, these findings are not simple in interpretation. The current largest meta-analysis based on the same phenotypes has shown contradictory results\(^{39}\) and, in addition, an outstanding issue in these analyses remains the difficulty in assessing the independent impact of reduced or elevated TG levels from HDL. In our data, rs138326449 is associated with reduced TG in line with predicted lower levels of functional apoCIII in carriers of the A allele. However, this effect is not unique to TG levels, with a coincident and independent association with HDL making the interpretation of downstream effects of this variant (or variants at this locus exerting a similar effect) difficult in terms of causal inference.

In the absence of a clear explanation for the complex relationship between apolipoprotein gene effects and multiple lipid outcomes, the notion of overall lipid profile as a risk factor may be the most acceptable paradigm. To this end, variants such as rs138326449 do potentially provide information about the impact of interventions aimed at changing lipid profile. In this context, the impact of APOC3 inhibition through approaches such as targeted antisense oligonucleotide use\(^{40}\) can be modelled given observations such as that made in this study. This essentially represents an applied Mendelian randomization\(^{41}\) experiment, and with coincident disease status available, this type of study may help identify future, gene-targeted, therapeutic interventions.

Methods

ALSPAC WGS discovery sample. The ALSPAC is a long-term health research project. More than 14,000 mothers enrolled during pregnancy in 1991 and 1992, and the health and development of their children has been followed in great detail ever since. A random sample of 2,040 study participants was selected for WGS. The ALSPAC Executive Committee approved the study and all participants gave signed consent to the study.

Non-fasting plasma levels of TC, HDL and TG at age 9 years were measured with enzymatic colorimetric assays (Roche) on a Hitachi Modular P Analyser. HDL, TGs and TC (all in mmol l\(^{-1}\)) were measured as previously\(^{42}\). LDL was derived from the Friedwald formula: TC–(HDL Cholesterol + (TG/2.19))\(^{43}\). We calculated VLDL as VLDL Cholesterol (mmol l\(^{-1}\)) = TC–LDL Cholesterol–HDL Cholesterol.

TwinsUK WGS discovery sample. TwinsUK is a nation-wide registry of volunteer twins in the United Kingdom, with about 12,000 registered twins (83% female, equal number of monozygotic and dizygotic twins, predominantly middle-aged and older). Over the last 20 years, questionnaire and blood/urine/tissue samples have been collected for over 7,000 subjects, as well as three comprehensive phenotyping assessments. The primary focus of study has been the genetic basis of healthy aging process and complex diseases, including cardiovascular, metabolic, musculoskeletal and ophthalmologic disorders. Alongside the detailed clinical, biochemical, behavioural and socio-economic characterization of the study population, the major strength of TwinsUK is availability of several ‘omics’ technologies for the participants. The database was used to study the genetic and environmental aetiology of age-related complex traits and diseases. The St Thomas’s Hospital Ethics Committee approved the study and all participants gave signed consent to the study.

Enzymatic colorimetric assays were used to measure serum levels of TC, HDL and TGs, and were measured using three analysing devices (Cobasefa; Roche Diagnostics, Lewes, UK; Kodak Ektachem dry chemistry analysers (Johnson and Johnson Vitros Ektachem machine, Beckman LX20 analysers, Roche P800 modular system)). The majority of discovery samples were lasted before measurement (95%).

Low read-depth WGS (cohorts data set). Low read-depth WGS was performed at both the Wellcome Trust Sanger Institute and the Beijing Genomics Institute (BGI). DNA (1–3 μg) was sheared to 100–1,000 bp using a Covaris E210 or LE220
Sheared DNA was subjected to Illumina paired-end DNA library preparation. Following size selection (300–500 bp insert size), DNA libraries were sequenced using the Illumina HiSeq platform as paired-end 100 base reads according to the manufacturer’s protocol.

Alignment and BAM processing. Data generated at the Sanger Institute and BGI were aligned to the human reference separately by the respective centres. The BAM files produced from these alignments were submitted to the European Genome-phenome Archive. The Vertebrate Resequencing Group at the Sanger Institute then performed further processing.

Alignment. Sequencing reads that failed quality control (QC) were removed using the Illumina GA Pipeline, and the rest were aligned to the GRCh37 human reference, specifically the reference used in Phase 1 of the 1000 Genomes Project (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz). Reads were aligned using BWA (v0.5.9-r16)44.

BAM improvement and sample file production. Further processing to improve SNV and INDEL calling, including realignment around known INDELS, basic quality score recalibration, addition of RAQ tags, merging and duplicate marking followed that used for Illumina low-coverage data in Phase 1 of the 1000 Genomes Project. Software versions used for UK10K for the steps described in that section was GATK version 1.1.5-gf643284, Picard version 1.64 and samtools version 0.1.16.

Variant calling. SNV and INDEL calls were made using samtools/bcftools (version 0.1.18-r579)45 by pooling the alignments from 3,910 individual low read-depth BAM files. All-samples and all-sites genotype likelihood files (bcf) were created with samtools mpileup.

INDEL pre-filtering. The observation of spikes in the insertion/deletion ratio in sequencing cycles of a subset of the sequencing runs led to the appearance of bubbles in the flow cell during sequencing. To counteract this, the bamcheck utility from the samtools package was used to create a distribution of INDELS per sequencing cycle. Lanes with INDELs predominantly clustered at certain read sequencing cycles of a subset of the sequencing runs were linked to the appearance of bubbles in the flow cell during sequencing. To counteract this, the bamcheck utility from the samtools package was used to create a distribution of INDELS per sequencing cycle. Lanes with INDELs predominantly clustered at certain read cycles were marked as problematic (159 samples). In the next step, we checked mapped positions of the affected reads to see whether they overlapped with called INDELS, which they did for 1,694,630 called sites. The genotypes and genotype likelihoods of affected samples were then set to the reference genotype unless there was a support for the INDEL in a different, unaffected lane from the same sample. In total, 140,163 genotypes were set back to reference and 135,647 sites were excluded by this procedure. Note that this step was carried out on raw, unfiltered calls before Variant Quality Score Recalibration filtering.

Site filtering. Variant Quality Score Recalibration46 was used to filter sites for SNVs, the GATK (version 1.3–21) UnifiedGenotyper was used to recall the sites/alleles discovered by samtools to generate annotations to be used for recalculation. Recalibration for the INDELS used annotations derived from the built-in samtools annotations. The GATK VariantRecalculator was then used to model the variants, followed by GATK ApplyRecalibration, which assigns VQSLOD (variant quality score log odds ratio) values to the variants. For SNV sites, a truth (GRCh37) sensitivity of 99.9%, which corresponded to a minimum VQSLOD score of −0.6804 was selected; that is, for this threshold, 99.9% of truth sites were retained. For INDEL sites, a truth sensitivity of 99%, which corresponded to a minimum VQSLOD score of 0.5939 was chosen. Finally, we also introduced the filter $P < 10^{-6}$ to remove sites that failed the Hardy–Weinberg equilibrium (302,388 sites removed) and sites removed with evidence for differential frequency (logistic regression P-value $> 1e^{-2}$) between samples sequenced at BGI and Wellcome Trust Sanger Institute (277,563 sites removed).

Given the presence of structure by genotyping batch, we ran a genome-wide association analysis for the binary variable ‘sequencing centre’ (‘BG1’/‘SANGER’) using a logistic regression model. SNPs (335,982) were associated with batch at a conservative threshold of P-value < 0.01 and formed a list that were subsequently filtered out from the genotype set, removing the batch effect due to sequencing centre.

Post-genotyping sample QC. Of the 4,030 samples (1,990 TwinsUK and 2,040 ALSPAC) that were submitted for sequencing, 3,910 samples (1,934 TwinsUK and 1,976 ALSPAC) were sequenced and went through the variant calling procedure. Low-quality samples were identified before the genotype refinement by comparing the samples with their GWAS genotypes using ~20,000 sites on chromosome 20 (see Supplementary Methods for full details).

Genotype refinement. The missing and low-confidence genotypes in the filtered VCFs were refined out through an imputation procedure with BEAGLE 4, rev9909 (ref. 47). The programme was run with default parameters (see Supplementary Methods for full details). After imputation, chunks were recombined using the vcf-phased-joint script from the vcftools [vcftools] package.

Post-refinement sample QC. Additional sample-level QC steps were carried out on refined genotypes, leading to the exclusion of additional 17 samples (16 TwinsUK and 1 ALSPAC) because of one or more of the following causes: (i) non-reference discordance with GWAS SNV data > 5% (12 TwinsUK and 1 ALSPAC), (ii) multiple relations to other samples (13 TwinsUK and 1 ALSPAC) or (iii) failed sex check (3 TwinsUK and 0 ALSPAC).

To exclude the presence of participants of non-European ancestry in our data set, we merged a pruned data set to the 11 HapMap3 populations48 and performed a principal components analysis using EIGENSTRAT49. A total of 44 participants (12 TwinsUK and 32 ALSPAC) did not cluster to the European (CEU) cluster of samples and were removed from association analyses.

The final sequence data set that was used for the association analyses comprises 3,621 samples (1,754 TwinsUK and 1,867 ALSPAC).

Re-phasing. SHAPEIT2 (ref. 50) was then used to rephase the genotype data. The samples were then converted to binary ped format. Multitmicel and MAF < 0.02% (singleton and monomorphic) sites were removed. Files were then split into 3-mbp chunks with ± 250 kbp flanking regions. SHAPEIT (v2.r727) was used to rephase the haplotypes.

Imputation from the combined UK10K + 1000 Genomes Panel. For each of the cohorts, we had additional GWA data available. For ALSPAC, 6,557 samples were measured on Illumina HumanHap550 arrays and passed QC (population stratification, sex check, heterozygosity and relatedness (identity by state (IBS) > 0.125)). For TwinsUK, 2,575 samples were genotyped on Illumina HumanHap550 or Illumina Human610 arrays. These samples passed QC on relatedness (IBS > 0.125), population stratification, heterozygosity, zygosity and sex checks. Samples from the imputed data sets were unrelated to the sequence data sets (IBS > 0.125). Variants discovered through WGS of the TwinsUK and ALSPAC cohorts were used for the development and use of a reference panel for imputation purposes. Intra- and inter-sample imputation was carried out on refined genotypes, leading to the exclusion of additional 17 samples out on refined genotypes, leading to the exclusion of additional 17 samples. We tested the 3 reference panels for imputing 3 SNP array data, a sub-sample of 1,000 individuals from the UK10K WGS data set, 4 European samples (3 CEU, 1 TSI) sequenced by Complete Genomics (density: 80 × 102) and an Italian isolate genotyped on core-exome SNP array (see Supplementary Methods for full details).

Validation genotyping. For ALSPAC, the entire cohort (10,145 participants, including 38 carriers of the rare A allele) was genotyped using KASP at Biosoftware (www.biosoftware.com; see Supplementary Methods for full details). For TwinsUK, genotyping accuracy was evaluated against a data set comprising ~250 high-coverage exomes sequenced in overlapping samples50. Of the six carriers detected in our study, four were overlapping and correctly called also in the exome data set, yielding a genotyping accuracy of 100%. There was 100% concordance with the genotypes called from the whole-genome data set.

Trait standardization. Each cohort applied a standardized protocol for preparation of phenotypes, as follows. Female and male participants were divided into separate groups and TwinsUK participants were further divided into two unrelated subsets. Outliers deviating > 4 or 5 s.d. (depending on the study) from the sample mean for a given trait were excluded from analysis (for this step, TGs were log transformed). The filtering of TG data by extremes of phenotype does not have a substantive impact on the numbers of rare variant carriers in this data set (although overall, it is likely to be an important factor). In the low end of the TG distribution in large collections). To approximate normality, each data set was inverse normal rank transformed in each group separately, and residuals were further computed by adjustment for age and age squared as a fixed effect. In TwinsUK, analyser effects were computed additionally as a random effect if age and age squared were not included. For control participants, the trait was further computed by adjustment for age and age squared as a fixed effect. In TwinsUK, analyser effects were computed additionally as a random effect if age and age squared were not included. For control participants, the trait was further computed by adjustment for age and age squared as a fixed effect. In TwinsUK, analyser effects were computed additionally as a random effect if age and age squared were not included. For control participants, the trait was further computed by adjustment for age and age squared as a fixed effect.
Associations between lipids and SNVs and indels. We assessed associations between 14,196,778 genetic variants (13,074,236 SNPs and 1,122,542 biallelic indels, MAF > 0.1%) and lipid traits (LDL, HDL, TG, TC and VLDL) as described before, using linear regression models assuming additive genetic models. For primary analyses, associations were tested using a genotype dosage-based test implemented in the SNPTEST v2.4 software package,4 apart from the TwinsUK GWAS and HELIC MANOIS data sets, where mixed linear models were used to account for family structure using the GEMMA software.5

Meta-analysis of associations with SNVs. Summary statistics from individual studies were combined using fixed-effect inverse variance meta-analysis implemented in GWAMA v2.1 (ref. 56).

Region-specific analyses. Conditional analyses of genotype and rare variant aggregate association were undertaken within a joint sample from the UK10K cohort (GenoC / TCI data set) adjusting for study origin by residualizing transformed TG on an indicator variable for study. Records of region-specific recombination used to derive the recombination interval boundaries were retrieved from (http://hapmap.ncbi.nlm.nih.gov/downloads/recombination/2011-01-phaseII_B37)/, and this analysis was limited to a 640-kb window of chromosome 11 marked by a recombination fraction < 0.05. Evidence for previous genetic association was available from existing studies5 and best tag variants for positive controls were derived by using PLINK to assess linkage disequilibrium across positive controls. Evidence for further novel independent TG associations across the APOC3 region in this data set were assessed using GCTA.6 We considered all SNPs as candidate alleles that had any evidence of association with TG (P < 10^−5) alongside those previously associated with lipid levels irrespective of association result in this sample. Conditional analyses were undertaken for r138326449 given all potentially independent contributing loci in this region using GCTA. GCTA was also used to calculate the total genetic contribution to variance in TG for the same region having calculated a matrix of relatedness from the whole of chromosome 11. In addition to regional estimates of variance explained for r138326449 alone were derived from the ALSPAC and 1958 birth cohort collections using linear regression taking into account the covariates age, age, sex, and lipid-lowering drugs in the case of the 1958 birth cohort. Analyses for this were undertaken using STATA version 13 (StataCorp 2013. Stata Statistical Software: Release 13; StataCorp LP, College Station, TX).

SKAT was undertaken across the APOC3 region. Sequence-derived genotypes with MAF capped at 1% were extracted and split into subregions containing as close to 50 variants as possible. These were analysed using SKAT and all signals with MAF capped at 1% were extracted and split into sub-regions containing as many as 51 variants per window but starting halfway the first window.

Replication samples. Description of the replication samples is given in the Supplementary Methods.

References

1. Arensault, B. J., Boekholdt, S. M. & Kastelein, J. J. Lipid parameters for measuring risk of cardiovascular disease. Nat. Rev. Cardiol. 8, 197–206 (2011).
2. Global Lipids Genetics, C. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
3. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
4. Weiss, L. A., Pan, L., Abney, M. & Ober, C. The sex-specific genetic architecture of quantitative traits in humans. Nat. Genet. 38, 218–222 (2006).
5. Nizam, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: Genetic interactions create phantom heritability. Proc. Natl Acad. Sci. 109, 1193–1198 (2012).
6. Jochens, C. et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat. Genet. 42, 684–687 (2010).
7. Cohen, J. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305, 869–872 (2004).
8. Stitziel, N. O. et al. Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 33, 2909–2914 (2013).
9. Lange, L. A. et al. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol. Am. J. Hum. Genet. 94, 43–52 (2014).
10. Peloso, G. M. et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 Whites and Blacks. Am. J. Hum. Genet. 94, 223–232 (2014).
11. Holmen, O. L. et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat. Genet. 46, 345–351 (2014).
12. Goldstein, D. B. et al. Sequencing studies in human genetics: design and interpretation. Nat. Rev. Genet. 14, 460–470 (2013).
13. Kotowski, I. K. et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am. J. Hum. Genet. 78, 410–422 (2006).
14. Moayyeri, A., Hammond, C. J., Valdes, A. M. & Spector, T. D. Cohort Profile: TwinsUK and healthy ageing twin study. Int. J. Epidemiol. 42, 76–85 (2013).
15. Stram, D. O. et al. Combined P–value and mini–meta–analysis. The Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 42, 111–127 (2013).
16. Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).
17. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).
18. Karathanasis, S. K. Apolipoprotein multigene family: tandem organization of human apolipoprotein AI, CIII, and AIV genes. Proc. Natl Acad. Sci. USA 63, 6374–6378 (1985).
19. Reue, K., Leff, T. & Breslow, J. L. Human apolipoprotein CIII gene expression is regulated by positive and negative cis-acting elements and tissue-specific protein factors. J. Biol. Chem. 263, 6857–6864 (1988).
20. Ogami, K., Hadzopoulou-Cladaras, M., Cladaras, C. & Zannis, V. I. Promoter elements and factors required for hepatic and intestinal transcription of the human ApoCIII gene. J. Biol. Chem. 265, 9808–9815 (1990).
21. Vergnes, L., Taniguchi, T., Omori, K., Zakin, M. M. & Ochola, A. The apolipoprotein A-UC-III/A-IV gene cluster: ApoC-III and ApoA-IV expression is regulated by two common enhancers. Biochim. Biophys. Acta 1548, 299–310 (1997).
22. Carlson, L. A. & Ballantyne, D. Changing relative proportions of apolipoproteins CII and CIII of very low density lipoproteins in hypertriglyceridaemia. Atherosclerosis 23, 563–568 (1976).
23. Malmender, C. L. et al. Apolipoproteins C-II and C-III metabolism in hypertriglyceridemic patients. Effect of a drastic triglyceride reduction by combined diet restriction and fenofibrate administration. Atherosclerosis 77, 139–149 (1989).
24. Aalto-Setala, K. et al. Further characterization of the metabolic properties of triglyceride-rich lipoproteins from human and mouse apoc-III transgenic mice. J. Lipid Res. 37, 1802–1811 (1996).
25. Ebara, T., Ramakrishnan, R., Steiner, G. & Shachter, N. S. Chylomicronemia due to apolipoprotein CIII overexpression in apolipoprotein E-null mice. J. Biol. Chem. 263, 6857–6864 (1988).
26. Yarnell, J. W. et al. Associations of low-density lipoprotein cholesterol and triglycerides act independently in the prediction of ischemic heart disease: Evidence, definition, measurement, atherogenicity, high risk patients, and present and future treatment. Pharmacol. Ther. 141, 358–367 (2014).
27. Averbeck, A., Benm, M. & Nordestgaard, B. G. Remnant cholesterol as a cause of ischemic heart disease: Evidence, definition, measurement, atherogenicity, high risk patients, and present and future treatment. Pharmacol. Ther. 141, 358–367 (2014).
28. Kotowski, I. K. et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 Whites and Blacks. Am. J. Hum. Genet. 94, 223–232 (2014).
29. Holmen, O. L. et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat. Genet. 46, 345–351 (2014).
30. Coldstein, D. B. et al. Sequencing studies in human genetics: design and interpretation. Nat. Rev. Genet. 14, 460–470 (2013).
31. Kotowski, I. K. et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am. J. Hum. Genet. 78, 410–422 (2006).
32. Consortium, G. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
33. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).
34. Varbo, A., Benn, M. & Nordestgaard, B. G. Remnant cholesterol as a cause of ischemic heart disease: Evidence, definition, measurement, atherogenicity, high risk patients, and present and future treatment. Pharmacol. Ther. 141, 358–367 (2014).
Ten-year follow-up of the Caerphilly and Speedwell Cohorts. Arterioscler. Thromb. Vasc. Biol. 21, 1340–1345 (2001).

37. Varebo, A., Benn, M., Tyberg-Hansen, A. & Nordestgaard, B. G. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 128, 1298–1309 (2013).

38. Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet. 45, 1345–1352 (2013).

39. The Emerging Risk Factors. C. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 1993–2000 (2009).

40. Visser, M. E., Witztum, J. L., Stroes, E. S. & Kastelein, J. J. Antisense oligonucleotides for the treatment of dyslipidemias. Eur. Heart J. 33, 1451–1458 (2012).

41. Davey Smith, G. & Ebrahim, S. Mendelian randomization: prospects, potentials, and limitations. Int. J. Epidemiol. 33, 30–42 (2004).

42. Williams, D. M. et al. Associations of maternal 25-hydroxyvitamin D in pregnancy with offspring cardiovascular risk factors in childhood and adolescence: findings from the Avon Longitudinal Study of Parents and Children. Heart. 99, 1849–1856 (2013).

43. Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).

44. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

45. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetic parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

46. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

47. Browning, S. R. & Browning, R. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

48. International HapMap. C. et al. Integrating common and rare genetic variation into clinical genetics practice. Nature 462, 52–58 (2010).

49. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

50. O’Connell, J. et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 10, e1004234 (2014).

51. Howie, B. N., Douwd, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

52. Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanorays. Science 327, 78–81 (2010).

53. Williams, F. M. et al. Genes contributing to pain sensitivity in the normal population: an exome sequencing study. PLoS Genet. 8, e1003095 (2012).

54. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

55. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

56. Magi, R. & Morris, A. P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11, 288 (2010).

57. Purcell, S. et al. PLINK: a tool for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

58. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

59. Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomization study. Lancet 380, 572–580 (2012).

60. Putter, A. A. et al. Isolation and sequence analysis of the human apolipoprotein CIIL gene and the intergenic region between the apo AI and apo CHI genes. DNA 3, 449–456 (1984).

Acknowledgements

This study makes use of data generated by the UK10K Consortium, derived from samples from the ALSPAC and TwinsUK data sets. A full list of the investigators who contributed to the generation of the data is available from www.UK10K.org. Funding for UK10K was provided by the Wellcome Trust under award WT094310. This work made use of data and samples generated by the 1958 Birth Cohort (NCDS). Access to these resources was enabled via the 58READIE Project funded by Wellcome Trust and Medical Research Council (grant numbers WT095219MA and G01001799). A full list of the financial, institutional and personal contributions to the development of the 1958 Birth Cohort Biomedical resource is available at www.le.ac.uk/projects/birthcohort. Genotyping was undertaken as part of the Wellcome Trust Case-Control Consortium (WTCCC) under Wellcome Trust award 076113, and a full list of the investigators who contributed to the generation of the data is available at www.wtccc.org.uk. We also are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. The UK Medical Research Council and the Wellcome Trust (Grant ref: 092731) and the University of Bristol provide core support for ALSPAC. TwinsUK was funded by the Wellcome Trust; European Community’s Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. SNP Genotyping was performed by The Wellcome Trust Sanger Institute and National and National Eye Institute via NHICIDR. S.S. is supported by an Oak Foundation Research Fellowship. N.S. is supported by the Wellcome Trust (Grant Codes WT098501 and WT09310), the EU FP7 (EPGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510). This work was also supported by the Wellcome Trust (099051) and the European Research Council (ERC-2011-SG -208559-SEPI). We are grateful to the residents of the Pomak villages and of the Mylopotamos villages for taking part in the HELIC study, and to Echinos Medical Centre and Anogia Medical Centre for their contribution to the collection. S.E.H. and M.F. are supported by the British Heart Foundation (PG08008). NTJ and GDS work within an MRC Unit at the University of Bristol (MC_UU_12013/1-9).

Author contributions

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications.

Additional information

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Corresponding author(s): Augusto P. L. Deinum and Graham S. Hargest
UK10K consortium members:

Saeed Al Turki15,16, Carl Anderson15, Richard Anney17, Dinu Antony18, Maria Soler Artigas19, Muhammad Ayub20, Senduran Balasubramaniam15, Jeffrey C Barrett15, Inês Barroso15,21, Phil Beales18, Jamie Bentham22, Shoumo Bhattacharya22, Ewan Birney23, Douglas Blackwood24, Martin Bobrow25, Elena Bochukova21, Patrick Bolton26, Rebecca Bounds21, Chris Boustred27, Gerome Breen26,28, Mattia Calissano29, Keren Carss15, Krishna Chatterjee21, Lu Chen15,30, Antonio Ciampi31, Sebhattin Cirak29,32, Peter Clapham15, Gail Clement33, Guy Coates15, David Collier34,35, Catherine Cosgrove22, Tony Cox15, Nick Craddock36, Lucy Crook15,37, Sarah Curran26,38,39, David Curtis40, Allan Daly15, Petr Danecek15, George Davey Smith27, Aaron Day-Williams15,41, Ian N.M. Day27, Thomas Down15,42, Yuanping Du43, Ian Dunham23, Richard Durbin15, Sarah Edkins15, Peter Ellis15, David Evans27,44, Sadaf Faroogi21, Ghazaleh Fatemifar27, David R. Fitzpatrick45, Paul Flicek15,23, James Flyod15,46, A. Reghan Foley29, Christopher S. Franklin15, Marta Futema27, Louise Gallagher17, Tom Gaunt27, Matthias Geis15, Daniel Geschwind48, Celia Greenwood31,49,50,51, Heather Griffin52, Detelina Grozeva25, Xueqin Guo43, Xiaosen, Guo43, Hugh Gurling40, Deborah Hart33, Audrey Hendricks15,53, Peter Holmans36, Bryan Howie54, Jie Huang15, Liren Huang43, Tim Hubbard33,42, Steve E. Humphries47, Matthew E. Hurles15, Pirro Hys33, David K. Jackson15, Yalda Jamshidi55, Tian Jing43, Chris Joyce15, Jane Kaye52, Thomas Keane15, Julia Keogh21, John Kemp27,44, Karen Kennedy15, Anja Kolb-Kokocinski15, Genevieve Lachance33, Cordelia Langford15, Daniel Lawson27, Irene Lee57, Monkol Lek58, Jieqin Liang43, Hong Lin43, Rui Li49,50, Yingrui Li43, Ryan Liu59, Jouko Lönnqvist60, Margarida Lopes15,61, Valentina Lotchkova15,23, Daniel MacArthur15,58,69, Jonathan Marchini63, John Maslen15, Mangino Massimo33, Iain Mathieson64, Gaëlle Marenne15, Shane McCarthy15, Peter McGuffin26, Andrew McIntosh24, Andrew G. McKechnie24,65, Andrew McQuillin40, Yasmin Mehtani15, Sarah Metrusted15,33, Josine Min27, Hannah Mitchison18, Alireza Moayyer33,66, James Morris15, Dawn Muddymen15, Francesco Muntoni29, Kate Northstone27, Michael O'Donnovan36, Alexandros Onoufriadis42, Stephen O'Rahilly21, Karim Ouakach67, Michael J. Owen36, Aarno Palotie15,68,69, Kallopie Panoutsopoulop15, Victoria Parker21, Jeremy R. Parr70, Lavinia Paternoster27, Tiina Paunio60,71, Felicity Payne15, John Perry33,72, Olli Pietilainen15,60,68, Vincent Plagnol73, Lydia Quaye33, Michael A. Quail15, Lucy Raymond25, Karola Rehnström15, Brent Richards31,33,49,50, Susan Ring27,74, Graham R.S. Ritchie15,23, Nicola Roberts25, David B. Savage21, Peter Scambler18, Stephen Schiffels15, Miriam Schmidts18, Nadia Schoenmakers21, Robert K. Semple21, Eva Serra15, Sally I. Sharp40, Hasheem Shihab27, So-Youn Shin15,27, David Skuse57, Kerrin Small33,40, Nicola Soranzo15, Lorraine Southam15,61, Olivera Spasic-Boskovic25, Tim Spector33, David St Clair27, Jim Stalker15, Elizabeth Stevens29, Beate St Pourcian27,76,77, Jianping Sun31,49, Gabriela Surdulescu33, Jaana Suvisaari60, Ionna Tachmazidou15, Nicholas Timpson27, Martin D. Tobin15, Ana Valdes33, Margriet Van Kogelenberg15, Parthiban Vijayarangakannan15, Peter M. Visscher44,78, Louise V. Wain19, Klaudia Walter15, James T.R. Walters26, Guangbiao Wang43, Jun Wang43,56,79,80,81, Yu Wang43, Kirsten Ward23, Elanor Wheeler15, Tamieka Whyte29, Hywel Williams36, Kathleen A. Williamson45, Crispian Wilson25, Scott G. Wilson33,82,83, Kim Wong15, Changjiang Xu31,49, Jian Yang44,77, Eleftheria Zeggini15, Fend Zhang33, Pingbo Zhang43, Hou-Feng Zheng49,50

15The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK. 16Department of Pathology, King Abdullah Medical City, Riyadh, Saudi Arabia. 17Department of Psychiatry, Trinity Centre for Health Sciences, St. James Hospital, James’s Street, Dublin 8, Ireland. 18Genetics and Genomic Medicine and Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK. 19Department of Health Sciences and Genetics, University of Leicester, Leicester, UK. 20Division of Developmental Disabilities, Department of Psychiatry, Queen’s University, Kingston, Canada. 21University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK. 22Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK. 23European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. 24Division of Developmental Disabilities, Department of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK. 25Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK. 26Institute of Psychiatry, Kings College London, 16 De Crespy Park; London SE5 BAF, UK. 27MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol BS8 1TQ, UK.
Erratum: A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans

Nicholas J. Timpson, Klaudia Walter, Josine L. Min, Ioanna Tachmazidou, Giovanni Malerba, So-Youn Shin, Lu Chen, Marta Futema, Lorraine Southam, Valentina Iotchkova, Massimiliano Cocca, Jie Huang, Yasin Memari, Shane McCarthy, Petr Danecek, Dawn Muddyman, Massimo Mangino, Cristina Menni, John R.B. Perry, Susan M. Ring, Amadou Gaye, George Dedoussis, Aliki-Eleni Farmaki, Paul Burton, Philippa J. Talmud, Giovanni Gambaro, Tim D. Spector, George Davey Smith, Richard Durbin, J. Brent Richards, Steve E. Humphries, Eleftheria Zeggini, Nicole Soranzo & UK10K Consortium

Nature Communications 5:4871 doi: 10.1038/ncomms5871 (2015); Published 16 Sep 2014; Updated 12 May 2015

During the production of this Article, errors were introduced in the frequencies of the variants rs964184-C and rs66505542-T reported in the Results section. The correct frequencies are 13 and 14%, respectively.