Research Article

Z-Complementary Sets Based on Sequences with Periodic and Aperiodic Zero Correlation Zone

Zhenyu Zhang,1,2 Wei Chen,1 Fanxin Zeng,2 Hua Wu,1 and Yuanhong Zhong1

1 College of Communication Engineering, Chongqing University, Shazheng Street no. 174, District of Shapingba, Chongqing 400044, China
2 Department of Information Engineering, Chongqing Communication Institute, Linyuan no. 1, District of Shapingba, Chongqing 400035, China

Correspondence should be addressed to Zhenyu Zhang, czhangzy@yahoo.com.cn

Received 18 September 2008; Revised 23 December 2008; Accepted 10 February 2009

Recommended by Ibrahim Develi

Methods of constructing Z-complementary sequence sets are described. Different from those constructions using complementary sequences as a kernel, the proposed constructions are based on sequences with periodic and aperiodic zero-correlation zone (PAZCZ). These PAZCZ sequences are unitary sequences, not complementary sequences. By means of interleaving iteration and orthogonal matrix expansion of PAZCZ sequences, desirable bivalued zero cross-correlation zone (ZCCZ) characteristics can be obtained. Compared with Z-complementary sequence sets with single value ZCCZ which is generally equal to the length of an element sequence, the proposed Z-complementary sequence sets with bivalued ZCCZ have larger set size and then can support more users.

Copyright © 2009 Zhenyu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Complementary sequences, first studied by Golay [1], have many useful properties for radar applications and spread-spectrum communications. Different from unitary sequences which work on a one-sequence-per-user basis, complementary sequences work on a one-flock-per-user basis [2]. It was shown in [3, 4] that orthogonal complementary (OC) sequences with ideal autocorrelation function (ACF) and cross-correlation function (CCF) can improve spectrum efficiency and bit error rate (BER) performance of code division multiple access (CDMA) systems.

Although OC sequences have ideal correlation properties, they cannot support the large number of users since the set size must not be larger than the flock size [2, 5]. To increase the set size of complementary sequence sets, the idea of zero-correlation zone (ZCZ) [6–8] or interference-free windows (IFWs) [9, 10] was exploited to the generation of complementary sequences, and generalized pairwise complementary (GPC) sequences [11] with the setwise uniform IFWs were constructed on the basis of complete complementary sequences [12] and generalized even shift orthogonal sequences [13]. Similar to the construction idea of GPC sequences, generalized pairwise Z-complementary (GPZ) sequences were generated in [14]. GPZ sequences are based on generalized even shift orthogonal-like sequences and include GPC sequences as a special case.

Compared with GPC and GPZ sequences which limit the flock size to be two, Z-complementary binary sequences [15] have fewer restrictions on the flock size. As a more general concept, Z-complementary sequences include the conventional complementary sequences as special cases. These sequences can efficiently resolve the limits on the lengths of conventional complementary sequences, and the theoretical bound given by [15] shows that Z-complementary sequences have much larger set size than conventional complementary sequences. In terms of the set of Z-complementary mates generated in [15], the zero cross-correlation zone (ZCCZ) is equal to the length of element sequences, and is usually larger than the zero autocorrelation zone (ZACZ) except that Z-complementary sequences become conventional complementary sequences.

Different from Z-complementary sequences with single value ZCCZ, intergroup complementary (IGC) sequences

[16] possess a bivalued ZCZ. The IGC sequence set is divided into several sequence groups. CCFs of any two sequences from the same group are zero within an intragroup IFW, while CCFs of any two sequences from different groups are zero everywhere. According to the theoretical bound in [15], the set size of IGC sequences comes up to the maximum number. However, just like other complementary sequences, IGC sequences still use a complementary sequence set as a basic kernel, which limits the employment of unitary sequences in the construction of complementary sequences.

Actually, the idea of dividing a sequence set into multiple groups and hence obtaining bivalued ZCZ first appears in [17] as mutually orthogonal sets of ZCZ sequences. Each of these sets is a ZCZ set, and any two sets are mutually orthogonal, which increases the number of available sequences for CDMA systems. Mutually orthogonal sets of ZCZ sequences can also be constructed in a new framework for constructing mutually orthogonal complementary sets and ZCZ sequences [18]. The framework involved characteristic matrices and mutually orthogonal Golay complementary sets (MOGCSs), and the required complete MOGCS in the framework was further studied on the basis of Reed-Muller codes in [19]. In comparison with MOGCS, GPC, Z-complementary sequences, IGC, and GPZ, it can be seen that mutually orthogonal sets of ZCZ sequences are unitary sequence sets, not complementary sequence sets.

This paper proposes methods to construct Z-complementary sets based on a set of sequences with PAZCZ which is a set of unitary sequences. By means of orthogonal matrix expansion and interleaving operation, two novel sets of Z-complementary sequences can be generated from a basic kernel of a PAZCZ sequence set. As an extension for Z-complementary sequences with single value ZCZ in [15], the presented Z-complementary sequences have a bivalued ZCZ like IGC sequences and can come up to the maximal set size as long as the kernel of PAZCZ sequences comes up to the maximal set size in terms of the theoretical bound on ZCZ sequences in [20].

The paper is organized as follows. In Section 2, we briefly introduce the definitions and notations used in the present paper. By using a PAZCZ sequence set as a basic kernel, Sections 3 and 4 present two construction schemes of Z-complementary sequences on the basis of orthogonal matrix expansion and interleaving operation, respectively. Some potential applications of the proposed sequence sets are described in Section 5, and we conclude the paper in Section 6.

2. Preliminary Considerations

Z-complementary sequences generally have larger set size than normal complementary sequences at the expense of correlation properties. Actually, a Z-complementary set can be considered to be a trade-off between correlation properties and set size. Although ideal correlation properties cannot be obtained, the CCFs and out-of-phase ACFs of Z-complementary sequences are zero within a region around the zero shift. Z-complementary sequences can be defined as follows.

Let A be a flock of complex-valued sequences with N element sequences of length L, written as $A = \{A_i, 1 \leq i \leq N\}$ with each element sequence $A_i = (A_i(0), A_i(1), \ldots, A_i(L - 1))$. Then $A = \{A_i, 1 \leq i \leq N\}$ is a Z-complementary sequence with flock size N if the sum $\Phi_{A,A}(\tau)$ of the aperiodic out-of-phase ACFs of N element sequences are zero within a region, namely,

$$\Phi_{A,A}(\tau) = \sum_{i=1}^{N} \Phi_{A_i,A_i}(\tau) = 0, \quad 1 \leq |\tau| \leq Z - 1,$$

where $\Phi_{A,A}(\tau)$ is the aperiodic ACF of element sequence A_i. The notations Z and E_{AC} denote the length of ZCZ and the energy of element sequence A_i, respectively.

Let $B = \{B_i, 1 \leq i \leq N\}$ be another Z-complementary sequence with each element sequence $B_i = (B_i(0), B_i(1), \ldots, B_i(L - 1))$. Then $B = \{B_i, 1 \leq i \leq N\}$ is referred to as a Z-complementary mate of $A = \{A_i, 1 \leq i \leq N\}$ if

$$\Phi_{A,B}(\tau) = \sum_{i=1}^{N} \Phi_{A_i,B_i}(\tau) = 0, \quad |\tau| \leq Z - 1,$$

where $\Phi_{A,B}(\tau)$ represents the sum of the aperiodic CCFs of N element sequences of A and B, $\Phi_{A_i,B_i}(\tau)$ denotes the aperiodic CCF of A_i and B_i, and is given by

$$\Phi_{A_i,B_i}(\tau) = \begin{cases} \sum_{l=0}^{L-1} A_i(l) B_i^*(l + \tau), & 0 \leq \tau \leq L - 1, \\ 0, & |\tau| \geq L, \end{cases}$$

where the symbol * denotes a complex conjugate. When $A_i = B_i$, the above definition becomes aperiodic ACF $\Psi_{A_i,A_i}(\tau)$.

In addition to aperiodic correlation properties, periodic correlation properties are also important for system performance and should be analyzed as GPC, GPZ, and IGC sequences do. For two element sequences of A_i and B_i, their periodic CCF can be expressed as

$$\phi_{A_i,B_i}(\tau) = \sum_{l=0}^{L-1} A_i(l) B_i^*(l + \tau), \quad 0 \leq \tau \leq L - 1,$$

where $l + \tau$ is performed modulo L. When $A_i = B_i$, the above definition becomes periodic ACF of A_i.

If any Z-complementary sequence in a set containing M Z-complementary sequences is a mate of other Z-complementary sequences in this set, then these Z-complementary sequences compose a Z-complementary set.
with set size M. In terms of [15], the set size M is bounded by
\[M \leq N \left\lfloor \frac{L}{Z} \right\rfloor, \]
(5)
where $\left\lfloor \frac{L}{Z} \right\rfloor$ denotes the largest integer smaller than or equal to $\frac{L}{Z}$.

From (5), a Z-complementary set generally has larger set size than a conventional complementary set even if the conventional complementary set is complete. However, for the fixed processing gain and the length of ZCZ, the set size of a Z-complementary set is smaller than that of mutually orthogonal ZCZ sequence sets in [17–19] and is usually comparable to the set size of each set of mutually orthogonal ZCZ sequence sets without regard to correlation properties.

When a Z-complementary set is divided into several sequence groups, the set will have the bivalued $ZCCZ$ characteristics like IGC sequences. We assume that a Z-complementary set with set size M, flock size N, element sequence length L, and ZCZ length Z, contains G sequence groups, then the Z-complementary set can be denoted by $Z-CS(M, N, L, G, Z)$.

According to the definition of Z-complementary sequences, a Z-complementary set becomes a conventional complementary set when $Z = L$, and becomes a $PAZCZ$ set when $N = 1$ in terms of the definition of $PAZCZ$ sequences in [21, 22]. Then Z-complementary sequences include the conventional complementary sequences and $PAZCZ$ sequences as special cases.

3. Sequence Construction Based on Orthogonal Matrix Expansion

A new scheme for the construction of Z-complementary set is presented in this section. The constructed sequences have good correlation properties and large set size. To show the performance of the generated sequences, a construction example is given.

3.1. The Construction Scheme. The proposed construction uses an arbitrary $PAZCZ$ sequence set as a basic kernel. By means of orthogonal matrix expansion, the bivalued $ZCCZ$ characteristics can be obtained.

Construction 1. Given an arbitrary $PAZCZ$ sequence set S with set size K and sequences length L, let S possess the ZCZ of one-sided length L for periodic and aperiodic correlation functions. Then S can be denoted by $Z-(K, L, Z)$ and be arranged in matrix form as follows:
\[
S = \begin{bmatrix}
S_1 \\
S_2 \\
\vdots \\
S_K
\end{bmatrix} = \begin{bmatrix}
S_1(0) & S_1(1) & \cdots & S_1(L-1) \\
S_2(0) & S_2(1) & \cdots & S_2(L-1) \\
\vdots & \vdots & \ddots & \vdots \\
S_K(0) & S_K(1) & \cdots & S_K(L-1)
\end{bmatrix}. \]
(6)

Let H be a $U \times V$ orthogonal matrix given by
\[
H = \begin{bmatrix}
h_{11} & h_{12} & \cdots & h_{1V} \\
h_{21} & h_{22} & \cdots & h_{2V} \\
\vdots & \vdots & \ddots & \vdots \\
h_{U1} & h_{U2} & \cdots & h_{UV}
\end{bmatrix}, \]
(7)
where any two distinct rows are orthogonal each other, and $U \leq V$ (generally $U = V$). Each entry is a complex number with unity amplitude. Then
\[
C = H \otimes S = \begin{bmatrix}
h_{u1}S_1 & h_{u1}S_2 & \cdots & h_{u1}S_V \\
h_{u2}S_1 & h_{u2}S_2 & \cdots & h_{u2}S_V \\
\vdots & \vdots & \ddots & \vdots \\
h_{uV}S_1 & h_{uV}S_2 & \cdots & h_{uV}S_V
\end{bmatrix}, \quad (1 \leq u \leq U)
\]
(8)
is a Z-complementary set $Z-CS(UK, V, L, U, Z)$, where the notation \otimes denotes Kronecker product.

The set C is divided into U sequence groups. In the matrix of (8), each row
\[
\begin{bmatrix}
h_{u1}S_1 & h_{u2}S_2 & \cdots & h_{uV}S_V \\
h_{u1}S_1 & h_{u2}S_2 & \cdots & h_{uV}S_V \\
\vdots & \vdots & \ddots & \vdots \\
h_{u1}S_K & h_{u2}S_K & \cdots & h_{uV}S_K
\end{bmatrix}
\]
(9)
becomes a group, and each group consists of K sequences with each sequence containing V element sequences of length L. Then the constructed Z-complementary set C consists of UK Z-complementary sequences, and the $((u-1)K+k)$th Z-complementary sequence which is also referred to as the kth Z-complementary sequence in the uth group can be denoted by $C_{uk} = \{h_{u1}S_k, \ldots, h_{uV}S_k, \ldots, h_{uV}S_k\}$, where $1 \leq u \leq U$, $1 \leq v \leq V$, $1 \leq k \leq K$, and $h_{uv}S_k = (h_{uv}S_k(0), h_{uv}S_k(1), \ldots, h_{uv}S_k(L-1))$ denotes the vth element sequence of C_{uk}.

When $U = V = 1$, the above Z-complementary set becomes the $PAZCZ$ sequence set $Z-(K, L, Z)$, which is also special case of the constructed Z-complementary set and can be also denoted by $Z-CS(K, 1, L, Z)$.

3.2. Correlation Properties of the Constructed Set. The aperiodic and periodic correlation properties of the designed set C in Construction 1 satisfy the following theorem.

Theorem 1. The generated Z-complementary set C in Construction 1 has bivalued $ZCCZ$. The $ZCCZ$ of any two sequences in a group is equal to Z, and the $ZCCZ$ of any two sequences from different groups is equal to L, that is, sequences from different groups are completely complementary. The ZACZ of the set C is Z.

\[
C = H \otimes S = \begin{bmatrix}
h_{u1}S_1 & h_{u1}S_2 & \cdots & h_{u1}S_V \\
h_{u2}S_1 & h_{u2}S_2 & \cdots & h_{u2}S_V \\
\vdots & \vdots & \ddots & \vdots \\
h_{uV}S_1 & h_{uV}S_2 & \cdots & h_{uV}S_V
\end{bmatrix}, \quad (1 \leq u \leq U)
\]
(8)}
We first consider aperiodic correlation properties. Let \(C_{ui,ki} \) sequence \(C \). We use a ternary PAZCZ sequence set \(-(4, 8, 2)\) in [22] as a basic kernel which is given by

\[
S = \begin{bmatrix}
S_1 & = 0+0+0+0- \\
S_2 & = 0+0+0-0+ \\
S_3 & = 0+0-0+0+ \\
S_4 & = 0+0-0-0-
\end{bmatrix}.
\]

Let \(H \) be a \(2 \times 2 \) Walsh-Hadamard matrix and be expressed as \(H = [++] \).

According to Construction 1, we can generate a \(Z \)-complementary set \(Z-CS(8, 2, 8, 2, 2) \) as follows:

\[
C = \begin{bmatrix}
C_{1,1} & = 0+0+0+0- \\
C_{1,2} & = 0+0+0+0- \\
C_{1,3} & = 0+0-0+0+ \\
C_{1,4} & = 0+0-0-0- \\
C_{2,1} & = 0+0+0+0- \\
C_{2,2} & = 0+0+0+0- \\
C_{2,3} & = 0+0-0+0+ \\
C_{2,4} & = 0+0-0-0-
\end{bmatrix}.
\]

The constructed \(Z \)-complementary set \(C \) has maximum set size in terms of (5). Figure 1 shows aperiodic correlation properties of the constructed \(Z \)-complementary

set Z-CS(8, 2, 8, 2, 2). It is obvious that the generated set has bivalued ZCCZ characteristics. In this example, the intragroup ZCCZ is 2, and the intergroup ZCCZ is 8.

4. Sequence Construction Based on Interleaving Iteration

According to Construction 1, the orthogonal matrix expansion method assures that the generated Z-complementary sequences from different groups are completely complementary. However, this method cannot increase the ZACZ and intragroup ZCCZ which are the same as the ZCZ of a basic PAZCZ set kernel. In order to obtain larger ZCCZ than one of a basic PAZCZ set kernel, the interleaving method is used to construct Z-complementary sets in this section.

4.1. The Iterative Construction. The interleaving operation is a significant expansion method and has wide applications to constructions of conventional complementary sequences [5, 23]. In [15], the bit-interleaving operation can be used to lengthen the element sequences of a single Z-complementary sequence, and then a new Z-complementary sequence can be obtained from a shorter Z-complementary sequence. Compared with the interleaving method for a single Z-complementary sequence in [15], we generate a novel Z-complementary set with multiple sequence groups and obtain larger set size, which guarantees that the CDMA systems using such Z-complementary sets can accommodate more users.

4.2. Correlation Properties of the Constructed Set

Theorem 2. The generated Z-complementary set C in Construction 2 has bivalued ZCCZ. Intergroup ZCCZ is 2L, that is, sequences from different groups are completely complementary. Both of ZACZ and intragroup ZCCZ are equal to 2Z.

Proof. We first consider aperiodic correlation properties. Let \(\Delta^{(1)}_{r_1, k_1} \) and \(\Delta^{(1)}_{r_2, k_2} \) denote the \(k_1 \)th Z-complementary sequence in the \(r_1 \)th group and the \(k_2 \)th Z-complementary sequence in the \(r_2 \)th group for \(\Delta^{(1)} \), respectively, where \(1 \leq r_1, r_2 \leq 2 \) and \(1 \leq k_1, k_2 \leq K \).

According to (14), when \(r_1 = r_2 \), the aperiodic correlation function of \(\Delta^{(1)}_{r_1, k_1} \) and \(\Delta^{(1)}_{r_2, k_2} \) can be given by

\[
\Psi_{\Delta^{(1)}_{r_1, k_1} \Delta^{(1)}_{r_2, k_2}}(\tau) = \left\{ \begin{array}{ll}
\psi_{S_{r_1}, S_{r_2}}(\tau) & \text{if } \tau \text{ is an even number} \\
0 & \text{otherwise}
\end{array} \right.
\]

where \(\tau \) denotes the chip index of the correlation function of \(\Delta^{(m)} \). Equation (15) is the ACF of \(\Delta^{(1)} \) when \(k_1 = k_2 \) and is the intragroup CCF of \(\Delta^{(1)} \) when \(k_1 \neq k_2 \).

For (15), when \(\tau \) is an even number and is denoted by \(\tau = 2\tau_0 \), where \(-(L-1) \leq \tau_0 \leq L-1 \), we have

\[
\Psi_{\Delta^{(1)}_{r_1, k_1} \Delta^{(1)}_{r_2, k_2}}(2\tau_0) = \left\{ \begin{array}{ll}
2\psi_{S_{r_1}, S_{r_2}}(\tau_0) & \text{if } \tau_0 \text{ is even number} \\
0 & \text{otherwise}
\end{array} \right.
\]

(16)

When \(\tau \) is an odd number and is denoted by \(\tau = 2\tau_0 + 1 \), where \(-(L-1) \leq \tau_0 \leq L-1 \), we have

\[
\Psi_{\Delta^{(1)}_{r_1, k_1} \Delta^{(1)}_{r_2, k_2}}(2\tau_0 + 1) = \left\{ \begin{array}{ll}
\psi_{S_{r_1}, S_{r_2}}(\tau_0) + \psi_{S_{r_1}, -S_{r_2}}(\tau_0) & \text{if } \tau_0 \text{ is even number} \\
0 & \text{otherwise}
\end{array} \right.
\]

(17)
When \(r_1 \neq r_2 \), the correlation function of \(\Delta^{(1)}_{r_1,k_1} \) and \(\Delta^{(1)}_{r_2,k_2} \) becomes the intergroup CCF of \(\Delta^{(1)} \) and can be given by
\[
\Psi_{\Delta^{(1)}_{r_1,k_1} \Delta^{(1)}_{r_2,k_2}} (\tau^{(1)}) = \Psi_{S_{k_1} \ominus S_{k_2}} (\tau^{(1)}) + \Psi_{S_{k_2} \ominus S_{k_1}} (\tau^{(1)}).
\]

(18)

Similar to the analysis of (15), we calculate (18) in terms of \(\tau^{(1)} = 2\tau^{(0)} + 1 \) and \(\tau^{(1)} = 2\tau^{(0)} + 1 \). When \(\tau^{(1)} = 2\tau^{(0)} \), we have
\[
\Psi_{\Delta^{(1)}_{r_1,k_1} \Delta^{(1)}_{r_2,k_2}} (2\tau^{(0)}) = \left[\Psi_{S_{k_1} \ominus S_{k_2}} (\tau^{(0)}) + \Psi_{S_{k_2} \ominus S_{k_1}} (\tau^{(0)})\right] + \left[-\Psi_{S_{k_1} \ominus S_{k_2}} (\tau^{(0)}) + \Psi_{S_{k_2} \ominus S_{k_1}} (\tau^{(0)})\right] = 0.
\]

When \(\tau^{(1)} = 2\tau^{(0)} + 1 \), we have
\[
\Psi_{\Delta^{(1)}_{r_1,k_1} \Delta^{(1)}_{r_2,k_2}} (2\tau^{(0)} + 1) = \left[\Psi_{S_{k_1} \ominus S_{k_2}} (\tau^{(0)}) + \Psi_{S_{k_2} \ominus S_{k_1}} (\tau^{(0)} + 1)\right] + \left[-\Psi_{S_{k_1} \ominus S_{k_2}} (\tau^{(0)}) + \Psi_{S_{k_2} \ominus S_{k_1}} (\tau^{(0)} + 1)\right] = 0.
\]

(20)

From (19)-(20), we can obtain that intergroup CCF (where \(r_1 \neq r_2 \)) of \(\Delta^{(1)} \) is zero. From (16)-(17), the odd-shift ACF (where \(r_1 = r_2 \) and \(k_1 = k_2 \)) and intragroup CCF (where \(r_1 = r_2 \) and \(k_1 \neq k_2 \)) of \(\Delta^{(1)} \) are zero, while the even-shift ACF and intragroup CCF of \(\Delta^{(1)} \) are determined by the ACF and CCF of \(\Delta^{(0)} = S \), respectively. Thus, at the \(n \)-th iteration, we have
\[
\Psi_{\Delta^{(n)}_{r_1,k_1} \Delta^{(n)}_{r_2,k_2}} (\tau^{(n)}) = \begin{cases}
4^n \Psi_{S_{k_1} \ominus S_{k_2}} (\tau^{(0)}), & \tau^{(n)} = 2^n \tau^{(0)},
r_1 = r_2, \\
0, & \text{otherwise},
\end{cases}
\]
where \(1 \leq r_1, r_2 \leq 2^n \) and \(1 \leq k_1, k_2 \leq K \).

Since \(\Psi_{S_{k_1} \ominus S_{k_2}} (\tau^{(0)}) = 0 \), \(|\tau^{(0)}| \leq Z - 1 \) (where \(k_1 \neq k_2 \)) and \(\Psi_{S_{k_1} \ominus S_{k_2}} (\tau^{(0)}) = 0 \), \(1 \leq |\tau^{(0)}| \leq Z - 1 \), we have
\[
\Psi_{\Delta^{(n)}_{r_1,k_1} \Delta^{(n)}_{r_2,k_2}} (\tau^{(n)}) = 0, \quad |\tau^{(n)}| \leq 2^n Z - 1, \quad k_1 \neq k_2, \quad 1 \leq |\tau^{(n)}| \leq 2^n Z - 1.
\]

From (19), (20), (22), and (23), we have proved that the aperiodic correlation properties of the constructed sequences in Construction 2 satisfy Theorem 2. For periodic correlation properties, similar analysis can be easily obtained, and the corresponding proof is omitted.

4.3. Set Size of the Constructed Set. Similar to Construction 1, when the PAZCZ sequence set \(Z-(K,L,Z) \) has the maximum set size (namely, \(K = L/Z \), the constructed Z-complementary set \(Z-CS(2^k K, 2^n, 2^n L, 2^n Z) \) in Construction 2 has the maximum set size in terms of (5).

4.4. An Example. The ternary PAZCZ sequence set \(Z-(4, 8, 2) \) in the example of Construction 1 is still used as a basic kernel. According to Construction 2, the Z-complementary set \(Z-CS(8, 2, 16, 2, 4) \) can be generated when \(n = 1 \) in (14). The constructed set comes up to the theoretical bound in (5) and can be given by

\[
\Delta^{(1)} = \begin{bmatrix}
\Delta_{1,1}^{(1)} & \Delta_{1,2}^{(1)} & \Delta_{1,3}^{(1)} & \Delta_{1,4}^{(1)} \\
\Delta_{2,1}^{(1)} & \Delta_{2,2}^{(1)} & \Delta_{2,3}^{(1)} & \Delta_{2,4}^{(1)}
\end{bmatrix} = \begin{bmatrix}
00 +00 +00 +00 +00 +00 - & 00 -+00 -+00 -+00 + & 00 +00 +00 +00 +00 + & 00 +00 +00 -+00 -+00 +
00 +00 +00 +00 +00 +00 + & 00 -+00 -+00 -+00 + & 00 +00 +00 +00 +00 + & 00 +00 +00 -+00 -+00 +
00 +00 +00 +00 +00 +00 + & 00 -+00 -+00 -+00 + & 00 +00 +00 +00 +00 + & 00 +00 +00 -+00 -+00 +
00 +00 +00 +00 +00 +00 + & 00 -+00 -+00 -+00 + & 00 +00 +00 +00 +00 + & 00 +00 +00 -+00 -+00 +
00 +00 +00 +00 +00 +00 + & 00 -+00 -+00 -+00 + & 00 +00 +00 +00 +00 + & 00 +00 +00 -+00 -+00 +
00 +00 +00 +00 +00 +00 + & 00 -+00 -+00 -+00 + & 00 +00 +00 +00 +00 + & 00 +00 +00 -+00 -+00 +
00 +00 +00 +00 +00 +00 + & 00 -+00 -+00 -+00 + & 00 +00 +00 +00 +00 + & 00 +00 +00 -+00 -+00 +
00 +00 +00 +00 +00 +00 + & 00 -+00 -+00 -+00 + & 00 +00 +00 +00 +00 + & 00 +00 +00 -+00 -+00 +
\end{bmatrix}
\]

(24)

Different from Z-complementary sets on the basis of the interleaving method in [15], the constructed set \(\Delta^{(1)} \) is divided into two groups, namely, \(\{\Delta_{1,1}^{(1)}, \ldots, \Delta_{1,4}^{(1)}\} \) and \(\{\Delta_{2,1}^{(1)}, \ldots, \Delta_{2,4}^{(1)}\} \). As a result, the set size is increased from 4 to 8 after iterating once. To compare with the designed Z-complementary set in Construction 1, we give Figure 2 which shows aperiodic correlation properties of Z-CS(8, 2, 16, 2, 4). From Figure 2, we can see that Construction 2 provides bivalued ZCCZ characteristics like Construction 1. However, the generated Z-complementary set in terms of Construction 2 has larger ZACZ and intragroup ZCCZ. At the first iteration, both of the ZACZ and intragroup ZCCZ are 4, and this value is as two times large as the ZCCZ of Z-(4, 8, 2).

5. Applications

Compared with PAZCZ sequence sets, the proposed Z-complementary sets in this paper have bivalued ZCCZ.
characteristics. Then better correlation properties can be obtained, and wider applications can be considered. The constructed sequences can be used in IGC-CDMA systems [16] since IGC sequences also possess bivalued ZCCZ characteristics. In addition, when the flock sizes of Constructions 1 and 2 are fixed to be two, we can apply the generated Z-complementary sets to those systems exploiting GPC [11] and GPZ [14] sequences. By choosing a suitable PAZCZ set kernel and controlling construction parameters in Constructions 1 and 2, the designed sequences can be adapted to various requirements of the above systems.

It should be noted that sequences with ZCZ just for periodic correlation function, which are usually called ZCZ sequences, can be used as a basic kernel when some CDMA systems only need good periodic correlation properties. Compared PAZCZ sequences, ZCZ sequences have received more attention. Then one can have a wider choice to generate Z-complementary sets just with periodic ZCZ in terms of Constructions 1 and 2.

Since correlation functions of complementary sequences are based on a flock of element sequences jointly instead of a single sequence, these element sequences should be transmitted via different channels which are usually different carriers like the cases in [3, 4, 16]. Therefore, complementary sequences, such as IGC sequences and Z-complementary sequences, are more sensitive to frequency selective fading channel than mutually orthogonal ZCZ sequence sets which are unitary sequence sets. It actually becomes the main drawback in applications of complementary sequences to multicarrier systems.

6. Conclusions

In this paper, two novel kinds of Z-complementary sets on the basis of a PAZCZ set are generated. As a basic kernel, the PAZCZ set affects significantly the ZCZ length and set size of the designed Z-complementary set, and it can be expanded by means of orthogonal matrix and the interleaving iteration. The proposed expansions of a PAZCZ set provide efficient and flexible ways to construct Z-complementary sets with bivalued ZCCZ characteristics.

Acknowledgment

This work was supported in part by the National Science Foundation of China (NSFC) under Grant no. 60872164.

References

[1] M. I. E. Golay, “Complementary series,” IRE Transactions on Information Theory, vol. 7, no. 2, pp. 82–87, 1961.
[2] H.-H. Chen and H.-W. Chiu, “Generation of perfect orthogonal complementary codes for their applications in interference-free CDMA systems,” in Proceedings of the 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC ’04), vol. 1, pp. 734–738, Barcelona, Spain, September 2004.
[3] S.-M. Tseng and M. R. Bell, “Asynchronous multicarrier DS-CDMA using mutually orthogonal complementary sets of sequences,” IEEE Transactions on Communications, vol. 48, no. 1, pp. 53–59, 2000.
[4] H.-H. Chen, J.-F. Yeh, and N. Suehiro, “A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications,” IEEE Communications Magazine, vol. 39, no. 10, pp. 126–135, 2001.
[5] P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, John Wiley & Sons, London, UK, 1996.
[6] P. Z. Fan, N. Suehiro, N. Kuroyanagi, and X. M. Deng, “Class of binary sequences with zero correlation zone,” Electronics Letters, vol. 35, no. 10, pp. 777–779, 1999.
[7] P. Z. Fan and L. Hao, “Generalized orthogonal sequences and their applications in synchronous CDMA systems,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E83-A, no. 11, pp. 2054–2066, 2000.
[8] H. Torii, M. Nakamura, and N. Suehiro, “A new class of zero-correlation zone sequences,” IEEE Transactions on Information Theory, vol. 50, no. 3, pp. 559–565, 2004.
[9] D. Li, “A method for spread spectrum multiple access coding with zero correlation window,” PCT/CN2000/000028, August 2001.
[10] D. Li, “The perspectives of large area synchronous CDMA technology for the fourth-generation mobile radio,” IEEE Communications Magazine, vol. 41, no. 3, pp. 114–119, 2003.
[11] H.-H. Chen, Y.-C. Yeh, X. Zhang, et al., “Generalized pairwise complementary codes with set-wise uniform interference-free
windows,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 1, pp. 65–74, 2006.

[12] N. Suehiro and M. Hatori, “N-shift cross-orthogonal sequences,” IEEE Transactions on Information Theory, vol. 34, no. 1, pp. 143–146, 1988.

[13] Y. Taki, H. Miyakawa, M. Hatori, and S. Namba, “Even-shift orthogonal sequences,” IEEE Transactions on Information Theory, vol. 15, no. 2, pp. 295–300, 1969.

[14] L. F. Feng, P. Z. Fan, X. H. Tang, and K.-K. Loo, “Generalized pairwise Z-complementary codes,” IEEE Signal Processing Letters, vol. 15, pp. 377–380, 2008.

[15] P. Z. Fan, W. Yuan, and Y. Tu, “Z-complementary binary sequences,” IEEE Signal Processing Letters, vol. 14, no. 8, pp. 509–512, 2007.

[16] J. Li, A. Huang, M. Guizani, and H.-H. Chen, “Intergroup complementary codes for interference-resistant CDMA wireless communications,” IEEE Transactions on Wireless Communications, vol. 7, no. 1, pp. 166–174, 2008.

[17] A. Rathinakumar and A. K. Chaturvedi, “Mutually orthogonal sets of ZCZ sequences,” Electronics Letters, vol. 40, no. 18, pp. 1133–1134, 2004.

[18] A. Rathinakumar and A. K. Chaturvedi, “A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences,” IEEE Transactions on Information Theory, vol. 52, no. 8, pp. 3817–3826, 2006.

[19] A. Rathinakumar and A. K. Chaturvedi, “Complete mutually orthogonal Golay complementary sets from Reed-Muller codes,” IEEE Transactions on Information Theory, vol. 54, no. 3, pp. 1339–1346, 2008.

[20] X. H. Tang, P. Z. Fan, and S. Matsufuji, “Lower bounds on correlation of spreading sequence set with low or zero correlation zone,” Electronics Letters, vol. 36, no. 6, pp. 551–552, 2000.

[21] D. Li, “A high spectrum efficient multiple access code,” in Proceedings of the 5th Asia-Pacific Conference on Communications and 4th Optoelectronics and Communications Conference (APCC/OECC ’99), vol. 1, pp. 598–605, Beijing, China, October 1999.

[22] H. Donelan and T. O’Farrell, “Families of ternary sequences with aperiodic zero correlation zones for MC-DS-CDMA,” Electronics Letters, vol. 38, no. 25, pp. 1660–1661, 2002.

[23] C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE Transactions on Information Theory, vol. 18, no. 5, pp. 644–652, 1972.