Association between Diurnal Variation of Ozone Concentration and Stroke Occurrence: 24-Hour Time Series Study

Myung-Hoon Han3, Hyeong-Joong Yi1*, Young-Seo Kim2, Yong Ko1, Young-Soo Kim1

1 Department of Neurosurgery, Hanyang University Medical Center, 222–1, Wangsimni-ro, Seongdong-gu, Seoul, Korea, 2 Department of Neurology, Hanyang University Medical Center, 222–1, Wangsimni-ro, Seongdong-gu, Seoul, Korea, 3 Department of Neurosurgery, Hanyang University Guri Hospital, 153 Gyeongchun-ro, Guri 471–701, Gyonggi-do, Korea

* hjyi8499@hanyang.ac.kr

Abstract

Background and Purpose

Increasing ozone concentrations have been known to damage human health and ecosystems. Although ozone tends to display diurnal variation, most studies have reported only on the association between daily ozone concentrations and ischemic stroke occurrence on the same day, or with a 1-day lag. We investigated the effect of the diurnal variation of ozone on ischemic stroke occurrence during the same day.

Methods

We included a consecutive series of 1,734 patients from January 1, 2008, to December 31, 2014, at a single tertiary hospital in Seoul, South Korea. We evaluated differences between temperature and pollutants at the time of stroke onset for each time interval and averaged those parameters across the 7-year study period.

Results

During the interval from 13:00 to 16:59, we found a positive association between ischemic stroke occurrence and ozone concentration relative to other time periods. Upper median ozone levels from 13:00 to 16:59 were positively correlated with ischemic stroke (odds ratio, 1.550; 95% confidence intervals, 1.220 to 1.970; P = <0.001) when compared with lower median levels.

Conclusions

The results show diurnal patterns of ischemic stroke occurrence based on upper and lower median ozone levels for a 24-hour period, which extends understanding of the association between stroke occurrence and environmental influences.
Introduction

Every year in Korea, approximately 105,000 people experience new or recurrent stroke, and more than 26,000 people die of stroke. In other words, every 5 minutes, someone in Korea experiences a stroke, and every 20 minutes, a stroke-related death occurs.[1] Many epidemiological studies have linked meteorological factors or concentrations of air pollutants with ischemic stroke (IS).[1–9] Ozone (O_3) is the air pollutant most consistently projected to increase as a result of future climate change.[10] The increasing tropospheric concentrations of O_3 have received extensive attention around the world because of the related damage to human health and ecosystems.[11–14] However, inconsistent and incomplete information has been reported on the relationship between IS occurrence and O_3 concentrations. Some studies[15–21] have asserted that IS occurrence is associated with O_3, whereas other studies[22–26] have reported no association between them. However, none of those studies investigated the relationship between IS occurrence and O_3 levels using time-specific IS onset and diurnal variation of O_3 concentrations over 24-h periods. We hypothesized that diurnal variations of ozone concentration could affect ischemic stroke occurrence. In addition, because studies[2,17,27–29] have reported an association between IS occurrence and temperature and particulate matter less than 10 μm in aerodynamic diameter (PM_{10}), we also evaluated the effects of those factors on IS occurrence across 24-h periods.

Materials and Methods

Study area

The Seongdong district is in an urban section of Seoul in northern South Korea with a mean population of about 250,000. Hanyang University Medical Center is the sole regional tertiary hospital qualified to treat stroke in the Seongdong district. We previously reported the characteristics of the Seongdong district.[30] Patients within the study area can reach the Hanyang University Medical Center emergency unit within 15 minutes by car, and almost all emergency patients within the Seongdong district are transported to our hospital according to the guidelines of the Emergency Medical Services system.

Stroke registry and patients

We collected patient data retrospectively from the Hanyang University Medical Center Stroke Registry. In the end, we included a consecutive series of 1,734 patients from January 1, 2008, to December 31, 2014 (Fig 1).

We included recurrent stroke patients because a previous study reported no differences in circadian variation in recurrent stroke compared with first stroke.[31]

The Hanyang University Medical Center Stroke Registry (established in 2007) was designed for prospective research, and the registration system is well organized. The data quality, consistency, and accuracy of our registry are reliable because trained staff manage all data directly and consistently within a single hospital for various research purposes. A neurologist diagnosed IS based on clinical symptoms following the World Health Organization criteria,[32] as well as neurologic imaging using CT or MRI, in all cases. This study was approved by the institutional review board of Hanyang University Medical Center. Due to the retrospective nature of this study, the ethics committee did not require subsequent informed written consent of the included patients. However, we de-identified and anonymized patient records prior to analysis.

Analysis of onset time

The time (registered per minute) and situation at IS onset are recorded in detail in our registry. When patients perceived the symptoms of stroke or guardians observed the occurrence of
Ischemic stroke

Hanyang University Medical Center Stroke registry (2008-2014)
Initial ischemic stroke (n=2367)

Patients referred from another region (273) were excluded

Ischemic stroke (n=2094)

Patients with the onset time interval > 6 hours or unknown (360) were excluded

Final ischemic stroke (n=1734)

Clear onset (n=1428)

Onset time interval < 3 hours (n=153)

Onset time interval ≥ 3 hours and < 6 hours (n=153)

Fig 1. Flow chart of the process for selecting eligible patients for our study from the Hanyang University Medical Center Stroke Registry during the period from January 1, 2008, to December 31, 2014.
doi:10.1371/journal.pone.0152433.g001

stroke in patients, we used the time of perception or observation as the onset time (clear onset). However, when the precise onset time was not clear (unclear onset), mostly due to sleep, we investigated and recorded in our registration system the last time that a patient felt or was seen to be normal and the first time a patient felt or was seen to be abnormal. We excluded patients with time intervals of more than six hours between the last normal time and first abnormal time because we expected high levels of heterogeneity in the time of IS occurrence, air temperature, and pollutant concentrations when we redistributed those patients across more than six hours. In addition, we were afraid of losing too many patients to overnight sleep if we reduced the range of time intervals too far to enhance the reliability. We therefore divided unclear onset patients within 6 hours into 0:01 to 2:59 hours and 3:00 to 5:59 hours and redistributed them to the middle of the preceding pertinent time intervals.

Temperature and air pollution variables

We investigated hourly temperature data in the Seongdong district for the day of stroke occurrence in all cases for the 7-year study period. Then we registered the temperature at the time of stroke onset. In addition, we collected hourly mean temperatures for every month from January 2008 to December 2014 (S1 Table). We obtained those data from the Meteorological Administration of South Korea (http://www.kma.go.kr). Similarly, we collected data on pollutants, including measures of PM$_{10}$ and O$_3$ in the Seongdong district, Seoul, for the 7-year study.
Statistical methods

We present baseline characteristics of patient data as mean ± standard deviation and number/percentage. We included patients with both clear and unclear onset (time interval 0–6h) in all analyses. We used the Chi-square test and one-way ANOVA to assess differences in the variables at 4-hour intervals.

We used descriptive statistics to describe the hourly incidence of IS and hourly measures of temperature, PM10, and O3 at the time of stroke onset from January 1, 2008, to December 31, 2014.

We categorized temperature, PM10 and O3 variables for the time of day of stroke onset into quartile groups and lower and upper median groups based on average hourly temperature, PM10 and O3 for every month during the study period for each 4-hour time interval, to evaluate possible differences between temperature, PM10 and O3 of the time of day of stroke onset for each time interval and averaged those parameters for each time interval during the study period. Then we calculated the number of IS occurrences based on the quartile and lower and upper median groups for temperature, PM10, and O3 stratified by 4-hour intervals. In addition, we divided the O3 variable for the time of stroke onset into lower and upper median groups based on the average hourly O3 for every month during the study period at 1-hour intervals.

We estimated the odds ratio (OR) with 95% confidence intervals (CIs) using multinomial logistic regression of IS occurrence for each 4-hour interval based on the lower and upper median groups for temperature, PM10, and O3 to evaluate the association of those variables with IS occurrence (S3 Table). We divided temperature, PM10, and O3 at the time of stroke onset (in 4-hour intervals) into lower and upper median groups for the same intervals using the average hourly values for every month during the study period (S2 Table). Then we calculated the ORs of the lower (coding = 1) and upper (coding = 2) median groups for temperature, PM10, and O3 for each 4-hour interval compared with half of the total number of IS occurrences (coding = 0) for each interval.

We also divided the day into 4-hour intervals to identify potential differences in IS occurrence when comparing the temperature, PM10, and O3 in each 4-hour interval with those in other time periods. Assuming that IS onset is not related to temperature, PM10, or O3 for each 4-hour interval, we calculated the OR with 95% CIs, using uni- and multivariable binary logistic regression of IS incidence for each 4-hour interval. First, we categorized temperature, PM10, and O3 at the time of stroke occurrence into the lower (coding = 0) or upper median group (coding = 1) as covariates for each 4-hour interval, based on the median and average hourly values for every month of the study period. Second, we coded 1 for the interval we wanted to calculate as a dependent variable and coded 0 for the other intervals. We first calculated the OR of IS occurrence using a univariate logistic regression model for each 4-hour time interval alternatively with covariates of median group variables (reference = lower median group) for temperature, PM10, and O3. We then estimated ORs with 95% CIs using a multivariate logistic regression model to adjust for possible confounders and considering \(p<0.05\) as statistically significant.

All statistical analyses were performed using SPSS for Windows, version 22.0.

Results

We included 1,734 patients with IS; 373 patients (21.5%) in the 09:00–13:00-h interval and 355 patients (20.5%) in the 13:00–17:00-h interval. The average age of IS onset was 66.29 years, and 57.4% of patients were men. There were no significant differences between the time intervals...
Table 1. Characteristics of Patients with Ischemic Stroke in the Hanyang University Medical Center Stroke Registry, and Distribution of Variables Based on 4-hour Time Intervals from January 1, 2008, to December 31, 2014.

Variables	All patients	01:00–04:59	05:00–08:59	09:00–12:59	13:00–16:59	17:00–20:59	21:00–00:59	P
Number (%)	1734	113 (6.5)	345 (19.9)	373 (21.5)	355 (20.5)	301 (17.4)	247 (14.2)	
Sex, male, n (%)	996 (57.4)	63 (55.8)	210 (60.9)	223 (59.8)	193 (54.4)	171 (56.8)	136 (55.1)	0.464*
Age, mean (SD), y	66.29 (13.06)	64.47 (13.72)	65.49 (13.74)	67.87 (12.25)	66.00 (13.39)	66.69 (13.04)	65.77 (12.35)	0.416†
TOAST subtype								
LAA, n (%)	517 (29.8)	22 (19.5)	129 (37.4)	110 (29.5)	102 (28.7)	82 (27.2)	72 (29.1)	0.006*
SAO, n (%)	560 (32.3)	36 (31.9)	116 (33.6)	130 (34.9)	112 (31.5)	93 (30.9)	73 (29.6)	0.760*
CE, n (%)	374 (21.6)	28 (24.8)	63 (18.3)	70 (18.8)	81 (22.8)	73 (24.3)	59 (23.9)	0.217†
Other, n (%)	66 (3.8)	6 (5.3)	4 (1.2)	18 (4.8)	13 (3.7)	16 (5.3)	9 (3.6)	0.068*
Undetermined, n (%)	217 (12.5)	21 (18.6)	33 (9.6)	45 (12.1)	47 (13.2)	37 (12.3)	34 (13.8)	0.210†
Risk factors								
Hypertension, n (%)	948 (54.7)	63 (55.8)	165 (47.8)	220 (59.0)	197 (55.5)	173 (57.5)	130 (52.6)	0.055*
Diabetes mellitus, n (%)	511 (29.5)	30 (26.5)	90 (26.1)	119 (31.9)	116 (32.7)	89 (29.6)	67 (27.1)	0.322*
Smoking, n (%)	387 (22.3)	22 (19.5)	75 (21.7)	86 (23.1)	67 (18.9)	76 (25.2)	61 (24.7)	0.365*
Alcohol drinking, n (%)	621 (35.8)	34 (30.1)	107 (31.0)	138 (37.0)	133 (37.5)	101 (33.6)	108 (43.7)	0.022*
Hyperlipidemia, n (%)	321 (18.5)	20 (17.7)	78 (22.6)	60 (16.1)	68 (19.2)	45 (15.0)	50 (20.2)	0.133*
Atrial fibrillation, n (%)	168 (9.7)	10 (8.8)	45 (13.0)	30 (8.0)	30 (8.5)	31 (10.3)	22 (8.9)	0.252*
Recurrent stroke, n (%)	271 (15.6)	14 (12.4)	50 (14.5)	61 (16.4)	53 (14.9)	50 (16.6)	43 (17.4)	0.802*

*Chi-square test
†ANOVA test
SD, standard deviation; LAA, large artery atherosclerosis; SAO, small vessel occlusion; CE, cardioembolism

doi:10.1371/journal.pone.0152433.t001

and the prevalence of stroke risk factors except for the history of alcohol drinking ($P = 0.022$). Further descriptive data stratified by 4-hour intervals, including TOAST classification, history of risk factors, and recurrent stroke, are shown in Table 1.

Table 2 shows the number of IS patients with clear onset times within 6-hour intervals and the temperature, PM$_{10}$, and O$_3$ at the time of stroke occurrence stratified by 1-hour intervals. In addition, we also present the median and quartiles 1 and 3 of hourly average temperature, PM$_{10}$, and O$_3$ for every month during the 7-year study period stratified by 1-hour and 4-hour intervals as a reference (S1 and S2 Tables).

Fig 2 shows the number of IS with clear onset and unclear onset ranges from 0–3 h and 3–6 h, all assigned within 2-hour intervals.

IS occurrence peaked during the period from 07:00 to 08:59, with 226 patients with clear onset, 16 with unclear onset within 3 hours and 27 with unclear onset between 3 and 6 hours.

Fig 3 presents time-specific IS onset patterns with data on temperature, PM$_{10}$, and O$_3$ for the time of stroke onset divided into quartiles and medians for each 4-hour interval and O$_3$ for the time of stroke onset divided into medians for each 1-hour interval by the average hourly values for every month during the 7-year study period.

The upper median groups of temperature for each 4-hour interval show patterns of slightly higher IS occurrence than the lower median groups, whereas a tendency toward higher IS occurrence appears in the lower median group for PM$_{10}$. We found a higher IS occurrence in
the upper median group of O3 compared with the lower median group during the period from 13:00 to 16:59. In addition, we observed a higher IS occurrence in the upper median group from 13:00 to 17:59 in the 1-hour interval model for O3.

We estimated ORs with 95% CIs for IS occurrence using a multinomial logistic regression model. We found a positive association between IS occurrence and the upper median group of O3 (OR, 1.255; 95% CI, 1.021 to 1.510; \(P = 0.017 \)) relative to half of the total number of IS onsets from 13:00 to 16:59 (S3 Table).

Table 3 shows ORs with 95% CIs for IS occurrence stratified by 4-hour intervals based on temperature, PM10, and O3. Each 4-hour interval contains a similar number of patients. There was a negative relationship between IS occurrence and O3 concentration during the period from 05:00 to 08:59 (OR, 0.635; 95% CI, 0.492 to 0.819; \(P < 0.001 \)) after full adjustment. In the period from 13:00 to 16:59, we found a positive association between IS occurrence and O3 concentration relative to the other time periods. The upper median group of O3 from 13:00 to 16:59 was positively correlated with IS (OR, 1.550; 95% CI, 1.220 to 1.970; \(P < 0.001 \)) compared with the lower median group of O3. These data suggest that the upper median group of O3 is associated with an approximately 1.5-fold higher risk of IS occurrence relative to the lower median group from 13:00 to 16:59 compared with the other time periods. In addition, this positive association between higher O3 concentrations and IS occurrence from 13:00 to 16:59 was

Table 2. Descriptive Analysis of the Number of Stroke Patients and Hourly Temperature and Air Pollutants on Day of Stroke Occurrence from January 1, 2008, to December 31, 2014, in the Seongdong district, Seoul, Korea.

Time	Clear onset	Time interval 0–6 h	Temperature (°C)	PM10 (µg/m³)	O3 (ppb)						
	Number	Number	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
01:00–01:59	10	17	11.01	-13.60	29.00	46.52	28.00	84.00	14.22	7.00	29.00
02:00–02:59	4	21	9.57	-13.60	24.90	45.64	26.00	73.00	16.08	7.00	27.00
03:00–03:59	14	16	9.76	-12.70	27.40	45.47	28.00	72.00	16.97	9.00	29.00
04:00–04:59	13	18	9.91	-6.10	25.20	40.33	30.00	56.00	15.79	9.00	24.00
05:00–05:59	8	16	13.04	-9.40	24.80	40.96	20.00	68.00	13.88	6.00	51.00
06:00–06:59	34	18	10.06	-12.40	26.00	40.96	20.00	68.00	13.88	6.00	51.00
07:00–07:59	108	19	8.25	-13.40	26.70	45.26	23.00	74.00	10.66	4.00	20.00
08:00–08:59	118	24	10.92	-15.00	26.30	44.23	23.00	75.00	9.80	4.00	19.00
09:00–09:59	102	11	10.71	-12.70	28.60	46.11	24.00	76.00	12.51	4.00	23.00
10:00–10:59	72	16	13.52	-11.30	29.70	46.55	7.00	83.00	15.72	6.00	29.00
11:00–11:59	62	9	11.96	-6.90	29.20	49.73	24.00	92.00	20.35	8.00	45.00
12:00–12:59	87	14	18.12	-8.70	33.30	44.75	21.00	100.00	26.92	10.00	45.00
13:00–13:59	64	5	17.45	-7.60	33.00	46.75	25.00	76.00	34.83	16.00	54.00
14:00–14:59	87	3	16.15	-9.60	32.80	47.22	20.00	100.00	36.18	10.00	62.00
15:00–15:59	80	14	18.71	-7.50	35.10	43.10	21.00	75.00	36.49	15.00	62.00
16:00–16:59	90	12	14.59	-12.50	33.70	49.38	21.00	85.00	37.27	14.00	70.00
17:00–17:59	74	5	13.85	-11.60	33.70	49.15	21.00	78.00	35.78	9.00	63.00
18:00–18:59	68	10	15.31	-8.30	30.80	47.10	23.00	80.00	28.67	8.00	57.00
19:00–19:59	66	5	13.21	-9.30	30.60	49.76	23.00	81.00	25.04	6.00	48.00
20:00–20:59	62	11	14.18	-6.00	28.20	50.56	3.00	86.00	20.49	6.00	40.00
21:00–21:59	52	8	11.20	-7.80	28.70	54.80	28.00	94.00	16.40	6.00	34.00
22:00–22:59	54	3	14.08	-8.10	27.20	52.70	29.00	100.00	15.70	6.00	27.00
23:00–23:59	29	11	10.21	-11.60	27.40	53.43	30.00	100.00	14.53	7.00	47.00
00:00–00:59	70	20	10.24	-11.30	26.10	50.84	28.00	108.00	13.33	6.00	25.00

PM10, particulate matter less than 10 µm in aerodynamic diameter; O3, ozone; Min, minimum; Max, maximum

doi:10.1371/journal.pone.0152433.t002
maintained after full adjustment for PM$_{10}$, temperature, sex, age, and risk factors (OR, 1.515; 95% CI, 1.172 to 1.959; $P = 0.002$). A higher IS occurrence was observed in the higher ozone concentration only in the top-tier ozone concentration during the period from 13:00 to 17:00 compared to the other time periods. In the other intervals, IS occurrence was not significantly higher in the upper median group for ozone compared to the lower median group. In this study, we observed about a 1.5-fold higher risk of IS occurrence at an ozone concentration above 33 ppb than below that threshold. Thus, IS might be associated with ozone concentrations above that level.

Discussion

The present study shows IS onset patterns for each time interval according to quartile and lower and upper median groups of temperature and air pollution concentrations. Our results accord with those of previous studies that reported higher rates of IS occurrence in the morning.[31,33–35] We also observed an abrupt decrease in IS occurrence from 10:00 to 11:59 and a gradual slight increase in IS onset from early afternoon to late afternoon. We found a significant association between higher IS occurrence and upper median O$_3$ concentrations between 13:00 and 16:59. We observed that the effect of O$_3$ remained significant during that time, compared with the other time periods, after including temperature, PM$_{10}$, and other risk factors in the logistic model. In addition, there was a tendency toward higher IS occurrence in the higher O$_3$ group in the afternoon, which increased gradually from 13:00–13:59 and peaked from 16:00–16:59. We also found a tendency for higher IS occurrence in the lower median groups of PM$_{10}$. However, we found no significant association between IS occurrence and PM$_{10}$ concentrations. These findings are in line with a recent meta-analysis[36] that reported that PM$_{10}$ showed non-significant associations with hospital admission for IS.

O$_3$ shows definite diurnal variation. According to the Climate and Air Quality Management Division of South Korea, O$_3$ concentration begins to increase after sunrise, 08:00–09:00 h, and attains its maximum level in the afternoon at 14:00–15:00 h. During the late evening hours, 18:00–20:00 h, the surface O$_3$ concentration tends to decrease and reaches a minimum. High temperatures, solar radiation, and longer sunshine duration lead to higher concentrations of
Therefore, we think it valuable to evaluate the immediate relationship between stroke occurrence and O₃ concentrations based on 24-hour time series data.

First, we need to clarify the units of measure used for O₃ because previous studies used several O₃ units. Using a conversion program, we converted O₃ units between ppm, ppb, and μg/m³. One ppb is 1/1000 ppm, and assuming an ambient pressure of 1 atmosphere and a temperature of 25 degrees, 1 ppb O₃ is approximately 2.00 μg/m³.

Many studies have reported an association between IS occurrence and O₃ concentration, [15–21] and most studies have described short-term effects (0–2 day lag) for O₃ on IS occurrence.[37] Therefore, we think it valuable to evaluate the immediate relationship between stroke occurrence and O₃ concentrations based on 24-hour time series data.

Fig 3. Time-specific stroke onset pattern with data on temperature, PM10, and O₃ for the time of stroke onset divided into quartiles and medians for each 4-hour interval and O₃ for the time of stroke onset divided into medians for each 1-hour interval by the average hourly values for every month during the 7-year study period.

doi:10.1371/journal.pone.0152433.g003
Table 3. Odds Ratios and 95% Confidence Intervals for Each 4-Hour Interval of Ischemic Stroke Occurrence Based on the Upper Median Group Compared with the Lower Median Group of Temperature, PM$_{10}$, and O$_3$ for the Hour the Stroke Occurred Categorized by the Median of Average Hourly Values for Every Month During the 7-Year Study Period.

Time interval (hour)	01:00–04:59	05:00–08:59	09:00–12:59	13:00–16:59	17:00–20:59	21:00–00:59
	(n = 113)	(n = 345)	(n = 373)	(n = 355)	(n = 301)	(n = 247)
OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Temperature (°C)	0.820 (0.560–1.201)	0.830 (0.666–1.051)	1.006 (0.800–1.266)	1.119 (0.885–1.414)	1.199 (0.934–1.540)	0.975 (0.765–1.243)
PM$_{10}$ (µg/m3)	0.732 (0.492–1.090)	0.914 (0.719–1.162)	0.822 (0.650–1.039)	1.134 (0.897–1.435)	1.096 (0.853–1.408)	1.170 (0.916–1.493)
O$_3$ (ppb)	1.181 (0.803–1.736)	0.617 (0.486–0.782)†	0.930 (0.740–1.170)	1.550 (1.220–1.970)†	1.023 (0.797–1.312)	0.885 (0.694–1.129)
Model 1						
PM$_{10}$ (µg/m3)	0.724 (0.486–1.079)	0.940 (0.738–1.196)	0.825 (0.652–1.043)	1.106 (0.873–1.400)	1.095 (0.852–1.407)	1.180 (0.923–1.507)
O$_3$ (ppb)	1.203 (0.817–1.770)	0.619 (0.488–0.785)†	0.941 (0.747–1.184)	1.541 (1.212–1.959)†	1.017 (0.792–1.306)	0.876 (0.687–1.118)
Model 2						
Temperature (°C)	0.619 (0.401–0.954)*	0.903 (0.691–1.179)	0.937 (0.719–1.220)	1.041 (0.795–1.362)	1.328 (0.993–1.777)	1.107 (0.836–1.467)
PM$_{10}$ (µg/m3)	0.598 (0.388–0.922)*	0.903 (0.691–1.179)	0.803 (0.620–1.040)	1.123 (0.866–1.457)	1.231 (0.931–1.627)	1.230 (0.938–1.612)
O$_3$ (ppb)	1.356 (0.902–2.041)	0.638 (0.495–0.821)†	0.960 (0.752–1.225)	1.505 (1.166–1.942)*	0.929 (0.711–1.213)	0.848 (0.654–1.100)
Model 3						
Temperature (°C)	0.633 (0.410–0.977)*	0.921 (0.698–1.214)	0.940 (0.721–1.226)	1.052 (0.802–1.380)	1.294 (0.965–1.737)	1.086 (0.818–1.442)
PM$_{10}$ (µg/m3)	0.602 (0.390–0.928)*	0.912 (0.697–1.193)	0.797 (0.615–1.033)	1.105 (0.851–1.436)	1.232 (0.929–1.635)	1.235 (0.940–1.623)
O$_3$ (ppb)	1.342 (0.890–2.024)	0.635 (0.492–0.819)†	0.957 (0.749–1.223)	1.515 (1.172–1.959)*	0.939 (0.717–1.230)	0.846 (0.651–1.099)

Model 1 was adjusted for each pollutant (PM$_{10}$ and O$_3$). Model 2 was adjusted for the variables in Model 1 plus temperature; Model 3 was adjusted for the variables in Model 2 plus age, sex and history of risk factors. PM$_{10}$, particulate matter less than 10 mm in aerodynamic diameter; O$_3$, ozone; OR, Odds ratio

*p<0.05
†p<0.001, respectively

doi:10.1371/journal.pone.0152433.t003

A study in the USA[14] reported that the ambient concentration sometimes increased at night because O$_3$ concentrations vary dramatically from morning to afternoon. Although we found a slight increase in IS occurrence during the high O$_3$ period, we found higher proportions of high O$_3$ concentration groups than low O$_3$ groups among the total IS occurrences in the high O$_3$ period. In addition, the higher O$_3$ groups in the high O$_3$ period showed a significant association with higher IS occurrence relative to the lower O$_3$ groups when compared with the other time periods. In our study, IS occurrence showed a gradual increase in the group with higher levels of O$_3$ from around 13:00 and reached a peak during the period from 16:00–16:59. This finding suggests that IS occurrence might increase depending on exposure time to higher O$_3$ concentrations during periods of high levels of O$_3$. We classified O$_3$ at the time of stroke onset from 13:00 to 16:59 by the median (33 ppb) of the average hourly O$_3$ for every month during the study period. However, 33 ppb of O$_3$ was the median of O$_3$ from 13:00 to 16:59 for the study period. Therefore, it is unclear whether O$_3$ above 33 ppb during a high O$_3$ period really affects IS occurrence. A study in the USA[14] reported that the ambient concentration–response relationship for O$_3$ showed evidence of a threshold at a little over 30 ppb. In other words, adverse health effects exist above that threshold. Similar findings were reported by a more recent study in Korea and
Those authors reported that the range of Japanese and Korean city thresholds for a link between the daily mean ambient O₃ concentration and the daily number of non-accidental deaths was from 11 to 34 ppb. The same city-combined analysis also showed a non-linear association with a threshold of 30–40 ppb with a 0–1 day lag. In addition, Ren et al.[12] reported short-term effects for O₃ on stroke mortality. They found that exposure to O₃ was strongly associated with mortality in diabetes and stroke, associated a little more strongly with respiratory disorders, and weakly associated with heart disease, such as myocardial infarction or cardiovascular diseases. Our study also showed higher IS occurrence in the upper median group (>33ppb of ozone) in the top-tiered ozone concentration during the period from 13:00 to 17:00. Therefore, we hypothesize that an O₃ concentration of just over 30 ppb might have some effect on stroke occurrence.

Some pathophysiological hypotheses could explain our findings. Devlin et al.[38] demonstrated O₃-induced changes in several markers associated with fibrinolysis in response to fibrin deposition in 23 healthy young volunteers. They reported that a small increase in tissue-type plasminogen activator was seen immediately after a 2-hour exposure to ozone. Although O₃ concentrations in the high O₃ period in our study were not high as the O₃ exposure (0.3 ppm) over 2 hours in that study, the subjects in that study were exposed to high levels of ozone for only 2 hours, in contrast to real-life situations that would involve much lengthier ozone exposures. A study in Canada[39] reported that short-term inhalation of fine particulate (PM₂.₅) air pollution and ozone at concentrations that occur in urban environments caused acute conduit artery vasoconstriction. These vasoconstrictor effects might induce obstruction in a stenotic artery, giving rise to ischemia, or trigger the rupture of an unstable atherosclerosis plaque. The mostly older patients in our study with vascular disease might be predisposed to thromboembolic episodes. Dales et al.[40] found a significant association between exposure to O₃ and venous thrombosis in a study in the Netherlands,[41] which reported that exposure to air pollutants such as O₃ was associated with increased platelet aggregation and thrombin generation.

We observed higher IS occurrence in lower O₃ concentrations during the period from 05:00 to 09:00. Ozone forms through the splitting of nitrogen dioxide by sunlight to provide the primary source of the oxygen atoms required for O₃ formation.[42] Sunlight splits nitrogen dioxide into nitric oxide and an oxygen atom (NO₂ + sunlight → NO + O). A single oxygen atom then combines with an oxygen molecule to produce O₃ (O₂ + O → O₃). Therefore, there is an inverse diurnal relationship between O₃ and nitrogen dioxide.[43] The study also showed higher concentrations of both carbon monoxide and PM₂.₅ during the period from 05:00 to 09:00. A recent meta-analysis[25] reported that PM₂.₅, nitrogen dioxide, and carbon monoxide were associated with the risk of hospital admission for stroke. However, PM₁₀ was not significantly related to the risk of stroke admission. We think higher concentrations of PM₂.₅, nitrogen dioxide, and carbon monoxide, which are inversely related to ozone, might be significantly associated with higher IS occurrence between 05:00 and 09:00.

Generally, IS occurrence tended to rise slightly in the high temperature group (upper median group). Tsai et al.[17] reported that O₃ showed a significant association with IS occurrence on warm days. In addition, we found no positive association between IS onset and higher PM₁₀ concentrations. Xiang et al.[44] explained that the main reason for higher PM₁₀ levels in cold temperatures are air stagnation caused by light wind, lack of precipitation, and formation of an inversion layer. These conditions make it hard for air-suspended particles to diffuse to higher altitudes. Therefore, we assume that PM₁₀ levels might have been relatively low on the relatively warm days on which stroke occurred in our study. A recent meta-analysis[45] reported that PM₂.₅ and PM₁₀ were associated with higher total cerebrovascular disease mortality, whereas those pollutants showed inconsistent, non-significant associations with hospital admission for IS.
Our study has some limitations. First, it is from only one region, and the generalizability of our findings is therefore limited. However, population characteristics, including exposure levels and socioeconomic factors, are likely to be more homogenous within small geographical areas. [46] Therefore, studies covering a larger region have inevitable data inconsistency issues, as well as a lack of weather and environmental homogeneity. Shah et al.[25] reported that many studies measured concentrations of air pollution at remote monitoring sites, and therefore some degree of misclassification of exposure is likely in those studies. Second, personal exposure to pollutants might differ from pollutant levels at fixed outdoor monitoring stations. Older people might have disabilities or limited mobility and thus could spend most of their time indoors. According to the Ministry of Health and Welfare in Korea, as lifespan has increased with medical advances in Korea, older people in Korea have shown greater interest in activities such as golf, mountain climbing, light jogging, and other outdoor activities. Some studies have reported that O₃ levels were positively correlated with IS occurrence at a 0- or 1-day lag in the elderly.[16,19,20] The third limitation is the possibility of stroke onset time error. However, most unclear-onset patients redistributed to the time between 13:00 and 16:59 had less than 3 hours of time between their last certain normal time and their first abnormal time. Therefore we think this error was unlikely to have skewed the main findings, though it might have decreased the statistical power. Finally, we could not evaluate the lag-day effect of O₃ levels on IS occurrence. However, most studies[16,19–21] have found that O₃ was associated with IS occurrence with a 0- to 1-day lag. Therefore our study would show the immediate O₃ effect on IS occurrence with a 0-day lag.

In conclusion, we demonstrated IS onset patterns for each time interval based on hourly temperature and air pollution concentration data for the day of stroke occurrence, and we classified those values using their averages across the study period. Our results suggest that exposure to O₃ during periods of high O₃ concentration, such as from 13:00 to 18:00, might be associated with higher IS occurrence. Our study of 24-hour time series data to evaluate the effect of diurnal variation of O₃ on IS occurrence extends understanding of the association between stroke occurrence and environmental influences.

Supporting Information
S1 Table. Descriptive statistics for hourly average temperature, PM10, and O3 for every month from January 2008 to December 2014 in Seongdong district, Seoul, Korea.
(DOCX)

S2 Table. Descriptive statistics for 4-hour time intervals of average temperature, PM10, and O3 for every month from January 2008 to December 2014 in Seongdong district, Seoul, Korea.
(DOCX)

S3 Table. Odds ratios and 95% confidence intervals for ischemic stroke occurrence based on temperature, PM10, and O3 at the hour of stroke occurrence categorized by median groups of average hourly temperature, PM10, and O3 for every month of the 7-year study period.
(DOCX)

Author Contributions
Conceived and designed the experiments: HJY Young-Seo Kim. Performed the experiments: MHH. Analyzed the data: MHH. Contributed reagents/materials/analysis tools: YK Young-Soo Kim. Wrote the paper: MHH. Re-examined and revised the paper: YK Young-Soo Kim.
References

1. Hong K-S, Bang OY, Kim JS, Heo JH, Yu K-H, Bae H-J, et al. Stroke Statistics in Korea: Part II Stroke Awareness and Acute Stroke Care, A Report from the Korean Stroke Society and Clinical Research Center For Stroke. J Stroke. 2013; 15: 67–77. doi:10.5853/jos.2013.15.2.67 PMID: 24324942

2. Hong Y-C, Lee J-T, Kim H, Kwon H-J. Air Pollution A New Risk Factor in Ischemic Stroke Mortality. Stroke. 2002; 33: 2165–2169. PMID: 12215581

3. Lisabeth L, Escobar J, Dvonch J, Sanchez B, Majersik J, Brown D, et al. Ambient air pollution and risk of ischemic stroke and TIA. Ann Neurol. 2008; 64: 53–59. doi: 10.1002/ana.21403 PMID: 18508356

4. Ljungman PL, Mittie-Man MA. Ambient Air Pollution and Stroke. Stroke. 2014; 45: 3734–3741. doi:10.1161/STROKEAHA.114.003130 PMID: 25300971

5. Sørensen M, Lühdorf P, Ketzel M, Andersen ZJ, Tjønneland A, Overvad K, et al. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke? Environ Res. 2014; 133: 49–55. doi: 10.1016/j.envres.2014.05.011 PMID: 24906068

6. Johnson JYM, Rowe BH, Villeneuve PJ. Ecological analysis of long-term exposure to ambient air pollution and the incidence of stroke in Edmonton, Alberta, Canada. Stroke.

7. Turin TC, Kita Y, Murakami Y, Rumana N, Sugihara H, Morita Y, et al. Higher Stroke Incidence in the Spring Season Regardless of Conventional Risk Factors Takashima Stroke Registry, Japan, 1988–2001. Stroke. 2008; 39: 745–752. doi: 10.1161/STROKEAHA.107.495929 PMID: 18258821

8. Shinkawa A, Ueda K, Hasuo Y, Kiyohara Y, Fujishima M. Seasonal variation in stroke incidence in Hisayama, Japan. Stroke J Cereb Circ. 1990; 21: 1262–1267.

9. Kent ST, McClure LA, Judd SE, Howard VJ, Crosson WL, Al-Hamdan MZ, et al. Short and Long-Term Sunlight Radiation and Stroke Incidence. Ann Neurol. 2013; 73: 32–37. doi:10.1002/ana.23737 PMID: 23225379

10. Kinney PL. Climate change, air quality, and human health. Am J Prev Med. 2008; 35: 459–467. doi: 10.1016/j.amepre.2008.08.025 PMID: 18929972

11. Karnosky DF, Skelly JM, Percy KE, Chappelka AH. Perspectives regarding 50 years of research on tropospheric ozone air pollution on US forests. Environ Pollut Barking Essex 1987. 2007; 147: 489–506.

12. Ren C, Melly S, Schwartz J. Modifiers of short-term effects of ozone on mortality in eastern Massachusetts—a case-crossover analysis at individual level. Environ Health Glob Access Sci Source. 2010; 9: 3. doi: 10.1186/1476-069X-9-3

13. Bae S, Lim Y-H, Kashima S, Yorifuji T, Honda Y, Kim H, et al. Non-Linear Concentration-Response Relationships between Ambient Ozone and Daily Mortality. PloS One. 2015; 10: e0129423. doi: 10.1371/journal.pone.0129423 PMID: 26076447

14. Moolgavkar SH, McClellan RO, Dewanji A, Turim J, Luebeck EG, Edwards M. Time-series analyses of air pollution and mortality in the United States: a subsampling approach. Environ Health Perspect. 2013; 121: 71–78. doi: 10.1289/ehp.1104507 PMID: 23108284

15. Yang W-S, Wang X, Deng Q, Fan W-Y, Wang W-Y. An evidence-based appraisal of global association between air pollution and risk of stroke. Int J Cardiol. 2014; 175: 307–313. doi: 10.1016/j.ijcard.2014.05.044 PMID: 24866079

16. Xu X, Sun Y, Ha S, Talbott EO, Lissaker CTK. Association between ozone exposure and onset of stroke in Allegheny County, Pennsylvania, USA, 1994–2000. Neuroepidemiology. 2013; 41: 2–6. doi: 10.1159/000345138 PMID: 23548644

17. Tsai S-S, Goggins WB, Chiu H-F, Yang C-Y. Evidence for an association between air pollution and daily stroke admissions in Kaohsiung, Taiwan. Stroke J Cereb Circ. 2003; 34: 2612–2616

18. Suissa L, Fortier M, Lachaud S, Staccini P, Mahagne M-H. Ozone air pollution and ischaemic stroke occurrence: a case-crossover study in Nice, France. BMJ Open. 2013; 3: e004060. doi: 10.1136/bmjopen-2013-004060 PMID: 24319276

19. Carlsen HK, Forsberg B, Meister K, Gísason T, Oudin A. Ozone is associated with cardiopulmonary and stroke emergency hospital visits in Reykjavik, Iceland 2003–2009. Environ Health Glob Access Sci Source. 2013; 12: 28. doi: 10.1186/1476-069X-12-28

20. Henrotin JB, Besancenot JP, Bejot Y, Giroud M. Short-term effects of ozone air pollution on ischaemic stroke occurrence: a case-crossover analysis from a 10-year population-based study in Dijon, France. Occup Environ Med. 2007; 64: 439–445. PMID: 17409181

21. Chan C-C, Chuang K-J, Chien L-C, Chen W-J, Chang W-T. Urban air pollution and emergency admissions for cerebrovascular diseases in Taipei, Taiwan. Eur Heart J. 2006; 27: 1238–1244. PMID: 16537554
22. Corea F, Silvestrelli G, Baccarelli A, Giua A, Previdi P, Siliprandi G, et al. Airborne pollutants and lacunar stroke: a case cross-over analysis on stroke unit admissions. Neurol Int. 2012; 4: e11. doi: 10.4081/ni.2012.e11 PMID: 23139849

23. Amancio CT, Nascimento LF. Environmental pollution and deaths due to stroke in a city with low levels of air pollution: ecological time series study. Sao Paulo Med J Rev Paul Med. 2014; 132:353–58.

24. Shah ASV, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W, et al. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ. 2015; 350: h1295. doi: 10.1136/bmj.h1295 PMID: 25810496

25. Chen L, Villeneuve PJ, Rowe BH, Liu L, Stieb DM. The Air Quality Health Index as a predictor of emergency department visits for ischemic stroke in Edmonton, Canada. J Expo Sci Environ Epidemiol. 2014; 24: 358–364. doi: 10.1038/jes.2013.82 PMID: 24301354

26. Berginger VM, Goldsmith J, Batz U, Vardi H, Shapiro Y. Clustering of strokes in association with meteorologic factors in the Negev Desert of Israel: 1981–1983. Stroke. 1989; 20: 65–69. PMID: 2911837

27. Wang Q, Gao C, Wang H, Lang L, Yue T, Lin H. Ischemic Stroke Hospital Admission Associated with Ambient Temperature in Jinan, China. PLoS ONE. 2013; 8: 10.1371/journal.pone.0080381

28. Mostofsky E, Wilker EH, Schwartz J, Zanobetti A, Gold DR, Wellenius GA, et al. Short-Term Changes in Ambient Temperature and Risk of Ischemic Stroke. Cerebrovasc Dis Extra. 2014; 4: 9–18. doi: 10.1159/000357352 PMID: 24575110

29. Han M-H, Yi H-J, Kim Y-S, Kim Y-S. Effect of Seasonal and Monthly Variation in Weather and Air Pollution Factors on Stroke Incidence in Seoul, Korea. Stroke. 2015; 46: 927–935. doi: 10.1161/STROKEAHA.114.007950 PMID: 25669311

30. Lago A, Gefner D, Tembi J, Landete L, Valero C, Baquero M. Circadian Variation in Acute Ischemic Stroke A Hospital-Based Study. Stroke. 1998; 29: 1873–1875. PMID: 9731611

31. Hatano S. Experience from a multicentre stroke register: a preliminary report. Bull World Health Organ. 1976; 54: 541–553. PMID: 1088404

32. Omama S, Yoshida Y, Ogawa A, Onoda T, Okayama A. Differences in circadian variation of cerebral infarction, intracerebral haemorrhage and subarachnoid haemorrhage by situation at onset. J Neurol Neurosurg Psychiatry. 2006; 77: 1345–1349. PMID: 16916854

33. Turin TC, Kita Y, Rumana N, Takashima N, Ichikawa M, Sugihara H, et al. Morning surge in circadian periodicity of ischaemic stroke is independent of conventional risk factor status: findings from the Takashima Stroke Registry 1990–2003. Eur J Neurol Off J Eur Fed Neurol Soc. 2009; 16: 843–851.

34. Casetta I, Granieri E, Fallica E, la Cecilia O, Paolino E, Manfredini R. Patient demographic and clinical features and circadian variation in onset of ischemic stroke. Arch Neurol. 2002; 59: 48–53. PMID: 11790230

35. Wang Y, Eliot MN, Wellenius GA. Short-term changes in ambient particulate matter and risk of stroke: a systematic review and meta-analysis. J Am Heart Assoc. 2014; 3.

36. Shan W, Yin Y, Zhang J, Ji X, Deng X. Surface ozone and meteorological condition in a single year at an urban site in central-eastern China. Environ Monit Assess. 2009; 151: 127–141. doi: 10.1007/s10661-008-0255-0 PMID: 18398691

37. Devlin RB, Duncan KE, Jardim M, Schmitt MT, Rappold AG, Diaz-Sanchez D. Controlled exposure of healthy young volunteers to ozone causes cardiovascular effects. Circulation. 2012; 126: 104–111. doi: 10.1161/CIRCULATIONAHA.112.094359 PMID: 22732313

38. Brook RD, Brook JR, Uroh B, Vincent R, Rajagopalan S, Silverman F. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation. 2002; 105: 1534–1536. PMID: 11927516

39. Dales RE, Cakmak S, Vidal CB. Air pollution and hospitalization for venous thromboembolic disease in Chile. J Thromb Haemost JTH. 2010; 8: 669–674. doi: 10.1111/j.1538-7836.2010.03760.x PMID: 20088925

40. Rudz G, Janssen NAH, Kilinc E, Leebeek FWG, Gerlofs-Nijland ME, Spronk HMH, et al. Effects of ambient air pollution on hemostasis and inflammation. Environ Health Perspect. 2009; 117: 995–1001. doi: 10.1289/ehp.0800437 PMID: 19590698

41. Finlayson-Pitts BJ Jr JNP. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. Academic Press; 1999.

42. Darrow LA, Klein M, Sarmat JA, Mulholland JA, Strickland MJ, Sarmat SE, et al. The Use of Alternative Pollutant Metrics in Time-Series Studies of Ambient Air Pollution and Respiratory Emergency Department Visits. J Expo Sci Environ Epidemiol. 2011; 21: 10–19. doi: 10.1038/jes.2009.48 PMID: 19756042
44. Xiang H, Mertz KJ, Arena VC, Brink LL, Xu X, Bi Y, et al. Estimation of short-term effects of air pollution on stroke hospital admissions in Wuhan, China. PloS One. 2013; 8: e61168. doi: 10.1371/journal.pone.0061168 PMID: 23593421

45. Wang Y, Eliot MN, Wellenius GA. Short-term Changes in Ambient Particulate Matter and Risk of Stroke: A Systematic Review and Meta-analysis. J Am Heart Assoc. 2014; 3: e000983. doi: 10.1161/JAHA.114.000983 PMID: 25103204

46. Maheswaran R, Pearson T, Beevers SD, Campbell MJ, Wolfe CD. Outdoor air pollution, subtypes and severity of ischemic stroke—a small-area level ecological study. Int J Health Geogr. 2014; 13: 23. doi: 10.1186/1476-072X-13-23 PMID: 24939673