IMPROVING THE ACCURACY-MEMORY TRADE-OFF OF RANDOM FORESTS VIA LEAF-REFINEMENT

Sebastian Buschjäger ¹ Katharina Morik ¹

ABSTRACT

Random Forests (RF) are among the state-of-the-art in many machine learning applications. With the ongoing integration of ML models into everyday life, the deployment and continuous application of models becomes more and more an important issue. Hence, small models which offer good predictive performance but use small amounts of memory are required. Ensemble pruning is a standard technique to remove unnecessary classifiers from an ensemble to reduce the overall resource consumption and sometimes even improve the performance of the original ensemble. In this paper, we revisit ensemble pruning in the context of ‘modernly’ trained Random Forests where trees are very large. We show that the improvement effects of pruning diminishes for ensembles of large trees but that pruning has an overall better accuracy-memory trade-off than RF. However, pruning does not offer fine-grained control over this trade-off because it removes entire trees from the ensemble. To further improve the accuracy-memory trade-off we present a simple, yet surprisingly effective algorithm that refines the predictions in the leaf nodes in the forest via stochastic gradient descent. We evaluate our method against 7 state-of-the-art pruning methods and show that our method outperforms the other methods on 11 of 16 datasets with a statistically significant better accuracy-memory trade-off compared to most methods. We conclude our experimental evaluation with a case study showing that our method can be applied in a real-world setting.

1 I NTRODUCTION

Ensemble algorithms offer state-of-the-art performance in many applications and often outperform single classifiers by a large margin. With the ongoing integration of embedded systems and machine learning models into our everyday life, e.g. in the form of the Internet of Things, the hardware platforms which execute ensembles must also be taken into account when training ensembles. From a hardware perspective, a small ensemble with minimal execution time and a small memory footprint is desired. Similar, learning theory indicates that ensembles of small models should generalize better which would make them ideal candidates for small, resource constraint devices (Koltchinskii et al., 2002; Cortes et al., 2014). Practical problems, on the other hand, often require ensembles of complex base learners to achieve good results. For some ensembling techniques such as Random Forest it is even desired that individual trees are as large as possible leading to overall large ensembles (Breiman, 2000; Biau, 2012; Denil et al., 2014; Biau & Scornet, 2016). Ensemble pruning is a standard technique for implementing ensembles on small devices (Tsoumakas et al., 2009; Zhang et al., 2006) by removing unnecessary classifiers from the ensemble. Remarkably, this removal can sometimes lead to a better predictive performance (Margineantu & Dietterich, 1997; Martínez-Muñoz & Suárez, 2006; Li et al., 2012). In this paper, we revisit ensemble pruning and show that this improvement effect does not carry over to the modern-style of training individual trees as large as possible in Random Forests. Maybe even more frustrating, ensemble pruning does not seem to be necessary anymore to achieve the best accuracy if the original forest has a sufficient amount of large trees. If, however, one also considers the memory requirements of the individual trees the situation changes. We argue that, from a hardware perspective, the trade-off between memory and accuracy is what really matters. Although a Random Forest might produce a good model it might not be possible to deploy it onto a small device due to its memory requirements. As shown later, the best-performing RF models are often larger than $5 - 10$ MB (see e.g. Fig. 2 and Fig. 3) while most available microcontroller units (MCU) only offer a few KB to a few MB of memory as depicted in Table 1. Hence, to deploy RF onto these small devices we require a good algorithm which gives accurate models for a variety of different memory constraints.

We directly optimize the accuracy-memory trade-off by introducing a technique called leaf-refinement. Leaf-Refinement is a simple, but surprisingly effective method, which, instead of removing trees from the ensemble, further refines the predictions of small ensembles using gradient-descent. This way, we can refine any given tree-ensemble

¹Chair for Artificial Intelligence, TU Dortmund University, Germany. Correspondence to: Sebastian Buschjäger <sebastian.buschjaeger@tu-dortmund.de>.
Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

MCU	Flash	(S)RAM	Power
Arduino Uno	32KB	2KB	12mA
Arduino Mega	256KB	8KB	6mA
Arduino Nano	26–32KB	1–2KB	6mA
STM32L0	192KB	20KB	7mA
Arduino MKR1000	256KB	32KB	4mA
Arduino Due	512KB	96KB	50mA
STM32F2	1MB	128KB	21mA
STM32F4	2MB	384KB	50mA

Table 1. Available memory on different microcontroller units. Excerpt from (Branco et al., 2019).

to optimize its accuracy thereby maximizing the accuracy-memory trade-off. Our contributions are as follows:

- **Revisiting ensemble pruning:** We revisit ensemble pruning in the context of modernly trained Random Forests in which individual trees are typically large. We show that pruning a Random Forest can improve the accuracy if individual trees are small, but this effect becomes negligible for larger trees. Moreover, if we are only interested in the most accurate models where memory is no constraint we can simply train unpruned Random Forests which yields comparable results without the need for pruning.

- **Random Forest with Leaf Refinement:** We show that pruning exhibits a better accuracy-memory trade-off than RF does. To further optimize this trade-off we present a simple, yet surprisingly effective gradient-descent based algorithm called leaf-refinement (RF-LR) which refines the predictions of a pre-trained Random Forest.

- **Experiments:** We show the performance of our algorithm on 16 datasets and compare it against 7 state-of-the-art pruning methods. We show that RF-LR outperforms the other methods on 11 of 16 datasets with a statistically significant better accuracy-memory trade-off compared to most methods. We conclude our experimental evaluation with a case study showing that our method can be applied on a real-world setting.

The paper is organized as the following. Section 2 presents our notation and related work. In Section 3 we revisit ensemble pruning in the context of 'modern' Random Forests, whereas section 4 discusses how to improve the accuracy-memory trade-off without ensemble pruning. In section 5 we experimentally evaluate our method and in section 6 we conclude the paper.

2 Background and Notation

We consider a supervised learning setting, in which we assume that training and test points are drawn i.i.d. according to some distribution \(\mathcal{D} \) over the input space \(\mathcal{X} \) and labels \(\mathcal{Y} \).

We assume that we have given a trained ensemble with \(M \) classifiers \(h_i \in \mathcal{H} \) of the following form:

\[
f(x) = \frac{1}{M} \sum_{i=1}^{M} h_i(x)
\]

Additionally, we have given a labeled pruning sample \(\mathcal{S} = \{ (x_i, y_i) | i = 1, \ldots, N \} \) where \(x_i \in \mathcal{X} \subseteq \mathbb{R}^d \) is a \(d \)-dimensional feature-vector and \(y_i \in \mathcal{Y} \subseteq \mathbb{R}^C \) is the corresponding target vector. This sample can either be the original training data used to train \(f \) or another pruning set not related to the training or test data. For classification problems with \(C \geq 2 \) classes we encode each label as a one-hot vector \(y = (0, \ldots, 0, 1, 0, \ldots, 0) \) which contains a '1' at coordinate \(c \) for label \(c \in \{0, \ldots, C-1\} \); for regression problems we have \(C = 1 \) and \(\mathcal{Y} = \mathbb{R} \). In this paper, we will focus on classification problems, but note that our approach is directly applicable for regression tasks, as well. Moreover we will focus on tree ensembles and specifically Random Forests, but note that most of our discussion directly translates to other tree ensembles such as Bagging (Breiman, 1996), ExtraTrees (Geurts et al., 2006), Random Subspaces (Ho, 1998) or Random Patches (Louppe & Geurts, 2012).

The goal of ensemble pruning is to select a subset of \(K \) classifier from \(f \) which forms a small and accurate sub-ensemble. Formally, each classifier \(h_i \) receives a corresponding pruning weight \(w_i \in \{0, 1\} \). Let

\[
L(w) = \frac{1}{N} \sum_{(x, y) \in \mathcal{S}} \ell \left(\sum_{i=1}^{M} w_i h_i(x), y \right)
\]

be a loss function and let \(\|w\|_0 = \sum_{i=1}^{M} 1 \{w_i > 0\} \) be the \(l_0 \) norm which counts the number of nonzero entries in the weight vector \(w = (w_1, w_2, \ldots, w_M) \). Then the ensemble pruning problem is defined as:

\[
\arg \min_{w \in \{0, 1\}^M} L(w) \text{ st. } \|w\|_0 = K
\]

Many effective ensemble pruning methods have been proposed in literature. These methods usually differ in the specific loss function used to measure the performance of a sub-ensemble and the way this loss is minimized. Tsoumakas et al. give in (Tsoumakas et al., 2009) a detailed taxonomy of pruning methods which was later expanded in (Zhou, 2012) to which we refer interested readers. Early works on ensemble pruning focus on ranking-based approaches which assign a rank to each classifier depending on their individual performance and then pick the top \(K \) classifier.
from the ranking. One of the first pruning methods in this direction was due toMarginanteau and Dietterich which proposed to use the Cohen-Kappa statistic to rate the effectiveness of each classifier in (Marginanteau & Dietterich, 1997). More recent approaches also incorporate the ensemble’s diversity into the selection such as (Lu et al., 2010; Jiang et al., 2017; Guo et al., 2018). An alternative to a simple ranking, Mixed Quadratic Integer Programming (MQIP) has also been proposed. Originally this approach was proposed by Zhang et al. in (Zhang et al., 2006) which uses the pairwise errors of each classifier to formulate an MQIP. Cavalcanti et al. expand on this idea in (Cavalcanti et al., 2016) which combines 5 different measures into the MQIP. A third branch of pruning considers the clustering of ensemble members to promote diversity. The main idea is to cluster the classifiers into (diverse) groups and then to select one representative from each group (Giacinto et al., 2000; Lazarevic & Obradovic, 2001). Last, ordering-based pruning has been proposed. Ordering-based approaches order all ensemble members according to their overall contribution to the (sub)-ensemble and then pick the top K classifier from this list. This approach was also first considered in (Marginanteau & Dietterich, 1997) which proposed to greedily minimize the overall ensemble error. A series of works by Martínez-Muñoz, Suárez and others (Martínez-Munoz & Suárez, 2004; Martínez-Muñoz & Suárez, 2006; Martínez-Muñoz et al., 2008) add upon this work proposing different error measures. More recently, theoretical insights from PAC theory and the bias-variance decomposition were also transformed into greedy pruning approaches (Li et al., 2012; Jiang et al., 2017).

Looking beyond ensemble pruning there are numerous, orthogonal methods to deploy ensembles to small devices. First, ‘classic’ decision tree pruning algorithms (e.g. minimal cost complexity pruning or sample complexity pruning) already reduce the size of DTs while offering a better accuracy (c.f. (Barros et al., 2015)). Second, in the context of model compression (see e.g. (Choudhary et al., 2020) for an overview) specific models such as Bonsai (Kumar et al., 2017) or Decision Jungles (Shotton et al., 2013) aim to find smaller tree ensembles already during training. Last, the optimal implementation of tree ensembles has also been studied, e.g. by optimizing the memory layout for caching (Buschjäger et al., 2018) or changing the tree traversal to utilize SIMD instructions (Ye et al., 2018). We find that all these methods are orthogonal to our approach and that they can be freely combined with one another, e.g. we may train a decision jungle, then perform ensemble pruning or leaf-refinement on it and finally find the optimal memory layout of the trees in the jungle for the best deployment.

Algorithm 1 Reduced Error Pruning (RE).

1: $w \leftarrow (0, \ldots, 0)$
2: $i \leftarrow \arg \min \{L(w + \epsilon_i)|i = 1, \ldots, M\}$
3: $w \leftarrow w + \epsilon_i$
4: for $j = 1, \ldots, K - 1$ do
5: $i \leftarrow \arg \min \{L(w + \epsilon_i)|i = 1, \ldots, M, w_i \neq 1\}$
6: $w \leftarrow w + \epsilon_i$
7: end for

3 REVISITING ENSEMBLE PRUNING

Before we discuss our method we first want to revisit Reduced Error Pruning (RE, (Marginanteau & Dietterich, 1997)) and repeat some experiments performed with it. RE pruning is arguably one of the simplest pruning algorithms but often offers competitive performance. RE is a ordering-based pruning method. It starts with an empty ensemble and iteratively adds that tree which minimizes the overall ensemble error the most until K members have been selected. Algorithm 1 depicts this approach where L is the $0-1$ loss and ϵ_i denotes the unit vector with a ‘1’ entry at position i.

We will now perform experiments in the spirit of (Martínez-Muñoz & Suárez, 2006), but adapt a more modern approach to training the base ensembles. In the original experiments, the authors show that when pruning a Bagging Ensemble of 200 pruned CART trees, that RE (among other methods) achieves a better accuracy with fewer trees compared to the original ensemble. This result has been empirically reproduced in various contexts (see e.g. (Barros et al., 2015; Zhou et al., 2002; Zhou, 2012)) and has been formalized in the Many-Could-Be-Better-Than-All-Theorem (Zhou et al., 2002). It shows that the error of an ensemble excluding the k-th classifier can be smaller than the error of the original ensemble if the bias $C_{k,k}$ is larger than its variance wrt. to the ensemble:

$$\sum_{i=1, i \neq k}^{M} \sum_{j=1, i \neq k}^{M} \frac{C_{i,j}}{(M-1)^2} \leq \sum_{i=1}^{M} \sum_{h=1}^{M} \frac{C_{i,j}}{M^2} \quad (4)$$

$$\Leftrightarrow -2 \sum_{i=1, i \neq k}^{M} C_{i,k} \leq C_{k,k} \quad (5)$$

where

$$C_{k,k} = \mathbb{E}_{x,y \sim D} [(h_k(x) - y)^2] \quad (6)$$

$$C_{k,i} = \mathbb{E}_{x,y \sim D} [(h_k(x) - y)(h_i(x) - y)] \quad (7)$$

Recall that the bias of a DT rapidly decreases while the variance increases wrt. to the size of the tree (Domingos, 2000). The original experiment used pruned decision trees whereas the today’s accepted standard is to train trees as large as possible for minimal errors (see (Breiman, 2000; Biau, 2012; Denil et al., 2014; Biau & Scornet, 2016) for...
more formal arguments on this). Hence, it is conceivable that ensemble pruning does not have the same beneficial effect on ‘modern’ Random Forests compared to RF-like ensembles trained 20 years ago. We will now investigate this hypothesis experimentally. As an example we will consider the EEG dataset which has 14,980 datapoints with 14 attributes and two classes (details for each dataset can be found in the appendix). By today’s standards this dataset is small to medium size which allows us to quickly train and evaluate different configurations but it is roughly two times larger than the biggest dataset used in original experiments. We perform experiments as follows: Oshiro et al. showed in (Oshiro et al., 2012) empirically on a variety of datasets that the prediction of a RF stabilizes between 128 and 256 trees and adding more trees to the ensemble does not yield significantly better results. Hence, we train the ‘base’ Random Forests with $M = 256$ trees. To control the individual errors of trees we set the maximum number of leaf nodes n_l to values between $n_l \in \{64, 128, 256, 512, 1024\}$. For ensemble pruning we use RE which is tasked to select $K \in \{2, 4, 8, 16, 32, 64, 128, 256\}$ trees from the original RF. We compare this against a smaller RF with $K \in \{2, 4, 8, 16, 32, 64, 128, 256\}$ trees, so that we recover the original RF for $K = M = 256$ on both cases. For RE we use the training data as pruning set. Experiments with a dedicated pruning set can be found in the appendix. Figure 1 shows the average accuracy over the size of the ensemble for a 5-fold cross-validation. The dashed lines depict the smaller RF and solid lines are the corresponding pruned ensemble. As expected, we find that ensemble pruning significantly improves the accuracy when smaller trees with $64 – 256$ leaf nodes are used. Moreover, the performance of the pruned forests approaches the performance of the original forests when more and more trees are added much like in the original experiments. However, the improvement in accuracy becomes negligible for trees with up to 1024 leaf nodes. Here, the accuracy of the pruned and the unpruned forest are near identical for any given number of trees. Maybe even worse, if we are only interested in the most accurate model then there is no reason to prune the ensemble as an unpruned Random Forest already seems to achieves the best performance.

We acknowledge that this experiment is one-sided because we only use Reduced Error Pruning – a nearly 25 year old method – for comparison. Maybe the problem simply lies in RE itself and not pruning in general? To verify this hypothesis we also repeated the above experiment with 6 additional pruning algorithms from the three different categories. In total we compare two ranking-based methods namely IE (Jiang et al., 2017) and IC (Lu et al., 2010); the three ordering-based methods RE (Margineantu & Dietterich, 1997), DREP (Li et al., 2012) and COMP (Martínez-Munoz & Suárez, 2004) and the two clustering-based prun-

n_l	K	COMP	DREP	IC	IE	LMD	RE	RF
64	8	81.86	80.79	81.71	81.34	81.46	**82.22**	80.92
32	8	83.09	82.33	83.10	82.22	82.60	**83.23**	81.98
128	8	82.17	83.28	83.10	82.49	82.87	**83.19**	82.34
128	8	85.12	84.08	84.69	84.81	83.85	**85.53**	84.23
32	8	86.34	85.49	86.38	85.76	85.65	**86.62**	85.17
128	8	86.40	85.75	86.27	86.00	86.03	**86.54**	85.92
256	8	87.37	86.24	87.14	87.16	86.36	**87.46**	86.44
32	8	88.97	88.02	**89.07**	88.70	88.37	89.01	88.16
128	8	88.97	88.70	**89.15**	88.97	88.77	89.07	88.71
512	8	88.36	88.51	**88.96**	88.78	87.44	88.79	87.95
32	8	91.11	90.30	**91.34**	90.67	90.37	90.68	90.17
128	8	91.22	90.91	**91.41**	91.30	90.87	91.23	90.83
1024	8	89.45	89.26	**89.51**	89.70	88.30	88.85	88.83
32	8	92.25	92.30	**92.64**	92.60	91.82	92.21	91.91
128	8	92.85	92.85	**93.17**	92.98	92.70	92.84	92.70

Table 2. 5-fold cross-validation accuracy over the number of members $K \in \{8, 32, 128\}$ in the ensemble for different n_l parameters and different methods on the EEG dataset. Rounded to the second decimal digit. Larger is better. The best method is depicted in bold.

We also experimented with MQIP pruning methods (Zhang et al., 2006; Cavalcanti et al., 2016), but unfortunately the MQIP solver (in our case Gurobi\(^1\)) used during experiments would frequently fail or time-out. Thus we decided to not include any MQIP pruning methods in our evaluation.

Table 2 shows the result of this experiment. For space reasons we only depict results for $K \in \{8, 32, 128\}$. As expected, all pruning methods manage to improve the performance of the original RF for smaller $n_l \leq 256$ and keep this advantage to some degree for larger n_l. However, this advantage becomes smaller and smaller for larger n_l until it is virtually non-existent for $n_l = 1024$ and the accuracies are near identical. Again, as expected setting n_l to larger

\(^1\)https://www.gurobi.com/
values leads to the overall best accuracy.

For presentational purposes we highlighted this experiment on the EEG dataset, but we found that this behavior seems to hold universally across the other 15 datasets we experimented with. The detailed results for these experiments are given in the appendix. While the specific curves would differ we always found that the performance of a well-trained forest and its pruned counterpart would nearly match once the individual trees become large enough. For more plots with experiments on other datasets and other ‘base’ ensembles please consult the appendix.

4 IMPROVING THE ACCURACY-MEMORY TRADE-OFF OF RF

Clearly, the previous section shows that we cannot expect the accuracy of a pruned forest to improve much upon the performance of a well-trained Random Forest. On the one hand, this is a clear argument in favor of Random Forests – why should we prune a pre-trained forest if we can directly train a similar forest in the first place? On the other hand, pruning shows clear superior performance for smaller n_t compared to RF. While pruning and RF both converge against a very similar maximum accuracy, pruning shows a better trade-off between the model size (controlled by n_t and K) and the accuracy.

We argue that, from a hardware perspective, this trade-off is what really matters and a good algorithm should produce accurate models for a variety of different model sizes. Ensemble pruning improves this trade-off by removing unnecessary trees from the ensemble thereby reducing the memory consumption while keeping (or improving) its predictive power. But, the removal of entire trees does not offer a very fine-grained control over this trade-off. For example, it could be better to train a large forest with many, but comparably small trees instead of having one small forest of large trees. Hence, we propose to directly evaluate the accuracy-memory trade-off and to optimize towards it.

To do so, we present a simply and surprisingly effective method which refines the predictions of a given forest with Stochastic Gradient Descent (SGD). Our method trains a small initial Random Forest (e.g. by using small values for n_t and M) and then refines the predictions of the individual trees to improve the overall performance: Recall that DTs use a series of axis-aligned splits of the form $\mathbb{I}\{x_i \leq t\}$ and $\mathbb{I}\{x_i > t\}$ where i is a pre-computed feature index and t is a pre-computed threshold to determine the leaf nodes. Let $s_l(x): \mathcal{X} \rightarrow \{0, 1\}$ be the series of splits which is ‘1’ if x belongs to leaf l and ‘0’ if not, then the prediction of a tree is given by

$$h_i(x) = \sum_{l=1}^{L_i} \tilde{y}_{i,l} s_{i,l}(x) \quad (8)$$

where $\tilde{y}_{i,l} \in \mathbb{R}^C$ is the (constant) prediction value of leaf l and L_i is the total number of leaves in tree h_i. Let θ_i be the parameter vector of tree h_i (e.g. containing split values, feature indices and leaf-predictions) and let $\theta = (\theta_1, \ldots, \theta_M)$ be the parameter vector of the entire ensemble f_θ. Then our goal is to solve

$$\arg\min_{\theta} \frac{1}{N} \sum_{(x,y) \in S} \ell(f_\theta(x), y) \quad (9)$$

for a given loss ℓ. We propose to minimize this objective via stochastic gradient-descent. SGD is an iterative algorithm which takes a small step into the negative direction of the gradient in each iteration t by using an estimation of the true gradient

$$\theta^{t+1} \leftarrow \theta^t - \alpha^t g_B(\theta^t) \quad (10)$$

where

$$g_B(\theta^t) = \nabla_{\theta^t} \left(\sum_{(x,y) \in B} \ell(f_{\theta^t}(x), y) \right) \quad (11)$$

is the gradient of ℓ wrt. to θ^t computed on a mini-batch B. Unfortunately, the axis-aligned splits of a DT are not differentiable and thus it is difficult to refine them further with gradient-based approaches. However, the leaf predictions $\tilde{y}_{i,l}$ are simple constants that can easily be updated via SGD. Formally, we use $\theta_i = (\tilde{y}_{i,1}, \tilde{y}_{i,2}, \ldots)$ leading to

$$g_B(\theta_i^t) = \frac{1}{|B|} \left(\sum_{(x,y) \in B} \frac{\partial \ell(f_{\theta^t}(x), y)}{\partial f_{\theta^t}(x)} w_{i,s_{i,l}(x)} \right)_{l=1,2,\ldots,L_i} \quad (12)$$

Algorithm 2 summarizes this approach. First, in get_forest a forest with K trees each containing at most n_t leaf nodes is loaded. This forest can either be a pre-trained forest with M trees from which we randomly sample K trees or we may train an entirely new forest with K trees directly. Once the forest has been obtained SGD is performed over the leaf-predictions of each tree using the step-size $\alpha^t \in \mathbb{R}_+^+$ to minimize the given loss ℓ.

Leaf-Refinement is a flexible technique and can be used in combination with any tree ensemble such as Bagging (Breiman, 1996), ExtraTrees (Geurts et al., 2006), Random Subspaces (Ho, 1998) or Random Patches (Louppe & Geurts, 2012). Moreover, we can also refine the individual weights w_i of the trees via SGD, although we did not find a meaningful improvement optimizing the weights and leafs simultaneously in our pre-experiments. For simplicity we will only focus on leaf-refinement in this paper without optimizing the individual weights and leave this for future research.
Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

Algorithm 2 RF with Leaf-Refinement (RF-LR).

1: \{Load forest and use constant weights\}
2: \(h \leftarrow \text{get_forest}(K, n_l) \)
3: \(w \leftarrow (1/K, \ldots, 1/K) \)
4: \{Init. leaf predictions\}
5: \(\text{for } i = 1, \ldots, K \ do \)
6: \(\theta_i \leftarrow (\hat{y}_{i,1}, \hat{y}_{i,2}, \ldots) \)
7: \(\text{end for} \)
8: \{Perform SGD using Eq. 10 + Eq. 12\}
9: \(\text{for receive batch } B \ do \)
10: \(\text{for } i = 1, \ldots, K \ do \)
11: \(\theta_i^t \leftarrow \theta_i^t - \alpha_t g_B(\theta_i^t) \)
12: \(\text{end for} \)
13: \(\text{end for} \)

5 Experiments

In this section we experimentally evaluate our method and compare its accuracy-memory trade-off with regular RF and pruned RF. As argued before, our main concern is the final model size as it determines the resource consumption, runtime, and energy of the model application during deployment (Buschjäger & Morik, 2017; Buschjäger et al., 2018). The model size is computed as follows: A baseline implementation of DTs stores each node in an array and iterates over it (Buschjäger et al., 2018). Each node inside the array requires a pointer to the left / right child (8 bytes in total), a boolean flag if it is a leaf-node (1 byte), the feature index as well as the threshold to compare the feature against (8 bytes). Last, entries for the class probabilities are required for the leaf nodes (4 bytes per class). Thus, in total, a single node requires \(17 + 4 \cdot C \) Bytes per node which we sum over all nodes in the entire ensemble.

We follow a similar experimental protocol as before: As earlier we train various Random Forests with \(M = 256 \) trees using \(n_l \in \{64, 128, 256, 512, 1024\} \). Again, we compare the aforementioned pruning methods COMP, DREP, IC, IE, LMD and RE with our leaf-refinement method (RF-LR) as well as a random selection of trees from the RF. Since our method shares some overlap with gradient boosted trees (GB, (Friedman, 2001)) we also include these in our evaluation. Each pruning method is tasked to select \(K \in \{8, 16, 32, 64, 128\} \) trees from the ‘base’ forest. For DREP, we additionally varied \(\rho \in \{0.25, 0.3, 0.35, 0.4, 0.45, 0.5\} \). For GB we use the deviance loss and train \(8, 16, 32, 64, 128 \) trees with the different \(n_l \) values. For RF-LR we randomly sample \(K \in \{8, 16, 32, 64, 128\} \) trees from the given forest and perform 50 epochs\(^2\) of SGD with a constant step size \(\alpha = 0.1 \) and a batch size of 128. We experimented with the mean-squared error (MSE) and the cross-entropy loss for minimization, but could not find meaningful differences between both losses. Hence, for these experiments we focus on the MSE loss. In all experiments we perform a 5-fold cross validation except when the dataset comes with a given train/test split. We use the training set for both, training the initial forest and pruning it. For a fair comparison we made sure that each method receives the same forest in each cross-validation run. In all experiments, we use minimal pre-processing and encode categorical features as one-hot encoding. The base ensembles have been trained with Scikit-Learn (Pedregosa et al., 2011) and the code for our experiments and all pruning methods are included in this submission. We implemented all pruning algorithm in a Python package for other researchers called PyPruning which is available under https://github.com/sbuschjaeger/PyPruning. The code for the experiments in this paper are available under https://github.com/sbuschjaeger/leaf-refinement-experiments. In total we performed 8 960 experiments on 16 different datasets which are detailed in the appendix. Additionally, more experiments with different ‘base’ ensembles and a dedicated pruning set are shown in the appendix.

5.1 Qualitative Analysis

We are interested in the most accurate models with the smallest memory consumption. Clearly these two metrics can contradict each other. For a fair comparison we therefore use the best parameter configuration of each method across both dimensions. More specifically, we compute the Pareto front of each method which contains those parameter configurations which are not dominated across one or more dimensions. For space reasons we start with a qualitative analysis and focus the EEG and the chess dataset as they represent distinct behaviors we found during our experiments.

Figure 2 shows the results on the EEG dataset. As before, the accuracy ranges from 75% to 92.5% and the model size ranges from a few KB to roughly 12MB (note the logarithmic scale on the x-axis). As before, larger models seem to generally perform better and all models seem to converge against a similar solution, expect GB which is stuck around 85% accuracy. In the range of 0 – 4000 KB, however, there are larger differences. For example, for roughly 1000 KB, CA performs sub-optimal only reaching an accuracy around 87.5% whereas the other methods all seem to have a similar performance around 90% except RF-LR which has an accuracy around 91%. For smaller model sizes below 4000 KB RF-LR seems to be the clear winner offering roughly up to 1% more accuracy compared to the other methods. Moreover, it shows a better overall accuracy-memory trade-off.

Figure 3 shows the results on the chess dataset. Here the accuracy ranges from 28% to 75% with model sizes up

\(^2\)In one epoch we iterate once over the entire dataset.
Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

To 12 MB (again note the logarithmic scale on the x-axis). Similar to before, the pruning methods all converge against similar solutions just above 65%. CA still seems to perform poorly for smaller model sizes, but not as bad as on the EEG data. Similar, GB also seems to struggle on this dataset. It is worth noting, that some pruning methods (e.g. IC or RE) have a better accuracy-memory trade-off compared to Random Forest and they outperform the original forest by about 2%. RF-LR offers the best performance on this dataset and outperforms the original forest by about 8% accuracy across all model sizes. This effect is only present for RF-LR and cannot be seen for the other methods. Overall, RF-LR offers a much better accuracy-memory trade-off and offers the best overall accuracy.

Conclusion: First we find that the well-performing RF models often require more than 1 MB easily breaking the available memory on small MCUs (cf. Table 1). Second, we found two different behaviors of RF-LR: In many cases all methods converge against a similar accuracy when more memory is available, e.g. as seen in Figure 2. This can be expected since all methods derive their models from the same RF model. Here, RF-LR often has better models and hence offers a better accuracy-memory trade-off. In many other cases we found that RF-LR significantly outperforms the other methods and offers a much better accuracy across most model sizes, e.g. as depicted in Figure 3. In these cases, RF-LR offers a much better accuracy-memory trade-off and the best overall accuracy.

5.2 Quantitative Analysis

The previous section showed that RF-LR can offer substantial improvements on some datasets and smaller improvements in other cases. To give a more complete picture we will now look at the performance of each method under various memory constraints. Table 3 shows the best accuracy of each method (across all hyperparameter configurations) with a final model size below 64 KB. Such models could for example easily be deployed on an Arduino Due MCU (cf. Table 1). We find that RF-LR offers the best accuracy in 9 out of 16 cases followed by RE which is first in 4 cases followed by GB with ranks first in 3 cases. IE shares the first place with RE on the mozilla dataset. On some datasets such as ida2016 the differences are comparably small which can be expected since all models are derived from the same base Random Forest. However, on other datasets such as the eeg, chess, japanese-vowels or connect dataset we can find more substantial improvements where RF-LR offers up to 5% better accuracy to the second ranking method.

A similar picture can be find in Table 4 which shows the best accuracy of each method (across all hyperparameter configurations) with a final model size below 256 KB. Such models could for example easily be deployed on an STM32F4 MCU (cf. Table 1). Now RF-LR offers the best accuracy in 10 out of 16 cases followed by RE which is first in only 1 case followed by GB with ranks first in 2 cases and IC which is now first in 3 cases. IE now shares the first place with IC on the mozilla dataset. As before, the differences are comparably small on some datasets (e.g. the mozilla dataset) and more substantial on other datasets where RF-LR now offers up 6% better accuracy against the second best method.

To give a more complete picture across different memory constraints we will now summarize the performance of each method by the (normalized) area-under the Pareto front: In- intuitively, we want to have an algorithm which gives small and accurate models and therefore places itself in the upper-left corner of the accuracy-memory plots. Similar to ‘regular’ ROC-AUC curves we can compute the area under the Pareto front (APF) normalized by the biggest model to summarize the accuracy for different models on the same dataset. Table 5 depicts the normalized APF for the experiments. Looking at RF-LR, we see that it is the clear winner. In total, it is the best method on 11 of 14 datasets, shares the

Figure 2. 5-fold cross-validation accuracy over the size of the ensemble on the EEG dataset. Single points are the individual parameter configurations whereas the solid line depicts the corresponding Pareto front. Best viewed in color.

Figure 3. 5-fold cross-validation accuracy over the size of the ensemble on the chess dataset. Single points are the individual parameter configurations whereas the solid line depicts the corresponding Pareto front. Best viewed in color.
Table 3.

Test accuracies for models with a memory consumption below 64 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold. More details on the experiments and datasets can be found in the appendix.

model	CA	COMP	DREP	GB	IC	IE	LMD	RE	RF	RF-LR
adult	85.455	85.777	85.618	**86.616**	85.799	85.882	85.378	86.128	85.464	86.241
anura	96.511	97.137	96.873	95.024	97.192	96.928	96.539	97.067	96.525	**97.512**
avila	91.930	96.957	95.318	67.724	96.760	96.689	86.965	**97.048**	92.534	94.278
bank	89.772	90.049	89.927	**90.677**	90.213	90.330	89.819	90.336	89.830	90.522
chess	48.025	51.714	50.492	34.969	50.356	51.793	49.041	52.495	48.090	**57.382**
connect	72.426	73.898	73.409	70.847	73.724	73.832	73.110	74.134	72.666	**77.498**
eeg	84.419	85.574	84.419	82.463	84.780	85.033	83.852	85.527	84.606	**86.622**
elec	83.523	83.620	84.075	83.878	82.749	84.556	82.817	84.680	83.391	**84.894**
ida2016	90.061	91.487	91.045	87.341	91.517	90.332	90.794	91.587	90.503	**93.173**
japanese-vowels	86.109	86.613	86.282	**87.355**	86.692	86.771	86.456	86.845	86.419	86.997
magic	80.700	85.700	84.300	74.400	84.700	84.100	85.000	84.900	84.200	**87.000**
mnist	95.508	95.804	95.575	95.958	95.749	95.819	95.358	95.802	95.633	**96.063**
nokia	79.913	81.688	80.827	69.058	81.137	80.996	79.599	81.727	80.246	81.081
postures	88.647	88.880	88.663	87.449	88.616	88.647	89.020	88.538	88.834	**95.016**

Table 4.

Test accuracies for models with a memory consumption below 256 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold. More details on the experiments and datasets can be found in the appendix.

model	CA	COMP	DREP	GB	IC	IE	LMD	RE	RF	RF-LR
adult	85.774	86.174	85.956	**87.135**	86.011	86.232	85.738	86.272	85.799	86.508
anura	96.511	97.818	97.748	97.429	**98.040**	97.929	97.582	97.818	97.735	**98.013**
avila	95.016	99.022	97.427	82.820	99.176	99.123	93.315	**99.248**	96.526	98.807
bank	89.967	90.297	90.082	90.737	90.290	90.443	89.952	90.471	90.038	**90.874**
chess	56.911	59.998	57.314	44.678	59.791	59.428	57.496	60.636	56.238	**66.852**
connect	74.522	76.270	75.119	76.170	76.239	76.333	75.100	76.303	74.997	**80.340**
eeg	87.233	88.364	88.511	85.734	88.959	88.778	87.884	87.951	87.951	**90.454**
elec	85.220	85.810	85.832	85.748	86.043	86.692	84.922	86.562	85.362	**87.829**
ida2016	99.106	99.225	99.119	99.169	**99.262**	99.175	99.238	99.175	99.194	99.244
japanese-vowels	91.979	94.810	94.428	94.860	94.790	94.077	94.278	94.709	94.408	**96.205**
magic	86.655	87.281	87.218	**87.733**	87.234	87.239	87.302	87.365	86.950	87.570
mnist	86.900	90.100	89.300	84.600	90.600	89.700	88.800	89.600	89.300	**91.800**
mozilla	94.731	95.034	94.982	94.989	**95.092**	**95.092**	94.802	94.995	94.912	95.014
nokia	96.039	96.222	96.150	96.408	96.318	96.269	96.077	96.356	96.135	**96.539**
postures	88.587	89.596	88.747	81.100	89.231	89.390	88.085	89.633	88.281	**90.504**
satimage	88.802	90.218	89.891	89.782	89.705	89.891	90.000	90.156	90.016	**90.715**
first place on 1 dataset (mozilla), is the second best method on 1 data-set (satimage), third best method (ida2016) and fourth best method (avila) each on one dataset. In the first block of datasets (chess, connect, eeg, elec, postures) RF-LR achieves substantial improvements with 1%−8% higher accuracies on average. Looking at the second block (adult, anura, bank, magic, mnist, nomao, japanese-vowels) RF-LR is still the best method, but the differences are smaller than before. Finally, in block three (ida2016, mozilla, satimage) RF-LR is not the best method alone anymore, but ranks among the best methods.

Table 5 implies that RF-LR can offer substantial improvements in some cases and moderate improvement in many other cases. To give a statistical meaningful comparison we present the results in Table 5 as a CD diagram (Demšar, 2006). A CD diagram ranks each method according to its performance on each dataset. Then, a Friedman-Test is performed to determine if there is a statistical difference between the average rank of each method. If this is the case, a pairwise Wilcoxon-Test between all methods is used to check whether there is a statistical difference between two classifiers. CD diagrams visualize this evaluation by plotting the average rank of each method on the x-axis and connect all classifiers whose performances are statistically similar via a horizontal bar.

Figure 4 shows the CD diagram for the experiments, where \(p = 0.95 \) was used for all statistical tests. RF-LR is the clear winner in this comparison. Its average rank is close to 1.5 and it has some distance to the second best method IC with an average rank around 2.5. It offers a statistically better performance compared to \{RE, IE, COMP, LMD, DREP, RF, GB, CA\}. The second clique is given by \{IC, RE, IE, COMP, LMD, DREP, RF, GB\} with ranks around 2.5−7. Overall, RE places third with an average rank around 4 which shows that a simple method can perform surprisingly well. We hypothesize that since RE minimizes the overall ensemble loss that it finds a good balance between the bias and the diversity of the ensemble as e.g. discussed in (Buschjäger et al., 2020).

Next, \{RF, GB, CA\} form the last clique with statistically similar performances which shows that a unpruned RF and GB do not offer a good accuracy-memory trade-off. CA ranks last with some distance to the other methods. We are not sure why CA has such a bad performance and suspect a bug in our implementation which we could not find so far.
5.3 Case-Study On Raspberry Pi0

To showcase the effectiveness of our approach we will now compare the performance of ensemble pruning and leaf-refinement on a Raspberry Pi0. The Raspberry Pi0 has 512 MB RAM and uses a BCM 2835 SoC CPU clocked at 1 GHz. This makes it considerably more powerful than the MCUs mentioned in Table 1, but also allows us to run a full Linux environment which simplifies the evaluation. Again we will now focus on the EEG dataset as our standard example. From our previous experiment we selected pruning configurations that resulted in an ensemble size below 256 KB and generate ensemble-specific C++ code as outline in (Buschjäger et al., 2018) which is then compiled on the Pi0 itself. We compare the latency, the accuracy and the total binary size of these implementations. Note that the total binary size may exceed 256 KB because the binary also contains additional functions from the standard library as well as a start routine and the corresponding ELF header. However, this overhead is the same for all implementations. For simplicity we measure the accuracy as well as the latency using the first cross-validation set. To ensure a fair comparison we repeat each experiment 5 times. Table 6 contains the results for this evaluation. As one can see the binary sizes range from 268 KB to roughly 800 KB and each implementation requires 0.8 to 1.6 µs to classify a single observation. As expected, RF-LR offers the best accuracy around 91% while ranking third in memory usage. Somewhat surprisingly, RF-LR has a comparably high latency. We conjecture that the structure of the trees in RF-LR is not very homogeneous which seems to be beneficial for the accuracy, but may hurt the caching behavior of the trees. A more thorough discussion can be found in (Buschjäger et al., 2018) on this topic and a combination of both approaches should be considered in future research. Nevertheless, this evaluation shows that our approach can be applied in a real-world scenario and we believe that these results can be transferred to other hardware architectures as well.

6 Conclusion

Ensemble algorithms are among the state-of-the-art in many machine learning applications. With the ongoing integration of ML models into everyday life, the deployment and continuous application of models becomes more and more an important issue. By today’s standard, Random Forests are trained with large trees for the best performance which can challenge the resources of small devices and sometimes make deployment impossible. Ensemble pruning is a standard technique to remove unnecessary classifiers from the ensemble to reduce the overall resource consumption while potentially improving its accuracy. This makes ensemble pruning ideal to bring accurate ensembles to small devices. While ensemble pruning improves the performance of ensembles of small trees we found that this improvement diminishes for ensembles of large trees. Moreover, it does not offer fine-grained control over this trade-off because it removes entire trees at once from the ensemble. We argue that, from a hardware perspective, the fine-grained control over the accuracy-memory trade-off is what really matters. We propose a simple and surprisingly effective algorithm which refines the predictions of the trees in a forest using SGD. We compared our Leaf-Refinement method against 7 state-of-the-art pruning methods on 16 datasets. Leaf-Refinement outperforms the other methods on 11 of 16 datasets with a statistically significant better accuracy-memory trade-off compared to most methods. In a small study we showed that our approach can be applied in real-world scenarios, and we believe that our results can be transferred to other hardware architectures. Since our approach is orthogonal to existing approaches it can be freely combined with other methods for efficient deployment. Hence future research should include not only the combination of more diverse hardware, but also the combination of different methods.

Table 6. Accuracy, Size and Latency on a Raspberry Pi0. Models are filtered so that the ensemble size does not exceed 256 KB.

Method	Accuracy	Size [Bytes]	Latency [µs/obs.]
CA	86.2817	268 536	0.80107
COMP	89.8531	689 712	1.06809
DREP	88.7850	342 696	1.00134
IC	89.2523	793 280	1.06809
IE	88.8518	743 232	1.00134
LMD	88.8518	784 896	1.06809
RE	89.2523	792 456	1.13485
RF	89.5194	588 336	1.60214
RF-LR	91.0881	588 088	1.46862

References

Barros, R. C., de Carvalho, A. C. P. L. F., and Freitas, A. A. Decision-Tree Induction, pp. 7–45. Springer International Publishing, Cham, 2015. ISBN 978-3-319-14231-9. doi: 10.1007/978-3-319-14231-9_2. URL https://doi.org/10.1007/978-3-319-14231-9_2.

Biau, G. Analysis of a random forests model. Journal of Machine Learning Research, 13(Apr):1063–1095, 2012.

Biau, G. and Scornet, E. A random forest guided tour. Test, 25(2):197–227, 2016.

Branco, S., Ferreira, A. G., and Cabral, J. Machine learning
Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement in resource-scarce embedded systems, fpgas, and end-devices: A survey. *Electronics*, 8(11):1289, 2019.

Breiman, L. Bagging predictors. *Machine learning*, 24(2):123–140, 1996.

Breiman, L. Some infinity theory for predictor ensembles. Technical report, Technical Report 579, Statistics Dept. UCB, 2000.

Buschjäger, S. and Morik, K. Decision tree and random forest implementations for fast filtering of sensor data. *IEEE Transactions on Circuits and Systems I: Regular Papers*, 65(1):209–222, 2017.

Buschjäger, S., Pfahler, L., and Morik, K. Generalized negative correlation learning for deep ensembling. *arXiv preprint arXiv:2011.02952*, 2020.

Buschjäger, S., Chen, K., Chen, J., and Morik, K. Realization of random forest for real-time evaluation through tree framing. In *ICDM*, pp. 19–28, 2018. doi: 10.1109/ICDM.2018.00017.

Cavalcanti, G. D., Oliveira, L. S., Moura, T. J., and Carvalho, G. V. Combining diversity measures for ensemble pruning. *Pattern Recognition Letters*, 74:38–45, 2016.

Choudhary, T., Mishra, V., Goswami, A., and Sarangapani, J. A comprehensive survey on model compression and acceleration. *Artificial Intelligence Review*, 53(7):5113–5155, 2020.

Cortes, C., Mohri, M., and Syed, U. Deep boosting. In *Proceedings of the Thirty-First International Conference on Machine Learning (ICML 2014)*, 2014.

Demšar, J. Statistical comparisons of classifiers over multiple data sets. *The Journal of Machine Learning Research*, 7:1–30, 2006.

Denil, M., Matheson, D., and De Freitas, N. Narrowing the gap: Random forests in theory and in practice. In *International conference on machine learning (ICML)*, 2014.

Domingos, P. A unified bias-variance decomposition for zero-one and squared loss. *AAAI/IAAI*, 2000:564–569, 2000.

Friedman, J. H. Greedy function approximation: a gradient boosting machine. *Annals of statistics*, pp. 1189–1232, 2001.

Geurts, P., Ernst, D., and Wehenkel, L. Extremely randomized trees. *Machine learning*, 63(1):3–42, 2006.

Giacinto, G., Rolli, F., and Fumera, G. Design of effective multiple classifier systems by clustering of classifiers. In *Proceedings 15th International Conference on Pattern Recognition. ICPR-2000*, volume 2, pp. 160–163. IEEE, 2000.

Guo, H., Liu, H., Li, R., Wu, C., Guo, Y., and Xu, M. Margin & diversity based ordering ensemble pruning. *Neurocomputing*, 275:237–246, 2018.

Ho, T. K. The random subspace method for constructing decision forests. *IEEE transactions on pattern analysis and machine intelligence*, 20(8):832–844, 1998.

Jiang, Z., Liu, H., Fu, B., and Wu, Z. Generalized ambiguity decompositions for classification with applications in active learning and unsupervised ensemble pruning. *31st AAAI Conference on Artificial Intelligence, AAAI 2017*, pp. 2073–2079, 2017.

Koltchinskii, V. et al. Empirical margin distributions and bounding the generalization error of combined classifiers. *The Annals of Statistics*, 30(1):1–50, 2002.

Kumar, A., Goyal, S., and Varma, M. Resource-efficient machine learning in 2 kb ram for the internet of things. In *International Conference on Machine Learning*, pp. 1935–1944. PMLR, 2017.

Lazarevic, A. and Obradovic, Z. Effective pruning of neural network classifier ensembles. In *IJCNN'01*, volume 2, pp. 796–801. IEEE, 2001.

Li, N., Yu, Y., and Zhou, Z.-H. Diversity regularized ensemble pruning. In *ECML PKDD*, pp. 330–345. Springer, 2012.

Louppe, G. and Geurts, P. Ensembles on random patches. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pp. 346–361. Springer, 2012.

Lu, Z., Wu, X., Zhu, X., and Bongard, J. Ensemble pruning via individual contribution ordering. In *Proc. of the ACM SIGKDD*, pp. 871–880, 2010.

Margineantu, D. D. and Dietterich, T. G. Pruning adaptive boosting. In *ICML*, volume 97, pp. 211–218, 1997.

Martinez-Munoz, G. and Suárez, A. Aggregation ordering in bagging. In *Proc. of the IASTED*, pp. 258–263, 2004.

Martínez-Muñoz, G. and Suárez, A. Pruning in ordered bagging ensembles. In *ICML*, pp. 609–616, 2006.

Martínez-Muñoz, G., Hernández-Lobato, D., and Suárez, A. An analysis of ensemble pruning techniques based on ordered aggregation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(2):245–259, 2008.
Oshiro, T. M., Perez, P. S., and Baranauskas, J. A. How many trees in a random forest? In *International workshop on machine learning and data mining in pattern recognition*, pp. 154–168. Springer, 2012.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

Shotton, J., Sharp, T., Kohli, P., Nowozin, S., Winn, J., and Criminisi, A. Decision jungles: Compact and rich models for classification. In *NIPS’13 Proceedings of the 26th International Conference on Neural Information Processing Systems*, pp. 234–242, 2013.

Tsoumakas, G., Partalas, I., and Vlahavas, I. An ensemble pruning primer. In *Applications of supervised and unsupervised ensemble methods*. Springer, 2009.

Ye, T., Zhou, H., Zou, W. Y., Gao, B., and Zhang, R. Rapidscorer: fast tree ensemble evaluation by maximizing compactness in data level parallelization. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 941–950, 2018.

Zhang, Y., Burer, S., and Street, W. N. Ensemble pruning via semi-definite programming. *Journal of machine learning research*, 7(Jul):1315–1338, 2006.

Zhou, Z.-H. *Ensemble methods: foundations and algorithms*. CRC press, 2012.

Zhou, Z.-H., Wu, J., and Tang, W. Ensembling neural networks: many could be better than all. *Artificial intelligence*, 137(1-2):239–263, 2002.
APPENDIX: Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

Sebastian Buschjäger
sebastian.buschjaeger@tu-dortmund.de
Katharina Morik
katharina.morik@tu-dortmund.de

Abstract

This appendix accompanies the paper ‘Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement’. It provides results for more experiments which are not given in the paper due to space reasons.

1. Transformation of the Many-Could-Be-Better-Than-All-Theorem

Let

\[C_{k,k} = \mathbb{E}_{x,y \sim \mathcal{D}} [(h_k(x) - y)^2] \]
\[C_{k,i} = \mathbb{E}_{x,y \sim \mathcal{D}} [(h_k(x) - y)(h_i(x) - y)] \]

then from Eq. (14) and Eq. (15) in \cite{paper} we have:

\[
\sum_{i=1}^{M} \sum_{j=1, j \neq k}^{M} \frac{C_{i,j}}{(M-1)^2} \leq \sum_{i=1}^{M} \sum_{h=1}^{M} \frac{C_{i,j}}{M^2} = \sum_{i=1}^{M} \sum_{j=1, j \neq k}^{M} \frac{C_{i,j}}{M^2} + 2 \sum_{i=1}^{M} \frac{C_{i,k}}{M^2} + \frac{C_{k,k}}{M^2} \\
\leq \frac{(M - 1)^2}{M^2} \left(\sum_{i=1, i \neq k}^{M} \sum_{j=1, j \neq k}^{M} C_{i,j} + 2 \sum_{i=1, i \neq k}^{M} C_{i,k} + C_{k,k} \right) \\
\leq \sum_{i=1, i \neq k}^{M} \sum_{j=1, j \neq k}^{M} C_{i,j} + 2 \sum_{i=1, i \neq k}^{M} C_{i,k} + C_{k,k} \\
0 \leq 2 \sum_{i=1, i \neq k}^{M} C_{i,k} + C_{k,k} \\
-2 \sum_{i=1, i \neq k}^{M} C_{i,k} \leq C_{k,k}
\]

2. Dataset

Table 1 gives an overview of the datasets used for all experiments. All datasets are freely available online. The detailed download scripts for each dataset are provided in the anonymized version of the source code.

3. Revisiting Ensemble Pruning on More Datasets

The section ‘Revisiting Ensemble Pruning’ showed results for the EEG dataset. In this section, we show the results for this experiment on the other dataset depicted in Table 1.
Table 1: Summary of data sets for our experiments. All datasets are publicly available and
download scripts are included in this submission. In all experiments we use a 5-fold
cross validation except for mnist and ida2016 in which we used the given test/train
split. We use minimal pre-processing and by removing examples containing NaN
values and computing a one-hot encoding for categorical features. \(N \) depicts total
number of datapoints (after removing NaN), \(d \) is the dimensionality including all
one-hot encoded features and \(C \) is the number of classes.

Dataset	\(N \)	\(d \)	\(C \)
adult	32,561	108	2
anura	7,195	22	10
avila	20,867	10	11
bank	45,211	51	2
chess	28,056	23	17
connect	67,557	42	3
eeg	14,980	14	2
elec	45,312	14	2

Dataset	\(N \)	\(d \)	\(C \)
ida2016	76,000	170	2
japanese-vowels	9,961	14	9
magic	19,019	10	2
mnist	70,000	784	10
mozilla	15,545	5	2
nomao	34,465	174	2
postures	78,095	9	5
satimage	6,430	36	6

Recall the following experimental protocol: Oshiro et al. showed in [7] that the prediction of
a RF stabilizes between 128 and 256 trees in the ensemble and adding more trees to the
ensemble does not yield significantly better results. Hence, we train the ‘base’ Random
Forests with \(M = 256 \) trees. To control the individual errors of trees we set the maximum
number of leaf nodes \(n_l \) to values between \(n_l \in \{64, 128, 256, 512, 1024\} \). For ensemble
pruning we use RE and compare it against a random selection of trees from the original
ensemble (which is the same a training a smaller forest directly). In both cases a sub-ensemble
with \(K \in \{2, 4, 8, 16, 32, 64, 128, 256\} \) members is selected so that for \(K = 256 \) the original
RF is recovered. For RE we use the training data as pruning set. We report the average
accuracy over a 5-fold cross-validation.
Figure 1: (Left) The error over the number of trees in the ensemble on the adult dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the adult dataset. Rounded to the second decimal digit. Larger is better.

Figure 2: (Left) The error over the number of trees in the ensemble on the anura dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the anura dataset. Rounded to the second decimal digit. Larger is better.
Figure 3: (Left) The error over the number of trees in the ensemble on the avila dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the avila dataset. Rounded to the second decimal digit. Larger is better.

Figure 4: (Left) The error over the number of trees in the ensemble on the bank dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the bank dataset. Rounded to the second decimal digit. Larger is better.
Figure 5: (Left) The error over the number of trees in the ensemble on the chess dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the chess dataset. Rounded to the second decimal digit. Larger is better.

Figure 6: (Left) The error over the number of trees in the ensemble on the connect dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the connect dataset. Rounded to the second decimal digit. Larger is better.
Figure 7: (Left) The error over the number of trees in the ensemble on the eeg dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the eeg dataset. Rounded to the second decimal digit. Larger is better.

Figure 8: (Left) The error over the number of trees in the ensemble on the elec dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the elec dataset. Rounded to the second decimal digit. Larger is better.
APPENDIX: Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

max_leaf_nodes	model	COMP	DREP	IC	IE	LMD	RE
64	8.0	80.04	96.97	99.09	99.02	98.95	99.09
16.0	99.12	99.01	99.08	99.05	99.02	99.12	
32.0	99.05	99.04	99.09	99.02	99.02	99.08	
64.0	99.05	99.06	99.07	99.07	99.04	99.08	
128.0	99.06	99.09	99.10	99.09	99.10	99.03	99.10
256.0	99.08	99.04	99.09	99.10	99.04	99.04	
512.0	99.08	99.04	99.09	99.10	99.04	99.04	
1024.0	99.08	99.04	99.09	99.10	99.04	99.04	

Figure 9: (Left) The error over the number of trees in the ensemble on the ida2016 dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the ida2016 dataset. Rounded to the second decimal digit. Larger is better.

max_leaf_nodes	model	COMP	DREP	IC	IE	LMD	RE
64	8.0	88.78	87.31	88.51	86.86	87.28	88.93
16.0	90.24	89.10	90.62	88.53	89.80	90.72	
32.0	91.00	90.21	91.16	89.54	90.96	91.24	
64.0	91.54	90.79	91.37	90.98	91.63	91.61	
128.0	91.60	91.03	91.15	90.40	91.11	91.55	
256.0	91.74	91.57	92.06	91.62	92.22	92.18	
512.0	92.02	92.68	93.37	92.96	93.64	93.95	
1024.0	92.19	93.44	94.10	93.98	94.66	94.95	

Figure 10: (Left) The error over the number of trees in the ensemble on the japanese-vowels dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the japanese-vowels dataset. Rounded to the second decimal digit. Larger is better.
Figure 11: (Left) The error over the number of trees in the ensemble on the magic dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the magic dataset. Rounded to the second decimal digit. Larger is better.

Figure 12: (Left) The error over the number of trees in the ensemble on the mnist dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the mnist dataset. Rounded to the second decimal digit. Larger is better.
Figure 13: (Left) The error over the number of trees in the ensemble on the mozilla dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the mozilla dataset. Rounded to the second decimal digit. Larger is better.

Figure 14: (Left) The error over the number of trees in the ensemble on the nomao dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the nomao dataset. Rounded to the second decimal digit. Larger is better.
Figure 15: (Left) The error over the number of trees in the ensemble on the postures dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the postures dataset. Rounded to the second decimal digit. Larger is better.

Figure 16: (Left) The error over the number of trees in the ensemble on the satimage dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the satimage dataset. Rounded to the second decimal digit. Larger is better.
4. Plotting the Pareto Front For More Datasets

Figure 17: 5-fold cross-validation accuracy over the size of the ensemble for different n_l and different M on the chess dataset. Single points are the individual parameter configurations whereas the solid line depicts the corresponding Pareto Front. Left side show the adult dataset, right side shows the anura dataset.

Figure 18: 5-fold cross-validation accuracy over the size of the ensemble for different n_l and different M on the chess dataset. Single points are the individual parameter configurations whereas the solid line depicts the corresponding Pareto Front. Left side show the avila dataset, right side shows the bank dataset.
Figure 19: 5-fold cross-validation accuracy over the size of the ensemble for different n_l and different M on the chess dataset. Single points are the individual parameter configurations whereas the solid line depicts the corresponding Pareto Front. Left side show the chess dataset, right side shows the connect dataset.

Figure 20: 5-fold cross-validation accuracy over the size of the ensemble for different n_l and different M on the chess dataset. Single points are the individual parameter configurations whereas the solid line depicts the corresponding Pareto Front. Left side show the eeg dataset, right side shows the elec dataset.
Figure 21: 5-fold cross-validation accuracy over the size of the ensemble for different n_l and different M on the chess dataset. Single points are the individual parameter configurations whereas the solid line depicts the corresponding Pareto Front. Left side show the ida2016 dataset, right side shows the japanese-vowels dataset.

Figure 22: 5-fold cross-validation accuracy over the size of the ensemble for different n_l and different M on the chess dataset. Single points are the individual parameter configurations whereas the solid line depicts the corresponding Pareto Front. Left side show the magic dataset, right side shows the mnist dataset.
Figure 23: 5-fold cross-validation accuracy over the size of the ensemble for different n_l and different M on the chess dataset. Single points are the individual parameter configurations whereas the solid line depicts the corresponding Pareto Front. Left side show the mozilla dataset, right side shows the nomao dataset.

Figure 24: 5-fold cross-validation accuracy over the size of the ensemble for different n_l and different M on the chess dataset. Single points are the individual parameter configurations whereas the solid line depicts the corresponding Pareto Front. Left side show the postures dataset, right side shows the satimage dataset.

4.1 Accuracies under various resource constraints

5. Revisiting Ensemble Pruning on More Datasets with a dedicated pruning set

Some authors use a dedicated pruning set (see e.g.) for ensemble pruning which was not used for training the ensemble. For completeness, we adapt this approach into the experimental protocol. We now split the training data into two sets with 2/3 and 1/3 of the original training data. The 2/3 of the training data is used to train the base ensemble, and the 1/3 of the data is used for pruning. As before, we either use a 5-fold cross validation or the given test/train split. For reference, recall our experimental protocol: Oshiro et al. showed in? that the prediction of a RF stabilizes between 128 and 256 trees in the ensemble and adding more trees to the ensemble does not yield significantly better results. Hence, we train the ‘base’ Random Forests with $M = 256$ trees. To control the individual errors of trees we set the maximum number of leaf nodes n_l to values between $n_l \in \{64, 128, 256, 512, 1024\}$.

7.ERM
Table 2: Test accuracies for models with a memory consumption below 32 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	CA	COMP	DREP	GB	IC	IE	LMD	RE	RF	RF-LR
adult	85.120	85.467	85.403	**86.244**	85.295	85.824	85.056	86.035	85.234	85.891
anura	95.789	96.484	96.220	91.564	96.609	96.372	96.081	96.609	96.178	**96.831**
avila	86.102	93.382	91.115	59.496	93.435	93.219	82.446	94.197	86.285	88.355
bank	89.741	89.985	89.927	**90.527**	90.213	90.226	89.706	90.246	89.764	90.343
chess	44.914	47.986	46.696	30.175	46.753	48.371	45.391	48.571	44.614	51.205
connect	71.551	73.052	72.595	67.584	73.057	73.223	71.993	73.313	71.466	**75.160**
eeg	81.015	83.037	82.917	79.226	83.451	81.455	83.565	82.443	84.059	**84.059**
elec	82.252	82.122	83.009	81.941	83.737	81.649	83.942	82.027	83.464	**83.464**
ida2016	98.956	99.038	98.969	99.038	99.087	99.025	98.950	99.094	99.031	99.031
japanese-vowels	86.819	88.796	87.843	81.930	88.716	88.626	87.280	88.927	87.632	**90.433**
magic	86.109	86.366	86.140	86.629	86.072	86.487	86.114	86.640	86.019	86.187
mnist	92.534	94.278								
moza	94.442	94.628	94.661	94.493	**94.815**	94.693	94.275	94.783	94.532	94.538
nomao	95.242	95.372	95.239	95.273	95.381	95.567	95.065	**95.683**	95.358	95.668
postures	74.960	76.138	75.261	64.126	75.477	75.978	74.101	**76.873**	74.673	75.069
satimage	87.807	**88.491**	87.776	85.925	88.289	87.589	87.403	88.258	87.760	87.216

Table 3: Test accuracies for models with a memory consumption below 64 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	CA	COMP	DREP	GB	IC	IE	LMD	RE	RF	RF-LR
adult	85.455	85.777	85.618	**86.616**	85.799	85.882	85.378	86.128	85.464	86.241
anura	96.511	97.137	96.873	95.024	97.192	96.928	96.539	97.067	96.525	**97.512**
avila	91.930	96.957	95.318	67.724	96.760	96.689	96.965	97.048	92.534	94.278
bank	89.772	90.049	89.927	**90.677**	90.213	90.330	89.819	90.336	89.830	90.522
chess	48.025	51.714	50.492	34.969	50.356	51.793	49.041	52.495	48.090	**57.382**
connect	72.426	73.898	73.409	70.847	73.724	73.832	73.110	74.134	72.666	**77.498**
eeg	84.199	85.574	84.419	82.463	84.780	85.033	83.852	85.527	84.606	**86.622**
elec	83.523	83.620	84.075	83.878	82.749	84.556	82.817	84.680	83.391	**84.894**
ida2016	99.044	99.119	99.025	99.094	99.106	99.100	99.031	99.125	99.075	**99.219**
japanese-vowels	90.061	91.487	91.045	87.341	91.517	90.332	90.794	91.587	90.503	**93.173**
magic	86.109	86.613	86.282	**87.355**	86.692	86.771	86.456	86.845	86.419	86.997
mnist	80.700	85.700	84.300	74.400	84.700	84.100	85.000	84.900	84.200	**87.000**
moza	94.590	94.764	94.661	94.590	94.815	**94.860**	94.468	94.860	94.545	94.699
nomao	95.508	95.804	95.575	95.958	95.749	95.819	95.358	95.802	95.633	**96.063**
postures	79.913	81.688	80.827	69.058	81.137	80.996	79.599	**81.727**	80.246	81.081
satimage	88.647	88.880	88.663	87.449	88.911	88.616	88.647	**89.020**	88.538	88.834

APPENDIX: Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement
Table 4: Test accuracies for models with a memory consumption below 128 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	CA	COMP	DREP	GB	IC	LMD	RE	RF	RF-LR	
adult	85.685	85.925	85.784	87.135	85.980	86.164	85.738	86.155	85.787	86.508
anura	96.511	97.568	97.206	96.553	97.679	97.512	97.137	97.415	97.206	97.693
avila	94.738	98.720	95.697	75.262	98.845	98.730	91.015	98.860	93.411	97.791
bank	89.967	90.148	89.985	90.737	90.259	90.376	89.830	90.354	89.994	90.794
chess	53.315	56.027	54.370	40.719	55.318	55.703	53.201	56.672	53.261	62.749
connect	73.348	74.897	74.065	73.850	75.026	74.327	75.305	73.825	97.791	
eeg	85.534	87.370	86.242	85.734	87.136	87.163	86.355	87.457	86.442	88.992
elec	84.589	84.318	84.872	85.748	84.635	83.896	85.851	84.574	86.416	86.416
ida2016	99.044	99.119	99.106	99.169	99.125	99.131	99.156	99.087	99.244	94.699
japanese-vowels	91.979	93.575	92.912	91.748	93.444	92.651	93.143	92.410	94.409	94.699
magic	86.608	86.882	86.661	87.733	87.071	86.987	87.087	86.918	87.570	90.200
mnist	86.900	89.000	87.600	79.300	88.500	87.400	87.200	86.800	86.900	96.298
mozilla	94.622	95.000	94.744	94.989	94.995	94.957	94.878	94.834	94.957	94.957
nomao	95.738	95.927	95.903	96.408	96.073	96.060	95.920	95.871	96.298	94.619
postures	84.582	86.166	85.655	75.760	85.933	85.169	84.167	86.267	84.400	86.300
satimage	88.647	89.378	89.300	88.631	89.425	89.393	89.518	89.580	90.140	

Table 5: Test accuracies for models with a memory consumption below 256 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	CA	COMP	DREP	GB	IC	LMD	RE	RF	RF-LR	
adult	85.774	86.174	85.956	87.135	86.011	86.232	85.738	86.272	85.799	86.508
anura	96.511	97.818	97.748	97.429	98.040	97.929	97.582	97.818	97.735	98.013
avila	95.016	99.022	97.427	82.820	99.176	99.123	93.315	99.248	96.526	98.807
bank	89.967	90.297	90.082	90.737	90.290	90.443	89.952	90.471	90.038	90.874
chess	56.911	59.998	57.314	44.678	59.791	59.428	57.496	60.636	56.238	66.852
connect	74.522	76.270	75.119	76.170	76.239	76.333	75.100	76.303	74.997	80.340
eeg	87.223	88.364	88.511	85.734	88.509	88.778	88.784	88.758	87.951	90.454
elec	85.220	85.810	85.832	85.748	86.043	86.692	84.922	86.926	85.362	87.829
ida2016	99.106	99.225	99.119	99.169	99.262	99.175	99.238	99.175	99.994	99.244
japanese-vowels	91.979	94.810	94.428	94.860	94.790	94.077	94.278	94.709	94.408	96.205
magic	86.655	87.281	87.218	87.733	87.234	87.339	87.302	87.365	86.950	87.570
mnist	86.900	90.100	89.300	84.600	90.600	89.700	88.800	89.600	89.300	91.800
mozilla	94.731	95.034	94.982	94.989	95.092	95.092	94.802	94.905	94.912	95.014
nomao	96.393	96.222	96.150	96.408	96.318	96.269	96.077	96.356	96.135	96.539
postures	88.587	89.596	88.747	81.100	89.231	89.390	88.085	89.633	88.281	90.504
satimage	88.802	90.218	89.891	89.782	89.705	89.891	90.000	90.156	90.016	90.715
For ensemble pruning we use RE and compare it against a random selection of trees from the original ensemble (which is the same as training a smaller forest directly). In both cases a sub-ensemble with $K \in \{2, 4, 8, 16, 32, 64, 128, 256\}$ members is selected so that for $K = 256$ the original RF is recovered.

![Graph](image)

Figure 25: (Left) The error over the number of trees in the ensemble on the adult dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the adult dataset. Rounded to the second decimal digit. Larger is better.
Figure 26: (Left) The error over the number of trees in the ensemble on the anura dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the anura dataset. Rounded to the second decimal digit. Larger is better.

Figure 27: (Left) The error over the number of trees in the ensemble on the avila dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the avila dataset. Rounded to the second decimal digit. Larger is better.
APPENDIX: Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

max_leaf_nodes	model COMP DREP IC IE LMD REmax
64	8.0 4.84 3.72 5.13 4.74 4.03 4.51
128	8.0 4.48 2.83 3.76 4.41 4.07 4.31
256	8.0 4.51 2.83 4.35 4.04 4.45 4.51
512	8.0 4.50 2.83 2.14 4.45 4.04 4.45
1024	8.0 4.48 2.83 1.35 4.45 4.04 4.45

Figure 28: (Left) The error over the number of trees in the ensemble on the bank dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the bank dataset. Rounded to the second decimal digit. Larger is better.

Figure 29: (Left) The error over the number of trees in the ensemble on the chess dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the chess dataset. Rounded to the second decimal digit. Larger is better.
Figure 30: (Left) The error over the number of trees in the ensemble on the connect dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the connect dataset. Rounded to the second decimal digit. Larger is better.

Figure 31: (Left) The error over the number of trees in the ensemble on the eeg dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the eeg dataset. Rounded to the second decimal digit. Larger is better.
APPENDIX: Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

max_leaf_nodes	model COMP DREP IC RE LMD RE
64	8.0 98.88 99.07 98.96 98.83 99.03
	16.0 99.04 99.02 99.01 99.01 99.00
	32.0 99.01 99.00 99.00 99.01 99.08
	64.0 99.03 99.08 99.04 99.04 99.05
	128.0 99.07 99.03 99.09 99.06 99.04 99.05
128	8.0 99.08 99.02 99.11 98.98 98.98 99.04
	16.0 99.08 99.09 99.11 99.08 99.09 99.14
	32.0 99.14 99.12 99.09 99.08 99.09 99.14
	64.0 99.14 99.13 99.12 99.11 99.13 99.12
	128.0 99.14 99.16 99.11 99.12 99.15 99.14
256	8.0 99.03 98.98 98.98 98.98 98.98 99.00
	16.0 99.12 99.11 99.09 99.05 99.11 99.10
	32.0 99.13 99.18 99.06 99.12 99.14 99.19
	64.0 99.14 99.17 99.14 99.13 99.14 99.18
	128.0 99.18 99.17 99.14 99.12 99.14 99.15
512	8.0 99.01 99.06 99.06 98.96 98.98 98.98
	16.0 99.09 99.07 99.11 99.13 99.09 99.11
	32.0 99.16 99.19 99.14 99.13 99.14 99.12
	64.0 99.19 99.19 99.18 99.16 99.18 99.17
	128.0 99.22 99.16 99.17 99.14 99.17 99.16
1024	8.0 99.00 99.07 99.03 99.11 98.98 99.00
	16.0 99.09 99.12 99.16 99.17 99.07 99.13
	32.0 99.18 99.19 99.18 99.14 99.14 99.18
	64.0 99.22 99.26 99.22 99.16 99.18 99.21
	128.0 99.22 99.24 99.21 99.19 99.20 99.21

Figure 32: (Left) The error over the number of trees in the ensemble on the elec dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the elec dataset. Rounded to the second decimal digit. Larger is better.

Figure 33: (Left) The error over the number of trees in the ensemble on the ida2016 dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the ida2016 dataset. Rounded to the second decimal digit. Larger is better.
Figure 34: (Left) The error over the number of trees in the ensemble on the japanese-vowels dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the japanese-vowels dataset. Rounded to the second decimal digit. Larger is better.

Figure 35: (Left) The error over the number of trees in the ensemble on the magic dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the magic dataset. Rounded to the second decimal digit. Larger is better.
Figure 36: (Left) The error over the number of trees in the ensemble on the mnist dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the mnist dataset. Rounded to the second decimal digit. Larger is better.

Figure 37: (Left) The error over the number of trees in the ensemble on the mozilla dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the mozilla dataset. Rounded to the second decimal digit. Larger is better.
Figure 38: (Left) The error over the number of trees in the ensemble on the nomao dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the nomao dataset. Rounded to the second decimal digit. Larger is better.

Figure 39: (Left) The error over the number of trees in the ensemble on the postures dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the postures dataset. Rounded to the second decimal digit. Larger is better.
APPENDIX: Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

Figure 40

(Left) The error over the number of trees in the ensemble on the satimage dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the satimage dataset. Rounded to the second decimal digit. Larger is better.

5.1 Plotting the Pareto Front For More Datasets with Dedicated Pruning Set

![Figure 41: (left) 5-fold cross-validation accuracy on the adult dataset. (right) 5-fold cross-validation accuracy on the anura dataset.](image-url)
Figure 42: (left) 5-fold cross-validation accuracy on the avila dataset. (right) 5-fold cross-validation accuracy on the bank dataset.

Figure 43: (left) 5-fold cross-validation accuracy on the chess dataset. (right) 5-fold cross-validation accuracy on the connect dataset.

Figure 44: (left) 5-fold cross-validation accuracy on the eeg dataset. (right) 5-fold cross-validation accuracy on the elec dataset.
Figure 45: (left) 5-fold cross-validation accuracy on the ida2016 dataset. (right) 5-fold cross-validation accuracy on the japanese-vowels dataset.

Figure 46: (left) 5-fold cross-validation accuracy on the magic dataset. (right) 5-fold cross-validation accuracy on the mnist dataset.

Figure 47: (left) 5-fold cross-validation accuracy on the mozilla dataset. (right) 5-fold cross-validation accuracy on the nomao dataset.
Table 6: Test accuracies for models with a memory consumption below 32 KB for each method and each dataset averaged over a 5 fold cross validation using a dedicated pruning set. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	CA	COMP	DREP	GB	IC	IE	LMD	RE	RF	RF-LR
adult	85.102	85.587	85.400	86.244	85.381	85.756	85.071	86.085	85.188	85.541
anura	85.360	85.087	85.150	91.564	96.650	95.866	96.317	95.928	96.678	
avila	89.717	88.887	89.830	90.527	90.053	90.184	89.695	90.140	89.775	
bank	43.834	46.571	45.801	30.175	46.970	43.814	47.762	43.545	48.065	
chess	70.771	72.530	72.540	67.584	72.524	72.993	71.360	73.197	71.100	
connect	81.509	82.590	81.569	79.226	82.029	82.677	81.202	82.041	81.515	
eeg	82.080	81.502	82.398	81.941	80.407	83.205	80.941	83.082	82.067	
ida2016	98.988	98.931	99.069	99.038	98.994	98.962	98.831	99.031	98.906	
japanese-vowels	86.287	89.017	87.321	81.930	89.178	87.702	87.351	88.847	87.391	
magic	85.762	86.161	85.714	86.629	86.240	85.961	86.067	86.445	85.814	
mnist	79.900	80.100	79.000	70.600	78.100	80.100	77.300	80.100	77.400	
mozilla	94.378	94.519	94.538	94.493	94.577	94.622	94.210	94.641	94.474	
nomao	94.998	95.259	95.271	95.273	95.250	95.323	94.972	95.404	95.152	
postures	74.165	76.115	75.412	64.126	75.319	76.093	73.922	76.518	73.986	
satimage	87.372	87.683	87.247	85.925	87.481	87.434	87.030	87.683	87.185	

Figure 48: (left) 5-fold cross-validation accuracy on the postures dataset. (right) 5-fold cross-validation accuracy on the satimage dataset.
Table 7: Test accuracies for models with a memory consumption below 64 KB for each method and each dataset averaged over a 5 fold cross validation using a dedicated pruning set. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	CA	COMP	DREP	GB	IC	IE	LMD	RE	RF	RF-LR
adult	85.179	85.639	85.523	**86.616**	85.609	85.928	85.172	86.085	85.507	86.075
anura	95.719	96.692	96.692	95.024	96.845	96.599	96.498	97.040	96.289	**97.054**
avila	89.610	94.522	93.171	67.724	94.719	**94.930**	94.863	88.690	91.757	
bank	89.741	90.113	89.941	**90.677**	90.230	90.206	89.733	90.248	89.775	90.151
chess	48.314	50.235	48.849	34.969	50.307	50.403	48.236	50.834	47.220	**53.728**
connect	72.465	73.408	73.351	70.847	73.473	73.813	72.043	74.075	72.244	**76.676**
eeg	83.091	84.766	83.718	82.463	84.399	84.272	83.478	84.619	83.271	**85.501**
electric	83.073	83.038	83.333	83.878	82.018	83.940	82.289	84.176	82.826	**84.040**
ida2016	99.012	99.081	99.069	99.094	99.106	99.006	99.012	99.044	99.050	**99.131**
japanese-vowels	89.459	90.955	89.840	87.341	90.884	90.061	90.212	90.915	89.589	**91.668**
magic	86.003	86.624	86.124	**87.355**	86.598	86.303	86.445	86.503	86.245	86.892
mnist	82.800	84.700	82.900	74.400	84.000	83.100	83.900	84.200	83.700	
nomao	95.358	95.564	95.491	**95.958**	95.610	95.555	95.331	95.575	95.363	95.784
postures	79.571	80.910	80.392	69.058	80.513	81.127	79.857	**81.268**	79.476	81.161
satimage	87.869	88.694	88.305	87.449	**88.849**	88.165	87.776	88.585	88.616	88.305

Table 8: Test accuracies for models with a memory consumption below 128 KB for each method and each dataset averaged over a 5 fold cross validation using a dedicated pruning set. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	CA	COMP	DREP	GB	IC	IE	LMD	RE	RF	RF-LR
adult	85.741	85.854	85.710	**87.135**	85.839	86.060	85.434	86.085	85.633	86.269
anura	90.386	97.262	97.095	96.553	97.331	97.582	97.165	97.373	97.067	**97.609**
avila	92.107	97.623	95.067	75.262	97.791	97.738	88.154	**97.796**	92.126	95.534
bank	89.876	90.184	89.980	**90.737**	90.259	90.206	89.949	90.268	89.978	90.644
chess	51.066	54.926	51.900	40.719	53.682	53.486	52.146	54.716	50.150	**57.018**
connect	73.270	74.738	74.105	73.850	74.969	74.854	73.972	75.147	73.354	**77.865**
eeg	85.547	86.595	85.861	85.374	86.976	86.435	85.314	86.182	85.107	**87.977**
electric	83.647	84.192	84.454	**85.748**	84.324	85.050	83.453	85.068	84.223	85.454
ida2016	99.012	99.081	99.087	**99.169**	99.106	99.106	99.119	99.112	99.087	99.131
japanese-vowels	90.433	92.461	91.688	91.748	92.471	91.447	92.069	92.390	91.878	**93.575**
magic	86.251	86.818	86.508	**87.733**	86.887	86.613	86.692	86.813	86.603	87.255
mnist	85.900	**88.100**	86.200	79.300	87.000	85.900	87.100	85.900	86.400	87.200
mozilla	94.455	94.738	94.603	**94.989**	94.821	94.802	94.526	94.751	94.603	94.667
nomao	95.697	95.891	95.833	**96.408**	95.897	95.854	95.764	95.941	95.825	96.089
postures	83.912	85.294	84.616	75.760	84.726	85.003	83.849	85.527	84.016	**85.691**
satimage	88.243	89.176	88.802	88.631	89.145	88.849	89.082	**89.440**	88.740	89.440
Table 9: Test accuracies for models with a memory consumption below 256 KB for each method and each dataset averaged over a 5 fold cross validation using a dedicated pruning set. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

5.2 Accuracies under various resource constraints with Dedicated Pruning Set

5.3 Area Under the Pareto Front with Dedicated Pruning Set
6. Revisiting Ensemble Pruning with a Bagging Classifier

For space reasons, the paper focuses on Random Forest classifier. Here we will repeat our experiment with a Bagging Classifier implemented in Scikit-Learn. As before, we either use a 5-fold cross validation or the given test/train split. For reference, recall our experimental protocol: Oshiro et al. showed in that the prediction of a RF stabilizes between 128 and 256 trees in the ensemble and adding more trees to the ensemble does not yield significantly better results. Hence, we train the ‘base’ Random Forests with $M = 256$ trees. To control the individual errors of trees we set the maximum number of leaf nodes n_l to values between $n_l \in \{64, 128, 256, 512, 1024\}$. For ensemble pruning we use RE and compare it against a random selection of trees from the original ensemble (which is the same a training a smaller forest directly). In both cases a sub-ensemble with $K \in \{2, 4, 8, 16, 32, 64, 128, 256\}$ members is selected so that for $K = 256$ the original RF is recovered.
Figure 50: (Left) The error over the number of trees in the ensemble on the adult dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the adult dataset. Rounded to the second decimal digit. Larger is better.

Figure 51: (Left) The error over the number of trees in the ensemble on the anura dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the anura dataset. Rounded to the second decimal digit. Larger is better.
APPENDIX: Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE
64	8.0	81.87	79.17	79.22	78.95	80.45	81.30
128	8.0	80.74	79.69	80.14	79.23	80.44	82.02
256	8.0	80.86	79.49	80.03	79.52	80.86	82.05
512	8.0	80.52	79.45	80.25	79.26	79.75	81.85
1024	8.0	80.20	NaN	80.16	79.16	79.60	81.21
128	8.0	90.28	89.67	90.37	89.24	89.15	91.16
256	8.0	90.54	89.20	90.54	89.68	89.60	92.02
512	8.0	90.21	NaN	90.21	89.52	89.50	91.60
1024	8.0	90.02	NaN	89.89	89.22	89.33	90.89
128	8.0	97.72	96.27	97.50	97.36	94.64	97.89
256	8.0	97.65	96.35	97.61	97.34	95.95	97.92
512	8.0	97.42	NaN	97.43	97.26	95.17	97.63
1024	8.0	97.08	NaN	97.06	96.91	95.21	97.29
128	8.0	99.34	99.09	99.36	99.34	97.49	99.34
256	8.0	99.37	99.23	99.47	99.44	97.66	99.38
512	8.0	99.40	99.29	99.47	99.47	97.82	99.43
1024	8.0	99.42	99.34	99.47	99.49	98.03	99.49
128	8.0	99.43	NaN	99.45	99.44	98.53	99.41
256	8.0	99.39	99.37	99.46	99.42	98.77	99.39
512	8.0	99.40	99.38	99.46	99.42	98.91	99.41
1024	8.0	99.43	NaN	99.43	99.44	99.17	99.44

Figure 52: (Left) The error over the number of trees in the ensemble on the avila dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the avila dataset. Rounded to the second decimal digit. Larger is better.

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE
64	8.0	90.55	90.49	90.38	90.49	90.27	90.51
128	8.0	90.55	90.58	90.56	90.52	90.47	90.53
256	8.0	90.61	90.54	90.62	90.57	90.54	90.64
512	8.0	90.64	90.65	90.72	90.65	90.62	90.64
1024	8.0	90.56	90.59	90.59	90.58	90.60	90.64
128	8.0	90.57	90.60	90.63	90.59	90.54	90.60
256	8.0	90.64	90.66	90.64	90.65	90.60	90.64
512	8.0	90.65	90.67	90.71	90.65	90.71	90.69
1024	8.0	90.68	90.68	90.68	90.65	90.61	90.79
128	8.0	90.73	90.73	90.73	90.65	90.66	90.73
256	8.0	90.76	90.76	90.76	90.70	90.68	90.73
512	8.0	90.70	90.72	90.76	90.76	90.70	90.72
1024	8.0	90.40	90.32	90.62	90.33	90.40	90.48
128	8.0	90.52	90.51	90.64	90.58	90.54	90.55
256	8.0	90.62	90.57	90.68	90.65	90.61	90.60
512	8.0	90.64	90.64	90.65	90.69	90.67	90.63
1024	8.0	90.67	90.72	90.69	90.69	90.66	90.66
128	8.0	90.70	90.72	90.76	90.70	90.70	90.70
256	8.0	90.67	90.72	90.69	90.69	90.66	90.66
512	8.0	90.68	90.70	90.70	90.70	90.70	90.70
1024	8.0	90.65	90.64	90.73	90.69	90.66	90.64

Figure 53: (Left) The error over the number of trees in the ensemble on the bank dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the bank dataset. Rounded to the second decimal digit. Larger is better.
Figure 54: (Left) The error over the number of trees in the ensemble on the chess dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the chess dataset. Rounded to the second decimal digit. Larger is better.

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE
64	8.0	44.40	43.93	43.35	43.99	44.36	45.63
128	8.0	50.34	49.80	50.35	50.19	49.62	51.69
256	8.0	50.71	49.59	50.53	50.55	50.02	51.54
512	8.0	50.75	49.80	50.73	50.19	50.17	51.63
1024	8.0	50.63	50.58	50.16	50.28	51.53	

Figure 55: (Left) The error over the number of trees in the ensemble on the connect dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the connect dataset. Rounded to the second decimal digit. Larger is better.
APPENDIX: Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE
64	8.0	83.43	82.75	83.14	83.02	82.94	83.47
16.0	83.99	83.24	83.71	83.26	83.34	83.96	
32.0	84.10	83.34	83.92	83.71	83.68	84.26	
64.0	84.04	83.45	84.05	83.57	83.68	84.11	
128.0	83.85	83.44	83.79	83.72	83.55	83.93	
128.0	83.85	83.44	83.79	83.72	83.55	83.93	
16.0	87.15	86.07	86.86	86.70	86.49	87.14	
32.0	87.49	86.42	87.25	87.06	86.96	87.58	
64.0	87.41	86.70	87.38	87.19	87.01	87.26	
128.0	87.37	86.78	87.42	87.08	86.93	87.16	
256	8.0	88.30	87.38	88.12	88.11	87.66	88.55
16.0	89.45	88.58	89.10	89.07	88.83	89.05	
32.0	89.71	88.92	89.81	89.42	89.21	89.51	
64.0	89.80	89.13	89.67	89.67	89.31	89.64	
128.0	89.75	89.27	89.81	89.57	89.47	89.67	
512	8.0	89.26	89.10	89.35	89.61	88.82	89.75
16.0	90.51	90.18	90.71	90.93	90.67	90.58	
32.0	91.67	90.86	91.49	91.36	90.62	91.01	
64.0	91.37	91.02	91.77	91.44	90.95	91.25	
128.0	91.36	91.16	91.55	91.48	91.16	91.35	
1024	8.0	89.98	89.36	89.84	89.95	89.03	89.77
16.0	91.30	91.03	91.82	91.48	90.77	90.96	
32.0	92.06	91.97	92.60	92.32	91.55	91.98	
64.0	92.32	92.32	92.76	92.66	92.07	92.36	
128.0	92.68	92.66	92.90	92.75	92.54	92.67	

Figure 56: (Left) The error over the number of trees in the ensemble on the eeg dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the eeg dataset. Rounded to the second decimal digit. Larger is better.

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE		
64	8.0	83.77	83.82	83.98	83.97	83.83	84.43		
16.0	84.11	83.87	84.04	84.02	84.27	84.53			
32.0	84.26	84.01	84.11	84.04	84.13	84.59			
64.0	84.16	84.04	84.17	84.05	84.02	84.45			
128.0	84.07	84.02	84.08	84.07	84.05	84.28			
256	8.0	86.20	85.76	86.00	86.18	85.79	86.50		
16.0	86.29	85.81	86.20	86.01	86.03	86.64			
32.0	86.36	85.92	86.30	86.04	86.06	86.60			
64.0	86.29	86.07	86.25	86.15	86.09	86.52			
128.0	86.28	86.13	86.17	86.12	86.16	86.28			
512	8.0	87.88	87.64	88.03	88.02	87.59	88.18		
16.0	88.24	87.93	88.29	88.16	87.90	88.38			
32.0	88.42	88.00	88.39	88.25	88.14	88.44			
64.0	88.35	88.12	88.36	88.21	88.19	88.44			
128.0	88.34	88.18	88.33	88.27	88.23	88.38			
35	512	8.0	89.41	89.10	89.36	89.41	89.03	89.56	
16.0	89.76	89.48	89.76	89.67	89.34	89.76			
32.0	89.82	89.65	89.80	89.86	89.57	89.87			
64.0	89.87	89.69	89.85	89.93	89.66	89.93			
128.0	89.90	89.74	89.90	89.92	89.75	89.88			
1024	8.0	90.60	90.29	90.52	90.59	90.62	90.51		
16.0	90.87	90.76	90.87	90.86	90.45	90.84			
32.0	91.65	90.88	91.18	91.09	90.55	90.94			
64.0	91.90	90.96	91.11	91.11	90.79	91.06			
128.0	91.99	91.02	91.17	91.09	90.93	91.02			

Figure 57: (Left) The error over the number of trees in the ensemble on the elec dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the elec dataset. Rounded to the second decimal digit. Larger is better.
Figure 58: (Left) The error over the number of trees in the ensemble on the ida2016 dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the ida2016 dataset. Rounded to the second decimal digit. Larger is better.

Figure 59: (Left) The error over the number of trees in the ensemble on the japanese-vowels dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the japanese-vowels dataset. Rounded to the second decimal digit. Larger is better.
APPENDIX: Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

Figure 60: (Left) The error over the number of trees in the ensemble on the magic dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the magic dataset. Rounded to the second decimal digit. Larger is better.

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE
64	8.0	86.35	86.15	86.25	86.24	86.11	86.37
128	8.0	86.49	86.20	86.35	86.26	86.30	86.59
512	8.0	86.49	86.35	86.43	86.34	86.40	86.67
256	8.0	86.52	86.41	86.46	86.43	86.47	86.44
1024	8.0	86.50	86.45	86.46	86.43	86.46	86.53
	16.0	86.63	86.61	86.71	86.63	86.68	86.68
	32.0	86.81	86.63	86.80	86.88	86.77	86.94
	64.0	86.87	86.89	86.91	86.83	86.65	86.94
	128.0	87.01	87.02	87.04	87.04	86.90	86.91
	512	87.11	86.89	87.13	87.13	87.15	87.07
	1024	87.28	87.18	87.33	87.13	87.23	87.35

Figure 61: (Left) The error over the number of trees in the ensemble on the mnist dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the mnist dataset. Rounded to the second decimal digit. Larger is better.

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE
64	8.0	84.7	84.3	85.6	82.6	84.4	85.4
128	8.0	86.2	82.1	85.4	82.9	85.3	86.0
512	8.0	86.2	86.1	85.6	82.4	86.6	87.0
256	8.0	86.6	86.4	85.9	83.4	87.2	87.1
1024	8.0	87.8	87.4	88.4	88.4	88.4	88.4
	16.0	89.3	88.1	88.6	87.4	89.6	88.9
	32.0	89.3	89.3	89.4	86.7	89.4	89.5
	64.0	89.5	89.1	89.5	88.4	89.0	89.0
	128.0	89.3	89.0	89.5	89.0	89.5	88.7
	512	89.0	89.0	89.0	90.0	90.0	90.0
	1024	91.5	90.8	90.4	90.9	91.5	90.8

37
Figure 62: (Left) The error over the number of trees in the ensemble on the mozilla dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the mozilla dataset. Rounded to the second decimal digit. Larger is better.

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE	
64	8.0	94.64	94.62	94.70	94.70	94.62	94.82	
	16.0	94.68	94.63	94.71	94.77	94.61	94.81	
	32.0	94.71	94.60	94.72	94.74	94.62	94.73	
	64.0	94.69	94.58	94.69	94.69	94.59	94.71	
	128.0	94.63	94.58	94.63	94.65	94.59	94.72	
	256	8.0	94.78	94.76	94.80	94.91	94.76	94.92
	16.0	94.89	94.77	94.88	94.93	94.79	94.93	
	32.0	94.81	94.74	94.91	94.94	94.75	94.91	
	64.0	94.87	94.80	94.87	94.94	94.78	94.87	
	128.0	94.85	94.81	94.85	94.86	94.79	94.86	
	512	8.0	94.94	94.94	95.05	94.86	94.85	94.94
	16.0	95.04	94.98	95.07	95.09	94.99	95.06	
	32.0	95.07	95.03	95.03	95.15	95.05	95.13	
	64.0	95.10	95.10	95.16	95.19	95.05	95.12	
	128.0	95.10	95.09	95.16	95.19	95.09	95.14	
	256	8.0	94.79	94.87	94.89	94.99	94.92	94.78
	16.0	95.21	95.14	95.21	95.12	95.18	95.23	
	32.0	95.29	95.42	95.34	95.37	95.32	95.33	
	64.0	95.37	95.39	95.43	95.39	95.39	95.39	
	128.0	95.41	95.40	95.44	95.45	95.39	95.42	
	512	8.0	94.75	94.69	94.87	94.90	94.56	94.85
	16.0	95.08	95.08	95.25	95.24	95.17	95.18	
	32.0	95.25	95.18	95.36	95.27	95.27	95.27	
	64.0	95.35	95.31	95.37	95.36	95.25	95.36	
	128.0	95.37	95.36	95.33	95.34	95.34	95.39	

Figure 63: (Left) The error over the number of trees in the ensemble on the nomao dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the nomao dataset. Rounded to the second decimal digit. Larger is better.

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE	
64	8.0	95.63	95.34	95.67	95.61	95.52	95.68	
	16.0	95.74	95.39	95.69	95.57	95.59	95.71	
	32.0	95.63	95.47	95.67	95.60	95.59	95.63	
	64.0	95.86	95.49	95.64	95.54	95.57	95.60	
	128.0	95.55	95.52	95.58	95.51	95.53	95.54	
	256	8.0	95.97	95.86	95.97	95.93	95.88	95.98
	16.0	96.09	95.97	96.11	96.03	95.98	96.04	
	32.0	96.10	95.95	96.14	95.97	95.98	96.04	
	64.0	96.06	95.96	96.07	95.99	96.01	96.06	
	128.0	96.08	95.96	96.06	96.04	96.04	96.02	
	512	8.0	96.22	96.16	96.20	96.25	96.17	96.42
	16.0	96.30	96.27	96.33	96.33	96.32	96.42	
	32.0	96.34	96.36	96.38	96.45	96.36	96.46	
	64.0	96.41	96.47	96.45	96.43	96.44	96.47	
	128.0	96.42	96.43	96.45	96.45	96.43	96.47	
	256	8.0	96.25	96.23	96.43	96.31	96.23	96.26
	16.0	96.57	96.41	96.52	96.61	96.48	96.57	
	32.0	96.69	96.60	96.69	96.65	96.57	96.62	
	64.0	96.74	96.68	96.72	96.70	96.70	96.71	
	128.0	96.73	96.70	96.73	96.70	96.72	96.71	
	512	8.0	96.27	96.37	96.34	96.29	96.26	96.27
	16.0	96.54	96.47	96.62	96.60	96.54	96.54	
	32.0	96.64	96.65	96.72	96.77	96.74	96.67	
	64.0	96.72	96.72	96.77	96.74	96.75	96.74	
	128.0	96.71	96.72	96.81	96.77	96.72	96.72	
APPENDIX: IMPROVING THE ACCURACY-MEMORY TRADE-OFF OF RANDOM FORESTS VIA LEAF-REFINEMENT

Table 1: Performance of Random Forests and Reduced Error Pruning Ensembles.

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE
64	8.0	74.93	72.36	72.28	72.88	73.10	73.37
128	8.0	74.75	72.63	73.01	73.20	73.14	73.73
256	8.0	81.48	78.99	79.79	78.96	80.40	81.81
512	8.0	81.72	81.53	79.66	80.35	82.07	
1024	8.0	87.21	84.98	84.88	85.46	86.49	87.54
	16.0	87.78	85.46	86.19	86.10	86.49	87.97
	32.0	87.86	87.53	86.15	86.60	88.01	
	64.0	87.46	87.31	86.33	86.47	87.62	
	128.0	86.82	86.77	86.45	86.35	86.95	
512	8.0	91.57	89.71	89.98	89.82	90.76	91.77
	16.0	91.96	90.22	90.91	90.40	91.04	92.17
	32.0	92.08	92.02	91.71	91.11	92.12	
	64.0	91.87	91.82	90.89	91.03	91.94	
	128.0	91.47	91.34	91.03	90.93	91.50	
1024	8.0	94.57	93.06	93.18	93.43	93.72	94.53
	16.0	94.96	93.53	94.53	93.93	94.24	95.00
	32.0	95.10	95.05	94.27	94.37	95.05	
	64.0	95.02	94.96	94.47	94.39	94.92	
	128.0	94.69	94.68	94.48	94.35	94.66	

Figure 64: (Left) The error over the number of trees in the ensemble on the postures dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the postures dataset. Rounded to the second decimal digit. Larger is better.

Figure 65: (Left) The error over the number of trees in the ensemble on the satimage dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the satimage dataset. Rounded to the second decimal digit. Larger is better.
Table 10: Test accuracies for models with a memory consumption below 32 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	Bag-LR	Bag.	CA	COMP	DREP	GB	IC	IE	LMD	RE
adult	86.045	86.204	86.118	86.260	86.254	86.244	86.155	86.315	86.082	86.441
anura	96.081	95.386	95.817	96.081	95.622	91.564	96.081	96.067	95.942	95.830
avila	95.193	94.843	93.200	97.125	96.545	59.496	97.000	96.947	93.468	97.446
bank	90.507	90.493	90.558	90.549	90.487	90.487	90.487	90.398	90.511	
chess	55.314	54.470	54.088	56.247	54.705	30.175	54.324	55.047	54.081	56.049
connect	73.073	72.968	72.300	74.174	73.890	67.584	74.134	73.738	74.278	74.414
eeg	84.680	83.865	83.852	84.666	84.666	84.666	84.666	84.666	84.666	85.060
elec	86.675	86.202	86.456	86.333	86.743	81.914	86.723	86.871	86.207	86.990
ida2016	99.106	99.119	99.038	99.112	99.138	99.038	99.038	99.112	99.075	99.125
japanese-vowels	88.274	86.538	86.166	87.873	87.080	81.930	87.501	87.290	87.622	87.923
magic	86.187	86.251	85.993	86.345	86.245	86.254	86.395	86.250	86.441	
mnist	82.800	82.100	83.200	83.000	80.600	70.600	84.200	81.000	81.700	83.300
mozilla	94.596	94.616	94.129	94.738	94.622	94.393	94.719	94.699	94.622	94.821
nomao	95.656	95.645	95.645	95.848	95.616	95.273	95.799	95.726	95.671	95.761
postures	75.707	76.366	75.421	78.615	77.029	64.126	75.705	76.337	78.192	78.566
satimage	87.823	87.543	87.574	88.212	87.900	85.925	87.543	87.838	87.900	88.383

Table 11: Test accuracies for models with a memory consumption below 64 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	Bag-LR	Bag.	CA	COMP	DREP	GB	IC	IE	LMD	RE
adult	86.220	86.373	86.306	86.300	86.254	86.616	86.254	86.395	86.250	86.441
anura	96.762	96.233	96.470	96.595	96.400	95.024	96.498	96.289	96.331	96.609
avila	98.596	97.101	97.350	98.457	98.160	67.724	98.328	98.342	96.535	98.356
bank	90.507	90.573	90.624	90.569	90.595	90.677	90.628	90.591	90.538	90.602
chess	61.762	61.085	61.217	61.616	61.506	34.969	61.188	61.965	61.242	62.332
connect	74.814	74.824	74.349	75.443	75.267	70.847	75.428	75.391	75.248	75.643
eeg	86.789	85.621	85.300	85.943	85.654	82.463	86.709	86.068	85.661	86.642
elec	87.805	87.427	87.264	87.730	87.813	83.878	87.725	88.014	87.189	88.041
ida2016	99.200	99.238	99.112	99.119	99.212	99.094	99.119	99.175	99.156	99.181
japanese-vowels	90.894	89.338	88.776	90.342	89.499	87.341	89.620	89.830	90.182	89.760
magic	86.671	86.419	86.519	86.629	86.613	87.355	86.708	86.634	86.477	86.876
mnist	86.600	82.900	83.300	85.600	84.300	74.400	85.600	85.100	84.400	86.200
mozilla	94.937	94.751	94.622	94.776	94.764	94.590	94.802	94.905	94.764	94.918
nomao	96.013	95.717	95.839	95.967	95.862	95.958	95.967	95.929	95.880	96.121
postures	83.236	82.082	81.839	83.999	82.767	69.058	81.880	82.675	83.356	84.218
satimage	88.818	88.274	88.600	88.818	88.896	87.449	88.538	88.476	88.694	89.082
Table 12: Test accuracies for models with a memory consumption below 128 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	Bag-LR	Bag.	CA	COMP	DREP	GB	IC	IE	LMD	RE
adult	86.373	86.496	86.306	86.355	86.370	87.135	86.468	86.496	86.450	86.478
anura	96.928	96.678	96.470	96.845	96.720	96.553	96.928	96.734	96.692	96.803
avila	99.161	98.505	98.428	99.219	98.994	75.262	99.157	99.147	97.407	99.157
bank	90.666	90.659	90.624	90.637	90.664	**90.737**	90.644	90.648	90.602	90.679
chess	**69.087**	67.526	68.881	67.412	40.719	67.469	67.658	66.895	68.524	
connect	76.461	75.658	75.579	75.926	73.850	76.259	76.114	76.048		
eeg	**88.959**	86.856	88.304	87.383	85.734	88.124	87.664	88.551		
elec	**89.131**	88.484	88.696	85.748	87.771	88.930	88.451	89.124		
ida2016	**99.275**	99.238	99.200	99.212	99.169	99.160	99.238	99.156	99.238	
japanse-vowels	**92.541**	91.035	90.904	91.828	90.985	91.748	91.728	91.878	91.407	
magic	87.060	86.761	86.813	86.634	**87.733**	86.797	86.882	86.818	86.939	
mnist	97.322	96.300	95.700	94.937	94.989	**95.047**	94.931	94.854	94.937	
mozilla	96.292	96.170	95.979	96.156	96.408	96.202	96.251	96.173	**96.417**	
nomao	87.476	86.634	86.494	87.460	75.760	86.991	87.798	87.481	**88.558**	
postures	**89.658**	89.145	88.647	89.316	89.207	88.631	89.160	89.331	89.565	

Table 13: Test accuracies for models with a memory consumption below 256 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	Bag-LR	Bag.	CA	COMP	DREP	GB	IC	IE	LMD	RE	
adult	86.401	86.511	86.306	86.493	86.401	**87.135**	86.493	86.515	86.465	86.576	
anura	97.040	96.873	96.470	97.040	96.859	**97.429**	97.248	97.040	97.067	96.928	
avila	**99.406**	99.224	98.428	99.339	99.224	82.820	99.391	99.353	97.824	99.363	
bank	90.719	90.659	90.635	90.670	90.664	90.737	90.677	90.655	90.710	**90.788**	
chess	**72.822**	69.347	69.365	70.021	69.440	44.678	69.554	69.372	68.545	70.406	
connect	**77.606**	76.577	76.383	77.275	76.726	76.170	77.376	77.080	77.002	77.333	
eeg	90.641	88.939	88.211	89.099	85.734	89.346	89.613	89.533			
elec	90.462	89.431	89.349	89.460	85.748	89.753	89.140	89.751			
ida2016	**99.275**	99.238	99.200	99.231	99.212	99.169	99.238	99.181	99.238		
japanse-vowels	93.866	93.063	92.029	93.444	93.294	**94.860**	93.424	93.013	93.053	93.083	
magic	87.465	87.013	86.519	87.188	86.892	**87.733**	87.129	87.155	87.071	87.046	
mnist	**90.200**	87.600	88.300	89.000	84.600	89.600	89.700	89.600	89.200		
mozilla	95.085	**95.117**	94.867	95.040	94.976	94.931	94.989	95.072	95.085	94.989	95.079
nomao	**96.521**	96.205	96.092	96.298	96.274	96.408	96.434	96.333	96.315	96.417	
postures	90.705	90.115	90.170	**91.119**	90.469	81.100	90.203	90.482	90.204	91.106	
satimage	**90.093**	89.580	89.362	89.751	89.705	89.782	89.969	89.751	89.969	89.984	

41
6.1 Accuracies under various resource constraints with a BaggingClassifier

6.2 Plotting the Pareto Front For More Datasets with Dedicated Pruning Set

Figure 66: (left) 5-fold cross-validation accuracy on the adult dataset. (right) 5-fold cross-validation accuracy on the anura dataset.

Figure 67: (left) 5-fold cross-validation accuracy on the avila dataset. (right) 5-fold cross-validation accuracy on the bank dataset.

Figure 68: (left) 5-fold cross-validation accuracy on the chess dataset. (right) 5-fold cross-validation accuracy on the connect dataset.
Figure 69: (left) 5-fold cross-validation accuracy on the eeg dataset. (right) 5-fold cross-validation accuracy on the elec dataset.

Figure 70: (left) 5-fold cross-validation accuracy on the ida2016 dataset. (right) 5-fold cross-validation accuracy on the japanese-vowels dataset.

Figure 71: (left) 5-fold cross-validation accuracy on the magic dataset. (right) 5-fold cross-validation accuracy on the mnist dataset.
Figure 72: (left) 5-fold cross-validation accuracy on the mozilla dataset. (right) 5-fold cross-validation accuracy on the nomao dataset.

Figure 73: (left) 5-fold cross-validation accuracy on the postures dataset. (right) 5-fold cross-validation accuracy on the satimage dataset.

6.3 Area Under the Pareto Front with a Bagging Classifier

model dataset	AUC Bag-LR	Bag.	CA	COMP	DREP	GB	IC	IE	LMD	RE
adult	0.8648	0.8653	0.8652	0.8654	0.8653	0.8705	0.8653	0.8654	0.8653	0.8654
anura	0.9686	0.9679	0.9638	0.9684	0.9681	0.9746	0.9724	0.9684	0.9693	0.9685
avila	0.9930	0.9926	0.9885	0.9930	0.9926	0.9864	0.9934	0.9936	0.9892	0.9931
bank	0.9079	0.9069	0.9067	0.9071	0.9070	0.9065	0.9071	0.9071	0.9068	0.9074
chess	0.7627	0.7129	0.7057	0.7174	0.7127	0.6265	0.7194	0.7150	0.7157	0.7214
connect	0.7947	0.7768	0.7736	0.7805	0.7768	0.7777	0.7806	0.7794	0.7782	0.7808
eeg	0.9268	0.9215	0.9050	0.9227	0.9222	0.8562	0.9256	0.9241	0.9206	0.9225
elec	0.9192	0.9082	0.9050	0.9097	0.9086	0.8566	0.9104	0.9099	0.9072	0.9092
ida2016	0.9906	0.9906	0.9901	0.9904	0.9903	0.9878	0.9905	0.9904	0.9902	0.9906
japanese-vowels	0.9484	0.9448	0.9301	0.9461	0.9456	0.9721	0.9493	0.9460	0.9463	0.9456
magic	0.8780	0.8758	0.8741	0.8771	0.8769	0.8765	0.8773	0.8769	0.8768	0.8767
mnist	0.9218	0.9135	0.9034	0.9180	0.9173	0.9358	0.9187	0.9178	0.9198	0.9185
mozilla	0.9533	0.9538	0.9502	0.9527	0.9529	0.9483	0.9530	0.9531	0.9526	0.9528
nomao	0.9669	0.9662	0.9643	0.9664	0.9661	0.9627	0.9669	0.9667	0.9664	0.9664
postures	0.9577	0.9405	0.9343	0.9493	0.9375	0.9104	0.9480	0.9425	0.9421	0.9489
satimage	0.9086	0.9063	0.9009	0.9072	0.9076	0.9102	0.9083	0.9063	0.9069	0.9072
7. Revisiting Ensemble Pruning with ExtaTrees Classifier

For space reasons, the paper focuses on Random Forest classifier. Here we will repeat our experiment with ExtaTreesClassifier implemented in Scikit-Learn?. As before, we either use a 5-fold cross validation or the given test/train split. For reference, recall our experimental protocol: Oshiro et al. showed in ? that the prediction of a RF stabilizes between 128 and 256 trees in the ensemble and adding more trees to the ensemble does not yield significantly better results. Hence, we train the ‘base’ Random Forests with $M = 256$ trees. To control the individual errors of trees we set the maximum number of leaf nodes n_l to values between $n_l \in \{64, 128, 256, 512, 1024\}$. For ensemble pruning we use RE and compare it against a random selection of trees from the original ensemble (which is the same as training a smaller forest directly). In both cases a sub-ensemble with $K \in \{2, 4, 8, 16, 32, 64, 128, 256\}$ members is selected so that for $K = 256$ the original RF is recovered.
Figure 75: (Left) The error over the number of trees in the ensemble on the adult dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the adult dataset. Rounded to the second decimal digit. Larger is better.

Figure 76: (Left) The error over the number of trees in the ensemble on the anura dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the anura dataset. Rounded to the second decimal digit. Larger is better.
Figure 77: (Left) The error over the number of trees in the ensemble on the avila dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the avila dataset. Rounded to the second decimal digit. Larger is better.

Figure 78: (Left) The error over the number of trees in the ensemble on the bank dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the bank dataset. Rounded to the second decimal digit. Larger is better.
Figure 79: (Left) The error over the number of trees in the ensemble on the chess dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the chess dataset. Rounded to the second decimal digit. Larger is better.

Figure 80: (Left) The error over the number of trees in the ensemble on the connect dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the connect dataset. Rounded to the second decimal digit. Larger is better.
Figure 81: (Left) The error over the number of trees in the ensemble on the eeg dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the eeg dataset. Rounded to the second decimal digit. Larger is better.

Figure 82: (Left) The error over the number of trees in the ensemble on the elec dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the elec dataset. Rounded to the second decimal digit. Larger is better.
Figure 83: (Left) The error over the number of trees in the ensemble on the ida2016 dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the ida2016 dataset. Rounded to the second decimal digit. Larger is better.

Figure 84: (Left) The error over the number of trees in the ensemble on the japanese-vowels dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the japanese-vowels dataset. Rounded to the second decimal digit. Larger is better.
APPENDIX: Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE
64	8.0	84.12	83.48	84.54	84.52	83.22	85.26
16.0	84.74	83.73	84.99	84.74	83.81	85.48	
32.0	84.90	83.72	85.03	84.58	84.13	85.15	
64.0	84.90	83.73	84.92	84.47	84.11	85.01	
128.0	84.56	83.78	84.53	84.14	84.10	84.65	
16.0	85.21	84.85	85.73	85.24	84.77	85.84	
32.0	85.47	84.82	85.77	85.27	85.04	85.98	
64.0	85.49	84.80	85.66	85.23	84.96	85.75	
128.0	85.44	84.81	85.51	85.09	85.00	85.51	
8.0	85.38	84.89	85.80	85.70	84.95	85.86	
16.0	85.97	85.48	86.21	86.01	85.32	86.27	
32.0	86.23	85.61	86.35	85.99	85.71	86.19	
64.0	86.21	85.55	86.39	85.93	85.80	86.14	
128.0	86.10	85.60	86.19	85.71	85.88	86.11	
512	8.0	85.96	85.65	86.04	85.94	84.97	86.06
16.0	86.46	86.27	86.82	86.35	85.98	86.39	
32.0	86.63	86.05	86.92	86.55	86.45	86.53	
64.0	86.67	86.18	86.74	86.55	86.46	86.58	
128.0	86.74	86.23	86.77	86.55	86.51	86.62	
256	8.0	87.79	87.69	86.24	86.10	85.73	86.07
16.0	86.51	86.21	86.77	86.59	86.26	86.63	
32.0	86.79	86.71	87.03	86.86	86.53	86.86	
64.0	87.09	86.97	87.11	86.97	86.98	86.86	
128.0	87.03	86.89	87.19	87.07	86.92	87.02	

Figure 85: (Left) The error over the number of trees in the ensemble on the magic dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the magic dataset. Rounded to the second decimal digit. Larger is better.

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE
64	8.0	82.3	82.3	81.4	81.3	79.7	84.7
16.0	85.8	85.1	84.8	83.0	83.1	81.4	88.5
32.0	87.3	87.0	86.1	85.4	85.1	83.9	88.7
64.0	88.1	87.6	88.1	87.1	88.1	87.1	88.5
128.0	88.6	88.1	87.9	88.0	88.0	87.9	88.5
256	8.0	85.5	83.9	86.1	84.4	83.4	85.1
16.0	88.6	87.0	88.2	89.2	88.8	88.6	88.6
32.0	90.2	88.7	89.3	89.4	88.1	89.5	89.5
64.0	90.6	89.2	91.2	91.2	90.0	90.7	90.7
128.0	90.9	90.1	91.4	90.8	90.1	90.8	90.8
512	8.0	87.7	87.6	85.8	86.4	85.6	86.4
16.0	90.0	88.8	88.9	88.8	88.8	88.8	88.8
32.0	91.7	91.4	90.9	90.2	90.7	92.4	92.4
64.0	92.3	91.3	91.9	91.1	91.5	92.9	92.9
128.0	92.2	92.5	91.9	92.5	92.2	92.2	92.2
1024	8.0	88.3	86.4	89.1	88.5	88.4	87.9
16.0	90.5	88.5	91.0	91.2	90.5	90.0	90.0
32.0	91.9	91.5	92.0	92.1	91.2	91.9	91.9
64.0	92.1	92.8	92.8	92.0	92.1	92.1	92.1
128.0	93.2	93.0	93.7	93.5	92.6	93.1	93.1
1024	8.0	85.6	85.1	87.5	87.7	86.3	84.8
16.0	89.5	90.5	90.8	91.0	90.4	90.8	90.8
32.0	92.3	92.3	92.6	92.6	92.2	91.3	91.3
64.0	93.3	93.1	93.1	93.6	92.7	92.6	92.6
128.0	93.4	93.7	93.8	94.0	93.8	93.6	93.6

Figure 86: (Left) The error over the number of trees in the ensemble on the mnist dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the mnist dataset. Rounded to the second decimal digit. Larger is better.
Figure 87: (Left) The error over the number of trees in the ensemble on the mozilla dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the mozilla dataset. Rounded to the second decimal digit. Larger is better.

Figure 88: (Left) The error over the number of trees in the ensemble on the nomao dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the nomao dataset. Rounded to the second decimal digit. Larger is better.
APPENDIX: Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

Figure 89: (Left) The error over the number of trees in the ensemble on the postures dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the postures dataset. Rounded to the second decimal digit. Larger is better.

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE
64	8.0	70.21	68.15	69.78	68.81	68.17	71.74
16.0	72.13	70.30	72.34	70.73	71.17	73.94	
32.0	73.11	NaN	73.10	71.59	72.71	75.25	
64.0	73.58	NaN	73.37	72.15	73.09	75.23	
128.0	73.38	NaN	73.30	72.38	73.12	74.47	
256	72.76	72.93	73.49	74.27	74.04	78.78	
512	72.80	72.91	73.55	74.62	74.70	78.99	
1024	72.88	73.33	73.52	74.68	75.18	79.19	

Figure 90: (Left) The error over the number of trees in the ensemble on the satimage dataset. Dashed lines depict the Random Forest and solid lines are the corresponding pruned ensemble via Reduced Error pruning. (Right) The 5-fold cross-validation accuracy on the satimage dataset. Rounded to the second decimal digit. Larger is better.

max_leaf_nodes	model	COMP	DREP	IC	RE	LMD	RE
64	8.0	87.59	87.17	87.85	87.93	87.22	88.86
16.0	88.16	87.56	88.35	87.87	87.78	88.07	
32.0	88.02	87.96	88.41	88.12	87.82	88.09	
64.0	88.34	88.15	88.26	88.32	88.53	90.20	
128.0	88.16	88.20	88.27	88.24	88.21	88.20	
256	88.44	88.32	88.77	88.46	87.76	88.69	
512	88.82	88.60	88.18	89.18	88.62	89.16	
1024	89.13	89.18	89.22	89.30	89.85	90.24	
128.0	89.35	89.59	89.39	89.30	89.24	89.30	
256	89.60	89.88	89.80	89.39	89.62	89.32	
512	89.81	89.39	89.97	90.12	89.19	89.94	
1024	89.95	89.61	90.14	90.02	89.75	90.28	
128.0	90.19	90.00	90.36	90.12	89.98	90.60	
256	90.22	90.28	90.17	90.20	90.08	90.23	
512	89.27	89.13	89.04	89.44	88.15	89.35	
1024	90.26	89.80	89.81	89.45	89.55	90.00	
128.0	90.68	90.40	90.39	90.72	90.30	90.42	
256	90.81	90.51	90.59	90.81	90.81	90.67	
512	90.89	90.90	90.90	91.09	90.96	90.95	
1024	90.42	90.05	89.42	89.41	88.88	89.36	
128.0	90.30	90.16	90.31	90.20	89.83	90.45	
256	90.62	90.48	90.76	90.90	90.33	90.72	
512	90.93	90.65	91.07	91.17	90.92	90.64	
1024	91.83	90.89	91.34	91.06	91.14	90.85	
7.1 Plotting the Pareto Front For More Datasets with Dedicated Pruning Set

Figure 91: (left) 5-fold cross-validation accuracy on the adult dataset. (right) 5-fold cross-validation accuracy on the anura dataset.

Figure 92: (left) 5-fold cross-validation accuracy on the avila dataset. (right) 5-fold cross-validation accuracy on the bank dataset.

Figure 93: (left) 5-fold cross-validation accuracy on the chess dataset. (right) 5-fold cross-validation accuracy on the connect dataset.
Figure 94: (left) 5-fold cross-validation accuracy on the eeg dataset. (right) 5-fold cross-validation accuracy on the elec dataset.

Figure 95: (left) 5-fold cross-validation accuracy on the ida2016 dataset. (right) 5-fold cross-validation accuracy on the japanese-vowels dataset.

Figure 96: (left) 5-fold cross-validation accuracy on the magic dataset. (right) 5-fold cross-validation accuracy on the mnist dataset.
Figure 97: (left) 5-fold cross-validation accuracy on the mozilla dataset. (right) 5-fold cross-validation accuracy on the nomao dataset.

Figure 98: (left) 5-fold cross-validation accuracy on the postures dataset. (right) 5-fold cross-validation accuracy on the satimage dataset.
model	CA	COMP	DREP	ET	ET-LR	GB	IC	IE	LMD	RE
adult	83.483	84.248	84.303	83.655	84.306	86.244	84.392	85.031	83.523	85.123
anura	94.329	95.261	95.038	94.580	96.178	91.564	95.427	95.372	93.871	95.525
avila	66.191	83.548	80.381	68.735	74.328	59.496	83.836	83.874	73.532	84.406
bank	89.427	89.737	89.578	89.491	89.772	90.527	90.117	90.115	89.496	90.124
chess	40.797	45.577	48.810	41.121	48.282	30.175	43.638	45.897	43.684	46.650
connect	70.036	72.050	72.013	70.117	74.735	67.584	71.808	72.320	70.546	72.699
eeg	75.935	76.168	76.702	76.175	76.832	79.226	76.762	76.652	74.693	79.393
eeg	75.448	75.980	78.686	75.872	77.344	81.941	78.136	79.063	74.347	79.844
eeg	87.725	98.800	98.881	98.719	98.906	99.038	98.962	98.894	98.744	98.894
japanese-vowels	84.018	86.969	84.309	83.847	88.706	81.930	86.357	85.584	84.520	87.210
magic	83.464	84.121	83.932	83.332	85.225	86.629	84.542	84.752	83.217	85.283
mnist	72.000	78.300	77.700	76.500	78.600	70.600	77.700	73.500	78.800	
mozilla	90.621	91.875	92.950	91.534	93.001	94.493	93.361	93.355	88.215	93.573
nomao	94.612	94.728	94.658	94.516	95.125	95.273	94.818	94.914	95.554	95.099
postures	63.365	67.290	65.118	63.535	67.743	64.126	65.807	66.641	59.460	68.149
satimage	86.034	86.579	86.454	86.376	87.076	85.925	87.170	86.905	86.283	86.921

Table 14: Test accuracies for models with a memory consumption below 32 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	CA	COMP	DREP	ET	ET-LR	GB	IC	IE	LMD	RE
adult	83.855	84.282	84.405	83.815	84.847	86.616	84.534	85.059	83.876	85.166
anura	94.329	96.331	95.835	95.691	97.276	95.024	96.261	96.275	95.817	96.178
avila	78.157	92.462	89.112	74.395	82.298	90.031	91.011	91.341	87.799	92.687
bank	89.516	89.949	89.587	89.491	90.367	90.677	90.117	90.115	89.593	90.124
chess	44.978	49.615	46.749	44.956	54.398	34.969	47.754	48.777	46.838	49.832
connect	71.813	73.009	72.894	71.784	72.212	70.847	72.990	73.568	71.580	73.822
eeg	78.184	79.386	79.586	78.698	82.684	82.463	80.247	81.348	77.724	81.469
eeg	76.033	78.156	79.348	76.740	79.707	83.878	78.889	79.928	76.382	80.577
eeg	98.925	98.900	98.881	98.856	99.031	99.094	98.962	98.894	98.862	98.969
japanes-vowels	85.915	89.760	87.939	88.033	93.254	87.341	89.158	88.264	88.465	90.132
magic	84.300	84.878	84.657	84.368	86.198	87.355	85.210	85.115	84.074	85.641
mnist	80.500	82.300	82.300	82.300	84.900	74.000	82.000	81.300	79.700	84.700
mozilla	92.030	92.203	92.950	91.682	93.451	94.590	93.985	93.786	89.894	93.734
nomao	94.876	95.244	95.111	94.957	95.691	95.935	95.361	95.213	94.917	95.358
postures	70.184	72.281	70.851	69.851	76.214	69.058	71.476	71.861	68.168	73.158
satimage	87.449	87.589	87.247	86.983	88.834	87.449	87.854	87.932	87.216	88.056

Table 15: Test accuracies for models with a memory consumption below 64 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.
Table 16: Test accuracies for models with a memory consumption below 128 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	CA	COMP	DREP	ET	ET-LR	GB	IC	IE	LMD	RE
adult	83.898	84.601	84.445	83.941	85.369	**87.135**	84.712	85.188	84.085	85.172
anura	95.344	96.942	96.692	95.267	97.726	97.197	96.331	96.915		
avila	83.323	96.454	93.051	82.206	88.796	75.262	**96.454**	80.817	96.454	
bank	89.516	89.960	89.633	89.589	90.595	**90.737**	90.117	90.115	90.124	
chess	50.121	53.393	50.866	48.695	57.973	40.719	52.481	50.845	53.532	
connect	72.413	73.927	73.314	72.429	**78.861**	73.850	74.080	74.697	74.795	
eeg	85.182	81.575	81.636	81.495	85.534	**85.142**	85.188	84.085	85.172	
elec	78.791	79.147	80.091	78.849	81.661	**85.748**	80.508	80.806	77.560	81.257
ida2016	89.925	89.980	89.894	99.131	**99.169**	98.994	98.862	98.975		
japanese-vowels	88.636	91.908	90.563	90.533	**94.699**	91.748	91.878	91.065	91.979	
magic	84.773	85.383	84.952	84.621	86.939	**87.733**	85.798	85.704	84.952	85.862
mnist	83.800	85.800	85.600	85.000	**89.200**	79.300	86.100	84.800	83.300	
mozilla	92.499	92.924	93.483	92.570	94.017	**94.989**	94.107	94.024	91.547	93.747
nomao	95.462	95.593	95.453	95.419	95.851	**96.408**	95.654	95.688	95.337	95.656
postures	75.577	77.789	76.502	75.981	82.953	75.760	77.215	77.465	73.751	77.983
satimage	87.854	88.445	88.320	88.090	**89.736**	88.631	88.771	88.460	87.776	88.694

Table 17: Test accuracies for models with a memory consumption below 256 KB for each method and each dataset averaged over a 5 fold cross validation. Rounded to the third decimal digit. Larger is better. The best method is depicted in bold.

model	CA	COMP	DREP	ET	ET-LR	GB	IC	IE	LMD	RE
adult	84.137	84.896	84.445	83.285	85.719	**87.135**	85.142	85.188	84.187	85.212
anura	95.344	97.248	97.109	97.192	**97.707**	97.429	97.582	97.345	96.942	97.429
avila	85.925	98.888	93.051	89.869	94.393	82.820	**98.922**	98.840	85.527	
bank	89.644	89.965	89.695	89.589	90.668	**90.737**	90.117	90.115	89.783	90.173
chess	52.253	56.708	54.031	52.956	**63.131**	44.678	55.935	54.965	55.118	56.836
connect	73.230	75.254	74.194	73.500	**80.553**	76.170	75.307	75.588	73.945	75.563
eeg	82.570	84.092	83.772	84.119	**88.144**	85.734	84.900	84.967	82.924	85.527
elec	79.586	80.224	81.140	79.904	82.861	**85.748**	82.223	81.861	79.065	82.523
ida2016	98.925	99.031	99.006	98.950	99.138	**99.169**	99.025	99.062	98.887	99.012
japanese-vowels	89.720	93.836	92.701	92.902	**95.894**	94.860	93.725	92.892	93.123	93.816
magic	85.015	85.972	85.646	85.404	87.081	**87.733**	86.230	86.009	85.520	86.266
mnist	83.800	88.600	87.600	88.300	**91.200**	84.600	88.200	89.000	88.600	
mozilla	93.284	94.037	93.483	93.097	94.114	**94.989**	94.172	94.037	92.576	94.088
nomao	95.668	95.886	95.825	95.651	96.240	**96.408**	95.871	95.860	95.665	95.900
postures	80.599	82.708	81.608	80.563	**87.939**	81.100	82.304	82.918	79.493	83.077
satimage	88.445	89.596	88.880	88.694	**90.140**	89.782	89.176	89.393	88.647	89.316
7.2 Accuracies under various resource constraints with a ExtraTrees Classifier

7.3 Area Under the Pareto Front with ExtaTrees Classifier

model dataset	AUC	CA	COMP	DREP	ET	ET-LR	GB	IC	IE	LMD	RE
adult	0.8451	0.8501	0.8477	0.8474	0.8567	0.8705	0.8511	0.8527	0.8477	0.8517	
anura	0.9686	0.9789	0.9788	0.9786	0.9811	0.9794	0.9797	0.9793	0.9782	0.9787	
avila	0.9210	0.9929	0.9501	0.9408	0.9852	0.9909	0.9936	0.9926	0.8991	0.9926	
bank	0.8965	0.9013	0.8972	0.8972	0.9064	0.9065	0.9017	0.9022	0.8982	0.9018	
chess	0.5722	0.6232	0.5936	0.5990	0.6779	0.6265	0.6235	0.6044	0.6128	0.6267	
connect	0.7406	0.7573	0.7451	0.7426	0.8234	0.7777	0.7608	0.7600	0.7441	0.7617	
eeg	0.8759	0.9021	0.8985	0.8976	0.9228	0.8563	0.9042	0.9023	0.8964	0.9027	
elec	0.8229	0.8316	0.8288	0.8278	0.8577	0.8566	0.8340	0.8304	0.8276	0.8369	
ida2016	0.9897	0.9905	0.9906	0.9906	0.9911	0.9903	0.9906	0.9905	0.9904	0.9907	
japanese-vowels	0.9556	0.9717	0.9701	0.9704	0.9750	0.9743	0.9719	0.9704	0.9704	0.9711	
magic	0.8627	0.8693	0.8683	0.8668	0.8751	0.8765	0.8706	0.8692	0.8679	0.8688	
mnist	0.9235	0.9306	0.9311	0.9313	0.9385	0.9385	0.9334	0.9343	0.9296	0.9327	
mozilla	0.9361	0.9461	0.9428	0.9420	0.9471	0.9491	0.9476	0.9473	0.9404	0.9461	
nomao	0.9609	0.9645	0.9641	0.9638	0.9663	0.9632	0.9648	0.9644	0.9642	0.9647	
postures	0.8951	0.9152	0.9049	0.9085	0.9619	0.9104	0.9149	0.9117	0.9102	0.9179	
satimage	0.9012	0.9087	0.9071	0.9090	0.9093	0.9123	0.9102	0.9097	0.9079	0.9082	