ON ZAGIER’S CONJECTURE ABOUT THE INVERSE OF A MATRIX RELATED TO DOUBLE ZETA VALUES

YAWEN MA AND LEE-PENG TEO

Abstract. We prove a conjecture of Zagier about the inverse of a \((K-1) \times (K-1)\) matrix \(A = A_K\) using elementary methods. This formula allows one to express the product of single zeta values \(\zeta(2r)\zeta(2K+1-2r), 1 \leq r \leq K-1,\) in terms of the double zeta values \(\zeta(2r, 2K+1-2r), 1 \leq r \leq K-1\) and \(\zeta(2K+1).\)

1. Introduction

This paper addresses a conjecture of Zagier he put forward in the paper [6]. Following [6], for positive integers \(k_1, \ldots, k_n\) with \(k_n \geq 2,\) define the multiple zeta value \(\zeta(k_1, k_2, \ldots, k_n)\) by

\[
\zeta(k_1, k_2, \ldots, k_n) = \sum_{1 \leq m_1 < \ldots < m_n} \frac{1}{m_1^{k_1} \ldots m_n^{k_n}}. \tag{1.1}
\]

\(k = k_1 + k_2 + \ldots + k_n\) is called the weight of this multiple zeta value.

When \(n = 1,\) we have the classical Riemann zeta value

\[
\zeta(k) = \sum_{m=1}^{\infty} \frac{1}{m^k}.
\]

When \(n = 2,\) the double sum

\[
\zeta(k_1, k_2) = \sum_{m=2}^{\infty} \frac{1}{m^{k_2}} \sum_{j=1}^{m-1} \frac{1}{j^{k_1}} \tag{1.2}
\]

has been considered by Euler.

Let \(H(0) = 1\) and define

\[
H(n) = \zeta(2, 2, \ldots, 2) \quad \text{for } n \geq 1.
\]

It is well known that for \(n \geq 0,\)

\[
H(n) = \frac{\pi^{2n}}{(2n+1)!}.
\]

When \(a\) and \(b\) are nonnegative integers, define

\[
H(a, b) = \zeta(\underbrace{2, \ldots, 2}_{a}, 3, 2, \ldots, 2) \underbrace{\ldots}_{b}.
\]

Date: June 30, 2021.

2020 Mathematics Subject Classification. Primary 11B65, 11B68, 11M32.

Key words and phrases. Double zeta values, Bernoulli numbers, generating functions.
In \cite{6}, Zagier derived the formula
\[H(a, b) = 2 \sum_{r=1}^{K} (-1)^r \left[\frac{2r}{2a+2} - \frac{1}{2^{2r}} \right] \left(\frac{2r}{2b+1} \right) H(K-r) \zeta(2r+1), \] (1.3)
where \(K = a + b + 1 \). Here for a real number \(n \) and a nonnegative integer \(k \), we define the generalized binomial coefficient \(\binom{n}{k} \) by
\[
\binom{n}{k} = \begin{cases}
 \frac{n(n-1)\ldots(n-k+1)}{k!}, & k \geq 1, \\
 1, & k = 0.
\end{cases}
\]
In particular, if \(n \) is an integer and \(n < k \), \(\binom{n}{k} = 0 \).

The formula (1.3) expresses \(H(a, b) \) as rational linear combinations of \(H(K-r) \zeta(2r+1) \). It can be used to prove that the following two sets
\begin{align*}
\mathcal{B}_1 &= \{ H(a, K-1-a) \mid 0 \leq a \leq K-1 \}, \\
\mathcal{B}_2 &= \{ H(K-r) \zeta(2r+1) \mid 1 \leq r \leq K \}
\end{align*}
span the same \(\mathbb{Q} \)-vector space over \(\mathbb{Q} \). On the other hand, Euler has found that all double zeta values of odd weight can be expressed as rational linear combinations of the Riemann zeta values. In particular, when \(1 \leq r \leq K-1 \),
\[\zeta(2r, 2K+1-2r) = \frac{1}{2} \zeta(2K+1) + \sum_{s=1}^{K-1} A_{r,s} \zeta(2s) \zeta(2K+1-2s), \] (1.4)
where
\[A_{r,s} = \left(\frac{2K-2s}{2r-1} \right) + \left(\frac{2K-2s}{2K-2r} \right). \] (1.5)
In \cite{6}, Zagier used an elementary argument to show that the \((K-1) \times (K-1) \) matrix \(A = A_K = [A_{r,s}] \) has nonzero determinant, and thus it is invertible. Using the fact that both \(\zeta(2s) \) and \(H(2s) \) are rational multiples of \(\pi^{2s} \), this shows that the set
\[\mathcal{B}_3 = \{ \zeta(2r, 2K+1-2r) \mid 1 \leq r \leq K-1 \} \cup \{ \zeta(2K+1) \} \]
spans the same \(\mathbb{Q} \)-vector space as the set \(\mathcal{B}_2 \).

In \cite{6}, Zagier formulated three conjectures about the matrix \(A_K \). The first one is about its determinant, the second one is about its \(LU \)-decomposition, and the third one is about its inverse. The main objective of this paper is to prove the third conjecture, which states a pair of conjectural formulas for \(A^{-1} \).

Let \(P \) and \(Q \) be the \((K-1) \times (K-1) \) matrices with entries
\[
P_{s,r} = \frac{2}{2s-1} \sum_{n=0}^{2K-2s} \binom{2r-1}{2K-2s-n+1} \binom{n+2s-2}{n} B_n, \\
Q_{s,r} = -\frac{2}{2s-1} \sum_{n=0}^{2K-2s} \binom{2K-2r}{2K-2s-n+1} \binom{n+2s-2}{n} B_n.
\]
Here \(B_n \) are the Bernoulli numbers.
Zagier conjectured that both P and Q are the inverse of A. This implies that P and Q must be the same matrix. This conjecture was proved by D. Ma in [4] using generating functions. In this work, we use a totally different approach.

In Section 2, we will prove that $P = Q$. In Section 3, we will prove that they indeed give the inverse of A.

Acknowledgements. This work is supported by the XMUM Research Fund XMUMRF/2018-C2/IMAT/0003.

2. The equality of the two conjectural formulas

Recall that the Bernoulli numbers B_n are defined by the generating function [3]:

$$
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} t^n.
$$

One can compute B_n recursively by $B_0 = 1$, and

$$
B_n = -n! \sum_{k=0}^{n-1} \frac{B_k}{k!(n-k+1)!}, \quad \text{for } n \geq 1.
$$

It is well known that $B_1 = -1/2$, and for any odd integer n larger than 1, $B_n = 0$.

Let K be an integer greater than or equal to 2, and let P and Q be the $(K - 1) \times (K - 1)$ matrices with entries defined by

$$
P_{s,r} = \frac{2}{2s-1} 2^{K-2s} \sum_{n=0}^{2K-2s} \left(\frac{2r - 1}{2K - 2s - n + 1} \right) \binom{n + 2s - 2}{n} B_n,
$$

$$
Q_{s,r} = -\frac{2}{2s-1} 2^{K-2s} \sum_{n=0}^{2K-2s} \left(\frac{2K - 2r}{2K - 2s - n + 1} \right) \binom{n + 2s - 2}{n} B_n.
$$

(2.1)

Our goal is to prove that $P_{s,r} = Q_{s,r}$ for all $1 \leq r, s \leq K - 1$ using a generating function technique that is totally different from that used in [4]. We begin with the following theorem which is interesting of its own right.

Theorem 2.1. Let s be a positive integer. Define the function $f_s(t)$ by

$$
f_s(t) = \frac{t^{2s-1}}{e^t - 1}.
$$

If m is a positive integer, we have the following relation that relates the derivatives of f_s up to order m.

$$
e^t f_s^{(m)}(t) = \sum_{p=0}^{m} (-1)^{m-p} \binom{m}{p} f_s^{(p)}(t)
$$

$$
+ \sum_{p=0}^{\min\{m,2s-1\}} (-1)^{m-p} \binom{m}{p} \frac{(2s-1)!}{(2s-1-p)!} t^{2s-1-p}.
$$

(2.2)

\footnote{In [6], the summations of n in (2.1) are taken to be until the term $n = 2K - 2s + 1$. However, since $s \leq K - 1$, $2K - 2s + 1$ is an odd number greater than 2, and so $B_{2K - 2s + 1} = 0$. Thus the summations can be taken to be until $n = 2K - 2s$ only.}
Proof. By the definition of $f_s(t)$, we have
\[f_s(t) = e^{-t} f_s(t) + t^{2s-1} e^{-t}. \]
Differentiate both sides m times and apply Leibniz rule, we have
\[f_s^{(m)}(t) = \sum_{p=0}^{m} \binom{m}{p} f_s^{(p)}(t) \frac{d^{m-p}}{dt^{m-p}} e^{-t} + \sum_{p=0}^{m} \binom{m}{p} \frac{d^p}{dt^p} t^{2s-1} \frac{d^{m-p}}{dt^{m-p}} e^{-t}. \]
Since
\[\frac{d^p}{dt^p} t^{2s-1} = 0 \quad \text{if } p > 2s - 1, \]
we find that
\[f_s^{(m)}(t) = \sum_{p=0}^{\min(m,2s-1)} (-1)^{m-p} \binom{m}{p} e^{-t} f_s^{(p)}(t) \]
\[+ \sum_{p=0}^{\min(m,2s-1)} (-1)^{m-p} \binom{m}{p} e^{-t} \frac{(2s-1)!}{(2s-1-p)!} t^{2s-1-p}. \]
Multiply both sides by e^t give (2.2).

Now we can prove the main theorem in this section.

Theorem 2.2. If K is a positive integer larger than or equal to 2, r and s are positive integers less than K, then
\[\frac{(2s-2)!}{(2K-2r)!} \sum_{n=0}^{2K-2s} \binom{2K-2r}{2K-2s-n+1} \binom{n+2s-2}{n} B_n = - \frac{(2s-2)!}{(2K-2r)!} \sum_{n=0}^{2K-2s} \binom{2r-1}{2K-2s-n+1} \binom{n+2s-2}{n} B_n. \]
(2.3)

In particular, this implies that the matrices P and Q defined by (2.1) are equal.

Proof. The left hand side of (2.3) can be rewritten as
\[\sum_{n=\max\{0,2r-2s+1\}}^{2K-2s} \frac{1}{(2K-2s-n+1)!} \frac{(n+2s-2)!}{n!} B_n, \]
(2.4)
and the right hand side of (2.3) can be rewritten as
\[- \sum_{n=\max\{0,2K-2s-2r+2\}}^{2K-2s} \frac{(2r-1)!}{(2K-2s-n+1)!} \frac{(n+2s-2)!}{(2r+2s-2K+n-2)!} (2K-2r)! \frac{1}{n!} B_n. \]
(2.5)

The proof of (2.3) is by taking $m = 2r - 1$ in the equation (2.2) and comparing the coefficients of t^{2K-2r} on both sides. Namely, we want to compare the coefficients of t^{2K-2r} on both sides of the equation
\[e^t f_s^{(2r-1)}(t) = - \sum_{p=0}^{2r-1} (-1)^p \binom{2r-1}{p} f_s^{(p)}(t) \]
\[+ \sum_{p=0}^{\min\{2r-1,2s-1\}} (-1)^p \binom{2r-1}{p} \frac{(2s-1)!}{(2s-1-p)!} t^{2s-1-p}. \]
(2.6)
Notice that
\[f_s(t) = t^{2s-2} \times \frac{t}{e^t - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} t^n 2s-2. \]

Therefore,
\[f_s^{(p)}(t) = \sum_{n=\max\{0,p-2s+2\}}^{\infty} B_n \frac{(n+2s-2)!}{(n+2s-2-p)!} t^{n+2s-2-p}. \]

First we consider the coefficient of \(t^{2K-2r} \) in the left hand side of (2.6), namely, the coefficient of \(t^{2K-2r} \) in
\[e^t f_s^{(2r-1)}(t) = \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{n=\max\{0,2r-2s+1\}}^{\infty} B_n \frac{(n+2s-2)!}{(n+2s-2-r-1)!} t^{n+2s-2-r-1}. \] (2.7)

It is given by the expression (2.5).

The term on the right hand side of (2.6) can be written as \(T_1 + T_2 \), where
\[T_1 = - \sum_{p=0}^{2r-1} (-1)^p \binom{2r-1}{p} f_s^{(p)}(t) \]
\[= - \sum_{p=0}^{2r-1} (-1)^p \frac{(2r-1)!}{p!(2r-1-p)!} \sum_{n=\max\{0,p-2s+2\}}^{\infty} B_n \frac{(n+2s-2)!}{(n+2s-2-p)!} t^{n+2s-2-p} \]
\[= - \sum_{n=0}^{\infty} \sum_{p=0}^{\min\{2r-1,n+2s-2\}} (-1)^p \frac{(2r-1)!}{p!(2r-1-p)!} B_n \frac{(n+2s-2)!}{(n+2s-2-p)!} t^{n+2s-2-p}, \]
\[T_2 = - \sum_{p=0}^{\min\{2r-1,2s-1\}} (-1)^p \frac{(2r-1)!}{p!(2r-1-p)!} \frac{(2s-1)!}{(2s-1-p)!} t^{2s-1-p}. \]

\(T_2 \) contains a term in \(t^{2K-2r} \) if and only if \(2s-1 \geq 2K-2r \), or equivalently, \(r+s \geq K+1 \). In this case the coefficient of \(t^{2K-2r} \) in \(T_2 \) is
\[\frac{(2r-1)!}{(2r+2s-2K-1)!(2K-2s)!} \frac{(2s-1)!}{(2K-2r)!}. \] (2.8)

For the term \(T_1 \), the coefficient of \(t^{2K-2r} \) is
\[- \sum_{n=\max\{0,2K-2s-2r+2\}}^{2K-2s} (-1)^n \frac{(2K-2s-n)!}{(2K-2s-n+1)!(2r+2s-2K+n-2)!} \frac{(2r-1)!}{(2K-2r)!} B_n \frac{(n+2s-2)!}{n!}. \] (2.9)

When \(r+s \leq K \), \(2K-2s-2r+2 \geq 2 \). Hence, the sum over \(n \) in (2.9) does not contain \(n = 1 \) term. Since \(B_n = 0 \) when \(n \) is odd and larger than 2, we find that (2.9) is equal to (2.5). Since there are no contribution from \(T_3 \) to the term \(t^{2K-2r} \) when \(r+s \leq K \), this proves that when \(r+s \leq K \), the coefficient of \(t^{2K-2r} \) in the right hand side of (2.6) is (2.5).
When \(r + s \geq K + 1 \), there is a term with \(n = 1 \) in (2.9). Using the fact that \(B_1 = \frac{1}{2} \), we find that this term is given by
\[
-\frac{1}{2} \frac{(2r - 1)!}{(2r + 2s - 2K - 1)!} \frac{(2s - 1)!}{(2K - 2r)!},
\]
which is \(-1/2\) of the term (2.8). Summing the coefficients of \(t^{2K-2r} \) from \(T_1 \) and \(T_2 \), we find that the sum is equal to (2.5). Therefore, when \(r + s \geq K + 1 \), the coefficient of \(t^{2K-2r} \) in the right hand side of (2.6) is (2.5).

Thus, we have shown that the coefficient of \(t^{2K-2r} \) in the left hand side of (2.6) is (2.4), and the coefficient of \(t^{2K-2r} \) in the right hand side of (2.6) is (2.5), this completes the proof of the theorem.

\[\square\]

As we mentioned before, this theorem has been proved in [4] using a totally different method, with the help of the Carlitz’s Bernoulli number identity [1, 5]. Our proof uses directly the generating function of the Bernoulli numbers.

Remark 2.3. Carlitz’s identity says that for any nonnegative integers \(m \) and \(n \),
\[
(-1)^m \sum_{k=0}^{m} \binom{m}{k} B_{n+k} = (-1)^n \sum_{k=0}^{n} \binom{n}{k} B_{m+k}. \tag{2.10}
\]
Prodinger [5] gave a short proof using an exponential generating function of two variables. Here we show that this identity can be derived directly from (2.2) by setting \(s = 1 \). Namely, we consider the generating function of the Bernoulli numbers
\[
f(t) = e^t - 1.
\]
Since (2.8) is symmetric in \(m \) and \(n \), it is sufficient to consider the case \(0 \leq m < n \). In this case, \(n \geq 1 \). Equation (2.2) says that
\[
e^t f^{(m)}(t) = (-1)^m t + (-1)^{m-1} m + \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} f^{(k)}(t).
\]
This gives
\[
\sum_{l=0}^{\infty} \frac{t^l}{l!} \sum_{k=m}^{\infty} \frac{B_k}{(k-m)!} t^{k-m} = (-1)^m t + (-1)^{m-1} m + \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \sum_{l=k}^{\infty} \frac{B_l}{l!} t^{l-k}.
\]
Compare the coefficients of \(t^n \) on both sides, we have
\[
\sum_{k=m}^{m+n} \frac{1}{(k-m)!(m+n-k)!} B_k = (-1)^m \delta_{n,1} + \sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \frac{B_{n+k}}{n!}.
\]
If \(n = 1 \), the last sum contains the term \((-1)^m B_1\), which can be combined with \((-1)^m \delta_{n,1}\) to yield \((-1)^{m-1} B_1\). Since \(B_k = 0 \) when \(k \) is odd and greater than 2, we find that
\[
\sum_{k=m}^{m+n} \frac{n!}{(k-m)!(m+n-k)!} B_k = \sum_{k=0}^{m} (-1)^{m-n} \binom{m}{k} B_{n+k}.
\]
Multiplying \((-1)^n\) on both sides and shifting the summation variables on the left hand side, we obtain
\[
(-1)^n \sum_{k=0}^{n} \binom{n}{k} B_{m+k} = (-1)^m \sum_{k=0}^{m} \binom{m}{k} B_{n+k},
\]
which is the Carlitz identity.

3. The proof of the conjecture

In this section, we prove that the inverse of the matrix \(A = A_K\) is the matrix \(P\).

Theorem 3.1 (Zagier’s Conjecture).

If \(K\) is an integer larger than 1, \(A_K\) is the \((K-1) \times (K-1)\) matrix defined by
\[
A_{r,s} = \left(\frac{2K - 2s}{2r - 1} \right) + \left(\frac{2K - 2s}{2K - 2r} \right),
\]
then the inverse of \(A\) is the matrix \(P\) defined by one of the following two formulas that are equal.

\[
P_{s,r} = \frac{2}{2s - 1} \sum_{n=0}^{2K - 2s} \left(\frac{2r - 1}{2K - 2s - n + 1} \right) \binom{n + 2s - 2}{n} B_n,
\]

\[
= - \frac{2}{2s - 1} \sum_{n=0}^{2K - 2s} \left(\frac{2K - 2r}{2K - 2s - n + 1} \right) \binom{n + 2s - 2}{n} B_n.
\]

Proof. Define the \((K-1) \times (K-1)\) matrices \(B\) and \(C\) by
\[
B_{r,s} = \left(\frac{2K - 2s}{2r - 1} \right), \quad C_{r,s} = \left(\frac{2K - 2s}{2K - 2r} \right),
\]
so that \(A = B + C\). Notice that \(B_{r,s} = 0\) if \(r + s > K\), and \(C_{r,s} = 0\) if \(r < s\).

The strategy of proof is to show that the matrix \(PA = PB + PC\) is indeed the identity matrix, by showing that if \(s\) and \(s'\) are positive integers less than \(K\), then
\[
(PB)_{s,s'} + (PC)_{s,s'} = \begin{cases}
1, & s = s', \\
0, & s \neq s'.
\end{cases}
\]

(3.3)

We will use the following two elementary identities of combination numbers. If \(n \geq 1\), then
\[
\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} = 2^{n-1},
\]
\[
\sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \binom{n}{2k + 1} = 2^{n-1}.
\]

(3.4)

First we compute \((PB)_{s,s'}\) using the first formula in (3.2) for \(P_{s,r}\). The cases where \(s \leq s'\) and \(s > s'\) are considered separately.
If $s \leq s'$, then for $r \leq K - s'$, we have $r \leq K - s$. Hence, $2K - 2s - 2r + 2 \geq 2$. Therefore,

\[(PB)_{s,s'} = \frac{2}{2s - 1} \sum_{n=2s'-2s+2}^{K-s'} \left(\frac{2K - 2s'}{2r - 1} \right) \sum_{r=2}^{2K-2s} \left(\frac{2r - 1}{2K - 2s - n + 1} \right) \binom{n + 2s - 2}{n} B_n \]

Notice that the summation over n only contains terms with n even since $2s' - 2s + 2 \geq 2$.

It can be easily verified that

\[
\left(\frac{2K - 2s'}{2r - 1} \right) \left(\frac{2r - 1}{2K - 2s - n + 1} \right) = \left(\frac{2K - 2s'}{2s - 2s' + n - 1} \right) \left(\frac{2s' + n - 1}{2r + 2s - 2K + n - 2} \right).
\]

Therefore,

\[(PB)_{s,s'} = \frac{2}{2s - 1} \sum_{n=2s'-2s+2}^{K-s'} \left(\frac{2K - 2s'}{2s - 2s' + n - 1} \right) \binom{n + 2s - 2}{n} B_n \times \sum_{r=K-s-\frac{n}{2}+1}^{K-s'} \left(\frac{2s - 2s' + n - 1}{2r + 2s - 2K + n - 2} \right) ;
\]

For $n \geq 2s' - 2s + 2$, we have $2s - 2s' + n - 1 \geq 1$. The first formula in (3.4) implies that

\[
\sum_{r=K-s-\frac{n}{2}+1}^{K-s'} \left(\frac{2s - 2s' + n - 1}{2r + 2s - 2K + n - 2} \right) = \sum_{r=0}^{s-s'+n/2-1} \left(\frac{2s - 2s' + n - 1}{2r} \right) = 2^{2s-2s'+n-2}.
\]

This shows that when $s \leq s'$,

\[(PB)_{s,s'} = \frac{2}{2s - 1} \sum_{n=2s'-2s+2}^{K-s'} \left(\frac{2K - 2s'}{2s - 2s' + n - 1} \right) \binom{n + 2s - 2}{n} 2^{2s-2s'+n-2} B_n. \quad (3.6)
\]

When $s > s'$,

\[(PB)_{s,s'} = \frac{2}{2s - 1} \sum_{n=0}^{2K-2s} \sum_{K-s-\frac{n}{2}+1 \leq r \leq K-s'} \left(\frac{2K - 2s'}{2r - 1} \right) \left(\frac{2r - 1}{2K - 2s - n + 1} \right) \binom{n + 2s - 2}{n} B_n.
\]
Splitting out the \(n = 1 \) term, we have

\[
(PB)_{s,s'} = \frac{2}{2s-1} \left\{ \sum_{0 \leq n \leq 2K-2s \atop n \text{ is even}} \binom{2K-2s'}{2s-2s'+n-1} \binom{n+2s-2}{n} B_n \right. \\
\times \left. \sum_{r=K-s-\frac{s'}{2}+1}^{K-s'} \binom{2s-2s'+n-1}{2r+2s-2K+n-2} \right. \\
+ \left. \binom{2K-2s'}{2s-1} B_1 \sum_{r=K-s+1}^{K-s'} \binom{2s-2s'}{2r+2s-2K-1} \right\}.
\]

Notice that the second formula in (3.4) give

\[
\sum_{r=K-s-\frac{s'}{2}+1}^{K-s'} \binom{2s-2s'+n-1}{2r+2s-2K+n-2} = 2^{2s-2s'-1}.
\]

Together with (3.5), we find that when \(s > s' \),

\[
(PB)_{s,s'} = \frac{2}{2s-1} \sum_{n=0}^{2K-2s} \binom{2K-2s'}{2s-2s'+n-1} \binom{n+2s-2}{n} 2^{2s-2s'+n-2} B_n.
\]

Next we compute \((PC)_{s,s'}\). Using the second expression in (3.2) for \(P_{s,r} \), we have

\[
(\text{PC})_{s,s'} = -\frac{2}{2s-1} \sum_{r=s'}^{K-s} \binom{2K-2s'}{2K-2r} \sum_{n=\max\{0,2r-2s+1\}}^{2K-2s} \binom{2K-2r}{2K-2s-n+1} \binom{n+2s-2}{n} B_n.
\]

Again, it is easy to verify that

\[
\binom{2K-2s'}{2K-2r} \binom{2K-2s'}{2K-2s-n+1} = \binom{2K-2s'}{2s-2s'+n-1} \binom{2s-2s'+n-1}{2r-2s'}.
\]

Now we discuss the cases \(s < s' \), \(s = s' \) and \(s > s' \) separately.

When \(s = s' \),

\[
(\text{PC})_{s,s} = -\frac{2}{2s-1} \sum_{r=s}^{K-s} \binom{2K-2s}{2K-2r} \sum_{n=2r-2s+1}^{2K-2s} \binom{2K-2r}{2K-2s-n+1} \binom{n+2s-2}{n} B_n.
\]

In this case, we have a \(n = 1 \) term when \(r = s \). When \(r > s \), summation over \(n \geq 2r - 2s + 1 \) is the same as summation over \(2r - 2s + 2 \). The term with \(r = s \) and \(n = 1 \) contribute the term 1. Therefore,

\[
(\text{PC})_{s,s} = 1 - \frac{2}{2s-1} \sum_{r=s}^{K-s} \binom{2K-2s}{2K-2r} \sum_{n=2r-2s+2}^{2K-2s} \binom{2K-2r}{2K-2s-n+1} \binom{n+2s-2}{n} B_n
\]

\[
= 1 - \frac{2}{2s-1} \sum_{n=2}^{2K-2s+n/2-1} \binom{2K-2s}{n-1} \binom{n+2s-2}{n} B_n
\]

\[
= 1 - \frac{2}{2s-1} \sum_{n=2}^{2K-2s} \binom{2K-2s}{n-1} \binom{n+2s-2}{n} 2^{n-2} B_n.
\]
The last equality follows from the first equation in (3.4). Compare to the \(s = s' \) case in (3.6) show that

\[(PB + PC)_{s,s} = 1. \]

Next we consider the case \(s < s' \). In this case, if \(r \geq s' \), then \(r > s \) and hence \(2r - 2s + 1 \geq 3 \). Therefore,

\[(PC)_{s,s'} = \frac{2}{2s - 1} \sum_{r=s'}^{2K-2s} \sum_{n=2r-2s+2}^{K-1} \left(\frac{2K - 2s'}{2s - 2s' + n - 1} \right) \left(\frac{2s - 2s' + n - 1}{r - 2s'} \right) \left(\frac{n + 2s - 2}{n} \right) B_n \]

\[= \frac{2}{2s - 1} \sum_{n=2s' - 2s + 2}^{2K-2s} \left(\frac{2K - 2s'}{2s - 2s' + n - 1} \right) \left(\frac{n + 2s - 2}{n} \right) B_n \sum_{r=s'}^{s+n/2-1} \left(\frac{2s - 2s' + n - 1}{2r - 2s'} \right) \]

\[= \frac{2}{2s - 1} \sum_{n=2s' - 2s + 2}^{2K-2s} \left(\frac{2K - 2s'}{2s - 2s' + n - 1} \right) \left(\frac{n + 2s - 2}{n} \right) 2^{2s-2s'+n-2} B_n \]

\[= - (PB)_{s,s'}. \]

Finally, we consider the case \(s > s' \). In this case

\[(PC)_{s,s'} = \frac{2}{2s - 1} \sum_{n=0}^{2K-2s} \sum_{s' \leq r \leq s+n/2-1} \left(\frac{2K - 2s'}{2K - 2r} \right) \left(\frac{2K - 2r}{2K - 2s - n + 1} \right) \left(\frac{n + 2s - 2}{n} \right) B_n. \]

Splitting out the \(n = 1 \) term, we have

\[(PC)_{s,s'} = \frac{2}{2s - 1} \left\{ \sum_{0 \leq n \leq 2K - 2s \atop n \text{is even}} \left(\frac{2K - 2s'}{2s - 2s' + n - 1} \right) \left(\frac{n + 2s - 2}{n} \right) B_n \sum_{r=s'}^{s+n/2-1} \left(\frac{2s - 2s' + n - 1}{2r - 2s'} \right) \right\} + \frac{2K - 2s'}{2s - 2s'} \left(\frac{2s - 2s'}{2s - 2s'} \right) \left(\frac{2s - 2s'}{2s - 2s'} \right) \left(\frac{2K - 2s'}{2s - 2s'} \right) \left(\frac{2s - 2s'}{2s - 2s'} \right) B_n \sum_{r=s'}^{s+n/2-1} \left(\frac{2s - 2s' + n - 1}{2r - 2s'} \right) \]

\[= - (PB)_{s,s'}. \]

This completes the proof of (3.3), and so the assertion of the theorem is proved. □

References

1. L. Carlitz. Problem 795. Math. Mag. 44 (1971), 107.
2. H. Gangl, M. Kaneko and D. Zagier, Double zeta values and modular forms, in Automorphic Forms and Zeta Functions, S. Böcherer et. al. (eds.), World Scientific, Singapore, 2006, pp. 71–106.
3. K. Ireland and M. Rosen, A classical introduction to modern number theory, 2nd ed., Springer-Verlag, 1990, ISBN 0-387-97329-X.
4. D. Ma, Inverse of some matrix related to double zeta values of odd weight, J. Number Theory 166 (2016), 166–180.
5. H. Prodinger, Carlitz’s symmetric Bernoulli number identity, J. Integer Sequences 17 (2014), article 14.4.1.
6. D. Zagier, *Evaluation of the multiple zeta values $\zeta(2,\ldots,2,3,2,\ldots,2)$*, Ann. Math. 175 (2012), 977–1000.

Department of Mathematics, Xiamen University, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia.

Email address: m1102439194@gmail.com, lpteo@xmu.edu.my