Absolutely Continuous Compensators

Conference in Honor of Walter Schachermayer
Philip Protter
ORIE, Cornell

July 16, 2010

Based on work with Svante Janson and Sokhna M’Baye
Reduced Form Models

- Let τ be the random time an event of interest happens
- We do not know the distribution of τ
- We have a filtration \mathcal{F} of observable events, and a probability measure P
- We let $N_t = 1\{t \geq \tau\}$ and let $A = (A_t)_{t \geq 0}$ be its compensator; that is
 \[N_t - A_t = \text{a martingale}. \]
- A common assumption is that A is of the form $A_t = \int_0^t \lambda_s ds$
- This depends on both \mathcal{F} and P
Examples from the Literature

- Eduardo Schwartz and Walter Torous, 1989: τ represents the time of prepayment of a mortgage
- Stanton, 1995: Extension of Schwartz and Torous (still mortgage prepayments)
- MHA Davis and Lischka, 1999: τ is the time of default of a convertible bond
- Hughston and Turnbull, 2001: Basic formal construction of the reduced form approach to Credit Risk
- Bakshi and Madan, 2002: Used in Catastrophe Loss models
- Ciochetti et al, 2003: τ is the default time of a commercial mortgage
Examples from the Literature, Continued

- Dassios and Jang, 2003: τ is the time of a catastrophic event, in reinsurance models
- Leif Andersen and Buffum, 2004: τ is the default time in convertible bond models
- Jarrow, Lando, and Yu, 2005: τ is the default time in commercial paper models
- Christopoulos, Jarrow and Yildirim, 2008: τ is the time a commercial mortgage loan is delinquent
- Chava and Jarrow, 2008: τ is the default time of a Loan Commitment, or Credit Line
- Jarrow, 2010: Catastrophe bonds
Structural Versus Reduced Form Models in Credit Risk (Merton, 1973)

- We begin with a filtered space \((\Omega, \mathcal{H}, P, \mathbb{H})\) where
 \[
 \mathbb{H} = (\mathcal{H}_t)_{t \geq 0}
 \]
- Let \(X\) be a Markov process on \((\Omega, \mathcal{H}, P, \mathbb{H})\) given by
 \[
 dX_t = 1 + \int_0^t \sigma(s, X_s) dB_s + \int_0^t \mu(s, X_s) ds
 \]
- In a structural model we assume we observe \(G = (\sigma(X_s; 0 \leq s \leq t))_{t \geq 0}\) and so \(G \subset \mathbb{H}\)
- Default occurs when the firm’s value \(X\) crosses below a given threshold level process \(L = (L_t)_{t \geq 0}\)
- If \(L\) is constant, then the default time is
 \[
 \tau = \inf\{t > 0 : X_t \leq L\}, \text{ and } \tau \text{ is a predictable time for } G \text{ and } \mathbb{H}
 \]
Two objections to the Structural Model Approach

- It is assumed that the coefficients σ and μ in the diffusion equation are knowable.
- It is also assumed the level crossing that leads to default is knowable.
- The default time is a predictable stopping time.
The Reduced Form Approach (Jarrow, Turnbull, Duffie, Lando, Jeanblanc...)

• We assume that a stopping time τ is given, which is a default time
• We assume that τ is a totally inaccessible time
• This means that $M_t = 1_{\{t \geq \tau\}} - A_t$ = a martingale
• A is adapted, continuous, and non decreasing
• Usually it is **implicitly assumed** that A is of the form

$$A_t = \int_0^t \lambda_s ds,$$

where λ is the instantaneous likelihood of the arrival of τ
The Hybrid Approach (Giesecke, Goldberg, ...)

- We assume the structural approach, but instead of a level crossing time as a default time, we replace it with a random curve.
- This can make the stopping time totally inaccessible, and of the form found in the reduced form approach.
- Giesecke has also pointed out that the increasing process A need no longer have absolutely continuous paths.
The Filtration Shrinkage Approach (Çetin, Jarrow, Protter, Yildirim)

- τ can be the time of default for the structural approach
- One does not know the structural approach, so one models this by shrinking the filtration to the presumed level of observable events
- The result is that τ becomes totally inaccessible, and one recovers the reduced form approach
- **Advantage:** This relates the structural and reduced form approaches which facilitate empirical methods to estimate τ
- Motivates studying compensators of stopping times and their behavior under filtration shrinkage
When does the compensator A have absolutely continuous paths?

- **Ethier-Kurtz Criterion:** $A_0 = 0$ and suppose for $s \leq t$
 \[E\{A_t - A_s | \mathcal{G}_s\} \leq K(t - s) \]
 then A is of the form $A_t = \int_0^t \lambda_s ds$

- **Yan Zeng, PhD Thesis, Cornell, 2006:** There exists an increasing process D_t with $dD_t \ll dt$ a.s. and
 \[E\{A_t - A_s | \mathcal{G}_s\} \leq E\{D_t - D_s | \mathcal{G}_t\} \]
 then A is of the form $A_t = \int_0^t \lambda_s ds$
Shrinkage Result; M. Jacobsen, 2005

- Suppose $1_{\{t \geq \tau\}} - \int_0^t \lambda_s \, ds$ is a martingale in \mathbb{H}
- Suppose also τ is a stopping time in \mathcal{G} where $\mathcal{G} \subset \mathbb{H}$. Then

$$1_{\{t \geq \tau\}} - \int_0^t \circ \lambda_s \, ds$$

is a martingale in \mathcal{G}

where $\circ \lambda$ denotes the optional projection of the process λ onto the filtration \mathcal{G}
Is there a general condition such that all stopping times have absolutely continuous compensators?

- Let X be a strong Markov process; suppose it also a Hunt process

- (Çinlar and Jacod, 1981) On a space $(\Omega, \mathcal{F}, \mathbb{F}, P^x)$, up to a change of time and space, if X is a semimartingale we have the representation

$$ X_t = X_0 + \int_0^t b(X_s)ds + \int_0^t c(X_s)dW_s $$

$$ + \int_0^t \int_{\mathbb{R}} k(X_{s-}, z)1_{\{|k(x_{s-},z)| \leq 1\}} [n(ds, dz) - ds\nu(dz)] $$

$$ + \int_0^t \int_{\mathbb{R}} k(X_{s-}, z)1_{\{|k(x_{s-},z)| > 1\}} n(ds, dz) $$
Lévy system of a Hunt process

• For a Hunt process semimartingale X with measure P^μ a **Lévy system** (K, H) where K is a kernel on \mathbb{R} and H is a continuous additive functional of X, satisfies the following relationship:

\[
E^\mu \left(\sum_{0<s\leq t} f(X_{s-}, X_s)1\{X_{s-}\neq X_s\} \right)
= E^\mu \left(\int_0^t dH_s \int_{\mathbb{R}} K(X_{s-}, dy)f(X_s, y) \right)
\]

• For X a strong Markov process as in the Činlar-Jacod theorem, we can take the continuous additive functional H to be $H_t = t$
In a “natural” Markovian space, all compensators of stopping times have absolutely continuous paths

Theorem: Let \mathbb{F} be the natural (completed) filtration of a Hunt process X on a space $(\Omega, \mathcal{F}, P^\mu)$ and let (K, H) be a Lévy system for X. If $dH_t \ll dt$ then for any totally inaccessible stopping time τ the compensator of τ has absolutely continuous paths a.s. That is, there exists an adapted process λ such that

$$1\{t \geq \tau\} - \int_0^t \lambda_s \, ds$$

is an \mathbb{F} martingale. \hfill (1)

Moreover if dH_t is not equivalent to dt, then there exists a stopping time ν such that (1) does not hold.
Jumping Filtrations

- Jacod and Skorohod define a **jumping filtration** \mathcal{F} to be a filtration such that there exists a sequence of stopping times $(T_n)_{n=0,1,...}$ increasing to ∞ a.s. with $T_0 = 0$ and such that for all $n \in \mathbb{N}$, $t > 0$, the σ-fields \mathcal{F}_t and \mathcal{F}_{T_n} coincide on $\{T_n \leq t < T_{n+1}\}$.
Jumping Filtrations

- Jacod and Skorohod define a **jumping filtration** \mathbb{F} to be a filtration such that there exists a sequence of stopping times $(T_n)_{n=0,1,...}$ increasing to ∞ a.s. with $T_0 = 0$ and such that for all $n \in \mathbb{N}$, $t > 0$, the σ-fields \mathcal{F}_t and \mathcal{F}_{T_n} coincide on $\{T_n \leq t < T_{n+1}\}$

- **Theorem:** Let $N = (N_t)_{t \geq 0}$ be a point process without explosions that generates a quasi-left continuous jumping filtration, and suppose there exists a process $(\lambda_s)_{s \geq 0}$ such that

$$N_t - \int_0^t \lambda_s \, ds = \text{a martingale.} \quad (2)$$

Let $\mathbb{D} = (\mathcal{D}_t)_{t \geq 0}$ be the (automatically right continuous) filtration generated by N and completed in the usual way. Then for any \mathbb{D} totally inaccessible stopping time R we have that the compensator of $1_{\{t \geq R\}}$ has absolutely continuous paths, a.s.
Increasing Processes

- **Theorem:** Z is an increasing process; suppose there exists λ such that

\[Z_t - \int_0^t \lambda_s \, ds = \text{a martingale} \]

- Consequence: If N is a Poisson process with parameter λ, and R is a totally inaccessible stopping time on the minimal space generated by N, then the compensator of R has absolutely continuous paths.
Increasing Processes

- **Theorem:** Z is an increasing process; suppose there exists λ such that
 $$Z_t - \int_0^t \lambda_s ds = \text{a martingale}$$

- Let R be a stopping time such that
 $$P(\Delta Z_R > 0 \cap \{R < \infty\}) = P(R < \infty); \text{ then } R \text{ too has an absolutely continuous compensator}; \text{ that is, there exists a process } \mu \text{ such that}$$
 $$1\{t \geq R\} - \int_0^t \mu_s ds = \text{a martingale}$$
Increasing Processes

• **Theorem:** Z is an increasing process; suppose there exists λ such that

$$Z_t - \int_0^t \lambda_s ds = \text{a martingale}$$

• Let R be a stopping time such that

$$P(\Delta Z_R > 0 \cap \{R < \infty\}) = P(R < \infty); \text{ then } R \text{ too has an absolutely continuous compensator; that is, there exists a process } \mu \text{ such that}$$

$$1_{\{t \geq R\}} - \int_0^t \mu_s ds = \text{a martingale}$$

• **Consequence:** If N is a Poisson process with parameter λ, and R is a totally inaccessible stopping time on the minimal space generated by N, then the compensator of R has absolutely continuous paths.
Dellacherie’s Theorem: Let R be a nonnegative random variable with $P(R = 0) = 0$, $P(R > t) > 0$ for each $t > 0$. Let $\mathcal{F}_t = \sigma(t \wedge R)$. Let F denote the law of R. Then the compensator $A = (A_t)_{t \geq 0}$ of the process $1\{R \geq t\}$ is given by

$$A_t = \int_0^t \frac{1}{1 - F(u^-)} dF(u).$$

If F is continuous, then A is continuous, R is totally inaccessible, and $A_t = -\ln(1 - F(R \wedge t))$.
Filtration Shrinkage and Compensators

- **Dellacherie’s Theorem:** Let R be a nonnegative random variable with $P(R = 0) = 0$, $P(R > t) > 0$ for each $t > 0$. Let $\mathcal{F}_t = \sigma(t \wedge R)$. Let F denote the law of R. Then the compensator $A = (A_t)_{t \geq 0}$ of the process $1_{\{R \geq t\}}$ is given by

$$A_t = \int_0^t \frac{1}{1 - F(u^-)} dF(u).$$

If F is continuous, then A is continuous, R is totally inaccessible, and $A_t = -\ln(1 - F(R \wedge t))$.

- We know by Jacobsen’s theorem, that once a compensator is absolutely continuous, it still is in any smaller filtration.
• It is *a priori* possible that a stopping time R has a singular compensator in a filtration \mathcal{F}, but an absolutely continuous compensator in a smaller filtration.

Conjecture: If a stopping time R has an absolutely continuous law, then it has an absolutely continuous compensator in any filtration rendering it totally inaccessible.

This conjecture is false. A stopping time can be constructed with Brownian local time at zero as its compensator. In its minimal filtration, the compensator is absolutely continuous with respect to $t \mapsto E(L_t)$, which is absolutely continuous with respect to dt.
• It is *a priori* possible that a stopping time R has a singular compensator in a filtration \mathcal{H}, but an absolutely continuous compensator in a smaller filtration

• **Conjecture:** If a stopping time R has an absolutely continuous law, then it has an absolutely continuous compensator in any filtration rendering it totally inaccessible.
• It is *a priori* possible that a stopping time R has a singular compensator in a filtration \mathcal{H}, but an absolutely continuous compensator in a smaller filtration.

• **Conjecture:** If a stopping time R has an absolutely continuous law, then it has an absolutely continuous compensator in any filtration rendering it totally inaccessible.

• **This conjecture is false.** A stopping time can be constructed with Brownian local time at zero as its compensator. In its minimal filtration, the compensator is absolutely continuous with respect to $t \mapsto E(L_t)$, which is absolutely continuous with respect to dt.
Equivalent Probabilities

Let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$
Equivalent Probabilities

- Let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

- Let Q be equivalent to P, a situation which often arises in Mathematical Finance, with risk neutral measures; let $Z = \frac{dQ}{dP}$ and $Z_t = E\left\{\frac{dQ}{dP} | \mathcal{F}_t\right\}$
Equivalent Probabilities

• Let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

• Let Q be equivalent to P, a situation which often arises in Mathematical Finance, with risk neutral measures; let $Z = \frac{dQ}{dP}$ and $Z_t = E\left\{\frac{dQ}{dP} | \mathcal{F}_t\right\}$

• Then τ has an absolutely continuous compensator, given by the relation

$$1\{t \geq \tau\} - \int_0^t \lambda_s ds - \int_0^t \frac{1}{Z_s} d\langle Z, M \rangle_s = \text{a martingale}$$
Equivalent Probabilities

• Let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

• Let Q be equivalent to P, a situation which often arises in Mathematical Finance, with risk neutral measures; let $Z = \frac{dQ}{dP}$ and $Z_t = E\{\frac{dQ}{dP} | \mathcal{F}_t\}$

• Then τ has an absolutely continuous compensator, given by the relation

$$1\{t \geq \tau\} - \int_0^t \lambda_s ds - \int_0^t \frac{1}{Z_s} d\langle Z, M \rangle_s = \text{a martingale}$$

• Note: Since $[M, M]_t = 1\{t \geq \tau\}$ we have that $\langle M, M \rangle_t = \int_0^t \lambda_s ds$, and the result follows by the Kunita-Watanabe inequality.
Initial Enlargement

- Again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds = \text{a martingale}$$
Initial Enlargement

- Again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds = \text{a martingale}$$

- Suppose we expand \mathbb{F} by adding a random variable L, with law $\eta(dx)$, to \mathcal{F}_0 and \mathcal{F}_t for all $t > 0$.

Initial Enlargement

• Again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

• Suppose we expand \mathbb{F} by adding a random variable L, with law $\eta(dx)$, to \mathcal{F}_0 and \mathcal{F}_t for all $t > 0$.

• Let $Q_t(\omega, dx)$ be the conditional distribution of L given \mathcal{F}_t, and suppose further that $Q_t(\omega, ds) \ll \eta(dx)$ and we write $Q_t(\omega, dx) = q^x_t \eta_t(dx)$.
Initial Enlargement

- Again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

- Suppose we expand \mathbb{F} by adding a random variable L, with law $\eta(dx)$, to \mathcal{F}_0 and \mathcal{F}_t for all $t > 0$.

- Let $Q_t(\omega, dx)$ be the conditional distribution of L given \mathcal{F}_t, and suppose further that $Q_t(\omega, ds) \ll \eta(dx)$ and we write

$$Q_t(\omega, dx) = q^x_t \eta_t(dx)$$

- We write

$$\langle q^x, M \rangle_t = \int_0^t k^x_s q^x_s d\langle M, M \rangle_s$$
The compensator of τ under the enlarged filtration \mathcal{G} given by $\mathcal{G}_t = \mathcal{F}_t \vee \sigma(t \wedge T)$ is

$$M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds - \int_0^t k_s^L d\langle M, M \rangle_s$$
The compensator of τ under the enlarged filtration \mathcal{G} given by $\mathcal{G}_t = \mathcal{F}_t \vee \sigma(t \wedge T)$ is

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds - \int_0^t k_s^L d\langle M, M \rangle_s$$

Again, note that $\langle M, M \rangle_t = \int_0^t \lambda_s ds$, so that the compensator is absolutely continuous.
Progressive Expansion of Filtrations

- Once again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$
Progressive Expansion of Filtrations

• Once again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

• We assume L is a positive random variable, and that L avoids all \mathbb{F} stopping times; that is, if T is an \mathbb{F} stopping time, then $P(L = T) = 0$
Progressive Expansion of Filtrations

• Once again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

• We assume L is a positive random variable, and that L avoids all \mathbb{F} stopping times; that is, if T is an \mathbb{F} stopping time, then $P(L = T) = 0$

• We enlarge the filtration \mathbb{F} with L such that the new filtration, \mathbb{G} makes L a stopping time; the method of expansion is called **progressive expansion**. We call the enlarged filtration \mathbb{G}
Progressive Expansion of Filtrations

- Once again, let τ be a stopping time on a space $(\Omega, \mathcal{F}, P, \mathbb{F})$ and suppose it has an absolutely continuous compensator; that is,

$$M_t = 1\{t \geq \tau\} - \int_0^t \lambda_s ds = \text{a martingale}$$

- We assume L is a positive random variable, and that L avoids all \mathbb{F} stopping times; that is, if T is an \mathbb{F} stopping time, then $P(L = T) = 0$

- We enlarge the filtration \mathbb{F} with L such that the new filtration, \mathcal{G} makes L a stopping time; the method of expansion is called **progressive expansion**. We call the enlarged filtration \mathcal{G}

- Then τ has an absolutely continuous compensator in \mathcal{G} as well.
Analogous Results for the Entire Space

• We will say that on a space \((\Omega, \mathcal{G}, P, \mathcal{G})\) that a probability \(Q\) has **Property AC** if under \(Q\), all totally inaccessible stopping times have absolutely continuous compensators.

• A class of examples with Property AC are strong Markov spaces, where the Lévy system of the Markov process is itself absolutely continuous.

• Theorem: Suppose that \((\Omega, \mathcal{G}, P, \mathcal{G}, X)\) is a given system, and that there exists a probability \(Q^\ast\) equivalent to \(P\) such that \(Q^\ast\) has Property AC. Then if \(Q\) is the set of all probability measure equivalent to \(P\), we have that Property AC holds under any \(Q \in Q\).

• This last theorem is especially useful for applications in Finance.
Analogous Results for the Entire Space

- We will say that on a space \((\Omega, \mathcal{G}, P, \mathbb{G})\) that a probability \(Q\) has **Property AC** if under \(Q\), all totally inaccessible stopping times have absolutely continuous compensators.

- A class of examples with Property AC are strong Markov spaces, where the Lévy system of the Markov process is itself absolutely continuous.

Theorem: Suppose that \((\Omega, \mathcal{G}, P, \mathbb{G}, X)\) is a given system, and that there exists a probability \(Q^\ast\) equivalent to \(P\) such that \(Q^\ast\) has Property AC. Then if \(Q\) is the set of all probability measures equivalent to \(P\), we have that Property AC holds under any \(Q \in Q\). This last theorem is especially useful for applications in Finance.
Analogous Results for the Entire Space

- We will say that on a space \((\Omega, \mathcal{G}, P, \mathbb{G})\) that a probability \(Q\) has **Property AC** if under \(Q\), all totally inaccessible stopping times have absolutely continuous compensators.

- A class of examples with Property AC are strong Markov spaces, where the Lévy system of the Markov process is itself absolutely continuous.

- **Theorem:** Suppose that \((\Omega, \mathcal{G}, P, \mathbb{G}, X)\) is a given system, and that there exists a probability \(Q^*\) equivalent to \(P\) such that \(Q^*\) has Property AC. Then if \(Q\) is the set of all probability measure equivalent to \(P\), we have that Property AC holds under any \(Q \in Q\).
Analogous Results for the Entire Space

- We will say that on a space \((\Omega, \mathcal{G}, P, \mathcal{G})\) that a probability \(Q\) has **Property AC** if under \(Q\), all totally inaccessible stopping times have absolutely continuous compensators.

- A class of examples with Property AC are strong Markov spaces, where the Lévy system of the Markov process is itself absolutely continuous.

- **Theorem:** Suppose that \((\Omega, \mathcal{G}, P, \mathcal{G}, X)\) is a given system, and that there exists a probability \(Q^*\) equivalent to \(P\) such that \(Q^*\) has Property AC. Then if \(Q\) is the set of all probability measure equivalent to \(P\), we have that Property AC holds under any \(Q \in Q\).

- This last theorem is especially useful for applications in Finance.
• **Theorem:** Under initial expansion, we have an analogous result. Expand \mathcal{G} by adding a random variable L initially to obtain \mathcal{H}. If there exists $Q^* \in \mathcal{Q}$ with Property AC under \mathcal{G}, then Q^* has Property AC in \mathcal{H}, and so all $Q \in \mathcal{Q}$.

• Let L be a positive random variable and progressively expand \mathcal{G} with L to get a filtration \mathcal{J}. If $Q^* \in \mathcal{Q}$ has Property AC for \mathcal{G}, then it also does for \mathcal{J} as long as we restrict ourselves to totally inaccessible stopping times in \mathcal{G}. Moreover this is true for any $Q \in \mathcal{Q}$.

• In general, whether this extends to all of \mathcal{J} depends on the nature of the compensator of L.
• **Theorem:** Under initial expansion, we have an analogous result. Expand \mathbb{G} by adding a random variable L initially to obtain \mathbb{H}. If there exists $Q^* \in \mathcal{Q}$ with Property AC under \mathbb{G}, then Q^* has Property AC in \mathbb{H}, and so all $Q \in \mathcal{Q}$.

• **Theorem:** Let L be a positive random variable and progressively expand \mathbb{G} with L to get a filtration \mathcal{J}. If $Q^* \in \mathcal{Q}$ has Property AC for \mathbb{G}, then it also does for \mathcal{J} as long as we restrict ourselves to totally inaccessible stopping times in \mathbb{G}. Moreover this is true for any $Q \in \mathcal{Q}$.
• **Theorem:** Under initial expansion, we have an analogous result. Expand \mathcal{G} by adding a random variable L initially to obtain \mathcal{H}. If there exists $Q^* \in \mathcal{Q}$ with Property AC under \mathcal{G}, then Q^* has Property AC in \mathcal{H}, and so all $Q \in \mathcal{Q}$.

• **Theorem:** Let L be a positive random variable and progressively expand \mathcal{G} with L to get a filtration \mathcal{J}. If $Q^* \in \mathcal{Q}$ has Property AC for \mathcal{G}, then it also does for \mathcal{J} as long as we restrict ourselves to totally inaccessible stopping times in \mathcal{G}. Moreover this is true for any $Q \in \mathcal{Q}$.

• In general, whether this extends to all of \mathcal{J} depends on the nature of the compensator of L.
Thank you