CARBONATE FORMATION IN NON-AQUEOUS ENVIRONMENTS BY SOLID-GAS CARBONATION OF SILICATES

S.J. Day\textsuperscript{1,2}, S.P. Thompson\textsuperscript{2}, A. Evans\textsuperscript{1} and J.E. Parker\textsuperscript{2}

Abstract. We have produced synthetic analogues of cosmic silicates using the Sol Gel method, producing amorphous silicates of composition $\text{Mg}_{x}\text{Ca}_{(1-x)}\text{SiO}_3$. Using synchrotron X-ray powder diffraction on Beamline I11 at the Diamond Light Source, together with a newly-commissioned gas cell, real-time powder diffraction scans have been taken of a range of silicates exposed to CO$_2$ under non-ambient conditions. The SXPD is complemented by other techniques including Raman and Infrared Spectroscopy and SEM imaging.

1 Introduction

Dust is present throughout the universe, existing in a wide variety of astrophysical environments and playing a major role in star and planet formation. Throughout their lifetime, dust grains are exposed to high levels of radiation and extreme temperatures, leading to the evolution of the amorphous, structurally disordered grains, that are characteristic of the diffuse interstellar medium (ISM; Kemper et al. 2004), to the highly processed materials that were present in the early solar nebula. We are investigating this processing and mineralization of grains using laboratory produced analogues of cosmic dust. In-situ synchrotron X-ray powder diffraction (SXPD) is conducted on Beamline I11 at Diamond Light Source (Thompson et al. 2009, 2011) and is complemented by SEM imaging, Raman and FTIR spectroscopy. This has relevance to the existence of carbonates in circumstellar environments that are believed to form through solid-gas interaction of cosmic silicates with gaseous CO$_2$ at high temperatures (Toppani et al. 2005, Rietmeijer et al. 2008). It also has relevance to processes in planetary environments where there is abundant CO$_2$ in the gas phase (Johnson & Fegley, 2002).

We describe preliminary proof-of-concept work which demonstrates that this process can indeed proceed.

\textsuperscript{1} Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK
\textsuperscript{2} Diamond Light Source, Harwell Campus, Didcot, Oxon, OX11 0DE, UK

© EDP Sciences 2014
DOI: (will be inserted later)
2 Experimental

Beamline I11 is equipped to simulate extreme temperature and gas pressure conditions (20 < \( T < 1000^\circ \text{C} \), 1-100 bar gas pressure), through the use of a cyberstar hot air blower and gas cell capillary holder ([Parker et al. 2012] Thompson et al. these proceedings). Amorphous magnesium and calcium silicates of composition \( \text{Mg}_x\text{Ca}_{1-x}\text{SiO}_3 \), where \( 0 < x < 1 \), were produced in the laboratory as analogues of cosmic dust, using an adapted sol gel method ([Thompson et al. 2012]). To inhibit the direct formation of carbonate, the gels were dried in vacuo and the dried silicates stored under argon. Powdered samples were loaded into quartz capillaries in a gas cell and mounted onto the sample stage of the diffractometer. The heating and dosing of samples with \( \text{CO}_2 \) was controlled remotely allowing real time, in-situ measurements to be taken. SXPD data were collected using a fast Position Sensitive Detector ([Thompson et al. 2011]), specifically designed for fast data collection. Data were collected at regular intervals as the samples were put under vacuum and then exposed to \( \text{CO}_2 \) up to a pressure of 1 bar. While this is clearly higher than in circumstellar environments (so the reaction rate is correspondingly higher), the nature of the experimental setup requires such pressure in order to provide adequate diffusion of \( \text{CO}_2 \) through the high packing density of the material in the capillary. Further, the experimental \( \text{CO}_2 \) pressure is comparable with that which was likely to be present in early planetary atmospheres ([Wood et al. 1968]). After a number of scans at room temperature the hot air blower was introduced and the temperature was increased in steps of 50°C, over a period of \( \sim 1 \) hour, up to a maximum of 900°C; two 4-s scans were taken at each temperature.

Fig. 1. SEM image of vacuum dried sample and a comparison of Raman Spectra of MgCaSiO\(_3\) grains, dried in air and under vacuum.
3 Characterization

3.1 Raman Spectroscopy

The sol gels were dried in air and in vacuo, producing noticeably different end products. The gel dried in air produced solid, angular grains of a few mm to a few cm in size, varying from clear to white in colour depending on composition. On the other hand, gels dried in vacuo produce a very fine white powder, with SEM images showing a branch-like network structure with individual grains no larger than a few µm in size (see Figure 1(a)).

![Figure 1(a)](image1)

![Figure 1(b)](image2)

Fig. 1. Examples of dried sol gel products. (a) Air-dried product showing solid, angular grains varying in size and colour. (b) Vacuo-dried product showing a fine white powder with a branch-like network structure.

Raman spectra show that there is also a compositional difference between the samples dried in air and those dried in vacuo (see Figure 1(b)). The air-dried samples exhibit features of crystalline calcium carbonate (calcite) exhibiting characteristic features at 712 cm$^{-1}$ and 1088 cm$^{-1}$, while samples dried in vacuo show a predominately silicate composition with prominent features in the 670 cm$^{-1}$ and 1000 cm$^{-1}$ bands. This implies that the carbonation of the samples is due to the reaction of Ca with atmospheric CO$_2$ during the drying phase.

3.2 FTIR

FTIR spectra of the samples were taken for a range of compositions and annealing temperatures. Figure 2(a) shows the comparison of four compositions, $x = 0, 0.2, 0.8$ and 1. A peak (arrowed) can be clearly seen at 7 µm strengthening with increasing Ca content. Also with increasing Ca content, the broad silicate features around 11 µm and 16 µm seem to weaken. Figure 2(b) shows the spectra of a CaSiO$_3$ sample annealed at four different temperatures. Few differences are observed at temperatures of up to 873 K, but note the disappearance of the 7 µm feature and the rise of crystalline silicate features at temperatures greater than
873K. This indicates that any carbonate phase present within the sample becomes unstable at this temperature and breaks down.

3.3 Synchrotron X-Ray Powder Diffraction

Figure 3(a) shows a sequence of in-situ SXPD patterns of Mg$_{0.5}$Ca$_{0.5}$SiO$_3$ exposed to CO$_2$ at 1 bar pressure and heated to 1272K over a period of a few hours. A feature indicative of calcite is present at low temperatures but disappears above 873K, again suggesting that the calcite phase is not stable at higher temperatures. The sample then begins to crystallize to diopside at just below 1173K. Rietveld refinement$^1$ of the powder diffraction patterns, using the TOPAS-Academic software package (Coelho, 2007), has provided information about the relative weight percentages of the diopside and calcite phases within the sample as it is being heated. This shows an inverse correlation of the two phases (see Figure 3(b)).

4 Results and Conclusions

Analysis of these data is still ongoing and the crystallization temperatures and effect of CO$_2$ on the samples will be much better constrained through further experiments and analysis. At this stage we provide proof of physical principle regarding the formation of carbonates rather than a direct simulation of any astrophysical environment. However by knowing that the carbonate phase becomes unstable above 873K, we can begin to constrain the astrophysical environments (both circumstellar and planetary) in which carbonates would be able to form and survive.

---

$^1$Rietveld refinement involves the fitting of a model crystal structure to x-ray powder diffraction data in order to determine the mineral phases present within the sample and to obtain information about the crystal structure.
References

Coelho, A., 2007, TOPAS-Academic [Computer Software], Version 4.1.
Johnson, N. M. and Fegley Jr, B. 2002, Adv. Space Res., 29, 233.
Kemper, F., Vriend, W. J. and Tielens, A. G. G. M. 2004, ApJ, 609, 826.
Parker, J.E., Potter, J., Thompson, S.P., Lennie, A. and Tang, C. 2012, Mater. Sci.
Forum, 706-709, 1707.
Rietmeijer, F.J.M., Pun, A., Kimura, Y. and Nuth, J.A. 2008, Icarus, 195, 493.
Thompson, S.P., Parker, J.E., Potter. J. et al. 2009, Rev. Sci. Inst., 80, 075107.
Thompson, S.P., Parker, J.E., Marchal, J. et al. 2011, J. Synchrotron Rad., 18, 637.
Thompson, S.P., Day, S.J., Parker, J.E., Evans, A. and Tang, C.C. 2012, J. Non Cryst-
talline Solids, 358, 885.
Toppani, A., Robert, F., Libourel, G., et al. 2005, Nature, 437, 1121.
Wood, A. T., Wattson, R. B., and Pollack, J. B. 1968, Science, 162, 114.