Characterization of Diastereomeric Equilibria of Pseudotetrahedral Bis[(R or S)-N-1-(Ar)Ethylsalicylaldiminato-κ²N,O]zinc(II) with Δ/Δ-Chirality-At-Metal Induction

Mohammed Enamullah,[a] Mohammad Mostafizur Rahman,[a] Mohammad Khairul Islam,[a] Dennis Woschko,[b] Christoph Janiak,[b] and Gennaro Pescitelli[c]

A family of bis[(R or S)-N-1-(Ar)ethylsalicylaldiminato-κ²N,O]-Δ/Δ-zinc(II) (A= C₆H₅ (ZnR₁³ or ZnSL¹), p-CH₃OCC₆H₄ (ZnR₂³ or ZnSL²) and p-ClC₆H₄ (ZnR₃³ or ZnSL₃)) compounds was synthesized and investigated by multiple methods. They feature Δ/Δ-chirality-at-metal induction along the pseudo-C₂ axis of the molecules. The chirality induction is quantitative in the solid state, explored by X-ray crystallography and powder X-ray diffraction (PXRD), where R or S-ligated complexes diastereoselectively yield Δ or Δ-configuration at the metal. On the other hand, Δ and Δ-diastereomers co-exist in solution. The Δ≈Δ equilibrium is solvent- and temperature-dependent. Electronic circular dichroism (ECD) spectra confirm the existence of a diastereomeric excess of Δ-ZnR¹³ or Δ-ZnSL¹³ in solution. DSC analysis reveals thermally induced irreversible phase transformation from a crystalline solid to an isotropic liquid phase. ECD spectra were reproduced by DFT geometry optimizations and time-dependent DFT (TD-DFT) calculations, providing ultimate proof of the dominant chirality atmetal in solution.

Introduction

Transition metal complexes with chiral Schiff base ligands are of continued interest[11–12] and developed for applications as chiral catalysts for the synthesis of organic and inorganic compounds.[13–14] We have recently reported on the synthesis, characterization, chiropical properties, supramolecular chemistry, (dia)stereoselectivity and X-ray molecular structures along with computational studies of four-coordinated chiral M[R or S-N=O] complexes (NO=deprotonated Schiff bases, M=Cu/Cu/Ni/Zn) with Δ/Δ-chirality-at-metal induction in tetrahedral or distorted tetrahedral/square-planar geometry.[15–26] Coordination of the enantiopure ligands (R or S-N=O) to the metal leads to the formation of two diastereomers Δ-M-R-N=O and Δ-M-S-N=O (or Δ-M-S-N=O and Δ-M-S-N=O), while the racemic ligands (R/S-N=O) give all four diastereomers. The noncovalent interactions acting within the metal-chiral ligands framework in the solid state, or solute-solvent interactions in solution, provide a difference in free energy between the two diastereomers and, hence, result in one thermodynamically favored diastereomer.[15,27–28] The Δ/Δ-chirality-at-metal induction arises exclusively (i.e., Δ-R or Δ-S as the only diastereomer) in an enantiopure crystal in the solid state, as evidenced by X-ray structure determination. However, it must be stressed that the measurement of a single crystal does not exclude the presence of other minor diastereomers in bulk solid-state samples. An alternative method, differential scanning calorimetry (DSC) for solid-state samples, provides both quantitative and qualitative information on Δ- and/or Δ-diastereomers based on thermally induced phase transformations from a crystalline solid to an isotropic liquid phase.[29] Moreover, in solution, both Δ- and Δ-diastereomers coexist with an uneven ratio and show a temperature-dependent dynamic diastereomeric equilibrium (Δ≈Δ), evidenced by NMR, electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) studies.[17,21] ECD/VCD spectra reveal expected mirror image relationships for complexes obtained from enantiomeric ligands in solution. In addition, these spectra are dominated by the chirality atmetal. Thus, comparing experimental ECD/VCD spectra with calculations allows for the assignment of the preferential chirality atmetal. Moreover, ECD/VCD spectra may be employed to study the diastereomeric equilibrium in solution.

Our recent studies on diastereoselection phenomena of metal(II) complexes (metal=Co/Cu/Ni/Zn) with enantiopure (Ar)salicylaldiminate/naphthaliminate ligands revealed that...
the Λ/Δ-chirality-at-metal induction is typically controlled by the chirality of the R or S-ligand, in general providing the Λ-MR or Λ-MS diastereomer in the solid state and a diastereomeric excess of Λ-MR or Δ-MS in solution\cite{11,12,20a,22,23,24}.1H NMR spectra for diamagnetic Zn complexes\cite{17,21} clearly display both Λ- and Δ-diastereomers with an uneven ratio for each enantiopure complex, and also show an equilibrium shift ($\Delta \leftrightarrow \Lambda$) depending on both time and temperature in solution. Different substitution patterns at the salicylic phenyl ring, such as the introduction of two halogen substituents, did not alter the preference for Λ-ZnR or Δ-ZnS diastereomers both in solution and in the solid state.\cite{26} This is opposite to what has been observed for homoleptic Cu complexes, where the presence of di-halogen substituents resulted in a chirality-at-metal inversion from Λ-CuR or Δ-CuS (in solid state) to Λ-CuR or Δ-CuS (in solution).\cite{23} Surprisingly, 1H NMR studies indicate the formation of only one diastereomer (Λ-ZnR or Δ-ZnS) in the bulk samples of the former homoleptic Zn complexes with di-halogen substituents\cite{26} (also supported by the simulated spectra), contrary to analogous Zn complexes without substituents.\cite{17,21} The phenomenon is further influenced by solvent polarity, pH of the solution, metal ion selection, redox state and crystallization protocol.\cite{29,30}

We herein report the synthesis, spectroscopy, thermal analyses, powder X-ray diffraction (PXRD) and X-ray structure of a family of bis([(R or S)-N-(Ar)ethylsalicylaldiminate-κ^2N,O]):Λ/Δ-zinc(II) complexes with Ar=\textit{C$_6$H$_5$}(ZnL), p-CH$_3$OC$_6$H$_4$(ZnL) and p-CIC$_6$H$_4$(ZnL). The X-ray structure for compound ZnL was reported before.\cite{34}–\cite{36} The difference with our X-ray structure for ZnL is noticed in the Supporting Information. Also, the ECD spectrum of ZnL has been measured previously,\cite{26,31} but density functional theory (DFT) calculations of geometries and ECD spectra had not been reported. Compounds ZnL and ZnL have also previously been reported on and had been examined by X-ray and VCD analyses.\cite{37} Preliminary ECD spectra were also reported,\cite{38} which will be recalled later. The present study mainly focuses on 1H NMR/ECD spectra at variable temperature/time and in different solvents to analyze, in detail, the impact of various variables on the phenomena of diastereoselection and chirality-at-metal induction. A thorough computational study was employed to get insight into chiroptical properties and to interpret the preferred formation of diastereomer (Λ vs. Δ) through comparisons of experimental and calculated ECD spectra. In this way, we complete our survey on the homoleptic series of ligands L$^\Lambda$-L$^\Delta$ in several metal complexes\cite{17,19,20a,22} and provide new comparison to the behavior of the analogous ZnL, (Ar)naphthaliminate series.\cite{21}

Results and Discussion

Synthesis

The enantiopure Schiff base ligands ([R or S]-N-1-(Ar)ethylsalicylaldimine (HL$^\Lambda$)\cite{15} react with zinc(II) acetate, under reflux, to give the enantiopure bis[(R or S)-N-1-(Ar)ethylsalicylaldiminate-κ^2N,O]:zinc(II) ([Ar=\textit{C$_6$H$_5$} (ZnRL), p-CH$_3$OC$_6$H$_4$ (ZnRL) or ZnSL), p-CIC$_6$H$_4$ (ZnRL) or ZnSL$^\Delta$) compounds, respectively, with Λ/Δ-chirality-at-metal induction (Scheme 1). IR spectra show strong bands at 1600–1625 cm$^{-1}$ (v(C=C)) for the imine group in the complexes. El-mass spectra show the parent ion peaks at m/z=512 (ZnRL or ZnSL), 572 (ZnRL or ZnSL$^\Delta$) and 582 (ZnRL or ZnSL$^\Delta$) in addition to several ions peaks for the fragmented species including [M-\textit{L}]$^+$, [HL]$^-$, [C$_6$H$_5$(O)(CHN)Zn]$^+$, [C$_6$H$_4$(O)(CHN)Zn]$^+$ and [C$_6$H$_5$(Cl)(CHN)Zn]$^+$ (see Supporting Information for spectral data).

Solid-State Structure

Single-crystal X-ray structure analyses for bis([(R or S)-N-1-(Ar)ethylsalicylaldiminate-κ^2N,O]:zinc(II) ([Ar=\textit{C$_6$H$_5$} (ZnRL), p-CH$_3$OC$_6$H$_4$ (ZnRL) or ZnSL), p-CH$_3$OC$_6$H$_4$ (ZnRL) or ZnSL$^\Delta$) and p-CIC$_6$H$_4$ (ZnRL or ZnSL$^\Delta$)] show that the two NO-chelate Schiff bases form a pseudotetrahedral N$_2$O$_2$-coordination sphere around the zinc atom with Λ/Δ-chirality induction along the pseudo-C$_2$ axis of the molecules (Figure 1). The R or S-ligand chirality diastereoselectively gives Λ-ZnRL$^\Lambda$, or Δ-ZnSL$^\Delta$-configured complexes in an enantiopure single crystal.\cite{5c,31} The structures for Λ-ZnRL$^\Lambda$ or Δ-ZnSL$^\Delta$ show two symmetry-independent molecules (Zn1/Zn2, Figure S1, Supporting Information) with identical configuration atmetal in the asymmetric unit to give Z=2 structures, which we confirmed through a structure re-determination for ZnRL$^\Lambda$ (see Supporting Information for details). On the other hand, the analogous ZnRL$^\Delta$ or ZnSL$^\Lambda$–3 species with \textit{p}-methoxy-/chloro-substituents on the phenyl group ([Ar=p-CH$_3$OC$_6$H$_4$ and p-CIC$_6$H$_4$ only provide a single molecule in the asymmetric unit.\cite{17} For Λ-ZnRL$^\Delta$ or Δ-ZnSL$^\Delta$–3,.

Scheme 1. Synthetic route to bis([(R or S)-N-1-(Ar)ethylsalicylaldiminate-κ^2N,O]:zinc(II) compounds.

the two coordinated ligands are crystallographically independent; the zinc atoms sit on a general position. Still, the complexes exhibit an approximately C₃-symmetric arrangement (cf. Scheme 1) with the assumed C₂-axis dissecting the O–Zn–O and the N–Zn–N angles. Selected bond lengths and angles for Λ-ZnR₃ or Λ-ZnSL₁ are listed in Table S1 (Supporting Information), comparable to the analogous Zn₃⁺(S)-phenylethylsalicylaldiminates.[24] The structures of the analogous M₃⁺(R or S)-(Ar)naphthalaldiminates (M=Zn₁⁷ and Ni₁⁹) also contained two symmetry-independent molecules in the asymmetric unit with the same metal configuration (i.e., Λ-MR₃ or Λ-MSL diastereomer), while the Cu⁺(R)-(Ar)naphthalaldiminates (Ar=m-Ch₂OC₆H₄)₁⁵ show two symmetry-independent molecules in the asymmetric unit with opposite configuration at metal (i.e., Λ/Δ-CuRL, diastereomeric pair). However, a consistent stereochemical chirality-at-metal induction is reported for the analogous M₃⁺(R or S)-(Ar)salicylaldiminates/naphthalaldiminates (M=Co,₁⁷,₂⁴ Ni,₂⁰ Cu,₁⁸,₂³ and Zn[18,2⁰,2₁,2₆]) to provide Λ-MR₃ or Λ-MSL diastereomers for R or S-HL ligands. Only in a single case, opposite chirality-at-metal induction has been reported to give Δ-CuRL or Λ-CuSL in the case of Cu⁺(R or S)-(Ar)salicylaldiminates.₁⁸

Powder XRD Analyses

PXRD patterns for the enantiopure complexes (ZnRL₁⁻³/ZnSL₁⁻³) were measured at 2θ = 5⁻⁵⁰° and ambient temperature, and they feature consistent similarities along the series (Figures 2 and S2). The experimental PXRD patterns fit well with the simulated patterns from the single-crystal structures, confirming the phase purity of the bulk samples of the complexes.¹⁵,¹⁷

Thermal Analyses

Thermally induced structural phase transformation from distorted tetrahedral/square-planar in solid-state (at low temperature) to regular tetrahedral/square-planar geometry in the isotropic liquid phase (at high temperature) is well known for transition metal-Schiff base complexes,¹⁸,²⁰,²³,₂⁵ furthermore offering an indication of the thermal stability of the complexes. The differential scanning calorimetry (DSC) heating curves display a strong endothermic peak with large heat absorption or transformation at 175–176 °C for ZnRL/ZnSL, 186–187 °C for ZnRL/ZnSL and 165–169 °C for ZnRL/ZnSL (Figure 3 and S3 and Table 1), while cooling curves show no peak on the reverse direction. DSC results thus suggest a thermally induced irreversible phase transformation from the crystalline solid to the isotropic liquid phase.¹⁸,²⁰,²³,₂⁵ The presence of a single endothermic peak corresponds to a single diastereomer Λ-ZnRL₁⁻³ or Δ-ZnSL₁⁻³ in the bulk sample in the solid state, in parallel to the X-ray structures for the complexes. Similar results with only a single DSC peak were found for each enantiopure complex of analogous M₃⁺(Ar)salicylaldiminates/naphthalaldiminates (M=Co,₂⁰,₂¹ Cu,₁⁸,₂³ Ni,₁⁹), while two separate peaks corresponding to both Λ- and Δ-diastereomers with an uneven

Figure 1. Molecular structures of (a) Λ-ZnSL₁ and (b) Λ-ZnRL₁ (depicting only one of the two symmetry-independent molecules in each case) to present the pseudotetrahedral/square-planar geometries with approximate C₃-symmetry in the structures of ZnRL₁⁻³ or ZnSL₁⁻³ (50% thermal ellipsoids). The structure shown in (b) is a re-determination (see Supporting Information for details); in (a), the structure was re-drawn from the deposited CIF file of CCDC 856921.[²⁴]

Figure 2. Experimental and simulated PXRD patterns for ZnSL₁⁻³ at ambient temperature. The simulated patterns are based on the deposited CIF files with CCDC numbers 856921, 841950 and 841952 for Λ-ZnSL₁⁻³, respectively.
ratio were reported for each enantiopure complex of Zn®-(Ar)naphthaldiminates.\[21\]

Absorption Spectra

Absorption spectra for enantiopure Schiff base ligands and enantiopure Zn®-Schiff base complexes in chloroform show consistent similarities along the series (Figures 4 and S4, and Table 2). The spectral patterns for the Schiff base ligands are quite different from those of the complexes. The spectra feature a strong band below 300 nm and a moderately intense band at 300–350 nm with maxima at \(\lambda_{\text{max}} = 320–325\) nm, due to the intra-ligand \(\pi\rightarrow\pi^*\) and \(n\rightarrow\pi^*\) transitions, respectively.\[17,21,26\]

The spectra for the complexes further show a strong broad band at 350–420 nm with \(\lambda_{\text{max}} = 372–378\) nm, assigned to the metal-ligand charge transfer (MLCT) transitions, which are obviously absent in the Schiff base ligands. Absorption spectra recorded at different time intervals suggest a rapid decomposition of the complex upon dissolution in chloroform (Figure 5): the intra-ligand \(n\rightarrow\pi^*\) band becomes more intense, while the MLCT band completely disappears over time. Almost 90% decomposition is observed within one hour, and full decomposition with fading of the orange-yellow color in one day. The rapid decomposition might be due to the presence of a small amount of water and/or acidity in chloroform which leads to hydrolysis of the complexes. Indeed, the presence of three isosbestic points at 267, 290 and 340 nm corresponds to
the existence of an equilibrium between the complexes and the free ligands. The same experiment in a non-polar solvent like cyclohexane suggests a somewhat slower decomposition, reaching ca. 20% within one hour and ca. 95% in 18 h (Figure S5). These results are in line with the common feature for four-coordinated labile pseudo-tetrahedral ZnII-Schiff bases complexes in solution.[17,21,24]

Electronic Circular Dichroism (ECD) Spectra

Electronic circular dichroism (ECD) spectra of complexes prepared from enantiomeric ligands, for example, ZnRL1 vs. ZnSL1, ZnRL2 vs. ZnSL2, and ZnRL3 vs. ZnSL3, show the expected mirror image relationships, thus confirming the diastereomeric purity or diastereomeric excess of the complexes in chloroform (Figure 6 and Table 3). The spectra for the complexes derived from the free ligands show a negative couplet with extrema at \(\lambda_{\text{max}} = 352–355 \) and 387–389 nm, a small negative band with its minimum at 319–322 nm, and a positive band below 300 nm (which is poorly defined due to the solvent cutoff). The reverse signs are observed for the complexes obtained from \(\Lambda \) ligands. The bands at \(\lambda_{\text{max}} = 282–287 \) and 319–322 nm are associated to the intra-ligand \(\pi \rightarrow \pi^* \) and \(n \rightarrow \pi^* \) transitions, respectively, while the bands at \(\lambda_{\text{max}} = 352–355 \) and 387–389 nm are due to the MLCT transitions. The spectra are consistent with those reported before,[16,17,21] though of overall better quality for ZnL2 for which the mirror-image appearance between enantiomeric species was not fully reflected in a previous publication.[17] A theoretical analysis of ECD spectra is reported in a separate section below.

\(^1H \) NMR Spectral Analyses

\(^1H \) NMR spectra for the ZnRL1 and ZnSL1 complexes are displayed in Figure 7. The methyl protons appear as a doublet at \(\delta = 1.45–1.51 \) ppm (\(J = 6.6 \) Hz) and the methine proton appears as a quartet at \(\delta = 4.21–4.28 \) ppm (\(J = 6.6 \) Hz). The imine proton appears as a singlet at \(\delta = 7.95–8.03 \) ppm, which is shifted up-field by 0.25–0.45 ppm in comparison to the free Schiff bases (\(\delta = 8.20–8.45 \) ppm),[15] indicating coordination of the nitrogen atom to the Zn\(^{2+}\) ion. Further, the methoxy protons appear as a singlet at \(\delta = 3.75 \) ppm in ZnRL2 or ZnSL2. Several aromatic proton peaks appear as doublet, triplet and multiplet in the range of \(\delta = 6.60–7.50 \) ppm, respectively (Figure 7 and Supporting Information). The phenolic proton peak, usually observed as a broad signal at \(\delta = 14.72–14.85 \) ppm in the free Schiff bases due to strong intermolecular hydrogen bonding,[17] is absent in the complexes, confirming the formation of an ionic bond between Zn\(^{2+}\) and O\(^-\) ions. A small residual peak (asterisked in Figure 7)

Figure 6. Electronic circular dichroism (ECD) spectra for bis(R or S)-N-1-(Ar)ethylsalicylidimino-N,O]-\(\Lambda \)/\(\Lambda \)-zinc(II) (1.4–2.6 mM) in chloroform at 25°C.

Figure 7. \(^1H \) NMR spectra for ZnRL1 and ZnSL1 (showing \(\Lambda \)- and \(\Delta \)-diastereomers) in CDCl3 (asterisked peaks correspond to the free Schiff base ligands liberated from decomposition of the complexes upon dissolution).

Table 3. ECD spectral data for bis(R or S)-N-1-(Ar)ethylsalicylidimino-N,O]-\(\Lambda \)/\(\Lambda \)-zinc(II) (1.4–2.6 mM) in chloroform at 25°C.

Compound	Transition	\(\lambda_{\text{max}} \) (nm)	\(\varepsilon_{\text{max}} \) (L mol\(^{-1}\) cm\(^{-1}\))	MLCT	MLCT
\(\Lambda \)-ZnRL1	\(\pi \rightarrow \pi^* \)	\(\approx 280 (\pm 0.6) \)	\(319 (\pm 1.4) \)	353 (\pm 4.2)	387 (\pm 11.4)
\(\Delta \)-ZnRL2	\(\pi \rightarrow \pi^* \)	\(\approx 280 (\pm 0.6) \)	\(319 (\pm 1.3) \)	350 (\pm 2.1)	386 (\pm 13.0)
\(\Lambda \)-ZnRL2	\(n \rightarrow \pi^* \)	\(\approx 320 (\pm 1.0) \)	352 (\pm 4.6)	388 (\pm 13.9)	
\(\Delta \)-ZnRL3	\(\pi \rightarrow \pi^* \)	\(\approx 280 (\pm 0.6) \)	\(322 (\pm 0.9) \)	350 (\pm 2.0)	387 (\pm 14.9)
\(\Lambda \)-ZnSL1	\(\Delta - \Lambda \)	\(\approx 281 (\pm 11) \)	\(322 (\pm 1.4) \)	355 (\pm 3.7)	389 (\pm 15.5)
\(\Delta \)-ZnSL2	\(\Delta - \Lambda \)	\(\approx 279 (\pm 12) \)	321 (\pm 1.7)	354 (\pm 2.6)	388 (\pm 16.2)

[a] \(\lambda \) in nm and \(\Delta \varepsilon \) in L mol\(^{-1}\) cm\(^{-1}\). [b] Noisy signal, only sign given.

ChemistryOpen 2022, 11, e202200116 (5 of 12) © 2022 The Authors. Published by Wiley-VCH GmbH
Effects of Temperature and Time on the $\Delta \rightleftharpoons \Lambda$ Equilibrium

As the complexes show two separate peaks for each proton, corresponding to the Λ- and Δ-diastereomers in solution, there might be a thermodynamic equilibrium between the two diastereomers ($\Delta \rightleftharpoons \Lambda$) which will be shifted by changing the temperature.[21,26] To check this hypothesis, 1H NMR spectra for ZnSL were run at variable temperatures starting from 20°C to 0°C, −20°C and −40°C in CDCl$_3$ (Figure 8). The spectral analyses reveal that the diastereomeric ratio (Δ:Λ) changes from 74:26 (20°C) to 77:23 (0°C), 80:20 (−20°C) and 83:17 (−40°C), respectively (Table 5). These results suggest an equilibrium between the two diastereomers which favors the most stable Λ-form at low temperature in solution, with the fraction of the less stable Δ-form increasing at higher temperatures (Figure 8). Indeed, the plot of diastereomeric ratio (Λ:Δ) vs. T (°C) shows a quasi-linear relationship, indicating the presence of a diastereomeric equilibrium ($\Delta \rightleftharpoons \Lambda$) in solution (Figure 9). The equilibrium constant of such a process amounts to 2.8 at 293 K (20°C), corresponding to a free energy difference $\Delta G^\circ = 0.6$ kcal mol$^{-1}$ between the two species.

1H NMR spectra at different time intervals after dissolution might also show an equilibrium ($\Delta \rightleftharpoons \Lambda$) shift provided that the equilibrium is slow enough with respect to the NMR time scale.[16,17,21,26] To check this equilibrium shift, we recorded 1H NMR spectra for ZnSL or ZnSL in CDCl$_3$ at different time intervals after dissolution of the sample. The spectral analyses demonstrate that the diastereomeric ratios (Δ:Λ or Λ:Δ) remain almost unchanged (data not shown), suggesting no equilibrium shift in course of time in solution, in line with our previous findings for Zn-(R or S)-F-phenylalkylamines.[21] On the contrary, a diastereomeric equilibrium shift as a function of complex dissolution time was reported from a single diastereomer (within 10 min) to a diastereomeric mixture of 33:67 (40 min) and 46:54 (36 h) in Zn-(R/S)-2-((2-OH-2-phenylethylimino)methyl)phenoxides.[21]

Variable-temperature ECD spectra were measured in chloroform for compounds ZnSL and ZnSL between 20 and 60°C (Figure 10). The major ECD couplet in the region between 340 and 420 nm features an intensity decrease to respectively 50% and 40% for ZnSL and ZnSL upon heating. An isodichroic point is observed in correspondence with the couplet crossover (i.e., where the ECD curve crosses the zero line) at 365 nm. This is also consistent with a diastereomeric equilibrium between two species ($\Lambda \rightleftharpoons \Delta$) showing ECD spectra with opposite sign in

Table 4. Percentages (% of Λ-Δ-diastereomers in ZnRL1,3 or ZnSL1,3 in CDCl$_3$ at 20°C (estimated from the imine, methyl and methylene proton peaks, respectively).

Entry	Imine proton a	Λ [%]	Methylene proton b	Δ [%]	Methyl proton b	Λ [%]
Λ	8.00	8.00	4.27	4.58	1.48	1.48
ZnRL1	76	76	76			
Δ-Λ-ZnSL3	7.96	3.96	2.22	2.55	1.45	1.53
ZnSL3	81	81	81			
Λ	8.03	8.03	2.11	2.18	1.51	1.51
ZnRL2	80	80	80			
Δ-Λ-ZnSL2	8.13	8.13	4.56	4.25	1.51	1.46
ZnSL2	23	23	23			
Λ	8.14	8.14	4.62	4.25	1.56	1.52
ZnRL2	22	22	22			
Δ-Λ-ZnSL3	8.15	8.15	4.57	4.21	1.50	1.50
ZnSL3	18	18	18			

a ppm. b Peaks for Λ and Δ-diastereomers are overlapped.
that region, as will be confirmed by TD-DFT calculations. In other regions of the spectrum, however, the effect of heating is less straightforward; for example, the band at 318.5 nm is increased in intensity. Thus, more than a single equilibrium phenomenon is responsible for the thermally induced evolution of the ECD spectra at high temperature, possibly a combination of a diastereomeric equilibrium and conformational rearrangements.

Effects of Solvent on Diastereomeric Ratio (Δ:Λ)

1H NMR spectra for ZnSL$_1^1$ were recorded in different solvents including acetone-d_6, CD$_2$OD, CDCl$_3$, CD$_2$Cl$_2$, toluene-d_8 and...
DMSO-d$_6$ at 25°C (Figure S6). The spectra show the presence of both Δ- and Λ-diastereomers with varying ratios in all solvents. The spectral analysis further reveals that the $\Delta:\Lambda$ ratio substantially changes with the polarity of the solvents from 93:7 (acetone-d$_6$) to 91:9 (CD$_3$OD), 88:12 (DMSO-d$_6$), 78:22 (CDCl$_3$), 74:26 (CDC$_6$) and finally, to 69:31 (toluene-d$_8$) (Table 6). Indeed, the plot of Δ or Λ fraction vs. the dielectric constant (ε_0) of the solvents suggests (Figure 11) that an increase of solvent polarity further favors the Δ-S-diastereomer, while a decrease favors – relatively – the Λ-diastereomer. It must be noticed, however, that the trend shown in Figure 11 is not regular; the largest $\Delta:\Lambda$ ratio is observed for acetone-d$_6$ rather than for the two more polar solvents. This means that the equilibrium cannot be simply described by the Onsager model (solvent reaction field), and specific solute-solvent interactions also come into play.[32]

Geometry Optimizations and ECD Calculations

Geometry optimizations run at the B3LYP-D3BJ/6-311G+(d,p) level with PCM for chloroform revealed a clear preference for Λ-ZnRL$_1$[3] or Λ-ZnSL$_1$[3] vs. Δ-ZnRL$_1$[3] or Δ-ZnSL$_1$[3] (Figures S7-S9) in parallel to the solid-state X-ray structures and NMR evidence. For all compounds, the calculated population of the major diastereomer was >99%. For compound ZnL$_1$, a different functional (ωB97X-D/6-311G+(d,p)/PCM) led to consistent results, too. Thus, DFT calculations predict the major diastereomeric species correctly, but overestimate its relative stability when compared to NMR data. The most stable structure found for Λ-ZnRL$_1$ or Λ-ZnSL$_1$, with population >97.5% with both functionals, is similar to the X-ray geometry: the root-mean-square deviation (RMSD) for the heavy (non-H) atoms between the two structures is 0.47 Å (Figure S10).

Excited-state calculations were run with the TD-DFT method employing CAM-B3LYP and B3LYP functionals, the def2-TZVP basis set, PCM model for chloroform, and using the structures optimized at the B3LYP-D3BJ/6-311G+(d,p)/PCM level. The absorption spectra calculated for all species ZnL$_1$, as well as for the diastereomeric pair Λ/Δ-ZnRL$_1$, were all consistent with each other (Figure S11). To avoid ambiguity, the results for the Λ-configured ligands are discussed here; calculations for Δ-configured ligands were fully consistent. The simulated ECD spectra for the diastereomeric pairs Λ-ZnRL$_1$ and Δ-ZnRL$_1$ exhibit mirror-image relationship on a wide wavelength range (Figure 12). As the d^{10} Zn$^{2+}$ core does not originate any allowed d–d transition, the absolute configuration of the metal center can be assessed from metal–ligand and/or intra-ligand transitions bands in the UV region.[21,26] In particular, complexes with Λ chirality atmetal are correlated with a first negative calculated ECD band, followed by a positive one. The opposite occurs for Δ chirality atmetal. Thus, we can establish the following relationship: a negative couplet in the region between 320 and 420 nm corresponds to Λ chirality atmetal, while a positive couplet in the same region corresponds to Δ chirality atmetal. The fact that diastereomeric structures of the kind Λ-ZnRL$_1$ vs. Δ-ZnRL$_1$ lend almost mirror-image ECD spectra signifies that they are dominated by the chirality atmetal rather than by the chirality at the carbon atoms, although it is this latter which dictate the former through diastereoselection. Similar results have been found before for different families of M^{2+}/(Ar)-salicylaldiminate/naphthaldiminate complexes.[32-24] Molecular orbital analysis of the diagnostic bands confirms they are due to exciton-coupled MLCT-type transitions (Figure S12). The occupied orbitals (HOMO and HOMO – 1) are a combination of metal d orbitals (d_{xy} and d_{yz}) and ligand π orbitals, while the virtual (LUMO) orbital is a ligand π^* orbital. The observed sign of the ECD couplet is in line with the expectations of exciton chirality theory, based both on qualitative arguments and a quantitative assessment (Figures S13-S14).[23] It is noteworthy that the analogous naphthaldimine Schiff base complexes exhibited an apparent exception of the exciton chirality rule for the corresponding ECD couplet in the 340–440 nm region.[21]

Comparison of experimental ECD spectra of complexes ZnL$_1$ with Boltzmann-averaged calculated spectra reveals a satisfactory agreement, using both the CAM-B3LYP (Figure 13) and the B3LYP functional (Figure S15). Recalling that the estimated diastereomeric populations (used to generate Boltzmann-averaged spectra) are dominated by Λ-ZnRL$_1$ and Δ-ZnSL$_1$ species, respectively, the results strongly suggest that the ZnRL$_1$ or ZnSL$_1$ complexes result in a diastereomeric excess of Λ-ZnRL$_1$ or Δ-ZnSL$_1$ (as major diastereomer) in

Table 6. Proportion of Λ- and Δ-diastereomers (%) for ZnSL$_2$ in different solvents at 25°C (estimated from the imine proton peak).

Solvents	Λ (%)	Δ (%)
Acetone-d$_6$	7	93
CD$_3$OD	9	91
DMSO-d$_6$	72	28
CDCl$_3$	22	78
CDC$_6$	26	74
Toluene-d$_8$	31	69

Figure 11. Plot of Δ or Λ fraction vs. dielectric constant (ε_0) of the solvents for ZnSL$_2$ at 25°C (values are calculated from the imine proton peak).
solution. This result is in line with the X-ray structures for Λ-\(\text{ZnR}_L^1\) or Δ-\(\text{ZnS}_L^1\) in solid state,\[^{[5c–d,17,21,26]}\] 1H NMR evidence, VT-ECD results, and DFT optimization findings discussed above. Overall, we observe a conservation of Λ or Δ-chirality-at-metal induction in the R or S-ligated complexes (i.e., Λ-MRL or Δ-MSL) resulting from diastereoselection in solid and solution phases (or gas-phase optimized structures), as observed for a series of analogues M\(^{\text{II}}\)-(R or S)-(Ar)salicylaldiminates/naphthaldiminates (M=Co,\[^{[22,25]}\] Ni,\[^{[20]}\] Cu,\[^{[18,19]}\] and Zn\[^{[5c–d,17,21,26]}\]). In contrast, solid-versus-solution studies reveal solvation-induced chirality-at-metal inversion in Cu\(^{\text{II}}\)-(R)-(p-CH\(_3\)OC\(_6\)H\(_4\))salicylaldiminates\[^{[19]}\] and Cu\(^{\text{II}}\)-(R or S)-1-N-(phenyl)-2,4-dihalogen-salicylaldiminates.\[^{[21]}\]

Conclusion

We have reported the synthesis and thorough investigation of a family of bis[(R or S)-1-(Ar)ethylsaliyaldiminato-κ\(^2\)N,O]-\(\Lambda\)/Δ-zinc(II) \(\text{Ar}=\text{C}_6\text{H}_4\text{(ZnR}_L^1\) or ZnSL\(_L^1\)) and \(p\text{-ClC}_6\text{H}_4\text{(ZnR}_L^3\) or ZnSL\(_L^3\)) compounds. This series allowed us to complete our survey on the homoleptic series of ligands HL\(_1\)-HL\(_3\)\[^{[17,19,20a,22]}\] and provided new comparison with the analogous Zn\(^{\text{II}}\)-(Ar)naphthaldiminate series.\[^{[21]}\] The solid-state properties were characterized by X-ray crystallography and powder X-ray diffraction, and solid-to-liquid phase transitions by DSC. In the solid state, a single diastereomer exists for each compound, that is, Δ-ZnSL or Λ-ZnRL. An equilibrium phenomenon was detected in solution between the diastereomeric species with opposite chirality at the metal. The equilibrium is shifted towards the species with Δ-ZnSL or Λ-ZnRL configuration in a temperature- and solvent-dependent manner. The phenomenon was evidenced and characterized by NMR and ECD spectroscopy, DFT geometry optimizations and TD-DFT calculations ultimately allowed the assignment of the chirality at-metal. It is noteworthy that the same equilibrium phenomenon, biased toward the same diastereomeric species, has been consistently found for the Schiff base complexes of several metals (Co, Zn, Ni, and Cu) with different coordination geo-
metries, and for two distinct families (salicylaldimines and naphthalaldimimates) of ligands.

Experimental Section

IR-spectra were recorded on a Nicolet iS10 spectrometer as KBr disc at ambient temperature. UV-Vis spectra were obtained with Shimadzu UV 3150 spectrophotometer in CHCl$_3$ at 25°C. ECD spectra were obtained with OLIS RSM spectropolarimeter, Rapid Scanning Monochromator (On-line Instrument System, Inc.) in CHCl$_3$ at 20°C. VT-ECD spectra were obtained with a Jasco J-1500 spectropolarimeter equipped with a Peltier stage. 1H NMR spectra were recorded on a Bruker Ascend 400 spectrometer operating at 400 MHz in different solvents (acetone-d$_6$, CD$_2$OD, CDCl$_3$, CD$_3$CN, toluene-d$_8$, and DMSO-d$_6$) at 25°C. Variable temperature 1H NMR spectra for ZnSL were recorded on a Bruker Ascend 400 spectrometer operating at 400 MHz in CDCl$_3$ at 25°C. Electron impact (EI) mass spectra were recorded with a Thermo-Finnigan TSQ 700. Isotopic distribution patterns for the Zn or Zn + Cl containing ions are clearly visible in the spectra and the peaks arising from the most abundant 64Zn/66Zn isotopes are listed. Differential Scanning Calorimetry (DSC) were run on a Shimadzu DSC-60 in the range 20-200 °C (just before any decomposition temperature) with a rate of 10 K min$^{-1}$ under nitrogen atmosphere. PXRD data were collected on a GNR Explorer Powder X-ray diffractometer operating in the Bragg-Brentano geometry with CuK$_\alpha$ radiation ($\lambda=1.5406$ Å). The experiment was carried out at 40 kV and 30 mA using a silicon zero-background sample holder. Data were collected at 25°C with 20 step size 0.02° and an integration time of 3.0 s over an angular range of 5-50° (2θ). The enantiopure Schiff base ligands (R or S)-1-(Ar)ethylsalicyldiamine (R or S-4H-3) were synthesized following our previous literature.$^{[11]}$

Bis(R)-N-1-(C$_2$H$_5$)ethylsalicyaldiminate-k$^\gamma$N,O-Λ/-Zn(II) (Λ/-ZnRL2): yield 255 mg (74%) based on (R)-N-1-(C$_2$H$_5$)-ethylsalicyaldidine. See Supporting Information for the compound’s spectral data.

Bis(S)-N-1-(C$_2$H$_5$)ethylsalicyaldiminate-k$^\gamma$N,O-Λ/-Zn(II) (Λ/-ZnRL2): yield 262 mg (76%).

Bis(R)-N-1-(p-CH$_3$OC$_6$H$_4$)ethylsalicyaldiminate-k$^\gamma$N,O-Λ/-Zn(II) (Λ/-ZnRL2): yield 288 mg (75%).

Bis(S)-N-1-(p-CH$_3$OC$_6$H$_4$)ethylsalicyaldiminate-k$^\gamma$N,O-Λ/-Zn(II) (Λ/-ZnRL2): yield 285 mg (74%).

Bis(R)-N-1-(p-CIC$_6$H$_4$)ethylsalicyaldiminate-k$^\gamma$N,O-Λ/-Zn(II) (Λ/-ZnRL2): yield 275 mg (70%).

Bis(S)-N-1-(p-CIC$_6$H$_4$)ethylsalicyaldiminate-k$^\gamma$N,O-Λ/-Zn(II) (Λ/-ZnRL2): yield 280 mg (72%).

Computational Section

Conformational searches and preliminary geometry optimizations were run with Spartan20 (Wavefunction, Inc, Irvine, CA). Final optimizations and excited-state calculations were run with Gaussian 16.$^{[20]}$ The computational procedure employed was similar to that previously reported for several analogs.$^{[18-26]}$ Starting from the X-ray structure of ZnRL1, the geometries for all three pairs of complexes Λ/-ZnRL$^{1-3}$/-ZnRL$^{1-3}$ were constructed. Conformational searches were run by varying all possible rotatable bonds and keeping O–Zn and N–Zn distances fixed. All structures thus obtained were pre-optimized at B3LYP-D3/6-311G(d) level in vacuo, then fully optimized at B3LYP-D3B/6-311G(d,p) level including PCM solvent model for chloroform. The most stable structures are shown in Figures S7-S9. Excited state properties (UV-Vis and ECD spectra) were calculated with two different functionals (B3LYP and CAM-B3LYP), the def2-TZVP basis set, and PCM solvent model for chloroform. For each calculation, 36 excited states (roots) were included. The computed spectra (UV-Vis/ECD) were generated with SpecDis$^{[31]}$ assuming a Gaussian band shape with exponential half-width $\sigma=0.2$ eV. 1H NMR spectra were computed at GIAO B3LYP/6-311+G(d,p) with PCM in chloroform for diastereomeric pairs Δ/Λ/-ZnRL2 and Δ/Λ/-ZnRL3. The optimized structures at B3LYP/6-31G(d) level. Assessments of Δ- and Λ-diastereomers were done following these computed spectra and found in good accord to the experimental results.

X-Ray Crystallography

Structure for compound Λ/-ZnRL1 is a redetermination of the structure described in H. Sakiyama, H. Okawa, N. Matsumoto, S. Kida, J. Chem. Soc., Dalton Trans. 1990, 2925–2939.$^{[21]}$ The Sakiyama structure has been deposited as CCDC 1185213. We note that in this deposited 'Sakiyama' structure, H atoms are missing on the aromatic and imine C–N carbon atoms C72, C22, C27, C32, and C52. At the same time there are two instead of one H atom on the aromatic carbon atoms C2 and C26. Single crystals of Λ/-ZnRL1 were carefully selected under a polarizing microscope and mounted on a loop. Data collection: Bruker APEX II CCD diffractometer with graphite- or multi-layer mirror monochromated Mo-K$_\alpha$ radiation ($\lambda=0.71073$ Å); ω-scans. Data collection and cell refinement with APEX2$^{[32]}$ data reduction with SAINT [Bruker].$^{[33]}$ Structure analysis and refinement: The structures were solved by direct methods (SHELXT-2015),$^{[34]}$ refinement was done by full-matrix least squares on F^2 using the SHELXL-2017/1 program suite, empirical (multi-scan) absorption correction with SADABS (Bruker).$^{[35,36]}$ All non-hydrogen positions were refined with anisotropic temperature factors. Hydrogen atoms for aromatic and olefinic CH, aliphatic CH and CH$_3$ groups were positioned geometrically (C–H = 0.94 Å for aromatic and olefinic CH, 0.97 Å for aliphatic CH and 0.97 Å for CH$_3$) and refined using a riding model (AFIX 43 for aromatic/olefinic CH, AFIX 13 for aliphatic CH, AFIX 137 for CH$_3$). Details of the X–ray structure determinations and refinements are provided in Table S2. Graphics were drawn with DIAMOND (Version 4.4). Deposition Number href=https://www.ccdc.cam.ac.uk/services/structures?id=doi:10.1002/open.202200116 2157176 (for Λ/-ZnRL3) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe href=http://www.ccdc.cam.ac.uk/services/structures Addresses the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe for obtaining elemental analyses and PXRD data. The authors are grateful to Alexander von Humboldt Foundation (AvH), Bonn, Germany for financial support under the project Research Group Linkage Program. We thank Prof. Andrew Woolley, Department of Chemistry, University of Toronto, Canada, for running ECD spectra. G. P. gratefully acknowledges University of Pisa for the availability of high-performance computing resources and support through the service computing@uniipi, and the CINECA award under the ISCRA initiative for the availability of high-performance computing resources and support.

Acknowledgements

We acknowledge the Wazed Miah Science Research Centre (WMSRC) at Jahanginnagar University, Dhaka, Bangladesh for obtaining elemental analyses and PXRD data. The authors are grateful to Alexander von Humboldt Foundation (AvH), Bonn, Germany for financial support under the project Research Group Linkage Program. We thank Prof. Andrew Woolley, Department of Chemistry, University of Toronto, Canada, for running ECD spectra. G. P. gratefully acknowledges University of Pisa for the availability of high-performance computing resources and support through the service computing@uniipi, and the CINECA award under the ISCRA initiative for the availability of high-performance computing resources and support.
The data that support the findings of this study are available in the supplementary material of this article.

Keywords: chirality • diasteromeric equilibrium • metal complexes • Schiff base ligand • spectroscopic investigation
[29] a) C. Merten, R. McDonald, Y. Xu, Inorg. Chem. 2014, 53, 3177; b) M. Albrecht, E. Issak, M. Baumert, V. Gossen, G. Raabe, R. Fröhlich, Angew. Chem. Int. Ed. 2011, 50, 2850.

[30] a) C. M. Álvarez, R. Carrillo, R. Garcia-Rodríguez, D. Miguel, Chem. Commun. 2011, 47, 12765; b) J. Gregolinski, M. Hikita, T. Sakamoto, H. Sugimoto, H. Tsukube, H. Miyake, Inorg. Chem. 2016, 55, 633; c) S. Zahn, J. W. Canary, Science 2000, 288, 1404.

[31] T. Onodera, T. Akitsu, Polyhedron 2013, 59, 107.

[32] M. Pollastrini, F. Lipparini, L. Pasquinelli, F. Balzano, G. U. Barretta, G. Pescitelli, G. Angelici, J. Org. Chem. 2021, 86, 7946.

[33] G. Pescitelli, Chirality 2022, 34, 333.

[34] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnemberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT 2016.

[35] a) T. Bruhn, A. Schaumlöffel, Y. Hemberger, G. Bringmann, Chirality 2013, 25, 243; b) SpecDis, Version 1.71, T. Bruhn, A. Schaumlöffel, Y. Hemberger, G. Pescitelli, Berlin, Germany 2017, https://specdis-software.jimdo.com.

[36] APEX2, Data collection program for the CCD area-detector system, Version 2.1-0, Bruker Analytical X-ray Systems: Madison WI, 1997–2014.

[37] SAINT, Data reduction, frame integration program for the CCD area-detector system, Bruker Analytical X-ray Systems: Madison WI, 1997–2014.

[38] G. M. Sheldrick, Program SADABS, University of Göttingen: Göttingen, Germany 1996.

[39] a) L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 2015, 48, 3; b) K. Brandenburg, Diamond Version 4.4), Crystal, Molecular Structure Visualization, Crystal Impact-K. Brandenburg & H. Putz Gbr: Bonn, Germany 2017.

Manuscript received: May 18, 2022
Revised manuscript received: May 24, 2022