Supplemental Methods & Data:

Histopathology & Immunofluorescence

For histopathology, samples were fixed, paraffin embedded and 5μm samples cut and stained with Hematoxylin and Eosin for blinded semi-quantitative GVHD scoring by an anatomical pathologist. Paneth cell numbers and Ki-67 staining were quantitated after immunohistochemical staining with anti-lysozyme or Ki-67 antibodies and goblet cells quantitated after staining with periodic acid Schiff stain. Enumeration was performed electronically using either the cytoplasmic or nuclear staining algorithms within Aperio ImageScope software (Version 12.3.2.8013). Three distinct areas devoid of processing artefact were chosen per slide and the average % of positive cells per slide assessed.

For immunofluorescence, tissues were fixed with 4% paraformaldehyde, then placed in 30% sucrose prior to being frozen. 7μm sections were cut and treated with Background Sniper (Biocare Medical) and 2% BSA for 30 min then anti-GFP and Ki-67 for 120 minutes at RT. Sections were counterstained with DAPI for 5 min and images acquired using a Zeiss 780-NLO Confocal Microscope (Zen software).

For multiplexed immunohistochemistry tissues were fixed with 10% formalin then placed in 70% ethanol prior to being paraffin-embedded. Sections (4 μm thickness on positively-charged slides) were baked for 1 hour at 60°C. The slides were then dewaxed and stained on a Leica BOND Rx stainer (Leica, Buffalo Grove, IL) using Leica Bond reagents for dewaxing (Dewax Solution), antigen retrieval/antibody stripping (Epitope Retrieval Solution 2), and rinsing after each step (Bond Wash Solution). Antigen retrieval and antibody stripping steps were performed at 100°C with all other steps at ambient temperature. Endogenous peroxidase was blocked with 3% H2O2 for 5 minutes followed by protein blocking with 10% normal mouse serum in TCT buffer (0.05M Tris, 0.15M NaCl, 0.25% Casein, 0.1% Tween 20, 0.05% ProClin300 pH 7.6) for 10 minutes. The first primary antibody (position 1) was applied for 60 minutes followed by the secondary antibody application for 10 minutes and the application of the tertiary TSA-amplification reagent (PerkinElmer OPAL fluor) for 10 minutes. A high stringency wash was performed after the secondary and tertiary applications using high-salt TBST solution (0.05M Tris, 0.3M NaCl, and 0.1% Tween-20, pH 7.2-7.6). Species specific Polymer HRP was used for all secondary applications, either Leica’s PowerVision (PV) Poly-HRP anti-Rabbit Detection or Vector Impress Rat polymer. The primary and secondary antibodies were stripped with retrieval solution for 20 minutes before repeating the process with the second primary antibody (position 2) starting with a new application of 3% H2O2. The process was repeated until five positions were completed. The stripping step was not performed after the final position. Slides were stained with DAPI for 5 minutes, rinsed for 5 minutes, and coverslipped with Prolong Gold Antifade reagent (Invitrogen/Life Technologies, Grand Island, NY).

Slides were cured overnight at room temperature, then whole slide images were acquired on the Vectra Polaris Quantitative Pathology Imaging System (Akoya Biosciences, Marlborough, MA). The
entire tissue was selected for processing using Phenochart and the images were spectrally unmixed using inForm software and exported as multi-image TIF files, which were analyzed with HALO image analysis software (Indica Labs, Coales, NM). Cellular analysis of the images was performed by first identifying cells based on nuclear recognition (DAPI stain), then measuring fluorescence intensity of the estimated cytoplasmic areas of each cell. A mean intensity threshold above background was used to determine positivity for each fluorochrome within the cytoplasm, thereby, defining cells as either positive or negative for each marker. The positive cell data was then used to define colocalized populations. Intestinal stem cells (ISC) and Paneth cells were defined as Lgr5-GFP+ EpCAM+ DAPI+ and Lysozyme+ EpCAM+ DAPI+, respectively. The average distance between every ISC to the nearest Paneth cell was calculated by Nearest Neighbor Analysis.

Whole animal and organ Imaging

Expansion of luciferase expressing T cells was quantitated through measurement of luciferin-luciferase signal intensity using the Xenogen imaging system (Xenogen IVIS 100; Caliper Life Sciences, CA, USA). Fur on the ventral surfaces was shaved and mice were injected with 500μg of luciferin subcutaneously and imaged 5 minutes later under continuous isoflurane-based anesthesia. After total body imaging, mice were again injected with luciferin and then euthanized and single organs were isolated and imaged. For assessment of donor T cell expansion after transplant, BALB/cLuc T cells were given at time of BMT. For assessment of APC function, expansion of TeteLuc T cells in response to selected antigen presenting cells was performed at day 15 post-transplantation, with 1-2x10⁶ flow cytometrically sorted T cells given on day 12 post-transplant.

FITC Dextran

Seven days post-transplantation, mice were fasted of food and water for 4 hours prior to oral gavage with 8mg of FITC labelled Dextran (MW 4kDa, Sigma-Aldrich) in 200μL of PBS. Peripheral blood was collected 4 hours later and serum separated. FITC-Dextran concentration in serum was determined using a Synergy H4 Fluorometer (Biotek) at excitation 485nm and emission 535nm.

Cytokine analysis

Serum IL-6, IL-17A, TNF and IFNγ were measured via murine Flex Array™ sets (BD Biosciences Pharmingen, San Diego, CA, USA) according to the manufacturer’s instructions. Samples were acquired on a BD LSR Fortessa and analyzed using FCAP Array™ Software (BD Biosciences).
Serum, SI and colon IL-28A/B were measured using the R&D Systems Mouse IL-28A/B (IFN-lambda 2/3) DuoSet ELISA on samples obtained from either serum or from mucosal intestinal homogenate as per a protocol provided by Invitrogen. The mucosa was scraped from the underlying muscle layer with a glass slide. The cells were lysed with Tris EDTA (10 mM Tris-HCl, and 1 mM EDTA, pH 7.4) containing 0.05% sodium azide, 1% Tween-80, 2 mM Phenylmethylsulfonyl fluoride (PMSF), and 1 microgram per milliliter of each of the following protease inhibitors: aprotinin, leupeptin, and pepstatin A prior to homogenization. The homogenate was then centrifuged (11,000 x g, 10 minutes at 4°C) and supernatant collected and filtered (4.5 micron filter).

qPCR

RT-qPCR was performed on RNA isolated from tissues obtained from naïve and post-transplant mice. Tissues were frozen in 500μL Trizol and then mechanically homogenized. RNA was then extracted using the QIAGEN RNeasy micro kit, converted to cDNA, and PCR performed using Taqman reagents. For *Ifnlr1* the Taqman Gene Expression Assay SM Mm00558035_m1 was used, and for the housekeeping gene SM Mm03024075_m1 (*Hprt*) was used. For *Reg3b, Reg3g, LysP* PCR GAPDH was used as the housekeeping gene and primers were used with Sybr Green Supermix using standard PCR conditions on an ABI ViiA7 PCR machine.

Mixed Lymphocyte reaction

BALB/c T cells were isolated from spleen and purified by magnetic bead selection. WT or *Ifnlr1*−/− DC were isolated from spleen via density gradient and further purified by magnetic bead selection. DC were irradiated with 2100cGy. Serial dilutions (20,000, 10,000, 5,000 and 0) of stimulator DC were plated with either CD4+ or CD8+ T cells at 200,000 T cells per well, in triplicate. After 4 days of culture, 100μL per well of 1:1000 ³H-thymidine was added. 18 hours later proportionate inclusion of ³H-thymidine was measured scintigrapically.

NK functional analysis

Congenically marked recipient B6 (CD45.2+) mice were conditioned with 1000cGy radiation on day -1 and then on day 0 co-injected with allogeneic 12x10⁶ Balb/c (CD45.1+) and syngeneic 12x10⁶ PTPxC57 (CD45.1+CD45.2+) bone marrow. 48 hours after transplantation mice were culled, spleens harvested, mashed in 2% FCS containing RPMI, and then filtered for single-cell suspensions. For in vivo cytotoxicity assays proportions of remaining syngeneic, allogeneic and recipient derived
haematopoietic cells were enumerated by flow cytometry. The index of cytotoxicity was calculated as the ratio of CD45.1+2 syngeneic derived cells to CD45.1 allogeneic derived cells. For recipient NK transcriptional profiling, splenocytes were isolated 24 hours after BMT (48 hours after irradiation) and stained with 7-AAD, CD45.1, CD45.2, CD3, NK1.1 and NKp46 for subsequent cell sorting.

16S ribosomal microbial sequencing

DNA was extracted from 50-100 mg of fecal material using an initial bead beating step followed by extraction using the Maxwell 16 Research Instrument (Promega, USA), according to the manufacturer’s protocol, with the Maxwell 16 Tissue DNA Kit (Promega, USA). DNA concentration was measured using a Qubit assay (Life Technologies, USA) and was adjusted to a concentration of 5 ng/µl. The 16S RNA gene encompassing the V6 to V8 regions was targeted using the 803F and 1392R primers modified to contain Illumina specific adapter sequence. Preparation of the 16S library was performed as described, using the workflow outlined by Illumina (#15044223 Rev.B). In the first stage, PCR products of ~466 bp were amplified according to the specified workflow, with an alteration in polymerase used to substitute Q5 Hot Start High-Fidelity 2X Master Mix (New England Biolabs, USA) in standard PCR conditions. Resulting PCR amplicons were purified using Agencourt AMPure XP beads (Beckman Coulter, USA). Purified DNA was indexed with unique 8 bp barcodes using the Illumina Nextera XT 384 sample Index Kit A-D (#FC-131-1002, Illumina, USA), in standard PCR conditions, with Q5 Hot Start High-Fidelity 2X Master Mix. Indexed amplicons were pooled together in equimolar concentrations and sequenced on the MiSeq Sequencing System (Illumina, USA), using paired end sequencing with V3 300 bp chemistry, at the Australian Centre for Ecogenomics according to manufacturer’s protocol. Heat map includes OTUs identified as significantly different \(p<0.001\) between separately housed WT and \(Ifnrl1^{-/-}\) at week 4, where OTU relative abundance exceeds 2% in at least one sample. Each column includes scaled read counts for one mouse. Read counts normalized using metagenomeSeq.

For analysis of 16S microbial sequencing, reads were cleaned of adapter sequences using Cutadapt and trimmed using Trimmomatic employing a sliding window of 4 bases with an average base quality above 15, followed by hard-trimming to 250 bases with exclusion of reads less than this length. Remaining forward reads were processed following the QIIME2 workflow using DADA2 to de-noise sequences. Taxonomy assignment was performed on amplicon sequence variants using BLAST against the SILVA reference database version 132. Differential abundance analysis was performed on raw read counts using DESeq2. Counts were normalized prior to principal component analysis (PCA) and heat map visualization using cumulative sum scaling implemented within metagenomeSeq. PCA was performed using the rda function within the vegan R package. Heat maps were generated using pheatmap.
RNAseq

For intestinal epithelial analyses single cells were isolated using the Lamina Propria dissociation kit (Miltenyi Biotec), stained with 7AAD, CD45.2 and EpCAM and sorted based on GFP expression into Lgr5+ and Lgr5− populations (see Supplemental Figure 5). For NK transcriptome analyses recipient NK cells were gated as 7-AAD−CD45.2+CD3−NK1.1+NKp46+. All subsequent cell sorting was performed on a BD FACSARia III cytometer. Sorted Lgr5+/− cells were treated with TRIzol and cryopreserved at -80°C. RNA was subsequently extracted after a second chloroform extraction step using the QIAGEN RNeasy Micro Kit. Sorted NK cells were stored at -80°C in Arcturus® PicoPure® RNA Isolation Buffer and RNA isolated as per manufacturer’s instructions. RNA libraries were prepared using the NEBnext Ultra RNA Library Prep Kit for Illumina (New England Biolabs), assessed for size, and quantified using the 2100 Bioanalyzer (Agilent Technologies) and Qubit fluorometer (Thermofischer Scientific). Libraries were sequenced using high output single-end 75 cycle sequencing kits (version 2) on the Illumina Nextseq 550 platform. Sequence reads in each fastq file were trimmed for adapter sequences using Cutadapt 32 (version 1.11) and aligned using STAR 33 (version 2.5.2a) to the mm19 assembly with the gene, transcript, and exon features of Ensembl (release 70) gene model. Expression was estimated using RSEM 34 (version 1.2.30) and was used as input to assess differential gene expression between groups.

Differential gene expression was determined using the edgeR package45 within R v3.3.4 and significance defined as $p < 0.05$ after Benjamini-Hochberg false discovery rate correction. Pathway analysis was performed by single sample gene set variation analysis via the GSVA package46 using KEGG, BioCarta, Reactome and Gene Ontology (GO) pathway databases and only gene sets between 25-500 genes considered. Heat maps were generated using heatmap.2 function in gplots v3.0.1 R package. Canonical Pathway enrichment analysis for differentially expressed genes (log2 Fold-change $>|0.58|$ and adj. p-value <0.05) across PEG-rIL-29-treated Lgr5+ and Lgr5− samples relative to genotype-matched PBS-treated samples was done using Ingenuity Pathway Analysis (IPA)49. IPA function enrichment was calculated using a right-tailed Fisher exact test with a threshold of significance set at P value of 0.05. Inferences in the significant activation state (z-score $>|2|$) of canonical pathways, upstream regulatory transcriptional regulators, cytokines and kinases were done using IPA. Positive z-scores reflect a predicted activation state, while negative z-scores reflect the inhibition of upstream regulatory activity.
Experimental Models

Model Description	Source/Identifier
C57Bl/6J (B6)	Animal Resources Centre, RRID:IMSR_ARC:B6
BALB/c	Animal Resources Centre, RRID:IMSR_ARC:BC
B6.SJL-Ptcra Pepcb/BoyJ (PTP)	Animal Resources Centre, RRID:IMSR_ARC:PTP
BALB/c CD45.1	QIMRB, N/A
C57Bl/6J.DBA/2 (B6D2F1)	Animal Resources Centre, N/A
B6.SJL-Ptcra Pepcb/BoyJ.C57Bl/6J (PTPxC57)	QIMRB, N/A
B6.lfnr1-/-	Bristol Myers Squibb (under MTA), N/A
B6.129P2-Lgr5^{CreERT2}/Ifnlr1^{fl/fl}	The Jackson Laboratory, JAX:008875
B6.Cg-Tg(Tcra,Tcrb)3Ayr/J (TEa)	Negrin Laboratory, Stanford Medicine, N/A
B6.FVB-Tg(CAG-luc,-GFP)L2G85Chco/JThy1^{fl}.Thy1^{fl} (B6^{Luc})	Negrin Laboratory, Stanford Medicine, N/A
B6.Cg-Tg(Tcra,Tcrb)3Ayr/J (TEa^{Luc})	The Alexander Rudensky Laboratory, MSKCC, N/A
B6.Cg-Tg(Tcra,Tcrb)3Ayr/J (TEa^{Luc})	QIMRB, N/A
lfnr1^{fl/fl}	The Kotenko Laboratory, New Jersey Medical School, N/A
Lgr5-EGFP-ires-creERT2.lfnr1^{fl/fl} (Lgr5^{Cre},lfnr1^{fl/fl})	QIMRB, N/A
B6(Cg)-Ncr1tm1.1(icre)Viv/Orl (NKp46^{Cre})	The Vivier Laboratory, Centre d’Immunologie de Marseille-Luminy, N/A
lfnr1^{fl/fl}.B6(Cg)-Ncr1tm1.1(icre)Viv/Orl (NKp46^{Cre},lfnr1^{fl/fl})	QIMRB, N/A
BCR-ABL1up98HoxA9 B6D2F1 primary murine leukemia	QIMRB, N/A
MLL-AF9 Balb/c and B6D2F1 primary murine leukemias (Brueidigam et al., 2014)	QIMRB, N/A
L-WRN (ATCC® CRL-3276™)	ATCC, Cat#CRL-3276; RRID:CVCL_DA06
PK136 (ATCC® HB-191™)	ATCC, Cat#HB-191; RRID:CVCL_7695

Supplemental Table 1. Mice, tumours and cell lines used in this study.
Antibodies

Antibodies	Source	Identifier
BioMag Goat Anti-Rat IgG	QIAGEN	Cat#310107
CD16/CD32 (2.4G2)	in-house, QIMRB	N/A
Rabbit polyclonal anti-Lysozyme (EC 3.2.1.17)	Agilent	Code#A0099
Rabbit anti-Ki67 (SP6)	Abcam	Cat#16667
Mouse anti-CD45.1 FITC (A20)	BioLegend	Cat#109076
Mouse polyclonal anti-IL-22 PE (Poly5164)	BioLegend	Cat#516404
Mouse anti-CD45.2 APC (104)	BioLegend	Cat#109814
Mouse anti-IL17A PE/Cy7 (TC11-18H10.1)	BioLegend	Cat#506922
Mouse anti-CD8a APC/Cy7 (53-6.7)	BioLegend	Cat#1200714
Mouse anti-IFN-γ Brilliant Violet 605 (53-2.1)	BioLegend	Cat#140318
Mouse anti-CD4 BV786 (GK1.5)	BD Biosciences	Cat#563331
Mouse anti-H-2D^d FITC (KH95)	BioLegend	Cat#111506
Mouse anti-CD4 PerCP-Cy5.5 (RM4-5)	BD Biosciences	Cat#550954
Mouse anti-H-2D^d PE (34-2-12)	BioLegend	Cat#110608
Mouse anti-CD19 PE-CF594 (1D3)	BD Biosciences	Cat#562291
Mouse anti-IFN-γ PE-Cy7 (XMG1.2)	BioLegend	Cat#505826
Mouse anti-IL-17A Alexa Fluor 700 (TC11-18H10.1)	BioLegend	Cat#506914
Mouse anti-CD8a V500 (53-6.7)	BD Biosciences	Cat#560776
Mouse anti-CD8a PerCP-Cy5.5 (53-6.7)	BD Biosciences	Cat#551162
Mouse anti-IFN-γ PE (XMG1.2)	BioLegend	Cat#505808
Mouse anti-CD4 PE-Cy7 (RM4-5)	BD Biosciences	Cat#552775
Mouse anti-CD45.1 APC/Cy7 (A20)	BioLegend	Cat#110716
Mouse anti-CD122 PerCP-eFluor 710 (TM-b1)	Thermo Fisher	Cat#46-1222-82
Mouse anti-TCR γ/δ PE (UC7-13D5)	BioLegend	Cat#107502
Mouse anti-CD17 PE-CF594 (1D3)	BD Biosciences	Cat#532291
Mouse anti-CD35 (NKp46) PE/Cy7 (29A1.4)	BioLegend	Cat#137618
Mouse anti-CD3c APC (145-2C11)	BioLegend	Cat#100312
Mouse anti-CD62L Alexa Fluor 700 (MEL-14)	BioLegend	Cat#104426
Mouse anti-CD4 APC/Cy7 (GK1.5)	BioLegend	Cat#100414
Mouse anti-CD44 Brilliant Violet 421 (IM7)	BioLegend	Cat#103040
Rabbit polyclonal anti-GFP (ab290)	Abcam	Cat#ab290
Mouse polyclonal anti-Ki-67 (MIB-5)	Dako	Cat#MT248
Mouse anti-NK1.1 PE (PK136)	Biologics	Cat#108708
Mouse anti-NK1.1 (PK136)	ATCC	#HB-191
Rabbit Polyclonal anti-GFP Rbt PV 570	Invitrogen	A11122
Rabbit anti-CD8α Rbt PV 620 (D4W22)	Cell Signalling	98941
Rabbit polyclonal anti-Lysozyme Rbt PV 480	DAKO	A0099
Rabbit anti-EpCAM Rbt PV 690 (EPR20533)	Abcam	Ab23785
Rat anti-CD4 Rat Impress HRP 520 (4SM95)	ebioscience	14-9766-32

Supplemental Table 2. Antibodies used in this study.
REAGENT	SOURCE	IDENTIFIER
PEG-riL-29	ZymoGenetics	Lot#ZO0702/A3023F
D-Luciferin	Gold Biotechnology	Cat#LUCK-1G; CAS: 115144-35-9
7-Aminoactinomycin D	Sigma Aldrich	Cat#A9400-5MG
Thymidine, [Methyl-3H]-	Perkin Elmer	Cat#NET027/E005MC
Phorbole 12-myristate 13-acetate (PMA)	Sigma Aldrich	Cat#P1585-1MG
Iononycin	Sigma Aldrich	Cat#I0634-1MG
Brefeldin A Solution (1000X)	BioLegend Inc	Cat#420601
Carboxyfluorescein succinimidyl ester (CFSE)	Sigma Aldrich	Cat#21888-25MG-F
Cultrex PathClear Reduced Growth Factor BME	R&D Systems	Cat#RDS353301002
SB431542	Selleck Chemicals	Cat#S1067-50mg
Y-27632 dihydrochloride	Tocris Bioscience	Cat#RDS125410
G 418 disulfate salt solution	Sigma Aldrich	Cat#G8168-10ML
Hygromycin B Gold	Invivogen	Cat#ant-hg-1
Ethylenediaminetetraacetic Acid Disodium salt dihydrate AR	Chem-supply	CAS#6381-92-6
Trypsin 2.5%	Thermo Fisher	Cat#15090-046
TRIzol reagent	Thermo Fisher	Cat#15596-026
Arcturus® PicoPure® RNA Isolation Kit	Thermo Fisher	Cat#K10204
Bayer Baytril 50 Injection 50ml (enrofloxacin 50mg/mL)	Provet	Cat#BAYT 1
Fluorescein isothiocyanate–dextran 500mg	Sigma Aldrich	Cat# 46944-500MG-F
Agencourt AMPure XP	Beckman Coulter	Cat# A63881
Q5® Hot Start High-Fidelity 2X Master Mix	New England Biolabs	Cat#M0494L

Supplemental Table 3. Chemicals, peptides, and recombinant proteins used in this study.
Symbol	Gene Description	logFC	P Value	FDR
Ncr1	natural cytotoxicity triggering receptor 1	-0.491	3.06E-46	2.91E-42
Syne2	synaptic nuclear envelope 2	-0.398	6.44E-10	3.06E-06
Cdkn1a	cyclin-dependent kinase inhibitor 1A (P21)	0.301	5.32E-09	1.48E-05
Phlda3	pleckstrin homology-like domain, family A, member 3	0.272	6.24E-09	1.48E-05
Cma1	chymase 1, mast cell	0.264	1.20E-08	2.29E-05
Fam46a	family with sequence similarity 46, member A	-0.189	2.34E-07	0.000291
Ephx1	epoxide hydrolase 1, microsomal	0.347	2.45E-07	0.000291
Wscd2	WSC domain containing 2	0.300	2.27E-07	0.000291
Abca1	ATP-binding cassette, sub-family A (ABC1), member 1	-0.236	3.06E-07	0.000323
Slco3a1	solute carrier organic anion transporter family, member 3a1	-0.416	6.89E-07	0.000596
Jun	Jun oncogene	0.327	6.48E-07	0.000596
Zfp26	zinc finger protein 26	-0.279	1.19E-06	0.000943
Gdf11	growth differentiation factor 11	-0.403	2.95E-06	0.00216
Plk2	polo-like kinase 2	0.281	8.87E-06	0.00527
S100a11	S100 calcium binding protein A11 (calgizzarin)	0.143	8.80E-06	0.00527
Psrc1	proline/serine-rich coiled-coil 1	0.238	8.41E-06	0.00527
Aldh2	aldehyde dehydrogenase 2, mitochondrial	0.267	1.14E-05	0.00542
St8sia4	ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4	-0.171	1.10E-05	0.00542
Gm10116	predicted pseudogene 10116	0.318	1.09E-05	0.00542
Gm1966	predicted gene 1966	-0.308	9.86E-06	0.00542
2010016i18Rik	RIKEN cDNA 2010016i18 gene	-0.282	1.41E-05	0.00638
Hist1h1c	histone cluster 1, H1c	0.446	1.72E-05	0.00742
Pygl	liver glycogen phosphorylase	0.387	3.03E-05	0.0101
Herc2	hect (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHC1)-like domain (RLD) 2	-0.182	3.09E-05	0.0101
Mga	MAX gene associated	-0.183	3.01E-05	0.0101

Supplemental Table 4. Top 25 differentially expressed genes in NKp46\(^{Cre}\).\(^{Ifnlr1^{fl.fl}}\) versus NKp46\(^{Cre-}\).\(^{Ifnlr1^{fl}}\) cells. RNA sequencing from sort purified single cells from 48hrs post-transplant (n = 6 mice per group). LogFC = the log2 transformed fold change obtained from edgeR analyses. FDR (false discovery rate) = the Benjamini-Hochberg (FDR) adjusted P value obtained from edgeR analyses.
Symbol	Gene Description	logFC	P Value	FDR
Lgals9	lectin, galactose binding, soluble 9	3.73	2.70E-15	9.73E-12
Ddx58	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	3.10	2.38E-15	9.73E-12
Xaf1	XIAP associated factor 1	4.82	1.36E-15	9.73E-12
Adar	adenosine deaminase, RNA-specific	2.19	6.45E-15	1.43E-11
Rnf213	ring finger protein 213	3.98	6.63E-15	1.43E-11
Stat1	signal transducer and activator of transcription 1	3.51	8.27E-15	1.49E-11
Ifi44	interferon-induced protein 44	7.55	1.09E-14	1.69E-11
Irf9	interferon regulatory factor 9	2.52	1.97E-14	2.66E-11
Dhx58	DEXH (Asp-Glu-X-His) box polypeptide 58	4.70	2.87E-14	3.11E-11
Ogfr	opioid growth factor receptor	2.01	2.84E-14	3.11E-11
Parp9	poly (ADP-ribose) polymerase family, member 9	2.80	3.47E-14	3.41E-11
Parp14	poly (ADP-ribose) polymerase family, member 14	3.10	4.28E-14	3.85E-11
Trim30a	tripartite motif-containing 30A	4.96	5.52E-14	4.26E-11
Lgals3bp	lectin, galactoside-binding, soluble, 3 binding protein	3.11	5.32E-14	4.26E-11
Rtp4	receptor transporter protein 4	5.11	6.51E-14	4.69E-11
Gbp6	guanylate binding protein 6	4.28	8.13E-14	5.50E-11
Mitd1	MIT, microtubule interacting and transport, domain containing 1	2.06	1.09E-13	6.94E-11
Tap1	transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	3.57	1.41E-13	8.48E-11
Ifi35	interferon-induced protein 35	2.76	1.63E-13	9.25E-11
Ly6e	lymphocyte antigen 6 complex, locus E	2.79	2.41E-13	1.24E-10
Stat2	signal transducer and activator of transcription 2	3.65	2.31E-13	1.24E-10
Hsh2d	haematopoietic SH2 domain containing	2.93	2.89E-13	1.42E-10
Gbp3	guanylate binding protein 3	5.99	3.49E-13	1.64E-10
H2-Q10	histocompatibility 2, Q region locus 10	2.63	4.96E-13	2.23E-10
Irgm1	immunity-related GTPase family M member 1	3.56	5.70E-13	2.47E-10

Supplemental Table 5. Top 25 differentially expressed genes in ISC treated *in vivo* with PEG-rIL-29. RNA sequencing from sort purified single colonic stem cells (LGR5+) derived from either rIL-29 or PBS treated mice (n = 5 mice per group). LogFC = the log2 transformed fold change obtained from edgeR analyses. FDR (false discovery rate) = the Benjamini-Hochberg (FDR) adjusted P value obtained from edgeR analyses.
Supplemental Table 6.

Top 25 differentially expressed genes in intestinal epithelial cells treated *in vivo* with PEG-rIL-29. RNA sequencing from sort purified single colonic epithelial cells (LGR5−) derived from either rIL-29 or PBS treated mice (n = 5 mice per group). LogFC = the log2 transformed fold change obtained from edgeR analyses. FDR (false discovery rate) = the Benjamini-Hochberg (FDR) adjusted P value obtained from edgeR analyses.

Symbol	Gene Description	logFC	P Value	FDR
Xaf1	XIAP associated factor 1	4.61	3.26E-15	3.52E-11
Ifi44	interferon-induced protein 44	7.55	1.37E-14	7.40E-11
Irf9	interferon regulatory factor 9	2.45	3.21E-14	9.90E-11
Dhx58	DEXH (Asp-Glu-X-His) box polypeptide 58	4.60	4.46E-14	9.90E-11
Trim30a	tripartite motif-containing 30A	5.02	5.49E-14	9.90E-11
Rtp4	receptor transporter protein 4	5.25	5.46E-14	9.90E-11
Ddx58	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	2.49	8.50E-14	1.31E-10
Lgals9	lectin, galactose binding, soluble 9	2.92	1.25E-13	1.32E-10
Parp9	poly (ADP-ribose) polymerase family, member 9	2.58	1.35E-13	1.32E-10
Stat1	signal transducer and activator of transcription 1	2.90	1.59E-13	1.32E-10
Adar	adenosine deaminase, RNA-specific	1.82	1.47E-13	1.32E-10
Parp14	poly (ADP-ribose) polymerase family, member 14	2.88	1.43E-13	1.32E-10
Rnf213	ring finger protein 213	3.29	1.22E-13	1.32E-10
Gbp3	guanylate binding protein 3	5.95	5.21E-13	4.02E-10
Gbp6	guanylate binding protein 6	3.74	6.00E-13	4.32E-10
Sp100	nuclear antigen Sp100	4.50	9.37E-13	6.02E-10
Trim34a	tripartite motif-containing 34A	2.92	9.46E-13	6.02E-10
Lgals3bp	lectin, galactoside-binding, soluble, 3 binding protein	2.58	1.01E-12	6.07E-10
Mx2	myxovirus (influenza virus) resistance 2	6.15	1.55E-12	7.96E-10
Mitd1	MIT, microtubule interacting and transport, domain containing 1	1.77	1.47E-12	7.96E-10
Usp18	ubiquitin specific peptidase 18	6.99	1.54E-12	7.96E-10
Qgfr	opioid growth factor receptor	1.58	1.75E-12	8.22E-10
Apol9a	apolipoprotein L 9a	5.99	3.49E-13	1.64E-10
Stat2	signal transducer and activator of transcription 2	2.63	4.96E-13	2.23E-10
Ifi2712b	interferon, alpha-inducible protein 27 like 2B	3.56	5.70E-13	2.47E-10
Supplemental Figure 1. Histological examination of naïve WT and Ifnlr1−/− GI tissues. A) Representative H&E stained images of colon and SI from naïve WT and Ifnlr1−/− mice. B) Pre-transplant weight of WT and Ifnlr1−/− mice; WT and Ifnlr1−/− were not aged matched (WT n = 14, Ifnlr1−/− n = 20, combined from 2 experiments). C) Representative period acid-schiff stained images of colon and SI from naïve WT and Ifnlr1−/− mice demonstrating goblet cells. D) Enumeration of goblet cells in WT and Ifnlr1−/− mice (n = 3). E) Representative images of colon and SI from naïve WT and Ifnlr1−/− mice stained by immunohistochemistry for lysozyme showing Paneth cells. F) Enumeration of Paneth cells in WT and Ifnlr1−/− mice (n = 3). Data are presented as mean ± SEM. P values calculated using two tailed Mann-Whitney T test.
Supplemental Figure 2. GVL capacity of WT and Ifnrlr1−/− donor grafts against leukemic cell lines. A) Ifnrlr1−/− BM + T BMT grafts retain GVL capacity. Balb/c recipients were transplanted with BM ± T cells from WT or Ifnrlr1−/− donors, together with recipient type MLL-AF9 leukemia expressing GFP. The absolute number of GFP+ leukemia cells in peripheral blood was determined thereafter (n = 18, combined from 3 replicate experiments). B) B6D2F1 recipients were transplanted with BM ± T cells from WT or Ifnrlr1−/− donors, together with recipient type BCR-ABL nup98hoxA9 leukemia expressing GFP. The absolute number of GFP+ leukemia cells in peripheral blood was determined thereafter (n = 12, combined from 2 experiments). Data are presented as mean ± SEM.
Supplemental Figure 3. The effect of conditional deletion of Ifnlr1 in NK cells following allogeneic BMT. A-B) RNAseq from sort purified NKP46Cre+.Ifnlr1fl/fl and NKP46Cre−.Ifnlr1fl/fl splenic NK cells isolated 24 hours after allogeneic BMT (48hrs after lethal irradiation). A) Heat map showing the pattern of differential gene expression between NKP46Cre+.Ifnlr1fl/fl and NKP46Cre−.Ifnlr1fl/fl splenic NK. B) Heat map showing canonical gene sets associated with functional pathways identified in NKP46Cre+.Ifnlr1fl/fl versus NKP46Cre−.Ifnlr1fl/fl (n = 6 per group) by GSVA analysis.
Supplemental Figure 4. Paneth cell evaluation in WT and Ifnlr1−/− GI tissues following allogeneic BMT. A) Representative images and B) Enumeration of Paneth cells from SI at day 7 post-transplant (WT, n = 8, Ifnlr1−/−, n = 7, TCD, n = 6 combined from 2 experiments). C) Day 7 post-transplant qPCR enumeration of Cryptidins (pan-cryptidin), Lysozyme P (Lysp) and Regenerating islet-derived protein III gamma (Reg3g) defensin expression from WT and Ifnlr1−/− recipient mice lethally irradiated (1000cGy), and transplanted with BALB/c derived BM and T-cells (n = 4). Data are presented as mean ± SEM. P values calculated using two tailed Mann-Whitney T test, **p < .01.
Supplemental Figure 5. Sort strategy for isolation of Lgr5+ cells from GI tissues. A) Representative images from FACS sorting strategy for isolation of GFP+ Lgr5+ cells from colonic tissue samples. B) Expression of intestinal stem cell markers from GFP+ and GFP− sorted fractions by RNA sequencing (n = 5, combined from 4 experiments). Data are presented as mean ± SEM. p values calculated using the Benjamini-Hochberg procedure corrected for multiple comparisons. ****p < .0001.
Supplemental Figure 6. Canonical Pathway enrichment analysis for differentially expressed genes across sorted Lgr5⁺ and Lgr5⁻ epithelial cells following PEG-rIL-29-treatment relative to genotype-matched PBS-treated samples. Representation of all canonical pathways found to be enriched in the dataset. Bubbles represent significant pathway enrichment, as determined by Fisher exact test. Bubble diameter represents the -log10 P value as determined by Fisher's exact test. Crosses signify a lack of significant pathway enrichment. Color indicates predicted pathway activation (red) or predicted inhibition (blue). White bubbles represent significant functional enrichment of pathways with no available prediction patterns. Data are presented as log2 Fold-change >|0.58| and adj. p-value <0.05).
Supplemental Figure 7. Interferon Lambda treatment effects on hematopoietic engraftment following allogeneic BMT. (A) Frequencies and (B) absolute numbers of donor derived WBC, neutrophils, monocytes, B cells, eosinophils, dendritic cells, T cells and NK cells in peripheral blood 7 and 14 days after Balb/c → B6 BMT in the presence and absence of peri-transplant PEG-rIL29 treatment. Data are presented as mean ± SEM. P values calculated using two tailed Mann-Whitney T test, **p < .01.
Supplemental Figure 8. Interferon Lambda treatment effects on GI tissues following allogeneic BMT. A) Representative images and B) Enumeration of Lysozyme+ Paneth cells at day 7 post-BMT from ileum from PBS or PEG-rIL-29 B6 recipients of BALB/c BM + T-cells following NK cell depletion (n = 9, combined from 2 experiments). C) Quantification of distance of GFP+ Lgr5+
intestinal cells from Paneth cells as for A) and B). D) Enumeration of CD4^+ and CD8 T cells from ileum and spleen as for A) and B). E) Numbers of GFP^+ Lgr5^+ cells isolated from small intestine and ileum from digested gut preparations at day 7 post-BMT (BALB/C → B6) from PBS or PEG-rIL-29 treated recipients without recipient NK depletion (n = 6, combined from 2 experiments). L) Representative immunoflourescent images as for E). G) Exemplar dual immunoflourescent images as for K, with secondary staining for GFP and Ki-67. Data are presented as mean ± SEM. p values calculated using two tailed Mann-Whitney T test. *p < .05, **p < .01, ***p < .001, ****p < .0001.