One-dimensional Kondo lattice model as a Tomonaga-Luttinger liquid

Naokazu Shibata
Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan

Alexei Tsvelik
Department of Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, UK

Kazuo Ueda
Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan
(3 Feb 1997)

Arguments are presented that in the one-dimensional Kondo lattice model \(f\)-electron spins participate in filling of the Fermi sea. It is shown that in its paramagnetic phase this model belongs to the spin-1/2 Tomonaga-Luttinger liquid universality class. The ratio of the spin and charge velocities \(v_σ/v_ρ\) and \(K_ρ\) are estimated to be of the order of \((T_K/ε_F)^{1/2}\).

I. INTRODUCTION

One can use a one dimensional Kondo Lattice (KL) model as a toy model to study the long standing problem of whether localized electrons determine the volume of the Fermi surface. The numerical results [1], [2] show that in the region of the phase diagram where KL model belongs to the universality class of spin-1/2 Tomonaga-Luttinger (TL) liquid [3] the Friedel oscillations are characterized by the large Fermi vector. So it seems that the \(f\)-electrons do participate in the Fermi surface formation. In this paper we undertake a further study of the TL phase of the KL model. Let the reader recall that the spin-1/2 TL liquid critical point is characterized by two parameters: the ratio of spin to charge density wave velocities \(v_σ/v_ρ\) and the number \(K_ρ\) which parameterizes scaling dimensions in the charge sector (the similar parameter in the spin sector is fixed by the SU(2) symmetry, \(K_σ = 1\)). The dynamical spin and charge susceptibilities at low \((ω, q)\) are given by

\[
χ_σ(ω_n, q) = \frac{2}{π} \frac{q^2}{ω_n^2/v_σ},
\]

\[
χ_ρ(ω_n, q) = \frac{2K_ρ}{π} \frac{q^2}{ω_n^2/v_ρ}. \tag{2}
\]

Thus if we shall manage to find these two parameters, the characterization of the low energy sector of KL model is complete.

II. LUTTINGER LIQUID PARAMETERS OBTAINED BY THE 1/N EXPANSION

The Hamiltonian of the one-dimensional KL model is

\[
H = -t \sum_{iσ} (a_{iσ}^† a_{i+1σ} + \text{H.c.}) + J \sum_{iμ} S_i^μ s_i^μ \tag{3}
\]

where \(a_{iσ}^† (a_{iσ})\) is the creation (annihilation) operator of a conduction electron at the \(i\)th site, and \(s_i^μ = (1/2)\sum_{σσ′} a_{iσ}^† τ_σ^μ a_{iσ′}\), with \(τ_σ^μ\) \((μ = x, y, z)\) being the Pauli matrices, are the spin density operators of the conduction electrons. The spin densities are coupled to the localized spins \(S_i^μ\) through an antiferromagnetic exchange coupling \(J\).

In order to obtain analytical results we shall extend the symmetry of the KL model to the SU(N) and resort to the 1/N-expansion (see [4] and [5]). The corresponding Lagrangian density is

\[
\mathcal{L} = a_σ^† [\partial_τ + \hat{ε}(x)]a_σ + f_σ^† \partial_τ f_σ + iλ(f_σ^† f_σ - qN) - \frac{J}{N}(a_σ^† f_σ)(f_σ^† a_σ). \tag{4}
\]

Here the dynamical field \(λ(τ, x)\) is introduced to enforce the local constraint of the fermion occupation number. The number \(q\) remains finite when \(N \rightarrow ∞\).

Next we decouple the interaction by the Hubbard-Stratonovich transformation:

\[
-\frac{J}{N}(a_σ^† f_σ)(f_σ^† a_σ) \rightarrow \frac{N}{J} V^* V + V(a_σ^† f_σ) + V^*(f_σ^† a_σ). \tag{5}
\]

The resulting partition function is gauge invariant:

\[
f_σ(τ, x) \rightarrow f_σ(τ, x) e^{iΦ(τ, x)},
\]

\[
V(τ, x) \rightarrow V(τ, x) e^{-iΦ(τ, x)},
\]

\[
λ(τ, x) \rightarrow λ(τ, x) - \partial_τ Φ(τ, x). \tag{6}
\]

It is convenient to choose the gauge where the field \(V\) is real. We choose the following parametrizations:

\[
V(τ, x) = V_0 \sqrt{1 + [r(τ, x)/V_0 √N]}, \tag{7}
\]

\[
iλ = T_K + iυ / √N. \tag{8}
\]
where V_0 is the saddle point value of V which we shall determine later and r is a new field chosen in such a way that its measure of integration is trivial.

We shall expand the partition function around its saddle point:

$$V = V_0, \quad i\lambda = T_K.$$

Expanding to the second order in r we get

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{\text{int}}$$

$$\mathcal{L}_0 = a^\dagger (\partial_r + \hat{c}(x)) a + f^\dagger (\partial_r + T_K) f + V_0 (a^\dagger f + c.c.)$$

$$\mathcal{L}_{\text{int}} = \frac{r^2}{4J} + \frac{r}{2\sqrt{N}} (a^\dagger f + c.c.) + \frac{iu}{\sqrt{N}} : f^\dagger f :$$

where the dots mean that the average is substracted: $\langle A \rangle := A - \langle A \rangle$ and the r^2 term comes from the expansion of the square root in the expression for V.

The saddle point parameters V_0 and T_K are determined self-consistently by vanishing of the terms linear in r and u:

$$\frac{1}{N} \sum_{j=1}^{N} \langle f^\dagger (n) f(n) \rangle = q,$$

$$\frac{1}{N} \sum_{j=1}^{N} \langle (a^\dagger (n) f(n)) + \langle f^\dagger (n) a(n) \rangle \rangle = -2V_0 \quad \text{J}.$$

In the leading order in $1/N$ the spectrum is determined by the saddle point. This gives us a great advantage because the saddle point describes the large Fermi surface. The single electron spectrum has the following well-familiar form:

$$E_{\pm}(p) = [\epsilon(p) + T_K]/2 \pm \sqrt{[\epsilon(p) - T_K]^2/4 + V_0^2}.$$

Substituting the saddle point Green’s functions into Eqs. (12) & (13) we get

$$q = \rho(0)V_0^2/T_K, \quad T_K = D \exp[-1/\rho(0)J]$$

where $\rho(0)$ is the bare density of states per one channel, D is the bandwidth. The expression for the new Fermi vector is

$$k_F = k_F^{(0)} + \pi q.$$

It follows from this equation that the charge susceptibility remains unaffected by the presence of the spins.

Only the mode $E_{\pm}(p)$ crosses the chemical potential. Near the Fermi points the spectrum can be linearized:

$$E_{\pm}(p) \approx \pm v^*(p \mp p_F), \quad v^* = v_F \rho(0) T_K q.$$

Now one can calculate the spin- and charge density response functions (2) directly. The calculation of the spin-spin correlation function is straightforward: in the leading order in $1/N$ the only contribution comes from the polarization loop of two $G_f = \langle (f f^+) \rangle$-functions. The result reproduces Eq. (11) with $\nu_\sigma = \nu^*$.

Calculation of the charge response function is more complicated. We chose the following approach: first we shall integrate out the high energy degrees of freedom in the partition function and obtain the effective action for the low energy sector; then we shall bosonize this action and obtain the parameters of the TL liquid. To do the integration it is convenient to diagonalize the saddle point Hamiltonian and to express the fermionic operators in terms of the new annihilation operators $A_{\pm,j}(k)$ corresponding to excitations with the dispersion $E_{\pm}(k)$ (since the transformation is diagonal in the flavour indices, we shall omit them):

$$a(k) = \sqrt{\alpha_k} A_+(k) + \sqrt{\beta_k} A_-(k),$$

$$f(k) = -\sqrt{\beta_k} A_+(k) + \sqrt{\alpha_k} A_-(k),$$

where

$$\alpha_k + \beta_k = 1, \quad \beta_k = \frac{1}{2} \left\{ 1 - \frac{[\epsilon(k) - T_K]}{\sqrt{[\epsilon(k) - T_K]^2 + 4V_0^2}} \right\}.$$

Substituting these expressions into Eq. (11) and omitting the terms containing only A_+ we get:

$$\int dx \mathcal{L}_{\text{int}} = L_1 + L_2$$

where

$$L_1 = \sum_q \frac{r(-q)r(q)}{4J}$$

$$+ \frac{1}{2\sqrt{N}} \sum_{k,q} \left[r(q) \left(\sqrt{\alpha_k + \alpha_q} - \sqrt{\beta_k + \beta_q} \right) \right.$$

$$- 2iu(q) \sqrt{\beta_k + \alpha_q} \right] [A^+_{+,j}(k + q) A_{-,j}(k) + c.c.]$$

$$L_2 = \frac{1}{\sqrt{N}} \sum_{k,q} \left[A^+_{-,j}(k + q) A_{-,j}(k) \right]$$

$$\left[\sqrt{\alpha_F \beta_F r(q) + i\alpha_F u(q)} \right].$$

where α_F, β_F are taken at the Fermi surface: $\alpha_F \approx 1, \beta_F \approx T_K/D$.

Integrating over A_+ we get in the leading order in $1/N$ the following action for the fields r and u:

$$S_{\text{eff}} = \frac{1}{2} \sum_{\omega,q} \Pi(\omega, q)$$

$$\left[4r(-\omega, -q)r(\omega, q) + u(-\omega, -q)u(\omega, q) \right].$$

To get the effective action for the low-lying excitations we need to know the function $\Pi(\omega, q)$ for the area around $q = 0$ and for $q = 2k_F$. The result is $\Pi(0, 0) = \rho(0)$.

We bosonize the fermionic operators:
\[
\sum_{k,j} A^*_{j,k}(k + q) A_{j,k} = i \sqrt{N/\pi} q \Phi_\rho(q) \quad (|q| \ll k_F)
\]

(24)

where \(\Phi_\rho \) is the charge field and integrate over \(u \) and \(v \). Since \(\beta_F \) is so small, the largest contribution to the effective action comes from the fluctuations of the \(u \)-field. The bosonized version of the effective action in the charge sector is given by

\[
S_{eff} = \int \! \! dx \! \! dv \left(\frac{1}{2 v^*} (\partial_x \Phi_\rho)^2 + \frac{1}{2\pi \rho(0)} (\partial_x \Phi_\rho)^2 \right) .
\]

(25)

From this action one can derive the canonical expression for the charge susceptibility and \(K_\rho \). At least in the leading order in \(1/N \) the result does not depend on \(N \):

\[
v_\rho = \sqrt{v^*/\pi \rho(0)} ,
\]

(26)

and

\[
K_\rho = \sqrt{\pi \rho(0) v^*} .
\]

(27)

III. DENSITY MATRIX RENORMALIZATION GROUP STUDY

In order to check the validity of the large \(N \) results for the \(N = 2 \) case we numerically estimate the TL liquid parameters making use of the density matrix renormalization group (DMRG) [6]. This method is the most suitable for studying long range and low-energy properties since it allows one to study long chains iteratively enlarging system size and to obtain the ground state wave function with only small systematic errors, which can be estimated from the eigenvalues of the density matrix. The obtained results are consistent with the above arguments and indicate that \(K_\rho \ll 1/2 \) in the Kondo limit.

Now we shall describe results of the numerical analysis of the model [6]. The paramagnetic metallic state of this model, which is expected to be a TL liquid, is realized only in the region of rather weak exchange coupling away from both the half-filling (\(n_c = 1 \)) and the low carrier density limit (\(n_c \to 0 \)). The ground state is always insulating at half-filling and ferromagnetic both in the strong coupling limit (\(J \to \infty \)) for general carrier densities (\(n_c \neq 1 \)) and in the low carrier density limit [6].

We first calculate spin excitation gap \(\Delta_s \) and difference of chemical potentials \(\mu_+ - \mu_- \) as a function of the system size \(L \). As expected, both \(\Delta_s \) and \(\mu_+ - \mu_- \) (Fig. 1 (a) and (b)) for the case of \(n_c = 2/3 \) and \(J = 1.8 t, 2.0 t \) vanish in the bulk limit (\(L \to \infty \)), which confirms that the paramagnetic phase of the KLM is a TL liquid.

The finite size corrections of \(\mu_+ - \mu_- \) and \(\Delta_s \) in Fig. 1 are related to the charge susceptibility and the spin velocity, respectively. Since we have used open boundary conditions \(\Delta_s(L) = v_\sigma \Delta k(L) = v_\sigma \pi/L \), and

\[
\mu_+(L) - \mu_-(L) = \Delta n_c(L)/\chi_\rho = 2/(\chi_\sigma L).
\]

The obtained values are shown in Table I. Once we have obtained \(v_\sigma \) then we can calculate \(\chi_\sigma \) through the relation \(K_\sigma = \pi v_\sigma \chi_\sigma/2 \), see Eq. (6). Because the SU(2) symmetry in the spin space guarantees \(K_\sigma = 1 \), rather large \(\chi_\sigma \) is obtained as is shown in Table I. This large \(\chi_\sigma \) is naturally expected because there are macroscopic number of almost free spins in both weak and strong coupling regions. The \(f \) spins are almost but not exactly independent with each other: in the weak coupling region, \(L \) almost free \(f \) spins, and in the strong coupling region, \(L(1-n_c) \) \(f \)-spins unpaired with conduction electrons.

Now we discuss the charge susceptibility. In the strong coupling limit it tends to the value for the free spinless fermions; \(\chi_\rho^{-1} = \pi t \sin(\pi n_c/2) \). On the other hand in the weak coupling limit we expect a \(J \) independent charge susceptibility as is predicted by the Gutzwiller type variational calculations [8]. \(\chi_\rho^{-1} = \pi t \sin(\pi n_c/2) \). The density \(n_c = 2/3 \) is rather special in the sense that the values expected for the strong coupling limit and the weak coupling limit are the same. Thus we expect \(\chi_\rho \) depends only weakly on \(J \). In general, in the weak coupling limit we have an asymptotic form of the charge velocity which is proportional to \(K_\rho \) as

\[
v_\rho = 2 K_\rho t \sin(\pi n_c/2) \]

(28)

from the relation \(K_\rho = \pi v_\rho \chi_\rho/2 \), Eq. (6). However, we have to be careful close to the half-filling where the charge susceptibility tends to diverge owing to the charge gap at half-filling.

The estimation of the correlation exponent is one of the most difficult calculations even by the DMRG method. In order to estimate \(K_\rho \) we need to see long range behaviors of the system with sufficient accuracy. In the present study we use asymptotic form of the Friedel oscillations because they are numerically more reliable than long range off-diagonal correlations.

The Friedel oscillations are density oscillations induced by a local perturbation. In a TL liquid, power low behaviors of the system with sufficient accuracy. In the present study we use asymptotic form of the Friedel oscillations because they are numerically more reliable than long range off-diagonal correlations. The Friedel oscillations obtained by the DMRG for \(t < 2.5 t \) at \(n_c = 6/7 \). The Fourier components of spin-density Friedel oscillations for \(J = 1.8 t, 2.5 t, 2.5 t \) at
n_c = 2/3, 4/5, 6/7, respectively, are also shown in Fig. 3. The charge density Friedel oscillations are induced naturally by the open boundary conditions of the system and the spin density oscillations are introduced by applying local magnetic fields at the both ends. As is already shown for n_c = 4/5 in the previous work [1], the period of the oscillations are explained by the assumption of the spin-1/2 TL liquid with the large Fermi surface, k_F = π(1 + n_c)/2, which includes f spin densities as well as the density of conduction electrons.

Now we calculate the correlation exponent, K_ρ. In order to obtain K_ρ, we simply use the slope of the envelope function of the charge density oscillations assuming that its decay is proportional to \(x^{-2K_ρ} \), because dominant component of the oscillations is the 4k_F component even for the case of J = 1.5\(t \). In Fig. 4, the obtained K_ρ for the exchange coupling from J = 4.0\(t \) to 1.5\(t \) at n_c = 2/3 are presented. Since the 2k_F spin density oscillations decay much slower than the charge density oscillations, it is not possible to determine K_ρ from the spin density oscillations in the present system size. However, the slower decay of the spin density oscillations is consistent with the TL liquid prediction, Eq. (30), which gives smaller exponent, \(x^{-2K_ρ} \).

As is clearly seen in Fig. 4, K_ρ is always smaller than 1/2 and monotonically decreases with decreasing J. In the strong coupling limit, the conduction electrons and the localized f spins form local singlets leading to a complete spin-charge separation. Since the charge part is described by the free spinless fermions, K_ρ = 1/2 is obtained in the strong coupling limit as in the case of the infinite-U Hubbard model. With decreasing J from infinity the repulsive interaction between the neighboring spinless fermions is introduced in the leading order of \(t/J \). Thus the situation is similar to a large-U Hubbard model with nearest neighbor repulsions whose K_ρ is smaller than 1/2 [12, 13].

In Fig. 4 we find a small discontinuity at J = 2.4\(t \). This is due to the phase transition from the ferromagnetic state to the paramagnetic one. Since this transition is of the first order accompanied by a jump in the total spin quantum number, from S = L(1 - n_c)/2 to 0, or 1/2 with L being the number of the sites, it is natural that the K_ρ also shows a jump at the critical value J_c. In order to confirm the discontinuity we have calculated the K_ρ in both ferromagnetic and the paramagnetic states at J = 2.4\(t \) which is near but smaller than the critical point. The K_ρ in the ferromagnetic state is calculated by setting the total S_z being L(1 - n_c)/2 which is the total spin in the ferromagnetic state.

In contrast to the slow decrease of K_ρ above the critical J_c, a rather sharp decrease is observed below J_c, and the K_ρ becomes smaller than 1/3 which means that the long range behavior of the charge-charge correlation is governed by the 4k_F oscillations. The dominance of the 4k_F oscillations is a characteristic feature of this new class of spin-1/2 TL liquid.

With further decreasing J, the K_ρ seems to cross the value \(3 - 2\sqrt{2} \sim 0.17 \). Since the exponent of the power low anomaly in the momentum distribution function, \(\alpha \), is given by \(\alpha = (K_ρ + 1/K_ρ - 2)/4 \), the power low anomaly is removed below this point and we cannot see clear Fermi surface any more. It is very difficult to observe clear Friedel oscillations for smaller K_ρ than 0.17.

IV. CONCLUSIONS

In conclusion we have established that in the area of phase diagram where the one dimensional Kondo lattice is paramagnetic, it belongs to the universality class of spin-1/2 TL liquids. The f-electrons do take part in formation of the Fermi surface. According to the Luttinger theorem the volume of the Fermi sea is determined by those branches of the spectrum which cross the chemical potential. Despite of the fact that most of the spectral weight of the f-electrons is concentrated far from the chemical potential, they do have access to it via the Kondo resonance. We bring attention of the reader to the fact that the Luttinger theorem does not require existence of a pole in the single electron Green’s function and therefore can be applied outside of the Fermi liquid domain. In particular, the system under consideration belongs to the spin-1/2 TL liquid universality class. It is a rather peculiar member of this class since K_ρ is small. How small is not entirely clear; the analytical calculations give K_ρ = v_α/v_ρ (see Eqs. [24, 27]) which is one order of magnitude smaller than the values obtained numerically (see Table I). This may be due to the inaccuracy of the 1/N-approximation; it is more likely however, that the maximal system size available for the numerical calculations is not big enough to penetrate to the asymptotic region. Thus the numerical values of K_ρ given in the Table should be considered as upper limits. This may appear unusual to those who consider the Hubbard model as a typical example of TL liquid. The smallness of K_ρ clearly originates from the nonlocality of the effective interactions in space and time. In this sense the KL model is similar to Charge Density Wave systems where the interactions are also retarded being carried by low energy optical phonons. In these systems K_ρ ≪ 1 [14, 15].

ACKNOWLEDGMENTS

A. M. T. and N. S. acknowledge a support of Japan Society for Promotion of Science. A. M. T. also acknowledges a kind hospitality of Institute for Solid State Physics, University of Tokyo where significant part of this work was accomplished. He is also grateful to Gilbert Lonzarich, David Khmelnitskii and Andrew Schofield for interesting discussions and interest to the work. N. S. also thanks Manfred Sigrist for valuable discussions.
TABLE I. Luttinger liquid parameters of the one dimensional Kondo lattice model. The carrier density n_c is $2/3$. The energy unit is t. The errors are estimated from the ambiguity of the power low decay of the charge density Friedel oscillations.

J	$K_ρ$	$v_ρ$	$χ_ρ$	$v_σ$	$χ_σ$
0	1	-	1.73	0.37	
1.5t	0.19 ± 0.03	-	0.30 ± 0.06	0.42	
1.8t	0.24 ± 0.02	0.014	0.41 ± 0.06	0.38	
2.0t	0.27 ± 0.02	0.011	0.48 ± 0.06	0.36	
\[\Delta s = 1.8 J_{\text{spin}} = 2.0 t \]

\[n_c = \frac{2}{3} \]

Fig. 1
Fig. 2

(a) $\rho(x)$

(b) $\sigma(x)$

Parameters:

- $n_c = 6/7$
- $J = 2.5t$
Fig. 3

\[\sigma(q) \]

\[q/\pi \]

- \(n_c = \frac{6}{7} \)
- \(n_c = \frac{4}{5} \)
- \(n_c = \frac{2}{3} \)

- \(J = 2.5t \)
- \(J = 2.5t \)
- \(J = 1.8t \)
$n_c = 2/3$