Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth

Liang Dong1*, Haojie Hao1*, Lei Xia2*, Jiejie Liu1, Dongdong Ti1, Chuan Tong1, Qian Hou1, Qingwang Han1, Yali Zhao3, Huiling Liu1, Xiaobing Fu1 & Weidong Han1

1Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China, 2Department of Medical Administration, Chinese PLA General Hospital, Beijing 100853, China, 3Central laboratory, Hainan branch of Chinese PLA General Hospital, Sanya, 572013, China.

Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engages in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP’s ability to induce hair cycling and regeneration.

Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engages in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP’s ability to induce hair cycling and regeneration.

Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engages in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP’s ability to induce hair cycling and regeneration.

Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engages in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP’s ability to induce hair cycling and regeneration.

Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engages in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP’s ability to induce hair cycling and regeneration.

Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engages in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP’s ability to induce hair cycling and regeneration.

Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engages in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP’s ability to induce hair cycling and regeneration.

Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engages in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP’s ability to induce hair cycling and regeneration.
invasion of the underlying dermis and joins the dermal condensation germ is the initial signal that stimulates hair follicle formation\textsuperscript{13,14}. Whether Wnt1a can trigger the hair cycle and regeneration is unclear.

The dermal papilla (DP) is embedded in the hair bulb at the base of the follicle and is surrounded by a variety of stem cells. DP cells induce the hair cycle and regeneration, which requires crosstalk with the stem cell populations\textsuperscript{15}. Adipose stem cells (ASCs) that come from the fat layer of mouse skin and can produce platelet-derived growth factor (PDGF), which activates DP cells to promote hair growth\textsuperscript{16}. When conditioned media from human amniotic fluid-derived MSCs (AF-MSC-CM) was subcutaneously injected around full thickness wounds in rats, wound healing was accelerated, but more surprisingly, hair regrew at the wound site\textsuperscript{17}. There are some reports suggesting that bone marrow mesenchymal stem cells (BM-MSCs) can also be used in animal models wound repair and can enhance hair regrowth\textsuperscript{18}. MSCs enhance wound healing and promote hair follicle regeneration through the differentiation or release of growth factors when injected in the wound bed in excisional wound splitting models\textsuperscript{19}. However, it is unclear whether MSCs interact with DP cells to trigger hair regeneration.

In our study, we prepared conditioned media (CM) from the supernatant of cultured BM-MSCs Wnt1a-overexpressing (Wnt-CM) and investigated its effect on mouse hair regeneration. Our results revealed that Wnt-CM accelerate the biological progression of hair follicles from the telogen to anagen phase and increases the number of hairs. In vitro experiments demonstrated that Wnt-CM can restore and maintain the hair induction ability of intermediate follicles DP cells damaged by DHT. These results indicate that Wnt1a overexpression by BM-MSCs can promote hair cell cycle progression and induce hair regeneration by actively facilitating the induction ability of mouse DP cells in mice.

Results

Wnt1a overexpression in BM-MSCs. We generated a PWPT-Wnt1a retroviral expression system and propagated it in HEK293 cells. We purified and concentrated the retrovirus to use for increasing Wnt1a exposure in BM-MSCs with polybrene. We confirmed retroviral-mediated Wnt1a expression by qRT-PCR and western blotting. Wnt1a mRNA and protein levels were higher Wnt1a-treated BM-MSCs (Fig. 1A–D), whereas Wnt1a was weakly expressed in untreated control BM-MSCs. We also detected Wnt1a in culture supernatants by ELISA. Secreted Wnt1a protein levels were significantly higher in retroviral-Wnt1a-infected BM-MSCs compared to untreated control BM-MSCs (Fig. 1E). These data demonstrate that Wnt1a was successfully expressed in BM-MSCs and secreted into the medium of the cultured BM-MSCs.

Wnt-CM promotes the hair follicle cycling. To determine whether Wnt1a from BM-MSCs affects the hair follicle cycle, we collected the culture medium from Wnt1a-overexpressing BM-MSCs and prepared Wnt-CM by dialysis and concentrated it 20-fold. Then, 100 μL of Wnt-CM was injected into intradermally injected at multiple points in the dorsal skin in which there were mouse hairs that were clipped, with the same dose of MSC-CM and DMEM used as controls. We determined the hair cycle stage by measuring the amount by skin pigmentation. The results revealed that Wnt-CM treatment by 7 days diffuse darkening of the dorsal skin, and the control groups displayed no significant change (Fig. 2A). At 14 days, hair regrowth had completed in Wnt-CM-treated mice, and the tip of the hair shaft emerged through the epidermis while dorsal skin pigmentation was uneven and only contained a few hair shafts in the MSC-CM-treated group. The dorsal skin of the DMEM-treated group retained large areas without pigmentation (Fig. 2B). We harvested dorsal skin for histological analysis at 3, 7, and 14 days. The tissue was fixed in 4% formaldehyde to make paraffin sections.

**Figure 1 | Wnt1a expression in BM-MSCs. (A), (C) RT-PCR analysis of Wnt1a expression and corresponding semi-quantitative analysis data. (B), (D) Wnt1a expression was validated by western blotting using anti-Wnt1a antibody and corresponding semi-quantitative analysis data. (E) Wnt1a expression levels of condition media (CM) from Wnt-MSCs and MSCs were measured by ELISA. The Wnt1a expression was up-regulated in Wnt-MSCs compared with MSCs. The data represents the means ± SEM, n = 3. *P < 0.05.**

**Figure 2 | Wnt1a expression in BM-MSCs. (A), (C) RT-PCR analysis of Wnt1a expression and corresponding semi-quantitative analysis data. (B), (D) Wnt1a expression was validated by western blotting using anti-Wnt1a antibody and corresponding semi-quantitative analysis data. (E) Wnt1a expression levels of condition media (CM) from Wnt-MSCs and MSCs were measured by ELISA. The Wnt1a expression was up-regulated in Wnt-MSCs compared with MSCs. The data represents the means ± SEM, n = 3. *P < 0.05.**

(8 μm thick). Histomorphometrical analyses indicated that Wnt-CM promoted telogen–anagen transition (Fig. S1A). In particular, the hair follicles that were treated with Wnt-CM were transformed telogen to early anagen and middle-anagen at day 3 and day 7 (Fig. S1A). Remarkably, the Wnt-CM-treated group re-entered anagen prematurely compared with the DMEM-treated group an average 2–3 days. However, the progression of hair growth was not significantly changed after entering catagen (Figure S1B). HE staining revealed that the changing structural of different stages hair follicles in the Wnt-CM-treated group. Some of the hair follicles had entered anagen IV by day 3, hair follicles entered anagen VI by day 14 (Fig. 3C–J). However, the MSC-CM-treated groups exhibited the hair follicles appeared to be in anagen III by day 3, the hair follicles entered anagen IV at day 7, and part of the hair follicle had entered anagen IV by day 14. The DMEM-treated group hair follicles entered anagen II, IIIC, and IV at 3, 7 and 14 days, respectively. Overall, these results indicate that Wnt1a overexpression by BM-MSCs can induce hair to rapidly enter anagen of the hair cycle in mice.

**Wnt-CM increases the amount of hair regrowth.** The number of hair was evaluated using typical photos of mouse dorsal skin and HE-stained skin tissue sections of mouse models subjected to Wnt-CM.
Figure 2 | Wnt-CM promotes the hair follicle cycle in mice. Telogen C57BL/6 mice were intradermally injected with Wnt-CM. Typical photos of dorsal skin reveal that the stage of the hair cycle by observed comparison of dorsal skin colors and hair growth (A, B). HE staining indicates a structural change of hair follicles (C–J). (E), (F), (G) represent different stages in the hair cycles at 14 days by HE stained. (H), (I), (J) show a magnification of the framed labeled area. Scale bar (E–G) = 50 μm, (C), (D), (H–J) = 20 μm.
Wnt-CM upregulates the hair induction related genes in vivo. To determine how Wnt-CM effects hair regeneration, we analyzed hair induction-related genes expression (Lef-1, Versican, Ptc-1 and Gli-1) by qRT-PCR of samples from the dorsal skin tissue of Wnt-CM-treated mice and MSC-CM-treated and DMEM-treated control mice. The results indicated that the expression of all hair induction-related genes was enhanced in the mice treated with Wnt-CM treated at day 3, and the expression rapidly increased by day 7. In addition, the increased expression tendency was sustained after 14 days. The MSC-CM-treated group also displayed increased expression compared to the DMEM group (Fig. 5A–D). These results suggest that Wnt1a from BM-MSCs could upregulate the expression of mice hair induction-related genes expression.

Wnt-CM sustains hair induction related gene expression in cultured DP cells. It is well known that microenvironment changes cause DP cells to lose their ability to induce hair follicle formation. Thus, we isolated, cultured and treated human scalp intermediate follicle DP cells with DHT to establish a model of DP cells with impaired hair induction ability. We examined Lef-1, Versican, Ptc-1 and Gli-1 expression by qRT-PCR. The results indicated that the hair induction-related gene expression of DP cells was significantly inhibited with 100 nM DHT treatment. We found that MSC-CM not only promoted hair growth gene expression but also recovered the hair hair induction-related gene expression of DP cells treated with DHT. Remarkably, Wnt-CM significantly increased hair induction-related gene expression ability was significantly enhanced by Wnt-CM treatment compared to MSC-CM treatment (Fig. 6A–D). We also investigated the effect of Wnt-CM on DP cells migration using scratch experiments (Fig. 6E). Our results revealed that Wnt-CM treatment significantly enhanced DP cell migration and restored the impaired migration ability of DP cells induced by DHT treatment. Although MSC-CM treatment also enhanced DP cell migration, its effect was weak compared to Wnt-CM treatment. These findings demonstrate that DP cells hair induction-related gene expression of can be maintained and repaired by MSCs in vitro, and this effect is significantly enhanced by Wnt1a overexpression in MSCs.

Discussion

DP cells manage hair follicle cycling through secreted signaling factors. Human hair follicles affected by androgenic alopecia contain a largely intact population of hair follicle stem cells and a primary defect in DP signaling, resulting in hair anagen momentum being unable to start. The restoration of DP cell hair induction ability has been considered a potential therapy for hair loss. In this study, we demonstrated that Wnt1a overexpression by BM-MSCs could induce the transition of hair follicles from telogen to anagen significantly increases the number of mice hairs and restores the expression of hair induction-related genes damaged by DHT in vitro. These finding indicate that Wnt1a overexpression by BM-MSCs can induce hair follicle regeneration.

Hair cycling between telogen to anagen is precisely regulated by DP cells. The Wnts pathway is an important signaling pathway that
activates the hair induction ability of DP cells. Wnt7a can mediate epidermal-mesenchymal interactions that enhance wound-induced follicle neogenesis in mouse models, and it is also important in maintaining the hair induction activity of cultured DP cells. Adenovirus-mediated ectopic expression of other Wnt proteins, such as Wnt10b, can activate precocious anagen entry in mouse models. During chicken embryo feather formation, Wnt1 is first expressed in the epidermis and then becomes enhanced on the embryonic 6th day during dermis formation, and the primary feather row appears on the embryonic 7.5th day along the dorsal midline of the lumbar region. There is complete loss of Wnt1 expression by the embryonic 8.5th day. During feather formation, Wnt1 triggers the formation of a feather and induces the appendage dermis. Therefore, Wnt1a expression is perhaps the original signal in hair formation to regulate the hair cycle and regeneration. In our results, Wnt-CM can enhance the expression of hair induction-related proteins and genes. Lef-1 is an essential regulatory protein in the Wnt signaling pathway that controls cell growth and differentiation. Wnt-CM can up-regulate Lef-1 expression in mouse model dorsal skin tissue depliation and in cultured DP cells treated with Wnt-CM. The data demonstrated that Wnt1a from BM-MSCs activates the Wnt/β-catenin signaling pathway to mediate hair regeneration.

The hair cycle and regeneration were complex process of cyclic tissue remodeling that involves growth factors, cytokines, hormones, adhesion molecules and related enzymes. In previous studies, vascular endothelial growth factor (VEGF) incorporated into collagen hydrogel could accelerate hair follicle entry into anagen phase and enhance hair elongation when it was subcutaneously implanted into the back of mice. These results demonstrated that VEGF can promote hair follicle growth through induced angiogenesis. Insulin-like growth factor-1 (IGF-1) is expressed in the hair follicle and was demonstrated to affect follicular proliferation, tissue remodeling, and the hair growth cycle. Loss of IGF-1 induced a delay telogen and retarded the onset of the second anagen phase, and the guard hairs of transgenic mice skin significantly elongated. However, the ectopic expression of IGF-1 in transgenic mice skin resulted in partial compensation of the hair growth cycle. Platelet-derived growth factor (PDGF) has been demonstrated to induce entry into the anagen phase of the hair growth cycle at the injection sites of the dorsal skin of C3H mice through its receptors in the hair follicle epithelium. When the PDGF gene was knocked out, the mice exhibited a thinner dermis, misshaped hair follicles, smaller dermal papillae, abnormal dermal sheaths and thinner hair compared to wild-type siblings. MSCs are multipotent cells that have been widely applied in regenerative medicine. In vitro and in vivo studies have increasingly shown that MSCs secretions have an increasingly wide range of biological functions. MSCs secrete many factors useful in regenerative and repair processes, which creates a comfortable environment for the cells in adjacent tissues. In this study, we concentrated the culture supernatant of MSCs and prepared conditioned medium (MSC-CM). MSC-CM accelerated the hair cycle and increased hair induction-related gene expression in vivo and restored the hair induction ability of DP cells that had been damaged by in vitro. Although we did not identify the individual roles of individual factors, our results suggest that BM-MSCs release a large number of growth factors that...
hair size, shape and cycling. Previous studies have demonstrated that Wnt signaling may maintain the progenitor pool and the regulate of differentiation and lineage commitment. Therefore, selective change in the Wnt signal pathway may be a useful target for cell-based therapy. The combined regulation of several genes may help us determine the potential of gene therapy for stem-cell-based hair regeneration. Wnt1a and MSCs treatment synergistically maintain the progenitor pool and the regulation of differentiation and lineage commitment. Therefore, selective change in the Wnt signal pathway may be a useful target for cell-based therapy. The combined regulation of several genes may help us determine the potential of gene therapy for stem-cell-based hair regeneration. Wnt1a and MSCs treatment synergistically maintain the progenitor pool and the regulation of differentiation and lineage commitment. Therefore, selective change in the Wnt signal pathway may be a useful target for cell-based therapy. The combined regulation of several genes may help us determine the potential of gene therapy for stem-cell-based hair regeneration. Wnt1a and MSCs treatment synergistically maintain the progenitor pool and the regulation of differentiation and lineage commitment. Therefore, selective change in the Wnt signal pathway may be a useful target for cell-based therapy. The combined regulation of several genes may help us determine the potential of gene therapy for stem-cell-based hair regeneration. Wnt1a and MSCs treatment synergistically maintain the progenitor pool and the regulation of differentiation and lineage commitment. Therefore, selective change in the Wnt signal pathway may be a useful target for cell-based therapy. The combined regulation of several genes may help us determine the potential of gene therapy for stem-cell-based hair regeneration.

The DP plays key roles in epithelial-mesenchymal interactions to enable hair follicle development, regeneration, and specification of hair size, shape, and cycling. Previous studies have demonstrated that an altered DP cell microenvironment can lead to hair loss in human skin, such as androgenic hair loss and chemically induced hair loss. In addition, rat DP cells cultured in DMEM containing 10% FBS in vitro have been demonstrated to retain their original hair growth induction ability until passage 3, and the loss is due to the unfavorable DP cell environmental change. To preserve the properties of DP cells, many strategies aim to mimic the in vivo microenvironment, such as culturing DP cells in three-dimensional aggregates or culturing them together with keratinocytes on extracellular matrix substrates. Furthermore, the hair induction ability of DP cells can be maintained by co-culturing with Wnt3a-expressing feeder cells. These results demonstrate that Wnt3a signaling has favorable effects on the follicle induction ability of DP cells. In our study, we found that Wnt-CM prepared by Wnt1a overexpression by BM-MSCs can enhance the expression of hair induction-related genes of DP cells in vitro. In addition, we found that hair induction-related genes displayed a downward expression trend at in DP cells treated with DHT, and this declining trend can be reversed with Wnt-CM treatment. These observations prove that Wnt1a and MSCs are suitable for mimicking the microenvironment necessary for restoration and enhancement of DP cell hair induction ability. Our results also provide a theoretical foundation for culturing a large number of DP cells for potential alopecia therapies.

In summary, Wnt-CM developed from Wnt1a overexpression in MSCs can accelerate the initiation of the hair follicle transition from the telogen phase to the anagen phase, increase the number of hairs and enhance expression of hair induction-related proteins in vivo. Furthermore, Wnt-CM can restore and promote the hair induction ability of DP cells that has been impaired by DHT in vitro. Our findings indicate that Wnt1a from MSCs can restore the ability of DP cells to induce hair follicle regeneration and can potentially serve as the basis of alternative therapeutic methods for alopecia.

**Methods**

**Animals.** Six-week-old male (SD) rats (220–250 g) and six-week-old male C57BL/6 mice were obtained from the Chinese PLA General Hospital. The protocol was approved by the medical ethics committee of the Chinese PLA General Hospital.

**Amplification and purification of retroviral vectors.** Murine Wnt1a cDNA (NM_021279, oriGene, MD, USA) was inserted into the Mlu I and Sal I sites of a retrovirus vector (PWPT, gift from Xin Wang, Shanghai Institute of Biochemistry and Cell Biology). Recombinant vectors were amplified in HEK293FT cells to generate high-titer preparations and purified using polyethylene glycol 6000 (PEG) via the precipitation method. Wnt1a virus was dissolved in PBS (phosphate-buffered saline) buffer and stored at −80°C.

**Rat BM-MSCs isolation and Wnt-CM preparation.** BM-MSCs were isolated and harvested from the femurs of 6-week-old male (SD) rats (220–250 g), purified, and identified as described previously. The MSCs were cultured to 50%–60% confluence in T75 culture flasks and treated with the Wnt1a virus-containing medium combined with Polybrene (8 mg/mL), which was applied to the containers, which was replenished with 12 mL of serum-free DMEM (GIBCO, NY, USA) for 24 h prior to harvesting the media of the Wnt1a virus-containing BM-MSCs. The collected media samples were centrifuged at 3,000 rpm for 10 min to remove the cell debris. The media were concentrated 20-fold by dialysis with a 7-kDa molecular.
weight cut-off bag filter (Union Carbide, CT, USA) in PEG 20000 at 4°C to prepare the Wnt-CM and MSC-CM.

ELISA. The level of Wnt1a protein in cell culture supernatants from MSCs was assayed using a Wnt1a immunoassay kit (CUSABIO, WH, CN). After transfection, conditioned medium was collected. MSC-CM or Wnt-CM was added to each well and incubated for 2 h at room temperature. The Wnt1a expression level was determined according to the manufacturer's protocol, and absorbance was measured at 450 nm using an ELISA reader (BIOTEK, VT, USA).

**Figure 6 | Wnt-CM enhances DP cell hair induction ability.** (A–D) The qRT-PCR results revealed that Lef-1, Versican, Ptc-1, and Gli-1 were significantly downregulated in DHT-treated. The expression of hair induction-related genes was enhanced by MSC-CM and Wnt-CM treatment. (E) The migration ability of DP cells was impaired by DHT according to the scratch test. (F) Quantitative analysis the scratch closure rate of DP cells cultured for 24 hours. The data represent the means ± SEM, n = 3. *P < 0.05 and **P < 0.01. Scale bar = 500 μm.

DP cell isolation, culture and DHT induction. Intermediate follicles, appeared thinner and less pigmented than terminal follicles and were obtained from 3 mm punch biopsies taken from the balding scalp of male patients undergoing hair transplantation surgery. Ethical permission and informed consent were obtained preoperatively. DP cells were isolated from hair scalp follicles according to previously described method. The cells were maintained in 10 ml of DMEM (Gibco, NY, USA) supplemented with 10% fetal bovine serum (Hyclone, UT, USA). On passage 2, the DP cells were grown to 50%–60% on 24-well plates containing 100 nM DHT DMEM medium and induced for 24 h. After which, 20-fold conditioned medium (100 μl per
1 ml of DMEM) was added, and the cells were cultured for another 24 h. The DP cells were harvested, and the relevant gene expression levels were assessed.

Hair regeneration model. Six-week-old male C57BL/6 mice were obtained and then allowed to adapt for a week with food and water. Anagen was induced by depilation of the skin on the back of C57BL/6 mice that were in the telogen phase of the cycle, as described. At one day after hair removal, 100 μl of Wnt-CM, MSC-CM, DMEM (Gibco BRL, NY, USA) was intradermally injected into multiple points.

ALP (alkaline phosphatase) activity. The detection of alkaline phosphatase (ALP) activity in frozen sections (8 μm thick) was performed with an ALP detection kit (Chemicon Millipore, Temecula, CA, USA), following the manufacturer’s protocol. Briefly, frozen sections were fixed with 4% paraformaldehyde, rinsed with phosphate-buffered saline (PBS), and incubated with a solution containing Fast Red Violet and Naphthol AS-BI phosphate for 15 min in the dark at room temperature. The reaction was terminated by rinsing again in phosphate-buffered saline (PBS). The sections were mounted in Permount (ebioscience, CA, USA).

Quantitative real-time RT-PCR (qRT-PCR). The treated skin tissue and DP cell total RNA were isolated using an RNeasy Mini Kit (Qiagen, CA, USA). Single-stranded cDNA was synthesized using SuperScript II reverse transcriptase and oligo (dT) (Invitrogen, CA, USA). The qRT-PCR was used to determine transcript expression and normalized against the glyceraldehyde-3-phosphate dehydrogenase (Gapdh). The primer sets used are shown in Table 1.

Western blot analysis. Western blotting was performed as previously described. MSCs and retrovirally infected MSC total protein was obtained. The primary antibodies were used of rabbit polyclonal antibodies to Wnt-1 and mouse monoclonal antibodies to Gapdh (Abcam, MA, UK), and the used secondary antibodies used goat anti-rabbit and goat anti-mouse IgG (HRP). The blots were analyzed with densitometry using ImageJ software (NIH, MD, USA).

Histological analysis. Dorsal skins was harvested for histological analysis. The treated dorsal skins were fixed in 4% formaldehyde and then processed by paraffin block embedding using standard techniques to make Paraffin sections (8 μm thick). The general histology was visualized by hematoxylin-eosin (HE) staining and was observed using a microscopy (Olympus BX53/IP).

Table 1 | List of sequences of forward and reverse primers

| Genes | Primer | Sequences | Product size (bp) | GeneBank Accession No. |
|-------|--------|-----------|------------------|-----------------------|
| Lef-1 | Forward: 5' - 3' gccaccagggtgaagatcc 107 | NM_010703 |
| Versican | Forward: 5' - 3' tttaccagggttagaacc   | 150 |
| Ptc-1 | Forward: 5' - 3' gccaattgtagcttcagtt 100 | NM_001081249 |
| Gli-1 | Forward: 5' - 3' caaggccacacttccaggg 164 | NM_008957 |
| Wnt1a | Forward: 5' - 3' gattcactagtgcaagtgg 134 | NM_001083603 |
| Gapdh | Forward: 5' - 3' agcgtgagcctgaatctgtg 130 | NM_010296 |
| Reverse: 5' - 3' ggagtagttgttacatccgttgc 188 | NM_001167609 |

PCR amplification conditions on the Applied Biosystems 7500 Real Time PCR System: 5 minutes at 95°C for 2 minutes; 40 cycles of 95°C for 15 seconds and 60°C for 60 seconds.

Quantitative histomorphometry. Hair cycle stages were evaluated and classified as described by the means of quantitative histomorphometry. Histomorphometry was performed with HE-stained sections that were taken from defined back skin regions. At least 30 hair follicles per mouse per group were evaluated.

Cell scratch experiment. DP cells were plated in 6-well plates at 5 × 10^5 cells/well. When cells covered the bottom of the well, a scratch was made with a sterilized P1000 pipette tip (a width of 1–1.2 mm), and the DP cells continued to be cultured in the different media after washing with PBS. After 24 h, the scratches were analyzed via microscopy (Olympus BX53, JP), and the scratch area was measured using IPP software (Media Cybernetics).

Statistics. All data from the quantitative experiments are presented as the mean plus standard deviation (SD). All experiments were repeated three times with independent cultures, and similar results were obtained. Statistical significance was determined using Student’s t-test. Statistical significance was accepted as P < 0.05.

1. Andl, T., Reddy, S. T., Gadappa, T. & Miller, S. E. Wnt signals are required for the initiation of hair follicle development (2002).
2. Plikus, M. V. & Chao, C.-M. Complex hair cycle domain patterns and regeneration hair waves in living rodents. J Invest Dermatol 128, 1071–1080 (2008).
3. Chi, W., Wu, E. & Morgan, B. A. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140, 1676–1685 (2013).
4. Mc Elwee, K. J., Kissling, S., Wentzel, E., Huth, A. & Hoffmann, R. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol 121, 1267–1275 (2003).
5. Luanpitpong, S. et al. Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through β2-dependent mechanism. Apoptosis 16, 769–782 (2011).
6. Inui, S. & Itami, S. Androgen action on the human hair follicle: perspectives. Exp Dermatol (2012).
7. Kwack, M. H. et al. Dihydrotestosterone-inducible dickkopf1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J Invest Dermatol 128, 263–269 (2007).
8. McDonough, P. H. & Schwartz, R. A. Adolescent androgenic alopecia. Cutis 88, 165–168 (2011).
9. Reddy, S. et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 107, 69–82 (2001).
10. Kishimoto, J., Burgess, R. E. & Morgan, B. A. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 14, 1181–1185 (2000).
11. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).
12. Li, Y.-H. et al. Adenovirus-mediated Wnt10b overexpression induces hair follicle regeneration. J Invest Dermatol 132, 2012.

13. Chang, C.-H. et al. Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers. Mech Dev 121, 157–171 (2004).

14. Widelitz, R. B. Wnt signaling in skin organogenesis. Organogenesis 4, 123–133 (2008).

15. Enshell-Seijffers, D., Lindon, C., Kashiwagi, M. & Morgan, B. A. β-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev Cell 18, 633–642 (2010).

16. Festa, E. et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146, 761–771 (2011).

17. Yoon, B. S. et al. Secretory Profiles and Wound Healing Effects of Human Amniotic Fluid–Derived Mesenchymal Stem Cells. Stem cells and development 19, 887–902 (2009).

18. Chen, L., Tredget, E. E., Wu, P. Y. & Wu, Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3, e1886 (2008).

19. Wang, X., Tredget, E. E. & Wu, Y. Dynamic signals for hair follicle development and regeneration. Stem Cells and Development 21, 7–18 (2011).

20. Ramos, R., Guerrero-Juarez, C. F. & Plikus, M. V. Hair Follicle Signaling Networks: A Dermal Papilla–Centric Approach. J Invest Dermatol 133, 2306–2308 (2013).

21. Soma, T., Fujisawa, S., Shirakata, Y., Hashimoto, K. & Kishimoto, J. Hair-inducing ability of human dermal papilla cells cultured under Wnt/β-catenin signalling activation. Exp Dermatol 21, 307–309 (2012).

22. Olivera-Martinez, I., The`lu, J., Teillet, M.-A. & Dhouailly, D. Dorsal dermis development depends on a signal from the dorsal neural tube, which can be substituted by Wnt-1. Mech Dev 100, 233–244 (2001).

23. Stenn, K. & Paus, R. Controls of hair follicle cycling. Physiol Rev 81, 449–494 (2001).

24. Yano, K., Brown, L. F. & Detmar, M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest 107, 409–417 (2001).

25. Hayashi, Y., Yamamoto, N., Nakagawa, T. & Ito, J. Insulin-like growth factor I inhibits hair-cell apoptosis and promotes the cell cycle of supporting cells by activating different downstream cascades after pharmacological hair cell injury in neonatal mice. Mol Cell Neurosci (2013).

26. Tomita, Y., Akiyama, M. & Shimizu, H. PDGF isoforms induce and maintain anagen phase of murine hair follicles. J Dermatol Sci 43, 105–115 (2006).

27. Fu, X. & Li, H. Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell Tissue Res 335, 317–321 (2009).

28. Kupcova Skalnikova, H. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie (2013).

29. Yamao, M. et al. Contact between dermal papilla cells and dermal sheath cells enhances the ability of DPSCs to induce hair growth. J Invest Dermatol 130, 2707–2718 (2010).

30. Jahoda, C. A. & Oliver, R. F. Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro. J Embryol Exp Morphol 79, 211–224 (1984).

31. Arase, S., Sadamoto, Y., Katoh, S., Urano, Y. & Takeda, K. Co-culture of human hair follicles and dermal papillae in a collagen matrix. J Dermatol 17, 667–676 (1990).

32. Philipson, L., Albertsson, P. & Frick, G. The purification and concentration of viruses by aqueous polymer phase systems. Virology 335, 553–571 (1960).

33. Hao, H. et al. Multiple intravenous infusions of bone marrow mesenchymal stem cells reverse hyperglycemia in experimental type 2 diabetes rats. Biochem Biophys Res Commun 313, 287–295 (2010).

34. Higgins, C. A., Chen, J. C., Cerise, J. E., Jahoda, C. A. & Christiano, A. M. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proceedings of the National Academy of Sciences 110, 19679–19688 (2013).

35. Müller-Röver, S. et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117, 7–18 (2001).

36. Wu, Z. et al. LRP16 integrates into NF-kB transcriptional complex and is required for its functional activation. PLoS One 6, e18157 (2011).

37. Lee, S.-H. et al. Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells. PLoS One 7, e34152 (2012).

Acknowledgments
This research was supported in part by the National Basic Science and Development Program [2012CB518103, 2012CB518105], the 863 Projects of Ministry of Science and Technology of China [2013AA02005 and 2012AA020502], National Natural Science Foundation of China (81121004, and 8120041), key sciences and technology project in hainan province[ZDZX2013003].

Author contributions
H.H., X.F., W.H. designed the research. L.D. and L.X., H.H. and J.L. performed the experiments. D.T., C.T., Q.H., Q.H. and L.D., date analysis, Y.Z., H.L. prepared figures 1–6. L.D. and L.X., H.H. contributed equally in writing the manuscript. All of the authors reviewed and approved the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Dong, L. et al. Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regeneration. Sci. Rep. 4, 5432; DOI:10.1038/srep05432 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/