Acoustic Correlates of Contrastive Stress in Compound Words versus Verbal Phrase in Mandarin Chinese

Weilin Shen*, Jacqueline Vaissière##, and Frédéric Isel###

Abstract

Duanmu (2000) proposed that tonal languages, such as Chinese, follow the same Compound and Nuclear Stress Rules (Chomsky & Halle, 1968) for phrasal stress as English. This study investigates the acoustic correlates of contrastive stress between compound words and verbal phrases in Mandarin Chinese. We focused on the durational, fundamental frequency, and intensity correlates of stress within minimal pair MN modifier-head compounds and VO verb-object phrases. Our results demonstrated that (1) the final syllable was more lengthened in [VO] than in [MN] and that (2) the F0 range was larger in [VO] than in [MN]. Moreover, the duration of the pause between the two syllables seems to play a role in distinguishing between [MN] and [VO]. In contrast, we showed that intensity contributed less to this distinction. Our results confirmed the right stress pattern in [VO]; however, we failed to find the lexical stress on the Left syllable we had expected, at least with the speakers we examined. Taken together, the present acoustic study lends support to the hypothesis that principles of stress upward of word level are universal through different languages.

Keywords: Morpholexical Ambiguity, Compounding, Compound versus Nuclear Stress, Acoustic Features.

1. Introduction

In stress languages, such as in English, most words have stable lexical stress patterns and it is often easy to tell which syllables have stress. For a typical tonal language, e.g. Mandarin, the word stress is often less obvious. Although, lexical stress has been shown to be highly...
language-dependent, principles of stress upward of word level (i.e. compound stress and phrasal stress) are more universal in different languages. Chomsky and Halle (1968) proposed two rules for English compound and phrasal stress.

- **Compound stress rule**: stress is assigned to the leftmost stressable vowel in nouns, verbs, or adjectives, e.g. blackbird.

- **Nuclear stress rule (NSR)**: stress is assigned to the rightmost stressable vowel in a major constituent, e.g. [the [black bird]].

It has been proposed that the Compound stress rule and NSR are true for Mandarin Chinese, and they permit one to distinguish between compounds and phrases (Duanmu, 2000). Nevertheless, there is no empirical evidence supporting this hypothesis to date. The first goal of the present study was to understand to what extent morphology affects abstract stress using acoustic-phonetic evidence. Moreover, we were interested in discerning the acoustic phonetic cues, which reflect abstract stress. In Chinese, a V-N construction is sometimes ambiguous, possibly representing both a modifier-head compound [MN] and a verb-object phrase [VO]. For example, a V-N construction ‘chao-fan’ (fry-rice) may be a compound, in which the verbal constituent ‘chao’ (fry) modifies the nominal head ‘fan’ (rice); it may also represent a verb-object relation (to fry rice). The ambiguous pairs have the same segmental characteristics and are assumed to differ from each other only in the stress pattern, showing left stress for compounds and right stress for phrases. There is, however, no phonetic evidence that compound stress and phrasal stress are implemented in [MN] compounds and in [VO] phrases in Mandarin Chinese.

Fraisse (1956) proposed two basic rhythmic tendencies 1) "rythmitisation intensive," sensitive to strengthening of the initial element, and 2) "rythmitisation temporelle," building on the lengthening of the final element. The supposed basic rhythmic tendencies predict initial extra loudness and final lengthening. From phonetic studies on the acoustic correlates of stress since the 1950s, researchers have agreed that linguistic stress correlates with a complex configuration of events of increased duration, larger F_0 range, and raised intensity (Lehiste, 1970) and that several cues may be functionally equivalent cross-linguistically (Vaissière, 2004).

Duration

From a series of experiments, Fry (1955, 1958) showed that duration is a consistent correlate of stress at the word level in English and that it is a more effective cue than intensity. Since then, researchers have started to give up the classical view that stress is equated to a higher degree of intensity. Studies on the neutral tone (i.e. destressed syllable) in Chinese have confirmed the crucial role of duration on the perception of a destressed syllable for Chinese. Lin (1980, 1990) and Cao (1992) showed that duration of the destressed neutral tone syllable
is systematically shorter (reduced by approximately 50%) than a syllable with full tone.

Fundamental frequency

The \(F_0 \) has been showed to be a major acoustic manifestation of suprasegmental structures. It is claimed by some researchers to be the strongest cue of stress for stress languages (Cooper *et al.*, 1985; Lieberman, 1960; Gussenhoven *et al.*, 1997). Nevertheless, others have shown that \(F_0 \) is not a necessary cue because stress can be identified on the basis of duration and intensity alone (Cutler & Darwin, 1981). The situation is the same for tonal languages, such as Mandarin. The pitch range has been shown wider when syllables are stressed (Shen, 1985; Liu & Xu, 2005). More specifically, when a 3rd Tone is stressed, it is dipped lower and, when a 4th Tone is stressed, it starts higher and falls lower (Chao, 1968). Moreover, computational corpus studies (Kochanski *et al.*, 2003) have established quantitative \(F_0 \) predictions in terms of the lexical tones and the prosodic strength of each word. Shen (1993), however, found that stress in Mandarin could be identified without \(F_0 \) information.

Intensity

In literature, the role of intensity for stress is not agreed upon. Fry (1955, 1958) showed that intensity was a less effective cue than duration on the perception of linguistic stress patterns. Nevertheless, some authors have argued that the strongest cue to prominence is intensity for English (e.g., Beckman, 1986; Turk & Sawusch, 1996). For Mandarin Chinese, the effect of the intensity is only secondary. Studies on the neutral tone in Chinese showed that the intensity of the destressed neutral tone is not necessary lower than the one with full tone (Cao, 1986). Moreover, the destressed neutral tone raises its intensity after Tone 3 (Lin, 2006). Phonetic data (Cao, 1992) has illustrated that the destressing of the neutral tone syllable is not related simply to its intensity. The intensity of a neutral tone syllable is lower than that of one with full tone in general, but the situation is reversed when it is preceded by a Tone 3 syllable.

The present study investigates the acoustic correlates of stress between compound and phrase in Mandarin Chinese. We focused on the durational, fundamental frequency, and intensity correlates of stress within minimal pair [MN] modifier-head compound and [VO] verb-object phrase. Our hypotheses were that 1) [MN] modifier-head compound and [VO] phrases differ phonetically with left stress in [MN] modifier-head compounds and right stress in [VO] phrases and that 2) a different prosodic pattern is reflected in acoustic features in \(F_0 \), duration and intensity.
2. Methodology

2.1 Materials
One hundred thirty-five minimal pairs presenting a morpholexical ambiguity (i.e. [MN] modifier-head compound vs. [VO] phrases) were selected from the Contemporary Chinese Dictionary 5th edition (Lu & Ding, 2008). Each pair had the same segmental characteristics and was assumed to differ from each other only in the stress pattern. The target words were not recorded in isolation and were embedded in an utterance fragment:

1) 我说的不是名词编号而是动词编号.
 [I did not say noun “bian-hao” but said verb “bian-hao”.

The critical words in each pair change their position in the utterance fragment, giving

2) 我说的不是动词编号而是名词编号.
 [I did not say verb “bian-hao” but said noun “bian-hao”.

In all, 270 sentences were created. The order of the sentences was randomized.

2.2 Recording Procedure
Before the recording session, the participants were instructed in the goal of the recording and how the recording would proceed. The material was carried out in the laboratory of Phonetics and Phonology of University Sorbonne Nouvelle Paris 3. Speakers were recorded individually in an acoustic chamber, using an attached microphone, placed at a distance of about 5 centimeters from the speaker’s mouth. Speech samples were recorded digitally at 44,100 Hz, 16-bit mono.

2.3 Subjects
Three Mandarin speakers (two females) in Paris participated in the experiment. One female speaker is an international student aged 25 years that was born in Xi’an, China. Her mother tongue and language of schooling is Mandarin. The others speakers are Beijing Mandarin speakers (one female 26 years; one male 32 years).
2.4 Acoustic Measurements

The first syllable, the second syllable, and the pause between them for each critical word were manually marked in Praat, yielding four marks, one at the beginning of the first syllable, a second mark at the offset of the first syllable, a third mark between the offset of the first syllable and the onset of the second syllable, and a fourth one at the offset of the second syllable. A Praat script extracted the duration and intensity value of each segment in msec. F₀ onset and offset were measured at the beginning and at the end of the vowel. In the study, we divided the vowel into ten segments normalized in time, with the mean F₀ of the first segment as F₀ onset and the mean F₀ of the last segment as F₀ offset.

3. Results

Three-way repeated analysis of variance ANOVA tests were performed separately for each acoustic feature (duration, F₀, and intensity). Word type ([MN] modifier-head compound vs. [VO] verb-object phrase) and syllable position (left syllable: S₁ vs. right syllable: S₂) were the within groups factors, and word position in the utterance fragment (i.e. final vs. non-final) was the between groups factor.

3.1 Duration

3.1.1 Left Syllable vs. Right Syllable

Results of the three-way ANOVA for the duration revealed a significant main effect for word type \[F(1, 134) = 440.8, p<0.001; \eta_p^2 = 0.77 \], a significant main effect for word position \[F(1, 134) = 25.6, p<0.001; \eta_p^2 = 0.16 \], a significant main effect for syllable position \[F(1, 134) = 105.3, p<0.001; \eta_p^2 = 0.44 \], a significant interaction word type x syllable position \[F(1, 134) = 87.4, p<0.001; \eta_p^2 = 0.40 \], and a significant interaction word position x syllable position \[F(1, 134) = 217.0, p<0.001; \eta_p^2 = 0.45 \]. Word position showed no interaction with word type. In order to increase the statistical power, we token the word position out, and ran a two-way ANOVA (word type x syllable position). The two-way ANOVA showed significant main effect for word type \[F(1, 269) = 846.7, p<0.001; \eta_p^2 = 0.64 \] and for syllable position \[F(1, 269) = 166.3, p<0.001; \eta_p^2 = 0.38 \] and a significant interaction word position x syllable position \[F(1, 269) = 217.1, p<0.001; \eta_p^2 = 0.45 \]. Post hoc analyses showed a larger effect of syllable position for [VO] \[F(1, 269) = 217.0, p<0.001; \eta_p^2 = 0.45 \] than for [MN] \[F(1, 269) = 28.6, p<0.001; \eta_p^2 = 0.10 \].
3.1.2 Duration of the Pause

As one can notice a pause between the two syllables in VO, we decided to perform measures of pause duration. The ANOVA on the average pause duration between the syllables showed a significant main effect for word type \(F(1, 269) = 33.5, p < 0.001; \eta^2_p = 0.11 \).

3.2 \(F_0 \)

The \(F_0 \) was analyzed separately for each of the four tones. A three-way ANOVA with word type (MN vs. VO), syllable position (Left syllable vs. Right syllable), and measure point (onset vs. set) was applied to Tone 1 and Tone 4, and a two-way ANOVA with word type (MN vs. VO) and syllable position (Left syllable vs. Right syllable) was calculated on the difference between \(F_{0_{\text{max}}} \) and \(F_{0_{\text{min}}} \) for Tone 2 and Tone 3.

3.2.1 Tone 1

Results showed a significant main effect for measure point \(F(1, 45) = 10.7, p < 0.01; \eta^2_p = 0.19 \), a significant interaction between word type and syllable position \(F(1, 45) = 4.7, p < 0.05; \eta^2_p = 0.10 \), and a significant interaction between measure point and syllable position \(F(1, 45) = 6.6, p < 0.05; \eta^2_p = 0.13 \). Nevertheless, neither significant interaction between word type and measure point \(F < 1 \), nor significant interaction between word type, syllable position, and measure point \(F < 1 \) was found.
3.2.2 Tone 2

Neither significant main effect for word type and syllable position \([F< 1]\) nor significant interaction \([F< 1]\) was found on the difference between \(F_{0\text{max}}\) and \(F_{0\text{min}}\).

3.2.3 Tone 3

In order to not confound tone sandhi influence for these analyses, we took out two items in our experimental material with a Tone 3-Tone 3 combination. The two-way ANOVA on the difference between \(F_{0\text{max}}\) and \(F_{0\text{min}}\) revealed a significant interaction word type x syllable position \([F(1, 53) = 217.1, p< 0.001; \eta_p^2 = 0.31]\). Post hoc analyses showed a larger effect of syllable position for \([VO]\) \([F(1, 53) = 37.9, p< 0.001; \eta_p^2 = 0.42]\) than for \([MN]\) \([F(1, 53) = 37.9, p< 0.05; \eta_p^2 = 0.80]\).
Figure 4. F_θ values on ten segments for Tone 3 for Left and Right syllable in [MN] and [VO].

3.2.4 Tone 4

Results showed a significant main effect for measure point $[F(1, 91) = 339.1, p<0.001; \eta_p^2 = 0.79]$ and for syllable position $[F(1, 91) = 14.0, p<0.001; \eta_p^2 = 0.13]$, a significant interaction between word type and syllable position $[F(1, 91) = 23.5, p<0.001; \eta_p^2 = 0.21]$, a significant interaction between measure point and syllable position $[F(1, 91) = 14.4, p<0.001; \eta_p^2 = 0.14]$, and a significant interaction of word type x measure point x syllable position $[F(1, 91) = 6.8, p<0.05; \eta_p^2 = 0.07]$. Post hoc analyses showed a main effect of syllable position for the Left syllable of [VO] $[F(1, 91) = 36.8, p<0.001; \eta_p^2 = 0.29]$, however, there was no main effect of syllable position for the Left syllable of [VO] $[F<1]$.

Figure 5. F_θ values on ten segments for Tone 4 for Left and Right syllable in [MN] and [VO].
3.3 Intensity
A three-way ANOVA with repeated measure was performed on the average intensity. Results showed a significant main effect for word type \(F(1, 134) = 139.0, p < 0.001; \eta_p^2 = 0.64\], a significant main effect for word position \(F(1, 134) = 234.8, p < 0.001; \eta_p^2 = 0.16\], a significant main effect for syllable position \(F(1, 134) = 58.9, p < 0.001; \eta_p^2 = 0.31\], a significant interaction word type x syllable position \(F(1, 134) = 87.4, p < 0.001; \eta_p^2 = 0.40\], and a significant interaction word position x syllable position \(F(1, 134) = 440.8, p < 0.001; \eta_p^2 = 0.77\). No interaction was found.

![Figure 6. Mean intensity (dB) for each syllable in [MN] and [VO].](image)

4. Discussion
This article investigated the acoustic correlates of linguistic stress on the ambiguous structure Verb-Noun \(i.e. [MN] vs. [VO]\) in Mandarin Chinese. Moreover, the acoustic feature associated with this stress pattern was analyzed. As explained in the introduction, duration, \(F_0\), and intensity are the main correlates of stress. Results showed the implication of duration, \(F_0\), and intensity in the production of compound and phrasal stress in Mandarin.

Our preliminary data showed that the duration was longer for the right syllable in [VO], which was consistent with previous studies on the acoustic correlates of linguistic stress for stress languages and for tone languages, such as Mandarin. Nevertheless, the ‘assumed stressed’ left syllable in [MN] was not longer than the Right syllable. We also performed measures of pause duration, and the results on the average pause duration between the Left and Right syllables showed that average pause duration is longer in [VO] than in [MN]. Nevertheless, we considered that this larger pause duration was not an acoustic manifestation of stress but a mark of the syntactic boundary in the verb-object phrase.

Despite the fact that, in tone languages, \(F_0\) information should be attributed to its lexical
usage, our results showed that F_0 would be a reliable cue for the stress pattern in [MN] and [VO]. The F_0 range was shown to link to the stress for Tone 3 and Tone 4, which was in line with the predictions (Chao, 1968) that pitch range is wider for stressed syllables, specifically, when a 3rd Tone is stressed, it dips lower, and, when a 4th Tone is stressed, it starts higher. Our results showed that, for Tone 3 the right syllable in [VO] had a larger F_0 range than the left syllable. For Tone 4 the left syllable in [MN] showed higher onset F_0 than the right one.

The analyses on the intensity were in line with previous studies, which showed a less important role of the intensity for stress. In our preliminary data, the intensity was shown to have larger amplitude in [VO] than in [MN] for the two syllables. Nevertheless, we failed to find the strengthening of the Left syllable in [MN], as proposed by Fraisse, that left-headed feet should show extra loudness on the initial syllable than the second initial. Our results showed the same pattern of intensity between [VO] and [MN]. Therefore, we considered that, unless the [VO] and [MN] were presented together, the intensity was not an effective cue for distinguishing between [VO] and [MN].

In sum, our preliminary data suggested an implementation of the final lengthening for the stressed syllable in [VO], but no initial extra loudness in [MN]. The F_0 information suggested that, for Tone 3, the Right syllable was stressed in [VO] and, for Tone 4, the Left syllable was stressed in [MN]. The results confirmed the right stress pattern in [VO]; however, with the only support in Tone 4, we did not consider a lexical stress on the Left syllable in [MN].

The prosodic information, such as stress, duration, and pause was shown to be critical for the processing of the compound words (Isel et al., 2003). Once we have shown that compound word and verbal phrase present different acoustic patterns with respect to the position of stress, the next step would be to verify whether this stress pattern is used by the listeners to differentiate the two forms in cases of segmental ambiguities. For this purpose, we plan to conduct different perception and categorization experiments. At the same time, more speakers would be added to the production study.

5. Conclusion

Our results showed a right stress pattern in [VO] with longer duration in the Right syllable, larger range F_0, and longer pause duration between the syllables; in contrast, no initial strengthening in [MN] was found. Only the F_0 range information in Tone 4 supported a lexical stress on the Left syllable in [MN].

Acknowledgments

We are grateful to the anonymous reviewers whose insightful suggestions have appreciably improved the manuscript. We also thank Mr. Joe Harwood for the correction of English.
References

Boersma, P. (2001). Praat, a system for doing phonetics by computer. *Glot International, 5*(9/10), 341-345.

Cao, J. f. (1992). On Neutral-Tone Syllables in Mandarin Chinese. *Canadian Acoustics, 20*(3).

Chao, Y. R. (1968). *A Grammar of Spoken Chinese*. Berkeley, CA: University of California Press.

Chomsky, N., & Halle, M. (1968). *The sound pattern of English*. New York: Harper and Row.

Cooper, W. E., Eady, S. J., & Mueller, P. R.. (1985). Acoustical aspects of contrastive stress in question-answer contexts. *Journal of the Acoustical Society of America, 77*, 2142-2156.

Duanmu, S. (2000). *The phonology of Standard Chinese*. Oxford: Oxford University Press.

Fry, D. B. (1955). Duration and intensity as physical correlates of linguistic stress. *Journal of the Acoustical Society of America, 27*(4), 765-768.

Fry, D. B. (1958). Experiments in the perception of stress. *Language and Speech, 1*, 126-152.

Gusseroven, C., Repp, B. H., Rietveld, A. C. M., Rump, H. H., & Terken, J. (1997). The perceptual prominence of fundamental frequency peaks. *Journal of the Acoustical Society of America, 102*, 3009-3021.

Isel, F., Gunter, T. C., & Friederici, A. D. (2003). Prosody-assisted head-driven access to spoken German compounds. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 29*, 277-288.

Kochanski, G., Shih, C., & Jing, H. Y. (2003) Hierarchical structure and word strength prediction of Mandarin prosody. *International Journal of Speech Technology, 6*(1), 33-43.

Lehiste, I. (1970). *Suprasegmentals*. Cambridge, Mass.: M.I.T. Press.

Lieberman, P. (1960). Some acoustic correlates of word stress in American English. *Journal of the Acoustical Society of America, 33*, 451-454.

Lin, M. C., & Yan, J. Z. (1990). Putonghua qingsheng yu qingzhong yin [The neutral tone and stress in Mandarin.]. *Yuyan Jiaoxue yu Yanjiu [Language Teaching and Linguistic Studies]*, 1990(2), 88-104.

Lin, H. (2006). Mandarin Neutral Tone Is a Phonologically Low Tone. *Journal of Chinese Language and Computing, 16*(2), 121-134.

Lin, M. C., & Yan, J. Z. (1980). The acoustic characteristics of neutral-tone syllables in Standard Chinese. *Fangyan, 3*, 166-178.

Liu, F., & Xu, Y. (2005). Parallel Encoding of Focus and Interrogative Meaning in Mandarin Intonation. *Phonetica, 62*, 70-87.

Lu, S. X., & Ding, S. S. (2008). *Modern Chinese Dictionary* (5th ed.). Beijing: Commercial Press.
Shen, J. (1985). *Beijinghua shengdiaode yinyu he yudiao*. [Pitch range of tone and intonation in Beijing dialect]. In: Beijing Yuyin Shiyan Lu [*Working Papers in Experimental Phonetics*]. Beijing: Beijing Daxue Chubanshe. 73-130.

Shen, X. S. (1993). Relative duration as a perceptual cue to stress in Mandarin. *Language and Speech, 36*, 415-433.

Vaissière, J. (2005). Perception of intonation. In D. B. Pisoni & R. E. Remez (Eds.), *Handbook of Speech Perception*. Oxford: Blackwell.
Table 1. One hundred thirty-five minimal pairs [MN] [VO] selected in the Contemporary Chinese Dictionary 5th edition (Lu & Ding, 2008).

Verb	Noun	Verb	Noun
help w/ farm w ork	helper	speak	speech
to quote	a quote	to sketch	a sketch
to reveal a new s	news	hold fee or more posts concurrently	concurrent post
to assure	assurance	to cut paper	paper-cut
to backup	backups	to crystalize	crystal
to stock	stock preparation	to loan	a loan
to number	a number	to end	ending
to add play	playright	to import	importation
encoded	code	to register an income	income
mark the price	price	to record actual events	record of actual events
express one’s feelings	expression	to record	a record
to compare the price	price parity	to contribute money	donation
allocate funds	Appropriation	to make a strategic decision	a strategic decision
supply w/ alter	fluid supplementation	to open	opening
to benefit	benefits	to make a start	beginning period
to collect books	a collection of books	to check achievement	mark of professional performance
to impale	episode	to manage	member of a council
exceed	supermen	to leave a message	a message
grow up	adult	take a photo as a memento	photograph
to operate a job	working w/ rings	fill the hall	whole hall
drink w/ alter	drinking water	complete the first month of life	full moon
create	originally	against the flow	backslide
create	creation	make a prescription	a prescription
to teach	successor	stabilize the price	fair price
to turn to rumour	a rumour	to evaluate	evaluation
pass on a message	hearsay	to taste	taste
to export	exports	owe	debt
to stock	a stock	run into debt	amount due
to store up grain	grain in stock	to debt	debt
come from	class origin	to visa	a visa
enter an item of expenditure in the accounts	payment	to sign	signature
to deposit	a deposit	make a price	starting price
to delete	to start a business	to delegate	to open a business
answer questions in an examination paper	answer sheet	to finance	a finance
to regulate a debt	bad debts	to argue	argument
to score	a score	to talk	a talk
decide on a verdict	verdict	to carry a bag	handbag
to order	a order	write an inscription	an inscription
against the wind	head wind	pay interest	interest so deducted
finalize a manuscript	final version	work as a substitute	temporary work
to freeze a price	fixed price	invest	investment
to quantify	norm	limit the price	limited price
infinite time	definite time	limit the quantity of	limited quantity
to define	definition	order sb. to do sth. when a certain time	an order
designate members	fixed number of staff members	set a time limit	deadline
select a venue	permanent venue	take effect	effect
fault	faultage	detect an option	option
have a dialogue	dialogue	renew a contract	renewal term
to file a play	a fine	borrow money on security	a loan on security
impose a fine	a fine	explain some reason or fact	historical novel
woven dough	weaved dough	negotiate a price	negotiated price
to return	return	cite	citation
to rebate	rebate	choose words	a choice of words
to speak	speech	fix a date	date of appointment
to seal	seal	reap unfair gains	easy gains
as the boundary	boundary	to model	modeling
cultured land	cultivated land	make a summary	summary
manager	manager	steer a boat	the man who steers a boat
to lump	a lump	solicit articles	essay writing
tire labour	tired labourer	transfer	a favourable turn
consumptive material	cost to the coming year	the coming year	
joint forces	resultant	to coin	coined money
to defend	custodian	to garrison	garrison
to reply	a reply	write a composition	composition
a remittance	remittance	to operate	a job
present a gift in return	a gift in return		
recollect the pleasant flavour of	aftertaste		
send w/ord	message		
cut new spade	cuttings		
one's part-time	part-time jobs		
