NOTES-Natural orifice transluminal endoscopic surgery: Why not?

Antonello Forgione

Since natural orifice transluminal endoscopic surgery (NOTES) was first described by Anthony Kalloo, it has attracted tremendous interest from surgeons and gastrointestinal endoscopists all around the world. This special issue of the World Journal of Gastrointestinal Surgery explores the current possibilities and future potential of the most disruptive revolution in the field of surgery represented by the NOTES approach. In the future, new technologies developed for this approach and deeper insight into several gastrointestinal diseases will lead to the design of completely new interventional procedures and change the way we will operate, bringing us to the previously unimaginable goal of "no scar surgery".

© 2010 Baishideng. All rights reserved.

Key words: Gastrointestinal surgery; Minimally invasive surgery; Natural orifice transluminal endoscopic surgery; Microrobotics

Forgione A. NOTES-Natural orifice transluminal endoscopic surgery: Why not? World J Gastrointest Surg 2010; 2(6): 177-178 Available from: URL: http://www.wjgnet.com/1948-9366/full/v2/i6/177.htm DOI: http://dx.doi.org/10.4240/wjgs.v2.i6.177

EDITORIAL

We, human beings, don't like to undergo surgical procedures, not only for the fear and effect of the disease, but also for the expected postoperative pain, the risks and side effects of anesthesia, the recovery time needed after an operation and the permanent visible scars that will forever leave an unpleasant reminder of the experience and alter the esthetic of the person[1].

The revolutionary concept of natural orifice transluminal endoscopic surgery (NOTES) described by Kalloo et al[2], promises to overcome many of the historical drawbacks of the surgical approach.

After a long period of testing in experimental settings the NOTES approach has now proven its feasibility and safety in preliminary clinical experience in the performance of basic surgical procedures[3-5]. At same time, new fields of surgery and innovative approaches are being explored in order to allow more advanced procedures to be performed[6].

So far, the major efforts in the field have been primarily concentrated on the use of natural orifice approaches to simply replicate traditional radical procedures whilst respecting established operative strategies. However, the NOTES approach is also stimulating the appreciation of complementary advanced technologies and new surgical concepts, that will allow us not only to perform the procedures via a minimal access, but also to minimize the extent or even the need for a surgical resection. These new concepts are represented for example by genetically driven gastrointestinal cancer treatment and manipulation of the gastrointestinal tract for the cure of metabolic disorders[8-10].

In fact, Better genetic and physiopathological knowledge will help us to customize the surgical approach to the specific needs of the patient. This will avoid the usual "one size fits all" strategy that often relies on extended surgical resection of large specimens simply to perform the correct cancer staging. This approach rarely adds any clinical benefit to the patients while may impair their functional outcome and quality of life[11].
In this special issue of the *World Journal of Gastrointestinal Surgery*, leading experts in the field report on their current experimental and clinical experience with this new approach, such as “Natural orifice transluminal endoscopic surgery: The transgastrical route moving forward from cholecystectomy” by Targarona *et al* [2], “Transgastric cholecystectomy: From the laboratory to clinical implementation” by Dallemagne *et al* [3], “Current experience and future directions of completely NOTES colorectal resection” by Sylla [4], “Natural orifice transluminal endoscopic surgery and localized resection for colorectal neoplasia” by Cahill *et al* [5], “NOTES: The question for minimal resection and sentinel node in early gastric cancer” by Asakuma [6], “Single access laparoscopic surgery: Complementary or alternative to NOTES?” by Dapri [7], “Natural orifice transluminal surgery: Flexible platform review” by Shaikh [8], “In vivo miniature robots for natural orifice surgery: State of the art and future perspectives” by Tiwari [9], and “Natural orifice transluminal endoscopic surgery: Educational challenge” by Dunkin [10]. All the authors in their articles, highlighting how technological developments and new concepts will definitively push forward this previously unimaginable frontier of “no scar surgery”, allowing for its widespread application and the conception of completely new techniques that will greatly impact the way we will address many diseases in the future.

REFERENCES

1. **Swanson LL**, Volckmann E, Hungness E, Soper NJ. Patient attitudes and expectations regarding natural orifice transluminal endoscopic surgery. *Surg Endosc* 2009; 23: 1510-1525
2. **Kalloo AN**, Singh VK, Jagannath SB, Niiyama H, Hill SL, Vaughn CA, Magee CA, Kantesvar SV. Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. *Gastrointest Endosc* 2004; 60: 114-117
3. **Zorrón R**, Filgueiras M, Maggioni LC, Pombo L, Lopes Carvalho G, Lacerda Oliveira A. NOTES. Transgastrical cholecystectomy: report of the first case. *Surg Innov* 2007; 14: 279-283
4. **Ujiki MB**, Martinec DV, Diwan TS, Denk PM, Dunst CM, Swanström LL. Video: natural orifice transluminal endoscopic surgery (NOTES): creation of a gastric valve for safe and effective transgastric surgery in humans. *Surg Endosc* 2010; 24: 220
5. **Rao GV**, Reddy DN, Banerjee R. NOTES: human experience. *Gastrointest Endosc Clin N Am* 2008; 18: 361-370; x
6. **Zorrón R**, Goncalves L, Leal D, Kanaan E, Cabral I, Saraiva P. Transvaginal hybrid natural orifice transluminal endoscopic surgery retroperitoneoscopy—the first human case report. *J Endour* 2010; 24: 233-237
7. **Sylla P**, Rattner DW, Delgado S, Lacy AM. NOTES transanal rectal cancer resection using transanal endoscopic microsurgery and laparoscopic assistance. *Surg Endosc* 2010; 24: 1205-1210
8. **Cahill RA**, Asakuma RA, Trazuno J, Schomisch S, Wiese D, Saha S, Dallemagne B, Marks J, Marescaux J. Intraperitoneal virtual biopsy by fiberoptical coherence tomography (OCT) at natural orifice transluminal endoscopic surgery (NOTES). *J Gastrointest Surg* 2010; 14: 732-738
9. **Cahill RA**, Lindsey I, Cunningham C. Address of early stage primary colonic neoplasia by N.O.T.E.S. *Surg Oncol* 2009; 18: 163-168
10. **Rubino F**, Schauer PR, Kaplan LM, Cummings DE. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. *Annu Rev Med* 2010, 61: 393-411
11. **Forjione A**, Lenoy J, Cahill RA, Bailey C, Simone M, Mutter D, Marescaux J. Prospective evaluation of functional outcome after laparoscopic sigmoid resection. *Ann Surg* 2009; 249: 218-224
12. **Targarona EM**, Maldonado EM, Marzol JA, Marinello F. Natural orifice transluminal endoscopic surgery: The transvaginal route moving forward from cholecystectomy. *World J Gastrointest Surg* 2010; 2: 179-186
13. **Dallemagne B**, Porretta S, Allemann P, Donatti G, Asakuma M, Mutter D, Marescaux J. Transgastric cholecystectomy: From the laboratory to clinical implementation. *World J Gastrointest Surg* 2010; 2: 187-192
14. **Sylla P**. Current experience and future directions of completely NOTES colorectal resection. *World J Gastrointest Surg* 2010; 2: 193-198
15. **Cahill RA**, Mortensen NJ. Natural orifice transluminal endoscopic surgery and localized resection for colorectal neoplasia. *World J Gastrointest Surg* 2010; 2: 199-202
16. **Asakuma M**, Cahill RA, Lee SW, Nomura E, Tanigawa N. NOTES: The question for minimal resection and sentinel node in early gastric cancer. *World J Gastrointest Surg* 2010; 2: 203-206
17. **Dapri G**. Single access laparoscopic surgery: Complementary or alternative to NOTES? *World J Gastrointest Surg* 2010; 2: 207-209
18. **Shaikh SN**, Thompson CC. Natural orifice transluminal surgery: Flexible platform review. *World J Gastrointest Surg* 2010; 2: 210-216
19. **Tiwari MM**, Reynoso JF, Lehman AC, Tsang AW, Farrar SM, Oleynikov D. In vivo miniature robots for natural orifice surgery: State of the art and future perspectives. *World J Gastrointest Surg* 2010; 2: 217-223
20. **Dunkin BJ**. Natural orifice transluminal endoscopic surgery: Educational challenge. *World J Gastrointest Surg* 2010; 2: 224-230

S-Editor Wang JL L-Editor Hughes D E-Editor Yang C