Modification of silica nanoparticles by 2,4-dihydroxybenzaldehyde and 5-bromosalicylaldehyde as new nanocomposites for efficient removal and preconcentration of Cu(II) and Cd(II) ions from water, blood, and fish muscles

Hanem M. Gad, S. M. El Rayes and Ehab A. Abdelrahman

Herein, silica nanoparticles were modified by 2,4-dihydroxybenzaldehyde and 5-bromosalicylaldehyde to produce new nanocomposites which were abbreviated as N1 and N2, respectively. The synthesized nanocomposites were used for efficient removal and preconcentration of Cu(II) and Cd(II) ions from water, blood, and fish muscles. FE-SEM, FT-IR, XRD, CHN elemental analysis, and nitrogen gas sorption analyzer were used to characterize the new nanocomposites. The XRD proved that the synthesized oxide is cristobalite with an average crystallite size of 54.80 nm. Due to the formation of the C=N group, the intensity of the XRD peak at 2θ = 21.9° in the N1 and N2 nanocomposites decreased significantly. The FT-IR bands, which appeared at 1603 and 1629 cm⁻¹ in the N1 and N2 nanocomposites, are attributable to the bending vibration of C=N and/or OH, respectively. Also, the FE-SEM analysis shows the morphology of the silica nanoparticles which were identified as spherical and rod-like with slight agglomeration while the N1 and N2 nanocomposites have flaky surfaces due to the formation of C=N groups. The maximum Cu(II) ion adsorption capacities of the N1 and N2 nanocomposites are 64.81 and 40.93 mg g⁻¹, respectively. The maximum Cd(II) ion adsorption capacities of the N1 and N2 nanocomposites are 27.39 and 26.34 mg g⁻¹, respectively. The adsorption of Cu(II) or Cd(II) ions using the synthesized nanocomposites is spontaneous, chemical, exothermic, and well-matched with the Langmuir equilibrium isotherm. The recovery findings demonstrate that the preconcentration process is accurate, adaptable, and resulted in quantitative separation because % Recovery is more than 95%. Furthermore, the % RSD was less than 3.5%, indicating good reproducibility.

1. Introduction

The release of toxic metals, which are produced from different industries, into the environment causes global concern due to its harmful effect on aquatic organisms, humans, soil, and plants. Cadmium and its compounds are highly toxic where exposure to them causes cancer and damages the cardiovascular system, digestion, breathing, reproductive system, kidneys, and nerves. Excess amounts of copper may cause liver and brain poisoning, diarrhea, skin rashes, anemia caused by red cell breakage, high blood pressure, heart disease, premenstrual syndrome, nausea, stomach pain, and severe damage to the central nervous system. Excess amounts of copper also accompany psychological and mental illnesses such as autism, behavior problems, hyperactivity in children, depression in adults, dementia, and stuttering. Pollution with heavy metals such as copper and cadmium is the most dangerous type of pollution as a result of their accumulation in the organs of fish or plants. Hence, human consumption of large quantities of fish or plants, that contain high concentrations of heavy metals, leads to human poisoning. Maximum allowed concentrations of Cd(II) and Cu(II) in water as recommended by the World Health Organization (WHO) are 3 and 2 µg L⁻¹, respectively. Until now, heavy metals have been removed and determined using many methods such as precipitation, evaporation, electrochemical, and membrane separation. Unfortunately, these methods display several disadvantages involving low efficiency, high cost, and secondary damage to the water environment. Consequently, it is essential to find an economical and environmentally friendly method for removing and preconcentrating heavy metals from water. The adsorption method is familiar as an efficient and simple method for removing and preconcentrating heavy metals from water.
interaction between the adsorbent and the surface of the adsorbent involving complexation reaction, surface adsorption, cation exchange, and electrostatic attraction. Bandara et al. used biochar adsorbent, which was derived from agricultural wastes, to remove Cd(II) and Cu(II) ions from aqueous media. They found that the adsorption capacity of this adsorbent towards Cd(II) and Cu(II) ions is 6.28 and 18 mg g⁻¹, respectively. Joseph et al. used FAU-type zeolite adsorbent, which was derived from coal fly ash, to remove Cd(II) and Cu(II) ions from aqueous media. They found that the adsorption capacity of this adsorbent towards Cd(II) and Cu(II) ions is 74.074 and 57.803 mg g⁻¹, respectively. Ali et al. used thio-functionalized layered double hydroxide (Mn–MoS₂) adsorbent to remove Cd(II) and Cu(II) ions from aqueous media. They found that the adsorption capacity of this adsorbent towards Cd(II) and Cu(II) ions is 93.11 and 58.07 mg g⁻¹, respectively. Hua et al. used Sulphydryl functionalized hydrogel adsorbent to remove Cd(II) and Cu(II) ions from aqueous media. They found that the adsorption capacity of this adsorbent towards Cd(II) and Cu(II) ions is 27.40 and 15.60 mg g⁻¹, respectively. Khalifa et al. developed a new adsorbent composed of silica nanoparticles enhanced with dibenzoylmethane to remove Cd(II) and Cu(II) ions from aqueous solutions. The adsorption capacity of this adsorbent for Cd(II) and Cu(II) ions was determined to be 35.37 and 31.76 mg g⁻¹, respectively. Consequently, our research team aims to synthesize new inorganic/organic nanocomposites via a simple procedure for efficient removal and preconcentration of Cd(II) and Cu(II) ions from water, blood, and fish muscles. The silica modified with (3-aminopropyl) triethoxysilane reacted with 2,4-dihydroxybenzaldehyde and 5-bromosalicylaldehyde to produce new inorganic/organic nanocomposites. In these nanocomposites, the inorganic support carries the organic molecules which form chelates with metal ions and thus facilitate their removal. The concentration of metal ions is often determined using atomic spectroscopic equipment such as flame atomic absorption spectrometry, graphite furnace atomic absorption spectrometry, and inductively coupled plasma optical emission spectrometry. Nevertheless, a preconcentration procedure is typically required before instrumental measurement in order to eliminate any predicted matrix influences and increase the instrument’s sensitivity by reducing the detection limit. Several separating and preconcentration techniques, such as ionic liquid extraction, cloud point extraction, electrochemical deposition, ion exchange, coprecipitation, and solid phase extraction, are employed to achieve this objective. Owing to its simplicity, selectivity, and versatility, solid phase extraction is generally favored over alternative methods. Before analyzing real samples with flame atomic absorption spectrometry, Cu(II) and Cd(II) ions were preconcentrated using the synthesized nanocomposites. Consequently, this research presents new and innovative environmental effects.

2. Experimental

2.1. Chemicals

Sodium metasilicate pentahydrate (Na₂SiO₃·5H₂O), nitric acid (HNO₃), (3-aminopropyl)triethoxysilane (C₉H₂₃NO₃Si), ethanol (C₂H₅OH), thiourea (CH₄N₂S), 2,4-dihydroxybenzaldehyde (C₇H₆O₃), 5-bromosalicylaldehyde (C₆H₅BrO₂), xylene (C₆H₆), hydrochloric acid (HCl), concentrated sulfuric acid (H₂SO₄), cadmium(n) chloride monohydrate (CdCl₂·H₂O), potassium chloride (KCl), sodium hydroxide (NaOH), copper(n) chloride dihydrate (CuCl₂·2H₂O), and ethylenediaminetetraacetic acid disodium salt dihydrate (C₁₀H₁₄N₂Na₂O₈·2H₂O) were obtained from Sigma Aldrich Company and consumed without additional refinement (purity = 99.99%).

2.2. Synthesis of 2,4-dihydroxybenzaldehyde/silica and 5-bromosalicylaldehyde/silica nanocomposites

Firstly, the SiO₂ nanoparticles were synthesized as the following: 80 g of sodium metasilicate pentahydrate was dissolved in 400 mL of distilled water. After that, pH was set at 9 then the formed gel was stirred for 1 h. Besides, the formed gel was separated and thoroughly washed several times with warm distilled water to get rid of sodium chloride. Moreover, the produced gel was dried at 60 °C for 12 h then ignited at 600 °C for 5 h to obtain SiO₂ nanoparticles. Secondly, SiO₂ sample was modified with (3-aminopropyl)triethoxysilane according to the method described by Khalifa et al. as the following: 2 g of SiO₂ sample was refluxed at 150 °C with 2.20 mL of (3-aminopropyl) triethoxysilane in 60 mL of xylene for 24 h. Besides, the modified silica was separated and thoroughly washed repeatedly with warm ethanol and water then dried at 60 °C for 12 h. Lastly, 2 g of the SiO₂ sample, which was modified with (3-aminopropyl) triethoxysilane, was refluxed at 150 °C for 24 h with 30 mL ethanolic solution containing 2 g of 2,4-dihydroxybenzaldehyde or 5-bromosalicylaldehyde accompanied by a few droplets of sulfuric acid. Then, the formed nanocomposites were separated and thoroughly washed repeatedly with warm ethanol and water then dried at 60 °C for 12 h. The nanocomposites, which were synthesized using 2,4-dihydroxybenzaldehyde and 5-bromosalicylaldehyde, were abbreviated as N₁ and N₂, respectively.

2.3. Instrumentation

The X-ray diffraction (XRD) patterns of the SiO₂, 2,4-dihydroxybenzaldehyde/silica, and 5-bromosalicylaldehyde/silica samples were obtained utilizing an X-ray diffractometer (D8 Advance, Bruker, Billerica, Massachusetts, United States) equipped with Kα copper radiations with a wavelength of 0.15 nm. Also, the Fourier transform (FT-IR) spectra of the SiO₂, 2,4-dihydroxybenzaldehyde/silica, and 5-bromosalicylaldehyde/silica samples, were obtained utilizing Fourier transform infrared spectrophotometer (Nicolet, Waltham, Massachusetts, United States). The morphologies of the SiO₂, 2,4-dihydroxybenzaldehyde/silica, and 5-bromosalicylaldehyde/silica samples were examined utilizing scanning electron microscopy (SEM, JEOL, SEM-JSM-5410LV, Akishima, Tokyo, Japan), BET surface area, average pore radius, and total pore volume of the SiO₂, 2,4-dihydroxybenzaldehyde/silica, and 5-bromosalicylaldehyde/silica samples were determined utilizing a nitrogen gas sorption analyzer (Quantachrome, NOVA, Boynton Beach, United States). CHN analyses of the 2,4-dihydroxybenzaldehyde/silica and 5-bromosalicylaldehyde/
silica nanocomposites were determined utilizing CHN Elemental Analyzer (PerkinElmer, 2400, Waltham, United States).

2.4. Removal of Cu(II) and Cd(II) ions from aqueous media

For studying the effect of pH, the pH values of 75 mL of 200 mg L\(^{-1}\) of Cu(II) or Cd(II) solutions were adapted to different values (from 4 to 6 in the case of Cu(II) ions or from 4 to 7 in the case of Cd(II) ions) before the addition of nanocomposites using 0.1 M HCl or NaOH. After that, 0.15 g of the N\(_1\) or N\(_2\) nanocomposites was added to each Cu(II) or Cd(II) solution then the mixture was stirred for 180 min.

For studying the effect of time, the pH values of 75 mL of 200 mg L\(^{-1}\) of Cu(II) or Cd(II) solutions were adapted to 6 in the case of Cu(II) ions or 7 in the case of Cd(II) ions before the addition of nanocomposites. After that, 0.15 g of the N\(_1\) or N\(_2\) nanocomposites is added to each Cu(II) or Cd(II) solution then the mixture was stirred for different times (10–180 min).

For studying the effect of temperature, the pH values of 75 mL of 200 mg L\(^{-1}\) of Cu(II) or Cd(II) solutions were adapted to 6 in the case of Cu(II) ions or 7 in the case of Cd(II) ions before the addition of nanocomposites. After that, 0.15 g of the N\(_1\) or N\(_2\) nanocomposites is added to each Cu(II) or Cd(II) solution. The mixture was then stirred for 120 min at different temperatures (298–328 kelvins).

For studying the effect of concentration, the pH values of 75 mL of 50–200 mg L\(^{-1}\) of Cu(II) or Cd(II) solutions were adapted to 6 in the case of Cu(II) ions or 7 in the case of Cd(II) ions before the addition of nanocomposites. After that, 0.15 g of the N\(_1\) or N\(_2\) nanocomposites is added to each Cu(II) or Cd(II) solution. The mixture was then stirred for 120 min at 298 kelvins.

After completing the study of each of the previous effects, the N\(_1\) or N\(_2\) nanocomposites are separated using centrifugation. After that, the remaining concentrations of Cu(II) or Cd(II) ions in the filtrate are estimated using atomic absorption spectrophotometer.

The quantity of the adsorbed Cu(II) or Cd(II) ions per gram of the N\(_1\) or N\(_2\) nanocomposites (Q, mg g\(^{-1}\)) was calculated using eqn (1).

\[Q = \left(M_i - M_e \right) \times \frac{V}{W} \]

(1)

The % removal [% R] of the Cu(II) or Cd(II) ions using the N\(_1\) or N\(_2\) nanocomposites was calculated using eqn (2).

\[% \ R = \left(\frac{M_i - M_e}{M_i} \right) \times 100 \]

(2)

where, \(M_i \) (mg L\(^{-1}\)) represents the initial concentration of Cu(II) or Cd(II) ions while \(M_e \) (mg L\(^{-1}\)) represents their equilibrium concentration in the filtrate. Besides, \(V \) (L) is the volume of Cu(II) or Cd(II) solution whereas \(W \) (g) is the quantity of the nanocomposites.

For studying the effect of desorption, 0.15 g of the N\(_1\) or N\(_2\) nanocomposites was stirred with 75 mL of 5 mg L\(^{-1}\) of Cu(II) or Cd(II) solution (pH = 6 in the case of Cu(II) ions or 7 in the case of Cd(II) ions) for 120 min. Besides, the N\(_1\) or N\(_2\) nanocomposites were separated using centrifugation then thoroughly washed repeatedly with distilled water to remove the non-adsorbed Cu(II) or Cd(II) ions. Also, the loaded nanocomposites with Cu(II) or Cd(II) ions were then stirred for 15 min with 5.00 mL of 0.50 M of different eluents (HCl, HNO\(_3\), thiourea, and EDTA disodium salt). Moreover, for studying the reusability (three cycles of adsorption/desorption process), 0.15 g of the regenerated N\(_1\) or N\(_2\) nanocomposites was stirred for 120 min with 75 mL of 5 mg L\(^{-1}\) of Cu(II) or Cd(II) solution (pH = 6 in the case of Cu(II) ions or 7 in the case of Cd(II) ions). 0.5 M of EDTA disodium salt is used to regenerate the N\(_1\) or N\(_2\) nanocomposites after each cycle.

The % desorption [% D] using different eluents was calculated using eqn (3).

\[% \ D = \frac{100 M_d V_d}{(M_i - M_e)V} \]

(3)

where, \(M_d \) (mg L\(^{-1}\)) is the concentration of Cu(II) or Cd(II) ions in the eluent whereas \(V_d \) (L) is the volume of the eluent.

The point of zero charge (pHpzc) of the N\(_1\) or N\(_2\) nanocomposites was determined as revealed by Khalifa et al.\(^{22}\), as the following; the pH values of 0.01 M of KCl solutions were adapted to different values (pH\(_{\text{initial}} = 2–12\) before the addition of the N\(_1\) or N\(_2\) nanocomposites using 0.1 M HCl or NaOH. After that, 0.15 g of the N\(_1\) or N\(_2\) nanocomposites was added to each KCl solution then the mixture was stirred for 6 h. After that, the N\(_1\) or N\(_2\) nanocomposites were separated using centrifugation. Then, the final pH values (pH\(_{\text{final}}\)) of the filtrates were determined. pH\(_{\text{final}}\) values were plotted against pH\(_{\text{initial}}\) values. The pH\(_{\text{pzc}}\) is the pH\(_{\text{final}}\) level where a characteristic plateau was gotten.\(^{22}\)

2.5. Preconcentration of real samples

Sea water (from Ras Elbar-Mediterranean Sea-Egypt) and tap water (from Benha City-Egypt) samples were collected and filtered using filter paper to remove any solid suspensions. After that, the samples were kept in containers made of polypropylene pre-washed with 10% nitric acid. The blood sample was placed in tubes containing K\(_2\)EDTA to prevent blood coagulation. The tilapia fish was purchased from a market in Benha City, Egypt. Then, the skin of the fish was removed, its muscles dried at 100 °C and it was stored in bags made of polyethylene. To accomplish a fast process, the previous real samples were digested utilizing a microwave-assisted acid digestion method. Using teflon digesting tubes, 0.6 g of dry sample was mixed with 2.5 mL of 30% hydrogen peroxide and 5 mL of nitric acid. After 10 min at room temperature, the tubes were sealed then heated according to the following one-step technique (power: 1650 W; temperature: 200 °C; ramp time: 12 min; cooling time: 12 min; hold time: 12 min). After cooling the tubes to room temperature, nearly all of the solutions were evaporated and then diluted to 75 mL with distilled water. In a conical flask, 75 mL of digested solution or water sample was
combined with 0.15 g of the N₁ or N₂ nanocomposite. The pH of the solution was adapted to 6 in the case of Cu(II) ions or 7 in the case of Cd(II) ions. Then, the contents were stirred for 120 min then the N₁ or N₂ nanocomposite was separated, dried, and transferred into a 25 mL beaker. After adding 5 mL of 0.5 M EDTA disodium salt, the mixture was stirred for 15 min to allow the studied metal ions to desorb. The filtrate was then analyzed for determining the concentration of studied metal ions using an atomic absorption spectrometer.

3. Results and discussion

3.1. Characterization of 2,4-dihydroxybenzaldehyde/silica and 5-bromosalicylaldehyde/silica nanocomposites

Fig. 1A–C represents the X-ray diffraction patterns of the SiO₂, N₁, and N₂ samples, respectively. The diffraction peaks showed that the formed silica nanoparticles and the average crystalline size (54.80 nm) were in good shape and size, which are confirmed by the JCPDS card number 00-039-1425 of cristobalite. Also, the results suggested that the silica nanoparticles had

Fig. 1 The X-ray diffraction patterns of the SiO₂ (A), N₁ (B), and N₂ (C) samples.
a tetragonal structure. Due to the formation of Schiff bases, as depicted in Scheme 1, the strength of the XRD peak at $2\theta = 21.9^\circ$ in the N1 and N2 nanocomposites decreased significantly.

The FT-IR spectra of the SiO2, N1, and N2 samples are depicted in Fig. 2A–C, respectively. The bands that appeared in the SiO2, N1, and N2 samples at 468, 474, and 469 cm$^{-1}$ are due to the bending vibration of O–Si–O, respectively. The bands that appeared in the SiO2, N1, and N2 samples at 620 and 792 cm$^{-1}$ are due to the symmetrical stretching vibration of Si–O–Si. The bands that appeared in the SiO2, N1, and N2 samples at 1071, 1087, and 1073 cm$^{-1}$ are due to the asymmetrical stretching vibration of Si–O–Si, respectively. The bands that appeared at 1620 and 3440 cm$^{-1}$ in the SiO2 sample are due to the bending and stretching vibration of OH, respectively. The bands that appeared in the N1 and N2 samples at 1603 and 1629 cm$^{-1}$ are due to the bending vibration of C=O, respectively. The bands that appeared in the N1 and N2 samples at 2940 and 2941 cm$^{-1}$ are due to the stretching vibration of aliphatic CH, respectively. The bands that appeared in the N1 and N2 samples at 3003 and 3005 cm$^{-1}$ are due to the stretching vibration of aromatic CH, respectively. The bands that appeared in the N1 and N2 samples in the range 1436–1506 cm$^{-1}$ and 1435–1510 cm$^{-1}$ are due to the stretching vibration of aromatic C=C, respectively. The band that appeared in the N1 and N2 samples at 1374 and 1377 cm$^{-1}$ are due to the bending vibration of CH, respectively. The bands that appeared in the N1 and N2 samples in the range 845–920 and 918 cm$^{-1}$ are due to the out-of-plane bending vibration of CH aromatic, respectively. The slight displacement in the band positions of silica and the appearance of organic groups in the synthesized composites confirm the successful loading of the aforementioned organic materials on silica.

The percentages of carbon, hydrogen, and nitrogen in the N1 nanocomposite were determined by elemental analysis to be 13.82, 3.50, and 1.53%, respectively. Also, the percentages of carbon, hydrogen, and nitrogen in the N2 nanocomposite were determined by elemental analysis to be 12.67, 3.33, and 1.42%, respectively. Hence, the presence of carbon and nitrogen confirms the successful loading of the organic materials on the silica nanoparticles as revealed in Scheme 1. Also, Fig. 3A–D represents the N2 adsorption/desorption isotherms of SiO2, SiO2/(3-aminopropyl)triethoxysilane, N1, and N2 samples, respectively. The results confirmed that the obtained isotherms belong to type IV. Average pore size, BET surface area, and total pore volume were tabulated in Table 1. The total pore volume and BET surface area of the N1 and N2 nanocomposite were reduced because the formed Schiff base molecules block the pores of SiO2. Consequently, this analysis confirms the
successful loading of the Schiff bases on the silica nanoparticles as revealed in Scheme 1. Moreover, Fig. 4A–C represents the FE-SEM images of the SiO2, N1, and N2 samples, respectively. Also, the FE-SEM analysis shows the morphology of the silica nanoparticles which identified as spherical and rod with slight agglomeration while the N1 and N2 nanocomposites have flaky surfaces due to the formation of C=N group.

3.2. Analytical factors that influence the removal of Cu(II) and Cd(II) ions from aqueous solutions

3.2.1. Effect of pH. Fig. 5A–B depicts the relationship between % R or Q (mg g⁻¹) and pH for Cu(II) and Cd(II) ions, respectively. In the case of Cu(II) ions, it was found that % R or Q using N1 and N2 nanocomposites increases with the increase in the pH value until it reached 59.60 and 39.20 at pH = 6, respectively. In the case of Cd(II) ions, it was found that % R or Q using N1 and N2 nanocomposites increases with the increase in the pH value until it reached 24.81 and 21.32 at pH = 7, respectively. Fig. 6A–B represents the plot of pHfinal versus pHinitial for several KCl solutions in the case of using N1 and N2 nanocomposites, respectively. Besides, the point of zero charge of the N1 and N2 nanocomposites is 3.27 and 3.20, respectively. If the pH of the Cu(II) or Cd(II) solutions is less than the point of zero charge of the nanocomposites, the surface of the nanocomposites is surrounded by positive hydrogen ions (H⁺). Accordingly, % R decreases owing to repulsion between positive hydrogen ions and Cu(II) or Cd(II) ions. On the contrary, if the pH of the Cu(II) or Cd(II) solution is higher than the point of the zero charge of the nanocomposites, the surface of the nanocomposites are surrounded by negative hydroxide ions (OH⁻) which works to ionize the hydroxyl group of the composites easily and hence % R of Cu(II) or Cd(II) ions increases.²⁴

3.2.2. Effect of time. Fig. 7A–B depicts the plot of % R or Q (mg g⁻¹) versus time in the case of Cu(II) and Cd(II) ions, respectively. In the case of Cu(II) ions, it was found that % R or Q

Table 1 Average pore size, BET surface area, and total pore volume of the synthesized samples

Sample	BET surface area (m² g⁻¹)	Total pore volume (cc g⁻¹)	Average pore size (nm)
SiO₂	115.260	0.391	6.777
SiO₂/(3-aminopropyl) triethoxysilane	83.335	0.281	6.745
N1	93.558	0.1491	3.188
N2	96.282	0.315	6.553

Fig. 3 The N₂ adsorption/desorption isotherms of the SiO₂ (A), SiO₂/(3-aminopropyl)triethoxysilane (B), N₁ (C), and N₂ (D) samples.
Our research group seeks to load organic materials that have not previously been loaded onto nanomaterials to study their effect on separation efficiency via the chelation method. In this regard, the effect of the presence of an electron-withdrawing groups such as Br in the para-position to OH by loading the 5-bromosalicylaldehyde material was studied. In addition, the effect of the presence of an electron-withdrawing group such as OH in the meta-position to OH by loading the 2,4-dihydroxybenzaldehyde material was studied. The presence of the bromine group in the para-position of OH makes the OH ionization relatively slow compared to the presence of the OH group in the meta-position of OH. The formation of chelates between loaded organic materials and studied metal ions is rapid in the case of the fast ionization of OH group and hence 2,4-dihydroxybenzaldehyde is superior to 5-bromosalicylaldehyde in removing the metal ions under study.

3.2.3. Effect of temperature. Fig. 8A–B depicts the plot of % R or Q (mg g\(^{-1}\)) versus temperature in the case of Cu(II) and Cd(II) ions, respectively. It was found that % R or Q using N\(_1\) and N\(_2\) nanocomposites decreases with the increase in the temperature. The optimal temperature, which will be considered for subsequent impacts, is therefore 298 K. The thermodynamic parameters, for example, change in free energy (\(\Delta G^o\)), change in enthalpy (\(\Delta H^o\)), and change in the entropy (\(\Delta S^o\)) were determined using eqn (4) & (5).

\[
\ln K_T = \frac{\Delta S^o}{R} - \frac{\Delta H^o}{RT} \quad (4)
\]

\[
\Delta G^o = \Delta H^o - T\Delta S^o \quad (5)
\]

where, \(T\) (K), \(K_T\) (L g\(^{-1}\)), and \(R\) (kJ mol\(^{-1}\) K\(^{-1}\)) are the temperature, distribution constant, and gas constant, respectively. The distribution constant \((K_T)\) was determined utilizing eqn (6).

\[
K_T = \frac{Q}{M_c} \quad (6)
\]

Fig. 9A–B depicts the relationship between lnK\(_T\) and T\(^{-1}\) for Cu(II) and Cd(II) ions, respectively. The correlation coefficients \((R^2)\) in the case of using N\(_1\) and N\(_2\) samples for removing Cu(II) ions are 0.992 and 0.860, respectively. The correlation coefficients \((R^2)\) in the case of using N\(_1\) and N\(_2\) samples for removing Cd(II) ions are 0.914 and 0.905, respectively. Hence, this confirms a strong relationship between lnK\(_T\) and 1/T. The thermodynamic parameters are listed in Tables 2 and 3. The results clarified that the adsorption of Cu(II) or Cd(II) ions using the N\(_1\) and N\(_2\) nanocomposites is chemical because the value of \(\Delta H^o\) is more than 40 kJ mol\(^{-1}\). Also, the adsorption of Cu(II) or Cd(II) ions using the N\(_1\) and N\(_2\) nanocomposites is exothermic owing to the negative sign of \(\Delta H^o\). The N\(_1\) and N\(_2\) nanocomposites can form chelates with Cu(II) or Cd(II) ions as clarified in Scheme 2. In addition, the spontaneous adsorption of Cu(II) or Cd(II) ions on N\(_1\) and N\(_2\) nanocomposites is due to the negative sign of \(\Delta G^o\). Moreover, the disordered adsorption of Cu(II) or Cd(II) ions at the solution boundary/nanocomposite is related to the positive sign of \(\Delta S^o\).
3.2.4. Effect of concentration. Fig. 10A–B depicts the plot of the initial concentration of Cu(II) ions versus % R and Q, respectively. Besides, Fig. 11A–B depicts the plot of the initial concentration of Cd(II) ions versus % R and Q, respectively. It was found that % R decreases whereas Q increases with the increase in the initial concentration of Cu(II) or Cd(II) ions.21–26

Fig. 5 The plot of % R or Q (mg g⁻¹) versus pH in the case of Cu(II) (A) and Cd(II) (B) ions.

Fig. 6 The plot of pHfinal versus pHinitial for several KCl solutions in the case of using N₁ (A) and N₂ (B) nanocomposites.

Fig. 7 The plot of % R or Q (mg g⁻¹) versus time in the case of Cu(II) (A) and Cd(II) (B) ions.
The concentration-related results were studied by two equilibriums isotherms, namely: Langmuir (eqn (7)) and Freundlich (eqn (8)).

\[
\begin{align*}
Q_e &= \frac{1}{P_4}Q_m + \frac{Q_e}{M_e} \\
\ln Q_e &= \ln P_5 + \frac{1}{L} \ln M_e
\end{align*}
\]

where, \(Q_m\) (mg g\(^{-1}\)) is the maximum adsorption capacity of the \(N_1\) and \(N_2\) nanocomposites. \(P_4\) (L mg\(^{-1}\)) and \(P_5\) (mg g\(^{-1}\)) (L

Table 2 Thermodynamic parameters in the case of Cu(II) ions

Sample	\(\Delta G^o\) (KJ mol\(^{-1}\))	\(\Delta S^o\) (KJ mol\(^{-1}\)K\(^{-1}\))	\(\Delta H^o\) (KJ mol\(^{-1}\))				
	Temperature (Kelvin)						
\(N_1\)	298	-105.129	-106.905	-108.679	-110.455	0.178	-52.227
\(N_2\)	308	-109.376	-111.249	-113.121	-114.993	0.187	-53.576

Table 3 Thermodynamic parameters in the case of Cd(II) ions

Sample	\(\Delta G^o\) (KJ mol\(^{-1}\))	\(\Delta S^o\) (KJ mol\(^{-1}\)K\(^{-1}\))	\(\Delta H^o\) (KJ mol\(^{-1}\))				
	Temperature (Kelvin)						
\(N_1\)	298	-97.169	-98.869	-100.569	-102.268	0.169	-46.523
\(N_2\)	308	-121.862	-123.980	-126.099	-128.218	0.212	-58.729

Fig. 8 The plot of % R or Q (mg g\(^{-1}\)) versus temperature in the case of Cu(II) (A) and Cd(II) (B) ions.

Fig. 9 The plot of \(\ln K_T\) versus \(1/T\) in the case of Cu(II) (A) and Cd(II) (B).
mg\(^{-1}\)) refer to the Langmuir and Freundlich constants, respectively. \(L^{-1}\) refers to the heterogeneity constant. eqn (9) can be used to get the \(Q_m\) from the Freundlich isotherm.\(^{21-26}\)

\[
Q_m = P_2 \left(M_i^{1/L} \right)
\]

(9)

Fig. 12A–B represents the Langmuir (the plot of \(M_e/Q_e\) versus \(M_i\)) and Freundlich (the plot of \(\ln Q_e\) versus \(\ln M_i\)) isotherms in the case of Cu(II) ions, respectively. Also, Fig. 13A–B represents the Langmuir (the plot of \(M_e/Q_e\) versus \(M_i\)) and Freundlich (the plot of \(\ln Q_e\) versus \(\ln M_i\)) isotherms in the case of Cd(II) ions, respectively. Also, the results confirmed that the correlation coefficients (\(R^2\)) of the Langmuir isotherm are larger than those of the Freundlich as shown in Tables 4 and 5. Therefore, the Langmuir isotherm better described equilibrium results than the Freundlich isotherm. The maximum adsorption capacity of the N\(_1\) and N\(_2\) nanocomposites toward Cu(II) ions is 64.81 and 40.93 mg g\(^{-1}\), respectively. Also, the maximum adsorption capacity of the N\(_1\) and N\(_2\) nanocomposites toward Cd(II) ions is 27.39 and 26.34 mg g\(^{-1}\), respectively. A comparison study was made between the adsorption capacity of the synthesized nanocomposites and that of other adsorbents such as biochar, FAU-type zeolite, thio-functionalized layered double hydroxide, sulf-hydryl functionalized hydrogel, and silica/dibenzoylmethane.

Scheme 2 The proposed mechanism for the adsorption of Cu(II) and Cd(II) ions.

Fig. 10 The plot of initial concentration of Cu(II) ions versus % R (A) and Q (B).

Fig. 11 The plot of initial concentration of Cd(II) ions versus % R (A) and Q (B).
Clearly, the N1 and N2 nanocomposites outperformed the majority of adsorbents because they possess a high adsorption capacity.

Table 4 Equilibrium constants in the case of Cu(II) ions

Sample	Langmuir	Freundlich				
	Q_m (mg g$^{-1}$)	P_4 (L mg$^{-1}$)	R^2	Q_m (mg g$^{-1}$)	P_5 (mg g$^{-1}$)[L mg$^{-1}$]$^{1/L}$	R^2
N1	64.81	0.122	0.994	84.78	15.85	0.7735
N2	40.93	0.272	0.999	44.47	20.30	0.975

Table 5 Equilibrium constants in the case of Cd(II) ions

Sample	Langmuir	Freundlich				
	Q_m (mg g$^{-1}$)	P_4 (L mg$^{-1}$)	R^2	Q_m (mg g$^{-1}$)	P_5 (mg g$^{-1}$)[L mg$^{-1}$]$^{1/L}$	R^2
N1	27.39	0.042	0.947	24.76	7.96	0.845
N2	26.34	0.032	0.976	23.74	5.03	0.972

3.2.5. **Effect of desorption and reusability.** Fig. 14A–B depicts the plot of % D *versus* some desorbing eluents in the case of Cu(II) and Cd(II) ions, respectively. The utilized composite as shown in Table 6.28–32,38–41
desorbing eluents are 0.5 M of HCl, HNO₃, thiourea, and EDTA disodium salt. The results confirmed that 0.5 M of EDTA disodium salt is considered the appropriate desorbing eluent required for the maximum recovery (more than 99%) of the adsorbed Cu(II) or Cd(II) ions from the N₁ or N₂ nanocomposites. Fig. 13A-B depicts the plot of % R versus cycle

Table 6 A comparison study between the adsorption capacity of the synthesized nanocomposites and that of other adsorbents

Adsorbent	Adsorption capacity (mg g⁻¹) toward Cu(II) ions	Adsorption capacity (mg g⁻¹) toward Cd(II) ions	Ref.
Biochar	18	6.28	28
FAU-type zeolite	57.803	74.074	29
Thio-functionalized layered double hydroxide	58.07	93.11	30
Sulphhydr functionalized hydrogel	15.60	27.40	31
Silica/dibenzoylmethane composite	31.76	35.37	32
Carbon gel/graphite composite	8.64	-	38
Arabica and robusta roasted coffee beans	2	2	39
Natural zeolite	2.5	1.5	40
Natural clay	13.41	3.25	41
N₁ nanocomposite	64.81	27.39	This study
N₂ nanocomposite	40.93	26.34	This study

Fig. 14 The plot of % D versus some desorbing agents in the case of Cu(II) (A) and Cd(II) (B) ions.

Fig. 15 The plot of % R or Q (mg g⁻¹) versus cycle number in the case of Cu(II) (A) and Cd(II) (B) ions.
number in the case of Cu(II) and Cd(II) ions, respectively. The slight decrease in % R confirms that the synthesized N1 and N2 nanocomposites can be used successfully and several times in the removal of Cu(II) and Cd(II) ions from aqueous media.

3.2.6. Effect of co-existing ions. To determine the effect of various anions and cations on the extraction efficiency of Cu(II) and Cd(II) ions using the present method, the possible interfering ion was introduced at varying concentrations to a 75 mL solution containing 200 µg L⁻¹ of each metal ion under investigation. The extraction technique was carried out using N1 and N2 nanocomposites precisely as described earlier, and its effectiveness was evaluated. The tolerance limit was established as the highest concentration of the accompanying ion that cause an error ≤5% in the recovery of Cu(II) or Cd(II) ions by the procedure. Tables 7 and 8 clearly illustrate that the majority of coexisting ions have a rather high tolerance limit, demonstrating the selectivity of the technique. Consequently, the method can be applied to the analysis of real samples including various components.

3.2.7. Application. Prior to atomic absorption spectrometer analysis, the proposed separation process was employed to preconcentrate Cu(II) and Cd(II) ions in real samples (sea water, tap water, fish muscles, and blood). The results of the preconcentration of Cu(II) using N1 and N2 nanocomposites, as well as the recoveries for the spiked samples, are presented in Tables 9 and 10, respectively.

% Recovery was calculated using eqn (10).

% Recovery = \frac{\text{Found Concentration (Practically)}}{\text{Total Concentration (Theoretically)}} \times 100 \tag{10}

Also, % RSD (relative standard deviation) was calculated using eqn (11).

% RSD = \frac{\text{Standard deviation}}{\text{Mean}} \times 100 \tag{11}

The recovery results indicate the process's precision, adaptability, and quantitative separation because the values of % recovery are more than 95%. In addition, the % RSD was less than 3.5%, showing excellent reproducibility.
4. Conclusions

In this study, silica nanoparticles were modified by 2,4-dihydroxybenzaldehyde and 5-bromosalicylaldehyde to form N$_1$ and N$_2$ new nanocomposites, respectively. The nanocomposites were utilized for the removal and preconcentration of Cu(II) and Cd(II) ions from water, blood, and fish muscles. XRD, FT-IR, CHN elemental analyzer, FE-SEM, and nitrogen gas sorption analyzer were used to characterize the novel nanocomposites. The maximum adsorption capacity of the N$_1$ and N$_2$ nanocomposites toward Cu(II) ions is 64.81 and 40.93 mg g$^{-1}$, respectively. The maximum adsorption capacity of the N$_1$ and N$_2$ nanocomposites toward Cd(II) ions is 27.39 and 26.34 mg g$^{-1}$, respectively. The recovery findings demonstrate that the preconcentration process is accurate, adaptable, and resulted in quantitative separation (>95 percent). Furthermore, the % RSD was less than 3.5 percent, indicating good reproducibility.

Table 10 Determination of Cu(II) ions in real samples using N$_2$ nanocomposite

Sample	Added volume from Cu(II) stock solution (1000 mg L$^{-1}$)	0 mL	0.2 mL	0.4 mL					
	Found concentration (mg L$^{-1}$)	% Recovery	% RSD	Found concentration (mg L$^{-1}$)	% Recovery	% RSD	Found concentration (mg L$^{-1}$)	% Recovery	% RSD
Sea water	4.500 ± 0.124	—	2.222	6.990 ± 0.188	97.795	2.169	9.540 ± 0.272	97.534	2.297
Tap water	8.300 ± 0.152	—	1.476	10.876 ± 0.141	99.438	1.043	13.500 ± 0.412	99.550	2.457
Fish muscles	7.060 ± 0.225	—	2.573	9.660 ± 0.299	99.579	2.493	12.260 ± 0.208	99.451	1.365
Blood	1.082 ± 0.025	—	1.894	3.600 ± 0.088	96.290	1.964	6.280 ± 0.195	98.413	2.495

Table 11 Determination of Cd(II) ions in real samples using N$_1$ nanocomposite

Sample	Added volume from Cd(II) stock solution (1000 mg L$^{-1}$)	0 mL	0.2 mL	0.4 mL					
	Found concentration (mg L$^{-1}$)	% Recovery	% RSD	Found concentration (mg L$^{-1}$)	% Recovery	% RSD	Found concentration (mg L$^{-1}$)	% Recovery	% RSD
Sea water	0.184 ± 0.007	—	2.977	2.720 ± 0.104	95.671	3.076	5.390 ± 0.092	98.213	1.376
Tap water	0.146 ± 0.005	—	2.837	2.754 ± 0.063	98.168	1.844	5.372 ± 0.103	98.560	1.549
Fish muscles	2.100 ± 0.679	—	2.596	23.400 ± 0.519	98.719	1.788	26.200 ± 0.555	99.646	1.707
Blood	1.068 ± 0.037	—	2.762	3.564 ± 0.119	95.685	2.696	6.348 ± 0.132	99.696	1.672

Table 12 Determination of Cd(II) ions in real samples using N$_2$ nanocomposite

Sample	Added volume from Cd(II) stock solution (1000 mg L$^{-1}$)	0 mL	0.2 mL	0.4 mL					
	Found concentration (mg L$^{-1}$)	% Recovery	% RSD	Found concentration (mg L$^{-1}$)	% Recovery	% RSD	Found concentration (mg L$^{-1}$)	% Recovery	% RSD
Sea water	0.171 ± 0.006	—	2.905	2.740 ± 0.068	96.802	1.999	5.450 ± 0.088	99.534	1.297
Tap water	0.157 ± 0.006	—	2.848	2.774 ± 0.054	98.503	1.563	5.440 ± 0.142	99.612	2.096
Fish muscles	21.600 ± 0.473	—	1.763	24.000 ± 0.760	99.165	2.552	26.730 ± 0.890	99.774	2.683
Blood	1.078 ± 0.038	—	2.814	3.594 ± 0.089	96.232	2.002	6.334 ± 0.137	99.321	1.742

Conflicts of interest

The authors confirm that there is no conflict of interest for this manuscript.

References

1 B. K. Mavakala, P. Sivalingam, A. Lafitte, C. K. Mulaji, G. Giuliani, P. T. Mpiana and J. Poté, Evaluation of heavy metal content and potential ecological risks in soil samples from wild solid waste dumpsites in developing country under tropical conditions, *Environ. Challenges*, 2022, 7, 100461.
2 M. A. Rahmat, A. F. Ismail, N. D. Rodzi, E. S. Aziman, W. M. R. Idris and T. Lihan, Assessment of natural radionuclides and heavy metals contamination to the environment: Case study of Malaysian unregulated tin-tailing processing industry, *Nucl. Eng. Technol.*, 2022, 54(6), 2230–2243.
the removal of Ni(II), Cu(II), and Zn(II) ions from aqueous solutions, *Composites, Part B*, 2019, 166, 382–400.

27 C. Duan, T. Ma, J. Wang and Y. Zhou, Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review, *J. Water Process Eng.*, 2020, 37, 101339.

28 T. Bandara, J. Xu, I. D. Potter, A. Franks, J. B. A. J. Chathurika and C. Tang, Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes, *Chemosphere*, 2020, 254, 126745.

29 I. V. Joseph, L. Tosheva and A. M. Doyle, Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash, *J. Environ. Chem. Eng.*, 2020, 8, 103895.

30 J. Ali, H. Wang, J. Iftikar, A. Khan, T. Wang, K. Zhan, A. Shahzad, Z. Chen and Z. Chen, Efficient, stable and selective adsorption of heavy metals by thio-functionalized layered double hydroxide in diverse types of water, *Chem. Eng. J.*, 2018, 332, 387–397.

31 R. Hua and Z. Li, Sulphdryl functionalized hydrogel with magnetism: Synthesis, characterization, and adsorption behavior study for heavy metal removal, *Chem. Eng. J.*, 2014, 249, 189–200.

32 M. E. Khalifa, E. A. Abdelrahman, M. M. Hassanien and W. A. Ibrahim, Application of Mesoporous Silica Nanoparticles Modified with Dibenzoylmethane as a Novel Composite for Efficient Removal of Cd(II), Hg(II), and Cu(II) Ions from Aqueous Media, *J. Inorg. Organomet. Polym. Mater.*, 2020, 30, 2182–2196.

33 I. M. M. Kenawy, Y. G. Abou El-Reash, M. M. Hassanien, N. R. Alnagar and W. I. Mortada, Use of microwave irradiation for modification of mesoporous silica nanoparticles by thioglycolic acid for removal of cadmium and mercury, *Microporous Mesoporous Mater.*, 2018, 258, 217–227.

34 S. Xue, H. Xie, H. Ping, Q. Li, B. Su and Z. Fu, Induced Transformation of Amorphous Silica to Cristobalite on Bacterial Surface, *RSC Adv.*, 2015, 5, 71844–71848.

35 V. Correcher, J. Garcia-Guinea, M. A. Bustillo and R. Garcia, Study of the thermoluminescence emission of a natural x-cristobalite, *Radiat. Eff. Defects Solids*, 2009, 164, 59–67.

36 Z. P. Xu and P. S. Brateman, High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes, *J. Mater. Chem.*, 2003, 13, 268–273.

37 E. A. Abdelrahman, R. M. Hegazy and R. E. El-Azabawy, Efficient removal of methylene blue dye from aqueous media using Fe/Si, Cr/Si, Ni/Si, and Zn/Si amorphous novel adsorbents, *J. Mater. Res. Technol.*, 2019, 8(6), 5301–5313.

38 M. Osińska, Removal of lead(II), copper(II), cobalt(II) and nickel(II) ions from aqueous solutions using carbon gels, *J. Sol-Gel Sci. Technol.*, 2017, 81, 678–692.

39 E. Lichtfouse, J. Schwarzbauer and D. Robert, *Environmental Chemistry*, Springer, 2001, pp. 119–259, DOI: 10.1007/ed078p1169.

40 N. Elboughdiri, The use of natural zeolite to remove heavy metals Cu(II), Pb(II) and Cd(II), from industrial wastewater, *Journal Cogent Engineering*, 2020, 7, 1782623.

41 B. Abbou, I. Lebkiri, H. Ouaddari, L. Kadir, A. Ouass, A. Habsaoui, A. Lebkiri and E. H. Rifai, Removal of Cd(II), Cu(II), and Pb(II) by adsorption onto natural clay: A kinetic and thermodynamic study, *Turk. J. Chem.*, 2021, 45, 362–376.