IgE-Mediated Peanut Allergy

Current and Novel Predictive Biomarkers for Clinical Phenotypes Using Multi-Omics Approaches

Czolk, Rebecca; Klueber, Julia; Sørensen, Martin; Wilmes, Paul; Codreanu-Morel, Françoise; Skov, Per Stahl; Hilger, Christiane; Bindslev-Jensen, Carsten; Ollert, Markus; Kuehn, Annette

Published in:
Frontiers in Immunology

DOI:
10.3389/fimmu.2020.594350

Publication date:
2021

Document version
Final published version

Document license
CC BY

Citation for published version (APA):
Czolk, R., Klueber, J., Sørensen, M., Wilmes, P., Codreanu-Morel, F., Skov, P. S., Hilger, C., Bindslev-Jensen, C., Ollert, M., & Kuehn, A. (2021). IgE-Mediated Peanut Allergy: Current and Novel Predictive Biomarkers for Clinical Phenotypes Using Multi-Omics Approaches. Frontiers in Immunology, 11, [594350]. https://doi.org/10.3389/fimmu.2020.594350

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 14. May. 2021
IgE-Mediated Peanut Allergy: Current and Novel Predictive Biomarkers for Clinical Phenotypes Using Multi-Omics Approaches

Rebecca Czolk1,2, Julia Klueber1,3, Martin Sørensen4,5, Paul Wilmes6, Françoise Codreanu-Morel7, Per Stahl Skov3,8,9, Christiane Hilger1, Carsten Bindslev-Jensen3, Markus Ollert1,3 and Annette Kuehn1*

1 Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg, 2 Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg, 3 Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark, 4 Department of Pediatric and Adolescent Medicine, University Hospital of North Norway, Tromsø, Norway, 5 Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway, 6 Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg, 7 Department of Allergology and Immunology, Centre Hospitalier de Luxembourg-Kanner Klinik, Luxembourg, Luxembourg, 8 ReLab ApS, Copenhagen, Denmark, 9 Institute of Immunology, National University of Copenhagen, Copenhagen, Denmark

Food allergy is a collective term for several immune-mediated responses to food. IgE-mediated food allergy is the best-known subtype. The patients present with a marked diversity of clinical profiles including symptomatic manifestations, threshold reactivity and reaction kinetics. In-vitro predictors of these clinical phenotypes are evasive and considered as knowledge gaps in food allergy diagnosis and risk management. Peanut allergy is a relevant disease model where pioneer discoveries were made in diagnosis, immunotherapy and prevention. This review provides an overview on the immune basis for phenotype variations in peanut-allergic individuals, in the light of future patient stratification along emerging omic-areas. Beyond specific IgE-signatures and basophil reactivity profiles with established correlation to clinical outcome, allergenomics, mass spectrometric resolution of peripheral allergen tracing, might be a fundamental approach to understand disease pathophysiology underlying biomarker discovery. Deep immune phenotyping is thought to reveal differential cell responses but also, gene expression and gene methylation profiles (e.g., peanut severity genes) are promising areas for biomarker research. Finally, the study of microbiome-host interactions with a focus on the immune system modulation might hold the key to understand tissue-specific responses and symptoms. The immune mechanism underlying acute food-allergic
events remains elusive until today. Deciphering this immunological response shall enable to identify novel biomarker for stratification of patients into reaction endotypes. The availability of powerful multi-omics technologies, together with integrated data analysis, network-based approaches and unbiased machine learning holds out the prospect of providing clinically useful biomarkers or biomarker signatures being predictive for reaction phenotypes.

Keywords: endotypes, food allergy, peanut allergy, phenotypes, predictive biomarker

TYPE-I HYPERSENSITIVITY TO FOOD

Food allergies (FA) are considered as an important public health concern (1, 2). FA can be classified into IgE-mediated, non-IgE-mediated and mixed types (3). This review focuses on IgE-mediated food allergy which is the best-known type among those food-adverse events.

Epidemiology

There is a general perception that FA prevalence increased during the last twenty years. FA prevalence has been estimated up to 8% in the pediatric and 11% in the adult population based on a number of surveys (2, 4, 5). Beyond the sheer patient numbers, FA entails an important socioeconomic impact, causing fear of accidental exposure in patients and their families, reduced quality of life and relevant healthcare costs nearly double the amount compared to non-allergic individuals (6, 7).

Pathophysiological Basis

IgE-mediated FA is considered as an epithelial barrier disease, resulting from food protein uptake via disrupted barriers (gastrointestinal tract, skin, lung) which in turn, leads to an immune dysregulation, and finally, food proteins being recognized as hostile invaders in a T helper type 2 (Th2)-skewed immune response (3, 8). During sensitization, epithelium-derived danger signals and pro-inflammatory cytokines, including interleukin 25 (IL-25) and IL-33, orchestrate the activation and expansion of type 2 innate lymphoid cells (ILC2) and dendritic cells (DCs) (9–11). Those activated DCs promote again the differentiation of naïve T cells into a Th2 phenotype cells. Th2 cells and ILC2 foster the recruitment of basophils and eosinophils into the tissue beneath the epithelium (mucosa, lamina propria) through the secretion of pro-inflammatory cytokines (eg, IL-4, IL-5, IL-13) (3). Th9 cells, another effector T helper subset maturing under the influence of IL-4 and transforming growth factor beta (TGF-β), release IL-9, a cytokine which promotes the tissue accumulation of mast cells. B cell class switching to plasma cells producing food antigen-specific IgE is also fostered through IL-4 secretion by Th2 cells. Specific IgE-antibodies bind to the high-affinity IgE receptor (FceRI) on effector cells, basophil granulocytes and mast cells (11–14). In the elicitation phase, food antigens undergo molecular interactions with cell-bound IgE-antibodies via specific epitopes, leading to cell activation and mediator release via crosslinking of FceRI-bound IgE. Subsequently released inflammatory mediators, including histamine, prostaglandins, tryptase, and platelet-activating factor (PAF), contribute to the clinical symptoms.

Clinical Features

Food-allergic patients present with a marked diversity by reactivity profiles (15). Clinical symptoms range from mild to severe (severity score) as does eliciting doses (sensitivity score) and time to reaction onset are highly variable (16, 17). The estimated dose likely to trigger reactions in 10% of a study population (ED10) vary also for specific foods (eg, peanut 11 mg; shrimp 12.8 g protein) (18). The organ involvement may relate to the skin and/or gastrointestinal tract, but also respiratory/ cardiovascular symptoms in the case of potentially life-threatening anaphylaxis. Although most patients suffer from stereotypic symptoms, threshold doses depend on multiple factors under real-life conditions (atopic comorbidities; cofactors eg, exercise, alcohol, nonsteroidal anti-inflammatory drugs) (19–21). Disease prognosis and progression may also vary depending on the food allergy, such as in milk or egg allergy, which is commonly outgrown, compared to peanut allergy, which often persists lifelong (22).

Food Allergens

A large variety of foods can cause allergic reactions and constantly, new allergenic foods are reported (23–25). The most allergenic foods include plant (peanuts, tree nuts, wheat, soy) and animal sources (milk, eggs, fish, shellfish) (13). Food allergens, the molecular drivers of allergen-specific Th2-immune responses, share molecular properties and belong to few structural protein superfamilies (26). Commonly, food allergens involved in food anaphylaxis exhibit a higher stability from digestion/processing as compared to low-allergenic homologs (27–29). Intrinsic characteristics contributing to Th2-immune modulation, such as the house dust mite allergen Der p 2 acting with auto-adjuvant properties via Toll-like receptor (TLR)4 signaling, are less known for food allergens (30). In-vitro models suggest that matrix effects might contribute to facilitate cross-barrier allergen uptake (eg, peanut lipids inhibiting immune-suppressive IL-10) (31). Class I food allergens are primary food allergens (eg, peanut Ara h 2). The “pollen-fruit syndrome” is mediated by specific IgE to pathogenesis-related protein-10 (PR-10; eg, birch Bet v 1) and/or profilins (eg, birch Bet v 2) as well as antibody cross-recognition of homolog class II food allergens (eg, PR-10: peanut Ara h 8). Those patients experience usually mild FA symptoms (32).
Food Allergy Diagnosis

Usually a detailed anamnesis and IgE-tests are combined (33). In single cases, oral food challenges (OFC) are necessary, time-consuming procedures entailing a significant health risk (34). IgE (skin prick test, SPT; serum specific IgE/sIgE) is an important biomarker. Though, there is a clear trend to overdiagnosing FA as specificity of the testing is low at diagnostic cut-offs (skin wheal size diameter 3 mm, serum sIgE 0.1 kU/L). Combining medical data, SPT and sIgE (extract, component-resolved sIgE) increase the diagnosis performance and might approximate OFC outcome (26, 35–37). There is the general notion that multiple IgE epitope recognition patterns correlate to FA severity and unfavorable disease progression (38, 39). Other serological parameters (e.g., total IgE, food-specific IgG4, sIgE/IgG4) are reported as discordant data. Functional assays using living cells, basophils (blood-/cell line-based) or mast cells (cell lines) feature an important added value in FA-diagnosis, although not yet being implemented into routine (29). Serum mediator levels, including histamine, tryptase and prostaglandin D2 metabolite levels, provided less consistent data like in venom- and drug-induced anaphylaxis (40). Overall, usable, reliable and affordable in-vitro predictors of clinical presentation (eg, severity, sensitivity) and risk stratification are elusive and considered still as important knowledge gaps (41). Such predictors may vary depending on the eliciting food, and therefore need to be evaluated for each food allergy.

EMERGING OMIC-AREAS FOR CLINICAL ENDOTypING

Peanut allergy (PA) is the focus of many research studies, due to its high prevalence, spectrum of clinical phenotypes, severity and lifelong duration, therefore it will be used as an example throughout. Here, we will give an overview of the immune basis for phenotype variations. We span from non-omics to omic-areas, with a focus on studies using cutting edge-technologies and studies based on patient reactivity stratification. A complete overview on biomarker approaches in peanut allergy can be found in Table 1.

Molecular Endotyping

The deep analysis of allergens by proteomic technologies (allergonomics), based on mass spectrometry (MS), pushed the boarders of knowledge around allergenic peanut proteins including basic aspects of primary structures and post-translational modifications (95–97).

Non-Omics

A total of 18 unique peanut iso/allergen are reported (with Ara h 4 now being considered an isoallergen of Ara h 3) (98). Serum IgE-reactivity to seed storage proteins, including 2S albumins (Ara h 2, Ara h 6) and cupins (Ara h 1, Ara h 3) relates to primary PA. Cross-reactivity markers are the PR-10 protein Ara h 8 (birch allergy) and the non-specific lipid transfer proteins (nsLTP) Ara h 9 (peach-related fruit allergy). The diagnostic relevance of molecular vs extract-based IgE-signatures seems to vary for patient groups from different geographic origins (42, 99–101).

However, a recent meta-analysis summarized the overall high diagnostic accuracy of sIgE to Ara h 2 in terms of sensitivity and specificity (95% CI 75.6, 88.9 and 95% CI 77.4, 88.4, respectively) at a cut-off of 0.35 kU/L (37). Patients are often IgE-positive for both Ara h 2 and Ara h 6.

Recently, Ara h 2 was described as the immunodominant molecule among the two allergens, with higher capacity to activate in-vitro effector cells (basophils, mast cells), pointing to a greater role of Ara h 2 in both disease pathophysiology and as diagnostic severity marker (Figure 1) (43). Even allergen peptides can be beneficial. Indeed, systematic peptide-based scanning approaches (epitope mapping) revealed that increasing IgE-epitope diversity correlated with a more severe phenotype (38, 67). In-vitro basophil activation tests (BAT), using basophils from peanut-allergic patients challenged with peanut protein, revealed dose-dependent activation (%-CD63+ basophils). High performance to identify clinical PA (98.7% specificity, 74.7% sensitivity) and high precision to identify individuals with severe outcome (97% specificity, 100% sensitivity) has been recently reported for large UK study populations (Table 1) (65). Here, the best prediction of low threshold reactivity was determined in a multivariate statistical tool combining various parameters, SPT, sIgE (Ara h 2, peanut extract), peanut extract-sIgG4/IgE quotient and BAT. In a similar integrated approach, a predictive algorithm based on the CD63 ratio (BAT with peanut protein) and clinical parameters (eg, exercise-induced asthma), had been proposed to predict severe reactions (66).

Allergonomics

As an extension to allergonomics as an analysis of the allergen repertoire of an allergen source, a new research axis applied proteomic approaches to study in-vitro degradation patterns of peanut digests by simulating gastric or small intestine milieus (102, 103). The pronounced digestion stability of Ara h 2, 6, and specific peptides was linked to IgE-recognition and suggested as triggers of the immune response in-vivo. Those peptide structures might be novel candidates for serological assays, be it as antigens in immunoassays or as references for peptide identification in patient blood. In fact, upon ingestion, peanut allergens are degraded, followed by absorption across biological barriers and distribution via the bloodstream (20, 60, 104–106).

The analysis of allergen residues in human samples after peanut ingestion has been recognized as an important challenge (60, 61). Recent antibody-based studies, combined with removal of interfering endogenous immunoglobulins, succeeded to detect peanut allergens in a reliable fashion (62). Proteomic analyses of such peripheral allergen peptides, together with MS-based analyses of serological metabolomics signatures (68), might be promising avenues toward molecular endotyping of peanut-allergic patients, and toward marker discovery for phenotype prediction (Figure 1).

Immunological Endotyping

Non-Omics

Deep immunological endotyping, including aspects of the genome, epigenome, transcriptome and proteome provided
TABLE 1 | Summary of the main approaches (non-/omics) toward phenotypic biomarkers in peanut allergy based on molecular, immunological and commensal endotyping.

Method	Biomarker research area	Interpretation in peanut allergy	C E*	References**
Molecular endotyping				
Non-omics	Serum IgE to Ara h 2, Ara h 6 (less Ara h 1 and Ara h 3)	Primary peanut allergy; often, presence of sIgE and high titers (cut-off titers unequivocal) along with severity	#	(37, 38, 42)
	Serum IgE to Ara h 10, Ara h 11, Ara h 14, Ara h 15	Primary peanut allergy; often, presence of sIgE related to severity	#	(49)
	Serum IgE to Ara h 8	Primary sensitization to pollen (eg, birch, alder); mostly, mild reactions to peanut	#	(49-52)
	Serum IgE to Ara h 9	Primary sensitization to nsLTP (eg, peach Pru p 3); severe reactions to peanut in Ara h 1-7 negative patients	#	(53-55)
	Serum IgE to peanut epitopes	High diversity of sequential IgE-epitopes (Ara h 1, Ara h 2, Ara h 3) along with more severity	#	(38, 56-59)
	Serum peanut peptides upon in-vivo ingestion	Digestion-stable Ara h 6-peptides as candidate markers for in-vivo reactivity and serological proteomics	(60-63)	
	Serum IgE-bound soluble FcεRI	Soluble FcεRI levels together with correlating IgE-titer as putative markers for in-vivo reactivity and severity	(64)	
Integrated algorithms	Serum IgE to Ara h 2 and peanut extract, BAT together with clinical variables (eg, skin test, asthma)	Prediction of risk to experience severe events (symptoms scoring, threshold reactivity)	#	(65, 66)
Allergenomics	Simulated digest-derived peanut peptides	Digestion-stable Ara h 2 Ara h 6 peptides as candidate markers for in-vivo reactivity and serological assays	(38, 67)	
	Serum metabolomic signatures	Metabolites (eg, from dysregulated tryptophan metabolism) as candidate markers for phenotypic severity	(68)	
Immunological endotyping				
Non-omics	PBMC peanut-stimulated CD4+ T cells	Increased Th2 cytokine expression (IL-4, IL-5, IL-9, IL-13) correlating with elevated peanut-specific IgE-titers and low threshold reactivity	#	(69) (70)
	Blood peanut-stimulated CD45+ cells, basophils (CD63, FceRI, CD23)	Basophil-platelet complexes (CD61, CD141, CD42b) with potential to contributing to severity and PAF-related anaphylaxis	(71)	(72, 73)
	PBMC un-/peanut-stimulated CD45+ cells, 11 cell types within CD4 T-cells, CD8 T-cells, B-cells, myeloid cells	Increased prevalence of activated B cells (CD19HLDR+) and peanut-specific CD4 T cells (CD40L,CD69, memory CD45RACCR7) correlating with in-vivo reactivity	(74)	
	Blood peanut/-anti-IgE–induced CD63Fcap basophils (%)	Reduced basophil response and FcεRI-expression, together with low sIgE, as putative markers for severity	(62)	(75-77)
	PBMC peanut-stimulated CD154+ T cells	Increased cytokine-positive CD4+ T cell counts (CD154CD45L- or IL-13) correlating with increased sIgE-titers and clinical threshold reactivity	(69)	(78, 79)
	Blood peanut/-anti-IgE–induced CD63Fcap basophils (%)	Increased sIgE-titers and clinical threshold reactivity	#	(69, 81)
	PBMC peanut-stimulated CD154+ T cells	Increase of CD4+ T cell homing populations (CCR4: skin, lung; CCR6: mucosa; CXCR5: B cell follicle) correlating with clinical reactivity	(69)	(82, 83)
	Blood peanut/-anti-IgE–induced CD63Fcap basophils (%)	Increase of IL-2-dependent CD154+ Treg cells with regulatory (CD8CD4CD25CD127FoxP3) and memory markers (CD45RO) correlating with clinical threshold reactivity	(69)	
	PBMC peanut/peptide-stimulated T cells	Increased coefficient of Teff/Treg (CD25CD127-) correlating with clinical threshold reactivity	#	(73) (83)
Multimodal omics	PBMC-derived peanut-activated CD154+ T cells	Phenotype Th2 shift (expression gut-homing factor Integrin β7, ORTh2) relating to clinical reactivity	(84)	
	Salivary DNA-based HLA gene SNPs	Increased diversity of the peanut-specific TCRβ repertoire (CDR3 sequences) and enrichment in the Teff compartment, in correlation with low threshold reactivity	(70)	
	Differential gene expression patterns according to clinical phenotypes stratified by threshold reactivity, pronounced gene expression associated to Th2 and Th17 cells in individuals with low threshold reactivity	With the HLA-DQB1 region confirmed as a risk factor for clinical allergy, increased odds ratios for SNPs in HLA rs17612852, rs9275596, and rs1612904 correlate with low reaction severity	(85)	(69) (67, 88)
	Differential gene expression patterns according to clinical phenotypes stratified by threshold reactivity, pronounced gene expression associated to Th2 and Th17 cells in individuals with low threshold reactivity	#	(69) (70)	
	Differential gene expression patterns according to clinical phenotypes stratified by threshold reactivity, pronounced gene expression associated to Th2 and Th17 cells in individuals with low threshold reactivity	#	(69) (90)	
	Differential gene expression patterns according to clinical phenotypes stratified by threshold reactivity, pronounced gene expression associated to Th2 and Th17 cells in individuals with low threshold reactivity	#	(90)	
	“Peanut severity CpG” methylation associated with “peanut severity genes” (eg, immune response, chemotaxis, macroautophagy regulation; moderator genes NRKBA and ARG1) and clinical reactivity scores	#	(90)	

(Continued)
insights in the immune landscape of PA phenotypes, with prospect of future multimodal omics, meaning the integration of heterogeneous data from those sources.

Tordesillas et al. studied the in-vitro activation of granulocytes (basophils, eosinophils, neutrophils), monocytes, dendritic cells, T cells, B cells and NK cells in whole blood using single-cell mass cytometry (71). More B cells and eosinophils but less neutrophils were found in resting CD45+ cells from peanut-allergic vs healthy individuals. After stimulation with peanut protein, the highest response was observed for basophils (CD16, CD23, CD63), but also monocytes, dendritic cells and neutrophils became activated, pointing to an emerging role of these myeloid cells related to clinical PA. Elevated plasma PAF levels had been associated with increased severity of PA earlier (72, 73). Basophils were found to form complex with platelets (CD61, CD141, CD42b) upon peanut activation, suggesting a novel way of PAF-related anaphylaxis (Figure 1) (71). Neeland et al. applied mass cytometry to study peripheral immune signatures associated with clinical PA, using peripheral blood mononuclear cell (PBMC) from peanut-allergic and controls (74). Allergic infants distinguished from sensitized infants by increased prevalence of a B cell cluster (CD19hiHLDRhi). Upon in-vitro stimulation with peanut protein, increased levels of CD4 T cells (CD40L, CD69, memory CD45RA CCR7hi) discriminated peanut-allergic from controls.

Other studies focused on analyzing the T cell compartment in PA (81, 107–109). Chiang et al. compared peanut-allergic (OFC positive at <1g cumulative peanut dose), high-threshold (OFC negative at ≤1g cumulative peanut dose but sIgE to peanut and clinical PA history), and healthy individuals (69). In-vitro PBMC stimulation induced a significant increase in peanut-responsive T cells (CD154+CD4+) and significant cytokine increases (mainly IL-4, IL-13) in peanut-allergic patients only. Cytokine-positive T cell counts (CD154+CD4+IL-4+ or IL-13+) correlated with sIgE-titers. Peanut-allergic patients had higher shares of peanut-activated Th2 cells with homing markers (CCR4: skin, lung; CCR6: mucosa; CXCR5: B cell follicle) as compared to controls. Peanut-responsive T cells presented with surface marker heterogeneity as well as enrichment for effector memory T cells (CD45RO) and regulatory marker expression (CD3+CD4+CD25hiCD127lowFoxP3hi, delayed IL-2-dependent activation). RNA sequencing of peanut-activated T cells confirmed proinflammatory Th2-polarization with multicytokine expression. This study pointed to the heterogeneous nature of the peanut-specific Th2 response in presence of functional Treg cells. The lack of Th2 cell reactivity (peanut-specific Th2, Treg) in high-threshold individuals discriminated those from peanut-allergic individuals. In a similar approach, Ruitier et al. investigated the T cell response to peanut protein comparing peanut-allergic (OFC positive at <0.5g cumulative peanut dose) and hyporeactive (OFC negative at ≤0.5g cumulative peanut dose but clinical PA history) individuals (70). Compared to hyporeactive patients, stimulated PBMC from peanut-allergic patients showed a higher CD154+CD4+ T cell response and stimulation index correlating with elevated peanut-specific CD4+ T cell and complementarity determining region 3 (CDR3; T cell receptor domain identifying) expression (91).

Multimodal Omics

Gene sequencing studies provided insights into FA immune regulation and epithelial barrier function (112, 113). Genome-
wide association studies reported on loci correlated to specific FAs (Table 1) (85–87, 114). Beyond aspects of disease susceptibility, recent studies focused on genes involved in acute inflammation in PA patients. Watson et al. analyzed the time-resolved transcriptome in peripheral blood sampled from peanut-allergic individuals during OFC (at baseline, 2 h/4 h later), comparing peanut vs placebo (89). Indeed, specific gene expression changes were induced by peanut intake. Gene upregulation was commonly found (1,411/2,168 genes) correlating with evolving peanut-induced inflammation. In leucocyte cell subsets after deconvolution, resting macrophages (M0) and neutrophilic granulocytes increased while naive CD4+ T cells decreased during OFC. Genes associated with peanut-allergic reactions were mostly found in a co-expression module with upregulated genes related to inflammatory processes. Six key driver genes were identified (3/6 with established role in inflammation) as modulators of the peanut-reactive co-expression module. The data-driven approach on genes involved in peanut-allergic reactions was further developed by Do et al. using transcriptome analysis during OFC (at baseline, 2 h/4 h later), in combination with baseline epigenomic profiling (90). The participants’ clinical reactivity was stratified by threshold-weighted severity grades. More than 300 genes (“peanut severity genes”) had significant expression changes during OFC and were found to be associated with reaction severity. Biological processes related to upregulated peanut severity genes clustered by function, mostly around neutrophils (activation, degranulation, neutrophil-mediated immunity). With pronounced reaction severity, neutrophilic granulocytes increased also in number while naive CD4+ T cells and naive B cells decreased significantly during the course of OFC. Most peanut severity genes clustered together by co-expression. Gene interaction network analysis indicated the central role of two genes, NFKBIA (NF-kappa-B-inhibitor alpha, a regulator protein) and ARG1 (arginase, a catabolic enzyme and immune regulator), on reaction severity. Epigenetic modification correlating with reaction severity, as measured by methylation signatures of CpG dinucleotides in CD4+ lymphocytes, was found for more than 200 CpGs (“peanut severity CpGs”). A causal relationship between methylation and peanut severity genes gene expression was established, pointing...
further to the relevance of epigenetic modifications in the context reaction severity.

Commensal Endotyping

The gut represents the largest interface for the interaction between the human body and food allergens. There is a constant regulatory interaction between the immune system and the intestinal microbiome (115). The microbiome might promote Th2-immunity to food by regulating eosinophils (frequency, function) in the gut (116).

Non-Omics

More recently, sIgE-binding to commensal bacteria was discovered in food-allergic children, suggesting structural similarities between food allergens and microbial structures (91). Molecular mimicry of the microbiome plays a role in a number of inflammatory diseases, such as celiac disease. Here, structures on *P. fluorescens*, a commensal which is overrepresented in celiac disease, have been found to mimic human leukocyte antigen (HLA) locus HLA-DQ2.5- and activate mucosal T cells, suggesting a pathological dysfunction of the gut barrier (117). First studies comparing amino-acid sequence similarities between known food allergens and microbiome data revealed conserved regions of T-cell immune recognition on commensal bacteria (118). Carrasco Pro et al. further showed similarities between human microbiome sequences and inhalation allergens (119).

Microbiomics and Gut Tissue Typing

The adaptive immune response is influenced by microbial interactions with secreted IgA (120), together with lower richness and lower local species diversity (alpha diversity), accompanied by a dysbiosis of commensal strains (92, 93). A previous study demonstrated that peanut allergy is marked by higher Bacteroidales, especially *Bacteroides fragilis* and reduced Clostridiales abundance (92). Low threshold reactivity to peanut has been connected to an increase in *Clostridium* sp, *Oscillospiraceae* sp, *Lachnospiraceae* sp, *Ruminococcaceae* sp, *Firmicutes* sp, and *Bacteroides* sp (91–93).

At which gastrointestinal sites immune dysregulation and allergic sensitization might develop is unexplored. Recently, large numbers of allergen-specific B cells were described in the gut (stomach, duodenum) of peanut-allergic patients (94). These IgE+ cells are rarely found in the blood (121, 122). Gut IgE+B cells counts were found to correlate with serum IgE-titer concentrations. Importantly, inter-individual variations in this local IgE+B but also variable mast cell IgE-loading by different IgE+B clones might explain differential reaction phenotypes in peanut-allergic patients’ reservoir (Figure 1). The high number of IgE+B cells in the gut combined with increased intestinal permeability might explain the high sIgE-levels found in fecal samples of food-allergic patients (123).

These findings give an idea of a new mechanism in which the microbiome may initiate, trigger and influence allergic reactions. This in turn may lead to novel ways to stratify patients, due to their metaproteomic profile, as has been shown for other inflammatory diseases (124, 125).

CONCLUSION: PERSPECTIVE TOWARD NEW INTEGRATIVE APPROACHES

Deciphering the immunological response to food proteins shall enable the stratification of patients into reaction endotypes, for advanced understanding of their phenotypic heterogeneity. The ambitious but ultimate goal will be to identify clinically useful predictors for allergic reactions to food, with emphasis on predicting clinical outcome, severity and threshold dose, upon allergen exposure in order to adapt avoidance protocols and symptomatic medication (15, 126). Recent PA-studies demonstrated the complexity of the immune mechanism, as investigated during simulated allergen-specific stimulations or during the course of clinical reactions (71, 74, 89, 90). Several studies did even compare immune targets in individuals with variable clinical reactions, based on severity or sensitivity (69, 70, 90). To explain clinical manifestations of reaction phenotypes, various aspects are considered of fundamental relevance, including the molecular IgE-signature/-repertoire, the potency/reertoire of effector cells, the genetics of allergen degradation/absorption, allergen-specific T cell reactivity profiles, genes/methylations and aspects of the gut microbiome including composition and host interaction (Figure 1).

The availability of multiple omics technologies, proteomics, high-dimensional mass cytometry, transcriptomics and epigenomics, allowed identifying promising molecular and immunological targets for future human studies. Taken individually, each omics-approach has assets and drawbacks (reviewed by (127, 128) but together they might unfold their full potential. Unbiased machine-learning, integrated data analysis of heterogeneous datasets as well as network-based approaches will be required to establish algorithms for providing insights in disease pathophysiology and for inferring biomarkers or biomarker signatures being predictive for reaction phenotypes (33, 127, 129, 130). Finally, those insights shall advance the stratification of individuals prior to selection for oral immunotherapy or early food introduction for prevention, both pioneer areas research in PA (131, 132).

AUTHOR CONTRIBUTIONS

RC and JK wrote the manuscript. MS, FC-M, and CB-J revised the manuscript as to clinical content. CH, PW, PS, and MO provided critical feedback to the manuscript concept and scientific content. AK developed the review concept together with RC/JK and helped to shape the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

Supported by the Luxembourg National Research Fund on PRIDE program grants PRIDE/11012546/NEXTIMMUNE and PRIDE17/11823097/MICROH; supported by the Personalized Medicine Consortium grant APSIS, PMC/2017/02 and by the Ministry of Research, Luxembourg.
REFERENCES

1. Muraro A, Werfel T, Hoffmann-Sommergruber K, Roberts G, Beyer K, Bindels-Jensen C, et al. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. *Allergy* (2014) 69(8):1008–25. doi: 10.1111/all.12429.

2. Sicherer SH, Sampson HA. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. *J Allergy Clin Immunol* (2018) 141(1):41–58. doi: 10.1016/j.jaci.2017.11.003.

3. Anvari S, Miller J, Yeh CY, Davis CM. IgE-Mediated Allergy. *Clin Rev Allergy Immunol* (2019) 57(2):244–60. doi: 10.1007/s12016-018-8710-3.

4. Gupta RS, Warren CM, Smith BM, Jiang J, Blumenstock JA, Davis MM, et al. Prevalence and Severity of Food Allergies Among US Adults. *JAMA New Open* (2019) 2(1):e185630. doi: 10.1001/jamanetworkopen.2018.5630.

5. Fox M, Mugford M, Voordouw J, Cornelisse-Vermaat J, Antonides G, de la Hoz Caballer B, et al. Health sector costs of self-reported food allergy in Europe: a patient-based cost of illness study. *Eur J Public Health* (2013) 23 (5):757–62. doi: 10.1093/europub/ckt010.

6. Polloni L, Muraro A. Anxiety and food allergy: A review of the last two decades. *Clin Exp Allergy* (2020) 50(4):420–41. doi: 10.1111/cea.13548.

7. Sampath V, Tupa D, Graham MT, Chatila TA, Spergel JM, Nadeau KC. Deciphering the black box of food allergy mechanisms. *Ann Allergy Asthma Immunol* (2017) 118(1):21–7. doi: 10.1016/j.anai.2016.10.017.

8. Valenta R, Hochwallner H, Linhart B, Pahr S. Food allergies: The basics. *Gastroenterology* (2015) 148(6):1120–31.e4. doi: 10.1053/j.gastro.2015.02.006.

9. Hammad H, Lambrecht BN. Barrier Epithelial Cells and the Control of Type 2 Immunity. *Immunity* (2015) 43(1):29–40. doi: 10.1016/j.immuni.2015.07.007.

10. Chinthrajah RS, Hernandez JD, Boyd SD, Galli SJ, Nadeau KC. Molecular and cellular mechanisms of food allergy and food tolerance. *J Allergy Clin Immunol* (2016) 137(4):984–97. doi: 10.1016/j.jaci.2016.02.004.

11. Sampath V, Tupa D, Graham MT, Chatila TA, Spergel JM, Nadeau KC. Deciphering the black box of food allergy mechanisms. *Ann Allergy Asthma Immunol* (2017) 118(1):21–7. doi: 10.1016/j.anai.2016.10.017.

12. Valenta R, Hochwallner H, Linhart B, Pahr S. Food allergies: The basics. *Gastroenterology* (2015) 148(6):1120–31.e4. doi: 10.1053/j.gastro.2015.02.006.

13. Tordesillas L, Berin MC, Sampson HA. Immunology of Food Allergy. *Immunity* (2017) 47(1):32–50. doi: 10.1016/j.immuni.2017.07.004.

14. Sampson HA, O'Mahony L, Burks AW, Platt M, Lack G, Akdis CA. Mechanisms of food allergy. *J Allergy Clin Immunol* (2018) 141(1):11–9. doi: 10.1016/j.jaci.2017.11.005.

15. Chong KW, Ruiz-Garcia M, Patel N, Boyle RJ, Turner PJ. Reaction phenotypes in IgE-mediated food allergy and anaphylaxis. *Ann Allergy Asthma Immunol* (2020) 124(5):473–8. doi: 10.1016/j.anai.2019.12.023.

16. Hourihane JO, Allen KJ, Shreffler WG, Dunngalvin G, Nordlee JA, Zurzolo er WG, Lin J, Bardina L, Dieguez MC, et al. Homologous tropomyosins from vertebrate and invertebrate: Recombinant calibrator proteins in functional biological assays for tropomyosin allergen assessment of novel animal foods. *Clin Exp Allergy* (2020) 50(1):105–16. doi: 10.1111/cepa.13503.

17. Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS, Madan R, et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. *Nature* (2009) 457(7229):585–8. doi: 10.1038/nature07548.

18. Palladino C, Nartez JS, Dubin M, Schreiner M, Huenenak P, Gschwandtner M, et al. Peanut lipids display potential adjuvanticity by triggering a pro-inflammatory response in human keratinocytes. *Allergy* (2018) 73(8):1746–79. doi: 10.1111/all.13475.

19. Alessandri C, Ferrara R, Bernardi ML, Zennaro D, Tupp J, Giangreco I, et al. Molecular approach to a patient’s tailored diagnosis of the oral allergy syndrome. *Clin Tras Allergy* (2020) 10(1):1–16. doi: 10.1111/cepa.13529.

20. Muraro A, Arasi S. Biomarkers in Food Allergy. *Curr Allergy Asthma Rep* (2018) 18(11):64. doi: 10.1007/s11882-018-0816-4.

21. Perry TT, Matsui EC, Conover-Walker MK, Wood RA. Risk of oral food challenges. *J Allergy Clin Immunol* (2014) 113(5):1164–8. doi: 10.1016/j.jaci.2014.07.063.

22. datena MR, van Ree R, Asero R, Barreales L, Belohlahkova S, de Blay F, et al. Component-resolved diagnosis and beyond: Multivariable regression models to predict severity of hazelnut allergy. *Allergy* (2018) 73(5):549–59. doi: 10.1111/all.13328.

23. Nilsson C, Berthold M, Mascialino B, Sjolander S, Hamilton RG. Accuracy of component-resolved diagnostics in peanut allergy: Systematic literature review and meta-analysis. *Pediatr Allergy Immunol* (2020) 31(3):303–14. doi: 10.1111/pai.13201.

24. Flinterman AE, Knol EF, Lenger DA, Bardina L, de Blay F, et al. Peanut epitopes for IgE and IgG4 in peanut-sensitized children in relation to severity of peanut allergy. *J Allergy Clin Immunol* (2008) 121(3):737–43.e10. doi: 10.1016/j.jaci.2007.11.039.

25. Czok et al. Biomarkers for Food Allergy Phenotypes

Frontiers in Immunology | www.frontiersin.org January 2021 Volume 11 Article 594350
40. Nassiri M, Eckermann O, Babina M, Edenharter G, Worm M. Serum levels of 9r1β-PGF2 and cysteinyl leukotrienes are useful biomarkers of anaphylaxis. *J Allergy Clin Immunol* (2016) 137(1):312–4.e7. doi: 10.1016/j.jaci.2015.07.001

41. Chan ES, Dinakar C, Gonzales-Reyes E, Green TD, Gupta R, Jones D, et al. Unmet needs of children with peanut allergy: Aligning the risks and the evidence. *Ann Allergy Asthma Immunol* (2020) 124(5):479–86. doi: 10.1016/j.anai.2020.01.016

42. Eller E, Bindslev-Jensen C. Clinical value of component-resolved diagnostics in peanut-allergic patients. *Allergy* (2013) 68(2):190–4. doi: 10.1111/all.12075

43. Hemmings O, Du Toit G, Radulovic S, Lack G, Santos AF. Ara h 2 is the dominant peanut allergen despite similarities with Ara h 6. *J Allergy Clin Immunol* (2020) 3:621–30. doi: 10.1016/j.jaci.2020.03.026

44. Cottet N, Saif S, Bourgain-Heck M, Lambert N, Amat F, Poncet P, et al. Two Different Composite Markers Predict Severity and Threshold Dose in Peanut Allergy. *J Allergy Clin Immunol Pract* (2020) 1:275–82. doi: 10.1016/j.jaip.2020.09.043

45. Faber MA, Donné I, Herrebosch E, Sabato V, Hagendornes MM, Bridges CH, et al. Sensitization profiles to peanut allergens in Belgium: cracking the code in infants, children and adults. *Acta Clin Belg* (2016) 71(1):32–7. doi: 10.1080/17843285.2013.1109170

46. Giovannini M, Comberiati P, Piazza M, Chiesa E, Piacentini GL, Boner A, et al. Retrospective definition of reaction risk in Italian children with peanut, hazelnut and walnut allergy through component-resolved diagnosis. *Allergy* (2019) 47(1):73–8. doi: 10.1111/jalle.2018.03.009

47. Kaur N, Mehr S, Katelaris C, Wainstein B, Altavilla B, Saad R, et al. Added Diagnostic Value of Peanut Component Testing: A Cross-Sectional Study in Australian Children. *J Allergy Clin Immunol Pract* (2020) 1:245–53. doi: 10.1016/j.jaip.2020.08.060

48. Schwager C, Küll S, Behrends J, Rückendorf N, Schocker F, Frey A, et al. Peanut oleosins associated with severe peanut allergy-importance of the non-dependent exercise-induced anaphylaxis. *J Allergy Clin Immunol Pract* (2020) 8:344. doi: 10.1016/j.jacip.2020.07.003

49. Czolk et al. Biomarkers for Food Allergy Phenotypes

50. Asarnoj A, Nilsson C, Lidholm J, Glaumann S, Östblom E, Hedlin G, et al. Sensitization profile to peanut allergens in Belgium; cracking the code in infants, children and adults. *Acta Clin Belg* (2016) 71(1):32–7. doi: 10.1080/17843285.2013.1109170

51. Giovannini M, Comberiati P, Piazza M, Chiesa E, Piacentini GL, Boner A, et al. Retrospective definition of reaction risk in Italian children with peanut, hazelnut and walnut allergy through component-resolved diagnosis. *Allergy* (2019) 47(1):73–8. doi: 10.1111/jalle.2018.03.009

52. Song Y, Wang J, Leung N, Wang LX, Liann L, Sichere SH, et al. Correlations between basophil activation, allergen-specific IgE with outcome and severity of oral food challenges. *Ann Allergy Asthma Immunol* (2015) 114(4):216–22. doi: 10.1159/000441681

53. Mittag D, Akkerdaas J, Ballamer-Weber BK, Vogel L, Wensing M, Becker W-M, et al. Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. *J Allergy Clin Immunol* (2014) 114(1):110–7. doi: 10.1016/j.jaci.2004.09.014

54. Asarnoj A, Nilsson C, Lidholm J, Glanumans S, Östblom E, Hedlin G, et al. Peanut component Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. *J Allergy Clin Immunol* (2014) 114(1):110–7. doi: 10.1016/j.jaci.2013.11.044

55. Song Y, Wang J, Leung N, Wang LX, Liann L, Sichere SH, et al. Correlations between basophil activation, allergen-specific IgE with outcome and severity of oral food challenges. *Ann Allergy Asthma Immunol* (2015) 114(4):216–22. doi: 10.1159/000441681

56. Lauer I, Dueringer N, Pokojo S, Rehm S, Zoccatelli G, Reese G, et al. The non-dependent exercise-induced anaphylaxis. *J Allergy Clin Immunol Pract* (2020) 124(5):479–86. doi: 10.1016/j.jaip.2020.09.043

57. Lauer I, Dueringer N, Pokojo S, Rehm S, Zoccatelli G, Reese G, et al. The non-dependent exercise-induced anaphylaxis. *J Allergy Clin Immunol Pract* (2020) 124(5):479–86. doi: 10.1016/j.jaip.2020.09.043

58. Bogh KL, Nielsen H, Eiweger T, Madsen CB, Mills ENC, Rigby NM, et al. IgE versus IgG4 epitopes of the peanut allergen Ara h 1 in patients with severe allergy. *Mol Immunol* (2014) 58(2):169–76. doi: 10.1016/j.molimm.2013.11.014

59. Dreskin SC, Germinaro M, Reinhold D, Chen X, Vickery BP, Kulis M, et al. IgE binding to linear epitopes of Ara h 2 in peanut allergic preschool children undergoing oral Immunotherapy. *Pediatr Allergy Immunol* (2019) 30(8):817–23. doi: 10.1111/pai.13117

60. Mose AP, Mortz E, Nielson C, Sprogøe U, Saad R, et al. Sensitization profile to peanut allergens in Belgium; cracking the code in infants, children and adults. *Acta Clin Belg* (2016) 71(1):32–7. doi: 10.1080/17843285.2013.1109170

61. Giovannini M, Comberiati P, Piazza M, Chiesa E, Piacentini GL, Boner A, et al. Retrospective definition of reaction risk in Italian children with peanut, hazelnut and walnut allergy through component-resolved diagnosis. *Allergy* (2019) 47(1):73–8. doi: 10.1111/jalle.2018.03.009

62. Kaur N, Mehr S, Katelaris C, Wainstein B, Altavilla B, Saad R, et al. Added Diagnostic Value of Peanut Component Testing: A Cross-Sectional Study in Australian Children. *J Allergy Clin Immunol Pract* (2020) 1:245–53. doi: 10.1016/j.jaip.2020.08.060

63. Schwager C, Küll S, Behrends J, Rückendorf N, Schocker F, Frey A, et al. Peanut oleosins associated with severe peanut allergy-importance of the non-dependent exercise-induced anaphylaxis. *J Allergy Clin Immunol Pract* (2020) 8:344. doi: 10.1016/j.jacip.2020.07.003

64. Schwartz C, Kull S, Katelaris C, Wainstein B, Altavilla B, Saad R, et al. Added Diagnostic Value of Peanut Component Testing: A Cross-Sectional Study in Australian Children. *J Allergy Clin Immunol Pract* (2020) 1:245–53. doi: 10.1016/j.jaip.2020.08.060

65. Giovannini M, Comberiati P, Piazza M, Chiesa E, Piacentini GL, Boner A, et al. Retrospective definition of reaction risk in Italian children with peanut, hazelnut and walnut allergy through component-resolved diagnosis. *Allergy* (2019) 47(1):73–8. doi: 10.1111/jalle.2018.03.009
76. Rentzos G, Lundberg V, Lundqvist C, Rodrigues R, van Odijk J, Lundell AC, et al. Use of a basophil activation test as a complementary diagnostic tool in the diagnosis of severe peanut allergy in adults. Clin Transl Allergy (2015) 5(3):172. doi: 10.1186/s13681-015-0064-9
77. Santos AF, Douiri A, Bécare N, Wu SY, Stephens A, Radulovic S, et al. Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children. J Allergy Clin Immunol (2014) 134(3):645–52. doi: 10.1016/j.jaci.2014.04.039
78. Reier-Nilsen T, Michelsen MM, Lodrup Carlsen KC, Carlsen KH, Mowinckel P, Nygaard UC, et al. Predicting reactivity threshold in children with anaphylaxis to peanut. Clin Exp Allergy (2018) 48(4):415–23. doi: 10.1111/ceai.13078
79. Santos AF, Du Toit G, Douiri A, Radulovic S, Stephens A, Turcanu V, et al. Distinct parameters of the basophil activation test reflect the severity and threshold of allergic reactions to peanut. J Allergy Clin Immunol (2015) 135(1):79–86. doi: 10.1016/j.jaci.2014.09.001
80. Blom LH, Juel-Berg N, Larsen LF, Hansen KS, Poulsen LR. Circulating allergen-specific T(H)2 lymphocytes: CCR4(+) rather than CLA(+) is the predominant phenotype in peanut-allergic subjects. J Allergy Clin Immunol (2018) 141(4):1498–501.e5. doi: 10.1016/j.jaci.2017.10.037
81. DeLong JH, Simpson KH, Wambre E, James EA, Robinson D, Kwok WW. Identification of peanut-specific T cell responses in children attending a Regional Paediatric Allergology Clinic. BMC Pediatr (2016) 16:74. doi: 10.1186/s12887-016-0609-7
82. Martino DJ, Ashley S, Koplin J, Ellis J, Saffery R, Dharmage SC, et al. Peanut sensitization in children attending a Regional Paediatric Allergology Clinic. BMJ Pediatr (2016) 16:74. doi: 10.1186/s12887-016-0609-7
83. Santos AF, Douiri A, Bečare N, Wu SY, Stephens A, Radulovic S, et al. Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children. J Allergy Clin Immunol (2014) 134(3):645–52. doi: 10.1016/j.jaci.2014.04.039
84. Reier-Nilsen T, Michelsen MM, Lodrup Carlsen KC, Carlsen KH, Mowinckel P, Nygaard UC, et al. Predicting reactivity threshold in children with anaphylaxis to peanut. Clin Exp Allergy (2018) 48(4):415–23. doi: 10.1111/ceai.13078
85. Santos AF, Du Toit G, Douiri A, Radulovic S, Stephens A, Turcanu V, et al. Distinct parameters of the basophil activation test reflect the severity and threshold of allergic reactions to peanut. J Allergy Clin Immunol (2015) 135(1):79–86. doi: 10.1016/j.jaci.2014.09.001
86. Blom LH, Juel-Berg N, Larsen LF, Hansen KS, Poulsen LR. Circulating allergen-specific T(H)2 lymphocytes: CCR4(+) rather than CLA(+) is the predominant phenotype in peanut-allergic subjects. J Allergy Clin Immunol (2018) 141(4):1498–501.e5. doi: 10.1016/j.jaci.2017.10.037
87. Santos AF, Du Toit G, Douiri A, Radulovic S, Stephens A, Turcanu V, et al. Distinct parameters of the basophil activation test reflect the severity and threshold of allergic reactions to peanut. J Allergy Clin Immunol (2015) 135(1):79–86. doi: 10.1016/j.jaci.2014.09.001
88. Blom LH, Juel-Berg N, Larsen LF, Hansen KS, Poulsen LR. Circulating allergen-specific T(H)2 lymphocytes: CCR4(+) rather than CLA(+) is the predominant phenotype in peanut-allergic subjects. J Allergy Clin Immunol (2018) 141(4):1498–501.e5. doi: 10.1016/j.jaci.2017.10.037
89. Watson CT, Cohain AT, Grif
90. Do AN, Watson CT, Cohain AT, Grif
112. Brown SJ, Asai Y, Cordell HJ, Campbell LE, Zhao Y, Liao H, et al. Loss-of-function variants in the flagglin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol (2011) 127(3):661–7. doi: 10.1016/j.jaci.2011.01.031

113. Madore A-M, Vaillancourt VT, Asai Y, Alizadehfar R, Ben-Shoshan M, Michel DL, et al. HLA-DQB1*02 and DQB1*06:03P are associated with peanut allergy. Eur J Hum Genet (2013) 21(10):1181–4. doi: 10.1038/ejhg.2013.13

114. Marenholz I, Grosche S, Kalb B, Rüschendorf F, Blümchen K, Schlags R, et al. Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy. Nat Commun (2017) 8(1):1056–.

115. Heintz-Buschart A, Wilmes P. Human Gut Microbiome: Function Matters. Trends Microbiol (2018) 26(7):563–74. doi: 10.1016/j.tim.2017.11.002

116. Jiménez-Saiz R, Anipindi VC, Galipeau H, Ellenbogen Y, Chaudhary R, Koenig JF, et al. Microbial Regulation of Enteric Eosinophils and Its Impact on Tissue Remodeling and Th2 Immunity. Front Immunol (2020) 11:155 (155). doi: 10.3389/fimmu.2020.00155

117. Petersen J, Ciacci L, Tran MT, Loh KL, Kooy-Winkelaar Y, Croft NP, et al. The application of omics techniques to understand the role of the gut microbiota in inflammatory bowel disease. Therap Adv Gastroenterol (2019) 12:1736248318822250. doi: 10.1177/1756284818822250

118. Li L, Figeys D. Proteomics and Metaproteomics Add Functional, Taxonomic and Biomass Dimensions to Modeling the Ecosystem at the Mucosal-Luminal Interface. Mol Cell Proteomics (2020) 19(9):1409–17. doi: 10.1074/mcp.R120.002051

119. Asari S, Mennini M, Valluzzi R, Riccardi C, Fiocchi A. Precision medicine in food allergy. Curr Opin Allergy Clin Immunol (2018) 18(5):438–43. doi: 10.1097/aci.0000000000000465

120. Delhalle S, Bode SFN, Balling R, Ollert M, He FQ. A roadmap towards personalized immunology. NPJ Syst Biol Appl (2018) 4(1):9. doi: 10.1038/s41540-017-0045-9

121. Donovan BM, Bastarache L, Turi KN, Zatter MM, Hartert TV. The current state of omics technologies in the clinical management of asthma and allergic diseases. Ann Allergy Asthma Immunol (2019) 123(6):550–7. doi: 10.1016/j.anai.2019.08.460

122. Dhondalay GK, Rael E, Acharya S, Zhang W, Sampath V, Galli SJ, et al. Food allergy and omics. J Allergy Clin Immunol (2018) 141(1):20–9. doi: 10.1016/j.jaci.2017.11.007

123. Krogulska A, Wood RA. Peanut allergy diagnosis: Moving from basic to more elegant testing. Pediatr Allergy Immunol (2020) 31(4):346–57. doi: 10.1111/pai.13215

124. Vickery BP, Vereda A, Casale TB, Beyer K, du Toit G, Hourihane JO, et al. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Copyright © 2021 Czolk, Klaiber, Sørensen, Wilmes, Codreanu-Morel, Skov, Hilger, Bindlev-Jensen and Kuehn. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.