THE INFRARED LUMINOSITY FUNCTION OF GALAXIES IN THE COMA CLUSTER

ROBERTO DE PROPRIS1 AND PETER R. EISENHARDT2

MS 169-327, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; propris@coma.jpl.nasa.gov, prme@kromos.jpl.nasa.gov

S. A. STANFORD2

Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratories, Livermore, CA 94550; adam@igpp.llnl.gov

AND

MARK DICKINSON2,3
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218; med@stsci.edu

Received 1998 May 14; accepted 1998 June 12; published 1998 July 17

ABSTRACT

An infrared survey of the central 650 arcmin² of the Coma Cluster is used to determine the H-band luminosity function for the cluster. Redshifts are available for all galaxies in the survey with $H < 14.5$, and for this sample we obtain a good fit to a Schechter function with $H^* = 11.13$ and $\alpha = -0.78$. These luminosity function parameters are similar to those measured for field galaxies in the infrared, which is surprising considering the very different environmental densities and, presumably, merger histories for field galaxies. For fainter galaxies, we use two independent techniques to correct for field galaxy contamination in the cluster population: the $B - R$ color-magnitude relation and an estimate for the level of background and foreground contamination from the literature. Using either method, we find a steep upturn for galaxies with $14 < H < 16$, with slope $\alpha \approx -1.7$.

Subject headings: galaxies: luminosity function, mass function — galaxies: clusters: individual (Coma)

1. INTRODUCTION

The availability of wide-field CCD detectors on large telescopes has renewed interest in the luminosity functions of galaxies in clusters, which can now be determined to $M_0 \sim -10$ at 100 Mpc, a luminosity limit comparable to that formerly reached in the Local Group (e.g., van den Bergh 1992). Coma, as one of the nearest ($z = 0.023$) and richest ($R = 2$) Abell clusters, is, together with Virgo, one of the best studied systems (see Mazure et al. 1998 for a compendium of recent work on the Coma Cluster).

Optical luminosity functions for bright galaxies in Coma are consistent with a Schechter (1976) luminosity function having $\alpha \sim -1$ (e.g., Lopez-Cruz et al. 1997). Dwarf galaxies are better fitted by a power law with $\alpha = -1.4$ (in the Schechter formalism). These properties are similar to those of the luminosity function in Virgo (Sandage, Binggeli, & Tammann 1985) and in Fornax (Ferguson & Sandage 1988). Recently, however, Lobo et al. (1997a) have claimed a steep V-band slope for faint galaxies in Coma ($\alpha \sim -1.8$), supporting earlier claims for a large population of dwarf galaxies in clusters (e.g., De Propris et al. 1995). Table 1 summarizes recent determinations of the faint-end slope of the luminosity function in the Coma Cluster.

It is generally difficult to relate optical luminosity functions (LFs) to the underlying mass distribution, owing to our incomplete understanding of star formation in galaxies. It has been known for some time that cluster galaxies have steeper LFs than those in the field (Binggeli, Sandage, & Tarenghi 1990), in contrast to cold dark matter (CDM) models, which predict $\alpha = -2$ (e.g., White & Frenk 1991).

On the other hand, a steep optical LF may be compatible with a flat mass function if dwarf galaxies have their luminosities boosted by fading starbursts (Hogg & Phinney 1997).

There is indeed some evidence for recent (1–2 Gyr ago) star formation among dwarfs in Coma (Donas, Milliard, & Laget 1995) and in Virgo and Fornax as well (Held & Mould 1994 and references therein).

Infrared luminosities are known to be less sensitive to star formation and to correlate well with dynamical mass (Gavazzi, Pierini, & Boselli 1996). Therefore, infrared luminosity functions should be expected to approximate better the underlying mass function. A study of the infrared luminosity function of Coma is timely because of the recent publication of the first infrared-selected luminosity functions for field galaxies (Gardner et al. 1997, hereafter G97; Szokoly et al. 1998), allowing a comparison of mass distributions in two environments of highly different densities. While Mobasher & Tremonti (1998) have recently presented a K-band study of faint galaxies in Coma, their survey covers only 41 arcmin², and hence the luminosity function is not well constrained.

Eisenhardt et al. (1998, hereafter EDGSWD) have obtained photometry in U, B, V, R, I, z, J, H, and K_s for \sim500 infrared-selected galaxies in a $29'2 \times 22.5$ field in the core of the Coma Cluster. EDGSWD selected objects at H (and required confirmation at J) to provide a baseline for comparison to K-selected samples in more distant clusters (Stanford, Eisenhardt, & Dickinson 1995, 1998) and also because the H data reached approximately 0.5 mag deeper. Here we use these data to derive the H luminosity function for galaxies in the Coma Cluster. The conversion from H to K is provided in § 3.1. A detailed description of the data, observations, data reduction, and photometry is given in EDGSWD and is not repeated here, except for some essential points. We assume a redshift of 6950 km s⁻¹ (Mazure & Gurzadyan 1998).

2. THE LUMINOSITY FUNCTION

Star-galaxy separation was determined in the R band using the Kron (1980) r_z parameter (EDGSWD). Because the available membership information is qualitatively different for

1 National Research Council Resident Research Associate.
2 Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
3 Allan C. Davis Fellow, also with the Space Telescope Science Institute.
bright versus faint galaxies, we consider them separately. For galaxies with $H < 14.5$, redshifts are available in the literature (Lobo et al. 1997b). All galaxies with $3000 \text{ km s}^{-1} < c z < 10,000 \text{ km s}^{-1}$ are assumed to be members and at the same distance. For fainter galaxies ($14.0 < H < 16$), we use two independent methods to correct for non-cluster members. Following Mazure et al. (1988) and Biviano et al. (1995), we assume that galaxies within ± 0.3 mag of the $B - R$ color-magnitude relation defined by the brighter early-type galaxies are members. The relation and the color selection criterion are shown in Figure 1. We also use the infrared counts by Huang et al. (1997), transformed to the H band using our $H - K$ color-magnitude relation, to estimate the amount of contamination from background and foreground galaxies. Galaxies are then counted in 0.5 mag bins. The resulting luminosity function is shown in Figure 2.

2.1. Bright Galaxies

For bright galaxies, we choose to fit a Schechter function, using the maximum likelihood technique of Sandage, Tammann, & Yahil (1979). The best-fitting parameters are $H^* = 11.13$ and $\alpha = -0.78$. The inset in Figure 2 shows the 1 σ error ellipse. The three brightest objects are excluded from the fit, since we are unable to fairly sample their space density and such objects fall outside of the extrapolation of the Schechter function at bright magnitudes (Schechter 1976).

To illustrate the uncertainty in H^* and α, 1000 Monte Carlo simulations were generated in which 111 objects were drawn from a Schechter function whose parameters were the best fit to our “original” data and with errors as described in EDGSWD. These artificial data were fitted using the same method as above, and the results are shown in the inset in Figure 2.

2.2. Faint Galaxies

As shown in Figure 2, both the color selection method and the background subtraction method result in a significant excess of faint galaxies relative to the Schechter function for bright galaxies determined above. Fitting to the $(B - R)$-selected counts for $14 < H < 16$, we find $\alpha = -1.73 \pm 0.14$. Could this slope be an artifact?

Magnitude errors and spurious detections can cause an artificial steepening in the derived slope (Kron 1980). However, the estimated errors are smaller than the width of the bin even for the faintest galaxies considered, and spurious detections should be few because objects were required to be detected in both the J and H images. In fact, we are quite likely to have underestimated the number of dwarfs because of the difficulty in detecting low surface brightness galaxies against the bright infrared background. The completeness is estimated from Monte Carlo simulations to be greater than 80% to $H = 16$ for galaxies with $r < 1.4 \text{ h}^{-1} \text{kpc}$ and greater than 90% to $H = 16.5$ for $r < 0.7 \text{ h}^{-1} \text{kpc}$ (EDGSWD), where r is the first moment of the light distribution (Kron 1980). Because Fornax Cluster dwarfs typically have effective radii less than 1 $\text{h}^{-1} \text{kpc}$ (Ferguson 1989), we do not expect this to be a large correction.

Misclassifying stars as galaxies cannot account for the upturn: there are no significant discrepancies in star/galaxy classification between EDGSWD and Lobo et al. (1997a).

A more serious concern is that the slope of the infrared background counts is similarly steep (equivalent to $\alpha = -2.7$; Huang et al. 1997), raising the possibility that an incorrect removal of contaminating objects is responsible for the upturn. We consider this unlikely because (1) counts obtained via color selection agree well with those derived via background subtraction techniques; a narrower color selection strip (± 0.15) yields a slightly flatter slope ($\alpha = -1.55 \pm 0.20$) but the upturn remains significant; (2) the excess required to account for our result is a factor of 2.5 above the estimated background counts; and (3) galaxy counts in the direction of the Coma Cluster are found to be in satisfactory agreement with those in the general field (Secker & Harris 1996).

Nevertheless, the question of cluster membership for these galaxies is the dominant uncertainty in our measurement of the faint-end slope, and we are planning on a redshift survey of the faint sample, in order to address the issue of their membership. Time has already been awarded on the WIYN telescope to pursue this investigation.

3. DISCUSSION

3.1. Bright Galaxies

The infrared luminosity function derived for bright galaxies ($H < H^* + 3$) is in good agreement with that at R (Lopez-Cruz et al. 1997) as well as at V (Lobo et al. 1997a); all are reasonably well matched by a Schechter function with a “flat” ($\alpha \sim -1$) power law. This argues for a relatively small contribution from young stars in these galaxies.
No. 1, 1998 INFRARED LF OF GALAXIES IN COMA CLUSTER L47

Fig. 2.—The luminosity function of the Coma Cluster and the best-fitting Schechter function (solid line). Error bars for bright galaxies and for color-selected counts are assumed to be Poissonian. For background-selected counts, we assume uncertainties in the “raw counts” and add these in quadrature with the errors in the estimated level of foreground and background contamination, evaluated according to eq. (5) of Huang et al. (1997). The differences between the values of H and α retrieved from Monte Carlo simulations and the best-fit values are plotted in the inset, together with the 1 σ error ellipse.

Our value of H^* is in excellent agreement with the $M^*_K = -23.12 + 5 \log h$ value reported by G97, using $H - K_s = 0.22$ from EDGSW and a k-correction of 0.05. Both this method and a direct determination from the K_s data of EDGSW, to the $M_K = -21 + 5 \log h$ limit of G97, yield $M_K^* = -23.25 + 5 \log h$. The observed $B - H = 4.2$ yields $M_K^* \approx -19.1 + 5 \log h$, versus $M_K^* = -19.0 + 5 \log h$ for the Virgo Cluster (Sandage et al. 1985). The agreement is somewhat fortuitous given the uncertainty in H^* due to our smaller sample and the fact that we do not properly survey the brightest galaxies. Our bright galaxy slope ($\alpha = -0.78$) agrees well with G97’s $\alpha = -0.91$ but depends on the cutoff magnitude. Using the G97 cutoff gives $\alpha = -0.93$ in H and $\alpha = -0.98$ from the K_s data, suggesting that our results may be influenced by the presence of the “dip” in the optical luminosity function of Coma at $V \sim 17$ (Lobo et al. 1997a), equivalent to $H \sim 14$.

The IR luminosity functions (and hence mass functions) of bright galaxies in the field and in this rich cluster appear to be similar, despite the roughly thousandfold difference in environmental density. This agreement is surprising because of the different morphological mixes and, presumably, merger histories for these galaxies. If mass is truly the defining parameter in controlling the bulk properties of galaxies and their morphology (see Gavazzi et al. 1996), this similarity supports models in which large galaxies form at high redshift and evolve passively to the present epoch and in which mergers are relatively unimportant (a scenario also favored by Stanford et al. 1998).

3.2. Faint Galaxies

For galaxies fainter than $H = 14.5$, we find a steep upturn in the luminosity function ($\alpha \approx -1.7$). Because of the uncertainty in cluster membership, this result should be considered to support claims for a steep luminosity function for dwarfs, rather than providing a precise estimate of the slope of the faint end of the luminosity function. Nevertheless, we detect a population of dwarfs about 2 times larger than expected from the $\alpha = -1.4$ found by many previous authors (Table 1).

Because H luminosity is linearly correlated with mass for field and Virgo Cluster galaxies (Gavazzi et al. 1996), the most natural interpretation of the steep infrared slope is that it represents a real increase in the space density of low-mass galaxies in Coma, rather than an enhanced star formation rate in such objects.

There is some suggestion in Table 1 that the luminosity function slope increases with clustercentric radius (e.g., Lobo et al. 1997a). Such a trend might be caused by a higher incidence of mergers or tidal disruption in the dense cluster core. On the other hand, dwarfs may actually form in mergers (Krivitsky & Kontorovich 1997) and in tidal tails (Hunsberger, Charlton, & Zaritsky 1996). The reality of the trend toward steeper slopes at larger radii remains inconclusive: Lopez-Cruz et al. (1997) and Secker, Harris, & Plummer (1997) find $\alpha = -1.4$ at R in fields of similar size to ours, identical to the value found at R by Bernstein et al. (1995) in a small field near the cluster center.

Another possibility is that most of the luminosity from dwarf galaxies comes from fading bursts of star formation, leading to steeper faint-end slopes at longer wavelengths, as predicted by Hogg & Phinney (1997). Because the burst luminosity becomes fainter and redder with time, there is an increased probability of finding faint, red galaxies. Given the difference in mass to (near-infrared) light ratio of a 10^8 versus a 10^{10} yr old population (Bruzual & Charlot 1993), starbursts producing
~10% of the mass in the underlying population every few hundred million years would satisfy the requirements of the Hogg & Phinney model. Although some Fornax Cluster dwarfs show evidence for a substantial young population (Held & Mould 1994), none of the Local Group dwarfs, with the possible exception of the Fornax dwarf (Gallagher & Wyse 1994), show such evidence. Again, existing data on the correlation of slope with wavelength are incomplete (Table 1).

It is also plausible that the dwarf galaxy H luminosity function is more accurately a Schechter function than a power law, and the steep slope we measure is only an approximation to the exponential portion of the function. Binggeli, Sandage, & Tammann (1988) suggest \(M_K = -15.9 + 5 \log h \) for dwarfs, corresponding to \(H \approx 15.5 \) in Coma. In this case, the data of Mobasher & Trentham (1998), which sample a smaller field to \(K = 18.5 \), provide a better estimate of the faint-end slope.

A comparison with field dwarfs is difficult, since no infrared survey has yet reached luminosity limits as deep as ours (which is equivalent to \(M_K = -18.5 + 5 \log h \)). Using a \(K \)-selected sample with 110 redshifts, Szokoly et al. (1998) do find a steeper slope (\(\alpha \sim -1.3 \)) in their field infrared luminosity function than G97, despite the similar luminosity limit (\(M_K \approx -21 + 5 \log h \)) of the samples analyzed, but we consider G97’s result more reliable as it is based on \(\approx 500 \) redshifts. If the similarity between the IR and optical luminosity functions in Coma also holds true in the field, the very steep slope (\(\alpha \sim -2.8 \)) found by Loveday (1997) at \(b \) for faint galaxies in the Stromlo-APM survey may foretell an upturn in the IR field luminosity function as well. The 2MASS survey should settle this issue, as it will reach \(M_K = -16.5 + 5 \log h \) at the distance of the Virgo Cluster (Skrutskie et al. 1997).

Our results for Coma support the existence of an universal galaxy luminosity function, which is well approximated by a flat Schechter function for bright galaxies and a steep power law for dwarfs (Trentham 1998b). As demonstrated by EDGS WD and Skrutskie et al. (1997), it is now possible to obtain “panoramic” data in the infrared: other clusters should now be studied with the same methods, in order to determine the mass function of galaxies in clusters and study the effects of their environment.

We would like to thank C. Pritchet for his help with Kron photometry and some helpful comments, C. Lobo for providing her catalog ahead of publication, and J. Secker for some enlightening discussions. We are grateful to the referee, J. P. Gardner, for a number of helpful suggestions. R. D. P.’s work is supported by the National Research Council under its Resident Research Associateship program. The research described here was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

REFERENCES

Bernstein, G. M., Nichol, R. C., Tyson, J. A., Ulmer, M. P., & Wittman, D. 1995, AJ, 110, 1507

Binggeli, B., Sandage, A., & Tammann, G. A. 1988, ARA&A, 26, 509

Binggeli, B., Sandage, A., & Tarenghi, M. 1990, A&A, 228, 42

Biviano, A., Durret, F., Gerbal, D., Le Fevre, O., Lobo, C., Mazure, A., & Sle扎k, E. 1995, A&A, 297, 610

Bruzual, A. G., & Charlot, S. 1993, ApJ, 405, 538

De Propris, R., Pritchet, C. J., Harris, W. E., & McClure, R. D. 1995, ApJ, 450, 534

Donas, J., Milliard, B., & Laget, M. 1995, A&A, 303, 661

Eisenhardt, P. R. M., De Propris, R., Gonzales, A., Stanford, S. A., Wang, M. C., & Dickinson, M. 1998, in preparation (EDGS WD)

Ferguson, H. C. 1989, AJ, 98, 367

Ferguson, H. C., & Sandage, A. 1988, AJ, 96, 1520

Gallagher, J. S., & Wyse, R. F. G. 1994, PASP, 106, 1225

Gardner, J. P., Sharples, R. M., Frank, C. S., & Carrasco, B. E. 1997, ApJ, 480, L99 (G97)

Gavazzi, G., Pierini, D., & Boselli, A. 1996, A&A, 312, 397

Held, E., & Mould, J. R. 1994, AJ, 107, 1307

Hogg, D. W., & Phinney, E. S. 1997, ApJ, 488, L95

Huang, J.-S., Cowie, L. L., Gardner, J. P., Hu, E. M., Songaila, A., & Wainscoat, R. J. 1997, ApJ, 476, 12

Hunsberger, S. D., Charlton, J. C., & Zaritsky, D. 1996, ApJ, 462, 50

Krivitsky, D. S., & Kontorovich, V. M. 1997, A&A, 327, 921

Kron, R. G. 1980, ApJS, 43, 305

Lobo, C., Biviano, A., Durret, F., Gerbal, D., Le Fevre, O., Mazure, A., & Sle扎k, E. 1997a, A&A, 317, 385

REFERENCES

Lobo, C., Biviano, A., Durret, F., Gerbal, D., Le Fevre, O., Mazure, A., & Sle扎k, E. 1997b, A&AS, 122, 409

Lopez-Cruz, O., Yee, H. K. C., Brown, J. P., Jones, C., & Forman, W. 1997, ApJ, 475, L97

Loveday, J. 1997, ApJ, 489, 29

Mazure, A., Casoli, F., Durret, F., & Gerbal, D., eds. 1998, A New Vision of an Old Cluster: Untangling Coma Berenices (Singapore: World Scientific)

Mazure, A., & Gurzadyan, V. 1998, in A New Vision of an Old Cluster: Untangling Coma Berenices, ed. A. Mazure, F. Casoli, F. Durret, & D. Gerbal (Singapore: World Scientific), 54

Mazure, A., Proust, D., Mathez, G., & Mellier, Y. 1988, A&AS, 76, 339

Mobasher, B., & Trentham, N. D. 1998, MNRAS, 293, 315

Sandage, A., Binggeli, B., & Tammann, G. A. 1985, AJ, 90, 1759

Sandage, A., Tammann, G. A., & Yahil, A. 1979, ApJ, 232, 352

Schechter, P. 1976, ApJ, 203, 279

Secker, J., & Harris, W. E. 1996, ApJ, 469, 623

Secker, J., Harris, W. E., & Plummer, J. D. 1997, PASP, 109, 1377

Skrutskie, M. F., et al. 1997, in The Impact of Large Scale Near-IR Sky Surveys, ed. F. Garzon et al. (Dordrecht: Kluwer), 25

Stanford, S. A., Eisenhardt, P. R. M., & Dickinson, M. 1995, ApJ, 450, 512

Szokoly, G. P., SubbaRao, M. U., Connolly, A. J., & Mobasher, B. 1998, ApJ, 492, 461

Thompson, L. A., & Gregory, S. A. 1993, AJ, 106, 2197

Trentham, N. D. 1998a, MNRAS, 293, 71

Trentham 1998b, MNRAS, 284, 193

van den Bergh, S. 1992, MNRAS, 255, 29P

White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52