Periodic Orbits, Entanglement, and Quantum Many-Body Scars in Constrained Models: Matrix Product State Approach

Wen Wei Ho, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin

Phys. Rev. Lett. 122, 040603 — Published 29 January 2019

DOI: 10.1103/PhysRevLett.122.040603
Periodic orbits, entanglement and quantum many-body scars in constrained models: matrix product state approach

Wen Wei Ho,1 Soonwon Choi,1 Hannes Pichler,2,1 and Mikhail D. Lukin1

1Department of Physics, Harvard University, Cambridge, MA 02138, USA
2ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

(Dated: December 27, 2018)

We analyze quantum dynamics of strongly interacting, kinetically constrained many-body systems. Motivated by recent experiments demonstrating surprising long-lived, periodic revivals after quantum quenches in Rydberg atom arrays, we introduce a manifold of locally entangled spin product states, representable by low-bond dimension matrix product states, and derive equations of motions for them using the time-dependent variational principle. We find that they feature isolated, unstable periodic orbits, which capture the recurrences and represent nonergodic dynamical trajectories. Our results provide a theoretical framework for understanding quantum dynamics in a class of constrained spin models, which allow us to examine the recently suggested explanation of ‘quantum many-body scarring’ [Nature Physics 14, 745-749 (2018)], and establish a possible connection to the corresponding phenomenon in chaotic single-particle systems.

Introduction. — Understanding non-equilibrium dynamics in closed quantum many-body systems is of fundamental importance. In ergodic systems, the eigenstate thermalization hypothesis (ETH) provides a means to describe their late-time, steady-state behavior by equilibrium statistical mechanics [1–5]. The few known exceptions to this paradigm include exactly solvable, integrable systems [6–8], and strongly disordered, many-body localized systems, which feature extensive number of conservation laws [9–12]. At the same time, the dynamics of equilibration and thermalization is not as well understood. Concepts such as the ETH, while providing requirements for a system to eventually relax, do not unambiguously prescribe the mechanism nor the timescales on which this occurs; interesting transient dynamics like prethermalization can occur [6–8, 13–21]. Such non-equilibrium phenomena are generally challenging to analytically analyze & simulate, and much progress has thus been spurred by quantum simulation experiments in well-isolated, controllable many-body systems [22–34].

Recently, experiments on Rydberg atom arrays demonstrated surprising long-lived, periodic revivals after quantum quenches [28], with strong dependence of equilibration timescales on the initial state. Specifically, quenching from some unentangled product states, quick relaxation and thermal equilibration of local observables was observed, typical of a chaotic, ergodic many-body system. Conversely, quenching from certain other product states, coherent revivals with a well-defined period were instead observed, which were not seen to decay on the experimentally accessible timescales, a distinctively nonergodic dynamical behavior. Most surprisingly, these strikingly different behavior resulted from initial states that are all highly excited with similar, extensive energy densities, and are hence indistinguishable from a thermodynamic standpoint. The apparent simplicity of the special, slowly thermalizing initial states’ dynamics – periodic, coherent many-body oscillations – therefore brings to question whether they can be understood in a simple, effective picture. In fact, recent theoretical work [35] suggested an intriguing analogy of the oscillations with the phenomenon of quantum scarring in chaotic single-particle systems, where a quantum particle shows similarly long-lived periodic revivals when launched along weakly unstable, periodic orbits of the underlying classical model [36]. However, to date, a firm connection to the theory of single-particle quantum scars [36] has not been established.

In this Letter, we develop a theoretical framework to analyze the quantum dynamics of a family of constrained spin models, which display similar phenomenology of long-lived periodic revivals from certain special initial states. Specifically, we introduce a manifold of simple, locally entangled states respecting the constraints, representable by a class of low bond dimension matrix product states (MPS), and derive equations of motions (EOMs) for them using the time-dependent variational principle (TDVP) [38, 39]. We find that these EOMs support isolated, unstable, periodic orbits. By quantifying the accuracy of this effective description, we show that these closed orbits indeed capture the persistent recurrences, and hence signal slow relaxation of local observables, a form of weak ergodicity breaking in dynamics, see Fig. 1(a,b). Furthermore, since the TDVP generates a Hamiltonian flow in the phase space parametrizing this (weakly entangled) manifold, one can associate our approach with a generalized “semiclassical” description of many-body dynamics in constrained Hilbert spaces. Our finding of periodic orbits in this description is therefore suggestive in establishing the connection to the theory of quantum scarring of single-particle systems of Heller [36].

Kinetically constrained spin models. — We consider a family of interacting, constrained spin models and demonstrate that they show atypical thermalization behavior for certain initial states. Consider a chain of L
spin-s particles on a ring, with Hamiltonian
\[
H = \Omega \sum_i P S_i^z P.
\]
Here, a basis on each site i is spanned by eigenstates $|n\rangle_i$ of $S_i^z + s I_i$, with $n = 0, \cdots, 2s$, and S_i^z is the spin-s operator in the z-direction. The projector $P = \prod_i P_{i,i+1}$ is a product of commuting local projectors $P_{i,i+1} = \mathbb{I}_i \otimes \mathbb{I}_{i+1} - Q_i \otimes Q_{i+1}$, with $Q_i = I_i - P_i$ and $P_i = |0\rangle_i \langle 0|_i$, and constrains dynamics to a subspace where at least one of two neighboring spins is in the state $|0\rangle$, which has dimensionality $d \sim ((1 + \sqrt{8s + 1})/2)^L$. When $s = 1/2$, Eqn. (1) effectively models the experimental setup of [28], where the constraint stems from the Rybderg blockade mechanism (see also [40-44]).

The Hamiltonian (1) has a simple interpretation: each spin rotates freely about the x-axis if both its neighbors are in the state $|0\rangle$, while its dynamics is frozen otherwise. Despite its apparent simplicity, the Hamiltonian is nonintegrable and quantum chaotic, as seen in Fig. 2(a) from level repulsion in the energy eigenspectrum. The chaotic nature of the system is expected to govern the nonequilibrium dynamics arising from a quantum quench. For example, consider "simple", unentangled initial states, specifically product states in the z-basis that satisfy the constraints. All these states have the property that they have the same energy density under (1), corresponding to that of the infinite-temperature thermal state, and are hence thermodynamically indistinguishable. Under time evolution, one would expect a quick relaxation of local observables (on the timescale $t_r \sim \Omega^{-1}$) to infinite-temperature ensemble values [37], in accordance with ETH predictions [1–3, 47–50]. This behavior is indeed observed generically, as demonstrated previously [41–44], and also in Fig. 1(b) for the local observable $S_i^z(t)$ from the initial state $|0\rangle = \otimes_{i=1}^{L} |0\rangle_i$ ($s = 1/2$). However, time evolution of the initial state $|Z_2\rangle \equiv \otimes_{i=1}^{L/2} |0\rangle_{2i-1} |2s\rangle_{2i}$ does not follow this expectation. As shown in Fig. 1(b), the same observable instead unexpectedly exhibits long-lived, coherent oscillations with a well-defined period $T \approx 2\pi \times 1.51 \Omega^{-1}$. Furthermore, it does not relax to, nor oscillate about, the thermal value expected from ETH, at least on numerically accessible timescales and system sizes.

This striking departure from generic behavior is also reflected in the growth of entanglement entropy (EE) (Fig. 2(b,c)). While for generic initial states EE essentially grows linearly and quickly saturates to that of a random state [37], this is not the case for $|Z_2\rangle$. In particular, the single-site EE drops periodically, indicating that each spin is repeatedly partially disentangling itself from the rest of the chain. This tantalizingly hints that the motion for the $|Z_2\rangle$ state lies within a low-entanglement manifold of the Hilbert space, thereby possibly allowing for a simple, effective description of dynamics.

Equations of motion from the TDVP. — Motivated

![Figure 1](image1.png)

Figure 1. (a) Flow diagrams of $\dot{\theta}_i(t), \dot{\theta}_s(t)$ for the model (1) with $s = 1/2$. The color map gives the error γ_i, (5). There is an isolated, unstable periodic orbit (red curve) describing oscillatory motion between $|Z_2\rangle$ (green dot) and $|Z'_2\rangle$ (blue dot), with numerically extracted period $T \approx 2\pi \times 1.51 \Omega^{-1}$. Conversely, motion from $|0\rangle$ (red dot) proceeds towards a saddle point where the error is large. (b): Dynamics of local observable $S_i^x(t)$. There are persistent, coherent oscillations in the local observable for $|Z_2\rangle$ with similar period, while $|0\rangle$ instead shows quick relaxation and equilibration towards a thermal value predicted by ETH [37].

![Figure 2](image2.png)

Figure 2. (a) Level spacing statistics in the momentum-zero, inversion-symmetric sector. Plotted is the r-statistics defined by the average of $r_n = \max(n, n+1) \min(n, n+1)/s_n$ where $s_n = E_{n+1} - E_n$. There is a clear albeit slow trend with Hilbert space dimension d towards Wigner-Dyson statistics in the GOE class, indicated by $r \approx 0.53$, away from the integrable Poissonian (POI) limit of $r \approx 0.39$ (for discussion of the slow convergence, see [45, 46]). (b,c) Growth of entanglement entropy S_A following quenches from the $|0\rangle$ and $|Z_2\rangle$ states, of subregions A being (b) six contiguous sites, (c) a single-site, for the $s = 1/2$ model. Total system size is $L = 30$.

Equations of motion from the TDVP. — Motivated
by these considerations, we analyze the dynamics of the system using the TDVP on a suitable variational manifold of simple, low entanglement states. For concreteness, we focus first on $s = 1/2$. Starting from classical spin configurations, i.e. products of unentangled coherent states $\otimes_i |\theta_i, \phi_i \rangle := \otimes_i \left[\cos(\theta_i/2) |0_i \rangle - i e^{i \phi_i} \sin(\theta_i/2) |1_i \rangle \right]$, we construct states that respect the constraints set by \mathcal{P}, by explicitly projecting out neighboring excitations,

$$\psi(\theta, \phi) = \mathcal{P} \otimes_i |\theta_i, \phi_i \rangle,$$

which is akin to a Gutzwiller projection to the constrained subspace \cite{37, 51}, see Fig. 3(b). Importantly, (2) is weakly entangled, and can be written as a particular matrix product state (MPS) with bond dimension $D = 2$ \cite{37, 52}. We find it convenient to normalize (2) and change to new variables $(\theta, \phi) \rightarrow (\theta, \phi)$ via a non-linear mapping \cite{37}, such that $|\psi(\theta, \phi)\rangle/|\psi(\theta, \phi)\rangle = |\psi(\theta, \phi)\rangle$, so that the MPS representation is given by

$$\psi(\theta, \phi) = \left(\begin{array}{c} P_i |\theta_i, \phi_i \rangle \end{array} \right).$$

and $|\theta_i, \phi_i \rangle = e^{i \theta_i} e^{i \phi_i} S_i^x e^{-i \theta_i} S_i^z |0_i \rangle$, which is normalized in the thermodynamic limit $L \rightarrow \infty$ (see also \cite{35, 54}). The generalization of (3) to spin-s then simply consists of replacing the appropriate operators and states with the spin-s analogs.

The TDVP respects conservation laws, and in particular conserves the energy of the Hamiltonian (1) \cite{37-39, 55}. On this general ground, we obtain that $\theta = 0$, and can set $\phi = 0$, which is obeyed for initial product states in the z-basis \cite{37}. Furthermore, to describe the motions of the $|0\rangle$ and $|Z_{2}\rangle$ states, it suffices to focus on the submanifold of states with a two-site translational symmetry, i.e. $\theta = \theta_{s+2}$. The TDVP-EOMs are obtained by projecting the instantaneous motion of the quantum system onto the tangent space of the variational manifold (Fig. 3(a)), and read $\sum_{\mu} \langle \partial_{\mu} | \psi \rangle \langle \partial_{\mu} | \psi \rangle = -i \langle \partial_{\mu} | H \psi \rangle$, for $\mu \in \{\theta, e\}$ (standing for even(e) and odd(o) sites). A lengthy but straightforward calculation \cite{37} yields closed-form, analytic expressions:

$$\dot{\theta}_e(t) = f(\theta_e(t), \theta_0(t))$$

$$\dot{\theta}_o(t) = f(\theta_o(t), \theta_e(t)),$$

with

$$f(x, y) = \Omega \left[1 - \cos^{4s-2}\left(\frac{x}{2} \right) + \cos^{4s-2}\left(\frac{x}{2} \right) \cos^{2s}\left(\frac{y}{2} \right) \right] + 2s \sin\left(\frac{x}{2} \cos^{6s-1}\left(\frac{x}{2} \right) \right).$$

These EOMs are coupled, nonlinear equations. Yet, remarkably, we find that for each spin-s, there is an isolated, unstable, periodic orbit C, as seen in the corresponding flow diagrams for $s = 1/2$ in Fig. 1(a), and $s = 1, 2$, in Fig. 4(a,c). Furthermore, C includes the points $(\theta_e, \theta_0) = (\pi, 0)$, and $(\theta_e, \theta_0) = (\pi, \pi)$ (modulo 2π), corresponding to $|Z_{2}\rangle$ and its counterpart $|Z_{2}\rangle = \otimes_{i=1}^{L} |0_{2i-1} \rangle |2s_{2i-1} \rangle$ respectively. Thus, the EOMs describe continual oscillations between these two product states (akin to a quantum Newton’s cradle! [see also \cite{22}]), which is manifestly an athermal, nonergodic behavior \cite{56}. Figure 3(b) depicts the TDVP over a manifold parameterized by z. The instantaneous motion $-iH|\psi(z)\rangle$ is projected onto the tangent space at the point, leading to motion on the manifold (green trajectory). The norm of the vector orthogonal to the manifold, $\Gamma = \gamma \mathcal{L}$ (c.f. Eqn. (5)), is a measure of its accuracy. (b) MPS representation of states $|\psi(\theta, \phi)\rangle$ (c.f. Eqn. (3)) used.

Figure 3. (a) Geometrical depiction of the TDVP over a manifold of states $|\psi(z)\rangle$ parameterized by z. The instantaneous motion $-iH|\psi(z)\rangle$ is projected onto the tangent space at the point, leading to motion on the manifold (green trajectory). The norm of the vector orthogonal to the manifold, $\Gamma = \gamma \mathcal{L}$ (c.f. Eqn. (5)), is a measure of its accuracy. (b) MPS representation of states $|\psi(\theta, \phi)\rangle$ (c.f. Eqn. (3)) used.
it would be interesting to relate this quantity to the Lyapunov exponent of the EOMs [59]. Furthermore, the effect of these orbits on the nature of many-body eigenstates deserve further study; however this to be done while contending with the thermodynamic limit, a notion absent in the single-particle scenario.

Finally, we note that the equations of motion we obtained can also be understood as the leading order, saddle-point evaluation of a path integral for the constrained spin systems (1). In particular, the manifold of states $|\psi(\theta, \phi)\rangle$ is dense and supports a resolution of the identity on the constrained space, with an appropriate measure $\mu(\theta, \phi)$ (see [37]), allowing the construction of a Feynman path integral [58, 60–63]. The TDVP EOMs extremize the action functional with the Lagrangian $L = i\langle \psi | \partial_t \psi \rangle + i\langle \psi | \partial_\phi \psi \rangle \phi - \langle \psi | H | \psi \rangle$, which evaluates (for $s = 1/2$) to:

$$L = \sum_i K_i(\theta) \left[\sin \left(\frac{\theta_i}{2} \right) \phi_i + \frac{\Omega}{2} \cos \left(\frac{\theta_{i+1}}{2} \right) \sin \left(\theta_i \right) \cos \left(\phi_i \right) \right],$$

where $K_i(\theta)$ is given in [37]. This formulation provides a framework, which can be used to systematically recover quantum dynamics from the saddle-point limit, by including higher-order corrections, i.e. fluctuations.

Conclusion. — In this Letter, we introduced and analyzed the dynamics of a family of constrained spin models which show atypical thermalization behavior — long-lived, coherent revivals from certain special initial states, similar to recent quench experiments in a quantum simulator of Rydberg atoms. We derived an effective description of these systems in terms of equations of motion for dynamics of locally entangled spins and found that they host isolated, unstable, periodic orbits, which correspond to long-lived recurrences at the quantum many-body level. Our results establish a possible connection to quantum scarring in single-particle chaotic systems, and suggest a framework for a generalization of the theory of quantum scars by Heller [36], which is intimately tied to unstable periodic orbits, to the many-body case.

While our analysis demonstrates that the phenomenology of stable, long-lived oscillations from special initial states extends to a number of interacting, constrained models, one of the most important outstanding questions is related to their physical origin and the sufficient conditions for their existence. A complementary Letter [45] demonstrates that these models possess important features resembling ergodic systems that are close to integrability, and that these features can be enhanced by non-trivial deformations of the Hamiltonian. In [37], we show that our variational description of the periodic dynamics is able to capture the effect of these deformations by making the corresponding error γ smaller. While it is currently unclear if this near-integrable-like behavior is directly related to, required for, or follows from the existence of scar-like dynamics, these observations as well.

Discussion. — Our effective description of the persistent oscillations seen in the many-body systems (1), in terms of isolated, unstable orbits, provides a framework to analyze a possible connection with the phenomenon of quantum scarring in single-particle chaotic systems [36]. There, special, weakly unstable classical orbits of a single-particle, characterized by the condition $\lambda T < 1$ (where T is the period of the orbit and λ the average Lyapunov exponent about the orbit) play a central role: the persistent revivals and slow decay of a Gaussian wavepacket (a quantum particle) launched along such an orbit give rise to a statistically significant enhancement of certain wavefunctions’ probability densities about these orbits, above that expected of Berry’s conjecture [57]. Indeed, the apparent similarity between these phenomena, and atypical signatures in the ergodic properties of certain many-body eigenstates of the $s = 1/2$ model (1) tied to the long-lived oscillations, motivated the recently proposed explanation in terms of quantum many-body scars [35, 46]. Our work provides a way to make such an analogy firmer: even though our variational manifold encompasses states that explicitly include quantum entanglement, the TDVP-EOMs describe a Hamiltonian flow in the corresponding phase space [38, 39, 58, 59], and thus offer a notion of a “semiclassical trajectory” through the many-body Hilbert space. A natural extension of the condition $\lambda T < 1$ characterizing the instability of orbits is then the leakage out of the manifold $\epsilon_c = \int_0^\infty \gamma(\theta) dt < 1$.
as the framework presented here provide both theoretical foundations and important physical insights on which future studies of quantum dynamics can be based upon.

Acknowledgments. — We thank V. Khemani, A. Chandran, D. Abanin, A. Vishwanath, D. Jafferis, E. Demler, J. Nieva-Rodriguez, V. Kasper and E. Heller for useful discussions. This work was supported through the National Science Foundation (NSF), the Center for Ultracold Atoms, the Air Force Office of Scientific Research via the MURI, and the Vannevar Bush Faculty Fellowship. H.P. is supported by the NSF through a grant for the Institute for Theoretical Atomic, Molecular, and Optical Physics at Harvard University and the Smithsonian Astrophysical Observatory. W.W.H. is supported by the Moore Foundation’s EPiQS Initiative Grant No. GBMF4306.

[1] J. M. Deutsch, “Quantum statistical mechanics in a closed system,” Phys. Rev. A 43, 2046–2049 (1991).
[2] Mark Srednicki, “Thermal fluctuations in quantized chaotic systems,” Journal of Physics A: Mathematical and General 29, L75 (1996).
[3] Mark Srednicki, “The approach to thermal equilibrium in quantized chaotic systems,” Journal of Physics A: Mathematical and General 32, 1163 (1999).
[4] Marcos Rigol, Vanja Dunjko, and Maxim Olshanii, “Thermalization and its mechanism for generic isolated quantum systems,” Nature 452, 854 (2008).
[5] James R. Garrison and Tarun Grover, “Does a single eigenstate encode the full hamiltonian?” Phys. Rev. X 8, 021026 (2018).
[6] J. Berges, Sz. Borsányi, and C. Wetterich, “Prethermalization,” Phys. Rev. Lett. 93, 142002 (2004).
[7] Marcos Rigol, Vanja Dunjko, Vladimir Yurovsky, and Maxim Olshanii, “Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1d lattice hardcore bosons,” Phys. Rev. Lett. 98, 050405 (2007).
[8] Marcos Rigol, “Breakdown of thermalization in finite one-dimensional systems,” Phys. Rev. Lett. 103, 100403 (2009).
[9] David A. Huse, Rahul Nandkishore, and Vadim Oganesyan, “Phenomenology of fully many-body-localized systems,” Phys. Rev. B 90, 174202 (2014).
[10] Maksym Serbyn, Z. Papic, and Dmitry A. Abanin, “Local conservation laws and the structure of the many-body localized states,” Phys. Rev. Lett. 111, 127201 (2013).
[11] R. Nandkishore and D. A. Huse, “Many-body localization and thermalization in quantum statistical mechanics,” Annual Review of Condensed Matter Physics 6, 15–38 (2015).
[12] Dmitry A. Abanin and Z. Papic, “Recent progress in many body localization,” Annales de l’Institut Henri Poincaré D 4, 399–442 (2017).
[13] T. Barthel and U. Schollwöck, “Dephasing and the steady state in quantum many-particle systems,” Phys. Rev. Lett. 100, 100601 (2008).
[14] Corinna Kollath, Andreas M. Läuchli, and Ehud Altman, “Quench dynamics and nonequilibrium phase diagram of the bose-hubbard model,” Phys. Rev. Lett. 98, 180601 (2007).
[15] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets, D. Adu Smith, E. Demler, and J. Schmiedmayer, “Relaxation and prethermalization in an isolated quantum system,” Science 337, 1318–1322 (2012).
[16] Matteo Marcuzzi, Jamir Marino, Andrea Gambassi, and Alessandro Silva, “Prethermalization in a nonintegrable quantum spin chain after a quench,” Phys. Rev. Lett. 111, 197203 (2013).
[17] Takashi Mori, Tomotaka Kuwahara, and Keiji Saito, “Rigorous bound on energy absorption and generic relaxation in periodically driven quantum systems,” Phys. Rev. Lett. 116, 120401 (2016).
[18] T. Kuwahara, T. Mori, and K. Saito, “Floquet-magnus theory and generic transient dynamics in periodically driven many-body quantum systems,” Annals of Physics 367, 96–124 (2016).
[19] Dmitry A. Abanin, Wojciech De Roeck, Wen Wei Ho, and Francois Huveneers, “Effective hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems,” Phys. Rev. B 95, 041412 (2017).
[20] Dmitry Abanin, Wojciech De Roeck, Wen Wei Ho, and Francois Huveneers, “A rigorous theory of many-body prethermalization for periodically driven and closed quantum systems,” Communications in Mathematical Physics 354, 809–82 (2017).
[21] Wen Wei Ho, Ivan Protopopov, and Dmitry A. Abanin, “Bounds on energy absorption and prethermalization in quantum systems with long-range interactions,” Phys. Rev. Lett. 120, 200601 (2018).
[22] Yoshihisa Kinoshita, Trevor Wenger, and David S. Weiss, “A quantum newton’s cradle,” Nature 440, 900 (2006).
[23] Adam M Kaufman, M Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko, Philipp M Preiss, and Markus Greiner, “Quantum thermalization through entanglement in an isolated many-body system,” Science 353, 794–800 (2016).
[24] Michael Schreiber, Sean S. Hodgman, Pranjal Bordia, Henrik P. Lüschen, Mark H. Fischer, Ronen Vosk, Ehud Altman, Ulrich Schneider, and Immanuel Bloch, “Observation of many-body localization of interacting fermions in a quasirandom optical lattice,” Science 349, 842–845 (2015).
[25] Bernhard Rauer, Sebastian Erne, Thomas Schweigler, Federica Cataldini, Mohammadamin Tajik, and Jörg Schmiedmayer, “Recurrences in an isolated quantum many-body system,” Science 360, eaan7938–310 (2018).
[26] Florian Meinel, Michael Knap, Emil Kirilov, Katharina Jag-Lauber, Mikhail B Zvonarev, Eugene Demler, and Hanns-Christoph Nägerl, “Bloch oscillations in the absence of a lattice,” Science 356, 945–948 (2017).
[27] Henning Labuhn, Daniel Barredo, Sylvain Ravets, Sylvain de Lesseleuc, Tommaso Macrì, Thierry Lahaye, and Antoine Browaeys, “Tunable two-dimensional arrays of single rydberg atoms for realizing quantum Ising models,” Nature 534, 667–670 (2016).
[28] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soon-won Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletic, and Mikhail D. Lukin, “Prob-
ing many-body dynamics on a 51-atom quantum simulator,” Nature 551, 579 (2017).

[29] Brian Neyenhuis, Jiehang Zhang, Paul W. Hess, Jacob Smith, Aaron C. Lee, Phil Richerme, Zhe-Xuan Gong, Alexey V. Gorshkov, and Christopher Monroe, “Observation of prethermalization in long-range interacting spin chains,” Science Advances 3 (2017), 10.1126/sciadv.1700672.

[30] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, and C. Monroe, “Observation of a discrete time crystal,” Nature 543, 217–220 (2017).

[31] Esteban A Martinez, Christine A Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, and Rainer Blatt, “Real-time dynamics of lattice gauge theories with a few-qubit quantum computer,” Nature 534, 516–519 (2016).

[32] Wen Wei Ho, Soonwon Choi, Mikhail D. Lukin, and Dmitri A. Abanin, “Critical time crystals in disordered systems,” Phys. Rev. Lett. 119, 010602 (2017).

[33] Soonwon Choi, Joohyeong Koo, Renate Landig, Georg Kucsko, Hengyun Zhou, Junichi Isoya, Fedor Jelezko, Shinobu Onoda, Hitoshi Sumiya, Vedika Khemani, Curt von Keyserlingk, Norman Y. Yao, Eugene Demler, and Mikhail D. Lukin, “Observation of a discrete time-crystalline order in a disordered dipolar many-body system,” Nature 543, 221–225 (2017).

[34] J. Choi, H. Zhou, S. Choi, R. Landig, W. W. Ho, J. Isoya, F. Jelezko, S. Onoda, H. Sumiya, D. A. Abanin, and M. D. Lukin, “Probing quantum thermalization of a disordered dipolar spin ensemble with discrete time-crystalline order,” ArXiv e-prints (2018), arXiv:1806.10169 [quant-ph].

[35] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papic, “Quantum scarred eigenstates in a Rydberg atom chain: entanglement, breakdown of thermalization, and stability to perturbations,” ArXiv e-prints (2018), arXiv:1806.10933 [cond-mat.quant-gas].

[36] Mark Srednicki, “Chaos and quantum thermalization,” Phys. Rev. E 50, 888–901 (1994).

[37] Lea F. Santos, Anatoli Polkovnikov, and Marcos Rigol, “Entropy of isolated quantum systems after a quench,” Phys. Rev. Lett. 107, 040601 (2011).

[38] L. F. Santos, F. Bordg, and F. M. Izrailev, “Chaos and statistical relaxation in quantum systems of interacting particles,” Phys. Rev. Lett. 108, 094102 (2012).

[39] E. J. Torres-Herrera and Lea F. Santos, “Quench dynamics of isolated many-body quantum systems,” Phys. Rev. A 89, 043620 (2014).

[40] Martin C. Gutzwiller, “Chaos and coherence in many-body systems,” Phys. Rev. Lett. 102, 208301 (2009).

[41] G. Vidal, “Classical simulation of infinite-size quantum lattice systems in one spatial dimension,” Phys. Rev. Lett. 98, 070201 (2007).

[42] Igor Lesanovsky, “Many-body spin interactions and the ground state of a dense rydberg lattice gas,” Phys. Rev. Lett. 106, 053001 (2011).

[43] Igor Lesanovsky, “Liquid ground state, gap, and excited states of a strongly correlated spin chain,” Phys. Rev. Lett. 108, 105301 (2012).

[44] Eyal Leviatan, Frank Pollmann, Jens H. Bardarson, David A. Huse, and Ehud Altman, “Quantum thermalization dynamics with Matrix-Product States,” ArXiv e-prints (2018), arXiv:1702.08894 [cond-mat.stat-mech].

[45] Note that due to the parametrization, \((\theta_e, \theta_o) = (\pi/2, 0) \) gives the same state as \((\theta_e, \theta_o) = (\pi/2, -\pi) \). There is additionally a coordinate singularity at each point.

[46] M V Berry, “Regular and irregular semiclassical wavefunctions,” Journal of Physics A: Mathematical and General 10, 2083 (1977).

[47] A. G. Green, C. A. Hooley, J. Keeling, and S. H. Simon, “Feynman Path Integrals Over Entangled States,” ArXiv e-prints (2016), arXiv:1607.01778 [cond-mat.str-el].

[48] R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics,” Rev. Mod. Phys. 20, 367–387 (1948).

[49] S Weinberg, The Quantum Theory of Fields (Cambridge University Press, 1996).

[50] A. Zee, Quantum Field Theory in a Nutshell (Princeton University Press, 2010).

[51] J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Lee, Phil Richerme, Zhe-Xuan Gong, Fedor Jelezko, Shinobu Onoda, Hitoshi Sumiya, Vedika Khemani, Curt von Keyserlingk, Norman Y. Yao, Eugene Demler, and Mikhail D. Lukin, “Probing quantum thermalization of a disordered dipolar many-body system,” Nature 543, 221–225 (2017).

[52] J. Choi, H. Zhou, S. Choi, R. Landig, W. W. Ho, J. Isoya, F. Jelezko, S. Onoda, H. Sumiya, D. A. Abanin, and M. D. Lukin, “Probing quantum thermalization of a disordered dipolar spin ensemble with discrete time-crystalline order,” ArXiv e-prints (2018), arXiv:1806.10169 [quant-ph].

[53] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papic, “Weak ergodicity breaking from quantum many-body scars,” Nature Physics 14, 745–749 (2018).

[54] Eric J. Heller, “Bound-state eigenfunctions of classically chaotic hamiltonian systems: Scars of periodic orbits,” Phys. Rev. Lett. 53, 1515–1518 (1984).

[55] See supplemental material for details on calculations.

[56] Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Istok Pizorn, Henri Verschelde, and Frank Verstraete, “Time-dependent variational principle for quantum lattices,” Phys. Rev. Lett. 107, 070601 (2011).

[57] Jutho Haegeman, Christian Lubich, Ivan Osledets, Bart Vandereycken, and Frank Verstraete, “Unifying time evolution and optimization with matrix product states,” Phys. Rev. B 94, 165116 (2016).

[58] B Sun and F Robicheaux, “Numerical study of two-body correlation in a 1d lattice with perfect blockade,” New Journal of Physics 10, 045032 (2008).

[59] B Olmos, M Miller, and I Lesanovsky, “Thermalization of a strongly interacting 1d rydberg lattice gas,” New Journal of Physics 12, 013024 (2010).

[60] Igor Lesanovsky, Beatriz Olmos, and Juan P. Garrahan, “Thermalization in a coherently driven ensemble of two-level systems,” Phys. Rev. Lett. 105, 100603 (2010).

[61] C. Ates, J. P. Garrahan, and I. Lesanovsky, “Thermalization of a strongly interacting closed spin system: From coherent many-body dynamics to a fokker-planck equation,” Phys. Rev. Lett. 108, 110603 (2012).