N-acetyl cysteine inhibits H$_2$O$_2$-mediated reduction in the mineralization of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway

Daewoo Lee1,*, Sung-Ho Kook1,2,*, Hyeok Ji1,*, Seung-Ah Lee3, Ki-Choon Cho4, Kyung-Yeol Lee1,* & Jeong-Chae Lee1,2,*

1Institute of Oral Biosciences and School of Dentistry, 2Department of Bioactive Material Sciences and Institute of Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, 3Department of Nursing, Chonnam Techno College, Chonnam 57500, 4Grassland and Forage Division, National Institute of Animal Science, RDA, Cheonan 31002, Korea

There are controversial findings regarding the roles of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway on bone metabolism under oxidative stress. We investigated how Nrf2/HO-1 pathway affects osteoblast differentiation of MC3T3-E1 cells in response to hydrogen peroxide (H$_2$O$_2$). N-acetyl cysteine (NAC), or both. Exposing the cells to H$_2$O$_2$, decreased the alkaline phosphatase activity, calcium accumulation, and expression of osteoblast markers, such as osteocalcin and runt-related transcription factor-2. In contrast, H$_2$O$_2$ treatment increased the expression of Nrf2 and HO-1 in the cells. Treatment with hemin, a chemical HO-1 inducer, mimicked the inhibitory effect of H$_2$O$_2$ on osteoblast differentiation by increasing the HO-1 expression and decreasing the osteogenic marker genes. Pretreatment with NAC restored all changes induced by H$_2$O$_2$ to near normal levels in the cells. Collectively, our findings suggest that H$_2$O$_2$-mediated activation of Nrf2/HO-1 pathway negatively regulates the osteoblast differentiation, which is inhibited by NAC. [BMB Reports 2015; 48(11): 636-641]

INTRODUCTION

Numerous studies have been performed to clarify the mechanisms by which oxidative stress negatively or positively modulates osteoblast differentiation and mineralization. It is believed that excessive oxidative stress decreases bone formation by down-regulating differentiation and viability of osteoblasts (1, 2). The intracellular accumulation of reactive oxygen species (ROS) in osteoblasts leads to oxidative stress-mediated bone damage (3). It is also believed that ROS accumulation stimulates bone resorption by activating the intracellular signaling involved in osteoclast differentiation, as well as by diminishing the capacity of cellular antioxidant defense systems (4, 5). In contrast, the administration of antioxidant compounds, such as α-tocopherol succinate and N-acetyl cysteine (NAC), exerted protective effects on oxidative damages (6, 7). Accordingly, it is suggested that oxidative stress disrupts the differentiation and mineralization of osteoblasts, and this disruption is prevented by antioxidants.

The induction of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is known to play important roles on the protection of tissues or cells from various oxidative damages (8, 9). Specifically, oxidative stress evokes nuclear Nrf2 translocation, in which the transcription factor leads to the recognition of antioxidant response elements on target genes. Heme oxygenase-1 (HO-1) is one of the main oxidative stress markers which are induced by the activation of Nrf2. The induction of HO-1 regulates numerous cellular responses involved in iron homeostasis, antioxidant defense mechanism, and bone resorption (10-12). Accordingly, it is suggested that the Nrf2/HO-1 signal is sensitively activated by oxidative stress to maintain the intracellular redox balance and the activation of Nrf2/HO-1 pathway tightly affects the processes required for bone homeostasis (13, 14). However, it is important to note that Nrf2 interferes with the transcriptional activation dependent on runt-related transcription factor-2 (Runx2), eventually leading to negative regulation on the differentiation and mineralization of osteoblasts (15). Furthermore, the differentiation and mineralization of osteoblasts was inhibited by upregulating the HO-1 (16). These reports suggest a controversial role of Nrf2/HO-1 signal on osteogenesis.

Here, we examined the effects of oxidative stress on osteoblast differentiation and Nrf2/HO-1 pathway, by exposing the MC3T3-E1 osteoblasts to various concentrations of hydrogen peroxide (H$_2$O$_2$). We also investigated the effects of NAC on osteogenic marker expression and mineralization in H$_2$O$_2$-
exposed osteoblasts. In addition, we explored whether hemin, a chemical inducer of HO-1, mimicked the inhibitory effects of H$_2$O$_2$ on osteoblast differentiation and mineralization.

RESULTS

H$_2$O$_2$ inhibits dose-dependently ALP activity, calcium accumulation, and viability in MC3T3-E1 cells

Cells were treated with various concentrations (0-400 µM) of H$_2$O$_2$ in osteoblast differentiating medium for 7 days and then the cells were evaluated for their differentiation and viability. Exposing the cells to H$_2$O$_2$ caused a dose-dependent reduction of alkaline phosphatase (ALP) activity and calcium accumulation, where significant decreases were noted at 100 µM (Fig. 1A). It was also seen that exposing to concentrations higher than 200 µM H$_2$O$_2$ decreased viability of the cells (Fig. 1B).

H$_2$O$_2$ increases the induction of Nrf2 and HO-1 in osteoblasts

We next examined whether H$_2$O$_2$ is the direct mediator to activate Nrf2/HO-1 pathway in osteoblasts. The addition of 100 µM H$_2$O$_2$ increased the HO-1 protein and mRNA levels in MC3T3-E1 cells, which were further augmented by treatment with 200 or 400 µM H$_2$O$_2$. (Fig. 2A, B). H$_2$O$_2$ treatment also increased the nuclear level of Nrf2, with a simultaneous reduction of nuclear Runx2 in the cells (Fig. 2C, D).

NAC inhibits H$_2$O$_2$-mediated decrease in osteoblast differentiation by down-regulating the expression of Nrf2 and HO-1

We explored whether the H$_2$O$_2$-induced changes in the induction of Nrf2, HO-1, and Runx2 are related to oxidative stress by incubating the cells with 200 µM H$_2$O$_2$ in combination with 2.5 or 5 mM NAC. NAC significantly inhibited the H$_2$O$_2$-induced increases in HO-1 induction ($P < 0.001$) and Nrf2 nuclear translocation ($P < 0.05$) by restoring the nuclear Runx2 level (Fig. 3A, B). NAC treatment almost completely blocked the H$_2$O$_2$-induced reduction in osteocalcin (OCN) mRNA level (Fig. 3C), ALP activity (Fig. 3D), and calcium content (Fig. 3E) in the cells.

HO-1 induction inhibits mineralization and calcium accumulation in MC3T3-E1 cells

We further investigated the regulatory roles of HO-1 on osteoblast differentiation by treating the cells with hemin. In this study, the cells were treated with 50 µM hemin for 24 h and then the osteogenic medium was changed to the medium without hemin. Thereafter, the cells were additionally incubated for various times (0-14 days) according to the experimental purpose. Pretreatment with hemin for 24 h decreased the bone-like nodule formation in MC3T3-E1 cells (Fig. 4A). Hemin at 20 or 50 µM also reduced the ALP activity (Fig. 4B) and calcium accumulation (Fig. 4C) in a dose-dependent manner. Pretreatment with hemin at the same concentrations dose-dependently augmented the expression of HO-1 at 24 h of additional incubation (Fig. 4D), while it decreased the mRNA expression of Runx2 (Fig. 4E) and OCN (Fig. 4F), as well as the nuclear level of Runx2 (Fig. 4G). However, the HO-1 inducer at 10 µM did not change the ALP

![Fig. 1.](http://bmbreports.org)
activity and calcium content, or the expression of osteogenic markers in the cells (data not shown). The negative effect of hemin on osteoblast differentiation of MC3T3-E1 cells was not due to cytotoxic effect, in that the treatment with 20 or 50 μM hemin for 1 day did not reduce viability of the cells (Fig. 4H, left panel). In contrast, co-incubation with more than 20 μM hemin for 3 days caused a slight reduction in viability of the cells (Fig. 4H, right panel).

DISCUSSION

The differentiation processes of osteoblasts can be distinguished mainly by two steps, i.e. extracellular matrix maturation and mineralization which are controlled by various osteogenic markers (17). ALP is one of the earliest markers expressed during the osteoblast differentiation process, while OCN, a non-collagenous and vitamin K-dependent protein, is secreted by mature osteoblasts during matrix calcification (18). Our present findings reveal that H2O2 dose-dependently inhibits the maturation and mineralization of MC3T3-E1 cells, along with the decreased expression of osteogenic markers.

There are a number of studies that have shown the beneficial effects of NAC on mineralization from osteogenic (19) and on survival rates in mice exposed to irradiation (5). Consistent with these reports, our data show that NAC at 5 mM reverses the effects of H2O2 to suppress the osteoblastic differentiation of MC3T3-E1 cells. This protective effect of NAC was accompanied by the restoration of bone specific markers ALP and OCN. NAC treatment also inhibited the H2O2-mediated increases of Nrf2 and HO-1 induction in MC3T3-E1 cells. However, NAC treatment alone did not cause any change in the viability, DNA synthesis, and the levels of cellular ROS and HO-1 protein, as well as the HO-1 enzymatic activity, in MC3T3-E1 cells (data not shown). These results strongly support that the decrease in the osteoblast differentiation and mineralization caused by the excessive oxidative stress is prevented by antioxidants.

We previously found that Nrf2-mediated signaling could play dual roles on the viability of cells depending on the condition of stress exposed; under a mild oxidative stress, Nrf2 activation has a protective role by maintaining normal levels of ROS, whereas it leads to cell injury under a persistent oxida-
The increase of HO-1 induction by hemin reduces the expression of osteogenic markers and mineralization of MC3T3-E1 cells. Cells were pretreated with the indicated concentrations of hemin in osteogenic medium for 24 h; the medium was replaced with fresh medium without hemin, followed by additional incubation for various times. Mineralization of the cells was evaluated by alizarin red staining (A) and ALP activity assay (B) at 7 days of incubation, or by calcium content determination (C) at 14 day post-incubation. The mRNA expressions of HO-1 (D), Runx2 (E), and OCN (F), and the nuclear level of Runx2 (G), were determined after 24 h of incubation by real time RT-PCR and Western blot analyses, respectively. Panel H shows viability of the cells exposed to 20 μM and 50 μM hemin for 1 or 3 days in osteogenic medium. (I) A proposed mechanism involved in the H2O2-mediated reduction of osteoblast differentiation, and its inhibition by NAC. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. the control cells without hemin.

In conclusion, this study highlights that oxidative stress may reduce the maturation and mineralization in MC3T3-E1 cells via the activation of Nrf2/HO-1 pathway and the decreased expression of bone differentiation markers. The down-regulation of Runx2 and the corresponding reduction of ALP and OCN are the important events related to H2O2-mediated inhibition of osteoblast differentiation and mineralization (Fig. 4I). Our current findings also reveal that NAC restores all the H2O2-induced changes to near levels of untreated control.

MATERIALS AND METHODS

Chemicals and laboratory equipment

Unless otherwise specified, chemicals and laboratory wares were purchased from Sigma-Aldrich Co. LLC. (St. Louis, MO, USA) and Falcon Labware (Becton-Dickinson, Franklin Lakes, NJ, USA), respectively.

Cell cultures

MC3T3-E1 cells (ATCC, CRL-2593) were cultured in α-minimum essential medium (α-MEM) supplemented with 10% fetal bovine serum (FBS; HyClone, Logan, UT, USA) and antibiotics. Culture medium was replaced twice per week. After cells reached 70-80% confluence in 6-well or 96-multiwell culture plates, the medium was replaced with osteoblast differentiating medium (α-MEM supplemented with 10% FBS, 100 nM dexamethasone, 50 μM ascorbic acid, and 5 mM β-glycerophosphate).
H₂O₂ exposure
MC3T3-E1 cells incubated in osteogenic medium were exposed to various concentrations (0-400 μM) of H₂O₂ in the presence and absence of 2.5 mM and 5 mM NAC. After various times (0-14 days) of exposure, the cells were evaluated for their ALP activity, calcium content, viability, Nrf2 and HO-1 induction, bone-specific gene expression, and mineralization.

Measurement of viability
The ability of cells to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), where the reducing activity is proportional to the viability of the cells, was measured according to methods described elsewhere (25).

Determination of mineralization and ALP activity
The degree of mineralization was determined at 7 days after H₂O₂ exposure by staining the cells with alizarin red, according to the methods described previously (26). Intracellular calcium content was measured using a Calcium C kit (Wako Chemical Inc., Osaka, Japan). The calcium content was expressed as the relative percent to the non-treated control level. ALP activity was measured by the methods described previously (27), and the enzyme activity was expressed as the relative percent to the control value.

RNA preparation and polymerase chain reaction
Total RNA was prepared using the SV Total RNA Isolation System (Promega, Madison, WI, USA) and reverse-transcribed using a RNA PCR kit, according to the instruction manuals (Access RT-PCR System, Promega). The quantitative amplifications were performed using a DNA thermal cycler (model PTC-100, MJ Research, Waltham, MA, USA), and the amplified PCR products were detected by ethidium bromide staining after electrophoresis in 1-2% agarose gels. Band intensity was calculated using a gel imaging system (model F1-F2 Fuses type PTB-100, MJ Research, Waltham, MA, USA) and exposed to X-ray film (Eastman-Kodak, Rochester, NY, USA). The calcium content was measured using a Calcium C kit (Wako Chemical Inc., Osaka, Japan). The calcium content was expressed as the relative percent to the control value.

DNA synthesis was performed with 1 μg of total RNA using SuperScript Reverse Transcriptase II and oligo(dT)18 primers. The Power SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA) was used to detect the accumulation of PCR product during cycling with the ABI 7500 sequence detection system (Applied Biosystems). The PCR primer sequences specific for OCN, Runx2, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been described earlier (28). Primer sequences for HO-1 are 5'-gcataaattcccactgccac-3' and 5'-gtgaaattcccagtccgaactc-3'. The all PCR reactions were performed at least in triplicate, and the expression levels were normalized to GAPDH signal in the same reaction.

Western blot analysis
The nuclear and whole cell proteins were prepared at various intervals after H₂O₂ or hemin exposure, according to the methods described previously (29). Equal amounts of protein samples were separated on a 12% SDS-PAGE, and blotted onto PVDF membranes. Blots were probed with primary antibodies and incubated with horseradish peroxidase-conjugated anti-IgG in a blocking buffer for 1 h. The blots were developed with enhanced chemiluminescence (GE Healthcare, Buckinghamshire, UK) and exposed to X-ray film (Eastman-Kodak, Rochester, NY, USA). The antibodies specific for Runx2 (C-20: sc-1796, goat IgG), Nrf2 (C-20: sc-722, rabbit IgG), lamin B (C-20: sc-6216, goat IgG), and α-tubulin (B-7: sc-5286, mouse IgG2a) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Statistical analysis
Unless specified otherwise, the data are expressed as the mean ± standard deviations (S.D.) from triplicate experiments (at least three samples per experiment). A one-way analysis of variance (SPSS version 12.0 software) followed by Scheffe’s test was applied to determine the significance of differences between groups. A P-value < 0.05 was considered significant.

ACKNOWLEDGEMENTS
This work was supported by a grant from the RDA, Ministry of Agriculture and Forestry, Republic of Korea (PJ010903032015). A part of this study was supported by the Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (No. 2012R1A1B6001778), Republic of Korea.

REFERENCES

1. Mody N, Parhami F, Sarafian TA and Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31, 509-519
2. Bai XC, Lu D, Bai J et al (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314, 197-207
3. Kondo H, Yumoto K, Alwood JS et al (2010) Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse. J Appl Physiol (1985) 108, 152-161
4. Banfi G, Iorio EL and Corsi MM (2008) Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med 46, 1550-1555
5. Jia P, Xu YJ, Zhang ZL et al (2012) Ferric ion could facilitate osteoclast differentiation and bone resorption through the production of reactive oxygen species. J Orthop Res 30, 1843-1852
6. Ueno T, Yamada M, Igarashi Y and Ogawa T (2011) N-acetyl cysteine protects osteoblastic function from oxidative stress. J Biomed Mater Res A 99, 523-531
7. Singh PK, Wise SY, Ducey EJ, Fatammi OO, Elliott TB and Singh VK (2012) α-Tocopherol succinate protects mice against radiation-induced gastrointestinal injury. Radiat Res 177, 133-145
8. Zhang Q, Pi J, Woods CG and Andersen ME (2010) A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol Appl Pharmacol 244, 84-97
9. Shin SM, Yang JH and Ki SH (2013) Role of the Nrf2-ARE pathway in liver diseases. Oxid Med Cell Longev 2013, 763257
10. Maines MD and Panahian N (2001) The heme oxygenase system and cellular defense mechanisms. Do HO-1 and HO-2 have different functions? Adv Exp Med Biol 502, 249-272
11. Zwerina J, Tzima S, Hayer S et al (2005) Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption. FASEB J 19, 2011-2013
12. Chen JS, Huang PH, Wang CH et al (2011) Nrf-2 mediated heme oxygenase-1 expression, an antioxidant-independent mechanism, contributes to anti-atherogenesis and vascular protective effects of Ginkgo biloba extract. Atherosclerosis 214, 301-309
13. Rana T, Schultz MA, Freeman ML and Biswas S (2012) Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL. Free Radic Biol Med 53, 2298-2307
14. Yu J, Zhu X, Qi X, Che J and Cao B (2013) Paeoniflorin protects human EA.hy926 endothelial cells against gamma-radiation induced oxidative injury by activating the NF-E2-related factor 2/heme oxygenase-1 pathway. Toxicol Lett 218, 224-234
15. Hinoi E, Fujimori S, Wang L, Hojo H, Uno K and Yoneda Y (2006) Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation. J Biol Chem 281, 18015-18024
16. Lin TH, Tang CH, Hung SY et al (2010) Upregulation of heme oxygenase-1 inhibits the maturation and mineralization of osteoblasts. J Cell Physiol 222, 757-768
17. Lee JH and Cho JY (2014) Proteomics approaches for the studies of bone metabolism. BMB Rep 47, 141-148
18. Neve A, Corrado A and Cantatore FP (2013) Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol 228, 1149-1153
19. Jun JH, Lee SH, Kwak HB et al (2008) N-acetyl cysteine stimulates osteoblastic differentiation of mouse calvarial cells. J Cell Biochem 103, 1246-1255
20. Kim KA, Kook SH, Song JH and Lee JC (2014) A phenolic acid phenethyl urea derivative protects against irradiation-induced osteoblast damage by modulating intracellular redox state. J Cell Biochem 115, 1877-1887
21. Araiz M, Shibata Y, Pugdee K, Abiko Y and Ogata Y (2007) Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB Life 59, 27-33
22. Ahanger AA, Prawez S, Leo MD et al (2010) Pro-healing potential of hemin: an inducer of heme oxygenase-1. Eur J Pharmacol 645, 165-170
23. Kook YA, Lee SK, Son DH et al (2009) Effects of substance P on osteoblastic differentiation and heme oxygenase-1 in human periodontal ligament cells. Cell Biol Int 33, 424-428
24. Kozakowska M, Szade K, Dulak J and Jozkowicz A (2013) Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. Antioxid Redox Signal 20, 1827-1850
25. Kim GY, Park SY, Jo A et al (2015) Gecko proteins induce the apoptosis of bladder cancer 5637 cell by inhibiting Akt and activating intrinsic caspase cascade. BMB Rep 48, 531-536
26. Park SS, Kim KA, Lee SY, Lim SS, Jeon YM and Lee JC (2012) X-ray radiation at low doses stimulates differentiation and mineralization of mouse calvarial osteoblasts. BMB Rep 45, 571-576
27. Heo JS, Lee SY and Lee JC (2010) Wnt/β-catenin signaling enhances osteoblastogenic differentiation from human periodontal ligament fibroblasts. Mol Cells 30, 449-454
28. Jeon YM, Kook SH, Rho SJ et al (2013) Fibroblast growth factor-7 facilitates osteogenic differentiation of embryonic stem cells through the activation of ERK/Runx2 signaling. Mol Cell Biochem 382, 37-45
29. Yu JY, Zheng ZH, Son YO, Shi X, Jang YO and Lee JC (2011) Mycotoxin zearalenone induces Alp- and ROS-mediated cell death through p38- and MAPK-dependent signaling pathways in RAW264.7 macrophages. Toxicol In Vitro 25, 1654-1663