Influence of quantum matter fluctuations on geodesic deviation

Nicolò Drago and Nicola Pinamonti

Dipartimento di Matematica, Università di Genova, via Dodecaneso, 35 I-16146
Genova, Italy

E-mail: drago@dima.unige.it and pinamont@dima.unige.it

Received 7 March 2014, revised 1 July 2014
Accepted for publication 20 July 2014
Published 29 August 2014

Abstract
We study the passive influence of quantum matter fluctuations on the expansion parameter of a congruence of timelike geodesics in a semiclassical regime. In particular, we show that the perturbations of this parameter can be considered to be elements of the algebra of observables of matter fields at all perturbative orders. Hence, once a quantum state for matter is chosen, it is possible to explicitly evaluate the behavior of geometric fluctuations. After introducing the formalism necessary to treat similar problems, in the last part of the paper, we estimate the approximated probability of having a geodesic collapse in a flat spacetime due to those fluctuations.

Keywords: quantum fluctuations, quantum field theory, semiclassical gravity

1. Introduction

Usually, semiclassical Einstein equations are used to evaluate the influence of quantum matter on classical curvature. These equations are obtained discussing quantum field theories propagating on classical curved backgrounds \((M, g)\) and equating the expectation value of the matter stress tensor \(T_{ab}\) in a suitable state \(\omega\) with the classical Einstein tensor [31, 33]. Assuming units \(c = \hbar = 8\pi G_N = 1\), they read

\[
G_{ab} = \langle T_{ab} \rangle_\omega.
\]

(1)

We recall that one of the most promising alternatives to the inflaton-driven inflationary cosmological model is based on this equation [25, 29]. Here, we want to stress that a similar equation can make sense only in the regime where the fluctuations of \(T\) are negligible. Unfortunately, quantum fluctuations of pointlike fields like \(T_{ab}(x)\) are divergent and thus they can never be neglected. These problems becomes milder when smearing of \(T_{ab}\) is taken into account and, in particular, when the smearing function is sufficiently large these fluctuations...
become very small. Unfortunately, the smeared version of (1) is a non-local equation which, furthermore, breaks covariance.

There is, however, an alternative way to deal with the semiclassical regime, also taking into account the influence of fluctuations of T_{ab} on G_{ab}. We can actually impose that the metric is described by a random field and we can assume that quantum fluctuations of the curvature tensor are passively sourced by T_{ab}. This point of view is the one specific to the theory of stochastic gravity. A good review on this subject can be found in [21]. Following similar ideas, in this paper, we study the influence of quantum matter fluctuations on the deviation equation for congruences of timelike geodesics.

More precisely, we study the passive influence of the fluctuations of T_{ab} on the geodesic deviation equation. In the physical literature, similar problems have been discussed in various cases. For example, Carlip, Mosna and Pitelli analyzed the case of two-dimensional dilatonic gravity models in [9], employing the construction of probability distributions of the expectation values of T_{ab} provided by Fewster, Ford and Roman [11]. In that paper, the authors show that the quantum nature of the stress tensor induces a sharp focusing of light cones at the Planck scale. Furthermore, they estimate the mean time in which the focusing occurs. In [9], the complicated interaction equation which describes the behavior of the geodesic congruence expansion parameter is solved dividing the time in finite intervals of the order of the Planck scale, and treating T_{ab} as a constant on every interval; the value of this constant is chosen according to the probability distribution of T_{ab}. The probability distribution for focusing is then obtained counting the occurrences of light focusing events in a large number of random sequences. Another recent work employing similar ideas is [27], where the authors discuss the first-order influence of matter fluctuations on null geodesics.

In this paper, we use a quantum massless minimally coupled scalar field ϕ as a model for matter, and, after quantizing it on a fixed background, which solves the semiclassical Einstein equation (1), we study the evolution equation for the expansion parameter on a congruence of timelike geodesics. We assume that the influence of the stress tensor fluctuations is only manifest in the expansion parameter; hence its effect on the shear and on the twist of the congruence is neglected. Then we shall show that it is possible to solve the Raychaudhuri equation for the expansion parameter within the algebra of quantum matter fields restricted on the congruence of geodesics.

The analysis we shall perform makes use of methods developed in the so-called perturbative algebraic quantum field theory [5, 14]. The corresponding solution is thus given in terms of a formal power series in the coupling parameter. However, at every order, every element of the series is a well-defined field in the algebra of matter fields. In order to obtain this result, it is necessary to employ renormalization and regularization techniques used in interacting field theory in analogy with the discussion presented in [4]. There are thus certain renormalization constants that need to be fixed.

Once a state is chosen it is possible to estimate the correlation functions for the field ϕ, whose logarithmic derivative with respect to the proper time along the geodesic gives the expansion parameter θ. We shall accomplish this task for the case of a four-dimensional Minkowski spacetime as a background, considering a congruence of timelike geodesics with vanishing shear and twist. The perturbative solution is explicitly computed up to the second order in the Newton constant. Furthermore, the probability distribution for the field ϕ is approximated by a Gaussian distribution. Under this approximation, the computation of the mean time to collapse confirms the results obtained for two-dimensional dilatonic gravity in [9].

The paper is organized as follows: in the next section we recall the basic notion on quantization of the massless scalar field ϕ on a globally hyperbolic spacetime in the context of the algebraic quantum field theory, and introduce the $*$-algebra of interest. Section 3 is
devoted to the construction of the algebra associated with the geometrical field \(\phi \), introduced using the Raychaudhuri equation. Finally, in section 4 we apply the previously introduced formalism to the flat case, obtaining an expression for \(\phi \) at second order in the coupling constant and approximating its probability distribution to a Gaussian. Finally, some conclusions are given in the last section.

2. Algebraic formulation of quantum field theory on curved spacetime

Let \((M, g)\) be a globally hyperbolic spacetime, where \(M \) is a smooth manifold and \(g \) is a Lorentzian metric. We shall consider the simplest possible matter field propagating on such background; namely, the massless minimally coupled field \(\phi \) whose classical equation of motion is

\[
-\Box_g \phi = 0.
\]

Above \(\Box_g \) is the D’Alembert operator constructed out of the Lorentzian metric \(g \). The quantization of this system is very well under control. We shall treat it according to the principle of algebraic quantization [7, 17, 18]. Following [3, 5], we introduce the non-commutative \(*\)-algebra \(\mathcal{A}(M) \), whose elements are the smooth functionals \(F: \mathcal{E}(M) \to \mathbb{C} \) over field configurations, which are differentiable with compact support and whose functional derivative \(\phi_F \) have a vanishing wave front set. Here, differentiability means that for each pair of smooth functions \(\phi \in \mathcal{F}(M) \), the function \(\lambda \mapsto \phi \otimes \lambda \) is often infinitely differentiable and the \(n \)th derivative at \(\lambda = 0 \) defines a symmetric distribution with compact support \(\phi_F(\lambda) \) on \(\mathcal{F}(M) \) with the property

\[
\phi \phi \Delta \hat{f}(\lambda) = \star \Phi(\lambda), \quad \forall \lambda \in \mathbb{R},
\]

and such that the application \((\phi, h) \mapsto \langle \Phi(\phi), \hat{h}\Phi(\phi) \rangle \) is continuous in the proper topology. The support of \(F \) is the closure of the union of the support of \(\phi_F(\lambda) \) for all \(\phi \in \mathcal{E}(M) \).

The product on \(\mathcal{A}(M) \), denoted by \(\star \), and defined by

\[
(F \star G)(\phi) = F(\phi)G(\phi) + \sum_{n=0}^{+\infty} \frac{i^n}{2^n n!} \Delta^{\otimes n}(F^{(n)}(\phi), G^{(n)}(\phi)),
\]

is non-commutative. As an immediate consequence of the definition, the algebra \(\mathcal{A}(M) \) is nothing but the algebra generated by the functionals \(\phi(f) := \int dx \phi(x) \), \(f \in D(M) \), which satisfy

\[
\phi(f), \quad \hat{\phi}(h) \big|_{\lambda=0} = i\Delta(f, h),
\]

where \(\Delta \) is the advanced-minus-retarded solution of \(-\Box_g \), whose existence is assured by the global hyperbolicity of \(M \). Moreover, the \(\star \)-operation on \(\phi(f) \) acts as follows

\[
\phi(f)^\ast = \phi(\hat{f}).
\]

States on \(\mathcal{A}(M) \) are defined as linear functionals \(\omega: \mathcal{A}(M) \to \mathbb{C} \), which are positive, i.e. \(\omega(A^\ast A) \geq 0 \ \forall A \in \mathcal{A}(M) \), and normalized \(\langle \omega(1) = 1 , \ I \ \text{identity of the algebra} \). These conditions imply that a state is completely described by its \(n \)-point functions

\[
\omega(f_1, \ldots, f_n) = \omega(\phi(f_1) \star \ldots \star \phi(f_n)),
\]

whose totally antisymmetric part is fixed by the second relation in (4).
In the next step we want to include fields like the stress tensor in the algebra. This is necessary in order to evaluate the influence of quantum matter on congruences of timelike geodesics. Notice that the classical stress tensor of the analyzed theory is

$$T_{\mu\nu} = \partial_\mu \varphi \partial_\nu \varphi - \frac{1}{2} g_{\mu\nu} \partial^\lambda \varphi \partial_\lambda \varphi.$$ \hspace{1cm} (6)

Unfortunately, the stress tensor involves the product of pointlike fields and, for this reason, it cannot be constructed as an element of $\mathcal{A}(M)$. However, as discussed in [3, 5], after deforming the product of smooth functions in a suitable way, it is possible to easily extend it to non-linear local fields like $T_{\mu\nu}$. The aforementioned deformation is realized by means of a Hadamard function H in such a way that the deformed product on generators reads

$$\varphi(f) \star_H \varphi(h) = \varphi(f)\varphi(h) + H(f, h).$$

For generic elements F, G the \star_H product is defined as in formula (3), where $i\Delta/2$ is substituted by H. We recall that the Hadamard function H is actually an element of $D'(M^2)$, whose antisymmetric part is $i\Delta(x, y)/2$; furthermore, it weakly satisfies the equation of motion up to smooth functions and it enjoys the micro local spectrum condition [6, 28]. Note also that the new product \star_H preserves the relation (4).

We shall indicate the extended algebra by $\mathcal{F}(M)$; its elements are again the functionals over smooth field configuration ($F: \mathcal{E}(M) \to \mathbb{C}$) which satisfy certain properties on the wave front set of the functional derivatives; namely

$$\mathcal{F}(M) = \left\{ F \text{ differentiable with compact support,} \right\}$$

$$WF\left(F^{(\omega)}(\varphi)\right) \cap \left(\nabla_{x}^{\omega} \cup \nabla_{y}^{\omega} \right) = \emptyset.$$

As discussed in [28], the set of conditions expressed above characterizes the Hadamard function H up to smooth functions; hence not uniquely: different choices of H correspond to different extensions which are, however, all isomorphic. However, local non-linear fields are not left invariant under the aforementioned isomorphisms: this results in a freedom in the definition of local fields like $T_{\mu\nu}$, which is nothing but the known regularization freedom [17, 19].

As a final remark we would like to stress that the extended algebra can be tested on a smaller class of states: certainly, Hadamard states ω are contained within this class [6, 28] and one can choose the two-point function ω_2 of such a state as the Hadamard function. Studies of the form of the stress tensor of a scalar field can be found in [26] or [19].

2.1. Restriction on timelike curves

We are interested in restricting certain local observables like the pointlike product of fields on regular timelike curves $\gamma \subset M$. The possibility of considering the restriction of local fields on timelike curves was discovered in [2]. Further work in this direction can be found in [23]. Recently, similar ideas have been employed in [1, 24]. We also remind the reader that the restriction of the expectation value of the stress tensor on timelike curves is used to derive bounds for the local energy density in curved spacetimes, as is shown in [13] or in a recent analysis in the realm [12].

Here, we would like to show that the restriction of fields on timelike curves can be realized within $\mathcal{F}(M)$, in the sense that a certain set of functionals over smooth field configurations on γ forms a sub-algebra of $\mathcal{F}(M)$ defined above. In order to clarify this point, we proceed by introducing the following definition.
Definition 2.1. Consider a timelike regular curve \(\gamma \) parametrized in such a way that \(\dot{\gamma} \) is future-directed. The set of regular functionals over smooth field configurations \(\varphi \in C^\infty(\gamma) \) is denoted by

\[
\mathcal{F}(\gamma) = \left\{ F, \text{ differentiable with compact support}, \right\}
\]

\[
WF\{F^{(n)}(\varphi)\} \cap \left(\mathbb{R}^n_+ \cup \mathbb{R}^n_- \right) = \emptyset.
\]

where \(\mathbb{R}_+ = \{ k \in \mathbb{R}, k \geq 0 \} \) is the set of positive directions and \(\mathbb{R}_- \) the set of negative ones. Consider now the map \(t_\gamma \), which realizes the restriction of the field configurations

\[
t_\gamma: C^\infty(M) \to C^\infty(\gamma), \quad t_\gamma \varphi := \varphi \circ \gamma.
\]

We want to show that the pullback \(t_\gamma^* \) on functionals over such smooth field configurations maps elements of \(\mathcal{F}(\gamma) \) to \(\mathcal{F}(M) \). We have the following proposition.

Proposition 2.1. Let \(\gamma \) be a smooth timelike curve, consider \(F \in \mathcal{F}(\gamma) \) and \(t_\gamma \) defined in (9), then \(t_\gamma^* F \) is contained in \(\mathcal{F}(M) \).

Proof. Since the curve \(\gamma \) is smooth, we have that for every \(\varphi \in C^\infty(M) \), \(t_\gamma \varphi \) is also smooth. Furthermore, since \(t_\gamma \) is also linear, \(t_\gamma^* F \) is differentiable and thus we obtain an explicit formula

\[
t_\gamma^* F^{(n)}(\varphi)(h_1 \otimes \cdots \otimes h_n) = F^{(n)}(t_\gamma \varphi)(t_\gamma h_1 \otimes \cdots \otimes t_\gamma h_n).
\]

Let us proceed by discussing its support. Notice that the support of \(t_\gamma^* F^{(n)} \) is contained on \(\gamma^{\otimes n} \subset M^n \) and there coincides with the image of the support of \(F^{(n)} \) under the continuous map \(\gamma^{\otimes n} \); hence it is compact. In order to conclude the proof, we need to show that the wave front set of \(t_\gamma^* F^{(n)} \) is disjoint from \(\mathbb{V}^n_+ \cup \mathbb{V}^n_- \). We address this problem looking for bounds for the wave front set of \(F^{(n)}(t_\gamma \varphi)(t_\gamma h_1 \otimes \cdots \otimes t_\gamma h_n) \) interpreted as the composition of \(F^{(n)}(t_\gamma \varphi): D(\gamma^{\otimes n}) \to \mathbb{C} \) with \(t_\gamma^{\otimes n} \).

Notice that for every \(h \in D(M) \), \(t_\gamma(h) \) is a linear transformation from \(D(M) \) to \(D(\gamma) \). We indicate by \(K \) its integral kernel, which is thus an element of \(D'(M \times \gamma) \) and

\[
WF(K) = \left\{ (x, t, k, \xi) \in T^*(M \times \gamma) \setminus \{0\}, \quad \gamma(t) = x, \quad \left(dt_\gamma \xi - k \right)(\dot{\gamma}) = 0 \right\}
\]

where \(dt \) is the differential map; hence, \(dt_\gamma \xi \) is the push forward of \(\xi \) to \(T_{t(\gamma)}M \). The distribution \(t_\gamma^* F^{(n)}(\varphi) \) is then constructed as the composition of \(F^{(n)}(t_\gamma \varphi) \) with the multi-linear map \(t_\gamma^{\otimes n} \), along the line of theorem 8.2.13 of [20]. Using the notation introduced therein, since \(WF(K^{\otimes n}) \) is empty, the hypothesis of that theorem is fulfilled. Thus, the composition is well defined and its wave front set is such that

\[
WF\left(t_\gamma^* F^{(n)}\right) \subset WF\left(K^{\otimes n}\right)_{M^n} \cup WF\left(K^{\otimes n}\right) \circ WF\left(F^{(n)}\right).
\]

Let us carefully analyze its form. First of all, note that \(WF(K^{\otimes n})_{M^n} \) contains only spatial directions, while, from (8), \(WF(F^{(n)}) \cap \left(\mathbb{R}^n_+ \cup \mathbb{R}^-_\gamma \right) = \emptyset \). In order to conclude the proof, we observe that the composition of \(WF(F^{(n)}) \) with \(WF(K^{\otimes n}) = \left[WF(K) \cup \{0\}\right]^{\otimes n} \setminus \{0\} \) where \(WF(K) \) is given in (10), has a disjoint intersection with \(\mathbb{V}^n_+ \cup \mathbb{V}^n_- \).

The previous proposition guarantees that the set \(\mathcal{F}(\gamma) \) is contained in \(\mathcal{F}(M) \), so we shall now proceed to introduce an algebraic structure on this set. Actually, we would like to equip \(\mathcal{F}(\gamma) \) with a non-commutative product \(\ast_R \) whenever \(R \in D(\gamma \otimes \gamma) \); its symmetric part is real
while its antisymmetric one is imaginary and
\[
WF(R) \subset \left\{ (x_1, x_2, k_1, k_2) \in T^*\mathbb{R}^2 \setminus \{0\}, \ x_1 = x_1, \ k_1 = -k_2, \ k_1 > 0 \right\}.
\]

We shall consider a product defined as
\[
F \ast_R G(q) = F(q)G(q) + \sum_{n \geq 1} \left\{ F^{(n)}(q), R^{\otimes n}G^{(n)}(q) \right\}_{n}
\]
where \((\cdot, \cdot)_n\) is the standard pairing in \(T^*\mathbb{R}^n\). With this product \((F, \ast_R)\) acquires the structure of a \(\ast\)-algebra if equipped with the \(\ast\)-operation corresponding to the complex conjugation
\[
F^\ast(q) = \overline{F(q)}.
\]

We would like to show that whenever \(R\) is chosen as the map of \(H\) under the pullback \((\gamma \otimes \gamma)^*\) the product in \(T(\gamma)\) agrees with that of \(\gamma(M)\). We start with the following proposition:

Proposition 2.2. Let \(\gamma\) be a timelike regular curve. The pullback \((\gamma \otimes \gamma)^*H\) of any Hadamard function \(H\) on \(D(\gamma \otimes \gamma)\) is unambiguously defined and its wave front set is
\[
WF((\gamma \otimes \gamma)^*H) = \left\{ (t_1, t_2, k_1, k_2) \in T^*\mathbb{R}^2 \setminus \{0\}, \ t_1 = t_2, \ k_1 = -k_2, \ k_1 > 0 \right\}
\]

Proof. In order to prove that the restriction of any \(H\) on \(\gamma(R) \otimes \gamma(R)\) is well defined, we shall show that the hypothesis of theorem 8.2.4 in [20] is fulfilled. Consider a regular parametrization of the curve \(\gamma: \mathbb{R} \to M\). We shall hence build a map \(f\) from \(\mathbb{R}^2 \to M^2\) as \(f(t_1, t_2) = (\gamma(t_1), \gamma(t_2))\). The set of normals to that map is
\[
N_f = \left\{ (\gamma(t_1), \gamma(t_2), k_1, k_2) \in T^*M^2, \ k_1(\dot{\gamma}(t_1)) = k_2(\dot{\gamma}(t_2)) = 0 \right\}.
\]
Note that, since \(\dot{\gamma}(t)\) is a non-vanishing timelike vector for all \(t\), if \((t_1, t_2, k_1, k_2)\) is in \(N_f\), then either \(g^{-1}k_1\) or \(g^{-1}k_2\) is spacelike. All the covectors in \(WF(H)\) are null; hence, we conclude that
\[
WF(H) \cap N_f = \emptyset.
\]
Hence, by theorem 8.2.4 in [20], the pullback of \(H\) under \(f^*\) is unambiguously defined and furthermore,
\[
WF(f^*H) \subset f^*WF(H) = \left\{ (t_1, t_2, k_1, k_2) \in T^*\mathbb{R}^2 \setminus \{0\}, \ t_1 = t_2, \ k_1 = -k_2, \ k_1 > 0 \right\}.
\]

In order to conclude the proof, we need to show the other inclusion. We notice that, for every choice of \(t_1 = t_2\), there is only one singular direction in \(f^*WF(H)\). Thus, in order to have \(WF(f^*H) \supset f^*WF(H)\), we just need to show that the singular support of \(f^*H\) is formed by the set \(D := \{(t_1, t_2), t_1 = t_2\}\). The singular support of \(f^*H\) surely contains the singular support of the causal propagator \(\Delta\), which is proportional to the antisymmetric part of \(H\). The singular support of \(f^*\Delta\) is \(D\). □

Thanks to the previous proposition, we have that \(R := (\gamma \otimes \gamma)^*H\) can be used in (11) to construct a product in \(F(\gamma)\). Moreover, this choice implies that the two products \(\ast_H\) in \(F(M)\) and \(\ast_R\) in \(F(\gamma)\) agree. We have the following proposition,

Proposition 2.3. Let \(\gamma\) be a regular timelike curve, \(F(\gamma)\) is a sub \(\ast\)-algebra of \(F(M)\).
Proof. Proposition 2.1 implies that as a set $F(\gamma) \subset F(M)$. Analyzing the form of (11) and thanks to the choice of R as the restriction of H on γ we have that

$$t^*_\gamma (F \ast_R G) = t^*_\gamma F \ast_H t^*_\gamma G.$$

We can conclude the proof, noting that the restriction preserves complex conjugation, and hence

$$\left(t^*_\gamma F \right)^* = t^*_\gamma (F^*)$$

for every F in $F(\gamma)$.

In order to simplify the presentation, from now on, we shall not explicitly indicate t. For the same reason we shall denote the product in $F(\gamma)$ by \ast_{nr}; namely, with the same symbol of the product in $F(M)$.

3. Deviation equation for congruences of timelike geodesics

Let us fix a background spacetime, (M, g), where M is a smooth manifold and g a background metric. Consider a congruence of timelike geodesics on this background. We want to study the probability of having a focusing point induced by the quantum nature of ϕ. To this end we shall first of all recall how this problem is treated classically.

Let ξ be the vector field of tangents to the congruence parametrized by proper time. As usual, we start discussing the infinitesimal spatial displacement of the tensor field defined as $B_{ab} = \nabla_b \xi_a$. This tensor field can be decomposed into simpler fields; namely, the expansion $\theta = \nabla_b \xi^b$, the shear σ_{ab} and the twist ω_{ab}. The geodesic deviation equation induces some equations for these fields. For a complete discussion refer to [16, 33]; here, we are interested only in the Raychaudhuri equation; namely, the equation for the expansion parameter

$$\xi^a \nabla_r \theta = -\frac{1}{3} \theta^2 - \sigma_{ab} \sigma^{ab} + \omega_{ab} \omega^{ab} - R_{cd} \xi^c \xi^d,$$

which can also be written as

$$\dot{\theta} = -\frac{1}{3} \theta^2 - \sigma_{ab} \sigma^{ab} + \omega_{ab} \omega^{ab} - \left(T_{ab} - \frac{1}{2} g_{ab} T \right) \xi^a \xi^b.$$

We shall use it to obtain the passive influence of matter fluctuations on the expansion parameter. In this process, as discussed in the introduction, we shall assume that both the shear and the twist of the geodesic congruences are not affected by those fluctuations; namely we shall assume that they are classical fields. This approximation can be justified analyzing the full deviation equation and noting that, at least when both σ_{ab} and ω_{ab} vanish on the background, their linear perturbations over the chosen solutions manifest as second-order effects in (12).

When the matter content of the theory is described by a massless minimally coupled field indicated by ϕ, equation (12) can be further simplified. Using $\theta = \frac{2 \dot{\phi}}{\phi}$, we get a linear equation in ϕ

$$\dddot{\phi} + \frac{1}{3} \left(\sigma_{ab} \sigma^{ab} - \omega_{ab} \omega^{ab} + \frac{1}{2} T_{\text{anomalous}} \right) \phi + \frac{1}{3} \dddot{\phi} \phi = 0,$$

where we have indicated by $T_{\text{anomalous}}$ the quantum anomalous contribution to the stress tensor. This term is responsible for the trace anomaly of the stress tensor [32]. Further details on this term can be found in [26] or [19].
In the next section, we would like to check when there is a focusing of the geodesics forming the congruence. Notice that when θ diverges such a focusing occurs. A sufficient condition for this to occur is the vanishing of ϕ.

3.1. Perturbative analysis of the Raychaudhuri equation

We shall here discuss the perturbative solution of the equation

$$\ddot{\phi} + V\phi + \frac{1}{3}\lambda \dot{\phi}\dot{\phi} \phi = 0 \quad (14)$$

where, once a congruence is chosen, the classical external potential is

$$V := \frac{1}{3} \left(\sigma_{ab} \sigma^{ab} - \omega_{ab} \omega^{ab} + \frac{1}{2} T_{\text{anomalous}} \right),$$

which depends only on the background metric. We shall assume that V is a smooth function which vanishes at infinity, as happens in a large class of physical situations.

Moreover, $\lambda = 1$ plays the role of a coupling ‘constant’. The interesting part in the previous equation is in $\dot{\phi}\dot{\phi}\phi$, which represents a quantum interaction between the field ϕ and ϕ. Furthermore, in order to isolate infrared problems, we shall consider initially λ in $D(\mathbb{R})$ and later we shall discuss the adiabatic limit; namely the limit $\lambda \to 1$.

In the approximation we are employing, as discussed above, we discard the influence of ϕ on $\dot{\phi}$, which means that neither the algebra \mathcal{F} nor the states ω on that algebra are influenced by θ. With this in mind, up to the choice of some initial conditions, or better, a classical solution for the free case, the previous equation can be solved within $\mathcal{F}(\mathcal{F})$. Later on, once a suitable state ω is chosen, we can obtain the n-point functions of ϕ out of the expectation values of ϕ.

The aim of the present section is to obtain an expression for the solution ϕ in a perturbative series, proving that each term of the sum defines an element of the algebra $\mathcal{F}(\mathcal{F})$. When both ϕ and $\dot{\phi}$ are classical smooth functions, equation (14) can be written in integral form, namely as a sort of Yang-Feldman equation

$$\phi - \phi_0 + R_V (\lambda \dot{\phi}\dot{\phi} \phi) = 0, \quad (15)$$

where ϕ_0 is a solution of the free equation and R_V is the unique retarded fundamental solution associated with

$$P_f = \frac{d^2}{dt^2} + V. \quad (16)$$

The retarded fundamental solution is an operator from $D(\mathbb{R}) \to C^\infty$ such that, for every $f \in D(\mathbb{R})$,

$$P_f R_V (f) = f$$

and $\text{supp}(R_V (f))$ is contained in the future of the support of f. This operator exists and it is unique, provided V is sufficiently regular as is the case for the potentials we are considering in this section. Moreover, the integral kernel associated with that map is of the form

$$R_V (x_1, x_2) = \theta (x_1 - x_2) S (x_1, x_2) \quad R_V f (x) = \int R_V (x, y) f (y) dy, \quad (17)$$

where θ is the Heaviside step function and S is the unique smooth real bi-solution of (16) such that $S (x, x) = 0$, $S (x_1, x_2) = -S (x_2, x_1)$ and $\frac{dS}{dx_1} (x, x) = 1$.

8
The solution ϕ of (15) can be treated as a formal power series in the coupling parameter λ.

$$\phi = \sum_{n=0}^{\infty} \phi_n$$

where ϕ_n are homogeneous expressions of degrees n in λ and ϕ_0 is a classical solution. Hence,

$$\phi_n = -R_V \left(\phi^{2n} \phi_{n-1} \right).$$

3.2. Perturbative algebraic quantum field theory and renormalization

The aim of this section is to show that, when ϕ is treated as a quantum field, the perturbative analysis of (15) can be performed at the algebraic level. In the literature, there are many approaches to the perturbative analysis of quantum field theories; here, we shall follow a procedure similar to that developed in the framework of perturbative algebraic quantum field theory [3, 4] (see also the lecture notes [5, 14]). However, since the influence of curvature fluctuations on the matter field will be neglected, the analysis will be much simpler, and thus we shall readapt the previously known results to that case. Furthermore, instead of constructing the interacting field by means of the Bogoliubov formula, we shall directly employ the perturbative solution of (15). We shall treat certain types of ‘retarded’ products of matter fields instead of time-ordered ones. Despite this difference, we shall see that it is possible to employ an inductive construction in the number of fields, similar to the one employed for time-ordered products [4, 10]. However, at every inductive step, these products are known up to the thin diagonal. We shall employ known renormalization techniques to extend those distributions to the thin diagonal, preserving their scaling degree [4]. We shall furthermore stress that the products employed in the present paper are slightly different to the retarder products present in the literature; see [8, 15] for a definition.

We shall again treat the solution of equation (15) as a formal power series in the coupling parameter λ. We would like to show that the interacting fields, treated as formal power series in λ, are contained in $\mathcal{F} (\gamma)$. Let us start by noting that, at least formally, choosing $\lambda \in D(\mathbb{R})$ and using the \star_{ω} product induced by an Hadamard state ω we have that

$$\phi(f) \coloneqq (-1)^n \int f(x_n) R_V(x_n, x_{n-1}) R_V(x_{n-1}, x_{n-2}) \ldots R_V(x_1, x_0) \left(\lambda(x_{n-1}) \ldots \lambda(x_0) \right)$$

where we used a compressed notation $\phi^2 \star_{\omega} \ldots \star_{\omega} \phi^2$ for the integral kernels of the distributions on $D(\mathbb{R})^\otimes n$

$$\phi^2 \star_{\omega} \ldots \star_{\omega} \phi^2 \left(f_1 \otimes \ldots \otimes f_n \right) = \phi^2 (f_1) \star_{\omega} \ldots \star_{\omega} \phi^2 (f_n).$$

Actually, if we indicate by T_f the element of $\mathcal{F} (\gamma)$ defined as

$$T_f (\phi) = \int_R f \phi^2 dx,$$

a more precise definition of those integral kernels is

$$\phi^2 (x_n) \star_{\omega} \ldots \star_{\omega} \phi^2 (x_1) := \frac{\delta^n}{\delta f_n (x_n) \ldots \delta f_1 (x_1)} T_f \star_{\omega} \ldots \star_{\omega} T_f.$$
too singular to be multiplied. The resulting product is thus well defined only outside of the coinciding limit. Hence, we notice that when the points \(x_0, \ldots, x_n \) are all disjoint, it is possible to safely multiply \(R_V \) s with \(\phi \) s: furthermore, in that case we have formally

\[
R_V(x_{n-1}, x_{n-2}) \ldots R_V(x_1, x_0) \phi^2(x_{n-1}) \ast \cdots \ast \phi^2(x_0) := S(x_{n-1}, x_{n-2}) \ldots S(x_1, x_0) r(x_{n-1}, \ldots, x_0) \quad n \geq 1,
\]

where we used the explicit form of \(R_V \) given in (17) and \(\{ r(x_n, \ldots, x_0) \}_{n \geq 0} \) are certain distributions we are going to discuss. Since \(S \) are smooth functions, the problem that we have to deal with is the definition of \(r(x_n, \ldots, x_0) \) when certain points coincide. In what follows, we construct the \(r \) with an inductive procedure, similar to the one used to construct time-ordered products for interacting quantum fields. In order to employ this procedure, we enumerate here the properties of these \(r \) we shall use. The functional valued distributions \(r(x_n, \ldots, x_0) \) are well defined outside the diagonals and satisfy the following properties:

- **Functional equation:**

\[
r(x_n, \ldots, x_0) = \frac{\delta^n}{\delta f_n(x_n) \ldots \delta f_0(x_0)} T_{f_n} \ast \cdots \ast T_{f_0},
\]

when all points \(x_n, \ldots, x_0 \) are strictly decreasing.

- **Retardation:** \(r(x_n, \ldots, x_0) = 0 \) if the points are not ordered, namely if it does not hold \(x_n \geq \cdots \geq x_0 \).

- **Factorization:** if \(x_n \geq \cdots \geq x_0 \) and \(x_m > x_{m-1} \) for some \(0 < m < n \) then

\[
r(x_n, \ldots, x_0) = r(x_n, \ldots, x_m) \ast \ast r(x_m, \ldots, x_0)
\]

- **Initial element:** \(r(x_0) = \phi^2(x_0) \).

We will use these characterizing properties in order to extend the retarded products \(r \) on the full space. Once we have constructed all the \(r \), we will have that

\[
\phi_0(f) := \int f(x_0) \phi_0(x_0) \, dx_0, \quad \phi_1(f) := -\int f_R(x_0) \phi_0(x_0) \lambda(x_0) \phi^2(x_0) \, dx_0
\]

where \(f_R \) is the smooth function obtained applying the adjoint of the retarded operator to the smooth function \(f \), formally

\[
f_R(x) := \int f(y) R_V(y, x) \, dy.
\]

Finally, for \(n \) bigger than 1, we will have

\[
\phi_n(f) = (-1)^n \int f_R(x_{n-1}) S(x_{n-1}, x_{n-2}) S(x_{n-2}, x_{n-3}) \ldots S(x_1, x_0) \left(\lambda(x_{n-1}) \ldots \lambda(x_0) \right) \phi_0(x_0)
\]

\[
r(x_{n-1}, \ldots, x_0) \, dx_{n-1} \ldots dx_0.
\]

3.3. Inductive procedure up to the total diagonal

Employing the functional equation and the retardation property of \(r \) stated above, we can construct them up to the diagonals. Here, we shall see that the elements \(r \) can be constructed by means of an inductive procedure over the number of entries in a similar manner to that in the analysis performed by Epstein and Glaser [10]. In particular, we shall assume that we have fully constructed the \(r \)s with \(n \) entries and hence show that, thanks to the factorization
property, it is possible to construct r with $n + 1$ entries up to the thin diagonal Δ_{n+1}; namely, the set of elements $(x_n, \ldots, x_0) \in \mathbb{R}^{n+1}$ such that $x_0 = x_1 = \ldots = x_n$. The step which is then missing is the extension on the full space. We shall discuss the last step in the next section. Here, we shall use the factorization property to construct r in $D'(\mathbb{R}^{n+1}\setminus \Delta_{n+1}; F)$ having already constructed $r \in D'(\mathbb{R}^n; F)$ for every $m \leq n$.

Let us start by discussing the patching of \mathbb{R}^{n+1} up to the total diagonal in the chart where r can be factorized. In accomplishing this step we shall adapt the analysis presented in [4] for the time-ordered products to the retarded one, and hence the number of charts we shall use will be much smaller. The set S^c is the complement of the set

$$S = \{(x_n, \ldots, x_0), x_n \geq \ldots \geq x_0\}$$

due to causality r vanishes on S^c. The other charts we shall use are C_m for $m \in \{1, \ldots, n\}$, where C_m is defined as the open set of points $(x_n, \ldots, x_0) \in \mathbb{R}^{n+1}$ where $x_i > x_j$ for every $i < m$, and $j \geq m$.

Proposition 3.1. Up to the small diagonal the space \mathbb{R}^{n+1} is covered by the union of all the C_m and by S^c; i.e.

$$\mathbb{R}^{n+1}\setminus \Delta_{n+1} = S^c \cup \bigcup_{m \in \{1, n\}} C_m$$

Proof. Clearly S^c and every C_m are contained in $\mathbb{R}^{n+1}\setminus \Delta_{n+1}$. In order to show the other inclusion, let’s take a generic element X of $\mathbb{R}^{n+1}\setminus \Delta_{n+1}$; either X is S or in its complement. We want to show that if X is not in S then it must be contained in C_m for some m. So suppose that $X = (x_n, \ldots, x_0)$ is in S, then $x_n \geq \ldots \geq x_0$. However, since $X \notin \Delta_{n+1}$, one of those inequalities must be strict; namely, there must be an m bigger than 1 and an m smaller than or equal to n for which $x_{m+1} > x_m$. Hence $X \in C_m$. \square

We shall now discuss the form of r on the patches presented in the previous proposition. First of all, we note that due to the retardation property on S^c the retarded product r must vanish. At the same time, on any C_m we might define r as follows.

Definition 3.1. On C_m, we define $r_m(x_n, \ldots, x_0) := r|_{C_m}(x_n, \ldots, x_0)$ as the \star_m product of two r with a smaller number of entries; namely

$$r_m(x_n, \ldots, x_0) := r(x_n, \ldots, x_m) \star_m r(x_{m-1}, \ldots, x_0), \quad r(x_0) := \hat{\omega}^2(x_0);$$

In order to be allowed to use these elements consistently we need to check that on the overlap of different C_m the different factorizations coincide.

Proposition 3.2. Different factorizations coincide on the overlap, namely

$$r_m \bigg|_{C_{m_1} \cap C_{m_2}} = r_{m_2} \bigg|_{C_{m_1} \cap C_{m_2}}$$

and

$$r_m \bigg|_{C_m \cap S^c} = 0$$

for any $m_1, m_2, m \in \{1, \ldots, n\}$.
Proof. Consider, first of all, the points in $(x_0, ..., x_n) \in C_m \cap C_{m-1}$, and suppose, without losing generality, that $m_1 < m_2$. Hence, due to the retardation property,

$$r_{m_2}(x_n, ..., x_0) = r(x_n, ..., x_{m_2}) \star \omega r(x_{m_2-1}, ..., x_0).$$

Since $m_1 < m_2$, we can further factorize the last factor on the right-hand side of the previous expression; namely

$$r_{m_2}(x_n, ..., x_0) = r(x_n, ..., x_{m_2}) \star \omega r(x_{m_2-1}, ..., x_{m_1}) \star \omega r(x_{m_1-1}, ..., x_0).$$

Since the star product is associative, we can conclude the first part of the proof; namely we have

$$r_{m_2}(x_n, ..., x_0) = r(x_n, ..., x_{m_1}) \star \omega r(x_{m_1-1}, ..., x_0) = r_m(x_n, ..., x_0).$$

Now let us consider the points in $C_m \cap S^e$; hence, in there,

$$r_m(x_n, ..., x_0) = r(x_n, ..., x_m) \star \omega r(x_m-1, ..., x_0).$$

However, $(x_n, ..., x_0) \in S^e$, so at least one of the inequalities $x_n \geq ... \geq x_0$ does not hold. Since it is still true that $x_m > x_{m-1}$, either $r(x_n, ..., x_m)$ or $r(x_{m-1}, ..., x_0)$ vanish. □

We are now ready to glue together all the r_m introduced above to a distribution with all the desired properties defined outside Δ_{n+1}.

Definition 3.2. On $\mathbb{R}^{n+1} \setminus \Delta_{n+1}$, we define $0_r(x_n, ..., x_0)$ as

$$0_r(x_n, ..., x_0) = \sum_m f_m(x_n, ..., x_0) r_m(x_n, ..., x_0),$$

where $\{f_m\}_{0 \leq m \leq n}$ is a smooth partition of unity on $\mathbb{R}^{n+1} \setminus \Delta_{n+1}$ adapted to $\{S^e, C_1, ..., C_n\}$.

Hence, on every X in $\mathbb{R}^{n+1} \setminus \Delta_{n+1}$ it holds that $\sum_m = 1 f_m(X) = 1$; furthermore, f_m is supported on C_m for $m \geq 1$ and on S^e otherwise: the existence of such a partition of unity is an immediate consequence of the finiteness of the covering of $\mathbb{R}^{n+1} \setminus \Delta_{n+1}$.

By definition, the functional valued distributions $0_r(x_n, ..., x_0)$ satisfy the properties of the functional equation, retardation, factorization and initial element. Furthermore, the inductive construction described above shows that even the procedure of extension of 0_r on the diagonals could be done inductively: in fact, assuming a fixed extension of $0_r(x_p, ..., x_0) \forall p = 1, ..., n-1$, by the factorization property the extension of $0_r(x_n, ..., x_0)$ should be done only on the full diagonal Δ_{n+1}.

3.4. Extension to the thin diagonal Δ_{n+1}

In this subsection, we shall discuss the extension of the distributions $0_r(x_n, ..., x_0)$ obtained in the preceding section to the thin diagonal Δ_{n+1}. This will complete the inductive construction of r. As discussed above, given a set of $r(x_p, ..., x_0) \forall p = 0, ..., n-1$, we can construct $0_r(x_n, ..., x_0)$, which is defined up to the thin diagonal; namely it is an element of $D'(\mathbb{R}^n \setminus \Delta_{n+1})$. In order to complete the inductive step, we need to extend it on Δ_{n+1}. For this, we proceed exactly as in [4, 30]: if the scaling degree of 0_r towards Δ is finite, we may apply either theorem 5.2 or theorem 5.3 of [4] to get the desired extension. The scaling degree towards all the diagonals is always finite, so we can extend all these distributions preserving the scaling degree: in this procedure there is certain renormalization freedom, which can be fixed at all orders. As a consequence, the procedure to extend $r(x_n, ..., x_0)$ to the thin diagonal is not unique; however, the ambiguities in this extension are all local and they are thus
characterized by a finite set of numbers. This freedom is usually called renormalization freedom and it can be restricted applying some physical criteria like translation invariance. The residual freedom is usually fixed in accordance with experiments.

After employing the renormalization conditions such as the one discussed above, we notice that the following proposition holds:

Proposition 3.3. The functionals \(\phi_n(f) \) constructed in (21) and (20) are elements of \(F(\gamma) \).

Proof. In order to prove this assertion we have to analyze the wave front set of the functional derivatives of \(\phi_n(f) \); namely, it must be such that

\[
WF\left(\phi_n^{(m)}(f)\right) \cap \left(\mathbb{R}_+^n \cup \mathbb{R}_-^n \right) = \emptyset.
\]

(22)

First of all we notice that only a finite number of functional derivatives of \(\phi_n \) do not vanish. The \(m \)th derivative of \(\phi_n \) contains a linear combination of \(r \) with a different number of arguments which are sometimes contracted with smooth functions (\(S \) or \(\lambda \) in (21)): by linearity of the wave front set, and by a straightforward application of theorem 8.2.12 in [20], it is sufficient to prove that each \(r \) satisfies (22). Let us start analyzing the one with two entries: \(r(x_1, x_0) \), which is the first one with a non-empty wave front set. We see that outside the thin diagonal \(\Delta_2 \), \(r = 0 \), which is either zero or \(\phi^2(x_1) \ast \phi^2(x_0) \) and in both cases the property (22) is satisfied. Regarding its extension \(r \), we have that \(WF(r) \) is contained within the closure in space of \(WF\left(\phi_n \right) \) (to cover also \(\Delta_2 \)) joined with the wave front set of the additional terms imposed by the employed renormalization techniques which are proportional to \(\delta(x_1, x_0) \) or its derivative. The wave front set of \(\delta(x_1, x_0) \) has an empty intersection with \(\mathbb{R}_+^n \cup \mathbb{R}_-^n \) because \(WF(\delta(x_1, ..., x_n)) = \{(x_1, ..., x_n, k_1, ..., k_n), x_1 = ... = x_n, k_1 + ... + k_n = 0\} \); property (22) is then satisfied by \(r(x_1, x_0) \). Since all other \(r \) are constructed by induction, in order to conclude the proof, we just need to check the \(n \)th step. We see that \(r \) with \(n + 1 \) entries outside the thin diagonal is constructed by means of the factorization property, and the \(\ast \) product among two \(r \) enjoys the property (22). In the last step we note that (22) holds also on \(\Delta_{n+1} \), because of the \(\delta \)-form of the terms which contain the renormalization constants. □

3.5. Adiabatic limit

So far we have analyzed the ultraviolet problems present in the perturbative construction of \(\phi \). We shall now discuss the adiabatic limit namely, the limit \(\lambda \to 1 \) and we shall see that no infrared problems arise. Furthermore, whenever \(f \) is a compactly supported smooth function, the limit \(\lambda \to 1 \) of every \(\phi_n(f) \) can be performed within \(F(\gamma) \). In order to prove this claim, we note that for every classical solution \(\phi_0 \) of the free equation (16) we want to perturb, it is always possible to select a compactly supported smooth function \(K \), whose support lies in the past of the support \(f \) without intersecting \(\text{supp} f \) (\(\text{supp} K \subset J^*(\text{supp} f) \) and \(\text{supp} f \cap \text{supp} K = \emptyset \)) and such that \(R\lambda(K) \) equals \(\phi_0 \) in the future of the support of \(K \); namely

\[
\phi_0(x) = \phi_0^+(x):= R\lambda(K)(x), \quad \forall \ x \in J^*(\text{supp} K) \setminus \text{supp} K.
\]

With this choice of \(K \), since equation (15) is linear in \(\phi \), we can formally split any solution in two parts \(\phi = \phi^+ + \phi^- \), where \(\phi^\pm \) solve an inhomogeneous equation
\[\phi^\pm + V\phi^\pm + \frac{1}{3}\dot{\phi}^2\phi^\pm = \pm K, \]

and where \(\phi^\pm \) are supported in the future/past of the support of \(K \) (supp \(\phi^\pm \subset J^\pm(\text{supp } K) \)). The solution \(\phi^+(f) \) can be obtained perturbatively\(^1\) to all orders, employing equations (20) and (21) and replacing \(\phi_0 \) with \(\phi_0^+ := R_V(K) \). Finally, thanks to the choice of the support of \(K \), for every \(n, \phi_n^+(f) \) coincides with \(\phi_n^+(f) \). However, now all the retarded integrals appearing in \(\phi_n^+(f) \) are performed on compact intervals also when \(\lambda \) is chosen to be equal to 1.

4. Perturbative expansion for the expansion parameter over a flat background

In this section we shall apply the previously introduced general picture in order to estimate the behavior of a congruence of parallel timelike geodesics on a flat background; i.e. \((M, g) = (\mathcal{M}^4, \eta)\) Minkowski spacetime. Notice that with a suitable choice of renormalization conditions, the Minkowski spacetime is a solution of the semiclassical Einstein equation whenever the stress tensor of the matter field \(\varphi \) is considered to be in the vacuum state \(\Omega \).

Furthermore, since \(\sigma, \omega \) and \(T_{\text{anomalous}} \) vanish in flat background, equation (14) reads

\[\dot{\phi} + \frac{1}{3}\lambda \dot{\phi}^2\phi = 0. \]

The explicit expression for the retarded fundamental solution \(R_V \), obtained imposing an initial asymptotic condition for \(t \to -\infty \), is

\[R_V(h)(t) = \int h(s)\Theta(t - s)ds, \quad (23) \]

where \(\Theta(x) := S(x)\theta(x) := x\theta(x) \). Hence, the classical solution of this problem enjoys

\[\phi(t) = \phi_0 - \frac{1}{3}\int d\theta(t - s)\dot{\lambda}(s)\dot{\phi}^2(s)\phi(s), \quad (24) \]

where, since \(\varphi \) vanishes classically, the classical solution \(\phi = \phi_0 \) is chosen to be a constant.

We shall now discuss the form of the quantum field describing the fluctuations passively induced by the matter ones. After smearing with a Gaussian-shaped test function \(f \), we shall evaluate both \(\langle \phi(f) \rangle \) and \(\varphi^2(f) := \langle (\phi(f) - \langle \phi(f) \rangle)^2 \rangle \) on the Minkowski ground state, expanding \(\phi \) up to the second perturbative order. It is thus possible to approximate the probability distribution with a Gaussian after smearing with suitable compactly supported smooth functions.

Performing this calculation we use the pullback on the algebra \(\mathcal{A}(\gamma) \) of the Minkowski vacuum state under the restriction map on any geodesic \(\gamma \) of the congruence. The obtained two-point function, parametrized with respect to the proper time, is

\[\Omega_2(t, t') := \frac{1}{4\pi^2} \frac{1}{(t - t' - i\varepsilon)^2}. \quad (25) \]

This two-point function can be used to construct the \(\star_w \) product on \(\mathcal{F}(\mathbb{R}) \); see for example [22] for the analysis of a similar two-point function.

We shall now write the explicit form of \(\phi(f) \) up to the second order in the coupling parameter, which is the first non-trivial perturbation order. Since \(\phi_0 \) is constant for the chosen congruence, we have immediately from (20) that

\(^1\) The field \(\phi(f) \) can be obtained perturbatively, employing advanced products of \(\varphi^2 \). The advanced products can be constructed in a similar way to the distributions \(\rho \) discussed in the paper.
\[\phi_1(f) = \int f(x_1) R_V(x_1, x_0) \hat{\lambda}(x_0) \phi^2(x_0) \phi_0 \, dx_1 \, dx_0. \]

(26)

To write the explicit form of the \(\phi_2 \), we need to construct \(r(x_1, x_0) \), employing the definition (19), valid when \(x_1 > x_0 \), and extending it to the full space along the guidelines discussed in section 3.4. We have that up to the diagonal, it is formed by three contributions

\[0_r(x_1, x_0) := \frac{9}{\pi^4} \theta(x_1 - x_0) + \frac{6}{\pi^2} \frac{\theta(x_1 - x_0)}{(x_1 - x_0)^2} \phi(x_1) \phi(x_0) + \theta(x_1 - x_0) \phi^2(x_1) \phi^2(x_0); \]

hence it is namely the integral kernel of a distribution in \(D'(\mathbb{R}^2) \), which is also a functional of \(\varphi \in C^0(\mathbb{R}) \). We need to extend it to the total diagonal \(x_1 = x_0 \).

The above-written distribution is well defined only on \(D'(\mathbb{R} \setminus \{0\}) \); using the techniques of scaling degree, see [6], the general expression for all the extensions of \(^0 \Gamma \) to \(D(\mathbb{R}) \) which preserve the scaling degree at 0 are

\[r(x_1, x_0) = -\frac{9}{\pi^4} \frac{1}{7!} \theta \ln \frac{\varphi}{x_0} + \sum_{a=0}^{7} a_a \delta^{(a)}(x_1 - x_0) + \]

\[-\frac{1}{\pi^2} \theta \ln \left(x_1 - x_0 \right) \phi(x_1) \phi(x_0) + \sum_{a=0}^{3} b_a \delta^{(a)}(x_1 - x_0) \phi(x_1) \phi(x_0) + \]

\[+ \theta(x_1 - x_0) \phi^2(x_1) \phi^2(x_0) \]

where the derivative should be interpreted in the distributional sense; the extension given by \(r \) will be fixed by an appropriate choice of the renormalization constants \(a_a \) and \(b_a \).

4.1. Probability distribution for \(\phi(f) \)

We shall now estimate the probability of a focusing of the geodesic congruence in a fixed interval of time. In order to accomplish this task we shall compute the first two moments of the probability distribution \(\mathcal{P} \), which describe the expectation values of \(\phi(f) \) up to the second order in the coupling parameter. We shall then use the obtained values in order to find the Gaussian distributions which better approximate \(\mathcal{P} \). After that we may evaluate the probability of a collapse, computing \(\mathcal{P}(\phi(f) \leq 0) \).

We proceed discussing the expectation value \(\langle \phi(f) \rangle := \Omega(\phi(f)) \) of the field \(\phi(f) \) on the vacuum state \(\Omega \). We note in particular that

\[\langle \phi_1(f) \rangle = 0 \]

while

\[\langle \phi_2(f) \rangle = \phi_0 \int dp \, f_R(p) \lambda(p) \left[\frac{9}{\pi^4} \left(8 \hat{\lambda}^{(7)} \ast \theta \ln \right)(p) - \left(\hat{\lambda}^{(8)} \ast \theta \ln \right)(p) \right] \]

\[+ \sum_{a=0}^{6} (-1)^{a} a_{\alpha} \hat{\lambda}^{(a)}(p) \]

(27)

where \(\ast \) indicates the convolution.

As discussed in section 3.5, we can avoid infrared problems arising in the adiabatic limit by reformulating the problem in a suitable way. Here we note that the previous formula (27) gives meaningful results in the limit \(\lambda \rightarrow 1 \) for every test function \(f \), provided \(a_0 \) is chosen to vanish. With this choice one gets
\[
\lim_{\lambda \to 1} \langle \phi(f) \rangle_\lambda = \phi_0 \int f dt.
\]

4.2. Approximated variance \(\zeta^2(f) \) and decay probability

In order to obtain an expression for the variance \(\zeta^2(f) = \langle \phi^2(f) \rangle - \langle \phi(f) \rangle^2 \) of the expectation value of the fluctuation \(\phi \) smeared with a test function \(f \) up to the second order in \(\lambda \) we just need to evaluate \(\langle \phi_1(f) *_\omega \phi_1(f) \rangle \). Recalling the form of \(\phi_1(f) \) obtained in (26) and the form of the two-point function restricted on the studied geodesic congruence given in (25), we get

\[
\zeta^2(f) \approx \frac{\phi_0^2}{\pi^2} \lim_{\epsilon \to 0^+} \int dx_0 dy_0 f_R(x_0) f_R(y_0) \frac{\lambda(x_0) \lambda(y_0)}{(x_0 - y_0 + \epsilon)^2},
\]

for all \(f \in D(\mathbb{R}) \), which is valid up to the second order in the coupling parameter \(\lambda \). Passing to the Fourier transform\(^2\), the previous expression can be simplified considerably, and for real smearing functions we finally have

\[
\zeta^2(f) \approx \lim_{c_1, c_2 \to 0^+} \frac{\phi_0^2}{7!} \int dp \int_{7/2}^\infty dp' l_{c_1}(p, f) l_{c_2}(-p, f),
\]

where \(l_{c_1}(p, f) = \int d\xi (- \xi, \hat{\lambda} (\xi - p) / (\xi - \omega)^2 \). The above-obtained expression for \(\zeta^2(f) \) can be used to perform the adiabatic limit \(\lambda \to 1 \). In particular, in the case of real smearing functions \(f \), this gives

\[
\zeta^2(f) = \frac{\phi_0^2}{7!} \int dp \int_{7/2}^\infty dp' \hat{f}(p) \hat{f}(p').
\]

By a dilation of the test function \(f \), i.e. smearing with \(f_{\tau}(x) = f(x/\tau)/\tau \), we find \(\zeta^2(f_{\tau}, f_{\tau}) = \zeta^2(f, f)/\tau^4 \), which is consistent with the fact that the variance should vanish when the smearing function has a large support. We should furthermore note that \(\zeta(f) \), at the second perturbative order, is not affected by any renormalization freedom.

We notice that even if we are working with distributions in \(D'(\mathbb{R}^2) \), the first two moments of the distribution of the expectation values of \(\phi(f) \) are meaningful even if \(f \) is chosen to be a Schwartz function. Hence, smearing with a Gaussian \(f(t) = \exp(-t^2)/\sqrt{\pi} \) centered at \(t = 0 \) one gets \(\zeta^2(f) = 2\phi_0^2 \). The corresponding estimate for the probability of a collapse of the congruence of geodesics is thus

\[
P(\phi(f) \leq 0) = \frac{1}{\sqrt{2\pi} \zeta(f)} \int_{-\infty}^0 ds \exp \left(- \frac{(s - \phi_0)^2}{2\zeta^2(f)} \right) = N \left(- \frac{\phi_0}{\zeta(f)}, 0, 1 \right),
\]

where \(N(x, y, z) \) is the normal cumulative distribution; namely, the function which computes the probability that a Gaussian of average \(y \) and variance \(z^2 \) takes value in the interval \((-\infty, x) \).

\(^2\) Our convention for the Fourier transform is

\[
\hat{f}(\xi) = \int dx f(x) e^{-i\xi x}, \quad f(x) = \frac{1}{(2\pi)^2} \int d\xi \hat{f}(\xi) e^{i\xi x}.
\]
Taking into account that for a ‘dilation’ \(f \rightarrow f_{\tau} \) we find \(\kappa(f) \rightarrow \kappa(f)/\tau^2 \), one can compute the above-written probability in terms of the dilatation parameter \(\tau \):

\[
P(\phi \leq 0) = N(-\tau^2, 0, 1),
\]

having absorbed a factor \(\sqrt{2/\pi} \) in the definition of \(\tau \).

Fixing the value \(\tau \), we can regard \(\phi(f_{\tau}) \) as a random process of Poisson variables on a discrete interval of time with step \(\tau \) (the variance of the Gaussian smearing function): the probability of having a collapse is then well approximated by an exponential of parameter \(\beta \), and average \(\beta = \tau \). This conclusion is very similar to the result obtained in [9] in the context of two-dimensional dilation gravity. Of course, the obtained result could be significantly different considering a better approximation for \(\kappa(f) \) and taking into account larger moments of the probability distribution.

5. Conclusions

In this paper we discussed the passive influence of quantum matter fluctuations on the expansion parameter, describing a congruence of timelike geodesics. This problem is classically of great importance in general relativity, essentially for the powerful applications in the characterization of spacetime singularities [16, 33]. Including it in the context of quantum field theory on curved backgrounds represents an important step for a deeper insight into problems like the formation of singularity in a semiclassical regime or semiclassical black hole evaporation. From the mathematical point of view, the problem we dealt with was the solution to the Raychaudhuri equation, which couples quantum matter fields with a geometrical field, the expansion parameter \(\theta \) of the congruence of geodesics. In more detail, considering a congruence of timelike geodesics and a quantum massless scalar field \(\phi \), we investigated the passive influence of fluctuations of \(\phi \) on the expansion parameter \(\theta \) of the geodesics.

Similar work has been presented in [9], where a probability distribution for a collapse of the congruence, which corresponds to a negative divergence of \(\theta \), was computed by a numerical procedure based on heuristic considerations in the case of a two-dimensional dilaton model for gravity.

We have shown that a more rigorous analysis can be performed restricting the focus to timelike geodesics and employing methods and techniques of perturbative algebraic quantum field theory. In particular, we showed that the field describing the logarithmic fluctuations of the expansion parameter can be constructed as a formal power series on the algebra of matter fields restricted on any geodesics forming the congruence.

As an application, we applied the previously described procedure to the simple case furnished by Minkowski spacetime. Here we have constructed \(\phi \) up to the second order in \(\lambda \) for a massless minimally coupled field in the vacuum state. We have then estimated the probability distribution of \(\phi \) with the Gaussian distribution, whose first two moments equal the expectation values previously computed. Proceeding in this way, after smearing with a suitable test function and considering a random process on a discrete interval of time of fixed step, it is possible to estimate the mean time to have a collapse as \(1/\beta \), \(\beta := P(\phi(f_{\tau}) < 0) \), obtaining results qualitatively similar to those of [9].
Acknowledgments

We would like to thank T-P Hack and V Moretti for their helpful discussions. We would also like to thank the referee for suggesting to us a clear and elegant treatment of the adiabatic limit. The work of N.P. has been supported partly by the Indam-GNFM project ‘Influenza della materia quantistica sulle fluttuazioni gravitazionali’ (2013).

References

[1] Bonga B and Khavkine I 2014 Quantum astrometric observables II: time delay in linearized quantum gravity Phys. Rev. D 89 024039
[2] Borchers H-J 1964 Field operators as C^∞ functions in spacelike directions Il Nuovo Cimento 23 1600–13
[3] Brunetti R, Duettsch M and Fredenhagen K 2009 Perturbative algebraic quantum field theory and the renormalization groups Adv. Theor. Math. Phys. 13 1255–599
[4] Brunetti R and Fredenhagen K 2000 Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds Commun. Math. Phys. 208 623
[5] Brunetti R and Fredenhagen K 2009 Quantum Field Theory on Curved Backgrounds (Lecture Notes in Physics 786) (Berlin: Springer) pp 129–55 chapter 5
[6] Brunetti R, Fredenhagen K and Köhler M 1996 The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes Commun. Math. Phys. 180 633
[7] Brunetti R, Fredenhagen K and Verch R 2003 The generally covariant locality principle: a new paradigm for local quantum physics Commun. Math. Phys. 237 31
[8] Dütsch M and Fredenhagen K 2004 Causal perturbation theory in terms of retarded products, and a proof of the action ward identity Rev. Math. Phys. 16 1291
[9] Carlip S, Mosna R A and Pitelli J P M 2011 Vacuum fluctuations and the small scale structure of spacetime Phys. Rev. Lett. 107 021303
[10] Epstein H and Glaser V 1973 The role of locality in perturbation theory Ann. Inst. H. Poincaré A 19 211
[11] Fewster C J, Ford L H and Roman T A 2010 Probability distributions of smeared quantum stress tensors Phys. Rev. D 81 121901
[12] Fewster C J and Pfenning M J 2006 Quantum energy inequalities and local covariance I: globally hyperbolic spacetimes J. Math. Phys. 47 082303
[13] Ford L H 1978 Quantum coherence effects and the second law of thermodynamics Proc. R. Soc. Lond. A 364 227
[14] Fredenhagen K and Rejzner K 2012 Perturbative algebraic quantum field theory, arXiv:1208.1428
[15] Glaser V, Lehmnn H and Zimmermann W 1957 Field operators and retarded functions Il Nuovo Cimento 6 1122
[16] Hawking S W and Ellis G F R 1973 The Large Scale Structure of Space-Time (Cambridge Monographs on Mathematical Physics) (Cambridge: Cambridge University Press)
[17] Hollands S and Wald R M 2001 Local Wick polynomials and time ordered products of quantum fields in curved spacetime Commun. Math. Phys. 223 289
[18] Hollands S and Wald R M 2002 Existence of local covariant time ordered products of quantum fields in curved spacetime Commun. Math. Phys. 231 309
[19] Hollands S and Wald R M 2005 Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes Rev. Math. Phys. 17 227
[20] Hörmander L 1989 The Analysis of Linear Partial Differential Operators I 2nd edn (Berlin: Springer)
[21] Hu B L and Verdaguer E 2008 Stochastic gravity: theory and applications Liv. Rev. Rel. 11 3
[22] Kay B S and Wald R M 1991 Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate killing horizon Phys. Rep. 207 49
[23] Keyl M 2000 Quantum fields on timelike curves, arXiv:math-ph/0012024
[24] Khavkine I 2012 Quantum astrometric observables I: time delay in classical and quantum gravity Phys. Rev. D 85 124014
[25] Kofman L A, Linde A D, Starobinsky A A and Keyl M 1985 Inflationary universe generated by the combined action of a scalar field and gravitational vacuum polarization Phys. Lett. B 157 361
[26] Moretti V 2003 Comments on the stress-energy tensor operator in curved spacetime Commun. Math. Phys. 232 189
[27] Parkinson V and Ford L H 2014 Non-cancellation of quantum geometry fluctuations Phys. Rev. D 89 064018
[28] Radzikowski M J 1996 Micro-local approach to the hadamard condition in quantum field theory on curved space-time Commun. Math. Phys. 179 529
[29] Starobinsky A A 1980 A new type of isotropic cosmological models without singularity Phys. Lett. B 91 99
[30] Steinmann O 1971 Perturbation Expansions in Axiomatic Field Theory (Lecture Notes in Physics vol 11) (Berlin: Springer)
[31] Wald R M 1977 The back reaction effect in particle creation in curved spacetime Comm. Math. Phys 54 1–19
[32] Wald R M 1978 Trace anomaly of a conformally invariant quantum field in curved space-time Phys. Rev. D 17 1477
[33] Wald R M 1984 General Relativity (Chicago, IL: Chicago University Press)