SARS-CoV2: should inhibitors of the renin–angiotensin system be withdrawn in patients with COVID-19?

Gabriela M. Kuster 1,2,*, Otmar Pfister 1,2, Thilo Burkard 1,3, Qian Zhou 1, Raphael Twerenbold 1,4, Philip Haaf 1, Andreas F. Widmer 1,5, and Stefan Osswald 1,*

1Clinic of Cardiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; 2Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; 3Hypertension Clinic, Medical Outpatient Clinic, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; 4Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, Spitalstrasse 2, 4036 Basel, Switzerland; and 5Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland

Received 11 March 2020; revised 14 March 2020; editorial decision 16 March 2020; online publish-ahead-of-print 18 March 2020

In a rapid response published online by the British Medical Journal, Sommerstein and Grani1 pushed forward the hypothesis that angiotensin-converting enzyme (ACE) inhibitors (ACE-Is) could act as a potential risk factor for fatal Corona virus disease 2019 (COVID-19) by up-regulating ACE2. This notion was quickly picked up by the lay press and sparked concerns among physicians and patients regarding the intake of inhibitors of the renin–angiotensin–aldosterone system (RAAS) by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infected individuals.1 In this article, we try to shed light on whether RAAS inhibition may increase the risk of deleterious outcome of COVID-19 through up-regulation of ACE2 and increase of viral load.

As previously shown for SARS-CoV,4 SARS-CoV25 similarly utilizes ACE2 as receptor for viral cell entry. In the RAAS, ACE2 catalyzes the conversion of angiotensin II to angiotensin 1–7, which acts as a vasodilator and exerts protective effects in the cardiovascular system. In animal experiments, increased expression and activity of ACE2 in various organs including the heart were found in connection with ACE-I and ARB administration.6 In addition, more recent data showing increased urinary secretion of ACE2 in hypertensive patients treated with the ARB olmesartan suggest that up-regulation of ACE2 may also occur in humans.7 These observations have been reiterated in the literature and on the web in recent days and the question arose whether RAAS inhibition may increase the risk of deleterious outcome of COVID-19 through up-regulation of ACE2 and increase of viral load.

Despite the possible up-regulation of ACE2 by RAAS inhibition and the theoretically associated risk of a higher susceptibility to infection, there is currently no data proving a causal relationship between ACE2 activity and SARS-CoV2 associated mortality. Furthermore, ACE2 expression may not necessarily correlate with the degree of infection. Although ACE2 is thought to be mandatory for SARS-CoV infection, absence of SARS-CoV was observed in some ACE2 expressing cell types, whereas infection was present in cells apparently lacking ACE2, suggesting that additional co-factors might be needed for efficient cellular infection.8 In addition, lethal outcome of COVID-19 is mostly driven by the severity of the underlying lung injury. Importantly, in a mouse model of SARS-CoV infection and...
pulmonary disease, a key pathophysiological role was shown for ACE, angiotensin II and angiotensin II receptor type 1. SARS-CoV or SARS-CoV spike protein led to down-regulation of ACE2 and more severe lung injury in mice that could be attenuated by administration of an ARB. These findings suggest a protective role of ARB in SARS-CoV associated lung injury and give rise to the hypothesis that primary activation of the RAAS in cardiovascular patients, rather than its inhibition, renders them more prone to a deleterious outcome.

It is important to note that Guan et al. do not report how many patients were taking ACE-Is or ARBs. Based on data from the China PEACE Million Persons Project, nearly half of Chinese adults between 35 and 75 years are suffering from hypertension, but fewer than one third receive treatment, and blood pressure control is achieved in less than 10%. Furthermore, there is thus far no data showing that hypertension or diabetes are independent predictors of fatal outcome. Therefore, based on currently available data and statistics, the assumption of a causal relationship between ACE-I or ARB intake and deleterious outcome in COVID-19 is not legitimate. In fact, in a case of reverse causality, patients taking ACE-Is or ARBs may be more susceptible for viral infection and have higher mortality because they are older, more frequently hypertensive, diabetic, and/or having renal disease.

Clearly, much more research is needed to clarify the multifaceted role of the RAAS in connection with SARS-CoV2 infection. Although there is data from animal studies suggesting potentially deleterious effects of the RAAS, prove-of-concept in humans is still lacking. Similarly, a few animal and human studies suggest up-regulation of ACE2 in response to RAAS inhibition through a yet to be identified mechanism, but whether this increases viral load in a critical way, and how viral load per se relates to disease severity remains unknown. Nevertheless, based on the work by Josef Penninger et al., who proposed to therapeutically use the dual function of ACE2 as viral receptor and gatekeeper of RAAS activation, a pilot trial using soluble human recombinant ACE2 (APN01) in patients with COVID-19 has recently been initiated (Clinicaltrials.gov #NCT04287686). Such therapy could have the potential to lower both the viral load and the deleterious effects of angiotensin II activity.

In the meantime, we are well-advised to stick to what is known. There is abundant and solid evidence of the mortality-lowering effects of RAAS inhibitors in cardiovascular disease. ACE-Is, ARBs, and MRAs are the cornerstone of a prognostically beneficial heart failure therapy with the highest level of evidence with regard to mortality reduction. They all have in common the inhibition of the adverse cardiovascular effects arising from the interaction of angiotensin II with the angiotensin II receptor type 1. Discontinuation of heart failure therapy leads to deterioration of cardiac function and heart failure within days to weeks with a possible respective increase in mortality. Similarly, ACE-Is, ARBs, and MRAs are part of the
standard therapy in hypertension^{18} and after myocardial infarction.^{19} Significant reduction of post-infarct mortality applies to all three substance classes, whereby early initiation of therapy (within days after infarction) is an important factor of success.\(^{20-23}\)

In conclusion, based on currently available data and in view of the overwhelming evidence of mortality reduction in cardiovascular disease, ACE-I and ARB therapy should be maintained or initiated in patients with heart failure, hypertension, or myocardial infarction according to current guidelines as tolerated, irrespective of SARS-CoV-2. Withdrawal of RAAS inhibition or preemptive switch to alternate drugs at this point seems not advisable, since it might even increase cardiovascular mortality in critically ill COVID-19 patients.

Conflict of interests: O.P. reports personal fees from Novartis, personal fees from Pfizer, grants and personal fees from Boehringer Ingelheim, grants and personal fees from AstraZeneca, grants from Sanofi, personal fees from Vifor Pharma, personal fees from MSD, outside the submitted work. T.B. reports personal fees from Servier, Amgen, Takeda, Menarini, MSD, Sanofi, and Vifor, outside the submitted work. R.T. reports personal fees from Abbott, Amgen, AstraZeneca, Roche Diagnostics, Siemens, Singulex, and Thermo Scientific BRAHMS, outside the submitted work. Q.Z. reports grants from Boehringer Ingelheim, personal fees from AstraZeneca, grants from Abbott, personal fees from Novartis, other from Alynlam, and personal fees from Bayer, outside the submitted work. S.O. reports grants from the Swiss National Science Foundation for the SwissAF cohort study, outside the submitted work. All other authors declared conflict of interest.

References

1. Sommerstein R, Gräni C. Rapid response: re preventing a covid-19 pandemic: ACE inhibitors as a potential risk factor for fatal Covid-19. BMJ 2020. https://www.bmj.com/content/368/bmj.m810/t2r? (8 March 2020).

2. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020. https://coronavirus.jhu.edu/map.html (11 March 2020).

3. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu S, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Li JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020. Epub ahead of print.

4. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Li H, Kruppa T, Krumholz HM, Jiang L; Prehospital Awareness of Treatment and Control of Hypertension in China: data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project). Lancet 2017;390:2549–2558.

5. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS; Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020. Epub ahead of print.

6. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, Diz DI, Gallagher PE. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers in patients with acute ST-elevation myocardial infarction: the Randomized Double-Blind Reminder Study. J Hypertens 2005;23:196–202.

7. Gilstrap LG, Farivar DC, Desai AS, Liang L, Matsoukas R, DeVore AD, Smith EE, Heidenreich P, Hernandez AF, Yancy CW, Bhatt DL; Initiation, continuation, or withdrawal of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers and outcomes in patients hospitalised with heart failure with reduced ejection fraction. J Am Heart Assoc 2017;6:e004675.

8. Halliday BP, Wassall R, Lota AS, Kalsi A, Gregson J, Newsome S, Jackson R, Rahnevski T, Wage R, Smith G, Venneri L, Tayal U, August D, Midwinter W, Whiffin N, Rajani R, Dungu JN, Pantazis A, Cook SA, Ware J, Bassi AJ, Pennell DJ, Rosen SD, Cowie MR, Cleland JGF, Prasad SK; Withdrawal of pharmacological treatment for heart failure with patients recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet 2019;393:61–73.

9. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Li G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005;436:112–116.

10. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Gu L, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005;11:875–879.

11. Gurwitz D; Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res 2020. Epub ahead of print.

12. Lu J, Yu Y, Xie X, Linderman GC, Wu C, Cheng X, Mu L, Zhang H, Li J, Su M, Zhao H, Spatz ES, Speruts JA, Masoudi FA, Krumholz HM, Jiang L; Prehospital awareness of treatment and control of hypertension in China: data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project). Lancet 2017;390:2549–2558.

13. Williams B, Manca G, Spiering A, Agbioti R, Li X, Linderman GC, Wu C, Cheng X, Mu L, Zhang H, Li J, Su M, Zhao H, Spatz ES, Speruts JA, Masoudi FA, Krumholz HM, Jiang L; Prehospital awareness of treatment and control of hypertension in China: data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project). Lancet 2017;390:2549–2558.