An Abstracted Survey on 6G: Drivers, Requirements, Efforts, and Enablers

Bin Han*, Wei Jiang†, Mohammad Asif Habibi*, and Hans D. Schotten*†

*Technische Universität Kaiserslautern, †German Research Centre for Artificial Intelligence (DFKI)

Abstract—As of today, 5G mobile systems have been already widely rolled out, it is the right time for academia and industry to explore the next generation mobile communication system beyond 5G. To this end, this paper provides an abstracted survey for the 6G mobile system. We shed light on the key driving factors for 6G through predicting the growth trend of mobile traffic and mobile service subscriptions until the year of 2030, envisioning the potential use cases and applications, as well as deriving the potential use scenarios. Then, a number of key performance indicators to support the 6G use cases are identified and their target values are estimated in a quantitatively manner, which is compared with those of 5G clearly in a visualized way. An investigation of the efforts spent on 6G research in different countries and institutions until now is summarized, and a potential roadmap in terms of the definition, specification, standardization, and spectrum regulation is given. Finally, an introduction to potential key 6G technologies is provided. The principle, technical advantages, challenges, and open research issues for each identified technology are discussed.

Index Terms—6G, 6G, wireless, communication networks

I. INTRODUCTION

The year of 2019 opens a new era of the 5G mobile communications. As we are writing the paper, a list of countries such as South Korea, United States, Switzerland, United Kingdom, and Spain have launched commercial 5G services for the general public, while this list grows quickly and is envisioned to become much longer in the near future. As a revolutionary technology, 5G will penetrate into all aspects of society, generating tremendous economic and societal benefits. From the perspective of technology research, however, it is already the time to start considering what the future beyond-5G (B5G) or 6G mobile networks should be, in order to satisfy the demand on communications and networking in 2030.

Since 2018, several pioneering projects have been launched aiming at the next generation of mobile networks. The International Telecommunication Union Telecommunication Standardization Sector (ITU-T) Focus Group Technologies for Network 2030 (FG NET-2030) was established in July 2018, intending to study the capabilities of networks for the year 2030 and beyond, when it is expected to support novel forward-looking scenarios. The European Commission initiated to sponsor beyond-5G research activities, such as its recent Horizon 2020 call - 5G Long Term Evolution – where a number of pioneer projects will be kicked off at the early beginning of 2020. In Finland, the University of Oulu began ground-breaking 6G research as part of Academy of Finland’s flagship program, 6G-Enabled Wireless Smart Society and Ecosystem (6Genesis). Besides, other counties such as the United States, China, Japan, and South Korea already formally started the research and development of key 6G technologies or at least announced their ambition to support the 6G works.

During the same period, there has also been a significant literature conducted for 6G, as listed in Tab. I. Some of these works focus on the description of use cases or applications, some list a number of potential key technologies but only in rough introduction, while some others are providing detailed technological description to very specific categories of technologies. To the best of our knowledge, yet there is no comprehensive survey that can provide a complete view to link the aforementioned related works into an organic structure. To fill this gap, in this article we attempt to provide a complete and through view of the state-of-the-art advances in the development and research of 6G by providing vision, use cases, use scenarios, requirements, efforts, roadmap, as well as an introduction to the promising key technologies.

The rest of this article is organized as follows: Sec. II discusses the key driving factors for the necessity of developing 6G, including the prediction of the explosive growth of mobile traffic and mobile users by 2030, the envision and use cases and application scenarios. Sec. III analyzes the requirements for the 6G systems by quantitatively depicting a number of key performance indicators. The efforts of research, regulatory, and standardization of the main players in the mobile communication industry are summarized and the potential timelines and roadmap for development and standardization are estimated in Sec. IV. Sec. V provides a brief survey of a dozen of key technologies that are identified as the key enablers for 6G. Finally, Sec. VI concludes this article.

II. DRIVERS

As of today, the commercial deployment of 5G mobile networks has been rolled out for around one year across the world, and the network scale in some countries is already very large. Following the historical tradition in the mobile industry, i.e., a new generation every ten years, it is the right time to discuss the successor of 5G in the research and standardization community. The key driving forces for the development of a next-generation system are not only from the exponential growth of mobile traffic and connectivity demand, but also from new disruptive services and applications on the horizon.

A. Explosive Mobile Traffic

We are in an unprecedented era where a massive number of smart products, services, and applications emerge and evolve
quickly, imposing a huge demand on mobile traffic. It can be foreseen that the 5G system designed before 2020 cannot well satisfy such a demand in 2030 and beyond. Due to the proliferation of rich-video applications, enhanced screen resolution, Machine-to-Machine (M2M) communications, mobile cloud services, etc., the global mobile traffic will continuously increase in an explosive manner, up to 5016 EB per month in the year of 2030 compared with 62 EB per month in 2020, according to the estimation of ITU-R made in 2015 [19]. A report by Ericsson [20] revealed that the global mobile traffic had reached around 33 EB per month by the end of 2019, which partially proves the correctness of ITU-R’s estimation. The number of smartphones and tablets will further increase, while other devices such as wearable electronics will grow in a faster pace, amounting to a total of 17.1 billion mobile subscriptions in 2030. In addition to the human-centric communications, the M2M terminals will experience a more-rapid growth and will become saturated no earlier than 2030. It is envisioned that the number of M2M subscriptions will reach 97 billion, as shown in Fig.1 around 14 times over that of 2020. The traffic from mobile video services already dominated, account for two-thirds of all mobile traffic. However, the usage of video services keeps growing, such as the boom of Tik-Tok recently, and the resolution of video continuously improves. In some developed countries, strong traffic growth before 2025 is driven by rich-video services and long-term growth wave will continue due to the penetration of Augmented/Virtual Reality (AR/VR) applications. The average data consumption for every mobile user per month, as illustrated in Fig.1, will increase from around 5 GB in 2020 to over 250 GB in 2030.

B. Use cases

With the advent and evolution of cutting-edge fields, such as displaying, robotics, edge computing, AI, unmanned aerial vehicle (UAV), and space technology, in combination with the mobile system, many unprecedented use cases can be fostered. Here, we envision several cases with high potential, as summarized in Tab. I.

C. Use scenarios

In the 5G systems, three usage scenarios have been firstly defined by ITU-R recommendation M.2083 in 2015 [21]. More specifically: the enhanced Mobile Broad-band (eMBB)
TABLE II
SOME 6G USE CASES WITH HIGH POTENTIAL.

Use Case	Typical Applications	Key Requirements
Extended reality (ER)	immersive gaming, remote surgery, remote industrial control	high data rate (>1.6 Gbps/device), low latency, high reliability
Holographic telepresence	online education, collaborative working, deep-immersive gaming	ultra-high data rate (terabits per second)
Multi-sense experience	remote surgery, tactile Internet, remote controlling and repairing	stringently low latency
Tactile Internet for Industry 4.0	industrial automation, smart energy consumption	≤1 ms E2E latency
Intell. transport & logistics	Automated road speed enforcement, real-time parking management	stringently high reliability and low latency
Ubiquitous global roaming	World-wide roaming services for UEs, portable devices, industrial apps.	low-cost fully global coverage
Pervasive intelligence	computer vision, SLAM, speech recognition, NLP, motion control	high decision accuracy and transparency, complex data privacy

FIG. 1. The estimated global mobile subscriptions and traffic from 2020 to 2030. Source: ITU-R Report M.2370-0 [19].

FIG. 2. The envisioned use scenarios for 6G systems.

addresses the human-centric applications for a high-data-rate access to mobile services, multi-media content and data; the Ultra-Reliable Low-Latency Communications (URLLC) focuses on enabling mission-critical connectivity for new applications with stringent requirements on reliability, latency, and availability; while the massive Machine-Type Communications (mMTC) aims at support to dense connectivity with a very large number of connected devices that are low-cost, low-power consumption but typically transmitting a low volume of delay-tolerate data [22].

Being customized for highly specialized applications, all 5G use scenarios achieve extreme performance in some aspect by sacrificing in others, and cannot fully satisfy the requirements of envisioned 6G use cases. For instance, an user wearing a lightweight VR glass playing interactive immersive games requires not only ultra-high data throughput but also very low latency connectivity. Autonomous vehicles on the road or flying drones demand both high data rate and high-reliability low-latency connectivity. Through extending the scope of current 5G use scenarios, as shown in Fig. 2, we envision four extra scenarios to cover their overlapping areas.

To accommodate the increasing capacity requirement from commercial passenger planes, helicopters, ships, high-speed trains and the demand of connectivity in remote areas, a ubiquitous coverage of MBB service for the whole planet is expected in 6G, which we named ubiquitous Mobile BroadBand (uMBB) as an use scenario for 6G. Another key aspect of uMBB is the capacity improvement for hot spots so as to support the proliferation of new services, e.g., VR with a data rate of up to 1 Gbps/user. Ultra-reliable Low-latency Broadband Communication (ULBC) supports the services with low-latency high-reliability connectivity and high data throughput, such as moving robots and Automatic Guided Vehicle (AGV) in industrial sites. The scenarios of massive Ultra-reliable Low-latency Communication (mULC) combines the features of mMTC and URLLC, facilitating the deployment of massive sensors and actuators in verticals.

III. KEY PERFORMANCE INDICATOR REQUIREMENTS
To satisfy the technical requirements of use scenarios and applications in 2030 and beyond, the 6G system will provide more system capacity and network performance. Most of the key performance indicators (KPIs) applied for quantitatively or qualitatively evaluating 5G networks are also valid for 6G networks while some new KPIs must be considered for the new features. We briefly summarize our overview to the KPI comparison between 5G and 6G in Fig. 3 and Tab. III

IV. ROADMAP AND EFFORTS
Although a discussion is ongoing within the wireless community about whether counting should be stop at 5, several pioneering works on the next-generation wireless networks have been initiated, as summarized in Fig. 4.

V. TECHNOLOGICAL ENABLERS
To pave the road towards the expected extreme performance, so as to realize the envisioned use cases and use scenarios, a diverse set of technologies are expected to play their roles in the future evolution of mobile networks. We can generally categorize them into the following groups: New Spectrum
TABLE III
COMPARISON BETWEEN 5G AND 6G ON SOME KPI REQUIREMENTS

KPI	5G Requirement	6G Requirement
Peak data rate	20/10 Gbps (DL/UL)	1 Tbps
User-experienced data rate	100/50 Mbps (DL/UL, dense urban)	≥ 1 Gbps
Latency	UP: 4/1 ms (eMBB/URLLC)	CP: 10 ms (eMBB/URLLC)
	CP: remarkably improved	CP: 10 μs to 100 μs
Mobility	up to 500 km/h (high-speed trains)	up to 1,000 km/h (airlines)
Connection density	10^m per km^2 (with relaxed QoS)	10^2 per km^2
Network energy efficiency	not defined	10 - 100 times better than that of 5G
Peak spectral efficiency	90/45 Gbps/Hz (DL/UL)	90/45 Gbps/Hz (DL/UL)
Area traffic capacity	10 MBps/m^2	1 Gbps/m^2
Reliability	≥ 99.999% (URLLC, 32 bytes within 1 ms, urban macro)	≥ 99.99999%
Signal bandwidth	≥ 100 MHz	≥ 1 GHz
Positioning accuracy	5/m,10/m	cm level
Hit奈ess	undefined	considered

Fig. 3. The envisioned KPI requirements for 6G in comparison with 5G.

VI. CONCLUSIONS

In this paper, we provided an abstracted outlook at the drivers, requirements, efforts, and enablers for the next-generation mobile system beyond 5G. The prediction of the trends, the envision of the future societal and technological evaluation, and the identification of key research directions might be rough, partial and even somehow inaccurate with the limitation of the knowledge of the authors and the information we can collect up to now.

REFERENCES

[1] K. David and H. Berndt, “6G vision and requirements: Is there any need for beyond 5G?” IEEE Veh. Technol. Mag., vol. 13, no. 3, pp. 72–80, Sep. 2018.
[2] S. J. Nawaz et al., “Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future,” IEEE Access, vol. 7, pp. 46 317–46 350, Apr. 2019.
[3] T. S. Rappaport et al., “Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond,” IEEE Access, vol. 7, pp. 78 729–78 757, Jun. 2019.
[4] P. Yang et al., “6G wireless communications: Vision and potential techniques,” IEEE Network, vol. 33, no. 4, pp. 70–75, Jul. 2019.
[5] K. B. Lettael et al., “The roadmap to 6G: AI empowered wireless networks,” IEEE Commun. Mag., vol. 57, no. 8, pp. 84–90, Aug. 2019.
[6] B. Zong et al., “6G technologies: Key drivers, core requirements, system architectures, and enabling technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 18–27, Sep. 2019.
[7] Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, Y. Lei, G. K. Karagiannidis, and P. Fan, “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 28–41, 2019.
[8] E. C. Strinati et al., “6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 42–50, Sep. 2019.
[9] T. Huang et al., “A survey on green 6G network: Architecture and technologies,” IEEE Access, vol. 7, pp. 175 758–175 768, Dec. 2019.
[10] W. Jiang and F. L. Luo, “Computational radio intelligence: One key for 6G wireless,” ZTE Commun., vol. 17, no. 4, pp. 1–3, Dec. 2019.
[11] S. Dang et al., “What should 6G be?” Nat. Electron., vol. 3, p. 20–29, Jan. 2020.
[12] F. Tang et al., “Future intelligent and secure vehicular network toward 6G: Machine-learning approaches,” Proc. IEEE, vol. 108, no. 2, pp. 292–307, Feb. 2020.
[13] M. Giordani et al., “Toward 6G networks: Use cases and technologies,” IEEE Commun. Mag., vol. 58, no. 3, pp. 55–61, Mar. 2020.
[14] H. Viswanathan and P. E. Mogensen, “Communications in the 6G era,” IEEE Access, vol. 8, pp. 57 063–57 074, Mar. 2020.
[15] S. Chen et al., “Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed,” IEEE Wireless Commun. Mag., vol. 27, no. 2, pp. 218–228, Apr. 2020.
[16] W. Saad et al., “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, May 2020.
[17] N. Kato et al., “Ten challenges in advancing machine learning technologies toward 6G,” IEEE Wireless Commun. Mag., vol. 27, no. 3, pp. 96–103, Jun. 2020.
Fig. 4. The roadmap for main 6G research and developments.

TABLE IV
CATEGORIZED KEY ENABLERS WITH ADVANTAGES AND CHALLENGES

Category	Enabler	Advantages	Challenges
Spectrum	THz	high bandwidth, narrow beams, high integration level [7], [23], [25]	severe attenuation & blockage, low range
	OWC (incl. VLC)	almost unlimited bandwidth, license-free, low cost, security, health-friendly	frail MIMO gain, HW implementation, noise, loss, nonlinearity, dispersion, pointing errors [8], [8]
	DSSM	coexistence of licensed/unlicensed users	service heterogeneity, SDN controller placement, auto network management [80] and orchestration [81], E2E QoS control [82], [83], [84]
	NFV & SDN	high flexibility, low operational cost [67]	rely on 3rd party assessments, business framework
	RAN Nslicing	flexibility, resource efficiency, security	arch. framework supporting multi-use-case verticals [85]
Networking	O-IOAN	efficiency, intelligence, flexibility, dynamic	lack of tech. convergence & standardization efforts
	Security	service-based E2E security	AI & ML deployment
Air interface	Massive MIMO	high capacity, statistical multiplexing gain	extremely large aperture, channel prediction [27], [86], intell. env. aware adaptation, holographic mMIMO, 6G positioning, large-scale MIMO radar [87], [88]
	IRS, aka RIS/SRE	high MIMO gain, low imp. cost, low power [42], [43]	rely on 3rd party assessments, business framework
	CoMP	BS-level spatial diversity, cell-free’ potential	clustering, sync. channel est., backhaul [44]
	New modulation	intell. OFDMA	waveform design [45], out-of-band radiation [46]
Architecture	Large-scale LEO satellite constellation	ubiquitous coverage, resistance to natural disasters, lower channel loss and cost than GEO [45], [47]	integration with terrestrial networks, launching cost
	HAP	large coverage, unobstructed, flexible deployment; lower cost, easier access to infrastructure and better	channel modelling [50], deployment, path planning, operational altitude, interference, energy limit, reliability [51]
	UAV	channel than satellite, new use scenarios [52], [53]	security, real-time demand [53]
	AI	Deep learning	computational complexity [53]
	AI as a service	low latency AI service for end-user at terminals	new distributed AI techniques, new APIs
	Block-chain	immutability, decentralization, transparency, security and privacy [55]	majority vulnerability, double-spending, transaction privacy leakage, scalability, quantum computing [59]
	Digital twin	improved quality of products, services, processes, devices, etc. in Industry 4.0 and IoT	scalability, self-management, lack of models and methodologies, security and privacy [60], [63], [62]
	Edge intelligence	resolves MEC issue caused by service requirement diversity among a massive number of users	customized AI algorithms, resource management and task scheduling [60]
	CoCoCo convergence	resolves timeliness and resilience problems due to the coupling between communication, computation, and control systems [64], [65]	in-loop co-design methodologies & frameworks

[18] W. Guo, “Explainable artificial intelligence for 6G: Improving trust between human and machine,” IEEE Commun. Mag., vol. 58, no. 6, pp. 39–45, Jun. 2020.
[19] IMT traffic estimates for the years 2020 to 2030, ITU-R Std. M.2370-0, Jul. 2015.
[20] “Mobile data traffic outlook,” Report, Ericsson, Jun. 2020.
[21] IMT vision-Framework and overall objectives of the future development of IMT for 2020 and beyond, ITU-R Std. M.2083-0, Sep. 2015.
[22] M. A. Habibi, M. Nasimi, B. Han, and H. D. Schotten, “A comprehensive survey of ran architectures toward 5G mobile communication system,” IEEE Access, vol. 7, pp. 70371–70421, 2019.
[23] X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon, and G. Chen, “Millimeter wave communication: A comprehensive survey,” IEEE Communications Surveys Tutorials, vol. 20, no. 3, pp. 1616–1653, 2018.
[24] Z. Chen, X. Ma, B. Zhang, Y. Zhang, Z. Niu, N. Kuang, W. Chen, L. Li, and S. Li, “A survey on terahertz communications,” China Communications, vol. 16, no. 2, pp. 1–35, 2019.
[25] P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 2047–2077, 2015.
[26] J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, Feb. 1997.
[27] I. F. Akyildiz, A. Kak, and S. Nie, “6g and beyond: The future of
wireless communications systems,” *IEEE Access*, vol. 8, pp. 133,995–134,030, 2020.

[28] A. Kliks, L. Kulacz, P. Krzyszkiwicz, H. Bogucka, M. Dryjanski, M. Isaksson, G. P. Koudouridis, and P. Tengkvist, “Beyond 5G: Big data processing for better spectrum utilization,” *IEEE Vehicular Technology Magazine*, vol. 15, no. 3, pp. 40–50, 2020.

[29] W. Jiang, M. Strufe, and H. Schotten, “Autonomic network management for software-define and virtualized 5G systems,” in *Proc. European Wireless*, Dresden, Germany, May 2017.

[30] W. Jiang, M. Strufe, and H. D. Schotten, “Experimental results for artificial intelligence-based self-organized 5G networks,” in *Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC)*, Montréal, QC, Canada, Oct. 2017.

[31] W. Jiang, M. Strufe, and H. Schotten, “Intelligent network management for 5G systems: The SELFNET approach,” in *Proc. IEEE Int. Conf. on 5G and Commun. (5G-Doctor)*, Chiva, Finland, Jun. 2017, pp. 109–113.

[32] A. Ksentini, M. Bagaa, and T. Tuleb, “On using SDN in 5G: The controller placement problem,” in *2016 IEEE Global Communications Conference (GLOBECOM)*, 2016, pp. 1–6.

[33] V.-M. Alevizaki, M. Anastasopoulos, A. Tzanakaki, and D. Sicimendou, “Joint fronthaul optimization and SDN controller placement in dynamic 5G networks,” in *Optical Network Design and Modeling*, A. Tzanakaki, M. Varvarigos, R. Muñoz, R. Nejabati, N. Yoshikane, M. Anastasopoulos, and J. Marquez-Barrja, Eds. Cham: Springer International Publishing, 2018, pp. 181–192.

[34] S. Khan, A. Gani, A. W. Abdul Wahab, M. Guizani, and M. K. Khan, “Topology discovery in software defined networks: Threats, taxonomy, and state-of-the-art,” *IEEE Communications Surveys Tutorials*, vol. 19, no. 1, pp. 303–324, 2017.

[35] S. Tomovska and P. Radev, “Fading channel prediction: A comprehensive overview,” in *IEEE Communications Surveys and Tutorials*, vol. 22, no. 4, pp. 3168–3207, 2020.

[36] A. Mohammed et al., “The role of high-altitude platforms (HAPs) in the global wireless connectivity,” *Proceedings of IEEE*, vol. 99, no. 11, pp. 1939–1953, Nov. 2011.

[37] Y. Hu and V. O. K. Li, “Satellite-based internet: A tutorial,” vol. 39, no. 1, pp. 154–162, Mar. 2001.

[38] W. Jiang et al., “Opportunistic relaying over aerial-to-terrestrial and device-to-device radio channels,” in *Proc. IEEE Int. Conf. on Comm. (ICC)*, Sydney, Australia, Jul. 2014, pp. 206–211.

[39] ——, “Achieving high reliability in aerial-terrestrial networks: Opportunistic time-space coding,” in *Proc. IEEE Eur. Conf. on Net. and Comm. (EUCN)*, Bologna, Italy, Jun. 2014.

[40] M. Isaksson, G. P. Koudouridis, and P. Tengkvist, “Beyond 5G: Big data processing for better spectrum utilization,” *IEEE Access*, vol. 7, pp. 118,112–118,124, Aug. 2019.

[41] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” *IEEE Signal Processing Magazine*, vol. 37, no. 5, pp. 50–60, 2020.

[42] H.-N. Dai et al., “Virtual internet: A survey,” *IEEE Internet of Things Journal*, vol. 6, no. 5, pp. 8076–8094, Oct. 2019.

[43] T. Nguyen, N. Tran, L. Loven, J. Partala, M. Kechadi, and S. Pirttikangas, “Privacy-aware blockchain innovation for 6g: Challenges and opportunities,” in *2020 2nd 6G Wireless Summit (6G SUMMIT)*, 2020, pp. 1–5.

[44] R. Minerva, G. M. Lee, and N. Crespi, “Digital twin in the iot context: A survey on technical features, scenarios, and architectural models,” *Proceedings of the IEEE*, vol. 108, no. 10, pp. 1785–1824, 2020.

[45] T. Cauquil, “Neural network-based fading channel prediction: A comprehensive overview,” *IEEE Access*, vol. 7, pp. 118,112–118,124, Aug. 2019.

[46] B. R. Barticelli, E. Casiraghi, and D. Fogli, “A survey on digital twin: Definitions, characteristics, applications, and design implications,” *IEEE Access*, vol. 7, pp. 167,653–167,671, 2019.

[47] W. Jiang, “Device-to-device based cooperative relaying for 5G network: A comparative review,” *ZTE Commun.*, vol. 15, no. S1, pp. 60–66, Jun. 2017.

[48] Z. Qu et al., “LEO satellite constellation for internet of things,” *IEEE Access*, vol. 5, pp. 18,391–18,401, Sep. 2017.

[49] Y. Hu and V. O. K. Li, “Satellite-based internet: A tutorial,” vol. 39, pp. 55–62, 2001.

[50] W. Jiang et al., “Opportunistic relaying over aerial-to-terrestrial and device-to-device radio channels,” in *Proc. IEEE Int. Conf. on Comm. (ICC)*, Sydney, Australia, Jul. 2014, pp. 206–211.

[51] ——, “Achieving high reliability in aerial-terrestrial networks: Opportunistic time-space coding,” in *Proc. IEEE Eur. Conf. on Net. and Comm. (EUCN)*, Bologna, Italy, Jun. 2014.