Clustering of *dioscorea* spp. From semarang district and boyolali-indonesia based on characterization starch type and tuber morphology

Siti Maqfiroh, Jumari, Murningsih
Department of Statistics, Faculty of Science and Mathematics, Diponegoro University
Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia

E-mail: smaqfiroh@gmail.com

Abstract. *Dioscorea* Spp. is a group of plants that having great potential to be developed, but its presence are increasingly marginalised. Semarang district and Boyolali-Indonesia have variants of *Dioscorea* Spp. that has not been characterized. The purpose of this research to clustering and know the similarity range of *Dioscorea* Spp. from Semarang district and Boyolali-Indonesia based on starch type and tuber morphology. Ten variants *Dioscorea* Spp. from Semarang district and Boyolali-Indonesia are characterized its starch and tuber, than arranged using cluster analysis with Past ver. 9.0 programs. The result of cluster analysis showed that 10 variants were found clustered into two main groups. First group consist of ‘gembili wulung’, ‘tomboreso’, ‘gembili brol’, ‘gembili tropong’ and ‘gembili pulung’, while second group are ‘uwi legi’, ‘uwi ungu’ and ‘uwi bangkulit’. Varieties from Semarang district and Boyolali have different morphological forms, but still have close kinship relationship.

1. Introduction

Central Java is one of the area that became center of genetic diversity resources (Rustini, 2003). According to Jumari (2017), rural areas in Central Java have various types of sweet potato that need to be preserved. Semarang district and Boyolali-Indonesia are two areas that still have variants of *Dioscorea* Spp. because existence is preserved by society. *Dioscorea* Spp. is one of species that must be preserved its existence because it has great potential, especially in the field of food.

Semarang district is a hilly area with a slope of 15-14% (Bappeda Semarang, 2014). The area of Boyolali, especially in the Simo area is a mountainous area located at an altitude of 432 masl (BPS Simo, 2014). A small proportion of people in these two regions cultivates *Dioscorea* Spp. as a side crop, so the diversity of *Dioscorea* Spp. in these areas can still be found. According Jumari (2017), there are five types of member *Dioscorea* Spp. located in 12 districts and some rural areas in central Java. Some species can be encountered in Semarang district and Boyolali-Indonesia areas. So far, Dioscorea Spp. from semarang and Boyolali not yet characterized definitively, so it is
necessary to carry out the group characterization activities to find out how much potential that *Dioscorea* Spp. can be develop.

Differences in the characteristics of a plant not only occur in plants originating from areas where production centers are different, but also from the same region (Hambali, 1994). The diversity occurring causing a classified plant/ taxonomy still shows the diversity among populations (Sofro, 1994). The equations and the existence of a plant morphology can be used to know how far closer kindship relationship (Sus kendriyati et al, 2000). Characterization activities based on morphological markers are important because their existence can be preliminary data to complement the diversity of a plant (Trimanto, 2012).

2. Material and methods

 Dioscorea Spp. sampling activity was conducted from April-August 2017. The location of the accession took place in the village of Jabungan, Mluweh and Simo. Characterization of tuber morphology tubers was carried out in Ecology and Systematic Laboratory, Observation of starch was done in the laboratory of Basic Biology Department of Biology, Faculty of Science and Mathematics, Diponegoro University. Tuber sample from Jabungan, Mluweh and Simo has identified and identification based on their stem and leaf using guidelines from IRETA (1998) and then characterized using Yam’s Descriptor From IPGRI (1997). The characteristic of the tubers observed are the number of tubers per hill, tuber spacing, shape, size and colours. Photomicrograph 4^x ($4 	imes 10$) magnification used for characterization of amyloc type. Similarity analysis was calculated using similarity index then cluster analysis was done to determine Dendrogram of *Dioscorea* Spp. similarity distance. Before determining the distance of similarity, scaled data was processed. Scoring is done by giving score 0 if not fulfilled and score 1 if fulfilled.

3. Results and discussion

 Jabungan and Mluweh villages located in Semarang are located at an altitude 123 amsl and 103 amsl. Simo village is located in Boyolali with an altitude of 216 amsl. Simo has the highest humidity (70,1%) compared to Jabungan and Mluweh. This means that mean that water vapor in the ground is still high because this area is close to the water flow. Soil moisture in Jabungan and Mluweh is about 25%-37.5%. Soil in the Jabungan area is more humid than Mluweh because in Jabungan there are many shaded. Mapping in Jabungan makes the intensity of light that coming into this area decreased. Jabungan and Mluweh have neutral soil, while Simo has acid soil (PH 5,5). But, these three areas have environmental conditions that suitable to the cultivation of *Dioscorea* Spp. In accordance with Abdillah (2015), the environmental requirements to the cultivation of *Dioscorea* Spp. in the form of lowland to the mainland that is at an altitude of 800 amsl, optimal soil moisture is 40% and soil’s PH around 5.5 to 6.5. Although Simo has a moist soil, some members of *Dioscorea* Spp. able to survive. This is because *Dioscorea* Spp. able to survive in a critical environment (poor nutrients). According to Zalindau (2015), Dioscorea is able to grow in places such as moor, rich field and lea.

 The result showed that in Jabungan area there are 4 variants *Dioscorea* Spp.(namely gembili brol, uwi legi, uwi bangkulit and tomoreso), from Mluweh there is 1 variant that is gembili wulung and from Simo got 5 variant (namely gembili brol, gembili tropong, gembili pulung, uwi bangkulit and uwi ungu). Based on leaf and stem characteristics, the ten sample variants obtained were placed on three types of Dioscorea Spp. members. There are *D. alata*, *D. esculenta* and *D. pentaphylla*. Samples from Semarang and Boyolali have various characteristics. One of the factors that influence the diversity of
morphological characteristic is the environment. Tuber characterization result are shown in Table 1.

Table 1. Tuber Characteristic *Dioscorea* Spp. From Semarang and Boyolali-Indonesia

No	Local Name	Shape	Skin Color	Length	Color of tuber after oxidation	Fresh tuber color	Oxidation duration	Relationship between tubers	There are Root spines	
1	Uwi legi	Round-elongated	Dark brown	Dark white	27 cm	Brown	White	< 1 minute	United	Yes
2	Uwi bangkulit Semarang	flattened	Light brown	Purple	26 cm	Brown	White	< 1 minute	United	No
3	Gembili wulung Semarang	rounded	Light brown	Purple	6 cm	Purple-yellowish	Purple-purple	> 1 minute	Separate	Yes
4	Gembili brol Semarang	Cylindrical	Light brown	Dark white	18 cm	Purple-yellowish	White	< 1 minute	Separate	Yes
5	Tomboreso	Cylindrical-elongated	Dark brown	Dark white	21 cm	Brown	White-purple	> 1 minute	United	No
6	Uwi ungu	Cylindrical-elongated	Dark brown	Purple	28 cm	Purple-yellowish	White-purple	< 1 minute	United	No
7	Uwi bangkulit Boyolali	Round-elongated	Dark brown	Purple	30 cm	Orange-brownish	Orange	< 1 minute	United	No
8	Gembili tropong Boyolali	Cylindrical	Light brown	Dark white	18 cm	Brown	yellowish	> 1 minute	Separate	No
9	Gembili brol Boyolali	Cylindrical	Light brown	Dark white	5 cm	Brown	White	< 1 minute	Separate	No
10	Gembili pulung	Cylindrical	Dark brown	Dark white	4.5 cm	Brown	White	< 1 minute	Separate	No

Table 2. Amylum Characteristics *Dioscorea* Spp. From Semarang and Boyolali-Indonesia

No	Local Name	Amylum Shape	Hilum Position	Amylum length (µm)	Amylum wide (µm)	Amylum Type
1	Uwi legi	Oval	Eccentric	422.5	275.5	Monoadelph
2	Uwi bangkulit Semarang	Oval	Eccentric	432.5	263.5	Monoadelph
3	Gembili wulung Semarang	Circle	Concentric	5.9	4.9	Monoadelph
4	Gembili brol Semarang	Circle	Concentric	8.7	7	Monoadelph
5	Tomboreso	Oval	Eccentric	422.5	275.5	Monoadelph
6	Uwi ungu	Oval	Eccentric	427.5	340	Monoadelph
7	Uwi bangkulit Boyolali	Triangle	Eccentric	370	299.5	Monoadelph
8	Gembili tropong Boyolali	Circle	Concentric	8.1	5.7	Monoadelph
9	Gembili brol Boyolali	Circle	Concentric	13.4	11.4	Monoadelph
10	Gembili pulung	Circle	Concentric	15.1	11.9	Monoadelph
Based on Table 1, varieties originating from different regions have different morphological characteristics. Ten varieties have tuber types and annual growth. Tubers can only be harvested during the dry season, because during the rainy season the unprofitable tubers will experience the growth of shoots and other vegetative organs. Different morphological characteristics are evident in groups *D. esculenta* and *D. alata*. *D. esculenta* has cylindrical tuber, has 2-5 or >5 tubers per hill, and is not branched. *D. alata* and *D. pentaphylla* have round tuber shape, one form per hill with size larger than *D. esculenta*. Differences in shape and surface of the tubers are influenced by different temperatures. Lower temperature makes the tubers elongate and pale. Crack on the surface of the bulbs is affected by the hottest light intensity in the area. The temperature intake as a result the growth of the ball rose normally. This is in accordance with the Nonnecke (1989) statement that if during tuber growth experienced high temperature stress the resulting tuber will be abnormal due to the growth of new tubers from the performed bulbs called secondary growth (tuber fractures, tuber lengthening and tuber series).

Tubers pulps have a variety of colors. *D. esculenta* white to yellowish white, *D. alata* and *D. pentaphylla* have the color of white, orange and purplish white. Variations in the color of pulps are influenced by the amount of anthocyanin. Highly low anthocyanin content is influenced by environmental conditions. Both of light factor, microorganisms and nutrients in the soil. According to Damanhuri (2005), differences in anthocyanin levels are caused by season and environmental conditions. The accumulation of anthocyanins is caused by environmental factors such as light, temperature, nitrogen source, pathogen attack and some substances such as cytokines, GA and ethylene. Tubers that produce much sap, will more quickly experience oxidation. The most rapidly oxidized and decayed variant is the gembili brol of Semarang.

Based on the results of the characterization of starch in Table 2, the type of starch *D. esculenta* is monoadelph, circular and the location of hilum in the center (centris). Groups *D. alata* and *D. pentaphylla* have a monoadelph starch type, eccentric hilum and oval-shaped amyllum and triangle. Circular, oval and triangular shapes are the common form of starch in the tuber groups. The shape of the starch is a special character that can be used to identify the type of starch from tuber plants. The circle is a typical form ‘gembili’ and oval shape is a hallmark of ‘uwi’ and ‘tomboreso’ starch. According to Richana (2004), granular form is characteristic of each starch that can be used to identify the types of starch.

Tuber characteristic morphology can be used to determine the kinship relationship resemblance variant based on the similarity. Result of cluster analysis clumped many variant become a group at a certain distance based on their characteristic similarity. The higher similar between variant it will increase similarity percentage and closer the distance kinship. Based on analysis of 30 character of tuber and starch, get the result in table 3 and picture 1.

Table 3. Index Similarity *Dioscorea* Spp. From Semarang and Boyolali-Indonesia

	USM2	USM4	GSM1	GSM2	TSM	UBY2	UBY4	GBY1	GBY2	GBY3
USM2	1									
USM4	0.35	1								
GSM1	0.25	0.26	1							
GSM2	0.41	0.27	0.47	1						
TSM	0.5	0.35	0.56	0.41	1					
UBY2	0.5	0.21	0.19	0.2	0.41	1				
UBY4	0.41	0.21	0.25	0.14	0.26	0.41	1			
GBY1	0.5	0.15	0.38	0.41	0.33	0.33	0.41	1		
GBY2										
GBY3										
Note: USM2 (‘Uwi’ Legi), USM4 (‘Bangkulit Semarang’), GSM1 (‘Gembili Wulung’), GSM2 (‘Brol Semarang’), TSM (‘Tomboreso’), UBY2 (‘Uwi Ungu Boyolali’), UBY4 (‘Uwi bangkulit Boyolali’), GBY1 (‘Gembili Tropong’), GBY2 (‘Gembili Brol Boyolali’) and GBY3 (‘Gembili Pulung’).

Based on Table 3, shows that variants that have similarities will be indicated by number one (1). While, variants that do not have any similarities will be indicated by number zero (0). ‘Gembili Tropong’, ‘Gembili Brol Boyolali’ and ‘Gembili Pulung’ have a close relationship. They have a similar characteristics based on their tuber morphologi and amyllum type.

Based on Pic. 1 shown that at the value of similarity 40, ten variants Dioscorea Spp. from Semarang and Boyolali-Indonesia clustering to be two clusters. 1st cluster consist of ‘Gembili wulung’, ‘Tomboreso’, ‘Brol Semarang’, ‘Uwi Ungu’, ‘Uwi legi’, ‘Gembili Tropong’, ‘Gembili Brol Boyolali’, ‘Gembili Pulung’ and ‘Uwi Bangkulit Boyolali’. 2nd cluster consist of ‘Uwi Bangkulit Semarang’. We know that ‘Uwi Bangkulit Semarang’ has a different characteristics from the other variant. It’s tuber length, wide and not have branches. At the value of similarity 1.0 ‘Gembili tropong’, ‘Gembili Brol boyolali’ and ‘Gembili Pulung’ are same. They have same tuber, from their size, color, and amyllum type.

According to Trimanto (2012), there are variations on the uwi caused of environmental factors. The environmental conditions that cause stress for long periods allow the plant to undergo a genetic change.
4. Results and discussion
Semarang and Boyolali area there are three types of members Dioscorea spp. namely D. alata, D. esculenta and D. pentaphylla. D. alata has big tuber, flattened, one per hill has branch, variant colors, and oval or triangle amylum. D. esculenta has small tuber, oval, ±5 tubers per hill, variant color, without branch and circle amylum. D. pentaphylla has round tuber, branch, big tuber, white tuber and oval amylum. From this research we know that varians ‘gembili pulung’, ‘gembili brol’, and ‘gembili tropong’ have same characteristics, so its have near relationship. And we know that ‘tomboreso’ near to ‘gembili’ than ‘uwii’.

References
[1] Bappeda Semarang. 2014. Peraturan Walikota Semarang No 18 Tahun 2014 Tentang Rencana Kerja Pembangunan Daerah (RKPD) Kota Semarang tahun 2015. Badan perencanaan Pembangunan Daerah : Semarang.
[2] Kecamatan Simo. 2016. Statistik Daerah 2016 Kecamatan Simo. Katalog. Ksk Kecamatan Simo.
[3] Cahyarini, R.D, Ahmad Y. dan Edi P. 2004. Identifikasi Keragaman genetik Beberapa Varietas Lokal Kedelai di Jawa Berdasarkan Analisis Isozim. Tesis. Program Pasca Sarjana. Universitas Sebelas Maret Surakarta.
[4] Daradjat, M., Silitonga S., Nafisah. 2008. Ketersediaan Plasma Nutfah untuk Perbaikan Varietas Padi. Sukamandi: Balai Besar Penelitian Tanaman Padi.
[5] Hambali, G. 1994. Spesies dan Varietas. Jakarta: Trubus.
[6] IPGRI, 1997. Descriptors for yam (Dioscorea spp.) IPGRI, Rome, Italy: International Plant Genetic Resources Institute (IPGRI)/ International Institute of Tropical Agriculture (IITA), Ibadan Nigeria. 61 pp.
[7] IRETA [Institute for Research, Extension and Training in Agricultural]. 1988. Agro-facts Crops IRETA Publication 1/88: A Practical Guide to Identifying Yams. 8p.
[8] Jumari, 2017. The Diversity of Dioscorea spp. in Central Java Indonesia: Local Utilization and Conservation. Journal. Advanced Science Letters. Vol 23 (7) pp : 6441-6443.
[9] Kementrian Pertanian. 2010. Road Map Strategi Sektor Pertanian dalam Menghadapi Perubahan Iklim. Jakarta : Kementrian Pertanian.
[10] Nonnecke, L. L. 1989. Vegetable Production. Van Nostrand Reinhold, New York
[11] Rustini, Sri., et al 2003. Inventarisasi, Eksplorasi dan Upaya Koleksi Sumber Daya Genetik Tanaman Pangan Jawa Tengah. Prosiding Seminar Nasional Sumber Daya Genetik Pertanian. Ungaran : BPTP Jawa Tengah.
[12] Sofro, A.S.M. 1994. Keanekaragaman Genetik. Yogyakarta: Andi Offset
[13] Suskendriyati, Herwin, et al 2000. Studi Morfologi dan Hubungan Kekerabatan Varietas Salak Pondoh (Salacca zalacca (Gaert.) Voss.) di Dataarang Tinggi Sleman. Jurnal Biodiversitas. Vol. 1 (2) Hal : 59-64
[14] Trimanto. 2012. Karakterisasi dan Jarak Kemiripan Uwi (Dioscorea alata L.) Berdasarkan Penanda Morfologi Umbi. Buletin Kebun Raya: 47-59