Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency

Rossella Guerrieri1,a,1, Soumaya Belmecheri1, Scott V. Ollinger3, Heidi Asbjornsen1, Katie Jennings7, Jingfeng Xiao8, Benjamin D. Stocker5, Mary Martin5, David Y. Hollinger5, Rosvel Bracho-Garrillo5, Kenneth Clark5, Sabina Dore9, Thomas Kolb5, J. William Munger6, Kimberly Novick7, and Andrew D. Richardson1,k

1Earth Systems Research Center, University of New Hampshire, Durham, NH 03824; 2Centre for Ecological Research and Forestry Applications, c/e Autonoma de Barcelona, 08290 Cerdanyola, Barcelona, Spain; 3Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721; 4Northern Research Station, US Department of Agriculture Forest Service, Durham, NH 03824; 5School of Forest, Northern Arizona University, Flagstaff, AZ 86011; 6School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; 7School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405; 8Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011; and 9School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011

Edited by James R. Ehleringer, University of Utah, Salt Lake City, UT, and approved June 28, 2019 (received for review April 10, 2019)

Multiple lines of evidence suggest that plant water-use efficiency (WUE)—the ratio of carbon assimilation to water loss—has increased in recent decades. Although rising atmospheric CO2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American temperate forests. Our goal was to separate the contributions of enhanced photosynthesis and reduced stomatal conductance to WUE trends and to assess consistency between multiple commonly used methods for estimating WUE. Our results show that tree ring-derived estimates of increases in WUE are consistent with estimates from atmospheric measurements and predictions based on an optimal balancing of carbon gains and water costs, but are lower than those based on ecosystem-scale flux observations. Although both physiological mechanisms contributed to rising WUE, enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to species that experienced moisture limitations. This finding challenges the hypothesis that rising WUE in forests is primarily the result of widespread, CO2-induced reductions in stomatal conductance.

Plants assimilate carbon dioxide (CO2) that moves through stomatal openings in foliage. This leads to unavoidable losses of water via transpiration and results in costs associated with accessing water, maintaining the transpiration stream, and repairing damage caused by drought (1–3). The trade-off between photosynthesis (4) and transpiration, reflected by water-use efficiency (WUE), is at the core of ecosystem functioning, underlying global-scale vegetation–climate interactions and the terrestrial water cycle.

Methods for estimating WUE differ in scale (individual leaf, plant, ecosystem) and in whether the abiogenic influence of atmospheric evaporative demand is considered. Leaf WUE is defined as the ratio of A and transpiration. Transpiration is the product of stomatal conductance, gs, and the difference in intercellular and atmospheric water-vapor pressure divided by the total atmospheric pressure, which is often presented as vapor pressure deficit (VPD) (4). Multiplying WUE by VPD yields the intrinsic WUE (iWUE = A/gs), which is not sensitive to increased transpiration driven by abiogenic changes in VPD, and thus is more closely coupled with plant ecophysiological function (4). The iWUE can be derived independently from the carbon isotope composition (δ13C) of plant material and that of atmospheric CO2, whose difference reflects discrimination against 13C (Δ13C) occurring during diffusion of CO2 through stomata and assimilation by photosynthesis. Intrinsic WUE is directly linked to the ratio of intercellular (ci) to atmospheric (ca) CO2 (ci/ca) (4, 5). Ecosystem WUE is calculated as the ratio between gross primary production (GPP) and evapotranspiration (ET), both derived from eddy covariance (EC) flux measurements. An ecosystem-scale analog of iWUE, called the inherent WUE (WUEei), can be readily calculated as WUEei = GPP × VPD/ET (6). Others (7) have calculated the underlying WUE (uWUE = WUEei/√VPD = (GPP × √VPD)/ET), which incorporates information about stomatal closure at high VPD (typically assumed to be a function of 1/√VPD), and thus should be more closely coupled to changes in A.

Both global-scale atmospheric δ13C values (8) and tree ring δ13C chronologies (9–11) have revealed a trend of increasing δ13C in recent decades and suggest that δ13C has increased in proportion with carbon-water optimality model; K.J. carried out the meta-analysis presented in SI Appendix, Fig S1, and calculation of BAI; M.M. provided support with analysis of LAI from MODIS; Ps and Co-PIs at the AmeriFlux sites, i.e., A.D.R., D.Y.H., J.W.M., K.C., K.N., R.B.-G., S.D., and T.K. shared flux data; R.G. wrote the paper with contribution from all coauthors; and S.V.O. provided project supervision. The authors declare no conflict of interest. This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). Data deposition: The dataset, including all tree-ring data, has been deposited with the Environmental Data Initiative (EDI), https://portal.edirepository.org/nsnap/browse?resource=edlidentifier=401. To whom correspondence may be addressed. Email: rosselaguerieri@gmail.com. This article contains supporting information online at www.pnas.org/cgi/doi/10.1073/pnas.1905912116/DCSupplemental.

ToDS

Significance

Forests remove about 30% of anthropogenic CO2 emissions through photosynthesis and return almost 40% of incident precipitation back to the atmosphere via transpiration. The trade-off between photosynthesis and transpiration through stomata, the water-use efficiency (WUE), is an important driver of plant evolution and ecosystem functioning, and has profound effects on climate. Using stable carbon and oxygen isotope ratios in tree rings, we found that WUE has increased by a magnitude consistent with estimates from atmospheric measurements and model predictions. Enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to moisture-limited forests. This result points to smaller reductions in transpiration in response to increasing atmospheric CO2, with important implications for forest–climate interactions, which remain to be explored.

Edited by James R. Ehleringer, University of Utah, Salt Lake City, UT, and approved June 28, 2019 (received for review April 10, 2019)
proportional changes in A and g_s (12). In contrast, ecosystem-scale EC data from 21 temperate forests suggest an even larger increase in WUEei and that c_i has remained constant (6). This result implies that g_s decreases strongly in response to rising c_i, and implementing this physiological response in a land surface model leads to larger reduction in ET and increase in runoff than large-scale observations show (13). Resolving these discrepancies in quantitative changes in WUE and explaining the underlying mechanisms is key to understanding and projecting vegetation responses and changes in the terrestrial water cycle under future c_i and climatic conditions.

Here, we used tree-ring α-cellulose 13C and 18O to document 30-y trends in iWUE, c_i, and g_s measured for 12 tree species (6 conifers and 6 broadleaves) at 8 forests within the AmeriFlux network, including 5 mesic and 3 xeric sites (Methods and SI Appendix, Fig. S1 and Table S1). We estimated changes in iWUE from 13C and used 18O to estimate the 18O enrichment in leaf water above the source water, Δ^{18}O$_{LW}$. The latter reflects variability in transpiration and g_s only (14), as opposed to 13C, which reflects changes in both A and g_s. We assessed trends in radial growth as a surrogate of photosynthetic carbon gain by computing the basal area increment (BAI) from tree-ring widths at all sites. Finally, we compared tree-ring isotope estimates of WUE (iWUE) with those obtained from EC data (WUEei) and with predictions of iWUE changes derived from a model that predicts an optimal c_i/g_s ratio, balancing carbon gain and water costs as a function of changing environmental conditions (2, 15).

Results

Tree-ring 13C-derived iWUE significantly increased over the last 30 y, with a slope for the combined dataset of $0.35 \pm 0.04 \mu$mol mol$^{-1}$ y$^{-1}$ ($P < 0.001$) (Fig. 1A). Conifers showed higher iWUE than broadleaf species (Fig. 1A), and within broadleaf species, ring porous species had lower iWUE than diffuse porous species (Fig. 1A). The trends in iWUE were positively associated with c_i, temperature, and VPD, and negatively associated with precipitation and soil moisture. One-half of the variance in the linear mixed-effects model, however, was explained by the variation in iWUE among species, and individual trees within each species (SI Appendix, Table S2). At the species level, iWUE increased through time for most species, except *Pinus echinata* at SL where iWUE decreased, and *Acer saccharum* at MM and *Tsuga canadensis* at BFE where no trend was detected (SI Appendix, Fig. S2 and Table S3). Relative changes in WUE (2012 relative to 1982) ranged between -11.5% and 26.9% with an average of $13.8\% (\pm 8.6\%)$ across all sites and species (SI Appendix, Fig. S3A).

We observed a consistent increase in the relationship between c_i and g_s (slope, 0.67 ± 0.022 ppm ppm$^{-1}$; $P < 0.001$; Fig. 1B and SI Appendix, Fig. S4 and Table S4) and in the c_i/g_s ratio over time across all 12 species, with conifers showing lower c_i/g_s ratios than broadleaf species (SI Appendix, Fig. S5 and Table S5). Similarly, carbon isotope discrimination (Δ^{13}C$_{c}$) increased with increasing c_i by 0.008 ± 0.002‰ ppm$^{-1}$ of c_i (SI Appendix, Fig. S6 and Table S6), with higher sensitivity for conifers (slope, 0.009 ± 0.002 ppm$^{-1}$ of c_i) compared with ring porous broadleaves (slope, 0.002 ± 0.003‰ ppm$^{-1}$ of c_i).

The trends in BAI and Δ^{18}O$_{LW}$ were used to constrain the contribution of A and g_s, respectively, in driving the observed changes in iWUE. On average, BAI increased over the last 30 y, with a slope for the combined dataset of 0.09 ± 0.03 cm2 y$^{-1}$ ($P < 0.001$) (Fig. 2), although the trend was not consistent over site-species combinations (Fig. 3A and SI Appendix, Figs. S7 and S8). Directionality of changes in Δ^{18}O$_{LW}$ obtained from measured tree-ring 13C (Methods and SI Appendix, Supplementary Text and Fig. S9) revealed that the mechanisms responsible for increasing iWUE were influenced by differences across sites in moisture conditions (SI Appendix, Figs. S10–S12 and Table S1). For mesic sites, we observed no changes or a reduction in Δ^{18}O$_{LW}$ (Fig. 3B), indicative of constant or increasing g_s (Fig. 3C). BAI, however, increased or remained constant for the majority of the species, with the exception of *Picea rubens* and *Acer saccharum*, where it decreased (Fig. 3D). In contrast, at xeric sites, the Δ^{18}O$_{LW}$ showed a significant upward trend indicative of reduction in g_s (Fig. 3B and C), which, however, negatively impacted tree growth only in the case of conifers (Fig. 3D).

For the period of 1992–2012 (concurrent with EC measurements), tree-ring and model-derived estimates of iWUE agreed well, but EC-derived WUEei had steeper temporal trends. We observed a median $Sen's$ slope of $0.2 (\pm 0.7)$% y$^{-1}$ for the tree-ring
Changes in basal area increment (BAI). Trend in BAI across the 12 species (n = 5 replicates per species) at 8 AmeriFlux sites in the United States. Changes in iWUE observed in our study are similar in magnitude to those reported for other temperate forests in the northern hemisphere (9–11) (SI Appendix, Fig. S3) and to those derived from the global estimate of a 20% increase over the 20th century inferred from atmospheric δ13C-CO2 observations (8). An increase in iWUE has been mostly associated with a proportional adjustment of A and gc to the increase in cg, which leads to an increase in cbi (but at a slower rate than cb), and a constant cbi/cb ratio (12). Our results show that, for every ppm of cb over the last 30 y, ci increased by 0.67 ± 0.022 ppm, consistent with rates reported for a large scale study in Europe (11), however inconsistent with EC observations (6) showing a constant ci for the 1992–2010 period (SI Appendix, Fig. S13). Moreover, we also found that the increase in iWUE was not achieved—at least not for all of the species—by a proportional adjustment of A and gc (12). Instead, it reflects a dynamic leaf gas exchange response to cb, and climate (17), with increase in A, and small changes in gc, modulated by differences in moisture conditions among sites.

The increase in ci across all of the species could partially indicate a CO2 fertilization effect on A. This is consistent with the dependence of A on ci as described by the model for C3 plant photosynthesis (18). Moreover, results from free-air CO2 experiments (FACEs) (19) and independent global measurements (8) based on atmospheric δ13C-CO2 supported an increase in A with rising cb. Lower ci values observed for conifers compared with broadleaves could be related to either differences in gc and mesophyll conductance (20) or in foliar nitrogen concentration (SI Appendix, Fig. S14), the latter being an important determinant of photosynthetic capacity (19). Nevertheless, enhanced A and iWUE in response to cb contribute to maintaining or increasing tree growth for the majority of the species.

Exposing trees to almost 700 ppm of cb increased iWUE (FACEs, SI Appendix, Fig. S3B) by enhancing A but also reducing gc. However, this latter result was not consistent across all of the experiments and studied species (19, 21), and still “the mechanism by which the stomata sense [CO2], and where in the leaf [CO2] is sensed, is unclear” (22). If a reduction in gc under increasing cb occurs across all of the investigated species, this should be reflected in a reduction in leaf transpiration, which in turn leads to less dilution of the enriched (in the heavy isotope 18O) water at the evaporative site by the unenriched water coming from the soil via

Discussion

Tree-ring isotope chronologies presented in this study fill the knowledge gap for underrepresented species (SI Appendix, Fig. S1 and ref. 16) in the highly productive forests of the Eastern United States. Changes in iWUE observed in our study are similar in magnitude to those reported for other temperate forests in the northern hemisphere (9–11) (SI Appendix, Fig. S3) and to those derived from the global estimate of a 20% increase over the 20th century inferred from atmospheric δ13C-CO2 observations (8). An increase in iWUE has been mostly associated with a proportional adjustment of A and gc to the increase in cg, which leads to an increase in cbi (but at a slower rate than cb), and a constant cbi/cb ratio (12). Our results show that, for every ppm of cb over the last 30 y, ci increased by 0.67 ± 0.022 ppm, consistent with rates reported for a large scale study in Europe (11), however inconsistent with EC observations (6) showing a constant ci for the 1992–2010 period (SI Appendix, Fig. S13). Moreover, we also found that the increase in iWUE was not achieved—at least not for all of the species—by a proportional adjustment of A and gc (12). Instead, it reflects a dynamic leaf gas exchange response to cb, and climate (17), with increase in A, and small changes in gc, modulated by differences in moisture conditions among sites.

The increase in ci across all of the species could partially indicate a CO2 fertilization effect on A. This is consistent with the dependence of A on ci as described by the model for C3 plant photosynthesis (18). Moreover, results from free-air CO2 experiments (FACEs) (19) and independent global measurements (8) based on atmospheric δ13C-CO2 supported an increase in A with rising cb. Lower ci values observed for conifers compared with broadleaves could be related to either differences in gc and mesophyll conductance (20) or in foliar nitrogen concentration (SI Appendix, Fig. S14), the latter being an important determinant of photosynthetic capacity (19). Nevertheless, enhanced A and iWUE in response to cb contribute to maintaining or increasing tree growth for the majority of the species.

Exposing trees to almost 700 ppm of cb increased iWUE (FACEs, SI Appendix, Fig. S3B) by enhancing A but also reducing gc. However, this latter result was not consistent across all of the experiments and studied species (19, 21), and still “the mechanism by which the stomata sense [CO2], and where in the leaf [CO2] is sensed, is unclear” (22). If a reduction in gc under increasing cb occurs across all of the investigated species, this should be reflected in a reduction in leaf transpiration, which in turn leads to less dilution of the enriched (in the heavy isotope 18O) water at the evaporative site by the unenriched water coming from the soil via
Comparing tree-ring effects were included (iWUEm_full). Numbers above Guerrieri et al. δ (14, 23) (Fig. 3 and/or function to remained constant or increased over to VPD than broadleaf species, (37), but no significant changes in ET were observed (SI Appendix, Fig. S17). FACE experiments reported reduced transpiration (as assessed through sapflow measurements) under increasing c0 (37), but no significant changes in sap flux were also observed (38, 39). This points to smaller reductions in transpiration in response to climate change than previously thought, with important implications for forest-climate interactions (40), which will require additional research to resolve. Moreover, the assumption that different tree species follow the same physiological strategy in response to increasing c0, regardless of the moisture conditions they experience, and that this strategy remains static over time, is probably too simplistic. Whether it is A and/or g0 driving increasing WUE depends on a dynamic coordination of functional traits (1−3) and their adjustment to environmental changes. Implementing such a dynamic response challenges the ability of large-scale vegetation models to predict how g0 will continue to optimize water loss relative to carbon gain under future CO2 emission scenarios.

Methods
Sites and Environmental Parameters. Eight forested sites within the AmeriFlux network were selected to represent major temperate forest types for the United States and to span a range of biological properties (32, 41) and climate conditions (SI Appendix, Fig. S1 and Table S1). Mesic and xeric sites were identified based on the long-term changes in precipitation (P), i.e., 1991−2012 compared with 1901−1960 average. Wetter conditions were reported since the 1990s for the sites in the Northeast and the Midwest, whereas precipitation decreased in the case of the three sites in the Southeast and Southwest (42). For the long-term temperature and P data, we referred to available data at meteorological stations near the study sites, obtained from the Global Historical Climatology Network. Growing season (May to September) and annual mean for both temperature and P were calculated from monthly values and indicated along the text as Tm, and Pm, and Tn and Pn. VPD was calculated from actual vapor pressure and T (43) from CRU TS 3.23, with data extracted at site locations. FACE experiments obtained the data on net precipitation-corrected sap flux relative to August, with 3-mo lag from the global database.

Measure of Carbon and Oxygen Isotope Ratios in Tree Rings. Wood cores were collected from 10 to 15 trees for each of the dominant and codominant tree species at each site and constructed stable isotope chronologies for the last 30 y (1982−2012). All of the wood cores were dated from the bark to the pith. Ring width measurements were carried out with a sliding scale micrometer (Velmex Measuring System) using Measure2X software (VoorTech Consulting). Ring width series were cross-dated from 1960 to 2012 first within each tree, then among trees, and finally between species within a site by using the COFECHA software (44). For stable isotope analyses, only the 5 trees showing the highest correlation with the mean chronology were selected. BAI was calculated for each tree by following the “outside-in” function to convert raw ring-width measurements to BAI based on the diameter of the tree and the width of each ring moving toward the pith. The method assumes a circular growth pattern. A mean BAI value was computed for each tree species at an annual resolution averaged over 2−3 wood cores sampled per tree. For HF, we used BAI used in ref. 45, and updated to 2012. From each of the 5 trees (n = 2 wood cores per tree), each annual ring from 1982 to 2012 was separated and then shredded by using a razor blade. For the two Quercus species, only the lateward was separated, as it better reflects the contribution of sugars from the current year’s photosynthetic activity (45, 46). Wood from each ring was subjected to α-cellulose extraction (47, 48), and then homogenized by using an ultrasonic bath. About 0.3 ± 0.1 mg of each ring sample
was weighed in tin capsules and converted to CO₂ with an elemental analyzer (EC 4010; Costech Analytical) coupled to a continuous flow isotope ratio mass spectrometer (Delta Plus XP; ThermoFinnigan) to determine δ¹³C. An additional 0.3 ± 0.1 mg of each sample was weighed in silver capsules, converted to CO with a pyrolysis elemental analyzer (TC/EA; ThermoFinnigan), and analyzed for δ¹⁸O with a continuous flow isotope ratio mass spectrometer (Delta Plus XP; ThermoFinnigan). Carbon and oxygen isotope ratios were expressed in per mil (%) relative to the Vienna PDB and Vienna SMOW international standards, respectively. Isotope analyses were carried out at the Stable Isotope Core Laboratory (Washington State University). The SDs for internal standards were less than 0.2% and 0.4% for δ¹³C and δ¹⁸O values, respectively, whereas SDs for Sigma-Aldrich α-cellulose (item C8002, lot 031M1033V) were less than 0.2% and 0.6% for δ¹³C and δ¹⁸O values, respectively. Finally, mean SDs across replicates on given years and assessed for each species were 0.2% and 0.3% for δ¹³C and δ¹⁸O values, respectively.

Calculation of Leaf WUE. We derived iWUE from δ¹³C measured in tree ring α-cellulose (49) based on the well-established theory linking leaf C/αC with isotopic carbon discrimination, δ¹³C (5):

$$\Delta^{13}C_{\text{c}} = a + (b - a) \times \frac{\delta^{13}C_{\text{c}} - \delta^{13}C_{\text{a}}}{\delta^{13}C_{\text{a}} - \delta^{13}C_{\text{p}}}$$

[1]

δ¹³C and δ¹³C are the carbon isotope compositions of tree ring α-cellulose and αC is the isotope fractionation during CO₂ diffusion through stomata (4.4%), and b is the isotope fractionation during fixation by Rubisco (2.7%). Note that Eq. 1 is the “simple” form of isotopic discrimination that does not include effects due to mesophyll conductance and photorespiration, which were not available for the species here. We derived c from the following equation:

$$c = \frac{\delta^{13}C_{\text{c}} - \delta^{13}C_{\text{a}}}{\delta^{13}C_{\text{c}} - \delta^{13}C_{\text{p}}}$$

[2]

and δ¹³C were obtained from Mauna Loa records (50) from 1990 to 2012, while from 1990 back to 1982 we used data published in ref. 51. iWUE (in micromoles of CO₂ per mole of H₂O) was then calculated using the following equation:

$$\text{iWUE} = \frac{\Delta^{13}C_{\text{c}}}{\Delta^{13}C_{\text{p}}} - \frac{\Delta^{13}C_{\text{c}}}{\Delta^{13}C_{\text{a}}} - \frac{\Delta^{13}C_{\text{a}}}{\Delta^{13}C_{\text{p}}}$$

where 1.6 is the molar diffusivity ratio of CO₂ to H₂O (i.e., g_CO₂ = g_W = 1.6). The iWUE as derived from Eq. 4 is normalized by a constant VPD of 1 mol mol⁻¹. Intrinsic WUE was converted from micromoles of CO₂ per mole of H₂O at VPD of 1 mol mol⁻¹ to grams of C per kilogram of H₂O at VPD of 1 kPa to better compare the leaf and ecosystem WUE. The conversion factor from micromole/mole at VPD of 1 mol mol⁻¹ to grams of C/kg of H₂O at 1 kPa is 12/18*1000/1,000.

Calculation of δ¹³C and δ¹⁸O in Leaf Water (δ¹³C_LW and δ¹⁸O_LW). We calculated the δ¹³C enrichment in tree-ring α-cellulose above the source water, δ¹³C, according to the following equation (52):

$$\delta^{13}C_{\text{LW}} = \frac{\delta^{13}C_{\text{c}} - \delta^{13}C_{\text{a}}}{\delta^{13}C_{\text{c}} - \delta^{13}C_{\text{p}}}$$

[3]

where δ¹³C is the oxygen isotope composition measured in α-cellulose extracted from each ring, while δ¹³C is the δ¹³C of precipitation, which we estimated as described in SI Appendix (SI Appendix, Supplementary Text and Fig. 51B). We assume δ¹³C to be reflected in the oxygen isotope composition of the soil water (i.e., source water), modified by evaporation (53). We also assume that the tree species at each site had access to water at similar soil depth, so that there are no differences in the δ¹³C of the source water over the long term. From δ¹³C, we then estimated δ¹³C_WW, which is directly linked to transpiration and gₛ. Notably, less enriched (in δ¹³C) water from the soil and more enriched (in δ¹³C) water at the leaf evaporative sites continuously mix, as a function of transpiration rates and the pathway of water movement through foliar tissues (54, 55) so that lower δ¹³C_WW results from an increase in transpiration and gₛ (56). The δ¹³C can be described by the following equation (57):

$$\delta^{13}C_{\text{LW}} = \frac{\delta^{13}C_{\text{c}} - \delta^{13}C_{\text{a}}}{\delta^{13}C_{\text{c}} - \delta^{13}C_{\text{p}}}$$

[4]

where gₛ is the isotope fractionation during fixation by Rubisco (27), which is introduced from canopy evaporation after precipitation events (6). We calculated inherent (6, 59) and underlying WUE (7) as described in the main text and by using mean of VPD over the days of reference.

Estimates of WUE from the Water–Carbon Optimality Model. The model predicts an optimal αC/δC ratio that balances carbon gains and water costs and maximizes leaf-level A minus costs. The water–carbon trade-off is governed by the costs arising from the maintenance of carboxylation capacity (Vₘₚₑₓ) and the transpiration stream as a function of gₛ. The model is based on the Farquhar–von Caemmerer–Berry model for CO₂ fixation (18). An iWUE-coordination hypothesis assuming that A operates at the intersection of the light and Rubisco-limited assimilation rates during typical daytime conditions (60), and the least-cost hypothesis assuming an optimal balance of carbon costs as functions of Vₘₚₑₓ and gₛ (1, 2). Thus, it simulates how photosynthetic parameters (Kₜ, gₛ, Vₘₚₑₓ, and Jₑₑₑ) and rates (A, light use efficiency) acclimate to environmental conditions (CO₂, T, radiation, VPD, and atmospheric pressure). A complete derivation and description of the model is given in ref. 16. Forcing data used for simulations presented here are annually varying cₐ, daily mean T, and specific humidity (WATCH-WFDEI) (61), converted to VPD as a function of T and elevation.

Statistical Analyses. We used R Studio (62) and specific packages for statistical analyses (63) and linear regression to explore how WUE, cₛ/δC, δ¹³C, and BA are related to environmental factors (64) when species combinations to allow for the temporal dependency of measurements. Quality of fit was assessed using residual distribution plots, qnorm plots of standardized residuals against quantiles of standard normals for both individual points and for the random effects. Marginal (only fixed factors) and conditional (fixed plus random factors) proportions of the explained variance (R²_m and R²_r, respectively) were calculated (64). For the comparison among EC-derived, tree-ring isotope, and predicted WUE, we first calculated the year-by-year percentage changes in WUE relative to the beginning of the EC data record. Then we used the Mann–Kendall Tau nonparametric trend test with Sen’s method to obtain slopes of trend in WUE for the different sites (65). Finally, differences in the slope for WUE among the different methods were assessed by the nonparametric Kruskal–Wallis and post hoc Dunn tests.

ACKNOWLEDGMENTS. This study was supported by grants from the National Science Foundation (NSF) (Award 1638868, 1832210, and 1637685) and the National Aeronautics and Space Administration (Award NNX12AK56G). Funding from Marie Skłodowska-Curie Fellowship H2020-MSCA-IF 2015 supported R.G. G. (Grant 705432) and B.B. (Grant 701329), while S.B. was supported by NASA (Award 1229887). R.G. thanks T. Martin, R. Oren, J.-C. Domec, M. Day, L. Lepine, and S. Maxwell for assistance in the field; R. Snyder, L. Buzinski, and...
C. Madison for assistance in the lab; and Z. Zhou, M. Mencuccini, and M. Cuntz for insightful discussions. We thank the Airs Management Project and Fluxnet for supporting the operation of flux towers. Research at US-Bar is supported by the NSF (Award DEB-1114804), the Northeastern States Research Cooperative, and the US Department of Agriculture Forest Service’s Northern Research Station. We thank the two anonymous reviewers and the editor for positive comments and constructive suggestions on earlier versions of the manuscript.

34. J. Knauer et al., Towards physiologically meaningful water-use efficiency estimates from eddy covariance data. Glob. Change Biol. 24, 694–710 (2018).
35. R. Wehr et al., Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534, 680–683 (2016).
36. A. W. Gerds, J. E. Metzl, D. A. Siegwolf, M. Cuntz, and C. Madison, Linking stomatal conductance and isohydricity: A comparison at multiple spatiotemporal scales. New Phytol. 221, 195–208 (2019).
37. J. A. Bailey, R. S. Hall, and E. A. Gartner, Annu. Rev. Ecol. Evol. Syst. 40, 303–537 (1989).
38. J. T. Farquhar, G. D. Farquhar, and D. A. Lloyd, An introduction: Water use in relation to productivity in stable isotopes and plant carbon. Annu. Rev. Ecol. Evol. Syst. 27, 82–91 (1996).
39. J. A. Bailey, P. Sperry, and A. J. Maranger, Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ. 40, 816–830 (2017).
40. J. R. Ehleringer, A. E. Hall, G. D. Farquhar, "Introduction: Water use in relation to productivity in stable isotopes and plant carbon. Annu. Rev. Ecol. Evol. Syst. 27, 82–91 (1996).
41. G. D. Farquhar, A. E. Hall, G. D. Farquhar, Eds. (Academic Press, New York, 1993), pp. 3–8.
42. G. D. Farquhar, J. R. Ehleringer, K. T. Hubick, Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Mol. Biol. 40, 503–537 (1989).
43. F. T. Keenan et al., Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 494, 324–327 (2013).
44. S. Zhou, B. Yu, Y. Huang, G. Wang, The effect of vapor pressure deficit on water use efficiency at the subdaily time scale. Geophys. Res. Lett. 41, 5005–5013 (2014).
45. R. F. Keeling et al., Atmospheric evidence for a global secular increase in carbon isotope discrimination of land photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 114, 10361–10366 (2017).
46. J. Petruzzi, J. G. Canadell, R. Oyaga, Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeo. 20, 597–608 (2011).
47. L. C. Bond et al., The effects of rising CO2 on photosynthesis and plant nitrogen use efficiency. Glob. Change Biol. 18, 2925–2944 (2012).
48. D. C. Frank et al., Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Change 5, 579–584 (2015).
49. M. Saurer, R. T. W. Siegwolf, F. H. Schweingruber, Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glob. Change Biol. 10, 2109–2120 (2004).
50. J. Knauer et al., The response of ecosystem water-use efficiency to rising atmospheric CO2 concentrations: Sensitivity and large-scale biogeochemical implications. New Phytol. 213, 1564–1666 (2017).
51. G. D. Farquhar, L. A. Cernusak, B. Barnes, Heavy water fractionation during transpiration of trees. Plant Physiol. 143, 11–18 (2007).
52. W. Wang et al., Toward a universal model for carbon dioxide uptake by plants. Nature Plants 3, 734–741 (2017).
53. S. C. Dekker, M. Groennlid, B. B. B. Booth, C. Huntingford, P. M. Cox, Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations. Earth Planet. Sci. Lett. 7, 525–533 (2016).
54. L. S. Voelker et al., A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: Evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Glob. Change Biol. 22, 889–902 (2016).
55. G. D. Farquhar, S. van Caemmeren, I. A. Berry, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Plants 149, 78–90 (1980).
56. E. A. Ainsworth, A. Rogers, The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).
57. J. R. Ackerly et al., Ribas-Carbó, A. Dáza-Esopo, J. Gálvez, H. Medrano, Mesophyll conductance to CO2: Current knowledge and future prospects. Plant Cell Environ. 31, 602–621 (2008).
58. C. Purcell et al., Increasing stomatal conductance in response to rising atmospheric CO2. Ann. Bot. 121, 1137–1148 (2017).
59. P. S. Long, E. A. Ainsworth, A. Rogers, D. R. Ort, Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev. Plant Biol. 55, 591–628 (2004).
60. L. W. Cooper, J. R. Norby, Atmospheric CO2 enrichment can increase the δ13C of leaf water and cellulose: Paleodendric and ecophysiologic implications. Clim. Res. 1, 1–11 (1994).
61. B. Choat et al., Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
62. J. Carrión, A. Barbeta, D. Sperlich, M. Coll, J. Peréulas, Contracting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 409 (2013).
63. B. E. Medlyn et al., Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2314–2314 (2011).
64. J-C. Domec, D. D. Smith, A. McCulloh, A synthesis of the effects of atmospheric carbon dioxide enrichment on plant hydraulics: Implications for whole-plant water use efficiency and resistance to drought. Plant Cell Environ. 40, 921–937 (2017).
65. F. Darwin, Observations on stomata. Proc. R. Soc. Lond. 63, 413–417 (1898).
66. T. N. Buckley, The control of stomata by water balance. New Phytol. 168, 275–292 (2000).
67. G. D. Farquhar, J. R. Norby, The mechanical dynamics of stomata and its significance in gas-exchange control. Plant Physiol. 143, 78–87 (2007).
68. M. Mencuccini, The ecological significance of long-distance water transport: Short-term regulation, long-term accretion and the hydraulic costs of stature across plant life forms. Plant Cell Environ. 26, 163–182 (2003).
69. R. Guerrieri, L. Epinie, A. Oakden, J. Xiao, S. V. Ollinger, Evapotranspiration and water use efficiency in relation to climate and canopy nitrogen in U.S. forests. J. Geophys. Res. Biogeosci. 121, 2610–2629 (2016).
70. K. Y. Li et al., Linking variation in intrinsic water use efficiency to isohydricity: A comparison at multiple spatiotemporal scales. New Phytol. 221, 195–208 (2019).