The role of RIPK1 mediated cell death in acute on chronic liver failure

Takayuki Kondo1,2,11, Stewart Macdonald1,11, Cornelius Engelmann1,3,4,11, Abeba Habtesion1, Jane Macnaughtan1, Gautam Mehta1,5, Rajeshwar P. Mookerjee1, Nathan Davies1, Marco Pavesi6, Richard Moreau6,7,8,9, Paolo Angelil6,10, Vicente Arroyo6, Fausto Andreola1,12 and Rajiv Jalan1,12

© The Author(s) 2021, corrected publication 2022
the integrity of RIPK1 and RIPK3 allowing the formation of a multimolecular complex, known as the necosome. Classically, the necosome complex formation depends on the interaction between RIPK1 and RIPK3 through the RHIM domain upon phosphorylation at their kinase domains.

RIPK3 phosphorylation is known to be dependent on both the kinase activity of RIPK1 and its own kinase activity [14]. The final step of necosome formation is RIPK3-mediated phosphorylation of the mixed lineage kinase like protein (MLKL); once phosphorylated, MLKL undergoes oligomerisation and translocation to the cell membrane, triggering not only the NLRP3 inflammasome [15] but also resulting in cell swelling, rupture and release of damage-associated molecular patterns (DAMPs) such as fragmented chromatin (mono- and poly-nucleosomes, core histones). These can drive further inflammasome activation leading to death of the neighboring cells and can potentially modulate extra hepatic organ failure [16–21].

A number of studies have addressed the role of necroptosis in various models of acute and chronic liver diseases [22]. Recent studies suggest a multifaceted role of RIPK3 in multiple causes of liver injury [23–25] whereas in the context of high-fat diet induced liver injury, RIPK3 seems to exert a protective role [16]. The role of RIPK3-dependent necroptosis is not known in the pathogenesis of ACLF.

The aims of this study were to assess whether RIPK1 mediated cell death is a feature of ACLF and to define its potential role by pharmacological blockade of RIPK1 impacting on the necrotic pathway using necrostatin-1 (NEC-1) or RIPA56 in rodent models of ACLF. Therefore, we first evaluated the RIPK3 levels, a marker of necroptosis in patients with ACLF and then in a rodent model. The role of RIPK1 mediated cell death in ACLF was then determined using NEC-1 or RIPA56 in two different animal models.

MATERIAL AND METHODS

Study design

Patient samples for the derivation cohort were obtained from the CANONIC study and for the validation cohort from prospectively collected bio-banked material at Royal Free Hospital as part of the DASIMAR study. The study was carried out in accordance with the principles of good clinical practice and Declaration of Helsinki (1951). Informed written consent was obtained from all subjects.

All animal experiments were conducted according to the Home Office guidelines under the UK Animals in Scientific Procedures Act 1986 with approval of the ethical committee for animal care of University College London. Rodents were used to generate both an in vitro necroptosis model with off-target effects shown by NEC1 [26]. NEC1 was chosen as being more selective and potent (60-fold) in inhibiting necroptosis in patients with ACLF and then in a rodent model. The role of necroptosis using RIPK1 inhibitors, NEC1 and its novel derivative RIPA56, as a treatment(s) in patients with ACLF was then determined.

Human studies

CANONIC study (derivation cohort)—cohort 1. Samples of patients with AD and ACLF were obtained from subjects recruited within the CANONIC study [6]. All patients were enrolled prospectively, and the study was designed specifically to define the clinical and prognostic features of ACLF. In total 1343 patients who were hospitalized with an acute decompensation of cirrhosis (bacterial infection, large volume ascites, gastrointestinal hemorrhage, hepatic encephalopathy, alone or in combination) were enrolled in 29 Hepatology centers across 8 countries [6]. Of the initial cohort, 111 patients with plasma samples were randomly selected for analysis (Fig. S1). Baseline characteristics of patients included in this study, which are displayed in Table 1 and Table S1, closely reflect the patients described in the CANONIC study [6]. RIPK3 levels measured in the current study were correlated with markers for cell death (K18 and cK18 - MacDonald et al. [9]) and inflammation (sCD163, IL6, IL8, IL1ra – Clara J et al. [3]) which were analyzed in previous studies on the same cohort.

DASIMAR study (validation cohort)—cohort 2. Bio-banked plasma samples and associated clinical data were obtained for 106 patients with decompensated cirrhosis from the multi-center, prospective, observational DASIMAR study (NCT01071746) (Fig. S1), designed to identify biomarkers

Table 1. Baseline characteristics stratified by the presence or absence of ACLF at enrollment (derivation cohort).
No ACLF (n = 187)
Age (years)
Male (n, %)
Etiology (n, %)
Alcohol
Alcohol + HCV
HCV
Non-alcoholic steatohepatitis
Other
Active alcoholism at enrollment (n, %)
Ascites (n, %)
Gastrointestinal bleeding (n, %)
Bacterial infection (n, %)
Organ failure (n, %)
Liver
Kidney
Brain
Coagulation
Cardiac
Respiratory
Laboratory values
White blood cell (x 10^9/L)
Bilirubin (mg/dL)
Prothrombin time (international normalized ratio)
Albumin (g/dL)
Creatinine (mg/dL)
Sodium (mmol/L)
Platelets (10^9/L)
Scores
MELD
MELD Na
Child-Pugh score
CLIF-COFs
Outcome
28-day mortality (n, %)
90-day mortality (n, %)

Continues data are expressed as mean ± standard deviation or median (Q1–Q3), as appropriate. Categorical data are expressed as n (%) ACLF acute on chronic liver failure, CLIF-COFs chronic liver failure-organ failure score, HCV hepatitis C virus, MELD model for end-stage liver disease.

Cell Death and Disease (2022) 13:5
Inclusions: Cirrhotic patients admitted to the hospital with acute deterioration associated with a precipitating illness. Exclusions: Patients were excluded if they were admitted for reasons other than acute decompensation of cirrhosis, had evidence of extra-hepatic malignancy or hepatocellular carcinoma, patients who had undergone major surgery or have unsolved surgical problems and pregnancy. Baseline characteristics are displayed in Tables S2 and S3.

Cohort 3. Samples from healthy volunteers and those with stable cirrhosis (UCL Biobank Ethical Review Committee approval number NC.2017.16) were obtained from archived bio-banked material at Royal Free Hospital (London, UK).

Cohort 4. Liver sections from patients with alcoholic hepatitis with or without ACLF were obtained from the histology department of the Royal Free Hospital in London (UCL Biobank Ethical Review Committee approval number NC.2017.10) (baseline characteristics Table S4).

Definitions for acute decompensation and ACLF are provided in the supplementary information.

Measurement of human plasma RIPK3

Plasma samples from cohort 1 and 2 were obtained by centrifugation of human blood at 3000 rpm for 10 min, and storage at ~80 °C within 4 h of collection. RIPK3 levels were measured in duplicate in 1:40 diluted plasma samples using a commercially available enzyme-linked immunosorbent assay (ELISA) as per manufacturer’s protocol (Human RIPK3 ELISA, CUSABIO, Wuhan, China). After addition of chromogenic substrate, absorbance was measured at 450 nm using a plate reader (FLUOstar Omega, BMG Labtech, UK).

Animal studies

Two animal models were used for this study. The sample size was estimated based on previous experiments [10, 11]. Investigators for analyses were not blinded.

Bile duct ligation plus Lipopolysaccharide (LPS) rat model of ACLF

Animals. Male Sprague-Dawley rats (Charles River UK, Margate, UK) (~300 g b.w., 8–10 weeks-old) underwent either sham operation or bile duct ligation (BDL) to induce advanced fibrosis as described previously [27]. ACLF was induced by intraperitoneal injection of Klebsiella pneumoniae LPS (Sigma, UK) (0.03 mg/ml in saline) 28 days after BDL.

Necrostatin 1. Nec1 (Calbiochem, Sigma Aldrich, UK) was prepared as described for Nec-1. RIPA 56 (3 mg/kg, i.p) was injected once per day for 8 days after BDL.

Study design. Animals underwent BDL surgery and were given 4 weeks to develop advanced fibrosis and portal hypertension [27]. The number per treatment group was determined based on liver function test with two-tailed tests with type I and II errors set at 0.05 and 0.20, respectively.

Bile-duct ligation group. The animals were assigned randomly into 3 groups 4-weeks after bile-duct ligation.

a. BDL + Vehicle (n = 4): BDL rats received an injection of intraperitoneal (i.p.) vehicle control and were euthanised 6 h later under general anaesthesia

b. BDL + Vehicle + LPS (n = 9): BDL rats received an i.p. injection of vehicle control followed an i.p. injection of LPS (0.025 mg/kg), 3 h later. Animals were euthanised 3 h after LPS injection (or whenever comatose).

c. BDL + Nec-1 + LPS (n = 8): This group of BDL rats received an i.p. injection of 3.3 mg/kg Nec-1 followed, by an i.p injection of LPS (0.025 mg/kg), 3 h later. Animals were euthanised 3 h after LPS.

Control group. Sham operated rats (n = 4) were also included in the analyses.

Carbon tetrachloride (CCL4) plus Galactosamine (GalN) mouse model of ACLF

Animals. For this model C57BL/6 male mice (~30 g b.w.; 8–10 weeks-old) were randomly assigned to four groups,

a. Vehicle (n = 8): gavaged with olive oil twice weekly for 6 weeks.

b. CCL4 (n = 8): gavaged with carbon tetrachloride (CCL4, 0.5 mg/ml in olive oil—dose 0.5 ml/kg) twice weekly for 6 weeks, to induce a chronic liver injury as described previously.

c. CCL4 + GalN (n = 8): Three days after the last dose of CCL4 mice were intraperitoneally injected with GalN 1000 mg/kg (Sigma, UK) in saline. All animals were sacrificed 48 h after GalN injection under general anesthesia.

d. CCL4 + GalN + RIPAS6 (n = 8): RIPAS6 (SMIL2100, Sigma UK) was prepared as described for Nec-1. RIPAS 6 (3 mg/kg, i.p) was injected twice daily with the first injection 1 h after GalN injection. All animals survived the 48 h observational period.

Animal blood and tissue handling, brain water determination

Plasma was separated from arterial blood collected in heparin or EDTA tubes by refrigerated centrifugation (3500 rpm, 10 min) and stored at ~80 °C until assessed for biochemistry, and other endpoints. Liver, brain, and kidney tissues were snap frozen and formalin-fixed for further analysis and histological assessment, respectively.

Immediately after termination, the whole brain was removed, and frontal cortex specimens (50 mm3) collected. The brain water content was calculated using the formula: Brain water (%) = (1−dry weight / wet weight) x 100.

Biochemistry and determination of plasma markers

Clinical biochemistry was assessed using the COBAS system (COBAS Integra 400 plus, Roche Diagnostics). Plasma RIPK3 and Histone 3 levels were quantified using ELISAs [Rat RIPK3 ELISA kit (Wuhan Fine Biotech, China), EpiQuick total histone H3 quantification kit (Epigenetek, USA) respectively], according to manufacturer protocols. Absorbance was determined using a plate-reader (FLUOstar Omega, BMG Labtech, UK).

Caspase assays

Caspase 3/7 and 8 activities were measured in liver extracts using Caspase-Glo assay kits (Promega) according to a modified protocol [28]. Diluted lysates (10 μg/ml) were mixed with an equal volume of Caspase-Glo reagents (100 μl each) in white 96-well plate and incubated at room temperature for 1 h. Luminescence was measured using a luminometer (FLUOstar Omega, BMG Labtech, UK).

Immunohistochemistry

Expression of RIPK1, RIPK3, and pMLKL were evaluated by immunohistochemistry in liver sections of patients with alcoholic hepatitis with and without ACLF (Table S4). Histology of rodent model was performed using liver and kidney sections. The paraffin-embedded tissue sections were deparaffinized using xylene and ethanol and endogenous peroxidase activity blocked in 0.3% H2O2 in water. After antigen retrieval by microwave, slides were blocked in 2.5% normal horse serum and then stained with following primary antibody (complete list of primary antibodies Table S5). Immunoperoxidase staining was completed using RTU Vectastatin universal Elite ABC kit (Vector Laboratories, UK), and 3,3’-diaminobenzidine was used to detect the target proteins. For negative controls primary antibody was replaced with PBS and a rabbit IgG antibody was used as isotype controls (Table S5). Respective images are shown in Fig. S2. RIPK3 antibody validation was performed by using a blocking peptide as shown in Fig. S3.

In situ detection of cell death by the TUNEL assay

Terminal deoxynucleotidyl transferase biotin-DUTP nick end labeling (TUNEL) staining of deparaffinised, proteinase K-treated liver and kidney
sections was performed using the In-Situ Cell Death Detection kit, POD (Roche, UK) as per manufacturer’s protocol.

Specimens were imaged with a Carl Zeiss Axio Scope. A1 microscope equipped with N-Acroplan 10x/0.25 Ph1 and 40x/0.65 Ph2 objectives and Axio Cam MrC5 (Carl Zeiss Inc., Germany). Quantification of positive areas was assessed by measuring optical density or relative DAB positive areas (%) as appropriate with FIJI Image J software [29, 30].

Statistical analysis
Human data are expressed as the mean ± standard deviation for normally distributed continuous variables, median and interquartile range (IQR) for not normally distributed continuous variables, and frequencies and percentages for categorical variables. Animal data were expressed as the mean ± standard error of mean. Continuous variables were analyzed using Student’s t test, Mann–Whitney U test, or Kruskal–Wallis tests, as appropriate. Categorical variables were analyzed by Fisher’s exact test. p value of less than 0.05 was considered to be significant.

RESULTS
RIPK1 associated cell death is a feature of human ACLF and is related to clinical severity

Derivation cohort. In patients with acute decompensation (n = 311) drawn from the derivation cohort, 187 (60.1%) patients had no ACLF and 124 (39.9%) had ACLF at enrollment. At 28 days and 90 days, 31 (12.4%) and 57 (22.7%) of the total number of patients had died respectively. Fifty-two patients (27.8%) who presented with no ACLF progressed to ACLF following admission (Fig. S1). The median RIPK3 levels were raised in a step-wise manner from 6248 pg/mL (interquartile range [IQR], 3760–9773) in AD, to 10,200 pg/mL (IQR, 6858–17152) in ACLF grade 1, and finally 20,981 pg/mL (IQR, 9296–38,877) in ACLF grade 2/3 (p < 0.001 for overall comparison) (Table 2, Fig. 1A).

Patients who presented with AD and then developed ACLF during hospitalization had significantly higher plasma RIPK3 levels compared with those who did not progress (p = 0.001) (Table 2, Fig. 1A). The area under the receiver-operating curve (AUROC) of RIPK3 to predict progression to ACLF was 0.650 (95% confidence interval [CI], 0.562–0.758) at 28 days, 0.679 (95% CI, 0.595–0.758) at 28 and 90 days, respectively (Table S6, Fig. 2B).

RIPK3 levels were significantly higher in those with alcohol-related cirrhosis and also in patients with infections and higher white blood cell count (WBC) (Table 2, Fig. 1A). Patients with ascites and/or younger patients (>50 years) also had more elevated RIPK3 levels (Table 2, Fig. 1A). RIPK3 were also higher in the presence of any type of organ failure apart from respiratory failure and more importantly increased in patients with single liver failure compared to no organ failure (Table 2, Fig. 1A). However, in the derivation cohort, plasma RIPK3 was also elevated in patients with single kidney failure but the levels were lower than those with single liver failure. Not surprisingly, in those with multiple organ failures, there was an elevation in RIPK3 (Table 2, Fig. 1A) and markers of inflammation and liver function (Table 2, Fig. 1A).

Circulating RIPK3 levels correlated well with other markers of cell death such as caspase-cleaved keratin 18 (cK18) (apoptotic cell death) and K18 (total cell death, including apoptosis) as well as inflammatory such as sCD163, interleukin (IL)–6, IL–8, and IL–1ra (Fig. 1B). Multivariate Cox regression analysis correcting for age, gender, MELD score, WBC and ACLF grade, revealed RIPK3 levels (hazard ratio [HR], 1.035; 95% CI, 1.002–1.068; p = 0.037) and WBC (HR, 1.081; 95% CI [1.026–1.138]; p = 0.003) as independent predictors for 28-day mortality (Table 57, Fig. 2A).

Table 2. Biomarkers stratified by patient group according to the PIRO concept (baseline—derivation cohort).

Disease severity	RIPK3 (pg/ml)	Median (IQR)	p value
Healthy controls (n = 21)	322 (136–493)		
Stable cirrhosis (n = 42)	445 (320–565)		
All decompensated (n = 311)	7816 (4500–140,905)	<0.001	
No ACLF (n = 186)	6248 (3760–9773)		
ACLF grade 1 (n = 66)	10,200 (6858–17,152)		
ACLF grade 2 or 3 (n = 58)	20,981 (9296–38,877)	<0.001	
AD throughout (n = 134)	5692 (3331–8436)		
AD to ACLF (n = 52)	8046 (5161–13,482)	0.001	

Survival

28-day survivor (n = 220)	7215 (4077–12,141)		
28-day non-survivor (n = 31)	15,761 (9025–39,237)	<0.001	
90-day survivor (n = 194)	7080 (3982–11,678)		
90-day non-survivor (n = 57)	12,104 (6135–26,039)	<0.001	

Epidemiological factors

Age <50 (n = 70)	12,016 (5534–20,758)		
Age ≥50 (n = 224)	7231 (4307–13,228)	0.006	
Male (n = 214)	7878 (4665–14,928)		
Female (n = 97)	7681 (4225–14,765)	0.983	

Etiology

Etiology no alcohol (n = 94)	6946 (3965–11,075)		
Etiology alcohol (n = 156)	9119 (5135–14,802)	0.027	
Etiology no HCV (n = 163)	8037 (4670–14,296)		
Etiology HCV (n = 75)	7816 (3928–14,121)	0.554	
Etiology no NASH (n = 220)	8014 (4307–14,177)		
Etiology NASH (n = 17)	6421 (4434–14,739)	0.360	
Etiology no others (n = 217)	8037 (4548–14,042)		
Etiology others (n = 21)	6421 (3076–16,364)	0.360	

Disease complication

| No ascites (n = 77) | 7816 (3787–14,404) | | |
| Ascites (n = 144) | 10,742 (6351–19,311) | 0.003 |

Injury

No infection (n = 217)	7241 (4137–13,217)		
Infection (n = 74)	10,764 (5699–20,743)	0.002	
No active alcoholism (n = 229)	7189 (4225–12,971)		
Active alcoholism (n = 46)	16,554 (8088–31,459)	<0.001	
No Gl bleeding (n = 215)	7990 (5014–13,273)		
Gl bleeding (n = 36)	7279 (3635–14,758)	0.560	

Response

White blood cell <8 (×109/L) (n = 175)	6525 (3848–10,267)		
White blood cell 8–12 (×109/L) (n = 81)	10,232 (5470–17,842)		
White blood cell >12 (×109/L) (n = 75)	11,551 (6583–29,985)	<0.001	

ACLF acute on chronic liver failure, AD acute decompensation, cK18 caspase-cleaved keratin 18, K18 keratin 18, IQR interquartile range, RIPK3 receptor interacting protein kinase 3.

Validation cohort. In patients with acute decompensation from the validation cohort, 59 (55.7%) patients had no ACLF and 47 (44.3%) had ACLF at enrollment. At 28 days and 90 days, 19 (17.9%) and 39 (36.8%) of the total number of patients had died respectively. Eighteen patients (30.5%) who presented with no ACLF progressed to ACLF following admission (Fig. S1B). In this cohort, we confirmed our previous observation that ACLF is
associated with elevated levels of plasma markers of RIPK3 in comparison to no ACLF (Tables S8 and S9, Fig. S4). The discrimination power (AUROC) of RIPK3 to predict survival was 0.653 (95% CI, 0.530–0.776) and 0.696 (95% CI, 0.593–0.799) at 28 and 90 days, respectively (Table S6, Fig. 2B).

Additional markers of cell death were also increased in patients with ACLF. In particular, levels of cK18, K18 and circulating nucleosomes were significantly raised in a step-wise manner with increasing ACLF grade (Tables S8 and S9). Interestingly, as K18 increased more steeply than the cK18 with
increasing clinical severity, the cK18:K18 ratio also dropped [from 0.89 (0.58–2.50) in no ACLF, to 0.71 (0.50–2.44) in ACLF 1, and to 0.53 (0.34–1.91) in ACLF 2/3 (p = 0.081)], suggesting, as previously reported, that non-apoptotic rather than apoptotic modes of cell death are relatively more important in the pathophysiology of ACLF (Tables S8 and S9).

Immunohistochemistry: RIPK1, RIPK3, and pMLKL

In order to determine whether the circulating RIPK3 was originating from the liver and reflected hepatic necroptosis, biopsies from patients with AD with and without ACLF were stained for RIPK1, RIPK3, and phosphorylated MLKL (pMLKL) (Table S4, Fig. 3). Although RIPK1, RIPK3, and pMLKL were expressed in...
compared to BDL; caspase-8, median 164 RLU (IQR 128-182.5),
(234.5 (IQR, 187.5 not differ between the two groups with a median activation of
necroptosis, restored an apoptotic phenotype as demonstrated
2492 RLU (IQR, 1273–1998) and 396 RLU (IQR, 279–630),
247 activation compared to control, with a median activation of
the activation pattern of both caspase-8 and caspase-3/7 in liver
Caspase-8 is a key regulator of the two forms of cell death
death in cirrhosis to necroptosis in ACLF, we evaluated the relative
RIPK1-RIPK3-dependent necroptosis might account for increased cell
demonstrated by Student’s t test or Mann–Whitney U test. *p < 0.05,
3/7 activation compared to sham-operated animals (Fig. S6).
In order to validate the results of the experiments in the BDL
animals, we used a second model of ACLF and a more speciﬁc
injury was induced by 6-weeks carbon tetrachloride (CCl4) gavage
whether inhibition of RIPK1 could account for the observed
attenuation of total cell death, we measured circulating levels of
RIPK3. Plasma RIPK3 levels in the BDL + NEC-1 + LPS group
reduced markedly compared to the BDL + Vehicle + LPS group
Vehicle + LPS injection (p = 0.05 for both), consistent with the reduced
activities shown above, and tended to increase after NEC-1
treatment (p < 0.001 for both) (Fig. 5A, B) which mirrors the enzyme activity shown on Fig. 4. In order to further evaluate
whether inhibition of RIPK1 could account for the observed
NEC-1 treatment prevents the occurrence of ACLF in the
rodent ACLF model
As increased liver expression of both RIPK1 and RIPK3 and elevated
levels of TNFα [31–33] are associated with onset of the ACLF
phenotype in both humans and rodents, a canonical TNFα-mediated
RIPK1-RIPK3-dependent necroptosis might account for increased cell
department of hepatic MLKL for cellular death, suggests that hepatic necroptosis is an important feature of human ACLF.
The rodent model of ACLF recapitulates RIPK1 associated cell
death in human ACLF
In keeping with our previous studies [9], rodents who had undergone bile-duct ligation (BDL, model of advanced fibrosis) demonstrated significant alterations in liver function tests compared with sham-operated controls (Table S10) but did not demonstrate significant elevation in circulating nucleosomes or RIPK3 when compared to sham-operated animals (Fig. S6). Immunohistochemistry of liver and kidney tissues from BDL animals demonstrated positive staining for RIPK1 and RIPK3 in comparison to sham animals (Fig. S6). Induction of ACLF in BDL animals by administration of LPS led to significant worsening of liver function tests [alanine aminotransferase (ALT), 79.4 ± 12.8 IU/L (mean ± SD); aspartate transaminase (AST), 412.9 ± 39.4 IU/L; p = 0.031 compared to BDL] mirrored by increased circulating nucleosomes. In the BDL + LPS animals, a dramatic significant increase in plasma RIPK3 levels was also observed compared to BDL (p = 0.042) and this was accompanied by increased protein expression of both RIPK1 and RIPK3 in liver and kidney tissues (Fig. S6). These data strongly demonstrate that the onset of ACLF triggered by LPS administration to the BDL animals is associated with initiation of necroptosis within 3 h, conﬁrming the ﬁndings in the ACLF patients.
LPS induces a switch from caspase-dependent cell death to RIPK1 mediated cell death
To further explore the switch from predominantly apoptotic cell
death in cirrhosis to necroptosis in ACLF, we evaluated the relative
caspases-3/7 and 8 activities in the animals described above. Caspase-8 is a key regulator of the two forms of cell death (apoptosis and necroptosis). Activation of caspase-8 (initiator caspase) promotes apoptosis through caspases-3/7 (executioner caspases). On the other hand, suppression of caspase-8 activity shifts the balance towards necroptosis. Therefore, we investigated the activation pattern of both caspase-8 and caspase-3/7 in liver homogenates. BDL livers showed a signiﬁcant increase in caspase-3/7 activation compared to control, with a median activation of 2492 RLU (IQR, 1273–2988) and 396 RLU (IQR, 279–630), respectively (p = 0.0087). In contrast, caspase-8 activation did not differ between the two groups with a median activation of 234.5 (IQR, 187.5–255.3) and 202 (IQR, 163.8–239.5), respectively (p = 0.425). In the “BDL + Vehicle + LPS” group a signiﬁcant reduction of all caspase activities was observed compared to BDL (caspase-3/7 (RLU) median 968 RLU (IQR 571–1495), p = 0.035 compared to BDL; caspase-8, median 164 RLU (IQR 128–182.5), p = 0.021 compared to BDL). NEC-1, inhibiting RIPK1-dependent necroptosis, restored an apoptotic phenotype as demonstrated by caspases-3/7 and caspase-8 activation, similar to that observed in the BDL group without LPS (caspase-3/7, median 2857 RLU (IQR 1640–3890); caspase-8, median 326.5 (IQR 313.5–414.3), p = 0.626 and p = 0.020, compared to BDL, respectively) (Fig. 4).

RIPK1 inhibition by RIPAS6 prevents RIPK1/RIPK3 mediated necroptosis in a CCl4-GaIN mouse model
In order to validate the results of the experiments in the BDL animals, we used a second model of ACLF and a more speciﬁc inhibitor of RIPK1, RIPAS6. In this mouse model, the chronic liver injury was induced by 6-weeks carbon tetrachloride (CCl4) gavage followed by Galactosamine (GaIN) injection as the second hit. This
Fig. 5 Effect of RIPK1 inhibition by Necrostatin 1. Histological assessment and biomarkers show the protective effect of pharmacological RIPK1 inhibition against ACLF-related liver injury. A Representative images of liver tissue of sham, BDL, BDL + LPS and BDL + NEC-1 + LPS stained for TUNEL, RIPK1, cleaved-Caspase 3 and 8. B The optical density of immunostaining intensity (mean ± SEM) was assessed by Image J (mean ± SEM). D Plasma levels of AST and albumin of sham, BDL, BDL + LPS, and BDL + NEC-1 + LPS (mean ± SEM). C-E Plasma levels of ALT, albumin, RIPK3 and histone 3 of sham, BDL, BDL + LPS and BDL + NEC-1 + LPS (mean ± SEM). Data were analyzed using Student’s t test or Mann–Whitney U test. *p < 0.05, **p < 0.01, ***p < 0.001.
model was designed to simulate ACLF that occurs due to a direct liver injury (unlike LPS) and produces predominant liver failure. ALT levels increased from 64.8 ± 54.2 U/L in CCl4 only treated animals to 353.5 ± 284.2 U/L in the CCl4-GalN animals (\(p < 0.001\)) (Fig. 6A) and TUNEL staining of liver tissue demonstrated a significant hepatocyte cell death after injection of GalN (\(p < 0.001\)) (Fig. 6B). RIPK3 immunohistochemistry showed that hepatocyte cell death was associated with TUNEL positivity, increased RIPK3 (\(p < 0.01\)) and pMLK expression (\(p < 0.01\)) and decreased caspase 3 and 8 expression (Fig. 6B) principally defining a necroptotic cell death in this model. RIPK1 inhibition by RIPAS6 (selectivity shown by Ren Y et al. [26]) significantly abrogated the tissue injury (ALT level \(p = 0.006\), TUNEL stain \(p < 0.001\)) and liver RIPK3 (\(p < 0.001\)) and pMLK expression (\(p < 0.01\)) suggesting that ACLF is associated with RIPK1/ RIPK3 mediated necroptotic cell death in the liver (Fig. 6B).

DISCUSSION

This study describes for the first time that plasma RIPK3 levels are associated with the progression of patients with no ACLF to ACLF,
severity of ACLF and mortality in two separate clinical cohorts suggesting that RIPK1 mediated cell death is an important mechanism of cell death in the patients with ACLF. This was associated with markedly increased expression of RIPK1, RIPK3, and pMLKL in liver tissues confirming the importance of this pathway in mediating hepatocyte injury in these patients. The important role of RIPK1 mediated cell death in ACLF was demonstrated in two animal models of ACLF. Administration of two separate inhibitors of RIPK1, NEC-1 or RIPA56, resulted in the prevention of development of ACLF in the animal models. Taken together these data point to the importance of necroptosis as being important in the pathogenesis of ACLF.

We have previously reported the importance of onset of non-apoptotic cell death in patients with ACLF [9]. The significant increase in the circulating levels of RIPK3 in patients with ACLF supports the notion that RIPK1 mediated cell death is likely to be the operative mechanism. RIPK3 is a key component in the necroptotic pathway alongside RIPK1 and pMLKL. It is also associated with mitochondrial energy metabolism and production of excess reactive oxygen species [20]. Circulating RIPK3 levels not only reflected the severity of ACLF in the present study but also identified patients likely to progress to develop ACLF and patients likely to die at 28-day and 90-day. These data were validated in a second cohort although the AUROC for 28-day mortality was lower possibly due to the small sample size and different timing of sampling. Importantly RIPK3 levels correlated closely with markers of systemic inflammation, which have been shown to be the central in the mechanism underlying the development of ACLF [31]. In order to determine whether this was simply an association or whether RIPK1 mediated cell death was pathophysiologically important in the development of ACLF, we designed a study to determine whether inhibition of the key upstream necroptosis component RIPK1 using NEC-1 and RIPA56 would prevent the development of ACLF in rodent models.

The most important observation in this study was that NEC-1, an inhibitor of RIPK1, prevented hepatic and renal cell death in a BDL model of ACLF induced by injection of LPS, providing the first proof of the importance of this pathway in the pathogenesis of ACLF from AD. This model, extensively validated previously, mimics the clinical situation where ACLF is precipitated by bacterial infection and exhibits cerebral, circulatory and renal failure, all important extrahepatic diagnostic features of ACLF. The observed over-expression of RIPK1 in the liver and kidney in the animal model of ACLF was associated with evidence of cell death. It is intriguing to note that renal tubular injury was also prevented with NEC-1 in this model suggesting that necroptosis may also be the operative mechanism of kidney injury. In order to determine whether the RIPK1 mediated cell death was also important in a ‘hepatic’ form of ACLF where liver injury predominates, a new model of CCL4-GaIN was developed. Interestingly, this model develops severe liver injury but no extrahepatic organ failures, such as kidney and brain failure. In this second model RIPA56, another inhibitor of RIPK1, was used as recently described to be more selective, potent and with no off-target effect compared to NEC-1, and its administration also abrogated severity of liver injury significantly [14]. Taken together, the data suggest that necroptosis is likely to be pathophysiologically important in the pathogenesis of ACLF and RIPK1 is a potential therapeutic target. Normalizing RIPK1 is known to modulate the NF-κB signaling pathway [34], which can promote cell survival thereby preventing development of ACLF [35]. An alternative mechanism of the protective effect of inhibition of RIPK1 may by through modulation of necroptosis that is triggered in BDL animals by induction of senescence [36–38]. In addition, we showed that Caspase 8 activity in ACLF rodent model (BDL + LPS) was suppressed suggesting a possible switch from apoptosis to necroptosis. Interestingly, NEC-1 prevented loss of Caspase 8 activity and onset of LPS-induced necroptosis. However, whether these observations on the potential role of necroptosis in ACLF can be translated into clinical application as a therapeutic, needs further evaluation as targeting RIPK3-mediated necroptosis was effective in preventing APAP induced acute liver failure in some studies [23, 39, 40] but not in others [41]. Of concern, was the observation that in concanavalin A (ConA)-induced autoimmune hepatitis, RIPK3 deletion was protective, whereas RIPK1 inhibition exacerbated disease, accelerated animal death, and was associated with increased hepatocyte cell death [40]. However, other data suggested that pre-treatment with NEC-1 had protective effect against ConA mediated injury [42–44]. The mechanism underlying these variable effects are unclear but may be related to the stage of the disease and potential activation of alternative pathways, particularly in the animals with RIPK3 deletion.

Circulating nucleosomes, a DAMP [45], also reflected the severity of ACLF. In addition, our study showed that circulating nucleosomes were associated with brain, heart, and respiratory failure. Histones, components of nucleosomes released into the circulation from damaged cells, are known to promote inflammation [46]. Our results are in concert with the finding that circulating nucleosomes are also elevated in other clinical conditions associated with necrosis such as severe acute pancreatitis [47] and circulating histones are elevated in acute liver failure [46]. Histones released after tissue trauma may lead to multiple organ injury and death [48]. Several studies suggest that histones are both biomarkers of disease progression and also possible therapeutic targets in sepsis, acute liver failure, and other inflammatory diseases [46–49]. In the rodent model of ACLF, NEC-1 also prevented the LPS-induced liver damage and the consequent release of histone-3, which may have partially contributed to its protective effect.

Acute kidney injury is an important feature of ACLF [50] and tubular cell death is an important pathophysiological characteristic of this syndrome [51]. In the present study, we also showed that renal dysfunction was associated with tubular injury. Interestingly, the expression of RIPK1 and RIPK3 in the kidney of the animal model of ACLF was significantly increased. Previous studies have also reported that plasma RIPK3 levels are elevated in patients with AKI following trauma [52]. Pharmacological inhibition of RIPK1 with NEC-1 protected against renal tubular cell death in our BDL model of ACLF suggesting that AKI in ACLF is due to renal tubular necroptosis. Alternatively, or in addition, AKI in ACLF may be consequent on release of DAMPs from liver injury. The study also showed that the brain water of the BDL animals with ACLF was markedly reduced in the NEC-1 treated group and this was independent of changes in the ammonia levels. The mechanism of protection of the brain by NEC-1 is not clear but may be consequent on protection of liver cell death and DAMP release.

There are some limitations of our study. Firstly, the mechanism and source of the circulating RIPK3 is unclear. However, when comparing no organ failure and single organ failure, we observed that the elevated plasma RIPK3 levels were associated with single liver failure. In addition, histological assessment showed high expression of RIPK3 in the liver of ACLF patients and also in the animal model. The elevation of plasma RIPK3 is therefore likely to be predominantly derived from the liver but could also be originating from the kidney as evidence of necroptosis was also observed in the rodent kidneys and the levels were also found to be elevated in the patients with single kidney failure in the patients in the CANONIC study. Secondly, NEC-1 has a short half-life of about 1 h [53] and is known to have off-target effects, such as inhibition of indoleamine-2,3-dioxygenase (IDO), which can modulate immune function [54] and this additional feature may have partially contributed to its observed effects. However, administration of RIPA56, a specific inhibitor of RIPK1 with no anti-IDO activity, had a similar protective effect suggesting that necroptosis is indeed important in the development of ACLF and a
potential therapeutic target. We considered using a RIPK3 deletion mouse but the fact that these animals develop variable degrees of liver injury and fibrosis and makes it an unsuitable model of cirrhosis and ACLF [16].

In conclusion, the novel observation that inhibition of RIPK1 with NEC-1 and RIPAP6 resulted in prevention of occurrence of ACLF in the two animal models suggests that necroptosis is likely to be of pathogenic importance and a potential therapeutic target to prevent the development of ACLF. This observation is supported by data from two patient cohorts in whom elevated circulating levels of RIPK3 was associated with progression of patients from AD to ACLF, severity of ACLF, and short-term mortality. Taken together, the study suggests that circulating RIPK3 may serve as a potential biomarker to select patients for therapy with drugs targeting RIPK1 mediated cell death.

DATA AVAILABILITY
All data is available on request from the corresponding author.

REFERENCES
1. Jalan R, Williams R. Acute-on-chronic liver failure: pathophysiologic basis of therapeutic options. Blood Purif. 2002;20:252–61. https://doi.org/10.1159/000063701
2. Jalan R, Gines P, Olson JC, Mookerjee RP, Moreau R, Garcia-Tsao G, et al. Acute-on-chronic liver failure. J Hepatol. 2012;57:1336–48. https://doi.org/10.1016/j.jhep.2012.06.026
3. Bernardi M, Moreau R, Angelii P, Schnabl B, Arroyo V. Mechanisms of decomposition and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis. J Hepatol. 2015;63:1272–84. https://doi.org/10.1016/j.jhep.2015.07.004
4. Moreau R. The pathogenesis of ACLF: the inflammatory response and immune function. Semin Liver Dis. 2016;36:133–40. https://doi.org/10.1055/s-0036-1583199
5. Claria J, Staubner RE, Conenrad MJ, Moreau R, Jalan R, Pavesi M, et al. Systemic inflammation in decompenated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology. 2016;64:1249–64. https://doi.org/10.1002/hep.28740
6. Moreau R, Jalan R, Gines P, Pavesi M, Angelii P, Cordoba J, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompenation of cirrhosis. Gastroenterology. 2013;144:1426–37. https://doi.org/10.1053/j.gastro.2013.02.042. 1437 e1421-1429
7. Angelii P, Ginès P, Wong F, Bernardi M, Boyer TD, Gerbes A, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatol. 2015;62:968–74. https://doi.org/10.1016/j.jhep.2014.12.029
8. Jalan R, Stadlbauer V, Sen S, Cheshire L, Chang YM, Mookerjee RP. Role of predisposition, injury, response and organ failure in the prognosis of patients with acute-on-chronic liver failure: a prospective cohort study. Crit Care. 2012;16:R227 https://doi.org/10.1086/sci113882
9. Macdonald S, Andreola F, Frise I, Eayning V, Longair M, Piettzech T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:677–82. https://doi.org/10.1038/nmeth.2089
10. Claria J, Araganda-Carreras I, Friese E, Kayning V, Longair M, Piettzech T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:677–82. https://doi.org/10.1038/nmeth.2089
11. Macdonald S, Andreola F, Bachtiger P, Amoros A, Pavesi M, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:677–82. https://doi.org/10.1038/nmeth.2089
12. Claria J, Araganda-Carreras I, Friese E, Kayning V, Longair M, Piettzech T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:677–82. https://doi.org/10.1038/nmeth.2089
13. Macdonald S, Andreola F, Bachtiger P, Amoros A, Pavesi M, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:677–82. https://doi.org/10.1038/nmeth.2089
14. Macdonald S, Andreola F, Bachtiger P, Amoros A, Pavesi M, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:677–82. https://doi.org/10.1038/nmeth.2089
15. Macdonald S, Andreola F, Bachtiger P, Amoros A, Pavesi M, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:677–82. https://doi.org/10.1038/nmeth.2089
16. Macdonald S, Andreola F, Bachtiger P, Amoros A, Pavesi M, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:677–82. https://doi.org/10.1038/nmeth.2089
17. Macdonald S, Andreola F, Bachtiger P, Amoros A, Pavesi M, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:677–82. https://doi.org/10.1038/nmeth.2089
18. Macdonald S, Andreola F, Bachtiger P, Amoros A, Pavesi M, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:677–82. https://doi.org/10.1038/nmeth.2089
40. Deutsch M, Graeffe CS, Rokosh R, Parsami M, Ochi A, Levie EM, et al. Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury. Cell Death Dis. 2015;6:e1759. https://doi.org/10.1038/cddis.2015.126

41. Dara I, Johnson H, Suda J, Win S, Gaarde W, Han D, et al. Receptor interacting protein kinase 1 mediates murine acetaminophen toxicity independent of the necroosome and not through necroptosis. Hepatology. 2015;62:1847–57. https://doi.org/10.1002/hep.27939

42. Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Moigne-Muller GL, Van Herreweghe F, et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent FADD-1 activation. Cell Death Differ. 2012;19:2003–14. https://doi.org/10.1038/cdd.2012.90

43. Arshad MI, Piquet-Pellorce C, Filliol A, L’Helgoualch A, Lucas-Clerc C, Jouan-Lanhouet S, et al. The chemical inhibitors of cellular death, PJ34 and Necrostatin-1, down-regulate IL-33 expression in liver. J Mol Med. 2015;93:867–78. https://doi.org/10.1007/s00109-015-1270-6

44. Zhou Y, Dai W, Lin C, Wang F, He L, Shen M, et al. Protective effects of necrostatin-1 against canavanalin A-induced acute hepatic injury in mice. Mediators Inflamm. 2013;2013:706156–15. https://doi.org/10.1155/2013/706156

45. Marsman G, Zeerleder S, Luken BM. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis. 2016;7:e2518. https://doi.org/10.1038/cddis.2016.410

46. Wen Z, Lei Z, Yao L, Jiang P, Gu T, Ren F, et al. Circulating histones are major mediators of systemic inflammation and cellular injury in patients with acute liver failure. Cell Death Dis. 2016;7:e2391. https://doi.org/10.1038/cddis.2016.303

47. Penttilä AK, Rouhiainen A, Kylanpää L, Mustonen H, Puolakkainen P, Rauvala H, et al. Circulating nucleosomes as predictive markers of severe acute pancreatitis. J Intensive Care. 2016;4:14. https://doi.org/10.1186/s40560-016-0135-6

48. Kawai C, Kotani H, Miyao M, Ishida T, Jemail L, Abiru H, et al. Circulating extracellular histones are clinically relevant mediators of multiple organ injury. Am J Pathol. 2016;186:829–43. https://doi.org/10.1016/j.ajpath.2015.11.025

49. Xu J, Zhang X, Pelayo R, Monestri M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–21. https://doi.org/10.1038/nm.2053

50. Gines P, Schrier RW. Renal failure in cirrhosis. N. Engl J Med. 2009;50:1886. https://doi.org/10.1056/nejmoa080139

51. Shah N, Dhar D, Mohammed FEZ, Habtesion A, Davies NA, Jover-Cobos M, et al. Prevention of acute kidney injury in a rodent model of cirrhosis following selective gut decontamination is associated with reduced renal TLR4 expression. J Hepatol. 2012;56:1047–56. https://doi.org/10.1002/hep.27939

52. Shashaty MG, Reilly JP, Sims CA, Hoang-Duc H, Cuny GD, et al. Structure-activity relationship study of tricyclic necroptosis inhibitors. J Med Chem. 2007;50:1886–95. https://doi.org/10.1021/jm060116o

53. Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med. 2005;11:312–9. https://doi.org/10.1038/nm1196

ACKNOWLEDGEMENTS

This work was supported by the funds of the Liver Failure Group, ILDH, Division of Medicine, UCL. T.K. was supported by a fellowship from Uehara Memorial Foundation.

The German Research Foundation (DFG) funded C.E. (EN 11002-1). We would like to thank Andrew Hall for helping with the additional experiments.

AUTHOR CONTRIBUTIONS

The corresponding author certifies that all listed authors participated meaningfully in the study and that they have seen and approved the final manuscript. T.K. contributed to study design, data collection and analysis, experiments, and drafted the paper. S.M. contributed to study design, data collection, analysis, and experiments. A.H. contributed to data collection, and experiments. C.E. contributed to data collection and analysis, experiments, and drafted the paper. J.M., G.M., and R. P.M. contributed to data collection. N.D. contributed to experiments. R.J. contributed to study design, data analysis, and drafted the paper. F.A. contributed to study design, data collection and analysis, experiments, and drafted the paper.

COMPETING INTERESTS

Rajiv Jalan has research collaborations with Yaqrit and Takeda. Rajiv Jalan is the inventor of OPA, which has been patented by UCL and licensed to Mallinckrodt Pharma. He is also the founder of Yaqrit Ltd. (a spin out company from University College London), Cyberliver Ltd. and Hepyx Ltd. C.E. has on-going research collaboration with Milre Pharmaceutical and Novartis. The other authors do not have any CoI to declare.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41419-021-04442-9.

Correspondence and requests for materials should be addressed to Rajiv Jalan.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021, corrected publication 2022