Quality evaluation of synthetic quorum sensing peptides used in R&D

Frederick Verbeke¹, Evelien Wynendaele¹, Sarah Braet, Matthias D’Hondt, Bart De Spiegeleer*

Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium

Received 3 October 2014; revised 23 November 2014; accepted 9 December 2014
Available online 31 January 2015

Abstract Peptides are becoming an important class of molecules in the pharmaceutical field. Closely related peptide-impurities in peptides are inherent to the synthesis approach and have demonstrated to potentially mask biomedical experimental results. Quorum sensing peptides are attracting high interest in R&D and therefore a representative set of quorum sensing peptides, with a requested purity of at least 95.0%, was evaluated for their purity and nature of related impurities. In-house quality control (QC) revealed a large discrepancy between the purity levels as stated on the supplier’s certificate of analysis and our QC results. By using our QC analysis flowchart, we demonstrated that only 44.0% of the peptides met the required purity. The main compound of one sample was even found to have a different structure compared to the desired peptide. We also found that the majority of the related impurities were lacking amino acid(s) in the desired peptide sequence. Relying on the certificates of analysis as provided by the supplier might have serious consequences for peptide research, and peptide-researchers should implement and maintain a thorough in-house QC.

1. Introduction

Peptides are becoming an important class of molecules in the biomedical and pharmaceutical fields owing to their high affinity, strong selectivity for their targets and low toxicity [1]. Despite potential limitations such as overall low oral bio-availability, low metabolic resistance, potential immunogenicity, poor membrane permeability and financial aspects, several peptide drugs have entered the market [2,3]. The promising future of peptide therapeutics is further highlighted by the number of peptides in clinical and preclinical phases [4]. In 2012, approximately 200 peptides entered the clinical phase, while another 400 were at advanced preclinical stages [4–6].
Quorum sensing peptides are a group of peptides currently attracting high interest. Quorum sensing, the process of cell-to-cell communication between bacteria, has been the subject of a great number of scientific research papers [7–9]. Three main groups of quorum sensing molecules can be distinguished: N-acetylhomoserine lactone derivatives (AHL or auto-inducer-1), quorum sensing peptides and boron-furan derivatives (auto-inducer-2). The quorum sensing peptides, mainly found in Gram-positive bacteria, show a large structural diversity: short, linear fragments as well as cyclic (thiolacton) derivatives, with or without post-translational isoprenyl modifications, are observed [10]. These peptides bind to (i) bacterial membrane associated receptors, or (ii) cytoplasmic receptors, after which the transcription of the target genes is activated. Interfering with this bacterial quorum sensing pathway might open interesting application perspectives.

Chemical peptide synthesis for medicinal purposes has become economically viable [11]. The possibility to produce small, medium (5–20 residues) to large (20–50 residues) peptides has evolved dramatically, hereby frequently outperforming the biotechnological approaches as they are known to date [6]. In 1965, Merrifield cleared the way for Solid-Phase Peptide Synthesis (SPPS), thus introducing and facilitating a totally new concept in peptide synthesis [12]: a peptidic chain, fixed to a solid support, is created by the consecutive addition of the appropriate amino acids. The reaction can be automated and possible solubilization-issues are avoided due to the fixation of the peptide to the solid matrix [13]. During SPPS, different side-reactions can occur, resulting in several types of peptide impurities [14]: e.g. (i) diketopiperazine structures [15,16], (ii) aspartimide residues [17–19], (iii) cysteine racemization [16], (iv) diastereoisomeric products [20,21], (v) dimers [22], (vi) acid precursors and protected sequences [20], (vii) oxidation and reduction of amino acids [19,23], (viii) amino acid deletions [15,23–26], (ix) amino acid insertions [23,24], (x) products of side chain reactivity and (xi) amino acid modifications during cleavage [16,19,23,24,26–30]. Thus, the crude peptides obtained from SPPS mostly will contain many by-products. These impurities, if present even after purification, have to be quantified and characterized to meet pharmaceutical regulatory requirements, but they need to be under control as well during the unregulated biomedical research and discovery phases [31,32]. Due to budgetary constraints, peptides used in research are often purchased at undefined or low purity levels, e.g. 70.0% [31]. Generally, the peptide purity used for biomedical research and discovery purposes ranges from as low as 50.0% to more than 95.0% [22,26]. However, closely related impurities of the target peptide may possess stronger binding affinities compared to the native peptide [26], thus potentially causing erroneous conclusions. Investigations by de Beukelaar et al. [33] indicated different immune responses of a protein-spanning peptide pool of 70.0% pure peptides due to the impurities. False-positive results in a HIV-vaccine trial were also ascribed to impurities in the peptide-mixtures [34]. Zhang et al. [35] were unable to reproduce their initial obstestin results in vitro, possibly due to impurities present in the initially examined peptide. Additionally, Verbeke et al. [31] observed different biofunctional responses in a set of tissue-organ bath experiments caused by impurities of the examined peptides. Impurities are thus able to potentially mask biomedical experimental outcomes and may cause false negative or positive results.

Quorum sensing peptides are currently being actively investigated, i.e. for their possible role in the crosstalk between the microbiome and its host [36,37]. Therefore, a thorough in-house QC analysis of a selected set of quorum sensing peptides will be conducted, followed by identification of the observed impurities. These data not only demonstrate the need for routine QC in peptide research, but also can help in building a global overview of expected related impurities in peptides.

Table 1 Peptides information.

Quorumpeps ID	Sequence	Molecular weight	Solvent	Column®	Purity (%)
2	FNTIPSY	839.95	Water	C18-FA	83.31
5	Ac-CGSLF, thiolacton linkage between C1 and F5	549.72	Water+50% DMSO	C18-FA	88.30
7	FNTWPSY	913.00	Water	C18-FA	98.46
10	ADLPFEF	837.93	Water	C18-FA	99.20
11	AGTPKPGKPSNLVECVFSLFKKCN	2667.14	Water+5% DMSO	C18-FA	72.93
13	AIFILAS	733.91	Water+5% DMSO	C18-FA	97.82
14	AITLIFI	790.01	Water+60% DMSO	C18-FA	72.48
15	AKDEH	598.62	Water+50% DMSO	C18-FA	69.26
16	AKTVQ	545.64	Water	C18-FA	96.20
17	ALILTLVS	829.05	Water+60% DMSO	C18-FA	94.43
18	ARNQT	588.62	Water	C18-FA	92.33
Quorumpeps ID	Sequence	Molecular weight	Solvent	Column^2 Purity (%)	Organic Acid
-------------	----------	------------------	---------	---------------------	--------------
19	NNWNN	660.64	Water	C_{18}-TFA	92.66
22	CVGIW, thiolacton linkage between C1 and W5	558.78	Water+50% DMSO	C_{18}-FA	60.39
24	CTFTLPGGGVGCTLTSECIC	1962.3	Water+1% DMSO	C_{18}-FA	12.21
25	CVFSLFKKC	1188.47	Water	C_{18}-FA	47.92
28	DLRGVNPSWGWIFGR	2480.91	Water	C_{18}-FA	93.68
30	DLRNIFLKIKFKKK	1770.03	Water	C_{18}-FA	91.62
31	DMCNGYF, thiolacton linkage between C3 and F7	1791.26	Water	C_{18}-FA	76.74
32	DRVGA	1962.3	Water+1% DMSO	C_{18}-FA	58.05
34	EKMIG	576.71	Water	C_{18}-FA	99.41
35	EMKRIILDFLFLRRK	2178.71	Water	C_{18}-FA	81.91
36	EMRLPKILRDIFIPRKK	2109.44	Water	C_{18}-FA	96.43
37	EQLSFTSIGILQLTIGTRSCWFFYCRY	3346.92	Water+17% DMSO	C_{18}-FA	52.58
38	ERGMT	592.67	Water	C_{18}-TFA	98.76
39	ERNNT	632.63	Water	C_{18}-FA	98.24
40	DSVCASYF, thiolacton linkage between C4 and F8	873.06	Water+50% DMSO	C_{18}-FA	31.61
42	DWRFNSIRDILIFPFRRK	2204.61	Water	C_{18}-FA	97.86
44	EKMI	576.71	Water	C_{18}-FA	99.41
45	EMKRIILDFLFLRRK	2178.71	Water	C_{18}-FA	81.91
46	EMRLPKILRDIFIPRKK	2109.44	Water	C_{18}-FA	96.43
47	EQLSFTSIGILQLTIGTRSCWFFYCRY	3346.92	Water+17% DMSO	C_{18}-FA	52.58
50	EQLSFTSIGILQLTIGTRSCWFFYCRY	3346.92	Water+17% DMSO	C_{18}-FA	52.58
52	ERPVG	556.62	Water	C_{18}-TFA	99.75
53	ESRLPKILLDLIFLFLRRK	2116.62	Water	C_{18}-FA	65.11
54	ESRLPKIRFDIFIPRKK	2177.62	Water	C_{18}-FA	99.30
55	ESRSRIILDFLFLQRKK	2135.54	Water	C_{18}-FA	96.90
56	VNYNGVGVSCKTCSVNWGQAQERYTATAGNSFVSGVASGAGSISGRRP	4969.46	Water	C_{18}-FA	33.57
58	DSRIRMGFDIFKLGK	1904.22	Water	C_{18}-FA	95.72
60	DSRISDIILDFLQRKK	2108.47	Water	C_{18}-FA	99.27
71	QNCPINIFGQWM, lacton linkage between S3 and M11	1319.70	Water+50% DMSO	C_{18}-FA	77.64
75	SINSIQKATSNSLVECVFSLFKKCN	2731.2	Water	C_{18}-FA	30.03
76	SNLVECVFSLFKKCN	1731.06	Water	C_{18}-FA	80.63
77	FNTIPKY	881.04	Water	C_{18}-FA	99.29
78	NTIPKY	733.87	Water	C_{18}-FA	69.22
79	FFNTCPYS	978.09	Water	C_{18}-FA	96.54
80	FNTCPYS	830.91	Water	C_{18}-FA	92.98
82	FHWQQTAPAHFS	1530.66	Water	C_{18}-FA	99.54
83	FLVMFSLG	913.14	Water+33% DMSO	C_{18}-FA	91.31
88	FLVMFSLG	913.14	Water+33% DMSO	C_{18}-FA	91.31
97	QNSPNIFGQWM, lacton linkage between S3 and M11	1303.63	Water+50% DMSO	C_{18}-FA	43.95
99	GKAED	550.61	Water	C_{18}-FA	99.33
100	GKAEDSISKCVFSFFKKC	1968.36	Water+33% DMSO	C_{18}-FA	28.65
101	GLWEDILSYLNIKHNNTKGLHHPQL	3167.67	Water	C_{18}-FA	96.92
102	GLWEDLYINRHYAHYIT	2254.53	Water+33% DMSO	C_{18}-FA	97.98
103	GNWNN	603.59	Water	C_{18}-FA	97.70
105	GSQKGVASQSFVPSWFRKIFRN	2846.25	Water	C_{18}-FA	99.31
107	GVNACSSLF, thiolacton linkage between C5 and F9	879.13	Water+50% DMSO	C_{18}-FA	39.15
111	GWWEDFLYRFNIIEQKNTFKFYQPIQL	3434.91	Water+50% DMSO	C_{18}-FA	89.72
121	ILSGACPWP	1056.29	Water	C_{18}-FA	77.04
123	IRFVT	634.78	Water	C_{18}-FA	99.53
125	KSSAYSQMGAIAIQVKKLFKKWG	2985.59	Water	C_{18}-FA	66.39
132	LFSVLLAG	819.01	Water+33% DMSO	C_{18}-FA	96.92
purchased from Merck (Overijse, Belgium). Water was purified using an Arium 611 purification system (Sartorius, Gottingen, Germany) yielding \(Z = 18.2 \) MΩ cm quality water. Eppendorf Protein LoBind 2.0 and 1.5 mL tubes were purchased from Eppendorf (Nijmegen, the Netherlands). UPLC/HPLC vials and inserts were purchased from Waters (Milford, MA, USA). The Vydac Everest C18 (250 mm × 4.6 mm, 5 µm) column and Alltech Prevail Organic Acid column (250 mm × 4.6 mm, 5 µm), both protected with guard columns, were obtained from Grace (Deerfield, IL, USA). The Acquity UPLC BEH300 C18 column (100 mm × 2.1 mm, 1.7 µm) with guard column was purchased from Waters (Milford, MA, USA).

Table 1 (continued)

Quorumpeps ID	Sequence	Molecular weight	Solvent	Columna	Purity (%)b
133	LFVVTLVG	847.06	Water+60% DMSO	C18-FA	97.74
134	LPFEF	651.76	Water+50% DMSO	C18-FA	17.17
135	LPFEH	641.72	Water	C18-FA	94.23
137	LVTLVFV	790.01	Water+50% DMSO	C18-FA	84.02
138	MAGNNSNFHIIKQIIFTHR	2229.59	Water+17% DMSO	C18-FA	81.90
140	MKAEH	614.72	Water	C18-FA	66.91
143	MPFEF	669.79	Water	C18-FA	86.24
146	NEVPFEF	880.95	Water	C18-FA	99.90
147	NGWN	603.59	Water	C18-FA	94.53
148	YSTCDFIM, thiolacton linkage between C4 and M8	961.25	Water+50% DMSO	C18-FA	44.40
151	NNGN	531.48	Water	C18-TFA	96.79
152	NNNWNNN	888.85	Water	C18-FA	98.42
153	NNWGN	603.59	Water	C18-FA	99.10
154	NNWNG	603.59	Water	C18-FA	99.33
155	NWN	432.44	Water	C18-FA	98.40
156	FNTIP	589.69	Water	C18-FA	99.27
157	FNTWP	662.75	Water	C18-FA	99.23
160	QKGMY	625.74	Water	C18-FA	99.04
162	QRGMI	603.74	Water	C18-FA	94.36
164	SDLPFEH	843.89	Water	C18-FA	91.37
165	SDMPFEF	871.96	Water	C18-FA	99.44
166	SGSLSTFFLLLFRNQFTQLG 250 mm × 4.6 mm, 5 µm.	2321.66	Water	C18-FA	92.99
174	SGSLSTFFRFLNQFTQLG 250 mm × 4.6 mm, 5 µm.	2236.52	Water	C18-FA	97.41
175	SGSLSTFFRFLNQFTQLG 250 mm × 4.6 mm, 5 µm.	2364.69	Water	C18-FA	98.96
177	SGSLSTFFRFLNQFTQLG 250 mm × 4.6 mm, 5 µm.	2634.04	Water	C18-FA	55.68
178	SGSLSTFFRFLNQFTQLG 250 mm × 4.6 mm, 5 µm.	2345.65	Water	C18-FA	99.06
184	SIFTLVA	749.90	Water+33% DMSO	C18-FA	93.17
186	SKDYN	625.64	Water	C18-TFA	92.88
188	SLSTFFRFLNQFTQLG 250 mm × 4.6 mm, 5 µm.	2083.37	Water+33% DMSO	C18-FA	85.61
191	SRKAT	561.64	Water	C18-FA	78.31
192	SRNAT	547.57	Water	Organic Acid	81.74
193	SRNV	575.62	Water	C18-TFA	81.49
206	SYPGWSW	881.94	Water	C18-FA	99.45
207	TAGPAIRAVSTVQKQKTLeKATRLKTSKCVSDKGNQ	3595.31	Water	C18-FA	32.42
208	TNRNYGKPNKDIQGTCWSGFRHC 250 mm × 4.6 mm, 5 µm.	2668.01	Water	C18-FA	89.19
210	VAVVLGLA	740.94	Water+33% DMSO	C18-FA	92.98
212	VPFEF	637.73	Water	C18-FA	97.65
214	WPFARHPWQYPR 250 mm × 4.6 mm, 5 µm.	1670.89	Water	C18-FA	58.94
215	FNTWP	954.10	Water	C18-FA	95.52
218	YNPCENYL, thiolacton linkage between C4 and L8	955.18	Water+50% DMSO	C18-FA	16.87

*aC18-FA: acquity UPLC BEH 300 C18 column (100 mm × 2.1 mm, 1.7 µm). C18-TFA: Vydac Everest C18 column (250 mm × 4.6 mm, 5 µm). Organic acid: Grace Alltech Prevail Organic Acid column (250 mm × 4.6 mm, 5 µm).

*bPurity assigned based on UV chromatogram with internal normalization to the most abundant peak.
2.2. Sample preparation

0.5–1 mg of each lyophilized, linear peptide was dissolved in water or a mixture of water and DMSO, depending on the calculated log P values and the solubility in water, to obtain a concentration of approximately 1.0 mg/mL (Table 1). The quantity of DMSO used was determined experimentally, by adding DMSO stepwise to the peptide-water suspension until no more precipitate was observed. The dissolved peptides were stored at $35 \pm 1^\circ$C. The cyclic peptides (i.e., ID5, 22, 32, 40, 71, 97, 107, 148 and 218) were dissolved in DMSO-water (50/50, V/V) to obtain a concentration of approximately 0.5 mg/mL.

2.3. HPLC and UPLC

2.3.1. QC purity profiling

Three LC systems were consecutively applied in the analysis. To avoid carry-over peaks, 50% acetonitrile in water was always used as needle wash.

Each peptide was first analyzed with the Acquity UPLC BEH300 C$_{18}$ column. Sample compartment was kept at 5°C (\pm 2°C) and column was maintained at 30°C (\pm 2°C). Injection volume was set at 2 µL for the linear and 5 µL for the cyclic peptides. Mobile phases consisted of 0.1% (m/V) formic acid in water (A) and 0.1% (m/V) formic acid in acetonitrile (B). A general linear gradient was applied running from 95% A to 20% A during 22 min, followed by returning to initial condition and re-equilibration with a flow rate set at 0.5 mL/min. Analysis was conducted using a Waters Acquity UPLC Class BioQuaternary Solvent Manager, a Waters Acquity Bio-sample Manager, combined with a Flow Through Needle and a Waters Acquity UPLC PDA (500 nL to 10 mm path length analytical flow cell) detector (Waters, Milford, MA, USA). Empower™ 2 software was employed for data acquisition and analysis. Peptides and related impurities were quantified by area-normalization at 210 nm, using a sampling rate of 20 points/s and a detector time constant of 0.1 s. A reporting threshold (i.e., 0.1% of main peak AUC in the UV chromatogram) and identification threshold (i.e., 0.5% of main peak AUC in the UV chromatogram) as stated in the European Pharmacopoeia were applied [39]. Solvent and system peaks, observed in the blank (i.e., the solvent used to dissolve a certain peptide, Table 1), were excluded.

If no retention of the peptides was observed using the Acquity UPLC BEH300 C$_{18}$ column, peptides were analyzed with the Vydac Everest C$_{18}$ column on a Waters Alliance 2695 HPLC apparatus equipped with a Waters 2695 Separations Module, combined with a Flow Through Needle, and a Waters 2996 Photodiode Array Detector with Empower™ 2 software for data acquisition. Mobile phases consisted of 0.1% (m/V) TFA in water (A) and 0.1% (m/V) TFA in acetonitrile (B). A general linear gradient was applied, i.e., running from 98% A to 80% A during 30 min, followed by returning to initial condition and re-equilibration with a flow rate set at 1.0 mL/min. For peptide ID191, a slightly modified linear gradient was applied, i.e. running from 95% A to 20% A during 30 min, followed by returning to initial condition and re-equilibration with a flow rate set at 1.0 mL/min. Sample compartment was kept at 5°C (\pm 2°C) and column was maintained at 30°C (\pm 2°C); 20 µL of the samples dissolved in suitable solvent composition were injected. UV detection was performed at 215 nm using a sample rate of 1.0 point/s combined
Fig. 4 TIC and UV chromatogram (A), MS¹ (B) and MS² (C) spectra of the related impurity C₁VFSLFKKᵦN (disulfide bond between C₁ and C₉) of peptide ID25 at a retention time of 23.47 min with appointed isotopic mass patterns and b- and y-fragmentation are allocated.

Fig. 5 TIC and UV chromatogram (A), MS¹ (B) and MS² (C) spectra of the related impurity LPFE(methyl)F of peptide ID134 at a retention time of 29.75 min with appointed isotopic mass patterns and b- and y-fragment allocation.
with a detector time constant of 0.2 s. The flow rate was set to 1.0 mL/min. The peptide purity was quantified through normalization by calculating the area (UV) of the most abundant peak as a percentage of total peak areas.

Finally, peptides ID18, 51 and 192 were analyzed using a Grace Alltech Prevail Organic Acid column (250 mm × 4.6 mm, 5 µm), using the same Waters Alliance 2695 HPLC equipment as used with the Vydc column. Mobile phases consisted of 10 mM phosphate buffer (pH 7) (A) and acetonitrile (B). A general linear gradient was applied running from 95% A to 60% A during 20 min, followed by returning to initial condition and re-equilibration with a flow rate set at 1.0 mL/min. Sample compartment was kept at 5 °C (± 2 °C) and column maintained at 30 °C (± 2 °C). 20 µL of the samples dissolved in suitable solvent composition were injected. UV detection was performed at 215 nm, using a sample rate of 1.0 point/s combined with a detector time constant of 0.2 s. The peptide purity was quantified through normalization by calculating the area (UV) of the most abundant peak as a percentage of total peak areas.

2.3.2. Identification of main LC peak and related impurities

Mass spectroscopic characterization was performed with a Thermo HPLC system consisting of a Waters 2487 dual λ absorbance UV/VIS-detector (UV at 215 nm), a Finnigan LCQ ion trap mass spectrometer with electrospray ionization (ESI) and Xcalibur™ software version 2.0 for data acquisition. The LC–MS equipment is yearly qualified using a tune solution and qualification solution according to the EDQM guideline [40]. The tune solution consists of 100 µL 1.0 mg/mL caffeine (Sigma-Aldrich, Diegem, Belgium) in methanol, 15 µL 5 nmol/µL MRFA (Met-Arg-Phe-Ala) (Research Plus Inc., Atlantic City, NJ, USA) in 50/50 methanol/water (V/V), 2.5 mL 0.1% (V/V) Ultramark 1621 (Alfa Aesar, Karlsruhe, Germany) in acetonitrile, 50 µL glacial acetic acid (Riedel de Haen, Diegem, Belgium) and 2.34 mL of 50/50 methanol/water (V/V). The EDQM qualification solution consists of a 10.0 µg/mL reserpine (Flandria, Ghent, Belgium) solution in acidified methanol (i.e. 1% acetic acid in methanol (V/V)). The reserpine solution is infused in the mass spectrometer with a flow rate of 3 µL/min with a collision energy of 35.00 eV. The m/z value of 609.4 is selected as parent ion and the m/z range for the daughter ions is set to m/z 165.0-800.0. The obtained m/z values are compared with the acceptance criteria as set by the EDQM.

For the analysis of the quorum sensing peptides, column temperature was set at 30 °C (± 2 °C) and samples were kept at room temperature. 20 µL of aqueous peptide solution was injected into the HPLC system and a flow rate of 1.0 mL/min was applied. All 15 selected quorum sensing peptides were analyzed using the Vydc Everest C18 column (250 mm × 4.6 mm, 5 µm). Mobile phases consisted of 0.1% (m/V) formic acid in water (A) and 0.1% (m/V) formic acid in acetonitrile (B) with a flow rate of 1.00 mL/min. An isocratic period consisting of 95% A during 5 min was maintained, followed by a linear gradient running from 95% A to 40% A in 60 min and returning to the initial conditions and re-equilibration afterwards. The ion transfer capillary was operated at 250 °C, nitrogen was used as sheath gas (80 arbitrary units corresponding to 1.2 L/min) and helium.

![Fig. 6 TIC and UV chromatogram (A), MS1 (B) and MS2 (C) spectra of the related impurity TIPKY of peptide ID82 at a retention time of 9.59 min with appointed isotopic mass patterns and b- and y-fragment allocation.](image-url)
as auxiliary gas (20 arbitrary units corresponding to 0.2 L/min). The
spray voltage was 4.50 kV and the capillary voltage was 46 V. MS\(^1\)
(100–2000 \(m/z\)) and MS\(^2\) (data dependent, i.e. highest abundant MS\(^1\)
\(m/z\) value for MS\(^2\)) data were obtained. All \(m/z\) values possessing an
abundance higher than 25% in the according MS\(^1\) spectrum were
subject to identification via their respective MS\(^2\) fragmentation pattern.
Theoretical MS\(^2\) fragmentation patterns of the peptides were calculated
in silico with ProteinProspector [41] (University of California, San
Francisco, CA, USA). The proposed sequences of the related impurities
were confirmed using the ProteinProspector generated MS\(^2\) spectra.
The nomenclature originally proposed by Roepstorff and Fohlman [42]
was used to annotate MS\(^2\) fragments.

3. Results and discussion

3.1. Quorum sensing peptide analysis flow chart

To determine the purity of the quorum sensing peptides, we
developed a UPLC/HPLC-analysis flow chart (Fig. 1). Each
peptide was analyzed first with the Acquity UPLC BEH300 C\(^{18}\)
column, using the method described above. A C\(^{18}\) column with a
0.1% (m/V) formic acid in water/acetonitrile gradient is widely
used for peptide analysis and was therefore selected as the initial
method of analysis. If no retention of the peptides was observed,
the peptides were analyzed with the Vydac Everest C\(^{18}\)
column with TFA as ion-pairing reagent, which is known to have
a narrowing effect on peak width and an increased retention.
Finally, if no retention was observed with the aforementioned
columns, the Prevail Organic Acid column (mobile phase of pH 7)
with a 10 mM phosphate buffered water/acetonitrile gradient was
used for peptide quality control. Previous experience indicated that
peptides which had no retention using standard C\(^{18}\) peptide columns
might have appropriate retention using a polar-embedded column
for highly hydrophilic compounds, like the Prevail Organic Acid
column.

3.2. QC purity assay

Despite a requested purity of at least 95.0%, only 43 out of 98
peptides met these purity specifications (Fig. 2). However, all the
98 peptides were accompanied by a certificate of analysis stating at
least 95.0% purity. Our QC analysis upon arrival showed purity
levels sometimes far below the demanded purity level (Table 1). In
Fig. 3, the chromatogram of ID76, as provided by the supplier on
the certificate of analysis versus our QC analysis, is given. The
mobile phases of the supplier consisted of 0.1% (m/V) TFA in
acetonitrile (A) and 0.1% (m/V) TFA in water (B). A general
linear gradient was applied running from 22% A to 47% A during
22 min with a Kromasil C\(^{18}\)-5 (250 mm \(\times\) 4.6 mm, 5 \(\mu\)m) column
with quantification at 220 nm. The peptide was analyzed in our
laboratory with the Acquity UPLC BEH300 C\(^{18}\) column, using the
operational details as described above.

Fig. 7 TIC and UV chromatogram (A), MS\(^1\) (B) and MS\(^2\) (C) spectra of the related impurity ILSGAPCIPWW of peptide ID121 at a retention
time of 35.70 min with appointed isotopic mass patterns and b- and y-fragment allocation.
The method applied by the supplier clearly lacked selectivity to determine the purity level of the peptide. We demonstrated the necessity of a reliable QC method, i.e. the need of a suitable chromatographic system to analyze peptide purity. The supplier claimed ≥ 95.0% purity using its system, where we determined a purity level of 80.6%.

Especially the cyclic peptides (n=9) were characterized by low purity levels: none of the peptides had a purity exceeding 90.0%. Of all cyclic peptides, 1 peptide had a purity between 80.0% and 90.0%, whereas the other 8 had purity levels below 80.0%. Nevertheless, each of these peptides was accompanied by a certificate of analysis stating a purity of at least 95.0%. After communication with the suppliers, they revealed that they were unable to produce these cyclic peptides at the requested purity level.

3.3. Identification of related impurities

A set of 15 peptides with varying purities was selected to determine the identity of the impurities (Table 1, depicted in red). The main peak was characterized as the desired peptide for 14 out of 15 peptides. The main peak from peptide ID25 was not the requested amino acid sequence. Instead of CVFSLFKKCN, a peptide with a mass difference of +2.1 Da compared with the requested peptide sequence was noted. Therefore, the formation of a disulfide bond (and thus cyclisation) between C1 and C9 is suggested. Because sulfur-containing amino acids are prone to oxidation [43], a spontaneous cyclisation is suspected for this peptide (Fig. 4).

The MS1 spectrum of a related peptide impurity of peptide ID134 (retention time of 29.75 min) showed an impurity with a monoisotopic mass of 666.22 Da (Fig. 5). The difference with the monoisotopic mass of the requested peptide sequence (LPFEF) amounted to 14.04 Da, a mass difference that could be associated with the addition of a methyl group. The MS2 fragmentation pattern of the related peptide impurity (Fig. 5C) showed a difference of +14 Da with the requested peptide sequence fragmentation pattern at b4, y2-H2O, y4, MH-H2O, while the b3 fragment of requested peptide and related impurity were the same, thus suggesting the addition of a methyl group to Glu4.

A related impurity of peptide ID82 (retention time 9.34 min) possessed an m/z value of 621.14 (Fig. 6). Compared with the desired peptide, i.e. NTIPKY, there was a mass difference of 114.02 Da, a mass difference which could be bridged by the deletion of Asn1. The suggested sequence TIPKY was confirmed by the MS2 spectrum in Fig. 6C. On the other hand, we also demonstrated a related impurity characterized by the incorporation of an additional amino acid at the C-terminus of peptide ID121 (retention time 35.70 min) (Fig. 7). The MS2 spectrum (Fig. 7C) confirmed the addition of an extra Trp residue at the C-terminus of peptide ID121, thus resulting in the related impurity ILSGAP-CIPWW. Another example of a related peptide impurity was the combination of both deleted and additionally inserted amino acids in the desired peptide sequence. In Fig. 8, such an example is

![Figure 8](image-url)
Table 2 Overview of the observed peptides (blue) and impurities (purple).

Peptide ID	Purity (%)	M_{exp} (Da)	Impurity sequence	Retention time (min)	Alteration type
NVNWN	92.66	660.12	NVNWN	4.59	
EKMG	99.41	578.19	EKMG	3.85	
NNVFV	80.63	1778.20	XPSLFFKKCN	35.18	Not yet identified
		1781.98	Not yet identified	38.31	Not yet identified
		1728.69	SNNVIECVPSLFFKKCN	40.59	
		1641.10	*NVLVECVPSLFFKKCN, N disulfide bond between C1 and C10	45.59	Deletion + cyclisation
LPFEF	17.17	518.10	LPFEF (methyl)F	22.40	Deletion + functional group
QRMG	94.36	546.07	QRMI	4.94	Deletion
		651.18	QRGM		
		665.22	LPFEF (methyl)F	29.75	Functional group
		709.28	LPFEFX	31.49	Not yet identified
		679.31	Not yet identified	33.29	Not yet identified
NNWGN	99.10	985.42	FSLFKKCN	17.57	Deletion
		1084.45	VSFSLFKCN	19.53	Deletion
CVPSLFFKKCN	47.92²	1187.46	CVPSLFFKKCN		
		1086.42	C₇FSPFLKKCN, N disulfide bond between C1 and C8	21.32	Deletion + cyclisation
		1185.50	C₇PSLFFKKCN, N disulfide bond between C1 and C8	23.47	Cyclisation
		1027.39	FKLFFKKCN or acetyl-FSLFKKC	25.46	Deletion + insertion or deletion + acetylation
		1219.36	C₇VPSFFKKCN, N disulfide bond between C1 and C8	25.74	Deletion + insertion + cyclisation
		1235.41	CPVSFLFKCN	28.16	Deletion + insertion
		1057.35	C₇PSLPC, N, disulfide bond between C1 and C8	28.21	Deletion + cyclisation
		1126.56	KVFSPFFKKCN	31.52	Deletion + insertion
		1213.38	KVPSLFFKKCN		
SDLPEIH	91.57	696.16	SDLPEIH	4.12	Deletion
		766.10	SDLPEIH	14.72	Deletion
		570.06	acetyl-PFPEH	16.31	Acid precipitation + deletion
		714.27	SDLPPF		Deletion
		785.22	SLDLPL	16.87	Not yet identified
		470.00	SDLH		Deletion
		529.05	PPFH		Deletion
		843.24	SDLPPF	17.36	
		641.17	LPPF		Deletion
		756.15	DLPEIH	18.33	Deletion
		919.30	SDLPEIH or PSDLPEIH	26.76	Insertion
		1308.75	XLPEIH or LPHEHX	31.05	Not yet identified
ESRLPKILDDLFLKRK	65.11	2115.99	ESRLPKILDDLFLKRK	29.87	Deletion
		1620.81	SKILLDDLFLRKK	31.11	Deletion
		1959.46	ESRLPKILDDLFLKKK	35.89	Deletion
		1430.67	XDPLFLRKK	38.98	Not yet identified
		2131.14	Not yet identified	39.73	Not yet identified
		1627.78	XDLFLFLRKK	41.53	Not yet identified
		1740.71	XDLDDFLFLRKK	43.52	Not yet identified
		138	MAGNSSNPDKKIQPFTHR	21.09	Deletion
		2027.84	GNSNPNHDKKQIPFTHR	4.11	Deletion
		2259.01	MAGNSSNPDKKIQPFTHR		
		2091.64	MAGNSSNPDKKIQPFTHR	23.01	Deletion
		1834.12	MAGNSSNPDKKIQPFTHR	23.90	Deletion
		1307.58	HKIQQPFTHR	24.53	Not yet identified
		2159.89	MAGNSSNPDKKQPFTHR		
		2142.95	RNNSNPDKKQPFTHR	25.34	Deletion
		1995.71	MANNSNPDKKQPFTHR		
given: ILSGAPCIPPPP is a related impurity of peptide ID121 and lacks the C-terminal Trp residue, but is characterized by 3 additional Pro residues at the C-terminus.

In total, 84 impurities (Table 2) were observed and 73% could be assigned a structure related to the requested peptide by means of MS². Analysis of these identified impurities revealed a high abundance of impurities with at least one deletion (i.e. in 74% of all identified impurities is involved) (Fig. 9). Inappropriate deletion of blocking groups during synthesis results in such sequences, thereby lacking at least 1 amino acid [20,44]. A minority of the observed peptide impurities were characterized by the incorporation of additional amino acids. During synthesis, an excess of amino acid equivalents used to assure a maximum coupling efficiency might result in the incorporation of additional amino acids [20,45]. Impurities can also be a combination of alteration types, e.g. one or more desired amino acid(s) might be missing at the N-terminus whilst at the C-terminus additional amino acid(s) are incorporated.

Peptide ID	Purity (%)	Mᵦ(exp.) (Da)	Impurity sequence	Retention time (min)	Alteration type
121 ILSGAPCIPPPP	77.04	-	Not yet identified	34.79	Not yet identified
614.30 ILSGAPCIPPPP	29.31	Not yet identified	Deletion		
927.34 ILSGAPCIPPPP	31.71	Deletion			
958.40 ILSGAPCIPPPP	32.56	Deletion			
1161.48 ILSGAPCIPPPP	33.55	Deletion + insertion			
1241.42 ILSGAPCIPPPP	35.70	Not yet identified			
125 KSSAYS1LQMGATAIKVQKRLFKWGW	66.39	2912.62	γ	29.63	Not yet identified
2984.46	KSSAYS1LQMGATAIKVQKRLFKWGW	39.73	-		
3089.70	KSSAYS1LQMGATAIKVQKRLFKWGW	32.36	Deletion + insertion		
1675.82	LRRNLKLFKFKKK	19.92	Deletion		
1760.02	DLRNLKLFKFKKK	20.19	Deletion		
1637.78	DLNLKLFKFKKK	21.96	Deletion		
644.18	XKY	4.12	Not yet identified		
520.22	TIPKY	9.59	Deletion		
406.07	PKY	11.22	Deletion		
734.24	NTIPKY	15.78	Insertion		
897.30	NTIPKY	15.78	Deletion + insertion		
569.09	YPKY or PKY	16.87	Deletion + hydroxylation		
605.87	NTIPY(hydroxylated)	18.12	Deletion + hydroxylation		
662.18	acetyl-TIPKY	18.47	Protection group + deletion		
1275.50	NTIPKTYTIPKNT or TIPKTYTIPKNT or TIPKTYTIPKY	18.52	Insertion		
517.05	K(ammonia-loss)PKY	24.73	Deletion + insertion + modification		
974.36	OR or TIPKY	32.98	Insertion		
75 SINSQIKATSNLVECVFSLFKKCN	30.03	2421.00	Not yet identified	28.40	Not yet identified
2743.23	Not yet identified	33.63	Not yet identified		
2256.32	SINSQIKATSNLVECVFSLF	35.20	Deletion		
2759.40	SINSQIKATSNLVECVFSLFKKCN	40.99	-		
2786.42	SINSQIKATSNLVECVFSLFKKCN	46.37	Insertion		

1Purity assigned based on UV chromatogram with internal normalization to the most abundant peak.
2The peptide C₁VFSLFKKCN (disulfide bond between C₁ and C₉) was the most abundant peak and was not the desired sequence.
3Structural deviations are defined as follows: (a) Chemical modifications of an amino acid are depicted in between brackets following the modified amino acid; (b) X signals a “semi-identifed” impurity with already part of the peptide sequence allocated in the MS² fragmentation pattern.
4Solely observed in UV spectrum, no signal in TIC.
4. Conclusions

In conclusion, “purified” synthetic peptides still contain a considerable amount and wide variety of related impurities, with peptides missing amino acid(s) being the most prominent. As a consequence, a thorough in-house quality characterization of peptides, already used in basic biomedical research, is mandatory. Remarkably, there is a large discrepancy between the certificates of analysis provided by the suppliers and the in-house quality control, which can at least partly be explained by the methods used. Finally, researchers should also be aware that the main peak observed in the chromatogram might be an impurity instead of the requested peptide; hence MS is requested in this QC.

Acknowledgments

This research was funded by PhD grants of “Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)” (Grant nos. 131356 to F.V. and 101529 to M.D.) and The Special Research Fund (BOF) of Ghent Flanders (IWT-Vlaanderen)” (Grant nos. 131356 to F.V. and 101529 to M.D.) and The Special Research Fund (BOF) of Ghent University (Grant no. 01J22510 to B.D.S. and E.W.).

References

[1] D. Craik, D. Fairlie, S. Liras, et al., The future of peptide-based drugs, Chem. Biol. Drug Des. 81 (2013) 136–147.
[2] R. Berggren, M. Moller, R. Moss, et al., Outlook for the next 5 years in drug innovation, Nat. Rev. Drug Discov. 11 (2012) 435–436.
[3] P. Van Arnum, Peptides gain traction in drug development, Pharm. Technol. 36 (2012) 42–43.
[4] F. Albericio, H. Kruger, Therapeutic peptides, Future Med. Chem. 4 (2012) 1527–1531.
[5] W. Danho, J. Swistok, W. Khan, et al., Peptides for Youth, in: S. Del Valles, E. Escher, W. Lubell (Eds.), Proceedings of the 20th American Peptide Symposium, Springer Sciences and Business Media, New York, NY, USA, 2009, pp. 467–468.
[6] P. Vliegh, V. Lisowski, J. Martinez, et al., Synthetic therapeutic peptides: science and market, Drug Discov. Today 15 (2010) 40–56.
[7] P. Williams, Quorum sensing, communication and cross-kingdom signaling in the bacterial world, Microbiology 153 (2007) 3923–3938.
[8] D.T. Hughes, V. Sperandio, Inter-kingdom signaling: communication between bacteria and their hosts, Nat. Rev. Microbiol. 6 (2008) 111–120.
[9] B. LaSarre, M.J. Federle, Exploiting quorum sensing to confuse bacterial pathogens, Microbiol. Mol. Biol. Rev. 77 (2013) 73–111.
[10] E. Wynendaele, B. Gevaert, S. Stalmans, et al., Exploring the chemical space of quorum sensing peptides (2015), Submitted for publication.
[11] T. Bruckdorfer, O. Marder, F. Albericio, From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future, Curr. Pharm. Biotechnol. 5 (2004) 29–43.
[12] R. Merrifield, Solid phase peptide synthesis. I. The synthesis of a tetrapeptide, J. Am. Chem. Soc. 85 (1963) 2149–2154.
[13] F. Guzman, S. Barberis, A. Illanes, Peptide synthesis: chemical or enzymatic, J. Biotechnol. 10 (2007) 279–314.
[14] M. D’Hondt, N. Bracke, L. Tavernier, et al., Related impurities in peptide medicines, J. Pharm. Biomed. Anal. 101 (2014) 2–30.
[15] D. Takahashi, T. Yamamoto, Development of an efficient liquid-phase peptide synthesis protocol using a novel fluorine-derived anchor support compound with fmoc chemistry, AJIPHASE35, Tetrahedron Lett. 53 (2012) 1936–1939.
[16] M. Stawikowski, G.B. Fields, Introduction to peptide synthesis, Curr. Protoc. Protein Sci. 18 (2012) 1–17.
[17] R. Dolling, M. Beyermann, J. Haenel, et al., Innovation and Perspectives in Solid Phase Synthesis, in: R. Epton (Ed.), Proceedings of the 3rd International Symposium on Innovation and Perspectives in SPPS, Oxford UK, Mayflower Scientific Ltd., Birmingham, 1994, p. 489.
[18] Y. Yang, W.V. Sweeney, K. Schneider, et al., Aspartimide formation in base-driven 9-fluorenylmethoxycarbonyl chemistry, Tetrahedron Lett. 35 (1994) 9689–9692.
[19] M. Hoitink, J. Beijnen, M. Boschma, et al., Identification of the degradation products of gonadorelin and three analogues in aqueous solution, Anal. Chem. 69 (1997) 4972–4978.
[20] V. Sanz-Nebot, F. Benavente, A. Castillo, et al., Liquid chromatography-electrospray mass spectrometry of multicomponent peptide mixtures. Characterization of a mixture from the synthesis of the hormone goserelin, J. Chromatogr. A 889 (2000) 119–125.
[21] D. Riester, K. Wiesmüller, D. Stoll, et al., Racemization of amino acids in solid-phase synthesis investigated by capillary electrophoresis, Anal. Chim. Acta 436 (2001) 279–284.
[22] B. De Spiegeleer, V. Vergote, A. Pezeski, et al., Impurity profiling quality control testing of synthetic peptides using liquid chromatography-photodiode array-fluorescence and liquid chromatography-electrospray ionization-mass spectrometry: the obstatin case, Anal. Biochem. 376 (2008) 229–234.
[23] V. Sanz-Nebot, B. Fernando, I. Toro, et al., Separation and characterization of complex crude mixtures produced in the synthesis of therapeutic peptide hormones by liquid chromatography coupled to electrospray mass spectrometry (LC–ESI-MS), Anal. Chim. Acta 521 (2004) 25–36.
[24] J. Eggens, F. Bakelaar, A. Petersen, et al., A novel method for repetitive peptide synthesis in solution without isolation of intermediates, J. Peptide Sci. 11 (2005) 633–641.
[25] H. Ball, P. Mascagni, Chemical synthesis and purification of proteins: a methodology, Int. J. Pept. Protein Res. 48 (1996) 31–47.
[26] J.W. Metzger, C. Kempter, K.H. Wiedmuller, et al., Electrospray mass spectrometry and tandem mass spectrometry of synthetic multicomponent peptide mixtures: determination of composition and purity, Anal. Biochem. 219 (1994) 261–277.

Fig. 9 Type of related peptide impurities found in the 61 experimentally determined sequences.
Quality evaluation of quorum sensing peptides

[27] D.S. King, C.G. Fields, G.B. Fields, A cleavage method which minimizes side reactions following fmoc solid phase peptide synthesis, Int. J. Pept. Protein Res. 36 (1990) 255–266.

[28] F. Albericio, N. Knebl-Cordonier, S. Biancalana, et al., Preparation and application of the 5-(4-(9-fluorenylmethyloxycarbonyl)amino- methyl)-3,5-dimethoxyphenoxy)valeric acid (PAL) handle for the solid-phase synthesis of C-terminal peptide amides under mild conditions, J. Org. Chem. 55 (1990) 3730–3743.

[29] N.A. Solé, G. Barany, Optimization of solid-phase synthesis of [Ala8]-dynorphin A, J. Org. Chem. 57 (1992) 5399–5403.

[30] J. Leon, E. Reubsät, H. Beijnen, et al., Reduction of Cys36–Cys42 and Cys64–Cys74 disulfide bonds in recombinant human granulocyte colony stimulating factor, J. Pharm. Biomed. Anal. 19 (1999) 837–845.

[31] M. Verbeken, E. Wynendaele, R. Lefebre, et al., The influence of peptide impurity profiles on functional tissue-organ bath response: the 11-mer peptide INSL6[151–161] case, Anal. Biochem. 421 (2012) 547–555.

[32] WHO, Handbook: Quality Practices in Basic Biomedical Research, (http://www.who.int/tdr/publications/documents/quality_practices.pdf), 2006.

[33] J. de Beukelaar, J. Gratama, P. Smitt, et al., The impact of impurities in synthetic peptides on the outcome of T-cell stimulation assays, Rapid Commun. Mass Spectrom. 21 (2007) 1282–1288.

[34] J. Currier, L. Galley, H. Wenschuh, et al., Peptide impurities in commercial synthetic peptides and their implications for vaccine trial assessment, Clin. Vaccine. Immunol. 15 (2008) 267–276.

[35] J. Zhang, C. Klein, P. Ren, et al., Response to comment on obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effect on food intake, Science 315 (2007) 766d.

[36] E. Wynendaele, F. Verbeke, M. D’Hondt, Crosstalk between the microbiome and cancer cells by quorum sensing peptides, Peptides 64 (2015) 40–48.

[37] B. De Spiegeleer, F. Verbeke, M. D’Hondt, et al., The quorum sensing peptides PhrG, CSP and EDF promote angiogenesis and invasion of breast cancer cells in vitro, PLoS One (2015) http://dx.doi.org/10.1371/journal.pone.0119471.

[38] E. Wynendaele, A. Bronselaer, J. Nielandt, et al., Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides, Nucleic Acids Res. 41 (2013) D655–D659.

[39] European Pharmacopoeia 7.0, European Directorate for the quality of Medicines and Healthcare, Strassbourg, France, 07/2009:2034, Substances for Pharmaceutical Use.

[40] OMCL Network of the Council of Europe, Qualification of equipment, Annex 1: Qualification of HPLC Equipment, PA/PH/OMCL (11)04, 2011.

[41] P.R. Baker, K.R. Clauser (http://prospector.ucsf.edu.), accessed 24/09/2014.

[42] P. Roepstorff, J. Fohlman, Proposal for a common nomenclature for sequence ions in mass spectra of peptides, Biomed. Mass Spectrom. 11 (1984) 601.

[43] M.C. Lai, E.M. Topp, Solid-state chemical stability of proteins and peptides, J. Pharm. Sci. 88 (1999) 489–500.

[44] V. Sanz-Nebot, A. Garcés, J. Barbosa, Investigation of crudes of synthesis of carbetocin by liquid chromatography coupled to electrospray ionization mass spectrometry, J. Chromatogr. A 883 (1999) 267–275.

[45] A. Taicrib, G.K. Scriba, C Neusüß, Identification and characterization of impurities of tetracosactide by capillary electrophoresis and liquid chromatography coupled to time-of-flight mass spectrometry, Anal. Bioanal. Chem. 401 (2011) 1365–1375.