Direct extraction of nuclear effects in quasielastic scattering on carbon

Callum Wilkinson and Kevin S. McFarland

1 University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), Bern, Switzerland
2 University of Rochester, Department of Physics and Astronomy, Rochester, New York 14627 USA

(Dated: July 28, 2016)

Nuclear effects on neutrino reactions are expected to be a significant complication in current and future neutrino oscillation experiments seeking precision measurements of neutrino flavor transitions. Calculations of these nuclear effects are hampered by a lack of experimental data comparing neutrino reactions on free nucleons to neutrino reactions on nuclei. We present results from a novel technique that compares neutrino and antineutrino charged current quasielastic scattering on hydrocarbons to extract a cross section ratio of antineutrino charged current elastic reactions on free protons to charged current quasielastic reactions on the protons bound in a carbon nucleus. This measurement of nuclear effects is compared to models. The cross sections for neutrino and antineutrino charged current quasielastic (CCQE) reactions on free nucleons, \(\nu_n \rightarrow l^- p \) and \(\bar{\nu}_p \rightarrow l^+ n \), can be expressed in terms of nucleon form factors \([1][3]\). This prescription, with form factors constrained by electron nucleon elastic scattering and pion electroproduction data, accurately describes available neutrino interaction data on hydrogen and loosely bound deuterium targets \([5][9]\). On heavier, more tightly bound nuclei, the relativistic Fermi Gas (FG) model \([10]\) modifies this formalism within the context of the impulse approximation to include a simple description of the initial state of bound nucleons within the nucleus, and has been extensively used in neutrino interaction generators. However, experiments with carbon, oxygen and iron targets \([11][19]\) with neutrino energies of a few GeV have measured a significantly different, typically higher, quasielastic cross section than predicted by the FG model. Additionally, recent measurements of the CC-inclusive cross section have shown that nuclear effects are not well understood \([20]\), and that the ratio of CC-inclusive cross section measurements on different nuclear targets cannot be described by the models available in generators \([21]\), particularly in the elastic region.

Theoretical work to understand these differences have been focused on three broad areas: a more sophisticated description of the initial state of nucleons within the nucleus \([22][29]\); contributions to the cross section beyond the impulse approximation which involve multiple initial state nucleons (hereafter referred to as multinucleon processes or MNP) \([30][31]\); and collective effects which modify the cross section, which are generally referred to by the name of the calculation, the Random Phase Approximation (RPA) \([30][31]\). Despite the flurry of theoretical activity in recent years, a consistent picture has yet to emerge, in part because of significant differences in the predictions of theoretical calculations \([32][44]\).

Quasielastic interactions are especially important for accelerator neutrino oscillation experiments at GeV energies \([35][39]\). In the impulse approximation, the initial state nucleons are independent in the mean field of the nucleus, and therefore the neutrino energy and momentum transfer \(Q^2 \) can be estimated from the polar angle \(\theta_L \) and momentum \(p_L \) of the final state lepton. However, the initial state prescription and multinucleon processes both disrupt this relationship in different ways \([40][42]\). MNP and collective RPA processes both alter the distribution of \(Q^2 \) which can in turn alter the relative acceptance of near and far detectors. Therefore understanding nuclear modifications is essential for the current and future generations of neutrino oscillation experiments.

Although neutrino–nucleon scattering data would be invaluable for untangling nuclear effects, no new data are expected from any current or planned experiments in the few-GeV energy region. In this analysis, we present a method for extracting a measurement of the suppression and enhancement to the CCQE cross section due to nuclear effects in carbon from neutrino and antineutrino measurements on hydrocarbon targets, which is relatively free of axial form factor and other uncertainties, particularly at low \(Q^2 \). This method is largely model independent when applied to high energy CCQE data, such as that from MINERνA \([15][16]\), but less so at the lower energies of the MiniBooNE experiment \([14][17]\).

The CCQE neutrino–nucleon differential cross section for free nucleons as a function of the negative of the four-momentum transfer squared, \(Q^2 \), can be expressed using the Llewellyn-Smith formula \([4]\):

\[
\frac{d\sigma}{dQ^2} \left(\nu_n \rightarrow l^- p \right) = \frac{M^2 G_F^2 \cos^2 \vartheta_C}{8\pi E^2} \left[A(Q^2) \pm B'(Q^2) \left(\frac{s-u}{M^4} \right) + C(Q^2) \left(\frac{1}{M^4} \right) \right],
\]

(1)

where \(M \) is the mass of the struck nucleon, \(G_F \) is Fermi’s constant, \(\vartheta_C \) is the Cabibbo angle, \(E_\nu \) is the incoming neutrino energy and \(s \) and \(u \) are the Mandelstam variables. \(A(Q^2) \), \(B'(Q^2) \) and \(C(Q^2) \) are functions of the vector form factors: \(F_V^1 \), constrained by electron nucleon elastic scattering experiments \([5][7]\); the axial form factor, \(F_A \), constrained by neutrino scattering experiments on hydrogen and deuterium and from pion electroproduction \([6][9]\); and the pseudoscalar form factor, \(F_P \), which
is derived from F_A \cite{1}. Uncertainties from F_P and the assumption that second class currents can be neglected are discussed in Reference \cite{13}. The term with $B'(Q^2)$ contains the interference between the axial and vector currents, and it is this term which is responsible for the Q^2 dependent difference between the $\nu_t+n \rightarrow \ell^-+p$ and $\bar{\nu}_t+p \rightarrow \ell^++n$ cross sections. At $Q^2 = 0$, there is no difference between the CCQE cross sections for neutrinos and antineutrinos. Note that $s-u = 4M_\nu E_\nu - Q^2 - m_\ell^2$, where m_ℓ is the mass of the final state lepton; therefore, the effect of the interference term is largest at small neutrino energies and high Q^2.

Nuclear models available in the NEUT \cite{44,45} event generator will be compared to the data. NEUT's default model is the Smith-Moniz \cite{10} implementation of an FG model with Fermi momentum (p_F) and binding energy (E_b) on carbon set to $p_F = 217$ MeV and $E_b = 25$ MeV based on electron scattering data \cite{46}. NEUT has implemented the Spectral Function (SF) model of Benhar \cite{22,47} which describes the initial nucleon's correlated momentum and removal energy and includes short range nuclear correlations which affect $\sim 20\%$ of the CCQE rate. Nuclear screening due to long-range nucleon correlations is implemented in RPA calculations \cite{34}. Calculations of MNF use the model of Nieves et al. \cite{30,48}. NEUT also has implementations of two effective models constructed to ensure agreement with electron data, an Effective Spectral Function (ESF) \cite{23,49,50} and the Transverse Enhancement Model (TEM) \cite{50,51}. For all models, we use the BBBA05 vector nucleon form factors \cite{52} and a dipole axial form factor with $M_A = 1.00$ GeV, based on fits to bubble chamber data \cite{4,9}.

In this analysis we use the published flux-averaged neutrino and antineutrino CCQE cross section results on hydrocarbon targets from the MINERvA \cite{15,16} and MiniBooNE \cite{11,17} experiments. The results used are differential in terms of Q^2, derived from lepton kinematics under the quasielastic hypothesis,

$$Q^2_{\mathrm{QE}} = -m_\mu^2 + 2E_\nu^{\mathrm{QE}, \, \, \, \mathrm{FG}}(E_\nu - \sqrt{E_\nu^2 - m_\mu^2 \cos \theta_\mu}),$$

$$E_\nu^{\mathrm{QE}, \, \, \, \mathrm{FG}} = \frac{2M_i^2 E_\mu - (M_f^2 + m_\mu^2 - M_i^2)}{2(M_i^2 - E_\mu + \sqrt{E_\mu^2 - m_\mu^2 \cos \theta_\mu})},$$

where E_μ is the muon energy, m_μ is the muon mass, M_i (M_f) is the initial (final) nucleon mass, $M_i^2 = M_i - V$ where V is the effective binding energy. For both MiniBooNE datasets and for the MINERvA neutrino dataset, $V = 34$ MeV; for the MINERvA antineutrino dataset, $V = 30$ MeV.

There are three differences in the neutrino and antineutrino cross section measurements for CCQE-like processes on hydrocarbon, $C'H_X$ targets. Firstly, the neutrino and antineutrino cross sections are fundamentally different for free nucleons (see Equation 1). Secondly, the neutrino and antineutrino fluxes produced in the same beamline may be different \cite{49,53}. Finally, antineutrinos can interact with the free proton from the hydrogen as well as bound protons within the carbon nucleus, whereas neutrinos can only interact with bound neutrons. The central thesis of this work is that a direct measurement of nuclear effects in carbon can be made by

$$\frac{6\sigma^\nu_H}{\sigma^\nu_C} = \frac{[6(1+N)\tilde{\sigma}^\nu_{C,H_0} - 6\lambda(Q^2)\tilde{\sigma}^\nu_{C,H_0}]}{N\lambda(Q^2)\tilde{\sigma}^\nu_{C,H_0}},$$

where σ denotes the flux-averaged cross section for interactions between the neutrino species in the super- and the the target in the subscript; $\tilde{\sigma}$ denotes a cross section per nucleon; the correction factor $\lambda(Q^2) = (d\sigma^\nu_p/dQ^2)/(d\sigma^\nu_n/dQ^2)$ corrects for the difference between the neutrino and antineutrino nucleon cross sections and fluxes and is shown in Figure 1.

![Figure 1](image_url)

FIG. 1: $\lambda(Q^2) = \sigma^\nu_p(Q^2)/\sigma^\nu_n(Q^2)$ calculated using the free nucleon cross-sections implemented in the GENIE neutrino interaction generator \cite{55}, averaged over the relevant flux and binned into the Q^2 binning used by the relevant experiment. The values are given in Appendix III.

The validity of Equation 3 rests on the assumption that the ratio of bound to free cross sections, as a function of Q^2, is the same for neutrino and antineutrino scattering. The quality of this assumption can be tested directly for a variety of models by looking at the double ratio $R(Q^2)$,

$$R(Q^2) = \left(\frac{6\sigma^\nu_p(Q^2)}{\sigma^\nu_C(Q^2)}\right)\left/\left(\frac{6\sigma^\nu_n(Q^2)}{\sigma^\nu_C(Q^2)}\right)\right.,$$

where the bound CCQE cross section for neutrino and antineutrino ($\sigma^\nu_p(Q^2)$ and $\sigma^\nu_n(Q^2)$) is calculated for any given nuclear model. Deviations of R from 1 indicate that this assumption is inadequate and will lead to biases in results extracted with Equation 3. Within an FG model, the assumption that $R = 1$ is imperfect due to the effects of binding energy and kinematic boundaries, and this point is discussed further in Appendix III. The bias to our extracted results can be seen in the generalization of...
\[\frac{6 \sigma_R^H}{\sigma_C^H} = \left[(6 + N) \sigma_{\text{CH}_N}^H - 6 \lambda(Q^2) \sigma_{\text{CH}_N}^\nu \right] \\
\quad \quad + \left[\frac{6 + N}{N \lambda(Q^2)} \sigma_{\text{CH}_N}^\nu (R - 1) \right] \rightarrow R - \text{term.} \]

We determine the size of the \(R\)-term MINER\(\nu\)A and MiniBooNE fluxes for the nuclear models discussed above in Figure 2. The \(R\)-term is relatively flat across the entire \(Q^2\) range for MINER\(\nu\)A, with no indication of strong biases, which suggests that our assumption holds well in this case and our results will be unbiased and do not depend strongly on the choice of nuclear model. For MiniBooNE, the assumption does not hold up as well, so we expect biases in results extracted using Equation 3.

Another complication of this analysis is that experiments measure differential cross-sections in \(Q_{\text{QE}}^2\), as defined in Equation 2 whereas the technique relates differential cross sections in \(Q^2\). Appendix 4 shows the relationship between these two in the FG model. The differences are small compared to \(Q^2\) bin widths for all relevant kinematics in the MINER\(\nu\)A experiment; however, in MiniBooNE, the smearing becomes comparable to the bin width for \(Q^2 > 0.2\ \text{GeV}^2\).

The measurement of nuclear effects on carbon is extracted from the public data releases for MINER\(\nu\)A [15, 16, 50] and MiniBooNE [11, 17] using Equation 3 with standard propagation of error techniques. For MINER\(\nu\)A, the full covariance matrix, including cross-correlations, of the neutrino and antineutrino datasets is provided. For MiniBooNE, only the diagonals from the shape covariance matrices, and overall normalization factors are provided separately for the neutrino and antineutrino datasets (which we assume to be uncorrelated in this analysis). The data points and covariance matrices extracted in this work for both MINER\(\nu\)A and MiniBooNE are available in the supplementary material.

In Figure 3 the test statistic of Equation 3 is calculated for the MINER\(\nu\)A and MiniBooNE data, and compared with the nuclear enhancement or suppression predicted by a variety of CCQE cross section models available in NEUT. The power of our measurement to constrain the choice of nuclear model is shown by the difference between our extracted data points and the ratio predicted by the various models tested. A \(\chi^2\) value can be calculated for each model

\[\chi^2 = \left(\nu_i^{\text{DATA}} - \nu_i^{\text{MC}} \right) M_{ij}^{-1} \left(\nu_j^{\text{DATA}} - \nu_j^{\text{MC}} \right), \]

where the measurement of nuclear effects from data is given by \(\nu_i^{\text{DATA}}\), the covariance matrix between the data points is \(M_{ij}\) and the NEUT prediction for each model is given with \(\nu_i^{\text{MC}}\). The \(\chi^2\) values for each model are given for both MINER\(\nu\)A and MiniBooNE in Table 4. The models to which we compare the data span calculational approaches to nuclear models for CCQE in the literature, but are not a complete set. Any other model can be compared to the measurements in this work using information in Appendix III.

Any model dependent bias in the test statistic due to the free nucleon correction factor \(\lambda(Q^2)\) (see Equation 5 and Figure 2) or \(Q^2 \rightarrow Q_{\text{QE}}^2\) differences (see Appendix 1) can be calculated for each NEUT model by comparing the predicted ratio \(6 \sigma_R^H(Q_{\text{QE}}^2)/\sigma_C^H(Q_{\text{QE}}^2)\) for each model (labeled TRUE), with the test statistic (TS) calculated using Equation 3. A large deviation between the TS and TRUE values would indicate that Equation 3 breaks down for that model and cannot be meaningfully compared with that model. The bottom panels of Figure 3 shows that this deviation is small compared to fractional uncertainties on the data for MINER\(\nu\)A; but is large for
$6\sigma_H^P(\sigma_{\nu}^{Q_E})/\sigma_{C}^P(\sigma_{\nu}^{Q_E})$ ratio can be used to differentiate between nuclear models.

Figure 3 and Table I show that the extracted MINERνA data have some power to differentiate between nuclear models, and that there is considerable tension between the data and all models tested. However, we have treated the NEUT nuclear models as having no free parameters, and have calculated χ^2 values assuming nominal model parameters. This tension may well be reduced by considering changes to the model parameters, and indeed this measurement could be used to tune the parameters of any one model. Many of the models have no well defined theoretical uncertainties which can be varied in NEUT; however, the FG model does have a number of parameters which may be varied to estimate uncertainties within the base FG model, and we may additionally consider uncertainties in the axial form factor. To illustrate the possible reduction in tension due to modified nuclear model parameters, we consider variations in the FG of $M_A = 1.00 \pm 0.02$ GeV [6][9], $p_F = 217 \pm 5$ MeV [10], $E_b = 25 \pm 3$ MeV [10] and variations of 3 MeV in E_b for either neutrino or antineutrino to reflect uncertainty on whether the binding energy is the same for neutrons and protons. Additionally, we consider the 3% uncertainty on $F_P(0)$ recommended in Reference [43]; and take the difference between the non-dipole F_A from Reference [7] and the dipole F_A as a 1σ uncertainty. The uncertainties are combined in quadrature and compared to the fractional uncertainty on the data in Figure 3. The FG model uncertainty is most significant at low Q^2, and is dominated by the uncertainty on the Fermi momentum, p_F. As the model bias of our measurement is smallest slightly in or-

MiniBooNE. Because the size of the bias for MINERνA is small, certainly $<10\%$ of the error on the data even in the highest Q_{QE}^2 bins, we conclude that our extracted measurement of the enhancement and suppression in the

Model	χ^2/DOF
MINERνA MiniBooNE	
FG	14.8/8
FG+RPA	44.3/8
FG+RPA+MNP	13.6/8
FG+TEM	13.4/8
SF	15.9/8
ESF+TEM	12.8/8

TABLE I: χ^2 values obtained with Equation 6 for the various cross section models shown in Figure 3.
data in the few-GeV energy region, the method described experiments which will take neutrino–nucleon scattering
ulation experiments. As there are no current or future
tic uncertainties in current and future neutrino oscil-
trino scattering has become a focus for reducing system-
ations cannot be significantly reduced by playing with the
in the case of simple FG-based nuclear models, the ten-
the tension for other models, but it is interesting that
clear model uncertainties may well significantly reduce the
tension for other models, but it is interesting that
in the case of simple FG-based nuclear models, the
tensions cannot be significantly reduced by playing with the
model uncertainties.
Improving the understanding of nuclear effects in neu-
trino scattering has become a focus for reducing systematic
uncertainties in current and future neutrino oscillation
experiments. As there are no current or future experiments which will take neutrino–nucleon scattering data in the few-GeV energy region, the method described
here offers a unique opportunity to directly inspect the
suppression or enhancement due to nuclear effects. The
method exploits the fact that antineutrinos have addi-
tional interactions on free protons (from the hydrogen),
and corrects for neutrino and antineutrino flux and cross
section differences. It was expected to work well at
low Q^2, and be relatively free of axial form factor or
other uncertainties, and proves to be relatively unbiased
at MINERνA even at high Q^2. Model dependent bi-
ases were seen for MiniBooNE, which should be borne in
mind when applying this technique to other low energy
datasets. The extracted measurement of nuclear effects
in carbon is the first of its kind, and is easy to inter-
pret for model builders. We conclude that models with
nuclear screening due to long-range correlations must be
balanced by the addition of multinucleon hard scattering
processes, and that the combination of both effects
is weakly favored over Fermi Gas models that only in-
clude the mean field of the nucleus. We also note that
all of the models tested show considerable tension with
the MINERνA data. Constraints from this measure-
ment could be improved using future, higher statistics,
MINERνA CCQE measurements. This method could be
applied to cross section measurements in terms of dif-
ferent kinematic variables, although a high-Q^2 bias will remain.

ACKNOWLEDGMENTS

This work was supported by the United States De-
artment of Energy under Grant de-sc0008475 and by
the Swiss National Science Foundation and SERI. CW
is grateful to the University of Rochester for hospitality
while this work was being carried out. We thank Geralyn
Zeller for useful discussions about this technique during
its early development, and in particular for information
about MiniBooNE’s consideration of a similar analysis.
We thank the developers of the NEUT generator for im-
plementation of many alternate nuclear models, and the
T2K collaboration for supporting this development. We
thank the MINERνA collaboration for early release of
their data corrected for the improved flux simulation.

TABLE II: Best fit χ^2 and p_F results for the fit to FG based models for MINERνA data. The nominal χ^2 with $p_F = 217$ MeV is included for comparison.

Model	χ^2/DOF Nominal	p_F (GeV2)
FG	14.8	213.8 ± 4.0
FG+RPA	44.3	387.6 ± 4.0
FG+RPA+MNP	13.6	141.1 ± 3.9
FG+TEM	13.4	215.8 ± 4.5

[1] S. L. Adler, Il Nuovo Cimento (1955-1965) 30, 1020 (1963)
[2] R. E. Marshak, Riazuddin, and C. P. Ryan, *Theory of Weak Interactions in Particle Physics* (Wiley-Interscience, 1969) pp. 1–761.
[3] A. Pais, Annals Phys. 63, 361 (1971).
[4] C. Llewellyn Smith, Phys. Rept. 3, 261 (1972).
[5] H. S. Budd, A. Bodek, and J. Arrington, in *2nd International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt 02)* Irvine, California, December 12-15, 2002 (2003) arXiv:hep-ex/0308005 [hep-ex]
[6] K. S. Kuzmin, V. V. Lyubushkin, and V. A. Nau-
mov, Acta Phys. Polon. B37, 2337 (2006), arXiv:hep-
ph/0606184 [hep-ph]
[7] A. Bodek, S. Avvakumov, R. Bradford, and H. Budd, The European Physical Journal C 53, 349
[8] K. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, Eur. Phys. J. C54, 517 (2008) arXiv:0712.4384 [hep-ph]
[9] A. Bodek, S. Avvakumov, R. Bradford, and H. S. Budd, J. Phys. Conf. Ser. 110, 082004 (2008) arXiv:0709.3538 [hep-ex]
[10] R. Smith and E. Moniz, Nucl. Phys. B43, 605 (1972)
I. APPENDIX: EQUALITY OF THE NUCLEAR CORRECTION FOR NEUTRINOS AND ANTI-NEUTRINOS IN THE FERMI GAS MODEL

The validity of Equation 3 rests on the assumption that the ratio of bound to free cross sections is the same for neutrino and antineutrino modes. Figure 5 shows the ratio of bound to free CCQE cross sections for both neutrino \((\rho_\nu(E_\nu, Q^2) = \sigma_{\nu}^{\text{RFG}}(E_\nu, Q^2)/\sigma_{\nu}^{\text{free}}(E_\nu, Q^2))\) and antineutrinos \((\rho_{\bar{\nu}}(E_\nu, Q^2) = \sigma_{\bar{\nu}}^{\text{RFG}}(E_\nu, Q^2)/\sigma_{\bar{\nu}}^{\text{free}}(E_\nu, Q^2))\) assuming the RFG model in GENIE for bound nucleons as a function of \(E_\nu\) and \(Q^2\). The simulated events used to produce Figure 5 are flat in neutrino energy. In Figure 6, the double ratio \(\xi(E_\nu, Q^2) = \sigma_{\nu}^{\text{RFG}}(E_\nu, Q^2)/\sigma_{\nu}^{\text{free}}(E_\nu, Q^2)\) is shown, which is a direct test of this assumption for the case of the RFG model. It can be observed from Figure 5 that at the fringe of the kinematically allowed region, where Fermi motion increases the allowed phase space for the RFG model, the ratio of bound to free cross sections changes rapidly. It is clear from Figure 6 that this change is different for neutrino and antineutrino modes. This implies that there will be a bias in the test statistic defined in Equation 3 for neutrino energies which cannot populate all \(Q^2\) bins. MINERνA, where the flux has neutrino energies in the range \(1.5 \leq E_\nu \leq 10\) GeV, will not be affected by the bias. However, MiniBooNE, with neutrino energies of \(0 \leq E_\nu \leq 3\) GeV, will be affected, although the size of this bias on the test statistic is not clear from Figure 6. The biases are shown for both MINERνA and MiniBooNE in Figure 8.

Note that the \(R(Q^2)\) defined in Equation 4 is the flux integrated \(1/\xi(E_\nu, Q^2)\) for the case of the RFG model.

FIG. 5: Ratios of \(\sigma(E_\nu, Q^2)\) for the RFG and L-S models, for both neutrino and antineutrino modes.

FIG. 6: The double ratio \(\xi(E_\nu, Q^2)\), defined in Equation 7, is shown. Deviations from unity indicates a bias in the technique in that region of \((E_\nu, Q^2)\) space.
II. APPENDIX: RELATIONSHIP BETWEEN MEASURED Q_{QE} AND Q^2

![Graphs showing relationship between Q^2 and Q_{QE} for MINERνA and MiniBooNE](image)

FIG. 7: The $Q^2 \to Q_{QE}^2$ smearing is shown for the MINERνA neutrino and antineutrino samples. The legend gives the Q_{QE}^2 bin edges used by MINERνA. The dashed lines give the flux-averaged cross section prediction for the FG model calculated using NEUT as a function of Q_{QE}^2 (broken down into the MINERνA binning). The solid lines show the true Q^2 distribution of events in each Q_{QE}^2 bin.

The $Q^2 \to Q_{QE}^2$ effect for the FG model is illustrated in Figure 7 for MINERνA, and Figure 8 for MiniBooNE. In both figures, the true Q^2 distribution is shown for events which populate each of the first 8 Q_{QE}^2 bins of the experiments using events simulated using the FG model in NEUT with default model parameters. The smearing is not very significant for MINERνA, and is minimal in the lowest Q_{QE}^2 bins. For MiniBooNE, the smearing becomes significant in the higher Q_{QE}^2 bins (and this trend continues for the other bins not shown in Figure 8), but is minimal at low Q_{QE}^2. Q_{QE}^2 is effectively an additional smearing effect on the Q^2 distribution measured by the experiments, which is dependent on the nuclear model. As such it is part of the measurement of nuclear effects, but it will smear the bias introduced by correcting for the antineutrino/neutrino cross section difference with the L-S model. This effect is not corrected for, but is included in the bias tests shown on Figure 3. Again, it is reassuring that the Q_{QE}^2 smearing is minimal at low Q^2.

FIG. 8: The $Q^2 \to Q_{QE}^2$ smearing is shown for the first 8 bins of the MiniBooNE neutrino and antineutrino samples. The legend gives the Q_{QE}^2 bin edges used by MiniBooNE. The dashed lines give the flux-averaged cross section prediction for the FG model calculated using NEUT as a function of Q_{QE}^2 (broken down into the MiniBooNE binning). The solid lines show the true Q^2 distribution of events in each Q_{QE}^2 bin.
FIG. 9: Correlation matrices between the measurement of the test statistic extracted from data for both MINERνA and MiniBooNE. The bins numbers correspond to the increasing Q^2_{QE} bins used by the experiments. The covariance matrices are given in Tables III and IV for MINERνA and MiniBooNE respectively.

Q^2_{QE} (GeV2) bins	0 - 0.025	0.025 - 0.05	0.05 - 0.1	0.1 - 0.2	0.2 - 0.4	0.4 - 0.8	0.8 - 1.2	1.2 - 2
Test statistic	1.61	0.83	0.85	0.22	1.06	0.89	1.66	2.49
$\lambda(Q^2)$	0.988	0.953	0.904	0.831	0.728	0.598	0.470	0.354
0 - 0.025	0.439	0.213	0.212	0.197	0.233	0.254	0.293	0.389
0.025 - 0.05	0.213	0.306	0.186	0.172	0.204	0.210	0.275	0.356
0.05 - 0.1	0.212	0.186	0.244	0.177	0.216	0.217	0.242	0.356
0.1 - 0.2	0.197	0.172	0.177	0.201	0.218	0.219	0.221	0.331
0.2 - 0.4	0.233	0.204	0.216	0.218	0.318	0.302	0.330	0.532
0.4 - 0.8	0.254	0.210	0.217	0.219	0.302	0.388	0.423	0.677
0.8 - 1.2	0.293	0.275	0.242	0.221	0.330	0.423	2.619	2.699
1.2 - 2	0.389	0.356	0.356	0.331	0.532	0.677	2.699	4.947

TABLE III: The measurement of nuclear effects on carbon using MINERνA data on CH, calculated using Equation 3 and the covariance matrix between the data points.

III. APPENDIX: APPLYING THE METHOD TO AN ARBITRARY THEORETICAL MODEL

The extracted central values, $\lambda(Q^2) = \sigma_{p}^{\nu}/\sigma_{n}^{\nu}(Q^2)$ correction factors and covariance matrices are given for MINERνA and MiniBooNE in Tables III and IV respectively. The extracted correlation matrices are also shown for both MINERνA and MiniBooNE in Figure 9. Note that no covariance matrix between the MiniBooNE bins has been released for either the neutrino or the antineutrino CCQE results; the correlations shown are due to the overall normalization uncertainties given independently for the neutrino (10.7%) and antineutrino (13.0%) data which are fully correlated between bins (but are not correlated with each other).

It is possible to apply the method outlined here to any cross section model using Equation 3, using the $\lambda(Q^2)$ correction factor. As shown in Figure 3, the bias on the test statistic can be shown for any given model by calculating $6\sigma_{H}^{\nu}/\sigma_{C}^{\nu}$ using the test statistic defined in this work, and exactly using that model.

It is possible to form a χ^2 statistic comparing an arbitrary model to the measurements of nuclear effects extracted here as described in Equation 6.
| Q^2_{QE} (GeV2) bins | 0 – 0.05 | 0.05 – 0.1 | 0.1 – 0.15 | 0.15 – 0.2 | 0.2 | 0.2 – 0.25 | 0.25 | 0.3 | 0.3 – 0.35 | 0.35 – 0.4 | 0.4 | 0.4 – 0.45 | 0.45 – 0.5 | 0.5 | 0.5 – 0.6 | 0.6 | 0.6 – 0.7 | 0.7 | 0.7 – 0.8 | 0.8 | 0.8 – 1 | 1 | 1 – 1.2 | 1.2 | 1.2 – 1.5 | 1.5 | 1.5 – 2 |
|-------------------------|---------|------------|------------|------------|-----|-------------|------|-----|-------------|-------------|-----|-------------|-------------|-----|-------------|-----|-------------|-----|-------------|-----|-------------|-----|-------------|-----|-------------|
| Test statistic | 2.49 | 1.59 | 1.27 | 1.29 | 1.39 | 1.33 | 1.22 | 1.39 | 1.45 | 1.61 | 1.64 | 1.42 | 1.4 | 1.38 | 0.93 | 0.31 | -1.57 |
| $\lambda(Q^2)$ | 0.784 | 0.543 | 0.408 | 0.321 | 0.262 | 0.217 | 0.186 | 0.162 | 0.141 | 0.125 | 0.108 | 0.090 | 0.077 | 0.064 | 0.052 | 0.043 | 0.037 |
| 0 – 0.05 | 2.093 | 0.609 | 0.568 | 0.570 | 0.583 | 0.574 | 0.561 | 0.583 | 0.591 | 0.613 | 0.567 | 0.587 | 0.585 | 0.582 | 0.522 | 0.358 | 0.190 |
| 0.05 – 0.1 | 0.609 | 0.688 | 0.475 | 0.477 | 0.487 | 0.480 | 0.469 | 0.487 | 0.495 | 0.512 | 0.515 | 0.491 | 0.489 | 0.486 | 0.436 | 0.299 | 0.158 |
| 0.1 – 0.15 | 0.568 | 0.475 | 0.516 | 0.444 | 0.454 | 0.447 | 0.437 | 0.454 | 0.461 | 0.477 | 0.480 | 0.457 | 0.455 | 0.453 | 0.407 | 0.279 | 0.148 |
| 0.15 – 0.2 | 0.570 | 0.477 | 0.444 | 0.501 | 0.456 | 0.449 | 0.439 | 0.456 | 0.463 | 0.479 | 0.482 | 0.459 | 0.457 | 0.455 | 0.408 | 0.280 | 0.148 |
| 0.2 – 0.25 | 0.583 | 0.487 | 0.454 | 0.511 | 0.459 | 0.449 | 0.466 | 0.473 | 0.490 | 0.493 | 0.469 | 0.468 | 0.465 | 0.417 | 0.286 | 0.152 |
| 0.25 – 0.3 | 0.574 | 0.480 | 0.447 | 0.449 | 0.459 | 0.500 | 0.442 | 0.459 | 0.466 | 0.483 | 0.486 | 0.463 | 0.461 | 0.458 | 0.411 | 0.282 | 0.149 |
| 0.3 – 0.35 | 0.561 | 0.469 | 0.437 | 0.439 | 0.449 | 0.442 | 0.495 | 0.449 | 0.455 | 0.471 | 0.474 | 0.452 | 0.450 | 0.448 | 0.402 | 0.275 | 0.146 |
| 0.35 – 0.4 | 0.583 | 0.487 | 0.454 | 0.456 | 0.466 | 0.459 | 0.449 | 0.588 | 0.473 | 0.490 | 0.493 | 0.469 | 0.467 | 0.465 | 0.417 | 0.286 | 0.152 |
| 0.4 – 0.45 | 0.591 | 0.495 | 0.461 | 0.463 | 0.473 | 0.466 | 0.455 | 0.473 | 0.472 | 0.497 | 0.500 | 0.476 | 0.474 | 0.472 | 0.424 | 0.290 | 0.154 |
| 0.45 – 0.5 | 0.613 | 0.512 | 0.477 | 0.479 | 0.490 | 0.483 | 0.471 | 0.490 | 0.497 | 0.813 | 0.518 | 0.493 | 0.491 | 0.489 | 0.439 | 0.301 | 0.159 |
| 0.5 – 0.6 | 0.616 | 0.515 | 0.480 | 0.482 | 0.493 | 0.486 | 0.474 | 0.493 | 0.500 | 0.518 | 0.952 | 0.496 | 0.494 | 0.492 | 0.441 | 0.302 | 0.160 |
| 0.6 – 0.7 | 0.587 | 0.491 | 0.457 | 0.459 | 0.469 | 0.463 | 0.452 | 0.469 | 0.476 | 0.493 | 0.496 | 1.270 | 0.471 | 0.468 | 0.420 | 0.288 | 0.153 |
| 0.7 – 0.8 | 0.585 | 0.489 | 0.455 | 0.457 | 0.468 | 0.461 | 0.450 | 0.467 | 0.474 | 0.491 | 0.494 | 1.892 | 0.466 | 0.449 | 0.287 | 0.152 |
| 0.8 – 1 | 0.582 | 0.486 | 0.453 | 0.455 | 0.465 | 0.458 | 0.448 | 0.465 | 0.472 | 0.489 | 0.492 | 0.468 | 0.466 | 2.800 | 0.416 | 0.285 | 0.151 |
| 1 – 1.2 | 0.522 | 0.436 | 0.407 | 0.408 | 0.417 | 0.411 | 0.402 | 0.417 | 0.424 | 0.439 | 0.411 | 0.420 | 0.419 | 0.416 | 0.442 | 0.256 | 0.136 |
| 1.2 – 1.5 | 0.358 | 0.299 | 0.279 | 0.280 | 0.286 | 0.282 | 0.275 | 0.286 | 0.301 | 0.302 | 0.288 | 0.287 | 0.285 | 0.256 | 4.152 | 0.093 |
| 1.5 – 2 | 0.190 | 0.158 | 0.148 | 0.148 | 0.152 | 0.149 | 0.146 | 0.152 | 0.154 | 0.159 | 0.160 | 0.153 | 0.152 | 0.151 | 0.136 | 0.093 | 4.036 |

TABLE IV: The measurement of nuclear effects on carbon using MiniBooNE data on CH_2, calculated using Equation 3 and the covariance matrix between the data points.