Thermal and hydraulic efficiency of the corridor tube bundle in conditions of pulsating flow of fluid

V K Ilyin1, L S Sabitov2, A I Haibullina1, A R Hayrullin1

1Kazan State Power Engineering University, Kazan, 420066, Russian Federation
2Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russian Federation

sabitov-kgasu@mail.ru

Abstract. The method of determining the thermal and hydraulic efficiency η of tube bundles with a pulsating flow is given in the paper. Based on numerical simulation, the effect of the Reynolds number Re of the dimensionless pulsation amplitude β and the Strouhal number Sh on the thermal and hydraulic efficiency η of the corridor tube bundles was investigated. The optimum pulsation regimes corresponding to the maximum η are found.

Tube bundles are the main elements of heat transfer devices which are widely used in various industries. Therefore, nowadays, there are many works devoted to the study of heat transfer and hydrodynamics in tube bundles in order to improve the efficiency of heat transfer equipment. [1-10]

In work [2], the heat transfer of an oscillating cylinder in a fluid flow was studied numerically. The dimensionless maximum frequency of the oscillation velocity of the cylinder lies in the range $0.5 \leq V_m \leq 1$, where $V_m = v_m/u_0$, here v_m and u_0 maximum speed of oscillation of the cylinder, m/sec and velocity of fluid flow, m/sec, the range of Reynolds numbers was $100 \leq Re \leq 500$. It is noted that as the V_m increases, the heat transfer intensification increases, and with increasing Re decreases. When $Re = 200$, $V_m = 0.25$, $V_m = 0.5$, $V_m = 1$ the increase in heat transfer were 10.2 $\%$, 13.3 $\%$, and 21.9 $\%$. When $V_m = 1$, $Re = 100$, $Re = 200$ and $Re = 500$ the increase in heat transfer were 17 $\%$, 21.9 $\%$, и 28.7 $\%$. The maximum local increase in heat transfer along the perimeter of the cylinder was observed at the bottom of the cylinder.

In [3], an experimental method was used to study heat transfer in the case of a transverse flow past a cylinder in a pulsating air flow. The Strouhal numbers Sh were in the range $0.18 \leq Sh \leq 2.8$, Reynolds numbers Re $205 \leq Re \leq 822$, amplitude of pressures $40 \leq p \leq 276$, Pa. An increase in the heat transfer coefficient by 2.1 times was registered. It is established that with increasing numbers of Re and Sh, the intensification of heat transfer decreases, and with increasing pressure amplitudes, p increases in intensification.

The authors of [4] used numerical methods to study the heat transfer of a semicircular cylinder placed in a horizontal channel under forced fluctuations in the flow of liquid. The pulsations were sinusoidal, water with Prandtl number $Pr = 7$ was used as the working fluid, Reynolds number Re lay in the range $10 \leq Re \leq 100$, Strouhal number $0 \leq Sh \leq 2$, amplitude of vibration $0 \leq A \leq 0.6$. The maximum increase in the dimensionless coefficient of drag of the form (total drag coefficient) was
22%, Nusselt number was 10%. It is noted that the maximum increase in heat transfer irrespective of Re is observed at Sh = 1.

In [5, 6], an experimental method was used to study heat transfer in a corridor bundle of tubes under conditions of a pulsating flow of a liquid. Flow pulsations were asymmetrical. As a working range $100 \leq Re \leq 500$, the ripple frequency is $0.125 \leq f \leq 0.5$ Hz, the amplitude of the oscillation is $1.25 \leq A/D \leq 4.5$. The maximum increase in heat transfer by 90% was observed at $Re = 500$, $f = 0.5$ Hz, $A/D = 4.5$. It is shown that with increasing Re, the heat transfer decreases, and with increasing f and A/D, heat transfer increases.

In pulsating currents, the effect of pulsations on heat transfer is mainly considered or the effect of pulsations on the shape resistance coefficient is investigated, but the thermal and hydraulic efficiency of heat exchange elements is not considered. Although the efficiency of the heat exchange equipment depends on the values of the hydraulic resistance and the heat transfer coefficients of the heat exchange elements, which in turn affect the final metal capacity of the heat exchanger and the necessary power of the pumps required for pumping the heat carriers. In this paper, we propose a technique for determining the thermal and hydraulic efficiency of heat exchange elements in pulsating flows.

To assess the effectiveness of methods of intensification in stationary flows, the coefficient of thermal and hydraulic efficiency of Kirpichev [7]

$$ E = q / N, \tag{1} $$

where q – specific heat sink, W/m2; N – specific coolant flow rate, W/m2

$$ N = \Delta p \cdot v = \frac{\rho \cdot v^2}{2} \cdot \frac{v}{\xi} = \frac{\rho \cdot v^3}{2}, $$

Here Δp – pressure drop in the tube bundles, Pa; v – Average fluid velocity in the bundle, m/sec; ρ – Fluid density, kg/m3; ξ – coefficient of hydraulic resistance.

The power for pumping a coolant in a bundle of tubes with a pulsating current is averaged over a period of pulsation T_p,

$$ N_p = \frac{1}{T_p} \int_0^{T_p} \Delta p_p(t) v_p(t) dt. \tag{2} $$

Here $\Delta p_p(t)$ – instantaneous values of the pressure drop during pulsating flow in a bundle of tubes, Pa; $v_p(t)$ – instantaneous velocities with a pulsating flow, m/sec; t – time, sec.

The effectiveness of the method of intensification can also be estimated with the help of the specific coefficient of thermal and hydraulic efficiency under the condition $Re_p = Re_{st}$ (Reynolds analogy factor) [1] in the form

$$ \eta = E_p / E_{st} = (Nu_p / Nu_{st}) / (\xi_p / \xi_{st}), \tag{3} $$

where Re_{st}, E_{st}, Nu_{st}, ξ_{st} – Reynolds number, Kirpichev efficiency coefficient, Nusselt number and hydraulic resistance in a steady-state channel, Re_p, E_p, Nu_p, ξ_p – the average for the period of pulsations of the Reynolds number, the Kirpichev efficiency coefficient, the Nusselt number and the equivalent hydraulic resistance in the channel for pulsating flow.

Reynolds for steady-state Re_{st} and pulsed flow is calculated as follows Re_p:

$$ Re_p = ... $
where \(D \) – diameter of tube bundle, m; \(\nu \) – Kinematic viscosity, m\(^2\)/sec; \(\nu_{st} \) – The average flow velocity for stationary flow along the narrowest section in the bundle, m/sec; \(\nu_p \) – The velocity during pulsed flow was averaged over the period of pulsation \(T_p \)

\[
\nu_p = \frac{1}{T_p} \int_0^{T_p} \nu_p(t) dt.
\]

For steady flow in a tube bundle, the coefficient of hydraulic resistance was determined as follows

\[
\xi_{st} = \frac{\Delta \nu_{st} \cdot 2}{\rho \nu_{st}^2}.
\]

where \(\nu_{st} \) – average flow velocity for stationary flow, m/sec.

For a pulsating flow, the equivalent coefficient of hydraulic resistance \(\xi_p \) (coefficient of hydraulic resistance of the channel with equivalent energy (power) expenditure for pumping the coolant with superposition of pulsations) was determined as follows

\[
\xi_p = \frac{N_p \cdot 2}{\rho \nu_p^3}.
\]

According to the authors of [8, 9], it is more rational from a practical point of view to evaluate the effectiveness of methods of heat exchange intensification from the value of heat removal from a unit surface at equal specific powers spent on overcoming the hydraulic losses \(N_{st} = N_p \)

\[
E_N = \frac{E_p}{E_{st}} \mid _{N_{st} = N_p} = \frac{\text{Nu}_{st}}{\text{Nu}_p} \mid _{N_{crit} = N_p} = \frac{\text{Nu}_p / \text{Nu}_{st}}{\left(\xi_p / \xi_{st} \right)^{\frac{m}{3}}} \mid _{\text{Re}_{st}}.
\]

Where \(m \) – the exponent with the number \(\text{Re} \) in the criterial equation for the calculation of heat transfer in pulsating flow (equation (10)). Thus, the expressions for the efficiency coefficient at equal specific powers \(E_N \) will be calculated as follows

\[
E_N = \frac{\text{Nu}_p / \text{Nu}_{st}}{\left(\xi_p / \xi_{st} \right)^{\frac{m}{3}}}.
\]

Heat transfer in a corridor bundle of tubes with pulsating flow can be found from the following relationship [10]

\[
\text{Nu}_p = 3,05 \cdot \text{Re}_{st}^{0,42} \cdot (\beta \text{Sh})^{0,2}.
\]

Here Strouhal number
Sh = \frac{fD}{v_{st}},

where the ripple frequency f

f = \frac{1}{T_p}, \text{ Hz; } T_p = T_1 + T_2, c,

where \(T_p \) – the period of pulsation, which consists of the sum of two half-cycles \(T_1 \) – half-period of the pulse delivery into the shell space of the tube bundle, \(T_1 = 0.5 \) (const) и \(T_2 \) – half-life pressure relief, \(T_2 \) – is set depending on \(f \). The dimensionless amplitude of pulsations \(\beta = A/D \), here \(A \) return of fluid in a tube bundle, m.

Equation (10) is valid for the following conditions \(100 \leq \text{Re} \leq 1000, \quad 0.026 \leq (\beta \text{Sh}) \leq 2.6, \quad 2.6 \leq \text{Re}(\beta \text{Sh}) \leq 260, \quad 1.25 \leq \beta \leq 4.5 \). At the relative longitudinal and transverse step of the tubes bundle \(s_1/D = 1.3, \quad s_2/D = 1.3 \) and \(\text{Pr} \approx 5.5 \). The coefficient of determination is \((R^2 = 0.84) \).

On Fig. 1–8 there are shown the dependencies \(\text{Re, } \beta, \text{ Sh, } f \) from \(\eta \) and \(E_N \) calculated by according to equations (3) and (9), respectively, for data obtained in numerical simulation. \[10\] On Fig. 1–3 there are shown \(\text{Re from } \eta \) and \(E_N \) for different \(\beta \) and \(f \). On Fig. 1–3 it could be seen that as the numbers \(\text{Re} \) increase, the coefficient \(\eta \) grows independently of \(\beta \) and \(f \), and the different influence of \(\text{Re on } E_N \). When \(f = 0.5 \) Hz with an increase in \(\text{Re} \) from 100 to 300, an increase in the index \(E_N \) from 1.09 to 1.32 is observed, with a further increase in \(\text{Re} \), a decrease \(E_N \) to 1.21 occurs. At \(f = 0.25 \) Hz and 0.1666 Hz, the maximum \(E_N \) for various \(\beta \) is observed in the \(\text{Re} \) range from 500 to 900.

In Fig. 4 shows the dependences of \(\text{Nu}_p/\text{Nu}_st \) and \(\xi_p/\xi_{st} \) on \(\beta \text{Sh}, \) which show that with increasing product \(\beta \text{Sh}, \) heat transfer and hydraulic resistance increase in non-stationary flow as compared to stationary flow. In the entire range of \(\beta \text{Sh} \) and \(\text{Re} \) numbers, the growth of \(\xi_p/\xi_{st} \) exceeds \(\text{Nu}_p/\text{Nu}_st \) (Fig. 5). The maximum value of the thermohydraulic efficiency \(\eta = 0.62 \) is observed at minimum \(\text{Re} = 100 \) and \(\beta \text{Sh} = 0.026 \).

\(\beta \) and \(f \) differently affect the indicator \(E_N \) (Fig. 6, 7). If the decrease in the pulsation amplitude \(\beta \) (Fig. 6) \(E_N \) occurs, then an increase in the ripple frequency \(f \) (Fig. 7) leads to an increase \(E_N \). A similar trend is observed for all the \(\text{Re} \) numbers studied (Fig. 8). The maximum value \(E_N = 1.32 \) is observed for \(\text{Re} = 300 \) and \(\text{Sh}/\beta = 0.15 \).
Fig. 2. Dependence Re from η and E_N for $f = 0.25$ Hz

Fig. 3. Dependence Re from η and E_N for $f = 0.1666$ Hz

Fig. 4. Dependence $\frac{Nu_p}{Nu_{st}}$ and $\frac{\xi_p}{\xi_{st}}$ from β_{Sh}
Fig. 5. Dependence η from β_{Sh}

Fig. 6. Dependence E_N from β for $Re = 100$ and 500

Fig. 7. Dependence E_N from f for $Re = 100$ and 500
A technique is proposed for evaluating the effectiveness of pulsations in order to increase the heat transfer of heat exchange elements.

The parameters of the specific coefficient of thermal efficiency η and hydraulic efficiency are given under the condition and the efficiency factor at equal specific powers spent for pumping the heat carrier E_N for external heat transfer in the corridor bundle in pulsating currents.

It is shown that with an increase in Re there is an increase in η, for E_N maximum regimes are observed at Re about 300 and 500.

With an increase in the frequency Sh and the amplitude β of pulsations, a decrease η occurs. The increase in Sh and β influences differently on E_N, the increase in Sh leads to an increase E_N, and the increase β, on the contrary, to a decrease E_N.

The maximum value is $\eta = 0.62$ for $Re = 100$ and $\beta Sh = 0.026$. The maximum value $E_N = 1.32$ is observed at $Re = 300$ and $Sh / \beta = 0.15$.

References
[1] Popov I A, Yakovlev A B, Shelkov A V, Rigkov D V, Obuhova L A 2011 Topical methods of heat transfer intensification for heat transfer equipment of heat power engineering Power engineering of Tatarstan no 5 pp 25-29
[2] Wu-Shung Fu, Tong Bao-Hong 2002 Numerical investigation of heat transfer from a heated oscillating cylinder in a cross flow International Journal of Heat and Mass Transfer V 45 pp 3033–43
[3] Guoneng Li, Youqu Zheng, Guilin Hu, Zhiguo Zhang, Yousheng Xu 2016 Experimental Study of the Heat Transfer Enhancement from a Circular Cylinder in Laminar Pulsating Cross-flows Heat Transfer Engineering V 37(6) pp 535–44
[4] Neelesh B, Amit K 2017 Pulsating flow and heat transfer analysis around a heated semi-circular cylinder at low and moderate Reynolds numbers Journal of the Brazilian Society of Mechanical Sciences and Engineering Mar Vol 54
[5] Khaibullina A I, Khairullin A R, Sinyavin A A, Ilin V K 2014 Heat transfer at in-line tube bank under low-frequency asymmetrical impulses impact on fluid flow *European physical journal* No 76 pp 010041-43

[6] Khaibullina A I, Ilyin V K 2014 Experimental investigation of external heat transfer from tube bundle under condition of low-frequency asymmetrical impulses of fluid cross-flow with reynolds numbers \(\leq 500 \) *Energy Problems* No 1-2 pp 11–19

[7] Popov I A, Mahyanov H M 2009 *Physical basics and manufacture use of heat transfer intensification. Heat transfer intensification* Kazan: Center of innovative technologies 560 p

[8] Migai V K 1987 *Modeling of heat-exchange power equipment* L.: Energoatomizdat 264 p

[9] Nazmeev Yu G, Konakhina I A 2001 *Organization of energy technology complexes in the petrochemical industry* M.: Publishing house MPEI 364 p

[10] Khaybullina A I, Khayrullin A R, Ilin V K 2016 Heat transfer in the flow channel in tube bundle corridor type under imposed on the flow liquid of upstream low-frequency asymmetrical pulsations *Energy Problems* No 11-12 pp 64–75