Integrability properties of some equations obtained by symmetry reductions

H. Baran
Mathematical Institute, Silesian University in Opava,
Na Rybníčku 1, 746 01 Opava, Czech Republic
Hynek.Baran@math.slu.cz

I.S. Krasil’schik
Mathematical Institute, Silesian University in Opava,
Na Rybníčku 1, 746 01 Opava, Czech Republic
josephkra@gmail.com

O.I. Morozov
Faculty of Applied Mathematics, AGH University of Science and Technology,
Al. Mickiewicza 30, Kraków 30-059, Poland
morozov@agh.edu.pl

P. Vojčák
Mathematical Institute, Silesian University in Opava,
Na Rybníčku 1, 746 01 Opava, Czech Republic
Petr.Vojcak@math.slu.cz

Received 20 October 2014
Accepted 27 January 2015

In our recent paper [1], we gave a complete description of symmetry reduction of four Lax-integrable (i.e., possessing a zero-curvature representation with a non-removable parameter) 3-dimensional equations. Here we study the behavior of the integrability features of the initial equations under the reduction procedure. We show that the ZCRs are transformed to nonlinear differential coverings of the resulting 2D-systems similar to the one found for the Gibbons-Tsarev equation in [17]. Using these coverings we construct infinite series of (nonlocal) conservation laws and prove their nontriviality. We also show that the recursion operators are not preserved under reductions.

Keywords: Partial differential equations, symmetry reductions, solutions, the Gibbons-Tsarev equation, Lax-integrable equations

2010 Mathematics Subject Classification: 35B06

Introduction

In [1] we gave a complete description of symmetry reductions for four three dimensional systems: the universal hierarchy equation, the 3D rdDym equation, the modified Veronese web equation, and Pavlov’s equation. The result comprised more than 30 equations, but the majority of them were either exactly solvable or linearized by the generalized Legendre transformations. Nevertheless, there were 10 ‘interesting’ reductions, among which two well-known equations, i.e., the Liouville
The rest eight can be divided in two groups by their symmetry properties: five equations admit infinite-dimensional Lie algebras of contact symmetries (with functional parameters) and three others possess finite-dimensional symmetry algebras. These are

\begin{align}
 u_yu_{xy} - u_xu_{yy} &= e^y u_{xx}
\end{align}

(reduction of the universal hierarchy equation),

\begin{align}
 u_{yy} &= (u_x + x)u_{xy} - u_y(u_{xx} + 2)
\end{align}

(reduction of the 3D rdDym equation), and

\begin{align}
 u_{xx} &= (x - u_y)u_{xy} + (2y + u_x)u_{yy} - u_y
\end{align}

(reduction of the Pavlov equation)\(^a\). These equations are pair-wise inequivalent (see Section 5).

We deal with these three equations below and study how the integrability properties of the initial 3D systems behave under reduction. More precisely, we construct (Section 1) the reductions of the zero-curvature representations for Equations (0.1)–(0.2) and show that they result in differential coverings of the form

\begin{align}
 w_x &= a_2 w^2 + a_1 w + a_0 \\
 w_y &= b_2 w^2 + b_1 w + b_0 \\
 w &= c_1 w + c_0
\end{align}

where \(a_i, b_i, c_i\) are functions in \(x, y, u, u_x, \) and \(u_y\). These coverings are similar to the one found in [17] for the Gibbons-Tsarev equation and this resemblance, by all means, reflects the relations between generalized Gibbons-Tsarev equations and integrable 3D-systems [18]. In Section 3, for every nonlinear covering we construct an infinite series of conservation laws and prove their non-triviality.

We also study the behavior of the recursion operators for symmetries of three-dimensional systems and show that these operators do not survive under reduction (Section 4).

In Section 2 local symmetries and cosymmetries of the reduction equations are described. The corresponding conservation laws are presented in the Appendix.

Throughout the text the notion of (differential) covering is understood in the sense of [9].

1. Reduction of the Lax pairs

Using Lax representations of the 3D equations, whose reductions are the equations at hand, we construct here nonlinear coverings of Equations (0.1)–(0.3).

1.1. Equation (0.1)

This equation is obtained as the reduction of the universal hierarchy equation\(^b\)

\begin{align}
 u_{yy} &= u_xu_{xy} - u_yu_{xz}
\end{align}

with respect to the symmetry

\begin{align}
 \varphi &= u_z + u_x + yu_y + u.
\end{align}

\(^a\)All the reductions of the modified Veronese web equation were either exactly solvable or linearizable.

\(^b\)To save the notation here and below, we denote by \(u\) the dependent and by \(x, y\) the independent variables. These are not the same as in the initial equation; see the details in [1].
Equivalently, this reduction may be written in the form

\[u_{yy} = u_y u_{xx} - (u_x + u) u_{xy} + u_x u_y \]

(1.3)

and Equation (0.1) transforms to (1.3) by the change of variables \(x \mapsto y, \ y \mapsto x, \ u \mapsto -e^y u. \)

Equation (1.1) admits the following Lax representation

\[
\begin{align*}
 w_z &= (wu_z - u_y)w^{-2}w_x, \\
 w_y &= u_x w^{-1}w_x.
\end{align*}
\]

(1.4)

The symmetry \(\phi \) can be extended to a symmetry \(\Phi = (\phi, \chi) \) of (1.4), where

\[\chi = w_z + w_x + yw_y + w \]

and the corresponding reduction leads to the covering

\[
\begin{align*}
 w_x &= -\frac{w^3}{w^2 - (u_x + u)w - u_y}, \\
 w_y &= -\frac{uyw^2}{w^2 - (u_x + u)w - u_y},
\end{align*}
\]

(1.5)

of Equation (1.3). Note that the first equation above is cubic in \(w \), but by an appropriate gauge transformation it can be converted to a quadratic one, see Subsection 3.2 below.

Remark 1.1. Equation (0.1) can be written in the potential form

\[\left(\frac{u_y}{u_x} \right)_y = \left(\frac{e^y}{u_x} \right)_x, \]

the corresponding Abelian covering being

\[v_x = \frac{u_y}{u_x}, \quad v_y = \frac{e^y}{u_x}. \]

(1.6)

Then \(v \) enjoys the equation

\[v_y - v_{yy} = v_y v_{xx} - v_x v_{xy}, \]

(1.7)

which also admits the rational covering

\[
\begin{align*}
 w_x &= \frac{w v_y - x v_x + v_y}{w^2 + (-2x + v_y)w + x^2 - xv_x + v_y}, \\
 w_y &= \frac{w v_y - x v_y}{w^2 + (-2x + v_y)w + x^2 - xv_x + v_y},
\end{align*}
\]

of the same type.

1.2. Equation (0.2)
This equation was obtained as the reduction of the 3D rdDym equation
\[u_{tx} = u_x u_{xy} - u_y u_{xx} \] \hspace{1cm} (1.8)
with respect to the symmetry
\[\varphi = u_t - xu_x - u_y + 2u. \] \hspace{1cm} (1.9)
The Lax representation for Equation (1.8) is
\[w_t = (w^2 - w u_x - u_y) w_x, \]
\[w_y = -w u_x w_x. \] \hspace{1cm} (1.10)
The symmetry \(\varphi \) extends to the one of (1.10): \(\Phi = (\varphi, \chi) \), where
\[\chi = w_t - xu_x - w_y + u. \]
Reduction of the covering (1.10) with respect to \(\Phi \) leads to the covering
\[w_x = \frac{w^2}{w^2 + (u_x - x)w + u_y}, \]
\[w_y = \frac{w}{w^2 + (u_x - x)w + u_y}. \] \hspace{1cm} (1.11)
over Equation (0.2).

1.3. Equation (0.3)
Finally, Equation (0.3) is the reduction of the Pavlov equation
\[u_{yy} = u_{tx} + u_x u_{xx} - u_x u_{xy} \] \hspace{1cm} (1.12)
with respect to the symmetry
\[\varphi = u_t - 2xu_x - yu_y + 3u. \] \hspace{1cm} (1.13)
The Pavlov equation possesses the Lax pair
\[w_t = (w^2 - w u_x - u_y) w_x, \]
\[w_y = (w - u_x) w_x. \] \hspace{1cm} (1.14)
The symmetry \(\varphi \) lifts to the symmetry \(\Phi = (\varphi, \chi) \) of (1.14), where
\[\chi = w_t - xu_x - yw_y + w. \]
Reduction of the covering (1.14) with respect to this symmetry results in the nonlinear covering
\[w_x = \frac{w(w - u_x)}{w^2 - (u_x + x)w + xu_y - u_x - 2y}, \]
\[w_y = \frac{w}{w^2 - (u_x + x)w + xu_y - u_x - 2y} \] \hspace{1cm} (1.15)
of Equation (0.3).
Remark 1.2. Equation (0.3) has a close relative. Namely, if we accomplish reduction of the Pavlov equation using another symmetry
\[\phi' = u_t - yu_x + 2x, \]
the resulting equation will be
\[u_{yy} = (u_y + y)u_{xx} - u_x u_{xy} - 2. \] \hfill (1.16)
The symmetry \(\phi' \) can also be lifted to (1.14) by \(\Phi' = (\phi', \chi') \), where
\[\chi' = w_t - yw_x + 1, \]
and the reduction of (1.14) will be
\[w_x = -\frac{1}{w^2 - u_x w - u_y - y}, \]
\[w_y = -\frac{1}{w^2 - u_x w - u_y - y}. \] \hfill (1.17)
By the change of variables \(u \mapsto u - y^2/2 \), Equation (1.16) transforms to the Gibbons-Tsarev equation, see [5],
\[u_{yy} = u_y u_{xx} - u_x u_{xy} - 1, \]
while (1.15) becomes
\[w_x = -\frac{1}{w^2 - u_x w - u_y}, \]
\[w_y = -\frac{1}{w^2 - u_x w - u_y}, \]
cf. [17].

Remark 1.3. Equations (0.1), (0.2) and (0.3) are known to admit linear Lax representations with non-removable parameter (see [10, 11, 19] for the universal hierarchy equation, [13, 20] for the 3DrDym equation, and [4, 19] for the Pavlov equation). Nonlinear Lax pairs (1.4), (1.10), and (1.14) can be obtained from their linear counterparts by the standard procedure proposed in [21] or by the methods used in [13, 14].

2. Local symmetries and cosymmetries of the reduced equations

We present here computational results on classical symmetries and cosymmetries of Equations (0.1)–(0.3), i.e., solutions of the equations
\[\ell_{E}(\phi) = 0 \]
and
\[\ell_{E}^*(\psi) = 0, \]
where \(\ell_{E} \) is the linearization of the equation at hand and \(\ell_{E}^* \) is its formally adjoint and \(\phi \) and \(\psi \) depend on \(x, y, u, u_x, u_y \) (see, e.g., [7]). The conservation laws corresponding to classical cosymmetries are presented in the Appendix below. The spaces of solutions are denoted by \(\sym_c(E) \) and \(\cosym_c(E) \), respectively.
All the equations under consideration happen to possess a scaling symmetry and thus admit weights (which we denote by $|\cdot|$) with respect to which they become homogeneous.

2.1. Equation (0.1)

We consider this equation in the form (1.3), i.e.,

$$u_{yy} = u_x u_{xx} - (u_x + u) u_{xy} + u_y u_y.$$

The weights are

$$|x| = 0, \quad |y| = 1, \quad |u| = -1, \quad |u_x| = -1, \quad |u_y| = -2.$$

Symmetries

The defining equation for symmetries is

$$D_y^2(\varphi) = u_x D_x^2(\varphi) - (u_x + u) D_x D_y(\varphi) + (u_y - u_{xy}) D_y(\varphi) + (u_{xx} + u_x) D_y(\varphi) - u_{xy} \varphi.$$

The space $\text{sym}_c(\mathcal{E})$ is generated by the symmetries

$$\varphi_{-1} = u_x, \quad \varphi_0 = y u_y + u, \quad \varphi'_0 = u_x, \quad \varphi_1 = e^{-x},$$

where the subscripts coincide with the weights.

Cosymmetries

The defining equation for cosymmetries of Equation (0.1) is

$$D_y^2(\psi) = u_x D_x^2(\psi) - (u_x + u) D_x D_y(\psi) + 2(u_y + u_x) D_y(\psi) - 2(u_{xx} + u_x) D_y(\psi) - 3u_{xy} \psi.$$

The space $\text{cosym}_c(\mathcal{E})$ is 6-dimensional and is spanned by the following cosymmetries:

$$\psi_{-3} = e^{3x} (3u_x^2 + 8u^2 + 10u u_x + 2u_y), \quad \psi_{-2} = e^{3x} (3u + 2u_x), \quad \psi_{-1} = e^{2x}$$

and

$$\psi_3 = \frac{1}{u_x^3}, \quad \psi_4 = \frac{2u_x - y u_y + 2u}{u_x^3},$$

$$\psi_5 = \frac{-4u_x y u_y + 6u u_x + 3u_x^2 - 4y u u_x + 3u^2 + 2u_y + y^2 u_y^2}{u_x^3},$$

where superscript coincides with the weight.

2.2. Equation (0.2)

The weights are

$$|x| = 1, \quad |y| = 0, \quad |u| = 2, \quad |u_x| = 1, \quad |u_y| = 2.$$

Here and below D_x and D_y denote the total derivatives with respect to x and y.

d To a symmetry φ we assign the weight of the corresponding evolutionary vector field E_φ.

e To every cosymmetry we assign the weight of the corresponding variational form, see [8].
Symmetries

The linearized equation is

$$D^2_x(\phi) = (u_x + x)D_xD_y(\phi) - u_yD_x^2(\phi) + u_{xy}D_x(\phi) - (u_{xx} + 2)D_y(\phi).$$

The space \(\text{sym}_c(\mathcal{E}) \) is generated by the symmetries

$$\varphi_{-2} = 1, \quad \varphi_{-1} = u_x + x, \quad \varphi_0 = u - \frac{1}{2} xu_x, \quad \varphi'_0 = u_y.$$

Cosymmetries

The defining equation for cosymmetries reads

$$D^2_x(\psi) = (u_x + x)D_xD_y(\psi) - u_yD_x^2(\psi) - 2u_{xy}D_x(\psi) + (2u_{xx} + 3)D_y(\psi).$$

The space \(\text{cosym}_c(\mathcal{E}) \) is generated by the cosymmetries

$$\psi_{-3} = \frac{e^{-2y}(u_x + x)}{u_y^2}, \quad \psi_2 = 1,$$

$$\psi_{-2} = \frac{e^{-y}}{u_y^2}, \quad \psi_3 = u_x + 2x.$$

2.3. Equation (0.3)

The weights of variables are

$$|x| = 1, \quad |y| = 2, \quad |u| = 3, \quad |u_x| = 2, \quad |u_y| = 1.$$ in this case.

Symmetries

The symmetries are defined by the equation

$$D^2_x(\phi) = (x - u_x)D_xD_y(\phi) + (2y + u_x)D^2_y(\phi) - D_y(\phi)$$

and the space \(\text{sym}_c(\mathcal{E}) \) is generated the symmetries

$$\varphi_0 = -\frac{1}{3} xu_x - \frac{2}{3} xu_y + u, \quad \varphi_{-1} = u_x - xu_y + y - \frac{1}{2} x^2,$$

$$\varphi_{-2} = u_y + 2x, \quad \varphi_{-3} = 1.$$

Cosymmetries

The defining equation for cosymmetries is of the form

$$D^2_x(\psi) = (x - u_y)D_xD_y(\psi) + (2y + u_x)D^2_y(\psi) - u_{xy}D_x + 3(2 - u_{xy})D_y.$$ The space \(\text{cosym}_c(\mathcal{E}) \) is 6-dimensional and is spanned by the elements

$$\psi_7 = \frac{54}{5} xu_xu_y + \frac{164}{5} xu_{xy} + \frac{4}{5} u_{xx} + \frac{12}{5} u_{yy} + 4yu_x + \frac{36}{5} u_y^2.$$
\[\begin{aligned}
&+ \frac{82}{5} x^2 u_x + \frac{512}{15} x^3 u_x + \frac{32}{5} x^4 u_x + \frac{96}{5} x^2 u_y + \frac{32}{5} x^2 u^2 + \frac{512}{15} x^4 + \frac{3}{5} u_x^2 + u_y^4, \\
\psi_6 &= \frac{48}{4} x y + 4 x u_x + \frac{3}{2} u_y u_x + \frac{9}{2} u_y y + \frac{49}{4} x^2 u_x + \frac{21}{4} x u_y^2 + \frac{343}{24} x^3 + \frac{1}{4} u + u_y^3, \\
\psi_5 &= 4 x u_y + 6 x^2 + 2 y + \frac{2}{3} u_x + u_y^2, \\
\psi_4 &= \frac{5}{2} x + u_y, \\
\psi_3 &= 1, \\
\psi_{-1} &= \frac{1}{(-x u_y + u_x + 2y)^2}.
\end{aligned}\]

3. Hierarchies of nonlocal conservation laws

Using the nonlinear coverings presented in Section 1 we construct here infinite hierarchies of non-local conservation laws for Equations (0.1)–(0.1).

3.1. A general construction

The initial step of the construction is the so-called Pavlov reversing, [21] (see [6] for the invariant geometrical interpretation). Let \(E \) be an equation in two independent variables \(x \) and \(y \) and unknown function \(u \) and

\[w_x = X(x, y, [u], w), \quad w_y = Y(x, y, [u], w)\]

be a differential covering over \(E \), where \([u]\) denotes \(u \) itself and a collection of its derivatives up to some finite order. Then the system

\[\psi_x = -X(x, y, [u], \lambda) \psi_\lambda, \quad \psi_y = -Y(x, y, [u], \lambda) \psi_\lambda\] (3.1)

is also compatible modulo \(E \) (thus, the nonlocal variable \(w \) turns into a formal parameter in the new setting).

Assume now that

\[X = X_{-1} \lambda + X_0 + \frac{X_1}{\lambda} + \cdots + \frac{X_i}{\lambda^i} + \cdots, \]
\[Y = Y_{-1} \lambda + Y_0 + \frac{Y_1}{\lambda} + \cdots + \frac{Y_i}{\lambda^i} + \cdots,\]

where \(X_i, Y_i, i \geq -1 \), are functions in \(x, y \) and \([u]\), and also expand \(\psi \) in formal Laurent series

\[\psi = \psi_{-1} \lambda + \psi_0 + \frac{\psi_1}{\lambda} + \cdots + \frac{\psi_i}{\lambda^i} + \cdots\]

Then (3.1) implies

\[\psi_{i,x} = -\sum_{j+k=i+1} kX_j \psi_k, \quad \psi_{i,y} = -\sum_{j+k=i+1} kY_j \psi_k,\]

or

\[\psi_{-1,x} = -X_{-1} \psi_{-1}, \quad \psi_{-1,y} = -Y_{-1} \psi_{-1};\]
Remark 3.1. The first two pairs of equations define local conservation laws (probably, trivial) and for all \(k > 0 \).

In general, this system defines an infinite-dimensional non-Abelian covering (which may be trivial generally) over the base equation \(\xi \), but in the particular case \(X_{-1} = Y_{-1} = 0 \) the covering becomes Abelian, i.e., transforms to an infinite series of (nonlocal) conservation laws. Indeed, the first pair of equations reads
\[
\psi_{-1,x} = 0, \quad \psi_{-1,y} = 0
\]
in this case and without loss of generality we may set \(\psi_{-1} = 1 \). The rest equations read
\[
\begin{align*}
\psi_{0,x} &= -X_0, \\
\psi_{0,y} &= -Y_0; \\
\psi_{1,x} &= -X_1, \\
\psi_{1,y} &= -Y_1; \\
\psi_{2,x} &= X_0 \psi_1 - X_2, \\
\psi_{2,y} &= Y_0 \psi_1 - Y_2; \\
\psi_{3,x} &= 2X_0 \psi_2 + X_1 \psi_1 - X_3, \\
\psi_{3,y} &= 2Y_0 \psi_2 + Y_1 \psi_1 - Y_3; \\
\end{align*}
\]
and
\[
\begin{align*}
\psi_{k,x} &= (k - 1)X_0 \psi_{k-1} + (k - 2)X_1 \psi_{k-2} + \cdots + X_{k-2} \psi_1 - X_k, \\
\psi_{k,y} &= (k - 1)Y_0 \psi_{k-1} + (k - 2)Y_1 \psi_{k-2} + \cdots + Y_{k-2} \psi_1 - Y_k
\end{align*}
\]
for all \(k > 3 \).

Remark 3.1. The first two pairs of equations define local conservation laws (probably, trivial) and the potential \(\psi_0 \) does not enter the other equations. This means that the obtained covering is the Whitney product of the one-dimensional Abelian covering \(\tau_0 \) associated to \(\psi_0 \) and the infinite-dimensional \(\tau \), related to \(\psi_1, \psi_2, \ldots \) We shall deal with \(\tau \) below.

We now confine ourselves to the case
\[
X = \frac{a_2 w^2 + a_1 w + a_0}{w^2 + c_1 w + c_0}, \quad Y = \frac{b_2 w^2 + b_1 w + b_0}{w^2 + c_1 w + c_0},
\]
where \(a_i, b_i, \) and \(c_i \) are functions in \(x, y, \) and \([u]\), and deduce the needed Laurent expansions. One has
\[
\frac{a_2 \lambda^2 + a_1 \lambda + a_0}{\lambda^2 + c_1 \lambda + c_0} = \left(a_2 + \frac{a_1}{\lambda} + \frac{a_0}{\lambda^2} \right) \left(\frac{1}{1 + \frac{c_1 \lambda + c_0}{\lambda^2}} \right)
\]
Let us present temporally the second factor in the form

\[\sum_{i \geq 0} \left(-\frac{c_1 \lambda + c_0}{\lambda^2} \right)^i = \sum_{i \geq 0} \frac{d_i}{\lambda^i}. \]

Then

\[
\frac{a_2 \lambda^2 + a_1 \lambda + a_0}{\lambda^2 + c_1 \lambda + c_0} = \left(a_2 + \frac{a_1}{\lambda} + \frac{a_0}{\lambda^2} \right) \sum_{i \geq 0} \frac{d_i}{\lambda^i} \\
= a_2d_0 + \frac{a_2d_1 + a_1d_0}{\lambda} + \frac{a_2d_2 + a_1d_1 + a_0d_0}{\lambda^2} + \cdots + \frac{a_2d_i + a_1d_{i-1} + a_0d_{i-2}}{\lambda^i} + \cdots
\]

Compute the coefficients \(d_i\) now. One has

\[
\left(-\frac{c_1 \lambda + c_0}{\lambda^2} \right)^i = (-1)^i \sum_{j=0}^{i} \binom{i}{j} \frac{c_j^i c_0^{i-j}}{\lambda^{2j}} ,
\]

from where it follows that

\[d_0 = 1, \quad d_1 = -c_1 \]

and

\[
d_i = \begin{cases}
\sum_{j=0}^{k} (-1)^{k-j} \binom{k+j}{2j} c_1^{k-j} c_0^j & \text{if } i = 2k, \\
\sum_{j=0}^{k} (-1)^{k-j+1} \binom{k+j+1}{2j+1} c_1^{k-j} c_0^{j+1} & \text{if } i = 2k + 1 \end{cases}
\]

(3.4)

for \(i > 1\), or, in shorter notation

\[
d_i = \sum_{j=0}^{\lfloor i/2 \rfloor} (-1)^{\lfloor i/2 \rfloor - j + p(i)} \binom{\lfloor i/2 \rfloor + j + p(i)}{2j + p(i)} c_0^{\lfloor i/2 \rfloor - j} c_1^{j+p(i)},
\]

(3.5)

where \(p(i) = i \mod 2\) is the parity of \(i\) and \(\lfloor k/2 \rfloor\) is the integer part.

Gathering together the results of the above computations, one obtains that in the case of coverings (3.3) we have \(X_{-1} = Y_{-1} = 0\), while other coefficients are

\[
X_0 = a_2, \quad Y_0 = b_2; \\
X_1 = a_1 - a_2c_1, \quad Y_1 = b_1 - b_2c_1; \\
X_2 = a_0 - a_1c_1 + a_2(c_1^2 - c_0), \quad Y_2 = b_0 - b_1c_1 + b_2(c_1^2 - c_0); \\
\ldots \\
X_i = a_0d_{i-2} + a_1d_{i-1} + a_2d_i, \quad Y_i = b_0d_{i-2} + b_1d_{i-1} + b_2d_i; \\
\ldots
\]

where the functions \(d_i\) are given by (3.4).

Let us now show how these general constructions look like in the particular cases of the equations under consideration.
3.2. Equation (0.1)

Note first that the covering (1.5) is not of the form (3.3). Nevertheless, it can be transformed to the needed form by the gauge transformation $w \mapsto w e^{-x}$. Then (1.5) acquires the form

\[w_x = \frac{(u_x + u) e^x w - u_x e^{2x} w}{w^2 - (u_x + u) e^x w - u_x e^{2x}}, \quad w_y = -\frac{u_x e^x w^2}{w^2 - (u_x + u) e^x w - u_x e^{2x}}. \]

We have $|w| = -1$.

Thus,

\[a_0 = 0, \quad a_1 = -u_x e^{2x}, \quad a_2 = (u_x + u) e^x, \]
\[b_0 = 0, \quad b_1 = 0, \quad b_2 = -u_x e^x, \]
\[c_0 = -u_x e^{2x}, \quad c_1 = -(u_x + u) e^x. \]

Let us compute the coefficients d_j. By (3.4), we have

\[d_{2k} = \sum_{j=0}^{k} (-1)^{k-j} \binom{k+j}{2j} (-u_x e^{2x})^{k-j} (-\(u_x + u\) e^x)^{2j} \]
\[= e^{2x} \sum_{j=0}^{k} \binom{k+j}{2j} u_x^{k-j}(u_x + u)^{2j} \]

and

\[d_{2k+1} = \sum_{j=0}^{k} (-1)^{k-j+1} \binom{k+j+1}{2j+1} (-u_x e^{2x})^{k-j} (-\(u_x + u\) e^x)^{2j+1} \]
\[= e^{(2k+1)x} \sum_{j=0}^{k} \binom{k+j+1}{2j+1} u_x^{k-j}(u_x + u)^{2j+1}, \]

or

\[d_j = e^{ix} \sum_{j=0}^{\lfloor j/2 \rfloor} \binom{\lfloor j/2 \rfloor + j + p(i)}{2j + p(i)} u_x^{\lfloor j/2 \rfloor - j}(u_x + u)^{2j + p(i)}. \]

(3.6)

Hence,

\[X_0 = (u_x + u)e^x, \quad Y_0 = -u_x e^x; \]
\[X_1 = (u_x + u)^2 - u_x e^{2x}, \quad Y_1 = (u_x + u)u_x e^{2x} \]

and

\[X_i = e^{(i+1)x} \left((u_x + u)^{i+1} + \sum_{j=1}^{\lfloor (i+1)/2 \rfloor} \binom{i - j}{i - 2j} - \binom{i - j}{i - 2j + 1} u_x^{i-j}(u_x + u)^{-2j+1} \right), \]
\[Y_i = -e^{(i+1)x} \sum_{j=0}^{\lfloor j/2 \rfloor} \binom{\lfloor j/2 \rfloor + j + p(i)}{2j + p(i)} u_x^{\lfloor j/2 \rfloor - j+1}(u_x + u)^{2j + p(i)} \]
for $i > 1$ (we assume \((a/\beta) = 0\) for $\beta < 0$). Obviously,

\[
|X_i| = -i - 1, \quad |Y_i| = -i - 2.
\]

The functions X_i, Y_i define, by Equations (3.2), the infinite number of nonlocal variables ψ_i for Equation (0.1) with

\[
|\psi_i| = -i - 1.
\]

The corresponding conservation laws have the same weights and the first three of them coincide (up to equivalence) with the local conservation laws ω_{-2}, ω_{-3}, ω_{-4} described in Section 2.1. The first essentially nonlocal one is associated to ψ_3.

3.3. Equation (0.2)

Due to Equations (1.11), one has

\[
\begin{align*}
a_0 &= 0, & a_1 &= 0, & a_2 &= -1, \\
b_0 &= 0, & b_1 &= u_y, & b_2 &= 0, \\
c_0 &= u_y, & c_1 &= u_x - x.
\end{align*}
\]

Hence,

\[
\begin{align*}
X_0 &= -1, & Y_0 &= 0; \\
X_1 &= u_x - x, & Y_1 &= u_y; \\
X_2 &= -(u_x - x)^2 + u_y, & Y_2 &= -u_y(u_x - x)
\end{align*}
\]

and

\[
\begin{align*}
X_i &= -d_i = \sum_{j=0}^{[i/2]} (-1)^{[i/2]-j+p(i)+1} \binom{[i/2]+j+p(i)}{2j+p(i)} u_y^{[i/2]-j}(u_x - x)^{2j+p(i)}, \\
Y_i &= u_y d_{i-1} = \sum_{j=0}^{[(i-1)/2]} (-1)^{[(i-1)/2]-j+p(i-1)} \times \\
&\times \binom{[(i-1)/2]+j+p(i-1)}{2j+p(i-1)} u_y^{[(i-1)/2]-j+1}(u_x - x)^{2j+p(i-1)}
\end{align*}
\]

for $i > 2$. Consequently,

\[
\begin{align*}
\psi_{0,x} &= -X_0 = 1, & \psi_{0,y} &= -Y_0 = 0; \\
\psi_{1,x} &= -X_1 = -u_x + x, & \psi_{1,y} &= -Y_1 = -u_y
\end{align*}
\]
and one may set
\[\psi_0 = x, \quad \psi_1 = -u + \frac{x^2}{2}, \]
while
\[\psi_{2,x} = (u_x - x)^2 + u_y + u - \frac{x^2}{2}, \quad \psi_{2,y} = (u_x - x)u_y \]
and for \(i > 2 \)
\[\psi_{i,x} = -(i-1)\psi_{i-1} + (i-2)X_i \psi_{i-2} + \cdots + X_{i-3} \psi_2 + \left(\frac{x^2}{2} - u\right) X_{i-2} - X_i, \]
\[\psi_{i,y} = -(i-2)Y_i \psi_{i-2} + \cdots + Y_{i-3} \psi_2 + \left(\frac{x^2}{2} - u\right) Y_{i-2} - Y_i, \]
where \(X_k, Y_k \) are given by the above formulas.

One has
\[|X_i| = i, \quad |Y_i| = i + 1, \quad |\psi_i| = i + 1. \]
The conservation law corresponding to \(\psi_i \) is of the weight \(i + 1 \) and the first two ones, up to equivalence coincide with those described in Section 2.2, while all the others are essentially nonlocal.

3.4. Equation (0.3)

By Equation (1.15), we have
\[
\begin{align*}
a_0 &= 0, & a_1 &= u_y, & a_2 &= -1, \\
b_0 &= 0, & b_1 &= -1, & b_2 &= 0, \\
c_0 &= xu_y - u_x - 2y, & c_1 &= -(u_y + x).
\end{align*}
\]
Consequently,
\[
\begin{align*}
X_0 &= -1, & Y_0 &= 0; \\
X_1 &= -x, & Y_1 &= -1; \\
X_2 &= -u_x - x^2 - 2y, & Y_2 &= -u_y - x \\
\end{align*}
\]
and
\[
\begin{align*}
X_i &= u_y d_{i-1} - d_i, & Y_i &= -d_{i-1}
\end{align*}
\]
for \(i > 2 \), where
\[
d_i = \sum_{j=0}^{[i/2]} (-1)^{[j/2]-j} \binom{[i/2]+j+p(i)}{2j+p(i)} (xu_y - u_x - 2y)^{[i/2]-j} (u_y + x)^{2j+p(i)}.
\]
One has
\[|X_i| = i, \quad |Y_i| = i - 1. \]
Thus we have
\[
\psi_{1,x} = x, \quad \psi_{1,y} = 1;
\]
\[\psi_{2,x} = u_x + \frac{x^2}{2} + y, \quad \psi_{2,y} = u_y + x \]

and we may set
\[\psi_1 = \frac{x^2}{2} + y, \quad \psi_2 = u + xy + \frac{x^3}{6}. \]

Then the other potentials are defined by
\[
\begin{align*}
\psi_i, x &= -(i - 1) \psi_{i-1} - (i - 2) \psi_{i-2}(i - 3)X_2 \psi_{i-3} + \\
&\cdots + 3X_{i-4} \psi_3 + \left(2u + 2xy + \frac{x^3}{3}\right) X_{i-3} + \left(\frac{x^2}{2} + y\right) X_{i-2} - X_i, \\
\psi_i, y &= -(i - 2) \psi_{i-2}(i - 3)Y_2 \psi_{i-3} + \\
&\cdots + 3Y_{i-4} \psi_3 + \left(2u + 2xy + \frac{x^3}{3}\right) Y_{i-3} + \left(\frac{x^2}{2} + y\right) Y_{i-2} - Y_i,
\end{align*}
\]

\[i > 2. \]

We have
\[|\psi_i| = i + 1. \]

The conservation laws associated with \(\psi_3, \ldots, \psi_7 \) are equivalent to \(\omega_4, \ldots, \omega_8 \) introduced in Section 2.3. The first essentially nonlocal conservation law corresponds to \(\psi_8 \).

3.5. Proof of nontriviality

We shall now prove that the above constructed conservation laws are nontrivial. To this end, introduce the notation \(\partial_\alpha, \alpha = 1, 2, 3, \) for Equations (0.1), (0.2) and (0.3), respectively, and

\[\tau_{i,\alpha} : \partial_{i,\alpha} \rightarrow \partial_\alpha \]

for the coverings defined by the nonlocal variables \(\psi_\alpha, \ldots, \psi_i \). Let

\[D_{i,\alpha}^x, \quad D_{i,\alpha}^y \]

be the total derivatives on \(\partial_{i,\alpha} \).

Proposition 3.1. For all \(i \geq \alpha \), the only solutions of the system
\[D_{i,\alpha}^x(f) = 0, \quad D_{i,\alpha}^y(f) = 0 \quad (3.7) \]

are constants.

Proof. Let us present the total derivatives in the form

\[D_{i,\alpha}^x = D^x_\alpha + X^{i,\alpha}, \quad D_{i,\alpha}^y = D^y_\alpha + Y^{i,\alpha}, \]

where \(D^x_\alpha, D^y_\alpha \) are the total derivatives on \(\partial_\alpha \) and \(X^{i,\alpha}, Y^{i,\alpha} \) are the ‘nonlocal tails’:

\[X^{i,\alpha} = \sum_{j=\alpha}^i X_{j,\alpha} \frac{\partial}{\partial \psi_j}, \quad Y^{i,\alpha} = \sum_{j=\alpha}^i Y_{j,\alpha} \frac{\partial}{\partial \psi_j}, \]

\(X_{j,\alpha}, Y_{j,\alpha} \) being the right-hand sides of the defining equations (3.2) for the potentials \(\psi \).
From the constructions of Sections 3.2–3.4 one readily sees that the quantities \(X^i, \alpha \) and \(Y^i, \alpha \) are polynomials in \(u_x \) and \(u_y \) and, moreover,

\[
X^{i,1} = \pm e^{(i+1)x} u_x^{i+1} \frac{\partial}{\partial \psi_i} + o;
\]

\[
Y^{i,1} = \pm e^{(i+1)x} u_y \frac{\partial}{\partial \psi_i} + o;
\]

\[
X^{i,2} = \pm u_x \frac{\partial}{\partial \psi_i} + o;
\]

\[
Y^{i,2} = \pm u_y \frac{\partial}{\partial \psi_i} + o;
\]

\[
X^{i,3} = \pm u_y^{-1} u_x \frac{\partial}{\partial \psi_i} + o;
\]

\[
Y^{i,3} = \pm u_y^{-1} \frac{\partial}{\partial \psi_i} + o,
\]

where \(o \) denotes terms of lower degree.

Now, the proof goes by induction. For small \(i \)'s the result follows from the fact that the cosymmetries corresponding to the local conservation laws do not vanish and these conservation laws are of different weights. Assume now that the statement is valid for all \(k < i \) and consider Equation (3.7). Then from the above estimates it follows that \(\partial f / \partial \psi_i = 0 \). \(\square \)

Evidently, nontriviality of the constructed conservation laws is a direct consequence of the Proposition 3.1.

4. On reductions of the recursion operators

We show here that symmetry reductions of Equations (1.1), (1.8), and (1.12) are incompatible with their recursion operators and thus the latter are not inherited by Equations (0.1), (0.2), and (0.3), respectively.

4.1. A general construction

We treat here recursion operators for symmetries as Bäcklund transformations of the tangent coverings, cf. [12]. More precisely, let \(\mathcal{E} \) be a differential equation given by the system

\[
\mathcal{E} = \{ F = 0 \}, \quad F = (F^1(x,y, [u]), \ldots, F^s(x,y, [u])),
\]

\(F^j \) being functions on some jet space, [7]. Here, as above, \([u] \) denotes the collection of \(u \) and its derivatives. The tangent covering \(t = t_\mathcal{E} : \mathcal{T}_\mathcal{E} \to \mathcal{E} \) is the projection \((x,y,[u],[q]) \mapsto (x,y,[u]) \) of the system

\[
\mathcal{T}_\mathcal{E} = \{ F(x,y,[u]) = 0, \quad \ell_F(x,y,[u],[q]) = 0 \}
\]

to \(\mathcal{E} \). The characteristic property of \(t \) is that its sections that preserve the Cartan (higher contact) distribution are identified with symmetries of \(\mathcal{E} \).

A Bäcklund transformation between equations \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) is a diagram

\[
\begin{array}{ccc}
\mathcal{B} & \xrightarrow{\tau_1} & \mathcal{E}_1 \\
& \xleftarrow{\tau_2} & \\
& & \mathcal{E}_2,
\end{array}
\]
where \(\tau_1 \) and \(\tau_2 \) are coverings. It relates solutions of \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) to each other. A recursion operator between symmetries of \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) is a Bäcklund transformation of the form

\[
\begin{array}{c}
\mathcal{J} \mathcal{E}_1 \xrightarrow{\tau_1} \mathcal{E}_1 \\
\mathcal{J} \mathcal{E}_2 \xrightarrow{\tau_2} \mathcal{E}_2.
\end{array}
\]

In particular, if \(\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E} \) it relates symmetries of \(\mathcal{E} \) to each other. Then \(\mathcal{R} \) may be considered as an equation

\[\mathcal{R} \subset \mathcal{J} \mathcal{E} \otimes \mathcal{E} \mathcal{J} \mathcal{E} \]

in the Whitney product of \(t_\mathcal{E} \) with itself.

Any symmetry \(\varphi = \varphi(x, y, [u]) \) of \(\mathcal{E} \) admits a natural lift \(\Phi = (\varphi, \varphi') \) to \(\mathcal{J} \mathcal{E} \). To this end, it suffices to set

\[
\varphi' = \frac{\partial \varphi}{\partial u} q + \ldots + \frac{\partial \varphi}{\partial u_\sigma} q_\sigma + \ldots
\]

Choose a symmetry \(\varphi \) of \(\mathcal{E} \) and denote by \(r_\varphi : \mathcal{E} \to \mathcal{E}_\varphi \) the corresponding reduction map. Then the diagram

\[
\begin{array}{ccc}
\mathcal{J} \mathcal{E} & \xrightarrow{t_\mathcal{E}} & \mathcal{E} \\
\downarrow r_\varphi & & \downarrow r_\varphi \\
(\mathcal{J} \mathcal{E})\Phi = \mathcal{J}(\mathcal{E}_\varphi) & \xrightarrow{t_{\mathcal{E}_\varphi}} & \mathcal{E}_\varphi
\end{array}
\]

is commutative. An immediate consequence of this fact is

Proposition 4.1. Let \(\mathcal{R} \subset \mathcal{J} \mathcal{E} \otimes \mathcal{E} \mathcal{J} \mathcal{E} \) be a recursion operator for symmetries of equation \(\mathcal{E} \) and \(\varphi \) be a symmetry of \(\mathcal{E} \). If \(\mathcal{R} \) is invariant with respect to \(\varphi \) then \(\mathcal{R}_\varphi \) is a recursion operator for symmetries of \(\mathcal{E}_\varphi \).

4.2. Recursion operators for symmetries of 3D systems

We briefly recall here the results on recursion operators for symmetries of Equation (1.1), (1.8), and (1.12) obtained in [15, 16]

The universal hierarchy equation

Equation (1.1) admits the following recursion operator

\[
\begin{align*}
D_y(\varphi) &= u_y D_x(\varphi) - u_{xy} \varphi, \\
D_z(\varphi) &= u_z D_x(\varphi) - D_y(\varphi) - u_{xz} \varphi
\end{align*}
\]

that acts on its symmetries.
The 3DrdDym equation

The Bäcklund transformation

\[
D_x(\tilde{\varphi}) = u_x D_x(\varphi) - D_t(\varphi) - u_{xx} \varphi, \\
D_y(\tilde{\varphi}) = u_y D_x(\varphi) - u_{xy} \varphi
\]

is a recursion operator for symmetries of Equation (1.8).

The Pavlov equation

The relations

\[
D_x(\tilde{\varphi}) = u_x D_x(\varphi) + D_y(\varphi) - u_{xx} \varphi, \\
D_y(\tilde{\varphi}) = D_t(\varphi) + u_y D_x(\varphi) - u_{xy} \varphi
\]

are a recursion operator for symmetries of Equation (1.12).

4.3. The negative result

Here we show that the general construction of Section 4.1 produces no recursion operator for the reduced equations under consideration.

Proposition 4.2. Recursion operators (4.1), (4.2) and (4.3) are not invariant with respect to the natural lifts of the symmetries (1.2), (1.9), and (1.13), respectively.

Proof. By direct check. \(\square\)

Remark 4.1. The same fact holds for the reduction of the Pavlov equation that leads to the Gibbons-Tsarev equation.

Remark 4.2. We also tried to construct recursion operators for all the equations at hand directly, but this did not lead us to positive results either.

5. Discussion

Let us first establish the following fact:

Proposition 5.1. Equations (0.1), (0.2), and (0.3) are pair-wise inequivalent with respect to an arbitrary contact transformation.

Proof. Let us first compare dimensions (see Table 1). Consequently, only Equations (0.1) and (0.3)

	\(\text{dim sym}_{\mathcal{C}}(\mathcal{E})\)	\(\text{dim cosym}_{\mathcal{C}}(\mathcal{E})\)
Equation (0.1)	4	6
Equation (0.2)	4	4
Equation (0.3)	4	6

Table 1. Dimensions of symmetry and cosymmetry spaces

may be equivalent. Now, the Lie algebra structure of \(\text{sym}_{\mathcal{C}}(\mathcal{E})\) for Equations (0.1) and (0.3) is
presented in Table 2. One can see that dimension of the commutant in the first case is 2, while in the second case it equals 3. Thus, the algebras are not isomorphic.

Remark 5.1. The equations under consideration are not equivalent to the Gibbons-Tsarev equation, because the symmetry algebra of the latter is five-dimensional.

Nevertheless, as we saw, all these equations have several common features. In particular, we would like to indicate how local cosymmetries of our equations are distributed with respect to weights (see Figure 1). In all three cases, they fit into two disjoint groups with certain gaps between them: the first one consist of cosymmetries whose corresponding conservation laws are members of infinite series (these are underlined by arrows, and the arrow itself indicates the direction to which the sequence of conservation laws goes). The second group includes ‘standing-alone’ cosymmetries.

Remark 5.2. A similar picture is observed in the case of the Gibbons-Tsarev equation. It also possesses a ‘standing-alone’ cosymmetry of order three.

A natural question arises: does there exist a construction, similar to the one of Section 3, that allows to embed the conservation laws corresponding to the ‘standing-alone’ cosymmetries into other infinite hierarchies?

Another question relates to the algebras of nonlocal symmetries in the infinite-dimensional coverings constructed above. It seems that such an algebra for Equation (0.3) should be similar (or isomorphic to that of the Gibbons-Tsarev equation), while the algebras for Equations (0.1) and (0.2) are different: all these Lie algebras are graded, but in the first two cases all homogeneous components are one-dimensional and for other equations this is not the case.

Finally, it is interesting to study the structure of symmetries and cosymmetries of the reductions that admit symmetry algebras with functional parameters (see the Introduction) and compare them with the results described here.

All these problems are subject to future research.

6. Appendix: Conservation laws

We present here the conservation laws that correspond to the cosymmetries described above. Everywhere below $|\omega_i| = i$. We also use the notation $\psi_\omega \in \text{cosym}_c(\mathcal{E})$ for the generating function of a conservation law ω.

Eq. (0.1)	φ_0	φ_0'	φ_1
φ_{-1}	φ_{-1}	0	0
φ_0	\ast	0	φ_1
φ_0'	\ast	\ast	$-\varphi_1$

Eq. (0.3)	φ_{-2}	φ_{-1}	φ_0
φ_{-3}	0	0	$-\varphi_{-3}$
φ_{-2}	\ast	$-\varphi_{-3}$	$\frac{2}{3} \varphi_{-2}$
φ_{-1}	\ast	\ast	$-\frac{1}{3} \varphi_{-1}$

Table 2. Commutators in $\text{sym}_c(\mathcal{E}_{(0.1)})$ and $\text{sym}_c(\mathcal{E}_{(0.3)})$
The space of corresponding conservation laws is 6-dimensional and is spanned by the following elements $\omega_0 = P_0 \, dx + Q_0 \, dy$:

$$
P_{-4} = e^{4x}(u_x^2 u_y + 8u_x^3 u_y + 13u_x^2 u_y^2 + 2u_x^3 u_y + u_x^2 - 3u_x^2 u_x u_y + 2u_x u_y^2)
- 2u_x u_y^3 - 2u_x u_y^3),
Q_{-4} = u e^{4x}(-2u_x u_x u_x u_y + 3u_x^2 u_y - u_x^2 u_x u_y + 8u_x u_y + 2u_x u_x u_y + 4u_y^2
- 2u_x u_y),
P_{-3} = e^{3x}(-u_x u_y + u_x u_y + 3u_x^2 u_x + u_x u_y - 2u_x u_x),
Q_{-3} = u e^{3x}(-u_x u_x - u_x u_y + u_x u_y + 2u_x u_y);
P_{-2} = -e^{2x}(-u_x + u_x u_y + u_y),
Q_{-2} = -u e^{2x} u_x u_y;

P_2 = -\frac{1}{u_y},
Q_2 = \frac{1}{u_y}(u_x + u);

P_3 = \frac{1}{u_y}(u_x^2 u_y + 2u_x u_y^2 - uu_y - 2u_x u_y),
Q_3 = -\frac{1}{u_y}(u_x u_y^2 + u_x^2 u_y^2 + 2u_x^3 u_y - u_x^2 u_y^2 + 2u_x u_y^2 - 4u_x u_y - 2u_x u_x u_y
u_x^2 u_y);$

P_4 = \frac{1}{u_y}(-u_x^3 u_y^2 - 4u_x u_y^3 + 2u_x^2 u_y^3 + 4u_x u_y^3 - u_x^2 u_x u_y + 6u_x u_y u_x
- 2u_x u_x u_y - 2u_x u_x u_y u_x - 3u_x^2 u_x + u_y^2),
Q_4 = \frac{1}{u_y}(u_x u_x u_y^2 + u_x^2 u_y^2 + 4u_x^2 u_y^2 u_x u_y - 2u_x^2 u_x u_y u_x u_y + 4u_x u_y u_x u_y
- 8u_x u_x u_y^2 - 4u_x u_y^3 + 2u_x^2 u_x u_y^2 + u_x u_y - 6u_x u_x u_y u_x u_y + 3u_x^2 u_x u_y
- 6u_x u_x u_y + 9u_x^2 u_y + 6u_x u_x u_y u_x u_y + u_x^2 u_y - 2u_x u_x u_y + 4u_y^2).

Here $|\psi_0| = |\omega| + 1$.

The space of conservation laws is 4-dimensional and is generated by $\omega_0 = P_0 \, dx + Q_0 \, dy$ of the form

$$
P_{-2} = \frac{1}{2}(2u_x u_y - 2u_x u_x - u_x u_x)\frac{e^{-2y}}{u_x^3},
Q_{-2} = \frac{1}{2}(2u_x u_x u_y - 4u_x u_y + 2u_x u_x u_y u_x - 8u_x u_y - 2u_x u_x u_y - u_x u_x u_y u_x u_y - 2u_x u_x u_y u_x u_y)\frac{e^{-2y}}{u_x^3};$$

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
Again, $|\psi_0| = |\omega| = 1$.

Equation (0.3)

The space of conservation laws is 6-dimensional; elements $\omega_i = P_i \text{d}x + Q_i \text{d}y$ of a basis are

$$P_0 = \frac{e^{-y}}{u_y},$$

$$Q_0 = -(u_x + x) \frac{e^{-y}}{u_y};$$

$$P_3 = uu_{xx} + 3u + u_y,$$

$$Q_3 = uu_{xy} + u_3 x;$$

$$P_4 = -\frac{1}{2} uu_{xy} + 2u_x x + \frac{5}{2} uu_{xx} + uu_{xx} + 8ux + \frac{1}{2} uu_x,$$

$$Q_4 = 2u_x x^2 + \frac{1}{2} uu_x + 2uu_{xy} x + \frac{1}{2} uu_{xx} + \frac{1}{2} uu_{xy} + uu_y.$$

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
\[
-\frac{256}{5}x^2y u_x + \frac{82}{5}ux u_x + 16ux u_y - \frac{17}{5}xu u_y + u_x^3 u_y - \frac{32}{5}uv u_y \\
-\frac{133}{15}x^3 u + \frac{256}{5}x^3 y u + \frac{512}{5}xy u + \frac{176}{5}ux uy u + \frac{64}{5}ux uy u + \frac{12}{5}uy^3 \\
+ 2048ax^3 + \frac{512}{15}x^5 u - 2yu^2 - \frac{32}{5}y^2 u_x - \frac{41}{5}x^2 u^2 - \frac{512}{15}x^4 u - \frac{1}{5}u_x^3;
\]

\[P_1 = \frac{13}{4}uy u_y u_y - \frac{25}{4}xy u_y u + 2uy^2 u_y u_y + \frac{65}{4}uy u_y u_y + \frac{1}{4}ux u_y u_y + \frac{23}{4}ux u_y u_y \\
+ \frac{3}{4}uy u_y u_y + \frac{13}{4}ux u_y u_y + \frac{65}{8}ux^2 u_y u_y + \frac{47}{8}ux^2 u_y u_y \\
+ u_x^2 u_y u_y + \frac{9}{2}uy^2 u_y u_y + \frac{1}{2}u_x^2 u_y u_y - \frac{49}{2}xy^2 u_y u_y + \frac{45}{4}uy u_y + \frac{391}{24}u^3 u_y u_y + 2ux u_y \\
+ \frac{7}{2}ux^2 u_x + \frac{5}{2}ux u_x u_x - \frac{9}{2}ux u_x u_x - \frac{49}{8}x^3 u_x u_x - \frac{333}{12}x^3 u_x u_x + \frac{313}{24}u^3 u_x u_x \\
- yu u_x u_x + \frac{21}{2}ux u_x u_x + \frac{21}{4}ux u_x u_x + \frac{1}{2}u^3 y + \frac{230}{12}u^3 y \\
- \frac{9}{2}u^2 u_x + \frac{3}{4}u^2 u_x - \frac{1}{2}u^2 y - \frac{53}{8}u^2 - \frac{7}{2}xy u_y - \frac{49}{2}x^2 u_x u_y + \frac{7}{2}x^2 u_x u_y + \frac{131}{8}u^2 u_y,
\]

\[Q_1 = \frac{21}{4}ux u_y u + \frac{21}{4}ux u_y u + \frac{11}{4}uy u_y u + \frac{35}{4}ux^2 u_y u + \frac{9}{2}ux u_y u \\
+ 2ux u_y u + 14uy u_y u - \frac{49}{4}xy u_y u + \frac{333}{8}ux u_y u + \frac{49}{4}uy u_y u - \frac{2}{4}u_x^2 u_y - \frac{2}{4}u_x^2 u_y - \frac{343}{24}u^3 u_x \\
+ \frac{343}{24}u^3 u_x + \frac{5}{2}u^2 u_x + \frac{1}{2}u^2 u_x u + \frac{49}{4}x^2 u_x u + \frac{49}{6}u^2 u_x u + \frac{65}{8}u^2 u_x u \\
- \frac{9}{4}yu u_x u + \frac{9}{4}uy u_y - \frac{33}{8}x^2 u_x u + \frac{1}{2}u^3 u_x u + u_x^2 u_y u + u_x^2 u_y u;
\]

\[P_2 = 12ux + \frac{2}{3}ux^2 + 36ux^2 + \frac{1}{3}u_x^2 u_x - \frac{2}{3}u_y^2 + \frac{7}{3}ux u_x u_y + \frac{14}{3}ux u_x u_y + uy u_y u \\
+ 2uy u_y u + \frac{17}{3}ux u + 2ux u_x u + \frac{2}{3}uy u_x u + \frac{8}{3}uy u_x u + u_x u_x u y + \frac{19}{3}u^2 u_x u y \\
- 12x^2 u_x + 2x^2 u_x u_x - 4xy u_x^2 - \frac{1}{2}x^2 u_y^2 - 4y^2 u_y - \frac{1}{3}u_x^4,
\]

\[Q_2 = 12ux - 6x^2 u_x + 2yu_x - 6x^3 u_x - \frac{1}{3}u_x^2 u_x + \frac{10}{3}ux u_x u_y - \frac{5}{3}ux u_x u_y + 4ux^2 u_y u \\
+ u_x^2 u_y u + \frac{7}{3}ux u_x u + \frac{8}{3}uy u_y u + u_x u_y u + u_y u_x u + 2xu_x u_y,
\]

\[P_3 = -5ux u_y - \frac{5}{2}ux u_x - u_x^2 u_x - \frac{1}{2}u_x^2 u_x - \frac{25}{2}ux + 2ux + \frac{1}{2}u_x u_y u + uy u_x u - \frac{1}{2}u_x u_y u \\
+ \frac{1}{2}ux u_x - \frac{1}{2}u_x u_y,
\]

\[Q_3 = \frac{1}{2}u_x^2 u_x + \frac{5}{2}u - \frac{5}{2}x u - \frac{1}{2}u_x u_x + \frac{5}{2}u^2 u_x - 2ux^2 - \frac{1}{2}u_x^2;
\]

\[P_4 = -u_x u_y - 2u_y + 4u,
\]

\[Q_4 = -u_x^2 + xu - u_x;
\]

\[P_0 = \frac{u_y}{ux - u_x - 2y},
\]
\[Q_0 = -\frac{1}{xu_y - u_x - 2y}. \]

Here \(|\psi_\omega| = |\omega| - 1.\]

Acknowledgements

The authors are grateful to E. Ferapontov for remarks and discussion. We also want to express our gratitude to the anonymous reviewer for his/her attention to the text and valuable comments. The 2nd author is grateful to the Mathematical Institute of the Silesian University in Opava for support and comfortable working condition. Computations of symmetry algebras were fulfilled using the Jets software, [2].

References

[1] H. Baran, I.S. Krasil’schik, O.I. Morozov, P. Vojčák, Symmetry reductions and exact solutions of Lax integrable 3-dimensional systems, Journal of Nonlinear Mathematical Physics, Vol. 21, No. 4 (December 2014), 643–671; arXiv:1407.0246 [nlin.SI], DOI: 10.1080/14029251.2014.975532.
[2] H. Baran, M. Marvan, Jets. A software for differential calculus on jet spaces and diffieties. http://jets.math.slu.cz.
[3] F. Calogero, A. Degasperis, Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations. New York–Holland, p. 60, 1982.
[4] M.A. Dunajski, A class of Einstein-Weil spaces associated to an integrable system of hydrodynamic type. J. Geom. Phys., 51 (2004) 126–137.
[5] J. Gibbons, S.P. Tsarev, Reductions of the Benney equations, Phys. Lett. A 211 (1996) 19–24.
[6] I.S. Krasil’schik, A natural geometric construction underlying a class of Lax pairs, Lobachevskii Journal of Mathematics, 2015 (to appear).
[7] I.S. Krasil’schik, V.V. Lychagin, A.M. Vinogradov, Geometry of Jet Spaces and Nonlinear Differential Equations, Adv. Stud. Contemp. Math. 1, Gordon and Breach, New York, London, 1986.
[8] I.S. Krasil’schik, A.M. Verbovetsky, Geometry of jet spaces and integrable systems Journal of Geometry and Physics, 61 (2011) Issue 9, 1633–1674, arXiv:1002.0077 [math.DG].
[9] I.S. Krasil’schik, A.M. Vinogradov. Nonlocal trends in the geometry of differential equations: Symmetries, conservation laws, and Bücklund transformations. Acta App. Math., 15 (1989) no. 1, 161–209.
[10] L. Martínez Alonso, A.B. Shabat, Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type, Phys. Lett. A, 299 (2002) 359–365.
[11] L. Martínez Alonso L., A.B. Shabat, Hydrodynamic reductions and solutions of a universal hierarchy, Theor. Math. Phys., 140 (2004) 1073–1085
[12] M. Marvan, Another look on recursion operators, in: Differential Geometry and Applications, Proc. Conf. Brno, 1995 (Masaryk University, Brno, 1996) 393–402.
[13] O.I. Morozov, Contact integrable extensions of symmetry pseudo-groups and coverings of (2+1) dispersionless integrable equations, J. Geom. Phys., 59 (2009) 1461–1475.
[14] O.I. Morozov, Cartan’s structure of symmetry pseudo-group and coverings for the r-th modified dispersionless Kadomtsev-Petviashvili equation, Acta Appl. Math., 109 (2010) No 1, 257–272.
[15] O.I. Morozov, Recursion Operators and Nonlocal Symmetries for Integrable rmdKP and rdDym Equations, arXiv:1202.2308, 2012
[16] O.I. Morozov, A recursion operator for the universal hierarchy equation via Cartan’s method of equivalence, Central European Journal of Mathematics, 12 (2), 2014, 271–283
[17] A.V. Odesskii, V.V. Sokolov, Non-homogeneous systems of hydrodynamic type possessing Lax representations, arXiv:1206.5230, 2006.
[18] A.V. Odesskii, V.V. Sokolov, Systems of Gibbons-Tsarev type and integrable 3-dimensional models, arXiv:0906.3509, 2009.
[19] M.V. Pavlov, Integrable hydrodynamic chains, J. Math. Phys., 44 (2003) 4134–4156.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
[20] M.V. Pavlov. *The Kupershmidt hydrodynamics chains and lattices*, Intern. Math. Research Notes, 2006, article ID 46987, 1–43.

[21] M.V. Pavlov, Jen Hsu Chang, Yu Tung Chen, *Integrability of the Manakov-Santini hierarchy*, arXiv:0910.2400, 2009.