Local diffusion theory of localized waves in open media

Chu-Shun Tian\(^1\), Sai-Kit Cheung\(^2\) and Zhao-Qing Zhang\(^2\)

\(^1\) Institut für Theoretische Physik, Universität zu Köln, D-50937 Köln, Germany
\(^2\) Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

We report a first-principles study of static transport of localized waves in quasi-one-dimensional open media. We found that such transport, dominated by disorder-induced resonant transmissions, displays novel diffusive behavior. Our analytical predictions are entirely confirmed by numerical simulations. We showed that the prevailing self-consistent localization theory [van Tiggelen, et al., Phys. Rev. Lett. 84, 4333 (2000)] is valid only if disorder-induced resonant transmissions are negligible. Our findings open a new direction in the study of Anderson localization in open media.

PACS numbers: 42.25.Dd, 71.23.An

Introduction.—In the past years experimental studies of localization have been boosted due to the unprecedented level of manipulating ultracold atomic gases [1], dielectric materials [2,7], and elastic media [8]. A key feature shared by many experimental setups is that, there, one allows wave energies to leak out of systems through boundaries in order to facilitate measurements. Consequently, wave interferences interplay strongly with the wave energy leakage that, conceptually, enriches transport phenomena of localized waves while, technically, pushes forward developments of theoretical approaches. In particular, as a unique property of finite-sized samples, localized states in the sample center create resonant transmissions [10-11]. Although these transmissions are rare events, nevertheless, they contribute significantly to average transmission. In fact, random matrix theory predicts that in quasi-one-dimensions (quasi-1D), the localization length measured from average transmission can be four times larger than that measured from typical transmission [12]. Recently, disorder-induced resonant transmissions have found considerable practical applications. For example, they mimic a “resonator” with high-quality factors and thus are used to fabricate random laser [13] and to realize optical bistability [14].

However, to study this intriguing interplay has proved to be, in general, a formidable task. Confronting this challenge, a decade ago van Tiggelen, Lagendijk, and Wiersma took a bold stroke [15], hypothesizing a so-called self-consistent local diffusion (SCLD) model for localized waves [11].

SCLD model [17] fails to describe transport in quasi-1D localized samples at long times, when energies are mainly stored in long-lived modes. The dramatic discrepancy between experimental measurements and theoretical predictions is conveying an opinion. That is, the highly non-local object of disorder-induced resonant transmission [10], which plays a decisive role in transport of localized waves [11], may not be captured by such a model.

Motivated by these activities, we performed a first-principles study of static wave transport in quasi-1D localized samples, i.e., \(L \gg \xi\) with \(L\) and \(\xi\) the sample and localization length, respectively. We predicted analytically and confirmed numerically that in these systems, localized waves display a novel diffusion phenomenon. Our theory shows that the SCLD model is valid only if disorder-induced resonant transmissions are negligible.

Our findings, capable of being generalized to higher dimensions, may open a new direction in the study of Anderson localization in open media.

Main results and qualitative discussions.—We considered the wave intensity and particularly its spatial correlation function, \(\mathcal{Y}(x,x')\). Our first-principles analytic theory, justifying the static local diffusion equation:

\[
-\partial_x D(x) \partial_x \mathcal{Y}(x,x') = \delta(x-x')
\]

with \(x,x'\) the distance of the observation (source) point from given boundary, leads to the following central results. (i) The local (or position-dependent) diffusion coefficient \(D(x)\) displays a novel scaling behavior. Specifically, \(D(x)\) depends on \(x\) via the scaling \(\lambda = (L - x)x/(L\xi)\) \([D_0 = D(0)]\),

\[
D(x)/D_0 = D_\infty(\lambda),
\]

and the scaling function \(D_\infty(\lambda)\) is \(\sim e^{-\lambda}\) for \(\lambda \to \infty\). (ii) From (i) it follows that inside the sample, surprisingly, \(D(x)\) is enhanced drastically from the exponential decay,

\[
D(x)/D_0 \propto e^{x^2/(L\xi)} e^{-x/\xi}, \quad \xi \ll x \leq L/2.
\]

(iii) Eqs. (1) and (2) are universal regardless of the time-reversal symmetry. Our results, while entirely confirmed by simulations (Fig. 1), show that the SCLD model fails in localized samples.
totic form of media). In this simple case, on physical grounds, we expect $D(x)/D_0 = D_\infty(\lambda) \sim e^{-x/\xi} \lambda$ for $x \gg \xi$. Because of $\lambda = x/\xi$, we find $D_\infty(\lambda) \sim e^{-\lambda}$ for $\lambda \gg 1$. This asymptotic form then gives Eq. (2) for finite-sized samples. Importantly, the significant enhancement from the exponential decay may be related to the fluctuation of the inverse localization length γ in finite-sized samples. Indeed, for $L \gg \xi$, the distribution of γ is Gaussian, with the average and variance being ξ^{-1} and $2/(\xi L)$, respectively [12-20]. Averaging $e^{-\gamma x}$, we obtained
\[\int_0^\infty d\gamma e^{-\gamma x} e^{-\frac{\xi}{2}(\gamma-\xi^{-1})^2} \sim D(x) \] (3)
for x deep inside the sample.

FIG. 1: Comparing results obtained from numerical simulations, the analytical prediction [2] (solid lines) and the SCLD model (dashed lines). $D(x)/D_0$ was computed numerically for two wave frequencies, $\omega = 1.65c/a$ (square) and $\omega = 0.72c/a$ (circle), and for five different sample lengths, $L/\xi = 2.5, 5, 10, 15$ and 20.

Let us first present qualitative explanations of the main results (i)-(iii). The scaling behavior, Eq. (1), finds its origin in wave interferences. Indeed, as waves penetrate into a time-reversal medium, they may counterpropagate along the same loop and interfere with each other—the well-known weak localization [19]. However, different from infinite media, in open media, wave energies leak out through the boundaries and as such, the probability (in the frequency domain) of forming a loop is finite in the static limit, which is $\propto (L-x)x/L$ in quasi-1D. Then, a one-loop wave interference correction to D_0 results, which is x-dependent and of the order of $\lambda = (L-x)x/(L\xi)$. Furthermore, because λ monotonously decreases from the sample midpoint to boundaries, as waves propagate towards the sample center, the propagation paths tend to form more (say n) loops with a probability $\propto [(L-x)x/L]^n$, leading to a wave interference correction $\sim \lambda^n$. Thus, wave interferences everywhere render $D(x)$ depending on x via λ.

That the scaling behavior of local diffusion is far beyond the reach of the SCLD model is best appreciated by broken time-reversal systems (unitary symmetry). There, the above one-loop wave interference is absent and, therefore, the SCLD model ceases to work. Instead, for $\lambda \to 0$, the linear term in the λ-expansion of $D_\infty(\lambda)$ now disappears. Instead, two paths may take the same route, propagate in the same direction but visit individual scatterers at different times. As such, they form loops and equally contribute wave interference corrections to D_0. The perturbative λ-expansion is thereby justified, with the leading order correction $\sim \lambda^2$.

Having explained Eq. (1), let us estimate the asymptotic form of $D_\infty(\lambda)$ at $\lambda \to \infty$. To this end we enjoy the universality of $D_\infty(\lambda)$ and set $L \to \infty$ (semi-infinite media). In this simple case, on physical grounds, we expect $D(x)/D_0 = D_\infty(\lambda) \sim e^{-x/\xi}$ for $x \gg \xi$. Because of $\lambda = x/\xi$, we find $D_\infty(\lambda) \sim e^{-\lambda}$ for $\lambda \gg 1$. This asymptotic form then gives Eq. (2) for finite-sized samples. Importantly, the significant enhancement from the exponential decay may be related to the fluctuation of the inverse localization length γ in finite-sized samples. Indeed, for $L \gg \xi$, the distribution of γ is Gaussian, with the average and variance being ξ^{-1} and $2/(\xi L)$, respectively [12-20]. Averaging $e^{-\gamma x}$, we obtained
\[\int_0^\infty d\gamma e^{-\gamma x} e^{-\frac{\xi}{2}(\gamma-\xi^{-1})^2} \sim D(x) \] (3)
for x deep inside the sample.

Failure of SCLD model.—For simplicity we focus on classical scalar waves, and begin with testing the validity of the SCLD model [15]. We performed numerical simulations of the spatially-resolved wave intensity across a randomly layered medium, which is embedded in an air background and excited by a plane wave of (angular) frequency ω. The layer thickness is a, and the relative permittivity at each layer fluctuates independently, with a uniform distribution in the interval $[1-\sigma, 1+\sigma]$. Here σ measures the degree of randomness of the system and throughout this work we considered non-reflecting boundaries. We set $\sigma = 0.7$ and considered two wave frequencies, $\omega = 1.65c/a$ and $0.72c/a$, where c is the speed of light in the air. We used the standard transfer matrix method to calculate the transmission coefficient, T_β, and wave intensity distribution, $I_\beta(x)$, for each configuration β. For each ω, we calculated the ensemble-averaged current $j \equiv \langle T_\beta \rangle$ and wave intensity distribution $I(x) \equiv \langle I_\beta(x) \rangle$ of 2,000,000 realizations of dielectric disorders for different sample lengths. Since the current across the sample is uniform due to the conservation law, we used the relation: $j = -D(x)\partial_x I(x)$ to compute $D(x)$ by presuming the static local diffusion equation.

In Fig. 1 the results of $D(x)/D_0$ obtained by simulations and by numerically solving the SCLD model are presented. First of all, they both show that $D(x)$ tends to decay exponentially from the boundary in the limit: $L \to \infty$ (dotted line). The decay length (the localization length) ξ was found to be the transport mean free path, which is $21a$ ($50a$) for $\omega = 1.65c/a$ ($0.72c/a$). We therefore rescale x into x/ξ and present results for five different sample lengths, $L/\xi = 2.5, 5, 10, 15$ and 20. We see that for different frequencies, the simulation results (squares and circles) overlap, signaling the scaling behavior independent of the parameters of random media. It is obvious that, except near the boundaries, the results from simulation are significantly larger than those from the SCLD model (dashed lines). The deviation is prominent for large L/ξ, where the results from the SCLD model converge to the sum of two truncated exponentials, decaying from their respective boundaries. Does localized waves in open media display diffusive transport? Our analytical prediction below provides a definitive answer.
to this conceptually important question. In particular, the analytical result of $D(x)/D_0$, Eq. (2), is in excellent agreement with numerical simulations (solid lines).

Exact microscopic formalism.—Referring to a separate publication for technical details, we turn now to outline the proof and the strategy is as follows. In the framework of the supersymmetric field theory of localization [21, 22], we calculated explicitly the correlation function $Y(x,x')$, and found that it solves the local diffusion equation. In doing so, we managed to calculate the weak localization correction, $\delta D(x)$. Then, we found the Gell-Mann–Low equation of the local diffusion coefficient, $D(x) = D_0 + \delta D(x)$, which eventually leads to Eq. (3).

In the present context the supersymmetric technique has many advantages over others. The key ingredient is the introduction of a “spin” Q (to be defined below) that encapsulates wave interferences by fluctuations of the “spin direction”: the larger the fluctuation, the stronger the localization effect. With the help of the Q-spin, the picture of localization in open media is analogous to that of the more familiar problem—finite classical ferromagnetic spin chains (but formal treatments are not). In the latter system, the two end spins are fixed and parallel, and the spin direction fluctuates elsewhere with a small (large) fluctuation amplitude closed to the chain ends (midpoint). Translated to the Q-spin language, such inhomogeneous fluctuations reflect the spatial inhomogeneity of wave interferences in open media—the very mechanism of local diffusion. Most importantly, the feature that the two Q-spins at the boundaries are “parallel” takes all disorder-induced resonant transmissions into full account. Thus, the phenomenon of local diffusion is substantiated by a completely microscopic formalism, albeit in an elegant manner.

Formally, the “spin” Q is an 8×8 supermatrix defined on the advanced-retarded (ar), bosonic-fermonic (bf) and time-reversal (tr) sector. The “ar” sector accommodates different analytic structures of the advanced (retarded) Green function. The “bf” sector accommodates the supersymmetry: the diagonal (off-diagonal) matrix elements are commuting (anti-commuting) numbers. The “tr” sector accommodates the time-reversal symmetry. The leakage enters through the boundary constraint: $Q(0) = Q(L) = \sigma_3^{bf}$. Here, $\sigma_3^{ar} = \text{diag}(1,-1)$, $X = \text{ar, bf, tr}$. Then, $Y(x,x')$ is exactly expressed as

$$
Y(x,x') = \frac{\pi \nu}{2} \int D[Q] e^{-F[Q]} \text{str} \left[x_3^{bf} (1 + \sigma_3^{bf}) (1 - \sigma_3^{bf}) \right]
\times Q(x)(1 - \sigma_3^{bf})(1 - \sigma_3^{bf}) Q(x') \right]. \quad (4)
$$

The action, $F[Q] = -\frac{\pi \nu D_0}{2} \int dx \text{str} (\partial_x Q)^2$ (ν the density of states per unit length and “str” the supertrace), is the energy cost of the Q-field fluctuations. It introduces a characteristic scale—the localization length $\xi \propto \pi \nu D_0$.

Importantly, the mean field $Q(x) = \sigma_3^{bf}$, compatible with the boundary constraint, minimizes the action and describes a vanishing wave intensity background across the sample. Bearing this in mind, we introduced the parametrization: $Q = (1 + i W) x_3^{bf} (1 + i W)^{-1}$, where $W(x)$ anti-commutes with σ_3^{bf} and vanishes at $x = 0, L$, and performed the W-expansion. By keeping the leading order W-expansions, we obtained from Eq. (4) the bare correlation function $Y(x,x')$, which satisfies $D_0 \partial_x Y(x,x') = \delta(x-x')$ with the boundary condition: $Y(0,x') = Y(L,x') = 0$. Calculating the leading wave interference corrections to $Y(x,x')$, we found

$$
Y(x,x') = Y(x,x') - \int dy Y(x,y) \partial_y \delta D(y) \partial_y Y(y,x') \quad (5)
$$

with the leading order weak localization correction read

$$
\frac{\delta D(x)}{D_0} = \alpha \frac{Y(x,x)}{\pi \nu} - \frac{1}{2} (1 - \alpha^2) \left[\frac{Y(x,x)}{\pi \nu} \right]^2, \quad (6)
$$

where $Y(x,x) = (L-x)/(D_0 L)$, and $\alpha = -1$ for the orthogonal symmetry while $\alpha = 0$ for the unitary symmetry. Eq. (6) justifies that $D(x)$ depends on x via λ.

For the unitary symmetry the first term of Eq. (6) vanishes, reflecting that the one-loop interference is impossible. Thus, the local diffusion and scaling behavior of $D(x)$ are universal concepts, extrinsic to the time-reversal symmetry that is required by the SCLD model.

Scaling theory of local diffusion and disorder-induced resonant transmission.—We now make an important observation: $G(\lambda) = \nu D(x)/\xi(\lambda)$ and λ, formally, play the role of the “Thouless conductance” [19] and the “system size”, respectively. Indeed, from Eq. (6) we found

$$
\frac{d \ln G}{d \ln \lambda} = \beta(G) = -1 + c_1 \nu^{-1} + c_2 \nu^{-2} + \cdots, \quad G \gg 1, \quad (7)
$$

with $c_1 < 0$ for $\alpha = -1$ and $c_1 = 0$, $c_2 < 0$ for $\alpha = 0$. This is fully analogous to the usual one-parameter scaling theory of quasi-1D localization [19] where, in particular, the perturbative expansion of the β-function also finds its origin in weak localization [16, 22].

From Eq. (6), we further found that the weak localization corrections of open and infinite media, including the coefficients, are identical except that the returning probability, $Y(x,x)$, replaces that of infinite media. This duality persists in all the higher-order weak localization corrections and, as such, the β-function here is identical to that of the usual one-parameter scaling theory [19]. Identifying this duality, we followed Refs. [19, 20] to extrapolate Eq. (7) into the regime of $G \ll 1$, obtaining

$$
\beta(G) = \ln G, \quad G \ll 1. \quad (8)
$$

The scaling theory of local diffusion namely Eqs. (7) and (8) is far beyond the reach of earlier theoretical studies [21, 23] and has far-reaching consequences. (It may be reproduced within the formalism of Ref. [24].) In particular, Eq. (8) gives $G(\lambda) \propto e^{\nu} \lambda$ for $\lambda \rightarrow \infty$ and thus Eq. (2).
which, as shown below, fully captures the rare disorder-induced resonant transmission. Solving the static local diffusion equation, we found that the ensemble-averaged transmission is \(\langle T(L) \rangle \propto \left(\int_0^L dx / D(x) \right)^{-1} \) (This is regardless of the explicit form of \(D(x) \), as first noticed in Ref. [11].) Inserting Eq. (2) into it gives \(\langle T(L) \rangle \propto e^{-L/(\xi^2)} \) for \(L \gg \xi \). On the other hand, noticing that \(T(L) = e^{-\gamma L} \), we found that the typical transmission gives \(d(\ln T(L))/dL = -\xi^{-1} \) from the Gaussian distribution of \(\gamma \) [cf. Eq. (3)]. Thus, the localization lengths obtained by the arithmetic and geometric means differ by a factor 4 irrespective of orthogonal or unitary symmetry. This is in agreement with the result of the random matrix theory, and is because that \(\langle T(L) \rangle \) is dominated by disorder-induced resonant transmissions [12].

To further study effects of rare high-transmission states we analyzed all the samples in Fig. 1 (\(\omega = 1.65c/a \) and \(L/\xi = 10 \)). The source is placed at \(x = 0 \).

Conclusions.—We found in quasi-1D localized samples a scaling behavior of the (static) local diffusion coefficient capturing all the rare disorder-induced resonant transmission. Our findings show unambiguously that the prevailing SCLD model is valid only if rare disorder-induced resonant transmissions are negligible which, nevertheless, play a decisive role in transport of localized waves.

The found phenomenon is intrinsic to finite-sized samples with open boundaries and does not exist in an infinite sample. It is an unconventional diffusion phenomenon in the sense that the diffusion coefficient can drop by many orders of magnitude as the position changes from the boundary to the midpoint. (For diffusive samples, such a position-dependence is weak and thus does not lead to any interesting phenomenon other than ordinary diffusion.) It is such a drastic change (in the diffusion coefficient) that leads to a global localization behavior as shown in the scaling of the average transmission which decays exponentially with sample size.

Our theory has many immediate applications. For example, it can be directly used to study the speckle pattern of scattered waves which has recently attracted considerable attentions. It may also be generalized to higher dimensions for studying disorder-induced resonant transmissions in (or close to) the localization regime. This issue has practical applications such as random laser.

We thank A. Z. Genack for discussions, and A. Altland, D. Basko, A. A. Chabanov, M. Garst, A. Kamenev, and T. Nattermann for conversations. Work supported by SFB TR12 of the DFG and the HK RGC No. 604506.

[1] J. Billy et al., Nature 453, 891 (2008); G. Roati et al., ibid. 453, 895 (2008).
[2] T. Schwartz, et al., Nature 446, 52 (2007).
[3] K. Yu, Blokh et al., Phys. Rev. Lett. 97, 243904 (2006).
[4] C. Toninelli, et al., Phys. Rev. Lett. 101, 123901 (2008).
[5] A. A. Chabanov, et al., Nature 404, 850 (2000).
[6] M. Stözer, et al., Phys. Rev. Lett. 96, 063904 (2006).
[7] Z. Q. Zhang et al., Phys. Rev. B 79, 144203 (2009).
[8] H. Hu, et al., Nature Physics 4, 945 (2008).
[9] A. A. Chabanov, Z. Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 90, 203903 (2003).
[10] M. Y. Azbel, Phys. Rev. B 28, 4106 (1983).
[11] K. Y. Blokh, et al., Rev. Mod. Phys. 80, 1201 (2008).
[12] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[13] H. Cao, et al., Phys. Rev. Lett. 82, 2278 (1999).
[14] I. V. Shadrivov, et al., Phys. Rev. Lett. 104, 123902 (2010).
[15] B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma, Phys. Rev. Lett. 84, 4333 (2000).
[16] P. Wölfle and D. Vollhardt, to appear in Fifty Years of Anderson localization, ed. E. Abrahams (World Scientific, Singapore, 2010).
[17] S. E. Skipetrov and B. A. van Tiggelen, Phys. Rev. Lett. 92, 113901 (2004); 96, 043902 (2006).
[18] N. Cherroret, et al., Phys. Rev. B 80, 037101 (2009).
[19] E. Abrahams, et al., Phys. Rev. Lett. 42, 673 (1979).
[20] P. W. Anderson, et al., Phys. Rev. B 22, 3519 (1980).
[21] C. Tian, Phys. Rev. B 77, 064205 (2008).
[22] K. B. Efetov, Adv. Phys. 32, 53 (1983).
[23] N. Cherroret and S. E. Skipetrov, Phys. Rev. E 77, 046608 (2008).

[24] P. W. Brouwer and A. Altland, Phys. Rev. B 78, 075304 (2008); A. Altland et. al., in Path Integrals–New Trends and Perspectives eds. W. Janke and A. Pelster (World Scientific, Singapore, 2008).

[25] J. B. Pendry, Adv. Phys. 43, 461 (1994).