Contamination of the Bushveld Complex (South Africa) magmas by basinal brines: Stable isotopes in phlogopite from the UG2 chromitite

Haoyang Zhou1,2*, Robert B. Trumbull1, Ilya V. Veksler1,3, Ilya N. Bindeman4, Johannes Glodny5, Felix E.D. Kaufmann6 and Dieter Rammeloo6

1GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam 14473, Germany
2Natural History Museum, University of Oslo, Blindern, Oslo 0318, Norway
3Institute of Geosciences, University of Potsdam, Potsdam-Golm 14476, Germany
4Department of Earth Sciences, University of Oregon, Eugene, Oregon 97403-1272, USA
5Museum für Naturkunde Berlin, Invalidenstrasse 43, Berlin 10115, Germany
6Federal Institute for Geosciences and Natural Resources (BGR), Hannover 30655, Germany

ABSTRACT

There is abundant evidence for significant H2O in evolved melts from the platinum-rich UG2 chromitite and the Merensky Reef of the Bushveld Complex (South Africa), but there is no consensus about the source of H2O. We report triple-oxygen and hydrogen isotope ratios of interstitial, late-magmatic phlogopite from three localities of the UG2 layer. The phlogopite yielded δD values of −43‰ to −23‰, which is >30‰ higher than previously known from Bushveld rocks and far above the mantle values of −75‰. The phlogopite triple-oxygen isotope ratios are the first to be reported for Bushveld rocks, with values of Δ18O23 (‰) (O excess relative to the reference line 0.5305) from −0.069‰ to −0.044‰ (8‰O 5.2‰–6.2‰). The oxygen data support existing models of as much as 30%–40% contamination of mantle-derived magmas in the lower to middle crust. However, the high δD values require a second step of contamination, which we attribute to brines from the marine sediments in the Transvaal Basin at the emplacement level.

INTRODUCTION

Understanding the petrogenesis of mafic layered intrusions and their mineralization remains a huge challenge, and among many open questions is the role of H2O in these essentially anhydrous igneous bodies (Charlier et al., 2015). The Rustenburg Layered Suite (RLS) of the Bushveld Complex (South Africa) contains the world’s three largest deposits of platinum-group elements: the Upper Group 2 (UG2) chromitite and the Merensky Reef in the upper Critical Zone (CZ) in the eastern and western limbs of the complex, and the Platreef in the northern limb (Fig. 1). Crystallized melt inclusions containing phlogopite, hornblende, and CI-rich apatite have been reported in UG2 chromite and Merensky Reef olivine, confirming a role of hydrated melts in the formation of these layers (Li et al., 2005; Schanorr et al., 2018; Smith et al., 2021). These late-stage melts crystallized interstitial phlogopite, which is closely intergrown with chromite and sulfide minerals (Smith et al., 2021). It has been suggested that interaction of hydrated, CI-rich melts with solidus cumulates of the UG2 and Merensky Reef caused remelting of the latter and remobilization of fluid-mobile elements (e.g., Mathez and Mey, 2005; Boudreau, 2008). Veksler and Hou (2020) confirmed experimentally that adding 4 wt% H2O to a B1 composition (parental melt composition for the CZ; Barnes et al., 2010) shifts the liquidus assemblage from silicate minerals to Cr-spinel. They inferred that localized H2O additions from the floor of the Bushveld magma chamber could have remelted pyroxenite cumulates and precipitated chromite, thus forming chromitite layers like UG2.

While the evidence for late hydrous melts in the CZ is well documented, the source of H2O is not. One option is concentration of primary, mantle-derived H2O in residual melts by fractional crystallization, while the other is derivation from external, crustal sources. The latter might be suggested by long-established evidence for crustal contamination of RLS magmas from high Sr- and Os-isotope ratios (Hart and Kinsloch, 1989; McCandless and Ruiz, 1991; Kruger, 1994) and from δ18O values higher than the mantle composition (Schiffries and Rye, 1989; Harris et al., 2005). Benson et al. (2020) reviewed evidence for large-scale fluid generation in the thermal aureole beneath the Bushveld intrusion and used geochemical and thermal-mechanical models to show how such fluids might have affected the RLS magmas. Surprisingly few studies have addressed the source of H2O by coupled hydrogen and oxygen isotope analysis of OH-bearing minerals, possibly because conventional methods required prohibitively large amounts of pure mineral separates given the low abundance of phlogopite. Two exceptions are studies by Mathez et al. (1994) and Willmore et al. (2002), who reported δD values of biotite from the Merensky Reef and other pyroxenite units from the CZ. There are a number of published bulk-rock values of δD, but these are harder to interpret because the mineral hosts of H2O are unknown. We report the first co-registered H and triple-O (δ16O, δ17O, and δ18O) isotopic ratios in late-magmatic phlogopite from the UG2 horizon at three localities spaced throughout the complete RLS (Fig. 1). Our analytical techniques require a sample mass of just a few milligrams, low enough to obtain high-purity phlogopite separates from the UG2 chromitite and also from silicate wall rocks.

CITATION: Zhou, H., et al., 2021, Contamination of the Bushveld Complex (South Africa) magmas by basinal brines: Stable isotopes in phlogopite from the UG2 chromitite: Geology, v. 49, p. 1272–1276, https://doi.org/10.1130/G49173.1
SAMPLES AND METHODOLOGY

Samples were collected from industry drill cores through UG2 in the Nkwe, Khuseleka (chromitite and wall rocks), and Karee (chromitite only) mines. Details of UG2 at these mines are given by Veksler et al. (2018) and Junge et al. (2014). The spatial distribution and abundance of phlogopite in the samples were determined by micro–X-ray fluorescence element mapping on the same polished thin sections used for electron microprobe analyses. Phlogopite was separated from ∼10 g of crushed, sieved rock material, and the stable isotopic ratios of hydrogen and oxygen were measured by thermal conversion elemental analyzer (TC/EA) and laser fluorination, respectively. Details of methods and analytical conditions are given in the Supplemental Material.

RESULTS

Phlogopite Occurrence and Composition

Phlogopite forms fresh, reddish-brown, interstitial grains (0.1–1 modal%, ∼50–500 μm in size) in the UG2 chromitite and its silicate wall rocks. It is evenly disseminated in the samples, with no clustering or connectivity between grains (Fig. S1 in the Supplemental Material). Phlogopite replaces orthopyroxene in UG2 chromitite and is intergrown with chromite, plagioclase, sulfides, and platinum-group minerals (Figs. 2A and 2B). Locally, phlogopite is associated with myrmekitic K-feldspar–quartz intergrowths (Figs. 2C and 2D). The phlogopite within chromitite has Mg# [100 × Mg/(Mg + Fe2+)] of 92–97, molar K/(K + Na) of 0.81–0.97, and TiO2, F, and Cl contents of 3.0–5.1, 0.1–0.6, and 0.1–0.4 wt%, respectively (Table S1, Figs. S2 and S3). Phlogopite in silicate wall rocks has a lower Mg# (71–88), higher K/(K + Na) ratio (0.97–1), and nearly the same range of TiO2, F, and Cl contents.

Hydrogen and Oxygen Isotopic Ratios

The total range of δD for phlogopite within chromitite is −38‰ to −23‰ (Table S2; Fig. 3), and the average values from each locality are nearly identical (Nkwe: −30‰ ± 4‰, n = 6; Khuseleka: −33‰ ± 1‰, n = 6; Karee: −29‰ ± 3‰, n = 8). Phlogopite from silicate rocks is similar in terms of range (−43‰ to −26‰) and average values (Nkwe: −33‰ ± 6‰, n = 4; Khuseleka: −32‰ ± 5‰, n = 3). All separates yielded stoichiometric H2O contents (3–4 wt%). This, combined with the lack of correlation between δD and H2O (Fig. S4) and the stoichiometric contents of 9 wt% K2O + Na2O rules out significant chloritization. We estimated the magmatic δD range as −37‰ to −16‰ using the compositionally dependent ΔDphlogopite-water (δDphlogopite − δDwater) equation at 800 °C (Table S2; Suzuoki and Epstein, 1976), based on the chromite-plagioclase O-isotope closure temperature from the Nkwe UG2 (Schanior et al., 2018), 750 °C for F-Cl-OH exchange between phlogopite and apatite (Willmore et al., 2000), and 850 °C for Ti thermometry of zircon associated with phlogopite from the UG2 footwall (Zeh et al., 2015).

Supplemental Material. Detailed methodology, and supplemental figures and tables. Please visit https://doi.org/10.1130/GES.14810532 to access the supplemental material, and contact editing@geosociety.org with any questions.
The δ¹⁸O values of chromite-hosted phlogopite are practically the same in all localities (5.7‰ ± 0.3‰, n = 19; Table S2; Fig. 3), and this is also true for phlogopite in silicate rocks (5.7‰ ± 0.2‰, n = 4). The corresponding magmatic values are 6.6‰ ± 0.3‰ based on Δ¹⁸O_phlogopite-from-basal of −0.9‰ at 800 °C (Zhao and Zheng, 2003). Not all samples yielded enough phlogopite for combined D/H and triple-O measurements, so the latter are fewer in number (Fig. 3). The Δ¹⁷O values, expressing δ¹⁸O excess relative to the reference line 0.5305, are calculated as: Δ¹⁷O = δ¹⁸O − 0.5305 × δ¹⁵O, where δ¹⁵O = 1000 × ln(δ¹⁷O/1000 + 1). They range from −0.069‰ to −0.044‰ and are similar in all localities (Nkwe: −0.053‰ ± 0.009‰, n = 6; Khuseleka: −0.051‰ ± 0.007‰, n = 2; Karee: −0.054‰ ± 0.003‰, n = 2). These Δ¹⁷O values can be considered equivalent to magmatic values given the negligible difference in Δ¹⁷O between magma and minerals at high temperatures (Bindeman, 2021). There are no correlations of either δ¹⁴O or δD with the chemical composition of phlogopite (Figs. S5 and S6).

DISCUSSION
Comparison with O-H Isotope Data from the Bushveld Complex

The triple-O isotope ratios reported here are the first published for the Bushveld Complex. Our average δ¹⁸O values for UG2 phlogopite (5.7‰ ± 0.3‰) are similar to biotite data from CZ pyroxenites (5.6‰–5.7‰; Willmore et al., 2002), and both data sets suggest a magma composition of 6.6‰ ± 0.3‰, which is consistent with the RLS range (6.8‰–7.1‰; Schiffries and Rye, 1989; Harris et al., 2005). In contrast, the δD values of phlogopite from UG2 at all three localities studied (−43‰ to −23‰) are distinctly higher than previously reported for the RLS (Fig. 4A), although there are no published data from the UG2 layer. The range of δD values for phlogopite or biotite from the Merensky Reef, other CZ rocks, and the Platreef (−88‰ to −49‰; Mathez et al., 1994; Harris and Chamba, 2001; Willmore et al., 2002; Pronost et al., 2008) is similar to the bulk-rock range for the entire RLS (−99‰ to −53‰; Mathez et al., 1994; Harris et al., 2005). The authors cited above suggested a magmatic source of H₂O because the δD values are similar to those of mantle rocks (−75‰ ± 12‰; Loewen et al., 2019). A late-magmatic origin of phlogopite in UG2 is indicated by textures (e.g., interstitial grains with no connection outside the layer; intergrowths with chrome, sulfide minerals, and feldspar–quartz microgranophyre) and chemical composition (e.g., high TiO₂, stoichiometric K₂O, and H₂O contents). Therefore, we consider the phlogopite δD values to reflect those of the magma. Our estimate of δD for the UG2 magma based on phlogopite (−37‰ to −16‰) is at least 30‰ higher than the mantle value.

The Origin of High δD in UG2

In principle, high magmatic δD can be source related or related to processes of magma evolution including mixing and assimilation. Source-related D/H enrichment in the mantle has been attributed to subduction-related metasomatism (Loewen et al., 2019), and indeed, a link between Bushveld parental magmas and subduction-related boninites has been suggested (e.g., Willmore et al., 2002). However, if the high δD values in UG2 were source related, they should be found throughout the RLS, which is not the case. Processes that enrich D/H during magma evolution include degassing, crystallization of abundant hydrous minerals, and contamination with external, high-δD material. Degassing cannot be ruled out for the shallow-level Bushveld intrusion, but there is no reason why this process should affect UG2 more than other layers of the RLS, so it is discounted. Enrichment of D/H in residual magma due to crystallization of hydrous minerals is unlikely because all but the latest, interstitial phases are anhydrous. The same argument rules out post-cumulus equilibration of interstitial melts with the surrounding, anhydrous cumulus minerals. Therefore, contamination of the UG2 magma seems the only likely explanation.

Harris et al. (2005) compiled new and existing isotopic data showing a narrow range of magmatic δ¹⁸O values throughout the RLS
We suggest that seawater-derived basal brines in the Transvaal Supergroup sediments would have appropriated high D/H ratios to raise the magmatic δD substantially without affecting oxygen isotope ratios. Furthermore, saline brines provide an alternative to subduction fluids for explaining the high Cl contents found in interstitial phlogopite and apatite from the Bushveld aureole, which might represent such brines in the Transvaal Supergroup sediments. We note that the triple-O isotope composition of the UG2 plagioclase indicates that the magma was affected by the contamination model of Harris et al. (2005). The new Δ17O–ΔD values from this study (−0.069‰ to −0.044‰) are also consistent with this model (Fig. 4B), although we note that the triple-O isotope composition of potential contaminants is poorly constrained (see the Supplemental Material for more discussion). However, the distinctly high δD values of UG2 imply that the magma was affected by a separate (and presumably later) process that was capable of increasing δD without causing a significant shift in δ18O. Mass-balance considerations suggest an aqueous fluid with high δD as the most likely contaminant, and the fact that RLS magmas intruded unmetamorphosed marine sedimentary rocks of the Transvaal Supergroup makes it likely that this contamination took place at the emplacement level. Benson et al. (2020) modeled the consequences of contact metamorphism and dehydration of the Transvaal sediments and showed how fluids could have been introduced into the overlying RLS by a combination of footwall diapirism and localized overpressure-driven channels.

Figure 4. (A) Statistical summary of all available δD values from the Rustenburg Layered Suite (RLS, South Africa). Sources: a—Mathez et al. (1994); b—Harris and Chaumba (2001); c—Willmore et al. (2002); d—Harris et al. (2005); e—Pronost et al. (2008); f—Loewen et al. (2019). (B) Δ17O–ΔD plot showing two-step mixing model. Δ17O is shown with 1 standard deviation; see the Supplemental Material (see footnote 1) for data sources and model details. Step 1 (following Harris et al., 2005) is contamination of mantle-derived magmas with Archean rocks (orthogneiss, high-grade metapelites) in lower to middle crust; step 2 is shallow emplacement of contaminated RLS magmas into Transvaal Basin and incorporation of basal brines (conate seawater) into UG2 melts.
ACKNOWLEDGMENTS
H. Zhou thanks the German Academic Exchange Service (DAAD) for supporting his stay in Potsdam and the German Research Centre for Geoscience (GFZ) for offsetting analytical costs. I. Veksler was supported by German Research Foundation (DFG) grant VE 619/6-1, and I. Bindeman by U.S. National Science Foundation Grant EAR-1910220. We are grateful to Lutz Hecht (Museum für Naturkunde Berlin) for discussions on the origin of Bushveld chromitites and his help securing samples from Nkwelo. Chris Harris and Alan Boudreau are thanked for constructive reviews.

REFERENCES CITED
Barnes, S.-J., Maier, W.D., and Curl, E.A., 2010, Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: Implications for the formation of the platinum-group element deposits: Economic Geology and the Bulletin of the society of Economic Geologists, v. 105, p. 1491–1511, https://doi.org/10.2113/econgeo.105.8.1491.

Bindeman, I.N., 2008, Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis: Reviews in Mineralogy and Geochemistry, v. 69, p. 445–478, https://doi.org/10.2138/rmm.2008.69.12.

Bindeman, I.N., 2021, Triple oxygen isotopes in evolving continental crust, granites, and clastic sediments: Reviews in Mineralogy and Geochemistry, v. 86, p. 241–290, https://doi.org/10.2138/rmm.2021.86.08.

Boudreau, A.E., 2008, Modeling the Merensky Reef, Bushveld Complex, Republic of South Africa: Contributions to Mineralogy and Petrology, v. 156, p. 431–437, https://doi.org/10.1007/s00410-008-0294-0.

Charlier, B., Namur, O., Latypov, R., and Tegner, M., 2020, Experimental study of H2O upon crystallization in the lower and critical zones of the Bushveld Complex with an emphasis on chromitite formation: Contributions to Mineralogy and Petrology, v. 175, 85, https://doi.org/10.1007/s00410-020-01733-w.

Veksler, I.V., 2016, Hydrogen isotope fractionation between OH-bearing minerals and water: Geochimica et Cosmochimica Acta, v. 40, p. 1229–1240, https://doi.org/10.1016/j.gca.2016.07.015.

Willmore, C.C., Boudreau, A.E., and Kruger, F.J., 2000, The halogen geochemistry of the Bushveld Complex, Republic of South Africa: Implications for chalcopylite element distribution in the lower and critical zones: Journal of Petrology, v. 41, p. 1517–1539, https://doi.org/10.1093/petrology/41.10.1517.

Zakharov, D.O., and Bindeman, I.N., 2019, Triple oxygen and hydrogen isotopic study of hydrothermally altered rocks from the 2.43–2.41 Ga Vetreryn belt, Russia: An insight into the early Paleoproterozoic seawater: Geochimica et Cosmochimica Acta, v. 248, p. 185–209, https://doi.org/10.1016/j.gca.2019.01.014.

Zeh, A., Ovtcharova, M., Wilson, A.H., and Schulz, T., 2006, Hydrogen isotopic systematics of the Bushveld Complex: An example from the Platreef, northern limb of the Bushveld Complex, South Africa: Mineralium Deposita, v. 43, p. 825–848, https://doi.org/10.1007/s00410-007-0294-0.

Suzuoki, T., and Epstein, S., 1976, Hydrogen isotope fractionation between OH-bearing minerals and water: Geochimica et Cosmochimica Acta, v. 40, p. 1229–1240, https://doi.org/10.1016/j.gca.2016.07.015.

Veksler, I.V., 2016, Hydrogen isotopic systematics of the Bushveld Complex: II. Constraints on hydrothermal processes in layered intrusions: American Journal of Science, v. 309, p. 209–245, https://doi.org/10.2113/ajs.309.3.209.

Smith, W., Maier, W., Barnes, S., Moorhead, G., Reid, D., and Karykovsky, B., 2021, Element mapping the Merensky Reef of the Bushveld Complex: Geoscience Frontiers, v. 12, 101101, https://doi.org/10.1016/j.gsf.2020.11.001.

Harris, C., Pronost, J.J.M., Ashwal, L.D., and Caw, M.O., 2017, 2.05-Ga isotopic ages for Transvaal tectonic units in South Africa: Implications for the formation of the Platreef, northern limb of the Bushveld Complex, South Africa: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 109, p. 795–810, https://doi.org/10.2113/econgeo.109.3.795.

Kinnaird, J.A., Hutchinson, D., Schurmann, L., Nex, P.A.M., and de Lange, R., 2005, Petrology and mineralisation of the southern Platreef: Northern limb of the Bushveld Complex, South Africa: Mineralium Deposita, v. 40, p. 576–597, https://doi.org/10.1007/s00410-005-0023-9.

Kruger, F.J., 1994, The Sr-isotopic stratigraphy of the western Bushveld Complex: South African Journal of Geology, v. 97, p. 393–398, https://hdl.handle.net/10520/AJA10120750.510.

Jones, M., Oberthür, T., and Melcher, F., 2014, Cryptic variation of chromite chemistry, platinum group element and platinum group mineral distribution in the UG2 chromitite from the Karee mine, western Bushveld Complex, South Africa: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 109, p. 795–810, https://doi.org/10.2113/econgeo.109.3.795.

Nex, P.A.M., and Manyeruke, T.D., 2018, The platinum-group element deposits: Economic Geologists, v. 105, p. 1491–1511, https://doi.org/10.1007/s00410-017-0615-1.

Zhou, H., and Zhang, Y., 2003, Calculation of oxygen isotope fractionation in magmatic rocks: Chemical Geology, v. 193, p. 59–80, https://doi.org/10.1016/S0009-2541(02)00226-7.

Printed in USA.