Cyclization of secondarily structured oligonucleotides to single-stranded rings by using Taq DNA ligase at high temperatures

Yixiao Cui¹,†, Xutiange Han¹,†, Ran An¹,²,*, Guangqing Zhou¹, Makoto Komiyama¹,³ and Xingguo Liang¹,²,*

¹ College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
² Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
³ National Institute for Materials Science (NIMS), Namiki, Tsukuba 305-0044, Japan

* To whom correspondence should be addressed. Tel: +86 532 82031086; Fax: +86 532 82031086; Email: liangxg@ouc.edu.cn
Correspondence may also be addressed to Ran An. Tel: +86 532 82031318; Fax: +86 532 82031086; Email: ar@ouc.edu.cn

†These authors contributed equally to this work as first authors.

Number of Pages: 7
Number of Figures: 5
Number of Tables: 1
Name	Sequences (5’→3’)	Length (nt)
splint74(10+9)	ACGTCAAAGGGAGATAGGG	19
splint74(11+10)	AACGTCAAAGGGAGATAGGGT	21
splint74(12+11)	CAACGTCAAAGGGAGATAGGGTT	23
splint74(14+13)	TCCACGTCAAAGGGAGATAGGGGTGA	27
splint74(15+14)	CTCACAAGTCAAAGGGAGATAGGGTTGAG	29
splint74(16+15)	ACTCCAACGTCAAAGGGAGATAGGGGTAGT	31
splint74(17+16)	GACCTCCAACGTCAAAGGGAGATAGGGGTAGTG	33
splint74(19+18)	TGGACTCCAACGTCAAAGGGAGATAGGGTTGTTT	37
splint74(20+19)	GTGGACTCCAACGTCAAAGGGAGATAGGGTTGTTG	39
l-DNA9GC	TATTAATATTGGGAGTCCACGTCTTTAAGTGGACTCTTGC	74
splint9GC(9+8)	TATTAATATTATATATA	17
splint9GC(9+9)	TATTAATATTATATATAA	18
splint9GC(10+9)	ATATATATATATATATAA	19
l-DNA9GC	TCTTTGACATTGGGAGTCCACGTCTTTAATAGTGGAACACCTTTTGC	74
splint9GC(9+8)	TGGTACAAGAGAGATAGA	17
splint9GC(9+9)	TGGTACAAGAGAGATAGAA	18
splint9GC(10+9)	ATGTACAAGAGAGATAGAA	19
l-DNA11GC	TGGCGCTTCTGTTGGGAGTCCACGTCTTATATAGTGGAACACCTTTTGC	74
splint11GC(9+8)	CGAAAGCAGAGGAGTCCCT	17
splint11GC(9+9)	CGAAAGCAGAGGAGTCCCT	18
splint11GC(10+9)	AGGAAAGCAGAGGAGTCCCT	19
l-DNA11GC	CGCAGCTCTGTTGGGAGTCCACGTCTGTTTATAGTGGAACACCTTTTGC	74
splint13GC(9+8)	CAGAGCGGAGAGGTCCCT	17
splint13GC(9+9)	CAGAGCGGAGAGGTCCCT	18
splint13GC(10+9)	CAGCGGCGGAGAGGTCCCT	19
l-DNA13GC	CCGCGCGCGGTGGGAGTCCACGTCTTAAATAGTGGAACACCTTTTGC	74
splint17GC(9+8)	CGCGCGCGCGCGCGGCC	17
splint17GC(9+9)	CGCGCGCGCGCGCGGCC	18
splint17GC(10+9)	CGCGCGCGCGCGCGGCC	19
l-DNA17GC	CTTTGTACGGTGGGAGTCCACGTCTTAAATAGTGGAACACCTTTTGC	74
splint17GC(9+8)	CTTTGTACGGTGGGAGTCCACGTCTTAAATAGTGGAACACCTTTTGC	74
splint18GC(9+9)	CTTTGTACGGTGGGAGTCCACGTCTTAAATAGTGGAACACCTTTTGC	74
splint18GC(10+9)	CTTTGTACGGTGGGAGTCCACGTCTTAAATAGTGGAACACCTTTTGC	74
l-DNA18GC	CTTTGTACGGTGGGAGTCCACGTCTTAAATAGTGGAACACCTTTTGC	74
splint19GC(9+8)	CTTTGTACGGTGGGAGTCCACGTCTTAAATAGTGGAACACCTTTTGC	74
splint19GC(9+9)	CTTTGTACGGTGGGAGTCCACGTCTTAAATAGTGGAACACCTTTTGC	74
splint19GC(10+9)	CTTTGTACGGTGGGAGTCCACGTCTTAAATAGTGGAACACCTTTTGC	74
Figure S1. T_m of (A) I-DNA$_{74}$ and (B) I-DNA$_{69}$ were respectively 66.4°C and 65.1°C. High resolution melting (HRM) was used to T_m measurement. The solutions of I-DNAs (1 µM) were prepared in 1× Taq DNA ligase buffer containing EvaGreen (1×). The mixed oligomer solution (10 µL) was pipetted into 96-well microtiter plates and then transferred to a PikoReal Real-Time PCR instrument (Thermo Scientific, Finland). Annealing was performed with a cooling rate of 0.1°C/s from 95°C to 10°C; then, fluorescence dates were collected over a temperature range of 10–95°C in 0.1°C increments (the holding time was 2 seconds). There are at least three parallel tests in one plate.
Figure S2. The ligation of nicked DNA by *Taq* DNA ligase (A). (B) the nicked DNA duplex substrate was formed by two short oligonucleotides (a and b) to a longer complementary oligonucleotide template (19 nt). The short oligonucleotide “a” is 9 nt (L$_{5'-9}$) and “b” is 9 nt (L$_{3'-9}$) or 8 nt (L$_{3'-8}$). Reaction conditions: [L$_{5'-9}$] = 5 μM; [L$_{3'-9}$] = 5 μM (Lanes 1 and 2); [L$_{3'-8}$] = 5 μM (Lanes 3 and 4); [template] = 5 μM; 1× *Taq* DNA ligase buffer at 90°C for 3 min and cooled with ice, then *Taq* DNA ligase (40 U) was added, and the mixture was incubated at 65°C for 12 h. Lanes 1 and 3 without *Taq* DNA ligase are as controls of Lanes 2 and 4.

Sequences of oligonucleotides used here are shown as follows:

Template: CCAGAGGCAGGAGGTCCCG (19 nt)
L$_{5'-9}$: CCGCCTCTG (9 nt)
L$_{3'-9}$: CTCCAGGGC (9 nt)
L$_{3'-8}$: CTCCAGGG (8 nt)
Figure S3. Exonuclease reaction to confirm the ring-structure of product for the cyclization of l-DNA74. The reaction mixtures obtained from l-DNA74 using Taq DNA ligase (A) at 65°C and (B) 70°C with various splints were treated with 20 U Exonuclease I in 1x Exonuclease I buffer at 37°C for 12 h. After the Taq DNA ligase reactions, the mixtures were heated at 85°C for 15 min and analyzed by gel electrophoresis.
Figure S4. Secondary structures of (A) I-DNA_{64}, (B) I-DNA_{54} and (C) I-DNA_{44} obtained by Mfold ([Mg^{2+}] = 10 mM, 25°C).
Figure S5. Time-courses of cyclization of l-DNA$_{74}$ by Taq DNA ligase at 65°C in 1× Taq DNA ligase buffer (A) and in 0.1× Taq DNA ligase buffer (B). [l-DNA$_{74}$] = 5 μM, [splint$_{415^{14}}$] = 10 μM, 40 U Taq DNA ligase(in 20 μL).