MicroRNA-21 targets the vitamin D–dependent antimicrobial pathway in leprosy

Philip T Liu1,2, Matthew Wheelwright2, Rosane Teles2, Evangelia Komisopoulou3,4, Kristina Edfeldt2, Benjamin Ferguson2, Manali D Mehta5, Aria Vazirnia6, Thomas H Rea6, Euzenir N Sarno7, Thomas G Graeber3,4,8–10 & Robert L Modlin2,5

Leprosy provides a model to investigate mechanisms of immune regulation in humans, given that the disease forms a spectrum of clinical presentations that correlate with host immune responses. Here we identified 13 miRNAs that were differentially expressed in the lesions of subjects with progressive lepromatous (L-lep) versus the self-limited tuberculoid (T-lep) disease. Bioinformatic analysis revealed a significant enrichment of L-lep–specific miRNAs that preferentially target key immune genes downregulated in L-lep versus T-lep lesions. The most differentially expressed miRNA in L-lep lesions, hsa-mir-21, was upregulated in Mycobacterium leprae–infected monocytes. By directly downregulating Toll-like receptor 2/1 heterodimer (TLR2/1)-induced CYP27B1 and IL1B expression as well as indirectly upregulating interleukin-10 (IL-10), hsa-mir-21 inhibited expression of the genes encoding two vitamin D–dependent antimicrobial peptides, CAMP and DEFB4A. Conversely, knockdown of hsa-mir-21 in M. leprae–infected monocytes enhanced expression of CAMP and DEFB4A and restored TLR2/1-mediated antimicrobial activity against M. leprae. Therefore, the ability of M. leprae to upregulate hsa-mir-21 targets multiple genes associated with the immunologically localized disease form, providing an effective mechanism to escape from the vitamin D–dependent antimicrobial pathway.

Interactions between the host immune response and the invading pathogen at the site of disease are crucial to the outcome of the infection. Leprosy, caused by the intracellular bacterium M. leprae, provides an extraordinary model for studying host-pathogen interactions in humans because the disease presents as a spectrum in which the clinical manifestations correlate with the level of immune response to the pathogen1. This allows for the investigation of the factors that contribute to the balance between host defense, persistence and pathogenesis at the site of disease in humans. At one end of the spectrum, in T-lep, the infection is self-limited, and skin lesions are typified by an adaptive immune response characterized by T helper type 1 (Th1) cytokines2,3 and an innate immune response characterized by macrophages programmed to express the vitamin D–mediated antimicrobial pathway4. At the other end of the spectrum, in L-lep, the infection is disseminated with lesions typified by an adaptive immune response characterized by Th17 cytokines2,3 and an innate immune response characterized by macrophages programmed to express a phagocytic activity4. To gain insight into the mechanisms that regulate host defense versus persistence in human infectious disease, we investigated miRNA expression in leprosy skin lesions.

RESULTS

Gene and miRNA profile in leprosy

The mRNA and miRNA expression profiles in skin lesions were determined in biopsy specimens from six individuals with T-lep and five individuals with L-lep collected at the time of diagnosis and classified according to the clinical and histopathological criteria of Ridley1 (Supplementary Fig. 1). Unsupervised hierarchal clustering analysis of the miRNA profiles revealed two major groups in which the L-lep and T-lep samples were segregated (Supplementary Fig. 2). In contrast, hierarchal clustering analysis of the miRNA profiles performed on the same samples indicated two major miRNA patterns, with each group containing a mixture of both L-lep and T-lep samples (Supplementary Fig. 2). These results indicate that the principal component of the measured miRNA expression patterns in leprosy did not differentiate the lesion types.

To identify lesion-specific differences, we used a supervised approach. Differentially expressed miRNAs between the two clinical groups were identified by ranking miRNAs probes according to statistical significance (t test) and limited to sequences present in the miRBase database (version 14). There was a fivefold higher number of clinical presentations that correlate with host immune responses. Here we identified 13 miRNAs that were differentially expressed in the lesions of subjects with progressive lepromatous (L-lep) versus the self-limited tuberculoid (T-lep) disease. Bioinformatic analysis revealed a significant enrichment of L-lep–specific miRNAs that preferentially target key immune genes downregulated in L-lep versus T-lep lesions. The most differentially expressed miRNA in L-lep lesions, hsa-mir-21, was upregulated in Mycobacterium leprae–infected monocytes. By directly downregulating Toll-like receptor 2/1 heterodimer (TLR2/1)-induced CYP27B1 and IL1B expression as well as indirectly upregulating interleukin-10 (IL-10), hsa-mir-21 inhibited expression of the genes encoding two vitamin D–dependent antimicrobial peptides, CAMP and DEFB4A. Conversely, knockdown of hsa-mir-21 in M. leprae–infected monocytes enhanced expression of CAMP and DEFB4A and restored TLR2/1-mediated antimicrobial activity against M. leprae. Therefore, the ability of M. leprae to upregulate hsa-mir-21 targets multiple genes associated with the immunologically localized disease form, providing an effective mechanism to escape from the vitamin D–dependent antimicrobial pathway.

Interactions between the host immune response and the invading pathogen at the site of disease are crucial to the outcome of the infection. Leprosy, caused by the intracellular bacterium M. leprae, provides an extraordinary model for studying host-pathogen interactions in humans because the disease presents as a spectrum in which the clinical manifestations correlate with the level of immune response to the pathogen1. This allows for the investigation of the factors that contribute to the balance between host defense, persistence and pathogenesis at the site of disease in humans. At one end of the spectrum, in T-lep, the infection is self-limited, and skin lesions are typified by an adaptive immune response characterized by T helper type 1 (Th1) cytokines2,3 and an innate immune response characterized by macrophages programmed to express the vitamin D–mediated antimicrobial pathway4. At the other end of the spectrum, in L-lep, the infection is disseminated with lesions typified by an adaptive immune response characterized by Th17 cytokines2,3 and an innate immune response characterized by macrophages programmed to express a phagocytic activity4. To gain insight into the mechanisms that regulate host defense versus persistence in human infectious disease, we investigated miRNA expression in leprosy skin lesions.

RESULTS

Gene and miRNA profile in leprosy

The mRNA and miRNA expression profiles in skin lesions were determined in biopsy specimens from six individuals with T-lep and five individuals with L-lep collected at the time of diagnosis and classified according to the clinical and histopathological criteria of Ridley1 (Supplementary Fig. 1). Unsupervised hierarchal clustering analysis of the miRNA profiles revealed two major groups in which the L-lep and T-lep samples were segregated (Supplementary Fig. 2). In contrast, hierarchal clustering analysis of the miRNA profiles performed on the same samples indicated two major miRNA patterns, with each group containing a mixture of both L-lep and T-lep samples (Supplementary Fig. 2). These results indicate that the principal component of the measured miRNA expression patterns in leprosy did not differentiate the lesion types.

To identify lesion-specific differences, we used a supervised approach. Differentially expressed miRNAs between the two clinical groups were identified by ranking miRNAs probes according to statistical significance (t test) and limited to sequences present in the miRBase database (version 14). There was a fivefold higher number

1Orthopaedic Hospital Research Center, University of California–Los Angeles, Los Angeles, California, USA. 2Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA. 3Department of Molecular and Medical Pharmacology, University of California–Los Angeles, Los Angeles, California, USA. 4Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA. 5Leprosy Laboratory Institute Oswaldo Cruz, Rio de Janeiro, Brazil. 6Institute for Molecular Medicine, University of California–Los Angeles, Los Angeles, California, USA. 7California NanoSystems Institute, University of California–Los Angeles, Los Angeles, California, USA. Correspondence should be addressed to P.T.L. (ptliu@mednet.ucla.edu).

Received 29 December 2010; accepted 26 October 2011; published online 29 January 2012; doi:10.1038/nm.2584
of differentially expressed miRNAs in the L-lep samples (16 probes representing 13 annotated miRNA species) versus the T-lep samples (three probes representing two unique miRNA species) (Fig. 1a).

To compare the magnitude of differential expression between these miRNA species, we compared the un-normalized intensity values of the probes. The difference in intensity of the hsa-mir-21 probe was the greatest among the miRNA species differentially upregulated in L-lep versus T-lep lesions (Fig. 1b).

Targeting of immune genes by leprosy-specific miRNAs

Because the differentially expressed miRNA species were predominantly enriched in L-lep lesions, we hypothesized that regulation of miRNA expression at the site of the progressive disease inhibits expression of genes involved in host defense against the pathogen. We tested this hypothesis by integrating a prediction algorithm for miRNA binding sites in the 3′ untranslated regions (3′ UTRs) of miRNA species within curated sets of host immune response signature genes known to be differentially expressed in leprosy lesions, including T₃₁₁-related genes as well as the genes of the vitamin D pathway (Supplementary Note). All miRNA species represented on the microarray platform were ranked by their ‘targeting preference score’, calculated as the difference in frequency for targeting of the T-lep compared to L-lep signature genes (Supplementary Fig. 3 and Supplementary Note). We next evaluated the enrichment of leprosy-disease-type–specific miRNA species by the Kolmogorov–Smirnov–based permutation test. On the basis of this analysis, we found the L-lep–specific miRNA species to be significantly associated with the miRNAs most strongly predicted to preferentially target T-lep signature genes (P = 0.049; Fig. 1c). Thus, L-lep–specific miRNAs may be a mechanism for the M. leprae–induced downregulation of T-lep host immune response signature genes in L-lep lesions.

In relation to the local immune response, the L-lep–specific set of miRNA species were predicted to have binding sites in the 3′ UTRs of T₃₁₁-related signature genes, known to be differentially expressed in T-lep versus L-lep lesions, with an average targeting frequency of 11.5%. In contrast, the L-lep–specific set of miRNAs species showed a significantly (P = 0.0003) lower targeting frequency for T₃₁₂-related genes, known to be differentially expressed in L-lep versus T-lep lesions.

Figure 1 MiRNA expression and targeting profile in leprosy. (a, b) MiRNA probes that are differentially expressed between T-lep and L-lep lesions, depicted as normalized data (a) and raw expression values (b). AU, arbitrary units. (c) All miRNA species represented on the microarray platform were ranked by their ‘targeting preference score’, calculated as the difference in frequency for targeting of the T-lep compared to L-lep signature genes (Supplementary Fig. 3 and Supplementary Note). We next evaluated the enrichment of leprosy-disease-type–specific miRNA species by the Kolmogorov–Smirnov–based permutation test. On the basis of this analysis, we found the L-lep–specific miRNA species to be significantly associated with the miRNAs most strongly predicted to preferentially target T-lep signature genes (P = 0.049; Fig. 1c). Thus, L-lep–specific miRNAs may be a mechanism for the M. leprae–induced downregulation of T-lep host immune response signature genes in L-lep lesions.
lesions, with an average targeting frequency of 1.3% (Fig. 1d). Notably, multiple L-lep–specific miRNA species targeted two key genes in the vitamin D–dependent antimicrobial pathway, encoding cytokrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1) and IL-1β (IL1B), but not the genes encoding the antimicrobial peptides induced by this pathway, cathelicidin (LL-37, encoded by CAMP) and defensin β4A (DEFB4A).5,6 (Fig. 1c). Taken together, these results indicate that the L-lep–specific miRNAs target and potentially downregulate host defense genes in leprosy.

Regulation of hsa-mir-21 in leprosy

We verified the tissue expression of the most differentially expressed miRNA, hsa-mir-21, in L-lep lesions by real-time PCR (qPCR) and fluorescent in situ hybridization (FISH) in additional leprosy tissue sections. By qPCR, hsa-mir-21 levels were significantly higher (3.5-fold, \(P = 0.01 \)) in 10 L-lep versus 11 T-lep lesions (Fig. 2a). An unrelated miRNA, hsa-let-7c, that was not differentially expressed in disease lesions by microarray analysis, was expressed at similar levels between the L-lep and T-lep lesions (Fig. 2b). Although the skin biopsies are composed predominately of granulomas in the dermis, we could not rule out that the differential expression of hsa-mir-21 came from nonimmune cells. Therefore, using FISH we determined that the frequency of hsa-mir-21–positive cells in the granulomatous regions was 25-fold higher in the L-lep lesions versus the T-lep lesions (98% versus 4% of nucleated cells, \(P = 0.001 \)) (Fig. 2c). In the L-lep lesions, the hsa-mir-21–positive cells were located within the granulomas, in the same microanatomic locations as *M. lepraemurium* (Fig. 2d). It was not possible to determine the frequency of cells expressing hsa-mir-21 and containing *M. lepraemurium*, as these are found in distinct subcellular compartments: microRNAs are located in the cytoplasm and the pathogen resides within phagosomes. We used a scrambled probe as a negative control to demonstrate the absence of nonspecific binding in either lesion type (Supplementary Fig. 4a), and a positive control probe for the U6 noncoding small RNA showed equivalent RNA integrity (Supplementary Fig. 4b). Taken together, these approaches, microarray, qPCR and FISH, provide evidence for the differential expression of hsa-mir-21 in L-lep versus T-lep lesions.

Given that we identified both *M. lepraemurium* and hsa-mir-21 in the granulomas, we hypothesized that *M. lepraemurium* induced hsa-mir-21 expression in monocytes and macrophages, the predominant cell type in a granuloma and the primary cell type infected by *M. lepraemurium*. We infected human peripheral blood monocytes with live *M. lepraemurium* at different multiplicities of infection (MOIs) for 18 and 40 h and measured hsa-mir-21 levels by qPCR. We efficiently infected monocytes with *M. lepraemurium* (Supplementary Fig. 5), which triggered an upregulation of hsa-mir-21 in a dose-dependent and time-responsive manner, with a 4.1-fold change (\(P = 0.005 \)) at 18 h and 7.6-fold change (\(P = 0.00003 \)) at 40 h, both at an MOI of 10 (Fig. 3a). In contrast, *M. lepraemurium* infection of monocytes did not result in detectable upregulation of hsa-mir-21 (Fig. 3b).

To explore the mechanism by which *M. lepraemurium* infection induces hsa-mir-21, we compared the ability of several key cell wall biomolecules to trigger hsa-mir-21 expression. Treatment of monocytes with phenolic glycolipid-I (PGL-I) induced a 2.9-fold increase in hsa-mir-21 expression, whereas the *M. lepraemurium* lipoarabinomannan (LAM) and lipomannan (LM), as well as a synthetic triacylated lipopeptide (a TLR2/1 ligand, TLR2/1L), did not significantly induce hsa-mir-21 (Fig. 3c). Together, these data indicate that hsa-mir-21 is present at the site of disease in leprosy, is associated with the progressive and disseminated form (L-lep) of the disease, is specifically induced in monocytes by *M. lepraemurium* infection and is triggered by an *M. lepraemurium*–specific glycolipid, PGL-I. It is therefore likely that *M. lepraemurium* infection of macrophages induces the upregulation of hsa-mir-21 at the site of infection.

Figure 2 Expression of hsa-mir-21 in leprosy. (a, b) Expression levels of hsa-mir-21 (a) and hsa-let-7c (b) comparing L-lep versus T-lep lesions by qPCR. The levels of hsa-mir-21 and hsa-let-7c are normalized to 36B4 levels in the same tissue and depicted as values from individual lesions (filled circles) as well as the average (horizontal bars) of 10 L-lep and 11 T-lep lesions. (c) Skin biopsy sections from subjects with L-lep or T-lep probed with a hsa-mir-21–specific oligomer using FISH. Cellular nuclei were visualized using DAPI. Data are representative experiment of four individual L-lep samples and three individual T-lep samples. (d) Skin biopsy section derived from subjects with L-lep and probed for hsa-mir-21 and *M. lepraemurium* using a monoclonal antibody specific for *M. lepraemurium*, detected by confocal microscopy. The images are representative of three individual subjects.

Figure 3 Regulation of hsa-mir-21 levels in primary human monocytes by *M. lepraemurium*. (a, b) Levels of hsa-mir-21 (a) and hsa-let-7c (b) in primary human monocytes infected with *M. lepraemurium* at an MOI of 0, 1, 5 or 10 for 18 h and 40 h. Data are mean fold change (FC) compared to no-infection control ± s.e.m., \(n = 3–5 \). (c) Levels of hsa-mir-21 in primary human monocytes after treatment with PGL-I, LAM (10 µg ml\(^{-1}\)), LM (10 µg ml\(^{-1}\)) or TLR2/1L for 18 h. Data are mean fold change compared to the vehicle control–treated cells ± s.e.m., \(n = 3–10 \).
Regulation of the vitamin D pathway by hsa-mir-21

It was noteworthy that of all the L-lep–specific miRNAs, only hsa-mir-21 had the potential to target both IL1B and CYP27B1 (Fig. 1e), which are both required for TLR-induced, vitamin D–dependent expression of CAMP and DEFB4A. We investigated the ability of hsa-mir-21 to regulate the expression of these antimicrobial genes by transfecting primary human monocytes with either the mature hsa-mir-21 oligomer or a nontargeting control oligomer (mir-neg). To determine the transfection efficiency of the miRNA oligomers into primary human monocytes, we used a fluorescently tagged nontargeting control oligomer, which showed that 71% (P = 0.002) of the monocytes were miRNA positive (Supplementary Fig. 6). As a control for targeting specificity, we determined that overexpression of hsa-mir-21 downregulated regulated interferon-γ–induced IL12A mRNA, a previously described direct target (Supplementary Fig. 7). The presence of hsa-mir-21 during TLR2/1L activation of monocytes resulted in the downregulation of IL1B mRNA by 24% (P = 0.006, representative experiment in Fig. 4a and averaged in Fig. 4b). Despite the absence of predicted hsa-mir-21 target sites in the 3′ UTR of IL10, transfection of hsa-mir-21 reduced TLR2/1-induced IL10 mRNA levels by 110% (P = 0.0035, Fig. 4a,c), consistent with studies in mouse cells. In contrast, IL6 mRNA, another cytokine without hsa-mir-21 target sequences, was not affected (Fig. 4a,c). TLR2/1-induced IL-1β secretion was reduced by 45% (P = 0.003), IL-10 release was enhanced by 85% (P = 0.001) and IL-6 levels did not change (representative experiment in Supplementary Fig. 8 and averaged in Fig. 4c). Therefore, the effects of hsa-mir-21 on TLR2/1-induced cytokine mRNAs and secreted proteins were consistent.

Transfection of hsa-mir-21 also resulted in a 34% decrease in TLR-induced expression of CYP27B1 mRNA (P = 0.008, Fig. 4a,b).

Given that hsa-mir-21 downregulated TLR2/1-induced IL-1β and CYP27B1 mRNA expression, we examined the effect of hsa-mir-21 on TLR2/1-induced antimicrobial peptide gene expression. Notably, TLR2/1 induction of CAMP and DEFB4A mRNAs was significantly inhibited by transfection of hsa-mir-21, by 73% (P = 0.005) and 60% (P = 0.006), respectively (Fig. 4a,b). Given that hsa-mir-21 upregulated IL-10, we investigated the effect of recombinant IL-10 on TLR2/1-induced gene expression. The addition of rIL-10 inhibited TLR2/1-induced mRNA expression of CAMP by 26% and DEFB4A by 35%, whereas the inhibition of IL12B was 76% (Supplementary Fig. 9a,b). Therefore, hsa-mir-21–mediated enhancement of IL-10 induction may partially contribute to the inhibition of antimicrobial gene expression.

We assessed whether hsa-mir-21 directly binds the TLR2/1–induced, vitamin D–dependent antimicrobial pathway genes with a 3′ UTR reporter assay. hsa-mir-21 directly bound the 3′ UTR of both CYP27B1 and IL1B but did not bind the 3′ UTRs of either CAMP or DEFB4A (Fig. 4d, Supplementary Fig. 10 and Supplementary Note). These data indicate that hsa-mir-21 inhibits TLR2/1–mediated CAMP and DEFB4A expression directly by regulating key epigenetic targets including CYP27B1 and IL1B and indirectly through induction of the immunomodulatory cytokine IL-10.

Role of hsa-mir-21 in the response to infection

Given the ability of hsa-mir-21 to downregulate key genes in the TLR2/1–induced antimicrobial pathway, and the observation that M. leprae induces hsa-mir-21 in monocytes, we investigated whether hsa-mir-21 contributes to inhibition of the innate immune response during M. leprae infection. We transfected monocytes with an hsa-mir-21–specific antisense oligomer (anti–mir-21), infected the transfected...
monocytes with live M. leprae for 18 h and then measured mRNA expression. The presence of anti–mir-21 (versus a control oligomer (anti–mir-neg), followed by M. leprae infection, resulted in a significant reduction of hsa-mir-21 levels by 70% (P = 0.00002, Supplementary Fig. 11a,c). Consistent with the hasa-mir-21 overexpression experiment, anti–mir-21 enhanced IL12A mRNA expression in the M. leprae–infected monocytes (P = 0.006, Supplementary Fig. 11b,c).

Relevant to the vitamin D–dependent innate immune pathway, anti–mir-21 increased IL1B mRNA expression in the M. leprae–infected monocytes by 118% (P = 0.047, Fig. 5a,b). In contrast, IL10 mRNA was downregulated by 34% (P = 0.045), and there was no significant change in IL6 mRNA levels (Fig. 5a,b). Notably, knockdown of hasa-mir-21 resulted in a significant increase in mRNA levels of CYP27B1 (59%, P = 0.014), CAMP (100%, P = 0.0006) and DEBF4A (227%, P = 0.014) (Fig. 5a,b). These results provide evidence that monocytes and macrophages can detect M. leprae infection and trigger the vitamin D–dependent antimicrobial pathway; however, this response is inhibited by the pathogen's upregulation of hasa-mir-21.

Effects of hasa-mir-21 on innate antimicrobial activity

We investigated the role of hasa-mir-21 in regulating the TLR2/1–induced macrophage antimicrobial activity by overexpressing hasa-mir-21 during Mycobacterium tuberculosis infection. For these experiments, we used the avirulent M. tuberculosis H37Ra strain, as it does not contain a PGL-1 homolog and failed to induce expression of hasa-mir-21 in monocytes upon infection (Supplementary Fig. 12a), despite induction of IL6 mRNA in the same cells (Supplementary Fig. 12b). We transfected monocytes with hasa-mir-21 or a control oligomer, infected them with M. tuberculosis H37Ra overnight, subsequently treated them with TLR2/1L for 3 d and assessed bacterial viability by qPCR according to the ratio of 16S RNA to the IS6110 genomic repeat element DNA10. TLR2/1L induced an antimicrobial activity against M. tuberculosis in monocytes transfected with a control oligomer (Fig. 6a), at a level consistent with previous studies using the standard colony-forming unit assay (Supplementary Note6). However, overexpression of hasa-mir-21 blocked the antimicrobial response and resulted in an increase in M. tuberculosis viability in TLR2/1L–activated cells (Fig. 6a). Also, in unstimulated cells, hasa-mir-21 increased bacterial viability. Overall, M. tuberculosis viability in TLR2/1L–treated as compared to control monocytes was significantly higher in the presence of hasa-mir-21 (P = 0.01, Fig. 6b).

To address the role of M. leprae–induced hasa-mir-21 in regulation of TLR2/1–induced antimicrobial activity, monocytes were transfected with anti–mir-21 or anti–mir-neg, then infected with live M. leprae. The transfected and infected cells were treated with the TLR2/1L for 3 d and antimicrobial activity assessed by qPCR by measuring the ratio of 16S RNA to RLEP DNA10. In anti–mir-neg transfected cells, TLR2/1–activation increased bacterial viability, consistent with previous findings indicating enhanced M. tuberculosis growth in TLR2/1–stimulated cells in the absence of CAMP and DEBF4A8. Strikingly, in anti–mir-21 transfected monocytes, TLR2/1–activation resulted in decreased bacterial viability (Fig. 6c). The anti–mir-21 oligomer had no effect on M. leprae viability in unstimulated monocytes (Fig. 6c).
In five donors tested, *M. leprae* viability in TLR2/1-stimulated cells was significantly lower in the presence of anti–mir-21 (P = 0.02, Fig. 6d). Together, the data from these infection experiments demonstrate the biologic relevance of hsa-mir-21 in innate host defense: the expression of hsa-mir-21 is sufficient to block TLR2/1-induced antimicrobial responses and the silencing of hsa-mir-21 induction restores TLR2/1-mediated antimicrobial activity.

DISCUSSION

Host-pathogen interactions determine the outcome of the immune response to microbial infection. Our data provide evidence that the human pathogen *M. leprae* regulates the miRNA profile at the site of infection in humans with leprosy and interferes with the host antimicrobial response. We used a unique bioinformatic strategy, combining an enrichment analysis of leprosy-disease-type–specific miRNA species ranked by 3′ UTR mRNA targeting preference and evaluated by the Kolmogorov-Smirnov-based permutation test. Together, these analyses led to the identification of hsa-mir-21 as differentially expressed in the progressive L-lep form of leprosy, with the potential to target genes in the vitamin D antimicrobial pathway. Infection of human monocytes with live *M. leprae*, or treatment with the mycobacterial virulence factor PGL-1, induced expression of hsa-mir-21. Next, we showed that hsa-mir-21 functionally downregulates the TLR2/1-induced vitamin D antimicrobial pathway by directly targeting *CYP27B1* and *IL1B* and indirectly inducing IL-10, all leading to the inhibition of the antimicrobial peptides *CAMP* and *DEFB4A*. Silencing of hsa-mir-21 during *M. leprae* infection led to the enhanced expression of vitamin D pathway genes. Finally, introduction of hsa-mir-21 into monocytes was sufficient to block TLR2/1-induced antimicrobial activity against *M. tuberculosis*, and the silencing of hsa-mir-21 induction restored TLR2/1-mediated antimicrobial activity against *M. leprae*. Therefore, these data identify an evasion strategy in which a microbial pathogen regulates the host miRNA profile at the site of infection to inhibit the antimicrobial response.

Although *M. leprae* was the first human pathogen discovered, it still cannot be grown in the laboratory, providing a major obstacle to investigation of the immunology of leprosy. To our knowledge, it has not been possible to demonstrate immune-mediated antimicrobial activity against *M. leprae* in primary human cells. A previous comparison of antimicrobial responses in mouse and human macrophages demonstrated that the combination of lipopolysaccharide and interferon-γ reduced the viability of intracellular *M. leprae* in mouse but not human macrophages. Here we successfully demonstrate that immune activation of *M. leprae*-infected human monocytes decreases bacterial viability, finding that TLR2/1 activation induced a fourfold reduction in *M. leprae* viability only when hsa-mir-21 was silenced. In addition, overexpression of hsa-mir-21 blocked the TLR2/1-induced antimicrobial activity against *M. tuberculosis*, resulting in a fivefold increase in bacterial viability. Taken together, these data indicate the biological relevance of hsa-mir-21 in the host antimicrobial response.

We gained insight into the mechanism by which *M. leprae* induces a specific miRNA immune regulatory profile at the site of infection by finding that hsa-mir-21 was induced in monocytes after *M. leprae* infection or by treatment with *M. leprae*-derived PGL-1. Previously, PGL-1 has been shown to inhibit monocyte responses, as well as associate with mycobacterial virulence. Further studies are needed to elucidate the mechanism of induction and functional role of those miRNAs differentially expressed in L-lep lesions. Given that the degree of genetic diversity in *M. leprae* clinical isolates is not as broad as compared with other human pathogens, it is not likely that species subtypes differentially induce single miRNAs, as has been shown for *Francisella tularensis*. To complement the study of miRNA profiles in disease lesions as shown here, additional insight can be obtained by profiling the miRNAs induced by a pathogen in an isolated cell type. It should be possible to learn whether the ability of a pathogen to induce a single miRNA or set of miRNA species that targets and inhibits host immune responses provides a potential virulence mechanism that contributes to the pathogenesis of infectious disease.

Our data demonstrate that a single miRNA species, by both directly and indirectly regulating immune modulatory genes, can affect the downstream effectors of an innate immune–triggered antimicrobial pathway. Specifically, hsa-mir-21 inhibited TLR2/1-induced *CYP27B1* and *IL1B* gene expression and enhanced IL-10 expression, thereby preventing upregulation of the *CAMP* and *DEFB4* mRNAs, which encode antimicrobial peptides. These factors are all key to the outcome of the vitamin D antimicrobial pathway: (i) *CYP27B1* converts vitamin D from an inactive to active state, leading to antimicrobial activity, (ii) IL-1β is required for *DEFB4* induction and (iii) IL-10 is known to inhibit TLR-induced responses. Consequently, hsa-mir-21 inhibits the innate immune response by its distinct gene regulatory activities: the indirect upregulation of an immunosuppressive cytokine and direct targeting of epigenetic components required for the TLR-induced, vitamin D–dependent antimicrobial pathway. Consistent with this model, the genes directly targeted by hsa-mir-21, *CYP27B1* and *IL1B*, are downregulated in L-lep versus T-lep lesions. Although the relationship between expression of miRNAs and gene targets in disease lesions is correlative, the demonstration that hsa-mir-21 is induced in human primary monocytes 18 h after *M. leprae* infection and its effect on the TLR-induced antimicrobial response suggest a role in disease pathogenesis. Our investigation of the effect of a single miRNA in leprosy provides a framework for analyzing the set of miRNAs that are differentially expressed at the site of disease to determine their cumulative role in regulating the host immune response, including autophagy and antimicrobial pathways.

The ability of anti–mir-21 to enhance the vitamin D–dependent antimicrobial pathway provides a potential therapeutic strategy to intervene in human infectious disease. In leprosy, the vitamin D antimicrobial pathway may contribute to disease outcome, on the basis of the preferential expression of antimicrobial pathway genes in the T-lep versus L-lep form, the correlation of the vitamin D receptor single-nucleotide polymorphism in humans with L-lep and the reported successful use of vitamin D as a therapeutic adjuvant in the treatment of leprosy. Potentially, the combination of vitamin D supplementation with targeted miRNA therapy could provide an optimal treatment approach to leprosy and other chronic infectious diseases in which the cellular immune response is dysregulated. This type of approach may be particularly worth exploring in the clinical setting of drug-resistant pathogens, including multi-drug-resistant, extremely drug-resistant and totally drug-resistant tuberculosis, in which antimicrobial therapy is losing its effectiveness. Finally, our findings may be relevant to other diseases, including infectious, autoimmune, and neoplastic diseases in which vitamin D sufficiency has been shown to be required for optimal host immunity.

METHODS

Methods and any associated references are available in the online version of the paper at http://www.nature.com/naturemedicine/.
Accession codes. Accession numbers for genes, miRNAs, mRNA arrays and miRNA arrays are provided in Supplementary Table 1.

Note: Supplementary information is available on the Nature Medicine website.

ACKNOWLEDGMENTS

We would like to thank G. Cheng, R. O’Connell, J. Krahenbuhl, R. Lahiri and B. Bloom for their helpful discussions. The live M. leprae was provided by the US National Hansen’s Disease Programs through the generous support of the American Leprosy Missions and Society of St. Lazarus of Jerusalem. This work was supported by US National Institutes of Health grants AI 022553, AI 047868, AR 040312 and AI 073539. P.T.L. is supported by US National Institutes of Health K22 Career Development Award AI 85025. K.E. is supported by a postdoctoral grant from the Wenner-Gren Foundations (Sweden). We would like to thank M. Schibler and the University of California–Los Angeles, California NanoSystems Institute, Advanced Light Microscopy Core Facility for their assistance with the confocal studies.

AUTHOR CONTRIBUTIONS

P.T.L. performed the experiments, supervised the project, analyzed the data and wrote the manuscript. M.W. performed the in situ hybridization experiments and a portion of the M. leprae infection, antimicrobial and monocyte transfection experiments. R.T. performed the microarray experiments. E.K. performed the bioinformatics analysis of the microarray data. K.E. performed the IL-10–related infection, antimicrobial and monocyte transfection experiments. M.D.M. performed a portion of the M. leprae infection and ligands experiments. A.V. performed a portion of the monocyte transfection experiments. T.H.R. and E.N.S. diagnosed patients with leprosy infection and ligands experiments. A.V. performed a portion of the monocyte transfection experiments. T.G.G. designed, supervised and performed transfection experiments. T.H.R. and E.N.S. diagnosed patients with leprosy infection and ligands experiments. A.V. performed a portion of the monocyte transfection experiments. B.F. performed a portion of the bioinformatics analysis of the microarray data. K.E. performed the IL-10–related infection, antimicrobial and monocyte transfection experiments. M.D.M. performed a portion of the M. leprae infection and ligands experiments. A.V. performed a portion of the monocyte transfection experiments. T.H.R. and E.N.S. diagnosed patients with leprosy collected skin biopsy specimens. T.G.G. designed, supervised and performed bioinformatics analysis. R.L.M. supervised the project and wrote the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Published online at http://www.nature.com/naturemedicine/

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Ridley, D.S. & Jolpling, W.H. Classification of leprosy according to immunity. A five-group system. Int. J. Lepr. Other Mycobact. Dis. 34, 255–273 (1966).
2. Yamamura, M. et al. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 254, 277–279 (1991).
3. Salgame, P. et al. Differing lymphokinome profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254, 279–282 (1991).
4. Mortoya, D. et al. Divergence of macrophage phagocytic and antimicrobial programs in leprosy. Cell Host Microbe 6, 343–353 (2009).
5. Liu, P.T. et al. Toll-like receptor triggering of a vitamin D–mediated human antimicrobial response. Science 311, 1770–1773 (2006).
6. Liu, P.T. et al. Convergence of IL-1β and VDR activation pathways in human TLR2/1–induced antimicrobial responses. PLoS ONE 4, e5810 (2009).
7. Lu, T.X., Munitz, A. & Rothenberg, M.E. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J. Immunol. 182, 5002–5006 (2009).
8. Sheedy, F.J. et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol. 11, 141–147 (2010).
9. Adams, L.B. et al. The study of Mycobacterium leprae infection in interferon-γ gene–disrupted mice as a model to explore the immunopathologic spectrum of leprosy. J. Infect. Dis. 185 (suppl. 1), S1–S8 (2002).
10. Martinez, A.N. et al. Molecular determination of Mycobacterium leprae viability by use of real-time PCR. J. Clin. Microbiol. 47, 2124–2130 (2009).
11. Hansen, G.A. Undersøgelsel angaende spedalskhedens arsager. Norsk. Mag. Laundry 4, 1–88 (1874).
12. Peña, M.T. et al. Expression and characterization of recombinant interferon γ (IFN-γ) from the nine-banded armadillo (Dasypus novemcinctus) and its effect on Mycobacterium leprae–infected macrophages. Cytokine 43, 124–131 (2008).
13. Vachula, M., Holzer, T.J. & Andersen, B.R. Suppression of monocyte oxidoative response by phenolic glycolipid I of Mycobacterium leprae. J. Immunol. 142, 1696–1701 (1989).
14. Neill, M.A. & Klisanoff, S.J. The effect of phenolic glycolipid-1 from Mycobacterium leprae on the antimicrobial activity of human macrophages. J. Exp. Med. 167, 30–42 (1988).
15. Taboreau, G. et al. Mycobacterium leprae phenolglycolipid-1 expressed by engineered M. bovis BCG modulates early interaction with human phagocytes. PLoS Pathog. 6, e1001159 (2010).
16. Clark-Curtiss, J.E. & Walsh, G.P. Conservation of genomic sequences among isolates of Mycobacterium leprae. J. Bacteriol. 171, 4844–4851 (1989).
17. Dreyer, T.J. et al. MIR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS ONE 4, e8508 (2009).
18. Liu, Z. et al. Up-regulated microRNA-146a negatively modulate Helicobacter pylori–induced inflammatory response in human gastric epithelial cells. Microbes Infect. 12, 854–863 (2010).
19. Sinsimer, D. et al. Mycobacterium leprae actively modulates the cytokine response in naïve human monocytes. Infect. Immun. 78, 293–300 (2010).
20. Krutzik, S.R. et al. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat. Med. 9, 525–532 (2003).
21. Roy, S. et al. Association of vitamin D receptor genotype with leprosy type. J. Infect. Dis. 179, 187–191 (1999).
22. Herrera, G. Vitamin D in massive doses as an adjuvant to the sulfones in the treatment of tuberculous leprosy. Int. J. Lepr. 17, 35–42 (1949).
23. Rook, G.A.W. The role of vitamin D in tuberculosis. Am. Rev. Respir. Dis. 138, 768–770 (1988).
24. Crowle, A.J., Ross, E.J. & May, M.H. Inhibition by 1,25(OH)2-vitamin D3 of the multiplication of virulent tubercle bacilli in cultured human macrophages. Infect. Immun. 55, 2945–2950 (1987).
25. Munger, K.L., Levin, L.I., Hollis, B.W., Howard, N.S. & Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. J. Am. Med. Assoc. 296, 2832–2838 (2006).
26. Lappe, J.M., Travers-Gustafson, D., Davies, K.M., Recker, R.R. & Heaney, R.P. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am. J. Clin. Nutr. 85, 1586–1591 (2007).
27. Ahn, J. et al. Vitamin D-related genes, serum vitamin D concentrations and prostate cancer risk. Carcinogenesis 30, 769–776 (2009).
ONLINE METHODS

Statistical analyses. Percentage change due to miRNA or antagonist was analyzed against no change with an unpaired Student’s t test. Gene or miRNA induction studies were analyzed with an unpaired Student’s t test against the medium control of each experiment. L-lep-specific miRNA targeting of T₃₁₀₁- and T₁₁₂₁- related genes was analyzed with an unpaired Student’s t test. The miRNA targeting preference was determined with the Kolmogorov-Smirnov–based permutation analysis as noted in the Supplementary Note. Error bars represent the s.e.m. between individual donors.

Leprosy biopsy specimens. The acquisition of all specimens was approved by the Medical Investigational Review Board 1 (MIRB1) of the University of California–Los Angeles; more details can be found in the Supplementary Methods. Scalpel or punch skin biopsy specimens were obtained after informed consent from individuals with tuberculoid leprosy and individuals with lepromatous leprosy at the time of diagnosis; therefore, all samples are representative of untreated disease.

Microarray analysis. For gene and miRNA expression profiling, the RNA from skin biopsy specimens was processed and analyzed by the University of California–Los Angeles Clinical Microarray Core Facility using the Affymetrix U133 Genechip and Asuragen using the Discovarray platform, respectively. Additional details pertaining hierarchical clustering, cluster dendrograms and heat maps are included in the Supplementary Methods.

In situ hybridization. Leprosy skin biopsy specimens were snap frozen and sectioned to a thickness of 10 µm and then mounted onto a glass slide. The protocol has been previously described 28 and adapted for current use. Briefly, biotinylated hsa-mir-21–specific, U6–specific and nonspecific control probes were purchased (Exiqon) and hybridized to the tissue at 0.1 pg µl⁻¹ for 1–4 h, followed by incubation with Strepavidin–horseradish peroxidase. Then, the sections were incubated with the TSA Plus Fluorescein System (PerkinElmer) according to the manufacturer’s instructions. A coverslip was sealed to the slides with ProLong Gold with DAPI (Invitrogen), left to dry at 4 °C in the dark overnight, and imaged using a Leica FLIM confocal microscope (Leica).

Live Mycobacterium leprae. Live and viable M. leprae bacteria were generously donated by J.L. Krahrenbuhl. Additional information is included in the Supplementary Methods.

Quantitative PCR. For miRNA analysis, qPCR was performed using the TaqMan MicroRNA Cells-to-CT kit in conjunction with the TaqMan MicroRNA Assay for hsa-mir-21 (Applied Biosystems) or the NCODE miRNA cDNA Synthesis and qPCR Kit (Invitrogen) according to the manufacturers’ recommended conditions. For miRNA studies, total RNA was isolated from monocytes by TRIzol (Invitrogen), and cDNA libraries were made using the iScript cDNA synthesis kit (BioRAD). qPCR reactions were carried out using the iQ SYBR Green qPCR Master Mix (BioRAD) according to the manufacturer’s recommended conditions. The primer sequences for 36B4, CAMP, DEFB4A and CYP27B1 were previously published 16; other primer sequences and calculations are included in the Supplementary Methods.

Transfection of monocytes. Monocytes were enriched from peripheral blood mononuclear cells using a Percoll (GE Healthcare) gradient as previously described 28 and then transfected with either the mature miRNA or the antagonist oligomers using the Amaza Nucleofector system with the Human Monocyte Nucleofector transfection kit (Lonza) according to the manufacturer’s recommended protocol. Additional details are included in the Supplementary Methods.

miRNA direct targeting analysis. MiRNA-targeting plasmids were prepared with endotoxin-free conditions using the Qiagen Endofree Maxi Kit (Qiagen) according to the manufacturer’s recommended protocols. The constructs were co-transfected into HEK293 cells (ATCC) with either hsa-mir-21 mature oligomer or a nontargeting control oligomer with the Amaza Nucleofector Transfection Cell Line V kit (Lonza) according to the manufacturer’s optimized protocol. After transfection, the cells were rested for 2 h and then washed to replace the medium. The transfected cells were then incubated 37 °C for 16 h, and luciferase activity was measured using the Dual Glo-Luciferase Assay System (Promega) according to the manufacturer’s recommended protocols. The miRNA effect is calculated as a ratio of the firefly to Renilla luciferase activities.

Antimicrobial assays. To assess M. leprae and M. tuberculosis H37Ra viability from infected macrophages, we adapted the previously described real-time PCR method for the assessment of bacterial viability, which compares 16S RNA levels to levels of a genomic DNA as a predictor of bacterial viability (Supplementary Note) 10. Experimental details are included in the Supplementary Methods. The 16S and bacterial DNA values were calculated using the ΔΔCₚ analysis, with the bacterial DNA value serving as the housekeeping gene. The M. leprae 16S and M. leprae repetitive genomic element primers used were as previously described 10; other primer sequences are included in the Supplementary Methods.

Additional methods. Detailed methodology is described in the Supplementary Methods.

28. Silahtaroglu, A.N. et al. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat. Protoc. 2, 2520–2528 (2007).