COMMUTATIVITY EQUATIONS AND THEIR TRIGONOMETRIC SOLUTIONS

MAALI ALKADHEM AND MISHA FEIGIN

Abstract. We consider commutativity equations $F_i F_j = F_j F_i$ for a function $F(x^1, \ldots, x^N)$, where F_i is a matrix of the third order derivatives F_{ikl}. We show that under certain non-degeneracy conditions a solution F satisfies the WDVV equations. Equivalently, the corresponding family of Frobenius algebras has the identity field e.

We study trigonometric solutions F determined by a finite collection of vectors with multiplicities, and we give an explicit formula for e for all the known such solutions. The corresponding collections of vectors are given by non-simply laced root systems or are related to their projections to the intersection of mirrors.

1. Introduction

A celebrated system of the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations for a prepotential function $F(x) = F(x^1, \ldots, x^N)$ has the form

$$F_{ij} g^{kl} F_{lmn} = F_{mik} g^{kl} F_{ljn}, \tag{1.1}$$

where

$$F_{ij} = \frac{\partial^3 F}{\partial x^i \partial x^j \partial x^k},$$

and $G = (g^{kl})$ is a constant symmetric $N \times N$ matrix. These equations appeared in topological field theories \cite{27} and they are in the core of Frobenius manifolds theory \cite{9}. In these considerations one normally has the property that the components of the flat metric G^{-1} can be represented as

$$(G^{-1})_{ij} = \sum_{k=1}^{N} e^k F_{kij} \tag{1.2}$$

for some vector field $e = \sum_{k=1}^{N} e^k(x) \partial_{x^k}$ which is the identity field for the corresponding family of Frobenius algebras. For example, in the Frobenius manifolds theory one normally has $e = \partial_{x^1}$, which is flat with respect to the metric G^{-1}. In the case of almost dual Frobenius manifold on the space of orbits of a finite Coxeter group the field e is not constant, it is proportional to the Euler vector field \cite{11}.

It is also of interest to consider equations (1.1) without the additional assumption (1.2) which expresses the metric G^{-1} as a linear combination of the third order derivatives of the prepotential. Indeed, in the case of G being the identity matrix the corresponding equations (1.1) have the form of the commutativity equations

$$F_i F_j = F_j F_i, \tag{1.3}$$

where F_i is the $N \times N$ matrix with matrix entries $(F_i)_{kl} = F_{ikl} = \frac{\partial^3 F}{\partial x^i \partial x^k \partial x^l}$.

Equations (1.3) appeared in the study of $N = 4$ supersymmetric mechanical system (see \cite{28}). For a suitable ansatz for the supercharges the supersymmetry algebra relations are
satisfied provided that equations (1.3) hold. Existence of the identity field or rather, more specifically, additional relations of the form $\sum_i x^i F_{ijk} = -\delta_{jk}$ lead to further superconformal symmetry (see [28] and also [5], where the relation with the WDVV equations is emphasized).

In this paper we are interested in commutativity equations (1.3) and the additional condition of the existence of a vector field $e = \sum_{i=1}^N e^k \partial_x^k$ such that $e(F_{ij}) = \delta_{ij}$. This vector field is the identity vector field for a family of algebras depending on x. One of our main results provides a sufficient condition on F which ensures that e exists. The components of the field can then be expressed via determinants of the matrices whose entries are the third order derivatives of the prepotential F. Similarly, for a general constant matrix G we establish a representation of G^{-1} as a linear combination of the matrices F_i as a consequence of equations (1.1) (see Sections 6 and 7).

There is an interesting class of solutions of the equations (1.1), (1.2) determined by finite collections A of vectors. The corresponding prepotential has the form

$$F = \sum_{\alpha \in A} (\alpha, x)^2 \log(\alpha, x), \quad x \in V. \tag{1.4}$$

In the case when A is a root system such solutions of the WDVV equations appeared in [18]. They are almost dual prepotentials for the finite group orbit spaces Frobenius manifolds [11]. Such solutions also appear in four-dimensional Seiberg–Witten theory as perturbative parts of the corresponding prepotentials [17]. More generally, solutions of the form (1.4) exist for special configurations of vectors known as \vee-systems introduced by Veselov in [26]. This class of solutions was studied further in [7,13,14,23]. Thus it was shown that the class is closed under the operations of taking subsystems and projections of A, and such solutions have to do with Dubrovin’s almost duality on the discriminant strata. Connection of these solutions to the supersymmetric mechanics was explored in [16]. More generally, one may also consider solutions of the form (1.4) for the commutativity equations (1.1) (without extra condition (1.2)). The corresponding (irreducible) configurations of vectors A can be shown to be the complex Euclidean version of \vee-systems introduced in [14].

There are also interesting trigonometric solutions of the equations (1.1), (1.2) of the form

$$F = \sum_{\alpha \in A} c_\alpha f((\alpha, x)) + Q(x, y), \tag{1.5}$$

where function $f = f(z)$ satisfies $f'''(z) = \cot z$, $c_\alpha \in \mathbb{C}$ and Q is a cubic polynomial depending on the additional variable y. Solutions of this form for reduced root systems and Weyl-invariant multiplicities were obtained by Hoevenaars and Martini in [19] (see also [24] and [4] for more details). They appear as almost dual prepotentials for the extended affine Weyl groups orbit spaces [10,12], see [22] for type A_N. Such solutions also appeared in five-dimensional Seiberg–Witten theory as perturbative parts of prepotentials [17]. In the case of simply laced root systems these solutions describe quantum cohomology of resolutions of simple A, D, E singularities [6]. Solutions of the form (1.5) for general configurations A were initially studied in [15] where a closely related notion of the trigonometric \vee-system was introduced. Similarly to the rational case, we showed in [2] that this class of solutions is closed under restrictions and that a subsystem of a trigonometric \vee-system is also a trigonometric \vee-system. The restriction procedure for the classical root systems recovers solutions obtained by Pavlov from reductions of Egorov hydrodynamic chains [20].

There are also elliptic versions of some of these solutions considered by Riley and Strachan in [21,25].
It appears that solutions of the form (1.5) with $Q = 0$ of the WDVV equations (1.1), (1.3) may also exist. Such a solution for the root system B_N appeared in [19] and it was generalized to BC_N in [3]. The corresponding metric G is the identity so the commutativity equations (1.3) hold as well.

Solutions of the form (1.5) with $Q = 0$ for the commutativity equations (1.3) for the root systems $A = F_4, G_2$ were obtained in [2]. The corresponding multiplicities are Weyl invariant but they have to satisfy a linear relation. A multi-parameter deformation of the root systems A (1.3) may also exist. Such a solution for the root system BC_N was also obtained in [3]. It is unclear whether there are more Frobenius manifold structures associated with such solutions.

In this paper we study solutions of the commutativity equations (1.3) of the form (1.5) with $Q = 0$. Thus we give a \vee-system version of conditions which the corresponding configuration of vectors has to satisfy, which we call a Euclidean trigonometric \vee-system (see Section 2). We also show that restrictions of solutions of the commutativity equations give new solutions and that a subsystem of a Euclidean trigonometric \vee-system is also a Euclidean trigonometric \vee-system (see Sections 3, 5). In Section 4 we clarify relations of Euclidean trigonometric \vee-systems to other versions of rational and trigonometric \vee-systems. All the known irreducible solutions of the commutativity equations (1.3) of the form (1.5) with $Q = 0$ are the non-simply laced root systems BC_N, F_4, G_2 with a relation between invariant multiplicities as well as restrictions of such solutions to the intersection of mirrors (in the case of BC_N one can also extend analytically integer parameters defining the restriction). In all these cases we give an explicit uniform formula for the corresponding identity field e in Section 8. Existence of the identity field implies that we also get new solutions of WDVV equations (1.1), (1.3) in the case of root system F_4 and its projections.

2. Commutativity equations and Euclidean trigonometric \vee-systems

Let A be a finite set of non-zero vectors in a Euclidean space $V \cong \mathbb{C}^N, N \in \mathbb{N}$, with the bilinear inner product (\cdot, \cdot). Let $c: A \to \mathbb{C}$ be the (multiplicity) function. We denote $c_\alpha := c(\alpha)$ for $\alpha \in A$. We assume that A belongs to a lattice of rank N. For each vector $\alpha \in A$ let us introduce the set of its collinear vectors from A:

$$\delta_\alpha := \{ \gamma \in A: \gamma \sim \alpha \}.$$

Let $\delta \subseteq \delta_\alpha$ and $\alpha_0 \in \delta_\alpha$. Then for any $\gamma \in \delta$ we have $\gamma = k_\gamma \alpha_0$ for some $k_\gamma \in \mathbb{R}$. Note that k_γ depends on the choice of α_0 and different choices of α_0 give rescaled collections of these parameters. Define $C_\delta^{\alpha_0} := \sum_{\gamma \in \delta} c_\gamma k_\gamma^2$. Note that $C_\delta^{\alpha_0} \neq 0$ if and only if $C_\delta^{\alpha_0} \neq 0$ for any $\tilde{\alpha}_0 \in \delta$.

We define strings (or series) of vectors as follows (cf. [15]).

For any $\alpha \in A$ let us distribute all the vectors in $A \setminus \delta_\alpha$ into a disjoint union of α-strings

$$A \setminus \delta_\alpha = \bigcup_{s=1}^k \Gamma_\alpha^s,$$

where $k \in \mathbb{N}$ depends on α. These strings Γ_α^s are determined by the property that for any $s = 1, \ldots, k$ and for any two covectors $\gamma_1, \gamma_2 \in \Gamma_\alpha^s$ one has either $\gamma_1 + \gamma_2 = m\alpha$ or $\gamma_1 - \gamma_2 = m\alpha$ for some $m \in \mathbb{Z}$. We assume that the strings are maximal, that is if $\gamma \in \Gamma_\alpha^s$ for some $s \in \mathbb{N}$, then Γ_α^s must contain all the covectors of the form $\pm \gamma + m\alpha \in A$ with $m \in \mathbb{Z}$. Note that if for some $\beta \in A$ there is no $\gamma \in A$ such that $\beta + \gamma = m\alpha$ for $m \in \mathbb{Z}$, then β itself forms a single α-string.
By replacing some vectors from A with their opposite ones and keeping the multiplicity unchanged one can get a new configuration whose vectors belong to a half-space. We will denote such a system by A_+. If this system contains repeated vectors α with multiplicities c_α^i then we replace them with the single vector α with multiplicity $c_\alpha := \sum_i c_\alpha^i$.

Let us now define a Euclidean trigonometric \vee-system in analogy with a trigonometric \vee-system \cite{15}.

Definition 2.1. The pair (A, c) is called a Euclidean trigonometric \vee-system if for all $\alpha \in A$ and for all α-strings Γ_α, one has the relation

$$
\sum_{\beta \in \Gamma_\alpha} c_\beta(\alpha, \beta)\alpha \land \beta = 0. \tag{2.1}
$$

Consider a function F given by the formula

$$
F = \sum_{\alpha \in A} c_\alpha f((\alpha, x)), \tag{2.2}
$$

where the function f is given by

$$
f(z) = \frac{1}{6}iz^3 + \frac{1}{4}Li_3(e^{-2iz})
$$

so that $f'''(z) = \cot z$. We are interested in configurations (A, c) such that the commutativity equations

$$
F_iF_j = F_jF_i, \quad i, j = 1, \ldots, N, \tag{2.3}
$$

hold, where F_i is the $N \times N$ matrix with entries

$$
(F_i)_{pq} = F_{ipq} = \frac{\partial^3 F}{\partial x_i \partial x_j \partial x_q}.
$$

The following statement establishes invariance of the commutativity equations under the action of the group of orthogonal transformations $O(N, \mathbb{C})$. Summation from 1 to N over repeated indices will be assumed throughout unless indicated otherwise.

Proposition 2.2. Suppose a function $F = F(x^1, \ldots, x^N)$ satisfies commutativity equations \cite{13}. Let $C = (C^k_i) \in O(N, \mathbb{C})$, and let

$$
\bar{x}^k = C^k_i x^i, \tag{2.4}
$$

where $\bar{x}^1, \ldots, \bar{x}^N$ is a new coordinates system. Then $\bar{F}(\bar{x}) = F(x)$ satisfies commutativity equations

$$
\bar{F}_i\bar{F}_j = \bar{F}_j\bar{F}_i, \quad i, j = 1, \ldots, N, \tag{2.5}
$$

where

$$
(\bar{F}_i)_{pq} = \frac{\partial^3 \bar{F}}{\partial x^i \partial x^j \partial x^q}.
$$

Proof. Since $\partial_{x^i} = C^k_i \partial_{\bar{x}^k}$, we have $F_{ijk} = C^k_i C^j_l C^m_k \bar{F}_{ijk}$. Then commutativity equations $F_{ijk}F_{klm} = F_{mjk}F_{kli}$ in the new coordinates take the form

$$
C^k_i C^j_l C^m_k \bar{F}_{ijk} \bar{F}_{klm} = C^m_i C^j_l C^k_m \bar{F}_{mjk} \bar{F}_{ijkl} \tag{2.6}
$$

Now we multiply both sides of equality (2.6) by $\hat{C}_\alpha^k \hat{C}_\beta^j \hat{C}_\gamma^l \hat{C}_\epsilon^m$, where $\hat{C} = C^{-1}$ so that $\hat{C}_\alpha^k C^\beta_k = \delta^\beta_\alpha$. We get

$$
C^k_i C^\beta_k \hat{F}_{\alpha\beta\gamma\epsilon} = C^k_i C^\beta_k \hat{F}_{\alpha\beta\gamma\epsilon}. \tag{2.7}
$$
For an orthogonal transformation C we have $C_k^\dagger C_{\tilde k}^a = \delta_k^a$. Hence equality (2.7) reduces to (2.5).

We are going to establish a relation between solutions (2.2) of the commutativity equations (2.3) and Euclidean trigonometric \vee-systems. The following two lemmas hold.

Lemma 2.3. The commutativity equations (2.3) for the function (2.2) are equivalent to the identity
\[
\sum_{\alpha,\beta \in A} c_\alpha c_\beta (\alpha, \beta) \cot(\alpha, x) \cot(\beta, x) B_{\alpha,\beta}(a,b) \alpha \wedge \beta = 0, \tag{2.8}
\]
for all $a, b \in V$, where $B_{\alpha,\beta}(a,b) = \alpha \wedge \beta = (\alpha, a)(\beta, b) - (\alpha, b)(\beta, a)$.

Lemma 2.4. Suppose that identity (2.8) holds for any $a, b \in V$. Suppose also that $C_{\delta_0}^{\alpha_0} \neq 0$ for any $\alpha \in A, \delta \subseteq \delta_\alpha, \alpha_0 \in \delta_\alpha$. Then A is a Euclidean trigonometric \vee-system.

Proofs of Lemmas 2.3 and 2.4 are similar to the proofs of analogous statements in [2] for the case of the trigonometric \vee-system (see also [1]).

Note that if A is a Euclidean trigonometric \vee-system then the left-hand side of identity (2.8) is non-singular. Since all vectors from A belong to an N-dimensional lattice then the left-hand side of identity (2.8) is a rational function in suitable exponential variables which has degree zero and therefore is a constant. In order to find this constant, by changing some of the vectors from A to their opposite ones we can assume that all vectors from A belong to a half-space, hence form a positive system A_+. Then in an appropriate limit in a cone $\cot(\alpha, x) \rightarrow i$ for all $\alpha \in A_+$ and the identity (2.8) reduces to
\[
\sum_{\alpha,\beta \in A_+} c_\alpha c_\beta (\alpha, \beta) B_{\alpha,\beta}(a,b) \alpha \wedge \beta = 0.
\]

From these considerations we get the following result.

Theorem 2.5. Suppose that a configuration (A,c) satisfies the condition $C_{\delta_0}^{\alpha_0} \neq 0$ for any $\alpha \in A, \delta \subseteq \delta_\alpha, \alpha_0 \in \delta_\alpha$. Then the commutativity equations (2.3) for the prepotential (2.2) imply the following two conditions:

1. A is a Euclidean trigonometric \vee-system,
2. $\sum_{\alpha,\beta \in A_+} c_\alpha c_\beta (\alpha, \beta) B_{\alpha,\beta}(a,b) \alpha \wedge \beta = 0$ for all $a, b \in V$.

Conversely, if a configuration (A,c) satisfies conditions (1), (2) then commutativity equations (2.3) hold.

Root systems of Weyl groups provide examples of Euclidean trigonometric \vee-systems.

Proposition 2.6. A root system $A = \mathcal{R}$ with Weyl-invariant multiplicity function c is a Euclidean trigonometric \vee-system.

Proof. Fix $\alpha \in \mathcal{R}$. Take any $\beta \in \mathcal{R}$, and let $\gamma = s_\alpha \beta = \beta - \frac{2(\alpha,\beta)}{(\alpha,\alpha)} \alpha$. Since $\frac{2(\alpha,\beta)}{(\alpha,\alpha)} \in \mathbb{Z}$ we get that $\beta, \gamma \in \Gamma_\alpha^s$ for some s. We have
\[
c_\beta = c_\gamma, \quad (\alpha, \beta) = -(\alpha, \gamma), \quad \alpha \wedge \beta = \alpha \wedge \gamma.
\]

Hence the contribution of β and γ to the sum in (2.1) cancel each other. \qed
In general root systems $A = R$ with invariant multiplicities do not satisfy condition (2) in Theorem 2.5. It has been shown in [4] that this condition is satisfied for root systems $R = BC_N, F_4, G_2$ with special invariant multiplicities.

Solutions of commutativity equations can be applied to construct $N = 4$ supersymmetric mechanical systems. Hamiltonians corresponding to root systems $R = BC_N, F_4, G_2$ were given explicitly in [4].

3. Subsystems of a Euclidean trigonometric \vee-system

Now we consider subsystems of a Euclidean trigonometric \vee-system.

Definition 3.1. Let $A \subset V$ be a finite collection of vectors. A subset $B \subseteq A$ is called a subsystem if

$$B = A \cap W$$

for a linear subspace $W \subseteq V$. The subsystem B is called reducible if B is a disjoint union of two non-empty subsystems $B = B_1 \cup B_2$. The subsystem B is called irreducible if it is not reducible.

If c is a multiplicity function for A then we will equip a subsystem $B \subseteq A$ with the multiplicity function which is the restriction of the multiplicity function c on B.

Assume that the linear span $\langle B \rangle = W$. We say that the subsystem B is non-isotropic if the restriction of the inner product (\cdot, \cdot) onto W is non-degenerate.

Theorem 3.2. Any non-isotropic subsystem of a Euclidean trigonometric \vee-system is also a Euclidean trigonometric \vee-system.

The proof of Theorem 3.2 is similar to the proof in [2] of the analogous statement for the trigonometric \vee-system, see also [1].

4. Relation with other types of \vee-systems

4.1. Relation with trigonometric \vee-systems. For a finite subset $A \subset V$ with a multiplicity function $c: A \to \mathbb{C}$, consider a bilinear form $G_{A,c}$ on V given by

$$G_{A,c}(x, y) = \sum_{\alpha \in A} c_\alpha(\alpha, x)(\alpha, y), \quad x, y \in V,$$

where $c_\alpha := c(\alpha)$. Following an analogy with the rational case (see [14] and subsection 4.2 below), we say that the pair (A, c) is well-distributed in V if the bilinear form (4.1) is proportional to the form (\cdot, \cdot). The pair (A, c) is called a trigonometric \vee-system if it satisfies the relations

$$\sum_{\beta \in \Gamma^*_\alpha} c_\beta G_{A,c}(\alpha, \beta) \alpha \wedge \beta = 0$$

for all $\alpha \in A$ and all α-strings Γ^*_α.

Now let (A, c) be a Euclidean trigonometric \vee-system. Define a linear operator $M: V \to V$ as

$$M = \sum_{\beta \in A} c_\beta \beta \otimes \beta,$$

that is, $M(u) = \sum_{\beta \in B} c_\beta(\beta, u)\beta$ for any $u \in V$. The following statement takes place.

Lemma 4.1. Let (A, c) be a Euclidean trigonometric \vee-system. Assume that the linear span $\langle A \rangle = V$. Then
(1) Any \(\alpha \in \mathcal{A} \) is an eigenvector of \(M \).
(2) The vector space \(V \) can be decomposed as
\[
V = V_1 \oplus V_2 \oplus \cdots \oplus V_k, \quad k \in \mathbb{N},
\]
where \(M|_{V_i} = \lambda_i I, \lambda_i \in \mathbb{C}, \) and \(I \) is the identity operator, and \(\lambda_i \neq \lambda_j \) for \(i \neq j \).

The proof of Lemma 4.1 is similar to the proof in [2] for the trigonometric \(\lor \)-system case (see also [1]).

Since \(\mathcal{A} \subset V = V_1 \oplus \cdots \oplus V_k \), then \(\mathcal{A} \) can be represented as a disjoint union
\[
\mathcal{A} = \mathcal{A}_1 \sqcup \cdots \sqcup \mathcal{A}_k,
\]
where \(\mathcal{A}_i := \mathcal{A} \cap V_i \subset V_i \). The following two lemmas relate the strings of vectors in \(\mathcal{A} \) and its components \(\mathcal{A}_i \).

Lemma 4.2. Let \(\mathcal{A} \) be a Euclidean trigonometric \(\lor \)-system. Let \(\alpha \in \mathcal{A} \) be such that \(\alpha \in V_i \) for some \(i \). Consider an \(\alpha \)-string \(\Gamma^s_\alpha \) in \(\mathcal{A}_i \) and let \(\beta \in \Gamma^s_\alpha \). Then \(\Gamma^s_\alpha \subset V_i \) or \(\Gamma^s_\alpha \subseteq \{ \pm \beta \} \).

Proof. For \(\beta \in \Gamma^s_\alpha \) we have two possible cases.

Case (i) \(\beta \in V_i \). Then for any \(\gamma \in \Gamma^s_\alpha \) we have that \(\gamma = m\alpha + \varepsilon \beta \in V_i \) for some \(m \in \mathbb{Z} \) and \(\varepsilon = \pm 1 \). Hence \(\Gamma^s_\alpha \subset V_i \).

Case (ii) \(\beta \notin V_i \). Hence \(\beta \in V_j \) for some \(j \neq i \). Then for any \(\gamma \in \Gamma^s_\alpha \) we have that \(\gamma \in V_i \) or \(\gamma \in V_j \) since decomposition (4.3) is the direct sum. Note that \(\gamma \notin V_i \) as otherwise we will have \(\beta = m\alpha + \varepsilon \gamma \in V_i \), for some \(m \in \mathbb{Z} \) and \(\varepsilon = \pm 1 \), which is a contradiction. Note also that \(\gamma \notin V_j \) unless \(\gamma = \pm \beta \) as otherwise we have \(m\alpha = \beta + \varepsilon \gamma \in V_j \) for some \(m \in \mathbb{Z} \) and \(\varepsilon = \pm 1 \), which is a contradiction. Hence \(\Gamma^s_\alpha \subseteq \{ \pm \beta \} \). \(\square \)

Lemma 4.3. Let \(\alpha, \beta \in \mathcal{A}_i \). Let \(^A\Gamma^s_\alpha, ^A\Gamma^t_\alpha \) be the \(\alpha \)-strings in \(\mathcal{A} \) and \(\mathcal{A}_i \) respectively containing \(\beta \). Then the set \(^A\Gamma^s_\alpha \) is equal to the set \(^A\Gamma^t_\alpha \).

Proof. Let \(\gamma \in ^A\Gamma^s_\alpha \). Then \(\gamma = m\alpha + \varepsilon \beta \in \mathcal{A}_i \), for some \(m \in \mathbb{Z} \) and \(\varepsilon = \pm 1 \). Thus \(\gamma \in ^A\Gamma^t_\alpha \) by the maximality of \(^A\Gamma^t_\alpha \). Hence \(^A\Gamma^s_\alpha \subseteq ^A\Gamma^t_\alpha \). The opposite inclusion is obvious. Therefore \(^A\Gamma^s_\alpha = ^A\Gamma^t_\alpha \). \(\square \)

Note that the operator \(M \) is symmetric: \((M(u), v) = (u, M(v)) \) for any \(u, v \in V \). Hence its eigenspaces are orthogonal.

Proposition 4.4. We have \((u, v) = 0 \) for any \(u \in V_i \) and \(v \in V_j \) such that \(i \neq j \).

The following statement takes place.

Lemma 4.5. Restriction \((\cdot, \cdot)_i \) of the bilinear form \((\cdot, \cdot) \) onto the subspace \(V_i \) is non-degenerate.

Proof. Suppose that \(v \in V_i \) satisfies \((v, u)_i = 0 \) for all \(u \in V_i \). By Proposition 4.3 we have \((v, u) = 0 \) for all \(u \in V \). Hence \(v = 0 \) since \((\cdot, \cdot) \) is non-degenerate. \(\square \)

The following statement relates the Euclidean trigonometric \(\lor \)-systems and the trigonometric \(\lor \)-systems.

Theorem 4.6. If \(\mathcal{A} \) is a Euclidean trigonometric \(\lor \)-system then the subsystem \(\mathcal{A}_i = \mathcal{A} \cap V_i \) is well-distributed in the subspace \(V_i \) with the bilinear form \((\cdot, \cdot)_i \) for all \(i \). Furthermore, if the bilinear form
\[
G_{\mathcal{A}_i}(u, v) = \sum_{\alpha \in \mathcal{A}_i} c_\alpha(\alpha, u)(\alpha, v), \quad u, v \in V_i
\]
is non-degenerate on V_i (equivalently, $G_{A,c}$ is non-zero), then A_i is a trigonometric \vee-system. Moreover, A is a trigonometric \vee-system if the form $G_{A,c}$ is non-degenerate.

Proof. By Lemma 4.1 we have $M|_{V_i} = \lambda_i I$. Hence for any $u \in V_i$ and $v \in V$ we have

$$G_{A,c}(u, v) = (M(u), v) = \lambda_i(u, v).$$

(4.4)

Note also that by Proposition 4.4 we have that $G_{A,c}$ is non-degenerate on V_i. Thus the subsystem A_i is reducible. Finally, for any $u \in V_i$ and $v \in V$ we have

$$G_{A,c}(u, v) = (M(u), v) = \lambda_i(u, v).$$

(4.5)

Thus the subsystem A_i is well-distributed in the subspace V_i.

Let us now assume that $G_{A,c}$ is non-degenerate on V_i, that is $\lambda_i \neq 0$. Let $\alpha \in A_i$. Consider an α-string Γ_α in A_i. Then by Lemmas 4.2, 4.3 and formulas (4.4), (4.5) we have

$$\sum_{\beta \in \Gamma_\alpha} c_\beta G_{A,c}(\alpha, \beta) \alpha \wedge \beta = \lambda_i \sum_{\beta \in \Gamma_\alpha} c_\beta (\alpha, \beta) \alpha \wedge \beta = 0$$

(4.6)

since A is a Euclidean trigonometric \vee-system. This proves that A_i is a trigonometric \vee-system. Finally, for $\alpha \in A_i$ let us consider its α-string A_{Γ_α} in A. If $A_{\Gamma_\alpha} \subset V_i$ then $\sum_{\beta \in A_{\Gamma_\alpha}} c_\beta G_{A,c}(\alpha, \beta) \alpha \wedge \beta = 0$ by Lemma 4.3 and (4.4). If $A_{\Gamma_\alpha} \not\subset V_i$ then $A_{\Gamma_\alpha} \subseteq \{\pm \beta\}$ for some $\beta \in V_j$, $j \neq i$, by Lemma 4.2. Then $G_{A,c}(\alpha, \beta) = \lambda_\alpha(\alpha, \beta) = \lambda_j(\alpha, \beta)$ by (4.4). Hence $G_{A,c}(\alpha, \beta) = 0$ and the trigonometric \vee-system condition holds. □

Let $U \subseteq V$ be a linear subspace such that $\langle A \cap U \rangle = U$. The following statement takes place.

Proposition 4.7. Let (A, c) be a Euclidean trigonometric \vee-system. Then the set of vectors $A \cap U$ with the multiplicity function $c|_{A \cap U}$ is well-distributed in U or the system $A \cap U$ is reducible.

Proof. Define a linear operator $M_U : U \to U$ by

$$M_U := \sum_{\beta \in A \cap U} c_\beta \beta \otimes \beta.$$

Let $\alpha \in A \cap U$. Let us sum up the Euclidean trigonometric \vee-condition (2.1) over α-strings which belong to the subspace U. Then

$$\sum_{\beta \in A \cap U} c_\beta (\beta, \alpha) \beta = M_U(\alpha) = \lambda \alpha$$

for some $\lambda = \lambda(\alpha)$. Suppose that $A \cap U$ is irreducible. Then λ does not depend on α and $M_U = \lambda I$. Therefore

$$\sum_{\beta \in A \cap U} c_\beta (\beta, u)(\beta, v) = (M_U(u), v) = \lambda(u, v),$$

and the pair $(A \cap U, c|_{A \cap U})$ is well-distributed. □

Suppose that $G_{A,c}$ is non-degenerate and define the vector $\alpha^\vee \in V$ by the relation

$$G_{A,c}(\alpha^\vee, x) = (\alpha, x)$$

(4.7)

for all $x \in V$. Now assume that $\alpha \in V_i$ in which case we also have $\alpha^\vee \in V_i$ for some i. Then by Lemma 4.1 we have

$$G_{A,c}(\alpha^\vee, x) = (M_U(\alpha^\vee), x) = \lambda_i(\alpha^\vee, x).$$

(4.8)
Hence from relations (4.7), (4.8) we have that \(\alpha \vee = \lambda^{-1}_i \alpha \). Therefore if the pair \((A, c)\) satisfies conditions (4.2) then for all \(\alpha \)-strings \(\Gamma^*_\alpha \) we have

\[
\sum_{\beta \in \Gamma^*_\alpha} c_\beta G_{A,c}(\alpha^\vee, \beta^\vee) \alpha \land \beta = \lambda^{-2}_i \sum_{\beta \in \Gamma^*_\alpha} c_\beta G_{A,c}(\alpha, \beta) \alpha \land \beta = 0.
\]

These conditions coincide with the definition of the trigonometric \(\vee \)-system given in [15] so the two definitions are equivalent. Let us now introduce an inner product \(\langle \cdot, \cdot \rangle \) on \(V \) as

\[
\langle u, v \rangle := G_{A,c}(u^\vee, v^\vee), \quad u, v \in V.
\]

The following statement is immediate.

Proposition 4.8. Let \((A, c)\) be a trigonometric \(\vee \)-system. Then \((A, c)\) is a Euclidean trigonometric \(\vee \)-system with respect to the bilinear form (4.9).

4.2. Relation with complex Euclidean \(\vee \)-systems.

Following [14], let us recall the notion of the (rational) complex Euclidean \(\vee \)-system. Let \(V \) be a complex vector space with a non-degenerate bilinear form \((\cdot, \cdot) \). Let \(A \subset V \) be a finite set of vectors. Consider the canonical form

\[
G_A^*(x, y) = \sum_{\alpha \in A} (\alpha, x)(\alpha, y), \quad x, y \in V.
\]

Suppose that \(G_A^* \) is proportional to the form \((\cdot, \cdot) \). Let \(\pi \subseteq V \) be a two-dimensional subspace such that \(\langle A \cap \pi \rangle = \pi \). \(A \) is said to be a (rational) complex Euclidean \(\vee \)-system if for any such \(\pi \) the subsystem \(B = A \cap \pi \) is reducible or the corresponding form \(G_B^*|_\pi \) is proportional to \((\cdot, \cdot)|_\pi \).

Proposition 4.9. Let \(F = \sum_{\alpha \in A} (\alpha, x)^2 \log(\alpha, x) \). Suppose that \(F \) satisfies the commutativity equations and \(A \) is irreducible. Then \(A \) is a (rational) complex Euclidean \(\vee \)-system. Moreover, if for a two-dimensional plane \(\pi \subset V \) the subsystem \(A \cap \pi \) is reducible then the corresponding directions are orthogonal with respect to the form \((\cdot, \cdot) \).

Proof is similar to [14]. The substitution of \(F \) into the commutativity equations gives the condition

\[
\sum_{\alpha, \beta \in A} \frac{(\alpha, \beta)}{(\alpha, x)(\beta, x)} (\alpha \land \beta)(\alpha \land \beta) = 0.
\]

It implies that for any two-dimensional plane \(\pi \)

\[
\sum_{\beta \in \pi \cap A} (\alpha, \beta) \alpha \land \beta = 0.
\]

The following statement relates the Euclidean trigonometric \(\vee \)-system and the (rational) complex Euclidean \(\vee \)-system.

Proposition 4.10. Let \((A, c)\) be an irreducible Euclidean trigonometric \(\vee \)-system. Then the set of vectors \(\sqrt{c} \alpha, \alpha \in A \), is a (rational) complex Euclidean \(\vee \)-system.

Proof. Firstly, since \(A \) is irreducible then by Lemma [14] we have \(A = A_1 \subset V = V_1 \) and \(M|_{V_1} = \lambda_1 I \). Then by Theorem [14] we have that \(A_1 = A \) is well-distributed.

Secondly, by Proposition [14] we have that any subsystem of \(A \) is well-distributed or reducible, which implies the statement. \(\square \)
5. Restricted solutions of commutativity equations

In this Section we apply the restriction procedure to a given solution to the commutativity equations. This gives new solutions of the commutativity equations.

Let $B = A \cap W$ be a subsystem of A for some n-dimensional linear subspace $W = \langle B \rangle \subset V$. Define

$$W_B := \{ x \in V : (\beta, x) = 0 \quad \forall \beta \in B \}.$$

Let $(\cdot, \cdot)_B$ be the restriction of (\cdot, \cdot) on W_B, and assume that it is non-degenerate. Let $S \subset B$ be a basis of W. Let f_1, \ldots, f_n be an orthonormal basis of the space W_B, and let $\xi = (\xi^1, \ldots, \xi^n)$ be the corresponding orthonormal coordinates in W_B. Define $M_A = V \setminus \bigcup_{\alpha \in A} \Pi_\alpha$, and $M_B = W_B \setminus \bigcup_{\alpha \in A \setminus B} \Pi_\alpha$, where $\Pi_\alpha = \{ x \in V : (\alpha, x) = 0 \}$. The following statement shows that the class of solutions of commutativity equations corresponding to Euclidean \vee-systems is closed under the restrictions.

Theorem 5.1. Assume that prepotential (2.2) satisfies commutativity equations (2.3). Suppose that $C^\alpha_\delta \neq 0$ for any $\alpha \in S, \alpha_0 \in \delta, \delta \subseteq \delta_\alpha$. Then the prepotential

$$F_B = \sum_{\alpha \in A \setminus B} c_\alpha f((\alpha, \xi)), \quad \xi \in M_B,$$

(5.1)

satisfies the commutativity equations

$$(F_B)_i (F_B)_j = (F_B)_j (F_B)_i, \quad i, j = 1, \ldots, n,$$

where $(F_B)_i$ is the $n \times n$ matrix with entries

$$((F_B)_i)_{pq} = (F_B)_{ipq} = \frac{\partial^3 F_B}{\partial \xi^i \partial \xi^p \partial \xi^q}.$$

Proof. First for any $u = (u^1, \ldots, u^N), v = (v^1, \ldots, v^N) \in V$ let us consider the vector fields

$$\partial_u = u^i \partial_{x^i}, \partial_v = v^i \partial_{x^i} \in T_x M_A.$$

We define the following multiplication on the tangent space $T_x M_A$:

$$\partial_u \ast \partial_v = u^i v^j F_{ijk} \partial_{x^k}. \quad \text{(5.2)}$$

It is easy to check that the associativity of the multiplication \ast is equivalent to the commutativity equations (2.3). From the formula (2.2) we have

$$F_{ijk} = \sum_{\alpha \in A} c_\alpha (\alpha, f_i)(\alpha, f_j)(\alpha, f_k) \cot(\alpha, x).$$

Hence multiplication (5.2) takes the form

$$\partial_u \ast \partial_v = \sum_{\alpha \in A} c_\alpha (\alpha, u)(\alpha, v) \cot(\alpha, x) \partial_\alpha.$$

(5.3)

By identifying $V \cong T_x V$, we have

$$u \ast v = \sum_{\alpha \in A} c_\alpha (\alpha, u)(\alpha, v) \cot(\alpha, x) \alpha.$$

Consider now a point $x_0 \in M_B$ and two tangent vectors $u_0, v_0 \in T_{x_0} M_B$. We extend vectors u_0 and v_0 to two local analytic vector fields $u(x), v(x)$ in the neighbourhood U of x_0 that are tangent to the subspace W_B at any point $x \in M_B \cap U$ such that $u_0 = u(x_0)$ and $v_0 = v(x_0)$. The proof of the next lemma is similar to the proof of [2 Lemma 4.1] (see also [13 Lemma 1] for the rational case, and [3] for the trigonometric case).
Lemma 5.2. The limit of the product \(u(x) \ast v(x) \) exists when vector \(x \) tends to \(x_0 \in M_B \) and it satisfies

\[
u_0 \ast v_0 = \sum_{\alpha \in A \setminus B} c_\alpha(\alpha, u_0)(\alpha, v_0) \cot(\alpha, x_0) \alpha.
\]

In particular, the product \(u_0 \ast v_0 \) is determined by vectors \(u_0 \) and \(v_0 \) only.

The following lemma holds and it shows that multiplication (5.3) is closed on the tangent space \(T_{x_0}M_B \).

Lemma 5.3. Let \(u, v \in T_{x_0}M_B \) where \(x_0 \in M_B \). Then \(u \ast v \in T_{x_0}M_B \).

The proof of Lemma 5.3 is similar to the proof of [2, Lemma 4.2]. It uses an argument analogous to [2] which claims that the following identity holds for any \(a, b \in V \) if \(\tan(\alpha, x) = 0 \):

\[
\sum_{\beta \in A \setminus \alpha} c_\beta(\alpha, \beta) \cot(\beta, x) B_{\alpha, \beta}(a \otimes b) \alpha \land \beta = 0.
\]

Then for \(u, v \in T_{x_0}M_B, x_0 \in M_B \), the product (5.3) takes the form

\[
\partial_u \ast \partial_v = \sum_{\alpha \in A \setminus B} c_\alpha(\alpha, u)(\alpha, v) \cot(\alpha, x_0) \partial_\alpha.
\]

By using the orthonormal basis \(f_1, \ldots, f_n \) of \(W_B \) we rearrange \(\partial_\alpha \) as

\[
\partial_\alpha = \sum_{k=1}^n (\alpha, f_k) \partial f_k.
\]

Hence for \(x_0 = \xi = \sum_{i=1}^n \xi^i f_i \) we have

\[
\partial_{f_i} \ast \partial_{f_j} = \sum_{\alpha \in A \setminus B} \sum_{k=1}^n c_\alpha(\alpha, f_i)(\alpha, f_j)(\alpha, f_k) \cot(\alpha, \xi) \partial f_k = \sum_{k=1}^n \tilde{F}_{ijk} \partial f_k, \quad i, j = 1, \ldots, n,
\]

where \(\tilde{F}(\xi) = \sum_{\alpha \in A \setminus B} c_\alpha(f, \xi) = F_B \). Now multiplication (5.4) is associative and it is easy to check that its associativity is equivalent to the commutativity equations

\[
\tilde{F}_i \tilde{F}_j = \tilde{F}_j \tilde{F}_i, \quad i, j = 1, \ldots, n.
\]

As an application of Theorem 5.1 we get the following solutions of the commutativity equations starting from a solution for the root system \(BC_N \). Let \(q, r, s \in \mathbb{C}, m = (m_1, \ldots, m_n) \in (\mathbb{C}^\times)^n \). Suppose

\[
r = -8s - 2q(N - 2)
\]
with $N = \sum_{i=1}^{n} m_i$. Define the configuration $\text{BC}_n(q, r, s; m) \subset \mathbb{C}^n$ consisting of the following vectors α with the multiplicities c_α:

\[
\begin{align*}
& m_i^{-1/2}e_i, \quad \text{with multiplicity } rm_i, \quad 1 \leq i \leq n, \\
& 2m_i^{-1/2}e_i, \quad \text{with multiplicity } sm_i + \frac{1}{2}qm_i(m_i - 1), \quad 1 \leq i \leq n, \\
& m_i^{-1/2}e_i \pm m_j^{-1/2}e_j, \quad \text{with multiplicity } qm_im_j, \quad 1 \leq i < j \leq n.
\end{align*}
\] (5.5)

Note that in the case $m_i = 1$ for all $i = 1, \ldots, n$, configuration (5.5) reduces to the positive half BC_n^+ of the root system BC_n. Consider the function

\[
\widetilde{F} = \sum_{\alpha \in \text{BC}_n(q, r, s; m)} c_\alpha f((\alpha, x)), \quad x \in \mathbb{C}^n.
\] (5.6)

It follows from Theorem 5.1 and it was shown earlier in [3] that function (5.6) satisfies the commutativity equations

\[
\widetilde{F}_i\widetilde{F}_j = \widetilde{F}_j\widetilde{F}_i \quad i, j = 1, \ldots, n.
\]

Consider now the positive half F_4^+ of the root system F_4 given by

\[
F_4^+ = \{e_i (1 \leq i \leq 4), \ e_i \pm e_j (1 \leq i < j \leq 4), \ \frac{1}{2}(e_1 \pm e_2 \pm e_3 \pm e_4)\}.
\] (5.7)

Let r be the multiplicity of short roots and let q be the multiplicity of long roots. A basis of simple roots consists of $\alpha_1 = e_2 - e_3, \alpha_2 = e_3 - e_4, \alpha_3 = e_4, \alpha_4 = \frac{1}{2}(e_1 - e_2 - e_3 - e_4)$.

Up to an orthogonal transformation there are two projected systems in dimension three and four projected systems in dimension two. Firstly, we give details of the three-dimensional projections of F_4^+. There are two different projections of F_4^+ along the root system A_1. The first one $(F_4, A_1)_1$ is obtained by projecting to the hyperplane $\alpha_3 = 0$. The second one $(F_4, A_1)_2$ is obtained by projecting to the hyperplane $\alpha_2 = 0$. Hence we have the following three-dimensional projected systems of the positive root system F_4^+.

- The projected system $(F_4, A_1)_1$ consists of the following vectors:

\[
\begin{align*}
& e_i, \quad \text{with multiplicity } r + 2q, \quad 1 \leq i \leq 3, \\
& e_i \pm e_j, \quad \text{with multiplicity } q, \quad 1 \leq i < j \leq 3, \\
& \frac{1}{2}(e_1 \pm e_2 \pm e_3), \quad \text{with multiplicity } 2r.
\end{align*}
\]
• The projected system \((F_4, A_1)_2\) consists of the following vectors (after doing a change of variables and renaming vectors):

\[
e_1, e_2, \quad \text{with multiplicity } r,
\]
\[
\sqrt{2}e_3, \quad \text{with multiplicity } q,
\]
\[
\frac{\sqrt{2}}{2}e_3, \quad \text{with multiplicity } 2r,
\]
\[
e_1 \pm e_2, \quad \text{with multiplicity } q,
\]
\[
\frac{1}{2}(e_1 \pm e_2), \quad \text{with multiplicity } 2r,
\]
\[
e_1 \pm \frac{\sqrt{2}}{2}e_3, e_2 \pm \frac{\sqrt{2}}{2}e_3, \quad \text{with multiplicity } 2q,
\]
\[
\frac{1}{2}(e_1 \pm e_2 \pm \sqrt{2}e_3), \quad \text{with multiplicity } r.
\]

Secondly, we give details of the two-dimensional projections of \(F_4^+\). There are two different projections of \(F_4^+\) along the root system \(A_2\). The first one \((F_4, A_2)_1\) is obtained by projecting to the plane \(\alpha_1 = \alpha_2 = 0\). The second one \((F_4, A_2)_2\) is obtained by projecting to the plane \(\alpha_3 = \alpha_4 = 0\). There is also a projected configuration \((F_4, A_1^2)\) along the subsystem \(A_1 \times A_1\) to the plane \(\alpha_1 = \alpha_3 = 0\), and there is a projected configuration \((F_4, B_2)\) along the subsystem \(B_2\) to the plane \(\alpha_2 = \alpha_3 = 0\). These configurations have the following explicit form

• The configuration \((F_4, A_2)_1\) consists of vectors \(\alpha\) with the corresponding multiplicities \(c_\alpha\) given as follows:

\[
e_1, \quad \text{with multiplicity } r,
\]
\[
\frac{1}{\sqrt{3}}e_2, \quad \text{with multiplicity } 3r,
\]
\[
\frac{2}{\sqrt{3}}e_2, \quad \text{with multiplicity } 3q,
\]
\[
e_1 \pm \frac{1}{\sqrt{3}}e_2, \quad \text{with multiplicity } 3q,
\]
\[
\frac{1}{2}(e_1 \pm \frac{1}{\sqrt{3}}e_2), \quad \text{with multiplicity } 3r,
\]
\[
\frac{1}{2}(e_1 \pm \frac{3}{\sqrt{3}}e_2), \quad \text{with multiplicity } r.
\]
- The configuration \((F_4, A_1^2)\) consists of vectors \(\alpha\) with the corresponding multiplicities \(c_\alpha\) given as follows:

\[
\begin{align*}
e_1, & \quad \text{with multiplicity } r + 2q, \\
\sqrt{2}e_2, & \quad \text{with multiplicity } q, \\
\frac{1}{2}e_1, & \quad \text{with multiplicity } 4r, \\
\frac{\sqrt{2}}{2}e_2, & \quad \text{with multiplicity } 2(r + 2q), \\
e_1 \pm \frac{1}{\sqrt{2}}e_2, & \quad \text{with multiplicity } 2q, \\
\frac{1}{2}(e_1 \pm 2\sqrt{2}e_2), & \quad \text{with multiplicity } 2r.
\end{align*}
\]

Configurations \((F_4, A_2)\) and \((F_4, B_2)\) are equivalent to the root systems \(G_2\) and \(BC_2\), respectively, the corresponding solutions of the commutativity equations were found in [4]. Theorem 5.1 gives new solutions of the commutativity equations which are listed in the next statement.

Theorem 5.4. Let \((A, c)\) be one of the configurations \((F_4, A_1)_1, (F_4, A_1)_2, (F_4, A_2)_1, (F_4, A_1^2)\) described above. Then the function \(F = \sum_{\alpha \in A} c_\alpha f((\alpha, x))\) satisfies the commutativity equations, where \(x \in \mathbb{C}^3\) for the first two configurations and \(x \in \mathbb{C}^2\) for the last two configurations and parameters \(r, q\) satisfy the condition \(r = -2q\) or \(r = -4q\).

6. **Commutativity equations and WDVV equations**

In this Section we investigate the relation between the commutativity equations and the WDVV equations. Let \(V \cong \mathbb{C}^N, N \geq 2\). Let \(F = F(x^1, \ldots, x^N)\) be a function on \(V\). We recall that it was proven in [18] (see also [17]) that the generalized WDVV equations

\[
F_i F_j^{-1} F_k = F_k F_j^{-1} F_i, \quad i, j, k = 1, \ldots, N
\]

can be written equivalently in the form

\[
F_i B^{-1} F_j = F_j B^{-1} F_i, \quad i, j = 1, \ldots, N, \tag{6.1}
\]

where \(B\) is any non-degenerate matrix of the form \(B = \sum_{i=1}^{N} A^k F_k\) for some functions \(A^k\). If the matrix \(B\) happens to be a multiple of the identity matrix then WDVV equations (6.1) reduce to the commutativity equations

\[
F_i F_j = F_j F_i, \quad i, j = 1, \ldots, N. \tag{6.2}
\]

A natural question to investigate is when there exists such a linear combination \(B\). We give an answer in this Section.

Let us assume that a function \(F = F(x^1, \ldots, x^N)\) satisfies the commutativity equations (6.2). Let us denote by \([F_i, F_j]_{(a,b)}\) the \((a, b)\)-entry of the commutator \([F_i, F_j]\) or, more explicitly,

\[
[F_i, F_j]_{(a,b)} = \sum_{m=1}^{N} (F_{iam} F_{jbm} - F_{ibm} F_{jam}). \tag{6.3}
\]
The equality \([F_i, F_k]_{(i,j)} = 0\) implies that
\[
F_{ijk}F_{iii} = \sum_{m=1}^{N} F_{ijm}F_{ikm} - \sum_{m \neq i} F_{imn}F_{jkm}. \tag{6.4}
\]

Observe the equality of matrix entries \([F_a, F_b]_{(i,j)} = [F_i, F_j]_{(a,b)}\). Introduce the notation
\[
[F_i, F_j]_{(a,b)} = F_{iam}F_{jbm} - F_{ibm}F_{jam},
\]
where there is no summation over \(m\) in the right-hand side. Define a matrix \(B^N = (B_{ij})_{i,j=1}^N\) with the entries given as a linear combination of the third order derivatives of \(F\):
\[
B_{ij} = \sum_{k=1}^{N} A^k F_{kij}, \tag{6.5}
\]
for some functions \(A^k = A^k(x^1, \ldots, x^N)\). Now we will investigate when there exists such a combination \(B\) so that equations \((6.2)\) imply equations \((6.1)\). For that it is sufficient to deduce that the matrix \(B\) is proportional to the identity.

Fix \(i_0 \in \mathbb{N}, 1 \leq i_0 \leq N\). Let \(P\) be the \((N-1) \times N\) matrix \(P = (F_{i_0ij}), 1 \leq i, j \leq N, i \neq i_0\). Define
\[
A^k = (-1)^{k+1} \det P_k, \tag{6.6}
\]
where the matrix \(P_k\) is obtained from the matrix \(P\) by removing its \(k\)-th column.

The following statement takes place.

Lemma 6.1. For any function \(F = F(x^1, \ldots, x^N)\) which satisfies the commutativity equations \((6.2)\) the following relation holds
\[
\det \begin{pmatrix}
F_{aiar} & F_{biar} & F_{ciar} \\
F_{aiot} & F_{biot} & F_{ciot} \\
F_{art} & F_{brt} & F_{crt}
\end{pmatrix} = - \sum_{m \neq t} \det \begin{pmatrix}
F_{aiam} & F_{biom} & F_{ciom} \\
F_{arm} & F_{brm} & F_{crm}
\end{pmatrix},
\]
where \(1 \leq a, b, c \leq N, 1 \leq r < t \leq N, \) and \(r, t \neq i_0\).

Proof. By applying the first row expansion and the commutativity equations we get
\[
\det \begin{pmatrix}
F_{aiar} & F_{biar} & F_{ciar} \\
F_{aiot} & F_{biot} & F_{ciot} \\
F_{art} & F_{brt} & F_{crt}
\end{pmatrix} = F_{aior} \det \begin{pmatrix}
F_{biot} & F_{ciot} \\
F_{brt} & F_{crt}
\end{pmatrix} - F_{biar} \det \begin{pmatrix}
F_{aiot} & F_{ciot} \\
F_{art} & F_{crt}
\end{pmatrix}
\]
\[
+ F_{ciar} \det \begin{pmatrix}
F_{aiot} & F_{biot} \\
F_{art} & F_{brt}
\end{pmatrix} = F_{aior} \sum_{m \neq t} [F_{ij}, F_{rj}]_{(b,c)}^{(m)} - F_{biar} \sum_{m \neq t} [F_{ij}, F_{rj}]_{(a,c)}^{(m)} + F_{ciar} \sum_{m \neq t} [F_{ij}, F_{rj}]_{(a,b)}^{(m)}
\]
\[
= - \sum_{m \neq t} \det \begin{pmatrix}
F_{aiar} & F_{biar} & F_{ciar} \\
F_{aiot} & F_{biot} & F_{ciot} \\
F_{art} & F_{brt} & F_{crt}
\end{pmatrix}.
\]
\[\square\]

The following statement takes place.
Lemma 6.2. Suppose that a function $F = F(x^1, \ldots, x^N)$ satisfies the commutativity equations (6.2). Let $1 \leq r < t \leq N$, $r, t \neq i_0$. Let $N \times N$ matrix Q be obtained from the matrix P by inserting the i_0-th row $R_{i_0} = (F_{1i_0}, \ldots, F_{N i_0})$. Then $\det Q = 0$.

Proof. Let $D = \det Q$. Let R_i denote the i-th row in the matrix Q. Let us perform the Laplace expansion of D along the rows

$$R_r = (F_{i_0 1r}, F_{i_0 2r}, \ldots, F_{i_0 Nr}),$$

$$R_t = (F_{i_0 1t}, F_{i_0 2t}, \ldots, F_{i_0 Nt}),$$

and the row R_{i_0}. For subsets $S, T \subset [N] := \{1, \ldots, N\}$ we define Q_{ST} to be the submatrix of Q defined by deleting rows S and columns T. Let $I = \{r, t, i_0\}$, $J = \{a, b, c\}$ for some $1 \leq a < b < c \leq N$. By applying the Laplace expansion to Q we get

$$D = \varepsilon \sum_J \sigma_J \det Q_{IJ} \det \begin{pmatrix} F_{aio} & F_{bi0} & F_{ci0} \\ F_{ai0} & F_{bi0} & F_{ci0} \\ F_{ai0} & F_{bi0} & F_{ci0} \end{pmatrix},$$

where $\varepsilon = \pm 1$ is determined by the relative order of r, t and i_0, and $\sigma_J = (-1)^s$ with $s = \sum_{i \in I} i + \sum_{j \in J} j$. Now by Lemma 6.1 the determinant (6.7) can be rewritten as

$$D = -\varepsilon \sum_J \sigma_J \det Q_{IJ} \left(\sum_{m \neq t} \det \begin{pmatrix} F_{aio} & F_{bi0} & F_{ci0} \\ F_{ai0} & F_{bi0} & F_{ci0} \\ F_{ai0} & F_{bi0} & F_{ci0} \end{pmatrix} \right),$$

$$= -\sum_{m \neq t} \det Q^{(m)},$$

where the matrix $Q^{(m)}$ is obtained from the matrix Q by replacing rows R_{i_0} and R_t as follows:

$$R_{i_0} \rightarrow \tilde{R}_{i_0} = (F_{1m}, \ldots, F_{Nm}),$$

$$R_t \rightarrow \tilde{R}_t = (F_{i_0 1m}, \ldots, F_{i_0 Nm}).$$

Note that the row \tilde{R}_t is equal to the m-th row of the matrix $Q^{(m)}$. Hence $\det D = 0$. \qed

The following statement takes place.

Proposition 6.3. Assume that the function $F = F(x^1, \ldots, x^N)$ satisfies the commutativity equations (6.2). Assume also that the rank of the matrix P is $N - 1$. Then matrix B with the entries given by formulae (6.5), (6.6) is diagonal.

Proof. Let us assume that $i_0 = 1$, the general case can be dealt with similarly. Consider the system of linear equations

$$B_{1m} = \sum_{k=1}^N A^k F_{1km} = 0,$$

for some functions $A^k = A^k(x^1, \ldots, x^N)$. The system (6.8) represents a homogeneous system of $N - 1$ linear equations in variables A^k. The assumption that the rank of the matrix $P = (F_{ij})$, where $2 \leq i \leq N$, $1 \leq j \leq N$, is $N - 1$ implies that the system (6.8) has a non-trivial solution. Moreover, this unique solution is up to proportionality.

Now, fix $2 \leq s \leq N$. The direct substitution of the functions A^k given by formula (6.6) into the right-hand side of relation (6.8) gives a row expansion of the determinant of a matrix.
with the repeated rows, hence the equation $B_{1s} = 0$ is satisfied. Note also that $A^k \neq 0$ for some k since the rank of the matrix P is $N - 1$.

Now we will show that off-diagonal entries $B_{rt} = 0$, where $2 \leq r < t \leq N$. In order to do so, we add a row corresponding to the non-diagonal entry B_{rt} to the coefficient matrix P of the linear system (6.8) and we will show that the resulting matrix is singular. This will imply the existence of a non-trivial solution to the resulting system of N equations. Indeed, as the first $N - 1$ equations have a unique solution given by (6.6) up to proportionality, it also has to solve the last equation. Thus we consider equations (6.8) together with

$$B_{rt} = \sum_{k=1}^{N} A^k F_{krt} = 0$$

(6.9)

as a system of linear equations for functions A^k. Its coefficient matrix is singular by Lemma 6.2. This proves the statement.

□

The following statement gives a further property of the matrix B.

Proposition 6.4. Under the assumptions of Proposition 6.3 we have

$$B_{11} = B_{pp}$$

for all $1 \leq p \leq N$.

Proof. Let us assume that $i_0 = 1$, the general case can be dealt with similarly. Let us first consider the case $p = 2$. Since the matrix P has rank $N - 1$, this implies that there exists some q ($1 \leq q \leq N$) such that $F_{12q} \neq 0$. Following the idea of the proof of Proposition 6.3 let us consider the following set of homogeneous equations:

$$B_{1m} = 0, \quad 2 \leq m \leq N,$$

$$F_{12q}(B_{11} - B_{22}) = 0.$$

(6.10)

It is sufficient to show that the coefficient matrix M corresponding to equations (6.10) considered as linear equations for A^k is singular. We have

$$M = \begin{pmatrix}
F_{112} & F_{212} & \cdots & F_{N12} \\
F_{113} & F_{213} & \cdots & F_{N13} \\
\vdots & \vdots & \ddots & \vdots \\
F_{11N} & F_{21N} & \cdots & F_{N1N} \\
F_{12q}(F_{111} - F_{122}) & F_{12q}(F_{211} - F_{222}) & \cdots & F_{12q}(F_{N11} - F_{N22})
\end{pmatrix}.$$

Let $D = \det M$. From the identity (6.4) we have

$$F_{12q}F_{111} = \sum_{m=1}^{N} F_{12m}F_{1qm} - \sum_{m=2}^{N} F_{11m}F_{2qm}.$$

(6.11)

Similarly, we have

$$F_{12q}F_{222} = \sum_{m=1}^{N} F_{12m}F_{2qm} - \sum_{m \neq 2} F_{1qm}F_{22m}.$$

(6.12)
Let \(R_i \) denote the \(i^{th} \) row in the matrix \(M \). We have
\[
R_i = (F_{11(i+1)}, F_{21(i+1)}, \ldots, F_{N1(i+1)}), \quad 1 \leq i \leq N - 1, \\
R_N = (r_{N1}, r_{N2}, \ldots, r_{NN}),
\]
where
\[
\begin{align*}
 r_{N1} &= \sum_{m \neq 2} F_{1qm} F_{12m} - \sum_{m \neq 1} F_{11m} F_{2qm}, \\
 r_{N2} &= \sum_{m \neq 2} F_{1qm} F_{22m} - \sum_{m \neq 1} F_{12m} F_{2qm}, \\
 r_{Nk} &= F_{12q} (F_{k11} - F_{k22}), \quad 3 \leq k \leq N
\end{align*}
\]
by applying formulas (6.11), (6.12). Now let us perform the following row operation on the matrix \(M \) and let \(\tilde{M} \) be the resulting matrix:
\[
R_N \rightarrow \tilde{R}_N = R_N - F_{11q} R_1 + \sum_{i=2}^{N} F_{2qi} R_{i-1}.
\]
Let \(\tilde{r}_{Nk} \) be the \(k^{th} \) element in the row \(\tilde{R}_N \) of the matrix \(\tilde{M} \). We have
\[
\begin{align*}
 \tilde{r}_{N1} &= \sum_{m \neq 1,2} F_{1qm} F_{12m}, \\
 \tilde{r}_{N2} &= \sum_{m \neq 1,2} F_{1qm} F_{22m}, \\
 \tilde{r}_{Nk} &= \sum_{m=1}^{N} F_{2qm} F_{1km} - F_{12q} F_{22k} - F_{11q} F_{12k}, \quad 3 \leq k \leq N
\end{align*}
\]
Let \(S_{2m} = (F_{12m}, F_{22m}, \ldots, F_{N2m}) \), where \(3 \leq m \leq N \). By Lemma 6.2 row \(S_{2m} \) is a linear combination of the rows of the matrix \(P \). Therefore one can add the row \(S_{2m} \) to the last row of the matrix \(\tilde{M} \) without changing its determinant \(D \). Let us add the rows \(-F_{1qm} S_{2m}, m = 3, \ldots, N \), consecutively to the last row of \(\tilde{M} \). The last row \((\tilde{r}_{N1}, \tilde{r}_{N2}, \ldots, \tilde{r}_{NN}) \) of the resulting matrix has the form
\[
\begin{align*}
 \hat{r}_{N1} &= 0, \quad \hat{r}_{N2} = 0, \\
 \hat{r}_{Nk} &= \sum_{m=1}^{N} F_{2qm} F_{1km} - \sum_{m=1}^{N} F_{1qm} F_{2km} = -[F_1, F_2]_{(q,k)}, \quad 3 \leq k \leq N
\end{align*}
\]
by formula (6.3). It follows from the commutativity equations that \(D = 0 \). This proves that \(B_{11} = B_{22} \). Similarly, one can prove that \(B_{11} = B_{pp} \) for all \(p \). \(\square \)

As a corollary of Propositions 6.3 and 6.4 the following statement takes place.

Theorem 6.5. Under the assumptions of Proposition 6.3 the matrix \(B \) given by formulas (6.5), (6.6) is proportional to the identity matrix.

We also have the following result.

Proposition 6.6. Under the assumptions of Proposition 6.3 suppose also that there exists a non-degenerate linear combination \(G = \eta^k F_k \) for some functions \(\eta^k, (1 \leq k \leq N) \). Then matrix \(B \) given by formulas (6.5), (6.6) is a non-zero multiple of the identity matrix.
Proof. From Theorem 6.5 we know that the matrix B is proportional to the identity matrix. It remains to show that B is not the zero matrix. Let $B_{ij} = A^kF_{ijk} = h\delta_{ij}$ for some function $h = h(x)$. Assume that $h = 0$. Then $A^kF_{ijk} = 0$. Hence $\eta^lA^kF_{ijk} = 0$, which means that the non-zero vector (A^1, \ldots, A^N) belongs to the kernel of the form G (cf. a similar argument in \[14\]). Therefore G is degenerate, which contradicts the assumption. Hence $h \neq 0$ and the statement follows. □

The following theorem is a corollary of Theorem 6.5 and Proposition 6.6, and it explains that a function F satisfying the commutativity equations also solves the WDVV equations.

Theorem 6.7. Under the assumptions of Proposition 6.3 suppose that there exists a non-degenerate linear combination $G = \eta^kF_k$ for some functions η^k. Then F is a solution of WDVV equations (6.1) where the matrix B is given by formulas (6.5), (6.6).

Remark 6.8. Note that under the assumptions of Theorem 6.7, function F also satisfies the generalized WDVV equations

\[F_iF_j^{-1}F_k = F_kF_j^{-1}F_i, \quad i, j, k = 1, \ldots, N \]

provided that matrices F_j are non-degenerate. Indeed these equations follow from equations (6.1) by the result from \[18\] (see also \[17\]). It also follows that F satisfies the WDVV equations

\[F_iG^{-1}F_j = F_jG^{-1}F_i, \quad i, j = 1, \ldots, N \]

for any non-degenerate linear combination $G = a^iF_i$.

7. Existence of the identity field

In this Section we define a natural multiplication on the tangent plane T_xV associated with a solution F of the commutativity equations. We find the identity vector field of this multiplication and establish that it is proportional to the vector field $A^k\partial_{x^k}$, where functions A^k are given by formula (6.6). Thus we will express the identity vector field in terms of F.

For any functions $u = (u^1, \ldots, u^N), v = (v^1, \ldots, v^N): V \to V$, consider vector fields $\partial_u = u^i\partial_{x^i}, \partial_v = v^i\partial_{x^i} \in \Gamma(TV)$. Let us define the following multiplication on the tangent space T_xV for generic $x \in V$:

\[\partial_u \ast \partial_v = u^i v^j F_{ijk}\partial_{x^k}. \] (7.1)

Note that multiplication (7.1) defines a commutative associative algebra on T_xV if F satisfies commutativity equations (6.2).

Consider a vector field

\[e = e^k\partial_{x^k}, \] (7.2)

where $e^k = e^k(x^1, \ldots, x^N)$ are some functions. Consider an $N \times N$ matrix $B = (B_{ij})_{i,j=1}^N$ given by

\[B_{ij} = e(F_{ij}) = e^kF_{ijk}, \quad i, j = 1, \ldots, N. \] (7.3)

Proposition 7.1. The following statements are equivalent:

1. The matrix B with entries given by (7.3) is equal to the identity matrix,
2. The vector field e given by formula (7.2) is the identity vector field of the multiplication (7.1).
Proof. From relations (7.1), (7.2) and (7.3) we have
\[e \ast \partial_v = e^i v^j \partial_{x^j} = e^i v^j F_{ijk} \delta^{kl} \partial_{x^l} = B_{jkl} v^j \delta^{kl} \partial_{x^l}. \]
(7.4)
Let us firstly assume that \(B_{jkl} = \delta_{jk} \). Then relation (7.4) reduces to
\[e \ast \partial_v = v^j \partial_{x^j} = \partial_v. \]
That is statement (2) follows from (1).
Secondly, assume that \(e \) is the identity vector field of the multiplication (7.1). Then from relation (7.3) we have
\[e \ast \partial_v = B_{jkl} v^j \partial_{x^k} = \partial_v = v^j \partial_{x^j}. \]
This implies that \(B_{jkl} = \delta_{jk} \), that is statement (1) holds. \(\square \)

Proposition 7.1 allows us to reformulate Theorem 6.5 as follows.

Theorem 7.2. Under the assumptions of Proposition 6.3 there exists the identity vector field \(e = e^k \partial_{x^k} \) for the multiplication (7.1). It has the form \(e^k = h^{-1} A^k \), where \(A^k \) is given by formula (6.6) and \(h = A^k F_{kii} \) (for any \(i = 1, \ldots, N \)).

Now we are going to generalize Theorem 6.7 to the case of an arbitrary constant metric \(g \) in place of the standard metric \(\delta_{ij} \). Thus we start with equations of the form
\[F_{ij \alpha \beta} g^{\alpha \beta} F_{\beta \delta \epsilon} = F_{ij \alpha \beta} g^{\alpha \beta} F_{\beta \delta \epsilon}, \quad \text{quad} 1 \leq i, j, k, l \leq N. \]
(7.5)
We will show that matrix \((g_{\alpha \beta})_{\alpha, \beta=1}^N\) can be represented as a linear combination of the matrices \(F_i \) under some non-degeneracy assumptions.

Theorem 7.3. Let \(F = F(x^1, \ldots, x^N) \) be a function on \(V \) which satisfies equations (7.5) for some constant symmetric non-degenerate matrix \((g_{\alpha \beta})\). Define new coordinates
\[y^i = \tilde{C}^i_j x^j, \]
(7.6)
where the matrix \(\tilde{C} = (\tilde{C}^i_j) \) satisfies the relations \(\tilde{C}^\alpha_i \tilde{C}^\beta_j g^{ij} = \delta^{\alpha \beta} \), where \(1 \leq \alpha, \beta \leq N \). Let \(\tilde{F}(y) = F(x) \). Suppose that there exists \(i_0, 1 \leq i_0 \leq N, \) such that the matrix \((\tilde{F}_{aij}(y))\) has rank \(N-1 \), where \(\tilde{F}_{aij} = \frac{\partial \tilde{F}}{\partial y^i y^j} g^{ij} \) and \(1 \leq i, j \leq N, i \neq i_0 \). Then there exists a unique vector field \(e = e^k(x) \partial_{x^k} \) such that
\[e(F_{lm}) = e^k F_{klm} = g_{lm}, \]
where \((g_{lm})\) is the inverse matrix for \((g^{\alpha \beta})\).

Proof. Let \(C = \tilde{C}^{-1} = (C^i_k) \). Then \(x^i = C^i_j y^j \). We also have
\[\partial_{x^j} = \tilde{C}^i_j \partial_{y^i}, \quad \partial_{y^i} = C^i_j \partial_{x^j}. \]
(7.7)
From (7.7) we have the following relations:
\[F_j(x) = \tilde{C}^i_j \partial_{y^i} \tilde{F}(y) = \tilde{C}^i_j \tilde{F}_j(y). \]
Hence,
\[F_{pjk}(x) = \tilde{C}^m_p \tilde{C}^i_j \tilde{C}^l_k \tilde{F}_{mjl}(y). \]
(7.8)
By multiplying relation (7.8) by \(C^i_a C^j_b C^k_c \) we get
\[\tilde{F}_{abc}(y) = C^p_a C^q_b C^r_c F_{pjk}(x). \]
By applying relation (7.8) we rewrite equation (7.5) as
\[\hat{C}_p^i \hat{C}_q^j \hat{C}_r^a \hat{C}^b \tilde{F}_{pqr} g^{\alpha \beta} \hat{C}_a^\beta \hat{C}_b^\alpha \hat{C}_r \hat{C}_q \hat{C}_p \tilde{F}_{abd} = \hat{C}_s^m \hat{C}_k^a \hat{C}_q \hat{C}_r^\alpha \hat{C}^b \tilde{F}_{sqr} g^{\alpha \beta} \hat{C}_a^\beta \hat{C}_b^\alpha \hat{C}_r \hat{C}_q \hat{C}_p \tilde{F}_{abd}. \] (7.9)

It follows from the relation \(\hat{C}_i^\alpha \hat{C}_j^\beta g^{ij} = \delta^{\alpha \beta} \) that\(\hat{C}_l^a \hat{C}_m^b \delta_{lm} = g_{ab}. \) (7.10)

Hence we reduce equation (7.9) to
\[\hat{C}_p^i \hat{C}_b^k \tilde{F}_{pqr} \tilde{F}_{rbd} = \hat{C}_s^m \hat{C}_q \hat{C}_r^\alpha \hat{C}^b \tilde{F}_{sqr} \tilde{F}_{rbd}. \] (7.11)

By multiplying equation (7.11) by \(C_n^i C_m^k \) we get
\[\tilde{F}_{nqr} \tilde{F}_{rmd} = \tilde{F}_{mqr} \tilde{F}_{rmd}, \]
that is \(\tilde{F}_m \) and \(\tilde{F}_n \) commute. Now since the rank of the matrix \((\tilde{F}_{ioj}) \) is \(N - 1 \), it follows by Theorem 6.5 that there exists a unique vector field \(e = e^i(y) \partial_y \) such that
\[e(\tilde{F}_{\alpha \beta}(y)) = e^j(y) \tilde{F}_{j\alpha \beta}(y) = \delta_{\alpha \beta}. \]

From relation (7.8) we have
\[C_j^i \partial_x F_{ab}(x) = \hat{C}_a^i \hat{C}_b^m \tilde{F}_{jlm}(y). \]

This equation implies that
\[e(F_{ab}(x)) = e^j C_j^i \partial_x F_{ab}(x) = e^j \tilde{F}_{jlm}(y) \hat{C}_a^i \hat{C}_b^m = \delta_{lm} \hat{C}_a^i \hat{C}_b^m = g_{ab} \]
by relation (7.10). This proves the theorem. \(\square \)

Remark 7.4. We note that the maximality of the rank of the matrix \(P \) is sufficient but not necessary for the existence of the identity field. Indeed, in the case of two-dimensional Frobenius manifold consider the function \(F \) given by
\[F(t^1, t^2) = \frac{1}{2}(t^1)^2 t^2 + f(t^2) \] (7.12)
with some function \(f(t^2) \). We have equation \(F_1 G F_2 = F_2 G F_1 \), where the matrix entries \((F_i)_{kl} = \frac{\partial^3 F}{\partial t^i \partial t^k \partial t^l} \), and
\[G = G^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = F_1. \] (7.13)

Now let
\[C = \begin{pmatrix} -\frac{i}{2} & \frac{1}{2} \\ \frac{1}{i} & 1 \end{pmatrix}, \quad \hat{C} = \begin{pmatrix} i & -\frac{i}{2} \\ 1 & \frac{1}{2} \end{pmatrix} \]
be the matrices of the change of variables such that
\[t^i = C_i^i x^j, \quad x^i = \hat{C}_i^j t^j, \] (7.14)
where \((x^1, x^2)\) is a new coordinate system and the matrix \(G = (g^{ij})\) satisfies the relation
\[\bar{C}_i^\alpha \bar{C}_j^\beta g^{ij} = \delta^{\alpha\beta}. \]
Let \(\bar{F}(x) = F(t)\). Then we have
\[
\bar{F}_{112} = \frac{\partial^3 \bar{F}}{\partial x^1 \partial x^1 \partial x^2} = \frac{1}{4} - f'''(ix^1 + x^2),
\]
\[
\bar{F}_{122} = \frac{\partial^3 \bar{F}}{\partial x^1 \partial x^2 \partial x^2} = -\frac{i}{4} + if'''(ix^1 + x^2).
\]
Note that the matrix \((\bar{F}_{112}, \bar{F}_{122})\) has rank zero if \(f(t^2) = \frac{1}{24}(t^2)^3 = \frac{1}{24}(ix^1 + x^2)^3\). Nonetheless \(e = \partial_{t^1} = i\partial_{x^1} + \partial_{x^2}\) is the identity field.

Remark 7.5. The maximality of the rank of the matrix \(P\) condition may be satisfied in the case of a family of non-semisimple algebras. An example is given by prepotential \((7.12)\) with \(f = 0\), as it follows from considerations in Remark \(7.4\)

8. Identity field for non-simply laced root systems and their projections

We are going to relate the identity field for a solution of commutativity equations and a restriction of such a solution. Firstly, we have the following statement.

Lemma 8.1. Let \(F(x)\) be a function and \(e = e^k \partial_{x^k}\) be a vector field such that \(e(F_{ij}) = \delta_{ij}\), where \(1 \leq i, j \leq N\). Let \(\tilde{x}^k = C_k^i x^i\) for a matrix \(C = (C_k^i) \in O(N, \mathbb{C})\). Let \(\bar{F}(\tilde{x}) = F(x)\). Then \(e(\tilde{F}_{\mu\nu}) = \delta_{\mu\nu}\), where \(1 \leq \mu, \nu \leq N\).

Proof. We have
\[e^k F_{ijk} = \delta_{ij}. \quad (8.1) \]
By relation \((2.4)\) we have \(\partial_{x^i} = C_i^k \partial_{x^k}\). Hence we have
\[F_{ijk} = C_k^i C_j^i \tilde{F}_{\mu\nu}. \quad (8.2) \]
Then by formula \((8.2)\) relation \((8.1)\) can be written as
\[e^k C_k^i C_j^i \tilde{F}_{\mu\nu} = \delta_{ij}. \quad (8.3) \]
Let \(\tilde{C} = C^{-1} = (\tilde{C}_j^i)\). Multiply equality \((8.3)\) by \(\tilde{C}_\mu^i \tilde{C}_\nu^j\). We get
\[e^k C_k^i \tilde{F}_{\mu\nu} = \delta_{\mu\nu}. \quad (8.4) \]
since \(\tilde{C} \in O(N, \mathbb{C})\). Hence equality \((8.4)\) becomes
\[e^k C_k^i \tilde{F}_{\mu\nu} = \delta_{\mu\nu}. \quad (8.5) \]
Note that \(e = e^k C_k^i \partial_{x^i}\). We have by relation \((8.5)\) that \(e(\tilde{F}_{\mu\nu}) = \delta_{\mu\nu}\) as required.

Let \(B = A \cap W\) be a subsystem of \(A\) for some \(n\)-dimensional linear subspace \(W = \langle B \rangle \subseteq V\). Let
\[W_B := \{ x \in V : \langle \beta, x \rangle = 0 \quad \forall \beta \in B \}. \]
Let \(f_1, \ldots, f_n\) be an orthonormal basis of the space \(W_B\), and let \(\xi^1, \ldots, \xi^n\) be the corresponding orthonormal coordinates in \(W_B\). Let us extend the orthonormal basis in \(W_B\) to an orthonormal basis \(f_1, \ldots, f_n, f_{n+1}, \ldots, f_N\) in \(V\) and let \(\xi^1, \ldots, \xi_n, \xi_{n+1}, \ldots, \xi_N\) be the corresponding orthonormal coordinates in \(V\). The following statement takes place.
Proposition 8.2. Let a function F be given by formula (2.2). Let $e = e(z), z \in V$, be a vector field such that $e(F_{ij}) = \delta_{ij}$ for all $i, j = 1, \ldots, N$, where $F_{ij} = \frac{\partial^2 F}{\partial x^i \partial x^j}$. Let $F(x^1, \ldots, x^N)$ be such that $F_{ij} = \frac{\partial^2 F}{\partial x^i \partial x^j}$. Let $\xi = e|_{W_B} \in \Gamma(T_B W_B)$. Then $\xi = e|_{W_B} \in \Gamma(T_B W_B)$. Let F_{ij} be such that $F_{ij} = \frac{\partial^2 F}{\partial x^i \partial x^j}$ and function F_B is given by formula (5.1).

Proof. Let $C = (C^k_i) \in O(N, \mathbb{C})$ be such that $\xi^k = C^k_i x^i$. By Proposition 8.1 we have $e(\hat{F}_{ij}) = \delta_{ij}$, where $\hat{F}_{ij} = \frac{\partial^2 F}{\partial \xi^i \partial \xi^j}$, and $i, j = 1, \ldots, N$. Hence $\hat{e}(\hat{F}_{ij}|_{W_B}) = \delta_{ij}, 1 \leq i, j \leq n$, which implies the statement since $\hat{F}|_{W_B} = F_B$ and $\hat{F}_{ij}|_{W_B} = (F_B)_{ij}$. □

In the next proposition we give a formula for the identity field for the multiplication (7.1) corresponding to the root system F_4, see [1] for a proof.

Proposition 8.3. The matrix $B = h^{-1} \sum_{k=1}^{4} B^k F_k$ is the identity matrix in dimension four in the following cases:

- F has the form (2.2) corresponding to $A = F_4^+$ with the condition $r = -2q, q \neq 0$, where
 \[
 B^k = \sin x^k \left(\cos x^k (-1 + \sum_{i \neq k} \cos 2x^i) - 2 \prod_{i \neq k} \cos x^i \right), \quad k = 1, 2, 3, 4,
 \]
 \[
 h(x) = 6q + \frac{1}{2} \sum_{\alpha \in F_4^+} c_{\alpha} \cos (2\alpha, x).
 \]

- F has the form (2.2) corresponding to $A = F_4^+$ with the condition $r = -4q, q \neq 0$, where
 \[
 B^k = \sin x^k \left(\cos x^k + 2 \prod_{i \neq k} \cos x^i \right), \quad k = 1, 2, 3, 4,
 \]
 \[
 h(x) = -q \left(6 + \sum_{i=1}^{4} \cos 2x^i + 8 \prod_{i=1}^{4} \cos x^i \right).
 \]

Solutions of the WDVV equations corresponding to the root system BC_n and its deformation $BC_n(q, r, s; m)$ were found in [3]. In the case of the root system F_4 and its projections we get new solutions of the WDVV equations.

Theorem 8.4. Function (2.2) corresponding to $A = F_4^+$ or any of its 3-dimensional projections $(F_4, A_1)_1$, $(F_4, A_1)_2$ satisfies WDVV equations (6.1) if $r = -2q$ or $r = -4q, q \neq 0$.

Proof. It was proven in [4] that function (2.2) for the collection $A = F_4^+$ satisfies commutativity equations (6.2) if $r = -2q$ or $r = -4q$. For $A = F_4^+$ the statement follows by Proposition 8.3. It is easy to see that for the three-dimensional restrictions $A = (F_4, A_1)_{1,2}$ the assumptions of Proposition 8.2 hold. The statement follows. □

Now we give the identity vector field for all the non-simply laced root systems as well as their projections. In the case of root system F_4 it can be checked that the components of the identity field given by the next theorem are equal to $h^{-1} B^k$ given by Proposition 8.3 (see [1]).
Theorem 8.5. Let function F be given by (2.2). Consider a vector field e given by

$$e = c_0 H^{-1} \sum_{\alpha \in \mathcal{A}} \bar{c}_\alpha \sin(2(\alpha, x)) \partial_\alpha$$

for some $c_0, \bar{c}_\alpha \in \mathbb{C}$ and

$$H = H_0 + \sum_{\alpha \in \mathcal{A}} \bar{c}_\alpha \sin^2(\alpha, x)$$

for some $H_0 \in \mathbb{C}$. Then $e(F_{ij}) = \delta_{ij}$ if

1. $\mathcal{A} = F_4^+$ given by formula (5.7) or \mathcal{A} is one of the projections $(F_4, A_1)_1$, $(F_4, A_1)_2$, $(F_4, A_2)_1$, $(F_4, A_2)_2$, $(F_4, B_2)_1$, (F_4, A_1^2), and

$$r = -2q \neq 0, \quad c_0 = -\frac{1}{4q}, \quad H_0 = 0, \quad \bar{c}_\alpha = c_\alpha \forall \alpha \in \mathcal{A},$$

2. \mathcal{A} is the same as in (1) and

$$r = -4q \neq 0, \quad c_0 = \frac{1}{4q}, \quad H_0 = 36q, \quad \bar{c} = c_\alpha|_{q=0} \forall \alpha \in \mathcal{A},$$

3. $\mathcal{A} = G_2^+$ and

$$p = -3q \neq 0, \quad c_0 = -\frac{1}{9q}, \quad H_0 = 0, \quad \bar{c}_\alpha = c_\alpha \forall \alpha \in G_2^+, \quad \text{where } q \text{ is the multiplicity of the long roots } \sqrt{3}e_1, \frac{1}{2}(\sqrt{3}e_1 \pm 3e_2) \text{ and } p \text{ is the multiplicity of the short roots } e_2, \frac{1}{2}(\sqrt{3}e_1 \pm e_2),$$

4. \mathcal{A} is the same as in (3), and

$$p = -9q \neq 0, \quad c_0 = \frac{1}{9q}, \quad H_0 = 27q, \quad \bar{c} = c_\alpha|_{q=0} \forall \alpha \in G_2^+,$$

5. $\mathcal{A} = BC_n(q, r, s; m), q \neq 0, n \geq 2,$ and

$$r = -8s - 2q \left(\sum_{i=1}^{n} m_i - 2 \right), \quad c_0 = -\frac{1}{4q}, \quad H_0 = \frac{r(2s - q)}{q}, \quad \bar{c}_\alpha = c_\alpha|_{q=s=0} \forall \alpha \in BC_n(q, r, s; m).$$

6. $\mathcal{A} = BC_1^+$ with $c_{\pm e_1} = r, c_{\pm 2e_1} = s$ and

$$c_0 = -\frac{1}{2(r + 8s)}, \quad H_0 = -\frac{r(r + 4s)}{r + 8s}, \quad \bar{c}_{e_1} = r, \bar{c}_{2e_1} = 0.$$

Theorem 8.5 follows from the identity

$$\sum_{\alpha, \beta \in \mathcal{A}} \bar{c}_\alpha c_\beta (\alpha, \beta)(\beta, u)(\beta, v) \sin(2\alpha, x) \cot(\beta, x) = c_0^{-1}H(u, v)$$

for any $u, v \in V$ for each case specified in Theorem 8.5. By Proposition 8.2 it is sufficient to establish identity (8.7) for the case when \mathcal{A} is a (non-simply laced) root system. Indeed it is easy to see that the vector field e given by (8.6) for $\mathcal{A} = F_4$, BC_N satisfies the condition $e|_W \in \Gamma(T_s W)$ for any intersection of mirrors W. It is also clear that the restricted vector field $e|_W$ has the form (8.6) for the corresponding projections of the root system \mathcal{A}.

Case by case proof of the identity (8.7) for $\mathcal{A} = F_4$ and $\mathcal{A} = G_2$ is contained in [1]; see [3] for $\mathcal{A} = BC_N$. We are not aware of a uniform proof of Theorem 8.5 or the identity (8.7).
ACKNOWLEDGMENTS

We thank I. Strachan, O. Mokhov, A.P. Veselov, E. Ferapontov and G. Cotti for useful discussions and comments. The work of M.A was funded by Department of Mathematics, College of Science and Humanities, Imam Abdulrahman Bin Faisal University, P.O. Box 12020 Jubail Industrial City 31961, Saudi Arabia.

REFERENCES

[1] M. Alkadhem, Trigonometric ∨-systems and solutions of WDVV and related equations, PhD thesis, University of Glasgow (2022).
[2] M. Alkadhem and M. Feigin, Trigonometric ∨-systems and solutions of WDVV equations, J. Phys. A: Math. Theor 54 (2021), 024002.
[3] M. Alkadhem, G. Antoniou, and M. Feigin, Solutions of BC\textsubscript{n} Type of WDVV Equations, In Integrability, Quantization, and Geometry: I. Integrable Systems, Proceedings of Symposia in Pure Mathematics 103.1 (2021).
[4] G. Antoniou and M. Feigin, Supersymmetric V-systems, Journal of High Energy Physics (2019), 115.
[5] S. Bellucci, A. Galajinsky, and E. Latini, New insight into WDVV equation, Phys. Rev. D. 71 (2005), 044023.
[6] J. Bryan and A. Gholampour, Root systems and the quantum cohomology of ADE resolutions, Algebra Number Theory. 2 (4) (2008), 369–390.
[7] O. Chalykh and A.P. Veselov, Locus configurations and ∨-systems, Physics Letters A 285 (2001), 339–349.
[8] R. Dijkgraaf, H. Verlinde, and E. Verlinde, Notes on topological string theory and 2D quantum gravity, In String Theory and Quantum Gravity, Proceedings of the Trieste Spring School (1990), 91-156.
[9] B.A. Dubrovin, Geometry of 2D topological field theories, Springer Lecture Notes in Math. 1620, Springer-Verlag, New York. (1996), 120–348.
[10] B.A. Dubrovin and Y. Zhang, Extended affine Weyl groups and Frobenius manifolds, Compositio Mathematica 111 (1998), 167–219.
[11] B.A. Dubrovin, On almost duality for Frobenius manifolds, Amer. Math. Soc. Transl 212 (2004), 75–132.
[12] B.A. Dubrovin, I.A.B. Strachan, Y. Zhang, and D. Zuo, Extended affine Weyl groups of BCD type, Frobenius manifolds and their Landau-Ginzburg superpotentials, Adv. Math. 351 (2019), 897–946.
[13] M.V. Feigin and A.P. Veselov, Logarithmic Frobenius structures and Coxeter discriminants, Advances in Mathematics. (1) Vol. 212 (2007), 143–162.
[14] M.V. Feigin and A.P. Veselov, On the geometry of ∨-systems, Amer. Math. Soc. Transl. (2) Vol. 224 (2008), 111–123.
[15] M.V. Feigin, Trigonometric solutions of WDVV equations and generalized Calogero-Moser-Sutherland systems, Symmetry, Integrability and Geometry: Methods and Applications, 5 (2009).
[16] A. Galajinsky, O. Lechtenfeld, and K. Polovnikov, N = 4 mechanics, WDVV equations and roots, JHEP 03 (2009), 113.
[17] A. Marshakov, A. Mironov, and A. Morozov, More evidence for the WDVV equations in N = 2 SUSY Yang-Mills theories, Internat. J. Modern. Phys. A15 (2000), 1157–1206.
[18] R. Martini and P.K.H. Gragert, Solutions of WDVV Equations in Seiberg-Witten Theory from Root Systems, J. Nonlin. Math. Phys.6 (1) (1999), 1–4.
[19] R. Martini and L.K. Hoevenaars, Trigonometric solutions of the WDVV equations from root systems, Lett. Math. Phys. 65 (2003), 15–18.
[20] M. Pavlov, Explicit solutions of the WDVV equation determined by the “flat” hydrodynamic reductions of the Egorov hydrodynamic chains, arXiv:nlin/0606008 (2006).
[21] A. Riley and I.A.B. Strachan, Duality for Jacobi group and orbit spaces and elliptic solutions of the WDVV equations, Lett. Math. Phys. 77 (2006), 221-234.
[22] A. Riley and I.A.B. Strachan, A note on the relationship between rational and trigonometric solutions of the WDVV equations, J. Nonlinear Math. Phys. 14 (2007), 82–94.
[23] V. Schreiber and A.P. Veselov, On deformation and classification of ∨-systems, J. Nonlin. Math. Phys 21(4) (2011), 543–583.
[24] D. Shen, *Frobenius algebras and root systems: the trigonometric case*, Lett. Math. Phys. 111 125 (2021).
[25] I.A.B. Strachan, *Weyl groups and elliptic solutions of the WDVV equations*, Advances in Mathematics 224 (2010), 1801–1838.
[26] A.P. Veselov, *Deformations of root systems and new solutions to generalised WDVV equations*, Phys. Lett. A 261 (1999), 297–302.
[27] E. Witten, *On the structure of the topological phase of two-dimensional gravity*, Nucl. Phys. B 340 (1990), 281-332.
[28] N. Wyllard, *(Super)-conformal many-body quantum mechanics with extended supersymmetry*, JHEP (41) (2000), 2826.