A COUNTEREXAMPLE FOR THE OPTIMALITY OF KENDALL-CRANSTON COUPLING

KAZUMASA KUWADA
Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan
email: kwada@math.ocha.ac.jp

KARL-THEODOR STURM
Institute for Applied Mathematics, University of Bonn, Wegelerstrasse 6, 53115 Bonn, Germany
email: sturm@uni-bonn.de

Submitted November 24 2005, accepted in final form September 29 2006

AMS 2000 Subject classification: 60D05, 58J65
Keywords: Brownian motion, manifold, optimal coupling, Kendall-Cranston coupling

Abstract
We construct a Riemannian manifold where the Kendall-Cranston coupling of two Brownian particles does not maximize the coupling probability.

1 Introduction

Given two stochastic processes X_t and Y_t on a state space M, a coupling $Z_t = (Z^{(1)}_t, Z^{(2)}_t)$ is a process on $M \times M$ so that $Z^{(1)}_t$ or $Z^{(2)}_t$ has the same distribution as X_t or Y_t respectively. Of particular interest in many applications is the distribution of the coupling time $T(Z) := \inf\{t > 0 ; Z^{(1)}_s = Z^{(2)}_s \text{ for all } s > t\}$. The goal is to make the coupling probability $\mathbb{P}[T(Z) \leq t]$ as large as possible by taking a suitable coupling. When X and Y are Brownian motions on a Riemannian manifold, Kendall [3] and Cranston [1] constructed a coupling by using the Riemannian geometry of the underlying space. Roughly speaking, under their coupling, infinitesimal motion $\Delta Y_t \in T_{Y_t}M$ at time t is given as a sort of reflection of ΔX_t via the minimal geodesic joining X_t and Y_t. Their coupling has the advantage of controlling the coupling probability by using geometric quantities such as the Ricci curvature. As a result, Kendall-Cranston coupling produces various estimates for heat kernels, harmonic maps, eigenvalues etc. under natural geometric assumptions.

On the other hand, there is the question of optimality. We say that a coupling Z of X and Y is optimal at time t if

$$\mathbb{P}[T(Z) \leq t] \geq \mathbb{P}[T(\tilde{Z}) \leq t]$$

holds for any other coupling \tilde{Z}. Though Kendall-Cranston coupling has a good feature as mentioned, in general there is no reason why it should be optimal.
The Kendall-Cranston coupling is optimal if the underlying space has a good symmetry. For example, in the case $M = \mathbb{R}^d$, the Kendall-Cranston coupling $(Z^{(1)}, Z^{(2)})$ is nothing but the mirror coupling. It means that $Z^{(2)}_t = \Psi(Z^{(1)}_t)$ up to the time they meet, where Ψ is a reflection with respect to a hyperplane in \mathbb{R}^d so that $\Psi(X_0) = Y_0$. It is well known that the mirror coupling is optimal. Indeed, it is the only coupling which is optimal and Markovian [2].

More generally, the same result holds if there is a sort of reflection structure like a map Ψ on \mathbb{R}. We take three parameter $R > 0, \zeta > 0$ and $\delta > 0$ such that $\zeta < R/4$ and $\delta < \zeta/3$. Let $C = \mathbb{R} \times S^1$ be a cylinder with a flat metric such that the length of a circle S^1 equals ζ. For simplicity of notation, we write $z = (r, \theta)$ for $z \in C$ where $r \in \mathbb{R}$ and $\theta \in (-\zeta/2, \zeta/2)$ such that the Riemannian metric is written as $dr^2 + d\theta^2$. If appropriate, any $\theta \in \mathbb{R}$ will be regarded mod ζ and considered as element of $(-\zeta/2, \zeta/2]$. We put

$$M_1 := ([-R, \infty) \times S^1) \setminus B_\zeta^C((0, \zeta/2)) \subset C$$

and write $\partial_{1,0} := \partial B_\zeta^C((0, \zeta/2))$ as well as $\partial_{1,2} := \{R\} \times S^1$ (see Fig.1). Let C' be a copy of C. Then we put analogously

$$M_2 := ((-\infty, R] \times S^1) \setminus B_\delta^C((0, 0)) \subset C'$$

and write $\partial_{2,0} := \partial B_\delta^C((0, 0))$ as well as $\partial_{2,1} := \{R\} \times S^1$. Let $M_0 = S^1 \times [-1, 1]$ be another cylinder. We write $z \in M_0$ by $z = (\varphi, r)$ where $\varphi \in (0, 2\pi]$ and $r \in [-1, 1]$. Now we define a C^∞-manifold M (see Fig.2) by $M = M_0 \sqcup M_1 \sqcup M_2 / \sim$, where the identification \sim means

$$\partial_{1,2} \ni (-R, \theta) \sim (R, \zeta/2 - \theta) \in \partial_{2,1} \quad \text{for } \theta \in (-\zeta/2, \zeta/2],$$

$$\partial_{1,0} \ni (\delta \cos \varphi, \zeta/2 - \delta \sin \varphi) \sim (\varphi, -1) \in M_0 \quad \text{for } \varphi \in (0, 2\pi],$$

$$\partial_{2,0} \ni (\delta \cos \varphi, \delta \sin \varphi) \sim (\varphi, 1) \in M_0 \quad \text{for } \varphi \in (0, 2\pi].$$

We endow M with a C^∞-metric g such that (M, g) becomes a complete Riemannian manifold and:

(i) $g|_{M_1}$ coincides with the metric on M_1 inherited from C,
(ii) $g|_{M_2}$ coincides with the metric on M_2 inherited from C',

(iii) $g|_{M_0}$ is invariant under maps $(\theta, r) \mapsto (\theta, -r)$ and $(\theta, r) \mapsto (\theta + \varphi, r)$ on M_0,

(iv) $d((-1, 0), (1, 0)) = \zeta$ for $z_1 = (-1, 0), z_2 = (1, 0) \in M_0$

where d is the distance function on M.

3 Comparison of coupling probabilities

Let M be the manifold constructed above (with suitably chosen parameters R, ζ and δ) and fix two points $x = (0, \zeta/6) \in M_1$ and $y = (0, \zeta/3) \in M_2$. In this paper, the construction of Kendall-Cranston coupling is due to von Renesse [5]. We will try to explain his idea briefly. His approach is based on the approximation by coupled geodesic random walks $\{\hat{\Xi}^k\}_{k \in \mathbb{N}}$ starting in (x, y) whose sample paths are piecewise geodesic. Given their positions after $(n - 1)$-th step, one determines its next direction ξ_n according to the uniform distribution on a small sphere in the tangent space and the other does it as the reflection of ξ_n along a minimal geodesic joining their present positions. We obtain a Kendall-Cranston coupling (X_t, Y_t) by taking the (subsequential) limit in distribution of them. We will construct another Brownian motion $(\hat{Y}_t)_{t \geq 0}$ on M starting in y, again defined on the same probability space as we construct (X_t, Y_t) such that

$$\mathbb{P}(X \text{ and } Y \text{ meet before time } 1) < \mathbb{P}(X \text{ and } \hat{Y} \text{ meet before time } 1).$$

In other words, if Q denotes the distribution of (X, Y) and \hat{Q} denotes the distribution of (X, \hat{Y}) then

Proposition 3.1 $Q[T \leq 1] < \hat{Q}[T \leq 1]$.

Our construction of the process \hat{Y} will be as follows. We define a map $\Phi : M_1 \to M_2$ by $\Phi((r, \theta)) = (-r, \zeta/2 - \theta)$ and then put
Lemma 3.2

(i) \(\hat{Y}_t = \Phi(X_t) \) for \(t \in [0, \tau_{\partial, 0} \wedge T] \);

(ii) \(X \) and \(\hat{Y} \) move independently for \(t \in [\tau_{\partial, 0}, T) \) in case \(\tau_{\partial, 0} < T \);

(iii) \(\hat{Y}_t = X_t \) for \(t \in [T, \infty) \).

Note that \(\tau_{\partial, 2} = T \) holds when \(\tau_{\partial, 2} \leq \tau_{\partial, 0} \) under \(\hat{Q} \).

Set \(H = S^1 \times \{0\} \subset M_0 \subset M \). For \(z_1, z_2 \in M \) and \(A \subset M \), minimal length of paths joining \(z_1 \) and \(z_2 \) which intersect \(A \) is denoted by \(d(z_1, z_2 ; A) \). We define a constant \(L_0 \) by

\[
L_0 := \inf \left\{ L \in (\delta, R] : d(z_1, z_2 ; H) \geq d(z_1, z_2 ; \partial, 2) \right\}
\]

for some \(z_1 = (L, \theta) \in M_1, z_2 = (L, \zeta/2 - \theta) \in M_2 \).

Lemma 3.2 \(R - \zeta < L_0 < R \).

Proof. First we show \(L_0 < R \). Let \(z_1 = (R, 0) \in M_1 \) and \(z_2 = (R, \zeta/2) \in M_2 \). Obviously there is a path of length \(2R \) joining \(z_1 \) and \(z_2 \) across \(\partial, 2 \). Thus we have \(d(z_1, z_2 ; \partial, 2) \leq 2R \).

By symmetry of \(M \),

\[
d(z_1, z_2 ; H) = 2d(z_1, H) = 2 \left(d(z_1, \partial, 0) + \frac{\zeta}{2} \right) = 2 \left(\sqrt{R^2 + \zeta^2/4} - \delta \right) + \zeta > 2R,
\]

where the second equality follows from the third and fourth properties of \(g \) and the last inequality follows from the choice of \(\delta \). These estimates imply \(L_0 < R \).

Next, let \(z'_1 = (R - \zeta, \theta) \in M_1 \) and \(z'_2 = (R - \zeta, \zeta/2 - \theta) \in M_2 \). In the same way as observed above, we have

\[
d(z'_1, z'_2 ; H) = 2 \left(\sqrt{(R - \zeta)^2 + \theta^2} - \delta \right) + \zeta \leq 2R - 2\delta.
\]

Note that the length of a path joining \(z'_1 \) and \(z'_2 \) which intersects both of \(\partial, 2 \) and \(H \) is obviously greater than \(d(z'_1, z'_2 ; H) \). Thus, in estimating \(d(z'_1, z'_2 ; \partial, 2) \), it is sufficient to consider all paths joining \(z'_1 \) and \(z'_2 \) across \(\partial, 2 \) which do not intersect \(H \). Such a path must intersect both \(\{\delta\} \times S^1 \subset M_1 \) and \(\{-\delta\} \times S^1 \subset M_1 \) (see Fig.3). Thus we have

\[
d(z'_1, z'_2 ; \partial, 2) \geq d(z'_1, \delta) + d(\{-\delta\} \times S^1, \partial, 2) + d(\partial, 2, \delta)
\geq (R - \zeta - \delta) + (R - \delta) + \zeta
= 2R - 2\delta.
\]

Hence, the conclusion follows. \(\square \)

Set \(M'_1 := M_1 \cap [-L_0, L_0] \times S^1 \subset C \) and \(M'_2 := M_2 \cap [-L_0, L_0] \times S^1 \subset C \). We define a submanifold \(M' \subset M \) with boundary by \(M' = M_0 \cup M'_1 \cup M'_2 / \sim \) (see Fig.4). Let \(\Psi : M' \to M' \) be the reflection with respect to \(H \). For instance, for \(z = (r, \theta) \in M'_1, \Psi(z) = (r, \zeta/2 - \theta) \in M'_2 \).

Note that \(\Psi \) is an isometry, \(\Psi \circ \Psi = \text{id} \) and \(\{ z \in M' : \Psi(z) = z \} = H \).

Let \(X' \) be the given Brownian motion starting in \(x \) and now stopped at \(\partial M' \), i.e. \(X'_t = X_{t \wedge \tau_{\partial M'}} \).

Define a stopped Brownian motion starting in \(y \) by \(Y'_t = \Psi(X'_t) \) for \(t < \tau_H \) and by \(Y_t = X_t \) for \(t \geq \tau_H \) (that is, the two Brownian particles coalesce after \(\tau_H \)). Then we can prove the following lemma.
Lemma 3.3 The law of \((X_t\wedge\tau_{\partial_1}, Y_t\wedge\tau_{\partial_1})_{t\geq 0}\) coincides with that of \((X'_t, Y'_t)_{t\geq 0}\).

Proof. Note that the minimal geodesic in \(M\) joining \(z\) and \(\Psi(z)\) must intersect \(H\) for every \(z \in M'\) by virtue of the choice of \(L_0\). Thus, by the symmetry of \(M'\) with respect to \(H\), coupled geodesic random walks \(\hat{\Xi}_k\) are in \(E\) defined by
\[
E := \{(z^{(1)}, z^{(2)}) \in C([0, \infty) \to M \times M) ; z_1^{(2)} = \Psi(z_1^{(1)}) \text{ before } z_1^{(1)} \text{ exits from } M'\}
\]
(cf. Theorem 5.1 in \[4\]). Since \(E\) is closed in \(C([0, \infty) \to M \times M)\), \((X\cdot, Y\cdot) \in E\) holds \(\mathbb{P}\)-almost surely by taking a (subsequential) limit in distribution of \(\{\hat{\Xi}_k\}_{k \in \mathbb{N}}\). Thus the conclusion follows. \(\square\)

We now begin to show Proposition 3.1. First we give a lower estimate of \(\hat{Q}[T \leq 1]\). Let
\[
\gamma(a) := \{(x_1, x_2) \in \mathbb{R}^2 ; x_2 = a\}, a \in \mathbb{R},
\]
\[
A(\delta) := \bigcup_{n \in \mathbb{Z}} B_{\frac{\delta}{\sqrt{2}}}^{\mathbb{R}^2}(\left(\zeta(n + \frac{1}{2}), 0\right)).
\]
The remark after the definition of \(\hat{Q}\) implies
\[
\hat{Q}[T \leq 1] \geq \hat{Q}[T \leq 1, \tau_{0,2} < \tau_{0,0}] = \hat{Q}[\tau_{0,2} \leq 1 \wedge \tau_{0,0}].
\]
By lifting \(X_1\) to \(\mathbb{R}^2\), the universal cover of \(C\),
\[
\hat{Q}[\tau_{0,2} \leq 1 \wedge \tau_{0,0}] = \mathbb{P}^{\mathbb{R}^2}[\tau_{0,2} \leq 1 \wedge \tau_{A(\delta)}] \geq \mathbb{P}^{\mathbb{R}^2}[\tau_{0,2} \leq 1, \tau_{A(\delta)} > 1] \geq \mathbb{P}^{\mathbb{R}}[\tau_{R} \leq 1] - \mathbb{P}^{\mathbb{R}^2}[\tau_{A(\delta)} \leq 1].
\]
(3.1)

Here \(\mathbb{P}^{\mathbb{R}}\) and \(\mathbb{P}^{\mathbb{R}^2}\) denote the usual Wiener measure for Brownian motion (starting at the origin) on \(\mathbb{R}^2\) or \(\mathbb{R}\), resp. For simplicity, we write \(\tau_R\) instead of \(\tau_{1(R)}\).
Next we give an upper estimate of $Q[T \leq 1]$. Let $E := \{\tau_{\partial,0} < 1 \wedge \tau_{\partial,\partial'}\}$. Then

$$Q[E] = P[E] \leq P^{R^2} [\tau_{A(\delta)} < 1].$$

Note that, on $\{T \leq 1\} \cap E^c$, X must hit $\partial \partial'$ before T. It means

$$Q[T \leq 1] \cap E^c = Q[\{\tau_{\partial,\partial'} < T \leq 1\} \cap E^c].$$

By Lemma 3.2, $Y_{\tau_{\partial,\partial'}} = \Psi(X_{\tau_{\partial,\partial'}})$ on E^c under Q. In order to collide two Brownian motions starting at $X_{\tau_{\partial,\partial'}}$ and $\Psi(X_{\tau_{\partial,\partial'}})$, either of them must escape from the flat cylinder of length $2(L_0 - \delta)$ where its starting point has distance $L_0 - \delta$ from the boundary. This observation together with the strong Markov property yields

$$Q[\{\tau_{\partial,\partial'} < T \leq 1\} \cap E^c] = Q[Q(Y_{\tau_{\partial,\partial'}}) \wedge \tau_{\partial} < 1 \wedge \tau_{\partial,0}] \leq 2Q[P^{R^2} [\tau_{\partial} < 1 \wedge \tau_{\partial,0}] \wedge \tau_{\partial,\partial'} < 1 \wedge \tau_{\partial,0}].$$

By Lemma 5.2 and the definition of ζ and δ, we have $L_0 - \delta \geq R - \zeta - \delta > 2R/3$. Thus

$$Q[P^{R^2} [\tau_{\partial} < 1 \wedge \tau_{\partial,0}] \wedge \tau_{\partial,\partial'} < 1 \wedge \tau_{\partial,0}] \leq 2 \exp \left(-\frac{(L_0 - \delta)^2}{2}\right) P[\tau_{\partial,\partial'} < 1 \wedge \tau_{\partial,0}] \leq \exp \left(-\frac{2R^2}{9}\right) P[\tau_{\partial,\partial'} < 1 \wedge \tau_{\partial,0}].$$

By lifting X_t to R^2, we have

$$P[\tau_{\partial,\partial'} < 1 \wedge \tau_{\partial,0}] \leq P^{R^2} [\tau_{\partial} \wedge \tau_{\partial'} < 1 \wedge \tau_{\partial,0}] \leq 2P^{R^2} [\tau_{\partial} < 1] \leq 2P^{R^2} [\tau_{R - \zeta} < 1].$$

Here the last inequality follows from Lemma 5.2. Consequently, we obtain

$$Q[T \leq 1] \leq P^{R^2} [\tau_{A(\delta)} < 1] + 16 \exp \left(-\frac{2R^2}{9}\right) P^{R^2} [\tau_{R - \zeta} < 1].$$

(3.2)

Now take $R > 3\sqrt{2 \log 2}$. After that we choose ζ so small that $P^{R^2} [\tau_{R - \zeta} < 1] \approx P^{R^2} [\tau_R < 1]$. Finally we choose δ so small that $P^{R^2} [\tau_{A(\delta)} < 1] \approx 0$. Then Proposition 5.1 follows from 3.1 and 3.2.

Acknowledgment. This work is based on the discussion when the first-named author stayed in University of Bonn with the financial support from the Collaborative Research Center SFB 611. He would like to thank the institute for hospitality.

References

[1] Cranston, M., “Gradient estimates on manifolds using coupling”, J. Funct. Anal. 99 (1991), no.1, 110–124. MR1120916

[2] Hsu, E., Sturm, K.-T., “Maximal coupling of Euclidean Brownian motions” SFB Preprint 85, University of Bonn 2003
[3] Kendall, W., “Nonnegative Ricci curvature and the Brownian coupling property”, Stochastics 19 (1986), 111–129 [MR0864339]

[4] Kuwada, K., “On uniqueness of maximal coupling for diffusion processes with a reflection”, to appear in Journal of Theoretical Probability

[5] von Renesse, M.-K., “Intrinsic coupling on Riemannian manifolds and polyhedra”, Electron. J. Probab, 9 (2004), no.14, 411–435. [MR2080605]