Local Diversification of Methicillin-Resistant Staphylococcus aureus ST239 in South America After Its Rapid Worldwide Dissemination

Ana Maria Nunes Botelho¹, Maiana Oliveira Cerqueira e Costa², Ahmed M. Moustafa³, Cristiana Ossaille Beltrame¹, Fabienne Antunes Ferreira¹, Marina Farrel Côrtes¹, Bruno Souza Scramignon Costa¹, Deborah Nascimento Santos Silva¹, Paula Terra Bandeira¹, Nicholas Costa Barroso Lima², Rangel Celso Souza², Luiz Gonzaga Paula de Almeida², Ana Tereza Ribeiro Vasconcelos³, Apurva Narechania⁴, Chanelle Ryan³, Kelsey O’Brien³, Sergios-Orestis Kolokotronis⁴,⁵, Paul J. Planet³,⁴*, Marisa Fabiana Nicolás²* and Agnes Marie Sá Figueiredo¹*

¹ Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; ² Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil; ³ Department of Pediatrics, Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, United States; ⁴ Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States; ⁵ Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Medical Center, Brooklyn, NY, United States

The global spread of specific clones of methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem, and understanding the dynamics of geographical spread requires worldwide surveillance. Over the past 20 years, the ST239 lineage of MRSA has been recognized as an emerging clone across the globe, with detailed studies focusing on isolates from Europe and Asia. Less is known about this lineage in South America, and, particularly, Brazil where it was the predominant lineage of MRSA in the early 1990s to 2000s. To gain a better understanding about the introduction and spread of ST239 MRSA in Brazil we undertook a comparative phylogenomic analysis of ST239 genomes, adding seven completed, closed Brazilian genomes. Brazilian ST239 isolates grouped in a subtree with those from South American, and Western, romance-language-speaking, European countries, here designated the South American clade. After an initial worldwide radiation in the 1960s and 1970s, we estimate that ST239 began to spread in South America and Brazil in approximately 1988. This clone demonstrates specific genomic changes that are suggestive of local divergence and adaptational change including agrC single-nucleotide polymorphisms variants, and a distinct pattern of virulence-associated genes (mainly the presence of the chp and the absence of sea and sasX). A survey of a geographically and chronologically diverse set of 100 Brazilian ST239 isolates identified this virulence genotype as the predominant pattern in Brazil, and uncovered an unexpectedly high prevalence of agr-dysfunction (30%). ST239 isolates from Brazil also appear to have undergone transposon (IS256) insertions in or near global regulatory genes (agr and mgr) that likely led to rapid reprogramming of bacterial traits. In general,
the overall pattern observed in phylogenomic analyses of ST239 is of a rapid initial global radiation, with subsequent local spread and adaptation in multiple different geographic locations. Most ST239 isolates harbor the ardA gene, which we show here to have in vivo anti-restriction activity. We hypothesize that this gene may have improved the ability of this lineage to acquire multiple resistance genes and distinct virulence-associated genes in each local context. The allopatric divergence pattern of ST239 also may suggest strong selective pressures for specific traits in different geographical locations.

Keywords: methicillin-resistant *Staphylococcus aureus*, ST239-SCCmeCIII, Brazilian epidemic clone, Brazilian/Hungarian clone, comparative genomics

BACKGROUND

Staphylococcus aureus is a challenging human pathogen capable of causing a range of hospital (HA) and community-associated (CA) infections, varying from local and uncomplicated skin/soft tissue infections to more severe illnesses such as necrotizing fasciitis, pneumonia, bacteremia, osteomyelitis, and endocarditis. This extraordinary pathogenic potential is generally attributed to a plethora of well-known virulence-associated genes, and a relatively high rate of genomic plasticity that results in the frequent acquisition of new genes (Figueiredo and Ferreira, 2014). MRSA remains one of the leading causes of hospital infections worldwide, despite aggressive infection control measures (World Health Organisation [WHO], 2017). Interestingly, like CA-MRSA strains, the global diversity of HA-MRSA is represented by just a few, mostly clonal, epidemic lineages that appear to have adapted to specific challenges of the hospital environment (Hsu et al., 2015). In many cases, the specific factors that enhance the fitness of HA-MRSA strains are unknown, but it is likely that environmental and host challenges as well as inter-strain competition affect selection (Figueiredo and Ferreira, 2014). The mechanisms that lead to the spread of organisms over large geographical areas, even though they manifest mostly in hospitals, are also obscure, betraying a more complex epidemiology that includes large-scale waves of replacement of one predominant clone by another (Figueiredo and Ferreira, 2014; Hsu et al., 2015; Planet et al., 2017).

One of the most successful HA-MRSA lineages is the multilocus sequence type (ST) 239 that carries the staphylococcal cassette chromosome type III (SCCmeCIII). ST239-SCCmeCIII appears to have originated as a naturally occurring “hybrid,” from a large recombination event involving *S. aureus* ancestors of two major lineages, CC8 and CC30, which contribute about 80% and 20% of its genome, respectively (Robinson and Enright, 2004). The ST239-SCCmeCIII MRSA lineage has been associated with outbreaks in healthcare settings on all populated continents, and members of this lineage are generally characterized by their ability to cause serious, disseminated infections (Holden et al., 2010). Additionally, these bacteria present high-level resistance to many types of available antimicrobial drugs. Glycopeptide antibiotics and some more recent anti-MRSA-targeted antibiotics remain effective, but heteroresistance to vancomycin (hVISA) has recently been detected in ST239 isolates from Australia (van Hal et al., 2011).

Several studies have analyzed the genomic epidemiology and phylogeny of ST239 MRSA from different geographic regions (Harris et al., 2010; Yamamoto et al., 2012; Wang et al., 2014; Baines et al., 2015; Hsu et al., 2015; Arias et al., 2017). These studies focused mostly on isolates from Europe, Asia, and Australia; although a handful of ST239 strains from Latin America have been noted to form their own clade. Within this clade is a ST239 lineage referred to as the Brazilian epidemic clone (BEC) that was first reported in 1992 (Teixeira et al., 1995). For over 20 years this clone has been one of the most common MRSA isolates collected in Brazilian hospitals (Figueiredo and Ferreira, 2014). To gain a better understanding of this lineage we completed, closed, and annotated genomes for seven ST239 isolates of Brazilian MRSA (ST239-BRC). We used publicly available ST239 genome sequences to assess the origin and phylogeography of these isolates, and to generate a more complete picture of the spread and local adaptation of ST239.

MATERIALS AND METHODS

Bacterial Strains and Genomes

Seven representatives of the ST239-SCCmeCIII lineage obtained from clinical samples in Brazil, including *agr*-functional and -dysfunctional isolates, were selected for whole-genome sequencing. These MRSA isolates were collected from patients presenting with local or invasive hospital-associated (HA) infections, admitted at different public general hospitals; and from colonization cases involving patients enrolled in a home-care system, from 1993 to 2001, as indicated in Table 1. The strains BMB9393, HC1335, and HC1340 were isolated in Rio de Janeiro, RJ (southeast region of Brazil), GV69, GV51, and GV88 in Teresina, PI (Northeast region), and Be62 in Belém, PA (North region). The distance from Rio de Janeiro to Belem...
is about 2,464 km and from Belém to Teresina approximately 752 km. The genomes of seven of these Brazilian ST239 MRSA were completely closed and referred collectively as ST239-BR.

Additionally, a collection of 100 hospital MRSA isolates previously genotyped as ST239-SCCmecIII (Teixeira et al., 1995) from different geographic regions of Brazil was used in experimental assays. We refer to this collection as ST239-BR100.

These isolates were collected from sites of infection (n = 62) or from nasal colonization (n = 38), and only one isolate per patient was included. The main characteristics of these isolates are listed in Supplementary Table S1.

For detailed comparative genomic analyses, we used two other representative genomic subsets (ST239-INTC, non-ST239-INTC). First we defined an international subset of completed and annotated ST239 genomes from GenBank (ST239-INTC). These genomes were from the following isolates: (i) TW20 (GenBank Accession Number: FN433596), isolated in 2003 from a 2-year MRSA outbreak in an intensive care unit (ICU), in London (Holden et al., 2010); (ii) JKD6008 (Acc: CP002120), a vancomycin-intermediate S. aureus (VISA) strain obtained in 2003 from blood after 42-day vancomycin treatment, in New Zealand (Howden et al., 2010); (iii) T0131 (Acc: CP002643), isolated in 2006 from an 87-year-old in China (Li et al., 2011); (iv) Z172 (Acc: CP006838), a VISA isolate obtained in 2010 from blood of an elderly patient in an ICU in Taiwan (Chen et al., 2013) and (v) XN108 (Acc: CP007447), also a VISA isolate collected from a burned patient with a wound infection, in China (Zhang et al., 2014). We also used another comparative group of well-described, international, complete HA-MRSA genomes from outside of the ST239 lineage (non-ST239-INTC), which included the following genomes: (i) MRSA252 (Acc: BX571856), a ST36-SCCmecII isolate, representative of the EMRSA-16 clone (Holden et al., 2004); (ii) Mu50 (Acc: BA000017), a ST5-SCCmecII isolate, representative of the USA100 clone (Kuroda et al., 2001); (iii) CA347 (Acc: CP006044), a ST45-SCCmecIV isolate, representative of the USA600 clone (Stegger et al., 2013); (iv) H-EMRSA-15 (Acc: CP007659), a ST22-SCCmecIV isolate, representative of the EMRSA-15 clone (Sabirova et al., 2014), and (v) 2395 (Acc: CP007499), a ST8-SCCmecIV isolate, representative of the USA500 clone (Benson et al., 2014). The characteristics of ST239-INTC and non-ST239-INTC are summarized in Table 2.

Besides the seven genomes sequenced for this work (ST239-BR) and the five completely closed genomes available on NCBI (ST239-INTC), a total of 171 ST239 and 7 single-locus variant (SLV) raw genome sequences deposited in the GenBank1, along with those used in the phylogenetic studies published by Castillo-Ramírez et al. (2012) and Harris et al. (2010) deposited in the EMBL-Bank (Acc: ERA00102) were also used in this study for phylogenetic analyses, altogether totaling 190 genomes. Only genomes of strains with reported isolation date were considered for the molecular clock analysis (n = 167 genomes). The accession numbers for these assemblies are listed in Supplementary Table S2. For comparative genomic studies, the genome of the Brazilian strain BMB9393 was used as reference, in order to easily highlight the differences between Brazilian and international ST239 genomes.

The strain TW20 that belongs to the ST239 lineage and has been used as reference in genomic studies of ST239 MRSA was chosen as the reference for phylogenetic analyses.

Whole Genome Sequencing and Assembly

DNA from the seven ST239-BR MRSA isolates used was obtained by phenol extraction and ethanol precipitation (Sambrook et al., 1989). The concentration and purity of the DNA were assessed using a Qubit™ 2.0 fluorometer (Invitrogen, Eugene, OR, United States). A total of 5 μg genomic DNA was used to prepare a paired-end library. The genome sequencing was performed using a 454 GS FLX Titanium (3-kb paired-end library) approach (Roche Diagnostics Corporation, Indianapolis, IN, United States). The assembly was accomplished using Newbler v2.6 (Roche) (Margulies et al., 2005) and Celera Assembler v6.1 (Myers et al., 2000). Gaps within scaffolds resulting from repetitive sequences were resolved by in silico gap filling. The complete genome assembly was accomplished using a combination of Newbler v 2.6 (Roche Inc.) and GapFiller (Boetzer and Pirovano, 2012). The consensus sequences assembled into contigs and scaffolds were aligned against a database of complete genomes from the Staphylococcus genus to determine the orientation and order of the contigs and scaffolds (Supplementary Figure S1). The gaps, intra- and inter-scaffolds, were filled by individual assemblies of the reads falling in both termini of a given gap (Supplementary Figure S1).

1https://www.ncbi.nlm.nih.gov/genome/genomes/154?genome_assembly_id=biotreecgroup16223, last accessed in 18 April 2018.
confirm the position of each locally collinear block (LCB) in specific primers listed in Supplementary Table S3 as reference, were confirmed by a PCR-based assay using genome (ST239-BR C with default parameters. The inversions found in the GV69 initially analyzed using ProgressiveMauve (Darling et al., 2010), Chromosomal architecture and genome organization were as well as identification of protein domains and important sites against KEGG, NCBI-nr, and UniProtKB/Swiss-Prot databases, inclusion similarity searches using both nucleotide and amino identification of bona fide ORFs and their probable functions and UniProtKB/Swiss-Prot), and the results are made available comparison with several databases (NCBI-nr, KEGG, InterPro, genomic context and conserved genes located at the flanking regions. Other genomic analyses were performed using the comparative genomic tools available in SABIA platform (Almeida et al., 2004). The Geneious software (Biomatters Ltd., Auckland, New Zealand) was also used for genome alignment and visualization of the regions analyzed. Putative bacteriophages were detected using the phage search tool, PHAST (Zhou et al., 2011). The set of virulence genes (virulome) and staphylococcal pathogenicity island (SaPI) and other genomic islands (GIs) were detected using VirulenceFinder 1.5 (minimum length = 80%, threshold id = 98%) and manual inspection using Uniprot/Swissprot, BLAST, and literature review (Joensen et al., 2014). The EasyFig software (Sullivan et al., 2011) was used for creating linear comparative figures of multiple genomic loci, and the BLASTn atlas was generated with GVIEW, applying as parameters identity >80% and e-values <10−10 (Petkau et al., 2010).

We used PCR to search for important genomic features in the whole collection of ST239-BR100 isolates. The primers used for each assay are listed in Supplementary Table S3.

TABLE 2 | General characteristics of the closed genomes of the HA–MRSA strains from ST239 and non-ST239 lineages.

Isolate	Lineage	Chromosome size (Mbp)	%GC	Number of genes in chromosome	Plasmid (Kbp)	tRNA	Reference
BMB9393	ST239-SCCmectIII	2.98	32.9%	3,073	2.9	60	This study
GV69	ST239-SCCmectIII	3.05	33.0%	3,175	–	60	This study
GV88	ST239-SCCmectIII	2.98	32.9%	2,964	2.9	57	This study
Be62	ST239-SCCmectIII	2.99	32.9%	2,961	2.7	61	This study
GV51	ST239-SCCmectIII	2.98	32.9%	2,965	2.9	60	This study
HC1335	ST239-SCCmectIII	2.97	32.9%	2,968	–	60	This study
HC1340	ST239-SCCmectIII	3.026	32.9%	3,026	–	60	This study
TW20	ST239-SCCmectIII	3.04	32.8	3,172	29.6/3	60	Holden et al., 2010
JkD6008	ST239-SCCmectIII	2.92	34.0	3,026	–	82	Howden et al., 2010
T0131	ST239-SCCmectIII	2.91	32.8	2,976	–	54	Li et al., 2011
Z172	ST239-SCCmectIII	2.99	32.8	3,125	27.3/3	60	Chen et al., 2013
XN108	ST239-SCCmectIII	3.05	32.8	3,049	–	57	Zhang et al., 2014
MRSA252	ST36-SCCmectIII	2.90	32.8	2,939	–	59	Holden et al., 2004
Mu50	STS-SCCmectI	2.88	32.9	2,958	25.1	59	Kuroda et al., 2001
2395	ST8-SCCmectIV	2.96	31.9	3,104	32.4	59	Benson et al., 2014
CA-347	ST45-SCCmectIV	2.85	32.9	2,696	24.7	60	Stogger et al., 2013
H-EMRSA-15	ST22-SCCmectIV	2.85	32.8	2,662	–	57	Sabrova et al., 2014

accomplished by selecting reads that formed the end of contigs adjacent to each gap stretches. Those reads were assembled separately with Newbler. Contiguous sequences generated by this approach that were able to complete the gap and anchor on the two adjacent contigs were added to the sequence, thus closing the gap. As a last step of gap closure, the remaining gaps were closed using the GapFiller program.

Genome Annotation

Genome annotation was performed using the System for Automated Bacterial Integrated Annotation (SABIA) (Almeida et al., 2004). This software uses an automated annotation pipeline, where each open-reading frame (ORF) is submitted for comparison with several databases (NCBI-nr, KEGG, InterPro, and UniProtKB/Swiss-Prot), and the results are made available on the screen for assessment by expert users. All possible ORFs were predicted by Glimmer (Delcher et al., 2007) and GeneMark (Besemer and Borodovsky, 2005) and the transfer RNAs (tRNAs) by tRNAscan-SE (Schattner et al., 2005). The identification of bona fide ORFs and their probable functions included similarity searches using both nucleotide and amino acid sequences by Basic Local Alignment Search Tool (BLAST) against KEGG, NCBI-nr, and UniProtKB/Swiss-Prot databases, as well as identification of protein domains and important sites using InterPro (Mitchell et al., 2015).

Comparative Genomics Analysis

Chromosomal architecture and genome organization were initially analyzed using ProgressiveMauve (Darling et al., 2010), with default parameters. The inversions found in the GV69 genome (ST239-BR C), using BMB9393 genome (ST239-BR C) as reference, were confirmed by a PCR-based assay using specific primers listed in Supplementary Table S3. Thus, to confirm the position of each locally collinear block (LCB) in the GV69 genome, primers were designed using the genome of GV69 based on contiguous sequences of adjacent LCBs. The rearrangement found in silico was confirmed when the PCR resulted in the expected amplicon size. The MicroScope platform (Vallenet et al., 2009, 2013) was used for determination of the RGPs and unique/shared gene content identification. RGPs were defined as DNA segments over 5 kbp that were possibly related to events of horizontal exchanges. Additional features for identification of RGPs included G + C% deviation, compositional biases, presence of prophage genes, synteny breaks, and proximity to tRNAs. For these analyses, the BMB9393 chromosome was set as the reference and RGPs were mapped in ST239-BR C, ST239-INT C, and non-ST239-INT C genomes. Each identified RGP was manually inspected based on the genomic context and conserved genes located at the flanking regions. Other genomic analyses were performed using the comparative genomic tools available in SABIA platform (Almeida et al., 2004). The Geneious software (Biomatters Ltd., Auckland, New Zealand) was also used for genome alignment and visualization of the regions analyzed. Putative bacteriophages were detected using the phage search tool, PHAST (Zhou et al., 2011). The set of virulence genes (virulome) and staphylococcal pathogenicity island (SaPI) and other genomic islands (GIs) were detected using VirulenceFinder 1.5 (minimum length = 80%, threshold id = 98%) and manual inspection using Uniprot/Swissprot, BLAST, and literature review (Joensen et al., 2014). The EasyFig software (Sullivan et al., 2011) was used for creating linear comparative figures of multiple genomic loci, and the BLASTn atlas was generated with GVIEW, applying as parameters identity >80% and e-values <10−10 (Petkau et al., 2010).

We used PCR to search for important genomic features in the whole collection of ST239-BR100 isolates. The primers used for each assay are listed in Supplementary Table S3.
Phylogenetic Analysis and Divergence Times

Besides the genomes sequenced in this study (ST239-BR_c) and the international representative genomes used (ST239-INT_c), ST239 genomes were downloaded from NCBI or from EMBL (n = 190) and were used for whole-genome alignment with reference to the S. aureus TW20 genome, using the NUCmer and show-snps utilities of MUMmer². All regions from the reference genome annotated as MGEs were excluded as well as the approximately 20% of the genome thought to be derived from CC30 (as in Holden et al., 2010; Supplementary Table S4). We also applied a mask that excluded repetitive sequences from the reference genome that were >80% identical over at least 100 nucleotides to other genomic loci, based on pairwise MegaBLAST-based analysis. Phylogenetic reconstruction was carried out by using the alignment of polymorphic sites in IQ-TREE v1.6.2 (Nguyen et al., 2015). One BIONJ (Gascuel, 1997) and 100 parsimony trees were used as starting trees for the maximum-likelihood (ML) tree search. The substitution model implemented was the general time-reversible (GTR) (Lanave et al., 1984) and empirical base frequencies, among-site rate heterogeneity was modeled according to the free-rate model (Yang, 1995; Soubrier et al., 2012), and ascertainment bias for variable-only sites was corrected (Lewis, 2001). Internode branch support was evaluated with the ultrafast bootstrap approximation method (UFBoot) and a maximum of 1000 replicates (Minh et al., 2013), using a convergence criterion, as well as with the Shimodaira–Hasegawa–aLRT branch test (Guindon et al., 2010) and 1,000 replicates.

To estimate the time that elapsed since the genomic divergence of the isolates in our dataset, we employed a Bayesian phylogenetic framework implemented in BEAST v2.5.1 (Drummond et al., 2012). For this analysis, genomes without collection date report were excluded, leading to a total of 167 genomes included. In addition to the above masked regions that were potentially mobile (Supplementary Table S4), we sought to exclude any regions with evidence of recombination. For this analysis, we rebuilt the genome matrix using simulated paired-end reads that were generated for the 167 assembled genomes that have dates using wgsim³ in the haplotype mode without introducing errors, mutations, or indels. Read mapping to TW20 reference genome and variants calling were performed using Snippy v.4.3.3⁴. The regions in TW20 excluded in the previous step were masked in this analysis as well. A whole-genome alignment was used as input for ClonalFrameML (Didelot and Wilson, 2015) to infer recombination using 100 pseudo-bootstrap replicates. The maskrc-svg script⁵ was then used to mask recombinant regions from the original whole-genome alignment. A SNP alignment was then called from the resultant alignment, from maskrc-svgs, using the SNP-sites tool (Page et al., 2016).

The SNP alignment was then used to estimate divergence times in BEAST v2.5.1 (Bouckaert et al., 2014). In order to gauge the potential for temporal signal of our dataset, we used a regression of root-to-tip genetic distance vs. isolation time as a diagnostic tool, as implemented in TempEst v1.5.1 (Rambaut et al., 2016). A positive correlation between genetic divergence and isolation time was observed (plot not shown; $R^2 = 0.6413$), indicating suitability of this dataset for downstream molecular clock analysis in BEAST. The Hasegawa–Kishino–Yano nucleotide substitution model was used (Hasegawa et al., 1985) with among-site rate heterogeneity modeled with the I distribution and four discrete rate categories (Yang, 1995), and ascertainment bias for variable-only sites was corrected by factoring in the number of variable sites based on fully sequenced MRSA genomes. We implemented an uncorrelated lognormal relaxed clock model with a random starting tree, a Bayesian skyline coalescent (Drummond, 2005), and a uniform prior probability distribution of 10^{-4}–10^{-8} substitutions/site/year. The chain length was set at 200 million MCMC steps with a 1,000-step thinning. The sampled parameters and their effective sample size (ESS > 200) were inspected in Tracer v1.6⁶. LogCombiner was then used to resample posterior distribution of the trees file at a lower frequency (10,000 steps). We also implemented a strict clock in BEAST with a random starting tree, a Bayesian skyline coalescent (Drummond, 2005), and a uniform prior probability distribution of 10^{-4}–10^{-8} substitutions/site/year. The chain length was set at 50 million MCMC steps with a 5,000-step thinning. Two independent runs were combined post convergence, following inspections of the sampled parameters and their ESS. The chronograms were plotted on the basis of the maximum clade credibility tree using the TreeAnnotator program from the BEAST package and were visualized in FigTree v1.4.3⁷. The trees and divergence times produced by the strict and relaxed clock techniques were largely indistinguishable.

Detection of Agr Activity in the ST239 Isolates

The detection of Agr activity in the collection of one hundred (ST239-BR₁₀₀) isolates was performed using MALDI–TOF–MS according to a previously described method (Josten et al., 2014). Briefly, individual colonies were subjected to MALDI-TOF-MS for detection of a peak at m/z 2415 representing the phenol soluble modulin PSM-<i>mec</i>, an Agr-regulated gene harbored on some types of SCC_{mec}, including SCC_{mec}III, which is carried by the ST239 lineage.

²http://mummer.sourceforge.net

³https://github.com/lh3/wgsim

⁴https://github.com/thanhleviet/maskrc-svgs

⁵http://tree.bio.ed.ac.uk/software/figtree/

⁶http://beast.bio.ed.ac.uk/Tracer

⁷http://tree.bio.ed.ac.uk/software/figtree/
Strains BMB9393 and HC1335 were also tested using a real-time quantitative reverse transcription-polymerase chain reaction (real-time qRT-PCR) for the RNAIII transcript with expression of the 16S rRNA gene as a control. For RNA preparations, bacterial cells grown in BH broth (18 h; 37°C; 250 rpm) were collected in the stationary phase. Total RNA was prepared using RNeasy Mini kit (Qiagen) and quantified using a Nanodrop Lite Spectrophotometer (Thermo Scientific, ThermoFisher Scientific). RNA integrity was analyzed by gel electrophoresis. Real-time qRT-PCR was performed using the Power SYBR Green RNA-to-CT™ 1-Step Kit (Applied Biosystems, ThermoFisher Scientific) as recommended. The run was performed in a StepOne Real-Time PCR System (Applied Biosystems, ThermoFisher Scientific) and analyzed using the StepOne Software v2.2 (Applied Biosystems, ThermoFisher Scientific). The cycling conditions for all primers were performed as follows: 48°C for 30 min (cDNA preparation); 95°C for 10 min; 35 cycles of 95°C for 30 s, 55°C for 45 s, and 72°C for 45 s (cDNA amplification cycles). At least three biological replicates were run with four technical replicates each. Primers used are listed in Supplementary Table S3.

IS256 Insertion in mgrA Promoter Region and in the agrC ORF

Genomic analysis showed an IS256-related element upstream mgrA ORF in the genome of BMB9393 strain (ST230-BR(C)). The frequency of this insertion in our collection of 100 ST239-BR isolates was assayed using primers designed based on the BMB9393 genome sequence, with the forward primer in the IS256 sequence and the reverse in the agrC sequence. Likewise, the IS256 insertion found disrupting agrC ORF in the genome of HC1335 (ST239-BR(C)) was also searched for in the whole ST239-BR collection using a PCR-based approach, with forward primer in the agrC sequence and the reverse in the IS256 sequence (based on the HC1335 genome sequence). Amplicons with the expected sizes were considered positive for the correspondent insertion.

Detection of Recombination and Natural Selection in agrC

We mined agrC coding sequences from all assembled genomes and were condensed into 15 unique haplotypes. Those were then aligned by coding frame using MAFFT v7.407 (Katoh and Standley, 2013), and first checked for recombination breakpoints using the GARD algorithm (Kosakovsky Pond et al., 2006) on the DataMonkey web server. We then employed several tests for positive or diversifying selection at different levels on this dataset. First, we examined whether or not over the length of the gene and across the phylogeny there had been at least one codon site that experienced diversified selection on a branch. This was done using Branch-Site Unrestricted Statistical Test for Episodic Diversification (BUSTED) as a gene-wide test by testing all branches across the tree (Murrell et al., 2015). We then used different methods to investigate the potential for diversifying selection having acted on individual codon sites and, separately, on branches of the phylogeny. We employed two sitewise methods: Mixed Effects Model of Evolution (MEME) (Murrell et al., 2012) and Fast Unconstrained Bayesian AppRoximation (FUBAR) (Murrell et al., 2013), asking whether the intensity of natural selection has been relaxed or increased along internal branches of the phylogeny using the RELAX framework (Wertheim et al., 2015).

ArDA Expression in the araD-Negative S. aureus Strain RN4220

The araD sequence was amplified using the primers araD-fwd and araD-rev (Supplementary Table S3) and genomic DNA from S. aureus BMB9393 as template. The araD gene was initially cloned into the p-GEM T easy vector (Promega) and subcloned into the expression vector pCN40 using BamHI and EcoRI restriction sites (Charpentier et al., 2004). The recombinant plasmid pCN40A (pCN40::blaZ-araD) or empty pCN40 were transformed by electroporation into DC10B competent cells (Monk et al., 2012). The recombinant plasmids (pCN40A) and pCN40 were obtained (QIAfilter Plasmid Midi Kit; Qiagen), and transformed into RN4220 by electroporation (Monk et al., 2012), yielding the clones 42P40E (RN4220; empty pCN40) and 42P40A (RN4220; pCN40A). Transformants were confirmed by DNA sequencing and the expression of araD in 42P40E was detected using real-time qRT-qPCR.

Competence Assays

The natural S. aureus plasmid pBMB (Costa et al., 2013) and the shuttle-vector plL150 (Addgen) were obtained from S. aureus BMB9393 and Escherichia coli DC10B strains, respectively. 42P40E or 42P40A competent cells were submitted to electroporation with 0.1 mg/µl of pBMB and 10 mg/µl of plL150. Chloramphenicol-resistant colonies derived from 42P40A or 42P40E were measured as colony forming units (CFU)/ml.

Statistical Analysis

We used Student’s t-test (α = 0.05) where noted. In addition to the selection tests noted above, a Poisson distribution was used to determine the probability of a nucleotide change in agrC occurring at the same rate observed for other ST239 S. aureus virulence regulator genes. To determine the most representative genetic pattern of a clade, defined by presence/absence of the loci (sasX, sae, chp, and agrC clade-specific SNPs), we used the Grubbs’ test. Subsequently, a χ²-test for independence was used to test whether the main genetic pattern of a clade and its SLVs were associated with a specific clade. We also used a χ²-test to correlate these genetic patterns and broad geographic location (Eastern Mediterranean, Asia, South America). Because there are many sequenced genomes from Tunisia and Turkey, we randomly selected only three representative genomes of each of these two countries.
RESULTS AND DISCUSSION

Genomic Characteristics and Chromosomal Architecture of ST239-BR$_C$

To understand genomic diversity of our sequenced genomes (ST239-BR$_C$), we did a detailed comparison to an international set of five completely closed ST239 genomes from different continents available in GenBank (ST239-INT$_C$). We also defined a set of five other non-ST239, closed, and completed, S. aureus genome representatives from internationally disseminated lineages (non-ST239-INT$_C$) commonly associated with hospital infections, including ST5, ST8, ST22, ST36, and ST45. The results of our analysis are shown in Figure 1.

The main characteristics of the completely sequenced and closed genomes of seven MRSA isolates from Brazil (ST239-BR$_C$) are described in Table 2. Whole-genome alignments revealed a large genomic inversion in the GV69 genome compared to other ST239-BR$_C$ genomes (Figure 1A). This inversion was confirmed by PCR amplification of the expected products (see the section “Materials and Methods”). Additional chromosomal rearrangements were detected in comparison with ST239-INT$_C$ genomes (Figure 1B), as represented by breaks in the synteny between 10 genomic LCBs (Figure 1B).

Unique and Shared Chromosomal Genes

Comparison of ST239-BR$_C$, ST239-INT$_C$, and non-ST239-INT$_C$ genomes performed using the SABIA platform (Almeida et al., 2004) revealed 1,991 genes in the ST239-SCCmecIII core genome, defined here as the genes common to all ST239 completely closed genomes. When compared with the non-ST239-INT$_C$ genomes, only 11 ORFs were exclusively found among the ST239-BR$_C$ genomes studied. These unique ORFs are predicted to encode five distinct hypothetical proteins (BMB9393 SABB_01759, BMB9393 SABB_01754, BMB9393 SABB_01753, BMB9393 SABB_02921, and BMB9393 SABB_01926), a putative...
transposase (BMB9393 SABB_00433), the cassette chromosome recombinase A (BMB9393 SABB_01756), the ribosome-binding factor A (BMB9393 SABB_00236), an ATP-binding protein (BMB9393 SABB_02230), a putative phi PVL-like protein (BMB9393 SABB_04160), and a superantigen-like protein (BMB9393 SABB_02209).

A total of 82 ORFs were exclusively present in the ST239-BRc set compared with the ST239-INTc genomes (Supplementary Table S5): 19 (23.2%) encode hypothetical proteins, 40 (48.8%) encode putative proteins related to bacteriophages and other MGEs and the remaining 23 (28%) ORFs have diverse predicted biological functions including some putative and known virulence-related genes, such as the gene for the chemotaxis inhibitory protein (chp; BMB9393 SABB_02361). A total of 59 ORFs (Supplementary Table S5) were exclusively found in ST239-INTc genomes: 33 (55.9%) encode hypothetical proteins, 8 (13.6%) encode predicted proteins related to bacteriophages and other MGEs, and 18 (30.5%) encode putative proteins with different biological functions including the genes for known virulence-factors, such as enterotoxin A (Sea; TW20 SATW20_19410) and staphylococcal enterotoxin-like Q (SelQ; TW20 SATW20_08910). Most of these exclusive, or diagnostic, genes were found within RGPs, which will be discussed in the sections below.

The S. aureus autolysin gene atl (BMB9393 SABB_01019), in all ST239-BRc genomes, has a deletion of 243 bp in the coding region (Supplementary Figure S2A). PCR-based screening detected this deletion in 84% of the collection ST239-BR100 clinical isolates. The truncated atl gene was significantly more prevalent in the group of ST239-BR100 isolates that was collected from infection cases compared with that of colonization cases (p < 0.05), although this difference was relatively small (Figure 2A). It is possible that the absence of functional atl might be beneficial for immune evasion by reducing the amount of immune stimulation that is due to bacterial cell lysis (Humann and Lenz, 2009). It is possible that this could contribute to higher levels of invasive disease associated with these isolates.

Regions of Genomic Plasticity (RGPs)

We identified 12 RGPs in Brazilian isolates through our comparative approach (Figure 1B). These RGPs contain multiple signatures of genomic plasticity and MGEs including sequences related to transposable elements, phage-structures, insertion sites for integrase or recombinases, as well as adjacent tRNA for insertions sites of GI's, as summarized in Table 3. The amount of DNA located in the RGPs accounted for at least 429.5 kbp or 14.4% of the chromosome of the BMB9393 reference genome. Another feature of these RGPs is that they have GC content typically equivalent to the chromosomal DNA, suggesting that HGT events have predominantly involved S. aureus or other bacteria with low GC content (Lindsay, 2008). The main characteristics of the most prominent RGPs are discussed below, with additional descriptions provided in Supplementary Table S6.

RGP1

This region in ST239-BRc genomes carries two SCC elements, the SCCmercury (also known as SCCChg) and SCCmec. All ST239 closed genomes (ST239c) shared a SCCmec type III, although ST239-BRc and ST239-INTc display different architectures for this element. The ST239-BRc genomes carry SCCmecIII.1.1.2 (named SCCmecIIIa), an approximately 28.0 kbp cassette, with 15-bp att direct-repeat sequences (attL, attR); however, this cassette is markedly distinct from TW20 (a representative of ST239 from the United Kingdom), which has SCCmecIII.1.1.1 (approx. 35.3 kbp), as shown in Supplementary Figure S2B. The SCCmecIII.1.1.1 (named SCCmecIII) carries four copies of the IS431 with the same orientation of those found in SCCmecIII.1.1.2, suggesting that the SCCmecIII.1.1.2 originated from a recombination event occurring between two IS431 copies (Ito et al., 2001; Supplementary Figure S2B).

RGP3

In the 5′-portion of this RGP (Supplementary Figure S2C), there is an integrative and conjugative element (ICE) with similarity to Tn5801, while another segment corresponds to

FIGURE 2 | Differences in isolates collected from colonization and infection sites. (A) Percentage of truncated (black) and not truncated (gray) atl gene (PCR detected) in hundred ST239 isolates from Brazil collected from colonization and infection cases. (B) Distribution of functional (black) and dysfunctional (gray) Agr functionality among 100 ST239 isolates obtained from colonization (n = 36) and infection cases (n = 62) in Brazil. (C) Presence (black) and absence (gray) of IS256 insertion in the mgrA gene in 100 ST239 MRSA isolates from Brazil collected from colonization and infection cases. Note a significantly increased number of IS256 insertion among infection cases compared with colonization cases (p-values calculated by Fisher’s exact).
TABLE 3 | RGP s identified comparing ST239 and non-ST239-closed genomes using the chromosome of the Brazilian strain BMB9393 as reference.

Regions	Coordinates	Length (kbp)	GC%	Features
RGP1	34139	105446	73.0	S.b., dGC%, Tnp, Rec, tRNA, GI SCCmec
RGP2	398966	413781	14.8	S.b., dGC%, Tnp, ArdB
RGP3	451997	509822	57.8	S.b., dGC%, Int, Tnp, ICE, GI vsAβ
RGP4	925027	939643	14.6	S.s., dGC%, Int, SaP1
RGP5	1165376	1213829	48.5	S.b., dGC%, Rec, phage similar to YMC09
RGP6	1424422	1438004	13.5	S.b., dGC%, Tnp
RGP7	1632358	1684127	51.8	S.b., dGC%, Int, phage similar to phiMR11
RGP8	2013514	2044432	30.9	S.b., dGC%, Tnp, tRNA, GI □SA□
RGP9	2149470	2222679	73.2	S.b., dGC%, Rec, phage similar to phiNM3, Tnp
RGP10	2263898	2269345	5.4	S.b., dGC%, Rec, tRNA
RGP11	2353104	2378952	25.8	S.b., Tnp, Res, tRNA
RGP12	2811924	2832078	20.2	S.b., dGC%, Tnp, ICE

Best hit (% query coverage, % subject coverage, % identity, e-value)

- S. aureus DNA, SCCmec, SCCmec type III.1.1 (IIIA), complete sequence, strain ORC3 (GenBank:AB983237.1) (55%, 64%, 99%, 0.0)
- S. aureus NCTC13435 chromosome 1 (GenBank: LN813036.1) (100%, 0.6%, 99%, 0.0)
- S. aureus subsp. aureus T0131, complete genome (GenBank:CP002643.1) (100%, 0.95%, 99%, 0.0)
- S. aureus pathogenicity island SaP1 Tokyo11212 (GenBank:AB860416.1) (84%, 72%, 98%, 0.0)
- S. aureus subsp. aureus Z172, complete genome (GenBank:CP006838.1) (100%, 0.2%, 100%, 0.0)
- Staphylococcus phage phiSaUs-IPLA35, complete genome (GenBank:EU861005.1) (61%, 65%, 97%, 0.0)
- S. aureus subsp. aureus XN108, complete genome (GenBank:BAY52705.1) (61%, 59%, 98%, 0.0)
- S. aureus subsp. aureus ST72 strain TMUS2134, complete genome (59%, 1.4%, 99%, 0.0)
- S. aureus subsp. aureus TW20, complete genome (GenBank:FN433596.1) (100%, 0.8%, 99%, 0.0)
- S. aureus HDG2, integrating conjugative element ICE6013 (GenBank:FJ312170.1) (100%, 98%, 99, 0.0)
- S. aureus HDG2, integrating conjugative element ICE6013 (55%, 64%, 99%, 0.0)
- S. aureus TW20, complete genome (GenBank:FN433596.1) (100%, 0.8%, 99%, 0.0)
- S. aureus entrance island SaPI Tokyo11212 (GenBank:AY954963.1) (61%, 59%, 98%, 0.0)
- S. aureus subsp. aureus ST72 strain TMUS2134, complete genome (59%, 1.4%, 99%, 0.0)
- S. aureus subsp. aureus Z172, complete genome (GenBank:CP007447.1) (100%, 1.0%, 99%, 0.0)
- S. aureus subsp. aureus ST72 strain TMUS2134, complete genome (59%, 1.4%, 99%, 0.0)
- S. aureus subsp. aureus TW20, complete genome (GenBank:FN433596.1) (100%, 0.8%, 99%, 0.0)
- S. aureus HDG2, integrating conjugative element ICE6013 (GenBank:FJ312170.1) (100%, 98%, 99, 0.0)

*BLASTN performed against the "nr" database at the NCBI website; ICE, integrative and conjugative element; SaPI, S. aureus Pathogenicity Island; Int., integrase; Rec., recombinase; Tnp, transposase; Res, resolvase; dGC%, deviation from mean chromosomal GC content; s.b., synteny break from at least one other compared S. aureus; phage, probable bacteriophage region; tRNA, presence of flanking transfer RNAs; transposases, presence of transposase-related sequences. The complete sequence of each RGP identified in the reference genome BMB9393 was used as a query in the BLASTN against the NCBI. Query coverage corresponds to the sequence of each RGP in reference BMB9393. Subject coverage is the NCBI best hit sequence listed in the last column.

In summary, the RGP1 region encodes a truncated transposase (BMB9393 SABB_02229) that shows high similarity to that of the IS256 family; hsdM (BMB9393 SABB_05215) and hsdS (BMB9393 SABB_05408) genes encoding a restriction/modification system; a cluster of 10 ssl (staphylococcal superantigen-like) ORFs encoding several lipoproteins (lpl) (BMB9393 SABB_02197 to SABB_05337). These two clusters are considered markers of the vSAα island (Baba et al., 2008).

In addition to tetM, this RGP also contains genes associated with conjugation, regulation, excision/integration systems, and a gene encoding the anti-restriction protein ArdA (BMB9393 SABB_02743). RGP3 showed sequence divergence for the genomes of the non-ST239-INTC (strains CA-347, H-EMRSA-15, and MRSA252) but it was highly conserved among all our comparison ST239 genomes.

A PCR screen detected the arda gene, which is present in the genome of all ST239 comparison genomes, and in the majority (95/100) of isolates from our Brazilian ST239-BR100 collection. The arda gene is also found in other non-ST239 HA-MRSA genomes (e.g., MU50 (ST5-SCCMecII)), and in other bacterial pathogens, such as *E. coli* (McMahon et al., 2009). It is important to note that typical CA-MRSA strains, such as USA300 and USA1100, do not harbor this gene, according to BLAST searches in public databases (data not shown). In *E. coli*, the acquisition of arda has a significant impact on gene exchange due to the ability of the ArdA protein to bind and inactivate type I restriction modification (RM) enzymes, which, in turn, results in increased dissemination of MGEs among these bacteria. ArdA from *S. aureus* is active against the EcoK1 type I RM system of *E. coli* K12 (McMahon et al., 2009), but this has not been demonstrated in *S. aureus*. To test the function of ArdA in *S. aureus*, we cloned the arda gene into the *S. aureus* expression vector pCN40 and transformed it into the arda-negative, ST8, strain RN4220 (42P40A). The ability to acquire exogenous DNA from both *E. coli* and *S. aureus* of a different lineage (ST5) increased significantly (*p < 0.001*) in 42P40A in comparison with 42P40E (RN4220 with empty vector pCN40) (Figure 3).

Recent studies have shown that the high-level multi-resistant ST239 isolates are adapted to the hospital environment (Alp et al., 2009; Xiao et al., 2013). The global dissemination of a bacterial clone is likely to be dependent on specific mechanisms for transmissibility, bacterial adaptability, and fitness (Amaral et al., 2005; Li et al., 2012). Thus, it is reasonable to posit that the presence of the arda gene may represent a substantial evolutionary event in the adaptation to the nosocomial niche, assisting not only in the acquisition of resistance determinants but also of genes associated with virulence/fitness.
and other disseminated diseases. On the other hand, the gene severe nosocomial infections including bloodstream infections these superantigen genes is not crucial for the pathogenesis of in animal models (Stach et al., 2014) – the acquisition of despit the role of some enterotoxins in enterotoxin or enterotoxin-like genes, clearly indicating that –

ST239-BR

selK

phages related with PT1028 harbor enterotoxin-like genes, such C to emphasize that in the ST239-INT is highly similar to the phage found in RGP4. It is important

fact that SaPI2 is very similar to SaPI1 (Subedi et al., 2007), specifically of modular units from other SaPIs (Novick and Subedi, 2007). Indeed, when RGP4 and SaPI2 were compared (Acc: EF010993) there was greater overall similarity than with SaPI1, specifically in the region related to the modules of DNA replication and SaPI packaging.

Interestingly, modular conservation could be related to the fact that SaPI2 is very similar to SaPI1028 (Subedi et al., 2007), for which the “auxiliary” phage is PT1028, which itself is highly similar to the phage found in RGP4. It is important to emphasize that in the ST239-INTC genomes analyzed, the phages related with PT1028 harbor enterotoxin-like genes, such as selK and selQ, which are absent in all ST239-BC. In fact, the ST239-BC genomes do not carry any of the known enterotoxin or enterotoxin-like genes, clearly indicating that – despite the role of some enterotoxins in S. aureus virulence in animal models (Stach et al., 2014) – the acquisition of these superantigen genes is not crucial for the pathogenesis of severe nosocomial infections including bloodstream infections and other disseminated diseases. On the other hand, the gene encoding the SAP domain-containing protein is lost in all non-ST239-INTC strains studied here. This observation is in agreement with the assumption that most SaPIs show an association with specific MRSA lineages instead of widespread distribution among different lineages (Lindsay, 2008).

RGP8

This 30.9 kbp region shows similar features to GIs, such as the presence of a putative truncated transposase, hsdS (BMB9393 SABB_06193) and hsdM (BMB9393 SABB_06194) encoding an RM system, and tRNAs flanking both ends. This GI has been classified as vSaβ type I in ST239 genomes (Baba et al., 2008) and carries the entire serine–protease operon splABCDEF (BMB9393 SABB_01932 to SABB_01937) and the gene cluster encoding staphylococcal lantibiotics (BMB9393 SABB_01939 to SABB_05404). In general, S. aureus extracellular proteases are considered important virulence factors. For instance, a S. aureus mutant derived from USA300 LAC – for which all 10 protease genes were deleted including spl proteases – showed lower mortality rates in mice compared with the isogenic wild-type strain (Kolar et al., 2013).

vSaβ is another example of a GI that is widely dispersed in S. aureus and not strictly associated with particular lineages, demonstrating that its acquisition may have important adaptive benefits for S. aureus strains. Among the strains analyzed, other than JKD6008, only CA347 (USA600) and H-EMRSA-15 do not carry this GI (Supplementary Figure S2E).

RGP9

This RGP is 73.2 kbp and corresponds to a bacteriophage-related plasticity region that shows high similarity (BLASTp ≥ 70%) with φNM3 (Acc:NC_008617). This region is highly conserved among all ST239-BC genomes (Supplementary Figure S2F) and is known to be a β-hemolysin converting prophage. RGP9 can also carry the immune evasion cluster (IEC) (Van Wamel et al., 2006), which has also been associated with S. aureus host-adaptation and virulence mechanisms (Van Wamel et al., 2006). The previously described S. aureus IEC carries genes encoding the chemotaxis-inhibitory protein (CHIPS), staphylococcal complement inhibitor (SCIN), staphylokinase (Sak), and the staphylococcal enterotoxin A (Sea). ST239-BC genomes have genes for all of these proteins except Sea. We could not detect the sea gene in any ST239-BC isolates from our collection.

While the chp gene is found in all ST239-BC strains, it is not found in any of the ST239-INTC genomes analyzed, raising questions about the specific importance of this gene in the microevolution of Brazilian ST239 (Supplementary Figure S2F). Bae et al. (2006) showed a significant reduction in the ability of S. aureus strain Newman to replicate in a murine liver abscess model when φNM3, harboring chp, was cured. The product of the chp gene (BMB9393 SABB_02361), CHIPS, specifically binds to C5a and formylated peptide receptors inhibiting human neutrophils and monocytes chemotaxis (de Haas et al., 2004; Postma et al., 2004). We detected the chp gene by PCR in all Brazilian isolates from our ST239-BC_100 collection (100%). It is intriguing that in GV69, the IEC cluster including chp are carried by a different phage (similar to tp310-3), which may
Virulence Genes

In general, the set of virulence genes in ST239 genomes is well conserved (Supplementary Table S7). The ST239-BR_C and ST239-INT_C genomes harbor a plethora of surface proteins named microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), which are required for the establishment of infections. A notable exception is the absence of genes encoding fibronectin-binding protein B (fnbB) and clumping factor A (clfA) in T0131 (ST239-INT_C) and the absence of clumping factor B (clfB) in T0131 and XN108 (ST239-BR_C). These genes are found in all ST239-BR_C genomes (Supplementary Table S7).

Until now, few studies have reported the tst gene in ST239 isolates (Iwao et al., 2012; Kong et al., 2016), and most of the enterotoxin and enterotoxin-like genes found in the other HA-MRSA lineages were absent in the ST239 genomes we studied. In fact, the only enterotoxin genes found in any ST239 genomes were selK, selQ, and sea, none of which are found in ST239-BR_C. The reason why it would be an advantage for ST239 isolates to be devoid of enterotoxin genes is unclear, but it is possible that loss of these genes may lead to less cytotoxicity and greater persistence (Das et al., 2016).

The arginine catabolic mobile element (ACME) is a putative virulence determinant, integrated into the chromosome at the same site as SCCmec (Diep et al., 2006; Barbier et al., 2011). While there are no reports of ST239 strains carrying ACME I, there are a few reports of ST239 isolates carrying ACME II (Espedido et al., 2012; Hsu et al., 2015). Using a BLAST-based search, we did not find the ACME-encoded arcA gene in any of 190 genome sequences analyzed, probably due to the fact that the geographic regions from which ACME+ ST239 strains reported are underrepresented in this set of genomes. Nonetheless, ACME does not seem to be important to the biology of ST239 overall.

A unique, conserved cluster consisting of 11 ORFs for putative staphylococcal exotoxin-like genes (set or ssI) was found in the genomes of ST239-BR_C and ST239-INT_C. Among the other non-ST239-INT_C genomes, only USA500 carries a ssI gene cluster similar to ST239. Like ST239, USA500 is a member of CC8 and it is possible that this region of ssI genes is associated with CC8 evolution (Aguiar-Alves et al., 2006). The role of some ssI gene products in impairing neutrophil chemotaxis and complement activation has been reported (Bestebroer et al., 2010; Koymans et al., 2016).

ST239 genomes carry a number of genes conserved in all S. aureus, encoding exoproteins likely important for bacterial dissemination in host tissues, such as phospholipases, proteases, hyaluronidase, coagulase, among others. The ST239_C genomes are also equipped with several hemolysin-encoded genes including hla, hld, hlgABC, and the leukocidins lukD and lukE. Interestingly, while JKD6008 has a gene for LukE it lacks the lukD gene. As generally observed for canonical hospital strains, the ST239_C genomes analyzed do not carry the genes encoding the Panton–Valentine leukocidin (Figueiredo and Ferreira, 2014).

Mutations in Regulatory Genes

The agr operon encodes the main S. aureus quorum sensing system (QSS) (Novick et al., 2000), but at least one Brazilian isolate (HC1335) has a transposable element similar to IS256 disrupting the agr coding sequence (Botelho et al., 2016), an insertion that is expected to inactivate the entire Agr system including multiple virulence determinants, since agrC encodes the Agr autoinducer peptide (AIP) receptor. A similar IS256 insertion was also found in the Chinese ST239 isolate T0131, located 36 nt upstream of the insertion site observed for HC1335 (Supplementary Figure S2G).

Agr dysfunction was assayed in the entire collection of ST239-BR₁₀₀ isolates using a mass spectrometry approach to detect PSM-mec, an Agr-regulated gene. Thirty percent of isolates (n = 30) had decreased Agr activity. Most of the Agr-dysfunctional isolates were from colonization cases (p < 0.01) (Figure 2B). Among these 30 Agr-dysfunctional isolates, the IS256 insertion in agrC was found by PCR in four isolates (13.3%) suggesting multiple possible inactivation mechanisms. The high prevalence of Agr dysfunction may seem counterintuitive given the prominent role of the Agr system in pathogenicity and virulence (Ferreira et al., 2013), but it is possible that in the specific context of the hospital where patients are debilitated and/or immunocompromised, Agr dysfunction may provide a fitness advantage (Paulander et al., 2012; Baines et al., 2015). However, one important caveat of this analysis is that multiple studies have documented within-patient heterogeneity in Agr dysfunction, and future work should incorporate multiple isolates from the same sample or paired isolates from the same individual.

Point mutations inactivating Agr QSS have predominately been described in the agrA or agrC genes (Traber and Novick, 2006; Shopsin et al., 2010). To investigate mutational evolution in these genes, we aligned the agrC genes of all 190 genomes used for our phylogenetic analysis. This analysis revealed 180 SNPs in the agrC genes distributed in 135 genomes, corresponding to 9.0 × 10⁻⁴ SNPs/nucleotide. The average number of SNPs in several other important global gene regulators (agrA, agrB, mga, rot, saeRS, sarA, sarR, sarS, sarX, sarZ, and sigB) was significantly lower (2.1 × 10⁻⁵ SNPs/nucleotide) (Supplementary Figure S3).

The 180 SNPs in agrC genes were located in 10 positions in the agrC sequence. Eight SNPs were nonsynonymous mutations. Three nonsynonymous SNPs resulted in amino acid changes, S6R, I311T, and A343T that were conserved in 60, 61, and 40 of the 190 ST239 genomes studied, respectively (Supplementary Figure S3), suggesting that these changes are not strongly detrimental. To test whether substitutions in the agrC gene occur at a significantly different frequency compared to the other virulence regulators studied, we used a statistical test based on Poisson probability distribution. The probability that agrC mutation rate was the same or lower compared to other genes
was extremely low \((p = 9.4 \times 10^{-12}) \) suggesting that this gene may be undergoing more rapid mutational change, a hallmark of possible positive or diversifying selection. No recombination breakpoints were found in \(\text{agrC} \). Scans for evidence of the action of diversifying selection using two methods (FUBAR and MEME) were in disagreement about selection at codon site 6 (56R change). FUBAR found evidence for codon site 6 \((\text{Prob}[dN > dS] = 0.908, \text{Bayes factor} = 12.254) \), whereas MEME did not \((P = 0.2) \). Across the phylogeny, the test for stringency of selection yielded a selection intensity parameter \(k = 1.74 \) that is usually indicative of an intensification of selection strength \((k > 1) \), but it was not significant \((p = 0.264) \).

In a recent study that identified two separate clades of ST239 MRSA in Australia, clade 2 also showed \(\text{agr} \)-dysfunction (Baines et al., 2015), which is thought to be due to mutations located upstream of \(\text{agr} \). In two of the three \(\text{Agr} \)-dysfunctional ST239-BRc genomes, the mutation was not found in the \(\text{agr} \) operon.

Several studies have demonstrated the importance of IS256 in MRSA evolution. Benson et al. (2014) reported an insertion of IS256 upstream of the repressor of toxins gene, \(\text{rot} \), in USAl000-related strains, leading to a hypervirulent variant of this lineage. Frisch et al. (2018) showed that strains with multiple copies of IS256 not only grouped together in phylogenetic analysis, but also displayed higher levels of antibiotic resistance. It is notable that in this study the high-level multi-resistant ST239 also showed high copy numbers of IS256 (12–24 insertions in the ST239-BRc genomes).

It is noteworthy that a copy of an IS256-related element was also found inserted at \(-210 \) bp of the \(\text{mgrA} \) gene, encoding another global regulatory protein, in the genomes of BMB9393, GV88, Be62, GV51, and HC1335 (ST239-BRc) (Supplementary Figure S4). This IS256 insertion was exclusively found among the Brazilian isolates. It is absent in the genomes of international ST239 strains. \(\text{mgrA} \) is a negative regulator of autoysis and consequently of biofilm development (Ingvale et al., 2003; Gupta et al., 2015). The expression of \(\text{mgrA} \) also has a positive effect on \(\text{agr} \) transcription (Ingvale et al., 2003), which is coordinated by the P1 (more active in stationary phase of growth) and P2 promoters (more active in logarithmic phase) (Ingvale et al., 2003; Gupta et al., 2015). The IS256 element in the ST239-BRc genomes was inserted between the P1 and P2 promoters (Supplementary Figure S4). It is notable that \(\text{agr} \)-RNAIII is a key molecule in the stabilization of the 5'-UTR mRNA transcribed under the action of P2\text{mgrA}. Gupta et al. (2015) demonstrated that two adjacent regions transcribed from the upstream P2\text{mgrA}, located between \(-300 \) and \(-200 \) bp, form a stable complex with two regions of \(\text{agr} \)-RNAIII near its 5' and 3'-ends. It was suggested that \(\text{agr} \) exerts its regulatory function through MgrA, which could act as an intermediate controller. According to this model, one might expect that the IS256 insertion near the \(\text{mgrA} \) gene at \(-210 \) bp impairs RNAIII-based stability of P2 transcript, thus decreasing the level of \(\text{mgrA} \) transcripts under the coordination of P2\text{mgrA} promoter.

The entire collection of ST239-BRc100 isolates was assessed for the IS256 insertion in the \(\text{mgrA} \) gene using PCR-based detection. Fifty-seven (57%) of the total isolates carry the IS256 insertion between the \(\text{mgrA} \) promoters. Notably, 43 out of these 57 (75.4%) isolates were from infection-associated cases \((p < 0.01) \) (Figure 2C). It has been shown that inactivation of \(\text{mgrA} \) resulted in increased autolytic activity and decreased transcription of several global regulators, including Agr (Luong et al., 2006). Other studies showed that MgrA regulates, directly or indirectly, a total of 355 genes, up-regulating 175 (including genes encoding exoproteins) and down-regulates the remaining 180 genes, among which are genes encoding surface proteins (Ingavale et al., 2005; Luong et al., 2006). Furthermore, the deletion of \(\text{mgrA} \) decreased virulence in an animal model (Jonsson et al., 2008). It is conceivable that the IS256 insertion found in 57% of ST239-BR isolates would not completely abolish \(\text{mgrA} \) transcription, because this insertion occurred in a position \(-210 \) bp that would be predicted to affect only P2 promoters without disturbing P1 regulatory region, located at \(-28 \) to \(+16 \), which is the binding site for the non-coding RNA, RsaA (Romilly et al., 2014).

Phenylogeny and Divergence Dating of the Three Major ST239 Clades

Maximum-likelihood (Supplementary Tables S2, 10 and Supplementary Figure S5) trees were constructed based on core genome SNPs using 190 complete genomes of ST239 and ST239-like SLVs of both draft and completely closed chromosomes that were available on NCBI during this study-period. Genomes used in the phylogenetic studies by Harris et al. (2010) and Castillo-Ramírez et al. (2012) were also included in this study. Trees were constructed both including and excluding the recombined region thought to be derived from CC30 (corresponding to positions 284818-3043210 and 1-427978 on the TW20 genome; data not shown), but we used datasets excluding this region for our final analyses. Trees were rooted using outgroups from ST8.

The tree architecture showed three primary ST239 clades referred to here as clades I \((n = 77 \) genomes), II \((n = 33) \), and III \((n = 80) \), that are roughly equivalent to the primary groupings defined in Castillo-Ramírez et al. (2012) \((n = 165) \). Both our trees and previously published trees showed a similar branch length distribution with multiple deeply divergent lineages and short branches near the root of the tree possibly suggesting deep and rapid radiation. These deep branches show no consistent geographic location, and they are not restricted to Europe, so it remains unclear where the ST239 lineage originated. This branching pattern also may cause some instability in the placement of early branching taxa in the major early bifurcations. Like previous studies, our tree also showed a similar pattern of three well-defined subclades that had strong geographical affinities and partitioned with long internal branches suggesting local adaptation. For standardization purposes, these subclades were designated as in Harris et al. (2010) and Castillo-Ramírez et al. (2012) as the Asian, South American, and Turkish subclades. All ST239-BRc genomes were found in the main clade II and grouped with genomes mostly from other Latin American and romance language-speaking European countries (South American clade; \(n = 27 \)). ST239-INTc genomes were located in the two other main clades (I and III). Closed genomes of TW20 from the United Kingdom, Z172 from Taiwan, and XN108
from China clustered in clade I, in the Asian subclade ($n = 63$). In clade I, there is a paraphyletic group ($n = 13$) composed largely of strains from Europe (e.g., P32 from Poland, H160 from Hungary, HSA10 from Portugal among others). The ST239-INT$_C$ genomes from Australia (JKD6008) and from China (T0131) clustered with the remaining 80 genomes in clade III, in which the derived subclade is represented mostly by Turkish isolates (Turkish subclade; $n = 70$).

For estimation of divergence times using Bayesian estimation (Figure 4), the genomes included were only those for which the isolation date of each isolate was reported ($n = 167$). The resulting Bayesian phylogenetic tree topology, calibrated by incorporating the temporal information of the isolation date and relaxed (Figure 4 and Supplementary Table S8) and strict (Supplementary Figure S7 and Supplementary Table S9) evolutionary clocks, suggests a global initial radiation of ST239 isolates in the 1960s and 1970s. The root of the tree is found at approximately 1962–1966. We estimate that the Asian clade originated in 1976 (HPD 95%: 1972–1980), the South American clade in 1988 (HPD 95%: 1986–1990), and the Turkish clade in 1981 (HPD 95%: 1976–1986). Even more recent intercontinental spread can be inferred based on the branching patterns within each clade. For example, European strains TW20 and D71 from the United Kingdom and Germany, respectively, clustered within the Asian clade; ES26 and M278 from Spain and Portugal, respectively, within the South American clade; and strains T0131 and TN79 from China in the Turkish clade. The intercontinental spread of ST239 isolates has also been documented by Harris et al. (2010) and Gray et al. (2011) among others. Our molecular dating techniques estimate that the expansion of the Brazilian strains began in 1988, coincident with the introduction of the South American clade. Indeed, the first report of ST239 in Brazil was published in 1995 using MRSA isolates collected in the 1992–1994 period (Teixeira et al., 1995). This data are in accordance with previous analyses which estimate that the ST239 introduction into South America occurred in the beginning of the 1990s (Smyth et al., 2010; Castillo-Ramírez et al., 2012). At that time, 87% of the total MRSA isolates detected in multiple Brazilian hospitals from the South to the North of the country belonged to the ST239 lineage, and all of them displayed the same or very similar PFGE patterns, suggesting a very recent clonal spread (Teixeira et al., 1995).

Virulence Profile of Different Phylogenetic Groups

Local BLAST was performed to compare all 190 ST239 genomes in relation to virulence-associated genes that diverged or were not homogeneously present in the virulome of the ST239c genomes. Our analyses revealed that several genes are associated with specific clades on the phylogenetic trees. The chp gene is present in 28 of 33 (81.8%) genomes of clade II (where the South American subclade is located). There is only one genome (URU110; Uruguay-1998; clade II) among the 190 genomes that carries both chp and sea genes, and all others carrying chp lack sea (81.8%, $n = 27$). Only five genomes in clade II lack chp and carry sea (M418, India-2006; MRGR3 from Switzerland-1990;
LIT68, LIT89, and LIT76 from Lithuania-1996). These genomes together with URU110 are found in a paraphyletic group in a basal position of clade II. Among all 190 genomes analyzed, only 17 do not carry chp or sea (Supplementary Table S2).

Clade I is composed of a total of 77 genomes, and the great majority, 75.6% (n = 59), carry the sasX gene encoding a LPXTG motif protein. All of these genomes in the Asian subclade, except for one genome (P32 from Poland) located in a basal position in this clade. SasX promotes bacterial aggregation, enhances nasal colonization and immune evasion, and plays a role in lung infection and abscess formation in animal models (Li et al., 2012). Outside the clade I, only two other ST239 genomes carry sasX (Botelho et al., 2013). These genomes grouped in the clade to harbor the sasX gene, but, after local diversification, only the Asian clade conserved this gene.

There are only four genomes (5.1%) in the Asian subclade (M592, Syria-2006; D90, Germany-1996; United Kingdom 102, UK-1996; and M170, Thailand-2005) where the chp gene shows 100% identity with the chp sequence found in the South American subclade (chp-I allele). In addition, in clade I, there are an additional 11 genomes (S40, S85, S87, S93, S102, S130, H202, M705, from Thailand-2007; H211, H216, from Denmark-2006; HDG2, from Portugal-1992) in which the chp gene displays up to four non-synonymous SNPs compared to the reference (variant chp-2). The genomes with chp-2 are all found in the Asian subclade except for the Portuguese strain HDG2 that is located in a basal position in this subclade (Supplementary Table S2).

Most Asian-subclade chp-2 positive strains also carry sasX genes (12/15), highlighting the acquisition of sasX as an important divergent evolutionary event for the Asian subclade. Many of the genomes grouped in clade I also carry sea (60.3%, n = 47). The genome of the strain OC3 (Russia, 2007–2009) is the only genome in this clade to harbor the tst gene (Supplementary Table S2).

For all 80 genomes in clade I (where the Turkish subclade is located), both sasX and chp are absent, and sea is present in all but one genome (MU7) from Turkey-2007 (97.5%, n = 78) (Figure 4).

While agr-dysfunction was detected in 30% of the ST239 isolates from the Brazilian collection, the major diversity of the genomes found in clade II show no variants in agrC (n = 32, 97%). Only one genome (RA3, Argentina-1996) shows any variation, a substitution of glutamic acid (E) for lysine (K) at position 175. None of the genomes found in the two other main clades share this point mutation.

Variants in agrC in the other two major clades (I and III) are also well conserved. The nonsynonymous variant A343T (n = 58) and A311T (n = 61) in the AgrC protein are found in 74.4 and 78.2% of the genomes grouped in the clade III. Another AgrC nonsynonymous variant S6R (n = 39) is specifically detected among many strains from clade I (48.1%), although one strain (MU1) from Turkey (clade III) also has this substitution. The agrC variants reported here are distinct from positions reported in other studies involving non-ST239 MRSA lineages (Geisinger et al., 2009; Shopsin et al., 2010).

Grouping genomes by their virulence gene patterns, based on the presence or absence of sea, chp, and sasX genes and agrC SNPs (Figure 4), we used the Grubbs’ test statistic to detect outliers and find a predominant virulence profile for each phylogenetic group (Supplementary Figure S6). Accordingly, the predominant pattern of each group was clade I: sasX+, chp−, sea+, agrC S6R+, agrC A343T−; clade II: sasX−, chp+, sea−, agrC S6R−, agrC A311T−, agrC A343T+; and clade III: sasX−, chp−, sea+, agrC S6R−, agrC A311T+, agrC A343T+. Each of these patterns and corresponding SLVs were strongly associated (√χ2-square, p < 0.0001; Supplementary Figure S6) with each of the three main clades and, independently, with broad geographical location of isolation. Gene patterns from a geographic origin were significantly independent from those from another region (p < 0.0001). This pattern strongly suggests the geographic (allopatric) influence on the diversification of ST239 MRSA. The selective pressures that may have driven this diversification remain unknown. It is possible that pathogen–immune system and pathogen–microbiome interactions play a role, in addition to broad pressures related to medical practices and socio-cultural influences (Georgiades and Raoult, 2011).

CONCLUSION

Our genomic and phylogenetic analysis of the ST239 lineage revealed specific patterns of local geographic divergence involving well-known virulence factors. The genomes grouped with the Brazilian ST239 isolates show a specific virulence pattern represented by the presence of chp-I, lack of sasX and sea (both of which are commonly observed in genomes grouped in the Asian subclade). In addition, we also found that the ardA gene was present and conserved in all 190 ST239 genomes analyzed, and confirmed ArDA-antirestriction activity in S. aureus, resulting in high-frequency plasmid-borne acquisition of resistance genes. We posit that the ardA gene played a role in the acquisition of high-level antimicrobial resistance and the plethora of virulence genes observed in this successful HA-MRSA lineage. Further we posit that the presence of this gene might have facilitated the pattern of local diversification seen in each of the major ST239 subclades, allowing each to rapidly adapt to its local context.

Mobile genetic elements such as phages and GIs have clearly played an important role in the evolution of virulence of this MRSA lineage. The insertion of transposable elements (derived from IS256) in, or close to, the important global regulatory genes such as agr and mgrA, may also function as an additional strategy for MRSA evolution, representing a rapid mechanism for global reprogramming of virulence attributes (Benson et al., 2014). Mutations driving agr dysfunction, represented by point mutation or IS256 insertion in the agrC gene, and also mutations upstream of the agr locus may be instances of convergent functional evolution, that may have decreased toxicity, and increased colonization and persistence (Le and Otto, 2015; Edmiston et al., 2016), balancing the increased fitness costs of antimicrobial resistance or other nosocomial adaptations.

Finally, much of the diversification we identified in the three major ST239 subclades appears to have occurred in the 1970–1980s, when MRSA emerged causing hospital outbreaks in Europe, United States, and Australia (Aires de Sousa et al., 1998).
To more fully understand the process of virulence gene diversification it is possible that targeted efforts on banked culture or tissue samples may more fully reveal the process of bacterial adaptation. Further studies might also be focused on uncovering the selective processes that favored one set of virulence-associated genes over another in each of the three major areas of diversification, and also in understanding evolution in other geographical locations or countries that have been so far neglected. It is clear that broad taxon sampling is critical to unraveling diversity patterns and processes that drive global radiations, allopatric diversification, or multigeographic shifts in pathogens.

AUTHOR CONTRIBUTIONS

AB carried out most of the experiments in this study, manual annotation, in addition to bioinformatics analyses using Local BLAST and Geneious. AMNB wrote the draft manuscript. MC and MN manual annotation, genome architecture, and RGP analysis. FF, MC, BC, and PB manual annotation. DS and CB manual annotation, arda molecular cloning and transformation experiments with arda-positive and -negative isogenic clones. RS, LA, and AV sequencing experiments, genome assembly, run automatic annotation, and other bioinformatics analyses. AN, AM, PP, and KOB phylogenetic analysis. S-OK, AM, and PP phylogenetic analysis, divergence times estimation, recombination scan and analysis, and natural selection scan. AF responsible for the study design. PP and AF wrote the final version of the manuscript. All others contributed to and reviewed the final version of the manuscript.

FUNDING

This work was supported in part by grants from the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), #E-26/010.001764/2014, E-26/201.147/2014, and E-26/202.803/2017, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), #303067/2015-2. AB and PB has a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Brasil, Finance Code 001. PP was supported by NIH 1K08AI1101005.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2019.00082/full#supplementary-material

FIGURE S1 | An illustration of the assembly and gap-closing strategies. Gaps intra- and inter-scaffolds were resolved using an hybrid assembly strategy with the Newbler and GapFiller programs, with local assemblies in gap regions using Newbler.

FIGURE S2 | Regions of Genetic Plasticity. Graphical representation of linear comparative alignments. Arrows represent predicted genes and their respective transcription strands (forward/reverse). Vertical red segments connecting regions represent direct conserved segments (BLASTN > 70%). Plots above each region indicate the corresponding % G+C content. Figures were generated using Easyfig program. (A) Chromosome region harboring the arda gene in MBMB393 (ST239 closed genome; Brazil) and TW20 (ST239 closed genome from United Kingdom). arda is highlighted in green. (B) SCCmec type III for MBMB393 (ST239 closed genome; Brazil) and TW20 (ST239 closed genome; United Kingdom) sequences. Genes coding for the recombinase gene are in blue, mec CR in dark yellow, mecR1 in dark and light pink, respectively; and IS437 elements, in green. (C) RGP context for MU50 (non-ST239 closed genome, Japan), BM9893 (ST239 closed genome; Brazil) and SaP1 genome sequences, (bottom) BM9893 and SaP1 sequences. In light pink, gene encoding an integrase; in light green, gene encoding an excisionase; in brown, pri genes; in dark green, rep gene; in dark blue, p/gene; in light blue, operon required to DNA packaging; in dark pink, gene encoding a recombinase protein. (E) RGP8 carrying the vSAp genomic island using the following genomic sequences: JK6D6068 (ST239 closed genome; Australia), BM9893 (ST239 closed genome; Brazil) and MRS2A52 (non-ST239 closed genome; United Kingdom). In green, hsdS and hsdW; in pink, the gene cluster encoding for serine proteases; in yellow, the gene encoding for staphylococcal ONCOHI. (F) RGP9 carrying a bacteriophage related to PhiNM3 in the genomes of BM9893 (ST239 close genome from Brazil; ST239-BR) and TW20 (ST239 closed genome from United Kingdom; ST239-INT). Arrows represent predicted ORFs and their respective transcription strands (forward/reverse). In light blue, gene encoding a chromatin-remodeling protein; in blue, hgb encoding a truncated p-hemolysin; in yellow, chp gene encoding a chemotaxis inhibitor protein (exclusively found in ST239-BR); in green and pink, sstl and sst2 genes encoding the staphylococcal complement inhibitory protein SCIN and staphylokinase; and in purple, gene encoding staphyloycoccal enterotoxin A (absent in BMB9393 and present in TW20). (G) agr operon for the genomes of the strains BM9893 (ST239 closed genome from Brazil; ST239-BR), HC1335 (ST239-BR) and T0131 (ST239 closed genome from China; ST239-INT). Arrows in blue hint (delta-toxin); agrB/agrD/agrC (blue); agrA and the transposase (yellow).

FIGURE S3 | Substitutions in agrC vs. other global gene regulators. (A) SNP allele frequency found in pools of DNA from the genomes of 190 ST239 deposited on the Genbank for the regulators of agrC (blue circle), agrA, mrnA, rot, sacRS, sarA, sarR, sarS, sarX sarZ, and sigB (other colored cirlces.) The horizontal line represents the average frequency. The probability P = 9.4x10^-12 is the chance of a SNP in agrC to occur at the same mean frequency observed for the other regulators using Poisson distribution. (B) Graphical representation shows the amino acid change and its position in the AgrC protein. In parenthesis is the number of genomes that show the correspondent SNP. From the 10 types of SNP substitution found, eight resulted in nonsynonymous changes.

FIGURE S4 | IS256 insertion at mgrA locus. Schematic representation of the mrnA gene regulator showing the position of the insertion of the IS256 between mgrA and the transposase (yellow).

FIGURE S5 | Maximum likelihood tree. Patterns within the three clades are denoted by a darker shade of the parent clade color: Asian pattern as purple, South American pattern as green, and Turkish pattern as blue. See methods for tree construction parameters. Red circles denote an isolate from this study while blue circles denote an isolate obtained from GenBank.

FIGURE S6 | Virulence gene patterns in clades. Distribution of the predominant pattern and its one-locus variants (clade specific patterns) among the genomes clustered in the Type I, Type II and Type III clades. Turkish predominant pattern (soapX+, cph+, sea+, agrC S6R-, agrC I111T+ agarC A343T+), South American predominant pattern (soapX, cph+, sea+, agrC S6R-, agrC I111T, agrC A343T), Asian predominant pattern soapX+, cph+, sea+, agrC S6R-, agrC I111T, agrC A343T). Other patterns comprises all patterns that differed by two or more loci from the specific clade pattern. The distribution of the clade specific patterns was extremely significant associated with the tree topology and geographic location of the strains. *** = p < 0.0001.

FIGURE S7 | A Bayesian phylogenetic tree based on core genome SNPs yields three distinct ST239 patterns (named based on predominant locations of strains): Turkish (light blue), South American (green) and Asian (purple). The Bayesian tree was constructed using r 190 and 167 complete genomes of ST239 and ST239-like single locus variants (SLV) of both draft and completely closed
chromosomes (obtained from NCBI) as well as genomes used in the phylogenetic studies by Harris et al. A heat map shows the presence (grey)/absence (blue) of saxX, chp, sea and main SNP mutation in agrC associated with each clade.

TABLE S1 | Main characteristics of the ST239-BRC100 strains.

TABLE S2 | List of genomes used on ML analysis and their main characteristics.

TABLE S3 | Primers used on PCR assays in this work.

TABLE S4 | Sequences that were potentially mobile excluded from SNP dataset.

REFERENCES

Aguirar-Alves, F., Medeiros, F., Fernandes, O., Guzikzi Pereira, R. M., Perdrea-Remington, F., and Riley, L. W. (2006). New *Staphylococcus aureus* genotyping method based on exotoxin (set) genes. *J. Clin. Microbiol.* 44, 2728–2732. doi: 10.1128/JCM.00376-06

Aires de Sousa, M., Sanches, I. S., Ferro, M. L., Vaz, M. J., Saraiva, Z., Tendeiro, T., et al. (1998). Intercellular spread of a multidrug-resistant meticillin-resistant *Staphylococcus aureus* clone. *J. Clin. Microbiol.* 36, 2390–2396.

Almeida, I. G. P., Paixão, R., Souza, R. C., da Costa, G. C., Barrientos, F. J. A., Trindade dos Santos, M., et al. (2004). A system for automated bacterial (genome) integrated annotation - SABIA. *Bioinformatics* 20, 2832–2833. doi: 10.1093/bioinformatics/bth273

Alp, E., Klaassen, C. H. W., Doganay, M., Altoparlag, U., Aydin, K., Engin, A., et al. (2009). MRSA genotypes in Turkey: persistence over 10 years of a single clone of ST239. *J. Infect. Dis.* 58, 438–433. doi: 10.1061/jinf.2009.04.006

Amaral, M. M., Coelho, L. R., Flores, R. P., Souza, R. R., Silva-Carvalho, M. C., Teixeira, L. A., et al. (2005). The predominant variant of the Brazilian epidemic clonal complex of meticillin-resistant *Staphylococcus aureus* has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. *J. Infect. Dis.* 192, 801–810. doi: 10.1086/435215

Arias, C. A., Reyes, J., Carvajal, L. P., Rincon, S., Diaz, L., Panesso, D., et al. (2017). A prospective cohort multicenter study of molecular epidemiology and phylogenomics of *Staphylococcus aureus* bacteremia in nine Latin American countries. *Antimicrob. Agents Chemother.* 61:00816-17. doi: 10.1128/AAC.00816-17

Baba, T., Bae, T., Oleksandrii, O., Takeuchi, F., and Hiramatsu, K. (2008). Prophages of *Staphylococcus aureus* Newman and their contribution to virulence. *Vol. Mol. Biol.* 62, 1035–1047. doi: 10.1111/j.1365-2958.2006.05441.x

Baines, S. L., Holt, K. E., Schultz, M. B., Seemann, T., Howden, B. O., Jensen, E. C., et al. (2010). Functional basis for complement evasion by staphylococcal virulence regulator. *J. Exp. Med.* 210, 2832–2844. doi: 10.1084/jem.20091363

Botelho, A. M. N., Costa, M. O. C., Beltrame, C. O., Ferreira, F. A., Lima, N. C. B., Costa, B. S. S., et al. (2016). Complete genome sequence of the MRSA isolate HC1335 from ST239 lineage displaying a truncated AgrC histidine kinase receptor. *Genome Biol. Evol.* 8, 3187–3194. doi: 10.1093/gbe/evw225

Boukkaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., et al. (2014). BEAST 2: a software platform for bayesian evolutionary analysis. *PLoS Comput. Biol.* 10:e1003537. doi: 10.1371/journal.pcbi.1003537

Charpentier, E., Anton, A. I., Barry, P., Alfonso, B., Fang, Y., and Novick, R. P. (2005). Novel Cassette-based shuttle vector system for Gram-positive bacteria. *Appl. Environ. Microbiol.* 70, 6076–6083. doi: 10.1128/AEM.70.18069-6085. 2004

Delcher, A. L., Bratke, K. A., Powers, E. C., and Salzberg, S. L. (2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. *Bioinformatics* 23, 673–679. doi: 10.1093/bioinformatics/btm009

Diedot, X., and Wilson, D. J. (2015). ClonalFrameML: efficient inference of recombination in whole bacterial genomes. *PLoS Comput. Biol.* 11:e1004041. doi: 10.1371/journal.pcbi.1004041

Diep, B. A., Gill, S. R., Chang, R. F., Phan, T. H., Chen, J. H., Davidson, M. G., et al. (2006). Complete genome sequence of *Staphylococcus aureus* Newman and their contribution to virulence. *Vol. Mol. Biol.* 93, 664–681. doi: 10.1111/j.1365-2958.2006.05441.x

Dinamarca, M. S., Corander, J., Marttinen, P., Aldeljawi, M., Hanage, W. P., Westh, H., et al. (2012). Phylogeographic variation in recombination rates within a global clone of meticillin-resistant *Staphylococcus aureus*. *Genome Biol.* 13:R126. doi: 10.1186/gb-2012-13-12-R126

Edmiston, C. E., Ledeboer, N. A., Buchan, B. W., Spencer, M., Seabrook, G. R., and Leaper, D. (2016). Is staphylococcal screening and suppression an effective interventional strategy for reduction of surgical site infection? *Surg. Infect.* 17, 158–166. doi: 10.1089/sur.2015.237

Eippedo, B. A., Steen, J. A., Barbagiannakos, T., Mercer, J., Paterson, D. L., Grimmmond, S. M., et al. (2012). Carriage of an ACME II variant may have
contributed to methicillin-resistant *Staphylococcus aureus* sequence type 239-
Like strain replacement in Liverpool hospital, Sydney, Australia. *Antimicrob.
Agents Chemother.* 56, 3380–3383. doi: 10.1128/AAC.00013-12
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the
bootstrap. *Evolution* 39, 783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x
Ferreira, F. A., Souza, R. R., de Sousa Moraes, B., de Amorim Ferreira, A. M.,
Américo, M. A., Fracalanza, S. E. L., et al. (2013). Impact of agr dysfunction on
vireulence profiles and infections associated with a novel methicillin-resistant
Staphylococcus aureus (MRSA) variant of the lineage ST1-SCCmec IV. *BMC
Microbiol.* 13:93. doi: 10.1186/1471-2180-13-93
Figueiredo, A. M. S., and Ferreira, F. A. (2014). The multifaceted resources and
intercontinental spread.

**Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human-ape splitting
Holden, M. T. G., Lindsay, J. A., Corton, C., Quail, M. A., Cockfield, J. D.,
Gray, R. R., Tatem, A. J., Johnson, J. A., Alekseyenko, A. V., Pybus, O. G.,
Georgiades, K., and Raoult, D. (2011). Defining pathogenic bacterial species in the
Frontiers in Microbiology | www.frontiersin.org
17
February 2019 | Volume 10 | Article 82

**Holden, M. T. G., Feil, E. J., Lindsay, J. A., Peacock, S. J., Day, N. P. J., Enright,
Humann, J., and Lenz, L. L. (2009). Bacterial peptidoglycan-degrading enzymes
within a healthcare system.

**Hsu, L.-Y., Harris, S. R., Chlebowicz, M. A., Lindsay, J. A., Koh, T.-H., Krishnan, P.,
et al. (2015). Evolutionary dynamics of methicillin-resistant *Staphylococcus
aureus* within a healthcare system. *Genome Biol.* 16:61. doi: 10.1186/s13059-
015-0643-z
Humann, J., and Lenz, L. L. (2009). Bacterial peptidoglycan-degrading enzymes and
their impact on host muropeptide detection. *J. Innate Immun.* 1, 88–97. doi:
10.1159/000181181

**Ingvale, S., Van Wamel, W., Luong, T. T., Lee, C. Y., and Cheung, A. L.
(2005). Rat/Mgra, a regulator of autolysis, is a regulator of virulence genes in
Staphylococcus aureus. *Infect. Immun.* 73, 1423–1431. doi: 10.1128/IAI.73.
3.1423-1431.2005

**Ingvale, S. S., Van Wamel, W., and Cheung, A. L. (2003). Characterization of RAT,
an autolysin regulator in *Staphylococcus aureus*. *Mol. Microbiol.* 48, 1451–1466.
doi: 10.1046/j.1365-2958.2003.03503.x

**Ito, T., Katayama, Y., Asada, K., Mori, N., Tsutsumimoto, K., Tienasaitorn, C.,
et al. (2001). Structural comparison of three types of staphylococcal cassette
cromosome mec integrated in the chromosome in methicillin-resistant
Staphylococcus aureus. *Antimicrob. Agents Chemother.* 45, 1323–1336. doi: 10.
1128/AAC.45.5.1323-1336.2001

**Iwao, Y., Khokhlova, O. E., Takano, T., Hung, W., Isobe, H., Peryanova, O. V.,
et al. (2012). Fatal pneumonia in HIV-infected patients from a novel
ST239 methicillin-resistant *Staphylococcus aureus* carrying the toxic shock
syndrome toxin-1 gene in Krasnoyarsk, Siberian Russia. *Jpn. J. Infect. Dis.* 65, 184–186.

**Joensen, K. G., Scheutz, F., Lund, O., Hasman, H., Kaas, R. S., Nielsen, E. M., et al.
(2014). Real-time whole-genome sequencing for routine typing, surveillance,
and outbreak detection of verotoxigenic *Escherichia coli*. *J. Clin. Microbiol.* 52,
1501–1510. doi: 10.1128/CM.03617-13

**Jonsson, I.-M., Lindholm, C., Luong, T. T., Lee, C. Y., and Tarkowski, A.
(2008). mrgrA regulates staphylococcal virulence important for induction and
progression of septic arthritis and sepsis. *Microbes Infect.* 10, 1229–1235.
doi: 10.1016/j.micinf.2008.07.026

**Josten, M., Dischingcr, J., Szekat, C., Reif, M., Al-Sabti, N., Sahil, H.-G., et al.
(2014). Identification of agr-positive methicillin-resistant *Staphylococcus aureus*
harbouring the class A mec complex by MALDI-TOF mass spectrometry. *Int. J.
Med. Microbiol.* 304, 1018–1023. doi: 10.1016/j.ijmm.2014.07.005

**Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment
software version 7: improvements in performance and usability. *Mol. Biol.
Evol.* 30, 772–780. doi: 10.1093/molbev/mso100

**Kolar, S. L., Ibarra, J. A., Rivera, F. E., Mootz, J. M., Davenport, J. E., Stevens,
S. M., et al. (2013). Extracellular proteases are key mediators of *Staphylococcus
aureus* virulence via the global modulation of virulence-determinant stability.
Microbiologyonline 2, 18–34. doi: 10.1002/mbo3.55

**Kong, Z., Zhao, P., Liu, H., Yu, X., Qin, Y., Su, Z., et al. (2016). Whole-Genome
sequencing for the investigation of a hospital outbreak of MRSA in China. *PLoS
One* 11:e0149844. doi: 10.1371/journal.pone.0149844

**Kosakovsly Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H., and Frost,
S. D. W. (2006). Automated phylogenetic detection of recombination using a
genetic algorithm. *Mol. Biol. Evol.* 23, 1891–1901. doi: 10.1093/molbev/msi051

**Koyamns, K., Bisschop, A., Vughs, M., van Kessel, K., de Haas, C., and van Strijp, J.
(2016). Staphylococcal superantigen-like protein 1 and 5 (S1SL & S5L) limit
neutrophil chemotaxis and migration through MMP-inhibition. *Int. J. Mol. Sci.*
17:1072. doi: 10.3390/ijms1701072

**Kuroda, M., Ohta, T., Uchiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., et al.
(2001). Whole Genome sequencing of meticillin-resistant *Staphylococcus aureus*
Lancet 357, 1225–1240. doi: 10.1016/S0140-6736(00)04403-2

**Lanave, C., Preparata, G., Saccone, C., and Serio, G. (1984). A new method for
calculating evolutionary substitution rates. *Mol. Biol. Evol.* 20, 86–93. doi: 10.1007/
BF02101990

**Le, K. Y., and Otto, M. (2015). Quorom-sensing regulation in staphylococci — an
overview. *Front. Microbiol.* 6:1174. doi: 10.3389/fmicb.2015.01174

**Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from
discrete morphological character data. *Syst. Biol.* 50, 913–928. doi: 10.1080/106351050117536287

**Li, M., Du, X., Villaruz, A. E., Diep, B. A., Wang, D., Song, Y., et al. (2012). MRSA
epidemic linked to a quickly spreading colonization and virulence determinant.
Nat. Med. 18, 816–819. doi: 10.1038/nm.2692

**Li, Y., Cao, B., Zhang, Y., Zhou, J., Yang, B., and Wang, L. (2011). Complete
genome sequence of *Staphylococcus aureus* T0131, an ST239-MRSA-SCCmec
type III clone isolated in China. *J. Bacteriol.* 193, 3411–3412. doi: 10.1128/JB.
01319-11

**Lindsay, J., (ed.) (2008). “*S. aureus evolution: lineages and mobile genetic elements
(MGEs)*” in *Staphylococcus*: Molecular Genetics, (Norfolk: Caister Academic Press), 45–70.
Luong, T. T., Dunman, P. M., Murphy, E., Projan, S. J., and Lee, C. Y. (2006). Transcription profiling of the mrgA regulon in Staphylococcus aureus. J. Bacteriol. 188, 1899–1910. doi: 10.1128/JB.188.5.1899-1910.2006

Margulis, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., et al. (2005). Genome sequencing in microfabricated high-density picotiter reactors. Nature 437, 376–380. doi: 10.1038/nature04726

McMahon, S. A., Roberts, G. A., Johnson, K. A., Cooper, L. P., Liu, H., White, J. H., et al. (2009). Extensive DNA mimicry by the ArDA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res. 37, 4887–4897. doi: 10.1093/nar/gkp478

Minh, B. Q., Nguyen, M. A. T., and von Haeseler, A. (2013). Ultrafast phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195. doi: 10.1093/molbev/mso034

Mitchell, A., Chang, H., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., et al. (2015). The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43, D213–D221. doi: 10.1093/nar/gku1243

Monk, I. R., Shah, I. M., Xu, M., Tan, M.-W., and Foster, T. J. (2012). Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. mBio 3:e00277-11. doi: 10.1128/mBio.00277-11

Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S. L., et al. (2013). FUBAR: A Fast, unconstrained bayesian approximation for inferring selection. Mol. Biol. Evol. 30, 1196–1205. doi: 10.1093/molbev/msm035

Murrell, B., Weaver, S., Smith, M. D., Wertheim, J. O., Murrell, S., Aylward, A., et al. (2015). Gene-wide identification of episodic selection. Mol. Biol. Evol. 32, 1365–1371. doi: 10.1093/molbev/msv035

Murrell, B., Wertheim, J. O., Moola, S., Weighill, T., Scheffler, K., and Kosakovsky Pond, S. L. (2012). Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8:e1002764. doi: 10.1371/journal.pgen.1002764

Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo, D. P., Flanigan, M. J., Novick, R. P., and Subedi, A. (2007). The SaPIs: mobile pathogenicity islands of Gram-positive bacteria. Nat. Rev. Microbiol. 5, 42–57. doi: 10.1038/nrmicro1551

Niu, Y., Wang, S., Li, R., Xi, Y., Tian, Z., Li, H., et al. (2009). The InterPro protein families database: the classification resource after 10.1093/molbev/msa140

Novick, R., Ross, H., Figueiredo, A., and Abramochkin, G. (2000). Activation for inferring selection. Science.287.5452.391a

Rambaut, A., Lam, T. T., Max Carvalho, L., and Pybus, O. G. (2016). Exploring Rambaut et al. (2015). Gene-wide identification of episodic selection.

Sambrook, J., Fritch, E., and Maniatis, T. (1989). “Commonly used techniques for inferring selection.” Molecular Cloning: A Laboratory Manual, eds J. Sambrook, E. Fritch, and T. Maniatis (New York, NY: Cold Spring Harbor Laboratory Press), E3–E4.

Schattner, P., Brooks, A. N., and Lowe, T. M. (2005). The tRNAscan-SE, snoscan and snGPS web servers for the detection of tRNAs and snRNAs. Nucleic Acids Res. 33, W686–W689. doi: 10.1093/nar/gki366

Seyfried, M. J., Petty, N. K., and Beatson, S. A. (2011). Easyfig: a genome visualization tool for comparative genomics. Bioinformatics 27, 541–551. doi: 10.1093/nar/mkr239

Stach, C. S., Herrera, A., and Schlievert, P. M. (2014). Staphylococcal superantigens interact with multiple host receptors to cause serious diseases. Immunol. Rev. 305, 177–181. doi: 10.1111/1600-065X.12249

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. doi: 10.1093/bioinformatics/btu033

Stegger, M., Driebe, E. M., Roe, C., Lemmer, D., Bowers, J. R., Engelthaler, D. M., et al. (2013). Genome sequence of Staphylococcus aureus strain CA347, a USA600 methicillin-resistant isolate. Genome Announce. 1:e00517-13. doi: 10.1101/gna.00517-13

Subedi, A., Ubeda, C., Adhikari, R. P., Penadés, J. R., and Novick, R. P. (2007). Sequence analysis reveals genetic exchanges and intraspecific spread of Sapa2, pathogenicity island involved in menstrual toxic shock. Microbiology 153, 3235–3245. doi: 10.1099/mic.0.2006932-0

Sullivan, M. J., Petty, N. K., and Beatson, S. A. (2011). Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010. doi: 10.1093/bioinformatics/btq393

Teixeira, L. A., Resende, C. A., Ormonde, L. R., Rosenbaum, R., Figueredo, A. M. S., De Lencastre, H., et al. (1995). Geographic spread of epidemic multiresistant Staphylococcus aureus clone in Brazil. J. Clin. Microbiol. 33, 2400–2404.

Therav, K., and Novick, R. (2006). A slipped-mispairing mutation in agrA of laboratory strains and clinical isolates results in delayed activation of agr and failure to translate α- and α-haemolysins. Mol. Microbiol. 59, 1519–1530. doi: 10.1111/j.1365-2958.2006.06498.x

Vallenet, D., Belda, E., Calteau, A., Cruveiller, S., Engelen, L., Lajas, A., et al. (2013). MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res. 41, D636–D647. doi: 10.1093/nar/gks1194

Vallenet, D., Engelen, L., Mornico, D., Cruveiller, S., Fleury, L., Lajas, A., et al. (2009). MicroScope: a platform for microbial genome annotation and comparative genomics. Database 2009:ba021. doi: 10.1093/database/bap021

van Hal, S. J., Jones, M., Gossell, I. B., and Paterson, D. L. (2011). Vancomycin heteroresistance is associated with reduced mortality in ST239 methicillin-resistant Staphylococcus aureus blood stream infections. PLoS One 6:e21217. doi: 10.1371/journal.pone.0021217

VanWamel, W. J. B., Rooijakkers, S. H. M., Ruyken, M., Van Kessel, K. P. M., and Van Strijp, J. A. G. (2006). The innate immune modulators staphylococcal activators and chemotaxis inhibitory protein of Staphylococcus aureus are located on α-hemolysin-converting bacteriophages. J. Bacteriol. 188, 1310–1315. doi: 10.1128/JB.188.4.1310–1315.2006

Botelho et al. Phylogenomics of South American ST239
Wang, Z., Zhou, H., Wang, H., Chen, H., Leung, K. K., Tsui, S., et al. (2014). Comparative genomics of methicillin-resistant *Staphylococcus aureus* ST239: distinct geographical variants in Beijing and Hong Kong. *BMC Genomics* 15:529. doi: 10.1186/1471-2164-15-529

Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L., and Scheffler, K. (2015). RELAX: detecting relaxed selection in a phylogenetic framework. *Mol. Biol. Evol.* 32, 820–832. doi: 10.1093/molbev/msu400

World Health Organisation [WHO] (2017). *Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics*. Geneva: WHO.

Xiao, M., Wang, H., Zhao, Y., Mao, L.-L., Brown, M., Yu, Y.-S., et al. (2013). National surveillance of methicillin-resistant *Staphylococcus aureus* in China highlights a still-evolving epidemiology with 15 novel emerging multilocus sequence Types. *J. Clin. Microbiol.* 51, 3638–3644. doi: 10.1128/JCM.01375-13

Yamamoto, T., Takano, T., Higuchi, W., Iwao, Y., Singur, O., Reva, I., et al. (2012). Comparative genomics and drug resistance of a geographic variant of ST239 methicillin-resistant *Staphylococcus aureus* emerged in Russia. *PLoS One* 7:e29187. doi: 10.1371/journal.pone.0029187

Yang, Z. (1995). A space-time process model for the evolution of DNA sequences. *Genetics* 139, 993–1005.

Zhang, X., Xu, X., Yuan, W., Hu, Q., Shang, W., Hu, X., et al. (2014). Complete genome sequence of *Staphylococcus aureus* XN108, an ST239-MRSA-SCCmec III strain with intermediate vancomycin resistance isolated in Mainland China. *Genome Announc.* 2:e00449-14. doi: 10.1128/genomeA.00449-14

Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J., and Wishart, D. S. (2011). PHAST: a fast phage search tool. *Nucleic Acids Res.* 39, W347–W352. doi: 10.1093/nar/gkr485

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Botelho, Cerqueira e Costa, Moustafa, Beltrame, Ferreira, Côrtes, Costa, Silva, Bandeira, Lima, Souza, Almeida, Vasconcelos, Narechania, Ryan, O’Brien, Kolokotronis, Planet, Nicolás and Figueiredo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.