The Reemergence of Seasonal Respiratory Viruses in Houston, Texas, after Relaxing COVID-19 Restrictions

Parsa Hodjat, Paul A. Christensen, Sishir Subedi, David W. Bernard, Randall J. Olsen, S. Wesley Long

ABSTRACT Measures intended to limit the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus at the start of the coronavirus disease 2019 (COVID-19) pandemic resulted in a rapid decrease in other respiratory pathogens. Herein, we describe the trends of respiratory pathogens in a major metropolitan health care system central microbiology reference laboratory before and during the COVID-19 pandemic, with attention to when COVID-19 mitigation measures were implemented and relaxed. During the initial lockdown period, COVID-19 was the primary respiratory pathogen detected by multiplex respiratory panels. As COVID-19 containment measures were relaxed, the first non-COVID respiratory viruses to return to prepandemic levels were members of the rhinovirus/enterovirus family. After the complete removal of COVID-19 precautions at the state level, including an end to mask mandates, we observed the robust return of seasonal coronaviruses, parainfluenza virus, and respiratory syncytial virus. Inasmuch as COVID-19 has dominated the landscape of respiratory infections since early 2020, it is important for clinicians to recognize that the return of non-COVID respiratory pathogens may be rapid and significant when COVID-19 containment measures are removed.

IMPORTANCE We describe the return of non-COVID respiratory viruses after the removal of COVID-19 mitigation measures. It is important for the public and physicians to recognize that, after months of COVID-19 being the primary driver of respiratory infection, more typical seasonal respiratory illnesses have returned, and this return is out of the normal season for some of these pathogens. Thus, clinicians and the public must now consider both COVID-19 and other respiratory illnesses when a patient presents with symptomatic respiratory illness.

KEYWORDS COVID-19, coronavirus, influenza, masking, parainfluenza virus, respiratory syncytial virus
of influenza virus, respiratory syncytial virus (RSV), rhinovirus/enterovirus, and seasonal coronavirus infections, as diagnosed by the respiratory pathogen panel in the Houston Methodist Hospital centralized microbiology laboratory, declined rapidly (Fig. 1) (https://flu.houstonmethodist.org, last accessed 25 May 2021). Similar declines can be observed both in influenza surveillance data and respiratory pathogen panel data from the United States.
As COVID-19 measures were gradually relaxed starting in May 2020, very low levels of non-SARS-CoV-2 respiratory pathogens were detected even as cases of COVID-19 began to rise (https://gov.texas.gov/uploads/files/press/EO-GA-23_phase_two_expanding_opening_COVID-19.pdf, last accessed 25 May 2021) (8). Levels of non-COVID respiratory infections remained exceedingly low through the summer (10 to 28 rhinovirus/enterovirus cases per week [cpw], 0 to 4 cpw of influenza A and B virus, and 0 to 1 cpw of RSV). In September 2020, rhinovirus/enterovirus cases began increasing to pre-pandemic levels as schools reopened and many remaining measures were relaxed in October 2020 (97 to 156 rhinovirus/enterovirus cases per week, October through December 2020) (Fig. 1A) (https://gov.texas.gov/uploads/files/press/EO-GA-32_continued_response_to_COVID-19_IMAGE_10-07-2020.pdf, last accessed 25 May 2021).

The first week of March 2021, the Texas governor announced that the remaining measures were being eliminated and face masks could no longer be mandated by state or local government (https://open.texas.gov/uploads/files/organization/openTexas/EO-GA-34-opening-Texas-response-to-COVID-disaster-IMAGE-03-02-2021.pdf, last accessed 25 May 2021). That same month, we began to observe a marked increase in rhinovirus/enterovirus, parainfluenza virus, and seasonal coronavirus infections (Fig. 1B to D). In Houston, seasonal coronaviruses typically peak during the winter months, with very low levels observed during the summer. We are now observing a month-over-month increase in parainfluenza and seasonal coronaviruses which would be considered out of season compared to their typical seasonality. Out-of-season increases in RSV have been reported elsewhere when COVID-19 measures were relaxed (https://www.abc.net.au/news/2021-02-24/rsv-cases-surging-in-south-east-queensland/13186788, last accessed 25 May 2021). These observations are important for clinicians to consider as they evaluate patients with respiratory infections in the coming months. They also underscore the high effectiveness of nonpharmacologic preventative measures like masking and social distancing in preventing the spread of respiratory pathogens.

REFERENCES

1. Olsen SJ, Azizz-Baumgartner E, Budd AP, Brammer L, Sullivan S, Pineda RF, Cohen C, Fry AM. 2020. Decreased influenza activity during the COVID-19 pandemic—United States, Australia, Chile, and South Africa, 2020. MMWR Morb Mortal Wkly Rep 69:1305–1309. https://doi.org/10.15585/mmwr.mm6937a6.
2. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors. 2020. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 395:1973–1987. https://doi.org/10.1016/S0140-6736(20)31142-9.
3. Long SW, Olsen RJ, Christensen PA, Subedi S, Olson R, Davis JJ, Saavedra MO, Yerramilli P, Pruitt L, Repond K, Shyer MN, Cambric J, Finkelstein UJ, Gollihar J, Musser JM. 2021. Analysis of sequencing data from 20,453 severe acute respiratory syndrome coronavirus 2 genomes from the Houston Metropolitan Area identifies the emergence and widespread distribution of multiple isolates of all major variants of concern. Am J Pathol 191:e983–e992. https://doi.org/10.1016/j.ajpath.2021.03.004.
4. Musser JM, Olsen RJ, Christensen PA, Long SW, Subedi S, Davis JJ, Gollihar J. 2021. Rapid, widespread, and preferential increase of SARS-CoV-2 B.1.1.7 variant in Houston, TX, revealed by 8,857 genome sequences. medRxiv. https://doi.org/10.1101/2021.03.16.21253753.
5. Long SW, Olsen RJ, Christensen PA, Bernard DW, Davis JR, Shukla M, Nguyen M, Ojeda Saavedra M, Cantu CC, Yerramilli P, Pruitt L, Subedi S, Hendrickson H, Eskandari G, Kumaraswami M, McLellan, Musser JS. 2020. Molecular architecture of early dissemination and evolution of the SARS-CoV-2 virus in metropolitan Houston, Texas. bioRxiv. https://doi.org/10.1101/2020.05.01.072652.
6. Redlberger-Fritz M, Kundi M, Aberle SW, Puchhammer-Stockl E. 2021. Significant impact of nationwide SARS-CoV-2 lockdown measures on the circulation of other respiratory virus infections in Austria. J Clin Virol 137:104795. https://doi.org/10.1016/j.jcv.2021.104795.
7. Kuutinen I, Artama M, Mäkelä L, Backman K, Heiskanen-Kosma T, Renko M. 2020. Effect of social distancing due to the COVID-19 pandemic on the incidence of viral respiratory tract infections in children in Finland during early 2020. Pediatr Infect Dis J 39:e423–e427. https://doi.org/10.1097/INF.0000000000003248.
8. Long SW, Olsen RJ, Christensen PA, Bernard DW, Davis JJ, Shukla M, Nguyen M, Saavedra MO, Yerramilli P, Pruitt L, Subedi S, Kuo HC, Hendrickson H, Eskandari G, Nguyen HAT, Long JH, Kumaraswami M, Goke J, Boutu D, Gollihar J, McLellan JS, Chou CW, Javanmardi K, Finkelstein U, Musser JM. 2020. Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 Virus in a major metropolitan area. mBio 11:e02707-20. https://doi.org/10.1128/mBio.02707-20.