Epidemiology, Virology, and Clinical Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2; Coronavirus Disease-19)

Su Eun Park

Department of Pediatrics, Pusan National University Children’s Hospital, Yangsan, the Republic of Korea

ABSTRACT

A cluster of severe pneumonia of unknown etiology in Wuhan City, Hubei province in China emerged in December 2019. A novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was isolated from lower respiratory tract sample as the causative agent. The current outbreak of infections with SARS-CoV-2 is termed coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO). COVID-19 rapidly spread into at least 114 countries and killed more than 4,000 people by March 11, 2020. WHO officially declared COVID-19 a pandemic on March 11, 2020. There have been 2 novel coronavirus outbreaks in the past 2 decades. The outbreak of severe acute respiratory syndrome (SARS) in 2002–2003 caused by SARS-CoV had a case fatality rate of around 10% (8,098 confirmed cases and 774 deaths), while Middle East respiratory syndrome (MERS) caused by MERS-CoV killed 858 people out of a total 2,499 confirmed cases between 2012 and 2019. The purpose of this review is to summarize known-to-date information about SARS-CoV-2, transmission of SARS-CoV-2, and clinical features of COVID-19.

Keywords: SARS-CoV-2; COVID-19; Coronavirus; SARS-CoV; MERS-CoV

서론

2019년 12월에 중국 후베이성 우한시에서 바이러스 폐렴 양상의 원인미상 폐렴이 무리 지어 발생하기 시작하였다. 환자의 대부분이 화난 수산 시장을 방문한 이력이 있었고, 중국 당국은 2019년 12월 31일에 원인 미상의 폐렴이 우한시에서 유행하고 있다고 공식 발표하였다.1,2) 2020년 1월 7일에 중국 질병예방통제센터는 이 폐렴 환자들로부터 이전에 알려지지 않은 새
코로나바이러스감염증-19와 SARS-CoV-2에 대한 고찰

로운 코로나바이러스를 겪었고, 1월 11일에 새로운 코로나바이러스의 유전 정보를 전 세계에 공개하였다. 3) 이 바이러스는 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)로 명명되었으며, 세계보건기구는 이에 의한 질병을 2019년에 발생된 코로나바이러스가 일으키는 질병을 뜻하는 코로나바이러스감염증-19 (coronavirus disease 2019, COVID-19)로 명명하였다. 5) 그리고 SARS-CoV-2의 전파를 차단하려는 노력에도 불구하고 중국 전 지역으로 감염이 확산되었을 뿐만 아니라 2020년 1월에는 태국, 일본, 우리나라 등에서도 감염이 확인되었다. 6) 우한에서 발생한 원인 미상 질병의 원인이 새로운 코로나바이러스로 확인된 후 총 3개월이 지났고, 전국 3월 11일에 약 114개국으로 확산이 확산되었으며, 4,000명 이상이 사망하였다. 7) 이에 세계보건기구는 2020년 3월 11일에 COVID-19가 세계적 대유행 (pandemic) 상황이라고 선언하였다. 8) 우리나라에서는 2020년 1월 20일에 첫 환자가 보고되었고 3월 12일 0시까지 총 7,869명의 확진 환자가 발생하였으며 66명 (0.84%)이 사망하였다. 9)

2000년 이후 지난 20년 동안 동물에서 유래한 새로운 코로나바이러스가 사람에게 감염을 일으킨 케이스는 전 세계에서 잦게 관찰되며, 급성 호흡곤란증후군과 높은 사망률을 나타낸 유행이 두 번 있었다. 10) 2002년 11월부터 2003년 7월까지 중국에서 시작하여 29개국에서 8,096명의 환자가 발생하였고, 중증급성호흡기증후군(SARS)의 원인은 박쥐에서 유래한 새로운 코로나바이러스로 밝혀졌다. 이 바이러스를 사스 코로나바이러스(severe acute respiratory syndrome-associated coronavirus, SARS-CoV)로 명명되었다. 11) 우리나라에서는 2003년 4월 3일에 첫 SARS 의심 환자가 신고되었고 2003년 6월 15일까지 추정사례 3례, 의심사례 중 17례가 확인되었으나 사망한 예는 없었다. 12) 2004년에 SARS-CoV 감염이 마지막으로 보고된 후 현재까지 전 세계에서 더 이상 보고가 없다. 13) 2012년 6월에 사우디아라비아에서 급성 호흡곤란증후군과 다발성 장기 부전이 발생한 환자에서 새로운 코로나바이러스가 발견되었다. 14) 이 새로운 코로나바이러스는 주로 아라비아반도 국가에서 폐렴과 급성 호흡곤란증후군 및 사망을 일으켜 중동호흡기증후군(Middle East respiratory syndrome, MERS)으로 불리게 된 질환의 원인으로, 메르스 코로나바이러스(Middle East respiratory syndrome coronavirus, MERS-CoV)로 명명되었다. MERS-CoV가 처음 보고된 후 요르단에서 2012년 4월에 원인 미상 질병으로 사망한 환자로부터 보관 중이던 혈액 검체에서 MERS-CoV가 확인되었다. 15) 2012년 4월부터 2019년 12월까지 27개국에서 2,499명이 MERS-CoV로 확진되었으며 858명 (34.4%)이 사망하였다. 16) 우리나라에서는 2015년 5월부터 12월까지 사우디아라비아에서 귀국한 후 발병한 환자와 연관하여 총 186명의 환자가 발생하였고 이중에서 38명 (20.4%)이 사망하였다. 17)

본 종결에서는 2020년 3월 12일 현재까지 발생한 SARS-CoV-2의 특정과 전파 양상 및 COVID-19의 임상 증상을 고찰하고 SARS와 MERS와의 유사점 및 차이점에 대하여 간략하게 소개하고자 한다 (Table 1).

본론

1. 바이러스 명칭과 특성

코로나바이러스는 외피에 나란히 있는 포지티브 센스 단일 가닥(positive-sense single-stranded) RNA 바이러스로 크기는 80~220 nm이다. 외피에 20 nm의 왕관 모양과 같은 돌기(spikes)가 있어
Table 1. Differences in characteristics of COVID-19, SARS, and MERS

Characteristics	COVID-19	SARS	MERS
First identified location	Wuhan, China	Guangdong, China	Jeddah, Saudi Arabia
Period	2019–present	2002–2003	2012–ongoing
Host of virus			
Natural host			
Intermediate host			
Mode of transmission	Respiratory droplet	Respiratory droplet	Respiratory droplet
	Contact	Contact	Contact
Incubation period	5.1 days* (95% CI, 2.2–11.5 days)	4.6 days** (95% CI, 3.8–5.8 days)	5.2 days*** (95% CI, 1.9–14.7 days)
Case fatality rate	3.8%† (95% CI, 1.9–14.7 days)	9.6% (95% CI, 5.2–13.9 days)	34.4% (95% CI, 29.1–40.6 days)

Abbreviations: COVID-19, coronavirus disease-2019; SARS, severe acute respiratory syndrome; MERS, Middle East respiratory syndrome; R₀, basic reproduction number; CI, confidence interval.
*Median incubation period; †Mean incubation period.

이 전자현미경 사진에서 태양의 코로나(corona)처럼 보이기 때문에 코로나바이러스로 명명되었다. 사랑과 동물에서 모두 질병을 일으킬 수 있다. 현재까지 알려진 RNA 바이러스군 중에서 가장 큰 유전체(genome)를 가지고 있다.iii 계통적으로 코로나바이러스는 Nidovirales 목(order) Coronaviridae 과(family)에 속하며 알파, 베타, 감마 및 델타의 4개의 속(genus)으로 다시 나뉜다. 인체 감염을 일으키는 사람 코로나바이러스(human coronavirus; HCoV)와 포유동물에 감염을 일으키는 코로나바이러스는 일반 또는 베타 코로나바이러스에 속한다. HCoV-229E와 HCoV-NL63은 알파 코로나바이러스에 속하며, HCoV-OC43, HCoV-HKU1, SARS-CoV 와 MERS-CoV는 베타 코로나바이러스에 속한다. 조류의 기관지암 바이러스와 일부 코로나바이러스는 감마 코로나바이러스에 속하고 최근에 발견된 일부 조류의 코로나바이러스는 델타 코로나바이러스에 속한다. 코로나바이러스의 핵산단백(nucleoprotein, N)이 RNA 유전체를 둘러싸고 코일관나선(coiled tubular helix) 형태를 이루며 이는 지질이 포함된 외피(E)에 둘러싸여 있다. 코로나바이러스의 외피는 2개 또는 3개의 당단백을 포함하고 있는데, 외피에 묻혀 있는 matrix 단백(M), 왕관 모양과 같은 돌기(spikes) 양상으로 외피 표면에 돌출된 S 단백과 일부 코로나바이러스에서만 존재하는 hemagglutinin esterase (HE)이다. S 단백이 중화 항체의 표적으로 작용한다. HE 또는 S 단백이 세포 수용체에 결합하면서 감염이 시작된다. 코로나바이러스의 유전체는 S 단백에 대한 유전자로 코로나바이러스에 속한다. 바이러스 복제효소인 RNA dependent RNA polymerase (RdRp), S, E, M과 N 단백에 대한 유전자가 5′-RdRp-S-E-M-N-3′의 순서로 배열되어 있다.iii

2019년 12월에 중국 우한의 폐렴 환자들에서 분리된 바이러스는 전체 유전체 염기서열 분석 결과 베타 코로나바이러스에 속하고 SARS-CoV와 구별되는 새로운(novel) 코로나바이러스로 밝혀졌다.iv 이 바이러스의 염기 서열은 SARS-CoV와 MERS-CoV의 염기서열과 각각 79.0%, 51.8% 일치하였으며, 박쥐의 SARS-like coronavirus (bat-SL-CoVZC45)와는 약 87.6–89% 일치하여 가장 유사하다.iii,iv 이 바이러스가 사람에서 검출된 새로운 코로나바이러스로서 치명적인 폐렴을 일으킬 수 있다고 처음 보고된 이후 2019 novel coronavirus (2019-nCoV)로 잠재적으로 불리다가, 2020년 2월 11일에 International Committee on Taxonomy of Viruses의 코로나바이러스 연구회(Coronaviridae Study Group)는 이 새로운 코로나바이러스의 계통발생학적(phylogenetic) 분석 결과에 근거하여 SARS-CoV-2로 명명하였다.vii 같은 날에 세계보건기구는 사람에서 발견된 새로운 감염병 원인체 명명 지침(WHO best practices for naming of new human infectious disease)에 따라 2019년 새로 발견된 코로나바이러스와 이에 의한 질환을 뜻하는 coronavirus disease 2019 (COVID-19)으로 명명하였다.vi
코로나바이러스 감염증-19 및 SARS-CoV-2에 대한 고찰

SARS-CoV-2 유전체 염기 서열 분석 자료에 근거하여 SARS-CoV-2의 발원소(reservoir)는 박쥐 등으로 추정되지만 중간 숙주는 현재까지 밝혀지지 않았다. SARS-CoV와 MERS-CoV의 발원소는 박쥐이고 SARS-CoV의 중간 숙주는 원코사향고양이(masked palm civet) 등이 추정되며, MERS-CoV의 중간 숙주는 단복남자(dromedary camel)로 알려져 있다. 22,25

코로나바이러스의 돌기 단백(spike protein)은 숙주 및 조직 친화성(tropism)을 결정하며 수용체 결합 단백을 통해 숙주 세포막과 결합하여 세포 내로 침투한다. 26 수용체 결합 유전자(receptor-binding gene)의 구조가 SARS-CoV와 매우 유사하여 SARS-CoV-2가 세포에 침투할 때 SARS-CoV와 동일한 수용체를 이용할 것으로 추측되었으며, 이후 연구에서 SARS-CoV-2가 SARS-CoV와 마찬가지로 angiotensin-converting enzyme 2 (ACE2)을 수용체로 이용할 수 증명되었다. 27,28 사망 코로나바이러스 중에서 HCoV-229E, OC43, NL63, HCoV-NL63 등에 여겨졌던 사람들로의 비교하여 SARS-CoV가 SARS-CoV와 마찬가지로 coronaviruses의 receptor-binding gene로 나열된 것으로 밝혀졌다. HCoV-229E의 수용체는 aminopeptidase N (CD-13)이고, HCoV-OC43의 수용체는 아직 밝혀지지 않았다. MERS-CoV의 수용체는 하기도의 dipeptidyl peptidase-4 (DPP4)이다. 29

SARS-CoV-2는 귀관계 세균세척액 검체에서 최초로 분리되었으며, 이후 바이러스 RNA가 비인두와 목구멍 도달 검체뿐만 아니라, 혈액, 대변, 소변, 타액 등에서도 검출되었다. 29,31

2. 바이러스 전파

중국 우한에서 COVID-19 감염 발생 초기에는 의료종사자의 감염이 보고되지 않아 사람에서 사람으로의 전파 가능성이 낮을 것으로 추정되었다. 그러나 우한에서 역학적 위험 요인으로 여겨졌던 수산 시장 방문력이 없는 환자가 발생하였고 지역 사회 및 중국 외 국가에서 환자가 발생하면서 사람에서 사람의 전파가 인정되었다. 20,31

HCoV-229E, OC43, NL63, 그리고 HKU1의 전파 방식은 명확하게 밝혀져 있지 않지만, 다른 호흡기 바이러스와 마찬가지로 비말과 직접 및 간접 접촉을 통해 전파가 일어난다. 32 에어로졸로 전파가 가능한 지에 대해서는 명확하게 알려진 바는 없다. MERS-CoV의 경우 비말과 직접 접촉이 가장 혼란 전파 경로이고 간접 접촉과 에어로졸로도 전파될 수 있으며 대변-구강 경로로의 전파도 가능할 것으로 보인다. 10 SARS-CoV의 주요 전파 경로도 비말과 직접 접촉이다. 분무기 치료나 기판 산란과 같은 에어로졸이 생성되는 경우 전파력이 증가한 것으로 보고가 있다. 대변을 통한 전파도 가능한 것으로 여겨지지만 명확한 증거는 없다. 10

SARS-CoV-2의 전파 경로는 SARS-CoV와 MERS-CoV와 동일할 것으로 추정되며, 호흡기 분비물 또는 비말이 주요 전파 경로이다. 바이러스가 포함된 호흡기 분비물이 스테인리스 철판 혹은 플라스틱 등과 같은 물체 표면에 묻어 수 시간 동안 생존할 수 있기 때문에 이러한 표면을 통한 간접 전파도 가능할 것으로 보인다. 33 공기 전파는 현재까지 보고되지 않아 주요 전파 경로로 여겨지지 않는다는 다만 병원과 같은 환경에서 에어로졸을 생성하는 시술을 하는 경우 공기 전파가 제한적으로 발생할 가능성이 있다. SARS-CoV-2의 RNA가 혈액, 소변 및 대변에서도 검출되지만 감염력이 있는 바이러스가 존재하여 이들을 통한 전파가 가능하지는 알려지지 않았다. 34

SARS-CoV-2는 전파 속도가 매우 빠르다 SARS-CoV가 확산되었던 속도보다 더 빠르게 전 세계로 확산되고 있다. 2019년 12월 31일에 중국 우한 지역에서 원인미상의 폐렴이 유행하고 있다.
코로나바이러스감염증-19과 SARS-CoV-2에 대한 고찰

고 공식 보고된 후 채 3개월이 지난기도 전인 2020년 3월 5일에 중국에서는 80,555명, 중국 외
90개국에서 17,821명의 확진 환자가 발생하였고, 3월 11일에는 전 세계 적어도 114개국으로 감
염이 확산되었으며 4,000명 이상 사망하여, 세계보건기구는 2020년 3월 11일에 COVID-19가
세계적 대유행(pandemic)이라고 선언하였다. 이는 SARS-CoV가 2002년 11월 16일에 처음 확
인된 후 2003년 7월까지 29개국에서 8,096명의 확진 환자와 774명의 사망자를 발생시켰으나
세계적 대유행의 가능성이 없다고 판단되었던 것과 차이가 있다. 한편 2009년 4월에 새로운
H1N1 인플루엔자 바이러스(H1N1pdm09 virus)가 출현한 후 전 세계로 빠르게 확산하여 2009
년 6월 1일에 세계보건기구가 세계적 대유행임을 선포하였을 때 74개국에서 약 3만명의 확
진 환자가 보고되었다. 26)

SARS-CoV-2의 전파력에 대하여 현재까지 상황이 지속적으로 변하고 있어 정확하게 알려진
바는 없다. 2020년 1월 1일부터 2월 7일까지 발표된 논문 중에서 12개의 연구를 분석하였을 때
SARS-CoV-2의 기초생산수수(basic reproduction number, R₀) 한 사람의 감염자가 전염 가능 기
간 동안에 직접 감염시키는 평균 인원수는 1.4~6.49로 추정되었으며, R₀의 평균은 3.32, 중앙
값은 2.79이다. 27) 향후 역학 자료가 더 빠르면 R₀는 변경될 수 있지만 2-3 정도로 예측된다.

SARS-CoV-2의 경우 전파가 일어나는 시기는 임상증상 발생 수일 후이며 증상 발생 10일경에
호흡기에서 바이러스의 양이 가장 높은 것과 일치한다. 28) SARS-CoV-2의 경우 임상 증상 발생 5
일 이내에 환자를 격리하면 이차 감염이 발생하는 경우가 적었고 증상 발생 직후에 격리하는
방법으로도 전파를 효과적으로 차단할 수 있었다. 그러나 SARS-CoV-2의 전파가 감염의 어느
시기에 일어나는지는 현재까지 명확하지 않다. 일반적으로 호흡기 바이러스는 증상이 있을
때 전염력이 가장 높기 때문에 SARS-CoV-2도 증상이 있을 때 전염력이 가장 높을 것으로 여
겨진다. 중국에서 18명의 환자를 대상으로 시사도 검체에서 SARS-CoV-2 양을 추적 조사한 연
구에 의하면 29) 임상 증상 발생 직후에 바이러스의 양이 가장 많았고 이후 점차 감소되는 양상
으로 인플루엔자 바이러스 배출 양상과 유사하였다. 이 연구 결과는 SARS-CoV-2의 전파가
증상 발생 초기 수일 동안에 일어날 수 있음을 시사하였다. 또한 이 연구에서 1명의 무증상
감염자의 상기도에서 검출된 바이러스 양은 나머지 증상자 와 상기도에서 검출된 바이러
스 양과 유사하였다. 이는 무증상 감염자 또는 증상이 경한 경우에도 바이러스 전파가 가능
할 수 있음을 나타낸다. 실제로 우리나라에서 전파 양상은 고려하여 보았을 때 감염의 초기
에 주로 전파가 발생하는 것으로 보인다. 또한 증상이 없는 가족으로부터 가족 내에서 전파
가 일어난 경우가 최근에 보고되었다. 30) 즉, SARS-CoV-2의 전파는 감염의 초기부터 발생하고
증상이 없거나 기진으로의 경우에도 일어날 수 있다. 이는 SARS-CoV-2의 전파와 다른 양상으로
SARS-CoV-2에 의한 감염의 경우 증상이 있는 환자를 찾아서 격리하는 방법으로 바이러스의
전파를 효과적으로 차단하지 못할 수도 있음을 시사한다. 그러나 환자와 자신의 증상을 미치
각각지 못하거나 고령 또는 기저질환으로 주변에서 인지하지 못했을 가능성이 등도 있어 무
증상자의 감염 전파 가능성에 대해서는 추가적인 연구가 필요하다. 임상 증상 발생 직전 잡
복기에 전염력이 있는지는 현재까지 알려진 바가 없다.

SARS-CoV-2가 임신부에서 태아로 수직 감염이 가능한지에 대해서도 알려진 바가 많지 않
다. 2002–2003년 SARS-CoV 유럽 사례에서 12명의 산모의 감염이 보고되었다. 31) 이 중 3명(25%)
의 임신부가 사망하였고 4명은 유산하였다. 분만은 5명에서 이루어졌고 분만 당시에 임신 나
이는 26~37주였으며, 출생한 신생아 5명 중 2명은 자궁내 발육지연이 있었다. 5명의 신생아는

https://doi.org/10.14776/piv.2020.27.e9

https://piv.or.kr
SARS-CoV의 감염의 증가가 없었다. 임신 중에 MERS-CoV 감염이 확인된 임신부들의 증례를 합쳐 문헌 고찰하였는데, 총 9명의 임신부가 증례 보고되었으며 이 중 5명이 집중치료실에 입원하였고 3명(33.3%)이 사망하였다. 사산이 2례 있었고 임신나이 32주에서 만산에 5명이 출생하였으며 신생아 모두 MERS-CoV 감염은 없었다. SARS-CoV-2가 임신에 미치는 영향을 알아보기 위한 연구 결과가 최근에 보고되었다. 임신 3기에 SARS-CoV-2 폐렴으로 진단받은 9명의 산모를 대상으로 재활 및 계획을 실시하였으며 SARS-CoV-2 검출은 양수, 제대혈, 모유, 신생아의 구인두 도말 검체에서 실시하였다. 9명의 산모 중에서 비염 폐렴으로 진행하거나 사망한 경우는 없었으며 사산도 없었다. 양수, 제대혈, 모유, 신생아의 구인두 도말 검체에서 SARS-CoV-2는 검출되지 않았다. 즉, 임신 3기에 COVID-19 폐렴으로 진단된 산모로부터 태아로의 수직 감염은 발생하지 않을 것으로 예상된다. 그러나 대상 임신부의 수가 매우 적고 임신 3기에 감염만 포함되어 있어 임신 초기 또는 중기의 감염이 임신부와 태아에 미치는 영향에 대해서는 현재로서는 평가할 수 없다.

3. 임상 양상
COVID-19의 임상양상은 중증 또는 약한 후기폐렴, 신생아, 중증요법, 사망, 기저 질환, 감염질환, 감염의 패턴, 감염자의 특성, 임신의 양상과 같은 주요 인을 포괄한다. 임산부의 감염은 임신부와 태아에 미치는 영향에 대해서는 현재로서는 평가할 수 없다.

2020년 2월 20일까지 중국의 국가보고시스템(National Reporting System)에 보고된 55,924명의 확진 환자의 연령 중앙값은 51세(2일-100세)였으며 30-69세가 77.8%를 차지하였고 남자가 51.1%이었다. 보고된 환자들의 약 80%는 폐렴이 발생하지 않았거나 경증 및 중증도 폐렴이었고 약 14%가 중증 폐렴이었으며 약 6%는 호흡 부전, 쇼크, 다발성 장기부전과 같은 위중상을 보였다. 중국의 COVID-19에 의한 치명률은 3.8%로, 첫 발원지인 우한의 경우는 5.8%, 우한 외 지역은 0.2%로 알려졌다. 발병 경과 또는 사망의 위험 요인으로 알려진 것은 60세 이상의 나이와 고혈압, 당뇨, 심혈관질환, 만성질환 및 약 같은 기저질환이다. 혈액 검사에서 백혈구 감소, 림프구 감소와 C-반응 단백의 경상 상승이 관찰된다. 심한 폐렴이 발생하면 백혈구 증가, 흉성증가, 크레아틴 키나아제 증가 등이 나타난다. 흉부 컴퓨터 단층촬영에서 양측 폐에 푹ታ운 흉내유리혼탁소견(ground glass appearance), 간질 점음, 또는 다발 부 분 경화 소견 등이 관찰되었다.

우한의 한 병원에서 COVID-19 폐렴의 특징을 중증도에 따라 분석하였다. 138명의 폐렴 환자 중 36명이 집중치료가 필요한 심한 폐렴에 속하였다. 이 36명의 평균 나이는 66세였고 집중치료가 필요하지 않았던 나머지 102명의 평균 나이는 51세였다. 심한 폐렴인 경우 고혈압, 당뇨 등과 같은 기저 질환을 동반한 경우가 더 많았다. 심한 폐렴이 있었던 경우 중증 시작부터 호흡곤란이 발생하기까지 기간은 5일이었고 급성호흡곤란증후군으로 진행한 기간은 8일이었다. 연구 발표 당시까지 6명이 사망하여 치명률은 4.3%이었다. 사망한 예중에서 발병 후 7일 이후부터 총 백혈구 수의 증가가 나타났고 증상의 수가 증가하였으며 림프구의 수가 감소하였다.
한편, SARS-CoV에 의한 감염의 가장 흔한 증상은 열이며, 근육통, 오한, 피로감과 같은 전신 증상으로 시작하여 발병 수일 후부터 일주일 경에 마른 기침, 호흡곤란이 발생한다. 발열이나 인후통과 같은 상기도 감염 증상은 드물며 병의 후반기에 수양성 설사가 10-25%에서 발생한다. 화자의 20-30%는 집단치료가 필요하였으며 사망률은 약 10%로 발병 3주째에 주로 발생하였고, 60세 이상 화자의 경우 치명률이 50% 이상이었다.

MERS-CoV의 경우 신부전과 같은 기저 질환이 동반된 경우에 특히 중증으로 진행하여 발병 수일 후부터 기침과 호흡곤란이 발생하고 흉부 X선 영상 활명에서 한쪽 또는 양쪽 폐야에 폐렴성 침윤이 발생하였으며 이후 급격히 악화되어 인공호흡기 치료가 필요하게 되었다. 치명률은 약 35%이며 약 25%에서 구토, 설사, 복통과 같은 증상이 동반되었다.

결론

중국 우한에서 발생한 원인미상의 폐렴 환자에서 SARS-CoV-2가 처음 검출되고 불과 3개월이 되기 전에 COVID-19는 전 세계로 확산되었고, SARS와 MERS보다 더 많은 확진 환자와 사망자를 발생시켰다. 과거의 그 어느 때보다 빠르게 새로운 감염병의 원인체를 찾아내고 그 유전 정보를 공유함으로써 진단 방법을 개발할 수 있게 되었고, 환자를 빨리 찾아내어 적절한 격리와 치료를 제공할 수 있게 되었다. 그러나 현재까지도 SARS-CoV-2의 병원소나 중간 속주를 밝혀내지 못했고, 바이러스의 전파 경로 또는 전파 기간 및 심한 폐렴과 관련된 병인 등에 대해서도 밝혀내야 한다. COVID-19의 전파 속도를 늦추는 전략을 지속하는 동안에 SARS-CoV-2에 대한 연구를 통해 효과적인 치료 약제와 백신 개발이 이루어져야 하겠다.

ACKNOWLEDGEMENT

자료 수집과 정리에 도움을 주신 대한소아청소년과학회 감염위원회와 대한소아감염학회에 감사드립니다.

I would like to thank all the members of the Committee on Infectious Diseases of the Korean Pediatric Society and the Korean Society of Pediatric Infectious Diseases for their efforts in searching and analyzing the data related with SARS-CoV-2.

REFERENCES

1. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J Med Virol 2020;92:401-2.

2. World Health Organization. Novel coronavirus (2019-nCoV), situation report-1, 21 January 2020 [Internet]. Geneva: World Health Organization; 2020 [cited 2020 Mar 2]. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf.

3. GISAID Database. 2020 coronavirus [Internet]. Munich, Germany: GISAID Database; 2020 [cited 2020 Mar 20]. Available from: https://www.gisaid.org/CoV2020.
4. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel coronavirus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol 2020;79:104212.

5. World Health Organization. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020 [Internet]. Geneva: World Health Organization; 2020 [cited 2020 Mar 12]. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020.

6. Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses 2020;12:135.

7. Kim JY, Choe PG, Oh Y, Oh KJ, Kim J, Park SJ, et al. The first case of 2019 novel coronavirus pneumonia imported into Korea from Wuhan, China: implication for infection prevention and control measures. J Korean Med Sci 2020;35:e61.

8. World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020 [Internet]. Geneva: World Health Organization; 2020 [cited 2020 Mar 11]. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.

9. Korea Centers for Disease Control and Prevention. Updates on COVID-19 in Republic of Korea (as of 12 March). Cheongju: Korea Centers for Disease Control and Prevention; 2020.

10. American Academy of Pediatrics. Coronaviruses, including SARS and MERS. In: Kimberlin DW, Brady MT, Jackson MA, Long SS, editors. Red Book®: 2018 Report of the Committee on Infectious Diseases. 31st ed. Itasca: American Academy of Pediatrics, 2018:207-301.

11. World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 [Internet]. Geneva: World Health Organization; 2004 [cited 2020 Apr 1]. Available from: https://www.who.int/csr/sars/country/table2004_04_21/en/.

12. Lee JS. Severe acute respiratory syndrome (SARS). In: Yoo JH, editor. Infectious disease. Seoul: Koonja, 2007:775-81.

13. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367:1814-20.

14. Memish ZA, Perlman S, Van Kerkhove MD, Zumla A. Middle East respiratory syndrome. Lancet 2020;395:1063-77.

15. Oh MD, Park WB, Park SW, Choe PG, Bang JH, Song KH, et al. Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea. Korean J Intern Med 2018;33:233-46.

16. Englund JA, Kim YJ, McIntosh K. Human coronaviruses, including Middle East respiratory syndrome coronavirus. In: Cherry J, Demmler-Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ, editors. Feigin and Cherry’s textbook of pediatric infectious disease. 8th ed. Philadelphia: Elsevier Inc., 2019:1846-54.

17. Brian DA, Baric RC. Coronavirus genome structure and replication. In: Enjuanes L, editor. Coronavirus replication and reverse genetics. Berlin: Springer, 2005:1-30.

18. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-33.

19. Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl), In press 2020.

20. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395:514-23.

21. Coronavirus Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5:536-44.
23. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 2005;102:14040-5.

24. Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Seebide B, Mbabazi R, et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. MBio 2017;8:e00373-17.

25. Drosten C, Kellam P, Memish ZA. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med 2014;371:1359-60.

26. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012;4:1011-33.

27. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020;5:562-9.

28. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020;46:586-90.

29. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis, In press 2020.

30. To KK, Tsang OT, Chik-Yan Yip C, Chan KH, Wu TC, Chan JMC, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA 2020;323:1488-94.

31. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020;382:1199-207.

32. Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020;323:1610-2.

33. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020;382:1564-7.

34. Chan M. World now at the start of 2009 influenza pandemic [Internet]. Geneva: World Health Organization; 2009. Available from: https://www.who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/.

35. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 2020;27:taaa021.

36. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 2020;382:1177-9.

37. Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020;323:1406-7.

38. Wong SF, Chow KM, Leung TN, Ng WF, Ng TK, Shek CC, et al. Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome. Am J Obstet Gynecol 2004;191:292-7.

39. Jeong SY, Sung SI, Sung JH, Ahn SY, Kang ES, Chang YS, et al. MERS-CoV infection in a pregnant woman in Korea. J Korean Med Sci 2017;32:1717-20.

40. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020;395:809-15.

41. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. In press 2020.
요약

2019년 12월에 중국 후베이성 우한시에서 원인 미상 폐렴이 무리 지어 발생하기 시작하였다. 환자의 하기도에서 이전에 알려지지 않은 새로운 코로나바이러스가 분리되었으며 severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)로 명명되었다. 세계보건기구는 SARS-CoV-2에 의한 질병을 코로나바이러스감염증-19(coronavirus disease 2019, COVID-19)로 명명하였다. 2020년 3월 11일에 COVID-19는 전세계 최소 114국으로 퍼졌으며 약 4,000명이 사망하여 세계보건기구는 COVID-19가 세계적 대유행임을 선언하였다. 지난 20년 동안 새로운 코로나바이러스에 의한 두 번의 유행이 있었다. 2002-2003년 중증급성호흡기증후군(severe acute respiratory syndrome, SARS) 유행 시에는 8,098명의 확진 환자와 774명의 사망자가 발생하였으며, 2012년에 사우디 아라비아에서 시작되어 현재까지 주로 아라비아 반도에서 발생하고 있는 중동호흡기증후군(Middle East respiratory syndrome, MERS)은 2019년까지 총 2,499명의 환자와 858명의 사망자를 발생시켰다. 본 종설의 목적은 2020년 3월 12일까지 알려진 SARS-CoV-2의 특징과 전파 양상 및 COVID-19의 임상 증상을 알아보고 SARS와 MERS와의 유사점 및 차이점에 대하여 간략하게 소개하는 것이다.