COVID-19: National Pandemic Management Strategies and their Efficacies and Impacts on the Number of Secondary Cases and Prognosis: A Systematic Review

Abstract

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for an acute respiratory disease designated COVID-19, which has spread throughout the world. Despite all the struggles with this virus, still, the majority of societies are affected by COVID-19, which raises many questions such as are these ways of management enough, which is crucial in order to contain the virus spread, and which is not effective. In this systemic review, we tried to summarize the data on different ways of managing COVID-19 outbreaks. Through understanding the efficacy and downsides of different approaches to manage COVID-19, public health officials, governing bodies, and health care administrators may be better equipped with the tools necessary to best manage COVID-19 and pandemics. **Methods:** This systematic review was carried out by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Articles were selected using several databases PubMed, ScienceDirect, and Google Scholar, all peer-reviewed and published articles from December 1, 2019 to April 23, 2020 that met the inclusion criteria were selected. **Results:** The majority of the included articles were mathematical modeling, cohort studies \((n = 9)\), cross-sectional \((n = 6)\), and one case series. Most articles originated from China and then Singapore. The measures that have been practiced in these articles consisted of close contact tracing and case isolation, quarantine, strict surveillance, lockdown, and travel surveillance. **Conclusions:** The most effective approach is at least the combination of case detection and isolation, and contact tracing or containment measures. In the literature, travel controls seem to be ineffective, personal hygiene should be tough and emphasized.

Keywords: COVID-19, pandemics, population surveillance, prognosis, public health surveillance, SARS-CoV-2, systematic review

Introduction

The emergence of acute respiratory disease, in Wuhan, China, in December 2019,\(^1\) has led to a wide outbreak across China and many other countries.\(^2,3\) In February 2020, the WHO designated the disease COVID-19, which stands for coronavirus disease 2019.\(^4\) On January 30, the WHO declared the COVID-19 pandemic as the sixth public health emergency of universal concern, following H1N1 (2009), polio (2014), Ebola in West Africa (2014), Zika (2016), and Ebola in the Democratic Republic of Congo (2019).\(^5\) As of August 26\(^a\), 2020, COVID-19 has spread to nearly all countries and authorities with more than 25 million confirmed cases and more than 820,000 deaths globally, and it has become a major global health concern.\(^6\)

The pathogen responsible for COVID-19 is referred to as the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), a member of the coronavirus family,\(^7\) and studies have increasingly demonstrated human-to-human transmission through droplets or direct contact.\(^3,8,9\) Due to the evidence of a rapidly increasing incidence of infection\(^10\) and the possibility of transmission by asymptomatic carriers,\(^11\) SARS-CoV-2 can be transmitted effectively among humans and exhibits high potential for transmission.\(^9,12,13\) The spread of SARS-CoV-2 must be solved dramatically and immediately, the Italian situation demonstrated how quickly the health care system can be overwhelmed.\(^14\)

Owing to the high transmission efficiency of SARS-CoV-2, many approaches have been taken by almost all countries throughout...
the world. These approaches focused on travel ban and monitor, contact tracing, case isolation, strict surveillance, self-isolation, and quarantine. Major quarantine throughout the world that includes major cities/villages and public areas has been applied, including China\cite{15,16} and many other countries to prevent further spread of the infection. Approximately 7 weeks after the first confirmed case in Washington state, on March 12, 2020, the governor of Washington declared a statewide prohibition of a large gathering, canceling events, and school closure; meanwhile, there was a temporary shutdown of restaurants, bars, and entertainment and recreational facilities, similar intervention has now been enacted in several states in the US and European countries.\cite{17} Border controls have been reinforced in many countries and active surveillance has been intensified to rapidly detect and isolate importation, trace contacts, and isolate suspect cases.\cite{18,19} On using a phone-based online survey, in order to reduce the time of identification of suspected individuals and apply rapid isolation,\cite{20} AI (artificial intelligence) argued to be a useful tool in assisting diagnosis and treatment decision making.\cite{21,22} Despite all the struggles with this virus, still, the majority of societies are affected by COVID-19, which raises many questions such as are these ways of management enough, which is crucial in order to contain the virus spread and which is not effective. In this systematic review, we tried to summarize the data on different ways of managing COVID-19 outbreaks. Through understanding the efficacy and downsides of different approaches to manage COVID-19, public health officials, governing bodies, and healthcare administrators may be better equipped with the tools necessary to best manage COVID-19 and pandemics. As such, it is anticipated that these results will be of assistance to the global community, to better apprehend this novel disease, and to successfully treat it.

Methods

Protocol and registration

This protocol follows the recommendations established by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, and it was reported in the International Prospective Register of Systematic Reviews (PROSPERO) database (ID = 184155).

** Eligibility criteria**

We have included all the articles that were peer-reviewed and published that reported the different ways of managing COVID-19 pandemic including case series, cross-sectional, cohort, and review of different approaches that were obtained from different countries. Article language limit was not set, and we included publications from December 1, 2019 until April 23, 2020. We included PubMed, ScienceDirect, and to review the gray literature we also search from December 1, 2019 until April 2, 2020 the Google Scholar database.

We have excluded opinion articles, editorials, comments, letters, or studies that were not related to our topic after analyzing abstracts and full text thoroughly as shown in Figure 1.

Information sources and search strategy

We conducted a systematic review using PubMed, ScienceDirect, the Google scholar. The following search terms used: “severe acute respiratory syndrome coronavirus 2”, “COVID-19”, “COVID-19 virus”, “SARS-CoV-2”, “coronavirus-19”, “COVID-19 virus”, “population surveillance,” and “public health surveillance.” The search in Google scholar was conducted on April 2nd, 2020 and in PubMed and Science Direct on April 23rd, 2020. The search was independently evaluated by two researchers.

Study selection

The results of the initial search strategy were first screened by title and abstracts. Then, the full texts of relevant articles were examined for inclusion and exclusion criteria. [Figure 1]. Duplicated articles were excluded at first by title. We have included mathematical models.

Data collection process and data items

Data extraction forms included information on the country, date of publication, the population that was studied, the strategy of public health surveillance, and the results of the...
measures to have unified thinking on each article. Articles were studied by four investigators.

6. Assessment of methodological quality and risk of bias for quality assessment. Any article that was related to our topic and was published and reviewed by journals was included in our quality synthesis.

Results

After using the noted search strategy, a total of 1136 articles were retrieved. After screening the abstracts and titles, 40 articles were selected for full-text assessment. Out of 40 articles, 7 were mathematical models, 4 of them were from Metrix database and as they were not still evaluated, they were excluded. Four articles after full-text assessment were excluded because they were irrelevant to the subject. The main characteristics of the included studies are shown in [Supplement Table 1]. Our review included 18 studies that were published between February 4th, 2020 and April 13th, 2020. From these 18 articles, these studies included 463 COVID-19 patients and they evaluated different ways of COVID-19 epidemic management. The majority of articles included were mathematical modeling.

Demographic characteristics and the way of management female to male proportion driven from three studies was approximately 1/1. From 18 studies, 9 studies were cohort,[2] cross sectional[6], and case series.[1] The measures that have been practiced in these articles consisted of close contact tracing and case isolation, quarantine, strict surveillance, lockdown, and travel surveillance. All articles and the management ways that have been a proposal by them and the summarized results can be observed in Table 1.

As it can be seen from the table, more than 30 percent of studies are mathematical modeling. Half of the studies were done on the population.

Most articles originated from China and then Singapore, with Singapore having the greatest number of population-based studies.

Discussion

Severe acute respiratory syndrome 2 (SARS-CoV-2) is a pathogen responsible for COVID-19 disease.[7] COVID-19 is highly infectious and transmitted from person to person through droplets and close contact.[3,8,9]

COVID-19 emerged in December 2019 in Wuhan, China[1] and then spread worldwide. On January 30th, the WHO declared that COVID-19 cases around the world rose to about 2719897 confirmed cases and more than 187 thousand people died because of SARS-CoV-2. Now, nearly all countries are affected by this virus. As yet there is no effective treatment for this disease, the best way to manage COVID-19 is prevention.

Approximately, all countries affected by this virus introduced their own system of surveillance. The approaches to contain the spread of COVID-19 mostly consist in travel ban and monitor, contact tracing, case isolation, strict surveillance, self-isolation, and quarantine.

Despite all the struggles with this virus, still, a majority of societies are affected by COVID-19, which raises many questions such as are these ways of management enough, which is crucial in order to contain the virus spread, and which is not effective. In this systemic review and meta-analysis, we tried to summarize the relevant data on different ways of managing COVID-19 outbreaks.

In this systematic review, we tried to summarize data that was published until April 23rd. We have searched through two databases (PubMed and ScienceDirect), and we also search in Google Scholar database in order to cover the gray literature. Our eligibility criteria were relevancy and a higher level of evidence. After studying the full text, 18 articles were included, and we managed to analyze 463 patients and over 4000 close contacts to evaluate the efficacy of different ways of managing the spread of COVID-19. Also, our study included over 4000 close contacts and different ways of managing them.

As it was demonstrated from studies, there are different types of management trying to contain COVID-19. These efforts consist of case definition, contact tracing, enhancing surveillance among different patients groups. Also, various ways of containment such as patients quarantine and isolation, active monitoring of contacts and border controls, isolation and quarantine of the whole society were used. As most countries used multiple ways of management to control SARS-CoV-2 spread, there is no evidence of each measure efficacy, solely.

Travel ban and surveillance

This was one of the early measures in countries. In Singapore, it included thermal surveillance, preventing entry of short-term visitors from specific countries, and mandatory quarantine for Singapore residents and long-term visitors.[23] In fact, thermo scan does not have a significant role to contain COVID-19.[24] Only more than half of patients can be recognized by this to measure. The uncertainty increases when the incubation period is longer.[24,25] In Italy, a study has revealed that travel ban from endemic countries such as China did not have an important impact.[26] As the travel control measures are not effective enough, it is important for the countries who are experiencing the burden of COVID-19 to set departure surveillance.[24,25]

There are several ways to improve the efficacy of travel surveillance: 1) increasing the efficacy of thermo scans, 2) designing an efficient questioner, and 3) setting arrival and departure surveillance.
Concurrent, also smart phone–based self-reporting of temperature or symptoms is a cheaper alternative approach.

Case definition and early detection

From 15th January to 3rd February 2020, seven case definitions of COVID-19 were established by the National Health Commission in China. Each new definition broadened to cover more patients, especially milder cases. All these are important in order to control the pandemic. Case definition allows an integrated action toward this disease. In Singapore, they used the case definition and informed all physicians of it, to identify the cases in the community. Obviously, no case definition is complete and guaranteed to identify all the cases, in order to omit this error, they also let the practitioner send a suspected case for rapid test based on their discrepancy. They also set up an enhanced surveillance system to identify the cases that did not meet the criteria.

Contact tracing, isolation of close contacts, and active monitoring of contacts

Contact tracing, isolation of close contacts, and active monitoring of contacts are measures to identify the cases that did not meet the criteria. To address the conflict written above, we must consider:

1. The length of the outbreak.
2. The number of initial cases.
3. Delay from symptom onset to isolation.
4. The population of a country.
5. Resources of a country.

As it was noted less than 0.22 percent of close contacts were diagnosed with COVID-19, the statement raises an important question, whether or not close contact tracing is efficient? For answering the question, all five items listed above should be considered.

In a country with a larger outbreak, more community transmissions occur, this leads to more missed cases. In addition, it will be more different to link cases and contain the spread. The number of initial cases is also very important. The higher number, the less probability of containing spread with this method.

With a greater understanding of SARS-CoV-2, we will be more certain of the incubation period and the transmission mechanism before the onset of symptoms. Close contact tracing is more effective when there is little transmission before symptom onset and the delay from symptom onset to isolation is short. As close contact tracing and isolation are resource heavy and time-consuming, it may not be possible in a large run or larger outbreak, also in countries with intensive populations. This method is recommended to resourceful countries.

To summarize, close contact tracing and isolation are recommended for countries with fewer initial cases with a smaller population and smaller and short-term outbreaks, which have enough resources in order to supply the demand of this method properly. A recent research article highlighted the need for governments to implement strategies to effectively allocate medical resources in the context of COVID-19. The most important recommendation they provide is the focus on maximizing benefits.

Quarantine, isolation, social distancing, and community containment

The goal is to decrease the human-to-human contact to manage the pandemic through limiting interpersonal contact and isolating known cases of COVID-19.

Isolation means separating an infected person from noninfected to protect the noninfected persons. Quarantine means restricted movements of exposed persons but not yet ill, either because they did not become infected or they are in incubation period. Quarantine is most successful in setting where fast detection is possible, and contacts can be identified and traced in a short time. Social distancing is a measure that reduces the interactions between people in a larger community, in which people
may be infectious but not yet identified, so they are not isolated. This method has the highest impact on children and the lowest on working-age adults.[34]

And among all these measures, the most serious is community-wide containment or lockdown.[26,33] This approach is used when other measures simply do not work.

We have explained isolation and contact tracing in the previous section. In a mathematical model, it was shown that the stricter the containment measures become, the less exposure occurs, thus leading to a smaller number of infected cases.[35]

Italy and China were among countries experiencing lockdown. In Italy, first, a red zone was designed. The red zone was designed for places with more than one person positive to COVID-19 but with unknown resources. Then, they expanded the red zone and finally, they declared a national red zone. In the red zone, appropriate containment measures were adopted.[26] On January 23rd and 24th, China was put under lockdown. As the result of this lockdown, the number of cases dropped dramatically also they observed lengthening of doubling time.[36]

The limitation of all the studies is that they have estimated the effect of all approaches together; therefore, the exact effect of lockdown or quarantine is not clear. Because community-wide containment puts a huge burden on the economy, it is important to figure out whether this approach is effective enough. As such, all the related factors would need to be effectively disentangled to truly determine the exact implications of each individual approach.

As it was mentioned, after lockdown, a decrease in the number of patients was observed in both countries.[26,36] In Italy, establishing the red zone was effective only in one area, whereas in the neighboring provinces, the number of cases increased after establishing the red zone. To address this conflict, it is important to pay attention to the time of establishing the red zone if the red zone is established late, it is going to be less effective.[26] In fact, timing is crucial for any mass measurements.[26] A mathematical model also showed that physical distancing was most effective for children because they have closer contact, and this may lead to more infected cases, whereas working adults are less vulnerable. Social distancing decreases mortality among elders the most.[34]

Overall, in larger areas, containment measures and lockdown can be effective. The earlier the lockdown is announced and implemented, the more efficient they are going to be. It is important to lift the containment measures gradually to avoid a second peak. After lifting the containment measures, informing people and teaching personal hygiene to them through media, the public will play an important role in managing the COVID-19 pandemic.[34]

Others

There are other approaches worth to be noted, such as:

1. Establishing special public health centers to merge the COVID-19 cases.[28]

The hospitals should be strictly monitored. Practitioners’ movement between health care institutions should be limited. Strict visitors’ controls should be set. Strict infection controls should be practiced across all settings.[28]

It is also important to assess patients with pneumonia or other respiratory infections.[28]

Publicities should be clear and detailed in reporting the true statistics and information and other medias spreading wrong information should be detected as early as possible and debunked quickly.[28]

The role of using technology in order to control the pandemic is getting bolder. We can use social media and other search engines to predict the peak of the cases.[36] The utility of smartphones for symptoms and thermal scanning is also a way to decrease expenditure and lowering contacts. For milder, symptomless, or suspected cases we can use teleconsultation in order to decrease the burden on health care providers. Supporting people for psychological problems that are imposed by quarantine also can be done through applications or telecommunication.[37,38] If the job can be done at home, telecommunication is the preferred method.[39]

This review has several limitations. There were few studies to include, and from which one-third of them were mathematical modeling. We need more detailed information for each approach and the impact of each should be measured solely. More observational studies are needed for certain deciding the effect of measures. Most of the studies were from China and Singapore although our review also included studies from the United States, the United Kingdom, Germany, Brazil, India, France, and Italy.

To account for the expansive list of national management strategies to COVID-19, more studies are required from other countries. Also, as the pandemic progresses and the international understanding of the nature of the virus develops, national pandemic management strategies may change within countries and between nations to best adapt to the particular context.

Conclusions

In conclusion, there are several ways of managing the spread of COVID-19 that are currently being used by different countries. The most effective one is at least the combination of two steps: case detection and isolation, and contact tracing for countries with less delay and more resources, or containment measures for countries with more patients and fewer resources. Travel controls seem to be ineffective. Finally, personal hygiene should be thorough and emphasized.
Table 1: The articles types included in this study

Article title	Measures	Results
Evaluating the effectiveness of surveillance and containment measures for the first 100 patients with COVID-19 in Singapore - January 2- February 29, 2020	Case definition	all measures recommended
Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data-driven analysis	Tracing contacts	Recommended
Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations, and control measures, January 2020	Enhancing surveillance among different patients	More cases less effective
Rapid viral diagnosis and ambulatory management of suspected COVID-19 cases presenting at the infectious diseases referral hospital in Marseille, France, - January 31st to March 1st, 2020: A respiratory virus snapshot	Allowing physician discretion containment	Best action than any prevention methods
Isolation, quarantine, social distancing and community containment: a pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. A Case for Participatory Disease Surveillance of the COVID-19 Pandemic in India Immediate Health Surveillance Response to COVID-19 Epidemic COVID-19 in Italy: impact of containment measures and prevalence estimates of infection in the general population Effectiveness of airport screening at detection travelers infected with the novel coronavirus (2019-ncov) Investigation of three clusters of COVID-19 in Singapore: implication for surveillance and response measures The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A MODELLING STUDY	Isolation Quarantine Community-wide containment Participatory disease surveillance to detect early and do contact tracing Self-protecting manners Health surveillance quickly General lockdown (mitigation) Checkpoint at airports with evaluating the temperature of passengers Execution of red zone Thermal screening Symptoms screening Exit screening Entry screening Tracing the close contacts and isolating them. Enhanced surveillance Physical distancing	All measures are recommended based on the condition of the community Controlling the pandemic and prohibiting the virus to spread Both measures are recommended More impressive than other actions No dramatic effect Not enough impressive maybe because they were taken late The effectiveness of entry screening is largely dependent on the effectiveness of exit screening. All the flight screenings are more efficient for longer flights. Thermal screening seems to be ineffective. Tracing the close contacts and isolating them was an effective measure. Thermal scanning seems inefficient Self-hygiene is a very important measure in order to interrupt the COVID-19 pandemic Physical distancing had the highest impact on children. Physical distancing had the lowest effect on working-age adults.
Effectiveness of airport screening at detection travelers infected with the novel coronavirus (2019-ncov)		
Investigation of three clusters of COVID-19 in Singapore: implication for surveillance and response measures		
The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A MODELLING STUDY		
Table 1: Contd...

Article title	Measures	Results
Interrupting transmission of COVID-19: lessons from containment efforts in	Case definition	Physical distancing decrease the mortality rate among elderlies
Singapore	Enhanced surveillance system	The premature and sudden lifting of interventions lead to an earlier secondary peak
	Practitioner discrepancy	All measures recommended
	Rapid test	
	Containment	
	Health care measures	
	Border control	
	Community and social measures	
The positive impact of lockdown in Wuhan on containing the COVID-19	Lockdown	Significant increase in doubling time from 2 days to 4 days
outbreak in China	Changing diagnostic and testing methodology	Changing diagnostic and testing methodology was successful
Feasibility of controlling COVID-19 outbreaks by isolation of cases and	Modeling contact tracing	The correlation between domestic air traffic and COVID-19 spread became weaker
contacts		The effectiveness of contact tracing and isolation depends on the number of infections generated
	Travel screening	by each parameter and the proportion of transmission that occurs before symptom onset
	Laboratory surveillance	This measure alone is insufficient
The estimated effectiveness of symptoms and risk screening to prevent the	Data processing, sharing, and timely	Screening would detect no more the half of the infected travelers
spread of COVID-19	analysis of epidemiological data	Departure screening is more important
The novel coronavirus SARS-CoV-2) emergency and the role of timely and	Analyzing the data obtained from	The positive effect of rapid notification and visualization channel for timely action
effective national health surveillance	google trends, Baidu Index, and Sina Webo	
Retrospective analysis of the possibility of predicting the COVID-19	Weibo Index	The advantage of internet surveillance
outbreak from internet social media, China, 2020		
Global preparedness against COVID-19: we must leverage the power of Digital	Providing different use of cases for	Teleconsultation with early-stage or mild COVID-19
Health	infection control, home base diagnosis, and	Creative way of using commercial video
	screening	Remote monitoring of infection prevention and control
		Home base diagnosis and screening
		Psychological intervention for the quarantine
		Contact tracing

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

Received: 11 Aug 20 **Accepted:** 25 Oct 21 **Published:** 15 Jul 22

References

1. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The Mystery and the Miracle. J Med Virol 2020;92:401-2.
2. Thompson R. Pandemic potential of 2019-nCoV. Lancet Infect Dis 2020;20:280.
3. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020;323:1843-4.
4. WHO. WHO Director-General’s opening remarks at the media briefing on COVID-19 11 March 2020. Available from: https://www.who.int/dg/speeches/detail/who-director‐general's‐opening‐remarks‐at‐the‐media‐briefing‐on‐covid‐19‐11‐march‐2020. [Last accessed on 2020 Mar 11].
5. WHO. WHO Director-General’s opening remarks at the media briefing on COVID-19 30 March 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general's-opening-remarks-at-the-media-briefing-on-covid-19-30-march-2020. [Last accessed on 2020 Mar 30].
6. WHO. Coronavirus disease (COVID-19). Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200509covid-19-sitrep-110.pdf. [Last accessed on 2020 May 09].
7. WHO. Infection prevention and control/Wash. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/infection-prevention-and-control. [Last accessed 2020 Mar 30].
8. Thompson R. Pandemic potential of 2019-nCoV. Lancet Infect Dis 2020;20:280.
9. Carlos WG, Dela Cruz CS, Cao B, Pasnick S, Jamal S. Novel Wuhan (2019-nCoV) coronavirus. Am J Respir Crit Care Med 2020;201:P7-8.
10. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis 2020;92:214-7.
11. Biscaycict C, Angeleri P, Lloveras S, Chaves TD, Schlangenhaus P, Rodrigue‑Morales AJ. The next big threat to global health? 2019 novel coronavirus (2019-nCoV): What advice can we give to travellers?–Interim recommendations January 2020, from the Latin-American society for Travel Medicine (SLAMVI). Travel Med Infect Dis 2020;33:101567.
12. Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in China—Key questions for impact assessment. N Engl J Med 2020;382:692-4.
13. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhu, China. Lancet 2020;395:497-506.
14. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—An update on the status. Mil Med Res 2020;7:11.
15. Rao AS, Vazquez JA. Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey when cities and towns are under quarantine. Infect Control Hosp Epidemiol 2020;1-5. doi: 10.1017/ice.2020.61.
16. Kerimay A, Baimatova N, Ibragimova OP, Bukenov B, Kenessov B, Plotitsyn P, et al. Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci Total Environ 2020;730:139179.
17. Matrajt L, Leung T. Evaluating the effectiveness of social distancing interventions against COVID-19. medRxiv 2020. doi: https://doi.org/10.1101/2020.03.27.20044891.
18. WHO. Preparedness, prevention and control of coronavirus disease (COVID-19) for refugees and migrants in non-camp settings: Interim guidance, 17 April 2020. Available from: https://apps.who.int/iris/handle/10665/331777.
19. Heymann DL, Shindo N. COVID-19: What is next for public health? Lancet 2020;395:542-5.
20. Alimadadi A, Aryan S, Manandhar I, Munroe PB, Joe B, Cheng X. Artificial intelligence and machine learning to fight Covid-19. Physiol Genomics 2020;52:200-2.
21. Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology 2020;200905. doi: 10.1148/radiol.2020200905.
22. Rao AS, Diamond MP. Deep learning of Markov model-based machines for determination of better treatment option decisions for infertile women. Reprod Sci 2020;27:763-70.
23. Gostic K, RO, Kucharski AJ, Lloyd-Smith JO. Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19. eLife 2020;9:e55570. doi: 10.7554/eLife.55570.
24. Quilty BJ, Clifford S, Flasche S, Eggo RM. Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV). Eurosurveillance 2020;25:2000080.
25. Signorelli C, Scognamiglio T, Odone A. COVID-19 in Italy: Impact of containment measures and prevalence estimates of infection in the general population. Acta Biomed 2020;91:175-9.
26. Tsang TK, Wu P, Lin Y, Lau EH, Leung GM, Cowling BJ. Effect of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China: A modelling study. Lancet Public Health 2020;5:e289-96. doi: 10.1016/S2468-2667(20)30009-X.
27. Lee VJ, Chiew CJ, Khong W-. Interrupting transmission of COVID-19: Lessons from containment efforts in Singapore. J Travel Med 2020;27:taaa039. doi: 10.1093/jtm/taaa039.
28. Bernard Stoecklin S, Rolland P, Silue Y, Mailles A, Campese C, Simondon A, et al. First cases of coronavirus disease 2019 (COVID-19) in France: Surveillance, investigations and control measures, January 2020. Euro Surveill 2020;25:200094.
29. Ng Y, Li Z, Chua YX, Chow WL, Zhao Z, Er B, et al. Evaluation of the effectiveness of surveillance and containment measures for the first 100 patients with COVID-19 in Singapore – January 2–February 29, 2020. MMWR Morb Mortal Wkly Rep 2020;69. doi: 10.15585/mmwr.mm6911e1.
30. Amrane S, Tissot-Dupont H, Doudier B, Eldin C, Hoquart M, Mailhe M, et al. Rapid viral diagnosis and ambulatory management of suspected COVID-19 cases presenting at the infectious diseases referral hospital in Marseille, France, - January 31st to March 1st, 2020: A respiratory virus snapshot. Travel Med Infect Dis 2020;36:101632.
31. Hellewell J, Abbott S, Gimm A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health 2020;8:e488-96.
32. Wilder-Smith A, Friedman DO. Isolation, quarantine, social distancing and community containment: Pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J Travel Med 2020;27: doi: 10.1093/jtm/taaa020.
33. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health 2020;5:e261-70. doi: 10.1016/S2468-2667(20)30073-6.
34. Fang Y, Nie Y, Penny M. Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data-driven analysis. J Med Virol 2020;92:645-59.
35. Lau H, Khosrawipour V, Kuchbach P, Mikolajczyk A, Schubaert J, Bania J, et al. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J Travel Med 2020;27:taaa037. doi: 10.1093/jtm/taaa037.
36. Li C, Chen LJ, Chen X, Zhang M, Pang CP, Chen H. Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020. Euro Surveill 2020;25:2000199.
37. Mahmoud S, Hasan K, Carras MC, Labrique A. Global preparedness against COVID-19: We must leverage the power of digital health. JMIR Public Health Surveill 2020;6:e18980. doi: 10.2196/18980.
38. Lana RM, Coelho FC, Gomes M, Cruz OG, Bastos LS, Villela DAM, et al. The novel coronavirus (SARS-CoV-2) emergency and the role of timely and effective national health surveillance. Cad Saude Publica 2020;36:e00019620. doi: 10.1590/0102-311x00019620.
| Article title | Study | Journal | Date | Country | First author | Number of population |
|--|----------------------------|--------------------------------|------------|--------------------------|--|----------------------|
| Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data-driven analysis | Modeling | Medical virology | March 2020 | China | Yaqing Fang | One million |
| Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong | Cross-sectional | Infectious control and hospital epidemiology | March 2020 | Hong Kong (China) | Vincent C. C Cheng MD | 1275 of normal population and 413 health care workers |
| First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations, and control measures, January 2020 | Cross-sectional | eurosurveillance | January 2020 | France | Sibylle Bernard Stoecklin | Not mentioned |
| Rapid viral diagnosis and ambulatory management of suspected COVID-19 cases presenting at the infectious diseases referral hospital in Marseille, France, - January 31st to March 1st, 2020: A respiratory virus snapshot | Cross-sectional | Travel medicine and infectious disease | March 2020 | France | Sophie Amrane | approximately 280 persons |
| Isolation, quarantine, social distancing and community containment: a pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. | review | Journal of travel medicine | February 2020 | UK | Wilder-Smith A. MD | Not mentioned |
| A Case for Participatory Disease Surveillance of the COVID-19 Pandemic in India | Cross-sectional | JMI Public Health and Surveillance | April 2020 | India | Suneela Garg Nidhi Bhatnagar Navya Gangadharan | Not mentioned |
| Global preparedness against COVID-19: we must leverage the power of Digital Health | Cross-sectional | JMI Public Health and Surveillance | April 2020 | United state | Sultan Mahmood | Not mentioned |
| COVID-19 in Italy: impact of containment measures and prevalence estimates of infection in the general population | Modeling | Acta Biomed | April 2020 | Italy | Carlo Signorelli | Not mentioned |
| Evaluation of the Effectiveness of Surveillance and Containment Measures for the First 100 Patients with COVID-19 in Singapore - January 2-February 29, 2020 | Case series | Morbidity and mortality weekly report | March 2020 | Singapore | Yixiang Ng | 100 persons |
| The estimated effectiveness of symptoms and risk screening to prevent the spread of COVID-19 | Modeling | life journal | February 2020 | USA | Katelyn Gostic | Not mentioned exactly |
| Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts | Modeling | Lancet | April 2020 | UK | Joel Hellewell | Not mentioned exactly |
| Interrupting transmission of COVID-19: lessons from containment efforts in Singapore | review | Journal of travel medicine | April 2020 | Singapore | Vermanj Lee | Not mentioned exactly |
| The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China | Cohort | Journal of travel medicine | April 2020 | USA | Hien Lav | Not mentioned exactly |
| Effectiveness of airport screening at detection travelers infected with the novel coronavirus (2019-ncov) | modeling | euro surveillance | February 2020 | United kingdom | Billy j Quilty | Not mentioned |
| Investigation of three clusters of COVID-19 in Singapore: implication for surveillance and response measures | Cross-sectional | Lancet | March 2020 | Singapore | Rachael Pung | 36 |
| Article title | Study | Journal | Date | Country | First author | Number of population |
|--|----------------------|-----------------------------|------------|---------|--------------------|----------------------|
| The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China; A MODELLING STUDY | Modeling | Lancet | March 2020 | China | Kiesha Prem | Not mentioned |
| The novel coronavirus (SARS-CoV-2) emergency and the role of timely and effective national health surveillance review | Cadernos de saúde publica | March 2020, Brazil | Raquel Martis Lana | Not mentioned |
| Retrospective analysis of the possibility of predicting the COVID-19 outbreak from internet social media, China, 2020 | Retrospective cohort study | Eurosurveillance journal | February 2020, China | Cuilian Li | Not mentioned |