Metric spaces in which many triangles are degenerate

Vašek Chvátal∗ Ida Kantor†

Abstract

Richmond and Richmond (American Mathematical Monthly 104 (1997), 713–719) proved the following theorem: If, in a metric space with at least five points, all triangles are degenerate, then the space is isometric to a subset of the real line. We prove that the hypothesis is unnecessarily strong: In a metric space on \(n \) points, \(\binom{n}{3} - n + 5 \) arbitrarily placed or \(3\binom{n-2}{2} + 1 \) suitably placed degenerate triangles suffice.

1 Results.

Given a metric space \((V, \text{dist})\), we follow [1] in writing \([rst]\) to signify that \(r, s, t \) are pairwise distinct points of \(V \) and \(\text{dist}(r, s) + \text{dist}(s, t) = \text{dist}(r, t) \). Following [15], we refer to three-point subsets of \(V \) as triangles; if \([rst]\), then the triangle \(\{r, s, t\} \) is called degenerate.

Now let \((V, \text{dist})\) be a metric space. Trivially, if there is a linear order \(\preceq \) on \(V \) such that \(r \prec s \prec t \Rightarrow [rst] \), then all triangles in \(V \) are degenerate. Richmond and Richmond [15] proved the converse under a mild lower bound on \(|V|\):

Theorem 1 ([15]). Let \((V, \text{dist})\) be a metric space such that \(|V| \geq 5\). If all triangles in \(V \) are degenerate, then there is a linear order \(\preceq \) on \(V \) such that \(r \prec s \prec t \Rightarrow [rst] \).
Here, the lower bound on $|V|$ cannot be reduced: consider $V = \{a, b, c, d\}$ and $\operatorname{dist}(a, b) = \operatorname{dist}(b, c) = \operatorname{dist}(c, d) = \operatorname{dist}(d, a) = 1$, $\operatorname{dist}(a, c) = \operatorname{dist}(b, d) = 2$.

The purpose of this note is to prove that the hypothesis of Theorem 1 can be relaxed as soon as $|V| = 6$ and that it can be relaxed further and further as $|V|$ gets larger and larger. To state these results, let us call a set E of three-point subsets of a set V an anchor in V if, for every metric space (V, dist), the assumption that all triangles in E are degenerate implies a linear order \preceq on V such that $r \prec s \prec t \Rightarrow [rst]$. In this terminology, Theorem 1 asserts that whenever $|V| = n \geq 5$, the set of all $\binom{n}{3}$ three-point subsets of V is an anchor in V.

Theorem 2. If $|V| = n$, then every set of $\binom{n}{3} - n + 5$ three-point subsets of V is an anchor in V.

The $\binom{n}{3} - n + 5$ in Theorem 2 cannot be replaced by $\binom{n}{3} - n + 4$. To see this, consider the graph with vertices $1, 2, \ldots, n$ and edges $\{1, 3\}$, $\{1, 4\}$, $\{2, 3\}$, $\{2, 4\}$ and $\{i, i + 1\}$ with $i = 4, 5, \ldots, n - 1$. In the metric space induced by this graph (in the usual way, where edges have unit lengths), the only nondegenerate triangles are $\{1, 2, i\}$ with $i = 5, 6, \ldots, n$.

Theorem 3. If $|V| = n \geq 5$, then there is an anchor in V consisting of $3\binom{n-2}{2} + 1$ three-point subsets of V.

We do not know whether or not the $3\binom{n-2}{2} + 1$ in Theorem 3 can be reduced.

2 Proofs.

Our arguments involve the following algorithm that, given a set E of triangles in V, produces a certain sequence T_1, T_2, \ldots, T_m of pairwise distinct triangles outside E:

Set $m = 0$.

While some six-point subset S of V contains precisely 19 members of $E \cup \{T_i : 1 \leq i \leq m\}$, increment m by one and then let T_m be the 20th three-point subset of S.

In an iteration of this algorithm, more than one S may be available, and so there may be more than one candidate for T_m. Nevertheless, candidates that are rejected now remain available in the next iteration and so, when the
If the algorithm terminates, the set \(\{ T_i : 1 \leq i \leq m \} \) is uniquely determined. We let \(\text{cl} \mathcal{E} \) denote its union with \(\mathcal{E} \). The role of this notion is explained by the following lemma.

Lemma 4. Let \((V, \text{dist})\) be a metric space and let \(\mathcal{E} \) be a set of triangles in \(V \). If all triangles that belong to \(\mathcal{E} \) are degenerate, then all triangles that belong to \(\text{cl} \mathcal{E} \) are degenerate.

Most of the work involved in proving Lemma 4 is subsumed in its following special case:

Lemma 5. Let \((V, \text{dist})\) be a metric space such that \(|V| = 6\). If 19 triangles in \(V \) are degenerate, then all 20 triangles in \(V \) are degenerate.

Proof. By assumption, there is a triangle \(T \) in \(V \) such that the 19 triangles distinct from \(T \) are degenerate. In particular, for each of the three elements \(\lambda \) of \(T \), all triangles in \(V - \{ \lambda \} \) are degenerate and so, by Theorem 1 there is a linear order \(\preceq_\lambda \) on \(V - \{ \lambda \} \) such that
\[
 r \prec_\lambda s \prec_\lambda t \Rightarrow [rst].
\] (1)

Having chosen a \(\mu \) in \(T \), let us label the elements of \(V - T \) as \(u, v, w \) in such a way that \(u \prec_\mu v \prec_\mu w \), and so \([uvw]\). Now for each of the remaining two elements \(\nu \) of \(T \), property (1) implies \(u \prec_\nu v \prec_\nu w \) or \(w \prec_\nu v \prec_\nu u \); reversing the orders if necessary, we may assume that \(u \prec_\nu v \prec_\nu w \), and so
\[
 u \prec_\lambda v \prec_\lambda w \text{ for all three } \lambda \text{ in } T. \quad (2)
\]

Next, let us label the elements of \(T \) temporarily as \(a, b, c \) in such a way that \(a \prec_c b \) and then permanently as \(x, y, z \): If \(b \prec_a c \), then \(x = a, y = b, z = c \); else either \(x = a, y = c, z = b \) (in case \(a \prec_b c \)) or \(x = c, y = a, z = b \) (in case \(c \prec_b a \)). Now we have
\[
 x \prec_z y \quad \text{and} \quad y \prec_x z. \quad (3)
\]

For future reference, let us note that
\[
 \text{the restrictions of } \leq_x \text{ and } \leq_z \text{ on } \{ u, v, w, y \} \text{ are identical.} \quad (4)
\]
(Analogous statements apply to \(x, y \) in place of \(x, z \) and to \(y, z \) in place of \(x, z \), but we will not need these variations.) To see this, observe that, by virtue of (2) and (1), our metric space determines the rank of \(y \) in the restriction of \(\leq_x \) on \(\{ u, v, w, y \} \) in the same way as it determines the rank of \(y \) in the restriction of \(\leq_z \) on \(\{ u, v, w, y \} \).
The remainder of the proof relies on the fact that

\[[\alpha\beta\gamma] \text{ and } [\alpha\gamma\delta] \implies [\alpha\beta\delta] \text{ and } [\beta\gamma\delta], \]

(5)

which has been pointed out by Menger [13]. (By the way, extensions of (5) are discussed in [6, Section 6].)

Finally, we are ready to prove that the triangle \{x, y, z\} is also degenerate. Actually, we are going to prove \[xyz\]. For this purpose, let us distinguish between three cases.

Case 1: \(u \preceq z \). By (3), we have \(u \preceq x \preceq z \), and so \([uxy]\); by (4) and (3), we have \(u \preceq x \preceq y \preceq x \), and so \([uyz]\). Now we have \([xyz]\) by (5).

Case 2: \(z \preceq x \). By (3), we have \(y \preceq x \preceq z \), and so \([yzw]\); by (3) and (4), we have \(x \preceq z \preceq w \), and so \([xyw]\). Now we have \([xyz]\) by (5).

Case 3: \(x \preceq u \preceq z \) and \(u \preceq x \preceq w \). In particular,

\([xuv],[xvw],[vwz],[uvz]\).

Here we have neither \([vxz]\) (else \([uvz]\) and (5) would imply \([uvx]\), contradicting \([xuv]\)) nor \([xvz]\) (else \([xvw]\) and (5) would imply \([zvw]\), contradicting \([vwz]\)); since \(\{x, v, z\}\) is degenerate, we must have \([xvz]\).

If \(v \preceq y\), then \([vyz]\) by (3); else \(y \preceq v\) by (4), and so \([xyv]\) by (5); in either case, this implies \([xyz]\) by \([xvz]\) and (5).

Proof of Lemma 4. By definition, members of \(\text{cl} \mathcal{E} - \mathcal{E}\) can be enumerated as \(T_1, T_2, \ldots T_m\) in such a way that, for each \(i = 1, 2, \ldots , m\), some six-point subset \(S_i\) of \(V\) contains precisely 19 members of \(\mathcal{E} \cup \{T_1, T_2, \ldots T_{i-1}\}\) and \(T_i\). Induction on \(i\) (= 1, 2, \ldots m) shows that all triangles belonging to \(\mathcal{E} \cup \{T_1, T_2, \ldots T_i\}\) are degenerate; the induction step relies on Lemma 5.

The remaining proofs fit the following framework. Berge [3] defined a 3-uniform hypergraph as an ordered pair \((V, \mathcal{E})\) such that \(V\) is a set and \(\mathcal{E}\) is a set of three-point subsets of \(V\); elements of \(V\) are called vertices and elements of \(\mathcal{E}\) are called hyperedges. Bollobás [4] coined the term \(m\)-saturated to designate certain graphs and hypergraphs and later [5] he introduced a related notion of weakly \(m\)-saturated graphs (which applies to hypergraphs, too). In the established terminology with notation far from unified, a 3-uniform hypegraph \((V, \mathcal{E})\) is said to be weakly \(K_6^3\)-saturated [8, p. 97] or
weakly K_6^3-saturated \cite{14} p. 484 or weakly $K_6^{(3)}$-saturated \cite{10} if and only if $cl \mathcal{E}$ consists of all three-point subsets of V. We will adopt the notation of \cite{14}. The following lemma is reminiscent of the theorem asserting that all weakly $(d+2)$-saturated graphs are rigid \cite{12} Theorem 1, where “rigid” has a geometric meaning that pertains to embedding these graphs into \mathbb{R}^d.

Lemma 6. All weakly K_6^3-saturated 3-uniform hypergraphs are anchors.

Proof. Concatenation of Lemma 4 and Theorem 1. □

Proof of Theorem 2. Concatenation of the following lemma with Lemma 6. □

Lemma 7. Every 3-uniform hypergraph with n vertices and at least $(\frac{n}{3})^3 - n + 5$ hyperedges is weakly K_6^3-saturated.

Proof. Consider a 3-uniform hypergraph (V, \mathcal{E}) such that $|\mathcal{E}| \geq (\frac{n}{3})^3 - n + 5$, where $n = |V|$. Since $|\mathcal{E}| \leq (\frac{n}{3})^3$, we have $n \geq 5$; if $n = 5$, then \mathcal{E} consists of all three-point subsets of V; now let us assume that $n \geq 6$. Given any three-point subset T of V, we shall show that $T \in cl \mathcal{E}$. This is trivial when $T \in \mathcal{E}$; to prove it when $T \notin \mathcal{E}$, it suffices to find a six-point subset S of V such that T is the unique three-point subset of S not belonging to \mathcal{E}. For this purpose, take one vertex from each $T' - T$ such that T' is a three-point subset of V not belonging to \mathcal{E} and $T' \neq T$. With W standing for the set of all these vertices, T is the unique three-point subset of $V - W$ not belonging to \mathcal{E}; since $|W| \leq (\frac{n}{3}) - |\mathcal{E}| - 1$, we have $|V - W| \geq n - (\frac{n}{3}) + |\mathcal{E}| + 1 \geq 6$. □

The remark that follows Theorem 2 shows that the $(\frac{n}{3})^3 - n + 5$ in Lemma 7 cannot be reduced.

Proof of Theorem 3. Concatenation of the following lemma with Lemma 6. □

Lemma 8. For every integer n greater than four there is a weakly K_6^3-saturated 3-uniform hypergraph with n vertices and $3(\frac{n-2}{2}) + 1$ hyperedges.

Proof. Take a three-point subset S of V and let \mathcal{E} consist of all three-point subsets of V that have a nonempty intersection with S. Note that $\binom{n}{3} - \binom{n-3}{3} = 3(\frac{n-2}{2}) + 1$. □

It is a known fact that the $3(\frac{n-2}{2}) + 1$ in Lemma 8 cannot be reduced: see, for instance, \cite{9} or \cite{11} Theorem 5.5.
3 Concluding remarks

1. Theorems[1][2] and[3] extend to the context of pseudometric betweenness defined in [2] p. 643], which is more general than the context of metric spaces.

2. The proof of Lemma[7] extends to show that every r-uniform hypergraph with n vertices and at least \(^{(n)_r} - n + k - 1\) hyperedges is weakly \(K_r^k\)-saturated.

3. Following [2], let us refer to a 3-uniform hypergraph \((V,E)\) as metric if there is a metric space \(M\) such that a triangle in \(M\) is degenerate if and only if it belongs to \(E\). Lemma[5] can be reformulated as the statement that the 3-uniform hypergraph with 6 vertices and 19 hyperedges is non-metric. Actually, this hypergraph is minimal non-metric in the sense that the deletion of an arbitrary vertex from it produces a metric hypergraph. To verify this, observe first that the deletion produces a hypergraph with 5 vertices and 10 or 9 hyperedges. The former hypergraph is obviously metric. To see that the latter hypergraph is metric, set \(n = 5\) in the comment that follows Theorem[2] (By the way, infinitely many minimal non-metric hypergraphs have been constructed in [7].)

Acknowledgments. We are grateful to Xiaomin Chen for pointing out that the type of hypergraphs that we are dealing with have been investigated before as weakly saturated graphs and for other insightful comments, and to Guillermo Gamboa for giving us the comment that follows Theorem[2].

References

[1] Aboulker, P., Chen, X., Hu Zhang, G., Kapadia, R., Supko, C. (2016). Lines, betweenness and metric spaces. *Discrete Comput. Geom.* 56(2): 427–448.

[2] Beaudou, L., Chvátal, V., Bondy, A., Chen, X., Chiniforooshan, E., Chudnovsky, M., Fraiman, N., Zwols, Y. (2013). Lines in hypergraphs, *Combinatorica* 33(6): 633–654.

[3] Berge, C. (1973). *Graphs and Hypergraphs*. Amsterdam: North-Holland.

[4] Bollobás, B. (1965). On generalized graphs. *Acta Math. Hungar.* 16(3): 447–452.
[5] Bollobás, B. (1968). Weakly k-saturated graphs. In: Sachs, H., Voss, H.-J., Walther, H., eds. Beiträge zur Graphentheorie (Kolloquium, Manebach, 1967). Leipzig: Teubner, pp. 25–31.

[6] Chvátal, V. (2004). Sylvester-Gallai theorem and metric betweenness. *Discrete Comput. Geom.* 31(2): 175–195.

[7] Chvátal, V., Kantor, I. (2022). Metric hypergraphs and metric lines. *arXiv:2207.11811 [math.CO]*.

[8] Erdős, P., Füredi, Z., Tuza, Zs. (1991). Saturated r-uniform hypergraphs. *Discrete Math.* 98(2): 95–104.

[9] Frankl, P. (1982). An extremal problem for two families of sets. *Europ. J. Combin.* 3(2): 125–127.

[10] Gyárfás, A., Hartke, S. G., Viss, C. (2018). Uniquely $K_r^{(k)}$-saturated hypergraphs. *Electron. J. Combin.* 25(4): #P4.3.

[11] Kalai, G. (1984). Intersection patterns of convex sets. *Israel J. Math.* 48(2): 161–174.

[12] Kalai, G. (1984). Weakly saturated graphs are rigid. *Ann. Discrete Math.* (20): Convexity and Graph Theory. Amsterdam: North-Holland, pp. 189–190.

[13] Menger, K. (1928). Untersuchungen über allgemeine Metrik. *Math. Ann.* 100(1): 75—163.

[14] Pikhurko, O. (1999). The minimum size of saturated hypergraphs. *Combin. Probab. Comput.* 8(5): 483–492.

[15] Richmond, B., Richmond, T. (1997). Metric spaces in which all triangles are degenerate. *Amer. Math. Monthly* 104(8): 713–719.