Positivity for Zinc Transporter 8 Autoantibodies at Diagnosis Is Subsequently Associated With Reduced β-Cell Function and Higher Exogenous Insulin Requirement in Children and Adolescents With Type 1 Diabetes

Diabetes Care 2016;39:118–121 | DOI: 10.2337/dc15-1027

OBJECTIVE
This study assessed the relationship between autoantibodies against zinc transporter 8 (ZnT8A) and disease characteristics at diagnosis of type 1 diabetes and during the first 2 years.

RESEARCH DESIGN AND METHODS
Children, younger than 15 years of age (n = 723) who were newly diagnosed with diabetes, were analyzed for ZnT8A, other diabetes-associated autoantibodies, HLA DR-DQ alleles, and metabolic status, which was monitored by pH, plasma glucose, and occurrence of ketoacidosis at diagnosis and through follow-up of C-peptide concentrations, exogenous insulin dose, and glycosylated hemoglobin for 2 years after the diagnosis.

RESULTS
ZnT8A positivity was detected in 530 children (73%). Positivity for ZnT8A was associated with older age (median 8.9 vs. 8.2 years, \(P = 0.002 \)) and more frequent ketoacidosis (24% vs. 15%, \(P = 0.013 \)). Children carrying the HLA DR3 allele were less often ZnT8A positive (66% vs. 77%, \(P = 0.002 \)) than others. ZnT8A-positive children had lower serum C-peptide concentrations (\(P = 0.008 \)) and higher insulin doses (\(P = 0.012 \)) over time than their ZnT8A-negative peers.

CONCLUSIONS
Positivity for ZnT8A at diagnosis seems to reflect a more aggressive disease process before and after diagnosis.

The clinical diagnosis of type 1 diabetes is preceded by an asymptomatic preclinical phase, during which autoantibodies against intracellular antigens of the β-cells appear in the circulation (1). Zinc transporter 8 (ZnT8) is the most recently discovered diabetes-associated autoantigen (2). The aim of this study was to assess the relationship between ZnT8A on the one hand and demographic characteristics, other diabetes-associated autoantibodies, HLA risk markers, the degree of

1Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
2Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
3Immunogenetics Laboratory, University of Turku, Turku, Finland
4Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland
5Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
6Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland

Corresponding author: Mikael Knip, mikael.knip@helsinki.fi.

Received 15 May 2015 and accepted 26 September 2015.

This article contains Supplementary Data online at http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc15-1027/-/DC1.

*A complete list of the investigators of the Childhood Diabetes in Finland Study Group can be found in the Supplementary Data online.

© 2016 by the American Diabetes Association.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
metabolic decompensation at diagnosis, and the natural course of the disease during the first 2 years after diagnosis on the other hand.

RESEARCH DESIGN AND METHODS

Subjects
The population-based, nationwide Childhood Diabetes in Finland (DiMe) study was conducted from 1986 to 1989. All patients younger than 15 years who were diagnosed with type 1 diabetes according to the World Health Organization criteria were invited to participate. The study involved 801 participants; serum samples were initially available from 758 children. The current study population comprised 723 children (55.4% male) because no serum was any longer available from 35 children (55.4% male) because no serum was any longer available from 35 children. These 723 patients represent the index cases in the DiMe study, described in detail elsewhere (3). The ethical committees of all participating hospitals approved the study protocol, and the parents gave written informed consent to their child’s participation. Serum samples were stored at −70°C.

Autoantibody Assays
Serum ZnT8A levels were analyzed by a radiobinding assay as described earlier (4,5). Islet cell antibody (ICA) was detected with indirect immunofluorescence, whereas GAD antibody (GADA), IA-2A, and insulin autoantibody (IAA) were quantified with specific radiobinding assays (6). We used a cutoff limit for ICA positivity of 2.5 JDFU. Antibody levels for ZnT8A, GADA, IA-2A, and IAA were expressed in relative units (RU). The cutoff limits corresponding to the 99th percentile in 374 nondiabetic children are 0.61 RU for ZnT8A, 3.48 RU for IA-2A, and 0.43 RU for IAA. The disease sensitivity and specificity of the ZnT8A assay were 60% and 100%, respectively, according to the 2010 Diabetes Autoantibody Standardization Program.

HLA Typing
HLA typing of the main predisposing DQA1-DQB1 genotypes and DRB1*04 subtypes was performed with a PCR-based oligonucleotide hybridization and time-resolved fluorometry (7). The DR3-DQA1*05-DQB1*02 haplotype has been shortened to DR3 and HLA-DRB1*04-DQB1*0302 to DR4. HLA typing data were available for 682 patients.

Markers of Metabolic Status
Metabolic parameters included pH and plasma glucose at diagnosis, analyzed in the local laboratories. Diabetic ketoacidosis was defined as blood pH ≤7.30.

Random serum C-peptide concentrations, glycosylated hemoglobin (Ghb), and exogenous insulin dose were monitored for 2 years after diagnosis. C-peptide concentrations were measured with a radioimmunoassay (8), using antiserum K6 (Novo Research Institute, Bagsvaerd, Denmark). The intraassay coefficient of variation was 1.8%, and the interassay coefficient of variation was 10%. We have previously shown that random serum C-peptide levels correlate strongly with other standardized C-peptide analyses (9). Standard methods for blood GHb analyses were used in the various hospitals. To compare the results, data were expressed as SD above mean for subjects without diabetes in each laboratory (10).

Statistical Analysis
The data were statistically evaluated using cross-tabulation, the Kruskal-Wallis test, and the Mann-Whitney U test. Mixed between- and within-subjects ANOVA was used to explore the effect of ZnT8A positivity on serum C-peptide concentrations, Ghb levels, and the exogenous insulin dose during the 2-year follow-up period. Serum C-peptide concentrations were not normally distributed and were log transformed. Statistical analyses were performed with SPSS 21.0 software (IBM Corp., Armonk, NY). A P value <0.05 was considered significant.

RESULTS

Frequencies and Levels of ZnT8A
Of 723 children tested for ZnT8A, 530 (73.3%) were positive (median 4.13 RU, range 0.61–733.8 RU). The ZnT8A-positive children were generally older (median age 8.85 vs. 8.23 years, P = 0.002).

Combinations and Associations Between Autoantibodies
ZnT8A positivity concurred consistently with ICA and/or IA-2A positivity but less often with GADA- or IAA-positivity. These proportions varied according to age (Supplementary Table 1). When analyzed for the four classical antibodies—ICA, IAA, GADA, and IA-2A—13 children (1.8%) had no detectable antibodies. When ZnT8A was added, this number decreased by 31% (n = 9). The most sensitive (97.9%) combination conferred by three autoantibody assays was the analysis of ZnT8A, GADA, and IA-2A, leaving only 2.1% of the subjects undetected.

The Relationship Between ZnT8A and HLA Genotypes
Among the 226 children carrying the HLA DR3 allele, only 65.9% tested positive for ZnT8A, whereas 76.7% of the DR3-negative subjects were ZnT8A positive (P < 0.001). Of the HLA-associated genotypes, the highest frequency (79.9%) and median ZnT8A titer levels (3.0 RU, P = 0.009) were seen among those carrying the non-DR3/DR4 genotype.

Metabolic State at Diagnosis
At diagnosis, children who were positive for ZnT8A had lower blood pH (mean 7.33 vs. 7.36, P = 0.002) and were more likely to have ketoacidosis than children who were negative for ZnT8A (23.9% vs. 15.0%, P = 0.013).

Natural Course of Type 1 Diabetes
At the time of diagnosis, ZnT8A-positive and -negative children had serum C-peptide concentrations of the same magnitude and a similar need of exogenous insulin. The serum C-peptide concentrations were, however, higher in the ZnT8A-negative patients during the follow-up period (P = 0.008). When the serum C-peptide concentrations were compared at specific times, these were lower in the ZnT8A-positive children during the second year (Fig. 1A). The daily insulin dose was significantly higher in ZnT8A-positive children during the follow-up (Fig. 1B, P = 0.012). There was no significant difference in Ghb over time (Fig. 1C).

CONCLUSIONS
The association between ZnT8A positivity, C-peptide concentrations, and insulin requirement over the first 2 years suggests that a strong initial humoral immune response against ZnT8 suppresses the recovery ability of the residual β-cell function after diagnosis. ZnT8 might be a regulator of β-cell function, the observed association between a polymorphism in the SLC30A8 gene and type 2 diabetes supporting such a role (11). Positivity for ZnT8A increases...
the risk of ketoacidosis at diagnosis, reflecting a more aggressive disease.

In this study we observed a strong inverse relationship between the HLA DR3 allele and ZnT8A, suggesting that the DR3-DQ2 haplotype protects against autoimmunity to ZnT8. This view is supported by a recent report on T-cell responses to ZnT8 in type 1 diabetes (12). Although our study indicates that the frequency of ZnT8A is reduced in DR3-positive individuals, high GADA levels have been reported to be associated with HLA DR3 and high IA-2A titers with DR4 (7). These three autoantibodies may accordingly complement each other in relation to HLA associations.

Prospective studies have shown that positivity for two or more diabetes-associated autoantibodies is a strong predictor of progression to type 1 diabetes, with ~70% of such individuals presenting...
with clinical disease during a 10-year follow-up (13). The current results suggest that the combination of GADA, ZnT8A, and IA-2A assays might be a feasible and cost-effective approach for the detection of β-cell autoimmunity because only 2.1% of the subjects in the current study would have remained undetected.

Positivity for ZnT8A at diagnosis was associated with reduced β-cell function, increased insulin requirement, and a higher frequency of diabetic ketoacidosis at diagnosis. Altogether, positivity for ZnT8A seems to reflect a more aggressive disease process both before and after diagnosis.

Acknowledgments. Sirpa Anttila (Department of Pediatrics, University of Oulu, Oulu, Finland), Berta Davydova (Children’s Hospital, University of Helsinki, Helsinki, Finland), and Riitta Päkkilä (Department of Pediatrics, University of Oulu, Oulu, Finland) are acknowledged for their excellent technical assistance.

Funding. This study was supported by grants from Folkhälsoan Research Foundation, Academy of Finland (Centre of Excellence in Molecular Systems Immunology and Physiology Research 2012–2017, Decision No. 250114), Helsinki University Hospital Research Funds, and the Liv och Hälsa Foundation. The DiMe project has been supported by grants from the National Institutes of Health (grant DK-37957), the Sigrid Jusélius Foundation, the Association of Finnish Life Insurance Companies, and the University of Helsinki.

Duality of Interest. No potential conflicts of interest relevant to this article were reported.

Author Contributions. M.J., A.P., T.H., H.S., and J.J. researched data. M.J., H.S., and M.K. wrote the manuscript. H.K.A. was principal investigator of the DiMe study. All authors reviewed and edited the manuscript. M.K. is the guarantor of this work and, as such, had full access to all data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

References
1. Knip M, Siljander H. Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev 2008;7:550–557
2. Wenzlau JM, Juhl K, Yu L, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 2007;104:17040–17045
3. Tuomilehto J, Lounamaa R, Tuomilehto-Wolf E, et al. Epidemiology of childhood diabetes mellitus in Finland—background of a nationwide study of type 1 (insulin-dependent) diabetes mellitus. The Childhood Diabetes in Finland (DiMe) Study Group. Diabetologia 1992;35:70–76
4. Wenzlau JM, Liu Y, Yu L, et al. A common nonsynonymous single nucleotide polymorphism in the SLC30A8 gene determines ZnT8 autoantibody specificity in type 1 diabetes. Diabetes 2008;57:2693–2697
5. Salonen KM, Ryhänen S, Härkönen T, Ilonen J, Knip M; Finnish Pediatric Diabetes Register. Autoantibodies against zinc transporter 8 are related to age, metabolic state and HLA DR genotype in children with newly diagnosed type 1 diabetes. Diabetes Metab Res Rev 2013;29:646–654
6. Kukko M, Kimpimäki T, Korhonen S, et al. Dynamics of diabetes-associated autoantibodies in young children with human leukocyte antigen-conferred risk of type 1 diabetes recruited from the general population. J Clin Endocrinol Metab 2005;90:2712–2717
7. Hermann R, Turpeinen H, Laine AP, et al. HLA DR-DQ-encoded genetic determinants of childhood-onset type 1 diabetes in Finland: an analysis of 622 nuclear families. Tissue Antigens 2003;62:162–169
8. Heding LG. Radioimmunological determination of human C-peptide in serum. Diabetologia 1975;11:541–548
9. Karjalainen J, Knip M, Mustonen A, Åkerblom HK. Insulin autoantibodies at the clinical manifestation of type 1 (insulin-dependent) diabetes—a poor predictor of clinical course and antibody response to exogenous insulin. Diabetologia 1998;31:129–133
10. Komulainen J, Lounamaa R, Knip M, Kaprio EA, Åkerblom HK; Childhood Diabetes in Finland Study Group. Ketoacidosis at the diagnosis of type 1 (insulin dependent) diabetes mellitus is related to poor residual beta cell function. Arch Dis Child 1996;75:410–415
11. Rutter GA, Chimenti F. SLC30A8 mutations in type 2 diabetes. Diabetologia 2015;58:31–36
12. Dang M, Rockell J, Wagner R, et al. Human type 1 diabetes is associated with T cell autoimmunity to zinc transporter 8. J Immunol 2011;186:6056–6063
13. Ziegler AG, Rewers M, Simell O, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013;309:2473–2479