Evaluation of the Efficiency of Certain Attractive Toxic Baits for the Control of the House Fly, *Musca domestica* (Diptera: Muscidae)

Amin AA¹, Soliman MH¹ and Shalaby AA²*

¹Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
²Research Institute of Medical Entomology, The General Organization for Teaching Hospitals and Institute, Dokki, Giza, Egypt

Abstract

The efficiency of boric acid, borax and imidacloprid is evaluated for inhibition of adult house fly emergence (IC₅₀ values) as dry and liquid baits. In the two cases, imidacloprid has the greatest fatal effect at both IC₅₀ and IC₉₀ levels followed by boric acid and then borax. In the liquid formulation, IC₅₀ and IC₉₀ values are (0.083 and 2.6%), (0.19 and 2.48%) and (2.6 and 16.9%) for three tested compounds respectively. The relative efficiency for imidacloprid and boric acid compared to borax (the least potent one), imidacloprid and boric acid achieved 31.3 and 13.7 times more suppression of adult emergence than borax. In the solid formulation, IC₅₀ and IC₉₀ values are (0.083 - 0.67%) followed by boric acid (3.7-11.6%) and borax (3.74-21.1%) respectively. It’s clear that imidacloprid 68.8 times and borax 1.5 times as toxic as borax. Reasons for differences in manifestation of mortality and possibilities for practical application are discussed. We conclude that the efficiency of tested compounds as liquid baits is higher than as dry baits.

Keywords: Efficiency; Boric acid; Borax; Imidacloprid; Housefly

Introduction

The common house fly (*Diptera: Muscidae*) continues to be a nuisance and acts as an important mechanical vector of pathogenic organism. Flies feeds and breeds in manure, excrement, garbage, sewage sludge and fermenting crop wastes and other sources of filth, where they can pick up and transport various diseases agents amongst humans and animals. Medically important pathogens such as bacteria, fungi, viruses, warm protozoa and nematodes were isolated on the house fly surface [1-5]. Flies have rapid, prolific breeding habits high, mobility and short life cycle, it a difficult control. In order to break the life cycle, control measures should be direct against larvae and adult flies. The traditional and the most extensive control technique used for the suppression of house fly population has been the application of residual contact insecticides. As a result of continuous use of insecticides to control flies, the problem of resistance began to appear. House fly insecticides resistance is global problem [6-9] and has specifically been documented in Egypt [10-14]. Historically house flies have shown great propensity to develop insecticide resistance, new methods need to be evaluated to prevent future control failures. Toxic baits have been an important tool in fly management program. Localized toxic target technique, like insecticide application through baits is advantageous as not only decrease the risk of resistance developing in flies but also greatly reduce the amount of insecticides released into environment. Also, conservation of predators and parasites of immature stages of house flies [15,16]. Recently, a new promising strategy based on attract and kill for controlling vectors of diseases called attractive toxic sugar bait (ATSB) method. Introduction of ATSB on bait stations have been successful against vectors of diseases in different parts of the world [17-19]. In this method, vectors are attracted to a surface or vegetation that applied with ATSB containing toxins such as organic compound (e.g., imidacloprid, azamethiphos, fipronil, methyamyl and chloropyrifos) or inorganic compound (Boron compounds). Neonicotinoid insecticides are the new class of insecticides and have higher selectivity factor for insect versus mammals [20,21]. Imidacloprid is an insecticide belonging to chloronicotinoid class compound. It is effective against a wide range of nuisance and public hygiene insect species [22-26]. Insecticides containing boron have a long history of use in pest control [27]. Boron-containing compound, especially boric acid and its sodium salts (e.g., borax, disodium octaborate and sodium metaborate) have been use routinely for fly control before the advent of chlorinated hydrocarbons and DDT, but it was used primarily as larvicid [28]. Boric acid and borax still remains a very safe and useful chemical acting as a contact insecticide and as stomach poison. Recent research had demonstrated efficacy of boron compound against several household pests [29-36]. Sub lethal doses concentrations of insecticides have been shown to cause latent toxicity [37]. Sub lethal effect is expressed as physiological impact on individuals that survive an exposure to an insecticide [38], for example, in changes of biological parameter, longevity, reproduction, fertility of eggs, puation, adult emergence and development in the life history. Several biological effects are reported in the literature due to the use of sub lethal doses concentrations of insecticides [39-42]. Insecticide mixtures have been proposed as important tools for resistance management in different insect pests. Insecticide mixtures could enhance the toxicity of insecticides in different resistant insects [43-47].

The present study was carried out with three objectives:

- To evaluate the toxicity of sugar baits containing boric acid, borax and imidacloprid against larvae and adult of house fly in liquid and dry formulations
- Latent effects resulted from treated larvae and adults with sub lethal concentrations of ATSB
- Efficacy of combination of imidacloprid with boric acid or borax.

*Corresponding author: Shalaby AA, Research Institute of Medical Entomology, The General Organization for Teaching Hospitals and Institute, Dokki, Giza, Egypt, Tel: +20223648073; E-mail: ashraf.yaseen@yahoo.com

Received August 26, 2017; Accepted August 29, 2017; Published September 06, 2017

Citation: Amin AA, Soliman MH, Shalaby AA (2017) Evaluation of the Efficiency of Certain Attractive Toxic Baits for the Control of the House Fly, *Musca domestica* (Diptera: Muscidae). Chem Sci J 8: 170. doi: 10.4172/2150-3494.1000170

Copyright: © 2017 Amin AA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Materials and Methods

Insecticides tested

The insecticides tested included two inorganic compounds (boric acid and borax) and one organic compound (imidacloprid).

Inorganic compound

a) Boric acid:

- **Common name:** Boric acid (Orthoboric acid, Boracic acid, Borofax)
- **Chemical name:** Trihydroxidoboron
- **Chemical formula:** BH$_3$O$_3$ or B(OH)$_3$

b) Borax.

- **Common name:** Borax (Sodium borate, Sodium tetraborate, Disodium tetraborate).
- **Chemical name:** Sodium tetraborate decahydrate
- **Chemical formula:** Na$_2$B$_4$O$_7$. 10H$_2$O

Organic compound (Imidacloprid)

- **Common name:** Imidacloprid (Admire, confidor, Pravado)
- **Chemical name:** 1-(6-chloro-3-pyridylmethyl)-N-nitromidalzolidin-2-ylidenamine.
- **Chemical formula:** C$_9$H$_{10}$CIN$_5$O$_2$

Tested insect

House fly, Musca domestica

Family: Muscidae

Order: Diptera

Adult house flies were collected from garbage dumps, Giza Governorate by insect’s net as a field strain and transferred to the laboratory. Adults were maintained in cubical cage, 35 cm in each direction. It is constructed of wood frame, covered with Iron network on top and sides. The bottom is made of a movable metallic sheet to facilitate cleaning. The front side was provided with a wooden frame with muslin cloth sleeve, which was used for handling the insects, and introducing the food. The adult flies were provided with cotton ball saturated with 10% milk solution containing 2% sugar held in petri dish for feeding and served as a medium for oviposition. The food was replaced every day.

Eggs were remove from cotton ball and placed on the top of rearing medium in glass jar. The jar top was covered with muslin square held in place by two rubber bands. The breeding medium of larvae consists of wheat bran, yeast, powder milk and water, in the ratios of 20:1:2:20 parts respectively [48-51].

Different larvae instars were reared on larval medium until pupation. The late third instar larvae migrate to the upper layer of the medium to pupate. The dry top layer of media in each jar was removed and transferred to a basin. A stream of air was used for separating the pupae from dried medium. The pupae were transferred to adult breeding cages for emergence. The population was reared at 27 ± 1°C and 65 ± 5% relative humidity (RH).

Preparation of Attractive Toxic Sugar Baits (ATSB)

ATSB solution: Sugar bait solution was made by adding sugar to water at rate of 10%. Boric acid, borax was added directly to sugar solution 10% to obtain serials concentrations. Imidacloprid was dissolve in alcohol before added to sugar solution 10%

ATSB dry: The baits were prepared by mechanically mixing technical insecticide with granulated sugar or prepared by mixing alcohol solutions of technical grad insecticides with granulated sugar and allow the solvent to evaporate. Tested application treatments:

- For imidacloprid (0.02 - 0.32%)
- For boric acid (0.125 - 4%)
- For borax (1-12%)

Another experiment for ATSB dry formulation, the range of concentration tested was as follows:

- For imidacloprid, (2 to 12%) for boric acid and (2 to 16%) for borax. Small plastic cups were filled with five grams of larval medium. Twenty-five third instar larvae were used per treatment. Control groups provided with untreated medium (rearing medium plus sugar solution 10% or granules sugar). Each insecticides concentration and sugar control for each insecticide were replicated four times. Mortality of larvae was observed daily until pupation. The number of pupae and adults emerging were recorded.

Results and Discussion

Effects of ATSB on the development of house fly larvae

ATSB as liquid baits: The development of third instar larvae of house fly Musca domestica was affected by imidacloprid, boric acid and borax treatment of larval medium as ATSB liquid baits (Tables 1-3 and Figures 1-3), and the effects were concentration dependent.

Concentration (%)	Pupation (% ± SD)	Emergence (% ± SD)	Inhibition of Adult Emergence (%)
0.0	100 ± 0.0	97 ± 0.58	3
0.02	97 ± 0.58	88 ± 0.58	12
0.04	93 ± 0.58	83 ± 0.58	17
0.06	75 ± 1.0	65 ± 1.0	35
0.12	47 ± 0.58	33 ± 0.58	67
0.16	30 ± 1.0	20 ± 1.0	80
0.32	18 ± 0.58	8 ± 0.58	92

Table 1: Effect of imidacloprid on the development of the house fly in a treated medium containing third instar larvae (liquid baits).

Concentration (%)	Pupation (% ± SD)	Emergence (% ± SD)	Inhibition of Adult Emergence (%)
0	100 ± 0.0	85 ± 0.58	15
0.125	97 ± 0.58	60 ± 0.58	40
0.25	75 ± 1.0	42 ± 0.58	58
0.5	63 ± 1.0	25 ± 1.0	75
1	60 ± 0.58	23 ± 0.58	77
2	48 ± 0.58	18 ± 1.0	82
4	35 ± 1.0	0 ± 0.58	100

Table 2: Effect of boric acid on the development of the house fly in a treated medium containing third instar larvae (liquid baits).
From data shown in Table 1 and Figure 4, it clears that the pupation rate was reduce at imidacloprid concentration as 0.32%, only 18% of treated larvae reached the pupal state. Additional 0.92% reduction in emergence of adult was observed for the same treatment.

Observation of the effect of boric acid (Table 2 and Figure 5) on the development of larvae showed that application of 4% resulting in 65% larval mortality and 35% pupation. This treatment prevented all exclusion of flies.

Borax also had some effects on the larval-to-pupal stage of development; however, compared with that of imidacloprid and boric acid, the effect of borax was relatively weak. The effect of borax on larvae to pupae development at high concentration of 12%, the formulation of pupae was 30%. Similarly, a reduction in adult emergence from the pupal stage was also observed; borax achieved 92% suppression of adult emergence (Table 3 and Figure 6). The efficiency of tested compounds is evaluated for inhibition of adult emergence (IC values). Data in Table 4 and Figure 7 revealed that, imidacloprid has the greatest fatal effect at both IC50 and IC90 levels followed by boric acid and then borax. This was represented by IC50 and IC90 values, (0.083 and 2.48%) and (2.6 and 16.9%) for three tested compounds respectively. The relative efficiency for imidacloprid and boric acid compared to borax (the least potent one), imidacloprid and boric acid achieved 31.3 and 13.7 times more suppression of adult emergence than borax (Figure 7).

ATSB as dry baits: Data on the effectiveness of dry formulation baits of tested compounds on development of third instar larvae of house fly are shown in Tables 5-7 there was a concentration dependent relationship in the rate of pupation and adult emergence with three compounds.

The mortality of larvae reached to 73% (27% pupation) when the larvae were reared in media containing 0.38% imidacloprid. Also, the number of flies was reduced by 85% (Table 5 and Figure 4).

Data in Table 6 and Figure 5 indicated that the mortality of larvae, as reflected by percentage of larvae forming pupa was 70% (pupation 30%) when third instar larvae fed at concentration level of 12% boric acid. At the same concentration, boric acid was able to suppress emergence of adult by 95%.

Treatment of larvae medium containing third larvae with borax at the rate of 12%, only 33% of larvae able to form pupae. At 16% more effective, the mortality increases to 85% (15% pupation) and the flies emerged reduced by 90% (Table 7 and Figure 6).

Comparisons among IC50 and IC90 values showed that imidacloprid exhibited the highest effect on the inhibition of adult emergence when applied as dry formulation bait. From the probit analysis with respect of IC50 and IC90 values, imidacloprid gave (0.083-0.67%) followed by boric acid (3.7-11.6%) and borax (5.74 - 21.1%) respectively. Regarding to the relative toxicity, it’s clear that imidacloprid 68.8 times and boric acid 1.5 times as toxic as borax (Table 8 and Figure 8).

Concentration (%)	Pupation (%) ± SD	Emergence (%) ± SD	Inhibition of Adult Emergence (%)
0.0	100 ± 0.0	98 ± 0.58	2
1.0	90 ± 0.58	70 ± 0.58	30
2.0	75 ± 1.0	55 ± 0.58	45
4.0	65 ± 1.0	43 ± 1.0	57
8.0	45 ± 0.58	23 ± 0.58	77
10.0	40 ± 0.58	15 ± 1.0	85
12.0	30 ± 1.0	8 ± 0.58	92

Table 3: Effect of borax on the development of the house fly in a treated medium containing third instar larvae (liquid baits).
associated with the indiscriminate effects of contact insecticides by narrowing the attraction to sugar and by using environmentally safe. Such as boron compounds that are considered to be only slightly toxic to humans [51-60]. At as a promising new tool for vector control, although imidacloprid is considered to have low oral toxicity to mammals [61-66]. Fly baits are usually applied as either dry insecticidal granular baits or as sprayable baits.

The data obtained from the present study indicate that both of solution or dry formulation baits could be used in the control of house fly. The lower concentration IC50 (0.083%) was observed for larvae treated rearing medium with imidacloprid in liquid and dry

Table 4: Relative efficiency and IC values of tested compounds in liquid formulation against third instar larvae of the house fly M. domestica.

Compounds	IC values %	IC25/IC50	Slope	Relative Efficiency
Imidacloprid	0.046	0.083	0.27	3.3
Boric acid	0.047	0.19	2.48	13.2
Borax	1	2.6	16.9	44.9
				1

Figure 5: Effect of boric acid on the development of the house fly in a treated medium containing third instar larvae (liquid and solid baits).

Figure 6: Effect of borax on the development of the house fly in a treated medium containing third instar larvae (liquid and solid baits).

Figure 7: Imidacloprid has the greatest fatal effect at both IC50 and IC90 levels followed by boric acid and then borax.

Attractive toxic sugar baits (ATSB) methods are new form of vector control. ATSB are highly effective method which targets flies based on their sugar foraging behavior by presenting baits of attractive compound. It is low cost and circumvents traditional problems related to the indiscriminate use of contact insecticides. The results of the present study indicate that both of solution or dry formulation baits could be used in the control of house fly. The lower concentration IC50 (0.083%) was observed for larvae treated rearing medium with imidacloprid in liquid and dry
formulation. For boron compounds, the inhibition of adult emergence was generally greater in those larvae treated by ATSB as liquid baits compared to dry formulation. Form probit analyses the IC50 were 0.19% and 2.6% in liquid baits and 3.7 and 5.7 for dry baits when larvae treated with boric acid and borax respectively. Also, data demonstrated that the effects of tested compound on both pupation (larval-to-pupal development) and emergence were significantly reduced at the high concentration of boron compounds. Concentrations needed were considerably greater than the effective concentration for imidacloprid. The relative efficiency revealed that, imidacloprid and boric acid 31.3 and 13.7 times more suppression of adult emergence than borax when larvae treated as liquid baits. In dry formulation baits, it is clear that imidacloprid 68.8 times and boric acid 1.5 times as to toxic as borax.

Table 5: Effect of imidacloprid on the development of the house fly in a treated medium containing third instar larvae (solid baits).

Concentration (%)	Pupation (% ± SD)	Emergence (% ± SD)	Inhibition of Adult Emergence (%)
0.0	100 ± 0.0	100 ± 0.0	0
0.024	85 ± 1.0	70 ± 0.0	30
0.048	80 ± 1.0	65 ± 1.0	35
0.072	70 ± 1.0	50 ± 1.0	50
0.096	55 ± 1.0	45 ± 1.0	55
0.192	40 ± 1.0	30 ± 1.0	70
0.38	27 ± 0.58	15 ± 0.0	85

Table 6: Effect of boric acid on the development of the house fly in a treated medium containing third instar larvae (solid baits).

Concentration (%)	Pupation (% ± SD)	Emergence (% ± SD)	Inhibition of Adult Emergence (%)
0.0	100 ± 0.0	100 ± 0.0	0
2	93 ± 0.58	75 ± 1.0	25
4	83 ± 0.58	55 ± 1.0	45
6	62 ± 0.58	35 ± 0.0	65
8	52 ± 0.58	18 ± 0.58	82
10	33 ± 0.58	10 ± 0.0	90
12	30 ± 1.0	5 ± 0.0	95

Table 7: Effect of borax acid on the development of the house fly in a treated medium containing third instar larvae (solid baits).

Compounds	IC values % Pupation (% ± SD)	Emergence (% ± SD)	IC90 / IC25	Slope	Relative Efficiency
Imidacloprid	0.027 0.083	0.67	8.1	1.41	68.8
Boric acid	2.1 3.7	11.6	3.1	2.6	1.5
Borax	2.8 5.74	21.1	3.7	2.26	1

Table 8: Relative efficiency and IC values of tested compounds in solid formulation against third instar larvae of the house fly M. domestica.

In a previous studies using imidacloprid, as Larvicidal activity was observed in the direct surrounding of treated animals [67,68]. Arther et al. concluded that monthly imidacloprid application of 7.5 to 10 mg/kg will rapidly kill existing and reinvesting flea infestation in dog and break the flea life cycle by killing adult fleas before egg production begins [69-74]. Previous works mentioned that the ability of imidacloprid to suppress the yield of adult fleas on carpate (6-hours exposure) steadily declined from 82% (Day +2) to 12% (Day +43) [75-81]. Previous works mentioned that LC 50 (84 Nano-gram/L) of imidacloprid to larvae of Aedes aegypti. Uragayala et al. evaluated the Larvicidal effect of neonicotinoid insecticides against susceptible and resistant mosquito’s strains [82-96].

Boron compounds were the standard chemical use for control of larval moscoid fly population in manure [97-105], sewage ludge [106-111] and compost [112]. Recently, Hinkle et al. [113,114] mentioned borate compounds varied in efficiency against larval of cat fleas. The LC50 values of larvae exposed in treated carpet for 96 h were 23 µg/cm2 for powder boric acid, 40 µg/cm2 for granular boric acid and 47 µg/cm2 for granular polybor. Shahiduzzaman [115-119] suggested that boric acid showed highest Larvicidal effect (78.9%) followed by borax (68.9%) against larva.

Conclusion

Imidacloprid has the greatest fatal effect at both IC50 and IC90 levels followed by boric acid and then borax. In the liquid formulation, the
relative efficiency for imidacloprid and boric acid compared to borax (the least potent one), imidacloprid and boric acid achieved 31.3 and 13.7 times more suppression of adult emergence than borax. In the solid formulation, it’s clear that imidacloprid 68.8 times and boric acid 1.5 times as toxic as borax. The efficiency of tested compounds as liquid baits is higher than it as dry baits.

References

1. Abass N, Crickmore N, Shad SA (2015) Efficacy of insecticide mixtures against baits is higher than it as dry baits. J Econ Entomol 18: 265-267.

2. Abbos N, Cechovacova N, Nadz SA (2015) Efficacy of insecticide mixtures against a resistant strain of house fly (Diptera: Muscidae) collected from a poultry farm. International Journal of Tropical Insect Science 35: 48-53.

3. Abbot WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18: 265-267.

4. acevedo GR, Zapater M, Toloza AC (2009) Insecticide resistance of house fly Musca domestica(L) from Argentina. Parasitol Res 105: 489-493.

5. Agraval VK, Agraval A, Choudhary V, Singh R, Ahmed N, et al. (2010) Efficacy of imidacloprid and fipronil gel on synthetic pyrethroid and propoxur aerosols in control of German cockroaches (Dictyoptera: Blatellidae). J Vector Borne Dis 47: 139-144.

6. Ahmed FM, Khaleequzzaman M (2001) Malathion tested for synergism with cypermethrin phosalon phorate and fenitrothion on musca domestica L. J Biological Science 11: 1028-1030.

7. Ahmed FS (2015) Toxicological studies on boric acid, imidacloprid and fipronil and their binary mixtures as insecticides on German cockroach blattella germanica L. (Dictyoptera: Blattellidae). Cairo University.

8. Ahmed S, Ansari MS, Ahmed N (2013) Acute toxicity and sub-lethal effects of the neonicotinoid imidacloprid on the fitness of Helicoverpa armigera (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science 33: 264-275.

9. Ali A, Xu RD, Barnard DR (2006) Effects of sub-lethal exposure to boric acid sugar bait on adult survival, host-seeking, blood feeding behavior and reproduction of Stenogama albopicta. J Am Mosq Control Assoc 22: 484-486.

10. Appel AG, Tanley MJ (2000) Laboratory and field performance of an imidacloprid gel bait against German cockroaches (Dictyoptera: Blatellidae). J Econ Entomol 93: 112-115.

11. Archer RG, Cunningham J, Dorn H, Everett R, Herr LG, et al. (1997) Efficiency of imidacloprid for removal and control fleas (cicnocepho ides flies) on dogs. J Am MOSQ Control Assoc 22: 484-486.

12. Appel AG, Tanley MJ (2000) Laboratory and field performance of an imidacloprid gel bait against German cockroaches (Dictyoptera: Blattellidae). J Econ Entomol 93: 112-115.

13. Curtis FS (1985) Theoretical models of the use of insecticide mixture for control of German cockroaches (Dictyoptera: Blatellidae). J Econ Entomol 88: 1209-1212.

14. Burns EC, Tower BA, Bonner FL, Austin HC (1959) Feeding polybor 3 for control under caged layers. J Econ Entomol 52: 446-446.

15. Chapman PA, Morgan CP (1992) Insecticide resistance in Musca domestica L from eastern England. Pest Sci 38: 35-45.

16. Corbel V, Raymond M, Chundre F, Hougard JM (2004) Efficacy of insecticides mixture against larvae of Culex quinquefasciatus Say (Diptera: Culicidae) resistant to pyrethroids and carbamates. Pest Manag Sci 60: 375-380.

17. Crawford SE, Gordon JR, Howles KA, Potter MF, Haynes MF (2017) Imact of sublethal exposure to a pyrethroid - neonicotinoid insecticide on mating, fecundity and development in the bed bug Cimex lectularius l. (Hemiptera: Cimicidae). PLoS ONE 10: 1-14.

18. Darriet F, Corbel V (2006) Laboratory evaluation of pyriproxifen and spinosad, alone and in combination against Aedes aegypti larvae. J Med Entomol 43: 1190-1194.

19. Desnux N, Decoruy A, Delpuech JM (2007) The sub-lethal effects of pesticides on beneficial arthropods. Anna Rev Entomol 52: 81-106.

20. Diafia M, Veronesi F, Fiorett DP, Guerra A, Rigilli M (2005) The sub-lethal effects of pesticides on beneficial arthropods. 46: 108-115.

21. Duncan DB (1955) Hepatoprotective, DNA Damage Prevention and Antioxidant Potential of Spirulina platensis on CCI4-Induced Hepatotoxicity in Mice Multiple range and multiple F-test. Biometics 11: 1-42.

22. Ebeling W (1995) Inorganic insecticides and dusts. In: Rust MK, Owens JM, Reierson DA (eds.). Understanding and controlling the German cockroach. Oxford University Press, New York, USA, pp: 193-230.

23. Farooq M, Freed D (2016) Combined effects of Beauveria bassiana (Hypocreales: Clavicipitaceae) and insecticides mixtures on biological parameters of Musca domestica (Diptera: Muscidae), Pakistan J 48: 1465-1478.

24. Finney DJ (1971) Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge University Press. Accessed on: 02 August 1982.

25. Förster M, Klimpel S, Mehlhorn H, Sievert K, Messler S, et al. (2007) Pilot studies on synantropic flies (e.g. Musca, Sarkocapha, Calliphora, Fania, Lucilia, Stomoxys) as vectors of pathogenic micro-organisms. Parasitol Res 101: 243-246.

26. Furse M, Kimpfel M, Mehlhorn H, Sievert K, Messler S, et al. (2007) Pilot studies on synantropic flies (e.g. Musca, Sarkocapha, Calliphora, Fania, Lucilia, Stomoxys) as vectors of pathogenic micro-organisms. Parasitol Res 101: 243-246.

27. Forsør M, Kimpfel M, Mehlhorn H, Sievert K, Messler S, et al. (2007) Pilot studies on synantropic flies (e.g. Musca, Sarkocapha, Calliphora, Fania, Lucilia, Stomoxys) as vectors of pathogenic micro-organisms. Parasitol Res 101: 243-246.

28. Gardeur N, Chateau J, Goudet JP, Chauve G, Goudet J, et al. (2006) Laboratory evaluation of boric acid-sugar solution as baits for management of German cockroach infestations. J Econ Entomol 97: 581-587.

29. Greenberg R (1971) Flies and Diseases. Volume 1. Princeton University Press, Princeton, NJ, USA, p: 856.

30. Hayash A (1969) Joint action of pyrethroids against house flies. J Midic Entomol and Zoology 4. 261-263.

31. Hemingway J, Ranson H (2000) Susceptibility of Culex quinquefasciatus (Diptera: Culicidae) to malathion in Sargodha district Insecticide resistance in insect vectors of human disease. An Rev Entomol 45: 371-391.

32. He YK, Zhao JW, Wu DD (2011) Sub-lethal effects of imidacloprid on Bemisia tabaci (Hemiptera: Aleyrodoideae) under laboratory conditions. J Econ Entomol 104: 833-838.

33. Hinkle NK, Koehler PG, Patterson RS (1995) Larvicidal effects of boric acid and disodium octaborate to cate fleas (Siphonoptera: Pulicidae). J Med Ento ol 32: 347-347.

34. Hogsett JA, Coeher PG (1994) Repellency of aqueous solution of boric acid and polybor 3 to house flies (Diptera: Muscidae). J Econ Entomol 87: 1110-1112.

35. Hogsett JA, Koehler PG (1992) Comparative toxicity of aqueous solutions of boric acid and polybor 3 to house flies (Diptera: Muscidae). J Econ Entomol 85: 1209-1212.

36. Hoghest JA, Larson DA, Nejame AS (2002) Development of Granular boric acid sugar bait on adult survival, host-seeking, blood feeding behavior and reproduction of Stegomia albopicta. J Vector Borne Dis 39: 701-701.

37. Hogest JA, Carlson DA, Nejame AS (2002) Development of Granular boric acid sugar bait on adult survival, host-seeking, blood feeding behavior and reproduction of Stegomia albopicta. J Vector Borne Dis 39: 701-701.

38. Hogest JA, Carlson DA, Nejame AS (2002) Development of Granular boric acid sugar bait on adult survival, host-seeking, blood feeding behavior and reproduction of Stegomia albopicta. J Vector Borne Dis 39: 701-701.
Citation: Amin AA, Soliman MH, Shalaby AA (2017) Evaluation of the Efficiency of Certain Attractive Toxic Baits for the Control of the House Fly, Musca domestica (Diptera: Muscidae). Chem Sci J 8: 170. doi: 10.4172/2150-3494.1000170

44. Hougard JM, Corbel V, Guessan RN, Darfiet F (2003) Efficacy of mosquito nets treated with insecticide mixtures or mosquito nets against insecticide resistant Anopheles gambiae and Culex quinquefasciatus (Diptera: Culicidae). 53: 491-498.

45. Islam MZ, Khalequzzaman M (2002) Potentiation of malathion by other insecticides against adult housefly. Pakistan J Biosciences 5: 299-302.

46. Jacobs DE, Hatchinson MJ, Ewaldthum D (2000) Inhibition of immature Ctenocephalides flies (Siphonoptera: Pulicidae) development in the immediate environment of cats treated with imidacloprid. J Mea Entom 7: 228-230.

47. Jin BL, Sulaiman S, Ohman HF (2008) Evaluation of imidacloprid against the housefly Musca domestica Linnaeus in the Laboratory. J Trop Med Parasitol 31: 223-273.

48. Kaufman PE, Gerr CA, Rutz AD, Scott JG (2006) Monitoring susceptibility of house flies (Musca domestica). In United States to imidacloprid. J Agric Urban Entomot 23: 195-200.

49. Kaufman PE, Scott JG, Rutz DA (2001) Monitoring insecticide resistance in house flies (Diptera: Muscidae) from New York dairies. Pest Manag Sci 57: 514-521.

50. Keiding J (1999) The housefly biology and control training and information guide (advanced level). Geneva, World Health Organization 86: 937.

51. Khan HAA, Akram W, Shaet SA, Lee JJ (2013) Insecticide mixtures could Enhance the toxicity of insecticides in resistant daily population of Musca domestica L. PLoS ONE 8: 1-8.

52. Kotz JH, Greenberg L, Amhrine C, Rust MK (2000) Toxicity and Repellency of Borate Suicide water baits to Argent Ants (Hymenoptera: Formicidae). J Econ Entomol 93: 1269-1275.

53. Klotz JH, Moss JI, Zhao RL, Davis R, Patterson RS (1994) Oral toxicity of 10 % imidacloprid / 50 % permethrin for the pervention of leishmaniasis in Kenne led dogs in an endemic area. Vet Parasitol 144: 270-278.

54. Marshall JM, White MT, Ghani AC, Schlein Y, Muller GC, et al. (2013) Quantifying the mosquito’s sweet tooth: modelling the effectiveness of attractive toxic sugar baits (ATSB) for malaria vector control. Malar J 12: 291.

55. Mascari TM, Foil LD (2010) Laboratory evaluation of insecticide-treated sugar baits for control of phlebotomine sand flies (Diptera: Psychodidae). J Am Mosq Control Assoc 26: 398-402.

56. Migley AR, Muller WD, Dunklee DE (1943) Borax and boric acid for control of flies in manure. J Am Soc Agrom 35: 779 - 785.

57. Miguelsen JG, Baker PB (2014) Evaluation of Liquid and Bait Insecticides against the Dark Rover Ant (Brachymyrmex patagonicus). Insects 5: 832-848.

58. Moriarty F (1969) The sub lethal effects of insecticides in insects. Bio Rev 44: 321-357.

59. Motlop NP (2016) The attractiveness of toxic bait is not always accompanied by increased mortality in laboratory colonies of Argent in ants, Linein tema humil (Hymenoptera=Formicidae). Entomological Society of Southern Africa.

60. Mullens BA, Rodriguez JL (1992) Effects of disodium octaborate tetrahydrate on survival, behavior, and egg viability of adult moscoid flies (Diptera=Muscidae). J Econ Entomol 85: 137-143.

61. Muller GC, Junnla A, Schlein Y (2010) Effective Control of Adult Culex pipiens by Spraying an Attractive Toxic Sugar Baits in the Vegetation Near Larval Habitats. J Med Entomol 47: 63-66.

62. Muller GC, Schlein Y (2011) Different methods of using attractive sugar baits (ATSB) for the control of Phlebotomus papatasi. J Vector Ecol 36: 64-70.

63. Mustafa AA, Almad KA, Badr KA, El-Dib VA (1996) Recent toxicological studies on adult housefly Musca domestica (L.) in some EgyptianGovernorates. J Med Entomol 7: 537-546.

64. Nazi WA, Seleena B, Lee HL, Jeffery JT, Rogayah TAR, et al. (2005) Bacteria fauna from the house fly Musca domestica (L). Tropical Biomedicine 22: 225-231.

65. Ohman DA (2014) Biochemical mechanism insecticide resistance in the housefly from certain Governorates in Egypt. PhD Thesis, Faculty of Science, Ain Shams University, Cairo, Egypt.

66. Ortonato D, Paradis P, Lia RP, Latrofa MS, Testini G, et al. (2007) Combination of 10 % imidacloprid / 50 % permethrin for the pervention of leishmaniasis in Kennes led dogs in an endemic area. Vet Parasitol 144: 270-278.

67. Pospischil R (2003) Fly control under field conditions with imidacloprid fly bait. Proceedings of the European Poultry Symposium, pp: 109-113.

68. Pospischil R, Junkersdorf J (2002) Imidacloprid fly bait - A fact acting formulation against flies in livestock. Proceedings 4 Int. Conf. Ins Pests in Urban Environment. Charleston, USA 457: 458.

69. Pospischil V, Junkersdorf K, Horn K (2005) Control of house flies, Musca domestica (Diptera: Muscidae), with imidacloprid WG 10 in pig farms. In: Lee CV, Robinson WH. Proceedings of the Fifth International Conference on Urban Pests, Singapore.

70. Rabhi KK, Esancy K, Voisin A, Crespin L, Lecorre J, et al. (2012) Unexpected enhancement of insecticidal activity of a neonicotinoid insecticide on effectual responses to sex pheromone in a pest insect. PLoS ONE 9: e11441.

71. Ross DH, Ather RG, Simson CV, Doyle V, Dryden MW (2012) Evaluation of mothap NP (2016) The attractiveness of toxic bait is not always accompanied by increased mortality in laboratory colonies of Argent in ants, Linein tema humil (Hymenoptera=Formicidae). Entomological Society of Southern Africa.

72. Rupesh V, Chmela J, Mazanek L, Vlckova J (2008) A novel imidacloprid bait for control of Monomorium pharao (Hymenoptera: Formicidae). Proceeding of sixth International Conference on Urban Pests.

73. Rust MK, Reiersen DA, Klotz JH (2004) Delayed toxicity as a critical factor in the efficacy of aqueous baits for controlling Argentin ants (Hymenoptera: Formicidae). J Econ Entomol 97: 1017-1024.

74. Sasaki T, Kobayashi M, Agui N (2000) Epidemiological potential of excretion and regurgitation by Musca domestica (Diptera: Muscidae) in the dissemination of Escherichia coliO157: H7 to food. J Med Entomol 37: 945.
90. Satpathy S, Kumar A, Shivalingaswarma TM, Rai AB (2012) Effect of foliar spray of boron on biology, egg laying activity and control of brinjal shoot and fruit borer (Leucinodes orbonalis Guen). Indian J Hort 69: 295-298.

91. Scott JG, Alfandis TG, Kaufman PE, Rutz DA (2000) Insecticide resistance in house flies from caged ——-laboratory facilities. Pest Manag Sci 56: 147-153.

92. Settepani PA, Crystal MM, Borkovec AB (1969) Boron Chemosterilants against screw ——-worm flies structure ——-activity relationship. J Econ Entomol, pp: 375-383.

93. Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

94. Shaffard M, Mosaad EA, Vazirianzadeh B, Mahmoudabadi A (2011) Interaction between entomopathogenic fungus, Metarhizium anisopliae and sublethal doses of spinosad for control of house fly, Musca domestica. Iran. J Arthropod Born Dis 5: 28-36.

95. Sherwood DH (1959) Effect of polybor 3 on egg production. Poul Sci 38: 491-493.

96. Shono T, Scott JG (2003) Spinosad resistance in the house fly, Musca domestica, is due to a recessive factor on autosome-1. Pestic Biochem Physiol 75: 1-7.

97. Stewart ZP, Oxborough RM, Tungu PK, Kirby MJ, Rowi MW (2013) Indoor Application of Attractive Toxic Sugar Bait (ATSB) in Combination with Mosquito Nets for Control of Pyrethroid-Resistant Mosquitoes. PLoS ONE 8: 084168.

98. Strong CA, Koehler PG, Patterson RS (1993) Oral Toxicity and repellency of borates to German cockroaches (Dictyoptera: Blattellidae). J Econ Entomol 86: 1458-1463.

99. Sulaiman S, Othman MZ, Aziz AH (1999) Isolation of Enteric Pathogens from Synanthropic Flies Trapped in Downtown Kuala Lumpur. J Vector Ecology 25: 9-93.

100. Sun YP (1950) Toxicity index and improved method of comparing the relative toxicity of insecticides. J Econ Entomol pp: 43-53.

101. Taillebois E, Thany SH (2016) The Differential effect of low-dose mixtures of four pesticides on the pea aphid Acyrthosiphon pisum. Insects 7: 53.

102. Tan Y, Biond A, Desneux A, Gao XW (2012) Assessment of physiological sub lethal effects of imidacloprid on the midi bug Apolygus. Lucorum Ectotoxicol 21: 1989-1997.

103. Thaddeus K, Graczy K, Knight R, Tamany L (2005) Mechanical Transmission of Human Protozoan Parasites by Insects. Clinical Microbiology Reviews, pp: 128-132.

104. Thompson SR, Brandenburg RL (2006) Effect of combining imidacloprid and diatomaceous earth with Beauveria bassiana on mole cricket (Orthoptera: Grylotalpidae) mortality. J Econ Entomol 99: 1948-1954.

105. Tomlin C (1994) The Pesticide Manual (A World Compendium). 10th edn. The British Crop Protection Council and The Royal Society of Chemistry. Cambridge, England, UK, pp: 591-593.

106. Zayed AB, Shalaby AA, Mostafa AA, Osman MZ (2004) Resistance to insecticides and prevalence of enzyme mechanisms in populations of the housefly Musca domestica (L.) (Diptera: Muscidae). J Econ Entomol 97: 1458-1452.

107. Yang LK, Nigg HN, Simpson SE (2000) Sodium tetraborate effects on mortality and reproduction of Anastrepha suspensa (Diptera: tephritidae). J Econ Entomol 93: 1485-1452.

108. Zayed AB, Shalaby AA, Mostafa AA, Allam KA, Osman MZ (2000) Resistance to insecticides and prevalence of enzyme mechanisms in populations of the housefly Musca domestica (L.) (Diptera: Muscidae). J Econ Entomol 93: 1485-1452.

109. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

110. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

111. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

112. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

113. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

114. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

115. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

116. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

117. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

118. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

119. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

120. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

121. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

122. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

123. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

124. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

125. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

126. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

127. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.

128. Zayed AB, Shalaby AA, Mostafa AA, Al-Tayeb KM, Khater MM (2002) Field studies on the susceptibility of housefly to certain insecticides in nine Egyptian governorates. J Egypt Soc Parasitology 32: 91-97.