COOLING SYSTEM FOR MARINE SHIP FUEL ENGINES

RAJENDR PRASAD.R

Assistant Professor, Department of Marine Engineering, AMET University, Chennai, Tamil Nadu, India

ABSTRACT

In previous days all marine systems are run using coal engines. It does not need any fuel to run the ship engine. But nowadays all maritime operations are executed by using fuel engine; it may be diesel or petrol. This can be used for improving the speed and quality of the aquatic systems. One of the drawbacks of the fuel engine is overheating, too much of heat in the engine creates the problem in the marine system. To overcome the problem by using a cooling system for cooling the engine while overheating. Two ways can do it, one is fresh water cooling system, and another one is seawater cooling system. These two cooling systems are frequently used in the marine engine for avoiding the heat during the time of running.

KEYWORDS: Fresh Water Cooling System, Seawater Cooling System & Marine System

INTRODUCTION

Fuel engines can be cooled by circulating the cooling liquid into the internal arrangement of the engine. [1] If the cooling fluid is heated and then using sea water to cool the engine. The heat of the engine can be achieved by burning of fuel at high temperature. The fresh water is used as a coolant liquid for marine engine; sea water is not directly used in the system because it contains corrosive actions. Lubrication is one of the processes to reduce the corrosive activities. Lubricating oil is interest in-between the methods to avoid destructive conflict. Greasing up oil is at times utilised for cylinder cooling since breaks into the crankcase would not bring about issues. Thus of its lower particular warmth however about double the amount of oil contrasted with water would be required. The oil cooler is coursed via ocean water, which is at a lower weight than the oil. Accordingly, any break in the cooler will mean lost fat and not tainting of the oil via ocean water. [2-3]Where the motor has oil-cooled cylinders they will be provided from the greasing up oil framework, conceivably at a higher weight delivered by sponsor pumps, e.g. Sulzer RTA motor. A proper greasing up oil must be utilised for oil-greased up cylinders to maintain a strategic distance from carbon stores on the more blazing parts of the framework.

RELATED WORKS

A nonlinear control approach for a creative motor cooling framework in vehicles is exhibited in this paper. The electrically determined radiator fan is utilised as a control input. The motor cooling framework speaks to an exceptional class of nonlinear frames described by both coordinated and bungled lumped unsettling influences. Given a control-arranged framework portrayal, a back stepping-based sliding mode control is intended to track wanted directions of the motor outlet temperature. Additionally, the lumped unsettling influences are evaluated utilising an increase booked changed Utkin eyewitness. Examinations at a committed test-fix portray the viability of the advanced control conspires in contrast with a PI controller.
Propelled warm administration frameworks for inward burning motors can enhance coolant-temperature direction and servomotor control utilisation by better managing the ignition procedure with numerous PC controlled electromechanical parts. The typical indoor regulator valve, coolant pump, and grip driven radiator fan are redesigned with servomotor actuators. At the point when the framework parts work congruously, wanted warm conditions can be proficient in a power-effective way. In this paper, a complete nonlinear-control engineering is proposed for the transient-temperature following. A trial framework has been manufactured and amassed which includes a variable-position brilliant valve, variable-speed electric water pump, variable-speed electric radiator fan, motor square, and different sensors. In the designed framework, the steam-based warmth exchanger imitates the warmth created by the motor's ignition procedure. Agent numerical and test comes about are talked about to show the usefulness of the warm administration framework in precisely following the recommended temperature profiles and limiting electrical power utilisation.

FRESH WATER COOLING SYSTEM

The barrel coat cooling water in the wake of leaving the motor goes to an ocean water-flowed cooler and after that into the coat water circling pumps. [4]It is then pumped around the chamber coats; barrel heads furthermore, turbo-blowers. A header tank considers development and water makeup in the framework. Vents are driven from the motor to the header tank for the arrival of air from the cooling water. A warmer in the circuit encourages warming of the engine preceding beginning by flowing hot water. The cylinder cooling framework utilises similar parts, aside from that an empty tank is employed rather than a header tank, and the vents are then prompted high focuses in the hardware space. A different cylinder cooling framework is used to restrain any defilement from cylinder cooling organs to the cylinder cooling framework.
SEA WATER COOLING SYSTEM

![Figure 2: Sea Water Cooling System](image)

The different cooling fluids which flow the motor are themselves cooled via ocean water. The typical plan utilises singular coolers for greasing up oil, coat water, and the cylinder cooling framework, every cooler being flowed via ocean water.[5] Some cutting-edge ships utilise what is known as a ‘focal cooling framework’ with just a single substantial ocean water-circled cooler. This cools a supply of new water, which then flows to the next Individual coolers. With less gear in contact with ocean water, the erosion issues are greatly diminished in this framework. An ocean water cooling framework appears in Figure 2. From the ocean suction, one of a couple of ocean water flowing pumps gives ocean water which flows the greasing up oil cooler, the coat water cooler and the cylinder water cooler before releasing over the edge. Another branch of the central ocean pipes gives ocean water to individually cool the charge air (for an immediate drive two-stroke diesel). [14-15] one course of action of a focal cooling framework appears in Figure 2. The ocean water circuit is comprised of high and low suctions, generally on either side of the apparatus space, suction strainers and a few ocean water pumps. [6-8]. An efficient approach for the removal of bipolar impulse noise using the median filter, The ocean water is flowed through the focal coolers and at that point released over the edge. A low-temperature and high-temperature circuit exist in the new water framework. [9] The fresh water in the high-temperature course flows the principle motor and may if required, be utilised as a warming medium for an evaporator. [10] The low-temperature circuit flows the principle motor air coolers, the greasing up oil coolers and all other warmth exchangers. A managing valve controls the blending of water between the high-temperature and low-temperature circuits. [11-13] a temperature sensor gives a flag to the control unit which works the managing valve to keep up the coveted temperature setting. A temperature sensor is likewise utilised as a part of a corresponding control circuit to accomplish the directing valve which controls the bypassing of the focal coolers.

RESULT AND DISCUSSIONS

Untreated turtles put under the warming light, by and large, warmed four times speedier than they cooled. It was additionally the case with atropinised turtles. Nonetheless, while all creatures warmed at comparable rates, the time taken per degree temperature change amid cooling in atropinised creatures was altogether longer at all temperatures than in the untreated beings, with the goal that the season made for cooling in these animals was drawn out by around one h in
contrast with untreated people. This was more articulated at temperatures beneath 27°C, which represented the expanded cooling timeframe seen in atropinised turtles.

Figure 3: Warming and Cooling Curves

CONCLUSIONS

A review of fresh water cooling system and seawater cooling system is discussed in this paper. It is more useful to protect the marine engine from overheat. The internal architecture of the marine system is changed to get high efficiency than compared to the exits architecture. The review is more useful for marine engine designers. It is suitable for only fuel marine engine system not for coal engine system. The time taken per degree temperature change amid cooling in atropinised creatures was altogether longer at all temperatures than in the untreated beings, with the goal that the season made for cooling in these animals was drawn out by around one h in contrast with untreated people. The warming and cooling curves show that treated and untreated.

REFERENCES

1. Butt et al., (2016, June). Backstepping-based sliding mode control for an innovative engine cooling system. In Control Conference (ECC), 2016 European (pp. 263-268). IEEE.
2. Wambsganss et al.,(1999). Thermal management concepts for higher-efficiency heavy vehicles (No. 1999-01-2240). SAE technical paper..
3. Salah, M. H et al., (2008). Nonlinear-control strategy for advanced vehicle thermal-management systems. IEEE Transactions on Vehicular Technology, 57(1), 127-137.
4. Jae-Hyongseoo & Moo-Yeon Lee, Hybrid Cooling Performances of the Cooling System Using Ferrofluid for High Power IGBT Device, International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), Volume 7, Issue 3, May - June 2017, pp. 59-66
5. Zou, X et al., (1999). A dynamic model for a thermostat. Journal of Engineering Mathematics, 36(4), 291-310.
6. Shu, G et al., (2013). A review of waste heat recovery on two-stroke IC engine aboard ships. Renewable and Sustainable Energy Reviews, 19, 385-401.
7. Moldanová, J et al., (2009). Characterisation of particulate matter and gaseous emissions from a large ship diesel engine. Atmospheric Environment, 43(16), 2632-2641.

8. Tse L. K. C., Wilkins et al., (2011). Solid oxide fuel cell/gas turbine trigeneration system for marine applications. Journal of Power Sources, 196(6), 3149-3162.

9. Goldmeer, J et al., (2005). U.S. Patent No. 6,978,617. Washington, DC: U.S. Patent and Trademark Office.

10. Burel, F et al., (2013). Improving sustainability of maritime transport through utilisation of Liquefied Natural Gas (LNG) for propulsion. Energy, 57, 412-420.

11. Ghirardo, F et al., (2011). Heat recovery options for onboard fuel cell systems. International journal of hydrogen energy, 36(13), 8134-8142.

12. Dzida, M. (2009). On the possible increase of efficiency of ship power plant with the system combined with the marine diesel engine, gas turbine and steam turbine, at the primary engine-steam turbine mode of cooperation. Polish Maritime Research, 16(1), 47-52.

13. Baldi, F et al., (2015). A feasibility analysis of waste heat recovery systems for marine applications. Energy, 80, 654-665.

14. Larsen, U et al., F. (2014). System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines. Energy, 64, 484-494.

15. Sagadevan, S et al., (2015). Investigation of Structural, SEM, TEM and Dielectric Properties of BaTiO3 nanoparticles. Journal of Nano-and Electronic Physics, 7(4), pp.4008-1.

16. Kadali, K.S. et al., (2015). An efficient approach for the removal of bipolar impulse noise using the median filter. Indian Journal of Science and Technology, 8(13).
