Relationships between benthic infauna and groundwater eutrophication on a sandy beach in southern Brazil

Luciano Lorenzi1,2 · Devon Gebauer Mayer1,4 · Bruna Conte Reginato1,2 · Paulo Roberto Pagliosa3 · David Valença Dantas1,4 · Eduardo Gentil1,4 · Vladimir G. Toro Valencia5

Abstract
Urban expansion in Brazilian coastal zones has caused various anthropic impacts on coastal marine ecosystems that have resulted from unorganized use and the lack of infrastructure projects. The inadequate disposal of domestic and industrial effluents in coastal waterbodies is notable, which can cause severe environmental problems. For sandy beaches, the relationships between the contamination of groundwater with domestic sewage and the possible effects on spatial and temporal variations in the density and composition of benthic infauna are still poorly understood. This work aimed to relate variations in benthic infaunal associations with the concentrations of groundwater nutrients in summer and winter on Enseada Beach. The greater concentrations of nutrients in water percolating through the sediment in the summer, increasing of domestic effluents, and periods of intense precipitation increased the contamination of the surface and groundwater. This contributes to an increase in the population density of *Thoracosphelia furcifera*, demonstrating its use as an indicator of eutrophication of the groundwater, allowing monitoring and contribution to actions aimed at improving the environmental quality of sandy beaches.

Keywords Sandy beaches · Benthic infauna · Groundwater · Eutrophication · Domestic effluents · *Thoracosphelia furcifera*

Introduction
Sandy beaches comprise one of the longest ecosystems along coastal Brazil (Amaral et al. 2016), are characterized as transition zones between oceans and continents, and are socially, economically and ecologically important (Defeo and McLachlan 2013; Amaral et al. 2016; McLachlan et al. 2018). They are highly hydrodynamic sedimentary environments, with a physical structure determined mainly by environmental energy from waves, and vary based on the degree of exposure. The interactions between these factors produce types of beaches with morphodynamics that range from reflective to dissipative (Wright and Short 1984; Short 1996; Short 2006). At a local scale, seasonal variation in the sandy beach morphodynamic can rapidly change the population dynamic of organisms in the benthic community (Defeo et al. 2009; Cisneros et al. 2011), which is involved in various ecological functions at multiple trophic levels, such as breaking down organic material in the sediment, substrate aeration, nutrient cycling and transferring energy to animals that feed on them (e.g., birds, reptiles, and fish) (Campanyà-Llovet et al. 2017). Furthermore, these organisms are sensitive to
environmental changes, since they have sessile or sedentary habits, and can be used as bioindicators when evaluating impacts caused by many human activities in aquatic environments (Coutinho and Bernardino 2017).

Coastal waterbodies (i.e., estuaries, bays, lagoons, inlets, tidal rivers, and tidal creeks) normally carry water with domestic and/or industrial effluent to beaches and intense rainfall results in groundwater saturation that causes water to percolate through the sediment of the profiles. Due to the bacterial action in effluent, the percolation water carries nutrients to beaches, which can favor the growth of populations of primary producers. The composition, diversity, biomass, and distribution of species of the phytoplankton community constantly change due to seasonal and temporal variations (Córdoba-Mena et al. 2020). Furthermore, algae overgrows when nutrients are in excess and there are ideal light and temperature conditions (Smith et al. 1999; Van Beusekom 2018; Barletta et al. 2019). This can result in reduced water quality, decreasing the quantity of dissolved oxygen by bacterial action (Halliday et al. 2014), which can affect many organisms in the trophic chain (Douglas et al. 2016; Lecher and Mackey 2018). The main effects of organic pollution on benthic organisms are observed in the structure of communities, with a tendency towards a reduction in the number of species sensitive to environmental changes and an increase in the number of opportunistic species (Dauvin et al. 2016; Cândido and Netto 2020). Additionally, individuals can exhibit morphological and ecological changes when exposed to organic contamination for long periods (Gusmao et al. 2016). This type of pollution in these important coastal environments can reduce the ecosystem and socioeconomic services provided, decreasing the environmental sanitary quality of a region (Amaral et al. 2016).

Thus, the objective of this work was to determine how benthic infauna are affected by eutrophication of the groundwater of a profile of Enseada Beach in the summer and winter. This beach was chosen because it has one of the highest urban occupations among the beaches of São Francisco do Sul, Santa Catarina.

Material and methods

Study area

São Francisco do Sul Island is bordered by the Atlantic Ocean to the east, Babitonga Bay to the north and west, and the Linguado Canal to the south (Possamai et al. 2010) (Fig. 1). The climate of the region is classified as temperate subtropical and humid subtropical, with winds predominantly from the south-southeast and east-northeast quadrants (Alvares et al. 2014). Enseada Beach is near the mouth of Açaraí Lagoon in the northern part of the island, extends approximately 2,260 m along the coast, and has a reflective profile in the summer, intermediary profile in the winter, and sediment with medium- to fine-grained sand (Lorenzi and Baran 2017). It has one of the highest amounts of urban occupation among the beaches in São Francisco do Sul. The beach is heavily used for tourism and recreation, mainly in the summer when the population of residents in São Francisco do Sul (ca. 50,746 inhabitants) (IBGE 2020) increases 8 times, especially in the northeastern part of the island where there are places to bathe (De Lima et al. 2018).

Sampling the benthic infauna

To determine the variability of the benthic infauna and environmental variables, samples were taken in the winter (September 2017) and summer (March 2018) from a profile of Enseada Beach (Fig. 1). In this profile, four of ten transects disposed in a 30 m perpendicular line near the drift line were randomly spaced and oriented perpendicular to the coastline in the intertidal zone (Rosa Filho et al. 2015), with ten points equidistant between themselves in each transect from the drift line (P10) to the low tide water line (P1). At each collection point a biological sample was collected, 15 cm deep, with a 0.05m² steel cylinder. In the field, the samples were washed in bags with a 500 μm opening and the remaining material was placed in plastic bags and fixed in 10% formalin. In the laboratory, the material was sorted with a stereomicroscope and the organisms were identified (Melo 1999; Amaral and Nonato 1996; Melo 1996; Rios 1994).

Sampling the sediment

For the granulometric analysis of the beach profile, sediment samples were collected along one transect and stored in 300mL plastic pots. The samples were dried to determine the percentage of moisture (% moisture), and the percentage of calcium carbonate (% CaCO₃) was determined by the reaction in 10% HCl (Dean 1974). Subsequently, the sediment was sieved to determine the diameters of the sandy fraction (Suguio 1973) and pipetting was conducted to determine the silt and clay fractions (Galehouse 1971). The mean diameter, asymmetry, selection, and kurtosis of the sediment samples from each point in the profile were determined with the software Sysgram 3.0 (Camargo 2006).

Morphodynamics and percolation water sampling

On one of the transects, the following was determined: the slope of the profile, with an automatic level (CST/Berger® 55-SAL24ND 24x) and graduated ruler; the depth of the groundwater, with a graduated tape measure; percolation

 Springer
water salinity, with a refractometer; and temperature, with a thermometer in Celsius. Percolation water samples were collected from three transects (according to the distances used to infauna transects randomization in winter and summer), where each point of sediment was drilled with an excavator. Thirty samples were taken, which were stored in 300 mL bottles and cooled in a freezer until the nutrient analysis. The samples were filtered before with a 0.45-μm Millipore membrane, and consecutively, the concentrations of ammonia, nitrate, nitrite, and phosphate (mg/L) were determined with a Lamotte Smart® 3 Colorimeter (Jeffery et al. 1989).

Statistical analysis

Beach morphodynamics

The mean values for groundwater depth, profile slope, moisture and calcium carbonate percentages, mean diameter, asymmetry, selection, and kurtosis of the sediment grains for the seasons (winter, WIN; summer, SUM) and respective profile points (P10 to P1) were submitted to the Kolmogorov-Smirnov normality test (p-value < 0.05). Variables that did not meet this assumption were logarithmized and retested. A principal component analysis (PCA) (Legendre and Legendre 2012) was applied to this set of variables to determine the relationships of the clusters of seasons of the year and profile points with the morphodynamic variables.

Groundwater variables

The means for pH, salinity, temperature, groundwater depth, ammonia, nitrate, nitrite, and phosphate for the seasons of the year (winter, WIN; summer, SUM) and the respective profile points (P10 to P1) were submitted to a Kolmogorov-Smirnov (K-S) normality test. The significant differences between the seasons were tested with a parametric t test and Mann-Whitney U test. The differences of the mean values of the environmental variables between the profile points (P10 to

Fig. 1 Location of Enseada Beach, São Francisco do Sul, Santa Catarina, Brazil. Rectangle in black represents the area of the beach where sampling was performed.
The densities of the benthic infauna taxa (ind./0.05 m²), total density, and richness (taxa/0.05 m²) were initially submitted to a K-S normality test. We used a Mann-Whitney U test for the variables that did not meet the normality assumption and a parametric t test for the variables that met this assumption, both for the purpose of comparing the seasons (WIN and SUM). The differences in the infauna density and richness for the profile points were tested with a Kruskal-Wallis ANOVA and post hoc multiple comparisons were applied (Underwood 1997; Vieira 2010). To determine the clusters of infauna taxa, the mean values of the densities for the seasons of the year (WIN and SUM) and profile points (P10 to P1) were submitted to a K-S normality test and, subsequently, a correspondence analysis (CA) (Legendre and Legendre 2012).

Infauna

The densities of the benthic infauna taxa (ind./0.05 m²), total density, and richness (taxa/0.05 m²) were initially submitted to a K-S normality test. We used a Mann-Whitney U test for the variables that did not meet the normality assumption and a parametric t test for the variables that met this assumption, both for the purpose of comparing the seasons (WIN and SUM). The differences in the infauna density and richness for the profile points were tested with a Kruskal-Wallis ANOVA and post hoc multiple comparisons were applied (Underwood 1997; Vieira 2010). To determine the clusters of infauna taxa, the mean values of the densities for the seasons of the year (WIN and SUM) and profile points (P10 to P1) were submitted to a K-S normality test and, subsequently, a correspondence analysis (CA) (Legendre and Legendre 2012).

Groundwater and community interactions

The normality of the mean values for taxon density, moisture and temperature of the sediment, groundwater depth, pH and nitrate, nitrite, ammonia, and phosphate concentrations in the percolation water for the seasons (WIN and SUM) and profile points (P1 to P10) were tested (K-S) to apply a canonical correspondence analysis (CCA). Subsequently, a Monte Carlo test with 100 permutations was applied to determine which groundwater variables significantly (p-value < 0.05) influence the clusters of benthic infauna taxa (Palmer 1993).

Results

Environmental variables

The unevenness of the profile varied in topography and length. The most uniform profile was in the winter, with a variation of 1.53m of unevenness and a total length of 60 m (Fig. 2A). In the summer, the topographic variation was greater, with 1.27m of unevenness and a total length of 42 m (Fig. 2B).

The mean values for groundwater depth were significantly higher in the summer (p-value < 0.05). For groundwater depth, pH, and salinity, the differences between the seasons were not different (Table 1). The mean values for groundwater depth were significantly higher in P10 (1.13m), P9 (0.62m), and P5 (0.53m) (Table 2). Salinity (P1: 36.67 PSU; P2: 35.83 PSU; and P3: 35.33 PSU) and pH (P1: 8.45; P2: 8.45; and P3: 8.30) in P1, P2, and P3 were significantly higher (Table 2). The mean values for ammonia were significantly greater in P5 (2.52 mg/L) and P8 (2.30 mg/L) compared to P1 (1.11 mg/L) and P2 (1.02 mg/L). The mean concentrations for nitrite were greater in P7 (0.14 mg/L), P5 (0.09 mg/L), P3 (0.03 mg/L), P8 (0.02 mg/L), and P6 (0.02 mg/L). The mean values for phosphate were greater in P7 (1.93 mg/L), P6 (1.15 mg/L), P2 (1.08 mg/L), P10 (1.06 mg/L), P9 (1.08 mg/L), P8 (0.98 mg/L), and P3 (0.95 mg/L). The differences in the mean values for temperature and nitrate in the profile points were not significant (Table 2). In the results of the PCA, component 1 (PC1) contributed 17.88% of the variance and related the increase in temperature, ammonia, nitrite, nitrate, and phosphate values to the profile points in the summer, with a tendency for an increase in P7 and P5. In the cluster of winter points, the values of these variables were intermediate. The granulometric composition of Enseada Beach was well selected and had a very positive asymmetry. In both seasons, the mean diameters of the grains were composed of fine sand in all the profile points and there was an extremely leptokurtic distribution (Fig. 3, SI. 1).

In the comparisons between seasons of the year, the temperature of the percolation water, ammonia, nitrite, nitrate, and phosphorous were significantly higher in the summer (p-value < 0.05). For groundwater depth, pH, and salinity, the differences between the seasons were not different (Table 1). The mean values for groundwater depth were significantly higher in P10 (1.13m), P9 (0.62m), and P5 (0.53m) (Table 2). Salinity (P1: 36.67 PSU; P2: 35.83 PSU; and P3: 35.33 PSU) and pH (P1: 8.45; P2: 8.45; and P3: 8.30) in P1, P2, and P3 were significantly higher (Table 2). The mean values for ammonia were significantly greater in P5 (2.52 mg/L) and P8 (2.30 mg/L) compared to P1 (1.11 mg/L) and P2 (1.02 mg/L). The mean concentrations for nitrite were greater in P7 (0.14 mg/L), P5 (0.09 mg/L), P3 (0.03 mg/L), P8 (0.02 mg/L), and P6 (0.02 mg/L). The mean values for phosphate were greater in P7 (1.93 mg/L), P6 (1.15 mg/L), P2 (1.08 mg/L), P10 (1.06 mg/L), P9 (1.08 mg/L), P8 (0.98 mg/L), and P3 (0.95 mg/L). The differences in the mean values for temperature and nitrate in the profile points were not significant (Table 2). In the results of the PCA, component 1 (PC1) contributed 17.88% of the variance and related the increase in temperature, ammonia, nitrite, nitrate, and phosphate values to the profile points in the summer, with a tendency for an increase in P7 and P5. In the cluster of winter points, the values of these variables tended to decrease (Fig. 4, SI. 2). PC2 contributed 9.69% of the variance and related the increase in salinity and pH to the lower profile points, which decreased in the direction of the higher points of the beach profile (Fig. 4, SI. 2).

Benthic infauna

The total density and richness of the infauna taxa were the same in the winter (13.12 ind./0.05 m² and 1.8 taxa/0.05
m², respectively) and summer (10.9 ind./0.05 m² and 1.57 taxa/0.05 m², respectively). However, the densities of *Donax hanleyanus* (1.32 ind./0.05 m²) and *Hastula cinerea* (0.200 ind./0.05 m²) were significantly higher in the winter (Table 3). In the summer, the densities of a species of Diptera (0.17 ind./0.05 m²) and *Thoracophelia furcifera* (5.20 ind./0.05 m²) were higher (Table 3). The densities of *Hemipodia olivieri*, *Albunea paretii*, a species of Coleoptera, *Excirolana braziliensis*, *Emerita brasiliensis*, *Haploscoplos* sp., *Scolelepis goodbodyi*, and *Orchestia* sp. were the same (Table 3).

The results of the comparisons of mean densities among the profile points had significantly high density (P1: 18.75 ind./0.05 m², P2: 32.87 ind./0.05 m²; and P3: 20.25 ind./0.05 m²) and richness (P1: 2.75 ind./0.05 m², P2: 2.75 ind./0.05 m², and P3: 2.35 ind./0.05 m²) values in the lower mesolittoral (Table 4). In this part of the profile, *Scolelepis goodbodyi* (P1: 14.0 ind./0.05 m², P2: 32.50 ind./0.05 m², and P3: 17.0 ind./0.05 m²), *Haploscoplos* sp. (P1: 1.38 ind./0.05 m², P2: 0.50 ind./0.05 m², and P3: 1.38 ind./0.05 m²), and *Emerita brasiliensis* (P1: 1.0 ind./0.05 m² and P2: 1.0...
Table 1 Results of the t test (t) and Mann-Whitney U test (U) comparing winter (WIN) and summer (SUM), showing the mean values, standard deviation (sd) and comparisons, ns: non-significant difference; *: significant difference with p-value < 0.05. N, sample number; df, degrees of freedom

Variables	Winter (N=30) Mean (sd)	Summer (N=30) Mean (sd)	t (p-value)	U (p-value)	N= 60 df= 29 Comparisons
Temperature (°C)	19.30 (0.47)	22.17 (0.46)	-	0.00 (0.000) *	SUM > WIN
Ammonia (mg/L)	1.12 (0.61)	2.49 (1.02)	-6.32 (0.000) *	-	SUM > WIN
Nitrite (mg/L)	0.005 (0.007)	0.07 (0.09)	-8.30 (0.000) *	-	SUM > WIN
Nitrate (mg/L)	0.13 (0.17)	0.35 (0.28)	-5.33 (0.002) *	-	SUM > WIN
Phosphate (mg/L)	0.67 (0.27)	1.41 (0.71)	-6.71 (0.000) *	-	SUM > WIN
Salinity (PSU)	29.53 (6.84)	31.63 (4.94)	-	389.0 (0.367) ns	ns
Groundwater depth (m)	0.46 (0.35)	0.59 (0.27)	-1.65 (0.104)	-	ns
pH	8.18 (0.17)	8.14 (0.24)	-	0.61 (0.544)	ns

ind./0.05 m²) were dominant. Donax hanleyanus was dominant in the lower and intermediary parts of the profile (P1: 2.25 ind./0.05 m², P2: 0.75 ind./0.05 m², P3: 1.5 ind./0.05 m², P4: 1.5 ind./0.05 m², P5: 1.12 ind./0.05 m², and P6: 0.62 ind./0.05 m²) and the density of Thoracophelia furcifera (P5: 5.12 ind./0.05 m², P6: 6.25 ind./0.05 m², P7: 7.35 ind./0.05 m², and P8: 7.25 ind./0.05 m²) was significantly greater in the intermediary part and initial part of the upper portion of the beach profile. The differences in the densities of the remaining benthic infauna taxa were not significant among the profile points (Table 4).

The correspondence analysis (CA) produced clusters of benthic infauna by profile point and season, with H. cinerea, Haploscoloplos sp., D. hanleyanus, H. olivieri, and S. goodbodyi corresponding to the lower part (P1 and P3) and initial portion of the intermediary part of the profile (P4 and P5) in both seasons of the year and predominating in the intermediary points (P6, P7, and P8) in the winter (Fig. 5). E. braziliensis, Orchestia sp., and Coleoptera formed a cluster in the upper points (P9 and P10) in the two seasons and only T. furcifera occupied the upper intermediary portion in the summer (P7 and P8) (Fig. 5).

In the results of the canonical correspondence analysis (CCA), the increase in groundwater depth (axis I: related to 76.4%) in the upper part of the profile in the summer and winter significantly influenced the cluster with the highest densities of Coleoptera, E. braziliensis, and Orchestia sp. Furthermore, the decrease of groundwater depth influenced the increase in the density of the cluster of H. olivieri, D. hanleyanus, Haploscoloplos sp., S. goodbodyi, and H. cinerea in the summer and winter, when the pH and moisture values of the sediment increased. In axis II (related to 14%), the increase in the concentration of nitrate significantly influenced the increase in the density of T. furcifera at the border between the intermediary (P5) and upper (P7 and P8) parts of the profile in the summer; the concentrations of the remaining nutrients increased with the percolation

Table 2 Results of the analyses of variance (ANOVARAs) for the environmental variables comparing the sample points (P1 to P10) and showing the mean values, standard deviation (sd), F value of parametric ANOVA, H value of Kruskal-Wallis ANOVA, ns non-significant difference and *: significant difference with p-value < 0.05. N, sample number; df, degrees of freedom

Variables	P1 (N=6) Mean (sd)	P2 (N=6) Mean (sd)	P3 (N=6) Mean (sd)	P4 (N=6) Mean (sd)	P5 (N=6) Mean (sd)	P6 (N=6) Mean (sd)	P7 (N=6) Mean (sd)	P8 (N=6) Mean (sd)	P9 (N=6) Mean (sd)	P10 (N=6) Mean (sd)	F (p-value)	H (p-value)	N= 60 df= 29 Comparisons	
GW Depth (m)	6.23 (0.13)	6.57 (0.17)	6.29 (0.12)	6.42 (0.27)	6.57 (0.19)	6.53 (0.29)	6.55 (0.26)	6.14 (0.13)	6.82 (0.17)	157.16 (0.000) *	-	-		
Salinity (PSU)	30.67 (0.82)	31.63 (1.17)	35.35 (0.52)	34.18 (0.357)	33.17 (1.94)	36.67 (3.12)	27.83 (2.08)	27.83 (0.87)	22.67 (5.44)	21.33 (2.94)	-	46.00 (0.000) *		
pH	8.45 (0.08)	8.90 (0.10)	8.38 (0.16)	8.15 (0.06)	8.81 (0.14)	7.97 (0.23)	8.90 (0.87)	8.12 (0.12)	8.88 (0.07)	7.99 (0.05)	16.10 (0.000) *	-	-	
Ammonia (mg/L)	1.62 (0.04)	1.11 (0.35)	1.09 (0.09)	2.23 (0.09)	1.91 (0.29)	2.87 (0.63)	2.38 (0.29)	1.78 (0.16)	1.19 (0.09)	3.45 (0.005) *	-	-		
Nitrite (mg/L)	0.99 (0.00)	0.62 (0.04)	0.63 (0.04)	0.17 (0.81)	0.09 (0.18)	0.63 (0.02)	0.14 (0.55)	0.62 (0.02)	0.82 (0.02)	0.41 (0.01)	7.24 (0.000) *	-	-	
Phosphate (mg/L)	0.52 (0.25)	1.09 (0.25)	0.90 (0.53)	0.78 (0.07)	0.90 (0.41)	1.15 (0.51)	0.91 (0.42)	0.98 (0.46)	1.00 (0.31)	1.07 (0.49)	5.83 (0.000) *	-	-	
Nitrate (mg/L)	0.21 (0.25)	0.16 (0.17)	0.16 (0.20)	0.23 (0.20)	0.25 (0.33)	0.11 (0.07)	0.35 (0.39)	0.12 (0.20)	0.29 (0.26)	0.28 (0.24)	1.05 (0.42)	-	ns	
Temperature (°C)	20.57 (0.53)	20.59 (1.53)	20.57 (1.54)	21.17 (2.84)	20.63 (1.30)	21.13 (1.80)	20.58 (1.66)	20.67 (1.53)	20.50 (1.44)	20.58 (1.66)	-	3.65 (0.032)	ns	
water temperature. In the opposite direction of the axis, the reduction in the concentration of nitrate significantly influenced the increase in the densities of *H. olivieri*, *D. hanleyanus*, *E. braziliensis*, *H. cinerea*, and *Orchestia* sp. in the upper points of the profile in the winter; the remaining nutrients and the temperature of the sediment also decreased (Fig. 6, Table 5).

Discussion

The environmental characteristics of Enseada Beach followed the morphodynamic pattern of sandy beaches in southern Brazil (Amaral et al. 2016), where there is an increase in wind from the south, southeast, east, and northeast in winter (Alvares et al. 2014; Lorenzi et al.

Table 3 Results of the Mann-Whitney *U* test (*U*) comparing winter (WIN) and summer (SUM), showing the mean values, standard deviation (sd), and comparisons between seasons, ns non-significant difference and * significant difference with *p*-value < 0.05. *N*, sample number; *df*, degrees of freedom

Variables	Winter (*N* = 40) Mean (sd)	Summer (*N* = 40) Mean (sd)	*U* (*p*-value)	*N* = 80 *df* = 39 Comparisons
Donax hanleyanus (Philippi, 1847)	1.32 (1.64)	0.25 (0.54)	492.00 (0.003)*	WIN > SUM
Hastula cinerea (Born, 1778)	0.20 (0.52)	0.00 (0.00)	680.00 (0.011)*	WIN > SUM
Diptera (Latreille, 1802)	0.00 (0.00)	0.17 (0.59)	720.00 (0.042)*	SUM > WIN
Thoracophelia furcifera (Ehlers, 1897)	0.00 (0.00)	5.20 (7.61)	500.00 (0.000)*	SUM > WIN
Hemipodia olivieri (Orensanz e Gianuca, 1974)	0.07 (0.35)	0.00 (0.00)	760.00 (0.70)	ns
Albunea paretii (Guérin & Méneville, 1853)	0.07 (0.27)	0.00 (0.00)	740.00 (0.08)	ns
Coleoptera (Latreille, 1802)	0.00 (0.00)	0.07 (0.35)	760.00 (0.16)	ns
Exciriana braziliensis (Richardson, 1912)	0.30 (0.99)	0.30 (0.69)	731.50 (0.29)	ns
Emerita brasiliensis (Schmitt, 1935)	0.20 (0.52)	0.20 (0.61)	782.00 (0.78)	ns
Haploscoplos sp. (Verill, 1873)	0.45 (1.45)	0.22 (0.73)	743.50 (0.37)	ns
Scolelepis goodbodyi (Jones, 1962)	10.42 (17.11)	4.45 (9.31)	665.50 (0.16)	ns
Orchestia sp. (Leach, 1814)	0.07 (0.27)	0.02 (0.16)	760.00 (0.31)	ns
Total density	13.12 (18.03)	10.90 (10.27)	752.50 (0.65)	ns
Richness	1.80 (1.26)	1.57 (1.13)	732.50 (0.51)	ns

Fig. 4 Result of the principal component analysis (PCA) showing the correlations between the sample points (P1 to P10) during each season (WIN: winter; SUM: summer) and the environmental variables [salinity (PSU), temperature (°C), ammonia (mg/L), nitrite (mg/L), nitrate (mg/L) and phosphate(mg/L)]. Cumulative percentage of variance for principal component 1 (PC1 17.88%) and principal component 2 (PC2 9.69%). See SI. 2 for mean values and components eigenvectors.
10848

Environmental Science and Pollution Research (2023) 30:10841–10853

Table 4 Results of the Kruskal–Wallis analysis of variance for the taxa between sample points (P1 to P10). Showing the mean values, standard deviation (sd), H value, and comparisons; ns non-significant differences and *: significant difference with p-value < 0.05. N, sample number; df, degrees of freedom

Variables	P1 (N=8) Mean (sd)	P2 (N=8) Mean (sd)	P3 (N=8) Mean (sd)	P4 (N=8) Mean (sd)	P5 (N=8) Mean (sd)	P6 (N=8) Mean (sd)	P7 (N=8) Mean (sd)	P8 (N=8) Mean (sd)	P9 (N=8) Mean (sd)	P10 (N=8) Mean (sd)	H (p-value)	NS/df	Comparisons
Donax hanleyanus	2.25 (2.43)	0.75 (0.73)	1.98 (1.07)	1.50 (0.99)	1.12 (0.58)	6.62 (1.06)	0.12 (0.35)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	28.35 (0.005)	*P1P2P3P4P5P6P7P8P9P10	
Eucelopa brasiliensis	1.90 (2.10)	1.00 (1.07)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	18.77 (0.001)	*P1P2P3P4P5P6P7P8P9P10	
Haplocladus sp.	1.57 (2.59)	0.50 (0.78)	1.73 (2.15)	0.00 (0.00)	0.12 (0.06)	1.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	20.60 (0.006)	*P1P2P3P4P5P6P7P8P9P10	
Scoliepis goodbodyi	14.0 (24.14)	32.50 (25.26)	17.00 (11.59)	6.75 (6.02)	4.50 (4.47)	1.50 (1.69)	1.00 (0.00)	1.00 (0.00)	1.00 (0.00)	1.00 (0.00)	52.00 (0.006)	*P1P2P3P4P5P6P7P8P9P10	
Thoracophilia furcierea	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	27.62 (0.001)	*P1P2P3P4P5P6P7P8P9P10	
emptied	2.75 (1.03)	2.75 (1.03)	2.75 (1.03)	1.75 (0.87)	1.75 (0.87)	2.25 (2.34)	1.75 (0.89)	1.12 (0.44)	0.00 (0.00)	0.00 (0.00)	31.69 (0.006)	*P1P2P3P4P5P6P7P8P9P10	
Total Density	19.75 (14.78)	34.87 (25.26)	20.25 (13.11)	8.75 (6.99)	18.75 (8.26)	8.75 (7.83)	8.12 (1.12)	7.25 (1.23)	0.00 (0.00)	0.00 (0.00)	52.90 (0.000)	*P1P2P3P4P5P6P7P8P9P10	
Coleoptera	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	8.10 (0.123)	ns	
Díptera	0.40 (0.10)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	21.43 (0.010)	ns	
Excireolina braziliensis	0.40 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	15.82 (0.070)	ns	
Hemileuca cebrensis	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	11.25 (0.236)	ns	
Hemipodia olivieri	0.40 (0.00)	0.25 (0.35)	0.00 (0.00)	0.12 (0.35)	0.12 (0.35)	0.25 (0.40)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	7.18 (0.018)	ns	
Heteropoda paretii	0.12 (0.35)	0.12 (0.35)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	11.43 (0.247)	ns	
Thoracophilia furcierea	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	11.43 (0.247)	ns	

2021), which contributes to more waves. The waves remobilize the deposited sediment, resulting in a destructive profile. The opposite occurs in the summer, when the intensity of wind and waves decreases, promoting deposition in the intertidal zone and an increase in the topographic variation that characterizes a constructive profile (Short 2006). These patterns corroborate the work of Lorenzi and Baran (2017), where in previous years the profile of Enseada Beach varied from reflective in the summer to intermediary in the winter and sediments composed of fine to medium sand grains predominated. Both works conducted on this beach identified the tendency

Fig. 5 Result of the correspondence analysis (CA) showing the correlations between the sample points (P1 to P10) in each season (WIN: winter; SUM: summer) and the benthic infauna (H. cinerea, Haplocladus sp.; D. hanleyanus; H. olivieri; S. goodbodyi; E. braziliensis; Orchestia sp.; Coleoptera, T. furcierea). Percentage of inertia on dimension 1 (44.79%) and dimension 2 (25.29%)
of greater unevenness in the upper portion of the profile in the summer, a pattern that was also observed by Pinto and Borzone (2018) on Barrancos Beach in Pontal do Paraná. Thus, the effects of seasonality on the profile morphology of beaches in the South Region of Brazil are evident (Amaral et al. 2016). As expected, the upper

Table 5 Monte Carlo test results with the proper values of the axis, cumulative percentage of variance of the axis and correlations between nutrients and environmental variables. sd, standard deviation

Variable	Mean (± sd)	p-value	F-ratio
GW depth (m)	0.36 (± 0.21)	0.019*	2.81
Ammonia (mg/L)	1.34 (± 0.59)	0.584	0.68
Nitrite (mg/L)	0.049 (± 0.07)	0.96	0.28
Phosphate (mg/L)	0.78 (± 0.43)	0.96	0.14
Moisture (%)	1.85 (± 0.30)	0.118	1.61
pH	8.33 (± 0.15)	0.703	0.45
Temperature (°C)	20.15 (± 1.25)	0.366	1.01

*Variables that influenced biological groups (ind./0.05 m²) in the slope points (P1 to P10) and seasons (WIN, winter; SUM, summer)
mesolittoral of the profile was characterized by the greater slope and depth of the groundwater and greater sediment moisture; in the lower mesolittoral the slope of the profile was less, with greater sediment moisture and saturation of the groundwater and greater salinity, pH, and calcium carbonate (Lorenzi and Baran 2017; McLachlan et al. 2018).

The nutrient concentrations of the percolation water increased in the middle and upper mesolittoral in the summer, which coincided with greater precipitation events in this season (Alvares et al. 2014; Lorenzi et al. 2020, 2021) when there is groundwater saturation and contaminated water drains into the ocean (Coffey et al. 2018). When the water reaches the sediment surface, the nutrients are used by benthic algae, which increases primary production (Tappin 2002; Defeo et al. 2009; Schlacher and Hartwig 2013) and bacterial density (Halliday et al. 2014). In the case of Enseada Beach, the increase in the concentrations of nutrients can be attributed to the summer vacation season (De Souza et al. 2018) that, according to data from the municipality, attracts around 400 thousand people to the city of São Francisco do Sul, representing an increase of up to 8 times the resident population (IBGE 2020).

Since there is no collection and treatment of sewage in the municipality, the domestic effluents are dumped directly into the rainwater drainage system (which goes to waterbodies) or into septic systems. In the second case, due to the systems not being watertight, the permeability of the sandy soils and the increase in rainfall, contaminated water moves from the septic systems to the groundwater, which contributes to saturating the sediment surface of the beach profile.

According to Resolution no. 369 of the National Environmental Council (Conselho Nacional de Meio Ambiente; CONAMA 2008), which provides the environmental classification and guidelines for groundwater, parameter concentrations most likely to occur are nitrate > 10 mg/L and nitrite > 1 mg/L. At these concentrations, the nutrients cause severe environmental impact in underground waterbodies and, according to Douglas et al. (2016), high concentrations of ammonia (> 1.5 mg/L) and phosphate (> 0.5 mg/L) indicate that the sediment could be hypoxic, which is related to the discharge of sewage with an elevated organic load. Under alkaline conditions, there is a tendency for ammonia to predominate that, in excess, is toxic to various aquatic organisms (Smith et al. 1999). The nitrogen cycle relies on the intense participation of bacteria in the nitrification process, with the bacterial oxidation of ammonia (NH₃) to nitrite (NO₂) and the oxidized form of nitrate (NO₃) (Couturier et al. 2017; Glasl et al. 2017). Nitrogen and phosphorous are the most important nutrients for algae and macrophyte growth and are easily assimilated in the forms of ammonia and phosphate (Fricke et al. 2016).

The overgrowth of algae, caused by eutrophication (Coffey et al. 2018; Barletta et al. 2019; Córdoba-Mena et al. 2020), was investigated on Central Beach in Balneário Camboriú, Santa Catarina. There was an increase in concentrations of nutrients in the water column in the summer that promoted considerable growth of bryozoans and phytobenthos (Rööig et al. 2017), which are an important source of food for the polychaete T. furcifera (Otegui et al. 2012). In this sense, and because it is in a more sheltered place on the coast, Enseada Beach predominantly has sediment with fine sand, which contributes to the population growth of T. furcifera in the summer, a pattern also found by Barros et al. (2001) on sandy beaches near Guaratuba Bay (Paraná). Polychaetes in the family Opheliidae inhabit the intertidal zone of sandy beaches throughout the world (Souza and Borzone 2007; Cisneros et al. 2011; Defeo and McLachlan 2013) and dominate the middle mesolittoral of beaches in the South Region of Brazil (Neves et al. 2007; Lorenzi and Baran 2017), which confirms the distribution pattern of T. furcifera on Enseada Beach. This species digs in the sediment, is a non-selective feeder (Barros et al. 2001; Otegui et al. 2012), and acquires carbon by ingesting sediment with bacteria and other microbes. It is one of the main benthic species responsible for cycling nutrients in this ecosystem (Kemp 1986) and a significant increase in population density can indicate an environmental disturbance (Seike 2008; Bergamin et al. 2009; Otegui et al. 2012). The environmental conditions combined with the organic increment in the summer, notably nitrate, resulted in high densities of T. furcifera in the middle mesolittoral on Enseada Beach, reinforcing the role of this species as a bioindicator of eutrophication on sandy beaches. This contamination compromises ecosystem services (Amaral et al. 2016) of Enseada Beach, reducing the economic, ecological, and social values provided by this important coastal ecosystem (Defeo and McLachlan 2013; McLachlan et al. 2018). In a study conducted on Casablanca Beach (Morocco), Daief et al. (2014) confirmed that sources of sewage influenced the composition of taxa of benthic fauna and are potential causes of eutrophication in urbanized coastal systems. Additionally, Córdoba-Mena et al. (2020) found algae that produce biotoxins, such as domoic acid, which can impact public health.

Another important association related to an increase in the total density and richness of the infauna comprises S. goodbodyi, D. hanleyanus, H. olivieri, H. cinerea, and Haploscoloplos sp. in the lower mesolittoral and initial middle mesolittoral. S. goodbodyi is known for dominating the upwelling zone of sandy beaches in southern Brazil (Borzone et al. 1996; Barros et al. 2001; Neves et al. 2007; Neves and Bemvenuti 2009). The relationship of this association with an increase in concentrations of nutrients in the percolation water was small. Instead, this association is more
related to an increase in sediment moisture, and the species were dominant in both seasons, except for *D. hanleyanus* and *H. cinerea* that were only dominant in the winter.

Worldwide, around 2.3 billion people live in coastal areas and less than half of this population has basic sanitary services (WHO and UNICEF 2017), resulting in the generation and release of tons of effluents into coastal ecosystems. A good proportion of these effluents are improperly discharged into waterbodies, including those associated with sandy beaches, and this may have serious or even irreversible consequences in the coming years, compromising ecosystem services. Using organisms as environmental quality indicators is extremely important since they can be help monitor impacts in a realistic and economically viable way. Installing sewage collection systems that are spread out and far from the coastline, preferably in areas with high environmental energy, can contribute to mitigating the effects of domestic sewage (Roberts et al. 2010; Puente and Diaz 2015; Cândido and Netto 2020). Despite the evidence presented here, long-term studies are still needed to better understand the effects of eutrophication of groundwater on the biological communities of sandy ecosystems.

Conclusions

This study provides the first results of the effects of increased concentrations of nutrients in the groundwater on benthic infauna communities on Enseada Beach, in São Francisco do Sul, Santa Catarina. When domestic effluent disposal is associated with a lack of proper treatment and appropriate destination, increase in population density during the summer vacation season and increase in rainfall, the domestic effluents are transported to adjacent marine areas by surface runoff and contaminate the groundwater. Consequently, there is an increase in the population density of the polychaete *Thoracophelia furcifera* that is related to an increased concentration of nutrients in the percolation water in the sediment of the beach profile. This event indicates that domestic effluents near sandy beaches need to be controlled and demonstrates to public managers the need to implement basic sanitary projects and monitoring. Thus, it will only be possible to improve the socio-environmental quality of coastal marine areas of São Francisco do Sul if sanitary criteria are met. In future studies, we hope to relate biological and physical (waves, currents, rainfall) parameters, with the goal of increasing what is known about these processes.

Data availability All data is available in tables along the manuscript and supplementary material.

Author contribution LL planned the sampling design, collected the data, conducted the statistical analyses, supervised the laboratory work, and wrote the article. DGM collected the data, conducted laboratory work, and wrote the article. BCR collected the data, conducted laboratory work, and wrote the article. PRPA analyzed and discussed the results and conducted a technical revision of the article. DVD analyzed the results and conducted a technical revision of the article. EG analyzed the results and conducted a technical revision of the article. VGT analyzed the results and conducted a technical revision of the article.

Funding This study was financed by the Fundo de Apoio à Pesquisa - FAP/UNIVILLE Brazil and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq/MCTI Brazil. The study was also supported by the project “PROPRAIAS: qualidade ambiental das praias do Brasil e Caribe” (NPP201501003752 – UDESC/Univille/Univille).

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication We consent for the publication of identifiable details, which can include to be published in the above Journal and Article. I understand that all Springer Nature journals may be available in both print and on the internet, and will be available to a broader audience through marketing channels and other third parties.

Competing interests The authors declare no competing interests.

References

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507

Amaral ACZ, Nonato EF (1996) Annelida Polychaeta: características, glossário e chaves para famílias e gêneros da costa brasileira. UNICAMP, São Paulo 124 p (in Portuguese)

Amaral ACZ, Corte GN, Denadai MR, Colling LA, Borzone CA, Veloso V, Omena LP, Zalmon IR, Barreira CAR, Souza JRB, Rosa LCD, Almeida TCM (2016) Brazilian sandy beaches: characteristics, ecosystem services, impacts, knowledge and priorities. Braz Jour Oceanog 64(SPE2):5–16. https://doi.org/10.1590/S1679-875920160933064sp2

Barletta M, Lima AR, Costa MF (2019) Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries. Sci Total Environ 651:1199–1218. https://doi.org/10.1016/j.scitotenv.2018.09.276

Barros F, Borzone CA, Rosso S (2001) Macroinfauna of six beaches near Guaratuba Bay, Southern Brazil. Braz Arch Biol Tech 44:351–364. https://doi.org/10.1590/S1516-89132001000400005

Bergamino L, Muniz P, Defeo O (2009) Effects of a freshwater canal discharge on polychaeta assemblages inhabiting an exposed sandy beach in Uruguay. Ecol Indic 9:584–587. https://doi.org/10.1016/j.ecolind.2008.07.008
Borzone CA, Souza JRB, Soares AG (1996) Morphodynamic influence on the structure of inter and subtidal macrofaunal communities of subtropical sandy beaches. Rev Chi Hist Nat 69:565–577
Camargo MG (2006) SYSGRAN: um sistema de códigos abertos para análises granulométricas do sedimento. Rev Bras Geoc 36(2):371–378 (in Portuguese)
Campana Jr L-lovet N, Smelgrov P, Parrish CC (2017) Rethinking the importance of food quality in marine benthic food webs. Prog Ocean 156:240–251. https://doi.org/10.1016/j.pocean.2017.07.006
Cândido TF, Netto SA (2020) Multiple benthic indicators suggest low sewage impact from an ocean outfall in a high-energy sandy shore (South Brazil). Ecol Ind 113:106–207. https://doi.org/10.1016/j.ecolind.2020.106207
Cisneros KO, Smith AJ, Laudien J, Schoeman DS (2011) Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure. PloS ONE 6(8):e23724. https://doi.org/10.1371/journal.pone.0023724
Coffey R, Paul MJ, Stamp J, Hamilton A, Johnson T (2018) A review of water quality responses to air temperature and precipitation changes: 2: nutrients, algal blooms, sediment, pathogens. Jour Ame Wat Res Assoc 1–25. https://doi.org/10.1111/1752-1688.12711
CONAMA – Conselho Nacional de Meio Ambiente (2008) Resolução n. 396. Diário Oficial da União n° 66, de 7 de abril de 2008, Brasil (in Portuguese). http://www2.mma.gov.br/port/conama/legiabre.cfm?codleg=356
Córdoba-Mena N, Florez-Leiva L, Atelhörtua L, Obando E (2020) Changes in phytoplankton communities in a tropical estuary in the Colombian Caribbean Sea. Estuar Coasts 43(8):2106–2120. https://doi.org/10.1007/s12237-020-00750-z
Coutinho MS, Bernardino AF (2017) Spatial and seasonal changes in benthic macrofauna from two dissipative sandy beaches in Eastern Brazil. Braz Jour Ocean 65(4):666–678. https://doi.org/10.1590/S1679-87952017115806504
Courtier M, Tommi-Morin G, Sirois M, Rao A, Nozais C, Chaillou G (2017) Nitrogen transformations along a shallow subterranean estuary. Biogeosciences 14(13):3321. https://doi.org/10.5194/bg-14-3321-2017
Daif Z, Borja A, Joulami L, Aszi M, Fahde A, Bazairi H (2014) Assessing benthic ecological status of urban sandy beaches (Northeast Atlantic, Morocco) using M-AMBI. Ecol Indic 46:586–595. https://doi.org/10.1016/j.ecolind.2014.07.023
Dawson JC, Andrade H, Ossa-Carretero JA, Del-Pilar-Ruso Y, Riera R (2016) Polychaete/amphipod ratios: an approach to validating simple benthic indicators. Ecol Indic 63:89–99. https://doi.org/10.1016/j.ecolind.2015.11.055
De Lima AS, Figueirôa AC, Coelho VGZG, Vieira CV, da Veiga Lema FA, Scherer MEG (2018) Diagnóstico da gestão costeira e das políticas públicas do Município de São Francisco do Sul, SC, Brasil. Rev Bras Geo 63(2):141–155 (in Portuguese). https://doi.org/10.21579/issn.2526-0375_2018_n2_141-155
Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Jour Sed Petr 44:224–248. https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D
Defeo O, Mcclachlan A (2013) Global patterns in sandy beach macrofauna: species richness, abundance, biomass and body size. Geomorphology 199:106–114. https://doi.org/10.1016/j.geomorph.2013.04.013
Defeo O, Mcclachlan A, Schoeman DS, Schlacher TA, Dugan J, Jones A, Lastra M, Scapini F (2009) Threats to sandy beaches ecosystems: a review. Estuar Coast Shelf Scie 81(1):1–12. https://doi.org/10.1016/j.ecss.2008.09.022
Douglas EJ, Pilditch CA, Hines LV, Kraan C, Thrush SF (2016) In situ soft sediment nutrient enrichment: a unified approach to eutrophication field experiments. Mar Pollut Bull 111(1–2):287–294. https://doi.org/10.1016/j.marpolbul.2016.06.096
Fricke A, Kopnirio GA, Alemay H, Gostandi M, Narvate M, Parodi ER, Iribarne O (2016) Changes in coastal benthic algae succession trajectories and assemblages under contrasting nutrient and grazer loads. Estuar Coasts 39(2):462–477. https://doi.org/10.1007/s12237-015-9999-2
Galehouse JS (1971) Sedimentation analysis. In: Procedures in sedimentary petrology. Wiley-Interscience, New York 653 p
Glasl B, Webster NS, Bourne DG (2017) Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems. Mar Biol 164:91. https://doi.org/10.1007/s00227-017-3097-x
Gusmao JB, Branco KM, Eriksson BK, Lana PC (2016) Functional diversity of macrobenthic assemblages decreases in response to sewage discharges. Ecol Ind 66:65–75. https://doi.org/10.1016/j.ecolind.2016.01.003
Halliday E, McLellan SL, Amaral-Zettler LA, Sogin ML, Gast RJ (2014) Comparison of bacterial communities in sands and water at beaches with bacterial water quality violations. PLoS ONE 9(3):e90815. https://doi.org/10.1371/journal.pone.0090815
IBGE - Instituto Brasileiro de Geografia e Estatística (2020) População de São Francisco do Sul. (in Portuguese). http://cidades.ibge.gov.br/brasil/sc/sao-francisco-do-sul/panorama
Jeffery GH, Basset J, Mendham J, Denney RC (1989) Vogel's textbook of quantitative chemical analysis, 5th edn. Longman Scientific & Technical, England, p 980
Kemp PF (1986) Direct uptake of detrital carbon by the deposit feeding Euzonus mucronata (Treadwell). Jour Exp Mar Biol Ecol 99:49–61. https://doi.org/10.1016/0022-0981(86)90020-1
Lecher AL, Mackey KRM (2018) Synthesizing the effects of submarine groundwater discharge on marine biota. Hydrology 5:60. https://doi.org/10.3390/hydrology5040060
Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam 1006 p
Lorenczi L, Baran MAA (2017) Distribuição da densidade e da riqueza da infauna bentônica em verão e inverno na praia da Enseada, São Francisco do Sul, Nordeste de Santa Catarina. In: Ciências Ambientais: Ensaios e Perspectivas. UNIVILLE, Joinville 302 p (in Portuguese)
Lorenczi L, Reginato BC, Mayer DG, Dantas DV (2020) Plastic floating debris along a summer-winter estuarine environmental gradient in a coastal lagoon: how does plastic debris arrive in a conservation unit? Environ Sci Pollut Res 27:8797–8806. https://doi.org/10.1007/s11356-020-07708-5
Lorenczi L, Reginato BC, Mayer DG, Gentil E, Pezzin APT, Silveira VF, Dantas DV (2021) Spatio-seasonal microplastics distribution along a shallow coastal lagoon ecocline within a marine conservation unit. Mar Pollut Bull 170:112644. https://doi.org/10.1016/j.marpolbul.2021.112644
McLachlan A, Defeo O, Short AD (2018) Characterizing sandy beaches into major types and states: Implications for ecologists and managers. Estuar Coast Shelf Sci 215:152–160. https://doi.org/10.1016/j.ecss.2018.09.027
Melo GAS (1996) Manual de identificação dos Brachyura (cangurejos e siris) do litoral brasileiro. Pleiade/FAPESP, São Paulo 604 p (in Portuguese)
Melo GAS (1999) Manual de identificação dos Crustacea Decapoda do litoral brasileiro: Anomura, Thalassinae, Palinuridea, Astacidea. Pleiade/FAPESP, São Paulo 551 p (in Portuguese)
Neves FM, Benvenuti CE (2009) Daily zonation variation of sandy beach benthic macrofauna in north coast of the Rio Grande do Sul, Brazil. Iher Série Zool 99(1):71–81. https://doi.org/10.1590/S0073-47212009000100011
Neves LP, Silva PS, Benvenuti CE (2007) Zonation of benthic macrofauna on Cassino beach, Southernmost Brazil. Braz Jour
Oceanog 55:293–307. https://doi.org/10.1590/S1679-87592020700 040006

Otegui MB, Blankensteyn A, Pagliosa PR (2012) Population structure, growth and production of Thoracophilia furcifera (Polychaeta: Opheliidae) on a sandy beach in Southern Brazil. Helg Mar Resear 66(4):479–488. https://doi.org/10.1007/s10152-011-0284-x

Palmer MW (1993) Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74(8):2215–2230. https://doi.org/10.2307/1939575

Pinto LR, Borzona CA (2018) A influência de um sangradouro na distribuição espaço-temporal do isóspode Tholozodium rhombo-frontalis (Isopoda, Sphaeromatidae). Iher Série Zool 108 (in português). https://doi.org/10.1590/1678-4766e2018043

Possamai T, Vieira CV, Oliveira FA, Horn Filho NO (2010) Geologia costeira da Ilha de São Francisco do Sul, Santa Catarina. Rev Geo, Recife: UFPE – DCG/NAPA, v. especial VIII SINAGEO, n. 2 (in Portuguese)

Prefeitura Municipal de São Francisco do Sul (2020) (in Portuguese). https://www.saofranciscodosul.sc.gov.br/noticia/3395/sao-francisco-do-sul-registra-crescimento-do-setor-turistico-nos-ultimos-anos

Puente A, Diaz RJ (2015) Response of benthos to ocean outfall discharges: does a general pattern exist? Mar Pollut Bull 101:174–181. https://doi.org/10.1016/j.marpolbul.2015.11.002

Rios EC (1994) Seashells of Brazil, 2nd edn. Universidade Federal do Rio Grande do Sul, Porto Alegre, p 492

Roberts PJW, Salas HJ, Reiff FM, Libhaber M, Labbe A, Thomson JC (2010) Marine wastewater outfalls and treatment systems. IWA Publishing, London 493 p. https://doi.org/10.21669/781780401669

Röög LR, Ottonelli M, Itozagu AG, Maraschin M, Lins JVH, Abreu PCV, Almeida MTR, Ramlov F, D’Oca M, Ramalho LV, Diehl FL, Horta Júnior PA, Filho JP (2017) Blooms of bryozoans and epi-benthic diatoms in an urbanized sandy Beach (Balneário Camboriú-SC-Brazil): dynamics, possible causes and biomass characterization. Braz Jour Oceanog 65(4):678–694. https://doi.org/10.1590/s1679-87592017116106504

Rosa Filho JS, Corte GS, Maria TF, Colling LA, Denadai MR, Rosa LC, Borzona CA, Almeida TCM, Zalmon IR, Omena E, Veloso V, Amaral ACZ. (2015) Monitoramento de longo prazo da macrofauna bentônica entremarés de praias arenosas. In: protocolos para o monitoramento de habitats bentónicos costeiros – rede de monitoramento de habitats bentónicos costeiros – ReBentos. Biblioteca Digital da Produção Intelectual / Universidade de São Paulo, São Paulo 258 p (in Portuguese)

Schlacher TA, Hartwig J (2013) Bottom-up control in the benthos of ocean-exposed sandy beaches? Austral Ecoligy 38:177–189. https://doi.org/10.1111/j.1442-9993.2012.02390.x

Seike K (2008) Burrowing behavior inferred from feeding traces of the Ophelid polychaete Euzonus sp. as response to beach morphodynamics. Mar Biol 153:1199–1206. https://doi.org/10. 1007/s00227-007-0893-8

Short AD (1996) The role of wave height, period, slope, tide range and embaymentisation in beach classifications: a review. Rev Chi Hist Nat 69(4):589–604

Short AD (2006) Australian beach systems – nature and distribution. Jour Coast Resear 22(1):11–27. https://doi.org/10.2112/ 05A-0002.1

Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 179-196. https://doi.org/10.1016/S0269-7491(99)00091-3

Souza JRG, Borzona CA (2007) Population dynamic and secondary production of Euzonis furcifera Ehlers (Polychaeta: Opheliidae) in an exposed sandy beach of Southern Brazil. Braz Jour Zool 24:1139–1144. https://doi.org/10.1590/S0101-81752007000400034

Suguio K (1973) Introdução a sedimentologia. EDUSP, São Paulo 317 p (in Portuguese)

Tappin AD (2002) An examination of the fluxes of nitrogen and phosphorus in temperate and tropical estuaries: current estimates and uncertainties. Estuar Coast Shelf Sci 55(6):885–901

Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge 504 p

Van Beusekom JEE (2018) Eutrophication. In: Handbook on Marine Environment Protection: Science, Impacts and Management. Springer, Cham 1024 p

Vieira S (2010) Bioestatística: tópicos avançados. 3a ed. Elsevier, Rio de Janeiro 278 p (in Portuguese)

WHO - World Health Organization, UNICEF - United Nations Children’s Fund (2017) Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. https://www.who.int/mediacentre/news/releases/2017/launch-version-report-jmp-water-sanitation-hygiene/pdf

Wright LD, Short AD (1984) Morphodynamic variability of surf zones and beaches: a synthesis. Mar Geology 56:93–118. https://doi.org/10.1016/0025-3287(84)90008-2

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.