Urban Form and Urban Materials as Controller of Urban Climate in Valparaiso, Chile

C Carrasco¹, M Palme²
¹Universidad de Valparaíso
²Universidad Católica del Norte

E-mail: claudio.carrasco@uv.cl, mpalme@ucn.cl

Abstract. The urban heat island (UHI) effect on the city and urban climate are related with urban form and urban materials: it’s an evidence of human influence in climate change. Into the cities, the air temperature increases in downtown and go to outskirts decreases. Valparaíso, Chile, is located in a Mediterranean climate in the southern hemisphere (-33°03'). The urban area of the city is 400 km² and its population reaches 300,000 inhabitants. The behaviour of air temperature in the city in winter and summer and on sunny days and cloudy days has been recorded. In all days heat island phenomenon is registered. A greater increase of UHI in summer and in sunny day has been recorded. The variation of the temperatures of the materials that make up the urban canyons has also been recorded, presenting different dispersions and variation according to whether it is a sunny day or a cloudy day. In sunny day all day a large dispersion is registered, at afternoon spatially. An important factor in the behaviour of the street climate is its morphology. This condition has been recorded with the visible sky factor (SVF) and with the geographic orientation of the studied canyons. Both the global urban form, the visibility of the sky, the street morphology and the materials of the city affect the urban air temperature variations. City normative planning and designers should consider these variables and its influences.

1. Introduction

Today, more than the half of the world population live in cities; in Latin-America the percentage is 80%. We expect that the fast growth of cities in this continent lead to the 90% by 2050 (worldwide, more than the 60%) [1]. Research on urban impacts put in evidence that urban planning and design affect the performance and climate patterns at different scales: macro, meso and microclimatic [2]. Local climate of city’s neighbours is influenced by built environment and urban context. The process affects the energy consumption of buildings, the well-being of inhabitants, the air quality and both indoor and outdoor comfort. Different studies already established these facts in many regions and cities [4] [5] [6] [7] evidencing that studied cities present higher temperatures respect to surroundings and rural zones, especially at night [8] [9]. Built environment acts in favour of urban overheating, affecting inhabitants’ well being and turning cities more vulnerable to climate change [10] [11]. At the same time, built environment influences thermal performance of buildings, which demands more energy use for cooling, especially in the case of office buildings during summer time [12] [13]. These urban areas present in summary the effect known as Urban Heat Island (UHI) [14]. The phenomenon
occurs due to impervious materials with high thermal capacity, which absorb heat during the day and release that during the night [15] [16]. The bigger the city, the higher the effect [17]. Recently, experimental studies have been developed for different cities: Barcelona and Rome [18], Guyaquil, Antofagasta, Lima and Valparaiso [19], Hong Kong [20], Toronto [21], Touluse [22], Paris [23], San Juan in Puerto Rico [24], Tokio [25], Salamanca [26], Mendoza [27], demonstrating that contemporary city is a complex thermo-dynamical system, which modify the climate, especially through the UHI effect [28] [2] affecting urban life conditions. In this situation, and considering fast urban growth, the buildings of the urban centres act as energy consumers especially when experimenting UHI around them [29] [30]. This is due to (among other factors) the emission of long wave radiation depending on surface temperature and emissivity [31]. In this sense, the urban pavements play a fundamental role in the thermal balance [32] [33] and in the UHI generation [34] [35].

The UHI intensity depends on many factors as topography, macroclimatic conditions, urban density, anthropogenic heat caused by buildings, cars, etc., thermal and optical properties of surfaces, urban form, and land use [36]. In summary, the existence of UHI affect mainly the energy demand of buildings, the air quality and the comfort felt by users in buildings and streets [19]. The study of urban fabric and urban canyon geometry has been used to generate microclimatic models [37] [38]. The sky view factor (SVF), for example, is a descriptor of urban morphology and density of buildings. Different researches relate SVF with the climate of urban space [39-45] and with UHI [46-50].

Moreover, climate change (CC) scenarios introduce the probability of an increase in temperatures and a decrease in precipitation [51]. Superposition of UHI and CC could produce dramatic situations of thermo-dynamical balance of cities, building energy needs, and changes in comfort of public spaces. UHI conditions increases the climate risk of urban environments, including heat stress and polluted air exposition. CC, caused by anthropogenic emission of CO₂ and other greenhouse gases, is a problem that in a long time could alter the intensity and the spatial extension of UHI in metropolitan regions [52]. The objective of this research is to analyse and present the UHI phenomenon in the city of Valparaiso in winter and summer season and relate the intensity to the urban form and materials.

2. Materials and Methods
This study is developed for the city of Valparaiso, located on the central coast of Chile (Lat 33.03 S and Long. 71.6 W). The climate is defined as Mediterranean climate following Koppen-Gaiger classification Csb. The population is estimated in 300.000 inhabitants.

![Figure 1. Valparaiso case of study. Geographic and topographical condition is shown.](image-url)
The studied area corresponds to the zone of the Valparaiso bay. Through a methodology of transects, a record of temperatures has been carried out defining a series of places with different urban characters, from surroundings to downtown. Records have been done in three different times of the day: 10.30, 2 pm and 8 pm to put in evidence the difference between the moment of maximum activity, the hottest hour of the day and the moment with the higher UHI normally detected in cities.
In order to determine the relationship between urban form, materials and thermal performance of the built environment, the sky view factor is used as descriptor of the canyon morphology and related to average solar radiation on the horizontal. SVF determination is done following procedure described in [42] by using a fish-eye image for each analysed site.

3. Results

Respect to thermal performance the following results were obtained: for a winter cloudy day (figure 5), a difference of air temperature between the surroundings and the centre is 7.9 degrees Celsius. For a winter sunny day (figure 6), a difference of 5.2 degrees is observed. For a cloudy day in summer (figure 7), a difference of 6.3 is observed. Finally, for a sunny summer day, a difference of 8.8 degrees is found. The black circle evidences the hottest zones of the city.

Figure 4. Structure of three transects monitoring done in winter 2016 and summer 2017.

Figure 5 and 6. Air temperature for winter (left) and summer (right) season during a cloudy day at 8 pm.
Figure 7 and 8. Air temperature for winter (left) and summer (right) season during a sunny day at 8 pm.

Once observed the general behaviour of the city and the patterns of the UHI phenomenon, the urban canyon of the city center are studied in a detailed way. After two neighbourhoods selection, 12 locations are defined and the morphological characters evaluated. Spatial distribution of air temperature is then recorded at the same time in both urban fabrics. Two urban canyons are different in terms of morphology and use. They have different sky view factors and orientations. The “El Almendral” zone present streets oriented following the four main orientations, the other has streets with 45 degrees of inclination respect to main orientations. Figures 7 and 8 show the morphology of the first canyon.
In figures 13 and 14 average surface temperatures of each canyon are shown as a function of SVF for sunny and cloudy days at 8pm. Figures 11-14 present the morphology of the second sector.
Figure 13. Façades and soil: average radiation v / s svf in every evaluated place in cloudy day at 8 pm.

Figure 14. Façades and soil: average radiation v / s svf in every evaluated place in sunny day at 8 pm.

Figures 15, 16: Bank sector
Figure 17. Bank Sector morphology parameters

In the follow average surface temperature is shown as a function of SVF, for sunny and cloudy days at 8 pm.
Figure 18. Façades and soil: average radiation vs svf in every evaluated place in cloudy day at 8 pm.

Figure 19. Façades and soil: average radiation vs svf in every evaluated place in sunny day at 8 pm.

In figure 20-27, vertical surface temperatures and pavements temperatures for each canyon are shown, for sunny and cloudy days at 10.30 am., 2 pm and 8 pm.

Figure 20, 21. Surface temperature of each façade according to cardinal orientation and register time, on a cloudy day (left) and sunny day (right) (Area 1 El Almedral).
Results of this study prove that urban form influences air temperature and mean radiant temperature in the streets during the day and the night, both in sunny and cloudy days. In the streets with high SVF values, the higher surface temperatures are recorded at 8 pm, both in sunny and cloudy days. This result should be due to better ventilation in streets with lower SVF.

Façades materials influence air temperatures and mean radiant temperatures, especially at night. It is proved that studied locations presents heat dissipation during the night independently by SVF, morphology and orientations. In general, during the night, surface temperatures are more homogenous and cooler respect to the noon.

Pavements present during the day surface temperatures higher than the façades, according also with previous studies. When the day is sunny, orientation of façades is determining the air temperature and the soil temperature. When the day is cloudy, the orientation effect is neglected.

4. Conclusions
Analysed data are useful to predict the outdoor conditions for comfort studies. Canyon morphology and materials of the façades define the variations in the thermal behaviour of the public space during
both day and night and the performance is close related to the type of day, sunny or cloudy. When the day is sunny, there is more heat dissipation on surfaces, especially after the noon. In the cloudy day, air temperature is lower during the night but similar during the day. The recorded data show a clear urban heat island effect in Valparaiso, which should be mitigated in a next future.

References
[1] United Nations, Department of Economic and Social Affairs, Population Division (2018).
[2] Oke, T. R. (1987). Boundary layer climates (2nd ed.). London: Routledge.
[3] Carrasco, C., Palme, M., Angel Galvez, M., Inostroza, L., Padilla, U., & Fonseca, A. (2017). Urban Heat Island of Valparaiso, Chile - A Comparison between 2007 and 2016. In IOP Series: Materials Science and Engineering (Vol. 245).
[4] Santamouris, M. (2016). Urban Climate Mitigation Techniques. Earthscan, London.
[5] Christen A., Vogt R., Rotach M.W., Parlow E. (2002a): First Results from BUBBLE I: Profiles of fluxes in the urban roughness sublayer. AMS 4th Symposium on the Urban Environment, Norfolk VA. 105-106.
[6] Grimmond C. S. B., Oke T. R. Comparison of heat fluxes from summertime observations in the suburbs of tour Nort American cities. Journal of Applied Meteorology, Abril 1995. Vol. 34, pp. 873-889.
[7] Cleugh, H.A. and Oke, T.R. (1986). “Suburban-rural energy balance comparisons in summer for Vancouver, B.C.”. Boundary Layer Meteorology, 36, pp. 351-369.
[8] Kikegawa Y., Ohashi Y., Kondo H. Observed and simulated effects of urban canopy on air temperatures in summer Tokyo. 7th Conference on Urban Environment. San Diego, CA. September 2007.
[9] Voogt J. A., Krayenhoff E. S. Modeling urban thermal anisotropy. International Society OF Photogrammetry and Remote Sensing. Proceedings of the ISPRS joint conference. Tempe, AZ, USA, March 14-16 2005.
[10] Palme, M., Carrasco, C., & Lobato, A. (2016a). Quantitative analysis of factors contributing to urban Heat Island effect in cities of Latin American Pacific coast. Procedia Engineering, 169, 199–206.
[11] Kolokotroni, M., Ren X., Davies M., Mavrogianni A. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy and Buildings, n° 47, pp. 302–311, 2012.
[12] Eliasson I. Intra-urban nocturnal temperature differences: a multivariate approach. Goteborg University, Department of Physical Geography, Laboratory of Climatology. Earth Sciences Centre, Goteborg. Sweden. Climate Research. Vol. 7, pp. 21-30, 1996.
[13] Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the Impact of Urban Heat Island and Global Warming on the Power Demand and Electricity Consumption of Buildings–A Review. Energy Build. 2015, 98, 119–124.
[14] Oke, T. R., The distinction between canopy and urban boundary-layer heat islands, Atmosphere, 14, 268-277. 1976.
[15] Carrasco, C. (2009). Morfología y microclima urbano análisis de la forma espacial y materiales como modeladores del microclima de tejidos urbanos mediterráneos costeros: el caso de la ciudad de Valparaiso. Doctoral dissertation Barcelona. http://www.tdx.cat/handle/10803/51572.
[16] Rao, K.V. (2012). Characterisation of urban heat islands in one of the most urbanised corridors of india from space based multi-sensor, spatio-temporal data. AGSE FOSS4G-SEA, 17.
[17] Oke T. Atmospheric Environment Pergamon Press 1973. Vol. 7, pp. 769-779.
[18] Salvati A., Monti P., Coch Roura H., Cecere C. Climatic performance of urban textures: Analysis tools for a Mediterranean urban context. Energy & Buildings 185 (2019) 162–179.
[19] Palme M., Inostroza L., Villacreses G., Carrasco C., Lobato A. (2019) Urban Climate in the South American Coastal Cities of Guayaquil, Lima, Antofagasta, and Valparaiso, and Its
Impacts on the Energy Efficiency of Buildings. In: Henríquez C., Romero H. (eds.) Urban Climates in Latin America. Springer, Cham, Switzerland.

[20] Pingying L., Siu Yu Lau S., Qin H., Gou Z., Effects of urban planning indicators on urban heat island: a case study of pocket parks in high-rise high-density environment, Landscape and Urban Planning, Volume 168, 2017, Pages 48-60.

[21] Yupeng W. Berardic U, Akbari H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings 114 (2016) 2-19.

[22] Masson, V.; Marchadier, C.; Adolphe, L.; Aiguejad, R.; Ayner, P.; Bonhomme, M.; Bretagne, G.; Briottet, X.; Bueno, B.; de Munck, C.; Doukari, O.; Hallegatte, S.; Hidalgo, J.; Houet, T.; Bras, J. L.; Lemonsu, A.; Long, N.; Moine, M.-P.; Morel, T.; Nolorgues, L.; Pigeon, G.; Salagnac, J.-L.; Vigué, V. & Zibouche, K. (2014), Adapting cities to climate change: A systemic modelling approach, Urban Climate 10, Part 2, 407-429.

[23] Masson, V., Lion, Y., Peter, A., Pigeon, G., Buyck, J., Brun, E., 2013. Grand Paris: regional landscape change to adapt city to climate warming. Clim. Change 117 (4), 769–782.

[24] Murphy, David J.R.; Hall, Myrna; Hall, Charles; Heisler, Gordon; Stehman, Steve. 2007. The relation between land-cover and the urban heat island in northeastern Puerto Rico. In: Proceedings of the seventh urban environment symposium; 2007 September 10-13; San Diego, CA. American Meteorological Society. 7 p.

[25] Ooka R., Harayama K., Murakami S., Kondo H. Study on urban heat islands in Tokyo metropolitan area using a meteorological mesoscale model incorporating an urban canopy model. Fifth Conference on Urban Environment. Vancouver, BC. August 2004.

[26] Alonso G. Mª S., Fidalg M. Mª del R., Labajo S. J. L. El clima de las ciudades: isla de calor de Salamanca. Rev. Salud Ambient. 2004; 4(1-2): 25-29.

[27] Mesa, N. A., Polimeni, C. M. La isla de calor urbana en zonas áridas andinas de clima mesotérmico seco. Caso Área Metropolitana de Mendoza (AMM). ASADES, Avances en Energías Renovables y Medio Ambiente. Vol. 7, Nº 2, 2003. Argentina. ISSN 0329-5184.

[28] Douglas, I. (1983). The urban environment. London: Edward Arnold.

[29] Kataoka K, Matsumoto F, Ichinose T and Taniguchi M 2009 Urban warming trends in several large Asian cities over the last 100 years Sci. Total Environ. 407 3112-9.

[30] Trihamdani A., H. Lee, T. Kubota, T. Phuong, Configuration of Green Spaces for Urban Heat Island Mitigation and Future Building Energy Conservation in Hanoi Master Plan 2030, Buildings. 5 (2015) 933-947.

[31] Santamouris M. Using cool pavements as a mitigation strategy to fight urban heat island-A review of the actual developments. Renew Sustain Energy Rev 2013; 26: 224–40.

[32] Sailor D. Simulated urban climate response to modifications in surface albedo and vegetative cover. Journal of Applied Meteorology 1995;34:1694–700.

[33] Gaitani N, Michalakakou G, Santamouris M. On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Building and Environment 2007; 42(1):317–24.

[34] Asaeda T, Thanh Ca Vu, Wake Akio. Heat storage of pavement and its effect on the lower atmosphere. Atmospheric Environment 1996; 30(3):413–27.

[35] Doll D, Ching JKS, Kaneshiro J. Parameterization of subsurface heating for soil and concrete using net radiation data. Boundary-Layer Meteorology 1985;32:351–72.

[36] G. Mihalakakou, H.A. Flocas, M. Santamouris, C.G. Helmis, Application of neural networks to the simulation of the heat island over Athens, Greece, using synoptic types as a predictor, Journal of Applied Meteorology 41 (5) (2002)519–527.

[37] Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900.

[38] Oke, T. R. (1981). Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. Journal of Climatology, 1(3), 237–254.

[39] Blennow, K. (1995) Sky view factors from high resolution scanned fish-eye lens photographic
negatives. Journal of Atmospheric and Oceanic Technology 12, pp1357-1362.

[40] Ochoa De La Torre José Manuel. La vegetación como instrumento para el control microclimático. Tesis Doctoral. Universitat Politècnica de Catalunya. Escola Tècnica Superior d'Arquitectura de Barcelona. Departament de Construccions Arquitectòniques. Programa de Doctorado Àmbits de Recerca de la Construcció i l'Energia a l'Arquitectura. Barcelona, Octubre de 1999.

[41] Grimmond C.S.B., Potter S.K., Zutteh.N. R, Souch, C. 2001: Rapid methods to estimate sky view factors applied to urban areas. International Journal of Climatology, 21, 903-913.

[42] Souza, L. C. L.; Rodrigues, Daniel Souto; Mendes, José Fernando Gomes. A 3D-gis extension for sky view factors assesment in urban environment. In: CUPUM 2003 - 8th International Conference on Computers in Urban Planning and Urban Management, 2003, Sendai. CUPUM'03 Sendai, 2003.

[43] Ratti C., Raydan D., Steemers K. Building form an environmental performance: archetypes, analysis and an arid climate. Energy and Buildings 35 (2003) 49–59.

[44] Ratti C., Baker N., Steemers K. Energy consumption and urban texture. Energy and Buildings Vol 37. pp. 762 - 776 (2005).

[45] Correa, E.; Pattini, A.; Córica, L.; Fornés, M.; Lesino, G. (2005). Evaluación del factor de visión de cielo a partir del procesamiento digital de imágenes hemisféricas. Influencia de la configuración del cañón urbano en la disponibilidad del recurso solar. Revista Avances en Energías Renovables y Medio Ambiente. Vol. 9, N° I. ISSN: 0329-5184. Argentina.

[46] Oke, T.R. (1988). Street design and urban canopy layer climate. Energy Build. 11, 103.

[47] Bottyan, Z., and Unger, J. (2003). A multiple linear statistical model for estimating the mean maximum urban heat island. Theor. Appl. Climatol. 75, 233.

[48] Gal, T., Lindberg, F., and Unger, J. (2009). Computing continuous sky view factors using 3D urban raster and vector databases: comparison and application to urban climate. Theor. Appl. Climatol. 95, 111.

[49] Yupeng W and Akbari H. Effect of Sky View Factor on Outdoor Temperature and Comfort in Montreal. Environmental Engineering Science Volume 31, Number 6, 2014.

[50] Carrasco C.; Palme, M.; Gálvez M.A. (2016). Factor de cielo visible y el efecto isla de calor en Valparaiso. Revista Urbano 34 / noviembre 2016. PÁG.26 – 33. ISSN 0717 - 3997 / 0718-3607.

[51] Santibáñez F., Santibáñez P., González P. Elaboración de una base digital del clima comunal de Chile: línea base (1980-2010) y proyección al año 2050. Ministerio del Medio Ambiente Gobierno de Chile. 2016, Santiago.

[52] Givoni, B. Climate Considerations in Building and Urban Design, New York: Wiley; 1998.