Crystal defects in semiconductor devices, whether present at fabrication or introduced later via radiation damage, can dramatically impair device performance[1–5]. Commonly-used methods for characterizing semiconductor defects have spatial resolution that is crude compared to the feature size in modern microelectronic devices. For example, capacitance-voltage (CV) profiling[7] and deep-level transient spectroscopy (DLTS)[8] can extract defect concentrations and energy levels, respectively, from simple heterojunctions. But the spatial information provided by these techniques is one-dimensional at best. Two dimensional mapping is possible with scanning electron microscope electron-beam induced current (SEM EBIC) imaging, which can locate electrically-active extended (i.e. one- and two-dimensional) defects[3, 9–11], monitor the development of conducting filaments in metal-oxide resistive memory[12], measure depletion region widths[13], and map minority carrier diffusion lengths[3, 14–16]. However, the spatial resolution of SEM EBIC imaging is limited by the size of its e-h generation volume[17]. In a standard, electron-opaque SEM sample, primary (beam) electrons deposit most of their energy near the end of their range. The resulting pear-shaped e-h generation volumes are of order 100 nm on a side[17] [18], which is large compared to feature sizes in many modern devices. Because a STEM sample is electron-transparent, the corresponding e-h generation volume is the cylindrical, narrow neck of the SEM e-h generation pear[19]. With this much smaller e-h generation volume STEM EBIC imaging has the potential to achieve much higher spatial resolution than SEM EBIC imaging[20–25]. Moreover, the higher beam energies accessible with STEM (usually 60–300 keV vs. the 1–30 keV of SEM) span the knock-on threshold in semiconductors, which allows a STEM operator to choose whether or not to introduce knock-on displacements in a semiconductor device precisely at the position of the sub-nm² STEM beam. The combination of superior spatial resolution and precision modification enables in situ STEM EBIC experiments that directly reveal e-h recombination physics in semiconductor nanodevices. In essence, the STEM’s focused electron beam serves both as a highly localized source of β-radiation damage, and as an immediate local probe of its effects. This combination allows individual point (i.e. zero-dimensional) defects to be located to within <1 nm².

To produce targets for demonstrating these capabilities, we fabricate heterojunctions in semiconductor nanowires (Fig. 1a), which are model systems for elucidating defect physics[5, 14–16]. We put Au contacts on 130 nm-diameter p-type GaAs nanowires (Fig. S1) with electron-beam lithography, and then briefly anneal the devices[29, 30] (see Supplementary Information). At elevated temperatures gallium and arsenic interdiffuse with the gold at the contacts, forming abrupt (<2 nm) axial Au-GaAs heterojunctions aligned with the (111) GaAs planes (Fig. 1b). Since the growth direction of the GaAs nanowires is along the [111] crys-
FIG. 1. STEM EBIC imaging of a Au-GaAs nanowire heterojunction. A low-magnification, 200 kV STEM annular dark-field (ADF) image (a) of a device shows 130 nm diameter GaAs nanowires and 250 nm-thick, lithographically-defined gold contacts supported by a 15 nm-thick silicon nitride membrane. An SEM image (a, inset) acquired with 30° stage tilt, shows the nanowires as grown, before transfer to the silicon nitride membrane (unlabeled scale bar is 500 nm). When the region indicated in green in (a) is imaged at higher-magnification (b), twin boundaries in the GaAs are apparent. An EBIC image (c), acquired simultaneously with (b), reveals the e-h separation that occurs near the Au-GaAs heterojunction. The electrical connections and the locations of the TIA, STEM detectors (ADF, BF), and analog-to-digital converter (ADC) are indicated on a cartoon (d).

We understand the EBIC signal as being generated as follows. Within some generation volume \(G \) surrounding the path of the primary electrons through the sample, the STEM electron beam creates e-h pairs. The pairs are predominantly created by plasmon decay in the GaAs, where plasmons can either be directly created by primary electrons in the GaAs or by secondary electrons resulting from primary electrons in the GaAs or the Au.\(^{18,19} \) Electrons in the GaAs conduction band, which are the minority carriers in these p-doped nanowires, then diffuse some distance, parametrized by the minority carrier diffusion length, before recombining probabilistically. Electrons that happen to diffuse to the space-charge region near the Au-GaAs heterojunction can be permanently separated from their holes by the built-in electric field \(E \). The separated charge is collected by the electrodes and constitutes the EBIC. The CCE, which here is the ratio of the EBIC to the rate of e-h pair generation, determines what fraction of e-h pairs are collected. The e-h generation rate is relatively insensitive to crystal defects, while the CCE is lowered by recombination centers within the GaAs. Thus relative changes in CCE due to carrier recombination have a proportional effect on the EBIC. The EBIC also depends on the beam position within the nanowire through three size scales: the radius \(R \) of the e-h generation volume, the minority-carrier diffusion length \(L \), and the thickness \(t \) of the space-charge region. A single EBIC image can provide information on each of them.\(^{31} \)

Imaging another device with STEM ADF (Fig. 2a) and STEM EBIC (Fig. 2b) shows how these length scales collectively determine the shape of the EBIC profile (Fig. 2c). The STEM ADF image shows the location of the heterojunction, twin boundaries in the GaAs, and some voiding in the Au. The STEM EBIC image shows a CCE that varies in a non-trivial way as a function of position. Just as an optical point-spread function limits the resolution of an optical microscope, the size of the e-h generation volume, \(G \), limits the EBIC electronic spatial resolution. It manifests itself clearly here in at least two ways. First, a non-zero EBIC is generated when the beam is incident on the Au side of the heterojunction, even though Au is not a semiconductor and has no band gap. Fitting an EBIC line profile from the center of the nanowire (Fig. 2c, blue profile, purple line) to an exponential \(I \propto e^{-R/\lambda} \) yields a decay length \(R = 9.4 \pm 0.2 \text{ nm} \), where the error bar reflects the statistical uncertainty.
in a linear least-squares fit. This length scale measures how far secondary electrons can travel in the gold and still create e-h pairs in the GaAs, i.e., the radius R of G within the Au. Second, the EBIC profile maximum 20 nm away from the heterojunction interface indicates that, near the heterojunction, G in the GaAs is truncated by the Au. Fitting the EBIC along the center-line in the GaAs immediately adjacent to the heterojunction (blue profile, brown line) to an exponential $I \propto e^{-x/R}$ yields $R = 9.6 \pm 0.4$ nm, which indicates the radius R of G within the GaAs. This model also explains the hiccups in the line profiles (also clearly visible in Fig. 2b) at the heterojunction: moving across the boundary into the Au actually increases the EBIC (even though the Au does not support e-h pairs) because G is continuous while the absolute number of secondary electrons increases discontinuously.

On the Au side of the heterojunction the electric field $E = 0$, while on the GaAs side a substantial electric field $E \neq 0$ exists in the space-charge region. Thus near the heterojunction the CCE is a step function with approximate values of zero within the Au and unity within the GaAs, and the EBIC $\propto G \times$ CCE measures G as just described. Far (> 50 nm) from the heterojunction in the GaAs the E-field returns to zero, the minority-carrier transport is dominated by diffusion, and the EBIC measures the CCE. With increasing distance from the space charge region the EBIC in the GaAs decays exponentially, with a decay length equal to the minority-carrier diffusion length L. Fitting the EBIC current in the center of the nanowire (Fig. 2b, blue profile) to $I \propto e^{-x/L}$, where x is the distance from the heterojunction, gives $L = 19.7 \pm 0.1$ nm (green line), where the error bar again reflects the statistical uncertainty in a linear least-squares fit. This relatively short diffusion length likely results not from the nanowire’s dense zincblende twin boundaries (Fig. 2b), but rather from surface recombination [15]. For instance, the surface-to-volume ratio at the thin edge of the nanowire is larger, and an EBIC profile at the edge (Fig. 2c, red profile) to $I \propto e^{-x/L}$ shows a much smaller minority-carrier diffusion length $L = 13.2 \pm 0.9$ nm (green line). Thus e-h pairs generated nearer the nanowire surface are more likely to recombine. While L is much smaller than the nanowire diameter $D = 130$ nm, this fact is not as surprising as it might seem at first: on average, any point in a long cylinder of diameter D is only a distance $D/6$ away from the cylinder surface.

The nanowire’s simple shape facilitates the interpretation of the EBIC data. ADF STEM data (Fig. 3a, rotated) show that the nanowire’s cross-section (Fig. 3b) is a near-perfect hexagon (Fig. 3c). To give a sense of scale, a slice of a cylindrical e-h generation volume with $R = 10$ nm is superimposed on the GaAs nanowire’s hexagonal cross section in Fig. 3c.

STEM EBIC imaging’s extraordinary spatial resolution reveals how charge recombination varies as a function of not only the nanowire’s axial coordinate, but also its radial coordinate (compare e.g., Ref. [15]). Extending the STEM EBIC analysis of Fig. 2 by fitting at every distinct axial coordinate, we map both the minority-carrier diffusion lengths L (which determine the CCE) and the radii R (which determine G) across the width of the nanowire. The diffusion length L decreases from 20 nm near the center axis of the 130 nm-wide nanowire to 13 nm near the edges (Fig. 3c, green plot), as expected.
FIG. 3. Mapping e-h recombination across the nanowire. (a) The data of Fig. 2a are rotated 90° to align the Schottky interface with the horizontal axis. Summing the ADF signal from the dashed-green ROI in (a) gives a profile (b) approximately proportional to the sample thickness. This profile agrees well with the projected thickness of a geometrically-perfect hexagon (dashed-red line in b). A slice of the cylindrical e-h generation volume is overlaid on the nanowire cross-section (c), with a decay radius $R = 10 \text{ nm}$. The generation volume radii R in gold and GaAs and the minority-carrier diffusion length L in the GaAs are plotted as a function of radial position across the hexagonal nanowire in (d). The L and R measurements shown explicitly in Fig. 2d are highlighted in blue (center) and red (edge) here. All panels are aligned horizontally on the same distance axis.

for recombination occurring primarily at the nanowire surface.

The generation volume G’s effective radius R is less than 10 nm in both the gold (Fig. 3d, purple points) and the GaAs (brown points). Due to voiding in the Au (see Figs. 2a and 3a), these curves are irregular on one side of the nanowire. Near the nanowire’s center the corresponding (cylindrical) STEM EBIC generation volume is $G \sim 4 \times 10^4 \text{ nm}^3$, while an SEM generation volume with effective radius $r \approx 100 \text{ nm}$ (appropriate for a 5 keV accelerating voltage[17]) is $\times 100$ larger. STEM EBIC’s resolution advantage is $\sim r/R$, or a factor of 10, relative to SEM EBIC.

Taking the ‘electronic structure resolution’ to be the full-width, half-maximum (FWHM) of the generation volume, our measured resolution is $(2 \ln 2) R = 14 \text{ nm}$. Note that our STEM EBIC images show smaller features, implying better STEM EBIC resolution, but that these features are primarily generated by changes in physical structure, not electronic structure. For instance, the STEM EBIC images show both the thickness variations that accompany the twin boundaries ($\sim 2 \text{ nm}$) and the EBIC hiccup ($\sim 3 \text{ nm}$) at the heterojunction (Fig. S6).

This resolution advantage creates qualitatively new capabilities: STEM EBIC, unlike SEM EBIC, can map device parameters like the minority-carrier diffusion length across an individual nanowire. Our measured R of 10 nm is an order-of-magnitude larger than predicted by the CASINO Monte Carlo simulator[19, 32, 33]. We attribute this discrepancy to CASINO’s omission of plasmon generation (the dominant energy loss mechanism in GaAs for electrons of $< 50 \text{ eV}$ energy[34]) in its calculation of stopping power at low electron energies.

Within 50 nm of the interface, the EBIC signal is below the continuation of the green lines on the log-linear plot (Fig. 2c). Near the heterojunction we might instead expect the EBIC increase as the local E-field increases in the space-charge region. As mentioned above, the observed decrease indicates that some of the e-h generation volume G is in the Au (Fig 3d). Thus the EBIC data indicates that the thickness t of the space-charge region is less than the radius $R < 10 \text{ nm}$ of the e-h pair generation volume G.

To compare damage rates at various accelerating voltages, we image the device of Figs. 2 and 3 while keeping all other imaging conditions (e.g. the 50 pA STEM beam current, 762 μA pixel dwell time, and 0.87 nm pixel size) constant (Fig. 4a). Repeated imaging at 80 kV and 200 kV has little effect on the EBIC, but 300 kV imaging markedly reduces the EBIC signal (Fig. 4b). (The EBIC magnitude decreases as the accelerating potential increases because higher energy electrons deposit less energy per distance traveled in a solid[35].)

As a function of dose, the EBIC, and thus the CCE, decreases linearly at 300 kV (Fig. 4b). We attribute the reduction in CCE to knock-on damage that introduces electronically-active vacancy-interstitial (VI) defects, probably on the As sublattice[36]. These defects
function as e-h recombination centers, reducing the current that is collected to form the EBIC signal. Energy and momentum conservation dictate that the maximum possible energy transfer from a beam electron to a gallium (mass number $A=70$) nucleus is 2.7, 7.5, and 12.2 eV for incident electron kinetic energies of 80, 200, and 300 keV, respectively [35]. The maximum energy transfer varies inversely with the mass of the target nucleus, so the numbers for arsenic ($A=75$) are nearly the same (2.5, 7.0, and 11.4 eV, respectively). Gold ($A=197$) allows only $\frac{70}{197} \sim \frac{1}{3}$ the energy transfer, which is small enough at all of the accelerating voltages used in these experiments that the displacement or knock-on damage in this material is negligible. But the displacement damage threshold energy in GaAs is ~ 10 eV [1][36-38] (although with substantial uncertainty — see Ref. [38] and references within), which leads us to expect an onset of electron beam-induced displacement damage between the accelerating voltages of 200 and 300 kV.

After they have been normalized relative to their minima, all twelve EBIC profiles acquired at the damaging 300 kV accelerating voltage overlap closely (Fig. 4c). That the defects introduced do not change the minority-carrier diffusion length L indicates that L is still dominated by surface recombination, and that this length scale is determined by the nanowire cross section as discussed earlier.

Repeated imaging of this device at 300 kV thus causes a substantial reduction in the EBIC (and thus the CCE) of the nanowire junction — the radiation damage destroys this device’s ability to effectively separate of e-h pairs. Given the large dose (six million 300 keV electrons per square nanometer) and accompanying efficiency drop, it is remarkable that the device appears undamaged in the standard STEM imaging channels (Figs. 5a–f). But while standard STEM imaging is blind to the inserted defects, which have a relatively minor effect on the nanowire’s physical structure, EBIC imaging (Figs. 5g–i), vividly reveals their outsize impact on the nanowire’s electronic structure (namely a 44% reduction of the maximum EBIC).

The device of Figs. 2–5 is part of a larger circuit (Fig. 6). At low magnification a second heterojunction, on an adjacent nanowire but also in the circuit, is visible. The second heterojunction is imaged at lower magnification and less frequently (4.8 nm pixel size, 0.762 µs dwell time), and is thus subjected to less than 1% of the radiation dose of the irradiated junction. This adjacent junction can control for changes that are independent of radiation dose.
FIG. 5. **Annular dark-field, bright-field, and EBIC imaging before and after irradiation with 300 kV STEM electrons.** STEM ADF, bright-field (BF), and STEM EBIC images acquired before (a,d,g) and after (b,e,h) a dose of $6.0 \times 10^6 \text{ e}^-/\text{nm}^2$ at 300 kV accelerating voltage. The total dose is applied while acquiring the twelve images #22–#33 (Fig. 4) and three alignment images (between #21 and #22). Line profiles are extracted (c,f,i) by horizontally averaging data within the blue boxes. A dashed brown line in the line profiles indicates the Au-GaAs interface. Irradiation produces almost no change in the conventional imaging channels (ADF, BF), but a 44% decrease in the maximum EBIC, which highlights the advantage of EBIC over conventional imaging for revealing functional properties such as the CCE.

To corroborate the role of radiation-induced defects in the observed EBIC reduction, after image #33 of Figs. 4–5 we anneal the nanowire device in an inert argon atmosphere at 250°C for 30 minutes. Such treatment reduces the density of VI defects within the nanowire, since the elevated temperature makes the beam-induced defects mobile, allowing interstitials and vacancies to meet and annihilate[36, 39]. After the annealing treatment, we image the nanowire heterojunction again (Fig. 6). The anneal restores the EBIC to its pre-irradiated value (i.e. restores the 44% lost) while changing the measured EBIC in the control junction by only a small amount (< 10%). The post-anneal restoration is consistent with the hypothesis that the radiation-induced CCE reduction is caused by defects — specifically VI defects — that anneal away at high temperature.

The STEM’s precise electron beam positioning allows us to observe the effect of selectively dosing just part of the nanowire. In an experiment performed on the Fig. 6 device (after the annealing experiment), we irradiate a narrow strip of GaAs that only spans half of the nanowire heterojunction (denoted by dashed green box in Fig. 7a). With 300 kV, a 50 pA beam current, a 0.633 nm pixel size, and a 2.3 ms pixel dwell time, the dose per area per strip image, $1.8 \times 10^6 \text{ e}^-/\text{nm}^2$, is 5.5× that of the Fig. 4 experiment. As in the experiment of Fig. 6, we acquire
low dose images before and after the high-dose images for purposes of comparison. (Here a 153 ms dwell time and 1.27 nm pixel size of the two low-dose images contributes only 1.1% of the combined dose from the three strip images.) The difference between the before and after images (Fig. 7a) shows that the localized strip irradiation decreases the CCE across the entire width of the nanowire.

By comparing consecutive EBIC images we can, in some cases, precisely identify the position where an electrically-active defect is inserted. ADF (Fig. 7c1, c2, c3) and EBIC (f1, f2, d3) images are collected simultaneously in the three high-dose strip images. In the (standard) raster pattern used here, the electron beam scans across one row from left to right, and then moves down to scan the next rows in sequence in the same direction. Each strip image shows a dose-induced EBIC decrease, as in Fig. 4. EBIC difference images (Fig. 7g1, g2) reveal a sudden drop (8 pA magnitude) in the EBIC that occurs in a single 0.63 nm pixel. We attribute this sudden drop to the insertion of an electrically-active defect during the second strip image, at the pixel indicated by the yellow cross (Fig. 7c2). Notably, since the displaced atom of a VI defect can travel only a few angstroms from its original position at these low energies, and likely in the direction of the electron beam, the yellow cross marks the final location of this single defect [31, 35]. Thuis the defect generation volume is much smaller than the e-h generation volume, and EBIC imaging is able to locate VI insertion events with a much higher precision (< 1 nm) than its electronic resolution of ≈ 10 nm.

This defect reduces the EBIC magnitude by 11 pA (a 10% reduction), as determined by comparing the mean EBIC of the 10 pixels before the insertion to the mean EBIC of the 10 pixels after the insertion. As with all of the other STEM-beam induced radiation damage here, this insertion leaves no signature in the conventional ADF imaging. The CCE reduction from this individual defect insertion event is again non-local (as in Fig. 7d), since the difference between the first and third strip images (Fig. 7g3) is uniform.

In summary, STEM EBIC imaging with an electron-beam acceleration potential of 80 or 200 kV maps the CCE of a GaAs nanowire diode without damaging the device. The minority-carrier diffusion length is found to decrease significantly near the thin edges of the nanowire, and is thus limited by surface recombination. Imaging with the acceleration potential increased to 300 kV introduces defects in the nanowire that decrease the diode’s CCE. These VI defects can be annealed away to restore the original CCE of the diode. Despite being invisible in conventional STEM imaging channels, a VI defect inserted at 300 kV can be precisely located by identifying an abrupt drop in CCE as the electron beam rasters. As these results show, a modern, variable-energy STEM equipped for EBIC imaging is an experimentally potent combination for producing, locating, and characterizing defects in semiconductor devices with high spatial resolution.

Methods: GaAs nanowires are grown by selective-area epitaxy in a vertical metalorganic chemical vapor deposition (MOCVD) reactor (Emcore D-75) at 60 Torr, using hydrogen as a carrier gas. Triethylgallium (TEGa), tertiarybutylarsine (TBAs), and diethylzinc (DEZn) are used as precursors for gallium, arsenic, and zinc p-type dopant, respectively. See supplementary information for complete growth parameters. The GaAs nanowires’ measured resistivity is ≲ 5 Ω·cm (see Fig. S5 and related text), which in bulk GaAs corresponds to a dopant concentration [40] of ≳ 5 × 10^15 cm^-3.

Nanowires are mechanically transferred using a sharp tungsten probe to 15 nm-thick silicon nitride windows reinforced with a 0.8 µm-thick backing layer of silicon oxide (Fig. S2). Nanowires are located with a scanning electron
FIG. 7. Defect insertion and pinpoint localization with STEM EBIC at 300 kV. We record the initial state of an Au-GaAs nanowire heterojunction with low-dose (3.0 × 10^4 e⁻/nm²) ADF STEM (a) and STEM EBIC (b) images acquired simultaneously. We then image the region outlined by the dashed box (a) three times (e1,e2,e3) with a high dose (1.8 × 10^6 e⁻/nm² per image). After the three strip images we acquire a second low-dose EBIC image (c). A difference image (d) shows that the EBIC decreases across the entire nanowire, even though the dose was confined to a narrow region on the left side of the nanowire. Dark-field strip images (e1,e2,e3) show no change during irradiation, while the simultaneously-acquired EBIC strip images (f1,f2,f3) show significantly smaller signals. EBIC difference images (g1, g2) reveal a sudden drop in the EBIC magnitude within one 0.63 nm pixel, indicating that a defect was inserted during the second strip image at the location indicated by the yellow cross (e2). Zoom regions (dashed boxes on g1, g2) of 11 pixels × 16 pixels (7 nm × 10 nm) demonstrate that both the row and the column of the insertion event can be located precisely. A difference image between the first and third strip image (g3) indicates that, as in (d), the electronic impact of the defect is delocalized. The black-white color scale applies to panels (b,c,f), and the blue-yellow color scale applies to panels d and g.

microscope (SEM), and individual electron-beam lithography patterns are written to each silicon nitride window using polymethylmethacrylate (PMMA) resist. The samples are dipped in 1:10 hydrofluoric acid:water solution for 60 seconds to remove native GaAs oxides. Immediately afterward, samples are placed in an electron-beam evaporation chamber and 250 nm of gold is deposited. Intruded gold contacts are formed by heating the samples in a rapid thermal annealer (RTA) at 340°C for 30 seconds in a nitrogen atmosphere. To make the sample electron-transparent, the silicon oxide support film is removed with a hydrofluoric acid vapor etch. The sample is loaded into a Hummingbird Scientific biasing holder with electrical feedthroughs. STEM images are acquired at 80, 200, and 300 kV accelerating voltage within an FEI Titan STEM. EBIC signal is measured using a FEMTO DLPCA-200 transimpedance amplifier, set to 10^9 Ω gain with 40 kHz bandwidth. The amplified current signal is fed into an analog input in the STEM, and is synced to the STEM probe position to form an EBIC image.

Acknowledgments: This work was supported by National Science Foundation (NSF) award DMR-1611036, NSF STC award DMR-1548924 (STROBE), and Sêr Cymru grants in Advanced Engineering. Data were collected at the Electron Imaging Center for Nanomachines (EICN) at the California NanoSystems Institute (CNSI). Samples were fabricated in the Integrated Systems Nanofabrication Cleanroom (ISNC) at the CNSI. We thank Ting-Yuan Chang for assistance with patterning the nanowire growth template.

[1] Allan Johnston, Reliability and Radiation Effects in Compound Semiconductors (World Scientific, Singapore, 2010).
[2] Matthew D. McCluskey and Eugene E. Haller, Dopants and Defects in Semiconductors, second edition. ed. (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2018).
Spirkoska, Ilaria Zardo, Jonathan J. Finley, Gerhard Abstreiter, and Gregor Koblmüller, “Spontaneous Alloy Composition Ordering in GaAs-AlGaAs Core–Shell Nanowires,” Nano Letters 13, 1522–1527 (2013).

[29] Marta Orrù, Silvia Rubini, and Stefano Roddaro, “Formation of axial metal–semiconductor junctions in GaAs nanowires by thermal annealing,” Semiconductor Science and Technology 29, 054001 (2014).

[30] Vidar T. Fauske, Junghwan Huh, Giorgio Divitini, Dasa L. Dheeraj, A. Mazid Munshi, Caterina Ducati, Helge Weman, Bjørn-Ove Finland, and Antonius T. J. van Helvoort, “In Situ Heat-Induced Replacement of GaAs Nanowires by Au,” Nano Letters 16, 3051–3057 (2016).

[31] Melanie Nichterwitz and Thomas Unold, “Numerical simulation of cross section electron-beam induced current in thin-film solar-cells for low and high injection conditions,” Journal of Applied Physics 114, 134504 (2013).

[32] Pierre Hovington, Dominique Drouin, and Raynald Gauvin, “CASINO: A new monte carlo code in C language for electron beam interaction — part I: Description of the program,” Scanning 19, 1–14 (1997).

[33] Dominique Drouin, Alexandre Réal Couture, Dany Joly, Xavier Tastet, Vincent Aimez, and Raynald Gauvin, “CASINO V2.42 — A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users,” Scanning 29, 92–101 (2007).

[34] A. Rothwarf, “Plasmon theory of electron-hole pair production: efficiency of cathode ray phosphors,” Journal of Applied Physics 44, 752–756 (1973).

[35] R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. (Springer, 2011).

[36] A. Pillukat, K. Karsten, and P. Ehrhart, “Point defects and their reactions in e-irradiated GaAs investigated by x-ray-diffraction methods,” Physical Review B 53, 7823–7835 (1996).

[37] K. Nordlund, J. Peltola, J. Nord, J. Keinonen, and R. S. Averback, “Defect clustering during ion irradiation of GaAs: Insight from molecular dynamics simulations,” Journal of Applied Physics 90, 1710–1717 (2001).

[38] Nanjun Chen, Sean Gray, Efrain Hernandez-Rivera, Danhong Huang, Paul D. LeVan, and Fei Gao, “Computational simulation of threshold displacement energies of GaAs,” Journal of Materials Research 32, 1555–1562 (2017).

[39] L. W. Aukerman and R. D. Graft, “Annealing of Electron-Irradiated GaAs,” Physical Review 127, 1576–1583 (1962).

[40] S. M. Sze and J. C. Irvin, “Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300k,” Solid-State Electronics 11, 599–602 (1968).