Dose-Dependent Effect of Tolvaptan on Renal Prognosis in Patients with Autosomal Dominant Polycystic Kidney Disease

Taro Akihisa,1 Shun Manabe,1 Hiroshi Kataoka,1 Shiho Makabe,1 Rie Yoshida,1 Yusuke Ushio,1 Kentaro Watanabe,1 Masayo Sato,1 Ken Tsuchiya,2 Toshio Mochizuki,1 and Kosaku Nitta1

KIDNEY360 2: 1148–1151, 2021. doi: https://doi.org/10.34067/KID.0007342020

Key Points
- This is the first report to describe dose dependency in the effects of tolvaptan treatment for autosomal dominant polycystic kidney disease.
- The weight-adjusted average daily dose of tolvaptan was found to be a factor that significantly affected the change in eGFR.
- If a patient shows tolerance, increasing the tolvaptan dose to the maximum should be considered.

Introduction
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease, in which multiple renal cysts develop and renal dysfunction progresses. Approximately half of patients with ADPKD reach ESKD by 60 years of age.

The clinical studies on tolvaptan treatment for ADPKD, Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and Its Outcomes (TEMPO) 3:4 trial, and the Replicating Evidence of Preserved Renal Function: an Investigation of Tolvaptan Safety and Efficacy in ADPKD (REPRISE) trial showed that tolvaptan suppressed both the increase in kidney volume and the reduction in renal function (1,2). In these studies, a starting dose of 60 mg was increased to 90–120 mg, if tolerated, during the 3-week titration period. In phase 2 of the TEMPO 3:4 study, tolvaptan was reported to induce a dose-dependent reduction in urinary osmolality, which was maintained over a longer duration, and an increase in urine volume (3,4). A study using cultured human ADPKD cells demonstrated that tolvaptan suppressed the production of cAMP—which is related to cyst formation, cell proliferation, and in vitro cyst growth—in a dose-dependent manner (5). In a study using animal models of cystic kidney disease, tolvaptan not only increased the urine volume and reduced the urinary osmolality, but it also inhibited the increase in kidney volume and reduced renal cAMP levels in a dose-dependent manner (6). However, no studies have investigated the dose-dependent effects of tolvaptan in patients with ADPKD. Therefore, we aimed to verify the dose-dependent inhibitory effects of tolvaptan on the reduction in renal function in patients with ADPKD.

Materials and Methods
Protocol
The brief protocol of this study was as follows: (1) the goal was to clarify whether the integrated weight-adjusted average daily dose of tolvaptan affected renal prognosis in a dose-dependent manner among patients with ADPKD; (2) we included patients with ADPKD who had >750 ml in total kidney volume (TKV) and >5% in annualized TKV growth rate, but patients with an eGFR of <15 ml/min per 1.73 m² were contraindicated; (3) we excluded patients with observation periods of <6 months, and patients who had missing TKV data in three dimensional (3D) reconstruction–computed tomography images; and (4) we assessed the annual percentage change in eGFR as a defined outcome. The main variable was the weight-adjusted average daily dose of tolvaptan.

Patients
We enrolled 92 patients with ADPKD who were administered tolvaptan at Tokyo Women’s Medical University hospital between September 2014 and February 2019. A flow chart of the study population is shown in Figure 1. We excluded eight patients whose cumulative period of tolvaptan was <6 months. Six patients discontinued tolvaptan; two patients discontinued due to liver enzyme elevation, two due to decreased renal function (eGFR of <15 ml/min per 1.73 m²), and two due to the onset of other diseases. One patient died from subarachnoid hemorrhage, and one transferred to another hospital. We also excluded five patients who had missing TKV data in 3D reconstruction–computed tomography images. Finally, 79 patients were eligible for this study.

All procedures performed were in accordance with the ethical standards of the institutional research committee.
Study Design
This was a single-center, prospective, observational cohort study. Tolvaptan was initiated on admission for 3 days. The starting dose was 60 mg, which was administered as a 45 mg dose after breakfast and a 15 mg dose after dinner for patients with a creatinine clearance rate of ≥ 30 ml/min per 1.73 m2. The initial tolvaptan dose was reduced in patients with a creatinine clearance rate of <30 ml/min per 1.73 m2. After discharge, patients visited the outpatient department monthly for follow-up. The tolvaptan dosage was gradually increased to 120 mg/d, depending on tolerability, according to the Japanese package insert. Tolvaptan was discontinued when the eGFR fell <15 ml/min per 1.73 m2, according to the Japanese package insert, and follow-up of the patient was terminated. If tolvaptan was discontinued and then resumed, the cumulative administration period was calculated. During follow-up, 16 patients had a long withdrawal period, with an average of 0.42 years.

Covariate Assessments
Blood and urine were sampled immediately before oral administration of tolvaptan. TKV was measured within 3 months before starting tolvaptan, using the 3D workstation of Ziosation2 version 2.4.2.3 (Ziosoft, Inc., Tokyo, Japan). Our defined outcome for assessment was the annual percentage change in eGFR. To calculate the annual percentage change in eGFR, the annual percentage change was calculated as follows:

$$\frac{\text{eGFR at the end of follow-up duration} - \text{eGFR at baseline}}{\text{eGFR at baseline}} \times 100\%$$

Table 1. Patient characteristics ($n=79$)

Variables	Value ($n=79$)
Clinical findings	
Age (yr), mean±SD	42.9±9.7
Sex (men), n (%)	44 (56)
Body weight (kg), mean±SD	66.5±12.9
Body mass index (kg/m2), mean±SD	23.4±3.5
Follow-up duration (yr), mean±SD	2.52±1.48
Initial tolvaptan dose (mg/d), mean±SD	56.9±9.6
Tolvaptan dose at the end of follow-up duration (mg/d), mean±SD	84.1±40.6
Weight-adjusted average daily dose of tolvaptan (mg/kg per d), mean±SD	1.14±0.58
Laboratory findings	
Hemoglobin (g/dl), mean±SD	13.3±1.5
Serum albumin (g/dl), mean±SD	4.40±0.26
Serum creatinine (mg/dl), mean±SD	1.34±0.65
eGFR (ml/min per 1.73 m2), mean±SD	68.6±4.3
Urine protein (g/gCre), median (IQR)	0.11 (0.06–0.3)
Urine osmolality at baseline (mOsm/L), mean±SD	358±138
Urine osmolality after final titration of tolvaptan (mOsm/L), mean±SD	179±74
Urine osmolality at the end of follow-up duration (mOsm/L), mean±SD	186±89
htTKV (ml/m), mean±SD	1217±679
Comorbidities, n (%)	
Hypertensiona	62 (78)
Hyperuricemiab	34 (43)
Hypertriglyceridemiac	23 (29)
Low HDL cholesterold	11 (14)
High LDL cholesterole	21 (27)

aHypertension was defined as a systolic BP of ≥ 140 mm Hg, diastolic BP of ≥ 90 mm Hg, or the need for an antihypertensive agent.

bHyperuricemia was defined as a serum uric acid level of ≥ 7.0 mg/dl or the need for an antihyperuricemic agent.

cHypertriglyceridemia was defined as a serum triglyceride level of ≥ 150 mg/dl or the need for an antidyyslipidemic agent.

dLow HDL cholesterol was defined as a serum HDL cholesterol level of ≤ 40 mg/dl in men and ≤ 50 mg/dl in women or the need for an antidyyslipidemic agent.

eHigh LDL cholesterol was defined as a serum LDL cholesterol level of ≥ 140 mg/dl or the need for an antidyyslipidemic agent.
positively correlated (β=0.31, P=0.005).

change in eGFR, eGFR values from 1 month after the start of tolvaptan to the final follow-up were used. The regression line was calculated from these values, and the rate of eGFR change was calculated.

To assess our variables of interest, the average daily dose of tolvaptan was calculated by dividing the actual prescribed dose by the actual administration period as follows: (actual prescribed dose)/(total follow-up day−withdrawal day). Therefore, the average daily dose of tolvaptan is reduced in patients with a longer tolvaptan withdrawal period. Using the body weight measurement that was recorded at the time of admission at the start of tolvaptan administration, we calculated the weight-adjusted average daily dose of tolvaptan. To calculate height-adjusted TKV (htTKV), TKV was divided by the height recorded at admission at the start of tolvaptan administration.

Statistical Analysis
Categoric variables are reported as numbers and percentages, unless otherwise stated. Data were evaluated using the chi-squared test, t test, Mann–Whitney U test, or one-way ANOVA. The Pearson correlation coefficient was used to determine the bivariate relationship between the weight-adjusted average daily dose of tolvaptan (mg/kg per day) and the annual percentage change in eGFR (percentage per year). Univariate and multivariate linear regression analyses were performed to investigate factors related to the percentage change in eGFR. Factors with a P value <0.1 in the univariate analysis were included in the multivariate analysis, as were general factors, such as sex, age, and eGFR. The sample size calculation was determined on the basis of the assumption that a minimum of five subjects were required for regression analysis (7,8). JMP Pro version 14.1.0 (SAS Institute, Cary, NC) was used for statistical analysis. P<0.05 was considered statistically significant.

Results
The patient characteristics are presented in Table 1. The baseline eGFR was 53.2±24.5 ml/min per 1.73 m². The average initial dosage of tolvaptan was 56.9 mg/d, and the weight-adjusted average daily dosage of tolvaptan was 1.14 mg/kg per day. The mean follow-up duration was 2.52 years. Although three patients showed large decline in eGFR (Supplemental Figure 1), no AKI occurred in any patient during the follow-up period. The bivariate analysis indicated that the weight-adjusted average daily dose of tolvaptan was significantly and positively correlated with the percentage change in eGFR (β=0.31, P=0.005; Figure 2). In the univariate analysis, the weight-adjusted average daily dose of tolvaptan (β=0.31, P=0.005), hemoglobin (β=0.22, P=0.05), eGFR (β=0.35, P=0.002), urine protein (β=−0.43, P<0.001), and htTKV (β=−0.36, P=0.0009) were significantly associated with the percentage change in eGFR (Table 2). In the multivariate analysis, the weight-adjusted average daily dose of tolvaptan (β=0.22, P=0.03), hemoglobin (β=0.28, P=0.02), eGFR (β=0.31, P=0.02), and urine protein (β=−0.31, P=0.002) were again identified as significant independent predictors (Table 2). However, htTKV was not identified as a significant independent predictor in the multivariate analysis (β=−0.02, P=0.87; Table 2).

Discussion
This study aimed to determine whether the integrated weight-adjusted average daily dose of tolvaptan affected
the renal prognosis in a dose-dependent manner among patients with ADPKD. In this study, although the doses were increased to 120 mg according to tolerability, the patients sometimes reduced or stopped medication due to aquaretic-related symptoms (9). Thus, the integrated dose derived from the actual prescription quantity was used, and the weight-adjusted doses were calculated as the index. In the TEMPO 3:4 study, the mean dosage of tolvaptan was 99 mg/d in the entire population, but was 95 mg/d in the Japanese subpopulation (10). However, the inhibitory effects on both the increase in TKV and the reduction in eGFR were stronger in the Japanese subpopulation than that in the entire population (1,10). Because the mean body weight was 79.47 kg in the entire population, and 64.94 kg in the Japanese subpopulation, the mean weight-adjusted doses were 1.25 mg/kg per day and 1.46 mg/kg per day, respectively. Although differences by ethnicity should also be considered, these findings suggest that the efficacy of tolvaptan is influenced by weight-adjusted doses.

In conclusion, the weight-adjusted average daily dose of tolvaptan was found to be a factor that significantly affected the change in eGFR. Hence, if there is tolerance, increasing the tolvaptan dose to the maximum should be considered.

Disclosures

H. Kataoka and T. Mochizuki are members of an endowed department sponsored by Chugai Pharmaceutical Co., JMS Co., Kyowa Hakko Kirin Co., and Otsuka Pharmaceutical Co. T. Mochizuki received travel fees and honoraria for lectures from Otsuka Pharmaceutical Co. All remaining authors have nothing to disclose.

Funding

This study was supported, in part, by Japan Society for the Promotion of Science KAKENHI grant number JP 20K17261 (to T. Akihisa).

Acknowledgments

We express our sincere appreciation to all of the patients, collaborating physicians, and other medical staff for their important contributions to this study.

Author Contributions

T. Akihisa, H. Kataoka, and S. Manabe were responsible for formal analysis and validation; T. Akihisa, H. Kataoka, and T. Mochizuki were responsible for methodology; T. Akihisa, S. Makabe, M. Sato, Y. Ushio, K. Watanabe, and R. Yoshida were responsible for data curation; T. Akihisa and S. Manabe were responsible for visualization; T. Akihisa, S. Manabe, and T. Mochizuki wrote the original draft; T. Akihisa and T. Mochizuki were responsible for funding acquisition; H. Kataoka, S. Manabe, and T. Mochizuki conceptualized the study, were responsible for investigation, and reviewed and edited the manuscript; S. Manabe was responsible for project administration; T. Mochizuki and K. Tsuchiya were responsible for resources; and K. Nitta and K. Tsuchiya provided supervision.

Supplemental Material

This article contains the following supplemental material online at http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0017342020/ - DC Supplemental.

Supplemental Figure 1. The changes of eGFR and SCr in three patients who showed large decline in eGFR.

References

1. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS: TEMPO 3:4 Trial Investigators: Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 367: 2407–2418, 2012 https://doi.org/10.1056/NEJMoA1205511
2. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Koch G, Ouyang J, McCauley RD, Blais JD, Czerwiec FS, Sergeyeva O; REPRISE Trial Investigators: Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N Engl J Med 377: 1930–1942, 2017 https://doi.org/10.1056/NEJMoA1703051
3. Kim SR, Hasunuma T, Sato O, Okada T, Kondo M, Azuma J: Pharmacokinetics, pharmacodynamics and safety of tolvaptan, a novel, oral, selective nonpeptide AVP V2-receptor antagonist: Results of single- and multiple-dose studies in healthy Japanese male volunteers. Cardiovasc Drugs Ther 25(Suppl 1): S5–S17, 2011 https://doi.org/10.1007/s10557-011-6299-3
4. Shoaf SE, Chapman AB, Torres VE, Ouyang J, Czerwiec FS: Pharmacokinetics and pharmacodynamics of tolvaptan in autosomal dominant polycystic kidney disease: Phase 2 trials for dose selection in the pivotal phase 3 trial. J Clin Pharmacol 57: 906–917, 2017 https://doi.org/10.1002/jcph.880
5. Reif GA, Yamaguchi T, Nivens E, Fujioki H, Pinto CS, Wallace DP: Tolvaptan inhibits ERK-dependent cell proliferation, C1β secretion, and in vitro cyst growth of human ADPKD cells stimulated by vasopressin. Am J Physiol Renal Physiol 301: F1005–F1013, 2011 https://doi.org/10.1152/ajprenal.00243.2011
6. Aihara M, Fujioki H, Mizuguchi H, Hattori K, Ohmoto K, Ishikawa M, Nagano K, Yamamura Y: Tolvaptan delays the onset of end-stage renal disease in a polycystic kidney disease model by suppressing increases in kidney volume and renal injury. J Pharmacol Exp Ther 349: 258–267, 2014 https://doi.org/10.1124/jpet.113.112325
7. Austin PC, Steyerberg EW: The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 68: 627–636, 2015 https://doi.org/10.1016/j.jclinepi.2014.12.014
8. Curtis MJ, Bond RA, Spina D, Abluvialia A, Alexander SP, Giembycz MA, Gilchrist A, Hoyer D, Insel PA, Izzo AA, Lawrence AJ, MacEwan DJ, Moon LD, Wonacott S, Weston AH, McGrath JC: Experimental design and analysis and their reporting: New guidance for publication in BJP. Br J Pharmacol 172: 3461–3471, 2015 https://doi.org/10.1111/bph.12856
9. Devuyst O, Chapman AB, Shoaf SE, Czerwiec FS, Blais JD: Tolvaptan inhibits aquaretic-related symptoms following tolvaptan for autosomal dominant polycystic kidney disease: Results from TEMPO 3:4. Kidney Int Rep 2: 1132–1140, 2017 https://doi.org/10.1016/j.ekir.2017.07.004
10. Muto S, Kawano H, Higashihara E, Narita I, Ubara Y, Matsuoka T, Ouyang J, Torres VE, Horie S: The effects of tolvaptan on autosomal dominant polycystic kidney disease patients: A subgroup analysis of the Japanese patient subset from TEMPO 3:4 trial. Clin Exp Nephrol 19: 867–877, 2015 https://doi.org/10.1007/s10157-015-1086-2

Received: December 11, 2020 Accepted: May 18, 2021