Closed Self-Similar Solutions to Flows by Negative Powers of Curvature

Shanze Gao

Received: 25 March 2023 / Accepted: 31 August 2023 / Published online: 26 September 2023
© Mathematica Josephina, Inc. 2023

Abstract
In some warped product manifolds including space forms, we consider closed self-similar solutions to curvature flows whose speeds are negative powers of mean curvature, Gauss curvature, and other curvature functions with suitable properties. We prove such self-similar solutions, not necessarily strictly convex for some cases, must be slices of warped product manifolds. A new auxiliary function is the key of the proofs.

Keywords Self-similar solution · Rigidity of hypersurface · Warped product manifold · Curvature flow

Mathematics Subject Classification 53C24 · 53C45 · 53E10

1 Introduction
In this paper, a closed, immersed hypersurface \(X: M^n \to \mathbb{R}^{n+1} \) \((n \geq 2)\) satisfying equation

\[
F^\beta(\mathcal{W}(x)) = \langle X(x), \nu(x) \rangle
\]

is called a closed self-similar solution, where \(F \) is a suitable function of the shape operator \(\mathcal{W} \) of \(M^n \), \(\beta \neq 0 \) is a constant, and \(\nu \) denotes the unit outward normal vector. In fact, this hypersurface is corresponding to the self-similar solution to curvature flow which satisfies

\[
\partial_t X = -\text{sign}(\beta) F^\beta \nu.
\]
Flow by negative powers of curvature (also called inverse curvature flow) refers to the flow with \(\beta < 0 \) and \(F(W) = f(\kappa(W)) \) where \(f \) is a 1-homogeneous (homogeneous of degree 1) function of principal curvatures \(\kappa = (\kappa_1, \ldots, \kappa_n) \). This type of flow has been studied by many researchers (see \([14, 16, 18, 21, 26, 27, 29]\) etc.). Urbas \([28]\) also considered noncompact self-similar solutions to flow by negative powers of Gauss curvature.

Self-similar solutions to mean curvature flow and Gauss curvature flow have been widely studied. Although closed self-similar solution is not unique in general (see example of Angenent \([4]\)), it must be a sphere provided suitable conditions. Huisken \([17]\) showed that any closed self-similar solution to mean curvature flow (also known as self-shrinker) must be a sphere if mean curvature is nonnegative. Colding–Minicozzi \([9]\) introduced a variational characterization of self-shrinker and proved spheres are the only closed \(F \)-stable self-shrinkers. For flow by powers of Gauss curvature, Brendle–Choi–Daskalopoulos \([8]\) proved closed and strictly convex self-similar solutions must be spheres when the power \(\alpha > 1/(n + 2) \). For curvature flow with general \(F \) and positive power \(\beta \), uniqueness results of closed self-similar solution were obtained by McCoy \([22, 23]\), Gao–Li–Ma \([12]\) and Gao–Li–Wang \([13]\) etc.

The concept of self-similar solution can be extended to hypersurfaces in warped product manifolds. Let \(\overline{M}^{n+1} = (0, \bar{r}) \times_{\lambda} N^n \) be a warped product manifold with metric

\[
\bar{g} = dr \otimes dr + \lambda^2(r) g_N,
\]

where \((N^n, g_N)\) is a closed Riemannian manifold and \(\lambda(r) \) is a smooth, positive function of \(r \in (0, \bar{r}) \). It is known that \(\lambda(r) \partial_r \) is a conformal vector field on \(\overline{M}^{n+1} \). A hypersurface \(M^n \) in \(\overline{M}^{n+1} \) is also called a self-similar solution if it satisfies

\[
F^\beta(W(x)) = \bar{g}(\lambda(r(x)) \partial_r(x), v(x)).
\]

In fact, we can generate a family of hypersurfaces by \(M^n \) and \(\lambda \partial_r \) which satisfies the equation of corresponding curvature flow (see \([1, 10]\) for details). The ambient space \(\overline{M} \) is actually Euclidean space \(\mathbb{R}^{n+1} \), sphere \(S^{n+1} \) or hyperbolic space \(\mathbb{H}^{n+1} \) if \(N^n = S^n \) and \(\lambda(r) = r, \sin r \) or \(\sinh r \) correspondingly.

Self-shrinkers in warped product manifolds were studied by Wu \([31]\), Alias–de Lira–Rigoli \([1]\) etc. Ma and the author \([10]\) considered closed self-similar solutions to flow with some general \(F \) and positive power \(\beta \) in warped product manifolds. And they proved uniqueness of solutions if the ambient space is a hemisphere. Later, Gao–Li–Wang \([13]\) extended the uniqueness result to more general \(F \) which is an inverse concave function of principal curvatures.

For flow by negative powers of the \(k \)th mean curvature \((k < n) \), Ma and the author \([11]\) proved uniqueness of closed, strictly convex self-similar solutions in a class of warped product manifolds.

In this paper, we consider closed self-similar solutions which are not necessarily strictly convex. A hypersurface is called \textit{mean convex} if its mean curvature \(H = \frac{1}{n}(\kappa_1 + \cdots + \kappa_n) \) is positive everywhere.
Theorem 1 Suppose that \(\mathcal{M}^{n+1} = [0, \bar{r}) \times_\lambda N^n \) is a warped product manifold satisfying
\[
\text{Ric}_N \geq (n-1)(\lambda'^2 - \lambda''') g_N,
\]
and \(M^n \) be a closed, immersed hypersurface in \(\mathcal{M}^{n+1} \). If \(M^n \) is mean convex and satisfies
\[
H - \alpha = \bar{g} (\lambda \partial_r, \nu),
\]
where \(\alpha > 0 \) is a constant, then \(M^n \) is a slice \(\{ r_0 \} \times N^n \) for some \(r_0 \in (0, \bar{r}) \).

Remark 1 Compared with Corollary 2 in [11], instead of strictly convex, \(M^n \) is mean convex in the above theorem. It is easy to check that \(\mathbb{R}^{n+1}, S^{n+1} \) and \(\mathbb{H}^{n+1} \) satisfy the assumption of \(M \).

Let \(\Gamma \subset \mathbb{R}^n \) be an open, convex, symmetric cone with vertex at the origin, which contains the positive cone \(\Gamma_+ = \{ (\kappa_1, \ldots, \kappa_n) \in \mathbb{R}^n : \kappa_i > 0 \text{ for any } i = 1, \ldots, n \} \).

Condition 2 We assume that \(F(\mathcal{W}) = f(\kappa(\mathcal{W})) \) satisfies the following properties in \(\Gamma \):

(i) \(f \) is a smooth, symmetric function of the eigenvalues \(\kappa \) of \(\mathcal{W} \).
(ii) \(f \) is positive in \(\Gamma \) and normalized such that \(f(1, \ldots, 1) = 1 \).
(iii) \(f \) is strictly increasing in each argument, i.e., \(\frac{\partial f}{\partial \kappa_i} > 0 \) in \(\Gamma \) for any \(i = 1, \ldots, n \).
(iv) \(f \) is 1-homogeneous (homogeneous of degree 1), i.e., \(f(s\kappa) = sf(\kappa) \) for any \(s > 0 \) and \(\kappa \in \Gamma \).
(v) The following inequalities hold in \(\Gamma \):
\[
\sum_{i=1}^n \frac{\partial f}{\partial \kappa_i} \geq 1, \quad \sum_{i=1}^n \frac{\partial f}{\partial \kappa_i} \kappa_i^2 \geq f^2, \quad \text{and} \quad f - \frac{\partial f}{\partial \kappa_i} \kappa_i \geq 0 \text{ for any } i = 1, \ldots, n.
\]

Theorem 3 Suppose that \(\mathcal{M}^{n+1} = [0, \bar{r}) \times_\lambda N^n \) is a warped product manifold, where \((N, g_N) \) is a closed Riemannian manifold with constant sectional curvature \(c \) and \(\lambda(r) \) satisfies \(\lambda'(r) > 0 \) and
\[
\frac{\lambda(r)''}{\lambda(r)} + \frac{c - \lambda(r)'^2}{\lambda(r)^2} \geq 0. \tag{1}
\]
Let \(M^n \) be a closed, immersed hypersurface in \(\mathcal{M}^{n+1} \) satisfying
\[
F^{-\alpha} = \bar{g}(\lambda \partial_r, \nu),
\]
where \(\alpha > 0 \) is a constant. If principal curvatures \(\kappa \) of \(M^n \) are in a cone \(\Gamma \) such that Condition 2 holds, then \(M^n \) is a slice \(\{ r_0 \} \times N^n \) for some \(r_0 \in (0, \bar{r}) \).
Remark 2 The assumption of the ambient space \overline{M} in the above theorem is stronger than it in Theorem 1. In fact, inequality (1) implies

$$(\lambda'^2 - \lambda'' \lambda) g_N \leq c g_N = \frac{1}{n-1} \text{Ric}_N.$$

It can be checked that space forms \mathbb{R}^{n+1}, \mathbb{S}^{n+1} and \mathbb{H}^{n+1} still satisfy the assumption and readers may refer to [6] for more spaces satisfying (1).

Let $\sigma_k(\kappa)$ denote the kth elementary symmetric polynomial of principal curvatures $\kappa = (\kappa_1, \ldots, \kappa_n)$ of hypersurface M^n, i.e.,

$$\sigma_k(\kappa) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \kappa_{i_1} \cdots \kappa_{i_k}.$$

The kth mean curvature is defined by $H_k = \sigma_k(\kappa)/(n \choose k)$.

The following corollary of Theorem 3 holds under weaker convexity assumption of M^n (compared with Corollary 5 in [11]).

Corollary 4 Suppose \overline{M}^{n+1} is the same in Theorem 3 and M^n is a closed, immersed hypersurface in \overline{M}^{n+1}. If M^n satisfies $H_{k+1} > 0$ and

$$H_k^{-\alpha} = \tilde{g}(\lambda \partial_r, \nu),$$

where $\alpha > 0$ is a constant and $2 \leq k \leq n - 1$, then M^n is a slice $\{r_0\} \times N^n$ for some $r_0 \in (0, \tilde{r})$.

If M^n is strictly convex, we have the following corollaries from Theorem 3.

Corollary 5 Suppose \overline{M}^{n+1} is under the same assumption of Theorem 3 and M^n is a closed, immersed hypersurface in \overline{M}^{n+1}. If M^n is strictly convex and satisfies

$$K^{-\alpha} = \tilde{g}(\lambda \partial_r, \nu),$$

where K is Gauss curvature and $\alpha > 0$ is a constant, then M^n is a slice $\{r_0\} \times N^n$ for some $r_0 \in (0, \tilde{r})$.

We say that f is inverse concave if the function

$$f^*(\kappa_1, \ldots, \kappa_n) := \frac{1}{f(\frac{1}{\kappa_1}, \ldots, \frac{1}{\kappa_n})}$$

is concave. It is known that a class of functions are concave and inverse concave in [2], for example $(\frac{\sigma_k}{\sigma_l})^{\frac{1}{l-k}}$ where σ_k is the kth elementary polynomials and $0 \leq l < k \leq n$. These convexity conditions of functions appear naturally in the study of curvature flows and other fully nonlinear PDEs (see, for example, [2, 5, 22]).
Corollary 6 Suppose \mathcal{M}^{n+1} is under the same assumption of Theorem 3 and M^n is a closed, immersed hypersurface in \mathcal{M}^{n+1}. If M^n is strictly convex and satisfies

$$F^{-\alpha} = \bar{g}(\lambda, \partial_r, \nu),$$

where F is concave, inverse concave and satisfies Condition 2 (i)–(iv), $\alpha > 0$ is a constant, then M^n is a slice $\{r_0\} \times N^n$ for some $r_0 \in (0, \bar{r})$.

There are some connections between self-similar solutions and hypersurfaces of constant curvatures. Brendle [6] proves closed and embedded hypersurfaces with constant mean curvature in a class of warped product manifolds must be umbilic. The case of hypersurfaces with constant H_k is showed by Brendle and Eichmair [7]. In these papers, Heintze–Karcher type inequality and Minkowski type formula in warped product manifolds are established, which can also be used to obtain uniqueness of self-similar solutions (see [11]). Rigidity problems of hypersurfaces in warped product manifolds are also considered in [19, 32] etc.

Now, we briefly recall the methods in [11] and compare them with the proofs in this paper. For example, let us consider the case $\mathcal{M}^{n+1} = \mathbb{R}^{n+1}$ and M^n satisfies

$$\frac{1}{n}(\kappa_1 + \cdots + \kappa_n)$$

is normalized mean curvature.

One method in [11] is based on an integral inequality

$$0 = \int_{M^n} \text{div}(HX^T - \nabla (X, \nu)) \geq -(n - 1) \int_{M^n} \langle X, \nabla H \rangle.$$ \hspace{1cm} (3)

If M^n is strictly convex, using (2), we know

$$\langle X, \nabla H \rangle = - \frac{1}{\alpha} \langle X, \nu \rangle^{-\frac{a+1}{\alpha}} \sum_{i} \kappa_i \langle X, e_i \rangle^2 \leq 0.$$ \hspace{1cm} (4)

Combing (3) and (4), we know M^n is a sphere.

The other method uses the Heintze-Karcher inequality for embedded and mean convex M^n

$$\int_{M^n} \langle X, \nu \rangle \leq \int_{M^n} \frac{1}{H}$$

and the Minkowski formula

$$|M^n| = \int_{M^n} H \langle X, \nu \rangle.$$

Combining with (2), we have

$$\int_{M^n} H^{-\alpha} \leq \int_{M^n} H^{-1}$$ \hspace{1cm} (5)
and
\[|M^n| = \int_{M^n} H^{1-\alpha}. \]

If \(\alpha > 1 \), using Hölder inequality, we obtain
\[
\int_{M^n} H^{1-\alpha} \int_{M^n} H^{-1} \leq |M^n| \int_{M^n} H^{-\alpha}.
\]

From (5) and (6) we know that equality occurs in the above inequality. This implies \(M^n \) is a sphere.

However, it seems that these integral methods can not be generalized for general curvature function \(F \), except for the case \(F = H_k \). This motivates us to seek a proof via the maximum principle.

In fact, for (2), we introduce an auxiliary quantity
\[
P = \frac{|X|^2}{2} - \frac{\alpha}{\alpha + 1} \langle X, \nu \rangle^{\frac{\alpha+1}{\alpha}},
\]
which is similar to Weinberger’s \(P \)-function [30] in spirit. We notice
\[
\Delta P = \langle X, \nu \rangle^{\frac{\alpha+1}{\alpha}} (|h|^2 - nH^2) + \frac{1}{\alpha} \langle X, \nu \rangle^{\frac{1-\alpha}{\alpha}} \sum_i (nH - \kappa_i) \kappa_i \langle X, \epsilon_i \rangle^2
\geq \frac{1}{\alpha} \langle X, \nu \rangle^{\frac{1-\alpha}{\alpha}} \sum_i (nH - \kappa_i) \kappa_i \langle X, \epsilon_i \rangle^2,
\]
where \(|h|^2 = \sum_i \kappa_i^2 \) and the last step is from the Cauchy–Schwarz inequality. Thus, function \(P \) is subharmonic if \(M^n \) is strictly convex, which implies \(M^n \) is a sphere. Proofs of Theorems 1 and 3 are based on this observation.

The paper is organized as follows. In Sect. 2, we show some examples of functions satisfying Condition 2 and recall some facts of hypersurfaces in warped product manifolds. In Sect. 3, we derive a basic formula of auxiliary function \(P \). In Sect. 4, we present the proof of Theorem 1. In Sect. 5, we prove Theorem 3 and its corollaries.

2 Preliminaries

Throughout this paper, repeated indexes will be added up from 1 to \(n \) unless otherwise stated.

2.1 Function \(F \) and Its Defining Cone \(\Gamma \)

We recall some facts of symmetric functions for later calculations (see [15, 25] for example).
If matrix $W = (h_{ij})$ is diagonal, i.e., $h_{ij} = \kappa_i \delta_{ij}$ for any $1 \leq i, j \leq n$, then the following formula holds for function $F(W) = f(\kappa(W))$:

$$\frac{\partial F}{\partial h_{ij}} b_{ij} = \frac{\partial f}{\partial \kappa_p} b_{pp},$$

for any symmetric matrix $B = (b_{ij})$.

If function $f = f(\kappa)$ is 1-homogeneous, differentiating $f(s\kappa) = sf(\kappa)$ with respect to s gives

$$\frac{\partial f}{\partial \kappa_i} \kappa_i = f.$$

Let $\sigma_k(\kappa)$ denote the kth elementary symmetric polynomial of $\kappa = (\kappa_1, \ldots, \kappa_n)$, i.e.,

$$\sigma_k(\kappa) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \kappa_{i_1} \cdots \kappa_{i_k}.$$

And let $\sigma_k(\kappa|i)$ denote $\sigma_k(\kappa)$ with $\kappa_i = 0$ for a fixed i. We also set $\sigma_0(\kappa) = 1$ and $\sigma_k(\kappa) = 0$ if $k > n$ or $k < 0$.

The Gårding’s cone is defined by

$$\Gamma_k := \{ \kappa \in \mathbb{R}^n | \sigma_m(\kappa) > 0 \text{ for any } 1 \leq m \leq k \}.$$

We also consider the following cone:

$$\tilde{\Gamma}_k := \left\{ \kappa \in \mathbb{R}^n \bigg| \begin{array}{l} \sigma_m(\kappa) > 0 \text{ for any } 1 \leq m \leq k - 1, \\ \sigma_k(\kappa|i) > -(k - 1)\sigma_k(\kappa) \text{ for any } 1 \leq i \leq n \end{array} \right\},$$

where $1 \leq k \leq n - 1$.

Combining $\sum_{i=1}^n \sigma_k(\kappa|i) = (n - k)\sigma_k(\kappa)$, inequalities $\sigma_k(\kappa|i) > -(k - 1)\sigma_k(\kappa)$ implies $\sigma_k(\kappa) > 0$ which means $\tilde{\Gamma}_k \subset \Gamma_k$. Furthermore, noticing $\sigma_k(\kappa|i) \geq 0$ in Γ_{k+1}, we know $\tilde{\Gamma}_k$ has the following relation with Gårding’s cones: $\Gamma_{k+1} \subset \tilde{\Gamma}_k \subset \Gamma_k \subset \tilde{\Gamma}_{k-1}$.

Now we show some examples of F satisfying Condition 2.

Example 1 Function $H_k^{\frac{1}{k}}(\kappa)$ in $\tilde{\Gamma}_k$, where $H_k(\kappa) = \frac{1}{(k)!} \sigma_k(\kappa)$ and $1 \leq k \leq n - 1$.

We only show Condition 2 (v) since (i)–(iv) are easy to be checked. If $f = H_k^{\frac{1}{k}}$, then

$$\sum_{i=1}^n \frac{\partial f}{\partial \kappa_i} \kappa_i = \frac{1}{k} H_k^{\frac{1-k}{k}} \sum_{i=1}^n \frac{\partial H_k}{\partial \kappa_i} \kappa_i = H_k^{\frac{1-k}{k}} H_{k-1} \geq 1,$$

where the last inequality is from MacLaurin inequality. And

$$\sum_{i=1}^n \frac{\partial f}{\partial \kappa_i} \kappa_i^2 = \frac{1}{k} H_k^{\frac{1-k}{k}} \sum_{i=1}^n \frac{\partial H_k}{\partial \kappa_i} \kappa_i^2 = \frac{n}{k} H_1 H_k^{\frac{1}{k}} - \frac{n-k}{k} H_k^{\frac{1-k}{k}} H_{k+1}.$$
From inequality $H_1H_k \geq H_{k+1}$ and MacLaurin inequality, we know
\[
\sum_{i=1}^{n} \frac{\partial f}{\partial \kappa_i} \kappa_i^2 \geq H_1H_k \frac{1}{k} \geq H_k^2 = f^2.
\]
We notice, for any index $1 \leq i \leq n$ fixed,
\[
f - \frac{\partial f}{\partial \kappa_i} \kappa_i = H_k \left(1 - \frac{\sigma_{k-1}(\kappa|i)\kappa_i}{k\sigma_k(\kappa)} \right).
\]
From $\sigma_k(\kappa) = \sigma_k(\kappa|i) + \sigma_{k-1}(\kappa|i)\kappa_i$ and the definition of $\tilde{\Gamma}_k$, we know
\[
1 - \frac{\sigma_{k-1}(\kappa|i)\kappa_i}{k\sigma_k(\kappa)} = \frac{(k-1)\sigma_k(\kappa) + \sigma_k(\kappa|i)}{\sigma_k(\kappa)} > 0.
\]
Thus, we know $H_k^{1/2}(\kappa)$ in $\tilde{\Gamma}_k$ satisfies Condition 2.

Remark 3 For function $H_k^{1/2}$, almost all requirements in Condition 2 hold in Γ_k except the inequality $f - \frac{\partial f}{\partial \kappa_i} \kappa_i \geq 0$ for any $1 \leq i \leq n$. In fact, there are examples showing that Γ_k is not sufficient. For the case $n = 3$ and $k = 2$, if $\kappa_1 = -\frac{1}{2}$, $\kappa_2 = 1$ and $\kappa_3 = \frac{3}{2}$, we can check such $\kappa \in \Gamma_2$ but $f - \frac{\partial f}{\partial \kappa_3} \kappa_3 < 0$ for $f = H_2^{1/2}$.

Example 2 Function $\sigma_n^{1/2}(\kappa)$ in $\Gamma_n = \Gamma_+$. Inequalities $\sum_{i=1}^{n} \frac{\partial f}{\partial \kappa_i} \geq 1$ and $\sum_{i=1}^{n} \frac{\partial f}{\partial \kappa_i} \kappa_i^2 \geq f^2$ can be checked similar to Example 1. If the defining cone $\Gamma = \Gamma_+$, $f - \frac{\partial f}{\partial \kappa_i} \kappa_i \geq 0$ follows from
\[
f - \frac{\partial f}{\partial \kappa_i} \kappa_i = \sum_{j=1}^{n} \frac{\partial f}{\partial \kappa_j} \kappa_j - \frac{\partial f}{\partial \kappa_i} \kappa_i = \sum_{j \neq i} \frac{\partial f}{\partial \kappa_j} \kappa_j > 0.
\]

Example 3 Concave and inverse concave function F in Γ_+ which satisfies Condition 2 (i)–(iv).

We only need to ensure inequalities $\sum_{i=1}^{n} \frac{\partial f}{\partial \kappa_i} \geq 1$ and $\sum_{i=1}^{n} \frac{\partial f}{\partial \kappa_i} \kappa_i^2 \geq f^2$. The proofs can be found in [3, Lemmas 4 and 5], and we show them for the readers’ convenience. Since f is concave and 1-homogeneous, we have
\[
1 = f(1, \ldots, 1) \leq f(\kappa) + \frac{\partial f}{\partial \kappa_i}(\kappa)(1 - \kappa_i) = \sum_{i} \frac{\partial f}{\partial \kappa_i}(\kappa).
\]
Let $\kappa^* = (\kappa_1^*, \ldots, \kappa_n^*)$ where $\kappa_i^* = \frac{1}{\kappa_i}$ for $1 \leq i \leq n$. Since f is also inverse concave, i.e., $f^*(\kappa_1, \ldots, \kappa_n) = \frac{1}{f(\kappa_1, \ldots, \kappa_n)}$ is concave, we have

$$1 \leq \sum_i \frac{\partial f^*}{\partial \kappa_i}(\kappa^*) = \frac{1}{(f(\kappa))^2} \frac{\partial f}{\partial \kappa_i}(\kappa)^2.$$

The following proposition shows that the class of functions satisfying Condition 2 has some convexity properties.

Proposition 7 If f_1 and f_2 satisfy Condition 2 in the same defining cone $\Gamma \supset \Gamma_+$, then $\lambda f_1 + (1 - \lambda) f_2$ and $f_1^\lambda f_2^{1-\lambda}$ also satisfy Condition 2 in Γ for any $\lambda \in [0, 1]$.

Proof Denote $f = \lambda f_1 + (1 - \lambda) f_2$ and $\tilde{f} = f_1^\lambda f_2^{1-\lambda}$.

First, we show f satisfies Condition 2. It is clear for (i)-(iv), so we only check (v). By direct calculations, we know

$$\sum_{i=1}^n \frac{\partial f}{\partial \kappa_i} = \lambda \sum_{i=1}^n \frac{\partial f_1}{\partial \kappa_i} + (1 - \lambda) \sum_{i=1}^n \frac{\partial f_2}{\partial \kappa_i} \geq \lambda + 1 - \lambda = 1$$

and

$$f - \frac{\partial f}{\partial \kappa_i} \kappa_i = \lambda \left(f_1 - \frac{\partial f_1}{\partial \kappa_i} \kappa_i \right) + (1 - \lambda) \left(f_2 - \frac{\partial f_2}{\partial \kappa_i} \kappa_i \right) \geq 0.$$

And

$$\sum_{i=1}^n \frac{\partial f}{\partial \kappa_i} \kappa_i^2 = \lambda \sum_{i=1}^n \frac{\partial f_1}{\partial \kappa_i} \kappa_i^2 + (1 - \lambda) \sum_{i=1}^n \frac{\partial f_2}{\partial \kappa_i} \kappa_i^2 \geq \lambda f_1^2 + (1 - \lambda) f_2^2 \geq f^2,$$

where we use Jensen’s inequality in the last step.

Next, we consider \tilde{f}. It is obvious for (i), (ii), and (iv). From

$$\frac{\partial \tilde{f}}{\partial \kappa_i} = \tilde{f} \left(\frac{\lambda \frac{\partial f_1}{\partial \kappa_i}}{f_1} + \frac{1 - \lambda \frac{\partial f_2}{\partial \kappa_i}}{f_2} \right),$$

we see

$$\frac{\partial \tilde{f}}{\partial \kappa_i} > 0 \quad \text{and} \quad \tilde{f} - \frac{\partial \tilde{f}}{\partial \kappa_i} = \tilde{f} \left(\frac{1 - \lambda \frac{\partial f_1}{\partial \kappa_i}}{f_1} + \frac{\lambda \frac{\partial f_2}{\partial \kappa_i}}{f_2} \right) > 0$$

for any $i = 1, \ldots, n$. Furthermore,

$$\sum_{i=1}^n \frac{\partial \tilde{f}}{\partial \kappa_i} \geq \lambda \left(\frac{f_2}{f_1} \right)^{1-\lambda} + (1 - \lambda) \left(\frac{f_1}{f_2} \right)^\lambda \geq 1.$$
and
\[\sum_{i=1}^{n} \frac{\partial \tilde{f}}{\partial \kappa_i} \kappa_i^2 \geq \tilde{f}(\lambda f_1 + (1 - \lambda) f_2) \geq \tilde{f}^2, \]
where Young’s inequality is used in the last steps of above inequalities. \(\square\)

Proposition 7 implies more examples satisfying Condition 2 on suitable cones larger than the positive cone. For instance, \(\lambda H_{k-1} + (1 - \lambda) H_k\) and \(H_k^{\lambda} H_{1-\lambda}^{1-\lambda}\) both satisfy Condition 2 in \(\tilde{\Gamma}_k\) for any \(\lambda \in (0, 1)\).

2.2 Hypersurface in Warped Product Manifold

Let \(M^n\) be a hypersurface in \(\overline{M}^{n+1}\). We will calculate under an orthonormal frame \(\{e_1, \ldots, e_n\}\) on \(M^n\) in this paper. Let \((h_{ij})\) denotes the second fundamental form. Under the orthonormal frame, \((h_{ij})\) equals to the matrix of shape operator \(\mathcal{W}\). Then
\[\nabla_i \nu = h_{ij} e_j. \]

By Codazzi equation,
\[\nabla_i h_{jl} = \nabla_l h_{ij} + \left[\bar{R}_{ijkl} \right], \]
where \(\bar{R}_{ijkl} = \bar{R}(v, e_i, e_l, e_j)\) and \(\bar{R}(\cdot, \cdot, \cdot, \cdot)\) is the \((0, 4)\)-Riemannian curvature tensor of \(\overline{M}^{n+1}\).

Now we assume \(\overline{M}^{n+1} = [0, \bar{r}) \times \lambda N^n\) is a warped product manifold. Let \(\bar{\nabla}\) denote the Levi–Civita connection of \(\overline{M}^{n+1}\). The vector field \(\lambda(r) \partial_r\) satisfies
\[\bar{\nabla}_\xi \lambda(r) \partial_r = \lambda'(r) \xi \]
for any vector field \(\xi\) on \(\overline{M}^{n+1}\).

Define \(\Phi(r) := \int_0^r \lambda(s) \mathrm{d}s\). Then \(\bar{\nabla} \Phi = \lambda \partial_r\).

Lemma 8 If \(\overline{M}^{n+1} = [0, \bar{r}) \times \lambda N^n\) satisfies
\[\text{Ric}_N \geq (n - 1)(\lambda'^2 - \lambda'' \lambda^2) g_N, \]
then \(\bar{\text{Ric}}(\nu, \lambda \partial_r \nu) \leq 0\), where \(\partial_r^T = \partial_r - \bar{g}(\partial_r, \nu) \nu\).

Proof A proof can be found in [11, p. 699]. \(\square\)

If we further assume \((N, g_N)\) has constant sectional curvature \(c\). Then
\[\bar{R}_{ijkl} = - \left(\frac{\lambda''}{\lambda} + \frac{c - \lambda'^2}{\lambda^2} \right) \left(\delta_{ij} r_l - \delta_{jl} r_i \right) r_v, \]
where \(r_i = \bar{g}(\partial_r, e_i)\) and \(r_v = \bar{g}(\partial_r, \nu)\) (see [24], or [11] for convenience).
3 Auxiliary Function P

In this section, we assume that hypersurface M^n in $\overline{M}^{n+1} = [0, \bar{r}) \times \lambda \, N^n$ satisfies

$$F^{-\alpha} = \bar{g}(\lambda \partial_r, \nu).$$

Denote $u := \bar{g}(\lambda \partial_r, \nu)$. And we still use Φ to denote its pull-back on M^n by the immersion $M^n \to \overline{M}^{n+1}$.

By direct calculation,

$$\nabla_j u = h_{jl} \bar{g}(\lambda \partial_r, e_l), \quad (9)$$

$$\nabla_i \nabla_j u = \nabla_i h_{jl} \bar{g}(\lambda \partial_r, e_l) + \lambda' h_{ij} - h_{il} h_{jl} \bar{g}(\lambda \partial_r, \nu) = \nabla_j h_{ij} \bar{g}(\lambda \partial_r, e_l) + \bar{R}_{vijli} \bar{g}(\lambda \partial_r, e_l) + \lambda' h_{ij} - u h_{il} h_{jl}. \quad (10)$$

It is also easy to check that

$$\nabla_j \Phi = \bar{g}(\lambda \partial_r, e_j), \quad (11)$$

$$\nabla_i \nabla_j \Phi = \lambda' \delta_{ij} - h_{ij} \bar{g}(\lambda \partial_r, \nu) = \lambda' \delta_{ij} - u h_{ij}, \quad (12)$$

where δ_{ij} is the Kronecker symbol.

Define operator $\mathcal{L} := F^{ij} \nabla_i \nabla_j$, where $F^{ij} = \frac{\partial F}{\partial h_{ij}}$. We consider the following auxiliary function

$$P := \Phi - \frac{\alpha}{\alpha + 1} u^{\frac{\alpha + 1}{\alpha}}. \quad (13)$$

Here $u > 0$ is confirmed by $F^{-\alpha} = u$ and assumption of $F > 0$ in Theorems 1 and 3.

Lemma 9 Function P satisfies the following equality:

$$\mathcal{L} P = \lambda' \left(\sum_i F^{ii} - 1 \right) + u^{\frac{\alpha + 1}{\alpha}} \left(F^{ij} h_{ij} h_{jl} - F^2 \right) - u^{\frac{1}{\alpha}} F^{ij} \bar{R}_{vijli} \bar{g}(\lambda \partial_r, e_l)$$

$$+ \frac{1}{\alpha} \bar{g}(\lambda \partial_r, \nabla \log u) - \frac{1}{\alpha} u^{\frac{\alpha + 1}{\alpha}} F^{ij} \nabla_i \log u \nabla_j \log u. \quad (14)$$

Proof By equality (10), we obtain

$$\mathcal{L} u = \bar{g}(\lambda \partial_r, \nabla F) + F^{ij} \bar{R}_{vijli} \bar{g}(\lambda \partial_r, e_l) + \lambda' F - u F^{ij} h_{ij} h_{jl}. \quad (15)$$
Moreover, using equation $F^{-\alpha} = u$,

\[
\frac{\alpha}{\alpha + 1} \mathcal{L} u^{\alpha+1} = \frac{1}{\alpha} \mathcal{L} u + \frac{1}{\alpha} u^{1-\alpha} F^{ij} \nabla_i u \nabla_j u
\]

\[
= \frac{1}{\alpha} \bar{g}(\lambda \partial_r, \nabla F) + u^{1-\alpha} \bar{R}_{ijkl} \bar{g}(\lambda \partial_r, e_l) + \lambda'
\]

\[
- u^{\alpha+1} F^{ij} h_{ij} + \frac{1}{\alpha} u^{1-\alpha} F^{ij} \nabla_i u \nabla_j u.
\]

By equality (12) and equation $F^{-\alpha} = u$, we know

\[
\mathcal{L} \Phi = F^{ij} (\lambda' \delta_{ij} - u h_{ij}) = \lambda' \sum_i F^{ii} - u F = \lambda' \sum_i F^{ii} - u^{\alpha+1} F^2.
\] (14)

Combining (13) and (14), we obtain

\[
\mathcal{L} P = \mathcal{L} \Phi - \frac{\alpha}{\alpha + 1} \mathcal{L} u^{\alpha+1} = \lambda' \left(\sum_i F^{ii} - 1 \right) + u^{\alpha+1} \left(F^{ij} h_{ij} - F^2 \right)
\]

\[
- u^{1-\alpha} F^{ij} \bar{R}_{ijkl} \bar{g}(\lambda \partial_r, e_l) + \frac{1}{\alpha} u^{1-\alpha} F^{ij} \nabla_i u \nabla_j u.
\]

\[
= \lambda' \sum_i F^{ii} - u^{\alpha+1} F^2.
\] (15)

4 Proof of Theorem 1

For case $F = H$, tensor $F^{ij} = \frac{1}{n} \delta_{ij}$ and operator $\mathcal{L} = \frac{1}{n} \Delta$. Then

\[
\sum_i F^{ii} = 1,
\]

\[
F^{ij} h_{ij} - F^2 = \frac{1}{n}|h|^2 - H^2
\]

and

\[
F^{ij} \bar{R}_{ijkl} \bar{g}(\lambda \partial_r, e_l) = \frac{1}{n} \bar{\text{Ric}}(\nu, \lambda \partial_r^T),
\]

where $\bar{\text{Ric}}$ denotes the Ricci curvature tensor of \bar{M} and ∂_r^T is the tangent part of ∂_r. Thus Lemma 9 gives

\[
\frac{1}{n} \Delta P = u^{\alpha+1} \left(\frac{1}{n}|h|^2 - H^2 \right) - \frac{1}{n} u^{\frac{1}{\alpha}} \bar{\text{Ric}}(\nu, \lambda \partial_r^T) + \frac{1}{\alpha} \bar{g}(\lambda \partial_r, \nabla \log u)
\]

\[
- \frac{1}{n\alpha} u^{\alpha+1} |\nabla \log u|^2.
\] (15)
Notice
\[\nabla P = \lambda \partial^T_r - u^\frac{1}{\alpha} \nabla u. \]

Then
\[\bar{g}(\nabla P, \nabla \log u) = \bar{g}(\lambda \partial_r, \nabla \log u) - u^\frac{\alpha + 1}{\alpha} |\nabla \log u|^2. \quad (16) \]

From (15) and (16), we obtain
\[\Delta P - \frac{n}{\alpha} \bar{g}(\nabla P, \nabla \log u) = u^\frac{\alpha + 1}{\alpha} (|h|^2 - nH^2) - u^\frac{1}{\alpha} \bar{\text{Ric}}(v, \lambda \partial^T_r) \\
+ \frac{n - 1}{\alpha} u^\frac{\alpha + 1}{\alpha} |\nabla \log u|^2. \]

Lemma 8 shows \(u^\frac{1}{\alpha} \bar{\text{Ric}}(v, \lambda \partial^T_r) \leq 0 \). Then inequality \(|h|^2 - nH^2 \geq 0\) indicates
\[\Delta P - \frac{n}{\alpha} \bar{g}(\nabla P, \nabla \log u) \geq \frac{n - 1}{\alpha} u^\frac{\alpha + 1}{\alpha} |\nabla \log u|^2 \geq 0. \]

By the strong maximum principle, we know \(P \) is constant. Then the above inequality shows \(\nabla u = 0 \) for \(n > 1 \). Consequently, \(\nabla r = \partial^T_r = \frac{1}{\lambda} (\nabla P + u^\frac{1}{\alpha} \nabla u) = 0 \) everywhere in \(M^n \). This implies \(r \) is constant in \(M^n \) which means \(M^n \) is a slice.

5 Proofs of Theorem 3 and Its Corollaries

Proof of Theorem 3 From equality (8),
\[F^{ij} \bar{R}_{vji} \bar{g}(\lambda \partial_r, e_i) = -\lambda \left(\frac{\lambda''}{\lambda} + \frac{c - \lambda'^2}{\lambda^2} \right) F^{ij} (\delta_{ij} r_l - \delta_{ji} r_i) r_l r_i \\
= -u \left(\frac{\lambda''}{\lambda} + \frac{c - \lambda'^2}{\lambda^2} \right) \left((\sum r_i^2) \left(\sum F^{ii} \right) - F^{ij} r_i r_j \right). \]

At any fixed point, we notice
\[(\sum r_i^2) \left(\sum F^{ii} \right) - F^{ij} r_i r_j = (\sum r_i^2) \left(\sum f^i \right) - f^i r_i^2 \geq 0, \quad (17) \]

where \(f^i := \frac{\partial f}{\partial x_i} > 0 \). And the equality occurs if and only if \(\partial^T_r = 0 \).

Combining with the assumption
\[\frac{\lambda''}{\lambda} + \frac{c - \lambda'^2}{\lambda^2} \geq 0, \]
we obtain

\[F_{ij} \tilde{R}_{jl} \tilde{g}(\lambda \partial_r, e_i) \leq 0. \]

Thus, from Lemma 9, we have the following inequality:

\[
\mathcal{L} P \geq \lambda'(\sum_i F^{ii} - 1) + u^{\frac{a+1}{\alpha}} (F^{ij} h_{ij} h_{jl} - F^2) + \frac{1}{\alpha} \tilde{g}(\lambda \partial_r, \nabla \log u)
\]

\[- \frac{1}{\alpha} u^{\frac{a+1}{\alpha}} F^{ij} \nabla_i \log u \nabla_j \log u. \]

Since

\[\nabla P = \lambda \partial_r T - u^{\frac{a+1}{\alpha}} \nabla \log u, \]

we have

\[u^{-\frac{a+1}{\alpha}} \tilde{g}(\lambda \partial_r, \nabla P) = u^{-\frac{a+1}{\alpha}} \lambda^2 \sum_i r_i^2 - \tilde{g}(\lambda \partial_r, \nabla \log u)\]

and

\[F^{ij} \nabla_i \log u \nabla_j P = \lambda F^{ij} r_j \nabla_i \log u - u^{\frac{a+1}{\alpha}} F^{ij} \nabla_i \log u \nabla_j \log u. \]

Then we know

\[
\mathcal{L} P + \frac{1}{\alpha} u^{-\frac{a+1}{\alpha}} \tilde{g}(\lambda \partial_r, \nabla P) - \frac{1}{\alpha} F^{ij} \nabla_i \log u \nabla_j P
\]

\[\geq \lambda'(\sum_i F^{ii} - 1) + u^{\frac{a+1}{\alpha}} (F^{ij} h_{ij} h_{jl} - F^2)
\]

\[+ \frac{1}{\alpha u} (\lambda^2 F \sum_i r_i^2 - \lambda F^{ij} r_j \nabla_i u). \]

At any fixed point, choosing a frame such that \(h_{ij} = \kappa_i \delta_{ij} \) and using equality (9), we have

\[\lambda^2 F \sum_i r_i^2 - \lambda F^{ij} r_j \nabla_i u = \lambda^2 \sum_i (f - f^i \kappa_i) r_i^2. \]

We also know

\[\sum_i F^{ii} = \sum_i f^i \]

and

\[F^{ij} h_{ij} h_{jl} = f^i \kappa_i^2. \]
Thus, the following inequality holds
\[
\mathcal{L}P + \frac{1}{\alpha} u^{-\frac{\alpha+1}{\alpha}} \tilde{g}(\lambda \partial_r, \nabla P) - \frac{1}{\alpha} F^{ij} \nabla_i \log u \nabla_j P \\
\geq \lambda' \left(\sum_i f^i - 1 \right) + u^{\frac{\alpha+1}{\alpha}} (f^i \kappa_i^2 - f^2) + \frac{\lambda^2}{\alpha u} \sum_i (f - f^i \kappa_i) r_i^2.
\]

Assumption \(\lambda' > 0 \) and Condition 2 (v) imply
\[
\mathcal{L}P + \frac{1}{\alpha} u^{-\frac{\alpha+1}{\alpha}} \tilde{g}(\lambda \partial_r, \nabla P) - \frac{1}{\alpha} F^{ij} \nabla_i \log u \nabla_j P \geq 0.
\]

From \(\frac{\partial f}{\partial \kappa_i} > 0 \) in \(\Gamma \), we know \(F^{ij} \) is positive definite. By the strong maximum principle, we know \(P \) is constant. It indicates inequality (17) is actually equality. Then \(\partial^2 T = 0 \) implies \(M^n \) is a slice.

Proof of Corollary 4 By Lemma 2.3 in [20], we know that principal curvatures \(\kappa \in \Gamma_{k+1} \subset \tilde{\Gamma}_k \) from \(H_{k+1} > 0 \). From Example 1 in Sect. 2, we finish the proof by letting \(F = H_k \) and \(\Gamma = \tilde{\Gamma}_k \) in Theorem 3.

Proofs of Corollary 5 and 6 See Examples 2 and 3 in Sect. 2 and use Theorem 3.

Acknowledgements The author would like to thank Professor Xianfeng Wang for her interest of the work and valuable comments. And the author was supported in part by the Natural Science Basic Research Program of Shaanxi Province (Program No. 2022JQ-065), Youth Innovation Team of Shaanxi Universities, Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSZ012) and the Fundamental Research Funds for the Central Universities (Grant Nos. GK202307001, GK202202007). The author is also grateful to the anonymous reviewers for helpful comments.

Data availability Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

1. Alías, L.J., de Lira, J.H., Rigoli, M.: Mean curvature flow solitons in the presence of conformal vector fields. J. Geom. Anal. 30(2), 1466–1529 (2020)
2. Andrews, B.: Pinching estimates and motion of hypersurfaces by curvature functions. J. Reine Angew. Math. 608, 17–33 (2007)
3. Andrews, B., McCoy, J., Zheng, Yu.: Contracting convex hypersurfaces by curvature. Calc. Var. Partial Differ. Equ. 47(3-4), 611–665 (2013)
4. Angenent, S. B.: Shrinking doughnuts, Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989). In: Program Nonlinear Differential Equations Application, 7, Birkhäuser, Boston, pp. 21–38 (1992)
5. Bian, B., Guan, P.: A microscopic convexity principle for nonlinear partial differential equations. Invent. Math. 177(2), 307–335 (2009)
6. Brendle, S.: Constant mean curvature surfaces in warped product manifolds. Publ. Math. Inst. Hautes Études Sci. 117, 247–269 (2013)
7. Brendle, S., Eichmair, M.: Isoperimetric and Weingarten surfaces in the Schwarzschild manifold. J. Differ. Geom. 94(3), 387–407 (2013)
8. Brendle, S., Choi, K., Daskalopoulos, P.: Asymptotic behavior of flows by powers of the Gaussian curvature. Acta Math. 219(1), 1–16 (2017)
9. Colding, T.H., Minicozzi, W.P., II.: Generic mean curvature flow I: generic singularities. Ann. Math. 175(2), 755–833 (2012)
10. Gao, S., Ma, H.: Self-similar solutions of curvature flows in warped products. Differ. Geom. Appl. 62, 234–252 (2019)
11. Gao, S., Ma, H.: Characterizations of umbilic hypersurfaces in warped product manifolds. Front. Math. China 16(3), 689–703 (2021)
12. Gao, S., Li, H., Ma, H.: Uniqueness of closed self-similar solutions to σ_k^a-curvature flow. NoDEA Nonlinear Differ. Equ. Appl. 25(5), 45 (2018)
13. Gao, S., Li, H., Wang, X.: Self-similar solutions to fully nonlinear curvature flows by high powers of curvature. J. Reine Angew. Math. 783, 135–157 (2022)
14. Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32(1), 299–314 (1990)
15. Gerhardt, C.: Closed Weingarten hypersurfaces in Riemannian manifolds. J. Differ. Geom. 43(3), 612–641 (1996)
16. Gerhardt, C.: Non-scale-invariant inverse curvature flows in Euclidean space. Calc. Var. Partial Differ. Equ. 49(1–2), 471–489 (2014)
17. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990)
18. Jin, Y., Wang, X., Wei, Y.: Inverse curvature flows of rotation hypersurfaces. Acta Math. Sin. 37(11), 1692–1708 (2021)
19. Kwong, K.-K., Lee, H., Pyo, J.: Weighted Hsiung–Minkowski formulas and rigidity of umbilical hypersurfaces. Math. Res. Lett. 25(2), 597–616 (2018)
20. Li, H., Wei, Y., Xiong, C.: A note on Weingarten hypersurfaces in the warped product manifold. Int. J. Math. 25(14), 1450121 (2014)
21. Li, H., Wang, X., Wei, Y.: Surfaces expanding by non-concave curvature functions. Ann. Glob. Anal. Geom. 55(2), 243–279 (2019)
22. McCoy, J.A.: Self-similar solutions of fully nonlinear curvature flows. Ann. Sci. Norm. Super. Pisa Cl. Sci. 10(2), 317–333 (2011)
23. McCoy, J.A.: Contracting self-similar solutions of nonhomogeneous curvature flows. J. Geom. Anal. 31(6), 6410–6426 (2021)
24. O’Neill, B.: Semi-Riemannian Geometry: With Applications to Relativity, Pure and Applied Mathematics, vol. 103. Academic Press, Inc., New York (1983)
25. Spruck, J.: Geometric aspects of the theory of fully nonlinear elliptic equations. In: Global Theory of Minimal Surfaces, Clay Mathematics Proceeding, 2. American Mathematical Society, Providence, pp. 283–309 (2005)
26. Urbas, J.: On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205(3), 355–372 (1990)
27. Urbas, J.: An expansion of convex hypersurfaces. J. Differ. Geom. 33(1), 91–125 (1991)
28. Urbas, J.: Complete noncompact self-similar solutions of Gauss curvature flows. II. Negative powers. Adv. Differ. Equ. 4(3), 323–346 (1999)
29. Wei, Y.: New pinching estimates for inverse curvature flows in space forms. J. Geom. Anal. 29(2), 1555–1570 (2019)
30. Weinberger, F.H.: Remark on the preceding paper of the Serrin. Arch. Rational Mech. Anal. 43, 319–320 (1971)
31. Wu, G.: The self-shrinker in warped product space and the weighted Minkowski inequality. Proc. Am. Math. Soc. 145(4), 1763–1772 (2017)
32. Wu, J., Xia, C.: On rigidity of hypersurfaces with constant curvature functions in warped product manifolds. Ann. Glob. Anal. Geom. 46(1), 1–22 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.