2500. Incidence of Herpes Zoster in the Pre- and Post-Vaccine Era: Do Trends Differ Between Blacks And Whites?

Kathleen Dooling, MD, MPH1; Joahn Zhang, PhD2; Angelia Guo, MPH2

Background. Herpes zoster (HZ) incidence in blacks is 25%–65% lower than in whites in the United States. Since 2007 and the widespread introduction of Zostavax (ZVL), studies report plateauing or decreasing HZ incidence in the United States among persons ≥60 years. We examined HZ incidence and ZVL coverage trends by race among Medicare beneficiaries, in the pre- and post-vaccine era.

Methods. We used administrative health claims from a 5% sample of Medicare beneficiaries ≥65 years. We defined incidence cases as HZ in the first diagnostic position, with no HZ code in the previous year, among beneficiaries enrolled in Part A and B, from 1993 to 2015. We calculated incidence of first HZ episode by dividing the number of cases by the total number of person-years (p-y). A case was a censoring event. We used Poisson regression to compare HZ incidence by race before and after 2007. We calculated vaccine coverage by dividing the total number of persons with at least one ZVL claim in the Medicare Part B file by the number of eligible enrollees.

Results. We identified 266,745 first HZ episodes. Prior to 2007, HZ incidence increased among both blacks and whites. Although incidence was double in whites vs. blacks (10.3 vs. 5.0 cases/1000 p-y), the rate of increase was similar (P = 0.75). From introduction of ZVL to 2015, HZ incidence decreased 1.8%/year in whites and did not change significantly in blacks (P < 0.001) (figure). By 2015, ZVL uptake in Medicare among blacks was less than half that among whites (7.3% vs. 19.9%).

Conclusion. Incidence of HZ increased at a similar rate for black and white Medicare beneficiaries in the pre-vaccine era. In the post-vaccine era, incidence has decreased among both races, but is still higher among whites.

Disclosures. All authors: No reported disclosures.

2501. Impact of Influenza A and B Infection on Stem Cell Transplant Patients During the 2017–2018 Season at a Single Center

Khind Sandar, MD, PhD1; Stephen G. Jenkins, PhD2; Tsiporah B. Shore, MD3; Koen Van Besen, MD, PhD4; Michael J. Satlin, MD, MS5; Lars F Westblad, PhD6; Rosemary Soave, MD, FIDSA7; and Rafael Harpar, MD8; 1DWD, Centers for Disease Control and Prevention, Atlanta, Georgia, 2Centers for Disease Control and Prevention, Atlanta, Georgia, 3Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, 4Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, 5Infectious Diseases, Vanderbilt University, Nashville, Tennessee, 6Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, 7Departments of Pediatrics and Medicine, Vanderbilt University, Nashville, Tennessee, 8Division of Infectious Diseases, Vanderbilt University, Nashville, Tennessee.

Session: 255. Virology Pothourri Saturday, October 6, 2018: 12:30 PM

Background. Seasonal influenza causes significant morbidity and mortality on HSCT recipient. The 2017–2018 influenza has been characterized in the United States by prolonged high rates of both influenza A (IAV) and B (IBV) and low vaccine effectiveness. The aim of this study was to assess the impact of both IAV and IBV during 2017–2018 influenza season on a cohort of stem cell transplant (SCT) recipients at Weill Cornell- NYP.

Methods. We reviewed charts of HSCT recipients that were diagnosed with influenza by PCR on nasopharyngeal swabs. Demographics, clinical and microbiological data, and outcomes were collected. The study was approved by Weill Cornell Institutional review board.

Results. From September 2017 to March 2018, 30 stem cell transplant recipient at NYP were diagnosed with influenza. IAV cases peaked in January (11 cases) while IBV infected-patients were equally distributed from December to March. Infected subject were likely to be male (n = 20, 66.6%) with mean age of 57 ± 12 (IAV) vs 59 ± 11 (IBV). Nine patients had received auto SCT and 21 patient allo SCT. Most common symptoms were cough (present in all patients), fever (28/30), nausea, dyspnea. Patient received oseltamivir (for 5 or 10 days) in 28/30 cases, with one patient developing resistance under treatment. Interestingly both IAV and IBV caused lower respiratory tract infection (LRTI, 7 cases) with severe pneumonia (IAV 1 cases, IBV 2 cases) and intubation. In 2 IAV and 4 IBV cases IV was detected in the BCT. 13 subjects (56%) with a LRTI and 4 (14%) subjects with LRTI did not received the influenza vaccine for the season. Prolonged shedding of influenza on oseltamivir treatment was documented in 7 patients.

Conclusion. Both IAV and IBV are serious threat in SCT population. Vaccination and oseltamivir are useful tools. Resistance testing should be considered in subjects with prolonged disease.

Disclosures. S. G. Jenkins, Merck: Grant Investigator, Grant recipient. M. J. Satlin, Harcy Diagnostics: Consultant, Research support. Allergan: Grant Investigator, Grant recipient. Merck: Grant Investigator, Grant recipient. Bionmerieux: Grant Investigator, Grant recipient. Achaogen: Consultant, Consulting fee. L. F. Westblad, Accelerate Diagnostics: Grant Investigator, Grant recipient. Bionmerieux: Grant Investigator, Grant recipient. Allergan: Grant Investigator, Grant recipient. Merck: Grant Investigator, Grant recipient.

2502. Host Susceptibility to Andes Hantavirus Infection Associates to a Single Nucleotide Polymorphism at the αVβ3 Integrin of the vH3 Integrin

Constanza Martínez-Valdebenito, MSc; Marcela Ferre, MD, MPH; Nicole Le Corre, MD, PhD1; Jennifer Angulo, PhD; Cecilia Val, PhD; Pablo Vial, MD; Gregory Mertz, MD, FIDSA2; Franciaca Valcarce, MD2; Hector Galeno, MSc; Eliecer Villagra, TM3; Lilian Vera, MD4; Natalia Lagos, TM4; Natalia Becerra, TM4; Judith Mora, MD5 and Marcelo Lopez-Lastra, PhD; 1Dpto Infeccologia e Imunologia Pediatrica, Pontificia Universidad Catolica de Chile, Santiago, Chile, 2Dpto de Infectologia e E Instituto Inmunologia Pediactica, Pontificia Universidad Catolica de Chile, Santiago, Chile, 3Dpto de Infectologia e E Instituto Inmunologia Pediactica, Pontificia Universidad Catolica de Chile, Santiago, Chile, 4Centro de Genes y Genomics, Universidad del Desarrollo, Santiago, Chile, 5Pediatrics, University Del Desarrollo, Santiago, Chile, 6Internal Medicine, University of New Mexico, Albuquerque, New Mexico, 7Universidad del Desarrollo, Santiago, Chile.

Session: 255. Virology Pothourri Saturday, October 6, 2018: 12:30 PM

Background. ANDV is etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in Chile. Transmission occurs mainly by exposure to aerosolized excretes of infected rodents, person-to-person transmission has also been reported. ANDV infected endothelial cell through αvβ3 integrin at plexin-semaporphin-integrin (PSI) domain. In vitro assays establish that the change from leucine to proline, at residues 33 in PSI domain inhibits ANDV recognition of integrin. Here we assessed the risk that represents a polymorphism leucine to proline (L33P) and the association to susceptibility to ANDV.

Methods. For risk assessment, 74 cases and 105 controls (exposed but not infected) were genotyped by Taqman assay, epidemiological and demographic data were recorded. We also evaluated SNP distribution at general population, infected population (serum collection) and 11 prospectively diagnosed ANDV cases. A regression model was used to assess environmental or person to person risks factors of hantavirus infection either in presence or absence of the “susceptible” or “protective” genotypes.

Results. In cases and controls the susceptible (TT) genotype (Leucine) was distributed in an 89.2 and 60%, respectively (Figure 1). The protective genotype (CC) was present in 10% of cases but present in 11.4% in exposed controls. We estimated the Odds ratio (OR), through a logistic model, first using only previously described risk activities and after adding the genotype TT; the OR increased from 6.2 to 12.6. Cases and control at same access (access to abandoned place) showed that controls have a 57% of TT genotype, meanwhile in cases was 91%, with an OR of 7.3. For a second common exposure activities (handle woods) the controls had a 59.4% of TT genotype, meanwhile for cases 85%. For general and infected population both did not show statistical differences in allele distribution, and we detected a 1.7% of CC genotype in the infected population (Figure 2). We did not detected CC genotypes in the eleven prospectived ANDV cases.

Conclusion. There was association between this particular SNP and infection susceptibility to ANDV. We highlight the relevance of genetic background in host-virus interaction. Nevertheless, other factors such as innate immune system or viral variability must be explored to fully understand the disease pathogenesis.

Disclosures. C. Martinez-Valdebenito, FONDECYT1161197: Grant Investigator, Educational grant. ACT1408: Grant Investigator, Research grant. M. Ferre, FONDECYT1161197: Grant Investigator, Research grant. ACT1408: Grant Investigator, Research grant. N. Le Corre, FONDECYT1161197: Grant Investigator, Research grant. ACT1408: Grant Investigator, Research grant. J. Angulo, FONDECYT1161197: Grant Investigator, Research grant. ACT1408: Grant Investigator, Research grant.
and Matthew Biggerstaff, PhD, MPH; 1Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia; 2Tufts University School of Medicine, Boston, Massachusetts; 3Utah Department of Health, Salt Lake City, Utah; 4Salt Lake County Health Department, Salt Lake City, Utah

Session: 255. Virology Potpourri
Saturday, October 6, 2018: 12:30 PM

Background. Influenza surveillance provides national indicators of influenza season severity in the United States. Given the variability in influenza activity from season to season and geographically, real-time state-specific estimates of seasonal influenza severity may help states tailor their public health communications and resource allocation during influenza seasons. Nationally, the 2017–2018 season was categorized as high severity; we developed disease severity thresholds to characterize the severity of the influenza season in Utah.

Methods. We applied the Moving Epidemic Method for a rapid mid-season assessment of weekly influenza season severity to 3 priority Utah indicators with at least 5 seasons of data: percent of outpatient visits for influenza-like illness, state-wide rate of reported influenza-associated hospitalizations, and percent positive influenza tests from the National Respiratory and Enteric Virus Surveillance System. This method calculates intensity thresholds (ITs) by determining the geometric mean and standard deviation of the 30 highest weekly values, distributed evenly across included seasons, and calculating one-sided confidence intervals. We established 3 ITs that corresponded to a 50% (IT\(_1\)), 10% (IT\(_2\)), and 2% (IT\(_3\)) chance of exceedance during a given influenza season. For each surveillance indicator, we graphed the weekly data against the calculated severity thresholds.

Results. We preliminarily categorized the 2017–2018 season as well as the 2014–2015 season, as high severity because ≥2 priority indicators peaked above their IT\(_2\) (Figures 1–3). All other seasons in Utah (beginning in 2012–2013) were categorized as moderate severity because ≥2 indicators peaked between IT\(_1\) and IT\(_2\).

Conclusion. The Utah seasonal severity assessment matched the national level assessment for all seasons. Understanding state-specific severity assessments during and after a season may help to inform state’s influenza preparedness activities.

Disclosures. All authors: No reported disclosures.

Figure 3.

2504. Influenza Surveillance and Outbreaks in the US Department of Veterans Affairs (VA): 2017–2018 Season
Cynthia Lucero-Obusan, MD; Patricia Schirmer, MD; Gina Oda, MS1; and Mark Holodny, MD, FIDSA, FSHEA1, 2; 1Public Health Surveillance and Research, Department of Veterans Affairs, Palo Alto, California; 2Stanford University, Stanford, California

Session: 255. Virology Potpourri
Saturday, October 6, 2018: 12:30 PM

Background. VA conducts yearly surveillance for seasonal influenza. VA’s large elderly population is at higher risk for influenza complications, including hospitalization and death. Herein we summarize 2017–2018 national influenza activity, outbreak and vaccination data for VA.

Methods. Hospitalization, outpatient visits, influenza testing, and antivirals were obtained from VA data sources (October 1, 2017–March 31, 2018) and compared with prior seasons. Vaccines were captured from August 1, 2017 and vaccination percentage calculated based on VA users for each fiscal year. Outbreak data were collected from VA Issue Briefs and email survey of Facility Infection Preventionists.

Results. Surveillance metrics for 6 seasons are presented (Table). In 2017–2018, high-dose (HD) vaccine increased to 20% of total vaccine given. Outpatient visits, hospitalizations, confirmed cases and antiviral prescriptions were more than double that of previous seasons. 46 distinct outbreaks at 35 different VA hospitals were also reported this season. Among 31,611 laboratory-confirmed influenza (LCI) cases, Veterans with vaccination >14 days prior to LCI were significantly more likely to have an influenza-related hospitalization than those with no documented vaccination (782, 29% vs. 5,888, 21%, P < 0.01) and were less likely to have received HD vaccine compared with the overall VA patient population (375; 14% vs. 365,357; 20%, P < 0.01) (figure).

Conclusion. The 2017–18 season was the most severe since VA surveillance was initiated in 2009. HD vaccine use increased over the seasons evaluated, but overall vaccination levels were stable. Nearly 90% of those with LCI had no VA-documented vaccination this season, although some may have received vaccine outside VA. Overall hospitalization rate for Veterans with LCI was high (22%). Vaccination did not reduce the likelihood of being hospitalized with influenza; however, HD vaccine may have afforded some additional protection compared with standard dose.

Table. VA Influenza Surveillance Measures, 2012–2013 through 2017–2018 Seasons.

VA Influenza Metrics	2012–13	2013–14	2014–15	2015–16	2016–17	2017–18
Total Vaccinationsa	1,095,553 (79%)	1,064,796 (75%)	1,034,370 (75%)	774,795 (60%)	727,967 (58%)	812,339 (70%)
High-Dose Vaccine	19,474 (2)	47,394 (2)	101,457 (8)	176,932 (13)	278,154 (13)	365,753 (30)
Outpatient Visits	12,406	7,721	11,251	11,790	10,079	9,599
Hospitalizations	2,509	2,442	4,673	3,267	4,413	8,379
Deaths	72	73	139	79	101	122
Influenza Tests	36,879	44,790	70,895	62,058	73,399	105,252
Total Positive	6,982 (18)	6,095 (14)	11,190 (16)	6,393 (10)	10,739 (13)	31,611 (30)
Influenza A	4,641 (74%)	4,965 (82%)	9,029 (78%)	4,439 (69%)	10,692 (75%)	31,914 (99%)
Influenza B	1,468 (23)	1,080 (17)	2,132 (20)	1,889 (28)	3,252 (24)	5,979 (20)
Ave/Not Specified	72 (3)	51 (3)	91 (1)	79 (1)	97 (1)	312 (1)
Total Antivirals	23,317	38,763	52,629	36,561	52,862	63,969
Inpatient	6,207	4,335	7,509	4,073	8,874	14,692
Outpatient	16,990	34,428	45,120	22,487	24,098	50,277

*Vaccination calculated based on the total number of VA users reported each fiscal year (VSCC Enrollment Cubes).
*Deaths during influenza-coded hospitalization record reviews were not performed to assess whether influenza was documented as a principal or contributing cause of death.