Biotic threats for 23 major non-native tree species in Europe

Elisabeth Pötzelsberger et al.*

For non-native tree species with an origin outside of Europe a detailed compilation of enemy species including the severity of their attack is lacking up to now. We collected information on native and non-native species attacking non-native trees, i.e. type, extent and time of first observation of damage for 23 important non-native trees in 27 European countries. Our database includes about 2300 synthesised attack records (synthesised per biotic threat, tree and country) from over 800 species. Insects (49%) and fungi (45%) are the main observed biotic threats, but also arachnids, bacteria including phytoplasmas, mammals, nematodes, plants and viruses have been recorded. This information will be valuable to identify patterns and drivers of attacks, and trees with a lower current health risk to be considered for planting. In addition, our database will provide a baseline to which future impacts on non-native tree species could be compared with and thus will allow to analyse temporal trends of impacts.

Background & Summary

Hundreds of tree species have been introduced to Europe over the last few hundred years. Initially, non-native tree species were mainly introduced out of curiosity and for ornamental purposes but a considerable number of non-native tree species have also been tested and used for forestry and restoration purposes1. Today, at least 150 non-native trees are grown in European forests with varying importance and area occupied in different regions and countries2. The higher productivity of some non-native trees compared to native tree species or the tolerance of poor soil conditions have been dominating factors in the choice of non-native trees over the last two hundred years. More recently, the search for alternative tree species that can survive and perform well under climate change conditions has become a topic of high importance in forestry1. However, also the concern about potential spread and negative environmental impact of alien species is increasing1. In order to share the extremely diverse knowledge and experience about the benefits, disadvantages or difficulties of growing non-native trees in Europe and to bring together proponents and opponents of non-native trees, the COST Action FP1403 (NNEXT) – ’Non-native tree species for European forests: experiences, risks and opportunities’ was initiated. This European project ran from 2014–2018 and involved 36 member countries.

Due to their non-European origin and thus lacking common evolutionary history, particular non-native tree species traits related to plant defence e.g. secondary metabolites in their leaves, may cause different responses of native and introduced pests and pathogens compared to native trees. Moreover, due to their limited distribution, the forest health situation and dynamics are different to those of native tree species. According to the enemy release hypothesis4 non-native trees may be more vital and productive because their natural enemies are absent and thus give them a competitive advantage. However, a lack of adaptation of non-native trees to European pests and pathogens could pose a high risk of attack for non-native trees. In the course of the NNEXT project, we compiled country specific information on observed biotic threats for non-native trees and their impacts for 27 countries (Fig. 1). The data sources utilised by the entomologists and pathologists of each country encompassed international scientific and grey literature, national forest health databases and national and regional reports. Besides, we also allowed for expert knowledge/observations to be integrated in the assessment of the biotic threats. The information compiled in this database has a high practical and scientific value. Practitioners intending to test new non-native trees may wish to learn about European or invasive insect pests, pathogens or other organisms, which have been observed to impact a specific non-native tree in other European countries and the extent and type of damage encountered. On the scientific side, a lot remains to be learned about the dynamics of pest and pathogen impacts on non-native trees. Previous studies have shown that at the continental scale the main drivers of insect and pathogen attacks on non-native trees are the abundance of a non-native tree, the presence of congeneric species and the time since introduction45. The limitations of those studies are the low
spatial resolution (continental scale) or small study extent and the limited consideration of the extent of damage caused by insects and pathogens. With the data presented here it will be possible to investigate whether drivers of and mechanisms underlying the variability in the level of damage might differ at a finer spatial resolution. By providing important baseline information the data will also serve to compare future data with and thus allow to analyse temporal trends of impacts of pest species on non-native trees. Not least this database allows to identify trees with a lower current health risk to be considered for planting, while we acknowledge that the plant health situation is not static and new or more severe attacks may occur for different reasons, e.g., through imported or naturally arriving non-native pests or pathogens, or caused by climate change (e.g. through better breeding conditions of pests) or by additional host shifts, which may occur with considerably prolonged cultivation time or area of cultivation4,5.

Methods
We designed a Microsoft Excel spreadsheet that allowed for straightforward recording of the occurrence of the biotic threats and their overall impact on specific non-native trees in a country. The required information was NNT (non-native tree), COUNTRY (for which the information was provided), ORGANISM_GROUP, ORDER, FAMILY, GENUS, scientific NAME of the biotic threat, AUTHOR of the taxon name, ORIGIN (continent of origin of the biotic threat), main host species (latter omitted), 1ST_OBSERVATION (year of 1st observation of the damage), PRIM_DAMAGE and SEC_DAMAGE (primary damage, which is the symptom most detrimental to the tree health, and, if any, secondary type of damage, which is an additional symptom), LEVEL of impact on an individual tree, MAX_AREA (maximum continuous area impacted), AGE_CLASS (tree cohort where impact occurs), CONFIDENCE level for the provided information, REF (references), COMMENTS (latter omitted) and DATA_PROVIDER (name and email address). We predefined selection options for the following fields: ORGANISM_GROUP, ORIGIN (multiple selections allowed), PRIM_DAMAGE and SEC_DAMAGE (primary and secondary type of damage), LEVEL, MAX_AREA and AGE_CLASS (Table 1). Because we received multiple entries for PRIM_DAMAGE and mainly for SEC_DAMAGE we transformed these columns in the final table into single columns for all eight damage types where ‘0’ means not observed, ‘1’ observed and ‘2’ observed and originally filled as primary type of damage. To describe the overall data quality, the data providers could choose among three CONFIDENCE levels on the type and severity of impact/damage (‘high’ - Reliable/high quality data sources on impact. The case was reviewed and verified by an expert; ‘medium’ - Reliable/medium quality data sources of impact. The impact was either reported by a reliable forester but could not be reviewed and verified by an expert or it was published in a professional journal, but it is not clear from the publication that it was checked by an expert; ‘low’ - Low quality data sources of impact. Observation was reported by a non-professional or reported in a non-professional journal, without being confirmed by an expert; Table 2). Any missing information was indicated with NA. In the final table, one line/entry was allowed per biotic threat per non-native tree per country. This procedure was chosen as the middle ground between requiring a detailed description of every single attack incidence (not feasible) and simple occurrence recording of a biotic threat on a non-native tree (limited value).

Fig. 1 Number of entries in the biotic threats database by country.
Table 1. Selection options (bold) and supplementary explanations (italic) for the columns PRIM_DAMAGE, SEC_DAMAGE, LEVEL, MAX_AREA, AGE_CLASS. Please mind that the columns PRIM_DAMAGE and SEC_DAMAGE were dropped in the final table and replaced with single columns for all eight damage types where 0 means not observed, 1 observed and 2 observed and originally filled as primary type of damage.

The tree species to be investigated in this study were selected mainly based on their importance in silviculture and the area they occupy, but also some less widely distributed species were included. In total, we requested biotic threats information for 24 non-native trees. One subject non-native tree, *Acaulis melanoxylon* with only one entry from Spain, was discarded due to limited data.

We approached forest damage experts in all 36 European member countries of NNEXT. Country representatives in NNEXT were either themselves forest protection experts or they contacted experts at universities or national forest research stations/institutes. Twenty-nine countries responded to our request to fill the biotic threats database, but only 27 countries eventually filled the database in the requested manner.

The information on the year of 1st observation turned out to be difficult to verify and thus we received many NAs or ambiguous information. Several improvement steps were taken. If “<” than a specified year had been entered, we changed it to the specified year (e.g. <1850 was changed to 1850). If a period was indicated, we changed it to the mean year (e.g. 1890’s was changed to 1895). If any text had been entered that could not be interpreted in a way to yield a certain year, we changed this to NA (e.g. ‘several times’ or ‘since introduction of a non-native tree’). To fill NAs, we took a look at reference of the entry, and whenever the reference was a publication specific to this biotic threat in that country, we took the year of the publication as a substitute. To distinguish such data from the original information on the year of 1st observation received from the data providers, we added the column YEAR_ADDED indicating with 1/0 whether the year was filled from the references or not.

The columns on the type of damage appeared to be filled very heterogeneously by our national experts and left many gaps. We thus decided to homogenize this information across countries based on current knowledge on species autecology and considering the information provided by the country experts. The damage information was also restructured. Instead of primary and secondary type of damage, we introduced eight columns for the eight possible types of damages, where the observation of a type of damage was given as 0 (not observed), 1 observed and 2 observed and originally filled as primary type of damage.
time since introduction of the non-native tree and area of the non-native tree, which have been shown to be main drivers at the European scale4,5.

The database managers added two additional columns. A column SPECIALISATION was introduced to differentiate the host plant niche breadth of species based on the main higher plant lineages6 following the approach published by Gossner et al.7. An organism was assigned ‘monophagous’ if it attacks species of one genus, ‘oligophagous’ if it attacks species of one higher plant lineage (i.e., bryophytes, ferns, gymnosperms, angiosperms: monocots, angiosperms: basal eudicots, angiosperms: eurosids, angiosperms: euasterids) and ‘polyphagous’ if it attacks species from more than one higher plant lineage. The column RELATIVE_ORIGIN categorises the biotic threats into species native to Europe but not at the origin of the non-native tree (‘Europe’), species from same origin as the tree species and not native in Europe (‘origin’), species native in both, Europe and the home range of the non-native tree (‘both’) and species from another region, neither Europe, nor the origin of the non-native tree (‘third’).

Data Records

We provide a database on synthesised biotic threat information for 23 non-native tree species (Abies grandis, Abies nordmanniana, Acer negundo, Ailanthus altissima, Cedrus atlantica, Chamaecyparis lawsoniana, Cryptomeria japonica, Eucalyptus camaldulensis, Eucalyptus globulus, Fraxinus pennsylvanica, Juglans nigra, Larix kaempferi, Larix sibirica, Picea sitchensis, Pinus contorta, Pinus radiata, Pinus strobus, Populus x canadensis, Eucalyptus globulus, Fraxinus pennsylvanica, Juglans nigra, Larix kaempferi, Larix sibirica, Picea sitchensis, Pinus contorta, Pinus radiata, Pinus strobus, Populus x canadensis,

Country	NNT	NAs	Pathogens	Insects	Other	Total number of entries
AT	13	1	51	50	12	113
BA	4	1	6	9	0	15
BE-WAL	4	7	13	11	0	24
BG	9	4	14	16	0	30
CH	11	1	43	78	6	127
CZ	14	1	52	38	4	94
DE	18	0	94	125	25	244
DK	12	3	22	33	0	55
EE	8	0	17	10	4	31
ES	10	2	39	63	3	105
FI	6	1	11	28	4	43
FR	15	7	28	59	15	102
GB	18	1	290	120	4	414
GR	8	1	14	24	1	39
HU	1	11	18	13	7	38
IE	7	2	14	6	2	22
IT	14	5	57	42	8	107
LT	8	1	12	7	2	21
NO	10	0	47	17	11	75
PL	10	7	25	105	2	132
PT	8	0	33	18	1	52
RO	8	6	17	45	4	66
RS	15	0	43	45	9	97
SE	8	1	10	21	2	33
SI	14	1	37	44	1	82
SK	15	3	28	53	2	83
UA	8	4	9	49	2	60

Table 3. NNT - Number of non-native tree species out of the 23 investigated tree species known to occur in a country; NA - Number of cases where non-native trees are known to occur in a country, but are without biotic threats entry in our database; Number of database entries for pathogens, insects and other organisms groups per country and total number of entries per country.
Prunus serotina, Pseudotsuga menziesii, Quercus rubra, Robinia pseudoacacia, Thuja plicata) in 27 European countries. The table contains 2304 entries. The database is available at Figshare in a comma separated values (.csv) format. The data table consists of 28 columns: ID, NNT (non-native tree species), COUNTRY (for which the data are provided), ORGANISM_GROUP, ORDER, FAMILY, GENUS, NAME (scientific name), AUTHOR (author of the scientific name), ORIGIN (continent of origin of the biotic threat), 1ST_OBSERVATION (year of 1st observation), YEAR_ADDED (1 indicates where the year in 1ST_OBSERVATION was filled based on the reference year of publication), LEVEL (level of impact on an individual tree), MAX_AREA (maximum continuous area impacted), AGE_CLASS (tree cohort where impact occurs), CONFIDENCE (confidence level for the provided impact information), SPECIALISATION, RELATIVE_ORIGIN, REF (references), DATA_PROVIDER (name and email address). The full list of references associated with column REF of the data table are provided in a second .csv file.

Table 4. Data quality assessment by the data providers concerning a potential bias in insect pests and pathogens, and steps taken thereafter (contacting of new experts and completing the database). Every data provider agreed to check for new records and fill NAs in existing entries. The bias is evaluated according to the following scheme: 1 – "The data well reflect the situation of the pest/pathogen impact. There is no bias due to prioritization of certain tree species and/or lack of experts’; 2 – "The data on pest/pathogen impact have some bias. The bias due to prioritization of certain tree species and/or lack of experts is, however, minor’; 3 – "The data on pest/pathogen impact have major bias. Due to prioritization of certain tree species and/or lack of experts the data does not reflect the complete situation in the country and thus should not be used in a cross-country analysis’; n.a. – not applicable.

Technical Validation

All country tables were checked by the database managers for formal correctness of the information provided. For example, entries for fungi occurring only on dead plant material or in association with ectomycorrhiza were removed, because they are not the topic of this data collection. The database managers checked all scientific names, families and orders and changed them where necessary to the current accepted name. Fungal nomenclature is particularly complex due to sexual (teleomorph) and asexual (anamorph) states having different names. The new codex rules adopted at the International Botanical Congress in 2011 advocated the abandoning of dual naming system for pleomorphic fungi ("one fungus, one name" convention). Therefore, we took the currently valid name from the online databases for fungal nomenclature, Indexfungorum.org and MycoBank.org, matched
with the most recent relevant taxonomic literature. For animals we used the Fauna Europaea\(^\text{10}\) as baseline and adapted recent changes. ORIGIN was completed and corrected by the database managers.

Two rounds of data quality checks involving the data providers were included in the data acquisition procedure. We calculated simple descriptive statistics for every country to determine the number of entries per non-native tree, the number cases where for a tree occurring in a country (based on NNEXT information\(^\text{2,11}\)) we did not have any biotic threats entries in the database and the number of entries per organism group and non-native tree (compare Table 3). In online-only Table 1 we provide the number of entries per tree species per country. The pre-analysis helped to indicate missing or biased information. A short, country specific report on these findings (stating i.e. whether there was a considerable and unexpected imbalance between insect pests and pathogens and for which non-native trees occurring in the country no records had been provided) was sent to the data providers. The report was accompanied with a formal request to (i) provide a personal assessment of the quality and completeness of the data (bias assessment), (ii) to name options to improve the data quality, (iii) to add new entries and (iv) to fill missing information in existing database entries. For the assessment of a potential bias in the number of entries and level of detail provided for different tree species for example due to missing experts or lacking economic value of a tree species resulting limited recording and knowledge on attacks, we offered the following categories: 1 - “The data well reflect the situation of the pest/pathogen impact. There is no bias due to prioritization of certain tree species and/or lack of experts”; 2 – “The data on pest/pathogen impact have some bias. The bias due to prioritization of certain tree species and/or lack of experts is, however, minor”; 3 – “The data on pest/pathogen impact have major bias. Due to prioritization of certain tree species and/or lack of experts the data does not reflect the complete situation in the country and thus should not be used in a cross-country analysis”; This call for data quality check and completion was successful and led to a large number of new and completed entries. In a second round of quality check, the data providers were given a final chance to update the database and give a final assessment of the data quality/bias (Table 4).

Acknowledgements

This study is based upon work from COST Action FP1403 (NNEXT) “Non-native tree species for European forests: experiences, risks and opportunities - COST Action FP1403 NNEXT country reports” supported by COST (European Cooperation in Science and Technology) (www.cost.eu). M.Z. acknowledges funding by the Ministry of education, science and technological development of the Republic of Serbia, project number: 451-03-68/2020-14/200197. We express our gratitude to additional contributors of the study, Thomas Cech, Milic Curovic, Ecaterina Fodor, Bo Karlsson, Thomas Kirisits, Johan Kroon, Leopold Poljakovic-Pajnik, Vytautas Tamutis, Hermann Voglmayr and Nikolay Zafirov. We also thank Sinisa Andašev, Oscar Godoy, Jean-Marc Henin, Krasimira Petkova and Emil Popov for helping with organising the data collection. We also appreciate the advice on country specific issues given by Marek Barta, Sygrid Launes and Marek Metslaid.

Author contributions

E.P., A.G. M.P., T.Y. and N.L.P. developed the concept and design of the study and organised the data collection, E.P., M.M.G. and L.B. managed the database, homogenised and cleaned the data, E.P. and M.M.G. performed the analysis and all other co-authors collected and synthesised the information for their respective countries. E.P., M.M.G. and L.B. wrote the paper and all other co-authors reviewed the paper.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to E.P.
Elisabeth Pötzensberger1,2,3, Martín M. Gossner4,5,6, Ludwig Beenken7, Anna Gazda6, Michal Petr7, Tiina Ylioka8, Nicola La Porta9,10, Dimitrios N. Avtzi11, Elodie Bay12, Maarten De Groot13, Rein Drenkhan14, Mihai-Leonard Duduman15, Rasmus Enderle16, Margarita Georgieva17, Ari M. Hietala18, Björn Hoppe19, Hervé Jactel20, Kristjan Jarni21, Srđan Keren2,22, Zsolt Keserü23, Marcin Kopolowski15,24,25, Andrej Kormutak26, Maria Josefa Lombardero27, Aljona Lukjanova28, Vitas Marozas29,30, Eduard Mauri30,31, Maria Cristina Montevedri31, Per Holm Nygaard32, Nikica Ogris33,13, Nicolai Olencic34,33, Christophe Orazio35,36, Bernhard Perny37, Glória Pinto37, Michael Power38, Radoslaw Puchalka24,25, Hans Peter Ravn39, Ignacio Sevillano40, Sophie Stroheker41, Paul Taylor41, Panagiotis Tsopefas42, Josef Urban34,35,44,46, Kaljo Voolma45, Marjana Westergren12, Johanna Witzell46, Olga Zborovska47 & Milica Zlatkovic48

1Institute of Silviculture, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan Str. 82, 1190, Wien, Austria. 2European Forest Institute, Platz der Vereinten Nationen 7, 53113, Bonn, Germany. 3Forest Research Institute, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan Str. 82, 1190, Wien, Austria. 4ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland. 5Forest Protection, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland. 6Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Kraków, Poland. 7Forest Research, Forestry Commission, Northern Research Station, Roslin, EH25 9SY, Scotland. 8National Research Institute Finland, Luke, Latokartanokkaari 9, 00790, Helsinki, Finland. 9FEM Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all’Adige, Italy. 10The EFI Project Centre on Mountain Forests MOUNTFOR, Via E. Mach 1, 38010, San Michele all’Adige, Italy. 11Forest Research Institute, Hellenic Agricultural Organization Demeter, Vassilika, 57006, Greece. 12Walloon Public service (SPW), 23 av Maréchal Juin, 5030, Gembloux, Belgium. 13Slovenian Forestry Institute, Vecna pot 2, 1000, Ljubljana, Slovenia. 14Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, 51006, Tartu, Estonia. 15Faculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street 13, 720229, Suceava, Romania. 16Institute for Plant Protection in Horticulture and Forests, Julius Kuehn Institute (Federal Research Centre for Cultivated Plants), Messegeweg 11/12, 38104, Braunschweig, Germany. 17Institute of Entomology, Phytopathology and Game fauna, Forest Research Institute - Bulgarian Academy of Sciences, St. Kliment Ohridski 132, 1756, Sofia, Bulgaria. 18Department of Fungal Plant Pathology in Forestry, Agriculture and Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Inncaomp Steinkjer, skolegata 22, 7713, Steinkjer, Norway. 19Institute for National and International Plant Health, Julius Kuehn Institute (Federal Research Centre for Cultivated Plants), Messegeweg 11/12, 38104, Braunschweig, Germany. 20Biodiversité, Génes et Communautés (BioGeCo), French National Institute for Agriculture, Food, and Environment (INRAE), University Bordeaux, F-33610, Cestas, France. 21Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Vecna pot 83, 1000, Ljubljana, Slovenia. 22Faculty of Forestry, University of Banja Luka, Bulevar vojvode Stepe Stepanovica 75A, 51000, Banja Luka, Bosnia and Herzegovina. 23Forest Research Institute, National Agricultural Research and Innovation Centre, Farkassziget 3, H-4150, Püspökladány, Hungary. 24Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, PL-87-100, Toruń, Poland. 25Centre for Climate Change Research, Nicolaus Copernicus University, Lwowska 1, PL-87-100, Toruń, Poland. 26Institute of Plant Genetics and Biotechnology SAS, Akademicka 2, P. O. Box 39A, SK-950 07, Nitra, Slovakia. 27Unidade de Xestión Ambiental e Forestal Sostible, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain. 28Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics (NICPB), Akadeemia tee 23, 12618, Tallinn, Estonia. 29Faculty of Forest Science and Ecology, Agriculture Academy, Vytautas Magnus University, Studentu 11, Akademija, 53361, Kaunas, Lithuania. 30Mediterranean Facility, European Forest Institute, Sant
Pau Art Nouveau Site, Sant Antoni M. Claret 167, 08025, Barcelona, Spain. 31Centro di Ricerca Forestale e Legno, Council for agricultural research and analysis of the agricultural economy (CREA), Viale Santa Margherita, 80, 52100, Arezzo, Italy. 32Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431, Ås, Norway. 33Marin Drăcea” National Research-Development Institute in Forestry, Station Câmpulung Moldovenesc, Calea Bucovinei, 73bis, 725100, Câmpulung Moldovenesc, Romania. 34EFI Atlantic, European Forest Institute, 69, Route de Arcachon, F-33610, Cestas, France. 35IEFC Institut Européen de la Forêt Cultivée, 69, Route de Arcachon, F-33610, Cestas, France. 36Department of Forest Protection, Austrian Federal Research Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, 1131, Vienna, Austria. 37Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal. 38Coillte Unit 27, Coillte Forest, Danville Business Park, Kilkenny, R95 YT95, Ireland. 39Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958, Frederiksberg C., Germany. 40UCD Forestry, School of Agriculture and Food Science, University College Dublin, UCD Forestry, School of Agriculture and Food Science, University College Dublin, D04 V1W8, Dublin, Ireland. 41Forest Research, Forestry Commission, Northern Research Station, Roslin, Midlothian, EH25 9SY, Great Britain. 42Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization “Demeter”-, Terma Alkmanos, 11528, Athens, Greece. 43Faculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, 613 00, Brno, Czech Republic. 44Siberian Federal University, Svobodny Ave, 79, 660041, Krasnoyarsk, Russia. 45Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, S1006, Tartu, Estonia. 46Southern Swedish Forest Research Center, PO Box 49, SE-230 53, Alnarp, Sweden. 47Polissya Branch, Ukrainian Research Institute of Forestry and Forest Melioration, Neskorenych st. 2, Dovzhik, Ukraine. 48Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Antona Cehova 13d, 21 000, Novi Sad, Serbia. ✉ e-mail: elisabeth.poetzelsberger@boku.ac.at