Bistable colloidal orientation in polar liquid near a charged wall

Yoav Tsori

Department of Chemical Engineering, Ben-Gurion University of the Negev, Israel.

Abstract

We examine the translation and rotation of an uncharged spheroidal colloid in polar solvents (water) near a charged flat surface. We solve the nonlinear Poisson-Boltzmann equation outside of the colloid in two dimensions for all tilt angles θ with respect to the surface normal. The colloid’s size is assumed to be comparable to the Debye’s length and hence field gradients are essential. The Maxwell stress tensor, including the ideal gas pressure of ions, is integrated over the colloid’s surface to give the total force and torque on the colloid. From the torque we calculate the effective angular potential $\mathcal{U}_{\text{ff}}(\theta)$. The classical behavior where the colloid tends to align in the direction perpendicular to the surface (parallel to the field, $\theta = 0$) is retrieved at large colloid-surface distances or small surface potentials. We find a surprising transition whereby at small separations or large potentials the colloid aligns parallel to the surface ($\theta = 90^\circ$). Moreover, this colloid orientation is amplified at a finite value of the aspect ratio. This transition may have important consequences to flow of colloidal suspensions or as a tool to switch layering of such suspensions near a surface.

Keywords: Spheroidal colloid, Orientational transition, Maxwell stress tensor, Torque, Maxwell-Boltzmann equation, Electrolytes.

Introduction

Electric forces occur naturally and play a vital role in liquids, polymers, and biological matter [1, 2]. They can also be a convenient external tool to tune the structure of soft-matter systems. When a liquid droplet is placed in external electric field, it elongates along the field, and the elongation is proportional to the field squared [3, 4]. In liquids and polymers the electric shear forces lead to various interfacial instabilities and order-order transitions [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Moreover, this colloid orientation is amplified at a finite value of the aspect ratio. This transition may have important consequences to flow of colloidal suspensions or as a tool to switch layering of such suspensions near a surface.

Below we restrict ourselves to equilibrium and assume no hydrodynamics flow or electric currents. Recall first the classical forces that act on a solid macroscopic body submerged in a liquid in a gravitational field in the y direction: regardless of the shape of the body, the total force is in the y direction, $\mathbf{F} = F\hat{y}$. This Archimedes force is proportional to the body’s volume and is positive or negative depending on the buoyancy of the body relative to the liquid. In addition, the torque on the body vanishes, $\tau = 0$. This is true because in the gravitational field the pressure varies linearly with y. However, we show that this does not hold in the case of a colloid near a charged surface. While a dielectrophoretic-like force in the y direction can be expected, the torque is highly non trivial. In contrast to the classical case of uniform electric field outlined above, here there are two (in general more) competing energy minima, and the colloid’s orientation can switch from the classical orientation into another one. The relative importance of the competing minima is dictated by the distance from the surface, the surface potential, the colloid size, the permittivities of the colloid and solvent, and the colloid shape.
1. Model

The colloid is modeled as an uncharged solid ellipsoid of long and short axis \(a \) and \(b \), respectively. In the two-dimensional \(x-y \) plane, this is a projection of long deformed cylinders extending in the \(z \)-direction. The colloid, whose permittivity is \(\varepsilon_0 \varepsilon_r \), is placed in a polar solvent of permittivity \(\varepsilon_\text{sol} \) (e.g. water), with \(\varepsilon_0 \) being the vacuum permittivity. The charged surface is at \(y = 0 \) and the colloid is close, the distance of its center of mass is \(y = y_{\text{center}} \). The colloid is tilted with respect to the surface such that its long axis makes an angle \(\theta \) with the \(y \) axis (see Fig. 1(b)). Our aim is to find the total force and torque acting on the colloid.

Within the mean-field theory, assuming point-like ions, and neglecting correlations, the electrostatic potential obeys the Poisson-Boltzmann equation [44, 45, 46]

\[
\varepsilon_0 \nabla^2 \tilde{\psi} = \sinh(\tilde{\psi}) \quad \text{outside of the colloid}
\]
\[
\varepsilon_c \nabla^2 \tilde{\psi} = 0 \quad \text{inside the colloid}
\]

The potential \(\tilde{\psi} = \psi/k_BT \) is scaled using the electron’s charge \(e \), the Boltzmann’s constant \(k_B \), and the absolute temperature \(T \).

Lengths are scaled as \(\lambda = r/\lambda_0 \), where \(\lambda_0 \) is given by

\[
\lambda_0^2 = \frac{\varepsilon_0 k_B T}{2n_0 e^2}
\]

Here \(n_0 \) is the bulk ion density far from the charged wall and colloid. The Debye length is larger than \(\lambda_0 \); in water (\(\varepsilon_\text{sol} \approx 80 \) \(\lambda_0 \approx 9\lambda_0 \). Equation (1) obeys the boundary conditions \(\tilde{\psi}(y = 0) = \tilde{V} \), \(\tilde{\psi} \to 0 \) as \(y \to \infty \), and sufficiently far from the colloid the field is oriented in the \(y \)-direction. The discontinuity of the normal field across the interface between the colloid and the solvent is obtained as \([\mathbf{D}] \cdot \tilde{n} = \sigma \), where \(\mathbf{D} = \varepsilon_0 \mathbf{E} \), and \([\mathbf{D}] \equiv \mathbf{D}^{(2)} - \mathbf{D}^{(1)} \) is the jump in \(\mathbf{D} \) across the regions. \(\tilde{n} \) is the normal unit vector pointing from region 1 (colloid) to region 2 (solvent). In this work the surface charge density \(\sigma \) vanishes. The continuity of the tangential field across the interface is given by \([\mathbf{E}] \cdot \tilde{t}_i = 0 \), where \(\tilde{t}_i \) (\(i = 1,2 \)) are the two orthogonal unit vectors lying in the plane of the interface.

Inside the solid colloid, the nonuniform field leads to internal elastic stress. We assume large elastic moduli and the corresponding strain and energy are therefore vanishingly small. The stress tensor \(\mathbb{T} \) is given by [47]:

\[
\mathbb{T} = -p_0(n^+, T)\delta_{ij} + \frac{1}{2} \varepsilon_0 \varepsilon_r E^2 (-1 + \rho(\partial E/\partial y)\gamma/E) \delta_{ij} + \varepsilon_0 \varepsilon_r E_i E_j.
\]

\(p_0 \) includes the non-electrostatic contributions to \(\mathbb{T} \) and depends on the density of the cations and anions \(n^\pm \). In this work we take it as the ideal-gas pressure of the ions: \(p_0 = (n^+ + n^-)k_BT \). The second term, depending on the colloid’s density \(\rho \), includes electrostriction. Since it is diagonal in \(\mathbb{T} \) it can be lumped together with \(p_0 \) without changing the forces on the colloid. The body force in the liquid \(\mathbf{f}_l \), given as a divergence of the stress: \(\mathbf{f}_l = \partial \mathbb{T}_{ij}/\partial x_j \), and the force acting on a unit area of the interface between the colloid and the solvent, \(\mathbf{f}_s \), are

\[
\mathbf{f} = -\nabla p_0 + \frac{1}{2} \nabla \left(\varepsilon_0 \varepsilon_r E^2 \rho E/\partial y \right) - \frac{1}{2} \varepsilon_0 \varepsilon_r E^2 \nabla E.
\]

\(\mathbf{f} = \nabla \mathbb{T} \cdot \mathbf{n} \) is the force on the colloid from the solvent. The torque acting on the colloid.

The stress tensor \(\mathbb{T} \) is given by [47]:

\[
\mathbb{T} = -p_0(n^+, T)\delta_{ij} + \frac{1}{2} \varepsilon_0 \varepsilon_r E^2 (-1 + \rho(\partial E/\partial y)\gamma/E) \delta_{ij} + \varepsilon_0 \varepsilon_r E_i E_j.
\]

\(p_0 \) includes the non-electrostatic contributions to \(\mathbb{T} \) and depends on the density of the cations and anions \(n^\pm \). In this work we take it as the ideal-gas pressure of the ions: \(p_0 = (n^+ + n^-)k_BT \). The second term, depending on the colloid’s density \(\rho \), includes electrostriction. Since it is diagonal in \(\mathbb{T} \) it can be lumped together with \(p_0 \) without changing the forces on the colloid. The body force in the liquid \(\mathbf{f}_l \), given as a divergence of the stress: \(\mathbf{f}_l = \partial \mathbb{T}_{ij}/\partial x_j \), and the force acting on a unit area of the interface between the colloid and the solvent, \(\mathbf{f}_s \), are

\[
\mathbf{f} = -\nabla p_0 + \frac{1}{2} \nabla \left(\varepsilon_0 \varepsilon_r E^2 \rho E/\partial y \right) - \frac{1}{2} \varepsilon_0 \varepsilon_r E^2 \nabla E.
\]

\(\mathbf{f} = \nabla \mathbb{T} \cdot \mathbf{n} \) is the force on the colloid from the solvent. The torque acting on the colloid.

To reduce the computation time in the numerical procedure employed below, we convert the volume integrals to surface integrals in the following way. The volume integral for the force on the colloid \(\mathbf{F} = \int \mathbf{F} \cdot \mathbf{n} ds \) is converted to a surface integral \(\int \mathbf{F} \cdot \mathbf{n} ds \) by virtue of the divergence theorem. For the torque, we use the Levi-Civita anti-symmetric tensor \(\epsilon_{ijk} \) and write \(\int \epsilon_{ijk} \mathbb{T}_{ij} \mathbf{n}_k ds = \int \epsilon_{ijk} \partial \mathbb{T}_{jk}/\partial x_i ds \). The term \(\epsilon_{ijk} \partial \mathbb{T}_{jk}/\partial x_i \) vanishes due to the symmetry of \(\mathbb{T} \) and the right-hand side is simply the \(i \)’th component of the torque.
the “vacuum” Bjerrum length. Since for a micron-sized colloid we are known we integrate these surface integrals to calculate the total force and torque acting on the colloid.[48]

When the torque \(\tau(\theta, y_{\text{center}}) \) for given tilt angle \(\theta \) and distance from the wall \(y_{\text{center}} \) is known, the effective rotation potential \(U_{\text{eff}}(\theta, y_{\text{center}}) \), defined as

\[
\tau(\theta, y_{\text{center}}) = -\frac{dU_{\text{eff}}(\theta, y_{\text{center}})}{d\theta},
\]

(5)
can be calculated.

2. Results

We solve numerically Eq. (1) with its boundary conditions on a rectangular grid in the \(x\)-\(y \) plane, with a charged wall at \(y = 0 \). Fig. 1(a) shows the potential (color) and field (arrows) distribution inside and near the colloid. In (b) the arrows are the surface force per unit area \(\mathbf{f} \) acting on the colloid. Clearly, these forces are non-uniform, and they lead to a net translation and rotation. We look at a solvent that is more polar than the colloid and hence there is a trivial force in the \(y \)-direction pushing the colloid away from the surface. When the colloid is more polar than the solvent this force is reversed. The system is invariant to reflections, namely when \(\theta \to -\theta \) the energy stays the same while the torque reverses its sign. We therefore look at positive values of \(\theta \).

In Fig. 2 we plot the effective rotation potential vs tilt angle \(\theta \) for a colloid that is allowed to freely rotate but its distance from the surface is fixed. For small potentials \(V \) the minimum is, as expected, at \(\theta = 0 \), namely the colloid tends to orient parallel to the average direction of the field (\(y \) direction, perpendicular to the surface). As \(V \) increases, \(\theta = 0 \) stays the global minimum but local minima appear at \(\theta = \pm 90^\circ \) (colloid’s long axis parallel to the surface). Further increase in \(V \) decreases the minima at \(\theta = \pm 90^\circ \) until they become the global minima. At this point the preferred state is where the colloid lies parallel to the surface. The depth of the minima of \(U_{\text{eff}}/k_B T \) is of order \(L_c/(4\pi\varepsilon \varepsilon_0 k_B T) \), where \(L_c \) is the colloid’s typical size and \(k_B T \) is the “vacuum” Bjerrum length. Since for a micron-sized colloid \(L_c \approx 1 \mu m \) and \(k_B T \approx 5.6 \times 10^{-2} \)m we find that \(U_{\text{eff}}/k_B T \gg 1 \).

To get a better understanding of this peculiar transition of the colloid from orientation parallel to an orientation perpendicular to the field, in Fig. 3 we look at the total torque acting on the colloid with increasing potentials \(V \) for a fixed orientation and distance from the surface. As \(V \) increases the torque increases from zero. Positive values mean rotation in the CCW direction, tending to orient the colloid with its long axis parallel to the field. However, there is finite value of \(V \) where the torque reaches a maximum, further increase in the potential leads to a reduction of the torque until, at another finite value, the torque vanishes. Another increase in \(V \) leads to negative torques, favoring orientation of the colloid parallel to the surface.

One can also look at the variation of the torque with colloid distance from the wall. In Fig. 4 we show the torque for a colloid tilted at \(\theta = 45^\circ \) with respect to the \(y \) axis vs \(y_{\text{center}} \). If the surface potential is small, \(V = 1 \), blue curve, the torque is positive, leading to CCW rotation. The torque decreases with increasing distance. However, the behavior is very different when...
we show that colloidal orientation near charged surfaces is bi-stable. The classical behavior where the colloid aligns with its long axis parallel to the field occurs at large colloid-surface distances or small surface potentials. The orientation with the long axis parallel to the surface is clearly seen. What is the origin of this unexpected transition? Close inspection of the forces shows that the transition is due to the ideal-gas pressure p_0. Figure 5 is an illustration of the ideal-gas forces acting on colloids with different aspect ratios. The forces exerted by the gas of ions are shown by arrows (long arrow denotes strong force). The horizontal grey level shades denote the ion gas pressure $p_0 \sim 2n_0 \cosh(\hat{v})$. On the left, the forces acting on the spherical colloid ($a/b = 1$) point towards its center and the torque vanishes. The colloid with $a/b = 3.5$ (center) experiences non-uniform forces: near the left-bottom tip, the forces for CW rotation (blue segment) are stronger than the forces in the CCW direction (red segment), leading to a net torque in the CW direction. Near the opposite tip the torques are reversed. However, since the pressure decays rapidly with y these torques are negligible and the total torque is CW. In the limit of a slender colloid with large aspect ratio $a/b \gg 1$ (right), the blue and red segments experience nearly the same force and the torque by the ion gas tends to zero.

From the above discussion it is clear that there is a finite value of a/b that maximizes the torque for CW rotation. Indeed this behavior is shown in Fig. 6 where the torque is plotted vs colloid aspect ratio a/b. For small voltages, the ion gas pressure effect is not strong enough to overcome the “classical” behavior and the torque orients the colloid perpendicular to the surface. If the voltage is strong enough, $V = 3$, the most negative torque occurs when $a/b \approx 1.5$. As a/b increases the torque increases from its minimal value to higher values, until the classical behavior overcomes and the torque becomes positive.

Figure 5: Illustration of forces acting on colloids with different aspect ratios in a polar solvent near a charged surface. Horizontal grey shades grossly correspond to the ideal gas pressure of ions varying nonlinearly in the y-direction. The forces exerted on the colloid by the ion gas are shown by arrows; longer arrows close to the surface mean stronger forces. Left: for the spherical colloid forces point to the center and the torque vanishes. Center: for an elongated colloid the force for CW (blue) and CCW (red) rotations do not balance – the force at the left-bottom tip for CW rotation is stronger than the CCW rotation force at the top-right tip. The torque exerted by the ions tends to zero again for a needle-like colloid (right, $a/b \gg 1$) because the pressure at the two sides of the colloid (blue and red segments) becomes the same when its width tends to zero. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Figure 6: Dimensionless torque $\tilde{\tau}$ at fixed tilt angle $\theta = 45^\circ$ and $\lambda_0 = 0.25\pi$. The horizontal grey level shades correspond to the ideal gas pressure of ions varying nonlinearly in the y-direction.

3. Conclusions

We show that colloidal orientation near charged surfaces is bi-stable. The classical behavior where the colloid aligns with its long axis parallel to the field occurs at large colloid-surface distances or small surface potentials. The orientation with the long axis parallel to the surface is clearly seen. What is the origin of this unexpected transition? Close inspection of the forces shows that the transition is due to the ideal-gas pressure p_0. Figure 5 is an illustration of the ideal-gas forces acting on colloids with different aspect ratios. The forces exerted by the gas of ions are shown by arrows (long arrow denotes strong force). The horizontal grey level shades denote the ion gas pressure $p_0 \sim 2n_0 \cosh(\hat{v})$. On the left, the forces acting on the spherical colloid ($a/b = 1$) point towards its center and the torque vanishes. The colloid with $a/b = 3.5$ (center) experiences non-uniform forces: near the left-bottom tip, the forces for CW rotation (blue segment) are stronger than the forces in the CCW direction (red segment), leading to a net torque in the CW direction. Near the opposite tip the torques are reversed. However, since the pressure decays rapidly with y these torques are negligible and the total torque is CW. In the limit of a slender colloid with large aspect ratio $a/b \gg 1$ (right), the blue and red segments experience nearly the same force and the torque by the ion gas tends to zero.

From the above discussion it is clear that there is a finite value of a/b that maximizes the torque for CW rotation. Indeed this behavior is shown in Fig. 6 where the torque is plotted vs colloid aspect ratio a/b. For small voltages, the ion gas pressure effect is not strong enough to overcome the “classical” behavior and the torque orients the colloid perpendicular to the surface. If the voltage is strong enough, $V = 3$, the most negative torque occurs when $a/b \approx 1.5$. As a/b increases the torque increases from its minimal value to higher values, until the classical behavior overcomes and the torque becomes positive.

Figure 5: Illustration of forces acting on colloids with different aspect ratios in a polar solvent near a charged surface. Horizontal grey shades grossly correspond to the ideal gas pressure of ions varying nonlinearly in the y-direction. The forces exerted on the colloid by the ion gas are shown by arrows; longer arrows close to the surface mean stronger forces. Left: for the spherical colloid forces point to the center and the torque vanishes. Center: for an elongated colloid the force for CW (blue) and CCW (red) rotations do not balance – the force at the left-bottom tip for CW rotation is stronger than the CCW rotation force at the top-right tip. The torque exerted by the ions tends to zero again for a needle-like colloid (right, $a/b \gg 1$) because the pressure at the two sides of the colloid (blue and red segments) becomes the same when its width tends to zero. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Figure 6: Dimensionless torque $\tilde{\tau}$ at fixed tilt angle $\theta = 45^\circ$ and $\lambda_0 = 0.25\pi$. The horizontal grey level shades correspond to the ideal gas pressure of ions varying nonlinearly in the y-direction.
uncommon. To the best of our knowledge only one work reports a similar transition – Buyukdagli and Podgornik [49]. These authors looked at correlation corrections to the mean-field theory to describe a charged rod near charged membrane in the weak and intermediate charge regimes. In our Poisson-Boltzmann theory the transition is first-order. The above analysis was carried out in the regime where the colloid size is neither much larger than Debye’s length λ_D (as is typically in electroosmosis [50]) where gradients are localized at the colloid’s surface, nor is it much smaller than λ_D, where the field is essentially uniform.

The driving force for the orientation parallel to the surface is the ideal gas pressure of dissolved ions. This pressure varies nonlinearly with y and this is essential for the rotation of the colloid. This is different from, e.g., a solid body submerged in a liquid under gravity on Earth. As is well known such a body feels an upward or downward force depending on its density and proportional to the volume and the total torque vanishes. But this is true only when the pressure varies linearly with the depth y. The scaling of the effective potential, $U_{\text{eff}}/k_B T \sim n_0 \alpha^3$, where n_0 is the ion number density in solution, highlights the importance of the ion gas pressure and is large because U_{eff} is effectively the integral of the surface torques, namely $U_{\text{eff}} \sim eE^2 \alpha^3$, and $E \sim k_B T / e\lambda_D$.

Our findings suggest a novel way to control the orientation of a colloidal suspension near a wall by a simple modification of the surface potential. For practical use one may want to cover the electrode with an insulating layer as is commonly done in electrowetting on dielectrics. For the best results it would be desired to use colloids with an optimal shape. In this work we considered spheroidal particles and the optimality is in the aspect ratio a/b, Fig. 6. Symmetry-breaking can arise from surface inhomogeneities and not necessarily from asymmetric shapes. Chemical composition gradients, e.g., metallic coating of parts of the colloid, imply asymmetric distribution of the field surrounding the colloid, and will lead to non-trivial torque on the colloid [51].

The orientational transition can have rheological consequences as well: we speculate that when a suspension is forced to flow parallel to the surface, the flow regime and effective viscosity would be very different in the two colloidal states, $\theta = 0$ or $\theta = 90^\circ$.

We neglected van der Waals and Casimir interactions but such forces acting via the nonhomogeneous electrolytes may have significant implications [52, 53]. This work assumed a static colloid at a given fixed position y_{center} and tilt angle θ. The force F and torque r both depend on θ. It would be interesting to simulate the total undulatory “swimming” motion of such a colloid when translation and rotation are coupled, and the transition between the $\theta = 0$ and $\theta = \pm \pi/2$ orientations. Here hydrodynamic and van der Waals interactions between two or more colloids will play a vital role due to the presence of the wall [54, 55].

Acknowledgments

This work was supported by the Israel Science Foundation Grant No. 56/14. I thank Antonio Ramos for useful correspondence and comments.

Appendix A: Supplementary material Numerical data and code will be supplied upon request.

References

[1] C. Holm, P. Kekicheff, R. Podgornik, Electrostatic effects in soft matter and biophysics, Vol. 46, Springer Science & Business Media, 2001 (2001).
[2] D. S. Dean, J. Dobnikar, A. Naji, R. Podgornik, Electrostatics of Soft and Disordered Matter, CRC Press, 2014 (2014).
[3] C. T. O’Konski, H. C. Thacher, The distortion of aerosol droplets by an electric field, J. Phys. Chem. 57 (1953) 955–958 (1953).
[4] R. S. Allan, S. G. Mason, Particle behaviour in shear and electric fields i. deformation and burst of fluid droplets, Proc. R. Soc. London, Ser. A 267 (1962) 45–61 (1962).
[5] Z. Lin, T. Kerle, S. M. Baker, D. A. Hoagland, E. Schäffer, U. Steiner, T. P. Russell, Electric field induced instabilities at liquid liquid interfaces, J. Chem. Phys. 114 (2001) 2377–2381 (2001).
[6] E. Schäffer, T. Thurn-Albrecht, T. P. Russell, U. Steiner, Electrohydrodynamic instabilities in polymer films, Europhys. Lett. 53 (2001) 518–524 (2001).
[7] E. Schäffer, T. Thurn-Albrecht, T. P. Russell, U. Steiner, Electrically induced structure formation and pattern transfer, Nature (London) 403 (2000) 874–877 (2000).
[8] T. L. Morkved, M. A. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, Local control of microdomain orientation in diblock copolymer thin films with electric fields, Science 273 (1996) 931–933 (1996).
[9] M. D. Morarui, N. E. Voicu, E. Schäffer, Z. Lin, T. P. Russell, U. Steiner, Hierarchical structure formation and pattern replication induced by an electric field, Nature Mater. 2 (2003) 48–52 (2003).
[10] T. Xu, Y. Zhu, S. P. Gido, T. P. Russell, Electric field alignment of symmetric diblock copolymer thin films, Macromolecules 37 (2004) 2625–2629 (2004).
[11] L. F. Pease, W. B. Russel, Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: A generalized linear stability analysis, J. Chem. Phys. 118 (2003) 3790–3803 (2003).
[12] L. F. Pease, W. B. Russel, Linear stability analysis of thin leaky dielectric films subjected to electric fields, J. Non-Newtonian Fluid Mech. 102 (2002) 233–250 (2002).
[13] Y. Tsori, Colloquium: Phase transitions in polymers and liquids in electric fields, Rev. Mod. Phys. 81 (2009) 1471 (2009).
[14] A. Böker, A. Knoll, H. Elbs, V. Abetz, A. H. Müller, G. Krausch, Large scale domain alignment of a block copolymer from solution using electric fields, Macromolecules 35 (4) (2002) 1319–1325 (2002).
[15] A. Böker, H. Elbs, H. Hänsel, A. Knoll, S. Ludwigs, H. Zettl, A. Zvelindovsky, G. Sevink, V. Urban, V. Abetz, et al., Electric field induced alignment of concentrated block copolymer solutions, Macromolecules 36 (21) (2003) 8078–8087 (2003).
[16] K. Schmidt, H. Schobert, F. Schubert, H. Hänsel, F. Fischer, T. Weiss, G. Sevink, A. Zvelindovsky, A. Böker, G. Krausch, Scaling behavior of the reorientation kinetics of block copolymer exposed to electric fields, Soft Matter 3 (4) (2007) 448–453 (2007).
[17] Y. Tsori, D. Andelman, Control of diblock copolymer morphology in thin film, Abstracts of Papers of the American Chemical Society 224 (2002) U485–U485 (2002).
[18] Y. Tsori, D. Andelman, Thin film diblock copolymers in electric field: Transition from perpendicular to parallel lamellae, Macromolecules 35 (13) (2002) 5161–5170 (2002). doi:10.1021/ma0117716
[19] Y. Tsori, F. Tournilhac, L. Leibler, Orienting ion-containing block copolymers using ac electric fields, Macromolecules 36 (15) (2003) 5873–5877 (2003). arXiv:https://doi.org/10.1021/ma034026x doi:10.1021/ma034026x
[20] D. Zerrouki, J. Baudry, D. Pinc, P. Chakrin, J. Bibeau, Chiral colloidal clusters, Nature 455 (7211) (2008) 380 (2008).
[21] G. van Anders, N. K. Ahmed, R. Smith, M. Engel, S. C. Glotzer, Entropically patchy particles: Engineering valence through shape entropy, Acs Nano 8 (1) (2013) 931–940 (2013).
