Identification of transcriptional networks during liver regeneration

Peter White¹, John E. Brestelli¹, Klaus H. Kaestner¹ and Linda E. Greenbaum²

¹Department of Genetics and ²Department of Medicine, University of Pennsylvania
School of Medicine, Philadelphia, PA 19104. USA.

Key words: hepatectomy, liver proliferation, expression profiling, cell growth, pathway, PancChip

Correspondence should be addressed to L.E.G. (greenbal@mail.med.upenn.edu)
415 Curie Blvd.
Clinical Research Building 675A
Philadelphia, PA 19104. USA
Fax: +1 (215) 573-2024; Phone: +1 (215) 573-1868
Summary

The molecular analysis of mammalian cellular proliferation *in vivo* is limited in most organ systems by the low turnover and/or the asynchronous nature of cell cycle progression. A notable exception is the partial hepatectomy model, in which quiescent hepatocytes reenter the cell cycle and progress in a synchronous fashion. Here we have exploited this model to identify regulatory networks operative in the mammalian cell cycle. We performed microarray-based expression profiling on livers 0 to 40 hours posthepatectomy corresponding to G₀, G₁ and S phase. Differentially expressed genes were identified using the statistical analysis program PaGE, which was highly accurate, as confirmed by quantitative RT-PCR of randomly selected targets. A shift in the transcriptional program from genes involved in lipid and hormone biosynthesis in the quiescent liver to those contributing to cytoskeleton assembly and DNA synthesis in the proliferating liver was demonstrated by biological theme analysis. In a novel approach, we employed computational pathway analysis tools to identify specific regulatory networks operative at various stages of the cell cycle. This allowed us to identify a large cluster of genes controlling mitotic spindle assembly and checkpoint control at the 40h time point as regulated at the mRNA level *in vivo*.
Introduction

The liver is one of few organs that retain the capacity to rapidly respond to changes in mass and/or function in both humans and animals. This property has significant implications for a variety of clinical situations including surgical removal of a portion of the liver, such as that which occurs following tumor resection or living-related liver transplantation and for recovery from fulminant liver failure. In contrast to the synchronous and extensive loss of liver mass that occurs in surgical contexts and acute liver failure, the majority of human liver diseases are characterized by repetitive inflammatory or toxic insults to the liver that are associated with loss of liver cells as the result of necrotic or apoptotic cell death. As a consequence of repetitive injury, proliferative signals to hepatocytes are associated with increased risk of hepatocellular carcinoma. However, the mechanisms that regulate both normal and pathologic proliferation are still poorly understood.

A widely used experimental model of hepatic growth is the partial hepatectomy model in rodents in which approximately 70% of the liver is removed and restoration of liver mass occurs within 10 to 14 days (1). Within 30 minutes of the surgery, cytokine and growth factor stimulation leads to the activation of preexisting transcription factors including NF-κB, Stat3, AP-1 and C/EBPβ and induction of a large number of genes responsible for stimulating normally quiescent hepatocytes and nonparenchymal liver cells to reenter the cell cycle and ultimately restore the liver mass (2-5). The genes that are either increased from basal levels of expression or are induced de novo encode proteins involved in maintaining homeostasis and stimulating cells to reenter the cell
cycle and proliferate. In a model proposed by Fausto, there appear to be at least two distinct phases of liver regeneration that are regulated via different mechanisms: a priming phase in which quiescent hepatocytes are induced to reenter the cell cycle as a result of TNF-\(\alpha\) and IL-6 stimulation, followed by a second phase in which hepatocytes respond to growth factors and progress through the G\(_1\) stage of the cell cycle (2). The priming phase in the rodent hepatectomy model in which immediate-early genes are activated corresponds to the first 4 hours posthepatectomy(6,7). The peak of DNA synthesis occurs approximately 40 hours after resection in the mouse and the period immediately preceding this is associated with the induction of cell cycle genes including cyclin D1, fox M1b, cyclin dependent kinases and the cyclin dependent kinase inhibitor, p21 (also known as CDKN1A) (8-12). Many of the individual genes involved in the priming phase of liver regeneration have been identified using mouse genetic models and more recently through the use of high-density oligonucleotide arrays(6,13-22). However, information regarding the pattern of gene expression in the periods following this immediate early priming phase is still limited. In addition, as a consequence of the complexity and robust nature of the transcriptional changes that occur in response to partial hepatectomy, there remains much to be learned regarding the integration of the products of these genes into the complex signaling and transcriptional hierarchies that result in this highly synchronized regenerative response. In this study, we utilized a cDNA microarray enriched for genes expressed in hepatocytes to profile changes in gene expression in mouse liver cDNA samples isolated 0, 2, 16, and 40h posthepatectomy (23,24). We selected these time points in order to detect differentially expressed genes
during the priming phase, mid-G₁ and peak of S phase in the mouse partial hepatectomy model (Figure 1A).

Previous microarray studies performed using models of liver regeneration have produced lists of temporally regulated genes but have failed to establish how these genes may form regulatory networks (6,18-20). Moreover, these studies have predominantly identified metabolic factors and other highly expressed genes that are easily detected through microarray analysis. In the present study we highlight novel approaches to the analysis of microarray data, focusing specifically on key time points during the hepatocyte cell cycle that have previously been overlooked. We leverage novel computational tools to identify themes and regulatory networks that govern hepatic proliferation in vivo. We demonstrate that this approach identifies even those genes whose expression levels are below the sensitivity limit of microarray analysis, including those encoding growth factors and DNA binding proteins. This paradigm will be generally applicable to other expression data sets of similar or higher complexity.
Methods

Preparation of samples.

12-16 week old C57BL6/SV129 mice were subjected to partial hepatectomy as described previously (22). Animals were sacrificed and RNA was prepared from the remaining liver lobes, taken from mice at 0, 2, 16 and 40 h post-hepatectomy, by homogenization in guanidine isothiocyanate and purification by cesium chloride ultracentrifugation(25). All RNA samples were analyzed using an Agilent Bioanalyzer Lab-On-A-Chip Nano 6000 chip to determine the integrity and concentration of the samples. Only samples passing this quality control step with a ratio of the 28S to 18S RNA of ≥ 2.0 were used for expression analysis.

Microarray expression profiling and data analysis. 20 μg of total RNA was indirectly labeled using amino-allyl dUTP and an anchored oligo (dT20) to prime reverse transcription. Flourescent label (Cy™Dye, Amersham Pharmacia Biotech Ltd, NJ) was coupled to the cDNA and hybridized to the PancChip version 5.0 13K cDNA microarray (26,27). For each array hybridization, labeled liver RNA from one of the four time points was hybridized with a common control RNA sample labeled with a different Cy dye. The common control RNA comprised equal quantities of a mixture of RNAs taken from both wild type and C/EBPβ−/− mutant mice (28) prepared from quiescent (0h), 2h, 16h, 24h, 30h, 40h and 48h posthepatectomy. This diverse pool of RNA ensured good expression coverage and was used to minimize the production of zero denominators in the calculation of expression ratios for the time course analysis.
Four biological replicates were used for each of the 0h, 2h, 16h and 40h time points. For each array hybridization a dye swap hybridization was performed, such that for each time point two of the biological replicates were hybridized as test (Cy5: Red) vs. common control (Cy3: Green) and the other two biological samples as common control (Cy5) vs. test (Cy3). The replicate dye-swap analysis reduced the impact of dye bias or other labeling artifacts on the ratio of gene expression at a given time point. The median intensities of each spot on the array were measured by an Agilent Scanner using the GenePix version 5 software, and the ratio of expression for each element on the array was calculated in terms of M (log₂(Red/Green)) and A ((log₂(Red) + log₂(Green))/2)). The data was normalized by the print tip lowess method using the SMA (Statistical Microarray Analysis) package in R (29). For statistical analysis, genes were identified as differentially expressed using the “Pattern from Gene Expression” package (PaGE version 5.0) as described previously (30). Two-class, unpaired data tests were also performed to specifically identify genes that were differentially expressed by more than 1.5 fold when comparing the different time points: 0h vs 2h, 0h vs. 16h, and 0h vs. 40h. In all cases a false discovery rate (FDR) of 0.2 was chosen to identify differentially expressed genes. The microarray data are available through the MIAME compliant database RAD (RNA abundance database)(31) at http://www.cbil.upenn.edu/RAD.

Quantitative real-time reverse transcription PCR (QPCR). Differential gene expression was confirmed using QPCR. Liver RNA (500 ng) was reverse transcribed at 42°C for one hour with 1 µg Oligo (dT) primer (Invitrogen) and Superscript II reverse transcriptase. PCR reaction mixes were assembled using the Brilliant® SYBR Green
QPCR Master Mix (Stratagene, CA). 10 µM primers, 1 µl cDNA and the included reference dye at a 1:200 dilution were prepared according to manufacturer’s instructions. Reactions were performed using the SYBR Green (with Dissociation Curve) program on the Mx4000™ Multiplex Quantitative PCR System (Stratagene, CA). Cycling parameters were 95°C for 10 minutes and then 40 cycles of 95°C (30 s), 58°C or 60°C (1 minute), and 72°C (30 s) followed by a melting curve analysis. All reactions were performed with 4 biological replicates and 3 technical replicates with reference dye normalization. The median cycle threshold (CT) value was used for analysis, and all CT values were normalized to expression of the housekeeping gene TBP (confirmed not to be differentially expressed with microarray expression analysis). Primer sequences are available upon request. The Students t-test was used to confirm that the QPCR was significant and matched the direction of the fold change predicted by the array. An unpaired t-test using the one-tailed probability table with a p-value significance cutoff of 0.05 was used for all genes tested.

Biological theme analysis. The software application Expression Analysis Systematic Explorer (EASE) was used to discover biologically relevant themes in the lists of genes identified as significantly differentially expressed at 2h, 16h, and 40h post hepatectomy (32). Briefly, EASE first maps Entrez GeneID identifiers for all genes assayed using the PancChip to gene categories represented by GO function. Within various categorical systems supported by GO function, the "Population Total" is determined for each system of gene categorization (e.g. Biological Process or Molecular Function), and the "Population Hits" are determined for every category within those systems (e.g. hormone...
metabolism or protein biosynthesis). In a second step, the lists of genes differentially expressed at each time point are analyzed to determine which functional categories are over-represented. Third, the probability of obtaining the number of genes in a certain pathway in the list of differentially expressed genes is then compared to the representation of the same pathway among all the genes on the microarray and is calculated as the Fisher exact probability. This probability is then used to calculate the metric known as the "EASE score", which is a conservative adjustment to the Fisher exact probability that weights significance in favor of themes supported by more genes and therefore yields more robust results. In order to be able to perform the EASE analysis, the 11,681 of the 13,008 EST clones on the PancChip M5.0 were annotated with Entrez Gene Identifiers (GeneIDs, formerly LocusIDs) using assembly annotation from the Database of Transcribed Sequences (DoTS version 9.0, 2004), and annotation tools available at the Database for Annotation, Visualization and Integrated Discovery (DAVID). The remaining EST clones were excluded from the analysis as they represented novel transcripts and these elements on the array could not be annotated with a GeneID. To prevent false over-representation of a particular GeneID, all duplicates were removed from the lists giving a population of 7125 unique GeneIDs, and 155, 259 and 479 unique GeneIDs representing genes differentially expressed by more than 1.5 fold at 2h, 16h and 40h respectively.

The data was analyzed for themes using Gene Ontology (GO) Cellular Compartment, Molecular Function and Biological Process provided by NCBI (33). The lists of up and down regulated genes at each time point were analyzed with the categorical overrepresentation function of EASE, and the most significantly
overrepresented categories were identified using EASE scores. All significant (p < 0.05) categories resulting from each list produced the overrepresented biological themes shown in Table 2S.

Pathway Analysis. Biologically relevant networks were drawn from the lists of genes that were differentially expressed at the 2h, 16h and 40h time points when compared to the 0h time point. This data was generated through the use of Ingenuity Pathways Analysis (IPA), a web-delivered application (www.Ingenuity.com) that enables the visualization and analysis of biologically relevant networks to discover, visualize and explore therapeutically relevant networks.

Expression data sets containing gene identifiers (Entrez Gene ID) and their corresponding expression values as fold changes were uploaded as a tab-delimited text file. Each gene identifier was mapped to its corresponding gene object in the Ingenuity Pathways Knowledge Base. The genes identified as differentially expressed by statistical analysis using PaGE described above, and which had a fold change between any of the time points of greater than 1.5 were included in the analysis. These genes, called Focus Genes, were then used as the starting point for generating biological networks. To start building networks, the application program queries the Ingenuity Pathways Knowledge Base for interactions between Focus Genes and all other gene objects stored in the knowledge base, and generates a set of networks. The program then computes a score for each network according to the fit of the network to the set of focus genes. The score indicates the likelihood of the Focus Genes in a given network being found together due to random chance. A score of greater than 2 indicates that there is a less than 1 in 100
chance that the Focus Genes were assembled randomly into a network due to random chance.
Results and Discussion

Identification of temporally regulated genes during liver growth

In order to identify genes that were differentially expressed at specific phases of the regenerative process, liver RNA samples were obtained from mice 0h, 2h, 16h and 40h after partial hepatectomy. These time points correspond to quiescent liver, early G₁, mid-G₁ and S phase of the hepatocyte cell cycle in this system (Figure 1A). One significant challenge inherent to high-throughput analysis of large scale changes in gene expression is the development of statistical methods that will maximize both the sensitivity and specificity of detection of differentially expressed genes. The PaGE statistical analysis package is a tool for analyzing microarray gene expression data useful for identifying expressed genes between two conditions, and for generating patterns across multiple conditions (30). PaGE uses an algorithm that generates discrete patterns using a false discovery rate (FDR) based on confidence measures. In the present study, we used a FDR of 20% to maximize sensitivity without significantly impacting accuracy. To identify candidate genes involved in early growth as well as later phases of liver regeneration, we also determined which genes were differentially expressed between time points. Two class, unpaired tests were performed to identify genes that were differentially expressed by more than 1.5 fold at 2, 16 and 40 hours posthepatectomy compared to quiescent liver.

Using these criteria, a total of 641 genes were found to be differentially expressed (Table 1A and Figure 1B). A sequential increase in the number of genes differentially expressed was observed with time after partial hepatectomy, with the comparison between 0h and 40h producing the largest change in gene expression. Table 1B lists the top 10 genes by
fold change up or down, for each of the comparisons made, while the complete list of affected genes is given in Table 1S (supplementary data). The groups of differentially expressed genes are shown schematically in the Venn diagram of Figure 1B, again highlighting the fact that the largest number of genes were differentially regulated at 40h posthepatectomy vs. 0h.

Statistical analysis using PaGE is highly predictive of true differences in gene expression

QPCR was used to determine how accurately the PaGE statistical analysis identified differentially expressed genes. 28 genes were chosen randomly from the 0h vs. 40h comparison. Of these 28 genes, 23 (82%) were found to be differentially expressed between 0h and 40h post hepatectomy by QPCR (Figure 2). Thus, PaGE is a highly accurate tool for the analysis of microarray data. The predictive power of the PaGE statistical analysis program was further highlighted by the correspondence between the preset 20% percent false discovery rate and the fact that about 20% of the genes showed no statistically significant change in gene expression by QPCR.

Identification of global programs important for homeostatic and proliferative responses in the proliferating liver.

Coordinated changes in expression of networks of genes involved in growth or homeostatic functions are essential for restoration of liver mass and survival during the posthepatectomy period. The Expression Analysis Systematic Explorer (EASE) program (see description in Methods) was used to identify important biological themes
overrepresented among genes that were differentially expressed at 2h, 16h and 40h posthepatectomy(32). Figure 3 summarizes some of the most significant themes that were identified using this analysis while a complete list of themes with significant scores is contained within Table 2S.

Genes involved in steroid and lipid metabolism were down-regulated as early as the 2h posthepatectomy time point and remained decreased throughout the remainder of the time course examined (Figure 3A). At the 16h posthepatectomy time point, which corresponds to hepatocyte mid-G1 phase, genes involved in nucleotide and protein synthesis as well as cytoskeletal organization were upregulated and remained upregulated 40h posthepatectomy. At 40h post-surgery, when the peak of S-phase is reached, several additional biological themes focused on nucleotide metabolism were overrepresented, likely corresponding to the increased need of the hepatocytes during DNA replication. Taken together, the results of the EASE analysis demonstrate a shift to those transcriptional programs that encode proteins involved in DNA synthesis and mitosis with a corresponding reduction in the expression of genes encoding proteins involved in most metabolic functions, which is summarized in the scheme shown in Figure 3B.

Identification of biologically relevant networks. Although the EASE analysis provided information regarding changes in large categories of biological processes, we were also interested to understand how individual genes were integrated into specific regulatory and signaling networks. This type of analysis has not been reported in microarray studies of the regenerating liver, and revealed several findings that have not been described previously for the partial hepatectomy model. Biologically relevant networks were
drawn from the lists of genes that were differentially expressed at the 2h, 16h and 40h time points through the use of Ingenuity Pathways Analysis (IPA) (see Methods for details). For each time point several major pathways were identified, and here we show the most significant network for each stage of liver regeneration analyzed. At 2h posthepatectomy, the pathway shown in Figure 4 was identified as being the most significant, containing 28 focus genes, with a highly significant score of 48. This pathway highlights a very powerful feature of this explorative tool. Our initial PaGE and EASE analysis reported above revealed that many genes involved in metabolism were differentially expressed 2h posthepatectomy (Figure 3/Table 1B). However, many of the known growth response genes that are induced in early G₁ phase were not detected as part of our initial array analysis. All of these growth response genes are contained on the PancChip M5.0, but were not detected because of the sensitivity limit of this and other microarray platforms. As shown in Figure 4A the pathway analysis identified Fos, JunB, JunD and Myc as likely participants in early growth responses based on the differential expression of other genes in the same pathway. Prompted by this result, we then utilized the more sensitive QPCR analysis to show that Fos, JunB, JunD and Myc were upregulated 209, 29, 22 and 14 fold respectively. The inclusion of these QPCR data confirmed the results of previous studies demonstrating the induction of these proto-oncogenes in the partial hepatectomy model and allowed us to identify a link between Myc and DUSP6 (MKP3), an inhibitor of ERK/MAP kinase signaling activity(34). To our knowledge, this is the first report of MKP3 expression and upregulation posthepatectomy in the liver.
At 16h posthepatectomy, the network shown in Figure 5 contained 35 focus genes, with a highly significant score of 61. The inclusion of the QPCR expression value for Myc at this time point identified regulatory links to other genes that were differentially expressed at the 16h posthepatectomy time point. The Myc targets that were differentially expressed encode proteins involved in diverse processes including cytokine signaling (ARTS-1)(35,36), matrix remodeling (SPARC)(37) and cell cycle progression (p21)(12).

The 40h time point corresponds to the peak of hepatocyte S phase in the partial hepatectomy model. Analysis of genes differentially expressed at this point identified several regulatory networks including pathways involved in DNA replication (TOP2A(38), RPA1(39), PCNA(40)), mitotic spindle assembly (MAPRE(41), DCTN2(42), CDC2(43), RACGAP1(44,45)) and mitotic checkpoint control (YWHAQ(46), MAD2L1(47), AURKB(48), CKS1B(49), BIRC5(50), NPM1(51)) (Figure 6). Our findings underscore the requirement for coordinate regulation of cytoskeletal and chromosomal components of mitotic complexes prior to the G2/M phase transition (52).

(53). We demonstrate here that mRNA levels for a large number of genes important for G2/M phase progression at the S phase peak are regulated coordinately, strongly supporting the notion that either transcriptional activation and/or posttranscriptional stability play a key role in phases of cell cycle progression beyond the G1 phase. While our analysis measures steady state levels of mRNA and therefore does not distinguish between these two mechanisms, several genes identified on our array including Mad2L1, Bub1b and Cdc2 are E2F transcriptional targets, suggesting that
similar to other growth models, E2Fs may be responsible for the upregulation of these mitotic checkpoint genes in the regenerating liver (54,55). Our ability to detect small changes in gene expression at the 40h posthepatectomy time point is likely to be a function of the highly synchronous nature of this in vivo model of cell cycle progression, a characteristic unique to the hepatectomy model.

Conclusion
In this study, we examined the changes in gene expression that occur following partial hepatectomy at selected time points with the aim of understanding the biological processes and specific regulatory networks that are important during early priming stages of the regenerative process and later time points corresponding to mid-G1 and S phase. Through the use of a variety of computational analysis tools, we have identified genes that are differentially expressed during various stages of liver regeneration and characterized biological processes and regulatory networks that provide both global and specific information regarding this highly synchronized proliferative and homeostatic response. While the links between individual genes identified by Ingenuity pathway analysis are derived from the scientific literature, to our knowledge, this is the first description of the relevance of many of these regulatory networks in the partial hepatectomy model. In addition, we demonstrate that the use of pathway analysis helps to overcome two problems of microarray expression profiling, that is both its limited sensitivity and the absence of certain genes on a given array platform. Finally, although transcriptional regulation is a key process by which protein function is regulated, pathway analysis can also include genes in a regulatory network that are modified
posttranslationally or as a result of protein-protein interactions that may also be important regulatory mechanisms. The approaches taken here for the analysis of the liver regeneration paradigm can serve as a model for the dissection of many other complex biological processes.
Acknowledgements

We would like to thank the members of the Greenbaum and Kaestner labs for many helpful discussions and Dr. G. Grant for advice on the use of the PaGE statistical analysis software. This work was supported by NIDDK R01-56669 to LEG, and NIDDK U01-56947 to KHK, as well as the Functional Genomics Core of the Penn Diabetes Center and the Molecular Biology Core of the Penn Center for Molecular Studies in Liver and Digestive Diseases.
Table 1A. PaGE Analysis of significantly differentially expressed genes between time points: two Class, unpaired data analysis with 20% FDR.

Comparison	Total	Up regulated (>1.5)	Down regulated (<-1.5)
0h to 2h	281	106	49
0h to 16h	489	127	132
0h to 40h	1155	386	93

Table 1B. Top 10 up or down regulated genes identified in each of the comparisons shown in Table 1A.

Top 10 upregulated genes	Top 10 downregulated genes				
Entrez GeneID	Gene symbol	Fold change	Entrez GeneID	Gene symbol	Fold change
0 h vs. 2 h comparison					
16006 Igfbp1	32.6	14870 Gstp1	-6.2		
100620 AK033727	14.2	14869 Gstp2	-5.5		
229751 LOC229751	11.9	15495 Hsd3b4	-4.3		
17750 Mt2	9.2	20341 Selenbp1	-3.1		
14262 Fmo3	8.8	13107 Cyp2f2	-2.8		
56031 Ppie	8.5	105171 Arrdc3	-2.7		
12227 Btg2	7.8	17836 Mug1	-2.7		
22072 Prss2	7.3	246277 Csad	-2.6		
11723 Amy2	7.1	103781 AK033431	-2.5		
69060 Php1	7.1	15492 Hsd3b1	-2.4		
0 h vs. 16 h comparison					
16819 Lcn2	120.7	12350 Car3	-21.0		
20209 Saa2	67.3	15495 Hsd3b4	-9.0		
11808 Apoa4	23.6	12401 Serpina6	-8.1		
19014 Pparbp	18.1	14859 Gsta3	-5.8		
234199 Fgl1	12.5	18478 Pah	-5.6		
22151 Tubb2	7.9	66234 Sc4mol	-5.0		
16006 Igfbp1	4.7	11522 Adh1	-4.5		
11520 Adfp	4.6	110196 Fdps	-4.3		
16426 Itlh3	3.6	13107 Cyp2f2	-4.2		
73710 2410129E14Rik	3.4	107869 Cth	-3.9		
0 h vs. 40 h comparison					
20209 Saa2	83.4	12350 Car3	-15.5		
16819 Lcn2	49.6	13107 Cyp2f2	-6.9		
11808 Apoa4	21.3	76971 2810007J24Rik	-5.6		
22072 Prss2	14.0	15495 Hsd3b4	-4.5		
16592 Fabp5	9.9	17836 Mug1	-4.0		
66473 Ctrb	9.6	12633 Cflar	-3.7		
19014 Pparbp	9.2	14081 Acs1	-3.6		
234199 Fgl1	8.8	231691 Sds	-3.6		
8.4 IMAGE=5648967	20341 Selenbp1	-3.4			
22074 Try4	7.7	18703 Pigr	-3.3		
Figure Legends

Figure 1. A. Phases of the hepatocyte cell cycle in the partial hepatectomy model. B. Venn diagram showing the number of temporally differentially regulated genes with expression changes greater than 1.5 fold up or down.

Figure 2. PaGE is an accurate statistical test for the identification of differentially expressed genes. Quantitative real-time PCR (QPCR) was used to confirm the results of the PaGE statistical analysis of the microarray data from the 0h vs. 40h comparison. The fold change values (log₂) of 28 genes randomly picked for verification are shown above. A Students t-test was performed on each of the QPCR results. Where significant, the p value is indicated by * p<0.05, ** p<0.01 and *** p<0.001. The p values of measurements that were insignificant with the QPCR t-test are shown below the name of the gene tested. As predicted by PaGE, 23 (82%) genes were found to be differentially expressed between 0h and 40h posthepatectomy.

Figures 3. Biological themes overrepresented at various time-points during liver regeneration after partial hepatectomy. A. Partial list of biological themes found to be overrepresented at a given time point posthepatectomy. The biological pathways indicated were identified using EASE and are listed with the corresponding p-values. A complete list of all statistically significant themes is contained in Table 2S (supplementary data). B. Schema summarizing important changes in gene expression of major biological processes during liver regeneration.
Figures 4. Ingenuity Pathway Analysis identifies a network of genes regulated during early G₁ phase in the liver in vivo. The network is displayed graphically as nodes (genes/gene products) and edges (the biological relationships between the nodes). The intensity of the node color indicates the degree of up- (red) or down- (green) regulation. As described in the Legend provided, nodes are displayed using various shapes that represent the functional class of the gene product. Edges are displayed with various labels that describe the nature of the relationship between the nodes (A, activation; B, binding; E, expression; I, inhibition; P, phosphorylation; T, transcription). Edges without a label represent binding only. The four nodes MYC, JUNB, JUND and FOS were identified by the pathway analysis as part of the network and their differential gene expression was determined subsequent to the pathway analysis by QPCR. A total of 28 differentially expressed "focus" genes were brought into this network with a highly significant score of 48. Uncommon gene symbols: DDX5, dead-box polypeptide; CANX, calnexin; H3F3B, histone H3B; PCK1, phosphoenolpyruvate carboxykinase; CEBPB, CCAAT/enhancer binding protein beta.

Figures 5. Ingenuity Pathway Analysis identifies a network of genes regulated during mid- G₁ phase in the liver in vivo. The network is displayed graphically as nodes (genes/gene products) and edges (the biological relationships between the nodes). For the explanation of the symbols and letters see legend to Figure 4. A total of 35 differentially expressed "focus" genes were brought into this network with a highly significant score of 61. Uncommon gene symbols: PCK1, phosphoenolpyruvate
carboxykinase; CDKN1A, p21; EP300, E1A binding protein p300; HSPCA, heat shock protein 1, alpha.

Figures 6. Ingenuity Pathway Analysis identifies networks of genes regulated during S phase in the liver in vivo. The network is displayed graphically as nodes (genes/gene products) and edges (the biological relationships between the nodes). For the explanation of the symbols and letters see legend to Figure 4. The above network was produced by combining the two highest scoring networks with a total of 31 differentially expressed "focus" genes and a highly significant score of 58. Uncommon gene symbols: AURKB, aurora kinase B; BIRC5, surviving; CCNE1, cyclin E1; CCNE2, cyclin E2; CDKN1A, p21; CDKN1B, p27Kip1; CDKN1C, P57KIP2; CEBPB, CCAAT/enhancer binding protein beta; DCTN1, dynactin 1; DCTN2, dynactin 2; DDIT3, GADD153; TFDP1, DP1; YWHAQ, 14-3-3 homolog.
References:

1. Higgins, G. M., and Anderson, R. M. (1931) *Archives of Pathology* **12**, 186-202
2. Fausto, N. (2000) *Journal of Hepatology* **32** (suppl 1), 19-31
3. Michalopoulos, G. K., and DeFrances, M. C. (1997) *Science* **66**, 60-66
4. Koniaris, L. G., McKillop, I. H., Schwartz, S. I., and Zimmers, T. A. (2003) *Journal of the American College of Surgery* **197**, 634-659
5. Taub, R., and Greenbaum, L. E. (1999) *Seminars in Liver Disease* **19**, 117-127
6. Su, A. I., Guidotti, L. G., Pezacki, J. P., chisari, F. V., and Schultz, P. G. (2002) *Proceedings of the National Academy of Sciences USA* **99**, 11181-11186
7. Weglarz, T. C., and Sandgren, E. P. (2000) *Proc Natl Acad Sci USA* **97**, 12595-12600
8. Albrecht, J. H., Meyer, A. H., and Hu, M. Y. (1997) *Hepatology* **25**, 557-563
9. Wang, X., Kiyokawa, H., Dennewitz, M. B., and Costa, R. H. (2002) *Proc Natl Acad Sci USA* **99**, 16881-16886
10. Albrecht, J. H., and Hansen, L. K. (1999) *Cell Growth and Differentiation* **10**, 397-404
11. Loyer, P., Glaise, D., Cariou, S., Baffet, G., Meijer, L., and Guguen-Guillouzo, C. (1994) *Journal of Biological Chemistry* **269**, 2491-2500
12. Albrecht, J. H., Poon, R. Y. C., Ahonen, C. L., Rieland, B. M., Deng, C., and Crary, G. S. (1998) *Oncogene* **16**, 2141-2150
13. Li, W., Liang, X., Kovalovich, K. K., Poli, V., and Taub, r. (2002) *J Biol Chem* **277**, 28411-28417
14. Strey, C. W., Markiewski, M., Mastellos, D., Tudoran, R., Spruce, L. A., Greenbaum, L. E., and Lambris, J. D. (2003) *Journal of Experimental Medicine* **198**, 913-923
15. Liao, Y., Shikapwashya, O. N., Shteyer, E., Dieckgraefe, B. K., Huruz, P. w., and Rudnick, D. A. (2004) *J Biol Chem* **epub**
16. Yamada, Y., Webber, E. M., Kirillova, I., Peschon, J. J., and Fausto, N. (1998) *Hepatology* **28**, 959-970
17. Yamada, Y., Kirillova, I., Peschon, J. J., and Fausto, N. (1997) *Proceedings of the National Academy of Sciences USA* **94**, 1441-1446
18. Fukuhara, Y., Hirasawa, A., Li, X.-K., Kawasaki, M., Fujino, Funeshima, N., Katsuma, S., Shiojima, S., Yamada, M., Okuyama, T., Suzuki, S., and Tsujimoto, G. (2003) *Journal of Hepatology* **38**, 784-792
19. Arai, M., Yokosuka, O., Chiba, T., Imazeki, F., Kato, M., Hashida, J., Ueda, Y., Sugano, S., Hashimoto, K., Saisho, H., Takiguchi, M., and Seki, N. (2003) *Journal of Biological Chemistry* **278**, 29813-29818
20. Locker, J., Tian, J., Carver, R., Concas, D., Cosso, C., Leda-Columbiano, G. M., and Columbano, A. (2003) *Hepatology* **38**, 314-325
21. Cressman, D. E., Greenbaum, L. E., DeAngelis, R. A., Ciliberto, G., Furth, E., Poli, V., and Taub, R. (1996) *Science* **274**, 1379-1383
22. Greenbaum, L. E., Li, W., Cressman, D., Peng, Y., Ciliberto, G., Poli, V., and Taub, R. (1998) *Journal of Clinical Investigation* **102**, 996-1007
23. Kaestner, K. H., Lee, C. S., Seearce, L. M., Brestelli, J. E., Arsenlis, A., Le, P. P., Lantz, K. A., Crabtree, J., Pizarro, A., Mazzarelli, J., Pinney, D., Fischer, S.
Manduchi, E., Stoeckert, C. J., Jr., Gradwohl, G., Clifton, S. W., Brown, J. R., Inoue, H., Cras-Meneur, C., and Permutt, M. A. (2003) *Diabetes* **52**, 1604-1610

24. Scearce, L. M., Brestelli, J. E., McWeeney, S. K., Lee, C. S., Mazzarelli, J., Pinney, D. F., Pizarro, A., Stoeckert Jr., C. J., Clifton, S. W., Permutt, M. A., brown, J., Melton, D. A., and Kaestner, K. H. (2002) *Diabetes*, in press

25. Mohn, K. L., Laz, T. M., Hsu, J.-C., Melby, A. E., Bravo, R., and Taub, R. (1991) *Molecular and Cellular Biology* **11**, 381-390

26. Kaestner, K. H., Lee, C. S., Scearce, L. M., Brestelli, J. E., Arsenlis, A., Le, P. P., Lantz, K. A., Crabtree, J., Pizarro, A., Mazzarelli, J., Pinney, d., fischer, S., Manduchi, E., Stoeckert, C. J. J., Gradwohol, Clifton, S. W., Brown, J. R., Inoue, H., Cras-Meneur, C., and Permutt, M. A. (2003) *Diabetes* **52**, 1604-1610

27. Scearce, L. M., Brestelli, J. E., McWeeney, S. K., Lee, C. S., Mazzarelli, J., Pinney, D. F., Pizarro, A., Stoeckert Jr., C. J., Clifton, S. W., Permutt, M. A., Brown, J., Melton, D. A., and Kaestner, K. H. (2002) *Diabetes* **51**, 1997-2004

28. Screpanti, I., Romani, L., Musiani, P., Modesti, A., Fattori, E., Lazzaro, D., Selitto, C., Scarpa, S., Bellavia, D., Lattanzio, G., Bistoni, F., Frati, L., Cortese, R., Gulino, A., Ciliberto, G., Costantini, F., and Poli, V. (1995) *EMBO Journal* **14**, 1932-1941

29. Dudoit, S., and Fridlyand, J. (2002) *Genome Biology* **25**, RESEARCH0036.0031-0036.0021

30. Manduchi, E., Grant, G. R., McKenzie, S. E., Overton, G. C., Surrey, S., and Stoeckert Jr., C. J. (2000) *Bioinformatics* **16**, 685-698

31. Manduchi, E., Grant, G. R., He, H., Liu, J., Mailman, M. D., Pizarro, A. D., Whetzel, P. L., and Stoeckert, C. J., Jr. (2004) *Bioinformatics* **20**, 452-459

32. Hosack, D. A., Dennis Jr., D. G., Sherman, B. T., Lane, H. C., and Lempicki, R. A. (2003) *Genome Biology* **4**, R70

33. Ashburner, M., Ball, C. A., J.A., B., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., K., D., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin , G. M., and G., S. (2000) *Nature Genetics* **25**, 25-29

34. Groom, L. A., Sneddon, a. A., Alessi, D. R., Dowd, s., and Keyse, S. M. (1996) *EMBO Journal* **15**, 3621-3632

35. Cui, X., Rouhani, F. N., Hawari, F., and Levine, S. J. (2003) *Journal of Immunology* **171**, 6814-6819

36. Cui, X., Rouhani, F. N., Hawari, F., and Levine, S. J. (2004) *J Biol Chem* **278**, 28677-28685

37. Sage, E. H., Reed, M. E., F. S., Truong, T., Steadele, M., Puloakkainen, P., Maurice, D. H., and Bassuk, J. A. (2003) *J Biol Chem* **278**, 37849-37857

38. Porter, A. C., and Farr, C. J. (2004) *Chromosome Research* **12**, 569-583

39. Dodson, G. E., Shi, Y., and Tibbetts, R. S. (2004) *J Biol Chem* **279**, 34010-34014

40. Maga, G., and Hubscher, U. (2003) *Journal of Cell Science* **116**, 3051-3060

41. Su, L. K., and Qi, Y. (2001) *Genomics* **71**, 142-149

42. Piehl, M., and Cassimeris, L. (2003) *Molecular and Cellular Biology* **14**, 916-925

43. Mishima, M., Pavicic, V., Grueneberg, U., Nigg, E. A., and Glotzer, M. (2004) *Nature* **430**, 908-913
44. Kitamura, T., Kawashima, T., Minoshima, Y., Tonozuka, Y., Hirose, K., and Nosaka, T. (2001) Cell Structure and Function 26, 645-651
45. Van de Putte, T., Zwijesen, A., Lonnoy, O., Rybin, V., Cozijnjnsen, M., Francis, A., Baekelandt, V., Kozak, C. A., Zerial, M., and Huylebroeck, D. (2001) Mechanisms of Development 102, 33-44
46. Wilker, E., and Yaffe, M. B. (2004) Journal of molecular and cellular cardiology 37, 633-642
47. Tunquist, B. J., Eyers, P. A., Chen, L. G., Lewellyn, A. L., and Maller, J. L. (2003) Journal of Cell Biology 163, 1231-1242
48. Carmena, M., and Earnshow. (2003) Nature Reviews Molecular Cell Biology 4, 842-854
49. Ganoth, D., Bornstein, G., Ko, T. K., Larsen, B., Tyers, M., Pagano, M., and Hershko, A. (2001) Nature Cell Biology 3, 321-324
50. Deguchi, M., Shiraki, K., Inoue, H., Okano, H., Ito, T., Yamanaka, T., Sugimoto, K., Sakai, T., Ohmori, S., Murata, K., Furusaka, A., Hisatomi, H., and Nakano, T. (2002) Biochemical and Biophysical Research Communications 297, 59-64
51. Li, J., Zhang, X., Sejas, d. P., Bagby, G. C., and Pang, Q. (2004) J Biol Chem 279, 41275-41729
52. Adams, R. R., Carmena, M., and Earnshaw, W. C. (2001) Trends in Cell Biology 11, 49-54
53. Steer, C. J. (1995) FASEB Journal 9, 1396-13400
54. Polager, S., Kalma, Y., Berkovich, e., and Ginsberg, d. (2002) Oncogene 17, 437-446
55. Hernando, E., Nahle, Z., Juan, G., Diaz-Rodriguez, E., Alaminos, M., Hermann, M., Michael, L., Mittal, V., Gerald, W., Benezra, R., Lowe, S. W., and Cordon-Cardo, C. (2004) Nature 430, 797-802
Table A

Comparison	Category	EASE Score
2 h DOWN	hormone metabolism	2.4E-03
	steroid biosynthesis	9.1E-03
	lipid metabolism	9.7E-03
	fatty acid metabolism	1.3E-02
16h UP	protein biosynthesis	3.7E-09
	ribosome biogenesis and assembly	3.3E-06
	cytoskeleton organization and biogenesis	2.6E-04
	actin cytoskeleton	2.6E-03
	microtubule cytoskeleton	1.2E-02
	intermediate filament cytoskeleton	4.9E-02
16h DOWN	hormone biosynthesis	1.9E-02
	steroid biosynthesis	3.3E-06
	lipid metabolism	3.6E-06
	fatty acid metabolism	3.1E-03
	amino acid and derivative metabolism	2.1E-05
40 h UP	protein biosynthesis	3.2E-12
	ribosome biogenesis and assembly	2.5E-07
	ribosome biogenesis	1.6E-07
	purine nucleoside triphosphate biosynthesis	1.7E-02
	nucleoside triphosphate metabolism	1.7E-02
	cytoplasm organization and biogenesis	2.4E-07
	cytoskeleton organization and biogenesis	1.8E-03
	actin cytoskeleton	1.1E-05
	intermediate filament cytoskeleton	3.4E-02
	microtubule	3.4E-02
40h DOWN	hormone biosynthesis	1.9E-02
	cholesterol metabolism	2.4E-02
	steroid biosynthesis	4.4E-05
	lipid metabolism	3.2E-06
	fatty acid metabolism	7.6E-05

Diagram B

- **Steroid synthesis**
- **Protein synthesis**
- **Cytoskeleton**
- **DNA metabolism**

Time Post Hepatectomy

0 5 10 15 20 25 30 35 40
Supplementary Data Table 1S

List of genes that were differentially expressed during the partial hepatectomy time course with an absolute fold change of 1.5 or higher, as identified by PaGE analysis (as shown in Figure 1B). The list is ranked by category (based upon GO annotation from MGI) and within each category genes are listed in descending order by the maximal fold change observed across the time course. Only fold change values that were significant according to PaGE are shown. Clicking on the Entrez GeneID will take you to the appropriate entry for that gene at the NCBI website, providing detailed information and PubMed references. The complete dataset can be downloaded from the RNA Abundance Database (RAD) at http://www.cbil.upenn.edu/RAD/php/index.php.

Entrez GeneID	Symbol	Description	Fold Differential Expression		
			2 h	16 h	40 h
Apoptosis					
12227	Btg2	B-cell translocation gene 2, anti-proliferative	7.8	2.0	
60599	Trp53inp1	transformation related protein 53 inducible nuclear protein 1	4.0	1.6	
12633	Cflar	CASP8 and FADD-like apoptosis regulator	-3.1	-3.7	
15370	Nr4a1	nuclear receptor subfamily 4, group A, member 1	2.2		
20393	Sgk	serum/glucocorticoid regulated kinase	2.2	1.5	
171543	Bmf	Bcl2 modifying factor	2.1		
12226	Btg1	B-cell translocation gene 1, anti-proliferative	1.8	1.3	
11799	Birc5	baculoviral IAP repeat-containing 5	1.6		
110213	Tegt	testis enhanced gene transcript	-1.6	-1.5	
12048	Bcl2l1	Bcl2-like 1	1.5		
17110	Lzp-s	P lysozyme structural	1.5	1.1	
Biosynthesis					
107869	Cth	cystathionase (cystathionine gamma-lyase)	-3.9		
110639	Prps2	phosphoribosyl pyrophosphate synthetase 2	4.1	1.7	3.0
235293	Sc5d	sterol-C5-desaturase (fungal ERG3, delta-5-desaturase) homolog (S. cerevisae)	-1.7	-3.4	-2.2
14718	Got1	glutamate oxaloacetate transaminase 1, soluble	3.4	1.8	2.0
13121	Cyp51	cytochrome P450, family 51	-3.3		
110391	Qdpr	quininoid dihydropteridine reductase	-2.2	-1.4	
15360	Hmgcs2	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2	2.1		
234724	Tat	tyrosine aminotransferase	2.3	1.2	
11656	Alas2	aminolevulinic acid synthase 2, erythroid	-2.2	-1.6	-1.9
18103	Nme2	expressed in non-metastatic cells 2, protein	1.6	2.0	
69219	Dda1	dimethylarginine dimethylaminohydrolase 1	-1.7		
67307	3110049J23Rik	RIKEN cDNA 3110049J23 gene	-1.8	-1.9	
18263	Odc1	ornithine decarboxylase, structural 1	1.7	1.8	
14854	Gss	glutathione synthetase	1.6		
27973	Vkorc1	vitamin K epoxide reductase complex, subunit 1	-1.5	-1.5	
11984	Atp6v0c	ATPase, H+ transporting, V0 subunit C	1.5		
Catabolism

Gene ID	Gene	Description	
18478	Pah	phenylalanine hydroxylase	-5.6 -1.8
246277	Csad	cysteine sulfenic acid decarboxylase	-2.6 -2.0 -1.9
11992	Auh	AU RNA binding protein/enoyl-coenzyme A hydratase	-1.6 -2.6 -1.4
212503	Paox	polyamine oxidase	-1.9
12583	Cdo1	cysteine dioxygenase 1, cytosolic	1.3 -1.7
14085	Fah	fumarylacetoacetate hydrolase	-2.1
13850	Ephx2	epoxide hydrolase 2, cytoplasmic	-1.5 1.3 -1.6
20229	Sat1	spermidine/spermine N1-acetyl transferase 1	1.9 1.7
26443	Psma6	proteasome (prosome, macropain) subunit, alpha type 6	1.6
19173	Psmb5	proteasome (prosome, macropain) subunit, beta type 5	1.6
15233	Hgd	homogentisate 1, 2-dioxygenase	-1.5

Catalytic activity

Gene ID	Gene	Description	
66473	Ctrb1	chymotrypsinogen B1	6.4 9.6
56031	Ppie	peptidylprolyl isomerase E (cyclophilin E)	8.5 2.1 2.2
114228	Trygn16	trypsinogen 16	4.8 7.7
107568	Wwp1	WW domain containing E3 ubiquitin protein ligase 1	4.8 7.0
71665	Fuca1	fucosidase, alpha-L-1, tissue	5.2
70790	4432411E13Rik	RIKEN cDNA 4432411E13 gene	5.8 4.1
14870	Gstp1	glutathione S-transferase, pi 1	-6.2
14859	Gsta3	glutathione S-transferase, alpha 3	-5.8 -2.0
76971	2810007J24Rik	RIKEN cDNA 2810007J24 gene	-1.8 -2.9 -5.6
13706	Ela2	elastase 2	4.3
67868	Ela3b	elastase 3B, pancreatic	3.4 3.9
67373	2210010C04Rik	RIKEN cDNA 2210010C04 gene	3.4 3.6
110196	Fdps	farnesyl diphosphate synthetase	-4.3 -2.5
22074	Try4	trypsin 4	3.6 1.6 7.7
109901	Ela1	elastase 1, pancreatic	4.0
16426	Itih3	inter-alpha trypsin inhibitor, heavy chain 3	3.6 3.2
67603	Dusp6	dual specificity phosphatase 6	3.4 1.7
109697	Cpa1	carboxypeptidase A1	1.6
223775	Pim3	proviral integration site 3	2.1
12494	Cd38	CD38 antigen	3.3 2.6
105349	Akr1c18	aldo-keto reductase family 1, member C18	-2.8
209186	C730036D15Rik	RIKEN cDNA C730036D15 gene	1.8 1.8 2.9
109660	Ctrl	chymotrypsin-like	2.2 1.8
16828	Ldh1	lactate dehydrogenase 1, A chain	2.6 2.2
20322	Sdh1	sorbitol dehydrogenase 1	-2.0 -2.8 -1.6
13430	Dnm2	dynamin 2	2.6 1.5 2.7
102022	9130231C15Rik	RIKEN cDNA 9130231C15 gene	-1.6 -2.2 -2.6
16612	Klk6	kallikrein 6	2.2 2.5
59044	Rnf130	ring finger protein 130	1.8 1.4
15473	Hrsp12	heat-responsive protein 12	-1.8 -1.8
68652	Map3k7ip2	mitogen-activated protein kinase kinase kinase 7 interacting protein 2	2.4
Gene ID	Gene Name	Function/Annotation	
----------	--------------------	---	
76703	Cpb1	carboxypeptidase B1 (tissue)	
231842	6530401C20Rik	RIKEN cDNA 6530401C20 gene	
74143	Opa1	optic atrophy 1 homolog (human)	
71207	Nudt4	nudix (nucleoside diphosphate linked moiety X)-type motif 4	
56734	Tulp2	tubby-like protein 2	
67931	Serpinii2	serine (or cysteine) proteinase inhibitor, clade I member 1	
53315	Sult1d1	sulfotransferase family 1D, member 1	
226105	Cyp2c70	cytochrome P450, family 2, subfamily c, polypeptide 70	
212442	Lactb2	lactamase, beta 2	
14651	Hagh	hydroxyacyl glutathione hydrolase	
75221	Dpp3	dipeptidylpeptidase 3	
66597	Trim13	tripartite motif protein 13	
13988	Gck	glucokinase	
20768	Sephs2	selenophosphate synthetase 2	
11886	Asah1	N-acylsphingosine amidohydrolase	
13806	Eno1	enolase 1, alpha non-neuron	
19255	Ptnp2	protein tyrosine phosphatase, non-receptor type 2	
229905	BC037135	cDNA sequence BC037135	
66887	1300002A08Rik	RIKEN cDNA 1300002A08 gene	
98711	Rdh10	retinol dehydrogenase 10 (all-trans)	
102294	Cyp4v3	cytochrome P450, family 4, subfamily v, polypeptide 3	
66120	Fkbp11	FK506 binding protein 11	
211770	Trib1	tribbles homolog 1 (Drosophila)	
69786	1810034M08Rik	RIKEN cDNA 1810034M08 gene	
14711	Gnm1	glycine N-methyltransferase	
57028	Pdxp	pyridoxal (pyridoxine, vitamin B6) phosphatase	
83814	Nedd4l	neural precursor cell expressed, developmentally down-regulated gene 4-like	
69590	2310016C16Rik	RIKEN cDNA 2310016C16 gene	
17449	Mdh1	malate dehydrogenase 1, NAD (soluble)	
19141	Lgmn	legumain	
268373	Ppia	peptidylprolyl isomerase A	
13039	Ctsl	cathepsin L	
225326	Pik3c3	phosphoinositide-3-kinase, class 3	
16784	Lamp2	lysosomal membrane glycoprotein 2	
14858	Gsta2	glutathione S-transferase, alpha 2 (Yc2)	
11674	Aldoa	aldolase 1, A isoform	
53381	Prdx4	peroxiredoxin 4	
14228	Fkbp4	FK506 binding protein 4	
27361	Sepx1	selenoprotein X 1	

Cell cycle

Gene ID	Gene Name	Function/Annotation
16006	Igfbp1	insulin-like growth factor binding protein 1
14453	Gas2	growth arrest specific 2
21973	Top2a	topoisomerase (DNA) II alpha

file:///C|/Table1S.htm (3 of 16)10/21/2004 7:37:40 AM
Gene Symbol	Description	Fold Change 1	Fold Change 2	Fold Change 3
18538	Pcna, proliferating cell nuclear antigen	3.5		
12534	Cdc2a, cell division cycle 2 homolog A (S. pombe)	2.6		
17242	Mdk, midkine	2.2		
12575	Cdkn1a, cyclin-dependent kinase inhibitor 1A (P21)	2.1, 2.0, 2.4		
21761	Morf4l1, mortality factor 4 like 1	-1.9		
12314	Calm2, calmodulin 2	1.2, 1.3, 2.3		
19384	Ran, member RAS oncogene family	1.3	1.2	2.2
23872	Ets2, E26 avian leukemia oncogene 2, 3' domain	2.1, 1.2, 1.4		
29811	Ndr2, N-myc downstream regulated gene 2	-2.1, -1.5		
20877	Aurkb, aurora kinase B	2.0		
68275	Rpa1, replication protein A1	1.7		
12315	Calm3, calmodulin 3	1.9		
13713	Elk3, ELK3, member of ETS oncogene family	1.9, 1.5		
19387	Rangap1, RAN GTPase activating protein 1	1.6		
56150	Mad2l1, nuclear factor of kappa light chain gene	1.8, 1.8, 1.2		
18035	Nkbia, nuclear factor of kappa light chain gene	1.8, 1.8, 1.2		
12313	Calm1, calmodulin 1	1.6, 1.7		
13401	Dmwd, dystrophia myotonica-containing WD repeat	-1.6		
54124	Cks1, CDC28 protein kinase 1	1.7		
56397	Morf4l2, mortality factor 4 like 2	1.4, 1.6		
57296	Psmd8, proteasome (prosome, macropain) 26S	1.5, 1.5		
11652	Akt2, thymoma viral proto-oncogene 2	1.6		
21781	Tfdp1, transcription factor Dp 1	1.5		

Cytoskeleton

Gene Symbol	Description	Fold Change 1	Fold Change 2	Fold Change 3	
22151	Tubb2, tubulin, beta 2	7.9, 6.7			
22143	Tuba2, tubulin, alpha 2	2.5, 5.1			
22146	Tuba6, tubulin, alpha 6	2.3, 4.4			
16668	Krt1-18, keratin complex 1, acidic, gene 18	1.6, 6.2			
22154	Tubb5, tubulin, beta 5	2.8, 3.9			
22145	Tuba4, tubulin, alpha 4	2.6			
69654	Dctn2, dynactin 2	1.5, 2.6			
11465	Actg1, actin, gamma, cytoplasmic 1	2.6, 2.2, 2.3			
56191	Tro, trophinin	2.2			
11461	Actb, actin, beta, cytoplasmic	2.4, 2.0			
11475	Acta2, actin, alpha 2, smooth muscle, aorta	2.3, 2.0			
22003	Tpm1, tropomyosin 1, alpha	2.1, 2.2			
12317	Calr, calreticulin	1.9			
19241	Tmsb4x, thymosin, beta 4, X chromosome	1.8, 2.0			
12331	Cap1, CAP, adenylate cyclase-associated protein 1	2.0			
94179	Krt1-23, keratin complex 1, acidic, gene 23	1.7, 1.9			
13589	Mapre1, microtubule-associated protein, RP/EB	1.7			
13800	Enah, enabled homolog (Drosophila)	-1.7, -1.4, -1.8			
18643	Pfn1, profilin 1	1.5, 1.6			
Gene ID	Gene Symbol	Description	Fold Change 1	Fold Change 2	Fold Change 3
---------	-------------	-------------	---------------	---------------	---------------
12631	Cfl1	cofilin 1, non-muscle	1.7		
17904	Myl6	myosin, light polypeptide 6, alkali, smooth muscle and non-muscle	1.8		
20742	Spnb2	spectrin beta 2	1.6		
22388	Wdr1	WD repeat domain 1	1.4	1.7	
67938	Mylc2b	myosin light chain, regulatory B	1.7		
16905	Lmna	lamin A	1.3	1.6	
16691	Krt2-8	keratin complex 2, basic, gene 8	1.6	1.7	
13007	Csrp1	cysteine and glycine-rich protein 1	1.4	1.6	
59069	Tpm3	tropomyosin 3, gamma			1.5
17920	Myo6	myosin VI	-1.5	-1.3	-1.4
21648	Tctex1	t-complex testis expressed 1	1.4	1.5	

Fatty acid metabolism

Gene ID	Gene Symbol	Description	Fold Change 1	Fold Change 2	Fold Change 3
11364	Acadm	acetyl-Coenzyme A dehydrogenase, medium chain	3.7		
14081	Acsl1	acyl-CoA synthetase long-chain family member 1	-1.7	-3.6	
170439	Elovl6	ELOVL family member 6, elongation of long chain fatty acids (yeast)	2.4	2.3	
16922	Phyh	phytanoyl-CoA hydroxylase	-1.9	-1.9	-2.1
111175	Pecr	peroxisomal trans-2-enoyl-CoA reductase	-2.1	-1.7	
20216	Sah	SA rat hypertension-associated homolog	-1.4	-1.6	-1.7
93747	Echs1	enoyl Coenzyme A hydratase, short chain, 1, mitochondrial	-1.5		
66885	Acadsb	acyl-Coenzyme A dehydrogenase, short/branched chain	-1.4	-1.6	

Immune response

Gene ID	Gene Symbol	Description	Fold Change 1	Fold Change 2	Fold Change 3
20315	Cxcl12	chemokine (C-X-C motif) ligand 12	-2.2		
12475	Cd14	CD14 antigen			2.2
80859	Nfkbiz	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta	2.0	1.3	
18489	Pap	pancreatitis-associated protein			1.9
12010	B2m	beta-2 microglobulin	-1.7	-1.7	
50909	C1r	complement component 1, r subcomponent			-1.5

Lipid metabolism

Gene ID	Gene Symbol	Description	Fold Change 1	Fold Change 2	Fold Change 3
20209	Saa2	serum amyloid A 2	3.6	67.3	83.4
11808	Apoa4	apolipoprotein A-IV		23.6	21.3
69060	Pnlip	pancreatic lipase	7.1	2.6	
11520	Adfp	adipose differentiation related protein	4.6	1.7	
18946	Pnliprp1	pancreatic lipase related protein 1	2.9	3.7	
109791	Clps	colipase, pancreatic			2.1
14137	Fdft1	farnesyl diphosphate farnesyl transferase 1		-2.8	
11807	Apoa2	apolipoprotein A-II	-1.9	-2.6	
171210	MGI:2159605	mitochondrial acyl-CoA thioesterase 1	2.4	1.8	
15450	Lipc	lipase, hepatic	-2.2	-1.5	
12613	Cel	carboxyl ester lipase		2.4	
11813	Apoc2	apolipoprotein C-II	1.6	2.3	
18534	Pck1	phosphoenolpyruvate carboxykinase 1, cytosolic	1.6	2.3	
Gene ID	Gene Description	log2 Fold Change			
---------	---	------------------			
56794	RIKEN cDNA 1600020H07 gene	1.7			
13641	ephrin B1	-1.6			
21991	triosephosphate isomerase 1	1.8			
20280	sterol carrier protein 2, liver	-2.0			
11657	albumin 1	1.9			
14824	granulin	1.5, 1.9			
14080	fatty acid binding protein 1, liver	-1.5, -1.7			
66113	apolipoprotein A-V	1.5, 1.5			
68465	adiponectin receptor 2	-1.5			
228033	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c (subunit 9), isoform 3	1.5			

Metabolism - other

Gene ID	Gene Description	log2 Fold Change
68449	RIKEN cDNA 1110003P22 gene	1.5
12350	carbonic anhydrase 3	-21.0, -15.5
11723	amylase 2, pancreatic	7.1, 6.2
11522	alcohol dehydrogenase 1 (class I)	-4.5
231691	serine dehydratase	-2.5, -3.6
18979	paraoxonase 1	-2.5, -2.2
14871	glutathione S-transferase, theta 1	1.5, -2.0, -1.5
22262	urate oxidase	-2.9, -2.3
14635	galactokinase 1	2.8, 1.8
109801	glyoxalase 1	-2.1, -2.6, -2.0
14857	glutathione S-transferase, alpha 1 (Ya)	-2.5
68021	biphenyl hydrolase-like (serine hydrolase, breast epithelial mucin-associated antigen)	-1.9, -1.8
19193	pipelolic acid oxidase	-2.3, -1.7
14863	glutathione S-transferase, mu 2	-1.8, -2.0
14862	glutathione S-transferase, mu 1	-1.8, -1.9
14068	coagulation factor VII	-2.1
11720	methionine adenosyltransferase I, alpha	2.1, 1.4
12349	carbonic anhydrase 2	-2.0
11668	aldehyde dehydrogenase family 1, subfamily A1	-1.6, -2.0, -1.5
94284	UDP glycosyltransferase 1 family, polypeptide A6	-1.8, -1.8
20148	dehydrogenase/reductase (SDR family) member 3	-2.0, -1.6
100727	expressed sequence AI788959	-1.9
104444	small fragment nuclease	1.7
58875	3-hydroxyisobutyrate dehydrogenase	-1.8, -1.6
22187	ubiquitin B	1.8
20775	squalene epoxidase	-1.6, -1.8
232223	thioredoxin reductase 3	-1.8, -1.7
15199	heme binding protein 1	-1.6
216558	UDP-glucose pyrophosphorylase 2	-1.5
12346	carbonic anhydrase 1	-1.7, -1.7
16333	insulin I	1.5
11867	actin related protein 2/3 complex, subunit 1B	1.7, 1.5

file:///C|/Table1S.htm (6 of 16)10/21/2004 7:37:40 AM
Accession	Gene Symbol	Description	Fold Change
67895	Pyp	pyrophosphatase stress 70 protein chaperone, microsome-associated, human homolog	1.5
110920	Stch	stress 70 protein chaperone, microsome-associated, human homolog	1.7
209558	Enpp3	ectonucleotide pyrophosphatase/phosphodiesterase 3	-1.6
110695	Aldh7a1	aldehyde dehydrogenase family 7, member A1	-1.6
12468	Cct7	chaperonin subunit 7 (eta)	1.6
15446	Hpgd	hydroxyprostaglandin dehydrogenase 15 (NAD)	1.6
319625	Galm	galactose mutarotase	-1.5
110821	Pcca	propionyl-Coenzyme A carboxylase, alpha polypeptide	-1.5
55990	Fmo2	flavin containing monooxygenase 2	1.5

Miscellaneous binding

Accession	Gene Symbol	Description	Fold Change
19692	Reg1	regenerating islet-derived 1	7.3
19693	Reg2	regenerating islet-derived 2	5.4
20341	Selenbp1	selenium binding protein 1	-3.1
57436	Gabarapl1	gamma-aminobutyric acid (GABA(A)) receptor-associated protein-like 1	-3.1
20219	Apcs	serum amyloid P-component	1.9
73710	2410129E14Rik	RIKEN cDNA 2410129E14 gene	3.4
72999	Insig2	insulin induced gene 2	2.2
54208	Arl6ip1	ADP-ribosylation factor-like 6 interacting protein 1	-1.9
23950	Dnajb6	DnaJ (Hsp40) homolog, subfamily B, member 6	2.1
22329	Vcam1	vascular cell adhesion molecule 1	1.6
83997	Slmap	sarcolemma associated protein	-1.7
93684	MGI:1927947	selenoprotein	1.7
17524	Mpp1	membrane protein, palmitoylated	1.4

Protein biosynthesis

Accession	Gene Symbol	Description	Fold Change	
110954	Rpl10	ribosomal protein 10	1.3	
67945	Rpl41	ribosomal protein 14	1.3	
269261	Rpl12	ribosomal protein 12	1.9	
27050	Rps3	ribosomal protein 3	1.3	
26961	Rpl8	ribosomal protein 8	2.1	
20116	Rps8	ribosomal protein 8	1.3	
20005	Rpl9	ribosomal protein 9	1.7	
22121	Rpl13a	ribosomal protein 13a	1.6	
27367	Rpl3	ribosomal protein 3	1.8	
20055	Rps16	ribosomal protein 16	1.5	
20042	Rps12	ribosomal protein 12	1.9	
54127	Rps28	ribosomal protein 28	1.9	
319195	Rpl17	ribosomal protein 17	1.4	
27207	Rps11	ribosomal protein 11	1.3	
27176	Rpl7a	ribosomal protein 7a	1.8	
56040	Rplp1	ribosomal protein, large, P1	1.8	
20088	Rps24	ribosomal protein 24	1.7	
67097	Rps10	ribosomal protein 10	1.7	
Gene Name	Description	Fold Change 1	Fold Change 2	Fold Change 3
-----------	-------------	---------------	---------------	---------------
Rpl39	ribosomal protein L39	1.7		
Rpl18	ribosomal protein L18	1.7		
Rps19	ribosomal protein S19	1.7		
Rpl11	ribosomal protein L11	1.7	1.4	
Rps4x	ribosomal protein S4, X-linked	1.7		
Rpl27a	ribosomal protein L27a	1.6		
Rps5	ribosomal protein S5	1.3	1.6	
Rpl7	ribosomal protein L7	1.6		
Rps20	ribosomal protein S20	1.4		
Rpl29	ribosomal protein L29	1.4	1.5	
Rps7	ribosomal protein S7	1.3	1.6	
Rps15a	ribosomal protein S15a	1.4	1.5	
Rpl19	ribosomal protein L19	1.5		
Rps27a	ribosomal protein S27a	1.5		
Lamr1	laminin receptor 1 (ribosomal protein SA)	1.5	2.6	
Eif3s9	eukaryotic translation initiation factor 3, subunit 9 (eta)	2.1	1.7	
Arbp	acidic ribosomal phosphoprotein P0	1.5	2.2	
Eif4a1	eukaryotic translation initiation factor 4A1	1.7	1.6	
Eef1b2	eukaryotic translation elongation factor 1 beta 2	1.3	1.7	
Eif2ak1	eukaryotic translation initiation factor 2 alpha kinase 1	1.4	1.7	
Eif4a2	eukaryotic translation initiation factor 4A2	-1.6		
Rps9	ribosomal protein S9	1.6		
Eif2s3x	eukaryotic translation initiation factor 2, subunit 3, structural gene X-linked	1.3	1.5	
Rpl18a	Ribosomal protein L18A	1.4	1.5	
Eef1d	eukaryotic translation elongation factor 1 delta (guanine nucleotide exchange protein)	1.3	1.5	
Ywhaz	tyrosine 3-monooxygenase/trypotphan 5-monooxygenase activation protein, zeta polypeptide	1.3	1.7	

Signal transduction

Gene Name	Description	Fold Change 1	Fold Change 2	Fold Change 3
Mt2	metallothionein 2	9.2	2.6	4.3
Mt1	metallothionein 1	6.5	2.7	4.2
Rab34	RAB34, member of RAS oncogene family			5.4
Rab1	RAB1, member RAS oncogene family			2.9
Sort1	sortilin 1			3.0
Pigr	polymeric immunoglobulin receptor	-2.3	-3.3	
Gnbp2	guanine nucleotide binding protein, beta 2			3.1
Dusp22	dual specificity phosphatase 22			1.7
Grb2	growth factor receptor bound protein 2	-2.0	-2.5	
Dmbt1	deleted in malignant brain tumors 1			2.1
5730406l15Rik	RIKEN cDNA 5730406l15 gene	2.2		2.4
Igf1	insulin-like growth factor 1			-2.4
Spp1	secreted phosphoprotein 1			2.1
Ptk2	PTK2 protein tyrosine kinase 2			2.2
Ctgf	connective tissue growth factor	1.3	1.9	2.1
Srpr	signal recognition particle receptor (‘docking protein’)	-1.6	-2.0	
Gene Symbol	Gene Name	Expression Level 1	Expression Level 2	Expression Level 3
------------	-----------	--------------------	--------------------	--------------------
AW742319	expressed sequence AW742319	1.8	1.5	
Gnb2-rs1	guanine nucleotide binding protein, beta 2, related sequence 1	1.6	1.9	
Pgrmc1	progesterone receptor membrane component 1	1.9		
Ywhaq	tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, theta polypeptide	1.8	1.4	1.8
Ptprz1	protein tyrosine phosphatase, receptor type Z, polypeptide 1	1.5		
Dek	DEK oncogene (DNA binding)	1.6		
Bzrp	benzodiazepine receptor, peripheral	1.7		
Dtx3	deltex 3 homolog (Drosophila)	1.7		
Ssr2	signal sequence receptor, beta	1.3	1.6	
Gab1	growth factor receptor bound protein 2-associated protein 1	1.7		
Stat5a	signal transducer and activator of transcription 5A	1.7	1.5	
Bcap37	B-cell receptor-associated protein 37	1.5	1.8	
Pvr2	poliovirus receptor-related 2	1.6	1.5	
Wnt3a	wingless-related MMTV integration site 3A	1.5		
Prkcb1	protein kinase C, beta 1	1.5		
Arf4	ADP-ribosylation factor 4	1.6		
Dscrl	Down syndrome critical region homolog 1 (human)	1.5		
A1cam	activated leukocyte cell adhesion molecule	1.5	1.5	
Tceal8	transcription elongation factor A (SII)-like 8	1.4	1.6	1.4
Fzd4	frizzled homolog 4 (Drosophila)	-1.6		
Rassf3	Ras association (RalGDS/AF-6) domain family 3	1.6		
Tomm20	translocase of outer mitochondrial membrane 20 homolog (yeast)	1.5		
Racgap1	Rac GTPase-activating protein 1	1.5		
Hcph	hemopoietic cell phosphatase	1.5		

Steroid metabolism

Gene Symbol	Gene Name	Expression Level 1	Expression Level 2	Expression Level 3
Hsd3b4	hydroxysteroid dehydrogenase-4, delta<5>-3-beta	-4.3	-9.0	-4.5
Sc4mol	sterol-C4-methyl oxidase-like	-5.0	-3.3	
Hsd3b1	hydroxysteroid dehydrogenase-1, delta<5>-3-beta	-2.4	-3.6	-3.0
Idi1	isopentenyl-diphosphate delta isomerase	-3.6	-1.8	
Akr1c20	aldo-keto reductase family 1, member C20	-2.8		
Hmgcs1	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1	-2.1	-1.7	
Ttr	transthyretin	-2.0		

Stress response

Gene Symbol	Gene Name	Expression Level 1	Expression Level 2	Expression Level 3
Cat	catalase	-1.8	-2.4	-3.0
Fn1	fibronectin 1	2.6		
Prkra	protein kinase, interferon inducible double stranded RNA dependent activator	2.4		
Hspca	heat shock protein 1, alpha	2.1	1.6	
Idh1	isocitrate dehydrogenase 1 (NADP+), soluble	-2.0		
Serpina1a	serine (or cysteine) proteinase inhibitor, clade A, member 1a	-1.9	-1.4	
Anxa2	annexin A2	1.8	2.2	
Gene ID	Description	Log2 Fold Change	Log10 Fold Change	
--------	-------------	----------------	-----------------	
20701	Serpina1b	-1.6	-1.3	
15505	Hsp105		1.5	

Transcription

Gene ID	Description	Log2 Fold Change	Log10 Fold Change	
19014	Pparbp peroxisome proliferator activated receptor binding protein	18.1	9.2	
22642	Zbtb17 zinc finger and BTB domain containing 17	6.0		
15184	Hdac5 histone deacetylase 5	4.8		
232807	Ppp1r12c protein phosphatase 1, regulatory (inhibitor) subunit 12C	5.7	4.0	
13653	Egr1 early growth response 1	4.8	2.0	
15081	H3f3b H3 histone, family 3B	4.6	2.3	
51788	H2afz H2A histone family, member Z	3.0		
12608	Cebpb CCAAT/enhancer binding protein (C/EBP), beta splicing factor proline/glutamine rich (polypyrimidine tract binding protein associated)	3.6	2.2	
71514	Sfpq	3.3		
19205	Ptbp1 polypyrimidine tract binding protein 1	3.0		
17692	Msli1 male-specific lethal-3 homolog 1 (Drosophila)	2.9		
21815	Tgif TG interacting factor	3.4		
20018	Rpo1-3 RNA polymerase 1-3	2.8		
59687	Hmg20a high mobility group 20A	2.6		
229584	Pogz pogo transposable element with ZNF domain	2.2		
19652	Rbm3 RNA binding motif protein 3	2.7	1.9	
20595	Smn1 survival motor neuron 1	2.6		
97165	Hmgb2 high mobility group box 2	2.4		
58809	Rnase4 ribonuclease, RNase A family 4	2.1		
64050	Yeats4 YEATS domain containing 4	1.9		
21807	Tgb1i4 transforming growth factor beta 1 induced transcript 4	-2.2	-1.8	
193116	D11Ertd730e DNA segment, Chr 11, ERATO Doi 730, expressed	2.1		
15331	Hmgn2 high mobility group nucleosomal binding domain 2	2.1		
19752	Rnase1 ribonuclease, RNase A family 1 (pancreatic)	2.1		
52705	Hrb2 HIV-1 Rev binding protein 2	1.7		
213742	Xist inactive X specific transcripts	1.8	2.0	
64384	Sirt3 sirtuin 3 (silent mating type information regulation 2, homolog) 3 (S. cerevisiae)	2.0		
20220	Sap18 Sin3-associated polypeptide 18	2.0		
20384	Sf5s5 splicing factor, arginine/serine-rich 5 (SRp40, HRS)	1.6		
192657	EII2 elongation factor RNA polymerase II 2	1.9	1.2	
67996	Sf56 splicing factor, arginine/serine-rich 6	1.9		
18813	Pa2g4 proliferation-associated 2G4	1.7		
26356	Ing1 inhibitor of growth family, member 1	1.8		
20383	Sf53 splicing factor, arginine/serine-rich 3 (SRp20)	1.8		
105559	Mbnl2 muscleblind-like 2	1.7	1.8	
229279	Hnrpa3 heterogeneous nuclear ribonucleoprotein A3	1.8		
15377	Foxa3 forkhead box A3	1.8		
15078	H3f3a H3 histone, family 3A	1.6		
80898	MGI:1933403 type 1 tumor necrosis factor receptor shedding aminopeptidase regulator	-1.7	-1.5	
Gene ID	Description	Log2 Fold Change 1	Log2 Fold Change 2	Log2 Fold Change 3
---------	-------------	--------------------	--------------------	--------------------
272359	Irf2bp1 interferon regulatory factor 2 binding protein 1	-1.7	-1.5	
192231	MGI:2385923 cardiac lineage protein 1			
53605	Nap11 nucleosome assembly protein 1-like 1	1.5	1.6	
15384	Hnrpab heterogeneous nuclear ribonucleoprotein A/B			
16599	Klf3 Kruppel-like factor 3 (basic)	1.6		
11804	Aplp2 amyloid beta (A4) precursor-like protein 2		-1.6	
68278	Ddx39 DEAD (Asp-Glu-Ala-Asp) box polypeptide 39		1.6	
18148	Npm1 nucleophosmin 1	1.2	1.4	1.6
13207	Ddx5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5		1.6	
51886	Fubp1 far upstream element (FUSE) binding protein 1			
15901	Idb1 inhibitor of DNA binding 1			
59028	Rcl1 RNA terminal phosphate cyclase-like 1	-1.5	-1.4	
13496	Arid3a AT rich interactive domain 3A (Bright like)	1.3		1.5

Transport and storage

Gene ID	Description	Log2 Fold Change 1	Log2 Fold Change 2	Log2 Fold Change 3
16819	Lcn2 lipocalin 2	3.3	120.7	49.6
22072	Prss2 protease, serine, 2		7.3	14.0
12401	Serpina6 serine (or cysteine) proteinase inhibitor, clade A, member 6		-8.1	-2.3
14262	Fmo3 flavin containing monooxygenase 3	8.8		1.2
13107	Cyp2f2 cytochrome P450, family 2, subfamily f, polypeptide 2	-2.8	-4.2	-6.9
22327	Vbp1 von Hippel-Lindau binding protein 1			3.9
13099	Cyp2c40 cytochrome P450, family 2, subfamily c, polypeptide 40	1.5	-3.2	-2.6
104158	Ces3 carboxylesterase 3		-3.2	-2.1
17836	Mug1 murinoglobulin 1	-2.7	-1.9	-4.0
100561	Slc15a4 solute carrier family 15, member 4			3.8
13117	Cyp4a10 cytochrome P450, family 4, subfamily a, polypeptide 10	2.0		
78388	Mvp major vault protein			
16647	Kpnal karyopherin (importin) alpha 2			
13884	Es1 esterase 1	1.7	3.1	1.9
67760	Slc38a2 solute carrier family 38, member 2	2.8		
71519	Cyp2u1 cytochrome P450, family 2, subfamily u, polypeptide 1	2.5		
70231	Gorasp2 golgi reassembly stacking protein 2	2.3		2.6
71393	Kctd6 potassium channel tetramerisation domain containing 6		1.6	
69354	Slc38a4 solute carrier family 38, member 4		-2.1	-2.7
21817	Tgm2 transglutaminase 2, C polypeptide		2.7	2.6
11747	Anxa5 annexin A5	1.6	2.0	2.5
20194	S100a10 S100 calcium binding protein A10 (calpactin)	1.6	2.4	1.8
50527	Ero1l ERO1-like (S. cerevisiae)			1.6
66427	1810044O22Rik RIKEN cDNA 1810044O22 gene	-1.6		-2.1
18453	P4hb prolyl 4-hydroxylase, beta polypeptide	2.1		1.9
22228	Ucp2 uncoupling protein 2, mitochondrial	2.3	2.3	1.9
19128	Pros1 protein S (alpha)	2.2		1.4
20501	Scl16a1 solute carrier family 16 (monocarboxylic acid transporters), member 1	2.2	2.2	2.1
11931	Atp1b1 ATPase, Na+/K+ transporting, beta 1 polypeptide	2.2		
56185	Hao3 hydroxyacid oxidase (glycolate oxidase) 3	2.0		
Gene ID	Gene Name	Description	Fold Change	
--------	----------------------------	---	-------------	
12560	Cdh3	cadherin 3	2.1	
13101	Cyp2d10	cytochrome P450, family 2, subfamily d, polypeptide 10	-1.7	
12555	Cdh15	cadherin 15	2.0	
59010	Sqrdl	sulfide quinone reductase-like (yeast)	-1.6	
22027	Tra1	tumor rejection antigen gp96	1.9	
22334	Vdac2	voltage-dependent anion channel 2	1.6	
11981	Atp9a	ATPase, class II, type 9A amyloid beta (A4) precursor protein-binding, family A, member 3	1.9	
57267	Apba3	TBD	1.8	
74277	Chic2	TBD	1.4	
66576	Uqcrh	TBD	1.8	
12499	Entpd5	TBD	-1.7	
56448	Cyp2d22	cytochrome P450, family 2, subfamily d, polypeptide 22	-1.7	
11778	Ap3s2	TBD	1.6	
29876	Clic4	chloride intracellular channel 4 (mitochondrial)	1.6	
18984	Por	TBD	1.6	
229782	Slc35a3	solute carrier family 35 (UDP-N-acetylglucosamine (UDP-GlcNAc) transporter), member 3	-1.7	
20692	Sparc	secreted acidic cysteine rich glycoprotein	1.7	
21366	Slc6a6	TBD	1.6	
68267	Slc25a22	TBD	1.5	
54403	Slc4a4	solute carrier family 4 (anion exchanger), member 4	1.6	
11699	Ambp	TBD	1.6	
74129	Dmgdh	dimethylglycine dehydrogenase precursor	-1.6	
11833	Aqp8	TBD	-1.6	
26458	Slc27a2	solute carrier family 27 (fatty acid transporter), member 2	-1.6	
56188	Fxyd1	FXYD domain-containing ion transport regulator 1	-1.5	
110826	Ettb	TBD	1.5	
15382	Hnrpa1	heterogeneous nuclear ribonucleoprotein A1	1.5	
11927	Atox1	TBD	1.5	
12330	Canx	TBD	-1.5	
102866	PIs3	TBD	-1.4	
68421	RIKEN cDNA 0910001K20	RIKEN cDNA 0910001K20 gene	6.6	
15982	Ifrd1	interferon-related developmental regulator 1	1.6	
83797	Smarcd1	TBD	3.2	
19231	Ptma	TBD	2.2	
30924	Angptl3	angiopoietin-like 3	-2.5	
15902	Igb2	TBD	-2.2	
69071	RIKEN cDNA 1810014L12	RIKEN cDNA 1810014L12 gene	-2.1	
68801	ElovL5	TBD	2.3	
74840	Armet	TBD	1.6	
73046	RIKEN cDNA 2900070E19	TBD	2.0	

Other

Gene ID	Gene Name	Description	Fold Change			
68421	RIKEN cDNA 1810014L12	TBD	-2.1			
68801	ElovL5	TBD	2.3			
74840	Armet	arginine-rich, mutated in early stage tumors	1.6			
73046	RIKEN cDNA 2900070E19	TBD	2.0			
Gene ID	Gene Name	Description	Value			
---------	-----------	--	--------			
71733	Susd2	sushi domain containing 2	1.6			
218335	C130052I12Rik	RIKEN cDNA C130052I12 gene	2.0			
66087	0610039A15Rik	RIKEN cDNA 0610039A15 gene	1.9			
22242	Umod	uromodulin	1.9			
56424	Stub1	STIP1 homology and U-Box containing protein 1	1.5			
98238	AA959742	expressed sequence AA959742	1.8			
192662	Arhgd1a	Rho GDP dissociation inhibitor (GDI) alpha	1.8			
67125	Sas	sarcoma amplified sequence	1.6			
67226	Tmem19	transmembrane protein 1	1.7			
80876	Ifitm2	interferon induced transmembrane protein 2	1.4			
67154	Mtsh	Metadherin	1.7			
12512	Cd63	Cd63 antigen	1.7			
217864	D12Wsu95e	DNA segment, Chr 12, Wayne State University 95, expressed	1.7			
58520	0610007P14Rik	RIKEN cDNA 0610007P14 gene	-1.6			
380712	2010305C02Rik	RIKEN cDNA 2010305C02 gene	-1.6			
50884	Nckap1	NCK-associated protein 1	-1.6			
68581	1110014C03Rik	RIKEN cDNA 1110014C03 gene	1.5			
67067	2010100O12Rik	RIKEN cDNA 2010100O12 gene	-1.6			
269831	Tm4sf12	transmembrane 4 superfamily member 12	-1.6			
68539	1110006I15Rik	RIKEN cDNA 1110006I15 gene	1.5			
52469	D11Erd99e	DNA segment, Chr 11, ERATO Doi 99, expressed	1.5			
78330	1500032D16Rik	RIKEN cDNA 1500032D16 gene	-1.5			
	Unknown					
100620	AI413194	expressed sequence AI413194	14.2			
234199	Fgl1	fibrinogen-like protein 1	3.5			
			12.5			
			8.8			
-			11.9			
			1.9			
			6.2			
-			0			
-			8.4			
-			5.3			
			9.9			
76799	2510006D16Rik	RIKEN cDNA 2510006D16 gene	7.6			
22073	Prss3	protease, serine, 3	6.0			
76884	Cyfip2	cytoplasmic FMR1 interacting protein 2	7.1			
269023	Zfp608	zinc finger protein 608	4.8			
-			6.4			
-			3.4			
108958	5730472N09Rik	RIKEN cDNA 5730472N09 gene	4.8			
14869	Gstp2	glutathione S-transferase, pi 2	4.8			
69116	1810009A16Rik	RIKEN cDNA 1810009A16 gene	3.9			
-			5.1			
-			3.9			
-			5.4			
233895	BC006909	cDNA sequence BC006909	5.3			
7039	TGFA		5.2			
			1.4			
-			4.9			
66999	1500003D12Rik	RIKEN cDNA 1500003D12 gene	3.2			
234695	D130029J02Rik	RIKEN cDNA D130029J02 gene	3.4			
Number	Description	Gene Name	Expression 1	Expression 2	Expression 3	
--------	-------------	-----------	--------------	--------------	--------------	
66523	RIKEN cDNA 0610039J04 gene	BI439298	4.3	2.7		
382406	RIKEN cDNA 4933430F16 gene	BM565240;BM565431			2.5	
	BE303336	CF583483;CF583482		3.8	4.0	
	BE303336	CF584313;CF584312			3.7	
	BG142276				2.4	
27784	COMM domain containing 8	CF584643;CF584642		3.6	2.4	
99929	TCDD-inducible poly(ADP-ribose) polymerase	4933430F16	3.1		1.4	
233552	cDNA sequence BC024955	CF580643				
66185	RIKEN cDNA 1110037F02 gene	CF584373;CF584374	2.9			
245828	trafficking protein particle complex 1	CF622806;BM730909		2.3		
211660	cDNA sequence BC055915	CF580075;BI499921		2.4	1.7	
18938	protein phosphatase 1, regulatory (inhibitor) subunit 14B	CF580075;BI499921		2.4	1.7	
263406	cDNA sequence BC030417	CF580643				
21763	testis expressed gene 2	CF622806;BM730909		2.3	2.1	
80884	melanoma antigen, family D, 2	BQ085135;BQ084821		2.8		
105171	arrestin domain containing 3	-	-2.7	-2.7		
445265	RIKEN cDNA 1810049H19 gene	BI791706;BI711906		2.6		
66975	RIKEN cDNA 2410002O22 gene	CF577927;CF577926		2.6		
67091	RIKEN cDNA 1810073E21 gene	CF580075;BI499921		2.4		
69675	RIKEN cDNA 2310075M15 gene	CF580075;BI499921		2.4		
103781	RIKEN cDNA 9030024J15 gene	CF580075;BI499921		2.4		
99650	RIKEN cDNA 4933434E20 gene	CF580075;BI499921		2.4		
26920	centrosomal protein 1	-		2.2		
66540	RIKEN cDNA 3110001A13 gene	BG964835		2.3	2.1	
320262	RIKEN cDNA A830073O21 gene	CF580075;BI499921		2.3		
66659	acid phosphatase 6, lysophosphatidic	-	1.3	2.5		
230866	RIKEN cDNA C230096C10 gene	AA030342;AI324228		2.3		
231670	F-box only protein 21	-	-1.9	-2.3		
		AA030342;AI324228		2.3	1.4	1.8
Accession	Description	Expression 1	Expression 2	Expression 3		
-----------	-------------	-------------	-------------	-------------		
330474	BC057627 cDNA sequence BC057627	2.1				
	-	2.1				
407831	BC054438 cDNA sequence BC054438	2.2				
69036	1810010M01Rik RIKEN cDNA 1810010M01 gene	1.9				
216454	CRAD-L cis-retinol/3alpha hydroxysterol short-chain dehydrogenase-like	-1.9				
76437	D11Bwg0414e DNA segment, Chr 11, Brigham & Women's Genetics 0414 expressed	2.1	1.8			
22381	Wbp5 WW domain binding protein 5	1.3	1.5	2.1		
	-					
99692	Al649393 expressed sequence Al649393	-1.4	-1.6	-2.1		
76719	1700081L11Rik RIKEN cDNA 1700081L11 gene	2.1				
106585	Ai447928 expressed sequence Ai447928	-1.7	-1.7			
	-	2.1				
72007	1600019O04Rik RIKEN cDNA 1600019O04 gene	2.0	1.6			
76464	2310043D08Rik RIKEN cDNA 2310043D08 gene	1.7	-1.5	-1.6		
72289	2210401K01Rik RIKEN cDNA 2210401K01 gene	2.0				
15936	Ier2 immediate early response 2	1.7				
216440	4632413K17Rik RIKEN cDNA 4632413K17 gene	1.9				
	-			-1.7		
170773	AB023957 cDNA sequence AB023957	1.5				
	-					
102747	D430025H09Rik RIKEN cDNA D430025H09 gene	1.6				
16432	Itm2b integral membrane protein 2B	-1.9				
	-					
65113	Ndfip1 Nedd4 family interacting protein 1	-1.7	-1.5			
66390	2310042G06Rik RIKEN cDNA 2310042G06 gene	1.7	1.9			
66357	2310008M10Rik RIKEN cDNA 2310008M10 gene	1.5	1.9			
	-			-1.7		
105853	Mal2 mal, T-cell differentiation protein 2	1.6				
74549	9130404D08Rik RIKEN cDNA 9130404D08 gene	1.7	-1.6	-1.4		
	-	1.4	1.8	1.6		
98667	AW112037 expressed sequence AW112037	1.3	1.6	1.7		
	-					
98732	1110059F07Rik RIKEN cDNA 1110059F07 gene	1.7				
70273	2310051E17Rik RIKEN cDNA 2310051E17 gene	1.7				
217217	Asb16 ankyrin repeat and SOCS box-containing 16	1.6				
	-					
75909	4930579A11Rik RIKEN cDNA 4930579A11 gene	1.5	1.7			
57443	Fbxo3 F-box only protein 3	-1.7				
Gene ID	Description	Expression 1	Expression 2			
--------	-------------	-------------	-------------			
97282	R75581	1.7				
59308	MGI:1891716	1.4	1.7			
20610	Sumo3	-	1.6			
74155	1300002F13Rik	1.7	1.3			
52331	D5Ert593e	-1.7	-1.4			
66627	5730405M13Rik	1.5				
66945	Sdha	-1.4	-1.5	-1.6		
56374	ORF18	-	1.6			
214489	BC003965	1.4	1.5			
71820	Wdr34	-	1.6			
106522	AW548124	1.6				
15374	Hn1	-	1.6			
56722	Litaf	-	1.5			
66870	1200009K13Rik	-1.6				
382038	AK122209	1.6				
235674	MGC29978	-1.6				
320594	9130004C02Rik	1.5				
110172	Ugal2	1.5				
236520	9130229H14Rik	-1.5				
66442	2600017H08Rik	1.5				
52822	D5Bwg0860e	-1.5				
Table 2S. EASE Biological Theme Analysis

2 hour: Upregulated genes

System	Category	EASE Score
molecular_function	chymotrypsin activity	0.000112
molecular_function	trypsin activity	0.000302
biological_process	digestion	0.000548
molecular_function	serine-type endopeptidase activity	0.000786
molecular_function	serine-type peptidase activity	0.00099
cellular_component	extracellular space	0.00124
cellular_component	extracellular	0.00166
biological_process	organismal physiological process	0.00195
molecular_function	catalytic activity	0.00435
biological_process	catabolism	0.0105
biological_process	amine catabolism	0.0238
molecular_function	endopeptidase activity	0.025
cellular_component	lytic vacuole	0.0297
cellular_component	lysosome	0.0297
cellular_component	vacuole	0.0397
biological_process	sulfur metabolism	0.0429
molecular_function	peptidase activity	0.0438
molecular_function	copper ion binding	0.0481

2 hour: Downregulated genes

System	Category	EASE Score
cellular_component	cytoplasm	0.000126
cellular_component	endoplasmic reticulum	0.000205
molecular_function	oxidoreductase activity	0.0003
cellular_component	peroxisome	0.00204
cellular_component	microbody	0.00204
molecular_function	glutathione transferase activity	0.0024
biological_process	hormone metabolism	0.00242
molecular_function	monooxygenase activity	0.00269
cellular_component	vesicular fraction	0.00364
cellular_component	microsome	0.00364
biological_process	response to abiotic stimulus	0.00532
biological_process	response to external stimulus	0.00697
biological_process	C21-steroid hormone biosynthesis	0.00785
biological_process	hormone biosynthesis	0.00785
molecular_function	oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor	0.00791
biological_process	steroid biosynthesis	0.00913
biological_process	lipid metabolism	0.0097
biological_process	C21-steroid hormone metabolism	0.0103
molecular_function	oxidoreductase activity, acting on CH-OH group of donors	0.0108
cellular_component	mitochondrion	0.0122
-------------------	--------------	--------
biological_process	fatty acid metabolism	0.013
cellular_component	intracellular	0.0154
molecular_function	catalytic activity	0.0164
molecular_function	transferase activity, transferring alkyl or aryl (other than methyl) groups	0.0192
biological_process	response to chemical substance	0.0196
cellular_component	membrane fraction	0.0224
biological_process	lipid biosynthesis	0.0237
biological_process	electron transport	0.0269
biological_process	steroid metabolism	0.0299
biological_process	physiological process	0.0352
cellular_component	cell fraction	0.0405

16h Upregulated genes

System	Category	EASE Score
molecular_function	structural molecule activity	1.17E-10
molecular_function	structural constituent of ribosome	1.47E-09
cellular_component	ribosome	1.91E-09
biological_process	cytoplasm organization and biogenesis	3.66E-09
biological_process	protein biosynthesis	3.72E-09
cellular_component	ribonucleoprotein complex	1.64E-08
cellular_component	cytoplasm	2.20E-08
biological_process	macromolecule biosynthesis	7.32E-08
biological_process	biosynthesis	0.00000129
cellular_component	cytosolic ribosome (sensu Eukarya)	0.00000201
molecular_function	structural constituent of cytoskeleton	0.00000438
biological_process	ribosome biogenesis	0.00000261
biological_process	ribosome biogenesis and assembly	0.0000329
cellular_component	cytosol	0.0000366
biological_process	cell organization and biogenesis	0.0000529
cellular_component	cytoskeleton	0.0000508
biological_process	protein metabolism	0.000093
biological_process	cytoskeleton organization and biogenesis	0.00026
molecular_function	RNA binding	0.000463
biological_process	organelle organization and biogenesis	0.000516
cellular_component	eukaryotic 43S preinitiation complex	0.000526
cellular_component	small ribosomal subunit	0.000732
biological_process	cellular physiological process	0.000804
biological_process	cell growth and/or maintenance	0.000907
biological_process	microtubule-based process	0.00141
cellular_component	actin cytoskeleton	0.00261
cellular_component	cytosolic small ribosomal subunit (sensu Eukarya)	0.00266
cellular_component	eukaryotic 48S initiation complex	0.00266
biological_process	translation	0.0028
biological_process	protein targeting	0.00555
cellular_component	intracellular	0.00609
-------------------	---------------	---------
cellular_component	microtubule	0.00828
biological_process	translational elongation	0.00947
cellular_component	microtubule cytoskeleton	0.0119
biological_process	intracellular transport	0.0128
biological_process	physiological process	0.0129
molecular_function	chaperone activity	0.0147
molecular_function	GTP binding	0.0147
molecular_function	guanyl nucleotide binding	0.0147
biological_process	pyrimidine ribonucleotide metabolism	0.0167
biological_process	pyrimidine ribonucleotide biosynthesis	0.0167
cellular_component	eukaryotic translation elongation factor 1 complex	0.0249
biological_process	protein folding	0.029
molecular_function	transferase activity, transferring acyl groups	0.0296
molecular_function	lipid binding	0.0326
biological_process	cation homeostasis	0.0342
biological_process	ion homeostasis	0.0342
biological_process	cell ion homeostasis	0.0342
molecular_function	binding	0.0383
molecular_function	translation factor activity, nucleic acid binding	0.045
cellular_component	intermediate filament cytoskeleton	0.0487
cellular_component	intermediate filament	0.0487

16h Downregulated genes

System	Category	EASE Score
molecular_function	oxidoreductase activity	3.88E-15
molecular_function	catalytic activity	2.02E-10
biological_process	organic acid metabolism	7.38E-09
biological_process	carboxylic acid metabolism	7.38E-09
molecular_function	lyase activity	0.000000621
biological_process	aromatic compound metabolism	0.00000209
molecular_function	hydro-lyase activity	0.00000252
biological_process	steroid biosynthesis	0.00000325
molecular_function	carbon-oxygen lyase activity	0.00000359
biological_process	lipid metabolism	0.00000363
biological_process	steroid metabolism	0.00000774
biological_process	amino acid and derivative metabolism	0.0000214
biological_process	amine catabolism	0.0000251
biological_process	sterol metabolism	0.0000459
biological_process	lipid biosynthesis	0.000047
biological_process	sterol biosynthesis	0.0000486
biological_process	amine metabolism	0.0000567
biological_process	amino acid catabolism	0.0000711
molecular_function	glutathione transferase activity	0.0000759
cellular_component	peroxisome	0.000109
cellular_component	microbody	0.000109
biological_process	amino acid metabolism	0.000257
------------------------------------	--	----------
biological_process	L-phenylalanine metabolism	0.000304
biological_process	metabolism	0.000338
molecular_function	transferase activity, transferring alkyl or aryl (other than methyl) groups	0.000386
biological_process	alcohol metabolism	0.000443
biological_process	aromatic amino acid family metabolism	0.000593
molecular_function	oxidoreductase activity, acting on CH-OH group of donors	0.000674
biological_process	hormone metabolism	0.000773
biological_process	electron transport	0.000948
biological_process	sulfur metabolism	0.000973
biological_process	fatty acid metabolism	0.00308
biological_process	cholesterol metabolism	0.00323
molecular_function	monooxygenase activity	0.00327
biological_process	coenzyme and prosthetic group metabolism	0.00426
biological_process	cholesterol biosynthesis	0.00567
biological_process	aromatic amino acid family catabolism	0.00582
biological_process	aromatic compound catabolism	0.00582
biological_process	phenylalanine catabolism	0.00582
biological_process	cysteine metabolism	0.00582
cellular_component	cytoplasm	0.00743
biological_process	heterocycle metabolism	0.00745
molecular_function	electron carrier activity	0.00927
biological_process	amino acid derivative metabolism	0.00984
biological_process	catabolism	0.0114
molecular_function	oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor	0.0118
biological_process	main pathways of carbohydrate metabolism	0.0135
cellular_component	mitochondrion	0.0148
cellular_component	cell fraction	0.0189
biological_process	C21-steroid hormone biosynthesis	0.0191
biological_process	hormone biosynthesis	0.0191
molecular_function	carbonate dehydratase activity	0.0196
cellular_component	extracellular space	0.0198
molecular_function	zinc ion binding	0.0203
cellular_component	extracellular	0.0231
biological_process	C21-steroid hormone metabolism	0.025
biological_process	sulfur amino acid metabolism	0.025
biological_process	isoprenoid metabolism	0.025
molecular_function	serine-type endopeptidase inhibitor activity	0.0252
molecular_function	carboxylic ester hydrolase activity	0.0303
biological_process	serine family amino acid metabolism	0.0315
biological_process	coenzyme metabolism	0.0319
biological_process	biosynthesis	0.0351
cellular_component	endoplasmic reticulum	0.0353
biological_process	detection of mechanical stimulus	0.0385
biological_process	sensory perception of mechanical stimulus	0.0385
biological_process	perception of sound	0.0385
-------------------	---------------------	--------
biological_process	energy derivation by oxidation of organic compounds	0.0388
molecular_function	vitamin binding	0.0394
molecular_function	steroid binding	0.0394
biological_process	energy pathways	0.0439
biological_process	physiological process	0.0465

40h Upregulated genes

System	Category	EASE Score
molecular_function	structural constituent of ribosome	8.87E-18
cellular_component	ribosome	6.31E-17
molecular_function	structural molecule activity	2.62E-15
cellular_component	cytoplasm	5.65E-13
cellular_component	cytosolic ribosome (sensu Eukarya)	1.66E-12
biological_process	protein biosynthesis	3.18E-12
cellular_component	ribonucleoprotein complex	5.13E-12
cellular_component	cytosol	5.43E-11
biological_process	biosynthesis	1.5E-10
biological_process	macromolecule biosynthesis	2.07E-10
molecular_function	structural constituent of cytoskeleton	2.17E-09
biological_process	physiological process	9.85E-09
biological_process	protein metabolism	9.91E-08
biological_process	ribosome biogenesis	0.000000155
biological_process	cytoplasm organization and biogenesis	0.000000241
biological_process	ribosome biogenesis and assembly	0.000000247
biological_process	cell organization and biogenesis	0.00000394
cellular_component	eukaryotic 43S preinitiation complex	0.0000068
molecular_function	RNA binding	0.00000754
cellular_component	cytoskeleton	0.0000105
cellular_component	actin cytoskeleton	0.0000113
biological_process	cellular physiological process	0.0000176
biological_process	cell growth and/or maintenance	0.0000196
cellular_component	intracellular	0.0000872
cellular_component	cytosolic small ribosomal subunit (sensu Eukarya)	0.000131
cellular_component	eukaryotic 48S initiation complex	0.000131
cellular_component	small ribosomal subunit	0.000254
cellular_component	Arp2/3 protein complex	0.000388
biological_process	protein folding	0.00107
biological_process	cytoskeleton organization and biogenesis	0.00182
biological_process	digestion	0.00254
biological_process	translation	0.00309
molecular_function	isomerase activity	0.00389
biological_process	metabolism	0.0055
molecular_function	translation factor activity, nucleic acid binding	0.00647
molecular_function	lipid binding	0.00716
-------------------	--------------	---------
biological_process	organelle organization and biogenesis	0.00824
biological_process	translational elongation	0.0107
molecular_function	translation regulator activity	0.011
biological_process	nucleoside triphosphate biosynthesis	0.0125
cellular_component	proteasome complex (sensu Eukarya)	0.0136
cellular_component	striated muscle thin filament	0.0153
biological_process	ribonucleotide biosynthesis	0.0164
biological_process	purine ribonucleoside triphosphate biosynthesis	0.0165
biological_process	ribonucleoside triphosphate biosynthesis	0.0165
biological_process	purine nucleoside triphosphate biosynthesis	0.0165
biological_process	nucleoside triphosphate metabolism	0.0167
cellular_component	microtubule cytoskeleton	0.018
biological_process	protein targeting	0.0194
molecular_function	translation initiation factor activity	0.0212
biological_process	purine ribonucleoside triphosphate metabolism	0.0222
biological_process	ribonucleoside triphosphate metabolism	0.0222
biological_process	purine nucleoside triphosphate metabolism	0.0222
biological_process	intracellular transport	0.0253
molecular_function	ATPase activity, coupled to transmembrane movement of ions	0.0258
molecular_function	ATPase activity, coupled to transmembrane movement of ions, phosphorylative mechanism	0.0258
biological_process	proton transport	0.028
biological_process	ribonucleotide metabolism	0.0329
biological_process	microtubule-based process	0.0337
cellular_component	proteasome core complex (sensu Eukarya)	0.0343
cellular_component	intermediate filament	0.0343
cellular_component	intermediate filament cytoskeleton	0.0343
cellular_component	microtubule	0.0343
cellular_component	cell	0.0361
cellular_component	nuclear membrane	0.0364
biological_process	DNA packaging	0.0387
molecular_function	hydrogen-exporting ATPase activity, phosphorylative mechanism	0.042

40h Downregulated genes

System	Category	EASE Score
molecular_function	oxidoreductase activity	3.88E-11
molecular_function	catalytic activity	2.32E-08
cellular_component	peroxisome	7.14E-08
cellular_component	microbody	7.14E-08
biological_process	carboxylic acid metabolism	0.00000021
biological_process	organic acid metabolism	0.00000021
biological_process	lipid metabolism	0.00000321
------------------------------------	------------------------------	------------
cellular_component	cytoplasm	0.00000352
biological_process	steroid biosynthesis	0.00000437
biological_process	steroid metabolism	0.00000706
biological_process	fatty acid metabolism	0.00000758
molecular_function	lyase activity	0.000133
biological_process	aromatic compound metabolism	0.000232
biological_process	lipid biosynthesis	0.000279
molecular_function	oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor	0.000303
molecular_function	hydro-lyase activity	0.000368
molecular_function	monooxygenase activity	0.000376
molecular_function	carbon-oxygen lyase activity	0.000464
biological_process	sterol metabolism	0.0005
molecular_function	oxidoreductase activity, acting on CH-OH group of donors	0.000534
biological_process	sterol biosynthesis	0.000748
biological_process	alcohol metabolism	0.00191
cellular_component	endoplasmic reticulum	0.00328
biological_process	coenzyme and prosthetic group metabolism	0.00406
cellular_component	mitochondrion	0.0046
biological_process	coenzyme metabolism	0.00791
biological_process	hormone metabolism	0.00874
biological_process	energy derivation by oxidation of organic compounds	0.0102
biological_process	metabolism	0.0102
biological_process	energy pathways	0.0119
biological_process	main pathways of carbohydrate metabolism	0.013
molecular_function	zinc ion binding	0.0168
molecular_function	carbonate dehydratase activity	0.0182
biological_process	C21-steroid hormone biosynthesis	0.0188
biological_process	hormone biosynthesis	0.0188
biological_process	cholesterol metabolism	0.0238
biological_process	C21-steroid hormone metabolism	0.0246
molecular_function	transition metal ion binding	0.0247
cellular_component	cell fraction	0.0254
biological_process	carbohydrate metabolism	0.0256
molecular_function	carboxylic ester hydrolase activity	0.0267
cellular_component	integral to membrane	0.0351
biological_process	peroxisome organization and biogenesis	0.0379
biological_process	heterocycle metabolism	0.0429
biological_process	sulfur metabolism	0.0429