Survival of parity effects in superconducting grains at finite temperature

K. Van Houcke,1 S.M.A. Rombouts,1 and L. Pollet2

1Universiteit Gent - UGent, Vakgroep Sabatoma en Stralingsfysica
Proeftuinstraat 86, B-9000 Gent, Belgium
2Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland
(Dated: March 23, 2022)

PACS numbers: 74.20.Fg, 74.25.Bt, 05.10.Ln

We study the thermodynamics of a small, isolated superconducting grain using a recently developed quantum Monte Carlo method. This method allows us to simulate grains at any finite temperature and with any level spacing in an exact way. We focus on the pairing energy, pairing gap, condensation energy, heat capacity and spin susceptibility to describe the grain. We discuss the interplay between finite size (mesoscopic system), pairing correlations and temperature in full detail.

The bulk properties of a superconductor are well described by standard BCS theory. When the system size is reduced however, its mesoscopic behavior is strongly dictated by the finite electron number. For such small systems with a fixed number of particles, BCS theory is no longer applicable since the BCS order parameter is identically zero. Therefore it cannot determine the lower size limit for which the system exhibits superconducting properties. It was suggested by Anderson [1] that superconductivity would disappear once the average level spacing becomes larger than the bulk superconducting gap \(\Delta \). Due to a series of experiments by Ralph, Black and Tinkham (RBT) [2] on the transport through a single superconducting nm-scale Al grain, a lot of authors shed new light on Anderson’s suggestion. In their experiments, RBT found a spectroscopic gap larger than the average level spacing, which goes to zero when applying a suitable magnetic field. The measurements also revealed a peculiar parity effect: grains with an even number of electrons have a larger gap in the spectrum than grains with an odd electron number. These observations were regarded as signs of ‘superconductivity’, in the sense that there is a pair-correlated ground state. Properties indicative of strong pairing correlations were only found in grains with \(d \lesssim \Delta \). So Anderson’s answer turned out to be incomplete, since it does not differentiate between odd and even numbers of electrons. A large number of theoretical studies tried to characterize the ground state correlations and superconductivity of such small systems in a qualitative way and tried to predict the critical level spacing at which the superconductivity breaks down. An extended review can be found in Ref. [3]. In this report we study the competition between pairing, finite size and finite temperature in an exact way, with all quantum correlations taken into account.

To model small superconducting grains, one uses the reduced BCS Hamiltonian [4]:

\[
H = \sum_{\sigma=\pm, j=1}^\Omega (\epsilon_j - \sigma \mu_B h) c^\dagger_j \sigma c_j \sigma - \lambda d \sum_{j,j'=1}^\Omega B^\dagger_j B_{j'},
\]

where \(B^\dagger_j = c^\dagger_j + c^\dagger_{j'} \). The operator \(c^\dagger_j \sigma \) creates an electron in the single-particle state \(|j, \sigma\rangle \). The quantum number \(j \) labels the \(\Omega \) single particle levels with energies \(\epsilon_j \), and \(\sigma \) labels time reversed states. Since the pairing interaction only scatters time-reversed pairs of electrons within an energy \(\omega_D \) of the Fermi level \(\epsilon_F \), electrons outside the cutoff are not taken into account. The parameter \(\lambda \) is the dimensionless BCS coupling constant and is related to \(\Delta \) and \(\omega_D \) via the bulk gap equation \(\sinh(1/\lambda) = \omega_D/\Delta \) [5]. We take \(\lambda = 0.224 \), close to that of Al [6]. The Zeeman term couples an external magnetic field \(h \) to the electrons and \(\mu_B \) is the Bohr magneton. Throughout the paper, we will consider a half-filled band with fixed width \(2\omega_D \) and \(\Omega = 2\omega_D/d \) doubly degenerate and uniformly spaced levels with energies \(\epsilon_j = jd \). We will only discuss the case without magnetic field \(h \).

To study the cross-over from the bulk to the few electron limit, a number of authors originally used a parity-projected grand canonical (g.c.) BCS approach [1, 7, 8, 9, 10, 11]. The parity effect can be explained with this variational technique. However, an artificial sharp transition to the normal state appears at some critical level spacing and temperature, which is impossible for a finite system. Since the electron number fluctuations are strongly suppressed by charging effects in the experiments of RBT, it is clear that a canonical formalism is needed to describe the grains properly. A number of canonical techniques were used to tackle this problem. Unfortunately, exact diagonalization techniques (e.g. Lanczos [12]) can only handle systems with a very small number of electrons. In order to go to larger model spaces, particle number projection was combined with the static path approximation (SPA) plus random-phase approximation (RPA) treatment [13, 14] and with variational wavefunctions [6]. Dukelsky and Sierra developed a particle-hole version of the density-matrix renormalization-group (DMRG) method to study the crossover [15, 16]. All these canonical techniques reveal the parity effect at low enough temperatures, and make clear that the abrupt cross-over is just an artefact of the g.c. approach. It turned out that small grains with \(d \lesssim \Delta \) are indeed characterized by strong superconducting pairing correlations. As the grain size decreases, quantum fluctuations of the order parameter start to play a crucial role. These fluctuations make the cross-over completely smooth without any sign of critical level spacing. Only when the grain is not too small (\(d \ll \Delta \))
the fluctuations in the order parameter can be neglected, making the mean field description of superconductivity appropriate. In the canonical picture, pairing correlations still exist at arbitrary large values of d/Δ, though in the form of weak fluctuations. Qualitative differences between the pairing correlations in the bulk and the few-electron regime make it still possible to speak of the superconducting regime ($d \ll \Delta$) and the fluctuation-dominated regime ($d \gg \Delta$) [3].

It was only after the appearance of most of these works that one became aware of the fact that the reduced BCS model has an exact solution, worked out decades ago by Richardson in the context of nuclear physics [17]. In Ref. [18], Sierra et al. compare the previously mentioned treatments with the exact solution. Using this exact solution to study the finite temperature behavior for a large number of many-particle states is difficult due to the exponential scaling of the number of eigenstates that need to be considered. Gladilin et al. developed an approximation based on the Richardson solution to get finite temperature information [19]. In Ref. [3] it was already suggested by von Delft and Ralph that quantum Monte Carlo (QMC) techniques could be helpful to investigate the dynamic properties in an exact way, up to a controllable statistical error. Simulations can be performed at any finite temperature and any level spacing d/Δ for large system sizes. Because our method allows a projection on specific symmetries like the total spin projection, we can calculate the susceptibility and magnetization.

We performed simulations of grains with different sizes (Ω equal to 10, 40, 80, 160, 320 and 400). These half-filled model spaces lead respectively to ratios d/Δ of 8.68, 2.17, 1.09, 0.54, 0.27 and 0.22. Figs. 1 and 2 show the thermal averages of the pairing energy $H_P = -\lambda d \sum_{j,j'=1}^{\Omega} \langle B_j^\dagger B_{j'} \rangle$ per particle as a function of temperature for even and odd grains. The energy scale is set by the level spacing d. By comparing both figures, one notices that at low enough temperatures (typically $T \ll d$) the even electron system has more pairing energy than the odd system. This is due to the single unpaired electron, which blocks the Fermi level in the odd case. Around $T \approx d$ a small dip appears in the odd pairing energy. Qualitatively, this can be explained as follows: due to the thermal energy, the single unpaired electron is moved one level upward, making the Fermi level available to pair scattering. This is reflected in a slight decrease of the pairing energy in Fig. 2. To measure the real correlation energy due to pairing in the system, the 'canonical' pairing gap

$$\Delta_{\text{can}}^2 = (\lambda d)^2 \sum_{m,n=1}^{\Omega} (\langle B_m^\dagger B_n \rangle - \langle B_m^\dagger B_n/\lambda = 0 \rangle), \quad (2)$$

was introduced in Eq. (92) of Ref. [3]. The second term subtracts the thermal average of the pairing interaction for the non-interacting system. When going to the thermodynamic limit, Δ_{can} becomes equivalent to the BCS bulk gap Δ [3].

Figure 3 shows the even and odd canonical gap for different system sizes. It follows very clearly that the temperature scale at which the parity effect appears is set by the level spacing d, and this for all grain sizes. The crossover temperature is given by $T_{cr} = \Delta \ln N_{\text{eff}}$, with N_{eff} the effective number of states available for excitation ($N_{\text{eff}} = \sqrt{\pi d \Delta}/d$ in the limit $d \ll \Delta$) [22]. This is in qualitative agreement with Figure 4 where the crossover temperature decreases as the grain size is reduced. One should of course keep in mind that the temperature is shown in units of the level spacing which is considerably smaller for the largest grains. Figure 4 shows that pairing correlations persist even for ultrasmall grains and that a reduction of the grain size leads to a suppression of these correlations.

The condensation energy $E_{\text{cond}} = \langle \psi | H | \psi \rangle - \langle FS | H | FS \rangle$ is the energy difference of the state $| \psi \rangle$, where all quantum correlations are included, and the non-correlated Fermi sea $| FS \rangle$. Figure 4 shows the thermal average of the condensation en-
higher temperatures the odd and even results become indistinguishable again. For the $\Omega = 10$ grain size, the finite model space makes the Shottky peak visible when the temperature becomes of the order of the level spacing.

The spin susceptibility of a grain is defined by

$$\chi(T) = \frac{\partial f(T, h)}{\partial h^2} \bigg|_{h=0} = \frac{1}{T} \langle M^2 \rangle - \langle M \rangle^2. \quad (3)$$

Here $f = -T \ln Z$ is the free energy of the grain, with Z the canonical partition function. The susceptibility is proportional to the fluctuation of the 'magnetization' $M = -\mu_B \sum_{\sigma} c_{n,\sigma}^\dagger c_{n,\sigma}$ at finite temperature T. The spin susceptibility of a single isolated grain has been studied by Di Lorenzo et al. They found that the pairing correlations affect the temperature dependence of the spin susceptibility. In particular, if the number of electrons in the grain is odd, the spin susceptibility shows a re-entrant behavior as a function of T for any value of the ratio d/Δ. They show that this behavior persists even in the case of ultrasmall grains, where the level spacing is much larger than the BCS gap. Since this re-entrance behavior is absent in normal metallic grains, they suggested that this quantity can be measured and used as a unique signature of pairing correlations in small and ultrasmall grains. The susceptibility was calculated by combining an analytic analysis in the limiting cases $\Delta \gg d$ and $\Delta \ll d$ with a static path approximation for intermediate values. By means of exact canonical methods based on Richardson’s solution, they also got exact results at low temperatures. With the aid of our QMC method, we are now able to solve the problem exactly for the whole temperature range. Figures 5 and 6 show the temperature dependence of the spin susceptibility for a number of even and odd grains, respectively. The susceptibility is normalized to its bulk high temperature value $\chi_{tr} = 2\mu_B^2/d$. Our results are completely in line with those of

FIG. 3: The canonical pairing gap as a function of temperature. For each number of levels Ω the gap is calculated for an even ($N = \Omega$) and an odd ($N = \Omega + 1$) number of electrons. Only at low enough temperature one can distinguish between the gap of the even grain (upper curve) and the odd grain (lower curve) of the same size Ω.

FIG. 4: The condensation energy per particle as a function of T/d for system sizes $\Omega = 10, 80$ and 400. Even (odd) grain data points are connected by a solid (dashed) line.

FIG. 5: The heat capacity $c = \frac{\partial (dF)}{\partial T}$ as a function of T/d for system sizes $\Omega = 10, 80$ and 400. Even (odd) grain data points are connected by a solid (dashed) line. Around temperatures $T \approx 0.5d$ for $\Omega = 10, 80$ and $T \approx d$ for $\Omega = 400$ the heat capacity of the even grain (with $N = \Omega$ electrons) exceeds the odd ($N = \Omega + 1$) specific capacity.

energy per particle for a number of even and odd grains as a function of temperature. These energy differences were obtained by calculating the thermal averages of the Hamiltonian over correlated states $|\psi\rangle$ and over the Fermi states $|FS\rangle$ separately. Below temperatures of the order d, the even grains have a larger condensation energy (in absolute value). Both even and odd grains have a minimal condensation energy around $T \approx d$. In agreement with Ref. 3, our calculations give a quasi intensive condensation energy for the smallest grains ($d \gg \Delta$), while the condensation energy of grains with $d \ll \Delta$ increases (in absolute value) inversely proportional to d.

Figure 5 shows the heat capacity as a function of temperature for sizes $\Omega = 10, 80$ and 400. Around the crossover temperature where the parity effect becomes visible (see Figures 5 and 4), a slight parity effect also appears in the heat capacity. Here the even heat capacity exceeds the odd one. At higher temperatures the odd and even results become indistinguishable again.
Di Lorenzo et al. [23]. At low temperatures the even susceptibility remains exponentially small, while for an odd grain the unpaired spin gives rise to an extra paramagnetic contribution to the spin susceptibility \(\chi \simeq \mu_B^2/T \). The minima in the odd spin susceptibilities coincide with a small increase of the pairing correlations (see Figs. 4 and 5), with a minimal condensation energy (see Fig. 4) and with a parity effect in the heat capacity (see Fig. 5). For the smallest odd grain no re-entrance behavior is visible in Fig. 4. This is an effect of the finite model space. If the BCS coupling constant is increased a little, a re-entrance effect appears also in this case.

The number of unpaired electrons in a grain can be increased by an external magnetic field. Frauendorf et al. showed that at zero temperature a magnetic field attenuates the pairing, but for a mesoscopic system in a strong magnetic field the pairing correlations may come back after heating [24]. Such a re-entrance of pairing correlations has also been discussed by Balian et al. [11]. Work on this problem of how an external field can influence the thermodynamic properties of a single superconducting grain is in progress.

The authors wish to thank K. Heyde, J. Dukelsky and S. Frauendorf for interesting suggestions and discussions. We acknowledge the financial support of the Fund for Scientific Research - Flanders (Belgium) and the Swiss National Science Foundation.

1. P.W. Anderson, J. Phys. Chem. Solids 11, 28 (1959).
2. D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 76, 688 (1996); 74, 3241 (1995); Physica (Amsterdam) 218B, 258 (1996).
3. J. von Delft and D. C. Ralph, Phys. Rep. 345, 61 (2001).
4. J. von Delft, A.D. Zaikin, D.S. Golubev and M Tichy, Phys. Rev. Lett. 77, 3189, (1996).
5. See, for example, A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York (1971).
6. F. Braun and J. von Delft, Phys. Rev. Lett. 81, 4712 (1998).
7. R.A. Smith and V. Ambegaokar, Phys. Rev. Lett. 77, 4962 (1996).
8. K.A. Matveev and A.I. Larkin, Phys. Rev. Lett. 78, 3797 (1997).
9. F. Braun, J. von Delft, D.C. Ralph and M. Tinkham, Phys. Rev. Lett. 79, 921 (1997).
10. R. Balian, H. Flocard and M. Vénérioni, cond-mat/9802006.
11. R. Balian, H. Flocard and M. Vénérioni, Phys. Rep. 317, 251 (1999).
12. A. Mastellone, G. Falci and R. Fazio, Phys. Rev. Lett. 80, 4542 (1998).
13. R. Rossignoli, N. Canosa and P. Ring, Phys. Rev. Lett. 80, 1853 (1998).
14. G. Falci, A. Fubini and A. Mastellone, Phys. Rev. B, 65, 140507(R) (2002).
15. J. Dukelsky and G. Sierra, Phys. Rev. Lett. 83, 172 (1999).
16. J. Dukelsky and G. Sierra, Phys. Rev. B 61, 12302 (2000).
17. R.W. Richardson, Phys. Lett. 3, 277 (1963); R.W. Richardson and N. Sherman, Nucl. Phys. 52, 221 (1964); 52, 253 (1964).
18. G. Sierra, J. Dukelsky, G.G. Dussel, J. von Delft and F. Braun, Phys. Rev. B 61, R11890 (2000).
19. V.N. Gladilin, V.M. Fomin and J.T. Devreese, Phys. Rev. B 70, 144506 (2004).
20. S. Rombouts, K. Van Houcke and L. Pollet, cond-mat/0508319.
21. K. Van Houcke, S. Rombouts and L. Pollet, cond-mat/0508431.
22. M.T. Tuominen, J.M. Hergenrother, T.S. Tighe and M. Tinkham, Phys. Rev. Lett. 69, 1997 (1992); P. Lafarge, P. Joyez, D. Esteve, C. Urbina and M. H. Devoret, Phys. Rev. Lett. 70, 994 (1993).
23. A. Di Lorenzo, R. Fazio, F.W.J. Hekking, G. Falci, A. Mastellone and G. Giaquinta, Phys. Rev. Lett. 84, 550 (2000).
24. S. Frauendorf, N. K. Kuzmenko, V. M. Mikhailov and J. A. Sheikh, Phys. Rev. B 68, 024518 (2003).