Role of Host and Bacterial Lipids in *Pseudomonas aeruginosa* Respiratory Infections

Pamella Constantino-Teles¹, Albane Jouault², Lhousseine Touqui² and Alessandra Mattos Saliba¹*

¹ Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil, ² Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France

The opportunistic pathogen *Pseudomonas aeruginosa* is one of the most common agents of respiratory infections and has been associated with high morbidity and mortality rates. The ability of *P. aeruginosa* to cause severe respiratory infections results from the coordinated action of a variety of virulence factors that promote bacterial persistence in the lungs. Several of these *P. aeruginosa* virulence mechanisms are mediated by bacterial lipids, mainly lipopolysaccharide, rhamnolipid, and outer membrane vesicles. Other mechanisms arise from the activity of *P. aeruginosa* enzymes, particularly ExoU, phospholipase C, and lipoxygenase A, which modulate host lipid signaling pathways. Moreover, host phospholipases, such as cPLA₂α and sPLA₂, are also activated during the infectious process and play important roles in *P. aeruginosa* pathogenesis. These mechanisms affect key points of the *P. aeruginosa*-host interaction, such as: i) biofilm formation that contributes to bacterial colonization and survival, ii) invasion of tissue barriers that allows bacterial dissemination, iii) modulation of inflammatory responses, and iv) escape from host defenses. In this mini-review, we present the lipid-based mechanism that interferes with the establishment of *P. aeruginosa* in the lungs and discuss how bacterial and host lipids can impact the outcome of *P. aeruginosa* respiratory infections.

Keywords: lipid, respiratory infection, *Pseudomonas aeruginosa*, phospholipase, inflammation, virulence

INTRODUCTION

Pseudomonas aeruginosa is a major etiological agent of both acute and chronic respiratory infections in immunocompromised and critically ill individuals. Several features explain the success of *P. aeruginosa* as an opportunistic pathogen, including the wide distribution of these bacteria in the environment (1, 2), the high frequency of multidrug-resistant strains (3–7), and the ability to produce an extensive and adaptable set of virulence factors, which are expressed depending on environmental conditions (8, 9).

In hospitalized patients, *P. aeruginosa* is usually associated with acute infections, representing one of the most common causes of hospital-acquired pneumonia (HAP) and the most isolated pathogen in ventilator-associated pneumonia (VAP) (10–12). Additionally, *P. aeruginosa* can persist in the lungs of individuals suffering from chronic respiratory diseases, such as cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). In fact, *P. aeruginosa* is the most frequently...
detected and longest-lasting microorganism found in CF lungs, representing the main cause of morbidity and mortality for these patients (13–17).

The capacity to cause acute and chronic infections relies on the multifactorial nature of \(P. \) aeruginosa pathogenicity, which is supported by a wide range of proteins, carbohydrates, and lipids that allow colonization of abiotic surfaces and host cells, invasion of tissue barriers, killing of other bacterial species, and escape from the immune system. To highlight the role of lipids in the pathogenesis of respiratory infections caused by \(P. \) aeruginosa, this mini-review will focus on virulence mechanisms that use bacterial lipids or interfere with host lipids to favor the establishment and persistence of \(P. \) aeruginosa in the airways.

BACTERIAL LIPIDS ACTING AS VIRULENCE FACTORS

Lipopolysaccharide (LPS)

pt?LPS is composed of three domains: lipid A, the core oligosaccharide, and the O-antigen polysaccharide. \(P. \) aeruginosa lipid A consists of an acylated glucosamine disaccharide phosphorylated at the 1 and 4’ positions which can undergo several modifications, such as phosphorylation, hydroxylation, and addition of a palmitate acyl chain or aminoarabinose (18–22).

Lipid A is highly variable among \(P. \) aeruginosa isolates and also differs under planktonic and biofilm growth conditions (22, 23). Lipid A modifications are under the control of the two-component regulatory systems PhoP-PhoQ and PmrA-PmrB, which sense changes in environmental conditions and activate the expression of lipid A-modifying enzymes (20, 24, 25). In addition, PagL, which encodes a lipid A 3-O-deacylase, is particularly susceptible to mutations and is one of the hot spot loci detected in CF isolates (23). Mutations in PagL can lead to increased acylation of lipid A over time, with the penta-acylated lipid A seen in bacteria that initially colonize CF lungs being replaced by hexa- or, in the late stages of CF disease, hepta-acylated forms (26, 27).

During infection, lipid A modifications may confer greater resistance to cationic antimicrobial peptides or activate the inflammatory response (20, 25, 28, 29). It is interesting to note that the \(P. \) aeruginosa penta-acylated LPS binds TLR2 and is predominantly found in isolates from non-CF and early CF disease (30), whereas the hexa- and hepta-acylated forms that prevail in well-established \(P. \) aeruginosa infections, with higher acylation pattern been associated with higher CF disease severity in late stages, efficiently bind and activate the human TLR4-MD2-CD14 complex, inducing a more robust inflammatory response (31–34). Since CF individuals acquire \(P. \) aeruginosa infection from environment early in their lives, the inability to respond strongly to the penta-acylated LPS of environmental strains may facilitate the initial colonization of CF lungs by \(P. \) aeruginosa.

In mice lungs, TLR4 activation by \(P. \) aeruginosa LPS was able to induce NF-κB activation, secretion of proinflammatory cytokines and chemokines, and neutrophil recruitment, through a mechanism involving GM-CSF and the transcription factor PU.1 (35). It remains to be elucidated whether chronic exposure to \(P. \) aeruginosa lipid A contributes to CF morbidity by stimulating neutrophils to release mediators that promote lung damage or whether it induces LPS-hyproresponsiveness to reduce the inflammatory injury.

Rhamnolipids

\(P. \) aeruginosa rhamnolipids are biosurfactants that consist of a dimer of fatty acids (3-(3-hydroxyalkanoyloxy) alkanoic acids - HAA), mainly composed of 10 carbon chains, linked to one or two molecules of L-rhamnose. The biosynthesis of rhamnolipids is under the control of various transcriptional and post-transcriptional regulators, with a critical role of the Rhl quorum sensing (QS) system that directly induces the transcription of the rhlAB operon and rhlC, which encode enzymes involved in HAA production and L-rhamnose transfer (36–38).

Rhamnolipids were first detected in sputum from CF patients chronically infected with \(P. \) aeruginosa (39), although a later study showed higher levels of rhamnolipids in \(P. \) aeruginosa isolates from intermittently colonized individuals than in isolates from chronically infected CF individuals (40). Curiously, when isolates from either chronic or acute infections were compared, a positive association between rhamnolipid production and acute infection was found (41).

In the airways, rhamnolipids favor the invasion of the epithelial barrier by \(P. \) aeruginosa and reduce bacterial clearance through innate immunity. On the respiratory epithelial surface, rhamnolipids slow down ciliary beat frequency and impair mucociliary transport, thus reducing the bacterial clearance (42, 43). Rhamnolipids initially interact with the apical membrane of epithelial cells and then progressively reach the basolateral membrane, displacing ezrin and disrupting the tight junctions, thus opening a paracellular route to invading bacteria (44). In the lungs, rhamnolipids inhibit phagocytosis by macrophages (45) and induce necrosis of neutrophils (46, 47), which play a key role in the defense against \(P. \) aeruginosa.

Several other effects related to rhamnolipid production may affect the respiratory infections caused by \(P. \) aeruginosa, since rhamnolipids can modulate swarming motility, participate in biofilm architecture by promoting the maintenance of channels that diffuse nutrients and oxygen, and mediate biofilm disruption by promoting the seeding dispersal of motile bacteria (48–51). Furthermore, rhamnolipids increase the bioactivity of the \(Pseudomonas \) quinolone signal (PQS) (52), a QS signaling molecule that controls several virulence factors (53), and can be detected in the lungs of CF patients infected with \(P. \) aeruginosa (54, 55). Importantly, rhamnolipids inhibit the growth of microorganisms that colonize CF lungs along with \(P. \) aeruginosa, such as \(Staphylococcus \) aureus and \(Aspergillus \) fumigatus, conferring them a competitive advantage in this environment (56–58).

Outer Membrane Vesicles (OMVs)

Outer membrane vesicles (OMVs) are spherical nanoparticles with a lipid bilayer produced by blebbing of the bacterial outer
membrane, containing a variety of lipids, sugars, DNA, RNA, and proteins. Depending on their content, which differs among P. aeruginosa strains (59, 60), OMVs can be involved in diverse biological processes, such as horizontal gene transfer (61–63), protection against phages (64), cell-cell communication (65), biofilm architecture (66, 67), antibiotic resistance (68, 69), escape from the immune system (70), and delivery of virulence factors into host cells (71).

The lipid membrane protects the vesicle content from extracellular degradative enzymes, enabling long-distance transport, and upon contact with host cells, fuses with cholesterol-rich host membrane microdomains known as lipid rafts, delivering their contents into the cell cytoplasm (72). The aminopeptidase PaAP, which is associated with the surface of OMVs from CF strains (59, 73), participates in the interaction with lung epithelial cells, optimizing the delivery of OMV content (73).

In P. aeruginosa respiratory infections, OMVs can release important virulence factors, such as the cystic fibrosis inhibitory factor (Cif) (72). Cif decreases the apical membrane expression of CFTR and chloride secretion, altering mucociliary clearance (74), and inhibits TAP1, reducing MHC class I antigen presentation in the airways (75). OMVs are also associated with macrophage apoptosis (76) and can induce inflammation since they stimulate CXCL8 secretion by lung epithelial cells (59), as well as secretion of TNF-α, IL-6, MIP-2, CXCL1, CXCL-8, CCL2, IL-1β, and IFN-γ, and activation of the inflammasome in macrophages (77–79). Moreover, Park et al., 2013 showed in vivo that OMVs can cause dose-dependent pulmonary inflammation, with greater cellular recruitment and increased chemoattractant and cytokine secretion in mice lungs than in live bacteria (78). In contrast, release of sRNA by P. aeruginosa OMVs is associated with reduced LPS- and OMV-induced CXCL8 secretion by human airway epithelial cells along with decreased OMV-induced KC secretion in the bronchoalveolar fluid and reduced neutrophil recruitment in mouse lungs (80).

VIRULENCE FACTORS TARGETING HOST LIPIDS

ExoU

ExoU, a phospholipase A2 (PLA2)-like enzyme that is injected into host cytosol by the type III secretion system machinery (81), is of special interest for acute respiratory infections caused by P. aeruginosa, since potent ExoU-mediated virulence is particularly associated with bloodstream invasion and increased morbidity and mortality in hospitalized patients, especially those suffering from HAP (70, 82–86).

ExoU and its chaperone SpcU are encoded in the PAPI-2 pathogenicity island (87–89), and are detected in about 20-40% of isolates of acute nosocomial infections, such as pneumonia and bacteremia (83–86, 90–92). A recent study performed with 243 isolates from P. aeruginosa bloodstream infection, including 50 with an exoU-positive genotype, showed that patients infected with exoU-positive strains had a higher proportion of respiratory infections, greater severity of illness, septic shock, and increased mortality compared with those infected with exoU-negative strains (85).

After injection into host cytosol, the ExoU C-terminal domain promotes localization of ExoU to the host cell membrane (93) through binding to the lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) followed by conformational change and oligomerization of ExoU (94–96). Furthermore, both ubiquitin and PI(4,5)P2 binding is necessary for full ExoU PLA2 activity and cytotoxicity (96–98). Hence, although the N-terminal domain interacts with SpcU and has enzymatic activity, the C-terminal domain, which promotes ExoU-membrane lipid interaction, is also essential for ExoU-mediated virulence (81, 87, 99–102).

Animal models of acute pneumonia showed that, after infection, ExoU is rapidly expressed in mice lungs and that its levels increase over time (103). In these models, ExoU promotes a bacterial burden in the lungs, enhances dissemination of P. aeruginosa from the bloodstream to other organs, and reduces survival of infected mice (102–106).

PLA2 catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to release arachidonic acid (AA) and lysophospholipids, both potent lipid mediators. In the lungs, the ExoU PLA2 activity on membrane phospholipids generates free AA (107, 108) that is used to produce PGE2 (109, 110), whereas lysophospholipids (102, 110) produce PAF, which binds to PAFR in airway epithelial cells and activates NF-kB, stimulating a potent proinflammatory response characterized by secretion of CXCL8, as well its murine homologue KC, and a marked influx of neutrophils (109, 111, 112). However, ExoU kills neutrophils, as well as other phagocytic cells, causing a state of local immunosuppression that favors the persistence of ExoU+ and ExoU- bacterial strains (113–115).

Although ExoU injection causes reactive oxygen species (ROS) imbalance (116) and is cytotoxic for airway epithelial cells (102, 117), the remaining non-infected cells activate several transcriptional regulators, such as AP1 and NF-kB, modulating the host response (111, 112, 118, 119). Furthermore, the cytotoxic activity of ExoU also promotes endothelial cell damage, which is associated with ROS generation, membrane lipid peroxidation, and caspase-1 activation (107, 120). The ability to break down cellular barriers to bacterial dissemination, such as epithelium and endothelium, helps explain why ExoU is a predictor of invasive infections and has been associated with severe pneumonia followed by bacteremia and sepsis.

Phospholipase C

P. aeruginosa synthesizes three types of phospholipases C (PLCs), the hemolytic PlcH, the non-hemolytic PlcN, and PlcB. All three PLCs hydrolyze phosphatidylcholine, the main component of cell membranes and lung surfactant, as well as other phospholipids found in eukaryotic membranes: PlcH also hydrolyzes sphingomyelin, PlcN targets phosphatidyserine, and PlcB, phosphatidylethanolamine (121, 122). To reach the extracellular medium, all three P. aeruginosa PLCs are secreted by the type II secretion system. However, to be transported across the inner membrane, PlcH and PlcN use the Tat system (123) whereas PlcB uses the Sec pathway (122). Furthermore, PlcH can be delivered into airway epithelial cells by OMVs (72).

In contrast to PlcN and PlcB, the role of PlcH in P. aeruginosa respiratory infections has been studied. Both intratracheal instillation of purified PlcH from P. aeruginosa and infection with
a PlcH-producing strain, but not with its PlcH-defective isogenic mutant, were able to alter the respiratory mechanics during infection, with decreased pulmonary surfactant activity and impaired lung function (124).

Moreover, hydrolysis of phosphatidylcholine and sphingomyelin by PlcH yields diacylglycerol and ceramide, which are involved in signal transduction cascades that result in cellular processes such as cell death and inflammation (125, 126). Actually, intranasal administration of *P. aeruginosa* PlcH increases secretion of the proinflammatory cytokines and chemokines IL-6, IL-1β, TNF-α, MIP-1α, and MIP-2, as well as cellular infiltration, in mice lungs (127).

Despite the activation of the proinflammatory response, PlcH seems to favor *P. aeruginosa* persistence in the lungs (128). PlcH can increase the colonization of biotic and abiotic surfaces, since it contributes to *P. aeruginosa* attachment to CF bronchial epithelial cells and promotes biofilm formation on plastic when bacteria are grown in lung surfactant (129). In addition, PlcH is cytotoxic to macrophages (130) and suppresses the respiratory burst activity of human neutrophils (131), thus promoting bacterial survival in the lungs. Although PlcH is also cytotoxic to endothelial cells and inhibits angiogenesis (132), its role in bloodstream invasion remains to be determined.

The role of PlcN and PlcB in the pathogenesis of *P. aeruginosa* respiratory infections is unclear, although some properties can contribute to successful infection. Both PlcN and PlcB participate in the formation of *P. aeruginosa* biofilms (133), whereas PlcB is also associated with twitching motility (122).

LoxA

Lipoxygenases play an important role in eukaryotic organisms since they metabolize polyunsaturated fatty acids (PUFAs), allowing the subsequent production of lipid mediators with strong immunomodulatory effects. Although lipoxygenases are rare in prokaryotes, Vance and colleagues reported in 2004 that *P. aeruginosa* secretes lipoxygenase A (LoxA), a functional homolog of the eukaryotic 15-LOX (134).

Lipoxygenase activity was detected in 34% of isolates from lungs of non-CF patients and in 18.3% of isolates from lungs of CF individuals, suggesting that LoxA may be secreted during *P. aeruginosa* respiratory infections (135). *In vitro* studies showed that, after interaction with host cell membranes and peroxidation of phospholipids, *P. aeruginosa* LoxA promotes biofilm growth on the surface of airway epithelial cells, helps bacterial invasion, and triggers arachidonoyl phosphatidylethanolamine-dependent ferroptosis (136–139). Furthermore, in a murine model of acute pneumonia, LoxA increased the production of the 15-LOX-dependent metabolites 13-hydroxy-octadecadienoic acid (13-HODE), 15-hydroxyeicosatetraenoic acid (15-HETE), and 17-hydroxydocosahexaenoic acid (17-HDoHE), which were then used to produce lipoxin A4 (LXA4), a bioactive lipid mediator with anti-inflammatory properties. Additionally, LoxA inhibited the secretion of the chemokines MIP-1α/CCL-3, MIP-1β/CCL-4, MIP-2/CXCL-2, CXCL-1, and KC in BALF, reduced the recruitment of inflammatory leukocytes, and promoted the persistence of *P. aeruginosa* in the lungs (135).

HOST PLA₂ ENZYMES AND THEIR ROLE IN P. AERUGINOSA INFECTION

In addition to the PLA₂ activity of *P. aeruginosa* ExoU, host cells also exhibit PLA₂ enzymes that can mediate *P. aeruginosa*-induced toxicity (Figure 1). Among these enzymes, the host...
cytosolic PLA₂α (cPLA₂α), which hydrolyzes host membrane phospholipids releasing lysophospholipids and AA, plays a key role in \textit{P. aeruginosa}-induced mouse mortality, mainly through cPLA₂α-derived AA metabolites (141). In addition, it is likely that the accumulation of highly cytotoxic lysophospholipids, such as lysophosphatidylcholine, may participate in the deleterious effects of \textit{P. aeruginosa}. This may indicate that cPLA₂α represents a potentially interesting therapeutic target for the treatment of lung injury induced by \textit{P. aeruginosa} infection and that a cPLA₂α inhibitor can be used as a new strategy against inflammation.

Conversely, the host also produces a family of secreted PLA₂ (sPLA₂) that play a key role in defense against invading bacteria. For example, sPLA₂-IIA can kill Gram-positive bacteria at very low concentrations (below 10 ng/ml), due to the unique preference of sPLA₂-IIA for anionic phospholipids, such as phosphatidylglycerol (140), the main phospholipid component of bacterial membranes. In contrast, much higher concentrations (> 10 µg/ml) of sPLA₂-IIA are required for its action on host cell membranes mainly composed of phosphatidylcholine, a poor substrate for sPLA₂-IIA. The ability of sPLA₂-IIA to kill Gram-negative bacteria, including \textit{P. aeruginosa}, depends on factors that disrupt bacterial outer membrane organization, such as the bactericidal/permeability-increasing protein (BPI), which predisposes bacterial membranes phospholipids to sPLA₂-IIA attack. Additionally, sPLA₂-IIA can directly kill clinical isolates of \textit{P. aeruginosa}, which chronically colonizes the upper airways of CF patients, but this effect is not affected by the high salt concentrations observed in CF secretions. Studies have shown that sPLA₂-IIA kills a laboratory strain of \textit{P. aeruginosa} and that sPLA₂-IIA transgenic mice are protected from mortality by both laboratory and clinical strains of \textit{P. aeruginosa} isolated from CF patients. These findings suggest that sPLA₂-IIA may play a role in host defense during episodes of pulmonary infection by \textit{P. aeruginosa} in CF patients (140).

DISCUSSION

\textit{P. aeruginosa} uses multiple virulence factors to cause acute and chronic respiratory infections. As summarized in Figure 2, \textit{P. aeruginosa} lipids are able to exert important effects during infection. Bacterial lipids can protect \textit{P. aeruginosa} from antibiotics and phagocytosis, promote bacteria-bacteria
communication, provide a competitive advantage, participate in biofilm development, and interfere with the host response. In addition, host and bacterial lipid-modifying enzymes induced during the infectious process may promote the direct lysis of membranes and manipulate eukaryotic signaling pathways, which may lead to modulation of the inflammatory response, invasion of host tissue barriers, escape from immune mechanisms, or bacterial clearance. Knowledge of lipid manipulation by P. aeruginosa that may facilitate its persistence is essential for understanding the mechanisms underlying its pathogenicity and may provide important insights to the control of P. aeruginosa infections.

REFERENCES

1. Aditi, Shariff M, Chhabra SK, Rahman MU. Similar Virulence Properties of Infection and Colonization Associated Pseudomonas aeruginosa. J Med Microbiol (2017) 66:1489–98. doi: 10.1099/jmm.0.000569.

2. Rutherford V, Yom K, Oter EA, Pora O, Hughes A, Murphy KR, et al. Environmental Reservoirs for Exoz+ and Exoz- Strains of Pseudomonas aeruginosa. Environ Microbiol Rep (2018) 10:485–92. doi: 10.1111/1758-2229.12653.

3. Obrist MD, Fish DN, MacLaren R, Jung R. National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained From Intensive Care Unit Patients From 1993 to 2002. Antimicrob Agents Chemother (2004) 48:4606–10. doi: 10.1128/AAC.48.12.4606-4610.2004

4. Fazeli N, Momtaz H. Virulence Gene Proflles of Multidrug-Resistant Pseudomonas aeruginosa Isolated From Iranian Hospital Infections. Iran Red Crescent Med J (2014) 16:e15722. doi: 10.5821/icrcm.15722.

5. Yaghj J, Fattouh N, Akkawi C, El Chamy L, Maroun RG, Khalil G. Unusually High Prevalence of Coexistence of Ambler Class A and B Carbapenemases and Nonenzymatic Mechanisms in Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa in Lebanon. Microb Drug Resist (2020) 26:150–9. doi: 10.1089/mdr.2019.0040

6. Pérez A, Gato E, Pérez-Llarena J, Fernández-Cuenca F, Gude MJ, Oviano M, et al. High Incidence of MDR and XDR Pseudomonas aeruginosa Isolates Obtained From Patients With Ventilator-Associated Pneumonia in Greece, Italy and Spain As Part of the MagicBullet Clinical Trial. J Antimicrob Chemother (2019) 74:1244–52. doi: 10.1093/jac/dkz030.

7. Xi, McAulay K, Schuetz AN, Fauntleroy K, Shen L, Merville YM, Deroncelay A, et al. Multidrug-Resistant Pseudomonas aeruginosa in Healthcare Facilities in Port-Au-Prince, Haiti. J Glob Antimicrob Resist (2021) 25:60–5. doi: 10.1016/j.jgar.2021.02.016.

8. Dötsch A, Schniedermans M, Khadei A, Hornischer K, Schulz S, Bielecka A, et al. The Pseudomonas aeruginosa Transcriptional Landscape is Shaped by Environmental Heterogeneity and Genetic Variation. mBio (2015) 6: e00749–15. doi: 10.1128/mBio.00749-15

9. Wardell SJ, Gauthier J, Martin LW, Potvin M, Brockway B, Levesque RC, et al. Genome Evolution Drives Transcriptomic and Phenotypic Adaptation in Pseudomonas aeruginosa During 20 Years of Infection. Microb Genom (2021) 7:000681. doi: 10.1099/mgen.0.000681.

10. Quartin AA, Sceppella EG, Pettigunta S, Kett DH. A Comparison of Microbiology and Demographics Among Patients With Healthcare-Associated, Hospital-Acquired, and Ventilator-Associated Pneumonia: A Retrospective Analysis of 1184 Patients From a Large, International Study. BMC Infect Dis (2013) 13:561. doi: 10.1186/1471-2334-13-561.

11. Walter J, Haller S, Quinten C, Kirk T, Zacher B, Eckmanns T, et al. Healthcare-Associated Pneumonia in Acute Care Hospitals in European Union/European Economic Area Countries: An Analysis of Data From a Point Prevalence Survey, 2011 to 2012. Euro Surveill (2018) 23:1700843. doi: 10.2807/1560-7917.ES.2018.23.32.1700843.

12. Litwin A, Rojek S, Gózdzik W, Duzynska W. Pseudomonas aeruginosa Lipid A Associated – Healthcare Associated Infections and Its Multidrug Resistance at Intensive Care Unit of University Hospital: Polish, 8.5-Year, Prospective, Single-Centre Study. BMC Infect Dis (2021) 21:180. doi: 10.1186/s12879-021-05883-5

13. Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, et al. Airway Microbiota and Pathogen Abundance in Age-Stratiﬁed Cystic Fibrosis Patients. PLoS One (2010) 6:e11044. doi: 10.1371/journal.pone.0011044

14. Sibley CD, Grinstein ME, Field TR, Eshaghroursh CS, Faria MM, Dowel SE, et al. Culture Enriched Molecular Proﬁling of the Cystic Fibrosis Airway Microbiome. PLoS One (2011) 7:e22702. doi: 10.1371/journal.pone.0022702.

15. Rodrigo-Troyano A, Suarez-Cuartin G, Paez M, Barrett S, Castillo D, Sanchez-Reus F, et al. Pseudomonas aeruginosa Resistance Patterns and Clinical Outcomes in Hospitalized Exacerbations of COPD. Respir (2016) 21:1355–42. doi: 10.1111/resp.12825

16. Choi J, Oh JY, Lee YS, Hur GY, Lee SY, Shim JJ, et al. Pseudomonas aeruginosa Infection Increases the Readmission Rate of COPD Patients. Int J Chron Obstruct Pulmon Dis (2013) 8:3377–83. doi: 10.2147/ICOPD.S137579.

17. Cuthbertson L, Walker AW, Oliver AE, Rogers GB, Rivett DW, Hampton TH, et al. Lung Function and Microbiota Diversity in Cystic Fibrosis. Microbiome (2020) 8:45. doi: 10.1186/s40168-020-00810-3

18. Ernst RK, Moskovitz SM, Emerson JC, Krag GA, Adams KN, Harvey MD, et al. Unique Lipid A Modifications in Pseudomonas aeruginosa Isolated From the Airways of Patients With Cystic Fibrosis. J Infect Dis (2007) 196:1088–92. doi: 10.1086/521367

19. Thaisiutikul I, Hittle LE, Chandra R, Zangari D, Dixon CL, Garrett TA, et al. A Divergent Pseudomonas aeruginosa Palmitoyltransferase Essential for Cystic Fibrosis-Specific Lipid a. Mol Microbiol (2014) 91:158–74. doi: 10.1111/micm.12451.

20. Ernst RK, Yi EC, Guo L, Kim BK, Burns JL, Hackett M, et al. Specific Lipopolysaccharide Found in Cystic Fibrosis Airway Pseudomonas aeruginosa. Science (1999) 286:1561–65. doi: 10.1126/science.286.5444.1561

21. Nowicky EM, O’Brien J, Brodbelt JS, Trent MS. Characterization of Pseudomonas aeruginosa LpxT Reveals Dual Positional Lipid A Kinase Activity and Co-Ordinated Control of Outer Membrane Modification. Mol Microbiol (2014) 94:728–41. doi: 10.1111/mcm.12796

22. Ciornei CD, Novikov A, Beloin C, Fitting C, Caroff M, Ghigo JM, et al. Biofilm-Forming Pseudomonas aeruginosa Bacteria Undergo Lipopolysaccharide Structural Modifications and Induce Enhanced Inflammatory Cytokine Response in Human Monocytes. Innate Immun (2016) 16:288–301. doi: 10.1177/1753429914518079.

23. Fischer S, Klockgether J, Gonzalez Sorribes M, Dorda M, Wiemhöl I, Tümmler B. Sequence Diversity of the Pseudomonas aeruginosa Population in Loci That Undergo Microevolution in Cystic Fibrosis Airways. Access Microbiol (2021) 3:000286. doi: 10.1099/acmi.0.000286

24. McPhee JB, Lewenza S, Hancock REW. Cationic Antimicrobial Peptides Activate a Two-Component Regulatory System, PmrA-PmrB, That Regulates Resistance to Polymyxin B and Cationic Antimicrobial Peptides in Pseudomonas aeruginosa. Mol Microbiol (2003) 50:205–17. doi: 10.1046/j.1365-2983.2003.03671.x

25. Moskovitz SM, Ernst RK, Miller SI. PmrAB, a Two-Component Regulatory System of Pseudomonas aeruginosa That Modulates Resistance to Cationic Antimicrobial Peptides and Addition of Aminoarabinose to Lipid a. J Bacteriol (2004) 186:575–9. doi: 10.1128/JB.186.2.575-579.2004

AUTHOR CONTRIBUTIONS

PC-T, AJ, LT, and AS contributed to the writing of the manuscript. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the PhD fellowship to PC-T. We also thank the Fondation Air Liquide for supporting our studies on P. aeruginosa in CF.
26. Ernst RK, Adams KN, Moskowitz SM, Kraig GM, Kasaki K, Stead CM, et al. The Pseudomonas aeruginosa Lipid A Deacylase: Selection for Expression and Loss Within the Cystic Fibrosis Airway. *J Bacteriol* (2006) 188:191–201. doi: 10.1128/JB.188.1.191-201.2006

27. Ciganá, C. Curcurú, L. Leon, MR, Ieranó, T. Loré, NL, Bianconi, I, et al. Pseudomonas aeruginosa Exploits Lipid A and Murepodeptides Modification as a Strategy to Lower Innate Immunity During Cystic Fibrosis Lung Infection. *PloS One* (2009) 4:e8439. doi: 10.1371/journal.pone.0008439

28. Pamp, SJ, Gjermansen, M, Johansen HK, Tolker-Nielsen T. Tolerance to the Antimicrobial Peptide Colistin in Pseudomonas aeruginosa Biofilms Is Linked to Metabolically Active Cells, and Depends on the Pmr and mexAB-oprM Genes. *Mol Microbiol* (2008) 68:223–40. doi: 10.1111/j.1365-2958.2008.06152.x

29. Gellaty, SL, Needham, B, Madera, L, Trent, MS, Hancock, RE. The Pseudomonas aeruginosa PhoP-PhoQ Two-Component Regulatory System Is Induced Upon Interaction With Epithelial Cells and Controls Cytotoxicity and Inflammation. *Infect Immun* (2012) 80:3122–31. doi: 10.1128/IAI.00382-12

30. Erridge, C, Pridmore, A, Eley, A, Stewart, J, Poxton, IR. Lipopolysaccharides of Pseudomonas aeruginosa for Rhamnolipid Detection-Important Virulence Factors of Pseudomonas aeruginosa. *J Bacteriol* (2004) 186:114. doi: 10.1128/JB.186.3.1109-1113.2004

31. Hajjar, AM, Ernst, RK, Tsai, JH, Wilson, CB, Miller, SI. Human Toll-Like Receptor 4 Recognizes Host-Specific LPS Modifications. *Nat Immunol* (2002) 3:354–9. doi: 10.1038/n777

32. Ernst RK, Hajjar AM, Tsai JH, Moskowitz SM, Wilson CB, Miller SI. Pseudomonas aeruginosa Lipid A Diversity and Its Recognition by Toll-Like Receptor 4. *J Endotoxin Res* (2003) 9:395–400. doi: 10.1178/09680519030060201

33. SenGupta, S, Hittle, LE, Ernst RK, Uriarte, SM, Mitchell, TC. A Pseudomonas aeruginosa Hepta-Acylated Lipid A Variant Associated With Cystic Fibrosis Selectively Activates Human Neutrophils. *J Leuk Biol* (2016) 100:1047–59. doi: 10.1189/jlb.MA0316-101R

34. Hajjar AM, Ernst RK, Tsai JH, Wilson CB, Miller SI. Human Toll-Like Receptor 4 Reciprocates Host-Specific LPS Modifications. *Nat Immunol* (2002) 3:354–9. doi: 10.1038/n777

35. Ernst RK, Hajjar AM, Tsai JH, Moskowitz SM, Wilson CB, Miller SI. Pseudomonas aeruginosa Lipid A Diversity and Its Recognition by Toll-Like Receptor 4. *J Endotoxin Res* (2003) 9:395–400. doi: 10.1178/09680519030060201

36. Ochsner UA, Koch AK, Fiechter A, Reiser J. Isolation, Characterization, and Expression of the Pseudomonas aeruginosa RhlA Gene That Encodes Rhamnolipid Transferase. *Mol Microbiol* (2001) 40:708–18. doi: 10.1046/j.1365-2958.2001.02420.x

37. Rahim R, Ochsner UA, Olivera C, Graninger M, Messner P, Lam JS, et al. Cloning and Functional Characterization of the Pseudomonas aeruginosa rhlA Gene That Encodes Rhamnolipid Transferase 2, an Enzyme Responsible for Di-Rhamnolipid Biosynthesis. *Mol Microbiol* (2001) 40:708–18. doi: 10.1046/j.1365-2958.2001.02420.x

38. Soberón-Chávez, G, González-Valdez A, Soto-Aceves MP, Cocoli-Yañez M. Rhamnolipids Produced by Pseudomonas: From Molecular Genetics to the Market. *Microb Biotechnol* (2011) 4:136–46. doi: 10.1111/j.1751-7915.2010.00137

39. Kownatzki R, Tümmler B, Döring G. Rhamnolipid of Pseudomonas aeruginosa in Sputum of Cystic Fibrosis Patients. *Lancet* (1997) 1:326–7. doi: 10.1016/S0140-6736(97)90851-1

40. Bjarnsholt T, Jensen PØ, Jakobsen TH, Phipps R, Nielsen AK, Rybtke MT, et al. The Pseudomonas aeruginosa rhlAB Genes Encoding a Rhamnosyltransferase Involved in Rhamnolipid Biosurfactant Expression in *Pseudomonas aeruginosa*. *Environ Microbiol* (2014) 58:447–53. doi: 10.1111/j.1462-2920.2007.01396.x

41. Calfee MW, Shilton JG, McCubrey JA, Pesci EC. Solubility and Bioactivity of the Pseudomonas Quinolone Signal are Increased by a Pseudomonas aeruginosa-Produced Surfactant. *Infect Immun* (2005) 73:8778–82. doi: 10.1128/IAI.73.2.8778–882.2005

42. Lin J, Cheng J, Wang Y, Shen X. The Pseudomonas Quinolone Signal (PQS): Not Just for Quorum Sensing Anymore. *Front Cell Infect Microbiol* (2018) 8. doi: 10.3389/fcimb.2018.00230

43. Guina T, Purvine SO, Yi EC, J Goodlett DR, Aebersold R, et al. Quantitative Proteomic Analysis Indicates Increased Synthesis of a Quinolone by Pseudomonas aeruginosa Isolated From Cystic Fibrosis Airways. *Proc Natl Acad Sci USA* (2003) 100:2771–6. doi: 10.1073/pnas.0345846100

44. Barr HL, Halliday N, Câmara M, Barrett DA, Williams P, Forrester DL, et al. Pseudomonas aeruginosa Quinolone Sensing Molecules Correlate With Clinical Status in Cystic Fibrosis. *Eur Respir J* (2015) 46:1046–54. doi: 10.1183/09031936.0025214

45. Radlinski L, Rowe SE, Karchter LB, Male R, Cairns BA, Vitko NP, et al. The Pseudomonas aeruginosa Exoproducts Determine Antibiotic Ef

46. Radlinski L, Rowe SE, Karchter LB, Male R, Cairns BA, Vitko NP, et al. The Pseudomonas aeruginosa Exoproducts Determine Antibiotic Efficacy Against Staphylococcus Aureus. *PLoS Biol* (2017) 15:e2003981. doi: 10.1371/journal.pbio.2003981

47. Gdaniec RG, Bonini F, Prodon F, Brachler T, Köhler T, van Delden C. Pseudomonas aeruginosa Rhamnolipid Micelles Deliver Toxic Metabolites Into Staphylococcus Aureus. *Infect Immun* (2021) 89:70. doi: 10.1128/AIIMS.7.1921846

48. Sas G, Nazik H, Chatterjee P, Shrestha P, Groeleu MC, Díezel E, et al. Altered Pseudomonas Strategies to Inhibit Surface Aspergillus Colonies. *Front Cell Infect Microbiol* (2021) 11. doi: 10.3389/fcimb.2021.734296

49. Bauman SJ, Kuehn MJ. Purification of Outer Membrane Vesicles From Pseudomonas aeruginosa and Their Activation of an IL-8 Response. *Microbes Infect* (2006) 8:2400–8. doi: 10.1016/j микроб.2006.05.001

50. Metrùscu MME, Evans DJ, Gabriel MM, Kadurugamuwa JL, Fleisch SMJ. Pseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion. *Front Microbiol* (2016) 7:871. doi: 10.3389/fmicb.2016.00871
61. Gifo O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Hoiby N. Chromosomal Beta-Lactamase Is Packaged Into Membrane Vesicles and Secreted From Pseudomonas aeruginosa. J Antimicrob Chemother (2000) 45:9–13. doi: 10.1093/jac/45.1.9

62. Renelli M, Matias V, Lo Ry, Beveridge TJ. DNA-Maintaining Membrane Vesicles of Pseudomonas aeruginosa PA01 and Their Genetic Transformation Potential. Microbiol (2004) 150:2161–9. doi: 10.1099/mic.0.26841-0

63. Bitto NJ, Chapman R, Podot S, Lo C, Choi J, et al. Bacterial Membrane Vesicles Transport Their DNA Cargo Into Host Cells. Sci Rep (2017) 7:7072. doi: 10.1038/s41598-017-07788-4

64. Augustyniak D, Obzak T, Družko-Kawa Z. Outer Membrane Vesicles (OMVs) of Pseudomonas aeruginosa Provide Passive Resistance But Not Sensitization to LPS-Specific Phages. Viruses (2022) 14:121. doi: 10.3390/v1410121

65. Zhao Z, Wang L, Miao J, Zhang Z, Ruan J, Xu L, et al. Regulation of the Formation and Structure of Biofilms by Quorum Sensing Signal Molecules Packaged in Outer Membrane Vesicles. Sci Total Environ (2022) 806:151403. doi: 10.1016/j.scitotenv.2021.151403

66. Esoda CN, Kuehn MJ. Pseudomonas aeruginosa Leucine Aminopeptidase Influences Early Biofilm Composition and Structure via Vesicle-Associated Antibiofilm Activity. mBio (2019) 10.e02548-19. doi: 10.1128/mBio.02548-19

67. Cooke AC, Florez C, Dunshee EB, Lieber AD, Terry ML, Light CJ, et al. Pseudomonas aeruginosa Membrane Vesicles: A New Mechanism of Host-Pathogen Interaction? Infect Immun (2011) 147:2552–6. doi: 10.1128/IAI.00338-07

68. Lo

69. Mart

70. Wareham DW, Curtis MA. A Genotypic and Phenotypic Comparison of Dissemination of New Delhi Metallo-β-Lactamase-1. J Antimicrob Agents (2021) 5:1013. doi: 10.1165/rcmb.2012-0370OC

71. Byfield SJ, Kuehn MJ. Vesicle-Associated Vesicle Membrane Vesicles of Pseudomonas aeruginosa. Infect Immun (2013) 81:e1000382. doi: 10.1128/PLoS One.0049388

72. Bomberger JM, MacEachran DP, Coutermarsh BA, Ye S, O’Toole GA, et al. Structure of the Type III Secretion Effector Protein ExoU in Complex With Its Chaperone SpuC. PLoS One (2012) 7:e49388. doi: 10.1371/journal.pone.0049388

73. Bauman SJ, Kuehn MJ. The Broad Sensing of Both Lipopolysaccharide and Protein SipC Protein Enhances the Ubiquitination and Degradation of the Transmembrane Conductance Regulator. Microbiol (2018) 147:2624–31. doi: 10.1111/imcb.12190

74. Ellis TN, Leiman SA, Kuehn MJ. Naturally Produced Outer Membrane Vesicles From Pseudomonas aeruginosa Elicits a Potent Innate Immune Response via Combined Sensing of Both Lipopolysaccharide and Protein Components. Infect Immun (2010) 78:3882–31. doi: 10.1128/IAI.00433-10

75. Park KS, Lee J, Jang SC, Kim SR, Jung MH, Løtvall J, et al. Pulmonary Inflammation Induced by Bacteria-Free Outer Membrane Vesicles From Pseudomonas aeruginosa. Am J Respir Cell Mol Biol (2013) 49:637–45. doi: 10.1165/rcmb.2012-0370OC

76. Byfield SJ, Baker PJ, Dowling JK, Wray-McCann G, De Paoli A, Tran LS, et al. Membrane Vesicles From Pseudomonas aeruginosa Activate the Noncanonical Inflammasome Through Caspase-5 in Human Monocytes. Immuno Cell Biol (2018) 96:1120–30. doi: 10.1111/iimb.12190

77. Koeppen K, Hampton TH, Jarek M, Scharfe M, Gerber SA, Mielcarek DW, et al. A Novel Mechanism of Host-Pathogen Interaction Through sRNA in Bacterial Outer Membrane Vesicles. PLoS Pathog (2016) 12:e1005672. doi: 10.1371/journal.ppat.1005672

78. Sato H, Frank DW, Hillard CJ, Feix JB, Pankhaniya RB, Moriyama K, et al. The Mechanism of Action of the Pseudomonas aeruginosa-Encoded Type III Cytotoxin, ExoU. EMBO J (2003) 22:2959–69. doi: 10.1093/emboj/cdg290

79. El-Soll AA, Hatterman A, Hauser AR, Allahjusain A, Vora H. Clinical Outcomes of Type III Pseudomonas aeruginosa Bacteremia. Crit Care Med (2012) 40:1157. doi: 10.1097/CCM.0b013e3182377906

80. Hauser AR, Cobb E, Bodi M, Mariscal D, Valles J, Engel JN, et al. Type III Protein Secretion Is Associated With Poor Clinical Outcomes in Patients With Ventilator-Associated Pneumonia Caused by Pseudomonas aeruginosa. Crit Care Med (2002) 30:521–8. doi: 10.1097/00003246-200203000-00005

81. Schultes GT, Feltman H, Rabin SD, Martin CG, Battle SE, Rello J, et al. Structure of the Toxin ExoU Is a Marker for Highly Virulent Pseudomonas aeruginosa Isolates Obtained From Patients With Hospital-Acquired Pneumonia. J Infect Dis (2003) 188:695–706. doi: 10.1086/373972

82. Recio R, Viedma E, González-Bodi S, Villa J, Orellana MA, Mancheño-Losa M, et al. Clinical and Bacterial Characteristics of Pseudomonas aeruginosa Affecting the Outcome of Patients With Bacteremic Pneumonia. Int J Antimicrob Agents (2021) 58:106450. doi: 10.1016/j.ijantimicag.2021.106450

83. Sullivan E, Bensman J, Lou M, Aghnlo M, Shrirong K, Wong-Beringer A. Risk of Developing Pneumonia Is Enhanced by the Combined Traits of Fluoroquinolone Resistance and Type III Secretion Virulence in Respiratory Isolates of Pseudomonas aeruginosa. Crit Care Med (2014) 42:48–56. doi: 10.1097/CCM.0000000000001886

84. Finck-Barbançon V, Yahr TL, Frank DW. Identification and Characterization of SpuC, a Chaperone Required for Efficient Secretion of the ExoU Cytotoxin. J Bacteriol (1998) 180:6224–31. doi: 10.1128/JB.180.23.6224-6231.1998

85. He J, Baldini RL, Dæzel E, Saucier M, Zhang Q, Liberati NT, et al. The Broad Host Range Pathogen Pseudomonas aeruginosa Strain PA14 Carries Two Pathogenicity Islands Harboring Plant and Animal Virulence Genes. Proc Natl Acad Sci U S A (2004) 101:2530–5. doi: 10.1073/pnas.0304622101

86. Halavaty AS, Borek D, Tyson GH, Veesenmeyer JL, Shulavolova J, Minasov G, et al. Structure of the Type III Secretion Effector Protein ExoU in Complex With its Chaperone SpuC. PLoS One (2012) 7:e49388. doi: 10.1371/journal.pone.0049388

87. Feltman H, Schulte G, Khan S, Jain M, Peterson L, Hauser AR. Prevalence of Type III Secretion Genes in Clinical and Environmental Isolates of Pseudomonas aeruginosa. Microbiol (Reading) (2001) 147:2659–69. doi: 10.1099/00221287-147-10-2659

88. Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, et al. Targeting of Lipopolysaccharide and Protein Cytotoxin, ExoU. J Biol Chem (2003) 278:15299–15309. doi: 10.1074/jbc.M302931200

89. Al Dawodeyah HY, Obeidat N, Abu-Qatouche LF, Shelabi AA. Antimicrobial Resistance and Putative Virulence Genes of Pseudomonas aeruginosa Isolates From Patients With Respiratory Tract Infection. Germs (2018) 8:31–40. doi: 10.18683/germs.2018.1130

90. Rabin SD, Veesenmeyer JL, Bieging KT, Hauser AR. A C-Terminal Domain Targets the Pseudomonas aeruginosa Cytotoxin ExoU to the Plasma Membrane of Host Cells. Infect Immun (2006) 74:2552–61. doi: 10.1128/IAI.74.5.2552-2561.2006

91. Zhang A, Veesenmeyer JL, Hauser AR. Phosphatidylinositol 4,5-Bisphosphate-Dependent Oligomerization of the Pseudomonas aeruginosa Cytotoxic ExoU. Infect Immun (2017) 86:e00402–17. doi: 10.1128/IAI.00402-17
130. Kida Y, Shimizu T, Kusano K. Cooperation Between LepA and PlcH Contributes to the In Vivo Virulence and Growth of Pseudomonas aeruginosa in Mice. Infect Immun (2011) 79:211–9. doi: 10.1128/IAI.0053-10

131. Terada LS, Johansen KA, Nowbar S, Vasil AI, Vasil ML. Pseudomonas aeruginosa Hemolytic Phospholipase C Suppresses Neutrophil Respiratory Burst Activity. Infect Immun (1999) 67:2371–6. doi: 10.1128/IAI.67.5.2371-2376.1999

132. Vasil ML, Stonehouse MJ, Vasil AI, Wadsworth SJ, Goldstein H, Bolcome IIIRe, et al. A Complex Extracellular Sphingomyelinase of Pseudomonas aeruginosa Inhibits Angiogenesis by Selective Cytotoxicity to Endothelial Cells. PloS Pathog (2009) 5:e1000420. doi: 10.1371/journal.ppat.1000420

133. Lewenza S, Charron-Mazenod L, Afroj S, van Tilburg Bernardes E. Hyperbiofilm Phenotype of Pseudomonas aeruginosa Defective for the PlcB and PlcN Secreted Phospholipases. Can J Microbiol (2017) 63:780–7. doi: 10.1139/cjm-2017-0244

134. Vance RE, Hong S, Gronert K, Serhan CN, Meekalani JI. The Opportunistic Pathogen Pseudomonas aeruginosa Carries a Secretable Arachidonate 15-Lipoxygenase. Proc Natl Acad Sci USA (2004) 101:2135–9. doi: 10.1073/pnas.0307308101

135. Morello E, Pérez-Berezo T, Boisseau C, Baranek T, Guillon A, Brezé D, et al. Pseudomonas aeruginosa Lipoxigenase LoxA Contributes to Lung Infection By Altering the Host Immune Lipid Signaling. Front Microbiol (2019) 10:1826. doi: 10.3389/fmicb.2019.01826

136. Garreta A, Val-Moraes SP, Garcia-Fernández Q, Busquets M, Juan C, Oliver A, et al. Structure and Interaction With Phospholipids of a Prokaryotic Lipoxigenase From Pseudomonas aeruginosa. FASEB J (2013) 27:4811–21. doi: 10.1096/fj.13-235952

137. Deschamps JD, Ogunsola AF, Jameson JB, Yasgar A, Flitter BA, Freedman CJ, et al. Biochemical and Cellular Characterization and Inhibitor Discovery of Pseudomonas aeruginosa 15-Lipoxygenase. Biochemistry (2016) 55:3329–40. doi: 10.1021/acs.biochem.6b00338

138. Aldrovandi M, Bantiya S, Meckelmann S, Zhou Y, Heydeck D, O’Donnell VB, et al. Specific Oxygenation of Plasma Membrane Phospholipids by Pseudomonas aeruginosa Lipoxigenase Induces Structural and Functional Alterations in Mammalian Cells. Biochim Biophys Acta Mol Cell Biol Lipids (2018) 1863:152–64. doi: 10.1016/j.bbalip.2017.11.005

139. Dar HH, Yturina YY, Mikulska-Ruminska K, Shrivastava I, Ting HC, Tyurin VA, et al. Pseudomonas aeruginosa Utilizes Host Polyunsaturated Phosphatidylethanolamines to Trigger Theft-Ferroptosis in Bronchial Epithelium. J Clin Invest (2018) 128:4639–5. doi: 10.1172/JCI99490

140. van Hensbergen VP, Wu Y, van Sorge NM, Touqui L. Type IIa Secreted Phospholipase A2 in Host Defense Against Bacterial Infections. Trends Immunol (2020) 41:313–26. doi: 10.1016/j.it.2020.02.003

141. Guillemot L, Medina M, Pernet E, Leduc D, Chignard M, Touqui L, et al. Cytosolic Phospholipase A2et Enhances Mouse Mortality Induced by Pseudomonas aeruginosa Pulmonary Infection via Interleukin 6. Biochimie (2014) 107:95–104. doi: 10.1016/j.biochi.2014.08.018

142. Duboux A, Campanac C, Fauvel J, Simon MF, Salles JP, Roques C, et al. Bacterial Properties of Group IIA Secreted Phospholipase A2 Against Pseudomonas aeruginosa Clinical Isolates. J Med Microbiol (2003) 52:1039–45. doi: 10.1099/jmm.0.05303-0

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Constantino-Teles, Jouault, Touqui and Saliba. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.