Norm Inequalities Related to Heinz and Logarithmic Means

Guanghua Shi

School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu, China
sghkanting@163.com

June 14, 2022

Abstract

In this paper, we got some refinements of the norm inequalities related to the Heinz mean and logarithmic mean.

AMS classification: 47A63; 94A17

Keywords: Heinz mean, Logarithmic mean, Positive function, Unitarily invariant norm

1 Introduction

There are several means that interpolate between the geometric and arithmetic means. For instance, the Heinz mean $H_t(a, b)$, defined by

$$H_t(a, b) = \frac{a^{1-t}b^t + a^t b^{1-t}}{2} \quad \text{for} \quad 0 \leq t \leq 1.$$

In 1993, Bhatia-Davis [2] obtained that if A, B and X are $n \times n$ matrices with A, B positive semidefinite, then for every unitarily invariant norm $\|\cdot\|$,

$$\|A^{\frac{1}{2}}XB^{\frac{1}{2}}\| \leq \frac{1}{2} \|A^{1-t}XB^t + A^t XB^{1-t}\| \leq \frac{1}{2} \|AX + XB\|.$$ \hspace{1cm} (1.1)

The logarithmic mean $L(a, b)$, defined by

$$L(a, b) = \frac{a - b}{\log a - \log b} = \int_0^1 a^t b^{1-t} dt,$$

also interpolates the geometric and arithmetic means. In 1999, Hiai-Kosaki [3] proved the following inequality

$$\|A^{\frac{1}{2}}XB^{\frac{1}{2}}\| \leq \left\| \int_0^1 A^v XB^{1-v} dv \right\| \leq \frac{1}{2} \|AX + XB\|.$$ \hspace{1cm} (1.2)
Moreover, in 2006, Drissi [4] proved that the following Heinz-logarithmic inequality
\[
\left\| A^{1-t}XB^t + A^tXB^{1-t} \right\| \leq 2 \left\| \int_0^1 A^vXB^{1-v}dv \right\|
\] (1.3)
holds for \(\frac{1}{4} \leq t \leq \frac{3}{4} \).

A complex-valued function \(\varphi \) on \(\mathbb{R} \) is said to be positive definite if the matrix \([\varphi(x_i - x_j)]\) is positive semidefinite for all choices of real numbers \(x_1, x_2, \ldots, x_n \), and \(n = 1, 2, \ldots \). Set \(M(a, b) \) and \(N(a, b) \) are two symmetric homogeneous means on \((0, \infty) \times (0, \infty)\). \(M \) is said to strongly dominate \(N \), denoted by \(M \ll N \), if and only if the matrix
\[
\begin{bmatrix}
M(\lambda_1, \lambda_j) \\
N(\lambda_1, \lambda_j)
\end{bmatrix}_{i,j=1,\ldots,n}
\]
is positive semidefinite for any size \(n \) and \(\lambda_1, \ldots, \lambda_n > 0 \). Drissi [4] proved that for \(a, b \geq 0 \), \(H_t(a, b) \ll L(a, b) \) if and only if \(\frac{1}{4} \leq t \leq \frac{3}{4} \). In general, the inequality \(M \ll N \) could be stronger than the Löwner’s order inequality \(M \leq N \).

For more operator or norm inequalities related to the Heinz mean and logarithmic mean we refer the readers to [7–9] and the references therein.

2 Main results

Lemma 2.1. For \(\sinh x \) and \(\cosh x \), we have

(i) If \(|\beta| > |\alpha| > 0 \), then the function \(\frac{\cosh \alpha x}{\cosh \beta x} \) is positive definite.

(ii) If \(|\beta| > |\alpha| > 0 \) with \(\alpha, \beta \) the same sign, then \(\frac{\sinh \alpha x}{\sinh \beta x} \) is positive definite.

(iii) If \(\beta > 0 \) and \(|\alpha| < \beta/2 \), then \(\frac{\beta x \cosh \alpha x}{\sinh \beta x} \) is positive definite.

Proof. We follow a similar argument as in Chapter 5 of [1]. From the product representations in p. 147-148 of [1],
\[
\frac{\sinh x}{x} = \prod_{k=1}^{\infty} \left(1 + \frac{x^2}{k^2 \pi^2} \right), \quad \cosh x = \prod_{k=0}^{\infty} \left(1 + \frac{4x^2}{(2k + 1)^2 \pi^2} \right), \tag{2.1}
\]
we have
\[
\frac{\sinh \alpha x}{\sinh \beta x} = \frac{\alpha}{\beta} \prod_{k=1}^{\infty} \frac{1 + \alpha^2 x^2/k^2 \pi^2}{1 + \beta^2 x^2/k^2 \pi^2}, \quad \frac{\cosh \alpha x}{\cosh \beta x} = \prod_{k=0}^{\infty} \frac{1 + 4\alpha^2 x^2/(2k + 1)^2 \pi^2}{1 + 4\beta^2 x^2/(2k + 1)^2 \pi^2}. \tag{2.2}
\]
Each factor in the product is of the form
\[
\frac{1 + a^2 x^2}{1 + b^2 x^2} = \frac{a^2}{b^2} + \frac{1 - a^2/b^2}{1 + b^2 x^2}, \quad b^2 > a^2.
\]
Since \(1/(1+b^2 x^2) \) is positive definite [1, 5.2.7], it follows that the functions \(\cosh \alpha x / \cosh \beta x \) is positive definite for \(|\beta| > |\alpha| > 0 \), and \(\sinh \alpha x / \sinh \beta x \) is positive definite for \(|\beta| > |\alpha| > 0 \) with \(\alpha, \beta \) the same sign.
Since
\[
\frac{\beta x \cosh \alpha x}{\sinh \beta x} = \frac{\beta x}{\sinh \frac{2}{\beta} x} \cdot \frac{\cosh \alpha x}{\cosh \frac{2}{\beta} x}
\]
and \(x/\sinh x\) is positive definite [1, 5.2.9], it follows from the above argument that when \(\frac{\beta}{2} > |\alpha|\) the function \(\frac{\beta x \cosh \alpha x}{\sinh \beta x}\) is positive definite. \(\square\)

Now, we define
\[
L_s(a, b) = \frac{a^{1-s}b^s - a^s b^{1-s}}{(1 - 2s)(\log a - \log b)} = \frac{1}{1 - 2s} \int_s^{1-s} a^v b^{1-v} dv
\]
for \(a, b > 0\), and \(0 \leq s < \frac{1}{2}\). When \(s = 0\), it is the logarithmic mean. So we can call it the

generalized logarithmic mean. And we also have \(\lim_{s \to \frac{1}{2}} L_s(a, b) = a^\frac{1}{2} b^\frac{1}{2}\).

Theorem 2.2. For Heinz mean and the generalized logarithmic mean, we have

(i) If \(0 \leq s < 1/2\), and \(|1 - 2t| < \frac{2a}{1 - 2s}\), then \(H_t(a, b) \ll L_s(a, b)\).

(ii) If \(|1 - 2t| < |1 - 2s|\), then \(H_t(a, b) \ll H_s(a, b)\).

(iii) If \(0 \leq s < t < 1/2\), or \(1 \geq s > t > 1/2\), then \(L_t(a, b) \ll L_s(a, b)\).

Proof. By definition, \(H_t(a, b) \ll L_s(a, b)\) if
\[
[y_{i,j}] = \left[\begin{array}{c}
H_t(\lambda_i, \lambda_j) \\
L_s(\lambda_i, \lambda_j)
\end{array} \right]_{i,j=1,...,n}
\]
is positive semidefinite. Set \(\lambda_i = e^{x_i}\) and \(\lambda_j = e^{x_j}\), with \(x_i, x_j \in \mathbb{R}\). Then
\[
y_{i,j} = (1 - 2s) \frac{(x_i - x_j)(e^{(1-2t)(x_i-x_j)} + e^{(1-2t)(x_j-x_i)})}{e^{(1-2s)(x_i-x_j)} - e^{(1-2s)(x_j-x_i)}}
\]
Thus the matrix \([y_{i,j}]\) is congruent to one with entries
\[
\frac{\beta(x_i-x_j) \cosh(\alpha(x_i-x_j))}{\sinh(\beta(x_i-x_j))},
\]
where \(\alpha = 1 - 2t, \beta = 1 - 2s\). Hence \([y_{i,j}]\) is positive semidefinite if and only if the function \(\frac{\beta x \cosh \alpha x}{\sinh \beta x}\) is positive definite, which by lemma 2.1 is correct.

Similarly, we have \(H_t(a, b) \ll H_s(a, b)\) if \(\frac{\cosh \alpha x}{\cosh \beta x}\) is positive definite, and \(L_t(a, b) \ll L_s(a, b)\) if \(\frac{\sinh \alpha x}{\sinh \beta x}\) is positive definite. \(\square\)

Theorem 2.3. Let \(A, B\) be any positive matrices. Then for any matrix \(X\) and for \(0 \leq s < 1/2\) and \(|1 - 2t| < (1 - 2s)/2\), we have
\[
\left\| A^{1-t}XB^t + A^tXB^{1-t} \right\| \leq \frac{2}{1 - 2s} \left\| \int_s^{1-s} A^v XB^{1-v} dv \right\|.
\]

(2.3)
Theorem 2.4. Let $1 \leq s < t$. The first inequality of (1.3) in the paper, where $A = B$, now replacing B with X. A well-known result related to the Schur multiplier norm [6, Theorem 5.5.18, 5.5.19] says that if Y is any positive semidefinite matrix, then for all matrix A and for every unitarily invariant norm, by Theorem 2.2, Y is positive semidefinite. Applying (2.4), we have

$$
\|Y \circ X\| \leq \max_{i} y_{ii} \|X\|
$$

for every unitarily invariant norm. By Theorem 2.2, Y is positive semidefinite. Applying (2.4), we have

$$
\|A^{1-t}XA^t + A^tXA^{1-t}\| \leq \frac{2}{1 - 2s} \left\| \int_{s}^{1-s} A^t XA^{1-t} dv \right\|.
$$

(2.5)

Now replacing A and X in the inequality (2.5) by the 2 by 2 matrices \(\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \) and \(\begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix} \). This gives the desired inequality (2.3).

When $s = 0$, we get Drissi’s result (1.3). Moreover, when $s = 0, t = 1/2$, we get the first inequality of (1.2).

Theorem 2.4. Let A, B be any positive matrices. Then for any matrix X and for $0 \leq s < 1/2$, we have

$$
\left\| \int_{s}^{1-s} A^t XB^{1-t} dv \right\| \leq \frac{1 - 2s}{2} \|A^{1-s} XB^s + A^s XB^{1-s}\|.
$$

(2.6)

Proof. Suppose A is diagonal with entries $\lambda_1, \ldots, \lambda_n$. Then we have

$$
\int_{s}^{1-s} A^tXA^{1-t} dv = Y \circ (A^{1-s}XA^s + A^sXA^{1-s}),
$$

where Y is the matrix with entries

$$
y_{i,j} = \frac{\lambda_i^{1-s}\lambda_j^s - \lambda_i^s\lambda_j^{1-s}}{\log \lambda_i - \log \lambda_j} = \frac{(1 - 2s) L_s(\lambda_i, \lambda_j)}{2H_s(\lambda_i, \lambda_j)}.
$$

By a similar argument as in the proof of Theorem 2.2, we know that Y is positive definite if and only if

$$
\beta \sinh \beta x = \frac{\beta \tanh \beta x}{2 \beta x \cosh \beta x} = \frac{2 \beta x \tanh \beta x}{\beta x}
$$
is positive definite for $\beta = 1 - 2s > 0$, because $\tanh x/x$ is positive definite (see Bhatia [1, 5.2.11]). Thus Applying (2.4) we have

$$\left\| \int_{s}^{1-s} A^v X A^{1-v} \, dv \right\| \leq \frac{1 - 2s}{2} \left\| A^{1-s} X A^s + A^s X A^{1-s} \right\|. \tag{2.7}$$

Hence the desired result follows. \hfill \Box

When $s = 0$, we get the second inequality of (1.2).

Theorem 2.5. Let A, B be any positive matrices. Then for any matrix X and for $|1-2t| < |1-2s|$ with $1 - 2t, 1 - 2s$ the same sign, we have

$$\left\| A^{1-t} X B^t - A^t X B^{1-t} \right\| \leq \frac{1 - 2t}{1 - 2s} \left\| A^{1-s} X B^s - A^s X B^{1-s} \right\|. \tag{2.8}$$

Proof. Suppose A is diagonal with entries $\lambda_1, \ldots, \lambda_n$. Then we have

$$A^{1-t} X A^t - A^t X A^{1-t} = Y \circ (A^{1-s} X A^s - A^s X A^{1-s}),$$

where Y is the matrix with entries

$$y_{i,j} = \frac{\lambda_i^{1-t} \lambda_j^t - \lambda_i^t \lambda_j^{1-t}}{\lambda_i^{1-s} \lambda_j^s - \lambda_i^s \lambda_j^{1-s}}.$$

Put $\lambda_i = e^{x_i}$ and $\lambda_j = e^{x_j}$, with $x_i, x_j \in \mathbb{R}$. Then Y is congruent to the matrix with entries

$$\frac{\sinh(\alpha \frac{x_i - x_j}{2})}{\sinh(\beta \frac{x_i - x_j}{2})}$$

where $\alpha = 1 - 2t, \beta = 1 - 2s$. Since $(\sinh x/x)/(\sinh \beta x)$ is positive for $|\beta| > |\alpha| > 0$ with α, β the same sign, it follows that Y is positive definite. Applying the inequality (2.4), we have

$$\left\| A^{1-t} X A^t - A^t X A^{1-t} \right\| \leq \frac{1 - 2t}{1 - 2s} \left\| A^{1-s} X A^s - A^s X A^{1-s} \right\|. \tag{2.9}$$

Hence the desired result follows. \hfill \Box

Set $s = 0$ and $s = 1$, and combine the conclusions, we have the following inequality proved by Bhatia-Davis [2],

Corollary 2.6. Let A, B be any positive matrices. Then for any matrix X and for $0 \leq t \leq 1$ we have

$$\left\| A^{1-t} X B^t - A^t X B^{1-t} \right\| \leq |1 - 2t| \left\| AX - XB \right\|. \tag{2.10}$$

Acknowledgments

The author acknowledges support from National Natural Science Foundation of China, Grant No: 12001477, and the Natural Science Foundation of Jiangsu Province for Youth, Grant No: BK20190874.
References

[1] R. Bhatia, Positive Definite Matrcies. Princeton University Press, Princeton (2007).

[2] R. Bhatia and C. Davis, More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl., 14 (1993), 132-136.

[3] R. Bhatia and C. Davis, A Cauchy-Schwarz inequality for operators with applications, Linear Algebra Appl., 223/224 (1995), 119-129.

[4] D. Drissi, Sharp inequalities for some operator means, SIAM J. Matrix Anal. Appl., 28(3) (2006), 822-828.

[5] F. Hiai and H. Kosaki, Means for matrices and comparison of their norms, Indiana Univ. Math. J., 48 (1999), 899-936.

[6] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, UK, 1991.

[7] Y. Kapil and M. Singh, Contractive maps on operator ideals and norm inequalities, Linear Algebra Appl., 459 (2014), 475-492.

[8] H. Kosaki, Arithmetic-geometric mean and related inequalities for operators, J. Funct. Anal., 156 (1998), 429-451.

[9] X. Zhan, Inequalities for unitarily invariant norms, SIAM J. Matrix Anal. Appl., 20 (1999), 466-470.