Exploring novel ice-core proxies for paleoclimate reconstruction in the sub-Antarctic

Amy C.F. King¹ and Dieter R. Tetzner¹,²

New ice-core records are being developed from the sub-Antarctic, a region previously lacking in paleoclimate archives. These records capture marine-sourced organic compounds that act as proxies for sea-ice concentration, and wind-lofted diatoms that reflect westerly wind strength.

The sub-Antarctic region is critical to our understanding of past changes in westerly wind strength, sea-ice extent, Southern Ocean biogeochemical cycling, and processes interfacing polar and mid-latitude climate. Yet this region, defined here as southward of the Southern Ocean polar front, is severely lacking in paleoclimate archives. Consequently, our ability to predict future changes in these processes is limited. To answer the need for new climate records, the 2016–2017 Antarctic Circumnavigation Expedition (https://spi-ace-expedition.ch/) collected a suite of shallow (12–24 m depth) ice cores from ice-capped islands and glaciers throughout the Antarctic and sub-Antarctic (Fig. 1). The cores are climate archives for the late 20th century to present day (Thomas et al. 2020). Due to the logistical challenges of accessing such remote islands, several of these cores are the first to have ever been drilled at these sites.

The main objective of the sub-Antarctic ice-core drilling expedition is to "plug the gap" by providing paleoclimate records from the data-sparse sub-Antarctic. The PAGES2k Consortium (2017) highlighted the absence of paleoclimate archives across the Southern Ocean. Their global composite database of 692 temperature-sensitive records from 648 locations provides no spatial coverage in the sub-Antarctic. Improving spatial fidelity of records is another project goal. Ice-core reconstructions of marine-sourced components so far rely on cores from coastal Antarctica. Source regions of marine compounds found in these cores may cover entire ocean sectors (shown in Fig. 1). This means local-scale past climatic changes are not captured.

Alongside the collection of new cores has been the development of a number of novel ice-core proxies, focussing on emissions from the marine biosphere. Sub-Antarctic islands are in areas of marine productivity, therefore sub-Antarctic cores ideally lend themselves to marine-sourced proxies. This article highlights the exciting potential of these new proxies for sea-ice concentration and westerly wind strength, both key drivers in global climate dynamics.

Diatoms as proxies for westerly winds

Diatoms are unicellular algae with siliceous cell walls, found in surface waters worldwide. They are especially abundant in major oceanic water-mass convergence zones, such as the Southern Ocean, where nutrient upwellings lead to high productivity. Diatoms are lifted from the ocean surface into the atmosphere by wind-induced bubble-bursting and wave-breaking processes (Cipriano and Blanchard 1981; Farmer et al. 1993). Once in the atmosphere, they can be transported by strong winds over long distances. In polar regions, airborne diatoms are deposited over ice sheets and ice caps, and incorporated into the ice-core record (Budgion et al. 2012).

Marine and non-marine diatoms have been found in ice cores from several locations across Antarctica (Kellogg and Kellogg 2005). Diatoms are found throughout the Southern Ocean, but Pike et al. (2008) observed the largest blooms occurred during spring near the Antarctic Polar Front zone, the sea-ice margin, or both. In light of this, Allen et al. (2020) and Tetzner et al. (2021) explored the abundance and diversity of diatoms preserved in Antarctic ice cores, highlighting their potential as proxies of wind strength and atmospheric circulation in the Southern Ocean.

The Peter 1st and Bouvet ice cores (providing climate records for 1999–2017 and 2001–2017, respectively) were obtained from two strategic locations to track changes in the westerly wind belt. Preliminary results from Tetzner et al. (2021), indicate that the Peter 1st ice-core diatom record presents correlations with winds in several locations; a positive correlation ($R > 0.8, p < 5\%$) with ERA5-reanalysis wind strength in the westerly wind belt.}

Figure 1: Locations of new sub-Antarctic ice cores (squares), alongside locations of cores previously used for reconstructing sea ice (yellow circles) and westerly winds (yellow/red circle) for the last 2000 years. Winter (WSIE) and summer sea-ice extent (SSIE; source: https://nsidc.org/data/g02135) are included for reference.
break-up zone enhances phytoplankton
larger area of sea-ice decay during the fol
with a greater sea-ice extent also have a
following mechanisms: (1) Antarctic winters
be interpreted as a sea-ice proxy under the
containing diatoms. Curran and Jones (2000)
product of dimethyl sulfide, a chemical com
anesulfonic acid (MsA). MsA is an oxidation
established marine organic proxy is meth
lack of current understanding, or both. One
core records due to low concentrations, a
are infrequently investigated in Antarctic ice-
the surface ocean into the atmosphere by
Organic compounds are emitted from
Novel organic compounds
circulation in the sub-Antarctic region.
low-pressure center drives the regional
positive (negative) correlation with offshore
wind belt (Antarctic coastal easterlies) and a
positive (negative) correlation with offshore
winds over the Weddell Sea. Both
indicate that the presence of the Weddell
low-pressure center drives the regional
atmospheric circulation.

Preliminary results from these ice cores high-
lit their diatom records as valuable proxies
of regional wind strength and atmospheric
circulation in the sub-Antarctic region.

Novel organic compounds
as sea-ice markers

Organic compounds are emitted from the
surface ocean into the atmosphere by
biochemical and physical processes. They
are infrequently investigated in Antarctic ice-
core records due to low concentrations, a
lack of current understanding, or both. One
established marine organic proxy is meth-
asulfonic acid (MSA). MSA is an oxidation
product of dimethyl sulfide, a chemical com-
 pound produced by phytoplankton blooms
containing diatoms. Curran and Jones (2000)
first proposed that MSA concentration may
be interpreted as a sea-ice proxy under the
following mechanisms: (1) Antarctic winters
with a greater sea-ice extent also have a
larger area of sea-ice decay during the fol-
owing spring melt; (2) This bigger sea-ice
break-up zone enhances phytoplankton
blooming, and subsequently, production of
MSA; (3) Atmospheric transport deposits
MSA onto ice caps, incorporating the varying
yearly concentrations into ice-core records.

Giorio et al. (2018) discussed a wealth of
additional marine organic compounds that
show potential for use as paleoclimate
indicators. Analytical advances developed
by King et al. (2019a), provided a method
for analyzing up to 30 of these novel com-
 pounds simultaneously in ice samples. King
et al. (2019b) subsequently applied these
methods, alongside MSA analysis, to the first
ever ice core drilled on the sub-Antarctic
island Bouvet.

Results of the Bouvet ice-core analyses show
a positive correlation ($R = 0.79; p < 1\%$)
between annual concentrations of MSA and
oleic acid, the latter a fatty acid found in
diatoms. Further investigation shows that a
direct, positive correlation between annual
oleic acid concentrations and each year’s
winter sea-ice concentration is found in a
geographical area extending west of Bouvet
Island, tracing the margin of maximum
winter sea-ice extent (Fig. 2). Back-trajectory
analysis (King et al. 2019b) ties the story
together: westerly winds transport MSA
and oleic acid, from spring blooming events
in the sea-ice break-up zone to the west of
Bouvet Island to the ice-core site, where they
are deposited. Greater concentrations of
MSA and oleic acid are emitted, transported,
and deposited in years of greater maximum
winter sea-ice extent.

The Bouvet ice-core analyses have also
produced records of the marine organic
components oxalate, formate, and acetate.
Compound concentrations positively corre-
late with sea-ice concentration (King et al.
2019b). In contrast to oleic acid and MSA,
the correlation exists for summer sea-ice
concentrations in a region south of Bouvet
Island (Fig. 2). A better understanding of the
sources of these compounds is required to
definitely define the mechanism behind this
correlation.

Analysis of the Bouvet core shows great
promise for the development of a suite of
marine organic sea-ice markers in sub-Ant-
arctic ice cores.

Future directions

Investigation of novel marine-sourced
components in ice cores presents new
climate proxies in the sub-Antarctic over
the past few decades. Organic compound
concentrations record variations in sea-ice
concentration, and diatoms record westerly
wind strength. Thus, diatoms and the fatty
acid compounds they produce commonly
link records of both emissions and transport
of these components. Future work analyzing
these components in further sub-Antarctic
island cores will allow us to develop these
archives throughout the sub-Antarctic,
and extend records further back in time.

Combining sea-ice proxy records from both
marine-sediment and ice cores (Thomas et
al. 2019) may provide sea-ice paleorecords
of improved accuracy, longevity, and spatial
coverage. All of these factors provide the
critical context needed for improving future
projections of change in the climate-influ-
encing sub-Antarctic region.

ACKNOWLEDGEMENTS

Many thanks to Claire S. Allen for producing the Southern
Ocean bathymetry map.

AFFILIATIONS

British Antarctic Survey, Cambridge, UK
Department of Earth Sciences, University of
Cambridge, UK

CONTACT

Amy King: amyking@bas.ac.uk

REFERENCES

Allen CS et al. (2020) Geosciences 10: 87
Budgeon A et al. (2012) Antarct Sci 24: 527-535
Cipriano RJ, Blanchard D C (1981) J Geophys Res 86: 8085-8092
Curran MAJ, Jones B (2000) J Geophys Res Atmos 105: 4511-4519
Farmer D et al. (1993) Nature 361: 620-623
Giorio C et al. (2018) Quat Sci Rev 183: 1-22
Kellogg D, Kellogg T (2005) In: Castello J, Rogers S (Eds),
Life in Ancient Ice. Princeton University Press,
69-93
King AcF et al. (2019a) Talanta 194: 233-242
King AcF et al. (2019b) Geophys Res Lett 46: 9930-9939
PAGE52 Consortium (2017) Sci Data 11: 1-33
Pike J et al. (2008) Mar Micropaleontol 67(4): 274-287
Tetzner D et al. (2021) Front Earth Sci 9: 617043
Thomas ER et al. (2019) Geosciences 9(2): 506
Thomas ER et al. (2020) Cryosphere Discuss,
doi:10.5194/tc-2020-110

Figure 2: Location of Bouvet with geographical areas where core compound concentrations positively correlate
with sea-ice concentration ($R = 0.6; p < 5\%$), and area where diatom concentration correlates with westerly winds
($R = 0.6, p < 5\%$). Also shown, how these correspond to winter (WSIE) and summer sea-ice extent (SSIE), and the
Antarctic Polar Front (APF).