Green synthesis of silver nanoparticles using aqueous plant extracts and its application as optical sensor

Abstract

The syntheses of metal nanoparticles have taken a new route from the emergence of green chemistry. We propose the synthesis of silver nanoparticles through simple bio synthetic method. Metal nanoparticles prepared are characterized by TEM, UV-Vis and FTIR spectroscopy. TEM image show the nanoparticles are nearly spherical in shape with size about 40-50nm. UV-vis spectra show distinct peak of silver at around 427nm corresponding to the surface plasmon peak of silver nanoparticles. The reduction in the surface plasmon peak of silver nanoparticles (Ag NPs) in addition to hydrogen peroxide at increasing concentrations supports our stand that it can be used as an optical sensor. Colorimetric detection of hydrogen peroxide is done with cellulose substrates.

Introduction

Metal nanoparticles have received a lot of attention in the recent decades due to their unique ability to alter optical, electrical, biological properties. Nanoparticles are also interesting because of their huge increase in surface area and a surge in conductivity compared to their metal counterparts. Moreover, metal nanoparticles also show surface plasmon resonance. These properties make them useful to many applications such as bio-sensing, imaging, drug delivery, HIV treatment, Cancer treatment, optical spectroscopy and Surface Enhanced Raman scattering (SERS).

Amongst different type of metal nanoparticles Ag NPs (Silver nanoparticles) are of great interest due to their potent antimicrobial activity against different type of pathogens. This extends their application into medicine, wound healing, dental materials, coating of stainless steel material, water treatment, sunscreen lotions, elimination of microorganisms on textile fabrics, cosmetics, optical transparent composites, polymer composites etc. The smaller the particle, the greater the antimicrobial activity. However, these particles are very reactive and consequently form aggregates losing their fundamental properties. This leads to the phenomenon called agglomeration. To deal with this challenge passivating agents such as polyvinylpyrrolidone(PVP), polyvinyl alcohol(PVA), hyper branched polyurethane(HP) and polyacronitrile(PAN) with reducing agents such as sodium borohydride, hydrazine, glycerol, etc have been used successfully in the synthesis and stabilization of silver nanoparticles.

The use of these passivating and reducing agents introduced the challenge of high cost and toxicity, thus threatening environmental sustainability and limiting the biological application of these noble materials. Physical methods require highly sophisticated instruments and is of high cost. This crisis can be solved by using eco friendly, environmental benign methods for the synthesis of AgNPs. This eventually led to the entry of green methods for synthesizing AgNPs. Thus, AgNPs are synthesized using varying types of plant extracts, green algae, leaf broths etc. We report the use of aqueous plant extracts and its application as optical sensor. Colorimetric detection of hydrogen peroxide is done with cellulose substrates.

Experimental

Materials required

Leaves of mangifera indica plucked from nearby trees, AgNO₃ (Silver Nitrate) (Sigma Aldrich), Cellulose fibres (1%) (University of Maine, U.S.A)

Synthesis techniques for Ag NPs: Leaves of mangifera indica were taken from a nearby tree. 10gm of mangifera indica leaves were taken. They were rinsed with deionized, double distilled water and cut into small pieces. They were boiled in 75mL of deionized water for 10 minutes. The leaf broth was allowed to cool. Now, it was filtered out and secured. Whatman filter paper (Grade 1) was used for the filtration. The leaf extract (2, 3, 4, 5, 10, 15, 20ml) was added to a vigorously stirred 30ml solution of 1*10⁻⁴ M AgNO₃. Stirring continued for 30 min to get the colloids labelled c1 to c6. 100ml AgNO₃ was prepared using H₂O as the solvent.

© 2017 Subramanian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially.
Effect of temperature: To different concentrations of AgNO$_3$ broth solution, the temperature was increased gradually from 30°C to 60°C. The temperature was readily increased 30, 40, 50, 60°C to the broth to AgNO$_3$ solution having a concentration of about 0.012N. The effect of temperature on the synthesized Ag NPs was studied.

Effect of pH: The pH of the solution was changed and monitored. NaOH (Sodium Hydroxide) solid aqueous pellets were added to the 30ml H$_2$O. This was added to 10ml nanoparticle in the solution having the broth concentration 0.012N. Thus the pH of the solution was changed from 8 pH to 12 pH. The pH was steadily changed (8, 9, 10, 11, 12 pH). Thus, the syntheses of nanoparticles were optimized by three methods namely

i. By changing the concentration of the broth
ii. By changing the temperature
iii. By changing the pH range of the colloidal solution.

Application of silver nanoparticles for hydrogen peroxide detection: The synthesis of silver nanoparticles are just the same as explained above using green, leaf extract of mangifera indica. Hydrogen peroxide present in laboratory was taken. Different concentrations of hydrogen peroxide was made from 1M to 1µM. The concentrations includes 1M, 100mM, 10mM, 1mM, 100µM, 75µM, 50µM, 25µM, 10µM and 1µM. Hydrogen peroxide of different concentrations was added to the synthesized Ag NPs.

Cellulose coated silver nanoparticle: Cellulose fiber is coated with silver nanoparticle by drop casting method.

Results and discussion

Figure 1 shows UV-Vis spectra of silver nitrate, broth and silver nanoparticle prepared at different broth concentration. The spectra of silver nitrate and broth didn’t show any distinct peak. However the distinct peaks are observed for broth reduced silver nitrate at around 427nm corresponding to the surface plasmon peak of silver nanoparticles. As the broth concentration is reduced, two peaks are observed at 380nm and 427nm. As the broth concentration increased, peak at 380 nm disappeared and merge with 427nm peak corresponding to the plasmon peak of silver.1

The formation of Ag NPs is quiet evident from the TEM image (Figure 5) obtained. Silver nanoparticles in the range having size 40-50nm are observed in the image. The UV-vis data Figure 6 shows the detection of hydrogen peroxide using bio-synthesized silver nanoparticles. The UV-vis data shows constant sharp decline on increasing the concentration of hydrogen peroxide. The peak of Ag NPs steadily decreases upon having higher concentrations of
Green synthesis of silver nanoparticles using aqueous plant extracts and its application as optical sensor

A simple colorimetric detection method for hydrogen peroxide is demonstrated. TEM image show the nanoparticles are nearly spherical in shape with size about 40-50nm. UV-vis spectra show distinct peak of silver at around 427nm corresponding to the surface plasmon peak of silver nanoparticles. The reduction in the surface plasmon peak of Ag NPs on addition of hydrogen peroxide at increasing concentrations supports our stand that it can be used as an optical sensor. Colorimetric detection of hydrogen peroxide is done with cellulose substrates. Thus, Ag NPs can be synthesized easily using aqueous plant extracts which can act as surfactants. The shape of nanoparticles can also be controlled by changing the parameters like pH, concentration of reducing agents etc. Paper based technique is developed for the detection of hydrogen peroxide.

Acknowledgements
None.

Conflict of interest
The author declares no conflict of interest.

References

1. Shiv Shanker, Akhilish Rai, Absar Ahmad, et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. *J Colloid Interface Sci*. 2004;275(2):496–502.

2. Akshaya K Samal, Lakshminarayana Polvarapu, Sergio Rodal Cederia. Size tunable Au @ Ag core–shell nanoparticles: synthesis and surface-enhanced raman scattering properties. *Langmuir*. 2013;29(48):15076–15082.

3. Guang Yang, Jianjian Xie, Feng Hong. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. *Carbohydrate Polymers*. 2012;87(1):839–845.

4. Sheny DS, Mathew J, Philip D. Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of *Anacardium occidentale*. *Spectrochim Acta A Mol Biomol Spectrosc*. 2011;79(1):254–262.

5. Shekhar Agnihotri, Soumyo Mukherji, Suparna Mukherji. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. *RSC Advances*. 2014;4(8):3974–3983.

6. Prakash P, Gnanaprakasam P, Emmanuel R, et al. Green synthesis of silver nanoparticles from leaf extract of *Mimusops elengi*, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. *Colloids Surf B Biointerfaces*. 2013;108:255–259.

7. Rafie HM El, Zahran MK. Brown algae himantothallus grandifolius (Desmarestiales, Phaeophyceae) suppresses proliferation and promotes apoptosis-mediated cell death in tumor cells. *Carbohydrate Polymers*. 2013;96:403–410.

8. Ye Tian, Fengli Wang, Yanxia Liu. Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. *Electrochimica Acta*. 2014;146:646–653.

9. Marimuthu Thiripura Sundari, Atmakuru Ramesh. Isolation and characterization of cellulose nanofibers from the aquatic weed *water hyacinth*–*Eichhornia crassipes*. *Carbohydrate Polymers*. 2012;87(2):1701–1705.

10. Tstomu Hirakawa, Prashant V Kamat. Charge separation and catalytic activity of Ag@TiO₂ core–shell composite clusters under UV–irradiation. *J Am Chem Soc*. 2005;127(11):3928–3934.

Citation: Subramanian L, Thomas S, Koshy O. Green synthesis of silver nanoparticles using aqueous plant extracts and its application as optical sensor. *Int J Biosen Bioelectron*. 2017;2(3):82-85. DOI: 10.15406/ijbsbe.2017.02.00022
Green synthesis of silver nanoparticles using aqueous plant extracts and its application as optical sensor

11. Wojciech Czaja, Alina Krystynowicz, Stanislaw Bielecki, et al. Microbial cellulose-the natural power to heal wounds. Biomaterials. 2006;27(2):145–151.

12. Jose Ruben Morones, Jose Luis Elechiguerra, Alejandra Camacho, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–2353.

13. Filippo E, Serra A, Manno D. Poly(vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor. Sensors and Actuators B. 2009;138(2):625–630.

14. Rajib Ghosh, Chaudhari, Sanatanu Paria. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112(4):2373–2433.

15. Aaron D Brumbaugh, Katelyn A Cohen, Sarah K St Angelo. Ultra small copper nanoparticles synthesized with a plant tea reducing agent. ACS Sustainable Chem Eng. 2014;2(8):1933–1939.

16. Jun Zhao, Dongming Zhang, Xiuli Zhang. Preparation and characterization of copper/silver bimetallic nanowires with core-shell structure. Surface Interface Analysis. 2015;47(44):529–534.

17. Dunying Deng, Yunxia Jin, Yuanrong Cheng. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature. ACS Applied Materials Interface. 2013;5(9):3839–3846.

18. Valentin V, Makarov, Svetlana S. et al. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of hordeum vulgare and rumex acetosa plants. Langmuir. 2014;30(20):505982–505988.

19. Lanlan Huang, Xiulan Weng, Zuliang Chen. Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochimica Acta A: Molecular and Biomolecular Spectrosctopy. 2014;130:295–301.

20. Lanlan Huang, Xiulan Weng, Zuliang Chen. Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Industrial Crops and Products. 2013;51:342–347.

21. Lanlan Huang, Xiulan Weng, Zuliang Chen. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;117:801–804.

22. Nitinaivinij K, Parapkat T, Thammacharoen C. Colorimetric determination of hydrogen peroxide by morphological decomposition of silver nanoparticles coupled with chromaticity analysis. Analytical Methods. 2014;6:9816–9824.

23. Wang G, Zhu X, Jiao H, et al. Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosensors and Bioelectronics. 2012;31(1):337–342.

24. Aadil KR, Barapatre A, Meena AS, et al. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles. International Journal of Biological Macromolecules. 2016;82:39–47.