Single-Input Quadruple-Boosting Switched-Capacitor Nine-Level Inverter with Self-Balanced Capacitors

Kazem Varesi1, Fatemeh Esmaeيلي1, Saeid Deliri1, Hadi Tarzamni2 (Student Member, IEEE)

1 Faculty of Electrical Engineering, Sahand University of Technology, PO. BOX 51335/1996, Tabriz, Iran.
2 Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland.

Corresponding author: Hadi Tarzamni (hadi.tarzamni@aalto.fi).

This work was supported by Finnish Electronic Library (FinELib), Finland under the FinELib consortium’s agreement with IEEE.

ABSTRACT This paper suggests a single-input switched-capacitor Nine-level inverter configuration advantaging from quadruple voltage-boosting ability, natural voltage balancing of capacitors, and reduced components per level. Also, the single-source character of the proposed topology makes it cheaper and more compact. The cascaded version of the suggested topology has also been introduced, by which high boosting factors, as well as large number of steps, can be obtained. The proposed topology can effectively supply the resistive-inductive or pure inductive load types. The capacitors’ impulsive-charging-current issue has been solved by simple small-inductance-based inductor-diode (L-D) networks. The comparative analysis affirms the fewer device-usage in suggested configuration per equal gain or level count than existed structures, resulting in less size and cost. The usage of Nearest-Level modulation guarantees the low-frequency operation of semiconductors and reduces the switching losses. The comparative analysis and experimental outcomes affirm the competitiveness and accurate functionality of suggested configuration.

INDEX TERMS Multilevel inverter, Number of levels, Self-balanced capacitors, Switched-capacitor, Voltage gain

I. INTRODUCTION

The Multi-Level Inverters (MLIs) are well-known for high-quality output voltage and low voltage stress on switching devices [1]. The conventional MLIs are mainly categorized as: A) Cascaded H-Bridge (CHB), B) Diode-Clamped (DC), and C) Floating-Capacitor (FC) inverters. The CHB inverters produce many voltage steps but have no voltage boosting ability and usually require numerous DC supplies and power semiconductors [2-4]. Also, the DC and FC inverters demand more clamping-diodes, DC-link, or floating-capacitors to acquire increased-levels. The requirement of voltage sensors and complex strategies for balancing the charge of capacitors is another shortcoming of NPC and FC inverters [5, 6].

To increase the number of voltage steps in MLIs, more DC supplies, semiconductors, and driver circuits are required, which leads to a bulky, heavy, and costly converter. So, many studies have focused on presenting reduced-component structures like [7, 8]. In [9], the authors aimed to decrease the semiconductors (and gate-driver circuits). As aimed in [10, 11], reducing the number of DC supplies (as large and expensive parts) is more beneficial than other components. The utilization of Switched-Capacitor Cells (SCCs) in MLIs can provide a higher number of levels without the need to increase DC sources. This critical feature improves output voltage quality and simultaneously keeps the converter as compact/cheap as possible [12, 13]. From viewpoint of voltage boosting ability, the Switched-Capacitor Multi-Level Inverters (SCMLIs) are classified into boost (step-up), step-down or unity-gain categories. The [14, 15] present two step-down converters, where the peak voltage (\(V_{\text{rms}}\)) is lower than total inputs. The topologies presented in [16-19] are examples of unity-gain converters with equal peak output voltage and summation of input sources. Usually, the MLIs utilizing capacitors only in DC-link(s) produce unity gain. But, the step-up or boost SCMLIs like [11, 20-24] have voltage boosting ability and can produce larger voltage than total inputs. The voltage boosting ability becomes very vital for grid-tied SCMLIs fed by Photovoltaics (PVs) or Fuel Cells (FCs), where the input...
voltage(s) is (are) much less than the grid voltage [25, 26]. The semiconductors' blocking-voltage is relatively high in step-up SCMLIs that may impact the price and efficiency of converter [27]. For the applications where significant step-up capability is not required, mild or low-gain structures with low voltage stress are preferred [28].

The SCMLIs usually realize the bipolar waveform through the conventional or developed H-bridge, two half-bridges, or inherently. The topologies presented in [29-31] apply an H-bridge unit, whose switches must tolerate \(V_{o,\text{max}} \). The [32] employs a developed H-bridge for negative voltage level generation, where two switches tolerate the maximum output voltage. The generation of a bipolar waveform in [33] is achieved inherently, but four switches suffer from voltage stress of \(V_{o,\text{max}} \). The [34, 35] use two half-bridges for a negative voltage-level generation. Accordingly, 2 and 0 switches tolerate \(V_{o,\text{max}} \) respectively in [34, 35]. Similar to [29-31] and due to application of the H-bridge in [36], four switches withstand the \(V_{o,\text{max}} \). The structures with a larger number of switches tolerating \(V_{o,\text{max}} \) suffer from large Total Voltage Stress (TVS) on semiconductors. The [30, 31, 33-36] outputs nine voltage levels through a single DC source, while the [32] requires two input sources. The application of more sources negatively impacts the converter's overall size, cost and weight. The [37] presents a double-input two H-bridge-based switched-capacitor 27-level topology that gives a gain of 1.3. The TVS of semiconductors in [37] is relatively low, and none of them tolerate the \(V_{o,\text{max}} \).

This article suggests a single-source 9-level switched-capacitor inverter that is capable of providing quadruple voltage-gain. The large boosting capability, capacitors' natural charge balancing as well as fundamental frequency operation of H-bridge switches are distinguished features of suggested inverter. In the following, the suggested basic and cascaded topologies are introduced and explained in Sections II and III. The design consideration of capacitors, suppression of capacitors’ charging current, and modulation strategy are presented in Sections IV-VI. Section VII provides the comparative analysis. The loss analysis is done in Section VIII. Finally, implemented set-up results and conclusion are given in Sections IX and X, respectively.

II. PROPOSED 9-LEVEL INVERTER

The proposed switched-capacitor-based inverter (shown in Fig. 1) is composed of level generation and polarity generation units. The level generation unit is formed of a single DC source, single-diode, two capacitors, and seven switches (MOSFETs), as (1). The \(S_1 - S_2 \) are bidirectional common-source switches. The others are unidirectional switches. The end-side H-bridge plays the role of the polarity generation unit.

\[
N_{\text{Source}} = 1, \quad N_{\text{Switch}} = N_{\text{Driver}} = 11, \quad N_{\text{MOSFET}} = 13, \\
N_{\text{Capacitor}} = 2, \quad N_{\text{Diode}} = 1, \quad N_{\text{Component}} = 26
\]

Table I shows different switching states of switches, forward/reverse bias of \(D_1 \) diode, and charge/discharge mode of \(C_1-C_2 \) capacitors. The green up and red down symbols represent the charging and discharging modes, respectively. Fig. 2 displays various operational modes of the suggested circuit. As seen, the positive and negative voltage steps are generated respectively by turning on the \((H_1, H_3) \) and \((H_2, H_3) \) switch pairs. Also, there is only one redundant state, which leads to zero voltage level.

![FIGURE 1. Proposed 9-level inverter.](image-url)
$V_{C1} = V_{dc}, \quad V_{C2} = 2V_{dc}, \quad V_{o,max} = 4V_{dc},$

\[G = \left(\frac{V_{o,max}}{V_{dc}} \right) = 4 \]

TABLE II
VOLTAGE STRESS ON SEMICONDUCTORS

Semiconductor	Voltage Stress	Voltage Stress	
S_1	$3V_{dc}$	S_2	$3V_{dc}$
S_1	$2V_{dc}$	H_1	$4V_{dc}$
S_2	V_{dc}	H_1	$4V_{dc}$
S_1	$2V_{dc}$	H_2	$4V_{dc}$
S_2	$2V_{dc}$	D_1	V_{dc}

The Voltage Stress (VS) on the semiconductors has been shown in Table II. The H-bridge switches tolerate the $V_{o,max}$, but operate at low-frequencies, leading to limited switching losses.

FIGURE 2. Operational-modes of suggested 9-level inverter.

States 1-2 (Figs. 2(a) and 2(b)): During zero voltage level generation ($V_o = 0$), the input-source charges the C_1 ($V_{C1} = V_{dc}$) through D_1 and S_1.

States 3-4 (Figs. 2(c) and 2(d)): The $V_o = \pm V_{dc}$ voltage levels are produced by the input DC source. Simultaneously, the C_1 capacitor keeps on being charged by the input DC source.

States 5-6 (Figs. 2(e) and 2(f)): The $V_o = \pm 2V_{dc}$ voltage steps are generated by a series connection of input source and C_1 capacitor. At the same time, the C_2 capacitor is paralleled with the cascaded input source and C_1 capacitor. So, the C_2 capacitor is charged to $v_{C2} = V_{dc} + v_{C1} = 2V_{dc}$.

States 7-8 (Figs. 2(g) and 2(h)): In order to synthesize the $V_o = \pm 3V_{dc}$ on the load, the input source is cascaded with C_2 capacitor. Meanwhile, the parallel connection of the input source and C_1 capacitor keeps its voltage on $v_{C1} = V_{dc}$.

States 9-10 (Figs. 2(i) and 2(j)): Finally, the $V_o = \pm 4V_{dc}$ voltage steps are provided by cascading the input DC source, C_1 and C_2 capacitors.

Table I and Fig. 2 show that the suggested converter can produce 9 voltage steps (including $0, \pm V_{dc}, \pm 2V_{dc}, \pm 3V_{dc}$ and $\pm 4V_{dc}$) with a maximum output voltage of $V_{o,max} = 4V_{dc}$. So, the voltage gain (G) of the suggested topology is equal to 4. Also, as shown in (2), the C_1 and C_2 capacitors are charged to V_{dc} and $2V_{dc}$, respectively.

FIGURE 3. Suggested extended configurations: (a) First version (T_1), (b) Second version (T_2).

III. PROPOSED CASCADED STRUCTURES

According to Fig. 3, the suggested basic 9-level inverter can be extended in two forms to achieve an increased number of levels: First extended topology (T_1), which employs multiple H-bridges (Fig. 3(a)), and Second extended topology (T_2) that applies single H-bridge (Fig. 3(b)). These structures are explained in the following.

A. 1ST EXTENDED TOPOLOGY (T_1)

As evident from Fig. 3(a), the number of required devices in proposed first extended topology are as (3):
\[N_{\text{Source}} = n, N_{\text{Switch}} = N_{\text{Driver}} = 11n, N_{\text{MOSFET}} = 13n, \]
\[N_{\text{Capacitor}} = 2n, N_{\text{Diode}} = n, N_{\text{Component}} = 26n \tag{3} \]

For level-count maximization, the DC-sources’ voltage is decided as (4). The DC-sources’ variety is \(n \).
\[V_i = V_{dc}, V_i = 9^{-i}V_{dc} \tag{4} \]

Where, the \(V_{o,\text{max}} \) denotes the maximum output voltage of \(j^{th} \) cascaded unit. Also, the \(V_i \) represents the input source of \(j^{th} \) cascaded unit \((j=1, 2, \ldots, n)\).

The maximum output voltage of each unit, as well as the whole cascaded structure, are computed as (5).
\[V_{o,\text{max}} = 4V_i = 4(9)^{-1}V_{dc}. \tag{5} \]

The voltage-levels and gain are as (6)-(7), respectively.
\[N_{\text{Level}} = 9^i \tag{6} \]
\[G = \left(V_{o,\text{max}} / \sum_{i=1}^{n} V_i \right) = 4 \tag{7} \]

The TVS for first extended topology is calculated from (8).
\[TVS = \sum V_{S,H,D} = \frac{30}{8}(9^i - 1)V_{dc} \tag{8} \]

The Average Voltage Stress (AVS) on switches/diodes of first extended topology is as (9).
\[AVS = \frac{TVS}{N_{\text{Switch}} + N_{\text{Diode}}} = \frac{30}{96n}(9^i - 1)V_{dc} \tag{9} \]

B. 2ND EXTENDED TOPOLOGY (T2)

The 2nd extended structure is shown in Fig. 3(b). The number of different components has been presented in (10).
\[N_{\text{Source}} = n, N_{\text{Switch}} = N_{\text{Driver}} = 7n + 4, N_{\text{Diode}} = n, \]
\[N_{\text{Capacitor}} = 2n, N_{\text{MOSFET}} = 9n + 4, N_{\text{Component}} = 18n + 8 \tag{10} \]

For level-count maximization in 2nd extended structure, the size of DC-sources is decided as (11).
\[V_i = V_{dc}, V_i = 8^{-i}V_{dc} \tag{11} \]

The peak output voltage of each unit and the total output voltage are shown in (12).
\[V_{o,\text{max}} = 4V_i = 4(8)^{-1}V_{dc} \tag{12} \]
\[V_{o,\text{max}} = \sum_{i=1}^{n} V_{o,\text{max}} = (8^i - 1)V_{dc} \]

According to (12), the level-count and gain of 2nd extended structure is computed respectively from (13) and (14).
\[N_{\text{Level}} = 2(8)^i - 1 \tag{13} \]
\[G = \left(V_{o,\text{max}} / \sum_{i=1}^{n} V_i \right) = 4 \tag{14} \]

The TVS and AVS of the second extended topology are obtained respectively from (15) and (16).
\[TVS = \frac{30}{4}(8^i - 1)V_{dc} \tag{15} \]
\[AVS = \frac{30}{4(8n + 4)}(8^i - 1)V_{dc} \tag{16} \]

IV. DESIGN OF CAPACITORS

The proper determination of capacitances leads to low voltage ripple and power loss in capacitors. The capacitors are designed such that their voltage ripple during Longest Discharge Interval (LDI) be limited to the desired value (\(\Delta V_C \)). According to Fig. 4, the LDI of C1 capacitor occurs during the generation of \(\pm 4V_{dc} \). Also, the LDI of C2 capacitor happens at \(\pm 5V_{dc} \) and \(\pm 4V_{dc} \). The beginning and ending of LDI of C1 capacitor are \(\theta_h \) and \(\pi - \theta_h \), respectively. Also, the LDI of C2 capacitor starts at \(\theta_h \) and finishes at \(\pi - \theta_h \). So, the duration of LDI of C1 - C2 capacitors are \(\theta_{c1} = \pi - 2\theta_h \) and \(\theta_{c2} = \pi - 2\theta_h \), respectively.

![FIGURE 4. Charge/Discharge intervals of C1-C2 capacitors.](image)

From (17), the capacitances are determined to limit their voltage-ripple to \(\Delta V_C \). Note that \(I_{o,\text{max}} \): maximum load current, \(\theta_c \): duration of LDI of C capacitor, \(\cos \varphi \): load power-factor, \(f \): fundamental-frequency, \(\Delta V_C \): capacitor’s voltage-ripple.
\[C \geq \frac{I_{o,\text{max}} \cos \varphi \sin(\theta_c / 2)}{\pi f \Delta V_C} \tag{17} \]

V. SUPPRESSION OF CAPACITORS’ CHARGING CURRENT

The capacitors’ impulse charging current is one of the main challenges associated with switched-capacitor-based multi-level inverters, which subject the semiconductors to large current stress and increase the losses. In this study, the \(C \)'s charging-current is restricted by inductor-diode \((L_i - D_i) \) cells, as Fig. 5. The presented equivalent circuits show that the
limiting inductors \((L)\)s are placed on the charging path of capacitors, leading to lower charging currents. But, at discharging modes, these charge-limiting inductors are bypassed by the reverse diodes \((D)\)s.

\[\text{FIGURE 5. Proposed inverter and its operational modes in presence of inrush-current limiting cells.} \]

VI. NEAREST LEVEL MODULATION (NLM)

In recent years many different modulation techniques have been presented for MLIs. This paper employs the "Fundamental Frequency" or "Nearest Level" modulation technique, which profits from generality, simplicity, ease of implementation, fast operation speed and low-frequency operation of semiconductors, and reduced switching losses [9]. A sinusoidal reference \((V_{\text{ref}} = A \sin(\omega t))\) waveform with an amplitude of \(A\) and frequency of \(f = \omega / 2\pi = 50[\text{Hz}]\) is compared with producible levels \((0, \pm V_{dc}, \pm 2V_{dc}, \ldots, \pm NV_{dc})\), where \(0 < A \leq N_{P}\) and the \(N_{P}\) denotes the maximum positive level. The control block diagram of “Nearest Level” modulation techniques as well as resulted switching pulses have been shown in Fig. 6. It is seen that the H-bridge switches \((H_1 - H_4)\) operate at fundamental frequency. The other remaining semiconductors also operate at low frequencies.
VII. COMPARISONS

This part compares the suggested topologies with existing SCMLIs from viewpoints of level and device count, voltage-stress on semiconductors, voltage-boosting capability and efficiency. In Table III, the suggested basic 9-level inverter is compared with similar 9-level inverters.

As seen, the proposed basic topology requires fewer total switches and diodes than other counterparts for producing 9 levels. Among selected topologies, the [32] utilizes two DC-sources, while the others and suggested basic configuration use on a single DC source. Table III confirms that the proposed basic topology employs only two capacitors (the same as [32, 35]), while the others use 3 capacitors. According to Table III, the proposed basic topology and [31, 32, 34] use minimum total devices, where the [22] utilize maximum devices. As seen from Table III, the TVS on semiconductors of suggested basic inverter is higher than other counterparts, which is considered as its main drawback. Among selected topologies, the [22] has the least maximum voltage stress (=0.25\(V_{\text{o,max}}\)) on its semiconductors than other structures. The maximum voltage gain (quadruple gain) belongs to proposed basic inverter and [22, 30, 31, 34, 35], where the [32] has the least gain (double gain).

Table III

Topology	\(N_{\text{level}}\)	\(N_{SW}+N_D\)	\(N_{DC}\)	\(N_C\)	\(N_{TC}\)	\(TVS\)	\(TVS_{\text{pu}}\)	\(MVS\)	\(V_{\text{o,max}}\)	Gain	NMB	Efficiency	Negative level generation
[22]	9	22	1	3	45	19\(V_{dc}\)	4.75	0.25\(V_{o,max}\)	4\(V_{dc}\)	4	0	88.9% @74W	Inherent
[30]	9	13	1	3	27	25\(V_{dc}\)	6.25	\(V_{o,max}\)	4\(V_{dc}\)	4	4	91.5% @138W	H-Bridge
[31]	9	14	1	3	26	26\(V_{dc}\)	6.5	\(V_{o,max}\)	4\(V_{dc}\)	4	4	91.6% @60W	H-Bridge
[32]	9	12	2	2	26	22\(V_{dc}\)	5.5	\(V_{o,max}\)	4\(V_{dc}\)	2	2	90-94.5% @50-500W	Developed H-Bridge
[34]	9	11	1	3	26	24\(V_{dc}\)	6	\(V_{o,max}\)	4\(V_{dc}\)	4	2	96-97.7% @5-50W	2 Half-Bridges
[35]	9	12	1	2	27	21\(V_{dc}\)	5.25	0.5\(V_{o,max}\)	4\(V_{dc}\)	4	0	97.9% @160W	2 Half-Bridges

Proposed: Number of levels, \(N_{SW}\): Number of switches, \(N_{D}\): Number of diodes, \(N_{DC}\): Number of sources, \(N_C\): Number of capacitors, \(N_{TC}\): Number of total components, \(TVS\): Total voltage stress, \(N_{Var}\): Number of DC sources variety, \(V_{o,max}\): Maximum output voltage, \(G\): voltage gain, \(NMB\): Number of switches tolerating \(V_{o,max}\)

Table IV

Type	Topology	\(N_{\text{level}}\)	\(N_{sw}\)	\(N_{DC}\)	\(N_C\)	\(N_{TC}\)	\(TVS/V_{dc}\)	\(N_D\)	\(N_{DC}\)	\(V_{o,max}\)	\(N_{TC}\)	\(N_{Var}\)	\(G\)	NMB
Asymmetric	[38]	(2n+3)^2	4n+8	4n+8	2n	20n/4+4n+16	2n	2	2n+4n+4	12n+18	2	n+1	2	
	[39]	2(3n+3)^2+1	10n+8	10n+8	4n	(3n+2)	(12n^2+1)	2n	2	3(3n+2)	20n+18	2	0	
	[36]	2n+1	3n+3	3n+3	n	7(2n-3)	1	1	2n	7n+8	2	n	4	
	[30]	5n	6n+6	6n	n	5(5n-1)/2	n	n	(5n-1)/2	15n	n	2	0	
Proposed \(T_1\)	9n	11n+1	11n	2n	30n(9n-1)/8	n	n	(9n-1)/2	26n+4	n	4	0		
Proposed \(T_2\)	2(5n-1)	7n+4	7n+4	2n	30n(5n-1)/4	n	n	5n-1	18n+8	n	4	4		
Symmetric	[33]	8n+1	6n+2	6n+2	2n	16n+8	n	n	4n	16n+4	1	2	2	
	[10] ISC	4n+1	2n+8	2n+8	1	12n-2	n	-	n	2n	5n+17	1	2	0
	[10] 2SC	6n+1	2n+14	2n+14	2	18n-2	n	-	n	3n	5n+30	1	3	0
	[40]	6n+1	11n	11n	2n	16n	0	n	3n	25n	1	3	0	
	[28]	8n+1	10n	10n	2n	11n	0	n	4n	23n	1	2	0	
	[41]	4n+1	9n	9n	9n	0	n	2n	20n	1	2	0		
Proposed \(P_1\)	8n+1	11n+1	11n	2n	31n	n	n	4n	26n	1	4	0		

\(N_{\text{level}}\): Number of levels, \(N_{sw}\): Number of switches, \(N_{D}\): Number of diodes, \(N_{DC}\): Number of sources, \(N_C\): Number of capacitors, \(N_{TC}\): Number of total components, \(TVS\): Total voltage stress, \(N_{Var}\): Number of DC sources variety, \(V_{o,max}\): Maximum output voltage, \(G\): voltage gain, \(NMB\): Number of switches tolerating \(V_{o,max}\)
Based on Table III, none of semiconductors in [22, 35] tolerate $V_{o,max}$. In [32, 34] two semiconductors tolerate $V_{o,max}$, while this amount in proposed basic inverter and [30, 31] is four. Based on Table III, none of semiconductors in [22, 35] tolerate $V_{o,max}$. In [32, 34] two semiconductors tolerate $V_{o,max}$, while this amount in proposed basic inverter and [30, 31] is four.

Table III presents and compares the efficiency of proposed converter with that of [22, 30-35]. As seen, the efficiency of topologies presented in [22], [30] and [31] are 88.9%, 91.5%, and 91.6%, respectively at 74[W], 138[W], and 60[W]. The efficiency of proposed converter in this range of output power is about 90.9% to 93.5%, which is higher than the reported efficiency of [22, 30, 31]. The reported efficiency range of [32] across output power range of 50[W] to 500[W] is [90%-94.5%]. During almost the same output power range, the efficiency of proposed topology is about 90.6% to 95.5%, which is slightly higher than that of [32]. Meanwhile, the reported efficiencies of topologies presented in [34, 35] are higher than the efficiency of proposed converter.

The proposed basic inverter and [30, 31] use an H-bridge, while the [32] use a developed H-bridge and [34, 35] employ two half-bridges for negative voltage generation. This feature is realized inherently in [22].

The proposed cascaded inverter and generalized counterparts presented in [10, 28, 30, 33, 36, 38-41] are compared in Table IV. Fig. 7 present the comparison results as plots. The topologies presented in [38, 39] utilize 2 DC sources, but the proposed topology (T_1, T_2 and P_1) and [10, 28, 30, 33, 36, 40, 41] demand only a single DC source at basic version. This further decreases the overall weight, expense and volume of the converter (Fig. 7(a)). Fig. 7(b) - 7(c) show that the proposed T_1 and T_2 topologies and [30, 36] require equal or less switching devices (switches and diodes) than other counterparts, which accordingly leads to less gate-driver circuits, less complexity, low size and low losses. Based on Fig. 7(d), the proposed T_1 and T_2 topologies utilize the second least number of capacitors to produce equal levels with similar counterparts. Also, it is seen from Fig. 7(e) that the proposed T_1 and T_2 topologies provide the third-highest (after [30, 36]) ratio of levels to total devices ($N_{TC} = N_{DC} + N_{SW} + N_{GD} + N_{D} + N_{C}$). This can result in a compact and less-complicated structure. As seen from Fig. 7(f), the gain of converters presented in [36, 38] increases at extended versions, but the gain of converters presented in [10, 28, 30, 33, 39-41] remains constant. Among these constant-gain converters, the proposed T_1, T_2 and P_1 topologies have the maximum step-up capability. According to Fig. 7(g), the Average Normalized Standing Voltage (ANSV) of the proposed symmetric converter (P_1) is quite low, while this amount in proposed asymmetric (T_1 and T_2) converters is rather high. Fig. 7(h) shows that the ANSV of converters reduces by an increment of cascaded units. Also, at equal units, the ANSV of proposed T_1, T_2 and P_1 topologies is lower than that of [33, 36, 38, 39], which is desirable. The proposed topology and [30, 31] require an H-bridge to create a bipolar voltage-waveform. Thus, the H-Bridge's switches are exposed to $V_{o,max}$. The negative voltage-level generation in [32] is achieved through a developed-H-bridge, where two switches tolerate $V_{o,max}$. The [34, 35] employ two half-bridges and the [33] inherently produce the negative voltage levels. The number of semiconductors tolerating the maximum output voltage (N_{MVS}) in [33, 34] and [35] are 4, 2 and 0, respectively. The [35] has the least TVS, because none of its semiconductors tolerate the Maximum Voltage Stress (MVS) of $V_{o,max}$.
MOSFETs, which can be modelled with an on-state resistance \((R_{on,T} \text{ or } R_{on,H})\). The conduction loss of switches happens at on-state resistances. Also, the switching losses occur during switch on-off transitions. The switching losses depend on voltage stress \((V_{stress})\), average current \((I_{ave})\), turn on and off times \((t_{on}, t_{off})\) and switching frequency \((f_s)\) of a switch. The total switch losses (conduction and switching) can be computed from (18).

\[
P_{\text{Loss Switch}} = \frac{1}{6} f_s V_{stress} I_{ave} (t_{on} + t_{off}) + R_{on} I_{rms}^2
\]

(18)

B. DIODES

The diodes are modelled with a series connection of forward voltage drop \((V_{FD})\) and on-state resistance \((R_{on,D})\). Thus, the diode losses can be calculated from (19).

\[
P_{\text{Loss Diode}} = R_{on} I_{rms}^2 + V_{FD} \times I_{ave}
\]

(19)

C. CAPACITOR

The capacitor losses (including voltage ripple and equivalent series resistance (RESR) losses) is obtained from (20):

\[
P_{\text{Loss Capacitor}} = \frac{1}{2} f_s C (AV)^2 + (R_{ESR} \times I_{rms})
\]

(20)

The total power losses, as well as the efficiency \((\eta)\) of suggested, can be achieved from (21) and (22), respectively.

\[
P_{\text{Loss Total}} = P_{\text{Loss Switch}} + P_{\text{Loss Diode}} + P_{\text{Loss Capacitor}}
\]

(21)

\[
\eta = \left(\frac{P_o}{P_o + P_{\text{Loss Total}}} \right) \times 100
\]

(22)

IX. EXPERIMENTAL RESULTS

Fig. 8 displays the laboratory-scale prototype implemented to verify theoretical analysis and correct performance of suggested basic inverter. Table V shows the experimental parameters.
(17), the capacitances should be selected in $C_1 \geq 1822$ [µF] and $C_2 \geq 1682$ [µF]. To satisfy the (17), the $C_1 - C_2$ have been assumed to be $C_1 = C_2 = 2200$ [µF]. Assuming the input voltage as $V_{dc} = 30$ [V], the voltage stress on C_1 and C_2 capacitors will be 30 [V] and 60 [V], respectively. The employed C_1 and C_2 capacitors have been selected to withstand up to 50 [V] and 100 [V], respectively, to meet the voltage stress requirement. Based on voltage and current stress of semiconductors, the IRFP260NpF, IRFS40 and MUR1560G have been respectively used for realizing $H_1 - H_4$, $S_1 - S_2$ and D_1.

| TABLE V EXPERIMENTAL PARAMETERS OF PROPOSED TOPOLOGY |
Parameters	Magnitude
Input DC voltage	30 [V]
Load (R, L)	90 [Ω], 110 [mH]
Capacitor C_1	2200 [µF], 50 [V]
Capacitor C_2	2200 [µF], 100 [V]
Diode (D_1)	MUR1560G
Switches (H_1-H_4)	IRFP260NpF, 200 [V], 50 [A], $R_{diss} = 0.04$ [Ω]
Switches (S_1-S_2)	IRFS40, 100 [V], 28 [A], $R_{diss} = 0.077$ [Ω]
Fundamental frequency	50 [Hz]

Figs. 9(a) and 9(b) respectively depict the output voltage-current waveforms for (i) $R = 90$ [Ω] and (ii) $R = 90$ [Ω] and $L = 110$ [mH]).

![FIGURE 9. Experimental results for output voltage-current waveforms (a) $R=90(\Omega)$, (b) $R=90(\Omega)$ & $L=110$ [mH].](image)

As seen from Fig. 10, the even-order harmonics have been eliminated from the output voltage. Among available harmonic orders, the 21st, 17th, 25th and 23rd harmonic orders have the highest magnitudes, which are respectively about 3.1%, 2.97%, 2.88% and 2.7% of fundamental harmonic. These high order harmonics can be eliminated through a small filter. The Total Harmonic Distortion (THD) of the suggested 9-level inverter is about 8.53%. Fig. 11 displays the current and voltage waveform of $C_1 - C_2$ capacitors.

![FIGURE 10. Harmonic spectrum of the output voltage.](image)

As expected, the voltage across C_1-C_2 capacitors has been naturally balanced on 28 [V] and 58 [V], respectively. Also, appropriate design of capacitances has suppressed voltage-ripple on C_1 and C_2 to equal or less than 5% ($\Delta V_{C1} = 1.5$ [V], $\Delta V_{C2} = 2$ [V]). Note that the experimental results have been obtained in presence of $L-D$ inrush-current limiting cells with small inductances of 50[µH]. Figs. 11(a)-11(b) confirms that the charging current of both C_1 and C_2 capacitors have been suppressed to less than 10[A], which is
acceptable.

Fig. 12 indicates the dynamic operation of the suggested topology during sudden load change conditions. It is seen that during decrement of load to half (from 120 [Ω] to 60 [Ω]), the peak load-current is doubled without considerable change in output-voltage. While changing load from 60 [Ω] to 120 [Ω], the peak load-current reduces to half, but its voltage remains unaltered. This confirms the appropriate dynamic performance of the suggested topology during sudden load change conditions.

![Dynamic operation during sudden load changes.](image)

FIGURE 12.

Figs. 13(a)-13(g) show the voltage waveforms of semiconductors. As seen, the voltage-stress of switches and diodes are as: \(V_{S1} = V_{S7} = 86 \text{ [V]} \) (Figs. 7(a) and 7(d)), \(V_{S2} = V_{S3} = V_{S6} = 58 \text{ [V]} \) (Figs. 7(a) and 7(c)), \(V_{S3} = V_{S4} = 30 \text{ [V]} \) (Fig. 7(b)), \(V_{S1} = 28 \text{ [V]} \) (Fig. 7(g)), and \(V_{H1} = V_{H2} = V_{H3} = V_{H4} = 117 \text{ [V]} \) (Figs. 7(e) and 7(f)). Despite the high voltage stress on \(H_1 - H_4 \), their low operation-frequency (fundamental frequency) limits the switching-losses.

![Voltage waveforms on semiconductors.](image)

FIGURE 13.

Fig. 14(a) illustrates efficiency of suggested topology at various input-voltages. The peak-efficiency is about 95.5% that occurs at \(V_{dc} = 70 \text{ [V]} \).

![Measured efficiency Vs. input voltage, (b) Loss distribution for \(V_{dc} = 30 \text{ [V]} \).](image)

FIGURE 14.

According to Fig. 14(b), the efficiency of converter at the operating point \((P_o = 60 \text{ [W]}, V_{dc} = 30 \text{ [V]} \) is about 90.9%, where the conduction-loss of switches/diode are about 4.5 [W] (6.77%) and 1.5 [W] (2.26%), respectively. The ripple-loss of capacitors is about 0.4 [W] (0.6%). The employment of Nearest-Level technique has decreased switching-loss of semiconductors to 0.00048%, which is negligible.

X. CONCLUSION

This paper has proposed a basic switched-capacitor 9-level inverter that is extendable to higher levels. The single-source nature, quadruple voltage-boosting ability, capacitors' natural charge-balancing, increased levels per device, and capability of feeding low power factor (resistive-inductive or inductive) load types are the main advantages of the suggested topology. The H-bridge switches tolerate \(V_{omax} \), but due to their fundamental-frequency operation, their switching-loss is
suppressed. The capacitors' impulse-charging current has been reduced by a small-inductance-based L-D network. The output voltage THD of the suggested topology is about 8.5%. The comparative analysis confirms that the suggested topology has higher ratios of a number of levels and gain to devices, which is an important advantage. The efficiency of an implemented laboratory-scale prototype of the suggested topology for $V_n = 30$ [V] is about 90.9%, which is acceptable. Two extended versions of the suggested basic topology have been introduced to achieve more levels and voltage-gains. The experimental outcomes validate the proper performance of the suggested switched-capacitor 9-level inverter.

REFERENCES

[1] M. Vijeh, M. Rezanejad, E. Samadaei, and K. Bertilsson, “A general review of multilevel inverters based on main submodules: Structural point of view,” IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9479-9502, 2019.

[2] M. Karimi, P. Kargar, and K. Varesi, “An extendable asymmetric boost multilevel inverter with self-balanced capacitors,” International Journal of Circuit Theory and Applications, In press.

[3] F. Esmaeili and K. Varesi, “A novel single-phase multilevel inverter topology based on bridge-type connected sources with enhanced number of levels per number of devices,” Journal of Energy Management and Technology, vol. 4, no. 3, pp. 37-47, 2020.

[4] S. Deliri, K. Varesi, and S. Padmanaban, “An extendable single-input reduced-switch 11-level switched-capacitor inverter with quintuple boosting factor,” IET Generation, Transmission & Distribution, In Press.

[5] A. A. Gandomi, K. Varesi, and S. H. Hosseini, “Control strategy applied on double flying capacitor multi-cell inverter for increasing number of generated voltage levels,” IET Power Electronics, vol. 8, no. 6, pp. 887-897, 2015.

[6] F. Esmaeili, H. R. Koofigar, and H. Qasemi, “A Novel Single Phase Multi-Level High Gain Inverter with Low Voltage Stress,” IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022.

[7] H. K. Jahan, H. Tarzamni, P. Kolahian, S. H. Hosseini, F. Tahami and F. Blaabjerg, “A Switched-Capacitor Inverter with Optimized Switch-count Considering Load Power Factor,” RECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 2019, pp. 4959-4964.

[8] M. Karimi, P. Kargar, K. Varesi, and P. Sanjeevikumar, “Power quality improvement by a double-source multilevel inverter with reduced device and standing voltage on switches,” in Power Quality in Modern Power Systems; Elsevier, 2021, pp. 245-282.

[9] S. Deliri, K. Varesi, Y. P. Siwakoti and F. Blaabjerg, “Generalized diamond-type single DC-source switched-capacitor based multilevel inverter with step-up and natural voltage balancing capabilities,” IET Power Electronics, 2021.

[10] S. S. Lee, K.-B. Lee, I. M. Alsofyani, Y. Bak and J. F. Wong, “Improved Switched-Capacitor Integrated Multilevel Inverter with a DC Source String,” IEEE Transactions on Industry Applications, 2019.

[11] T. Roy and P. K. Sadhu, “A step-up multilevel inverter topology using novel switched-capacitor converters with reduced components,” IEEE Transactions on Industrial Electronics, 2020.

[12] T. Roy, P. K. Sadhu, and A. Dasgupta, “Cross-switched multilevel inverter using novel switched capacitor converters,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 8521-8532, 2019.

[13] S. A. Hosseini and K. Varesi, “Hybrid Switched-Capacitor 9-Level Boost Inverter,” in 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2021: IEEE, pp. 1-4.

[14] F. Esmaeili and K. Varesi, “An Asymmetric Multi-Level Inverter Structure with Increased Steps per Devices,” in 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2020: IEEE, pp. 1-5.

[15] N. Sandeep and U. R. Varagattu, “Operation and control of an improved hybrid nine-level inverter,” IEEE Transactions on Industry Applications, vol. 53, no. 6, pp. 5676-5686, 2017.

[16] F. Esmaeili, K. Varesi, and S. Padmanaban, “A Solar Energy– Based Multi-Level Inverter Structure with Enhanced Output-Voltage Quality and Increased Levels per Components,” Green Energy: Solar Energy, Photovoltaics, and Smart Cities, pp. 469-493, 2020.

[17] S. Majumdar, B. Mahato, and K. C. Jana, “Implementation of an Optimum Reduced Components Multi-cell Multilevel (MC-MLI) Inverter for Lower Standing Voltage,” IEEE Transactions on Industrial Electronics, 2019.

[18] M. Karimi, P. Kargar, and K. Varesi, “Two Novel Switched-Capacitor Based Multi-Level Inverter Topologies,” in 2019 International Power System Conference (PSC), 2019: IEEE, pp. 391-396.

[19] S. R. Raman, Y. C. Fong, Y. Ye, and K. W. E. Cheng, “Family of Multiport Switched-Capacitor Multilevel Inverters for High-Frequency AC Power Distribution,” IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4407-4422, 2018.

[20] M. D. Siddique, S. Mekhilef, S. Padmanaban, M. A. Memon, and C. Kumar, “Single Phase Step-up Switched-Capacitor Based Multilevel Inverter Topology with SHEPWM,” IEEE Transactions on Industry Applications, 2020.

[21] S. D. Khatoonabadi, K. Varesi, and S. Padmanaban, “Photovoltaic-Based Switched-Capacitor Multi-Level Inverters with Self-Voltage Balancing and Step-Up Capabilities,” Green Energy: Solar Energy, Photovoltaics, and Smart Cities, pp. 549-582, 2020.

[22] A. Taghvaie, J. Adahi, and M. Rezanejad, “A self-balanced step-up multilevel inverter based on switched-capacitor structure,” IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 199-209, 2017.

[23] P. Kargar, M. Karimi, and K. Varesi, “A Novel Boost Switched-Capacitor Based Multi-Level Inverter Structure,” in 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2020: IEEE, pp. 1-6.

[24] S. Deliri, K. Varesi, Y. P. Siwakoti and F. Blaabjerg, “A boost type switched-capacitor multi-level inverter for renewable energy sources with Self-Voltage balancing of capacitors,” International Journal of Energy Research, 2021.

[25] E. Babaie, H. Tarzamni, F. Tahami, H. K. Jahan, and M. B. B. Shirafian, “Multi-input high step-up inverter with soft-switching capability, applicable in photovoltaic systems,” IEEE Power Electron., vol. 13, no. 1, pp. 133-143, Jan. 2020.

[26] N. Vosoughi, S. H. Hosseini, and M. Sabahi, “A New Single Phase Transformerless Grid Connected Inverter with Boosting Ability and Common Ground Feature,” IEEE Transactions on Industrial Electronics, 2019.

[27] K. Varesi, M. Karimi, and P. Kargar, “A new basic step-up cascaded 35-level topology extendable to higher number of levels,” in 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 2019: IEEE, pp. 291-296.

[28] S. S. Lee, “Single-stage switched-capacitor module (S’CM) topology for cascaded multilevel inverter,” IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8204-8207, 2018.

[29] Y. Hinago and H. Koizumi, “A switched-capacitor inverter using series/parallel conversion with inductive load,” IEEE Transactions on industrial electronics, vol. 59, no. 2, pp. 878-887, 2011.

[30] E. Babaie and S. S. Gowgani, “Hybrid multilevel inverter using switched capacitor units,” IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4614-4621, 2014.

[31] Y. Ye, K. W. E. Cheng, J. Liu, and K. Ding, “A Step-Up Switched-Capacitor Multilevel Inverter With Self-Voltage
E. Zamiri, N. Vosoughi, S. H. Hosseini, R. Barzegarkhoo, and M. Sabahi, "A new cascaded switched-capacitor multilevel inverter based on improved series-parallel conversion with less number of components," *IEEE Transactions on Industrial Electronics*, vol. 63, no. 6, pp. 3582-3594, 2016.

R. Barzegarkhoo, M. Moradzadeh, E. Zamiri, H. M. Kojabadi, and F. Blaabjerg, "A new boost switched-capacitor multilevel converter with reduced circuit devices," *IEEE Transactions on Power Electronics*, vol. 33, no. 8, pp. 6738-6754, 2018.

Y. Nakagawa and H. Koizumi, "A boost-type nine-level switched capacitor inverter," *IEEE Transactions on Power Electronics*, vol. 34, no. 7, pp. 6522-6532, 2018.

N. Sandeep, J. S. M. Ali, U. R. Yaragatti, and K. Vijayakumar, "Switched-Capacitor-Based Quadruple-Boost Nine-Level Inverter," *IEEE Transactions on Power Electronics*, vol. 34, no. 8, pp. 7147-7150, 2019.

B.-B. Ngo, M.-K. Nguyen, J.-H. Kim, and F. Zare, "Single-phase multilevel inverter based on switched-capacitor structure," *IET Power Electronics*, vol. 11, no. 11, pp. 1858-1865, 2018.

S. Deliri Khatoonabad and K. Varesi, "A Novel Dual-Input Switched-Capacitor Based 27-Level Boost Inverter Topology," in 28th Iranian Conference on Electrical Engineering (ICEE2020), Tabriz, Iran, 2020.

M. Ghodsi and S. M. Barakati, "A generalized cascade switched-capacitor multilevel converter structure and its optimization analysis," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 8, no. 4, pp. 4306-4317, 2019.

A. Ahmad et al., "Realization of a generalized switched-capacitor multilevel inverter topology with less switch requirement," *Energies*, vol. 13, no. 7, p. 1556, 2020.

M. D. Siddique, S. Mekhilef, N. M. Shah, J. S. M. Ali, and F. Blaabjerg, "A new switched capacitor 7L inverter with triple voltage gain and low voltage stress," *IEEE Transactions on Circuits and Systems II: Express Briefs*, 2019.

N. Sandeep, J. S. M. Ali, U. R. Yaragatti, and K. Vijayakumar, "A self-balancing five-level boosting inverter with reduced components," *IEEE Transactions on Power Electronics*, vol. 34, no. 7, pp. 6020-6024, 2018.

Fatemeh Esmaeili was born in Abhar-Zanjani (Iran) in 1997. She earned the B.Sc. degree in Electrical Engineering from Sahand University of Technology (SUT), Tabriz, Iran, in 2020. Presently, she has been granted a merit-based scholarship for completing a Master program at University of Isfahan. Her research interests include power electronics, multilevel voltage source inverters, switched-capacitor converters and renewable energy systems.

F. Esmaeili was the recipient of the best B.Sc. thesis award from the Power Electronics Society of Iran in 2020. She is also selected in the IEEE Iran section for designing and implementing a multilevel inverter for renewable energy applications.

Saeid Deliri was born in Tabriz, Iran, in 1996. He received the B.Sc. and M.Sc. degree from Sahand University of Technology, Tabriz, Iran in electrical control engineering, and power electronic engineering in 2018 and 2020, respectively.

His research interests include multilevel inverters, switched capacitor inverters and its applications in renewable energy systems.

HADI TARZAMNI (Student Member, IEEE) was born in Tabriz, Iran, in 1992. He received the B.Sc. and M.Sc. degrees with first class honors in power electrical engineering from the Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran, in 2014 and 2016, respectively. He is currently working toward the Ph.D. degree in power electronics engineering under a dual-degree doctoral program at the Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran, and the Department of Electrical Engineering and Automation, Aalto University, Finland. He has authored and coauthored more than 25 journal and conference papers. He also holds 6 patents in the area of power electronics. He is the recipient of best paper award in 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC) in 2019. He has received a three-year Aalto ELEC Doctoral School grant in 2021. Since Jan. 2021, he has been a researcher at the Department of Electrical Engineering and Automation; and the Department of Electronics and Nanoengineering, Aalto University, Finland. His research interests include power electronic converters analysis and design, DC-DC and DC-AC converters, high step-up power conversion, soft-switching and resonant converters, and reliability analysis.

Kazem Varesi was born in Ilkhchi, Tabriz, Iran, in 1985. He received the B.Sc. degree from University of Tabriz, Tabriz, Iran, the M.Sc. degree (3rd Honor) from K. N. Toosi University of Technology, Tehran, Iran and the Ph.D. degree (1st Honor) from University of Tabriz, Tabriz, Iran, respectively, respectively in 2008, 2011 and 2017 all in Power Electrical Engineering.

Since 2017, he has been working with Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran, as an Assistant Professor. He has authored or coauthored more than 60 journal articles, book chapters and conference papers. He holds one patent in the area of power electronics. He was a recipient of the Best Paper Award in 11th International Smart Grid Conference (SGC) in 2021. Also, he was the recipient of Best Young Researcher Award of Sahand University of Technology in 2020. His research interests include dc–dc converters, multilevel inverters, hybrid electric vehicles, and renewable energy systems.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/