A list analog of Vizing’s Theorem for simple graphs with triangles but no other odd cycles

Jessica McDonald
Auburn University
mcdonald@auburn.edu

Clemson University, October 2014
1 Introduction

- **edge-colouring**: assignment of colours to edges so that adjacent edges receive different colours
- **k-edge-colourable**: can be edge-coloured with k colours
- **chromatic index** $\chi'(G) = \min k$ s.t. G is k-edge-colourable

\[\chi'(G) \geq \chi'(G) \geq \Delta \]

- **list-edge-colouring**: edge-colouring where, for each edge e, the colour for e must come from a given list L_e
- **k-list-edge-colourable**: $|L_e| \geq k \ \forall e \in E(G) \Rightarrow G$ has a list-colouring from the given lists
- **list-chromatic index** $\chi'_l(G) = \min k$ st G is k-list-edge-colourable

\begin{array}{ccc}
\text{one} & \{1, 2, 3\} & \{1, 2, 3\} & \{1, 3, 4\} \\
\text{two} & \{1, 2, 3\} & \{1, 2, 3\} & \{1, 3, 4\} \\
\text{three} & \{1, 2, 3\} & \{1, 2, 3\} & \{1, 2, 3\} \\
\text{four} & \{1, 2, 3\} & \{1, 2, 3\} & \{1, 2, 3\} \\
\end{array}
$\chi'_l(G) \geq \chi'(G) \geq \Delta$

Vizing's Theorem. G simple \Rightarrow $\chi'(G) \leq \Delta + 1$.

Theorem (M., 2014+). G simple, no odd cycles except triangles \Rightarrow $\chi'_l(G) \leq \Delta + 1$.

Theorem (Galvin, 1995). G bipartite \Rightarrow $\chi'_l(G) = \chi'(G)$.

List-edge-colouring Conjecture. $\chi'_l(G) = \chi'(G)$

Known about the Conjecture:
- true for some planar G (Ellingham, Goddyn; Borodin, Kostochka)
- true for G series parallel (Juvan, Mohar, Thomas)
- some results when $G - v$ bipartite (Plantholt, Tipnis)
- $\chi'_l(G) \leq \frac{3\Delta}{2}$ (Borodin, Kostochka)
Vizing’s Theorem. G simple $\Rightarrow \chi'(G) \leq \Delta + 1$.

Theorem (M., 2014+). G simple, no odd cycles except triangles $\Rightarrow \chi'_l(G) \leq \Delta + 1$.

Theorem (Galvin, 1995). G bipartite $\Rightarrow \chi'_l(G) = \chi'(G)$.

List-edge-colouring Conjecture. $\chi'_l(G) = \chi'(G)$

Known about the Conjecture:
- true for some planar G (Ellingham, Goddyn; Borodin, Kostochka)
- true for G series parallel (Juvan, Mohar, Thomas)
- some results when $G - v$ bipartite (Plantholt, Tipnis)
- $\chi'_l(G) \leq \frac{3\Delta}{2}$ (Borodin, Kostochka)
Theorem (M., 2014+). G simple, no odd cycles except triangles
\[\Rightarrow \chi'_i(G) \leq \Delta + 1. \]

1. Introduction
2. Galvin’s proof
3. Allowing triangles (at a cost)
4. Wrap-up
2 Galvin’s proof

Theorem (Galvin, 1995). G bipartite $\Rightarrow \chi'_l(G) = \chi'(G)$.

proof.

• G is bipartite so we can k-edge-colour G with $k = \Delta = \chi'(G)$.

• Fix a bipartition (A, B). Orient the line graph $L(G)$ as follows:
 - big \rightarrow small for A;
 - small \rightarrow big for B.

• $d^+_L(v) \leq k - 1$

• Lemma (Bondy, Boppana, Siegel): If a digraph is kernel-perfect, then it is list-vertex-colourable for any lists with $|L_v| \geq d(v)^+ + 1$.

• To complete the proof: show $L(G)$ is kernel-perfect
So far:
- k-edge-colour $G = (A, B), \ k = \Delta$
- Orient $L(G)$
 - A: high \rightarrow low
 - B: low \rightarrow high
- By BBS lemma, G is k-edge-colourable if $L(G)$ is kernel-perfect

kernel-perfect: every induced subdigraph of has a kernel
(independent set S such that every vertex is either in S, or has an edge into S)

To prove $L(G)$ is **kernel-perfect**:
- induction on size of subdigraph
 (very dependent on G being bipartite)
 OR
- apply a theorem of Maffray
 (can work provided G has no odd cycles of length 5 or longer)
So far:

- k-edge-colour $G = (A, B)$, $k = \Delta$
- Orient $L(G)$
 - A: high \rightarrow low
 - B: low \rightarrow high
- By BBS lemma, G is k-edge-colourable if $L(G)$ is *kernel-perfect*

kernel-perfect: every induced subdigraph of has a *kernel* (independent set S such that every vertex is either in S, or has an edge into S)

To prove $L(G)$ is *kernel-perfect*:

- induction on size of subdigraph (very dependent on G bipartite)
 - OR
- apply a theorem of Maffray
 (can work provided G has no odd cycles of length 5 or longer)
So far:
- k-edge-colour $G = (A, B)$, $k = \Delta$
- Orient $L(G)$
 A: high \rightarrow low
 B: low \rightarrow high
- By BBS lemma, G is k-edge-colourable if $L(G)$ is **kernel-perfect**

kernel-perfect: every induced subdigraph of has a *kernel*
(independent set S such that every vertex is either in S, or has an edge into S)

To prove $L(G)$ is **kernel-perfect**:
- induction on size of subdigraph (*very dependent on G bipartite*)
 OR
- apply a theorem of Maffray
 (*can work provided G has no odd cycles of length 5 or longer*)
Theorem (Maffray, 1992) A line graph is solvable iff it is perfect.

perfect: $\chi(H) = \omega(H) \ \forall \ \text{induced} \ H \subseteq G$

solvable: there is a kernel in any orientation with the property that every clique has a sink.

- In our $L(G)$, every clique has a sink (also true for induced subdigraphs)
- Line graphs of bipartite graphs (and their subgraphs) are perfect.
- $L(G)$ is kernel-perfect.

Theorem (Trotter, 1977) A line graph $L(G)$ is perfect iff G has no odd cycles of length 5 or longer.

To extend Galvin’s result to all G without odd cycles of length 5 or longer, we need only to define an orientation of $L(G)$ where:

- every clique has a sink
- $d^+(e) \leq k - 1$.

To do this we will need $k = \Delta + 1$, G simple.
Theorem (Maffray, 1992) A line graph is \textit{solvable} iff it is \textit{perfect}.

\textit{perfect}: \(\chi(H) = \omega(H) \ \forall \) induced \(H \subseteq G \)

\textit{solvable}: there is a kernel in any orientation with the property that every clique has a sink.

- In our \(L(G) \), every clique has a sink (also true for induced subdigraphs)
- Line graphs of bipartite graphs (and their subgraphs) are perfect.
- \(L(G) \) is \textit{kernel-perfect}. \hfill \square

Theorem (Trotter, 1977) A line graph \(L(G) \) is perfect iff \(G \) has no odd cycles of length 5 or longer.

To extend Galvin’s result to all \(G \) without odd cycles of length 5 or longer, we need only to define an orientation of \(L(G) \) where:
- every clique has a sink
- \(d^+(e) \leq k - 1 \). *To do this we will need \(k = \Delta + 1 \), \(G \) simple.
3 Allowing triangles (at a cost)

Theorem (M., 2014+). G simple, no odd cycles except triangles \[\Rightarrow \chi'_l(G) \leq \Delta + 1. \]

proof sketch.

It suffices to define an orientation of $L(G)$ where:
(1) every clique has a sink
(2) $d^+(e) \leq k - 1$ (we let $k = \Delta + 1$).

We define a partition (D, U) of $V(G)$ and a k-edge-colouring c of G, so that the following orientation works:
• incidences in D go down, big \rightarrow small colour
• incidences in U go up, small \rightarrow big colour

For (2):
• edges between D and U are good.
 • edges between Ds must be low – in $\{1, 2, \ldots, \lfloor \frac{k+1}{2} \rfloor \}$
 • edges between Us must be high – in $\{\lceil \frac{k+1}{2} \rceil, \ldots, k \}$

For (1):
• All cliques not arising from triangles are good.
 • For every triangle, we must ensure a sink (source)
Theorem (Maffray, 1992) A simple graph has no odd cycles of length 5 or longer iff every block B satisfies one of:

1. B is bipartite
2. $B = K_4$
3. B is ...

Define a k-edge-colouring c and partition (U, D) one block B at a time:

At each step, we assume one vertex $b \in B$ has already been assigned to D or U and that all its incident edges not in B have been coloured by c.

We must ensure B satisfies the rules:

- edges between Ds must be low – in \{1, 2, \ldots, \lceil \frac{k+1}{2} \rceil \}
- edges between Us must be high – in \{\lceil \frac{k+1}{2} \rceil, \ldots, k \}
- For every triangle, we must ensure a sink (source)
 (incidences in D go down, big\rightarrowsmall colour)
 (incidences in U go up, small\rightarrowbig colour)

It can be done! (for $k = \Delta + 1$)
Theorem (Maffray, 1992) A simple graph has no odd cycles of length 5 or longer iff every block B satisfies one of:

1. B is bipartite
2. $B = K_4$
3. B is ...

Define a k-edge-colouring c and partition (U, D) one block B at a time:

At each step, we assume one vertex $b \in B$ has already been assigned to D or U and that all its incident edges not in B have been coloured by c.

We must ensure B satisfies the rules:

- edges between Ds must be **low** – in $\{1, 2, \ldots, \lceil \frac{k+1}{2} \rceil \}$
- edges between Us must be **high** – in $\{ \lceil \frac{k+1}{2} \rceil, \ldots, k \}$
- For every triangle, we must ensure a sink (source)
 (incidences in D go **down**, big\rightarrowsmall colour)
 (incidences in U go **up**, small\rightarrowbig colour)

It can be done! (for $k = \Delta + 1$)
Q: What prevents using $k = \Delta$?

The rules for assigning c and (U, D) in B, given pre-determined b:

- edges between Ds must be **low** – in $\{1, 2, \ldots, \left\lfloor \frac{k+1}{2} \right\rfloor \}$
- edges between Us must be **high** – in $\{\left\lceil \frac{k+1}{2} \right\rceil, \ldots, k\}$
- For every triangle, we must ensure a sink (source)
 - (incidences in D go **down**, big \rightarrow small colour)
 - (incidences in U go **up**, small \rightarrow big colour)

A: We might have no choice in colouring edges incident to b in B, and get one of these, which can’t be completed:
4 Wrap-up

\[\chi'_l(G) \geq \chi'(G) \geq \Delta \]

Vizing’s Theorem. G simple $\Rightarrow \chi'(G) \leq \Delta + 1$.

Theorem (M., 2014+). G simple, no odd cycles except triangles
\[\Rightarrow \chi'_l(G) \leq \Delta + 1. \]

Theorem (Galvin, 1995). G bipartite $\Rightarrow \chi'_l(G) = \chi'(G)$.

List-edge-colouring Conjecture. $\chi'_l(G) = \chi'(G)$
Thank-you