Astrocytes play critical roles after brain injury, but their precise function is poorly defined. Utilizing single-nuclei transcriptomics to characterize astrocytes after ischemic stroke in the visual cortex of the marmoset monkey, we observed nearly complete segregation between stroke and control astrocyte clusters. Screening for the top 30 differentially expressed genes that might limit stroke recovery, we discovered that a majority of astrocytes expressed RTN4A/ NogoA, a neurite-outgrowth inhibitory protein previously only associated with oligodendrocytes. NogoA upregulation on reactive astrocytes post-stroke was significant in both the marmoset and human brain, whereas only a marginal change was observed in mice. We determined that NogoA mediated an anti-inflammatory response which likely contributes to limiting the infiltration of peripheral macrophages into the surviving parenchyma.
While thrombolytic therapies have proven beneficial for ischemic stroke recovery, decades of effort to translate neuroprotective discoveries from rodent experiments to the clinical setting have been typified by numerous failures. There are likely multiple explanations, but a focus on rodents for discovery research and an emphasis on neuronal responses are likely to be crucial factors. For this reason, we investigated astrogial responses in a nonhuman primate (NHP) model of ischemic stroke, which has previously been demonstrated to be more akin to the human condition.

It is well established that astrocytes are crucial players in the pathogenesis of brain injuries, such as ischemic stroke, yet experimental investigation has remained centered on the neuron. In response to exogenous or endogenous stimuli arising from injury, disease, or aging, astrocytes are triggered into their reactive state (reactive astrocytes), characterized by drastic changes to their gene expression, morphology, and function. Although it is recognized that reactive astrocytes can exacerbate secondary neurodegeneration, recent studies have highlighted that they are a highly heterogeneous population of cells that can also provide crucial neuroprotection for surviving neurons in response to CNS pathologies. Recent transcriptome analyses have clearly demonstrated the evolutionary novelties of specific CNS cell types in primates compared to rodents, highlighting the power of transcriptomic studies in NHPs. Here, we provide a catalog of NHP astrocyte transcriptional changes in a clinically translatable stroke model and identify putative therapeutic targets from the reactive astrocyte-mediated pathogenesis of ischemic stroke.

Single-nuclei RNA sequencing (snRNAseq) revealed near complete segregation of astrocytes between the injured and uninjured brain highlighting the extensive transcriptomic changes, mostly immune-associated, that occur as a consequence of ischemic stroke. Unexpectedly, we discovered that a neurite outgrowth inhibiting protein associated with myelinating oligodendrocytes (NogoA), expressed by a large population of reactive astrocytes. This specific response may provide a local secondary source of neurite outgrowth inhibition, potentially reinforcing oligodendrocyte effects. We present evidence that a collar of reactive astrocytes expressing NogoA likely play an anti-inflammatory role in the subacute stroke period to limit peripheral macrophage infiltration from the ischemic zone (adjacent to the ischemic core). Therefore, immediate post-stroke blockade of NogoA action may exacerbate brain inflammation in primate species, including humans. These data highlight the pronounced transcriptomic changes that occur in astrocytes and their response to ischemic damage.

Results

snRNAseq revealed near complete segregation of stroke and control astrocyte clusters. Single-nuclei RNAseq (snRNAseq) on the 10X platform was used to profile NHP astrocytes following ischemic stroke. Adult marmosets (n = 3) received unilateral injections of endothelin-1 (ET-1) to the primary visual cortex (V1), with grey matter tissues encompassing all cortical layers of operculum collected 7 days later (Fig. 1a; Supplementary Fig. 1a). Non-lesioned adult marmoset (n = 3) V1 was used as control. Single nuclei (29,537 total from the injured cohort and 8,610 total from the control cohort; Supplementary Fig. 1b) were isolated from snap frozen tissue. Following sequencing, individual nuclei underwent unsupervised clustering and were arranged by uniform manifold approximation and projection (UMAP) for visualization, with nuclei from each cohort being analyzed separately to ensure effective cell type-specific clustering in each (Fig. 1b). Clusters were assigned to neural cell types based on the expression patterns of known cell-type-specific markers (Fig. 1c, Supplementary Fig. 1c). Additional quality control on the injured cohort of marmosets was performed to demonstrate how the data clusters across the dataset (Supplementary Fig. 1d–f). We observed no obvious differences between the n = 3 injured marmosets across the number of genes expressed (Supplementary Fig. 1d), UMIs (Supplementary Fig. 1e) and cells captured (Supplementary Fig. 1f), although there was a larger number of ExN nuclei captured in one marmoset. This highlights the consistency and strength of the data across our injured cohort of adult marmosets.

There has already been considerable previous focus on neuronal changes following ischemic injury, so we sought to investigate the changes to astrocytes after stroke. Astrocyte nuclei profiles from both cohorts were isolated from the datasets (2,107 from the injured cohort and 594 from the control cohort; Supplementary Fig. 1b), merged, integrated, scaled and processed using the Seurat algorithm. Significant post-stroke changes were evident with near complete segregation between injured and control observed when arranged by UMAP for visualization (Fig. 1d). Astrocytes from both cohorts expressed appropriate pan-astrocyte markers (SLC1A2, SLC1A3, ALDH1L1, AQP4) and injured cohorts increased levels of pan-reactive markers (GFAP, VIM, SERPINA3, CXL10, OSMR) (Fig. 1e). A total of 576 differentially expressed genes (DEGs) were identified between injured and control astrocytes, with significantly more upregulated than downregulated (529 upregulated versus 47 downregulated) (Fig. 1f; Supplementary Data 1). Of particular interest, the top DEGs predominantly possessed immunomodulatory roles, such as cytokine/interferon signaling pathways and defense response to virus (Supplementary Data 1). However, within the top 30 DEGs, it was notably observed that RTN4A (NogoA), previously described as an oligodendrocyte marker and known to inhibit neurite outgrowth, was significantly upregulated (Fig. 1f, highlighted in red) and expressed in a large majority of reactive astrocytes (Fig. 2a). Astrocytes were segregated based on RTN4A expression, and RTN4A- and RTN4A+ astrocytes were found to share 252 injury-dependent DEGs, with 187 unique to RTN4A- and 178 unique to RTN4A+ astrocytes (Fig. 1g, Supplementary Data 1). Characterization of these unique DEGs revealed distinct GO terms associated with positive regulation of synaptic plasticity and ion transport in RTN4A- astrocytes, compared to negative regulation of the leukocyte response and exocytosis in RTN4A+ astrocytes (Fig. 1h, Supplementary Data 1). Further characterization of the top 100 DEGs in RTN4A- nuclei using Functional Module Detection (HumanBase) revealed four distinct functional categories (Fig. 1i, Supplementary Data 1). Remarkably, characterization of the top 100 DEGs in RTN4A+ nuclei using the same technique revealed significant overlap between three out of the four functional categories, but with a distinct difference in one, which included regulation of the adaptive immune response, leukocyte trafficking, and blood–brain barrier integrity (Fig. 1j, Supplementary Data 1). These data indicate that RTN4A may be involved in functions other than those it is typically associated within the literature, including immunomodulatory reactive astrocyte functions after stroke in primates.

Genes spanning two functional categories within the RTN4A+ population were used for in tissue validation of transcriptomic data (GAP43, CD44, KLF6) (Fig. 1h, highlighted in red). GAP43 was recently shown to mediate glial plasticity and promote neuroprotection. The transcriptional activator KLF6 and major surface hyaluronan (HA) receptor CD44, involved in cell proliferation and cell adhesion/ migration, respectively, were previously reported to be upregulated following a middle cerebral artery occlusion. Alongside expression of RTN4A, comprising
76% total astrocytes in the injured cohort and 21% in control, we observed robust expression of GAP43, CD44 and KLF6, with both the percent of nuclei expressing these genes and the overall level of expression significantly increased after stroke (Fig. 2a). Subsequent immunohistochemical staining in tissues from 1-week post-ischemic stroke and control marmosets, revealed an increased number of astrocytes colocalizing NogoA and either GAP43, KLF6, or CD44, consistent with the transcriptomic results (Fig. 2b–d). Notably, the in-tissue quantification of NogoA+/GAP43+ astrocytes (Fig. 2c) was also consistent with the numbers obtained at the nuclei level from the transcriptomic data (Fig. 2a).
Reactive astrocytes express neurite outgrowth inhibitory protein NogoA in primates post-ischemic stroke. The best-characterized sequela of NogoA expression after CNS injuries is inhibition of neurite outgrowth through neuron axon–oligodendrocyte interactions. Having identified that reactive astrocytes upregulate NogoA in the marmoset 1-week post-stroke (Fig. 1f, i; 2a–c), and given that this had not been previously described in rodent literature, we sought to investigate astrocytic NogoA expression at the equivalent post-stroke time point of 3 and 7 DPI in mouse and marmoset, respectively. Our analysis revealed fewer than 50% of astrocytes adjacent to the ischemic core in mouse cortex were NogoA+ (Fig. 3a, c), with minimal and punctate labeling compared to the widespread and uniform NogoA expression observed in almost all marmoset astrocytes at 7 DPI within the ischemic zone (Fig. 3b, c). Furthermore, the fluorescence intensity of NogoA immunoreactivity in astrocytes of the mouse was negligible relative to that in the marmoset (Fig. 3d). These data are supported by previous transcriptomic analysis of reactive astrocytes where RTN4A remains unchanged in adult mice 3 days after transient middle cerebral artery occlusion. Macroscopically, it is evident that the vast majority of GFAP+ astrocytes in marmosets express NogoA within the ischemic zone, tapering off at the V1/ V2 border with decreasing levels of NogoA expression (Supplementary Fig. 2). Together, these data indicate that there are marked differences between mouse and marmoset in terms of NogoA expression on reactive astrocytes and that its upregulation post-stroke may be unique to primates.

To investigate the marmoset-specific NogoA+ astrocytes further, we extended our analysis to several key pathophysiological time points post-stroke. We were able to demonstrate a transient upregulation of NogoA on GFAP+ reactive astrocytes for at least 2 weeks post-ischemic stroke in the marmoset (Supplementary Fig. 3). We also demonstrated that the population of NogoA+ reactive astrocytes upregulated select markers, such as GAP43 (Fig. 2b–c), CD44, and KL6 (Fig. 2d–e), in tissue, consistent with our transcriptomic data.

To determine if the NogoA+ reactive astrocytes observed in marmosets were found following human stroke, post-mortem human cortical tissue (1-week post-ischemic stroke) was sourced from the Newcastle Brain Tissue Resource (UK). Immunolabelling revealed a subpopulation of GFAP+ reactive astrocytes expressing NogoA adjacent to the ischemic core (Fig. 3e), consistent with our data in the marmoset at the same pathophysiological time point. Importantly, the expression profile of NogoA in human reactive astrocytes is consistent with the marmoset and unlikely to be accumulation of myelin debris. These results confirm that the expression of NogoA was associated with astrocytes at the same time point post-ischemic stroke in both marmoset and human. Following CNS injury, myelin breakdown occurs and results in the accumulation of myelin debris proximal to the injury site. Astrocytes are capable of phagocytosis of synapses, debris and dead cells in the CNS. To assess whether NogoA labeling on GFAP+ reactive astrocytes was due to expression and not a consequence of intracellular myelin debris, we cultured mouse, marmoset and human astrocytes in the absence of myelin. Mouse, marmoset and human astrocytes all expressed NogoA in vitro. Primate astrocytes were observed to be much larger in size when compared to mouse astrocytes as previously demonstrated. Therefore, these findings confirm that expression of NogoA in astrocytes is independent of myelin debris uptake.

Infiltrating peripheral macrophages in the ischemic zone express NogoA immune-receptor LIRIB2. Following ischemic stroke, the blood–brain barrier (BBB) breaks down, permitting infiltration of blood-borne (peripheral) macrophages into the parenchyma. In parallel, reactive astrocytes can exert inhibitory effects on infiltrating inflammatory cell populations in order to mitigate damage following CNS injury, such as producing anti-inflammatory cytokines and corralling immune infiltrates in a specific region. Following ischemic stroke, infiltration of peripheral macrophages peaks around 5–7 DPI in primates, including humans (Supplementary Fig. 5a). Consistent with this, we observed that almost all macrophages at 7 DPI in the ischemic zone were of peripheral origin, as indicated by the abundant expression of the macrophage marker Iba1 and absence of the microglia-specific marker TMEM119. (Fig. 4a, c), which is in line with previous work in the marmoset. However, we cannot entirely exclude the presence of TMEM119 + microglia in the ischemic zone given TMEM119 was not annotated in our genome alignment. In tissue, we observed the presence of TMEM119-/-
Iba1+ peripheral macrophages within the ischemic zone at 7 DPI (Fig. 4b). By 21 DPI, we observed a significant reduction of peripheral macrophages within the ischemic zone compared to their peak at 7 DPI (Fig. 4c). It is important to note that although other brain resident macrophages, such as perivascular, choroid plexus and meningeal macrophages also present as TMEM119-/- Iba1+/ peripheral macrophages within the ischemic zone. NogoA, GFAP, and GAP43, d Validation of CD44 upregulation by immunohistochemistry in marmoset 1-week post-stroke, compared to control (n = 3 biological replicates). e Validation of KLF6 upregulation by immunohistochemistry in marmoset 1-week post-stroke, compared to control (n = 3 biological replicates). RTN4A (NogoA): reticulon-4/ neurite outgrowth inhibitor A; GAP43: growth-associated protein 43; KLF6: kruppel-like factor 6; CD44: cell-surface glycoprotein-44; ET-1: endothelin-1; scale bar: 10 μm (b–d); UT: unpaired t-test, statistical test: UT, two-tailed, t = 19.97, df = 4, 95% CI; ****p < 0.0001. Source data are provided as a Source Data file.

Outside the CNS, the NogoA immune-receptor LILRB2 is primarily expressed on mononuclear phagocytes, B cells, and dendritic cells. Blood-borne macrophages lacking LILRB2 are hyper-adhesive and spread more rapidly, indicating that LILRB2 functionally limits adhesion and cell spreading. While expression of LILRB2 is known on human peripheral monocytes, the expression on marmoset monocytes is unknown. Based on these data, we asked whether infiltrating macrophages expressed LILRB2 in marmosets and whether macrophage distribution relative to NogoA+ reactive astrocytes was consistent with a receptor-ligand interaction between cell populations. To address these questions, blood was collected from adult marmosets and mononuclear cells were isolated and cultured. Marmoset macrophages were identified as CD14+/ CD11b+ cells, and expression of LILRB2 was detected after 7 days in culture, consistent with humans (Fig. 4d). Thus, blood-borne
macrophages highly express LILRB2 in the marmoset, as in humans, at baseline.

To determine whether the aforementioned infiltrating peripheral macrophages were expressing LILRB2, we immunolabeled tissues and found a dense distribution of LILRB2+/Iba1+ macrophages in the ischemic zone at 7 DPI (Fig. 4e), compared to controls and other post-ischemic stroke time points (Supplementary Fig. 5b). The population of LILRB2+/Iba1+ cells exhibited a spherical/ameboid morphology at 7 DPI, indicative of infiltrating peripheral macrophages or phagocytic microglia (Fig. 4e). The LILRB2+/Iba1+ macrophages (Fig. 4e, yellow-hatched line) and TMEM119-/Iba1+ (infiltrating peripheral) macrophages (Fig. 4a, b, yellow-hatched line) were localized to the same region of the ischemic zone, suggesting that they were...
the same population of cells. Furthermore, at 7 DPI we observed that deeper infiltrating Iba1+ macrophages had reduced LILRB2 expression and exhibited ramified morphologies compared to the macrophages more proximal to the cortical surface, which highly expressed LILRB2 and were spherical/ ameboid in morphology (Supplementary Fig. 5c). At 7 DPI, the spatial distribution of LILRB2 and NogoA expression were juxtaposed at the ischemic zone (Fig. 4f). These results demonstrate that LILRB2 is upregulated on a population of Iba1+ peripheral macrophages 7 DPI with complementary expression to NogoA upregulation on GFAP + astrocytes. Combined with our transcriptomic analysis of RTN4A (NogoA) astrocyte function and indication of involvement in regulating leukocyte trafficking, these data suggest a potential ligand-receptor interaction contributing to astrocyte corolling of macrophages.

NogoA-positive reactive astrocytes induce macrophage repulsion through two functional domains. Genetic deletion of the mouse homolog of LILRB2, PirB, after stroke results in an attenuated reactive astrocyte response35, indicating a molecular role for LILRB2 related to astrocytes after injury. Additionally, NogoA signaling has been previously demonstrated to limit the migration of microglia in vitro36. Nogo-A-LILRB2 interaction typically leads to downstream POSH/ Shroom3 and/or ROCK-dependent actin cytoskeletal reorganization37, ultimately resulting in neurite collapse or cell repulsion. This knowledge, combined with our transcriptomic analysis of RTN4A (NogoA)+ astrocyte function, prompted us to consider a NogoA/ LILRB2-dependent immune regulatory function following CNS injury. The function of NogoA/ LILRB2 signaling on peripheral macrophages was investigated using a human monocyte cell line, THP-1-derived macrophages. Analysis of previous transcriptomic data from Gosselin, Skola29 revealed the enrichment of LILRB2 on human monocytes (Fig. 5a), with an absence of other NogoA binding partners, such as NgR1 and SIPR2. We confirmed this in THP-1-derived macrophages (Fig. 5b). LILRB2 + THP-1-derived macrophages, co-expressing Iba1, were phagocytic and exhibited expected morphologies (Fig. 5c), including but not limited to multi-nucleation, granulation and heterogeneity in cell shape and size, as described in Daigneau, Preston38. We subsequently investigated if the two potent functional domains of NogoA (Nogo-66 and Nogo-Δ20) (Fig. 5d), could activate LILRB2-signaling on THP-1-derived macrophages by examining key downstream effectors: POSH, Shroom3, RhoA, and ROCK1. Nogo-66 treatment induced significant elevation of LILRB2 and POSH at 120 min (Fig. 5e, g). Shroom3 and RhoA elevation were detected more acutely at 60 and 30 min, respectively, returning to control levels at subsequent time points analyzed (Fig. 5e, g). Nogo-Δ20 treatment induced significant elevation of LILRB2 at 60 min, which was sustained up to 120 min (Fig. 5f, h). POSH elevation was detected more acutely starting at 10 min and remaining elevated (Fig. 5f, h). Shroom3 and RhoA were elevated at 120 min (Fig. 5f, h). No significant changes in ROCK1 expression levels were observed up to 120 min of stimulation with Nogo-66 or Nogo-Δ20 (Fig. 5e–h). These data suggest that NogoA induces LILRB2 signaling through the POSH/ Shroom3-dependent pathway in human macrophages via its two distinct functional domains either directly or indirectly. Finally, stripe assays were performed to demonstrate a functional role for NogoA/ LILRB2 signaling in THP-1 human macrophages. Stimulation with either Nogo-66 or Nogo-Δ20 revealed a significantly greater number of Iba1+ macrophages between immobilized human NogoA (Nogo-66-Fc or Nogo-Δ20-Fc) stripes compared to immobilized control-Fc stripes (Fig. 5i, j). Our results demonstrate that LILRB2 blockade significantly attenuates the effect of NogoA signaling on human macrophages resulting in a macrophage distribution indistinguishable from controls (Fig. 5i, j). These data demonstrate that NogoA/ LILRB2 signaling leads to macrophage repulsion. Taken together, these data provide substantive evidence that NogoA expression on GFAP + reactive astrocytes contributes to the corolling of LILRB2 + infiltrating monocytes and macrophages in the primate brain post-ischemic stroke.

Although Nogo-Δ20 is not able to pull down LILRB2 from human macrophage cell lysates (Fig. 5k), blocking LILRB2 overcomes Nogo-Δ20-mediated repulsion in vitro (Fig. 5j). Nogo-Δ20 has not been demonstrated to signal through LILRB2 directly, but rather various integrins39 (Fig. 5d). As a negative regulator of integrins, the absence or blockade of PirB in macrophages can cause enhanced integrin signaling, resulting in hyper-adhesive macrophages31. We also considered that Nogo-Δ20 effects may occur via SIPR2 signaling. SIPR2 is an established Nogo-Δ20 receptor (Fig. 5d). Very little is known about the detailed composition of the NogoA receptor complexes, and there is the possibility that different subunits may form a multisubunit heterodimeric complex akin to neurotrophin or Wnt receptors. Thus, antibodies against one subunit, such as LILRB2, could sterically hinder the binding of other subunits to a different ligand site, such as SIPR2. However, given the absence of SIPR2 on human macrophages (Fig. 5b), we hypothesize that blocking LILRB2 in our experimental paradigm activated integrin-mediated signaling which overcame Nogo-Δ20-mediated repulsion. This hypothesis is supported by evidence demonstrating that activating integrin-β1 could overcome Nogo-Δ20-mediated repulsion39, and our own experiments demonstrating that integrin-α4 and -β3 are significantly upregulated on human macrophages following treatment with a LILRB2 blocking antibody (Fig. 5i). Thus, these data demonstrate that reactive astrocyte-mediated repulsion of infiltrating macrophages between 7–14 DPI occurs through NogoA-LILRB2 signaling in the primate.
Discussion
Here we investigated the transcriptomic changes in NHP astrocytes after brain injury at single-nuclei resolution. Deep molecular profiling revealed a remarkable shift in astrocyte gene expression following ischemic stroke in the marmoset monkey. We observed significant upregulation of genes contributing to immunomodulatory signaling pathways in the post-stroke brain. Notably, within the top 30 DEGs alone, we identified that RTN4A...
(NogoA), a membrane protein previously described as an oligodendrocyte-associated neurite outgrowth inhibitor, is also expressed by astrocytes and its expression is transiently upregulated by reactive astrocytes adjacent to the ischemic core, including in the human cortex. Finally, we demonstrated that NogoA likely functions in these reactive astrocytes to corral peripheral macrophages from spreading into healthy adjacent CNS tissue. Our data highlight differences in astrocyte identity across model organisms and emphasizes the need for models that better recapitulate primate, including human, phenomena for the development of therapeutic treatments.

To date, the most widely accepted role for reactive astrocytes is to create a glial scar, as a structural and molecular barrier to repair and regeneration. However, astrocyte reactivity is not...
necessarily synonymous with repair inhibition, since reactive astrocytes provide crucial neuroprotection after CNS injuries, e.g.: trophic support12-44, attenuation of excitotoxicity11,45-47, elimination of cell debris48, and regulation of neuroinflammation26,49. In line with this latter function, we observed significant upregulation of genes involved in regulation of interferon-gamma signaling, cytokine production, response to cytokines, and defense response to virus. Additionally, given the post-stroke time point of 1-week, which coincides with the peak of peripheral immune infiltration27,28, it is not surprising that within the top 30 DEGs the majority were genes associated with immunomodulatory functions. However, the reality that reactive astrocyte characteristics significantly differ between rodents and humans, including diverging microanatomical30 and transcriptional characteristics31 that collectively underpin functional differences, may explain the failure to observe NogoA on reactive astrocytes over the past decades. A recent study directly comparing primary resting astrocytes derived from mouse versus human brain, demonstrated that more than 600 genes enriched in human astrocytes were not similarly enriched in mouse astrocytes51. Furthermore, extrinsic factors that influence astrocyte gene expression and subsequent function, such as the immune response, differ significantly between rodents and primates. Mouse and human macrophages can also respond very differently to the same stimuli52; for example, lipopolysaccharide induces upregulation of iNOS in mouse macrophages but upregulation of CCL20, CXCL13, IL-7R, P2RX7, and STAT4 in human macrophages53. The combination of these interspecies differences is likely to culminate in variability in additional mechanisms associated with the interplay between astrocytes and monocytes/macrophages after CNS injury. Although we observed low levels of NogoA expression on reactive astrocytes in mouse, NogoA is not upregulated at 3 days post-ischemic stroke19,20, equivalent to 1-week post stroke in marmoset, at which time there is an influx of blood-borne macrophages. As such, the enrichment of NogoA on a large proportion of reactive astrocytes in primates, including human, but not rodents19,20, which coincides temporally with peripheral macrophage infiltration after ischemic stroke, is likely a consequence of requiring a more complex reactive astrocyte response to a more complex immune response. The potential addition of NogoA to astrocyte-mediated corralling of infiltrating leukocytes reinforces the physiological importance of this neuroprotective mechanism to spare healthy brain tissue and confine the injury to a discrete region.

There are some limitations to the current study that merit discussion. First, although we have explored various time points immunohistochemically, our transcriptomic dataset is limited to the 1-week time point after ischemic brain injury in the marmoset. Transcriptomic analyses of astroglia at additional time points may provide greater clarity of the temporal picture of reactive astrocyte function beyond the acute time points. Second, we have restricted our analysis to regions proximal to the lesion site. We have not explored whether there are transcriptomic and phenotypic changes in astrocytes in regions distal to the injury site. Future studies documenting the transcriptomic and phenotypic status of astrocytes in regions distal to the injury site would provide a more complete spatial picture of the astroglial response. It is conceivable, for example, that the presence of extensive interhemispheric projections result in changes in astrocytes in the contralateral hemisphere since denervation is a well-recognized trigger of astrocyte reactivity and changes in gene expression. Third, our functional analyses focus on a particular protein-coding gene of interest. Given the extensive list of differentially expressed immunomodulatory genes in astrocytes, there are likely to be other gene products that influence reactive astrocyte function after brain injury in primates. Despite these limitations, the current study advances our understanding of reactive astrocyte function, revealing that there are important differences between rodent and primate, including human, after ischemic brain injury which have significant clinical implications for current and future therapeutics.

With respect to therapeutic intervention, NogoA and other myelin-associated inhibitors have been extensively studied in their capacity as inhibitors of repair and have been identified as promising targets for therapeutic intervention, especially for the treatment of SCI54-63 and stroke64-70. Various neutralizing antibodies and competitive inhibitors against NogoA and receptor bodies, as well as genetic deletions, have been used to demonstrate enhanced sprouting and regeneration after CNS lesions22. One of these, a NogoA neutralizing antibody, IN-1, has been tested in rodent models of SCI59-61,71, followed by NHPs55,72,73, and finally human subjects74. The Phase I clinical trial using ATIII35 (NogoA neutralizing antibody) in acute paraplegic and tetraplegic patients reported that it was well
tolerated following intratracheal administration and has entered Phase II trials in subacute SCI (ClinicalTrials.gov NCT03935521). In addition, a soluble NgR decoy blocking Nogo, MAG and O Migp ligands is efficacious preclinically in chronic SCI and has entered clinical trials for that indication (ClinicalTrials.gov NCT03989440). The current study provides evidence that consideration of timing of the specific intervention is essential to ensure appropriate therapeutic benefit.

Importantly, our findings from acute to subacute time points following ischemic stroke in the marmoset indicate that NogoA antagonism might restrict reactive astrocyte-mediated corralling of infiltrating macrophages. In addition, NogoA blockade might have indirect immunomodulatory effects at early time points. Here, we find that NogoA+ astrocytes are enriched with genes involved in leukocyte trafficking, which accurately recapitulates our in vivo and in vitro observations of peripheral macrophage corralling by this cell population. We know that reactive astrocytes can physically restrict migration of leukocytes, including macrophages, after CNS injury to limit their infiltration into adjacent healthy tissue. While immune infiltrates are crucial in the clearance of detrimental cell and myelin debris, the inflammatory consequences may exacerbate secondary neuronal cell death. For example, if proliferating or corralling reactive astrocytes are ablated following CNS trauma, the result is propagation of leukocyte infiltration, severe demyelination, neuronal and oligodendrocyte cell death and pronounced motor deficits. Expression of the receptors ERα (ESR1), GP130 (IL6ST), DRD2, and CsaR1 is absent or negligible in marmoset reactive astrocytes with only ESR1 & IL6ST significantly upregulated 1 week after stroke. In primates, NogoA signaling may be crucial to fully restrict macrophage infiltration into surrounding healthy CNS parenchyma after stroke. Therefore, different mechanisms may mediate macrophage corralling in rodents and primates. NogoA-directed therapies in primates may titrate both early, modulation of inflammation, as well as longer term regulation of axonal sprouting and neural repair.

In sum, our results support the notion that a NHP ischemic stroke model is more representative of human sequelae than the rodent, highlighted by our identification of abundant NogoA+ reactive astrocytes both in marmoset and human cortical tissue 1 week post-stroke. Given the complex and species-specific response of astroglial cells to CNS injury, it is essential to complete a detailed molecular characterization of NHP preclinical models, considering the immune system implication amongst others, to advance ischemic stroke research and therapeutic development.

Methods

Animals. Adult common marmosets (Callithrix jacchus > 12 months; n = 15 fixed, n = 16 fresh, n = 6 for transcriptomics) were used in this study. Animals were subdivided into uninjured control and injured cohorts, comprising 1, 7, 14, and 21 days post-injury (DPI) recovery periods (fixed: n = 3 per time point; fresh: n = 3 per time point, excluding 14 DPI, where n = 4). n = 3 for transcriptomics were allocated to the 7 DPI recovery period and n = 3 uninjured marmosets were used as control. Experiments were conducted according to the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes and were approved by the Monash University Animal Ethics Committee. Animals were obtained and housed at the National Nonhuman Primate Breeding and Research Facility (Monash University).

ET-1-induced focal ischemic stroke. Preparative procedures, anesthesia and surgery were all performed on adult marmoset monkeys. In short, anesthesia was induced using Alfaxalone (5 mg/kg) and maintained using inspired isoflurane (0.5-4%) throughout all surgical procedures. Induction of focal ischemic injury to adult marmoset primary visual cortex (V1) was achieved by vasconstricitor-mediated vascular occlusion of the calcarine branch of the posterior cerebral artery, which supplies operculum V1. Following midline incision, craniotomy, and dural resection, intracortical injections of endothelin-1 (ET-1: 1 mg/mL; rate: 0.1 μL/30 s pulse + 30 s intervals, totaling 0.7 μL over seven sites) produced focal ischemic areas were performed. Upon completion of injections, the craniotomy was replaced and positioned with tissue adhesive (Verband 3 M) and the skin sutured closed. Uninjured animals were used as controls. Stroke model is summarized in Fig. 1a and Supplementary Fig. 1a.

Single nuclei 10x genomic sequencing and analysis. Adult marmosets in both injured (1-week post-ET-1-induced ischemic stroke, n = 3) and uninjured cohorts (control, n = 3) were administered an overdose of sodium pentobarbital (100 mg/kg; IM). Following the loss of corneal and muscular reflexes, the animals were decapitated, and the brain removed under aseptic conditions. Cerebral tissues were rinsed in chilled PBS to remove excess blood, before microdissection of regions of interest within V1, including operculum V1 but excluding calcarine V1 and associated white matter (Fig. 1a). In stroke animals, this also included the core and penumbra. Dissected tissues were placed in sterile tubes and dropped into liquid nitrogen before storage at −80 °C. The procedures/ dissections were performed in chilled RNase-free PBS with RNase-free sterilized instruments under RNase-free conditions. Approximate time from apexa to snap-freezing ranged from 20–30 min. All six samples passed QC.

Nuclei Isolation. All buffers were ice-cold and all reagents used for consequent nuclear isolation were molecular biology grade unless stated otherwise. Frozen cerebral tissues from the injured cohort were finely pulverized to powder in liquid nitrogen with mortar and pestle (Coorstek #60316, #60317). 50 mg of pulverized tissue was added into 5 ml of ice-cold lysis buffer: 320 mM sucrose (Sigma #S0389), 5 mM CaCl2, 5 mM MgCl2 (Sigma #63502), 10 mM Tris-HCl (pH 8) (AmericanBio #AB14043), protease inhibitors w/o EDTA (Roche #11831670010), 0.1 mM EDTA (AmericanBio #AB00502), RNase inhibitor (80 U/mL) (Roche #03335402001), 1 mM DTT (Sigma #43186), 0.1% TWEEN-20 (v/v) (Sigma #S7878). Reagents: DTT, RNase Protector, protease inhibitors, TX-100 were added immediately before use. The suspension was transferred to a 15 mL tissue grinder (15 mL volume, Sigma #357544; autoclaved, RNAse free, ice-cold) and homogenized with loose and tight pestles, 30 cycles each, with constant pressure and without introduction of air. The homogenate was strained through 40 um tube top cell strainer (Corning #352340) which was pre-wetted with 1 mL of nuclear buffer (Sigma #50309), 3 mL of 10X nuclear buffer (Sigma #63502), 10 mM Tris-HCl (pH 8) (AmericanBio #AB14043), protease inhibitors w/o EDTA (Roche #11831670010), RNase inhibitor (80 U/mL) (Roche #03335402001), 1 mM DTT (Sigma #43186). Additional 9 mL of isolation buffer was added to wash the strainer. Final 15 mL of solution was mixed by inverting the tube 10x and carefully pipetted into two ultracentrifuge tubes (Beckman Coulter #44059) onto the isolation buffer cushion (5 mL) without disrupting the phases. The tubes were centrifuged at 30000 × g, for 60 min at 4 °C on ultracentrifuge (Beckman L7-65) and rotor (Beckman SW41-Ti). Upon end of ultracentrifugation, the supernatant was carefully and completely removed and 100 ul of resuspension buffer (Sigma #50309), 25 mM KCI (Sigma #61042), 5 mM MgCl2 (Sigma #M1028), 20 mM Tris-HCl (pH 7.5) (AmericanBio #AB14043; Sigma #T2413), protease inhibitors w/o EDTA (Roche #11831670010), RNase inhibitor (80 U/mL) (Roche #03335402001), 1 mM DTT (Sigma #43186) was added dropwise on the pellet in each tube and incubated on ice for 15 min. Pellets were gently dissolved by pipetting with 7 mL of 1 mL pipette filtered through 40 um tube top cell strainer (Corning #352340). Finally, nuclei were counted on hemocytometer and diluted to 1 million/mL with sample-run buffer: 0.1% BSA (Gemini Bio-Products #700-106-P), RNase inhibitor (80 U/mL) (Roche #03335402001), 1 mM DTT (Sigma #43186) in DPBS (Gibco #14190).

Frozen cerebral tissues from the control cohort were homogenized using a glass Dounce tissue grinder (2 mL volume, Sigma, Kimble #D9893-1SE) with loose and tight pestles, 25 cycles each, in 2 mL ice-cold lysis buffer (Nuclei PURE Lysis buffer (Sigma #NUC201-IKT) + 0.1% NP40 (Invitrogen #FNN0021) + RNase inhibitor (Invitrogen #10777-019)). Following homogenization, an additional 2 mL of ice-cold lysis buffer was added and the homogenates were incubated on ice for 5 min. The homogenates were then transferred to 15 mL tubes and centrifuged at 500 × g for 5 min at 4 °C. The supernatant was subsequently removed and discarded. The remaining pellets were then washed with 3 mL ice-cold lysis buffer and incubated on ice for 5 min. After another round of centrifugation, the nuclei were washed in 2 mL nuclear suspension buffer (NSB: Dulbecco’s phosphate-buffered saline + 1% BSA (Ambion #AM2616) + 1% Proteinase inhibitor (Roche #11831653001) + 0.2 U/μL RNase inhibitor (Invitrogen #10777-019) and centrifuged again for another 5 min with the same parameters. Isolated nuclei were resuspended in 500 μL NSB or approximately 5 million/400 μL, factoring in 30% cell loss from centrifugation. Nuclei were then gently dissolved through a 30 μM cell strainer and counted using a Dounce tissue homogenizer. Nuclei were subsequently stained with Hoechst 333258 at 1:1000, then processed through FACs analysis/ sorting (InfluxI, 70 μm nozzle, PSI 20; with nuclei present in approximately 5–20% of events). DAPI + nuclei were then sorted into a collection tube containing NSB with RNase inhibitor (Invitrogen #10777-019) at a concentration of 1000 nuclei/μL.
Single cell/nucleus microfluidic capture, cDNA synthesis and RNAseq library preparation. The nuclei from the injured cohort were placed on ice and taken to Yale Center for Genome Analysis core facility. Nuclei from the control cohort were placed on ice and taken to Micromon Genomics facility, each for single nucleus RNA sequencing. Samples were processed within 15 min with targeted nuclei recovery of 10,000 nuclei per sample. Nuclei suspensions were packaged into single-nucleus beads and the cDNA libraries were run using Chromium Single Cell 3’ v3 chemistry (10x Genomics, Illumina 10x Genomics) by following precisely manufacturers detailed protocol (CG000183_ChromiumSingleCells_v3_v3_UG_RevA). Specifically, due to limitations imposed by source RNA quantity, cDNA from nuclei was amplified for 8–14 cycles.

Sequencing of libraries. In order to reach optimal sequencing depth (25,000 raw reads per nucleus), single cell and/or nucleus libraries were run using paired-end sequencing of libraries imposed by source RNA quantity, cDNA from nuclei was amplified separately but shared by the three batches, using Seurat FindVariableFeatures function with parameters selection.method = "vst", nfeatures = 3000.

Removal of unwanted batch effects. In order to reduce unwanted batch effects that originated from external systematic or technical issues, we utilized Fast Mutual Nearest Neighbors (fastMNN)2 correction. Here, we considered the three different injured mammal sets as the potential source of external batches, since the sample dissection and library preparation were separately executed; there was also the possibility that individual differences could be a contributor. Instead of using fastMNN directly, we used the RunFastMNN function, which is efficiently integrated in the SeuratWrappers2 package, to unite this analysis to the whole pipeline. Additionally, the execution of the RunFastMNN function was based on some HVGs which were identified separately but shared by the three batches, using Seurat FindVariableFeatures function with parameters selection.method = "vst", nfeatures = 3000.

Removal of nuclear doubles. For the injured cohort, nuclei doubles or clumps were removed through post-transcriptomic analysis, using Scrublet28 software with a filtered feature barcode matrix (i.e., matrix.mtx) generated by cellranger as input. To optimize the filtering procedure, we customized some parameters based on in-house computing trials, i.e., expected_doublet_rate = 0.05, min_counts = 2, min_cells = 3, min_gene.variability.pctl = 85, n_prin_comp = 30. For the control cohort, Seurat’s standard pre-processing and quality control workflow was followed to remove low-quality cells, empty droplets, cell doubles, and multiplets93. To optimize the analysis, the QC metrics were customized (200 > nFeature_RNA < 2500) based on the distribution of features-counts.

Data analysis and mining. During the first stages of analysis, injured and control datasets were processed separately. For each dataset, raw gene UMI counts per nuclei were recorded in a matrix format before being used to create a Seurat object, followed by log normalization using NormalizeData function with setting parameters pca.min.pct = 0.1, logLowerLimit = 0.1, logUpperLimit = 0.01, selection.method = "LogNormV2", norm.var.factor = 1, throw the signal-to-noise ratio, and produce robust and reliable results for downstream analyses, we identified highly variable genes (HVGs) using Seurat FindVariableFeatures function by choosing parameters selection.method = "vst", nfeatures = 3000. To achieve this goal, we fit the relationship between log-transformed variance and log-transformed mean of gene UMI counts using local polynomial regression, and then chose the top 300 top-ranked genes as HVGs, which were scaled subsequently using ScaleData to feed the request from gene dimension reduction and cell clustering. For gene dimension reduction, the first step used principle component analysis (PCA) via a linear dimension reduction approach, which was implemented by using the Seurat RunPCA function and consequently choosing the top 50 principal components (PCs) to represent cell variation. The second step used uniform manifold approximation and projection (UMAP)90 to complete further dimension reduction of the top 30 PCs generated in the first step. Finally, we used the Seurat FindClusters function with parameters (i.e., dims = 1:30, resolution = 1) to analyze global cluster distribution. This method was used to identify major nuclei clustering that would ultimately be associated with the main cell type. Subsequent clustering to look for subclusters within cell types was not performed for this study.

Assignment of cell type. In order to identify and isolate astrocytes, nuclei clusters were matched to specific cell types by calculating gene specificity scores for each gene in each cluster using the R script retrieved from Eronon, IP14 or using FindMarkers with the test.use = "roc" parameter28. Genes with the highest specificity scores or roc scores suggested enrichment and were consequently considered as cluster-specific markers, which would be compared with the literature of reported cell type markers to assign a cell type to each cluster. Cell-type markers were as follows: oligodendrocyte (SLC1A3, ALDH1L1, Olig2, AQP4, NGFR, ONMT2), microglia (P2RY12, CD74, DOCK8, GPR3, C1QB), oligodendrocyte precursor cell (PDGERA, PCHDH15, KIAA0339, C1QBP), astrocytes (GFAP, S100A6, IL6, ITGB3, CTNNB1) and chondrocytes (COL1A1, COL1A2, COL9A1, COL9A2). For fresh tissue, cells were immediately harvested following apoptosis. The occipital poles were dissected at the level of the diencephalon and bisected coronally, with caudal portions encompassing V1 and the ischemic zone and core, before snap freezing them in liquid nitrogen.

Fresh fixed marmoset tissue collection for protein analyses. At the end of the designated post-stroke period: 1 DPI, 7 DPI, 14 DPI, or 21 DPI; marmosets were administered an overdose of pentobarbitone (100 mg/kg; IM). For fresh tissue, brains were immediately harvested following anaesthesia. The occipital poles were dissected at the level of the diencephalon and bisected coronally, with caudal portions encompassing V1 and the ischemic zone and core, before snap freezing them in liquid nitrogen. Fresh fixed tissue, animals were similarly euthanized and transcardially perfused with 0.1 M heparinized saline solution (0.9% sodium chloride at 37 °C containing 0.1 M heparin), followed by 4% paraformaldehyde. Brains were collected, post-fixed for 24 h in 4% paraformaldehyde, sucrose protected, and cryosectioned29.

Three days post-MCAO mouse tissue. C57Bl/6 mice (n = 3) was gifted from Professor Christopher G. Soby, 8–12-week-old mice were subjected to restraint MCAO for 3 h, and bilateral brains were collected in cold PBS. Unperfused fresh brains were snap frozen over liquid nitrogen and sectioned on slides at 10 μm thick and 420 μm apart before storing at −80 °C. Sections were post-fixed in 4% PFA before immunostaining as described in immunolabeling protocol below. Experiments were approved by the Monash University Animal Ethics Committee.

Human tissue. Snap-frozen and paraffin-fixed human brain samples (n = 1; Age: 74 yrs; Gender: Female; COD: Cirrhosis; Post-mortem processing: <24 h) were obtained from the Newcastle Brain Tissue Resource (UK) with informed consent.
Informed consent was provided by donors or their nominated representatives under the understanding that donated brain and/or spinal cord tissue was to be used to make autologous stem cells for patients with disabilities caused by spinal cord injury. Cell suspensions were fixed on poly-l-lysine coated coverslips and cultured with Hectost 333258 nuclei stain and coverslipped using fluoromount-G.

Stained tissue/cells were analyzed using either the Axiostar Z1 Upright Microscope and Axiophot Software (Carl Zeiss), or the Sp5 Inverted Confocal Microscope, and LAS Software (Leica Microsystems). ImageJ, Fiji, Adobe Photoshop and Illustrator CC 2017 (Adobe) were used for image post-processing and figure design.

Fig. 4f the representative pseudo-colored LILRB2 and NogoA fluorescent intensity of GFAP was calculated over the mean fluorescent intensity of NogoA and expressed as a ratio of NogoA:GFAP. The area of Iba1 and TEM119+ was calculated between the respective labeled datasets for all sections.

Protein extraction, SDS-PAGE, and immunoblot. Snap-frozen V1 tissues were homogenized using either TRIzol LS Reagent (ThermoFisher), or NP40 (ThermoFisher) lysis buffer, and protein extracted according to manufacturer’s instructions. Subsequent lysates were supplemented with 10% Protease Inhibitor Cocktail (ProTic; Sigma-Aldrich), 1% Phosphatase Inhibitor Cocktail 2 (Phic; Sigma-Aldrich). A protein concentration was determined using Bradford Reagent (Sigma-Aldrich). At experimental endpoints, cells were fixed using RIPA buffer (Biorad) and analyzed using Odyssey Infrared Imaging System. Protein reproducibility across multiple experiments was ensured through a consistent loading control (GAPDH). Following gel electrophoresis, proteins were blotted onto PVDF membranes (ThermoFisher), pre-blocked in Odyssey Blocking Buffer (PBS; Li-Cor) before incubation with primary antibodies (Supplementary Table 1) overnight at 4 °C. Following washes, membranes were incubated with IRDYE secondary antibodies (Li-Cor) and visualized using the Odyssey CLX Scanner (Li-Cor).

Densitometry. Densitometric analysis was performed on scanned immunoblot images using Image Studio Lite (Li-Cor; version 5.2.5), and values representing protein over loading control were calculated. Data distribution was evaluated for Gaussian distribution using the Shapiro-Wilk normality test. Ordinary one way-ANOVA with Dunnnett’s multiple comparisons post-hoc test were used for statistical analysis of densitometry data—Prism 7 (GraphPad). ImageJ Fiji (Rasband) and Adobe Illustrator CC 2017 (Adobe) were used for post-processing of immunoblot images and figure design.

Antibody characterization. NogoA and LILRB2 antibodies (Supplementary Table 1) were tested in rat, marmoset and human cortical tissue to ensure uniformity of detectable bands across species (Supplementary Fig. 6a). NogoA antibodies were validated using two antibodies recognizing separate epitopes on the NogoA ligand due to the ambiguity of some of the data surrounding NogoA expression in various CNS injury models. The NogoA antibodies were tested on fresh and fixed marmoset cortical tissue, rat cortical tissue as a positive control and marmoset liver as a negative control, with and without pre-incubation with blocking peptides to determine species specificity (Supplementary Table 1; Figs. 5a, c). TEM119 and LILRB2 antibodies (Supplementary Table 1) were tested in fixed marmoset spleen and brain tissue with an Iba1 co-label to ensure specificity of TEM119 to microglia in marmoset (Supplementary Fig. 6d).

NogoA -/GFP+ cell quantification. 2 stack images were taken at high magnification of randomly selected GFP+ cells within 500 µm of the ischemic core in 3 days post-MCAO mouse tissue (n = 3) and in 7 days post-ischemia marmoset tissue (n = 4). Colocalization of NogoA and GFP or lack thereof was determined using ImageJ/Fiji and subsequently quantified as the number of NogoA+ astrocytes over the total number of counted astrocytes (GFP+ cells) and expressed as a percentage. A minimum of 30 cells per animal, over 3–5 sections across three mice and 200 neurons in each section were imaged and counted. These images were also used to determine the fluorescent intensity of NogoA expression by GFP+ astrocytes. Ten cells were randomly selected from each of the three mice and four marmosets, and the mean fluorescent intensity of NogoA was calculated over the mean fluorescent intensity of GFP using ImageJ/Fiji and expressed as a ratio of NogoA:GFP fluorescence distribution for Iba1 and TEM119+ marmoset sections. These images were evaluated for Gaussian distribution using the Shapiro–Wilk normality test. Unpaired t-tests were used for statistical analysis of data using Prism 7 (Graphpad).

Iba1/TEM119 quantification. Iba1 and TEM119 DAB-immunolabeled marmoset V1 tissues across control (n = 2), 1 (n = 2), 7 (n = 3), 14 (n = 2) and 21 (n = 3) DPI time points were imaged and photo-merged using Adobe Photoshop. The number of Iba1 and TEM119+ marmoset labeling was quantified over three sections from each animal using ImageJ. Data distribution was evaluated for Gaussian distribution using the Shapiro–Wilk normality test. Ordinary two-way ANOVA...
and Sidak’s multiple comparisons post-hoc test were used for statistical analysis of data using Prism 7 (GraphPad). For tabulated statistics see the Source Data File.

Isolation of marmoset blood mononuclear cells

Mononuclear cells were collected by density centrifugation using Ficoll–Hypaque (1.077 g/mL, Pharmacia Biotech). Red blood cells were removed by lysis using NH4Cl lysis buffer, the MNC washed twice with PBS (0.5% BSA), filtered through a 40 µm strainer and counted.

Flow cytometry. For analysis of LILRB2 expression on marmoset and human monocyte-derived macrophages, marmoset or human MNC were resuspended in DMEM (0.5% BSA) at a density of 3 x 10⁶ cells/mL and seeded into 12 or 24-well tissue culture plates. The cells were incubated in a CO₂ incubator at 37 °C for 1 h prior to non-adherent cells being removed by aspiration, leaving behind adherent monocytes. Fresh DMEM (supplemented with 10% autologous serum and Gibco GlutaMAX) was added and the adherent cells cultured for 5 days (human) or 7 days (marmoset) with autologous serum/media being replaced on day 3 and 5. The plates were gently washed with warm PBS, the adherent macrophages lifted with trypLE Express (Gibco) cell dissociation enzyme and washed with PBS (0.5% BSA) for subsequent analysis.

In vitro culture of monocyte-derived macrophages. Marmoset or human MNC were suspended in DMEM (0.5% BSA) at a concentration of 3 x 10⁶ cells/mL and seeded into 12 or 24-well tissue culture plates. The plates were incubated in a CO₂ incubator at 37 °C for 1 h prior to non-adherent cells being removed by aspiration, leaving behind adherent monocytes. Fresh DMEM (supplemented with 10% autologous serum and Gibco GlutaMAX) was added and the adherent cells cultured for 5 days (human) or 7 days (marmoset) with autologous serum/media being replaced on day 3 and 5. The plates were gently washed with warm PBS, the adherent macrophages lifted with trypLE Express (Gibco) cell dissociation enzyme and washed with PBS (0.5% BSA) for subsequent analysis.

Code availability

No custom code for analysis was utilized in this study, only custom in-house parameters.

Received: 11 January 2021; Accepted: 5 November 2021; Published online: 25 November 2021

References

1. O’collins, V. E. et al. 1,026 experimental treatments in acute stroke. *Ann. Neurol.* 59, 467–477 (2006).
2. Teo, L. & Bourne, J. A. A reproducible and translatable model of focal ischemia in the visual cortex of infant and adult marmoset monkeys. *Brain Pathol.* 24, 459–474 (2014).
3. Liddelow, S. A. & Sofroniew, M. V. Astrocytes usurp neurons as a disease focus. *Nat. Neurosci.* 22, 512–513 (2019).
4. Liddelow, S. A. & Barres, B. A. Reactive astrogliosis: production, function, and therapeutic potential. *Immunity* 46, 957–967 (2017).
5. Krien, F. M. et al. Innovations present in the primate interneuron repertoire. *Nature* 586, 262–269 (2020).
6. Chen, M. S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. *Nature* 403, 434–439 (2000).
7. Creanova, T., Nakamura, F., Vartanian, T. & Strittmatter, S. M. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. *Nature* 449, 343–444 (2000).
8. Kuhlmann, T., Remington, L., Maruschak, B., Owens, T. & Brück, W. Nogo-A is a reliable oligodendroglial marker in adult human and mouse CNS and in demyelinated lesions. *J. Neuropathol. Exp. Neurol.* 66, 238–246 (2007).
9. Kim, J.-E., Li, S., GrandPre, T., Quo, D. & Strittmatter, S. M. Axon regeneration in young adult mice lacking Nogo-A/Neur. *Neurosci. 38*, 187–199 (2003).
10. Oertle, T. et al. Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. *J. Neurosci.* 23, 5393–5406 (2003).
11. Hung, C.-C. et al. Astrocytic GAP43 induced by the TLR4/NF-κB and the B/STAT3 axis attenuates astroglial microglial activation and neurotoxicity. *J. Neurosci.* 36, 2027 (2016).
12. Dzownek, J. & Wilczynska, G. M. CD44: molecular interactions, signaling and functions in the nervous system. *Front. Cell. Neurosci.* 9, 175–175 (2015).
13. Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. *J. Neurosci.* 32, 6391–6410 (2012).
14. Kim, J.-E., Liu, B., Park, J. H. & Strittmatter, S. M. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. *Neuron* 44, 439–451 (2004).
15. Cofferty, W. B., Duffy, P., Huebner, E. & Strittmatter, S. M. MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. *J. Neurosci.* 30, 6825–6837 (2010).
16. Teo, L., Bogdadi, A. G., Souza, M. & Bourne, J. A. Reduced post-stroke gllaring in the infant primate brain reflects age-related differences in the regulation of astrogliosis. *Neurobiol. Dis.* 111, 1–11 (2018).
17. Ding, S. Dynamic reactive astrocytes after focal ischemia. *Neural Regen. Res.* 9, 2048 (2014).
18. Susarla, B. T. S., Villapol, S., Yi, J.-H., Geller, H. M. & Symes, A. J. Temporal patterns of corticofugal glial cell populations after traumatic brain injury in mice. ASN Neuro 6, AN20130034 (2014).
19. Rakers, C. et al. Stroke target identification guided by astrocyte transcriptome analysis. Glia 67, 619–633 (2019).
20. Androvic, P. et al. Decoding the transcriptional response to ischemic stroke in young and aged mouse brain. Cell Rep. 31, 107777 (2020).
21. Gegg, G. et al. Nogo phosphorylation by astrocytes after myelin damage promotes lesion pathology. Brain 140, 399–413 (2017).
22. Boghadi, A. G., Teo, L. & Bourne, J. A. The involvement of the myelin-associated inhibitors and their receptors in CNS plasticity and injury. Mol. Neurobiol. 55, 1–16 (2017).
23. Homman-Ludiy, J. & Bourne, J. A. The morphost: the next frontier in understanding the development of the human brain. ILAR J https://doi.org/10.1093/ilar/ilaa028 (2021).
24. Figiel, M., Maucher, T., Rozyczka, J., Bayatti, N. & Engele, J. Regulation of glial scar formation in nonhuman primate: a new era for treatment strategies. Neurotherapeutics 31, 541–551 (2014).
25. Lee, J. K., Kim, J. E., Sivula, M. & Strittmatter, S. M. Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity. J. Neurosci. 31, 4219–4227 (2003).
26. Ying, Z. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).
27. Reynolds, G. & Hanifi, M. Human and mouse monoclonal phagocyte chemokines involved in neuroinflammation. Trends Neurosci. 17, 547–551 (2004).
28. Saleh, A. et al. In vivo MRI of brain injury in mice. Brain Res 1615, 397–401 (2015).
29. Gosselin, D. et al. An environment-dependent transcriptional network mediates human microglia identity. Science 356, eaad3222 (2017).
30. Brown, D., Trowsdale, J. & Allen, R. The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens 64, 215–225 (2004).
31. Pereira, S., Zhang, H., Takai, T. & Lowell, C. A. The inhibitory receptor PIR-B negatively regulates neutrophil and macrophage integrin signaling. J. Immunol. 173, 5754–5765 (2004).
32. Martinez, F. O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional profiling of the human monocyte-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177, 7303 (2006).
33. Vogel, D. Y. et al. Macrophages migrate in an activation-dependent manner to chemoattractants involved in neuroinflammation. J. Neuroinflammation 11, 23 (2014).
34. Liu, W., Tang, Y. & Feng, J. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci. 89, 141–146 (2011).
35. Szulc, S. A. et al. Neuronal and glial cell lineages are regulated by Notch signaling in the developing mouse brain. J. Neurosci. 31, 7132–7141 (2011).
36. Yan, J. et al. Nogo-A promoter acts as a transcriptional enhancer of Nogo-A expression and promotes axonal growth and regeneration in injured brain. Brain Res 1402, 378–388 (2010).
37. Lee, J. K., Kim, J. E., Sivula, M. & Strittmatter, S. M. Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity. J. Neurosci. 31, 4219–4227 (2003).
38. Ying, Z. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).
39. Reynolds, G. & Hanifi, M. Human and mouse monoclonal phagocyte chemokines involved in neuroinflammation. Trends Neurosci. 17, 547–551 (2004).
40. Saleh, A. et al. In vivo MRI of brain injury in mice. Brain Res 1615, 397–401 (2015).
41. Gosselin, D. et al. An environment-dependent transcriptional network mediates human microglia identity. Science 356, eaad3222 (2017).
42. Brown, D., Trowsdale, J. & Allen, R. The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens 64, 215–225 (2004).
43. Pereira, S., Zhang, H., Takai, T. & Lowell, C. A. The inhibitory receptor PIR-B negatively regulates neutrophil and macrophage integrin signaling. J. Immunol. 173, 5754–5765 (2004).
44. Martinez, F. O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional profiling of the human monocyte-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177, 7303 (2006).
45. Vogel, D. Y. et al. Macrophages migrate in an activation-dependent manner to chemoattractants involved in neuroinflammation. J. Neuroinflammation 11, 23 (2014).
46. Liu, W., Tang, Y. & Feng, J. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci. 89, 141–146 (2011).
47. Hu, F. & Strittmatter, S. M. The n-terminal domain of Nogo-A inhibits cell adhesion and axonal outgrowth by an integrin-specific mechanism. J. Neurosci. Off. J. Soc. Neurosci. 28, 1262–1269 (2008).
48. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).
49. Teo, L., Rosenfeld, J. V. & Bourne, J. A. Models of CNS injury in the nonhuman primate: a new era for treatment strategies. Transl. Neurosci. 3, 181–195 (2013).
50. Anderson, M. A., Ao, Y. & Sofroniew, M. V. Heterogeneity of reactive astrocytes. Neurosci. Lett. 565, 23–29 (2014).
51. Creed, J. M. et al. Functional regeneration beyond the glial scar. Exp. Neurol. 253, 197–207 (2014).
52. Sofroniew, M. V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009).
53. Figiel, M., Maucher, T., Rozyczka, J., Bayatti, N. & Engele, J. Regulation of glial glutamate transporter expression by growth factors. Exp. Neurol. 183, 124–135 (2003).
54. Li, S. & Carmichael, S. T. Growth-associated gene and protein expression in the region of axonal sprouting in the aged rat brain. Neurobiol. Dis. 23, 362–373 (2006).
75. Wang, X. et al. Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury. *Brain* **143**, 1697–1713 (2020).
76. Wang, X. X. et al. Recovery from chronic spinal cord contusion after nogo receptor intervention. *Ann. Neurol.* **70**, 805–821 (2011).
77. Frik, J. et al. Cross-talk between monocyte invasion and astrocyte proliferation regulates scarring in brain injury. *EMBO Rep.* **19**, e45294 (2018).
78. Verkman, A. S. et al. Classically and alternatively activated bone marrow derived macrophages differ in cytokine functions and migration towards specific CNS cell types. *J. Neuroinflammation.* https://doi.org/10.1186/s12974-011-0069-6 (2011).
79. Bush, T. G. et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. *J. Neurosci.* **24**, 21077–21093 (2004).
80. Faulkner, J. R. et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. *J. Neurosci.* **24**, 2143 (2004).
81. Brennan, F. H. et al. The complement receptor C5aR controls acute inflammation and astroglialosis following spinal cord injury. *J. Neurosci.* **35**, 6525–6534 (2015).
82. Drogemuller, K. et al. Astrocyte gp130 expression is critical for the control of toxoplasma encephalitis. *J. Immunol.* **181**, 2683–2693 (2008).
83. Shao, W. et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via α-crystallin. *Nature* **494**, 90–94 (2013).
84. Spence, R. D. et al. Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ER signaling on astrocytes but not through ER signaling on astrocytes or neurons. *J. Neurosci.* **33**, 10924–10933 (2013).
85. Spence, R. D. et al. Neuroprotection mediated through estrogen receptor-in astrocytes. *Proc. Natl Acad. Sci.* **108**, 8867–8872 (2011).
86. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. *Nat. Commun.* **8**, 14049 (2017).
87. Zerbino, D. R. et al. Ensembl 2018. *Nat. Commun.* **9**, 5652 (2018).
88. Shao, W. et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via α-crystallin. *Nature* **494**, 90–94 (2013).
89. McInnes, I. & Healy, J. UMAP: uniform manifold approximation and projection for high-dimensional single-cell data. *Cell Syst.* **28**, 638–647 (2018).
90. Efroni, I., Ip, P. L., Nawy, T., Mello, A. & Birnbaum, K. D. Quantification of cell identity from single-cell gene expression profiles. *Genome Biol.* **16**, 9 (2015).
91. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. *Nat. Biotechnol.* **36**, 411–420 (2018).
92. McInnes, I. & Healy, J. UMAP: uniform manifold approximation and projection for dimension reduction. *arXiv.* https://arxiv.org/abs/1802.03426 (2018).
93. Stuart, T. A. et al. Comprehensive integration of single-cell data. *Cell* **177**, 1888–1902.e1821 (2019).
94. Wickham, H. *Elegant Graphics for Data Analysis* (ggplot2) (Springer Verlag, 2009).
95. Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. Panther version 14: more genomes, a new Panther go-slim and improvements in enrichment analysis tools. *Nucleic Acids Res.* **47**, D419–D426 (2019).
96. Krishnan, A. et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. *Nat. Neurosci.* **19**, 1454–1462 (2016).
97. Warner, C. E., Goldsmith, Y. & Bourne, J. A. Retinal afferents synapse with relay cells targeting the middle temporal area in the pulvinar and lateral geniculate nucleus. *Front. Neuroanat.* https://doi.org/10.3389/neo.05.008.2010 (2010).
98. Homman-Ludijie, J., Merson, T. D. & Bourne, J. A. The early postnatal nonhuman primate neocortex contains self-renewing multipotent neural progenitor cells. *PLoS One* **7**, e34383 (2012).
99. Jagessar, S. A. et al. An overview of models, methods, and reagents developed for translational autoimmunity research in the common marmoset (Callithrix jacchus). *Exp. Anim.* **62**, 159–171 (2013).
100. Grassinger, J. et al. Thrombin-activated osteopontin regulates hematopoietic stem and progenitor cell functions through interactions with α9β1 and αβ4β1 integrins. *Blood* **114**, 49–59 (2009).

Acknowledgements

The authors wish to acknowledge the technical assistance and contributions of A.L. Chan, A. Grubman, J. Legrand, A.M. Tichy, M. de Souza, T.A. Hoang, J. Homman-Ludijie, and C.G. Sobey. This work was supported by grants from the NHMRC (APP108197) to J.A.B. at Monash University, and from the NIH (R35 NS097283) and the Falk Medical Research Trust to S.M.S. at Yale University. A NHMRC Senior Research Fellowship (APP107677) supports J.A.B. An Australian Postgraduate Award Scholarship supports A.G.B. The Australian Regenerative Medicine Institute is supported by grants from the State Government of Victoria and the Australian Government.

Author contributions

A.G.B., L.T., S.M.S. and J.A.B. conceived and designed the research. A.G.B. performed most of the experiments, analyzed the data and wrote the first draft of the manuscript. A.G.B., J.S., M.L. and M.S. performed the mRNAseq and analysis and wrote transcriptomic relevant sections of the manuscript. A.G.R., J.A.B. and L.T. performed the ET-1-induced stroke surgeries. B.C. performed blood work and flow cytometry. W.C.K. performed human tissue immunolabeling and assisted with surgeries. T.D.M. assisted with the ASCA+ astrocytes isolation from mouse pups. S.M.S., N.S. and S.K.N. provided intellectual advice and support. L.T. and J.A.B. supervised the project. J.S., L.T., S.M.S. and J.A.B. were involved in manuscript editing.

Competing interests

S.M.S. is a founder and equity holder in ReNetX Bio, Inc., which seeks clinical development of NgR1-FC (AXER-204) for spinal cord injury. The remaining authors declare no competing interests.

Additional information

Supplementary information

The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-27245-0.

Correspondence

and requests for materials should be addressed to James A. Bourne.

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information

is available at http://www.nature.com/reprints

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021