Learning like humans
with Deep Symbolic Networks

Qunzhi Zhang* and Didier Sornette

ETH Zurich
Department of Management, Technology and Economics

July 14, 2017

Abstract

We introduce the Deep Symbolic Network (DSN) model, which aims at becoming the white-box version of Deep Neural Networks (DNN). The DSN model provides a simple, universal yet powerful structure, similar to DNN, to represent any knowledge of the world, which is transparent to humans. The conjecture behind the DSN model is that any type of real world objects sharing enough common features are mapped into human brains as a symbol. Those symbols are connected by links, representing the composition, correlation, causality, or other relationships between them, forming a deep, hierarchical symbolic network structure. Powered by such a structure, the DSN model is expected to learn like humans, because of its unique characteristics. First, it is universal, using the same structure to store any knowledge. Second, it can learn symbols from the world and construct the deep symbolic networks automatically, by utilizing the fact that real world objects have been naturally separated by singularities. Third, it is symbolic, with the capacity of performing causal deduction and generalization. Fourth, the symbols and the links between them are transparent to us, and thus we will know what it has learned or not - which is the key for the security of an AI system. Fifth, its transparency enables it to learn with relatively small data. Sixth, its knowledge can be accumulated. Last but not least, it is more friendly to unsupervised learning than DNN. We present the details of the model, the algorithm powering its automatic learning ability, and describe its usefulness in different use cases. The purpose of this paper is to generate broad interest to develop it within an open source project centered on the Deep Symbolic Network (DSN) model towards the development of general AI.

*Email address: qzhang@ethz.ch
Contents

1 Introduction 3

2 Definition of Deep Symbolic Networks 4
 2.1 Recursive hierarchical model . 4
 2.2 Identifying operators of symbols 4

3 Structure and properties of Deep Symbolic Networks 5
 3.1 Links between the symbols . 5
 3.1.1 Links by the composition relationship 6
 3.1.2 Links by the inheritance relationship 6
 3.1.3 Links by dependence . 6
 3.1.4 Links by causality . 8
 3.1.5 Links by abstraction . 8
 3.1.6 Higher order links . 8
 3.1.7 Links can also be represented by symbols 8
 3.2 Dynamics, interactions and processes 9
 3.2.1 Dynamics . 9
 3.2.2 Interactions . 9
 3.2.3 Processes . 9
 3.3 Storing the Deep Symbolic Networks (DSN) to storage media . 11
 3.4 Use of the Deep Symbolic Networks (DSN) 11
 3.4.1 General principles of statistical inference and object gen-
 erating . 11
 3.4.2 Deep Symbolic Networks (DSN) for survival 12
 3.4.3 Automatic coding . 13

4 Learning of the Deep Symbolic Networks (DSN) model from
data 14
 4.1 Identifying operators . 14
 4.2 Unsupervised learning . 16
 4.3 Supervised learning . 17

5 Experiment 18

6 Conclusion 19
1 Introduction

Deep learning has achieved great success in many machine learning or artificial intelligence (AI) areas, and it is attracting the attention of the entire scientific community. In this paper, we study the general AI problem from a statistical physics point of view, and introduce a Deep Symbolic Networks (DSN) model to generalize the Deep Neural Networks (DNN) model in Deep learning. The Deep Symbolic Networks (DSN) model aims at solving the drawback of Deep learning that the obtained models remain black-boxes. In other words, DSN aims at becoming a white-box version of DNN.

We study the problem from a different angle than DNN, by naturally combining the DNN's structure with the methodologies (i) of Statistical Physics dealing with the micro-macro problem and (ii) of complex system theory dealing with emergence and hierarchies. In a nutshell, these theories describe the world in a deep, hierarchical structure. Indeed, physical matter constituting the Universe, i.e. anything occupying some space and having some mass, is made of elements. All these matter pieces are organised in many composition layers, from the microscopic level to the macroscopic level. From the micro to the macro levels, atoms make molecules, molecules make cells, cells make organs and body parts, organs and body parts make plants, animals (and human beings). Animals form communities, people form societies, states, nations, unions... Soil particles makes lands, water drops make rivers and oceans. Lands and rivers make continents, continents and oceans make our Earth. The Sun, our Earth and other planets make our solar system, billions of solar systems make our galaxy, and billions of galaxies make the known universe. Similarly, from the macro to the micro levels, atoms have their own hierarchical structures, formed of a nucleus and orbiting electrons, the nucleus being formed of protons and neutrons, themselves made of quarks, which may in their turn be conceived as vibrational modes of fundamental strings... In a word, the world in all its rich structure and complexity has deep, hierarchical structures at all scales, though the natural laws gluing these structures together may be different at different scales.

While intelligence is nothing but about learning and using this complex world, we conjecture that there is a universal way of preserving knowledge at all these scales in human brains. More precisely, we conjecture that the power of human brains benefits from a well-known tool in statistical physics called coarse graining. The idea is that our brains are good at clustering similar physical matter sharing enough common features at any scales, and map them to the same conceptual symbol. In this way, humans can significantly reduce the various sources of noise in the information produced by the real world. It is also an efficient way in the economic sense, as learning from noise will not increase humans’ utility functions, but only the consumption of more energy.
2 Definition of Deep Symbolic Networks

2.1 Recursive hierarchical model

Let us call some specific coarse-grained physical matter at some scale an “object”, and denote it by \(f_{n,i}(x) \), where \(n \) is its hierarchical layer, \(i \) is its index that allows us to identify it on that layer, and \(x \) is its domain, for instance, the space it occupies. The function \(f_{n,i} \) approximates thus the details at each point in the space the object occupies. The level of coarse-graining is determined by a trade-off between the costs and benefits of learning. To be specific, let us consider a physical thing to be coarse-grained, perceived as the object plus an error term, denoted by \(\epsilon f_{n,i} \), which can be modelled as a Gaussian centred random variable. We have therefore a simple mathematical formula to describe physical matter:

\[
\text{matter} := f_{n,i}(x) + \epsilon f_{n,i}
\]

(1)

With these notations, we can formulate the core of the Deep Symbolic Network (DSN) model as follows:

\[
f_{n,i}(x) + \epsilon f_{n,i} = \sum_{j=1}^{k_{n,i}} (a_{n,j} + \epsilon a_{n,j}) \left[f_{n,j} \left(\frac{x_j - (b_{n,j} + \epsilon b_{n,j})}{c_{n,j} + \epsilon c_{n,j}} \right) + \epsilon f_{n,j} \right]
\]

(2)

The recursive model simply states that matter at layer \(n \) is made of matter at other layers, \(n_j \), where \(j = 1...k_{n,i} \), and \(k_{n,i} \) is the total number of the direct composition objects of the object \(f_{n,i}(x) \). The recursive model presents the fact that we observe from the real world, and there is no loop in the model, i.e. no part of an object is made of itself. The parameters \(a_{n,j} \), \(b_{n,j} \), and \(c_{n,j} \) represent the states of the objects, such as magnitude, place, size, and so on. Changes in the values of these parameters correspond to operations on the objects such as amplification in magnitude, displacement in space, or variation in size. There could also be other linear operations, for instance, rotation, which we do not discuss here for the sake of simplicity.

For some objects, the state parameters such as \(a_{n,j} \), \(b_{n,j} \), \(c_{n,j} \), can have certain constraints. For instance, the natural languages are constrained by the grammars. Such constraints can be expressed mathematically as following:

\[
C(a_{n,1}, b_{n,1}, c_{n,1}, ..., a_{n,j}, b_{n,j}, c_{n,j}) > \theta,
\]

(3)

where \(\theta \) denotes some threshold.

2.2 Identifying operators of symbols

By assuming that each object \(f_{n,i}(x) \) is mapped in human mind to a symbol, denoted by \(S_{n,i} \), equation \(^2\) becomes our Deep Symbolic Networks (DSN) model. Formally,

\[
S_{n,i} := f_{n,i}(x)
\]

(4)
In this way, all physical matter or abstract concepts are symbolized. The atom, the molecule, the cell, the grain of sand, the water droplet, the river, the land, the world, the universe, the number, the space, and so on and so forth, are symbols. As a matter of fact, humans have already symbolized these symbols in natural languages.

The goal of the symbolization is to represent a rich variety of physical matter or abstract concepts sharing common features with a single abstract symbol. To this end, it is crucial that a symbol $S_{n,i}$ must be equipped with at least one identifying operator so that it can identify physical matter or abstract concepts. When an identifying operator of it is applied to data of certain physical matter or abstract concept, it will determine if the physical matter or abstract concept can be represented by the symbol, i.e., belongs to the class of things represented by the symbol.

We assume that an identifying operator is a linear operator, denoted by $M_{n,i}$. On the one hand, if it is applied to data of certain physical matter or abstract concept picked from the class of things the symbol represents, the output should exceed a threshold. On the other hand, if the physical matter or abstract concept is irrelevant, the output should be below the threshold. Mathematically, this can be expressed as follows. We call a linear operator $M_{n,i}$ an identifying operator of the symbol $S_{n,i}$ if it satisfies

$$M_{n,i}(f'_{n,i}) > v > M_{n,i}(f'_{m,j}), \forall m \neq n, j \neq i,$$

where $f'_{n,i}$ denotes that the symbol is normalized, and v is the decision making threshold.

A symbol can have more than one identifying operator, and the final decision in that case is the output of a Boolean combination of the decisions of all identifying operators. For instance, the symbols “pests” and “beneficial insects” must be identified first to be animals or insects, and then to be harmful or to be beneficial. An identifying operator defines a symbol, a Boolean combination of identifying operators of many different symbols generates a new identifying operator, thus defining a new symbol. Rich symbols can be built in this way.

A symbol can be given a name or just be anonymous, and it can be formed in a deep, hierarchical way as depicted in expression (2). Indeed, the symbols, and the links between the symbols in such a deep, hierarchical structure provide a universal way of storing any knowledge about the physical world and any knowledge abstracted from the physical world.

3 Structure and properties of Deep Symbolic Networks

3.1 Links between the symbols

Suppose we have already constructed a deep symbolic network as in model (2), with all symbols equipped with their identifying operators. One notices imme-
diately the composition links between the symbols, emerging from the relationships between them. Figure 1 is an illustration of the Deep Symbolic Networks (DSN) model, including many well-known symbols, and their links representing what makes what. On the left side of the figure, how physical matter composes the universe is represented in the same symbolic form.

3.1.1 Links by the composition relationship

The composition relationship is easy to understand, just indicating what kinds of physical matter or abstract concepts compose other kinds. It links many symbols together, such as the atom and the molecule, the molecule and the cell, the cell and the organ and many other body parts, to name only a few. A concrete example is the H$_2$O molecule, which is made of two Hydrogen atoms and one Oxygen atom. The relationship is about that the Hydrogen atom and the Oxygen atom compose the H$_2$O molecule, and that the H$_2$O molecule is composed by the Hydrogen atom and the Oxygen atom. The example shows therefore the composition relationship is two-way. Figure 1 depicts the composition relationship only one-way, as one direction of the relationship implies its counterpart automatically. This is true for all relationships, therefore in the figure, we present all relationships one-way.

3.1.2 Links by the inheritance relationship

The links by the inheritance relationship, however, are not included explicitly in model 2. This relationship indicates that one kind of physical matter or abstract concepts belongs to another broader kind. For instance, hens, cows, and horses all belong to the cattle kind, which itself belongs to the animal kind. In this relationship, the animal symbol is at a lower layer, the cattle symbol is above it, and the hen, cow, and horse symbols are above them. It is clear that the lower layer symbols capture more general common features of the physical matter or abstract concepts they represent, while the upper layer symbols capture more specific common features. A similar idea exists in object oriented programming [8].

This relationship is again two-way, which are generalization and concretization respectively.

When it comes to the identifying operators, the higher level, more concrete symbols can be identified by the identifying operators of its lower level, more generalized symbols, as long as they are connected by this relationship. It thus provides a way to look for more general symbols from identifying operators directly; i.e., we look for identifying operators whose inputs are identifying operators.

3.1.3 Links by dependence

This relationship indicates that the symbols tend to link to the same symbol, either implicitly or explicitly. For instance, orange and apple are different, but
Figure 1: An illustration of the Deep Symbolic Networks (DSN). The pictures are taken from the Wikipedia website [1].

Earth
Elements
Matter
Integers
Rational numbers
Real numbers
Hilbert spaces
Banach spaces
Normed spaces
Metric spaces

Interactions
Dynamics

Atoms

Molecules

Cells

Plants

Animals

Sand
Water
Lands
Rivers
Oceans
Continents
Galaxies
Stars
Matter

composition
inheritance
abstraction

Matter at t(1)
Matter at t(i)
Matter at t(n)

Nose
Face
Ear
Eye
Tail
Thigh
Throat

Euclidean spaces
they are related as they both belong to the fruit kind. A computer monitor and a mouse are also related because they are both a part of a computer system.

3.1.4 Links by causality

According to Wikipedia, “Causality (also referred to as causation, or cause and effect) is the natural or worldly agency or efficacy that connects one process (the cause) with another process or state (the effect), where the first is partly responsible for the second, and the second is partly dependent on the first. In general, a process has many causes, which are said to be causal factors for it, and all lie in its past. An effect can in turn be a cause of, or causal factor for, many other effects, which all lie in its future.” A process or a state is represented by a symbol in the Deep Symbolic Networks (DSN) model, and so does its effect. The causal-effect symbolic group composes a new symbol. The causality relationship is thus a special form of the composition relationship, and the involved symbols are often related to time, because of the interests of humans to predict the future.

3.1.5 Links by abstraction

On the right side of figure 1, a few mathematical symbols are represented. These symbols emerge also from model 2. For instance, the integer number emerges from the parameter \(k_{n,i} \) in model 2, i.e. the number of the direct underlying symbols that compose the symbol \(f_{n,i} \). A parent symbol composed by a list of identical child symbols can be abstracted to a combination of the child symbol and the number symbol, indicating the number of children in the composition relationship. From the state parameters \(a_{n,j}, b_{n,j} \), and \(c_{n,j} \), one can derive conceptual symbols such as directions, positions, and sizes.

3.1.6 Higher order links

A symbol can connect to another one implicitly by a path of many links, along the network structure of the Deep Symbolic Networks (DSN) model. Those two implicitly connected symbols can be connected directly with a link composed by all links in the middle, namely a higher order link.

3.1.7 Links can also be represented by symbols

A concrete link between two symbols can also be seen as a symbol. It is composed by the involved symbols, as in the following set:

\[
\{ S_1, S_2 \}, \quad (6)
\]

if and only if the symbol \(S_1 \) is composed with symbol \(S_2 \). A deep symbolic network has to store all these links. A conceptual composition link symbol can be defined as an aggregation of all concrete composition links; i.e., its identifying operator can identify all the concrete composition links.
3.2 Dynamics, interactions and processes

The upper right side of figure [1] depicts the symbols associated with dynamics and interactions. A process is usually a series of interactions producing final outputs through the dynamics of the interactions. They often involve time, as they happen in specific order.

3.2.1 Dynamics

Dynamics can be represented by a symbol with its states changing with time. According to model [2], a symbol is defined by its underlying components and the state parameters such as \(a_{n,j} \), \(b_{n,j} \), and \(c_{n,j} \). The dynamics symbol represents thus its composing symbol evolving in the time dimension. A specific type of dynamics can thus be identified by similar changes of the state parameters in time.

Consider the concrete example of the dynamics symbol representing ‘falling’, which describes the dynamics of an object falling to the ground. The falling symbol involves thus two symbols, certain physical matter, and the ground. The combination of the physical matter and the ground forms the underlying symbol of the falling symbol, and the falling symbol is about how the distance between the physical matter and the ground change along time, as depicted in the figure [2].

3.2.2 Interactions

All human actions generate interactions between humans and physical matter or other humans. An interaction has its participants, its outcomes, and is often linked with some dynamics. Humans change the world through interactions with the world. Interactions between physical matter create the colorful world. The same action, mixing two different things, can take place in both the real world and the virtual world. For instance, we can mix chocolate and milk together to produce chocolate milk, or we can mix a character with a number to generate another symbol, such as “number1”. The two examples are not so different from each other in a deep symbolic network. The former one has to be carried out in the physical world, and the latter one has to be done by a function in the computer world. Nevertheless, they are generalized to be the same interaction in a deep symbolic network.

3.2.3 Processes

The operation of a machine is a process to convert one thing to another one. A process is nothing but a series of interactions between physical matter or conceptual ideas, such as the process of making a car, or the process of proving a mathematical theorem. In a deep symbolic network, they can be both generalized to the same symbol.
Figure 2: An illustration of a symbol representing dynamics. A thing is falling to the ground, where t_1, t_2, t_3, t_4 denote the elapsing of the time.
3.3 Storing the Deep Symbolic Networks (DSN) to storage media

The core ingredients of a deep symbolic network are symbols and the links between them. Inside a symbol, we should store pointers to its direct underlying symbols, and also pointers to the symbols it links to. A symbol is defined by its identifying operators, which must also be stored. We shall see in the later sections that the identifying operators are just vectors, or tensors with higher dimensions. Along with the identifying operators, the thresholds in equation (5) must also be stored. One often needs to represent certain concrete physical matter by a symbol, for instance, the computer in an office. It is an instance of the computer symbol. By borrowing terms from the object oriented programming field, we can think of the symbols as classes, and their instances as objects. In the classes, we record only the statistical facts of the state parameters $a_{n_j,j}$, $b_{n_j,j}$, and $c_{n_j,j}$, while in their instances we shall record the concrete values. In addition, the prior and posterior distributions of the deep symbolic network learned from data must also be stored for future Bayesian decision making, as discussed below in the section 3.4.1. The solution of this kind of storage problems exists already in computer science, so we stop discussing it any further.

It is obvious that the more symbols, links and instances of the symbols stored in a deep symbolic network, the more powerful it is. What to store or how much to store is a trade-off between the benefits and the storage costs.

3.4 Use of the Deep Symbolic Networks (DSN)

3.4.1 General principles of statistical inference and object generating

We list a few practical tasks a deep symbolic network will face in the real world, and introduce the general principles of accomplishing the tasks. The practical tasks include cognitive tasks, decision making and the generative problem. We examine them in turn.

Cognitive tasks. A deep symbolic network must be able to map physical matter or abstract concepts to symbols in its vocabulary correctly. Naturally it can be done in a bottom up manner. For instance, if the input data is a picture, the DSN will scan all the parts of the picture from a small scale to the largest scale, and identify the first layer symbols, i.e. ground symbols at all scales. That is done by iterating over the ground symbols and applying their identifying operations. In this process, the prior distribution of each ground symbols, i.e. $P(f_{0,i})$, where P denotes the probability, and $f_{0,i}$ denotes the i-th ground symbol, can be used to determine the priority of scanning the ground symbols. When ground symbols are identified, it will then look for higher level symbols using the posterior probabilities $P(f_{n,i}|f_{0,1},...,f_{0,k})$, where $f_{n,i}$ denotes a higher level symbol than the ground level, which is an instance of the deep symbolic network. The probabilities $P(f_{0,j}|f_{n,i})$, where $f_{0,j}$ is a ground symbol existing in the data but not identified yet, can be used later to identify more details.
from the ground level. Continuing this process, it will accomplish the cognitive task and create a small network containing instances of identified symbols for further information processing.

Decision making mainly involves searching the paths between the links and dealing with missing symbols in the deep symbolic network. Denote the input symbols it has identified from the data by \(f_{n,i} \), where \(i \) is the index of each symbol, and denote by \(f_{m,j} \) a list of possible decisions to make, again represented by symbols. DSN is thus finding the \(\arg \max_j P(f_{m,j} | f_{n,1}, ..., f_{n,k}) \), a Bayesian decision making problem, which can be done by using the following formula:

\[
P(f_{m,j} | f_{n,1}, ..., f_{n,k}) = \sum_{f_{l,i}} P(f_{m,j} | f_{l,i}) P(f_{l,i} | f_{l,1})...P(f_{l,i} | f_{n,1}, ..., f_{n,k})
\]

as long as it can find the corresponding link path to realize the calculation. A simple example is to answer the question “From which direction does the Sun rise?”. A deep symbolic network will identify the symbols such as the Sun, rise, and direction, and it will find the Sun symbol, which linked to the rise symbol, which in turn contains the direction symbol with a value “east”, the correct answer. Here, the rise symbol of the Sun is an instance of the more general rise concept.

The generative problem consists for example in drawing a picture, or writing an article. This task can be done with model [2]. As we can expect, to generate better results, the deep symbolic network needs to learn harder for more details on each layer.

The following sections show more concrete examples.

3.4.2 Deep Symbolic Networks (DSN) for survival

Suppose there is an existing deep symbolic network aggregating all the knowledge the human kind needs, and let us imagine how it generates human-level intelligence with the following thought experiment. Say an ancient hunter equipped with such a deep symbolic network, encountered a wild cow. He would immediately receive visual data input of the wild cow from his eyes, and start to process the information. He would apply the symbol identifying operators to identify the ears, eyes, face, legs, and all other body parts of the wild cow, as depicted on the upper middle side of the figure [1], and identify the highest layer symbol, the wild cow, under the circumstance. He would then run through the links of the wild cow symbol to check its usefulness, and he would realize that it can be turned to food by hunting it. A path of symbol links tells him how to turn the wild cow into his food, which is a series of interactions between him and the wild cow. He therefore would apply the hunting algorithm, represented by a hunting process, to the wild cow. In reality it is not always possible to identify certain symbols deterministically due to lack of information, for instance, a missing underlying symbol, so he would have to make decisions based on the Bayesian inference as discussed in the section [3.4.1] To that end, the
ancient hunter had to keep receiving information and react to the new situations adaptively according to the knowledge stored in his deep symbolic network.

3.4.3 Automatic coding

Automatic coding is a challenging task. The code needs to be first represented in symbols in a deep symbolic network, and then translated to certain programming languages to be executed by computers. The machine to which the task is assigned must first identify the key symbols from the inputs and outputs of the task, and then find a link path in its deep symbolic network to convert the inputs to the outputs. To this end, it must have accumulated a huge amount of knowledge represented in symbols and links. The following is a simple and concrete example.

Suppose a machine is given a C++ coding task to read the content from a specific CSV file, sum up the values in each column, and print out the results. The machine will start from identifying the symbols, such as the file, the file content, the column, the sum, the print, and so on. It will instantiate the involved symbols, in the same way as instantiating objects according to their classes in C++ programming. The instantiated symbols will be naturally linked with many other symbols in the deep symbolic network, and many links are important for the task, for instance, the file content is made of lines, a line is made of characters and a line break, and the characters in a line contain data fields separating by certain separator, normally ','. The same data fields in the lines make columns, and the data fields are strings, which must be converted to numbers. The machine will follow these links to reach the output symbol, and print the sum of the data fields. The path defines a process to convert the input to the output, including interaction symbols, such as opening files, reading lines, splitting data fields, converting strings to numbers, summing up numbers, and so on. Translated to C++, it will be operations such as instantiating objects, calling their methods to generate new objects, and so on and so forth, according to the definition of the interaction symbols, until it reaches the output. More specifically, entity symbols will be translated to C++ classes, interaction symbols will be translated to class methods, and symbol composition will be translated to class initialization. In the main function, the classes will be instantiated, and the process will be started.

The automatic coding procedure often takes many iterations, due to uncertainty in how to interpret the inputs. For instance the machine may assume that the data fields are separated by ',', according to the posterior distribution of the separator symbol, but it might actually be ':'. In that case it has to open the file with a text editor and identify the data field separator visually, instantiating a new separator symbol to replace the old one, and re-program the code accordingly.

Translating the symbolic process to C++ code needs good knowledge about the C++ programming language. The machine needs to know all the library interfaces, classes, methods, functions, and the C++ language specification as well, and learn symbols and links from them, so that it can translate all pieces
of the symbol process into C++ clauses. If a function computing outputs from certain inputs does not exist yet, it must find a computer algorithm to implement it according to the grammar of the C++ language. It will not be able to accomplish the task even if there is a tiny missing piece in its deep symbolic network.

In summary, to accomplish automatic coding, the machine has to accumulate a huge amount of knowledge. Nevertheless, the brighter side is that, powered by a deep symbolic network and an unsupervised learning method, a machine could be able to scan all open source software and learn unsupervised all the symbols and links, and thus acquire the knowledge to translate software from one programming language to any other ones, as humans do, but it would do it in a much faster way.

4 Learning of the Deep Symbolic Networks (DSN) model from data

The Deep Symbolic Networks (DSN) model would have little value if it was not able to learn from data, which are often visual data represented by pixels, acoustic data represented by sound waves, or text encoded in natural languages. Here, we base our discussions on visual data, but the ideas and methods, because of their universality, can be easily applied to other types of data.

4.1 Identifying operators

Because of the multi-layer noises present in physical matter, it is usually difficult to isolate symbols from one another, not to mention to identify them. Nonetheless, symbols can be naturally isolated by singularities. Indeed, as shown in model (2), if the function \(f_{n,i} \) and its derivatives are continuous everywhere in its domain \(x \), it will be a whole integrated piece, without its underlying building blocks. For visual data, the singularities are present in both the color space and in the edges. In a nutshell, singularities are present on the boundaries of the underlying building blocks of any symbol, separating the building blocks naturally. Figure 3 shows three instances of singularities. In the first case, the singularities are the red edges, because of the discontinuity in the color space. In the second one, the singularity is a red connecting point, because of the discontinuity in the slopes of the two lines it connects. In the third one, the singularity is the red tangent point where the straight line touches the circle, because of the discontinuity in the curvatures. The methods of identifying singularities have been actively studied, and many well-known ones are based on wavelets analysis [6].

Identifying one dimensional singularities on edges is more or less special, as the two dimensional visual data have to be converted to one dimensional.

With the singularities, we can isolate the symbols at all scales by looking for bounding boxes of the symbols, which are rectangle areas isolating approximately the symbols. For natural languages, it is even better that the symbols are already presented in the dictionaries.
Figure 3: Examples of singularities separating different instances of different symbols.
The ground symbols, i.e. the first layer symbols, must be among those isolated ones. They form the bases of the symbol space, so their identifying operators are themselves normalized. Indeed, given two different types of data pieces, \(f_{n,i}(x) + \epsilon_{f_{n,i}} \) and \(f_{m,j}(x) + \epsilon_{f_{m,j}} \), containing two different symbols \(S_{n,i} := f_{n,i}(x) \) and \(S_{m,j} := f_{m,j}(x) \), we need an identifying operator \(M_{n,i} \) to separate them according to equation (5). The operations of \(M_{n,i} \) can be represented by \(M_{n,i}(f_{n,i}) = g_{n,i} \cdot f'_{n,i} \), and \(M_{n,i}(f_{m,j}) = g_{n,i} \cdot f'_{m,j} \), where \(\cdot \) denote the dot product, \(f' \) is the normalized \(f \), and \(g_{n,i} \) is another normalized function represents \(M_{n,i} \). So the identifying operator returns the cosine similarity between the \(g_{n,i} \) and the symbols. \(f'_{n,i} \) is thus the best choice for \(g_{n,i} \), and it is true for all other ground symbols. As \(f_{n,i} \) is represented by a vector, so does its identifying operator.

Higher level symbols must be represented by their direct underlying building blocks. Say a symbol \(S_{n,i} \) is made of \(S_{n,k},k \), where \(k = 1,2,... \), it can be represented by \((S_{n,1},S_{n,2},...) \), i.e. a symbol vector. Its identifying operator is again itself. The symbols are the orthogonal bases of the symbol space, so the cosine similarity indicates the square of the fraction of the same compositing symbols. The state parameters of the direct underlying symbols, such as \(a_{n,j} \), \(b_{n,j} \), and \(c_{n,j} \) in the model [2], store the state information of the symbol, such as the size, place, color, and so on, so there must be another identifying operator to operate on these state parameters. For instance, the digits 6 and 9 have similar underlying building blocks, while they appear always in different places in different symbols. By applying an identifying operator to the state parameters, we will be able to distinguish each from one another.

Because of the universal representative form of identifying operators, we can look for identifying operators on identifying operators, thus defining more general symbols.

4.2 Unsupervised learning

Unsupervised learning from data is a process of clustering similar things into symbol categories layer by layer, until no new symbol can be identified. If the learning is cumulative, the first step of the unsupervised learning is to identify the known symbols from training samples, and then the next steps are no different than the following algorithm of learning from scratch.

1. Detect singularities at all data points at all scales in all training samples.
2. Isolate the symbols by the singularity bounding boxes in all training samples, and cut down the data pieces from the singularity bound boxes. The symbol identifying will be always running on these data pieces. Of course we should record the hierarchical composition relationships between the data pieces.
3. Iterate over all data pieces to cluster them, and thus find the ground symbols. We create an empty cluster list in the beginning. When a data piece is picked, we create a new cluster, add the data piece into the
cluster, and insert the cluster into the cluster list, if the cluster list is empty, and generate the identifying operator of this new cluster, which is the normalized data piece. If the cluster list is not empty, we apply the identifying operators of all clusters to the data piece. And we also rescale, rotate or transform linearly in other ways the data piece to get the best cosine similarity between the data piece and the existing clusters. If a result is higher than a threshold λ_0, it will be added into the corresponding cluster; if it cannot be added to any existing cluster, a new cluster will be created for it. If two different results are qualified, either the two clusters should be merged, or the threshold should be increased. When a new data piece is added into an existing cluster, its identifying operator should be updated by averaging all the data pieces in the cluster to reduce noises, including the new one. In this way, every data piece will be clustered in a cluster. We filter out those clusters with too few data pieces with a threshold μ_0. The remaining clusters are the ground symbols we look for, defined by the identifying operators.

4. In this step, we go to higher layers. On each layer, there are again two thresholds, λ_i and μ_i, where i is the number of the layer. Different than in the step 3 the data pieces are represented by the known symbols, as discussed in section 4.1. Here, the insight is to decrease the multi-layer noise. Specifically, when a noisy data piece is identified by a symbol, we remove all noises it carries. Another difference between this step and the step 3 is that we also look for the identifying operators for the state parameters, as discussed in section 4.1. The clustering method for the symbols and the state parameters are the same as in step 3. We continue this step until no new symbols can be identified.

5. We add links between the symbols by their composition relationship.

6. We record the prior and posterior probabilities for the symbols.

The basic assumption underlying this unsupervised learning algorithm is that the symbols can be linearly separated, and the amplitudes of the noises presented in the data are small enough. The size of the training samples depends on the number of symbols to learn. The algorithm will get too many unnecessary symbols if the thresholds λ_i and μ_i, where $i = 0, 1, ..., $ are too tight, or get too few symbols if they are too loose. The algorithm has to know the approximate number of symbols to learn, or find an area where the number of learned symbols are insensitive to the change of the thresholds. In any case, the algorithm has to run a number of experiments to learn better.

4.3 Supervised learning

There are much more tools available in supervised learning than in unsupervised learning. One method is that we use the same unsupervised learning algorithm
in the last section, while find the best thresholds λ_i and μ_i by optimizing the objective function.

Another way is to learn the generative function in model (2) directly, using the method similar to that developed in Ref. [7].

5 Experiment

We now propose an experiment protocol to validate the Deep Symbolic Networks (DSN) model (2) with the MNIST database of handwritten digits [4]. Figure 4 shows some examples of digits in the training set of the MNIST database. The validation should include both the unsupervised learning algorithm and the supervised learning algorithm. The relationship between the success rates of the unsupervised learning and the training sample sizes should also be studied. Moreover, we should test if there are stable areas of the thresholds λ_i and μ_i, so that the learned number of symbols is stable in the threshold range, as discussed in section 4.2.

Digits share some basic building blocks, which can be inferred from figure 4. A few obvious ones are straight lines (in 1, 4, 5, 6, 7, 9), open curves (in 2, 3, 5), close curves, i.e. circles (in 0, 6, 8 and 9), and connecting points or
crossing points as well (in all digits except 0 and 1). In addition, the open
curves may comprise other more fundamental building blocks. For instance,
two open curves connected together make 3, while each open curve is made of
two curving segments connected by a point. When one draws a closed circle to
represent 0, one may also try to divide it into several parts, draw one part at
time and connect the adjacent parts with connecting points. One thus can
find out the generative model of digits in one’s own mind. The problem is that
a lot of noise is present in the generative processes. For instance, there can be
decorating parts such as serifs, and some strokes can be exceptionally long or
short, when they are not well controlled.

To deal with the noises, we propose to include the singularities as symbols,
and rotate the data pieces for better match. Another thing worth mentioning is
that the symbols are all edges so that the symbols are harder to match, because
of their relatively small domains. One way to deal with this problem is to blur
the identifying operators around the edges to give them some breadth. For
instance, we blur a circle to make a ring, so that it can match imperfect circles.
The size of the blurring can be added as a new parameter.

6 Conclusion

In this conceptual paper, we have introduced a Deep Symbolic Networks (DSN)
model, which is inspired by DNN and also comes out from observing the real
world - it models the deep, hierarchical structure of the world, with the observa-
tions that humans symbolize physical matter, and that singularities isolate
symbols and create symbol dictionary naturally for us.

Because of its simple, universal and transparent structure, in addition to
the many advantages of DNN, such as the strong representative ability and the
universal learning methods, it also possesses its own unique strong points. Of
course, we need to prove with experiments that it has the same performance as
DNN. Nonetheless, its many unique features are essential for general artificial
intelligence (AI). A deep symbolic network comprises symbols and links, suitable
for Bayesian decision making. If the symbols and links are complete enough, we
conjecture that they can generate human-level intelligence. We can check the
symbols and links the DSN has learned, and thus assess what it can do and what
it can not. This kind of understanding should allow us to build more secure AI
systems. It is also easier to train, because it is more friendly to unsupervised
learning, it accepts all kinds of data, and it can accumulate knowledge.

By this conceptual paper, we hope to have presented an idea that will trig-
ger an interest to develop it within an open source project, hosted on Github
towards the development of general AI.

References

[1] Wikipedia. [https://www.wikipedia.org]
[2] Tim Appenzeller. The scientist’s apprentice. Science, 357(6346):1617, Jul 2017.

[3] Davide Castelvecchi. Can we open the black box of AI? Nature News, 538(7623):20, Oct 2016.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):22782324, Nov 1998.

[5] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436444, May 2015.

[6] S Mallat. A wavelet tour of signal processing: the sparse way. Elsevier/Academic Press, 3rd ed. edition, 2009.

[7] Ankit B. Patel, Tan Nguyen, and Richard G. Baraniuk. A probabilistic framework for deep learning. arXiv:1612.01936 [cs, stat], Dec 2016. arXiv: 1612.01936.

[8] Tim Rentsch. Object oriented programming. SIGPLAN Not., 17(9):5157, Sep 1982.

[9] Didier Sornette. Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools. Springer, 2nd edition, Apr 2006.