Ideals generated by traces in the symplectic reflection algebra $H_{1,\nu_1,\nu_2}(I_2(2m))$. II.

I.A. Batalin, S.E. Konstein, and I.V. Tyutin

I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, RAS 119991, Leninsky prosp., 53, Moscow, Russia.

Abstract

The associative algebra of symplectic reflections $\mathcal{H} := H_{1,\nu_1,\nu_2}(I_2(2m))$ based on the group generated by the root system $I_2(2m)$ has two parameters, ν_1 and ν_2. For every value of these parameters, the algebra \mathcal{H} has an m-dimensional space of traces. A given trace tr is called degenerate if the associated bilinear form $B_{tr}(x,y) = tr(xy)$ is degenerate. Previously, there were found all values of ν_1 and ν_2 for which there are degenerate traces in the space of traces, and consequently the algebra \mathcal{H} has a two-sided ideal. We proved earlier that any linear combination of degenerate traces is a degenerate trace. It turns out that for certain values of parameters ν_1 and ν_2, degenerate traces span a 2-dimensional space. We prove that non-zero traces in this 2d space generate three proper ideals of \mathcal{H}.

1E-mail: batalin@lpi.ru
2E-mail: tyutin@lpi.ru
1 Introduction

This paper is a continuation of [3]; we advise the reader to recall [3].

2 The associative algebra $H_{1,\nu_1,\nu_2}(I_2(n))$ with n even

2.1 The group $I_2(2m)$

Definition 2.1. We denote the finite subgroup of $O(2, \mathbb{R})$, generated by the root system $I_2(2m)$, also by $I_2(2m)$. It consists of $2m$ reflections R_k and $2m$ rotations $S_k := R_kR_0$, where $S_0 = S_{2m}$ is the unit in $I_2(2m)$. The indices of S_k and R_k belong to $\mathbb{Z}/n\mathbb{Z}$. These elements satisfy the relations

$$R_kR_l = S_{k-l}, \quad S_kS_l = S_{k+l}, \quad R_kS_l = R_{k+l}, \quad S_kR_l = R_{k+l}. \quad (2.1.1)$$

Evidently, the R_{2k} belong to one conjugacy class and the R_{2k+1} belong to another class. The rotations S_k and S_l constitute a conjugacy class if $k + l = 2m$.

It is convenient to use the following basis L_p, Q_p instead of R_k and S_k in the group algebra $\mathbb{C}[I_2(2m)]$:

Definition 2.2.

$$L_p := \frac{1}{2m} \sum_{k=0}^{2m-1} \lambda^{kp} R_k, \quad Q_p := \frac{1}{2m} \sum_{k=0}^{2m-1} \lambda^{-kp} S_k, \quad \lambda = \exp \left(\frac{\pi i}{m} \right), \quad p = 0, \ldots, 2m - 1. \quad (2.1.2)$$

2.2 Symplectic reflection algebra $H_{1,\nu_1,\nu_2}(I_2(2m))$

For a general definition of Symplectic reflection algebra, see, e.g., [1]. Here we restrict ourselves to $H_{1,\nu_1,\nu_2}(I_2(2m))$ only, introducing, for convenience, the new parameters

$$\mu_0 := m(\nu_1 + \nu_2), \quad \mu_1 := m(\nu_1 - \nu_2). \quad (2.2.1)$$

Here and below we use the following notation. Let I be a logical expression; set

$$\delta_I := \begin{cases} 1, & \text{if } I \text{ is true;} \\ 0, & \text{if } I \text{ is false; } \end{cases} \quad (2.2.2)$$

e.g. $\delta_{i=j} = \delta_{i,j}$ (the Kronecker delta), $\delta_{p \geq q} = 1$ if $p \geq q$ and $\delta_{p < q} = 0$ if $p < q$.

Definition 2.3. The symplectic reflection algebra $\mathcal{H} := H_{1,\nu_1,\nu_2}(I_2(2m))$ is an associative algebra of polynomials in a^α, b^α, where $\alpha = 0, 1$, with coefficients in $\mathbb{C}[I_2(2m)]$, satisfying the relations

$$R_k a^\alpha = -\lambda^k b^\alpha R_k, \quad R_k b^\alpha = -\lambda^{-k} a^\alpha R_k, \quad (2.2.3)$$

$$S_k a^\alpha = \lambda^{-k} a^\alpha S_k, \quad S_k b^\alpha = \lambda^k b^\alpha S_k,$$
and

\[[a^\alpha, b^\beta] = \varepsilon^{\alpha\beta} (1 + \mu_0 L_0 + \mu_1 L_m), \]
\[[a^\alpha, a^\beta] = \varepsilon^{\alpha\beta} (\mu_0 L_1 + \mu_1 L_{m+1}), \]
\[[b^\alpha, b^\beta] = \varepsilon^{\alpha\beta} (\mu_0 L_{-1} + \mu_1 L_{m-1}), \]

where \(\varepsilon^{\alpha\beta} \) is the skew-symmetric tensor with \(\varepsilon^{01} = 1 \).

The relations (2.2.3) imply

\[L_p a^\alpha = -b^\alpha L_{p+1}, \quad L_p b^\alpha = -a^\alpha L_{p-1}, \]
\[Q_p a^\alpha = a^\alpha Q_{p+1}, \quad Q_p b^\alpha = b^\alpha Q_{p-1}, \]
\[L_k L_l = \delta_{k=-l} Q_l, \quad L_k Q_l = \delta_{k=l} L_l, \]
\[Q_k L_l = \delta_{k=-l} L_l, \quad Q_k Q_l = \delta_{k=l} Q_l, \]

2.3 Subalgebra of singlets

The algebra \(\mathcal{H} \) contains the Lie subalgebra \(sl_2 \) of inner derivations with the generating elements

\[T^{\alpha\beta} := \frac{1}{2}(\{a^\alpha, b^\beta\} + \{b^\alpha, a^\beta\}) \]

which act on \(\mathcal{H} \) as follows

\[f \mapsto [f, T^{\alpha\beta}] \quad \text{for each} \quad f \in \mathcal{H}. \]

We say that the element \(f \in \mathcal{H} \) is a singlet if \([f, T^{\alpha\beta}] = 0 \) for each \(\alpha, \beta \) and denote the subalgebra consisting of all the singlets in \(\mathcal{H} \) by \(\mathcal{H}_0 \).

Let the skew-symmetric tensor \(\varepsilon_{\alpha\beta} \) be such that \(\varepsilon_{01} = 1 \) and \(\varepsilon_{\alpha\beta} \varepsilon_{\gamma\delta} = \delta_{\gamma}^{\alpha} \). Set

\[s := \sum_{\alpha, \beta = 0,1} \frac{1}{4i} (\{a^\alpha, b^\beta\} - \{b^\alpha, a^\beta\}) \varepsilon_{\alpha\beta}. \]

Then

\[[s, Q_p] = [s, S_k] = [T^{\alpha\beta}, s] = 0, \]
\[s L_p = -L_p s, \quad s R_k = -R_k s, \]
\[(s - i(\mu_0 L_0 + \mu_1 L_m)) a^\alpha = a^\alpha (s + i(\mu_0 L_0 + \mu_1 L_m)). \]

Proposition 2.4. If \(f \in \mathcal{H}_0 \), then \(f \) has the form

\[f = \sum_{p=0}^{2m-1} (\phi_p Q_p + \psi_p L_p), \quad \text{where} \quad \phi_p, \psi_p \in \mathbb{C}[s]. \]
3 Ideals generated by degenerate traces

We call the trace tr degenerate if symmetric invariant bilinear form $B_{tr} : B_{tr}(x, y) = tr(xy)$ is degenerate.

It is clear that the kernel of B_{tr} is an ideal in H, we will denote it I_{tr}.

It is shown in [2] that for any degenerate trace tr, the ideal I_{tr} is completely determined by $I_{tr} \cap H_0$.

3.1 The values of the trace on $\mathbb{C}[I_2(2m)]$

According to the general result of [4], the restriction of the trace to $\mathbb{C}[I_2(2m)]$ is completely defined by the value of this trace on the conjugacy classes without the eigenvalue $+1$ in their spectra.

The group $I_2(2m)$ has the following m conjugacy classes without the eigenvalue $+1$ in their spectra: $m - 1$ classes consisting of two elements,

$$\{S_p, S_{n-p}\}, \text{ where } p = 1, ..., m - 1,$$

and one class consisting of 1 element,

$$\{S_m\}.$$

The values of the trace on these conjugacy classes

$$s_k := tr(S_k) = tr(S_{n-k}), \quad s_{2m-k} = s_k, \quad k = 1, ..., m,$$

completely define the trace on H, and therefore the dimension of the space of traces is equal to m.

Besides, the group $I_2(2m)$ has two conjugacy classes each having one eigenvalue $+1$ in its spectrum:

$$\{R_{2l} | l = 0, ..., m - 1\}, \quad \{R_{2l+1} | l = 0, ..., m - 1\},$$

and one conjugacy class with two eigenvalues $+1$ in its spectrum: $\{S_0\}$.

The traces on these conjugacy classes (see [3]) are equal to

$$tr(R_{2l}) = -2\nu_2 X_1 - 2\nu_1 X_2, \quad (l = 0, 1, ..., m - 1),$$

$$tr(R_{2l+1}) = -2\nu_1 X_1 - 2\nu_2 X_2, \quad (l = 0, 1, ..., m - 1),$$

$$tr(S_0) = 2(\nu_1^2 + \nu_2^2) m X_1 + 4\nu_1\nu_2 m X_2,$$

where

$$X_1 := \sum_{l=1}^{m-1} s_{2l} \sin^2 \left(\frac{\pi l}{m}\right), \quad X_2 := \sum_{l=0}^{m-1} s_{2l+1} \sin^2 \left(\frac{\pi (2l + 1)}{2m}\right).$$

We note also that

$$tr(L_0) = -\frac{\mu_0}{m} (X_1 + X_2), \quad tr(L_m) = -\frac{\mu_1}{m} (X_1 - X_2), \quad tr(L_p) = 0 \text{ for } p \neq 0, \text{ (3.1.9)}$$

$$tr(S_0) = -\mu_0 tr(L_0) - \mu_1 tr(L_m).$$

(3.1.10)
3.2 Generating functions of the trace

Set \(L := \mu_0 L_0 + \mu_1 L_m \).

For each trace \(\text{tr} \), we define the following set of generating functions on \(\mathcal{H} \):
\[
F_p(t) := \text{tr}(\exp(t(s - iL))Q_p), \tag{3.2.1}
\]
\[
\Psi_p(t) := \text{tr}(\exp(tL_p)), \tag{3.2.2}
\]
where \(p = 0, \ldots, 2m - 1 \). From \(sL_p = -L_p s \) and definition of the trace it follows that
\[
\Psi_p(t) = \Psi_p(0). \tag{3.2.3}
\]

We also consider the functions \(\Phi_p(t) := \text{tr}(\exp(t(s + iL))Q_p) \) related with the functions \(F_p \) by the formula
\[
\Phi_p(t) = F_p(t) + 2i\Delta_p(t), \text{where } \Delta_p(t) = \delta_p \sin(\mu_0 t)\text{tr}(L_0) + \delta_{m-p} \sin(\mu_1 t)\text{tr}(L_m). \tag{3.2.4}
\]

In [3] we derived the following system of equations
\[
\frac{d}{dt}F_p - \lambda^k \frac{d}{dt}F_{p+1} = iF_p + i\lambda \frac{d}{dt}F_{p+1} + 2i\lambda \frac{d}{dt}(e^{it}\Delta_{p+1}). \tag{3.2.5}
\]

Next, consider the Fourier transform of (3.2.5),
\[
G_k := \sum_{p=0}^{2m-1} \lambda^{kp} F_p, \text{ where } k = 0, \ldots, 2m - 1, \tag{3.2.6}
\]
\[
\tilde{\Delta}_k := \sum_{p=0}^{2m-1} \lambda^{kp} \Delta_{p+1} = \lambda^{-k} \left(\sin(\mu_0 t)\text{tr}(L_0) + \lambda^{km} \sin(\mu_1 t)\text{tr}(L_m) \right),
\]
where \(k = 0, \ldots, 2m - 1 \) and \(\lambda := e^{i\pi/m} \),
\[
\tag{3.2.7}
\]
which satisfies the equation
\[
\frac{d}{dt}G_k = i\lambda^k + e^{it}G_k + \frac{2i\lambda^k}{\lambda^k - e^{it}} \frac{d}{dt}(e^{it}\tilde{\Delta}_k) \tag{3.2.8}
\]
with initial conditions
\[
G_k(0) = s_k, \text{ where } k = 0, \ldots, 2m - 1, \text{ and } s_k = s_{2m-k} \tag{3.2.9}
\]
and where the \(s_k \) are defined by Eq. (3.1.3) for \(k = 1, \ldots, 2m - 1 \), and \(s_0 := \text{tr}(S_0) \) is defined by Eq. (3.1.7). The value \(s_0 \) depends linearly on \(s_k \), where \(k = 1, \ldots, m \) (see Eq. (3.1.7) and take in account the relations \(s_k = s_{2m-k} \)).

The solution of the equations for \(G_k \) has the form:
\[
G_k(t) = \frac{e^{it}f_k(t)}{(e^{it} - \lambda^k)^2}, \tag{3.2.10}
\]
where
\begin{align*}
f_k(t) &= \frac{2\lambda^k}{m}X_+[1 - \cos(t\mu_0)] + (-1)^k\frac{2\lambda^k}{m}X_-[1 - \cos(t\mu_1)] + \\
&\quad + \frac{2i}{m}(e^{it} - \lambda^k)[\mu_0X_+\sin(t\mu_0) + (-1)^k\mu_1X_-\sin(t\mu_1)] - 4\lambda^k s'_k. \quad (3.2.11)
\end{align*}

Here
\begin{align*}
X_\pm &:= X_1 \pm X_2, \quad (3.2.12) \\
s'_k &:= s_k \sin^2 \left(\frac{\pi k}{2m} \right), \quad k = 1, \ldots, 2m - 1, \quad s'_0 = 0. \quad (3.2.13)
\end{align*}

Note that the functions \(G_k \) in Eq (3.2.10) do not depend on the signs of \(\mu_0 \) and \(\mu_1 \).
So we can consider \(\mu_0 \) and \(\mu_1 \) positive if they are non-zero.

3.3 The degeneracy conditions for the trace

It is proved in [3] that the trace \(tr \) is degenerate if and only if the functions \(F_p \) (and, as a consequence, \(G_k \)) have the form \(\sum_{i=0}^{n_p} \exp(t\omega_i)q_i(t) \), where the \(q_i \) are polynomials. Further, these conditions yield that the trace \(tr \) is degenerate if and only if the parameters \(s'_k \) satisfy the following system of linear equations
\begin{align*}
\left(1 - \cos \left(\frac{\pi}{m} k \mu_0 \right) \right) X_+ + (-1)^k \left(1 - \cos \left(\frac{\pi}{m} k \mu_1 \right) \right) X_- &= 2ms'_k, \quad k = 1, \ldots, 2m - 1, \quad (3.3.1) \\
s'_{2m-r} &= s'_r, \quad r = 1, \ldots, m, \quad (3.3.2) \\
X_\pm &= X_1 \pm X_2, \quad (3.3.3) \\
X_1 &= \sum_{1 \leq l \leq m-1} s'_{2l}, \quad (3.3.4) \\
X_2 &= \sum_{0 \leq l \leq m-1} s'_{2l+1}, \quad (3.3.5)
\end{align*}

and the parameters \(\mu_0 \) and \(\mu_1 \) are defined from the condition that this system has a nonzero solution.

Theorem 3.1. Let \(m \geq 2 \). Then the system of equations (3.3.1)-(3.3.5) has nonzero solutions at the following values of the parameters \(\mu_0 \) and \(\mu_1 \) only:
\begin{align*}
\mu_0 \in \mathbb{Z} \setminus m\mathbb{Z}, & \quad \mu_1 \in \mathbb{Z} \setminus m\mathbb{Z}, \quad (3.3.6) \\
\mu_0 \in \mathbb{Z} \setminus m\mathbb{Z}, & \quad \text{any } \mu_1, \quad (3.3.7) \\
\mu_1 \in \mathbb{Z} \setminus m\mathbb{Z}, & \quad \text{any } \mu_0, \quad (3.3.8) \\
\mu_0 = \pm \mu_1 + m(2l + 1), & \quad l = 0, \pm 1, \pm 2, \ldots \quad (3.3.9)
\end{align*}

Here,

1. In case (3.3.6), the system of equations (3.3.1)-(3.3.5) has a two-parameter family of solutions;
2. In case (3.3.7), if $\mu_1 \notin \mathbb{Z} \setminus m\mathbb{Z}$, then the system of equations (3.3.1)-(3.3.5) has a one-parameter family of solutions with $X_- = 0$.

3. In case (3.3.8), if $\mu_0 \notin \mathbb{Z} \setminus m\mathbb{Z}$, then the system of equations (3.3.1)-(3.3.5) has a one-parameter family of solutions with $X_+ = 0$.

4. In case (3.3.9), if $\mu_0, \mu_1 \notin \mathbb{Z} \setminus m\mathbb{Z}$, then the system of equations (3.3.1)-(3.3.5) has a one-parameter family of solutions with $X_1 = 0$.

4 Explicit expressions for generating functions F_p.

Consider the associative algebra \mathcal{H} with parameters ν_1, ν_2 such that

$$\mu_0 \in \mathbb{Z} \setminus m\mathbb{Z}, \quad \mu_1 \in \mathbb{Z} \setminus m\mathbb{Z}$$

and find explicit expressions for generating functions F_p.

4.1 Explicit expressions for generating functions G_k of degenerate trace.

Recall, that

$$G_k = \sum_{p=0}^{n-1} \lambda^{kp} F_p, \quad F_p = \frac{1}{n} \sum_{k=0}^{n-1} \lambda^{-kp} G_k. \quad (4.1.1)$$

Introduce the notation

$$z := e^{it}, \quad z_k := z^{\mu_k} \quad (k = 0, \ldots, n-1), \quad (4.1.2)$$

and substitute the expression (3.3.1) into the formula (3.2.10). Since $\mu_0 \in \mathbb{Z} \setminus m\mathbb{Z}$ and $\mu_1 \in \mathbb{Z} \setminus m\mathbb{Z}$, we can introduce the polynomials P_{μ_0} and P_{μ_1} of variable x by the formula

$$P_{\mu}(x) := \frac{x}{(1-x)^2} (\mu(x-1) - (x^{\mu} - 1)).$$

The polynomial P_{μ} is a polynomial of x and can be represented in the form

$$P_{\mu}(x) = \begin{cases} 0 & \text{if } \mu = 1, \\ -\sum_{q=\mu-1}^{1} (\mu - q) x^q & \text{if } \mu > 1. \end{cases}$$

Now we can notice that the functions G_k can be expressed in the form

$$G_k(t) = G_k^{(+)}(t) X_+ + G_k^{(-)}(t) X_-,$$ \quad (4.1.3)

where

$$G_k^{(+)}(t) = -\mu_0 z^{\mu_0} + z^{\mu_0} P_{\mu_0}(z^{-1} \lambda^k) + z^{-\mu_0} P_{\mu_0}(z \lambda^{-k}),$$ \quad (4.1.4)

$$G_k^{(-)}(t) = -(1)^k \mu_1 z^{\mu_1} + (1)^k z^{\mu_1} P_{\mu_1}(z^{-1} \lambda^k) + (1)^k z^{-\mu_1} P_{\mu_1}(z \lambda^{-k}),$$ \quad (4.1.5)
or

\[
G_k^{(+)}(t) = \frac{1}{i} \frac{d}{dt} \left(-1 \sum_{q=-\mu_0}^{-1} z^{-q-\mu_0} \lambda^{kq} - \frac{1}{i} \frac{d}{dt} \left(z^{\mu_0} + \sum_{q=1}^{q=\mu_0-1} z^{\mu_0-q} \lambda^{kq} \right) \right), \quad (4.1.6)
\]

\[
G_k^{(-)}(t) = (-1)^k \frac{1}{i} \frac{d}{dt} \left(\sum_{q=-\mu_1}^{-1} z^{-q-\mu_1} \lambda^{kq} - (-1)^k \frac{1}{i} \frac{d}{dt} \left(z^{\mu_1} + \sum_{q=1}^{q=\mu_1-1} z^{\mu_1-q} \lambda^{kq} \right) \right). \quad (4.1.7)
\]

Now we can write down the functions \(F_p(t) \) in the form

\[
F_p(t) = F_p^{(+)}(t) X_+ + F_p^{(-)}(t) X_-, \quad (4.1.8)
\]

where

\[
F_p^{(\pm)}(t) = \frac{1}{n} \sum_{k=0}^{n-1} \lambda^{-kp} G_k^{(\pm)}. \quad (4.1.9)
\]

First, introduce the values

\[
d_{\alpha} = \left[\frac{\mu_\alpha}{n} \right], \quad \text{where } \alpha = 0, 1, \text{ and } [x] \text{ is an integer part of } x, \quad (4.1.10)
\]

\[
\tilde{\mu}_\alpha : = \mu_\alpha - n d_{\alpha}, \quad 1 \leq \tilde{\mu}_\alpha \leq n - 1. \quad (4.1.11)
\]

Each value \(q \in \{-\mu_\alpha, ..., \mu_\alpha\} \) can be represented in the form

\[
q = sn + q',
\]

where

\[
s \in \{-d_{\alpha} - 1, ..., d_{\alpha}\}, \quad (4.1.12)
\]

\[
q' \in \{0, ..., n - 1\}. \quad (4.1.13)
\]

Now we can write

\[
F_p^{(+)}(z) = \frac{1}{i} \frac{d}{dt} \left(\sum_{s=-d_0}^{s=-1} z^{-\mu_0-sn-p} \delta_{\mu_0>n} + z^{-\mu_0+(d_0+1)n-p} \delta_{n-1\geq p\geq n-\tilde{\mu}_0} \right) - \frac{1}{i} \frac{d}{dt} \left(\sum_{s=0}^{s=d_0-1} z^{-\mu_0-sn-p} \delta_{\mu_0>0} + \sum_{s=0}^{s=d_0-1} z^{-\mu_0-sn-p} \delta_{\mu_0>0} \delta_{\mu_0>n} + z^{-\mu_0-d_0n-p} \delta_{1\leq p\leq \tilde{\mu}_0} \right). \quad (4.1.14)
\]

Further,

\[
F_p^{(-)}(z) = \frac{1}{i} \frac{d}{dt} \left(\sum_{s=-d_1}^{s=-1} z^{-\mu_1-sn-p} \delta_{\mu_1>n} + z^{-\mu_1+(d_1+1)n-p} \delta_{n-1\geq p\geq n-\tilde{\mu}_1} \right)
\]

\[
- \frac{1}{i} \frac{d}{dt} \left(\sum_{s=0}^{s=d_1-1} z^{-\mu_1-sn-p} \delta_{\mu_1>0} + \sum_{s=0}^{s=d_1-1} z^{-\mu_1-sn-p} \delta_{\mu_1>0} \delta_{\mu_1>n} + z^{-\mu_1-d_1n-p} \delta_{1\leq p\leq \tilde{\mu}_1} \right), \quad (4.1.15)
\]
where
\[\rho(p) = \begin{cases} p + m & \text{if } 0 \leq p < m, \\ p - m & \text{if } m \leq p < 2m, \end{cases} \]
(4.1.16)

it is clear that \(\rho(\rho(p)) = p \).

Proposition 4.1. The functions \(F_p^{(\pm)} \) have the following form
\[F_p^{(\pm)} = i \frac{d}{dt} \sum_{\ell = -\ell_{\pm}}^{\ell_{\pm}} a_{p,\ell}^{\pm} e^{\ell_{\pm}}, \]
(4.1.17)

where \(\ell_+ = \mu_0, \ell_- = \mu_1 \), and the \(a_{p,\ell}^{\pm} \) are equal to either \(\text{sgn}(\ell) \) or 0.

Proposition 4.2. If there exist \(p \neq 0, m \) and \(\ell \) such that \(a_{p,\ell}^{+} \neq 0 \) and \(a_{p,\ell}^{-} \neq 0 \), then there exists an odd integer \(o \) such that \(\mu_0 - \mu_1 = om \).

4.2 Generating functions of the trace II

Now define one more set of generating functions of the trace, connected with Eq(4.2.1):
\[\tilde{F}_p(t) := \text{tr}(\exp(ts)Q_p), \]
(4.2.1)

where \(p = 0, \ldots, 2m - 1 \).

Evidently, \(\tilde{F}_p(t) = F_p(t) \) if \(p \neq 0, m \) since \(LQ_p = 0 \) if \(p \neq 0, m \).

Let \(\text{tr} \) be a degenerate trace. Then, it is possible to express \(\tilde{F}_p \) via \(F_p \) for \(p = 0, m \).

4.3 The generating functions \(\tilde{F}_0 = \text{tr}(\exp(ts)Q_0) \) and \(\tilde{F}_m = \text{tr}(\exp(ts)Q_m) \) for the degenerate trace

Let \(\mu_0, \mu_1 \in \mathbb{Z} \setminus m\mathbb{Z} \). Express \(\tilde{F}_p \) via \(F_p \) for \(p = 0, m \).

Proposition 4.3. Let \(p = 0, m \), then \(\tilde{F}_p \) is an even function of \(t \):
\[\tilde{F}_p = \text{tr}(\cosh(ts)Q_p). \]
(4.3.1)

Indeed, \(\tilde{F}_p = \text{tr}(\cosh(ts)Q_p + \sinh(ts)Q_p) \) and \(\text{tr}(\sinh(ts)Q_p) = 0 \) since
\[
\text{tr}(\sinh(ts)Q_p) = \text{tr}((\sinh(ts)L_p)L_p) = \text{tr}(L_p(\sinh(ts)L_p)) \\
= \text{tr}((\sinh(-ts)L_p)L_p) = \text{tr}((-(\sinh(ts)L_p))L_p) = \text{tr}(-\sinh(ts)Q_p).
\]

Now, decompose \(F_0 \):
\[F_0 = \text{tr} \left(e^{(s-i\mu)L_p}Q_0 \right) = F_0^{\text{even}} + F_0^{\text{odd}}, \]
(4.3.2)
where

\[F_0^{even} = \text{tr} \left(\sum_{s=0}^{\infty} \frac{1}{(2s)!} (t(s - i \mu L_0))^{2s} Q_0 \right) = \text{tr} \left(\sum_{s=0}^{\infty} \frac{1}{(2s)!} t^{2s} (s^2 - \mu^2)^s Q_0 \right), \quad (4.3.3) \]

\[F_0^{odd} = \text{tr} \left(\sum_{s=0}^{\infty} \frac{1}{(2s+1)!} (t(s - i \mu L_0))^{2s+1} Q_0 \right) = \text{tr} \left(\sum_{s=0}^{\infty} \frac{1}{(2s+1)!} t^{2s+1} (s^2 - \mu_0^2)^s (s - i \mu_0 L_0) Q_0 \right) = \text{tr} \left(\sum_{s=0}^{\infty} \frac{1}{(2s+1)!} t^{2s+1} (s^2 - \mu_0^2)^s (-i \mu_0) \text{tr} L_0 \right) \]

\[= \sinh(-it \mu_0) \text{tr} L_0 = -\frac{1}{2}(z^{\mu_0} - z^{-\mu_0}) \text{tr} L_0. \quad (4.3.4) \]

Eq. \((4.1.17)\) implies that

\[F_{odd} = \frac{1}{2} \left(\sum_{\ell=\mu}^{-\mu} a_0^{\ell} z^\ell - \sum_{\ell=-\mu}^{\mu} a_0^{\ell} \tilde{z}^\ell \right). \quad (4.3.5) \]

Comparing Eq. \((4.3.5)\) with Eq. \((4.3.4)\) we see that

\[a_0^{\ell} = a_0^{-\ell}, \quad \text{if} \ \ell \neq \mu, \ \ell \neq -\mu, \]

\[a_0^{\mu} = a_0^{-\mu} = -\text{tr} L_0, \quad (4.3.6) \]

and

\[F_{even} = \frac{1}{2} a_0^{\mu} (y^\mu + y^{-\mu}) + \frac{1}{2} \sum_{\ell=0}^{\mu-1} a_0^{\ell} (y^\ell + y^{-\ell}) = a_0^{\mu} \cosh(it \mu) + \sum_{\ell=0}^{\mu-1} a_0^{\ell} \cosh(it \ell). \quad (4.3.7) \]

Proposition 4.4.

\[\tilde{F}^{\text{tr}}_0(t) = a_0^{\mu} + \sum_{\ell=0}^{\mu-1} a_0^{\ell} \cosh \left(t \sqrt{\mu^2 - \ell^2} \right). \]

Proof. Taking Proposition \(4.3\) into account let us expand Eq \((4.3.1)\) into the Taylor series:

\[\tilde{F}^{\text{tr}}_0(t) = \sum_{s=0}^{\infty} a_{2s} \frac{t^{2s}}{(2s)!}, \]

where \(a_{2s} := \text{tr}(s^{2s} Q_0)\) for \(s = 0, 1, 2, \ldots\).
Eq (4.3.3) implies
\[a_{2s} = \left(\frac{d^2}{dt^2} + \mu^2 \right)^s F_{\text{even}}|_{t=0}, \]
and Eq (4.3.7) implies
\[a_{2s} = \left\{ \begin{array}{ll} a_0^0 + \sum_{\ell=0}^{\mu-1} \alpha_\ell^0 & \text{if } s = 0 \\ \sum_{\ell=0}^{\mu-1} \alpha_\ell^0 (-\ell^2 + \mu^2)^s & \text{if } s \neq 0. \end{array} \right. \]
So
\[\tilde{F}_{0}^{tr}(t) = \sum_{s=0}^{\infty} a_{2s} \frac{t^{2s}}{(2s)!} = a_0^0 + \sum_{\ell=0}^{\mu-1} \alpha_\ell^0 \cosh \left(t \sqrt{\mu^2 - \ell^2} \right). \]

4.4 Expressions for \(\tilde{F}_{0}^{tr} = \text{tr} (\exp(ts)Q_0) \) and \(\tilde{F}^{tr} = \text{tr} (\exp(ts)Q_m) \) for the degenerate trace
For \(F_{0}^{(+)} \), \(F_{0}^{(-)} \), \(F_{m}^{(+)} \) and \(F_{m}^{(-)} \), we find the following expressions:
\[
F_{0}^{(+)}(z) = \frac{1}{i} \frac{d}{dt} \left(\sum_{s=-d_0}^{s=-1} z^{-\mu_0-sn} \delta_{p=n} \right) - \frac{1}{i} \frac{d}{dt} \left(\sum_{s=0}^{d_0} z^{\mu_0-sn} \delta_{p=0} \right) = -\frac{1}{i} \frac{d}{dt} z^{\mu_0} + \left(-\sum_{s=1}^{d_0} z^{\mu_0-sn} \delta_{p=n} + \sum_{s=-d_0}^{s=-1} z^{-\mu_0-sn} \delta_{p=n} \right) = -\frac{1}{i} \frac{d}{dt} z^{\mu_0} + \left(\sum_{s=1}^{d_0} z^{\mu_0-sn} \delta_{p=n} + \sum_{s=1}^{s=d_0} z^{-\mu_0+sn} \delta_{p=n} \right) = -\frac{1}{i} \frac{d}{dt} z^{\mu_0} + \left(\sum_{s=1}^{d_0} \sinh(it(-\mu_0 + sn)) \delta_{p=n} \right), \tag{4.4.1} \]
\[
F_0^{(-)}(z) = \frac{1}{i} \frac{d}{dt} \left(\sum_{s=-d_1}^{s=-1} z^{-\mu_1 - sn - m} \delta_{\mu_1 > n} + z^{-\mu_1 + (d_1 + 1)n - m} \delta_{n-1 \geq m \geq n - \tilde{\mu}_1} \right) \\
- \frac{1}{i} \frac{d}{dt} \left(\sum_{s=d_0}^{d_1-1} z^{-\mu_1 - sn - m} \delta_{\mu_1 > n} + z^{\mu_1 - d_1 n - m} \delta_{1 \leq m \leq \tilde{\mu}_1} \right) \\
= \frac{1}{i} \frac{d}{dt} \left(\sum_{s=-d_1}^{s=d_1} z^{-\mu_1 - sn - m} - \sum_{s=0}^{d_1-1} z^{\mu_1 - sn - m} \right) \delta_{\mu_1 > n} \\
+ \frac{1}{i} \frac{d}{dt} \left(z^{-\mu_1 + (d_1 + 1)n - m} - z^{\mu_1 - d_1 n - m} \right) \delta_{1 \leq m \leq \tilde{\mu}_1} \\
= \frac{2}{i} \frac{d}{dt} \left(\sum_{s=1}^{s=d_1} \sinh(it(-\mu_1 + sn - m)) \right) \delta_{\mu_1 > n} \\
+ \frac{2}{i} \frac{d}{dt} \sinh(it(-\mu_1 + d_1 n + m)) \delta_{m \leq \tilde{\mu}_1}, \quad (4.4.2)
\]

\[
F_m^{(+)}(z) = \frac{1}{i} \frac{d}{dt} \left(\sum_{s=-d_0}^{s=-1} z^{-\mu_0 - sn - m} \delta_{\mu_0 > n} + z^{-\mu_0 + (d_0 + 1)n - m} \delta_{n-1 \geq m \geq n - \tilde{\mu}_0} \right) \\
- \frac{1}{i} \frac{d}{dt} \left(\sum_{s=0}^{s=d_0-1} z^{-\mu_0 - sn - m} \delta_{\mu_0 > n} + z^{\mu_0 - d_0 n - m} \delta_{1 \leq m \leq \tilde{\mu}_0} \right) \\
= \frac{1}{i} \frac{d}{dt} \sum_{s=1}^{s=d_0} \left(z^{-\mu_0 + sn - m} - z^{\mu_0 - sn + m} \right) \delta_{\mu_0 > n} \\
+ \frac{1}{i} \frac{d}{dt} \left(z^{-\mu_0 + d_0 n + m} - z^{\mu_0 - d_0 n - m} \right) \delta_{1 \leq m \leq \tilde{\mu}_0} \\
= \frac{2}{i} \frac{d}{dt} \sum_{s=1}^{s=d_0} \sinh(it(\mu_0 - sn + m)) \delta_{\mu_0 > n} \\
+ \frac{2}{i} \frac{d}{dt} \sinh(it(-\mu_0 + d_0 n + m)) \delta_{m \leq \tilde{\mu}_0}, \quad (4.4.3)
\]
\[
F_m^{(-)}(z) = \frac{1}{i} \frac{d}{dt} \left(\sum_{s=-d_1}^{s=1} z^{-\mu_1 - sn} \delta_{\mu_1 > n} \right) - \frac{1}{i} \frac{d}{dt} \left(\sum_{s=0}^{d_1} z^{\mu_1 - sn} \right)
= - \frac{1}{i} \frac{d}{dt} \mu_1 + \frac{1}{i} \frac{d}{dt} \left(\sum_{s=1}^{d_1} z^{-\mu_1 + sn} \delta_{\mu_1 > n} \right)
- \frac{1}{i} \frac{d}{dt} \left(\sum_{s=1}^{d_1} z^{\mu_1 - sn} \delta_{\mu_1 > n} \right)
= - \frac{1}{i} \frac{d}{dt} \mu_1 + \frac{2}{i} \frac{d}{dt} \sum_{s=1}^{d_1} \sinh \left(it \left(-\mu_1 + sn \right) \right) \delta_{\mu_1 > n}.
\]

(4.4.4)

Acknowledgments

The authors are grateful to the Russian Fund for Basic Research (grant No. 20-02-00193) for partial support of this work.
References

[1] P. Etingof and V. Ginzburg, “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism”, Inv. Math. 147 (2002), 243 – 348.

[2] S.E. Konstein, I.V. Tyutin, “Connection between the ideals generated by traces and by supertraces in the superalgebras of observables of Calogero models”, Journal of Nonlinear Mathematical Physics, 27:1 (2020), 7-11; arXiv:1909.02781 DOI: 10.1080/14029251.2020.1684005

[3] S. E. Konstein and I. V. Tyutin, “Ideals generated by traces in the algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$”, Theoretical and Mathematical Physics, 187(2), 706 – 717 (2016).

[4] S.E. Konstein and I.V. Tyutin, “Traces on the Superalgebra of Observables of Rational Calogero Model based on the Root System”, Journal of Nonlinear Mathematical Physics, 20:2 (2013), 271 – 294; arXiv:1211.6600; arXiv:math-ph/9904032