Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Wharton's jelly-mesenchymal stem cells treatment for severe COVID 19 patients: 1-year follow-up

Mahshid Saleh a, Amir Abbas Vaezi b, Amir Ali Sohrabpour c, Maryam Barkhordar d,⁎,⁎,1, Leila Aghaghazvini e,⁎,⁎,1, Neda Alijani f,⁎,⁎,1, Javad Verdi a

a Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
b Department of internal medicine, Alborz University of Medical Sciences, Karaj, Iran
c Advanced Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran
d Hematology, Oncology and Stem Cell Transplantation Research Center (HORCSCT), Tehran University of Medical Sciences, Tehran, Iran
e Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
f Department of Infectious Diseases, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran

ARTICLE INFO
Edited by Jormay Lim

Keywords:
One-year follow-up
COVID-19
WJ-MSC
Cell therapy

SUMMARY

Background: Recently, attention has been focused on mesenchymal stem cells (MSC) because of their unique ability to suppress inflammation induced by cytokine storms caused by COVID-19. Several patients have been successfully treated in this manner. After one year of treatment with Wharton's jelly-derived MSC injections, this study evaluated the safety and efficacy of injecting MSCs intravenously in patients with COVID-19.

Methods: This study treated four patients with severe COVID-19 with Wharton's jelly-derived mesenchymal stem cells. In this study, patients were followed up for routine tests, tumor markers, and whole-body imaging (spiral neck CT scan (with contrast), spiral chest CT scan (with & without contrast), and spiral abdominopelvic CT scan (with IV & Oral contrast)) one year after cell therapy.

Results: The results indicated that lymphocyte; lymph count significantly increased, and neutrophil, ESR, ferritin, and CRP significantly decreased. LDH showed a non-significant decrease (P-value < 0.05). One year after the WJ-MSC injection, the tumor markers were normal, and no tumors were observed in patients after one year. Also, the CT scan result was normal.

Conclusions: In patients, no serious complications were observed after a one-year follow-up. After monitoring the patient via laboratory tests, tumor markers, and whole-body imaging, we concluded that the Wharton jelly-derived mesenchymal stem cells did not cause severe complications, including tumor formation, in severe COVID19 patients within a year. More clinical trials with higher sample sizes need to be performed on cell therapy with Wharton jelly-derived mesenchymal stem cells in the future.

1. Introduction

Coronavirus disease 2019 (COVID-19) has emerged as a global epidemic and has caused diverse clinical conditions, from asymptomatic carriers to severe acute respiratory distress syndrome (Huang et al., 2020; Tang et al., 2020; Xu et al., 2020). COVID-19 symptoms subside within 2 to 3 weeks, but approximately 10 % of patients experience symptoms several months after the infection. Long-term follow-up studies have been reported for severe COVID-19 patients discharged from hospitals (Huang et al., 2021; Wu et al., 2021). COVID19 is categorized into three categories based on the severity of the symptoms (Huang et al., 2020; Wu and McGoogan, 2020; Shi et al., 2020). Mild cases present symptoms such as fatigue, cough, fever, diarrhea, headache, and whether or not mild pneumonia is present. Dyspnea, decreased blood oxygen saturation, pulmonary infiltrates, acute respiratory stress, multiple peripheral ground-glass patches on both lungs, and so forth are symptoms of severe cases. Septic shock and respiratory failure are symptoms of critical cases. COVID-19 is estimated to have a

☆ Trial registration: IRCT, IRCT2019071704424N2. Registered April 22, 2020, https://www.irct.ir/trial/47110.
⁎ Corresponding authors.
⁎⁎ Corresponding authors.
1 NA, LA, MB contributed equally to this work.

https://doi.org/10.1016/j.genrep.2022.101691
Received 31 July 2022; Received in revised form 22 September 2022; Accepted 26 September 2022
Available online 30 September 2022
2452-0144/© 2022 Published by Elsevier Inc.
mortality rate of 2.3 %, ranging from 6 to 41 days after the onset of symptoms (Shi et al., 2020; Wang et al., 2020).

Most cases are treated with supportive and symptomatic measures, but several antiviral agents, an antimalarial drug (chloroquine), and antibiotics have been used to treat milder and more severe cases. In addition to convalescent plasma therapy and mesenchymal stem cell therapy, other options have also been proposed to modulate the immune response in severely and critically ill patients (Shen et al., 2020; Leng et al., 2020; Orleans et al., 2020).

Mesenchymal stem cells can self-regeneration and differentiate into numerous types of cells (Metrellies et al., 2006; Chamberlain et al., 2007). Because MHC-I is not expressed to a high degree, and MHC-II is expressed in low numbers, mesenchymal stem cells are not immunogenic (Lee et al., 2014; Hass et al., 2011). That is why MSCs can be used for allogeneic cell transplantation. Several disease models have shown that MSCs can modulate the immune system and regenerate tissue (Corcione et al., 2006; Le Blanc and Davies, 2015; Wang et al., 2013; Forbes et al., 2014). There have been significant developments in stem cell technology with promising therapeutic prospects for treating various diseases, such as respiratory diseases (Fatima and Nawaz, 2015).

In a previous study in 2020 conducted by our research team, Wharton Jelly-derived mesenchymal stem cells were performed in 5 patients with severe forms of COVID19. After a 1-month follow-up, Wharton's jelly-derived stem cells were safe and well-tolerated by the patient (Saleh et al., 2021).

This study examined patients for one year for routine laboratory tests, tumor markers, and whole-body imaging examinations.

2. Materials and methods

Five patients with severe COVID-19 were treated with Wharton Jelly-derived mesenchymal stem cells in a previous pilot study at Shariat Hospital. By signing the consent form, patients entered the study from July 21, 2020, to August 21, 2020. HWj-MSC cells prepared by cell Tech Pharmed were injected into patients in 150 × 106 cells via IV in 3 doses on days 0, 3, and 6 (Saleh et al., 2021). In the previous study, these patients were monitored after cell injection for 0, 3, 6, and 14 days (myocardial enzymes, hematologic parameters, biochemistry, and inflammatory tests) and one year after cell therapy. In this study, patients (4 patients and one patient's information is not available) were followed up for routine tests, tumor markers, and whole-body imaging (spiral neck CT scan (with contrast), spiral chest CT scan (with & without contrast) and spiral abdominopelvic CT scan (with IV & Oral contrast)) one year after cell therapy. The Ethics Committee approved this study at the Tehran University of Medical Sciences (IR.TUMS.MEDICINE.REC.1400.035).

One year after cell therapy, all patients were evaluated for adverse events through clinical examinations, measurements of vital signs, and routine tests. One year after cell therapy, the following parameters were monitored: heart rate, respiration, blood pressure, body temperature, and oxygen saturation. Routine blood tests, biochemical indicators, myocardial enzymes, and Inflammatory Markers were performed before and after one year of cell therapy.

Beta-hCG, AFP, CEA, CA125, CA19-9, CA15-3, TPSA, and FPSA levels were measured in serum samples one year after cell therapy (ECL, HITACHI).

3. Statistical analysis

GraphPad Prism version 8.00 (GraphPad Software, Inc.) analyzed the data. We compared the means of two related groups using paired t-tests and one-way ANOVA for multi-group comparisons. The data were analyzed as mean ± S.D. P < 0.05 was considered to be statistically significant.
Table 2
Laboratory tests (base, Day3, Day6, Day14 & 1 year).

Variables	Patient 1 Day0	Patient 1 Day3	Patient 1 Day6	Patient 1 Day14	Patient 1 Year	Patient 2 Day0	Patient 2 Day3	Patient 2 Day6	Patient 2 Day14	Patient 2 Year	Patient 3 Day0	Patient 3 Day3	Patient 3 Day6	Patient 3 Day14	Patient 3 Year	Patient 4 Day0	Patient 4 Day3	Patient 4 Day6	Patient 4 Day14	Patient 4 Year			
Routine blood tests																							
WBC count	Normal range	3400 - 12,500	10,940	14,910	16,710	14,220	7500	9600	7560	10,620	8050	5400	10,400	11,040	10,950	11,630	6200	6100	12,740	10,050	9640	7190	
Hb (g/L)	M:14-18	12.7	12.7	13.7	12.5	11.5	11	11	13.5	13	13.1	14.2	13.5	15.1	15	14.7	15.1	14.4	13.8	16.9			
PLT count (×10^9/L)	F:12-16	146	195	227	218	204	233	321	428	295	220	287	243	192	205	228	307	328	183	189	226		
Neutrophil (%)	NA	88	88	70	54	90	80	83	62	50	90	82	70	71	54	86	91	71	81	57			
Lymphocyte (%)	45-75	2	10	19	39	4	9	11	26	38	5	10	20	20	33	8	2	21	14	35			
LYM count (×10^9/L)	20-40	NA	298.2	1671	2702	2925	384	680.4	1168.2	2093	2052	520	1104	2190	2326	2046	640	254.8	2110.5	1265.6	2517		
ESR	M: 0 to 20	96	73	23	26	20	104	NA	NA	51	15	74	9	25	10	6	37	5	64	17	1		
Myocardial enzymes																							
LDH (U/L)	240-480	723	939	462	374	269	860	483	427	545	350	542	465	392	398	313	1458	1117	615	417	354		
Biochemical indicators																							
Total Bili (mg/dL)	0.1-1.2	0.26	0.7	1	0.6	0.7	1.1	0.54	0.43	0.9	0.8	0.7	0.6	0.7	1.3	0.8	1.6	1.6	1.6	0.9	1		
Direct Bili (mg/dL)	Up to 0.3	0.1	0.3	0.3	0.1	0.2	0.3	0.2	0.02	0.1	0.1	0.1	0.2	0.2	0.2	0.3	1.2	0.6	0.3	0.2	0.3		
ALT (U/L)	M: up to 41	55	29	40	43	11	98	41	42	39	21	16	43	30	11	15	136	106	55	75	29		
AST (U/L)	F: up to 31	23.5	20	25	20	17	68	47.5	25	18	26	19	40	15	35	18	145	50	29	27	23		
BUN (mmol/L)	M: up to 38	6	23	24	16	13	23	54	43	21	14	25.2	16	21	21	16	25	14	11	11	11		
Cr (μmol/L)	F: up to 31	0.8	0.8	0.7	0.8	0.6	0.5	0.9	1	1.1	0.74	0.9	0.8	1.1	0.9	0.8	0.8	0.7	0.8	0.7	1		
Inflammatory markers																							
CRP	UP TO 10	60.5	6	3	0.48	2	107	101	20	3.84	2	87	53.5	24.5	4.44	3.9	45	82	25	147	2		
Ferritin	M: 24 to 336	1979	959	231	169	55	798	986	686	659	120	896	707	6200	500	142	1087	2666	742	878	229		
Cr: 11 to 307	F: 24 to 336	1979	959	231	169	55	798	986	686	659	120	896	707	6200	500	142	1087	2666	742	878	229		
Laboratory Tests in all patients (base, Day3, Day6, Day14 & 1 year)

Neutrophil

Lymphocyte

LYM count

ESR

CRP

Ferritin

LDH

ESR: Erythrocyte sedimentation rate, CRP C-reactive protein, LDH: Lactate dehydrogenase

Fig. 1. Laboratory tests at day 0, 3, 6, 14, and 1 year after WJ-MSC injection.
In the spiral abdominopelvic CT scan, the Liver was within normal limit, and no intrahepatic focal mass lesion was noted. Gall bladder, bile ducts, spleen, kidneys, and pancreas appeared normal. No obvious abdominopelvic abnormality was found.

5. Discussion

The growing evidence of MSCs’ therapeutic effectiveness has been shown in preclinical and clinical studies. Many studies indicate that the short-lived viability of MSCs after the injection may also account for low engraftment (Wang et al., 2014; Von Bahr et al., 2012). MSCs have started to appear as a new treatment option for COVID-19 patients (Haslemian et al., 2021; Feng et al., 2020). After MSCs are injected, many of them are trapped in the lungs, resulting in reduced cells that reach the target site (Makela et al., 2015). Since the most common infection of the COVID-19 virus is the lung, intravenous injection of these mesenchymal stem cells is beneficial in these patients.

However, new therapies, such as cell therapy, face several challenges. The tumorigenic properties of stem cells are essential to consider when using them. Several studies have evaluated the risk associated with tumorigenesis following stem cell transplantation. Both stem cells, and tumor cells can survive, proliferate, and prevent death (Bellagamba et al., 2016). After one year of cell therapy, we evaluated beta-hCG, AFP, CEA, CA125, CA19-9, CA15-3, TPSA, and FPSA. We did not include any patients with cancer diagnoses in this study. Therefore, we cannot correlate the elevation of these biomarkers with preexisting tumorigenesis conditions.

There is evidence that cancer biomarkers, such as CEA, and CA, are elevated during various inflammatory conditions of the lungs. For instance, smoking increases CEA levels, and chronic obstructive pulmonary disease increases CA125 levels (Stockley et al., 1986; Barouchos et al., 2015).

In this study, there were no complications, including tumor formation. Tumor marker results besides whole-body imaging demonstrate the safety of Wharton jelly-derived mesenchymal cells after one year.

In another study, in line with our safety results on a large scale, UC-MSC cells were used in patients with severe COVID-19. These patients were monitored for one year. They concluded that administering UC-MSCs to severe COVID-19 patients for some time could reduce lung...
Fig. 2. a. Chest CT scan.
a-1: A-D: A: day 0, B: day 14, C: day 30, and D: 1 year after WJ-MSC infection.
P1: Patient 1.
a-2: A-D: A: day 0, B: day 14, C: day 30, and D: 1 year after WJ-MSC infection.
P4: Patient 4.

b. CT scan of thoracic and abdominopelvic with contrast.
b-1: CT scan of thoracic and abdominopelvic with contrast: No pathology is seen.
Follow up 1 year chest CT scan, revealed complete resolution of parenchymal involvement without any Sequela.
P1: Patient 1.
b-2: CT scan of thoracic and abdominopelvic with contrast: No pathology is seen.
Follow up 1 year chest CT scan, revealed complete resolution of parenchymal involvement without any Sequela. P4: Patient 4.
b. CT scan of thoracic and abdominopelvic with contrast

b-1: CT scan of thoracic and abdominopelvic with contrast: No pathology is seen.

Follow up 1 year chest CT scan, revealed complete resolution of parenchymal involvement without any Sequela.

P1: Patient 1

b-2: CT scan of thoracic and abdominopelvic with contrast: No pathology is seen.

Follow up 1 year chest CT scan, revealed complete resolution of parenchymal involvement without any Sequela.

P4: Patient 4

Fig. 2. (continued)
lesions and offer good symptom improvement, indicating that UC-MSC administration as adjunctive therapy for COVID-19 patients is feasible (Shi et al., 2022).

6. Conclusion

This study showed that cell therapy using Wharton jelly-derived mesenchymal stem cells after one year did not have serious complications, including tumorigenesis, and the patient tolerated the patient well. It is best to do this study on a larger scale and do more research on tumor formation.

Abbreviation

Acronym	Definition
WJ-MSC	Wharton’s jelly derived MSCs
COVID-19	coronavirus disease 2019
ALT	alanine aminotransferase
AST	aspartate aminotransferase
Cr	creatinine
CRP	C-reactive protein
CT	computed tomography
MSCs	mesenchymal stem cells

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

Funding

The Tehran University of Medical Sciences supported this work. Tehran University of Medical Sciences and Health Services provided funding for this study (ethics code IR.TUMS.MEDICINE.REC.1400.035).

Ethics approval and consent to participate

Written informed consent was obtained from each patient or the patient’s legally authorized surrogate before the conduct of study-specific procedures.

Consent for publication

Not applicable.

Code availability

Not applicable.

CRediT authorship contribution statement

MS proposed initial idea, study design and writing of the manuscript. MS, AAV, LA, NA, MB, AAS and JV were responsible for the reference selection and writing of the manuscript. MS, NA, MB, and LA took care of the patients and performed the follow-up checks. MS collected and analyzed the data. MS and LA analyzed the CT. All authors read and approved the final manuscript.

Declaration of competing interest

The authors declare that they have no competing interests.

Data availability

All of the data generated and analyzed during this study are included in our manuscript.

Acknowledgements

Not applicable.

References

Barouch, N., Papazafiropoulou, A., Iacovidou, N., Vrachnis, N., Barouch, N., Armenakas, E., et al., 2015. Comparison of tumor markers and immunological biomarkers in chronic obstructive pulmonary disease (COPD) exacerbations. Scand. J. Clin. Lab. Invest. 75 (2), 126–132.
Bellagamba, B.C., Abreu, B.R.Rd., Grivich, I., Markarian, C.F., Camassola, M., Nardi, N.B., et al., 2016. Human mesenchymal stem cells are resistant to cytotoxic and genotoxic effects of cisplatin in vitro. Genet. Mol. Biol. 39, 129–134.
Chamberlain, G., Fox, J., Ashton, B., Middleton, J., 2007. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25 (11), 2799–2800.
Corcione, A., Benvenuto, F., Ferretti, E., Giani, D., Cappiello, V., Cazzani, F., et al., 2006. Human mesenchymal stem cells modulate B-cell functions. Blood 107 (1), 367–372.
Fatima, F., Nawaz, M., 2015. Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chin. J. Cancer 34 (3), 1–13.
Feng, Y., Huang, J., Xu, X., Chen, B., Jiang, L., et al., 2020. Safety and feasibility of umbilical cord mesenchymal stem cells in patients with COVID-19 pneumonia: a pilot study. Cell Prolif. 53 (12), e12047.
Forbes, G.M., Sturm, M.J., Leong, R.W., Sparrow, M.P., Segragasajingam, D., Cummins, A.G., et al., 2014. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clin. Gastroenterol. Hepatol. 12 (1), 64–71.
Hashemian, S.M.R., Alannejad, R., Zarrabi, M., Soleimani, M., Vosough, M., Hosseini, S.-E., et al., 2021. Mesenchymal stem cells derived from peri-natal tissues for treatment of critically ill COVID-19 infected ARDS patients: a case series. Stem Cells 2021 (12), 1–12.
Hass, R., Kasper, C., Bohm, S., Jacobs, R., 2011. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal 9 (1), 1–14.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395 (10223), 497–506.
Huang, C., Huang, L., Wang, Y., Li, X., Ren, L., Gu, X., et al., 2021. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397 (10270), 220–232.
Le Blanc, K., Davies, L.C., 2015. Mesenchymal stromal cells and the innate immune response. Immunol. Lett. 168 (2), 140–146.
Lee, M., Jeong, S.Y., Ha, J., Kim, M., Jin, H.J., Kwon, S.-J., et al., 2014. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biophys. Biophys. Res. Commun. 446 (4), 983–989.
Leng, Z., Zhu, Y., Hou, W., Yang, Y., Zhou, Y., et al., 2020. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. (11), 216.
Makela, T., Takalo, R., Arvola, O., Haapanen, H., Yannopoulos, F., Blanco, R., et al., 2015. Safety and biodistribution study of bone marrow-derived mesenchymal stromal cells and mononuclear cells and the impact of the administration route in an intact porcine model. Cytotherapy (17) (4), 392–402.
Meirleis, L.d.S., Chapastelles, P.C., Nardi, N.B., 2006. Mesenchymal stem cell reside in virtually all post-natal organs and tissues. J. Cell Sci. 119 (11), 2204–2211.
Orleans, L., Ine, Vice, H., Manchikanti, L., 2020. Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: the case for compassionate use. Pain Physician 23, E71–E83.
Saleh, M., Vaezi, A.A., Alannejad, R., Sohrabpour, A.A., Kiani, S.Z.F., Shadoush, M., et al., 2021. Cell therapy in patients with COVID-19 using Wharton’s jelly mesenchymal stem cells: a phase 1 clinical trial. Stem Cell Res Ther 12 (1), 1–13.
Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., et al., 2020. Treatment of critically ill patients with COVID-19 with convalescent plasma. JAMA 323 (16), 1582–1589.
Shi, H., Han, X., Jiang, N., Cao, Y., Alwaldi, O., Gu, J., et al., 2020. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis. 20 (4), 425–434.
Shi, L., Yuan, X., Yao, W., Wang, S., Zhang, C., Zhang, B., et al., 2022. Human mesenchymal stem cells treatment for severe COVID-19: 1-year follow-up results of a randomized, double-blind, placebo-controlled trial. ElioMedicine 75, 105798.
Stockley, R., Shaw, J., Whitfield, A., Whitehead, T., Clarke, C., Burnett, D., 1986. Effect of cigarette smoking, pulmonary inflammation, and lung disease on concentrations of carcinoembryonic antigen in serum and secretions. Thorax 41 (1), 17–24.
Tang, L., Jiang, Y., Zhu, M., Chen, L., Zhou, X., Zhou, C., et al., 2020. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19. Front. Med. 14 (5), 664–673.
Von Bahr, L., Batsis, I., Moll, G., Hagg, M., Szakos, A., Sundberg, B., et al., 2012. Analysis of tissues following mesenchymal stem cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 30 (7), 1575–1578.
Wang, D., Zhang, H., Liang, J., Li, X., Feng, X., Wang, H., et al., 2013. Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years of experience. Cell Transplant. 22 (12), 2267–2277.
Wang, Y., Chen, X., Cao, W., Shi, Y., 2014. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat. Immunol. 15 (11), 1099–1106.
Wang, W., Tang, J., Wei, F., 2020. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol. 92 (4), 441–447.
Wu, Z., Mcgoogan, J.M., 2020. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72
314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323 (13), 1239–1242.
Wu, X., Lim, X., Zhou, Y., Yu, H., Li, R., Zhan, Q., et al., 2021. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. Lancet Respir. Med. 9 (7), 747–754.
Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., et al., 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8 (4), 420–422.