Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome

Sam Giles¹, Matt Friedman¹ & Martin D. Brazeau²,³

The phylogeny of Silurian and Devonian (443–358 million years (Myr) ago) fishes remains the foremost problem in the study of the origin of modern gnathostomes (jawed vertebrates). A central question concerns the morphology of the last common ancestor of living jawed vertebrates, with competing hypotheses advancing either a chondrichthyan-like or osteichthyan-like model. Here we present Janusiscus schultzei gen. et sp. nov., an Early Devonian (approximately 415 Myr ago) gnathostome from Siberia previously interpreted as a ray-finned fish⁴, which provides important new information about cranial anatomy near the last common ancestor of chondrichthyans and osteichthyans. The skull roof of Janusiscus resembles that of early osteichthyans, with large plates bearing vermiciform ridges and partially enclosed sensory canals. High-resolution computed tomography (CT) reveals a braincase bearing characters typically associated with either chondrichthyans (large hypophysial opening accommodating the internal carotid arteries) or osteichthyans (facial nerve exiting through jugular canal, endolymphatic ducts exiting posterior to the skull roof) but lacking a ventral cranial fissure, the presence of which is considered a derived feature of crown gnathostomes⁵. A conjonction of well-developed cranial processes in Janusiscus unifies the comparative anatomy of early jawed vertebrate neurocrania, clarifying primary homologies in ‘placoderms’, osteichthyans and chondrichthyans. Phylogenetic analysis further supports the chondrichthyan affinities of ‘acanthodians’, and places Janusiscus and the enigmatic Ramirosauzia⁶ in a polytomy with crown gnathostomes. The close correspondence between the skull roof of Janusiscus and that of osteichthyans suggests that an extensive dermal skeleton was present in the last common ancestor of jawed vertebrates⁷, but ambiguities arise from uncertainties in the anatomy of Ramirosauzia. The unexpected contrast between endoskeletal structure in Janusiscus and its superficially osteichthyan-like dermal skeleton highlights the potential importance of other incompletely known Siluro-Devonian ‘bony fishes’ for reconstructing patterns of trait evolution near the origin of modern gnathostomes.

Gnathostomata Gegenbaur, 1874
Janusiscus schultzei gen. et sp. nov.

Etymology. Generic name refers to double-sided nature of the specimen, with an osteichthyan-like dorsal skull roof, but a braincase that displays an array of plesiomorphic gnathostome characters (Latin Janus, the god of doorways and transitions, often depicted as having two faces; [p]iscis, fish). Specific name in honour of Hans-Peter Schultze (University of Kansas), who first described these specimens⁸.

Holotype. GIT (Institute of Geology, Tallinn, Estonia) 496-6 (Pl.1384), skull roof and braincase, both missing anterior region (Fig. 1 and Extended Data Figs 1a, 3).

Referred material. We refer a second, more complete skull roof (GIT 496-7 (Pl. 1383); Extended Data Fig. 1c) from the type locality to Janusiscus. Rhombic scales lacking clear dorsal pegs are also known from this deposit (GIT 496-8–496-16; Extended Data Fig. 2a–c), but cannot be definitively associated with cranial material. All of these remains were previously attributed to Dialipina markae, the type of which is an isolated scale bearing a modest peg from the Lower Devonian of Kotelný Island, New Siberian Islands⁹ (approximately 1,500 km from the Sida River site).

Locality and horizon. Lower member, Kureika Formation, Sida River, Kotu Basin, Siberia. The presence of the zone fossil Rhinopteraspis crouchi in a lateral equivalent of the Kureika Formation¹⁰ restricts the age of this deposit to middle Lochkovian (approximately 415 Myr ago)¹¹. This is consistent with evidence drawn from other biostratigraphic markers (Supplementary Notes).

Diagnosis. A jawed vertebrate characterized by a rectilinear pattern of skull roof bones bearing vermiciform ridges but lacking endochondral bone, a ventral cranial fissure and vestibular fontanelles. Skull roof differs from those attributed to the type species of Dialipina (Dialipina salgueiroensis)¹² in having postparietals longer than parietals, and parietals lacking anterolateral extensions. Principal autapomorphy of Janusiscus is a boundary between parietals and postparietals that slopes posteriorly towards the midline, with the postparietals forming distinct anterolateral processes (as per the original description¹³). Braincase with broad otic region, and narrow sphenoid pierced by large hypophysial opening and bearing pronounced ventrolateral ridges.

Description. The skull roof comprises paired parietals and postparietals, and a median pineal plate (Fig. 1a and Extended Data Fig. 1). The anterior part of the skull roof, including the pineal, is not preserved in the holotype. All bones are ornamented with vermiciform ridges, although the histological structure of these ridges is not preserved (Extended Data Fig. 2h–j). The supraorbital sensory canals extend across the parietals and postparietals in open grooves but are enclosed in bony tubes posteriorly (Extended Data Fig. 3). The postparietal bears a middle pit-line behind the termination of the supraorbital canal. The pattern of dermal ornament in the posterior part of the skull suggests the presence of posteriorly placed pitlines (as in ‘Ligulalepis’¹⁴).

High-resolution CT scanning of GIT 496-6 reveals a nearly complete perichondrally ossified neurocranium, lacking evidence of endochondral mineralization (Fig. 1 and Extended Data Figs 4, 5). The incompletely preserved ethmoid is co-mineralized with the remainder of the braincase. The basiphenoid is elongate and mediolaterally narrow, resembling conditions in Acanthodes¹⁵ and osteichthyans¹⁶,¹⁷. The basiphenoid bears a large, diamond-shaped hypophysial opening but no evidence of a parapophysial. Subcranial ridges like those of Doliolus¹⁸ define the lateral margins of the basiphenoid and extend posteriorly to the otic region (Extended Data Fig. 5). The modest basipterygoid processes emerge as slight flanges posterior to the level of the hypophysial. Like ‘placoderms’¹⁹,²⁰,²¹ and many chondrichthyans,¹²,¹³ Janusiscus lacks a ventral cranial fissure. The gently concave parachordal region tapers towards the occiput, where its edges form ventral cristae that border grooves for the lateral dorsal aortae. The occipital margin bears a notch that is aligned with a midline thickening of the parachordal surface.

Two prominent transverse processes are present (Fig. 1a, b). The postorbital process defines the rear margin of the orbit. The passage of the jugular vein through the postorbital process is unclear. It bears a ventral notch and a posteroventral opening, either of which may have

¹Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK. ²Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands. ³Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK.

©2015 Macmillan Publishers Limited. All rights reserved
accommodated the jugular vein. The transverse otic process is separated from the postorbital process by a wide postorbital fossa. This process terminates distally in a single hyomandibular facet, and is pierced by the jugular canal. An enclosed canal for the hyomandibular branch of the facial nerve intersects that of the jugular (Extended Data Fig. 3).

The suborbital and supraorbital shelves are well developed. The orbital wall is interrupted by a large eyestalk attachment with a raised post-oventral rim (Fig. 1c, d and Extended Data Fig. 6e–f). The optic nerve exited through a foramen anterior to the eyestalk area. Foramina for the oculomotor, profundus and abducens nerves, along with associated myodomes, are present along an arc in the rear of the orbit (Extended Data Fig. 6).

The otic capsules are broad, protruding well beyond the lateral margins of the basicranium (Extended Data Fig. 3). Paired endolymphatic ducts emerge from the roof of the braincase immediately posterior to the skull roof (Extended Data Figs 2j and 3). Vestibular fontanelles are absent, but the condition of the metotic fissure is unclear. The narrow roof bones bearing vermiform ornament, partially buried sensory canals, endolymphatic ducts opening posterior to the dermal skull roof, and the exit of the hyomandibular branch of the facial nerve into the jugular canal are features typically associated with osteichthyan5,22,23. However, the combination of a flat-based braincase, weakly developed basipterygoid processes, the absence of vestibular fontanelles, and the absence of a ventral cranial fissure are inconsistent with Janusiscus as a crown-group osteichthyan and therefore also with the original actinopterygian diagnosis5 and its current use as a fossil calibration in ray-finned fish molecular clocks24.

Janusiscus possesses some chondrichthyan-like features, including the absence of paired openings for the internal carotids, a condition also shared with Acanthodes. Instead, the internal carotids entered the braincase through the large hypophyseal opening. The subcranial ridges flanking the ventrolateral angle of the braincase in Janusiscus strongly resemble those in the early chondrichthyan Doliodus17.

At least four pairs of transverse cranial processes are present on the braincases of some early gnathostomes (Supplementary Notes, Fig. 2 and Extended Data Fig. 7). The prominent transverse walls in Janusiscus allow us to address the primary homology of the anterior two processes. Comparison with crown-group osteichthyan and placoderm reveals that the so-called ‘supraorbital process’ of arthrodires corresponds to the postorbital process of crown-group gnathostomes (including the postorbital pila of sarcopterygians25) and the postorbital pila of Entelognathus4. The ‘anterior postorbital process’ of placoderm can be homologized with the transverse otic process of osteichthyans. The transverse otic process appears to be substantially reduced or lost in Acanthodes1 and the earliest chondrichthyans8,17, although it may correspond to the prominent lateral otic process of later chondrichthyans such as Orthacanthus and Tamiobatis (Extended Data Fig. 7). This further corroborates recent anatomical reinterpretations of Acanthodes3 and its placement in the chondrichthyan total group4,5.

Phylogenetic analysis recovers Janusiscus in a polytomy with Ramirosoarezia and the gnathostome crown. This corroborates our removal of the Siberian material from the genus Dialipina, which we recover as a stem osteichthyan26,27. Our result provides the first analytical placement for the enigmatic Ramirosoarezia, which has previously been
compared with ‘placoderm’-grade stem gnathostomes and holoccephalan chondrichthyans.

Although our analysis favours the stem gnathostome hypothesis for Janusiscus, we consider stem chondrichthyan and stem osteichthyan placements to be reasonable alternatives: both require only one additional step. Placement of Janusiscus on the chondrichthyan stem may seem provocative, but the hypothesis of micromery as a derived chondrichthyan trait predicts macromeric stem chondrichthyans. While there is ambiguity in the position of Janusiscus relative to the three branches incident to the gnathostome crown node, we reject an actinopterygian interpretation, which requires seven additional steps.

The new anatomical details of Janusiscus and our phylogenetic result corroborate the recently revived hypothesis that ‘acanthodians’ are, in fact, total-group chondrichthyans. The osteichthyan-like skull roof of Janusiscus strongly implies that the continuous dermal armour common to ‘placoderms’ and bony fishes is a gnathostome symplesiomorphy. However, uncertainty about conditions of the exoskeleton in Ramiro-suarezia precludes more definitive statements about the nature of the dermal skeleton in the earliest crown gnathostomes. We find that chondrichthyans (including all ‘acanthodians’) and osteichthyans are united to the exclusion of Janusiscus by the presence of a ventral cranial fissure separating the otic and sphenoid regions of the braincase (Fig. 3). The revised comparative framework for gnathostome braincases provided by Janusiscus highlights substantial neurocranial modifications uniting total-group chondrichthyans (for example, loss of the jugular vein canal in the otic region, hyomandibular articulation at the level of the posterior semicircular canal; Fig. 3), while casting doubt on the validity of some supposed osteichthyan synapomorphies (for example, exit of the hyomandibular branch of the facial nerve through the jugular canal; Extended Data Fig. 3).

This work reinforces an emerging consensus for osteichthyan-like anatomical conditions in stem gnathostomes and also in the last common ancestor of crown-group gnathostomes. The recognition that many features of the bony fish dermal skeleton might be general traits of modern jawed vertebrates highlights the need to revisit the roughly half-dozen supposed stem osteichthyans known only from isolated

Figure 2 | Comparative braincase morphology of selected Palaeozoic gnathostomes. Braincases are aligned on the hypophyseal opening, the position of which is indicated by the horizontal purple line. The path of the major cranial blood vessels is shown in red, with inferred paths represented by dotted lines. Character distributions reject the homology of craniospinal processes in ‘placoderms’ and actinopterygians. Illustrations are redrawn with permission from refs 4, 16, 17 (Wiley), 29 (Wiley).

Figure 3 | Summary result of phylogenetic analyses. Some clades are collapsed or omitted for simplicity. Shaded disks represent ranges of bootstrap support, numbers at nodes are decay indices. Numbers refer to characters in character list (Supplementary Notes). Full cladograms are provided in Extended Data Figs 8, 9 and Supplementary Fig. 1.
Notably, our results suggest the plausibility of alternative placements for some of these taxa as either stem gnathostomes or even stem chondrichthyans.

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 10 March; accepted 11 November 2014.

Published online 12 January 2015.

1. Miles, R. S. in Interrelationships of Fishes (eds Greenwood, P. H., Miles, R. S. & Patterson, C.) 63–103 (Academic, 1973).
2. Brazeau, M. D. The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. *Nature* **457**, 305–308 (2009).
3. Davis, S. P., Finarelli, J. A. & Coates, M. I. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. *Nature* **486**, 247–250 (2012).
4. Zhu, M. et al. A Silurian placoderm with osteichthyan-like marginal jaw bones. *Nature* **502**, 188–193 (2013).
5. Dupret, V., Sanchez, S., Goujet, D., Tafforeau, P. & Ahlberg, P. E. A primitive placoderm sheds light on the origin of the jawed vertebrate face. *Nature* **507**, 500–503 (2014).
6. Schultz, H.-P. in Fossil Fishes as Living Animals (ed. Mark-Kurik, E.) 233–242 (Academy of Sciences of Estonia, 1992).
7. Maisey, J. G. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) 263–288 (Taylor & Francis, 2001).
8. Maisey, J. G. & Anderson, M. E. A primitive chondrichthyan braincase from the Early Devonian of South Africa. *J. Vertebr. Paleontol.* **21**, 702–713 (2001).
9. Pradel, A., Maisey, J. G., Tafforeau, P. & Janvier, P. An enigmatic gnathostome vertebrate skull from the Middle Devonian of Bolivia. *Acta Zoologica* **90**, 123–133 (2009).
10. Schultz, H.-P. Ausgangsform und Entwicklung der rhombischen Schuppen der Osteichthyes (Pisces). *Palaeontol. Z.* **51**, 152–168 (1977).
11. Blik, A. & Janvier, P. in Palaeozoic Vertebrate Biostatigraphy and Biogeography (ed. Long, J. A.) 87–103 (Belhaven, 1993).
12. Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G. The Geologic Time Scale 2012 (Elsevier, 2012).
13. Schultz, H.-P. & Cumbaa, S. L. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) 315–332 (Taylor & Francis, 2001).
14. Basden, A. M. & Young, G. C. A primitive actinopterygian neurocranium from the Early Devonian of Southeastern Australia. *J. Vertebr. Paleontol.* **21**, 754–766 (2001).
15. Jarvik, E. Basic Structure and Evolution of Vertebrates (Academic, 1980).
16. Gardiner, B. G. The relationships of the palaeoniscid fishes, a review based on new specimens of *Mimia* and *Mythomysana* from the Upper Devonian of Western Australia. *Bull. Br. Mus. Nat. Hist.* **37**, 173–428 (1984).
17. Maisey, J. G., Miller, R. & Turner, S. The braincase of the chondrichthyan *Doliodus* from the Lower Devonian Campbellton Formation of New Brunswick, Canada. *Acta Zoologica* **90** (suppl. 1), 109–122 (2009).
18. Stensiö, E. Anatomical studies on the arthrodial head, part I. *Kungl. Svensk. Vetenskakad. Handl.* **8**, 1–419 (1963).
19. Goujet, D., *Les Poissons Placodermes du Spitsberg* (Centre National de la Recherche Scientifique, 1984).
20. Schaeffer, B. The xenactanth shark neurocranum, with comments on elasmobranch monophyly. *Bull. Am. Mus. Nat. Hist.* **169**, 1–66 (1981).
21. Maisey, J. G. Braincase of the Upper Devonian shark *Cladosodioides* waldensigii (Chondrichthyes, Elasmobranchii), with observations on the braincase in early chondrichthyan *B bull. Am. Mus. Nat. Hist.* **288**, 1–103 (2005).
22. Friedman, M. & Brazeau, M. D. A reappraisal of the origin and basal radiation of the Osteichthyes. *J. Vertebr. Paleontol.* **30**, 56–96 (2010).
23. Brazeau, M. D. & Friedman, M. The characters of Palaeozoic jawed vertebrates. *Zool. J. Linn. Soc.* **170**, 779–821 (2014).
24. Broughton, R. B.-R., Li, C., Arratia, G., Orli, G. & Richard, E. Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. *PLoS Curr.* http://dx.doi.org/10.1371/currents.tld2ca8041495f1a0dc92796e75247483e (2013).
25. Yu, X.-B. A new poroleiform-like fish, *Psarolepis ramesi*, gen. et sp. nov. (Sarcopterygii, Osteichthyes) from the Lower Devonian of Yunnan, China. *J. Vertebr. Paleontol.* **18**, 261–274 (1998).
26. Anderson, P. S. L., Friedman, M., Brazeau, M. D. & Rayfield, E. J. Initial radiation of jaws demonstrated stability despite faunal and environmental change. *Nature* **476**, 206–209 (2011).
27. Botella, H., Blom, H., Dorka, M., Ahlberg, P. E. & Janvier, P. Jaws and teeth of the earliest bony fishes. *Nature* **488**, 583–586 (2007).
28. Cunningham, J. A., Rucklin, M., Blom, H., Botella, H. & Donoghue, P. C. J. Testing models of dental development in the earliest bony vertebrates, *Andreolepis* and *Lophosteus*. *Biol. Lett.* **8**, 833–837 (2012).
29. Young, G. C. New information on the structure and relationships of *Buchanosteus* (Placodermi: Euarthrodira) from the Early Devonian of New South Wales. *Zool. J. Linn. Soc.* **66**, 309–352 (1979).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank U. Toom for access to material, E. Mark-Kurik for discussions on stratigraphy and specimen provenance, W. Renema and R. Garwood for assistance with scanning. This work was supported by a Natural Environment Research Council Cohort NE/500045/1 grant to S.G., the Philip Leverhulme Prize and John Fell Fund, both to M.F., and the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement number 311092 to M.D.B.

Author Contributions The project was conceived by M.D.B. and M.F. CT scanning was conducted by M.F. and M.D.B. S.G. generated the CT renderings. Figs 1–3 were produced by M.D.B. and S.G. with input from M.F. All authors participated in the generation of phylogenetic data. M.D.B. conducted the phylogenetic analyses. All authors participated in the interpretation of the specimen data and writing the manuscript, and generating Extended Data Figs 1–8, Supplementary Fig. 1 and Supplementary Notes.

Author Information The Life Science Identifiers (LSIDs) urn:lsid:zoobank.org:pub:CF016449-8A34-4401-9E01-289EA912C277 (article), urn:lsid:zoobank.org:act:652A7405-1648-4D8B-85AF-F21EDF552303 (genus), and urn:lsid:zoobank.org:act:3BD31DC4-11E1-4510-A85B-895CC626C07 (species) have been deposited in ZooBank. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to M.D.B. (m.brazeau@imperial.ac.uk).
METHODS

X-ray computed microtomography. GIT 496-6 was scanned using a SkyScan1172, combining two vertically overlapping scan series with 7,200 projections with an energy of 100 kV and 100 μA and 4.75 s exposure. Scan data were analysed using Mimics (http://biomedical.materialise.com/mimics; Materialise). After segmentation, surface meshes were exported into and imaged in Blender (http://blender.org; Stitching Blender Foundation).

Phylogenetic analysis. Phylogenetic analysis was performed in PAUP* v.4.0b10 (ref. 30) using a data set with 236 characters (three of which were ordered: 64, 126 and 166) and 78 taxa. The data set is based on ref. 3. In addition to a number of coding changes, one highly incomplete taxon (Rhadinacanthus) and four characters were deleted from the matrix of ref. 3; full justification for excluded characters is given in the character list. Additional characters were taken from a variety of sources, and are referenced in the character list. In addition to Janusiscus and taxa carried forward from the data set of ref. 3, we added 18 taxa spanning most taxonomic assemblages of Palaeozoic gnathostomes. In the case of Janusiscus, we coded as unknown any characters relating to scale morphology and histology; the Siberian scales originally referred to D. markae were not directly associated with the braincase, and their affinity is thus uncertain (for further details, see Supplementary Notes).

We follow a similar convention with the braincase attributed to ‘Ligulalepis’, and hence scale and histology characters are coded as uncertain. We assessed taxonomic equivalence25 using the software package TAXEQ3 (ref. 32). No taxa showed non-unique combinations of character states that would permit safe taxonomic reductio, so analyses were executed with a complete taxon set. Although several taxa are highly incomplete, we followed previous recommendations26-34 by maximizing the absolute number of characters instead of deleting incomplete or fragmentary taxa.

We conducted a heuristic search using 1,000 random addition sequence replicates, holding 5 trees at each step, and the tree bisection and reconnection (TBR) strategy. Maxtrees was set to automatically increase by 100. To prevent outgroup taxa from moving to the ingroup or collapsing of the ingroup node, we employed a rooted constraint tree, keeping only trees consistent with the following general topology: (Galeaspida+Osteostraci(Ingroup)).

Bootstrap values were calculated using 15,000 replicates of a heuristic search using random addition sequence, 10 replicates, holding 5 trees at each step, using the TBR strategy. To speed up the search, we set a limit of 20 million rearrangements per addition sequence replicate (options: rearrlimit = 200000000 limitperrep = yes in the hsearch command in PAUP*).

Node decay values (that is, Bremer support) were calculated manually using 20 random addition sequence replicates of a heuristic search, rearrlimit = 200000000, limitperrep = yes, and by incrementing the KEEP score by 1 over the length of the shortest tree found. Nodes retained in the strict consensus tree had their decay index incremented by one.

We conducted a set of further searches using the protocols outlined earlier with the following modifications. First, we conducted an equally weighted analysis minus Janusiscus to assess whether inferred patterns of relationships among early gnathostomes were robust to exclusion of the genus. To test whether the tree topology was sensitive to the removal of random taxa, we conducted an additional five searches each following the removal of a randomly selected terminal. Random selection was conducted using Microsoft Excel’s RANDBETWEEN function with parameters set to 3 and 78 (we excepted the outgroup from random pruning) and used the first five results obtained to draw taxa from the list following their order in the Nexus file. To speed up these searches, we used rearrlimit = 10000000 and limitperrep = yes. Finally, we reweighed all characters by their retention indices in the shortest trees recovered by our initial analysis that applied equal character weights.

Phylogenetic results. The phylogenetic search resulted in 522,936 trees of 639 steps. A summary strict consensus tree with some clades omitted or collapsed is shown in Fig. 3. The complete result is shown in Extended Data Fig. 8a. The Adams consensus tree is shown in Extended Data Fig. 8b. All unambiguous character state transformations are shown in Supplementary Fig. 1. A summary strict consensus tree of an analysis of the data set with characters reweighted by retention index is shown in Extended Data Fig. 9a. It preserves all major branching patterns found in the analysis of equally weighted characters, but shows greater resolution within some clades.

Inferred interrelationships are not changed when Janusiscus is removed from the analysis (Extended Data Fig. 9b), as its influence on how cranial processes are scaled originally referred to Cladoselache, Tristycthus, Acanthodes, Kentuckia, Lupsyrus each had no considerable impact on the overall tree topology, excepting differences in the degree of resolution.

The overall large number of trees results in polytomous branchings primarily concentrated in the chondrichthyan stem compounded with a smaller number of polychotomous branchings in the gnathostome and osteichthyan stems. The Adams consensus shows two principal branching patterns that are consistent within the results. One is a clade of stem chondrichthyans comprising acanthoidiforms, ischnacanths, some diplacanths, as well as Latvianacanthus and Euthacanthus. The other branching consisted of most Climiticus-like taxa and conventionally defined chondrichthyans (including the crown group).

Support for key nodes is summarized in Fig. 3, with full details given Extended Data Fig. 8a. Unsurprisingly, most are quite low. The highest values are found within well-studied groups (for example, sarcopterygians and actinopterygians) and associated with clades with numerous specializations (for example, holocephalans, bothriolepidid antiarchs). A decay index of 2 and a bootstrap support of 68% are recovered for the clade comprising all chondrichthyans and acanthodians. A decay index greater than 1 is consistent with the very long branch subtending this clade (Supplementary Fig. 1). The low bootstrap value might be explained by the fact that more than half of the transformations along this branch are homoplasious and have a consistency index of 0.5 or less. In spite of this, the branch is supported by five invariant, unambiguous synapomorphies (see Supplementary Fig. 1).

30. Swofford, D. L. PAUP*: Phylogenetic Analysis Using Parsimony (*And Other Methods) v.4.0b 10 (Sinauer Associates, 2003).
31. Wilkinson, M. Coping with missing entries in phylogenetic inference using parsimony. Syst. Biol. 44, 501–514 (1995).
32. Wilkinson, M. TAXEQ3: Software and Documentation (Department of Zoology, Natural History Museum, 2001).
33. Wiens, J. J. Missing data, incomplete taxa, and phylogenetic accuracy. Syst. Biol. 52, 528–538 (2003).
34. Wiens, J. J. Incomplete taxa, incomplete characters, and phylogenetic accuracy: is there a missing data problem? J. Verteb. Paleontol 23, 297–310 (2003).
35. Long, J. A., Barwick, R. E. & Campbell, K. S. W. Osteology and functional morphology of the osteolepiform fish Gogonasus andrewsae Long, 1985, from the Upper Devonian Gogo Formation, Western Australia. Rec. West. Austral. Mus. 53, 1–89 (1997).
Extended Data Figure 1 | Dermal skull roofing bones of Janusiscus and Dialipina salgueiroensis. a, Photograph of the holotype (GIT 496-6 (Pi.1384)). b, Original interpretation modified with permission from ref. 6. Reinterpretation of bones italicized in brackets (where applicable). c, Photograph of the referred skull roof (GIT 496-7 (Pi.1383)). d, Original interpretation modified with permission from ref. 6. e, New interpretive drawing of the holotype (GIT 496-6 (Pi.1384)). f, New interpretive drawing of the referred skull roof (GIT 496-7 (Pi.1383)). g, Dialipina salgueiroensis, modified with permission from ref. 13.
Extended Data Figure 2 | Scales attributed to Dialipina and scanning electron micrograph images of Janusiscus schultzei gen. et sp. nov. Scales from the localities of the Kureika Formation along the Sida River, Kotui Basin, Siberia, previously referred to *D. markae*, in: a, external view (GIT 496-8 (Pi.1384a)), previously figured by Schultze (plate 1, figure 3); b, internal view (GIT 496-10 (Pi.1385b)); c, external view (GIT 496-16 (Pi.1387)), ventral margin at upper right. d, e, Gross-scale morphology of *D. salgueiroensis* and referred species of *Dialipina*. d, Holotype of *D. salgueiroensis*, from the Emsian of Canada. Reproduced from ref. 10 (Fig. 3h) (with kind permission from Springer Science and Business Media). e, Holotype of *D. markae*, from the Lochkovian of the New Siberian Islands. Reproduced from ref. 10 (Fig. 3a) (with kind permission from Springer Science and Business Media). f, Scale from the Kureika Formation, Siberia, referred to *D. markae* and figured previously (reproduced with permission from figure 4 in ref. 6). This scale is the same specimen as in a–g. New interpretive drawing of scale in a. h, Broken edge of the skull roof in the holotype (GIT 496-6 (Pi.1384)). The histological structure is not preserved. i, The anterior part of the referred skull roof (GIT 496-7). The dermal bone is poorly preserved, with the bone in the centre of each ridge missing. The histological structure is not preserved. j, The holotype (GIT 496-6 (Pi.1384)) in dorsal view, showing the endoskeletal supraoccipital crest and openings of the endolymphatic ducts. Images in a, b, and c are modified slightly with permission from those by the Institute of Geology at Talinn University of Technology and licensed by CC 3.0 (http://geokogud.info/git/specimen_image/496/496-8.jpg; http://geokogud.info/git/specimen_image/496/496-10.jpg; http://geokogud.info/git/specimen_image/496/496-16.jpg).
Extended Data Figure 3 | Semi-transparent rendering of the skull of *Janusiscus schultzei* gen. et sp. nov. showing osteichthyan-like traits not visible externally. Scale bar, 5 mm.
Extended Data Figure 4 | Janusiscus lacks endochondral ossification. a, The actinopterygian *Kentuckia deani* MCZ 5226; tomographs showing extensive and well-developed endochondral ossification in both the sphenoid (top) and otic (bottom) regions. Bright white objects are voids within spongy endochondral bone that have been diagenetically infilled with dense (probably iron) minerals. b, *Janusiscus schultzei* gen. et sp. nov. GIT 496-6 (Pl.1384); tomographs showing lack of obvious endochondral ossification in either the sphenoid (top) or otic (bottom) regions. There is also no visual indication of endochondral bone in a break across the ethmoid region of this same specimen.
Extended Data Figure 5 | Subcranial ridges in *Janusiscus* and early crown gnathostomes.

a, Reconstructed tomographs showing that the thickenings along the lateral margins of the sphenoid region of *Janusiscus* do not represent artefacts of post-mortem compression.

b, The ‘acanthodian’ *Ptomacanthus anglicus* NHMUK PV P 24919a; a silicone peel of the specimen preserved in negative, dusted with ammonium chloride. Portions of the skull other than the neurocranium are partially masked for clarity.

c, The chondrichthyan *Doliodus problematicus* NBMG 10127/1a; a reconstruction of the neurocranium based on CT data.

d, *Janusiscus schultzei* gen. et sp. nov. GIT 496-6 (Pl.1384); a reconstruction of the neurocranium based on CT data. Red arrows in each panel indicate subcranial ridges.
Extended Data Figure 6 | Orbit anatomy of *Janusiscus schultzei* gen. et sp. nov.

a, Scanning electron micrograph image into left orbit showing endoskeletal bone and surrounding matrix. **b**, Image based on X-ray computed microtomography scan with matrix digitally removed. **c**, Lateral view into right orbit, with matrix digitally removed. **d**, Anterolateral view into right orbit, with matrix digitally removed. **e**, Interpretive drawing of the orbit, based on a composite of the left and right orbits of the holotype (GIT 496-6 (Pl.1384)). Arrow points to anterior.
Extended Data Figure 7 | Comparison of transverse processes in the braincases of early gnathostomes. a, *Macropetalichthys* (redrawn from ref. 18). b, *Dicksonosteus* (redrawn from ref. 19). c, *Buchanosteus* (redrawn from ref. 29). d, *Entelognathus* (redrawn from ref. 4). e, *Jagorina* (redrawn from ref. 19). f, *Ramirosuarezia* (redrawn from ref. 9). g, *Acanthodes* (redrawn from ref. 3). h, *Doliodus* (redrawn from ref. 17). i, *Cladodoides* (redrawn from ref. 21). j, *Orthacanthus* (redrawn from ref. 20). k, *Janusiscus* l, *Ligulalepis* (redrawn from ref. 14). m, *Mimipiscis* (redrawn from ref. 16). n, *Psarolepis* (redrawn from ref. 25). o, *Gogonasus* (redrawn from ref. 35).

- craniospinal process
- transverse otic process/lateral otic process (chondrichthyan neomorph?)
- vagal process(es)
- postorbital process
- articulation of hyomandibula
Extended Data Figure 8 | Results of phylogenetic analysis. a, Strict consensus of the 522,936 shortest trees (639 steps) for 78 taxa and 236 equally weighted characters. Digits above nodes indicate Bremer decay indices above 1. Digits below nodes indicate percentage bootstrap support. b, Adams consensus tree of the 522,936 shortest trees for 78 taxa and 236 equally weighted characters.
Extended Data Figure 9 | Results of modified phylogenetic analyses. a, Strict consensus tree of 216 trees with a score of 452.52565 resulting from analysis of characters reweighted according to retention index. b, Strict consensus of the 128,395 shortest trees for 77 taxa and 236 equally weighted characters, with Janusiscus removed from the data set.