Memory size bounds of prefix DAGs

János Tapolcai, Gábor Rétvári, Attila Kőrösi

MTA-BME Future Internet Research Group, High-Speed Networks Laboratory (HSNLab),
Dept. of Telecommunications and Media Informatics, Budapest University of Technology,
Email: \{tapolcai, retvari, korosi\}@tmit.bme.hu

Abstract—In this report an entropy bound on the memory size is given for a compression method of leaf-labeled trees. The compression converts the tree into a Directed Acyclic Graph (DAG) by merging isomorphic subtrees.

I. COUPON COLLECTOR’S PROBLEM WITH ARBITRARY COUPON PROBABILITIES

Given a set of C coupons, where $\delta = |C|$ denotes the number of coupons. At each draw p_o denotes the probability for getting coupon o for $o \in C$. We draw m coupons, and let E denote the expected number of different coupons we have obtained. The task is to give an upper bound on E.

Let V denote the set of coupons we have after m draw. The probability of having coupon o in V is

$$P(o \in V) = 1 - (1 - p_o)^m$$

(1)

Thus the expected cardinality of V is

$$E(|V|) = \sum_{o \in C} E(I(o \in V)) = \sum_{o \in C} P(o \in V) = \sum_{o \in C} (1 - (1 - p_o)^m)$$

(2)

Let H_C denote the entropy of the coupon distribution

$$H_C = \sum_{o \in C} p_o \log_2 \frac{1}{p_o}$$

(3)

Lemma 1.

$$E(V) \leq \min \left\{ \frac{m}{\log_2(m)} \cdot H_C + 3, m, n \right\}$$

for $m \geq 3$.

Proof: Trivially holds that $E \leq m$ and $E \leq n$. Next, let us expand

$$\sum_{o \in C} (1 - (1 - p_o)^m) \leq \frac{m}{\log_2(m)} \sum_{o \in C} p_o \log_2 \frac{1}{p_o} + 3$$

(4)

The above inequality holds if the inequality holds for each $o \in C$. Thus next we prove that

$$1 - (1 - p_o)^m \leq \frac{m}{\log_2(m)} p_o \log_2 \frac{1}{p_o}$$

(5)

holds for $p_o \leq \frac{1}{e}$. Let us assume $m \geq \frac{1}{e}$. Note that the right hand side is a monotone increasing function of m, when $m \geq e$. Thus we can substitute $m = \frac{1}{e}$ if $\frac{1}{p} > e$ in the right hand side and we get

$$1 - (1 - p_o)^m \leq \frac{1/p}{\log_2(1/p_o)} p_o \log_2 \frac{1}{p_o} = 1.$$ (6)

In the rest of the proof we focus on the other case, which is $m < \frac{1}{p_o}$. Let us define $1 > x > 0$ as

$$x := \log_{p_o} m.$$ (7)

After substituting $m = \frac{1}{x}$ we have

$$1 - (1 - p_o)^{\frac{1}{x}} \leq \frac{1}{x \log_2 (\frac{1}{p_o})} p_o \log_2 \left(\frac{1}{p_o} \right) = \frac{1}{x} p_o = \frac{1}{x p_o - 1},$$

(8)

which can be reordered as

$$(1 - p_o)^{\frac{1}{x}} \geq 1 - \frac{1}{x p_o - 1}.$$ (9)

Taking the $p_o^{x-1} > 0$ exponent of both sides we get

$$(1 - p_o)^{\frac{1}{x}} \geq \left(1 - \frac{1}{x p_o - 1} \right)^{p_o^{x-1}}.$$ (10)

Note that $x < 1$, thus $\frac{1}{x} > 1$, and we can prove

$$(1 - p_o)^{\frac{1}{x}} \geq \left(1 - \frac{1}{p_o^{x-1}} \right)^{p_o^{x-1}}.$$ (11)

Bernoulli discovered that $(1 - p_o)^{x}$ is monotone decreasing function and equals to $\frac{1}{e}$ for $p_o \rightarrow 0$. Thus the inequality holds if

$$p_o \leq \frac{1}{p_0 - 1}.$$ (12)

which holds because

$$p_0 \leq 1.$$ (13)

This proves (5) with the assumption of $p_o < \frac{1}{e}$. There are at most $3 > \frac{1}{e}$ coupons for which (5) cannot be applied, but the expected number of these coupons is still at most 3.

II. TRIE-FOLDING

For IP address lookup a binary trie is used, where each leaf has a label called next hop. To compress the trie we will use trie-folding, which merges the sub-tries with exactly the same structure and next hops labels at each leaf instead of repeating it in the binary trie. After the process the trie is transformed into a DAG. See an example below.
We evaluate the efficiency of the trie-folding methods on a randomly generated trie, where the next hops follow a given distribution. The randomly generated trie is denoted by $T = (V_T, E_T)$ and has the following properties:

- h is the height bound of the trie, typically 24 in IPv4.
- δ is the set of next hops.
- p_i is the probability that an IP address is forwarded to next hop $i \in \delta$.

Let V^j_T denote the set of nodes in T at the j-th level for $1 \leq j \leq h$. The level of a node is h minus the hop count of the path to the root node. Thus the root node has level h. At the j-th level there are 2^{h-j} nodes, formally $|V^j_T| = 2^{h-j}$. Each node at the j-th level has 2^{j+1} child nodes, and eventually 2^j leaves each of which is assigned with a next hop.

The DAG resulted by the trie-folding method is denoted by $D = (V_D, E_D)$, and V^j_D denotes the set of nodes in D at the j-th level for $1 \leq j \leq h$.

Lemma 2. The expected number of nodes at the j-th level in a DAG resulted by trie-folding of a randomly generated trie with height h and next hop distribution p_1, \ldots, p_N is at most

$$E(|V^j_D|) \leq \min \left\{ \frac{H_O}{h-j} 2^h + 3, 2^{h-j}, \delta^j \right\} \quad (14)$$

where H_O denotes the entropy of the next hops

$$H_O = \sum_{o \in \delta} p_o \log_2 \frac{1}{p_o} \quad (15)$$

Proof: We treat the problem as a coupon collection problem, where each coupon is a subtree with j height and 2^j next hops on leaves. In other words each coupon is a string with length 2^j on alphabet δ, and we draw $m = 2^{h-j}$ coupons. Note that there are $C = \delta^{2^j}$ different coupons. Lemma 1 gives an upper bound on the number of different coupons, which are the subtrees in this case. Thus we have $|V^j_D| \leq 2^{h-j}$, $|V^j_D| \leq \delta^j$ and

$$E(|V^j_D|) \leq \frac{2^{h-j}}{\log_2 (2^{h-j})} H_C + 3 = \frac{2^{h-j}}{\log_2 (2^{h-j})} H_O 2^j + 3 = \frac{2^h}{h-j} H_O + 3 \quad (16)$$

where $H_C = H_O 2^j$ is the entropy of a 2^j long string made of next hops. We need to find a reference or add a lemma proving it.

Let k^* be the row where the bounds take the maximum value for all $j = 1, \ldots, h$. See also Figure 1 as an illustration of the bounds on the width of the DAG given by the above lemma. Such k^* clearly exists, because the bounds by Lemma 2 are decreasing function of j until $2^h - j$ holds, while both $\frac{H_O}{h-k} 2^h + 3$ and δ^j are monotone increasing functions of j.

We store each pointer for a node in $h-k^*$ bits. Since each node has two child nodes, it can be stored in $2h - 2k^*$ bits. At level k^* the bound is

$$E(|V^j_D|) \leq E(|V^{k^*}_D|) \leq \frac{H_O}{h-k^*} 2^h + 3 \leq 2^{h-k^*} \quad j = 1, \ldots, h \quad (17)$$

As each node is stored in $2h - 2k^*$ bits we have the following corollary on the width of the DAG.

Corollary 1. The expected number of bits to store the nodes at any level $j = 1, \ldots, h$ in the DAG resulted by trie-folding of a randomly generated trie with height h and next hop distribution p_1, \ldots, p_N is at most

$$M = 2H_O 2^h + 6h.$$

Based on this we have the following theorem on the size of the DAG.

Theorem 1. The expected number of bits to store the nodes in the DAG resulted by trie-folding of a randomly generated trie with height h and next hop distribution p_1, \ldots, p_N is at most

$$2H_O 2^h + 6h^2.$$

The lower bound above theorem can be further improved if $H_O \geq \frac{h}{2}$. Let k be the smallest level where $\frac{H_O}{h-k} 2^h + 3$ is larger than 2^{h-k}. Note that, $k^* < k$. The value of k is

$$k > \lceil \log_2 \left(\frac{h}{H_O} \right) \rceil \quad (18)$$

because

$$2^{h-k} < 2^{h-\lceil \log_2 (\frac{h}{H_O}) \rceil} \leq 2^{h-\log_2 (\frac{h}{H_O})} = 2^h \frac{H_O}{h} \frac{h}{h-k} 2^h + 3 \quad (19)$$

Note that, $\log_2 \left(\frac{h}{H_O} \right) \leq h$ when $H_O \geq \frac{h}{2}$.

![Diagram of DAG](image_url)
To count the total space needed to store the DAG we divide it into two parts (see also Figure 1).

head for levels h, \ldots, k,
body for levels $k-1, \ldots, 1$.

First we estimate the size of head and use the bound 2^{h-j} from [14]. The expected number of bits needed for the DAG at level $j = k, \ldots, h$ is

$$
\sum_{j=k}^{h} E(|V_{D_j}|) \leq \sum_{j=k}^{h} 2^{h-j} = \sum_{j=0}^{h-k} 2^{i} = 2^{h-k+1} < 2\frac{H_O}{h-k} 2^h + 6
$$

where the last inequality comes from (19). After multiplying with $2h - 2k^*$ bits for each node we have

$$
(2h - 2k^*) 2^{\left(\frac{H_O}{h-k} 2^h + 6\right)} < (4(h-k) - 2) 2^h + 12h = 4H_O 2^h + 12h = 2M
$$

(20)

For the size of body we use Corollary 1

$$
\sum_{j=1}^{k-1} (2h - 2k - 2) E(|V_{D_j}|) \leq (k-1)M = \left[\log_2 \left(\frac{h}{H_O} \right) \right] - 1 \leq \log_2 \left(\frac{h}{H_O} \right) - 1
$$

(21)

Finally, summing up with (20) we get the following bound.

Theorem 2. The expected number of bits to store the nodes in the DAG resulted by trie-folding of a randomly generated trie with height h and next hop distribution p_1, \ldots, p_N is at most

$$(2 + \log_2(h) - \log_2 H_O) (2H_O 2^h + 6h),$$

when $H_O \geq \frac{h}{2^h}$.

Finally we further improve the lower bound above theorem when δ is a finite number. Let l be the largest level where δ^{2^j} is smaller than $\frac{H_O}{h-l} 2^h + 3$. The value of l is

$$l < \left[\log_2 \left(\frac{h - \log_2 \left(\frac{h}{H_O} \right)}{\log_2(\delta)} \right) \right]$$

(22)

because

$$
\delta^{2^l} < \delta^{2^{l+1}} \leq \delta^{2^j} = \frac{h - \log_2 \left(\frac{h}{H_O} \right)}{\log_2(\delta)}
$$

(23)

Note that $k \geq l+1$, because of the floor an ceiling function and

$$
\log_2 \left(\frac{h}{H_O} \right) > \log_2 \left(\frac{h - \log_2 \left(\frac{h}{H_O} \right)}{\log_2(\delta)} \right)
$$

and taking both side on power 2 we have

$$
\frac{h}{H_O} > \frac{h - \log_2 \left(\frac{h}{H_O} \right)}{\log_2(\delta)}
$$

Note that $H_O \leq \log_2(\delta)$, thus

$$
h > h - \log_2 \left(\frac{h}{H_O} \right),
$$

which always holds.

To count the total space needed to store the DAG we divide it into three parts (see also Figure 1)

head for levels h, \ldots, k,
body for levels $k-1, \ldots, l+1$,
tail for levels $l, \ldots, 1$.

To estimate the size of head we use (20). For the size of the tail we use the bound δ^{2^j} from (13). We have

$$
\sum_{j=1}^{l} E(|V_{D_j}|) \leq \sum_{j=1}^{l} \delta^{2^j} < \sum_{i=1}^{2^l} \delta^i = N \sum_{i=0}^{2^l-1} \delta^i = \frac{N \delta^l - 1}{\delta - 1} < \frac{\delta^2 - 1}{\delta - 1} = \left(\frac{H_O}{h-l} 2^h + 3 \right)
$$

(24)

where the last inequality comes from (23). After multiplying with $2h - 2k^*$ bits for each node we have

$$
(2h - 2k^*) \delta \frac{H_O}{h-l} 2^h + 3 < \left(\frac{\delta^2 - 1}{\delta - 1} \right) \left(\frac{H_O}{h-l} 2^h + 3 \right) = \frac{\delta}{\delta - 1} M
$$

(25)

For the size of body we use Corollary 1

$$
\sum_{j=l+1}^{k-1} (2h - 2k - 2) E(|V_{D_j}|) \leq (k-1-l)M = \left(\log_2 \left(\frac{h}{H_O} \right) - \log_2 \left(\frac{h - \log_2 \left(\frac{h}{H_O} \right)}{\log_2(\delta)} \right) - 1 \right) M = \left(\log_2 \left(\frac{h}{H_O} \right) - \log_2 \left(\frac{h - \log_2 \left(\frac{h}{H_O} \right)}{\log_2(\delta)} \right) - 1 \right) M
$$

(26)

Finally, summing up with (25) and (20) we get the following bound.

Theorem 3. The expected number of bits to store the nodes in the DAG resulted by trie-folding of a randomly generated trie with height h and next hop distribution p_1, \ldots, p_N is at most

$$
\left(1 + \log_2 \left(\frac{h}{h - \log_2 \left(\frac{h}{H_O} \right) + \log_2(\delta)} \right) \log_2(\delta) + \frac{\delta}{\delta - 1} \right) \left(\frac{2H_O 2^h + 6h}{2} \right)
$$

(27)

when $H_O \geq \frac{h}{2^h}$ and δ is a finite number.

Note that the above bound asymptotically leads to

$$
\left(1 - \log_2(\delta) + \frac{\delta}{\delta - 1} \right) \frac{2H_O}{(6 - 2 \log_2 H_O)} H_O
$$

bits for each leaf when $h \rightarrow \infty$. For $\delta = 2$ it is $H_O < 1$ and

$$
(6 - 2 \log_2 H_O) H_O.
$$