Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

Byoung-Hwan Lee1, Sun-Hye Choi1, Hyeon-Joong Kim1, Seok-Won Jung1, Sung-Hee Hwang2, Mi-Kyung Pyo3, Hyewhon Rhim4, Hyoung-Chun Kim5, Ho-Kyoung Kim6, Sang-Mok Lee1,* and Seung-Yeol Nah1,*

1Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University, Seoul 05029, 2Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, 3International Ginseng and Herb Research Institute, Geumsan 32724, 4Life Science Division, Korea Institute of Science and Technology, Seoul 02792, 5Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, 6Mibyeong Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea

Abstract
Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and querce- tin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nACHR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nACHR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nACHR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nACHR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin>Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nACHR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nACHR in a differential manner.

Key Words: Flavonoids, Quercetin, Quercetin glycosides, α7 nACHR

INTRODUCTION
Nicotinic acetylcholine receptors (nACHRs) are members of the Cys-loop family of ligand-gated ion channels. The Cys-loop family also includes serotonin (5-HT3), gamma-aminobutyric acid (GABAa), and glycine receptors (Jensen et al., 2005). nACHRs have been divided into two types: a muscle type and a neuronal type (Dani and Bertrand, 2007). Neuronal nACHRs are widely expressed in the human central and peripheral nervous systems. Eleven different nACHR subunits are currently known, and subunits of nACHR α (α2, α4) and β (β2, β4) have been identified (Nashmi and Lester, 2006). Neuronal nACHRs containing α2 β4 subunits are usually expressed as heteromers in combination with β2β4 subunits (Boulter et al., 1987; Karlin, 2002) and are found throughout the whole nervous system (Gotti and Clementi, 2004). In contrast, the α7 and α9 subunits can form homomeric receptors (Couturier et al., 1990; Elgoyhen et al., 1994; Karlin, 2002). Homomeric α7 nACHRs are the major binding site for α-bungarotoxin in the central nervous system of mammals and are predominantly expressed in the cortical and the limbic areas including the hippocampus. Homomeric α7 nACHRs are known to play an important role in normal brain function and development (Gotti et al., 2000).
In previous reports, we have shown that the application of the flavonoid quercetin inhibits 5-HT- and glycine-induced peak inward currents (I_{ACh} and I_{Gly}) of mouse 5-HT_{1A} and human glycine α receptor channels expressed in *Xenopus laevis* oocytes, respectively. The observed inhibition of I_{5-HT} by quercetin was competitive and voltage-independent, whereas inhibition of I_{Gly} by quercetin appeared non-competitive and voltage-dependent (Lee et al., 2005; Lee et al., 2007). In addition, we have found that co- or pre-application of quercetin with acetylcholine (ACh) enhanced I_{ACh} in oocytes expressing human α7 nAChRs. This enhancement appeared independent of ACh concentration and voltage. Furthermore, quercetin enhanced Ca^{2+}-mediated potentiation of I_{ACh}, which was observed to be dependent on extracellular Ca^{2+} concentration (Lee et al., 2010).

On the other hand, in addition to quercetin, quercetin glycosides are also compounds of low molecular weight and are mainly found in apples, tomatoes, gingko, other red fruits, and vegetables (Havsteen, 2002). In fruits and vegetables, quercetin naturally exists in glycosylated forms such as Rham1, Rutin, Rham2, or other glycosidic forms (Azevedo et al., 2013). In previous studies using glycine and 5HT_{3} receptors, we have shown that quercetin glycosides can regulate ligand-gated ion channel activity in a differential manner with respect to quercetin. The inhibition of the glycine receptor channel activity by quercetin glycosides was noncompetitive and voltage-sensitive, whereas the inhibition of 5-HT_{3} receptor channel activity by quercetin glycosides was competitive and voltage-insensitive. Recently, we have also shown that quercetin glycosides inhibit GABA_{A} receptor channel activity in a non-competitive and membrane voltage-insensitive manner. However, relatively little is known about the effects of quercetin glycosides on α7 nAChR channel activity.

In this study, we investigated the regulation of α7 nAChR channel activity expressed in *Xenopus* oocytes by quercetin glycosides. We first expressed neuronal human α7 nAChR copy RNAs (cRNAs) in *Xenopus* oocytes and examined the effect of quercetin and quercetin glycosides on I_{ACh}. This system was employed because (1) *Xenopus laevis* oocytes have been used widely as a tool to express the membrane proteins encoded by exogenously administered cDNAs or cRNAs including receptors, ion channels, and transporters (Dascal, 1987); and (2) nAChR channels expressed in *Xenopus* oocytes by the injection of nAChR subunit cRNAs have been well studied and characterized (Chavez-Noriega et al., 1997). We found that co- or pre-application of quercetin with ACh enhanced I_{ACh}, whereas co- or pre-application of quercetin glycosides inhibited I_{ACh}. The observed inhibition of I_{ACh} by quercetin glycosides was ACh concentration- and voltage-independent. Interestingly, quercetin-induced enhancement of I_{ACh} was attenuated by co-treatment of quercetin glycosides. Here, we demonstrate that the quercetin glycosides-induced regulation of α7 nAChR channel activity is different from that of quercetin. We further discuss the role of the carbohydrate portion of quercetin glycosides in the differential regulation of α7 nAChR channel activity.

MATERIALS AND METHODS

Materials

Human wild-type α7 nAChR cDNA was kindly provided by Dr. S. Heinemann (Salk Institute, California, USA). Quercetin (Fig. 1) and all other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Preparation of Xenopus laevis oocytes and microinjection

X. laevis frogs were purchased from *Xenopus* I (Ann Arbor, MI, USA). Animal care and handling were in accordance with the highest standards of institutional guidelines. To isolate oocytes, frogs were anesthetized with an aerated solution of 3-amino benzoic acid ethyl ester, and the ovarian follicles were removed. The oocytes were separated with collagenase followed by agitation for 2 h in a Ca^{2+}-free medium containing 82.5 mM NaCl, 2 mM KCl, 1 mM MgCl_{2}, 5 mM HEPES, 2.5 mM sodium pyruvate, 100 units/ml penicillin, and 100 μg/ml streptomycin. Stage V-VI oocytes were collected and stored in a ND96 medium (96 mM NaCl, 2 mM KCl, 1 mM MgCl_{2},

Fig. 1. Chemical structures of quercetin and its glycosides. (A) Quercetin, (B) quercetin-3-O-rhamnoside (Rham1), (C) quercetin-3-O-rutinoside (Rutin), and (D) quercetin-3-(2′-rhamnosylrutinoside) (Rham2).
1.8 mM CaCl₂, and 5 mM HEPES, pH 7.5) supplemented with 50 μg/ml gentamicin. The solution containing the oocytes was maintained at 18°C with continuous gentle shaking and media was replaced daily. Electrophysiological experiments were performed five to six days after oocyte isolation, during which time the relevant chemicals were added to the media. α7 nAChR-encoding cRNAs (40 nL) were injected into the animal or vegetal pole of appropriate oocytes 1 day after isolation using a 10-μl microdispenser (VWR Scientific, West Chester, PA, USA) fitted with a tapered glass pipette tip (15-20 μm diameter) (Lee et al., 2005).

Data recording
A custom-made Plexiglas net chamber was used for two-electrode voltage-clamp recordings, as previously reported (Lee et al., 2005). A single oocyte was constantly superfused with ND96 media in the absence or presence of acetylcholine or quercetin during recording. The microelectrodes filled with 3 M KCl giving a resistance of 0.2-0.7 MΩ. Two-electrode voltage-clamp recordings were obtained at room temperature using an Oocyte Clamp (OC-725C, Warner Instrument) and digitized using Digidata 1200A (Molecular Devices, Sunnyvale, CA, USA). Both stimulation and data acquisition were controlled using pClamp 8 software (Molecular Devices). For most electrophysiological experiments, the oocytes were clamped at a holding potential of -80 mV, and 300 ms voltage steps were applied from -100 to +50 mV to assess the relationship between current and voltage. Linear leak and capacitance currents were corrected by means of the leak subtraction procedure. Because α7 nAChRs have a high relative permeability to Ca²⁺ (Séguela et al., 1993; Castro and Albuquerque, 1995), oocytes were incubated in 100 μM 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM) for 4 h before recording to avoid α7 nAChR-mediated endogenous Ca²⁺-activated Cl⁻ currents.

Data analysis
To obtain the concentration-response curves for quercetin and quercetin glycosides on the inward peak I_{ACh} mediated by α7 AChR, the I_{ACh} peak was plotted at different concentrations of quercetin and its glycosides. Origin software (OriginLab Corp., Northampton, MA, USA) was used to fit the plot to the Hill equation: \(I/I_{\text{max}} = \frac{1}{1 + (\text{ED}_50/ [A])^{nH}} \), where \(I_{\text{max}} \) is maximal current obtained from each ED₅₀ value of acetylcholine in wild-type receptors, ED₅₀ is the concentration of quercetin or quercetin glycoside required to increase/decrease the response by 50%, \([A]\) is the concentration of quercetin or quercetin glycoside, and nH is the Hill coefficient. All values are presented as means ± S.E.M. The differences between the means of control and treatment data were determined using the paired t-test or a one-way ANOVA followed by Tukey test. A value of \(p < 0.05 \) was considered to be statistically significant.

RESULTS
Effects of quercetin or quercetin glycosides on I_{ACh} in oocytes expressing α7 nAChRs
Treatment of ACh (200 μM) to oocytes injected with human α7 nAChR cRNA induced a large inward current (I_{ACh})
Fig. 3. Concentration-dependent effects of quercetin and its glycosides on $I_{\alpha 7\text{ACh}}$. (A) The representative trace of quercetin- or quercetin glycoside- (30 μM each) mediated effects on $I_{\alpha 7\text{ACh}}$ in oocytes expressing the $\alpha 7$ nAChR was elicited at a holding potential of -80 mV for 30 s in the presence of 200 μM ACh. Quercetin and its glycosides were pre-applied 30 s before ACh application. (B) The representative trace of quercetin- and quercetin glycoside- (300 μM each) mediated effects on $I_{\alpha 7\text{ACh}}$ in oocytes expressing the $\alpha 7$ nAChRs was elicited at a holding potential of -80 mV for 30 s in the presence of 200 μM ACh. Quercetin and its glycosides were pre-applied 30 s before ACh application. Traces represent six separate oocytes from three different batches of frogs. (C-D) Concentration-dependent effects of quercetin and quercetin glycosides on $I_{\alpha 7\text{ACh}}$. The solid lines were fit using the Hill equation. Each point represents the mean ± S.E.M. (n=9-12/group).

(Fig. 2A) but the application of ACh did not induce any inward current in H2O-injected control oocytes (data not shown) (Lee et al., 2010). Although quercetin (100 μM) itself had no effect on oocytes expressing $\alpha 7$ nAChRs at a holding potential of -80 mV (data not shown), the co-application of quercetin with ACh enhanced $I_{\alpha 7\text{ACh}}$ in oocytes expressing $\alpha 7$ AChR (Fig. 2A, n=9 from three different frogs). Although quercetin (100 μM) alone for 30 s before co-application with ACh (200 μM) induced a much larger enhancement of $I_{\alpha 7\text{ACh}}$ in oocytes expressing $\alpha 7$ nAChRs than the enhancement observed after co-application as we previously demonstrated (Fig. 2A, *p<0.005, compared to co-treatment) (Lee et al., 2010). Next, we examined the effects of quercetin glycosides on $I_{\alpha 7\text{ACh}}$. Quercetin glycosides (100 μM each) themselves showed no effect on oocytes expressing the $\alpha 7$ nAChRs at a holding potential of -80 mV. Co-application of quercetin glycosides with ACh decreased the amplitude of $I_{\alpha 7\text{ACh}}$ reversibly (13.2 ± 2.7%, 15.0 ± 2.9%, and 4.7 ± 1.2% inhibition by Rham1, Rutin, and Rham2, respectively) (Fig. 2C). Pre-application of quercetin glycosides alone for 30 s before co-application with ACh induced a much larger inhibitory effect on $I_{\alpha 7\text{ACh}}$ (39.4 ± 3.5%, 42.1 ± 4.7%, and 13.1 ± 4.5% inhibition by Rham1, Rutin, and Rham2, respectively) (Fig. 2B, 2C, n=8-11 from three different frogs). Thus, the $I_{\alpha 7\text{ACh}}$ inhibitory potency order appeared where Rutin≈Rham1>Rham2, also indicating that the regulatory pattern of quercetin glycosides on $\alpha 7$ nAChR channel activity is different from that of quercetin (Fig. 2).

Quercetin enhances $I_{\alpha 7\text{ACh}}$ while quercetin glycosides inhibit $I_{\alpha 7\text{ACh}}$ in a concentration-dependent manner

In concentration-dependent experiments with quercetin, pre-application with quercetin for 30 s enhanced $I_{\alpha 7\text{ACh}}$ in a concentration-dependent manner in oocytes expressing $\alpha 7$ nAChRs (Fig. 3C). Pre-application of quercetin at 3, 10, 30, 100, and 300 μM increased $I_{\alpha 7\text{ACh}}$ by 5.9 ± 0.9, 23.1 ± 3.0, 52.9 ± 4.2, 98.7 ± 7.3, and 113.4 ± 11.9% in oocytes expressing $\alpha 7$ AChRs, respectively. Thus, the apparent EC50 of $I_{\alpha 7\text{ACh}}$ for quercetin pre-application was 35.1 ± 3.8 μM (n=10-11, with samples taken from three different frogs for each point; Fig. 3C). In concentration-dependent experiments with quercetin glycosides, pre-application with quercetin glycosides for 30 s inhibited $I_{\alpha 7\text{ACh}}$ in a concentration-dependent manner in oocytes expressing $\alpha 7$ nAChRs (Fig. 3D). For instance, pre-application of Rutin1 inhibited $I_{\alpha 7\text{ACh}}$ by 1.2 ± 0.3, 6.8 ± 0.8, 16.2 ± 1.1, 41.9 ± 3.5, and 53.9 ± 4.1% at 3, 10, 30, 100, and 300 μM in oocytes expressing $\alpha 7$ AChRs, respectively. Pre-application of Rutin inhibited $I_{\alpha 7\text{ACh}}$ by 2.9 ± 0.9, 8.9 ± 0.8, 21.8 ± 1.8, 45.7 ± 71.
The apparent EC$_{50}$ values were 70.8 ± 9.6, 78.6 ± 7.1, 76.1 ± 6.5, and 80.6 ± 6.5 μM for ACh alone, ACh + Rham1, ACh + Rutin, and ACh + Rham2, respectively, and the Hill coefficients were 1.1 ± 0.1, 1.0 ± 0.2, 1.0 ± 0.1, and 1.1 ± 0.1, respectively. Thus, Rham1, Rutin, and Rham2 significantly inhibited the I_{AC} elicited, independent of ACh concentration (n=9-12 from three different frogs) (Fig. 4). These results show that quercetin increases I_{AC}, whereas quercetin glycosides inhibit I_{AC} and that these effects probably occur in a non-competitive manner.

In the current-voltage relationship, the membrane potential, which was held at -80 mV, and a voltage ramp was applied from -100 to +50 mV for 300 ms. In the absence of ACh, the inward current (at -100 mV) and the outward current (at +50 mV) were negligible (data not shown). Treatment of ACh to in oocytes expressing the α7 nAChR induced a mainly inward current and outward current at negative- and positive voltages, respectively. Pre-application of quercetin with ACh enhanced both inward and outward currents. The reversal potential was near 0 mV for both ACh alone and for ACh with quercetin. This indicates that Na$^+$ and Ca$^{2+}$ are main charge carriers (Revah et al., 1991; Galzi et al., 1992). In addition, the pre-application of quercetin with ACh further increased currents but did not appear to affect α7 nAChR channel properties as quercetin addition did not change the reversal potential of the α7 nAChR (Fig. 5A). Pre-application of quercetin glycosides combined with ACh treatment gave greater inhibition of both inward and outward currents than those achieved when ACh
and quercetin glycosides were applied together. The reversal potential was also near -0 mV when ACh was used alone, as well as in ACh+quercetin glycoside treatments (Fig. 5A). In addition, the enhancement of quercetin or the inhibitory effects of quercetin glycosides on I_{ACh} in oocytes expressing $\alpha 7$ nAChRs did not appear to be membrane voltage-sensitive. Quercetin increased I_{ACh} by $98.5 \pm 5.4\%$, and $95.6 \pm 6.3\%$, at -120 and -30 mV, respectively. Rham1, Rutin and Rham2 inhibited I_{ACh} by $41.2 \pm 3.8\%$, $44.9 \pm 2.2\%$, and $16.7 \pm 3.7\%$, respectively, at -120 mV, and by $38.9 \pm 4.9\%$, $48.1 \pm 2.1\%$, and $18.7 \pm 4.6\%$, respectively, at -30 mV (n=10-12, from three different frogs). These results indicate that quercetin enhances I_{ACh}, while quercetin glycosides inhibit I_{ACh} in a voltage-insensitive manner (n=10-12, from three different frogs; Fig. 5B).

Effects of quercetin glycosides on quercetin-induced I_{ACh} enhancement

The above results indicate that quercetin glycosides may be novel regulators of $\alpha 7$ nAChR channel activity and that their actions could be different from those of quercetin. Therefore, we investigated the effect of quercetin on I_{ACh} after co-treatment with quercetin glycosides. As shown in Fig. 6, the enhancing effect of quercetin on I_{ACh} was significantly attenuated in the presence of Rutin, Rham1 and Rham2. The order of potency for the quercetin attenuating effects was Rutin>Rham1>Rham2. The above results show that quercetin-mediated enhancement of I_{ACh} could be affected by the presence of quercetin glycosides.

DISCUSSION

Quercetin is a flavonoid that shows diverse effects in nervous and non-nervous systems (Kandaswami and Middleton, 1994; Harborne and Williams, 2000). For example, quercetin protects the central nervous system against oxidative effects and exerts effects on analgesia, locomotor activity and sleep (Speroni and Minghetti, 1988; Picq et al., 1991; Oyama et al., 1994), as well as having anticonvulsant, sedative, and anxiolytic effects (Marder et al., 1996; Medina et al., 1997; Griebel et al., 1999; Yao et al., 2010). Quercetin glycosides are natural forms of quercetin that are found in colored fruit and vegetables (Fig. 1) (Murota and Terao, 2003; Nemeth and Piskula, 2007). In previous reports, we have shown that quercetin and quercetin glycosides can regulate the activity of several types of ligand-gated ion channels, but the relationship between quercetin and quercetin glycosides and $\alpha 7$ nAChR regulation has not been well characterized.

In the present study, we have investigated the effects of quercetin glycosides on human $\alpha 7$ nAChRs heterologously expressed in *Xenopus* oocytes. We found that: (1) pre-application of quercetin with ACh induced a large enhancement of I_{ACh} in a reversible and concentration-dependent manner; (2) quercetin glycoside pre-application with ACh inhibited I_{ACh}; (3) quercetin-mediated enhancement of I_{ACh} was non-competitive and membrane potential independent, while quercetin glycosides inhibit I_{ACh} in a non-competitive manner and are also membrane potential independent; and (4) quercetin-induced enhancement of I_{ACh} was attenuated in the presence of quercetin glycosides. These results indicate that quercetin and quercetin glycosides show opposite effects on $\alpha 7$ nAChR channel activity and quercetin glycosides are different from quercetin in their regulation of $\alpha 7$ nAChRs. Structural differences between quercetin and quercetin glycosides suggest that the differential regulation of $\alpha 7$ nAChR channel activity might be due to the carbohydrate components.

It will be questioned how structural differences between quercetin and quercetin glycosides induce differential regulations of $\alpha 7$ nAChR channel activity. One possibility is that the carbohydrate(s) attached to quercetin might cause a different behavior in the regulations of $\alpha 7$ nAChRs. For example, quercetin enhances I_{ACh}, whereas quercetin glycosides inhibit I_{ACh} of $\alpha 7$ nAChR (Fig. 3). The other is that the number or different size of carbohydrate attached to quercetin might also induce differential effects on I_{ACh} of $\alpha 7$ nAChRs. Rutin or Rutin with one or two carbohydrates more potently inhibited I_{ACh} than Rham2, which is tri-glycosylated forms of quercetin (Fig. 3). In addition, quercetin glycosides attenuated the quercetin-induced enhancement of I_{ACh}. Thus, although we found in the present study that carbohydrate component of quercetin could play important roles in the regulations of ligand-gated ion channel such as $\alpha 7$ nAChR, we do not know exactly how carbohydrate(s) attached to quercetin cause an opposite on I_{ACh} of $\alpha 7$ nAChRs or differential effects on I_{ACh} of $\alpha 7$ nAChRs and how quercetin glycosides decreases the quercetin-induced enhancement of I_{ACh}. Further study will be required to elucidate molecular mechanisms how carbohydrate(s) attached to quercetin contribute to quercetin-induced regulations of $\alpha 7$ nAChR.

The activation of the $\alpha 7$ nAChR is known to be linked to many physiological conditions (Khirogu et al., 2003; Gotti and Clementi, 2004; Gilbert et al., 2009). The $\alpha 7$ nAChR is widely expressed throughout the central nervous systems, including the cortical and limbic areas of the brain. Clearly, the $\alpha 7$ nAChR plays an important role in normal brain function because $\alpha 7$ nAChR dysfunction is associated with neurological disorders such as learning and memory loss, Alzheimer’s disease, schizophrenia, and epilepsy (Chini et al., 1994; Léna and Changeux, 1997; Welland et al., 2000; Changeux and Edelstein, 2001). However, relatively little is known about the effects of quercetin glycosides on $\alpha 7$ nAChR function. In the
present study, we found that quercetin glycosides inhibited $I_{\alpha \text{Ch}}$ and furthermore, Rutin and Rham1 could attenuate the quercetin-induced enhancement of $I_{\alpha \text{Ch}}$. Interestingly, the inhibitory effects of quercetin glycosides on $I_{\alpha \text{Ch}}$ as well as the attenuation of quercetin-induced enhancement of $I_{\alpha \text{Ch}}$, was observed to be more potent with pre-treatment before ACh addition. Currently we cannot explain the exact physiological or pharmacological role of quercetin glycosides or the reason for their behavior being different from that of quercetin in $\alpha7$ nAChR regulation. It is known that dietary quercetin glycosides are usually metabolized in two ways. First, they are deglycosylated to the aglycone quercetin; and second, they remain as quercetin glycosides without further metabolism (Havsteen, 2002; Lee et al., 2010). Further studies will be required to elucidate the role of quercetin glycosides in the in vivo regulation of the $\alpha7$ nAChR.

In previous studies, we have shown that quercetin inhibits 5-HT3 receptor-gated ion currents through interactions within the pre-transmembrane domain I. Furthermore, quercetin can inhibit or potentiate glycine receptor-gated ion currents through interactions with the amino acid Ser256 residue in transmembrane domain II (Lee et al., 2005; Lee et al., 2007). Examination of the effects of quercetin glycosides shows an inhibition of GABAC receptor channel activity in the order of Rutin=Rham1=Rham2 (Kim et al., 2015). In the present study, we found that quercetin glycosides also inhibited $\alpha7$ nAChR-gated ion currents with the same order of efficacy. Thus, although the Cys-loop family of ligand-gated ion channels such as glycine, GABAC, 5-HT3, and $\alpha7$ nAChR all form homomeric receptors, quercetin and quercetin glycosides regulate these homomeric receptors in a different manner.

In conclusion, we found that quercetin increased $I_{\alpha \text{Ch}}$ while quercetin glycosides inhibited $I_{\alpha \text{Ch}}$ in Xenopus oocytes expressing $\alpha7$ nAChRs. The present results indicate that quercetin and quercetin glycosides act differently in the regulation of $\alpha7$ nAChRs. Finally, these results also suggest that quercetin and quercetin glycosides exhibit their differential regulation of $\alpha7$ nAChR channel activity through their structural differences.

ACKNOWLEDGMENTS

This research was supported by the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIP(2015M3A9E3052336).

This paper was also written as part of Konkuk University's research support program for its faculty on sabbatical leave in 2015 to S.M. Lee.

REFERENCES

Azevedo, M. I., Pereira, A. F., Nogueira, R. B., Rolim, F. E., Brito, G. A., Wong, D. V., Lima-Júnior, R. C., de Albuquerque Ribeiro, R. and Vale, M. L. (2013) The antioxidative effects of the flavonoids rutin and quercetin inhibit oxalплатin-induced chronic painful peripheral neuropathy. Mol. Pain 9, 53.

Boulter, J., Connolly, J., Deneris, E., Goldman, D., Heinemann, S. and Patrick, J. (1987) Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc. Natl. Acad. Sci. U.S.A. 84, 7763-7767.

Castro, N. G. and Albuquerque, E. X. (1995) Alpha-bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophys. J. 68, 516-524.

Changeux, J. and Edelstein, S. J. (2001) Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors. Curr. Opin. Neurobiol. 11, 369-377.

Chavez-Noriega, L. E., Crona, J. H., Washburn, M. S., Urrutia, A., Elliott, K. J. and Johnson, E. C. (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors hu2[1][2], hu2[1][4], hu3[1], hu3[4], hu4[1] and hu7 expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther. 280, 346-356.

Chini, B., Raimondi, E., Elgoyhen, A. B., Moralli, D., Balaretti, M. and Heinemann, S. (1994) Molecular cloning and chromosomal localization of the human alpha 7-nicotinic receptor subunit gene (CHR-NAT). Genomics 19, 379-381.

Couturier, S., Bertrand, D., Matter, J. M., Hernandez, M. C., Bertrand, S., Millar, N., Valera, S., Barkas, T. and Ballivet, M. (1990) A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron 5, 847-856.

Dani, J. A. and Bertrand, D. (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47, 699-729.

Dascal, N. (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22, 317-387.

Elgoyhen, A. B., Johnson, D. S., Boulter, J., Vetter, D. E. and Heinemann, S. (1994) alpha: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79, 705-715.

Galzi, J. L., Devillers-Thiéry, A., Hussy, N., Bertrand, S., Changeux, J. P. and Bertrand, D. (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359, 500-505.

Gilbert, D., Lecci, M., Arnaudeau, S., Bertrand, D. and Demaurex, N. (2009) Local and global calcium signals associated with the opening of neuronal alpha7 nicotinic acetylcholine receptors. Cell Calcium 45, 198-207.

Gotti, C., Carbonnelle, E., Moretti, M., Zwarts, R. and Clementi, F. (2000) Drugs selective for nicotinic receptor subtypes: a real possibility or a dream? Behav. Brain Res. 113, 183-192.

Gotti, C. and Clementi, F. (2004) Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363-396.

Griebel, P., Perrault, G., Tan, S., Schoemaker, H. and Sanger, D. J. (1999) Pharmacological studies on synthetic flavonoids: comparison with diazepam. Neuropharmacology 38, 965-977.

Harbome, J. B. and Williams, C. A. (2000) Advances in flavonoid research since 1992. Phytochemistry 55, 481-504.

Havsteen, B. H. (2002) The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96, 67-202.

Jensen, M. L., Schousboe, A. and Ahring, P. K. (2005) Charge selectivity of the Cys-loop family of ligand-gated ion channels. J. Neurochem. 92, 217-225.

Kandalsawmi, C. and Middleton, E., Jr. (1994) Free radical scavenging and antioxidant activity of plant flavonoids. Adv. Exp. Med. Biol. 366, 351-376.

Karlin, A. (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3, 102-114.

Khroug, L., Giniatullin, R., Klein, R. C., Fayuk, D. and Yakel, J. L. (2003) Functional mapping and Ca$^{2+}$ regulation of nicotinic acetylcholine receptor channels in rat hippocampal CA1 neurons. J. Neurosci. 23, 9024-9031.

Kim, H. J., Lee, B. H., Choi, S. H., Jung, S. W., Kim, H. S., Lee, J. H., Hwang, S. H., Pyo, M. K., Kim, H. C. and Nah, S. Y. (2015) Differential effects of quercetin glycosides on GABAC receptor channel activity. Arch. Pharm. Res. 38, 108-114.

Lee, B. H., Jeong, S. M., Lee, J. H., Kim, J. H., Yoon, I. S., Lee, J. H., Choi, S. H., Lee, M. S., Chang, C. G., Kim, H. C., Han, Y., Paik, H. D., Kim, Y. and Nah, S. Y. (2005) Quercetin inhibits the 5-hydroxytryptamine type 3 receptor-mediated ion current by interacting with pre-transmembrane domain I. Mol. Cells 20, 69-73.

Lee, B. H., Lee, J. H., Yoon, I. S., Lee, J. H., Choi, S. H., Pyo, M. K., Jeong, S. M., Choi, W. S., Shin, T. J., Lee, S. M., Rhim, H., Park, D. J., Kim, Y. and Nah, S. Y. (2005) Quercetin inhibits the 5-hydroxytryptamine type 3 receptor-mediated ion current by interacting with pre-transmembrane domain I. Mol. Cells 20, 69-73.

http://dx.doi.org/10.4062/biomolther.2015.153
Lee et al. Quercetin Glycosides Regulate the α7 nAChR

Y. S., Han, Y. S., Paik, H. D., Cho, S. G., Kim, C. H., Lim, Y. H. and Nah, S. Y. (2007) Human glycine alpha1 receptor inhibition by quercetin is abolished or inversed by alpha267 mutations in transmembrane domain 2. Brain Res. 1161, 1-10.

Lee, B. H., Choi, S. H., Shin, T. J., Pyo, M. K., Hwang, S. H., Kim, B. R., Lee, S. M., Lee, J. H., Kim, H. C., Park, H. Y., Rhim, H. and Nah, S. Y. (2010) Quercetin enhances human α7 nicotinic acetylcholine receptor-mediated ion current through interactions with Ca2+ binding sites. Mol. Cells 30, 245-253.

Léna, C. and Changeux, J. P. (1997) Pathological mutations of nicotinic receptors and nicotine-based therapies for brain disorders. Curr. Opin. Neurobiol. 7, 674-682.

Marder, M., Viola, H., Wasowski, C., Wolfman, C., Waterman, P. G., Cassels, B. K., Medina, J. G. and Paladini, A. C. (1996) 6-Bromo-flavone, a high affinity ligand for the central benzodiazepine receptors is a member of a family of active flavonoids. Biochem. Biophys. Res. Commun. 223, 384-389.

Medina, J. H., Viola, H., Wolfman, C., Marder, M., Wasowski, C., Calvo, D. and Paladini, A. C. (1997) Overview—flavonoids: a new family of benzodiazepine receptor ligands. Neurochem. Res. 22, 419-425.

Murota, K. and Terao, J. (2003) Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys. 417, 12-17.

Nashmi, R. and Lester, H. A. (2006) CNS localization of neuronal nicotinic receptors. J. Mol. Neurosci. 30, 181-184.

Nemeth, K. and Piskula, M. K. (2007) Food content, processing, absorption and metabolism of onion flavonoids. Crit. Rev. Food Sci. Nutr. 47, 397-409.

Oyama, Y., Fuchs, P. A., Katayama, N. and Noda, K. (1994) Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca2+-load ed brain neurons. Brain Res. 635, 125-129.

Picq, M., Cheav, S. L. and Prigent, A. F. (1991) Effect of two flavonoid compounds on central nervous system. Analgesic activity. Life Sci. 49, 1979-1988.

Revah, F., Bertrand, D., Galzi, J. L., Devillers-Thiéry, A., Mulé, C., Hussy, N., Bertrand, S., Ballivet, M. and Changeux, J. P. (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353, 846-849.

Séguela, P., Wadiche, J., Dineley-Miller, K., Dani, J. A. and Patrick, J. W. (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J. Neurosci. 13, 596-604.

Speroni, E. and Minghetti, A. (1988) Neuropharmacological activity of extracts from Passiflora incarnata. Planta Med. 54, 488-491.

Weiland, S., Bertrand, D. and Leonard, S. (2000) Neuronal nicotinic acetylcholine receptors: from the gene to the disease. Behav. Brain Res. 113, 43-56.

Yao, Y., Han, D. D., Zhang, T. and Yang, Z. (2010) Quercetin improves cognitive deficits in rats with chronic cerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1 pyramidal neurons. Phytother. Res. 24, 136-140.