EVALUATION OF THE EFFECTS OF COCONUT OIL ON SOME BIOCHEMICAL PARAMETERS IN ALBINO RATS

F. A. James1,3, N. Boisa1, N. Nwachoko2 and O. S. Bull1

1Chemistry Department, Rivers State University, Port Harcourt, Nigeria.
2Biochemistry Department, Rivers State University, Port Harcourt, Nigeria.
*Corresponding Author: jacodaqueens@yahoo.com +2348036181395

Received 19 August 2020; accepted 12 October 2020, published online 30 January 2021

Abstract
Coconut oil from coconut kernel is a source of natural cooking oil for most people in tropical countries. This study was undertaken to evaluate the effects of coconut oil on some biochemical, haematological and histological parameters in albino rats. Two phases of experiment with four groups of male albino rats each consisting of five rats weighing about 180 – 200 g were used for this study. Phase 1 of the experiment involves feeding of albino rats with commercial rodent chow mixed with coconut oil, coconut oil supplemented diet (COSD) while phase 2 experimental rats were treated with coconut oil orally. Group 1 served as the control for both phases of treatment, groups 2, 3 and 4 were treated with 3 ml/kg, 6 ml/kg and 12 ml/kg of COSD and coconut oil respectively for 4 weeks. Result of both phases of experiment showed significant increase (p≤0.05) in serum concentrations of AST, ALP and ALT levels. Also, the result showed that the levels of urea and creatinine decreased significantly when compared with the control group. Haematological results showed that levels of haemoglobin and PCV for both phases of treatment decreased significantly (p≤0.05) compared with the control group. Total protein for COSD treatment phase showed a significant increase while total protein for coconut oil (CO) oral administration treatment phase decreased significantly for only group 4 albino rats when compared with control. Histopathological results showed normal liver hepatocytes in the treated albino rats except for some albino rats with microvesicular steatosis. This study has also shown that coconut oil within the dosage administered cause mild inflammation of the liver in some of the albino rats.

Keywords: Coconut Oil, Enzyme, Urea, Creatinine, Haematological, Histopathological

INTRODUCTION
Toxicity is the extent to which a substance or a particular mixture of substances can damage an organism [1]. Toxicants are substances that are detrimental to an organism; these organisms may be plants or animals [2]. Pathways through which toxicants enter the body of an organism is by absorption through the skin, ingestion through the mouth and inhalation through the nose [3] where they exert biochemical effect such as cell membrane disruption, malfunction of protein biosynthesis by their action on DNA, enzyme inhibition, disruption of lipid metabolism resulting in excess lipid accumulation (fatty liver) and disruption of carbohydrate metabolism [4, 5]. The outrageous use of food substandard in chemical composition may lead to toxic effects [6].

Coconut from \textit{Cocos nucifera} palm family is an essential part of food and source of revenue in most tropical countries [7]. Coconut oil from coconut kernel is one of the edible oils on the rise as a dietary supplement and functional food in the emergent functional food market [8]. The likely impact of coconut oil on human health due to its high concentration in saturated fats has been a subject of discussion by researchers especially nutritionist and other health managers. Some have noted that the saturated fats present in coconut oil could contribute to atherosclerosis and cardiovascular diseases (CVD) [9, 10]. As a food item, coconut oil offers countless health remunerations to humans, such as antifungal, antibacterial, antimicrobial, antiviral and many more [11]. Coconut oil has a long shelf life and it is used in baking industries, processed food, infant formulae, pharmaceuticals, cosmetics and as hair oil [7].

MATERIALS AND METHODS
Collection of Coconut Kernel: Matured coconuts were purchased at the Miabaa market in Ahoada West Local Government Area of Rivers State, Nigeria. The coconuts were identified and authenticated by Dr. Stanley Dimkpa as \textit{Cocos}
Extraction of Coconut oil

The matured coconut kernel was de-shelled to obtain the endosperm using a paired knife, the endosperm was washed, weighed and later blend with water in a food processor to obtain coconut milk. The coconut milk was filtered from the blend coconut with a cheese cloth over a wide – mouth container and refrigerated for 24 hours. After 24 hours, the milk was scooped out and subjected to mild heating using an electric hot plate cooker at 60°C for 30 minutes until the water content was completely evaporated. Further, the protein coagulates to release oil and the residue was repeatedly filtered with a cheese cloth to obtain pure coconut oil [12].

Experimental Design

Thirty – five male albino rats weighing between 180 – 200 g were purchased from the Department of Biochemistry animal house in the University of Port Harcourt. The albino rats were allowed access to commercial rodent chow and clean drinking water *ad libitum* for one – week acclimatization before treatment that lasted for four weeks.

The albino rats were divided into four groups of five rats each for two phases of treatment. These groups were labeled 1, 2, 3, and 4.

Group 1 albino rats were treated with water and rodent chow; they served as control for both phases of treatment.

Phase 1 albino rats were treated with coconut oil supplemented diet (COSD). Rodent feed was mixed with coconut oil. The albino rats were treated with the mixed feed at 3 ml/kg, 6 ml/kg and 12 ml/kg body weight for groups 2, 3 and 4 respectively [13].

Phase 2 albino rats were administered with coconut oil by oral gavage at 3 ml/kg, 6 ml/kg and 12 ml/kg body weight for groups 2, 3 and 4 respectively [13].

RESULTS AND DISCUSSION

Table 1: Effect of Coconut Oil on Enzyme Activities

Groups	Treatment (ml/kg)	AST (U/L)	ALP (U/L)	ALT (U/L)	AST (U/L)	ALP (U/L)	ALT (U/L)
1	Control	52.6±3.43df	33.8±0.84df	16.6±1.51f	52.6±3.43df	33.8±0.84df	16.6±1.51f
2	3	57.6±1.82a	34.4±1.67adff	16.4±1.14f	64.8±3.49af	37.2±1.92a	19.0±2.55a
3	6	58.0±1.0bcf	37.6±1.51bce	17.2±1.48df	60.6±2.70bcf	39.2±2.39bcf	20.2±2.17bcf
4	12	58.8±2.05be	39.4±0.89bdf	22.4±2.07bd	58.2±3.11be	40.0±4.12be	20.6±1.34be

Values are expressed as mean ± standard deviation of mean (SEM) for n=5. Values with different superscript letters in the same rows are significantly different at the 0.05 level (p≤0.05).
Table 2: Effect of Coconut Oil on Kidney Functions

Groups	Treatment (ml/kg)	Oral Administration	
	Urea (mmol/L)	Creatinine (mmol/L)	Albumin (g/L)
	Urea (mmol/L)	Creatinine (mmol/L)	Albumin (g/L)
1	control 6.2±0.31^b	146.0±1.41^{bd}	37.2±3.03^b
	146.0±1.41^{bd}	37.2±3.03^b	6.2±0.31^{bdf}
2	3 5.4±0.18^{adf}	130.2±3.96^{adf}	42.0±2.55^{adf}
	130.2±3.96^{adf}	42.0±2.55^{adf}	5.5±0.31^a
3	6 5.9±0.13^{bcf}	136.8±2.17^{bcf}	40.6±1.14^{bc}
	136.8±2.17^{bcf}	40.6±1.14^{bc}	5.6±0.11^c
4	12 6.2±0.36^{bde}	146.8±2.05^{bde}	40.4±4.10^{be}

Values are expressed as mean ± standard deviation of mean (SEM) for n=5. Values with different superscript letters in the same rows are significantly different at the 0.05 level (p≤0.05).

Table 3: Effect of Coconut Oil on Total Protein and Haematology

Groups	Oral Administration					
	T.P (g/L)	PCV (%)	Hb (g/dL)	T.P (g/L)	PCV (%)	Hb (g/dL)
1	control 60.6±3.43^{bdf}	37.8±3.9^{bdf}	12.6±0.14^{bdf}			
2	3 69.0±2.12^a	33.0±1.73^{adf}	11.8±0.23^a			
3	6 68.2±2.05^{bc}	34.8±0.84^{bc}	11.7±0.30^{bc}			
4	12 67.6±1.52^e	35.0±1.58^{be}	11.8±0.31^e			

Values are expressed as mean ± standard deviation of mean (SEM) for n=5. Values with different superscript letters in the same rows are significantly different at the 0.05 level (p≤0.05).

HISTOLOGY

1a–Normal hepatocyte cells (H).
1b–Normal hepatocyte cells (H).
1c–Normal hepatocyte cells (H).

Plate 1a–1c: Photomicrographs of the liver of albino rats for the control group
Plate 2a – 2c: Photomicrographs of the liver of albino rats for COSD group 2

Plate 3a – 3c: Photomicrographs of the liver of albino rats for COSD group 3

Plate 4a – 4c: Photomicrographs of the liver of albino rats for COSD group 4
Plate 5a – 5c: Photomicrographs of the liver of albino rats for coconut oil oral administration group 2

Plate 6a – 6c: Photomicrographs of the liver of albino rats for coconut oil oral administration group 3

Plate 7a – 7c: Photomicrographs of the liver of albino rats for coconut oil oral administration group 4
DISCUSSION

The result of the effect of coconut oil on the enzyme activities of albino rats treated with coconut oil supplemented diet (COSD) and coconut oil (CO) oral administration are showed on Table 1. The result indicated that there was a significant increase (p≤0.05) in AST, ALP and ALT levels for both phases of treatment when compared with the control. The statistical increase in the levels of these enzymes agrees with findings in persons who consumed coconut oil for 8 weeks as these persons who consumed coconut oil had increase in these enzyme activities [15]. Table 2 shows results of the effect of coconut oil on kidney functions of the treated albino rats. When the filtration in the kidney is poor, creatinine blood levels increases [16]. In this study, the urea and creatinine blood levels for both treatment phases showed a significant decrease compared to the control group. This may infer that the kidneys of the albino rats used for this study were not affected. There was a significant (p≤0.05) increase in albumin levels for COSD treated groups compared with the control. Albumin levels for the coconut oil (CO) oral administration treatment phase increased significantly for only group 2 rats while group 4 rats had insignificant decrease compared with the control rats. The effect of coconut oil on total protein and haematological parameters are on Table 3, the result revealed that there was a significant (p≤0.05) increase of total protein levels in the COSD treated phase compared with the control. Total protein levels for the coconut oil (CO) oral administration treated phase revealed a significant increase in group 2 albino rats while that of group 4 albino rats revealed that there was a significant decrease in total protein when compared with the control albino rats. PCV levels revealed a significant decrease for both treatment phases compared with the control group. Haemoglobin levels of the treated rats indicated a significant (p≤0.05) decrease for both treated phases compared with the control except for coconut oil (CO) oral administration group 4 albino rats where the decrease is insignificant.

Plate 1a – 7c showed the photomicrographs of the histological result of the liver of albino rats used for this study. The histological result of albino rat liver for the control group in plate 1a – 1c revealed that the albino rats had normal liver with regular hepatocytes, sinusoids and prominent central vein as indicated with the black arrow. Plate 2a – 2c (COSD group 2) liver sections appeared normal with regular hepatocytes, sinusoids and central vein for the albino rats in this group. Plate 3a – 3c (COSD group 3) revealed normal liver with regular hepatocytes for plate 3a, 3b and 3c albino rats. Plate 4a – 4c (COSD group 4), plate 4a, and 4c liver sections appeared histologically normal with regular hepatocytes, sinusoids and central vein while plate 4b had abnormal liver hepatocyte as indicated with the white arrow. Plate 5a –5c (Coconut oil oral administration group 2). Normal liver cells with regular hepatocytes, sinusoids and central vein was discovered in plate 5a, 5b and 5c as indicated with the black arrow. Plate 6a – 6c (Coconut oil oral administration group 3), it was revealed that the liver of albino rats in this group are normal with regular hepatocytes and central vein. Plate 7a – 7c (Coconut oil oral administration group 4), an abnormal liver hepatocyte with microvesicular steatosis was discovered in plate 7a as indicated with the white arrow while plate 7b and 7c revealed that the liver of the albino rats are normal with regular hepatocytes and a congested central vein. Microvesicular steatosis is usually an acute liver disorder histologically regarded as numerous tiny lipid vesicles in the hepatocyte that leaves the nucleus at the middle of the cell [17]. It’s certainly not a major damage to the liver [18]; clinically it can be linked with a rise in serum amino transferase levels [18, 19].

CONCLUSION

This study has shown that coconut oil within the administered concentrations cause mild inflammation of the liver in some of the experimental rats.

REFERENCES

[1] D. L. Kasper, S. F. Anthony, L. L. Dan, L. J. Jameson, L. Joseph and L. H. Stephen (2015). Harrison’s principles of internal medicine, 9th edition. United States: McGraw – hill education.
[2] S. E. Manahan (1992). Toxicological chemistry. 2nd edition, lewis publishers/CRC press. Boca raton, FL.
[3] F. J. Gonzalez (1998). The study of xenobiotic metabolizing enzymes and their role in toxicity in vivo using targeted gene disruption, Toxicology Letters, 102, 161–166.
[4] P. Millburn (1995). The fate of xenobiotics in mammals: biochemical processes. Progress in Pesticide Biochemistry and Toxicology, 8, 1–86.
[5] S. E. Manahan (2000). Environmental science, technology and chemistry. Boca raton: CRC press LLC.
[6] P. K. Mukherjee (2002). Quality control of herbal drugs, Pharmaceutical Publishers, 113.
[7] F. M. D. Bruce (2004). The coconut oil miracle. USA 4th Edition, 1–7.
[8] A. M. Marina, Y. B. Che–Man and I. Amin (2009). Virgin coconut oil: emerging functional food oil, Trends in Food Science and Technology, 20(10), 481–487.
[9] C. Dayrit and H. B. Calleja (2003). Professorial lecture on coconut oil: atherogenic or not? Philippine Journal of Cardiology, (3), 97–103.
[10] M. F. Piepoli, A. W. Hoes and S. Agewall (2016). “2016 European guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts): developed with the special contribution of the European association for cardiovascular prevention and rehabilitation (EACPR)”. European Heart Journal, 72–78.
[11] F. Bruce (2009). Coconut oil miracle. Adventure works press, Philippines.
[12] R. K. Agarwal and S. J. D. Bosco (2017). Extraction processes of virgin coconut oil, MOJ Food Processing and Technology, 4(2), 54 – 56.
[13] N. Boisa, N. Nwachoko, O. S. Bull and F. A. James (2020). Physical composition, proximate, phytochemical and impact of coconut oil on lipid profile of albino rats, IOSR Journal of Applied Chemistry, 13(7), 51–56.
[14] A. Mann, A. Thompson, N. Robbins and A. L. Blomkalns (2014). Localization, identification and excision of murine adipose depots, Journal of Visualized Experiments, 12(4), 94.
[15] S. Chinchwong, D. Chinchwong and M. Ampica (2017). Daily consumption of virgin coconut oil increases high-density lipoprotein cholesterol levels in healthy volunteers: A randomized crossover trial, Evidence-based Complementary and Alternative Medicine, 1–8.
[16] K. Md. M. Hassan, N. Tamanna and Md. A. Haque (2017). Biochemical and histopathological profiling of wistar rat treated with Brassica napus as a supplementary feed. Food Science and Human Wellness, 7(2018), 77–82.
[17] F. Bissuel, F. Bruneel, F. Habersetzer, D. Chassard, L. Cotte, M. Chevallier, J. Bernuau, J.C. Lucet and C. Trepo (1994). Fulminant hepatitis with severe lactate acidosis in HIV-infected patients on didanosine therapy. Journal of Internal Medicine, 235, 367–371.
[18] A. Boyd, O. Cain, A. Chauhan and G. James-Webb (2020). Review: medical liver biopsy on background, indications, procedures and histopathology, open access: Frontline Gastroenterology, 11, 40–47.
[19] L. Miele, A. Liguori, G. Marrone, M. Biolata, C. Araneo, F. G. Vaccaro, M. Gasbarrini and A. Grieço (2017). Fatty liver and drugs: The two sides of the same coin. European Review for Medical and Pharmacological Sciences, 21(1), 86–94.