Anaesthetic Impairment of Immune Function Is Mediated via GABA_A Receptors

Daniel W. Wheeler¹, Andrew J. Thompson², Federico Corletto¹, Jill Reckless³, Justin C. T. Loke¹, Nicolas Lapaque⁴, Andrew J. Grant⁵, Pietro Mastroeni⁵, David J. Grainger³, Claire L. Padgett², John A. O’Brien⁶, Nigel G. A. Miller⁴, John Trowsdale⁴, Sarah C. R. Lummis^{2,6,9}, David K. Menon^{1,9}, John S. Beech^{1,9}

1 Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom, 2 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom, 3 Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom, 4 Department of Pathology, University of Cambridge, Cambridge, United Kingdom, 5 Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, 6 Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom

Abstract

Background: GABA_A receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs [1]. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear [2]. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die [3–6]. As many anaesthetics act via GABA_A receptors [7], the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients.

Principal Findings: We demonstrate, using RT-PCR, that monocytes express GABA_A receptors constructed of α₁, α₄, β₂, γ₁ and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABA_A receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABA_A receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin.

Significance: Our results show that functional GABA_A receptors are present on monocytes with properties similar to CNS GABA_A receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABA_A receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABA_A receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anaesthetising agent may be advantageous where infection is a life threatening problem.

Citation: Wheeler DW, Thompson AJ, Corletto F, Reckless J, Loke JCT, et al. (2011) Anaesthetic Impairment of Immune Function Is Mediated via GABA_A Receptors. PLoS ONE 6(2): e17152. doi:10.1371/journal.pone.0017152

Editor: Alexander Annala, City of Hope, United States of America

Received November 4, 2010; Accepted January 20, 2011; Published February 24, 2011

Copyright: © 2011 Wheeler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Medical Research Council (DW, JAOB, DKM, JSB); JSB, DKM: grant number 79588, the Wellcome Trust (FC, AJT, PM, SCRL, DKM) SCRL: grant number 08195, the Association of Anaesthetists of Great Britain and Ireland (DWW), Biotechnology and Biological Sciences Research Council (AJG), Royal College of Anaesthetists (DKM), Queen’s College, Cambridge (DKM), the Evelyn Trust (DKM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

[*] E-mail: sl120@mole.bio.cam.ac.uk

[†] These authors contributed equally to this work.

Introduction

The anaesthetic drug, propofol, is a first line agent for sedation of critically ill patients on intensive care, facilitating potentially lifesaving invasive treatments such as mechanical ventilation [1]. Its use, however, can have serious side effects, such as an increase in the incidence of secondary pneumonia from 35% to 53% [2]. Thiopental is another intravenous anaesthetic used in intensive care patients, usually for the management of patients with refractory status epilepticus or intracranial hypertension [1], but again can impair immune function, for example by suppressing bone marrow haematopoiesis [3]. The extent to which these drugs immunocompromise patients, and the contribution of this immunological impairment to the development of septicemia on the intensive care unit has not been studied. However, a large proportion of critically ill patients have a primary diagnosis of septicemia or severe sepsis as a result of respiratory or abdominal infections [8], and are prone to secondary infections; risk factors for these include blood transfusion [9], positive pressure respiratory support [10] and intravenous nutrition [11]. The seriousness of such infection in critically ill patients is not in doubt: more than 50% of patients with severe sepsis will die, usually from multiple organ failure [4]. It is known that a wide variety of anaesthetic and analgesic drugs negatively modulate the migration
and actions of various cells in the innate immune system [5–7], but as these drugs act at a broad range of receptors, their cytotoxic excipients have generally been considered to be responsible [12–14]. Recent work has shown that Cys-loop receptors are present on immune cells, and are a potential site of drug action [15–17]. Here we consider whether propofol and thiopental act via GABA_A receptors on monocytes. These receptors are the target of a range of anaesthetics [18] and are known to modulate T-lymphocytes in mouse models of autoimmune diseases such as type 1 diabetes mellitus and experimental autoimmune encephalomyelitis [19–21]. Monocytes and macrophages produce and secrete GABA [21,22], so the tonic paracrine inhibition of function seen in embryonic neurons and cerebellar granule cells may play a role in the regulation of innate immune function and inflammation. In this report we show that GABA_A receptors are expressed by monocytes, and that action at these proteins can explain the effects of both propofol and thiopental. The studies were performed using freshly-prepared human monocytes whenever possible, but where they were unsuitable we used the human myleomonocytic cell line (THP-1), which are routinely used as a model of human monocyte function e.g.[23].

Results

RT-PCR of RNA extracted from a human myleomonocytic cell line (THP-1 cells) and freshly prepared human monocytes showed that GABA_A receptor subunits are expressed in these cells. In THP-1 cells, amplimers of the correct sizes and sequences were obtained for α4, β2, γ1 and δ GABA_A receptor subunits (figure 1a). In fresh monocytes, only β2 subunits could be isolated (table 1). Expression of the β2 subunit protein was confirmed by immunoblotting and immunohistochemistry (figure 1b). These receptors are functional: whole cell patch clamp of THP-1 cells showed that both GABA and the GABA_A-specific agonist muscimol elicited currents that were blocked by the GABA_A antagonists picrotoxin and bicuculline at 1 mM and 100 μM respectively (figure 2a). The channels predominantly conducted chloride: in whole cell patch clamp experiments the reversal potential of the GABA-induced responses was 15.1 ± 0.7 mV (all data = mean ± SEM, n=5), close to the theoretical value of 16.1 mV for a chloride channel, and under bi-ionic conditions was predominantly chloride permeable (figures 2b and 2c). Due to the small amplitudes of the whole-cell responses and the fragility of the

Figure 1. mRNA and protein expression of GABA_A receptor subunits in monocytic cells.

a) Typical RT-PCR of total RNA isolated from monocyte (M) and THP-1 cell (T) lysates detecting GABA_A receptor subunits. Amplimers corresponding to the expected sizes were detected for α4, γ1 and δ subunits of the GABA_A receptor in THP-1 cells, and β2 subunits in monocytes. RNA isolated from whole human brain (B) was used as a positive control. **b)** GABA_A receptor β2 subunit expression in non-permeabilised human monocytes. Image of a human monocyte stained with Hoechst 33342 (left hand panel) to show the nucleus, and with a GABA_A receptor β2-specific polyclonal antiserum (centre) revealing cell surface β2 subunits. The right panel shows the merged image. Positive controls were human cerebral cortex and negative controls were neutrophils (data not shown). Scale bar = 5 μm. Data are typical of at least 6 independent experiments. Inset = typical immunoblot of a monocyte sample (left hand side) and control (neutrophil, right hand side) probed with the β2-specific antiserum and showing expected MWt for a β2 subunit.

doi:10.1371/journal.pone.0017152.g001
Table 1. GABAA receptor subunits detected using RT-PCR in human monocytes, THP-1 cells and human cerebral cortex (positive control); n = 4–12.

Subunit	Cerebral cortex	Human monocytes	THP-1 cells
α1	+	-	-
α2	+	-	-
α3	+	-	-
α4	+	-	-
α5	+	-	-
α6	+	-	-
β1	+	-	-
β2	+	+	+
β3	+	-	-
γ1	+	-	+
γ25	+	-	-
γ2L	+	-	-
δ	+	-	-
ε	+	-	-
θ	+	-	-

Typical immunoblot are shown in figure 1.

doi:10.1371/journal.pone.0017152.t001

GABA_A Receptors in Monocytes

The data we present here show that functional GABA_A receptors, constructed of a combination of α1, α4, β2, γ1 and/or δ subunits, are present on monocytes. Whole cell patch clamp studies show that these receptors have properties broadly similar to CNS GABA_A receptors, and the anaesthetic drugs propofol and thiopental, which can also activate GABA_A receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays. The data therefore could provide an explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients.

The benzodiazepine diazepam did not affect function or modulate the effects of propofol or thiopental. Benzodiazepines have long been known to modulate GABA_A receptor responses [25], although more recently it was shown that this capacity critically depends on the subunit composition of the GABA_A receptors [26]. GABA_A receptors are heteromeric pentamers that most commonly contain α2, β2 and a γ subunit, although as there are 19 GABA_A receptor subunits, a large number of receptor stoichiometries are possible. We detected α2, β2, γ1 and δ subunits in THP-1 cells and β2 subunits in fresh monocytes. Detecting RNA in the latter is problematic, due to high levels of RNAses and difficulties in obtaining large numbers of pure monocytes, and other subunits, such as α1, may be present. RNA for this subunit has been previously reported in monocytes which, despite lack of evidence of any other subunits, also responded to GABA_A receptor agonists [27]. This suggests that a likely constitution of the GABA_A receptors in monocytes is α2α1β2γ2 or α2α1β2γ2δ, combinations typical of tonic GABA_A receptors responsible for slower signalling in the central nervous system [28]. GABA_A receptors containing α2 or δ subunits, and those lacking a γ2 subunit, would be expected to be insensitive to diazepam [29]. The detection of β2 subunits is significant, as this subunit contains a propofol-sensitive binding site, and - intriguingly - these subunits can assemble into functional receptors that respond to thiopental in vitro [30,31]. Thus our RNA data are consistent with the presence of GABA_A receptors in monocytes that are not modulated by benzodiazepines.

This first demonstration that propofol and thiopental modulate monocyte function through actions at diazepam-insensitive GABA_A receptors has important clinical implications. If a patient’s primary pathology is inflammatory, the immunomodulatory effects of propofol or thiopental could be therapeutic, but if it is infective they may increase the risk of sepsis. Recently the use of benzodiazepines as sedatives has been largely supplanted by propofol, but our data suggest that propofol might compromise immune cell function, while benzodiazepines would not. This raises the possibility that sedation strategies in critically ill patients could be tailored to their diagnosis, with a more traditional benzodiazepine-based approach for patients with, or at risk of, severe sepsis.

An essential question is whether our findings are relevant in terms of the concentrations of thiopental and propofol used in clinical practice. Here the concentrations at which thiopental and propofol cause a 50% reduction in monocyte chemotaxis in vitro are 270 μM and 120 μM respectively. High dose thiopental infusions result in a serum concentration of ~73 mg.l⁻¹, which is ~300 μM [32], and the concentration of propofol required to prevent 50% of patients responding to a surgical stimulus equates to 0.5 μM, which is ~150 μM in human monocytes.
to 38 mM [33]. There is a potential problem in that these compounds can bind to serum proteins, but this may not have large effects at low concentrations [34] and we included serum (bovine serum albumin) in our chemotaxis experiments to mimic this effect. It should also be considered that whilst half maximal effective and inhibitory (EC50 and IC50) concentrations are the conventional means of reporting experimental data, far more subtle reductions in function could have clinically relevant consequences. Thus we propose that thienopental and propofol are used in clinical practice at concentrations that have the potential to significantly diminish monocyte function in vivo.

An immunocompromising effect of two such widely used anaesthetics has significant consequences. Not least our data make a strong case for investigating alternative sedation strategies for patients depending on their primary pathology, and also add weight to the case for developing more precise methods for quantifying the adequacy of sedation. Clinicians titrate the doses of sedative drugs against rather blunt endpoints, tending to err on the side of caution (i.e. higher concentrations) to ensure that patients are comfortable and not distressed. Recent papers have focused on the need to minimise sedation levels in anaesthesia and critical care to reduce complications and time spent in an intensive care unit [35,36]. While most attention has focused on the sedative effects of drugs in this situation, our data suggest that the increased potential to compromise immune function may play a part. Lower plasma concentrations or novel combinations of sedatives could significantly improve prognoses. The same applies during surgery: administering a larger anaesthetic dose than is necessary could have implications for wound healing and acquisition of postoperative infections.

Our findings also raise the intriguing possibility of administering GABAA antagonists to influence immune function. Picrotoxin and securinine have been shown to positively modulate macrophage activity and enhance the clearance of bacteria [37,38]. A highly charged non-toxic GABAA antagonist that does not cross the blood brain barrier could be a means of diminishing the unwanted peripheral effects of the agonist drugs, or might even act as a novel non-sedating anti-inflammatory drug.

In conclusion we have demonstrated the clinical importance of GABAA receptors on monocytes, and suggest that using an anaesthetic or sedative drugs that act via different receptors could avoid immune impairment. At this stage it is not possible to quantify the extent to which GABAA agonists contribute to the acquisition of function on the intensive care unit considering the complex interplay of many pathophysiological processes in critical illness and multi-organ dysfunction. Our data suggest that the drugs used to sedate patients might be part of the problem, but also indicate possible solutions. The hypothesis that improved or different sedation strategies could reduce fatalities from septicemia in the critically ill requires further testing, but the outcome potentially has very great clinical implications.

Materials and Methods

Materials

All reagents were source from Sigma Aldrich (Poole, UK) unless otherwise stated.

Cell preparation

Peripheral blood mononuclear cells were used as the source of primary human monocytes. These had been isolated by centrifugation of Buffy coat (Blood Transfusion Service, Cambridge, UK) in Percoll gradients [39]. Monocytes were negatively isolated using immunomagnetic beads coated with monoclonal antibodies against human CD2, CD7, CD16, CD19, CD56 and CD3 as previously described [Monocyte negative isolation kit; Invitrogen, Paisley, UK] [40]. THP-1 cells (European Collection of Cell Cultures, Salisbury, Wiltshire, UK) were maintained at a density of between 4×10^5 and 1×10^6 cells/ml in RPMI 1640 supplemented with penicillin, streptomycin, 10% fetal calf serum and 20 mM 2-mercaptoethanol.

RT-PCR

Total RNA was extracted using an RNAqueous-4PCR kit (Ambion, Huntingdon, UK). RT-PCR reactions were prepared using 0.2 µg of total RNA and 20 µmol oligonucleotide primers using a SuperScript One-Step RT-PCR with Platinum Taq kit (Invitrogen). Total RNA extracted from human brain was used for positive controls; reactions lacking RT were also included. The expression of the ‘housekeeping gene’ glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was also examined. The primer sequences used to identify GABAA subunit mRNA have been published previously [41], those for GAPDH were: ACCACA-GTCCATGCACTAC (sense) and TCCACCACCCCTGTGCTGTAT (antisense). PCR conditions were: 2 min at 94°C x1; 94°C for 15 s, 55°C for 30 s and 68°C for 1 min x40; 5 min at 68°C x1. Amplifiers were resolved on a 1% agarose gel, extracted and sequenced (Applied Biosystems 3130x1, Applied Biosystems, Warrington, UK). Results were compared with known mRNA sequences on the Entrez PubMed nucleotides database (http://www.ncbi.nlm.nih.gov/entrez) using ClustalW (http://www.ebi.ac.uk/Tools/clustalw2).

Immunohistochemistry and immunoblotting

Cells were fixed with 4% paraformaldehyde in phosphate buffered saline (PBS), washed in Tris buffered saline (TBS), blocked with 3% BSA in TBS containing 0.2% Tween 20 (TTBS) and incubated overnight in a humidified chamber at 4°C with 1:1000 β2 subunit antisera (Abcam, Cambridge, UK). After 2 washes in TTBS, the samples were incubated with FITC-conjugated secondary antibody at room temperature for 3 h. Following washing, the samples were dried and mounted in Vectashield containing 4',6-diamidino-2-phenylindole (Vector, London, UK), and examined using confocal microscopy. Immunohistochemistry was performed using standard techniques with an overnight incubation using a 1:1000 dilution of the β2 subunit antisera, followed by a 1 h incubation with an HRP-conjugated secondary antibody. Bands were detected using enhanced luminal chemiluminescent reagent (Perkin Elmer, Beaconsfield, UK).

Whole cell patch clamp

THP-1 cells were grown on fibronectin-coated sterile cover slips. Cells were clamped at +60 mV in whole-cell configuration. Extracellular saline consisted of (mM) 140 NaCl, 5.4 KCl, 1 MgCl2, 1.0 CaCl2, 10.0 HEPES (pH 7.2). Pipettes were filled with...
(mM) 140 CsCl, 1.0 MgCl₂, 1.0 CaCl₂, 10.0 EGTA, 10.0 HEPES (pH 7.2). Currents were filtered at a frequency of 1 kHz (−3 dB) with a 4-pole low-pass Bessel filter and acquired at a sampling frequency of 110 Hz. Current-voltage relationships were studied using a voltage-ramp protocol from −80 mV to +40 mV over 1 s. Series resistance was usually less than 5.0 MΩ and voltage errors never exceeded 5 mV.

FlexStation analysis of potentiometric dyes
THP-1 cells were washed in flex buffer (in mM 115.0 NaCl, 1.0 KCl, 1.0 CaCl₂, 1.0 MgCl₂, 1.0 glucose, 10.0 HEPES pH 7.4) and 1×10⁵ cells added to each well of a 96 well plate. This was centrifuged at 1000 rpm for 2 min to embed an even layer of cells, and then incubated at room temperature for 45 min in 100 μl buffer containing membrane potential dye (Blue Kit, Molecular
Figure 4. Inhibition of monocyte phagocytosis by anaesthetics is reversed by GABA\textsubscript{A} antagonists. a) Concentration dependent inhibition of phagocytosis by thiopental in primary human monocytes; b) In the presence of either propofol (PPF) or sodium thiopental (STP), phagocytosis was significantly restored by the addition of the GABA\textsubscript{A} receptor antagonists picrotoxin (PTX) and bicuculline (BIC) (* sig diff. Mann-Whitney U test: p<0.05).

doi:10.1371/journal.pone.0017152.g004

Devices, Wokingham, UK) before being assayed in the FlexStation (Molecular Devices). Fluorescence was measured every 2 s for 300 s. At 20 s, 50 \mu l of muscimol was added to each well. Data was analysed using Prism (GraphPad, San Diego, USA).

Transwell filter migration assay

MCP-1 (Peprotech, London, UK) was diluted in Gey’s Balanced Salt Solution (GBSS) with 1% BSA to a final concentration of 12.5 ng.ml\(^{-1}\); 29.2 \mu l was added to each well of 96 well disposable chemotaxis chamber (Neuroprobe, Gaithersburg, USA) and an 8 \mu m polycarbonate filter membrane fitted. 1\times10^5 monocytes in 25 \mu l GBSS/BSA were then placed on the top of each well. The assembled chamber was incubated at 37 °C in a humidified atmosphere of air and 5% CO\(_2\) for 90 min.

Compounds under investigation were added in equal concentrations to both the top and bottom compartments of the migration chamber. After incubation, the cells were gently removed from the top of the filter with a pipette, 20 \mu l of ice-cold 20 mM EDTA in PBS was added to the top of each well and incubated at 4°C for 15 min. Cells that had migrated into the lower compartment of the chamber were incubated at 37 °C for 60 min with 3 ml of the vital dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT; 5 mg/ml in RPMI-1640). The liquid was then carefully aspirated from the wells leaving the stained cells, and the converted formazan blue dye was solubilised using 20 \mu l DMSO per well. Absorbance of the converted dye was measured at a wavelength of 595 nm using an ELISA plate reader (Molecular Devices). The number of cells migrated in each well was determined by interpolation of an 8-point standard curve using Softmax Pro (Molecular Devices).

Monocyte Phagocytosis Assay

THP-1 cells were differentiated in 200 nM phosphol 12-myristate 13-acetate (PMA) for 24 h. Fluorescent (FITC) labelled microspheres (Molecular Probes) were coated with 1% BSA (2.25\times10^7 microspheres.ml\(^{-1}\)) and added to the cells in 500 \mu l HEPES-buffered saline (m\(\text{M}\): 140.0 NaCl, 5.0 KCl, 2.0 CaCl\(_2\), 1.0 MgCl\(_2\), 10.0 HEPES, pH 7.4) with the compounds under investigation and incubated for 1 h. The positive control conditions were PMA alone; the negative control was unstimulated THP-1 cells. The cells were then washed with ice-cold PBS solution, fixed with 0.5% glutaraldehyde and analysed by flow cytometry using FlowJo software (version 7.5.5, Tree Star Inc., OR, USA). A phagocytosis index was calculated from the average number of beads taken up per cell.

Author Contributions

Conceived and designed the experiments: DW JT SL DM JB. Performed the experiments: DW AT FC JR JL NL AG PM DG CP JOB NM JT SL. Wrote the paper: DW SL.

References

1. Fraser GL, Riker RR (2007) Sedation and analgesia in the critically ill adult. Curr Opin Anaesthesiol 20: 119–123.
2. Nadal P, Nicolas JM, Font C, Vilella A, Noque S (1995) Pneumonia in ventilated head trauma patients: the role of thiopental therapy. Eur J Emerg Med 2: 14–16.
3. Stover JF, Stocker R (1998) Barbiturate coma may promote reversible bone marrow suppression in patients with severe isolated traumatic brain injury. Eur J Clin Pharmacol 54: 529–534.
4. Brun-Buisson C, Doyon F, Carlet J, Dellamonica P, Gouin F, et al. (1995) Inhibition of phagocytosis and killing of bacteria by anaesthetic agents in vitro. Br J Anaesth 75: 66–70.
5. Hoßbauer R, Frass M, Saffinger H, Moser D, Hornskwycz S, et al. (1999) Propofol reduces the migration of human leukocytes through endothelial cell monolayers. Crit Care Med 27: 1843–1847.
6. Krumholz W, Endrass J, Hempelmann G (1995) Inhibition of phagocytosis and killing of bacteria by anaesthetic agents in vitro. Br J Anaesth 75: 66–70.
7. Krumholz W, Reusner D, Hempelmann G (1999) The influence of several intravenous anaesthetics on the chemotaxis of human monocytes in vitro. Eur J Anaesthesiol 16: 547–549.
8. Volakli E, Spies C, Michalopoulos A, Groeneveld AB, Sakr Y, et al. Infections of respiratory or abdominal origin in ICU patients: what are the differences? Crit Care Med 27: 1843–1847.
23. Ferrer NL, Gomez AB, Neryrolles O, Gicquel B, Martin C (2010) Interactions of attenuated Mycobacterium tuberculosis phoP mutant with human macrophages. PLoS One 5: e12978.
24. Frow EK, Reckless J, Grainger DJ (2004) Tools for anti-inflammatory drug design: in vitro models of leukocyte migration. Med Res Rev 24: 276–298.
25. Sigel E, Buhr A (1997) The benzodiazepine binding site of GABA_A receptors. Trends Pharmacol Sci 18: 425–429.
26. Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABA_A receptor subtypes. Curr Top Med Chem 2: 795–816.
27. Alam S, Laughton DI, Walding A, Wolstenholme AJ (2006) Human peripheral blood mononuclear cells express GABA_A receptor subunits. Mol Immunol 43: 1432–1442.
28. Farrant M, Nuwer Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA_A receptors. Nat Rev Neurosci 6: 215–229.
29. Brown N, Kerby J, Bonnett TP, Whiting PJ, Walford KA (2002) Pharmacological characterization of a novel cell line expressing human α4β3δ GABA_A receptors. Br J Pharmacol 136: 965–974.
30. Bali M, Akabas MH (2004) Defining the propofol binding site location on the GABA_A receptor. Mol Pharmacol 65(1): 68–76.
31. Cestari IN, Uchida I, Li L, Bart D, Yang J (1996) The agonistic action of pentobarbital on GABA_A β-subunit homomeric receptors. Neuroreport 7: 943–947.
32. Cordato DJ, Herkes GK, Mather LE, Gross AS, Finfer S, et al. (2001) Prolonged thiopentone infusion for neurosurgical emergencies: usefulness of therapeutic drug monitoring. Anaesth Intensive Care 29: 339–348.
33. Stuart PC, Stott SM, Millar A, Kenny GN, Russell D (2000) Cp50 of propofol with and without nitrous oxide 67%. Br J Anaesth 84: 638–639.
34. Dawidowicz AL, Kalifatni K, Kobierski M, Pieniazek J (2006) Influence of propofol concentration in human plasma on free fraction of the drug. Chem Biol Interact 159: 149–155.
35. Strom T, Martinussen T, Toft P (2010) A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet 375: 475–480.
36. Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342: 1471–1477.
37. Stankevicus D, Rodrigues-Costa EC, Camillo Florio J, Palermo-Neto J (2006) Neuroendocrine, behavioral and macrophage activity changes induced by picrotoxin effects in mice. Neuropharmacology 54: 300–308.
38. Labick K, Radke M, Jutila M (2007) Securinine, a GABA_A receptor antagonist, enhances macrophage clearance of phase II C. burnetii: comparison with TLR agonists. J Leukoc Biol 82: 1062–1069.
39. Hadlett C, Guthrie LA, Kopaniak MM, Johnston RR, Jr., Henson PM (1985) Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharides. Am J Pathol 119: 101–110.
40. Haigh AH, Bishop MJ, Kuhilga PS, Newell DW, Piron DJ (1992) Pneumonia following closed head injury. Am Rev Respir Dis 146: 290–294.
41. Maddox FN, Valeyev AV, Poth K, Hollohan AM, Wood PM, et al. (2004) GABA_A receptor subunit mRNA expression in cultured embryonic and adult human dorsal root ganglion neurons. Brain Res Dev Brain Res 149: 143–151.