INTRODUCTION

Post-enucleation socket syndrome (PESS) is a common complication in anophthalmic sockets and typically gives rise to enophthalmos and deep sockets.[1-4] The two most frequent causes of this problem are inadequate volume of the orbital implant and decreased volume of intraorbital soft tissues. Insufficient orbital volume often leads to an unacceptable position and appearance of the ocular prosthesis and deep upper eyelid sulcus. Other findings in this syndrome include superior sulcus deformity, ptosis, and lower eyelid laxity.[4-7]

PESS can be addressed by augmenting the orbital volume with a larger orbital implant, subperiosteal placement of sheet or wedge implants, and placement of a dermis fat graft. All these methods are invasive and frequently require hospital admission and administration of general or local anesthesia.[6-14]

Abstract

Purpose: To report the long-term results of orbital volume augmentation using calcium hydroxyapatite filler injections in patients with anophthalmic sockets.

Methods: Twelve eligible patients with post-enucleation socket syndrome (PESS) and small orbital volumes were included in our study. In this investigation, 1.5 mL injectable calcium hydroxyapatite (Radiesse) was utilized in an off-label application under local anesthesia. We evaluated the effect of orbital volume augmentation for correction of enophthalmos.

Results: Five women and seven men with a mean age of 35 years (range, 21-72 years) were included in the study. The mean follow-up was 19.5 months (range, 16-27 months). Enophthalmos and deep superior sulcus were reduced in all patients during all follow-up visits postoperatively. The mean improvement of enophthalmos was 2.58 mm (range, 1-5 mm) and the improvement in deformity grading of superior sulcus was 0.83 (range, 0-4 grade). The mean marginal reflex distance increased by 0.6 mm (range of -1 to 3 mm). Complications included increase in ptosis in two cases and extrusion of the filler accompanied by discoloration of the skin in one case.

Conclusion: The use of injectable calcium hydroxyapatite for orbital volume restoration in anophthalmic sockets is a simple, fast, and minimally invasive method with considerable long-term effects and low complications.

Keywords: Anophthalmic Enophthalmos; Calcium Hydroxyapatite; Radiesse

J Ophthalmic Vis Res 2017; 12 (4): 397-401

How to cite this article: Aletaha M, Salour H, Yadegary S, Fekri Y, Tavakoli M. Orbital volume augmentation with calcium hydroxyapatite filler in anophthalmic enophthalmos. J Ophthalmic Vis Res 2017;12:397-401. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com
Recently, fillers have been used to increase the orbital volume as a minimally invasive procedure. Generally, orbital volume augmentation with fillers is a relatively safe, simple, and cost-effective procedure. Different substances such as cross-linked collagen, silicone oil, autologous fat, hydrogel pellet expanders, hyaluronic acid, and polyacrylamide gel have been used for injection in the intraorbital space. However, some limitations and complications such as a short half-life, unpredictable volume restoration, inflammatory reactions, migration, and extrusion of material have been reported. Furthermore, follow-up periods in previous studies were not sufficient to verify the longstanding effects of the injected materials in the orbit.[15-23]

Radiesse (Merz Aesthetics, Inc., Frankfurt, Germany) is a semi-solid filler with the Food and Drug Administration approval for several functional and cosmetic purposes. It constitutes 30\% calcium hydroxyapatite particles (size range, 25-45 microns), 70\% glycerin, sodium carboxymethyl cellulose, and water. In this study, we aimed to evaluate the long-term effectiveness and safety of intraorbital injection of Radiesse filler for orbital volume augmentation in patients with PESS.

METHODS

This study was approved by the scientific and ethics committee of our university. In an interventional study during a period of two years, from January 2014 to April 2016, in our hospital, patients with PESS and small orbital volume were enrolled. Patients with socket restriction and the inability to fit prosthesis were excluded from the study. The procedure, alternative treatments, risks, and benefits of the treatment were explained to all patients, and a signed consent form was obtained prior to injection. One surgeon performed all the procedures.

The severity of enophthalmos was quantified using a Naugle exophthalmometer with the ocular prognosis in place. The sulcus deformity was graded as: 0, normal and symmetric superior sulcus; 1, subtile medial fat pad atrophy; 2, marked medial fat pad atrophy; 3, medial and central fat pad atrophy; or 4, superior sulcus medial to lateral fat pad atrophy (severe form).[7] Ptosis was assessed by measuring the marginal reflex distance 1 (MRD1). In all patients, the procedure was performed at least 3 years after the latest surgery.

Since the orbital injection of Radiesse is painful, it was performed in the operating room with intravenous sedation and retrobulbar injection of anesthesia (2 cc of 2\% lidocaine).

In the supine position, a total of 1.5 cc Radiesse filler was injected using a 23-gauge needle. Approximately two-thirds of the syringe volume was injected into the orbit while the needle was in touch with the orbital floor. Then, the remaining filler was injected deeply in the superior socket [Figure 1].

The needle was passed transcutaneously, and the surgeon tried to inject only in the extraconal space. The injection was performed slowly and only while the needle was being withdrawn from the site. A superficial injection was avoided. Furthermore, very deep posterior injections around the orbital apex were avoided to prevent the unacceptable spreading of the filler into the danger zones of the orbital fissures.

The patients were examined at one day, four months, and twelve months after injection. Results of exophthalmometry, sulcus deformity grading, and evidence of any complications were recorded.

To describe the data, we used frequency (percent) and mean ± SD. To evaluate the differences between the pre and post-injection values, the Wilcoxon signed rank test was used. A P value less than 0.05 was considered as statistically significant. All statistical analysis was performed using SPSS software (IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.).

RESULTS

Twelve patients consisting of five women (42\%) and seven men (58\%) with a mean age of 35 years (range, 21-72 years) were included in the study. The initial indications of enucleation were congenital anophthalmos, painful blind eye, and periocular trauma. The mean follow-up period was 19.5 months (range, 16-27 months).

Enophthalmos and deep superior sulcus improved in all patients during all follow-up visits postoperatively [Figure 2]. The mean improvement of enophthalmos in the last visit was 2.6 mm (range, 1-5 mm) (P = 0.04). The grading of deep superior sulcus deformity showed an improvement of 0.83 (range, 0-2 grades) (P = 0.004) from preoperative to postoperative status. Ptosis was improved in 10 cases with a mean MRD1 change of 0.6 mm (range, -1 to 3 mm, Table 1).

After the procedure, a mild and limited ecchymosis at the site of injection was observed in seven cases and resolved within a few days with conservative treatment. Worsening of ptosis was observed in two patients [Figure 3] which did not improve after six months of follow-up, so a levator resection surgery was performed.

Anterior extrusion of Radiesse gel and subsequently, the presence of lower eyelid skin discoloration (darkening) and a bump were noted in one patient [Figure 4]. This problem did not improve after three months of follow-up. Therefore, a transconjunctival orbitotomy and surgical excision of extruded materials were performed. Pathologic evaluation of the specimen showed mild chronic inflammatory cell infiltration around the calcium hydroxyapatite particles. The discoloration and bump
Calcium Hydroxylapatite Filler in Anophthalmic Enophthalmos; Aletaha et al

DISCUSSION

The outcomes of this study showed the relative effectiveness of orbital injection of Radiesse to improve enophthalmos, sulcus deformity, and ptosis. A low rate of complications was also observed in patients with PESS.

An ideal substance for orbital volume augmentation should have certain characteristics such as safety, easy administration, a reasonable cost, and predictable outcomes. In addition, fillers with longer residual effects are preferred.\[^{16,20,23}\] Calcium hydroxylapatite gel (Radiesse) is a biocompatible material with longstanding effects so it can be a good option for orbital volume augmentation.\[^{18‑19}\]

In our study, enophthalmos and deep superior sulcus were reduced in all patients during all follow-up visits postoperatively. Similar to Malhorta’s study, reduction in enophthalmos of 2 mm with a 2-mL injection of hyaluronic acid was achieved in all primary injections.\[^{16}\] However, the effects of hyaluronic acid were temporary, and reduced within the days after the injection.\[^{16,23}\]

In a study carried out by Vagefi et al, a reduction in enophthalmos ranging from 1 to 4 mm was noted per syringe of filler, and each syringe of filler provided a mean improvement of 2.4 mm.\[^{20}\] Although our patients had a history of multiple reconstructive orbital surgeries with some degrees of fibrotic sockets, acceptable outcomes were observed during the follow-up periods.

Anterior dislocation of filler is a potential complication of intraorbital injection of Radiesse gel. The presence of significant fibrosis in the intraorbital tissue secondary to chronic inflammation and iatrogenic surgical trauma disappeared one month after surgery. Lower eyelid retraction was also improved in one patient after the injection of Radiesse gel into the orbit [Figure 5].

Table 1. The characteristic of patients (pre and post filler injection)

ID	Age (years)	Sex	Exophthalmometer	Sulcus deformity	F.U	Complication		
ID	Pre-injection	Four months post-injection	Last Follow-up	Pre-injection	Post-injection			
----	-------------	----------------------------	---------------	-------------	--------------			
1	21	M	13	15	14	0	0	22
2	22	F	11	13	13	3	2	16
3	36	M	11	12	12	1	1	19
4	27	M	13	13	13	4	3	18
5	30	M	17	17	17	3	1	21
6	40	F	14	14	14	4	3	17
7	27	F	11	15	15	3	2	17
8	48	F	9	11	11	2	1	18
9	32	M	15	15	15	4	3	24
10	26	M	11	11	11	4	3	27
11	38	M	18	18	18	1	0	17
12	72	M	15	15	15	4	4	18
Mean	35	13	14	14	3	2	20	
SD	14	2	2	2	1	1	3	

\(p \) values are based on Wilcoxon Signed Ranks Test (between each follow up and pre-injection values)

Figure 1. Intraorbital injection of Radiesse gel with a 23-gauge needle passed transcutaneous into the deep socket spaces.

Figure 2. A 72-year-old man with 4 mm improvement of enophthalmos after the injection of Radiesse gel into the right orbit (left picture).
Calcium Hydroxylapatite Filler in Anophthalmic Enophthalmos; Aletaha et al

Journal of Ophthalmic and Vision Research
Volume 12, Issue 4, October-December 2017

400

selected cases with anophthalmic socket is a simple, fast, and minimally invasive technique with relatively longstanding effects and low complication rates.

Financial Support and Sponsorship
Nil.

Conflicts of Interest
There are no conflicts of interest.

REFERENCES

1. Hardy TG, Joshi N, Kelly MH. Orbital volume augmentation with autologous micro-fat grafts. Ophthalm Plast Reconstr Surg 2007;23:445-449.
2. Tyers AG, Collin JR. Orbital implants and postenucleation socket syndrome. Trans Ophthalmol Soc UK 1982;102:90-92.
3. Woog JJ, Angrist RC, White WL, Dortzbach RK. Enucleation, exenteration, and exenteration. In: Dortzbach RK, editors. Ophthalmic plastic surgery; Prevention and management of complications. New York, NY: Raven Press Ltd.; 1994. p. 251-268.
4. Custer PL, Trinkaus KM. Volumetric determination of enucleation implant size. Am J Ophthalmol 1999;128:489-494.
5. Kaltreider SA, Jacobs JL, Hughes MO. Predicting the ideal implant size before enucleation. Ophthalm Plast Reconstr Surg 1999;15:37-43.
6. Kaltreider SA, Lucarelli MJ. A simple algorithm for selection of implant size for enucleation and evisceration: A prospective study. Ophthalm Plast Reconstr Surg 2002;18:336-341.
7. Paris GL, Spohn WG. Correction of enophthalmos in the anophthalmic orbit. Ophthalmology 1980;87:1301-1308.
8. Coster DJ, Galbraith JE. Diced cartilage grafts to correct enophthalmos. Br J Ophthalmol 1980;64:135-136.
9. Steinkogler FJ. The treatment of the post-enucleation socket syndrome. J Craniofac Surg 1987;15:31-33.
10. Leone CR Jr. Correction of superior sulcus defects after enucleation. Adv Ophthalmic Plast Reconstr Surg 1990;8:209-213.
11. Meleca R, Mathog RH. Bone graft implantation for correction of the anophthalmic orbit. Arch Otolaryngol Head Neck Surg 1994;120:49-55.
12. Nasr AM, Jabak MH, Batainah Y. Orbital volume augmentation with subperiosteal room-temperature-vulcanized silicone implants: A clinical and histopathologic study. Ophthalm Plast Reconstr Surg 1994;10:11-21.
13. Hunter PD, Baker SS. The treatment of enophthalmos by orbital injection of fat autograft. Arch Otolaryngol Head Neck Surg 1994;120:835-839.
14. Wiese KG, Vogel M, Guthoff R, Gundlach KK. Treatment of congenital enophthalmos with self-inflating polymer expanders: A new method. J Craniofac Surg 1999;27:72-76.
15. Kotlus BS, Dryden RM. Correction of anophthalmic enophthalmos with injectable calcium hydroxyapatite (Radiess). Ophthalm Plast Reconstr Surg 2007;23:313-314.
16. Malhotra R. Deep orbital Sub-Q restylane (nonanimal stabilized hyaluronic acid) for orbital volume enhancement in sighted and anophthalmic orbits. Arch Ophthalmol 2007;125:1623-1629.
17. da Silva AL, Bredemeier M, Gebrim ES, Moura Epa M. Intraorbital polyacrylamide gel injection for the treatment of anophthalmic enophthalmos. Ophthalm Plast Reconstr Surg 2008;24:367-371.
18. Vagefi MR, McMullan TF, Burroughs JR, White GL Jr, McCann JD, Anderson RL. Injectable calcium hydroxyapatite for orbital volume augmentation. Arch Facial Plast Surg 2007;9:439-442.
19. Marmur ES, Phelps R, Goldberg DJ. Clinical, histologic and electron microscope findings after injection of a calcium
hydroxylapatite filler. *J Cosmet Laser Ther* 2004;6:223-226.

20. Vagefi MR, McMullan TF, Burroughs JR, Georgescu D, McCann JD, Anderson RL. Orbital augmentation with injectable calcium hydroxylapatite for correction of postenucleation/evisceration socket syndrome. *Ophthal Plast Reconstr Surg* 2011;27:90-94.

21. Buchanan AG, Holds JB, Vagefi MR, Bidar M, McCann JD, Anderson RL. Anterior filler displacement following injection of calcium hydroxylapatite gel (Radiesse) for anophthalmic orbital volume augmentation. *Ophthal Plast Reconstr Surg* 2012;28:335-337.

22. Roy D, Sadick N, Mangat D. Clinical trial of a novel filler material for soft tissue augmentation of the face containing synthetic calcium hydroxylapatite microspheres. *Dermatol Surg* 2006;32:1134-1139.

23. Zamani M, Thyagarajan S, Oiver M. Adjunctive use of hyaluronic acid gel (restylane sub-q) in anophthalmic volume deficient sockets and phthisical eyes. *Ophthal Plast Reconstr Surg* 2010;26:250-253.