Macronutrients of mothers’ milk of very low birth weight infants: analysis according to gestational age and maternal variables

Maria Elisabeth Lopes Moreira, Sabrina Lopes Lucena, Patrícia Sffeir Coelho de Magalhães, Adriana Duarte Rocha, Ana Carolina Carioca Costa, Fernanda Valente Mendes Soares

Objective: To analyze the composition of macronutrients present in the milk of mothers of preterm newborn infants (PTNB) — protein, fat, carbohydrate, and calories — by gestational age (GA), chronological age (CA) and maternal variables.

Methods: Longitudinal study that analyzed 215 milk samples from 51 mothers of PTNB admitted in three Neonatal Intensive Care Units of Rio de Janeiro from May/2013-January/2014. Milk collection was performed by pickup pump, on a fixed day of each week until discharge. The spectrophotometric technique with Infrared Analysis (MilkoScan Minor 104) was used for the quantitative analysis. A sample of 7 mL of human milk was taken from the total volume of milk extracted by the mother. The data was grouped by GA (25-27, 28-31, 32-36 and 37-40 weeks) and by CA (zero to 4, 5-8, 9-12 and 13-16 weeks).

Results: Protein, carbohydrate, fat and calories presented increasing values in all groups, without significant differences. Weight gain during pregnancy, maternal hypertension and maternal age were associated with changes in fat and calories in the first moment of the analysis of milk.

Conclusions: There was a significant decrease in the levels of protein during the first eight weeks after birth. CA may be an important factor in the composition of human milk.

Keywords: Macronutrients; Milk, human; Infant, premature.
Macronutrientes do leite materno de RNMBP

INTRODUÇÃO
As taxas de sobrevida dos recém-nascidos pré-termo (RNPT) aumentaram substancialmente no decorrer das últimas duas décadas.1 Entretanto, apesar dos avanços no conhecimento da nutrição para esse grupo, a restrição de crescimento pós-natal continua apresentando-se como um problema crítico.2,3 A oferta de uma alimentação adequada no período neonatal, do qual o leite humano faz parte, é fator determinante para a sobrevivência imediata e para o crescimento e o desenvolvimento durante a infância e também o maior condicionante para a saúde a longo prazo.6,7

Segundo Arslanouglu et al.,8 evidências substanciais sugerem que não somente a baixa ingestão calórica, mas a ingestão inadequada de proteínas constitui um dos principais responsáveis pelo crescimento lento e por piores resultados neurocognitivos encontrados nos RNPT. A otimização do suporte nutricional é a melhor estratégia para reduzir e/ou prevenir essa restrição.

Diversos fatores podem influenciar a composição do leite humano de RNPT, que apresenta grande variabilidade, sendo importante analisar a presença de micronutrientes, para avaliar a necessidade de suplementação9 e de macronutrientes energéticos para os ajustes necessários. Bauer e Gerss,10 em análise longitudinal recente dos macronutrientes presentes no leite de mães de RNPT nas primeiras oito semanas de lactação, demonstraram concentrações maiores de proteína nas semanas iniciais, com diminuição progressiva ao longo das semanas, além de aumento progressivo nas taxas de gordura, carboidratos e calorias, atingindo valores superiores àqueles presentes no leite das mães dos RN a termo.

O leite humano é o melhor alimento para os recém-nascidos a termo e pré-termo. Todavia, ainda que seja amplio o leque de estudos científicos que discutam a composição nutricional do leite materno (LM), não deveriam ultrapassar 5% do obtido do estudo, o que resultou em 32 mães, para propiciar um poder de teste de 80%.

Para o cálculo do tamanho amostral, utilizou-se o estudo desenvolvido por Bauer e Gerss,10 que determinou a diferença média da concentração de proteínas no LM entre a 25ª e a 32ª semana de idade gestacional corrigida da segunda semana de lactação (período de provável início da coleta do leite). Para o tamanho amostral, foi estabelecido que as diferenças das médias não deveriam ultrapassar 5% do obtido do estudo, o que resultou em 32 mães, para propiciar um poder de teste de 80%.

A coleta do LM foi realizada no Banco de Leite Humano por enfermeiras treinadas, utilizando bomba coletora e esvaziando totalmente o seio a cada coleta. A primeira coleta ocorreu no momento em que a mãe apresentou condições de retirar o volume de leite suficiente (7 mL para a análise dos dados. Após esse início, o leite foi retirado semanalmente até a alta hospitalar.

A análise quantitativa dos macronutrientes energéticos (proteínas, gorduras e carboidratos — componentes da alimentação fundamentais para os organismos) do leite humano de RNPT, que apresenta grande variabilidade, sendo importante analisar a presença de micronutrientes, para avaliar a necessidade de suplementação9 e de macronutrientes energéticos para os ajustes necessários. Bauer e Gerss,10 em análise longitudinal recente dos macronutrientes presentes no leite de mães de RNPT nas primeiras oito semanas de lactação, demonstraram concentrações maiores de proteína nas semanas iniciais, com diminuição progressiva ao longo das semanas, além de aumento progressivo nas taxas de gordura, carboidratos e calorias, atingindo valores superiores àqueles presentes no leite das mães dos RN a termo.

O leite humano é o melhor alimento para os recém-nascidos a termo e pré-termo. Todavia, ainda que seja amplio o leque de estudos científicos que discutam a composição nutricional do leite materno (LM), não deveriam ultrapassar 5% do obtido do estudo, o que resultou em 32 mães, para propiciar um poder de teste de 80%.

Para o cálculo do tamanho amostral, utilizou-se o estudo desenvolvido por Bauer e Gerss,10 que determinou a diferença média da concentração de proteínas no LM entre a 25ª e a 32ª semana de idade gestacional corrigida da segunda semana de lactação (período de provável início da coleta do leite). Para o tamanho amostral, foi estabelecido que as diferenças das médias não deveriam ultrapassar 5% do obtido do estudo, o que resul-
Os macronutrientes também foram analisados em relação às seguintes características maternas gestacionais: idade materna, índice de massa corpórea (IMC) pré-gestacional, ganho de peso na gestação, diabetes melito gestacional (DMG), hipertensão arterial sistémica (HAS), gemelidade e raça. Consideraram-se mães portadoras de DMG aquelas que apresentaram curva glicêmica ou teste de tolerância oral à glicose alterado, e portadoras de HAS as mães que já eram hipertensas crônicas antes da gestação, além daquelas que exibiaram doença hipertensiva específica da gestação (DHEG), pré-eclâmpsia e eclâmpsia. A raça foi classificada em branca, parda ou negra, sendo autorreferida. O IMC foi calculado pela divisão do peso pré-gestacional em quilos (kg) pela altura em metros (m) ao quadrado e classificado em baixo peso (<18,5), peso adequado (18,5–24,9), sobrepeso (25–29,9) e obesidade (>30). O ganho de peso na gestação baseou-se nas recomendações do Institute of Medicine, levando-se em conta o IMC pré-gestacional da paciente, e foi classificado como deficitário, adequado ou excessivo.

Os dados coletados foram registrados num questionário elaborado para o estudo e analisados no software Statistical Package for the Social Sciences (SPSS) versão 20. A análise de variância foi utilizada para testar a hipótese de que as concentrações de cada um dos macronutrientes no leite são iguais, em média, segundo diferentes faixas de IGC e IC, sendo empregado o teste de Levene para testar a homogeneidade dos dados. Adicionalmente, foi realizado o teste de comparações múltiplas por meio dos testes de Tukey e Dunet. Para avaliar se fatores gestacionais maternos determinam diferenças nos macronutrientes presentes no leite das mães dos RNPT, fizeram-se os testes t de Student para amostras independentes e o teste de Mann-Whitney quando a suposição de normalidade não foi verificada. O nível de significância adotado para as análises foi de 5%.

Este estudo foi conduzido seguindo as boas práticas clínicas e a Resolução nº 466/12 e aprovado pelo Comitê de Ética em Pesquisa (CEP) do IFF, Certificado de Apresentação para Apreciação Ética (CAAE) 11414912.0.1001.5269. Solicitou-se o termo de consentimento informado (CAAE) 11414912.0.1001.5269. Solicitou-se o termo de consentimento informado dessas mães, e verificou-se que a ausência de HAS na gestação (p=0,043) e portadoras de HAS as mães que não apresentaram tal condição.

Os macronutrientes do LM foram também analisados por grupos de IC. Observou-se que gordura, carboidrato e calorias não apresentaram variação significativa, no entanto a concentração de proteína mostrou diferença estatística significativa quando comparado o primeiro grupo (zero a quatro semanas) com o segundo (cinco a oito semanas) (p=0,014) (Figura 1).

Ao analisar os macronutrientes presentes no LM (no primeiro momento de análise do leite) em relação às características maternas, observou-se um valor de gordura e de calorias significativamente maior nas mães com ganho de peso adequado na gestação, quando comparado com o das mães com ganho de peso excessivo. Os valores de gordura e de calorias mostraram-se ainda estatisticamente menores no leite das mães que tiveram HAS na gestação, quando comparados aos das mães que não apresentaram tal condição.

Outra variável que mostrou esse mesmo padrão de alteração na composição de gordura e de caloria foi a idade materna: mães com idade igual ou superior a 35 anos apresentaram maior concentração desses macronutrientes, quando comparadas com aquelas com idade menor que 35 anos (Tabela 2). As variáveis ganho de peso, HAS na gestação e idade materna foram incluídas no modelo de regressão, e verificou-se que a ausência de HAS na gestação (p=0,043) e a idade materna ≥35 (p<0,001) contribuíram significativamente para o aumento dos níveis de gordura e calorias do leite.

RESULTADOS

Foram incluídas 215 amostras de leite de 51 mães, no período de maio de 2013 a janeiro de 2014. Todos os recém-nascidos de mães participantes do estudo tiveram alta hospitalar antes de 37 semanas, e por esse motivo o grupo 4 de IGC (37 a 40 semanas) não foi analisado. A primeira coleta do leite ocorreu em média com 19 dias pós-natal.

A análise dos macronutrientes do LM mostrou que os valores de carboidrato apresentaram aumento progressivo, quando comparados entre os grupos de IGC, enquanto a proteína teve queda progressiva, porém essas diferenças não foram estatisticamente significativas quando comparados os três grupos de IGC entre si. A gordura e as calorias totais não seguiram nenhum padrão de mudança (Tabela 1).

Os macronutrientes do LM foram também analisados por grupos de IC. Observou-se que gordura, carboidrato e calorias não apresentaram variação significativa, no entanto a concentração de proteína mostrou diferença estatística significativa quando comparado o primeiro grupo (zero a quatro semanas) com o segundo (cinco a oito semanas) (p=0,014) (Figura 1).

Ao analisar os macronutrientes presentes no LM (no primeiro momento de análise do leite) em relação às características maternas, observou-se um valor de gordura e de calorias significativamente maior nas mães com ganho de peso adequado na gestação, quando comparado com o das mães com ganho de peso excessivo. Os valores de gordura e de calorias mostraram-se ainda estatisticamente menores no leite das mães que tiveram HAS na gestação, quando comparados aos das mães que não apresentaram tal condição.

Outra variável que mostrou esse mesmo padrão de alteração na composição de gordura e de caloria foi a idade materna: mães com idade igual ou superior a 35 anos apresentaram maior concentração desses macronutrientes, quando comparadas com aquelas com idade menor que 35 anos (Tabela 2). As variáveis ganho de peso, HAS na gestação e idade materna foram incluídas no modelo de regressão, e verificou-se que a ausência de HAS na gestação (p=0,043) e a idade materna ≥35 (p<0,001) contribuíram significativamente para o aumento dos níveis de gordura e calorias do leite.

Tabela 1

Macronutriente (g/100 mL)	25 a 27 semanas (n=6 lactantes)	28 a 31 semanas (n=20 lactantes)	32 a 36 semanas (n=25 lactantes)
Gordura (g)	3,54±0,95	2,80±1,33	3,37±1,44
Proteína (g)	2,28±0,55	1,78±0,98	1,66±0,50
Carboidrato (g)	6,06±0,30	6,11±0,59	6,28±0,63
Calorias (Kcal)	65,24±10,49	55,91±12,06	62,34±11,73
DISCUSSÃO

O leite humano é o alimento ideal para o recém-nascido a termo e pré-termo, uma vez que se adapta nutritivamente às necessidades específicas do crescimento infantil e seu uso está associado com vários benefícios para os RNPT, tanto em curto quanto em longo prazo.12

No que diz respeito à composição do LM, o presente estudo apresentou resultado similar ao encontrado por Lafuente et al.13 e Bauer e Gerss,10 em que a proteína seguiu um padrão de queda relacionado com a idade corrigida, ou semanas de lactação ao longo das primeiras semanas, no entanto a diferença estatística entre os valores de proteína por IGC evidenciada pelos autores referidos não foi verificada em nosso estudo.

Relação inversa entre concentração de proteína e IC foi vista em dois estudos, sugerindo a necessidade de um teor mais elevado de proteína nas primeiras semanas de vida de um pré-termo, a fim de suprir a necessidade de maior aporte diário desse macronutriente.14,15

Ziegler15 em um estudo sobre as necessidades nutricionais dos recém-nascidos de baixo peso discute alguns requerimentos nutricionais e recomendações oficiais para esse grupo. Entre eles, a maior recomendação que versa sobre a importância das proteínas é da European Society for Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) 2010 (3,5–4,5 g/kg/dia).

Uma revisão de 201416 concluiu que a ingestão adequada de proteína e energia, assim como a velocidade de crescimento, é preditivo de melhor saúde a longo prazo. Artigos recentes17,18 levantam a hipótese de que a recomendação atual de proteínas no início da vida não é suficientemente agressiva para melhorar os desfechos no crescimento e no desenvolvimento dos RNPT. Segundo os autores, a maior ingestão de aminoácidos por esses recém-nascidos pode aumentar a velocidade de ganho de peso e alcançar massa magra compatível à de bebês a termo.

Outro macronutriente analisado, o carboidrato, apresentou aumento progressivo ao longo das IC, porém sem diferença estatística. Esse padrão de aumento foi semelhante ao encontrado também por Bauer e Gerss.10 Um dado que difere em parte do que dizem os autores citados se refere à gordura e às calorias, que em nossa análise não apresentaram mudança de comportamento ao longo da IC. Os resultados alcançados sugerem que o tamanho amostral pode ser uma limitação importante do nosso estudo, uma vez que o cálculo deste foi baseado na diferença média de proteína. Provavelmente, para o estudo de carboidratos e gordura, o tamanho amostral deveria ter sido maior.

Revisão sistemática e metanálise conduzidas por Gidrenwicz e Fenton em 201419 concluíram que a concentração de proteína do LM diminuiu após o nascimento, ao longo de seis semanas. Segundo os autores, a diferença na concentração de proteína encontrada entre o leite de mães de recém-nascidos a termo e a pré-termo perdura até os 3 meses de idade.

Ao compararmos os valores médios dos macronutrientes, segundo IC, encontrados neste estudo com os dados da literatura, observamos que os valores médios de proteína, gordura, carboidrato e calorias obtidos nas amostras do leite das mães dos RNMBP nas primeiras quatro semanas de IC se aproximaram dos valores encontrados em Anderson et al.,20 que fizeram essa análise para amostras de leite de mães de pré-termos (28 a 36 semanas) nas duas primeiras semanas de IC, porém os valores médios de proteína e gordura são inferiores aos identificados por Weber et al.21 em mães de RNMBP nas quatro primeiras semanas de IC. O estudo de Weber et al.21 mostrou ainda que as concentrações de gordura presentes nos leites das mães dos RNMBP se revelaram menores no período da manhã, diferença não vista para os valores de proteína. Kociszewska-Najman et al.16 também evidenciaram concentração menor de gordura no leite das mães dos prematuros no período da manhã. Nossas amostras foram coletadas somente no período da manhã, o que poderia justificar os valores menores de gordura por IC encontrados em nosso estudo em relação aos de Weber et al.,21 no qual as amostras de leite analisadas foram coletadas em quatro períodos do dia, e aos de Bauer e Gerss,10 no qual se coletaram as amostras durante o período de 24 horas. Outra variável que também deve ser levada em consideração diz respeito aos diferentes métodos utilizados para a análise dos macronutrientes.

A composição química do leite humano está ligada ao metabolismo materno, que influencia diretamente a sua qualidade e

Figura 1 Concentração de proteína encontrada no leite das mães dos recém-nascidos de muito baixo peso ao nascer por grupos de idade cronológica, expressa por média e desvio padrão.
quantidade.22,23 Os relatos correlacionando a composição corporal, a dieta e a paridade materna afetando os macronutrientes de leite humano não são recentes.24 Ao analisar a associação entre as características maternas e os macronutrientes presentes no LM na primeira análise do leite, verificou-se valor de gordura e de calorias maior nas mães com ganho de peso adequado na gestação, com diferença estatística quando comparadas às mães com ganho de peso excessivo. O estado nutricional e sua associação com os macronutrientes do LM foram descritos na literatura, revelando relação direta entre o bom estado nutricional e maiores concentrações de gordura encontradas no LM.24,25

Alguns dos estudos utilizaram o IMC materno para essa análise, sendo ele positivamente associado ao teor de gordura do leite,25,26 porém não levaram em conta o ganho de peso durante a gestação. O efeito do ganho de peso ou do IMC gestacional sobre os componentes do LM ainda são controversos. Na análise conjunta dos dados, em modelo de regressão, o ganho de peso durante a gestação não se mostrou fator impactante na composição do leite na

Tabela 2 Correlação entre os fatores maternos e a concentração dos macronutrientes do leite no primeiro momento, expressa por média e desvio padrão.

Fatores maternos	Macronutrientes (/100 mL)	Gordura (g)	Proteína (g)	Carboidrato (g)	Calorias (Kcal)
IMC					
Baixo peso (n=2)	4,63±0,47	1,57±0,37	6,50±0,28	73,89±4,63	
Peso adequado (n=29)	3,23±1,20	1,80±0,91	6,30±0,28	60,94±10,95	
Sobrepeso (n=15)	2,73±1,43	1,74±0,42	6,21±0,52	56,87±12,70	
Obesidade (n=5)	3,49±1,98	1,83±0,60	5,31±1,28	60,01±16,21	
Ganho de peso					
Deficitário (n=26)	3,12±1,29	1,74±0,95	6,33±0,30	59,67±11,80	
Adequado (n=17)	3,75±1,43	1,82±0,50	5,94±0,72	64,82±12,05	
Excessivo (n=8)	2,09±0,63	1,81±0,33	6,24±0,85	51,85±8,57	
DMG					
Sim (n=2)	3,42±1,24	1,26±0,42	6,19±0,06	60,57±13,05	
Não (n=49)	3,16±1,37	1,80±0,75	6,18±0,60	60,14±12,14	
HAS					
Sim (n=20)	2,63±0,86	1,64±0,45	6,10±0,57	55,07±18,03	
Não (n=31)	3,51±1,52	1,87±0,88	6,24±0,60	63,44±13,12	
Infecção					
Sim (n=13)	2,85±1,54	1,58±0,61	6,12±0,90	56,42±12,96	
Não (n=38)	3,27±1,30	1,85±0,78	6,21±0,45	61,44±11,71	
Gemelaridade					
Sim (n=12)	2,74±1,06	1,74±0,35	6,21±0,69	57,05±10,43	
Não (n=39)	3,30±1,42	1,79±0,83	6,18±0,56	61,12±12,46	
Raça					
Branca (n=37)	3,23±1,20	1,68±0,53	6,31±0,36	61,05±10,54	
Parda (n=11)	2,70±1,65	2,07±1,21	5,80±0,96	54,85±14,10	
Negra (n=3)	4,10±2,06	1,91±0,90	6,02±0,65	68,70±18,66	
Idade					
<35 (n =32)	2,58±0,97	1,83±0,81	6,22±0,48	23,41±8,77	
≥35 (n=19)	4,14±1,37	1,68±0,61	6,11±0,73	37,26±12,34	

IMC: índice de massa corpórea; DMG: diabetes melito gestacional; HAS: hipertensão arterial sistêmica; *comparado à variável ganho de peso excessivo (p=0,010); †comparado à variável ganho de peso excessivo (p=0,030); ‡comparado à variável DMG não (p=0,012); §comparado à variável HAS não (p=0,007); ¶comparado à variável idade<35 (p=0,001).
nossa amostra. Uma limitação do estudo está no fato de o nosso desenho metodológico não controlar a dieta materna durante a gestação, o que pode ser um viés de confundimento, no entanto o estudo de Argov-Argaman et al., publicado em 2017,27 usou questionário alimentar e não apontou diferença no consumo materno de gordura, sugerindo que as diferenças encontradas na composição do leite entre os grupos provavelmente são atribuídas a diferenças metabólicas e fisiológicas, e não à dieta materna.

Outra variável materna avaliada em nosso estudo foi a HAS. No Brasil, trata-se da doença que mais frequentemente complica a gravidez, acometendo de 5 a 10% das gestações.28 Não há evidências na literatura que sustentem a relação direta entre a HAS e a composição do LM, contudo em nosso estudo o valor de gordura e de calorias encontrado no leite das mães que apresentaram HAS na gestação foi menor quando comparado com o das mães que não exibiram tal condição (p=0,012 para gordura e p=0,007 para calorias), não havendo diferença na concentração de carboidratos nem de proteínas. De forma controversa, Massmann et al.29 avaliaram a composição nutricional do leite de mulheres com HAS e verificaram que o colostro e o leite maduro de mães hipertensas exibiram níveis mais elevados de proteína total, porém não analisaram os níveis de gordura nem de calorias. Não foram encontrados outros estudos associando macronutrientes no LM e presença de HAS na gestação, mas a relação entre esse tipo de doença e a idade materna já foi citada na literatura.20

Nossos dados apontam relação direta entre a idade materna e a concentração de gordura e caloria no leite de mães acima de 35 anos, em comparação com o leite daquelas abaixo dessa idade. Essa evidência também foi discutida por Argov-Argaman et al.27 em estudo sobre a relação da composição do leite e a idade materna. Esses autores concluíram que a idade da mãe é um fator adicional que influencia o amadurecimento do leite, em termos de teor e composição de gordura, durante os estágios posteriores da gravidez. Outro estudo, ainda mais recente, descrito como o primeiro relatório sobre as interações significativas entre a idade materna e o IMC afetando os macronutrientes do leite humano, sugere que ambos devem ser considerados como fatores impactantes.25

O aumento da idade das mulheres ao nascimento dos filhos é uma realidade que vem crescendo nas últimas décadas. A gravidez tardia, por sua vez, aumenta as chances do desenvolvimento de doenças como HAS, diabetes materna e o parto precoce. Os fatores metabólicos associados à idade materna podem afetar a composição do leite. No entanto, ao avaliarmos se havia diferença significativa da presença de HAS entre os grupos de diferentes faixas etárias maternas, não observamos associação entre elas (p=0,554), o que nos leva a crer que, entre as variáveis analisadas, a idade materna foi a de maior impacto na composição dos macronutrientes do LM. Esses achados reforçam o fato de que a idade materna deve ser levada em conta ao planejar dietas para mulheres grávidas de diferentes faixas etárias, assim como a importância do adequado pré-natal, do incentivo ao aleitamento materno, do monitoramento do estado nutricional, da adequação do ganho de peso e do controle da pressão arterial. Esses cuidados visam a um melhor aporte de nutrientes para o bebê, incluindo gordura e calorias, e assim podem contribuir para a melhor nutrição e crescimento, principalmente para os RNMBP, que necessitam de maior aporte calórico.

Estratégias de aleitamento que podem impactar favoravelmente na produção de leite devem ser encorajadas não só na admissão de um recém-nascido, mas também na assistência pré-natal e durante toda a internação. Apoio e suporte são fundamentais para as mães de RNPT, objetivando melhorar e preservar sua produção de leite. Essa prática reflete a tendência contemporânea de apoio à lactação e à conscientização dos pesquisadores e cuidadores para o impacto do uso do LM para a saúde dos RNPT. Segundo Victora et al.,16 o leite humano não é apenas um alimento perfeitamente adaptado para os bebês, mas provavelmente o medicamento personalizado mais específico que o bebê receberá, oferecido em um momento em que a expressão génica está sendo ajustada para a vida.

Financiamento
O estudo não recebeu financiamento.

Conflito de interesses
Os autores declararam não haver conflito de interesses.

REFERÊNCIAS
1. De Curtis M, Rigo J. The nutrition of preterm infants. Early Hum Dev. 2012;88 (Suppl 1):S5-7. https://doi.org/10.1016/j.earlhumdev.2011.12.020
2. Cooke RJ, Ainsworth SB, Fenton AC. Postnatal growth retardation: a universal problem in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2004;89:F428-30. https://doi.org/10.1136/adc.2001.004044
3. Horbar JD, Ehrenkranz RA, Badger GJ, Edwards EM, Morrow KA, Soll RF, et al. Weight growth velocity and postnatal growth failure in infants 501 to 1500 Grams: 2000-2013. Pediatrics. 2015;136:e84-92. https://doi.org/10.1542/peds.2015-0129
4. Villela LD, Méio MD, Gomes Junior SC, de Abranches AD, Soares FV, Moreira ME. Body composition in preterm infants with intrauterine growth restriction: a cohort study. J Perinat Med. 2018;46:804-10. https://doi.org/10.1515/jpm-2017-0175
5. Jung YH, Park Y, Kim BI, Choi CW. Length at birth z-score is inversely associated with an increased risk of bronchopulmonary dysplasia or death in preterm infants born before 32 gestational weeks: a nationwide cohort study. PLoS One. 2019;14:e0217739. https://doi.org/10.1371/journal.pone.0217739

6. Cunha AJ, Leite AJ, Almeida IS. The pediatrician’s role in the first thousand days of the child: the pursuit of healthy nutrition and development. J Pediatr (Rio J). 2015;91 (Supl 1):S44-51. http://dx.doi.org/10.1016/j.jped.2015.07.002

7. Ramel SE, Georgieff MK. Preterm nutrition and the brain. In: Koletzko B, Poin Dexter B, Uauy R, editors. Nutritional care of preterm infants: scientific basis and practical guidelines. Switzerland: Karger; 2014. p. 190-200.

8. Arslanoglu S, Moro GE, Ziegler EE, The Wapm Working Group. Gastroenterology, Hepatology, and Nutrition Committee commentary from the European Society of Paediatric Gastroenterology, Hepatology, and Nutrition Committee. J Perinat Med. 2018;47:106-13. https://doi.org/10.1515/jpm-2017-0334

9. Codo CR, Caldas JP, Peixoto RR, Sanches VL, Guiraldelo TC, Cadore S, et al. Electrolyte and mineral composition of term donor human milk before and after pasteurization and of raw milk of preterm mothers. Rev Paul Pediatr. 2018;36:141-7. http://dx.doi.org/10.1590/1984-0462/2018;36;2;00015

10. Bauer J, Gerss J. Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants. Clin Nutr. 2011;30:215-20. https://doi.org/10.1016/j.clinu.2010.08.003

11. Vieira AA. Nutrição e crescimento do recém-nascido de muito baixo peso: um desafio para a prática perinatal [PhD thesis]. Rio de Janeiro: FIOCRUZ; 2005.

12. Victora CG, Bahl R, Barros AJ, França GV, Horton S, Krasevec J, et al. Breastfeeding Series Group. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387:475-90. https://doi.org/10.1016/S0140-6736(15)01204-7

13. Cabrera Lafuente M, Montes Bueno MT, Pastrana N, Segovia C, Madero Jarabo R, Martin CR, et al. A prospective analysis of intake and composition of mother’s own milk in preterm newborns less than 32 weeks’ gestational age. J Perinat Med. 2018;47:106-13. https://doi.org/10.1515/jpm-2017-0334

14. Agostoni C, Buonocore G, Carnielli V, Curtis M, Darmaun D, Decsi T, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology, and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50:85-91. https://doi.org/10.1097/MPG.0b013e3181eadaee0

15. Ziegler EE. Meeting the nutritional needs of the low-birthweight infant, Ann Nutr Metab. 2011;58 (Suppl 1):8-18. https://doi.org/10.1159/000323381

16. Uthaya S, Modi N. Practical preterm parenteral nutrition: systematic literature review and recommendations for practice. Early Hum Dev. 2014;90:747-53. https://doi.org/10.1016/j.earhumdev.2014.09.002