A study on the transition between seniority-type and collective excitations in 204Po and 206Po

Milena Stoyanova$^{1,∗}$, Georgi Rainovski1, Jan Jolie3, Norbert Pietralia2, Andrey Blazhev1, Martin Djongolov1, Arwin Esmanyazdeh3, Lisa Gerhard3, Kalin Gladnishki1, Vasil Karayonchev3, James Keatings4, Ralph Kern2, Diana Kocheva1, Thorsten Kröll2, Konstantin Mashtakov4, Oliver Möller2, Jean-Marc Régis3, Marcus Scheck4, Kerstin Schomacker3, Jacqueline Sinclair4, Christian Sürder2, Volker Werner2, and Johannes Wiederhold2

1Faculty of Physics, St. Kliment Ohridski University of Sofia, 1164 Sofia, Bulgaria
2Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
3Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany
4School of Engineering & Computing, University of the West of Scotland, Paisley PA1 2BE, United Kingdom

Abstract. Low-lying yrast states in 204Po and 206Po have been investigated by the γ-γ fast timing technique with LaBr$_3$(Ce) detectors. Excited states of these nuclei were populated in the 197Au(11B,4n) and the 198Pt(12C,4n) fusion-evaporation reactions, respectively, at the FN-Tandem Facility at the University of Cologne. The lifetimes of the 4^+_1 states in both nuclei were measured, along with an upper limit for the 2^+_2 state in 204Po. The preliminary results are discussed in the scope of the systematic behavior of the transition strengths between yrast states in polonium isotopes.

1 Introduction

The evolution from seniority-type to collective structure is a process which provides a stringent test for the contemporary nuclear structure models. The yrast structures of polonium isotopes below the $N = 126$ shell closure are suitable for studying this evolution. In a recent study [1], an increased strength for the seniority-changing $2^+_1 \to 0^+_1$ transition in 206Po has been reported, leading to the conclusion that the 2^+_1 state of 206Po has a predominantly collective character. It has to be noted however, that the energy level pattern of the yrast states of 206Po and the hindered transition probability of the $8^+_1 \to 6^+_1$ transition indicate that seniority-type structure is preserved to a certain extent. This fact either implies a spin dependence in the evolution from seniority-type regime to collective or questions the conclusions in Ref. [1]. The later stems from the fact that in the seniority regime, the $E2$ transition strength of seniority changing transitions, such as the $2^+_1 \to 0^+_1$ transition, increases in a parabolic way with increasing the number of valence particles and reaches a maximum at the middle of the j-shell [2]. This behavior is identical to the one in the collective regime and therefore the evolution of the $E2$ transition strength for the $2^+_1 \to 0^+_1$ transitions cannot be used as a decisive fingerprint for locating the transition from single-particle (seniority-type) to collective mode. For the latter purpose, more unambiguous information can be obtained from the evolution of the $E2$ strengths of seniority-preserving transitions, such as the $4^+_1 \to 2^+_1$ transition, because it has two distinctive behaviors in each regime. In seniority regime it follows a parabola with a minimum at the middle of the j-shell, while in the collective regime the parabola follows the evolution of the $B(E2; 2^+_2 \to 0^+_1)$ strengths, i.e. it has a maximum at the middle of the j-shell [2].

Our study is focused on the Po isotopes in the vicinity of 208Pb. The main goal is to derive the absolute $E2$ strengths for the $4^+_1 \to 2^+_1$ transitions. This can reveal where and how the transition from seniority type to collective mode occurs. Such study requires the lifetimes of the 4^+_1 states of 206Po and 208Po to be measured. Until now, such information is missing due to experimental difficulties that stem from the fact that 4^+_1 states in both isotopes are positioned between the long-lived 8^+_1 states and the short-lived 2^+_1 states. In this work we report preliminary results on the $B(E2)$ transition strengths of the seniority-conserving $4^+_1 \to 2^+_1$ transitions in 204Po and 206Po.

2 Experiment

The experiment was performed at the FN Tandem facility at the University of Cologne. Excited states of 204Po were populated in the 197Au(11B,4n) fusion-evaporation reaction at a beam energy of 55 MeV. A thick (110 mg/cm2) self supporting 197Au foil was used as a target. The excited states of 206Po were populated in the 198Pt(12C,4n) reaction at a beam energy of 65 MeV. The used target was 10 mg/cm2 198Pt foil. The fast-timing array consisted of eight HPGe detectors and nine $\phi 1.5' \times 1.5'$ LaBr$_3$(Ce) scintillators (referred later in the text as LaBr). To suppress the Compton background, six of the LaBr detec-
tors were placed inside bismuth-germanate (BGO) Compton suppressors. The other three had lead shields to suppress background events associated with scattered γ-rays. Time-to-Amplitude Converters (TACs) recorded the time differences between the timing signals for every unique detector-detector combination [3]. To process and collect the energy signals from the detectors and the amplitudes of the TAC signals, 80 MHz synchronized digitizers were used. The data were analyzed using the "soco.v2" software developed at the Institute of Nuclear Physics in Cologne [4]. For the lifetime determination the Generalized Centroid Difference method (GCDM) was used, discussed in detail in [5]. In this method, two independent time spectra are obtained, constructed as the time difference between two signals generated by two γ-rays that connects an excited state. If the transition which feeds the state provides the start signal to the TAC and the decay transition from this state - the stop signal, the Delayed (D) time distribution is obtained. In the reverse case, Anti-delayed (AD) time distribution is obtained. Assuming no background contributions, the difference between the centroids (first moment of the time distribution) of the delayed and anti-delayed time spectra is expressed as:

$$\Delta C(E_f, E_d) = C^D - C^{AD} = 2\tau + \text{PRD}(E_f, E_d)$$

where \(\tau\) is the mean lifetime of the given state and \(E_f\) and \(E_d\) are the energies of the feeding and the decaying transition respectively. In this formula, PRD is the prompt response difference, defined as the linearly combined zero-time response of the whole fast-timing array [6]. The PRD is used as a single correction for the lifetime determination, according to Eq. (1), and one of the main tasks is to determine its energy dependence. For calibration of the PRD, \(^{152}\text{Eu}\) source has been used. It produces coincident γ-rays in the 40-1408 keV energy region, which corresponds to the energy region of interest. The lifetimes of the relevant excited states in the daughters \(^{152}\text{Gd}\) and \(^{152}\text{Sm}\) are known precisely and nearly no background contribution is present in the coincidence spectrum. In Figure 1, LaBr spectrum is obtained in coincidence with the decay transition from \(2^+_1\) to g.s. in \(^{152}\text{Gd}\). Time-difference spectra of the 779-344 keV cascade are shown along with the corresponding centroid difference, PRD, peak-to-background (p/b) ratio and lifetime value. Using Eq. (1) the PRD was obtained. Repeating the same procedure for the rest of the feeding transitions of 344 keV state, data points for PRD were obtained. For precise calibration over larger energy region, multiple \(\gamma\) feeder - \(\gamma\) decay combinations were used.

The final PRD data points are fitted using the function [6]

$$\text{PRD}(E_\gamma) = \frac{a}{\sqrt{E_\gamma^2 + b}} + cE_\gamma + d$$

The final result of the PRD-curve is presented in Figure 2. The precision is defined as two times the standard root-mean-squared deviation (2\(\sigma\)) of the PRD fit corresponding to 8 ps.

Full projections of the symmetric \(\gamma\)-\(\gamma\) matrices obtained with the HpGe detectors (red spectrum) and the LaBr detectors (blue spectrum) are shown in Figure 3. Partial level scheme of \(^{206}\text{Po}\), relevant for the analysis, is also shown on the picture.

To extract the lifetime, triple HpGe-LaBr-LaBr coincidences were used. The doubly gated HpGe and LaBr spectra, relevant for the analysis of the \(4^+_1\) state in \(^{206}\text{Po}\) are shown in Figure 4. The doubly gated HpGe spectrum is generated from HpGe-LaBr-HpGe triple coincidences. The good energy resolution of the HpGe detectors allows a precise coincidence cascade selection. By placing the first LaBr gate on the 477 keV decay transition, the de-
Table 1. Lifetimes determined from the fast-timing experiments on 204Po and 206Po and energies of the corresponding gates to obtain time-difference spectra as well as reduced transition probabilities of yrast states in both nuclei, calculated from the measured lifetimes.

Nucleus	State	E_1 [keV]	E_2 [keV]	HpGe gate [keV]	τ [ps]	transition	$B(E2)$ [W.u.]
204Po	4^+_1	426	516	684	23.3(61)	$4^+_1 \rightarrow 2^+_1$	13.0(3.4)
206Po	4^+_1	395	477	701	89(12)	$4^+_1 \rightarrow 2^+_1$	4.97(40)
206Po	2^+_1	395	701	477	16	$2^+_1 \rightarrow 0^+_1$	≥ 4.4

The lifetime data presented in Table 1 and in Figure 4 were used to extract the reduced transition probabilities $B(E2)$ for corresponding transitions in both nuclei. The analyses were performed using the “soco.v2” software.

Figure 4 shows the graphical representation of the $B(E2)$ values for the case of $N=122$ isotones. It can be seen that the evolution of the $E2$ strengths for the $4^+_1 \rightarrow 2^+_1$ transition follows the one for the $2^+_1 \rightarrow 0^+_1$ which rises up towards mid-shell. This indicates that the 4^+_1 state of 206Po has a collective character. The same situation is observed for 204Po (not shown). These conclusions are in agreement with the results from Ref. [1] that the transition to mid-shell occurs before 204Po. At the same time, the behavior of the $B(E2; 8^+_1 \rightarrow 6^+_1)$ in $N=122$ isotonic chain
has a seniority character. All together, this strongly suggests that the transition from seniority regime to collective mode has a spin dependence. However, theoretical calculations are needed to validate this observation.

![Figure 5](image1.png)

Figure 5. (Color online) Full projections of the symmetric γ-γ matrices obtained with HpGe detectors (red) and LaBr detectors (blue) for the case of 204Po. The inset shows the relevant partial level scheme of 204Po.

![Figure 6](image2.png)

Figure 6. (Color online) Evolution of the $B(E2)$ values in the $N=122$ isotonic chain. The data have been taken from the present work (corresponding value for the $4^+_1 \rightarrow 2^+_1$ transition), from [1], and references therein.

3 Conclusion

We have measured the lifetimes of low-lying yrast states in 204Po and 206Po using a HpGe-gated picosecond-sensitive fast-timing technique. The lifetimes of the 4^+_1 states in both nuclei were determined, along with a deduced upper limit for the 2^+_1 state in 204Po using GCDM. The evolution of the $B(E2)$ strengths for the $2^+_1 \rightarrow 0^+_1$ and the $4^+_1 \rightarrow 2^+_1$ transitions of 206Po and 204Po indicates that these states are of collective nature.

This work was supported by the partnership agreement between the University of Cologne and University of Sofia and by the Bulgarian National Science Fund under Grant No. DN08/23/2016.

References

[1] T. Grahn et al., Eur. Phys. J. A **52**, 340 (2016)
[2] J.J. Ressler, R.F. Casten et al., Phys. Rev. C **69**, 034317 (2004)
[3] J.-M. Régis et al., Nucl. Inst. Meth. Phys. Res. A **823**, 72 (2016)
[4] J.-M. Régis et al., Nucl. Instrum. Methods Phys. Res. A **763**, 210 (2014)
[5] J.-M. Régis et al., Nucl. Inst. Meth. Phys. Res. A **726**, 191 (2013)
[6] J.-M. Régis et al., Nucl. Instr. Meth. Phys. Res. A **684**, 36 (2012)
[7] J.-M. Régis et al., Phys. Rev. C **95**, 054319 (2017)