A VDAC1-mediated NEET protein chain transfers [2Fe-2S] clusters between the mitochondria and the cytosol and impacts mitochondrial dynamics

Ola Karmi, Henri-Baptiste Marjault, Fang Bai, Susmita Roy, Yang-Sung Sohn, Merav Darash Yahana, Faruck Morcos, Konstantinos Ioannidis, Vaakov Nahmia, Patricia A. Jennings, Ron Mittler, Jose N. Onuchic, and Rachel Nechushtai

Mitochondrial inner NEET (MiNT) and the outer mitochondrial membrane (OMM) proteins belong to the NEET protein family. This family plays a key role in mitochondrial labile iron and reactive oxygen species (ROS) homeostasis. NEET proteins contain labile [2Fe-2S] clusters which can be transferred to apo-acceptor proteins. In eukaryotes, the biogenesis of [2Fe-2S] clusters occurs within the mitochondria by the iron–sulfur cluster (ISC) system; the clusters are then transferred to [2Fe-2S] proteins within the mitochondria or exported to cytosolic proteins and the cytosolic iron–sulfur cluster assembly (CIA) system. The last step of export of the [2Fe-2S] is not yet fully characterized. Here we show that MiNT interacts with voltage-dependent anion channel 1 (VDAC1), a major OMM protein that connects the intermembrane space with the cytosol and participates in regulating the levels of different ions including mitochondrial labile iron (mLI). We further show that VDAC1 is mediating the interaction between MiNT and mNT, in which MiNT transfers its [2Fe-2S] clusters from inside the mitochondria to mNT that is facing the cytosol. This MiNT–VDAC1–mNT interaction is shown both experimentally and by computational calculations. Additionally, we show that modifying MiNT expression in breast cancer cells affects the dynamics of mitochondrial structure and morphology, mitochondrial function, and breast cancer tumor growth. Our findings reveal a pathway for the transfer of [2Fe-2S] clusters, which are assembled inside the mitochondria, to the cytosol.

The NEET family in humans is composed of three members: mitoNEET (mNT, CISD1), NAF-1 (CISD2), and the mitochondrial inner NEET (MiNT, CISD3) (9–11). The homodimeric mNT and NAF-1 proteins are located on the outer mitochondrial membrane (OMM); NAF-1 is also located at the endoplasmic reticulum (ER) membrane, and the ER–mitochondrial associated membranes (MAM) (10). MiNT is a soluble, monomeric protein, localized inside the mitochondria (12). The mNT and NAF-1 were recently shown to be important for mitochondrial function and morphology (13–15). They were also shown to play a role in cancer, diabetes, and Wolfram syndrome type 2 diseases (16). Downregulating any one of the NEET proteins, including MiNT, leads to increased accumulation of mitochondrial labile iron (mLI) and mitochondrial reactive oxygen species (mROS), as well as to disruptions in mitochondrial function and morphology (12, 14, 17). Mitochondrial iron and ROS accumulation were shown to affect mitochondrial respiratory capacity (12, 18–26). Since the iron–sulfur cluster (ISC) biogenesis system, located in eukaryotic cells inside the mitochondria, is where [2Fe-2S] ISC clusters are de novo synthesized by a complex system whose structure was elucidated in atomic resolution (1, 2). The [2Fe-2S] clusters produced by ISC are then transferred to different apo-acceptor proteins that either function as mitochondrial iron–sulfur–proteins (3, 4), or as cluster donor proteins (1, 4, 5). The [2Fe-2S] clusters produced in the mitochondria need to reach cytosolic apo-acceptor proteins, including the cytosolic iron–sulfur–protein assembly (CIA) pathway which is the biogenesis system responsible for [4Fe-4S] cluster formation (1, 5, 6). While ISC and CIA are well characterized (1, 7), the mechanism of export of [2Fe-2S] cluster from the mitochondria to the cytosol is still partially unknown (1, 8). Here we propose that two NEET [2Fe-2S] protein family members play a role in the transport of [2Fe-2F] clusters from the mitochondria to the cytosol.

A VDAC1-mediated NEET protein chain transfers [2Fe-2S] clusters between the mitochondria and the cytosol and impacts mitochondrial dynamics

Ola Karmi, Henri-Baptiste Marjault, Fang Bai, Susmita Roy, Yang-Sung Sohn, Merav Darash Yahana, Faruck Morcos, Konstantinos Ioannidis, Vaakov Nahmia, Patricia A. Jennings, Ron Mittler, Jose N. Onuchic, and Rachel Nechushtai

Mitochondrial inner NEET (MiNT) and the outer mitochondrial membrane (OMM) proteins belong to the NEET protein family. This family plays a key role in mitochondrial labile iron and reactive oxygen species (ROS) homeostasis. NEET proteins contain labile [2Fe-2S] clusters which can be transferred to apo-acceptor proteins. In eukaryotes, the biogenesis of [2Fe-2S] clusters occurs within the mitochondria by the iron–sulfur cluster (ISC) system; the clusters are then transferred to [2Fe-2S] proteins within the mitochondria or exported to cytosolic proteins and the cytosolic iron–sulfur cluster assembly (CIA) system. The last step of export of the [2Fe-2S] is not yet fully characterized. Here we show that MiNT interacts with voltage-dependent anion channel 1 (VDAC1), a major OMM protein that connects the intermembrane space with the cytosol and participates in regulating the levels of different ions including mitochondrial labile iron (mLI). We further show that VDAC1 is mediating the interaction between MiNT and mNT, in which MiNT transfers its [2Fe-2S] clusters from inside the mitochondria to mNT that is facing the cytosol. This MiNT–VDAC1–mNT interaction is shown both experimentally and by computational calculations. Additionally, we show that modifying MiNT expression in breast cancer cells affects the dynamics of mitochondrial structure and morphology, mitochondrial function, and breast cancer tumor growth. Our findings reveal a pathway for the transfer of [2Fe-2S] clusters, which are assembled inside the mitochondria, to the cytosol.

The NEET family in humans is composed of three members: mitoNEET (mNT, CISD1), NAF-1 (CISD2), and the mitochondrial inner NEET (MiNT, CISD3) (9–11). The homodimeric mNT and NAF-1 proteins are located on the outer mitochondrial membrane (OMM); NAF-1 is also located at the endoplasmic reticulum (ER) membrane, and the ER–mitochondrial associated membranes (MAM) (10). MiNT is a soluble, monomeric protein, localized inside the mitochondria (12). The mNT and NAF-1 were recently shown to be important for mitochondrial function and morphology (13–15). They were also shown to play a role in cancer, diabetes, and Wolfram syndrome type 2 diseases (16). Downregulating any one of the NEET proteins, including MiNT, leads to increased accumulation of mitochondrial labile iron (mLI) and mitochondrial reactive oxygen species (mROS), as well as to disruptions in mitochondrial function and morphology (12, 14, 17). Mitochondrial iron and ROS accumulation were shown to affect mitochondrial respiratory capacity (12, 18–26). Since
mitochondria are considered to play a central role in bioenergetics, metabolism, and other cellular pathways (27), mitochondria morphodynamics are tightly linked to the overall bioenergetic function of cells (28). The dynamics of mitochondrial architecture/morphology was shown to be involved in several cellular functions, including proliferation, viability, senescence, and signaling (28). The control of mitochondrial dynamics, through fusion or fission, displays therefore high plasticity in the regulation of mitochondrial hemostasis and metabolism. Mitochondrial morphology dynamical balance through fragmentation or elongation, in turn, depends on nutrient availability as well as ATP synthesis under the energy demands of the cell (28, 29).

Decreasing mNT or NAF-1 levels leads to a reduction of mitochondrial size indicative of a fission process in cells (24, 26). NAF-1 and mNT were previously shown to interact; in this interaction, mNT transfers its [2Fe-2S] cluster to NAF-1 (17). Moreover, both mNT and NAF-1 were shown to function as cluster donor proteins, transferring their [2Fe-2S] clusters to apo-acceptors in the cytosol, such as anamorsin, with NAF-1 showing higher transfer efficiency than mNT (30). The mNT was proposed to play an important role in regulating cytosolic iron regulatory protein 1 (IRP1) (31); mNT was also shown to bind within the central cavity of the voltage-dependent anion channel 1 (VDAC1), which suggested a potential role for mNT in regulating VDAC1 and maintaining the cellular iron/[Fe-S] hemostasis of cells (32). A major role of mitochondria in iron metabolism is thought to be iron–sulfur [Fe-S] cluster synthesis and transport to the cytosol (1, 33). Mitochondrial iron hemostasis is also considered a regulator of mitochondrial morphology (34, 35). However, the different players constituting the complete [2Fe-2S] transport machinery from the mitochondria to the cytosol have not been fully identified yet (7, 36, 37).

Here we show that the expression level of MiNT affects mitochondrial function and dynamics. Using human breast cancer cell lines with decreased or overexpressed levels of MiNT, we show that overexpressing MiNT is accompanied by mLI and mROS accumulation, as well as by heightened ROS resistance, cellular proliferation, and tumor growth. In contrast, suppression of MiNT expression results in mLI and mROS accumulation that are accompanied by cytosolic ROS accumulation and decrease in cellular proliferation and tumor growth. Using biochemical methods and computational studies, we further show that MiNT interacts with VDAC1, and, through VDAC1, with mNT, transferring its [2Fe-2S] clusters from inside the mitochondria to mNT that is facing the cytosol on the OMM. Our findings reveal the existence of a pathway for transferring of [2Fe-2S] clusters from within the mitochondria, to the cytosol.

Results

MiNT Overexpression in Human Breast Cancer Cells Enhanced ROS Resistance and Tumor Growth. For our analyses of MiNT function, we chose triple-negative human breast cancer cells (MDA-MB-231). Breast cancer cells were chosen as they represent a major form of human epithelial cancers with a high demand for cellular iron. MDA-MB-231 cell lines were used to down-regulate MiNT protein (MiNT(−)) by ~50%, or overexpress MiNT (MiNT(+)) by ~10x (SI Appendix, Fig. S1A). As MiNT expression decreased by ~50%, mNT expression increased by ~60% (Fig. L4). An increase in mNT expression also occurs when MiNT is overexpressed by ~10x, yielding an mNT increase of ~30%. On the other hand, NAF-1 level did not change in both MiNT cell lines compared to control cells (Fig. L4).

Human breast cancer cells (MDA-MB-231) with decreased or increased expression of MiNT showed increased mROS accumulation (Fig. 1B), while ROS in the cytosol was increased only in the MiNT(−) line (Fig. 1C). This finding may result from enhanced ROS resistance of the MiNT(+ cell line, as shown in SI Appendix, Fig. S1B. As the cell biology characterization was conducted with human breast cancer cells, we elected to use a human xenograft model system to characterize the relationship between MiNT and tumor growth. Using the MiNT(−) and MiNT(+) MDA-MB-231 cell lines, xenograft breast cancer tumors were generated (Fig. 1D); MiNT(+) showed increased tumor growth compared to control, while MiNT(−) displayed decreased tumor growth compared to control or the MiNT(+) line (Fig. 1D). This finding correlated with increased survival of mice with MiNT(−) cells compared to control or mice with MiNT(+) cells, that showed the poorest survival (Fig. 1E). Interestingly, tumor growth rate of MiNT(−) tumors was affected by day 2, while that of control and the MiNT(+) tumors were similar until day 12. This finding could suggest that xenograft tumor establishment is dependent on MiNT function. Both lines (MiNT(−) and MiNT(+)) displayed high accumulation of mROS and mLI, that was corrected upon treatment of cells with the iron chelator deferiprone (DFP; SI Appendix, Fig. S1 C and D). DFP was also able to repair the impairment of both cells in mitochondrial membrane potential (MMP; SI Appendix, Fig. S1E). In future studies, we plan to study MiNT function in a murine tumor model system, as well as in three-dimensional human cultures.

MiNT Expression Modulates Mitochondrial Function and Dynamics through Stimulating Mitochondrial Fission or Fusion. The expression level of MiNT was found to affect mitochondrial morphology and size, as well as the expression of OPA-1, a major protein involved in fusion, and DRP-1, a protein which is known to induce mitochondrial fission (38, 39). Fission of mitochondria was observed in MiNT(−) cells (Fig. 2 A–D), and this finding correlated with low expression levels of the OPA-1 protein, especially its large subunit (Fig. 2E), and high expression of DRP-1 (Fig. 2F). In MiNT(+) cells, mitochondrial fusion was observed (Fig. 2 A–D), and this finding correlated with high expression of OPA-1 (Fig. 2E) as well low expression of DRP-1 (Fig. 2F).

These changes in mitochondrial length were also associated with abnormal morphological structures of the organelle (SI Appendix, Fig. S2). In addition to these morphological and dynamical changes, functional changes were observed in mitochondria of the different cell lines. The decreased expression of MiNT(−) was associated with increased ROS production and decreased production of ATP while overexpressing of MiNT did not alter respiration (SI Appendix, Fig. S3A). In contrast, glycolysis was increased in the MiNT(+) line and decreased in the MiNT(−) line (SI Appendix, Fig. S3B).

Taken together, our findings suggest that the expression level of MiNT impacts both mitochondrial dynamics and morphology by affecting mitochondrial function and expression level of DRP-1 and OPA-1.

MiNT Plays a Role in Transferring [2Fe-2S] Clusters from Inside the Mitochondria to apo-mNT Situated on the Mitochondrial Outer Membrane through the VDAC1 Channel. To identify mitochondrial MiNT-interacting protein partners, we used a communoprecipitation (Co-IP) approach, with an antibody raised against the MiNT protein, applied to an enriched mitochondrial fraction obtained from MDA-MB-231 wild-type (WT) cells. The identification of the communoprecipitated proteins was performed using mass spectrometry (MS) and Western blots. The MS analysis (SI Appendix, Table S1) revealed that MiNT interacts with VDAC1 and mNT (Fig. 3A). The Co-IP of VDAC1, MiNT, and mNT was then verified by Western blot analysis using antibodies raised against MiNT, mNT, and VDAC1 (Fig. 3B). Furthermore, there was specific interaction with each antibody on the control mitochondrial fraction (Mito), and the three interacting proteins revealed the same band at a higher molecular weight (IPMI) corresponding to the weight of the three-protein complex.
with high cells (black), or MDA-MB-231 cells with high MiNT (gray dots) or MiNT(C0) (red dots) to control; \(*P < 0.05, **P < 0.01, ***P < 0.001 \); Student’s t test. (D) Xenograft tumor growth (square centimeters) in mice injected subcutaneously with control MDA-MB-231 breast cancer cells (black), or MDA-MB-231 cells with high—MiNT(+) (gray)—or low—MiNT(−) (red)—MiNT expression. (Insets) Images of representative tumors; \(n = 7 \). Statistical significance was determined using log-rank (Mantel–Cox) test to compare MiNT(−) or MiNT(+) to control; \(*P < 0.05 \).

Computational Modeling of MiNT–VDAC–mNT Interaction

To characterize how MiNT, VDAC, and mNT interact, a computational prediction and modeling framework was developed to define this ternary complex and inspect its recognition process (see the details in SI Appendix, Fig. S4). First, we used our in-house protein–protein interaction (PPI) binding site identification method Fd-DCA (40, 41) to search potential sites on the surface of the soluble domain of mNT (homodimer) and MiNT. Fd-DCA is a method for PPI binding site identification combining fragment docking-based searching and direct-coupling analysis. MiNT and mNT belong to the same protein family; hence, distinguishing the interprotein residue–residue coevolutionary couplings from intraprotein signals is challenging. In this work, we only used the fragment docking-based searching module of Fd-DCA to identify the candidate binding sites. We selected a group of residues to locate the candidate binding sites for the next step of protein–protein docking simulations. As a result, we obtained three candidate binding sites for each of them, as shown in SI Appendix, Fig. S4. The potential site 1 and site 2 of mNT are almost symmetric, having significant overlapped residues. The potential site 3, located on the bottom of the protein away from the ISC, was not considered as a potential interacting site in this work. The residue composition of each site is shown below each structure in SI Appendix, Fig. S4. Then we used high-ambiguity-driven protein–protein docking (HADDOCK) (42), a protein–protein docking webserver, to predict the binding poses for the PPI pairs for VDAC1, mNT, and MiNT. For each candidate site of mNT and MiNT, we chose two residues located around the center position of the candidate site as the constraints (representatives for the location) of the active residues required as the constraints for the docking simulations. For VDAC1, we did not specify the active sites or residues, we randomly picked the residues scattered on the inner surface of the tunnel, because any protein which interacts

![Fig. 1. The expression level of MiNT impacts the growth of human xenograft breast cancer tumors.](https://doi.org/10.1073/pnas.2121491119)
with VDAC1 should insert into its large tunnel, forming a circle of contacts with the inner residues of VDAC1. Hence, any potential sites for VDAC1 were not used as constraints. We constructed a ternary complex of VDAC1–mNT–MiNT by selecting representative conformations from the largest clusters of docked binary conformations, and refined its binding conformation by using the steepest descent energy minimization approach. The constructed ternary binding complexes are shown in Fig. 3D. The mNT binds with VDAC1 mainly via its site 2 and part of site 1, and uses its large area of site 1 to interact with site 1 of MiNT. Site 2 and site 3 of MiNT are the major areas potentially interacting with VADC1. Finally, we used a coarse-grained molecular dynamics simulation to describe the recognition process between mNT and MiNT via VADC1 (Movie S1 and SI Appendix, Fig. S5). This movie shows that the relatively smaller protein MiNT can quickly tunnel into one side of VDAC1 and form a stabilized binary complex, then mNT finds a suitable orientation and inserts itself into the VDAC1 from the other side of VDAC1 until it forms a well-packed ternary complex (Movie S1).

Summarizing our biochemical and computational studies, we propose a model for a chain of [2Fe-2S] transfer from inside the mitochondria from holo-MiNT to apo-mNT through the VDAC1 channel, then from holo-mNT to apo-NAF-1 in the MAM area, or from holo-mNT or holo-NAF-1 to any other apo-accepter in the cytosol (Fig. 4).

Discussion
MiNT is the last human NEET protein member to be characterized. Its function was shown to be associated with mitochondrial iron[Fe-S] hemostasis (12, 14), cancer proliferation, and ferroptosis (14). MiNT was also found to have a role in apoptosis (43). Altering the expression of MiNT affects mROS as well as cytosolic ROS. MiNT(−) cells accumulate high ROS inside and outside of their mitochondria which is associated with decreased size of xenograft tumors. In contrast, MiNT(+) cells having higher ROS resistance and higher expression levels of mNT that is known to protect cells and mitochondria from...
oxidative stress (44, 45). Previously, mNT and NAF-1 were shown to play a role in mitochondrial morphology and dynamics (13, 16, 24, 27). Here we show that MiNT is also involved in mitochondrial function, morphology, and dynamics. In MiNT(−/−) cells, fission was associated with low expression of the OPA-1 fusion-inducing protein, and high expression of DRP-1, a fission-promoting protein. Conversely, high expression of MiNT was associated with higher fusion of mitochondria and increased expression of OPA-1. These features suggest a strong role for MiNT in regulating the mitochondrial fission/fusion pathway.

NEET proteins harbor a labile [2Fe-2S] cluster that can be transferred to many different apo-acceptor proteins. The mNT and NAF-1 were shown to interact and contribute to the same pathway, through the ability of mNT present at the OMM to donate its cluster to NAF-1 that is mainly present on the ER (17). In addition, mNT was found to interact with VDAC1 and play a role in [Fe-S]/iron hemostasis between the mitochondria and the cytosol (32). MiNT (CISD3) is the only member of the human NEET family to localize within the mitochondria where the cellular biosynthesis of [2Fe-2S] clusters takes place. Many studies focused on the export of [2Fe-2S] clusters from the mitochondria to the cytosol, but, to date, the exact mechanism for this process remains incomplete. Here we show that MiNT is able to transfer its [2Fe-2S] clusters to apo-mNT when both proteins interact inside the VDAC1 channel. Co-IP with anti-MiNT antibodies, MS, and computational modeling of complex formation bring significant support to this pathway. Our work highlights a possible route for [2Fe-2S] clusters to be transferred from the mitochondria to the cytosol—via MiNT to mNT cluster transfer inside the VDAC1 protein (Fig. 4). It further supports the involvement of NEET proteins in [2Fe-2S] transfer between the mitochondria and the cytosol.
cross-talk between the mitochondria and cytosol. The existence of this pathway and the central role it plays in cellular metabolism, regulating iron, ROS, and overall Fe-S metabolism can affect our understanding of many different biochemical, molecular, and cellular processes key to diseases such as diabetes, cancer, and neurodegeneration.

Materials and Methods

Cell Growth. MDA-MB-231 human breast cancer cells were obtained from ATCC and propagated as previously described (18). Plasmids containing short hairpin RNA (shRNA) in pGFP-RS vector (OriGene Technologies, Inc.) were used for repressing MiNT expression (−), whereas plasmids containing the pEGFP-N1 vector (Clontech Laboratories, Inc.) were used for overexpressing MiNT (+). Cell growth and transfection were performed as described earlier (12, 18, 22).

Animal Experiments. Animal experiments were performed with the Hebrew University Authority for biological and biomedical models (NS-17-15262-4). Xenograft tumor of MDA-MB-231 human breast cancer cells were generated after injecting (2.5 × 10⁴) into female athymic nude (FOXN1NU) mice of 5- to 6-wk age. Cells injected included normal Control, shRNA MiNT (Sigma, 401315), and Peroxidase-Conjugate Af.

Protein Blots. For protein blot analyses, cells were grown to full confluence, washed twice with 1× phosphate-buffered saline (PBS) and immediately scraped off the plate into a microcentrifuge tube with 1× Laemmli sample buffer and heated to 95 °C for 10 min. Protein gels were loaded with equal amounts of proteins and analyzed using antibodies against NAF-1, mNT, MiNT (18, 21), β-actin (R&D Systems, MAB8929), DRP-1 (Abcam, ab56788), and OPA-1 (Abcam, ab157457). For DRP-1 and OPA-1 antibodies, we used radioimmuno precipitation assay (Sigma-Aldrich) buffer for lysing the cells, then lysates were kept on ice for 2 h with vortex every 30 min, then centrifugation at 15,000 rpm for 15 min, and supernatant was used for protein denaturation with Laemmli sample buffer 5×. Protein gels were loaded with equal amounts of protein, determined using The Pierce 660 nm Protein Assay (Thermo Scientific, cat. no. 22662) (46); Goat Anti-Rabbit IgG, H & L Chain Specific Peroxidase Conjugate (Sigma, 401315), and Peroxidase-conjugated AffiniPure Goat anti-mouse IgG (H+L) (Jackson ImmunoResearch Laboratories, AB, 10015289) were used as secondary antibodies (7, 23). All experiments were repeated at least three times.

Fluorescence Microscope. Cells were cultured and imaged by epifluorescent microscopy; for MMP, we used TMRE (tetramethylrhodamine ethyl ester) (Sigma, 87917) at a concentration of 0.1 μM. The mLI was determined with the fluorescent probe RPA (rhodamine B-[1(10-phenanthrolin-5-y1) aminocarboxyl] benzyl ester) (Squarix Biotechnology, ME043.1) as described in ref. 18. The mROS accumulation was determined using mitoSOX Red (Invitrogen, M36008) according to refs. 22 and 46. Images were analyzed with Velocity (Quorum Technologies Inc.) and/or with Image-J (18). For cell ROS measurements, CellROX Deep Red Reagent detection assay (Invitrogen, C10422) was used in conjunction with a Biotek plate reader (excitation 640 nm, emission 665 nm). Quantification of miLI was performed using 30 different fields (five cells per field). Quantification of mitoSOX and cellular ROS, and fluorescence changes was performed by analyzing nine different fields (five cells per field). The mLI and mROS levels were averaged from three independent experiments. Cells were plated onto microscope slides glued to perforated 3-cm-diameter tissue culture plates as previously described (18, 46). Cells were also incubated with or without DFP (3-Hydroxy-1,2-dimethyl-4(1H)-pyridone; Sigma, 279409) at a concentration of 100 μM for 1 h prior to measuring for MMP, mLI, and mROS as described in refs. 18 and 21. For the ROS resistance experiment, we used DHR-123 (Dihydropyrdohondamine) probe (Biotium, cat. no. 10055) concentration 50 μM for 15 min at 37 °C, washed 2×, then read the signal after stabilizing for 15 min, then added H2O2 (100 μM, in a concentration of 50 μM, and continued the ROS increasing for 60 min (22). For mitochondrial length fluorescence imaging, cells were treated with the mitochondrial tracker Rhodamine B00 (Sigma, 83701). Cells were then evaluated by the Olympus FXV3000 confocal laser-scanning microscope, and all images were analyzed with ImageJ.

Mitochondrial Bioenergetics, Oxygen Consumption Rate, Cellular Glycolysis, and Extracellular Acidification Rate. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured using a Seahorse XFp, Agilent, cell mito-stress analyzer (Agilent Technologies, Inc.) with the XF Cell Mito Stress Kit and XF Glycolysis Stress Kit (Agilent Technologies, Inc.), as previously described (26), and according to the manufacturer’s instructions (40). MDA-MB-231 cells (25,000) were grown to ~80% confluence in complete medium overnight before the experiment. The initial medium was then exchanged with a seahorse-running medium consisting of Dulbecco’s modified Eagle’s medium base without glucose, L-glutamine 2 mM, sodium pyruvate 1 mM, and 2-DG 50 μM, using an XF Cell Mito Stress Test kit. The XF medium initially did not contain glucose, and then was measured after the addition of glucose 10 mM, oligomycin A 2 µM, and 2-DG 50 mM. Results were expressed as mean ± SD of three independent experiments. All measurements were recorded at set interval time points. All materials and compounds were obtained from Seahorse Bioscience (18).

Karmi et al. A VDAC1-mediated NEET protein chain transfers [2Fe-2S] clusters between the mitochondria and the cytosol and impacts mitochondrial dynamics.
Transcription Electron Microscopy for Mitochondrial Structure. Cells were grown on eight-well Permanox chamber slides and, upon reaching ~80% confluence, were fixed in 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1 M cacodylate buffer (pH 7.4) for 2 h at room temperature, then prepared for transmission electron microscope (TEM) imaging as described in detail in refs. 18 and 26. Results were evaluated from 5 to 10 different cells randomly selected, averaged over 10 to 20 fields per cell, at least 100 to 200 mitochondrial were counted. Mitochondrial damages were expressed as the ratio of damaged organelles to total number of organelles, in three independent experiments (16, 40). Mitochondrial length was similarly determined in three different biological repeats (16, 40).

Mitochondrial Fraction Enrichment and Protein Solubilization. Mitochondria were isolated following the protocol published by Lampl et al. (48). Briefly, 3.0 × 10⁶ cells were collected and washed with precooled PBS 1× twice and centrifuged at 600 × g for 5 min at 4 °C. The cell pellet was resuspended into 1 mL of mitochondrial isolation buffer (250 mM Mannitol, 70 mM sucrose, 10 mM Tris/HCl, pH 7.4, and 0.1 mM [ethylenebis(oxyethylenenitrilo)])tetracetic acid (Tris) and homogenize with a glass dounce homogenizer. Then the cells were broken using a syringe and a 27-gauge 1/2-inch needle. The cell debris were centrifuged at 400 × g, and the supernatant containing the mitochondria was collected. The mitochondria were collected and rinsed with 10 mL of 0.500 mM Tris pH 8.0, 0.100 mM NaCl, 0.010 M sucrose, 10.000 mM KCl, and 0.005% Nonidet P-40 for 5 min, the beads were analyzed by MS or by Western blotting as described above and below.

Sample Preparation for MS Analysis. After the last step of immunoprecipitation, beads were washed twice with 150 mM NaCl, 50 mM Tris pH 7.4. Packed beads were then resuspended in 100 μL of 8M urea, 10 mM Dithiothreitol (DTT), 25 mM Tris HCl pH 8.0 and incubated for 30 min at 22 °C. Next, iodoacetamide (55 mM) was added, and beads were incubated for 30 min (22 °C, in the dark), followed by addition of DTT (20 mM). The urea was diluted by the addition of six volumes of 25 mM Tris HCl pH 8.0. Trypsin was added (0.3 μg per sample), and the beads were incubated overnight at 37 °C with gentle agitation. The beads were spun down, and the peptides in the supernatant were desalted on C18 homemade Stage tips.

nanoLC-MS/MS Analysis. MS analysis was performed using a Q Exactive Plus mass spectrometer (Thermo Fisher Scientific) coupled online to a nanoﬂow ultra high performance liquid chromatography instrument, Ultimate 3000 Dionex (Thermo Fisher Scientific). Peptides (0.35 μg, as estimated by optical density 280 nm) were separated over a nonlinear 60-min gradient (0 to 80% acetonitrile) run at a flow rate of 0.3 μL/min on a C18 column 2.5-μm, 100 μm, 100 Å, Thermo PepMapRSLC. The survey scans (380 to 2,000 m/z, target value 3E6 charges, maximum ion injection time 50 ms) were acquired and followed by higher-energy collision dissociation–based fragmentation (normalized collision energy 35). A resolution of 70,000 was used for survey scans, and up to 15 dynamically chosen most abundant precursor ions, with “peptide preferable” profile, were fragmented (isolation window 1.6 m/z). The MS/MS scans were acquired at a resolution of 17,500 (target value 1E5 charges, maximum ion injection time 120 ms). Dynamic exclusion was 60 s. Data were acquired using Xcalibur software (Thermo Scientific). To avoid a carryover, the column was washed with 80% acetonitrile, 0.1% formic acid for 25 min between samples.

Data Availability. All study data are included in the article and/or supporting information. Proteomics data was deposited in ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD030730.

Acknowledgments. O.K. acknowledges The Annual Golda Meir Fellowship and The Hebrew University Rector for the Emergency Scholarship recipients for Postdoctoral fellows, 2020–2021. H.B.M. is financed by the STIMULATE project that has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement 765048. This work was supported by NSF–Binational Science Foundation (BSF) Grant NSF-MCB 1613462 (to R.M.) and BSF Grant 2015831 (to R.N.), as well as by GM11364 (to R.M.). The work of J.N.O., F.B., and S.R. was supported by NSF Grants PHY-2019745 and CHE-1614101, and by Welch Foundation Grant C-1792. J.N.O. is a Cancer Prevention and Research Institute of Texas Scholar in Cancer Research. F.M. acknowledges support and/or information from the NSF Grant MCB-1943442 and the NIH Grant R35GM133631.
R. Nechushtai
13. D. Molino
1. J. J. Braymer, R. Lill, Iron-sulfur cluster biogenesis and trafficking in mitochondria. J. Biol. Chem. 292, 12754–12763 (2017).
2. T. Yi, S. A. Freibert, U. Mühlenhoff, R. Lill, Mechanisms of mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 100, 61–77 (2014).
3. R. Lill, Function and biogenesis of iron-sulfur proteins. Nature 460, 831–838 (2009).
4. O. Karmi et al., The unique fold and location of the [2Fe–2S] clusters of NEET proteins mediate their key functions in health and disease. JBC 23, 599–612 (2018).
5. S. Tamir et al., Structure-function analysis of NEET proteins uncover their role as key regulators of iron and ROS homeostasis in health and disease. Biochim. Biophys. Acta Mol. Cell Res. 1853, 1294–1315 (2015).
6. R. Lill et al., Interactions between mitoNEET and NAF-1 in cells. PloS One 12, e0175796 (2017).
7. Y. S. Sohn et al., MitoNEET and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proc. Natl. Acad. Sci. U.S.A. 110, 14676–14681 (2013).
8. A. P. Landry, H. Ding, Redox control of human mitochondrial outer membrane protein mitoNEET [2Fe–2S] clusters by biological thiols and hydrogen peroxide. J. Biol. Chem. 289, e4037–e4135 (2014).
9. B. Baillie et al., The Fe–S cluster-containing NEET proteins mitoNEET and NAF-1 as chemotherapeutic targets in breast cancer. Proc. Natl. Acad. Sci. U.S.A. 112, 3698–3703 (2015).
10. L. Danielpetru et al., GLP-1-RA corrects mitochondrial labile iron accumulation and improves beta-cell function in type 2 Wolfram syndrome. J. Clin. Endocrinol. Metab. 101, 3592–3599 (2016).
11. M. Darash-Yahana et al., Breast cancer tumorigenesis is dependent on high expression levels of NAF-1 and the lability of its Fe–S clusters. Proc. Natl. Acad. Sci. U.S.A. 113, 10890–10895 (2016).
12. M. F. Gaglioli-Cohen et al., Redox control of the human iron-sulfur repair protein mitoNEET activity via its iron-sulfur cluster. J. Biol. Chem. 291, 7583–7593 (2016).
13. A. Varnay et al., MitoNEET-dependent formation of intermembrane junctional interactions. Proc. Natl. Acad. Sci. U.S.A. 114, 8277–8282 (2017).
14. T. Furhanta et al., mitoNEET regulates mitochondrial iron homeostasis interacting with transferrin receptor. BioReV (Preprint) (2018). https://doi.org/10.11393/issn:0084.
15. O. Karmi et al., Combined drug treatment that reduces mitochondrial iron and reactive oxygen levels recovers insulin secretion in NAF-1-deficient pancreatic cells. Antioxidants 10, 1160 (2020).
16. M. Giaconello, A. Pyakurel, C. Gylansu, L. Scorrano, The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020).
17. E. Schreper, L. Scorrano, Mitofusins, from mitochondria to metabolism. Mol. Cell 61, 683–694 (2016).
18. L. Pernas, L. Scorrano, Mitochondria-based fusion, fission, and cristae remodeling as key mediators of cellular function. Annu. Rev. Physiol. 78, 505–531 (2016).
19. C. H. Lipper et al., Cancer-related NEET proteins transfer 2Fe–2S clusters to Anamor- sin, a protein required for cytosolic iron-sulfur cluster biogenesis. PLoS One 10, e0139699 (2015).
20. F. Bai, F. Morcos, R. R. Cheng, H. Jiang, J. N. Onuchic, Elucidating the druggable inter- face of protein–protein interactions using fragment docking and coevolutionary analysis. Proc. Natl. Acad. Sci. U.S.A. 113, E8051–E8058 (2016).
21. F. Morcos et al., Direct-coupling analysis of residue coevolution captures native con- tacts across many protein families. Proc. Natl. Acad. Sci. U.S.A. 108, E1293–E1301 (2011).
22. C. Dominguez, R. Boelens, A. M. Bonvin, HADDOCK: A protein–protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).
23. S. K. King et al., The cis gene family regulates physiological germine apoptosis through ced-13 and the canonical cell death pathway in Caenorhabditis elegans. Cell Death Differ. 26, 162–178 (2019).
24. X.-Y. Chen et al., Isothermometry indicates mitochondrial dysfunction and apoptosis by inhibiting mitoNEET in a reactive oxygen species-dependent manner in A375 melanoma cells. Oxidative Med. Cellular Longevity 2019, 9817576 (2019).
25. W. J. Geldenhuys, T. C. Leeper, R. T. Carroll, mitoNEET as a novel drug target for mito-ochondrial dysfunction. Drug Discov. Today 19, 1601–1606 (2014).
26. S. H. Holt et al., Activation of apoptosis in NAF-1-deficient human epithelial breast cancer cells. J. Cell Sci. 129, 155–165 (2016).
27. A. S. Divakaruni et al., Analysis and interpretation of microplate-based oxygen con- sumption and pH data. Methods Enzymol. 547, 309–354 (2014).
28. T. Lampel et al., Isolation and functional analysis of mitochondria from cultured cells and mouse tissue. J. Vis. Exp. 97, 52016 (2015).
29. M. L. Paddock et al., MitoNEET is a uniquely folded 2Fe 25 outer mitochondrial membrane protein stabilized by pioglitazone. Proc. Natl. Acad. Sci. U.S.A. 110, 14342–14347 (2013).
30. F. Bai et al., Free energy landscape for the binding process of Huperzine A to acetyl- cholinesterase. Proc. Natl. Acad. Sci. U.S.A. 110, 4273–4278 (2013).
31. C. Clementi, H. Nymeyer, J. N. Onuchic, Topological and energetic factors: What determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298, 937–953 (2000).
32. J. K. Noel, P. C. Whitford, J. N. Onuchic, The shadow map: A general contact defini- tion for capturing the dynamics of biomolecular folding and function. J. Phys. Chem. B 111, 8692–8702 (2007).
33. S. Roy, A. Jaiswar, R. Sarkar, Dynamic asymmetry exposes 2019-nCoV prefusion spike. J. Phys. Chem. Lett. 11, 7021–7027 (2020).
34. J. D. Honeycutt, D. Thirumalai, The nature of folded states of globular proteins. Biomol- polymers 32, 695–709 (1992).
35. R. Jana, N. Onuchic, Strain mediated adaptation is key for myosin mechanochemis- try: Discovering general rules for motor activity. PLoS Comput. Biol. 12, e1005305 (2016).
36. J. K. Noel et al., SMOG 2: A versatile software package for generating structure-based models. PLoS Comput. Biol. 12, e1004794 (2016).
37. M. J. Robertson, Y. Qian, M. C. Robinson, J. Tirado-Rives, W. L. Jorgensen, Development and testing of the OPLS-AA/M force field for RNA. J. Chem. Theory Comput. 15, 2734–2742 (2019).
38. T. Darden, D. York, L. Pedersen, Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10889–10902 (1993).