Circle of Willis atherosclerosis, Alzheimer’s disease and the Dean number

Rovshan M Ismailov

Rovshan M Ismailov, Complex Mechanisms of Disease, Aging and Trauma (CMDAT) Research Foundation, Glendale, CO 80246, United States
Author contributions: Ismailov RM solely contributed to this paper.
Correspondence to: Rovshan M Ismailov, MD, MPH, PhD, Research Scientist, Complex Mechanisms of Disease, Aging and Trauma (CMDAT) Research Foundation, PO Box 461286, Glendale, CO 80246, United States. rovshani@yahoo.com
Telephone: +1-720-9753393 Fax: +1-720-9494866
Received: June 16, 2013 Revised: September 20, 2013 Accepted: October 11, 2013 Published online: October 26, 2013

Abstract
The important role of atherosclerosis in pathophysiology of Alzheimer’s Disease has become evident. Mechanisms such as hyperlipidemia, inflammation, abdominal obesity and insulin resistance are important yet they may not fully explain the specific involvement of the Circle of Willis in these pathologies. The Circle of Willis is a complex geometrical structure which has several areas with different curvature as well as various branching angles of vessels composing the circle. The hemodynamics in this region should take into account the Dean number which indicates the influence of curvature on the resistance to blood flow. Thus, areas with various curvature and angles may have different hemodynamics and there are certain areas in the Circle of Willis that are more likely to develop atherosclerotic changes. Therefore, this could suggest the novel pathophysiological pathway resulting from the geometric peculiarities of the Circle of Willis. One of the directions of future research is to examine whether specific areas of the Circle of Willis are more likely to develop atherosclerotic changes compared to other ones. Selective areas of the Circle of Willis affected by atherosclerotic changes could indicate the primary role of atherosclerosis promoting Alzheimer’s disease although other pathophysiological mechanisms suggesting the opposite direction should be also examined in prospective studies.

© 2013 Baishideng. All rights reserved.

Key words: Circle of Willis; Alzheimer’s disease; Atherosclerosis; Mechanism; The Dean number

Core tip: The Dean number can become an important local pathophysiological mechanism that can help to explain the specific involvement of the Circle of Willis in atherosclerosis and Alzheimer’s Disease as anatomically different parts of the Circle of Willis would exhibit various degree of the curvature which would predispose to Alzheimer’s disease. This could possibly explain some sporadic cases of Alzheimer’s disease in the presence of minimal damage from atherosclerosis as well as open up new avenues for prevention of sporadic Alzheimer’s disease.

Ismailov RM. Circle of Willis atherosclerosis, Alzheimer’s disease and the Dean number.

World J Cardiol 2013; 5(10): 394-396
Available from: URL: http://www.wjgnet.com/1949-8462/full/v5/i10/394.htm DOI: http://dx.doi.org/10.4330/wjc.v5.i10.394

TO THE EDITOR

The important role of atherosclerosis in pathophysiology of Alzheimer’s disease has become evident. Studies that examined an association between the Circle of Willis atherosclerosis, Alzheimer’s disease and some other neurodegenerative conditions are examples of important research directions focused on probable influence of various vascular factors on Alzheimer’s disease[1,2]. On the other hand, those studies suggest that these pathologies could share some common pathophysiological mechanisms that yet need to be investigated. Some of such mechanisms such as hyperlipidemia, inflammation, abdominal obesity and insulin resistance were described by authors as prob-
Therefore, there are certain areas in the Circle of Willis the development of the Circle of Willis atherosclerosis. Common pathophysiological pathways should take into account multiple factors such as hyperlipidemia, insulin resistance, certain local rheological and hemodynamic mechanisms that could explore local factors (i.e., the Dean number) and suggesting the opposite direction of this pump is in the cyclic creation of the boundary layer and its separation. This deformation pump is important to consider as it could influence the dynamics of the regional brain extravascular extracellular fluid which was previously studied with regard to amyloid beta-protein, amyloid-beta building blocks for plaques and subsequent involvement in neurodegeneration. Such consideration of regional brain extravascular extracellular fluid dynamics is also particularly important in light of the fact that certain waste products such as glutamate or calcium can accumulate there causing degradation of certain cellular components thus playing an important role in the pathogenesis of Alzheimer’s disease. A consideration of both the deformation pump and extravascular extracellular fluid could become an important link between Alzheimer’s disease and atherosclerosis.

All this could suggest the novel pathophysiological pathway resulting from the geometric peculiarities of the Circle of Willis. One of the directions of future research is to examine whether specific areas of the Circle of Willis are more likely to develop atherosclerotic changes compared to other ones. Selective areas of the Circle of Willis affected by atherosclerotic changes could indicate the primary role of atherosclerosis promoting Alzheimer’s disease. On the other hand, other pathophysiological mechanisms that could explore local factors (i.e., the Dean number) and suggesting the opposite direction should be also examined in prospective studies. For example, anatomically “different” parts of the Circle of Willis (i.e., narrowed branching areas) would exhibit various degree of the Dean number and this would predispose to Alzheimer’s disease. This could possibly explain some sporadic cases of Alzheimer’s disease in the presence of minimal damage from atherosclerosis in this area. More importantly, this would open up new avenues for prevention of sporadic Alzheimer’s disease in the light of the fact that this is an emerging health concern in the elderly. In addition, certain rheological factors such as blood viscosity should be taken into account as a contributing pathophysiological mechanism as well. In conclusion, more studies are needed to examine the common pathophysiological mechanisms related to both Alzheimer’s disease and various vascular pathologies. Such common pathophysiological pathways should take into account multiple factors such as hyperlipidemia, insulin resistance, certain local rheological and hemodynamic mechanisms in the development of the Circle of Willis atherosclerosis. Therefore, there are certain areas in the Circle of Willis that are more likely to develop atherosclerotic changes. As mentioned earlier, other factors such as hyperlipidemia or abdominal obesity should be taken into account as well.

Subsequently, with the development of atherosclerosis, vascular wall in the certain areas of the Circle of Willis (i.e., with substantial curvature) becomes less elastic and more rigid. This could result in the deterioration in the cyclic changes in the vascular wall deformation produced by cardiac contractions, and, therefore, in the performance of a “deformation pump”. The operating principle of this pump is in the cyclic creation of the boundary layer and its separation. This deformation pump is important to consider as it could influence the dynamics of the regional brain extravascular extracellular fluid which was previously studied with regard to amyloid beta-protein, amyloid-beta building blocks for plaques and subsequent involvement in neurodegeneration. Such consideration of regional brain extravascular extracellular fluid dynamics is also particularly important in light of the fact that certain waste products such as glutamate or calcium can accumulate there causing degradation of certain cellular components thus playing an important role in the pathogenesis of Alzheimer’s disease. A consideration of both the deformation pump and extravascular extracellular fluid could become an important link between Alzheimer’s disease and atherosclerosis.

All this could suggest the novel pathophysiological pathway resulting from the geometric peculiarities of the Circle of Willis. One of the directions of future research is to examine whether specific areas of the Circle of Willis are more likely to develop atherosclerotic changes compared to other ones. Selective areas of the Circle of Willis affected by atherosclerotic changes could indicate the primary role of atherosclerosis promoting Alzheimer’s disease. On the other hand, other pathophysiological mechanisms that could explore local factors (i.e., the Dean number) and suggesting the opposite direction should be also examined in prospective studies. For example, anatomically “different” parts of the Circle of Willis (i.e., narrowed branching areas) would exhibit various degree of the Dean number and this would predispose to Alzheimer’s disease. This could possibly explain some sporadic cases of Alzheimer’s disease in the presence of minimal damage from atherosclerosis in this area. More importantly, this would open up new avenues for prevention of sporadic Alzheimer’s disease in the light of the fact that this is an emerging health concern in the elderly. In addition, certain rheological factors such as blood viscosity should be taken into account as a contributing pathophysiological mechanism as well. In conclusion, more studies are needed to examine the common pathophysiological mechanisms related to both Alzheimer’s disease and various vascular pathologies. Such common pathophysiological pathways should take into account multiple factors such as hyperlipidemia, insulin resistance, certain local rheological and hemodynamic mechanisms in the development of the Circle of Willis atherosclerosis. Therefore, there are certain areas in the Circle of Willis that are more likely to develop atherosclerotic changes. As mentioned earlier, other factors such as hyperlipidemia or abdominal obesity should be taken into account as well.

Subsequently, with the development of atherosclerosis, vascular wall in the certain areas of the Circle of Willis (i.e., with substantial curvature) becomes less elastic and more rigid. This could result in the deterioration in the cyclic changes in the vascular wall deformation produced by cardiac contractions, and, therefore, in the performance of a “deformation pump”. The operating principle of this pump is in the cyclic creation of the boundary layer and its separation. This deformation pump is important to consider as it could influence the dynamics of the regional brain extravascular extracellular fluid which was previously studied with regard to amyloid beta-protein, amyloid-beta building blocks for plaques and subsequent involvement in neurodegeneration. Such consideration of regional brain extravascular extracellular fluid dynamics is also particularly important in light of the fact that certain waste products such as glutamate or calcium can accumulate there causing degradation of certain cellular components thus playing an important role in the pathogenesis of Alzheimer’s disease. A consideration of both the deformation pump and extravascular extracellular fluid could become an important link between Alzheimer’s disease and atherosclerosis.
factors as well as potentially new contributing factors established in future research.

REFERENCES

1 Roher AE, Esh C, Kokjohn TA, Kalback W, Luehrs DC, Seward JD, Sue LI, Beach TG. Circle of willis atherosclerosis is a risk factor for sporadic Alzheimer's disease. *Arterioscler Thromb Vasc Biol* 2003; 23: 2055-2062 [PMID: 14512367 DOI: 10.1161/01.ATV.0000095973.42032.44]

2 Yarchoan M, Xie SX, Kling MA, Toledo JB, Wolk DA, Lee EB, Van Deelen V, Lee VM, Trojanowski JQ, Arnold SE. Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. *Brain* 2012; 135: 3749-3756 [PMID: 23204143 DOI: 10.1093/brain/aws271]

3 Kapoor K, Singh B, Dewan LI. Variations in the configuration of the circle of Willis. *Anat Sci Int* 2008; 83: 96-106 [PMID: 18507619 DOI: 10.1111/j.1447-073X.2007.00216.x]

4 Caro CG, Pedley TJ. The Mechanics of the Circulation. Oxford, New York: Oxford University Press, 1978

5 Ismailov RM. Arch vessel injury: geometrical considerations. Implications for the mechanism of traumatic myocardial infarction II. *World J Emerg Surg* 2006; 1: 28 [PMID: 16961917 DOI: 10.1186/1749-7221-1-28]

6 Ismailov RM. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction. *Theor Biol Med Model* 2005; 2: 13 [PMID: 15799779 DOI: 10.1186/1742-4682-2-13]

7 Ismailov RM. New insights into the mechanism of Alzheimer's disease: A multidisciplinary approach. In: Amazon Kindle, 2009

8 Meyer-Luehmann M, Stalder M, Herzig MC, Kaeser SA, Kohler E, Pleifer M, Boncristiano S, Mathews PM, Merczen M, Abramowski D, Staufenbiel M, Jucker M. Extracellular amyloid formation and associated pathology in neural grafts. *Nat Neurosci* 2003; 6: 370-377 [PMID: 12598899 DOI: 10.1038/nn1022]

9 Cirrito JR, May PC, O’Dell MA, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, Bales KR, Paul SM, DeMattos RB, Holtzman DM. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. *J Neurosci* 2003; 23: 8844-8853 [PMID: 14523085]

10 Khachaturian ZS. The role of calcium regulation in brain aging: reexamination of a hypothesis. *Aging* (Milano) 1989; 1: 17-34 [PMID: 2488296]