MOLECULAR MARKERS IDENTIFICATION OF LEAF RUST RESISTANT GENES LR19, LR21, LR24, LR47 AND LR51 IN SELECTED EGYPTIAN WHEAT CULTIVARS

a Ashraf M.M. Abdelbacki*, b Reda I. Omara, a Nor E.K. Soliman, b Mohammed A. Najeeb

a Department of Plant Pathology, Faculty of Agriculture, University of Cairo, Egypt.
b Department of Wheat Diseases, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt.

ABSTRACT

Leaf rust, caused by Puccinia triticina is a common and widespread disease of bread wheat (Triticum aestivum L.), in Egypt. Host resistance is the most economical, effective and ecologically sustainable method for controlling the disease. Molecular markers help to determine leaf rust resistance genes (Lr genes) that may be present in a large group of wheat germplasm. The objective of this study was to evaluate and detect leaf rust resistance genes in Egyptian wheat cultivars. Ten out of fifteen cultivars were resistance to leaf rust disease in four locations i.e., Dakahlia, Kafr el-Sheikh, Beheira and Sharqia during seasons 2011/2012 and 2012/2013. As for, using specific SSR primers proved that Lr19 was present in five cultivars i.e., Sakha-95, Gemmeiza-9, Gemmeiza-10, Misr-1 and Misr-2. Lr21, Lr24, Lr47, and Lr51 were detected in all tested cultivars. These genes should be taken into consideration in wheat breeding programs for successful rust resistance. Furthermore these materials can be used as a parent for plant breeders to add new effective resistance genes to their breeding materials because of the dynamic change of leaf rust races which can breakdown the resistance.

Keywords: wheat, leaf rust, Puccinia triticina, wheat cultivars, resistance genes, molecular markers.

INTRODUCTION

Wheat leaf rust is one of the most important diseases resulting in high yield losses and reduced grain quality (Cloutier et al., 2007). Resulting in the use of resistant cultivars offers the most effective and ecologically sustainable method of control of the disease; therefore, incorporating genetic resistance to this pathogen into adapted germplasm is a major goal in most wheat breeding programs.

Plant disease resistance can be classified into two categories: qualitative resistance, conferred by a single resistance gene (also termed as major, seedling, or race specific resistance) and quantitative resistance, mediated by multiple genes or quantitative trait loci (QTLs) (also termed as adult plant, race non-specific or slow rusting resistance) with each providing a partial increase in resistance (Kou and Wang, 2010). More than sixty genes for leaf rust resistance (Lr), most of them major, seedling or race specific genes, have been catalogued to date in wheat (McIntosh et al., 2008 and Samsampour et al., 2010). However, the gene-for-gene interaction between host resistance genes and pathogen virulence genes combined by virulence shifts in pathogen populations have reduced the effectiveness of a significant number of major leaf rust resistance genes (Johnson, 2000; Bulos et al., 2006). Replacement of highly variable land races by higher yielding, pure-line varieties in many parts of the world has further reduced the wheat gene pool and favored virulence shifts events in pathogen populations.

In this context, a better knowledge on the identity of effective Lr genes present in adapted cultivars that can be used as donors of resistance in wheat breeding programs could greatly improve the efficiency of developing resistant cultivars by using these genes or by stacking different resistant genes in a given cultivar, a process also known as gene pyramiding (Messmer et al., 2000); thereby helping to avoid the release of cultivars that are genetically uniform (Mebrate et al., 2008).

* Corresponding Author:
Email: amaeg@hotmail.com

© 2015 ESci Journals Publishing. All rights reserved.
Before gene pyramiding is practiced, it is advisable to identify effective and genetically different sources of resistance. Alternatively to gene postulation, presence of \(Lr \) genes can be determined by testing host cultivars with molecular markers linked to resistance genes. This approach overcomes some of the problems associated with traditional gene postulation, such as gene interactions and plant stage of gene expression. Recently there have been advances in the mapping and development of molecular markers of several leaf rust resistance genes (Helguera et al., 2000; Prins et al., 2001; Helguera et al., 2003, Helguera et al., 2005; Gupta et al., 2006; Lagudah et al., 2006; Bansal et al., 2008; Mebrate et al., 2008; Kuraparthi et al., 2009; Sun et al., 2009; Samsampour et al., 2010). Once these genetic factors are mapped, they can be controlled by molecular markers and the corresponding genotypes of individuals can be assessed easily. As a consequence, the identification of cultivars carrying favourable alleles at these loci will provide valuable genetic material for the development of new improved varieties. The objective of this study was to identify leaf rust resistance in ten bread Egyptian wheat cultivars using molecular markers.

MATERIALS AND METHODS

Evaluation of 15 Egyptian Wheat Cultivars and Four Monogenic Lines Under Field Condition: A total of 15 wheat cultivars i.e., Sakha-61, Sakha-69, Sakha-93, Sakha-94, Sakha-95, Gemmeiza-7, Gemmeiza-9, Gemmeiza-10, Gemmeiza-11, Sids-1, Sids-12, Sids-13, Giza-168, Misr-1 and Misr-2 and four resistance monogenic lines (\(Lr \) genes) \(Lr19, \ Lr21, \ Lr24 \) and \(Lr47 \) were evaluated under field condition at four locations: Dakahlia, Kafr el-Sheikh, Beheira and Sharqia during two seasons 2011/12 and 2012/13 for leaf rust resistance. These cultivars were sown in 3m long rows, with 30cm apart and 5g seed rate for each row. The experiment was surrounded by 1.5m belt of highly susceptible varieties i.e., Morocco and Triticum spletasaharenes, served as a spreader of leaf rust. This spreader was artificially inoculated using a mixture of races in addition to the natural infection during late tillering and early booting. Rust reaction was expressed in five types i.e., immune = \(0 \), resistant = \(R \), moderately resistant = \(MR \), moderately susceptible = \(MS \) and susceptible = \(S \) (Stakman et al, 1962). Then rust reaction was transformed to Average Coefficient of Infection (ACI) values according to the methods adopted by Saari and Wilcoxson (1974).

Molecular Markers

Laboratory studies: This part of the investigation was carried out at the molecular biology laboratory, Faculty of Agriculture Research Park (FARP), Faculty of Agriculture, Cairo University.

Plant Material: Resistance Egyptian wheat cultivars: Sakha-94, Sakha-95, Gemmeiza-9, Gemmeiza-10, Gemmeiza-11, Sids-12, Sids-13, Giza-168, Misr-1 and Misr-2 and four resistance monogenic lines: \(Lr19, \ Lr21, \ Lr24 \) and \(Lr47 \) were selected as plant materials for detection of leaf rust resistance genes using molecular markers.

DNA Extraction: A modified method based on the protocol of Dellaporta et al. (1983) was conducted for extraction of total genomic DNA.

PCR Amplification: Polymerase chain reaction was performed in thermocycler (Rocorbett-Research, CG1-96) in 25μl reaction volume containing: 2.5μl 50ng/μl of genomic DNA, 1μl each primer (10 pmol, F & R) and 8μl MQ H2O (Devos and Gale, 1992). The specific SSR primers used to verify the presence of \(Lr19, \ Lr21, \ Lr24 \) and \(Lr47 \) and \(Lr51 \) genes are listed in Table 1.

Amplification products were electrophoresed at 100V/1h. After electrophoresis, the gel was stained with ethidium bromide and bands were visualized using UV light and photographed with a Syngen UV visualizer (gel documentation system, G:BOX). The Mid-Range DNA Ladder 100bp-3kbp linear saele (Jena Bioscience) was used to detect the molecular weight of the tested samples.

RESULTS

Evaluation of 15 Egyptian Wheat Cultivars and Four Resistance Monogenic Lines Against Leaf Rust Under Field Conditions: The aim of this work was to study the response of 15 wheat cultivars i.e., Sakha-61, Sakha-69, Sakha-93, Sakha-94, Sakha-95, Gemmeiza-7, Gemmeiza-9, Gemmeiza-10, Gemmeiza-11, Sids-1, Sids-12, Sids-13, Giza-168, Misr-1 and Misr-2 and four resistance monogenic lines (\(Lr \)s) \(Lr19, \ Lr21, \ Lr24 \) and \(Lr46 \) against leaf rust under field condition in four locations Kafr el-Sheikh, Beheira, Dakahlia and Sharqia during growing seasons 2011/12 and 2012/13.
The first growing season 2011/12: Data presented in Table 2 revealed that the wheat cultivars Giza-168, Sakha-94, Misr-2, Misr-1, Sakha-95, Sids-13, Gemmeiza-9, Sids-12, Gemmeiza-10 and Gemmeiza-11 showed high resistance where the rust severity values were 0.50 %, 1.00 %, 1.10 %, 1.30 %, 1.50 %, 4.75 %, 4.90 %, 6.50 % and 6.50 % respectively. On the other hand, the wheat cultivars Gemmeiza-7, Sakha-93, Sakha-61, Sakha-69 and Sids-1 showed high levels of rust severity i.e., 67.50 %, 55.00 %, 52.50 %, 52.50 % and 42.50 % respectively. Therefore, these cultivars were considered highly susceptible to leaf rust disease. Likewise, the monogenic line Lr19 showed highly resistance (0 DS) to leaf rust disease in the four locations followed by Lr47 (7.00 %), Lr21 (13.25 %) and Lr24 (14.00 %).

The second growing season 2012/13: The lowest response of rust severity was found on the cvs. Misr-1 (0.50 %), Giza-168 (0.75 %), Misr-2 (0.80 %), Sakha-94 (0.80 %), Sakha-95 (1.05 %), Sids-13 (5.75 %), Sids-12 (6.25 %), Gemmeiza-9 (6.5 %), Gemmeiza-10 (7.5 %) and...
Gemmeiza-11 (14.5 %). On the other hand, the wheat cultivars Sids-1, Gemmeiza-7, Sakha-93, Sakha-61 and Sakha-69 showed the highest response of rust severity. They were 75.00 %, 70.00 %, 62.50 %, 57.50 % and 35.00 %, respectively. Furthermore data showed that Lr19 was highly resistance to leaf rust in the four locations followed by Lr21 (4.50 %), Lr24 (6.50 %) and Lr47 (8.25 %) (Table 2).

Molecular markers: The polymorphic survey revealed that the marker for Lr19 was identified as a fragment of 130bp in five cultivars namely: Sakha-95, Gemmeiza-9, Gemmeiza-10, Misr-1 and Misr-2, while five cultivars; Sakha-94, Gemmeiza-11, Giza-168, Sids-12 and Sids-13 did not show the presence of Lr19 (Fig. 1). On the other hand, the diagnostic PCR fragments associated with Lr21 and Lr47 were detected in all tested cultivars (Fig. 2 and 3). Likewise markers for resistance genes Lr24 and Lr51 were found in the ten tested cultivars (Table 3).

Table 3. Lr genes detected with PCR based markers in ten Egyptian wheat cultivars.

No.	Cultivar	Lr19	Lr21	Lr24	Lr47	Lr51
1	Sakha-94	_	+	+	+	+
2	Sakha-95	+	+	+	+	+
3	Gemmeiza-9	+	+	+	+	+
4	Gemmeiza-10	+	+	+	+	+
5	Gemmeiza-11	_	+	+	+	+
6	Sids-12	_	+	+	+	+
7	Sids-13	_	+	+	+	+
8	Giza-168	_	+	+	+	+
9	Misr-1	+	+	+	+	+
10	Misr-2	+	+	+	+	+

(+)= presence of Lr gene in wheat cultivars and (-)=absence of Lr gene in wheat cultivars

Figure 1. Electrophoretic amplified pattern of DNA extracted from 10 cultivars using the specific primer for Lr19 (TCG TCC AGA TCA GAA G-T F, CTC GTCGATTAGCAGTGAG R). M= DNA Ladder (DNA Marker), P= Positive, Lane 1= Giza-168, Lane 2= Sids-12, Lane 3= Misr-2, Lane 4= Sakha-95, Lane 5= Sakha-94, Lane 6= Sids-13, Lane 7= Gemmeiza-10, Lane 8= Gemmeiza-9, Lane 9= Misr-1= Lane 10= Gemmeiza-11.

Figure 2. Electrophoretic amplified pattern of DNA extracted from 10 cultivars using the specific primer for Lr21 (CCA AAG AGC ATC CAT GGT GT F, GGC TTTT ACC GAG ATT GGT C R). M= DNA Ladder (DNA Marker), P= Positive, Lane 1= Giza-168, Lane 2= Sids-12, Lane 3= Misr-2, Lane 4= Sakha-95, Lane 5= Sakha-94, Lane 6= Sids-13, Lane 7= Gemmeiza-10, Lane 8= Gemmeiza-9, Lane 9= Misr-1= Lane 10= Gemmeiza-11.
DISCUSSION

Leaf rust of wheat was the cause of eliminating many cultivars i.e., Giza 139, Super X, Mexipak 69 and Chenab 70 because of their susceptibility under field conditions. Moreover, some wheat genotypes were discarded very shortly after their release such as Giza 139. The failure of such cultivars was mainly due to the dynamic nature, in population, of the causal organism, which produces new virulence having the ability to breakdown their resistance. Thus, we evaluated 15 Egyptian wheat commercial cultivars under field condition in four locations: Dakahlia, Kafr el-Sheikh, Beheira and Sharqia during two seasons 2011/12 and 2012/13 for leaf rust resistance. We found ten out of fifteen cultivars: Sakha-94, Sakha-95, Gemmeiza-7, Gemmeiza-9, Gemmeiza-10, Gemmeiza-11, Sids-12, Sids-13, Giza-168, Misr-1 and Misr-2 showed high level of resistance against leaf rust in four locations during the two seasons. These results supported by Nazim et al. (1990) and Boulot (2007) showed that final rust severity (%) and area under disease progress curve (AUDPC) of wheat varieties Giza 168, Sakha 94, Gemmeiza 9 and Gemmeiza 10 were low compared to susceptible varieties.

These results are agree with Liatukas 2003; Tariq et al., 2003; Masar et al., 2004; Martinez et al., 2005 and Hanzalova and Bartos 2006; Hanzalova 2010; Hanzalova et al., 2010 and Hanzalová et al., 2012. Elyasi-Gomari (2010) showed that no leaf rust damage occurred on Lr9, Lr25, Lr28 and Lr29 in the field, and lines with Lr19, Lr16, Lr18, Lr35, Lr36, Lr37 and the combination Lr27 + Lr31 showed less than 15% severity.

In this context, gene pyramiding of effective Lr genes is probably the faster strategy to develop leaf rust resistant wheat cultivars. Gene pyramiding can be greatly facilitated with associated markers through marker assisted selection programs (MAS), this is particularly true in the field of wheat breeding for leaf rust resistance where PCR-based markers are already available for almost half of the 80 or more designated resistance genes and alleles (Samsampour et al., 2010, Herrera-Foessel et al., 2011 and McIntosh et al., 2012). Many authors conclude there is a greater predictive ability of molecular markers than pedigree data (Błaszczyk et al., 2008 and Stepień et al., 2003). Our results clearly indicate the advantage of molecular markers for evaluating the presence of Lr genes in wheat cultivars compared to pedigree data and are in accordance with numerous studies and reviews (Stepień et al., 2003; Ordon et al. 2004). We selected 10 out of 15 cultivars for molecular markers identification and explained their resistance to leaf rust resistance. The Results obtained proved that resistance in the tested cultivars was due to the presence of resistance genes i.e., Lr19, Lr21, Lr24, Lr47, and Lr51. On a global scale, Lr19 is probably the most widely distributed gene for resistance to P. triticina (McIntosh et al., 1995 and Winzeler et al., 2000). Therefore, it is still considered important gene because it is present in several bred cultivars in CIMMYT in combination with other adult plant resistance genes which continue to give excellent leaf rust protection (Huerta-Espino et al., 2011). In Egypt, this gene is important gene for resistance and detected in five cultivars, Sakha-95, Gemmeiza-9, Gemmeiza-10, Misr-1 and Misr-2 (present study). We advise especially the planting cultivars Misr-1 and Misr-2 because they carry many resistant genes (Lr19, Lr21, Lr24, Lr47, and Lr51) for leaf rust and resistant genes Sr2 and Sr25 for stem rust (Singh et al., 2011). Therefore, they considered very resistance to leaf and stem rusts (especially Ug99 race) and they can be grown in different environmental conditions. In addition the results showed that the genes Lr21, Lr24, Lr47 and Lr51 were identified by molecular

Figure 3. Electrophoretic amplified pattern of DNA extracted from 10 cultivars using the specific primer for Lr47 (TCT TCA TGC CCG GTC GGG T-F, GGG CAG GCG TTT ATT CCA G-R). M= DNA Ladder (DNA Marker), P= Positive, Lane 1= Giza-168, Lane 2= Sids-12, Lane 3= Misr-2, Lane 4= Sakha-95, Lane 5= Sakha-94, Lane 6= Sids-13, Lane 7= Gemmeiza-10, Lane 8= Gemmeiza-9, Lane 9= Misr-1= Lane 10= Gemmeiza-11.
markers in the ten tested cultivars. Thus, the good resistance of these cultivars is due to the complementary effect between these major genes which enhance the response of a variety and give its higher levels of resistance.

Finally, in the future studies we recommend the genes pyramiding as a method to achieve more durable resistance against pathogens with low genetic diversity, high gene flow and asexual mating systems (McDonald & Linde, 2002; Hysing et al., 2006). The combination of several effective resistance genes into a single cultivar should extend the period of resistance and this is called horizontal resistance.

REFERENCES

Bansal, U. K. M. J. Hayden, B. P. Venkata, R. Khanna, R.G. Saini and H. S. Bariana. 2008. Genetic mapping of adult plant leaf rust resistance genes Lr48 and Lr49 in common wheat. Theor. Appl.Genet. 117(3): 307-312.

Błaszczyk, L., I. Krämer, F. Ordon, J. Chełkowski, M. Tyrka and G. Vida. 2008. Validity of selected DNA markers for breeding leaf rust resistant wheat. Cereal Research Communications. 36(2): 201-213.

Boulot, O. A. 2007. Durable resistance for leaf rust in twelve Egyptian wheat varieties. Egypt. J. of Appl. Sci. 7: 40 - 60.

Bulos, M., Echarte, M. and Sala, C. 2006. Occurrence of the rust resistance gene Lr37 from Aegilops ventricosa in Argentine cultivars of wheat. Electronic J. Biotechnology. 9(5).

Cloutier, S., B. D. McCallum, C. Loutre, T. W. Banks, T. Wicker, C. Feuillet, B. Keller and M. C. Jordan. 2007. Leaf rust resistance gene Lr1, isolated from bread wheat is a member of the large psr567 gene family. Plant Mol. Biol. 65: 93-106.

Dellaporta, S. L., J. Wood and J. B. Hicks. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19-21.

Devos, K. M. and M. D. Gale. 1992. The genetic maps of wheat and their potential in plant breeding. Outlook Agric. 22: 93-99.

Elyasi-Gomari, S. 2010. Virulence of Puccinia triticina on wheat in Iran. African J. Plant Sci. 4: 26-31.

Gupta, S. K., A. Charpe, K. V. Prabhu and Q. M. R. Haque. 2006. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. TAG Theor. Appl. Genet. 113(6): 1027-1036.

Hanzalová, A. 2010. Physiologic Specialization of Wheat Leaf Rust (Puccinia triticina Eriks.) in the Czech Republic in 2005-2008. Cereal Res. Communications. 38(3): 366-374.

Hanzalova, A. and P. Bartos. 2006. Physiologic specialization of wheat leaf rust (Puccinia triticina Eriks.) in the Czech republic in 2001-2004. Czech J. Genet. Plant Breeding, 42: 126-131.

Hanzalová, A., J. Huszář, E. Herzová and P. Bartoš. 2010. Development of PCR markers for the wheat leaf rust resistance gene Lr47. Theor. Appl. Genet. 100: 1137-1143.

Helguera, M., I. A. Khan and J. Dubcovsky. 2000. Physiologic specialization of wheat leaf rust (Puccinia triticina Eriks.) in the Slovak Republic in 2005, 2006 and 2008. Czech J. Genet. Plant Breeding. 46(3): 114-121.

Hanzalová, A., T. Sumíkova, J. Huszář and P. Bartoš. 2012. Physiologic specialization of wheat leaf rust (Puccinia triticina Eriks.) in the Slovak Republic in 2009-2011. Czech J. Genet. Plant Breeding 48(3): 101-107.

Huang, L. and B. S. Gill. 2001. An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat, Theor. Appl. Genet. 103: 1007-1013.
Mccallum, R. F. Park, W. Q. Chen, S. C. Bhardwaj and H. Goyeau. 2011. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica. 179: 143–160.

Hysing, S. C., R. Singh, J. H. Espino, A. Merker, E. Liljeroth and O. Diaz. 2006. Leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum) cultivars grown in Northern Europe 1992–2002. Hereditas. 143: 1-14.

Johnson, R. 2000. Classical plant breeding for durable resistance to diseases. J. Plant Pathol. 82(1): 3-7.

Kou, Y. and S. Wang. 2010. Broad-spectrum and durability: Understanding of quantitative disease resistance. Current Opinion in Plant Biology. 13(2): 181-18.

Kuraparthy, V., S. Sood, D. R. See and B. S. Gill. 2009. Development of a PCR assay and marker-assisted transfer of leaf rust and stripe rust resistance genes Lr57 and Yr40 into hard red winter wheats. Crop Sci. 49(1): 120-126.

Lagudah, E. S., H. Mcfadden, R.P. Singh, J. Huerta-Espino, H. S. Bariana and W. Spielmeyer. 2006. Molecular genetic characterisation of the Lr34/Yr18 slow rusting resistance gene region in wheat. TAG Theor. Appl. Genet. 114(1): 21-30.

Liatukas Ž. 2003. Virulance of winter wheat leaf rust isolates. Biologija. 1: 77-80.

Martinez, F., J. C. Sillero and D. Rubiales. 2005. Pathogenic specialization of Puccinia triticina in Andalusia from 1998 to 2000. J. Phytopathol. 153: 344 - 349.

Masar, S., B. Vanco and K. Masarova. 2004. Virulence of Puccinia recondita f. sp. tritici in Slovakia in 2002. Proceeding of the XVI. Slovak and Czech Plant Protection Conference September 2003, Nitra, Slovakia. 7: 196-198.

McDonal, B. A. and C. Linde. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40: 349-379.

Mcintosh, R. A., K. M. Devos, J. Dubcovsky, W. J. Rogers, C. F. Morris, R. Apples, D. J. Somers and O. A. Anderson. 2008. Catalogue of gene symbols for wheat: 2008 Supplement.
Singh, R. P., D. P. Hodson, J. Huerta-Espino, Y. Jin, S. Bhavani, P. Njau, S. Herrera-Foessel, P. K. Singh, S. Singh and V. Govindan 2011. The Emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49: 465-481.

Stępień, Ł., L. Golka and J. Chelkowski. 2003. Leaf rust resistance genes of wheat: identification in cultivars and resistance sources. J. Appl. Genet. 44(2): 139-149.

Sun, X., G. Bai and B. F. Carver. 2009. Molecular markers for wheat leaf rust resistance gene Lr41. Molecular Breeding. 23(2): 311-321.

Tariq, A. H., S. Ahmad, M. A. Hussain, L. H. Akhtar, M. Arshad and S. Z. Siddiqi. 2003. The virulence spectrum of wheat leaf rust in Southern Punjab, Pakistan. Plant Pathol. 2: 80-84.

Winzeler M., A. Mysterhazy and R. F. Park. 2000. Resistance of European winter wheat germplasm to leaf rust. Agronomie. 20: 783-792.