Critical metrics of the volume functional on three-dimensional manifolds

Huiya He

Center of Mathematical Sciences, Zhejiang University, Hangzhou, P. R. China

Correspondence
Huiya He, Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, P. R. China.
Email: hehuiya2019@163.com

Abstract
In this paper, we prove the three-dimensional CPE conjecture with nonnegative Ricci curvature. Moreover, we establish rigidity theorems for three-dimensional compact, oriented, connected V-static metrics with nonnegative Ricci curvature. Finally, we obtain classification results on three-dimensional vacuum static space and Miao–Tam critical metric with nonnegative Ricci curvature.

KEYWORDS
CPE metric, Miao–Tam critical metric, V-static metric, vacuum static space

MSC (2020)
53C25, 53C20, 53C21

1 | INTRODUCTION

Let \((M^n, g)\) be a compact, oriented, connected Riemannian manifold with dimension \(n\) at least three, \(\mathcal{M}\) be the set of Riemannian metrics on \(M^n\) of unitary volume, and \(C \subset \mathcal{M}\) be the set of Riemannian metrics with constant scalar curvature. Define the total scalar curvature functional \(\mathcal{R} : \mathcal{M} \to \mathbb{R}\) as

\[
\mathcal{R}(g) = \int_{M^n} R_g \, dM_g,
\]

where \(R_g\) is the scalar curvature on \(M^n\). It is well known that the formal \(L^2\)-adjoint of the linearization of the scalar curvature operator \(\mathcal{Q}_g\) at \(g\) is defined as

\[
\mathcal{Q}_g^*(f) := -(\Delta_g f) g + \text{Hess}_g f - f \text{Ric}_g,
\]

where \(f\) is a smooth function on \(M^n\), and \(\Delta_g, \text{Hess}_g,\) and \(\text{Ric}_g\) stand for the Laplacian, the Hessian form, and the Ricci curvature tensor on \(M^n\), respectively. An Euler–Lagrange equation is given by

\[
\mathcal{Q}_g^*(f) = \text{Ric}_g - \frac{R_g}{n} g.
\] (1.1)

As the terminology used in [8, 13, 33], a CPE metric can be defined as follows.

Definition 1.1. A CPE metric is a three-tuple \((M^n, g, f)(n \geq 3)\), where \((M^n, g)\) is a compact (without boundary), oriented Riemannian manifold with constant scalar curvature and \(f : M^n \to \mathbb{R}\) is a nonconstant smooth function satisfying Equation (1.1). Such a function \(f\) is called a potential function.
Besse [8] first posed the following conjecture on CPE metrics:

CPE Conjecture. A CPE metric is always Einstein.

In the last decades, many researchers tried to solve this conjecture, but only partial results were proved. In 1983, Lafontaine [26] showed the CPE conjecture under a locally conformally flat assumption and $\text{Ker} \mathcal{L}_g(f) \neq 0$. Chang, Hwang, and Yun [13] avoided the condition on $\text{Ker} \mathcal{L}_g(f)$. In 2000, Hwang [22] obtained the conjecture provided $f \geq -1$. In 2013, Qing and Yuan [33] obtained a positive answer for Bach-flat CPE metrics manifolds. For more references on CPE metrics, see [12, 14, 17, 28] and references therein.

When the dimension $n = 3$, Baltazar [2] proved that the CPE conjecture is true for three-dimensional manifolds with nonnegative sectional curvature. In this paper, we are able to prove that the CPE conjecture is true for three-dimensional manifolds with nonnegative Ricci curvature.

One of our main results is the following:

Theorem 1.2. Let (M^3, g, f) be a three-dimensional compact, oriented, connected CPE metric with nonnegative Ricci curvature. Then, M^3 is isometric to a standard sphere S^3.

In this paper, we also pay attention to another kind of critical point equation. As in [4, 16, 23], we say that g is a V-static metric if there is a smooth function f on M^n and a constant ν satisfying the V-static equation

$$\mathcal{L}_g^\nu(f) = \nu g. \quad (1.2)$$

On the one hand, when $\nu = 0$ in (1.5), as in [19, 25], we can have the definition of vacuum static space.

Definition 1.3. A vacuum static space is a three-tuple $(M^n, g, f)(n \geq 3)$, where (M^n, g) is a compact, oriented, connected Riemannian manifold with a smooth boundary ∂M and $f : M^n \rightarrow \mathbb{R}$ is a smooth function such that $f^{-1}(0) = \partial M$ satisfying the overdetermined-elliptic system

$$\mathcal{L}_g^\nu(f) = 0. \quad (1.3)$$

Such a function f is called a potential function.

Kobayashi and Obata [25] (for dimension $n = 3$, see [29]) proved that a static metric g is isometric to a warped-product metric of constant scalar curvature near the hypersurface $f^{-1}(c)$ for a regular value c provided g is locally conformally flat. In the paper [18], Fischer and Marsden showed the local surjectivity for the scalar curvature as a map from the space of metrics to the space of functions at a nonstatic metric on a closed manifold and raised the possibility of identifying all compact vacuum static spaces.

Obata [32] showed that the only compact Einstein manifold, which satisfies (1.3), is the standard sphere. Locally conformally flat vacuum static spaces have been completely classified in [24] and [26] independently. When dimension $n = 3$, as Ambrozio state in [1], the classification of locally conformally flat vacuum static spaces is as follows.

Theorem A (Kobayashi [24], Lafontaine [26]). Let (M^3, g, f) be a vacuum static space with positive scalar curvature. If (M^3, g) is locally conformally flat, then (M^3, g, f) is covered by a static space that is equivalent to one of the following tuples:

(i) The standard round hemisphere

$$S_+^3, g_{\text{can}}, f = x_4,$$

where g_{can} is the metric of standard unit round sphere.

(ii) The standard cylinder over S^2 with the product metric

$$\left(\left[0, \frac{\pi}{\sqrt{3}} \right] \times S^2, g_{\text{prod}} = dt^2 + \frac{1}{3} g_{\text{can}} : f = \frac{1}{\sqrt{3}} \sin(\sqrt{3}t) \right).$$
iii) For some $m \in \left(0, \frac{1}{3\sqrt{3}} \right)$, the tuple

$$\left([r_h(m), r_c(m)] \times S^2, g_m = \frac{dr^2}{1 - r^2 - \frac{2m}{r}} + r^2g_{\text{can}}, f_m = \sqrt{1 - r^2 - \frac{2m}{r}} \right)$$

where $r_h(m) < r_c(m)$ are the positive zeroes of f_m.

Based on a similar idea from [9, 10], Qing and Yuan [33] obtained a classification result for Bach-flat vacuum static spaces in any dimension. Ambrozio [1] got some classification results for compact simply connected static three-manifolds with positive scalar curvature. Baltazar-Ribeiro [4] gave a classification theorem for compact static three-manifolds with nonnegative sectional curvature. For more information, see [21, 27, 34, 36] and references therein.

On the other hand, when $\kappa \neq 0$ in (1.5), in [30], Miao and Tam have studied the volume functional on the space of constant scalar curvature metrics with a prescribed boundary metric, and derived a sufficient or necessary condition for a metric to be a critical point. As in [23, 31], we can define the Miao–Tam critical metric as follows.

Definition 1.4. A Miao–Tam critical metric is a three-tuple $(M^n, g, f)(n \geq 3)$, where (M^n, g) is a compact, oriented, connected Riemannian manifold with a smooth boundary ∂M and $f : M^n \to \mathbb{R}$ is a smooth function such that $f^{-1}(0) = \partial M$ satisfying the overdetermined-elliptic system

$$\mathcal{L}^r g(f) = g. \quad (1.4)$$

Such a function f is called a potential function.

In [31], Miao–Tam studied these critical metrics under Einstein condition. More precisely, they obtained the following result.

Theorem B (Miao–Tam [31]). Let (M^n, g, f) be a connected, compact Einstein Miao–Tam critical metric with smooth boundary ∂M, then M^n is isometric to a geodesic ball in a simply connected space form \mathbb{R}^n, \mathbb{H}^n, or \mathbb{S}^n.

In the same article, they obtained the same result under the assumption that the metric is locally conformally flat instead of Einstein. Based on a work of Cao–Chen [11], Barros–Diogenes–Ribeiro [6] showed that a four-dimensional Bach-flat simply connected, compact Miao–Tam critical metric with boundary isometric to a standard sphere \mathbb{S}^3 must be isometric to a geodesic ball in a simply connected space form \mathbb{R}^4, \mathbb{H}^4, or \mathbb{S}^4.

It is important to note that Baltazar–Ribeiro [4] provided a general Bochner-type formula to show that a three-dimensional compact, oriented, connected Miao–Tam critical metric (M^3, g, f) with smooth boundary ∂M and non–negative sectional curvature, with f assumed to be nonnegative, is isometric to a geodesic ball in a simply connected space form \mathbb{R}^3 or \mathbb{S}^3. We refer to [3, 5, 7, 35] for more related results.

In this paper, we are able to prove the following theorem on three-dimensional V-static space with nonnegative Ricci curvature.

Theorem 1.5. Let (M^3, g, f) be a three-dimensional compact, oriented, connected V-static metric with a smooth boundary ∂M and a nonnegative Ricci curvature. If f and κ satisfy one of the following conditions:

(i) $\kappa \geq 0$ and $f > 0$,
(ii) $\kappa \leq 0$ and $f < 0$,

then M^3 is locally conformally flat.

Specifically, when $\kappa = 0$, we can get the following corollary.
Corollary 1.6. Let \((M^3, g, f)\) be a three-dimensional compact, oriented, connected vacuum static space with smooth boundary \(\partial M\), nonnegative Ricci curvature, and positive \(f\). Then, \((M^3, g, f)\) is covered by a static space that is equivalent to one of the following tuples:

(i) The standard round hemisphere

\[
(S^3_+, g_{\text{can}}, f = x_4),
\]

where \(g_{\text{can}}\) is the metric of standard unit round sphere.

(ii) The standard cylinder over \(S^2\) with the product metric

\[
\left(\left[0, \frac{\pi}{\sqrt{3}}\right] \times S^2, g_{\text{prod}} = dt^2 + \frac{1}{3}g_{\text{can}}, f = \frac{1}{\sqrt{3}} \sin(\sqrt{3}t)\right).
\]

Moreover, when \(\kappa > 0\), we are able to establish the following result under the condition of \(f \geq 0\).

Theorem 1.7. Let \((M^3, g, f)\) be a three-dimensional compact, oriented, connected \(V\)-static metric with smooth boundary \(\partial M\) and nonnegative Ricci curvature. If \(\kappa > 0\) and \(f \geq 0\), \(M^3\) is an Einstein manifold.

As a direct corollary, we can prove the following result.

Corollary 1.8. Let \((M^3, g, f)\) be a three-dimensional compact, oriented, connected Miao–Tam critical metric with smooth boundary \(\partial M\), nonnegative Ricci curvature, and nonnegative \(f\). Then, \(M^3\) is isometric to a geodesic ball in a simply connected space form \(\mathbb{R}^3\) or \(S^3\).

Remark 1.9. After we finished the first version of this paper in January 2021 and posted on the Arxiv (2101.05621v1), 2 months later, Allan Freitas contacted us to claim that they proved that a three-dimensional compact Miao–Tam critical metric with smooth boundary \(\partial M\), positive scalar curvature, nonnegative Ricci curvature, and nonnegative \(f\) is isometric to a geodesic ball in \(S^3\) by using a distinct technique.

The organization of the paper is as follows. In Section 2, we unify the form of equation of CPE metric and \(V\)-static metric. Moreover, we state four lemmas as the preparation. In Section 3, we give the proof of our main theorems and corollaries.

2 | PRELIMINARIES

Let \((M^n, g)(n \geq 3)\) be an \(n\)-dimensional compact, orientable Riemannian manifold. In what follows, we adopt, without further comment, the moving frame notation. For any \(p \in M^n\), we choose \(e_1, \ldots, e_n\) as a local orthonormal frame field at \(p\), \(\omega_1, \ldots, \omega_n\) as its dual coframe field, \(g_{ij} = \delta_{ij}\). Here and hereafter, the Einstein convention of summing over the repeated indices will be adopted.

The decomposition of the Riemannian curvature tensor into irreducible components yields

\[
R_{ijkl} = W_{ijkl} + \frac{1}{n-2}(R_{ik} \delta_{jl} - R_{il} \delta_{jk} + R_{jl} \delta_{ik} - R_{jk} \delta_{il}) - \frac{R}{(n-1)(n-2)}(\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk}),
\]

where \(R_{ijkl}\) are the components of the Riemannian curvature tensor, \(W_{ijkl}\) are the components of the Weyl tensor, \(R_{ij} := \Sigma_{k,l} R_{ikjl} g_{kl}\) are components of Ricci curvature tensor, and \(R := \Sigma_{ij} R_{ij} g_{ij}\) is the scalar curvature of \(M^n\).
Let $\phi = \sum_{i,j} \phi_{i,j} \omega_i \otimes \omega_j$ be a symmetric $(0,2)$-type tensor defined on M^n. By letting $\phi_{i,j,k} := \nabla_k \phi_{i,j}$, $\phi_{i,j,k,l} := \nabla_l \nabla_k \phi_{i,j}$, where ∇ is the operator of covariant differentiation on M^n, we have the following Ricci identities:

$$\phi_{i,j,k,l} - \phi_{i,j,l,k} = \phi_{m,j} R_{m,i,k,l} + \phi_{i,m} R_{m,j,k,l}. \quad (2.2)$$

The norm of a $(0,4)$-type tensor T is defined as

$$|T|^2 = |T_{ijkl}|^2 = T_{ijkl} T_{ijkl}.$$

By the second Bianchi identity

$$R_{lmkl,j} + R_{mlkj} + R_{lkmj} = 0,$$

we have

$$R_{i,j,k} - R_{i,k,j} = R_{l,i,k,j,l} \quad (2.3)$$

and

$$R_{i,k,l} = \frac{1}{2} R_{k} \quad (2.4)$$

A Cotton tensor $C_{i,j,k}$ is given by

$$C_{i,j,k} = R_{j,k,i} - R_{i,k,j} - \frac{1}{2(n-1)} (R_{i} \delta_{j,k} - R_{j} \delta_{i,k}). \quad (2.5)$$

From Definition 1.1, we know that a CPE metric (M^n, g, \tilde{f}) satisfies

$$-(\Delta \tilde{f}) \delta_{i,j} + \tilde{f}_{i,j} - \tilde{f} R_{i,j} = Ric - \frac{R}{n} \delta_{i,j}, \quad (2.6)$$

where R is a constant. Replacing \tilde{f} by $f - 1$, we can rewrite (2.6) as

$$-(\Delta f) \delta_{i,j} + f_{i,j} - f R_{i,j} = \frac{R}{n} \delta_{i,j}, \quad (2.7)$$

where $\frac{R}{n}$ is a constant. Obviously, (2.7) is a V-static equation. Then, we can unify the equation of CPE metric and V-static metric into the following form:

$$-(\Delta f) \delta_{i,j} + f_{i,j} - f R_{i,j} = \kappa \delta_{i,j}, \quad (2.8)$$

where κ is a constant. By tracing the above formula, we can get

$$\Delta f = \frac{f R + n \kappa}{1-n}. \quad (2.9)$$

Substituting (2.9) into (2.8), we have

$$f R_{i,j} - f_{i,j} - \frac{f R}{n-1} \delta_{i,j} = \frac{\kappa}{n-1} \delta_{i,j}. \quad (2.10)$$

Now, we present four lemmas as the preparation for proving our main theorems.
Lemma 2.1. Let \((M^n, g)(n \geq 3)\) be an \(n\)-dimensional Riemannian manifold and \(f\) be a smooth solution to (2.8). Then, \(g\) has constant scalar curvature.

Proof. As the proof of Theorem 7 in Miao-Tam [30], differentiating (2.8), we get

\[-f_{,k} f_{,k} \delta_{ij} + f_{,ijj} - f_{,j} R_{ij} - f R_{ij,j} = 0.\]

(2.11)

From Ricci identity and (2.4), we can derive that

\[0 = -f_{,kk} + f_{,j} R_{ij} - \frac{1}{2} f R_j = -\frac{1}{2} f R_j.\]

Thus, scalar curvature \(R\) is constant. Hence, we complete the proof of Lemma 2.1.

Lemma 2.2. Let \((M^n, g)(n \geq 3)\) be an \(n\)-dimensional Riemannian manifold and \(f\) be a smooth solution to (2.8). Then,

\[f C_{kij} = f_{,h} R_{hjik} + R \frac{n-1}{n-2} (f_{,k} \delta_{ij} - f_{,i} \delta_{kj}) - (f_{,k} R_{ij} - f_{,i} R_{kj}).\]

(2.12)

Remark 2.3. As in [6] and [3], we can derive

\[f C_{kij} = T_{kij} + W_{kij} f_s\]

(2.13)

from (2.1) and Lemma 2.2, where \(T_{kij}\) is defined as

\[T_{kij} = \frac{n-1}{n-2} (R_{jk} f_{,i} - R_{ij} f_{,k}) - R \frac{n-2}{n-1} (\delta_{jk} f_{,i} - \delta_{ij} f_{,k}) + \frac{1}{n-2} (\delta_{jk} R_{is} f_{,s} - \delta_{ij} R_{ks} f_{,s}).\]

Proof. Differentiating (2.10), we get

\[f R_{ij,k} = f_{,ijk} + f_{,ij} R_{kj} - f_{,k} R_{ij}.\]

(2.14)

Combining this equation with Ricci identity, we have

\[f C_{kij} = f (R_{ij,k} - R_{kij}) = f_{,ijk} - f_{,kji} + \frac{R}{n-1} (f_{,k} \delta_{ij} - f_{,i} \delta_{kj}) - (f_{,k} R_{ij} - f_{,i} R_{kj}).\]

(2.15)

Hence, we complete the proof of Lemma 2.2.

Lemma 2.4. Let \((M^n, g)(n \geq 3)\) be an \(n\)-dimensional Riemannian manifold and \(f\) be a smooth solution to (2.8). Then,

\[f R_{ij} C_{kij,k} = f R_{ij} R_{jk} R_{kij} - f R_{ij} R_{ns} R_{kijh} - \frac{1}{2} \langle V f, V |Ric| \rangle^2 \]

\[-2R_{ij} f_{,k} C_{kij} + \frac{n \alpha}{n-1} |Ric|^2.\]

(2.15)
Proof. According to Lemma 2.2, we have
\[
fr_{ij}k = r_{ij}(f_{kij})_k - r_{ij}f_{jk}c_{kij}
\]
\[
= r_{ij}
\left[
 f_{j}r_{hjk} + \frac{r}{n-1}(f_{j} \delta_{ij} - f_{i} \delta_{kj}) - (f_{j} r_{ij} - f_{j} r_{kj})
\right]_k
- r_{ij}f_{jk}c_{kij}
\]
\[
= r_{ij}f_{jk}r_{hjk} + r_{ij}f_{jk}r_{hjk,k} + \frac{r^2}{n-1} \Delta f - \frac{r}{n-1} f_{ij} r_{ij}
- \Delta f |Ric|^2 - r_{ij}f_{jk}r_{ij,k} + r_{ij}f_{jk}r_{kj} - r_{ij}f_{jk}c_{kij}.
\]

From (2.3), (2.5), and the fact R is a constant, we know that \(R_{hjk,k} = C_{jhi}\). Substituting this equation, (2.9), and (2.10) into the equation above, we have
\[
fr_{ij}k = r_{ij}(fr_{hk} - f_{i} \frac{r}{n-1} \delta_{hk} - \frac{r}{n-1} \delta_{i} f_{hk})r_{hjk} + r_{ij}f_{hk}c_{jhi}
+ \frac{r^2}{n-1} f + \frac{r}{n-1} (f_{ij})_k
- \frac{r}{n-1} \delta_{ij})r_{ij}
- \frac{r}{n-1} |Ric|^2 - r_{ij}f_{jk}r_{ij,k} + r_{ij}f_{jk}r_{ij} - \frac{r}{n-1} f_{ik} c_{kij}.
\]

That is,
\[
fr_{ij}k = fr_{ij}r_{jk}r_{ki} - fr_{ij}r_{hk}r_{ik} - \frac{1}{2} (\nabla f, \nabla |Ric|^2)
- 2r_{ij}f_{jk}c_{kij} + \frac{n r}{n-1} |Ric|^2 - \frac{r^2}{n-1}.
\]

Thus, we complete the proof of Lemma 2.4. \(\Box\)

Lemma 2.5. Let \((M^3, g)\) be a three-dimensional Riemannian manifold with nonnegative Ricci curvature. Then,
\[
6r_{ij}r_{hj}r_{hi} - 5r |Ric|^2 + r^3 \geq 0.
\]

Proof. For any fixed point \(p \in M\), we choose an orthonormal basis \(\{e_i\}_{i=1}^3\) in \(T_p M\) such that
\[
r_{ij} = \rho \delta_{ij}, \quad r = \rho_1 + \rho_2 + \rho_3.
\]
Without loss of generality, we can assume \(0 \leq \rho_1 \leq \rho_2 \leq \rho_3\).

Similar to the proof of Lemma 2.2 in [20], we can compute that
\[
6r_{ij}r_{hj}r_{hi} - 5r |Ric|^2 + r^3 = 6 \sum_{i=1}^3 \rho_i^3 - 5 \sum_{i=1}^3 \rho_i \sum_{j=1}^3 \rho_j^2 + (\sum_{i=1}^3 \rho_i)^3
\]
\[
= 9 \sum_{i=1}^3 \rho_i^3 - 6 \sum_{i=1}^3 \rho_i \sum_{j=1}^3 \rho_j^2 + (\sum_{i=1}^3 \rho_i)^3
- 3 \sum_{i=1}^3 \left(3 \rho_i^3 - \rho_i \sum_{j=1}^3 \rho_j^2\right)
\]
\[
\begin{align*}
\sum_{i,j,k=1}^{3} \rho_i(\rho_i - \rho_j)(\rho_i - \rho_k) - \sum_{i,j=1}^{3} \rho_i(\rho_i - \rho_j)^2
\end{align*}
\]

\[
= \sum_{i,j,k=1}^{3} \rho_i(\rho_i - \rho_j)(\rho_i - \rho_k)
\]

\[
= \sum_{i,j,k} \rho_i(\rho_i - \rho_j)(\rho_i - \rho_k)
\]

\[
= 2[\rho_1(\rho_1 - \rho_2)(\rho_1 - \rho_3) + \rho_2(\rho_2 - \rho_1)(\rho_2 - \rho_3) + \rho_3(\rho_3 - \rho_1)(\rho_3 - \rho_2)]
\]

\[
= 2[\rho_1(\rho_1 - \rho_2)(\rho_1 - \rho_3) + \rho_2(\rho_2 - \rho_1)(\rho_2 - \rho_3) + \rho_3(\rho_3 - \rho_1)(\rho_3 - \rho_2)]
\]

\[
= 0,
\]

where \(i, j, k \neq \) means that \(i, j, k\) are distinct from each other. Thus, we complete the proof of Lemma 2.5.

3 PROOF OF MAIN THEOREMS

In this section, we prove the main theorems of our paper. Let \((M^n, g)(n \geq 3)\) be an \(n\)-dimensional compact, oriented, connected Riemannian manifold and \(f\) be a smooth solution to (2.8). From a direct computation and the definition of \(C_{ijk}\), we get

\[
\text{div}
\left(f^2 \nabla |\text{Ric}|^2\right) = 2f \langle \nabla f, \nabla |\text{Ric}|^2 \rangle + f^2 \Delta |\text{Ric}|^2
\]

\[
= 2f \langle \nabla f, \nabla |\text{Ric}|^2 \rangle + 2f^2 |\nabla \text{Ric}|^2 + 2f^2 R_{ij} R_{jk,kk}
\]

\[
= 2f \langle \nabla f, \nabla |\text{Ric}|^2 \rangle + 2f^2 |\nabla \text{Ric}|^2 + 2f^2 R_{ij} (C_{klj} + R_{kj,i})_k
\]

\[
= 2f \langle \nabla f, \nabla |\text{Ric}|^2 \rangle + 2f^2 |\nabla \text{Ric}|^2 + 2f^2 R_{ij} C_{klj,k}
\]

\[
+ 2f^2 R_{ij} R_{jk,ik}.
\]

Combining equation above with Lemma 2.4 and Ricci identity, we have

\[
\text{div}
\left(f^2 \nabla |\text{Ric}|^2\right) = 4f^2 R_{ij} R_{jk} R_{kl} - 4f^2 R_{ij} R_{nk} R_{jk,ih} - 8f R_{ij} f \delta_{ij} C_{klj}
\]

\[
+ \frac{4nf}{n-1} |\text{Ric}|^2 - 4f^2 R_{ij} C_{kij,k} + 2f^2 |\nabla \text{Ric}|^2
\]

\[
+ 2f^2 R_{ij} C_{kij,k} + 2f^2 R_{ij} R_{jk,ik}
\]

\[
= 6f^2 R_{ij} R_{jk} R_{kl} - 6f^2 R_{ij} R_{nk} R_{jk,ih} - 8f R_{ij} f \delta_{ij} C_{klj}
\]

\[
+ \frac{4nf}{n-1} |\text{Ric}|^2 - 2f^2 R_{ij} C_{kij,k} + 2f^2 |\nabla \text{Ric}|^2 + 2f^2 R_{ij} R_{jk,ik}.
\]

From

\[
(f^2 R_{ij} C_{kij})_k = 2f \delta_{jk} R_{ij} C_{kij} + f^2 R_{ij} C_{kij} + f^2 R_{ij} C_{kij,k}
\]
and the fact that R is constant, it follows that
\[
div\left(f^2 \nabla |\text{Ric}|^2\right) = 6f^2 R_{ij} R_{jk} R_{ki} - 6f^2 R_{ij} R_{hk} R_{ik, jh} - 4f R_{ij} f_k C_{kij} + \frac{4n \pi f}{n - 1} |\text{Ric}|^2 + 2f^2 |\nabla \text{Ric}|^2
\]
\[
= 6f^2 R_{ij} R_{jk} R_{ki} - 6f^2 R_{ij} R_{hk} R_{ik, jh} - 4f R_{ij} f_k C_{kij} + \frac{4n \pi f}{n - 1} |\text{Ric}|^2 + 2f^2 |\nabla \text{Ric}|^2 + 2f^2 |\text{Ricc}||^2 - 2(f^2 R_{ij} C_{kij})_k + 2f^2 |\text{Ricc}||^2.
\]

According to (2.13) and the fact that $W_{ijkl} = 0$ when $n = 3$, we have
\[
f C_{kij} = T_{kij},
\]
then from the definition of T_{kij}, we can get
\[
f |C|^2 = T_{kij} C_{kij} = -4C_{kij} R_{ij} f, k.
\] (3.2)

Besides, from (2.1), we know that
\[
R_{ij} R_{jk} R_{ki} - R_{ij} R_{hk} R_{ik, jh} = 3R_{ij} R_{jk} R_{ki} - \frac{5R}{2} |\text{Ric}|^2 + \frac{R^3}{2}.
\] (3.3)

Thus, we can conclude that when $n = 3$,
\[
div\left(f^2 \nabla |\text{Ric}|^2\right) = 3f^2 (6R_{ij} R_{jk} R_{ki} - 5R |\text{Ric}|^2 + R^3) + 6 \pi f |\nabla \text{Ric}|^2 + 2f^2 |C|^2
\]
\[
-2(f^2 R_{ij} C_{kij})_k + 2f^2 |\nabla \text{Ric}|^2.
\] (3.4)

To prove Theorem 1.2, we need the following results by Hwang [22] and Cheng [15].

Proposition 3.1 [22]. Let (M^n, g, f) be a CPE metric with f nonconstant. Then, the set $\{x \in M^n : f(x) = -1\}$ has measure zero.

Proposition 3.2 [15]. Let M^n be a compact connected oriented locally conformally flat n-dimensional Riemannian manifold with constant scalar curvature. If the Ricci curvature of M^n is nonnegative, then M^n is isometric to a space form or a Riemannian product $\mathbb{S}^{n-1}(c) \times \mathbb{S}^1$, where c is the sectional curvature of \mathbb{S}^{n-1}.

Proof of Theorem 1.2. Let (M^3, g, \tilde{f}) be a three-dimensional compact, oriented, connected CPE metric with nonnegative Ricci curvature. Then, \tilde{f} is a nonconstant solution to (2.6). Hence, $f = 1 + \tilde{f}$ satisfies (2.8) with $\gamma = -\frac{R}{3}$. From Lemma 2.5 and (3.4), we have
\[
div\left((1 + \tilde{f})^2 \nabla |\text{Ric}|^2\right) \geq -2R(1 + \tilde{f}) |\nabla \text{Ric}|^2 + 2(1 + \tilde{f})^2 |C|^2
\]
\[
-2((1 + \tilde{f})^2 R_{ij} C_{kij})_k + 2(1 + \tilde{f})^2 |\nabla \text{Ric}|^2.
\]

According to a direct computation on (2.6), we can see that $(1 + \tilde{f}) |\text{Ric}|^2 = \tilde{f}_{ij} \hat{R}_{ij}$, and from (2.4) and the fact that M^3 has no boundary, it is easy to know that $\int_{M^3} (1 + \tilde{f}) |\text{Ric}|^2 dM_g = 0$. Integrating the inequality above, we can derive that
\[
0 \geq \int_{M^3} 2(1 + \tilde{f})^2 |C|^2 dM_g + 2 \int_{M^3} (1 + \tilde{f})^2 |\nabla \text{Ric}|^2 dM_g.
\]
From Proposition 3.1, we can see that M^3 is a locally conformally flat manifold and $\nabla \text{Ric} = 0$.

Taking trace of (2.6), we have

$$\Delta \tilde{f} = -\frac{R}{2} \tilde{f}. \quad (3.5)$$

Multiplying both sides of this equation by \tilde{f} and integrating on M^3, we get

$$-\int_{M^3} |\nabla f|^2 dM_g = \int_{M^3} (\Delta \tilde{f}) \cdot f dM_g = -\frac{R}{2} \int_{M^3} f^2 dM_g.$$

According to the fact that \tilde{f} is not a constant, we can conclude that the scalar curvature R is a positive constant.

By using Proposition 3.2, we can conclude that M^3 is isometric to a standard sphere S^3 or a Riemannian product $S^2(c) \times S^1$, where c is the sectional curvature of S^2.

Here, if M^3 is isometric to $S^2(c) \times S^1$, we have

$$(R_{ij})_{3 \times 3} = \begin{pmatrix} c & c & 0 \\ c & c & 0 \\ 0 & 0 & 0 \end{pmatrix}_{3 \times 3},$$

and $R = 2c$. Substituting (3.5) into (2.6), we can deduce that

$$\tilde{f}(c \delta_{ij} - R_{ij}) + \tilde{f}_{,ij} = R_{ij} - \frac{2c}{3} \delta_{ij}.$$

Then, $\tilde{f}_{,11} = \frac{c}{3}, \tilde{f}_{,22} = \frac{c}{3}, \tilde{f}_{,33} = -c \tilde{f} - \frac{2c}{3}$. Thus, for any $q \in S^1$, we can get that $\int_{S^2 \times \{q\}} \Delta S^2 \times \{q\} \tilde{f} d\text{vol} = \int_{S^2 \times \{q\}} \frac{2c}{3} d\text{vol} \neq 0$, which is a contradiction.

Thus, we finish the proof of Theorem 1.2. \qed

Remark 3.3. In the process of proving Theorem 1.2, after getting the result that M^3 is a locally conformally flat manifold, we can also deduce that M^3 is isometric to a standard sphere S^3 by using Corollary 1.3 in [13].

Similarly, we can prove that a three-dimensional V-static metric is locally conformally flat under some suitable conditions.

Proof of Theorem 1.5. Let (M^3, g, f) be a three-dimensional compact, oriented, connected V-static metric with a smooth boundary ∂M and nonnegative Ricci curvature. Integrating (3.4), we can deduce

$$0 \geq 6\kappa \int_{M^3} f |\nabla \text{Ric}|^2 dM_g + 2 \int_{M^3} f^2 |C|^2 dM_g + 2 \int_{M^3} f^2 |\nabla \text{Ric}|^2 dM_g \quad (3.6)$$

from Lemma 2.5. Then, if $\kappa \geq 0$, $f > 0$, or $\kappa \leq 0$, $f < 0$, M^3 is locally conformally flat. Thus, we complete the proof of Theorem 1.5. \qed

When $\kappa = 0$, since for case (iii) in Theorem A, Ricci curvature is always strictly negative, Corollary 1.6 can be directly deduced from Theorem 1.5 and Theorem A.

When $\kappa > 1$, from (3.1), we can prove Theorem 1.7 on the basis of the following calculation on n-dimensional compact, oriented, connected V-static metric:

$$\text{div}(f \nabla |\text{Ric}|^2) = \frac{1}{f} \text{div}(f^2 \nabla |\text{Ric}|^2) - \langle \nabla f, \nabla |\text{Ric}|^2 \rangle$$

$$= 6f R_{ij} R_{jk} R_{kl} - 6f R_{ij} R_{jk} R_{kh} - 8R_{ij} f_{,k} C_{kij}$$

$$+ \frac{4n\kappa}{n-1} |\text{Ric}|^2 - 2f R_{ij} C_{kij,k} + 2f |\nabla \text{Ric}|^2 - \langle \nabla f, \nabla |\text{Ric}|^2 \rangle.$$
Using Lemma 2.4 again, we have
\[
\text{div}\left(f \nabla |\mathbf{Ric}|^2\right) = 4f R_{ij} R_{kj} - 4f R_{ik} R_{jk} f_{ij} \\
- 4f R_{ij} f_{k} C_{kij} + \frac{2n \kappa}{n-1} |\mathbf{Ric}|^2 + 2f |\nabla \mathbf{Ric}|^2.
\] (3.7)

Proof of Theorem 1.7. Let \((M^3, g, f)\) be a three-dimensional compact, oriented, connected \(V\)-static metric with smooth boundary \(\partial M\), nonnegative Ricci curvature, and nonnegative \(f\). As the proof of Theorem 1.5, integrating (3.7), we can derive that
\[
0 \geq \int_{M^3} f(2 |\nabla \mathbf{Ric}|^2 + |C|^2) dM_g + \int_{M^3} 3 \kappa |\mathbf{Ric}|^2 dM_g
\]
from (3.2), (3.3), and Lemma 2.5. Hence, \(M^3\) is an Einstein manifold when \(\kappa > 0\). Thus, we can complete the proof of Theorem 1.7. \(\square\)

When \(\kappa = 1\), from Theorem 1.7 and Theorem B, we can complete the proof of Corollary 1.8.

ACKNOWLEDGMENT
The author is very grateful to Professor Haizhong Li and Professor Hongwei Xu for their guidance and constant support.

REFERENCES
[1] L. Ambrozio, *On static three-manifolds with positive scalar curvature*, J. Differential Geom. 107 (2017), no. 1, 1–45.
[2] H. Baltazar, *On critical point equation of compact manifolds with zero radial Weyl curvature*, Geom. Dedic. 202 (2019), 337–355.
[3] H. Baltazar and E. Ribeiro Jr, *Critical metrics of the volume functional on manifolds with boundary*, Proc. Amer. Math. Soc. 145 (2017), 3513–3523.
[4] H. Baltazar and E. Ribeiro Jr, *Remarks on critical metrics of the scalar curvature and volume functionals on compact manifolds with boundary*, Pacific J. Math. 297 (2018), no. 1, 29–45.
[5] A. Barros and A. da Silva, *Rigidity for critical metrics of the volume functional*, Math. Nachr. 292 (2019), no. 4, 709–715.
[6] A. Barros, R. Diógenes, and E. Ribeiro Jr, *Bach-flat critical metrics of the volume functional on 4-dimensional manifolds with boundary*, J. Geom. Anal. 25 (2015), 2698–2715.
[7] R. Batista, R. Diógenes, M. Ranieri, and E. Ribeiro Jr, *Critical metrics of the volume functional on compact three-manifolds with smooth boundary*, J. Geom. Anal. 27 (2017), 1530–1547.
[8] A. L. Besse, *Einstein manifolds*, Springer, Berlin, 1987.
[9] H.-D. Cao, G. Catino, Q. Chen, C. Mantegazza, and L. Mazzieri, *Bach-flat gradient steady Ricci solitons*, Calc. Var. Partial Differential Equations 49 (2014), 125–138.
[10] H.-D. Cao and Q. Chen, *On locally conformally flat gradient steady solitons*, Trans. Amer. Math. Soc. 364 (2012), 2377–2391.
[11] H.-D. Cao and Q. Chen, *On Bach-flat gradient shrinking Ricci solitons*, Duke Math. J. 162 (2013), 1149–1169.
[12] J. Chang, S. Hwang, and G. Yun, *Critical point metrics of the total scalar curvature*, Bull. Korean Math. Soc. 49 (2012), 655–667.
[13] J. Chang, S. Hwang, and G. Yun, *Total scalar curvature and harmonic curvature*, Taiwanese J. Math. 18 (2014), 1439–1458.
[14] J. Chang, S. Hwang, and G. Yun, *Erratum to: total scalar curvature and harmonic curvature*, Taiwanese J. Math. 20 (2016), no. 3, 699–703.
[15] Q. M. Cheng, *Compact locally conformally flat Riemannian manifolds*, Bull. London Math. Soc. 33 (2001), no. 4, 459–465.
[16] J. Corvino, M. Eichmair, and P. Miao, *Deformation of scalar curvature and volume*, Math. Ann. 357 (2013), 551–584.
[17] Y. Fang and W. Yuan, *Brown-York mass and positive scalar curvature II-Besse’s conjecture and related problems*, Ann. Global Anal. Geom. 56 (2019), no. 1, 1–15.
[18] A. Fischer and J. Marsden, *Deformations of the scalar curvature*, Duke Math. J. 42 (1975), 519–547.
[19] S. Hawking and G. Ellis, *The large scale structure of space-time*, Cambridge University Press, Cambridge, 1975.
[20] Z.J. Hu, H. Li, and Udo Simon, *Schouten curvature functions on locally conformally flat Riemannian manifolds*, J. Geom. 88 (2008), 75–100.
[21] G. Huang and F. Zeng, *The classification of static spaces and related problems*, Colloq. Math. 151 (2018), no. 2, 189–202.
[22] S. Hwang, *Critical points of the total scalar curvature functional on the space of metrics of constant scalar curvature*, Manuscripta Math. 103 (2000), 135–142.
[23] J. Kim and J. Shin, *Four dimensional static and related critical spaces with harmonic curvature*, Pacific J. Math. 295 (2018), no. 2, 429–462.
[24] O. Kobayashi, *A differential equation arising from scalar curvature function*, J. Math. Soc. Japan. 34 (1982), no. 4, 665–675.
[25] O. Kobayashi and M. Obata, *Conformally-flatness and static space-time*, in: Manifolds and Lie Groups, Progr. Math. vol. 14, Birkhäuser (1981), pp. 197–206.
[26] J. Lafontaine, *Sur la géométrie d’une généralisation de l’équation différentielle d’Obata*, J. Math. Pures Appl. 62 (1983), 63–72.
[27] J. Lafontaine, *A remark about static space times*, J. Geom. Phys. 59 (2009), 50–53.
[28] B. Leandro, *A note on critical point metrics of the total scalar curvature functional*, J. Math. Anal. Appl. 424 (2015), 1544–1548.
[29] L. Lindblom, *Some properties of static general relativistic stellar models*, J. Math. Phys. 21 (1980), 1455–1459.
[30] P. Miao and L.-F. Tam, *On the volume functional of compact manifolds with boundary with constant scalar curvature*, Calc. Var. Partial Differential Equations 36 (2009), 141–171.
[31] P. Miao and L.-F. Tam, *Einstein and conformally flat critical metrics of the volume functional*, Trans. Amer. Math. Soc. 363 (2011), 2907–2937.
[32] M. Obata, *Certain conditions for a Riemannian manifold to be isometric with a sphere*, J. Math. Soc. Japan 14 (1962), no. 3, 333–340.
[33] J. Qing and W. Yuan, *A note on static spaces and related problems*, J. Geom. Phys. 74 (2013), 18–27.
[34] J. Qing and W. Yuan, *On scalar curvature rigidity of vacuum static spaces*, Math. Ann. 365 (2016), no. 3-4, 1257–1277. https://doi.org/10.1007/s00208-015-1302-0
[35] W. Sheng and L. Wang, *Critical metrics with cyclic parallel Ricci tensor for volume functional on manifolds with boundary*, Geom. Dedic. 201 (2019), 243–251.
[36] W. Yuan, *The geometry of vacuum static spaces and deformations of scalar curvature*, Ph.D. Thesis, UC Santa Cruz, 2015.

How to cite this article: H. He, *Critical metrics of the volume functional on three-dimensional manifolds*, Math. Nachr. 296 (2023), 2838–2849. https://doi.org/10.1002/mana.202100144