Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery

Patrice Voss*†, Maryse E. Thomas†, J. Miguel Cisneros-Franco and Étienne de Villers-Sidani*

Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada

A growing number of research publications have illustrated the remarkable ability of the brain to reorganize itself in response to various sensory experiences. A traditional view of this plastic nature of the brain is that it is predominantly limited to short epochs during early development. Although examples showing that neuroplasticity exists outside of these finite time-windows have existed for some time, it is only recently that we have started to develop a fuller understanding of the different regulators that modulate and underlie plasticity. In this article, we will provide several lines of evidence indicating that mechanisms of neuroplasticity are extremely variable across individuals and throughout the lifetime. This variability is attributable to several factors including inhibitory network function, neuromodulator systems, age, sex, brain disease, and psychological traits. We will also provide evidence of how neuroplasticity can be manipulated in both the healthy and diseased brain, including recent data in both young and aged rats demonstrating how plasticity within auditory cortex can be manipulated pharmacologically and by varying the quality of sensory inputs. We propose that a better understanding of the individual differences that exist within the various mechanisms that govern experience-dependent neuroplasticity will improve our ability to harness brain plasticity for the development of personalized translational strategies for learning and recovery following brain injury or disease.

Specialty section:
This article was submitted to Auditory Cognitive Neuroscience, a section of the journal Frontiers in Psychology

INTRODUCTION

Neuroplasticity can be viewed as a general umbrella term that refers to the brain’s ability to modify, change, and adapt both structure and function throughout life and in response to experience. Just as individual differences contribute to variability observed in brain structure and function (see Gu and Kanai, 2014, for a review), mechanisms of neuroplasticity also show significant variability across individuals. Indeed, a growing number of recent studies suggest that the rules and mechanisms that govern cortical plasticity are more variable than previously thought. The purpose of this article is to shed light on the various factors that contribute to neuroplastic variability observed within cortical sensory systems, with a special focus on the auditory system as a model. We will establish the role played by critical periods, plasticity inhibitors, and neuromodulator systems and highlight how these factors interact with other elements such as age, sex, and sensory experience.
to produce a broad variability of plastic processes. We propose that developing a more robust comprehension of the individual differences that exist within neuroplastic mechanisms can have a significant impact on how clinicians and researchers approach a wide range of neurological and neurodevelopmental disorders. The first section of this paper will introduce the concepts of experience dependent plasticity, critical periods, and plasticity inhibitors. The second portion will provide evidence of how the quality and quantity of sensory inputs reaching the brain influence the rules of plasticity within cortical sensory areas. The third part will illustrate how individual differences in neuromodulator tone can differentially affect brain plasticity within sensory cortices throughout the lifetime.

EXPERIENCE-DEPENDENT PLASTICITY IN THE DEVELOPING AND MATURE BRAIN

Critical Periods for Experience-Dependent Plasticity

Age is a key determinant of experience-dependent cortical plasticity. Important structural and functional changes tend to predominantly occur early in life during time-limited epochs of stimulus-driven plasticity known as critical periods (Knudsen, 2004). A well-known example of this limited time-window was provided by the classic monocular visual deprivation studies of Wiesel and Hubel (1963). CPs have since been described in all major sensory systems and in a variety of animal species and their identification has been instrumental in the discovery of the cortical machinery involved in their regulation (see Hensch, 2005 for a review). Many studies of CP plasticity have focused on the rat primary auditory cortex (A1) model, which displays a succession of partially overlapping CPs for various stimulus parameters during development (de Villers-Sidani and Merzenich, 2011). For example, frequency tuning has the earliest and shortest CP in the auditory system (around days 11–14 of life), whereas CPs for more complex sound representations, such as frequency modulation tuning, tend to occur slightly later during early infancy (around days 25–33) (Insanally et al., 2009). Several sensitive periods have also been identified in humans, particularly as they relate to hearing restoration following prelingual deafness and language acquisition. Current evidence suggests that the optimal time for cochlear implantation is before 4 years of life and that implantations performed after 7 years are unlikely to produce satisfactory results (see Kral and Sharma, 2012). Although typically associated with early developmental stages, there is a growing body of evidence demonstrating that CPs can be reopened later in life due to a variety of factors that are still being uncovered. These include damage to peripheral sensory organs (Chino et al., 1992; Diamond et al., 1993; Van Brussel et al., 2011) and changes in the sensory environment (He et al., 2006; Zhou et al., 2011). Recent work has shown that plastic changes in auditory cortex that normally occur within early CPs can even be observed in aging humans and rodents (de Villers-Sidani et al., 2010; Mishra et al., 2014). This suggests that the elements that regulate plasticity change throughout the lifespan and do not only operate around developmental CPs.

Plasticity Inhibitors and Cellular Brakes

With CP closure, sensory representations are stabilized (Rice and Van der Loos, 1977; Fagiolini et al., 1994; Zhang et al., 2002; de Villers-Sidani et al., 2007). This process requires the maturation of inhibitory (GABAergic) cellular networks and the maintenance of sufficient GABAergic tone in the cortex (Hensch, 2005; Fritschy and Panzanelli, 2014). Any further modification of these networks and associated cortical plasticity is regulated by a series of plasticity inhibitors and molecular brakes, so-called because of their role in limiting plasticity in the mature brain (see Hensch, 2005; Bavelier et al., 2010, for reviews). Functional and structural elements that promote and constrain plasticity include the inhibitory activity of GABAergic interneurons such as parvalbumin positive (PV+) cells (Kuhlman et al., 2013), extracellular matrix components including perineuronal nets (PNNs) (Wang and Fawcett, 2012), and myelin associated proteins (McGee et al., 2005). For a summary of these elements, see Figure 1.

Throughout life, the proportion of GABAergic interneurons in the cortex remains relatively stable. However, the number of PV+ and somatostatin positive (SOM+) interneurons decreases with age, indicating that different interneuron subtypes are differentially affected by aging (Stanley et al., 2012; Ouellet and de Villers-Sidani, 2014). Furthermore, PV staining intensity has been shown to be positively correlated with the degree of experience-dependent plasticity (de Villers-Sidani et al., 2008; Zhou et al., 2011). Adult brain CP-like plastic remodeling can be induced by down-regulating cortical inhibition (Fagiolini and Hensch, 2000) or disrupting PNNs (Pizzorusso et al., 2002; McRae et al., 2007; Wang and Fawcett, 2012) or myelin (Kartje et al., 1999; McGee et al., 2005), which form structural barriers to limit plasticity and stabilize cortical representations.

Loss of inhibition during aging could lead to a state of cortical instability where sensory representations are easily distorted by non-specific passive experiences as is the case during CPs (Zhou et al., 2011) (Figures 1A,B). Indeed, we recently observed that experience-dependent plasticity is not only paradoxically enhanced, it is also unstable (i.e., producing plastic changes that decayed rapidly in time) in old rats compared to young controls, and was paralleled by a reduction in PV+ cell density, GABA concentration, and PNNs (Cisneros-Franco et al., unpublished). We also found that passive distortions of the auditory map decayed rapidly, indicating an ongoing instability of A1 tuning in the aging cortex. These observations led us to propose that the inhibitory regulation of plasticity, rather than plasticity per se, is reduced in the aged brain. This finding has important repercussions for the development of rehabilitation strategies targeted toward aging and opposes the traditional view that aging is a period of limited plasticity.
Disorders affecting regulators of plasticity

- E.g. dementia, schizophrenia, bipolar disorder
- Hastened by degraded sensory inputs, genetic predispositions

Regulators of plasticity and examples of associated disorders

GABAergic interneurons including those expressing parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) drive cortical oscillations, maintain excitatory-inhibitory balance in cortical circuits, and regulate activity-dependent plasticity through inhibition. Inhibitory deficits have been strongly linked to schizophrenia through post-mortem analyses, mouse model studies, and surveys of susceptibility genes. PV+ cell function in particular has been shown to be disrupted in schizophrenia, leading to defective inhibition of pyramidal cells and irregular neuronal rhythms. More general inhibitory deficits such as excitatory-inhibitory imbalance and reductions in GABA transmission and receptors have also been linked to a variety of neurodevelopmental disorders including autism, Down’s syndrome, and fragile X syndrome.

Peri-neuronal nets (PNN) are components of the extracellular matrix that densely surround neurons, particularly PV+ cells, and provide a physical barrier to plasticity by stabilizing synapses. PNN disruption has been implicated in schizophrenia, bipolar disorder, major depression, autism, and addiction.

Neuromodulatory inputs and **neuromodulators** are critical for many forms of cortical plasticity in the mature brain and mediate plasticity through the recruitment of neural pathways associated with states of cognition including motivation, attention, and emotion. Neurological conditions are typically associated with deficits in one or more neuromodulatory systems. For instance, Parkinson’s arises from the cell death of dopaminergic cells in the substantia nigra, however deficiencies of the serotonergic, noradrenergic, and cholinergic systems have also been identified in the progression of the disease.

Myelin and **myelin associated proteins** play an important role in neuronal connectivity and inhibit large-scale plasticity by limiting axonal growth and regeneration, especially after injury in adult animals. Diffusion tensor and magnetization transfer imaging studies have shown alterations in white matter associated with illnesses including multiple sclerosis, schizophrenia, bipolar disorder, and depression.

Glia cells including **astrocytes** and **microglia** are being increasingly understood to contribute to synaptic plasticity through monitoring the extracellular milieu and absorbing and releasing synthetically active molecules. Astrocytes are known to communicate with neurons by releasing glutamatergic, especially glutamate. Microglia are involved in neuroimmune responses following brain injury and are capable of physically remodeling synapses. Altered astrocyte and microglia function has been linked to neurodegenerative diseases including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis.

Neurotrophins such as BDNF promote plasticity during adulthood through mediating local protein synthesis, dendritic arborization and synaptic growth. Deficient neurotrophin levels may lead to some of the deficits in synaptic transmission observed in various dementias.
SENSORY INPUTS REACHING THE BRAIN INFLUENCE THE RULES OF PLASTICITY

The Quality and Quantity of Sensory Inputs Affect the Timing of Critical Period Windows

Studies of CPs have demonstrated the importance of sensory experience for normal neurodevelopment and sensory map acquisition. The quality and quantity of sensory experience, however, can have diverse effects on CP duration and outcome. Enriched sensory environments, for example, can prolong CP plasticity (Greifzu et al., 2014), stimulate dendritic growth (Leggio et al., 2005; Bose et al., 2010), and improve neuronal response properties (Engineer et al., 2004; Feldman, 2005), whereas deprived or unstructured noisy environments postpone CP onset and maintain cortical neurons in an immature state (Cynader and Mitchell, 1980; Mower, 1991; Fagiolini et al., 1994). In general, the excess presence of a specific stimulus during the CP appears to result in its exaggerated incorporation into the sensory map. For instance, altering the visual environment of the kitten through striped surroundings (Sengpiel et al., 1999) or goggles (Tanaka et al., 2009) shifts the orientation selectivity of visual cortical neurons to prefer the dominant orientation of their environment. In auditory cortex, pure tone pips of a chosen frequency played continuously result in the overrepresentation of that frequency within the tonotopic map (Zhang et al., 2001; de Villers-Sidani et al., 2007). However, there is evidence for hardwired preferences for ethologically relevant stimuli such as tone pips played at a temporal modulation rate similar to that of communication (Kim and Tao, 2009) and vocalizations from members of the same species (Soha and Marler, 2001). The quantity of salient stimuli present during development can also affect the timing of CP closure. Exposure to temporally modulated white noise produces a shorter than usual CP for spectral tuning in auditory cortex, whereas the masking of normal auditory inputs with continuous white noise keeps it open indefinitely (Chang and Merzenich, 2003). Similarly, exposure to bandlimited noise results only in the selective functional and inhibitory maturation of sectors of the tonotopic map outside of the noise band (de Villers-Sidani et al., 2008).

Sensory Inputs with Low Signal-to-Noise Ratio Can Trigger Plasticity in the Mature Cortex

While the fidelity of sensory inputs has long been known to affect perceptual development, the potential effects of weak, absent, or noisy sensory inputs on mature brain function are only beginning to be understood. Sensory information reaching the brain can be degraded due to exogenous or endogenous factors. Exogenous factors are environmental noise that reduce the discriminability of a stimulus, such as listening to a voice in a crowded room, whereas endogenous factors refer to limits of the peripheral sensory organs or central processing disorders that affect the perception of sensory inputs. In all cases, plastic processes determine how the brain responds and adapts to these challenging perceptual situations and a major goal of neuroscience research should be to understand and integrate our knowledge of these different contexts. We previously demonstrated the similarity between auditory impairments that arise with natural aging in old rats and young adult rats exposed to continuous white noise for 8 weeks (Kamal et al., 2013). Aged rats displayed poor tuning selectivity, neuronal desynchronization, and reduced sensitivity to low-probability sounds, which was nearly indistinguishable from the young adult rats that had been housed in a noisy auditory environment. Furthermore, these impairments were associated with reduced inhibitory interneuron expression and decreased cortical myelin density in both groups of animals. More recently, we observed that exposure to amplitude-modulated noise did not produce the same plastic changes as continuous noise in young adult rats (Thomas et al., unpublished). We concluded that auditory inputs with a high temporal signal-to-noise ratio are protective for auditory function well into adulthood. Together, these findings strongly suggest that noisy sensory inputs, whether originating from the environment or endogenous processes associated with aging could manifest similar functional and structural deficits. Other studies have also demonstrated the ability of...
neuronal excitability, improving signal to noise ratio, and controlling the propagation of activity through the cortex (Kirkwood, 2007). Early studies indicated that norepinephrine, a key neurotransmitter of the noradrenergic system, is necessary for ocular dominance column plasticity during the critical period (Kasamatsu and Pettigrew, 1976; Kasamatsu et al., 1979). Subsequent work, however, suggested that both noradrenergic and cholinergic networks need to be impaired to affect cortical plasticity, suggesting a functional redundancy between the two systems (Bear and Daniels, 1983; Bear and Singer, 1986). More recent studies have demonstrated that the cholinergic system is a potent neuromodulator of attention, learning and memory, in both humans (Rokem and Silver, 2010; Beer et al., 2013; Moran et al., 2013; Chamoun et al., 2017) and animal models (Herrero et al., 2008; Hasselmo and Sarter, 2011). Furthermore, Shepard et al. (2015) has provided evidence that mice lacking norepinephrine failed to reorganize auditory cortex frequency representation in response to prolonged sound exposure, suggesting that norepinephrine is a necessary driver of CP plasticity within auditory cortex. The dopaminergic and noradrenergic systems have also been shown to significantly modulate and shape cortical plasticity. For instance, dopamine upregulation has been linked with increases in the auditory cortical representation of paired tones (Bao et al., 2001) and increases in noradrenaline have been shown to increase the threshold of acoustic excitatory responses in auditory neurons (Manunta and Edeline, 1998).

Taken together, these findings highlight the critical role of neuromodulator systems as the main gating mechanisms of plasticity in adult sensory cortex, as well as their important role in shaping cortical function and cognitive abilities. Indeed, both neurochemically boosting cholinergic transmission (Greuel et al., 1988; Voss et al., 2016) and stimulating the basal forebrain — from which the cholinergic neurons project to the cortex — (Kilgard and Merzenich, 1998; Froemke et al., 2007; Kang and Voucher, 2009; Kang et al., 2014) have been shown to have a significant effect on learning rates and the cortical processing of stimuli. Stimulating the dopaminergic system has also been shown to improve cortical signal-to-noise ratio (Winterer and Weinberger, 2004; Kroener et al., 2009), to enhance visual perceptual performance (Müller et al., 1998; Noudoost and Moore, 2011) and to modulate plasticity within sensory cortex (Bao et al., 2001; Hui et al., 2009). These data provide interesting research avenues worth exploring to develop methods to promote neuroplasticity in situations of learning difficulties or of recovery following brain injury.

BRAIN PLASTICITY IS MEDIATED BY NEUROMODULATOR SYSTEMS

Neuromodulator Systems As Drivers of Plasticity

In addition to sensory experience, various neuromodulator systems can affect both CPs and adult cortical plasticity by increasing neuronal excitability, improving signal to noise ratio, and controlling the propagation of activity through the cortex (Kirkwood, 2007). Early studies indicated that norepinephrine, a key neurotransmitter of the noradrenergic system, is necessary for ocular dominance column plasticity during the critical period (Kasamatsu and Pettigrew, 1976; Kasamatsu et al., 1979). Subsequent work, however, suggested that both noradrenergic and cholinergic networks need to be impaired to affect cortical plasticity, suggesting a functional redundancy between the two systems (Bear and Daniels, 1983; Bear and Singer, 1986). More recent studies have demonstrated that the cholinergic system is a potent neuromodulator of attention, learning and memory, in both humans (Rokem and Silver, 2010; Beer et al., 2013; Moran et al., 2013; Chamoun et al., 2017) and animal models (Herrero et al., 2008; Hasselmo and Sarter, 2011). Furthermore, Shepard et al. (2015) has provided evidence that mice lacking norepinephrine failed to reorganize auditory cortex frequency representation in response to prolonged sound exposure, suggesting that norepinephrine is a necessary driver of CP plasticity within auditory cortex. The dopaminergic and noradrenergic systems have also been shown to significantly modulate and shape cortical plasticity. For instance, dopamine upregulation has been linked with increases in the auditory cortical representation of paired tones (Bao et al., 2001) and increases in noradrenaline have been shown to increase the threshold of acoustic excitatory responses in auditory neurons (Manunta and Edeline, 1998).

Taken together, these findings highlight the critical role of neuromodulator systems as the main gating mechanisms of plasticity in adult sensory cortex, as well as their important role in shaping cortical function and cognitive abilities. Indeed, both neurochemically boosting cholinergic transmission (Greuel et al., 1988; Voss et al., 2016) and stimulating the basal forebrain — from which the cholinergic neurons project to the cortex — (Kilgard and Merzenich, 1998; Froemke et al., 2007; Kang and Voucher, 2009; Kang et al., 2014) have been shown to have a significant effect on learning rates and the cortical processing of stimuli. Stimulating the dopaminergic system has also been shown to improve cortical signal-to-noise ratio (Winterer and Weinberger, 2004; Kroener et al., 2009), to enhance visual perceptual performance (Müller et al., 1998; Noudoost and Moore, 2011) and to modulate plasticity within sensory cortex (Bao et al., 2001; Hui et al., 2009). These data provide interesting research avenues worth exploring to develop methods to promote neuroplasticity in situations of learning difficulties or of recovery following brain injury.

Inter-individual Variability of Neuromodulator Tone Affects Brain Plasticity and Cognition

One of the hallmarks of cognitive processes is the inter-individual variability that exists among healthy individuals. Indeed, a growing body of evidence suggests that this variability is intrinsically linked to variability within the neuromodulator systems. In particular, the potency of the dopaminergic and cholinergic systems changes across the lifespan and cognitive abilities tend to correlate with the maturation of these systems. For instance, the inverted u-shaped function of dopamine signaling (Arnsten, 1998; Goldman-Rakic et al., 2000), while both insufficient or excessive dopamine levels impair function, is well-suited to model the link between changes in cognitive performance across the lifespan and age-related changes in dopamine signaling, both which also follow an inverted u-shaped function (Störmer et al., 2012). Similarly, cholinergic functions have also been shown to decline during the course of healthy aging (Gibson et al., 1981; McGeer et al., 1984; Voss et al., 2016) and are linked to age-related cognitive and perceptual decline (Everitt and Robbins, 1997; Schliebs and Arendt, 2011). The degeneration of neuromodulatory function with normal aging is likely to contribute to both the diminished and enhanced plasticity observed in aging individuals because neuromodulatory control is weakened overall. While older adults have poorer learning outcomes traditionally perceived as a reduction in plasticity, they are also more vulnerable to maladaptive plastic changes (Mahncke et al., 2006; Oberman and Pascual-Leone, 2013).

There is also an increasing number of studies demonstrating important sex differences regarding neuromodulator levels and how they affect cognition. Research with both animal models and humans has reported that nicotine — a receptor agonist of the cholinergic system—, for instance, can increase learning rates in a sexually dimorphic manner (Levin et al., 1993; Algan et al., 1984; Voss et al., 2016) and are linked to age-related cognitive and perceptual decline (Everitt and Robbins, 1997; Schliebs and Arendt, 2011). The degeneration of neuromodulatory function with normal aging is likely to contribute to both the diminished and enhanced plasticity observed in aging individuals because neuromodulatory control is weakened overall. While older adults have poorer learning outcomes traditionally perceived as a reduction in plasticity, they are also more vulnerable to maladaptive plastic changes (Mahncke et al., 2006; Oberman and Pascual-Leone, 2013).

There is also an increasing number of studies demonstrating important sex differences regarding neuromodulator levels and how they affect cognition. Research with both animal models and humans has reported that nicotine — a receptor agonist of the cholinergic system—, for instance, can increase learning rates in a sexually dimorphic manner (Levin et al., 1993; Algan et al., 1984; Voss et al., 2016) and are linked to age-related cognitive and perceptual decline (Everitt and Robbins, 1997; Schliebs and Arendt, 2011). The degeneration of neuromodulatory function with normal aging is likely to contribute to both the diminished and enhanced plasticity observed in aging individuals because neuromodulatory control is weakened overall. While older adults have poorer learning outcomes traditionally perceived as a reduction in plasticity, they are also more vulnerable to maladaptive plastic changes (Mahncke et al., 2006; Oberman and Pascual-Leone, 2013).

...
Neurotherapeutic interventions targeting regulators of plasticity.

(A) Cholinergic enhancement paired with training reduces the probability of false positives (FP) in aged rats. Young adult and old (>24-month-old) rats were trained on a “Go (target frequency)/No-Go (non-target frequency)” auditory perceptual learning task. The FP rate can be used as an indicator of distractibility, and aged humans and rodents tend to have particularly high FP rates during early stages of training. When aged rats were given the cholinesterase inhibitor rivastigmine before each training session their FP rate was halved. This suggests that boosting the cholinergic system can enhance perception and behavioral performance in the elderly by reducing distractibility.

(B) The tonotopic map of trained aged rats resembles young rats when training is paired with cholinergic enhancement. Compared to a naive, young adult rat (top left), the map of a trained rat (top right) will have a greater proportion of sites tuned to the target stimulus frequency and a smaller proportion tuned to the non-target frequency. This differential representation is believed to help the rat assign more importance to the target tone and ignore the non-target. In old rats (bottom left), however, training results in an equal enlargement of both the target and non-target frequency regions. While these rats are capable of learning the discrimination task, this alternative learning mechanism...
transgenic mice overexpressing amyloid precursor protein, the Alzheimer's disease (Gates et al., 2008; Albers et al., 2015). In is also associated with high incidences of cognitive decline and dysfunction, in the absence of severe peripheral hearing loss, evidenced by behavioral, electrophysiological, and structural associated with a variety of low-level auditory dysfunctions at the level of early sensory processing (Javitt, 2015; Javitt and order processes, deficits can be found throughout the cortex could be caused or exacerbated by neuromodulatory imbalances. These neuropathological conditions are also often associated with perceptual impairments, which neurodopaminergic systems. These neuropathological conditions include the disruption of dopaminergic networks, whereas Alzheimer's disease and multiple forms of dementia disease include the disruption of dopaminergic networks, and loss of GABAergic inhibition (Huang and Mucke, 2012) and presence of Alzheimer's disease pathology is associated with significant changes in auditory evoked responses within the primary auditory cortex (Wang et al., 2003).

Several medications have been developed to specifically target the neuromodulator systems involved in neuropathological disorders, and therefore, also affect brain plasticity and sensory processes. In theory, these drugs could be used to target mechanisms of sensory plasticity in healthy adults and be paired with training to ward off perceptual deficits associated with natural aging. For instance, cholinergic antagonists have been shown to significantly improve occipital cortical responsiveness in rats (Kang et al., 2015) and visual perceptual learning in humans (Rokem and Silver, 2010), and recent evidence suggests that these learning effects can last several months after ceasing cholinergic enhancement (Rokem and Silver, 2013). Cholinergic function can also be enhanced through the use of cholinesterase inhibitors such as rivastigmine or donepezil (Colović et al., 2013), which are currently used to treat Alzheimer's disease and diverse dementia (Ellis, 2005; Birks, 2006). We recently showed in the aged rat that a daily administration of rivastigmine paired with training on an auditory discrimination task led to profound plastic changes within auditory cortex compared with age-matched controls who only underwent perceptual training (Voss et al., 2016) (Figures 2A,B). Not only did boosting cholinergic function produce robust frequency map and tuning bandwidth changes within auditory cortex, it also significantly improved the speed with which rats learned to perform the task. Furthermore, the magnitude of the functional changes was found to correlate with each rat's individual discrimination performance. These results demonstrate that combining perceptual training with neuromodulation of the cholinergic system can restore cortical functional deficits observed as a result of normal aging. Taken together, these findings highlight the therapeutic potential and the powerful potentiating effect of neuromodulator systems for improving the recovery or prevention of age-related and disease-related deficits. See Figure 2C for a selection of current and proposed therapeutic interventions targeting various modulators of plasticity.

FUTURE DIRECTIONS

The research described here demonstrates that the propensity for experience dependent plasticity throughout life can be more or less potentiated by diverse factors including individual genetic, cellular, molecular, and environmental differences. These findings have lead us to understand that the rules that regulate plasticity are not only more intrinsically variable...
than were previously thought, but can also be shaped in mature brains. Although plasticity within sensory systems is greatest during time-limited epochs during early development, plasticity regulators in the adult brain can be manipulated by acting on various neuromodulators and by precisely regulating sensory input. Indeed, our lab and others have shown that degraded sensory inputs can trigger plasticity within primary sensory cortex, possibly the result of an adaptive mechanism to facilitate cortical rewiring in cases of neurological injury or trauma to peripheral sensory systems. The idea that plasticity mechanisms can operate throughout the lifespan suggests that many functional properties of sensory neurons can be altered, and even reversed in some cases. This is particularly relevant for neurodegenerative and neuropsychiatric conditions where plasticity mechanisms appear to be dysregulated. Additional research will be required to more completely model age and disease-related plastic changes within sensory cortex, which will then allow us to better tailor stimulus-exposure or behavioral training paradigms to produce the desired functional and behavioral outcome measures. Indeed, without properly establishing a link with behavior, the nature of the reorganization, whether adaptive or maladaptive, will remain difficult to establish. Studies focusing on this goal will be important, with procedures allowing functional perturbation of particular relevance to establish causality.

Moving forward, it will also be necessary to take into account individual differences including age, sex, drug use, and pathological conditions in order to advance personalized treatments that aid learning, memory, and recovery from brain injury and disease. Neuromodulator systems, in particular, display immense variability between individuals. This is particularly evident when considering the huge range of interindividual variability in the effects of cholinergic, dopaminergic and noradrenergic drugs, regardless of the desired outcome measure (Keers and Aitchison, 2010; Tang et al., 2014; Turner et al., 2015). Individual differences in baseline perceptual abilities (Wong and Perrachione, 2007; Perrachione et al., 2011) and in brain connectivity (Lee et al., 2014; Voss and Zatorre, 2015) are also likely to affect learning and recovery rates. As with many medical and health-related fields where personalized and precision medicine are increasingly becoming mainstream, neurotherapeutic interventions targeting mechanisms of plasticity and cognition should also follow an individualized approach by harnessing individual differences to best utilize the brain’s innate capacity to change.

AUTHOR CONTRIBUTIONS

PV, MT, JC-F, and EdV-S conceived and wrote the manuscript. MT conceived and designed the figures.

FUNDING

This work was supported by the Canadian Institutes for Health Research, the Natural Sciences and Engineering Research Council of Canada, the Canadian Foundation for Innovation and the Fonds de Recherche du Quebec.

ACKNOWLEDGMENT

The authors would like to thank Lydia Ouellet for her technical support during various experiments described in this paper.

REFERENCES

Alain, C., Zendel, B. R., Hutka, S., and Bidelman, G. M. (2014). Turning down the noise: the benefit of musical training on the aging auditory brain. Hear. Res. 308, 162–173. doi: 10.1016/j.heares.2013.06.008

Albers, M. W., Gilmore, G. C., Kaye, J., Murphy, C., Wingfield, A., Bennett, D. A., et al. (2015). At the interface of sensory and motor dysfunctions and Alzheimer’s disease. *Alzheimer’s Dement.* 11, 70–98. doi: 10.1016/j.jalz.2014.04.514

Algan, O., Furedy, J. J., Demirgören, S., Vincent, A., and Pogün, Ş (1997). Effects of tobacco smoking and gender on interhemispheric cognitive function: performance and confidence measures. *Behav. Pharmacol.* 8, 416–428. doi: 10.1097/00008877-199710000-00006

Alwis, D. S., and Rajan, R. (2014). Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury. *Front. Syst. Neurosci.* 8:156. doi: 10.3389/fnsys.2014.00156

Arancio, O., and Chao, M. V. (2007). Neurotrophins, synaptic plasticity and dementia. *Curr. Opin. Neurobiol.* 17, 325–330. doi: 10.1016/j.conb.2007.03.013

Arnsten, A. F. (1998). Catecholamine modulation of prefrontal cortical cognitive function. *Trends Cogn. Sci.* 2, 436–447. doi: 10.1016/S1364-6613(98)01240-6

Bao, S., Chan, V. T., and Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. *Nature* 412, 79–83. doi: 10.1038/35083586

Bavelier, D., Levi, D. M., Li, R. W., Dan, Y., and Hensch, T. K. (2010). Removing brakes on adult brain plasticity: from molecular to behavioral interventions. *J. Neurosci.* 30, 14964–14971. doi: 10.1523/JNEUROSCI.4812-10.2010
Derringer, J., Krueger, R. F., Dick, D. M., Saccone, S., Grucza, R. A., Agrawal, A., de Villers-Sidani, E., and Merzenich, M. M. (2011). Lifelong plasticity in the rat primary auditory cortex. *Science* 330, 498–502. doi: 10.1126/science.1221637

Diamond, M. E., Armstrong-James, M., and Ebner, F. F. (1993). Experience-dependent and experience-independent changes in the rat primary auditory cortex with operant training. *Proc. Natl. Acad. Sci. U.S.A.* 90, 13900–13905. doi: 10.1073/pnas.100788590

Chang, E. F., and Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. *Science* 300, 498–502. doi: 10.1126/science.1082163

Chino, Y. M., Haas, J. H., Smith, E. L., Langston, A. L., and Cheng, H. (1992). Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. *Vis. Res.* 32, 789–796. doi: 10.1016/0042-6989(92)90021-A

Coelho, F. G., de, M., Gobbi, S., Andreatto, C. A. A., Corazza, D. I., Pedroso, R. V., Reinhart, R. M. G., Roach, B. J., Gueorguieva, R., Teyler, T. J., Clapp, N. M., and Panzanelli, P. (2014). GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. *Eur. J. Neurosci.* 39, 1845–1865. doi: 10.1111/ejn.12534

Froemke, R. C., Merzenich, M. M., and Schreiner, C. E. (2007). A synaptic memory trace for cortical receptive field plasticity. *Nature* 450, 425–429. doi: 10.1038/nature06389

Gates, G. A., Anderson, M. L., Feeney, M. P., McCurry, S. M., and Larson, E. B. (2008). Central auditory dysfunction in older persons with memory impairment or Alzheimer dementia. *Arch. Otolaryngol. Neck Surg.* 134, 771–777. doi: 10.1001/archotol.134.7.771

Gervain, J., Vines, B. W., Chen, L. M., Seo, R. J., Hensch, T. K., Werker, J. F., et al. (2013). Valproate reopens critical-period learning of absolute pitch. *Front. Syst. Neurosci.* 7:102. doi: 10.3389/fnsys.2013.00102

Gibson, G., Peterson, C., and Jenden, D. (1981). Brain acetylcholine synthesis declines with senescence. *Science* 213, 674–676. doi: 10.1126/science.7256270

Goldman-Rakic, P. S., Castner, S., and Williams, G. (2000). Clinical implications of the inverted U-shaped curve relating D1 stimulation and behavior. *Biol. Psychiatry* 47, 562. doi: 10.1016/S0006-3223(00)00296-1

Gourévitch, B., Edeline, J. M., Occelli, F., and Eggartert, J. J. (2014). Is the dNIRF signal really harmless? Long-term effects of non-traumatic noise on the adult auditory system. *Nat. Rev. Neurosci.* 15, 483–491. doi: 10.1038/nrn3744

Greifzu, F., Pielecka-Fortuna, J., Kalogerakis, E., Krempel, K., Favaró, P. D., Schlüter, O. M., et al. (2014). Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity. *Proc. Natl. Acad. Sci. U.S.A.* 111, 1150–1155. doi: 10.1073/pnas.1311385111

Greul, J. M., Luhmann, H. J., and Singer, W. (1988). Pharmacological induction of use-dependent receptive field modifications in the visual cortex. *Science* 242, 74–77. doi: 10.1126/science.2902687

Greivenik, V. P., Papke, R. L., Lippiello, P. M., and Bencherif, M. (2009). Atypical antipsychotics as noncompetitive inhibitors of α4β2 and α7 neuronal nicotinic receptors. *Neuropharmacology* 57, 183–191. doi: 10.1016/j.neuropharm.2009.05.003

Gu, J., and Kanai, R. (2014). What contributes to individual differences in brain structure? *Front. Hum. Neurosci.* 8:262. doi: 10.3389/fnhum.2014.00262

Hamidovic, A., Drugoš, A., Skol, A., Palmer, A. A., and de Wit, H. (2009). Evaluation of genetic variability in the dopamine receptor D2 in relation to behavioral inhibition and impulsivity/sensation seeking: an exploratory study with d-amphetamine in healthy participants. *Exp. Clin. Psychopharmacol.* 17, 374–383. doi: 10.1037/a0017840

Hasselmo, M. E., and Sarter, M. (2011). Modes and models of forebrain cholinergic neuromodulation of cognition. *Neuropsychopharmacology* 36, 52–73. doi: 10.1038/npp.2010.104

He, H.-Y., Hodos, W., and Quilan, E. M. (2006). Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. *J. Neurosci.* 26, 2951–2955. doi: 10.1523/JNEUROSCI.5554-05.2006

Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. *Nat. Rev. Neurosci.* 6, 877–888. doi: 10.1038/nrn1787

Herrero, J. L., Roberts, M. J., Delicato, L. S., Gieselman, M. A., Dayan, P., and Thiele, A. (2008). Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. *Nature* 454, 1110–1114. doi: 10.1038/ nature07141

Higley, M. I., and Picciotto, M. R. (2014). Neuromodulation by acetylcholine: examples from schizophrenia and depression. *Curr. Opin. Neurobiol.* 24, 88–95. doi: 10.1016/j.conb.2014.06.004

Huang, Y., and Mucke, L. (2012). Alzheimer mechanisms and therapeutic strategies. *Cell* 148, 1204–1222. doi: 10.1016/j.cell.2012.02.040

Hui, G. K., Wong, K. L., Chavez, C. M., Leon, M. L., Robin, K. M., and Weinberger, N. M. (2009). Conditioned tone control of brain reward behavior produces highly specific representational gain in the primary auditory cortex. *Neurobiol. Learn. Mem.* 92, 27–34. doi: 10.1016/j.nlm.2009.02.008

Insall, N. M., Köver, H., Kim, H., and Bao, S. (2009). Feature-dependent sensitive periods in the development of complex sound representation. *J. Neurosci.* 29, 5456–5462. doi: 10.1523/JNEUROSCI.3511-09.2009

Jacobs, E., and D’Esposito, M. (2011). Estrogen shapes dopamine-dependent cognitive processes: implications for Women’s health. *J. Neurosci.* 31, 5286–5293. doi: 10.1523/JNEUROSCI.6394-10.2011
concomitant hearing loss. *Hear. Res.* 261, 30–35. doi: 10.1016/j.heares.2009.12.025

Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J. W., and Maffei, L. (2002). Reactivation of ocular dominance plasticity in the adult visual cortex. *Science* 298, 1248–1251. doi: 10.1126/science.1072699

Quindlan, M. G., Alme, A., Caisse, M., LaChappelle, L., Radiotis, G., and Brake, W. G. (2013). Estradiol and strial dopamine receptor antagonism influence memory system bias in the female rat. *Neurobiol. Learn. Mem.* 106, 221–229. doi: 10.1016/j.nlm.2013.08.018

Rice, F. L., and Van der Loos, H. (1977). Development of the barrels and barrel field in the somatosensory cortex of the mouse. *J. Comp. Neurol.* 171, 545–560. doi: 10.1002/cne.901710408

Rokem, A., and Silver, M. A. (2010). Cholinergic enhancement augments magnitude and specificity of visual perceptual learning in healthy humans. *Curr. Biol.* 20, 1723–1728. doi: 10.1016/j.cub.2010.08.027

Rokem, A., and Silver, M. A. (2013). The benefits of cholinergic enhancement during perceptual learning are long-lasting. *Front. Comput. Neurosci.* 7:66. doi: 10.3389/fncom.2013.00066

Schliebs, R., and Arendt, T. (2011). The cholinergic system in aging and neuronal degeneration. *Behav. Brain Res.* 221, 555–563. doi: 10.1016/j.bbr.2010.11.058

Singh, A., and Abraham, W. C. (2017). Astrocytes and synaptic plasticity in health and disease. *Exp. Brain Res.* 235, 1645–1655. doi: 10.1007/s00221-017-4928-1

Soha, J. A., and Marler, P. (2001). Cues for early discrimination of conspecific song in the white-crowned sparrow (*Zonotrichia leucophrys*). *Ecol. Ethology* 107, 813–826. doi: 10.1046/j.1439-0310.2001.00713.x

Sorg, B. A., Berretta, S., Blacktop, J. M., Fawcett, J. W., Kitagawa, H., Kwok, J. C. F., et al. (2016). Casting a wide net: role of perineuronal nets in neural plasticity. *J. Neurosci.* 36, 2432–2437. doi: 10.1523/JNEUROSCI.0532-14.2015

Singh, A., and Abraham, W. C. (2017). Astrocytes and synaptic plasticity in health and disease. *Exp. Brain Res.* 235, 1645–1655. doi: 10.1007/s00221-017-4928-1

Störmer, V. S., Passow, S., Biesenack, J., and Li, S.-C. (2012). Dopaminergic and cholinergic modulations of visual-spatial attention and working memory: insights from molecular genetic research and implications for adult cognitive development. *Dev. Psychol.* 48, 875–889. doi: 10.1037/a0026198

Surawerra, C., Hanwell, R., and de Silva, V. A. (2015). Medications used in dementia: a review of evidence. *Sri Lanka J. Psychiatry* 6, 3–8. doi: 10.4038/ sljpysc.v6i2.873

Suzhany, K. L., Bugatti, M., and Otto, M. W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. *J. Psychiatr. Res.* 60, 56–64. doi: 10.1016/j.jpsychires.2014.10.003

Tanaka, S., Tani, T., Ribot, J., O’Hashi, K., and Imamura, K. (2009). A postnatal critical period for orientation plasticity in the cat visual cortex. *Cereb. Cortex* 21, 213–214. doi: 10.1093/cercor/bhq286

Vinogradov, S., Fisher, M., and de Villers-Sidani, E. (2012). Cognitive training for impaired neural systems in neuropsychiatric illness. *Neuropsychopharmacology* 37, 43–76. doi: 10.1038/npp.2011.251

Voss, P., Thomas, M., Chou, Y. C., Cisneros-Franco, J. M., Ouellet, L., and de Villers-Sidani, E. (2016). Pairing cholinergic enhancement with perceptual training promotes recovery of age-related changes in rat primary auditory cortex. *Neural. Plast.* 2016, 1–18. doi: 10.1155/2016/1801979

Voss, V., and Zatorre, R. J. (2015). Early visual deprivation changes cortical anatomical covariance in dorsal-stream structures. *Neuroimage* 108, 194–202. doi: 10.1016/j.neuroimage.2014.12.063

Wang, D., and Fawcett, J. (2012). The perineuronal net and the control of CNS plasticity. *Cell Tissue Res.* 349, 147–160. doi: 10.1007/s00441-012-1375-y

Wang, J., Ikonen, S., Gurevicius, K., Van Groen, T., and Tanila, H. (2003). Altered auditory-evoked potentials in mice carrying mutated human amyloid precursor protein and presenilin-1 transgenes. *Neuroscience* 116, 511–517. doi: 10.1016/S0098-9933(02)00714-5

Wen, M. C., Steffens, D. C., Chen, M. K., and Zainal, N. H. (2014). Diffusion tensor imaging studies in late-life depression: systematic review and meta-analysis. *Int. J. Geriatr. Psychiatry* 29, 1173–1184. doi: 10.1002/gps.4129

White-Schwoch, T., Woodruff Carr, K., Anderson, S., Strait, D. L., and Kraus, N. (2013). Older adults benefit from music training early in life: biological evidence for long-term training-driven plasticity. *J. Neurosci.* 33, 7667–7674. doi: 10.1523/JNEUROSCI.2560-13.2013

Wiesel, T. N., and Hubel, D. H. (1963). Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. *J. Neurophys.* 26, 978–993.

Winterer, G., and Weinberger, D. R. (2004). Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. *Trends Neurosci.* 27, 683–690. doi: 10.1016/j.tins.2004.08.002

Wong, P. C. M., and Perrachione, T. K. (2007). Learning pitch patterns in lexical identification by native English-speaking adults. *Appl. Psycholinguist.* 28, 565–585. doi: 10.1017/S0142716407070312

Zhang, L. I., Bao, S., and Merzenich, M. M. (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. *Nat. Neurosci.* 4, 1123–1130. doi: 10.1038/nn745

Zhang, L. I., Bao, S., and Merzenich, M. M. (2002). Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. *Proc. Natl. Acad. Sci. U.S.A.* 99, 2309–2314. doi: 10.1073/pnas.261707398

Zheng, W. (2012). Auditory map reorganization and pitch discrimination in adult rats chronically exposed to low-level ambient noise. *Front. Syst. Neurosci.* 6:65. doi: 10.3389/fsyst.2012.00065

Zhou, X., Panizzutti, R., de Villers-Sidani, E., Madeira, C., and Merzenich, M. M. (2011). Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. *J. Neurosci.* 31, 5625–5634. doi: 10.1523/JNEUROSCI.1670-10.2011

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Voss, Thomas, Cisneros-Franco and de Villers-Sidani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.