C-Reactive Protein Levels in Patients with Infectious Mononucleosis

Alon Nevet (alon.nevet@gmail.com)
Hillel Yaffe Medical Center https://orcid.org/0000-0002-0922-2166

Maanit Shapira
Hillel Yaffe Medical Center

Research Article

Keywords: Infectious Mononucleosis, Inflammation, Bio Marker

Posted Date: November 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1091452/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Plasma level of C-reactive protein (CRP) is used as a biomarker of systemic inflammation. Differential distributions of CRP levels related to different pathogens aid clinicians in the differential diagnosis of patients.

Objectives: To evaluate the distribution of CRP levels in patients with Infectious Mononucleosis (IMN) and its correlation with different pathogen and host characteristics.

Methods: A retrospective study conducted on electronic medical records of patients diagnosed clinically and serologically with IMN in a public regional hospital during consecutive five years.

Results: CRP levels were significantly elevated in patients hospitalized with clinical diagnosis of IMN and serologic evidence of EBV (average 6.8 md/dL) or CMV (average 6.3 md/dL). However, levels of CRP were not significantly correlated with plasma levels of liver enzymes.

Conclusions: Although CRP levels may aid in the differential diagnosis of respiratory syndromes, its distribution in patients infected by hepatotrophic viruses is similar to that in bacterial infections.

Introduction

C-reactive protein (CRP) is part of the complementary chain of reactions in response to inflammation-provoking triggers. It is produced in the liver, and secreted to the blood plasma, where its levels are routinely measured.

Due to the statistically higher levels of CRP correlated with bacterial infections relative to respiratory viruses, different cutoffs have been proposed to assist clinicians in the differential diagnosis of systemic inflammation [1–4].

However, some viral infections and non-infectious states are associated with CRP levels overlapping those induced by bacterial infections [5].

Specifically, high CRP levels were demonstrated to be in associated with Herpetic and Adenoviral infections. These viruses are hepatotrophic, thus may directly stimulate the production of CRP in the liver.

To further examine the association between hepatotrophic viral infections with elevated CRP levels, we examined its levels in patients with infectious mononucleosis (IMN), caused by Cytomegalovirus (CMV) or Epstein-Barr Virus (EBV), and the correlation between CRP and liver enzymes levels in these patients.

Patients And Methods

The study was conducted retrospectively on electronic health records of inpatients diagnosed with IMN using the combination of clinical symptoms and positive serology between January 2014 and December
2018 in Hillel Yaffe Medical Center, a regional public hospital.

Only records with data regarding CRP and liver enzymes were included, and those with positive bacterial cultures were excluded.

Results

Sixty five patients were included in the study, as described in Table 1.

Virus	Male	Female	Age (Average)
EBV	35	22	22 - 84 (46.3)
CMV	1	7	1 - 52 (15.9)
TOTAL	36	29	1 - 84 (42.6)

EBV – Ebstein Barr Virus; CMV - Cytomegalovirus

Table 1: Demographics

The average CRP level was 6.1 mg/dL (CMV patients 6.3 mg/dL, EBV patients 6.0 mg/dL). Twenty four patients (37%) had CRP levels higher than 5 mg/dL, which are considered indicative of bacterial infection in certain clinical scenarios, such as respiratory infections.

As expected, liver enzymes were elevated in most patients (ALT >35 U/L in 55% of patients, average 94.6 U/L). However, CRP and ALT levels were not significantly correlated with each other, nor with age.

Discussion

This study demonstrates that elevated levels of CRP are found in a significant portion of patients hospitalized with IMN without bacterial co-infection.

The mechanisms underlying the induction of CRP synthesis in different circumstances are still to be explored. Cytokines such as interleukin-6 and tumor necrosis factor-alpha have been shown to be involved [6–10], but their relation to specific characteristics of the offending microorganism is unknown. Exceptionally high levels have been reported in patients with adenovirus [2, 11] and herpes simplex virus (HSV) infections [12].

Since adenovirus and HSV are hepatotrophic viruses, and CRP is synthesized in the liver, our hypothesis was that the distribution of CRP levels would be similarly elevated in patients infected by other hepatotrophic viruses - EBV and CMV. The results presented in the current study support the hypothesis of a general relation between hepatotrophic viral infections and elevated CRP levels, relative to historic cohorts of patients with respiratory virus infections [13], and similar to bacterial infections.
Although CRP may support clinical decisions when the differential diagnosis includes viral and bacterial infections, the extent of its application is controversial[13–16] due to the relatively high gap between specificity and sensitivity, independent of the threshold used. This gap is the result of overlap between CRP values distribution related to different conditions.

Our results may aid clinicians by suggesting that elevated CRP levels in a clinical context implying infection caused by hepatotrophic viruses (e.g. conjunctivitis for adenovirus, oral aphtha for HSV, rash, lymphadenophathy and/or elevated liver enzymes for IMN) do not necessarily indicate bacterial co-infection, and antibiotic therapy may be withheld.

However, CRP remains important in patients lacking clinical signs and laboratory results implying a possible hepatotrophic viral infection. In the relevant clinical scenarios, such as fever without localizing signs or patients with pneumonia, CRP levels of 5 mg/dL and above support the possibility of bacterial infection and decisions to initiate empirical antibiotic therapy [2, 4, 13, 14].

To the best of our knowledge, this work is the first to systematically evaluate CRP values in patient with IMN. The retrospective nature of this work and the characteristics of its population preclude definitive conclusions regarding the distribution of CRP among IMN patients in the community. However, even if the results refer to a subpopulation of IMN patients, the general conclusions and recommendations presented above remain relevant.

Declarations

- **Ethics approval and consent to participate:**

 This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Hillel Yaffe Medical Center (HYMC 87-19). This is an observational study. The Research Ethics Committee has confirmed that informed consent is not required.

- **Consent for publication:**

 Not Applicable

- **Availability of data and materials:**

 The dataset will be sent by request.

- **Competing interests:**

 The authors have no relevant financial or non-financial interests to disclose.

- **Funding:**
The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

- Authors' contributions:

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Alon Nevet and Maanit Shapira. The first draft of the manuscript was written by Alon Nevet and Maanit Shapira commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

- Acknowledgements:

Not Applicable

References

1. Sanders, S., A. Barnett, I. Correa-Velez, M. Coulthard, and J. Doust. 2008. Systematic review of the diagnostic accuracy of C-reactive protein to detect bacterial infection in nonhospitalized infants and children with fever. J Pediatr 153: 570–574.
2. Hawk, M. 2008. C-reactive protein in neonatal sepsis. Neonatal Netw 27: 117–120.
3. Batlivala, S. P. 2009. Focus on diagnosis: the erythrocyte sedimentation rate and the C-reactive protein test. Pediatr Rev 30: 72–74.
4. Bilavsky, E., H. Yarden-Bilavsky, S. Ashkenazi, and J. Amir. 2009. C-reactive protein as a marker of serious bacterial infections in hospitalized febrile infants. Acta Paediatr 98: 1776–1780.
5. Appenzeller, C., R. A. Ammann, A. Duppenthaler, M. Gorgievski-Hrisoho, and C. Aebi. 2002. Serum C-reactive protein in children with adenovirus infection. Swiss Med Wkly 132: 345–350.
6. Mistchenko, A. S., R. A. Diez, A. L. Mariani, J. Robaldo, A. F. Maffey, and G. Bayley-Bustamante, et al. 1994. Cytokines in adenoviral disease in children: association of interleukin-6, interleukin-8, and tumor necrosis factor alpha levels with clinical outcome. J Pediatr 124: 714–720.
7. Kaiser, L., R. S. Fritz, S. E. Straus, L. Gubareva, and F. G. Hayden. 2001. Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses. J Med Virol 64: 262–268.
8. Kawasaki, Y., M. Hosoya, M. Katayose, and H. Suzuki. 2002. Correlation between serum interleukin-6 and C-reactive protein concentrations in patients with adenoviral respiratory infection. Pediatr Infect Dis J 21: 370–374.
9. Higginbotham, J. N., P. Seth, R. M. Blaese, and W. J. Ramsey. 2002. The release of inflammatory cytokines from human peripheral blood mononuclear cells in vitro following exposure to adenovirus variants and capsid. Hum Gene Ther 13: 129–141.
10. Zsengeller, Z., K. Otake, S. Hossain, P. Y. Berclovz, and B. C. Trapnell. 2000. Internalization of adenovirus by alveolar macrophages initiates early proinflammatory signaling during acute respiratory tract infection. J Virol 74: 9655–9667.
11. Peltola, V., J. Mertsola, and O. Ruuskanen. 2006. Comparison of total white blood cell count and serum C-reactive protein levels in confirmed bacterial and viral infections. *J Pediatr* 149: 721–724.

12. Nevet, A., H. Yarden-Bilavsky, S. Ashkenazi, and G. Livni. 2014 Nov. C-Reactive protein levels in children with primary herpetic gingivostomatitis. *Isr Med Assoc J* 16: 700–702.

13. André, M., A. Schwan, and I. Odenholt, Swedish Study Group on Antibiotic Use. 2004. The use of CRP tests in patients with respiratory tract infections in primary care in Sweden can be questioned. *Scand J Infect Dis* 36: 192–197.

14. Rausch, S., M. Flammang, N. Haas, R. Stein, P. Tabouring, and S. Delvigne, et al. 2009. C-reactive protein to initiate or withhold antibiotics in acute respiratory tract infections in adults, in primary care [Review]. *Bull Soc Sci Med Grand Duche Luxemb* 1: 79–87.

15. Farah, R., and N. Makhoul. 2011. Usefulness of various inflammatory markers to differentiate pulmonary edema from pneumonia. *IMAJ* 13: 225–229.

16. Pulliam, P. N., M. W. Attia, and K. M. Cronan. 2001. C-reactive protein in febrile children 1 to 36 months of age with clinically undetectable serious bacterial infection. *Pediatrics* 108: 1275–1279.