Defining Disease, Diagnosis, and Translational Medicine within a Homeostatic Perturbation Paradigm: The National Institutes of Health Undiagnosed Diseases Program Experience

Timothy Gall1,2, Elise Valkanas3†, Christofer Bello3†, Thomas Markello1, Christopher Adams2, William P. Bone3, Alexander J. Brandt4, Jennifer M. Brazill3, Lynn Carmichael4, Mariska Davids5, Joie Davis6, Zoraida Diaz-Perez7, David Draper1,2, Jeremy Elson8, Elise D. Flynn9, Rena Godfrey5, Catherine Groden1, Cheng-Kang Hsieh8, Roxanne Fischer2, Gretchen A. Golas1, Jessica Guzman1, Yan Huang1, Megan S. Kane1, Elizabeth Lee1, Chong Li3, Amanda E. Links4, Valerie Maduro1, May Christine V. Malicdan1, Fayeza S. Malik3, Michele Nehrebecky1, Joung Park3, Paul Pemberton1, Katherine Schaffer4, Dimitre Simeonov4, Murat Sincan1, Damian Smedley6, Zaheer Valivullah1, Colleen Wahl1, Nicole Washington9, Lynne A. Wolfe1,2, Karen Xu1, Yi Zhu1, William A. Gahl1,2, Cynthia J. Tifft1,2, Camillo Toro1, David R. Adams2,2, Miao He8,9, Peter N. Robinson10, Melissa A. Haendel11†, R. Grace Zhai3 and Cornelius F. Boerkoel1

1 NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States, 2 National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States, 3 Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States, 4 Appistry, Inc., St. Louis, MO, United States, 5 Microsoft Research, Redmond, WA, United States, 6 William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom, 7 Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 8 Palmieri Metabolic Disease Laboratory, Children’s Hospital of Philadelphia, Philadelphia, PA, United States, 9 Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States, 10 The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States, 11 Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States

Traditionally, the use of genomic information for personalized medical decisions relies on prior discovery and validation of genotype–phenotype associations. This approach constrains care for patients presenting with undescribed problems. The National Institutes of Health (NIH) Undiagnosed Diseases Program (UDP) hypothesized that defining disease as maladaptation to an ecological niche allows delineation of a logical framework to diagnose and evaluate such patients. Herein, we present the philosophical bases, methodologies, and processes implemented by the NIH UDP. The NIH UDP incorporated use of the Human Phenotype Ontology, developed a genomic alignment strategy cognizant of parental genotypes, pursued agnostic biochemical analyses, implemented functional validation, and established virtual villages of global experts. This systematic approach provided a foundation for the diagnostic or non-diagnostic answers provided to patients and serves as a paradigm for scalable translational research.

Keywords: rare disease, human phenotype ontology, distributed cognition, diploid alignment, glycome
INTRODUCTION

As established in 2008, the purpose of the National Institutes of Health (NIH) Undiagnosed Diseases Program (UDP) is to provide answers to patients with conditions that have eluded diagnosis and to advance medical knowledge about rare and common diseases (1). At its fundamental core, the NIH UDP is, therefore, an implementation of both personalized and genomic medicine.

Personalized medicine, which is the customization of healthcare to the individual patient, conceptually flows from the dawn of medicine. Medical practice has had a long tradition of being inherently “personal” to each patient. Current usage of “personalized medicine” denotes, however, the use of technology to enable a personalization not previously feasible and is generally applied in the context of using genetic information to guide medical care. The use of genetic information in this manner arose from the Human Genome Project and technological advances that apply genomic information to medical practice (2).

Within genomic medicine, DNA sequence variations are mined for predictors of susceptibility and resistance to diseases, as well as for medication safety and efficacy. The former use has proven its utility in the diagnosis of many inherited disorders (3), the management of several cancers, and disease stratification (4). The latter has proven its usefulness for delineating appropriate anticancer therapies, anticoagulant therapy, and cholesterol reduction treatments among others (5, 6).

Genomic and precision medicine decisions generally rely on prior discovery and validation of genotype–phenotype associations across many patients. While this approach can be effective for patients with a previously identified disease correlation, it is inadequate for NIH UDP patients who present with undescribed problems. Herein, we describe the philosophical bases, methodologies, and processes that the NIH UDP developed to provide answers to patients with conditions that have eluded diagnosis and to advance biomedical knowledge about disease mechanisms.

DEFINING DISEASE: THE PHILOSOPHICAL BASIS OF THE NIH UDP

As implied by the title UDP, definition of a diagnosis is crucial to understanding the Program’s purpose and approach. Given that a diagnosis is a culturally appropriate explanation for a problem (7), then, within Occidental medical culture, a diagnosis is a material and rational explanation testable by the scientific method (8). Within this perspective, diseases arise from malfunctioning biologic processes causing harm and are not inclusive of illness caused by loss of mental or social well-being (9, 10). Adhering to this objectivist occidental medical definition, the NIH UDP has generally chosen to exclude diseases with sociocultural etiologies.

Biological or physiological malfunction is the product of gene–environment interactions over time (11). Thus, disease can be considered maladaptation to an ecological niche (12). Such maladaptations are characterized by disturbances of genetic, developmental, and physiological homeostases (12). The NIH UDP has defined genetic homeostasis as the sum of human evolutionary history encoded within DNA sequence, developmental homeostasis as the lifetime response of an organism to an ecological niche, and physiological homeostasis as the biochemical and molecular balance detectable at the moment of inquiry. In this construct, the developmental and physiological homeostatic responses to the environment are constrained by an organism’s genetic composition.

For most of human evolutionary history, natural selection molded humans to be hunter-gatherers. They walked many miles each day and ate a diverse, relatively unprocessed diet (11). Among many adaptations for survival, the development of culture sets humans apart from other organisms and allows them to change their environment to buffer against selective pressure. Through cultural evolution, humans colonize environments and develop lifestyles that are not primarily adapted to by natural selection. Within the current urban lifestyle, for example, industrialization has exposed humans to novel toxins and processed food and enabled them to avoid most physical activity. Unable to alter millennia of natural selection, the mismatch of human bodies to this modern ecological niche causes most human disease in wealthy societies (11). These mismatch diseases, which include osteoporosis, cardiovascular disease, some cancers, type 2 diabetes, and metabolic syndrome, rarely arise from recent strong single-gene mutations but instead from multiple adaptations selected over the millennia of human existence. This perspective on gene–environment interactions consequently divides disease into rare monogenic or oligogenic disorders and common cultural mismatch disorders.

The NIH UDP has chosen for two reasons to focus its efforts on undescribed diseases likely to have a monogenic or oligogenic etiology. First, many cultural mismatch disorders are diagnosed and have defined etiologies and treatments (11). Second, monogenic or oligogenic disorders are more tractable for causal genetic discovery, and consequently, a material and rational explanation testable by the scientific method, i.e., a molecular diagnosis, is more achievable.

To provide answers for patients judged to have monogenic or oligogenic disorders that have eluded diagnosis, the NIH UDP screened for disturbances of the genetic, developmental, and physiologic homeostases. In addition, the NIH UDP implemented a management and communication system to facilitate collaborations and solutions (5). As represented in Figure 1, the NIH UDP process can be broken into the following steps: (1) patient selection, (2) patient phenotyping, (3) integrated analysis, (4) causal confirmation, and (5) disposition. The methodology and processes developed are described in the following sections.

METHODOLOGIES AND RESULTS OF THE NIH UDP

Patient Selection

Individuals with a broad spectrum of disorders apply to the NIH UDP (1, 13, 14). The experimental paradigm of the NIH UDP is predicated on an identifiable biological dysfunction arising from
a monogenic or oligogenic etiology; thus, the ascertainment of the appropriate families is critical for an interpretable outcome and ethical experimentation (15–17). To satisfy these requirements, the NIH UDP selection criteria for admitting individuals to the
clinical research center (CRC) included (1) a physician referral providing a clear picture of the patient’s illness and promising follow-up care after the UDP evaluation, (2) records of previous care and evaluations showing elimination of known disorders,
(3) medical records and findings supporting a genetic etiology, (4) willingness of family members to participate for segregation of putative genetic causes, and (5) a problem within the expertise of the care available at the NIH CRC. All patients or their guardians and participating family members gave informed consent to clinical protocol 76-HG-0238, which was approved by the NHGRI Institutional Review Board.

Patient Phenotyping
Having selected patients appropriate to the experimental paradigm, the next step for the NIH UDP was delineation of the disease phenotype. Given that disease is the loss of evolutionary, developmental, or physiological homeostasis and that a phenotype is the expression of that loss, characterization of the disease requires a thorough and unbiased assessment of each homeostatic disturbance. To this end, the NIH UDP implemented the following methodologies for assessment of these homeostases.

Assessment of Genetic Homeostasis
Nothing in biology makes sense except in the light of evolution.

Theodosius Dobzhansky
American Biology Teacher (1973) 35:125–129

Classically, genetic characterization has been performed by collecting a family history and carefully examining and testing family members to determine affected and unaffected status. This is usually presented as a pedigree and family history within the medical record. The NIH UDP continues this practice for immediate family members and occasionally for additional generations.

Given that the family and medical history meet criteria supporting a genetic etiology (see supplemental methods), identifying the point in the meiotic history of the family when the disturbance in evolutionary or genetic homeostasis occurred enables the generation of inheritance hypotheses and comparison of the affected individual’s genome to meiotically close reference genomes. Assessing evolutionary homeostasis through genome or exome sequencing, the NIH UDP developed and implemented DiploidAlign, an alignment strategy that imputes information from population and both parental genomes and then aligns the proband’s sequence data to those imputed genomes (see supplemental methods) (18–20).

Assessment of Developmental Homeostasis
Developmental homeostasis and its disturbances reflect the manifestation and evolution of disease during the lifetime of an individual. Classically, this information has been collected through medical history and serial physical examination. Although the temporal manifestation and evolution of disease are predicted to manifest in the transcriptome and epigenome profiles (21), the NIH UDP has not routinely assessed the transcriptome and epigenome because the disease-related changes were thought often specific to minimally accessible affected tissues.

Systematic collection of medical history and physical examination information require the use of a standardized vocabulary. Because traditional clinical vocabularies had been shown to be insufficient (22), the NIH UDP uses the Human Phenotype Ontology (HPO) (23), a standardized vocabulary of phenotypic abnormalities encountered in human disease, and the PhenoTips graphical user interface and search engine (24, 25). This allows comparison to other human disorders and model organisms as well as identification of relationships between human phenotypic abnormalities and cellular and biochemical networks (26).

Assessment of Physiologic Homeostasis
Physiologic or biochemical homeostasis reflects the equilibrium of the body at a moment in time, i.e., the moment at which the fluid or tissue is collected. Measurement of this homeostasis is the *sine qua non* of clinical pathology laboratories and is usually directed by a differential diagnosis. Given that the individuals presenting within the NIH UDP have, by definition, undescribed disorders, the differential diagnosis is absent to minimal, and thus, screens agnostic to diagnosis were used to detect disturbances of physiologic or biochemical homeostasis.

Exemplifying the utility of this agnostic approach, approximately 50% of UDP patients screened for perturbation of protein glycosylation or free glycans in the plasma or urine differed from healthy controls (data not shown). These qualitative and quantitative changes in glycosylation, whether primary or secondary, have diagnostic, mechanistic, or therapeutic value as illustrated by detection of glycosylation abnormalities in DNA repair disorders (27, 28), ciliopathies (29, 30), mitochondrialopathies (31, 32), and Golgi disorders (33). In contrast, detailed metabolomics studies uncovered very few anomalies, suggesting that the current medical testing technology already detects most disorders of metabolism prior to referral to the NIH UDP (data not shown). The NIH UDP did not pursue lipidome analysis; however, we hypothesize that, like the glycome analyses, these will define previously undetected primary and secondary changes having diagnostic, mechanistic, or therapeutic value and will be the subject of future investigation.

Integration of Measures of Homeostatic Disturbance
Having characterized these homeostases, the observations were integrated to minimize investigator bias and to generate testable hypotheses for disease causation. To accomplish this, the NIH UDP used the HPO terms to implement bioinformatic tools such as Exomiser1 and PhenIX (34–36). These software programs compare HPO terms to similar phenotypic profiles in humans and model organisms, improving prioritization of candidate disease variants. Illustrating the utility of this approach, reanalysis of UDP patient sequence data with Exomiser identified about 10–20% additional molecular diagnoses compared to those identified by manual curation alone (19).

This strategy also facilitated prioritizing of sequence variants within gene networks seeded by genes giving similar phenotypes when mutated in humans or model organisms and was effective for identifying atypical presentations (18, 37). A tool enabling such analysis is Exome Walker (38), which is incorporated into Exomiser for exome sequence analysis (19). This method

1https://exomiser.github.io/Exomiser/.
variants to reflect the level of support. The first or lowest level is a
level of support. The first or lowest level is a
and mice recapitulated the dominant osteoporosis segregating in
and mice recapitulated the dominant osteoporosis segregating in
N-methyl-d-aspartate receptor effectively treated his
N-methyl-d-aspartate receptor effectively treated his
In the absence of identifying another family, two methods
In the absence of identifying another family, two methods
bioinformatically derived likelihood of the variant being associ-
bioinformatically derived likelihood of the variant being associ-
parameters to reflect the level of support. The first or lowest level is a
parameters to reflect the level of support. The first or lowest level is a

Delineation of a Sequence Variant As Causal or Not

In what circumstances can we pass from this observed
association to a verdict of causation? Upon what basis
should we proceed to do so?

Sir Austin Bradford Hill
Proceedings of the Royal Society of Medicine
(1965) 58:295-300

Classically, a genetic cause for a trait is accepted if (1) variants seg-
Classically, a genetic cause for a trait is accepted if (1) variants seg-

Large pedigrees are generally used to acquire statistical evidence for
Large pedigrees are generally used to acquire statistical evidence for

In the absence of the above, the NIH UDP grades sequence
In the absence of the above, the NIH UDP grades sequence

1https://phenomecentral.org/.
1https://phenomecentral.org/.

2http://www.ncbi.nlm.nih.gov/gap.
2http://www.ncbi.nlm.nih.gov/gap.

3https://beta.monarchinitiative.org/case/MONARCH:c000001#overview.
3https://beta.monarchinitiative.org/case/MONARCH:c000001#overview.
TABLE 1 | Results of Drosophila central nervous system knockdown and rescue for 11 mutations in differing candidate genes.

Patient	Human phenotype	Human gene Fly homolog	Drosophila phenotype (CNS KD with C155)	Human expression construct	Rescue w/ human cDNA				
		Human expression index	Survival (2 DAE)	Behavior (20 DAE)	Adult lifespan (LS\(\text{a}\))	Rescue efficacy	Behavior Improvement (2 DAE)		
5628	Spasticity, abnormality of the periventricular white matter, abnormality of the cerebral white matter, spinal cord lesions, impaired distal tactile sensation, impaired temperature sensation, impaired distal vibration sensation, Babinski sign, impaired distal proprioception, ankle clonus, knee clonus, gait disturbance, catacaract	DARS CG3821	0.89	♂ 37.4%, ♀ 50.4%	♂ 20.1%, ♀ 29.4%	♂ 68 DAE, ♀ 65 DAE	NM_001349.2:wt; c.839A>T; p.H280L	0.11	♂ 54.5, ♀ 41
4694	Specific learning disability, attention deficit hyperactivity disorder, ataxia, spasticity, morphological abnormality of the central nervous system, strabismus	SRPK3 CG11489	0.99	♂ 4.7%, ♀ 16.0%	♂ 0.06%, ♀ 0.02%	♂ 74 DAE, ♀ 72 DAE	NM_014370.3:wt; c.1099G>C; p.D367H	0.01	♂ 10.5, ♀ 44.1
4245	Insomnia, chorea, elevated hepatic transaminases, malabsorption, gastric ulcer, iron deficiency anemia, elevated circulating catecholamine level, prolactin excess, palpitations, vomiting, bradycardia	CHD4 CG8103	0.5	NA	NA	NA	NM_0008350.0:wt; c.417G>A; p.D15G	0.50	Not compared
2723	Ataxia, typical absence seizures, cerebellar atrophy, cerebral atrophy, dysarthria, short stature	UBE2V2 CG10640	0.98	♂ 0%, ♀ 0%	NA	♂ 5 DAE, ♀ 10 DAE	NM_006350.0:wt; c.215A>C; p.K72T	−0.20	♂ 96.3, ♀ 83
2146, 2156	Profound global developmental delay, epileptiform EEG discharges, decreased muscle mass, hyperactive deep tendon reflexes, spastic tetraplegia, scissor gait, osteopenia, gait imbalance, elevated brain choline level by MRS, plagiocephaly, non-progressive encephalopathy, nasolacral duct obstruction, muscular hypotonia of the trunk, dystonia, chronic gastritis, chooreathetosis, Achilles tendon contracture, recurrent sinusitis, drooling, congenital cataract, chronic constipation, cerebral cortical atrophy, asthma, parietal bossing, flat occiput, EEG with focal slow activity, delayed myelination, coarse facial features, sleep disturbance, left-right shunt, irritability, Hashimoto thyroiditis, contractures of the joints of the lower limbs, pectus excavatum, recurrent otitis media, esotropia, ventricular septal defect, CNS hypomyelination, cerebral palsy, intellectual disability, severe	MED23 CG3695	0.99	♂ 46.0%, ♀ 55.7%	♂ 8.0%, ♀ 3.0%	♂ 42 DAE, ♀ 110 DAE	NM_015979.2:wt; c.341G>C; p.D114H	0.01	♂ 3, ♀ 9
3225	Abnormal protein N-linked glycosylation, low-set ears, antverted nares, diffuse cerebral atrophy, cerebellar atrophy, dilation of lateral ventricles, abnormality of the cerebellar peduncle, scoliosis, rod-cone dystrophy, muscular hypotonia of the trunk, low CSF 5-methyltetrahydrofolate, EEG with generalized slow activity, cortical visual impairment, aplasia/hypoplasia of the cerebellum, EMG: neuropathic changes, neuronal loss in the cerebral cortex, hypoplasia of the pons, Dandy–Walker malformation, abnormality of the medulla oblongata, optic atrophy, abnormality of midbrain morphology, generalized hypotonia, cerebral white matter atrophy, generalized dystonia, exaggerated startle response, severe muscular hypotonia, poor head control, joint hypermobility, hyperactive deep tendon reflexes,	ATP1A3 CG5670	0.27	Not analyzed	Not analyzed	Not analyzed	NM_152296.3:wt; c.2048G>A; p.G803D	0.03	n too small

(Continued)
Patient	Human phenotype	Human gene	Fly homolog	Drosophila phenotype (CNS KD with C155)	Human expression construct	Rescue w/ human cDNA
4306	Birth length less than third percentile, memory impairment, depression, hand tremor, obsessive-compulsive behavior, bipolar affective disorder, aphasia, tachycardia, EMG: neuropathic changes, slow saccadic eye movements, periventricular leukomalacia, EEG with abnormally slow frequencies, exotropia, leukodystrophy, inappropriate behavior, urinary incontinence, recurrent urinary tract infections, dystonia, cogwheel rigidity, bowel incontinence, Babinski sign, abnormal conjugate eye movement, anxiety, aggressive behavior, expressive language delay, nystagmus, congenital strabismus, morphological abnormality of the central nervous system, spasticity, seizures, behavioral abnormality, intellectual disability, moderate	AARS	CG13391	0.09^a		
♀ 0%,						
♂ 0%						
♀ 4 DAE (n = 10)	NM_01605.2:wt					
c.242A>G;						
p.K81T						
c.2251A>G;						
p.R751G	0.84					
♀ 94.3,						
♂ 97.2						
♀ 0.91						
♂ 95,						
♀ 91.6						
5316	Decreased body weight, short stature, microcephaly, failure to thrive, intrauterine growth retardation, defect in the atrial septum, smooth philtrum, hypotelorism	GARS	CG6778	0^a		
♀ NA						
♂ NA						
♀ NA	NM_002047.2:wt					
c.246_249del;						
p.E83I(fs*6)						
c.929G>A;						
p.R310Q	0.68					
♀ 0.73						
♂ Not compared	Not compared					
3404	Sensorineural hearing impairment, pontocerebellar atrophy, laryngeal dystonia, postural instability, limb tremor, abnormal pyramidal signs, spastic dystarthritis, progressive neurologic deterioration, myoclonus, oculomotor apraxia, abnormality of vision evoked potentials, vertical supranuclear gaze palsy, parkinsonism, mask-like facies, spasticity, ataxia, seizures, nystagmus, visual impairment	GEMIN5	CG30149	0.99		
♀ 96.6%,						
♂ 97.6%						
♀ 86.6%						
♂ 96 DAE						
♀ 81 DAE						
♂ 96 DAE	NM_015465.4:wt					
c.250A>G;						
p.K835R	Did not perform rescue					
5509	Abnormality of the vertebrae, abnormality of the skeletal system, osteopenia, hypogammaglobulinemia	SMC3	CG9802	0.02^a		
♀ NA						
♂ NA						
♀ <1 DAE	NM_005445.3:wt					
c.3371C>A;						
p.A1124D	0.98					
♀ 0.73						
♂ Not compared	Not compared					
1480, 1481	Global developmental delay, delayed fine motor development, delayed gross motor development, delayed speech and language development, intellectual disability, severe, autism, seizures, ataxia, dystonia, chorea	Nid2	CG12908	0.99^a		
♀ 40.1%,
♂ 66.1%
♀ 42.9%
♂ 24.8%
♀ 71 DAE
♂ 76 DAE | NM_007361.3:wt
c.1904G>T;
p.G635V
c.3887A>G;
p.K1296R | −0.18
♀ 53.1,
♂ 12.3
♀ 47,
♂ 9.6
♀ 53.9,
♂ 26.1 | |

DAE, days after eclosion; NA, no adults; LS50, DAE of 50% of flies remaining; w/, with.
Survival index = (1 × percent survive to adult) + (0.5 × percent survive to pupae) + (0.25 × percent survive to larvae).
Rescue efficacy: −1 = enhancement of KD survival phenotype, 0 = no rescue, 1 = suppression of KD survival phenotype.
^aSurvival index = 1 × percent survive to adult.
Behavior improvement: difference in percent climbing between rescue and RNAi KD at 2 DAE.
Patient Disposition
Having completed these evaluations, a patient admitted to the NIH UDP might be diagnosed with a known disorder unrecognized during prior evaluations, an atypical presentation of a known disorder, a combination of several disorders, or a previously unreported disorder. Alternatively, in the absence of proof of causation or association, the patient’s problems might continue to elude explanation and remain undiagnosed. Disposition summaries, which are collaboratively decided on by the clinical and research staff, are communicated to all patients and their referring clinicians by letter and discussed by phone.

SYSTEMS MANAGEMENT OF THE NIH UDP THROUGH SCALABLE TRANSLATIONAL RESEARCH
The NIH UDP provides translational research for approximately 100–120 families per annum. Typically, individual physician scientists focus on a limited number of diseases; therefore, the NIH UDP defined a need for a scalable means of translational research.

Humans use the distribution of cognitive processes among a group with a variety of skills, e.g., a village, to solve complex problems. The success of these groups or villages requires knowledge of available resources, delineation of social relationships, and effective communication (54, 55). With this as precedent (56), the NIH UDP developed a scalable solution for translational research to coordinate the translational research needs of each family (5).

Definition of a Common Knowledge Base
Performance of translational research requires knowledge and understanding of the problem: what has been tried to address the problem, what has been completed, and what reagents are available. To address these needs, the NIH UDP constructed an integrated system of inventory and data and process management, the Undiagnosed Diseases Program Integrated Collaboration System (UDPICS) (19). This system accumulates an inventory of all biospecimens and associated metadata, HPO description of problems and relationships are critical for community (58, 59).

In this context, the NIH UDP created virtual communities of geographically distributed experts to enable scalable translational research. Because identification of experts for such communities is traditionally limited by personal awareness, the NIH UDP also facilitated the development of computational tools using disease phenotypes or associated genotypes to identify and rank potential collaborators (60–62). These experts can be then contacted about collaborating on a patient’s problem. Although still a work in progress, UDPICS transformed translational research for the NIH UDP (19).

DISCUSSION
We report for the first time how the NIH UDP definition of disease within the rubric of evolutionary biology, i.e., maladaptation to an evolutionary niche, provided a logical construct for defining a systematic approach to diagnostic testing, interpretation, collaboration, and translational research. In this context, we also tested several theories including the alignment of next-generation sequence reads to deduced parental reference sequences, a systematic multistep approach to defining genetic causality for variants of uncertain significance, and distributed cognition as an efficient scalable model for translational research.

The embodiment of disease within the rubric of evolutionary biology and the delineation of the homeostatic components of adaptation allowed the NIH UDP, upon exhaustion of standard medical approaches, to take a systematic approach to agnostic measure of each of these homeostases. Chromosome microarray and exome sequencing, integrated with the phenome (via HPO) to measure both evolutionary and developmental homeostasis, detected diagnostic mutations in 20–30% of patients (1, 63). These measures, integrated with agnostic analyses of the glycome, seem poised to delineate disease mechanisms and causes in possibly half of the NIH UDP patients.

Postulating that mutations causing undiagnosed disorders are missed because haploblock-specific variants impede sequence alignment, we tested measurement of evolutionary homeostasis by aligning patient sequence to parental- and population-deduced reference sequences. This approach marginally improved alignment and genotyping to Hg37 but did not increased diagnostic rate. Therefore, although this approach is cognizant of the diploid nature of the human genome and haploblock-specific variants, it does not appear to improve detection of causal mutations sufficiently to justify the increased computational costs. In contrast, based on the preliminary studies of others, de novo assembly of long reads might enable detection of causal mutations undetected by short read next-generation sequencing (64).

Delineation of causative variants for traits investigated within individualized precision medicine remains problematic.
(65–69). The NIH UDP experience and the conclusions of others reiterate prior tenets of medical genetics regarding definition of causality. Specifically, the NIH UDP has observed that, for a single individual, defining a variant in a gene not previously associated with a trait as causative of that trait is not scientifically defensible. As stated by MacArthur et al. “strong evidence that a variant is deleterious (in an evolutionary sense) and/or damaging (to gene function) is not sufficient to implicate a variant as playing a causal role in disease” (65). In contrast, delineation of causality for a novel variant in a gene previously associated with a trait is possible as we demonstrated herein using pharmacologic suppression and *Drosophila melanogaster* as a model system.

Identifying pathogenicity for the many different novel variants identified in disease-associated genes requires collaboration to leverage global expertise. The underlying principles for this are those of distributed cognition (54, 55) enabled through various Internet and social media tools (19). By this means, the NIH UDP was able to systematically and methodically assemble virtual villages of collaborators to provide translational research appropriate to each problem and to provide medically and economically efficient translational research.

We conclude that the NIH UDP experience of systematically and methodically integrating concepts from multiple disciplines provides a guide for individualized or personalized medical practices. These principles are currently being refined and extended through the Undiagnosed Diseases Network launched by the NIH in September 2015 (63) and through the Undiagnosed Diseases Network International (70).

ETHICS STATEMENT

All patients or their guardians and participating family members gave informed consent to clinical protocol 76-HG-0238, which was approved by the NHGRI Institutional Review Board.

AUTHOR CONTRIBUTIONS

WG, DA, TM, RZ, and CFB conceived the methodology. WG, DA, TM, JD, RG, CG, DD, GG, MN, CW, LW, CJT, and CT participated in patient selection and phenotyping. MAH, PR, D Smedley, and NW developed the HPO annotation guidelines, curated the patients’ phenotype data, and helped with the exome analysis. EV, TG, CA, WB, AB, LC, EF, JG, JE, PP, D Simeonov, EL, AL, D Smedley, MS, KX, DA, and TM participated in patient genotyping, the development of DiploidAlign, or implementation of DiploidAlign. CB, JB, MD, ZD-P, YH, MK, CL, VM, MM, FM, JP, KS, YZ, and RZ performed cell biology, biochemical, and model organism experiments to delineate causality. RF, YH, and VM participated in patient sample extraction, archiving, and distribution. EV, CA, WB, DD, EF, JG, EL, AL, VM, KS, MS, and ZV developed or implemented and tested software infrastructure. EV, CFB, CB, and RZ wrote the manuscript. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

We thank the National Human Genome Research Institute Information Technology staff for their untiring collaboration and advice. We also thank Peter Chines of NHGRI for providing SNP probe mapping assistance and software. We thank Sean Leighton, Heath Moylan, and Jamie Osman for support in operationalizing DiploidAlign. This work was supported in part by the National Human Genome Research Institute (HG000215–07) and by the Common Fund, Office of the Director and the Intramural Research Program of the National Human Genome Research Institute (NIH, Bethesda, MD, USA). The Drosophila project is supported by 1R21GM119018, and by NIH UDP: HHSN268201300036C, HHSN268201400033C, HHSN268201600043P. The Monarch Initiative is supported by an NIH Office of the Director Grant #5R24OD011883, as well as by NIH UDP: HHSN268201300036C, HHSN268201400093P.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmed.2017.00062/full#supplementary-material.
neurodegeneration. J Med Genet (2016) 53:180–9. doi:10.1136/jmedgenet-2015-103338
34. Washington NL, Haezendel MA, Mungall CJ, Ashburner M, Westerfield M, Lewis SE. Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol (2009) 7:e1000247. doi:10.1371/journal.pbio.1000247
35. Robinson PN, Köhler S, Oellrich A; Sanger Mouse Genetics Project, Wang K, Mungall CJ, et al. Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Res (2014) 24:340–8. doi:10.1101/gr.160325.113
36. Zemojtel T, Köhler S, Mackenroth L, Jäger M, Hecht J, Krawitz P, et al. Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome. Sci Transl Med (2014) 6:252ra123. doi:10.1126/scitranslmed.3009262
37. Mardkello T, Chen D, Kwan JY, Horkayne-Szakály I, Morrison A, Simakova O, et al. York platelet syndrome is a CRAC channelopathy due to gain-of-function mutations in STIM1. Mol Genet Metab (2015) 114:474–82. doi:10.1016/j.ymge.2014.12.307
38. Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet (2008) 82:949–58. doi:10.1016/j.ajhg.2008.02.013
39. Trehan A, Brady JM, Maduro V, Bone WP, Huang Y, Gókas GA, et al. MED23-associated intellectual disability in a non-consanguineous family. Am J Med Genet A (2015) 167:1374–80. doi:10.1002/ajmg.a.37047
40. Valkanis E, Schaffer K, Dunham C, Maduro V, du Souich C, Rupp R, et al. Phenotypic evolution of UNC80 loss of function. Am J Med Genet A (2016) 170(12):3106–14. doi:10.1002/ajmg.a.37929
41. NCI-NHGRI Working Group on Replication in Association Studies, Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, et al. Replicating genotype-phenotype associations. Nature (2007) 447:655–60. doi:10.1038/447655a
42. Page GP, George V, Go RC, Page PZ, Allison DB. “Are we there yet?” Deciding when one has demonstrated specific genetic causation in complex diseases and quantitative traits. Am J Hum Genet (2005) 73:711–9. doi:10.1086/378900
43. Morton NE. Sequential tests for the detection of linkage. Am J Hum Genet (1955) 7:277–318.
44. Marian AJ. Causality in genetics: the gradient of genetic effects and back to Koch postulates of causality. Circ Res (2011) 104:e18–21. doi:10.1161/CIRCRESAHA.111.292094
45. St Hilaire C, Ziegler SG, Markello TC, Brusco A, Groden C, Gill F, et al. NTSE mutations and arterial calcifications. N Engl J Med (2011) 364:432–42. doi:10.1056/NEJMoa1091293
46. Philippakis AA, Azzariti DR, Beltran S, Brookes AJ, Brownstein CA, Brudno M, et al. The matchmaker exchange: a platform for rare disease gene discovery. Hum Mutat (2015) 36:915–21. doi:10.1002/hum.22858
47. Buske OJ, Girdea M, Dumitriu S, Gallinger B, Hartley T, Trang H, et al. PhenomeCentral: a portal for phenotypic and genotypic matchmaking of patients with rare genetic diseases. Hum Mutat (2015) 36:931–40. doi:10.1002/hum.22851
48. Yuan H, Hansen KB, Zhang J, Pierson TM, Markello TC, Fajardo KV, et al. Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun (2014) 5:3251. doi:10.1038/ncomms4251
49. Pierson TM, Yuan H, Marsh ED, Fuentes-Fajardo K, Adams DR, Markello T, et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol (2014) 1(3):190–8. doi:10.1002/acn3.39
50. Duan X, Liu J, Zheng X, Wang Z, Zhang Y, Hao Y, et al. Deficiency of ATP6V1H myelination. Exp Gerontol (2014) 57:190–4. doi:10.1016/j.exger.2014.01.004
51. Zhang Y, Huang H, Zhao G, Yokoyama T, Vega H, Huang Y, et al. ATP6V1H deficiency impairs bone development through activation of MMP9 and MMP13. PLoS Genet (2017) 13(2):e1006481. doi:10.1371/journal.pgen.1006481
52. Phelps CB, Brand AH. Ectopic gene expression in Drosophila using GAL4 system. Methods (1998) 14:367–79. doi:10.1016/s1046-8199.1998.0592
53. Philippakis AA, Azzariti DR, Beltran S, Brookes AJ, Brownstein CA, Brudno M, et al. The matchmaker exchange: a platform for rare disease gene discovery. Hum Mutat (2015) 36:915–21. doi:10.1002/hum.22858
54. Buske OJ, Girdea M, Dumitriu S, Gallinger B, Hartley T, Trang H, et al. PhenomeCentral: a portal for phenotypic and genotypic matchmaking of patients with rare genetic diseases. Hum Mutat (2015) 36:931–40. doi:10.1002/hum.22851
55. Yuan H, Hansen KB, Zhang J, Pierson TM, Markello TC, Fajardo KV, et al. Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun (2014) 5:3251. doi:10.1038/ncomms4251
56. Pierson TM, Yuan H, Marsh ED, Fuentes-Fajardo K, Adams DR, Markello T, et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol (2014) 1(3):190–8. doi:10.1002/acn3.39
57. Duan X, Liu J, Zheng X, Wang Z, Zhang Y, Hao Y, et al. Deficiency of ATP6V1H causes bone loss by inhibiting bone resorption and bone formation through the TGF-beta1 pathway. Theranostics (2016) 6:2185–93. doi:10.7150/thno.17140
58. Zhang Y, Huang H, Zhao G, Yokoyama T, Vega H, Huang Y, et al. ATP6V1H deficiency impairs bone development through activation of MMP9 and MMP13. PLoS Genet (2017) 13(2):e1006481. doi:10.1371/journal.pgen.1006481
53. Hotta Y, Benzer S. Genetic dissection of the Drosophila nervous system by means of mosaics. Proc Natl Acad Sci U S A (1970) 67:1156–63. doi:10.1073/pnas.67.3.1156
54. Hollan J, Hutchins E, Kirsh D. Distributed cognition: toward a new foundation for human-computer interaction research. ACM Trans on Comput Hum Intercnt (2000) 7:174–96. doi:10.1145/353485.353487
55. Hutchins E. Cognition in the Wild. Cambridge, MA: MIT Press (1995).
56. Diviacco P, Fox P, Pshenichny C, Leadbetter A. Collaborative Knowledge in Scientific Research Networks. Hershey, PA: IGI Global (2014).
57. Washington NL, Mungall CJ, Gibson M, Balhoff JP, Day-Richter J, Lewis SE. Phenote: A Biological Data Annotation Editor Using Ontologies. The 2nd International Biocuration Meeting. San Jose, CA (2007).
58. Larsen ON, Hill RJ. Social structure and interpersonal communication. Am J Sociol (1958) 63:497–505. doi:10.1086/222300
59. La Fond T, Roberts D, Neville J, Tyler J, Connaughton S. The impact of communication structure and interpersonal dependencies on distributed teams. Paper Presented at: 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2012 International Conference on Social Computing (SocialCom). Amsterdam, Netherlands (2012).
60. Institute NHGR. Executive summary. Paper Presented at: NHGRI Genomic Medicine IX: NHGRI’s Genomic Medicine Portfolio – Bedside to Bench. Silver Spring, MD (2016).
61. Haendel M. Translating Human to Models and Back Again: Phenotype Ontologies for Data Integration and Discovery. NHGRI Genomic Medicine IX: NHGRI Genomic Medicine Portfolio – Bedside to Bench. Silver Spring, MD: National Human Genome Research Institute (NHGRI) (2016).
62. Haendel M. Envisioning a world where everyone helps solve disease. 8th International SWAT4LS Conference: Semantic Web Applications and Tools for Life Sciences. Cambridge, UK: SWAT4LS (2015).
63. Gahl WA, Mulvihill JJ, Toro C, Markello TC, Wise AL, Ramoni RB, et al. The NIH undiagnosed diseases program and network: applications to modern medicine. Mol Genet Metab (2016) 117:393–400. doi:10.1016/j.ymgme.2016.01.007
64. Brandler WM, Antaki D, Gujral M, Noor A, Rosanio G, Chapman TR, et al. Frequency and complexity of de novo structural mutation in autism. Am J Hum Genet (2016) 98:667–79. doi:10.1016/j.ajhg.2016.02.018
65. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature (2014) 508:469–76. doi:10.1038/nature13127
66. Yong E. Clinical genetics has a big problem that’s affecting people’s lives. Atlantic (2015). Available from: https://www.theatlantic.com/science/archive/2015/12/why-human-genetics-research-is-full-of-costly-mistakes/420693/ (accessed December 16, 2015).
67. Manrai AK, Funke BH, Rehm HL, Olesen MS, Maron BA, Szolovits P, et al. Genetic misdiagnoses and the potential for health disparities. N Engl J Med (2016) 375:655–65. doi:10.1056/NEJMa1507092
68. Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med (2011) 3:65ra4. doi:10.1126/scitranslmed.3001756
69. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen – the clinical genome resource. N Engl J Med (2015) 372:2235–42. doi:10.1056/NEJMs1406261
70. Taruscio D, Groft SC, Cederroth H, Melegh B, Lasko P, Kosaki K, et al. Undiagnosed diseases network international (UDNI): white paper for global actions to meet patient needs. Mol Genet Metab (2015) 116:223–5. doi:10.1016/j.ymgme.2015.11.003

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Gall, Valkanas, Bello, Markello, Adams, Bone, Brandt, Bruzill, Carmichael, Davids, Davis, Diaz-Perez, Draper, Elson, Flynn, Godfrey, Groden, Hsieh, Fischer, Golas, Guezman, Huang, Kane, Lee, Li, Links, Maduro, Malicdan, Malik, Nehrebecky, Park, Pemberton, Schafer, Simeonov, Sincan, Smedley, Valivullah, Wahl, Washington, Wolfe, Xu, Zhu, Gahl, Tifft, Toro, Adams, He, Robinson, Haendel, Zhuai and Boerkoel. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.