Defective Glycogenesis Contributes Toward the Inability to Suppress Hepatic Glucose Production in Response to Hyperglycemia and Hyperinsulinemia in Zucker Diabetic Fatty Rats

Tracy P. Torres,1 Yuka Fujimoto,1 E.P. Donahue,1 Richard L. Printz,1 Karen L. Houseknecht,2 Judith L. Treadway,2 and Masakazu Shiota1

OBJECTIVE—Examine whether normalizing net hepatic glycogenesis restores endogenous glucose production and hepatic glucose phosphorylation in response to diabetic levels of plasma glucose and insulin in Zucker diabetic fatty rats (ZDF).

RESEARCH DESIGN AND METHODS—Hepatic glucose and intermediate fluxes (μmol · kg⁻¹ · min⁻¹) were measured with and without a glycogen phosphorylase inhibitor (GPI) using [2-3H]glucose, [3-3H]glucose, and [U-14C]alanine in 20-h-fasted conscious ZDF and their lean littermates (ZCL) under clamp conditions designed to maintain diabetic levels of plasma glucose and insulin.

RESULTS—With infusion of GPI into ZDF (ZDF-GPI+G), compared with vehicle infused ZDF (ZDF-V), high glycogen phosphorylase activity was decreased and low synthase I activity was increased to that of ZCL. Low net glycogenesis from plasma glucose phosphorylation was decreased and low synthase I activity but not to that of ZCL (46±6 in ZDF-V, 18±4 in ZDF-GPI+G, and 8±6 in ZCL). This was accompanied by reduction of the higher glucose-6-phosphatase flux (75±4 in ZDF-V, 41±4 in ZDF-GPI+G, and 86±12 in ZCL) and no change in low glucose phosphorylation or total glucogenesis.

CONCLUSIONS—In the presence of hyperglycemic-hyperinsulinemia in ZDF, reduced glycogenic flux partially contributes to a lack of suppression of hepatic glucose production by failing to redirect glucose-6-phosphate flux from production of glucose to glycogen but is not responsible for a lower rate of glucose phosphorylation.

Diabetic hyperglycemia is in part associated with a lesser suppression of net hepatic glucose production and a defect in hepatic glucose uptake in response to increased plasma glucose and insulin (1–4). These defects are accompanied by reduced hepatic glycogen synthesis (5–7).

The flux from glucose to glycogen has two highly regulated steps, glucose phosphorylation by glucokinase (GK) and the formation of a glycosidic bond between C1 of the activated glucose uridine 5'-diphosphate (UDPG) and C4 of a terminal glucose residue of glycogen by glycogen synthase (GS) (8). Basu et al. (5,6) showed that lower net splanchnic glucose uptake measured during a hyperglycemic-hyperinsulinemic clamp in type 2 diabetic subjects when compared with nondiabetic subjects is associated with a proportionate decrease in both the flux through the UDPG pool and the percentage of extracellular glucose contributing to glycogen synthesis via the direct pathway. Mavorach et al. (9) reported glucose cycling fails to increase even when the concentration of circulating glucose doubles. We (10–13) reported that in Zucker diabetic fatty rats (ZDF), a widely used genetic model of obese type 2 diabetes, the failure to suppress endogenous glucose production (EGP) and to increase in flux from glucose to glycogen in response to a rise in plasma glucose and insulin is associated with defects in allosteric activation of GK during an early stage of diabetes and decreased expression of GK during a late stage of diabetes. These observations suggest that insufficient suppression of net hepatic glucose production and a defect in hepatic glucose uptake in response to increased plasma glucose and insulin seen in type 2 diabetes results, at least partly, from a failure to enhance glucose phosphorylation mediated by GK. On the other hand, Cline et al. (14) reported that activation of GS by treatment with an inhibitor of glycogen synthase kinase-3 improves glucose disposal during an oral glucose tolerance test in ZDF, which indicated a defect in net glycogenesis, regardless of any defect in glucose phosphorylation in this diabetic model (10–12).

To assess the contribution of a defect in net glycogenesis and glucose phosphorylation to the blunted response of hepatic glucose flux to hyperglycemia and hyperinsulinemia in ZDF, we examined the effects of restoring net glycogenesis by treatment with a glycogen phosphorylase inhibitor (GPI).

RESEARCH DESIGN AND METHODS

Surgical procedure. Six-week-old male ZDF (ZDF/GmiCrj-fa/ja) and their lean littermates (ZCL) were purchased from Charles River Laboratories, Inc. (Wilmington, MA). Rats were fed with Formulab Diet 5008 (Purina LabDiet, Purina Mills, Inc., Richmond, IN) and were given water ad libitum in an environmentally controlled room with a 12 h light/dark cycle. At 12 weeks of age, 2 weeks prior to the experiment, surgery was performed to place a sterile silicone rubber catheter (0.51 mm internal diameter and 0.94 mm outer diameter) in an iliac vein, the left common carotid artery, and the right external jugular vein as described previously (10–13).
Studies for measuring glucose kinetics. At 14 weeks of age, the animals were fasted for 20 h prior to each study. Each study consisted of a 90-min tracer equilibration period (−150 to −60 min), a 1-h control period (−60 to 0 min), and a 3-h test period (0 to 180 min). At −150 min, both [2-3H]glucose and [3-3H]glucose were administered as a bolus injection (10 µCi) and then infused at 30.6 µCi/min through the jugular vein catheter during the experimental period. During the test period, change in the specific activities (SAs) of [2-3H]- and [3-3H]glucose in plasma were minimized by varying the tracer infusion rate based on an algorithm obtained from preliminary studies, thereby reducing non-steady-state errors associated with the estimation of glucose Rm that may arise from intercompartmental tracer concentration gradients between plasma and interstitial compartments (15). At 170 min, [U-14C]alanine was given as a bolus injection (100 µCi) and then infused continuously at 10 µC/min for 10 min through the arterial catheter. During the test period, in the first group of ZDF (ZDF-V), the vehicle (25% sulphobutylether β-cyclodextrin solution) was infused into systemic circulation through the jugular vein catheter at 20 µL · kg⁻¹ · min⁻¹. In the second group of ZDF (ZDF-GPI), GPI (CP-688286, Pfizer Inc., Groton, CT) was continuously infused at 104 µg · kg⁻¹ · min⁻¹ after a bolus infusion of 15 mg · kg⁻¹ · min⁻¹ at 0 min. In the third group of ZDF (ZDF-GPI+G), in addition to the infusion of GPI as described for the second group, 50% glucose solution was infused through the jugular vein catheter at a variable rate to maintain a basal concentration. In the fourth group (ZCL), hyperglycemic-hyperinsulinemic clamps were performed to maintain plasma glucose, insulin, and glucose levels as seen in the ZDF. At 90 min when glucose infusion was initiated, somatostatin was infused at 5 µg · kg⁻¹ · min⁻¹ through the jugular vein catheter while insulin and glucagon were also infused at 5 mU · kg⁻¹ · min⁻¹ and 3 ng · kg⁻¹ · min⁻¹, respectively, into the portal vein through the iliac vein catheter. Blood samples were taken through the arterial catheter. At each sampling time, to maintain the hematocrit levels, erythrocytes were washed and resuspended with saline and given back to each animal. At the end of each experiment, the left liver lobe and skeletal muscle (vastus lateralis) were frozen in liquid nitrogen, stored at −80°C, and the National Institutes of Health, and all protocols were approved by the Vanderbilt University Institutional Animal Care and Use Committee.

![Image](https://example.com/image1)

Table 1

Animals	Body weight (g)	PG (mmol/L)	[2-3H] × 10⁷ dpm/kg	[3-3H]SA × 10⁷ dpm/mol	Gmass (mmol/kg)	V₀ (mL/kg)
ZCL	365 ± 9	6.7 ± 0.5	15.9 ± 1.3	8.12 ± 0.65	1.96 ± 0.16	292 ± 9
ZDF	395 ± 12	26.5 ± 2.1	15.4 ± 1.7	2.11 ± 0.26	7.29 ± 0.80	275 ± 11

PG, plasma glucose; [2-3H], given amount of [2-3H]glucose; [3-3H]SA, zero-time intercept value of [2-3H] specific activity in plasma glucose. Values are means ± SE for five animals in each group.
lower (Fig. 3F). Although the content of glycogen (269 ± 27 μmol glucose/g liver) nearly doubled (Fig. 3E), the newly synthesized glycogen was only 20% of the total glycogen.

In response to GPI infusion (ZDF-GPI), plasma glucose levels decreased from 18 ± 2 to 7 ± 1 mmol/L by 180 min without altering plasma insulin and glucagon levels (Fig. 1). The [2-3H]SA and [3-3H]SA were kept constant (Fig. 2C and D) by decreasing the infusion rate of these tracers (Fig. 2A and B). Compared with ZDF-V, [3-3H]Rd, EGP, glucose cycling, and G-6-Pase flux were decreased; 50% by the end of the test period (Fig. 2). Hepatic contents of G-6-P and UDPG (31 ± 3 and 126 ± 24 nmol/g liver, respectively) were reduced by 70 and 40%, respectively (Fig. 3A and C). The percent contribution to UDPG derived from plasma glucose (39 ± 4%) was significantly lower than that found in ZDF-V, whereas that derived from PEP (58 ± 6%) tended to be higher (Fig. 3D). However, the amount of plasma glucose incorporated via the direct pathway (47 ± 7 μmol glucose/g liver) and derived from PEP (69 ± 7 μmol glucose/g liver) incorporated into glycogen were increased three- and fivefold, respectively (Fig. 3F). Glycogen content (386 ± 8 μmol glucose/g liver) was significantly increased (Fig. 3E) and newly synthesized glycogen (119 ± 12 μmol glucose/g liver) was 30% of total glycogen. When compared with ZCL, ZDF-GPI had similar levels of newly synthesized glycogen, but approximately half the amount of plasma glucose was incorporated via the direct pathway into glycogen, whereas that derived from PEP doubled (Fig. 3F).

Infusion of glucose along with GPI in ZDF (ZDF-GPI+G) was done to maintain glycemia at basal ZDF levels. Under these conditions, the [3-3H]Rd and rates of EGP, glucose cycling rate and G-6-Pase flux are the minimal estimates that were calculated with assumption that exchange of 3H at the second position of G-6-P with hydrogen of bulk water is 100%. The values for flux rates are described in μmol · kg⁻¹ · min⁻¹. The values are averages ± SE of five experiments. *Significant difference from the corresponding values of the ZCL group (P < 0.05).

TABLE 2

	ZCL	ZDF-V	ZDF-GPI	ZDF-GPI+G
Plasma insulin (pmol/L)	89 ± 15	386 ± 84*	400 ± 74*	384 ± 37*
Plasma glucagon (ng/L)	48 ± 2	48 ± 2	55 ± 6	52 ± 1
Plasma glucose (nmol/L)	5.2 ± 0.3	16.8 ± 0.3*	18.4 ± 2.0*	18.6 ± 0.7*
Endogenous glucose production	41 ± 5	48 ± 2	44 ± 4	48 ± 3
Glucose cycling rates	21 ± 3	32 ± 5	45 ± 4	45 ± 4
G-6-Pase flux	62 ± 6	80 ± 4*	80 ± 7*	83 ± 3*

Glucose cycling rate and G-6-Pase flux are the minimal estimates that were calculated with assumption that exchange of 3H at the second position of G-6-P with hydrogen of bulk water is 100%. The values for flux rates are described in μmol · kg⁻¹ · min⁻¹. The values are averages ± SE of five experiments. *Significant difference from the corresponding values of the ZCL group (P < 0.05).
cycling, and G-6-Pase flux were rapidly decreased within 30 min and thereafter returned partially (Fig. 2). The rapid decrease in these parameters was the result of a rapid rise in the [2-3H]SA and [3-3H]SA that was not accompanied by increased infusion rates of these tracers (Fig. 2C and D); therefore, the rise of the [2-3H]SA and [3-3H]SA might be because of a technical problem. At the termination of the study, no significant differences from only GPI infusion (ZDF-GPI) were observed with any of the measured parameters (Figs. 2 and 3, Table 2).
Effect of GPI on activities of glycogen phosphorylase, GS, GK, and G-6-Pase. In ZDF-V compared with ZCL, glycogen phosphorylase a (GPa) activity was significantly higher (units/g liver; 14.2 ± 2.6 in ZDF-V vs. 6.8 ± 1.6 in ZCL) and, in contrast, glycogen synthase I (GSI) activity was significantly lower (units/g liver; 0.14 ± 0.01 in ZDF-V vs. 0.24 ± 0.04 in ZCL) (Fig. 4). With GPI treatment of ZDF (ZDF-GPI), GPa activity decreased (7.7 ± 2.2 units/g liver) and GSI increased (0.34 ± 0.04 units/g liver). In addition, the GS activity ratio (active form/total activity) increased to the levels seen in ZCL. The maintenance of hyperglycemia along with GPI infusion (ZDF-GPI+G) tended to enlarge GPI-induced changes in GP activity (6.4 ± 1.6 units/g liver) and GSI activity (0.45 ± 0.17 units/g liver), or the GS activity ratio (0.32 ± 0.07). GK and G-6-Pase activity in the liver were not significantly different among ZCL and ZDF.

Estimated G-6-P flux in the liver during test period. The difference in G-6-P flux within the liver between ZCL and ZDF, as well as changes in flux in ZDF when net glycogenesis is increased, is listed in Table 3 and shown schematically in Fig. 5.

When plasma glucose and insulin levels were raised to that in ZDF, in ZCL, EGP was completely suppressed. Total flux toward G-6-P pool consisted of several major fractions from plasma glucose (78%), PEP (20%), and the other source (glycogen and glycerol; 2%). In addition, 26% of G-6-P derived from plasma glucose and 35% derived from PEP were stored as glycogen, whereas the rest recycled back to glucose or was released as glucose, respectively. GK flux (glucose to G-6-P) was higher than G-6-Pase flux contrary to ZCL. The flux from PEP to G-6-P was 70% higher.

With GPI treatment (ZDF-GPI), without significant changes in total flux toward G-6-P pool, EGP was decreased by 44%. This decrease was associated with a change in G-6-P flux with a 40% decrease in the flux of G-6-P toward glucose and a 4.5-fold increase in the flux of G-6-P toward glycogen. The G-6-P fractions derived from plasma glucose tended to decrease and in contrast, PEP tended to increase. As seen in ZDF-GPI+G, maintaining hyperglycemia with GPI treatment tended to lower EGP, increase G-6-P derived from plasma glucose, and decrease that from PEP slightly. It increased glycogen synthesis from plasma glucose and in contrast, decreased that from PEP slightly, whereas it did not alter total glycogen synthesis.

Estimating whole body glucose kinetics along with intracellular intermediate fluxes using tracers involves certain assumptions. Estimates of G-6-Pase flux and GK flux (glucose phosphorylation) are dependent upon the measurement of glucose cycling rate using [2-3H]glucose, which involves an assumption that exchange by hexose 6-phosphate isomerase of G-6-P hydrogen 2 with that of bulk water is 100% complete before proceeding down any pathways (18,19). Our data from liver predict ~50% exchange completion. Such a low exchange is likely not an error in analytical processing of the sample because the exchange measured in skeletal muscle was ~90% (80 ± 8% in ZCL, 88 ± 7% in ZDF, 91 ± 2% in ZDF-GPI, and 89 ± 5%...
TABLE 3
Hepatic glucose flux, plasma hormones, enzyme activities, and metabolites in 14-week-old ZCL and ZDF as measured during test period

	ZCL	ZDF-V	ZDF-GPI	ZDF-GPI+G
Plasma insulin (pmol/L)	361 ± 44	369 ± 43	361 ± 60	406 ± 86
Plasma glucagon (ng/L)	52 ± 4	43 ± 4	50 ± 4	42 ± 4
Plasma glucose (mmol/L)	17.8 ± 0.8	16.0 ± 0.8	7.1 ± 0.8*†	18.3 ± 0.3
[2-3H]R\(_a\)	288 ± 46	75 ± 4*	47 ± 2*†	67 ± 8*‡
[3-3H]R\(_a\)	194 ± 26	46 ± 4*	26 ± 3*†	48 ± 5*‡
GIR	175 ± 28	0	0	30 ± 3*
EGP	−8 ± 3	46 ± 4*	26 ± 3*†	18 ± 4*†
Detritiation of [2-3H]G-6-P (%)	41 ± 4	52 ± 5	56 ± 5	55 ± 3
Contribution to form UDPG (%)				
Plasma glucose	78 ± 3	50 ± 2*	39 ± 4*†	48 ± 3*
PEP	20 ± 3	47 ± 4*	58 ± 6*	44 ± 6*
Others	2 ± 2	3 ± 3	3 ± 3	8 ± 6
Glycogen synthesis				
Total	31 ± 4	8 ± 6*	35 ± 4	37 ± 5
From plasma glucose	24 ± 2	4 ± 1*	13 ± 1*†	18 ± 1*‡
From PEP	6 ± 2	4 ± 2	21 ± 3*†	16 ± 1*†
From others	1 ± 0	0 ± 5	1 ± 1	3 ± 3
Minimal estimation				
Glucose cycling rates	94 ± 21	29 ± 3*	21 ± 2*†	23 ± 6*
GK flux	118 ± 16	33 ± 3*	34 ± 3*	41 ± 3*
G-6-Pase flux				
Total	86 ± 12	75 ± 4	47 ± 2*†	41 ± 4*
From plasma glucose	67 ± 13	38 ± 2*	18 ± 1*†	20 ± 2*‡
From PEP	17 ± 4	35 ± 2*	27 ± 1*†	18 ± 2*‡
From others	2 ± 1	2 ± 0	1 ± 1	3 ± 1
Flux toward G-6-P pool				
Total	117 ± 18	83 ± 7*	83 ± 6*	78 ± 6*
From plasma glucose	91 ± 12	42 ± 5*	31 ± 3*	38 ± 3*
From PEP	23 ± 5	39 ± 6*	48 ± 3*	34 ± 3*‡
From others	3 ± 1	2 ± 5	2 ± 1	6 ± 4
Maximal estimation				
Glucose cycling rates	229 ± 51	56 ± 6*	37 ± 4*†	44 ± 13*†
GK flux	253 ± 32	60 ± 5*	50 ± 4*‡	62 ± 6*
G-6-Pase flux				
Total	221 ± 43	102 ± 6*	63 ± 3*	56 ± 7*
From plasma glucose	172 ± 32	51 ± 3*	25 ± 2*†	27 ± 3*‡
From PEP	44 ± 8	48 ± 3	37 ± 2†	25 ± 3*‡
From others	5 ± 2	3 ± 4	2 ± 1	4 ± 3
Flux toward G-6-P pool				
Total	252 ± 41	110 ± 11*	98 ± 8*	93 ± 11*
From plasma glucose	196 ± 22	55 ± 4*	38 ± 4*	45 ± 5*
From PEP	50 ± 11	52 ± 7	58 ± 6	41 ± 4
From others	6 ± 2	3 ± 0	2 ± 1	7 ± 3

The minimal estimations of the intermediate fluxes were calculated with assumption that exchange of \(^3\)H at the second position of G-6-P with hydrogen of bulk water is 100%. The maximal estimations were calculated with percent exchange of \(^3\)H at the second position of G-6-P with hydrogen of bulk water measured as the ratio of [2-\(^3\)H]glucose to [3-\(^3\)H]glucose incorporated into glycogen. "Others" includes possible metabolites (e.g., glycogen and glycerol) except glucose and PEP. The values for flux rates are described in \(\mu\)mol · kg\(^{-1}\) · min\(^{-1}\) and average ± SE of five experiments. *Significant difference from the corresponding values of the ZCL group \((P < 0.05)\). †Significant difference from the corresponding values of the ZDF-V group \((P < 0.05)\). ‡Significant difference from the corresponding values of ZDF-GPI group \((P < 0.05)\).

in ZDF-GPI+G). As shown in Table 1, when the efficiency of the exchange is taken into account, then in ZCL, the predicted maximal rates would be 2.4 times greater for glucose cycling and as a result, −2.1−2.8 times greater for GK flux, total G-6-P flux, and fractional contribution to G-6-P pool from plasma glucose and PEP. In ZDF-V, ZDF-GPI, and ZDF-GPI+G, the maximal predicted rates for glucose cycling would be −2 times greater. Given that the absolute rates of glucose cycling were much lower in these groups compared with that of ZCL, the intermediate fluxes would be predicted to be −30–80% greater compared with the rates calculated without considering exchange efficiency. Although this suggests the importance of measuring exchange efficiency of hydrogen at C2 position of G-6-P with that of bulk water in estimating hepatic intermediate fluxes, the problem is that the efficiency of exchange is assessed only as a ratio of [2-\(^3\)H]glucose to [3-\(^3\)H]glucose incorporation into glycogen, which represents an average ratio during the entire experimental period and not the desired specific point in time. **Skeletal muscle glycogen at end of the test period.** The amount of incorporated plasma glucose by the direct pathway was markedly lower in ZDF-V (0.8 ± 0.2 \(\mu\)mol glucose/g muscle) compared with that in ZCL (10.9 ± 3.3 \(\mu\)mol glucose/g muscle). GPI treatment with (1.2 ± 0.6 \(\mu\)mol glucose/g muscle).
DISCUSSION

The current study performed in an animal model of obesity-associated type 2 diabetes, ZDF, demonstrates that a failure to redirect G-6-P flux from glucose to glycogen because of reduced glycogenic flux is partially responsible for insufficient suppression of net hepatic glucose production in response to a rise in plasma glucose and insulin, but it does not explain the reduction in glucose phosphorylation.

Failure to inactivate GPa reduces both activation of GS and net glycogenesis in the presence of hyperglycemia and hyperinsulinemia in ZDF. In the presence of hyperglycemic-hyperinsulinemia associated with ZDF, markedly lower net hepatic glycogenic flux was accompanied by higher GPa activity and lower GS activity, when compared with that of ZCL clamped under similar conditions. Treatment with GPI resulted in normalized activities of these enzymes, which restored net glycogenic flux that was accompanied by marked decreases in G-6-P and UDPG content without altering total influx of metabolites toward the G-6-P pool, indicating that the normalized activity of these enzymes provides a “pull mechanism” for glycogen synthesis. Therefore, a defect in net glycogenesis in response to hyperglycemic-hyperinsulinemia observed with ZDF might arise from a failure to regulate GS and/or GP activity and not from a lower influx of metabolites toward the G-6-P pool.

The treatment with the GPI (CP-368298), which binds to the indole inhibitor site of GP (20), caused not only decreased activity of GPa but also increased activity of GS in liver in ZDF. This is thought to occur as a result of the binding-induced conformational changes that make GPa better substrate for its regulatory phosphatase, protein phosphatase 1 (PP1) (21), and/or interfere with the binding of GPa to a potent allosteric inhibitory site of PP1, the COOH-terminal domain of the glycogen-targeting subunit of PP1 (22–26). Because activation of GS is mediated by dephosphorylation of the enzyme by PP1, the activation of GS by GPI may result from decreased GPa inhibition of PP1. Therefore, a defect in net glycogenic flux in response to hyperglycemia and hyperinsulinemia in ZDF may arise from a failure of glucose and/or insulin to inactivate GPa.

Insulin inactivates GPa by activating PP1 via the activation of PKB/Akt (27). It was reported that insulin stimulated activation of PKB/Akt is blunted in the liver of ZDF (28). Thus, the impaired insulin signaling may be responsible for the failure of the hormone to activate GS. On the other hand, glucose inhibits GPa by binding to the catalytic site of the enzyme (29) and stabilizing the enzyme by changing the active form to an inactive form that is a better substrate for PP1 (30). Hepatocyte intracellular glucose concentration is always similar or slightly higher compared with plasma concentration of the sugar (31,32), which predicts that ZDF would have very high hepatic intracellular glucose concentrations because their plasma glucose levels were ~19 mmol/L. It still remains unknown how GPa remains in its phosphorylated active form given the presence of both hyperinsulinemia and hyperglycemia in ZDF.

A lack of net glycogenic flux contributes to insufficient suppression of net hepatic glucose production by failing to redirect G-6-P flux from glucose to glycogen in ZDF. Restoration of net glycogenic flux decreased EGP in ZDF treated with GPI. Net hepatic glucose flux is the balance between glucose phosphorylation catalyzed by GK and G-6-P dephosphorylation catalyzed by G-6-Pase. The reduction of

FIG. 4. Hepatic GS and phosphorylase activities in the liver at the end of the test period. Data are means ± SE for five experiments. *Significantly different from ZCL group (P < 0.05). †Significantly different from ZDF-V group (P < 0.05).
hepatic glucose production by restored net glycogenesis was associated with decreased G-6-Pase flux and content of its substrate, G-6-P. The decreased G-6-P content was accompanied by no alteration of the total flux through the G-6-P pool. During steady state, the efflux rate equals the influx rate as a result of equilibration between the substrate (G-6-P) concentration and the catalytic activity (Vmax and Km) of the rate-regulating enzymes of glycogen synthesis, glycolysis, and pentose phosphate pathway along with G-6-Pase. The activation of GS may shift the equilibrium in favor of increased glycogen flux and lower G-6-P concentration. As a result of this reduced G-6-P concentration, the fluxes of the other pathways are decreased and a new steady state is established without altering total flux through the G-6-P pool. Therefore, increased efflux of G-6-P to glycogen by a pull mechanism likely decreased cytoplasmic G-6-P concentration, resulting in decreased G-6-Pase flux.

Reduced glucose phosphorylation and elevated total glycogenesis are not secondary to a defect in net glycogenic flux in ZDF. Flux from plasma glucose toward the G-6-P pool and the percent contribution of plasma glucose to form UDPG in liver of ZDF were one-third and two-thirds of that in ZCL, respectively. Total glycogenesis (PEP to G-6-P) in ZDF was 50% higher than that of ZCL. The restoration of glycogenic flux does not alter these parameters at all in ZDF. The redirection of G-6-P flux by restoring net glycogenic flux did not alter the relative contribution of PEP and plasma glucose (glucose recycling) to plasma glucose (90 and 90% in ZDF-V compared with 53 and 52% in ZDF-PG-G, respectively) and to glycogen (10 and 10% in ZDF-V compared with 47 and 48% in ZDF-PG-G, respectively). Therefore, the blunted response of glucose phosphorylation to hyperglycemia and the increased total gluconeogenesis seen in ZDF is not likely a result of defective glycogenic flux.

A failure to increase glucose phosphorylation explains insufficient suppression of net hepatic glucose production in ZDF. As seen in patients with type 2 diabetes (5,6), ZDF, compared with ZCL, exhibit a lower increment in net flux from glucose to glycogen in response to hyperglycemia and hyperinsulinemia that is associated with a decrease in both GK flux and UDPG flux (10–14). The lowered net flux is restored by normalizing GK activity (10–13) or by activating GS (14). The current study shows that reduced glucose phosphorylation by GK is not the result of reduced glycogenic flux. These results suggest that impaired activation of both glycogenesis and glucose phosphorylation are involved.

ACKNOWLEDGMENTS

M.S. has received a grant from the National Institutes of Health (NIH DK-60667). The hormone assay core laboratory at Vanderbilt University Medical Center is supported by a grant from the NIH (DK-20593). No other potential conflicts of interest relevant to this article were reported.

T.P.T., Y.F., and E.P.D. researched data. R.L.P. reviewed and edited the manuscript. K.L.H. researched data. J.L.T. researched data and contributed to discussion. M.S. researched data and wrote the manuscript.

REFERENCES

1. Consoli A. Role of liver in pathophysiology of NIDDM. Diabetes Care 1992; 15:430–441.
2. Ferrannini E, Groop LC. Hepatic glucose production in insulin-resistant states. Diabetes Metab Rev 1989;5:711–726.
3. Iozzo P, Halbstein K, Oikonen V, et al. Insulin-mediated hepatic glucose uptake is impaired in type 2 diabetes: evidence for a relationship with glycemic control. J Clin Endocrinol Metab 2003;88:2055–2060.
4. Pirth RG, Bell FM, Marsh HM, Hansen I, Rizza RA. Postprandial hyperglycemia in patients with noninsulin-dependent diabetes mellitus. Role of hepatic and extrahepatic tissues. J Clin Invest 1986;77:152S–1532.
5. Basu A, Basu R, Shah P, et al. Type 2 diabetes impairs splanchnic uptake of glucose but does not alter intestinal glucose absorption during enteral glucose feeding: additional evidence for a defect in hepatic gluconeogenesis activity. Diabetes 2001;50:1351–1362.
6. Basu A, Basu R, Shah P, et al. Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism: evidence for a defect in hepatic glycogen activity. Diabetes 2000;49:272–283.
7. Krssak M, Brehm A, Bernroeder E, et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 2004;53:3048–3056.
8. Agius L. Gluconeokase and molecular aspects of liver glycogen metabolism. Biochim J 2008;414:1–18.
9. Mevorach M, Giacca A, Aharon Y, Hawkins M, Shamoou H, Rossetti L. Regulation of endogenous glucose production by glucose per se is impaired in type 2 diabetes mellitus. J Clin Invest 1998;102:744–753.
10. Fujimoto Y, Donahue EP, Shiota M. Defect in gluconeogenesis translocation in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 2004;287:E414–E423.
11. Fujimoto Y, Torres TP, Donahue EP, Shiota M. Glucose toxicity is responsible for the development of impaired regulation of endogenous glucose production and hepatic gluconeogenesis in Zucker diabetic fatty rats. Diabetes 2006;55:2479–2490.
12. Shin JS, Torres TP, Catlin RL, Donahue EP, Shiota M. A defect in glucose-induced dissociation of gluconeokase from the regulatory protein in Zucker diabetic fatty rats in the early stage of diabetes. Am J Physiol Regul Integr Comp Physiol 2007;292:R1381–R1390.
13. Torres TP, Catlin RL, Chan R, et al. Restoration of hepatic gluconeogenesis expression corrects hepatic glucose flux and normalizes plasma glucose in Zucker diabetic fatty rats. Diabetes 2009;58:78–86.
14. Cline GW, Johnson K, Reggittin W, et al. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes 2002;51:2903–2919.
15. Hother-Nielsen O, Henriksen JE, Holst JJ, Beck-Nielsen H. Effects of insulin on glucose turnover rates in vivo: isotope dilution versus constant specific activity technique. Metabolism 1996;45:82–91
16. Katz J, Dunn A, Chenoweth M, Golden S. Determination of synthesis, recycling and body mass of glucose in rats and rabbits in vivo 3H- and 14C-labelled glucose. Biochem J 1974;142:171–183
17. Steele R, Bishop JS, Dunn A, Altszuler N, Rathbeb I, Debedo RC. Inhibition by insulin of hepatic glucose production in the normal dog. Am J Physiol 1965;208:301–306
18. Katz J, Wood HG. The use of glucose-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem 1960;235:2165–2177
19. Katz J, Wood HG. The use of C14O2 yields from glucose-1- and -6-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem 1963;238:517–523
20. Treadway JL, Mendys P, Hoover DJ. Glycogen phosphorylase inhibitors for treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs 2001;10:439–454
21. Kasvinsky PJ, Fletterick RJ, Madsen NB. Regulation of the dephosphorylation of glycogen phosphorylase a and synthase b by glucose and caffeine in isolated hepatocytes. Can J Biochem 1981;59:387–395
22. Brady MJ, Saltiel AR. The role of protein phosphatase-1 in insulin action. Recent Prog Horm Res 2001;56:157–173
23. Pautsch A, Stadler N, Wissdorf O, Langkopf E, Moreth W, Streicher R. Molecular recognition of the protein phosphatase 1 glycogen targeting subunit by glycogen phosphorylase. J Biol Chem 2008;283:8913–8918
24. Kelsall IR, Munro S, Hallyburton I, Treadway JL, Cohen PT. The hepatic PP1 glycogen-targeting subunit interaction with phosphorylase a can be blocked by C-terminal tyrosine deletion or an indole drug. FEBS Lett 2007;581:4749–4753
25. Zibrova D, Grempler R, Streicher R, Kauschke SG. Inhibition of the interaction between protein phosphatase 1 glycogen-targeting subunit and glycogen phosphorylase increases glycogen synthesis in primary rat hepatocytes. Biochem J 2008;412:359–366
26. Armstrong CG, Doherty MJ, Cohen PT. Identification of the separate domains in the hepatic glycogen-targeting subunit of protein phosphatase 1 that interact with phosphorylase a, glycogen and protein phosphatase 1. Biochem J 1998;336:699–704
27. Astion S, Hampson LJ, Arden C, Iynedjian PB, Agius L. The role of protein kinase B/Akt in insulin-induced inactivation of phosphorylase in rat hepatocytes. Diabetologia 2006;49:174–182
28. Nawano M, Oku A, Ueta K, et al. Hyperglycemia contributes insulin resistance in hepatic and adipose tissue but not skeletal muscle of ZDF rats. Am J Physiol Endocrinol Metab 2000;278:E535–E543
29. Ercan-Fang N, Gannon MC, Rath VL, Treadway JL, Taylor MR, Nuttall FQ. Integrated effects of multiple modulators on human liver glycogen phosphorylase a. Am J Physiol Endocrinol Metab 2002;283:E29–E37
30. McCormack JG, Westergaard N, Kristiansen M, Brand CL, Lau J. Pharmacological approaches to inhibit endogenous glucose production as a means of anti-diabetic therapy. Curr Pharm Des 2001;7:1451–1474
31. Wals PA, Katz J. A concentration gradient of glucose from liver to plasma. Diabetes 1988;37:1559–1566