Materials Research Express

TOPICAL REVIEW

Cadmium selenide nanowires from growth to applications

Raja Azadar Hussain \(^{1,}\) and Iqtadar Hussain \(^{2,3}\)

\(^{1}\) Department of Chemistry, Quaid-i-Azam University (45320) Islamabad, Pakistan
\(^{2}\) Department of Mathematics, Statistics and Physics, Qatar University, Doha (2713), Qatar
\(^{3}\) Authors to whom any correspondence should be addressed.

E-mail: hussainazadar@yahoo.com and iqtadarqau@qu.edu.qa

Keywords: cadmium selenide, nanowires, SLS methods, VLS methods

Abstract

This review article deals with the synthetic strategies of cadmium selenide nanowires via electrodeposition, solution liquid solid methods, vapor liquid solid methods and template wet methods. Applications of these nanowires in solar cells, photodetectors, field effect transistors, and field emission have been presented. A comparative account of cadmium selenide nanowires with other cadmium selenide morphologies (ribbons, rods, belts etc) and cadmium compounds has been discussed.

1. Introduction

Modification of semiconducting nanomaterials into well defined mono or multilayer morphologies is the basic requirement for their use in various devices such as light emitting diodes [1], light emitting films [2, 3], biosensors [4, 5], light harvesting devices [6], solar cells [7], photodetectors [8], forster resonance energy transfer sensing [9] etc. Properties of semiconducting nanomaterials are dependent not only on size but also on the type of nanostructure as well therefore; all these properties can be tuned with proper size and structure orientations. Extensive work has been carried out in the last two decades on inorganic semiconducting chalcogenides materials for all the above mentioned applications [10–12]. Carbon free energy demand of the world is the motivational force behind all these research efforts. Noble metals have shown good results (in solar cells [13, 14] and water splitting [15–17]) but their availability in the Earth crust along with economic concerns limit their market applications. Chalcogenides of those metals which are easily available in the Earth crust are considered to be an alternate option. In this regard transition metal oxides [18], sulfides [19, 20], selenides [21, 22] and tellurides [23, 24] have been deeply investigated and their properties and applications have been compared curiously.

Cadmium selenide (CdSe) is a semiconducting chalcogenide material which exists in hexagonal (wurtzite), cubic/zinc blende (sphalerite) and cubic (rock-salt) crystal structures [25]. CdSe nanostructures (Ns) have been investigated extensively owing to their direct band gap which is tunable with size and morphology. As the size of CdSe quantum dots (QDs) decreases their band gap increases e.g. band gap of 2.4 nm QDs is 2.4 eV and 0.9 nm QDs have a band gap of 2.7 eV [26]. This band gap management is important for optical and electronic properties of any material which in turn determines its use in device applications.

After the discovery of carbon nanotubes (CNTs) [27], one dimensional (1D) inorganic nanowires (NWs) [28], nanorods (NRs) [29] and nanotubes (NTs) [30] have been explored comprehensively due to their specialized physical and chemical properties. NWs particularly have quantum confinement in two directions and one direction is unconfined for electrical conduction which makes them useful for applications depending upon electrical conduction as compared to tunneling. This unidirectional electron mobility in length provides the possibility to tailor the physical properties by confinement effect. Keeping this in view CdSe NWs have been synthesized by top down and bottom up approaches with success via electrodeposition [31–39], solution-liquid solid methods (SLS) [40–44], vapor liquid solid methods (VLS) [45–47] and template wet methods [48, 49]. Because of the bitter fact that we are far behind the technical mass production, nanoscience is the most
appropriate term for the field. In this review article we have covered all these synthetic routes and applications of CdSe NWs.

2. Growth of cadmium selenide nanowires

2.1. Electrodeposition

Electrodeposition is a widely used technique for metal chalcogenide thin films preparation. It has advantages of low cost, good thickness control, deposition on any shape and working under ambient conditions. First report of CdSe NWs is attributed to the first attempt number of other workers [32–39] have used electrodeposition with different modifications. Details of deposition parameters in terms of precursors, bath composition, electrode system and templates have been presented in table 1. For all the different parameters in table 1, pH of the deposition solution is maintained between 1–3 by the addition of sulfuric acid or hydrochloric acid in aqueous media. In most of the cases films deposited are annealed between 300–400 °C.

For the growth of NW, nuclear growth should occur with high linear density denoted by \(\delta \) (units of \(\mu m^{-1} \)) at the step edge of template. This phenomenon is known as electrostatic step edge decoration (ESED). Li et al [38] have used this technique with \(\delta \) value of 30 \(\mu m^{-1} \) for the growth of CdSe NWs. This \(\delta \) value should be greater than 1 NW diameter for hemispherical nuclei and this higher value was only achieved when supporting electrolyte was not used. Having a close look at cyclic voltammetry (CV) profile in the absence and presence of sodium sulfate (supporting electrolyte) it is evident that both the reactions provide a reversible oxidation and reduction maxima (figure 1). Dwarf type peak in figure 1 is attributed to high ohmic resistance in the absence of sodium sulfate. Another difference between the two CV profiles is the onset of cathodic current for supporting electrolyte free CV at \(-0.1\) V and second faradic process starts at \(-0.62\) V. Cathodic processes between \(-0.1\) V to \(-0.65\) V in the starvation of CdSe nuclei due to ohmic resistance yield NWs at step edge of template (highly oriented pyrolytic graphite, HOPG). Cathodic reaction for the production of CdSe is direct 6e⁻ reduction process according to following reaction

\[
H_2SeO_3 + Cd^{2+} + 6e^- + 4H^+ \rightarrow CdSe + 3H_2O
\] (1)

Mechanism of CdSe NWs growth can be explained according to following steps. In the first step from \(-0.45\) V to \(-0.65\) V \(H_2SeO_3 \) is reduced to elemental Se via following reactions

\[
H_2SeO_3 + 6e^- + 4H^+ \rightarrow H_2Se + 3H_2O
\] (2)

\[
H_2Se \rightarrow Se + 2H^+ + 2e^-
\] (3)

In the second step CdSe NWs are formed at electrodeposited Se between \(-0.6\) V to \(-0.8\) V. In step 3, between \(-0.76\) V to \(-1.00\) V, elemental Cd is deposited according to following reaction

\[
Cd \rightarrow Cd^{2+} + 2e^-
\] (4)

In step 4 and 5 between \(-1.0\) V to 0.6 V and 0.6 V to 0.8 V, excessive Cd and Se are stripped respectively. Diameter of CdSe NWs in all these experiments is directly proportional to scan cycles i.e. for \(n = 1, 2, 5 \) and 10, diameter is 32 nm, 102 nm, 210 nm and 278 nm respectively. This is because of the fact that with increasing number of cycles more time is available for the deposition of CdSe NWs. In a similar way at higher scan rates CdSe NWs of smaller diameter will be formed. This study also reveals that by increasing the pH crystallite size decreases. In another study [39] electrodeposition at 10 mV s⁻¹, 30 mV s⁻¹ and 90 mV s⁻¹ produced NW of 380 nm, 200 nm and 50 nm respectively.

Kung et al [37] have reported the synthesis of nanocrystalline cadmium selenide (nc-CdSe) NWs by lithographically patterned nanowires electrodeposition (LPNE) method on glass surfaces having a trench in which is embedded a vertical nickel nanoband electrode with a dimension of 20 × 50 nm at pH 1–2 and 25 °C according to the following equation
Precursors	Bath composition	Electrode system	Deposition time (min)/temperature (°C)	Scan rate (mV s\(^{-1}\))	Template	References
CdCl\(_2\)Se	DMSO	AAO cathode, Pt anode	30–60/185	dc	AAO	[50]
Cd(SO\(_4\))\(_2\)SeO\(_2\)	H\(_2\)O, H\(_2\)SO\(_4\)	HOPG W, Pt C, SCE R	RT		HOPG	[38]
Cd(SO\(_4\))\(_2\)SeO\(_2\)	H\(_2\)O, H\(_2\)SO\(_4\)	PCM W, Pt C, Ag/AgCl R	20/RT	10, 30, 90	PCM	[39]
CdCl\(_2\)Se	DMF	ITO glass W, Pt foil C	147	Nil	Nil	[34,37]
Cd(SO\(_4\))\(_2\)SeO\(_2\)	H\(_2\)O, H\(_2\)SO\(_4\)	Ni W, Pt C, SCE R	RT		Ni nanoband	[37]
CdCl\(_2\)SeO\(_2\)	HCl, H\(_2\)O	ITO glass W, Pt guaze C, Ag/AgCl R	30 min/RT	570 to 610 (deposition potential)	h-PDMS	[33]
CdCl\(_2\)SeO\(_2\)	HCl, H\(_2\)O	SWCNTS W, Au C, Ag/AgCl R,	RT	10	SOCNTs	[35]
Cd(SO\(_4\))\(_2\)SeO\(_2\)	H\(_2\)O, H\(_2\)SO\(_4\)	Cu rod anode, PC cathode	20/RT	dc		[33]
In this method LPNE template was dipped in precursor plating solution containing 0.3 M CdSO₄ and 0.3 mM SeO₂ in 0.25 M aqueous H₂SO₄. Concise detail of the process is that CdSe was first deposited at −0.8 V versus saturated calomel electrode (SCE) on nickel during a negative scan and excessive Cd was stripped at −0.4 V during a positive scan. Excessive Se is removed by using optimized Cd:Se ratio of 43:1 and −0.4 V value was optimized in such a way that it should not strip deposited CdSe during removal of excessive Cd. LPNE (following reaction 5) provides nc-CdSe of 5 nm which can be increased to (i) 10 nm by thermal annealing, (ii) 20 nm by deposition from 75 °C hot plating solution and (iii) 100 nm by exposing it to methanolic CdCl₂ [36]. Moreover by increasing the number of scans, width of NWs increases i.e. 50 nm at 1 scan, 100 nm at 5 scans, 200 nm at ~20 scans [37].

For industrial overall acceptance of the process electrodeposition should be user friendly and high throughput fabrication method. In this regard electrodeposition on the templates prepared from soft nanoimprinting lithography (SNIL) has been used by Brucin Erenturk et al [33] for the fabrication of CdSe NWs of 100 nm in thickness, 300–500 nm width and several centimeter in length (figure 2(i)). Figures 2(a)–(h) shows schematic presentation of CdSe NW growth which involves the casting of polydimethyl siloxane (h-PDMS) mold from a master of patterned polycarbonate (PC). PC master has a height of 180 nm, width of 450 nm and spaces of 350 nm. Low adhesion force between PC master and PDMS supports easy separation after curing. Surface hydrophobic nature of daughter mold was confirmed by water contact angle of 113°. Norland optical adhesive 60 (NOA 60) was applied to O₂ plasma treated and washed ITO glass substrate. Curing was carried out by exposure to UV radiation (365 nm, 17 mWcm⁻²) for 15 s in air to improve pattern transfer. These daughter molds can be used for over 20 imprints. Details of electrodeposition have been given in table 1 which follow the chemistry of reaction 1. Color of CdSe deposited to ITO glass is yellow brown after 5 min and becomes dark brown after 30 min [33]. CdSe NWs produced with this technique are organized, ductile and crystalline with dimensions of 100 nm height × 500 nm width × 2.5 cm length reciprocating the dimensions of photoresist.

A new trend in material research is to synthesize the NWs of helical, saw like and zigzag shapes with an aim to use them as nano mechanical springs, nanoelectronics, nano lightening elements etc. Gu et al [35] have fabricated CdSe NWs serpentines and loops (figure 3). Conditions of electrodeposition have been presented in table 1 and chemistry of deposition was similar to previously reported reactions 1–4 in above paragraph. Increasing the number of cycles increases the size of deposit and keeps the composition same. This finding is in agreement with previously reported results [32]. This bottom up approach of designing CdSe NWs on the architecture of CNTs can be assumed to design semiconducting NWs on any available nano geometry.

Template methods explained above in electrodeposition have yielded very good results but they have disadvantages of multisteps, extensive experimentation and requirement of optimal conditions for the removal
of resist and detachment of mold. A one step template free method having facile and mild reaction conditions is highly beneficial. Feng et al [34] have reported nontemplated synthesis of CdSe by electrodeposition (table 1). It was observed in this study that NWs are only formed above 145 °C and below this temperature nanoparticles (NPs) are produced. Dimethyl formamide (DMF) was used as a solvent in this study which has a B.P of 152 °C.
This means that NWs were produced in a narrow temperature range of 145 °C–150 °C. At this high temperature, diameter of NWs and deposition rate increases which is controlled by current density, stirring rate and concentration of reactants. Increase in the current density has direct proportionality to deposition potential of working electrode which increases the diameter of CdSe NWs and Se-Cd ratios. Mass transfer to electrode is directly dependent on stirring rate and then deposition rate. Higher is the concentration higher is the deposition rate. Keeping in view all these mentioned details optimized current density was 0.22 mA cm$^{-2}$, temperature 147 °C, concentration 10 mM CdCl$_2$ and 5 mM Se and a stirring rate of 1000 rpm for perfectly single crystalline CdSe NWs. CdSe grows fast in three directions i.e. (000I), (0I $Ī$0) and (2$Ī$Ī0). Surface of CdSe is polar and contains positively charged Cd-000I and negatively charged Se-000 $Ī$. If equal growth occurs in all the three fast growing directions then NPs are formed but if negatively charged Se surface is made relatively inert as compared to positively charged Cd surface then chances of NW growth are high. Three parameters namely, crystallography, electrochemical nucleation and growth kinetics govern preferred growth in electrodeposition. Among these three, nucleation kinetics is the most important [34]. Relationship between nucleation rate (I) and nucleation energy W_{hkl} is given by following equation

$$I = A \exp\left(-\frac{W_{hkl}}{kT}\right)$$

(6)

Where hkl is the crystal plane, k is the Boltzmann constant and A is the function of overpotential. At very low current density and low overpotential, A is constant and rate of nucleation is directly proportional to $\exp(-W_{hkl}/kT)$. Under this condition growth of CdSe is parallel to the direction of current. Below 145 °C nucleation energy of nuclei may be close which favors NPs formation however; more work is still required to understand the exact mechanism of NWs formation. Template free electrodeposition seems to be very appealing but it is inferior to templated electrodeposition in terms of structural control, diversity of different NWs geometries and thin temperature range for the production of NWs and poor understanding of mechanism [34].

2.2. Solution based methods

Solution chemistry routes may be broadly classified as catalyzed and un-catalyzed. Among catalyzed methods, metallic and nonmetallic catalysts are used for tuning the structural parameters. These catalysts should have low melting points and temperature during the reaction is kept at a level that these catalyst particles are present in a molten form. Cd and Se precursors are then adsorbed or dissolved into these molten nano-droplets and support 1D growth via a so called solution liquid solid method (SLS) [40, 41].

First purely solution based attempt for straight and branched CdSe NWs was published by Grebinski et al [51]. This method utilizes the catalysis by Au/Bi NPs. Synthesis of straight and branched NWs takes place by following scheme 1. This method is advantageous over vapor liquid solid (VLS) in terms of low temperature requirement, higher yield of NWs and soluble product for easy functionalization. In this method molten Au/Bi NPs catalyst is saturated with Cd and Se precursor in the presence of reagents having long chain hydrocarbon functionalities which form the basis of NWs growth on the surface of NPs via a so called seeded mechanism. Different parameters which effect the morphology and aspect ratio of CdSe NWs include concentration of reaction mixture, temperature, initial Cd/Se ratio, Au/Bi volume and size and concentration of TOP (trioctyl phosphine). We will now discuss these parameters one by one [51].
Greater is the concentration of TOPO (trioctyl phosphine oxide) in the reaction mixture i.e. reaction mixture is dilute, greater are the chances of straight NWs formation. This happens due to decrease of Se contents in the immediate vicinity of catalyst which supports nucleation only in one direction. At dilute concentrations catalyzed growth of CdSe NWs is preferred over un-catalyzed self CdSe nucleation. At higher concentrations of Se self-nucleation dominates to form NPs. Optimized concentration for branched and straight NWs has to be determined experimentally [51].

Synthesis of straight NWs requires a temperature between 330 °C and 350 °C whereas branched NWs are formed between 280 °C and 300 °C. Although synthesis of NWs is a kinetically driven process but branching occurs at low temperature due to some un-identified thermodynamic parameters. At higher Cd concentrations (Cd/Se ratio = ~7:1) straight NWs are formed and if this ratio is increased more, then diameter of NWs increases. These findings of straight NWs formation at higher Cd/Se ratio (7:1) and high temperature (330 °C) have been confirmed by Zhen Li et al by using a novel Bi based nano catalyst [42]. Temperature dependence of NWs formation is important because melting point of nanocatalyst is size dependent. Bulk Bi NPs melt at 272 °C but nano sized Bi particles melt even at 150 °C. So, at the reaction temperature (330 °C) all catalyst particles are essentially present in molten state. Although a generalization is difficult to draw because other factors including precursor type (CdO, CdMe₂) and ratios are also important but wires can be generated even at 150 °C but will disappear to QDS after only one minute of reaction. If the reaction is carried out for 10 min then some NWs of 12 nm diameter and 0.8 μm length are obtained. This supports the hypothesis that QDs are intermediate products of NWs formation. Increasing the temperature from 150 °C to 180 °C, diameter of NWs increases from 12 nm to 22 nm and length increases from 0.8 μm to 6 μm. A further increase in temperature to 250 °C gives a diameter of 21 nm and length of 7 μm. Previously no NWs have been reported for Au/Bi catalysis below 240 °C. Melting point of Bi NPs is low and their reactivities are high that’s why their presence in molten form supports the formation of NWs [42, 43].

At higher Se ratios (Cd/Se 1.7:1) branching is favored. This condition can be achieved by two ways; firstly, by increasing the TOPSe concentration and keeping the volume same and secondly by adding more volume of TOPSe without considering the dilution effect however, after a certain dilution branching will not occur and diameter of NWs will increase. In addition, higher contents of Se in the reaction mixture decrease the length of NWs. This happens because of high reactivity of Se and low monomer concentration which yield magic sized NPs [43].

Increasing the size of catalyst NPs (Au/Bi and Au) increases the diameter of NWs [42, 51]. Smaller catalyst NPs (~1.4–2.2 nm) introduce more branching then larger catalyst NPs (2.5–2.7 nm). At very low volumes of the catalyst (Au/Bi NPs), QDs formation is favored relative to NWs [51] and this is true for Bi NPs catalyst as well [43]. Optimum value of volume for NWs formation is between 175 μl and 350 μl for either straight or branched NWs using bimetallic Au/Bi catalyst whereas 25 μl is the optimized value for monometallic Bi NPs which produces CdSe NWs of 18 nm diameter and 3 μm length. In a similar way amount of catalyst has to be optimized for length of NWs. Addition of small amount of TOP supports the formation of branched NWs dramatically [51, 52].

If we compare Au/Bi and pure Bi NPs, diameter of CdSe NWs is larger for pure Bi NPs catalyst and this pure catalyst produces straight NWs even at low Cd/Se ratios (1:1 and 1:7). These differences are due to slow release of Bi from Au cores (1.5 nm in diameter) which retards the formation of large Bi particles. As a result, thinner CdSe NWs are generated [43]. Surface modification of bimetallic catalyst (Au/Bi) and CdSe NWs with TOP or oleic acid always produces NWs of larger diameter than initial catalyst size however effect of TOP for monometallic catalyst (Bi NPs) is the production of thinner and shorter NWs. Using a polymer (poly(1-hexadecene)₀₋₁₋₋₋˓→content removed to maintain length limits→...
NWs after formation [43]. In another attempt electrodeposited Bi NPs have been used for direct growth of CdSe NWs on ITO glass using the above mentioned details with success [44].

2.2.1. Solvothermal reactions

In solvothermal reactions, reactants are mixed in a particular solvent in a reaction vessel (mostly autoclave) and reaction is carried out at a temperature which is above the boiling point of the solvent [53–55]. This simple and easy to handle methodology has been adopted via scheme 2 for the fabrication of NWs of >50 nm diameter and 10–30 µm length [56]. As reported above, low temperature synthesis creates branching in the CdSe NWs. In fact when CdS combine in a particular direction to form NRs of less than 50 nm size, branching along the axis has been reported [51,57]. This approach has been further modified for the fabrication of CdSe NWs with diameters of 1.5–6 nm by using alkyl amines of different chain lengths as surface modifiers and solvents, between 100 °C–180 °C [58]. In the first step CdSe clusters are formed which act as an initiator for prewire aggregates and heating of these prewire aggregates produces solid NWs. By keeping the temperature same diameter of CdSe NWs increase by increasing the length of alkyl chain of amine and if the length of carbon chain is more than 14 carbons, formation of NWs is completely inhibited. For mixtures of small chain alkyl amines and long chain amines in which small chain proportion was high, diameters of NWs produced were small relative to higher proportion of long chain amines. For exactly 50% mixtures of short chain and long chain, both thinner and thicker CdSe NWs are produced [58]. Exact mechanism is not clear so far but it seems that amines having higher lengths of alkyl chains keep the nucleation centers separate from each other to favor NDs (nanodots) formation and when small chain amines are available in the mixture, they support the nucleation in a particular direction to support the NWs formation. At lower temperature, time is available for nuclei to form the branching but at high temperature growth only in one direction is favored by collision of nuclei along one axis only.

Use of metallic catalyst is not always necessary and synthesis of mono-dispersed CdSe NWs can be achieved by using dodecyl phosphonic acid (DDPA), octadecyl phosphonic acid (ODPA) and hexyl phosphonic acid (HPA) as complexing ligands for Cd and TOP as a ligand for Se [59]. Better control over morphology is achievable by using long alkyl chain phosphonic acids i.e. ODPA and DDPA rather than using HPA. Morphological results for DDPA are even better than ODPA. This is a contradiction with previously reported results [60] according to which cleavage of P = S bond governs the nucleation and growth allowing the low reactive complexes to position perfectly on the surface of NWs before the start of binding. If it is so then Cd-ODPA should provide a better aspect ratio than Cd-DDPA. These findings are also contradictory with the results of long chain amines in which long chain amines only, do not provide better aspect ratios until short chain amines are mixed with them [58]. However these result may be explained in terms of easy cleavage of P = Se bond relative to P = S bond in these two cases. TBP (tributyl phosphine) provides smaller sized NWs in terms of diameter and length than TOP. It has been proposed that this is because of strong binding of TBP with NWs. This result is also a contradiction with previously reported studies [61] which were based on the idea of stearic factors for low reactivity of TOP than TBP. Contrary to the previous experimental observations, decrease in temperature decreases the highest aspect ratio, in this study [59]. According to the authors, lowering in temperature decreases both the cleavage rate and monomer concentration in reaction mixture which in turn ceases the anisotropic growth. At higher temperature monomers find less time for adjustment so control over morphology becomes possible. Keeping total amount of reactants constant and doubling precursor’s concentration provides a length of 220 nm with a diameter of 8 nm but a further increase in precursor concentration effects distribution of size badly. This observation is in accordance with previous findings in which higher concentration of reactants favors NCs formation instead of NWs [51]. Continuous and multiple
injections do not effect morphology but increasing the injection time decreases the length of NWs with constant diameter. In fact large injection time decreases the monomer concentration in reaction medium which effects anisotropic growth. Time dependent studies provide a match with previous studies \[51\] i.e. generally with increase in reaction time, both diameter and length of the NWs increase \[51\].

2.3. Vapor based methods
Vapor based methods include chemical vapor deposition (CVD) and vapor liquid solid (VLS) methods \[12, 62–71\]. In a traditional VLS method a source material is evaporated inside a tube furnace and is transported with the help of a carrier gas to the catalyst coated substrates (figure 4). At reaction temperature, evaporated gaseous source material is deposited on liquid catalyst droplets, supersaturates them and is precipitated at solid liquid interface. VLS method requires higher temperature treatments than solution based methods. First ever attempt for morphologically controlled synthesis of CdSe from commercial CdSe via VLS method was reported by Christopher Ma et al \[45\]. According to this study, temperatures of the source, temperature of substrate and gas pressure inside tube are important parameters which determine the morphologies of resultant CdSe. Source temperature is important for the vaporization of source material but substrate temperature governs the actual growth of different CdSe morphologies. At 600 mbar and 575 ± 5 °C substrate temperature, nanosaws and nanocombs are produced whereas at 4 mbar and 575 ± 8 °C substrate temperature produces high percentage of nanobelts (figure 4). Synthesis of NWs is not conspicuously dependent on pressure however high percentage of NWs was observed in the region of high pressures and high temperatures \[45\]. This may be because of energy constraints at higher temperature for the production of teeth of nanosaws and nanobelts via secondary growth following so called spontaneous polarization induced asymmetric growth. Exact mechanism for the production of NWs has not been reported yet.

In a series of publications Shan et al have used a typical MOCVD setup for the preparation of CdSe nano needles and CdSe NWs \[72–75\]. Dimethyl cadmium and diisopropyl selenide were used as precursors for Cd and Se respectively in the presence of hydrogen as a carrier gas at 500 torr using varying temperatures. GaAs was used as a substrate and the reaction was catalyzed by gold for NWs production. Crystallographic surface of substrate and temperature governs the orientation of NWs according to these experimental efforts \[72–75\]. VLS method clearly shows inferior control of CdSe NWs morphologies and diameter of CdSe NWs is thicker in this case (~100 nm) \[46\]. This VLS method is important for the synthesis of thick CdSe NWs for application studies \[47, 76, 77\].

2.4. Template wetting method
Template wetting is a simple chemical method which involves the wetting of porous template with precursor and then subsequent temperature treatment firstly for insertion/infiltration of precursor into the pores and

\[\text{Figure 4. Schematic diagram of tube furnace used for VLS deposition of CdSe NWs (right). SEM images (top), TEM images (bottom right) and electron diffraction patterns (bottom left). (a) Nanosaws/nanocombs, (b) nanobelts, and (c) nanowires. Modified from [45]. Copyright Wiley 2005.}\]
secondly for the decomposition of precursor to semiconductor chalcogenide materials [48]. Using this method Lili Zhao et al [49] have coated porous alumina substrate (pore size 25 nm, pore depth 100 μm) with single source precursor Cd(SePh)₂ and TMEDA (TMEDA = tetramethylethylenediamine) powder according to Scheme 3. NPs, NRs, NRs with high aspect ratio and NWs after one (5 h), two (11 h), three (35 h) and four (83 h) wetting and crystallization cycles respectively have been generated. It has been proposed that these nanostructures are formed in two steps. In the first step small grains are formed from molecular precursors which combine with each other to form small NPs. These small NPs further grow to form larger NPs at the expense of smaller particles via Ostwald ripening process [78]. In the second step anisotropic growth of particles takes place for NRs and NWs formation. In this process mobility of NPs is hindered as compared to wet chemical processes (which have been extensively used by successors) for good anisotropic growth but this process requires much longer times for reaction completion [25, 48, 49].

3. Applications of CdSe nanowires

3.1. Solar cells
Energy crisis and pollution are two problems which endanger the existence of human race on the globe. Solar cells are a green solution to this problem because they can convert the Sunlight to electricity without any harmful effluents such as oxides of C, N and S which are generated by fossil fuels. Considering CdSe NWs as carrier transport material in solar cells their incident-photon-to-carrier conversion efficiency (IPCE) is 13% at 500 nm with concomitant 1 sun PCE of 0.007%. This low efficiency has been attributed to the presence of voids in irregularly oriented NWs which reduces the conductivity of charge carriers to the respective electrodes. Filling of these voids with colloidal CdSe QDs improves the efficiency of this hybrid architecture to 25% at 500 nm (figure 5) [79].

Blending of CdSe NWs with organic conjugated polymers is an interesting strategy for tuning the electronic and optical properties. In this domain Zhou and coworkers have reported short-circuit current density (Jsc) of 8.08 mAcm⁻², open circuit voltage (Voc) of 642 mV and fill factor (FF) of 0.69. This provided an overall energy conversion efficiency of 3.6% [34].

3.2. Photodetectors
Semiconductors can sense the light that has photon energy greater than their bandgap. This property of semiconductor materials makes them important in photon detection which has applications for light-wave communication, environmental and biological research and sensors etc. CdSe is important in photodetectors research because of its direct bandgap. Two important outcomes of research on single crystalline NWs [80], SnO₂ [81], GaN [82] and CdS are higher photoconductive gain than thin films of same materials [83] and delayed (approaching seconds) photorecurrent rise and decay [36]. It has been proposed that this difference is because of a barrier for electron hole recombination due to surface electric field. Source of this electric field is

\[
\text{Cd(SePh)}_2 \text{TMEDA} \rightarrow 30\% \text{ KOH at 70 °C} \\
\text{Porous Alumina Template} \rightarrow 160 °C, 2 °C/min \\
\text{Melting and infiltration of P} \rightarrow 500 °C, 2 °C/min \\
\text{to pores} \rightarrow 160 °C, 2 °C/min \\
\text{maintained for 2h} \rightarrow \text{P decomposition to nanostructures on template} \\
\text{Sonication} \rightarrow \text{Cooling to RT, 5 °C/min}
\]
material dependent and for CdS, CdS is trapped by surface states. For single crystalline NWs, photoconductive performance depend upon diameter, crystallographic orientation of long axis, dopant concentration and surface modification however photoconductive performance of polycrystalline NWs is also dependent on mean grain diameter \(d_{\text{avg}} \). Photoconduction bandwidth of 45 kHz has been provided by nanocrystalline CdSe (nc-CdSe) NWs having a \(d_{\text{avg}} \) of \(\sim 10 \) nm which was the best of all the NWs types till that time however, photoconductive gain was the lowest \(0.032 – 0.050 \) among all the NWs types. Increasing the \(d_{\text{avg}} \) to 100 nm increases the photosensitivity by a factor of 375 which means that photoconductive properties of nc-CdSe NWs can be adjusted with mean grain diameter \(d_{\text{avg}} \). Table 2 presents the comparative photoconductive responses of nc-CdSe NWs with other cadmium based chalcogenides having different morphologies (figure 6). Figure 5. (a) CdSe nanowires (NWs) IPCE values (solid lines) and absorption (dashed lines) in the visible region of electromagnetic radiations. (b) I-V plots of optimized solar cell between 1.5 mW cm\(^{-2}\) and 330 mW cm\(^{-2}\) under halogen light illumination. (c) Comparative plots of open circuit voltage versus time of CdSe NWs, CdSe quantum dots (QDs) and CdSe NWs/QDs. Dashed line show the ~1/e lifetime of each trace. Modified with permission from [79]. Copyright Wiley 2010.

3.3. Field effect transistors (FETs)
CdSe is a promising candidate for research in the domain of inorganic field effect transistors due to its high Hall and field effect mobilities \(800 \text{ cm}^2\text{V}^{-1}\text{s}^{-1} \) relative to Si [98]. In this regard Lee and his fellows have doped CdSe NWs with indium to generate CdSe:In NWs hybrid which increases conductivity of NWs enormously especially at high doping [99].

Talin Ayvazian et al. have used lithographic patterning to produce pc-CdSe NWs arrays on SiO\(_2\)/Si substrates with and without exposure to methanolic solution of CdCl\(_2\) (growth promoter) [100]. These arrays of pc-CdSe NWs were used to prepare FETs via back gate configuration. Field effect mobility \(\mu_{\text{eff}} \) of sample exposed to CdCl\(_2\) increases from \(1.94 \times 10^{-4} \text{ cm}^2\text{V}^{-1}\text{s}^{-1} \) to \(23.4 \times 10^{-4} \text{ cm}^2\text{V}^{-1}\text{s}^{-1} \) with a decrease in threshold voltage of 75% and subthreshold slope by 35%. With increase in the channel length from 5 to 25 \(\mu \) a decrease in \(\mu_{\text{eff}} \) is observed because of the defects in the individual CdSe NWs. These inferior performances have been attributed to depressed electronic mobilities in the defects (figure 7) [100]. Same group has reported nc-CdSe NWs with lithographic patterning for electroluminescent studies [101]. Although the quantum yield is low \((10^{-6}) \) but it is similar to devices having single crystalline CdSe NWs [102]. Table 3 presents the comparative device metrics for CdSe thin films and NWs samples.

3.4. Field emission properties
Emission of electrons under the influence of applied electric field from material surface into vacuum is called field emission (FE). This is a physical phenomenon and FE properties of CdSe have been uncommon. FE of CdSe NWs were first reported by H Li et al. [112] in which hybrid nanostructure consisting of branched and ordered
CdSe branches were present. This array was used as cathode and rod like copper probe single crystalline morphologies has been evaluated. This structure consisted of nano stem on which wurtzite anode under a direct current sweep from 100 to 1100 V to record the PL at room temperature. Hybrid CdSe NWs patterned on glass (5 μm pitch) and red is the photoluminescence spectrum recorded with excitation at 514.5 nm. (b) SEM image with 5 μm gap containing ~350 NWs of nc-CdSe. (c) Plot of photocurrent versus time as a result of chopped illumination (532 nm, 59 mW cm⁻²) at a frequency of 3940 Hz and biased at 2 V (black spectrum below) with silicon photodiode. (d) Plot of normalized photocurrent versus time presenting exponential fits and time constants for response (τresp) and recovery (τrec,fast,slow). (e) Schematic presentation of the apparatus used for measurement of photoconductive properties. Reproduced with permission from [36, 37]. Copyright ACS 2010 and 2011.

Table 2. Photoconductive responses of Cd based chalcogenides.

Products	Response, recovery	Photosensitivity	Dimensions	References
CdSe film	1.0 ms, 1.5 ms	10−10⁶	40 μm (gap) × 2.2 mm (w) × 700 nm (h)	[86]
CdSe film	1.6 ms, 1.6 ms	11	0.3 cm (gap) × 2.0 cm (w) × 750 nm (h)	[67]
CdSe film	1.0 ms, 0.2 ms	1 × 10⁶	35 μm (gap) × 10 μm (w) × 300 nm (h)	[88]
CdSe film	1.3 ms, 0.2 ms	NA	1 cm² (A) × 300 nm (h)	[69]
CdSe film	200 ms, 200 ms	10⁻⁴⁻¹⁰⁷	5 mm (gap) × 5 mm (w) × 170 nm (h)	[90]
CdSe rods	1 s, 200 μs	15	350 nm (diameter)	[91]
CdS NWs	15 ms, 15 ms	39	20 μm (gap) × 200 nm (diam.) array	[92]
CdS belt	1 s, 3 s	1.5 × 10³	200 nm (w)	[93]
CdS ribbon	200 ms, 500 ms	2	25 μm (gap) × 640 nm (w) × 50 nm (h)	[94]
CdS ribbon	746 μs, 794 μs	9.2 × 10³	18 μm (gap) × 10–60 μm (w) × 2–40 nm (h)	[95]
CdS ribbon	551 μs, 1.09 ms	3.3 × 10⁶	50 nm (gap) × 5–10 μm (w) × 65 nm (h)	[96]
CdSe ribbon	1.7 ms, 6.7 ms	NA	5 μm (gap) × 5 μm (w) × 60 nm (h)	[85]
CdSe NWs	700 ms, 700 ms	40	3 μm (gap) × 60 nm (diam.)	[97]
CdTe rods	> 1 s, > 3 s	10	2 μm (gap) × 300 nm (diam.) vertical array	[86]
CdSe NWs	20, 30 μs	10–100	5 μm (gap) × 200 nm (w) × 60 nm (h) array	[36, 37]
CdSe NWs	49 μs, 42 μs	8	5 nm cubic, (average crystallite size)	[36]
CdSe NWs	8 μs, 30 μs	20	10 nm cubic (average crystallite size)	[36]
CdSe NWs	200 μs, 6 × 10⁷ μs	10	20 nm cubic (average crystallite size)	[36]
CdSe NWs	8 μs, 2.7 × 10⁸ μs	300	100 nm hex (average crystallite size)	[36]

single crystalline morphologies has been evaluated. This structure consisted of nano stem on which wurtzite CdSe branches were present. This array was used as cathode and rod like copper probe (1 mm²) was used as an anode under a direct current sweep from 100 to 1100 V to record the PL at room temperature. Hybrid CdSe nano array showed a turn on field at 4.3 ± 0.2 V μm⁻¹ for current densities of 10 μAcm⁻² [112]. This system
also showed high field enhancement factor (1160 ± 50) and long emission stability. CdSe NWs branched array also showed red lasing in the range of 700–720 nm (figure 8). These results are comparable to the result obtained for CNTs (5.4 V/μm) [113], zinc sulfide nanostructures (2.39 [114], 3.55 [115], and 3.8 V/μm [116]), zinc oxide nanostructures (11 V/μm [117], Si nanostructures (13 V/μm [118]) and CdS nanostructures (12.2 [119] and 1.4 [120] V/μm).

Table 3. Device metrics comparison for FETs of CdSe thin films and NWs samples.

Description	L x (W) (μm)	μμeff(cm²(Vs)−1)	Vth(V)	S(mV(dec)−1)	References
pc-CdSe thin films	8 × (293)	1	6.7	7000–10 000	[103]
100 × (500)	1–6.7	2.5–30	260–5000	[104]	
20 × (200)	15	3.5	500	[105]	
200–200	0.2–0.6	60		[106]	
(×1–2 mm)					
sc-CdSe NRs	3.2	9.6	20.9	[99]	
sc-Cd-doped CdSe NWs		0.5	2	5 × 10⁴	[107]
	18.3	0.77		[108]	
	2	0.1–6.7		[109]	
sc-In-doped CdSe NWs	2	0.1–6.7		[109]	
sc-Cd-doped CdSe NRs	20	800	−4.1	65	[110]
sc-In-doped CdSe NWs	5	3.2–166	−1.7	508–10⁸	[111]
pc-CdSe NWs (annealed)	5	1.9 (±0.2) × 10⁻⁴	18–25	3600	[100, 101]
pc-CdSe NWs (annealed and CdCl₂ treated)	5	23 (±5) × 10⁻⁴	4–8	2300	[100, 101]

![Figure 7. Relationship between the channel length and transfer characteristics of CdCl₂ treated and annealed pc-CdSe nanowires field effect transistors (NWFETs) (a) Plot of I沟 versus V门 at 2 V for indicated channel lengths, (b) Plot of log I沟 versus V门 for indicated channel lengths, (c) Plot of linear range carrier mobility (μμeff) versus channel length for untreated (with CdCl₂) pc-CdSe NWFETs before (green) and after (red) correction, (d) Plot of μμeff versus channel length for CdCl₂ treated pc-CdSe NWFETs. Reprinted with permission from Ref [100]. Copyright ACS 2012.]
4. Conclusions

Top-down approach generally follows conventional lithographic methods which have the advantages of tackling most of the physical and technological difficulties but with a very slow production rate, making them incompatible with industrial production. Nanoscale physicochemical phenomena are used to fabricate nanostructures in a spontaneous manner with high yield using bottom-up approach. Main advantages of bottom-up approach are reduced cost and control over crystal growth for better reproducibility. Shortcomings of bottom-up approach are the practical incompatibility between spontaneous growth and their use in transistors, memory cells and other electronic devices [121].

Electrodeposition (ED) is the pioneering technique for the production of CdSe NWs. In templated ED, length of CdSe NWs is dependent on deposition time and diameter of NWs depends on pore diameter of template, scan rate (time), thermal annealing, temperature assisted deposition and reaction medium. Non templated ED produces CdSe NWs only above 145 °C and this method is inferior to templated method in terms of structural control, diversity of NWs morphologies and workable temperature range.

Solution based synthesis of CdSe NWs is carried out by catalyzed and un-catalyzed methods. Au/Bi NPs and Bi NPs have been used as a catalyst for the growth of CdSe NWs. Among these two, Bi NPs can generate CdSe NWs at a temperature as low as 150 °C but Au/Bi NPs require at least 240 °C for NWs formation because of low melting point of Bi catalyst relative to Au/Bi catalyst. Bi NPs produce straight NWs of larger diameter than Au/Bi NPs, possibly due to slow release of Bi from Au cores. Chemistry of solution based synthesis is too much complicated but concentration of reaction mixture, temperature, Cd/Se ratio, volume of catalyst and concentration of surface modifiers (phosphines and amines) govern the tuning of structural parameters for a competition between catalyzed and un-catalyzed growth of CdSe NWs.

Vapor based synthetic methods (CVD and VLS) show inferior control of morphology relative to solution based methods and ED methods. VLS is important for thick NWs used in application studies. Among all the synthetic methods i.e. templated ED, non templated ED, catalyzed and un-catalyzed solution based methods, solvothermal method, VLS methods and template wetting method, templated ED has given the best control over size, morphology and phase. However, nano-science is the appropriate term when we discuss CdSe NWs because we are far behind technical mass production.
CdSe NWs are in research phase for their device applications and no product (to the best of our knowledge) has been marketed consisting of CdSe NWs. Solar cell applications of CdSe NWs are inferior due to the presence of voids and can be enhanced by filling the voids with CdSe QDs. Filling of these voids with other chalcogenide semiconductor quantum dots is the future horizon of research. Photoconduction band width of 45 KHz for CdSe NWs is the best of all NW types but photoconductive gain is the lowest. Applications of CdSe NWs in field effect transistors are not very promising due to defects in the wires. Improvement of these applications by enhancement of electronic conduction via doping and/or removal of defects is the future goal of research.

ORCID iDs

Raja Azadur Hussain @ https://orcid.org/0000-0003-3053-9800

References

[1] Freudenberg J, Jänisch D, Hinkel F and Bunz U H F 2018 Immobilization strategies for organic semiconducting conjugated polymers Chem. Rev. 118 5398–689
[2] Wang S-P, Chang C-K, Yang S-H, Chang C-Y and Chao Y-C 2018 Novel hybrid light-emitting devices based on MAPbBr3 nanoplatelets/PV K nanocomposites and zinc oxide nanorod arrays Mater. Res. Express 5 015037
[3] Scaranella A, Reitano R, Priolo F and Mirtillo M 2019 Bismuth doping of silicone compatible thin films for telecommunications and visible light emitting devices Mater. Sci. Semicond. Process. 92 47–57
[4] Wongkaew N, Simsek M, Griesce C and Baeumner A J 2019 Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective Chem. Rev. 119 120–94
[5] Ibraheam A S, Al-Douri Y, Gopinath S C B and Hashim U 2016 A novel quaternary alloy (Cu2Zn1−xCdxsSnS4) nanostructured sensor for biomedical diagnosis Mater. Res. Express 3 085022
[6] Yun S, Zhang Y, Xu Q, Liu J and Qin Y 2019 Recent advance in new-generation integrated devices for energy harvesting and storage Nano Energy. 60600–19
[7] Zhou B, Yang Z, Xu J and Cao G 2018 Synergistic combination of semiconductor quantum dots and organic-inorganic halide perovskites for hybrid solar cells Coord. Chem. Rev. 374 279–313
[8] Spies M and Monroy E 2019 Nanowire photodetectors based on wurtzite semiconductor heterostructures Semicond Sci Technol. 34 035002
[9] Balasubramanian K and Swaminathan H 2018 Highly sensitive sensing of glutathione based on Förster resonance energy transfer between MoS2 donors and Rhodamine 6G acceptors and its insight Sensors 18 689–90
[10] Reiss P, Carrière M, Linchenieau C, Vaure L and Tamang S 2016 Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials Chem. Rev. 116 10731–819
[11] Hussain R A and Hussain I 2019 Fabrication and applications of nickel selenide J. Solid State Chem. 277 316–28
[12] Um–e–Habiba B A and Hussain R A 2016 Synthesis of iron chalcogenides from single source precursors Appl. Organomet. Chem. 30 783–95
[13] He X, Song Y, Wu L, Li C, Zhang J and Feng L 2018 Simulation of high-efficiency CdTe solar cells with Zn1−xMgxO window layer by SCAPS software Mater. Res. Express 5 065007
[14] Iqbal M Z and Khan S 2018 Progress in the performance of dye sensitized solar cells by incorporating cost effective counter electrodes Sol. Energy 160 130–52
[15] Qiu Y, Pan Z, Chen H, Ye D, Guo L, Fan Z and Yang S 2019 Current progress in developing metal oxide nanoray-based photoanodes for photoelectrochemical water splitting Sci. Bull. 64 1348–80
[16] Wang Q and Domen K 2019 Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies Chem. Rev. (https://doi.org/10.1021/acs.chemrev.9b00201)
[17] Du Y, Sheng H, Astruc D and Zhu M 2019 Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties Chem. Rev. (https://doi.org/10.1021/acscatal.8b00726)
[18] Gusain R, Gupta K, Joshi P and Khatri P O P 2019 Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review Adv. Collid. Interface Sci. 272 102099
[19] Peng L, Shah S A and Wei Z 2018 Recent developments in metal phosphate and sulfide electrocatalysts for oxygen evolution reaction Chin. J. Catal. 39 1575–93
[20] Li H, Zhang Q, Duan X, Wu X, Fan X, Zhu X, Zhuang X, Hu W, Zhou H and Pan A 2015 Lateral growth of composition graded atomic layer MoS2−xSe2x nanosheets J. Am. Chem. Soc. 137 5284–7
[21] Shamraiz U, Hussain R A, Badshah A, Raza B and Saba S 2016 Functional metal sulfides and selenides for the removal of hazardous dyes from Water J. Photochem. Photobiol B 159 33–41
[22] Li H, Duan X, Wu X, Zhuang X, Zhou H, Zhang Q, Zhu X, Hu W, Ren P and Guo P 2014 Growth of alloy MoS2-Se1−x nanosheets with fully tunable chemical compositions and optical properties J. Am. Chem. Soc. 136 3756–9
[23] Munir H, Bhiyani M R A, Korkmaz F and Nil M 2018 A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications Renew Sustain Energ Rev. 82 4159–69
[24] Gadda A, Ott J, Karadzhina-Ferrer A, Golovleva M, Kalliokoski M, Winkler A, Luukka P and Härkönen J 2019 Cadmium telluride x-ray pad detectors with different passivation dielectrics Nucl. Instrum. Meth. A 924 33–7
[25] Zhao L, Hu L and Fang X 2012 Growth and device application of CdSe nanostuctures Adv. Funct. Mater. 22 1531–66
[26] Klimov V I, Mikhailovski A, Hollingsworth J A, Leatherdale C A and Bawendi M G 2004 Optical amplifiers and lasers in, Google Patents
[27] Iijima S 1991 Helical microtubules of graphitic carbon Nature 354 56
[28] Kenny and Lim C T 2013 Synthesis, optical properties, and chemical–biological sensing applications of one-dimensional inorganic semiconductor nanowires Prog. Mater. Sci. 58 765–48
[29] Ali N M and Rafat N H 2017 Modeling and simulation of nanorods photovoltaic solar cell: a review Renewable Energ. 68 212–20
Shamraiz U, Hussain R A and Badshah A 2018 Fabrication and applications of copper sulfide nanowires

Shamraiz U, Badshah A, Hussain R A, Nadeem M A and Saba S 2017 Surfactant free fabrication of copper sulphide nanowires

Xu D, Shi X, Guo G, Gui L and Tang Y 2000 Electrochemical preparation of CdSe nanowire arrays

Kung S-C, Xing W, van der Veer W E, Yang F, Donavan K C, Cheng M, Hemmering J C and Penner R M 2011 Tunable photocathode sensitivity and bandwidth for lithographically patterned nanocrystalline cadmium selenide nanowires ACS Nano. 5 7627–39

Li Q, Brown M, Hemminger J and Penner R 2006 Luminescent polycrystalline cadmium selenide nanowires synthesized by cyclic electrodeposition/stripping coupled with step edge decoration Chem. Mater. 18 3432–41

Shpaisman N, Givan U and Patolsky F 2010 Electrochemical synthesis of morphology-controlled segmented CdSe nanowires ACS nano. 4 11901–6

Wang F, Dong A, Sun J, Tang R, Yu H and Buhro W E 2006 Solution−liquid−solid growth of semiconductor nanowires Inorg. Chem. 45 7531–21

Kuno M 2008 An overview of solution-based semiconductor nanowires: synthesis and optical studies Phys. Chem. Chem. Phys. 10 620–39

Li Z, Kornowski A, Myalitsin A and Mews A 2008 Formation of bismuth nanoparticle catalysts for the solution–solid synthesis of CdSe nanowires Small. 4 1698–702

Li Z, Kurtulus Ö, Fu N, Wang Z, Kornowski A, Pietsch U and Mews A 2009 Controlled synthesis of CdSe nanowires by solution–liquid–solid method Adv. Funct. Mater. 19 3650–61

Reim N, Littig A, Behm D and Mews A 2013 Controlled electrodeposition of bismuth nanoparticle catalysts for the solution–solid synthesis of CdSe nanowires on transparent conductive substrates J Am Chem Soc. 135 18520–7

Ma C and Wang Z I 2005 Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—a step towards nanomanufacturing Adv. Mater. 17 2635–9

Xiao B -b. and Xu Y.-b. 2011 VLS synthesis of disordered CdSe nanowires and optical properties of an individual CdSe nanowire Physica E 44 696–9

Ding L, Niu S, Pan C, Yu R, Zhang Y and Wang Z L 2012 Piezo–phototronic effect of CdSe nanowires Adv. Mater. 24 5470–5

Martin C R 1991 Template synthesis of polymeric and metal microtubules Adv. Mater. 3 457–9

Zhao L, Lu T, Yosel M, Steinhart M, Zacharias M, Gösele U and Schlecht S 2006 Single-crystalline CdSe nanostuctures: from primary grains to oriented nanowires Chem. Mater. 18 6094–6

Xu D, Shi X, Guo G, Gui L and Tang Y 2000 Electrochemical preparation of cdse nanowire arrays J. Phys. Chem. B 104 5061–3

Grebinski J W, Hull K L, Zhang J, Kossel T H and Kuno M 2004 Solution-based straight and branched CdSe nanowires Chem. Mater. 16 5260–72

Protsenko V V, Hull K L and Kuno M 2005 Disorder-induced optical heterogeneity in single cdse nanowires Adv. Mater. 17 2942–9

Shamraiz U, Hussain R A and Badshah A 2016 Fabrication and applications of copper sulfide (CuS) nanostructures J. Solid State Chem. 238 25–40

Shamraiz U, Badshah A, Hussain R A, Nadeem M A and Saba S 2017 Surfactant free fabrication of copper sulphide (CuS–Cu2S) nanoparticles from single source precursor for photocatalytic applications J Saudi Chem Soc. 21 390–8

Hussain W, Badshah A, Hussain R A, Akber M A, Bahadur A, Iqbal S, Farooq M U and Ali H 2017 Photocatalytic applications of CdS synthesized from singlet precursors Mater. Chem. Phys. 194 345–55

Yang Q, Tang K, Wang C, Qian Y and Zhang S 2002 PVA-assisted synthesis and characterization of CdSe and CdTe nanowires J. Phys. Chem. B 106 9227–30

Thoma S G, Sanchez A, Provencio P P, Abrams B L and Wölfchen J P 2005 Synthesis, optical properties, and growth mechanism of blue-emitting CdSe nanorods J Am Chem Soc. 127 7611–4

Pradhan N, Xu H and Peng X 2006 Colloidal CdSe quantum wires by oriented attachment Nano Lett. 6 720–4

Xi L and Lam Y M 2009 Controlling growth of CdSe nanowires through ligand optimization Chem. Mater. 21 3718–8

Xu L, Tan W X W, Boothroyd C and Lam Y M 2008 Understanding and controlling the growth of monodisperse CdSe nanowires in solution Chem. Mater. 20 5444–52

Washington I, A L and Strouse G F 2008 Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes J Am Chem Soc. 130 8916–22

Hussain R A, Badshah A, Younis A, Khan M D and Akhtar J 2014 Iron selenide films by aerosol assisted chemical vapor deposition from single source organometallic precursor in the presence of surfactants Thin Solid Films 567 58–63

Hussain R A, Badshah A, Yasin F, Khan M D and Tahir M N 2015 Aerosol-assisted chemical vapour deposition for iron selenide thin films from single source ferrocene-incorporated selenourea precursor in the presence of surfactants Ayst. J. Chem. 68 298–306

Hussain R A, Badshah A, Matwat S, Yasin F and Tahir M N 2014 Iron selenide nanoparticles coated on carbon nanotubes from single-source ferrocene incorporated selenourea precursor for fuel cell and photocatalytic applications J. Organomet. Chem. 769 58–63

Hussain R A, Badshah A and Lal B 2016 Fabrication, characterization and applications of iron selenide J. Solid State Chem. 243 179–89

Hussain R A, Badshah A, Khan M D, Haider N, Khan S I and Shah A 2015 Comparative temperature and surfactants effect on the morphologies of FeSe thin films fabricated by AACVD from a single source precursor with mechanism and photocatalytic activity Mater. Chem. Phys. 159 152–8

Hussain R A, Badshah A, Haider N, Khan M D and Lal B 2015 Effect of surfactants on the morphology of FeSe films fabricated from a single source precursor by aerosol assisted chemical vapour deposition J. Chem. Soc. 127 499–507

Hussain R A, Badshah A, Khan M D and Ahmad F 2019 Morphological changes under the influence of surfactants of fes fabricated from single source precursor via ascvd with mechanism and photocatalytic activity Rev. Mater. Sci. 9 1–7
[69] Li H, Wang X, Zhu X, Duan X and Pan A 2018 Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures Chem. Soc. Rev. 47 7504–21
[70] Li H, Liu H, Zhou L, Wu X, Pan Y, Ji W, Zheng B, Zhang Q, Zhuang X and Zhu X 2018 Strain-tuning atomic substitution in two-dimensional atomic crystals ACS nano. 12 4853–60
[71] Li H, Wu X, Liu H, Zheng B, Zhang Q, Zhu X, Wei Z, Zhuang X, Zhou H and Tang W 2016 Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution ACS nano. 11 981–7
[72] Shan C, Liu Z and Hark S 2007 CdSe nanowires with controllable growth orientations Appl. Phys. Lett. 90 193123
[73] Shan C, Liu Z and Hark S 2005 Highly oriented zinc blende CdSe nanowires Appl. Phys. Lett. 87 163108
[74] Shan C, Liu Z and Hark S 2005 Controlled growth of highly ordered CdSe one-dimensional nanostructures NanoTechnology 16 3133
[75] Shan C, Liu Z, Ng C and Hark S 2005 Structure and luminescence of pyramid-shaped CdSe nanostructures grown by metalorganic chemical vapor deposition Appl. Phys. Lett. 86 231106
[76] Wang X, Song W, Liu B, Chen G, Chen D, Zhou C and Shen G 2013 High-performance organic–inorganic hybrid photodetectors based on P3HT:CdSe nanowire heterojunctions on rigid and flexible substrates Adv. Funct. Mater. 23 1202–9
[77] Shalev E, Olsenberg E, Revach K, Popovitz-Biro R and Joselevich E 2017 Guided CdSe nanowires parallelly integrated into fast visible-range photodetectors ACS Nano. 11 213–20
[78] Ostwald W 1900 Über die vermeintliche isomerie des roten und gelben qucksilberoxys und die oberflächenspannung fester Körper Z. Phys. Chem. 34 495–503
[79] Yu Y, Kamat P V and Kuno M 2010 A CdSe nanowire/quintum dot hybrid architecture for improving solar cell performance Adv. Funct. Mater. 20 1464–72
[80] Fan Z, Chang P-C, Lu J G, Walter E C, Penner R M, Lin C.-h. and Lee H P 2004 Photoluminescence and polarized photodetection of single ZnO nanowires Appl. Phys. Lett. 85 6128–30
[81] Law M, Kind H, Messer B, Kim L and Yang P 2002 Photochemical sensing of NO3 with SnO2 nanoribbon nanosensors at room temperature Angew. Chem. Int. Ed. 41 2485–8
[82] Kang M, Lee S-J, Sim S-K, Kim H, Min B, Cho K, Kang G-T, Sung M-Y, Kim S and Han H S 2004 Photocurrent and photoluminescence characteristics of networked GaN nanowires J Appl. Phys. 43 6868
[83] Calarco R, Marso M, Richter T, Akyanat A L, Meijers R, Vd Hart A, Stoica T and Lüth H 2005 Size-dependent photocconductivity in MBE-grown GaN–nanowires Nano Lett. 5 981–4
[84] Paul G S and Agarwal P 2009 Persistent photocurrent and decay studies in CdS nanorods thin films J. Appl. Phys. 106 103705
[85] Jiang Y, Zhang W J, Jie J S, Meng X M, Fan X and Lee S-T 2007 Photoresponse properties of CdSe single-nanoribbon photodetectors Adv. Funct. Mater. 17 1795–800
[86] Sato M, Kawai S and Yamada F 1981 Heat treatment of CdSe thin films and application to photopotentiometers. 8 199–206
[87] Raturi A K, Thangaraj R, Ram P B, Tripati B B and Agnihotri O P 1983 Non-equilibrium carrier relaxation in sprayed CdSe films Thin Solid Films 106 257–61
[88] Capon J, De Baets J, De Rycke I, De Smet H, Van Calster A and Van Calster A 2004 Replication, Recombination, and Repair Proc Nat Acad Sci. (U.S.A) 101 17595–60
[89] Capon J, De Baets J, De Cubber A, De Smet H, Van Calster A and Van Calster A 1993 A lensless contact-type image sensor based on a CdSe photodiode array Sens. Actuators, A 37 546–51
[90] Capon J, De Baets J, De Cubber A, De Smet H, Van Calster A and Van Calster A 1994 Analysis of transient photocconductivity in CdSe: Cu: Cl thin films Phys. Status Solidi (a) 142 127–40
[91] Garcia V, Nair M, Nair P and Zingaro R 1996 Preparation of highly photosensitive CdSe thin films by a chemical bath deposition technique Semiconductor Sci. Tech. 11 627
[92] Pena D J, Minhdyo J K, Carado A J, Mallouk T E, Keating C D, Razavi B and Mayer T S 2002 Template growth of photocconductive metal – CdSe – metal nanowires J. Phys. Chem. B 106 7438–62
[93] Li Q and Penner R M 2005 Photocative cadmium sulfide hemicylindrical shell nanowire ensembles Nano Lett. 5 1720–5
[94] Gao T, Li Q and Wang T 2005 CdS nanobelts as photoconductors Appl. Phys. Lett. 86 173105
[95] Chen J, Xue K, An J, Tsang S, Ke N, Xu J, Li Q and Wang C 2005 Photoelectric effect and transport properties of a single CdS nanobrill Ultramicroscopy 105 275–80
[96] Jie J, Zhang W, Jiang Y, Meng X, Li Y and Lee S 2006 Photocative characteristics of single-crystal CdS nanoribbons Nano Lett. 6 1887–92
[97] Ishii M, Tomida J, Iwaya A, Hijima J and Takata M 2016 The Fanconi Anemia Pathway and Interstrand Cross-Link Repair DNA Replication, Recombination, and Repair pp 175–210(Berlin: Springer)
[98] Fan Z, Ho J C, Jacobson Z A, Razavi H and Javey A 2008 Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry Nat. Nanotechnol. 3 11066–70
[99] Streetman B G 2000 Solid state electronic devices / Ben G. Streetman and Sanjay Banerjee. 5th edn (Englewood Cliffs, NJ: Prentice Hall) International Editions, pper Saddle River, N.J.; Prentice Hall2000
[100] Jie J S, Zhang W J, Jiang Y and Lee S T 2006 Single-crystal CdSe nanobrill field-effect transistors and photoelectric applications Appl. Phys. Lett. 89 133118
[101] Ayvazian T, Xing W, Yan W and Penner R M 2012 Field-effect transistors from lithographically patterned cadmium selenide nanowire arrays ACS Appl Mater Inter. 4 4445–52
[102] Ayvazian T, van der Veer W E, Xing W, Yan W and Penner R M 2013 Electroeluminescent, polycrystalline cadmium selenide nanowire arrays ACS Nano. 7 9469–79
[103] Doh J-Y, Maher K N, Ouyang L, Yu C L, Park H and Park J 2008 Electrically driven light emission from individual CdSe nanowires Nano Lett. 8 4552–6
[104] Ridley B A, Nivi B and Jacobson J M 1999 All-inorganic field effect transistors fabricated by printing Science 286 746–9
[105] Byrne P D, Facchetti A and Marks T J 2008 High-performance thin-film transistors from solution-processed cadmium selenide and a self-assembled multilayer gate dielectric Adv. Mater. 20 2319–24
[106] Gao F and Shih I 2002 Preparation of thin-film transistors with chemical bath deposited CdSe and CdS thin films IEEE Trans. Electron Devices 49 15–8
[107] Kang M S, Sahu A, Norris D J and Frisbie C D 2010 Size-dependent electrical transport in CdSe nanocrystal thin films Nano Lett. 10 3727–32
[108] Skinner K, Dwyer C and Washburn S 2008 Quantitative analysis of individual metal–CdSe-metal nanowire field-effect transistors Appl. Phys. Lett. 92 112105
[109] Yan Y, Liao Z-M, Bié Y-Q, Wu H-C, Zhou Y-B, Fu X-W and Yu D-P 2011 Luminescence blue-shift of CdSe nanowires beyond the quantum confinement regime Appl. Phys. Lett. 99 103103
Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping. *Small.* **5** (2009) 345–50

Synthesis of high quality n-type CdSe nanobelts and their applications in nanodevices. *Phys. Chem. C* **113** (2009) 14478–81

High-performance CdSe: In nanowire field-effect transistors based on top-gate configuration with high-K non-oxide dielectrics. *Phys. Chem. C* **114** (2010) 4663–8

Enhanced field-emission and red lasing of ordered CdSe nanowire branched arrays. *Phys. Chem. C* **115** (2011) 57–61

Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing. *AIP Adv.* **4** (2014) 077110

ZnS branched architectures as optoelectronic devices and field emitters. *Adv. Mater.* **22** (2010) 2376–80

Ultrafine ZnS nanobelts as field emitters. *Adv. Mater.* **19** (2007) 2593–6

High-performance ZnO nanowire field-effect transistors. *Appl. Phys. Lett.* **89** (2006) 133113

Field emission from well-aligned zinc oxide nanowires grown at low temperature. *Appl. Phys. Lett.* **81** (2002) 3648–50

Fabrication and field emission of high-density silicon cone arrays. *Adv. Mater.* **14** (2002) 1308–11

Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays. *ACS Nano.* **3** (2009) 3949–59

Novel CdS nanostructures: synthesis and field emission. *Phys. Chem. C* **112** (2008) 11227–30

Cds and Lahmani M 2007 *Nanoscience: Nanotechnologies and Nanophysics* (Berlin: Springer)