First Larval Description of the Coastal Genus and Species Phucobius simulator (Coleoptera: Staphylinidae)

Authors: Jeon, Mi-Jeong, and Ahn, Kee-Jeong

Source: Florida Entomologist, 97(1) : 203-207

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.097.0126
FIRST LARVAL DESCRIPTION OF THE COASTAL GENUS AND SPECIES
PHUCOBIUS SIMULATOR (COLEOPTERA: STAPHYLINIDAE)

MI-JEONG JEON¹ AND KEE-JEONG AHN²,*
¹Exhibition and Education Division, National Institute of Biological Resources, Incheon 404-170, Republic of Korea
²Department of Biology, Chungnam National University, Daejeon 305-764, Republic of Korea

*Corresponding author; E-mail: kjahn@cnu.ac.kr

ABSTRACT

The late-instar larva of Phucobius simulator Sharp is described for the first time, being also the first larval description of the genus Phucobius Sharp. Nine unknown larvae were collected in association with adults of P. simulator from seashores of Korea and Japan. The unknown larvae were identified as P. simulator by DNA sequencing. Diagnostic characters of the species are provided, with illustrations.

Key words: Phucobius simulator, larval description, seashore, Staphylinidae

RESUMEN

Se describe por primera vez el último estadio larval de Phucobius simulator Sharp, siendo también la primera descripción de una larva del género Phucobius Sharp. Se recolectaron nueve larvas desconocidas en asociación con los adultos de P. simulator de la costa de Corea y de Japón. Se identificaron las larvas desconocidas como P. simulator por medio de la secuenciación de ADN. Se provee caracteres diagnósticos e ilustraciones de la especie.

Palabras Clave: Phucobius simulator, descripción larval, costa, Staphylinidae

The genus Phucobius Sharp contains 8 species (Herman 2001) and is confined to the seashores of the Oriental and eastern Palearctic Regions, and East Africa. Adults of the genus Phucobius are similar to those of the genus Cafius Stephens but lack spines on the anterior tibiae (Moore & Legner 1976; Smetana 1995). Adults and larvae are found under accumulated decaying seaweeds and logs. To date no late-instar larvae of the genus Phucobius have ever been described.

In this paper, we describe late-instar larvae of P. simulator for the first time through the association of larvae-adults with DNA sequences, and provide diagnostic characters with illustrations.

LATE-INSTAR LARVA OF
PHUCOBIUS SIMULATOR SHARP
(Fig. 1)

Diagnostic Combination

Among coastal staphylinid genera, late-instar larvae of Phucobius simulator are recognized by the following combination of characters: neck present; antenna with article 2 longer than 3, article 3 with 2 solenidia and 1 campaniform sensillum (Fig. 2); stipes a little shorter than maxillary palpus, mala with 1 apical seta (Fig. 3); mandible slender, with tiny internal tooth (Fig. 4); nasale middle 3 teeth distinctly separated from lateral teeth (Fig. 5); ligula short, 0.32 times as long as labial palpmere 1 (Fig. 6); tarsungulus with 3 spines (Fig. 7); tergite X shorter than 1st article of urogomphi.

Description

Length 11.0-13.0 mm. General body shape elongate, flattened, parallel-sided (Fig. 1). Body brown, but head light brown, abdomen dark brown.

Head

Sub-quadrate, almost equally wide from apical to basal margin. About 0.8 times as long as wide. Four stemmata present. Ecdysial sutures distinct and complete from near antennal insertion. Antenna (Fig. 2), 4-articled. Length of articles 1st = 4th < 3rd < 2nd; article 1 wider than...
long, transverse; 1 campaniform sensillum present on 1/3 of article 2; article 3 with 2 solenidia (IIIS1 and IIIS2) and 1 campaniform sensillum, 1 corn-type sensory appendage present; article 4 with 4 solenidia (IVS1–IVS4); article 3 and 4 each with 3 setae. Mentum with 3 pairs of setae. Gular sutures convergent in middle of head, divergent to apex.

Mouthparts

Maxilla (Fig. 3). Stipes a little shorter than maxillary palpus; mala with 1 seta at apex, small, elongate; maxillary palpus with 4 articles, a separate sclerotization forming a short ring at base in form of an extra article present, 1 seta and 1 campaniform sensillum present; length ratio of palpomeres 1st : 2nd : 3rd : 4th = 1:1.43:1.14:0.36; width of palpomeres 1st = 2nd > 3rd > 4th. Mandible (Fig. 4) slender, 2 macrorosettes present along outer surface, falciform, undivided at acute apex, tiny internal tooth present on apical region, almost symmetrical. Nasale (Fig. 5). Anterior margin of nasale with 9 teeth divided into 3 distinct clusters (1 middle and 2 lateral), each cluster with 3 teeth; middle 3 teeth pointed (LT4 and LT5), central tooth (LT5) smallest, the last and penultimate teeth (LT 1 and LT2) very weak. Ten setae present on each side of midline. Labium (Fig. 6). Labial palpus with 3 articles; length ratio of palpomeres 1st : 2nd : 3rd = 1.0:0.47:0.16, conical ligula short, 0.32 times as long as palpomere 1, pubescent at base.

Thorax

Pronotum subquadrate, sclerotized, setae scattered at sides and on disc. Pronotum about 2 times longer than mesonotum. Mesonotum length subequal to metanotum, both as long as posterior margin of pronotum.

Legs (Fig. 7)

Coxa, trochanter, femur, tibia, and tarsungulus distinguishable, tarsungulus with 3 articulated spines.

Abdomen

Abdominal tergites I–VIII transverse, parallel-sided, slightly narrowed to apex. Tergites and sternites divided by mid-longitudinal line; tergite X about 5.0 times longer than wide. Urogomphi two-articled, longer than tergite X; article 1 slender, longer than tergite X; article 2 with 2 small setae and 1 large seta arising from apex.

Fig. 1. Phucobius simulator. Habitus of larva, length 12.0 mm.
Specimens Examined

KOREA: Gyeongnam Prov., Geoje Isl., Hwangpo beach, 28-VI-2004, J.-S. Park and K.-J. Ahn, ex under seaweeds (CNUIC, 1); Gangwon Prov., Gangneung-si, Geumjin-ri, Okgye beach, N 37° 37' 37.2" E 129° 03' 04.8" 7 m, 4-IX-2013, K.-J. Ahn, I. S. Yoo, J. H. Song, under log near estuary (CNUIC, 2); Japan: Hokkaido, Nemuro, Shunkunitai, 24-VIII-1999, K.-J. Ahn, ex under stones on salt marsh (CNUIC, 6).

Remarks

Most specimens were collected under logs or stones in an estuary (Fig. 8). The late-instar larva of *Phucobius simulator* resembles that of *Cafius*.
vestitus (Sharp) in shape and structures of mouthparts including the teeth on the nasale. They are also similar in the shape of antenna and urogomphi. But they differ from each other in the ratios of following characters presented in Table 1.

ADDITIONAL MOLECULAR EVIDENCE FOR THE IDENTIFICATION OF LATE-INSTAR LARVAE OF P. SIMULATOR

Unknown larvae were collected with adults of Phucobius simulator from seashores of Korea and Japan, and we attempted to associate them by gene sequencing of individuals. The partial cytochrome oxidase II gene was sequenced from the unknown larvae and several identified adult specimens of Phucobius (see Jeon & Ahn 2007 for the method). The sequences are deposited in GenBank under accession numbers (Table 2).

In previous studies of the genus Cafius known to be closely related to Phucobius (Jeon & Ahn 2005, 2007; Jeon et al. 2012), the intraspecific p-distance of cytochrome oxidase II gene varied in the range 0-2.93% and the minimum interspecific p-distance was 11.79%. The pairwise distances of P. simulator between adult and larva were 1.23-1.72%, placed within the range of intraspecific p-distances compared to the former results.

We added the present Phucobius data (Table 2) to the previous Cafius data (Jeon & Ahn 2007) and performed a parsimony analysis with CO II genes in TNT 1.1 (Goloboff et al. 2007) using the implicit enumeration option. The length of the COII sequences included in the analysis was 344 bp. The branch support values were estimated by bootstrapping with 100 replications. The analysis showed that specimens of a single species formed cohesive assemblages (Fig. 9). The unknown larva grouped unambiguously with the adult specimens of Phucobius simulator. Therefore, we identified the unknown larvae as probable late-instar larvae of P. simulator.

ACKNOWLEDGMENTS

We thank the W. Hennig Society for sponsorship of the program, TNT. Comments by J. H. Frank (Univ. of Florida, Gainesville) significantly improved the manuscript. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0073111 and 2012-031412).

Table 1. Differences between late-instar larvae of Phucobius simulator and Cafius vestitus.

	P. simulator	C. vestitus
LT1 and LT2 on nasale	not distinct	distinct
length ratio of LT5 to LT4	about 0.75	about 0.87
length ratio of ligula to labial palpomere 1	about 0.32	about 0.67
length ratio of labial palpomere 1 to 2	about 2.13	about 1.36

Table 2. Species, collection information, and GenBank accession numbers for Cytochrome oxidase II sequences investigated in this study to identify larvae collected in association with adults of Phucobius simulator from seashores of Korea and Japan.

Species	Collection information	GenBank accession
Phucobius simulator (larva)	Korea: Geoje, Hwangpo Beach,	EF450220
P. simulator (adult)	Korea: Jeju, Seongsan, Ihchulbong,	EF450221
P. simulator (adult)	Korea: Jeju, Seongsan, Ihchulbong,	EF530919
Phucobius sp. (adult)	Australia: Queensland, Daintree N.P., Beach of Wonga	EF530920
Phucobius sp. (adult)	Philippines: Panglao Isl., Libaong beach	EF530921
Fig. 9. Bootstrapping results in TNT based on 100 replications with branch support values. A parsimony analysis in TNT 1.1 was performed on the CO II Phucobius and Cafius 344 bp data, and the branch support values were estimated by bootstrapping with 100 replications.

REFERENCES CITED

GOLLOFF, P., FARRIS, J., AND NIXON, K. 2007. T.N.T. version 1.1: Tree analysis using new technology. Program and documentation, available from the authors, and at www.zmuc.dk/public/phylogeny.

HERMAN, L. H. 2001. Catalog of the Staphylinidae (Insecta: Coleoptera). 1758 to the end of 161 the second millennium. Parts I-VII. Bull. Amer. Mus. Nat. Hist. 265: 1-4218.

JEON, M.-J., AND AHN, K.-J. 2005. First larval descriptions for Cafius Curtis (Coleoptera: Staphylinidae: Staphylininae) in Korea. J. Kansas Entomol. Soc. 78(3): 261-271.

JEON, M.-J., AND AHN, K.-J. 2007. Descriptions of late-instar larvae of three littoral Cafius species (Coleoptera: Staphylinidae) by association of life stage using DNA sequences. Florida Entomol. 90(3): 465-474.

JEON, M.-J., SONG, J.-H., AND AHN, K.-J. 2012. Molecular phylogeny of the marine littoral genus Cafius (Coleoptera: Staphylinidae: Staphylininae) and implications for classification. Zool. Scr. 41(2): 150-159.

MOORE, I., AND LEGNER, E. F. 1976. Intertidal rove beetles (Coleoptera: Staphylinidae). Chapter 19, pp. 521-551 In L. Cheng [ed.], Marine Insects. North Holland Publisher, New York.

SMETANA, A. 1995. Rove beetles of the subtribe Philonthina of America north of Mexico (Coleoptera: Staphylinidae). Classification, phylogeny and taxonomic revision. Mem. Entomol., Intl. 3: 1-946.

Downloaded From: https://bioone.org/journals/Florida-Entomologist on 02 Nov 2020
Terms of Use: https://bioone.org/terms-of-use