NOTE ON K-STABILITY OF PAIRS

SONG SUN

Abstract. We prove that a pair (X, D) with X Fano and D an anti-canonical divisor is K-unstable for negative angles, and is K-semistable for zero angle.

1. Introduction

Let X be a Fano manifold. It was first proposed by Yau [20] that finding Kähler-Einstein metrics on X should be related to a certain algebro-geometric stability. In [17], the notion of K-stability was introduced by Tian. This has been conjectured to be equivalent to the existence of a Kähler-Einstein metric. One direction is essentially known, in a wider context of constant scalar curvature Kähler metrics [3]. Namely, it is proved by Donaldson [4] that the existence of a constant scalar curvature metric implies K-semistability. This was later strengthened by Stoppa [15] to K-stability in the absence of continuous automorphism group, and by Mabuchi [9] to K-polystability in general.

Recently in [6] (see also, [10], [7]) K-stability has been defined for a pair (X, D), where X is a Fano manifold and D is a smooth anti-canonical divisor. The definition involves a parameter $\beta \in \mathbb{R}$. At least when $\beta \in (0, 1]$, the K-stability of a pair (X, D) with parameter β is conjectured to be equivalent to the existence of a Kähler-Einstein metric on X with cone singularities of angle $2\pi\beta$ transverse to D. This generalization grew out of a new continuity method for dealing with the other direction of the above conjecture, as outlined in [5]. Note heuristically the case $\beta = 0$ corresponds to a complete Ricci flat metric on the complement $X \setminus D$. By the work of Tian-Yau [18] such a metric always exists if D is smooth. In this short article we prove the following theorem, which may be viewed as an algebraic counterpart of the differential geometric result of Tian-Yau.

Theorem 1.1. Any pair (X, D) is strictly K-semistable with respect to angle $\beta = 0$, and K-unstable with respect to angle $\beta < 0$.

By the definition of K-stability for pairs which will be recalled in the next section, the Futaki invariant depends linearly on the angle β. Thus Theorem 1.1 leads immediately to the following

Corollary 1.2. If X is K-stable(semi-stable), then for any smooth anticanonical divisor D, the pair (X, D) is K-stable(semi-stable) with respect to angle $\beta \in (0, 1]$.

Date: January 16, 2013.
This corollary provides evidence to the picture described in [5] that a smooth Kähler-Einstein metric on X should come from a complete Calabi-Yau metric on $X \setminus D$ by increasing the angle from 0 to 2π. The relevant definitions will be given in the next section. The strategy to prove K-unstability for negative angles is by studying a particular test configuration, namely the deformation to the normal cone of D. To deal with the zero angle case we shall construct “approximately balanced” embeddings using the Calabi-Yau metric on D. In [11], Odaka proved that a Calabi-Yau manifold is K-stable, by a purely algebro-geometric approach. It is very likely that his method can give an alternative proof of the above theorem, but the one we take seems to be more quantitative.

2. K-stability for pairs

We first recall the definition of K-stability.

Definition 2.1. Let (X, L) be a polarized manifold. A *test configuration* for (X, L) is a \mathbb{C}^* equivariant flat family $(\mathcal{X}, \mathcal{L}) \to \mathbb{C}$ such that $(\mathcal{X}_1, \mathcal{L}_1)$ is isomorphic to (X, L). $(\mathcal{X}, \mathcal{L})$ is called *trivial* if it is isomorphic to the product $(X, L) \times \mathbb{C}$ with the trivial action on (X, L) and the standard action on \mathbb{C}.

Suppose D is a smooth divisor in X, then any test configuration $(\mathcal{X}, \mathcal{L})$ induces a test configuration $(\mathcal{D}, \mathcal{L})$ by simply taking the flat limit of the \mathbb{C}^* orbit of D in X_1. We call $(\mathcal{X}, \mathcal{D}, \mathcal{L})$ a test configuration for (X, D, L). Given any test configuration $(\mathcal{X}, \mathcal{D}, \mathcal{L})$ for (X, D, L), we denote by A_k and A_0 the infinitesimal generators for the \mathbb{C}^* action on $H^0(X_0, \mathcal{L}_0^k)$ and $H^0(D_0, \mathcal{L}_0^k)$ respectively. By general theory for k large enough we have the following expansions

$$d_k := h^0(X_0, \mathcal{L}_0^k) = a_0 k^n + a_1 k^{n-1} + O(k^{n-2}),$$

$$w_k := \text{tr}(A_k) = b_0 k^{n+1} + b_1 k^n + O(k^{n-1}),$$

$$\tilde{d}_k := h^0(D_0, \mathcal{L}_0^k) = \tilde{a}_0 k^{n-1} + \tilde{a}_1 k^{n-2} + O(k^{n-3}),$$

$$\tilde{w}_k := \text{tr}(\tilde{A}_k) = \tilde{b}_0 k^n + \tilde{b}_1 k^{n-1} + O(k^{n-2}).$$

Definition 2.2. For any real number β, the Futaki invariant of a test configuration $(\mathcal{X}, \mathcal{D}, \mathcal{L})$ with respect to angle β is

$$\text{Fut}(\mathcal{X}, \mathcal{D}, \mathcal{L}, \beta) = \frac{2(a_1 b_0 - a_0 b_1)}{a_0} + (1 - \beta)(\tilde{b}_0 - \tilde{a}_0 b_0).$$

When $\beta = 1$ we get the usual Futaki invariant of a test configuration $(\mathcal{X}, \mathcal{L})$

$$\text{Fut}(\mathcal{X}, \mathcal{L}) = \frac{2(a_1 b_0 - a_0 b_1)}{a_0}.$$

Definition 2.3. A polarized manifold (X, L) is called *K-stable(semistable)* if $\text{Fut}(\mathcal{X}, \mathcal{L}) > 0(\geq 0)$ for any nontrivial test configuration $(\mathcal{X}, \mathcal{L})$. Similarly, (X, D, L) is called *K-stable(semistable) with respect to angle β* if $\text{Fut}(\mathcal{X}, \mathcal{D}, \mathcal{L}, \beta) > 0(\geq 0)$ for any nontrivial test configuration $(\mathcal{X}, \mathcal{D}, \mathcal{L})$.

When the central fiber \((X_0, D_0)\) is smooth, by Riemann-Roch the Futaki invariant then has a differential geometric expression as
\[
\text{Fut}(X, D, L, \beta) = \int_{X_0} (S-S) H \frac{\omega^n}{n!} - (1-\beta) \left(\int_{D_0} H \frac{\omega^{n-1}}{(n-1)!} \frac{\text{Vol}(D_0)}{\text{Vol}(X_0)} \int_{X_0} H \frac{\omega^n}{n!} \right),
\]
where \(\omega\) is an \(S^1\) invariant Kähler metric in \(2\pi c_1(L_0)\) and \(H\) is the Hamiltonian function generating the \(S^1\) action on \(L_0\). This differs from the usual Futaki invariant by an extra term which reflects the cone angle.

The above abstract notion of K-stability is closely related to Chow stability for projective varieties, which we now recall. Given a \(\mathbb{C}^*\) action on \(\mathbb{CP}^N\), and suppose the induced \(S^1\) action preserves the Fubini-Study metric. Then the infinitesimal generator is given by a Hermitian matrix, say \(A\). The Hamiltonian function for the \(S^1\) action on \(\mathbb{CP}^N\) is
\[
H_A(z) = \frac{z^*Az}{|z|^2}.
\]
Given a projective manifold \(V\) in \(\mathbb{CP}^N\), we define the center of mass of \(V\) with respect to \(A\) to be
\[
\mu(V; A) = -\text{Tr}(\mu(V) \cdot A) = -\int_V H_A d\mu_{FS} + \frac{\text{Vol}(V)}{N+1} \text{Tr} A.
\]
Notice this vanishes if \(A\) is a scalar matrix. The definition is not sensitive to singularities of \(V\) so one may define the Chow weight of any algebraic cycles in a natural way. It is well-known that the \(CH(e^{tA}.V, A)\) is a decreasing function of \(t\), see for example [4]. So
\[
CH(V, A) \leq CH(V_\infty, A),
\]
where \(V_\infty\) is the limiting Chow cycle of \(e^{tA}.V\) as \(t \to -\infty\). \(V_\infty\) is fixed by the \(\mathbb{C}^*\) action and then \(CH(V_\infty, A)\) is an algebraic geometric notion, i.e. independent of the Hermitian metric we choose on \(\mathbb{CP}^{N+1}\).

This well-known theory readily extends to pairs, see [3, 4]. We consider a pair of varieties \((V, W)\) in \(\mathbb{CP}^N\) where \(W\) is a subvariety of \(V\). Given a parameter \(\lambda \in [0, 1]\), we define the center of mass of \((V, W)\) with parameter \(\lambda\)
\[
\mu(V, W; \lambda) = \lambda \int_V \frac{z^*zd\mu_{FS}}{|z|^2} + (1-\lambda) \int_W \frac{z^*zd\mu_{FS}}{|z|^2} - \lambda \frac{\text{Vol}(V) + (1-\lambda)\text{Vol}(W)}{N+1} \text{Id},
\]
and the Chow weight with parameter \(\lambda\):
\[
CH(V, W; A, \lambda) = -\text{Tr}(\mu(V, W; \lambda) \cdot A).
\]
A pair \((V, W)\) with vanishing center of mass with parameter \(\lambda\) is called a \(\lambda\)-balanced embedding.

Now given a test configuration \((X, D, L)\), it is explained in [13] and [4] (see also [12]) that for \(k\) large enough one can realize it by a family of projective
schemes in \(\mathbb{P}(H^0(X, L^k)^*) \) with a one parameter group action. Moreover one could arrange that the fiber \((X_1, D_1, L_1)\) is embedded into \(\mathbb{P}(H^0(X, L^k)^*) \) with a prescribed Hermitian metric, and the \(\mathbb{C}^* \) action is generated by a Hermitian matrix \(-A_k\) (negative sign because we are taking the dual). Then as in [14] the Futaki invariant is the limit of Chow weight:

\[
\lim_{k \to \infty} k^{-n}CH_k(X_0, D_0, -A_k, \lambda) = Fut(X, D, L, \beta),
\]

with \(\beta = \frac{3\lambda - 2}{\chi} \).

3. Proof of the main theorem

From now on we assume \(X \) is a Fano manifold of dimension \(n \), \(D \) is a smooth anti-canonical divisor and the polarization is given by \(L = -K_X \). We first prove the part of unstability in theorem 1.1, by considering the \(\nu \) of the normal bundle blow up \(D \) smooth anti-canonical divisor and the polarization is given by \(X \) we get test configurations \((\pi_0, D_0, \beta)\) with \(\beta = \frac{3\lambda - 2}{\chi} \). Using the short exact sequence

\[
0 \to H^0(X, L^{i-1}) \to H^0(X, L^i) \to H^0(D, L^i) \to 0,
\]

we obtain

\[
H^0(X_0, L^k) = H^0(X, L^k)/tH^0(X, L^k) = H^0(X, L^{(1-c)k}) \oplus \bigoplus_{i=0}^{ck-1} t^{ck-i}H^0(D, L^{k-i}).
\]

This is indeed the weight decomposition of \(H^0(X_0, L^k) \) under the \(\mathbb{C}^* \) action. Note the weight is \(-1\) on \(t \). So

\[
\dim H^0(X_0, L^k) = \dim H^0(X, L^{(1-c)k}) + \sum_{i=0}^{ck-1} \dim H^0(D, L^{k-i}) = \dim H^0(X, L^k).
\]
This actually shows the flatness of the family \((X, D, L)\). Thus by Riemann-Roch,

\[
a_0 = \frac{1}{n!} \int_X c_1(L)^n,
\]

and

\[
a_1 = \frac{1}{2(n-1)!} \int_X c_1(-K_X) \cdot c_1(L)^{n-1} = \frac{n a_0}{2}.
\]

The weight is given by

\[
w_k = - \sum_{i=0}^{ck-1} (ck - i) \dim H^0(D, L^{k-i})
\]

\[
= - \sum_{i=0}^{ck-1} (ck - i) \frac{(k - i)^{n-1}}{(n - 1)!} \int_D c_1(L)^{n-1} + O(k^{n-3})
\]

\[
= -n a_0 \int_0^c (c - x)(1 - x)^{n-1} dx \cdot k^{n+1} = -\frac{nca_0}{2} k^n + O(k^{n-1}).
\]

So

\[
b_0 = \left(\frac{1 - (1 - c)^{n+1}}{n + 1} - c \right) a_0,
\]

and

\[
b_1 = -\frac{nca_0}{2}.
\]

Thus the ordinary Futaki invariant for the test configuration \((X, L)\) is given by

\[
Fut_c(X, L) = \frac{2(a_1 b_0 - a_0 b_1)}{a_0} = n(\frac{1 - (1 - c)^{n+1}}{n + 1})a_0.
\]

Note

\[
H^0(D, L^k_c) = H^0(D \times \mathbb{C}, L^k \otimes (t)^ck) = t^{ck} \mathbb{C}[t] H^0(D, L^k).
\]

So

\[
H^0(D_0, L^k_c) = H^0(D, L^k_c) / t H^0(D, L^k_c) = t^{ck} H^0(D, L^k).
\]

Thus we see

\[
\tilde{a}_0 = \int_D \frac{c_1(L)^{n-1}}{(n - 1)!} = na_0,
\]

and

\[
\tilde{b}_0 = -c \int_D \frac{c_1(L)^{n-1}}{(n - 1)!} = -nca_0.
\]

Therefore,

\[
Fut_c(X, D, \beta) = Fut_c(X, L) + (1 - \beta)(\tilde{b}_0 - \frac{\tilde{a}_0}{a_0} b_0)
\]

\[
= [n(\frac{1 - (1 - c)^{n+1}}{n + 1}) + (1 - \beta)(-nc + n(c - \frac{1 - (1 - c)^{n+1}}{n + 1}))]a_0
\]

\[
= n\beta \frac{1 - (1 - c)^{n+1}}{n + 1} a_0.
\]

Therefore for \(\beta < 0\) this particular test configuration gives rise to unstability, and for \(\beta = 0\) the pair \((X, D)\) can not be stable.
Choosing an orthonormal basis of orthogonal. We can put an arbitrary metric on $H^0(X,L^{s-1})$, and make the splitting (3.1) orthogonal. We also identify the vector spaces for $D \rightarrow f$ arbitrary embedding of (X,D), let C be the union of all these $N(D_{j-1},D_j)$ together with $f_{k-1}(X)$. Then it is not hard to see that as a pair of Chow cycles (X_k,D_k) lies in the closure of the $PGL(d_k;\mathbb{C})$ orbit of a smooth embedding of (X,D) in $\mathbb{P}(H^0(X,L^k))$. We want to estimate its center of mass. The following two lemmas involve some calculation and the proof will be deferred to the end of this section.

Lemma 3.1. For $s \leq j \leq k$ we have

$$\pi_{j*}(\omega_{FS}^n) = \sum_{i=0}^{n-1} \omega_j^i \wedge \omega_{j-1}^{n-1-i},$$

where $\omega_j = f_j^*\omega_{FS}$.

This lemma implies that

$$Vol(N(D_{j-1},D_j)) = \frac{1}{n!} \sum_{i=0}^{n-1} j^i (j-1)^{n-1-i} \cdot (n-1)! Vol(D) = (j^n - (j-1)^n) Vol(X).$$

Summing over j we see that $Vol(X_k) = k^n Vol(X)$.

Notice $N(D_{j-1},D_j)$ can only contribute to the $H^0(D,L^{j-1})$ and $H^0(D,L^j)$ components of the center of mass of X_k. Denote by $Z_j = (Z_j^1,\cdots,Z_j^n)$ the homogeneous coordinates on $H^0(D,L^j)$ for $s \leq j \leq k$, and by Z_{s-1} the homogeneous coordinate on $H^0(X,L^{s-1})$. Then we have

Lemma 3.2. For $s \leq j \leq k$ we have

$$\pi_{j*} \frac{Z_j Z_{j-1}^*}{|Z_j|^2 + |Z_{j-1}|^2} \omega_{FS}^n = 0,$$
The induced metric \(\omega_j \) is related to the original metric \(\omega_0 \) by the “density of state” function:

\[
\omega_j = j \omega_0 + \sqrt{-1} \partial \overline{\partial} \log \rho_j(\omega_0).
\]

It is well-known that we have the following expansion (see [2], [21], [8], [10])

\[
\rho_j(\omega_0) = j^{n-1} + \frac{S(\omega_0)}{2} j^{n-2} + O(j^{n-3}) = j^{n-1} + O(j^{n-3}),
\]

since \(\omega_0 \) is Ricci flat. Thus

\[
\omega_j^{n-1-i} = j^i (j-1)^{n-1-i} \omega_0^{n-1}(1 + O(j^{-3})).
\]

To estimate \(\mu_j \) recall we have chosen an orthonormal basis \(\{ s^j_i \} \) of \(H^0(D, L^j) \) and we can assume \(\mu_j \) is a diagonal matrix. Then for \(s \leq j \leq k-1 \) we obtain

\[
\mu_j(X_k) = \int_D \frac{|s^j_i|^2 (1 + O(j^{-3}))}{j^{n-1} + O(j^{n-3})} \sum_{i=0}^{n-1} \frac{i+1}{n+1} j^i (j-1)^{n-1-i} \frac{n-i}{n+1} (j+1)^i j^{n-1-i} \omega_0^{n-1} \frac{1}{n!}.
\]

It is easy to see that

\[
\sum_{i=0}^{n-1} \left(\frac{i+1}{n+1} j^i (j-1)^{n-1-i} + \frac{n-i}{n+1} (j+1)^i j^{n-1-i} \right) = nj^{n-1} + O(j^{n-3}).
\]

Thus

\[
\mu_j(X_k) = 1 + O(j^{-2}).
\]

For \(j = k \), we have

\[
\mu_k(X_k) = 1/2 + O(k^{-1}).
\]

For \(j = s - 1 \), we have

\[
\mu_{s-1}(X_k) = O(1).
\]
The center of mass of the pair \((X_k, D_k)\) with respect to \(\lambda = 2/3\) is given by

\[
\mu(X_k, D_k, 2/3) = \frac{2}{3} \mu(X_k) + \frac{1}{3} \mu(D_k) - \mu \cdot Id,
\]

where we denote

\[
\mu = \frac{2Vol(X_k) + Vol(D_k)}{3d_k} = \frac{2}{3} + O(k^{-2}).
\]

Thus for \(s \leq j \leq k - 1\) and \(0 \leq l \leq n_j\) we have

\[
\mu_j^l(X_k, D_k, 2/3) = O(j^{-2}) + O(k^{-2}).
\]

Since \(n_j\) is a polynomial of degree \(n - 1\) in \(j\), we obtain

\[
|\mu_j(X_k, D_k, 2/3)|_2 = \left(\sum_{l=0}^{n_j} |\mu_j^l(X_k, D_k, 2/3)|^2 \right)^{1/2} = O(\frac{n}{\sqrt{2}}),
\]

and

\[
\sum_{j=s}^{k-1} |\mu_j(X_k, D_k, 2/3)|_2 = O(k^{\frac{n}{\sqrt{2}}}).
\]

For \(j = k\), we have

\[
\mu_k^l(D_k) = \int_D \frac{|s_k|^2}{k^{n-1} + O(k^{n-3})} (1 + O(k^{-2})) \frac{k^{n-1} \omega_0^{n-1}}{(n-1)!} = 1 + O(k^{-2}).
\]

So

\[
\mu_k^l(X_k, D_k) = O(k^{-1}),
\]

and

\[
|\mu_k(X_k, D_k)|_2 = O(k^{\frac{n}{\sqrt{2}}}).
\]

Therefore we obtain

\[
|\mu(X_k, D_k)|_2 = O(k^{\frac{n}{\sqrt{2}}}).
\]

So for a smoothly embedded \((X, D)\) in \(\mathbb{P}(H^0(X, L_k))\) we have

\[
\inf_{g \in PGL(d_k; \mathbb{C})} |\mu(g(X, D))|_2 = O(k^{\frac{n}{\sqrt{2}}}).
\]

In particular there are embeddings \(\iota_k : (X, D) \to \mathbb{P}(H^0(X, L_k))\) such that

\[
|\mu(\iota_k(X, D))|_2 = O(k^{\frac{n}{\sqrt{2}}}).
\]

Now any test configuration \((X, D, L)\) can be represented by a family in \(\mathbb{P}(H^0(X, L^k))\) such that the fiber \((X_1, D_1, L_1)\) is embedded by \(\iota_k\) and the \(\mathbb{C}^*\) action is generated by a Hermitian matrix \(A_k\). Again by general theory \(|A_k|^2 = Tr A_k^2 = O(k^{n+2})\). Therefore by monotonicity of the Chow weight we obtain

\[
CH_k(X_0, D_0, -A_k, 2/3) \geq CH_k(X_1, D_1, -A_k, 2/3) \geq -\inf_{g \in PGL(d_k; \mathbb{C})} |\mu(g(X, D))|_2 \cdot |A_k|_2 \geq -O(k^{n+\frac{2}{2}}).
\]

Thus by (2.2)

\[
Fut(X, D, L, 0) = \lim_{k \to \infty} k^{-n} CH_k(X_0, D_0, -A_k, \frac{2}{3}) \geq 0.
\]
This finishes the proof of Theorem 1.1.

Now we prove Lemmas 3.1 and 3.2. In general suppose there are two embeddings \(f_1 : D \to \mathbb{P}^l \) and \(f_2 : D \to \mathbb{P}^m \). As before, let \(N(D) \) be the variety in \(\mathbb{P}^{l+m+1} \) containing all points of the form \((tf_1(x), sf_2(x))\) where \(t, s \in \mathbb{C} \). Intuitively \(N(D) \) is ruled by all lines connecting \(f_1(x) \) and \(f_2(x) \) for \(x \in D \).

Choose a local coordinate chart \(U \) in \(D \) such that the image \(f_1(U) \) and \(f_2(U) \) are contained in a standard coordinate chart for the projective spaces \(\mathbb{P}^l \) and \(\mathbb{P}^m \) respectively. Let \([1 : z]\) and \([1 : w]\) be local coordinates in \(\mathbb{P}^l \) and \(\mathbb{P}^m \). Under unitary transformations we may assume \(f_1(x_0) = [1 : 0] \) and \(f_2(x_0) = [1 : 0] \). The line connecting \(f_1(x_0) \) and \(f_2(x_0) \) is parametrized as \([1 : 0 : t : 0]\) for \(t \in \mathbb{C} \). Along this line we have

\[
\omega_{FS} = \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \log((1+|t|^2)^2 + |t|^2|w|^2)
= \frac{\sqrt{-1}}{2\pi} (1 + |t|^2) \sum_i dz^i \wedge d\bar{z}^i + |t|^2(1 + |t|^2) \sum_j dw^j \wedge d\bar{w}^j + dt \wedge d\bar{t}.
\]

Thus

\[
\omega_{FS}^n = n(\frac{\sqrt{-1}}{2\pi})^n(1 + |t|^2)^{-n-1}(\sum_i dz^i \wedge d\bar{z}^i + |t|^2 \sum_j dw^j \wedge d\bar{w}^j)^n \wedge dt \wedge d\bar{t}.
\]

Hence integrating along the \(\mathbb{P}^1 \) we get

\[
\int_{\mathbb{P}^1} \omega_{FS}^n = \frac{1}{2\pi} \int_{\mathbb{C}} n(\omega_1 + |t|^2 \omega_2)^{n-1} \wedge (1 + |t|^2)^{-n-1} \sqrt{-1} dt \wedge d\bar{t}
= \frac{1}{2\pi} \int_0^\infty n \sum_{j=0}^{n-1} \binom{n-1}{j} \omega_1^j \wedge \omega_2^{n-1-j} x^j (1 + x)^{-n-1} dx
= \sum_{j=0}^{n-1} \omega_1^j \wedge \omega_2^{n-1-j}.
\]

This proves lemma 3.1.

For the center of mass we compute

\[
\int_{\mathbb{P}^1} \frac{1}{1 + |t|^2} \omega_{FS}^n = \sum_{j=0}^{n-1} \frac{j + 1}{n + 1} \omega_1^j \wedge \omega_2^{n-1-j},
\]

and

\[
\int_{\mathbb{P}^1} \frac{|t|^2}{1 + |t|^2} \omega_{FS}^n = \sum_{j=0}^{n-1} \frac{n - j}{n + 1} \omega_1^j \wedge \omega_2^{n-1-j}.
\]

Thus globally we obtain

\[
\int_{N(D)} \frac{zz^*}{|z|^2 + |w|^2} \omega_{FS}^n = \int_D \frac{zz^*}{|z|^2} \sum_{j=0}^{n-1} \frac{j + 1}{n + 1} \omega_1^j \wedge \omega_2^{n-1-j},
\]

and

\[
\int_{N(D)} \frac{ww^*}{|z|^2 + |w|^2} \omega_{FS}^n = \int_D \frac{ww^*}{|w|^2} \sum_{j=0}^{n-1} \frac{n - j}{n + 1} \omega_1^j \wedge \omega_2^{n-1-j}.
\]
Also notice by symmetry of $N(D)$ under the map $w \mapsto -w$ we have

$$\int_{N(D)} \frac{z^w}{|z|^2 + |w|^2} \omega^n_F S = 0.$$

Similarly

$$\int_{N(D)} \frac{wz^w}{|z|^2 + |w|^2} \omega^n_F S = 0.$$

This proves lemma 3.2.

Remark 3.3. In the case when X is \mathbb{P}^1 and D consists of two points, one can indeed find the precise balanced embedding for $\lambda = 2/3$. In \mathbb{P}^k let L be the chain of lines L_i connecting p_i and p_{i+1} ($0 \leq i \leq k-1$), where p_i is the i-th coordinate point. Then it is easy to see that L is the degeneration limit of a smooth degree k rational curve, and it is exactly $\frac{2}{3}$ balanced. It is well-known that a rational normal curve in \mathbb{P}^k is always Chow polystable, it follows by linearity that it is also Chow polystable for $\lambda \in (2/3, 1]$.

Acknowledgements: The author is grateful to Professor Simon Donaldson for enlightening discussions. He would also like to thank Professor Xiuxiong Chen for constant encouragement. This work was partly supported by a postdoc grant under European Research Council award No 247331.

References

[1] C. Arezzo, A. Della Vedova, Notes in preparation.
[2] D. Catlin, *The Bergman kernel and a theorem of Tian*, in Analysis and geometry in several complex variables (Katata, 1997) 1-23, Birhauser, Boston, 1999.
[3] S. K. Donaldson. *Scalar curvature and stability of toric varieties*. J. Differential. Geom. 62 (2002), no. 2, 289-349.
[4] S. K. Donaldson. *Lower bounds on the Calabi functional*, J. Differential Geom. 70 (2005), no. 3, 453-472.
[5] S. K. Donaldson. *Discussion of the Kähler-Einstein problem*, notes available on http://www2.imperial.ac.uk/~skdona/.
[6] S. K. Donaldson. *Kähler metrics with cone singularities along a divisor*, arXiv:1102.1196.
[7] C. Li. *Remarks on logarithmic K-stability*, arxiv: 1104.0428.
[8] Z-Q. Lu. *On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch*, Amer. J. Math. 122(2000), 235–273.
[9] T. Mabuchi. *K-stability of constant scalar curvature polarization*, arxiv: 0812.4093.
[10] M. Marinescu, X-N. Ma. *Holomorphic Morse inequalities and Bergman kernels*, Progress in Mathematics, 254. Birkhäuser Verlag, Basel, 2007.
[11] Y. Odaka. *The Calabi conjecture and K-stability*, arxiv: 1010.3597.
[12] D. Phong, J. Sturm. *Test configurations for K-stability and geodesic rays*. J. Symplectic Geom. 5 (2007), no. 2, 221–247.
[13] J. Ross, R. Thomas. *A study of Hilbert-Mumford criterion for the stability of projective varieties*, J. Algebraic. Geom. 16(2007), 201–255.
[14] J. Ross, R. Thomas. *An obstruction to the existence of constant scalar curvature Kähler metrics*, J. Differential. Geom. 72(2006), 429–466.
[15] J. Stoppa. *K-stability of constant scalar curvature Kähler manifolds*. Adv. Math. 221 (2009), no. 4, 1397–1408.
[16] G. Székelyhidi, *Extremal metrics and K-stability*, Ph.D. thesis, 2006.
[17] G. Tian. *Kähler-Einstein metrics with positive scalar curvature*, Invent. Math. 130 (1997), 1–39.
[18] G. Tian, S-T. Yau. *Complete Kähler manifolds with zero Ricci curvature*. I. J. Amer. Math. Soc. 3 (1990), no. 3, 579–609.

[19] S-T. Yau. *On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation*, I. Comm. Pure. Appl. Math. 31 (1978), no. 3, 339–411.

[20] S-T. Yau. *Open problems in geometry*, Proc. Sympos. Pure Math. 54 (1993), 1–28.

[21] S. Zelditch. *Szegő kernel and a theorem of Tian*, Int. Math. Res. Notices 6 (1998), 317–331.

Department of Mathematics, Imperial College, London SW7 2AZ, United Kingdom.

E-mail address: s.sun@imperial.ac.uk