A five-octave broadband LNA MMIC using bandwidth enhancement and noise reduction technique

Lin Yang¹, Lin-An Yang¹, Taotao Rong¹, Zhi Jin² and Yue Hao¹

Abstract This letter presents the design and fabrication of a five-octave broadband low noise amplifier (LNA) using 0.1-μm GaAs pseudomorphic high-electron mobility transistor (pHEMT) technology. The multi-peaking bandwidth enhancement and noise reduction technique is proposed for a cascode topology to significantly improve the performance of the LNA. The fabricated LNA achieves a -3 dB bandwidth of 1-32 GHz with an average gain of 12.2 dB, an excellent noise figure (NF) of 1.9-2.6 dB, and an output-referred 1 dB compression point (OP1dB) of 10.2-12.7 dBm with good input/output matching over the entire bandwidth. To the best of the authors’ knowledge, these results demonstrate the lowest room-temperature NF ever reported for fully integrated MMIC amplifiers with a bandwidth of 1 to more than 30 GHz.

key words: ultra-wideband, low noise amplifier (LNA), cascode, GaAs, pseudomorphic high electron mobility transistor (pHEMT)

Classification: Integrated circuits (memory, logic, analog, RF, sensor)

1. Introduction

Advancements in wireless communication technology have prompted the demand for multi-octave broadband amplifiers for application in high data rate transmission, ultra-wideband (UWB) systems, high-resolution radars, and instrumentation where a broadband LNA is a crucial component [1-4]. For designing UWB amplifiers, Darlington configurations [5, 6, 7], feedback techniques [8-13], inductive-peaking techniques [14-17], and distributed amplifiers (DAs) [18-24] are the most popular approaches. Researchers in [5] reported broadband feedback Darlington amplifiers with bandwidth enhancement. A broadband gallium-nitride (GaN) LNA using a modified resistive-feedback topology is reported in [8]. A 0.1-20 GHz UWB LNA with the combined techniques of shunt-resistive feedback, dual inductive-peaking techniques and an improved active load is reported in [15]. The study in [18] reported a tapered, distributed LNA that can provide a lower broadband average NF compared to a uniform DA by optimal tapering of the gate and drain transmission lines and transistors. A fully integrated distributed amplifier using the GaAs HEMT–HBT cascode gain stage is explored in [19]. However, previously reported UWB amplifiers tend to have high NFs, therefore, they are not preferable in many applications as receivers. Furthermore, many reported UWB LNAs [5, 16, 17, 25] cannot realize full integration with the entire RF choke bias circuit or input/output blocking capacitors, which is inconvenient in practical applications.

In this letter, we report on a fully integrated UWB LNA with a low noise figure and flat gain over the full operation bandwidth of 1-32 GHz. We propose the multi-peaking bandwidth enhancement and noise reduction technique, which is used in input matching, inter-stage matching and the RF choke bias circuit of the LNA. The five-octave bandwidth LNA presented in this letter achieves the excellent NF, relatively high OP1dB and FOM, with comparable gain, power consumption and chip area. Meanwhile, the measured room-temperature NF is the lowest among fully integrated MMIC amplifiers ever reported with a bandwidth of 1 to more than 30 GHz.

2. Design and analysis of the UWB LNA

The LNA is implemented in the 0.1-μm AlGaAs/InGaAs pHEMT technology. The cascode topology was employed because it has wider gain bandwidth over the common-source configuration due its suppression of the Miller effect [26, 27]. Transistors M₁, M₂ have equal size of 8× 50 μm. The LNA was biased with a drain-to-source voltage (VDS) of 2 V and a gate-to-source voltage (VGS) of -0.42 V, since simulations demonstrate that the transistor exhibits the lowest minimum noise figure (NFmin) in the full operation band under this bias condition, and the NFmin is 0.7 dB at 16 GHz. The improved cascode configuration with the multi-peaking bandwidth enhancement and noise reduction technique, mainly including inductors LA, LX, LY, L₀ and L₁, is illustrated in Fig. 1. Fig. 2 shows the small-signal equivalent circuit of the proposed LNA. The inductor LA
is added in series with the total parasitic capacitance at node A, mainly including the drain-to-source parasitic capacitance of M_1 (C_{gs1}), as shown in Fig. 2. With careful selection of the inductor L_A, the high resonant frequency point with the capacitance at node A is introduced, thus expanding the gain bandwidth. The series inductor L_A was realized using a micro-strip line with a width of 35 μm to reduce the NF because the parasitic resistance of the input matching circuit has a great influence on the NF of the total circuit. The noise introduced by M_2 at low frequencies of the operation band is much less. At high frequencies, the parasitic capacitance C_X at node X can increase the noise considerably, where C_X is the total parasitic capacitance and includes the parasitic capacitances of M_1 and M_2 at node X. Therefore, an 84 μH inductance L_X is intentionally added between M_1 and M_2 to eliminate the effect of C_X by resonating with it at the high operating frequency, as shown in Fig. 2. The NF of the cascode cell can be minimized accordingly [28]. Simulations show that the NF of the proposed LNA is reduced from 2.72 to 2.51 dB due to the impact of L_X at 32 GHz. The effect of L_X on the input is only a slight increase in the input impedance, since the inductance is small. Moreover, to meet the challenge of full integration with the broadband RF choke, the on-chip drain bias circuit (Z_D) including the series inductance network is employed, as shown in Fig. 1 enclosed by dash line. The large inductance L_0 introduces low and high resonant frequency points, while the moderate inductance L_Y introduces a high resonant frequency point. The three optimized resonant frequency points help to achieve the desired RF choke performance in a wide band with the advantages of a lower NF and higher operation frequencies compared with the active load structure.

Furthermore, the inductor L_4 is used to compensate for the roll-off of the output impedance of the cascode topology, thus enhancing the gain in high operation frequency bands [15]. The resistors R_d and R are employed to decrease the quality factor of the bias circuit and enhance the circuit stability, as shown in Fig. 1. The design employs an R-L-C feedback loop to achieve a flat gain response in a wide band and improve the stability of the LNA, as shown in Fig. 2.

3. Measurement and discussions

The die photograph of the LNA is shown in Fig. 3. The chip area is 1.3 mm\times1.4 mm including pads. The LNA RF performance was measured with a KEYSIGHT
N5245A PNA-X at room temperature. The on-wafer measurement results are shown in Figs. 4–5. Fig. 4 shows the measured and simulated S-parameters including S_{21}, S_{11}, and S_{22}. The measured S_{21} reaches a peak value of 13.1 dB at 16 GHz and an average value of 12.2 dB over the 1 to 32 GHz band (3 dB bandwidth). The measured $|S_{11}|$ is better than -8 dB between 1.5 and 32 GHz, and $|S_{22}|$ is better than -8 dB between 2 and 32 GHz. Fig. 5 shows the measured and simulated NF and OP_{1dB}. The measured NF is 1.9-2.6 dB throughout the band, and the average NF is 2.1 dB. The measured OP_{1dB} is from 10.2-12.7 dBm over the entire bandwidth, as shown in Fig. 5. The LNA is unconditionally stable for all frequencies ($K > 1$). The above measurement results are obtained with a V_{GS} of -0.42 V and a total drain voltage (V_{DD}) of 4.0 V. The whole chip draws 44 mA from the power supply, resulting in a power consumption of 176 mW. A comparison between this work and the previously reported III–V compound-based broadband amplifiers with various technologies is summarized in Table I. The five-octave bandwidth LNA presented in this letter exhibits the lowest room-temperature NF ever reported for fully integrated MMIC amplifiers over the 1-32 GHz band. Meanwhile, it achieves higher OP_{1dB} and FOM with comparable small signal gain among the listed amplifiers in Table I.

Table I. Performance comparison.

Ref	Bandwidth (GHz)	Gain (dB)	NF (dB)	OP_{1dB} (dBm)	FOM
[6]	dc-25.3	13.2	7.8	-0.7	-
	1.8-26	11	8.6	-0.75	-
	dc-29.8	10	10.2	1.46	-
[8]	1-25	13	3.3-4.6	17.5	0.1
[15]	0.1-20	28.6	3.1-5.8	7.8-12.7	1.0
[19]	dc-40.4	8.2	4.2-16.5*	7	0.49
	dc-43.5	8.5	4.2-18.5*	8	0.32
[29]	1-13	13.1-18.2	>5.28	-15*	2.7
[30]	0.5-30	10.5	7.5*	>5	0.53
This work	1-32	12.2	1.9-2.6	10.2-12.7	1.3

*estimate value from figure; # average NF from 1 to 30 GHz; the figure-of-merit (FOM) is defined in [31].

6. Conclusion

A fully integrated LNA MMIC using a 0.1-μm GaAs pHEMT process has been successfully presented in this letter. The multi-peaking bandwidth enhancement and noise reduction technique is proposed and successfully used in a feedback cascode topology. The bandwidth and noise performance of the LNA are strongly improved. The 1–32 GHz LNA obtains a relatively flat gain of 12.2 dB, a noise figure of 1.9-2.6 dB, and a maximum OP_{1dB} of 12.7 dBm with good input/output matching. The proposed UWB LNA can be further applied to modern high-speed data communications due to its superior performance.

Acknowledgments

This work was supported by the key Program of National Natural Science Foundation of China under Grant 61434006 and the National Natural Science Foundation of China under Grant 61674117.

References

[1] Nikandish G, Yousefi A, Kalantari M: “A Broadband multistage LNA with bandwidth and linearity enhancement,” IEEE Microwave and Wireless Components Letters 26 (2016) 834 (DOI: 10.1109/LMWC.2016.2605446).
[2] Hong Zhang, Gui-Can Chen, et al.: “A high-gain differential CMOS LNA for 3.1-10.6GHz ultra-wideband receivers,” IEICE Electron. Express 5 (2008) 523 (DOI: 10.1587/elex.5.523).
[3] W. Chen, et al.: “4–20 GHz low noise amplifier MMIC with on-chip switchable gate biasing circuit,” IEICE Electron. Express 14 (2017) 20170711 (DOI: 10.1587/elex.14.20170711).
[4] Lin Yang, Lin-An Yang, et al.: “1–30GHz ultra-wideband low noise amplifier with on-chip temperature-compensation circuit,” IEICE Electron. Express 15 (2018) 20180804 (DOI: 10.1587/elex.15.20180804).
[5] Nikandish G, Medi A: “Design and analysis of broadband Darlington amplifiers with bandwidth enhancement in GaAs pHEMT technology,” IEEE Trans. Microw. Theory Tech. 62 (2014) 1705 (DOI: 10.1109/tmtt.2014.2328972).
[6] Weng S H, Chang H Y, Chiang C C, et al.: “Gain-bandwidth analysis of broadband Darlington amplifiers in HBT-HEMT process,” IEEE Trans. Microw. Theory Tech. 60 (2012) 3458 (DOI: 10.1109/TMTT.2012.2215051).
[7] Shanwen Hu, Shu Yu, et al.: “A 0.2–6 GHz linearized Darlington-cascade broadband power amplifier,” IEICE Electron. Express 15 (2018) 20180298 (DOI: 10.1587/elex.15.20180298).
[8] Chen M, Sutton W, et al.: “A 1–25 GHz GaN HEMT MMIC low-noise amplifier,” IEEE Microwave Wireless Compon. Lett. 20 (2010) 563 (DOI: 10.1109/LMWC.2010.2059002).
[9] Gang Wang, Wei Chen, et al.: “Design of a broadband Ka-band MMIC LNA using deep negative feedback loop,” IEICE Electron. Express 15 (2018) 20180317 (DOI: 10.1587/elex.15.20180317).
[10] Chen Y C, Wang Y, et al.: “A broadband low noise amplifier in GaAs 0.1-μm pHEMT process for radio astronomy application,” IEEE International Symposium on Radio-Frequency (2017) (DOI: 10.1109/RFFT.2017.8048296).
[11] Day P. Nguyen, Binh L. Pham, Thanh Pham, et al.: “A 14–31 GHz 1.25 dB NF enhancement mode GaAs pHEMT low noise amplifier,” Global Symposium on Millimeter-Waves (2017) (DOI: 10.1109/MWSYM.2017.8059048).
[12] Minghua Wang, Xiaosong Wang, et al.: “A CMOS dual-feedback reconfigurable low noise amplifier with improved stability and reduced noise,” IEICE Electron. Express 14 (2017) 20170804 (DOI: 10.1587/elex.14.20170985).
[13] Zi-Peng Bian, Ming-Ming Zhang, et al.: “22–27 GHz 11 dB inductive feedback cascode amplifier with 12 picoseconds group delay variation,” IEICE Electron. Express 13 (2017) 20170804 (DOI: 10.1587/elex.13.20160862).
[14] Shekhar S, Walling J S, Allstot D J: “Bandwidth extension techniques for CMOS amplifiers,” IEEE Journal of Solid-State Circuits 41 (2006) 2424 (DOI: 10.1109/JSSC.2006.883336).
[15] Hu J, Ma K, et al.: “A seven-octave broadband LNA MMIC using bandwidth extension techniques and improved Active Load,” IEEE Transactions on Circuits & Systems I Regular Papers 65 (2018) 3150 (DOI: 10.1109/TCSI.2018.2803299).
[16] Chen H K, Chang D C, et al.: “A compact wideband CMOS low-
noise amplifier using shunt resistive-feedback and series inductive-peaking techniques,” IEEE Microwave & Wireless Components Letters 17 (2007) 616 (DOI: 10.1109/LMWC.2007.901797).

[17] Chen H K, Lin Y S, Lu S S, et al: “Analysis and design of a 1.6–28-GHz compact wideband LNA in 90-nm CMOS using a π-match input network,” IEEE Trans. Microw. Theory Tech. 58 (2010) 2092 (DOI: 10.1109/TMTT.2010.2052406).

[18] Nikandish G, et al.: “A 40-GHz bandwidth tapered distributed LNA,” IEEE Transactions on Circuits & Systems II Express Briefs 65 (2017) 1614 (DOI: 10.1109/TCSII.2017.2758861).

[19] Chang H Y, Liu Y C, Weng S H, et al. “Design and analysis of a DC–43.5-GHz fully integrated distributed amplifier using GaAs HEMT–HBT cascode gain stage,” IEEE Trans. Microw. Theory Tech. 59 (2011) 443 (DOI: 10.1109/TMTT.2010.2092786).

[20] K. W. Kobayashi, et al.: “A novel 100 MHz–45 GHz input-termination-less distributed amplifier design with low-frequency low-noise and high linearity implemented with a 6 inch 0.15 µm GaN-SiC wafer process technology,” IEEE J. Solid-State Circuits 51 (2016) 2017 (DOI: 10.1109/JSSC.2016.2558488).

[21] G. Nikandish and A. Medi: “Unilateralization of MMIC distributed amplifiers,” IEEE Trans. Microw. Theory Tech. vol. 62 (2014) 3041 (DOI: 10.1109/TMTT.2014.2361341).

[22] C.-Y. Hsiao, T.-Y. Su, and S. S. H. Hsu: “CMOS distributed amplifiers using gate–drain transformer feedback technique,” IEEE Trans. Microw. Theory Techn. 61 (2013) 2901 (DOI: 10.1109/TMTT.2013.2271614).

[23] Ying Zhang, Kaixue Ma, et al.: “1–20 GHz distributed power amplifier based on shared artificial transmission lines,” IEICE Electron. Express 14 (2018) 20170198 (DOI 10.1587/elex.14.20170198).

[24] Santhakumar R, Thibeault B, Higashiwaki M, et al.: “Two-stage high-gain high-power distributed amplifier using dual-gate GaN HEMTs,” IEEE Transactions on Microwave Theory and Techniques 59 (2011) (DOI: 10.1109/tmtt.2011.2144996).

[25] Ma B Y, Bergman J, Kim D H, et al.: “Commercial wideband MMIC low noise amplifier with 50nm gate-length E-mode InGaAs PHEMT,” IEEE Microwave Symposium Digest (2012) (DOI: 10.1109/MWSYM.2012.6259443).

[26] Kevin W. Kobayashi: “An 8-W 250-MHz to 3-GHz decade-bandwidth low-noise GaN MMIC feedback amplifier with >+51 dBm OIP3,” IEEE J. Solid-State Circuits 47 (2012) 2898 (DOI: 10.1109/JSSC.2012.2204929).

[27] P. R. Grey and R. G. Meyer: Analysis and Design of Analog Integrated Circuits (Wiley, New York, 1984) 2nd ed. 455.

[28] Huang B J, Lin K Y, Wang H: “Millimeter-wave low power and miniature CMOS multcascode low-noise amplifiers with noise reduction topology,” IEEE Trans. Microw. Theory Tech. 57 (2009) 3049 (DOI: 10.1109/TMTT.2009.2033238).

[29] Hyohyun Nam, Junsik Park, et al.: “A 1–13 GHz CMOS low-noise amplifier using compact transformer-based inter-stage networks,” IEICE Electron. Express 15 (2018) 20171019 (DOI: 10.1587/elex.14.20171019).

[30] S.-H. Weng, H.-Y. Cheng, and C.-C. Chiong: “Design of a 0.5–30 GHz Darlington amplifier for microwave broadband applications,” IEEE MTT-S Int. Microw. Symp. Dig. (2010) (DOI: 10.1109/MWSYM.2010.5518254).

[31] Ma B Y, Bergman J, et al.: “InAs/AlSb HEMT and its application to ultra-low-power wideband high-gain low-noise amplifiers,” IEEE Trans. Microw. Theory Tech. 54 (2006) 4448 (10.1109/TMTT.2006.883604).