Bioactive α-pyrone meroterpenoids from mangrove endophytic fungus Penicillium sp.

Bo Ding 1, 2, Zhiyuan Wang 2, Xishan Huang 1, Yayue Liu 1, Wenrui Chen 2,* and Zhigang She 1,*

1 School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
2 Guangdong Inspection and Quarantine Technology Center, Guangzhou, China

Five α-pyrone meroterpenoids, including one new 3-epiarigsgacan E (1) and four known compounds, arisugacin D (2), arisugacin B (3), territrem C (4) and terreulactone C (5) were obtained from marine fungus Penicillium sp. SK5GW1L. Their structures were identified by MS and NMR experiments, and the absolute configuration of compound 1 was further confirmed by low temperature (150 K) single crystal X-ray diffraction with Cu Kα radiation. Compounds 3, 4 and 5 showed strong inhibitory activities against acetylcholinesterase (AchE) with IC50 values of 3.03 μM, 0.23 μM and 0.028 μM, respectively.
Support Information

Table S1. 1H NMR (500 MHz), 13C NMR (125M), and 2D- NMR data for compound 1 (ppm from TMS, J = Hz, in CDCl$_3$).

Table S2. The single crystal parameters of compound 1

Figure S1. The single crystal structure of compound 1

Figure S2. 1H and 13C NMR, HSQC, and HMBC data for compound 1

Figure S3. UV of compound 1

Figure S4. IR of compound 1

Figure S5. ESIMS of compound 1

Figure S6. HRESIMS of compound 1

The single crystal cif file of compound 1
Table S1 1H NMR (500 MHz), 13C NMR (125M), and 2D- NMR data for compound 1 (ppm from TMS, $J =$ Hz, in CDCl$_3$).

No.	δ_C	δ_H	1H-1H COSY	HMBC(H→C)
1	30.9	1.67-1.65, m	2, 10, 19, 3, 5	
		1.45, dd (8.5, 2.3)		
2	27.4	1.79-1.76, m	H-3	1, 10, 4, 3
		1.68-1.65, m		
3	73.8	3.88, dd (11.0, 5.7)	H-2	17, 18
4	43.9			
5	78.1			
6	25.3	1.91-1.87, m	H-7	7, 5, 8
		1.71-1.69, m		
7	33.9	2.18-2.14, m	H-6	20, 6, 9, 8
		1.89-1.86, m		
8	80.2			
9	43.1	2.46, dd (13.1, 4.7)	H-11	20, 11, 1, 10, 8
10	40.6			
11	17.4	2.39, dd (16.7, 4.7)	H-9	9, 8, 12, 13
		2.21-2.24, m		
12	98.8			
13	163.7			
14	97.0	6.24, s	12, 1’, 15, 13	
15	158.4			
16	164.8			
1’	124.2			
2’	127.1	7.73, d (8.8)	H-3’	15, 4’, 6’
3’	114.3	6.93, d (8.8)	H-2’	1’, 4’, 2’
4’	158.4			
5’	114.3	6.93, d (8.8)	H-6’	1’, 4’, 6’
6’	127.1	7.73, d (8.8)	H-5’	15, 2’, 4’
17	17.6	0.96, s	18, 4, 3, 5	
18	22.8	1.09, s	17, 4, 3, 5	
19	18.4	1.06, s	1, 10, 9, 5	
4’-OCH$_3$	55.6	3.86, s	4’	
20	21.2	1.28, s	8, 9, 7, 10, 6	
Table S2. The single crystal parameters of compound 1

parameter	parameter values	parameter	parameter values
Empirical formula	C₂₇H₃₄O₆	Reflections	15932/4078[R(int)=0.02]
Formula weight	454.54	collected/unique	48
Temperature	150(2) K		
Wavelength	1.54178 Å	Absorption correction	Semi-empirical from Equivalents
Crystal system, space group	Orthorhombic, P 21 21 21		
Unit cell dimensions			
a	10.70160(10) Å	a=90°	
b	10.75190(10) Å	A, β=90°	
c	20.1484(2) Å	A, γ=90°	
Volume	2318.33(4) Å³		
Z, calculated density	4.1.302 mg/m³		
Absorption coefficient	0.737 mm⁻¹	Max./min.transmission	0.8726 / 0.7470
F (000)	976	Refinement method	Full-matrix
Crystal size	0.40x0.32x0.19 mm	Refinement method	Full-matrix
Theta range for data collection	4.39-66.91°	Data/restraints/parameters	4078 / 0 / 305
Limiting indices	-12≤h≤12, -12≤k≤12, -23≤l≤22		
completeness to theta=62.77	99.3%	Largest diff. peak and	0.133 and -0.196 e. Å⁻³

Figure S1. The single crystal structure of compound 1
Figure S2. 1H and 13C NMR, COSY, HSQC, HMBC and NOE data for compound 1

1H-NMR
HSQC

HMBC
Figure S3. UV of compound 1
Figure S4. IR of compound 1

Figure S5. ESIMS of compound 1
Figure S6. HRESIMS of compound 1

[SPECTRUM - simulation:

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
455.24319	455.24282	0.82	10.5	C27 H35 O6

Limits:

1. Charge: 1
2. Nitrogen-Rule: Do not use
3. Mass tolerance: 10.00 ppm
4. Elements in use: 12C (0~30), 1H (0~60), 16O (0~15);
The single crystal cif file of compound 1
data_a

_audit_creation_method SHELXL-97
_chemical_name_systematic
;
?
;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum 'C27 H34 O6'
_chemical_formula_weight 454.54
_chemical_absolute_configuration ad

loop
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0181 0.0091
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0492 0.0322
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting 'Orthorhombic'
_symmetry_space_group_name_H-M 'P2(1)2(1)2(1)'

loop
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x+1/2, -y, z+1/2'
'-x, y+1/2, -z+1/2'
'x+1/2, -y+1/2, -z'

_cell_length_a 10.70160(10)
_cell_length_b 10.75190(10)
_cell_length_c 20.1484(2)
_cell_angle_alpha 90.00
_cell_angle_beta 90.00
_cell_angle_gamma 90.00
_cell_volume 2318.33(4)
_cell_formula_units_Z 4
_cell_measurement_temperature 293(2)
_cell_measurement_reflns_used ?
_cell_measurement_theta_min ?
_cell_measurement_theta_max ?

_exptl_crystal_description ?
_exptl_crystal_colour ?
_exptl_crystal_size_max 0.42
_exptl_crystal_size_mid 0.32
_exptl_crystal_size_min 0.19
_exptl_crystal_density_meas ?
_exptl_crystal_density_diff 1.302
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 976
_exptl_absorb_coefficient_mu 0.737
_exptl_absorb_correction_type multi-scan
_exptl_absorb_correction_T_min 0.7470
_exptl_absorb_correction_T_max 0.8726
_exptl_absorb_process_details multi-scan

_exptl_special_details
; ?
;

_diffrn_ambient_temperature 293(2)
_diffrn_radiation_wavelength 1.54178
_diffrn_radiation_type CuKα
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device_type ?
_diffrn_measurement_method ?
_diffrn_detector_area_resol_mean ?
_diffrn_standards_number ?
_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% ?
_diffrn_reflns_number 15932
_diffrn_reflns_av_R_equivalents 0.0248
_diffrn_reflns_av_sigmaI/netI 0.0206
Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

;

_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment mixed
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_abs_structure_details

'Flack H D (1983), Acta Cryst. A39, 876-881'
_refine_ls_abs_structure_Flack -0.13(13)
_refine_ls_number_refl 4078
_refine_ls_number_parameters 305
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.0320
_refine_ls_R_factor_gt 0.0297
_refine_ls_wR_factor_ref 0.0765
_refine_ls_wR_factor_gt 0.0742
_refine_ls_goodness_of_fit_ref 1.093
_refine_ls_restrained_S_all 1.093
_refine_ls_shift/su_max 0.001
_refine_ls_shift/su_mean 0.000

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
O5 O 0.81140(10) 0.85997(10) 0.22487(5) 0.0232(2) Uani 1 1 d . . .
O2 O 0.98623(8) 0.66338(10) -0.10772(5) 0.0205(2) Uani 1 1 d . . .
H2 H 1.0303 0.6077 -0.1227 0.031 Uiso 1 1 calc R . .
O3 O 0.87640(9) 0.59214(9) 0.08623(5) 0.0202(2) Uani 1 1 d . . .
O4 O 0.71790(10) 0.98308(10) 0.15187(5) 0.0248(2) Uani 1 1 d . . .
O1 O 0.85238(13) 0.78851(11) -0.28990(5) 0.0359(3) Uani 1 1 d . . .
H1 H 0.8352 0.8608 -0.2991 0.054 Uiso 1 1 calc R . .
O6 O 0.99178(12) 0.70808(11) 0.51230(5) 0.0349(3) Uani 1 1 d . . .
C11 C 0.77136(14) 0.82678(14) 0.03926(6) 0.0200(3) Uani 1 1 d . . .
H11A H 0.8060 0.9072 0.0276 0.024 Uiso 1 1 calc R . .
H11B H 0.6814 0.8310 0.0340 0.024 Uiso 1 1 calc R . .
C12 C 0.80287(12) 0.79672(14) 0.11009(7) 0.0185(3) Uani 1 1 d . . .
C13 C 0.85650(13) 0.68639(14) 0.12853(7) 0.0183(3) Uani 1 1 d . . .
C16 C 0.77445(13) 0.88510(14) 0.16028(7) 0.0194(3) Uani 1 1 d . . .
C10 C 0.78353(12) 0.73781(13) -0.08080(7) 0.0171(3) Uani 1 1 d . . .
C6 C 0.82725(14) 0.50643(13) -0.09252(7) 0.0213(3) Uani 1 1 d . . .
H6A H 0.8724 0.4439 -0.1176 0.026 Uiso 1 1 calc R . .
H6B H 0.7386 0.4894 -0.0969 0.026 Uiso 1 1 calc R . .
C7 C 0.86445(15) 0.49759(14) -0.01909(7) 0.0221(3) Uani 1 1 d . .
H7A H 0.8409 0.4164 -0.022 0.027 Uiso 1 1 calc R . .
H7B H 0.9545 0.5049 -0.0155 0.027 Uiso 1 1 calc R . .
C5 C 0.85581(12) 0.63549(13) -0.12122(7) 0.0174(3) Uani 1 1 d . .
C18 C 1.00540(14) 0.67575(15) 0.33420(7) 0.0267(3) Uani 1 1 d . .
H18 H 0.9635 0.7888 -0.2119 0.027 Uiso 1 1 calc R . .
C1 C 0.7716 0.9300 -0.0851 0.024 Uiso 1 1 calc R . .
H1B H 0.9085 0.8823 -0.0960 0.024 Uiso 1 1 calc R . .
C14 C 0.89559(13) 0.66545(14) 0.19521(7) 0.0207(3) Uani 1 1 d . .
H14 C 0.9368 0.5923 0.2066 0.025 Uiso 1 1 calc R . .
C15 C 0.82259(13) 0.75250(14) 0.24147(7) 0.0210(3) Uani 1 1 d . .
C9 C 0.82479(12) 0.72651(13) -0.00687(7) 0.0160(3) Uani 1 1 d . .
H9 C 0.9155 0.7393 -0.0068 0.019 Uiso 1 1 calc R . .
H1A H 0.82161(14) 0.86702(13) -0.10703(7) 0.0199(3) Uani 1 1 d . .
C20 C 0.7610 0.8516 0.3462 0.035 Uiso 1 1 calc R . .
C2 C 0.83495(15) 0.64466(14) -0.08679(7) 0.0236(3) Uani 1 1 d . .
C22 C 0.6175 0.6403 -0.0904 0.035 Uiso 1 1 calc R . .
C25 C 0.64021(12) 0.72644(15) -0.08679(7) 0.0236(3) Uani 1 1 d . .
H25A H 0.6016 0.7618 -0.0481 0.035 Uiso 1 1 calc R . .
H25B H 0.6175 0.6403 -0.0904 0.035 Uiso 1 1 calc R . .
C23 C 0.90333(14) 0.74490(14) 0.31249(7) 0.0232(3) Uani 1 1 d . .
H23A H 0.7067 0.6018 -0.2701 0.041 Uiso 1 1 cal d R . .
H23B H 0.6491 0.6772 -0.2110 0.041 Uiso 1 1 calc R . .
C24 C 0.92700(16) 0.55435(15) -0.23457(8) 0.0292(4) Uani 1 1 d . .
H24A H 0.9055 0.4703 -0.2233 0.044 Uiso 1 1 calc R . .
H24B H 1.0115 0.5708 -0.2212 0.044 Uiso 1 1 calc R . .
C21 C 0.85463(17) 0.79278(16) 0.42704(7) 0.0321(4) Uani 1 1 d . .
H21 H 0.8033 0.8313 0.4581 0.039 Uiso 1 1 calc R . .
C4 C 0.83788(13) 0.64466(14) -0.19848(7) 0.0206(3) Uani 1 1 d . .
C32 C 0.66970(14) 0.56441(15) 0.04276(8) 0.0260(3) Uani 1 1 d . .
H32A H 0.6703 0.4979 0.0746 0.039 Uiso 1 1 calc R . .
H32B H 0.6242 0.5389 0.0040 0.039 Uiso 1 1 calc R . .
H32C H 0.6303 0.6362 0.0619 0.039 Uiso 1 1 calc R . .
C26 C 0.9144(2) 0.76188(18) 0.56253(8) 0.0413(5) Uani 1 1 d . .
H26A H 0.9121 0.8505 0.5569 0.062 Uiso 1 1 calc R . .
H26B H 0.9480 0.7424 0.6055 0.062 Uiso 1 1 calc R . .
H26C H 0.8314 0.7289 0.5589 0.062 Uiso 1 1 calc R . .

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12
O5 0.0290(5) 0.0249(5) 0.0156(5) -0.0019(4) 0.0012(4) 0.0035(5)
O2 0.0138(5) 0.0261(5) 0.0216(5) -0.0042(4) -0.0002(4) 0.0029(4)
O3 0.0256(5) 0.0202(5) 0.0147(5) -0.0005(4) -0.0007(4) 0.0025(4)
O4 0.0294(6) 0.0240(5) 0.0210(5) -0.0029(4) 0.0001(4) 0.0045(5)
O1 0.0644(8) 0.0290(6) 0.0144(5) 0.0023(5) 0.0016(5) 0.0094(6)
O6 0.0514(7) 0.0399(7) 0.0134(5) 0.0006(5) -0.0016(5) -0.0095(6)
C11 0.0225(7) 0.0216(7) 0.0158(7) -0.0012(6) 0.0001(5) 0.0035(6)
C12 0.0169(7) 0.0222(7) 0.0163(7) -0.0004(6) 0.0026(5) -0.0015(6)
C13 0.0157(6) 0.0223(7) 0.0168(7) -0.0009(6) 0.0035(5) -0.0025(6)
C16 0.0181(6) 0.0240(7) 0.0162(7) 0.0006(6) 0.0008(5) -0.0009(6)
C10 0.0151(6) 0.0203(7) 0.0159(7) -0.0014(6) -0.0005(5) 0.0021(6)
C6 0.0260(7) 0.0198(7) 0.0181(7) -0.0029(6) -0.0010(6) 0.0004(6)
C7 0.0299(8) 0.0184(7) 0.0180(7) -0.0001(6) -0.0003(6) 0.0009(6)
C5 0.0147(7) 0.0207(7) 0.0168(7) -0.0021(6) -0.0016(5) -0.0006(6)
C18 0.0282(8) 0.0341(9) 0.0177(7) -0.0011(7) 0.0028(6) -0.0012(7)
C3 0.0295(8) 0.0259(8) 0.0130(7) 0.0018(6) 0.0003(6) 0.0012(7)
C1 0.0231(7) 0.0193(7) 0.0173(7) -0.0011(6) -0.0009(6) 0.0025(6)
C14 0.0211(7) 0.0239(8) 0.0171(7) 0.0025(6) 0.0021(5) -0.0009(6)
C15 0.0200(7) 0.0238(7) 0.0193(7) 0.0030(6) 0.0024(6) -0.0009(6)
C9 0.0141(6) 0.0184(7) 0.0155(7) -0.0020(6) -0.0005(5) 0.0000(6)
C20 0.0407(9) 0.0275(8) 0.0160(7) 0.0003(6) -0.0003(6) -0.0113(8)
C22 0.0381(9) 0.0271(8) 0.0229(8) 0.0009(7) 0.0030(7) 0.0051(7)
C8 0.0214(7) 0.0217(7) 0.0138(7) 0.0008(6) -0.0022(6) -0.0009(6)
C2 0.0324(8) 0.0200(7) 0.0189(8) 0.0020(6) 0.0004(6) 0.0028(6)
C25 0.0156(7) 0.0328(8) 0.0223(7) -0.0019(7) -0.0009(6) 0.0027(6)
C17 0.0280(8) 0.0254(8) 0.0162(7) 0.0000(6) 0.0017(6) -0.0036(6)
C19 0.0305(8) 0.0356(9) 0.0208(8) 0.0027(7) -0.0021(6) -0.0014(7)
C23 0.0316(8) 0.0305(8) 0.0203(8) -0.0031(7) -0.0079(6) -0.0025(7)
C24 0.0393(9) 0.0304(9) 0.0179(8) -0.0035(7) 0.0014(7) 0.0111(8)
C21 0.0500(11) 0.0302(9) 0.0162(8) -0.0048(7) 0.0087(7) 0.0029(8)
C4 0.0229(7) 0.0229(8) 0.0159(7) -0.0030(6) -0.0008(5) 0.0028(6)
C32 0.0266(8) 0.0272(8) 0.0241(8) 0.0003(7) 0.0027(6) -0.0072(7)
C26 0.0660(13) 0.0410(10) 0.0171(8) -0.0058(8) 0.0086(8) -0.0185(9)

_geom_special_details
;
All esd (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
O5 C15 1.3681(18) . ?
O5 C16 1.3867(16) . ?
O2 C5 1.4532(16) . ?
O2 H2 0.8200 . ?
O3 C13 1.3412(18) . ?
O3 C8 1.4862(16) . ?
O4 C16 1.2267(18) . ?
O1 C3 1.4326(17) . ?
O1 H1 0.8200 . ?
O6 C20 1.3651(18) . ?
O6 C26 1.430(2) . ?
C11 C12 1.5015(19) . ?
C11 C9 1.5339(19) . ?
C11 H11A 0.9700 . ?
C11 H11B 0.9700 . ?
C12 C13 1.369(2) . ?
C12 C16 1.421(2) . ?
C13 C14 1.425(2) . ?
C10 C1 1.5412(19) . ?
C10 C25 1.5433(18) . ?
C10 C9 1.5584(18) . ?
C10 C5 1.5722(19) . ?
C6 C5 1.534(2) . ?
C32 H32C 0.9600 . ?
C26 H26A 0.9600 . ?
C26 H26B 0.9600 . ?
C26 H26C 0.9600 . ?

loop_
 __geom_angle_atom_site_label_1
 __geom_angle_atom_site_label_2
 __geom_angle_atom_site_label_3
 __geom_angle
 __geom_angle_site_symmetry_1
 __geom_angle_site_symmetry_3
 __geom_angle_publ_flag
C15 O5 C16 122.00(11) . . ?
C5 O2 H2 109.5 . . ?
C13 O3 C8 115.73(11) . . ?
C3 O1 H1 109.5 . . ?
C20 O6 C26 117.57(14) . . ?
C12 C11 C9 109.93(12) . . ?
C12 C11 H11A 109.7 . . ?
C9 C11 H11A 109.7 . . ?
C12 C11 H11B 109.7 . . ?
C9 C11 H11B 109.7 . . ?
H11A C11 H11B 108.2 . . ?
C13 C12 C16 118.42(13) . . ?
C13 C12 C11 122.59(13) . . ?
C16 C12 C11 118.98(13) . . ?
O3 C13 C12 123.27(12) . . ?
O3 C13 C14 115.67(13) . . ?
C12 C13 C14 121.06(13) . . ?
O4 C16 O5 115.96(13) . . ?
O4 C16 C12 125.57(13) . . ?
O5 C16 C12 118.47(13) . . ?
C1 C10 C25 107.90(12) . . ?
C1 C10 C9 108.85(11) . . ?
C25 C10 C9 110.50(11) . . ?
C1 C10 C5 108.84(11) . . ?
C25 C10 C5 113.14(12) . . ?
C9 C10 C5 107.53(11) . . ?
C5 C6 C7 111.57(12) . . ?
C5 C6 H6A 109.3 . . ?
C7 C6 H6A 109.3 . . ?
C5 C6 H6B 109.3 . . ?
C7 C6 H6B 109.3 . . ?
H6A C6 H6B 108.0 . . ?
C8 C7 C6 112.97(12) . . ?
C8 C7 H7A 109.0 . . ?
C6 C7 H7A 109.0 . . ?
C8 C7 H7B 109.0 . . ?
C6 C7 H7B 109.0 . . ?
H7A C7 H7B 107.8 . . ?
O2 C5 C6 107.90(11) . . ?
O2 C5 C4 106.84(11) . . ?
C6 C5 C4 113.94(12) . . ?
O2 C5 C10 103.37(10) . . ?
C6 C5 C10 109.85(11) . . ?
C4 C5 C10 114.16(11) . . ?
C19 C18 C17 120.90(14) . . ?
C19 C18 H18 119.6 . . ?
C17 C18 H18 119.6 . . ?
O1 C3 C2 110.83(12) . . ?
O1 C3 C4 108.05(12) . . ?
C2 C3 C4 113.67(12) . . ?
O1 C3 H3 108.0 . . ?
C2 C3 H3 108.0 . . ?
C4 C3 H3 108.0 . . ?
C2 C1 C10 112.50(12) . . ?
C2 C1 H1A 109.1 . . ?
C10 C1 H1A 109.1 . . ?
C2 C1 H1B 109.1 . . ?
C10 C1 H1B 109.1 . . ?
H1A C1 H1B 107.8 . . ?
C15 C14 C13 119.29(14) . . ?
C15 C14 C14 120.4 . . ?
C13 C14 H14 120.4 . . ?
C14 C15 O5 120.46(13) . . ?
C14 C15 C17 126.43(14) . . ?
O5 C15 C17 113.10(12) . . ?
C11 C9 C8 110.13(11) . . ?
C11 C9 C10 114.76(11) . . ?
C8 C9 C10 114.06(11) . . ?
C11 C9 H9 105.7 . . ?
C8 C9 H9 105.7 . . ?
C10 C9 H9 105.7 . . ?
O6 C20 C21 125.06(15) . . ?
O6 C20 C19 115.06(15) . . ?
C21 C20 C19 119.88(14) . . ?
C21 C22 C17 120.97(15) . . ?
C23 C4 C5 114.42(12) . . ?
C24 C4 C5 110.60(12) . . ?
C3 C4 C5 107.76(11) . . ?
C8 C32 H32A 109.5 . . ?
C8 C32 H32B 109.5 . . ?
H32A C32 H32B 109.5 . . ?
C8 C32 H32C 109.5 . . ?
H32A C32 H32C 109.5 . . ?
H32B C32 H32C 109.5 . . ?
O6 C26 H26A 109.5 . . ?
O6 C26 H26B 109.5 . . ?
H26A C26 H26B 109.5 . . ?
O6 C26 H26C 109.5 . . ?
H26A C26 H26C 109.5 . . ?
H26B C26 H26C 109.5 . . ?

loop_

geom_torsion_atom_site_label_1
geom_torsion_atom_site_label_2
geom_torsion_atom_site_label_3
geom_torsion_atom_site_label_4
geom_torsion
geom_torsion_site_symmetry_1
geom_torsion_site_symmetry_2
geom_torsion_site_symmetry_3
geom_torsion_site_symmetry_4
geom_torsion_publ_flag
C9 C11 C12 C13 -8.07(19) . . ?
C9 C11 C12 C16 172.89(12) ?
C8 O3 C13 C12 -17.84(18) ?
C8 O3 C13 C14 162.46(11) ?
C16 C12 C13 O3 173.57(13) ?
C11 C12 C13 O3 -5.5(2) ?
C16 C12 C13 C14 -6.7(2) ?
C11 C12 C13 C14 174.20(13) ?
C15 O5 C16 O4 178.27(12) ?
C15 O5 C16 C12 -0.96(19) ?
C13 C12 C16 O4 -174.02(14) ?
C11 C12 C16 O4 5.1(2) ?
C13 C12 C16 O5 5.1(2) ?
C11 C12 C16 O5 -175.79(12) ?
C5 C6 C7 C8 55.66(17) ?
C7 C6 C5 O2 53.23(15) ?
C7 C6 C5 C4 171.69(11) ?
C19 C18 C17 C22 0.0(2) ?
C19 C18 C17 C15 -178.16(14) ?
C21 C22 C17 C18 -1.0(2) ?
C21 C22 C17 C15 177.23(15) ?
C14 C15 C17 C18 29.1(2) ?
O5 C15 C17 C18 -152.53(14) ?
C14 C15 C17 C22 -149.08(16) ?
O5 C15 C17 C22 29.3(2) ?
C17 C18 C19 C20 0.6(2) ?
O6 C20 C19 C18 179.90(14) ?
C21 C20 C19 C18 -0.3(2) ?
O6 C20 C21 C22 179.15(15) ?
C19 C20 C21 C22 -0.6(3) ?
C17 C22 C21 C20 1.2(3) ?
O1 C3 C4 C23 -51.59(15) ?
C2 C3 C4 C23 71.85(16) ?
O1 C3 C4 C24 63.45(15) ?
C2 C3 C4 C24 -173.11(12) ?
O1 C3 C4 C5 -177.44(11) ?
C2 C3 C4 C5 -53.99(16) ?
O2 C5 C4 C23 177.18(12) ?
C6 C5 C4 C23 58.11(16) ?
C10 C5 C4 C23 -69.21(16) ?
O2 C5 C4 C24 57.79(15) ?
C6 C5 C4 C24 -61.27(16) ?
C10 C5 C4 C24 171.40(12) ?
O2 C5 C4 C3 -59.19(14) ?
C6 C5 C4 C3 -178.26(11) ?
C10 C5 C4 C3 54.42(15) ?

_diffrn_measured_fraction_theta_max 0.993
_diffrn_reflns_theta_full 66.91
_diffrn_measured_fraction_theta_full 0.993
_refine_diff_density_max 0.133
_refine_diff_density_min -0.196
_refine_diff_density_rms 0.049