Extension of PSO and ACO-PSO algorithms for solving Quadratic Assignment Problems

K. Rameshkumar

1Department of Mechanical Engineering, Amrita University, Bangalore, India.

Abstract. In this paper, PSO and Ant Colony Optimization inspired PSO (ACO-PSO) algorithms were adopted to solve the Quadratic Assignment Problems. A hybrid approach is adopted in this paper by combining assignment construction with local-search. In the PSO algorithm, solution construction has been carried out by assigning weights to current, particle’s best and global best solutions associated with assignment of resources. Velocities which are used to construct the assignments in this approach are similar to the trail intensities considered in the ant colony algorithms. The proposed algorithms have been applied to a set of benchmark problems and the performance of the algorithm is evaluated by testing the obtained results with the results published in the literature. The computational results show that good quality solutions are obtained using the PSO and ACO inspired PSO algorithm.

1. Introduction

The quadratic assignment problem (QAP) is an ‘NP-hard’ optimization problem [1] and it is one of the most hard optimization problems to resolve optimally. The QAP can best be depicted as the problem of assigning items to locations. The distances between the locations and flows between the items will be provided as an input to the algorithm to find the optimal or near optimal assignment. The goal in QAP is to position the items in the locations such a way that the sum of the product between flows and distances is minimal. Many practical problems like blackboard wiring [2], campus and hospital layout [3], typewriter keyboard design [4], scheduling [1] and many others [5-7] formulated as QAP’s.

For the given ‘n’ items and ‘n’ locations, two ‘n × n’ matrices ‘A’ and ‘B’ are given as an input to the algorithm. Distance between the locations ‘i’ and ‘j’ are indicated by ‘a_{ij}’. The flow between items ‘r’ and ‘s’ is ‘b_{rs}’. In QAP items are assigned to locations such that every item is assigned exactly at one location. It is also considered that no location is assigned more than one item. In QAP, the number of items, ‘n’ is the same as the number of locations ‘n’. A typical assignment in QAP corresponds to a permutation of the integers from ‘1’ to ‘n’. The objective for the QAP is formulated as an optimization function as shown in the equation (1).

\[
\min_{\phi \in S_n} \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} a_{\phi_i \phi_j} \tag{1}
\]

It is considered that ‘S_n’ is the set of all permutations of \{1, 2, n\}, and ‘F_i’ gives the location of item ‘i’ in a solution ‘\phi \in S_n’. In practice, the only feasible way to resolve large QAP instances is to apply heuristic algorithms. In general, heuristic algorithms find good quality solutions in short computational time. Theory, algorithms and heuristic approaches to solve QAP is presented in [8]. The heuristic approaches include local search algorithms like iterative improvement and stochastic local search [9-12] simulated annealing [13-15], Tabu search [16-19], Genetic algorithms [20-22], and Ant Colony Optimization algorithms [23-26] were proposed over the year to solve the QAPs. Off late, particle
Swarm optimization algorithms have been applied to a variety of optimization problems in including continuous function optimization, sequencing and scheduling and QAP [27-29]. In this paper, two approaches were used to solve the QAP instances available in the literature. First, a discrete PSO algorithm which was used to solve discrete optimization problem for scheduling [30-31] is adapted to solve QAP. Next, in the Ant inspired PSO, assignment construction procedure employed in this study is based on procedures developed by [32-35].

2. Structure of the proposed PSO and ACO based PSO algorithm
For the QAP, permutation that yields minimum cost for allocating items to the various locations is to be determined. A sequence is a permutation order of the items assigned to various locations. A sequence is considered as particle’s location in the ‘d’ dimensional space. A particle ‘k’ in PSO is considered as a sequence of ‘i’ items. In the QAP problems no. of items (‘i’) assigned are equal to the number of locations (‘j’). The structure of the PSO and ACO based PSO algorithm is described as follows:

Step1: Generate the initial solution \([X_{kd}]\) randomly according to the swarm size.
Step2: Apply improvement schemes for the initial population
Step3: For each particle ‘k’ compute the cost value of the assignment
Step4: Initialize \([P_{kd}]\) and \([G_d]\); \([P_{kd}]\) is the particle’s best assignment which provide minimum assignment cost and \([G_d]\) is the overall global best assignment among all the particles in the swarm which provides over all minimum assignment cost.
Step5: While (until the termination criterion is met with)
 Do (for all the particle ‘k’)
 {
 Calculate velocity of the particle
 Construct new solution (PSO / ACO-PSO approach)
 Improve the solution using improvement schemes
 }
 Step6: Update \([P_{kd}]\) and \([G_d]\) and evaluate the assignment cost
 Step7: Return the assignment and minimum assignment cost

3. Assignment initialization of PSO and ACO-PSO algorithm
 Initial assignments were generated randomly as per the size of the swarm. In this work, swarm size of ‘5’ has been chosen. It means ‘5’ solutions are generated randomly irrespective of the size of the problem. The initial solutions were subjected to improvement schemes namely ‘adjacent-pair wise-interchange’ [36], ‘job index based insertion scheme’, ‘job index based swap scheme’ [37] sequentially. These schemes will improve the solution quality there by convergence of the algorithm is improved. From the improved assignment, for each particle current location \([X_{kd}]\) and particle best location \([P_{kd}]\) is identified. For the first iteration it is set that \([X_{kd}] = [P_{kd}]\). The best particle among all the particles in the swarm is also identifies and called as \([G_d]\). Using \([X_{kd}], [P_{kd}]\) and \([G_d]\) new solutions are constructed in the subsequent iterations. It is to be noted that in every iteration swarm size of 20 is maintained. To avoid premature convergence, in every iteration, assignments in \([X_{kd}], [P_{kd}]\) and \([G_d]\) is verified. If \([X_{kd}] = [P_{kd}] = [G_d]\), generate one solution randomly and improvement schemes are applied. The generated assignment is called as \([X’_{kd}]\). Compare the solution quality of \([X’_{kd}]\) with the other sequence. The better one will be called as \([P_{kd}]\) and the rest will be \([X_{kd}]\). Update the \([G_d]\) if applicable by comparing with \([X_{kd}]\) and \([P_{kd}]\).

4. Assignment construction in PSOA
 A new position of a particle ‘k’ is constructed from the existing location of the particle, particle’s best location ever reached and best location of any particle in the swarm. This procedure used in this study is adopted from the solution construction procedure employed in the shop scheduling problems [30]. Location means that the position of the particle indicating its objective functions value. Weights \(w_1, w_2\) and \(w_3\) are generated in such a way that \(w_1 + w_2 + w_3 = 1\) . The weights, \(w_1\), \(w_2\) and \(w_3\) play a role similar to the constriction coefficients ‘c1’ and ‘c2’ used in the generic PSO velocity updating
equation. The velocity and position updating equations are given in the equation (2) and (3). \(V_{kd} \) is the velocity obtained in the previous iteration; \(u_1 \) and \(u_2 \) are the two uniformly distributed random numbers. \(X_{kd} \) is the current location of the particle, \(P_{kd} \) is the best location ever reached by the particle and \(G_d \) is the best location reached by any of the particle in the swarm. In every iteration \(i \) the particle \(k \) travels in the solution space of dimension, \(d \). This velocity definition is more applicable for solving continuous functions. The problem considered in this study is of discrete in nature. The velocity construction procedure is modified to suit the discrete problem considered in this study.

\[
\text{New Velocity, } V_{kd} = V_{kd} + c_1 \times \left[u_1 \times (P_{kd} - X_{kd}) \right] + c_2 \times \left[u_2 \times (G_d - X_{kd}) \right] \quad \text{(2)}
\]

\[
\text{New location, } X_{kd}^{new} = X_{kd}^{new} + V_{kd} \quad \text{(3)}
\]

In this approach, a uniformly distributed random number \(u \) in the range ‘0’ and ‘1’ is generated and compared with the weights assigned to the \([X_{kd}], [P_{kd}]\) and \([G_d]\) for selecting a job in the sequence. If the sampled random number; \(u \leq w_1 \), first unassigned item in the \(X_{kd} \) is chosen and updated in \(X_{kd}^{new} \). If the sampled random number; \(0.2 < u \leq 0.5 \), first unassigned item from the \(P_{kd} \) is chosen and updated in \(X_{kd}^{new} \). If the random number; \(0.5 < u \leq 1 \), the first unassigned item from \(G_d \) is chosen and updated in \(X_{kd}^{new} \). This procedure is repeated until all the items are assigned to \(X_{kd}^{new} \). For the newly constructed assignment, improvement schemes are applied and the resultant assignment is called \([X_{kd}], [P_{kd}]\) be the current location and corresponding \(P_{kd} \) and \(G_d \) locations are updated. The procedure continues until the termination criterion is met with.

The weights ‘\(w_1 \)’, ‘\(w_2 \)’ and ‘\(w_3 \)’ used in this study are 0.2, 0.3 and 0.5 respectively. For example, \([X_{kd}] = [4 \ 1 \ 3 \ 5 \ 2]; \ [P_{kd}] = [5 \ 3 \ 2 \ 1 \ 4]; \ [G_d] = [3 \ 5 \ 4 \ 1 \ 2]; \ w_1=0.2; \ w_2=0.3; \ w_3=0.5, \ r_1=0.34; \ r_2=0.78; \ r_3=0.12; \ r_4=0.02; \) and \(r_5=0.97. \) The \([X_{kd}^{new}] = [5 \ 3 \ 4 \ 1 \ 2]. \) The solution represents the order of allocation of items ‘i’ to locations ‘n’. It means 5th item is allocated to location 1, 3rd item is assigned to location 2, 4th item is allocated to location 3, 1st item is located to location 4 and item 2 is located to the location 5. The solution construction methodology is shown in Figure 1. The corresponding cost function is calculated for every solution generated during the iterative process.

![Figure 1. Solution construction](image)

5. Assignment construction in ACO based PSOA

5.1 Velocity calculation in ACO based PSOA

Velocity and assignment construction procedure employed in this study is based on procedures developed in [32-35]. In this proposed procedure, velocities are computed for updating the particles from one position to other by calculating trail intensities. Trial intensities computed are similar to velocities used in PSO algorithm.

In the beginning, velocities trails are updated using the equation, \(V_{ij}^{new} = w_1 \times V_{ij}^e + w_2 \times V_{ij}^p + w_3 \times V_{ij}^g. \)

Weights, ‘\(w_1 \)’, ‘\(w_2 \)’ and ‘\(w_3 \)’ are relative importance given to the \([X_{kd}], [P_{kd}]\) and \([G_d]. \) For all ‘i’ (item), ‘j’ (location) and ‘k’ (particles), velocity components are set as shown in the equations (4), (5) and (6).
\[
V_{ij}^s = \frac{1}{\left(\text{Position of item } 'i' \text{ in the assignment } [X_{kd}] - j + 1\right)^{4/3}} \quad \ldots (4)
\]
\[
V_{ij}^p = \frac{1}{\left(\text{Position of item } 'i' \text{ in the assignment } [P_{kd}] - j + 1\right)^{4/3}} \quad \ldots (5)
\]
\[
V_{ij}^g = \frac{1}{\left(\text{Position of item } 'i' \text{ in the assignment } [G_{kd}] - j + 1\right)^{4/3}} \quad \ldots (6)
\]

The suitable values of weights used in this study are 'w_1'=0.2, 'w_2'=0.3 and 'w_3'=0.5. The coefficients, 'c_1'=3; 'c_2'=2; 'c_1'=3 are arrived based on pilot studies.

5.2 Assignment construction in the ACO based PSO algorithm
Assignment of an item (i) to a location (j) is based on current location [X_{kd}] and velocity trail, 'V_{ij}^{new}'. Velocity trail is analogous to trail-intensity used in ant algorithm, which indicates desire of assigning an item 'i' in the location 'j' of the assignment, where 'j'=1,2,...D and 'i'=1,2,...D. Total no. of locations / items is indicated by 'D'. For assigning items, a parameter called '\gamma_{ij}' is set, which indicates sum of velocities of swarm particles for item, 'i' up to the location 'j'.

\[
\gamma_{ij} = \sum_{k=1}^{D} V_{ij}^{new} \quad \ldots (7)
\]

For each 'i', a random number 'r' is generated. If 'r' is less than or equal to 0.4, an unassigned item from the [G_{kd}] is assigned to [s]. If the sampled 'r' of between 0.4 and 0.8, the unassigned item with maximum value of 'r_{ij}' is assigned to [s]. If the sampled 'r' is above 0.8, an item is assigned probabilistically to [s]. The probability of assigning item 'i' in the location 'j' is given by

\[
P_{ij} = \frac{\gamma_{ij}}{\sum_{i \text{ unscheduled } \text{jobs in } [X_{kd}]} \gamma_{ij}} \quad \ldots (8)
\]

Construction of an assignment is shown with the following example:

Locations (j)
\[
V_{ij}^{new} = \begin{pmatrix}
0.4 & 0.2 & 0.6 \\
0.3 & 0.2 & 0.7 \\
0.5 & 0.3 & 0.1
\end{pmatrix}
\]

Items (i)

Let [X_k]=[3 1 2] and [G_k]=[2 1 3] and Set \[\gamma_{ij} = \sum_{k=1}^{D} V_{ij}^{new} \]

Location (j)
\[
\gamma_{ij} = \begin{pmatrix}
0.4 & 0.6 & 1.2 \\
0.3 & 0.5 & 1.2 \\
0.5 & 0.8 & 0.9
\end{pmatrix}
\]

Item (i)

Assignment of items starts with a null set, [\emptyset]. Initially set [s] = [\emptyset]. Three uniformly distributed random numbers be 0.35, 0.96, and 0.71. For assigning an item in the first position, j=1; r \leq 0.4; select unassigned job from [G_{kd}]. Select item '2' from [G_k] and append to [s]; i.e. [s]=[2]. For the second position, j=2; the sampled random number is between 0.8 and 1.0; select the unassigned item probabilistically. The probability, 'P_{ij}' of placing a item 'i' in the location 'j' is computed, i.e, 'P_{12}'=0.375 and 'P_{22}'=0.571. For assigning an item for position '2', a uniformly distributed random number 'r' is generated. If r \leq P_{12}, assign item '1' to position '2'. Otherwise select item '3' to position '2'. In this case, the generated 'r' = 0.96. Since r \geq P_{12}, assign item '3' to the location '2' and update [s]. The updated assignment [s]=[2 3]. For the third position, the sampled random number is 0.71,
which is between 0.4 and 0.8. The position ‘3’ is selected based on the unassigned item with maximum value of \(c_{ij} \). The unassigned item is ‘1’. The updated assignment \([s]\) is \([2 \ 3 \ 1]\). The assignment is subjected to improvement scheme and the resultant is \([X_{i\ell}]\). Assignment cost is evaluated for all the particles. \([P_{d\ell}]\) and \([G_{d\ell}]\) is updated and iteration continues.

As like ant colony optimization algorithm, velocity trails are updated at the end of every iteration. For every particle in the swarm, \(V^k_{\ell} \) is set as \(\rho \times V^k_{\ell} \). The \(\rho \) value considered in this study is 0.75 for all iterations. The velocity is updated using the equation

\[
V^k_{\ell} = V^k_{\ell} + \frac{1}{|\text{Position of item 'i' in the assignment }[X_{i\ell}] - j + 1|} \quad \cdots \quad (8)
\]

6. Performance analysis

6.1 Benchmark problems

To evaluate the PSO and ACO-PSO, QAP instances available in the QAPLIB [38-39] has been utilised. The updated optimum / best known solutions for well-known QAP instances are available at https://www.opt.math.tugraz.at/qaplib/. Eight problem instances of Bur26X, 15 instances of NugXX, 20 instances of EscXXX, 13 instances of SkoXX, 14 instances of ChrXXX, 3 instances of KraXXX, 5 instances of HadXXX, 3 instances of RouXX, 3 instances of ScrXX, 9 instances of TaiXX problems and 2 instances of SteXXX were solved to evaluate the performances of the algorithms. A total of 95 problems of size varying from 12 to 100 were solved to evaluate the performance of the algorithm.

6.2 Results and discussions

The performances of algorithms are evaluated using the best-known upper bound values (https://www.opt.math.tugraz.at/qaplib/) . PSO and ACO-PSO algorithms were allowed to run for a maximum of 2000 × n² functional evaluations by fixing the swarm size as 5. The proposed algorithms were coded in C++ language and are implemented in Intel centrino 2 processor running at 2.0 GHz processor with 4.0 GB RAM. The algorithms were allowed to run only once. Taillard random number generator is used to generate the unbiased uniformly distributed random number. The same seed is used in computing the objective function value for all QAP instances considered. The assignment cost yielded by the PSO and ACO-PSO algorithms and the relative percentage deviation over the best known values for each of the benchmark instances are shown in Table 1. The relative percentage increase in assignment cost over the best-known values is computed using the equation (9).

\[
\text{Relative % increase in assignment cost} = \frac{((\text{Solution: PSO / ACO - PSO}) - BKS)}{((\text{Solution: PSO / ACO}) - \text{PSO})} \times 100 \cdots (9)
\]

The results shows that out of 95 problem instances considered, PSO produces optimum / best known solutions for 61 problem instances and ACO-PSO algorithm produces optimum / best-known solutions for 57 problem instances.

Table 1. Performance evaluation of PSO and ACO-PSO algorithm for BurXXX problems

Prob. No.	Problem instances	Problem size	Best known cost PSO	ACO-PSO	Relative percentage increase in cost PSO	Relative percentage increase in cost ACO-PSO
1	Bur26a	26	5426670	5426670	0.00	0.00
2	Bur26b	26	3817852	3817852	0.00	0.00
3	Bur26c	26	5426795	5426795	0.00	0.00
4	Bur26d	26	3821225	3821225	0.00	0.00
5	Bur26e	26	5386879	5386879	0.00	0.00
6	Bur26f	26	10117172	10262690	1.42	2.01
7	Bur26g	26	7098658	7098658	0.00	0.00
Table 2. Performance evaluation of PSO and ACO-PSO algorithm for NugXXX problems

Prob. No.	Problem instances	Problem size	Best known cost	PSO	ACO-PSO	Relative percentage increase in cost
1	Nug12	12	578	578	578	0.00
2	Nug14	14	1014	1014	1014	0.00
3	Nug15	15	1150	1150	1150	0.00
4	Nug16a	16	1610	1610	1610	0.00
5	Nug16b	16	1240	1240	1240	0.00
6	Nug17	17	1732	1732	1732	0.00
7	Nug18	18	1930	1930	1930	0.00
8	Nug20	20	2570	2570	2570	0.00
9	Nug21	21	2438	2438	2438	0.00
10	Nug22	22	3596	3596	3596	0.00
11	Nug24	24	3488	3488	3488	0.00
12	Nug25	25	3744	3744	3744	0.00
13	Nug27	27	5234	5234	5234	0.00
14	Nug28	28	5166	5166	5170	0.08
15	Nug30	30	6124	6124	6148	0.16

Table 3. Performance evaluation of PSO and ACO-PSO algorithm for EscXXX problems

Prob. No.	Problem instances	Problem size	Best known cost	PSO	ACO-PSO	Relative percentage increase in cost
1	Esc16a	16	68	68	68	0.00
2	Esc16b	16	292	292	292	0.00
3	Esc16c	16	160	160	160	0.00
4	Esc16d	16	16	16	16	0.00
5	Esc16e	16	28	28	28	0.00
6	Esc16f	16	0	0	0	0.00
7	Esc16g	16	26	26	26	0.00
8	Esc16h	16	996	996	996	0.00
9	Esc16i	16	14	14	14	0.00
10	Esc16j	16	8	8	8	0.00
11	Esc32a	32	130	130	130	0.00
12	Esc32b	32	168	168	168	0.00
13	Esc32c	32	642	642	642	0.00
14	Esc32d	32	200	200	200	0.00
15	Esc32e	32	2	2	2	0.00
16	Esc32f	32	2	2	2	0.00
17	Esc32g	32	6	6	6	0.00
18	Esc32h	32	438	438	438	0.00
19	Esc64a	64	116	116	116	0.00
20	Esc128	128	64	64	64	0.00

Table 4. Performance evaluation of PSO and ACO-PSO algorithm for SteXXX problems

Prob. No.	Problem instances	Problem size	Best known cost	PSO	ACO-PSO	Relative percentage increase in cost
1	Ste36a	36	9526	9526	9526	0.00
2	Ste36b	36	8653	8653	8653	0.00
Table 5. Performance evaluation of PSO and ACO-PSO algorithm for SkoXXX problems

Prob. No.	Problem instances	Problem size	Best known cost	PSO Best cost	ACO-PSO Best cost	Relative percentage increase in cost
1	Sko42	42	15812	15944	15836	0.83
2	Sko49	49	23386	23530	23514	0.61
3	Sko56	56	34458	34924	34554	1.33
4	Sko64	64	48498	48928	48684	0.88
5	Sko72	72	66256	66934	66740	1.01
6	Sko81	81	90998	91830	91556	0.91
7	Sko90	90	115534	116898	116302	1.17
8	Sko100a	100	152002	153822	153254	1.18
9	Sko100b	100	153890	155956	155496	1.32
10	Sko100c	100	147862	150204	149426	1.56
11	Sko100d	100	149576	151592	151126	1.33
12	Sko100e	100	149150	151494	150736	1.55
13	Sko100f	100	149036	150734	150664	1.13

Table 6. Performance evaluation of PSO and ACO-PSO algorithm for ChrXXX problems

Prob. No.	Problem instances	Problem size	Best known cost	PSO Best cost	ACO-PSO Best cost	Relative percentage increase in cost
1	Chr12a	12	9552	9552	10096	0.00
2	Chr12b	12	9742	9742	9742	0.00
3	Chr12c	12	11156	11186	11141	0.27
4	Chr15a	15	9896	9936	9978	0.40
5	Chr15b	15	7990	7990	8210	0.00
6	Chr15c	15	9504	9540	9504	0.38
7	Chr18a	18	11098	11462	11610	3.18
8	Chr18b	18	1534	1534	1534	0.00
9	Chr20a	20	2192	2232	2292	1.79
10	Chr20b	20	2298	2298	2298	0.00
11	Chr20c	20	14142	14996	14142	5.69
12	Chr22a	22	6156	6176	6156	0.32
13	Chr22b	22	6194	6194	6194	0.00
14	Chr25a	25	3796	3998	4230	5.05

Table 7. Performance evaluation of PSO and ACO-PSO algorithm for TaiXXX problems

Prob. No.	Problem instances	Problem size	Best known cost	PSO Best cost	ACO-PSO Best cost	Relative percentage increase in cost
1	Tai12a	12	224416	224416	224416	0.00
2	Tai15a	15	388214	389718	389718	0.39
3	Tai17a	17	491812	494550	500966	0.55
4	Tai20a	20	703482	709642	706478	0.87
5	Tai25a	25	1167256	1196340	1179188	2.43
6	Tai30a	30	1818146	1846190	1854720	1.52
7	Tai35a	35	2422002	2496036	2475146	2.97
8	Tai40a	40	3139370	3227924	3233532	2.74
9	Tai50a	50	4941410	5109982	5085874	3.30
Table 8. Performance evaluation of PSO and ACO-PSO algorithm for HadXX problems

Prob. No.	Problem instances	Problem size	Best known cost	PSO	ACO-PSO	Relative percentage increase in cost PSO	Relative percentage increase in cost ACO-PSO
1	Had12	12	1652	1652	1660	0.00	0.48
2	Had14	14	2724	2724	2724	0.00	0.00
3	Had16	16	3720	3720	3720	0.00	0.00
4	Had18	18	5358	5358	5358	0.00	0.00
5	Had20	20	6922	6922	6934	0.00	0.17

Table 9. Performance evaluation of PSO and ACO-PSO algorithm for KraXXX problems

Prob. No.	Problem instances	Problem size	Best known cost	PSO	ACO-PSO	Relative percentage increase in cost PSO	Relative percentage increase in cost ACO-PSO
1	Kra30a	30	88900	90460	88900	1.72	0.00
2	Kra30b	30	91420	91710	91490	0.32	0.08
3	Kra32	32	88900	88900	88900	0.00	0.00

Table 10. Performance evaluation of PSO and ACO-PSO algorithm for RouXX problems

Prob. No.	Problem instances	Problem size	Best known cost	PSO	ACO-PSO	Relative percentage increase in cost PSO	Relative percentage increase in cost ACO-PSO
1	Rou12	12	235528	235528	240038	0.00	1.88
2	Rou15	15	354210	354210	368356	0.00	3.84
3	Rou20	20	725522	725522	726920	0.00	0.19

Table 11. Performance evaluation of PSO and ACO-PSO algorithm for ScrXX problems

Prob. No.	Problem instances	Problem size	Best known cost	PSO	ACO-PSO	Relative percentage increase in cost PSO	Relative percentage increase in cost ACO-PSO
1	Scr12	12	31410	31410	31410	0.00	0.00
2	Scr15	15	51140	51140	51140	0.00	0.00
3	Scr20	20	110030	110030	110030	0.00	0.00

7. Conclusions

In this paper, PSO and ACO-PSO algorithms were adopted to solve the QAP problems. Ninety five well-known benchmark problems available in the literature were solved. Results shows that out of 95 problem instances, PSO produces optimum / best known solution for 61 problem instances. ACO-PSO algorithm produces optimum / best known solutions for 57 problem instances. In summary, it is noteworthy that the PSO and ACO-PSO algorithms were converging to good quality solution due the solution construction procedures adopted in this study. The solution construction procedures used in QAP were adopted from the shop schedule construction exist in the literature. In PSO, assignments were generated by assigning weights for current, particle’s best and global best assignments. In ACO-PSO, velocities for solution construction were arrived analogous to computing velocity trails in ant colony algorithms. The use of improvement schemes were also helped for attaining faster convergence. Further, algorithm has to be studied for solving real-world QAP problems.

References

[1] Garey M R, and Johnson D S 1979 Computers and Intractability: a Guide to Theory of NP – Completeness *Freeman*. San Francisco.
Steinberg L 1961 The backboard wiring problem: a placement algorithm SIAM Review. 3 37-50.

Elshafei A N 1977. Hospital layout as quadratic assignment problem Operational Res. Quarterly. 28 167-179.

Burkard R E, and Oﬀermann J 1977 Entwurf von Schreibmaschinentastaturen mittels quadratischer Zuordnungsprobleme Mathematical Methods of Operations Research 21(4) B121-B132.

Eiselt H A, and Laporte G 1991 A Combinatorial optimization problem arising in Dartboard design Journal of the Operational Research Society 42 B121-118.

Laporte G, and Mercure H 1988 Balancing hydraulic turbine runners: A quadratic assignment problem European Journal of Operational Research 35 378-381.

Abdelkafi O, Idoumghar L, and Lepagnot J 2016 A survey on the metaheuristics applied to QAP for the graphics processing units Parallel Processing Letters. 26(03) 1650013.

Burkard R E 2013 Quadratic assignment problems Handbook of combinatorial optimization 2741-2814.

Stützle T 2006 Iterated local search for the quadratic assignment problem European Journal of Operational Research. 174(3) 1519-1539.

Rameshkumar K, Rajendran C, and Mohanasundaram K M 2011 Discrete particle swarm optimisation algorithms a review. MIT Press.

Bonyadi M R, and Michalewicz Z 2017 Particle swarm optimization for single objective optimization problem Computers & Operations Research 79 1-21.

Jordehi A R, and Jasni J 2015 Particle swarm optimisation for discrete optimisation problems. European Journal of Operational Research 241(1) 85-96.

Skorin-Kapov J 1994 Extensions of a tabu search adaptation to the quadratic assignment problem Computers & Operations Research 21(8) 855-865.

Misevicius A 2005 A tabu search algorithm for the quadratic assignment problem Computational Optimization and Applications, 30(1) 95-111.

Fleurent C, and Ferland J A 1994 Genetic hybrids for the quadratic assignment problem. Quadratic assignment and related problems, 16 173-187.

Tate D M, and Smith A E 1995 A genetic approach to the quadratic assignment problem. Computers & Operations Research, 22(1) 73-83.

Merz P, and Freisleben B 1997 A genetic local search approach to the quadratic assignment problem. Proceedings of the 7th international conference on genetic algorithms.

Gambardella L M, Taillard É D, and Dorigo M 1999 Ant colonies for the quadratic assignment problem Journal of the operational research society, 50(2) 167-176.

Stützle T 1997 MAX-MIN ant system for quadratic assignment problems. Germany: Intelletek Group, Department of Computer Science, Darmstadt University of Technology (Report No. AIDA-97-04).

Maniezzo V, and Colotti A 1999 The ant system applied to the quadratic assignment problem IEEE Transactions on knowledge and data engineering 11(5) 769-778.

Montero A R, and López A S 2015 Ant Colony Optimization for Solving the Quadratic Assignment Problem. In Artificial Intelligence (MICAI) Fourteenth Mexican International Conference, IEEE.

Jordehi A R, and Jasni J 2015 Particle swarm optimisation for discrete optimisation problems: a review. Artificial Intelligence Review, 43(2) 243-258.

Hafiz F, and Abdenour A 2016 Particle Swarm Algorithm variants for the Quadratic Assignment Problem-A probabilistic learning approach Expert Systems with Applications, 44 413-431.

Bonyadi M R, and Michalewicz Z 2017 Particle swarm optimisation for single objective continuous space problems: a review. MIT Press.

Rameshkumar K, Rajendran C, and Mohanasundaram K M 2011 Discrete particle swarm optimisation algorithms for minimising the completion-time variance of jobs in flowshops International Journal of Industrial and Systems Engineering. 7(3) 317-340.

31 Rameshkumar K, and Rajendran C 2017 A novel discrete PSO algorithm for solving job-shop scheduling problem to minimize makespan Second International Conference on Advances in Materials and Manufacturing Applications (IconAMMA)

Stützle T 1998 An ant approach to the flow shop problem Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing 3 1560-1564.

Rajendran C, and Ziegler H 2004 Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs European Journal of Operational Research, 155(2) 426-438.

Rajendran C, and Ziegler H 2005 Two ant-colony algorithms for minimizing total flowtime in permutation flowshops Computers & Industrial Engineering, 48(4) 789-797.

Rameshkumar K, Rajendran C, and Mohanasundaram K M 2012 A novel particle swarm optimisation algorithm for continuous function optimisation International Journal of Operational Research. 13(1) 1-21.
[36] Miyazaki S, Nishiyama N, and Hashimoto F 1978 An adjacent pairwise approach to the mean flow-time scheduling problem. *Journal of the Operations Research Society of Japan, 21*(2) 287-301.

[37] Varadharajan T K, and Rajendran C 2005 A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs *European Journal of Operational Research, 167*(3) 772-795.

[38] Burkard R E, Karisch S, and Rendl F 1991 QAPLIB-A quadratic assignment problem library *European Journal of Operational Research, 55*(1) 115-119.