EINNs: Epidemiologically-Informed Neural Networks

Alexander Rodríguez¹, Jiaming Cui¹, Naren Ramakrishnan², Bijaya Adhikari³, and B. Aditya Prakash¹

¹College of Computing, Georgia Institute of Technology, Atlanta, USA
²Department of Computer Science, Virginia Tech, Arlington, USA
³Department of Computer Science, University of Iowa, Iowa City, USA

{arodriuezc, jiamingcui1997, badityap}@gatech.edu, naren@cs.vt.edu, bijaya-adhikari@uiowa.edu

Abstract

We introduce EINNs, a framework crafted for epidemic forecasting that builds upon the theoretical grounds provided by mechanistic models as well as the data-driven expressibility afforded by AI models, and their capabilities to ingest heterogeneous information. Although neural forecasting models have been successful in multiple tasks, predictions well-correlated with epidemic trends and long-term predictions remain open challenges. Epidemiological ODE models contain mechanisms that can guide us in these two tasks; however, they have limited capability of ingesting data sources and modeling composite signals. Thus, we propose to leverage work in physics-informed neural networks to learn latent epidemic dynamics and transfer relevant knowledge to another neural network which ingests multiple data sources and has more appropriate inductive bias. In contrast with previous work, we do not assume the observability of complete dynamics and do not need to numerically solve the ODE equations during training. Our thorough experiments on all US states and HHS regions for COVID-19 and influenza forecasting showcase the clear benefits of our approach in both short-term and long-term forecasting as well as in learning the mechanistic dynamics over other non-trivial alternatives.

1 Introduction

The COVID-19 pandemic has led to a maturing of methods for epidemic modeling and forecasting with the CDC establishing the first Center for Forecasting and Outbreak Analytics in 2021. A variety of forecasting innovations in machine learning and deep learning were developed—e.g., (Rodríguez et al. 2021a; Kamarthi et al. 2021)—with many lessons learned for COVID-19 and future pandemics. As the current experience has shown, predicting and preventing epidemics is one of the major challenges with far reaching impacts on health, economy and broad social well being.¹

From this perspective, active participation by several academic and industrial teams (including by coauthors) in multiple CDC-led forecasting initiatives has led to two broad themes that are important for epidemic modeling. First, modern disease surveillance has grown by leaps and bounds yielding novel data sources that can shed light into happenings real-time. Statistical/ML epidemic models leverage these data sources to provide dramatic improvements in short-term forecasting (usually 1-4 weeks ahead). At the same time, as these methods do not explicitly learn mechanistic dynamics, such methods do not provide understanding of how the epidemic will unfold at even longer time horizons, and do not support posing causal and counterfactual questions (e.g., design of countermeasures). Such long-term forecasting remains the province of mechanistic epidemic models that can support scenario-based understanding of epidemic progression (e.g., “what will happen if schools are closed?”). However, these methods present scalability issues, their calibration is prone to noise (Hazelbag et al. 2020), and they have limited capability to ingest multimodal data sources (Viboud and Vespignani 2019). At the intersection of these two modeling approaches, we have hybrid models that make compartmental models (based on ordinary differential equations – ODEs) more informed of these data sources (Shaman et al. 2013; Arik et al. 2020). However, most of these approaches use the mechanistic model for prediction, thus, they are not flexible enough to fit the complex patterns in epidemics and have very few tunable parameters. In addition, they are not easily generalizable to new models/data sources or do not aim to incorporate ODE dynamics from first principles (e.g., predict ODE parameters instead of the ODE states).

In this paper, we develop a general framework for incorporating epidemic dynamics from a mechanistic model into a neural framework for forecasting, which enables seamless integration of multimodal data, greater representation power, and inclusion of composable neural modules of learned representations. Our focus is to leverage the selective superiorities of both approaches (see Figure 1) to have predictions that are accurate (low error) and well-correlated with even longer-term epidemic trends than what has been usually studied in past literature.

Recent lines of research (e.g., (Karniadakis et al. 2021)) aim to bridge scientific models (usually represented as differential equations) and ML algorithms. Specifically, the rapidly growing literature in physics-informed neural networks (PINNs) has demonstrated that integrating neural networks with ODEs can lead to large scalability improvements as forward passes (over the ODE) are no longer needed (Lu et al. 2021). In addition, the neural network flexibility and gradient-based learning enables robust solutions in spite of
We propose to build upon this body of work to incorporate the dynamics of a mechanistic epidemic model into deep neural models. Our goal requires innovations to the PINN literature as many of the compartments in epi-models are latent (e.g., the actual number of people exposed to the disease) while most work in PINNs has only experimented with all states of the system dynamics being observable.

In addition, PINNs are limited to working with the variables that are described in the mechanistic equations which limits their capabilities to ingest data sources. On top of that, PINNs often use a simple multi-layer perceptron architecture whose inductive bias is often insufficient for sequential data. The main technical innovation of this paper comes from designing a transfer learning framework for transferring learned dynamics from a PINNs to a Recurrent Neural Network (RNN) that can ingest exogenous data features (data not-represented in the ODE). The goal of this is to have an RNN aware of epidemic ODE dynamics that has learned how data features (inputs to the RNN) shape/connect to the latent epidemic dynamics (outputs of the RNN).

We summarize our contributions as follows:

- **Push the boundaries of data-driven epi forecasting via integration of ODE-based mechanistic dynamics:** We introduce Epidemiologically-informed Neural Networks (EINNs), a new framework to bridge the gap between mechanistic and neural models for epidemiology. Our method incorporates epidemiological (expert) knowledge embedded in ODE models into neural networks (NNs). The key idea in EINNs is utilizing a PINN to learn the latent epidemic dynamics and transfer its learned representations to another neural model with more appropriate inductive bias (RNN) and capable of ingesting heterogeneous sources of data that are exogenous to the ODE equations.

- **Transfer learning via gradient matching of dynamics:** We propose a novel method to transfer learned representations from a PINN (source model) to another neural network (target model). This is based on matching the gradients of mechanistic ODEs in the target model as we do so when training the source model. This cannot be directly done in the target model (RNN) due to its neural architecture and data inputs. Therefore, we propose approximating internal representations of source and target models to enable the target model to learn to match the ODE gradient.

- **Extensive empirical evaluation:** We evaluate our method in the challenging task of weekly COVID-19 forecasting (in 48 geographical regions and a period of 8 months) and flu (in 10 regions and 5 months). Our results showcase that our method can indeed leverage the ‘best of both worlds’ compared to other non-trivial ways of merging such approaches. We believe this opens new avenues for exploring how AI can better complement domain knowledge in traditional epidemiology.

2 Related Work

Mechanistic and ML models for epidemic forecasting: Epidemic mechanistic models (Hethcote 2000) like the popular SIR are designed using domain knowledge of the epidemic dynamics. They model causal underpinnings to explain empirically observed variables (e.g., mortality), and ODE-based models have been a workhorse of epidemiology since the late 18th century (Marathe et al. 2013). More recently, there are several successful applications of ML to short-term forecasting (Osthus et al. 2019; Brooks et al. 2018; Adhikari et al. 2019; Rodríguez et al. 2021a) which led them to be often ranked among the top performing models in these tasks (Cramer et al. 2022; Reich et al. 2019). Some of the recent deep learning innovations include advances in incorporating multi-view and multimodal data (Kamarthi et al. 2022b), spatial correlations (Deng et al. 2020; Jin et al. 2021), transfer learning for domain adaptation (Rodríguez et al. 2021b) and non-parametric approaches (Kamarthi et al. 2021; Zimmer et al. 2020).

Hybrid epidemic models: They integrate mechanistic models and ML approaches (Rodríguez et al. 2022). Some lines of work use statistical techniques to estimate the mechanistic parameters (e.g. transmission rate) (Arik et al. 2020; Wang et al. 2021a), learn from simulation-generated data (Wang et al. 2019), or use the ODEs as regularization (Gao et al. 2021). However, in addition to the previously mentioned flexibility problems, these models require a forward pass over the mechanistic models, which may become very expensive for long periods and large mechanistic models. Furthermore, they often need to discretize the continuous ODE space, which is a delicate process as it has been found that sub-optimal discretization can impede the learning process (Thuerey et al. 2021). Our approach utilizes PINNs which allows skipping forward passes and discretization. Perhaps the most prominent in this line of research is the work by (Shaman et al. 2013) that integrated search volume data into a SIR model via the principle of data assimilation. However, developing such data assimilation approaches requires a large amount of domain knowledge and cannot be used to incorporate many of the data features studied in our work (e.g., mobility).

Physics-informed neural networks (PINNs): PINNs are universal function approximators via neural networks that embed knowledge of ODEs and partial differential equations (PDEs) via unsupervised loss functions based on these equations. They have been used for forward and inverse problems with ODEs in a variety of domains including computational biology (Yazdani et al. 2020). PINNs have connections to
3 Background

As mentioned earlier, we aim on merging neural models with epidemiological dynamics from a mechanistic model. Without loss of generality, here we introduce instantiations of such models which we refer to as building blocks. Their definitions help us to explain the formulation of the problem and to our best knowledge a recurrent neural architecture for PINNs remains an open problem. Also, incorporating exogenous variables to this framework and working with partially observable systems are largely unexplored problems (Cai et al. 2021; Wang et al. 2021b). Our approach EINNs extends the capabilities of PINNs by directly addressing these limitations in the context of epidemiology.

3.1 ODE-Based Mechanistic Epidemic Models

Our first building block is a mechanistic epidemic model. Epidemiologists use different mechanistic models for each disease because infection dynamics and disease progression varies (Hethcote 2000). In this paper we use COVID-19 and influenza as a vehicle to demonstrate the benefits of our general framework, therefore, we use two different mechanistic epidemic models: SEIRM and SIRS (SIRS description is similar to SEIRM and can be found in our appendix).

SEIRM model for COVID-19: The SEIRM ODE model consists of five compartments: Susceptible (S), Exposed (E), Infected (I), Recovered (R), and Mortality (M). It is parameterized by four variables \(\Omega = \{ \beta, \alpha, \gamma, \mu \} \), where \(\beta \) is the infectivity rate, \(1/\alpha \) is the mean latent period for the disease, \(1/\gamma \) is the mean infectious period, and \(\mu \) is the mortality rate. Due to COVID-19’s prolonged incubation period, the SEIRM has been broadly used in modeling its progression (Wu et al. 2020; Morozova et al. 2021). It has also been used by the CDC in modeling transmission of Ebola (Gaffey et al. 2018). To capture the evolving nature of the dynamics and spread of COVID-19 (e.g., consider the multiple variant waves), we leverage the dynamic version of the SEIRM model, where the parameters governing the disease progression themselves evolve over time. In such a setting, the dynamics is governed by the set of parameters \(\Omega_t = \{ \beta_t, \alpha_t, \gamma_t, \mu_t \} \) at the given time-stamp \(t \). Let \(s_t = [S, E, I, R, M]^T \) be the values taken by the states at time \(t \). (ODE state \(S_t \) represents the number of susceptible people at time \(t \), similar for the other states). Then, the ODEs describing the SEIRM model are given by \(f_{\text{ODE}}(s_t, \Omega_t) \):

\[
\begin{align*}
\frac{dS_t}{dt} &= -\beta_t S_t I_t / N, \\
\frac{dE_t}{dt} &= \beta_t S_t I_t / N - \alpha_t E_t, \\
\frac{dI_t}{dt} &= \alpha_t E_t - \gamma_t I_t - \mu_t I_t, \\
\frac{dR_t}{dt} &= \gamma_t I_t, \\
\frac{dM_t}{dt} &= \mu_t I_t.
\end{align*}
\]

In our SEIRM model, only mortality is considered observed (Wu et al. 2020), therefore, ODE states \(S_t, E_t, I_t, \) and \(R_t \) are latent. By solving the set of ODEs, we can discover the latent epidemic dynamics which are described by the values of \(s_t \) and \(\Omega_t \) for the entire period for which we have observational data, i.e., \(\forall t \in \{ t_0, \ldots, t_N \} \).

3.2 RNN Architecture

Our second building block is a deep sequential model, which we instantiate with an RNN with attention, extensively used in neural epidemic forecasting as a central building block (Adhikari et al. 2019; Kamath et al. 2021; Wang et al. 2019). Here, we introduce the base architecture of this model. Informally, at prediction time \(t = t_N \) we are given a multivariate time series of features/signals \(X = \{ x_t \}_{t=0}^{t_N} \) with \(x_t \in \mathbb{R}^{D_x} \), where \(D_x \) is the number of features. And we are tasked to predict \(K \) steps ahead in the future. We encode the feature time series until \(t_N \) by passing it through a Gated Recurrent Unit (GRU) (Cho et al. 2014) to obtain a condensed representation for each time step: \(\{ h_t \}_{t=0}^{t_N} = \text{GRU}(\{ x_t \}_{t=0}^{t_N}) \) where \(h_t \) is the hidden state of the GRU for time step \(t \). To capture long-term relations and prevent over-emphasis on last terms of sequence we use a self-attention layer (Vaswani et al. 2017), and finally a feedforward network to make the prediction \(y_t = N + k \).

3.3 PINNs for Systems Biology

Recently, several works (Yazdani et al. 2020; Karniadakis et al. 2021) in Systems Biology have used PINNs for solving forward and inverse problems with ODEs. The neural network \(N(t) \) is a function of single variable \(t \) and ODE system is in the form \(f_{\text{ODE}}(t) \) describing the rate of change (gradient) of some function with respect to \(t \). Gradient \(\frac{dN(t)}{dt} \) can be used computed via Automatic Differentiation–autograd, which in turn makes it possible to train the neural network \(N(\cdot) \) while minimizing the residual between the two gradients, e.g. loss \(\left(\frac{dN(t)}{dt} - f_{\text{ODE}}(t) \right)^2 \).

4 Problem Formulation

As mentioned earlier, we aim on harnessing the strengths of both machine learning/deep learning approaches (which have been very successful in short-term forecasting) and mechanistic models (which are useful for long-term trend projections). Hence, our problem is one of merging neural models with mechanistic model dynamics while maintaining benefits from both the techniques. To capture this specific intention, we modify traditional forecasting problems (Adhikari et al. 2019) in the following manner:
Problem: INCORPORATING EPI-DYNAMICS IN NNs

Given: • A base epidemiological model mathematically represented as a set of ODEs (for example, see the SEIRM and SIRS models in Section 3.1). • A base RNN (see Section 3.2). • Data: an observed multivariate time series of COVID/flu-related signals $\mathcal{X} = \{x_t\}_{t=t_0}^{t_N}$ and corresponding values for the forecasting target (new COVID-associated deaths or ILI flu counts) $\mathcal{Y} = \{y_t\}_{t=t_0}^{t_N}$, where t_0 is the first day of the outbreak and t_N is the current date.

Predict: next K values of the forecasting target, i.e. $\{\hat{y}_{N+k}\}_{k=1}^{K}$ (here K is the size of the forecasting window/horizon), such that predictions are accurate and well-correlated with the trends of the epidemic curve.

We are also interested in learning if taking advantage of selective superiorities of both approaches can push the prediction horizon (i.e., how many steps ahead we can forecast). Typically, CDC forecasting initiatives request short-term forecasts up to 4-weeks ahead ($K = 4$) – see (Cramer et al. 2022; Jin et al. 2021). Longer forecasting horizons have not been explored much, thus, we propose the double approach of the current horizon (i.e., $K = 8$) in this paper.

5 Our Approach

To tackle the problem INCORPORATING EPI-DYNAMICS in NNs, one can easily conjure ‘naïve’ approaches. A simple approach is to calibrate the given mechanistic model with the observed targets \mathcal{Y} and train the base RNN using the generated (synthetic) curve. Similarly, one could also use the ODEs to regularize the neural predictions or could train an ensemble with neural network’s and ODE-model’s predictions. However, as we show later in our experiments, while these approaches often can maintain the performance of the base RNN, they do not generate well-correlated predictions.

Overview: See Figure 2. We propose using an heterogeneous domain transfer learning setup (Moon and Carbonell 2017), where we transfer knowledge from a source model to a target model. Here our source model is a PINN whose purpose is discovering the latent epidemic dynamics (solving ODEs). The gradients of our ODE epi-models $(d\hat{s}_t/dt)$ are with respect to time; therefore, as noted in Section 3.3, time is the only input to this PINN. Thus, we refer to this PINN as time module. The target model is an RNN which ingests data features from heterogeneous sources—thus we call it feature module—and incorporates appropriate inductive bias to model sequential time series data. Note that both source and target models predict the same output s_t, which are the ODE states. Therefore, the feature module learns a mapping from a multivariate time series of COVID/flu-related signals \mathcal{X} (exogenous data features, i.e., not-represented in the ODE) to the epidemic dynamics s_t. Next, we explain each of these modules in detail.

5.1 Time Module (Source Model): Learning Latent Time-Varying Dynamics

The time module interfaces with the set of ODEs describing an epidemic mechanistic model. Via PINNs, it learns the latent epidemic dynamics given observational data. Following the introduction in Section 3.3, PINNs solve the ODEs by jointly minimizing the observational error and the residual between gradient given by the ODE and the gradient of the neural network with respect to the time inputs (computed via autograd). As in most literature—see Section 2—our time module $N_{\text{time}}(t)$ is parametrized by a multi-layer perceptron that ingests time t as input and predicts ODE states for time t, denoted as $\hat{s}_t \in \mathbb{R}^{D_s}$, where D_s is the number of ODE states (e.g., 5 for SEIRM). We want this neural network to make predictions that follow epidemic dynamics described the set ODEs f_{ODE}. This is, we make $N_{\text{time}}(t) = s_t$; subject to $ds_t/dt = f_{\text{ODE}}(s_t, \Omega_t)$, where Ω_t are the learned ODE parameters for time t. We minimize the ODE loss (unsupervised loss $L_{\text{ODE-T}}$) while fitting the observed data (supervised loss $L_{\text{Data-T}}$):

$$L_{\text{ODE-T}} = \frac{1}{N + 1} \sum_{t=t_0}^{t_N} \left[\frac{ds_t}{dt} - f_{\text{ODE}}(s_t, \Omega_t) \right]^2$$

$$L_{\text{Data-T}} = \frac{1}{N + 1} \sum_{t=t_0}^{t_N} [\hat{M}_t - M_t]^2$$

where \hat{M}_t is predicted mortality by the time module. To discover the latent dynamics, we want to obtain s_t and Ω_t.

Constraining the optimization via domain knowledge: In contrast to the setting in most prior work in PINNs where most states of the system dynamics are observed, most states in our SEIRM model are latent. We found learning in such a scenario can be very challenging. We alleviate this by infusing additional epidemiological domain knowledge in the form of monotonicity constraints. In particular, we adapt monotonicity losses from (Murailidhar et al. 2018) to our setting. They proposed to penalize consecutive predictions if they are not monotonic in the required direction. Note that the difference between consecutive predictions are discrete approximation to the derivatives. Here, we generalize this loss to continuous derivatives by taking the limit $\lim_{h \to 0}$.

Now, derivatives can be directly computed via autograd. To incorporate these constraints, we use domain knowledge. Using SEIRM as an example (similar can be easily derived for other epidemiological models), we know that the Susceptible state S_t monotonically decreases and the Recovered state R_t monotonically increases. Then, we add a penalty when dS_t/dt is positive and when dR_t/dt is negative as follows:

$$L_{\text{Mono}} = \frac{1}{N + 1} \left(\sum_{t=t_0}^{t_N} dS_t \text{ReLU}(dS_t/dt) + \sum_{t=t_0}^{t_N} -dR_t \text{ReLU}(-dR_t/dt) \right)$$

where $\text{ReLU}(x) = \max(0, x)$ is the rectified linear function. Note that S_t and R_t are part of s_t, which is the output of the time module; thus, dS_t/dt and dR_t/dt are computed via autograd.

Coping with spectral bias in neural networks: One of the central issues in fitting PINNs is the spectral bias of neural networks, which is the tendency of neural networks to
(a) EINNs: Time and feature modules

![Diagram of EINNs](image)

- **Time module**: Input: Timestamp (day), i.e., position in the temporal sequence
- **Feature module**: Input: data features such as search trends, online surveys, hospital patients

(b) Required gradient computations via autograd

\[
L_{ODE-T} = \left(\frac{ds_t}{dt} - f_{ODE}(s_t, \Omega_t) \right)^2
\]

\[
L_{ODE-F} = \left(\frac{ds^F_t}{dt} - f_{ODE}(s^F_t, \Omega_t) \right)^2
\]

(c) Calculation of ODE losses

- **S** (Source model)
- **E** (EINNs)
- **I** (Innovation)
- **M** (Model)

Figure 2: Depiction of our proposed framework EINNs. (a) The pipeline of EINNs has two independent computational paths: time module (source model) and feature module (target model). For simplicity, in our equations we refer to \(N_{Time} \) as a single module, but, in practice, this is implemented as two neural models: \(N_{output} \circ N_{Time} \) where \(N_{output} \) is a multi-layer feedforward network. Similarly, \(N_{Feat} \) is implemented as \(N_{output} \circ N_{Feat} \). During training step 2, when \(e_t \approx e^F_t \), we will freeze layers and train only \(N_{output} \). (b) Three gradients are computed via autograd: \(\frac{ds_t}{dt}, \frac{de_t}{dt}, \text{ and } \frac{ds^F_t}{dt} \). Using these gradients we can compute ODE loss for the time module and approximate \(\frac{ds^F_t}{dt} / dt \) via our gradient trick. (c) We utilize equations \(f_{ODE} \) to compute the ODE losses. Approximation of \(\frac{ds^F_t}{dt} / dt \) is used to compute the ODE loss for the feature module \(L_{ODE-F} \). This loss encourages integration of ODE dynamics from the time module (source model) into the feature module (target model).

fit low frequency signals (Wang et al. 2021b). To overcome this, usually the neural networks are given more flexibility to fit high frequency systems. Here, we adopted Gaussian Random Fourier feature mappings (Tancik et al. 2020): \(\Gamma(v) = [\cos(2\pi B v), \sin(2\pi B v)]^T \), where each entry in \(B \in \mathbb{R}^{d \times 1} \) is sampled from \(N(0, \sigma^2) \), where \(\sigma \) is a hyperparameter.

Handling time-varying ODE parameters: Our ODE model is time varying, therefore we have to learn mechanistic parameters for each time step, which increases the difficulty of the optimization. To make this more tractable, we propose a consistency loss between consecutive parameters.

\[
L_{Param} = \frac{1}{N + 1} \sum_{t=0}^{T_N} [\Omega_{t+1} - \Omega_t]^2
\]

(4)

5.2 Feature Module (Target Model): Connecting Features to Epidemic Dynamics via Gradient Matching

The feature module is composed of a shared RN and ingests multivariate time-series of COVID/flu-related signals \(X \) to predict the epidemic dynamics \(s^F_t \). (Note: embeddings and outputs of feature module have superscript \(F \) to avoid confusions with the ones given by the time module). Here, we want to ensure that the predictions made by the feature module are consistent with the ones given by the ODE module. Hence, we want the feature module neural network \(N_{Feat} (X) \) to follow the learned latent dynamics from the time module neural network \(N_{Time} (t) \) (note the heterogeneous domains). We can formalize our goal as follows: \(N_{Feat} (X) = s^F_t \) subject to \(\frac{ds^F_t}{dt} = f_{ODE}(s^F_t, \Omega_t) \), where \(s^F_t \in \mathbb{R}^{D_s} \) are the ODE states predicted by the feature module and \(\Omega_t \) are the same ODE parameters used by the time module.

Matching the ODE gradient: We cannot directly calculate \(\frac{ds^F_t}{dt} \) via autograd from the inputs as we did for the time module because our feature module is an RNN and ingests features. We propose to use internal representations (embeddings) so that we can approximate the gradient to an expression that can be computed via autograd. Let \(e_t \in \mathbb{R}^{D_e} \) and \(e^F_t \in \mathbb{R}^{D_e} \) be embeddings for the time module and feature module, respectively \((D_e \) is embedding size). Then, by using the chain rule, we propose to approximate the gradient of \(s^F_t \) assuming \(e_t \approx e^F_t \) and have our gradient trick:

\[
\frac{ds^F_t}{dt} = \frac{ds^F_t}{de^F_t} \frac{de^F_t}{dt} \approx \frac{ds^F_t}{de^F_t} \frac{de_t}{dt}
\]

(5)

where \(\frac{ds^F_t}{de^F_t} \) can be calculated in the feature module using autograd because \(e^F_t \) is the only variable that is needed to compute \(s^F_t \). Similarly, \(t \) is the only input needed for computing \(e_t \), thus, we can use autograd to compute \(\frac{de_t}{dt} \). To make this approximation valid, we have to make these embeddings \(e_t \) and \(e^F_t \) similar. We do this with the following loss:

\[
L_{Emb} = \frac{1}{N + 1} \sum_{t=0}^{T_N} [e_t - e^F_t]^2
\]

(6)

This derivation allows us to make the feature module to learn the gradients learned by the time module by minimizing an ODE loss for the feature module:

\[
L_{ODE-F} = \frac{1}{N + 1} \sum_{t=0}^{T_N} \left[\frac{ds^F_t}{dt} \frac{de_t}{dt} - f_{ODE}(s^F_t, \Omega_t) \right]^2
\]

(7)

Aligning with data and time module outputs: Matching the ODE gradient is not enough to ensure the dynamics will be transferred. We have to make sure that the feature module outputs are aligned with data and with the ODE dynamics as found by the time module. For fitting the data, we define data loss in a manner similar to the time module:

\[
L_{Data-F} = \frac{1}{N + 1} \sum_{t=0}^{T_N} \left[\hat{M}^F_t - M_t \right]^2
\]

(8)
where \(\hat{M}_{t}^F \) is the predicted mortality of the feature module. To align the time and feature modules, we use knowledge distillation (KD) (Ba et al. 2014), a popular transfer learning method. We impose our KD loss on the outputs of these two:

\[
L_{\text{Output}} = \frac{1}{N+1}\sum_{t=t_0}^{t_N} [s_t - \hat{s}_t^F]^2. \tag{9}
\]

Note that our time module is able to predict for any given time but our base RNN makes prediction for one target in the future. To align these two, we make our feature module to make joint prediction using a decoder GRU which takes \(u_{t_0:t_N} \) as the initial hidden state and roll the GRU forward for every prediction step ahead taking time as input. Thus, our decoder equations will be \(e_{t=tN+k} = \text{GRU}(u_{t_0:tN}, t_{N+k}) \) and our final predictions \(y_{t=tN+k} = \text{FFN}(e_{t=tN+k}) \).

5.3 Model Training, Inference, and Implementation

During training, our first goal is to make \(e_t \approx e_t^F \) so that later we can use the gradient approximation stated in Equation (5). This is a 2-step process which we detail in our appendix. At inference, we solely utilize the feature module predictions as it ingests features and we want to emphasize the utility of inserting dynamics in ML models.

6 Experiments

6.1 Setup, Metrics, and Baselines

All experiments were conducted using a 4 Xeon E7-4850 CPU with 512GB of 1066 Mhz main memory and 4 GPUs Tesla V100 DGXS 32GB. Our method implemented in PyTorch (implementation details in the appendix) trains on a GPU in about 30 mins for one predictive task. Inference takes only a few seconds. Appendix, code, and other resources can be found online.

Evaluation: All the results are for forecasting COVID-19 mortality in the US up to 8-weeks ahead in the future. For COVID-19, as per previous CDC-coauthored papers (Cramer et al. 2022), we evaluate at state and national level. Specifically, we include 47 states; we exclude 3 out of the 50 states where the SEIRM mechanistic model had difficulties fitting due to sparsity of death counts (specifically Alaska, Montana, and Wyoming). Our evaluation period is 8 months from Sept. 2020 to March 2021. which includes the complete Delta wave in the US, and we make 8-weeks ahead predictions for every two weeks in this period. We used June 2020 to Aug. 2020 to tune our models. For flu, we also follow CDC (Biggerstaff et al. 2018) and predict for all 10 HHS region\(^3\) for a period of 5 months (Dec. 2017 to May 2018).

For each forecasting week, all models are trained with historical data available until that week (i.e., they are trained on every prediction week). In total, we make 5696 predictions per model which requires training each of them 700+ times, therefore, is very computationally expensive to run all models for multiple runs.

\(^3\)Resources website: https://github.com/AdityaLab/EINNs

hhs.gov/about/agencies/tea/regional-offices/index.html

Metrics: Our focus is in predictions that are accurate and well-correlated the epidemic trends, thus we measure two aspects of our predictive performance: error and trend correlation. Specifically, we use two different versions of Normalized RMSE (NR1 and NR2) and Normal Deviation (ND), and Pearson correlation. See more details in appendix.

Data: We collected important publicly available signals from a variety of trusted sources that are relevant to COVID-19 forecasting. For COVID-19, we collected 13 features in this dataset, this include mobility from Google and Apple, social media surveys from Facebook, hospitalization data from the U.S. Depart. of Health & Human Services and CDC, and cases and mortality from Johns Hopkins Univ. For flu, we use the 14 signals from the Google symptom dataset. See appendix for more details and links.

Baselines: As we are the first to pose the INCORPORATING EPI-DYNAMICS IN NNs problem, we do not have off-the-shelf baselines. Instead, our focus is on how to incorporate ODE dynamics into NNs. Hence we focus on the different ways these have been explored in literature (Dash et al. 2022). • GENERATION: Similar to (Wang et al. 2019; Sanchez-Gonzalez et al. 2020), the NN learns directly from data generated by the numerical solution of SEIRM/SIRS, • REGULARIZATION: Similar to (Gao et al. 2021; Gaw et al. 2019), the NN predicts both the ODE states and the ODE parameters. Then uses the ODE parameters to regularize the states via a loss based on the SEIRM/SIRS equations. • ENSEMBLING: As per (Adiga et al. 2021; Yamana et al. 2017), combines predictions from RNN and SEIRM/SIRS via a NN that outputs final predictions.

6.2 Results in COVID-19 and Influenza

Our results showcase EINN as an effective general framework for incorporating epidemic dynamics from a mechanistic model into a neural network. We first demonstrate that we can leverage advantages from both modeling paradigms resulting in consistently good forecasts across all tasks and metrics. We also compare against other non-trivial methods to incorporate ODE dynamics into neural models. To contextualize our model’s performance with the broader picture of epidemic forecasting, we also have results with standard data-driven baselines, which can be found in our appendix.

Q1: Leveraging advantages of both mechanistic models and neural models. Our RNN has a lower or similar error in short- and long-term forecasting than the SEIRM and SIRS, but its predictions are much less correlated with epidemic trends (see lines 1-2 of comprehensive results in Table 1). By integrating mechanistic and neural models, EINNs is capable of taking advantage of both. Comparing EINNs with the SEIRM/SIRS, Pearson correlations are close but our predictions are much more accurate (up to 77% less error). Indeed, EINNs not only improves RNN correlation by 475% but also its accuracy up to 55% thanks to the incorporation of short and long-term dynamics. Note that our goal was not to beat the SEIRM/SIRS but have a method that has a consistently good performance across accuracy and correlation.

Q2: Benefits over other ways to incorporate epidemic dynamics into neural models. EINNs has the lowest error and best correlation in comparison with other existing ways
to incorporate epidemic dynamics to neural networks. We can see that these methods may excel in one task (e.g., EINN in long-term forecasting) but they are severely worse in other important tasks. Instead, EINNs is the only one consistently good in all tasks.

Q3: Ablation: time module PINN and gradient matching. We perform ablation studies to understand what are the contributions of the main components of our model. First, we analyze our time module trained standalone, i.e., being trained without the feature module with losses in Equations (5-9) (PINN in Table 1). We can see that, although our time module trained without the feature module with losses in Equations (6) and (7). In this scenario where only \(L_{Output} \) helps to transfer the dynamics, we can see that it is a less effective way.

Q4: Sensitivity to hyperparameters. We found our results are not sensitive to changes in most hyperparameters. See appendix for more details and extra results (more baselines).

7 Discussion and Societal Impact

Preventing and responding to pandemics requires trustworthy epidemic forecasts, e.g., forecasts well correlated with actual epidemic trends. The ML community has been very active in CDC forecasting initiatives and has harnessed multiple successes. However, generating trustworthy epidemic forecasts may require more than only data. In this paper we tackle this challenge by introducing EINNs to incorporate mechanistic dynamics (via the SEIRM/SIRS model) into neural models (using a RNN style base model). We show the effectiveness of a principled method to transfer relevant knowledge via gradient matching of the ODE equations, without integrating (forward pass) the ODE model. Through extensive experiments over states/regions in the US we also show the usefulness of EINNs in COVID-19 and flu forecasting and also the importance of our various design choices. Overall, we believe this work opens up new avenues for leveraging epi domain knowledge into AI models for better decision making. Connecting complex mechanistic models to neural networks also enables us to have learned representations useful for other tasks downstream like what-if predictions, which would be worth exploring. In addition investigating more complex epidemiological models (like network based agent models) would be fruitful.

Acknowledgments

This work was supported in part by the NSF (Expeditions CCF-1918770, CAREER IIS-2028586, RAPID IIS-2027862, Medium IIS-1955883, Medium IIS-2106961, CCF-2115126, PIPP CCF-2200269), CDC MInD program, faculty research award from Facebook and funds/computing resources from Georgia Tech. B.A. was supported by CDC-MIND U01CK000594 and start-up funds from University of Iowa. NR was supported by US NSF grants Expeditions CCF-1918770, NRT DGE-1545362, and OAC-1835660. We also would like to thank Harsha Kamarthi for his helpful suggestions which improved the paper.

Table 1: EINNs is the only one consistently providing accurate and well-calibrated forecasts and it is among the best performing for all metrics (lower NR1, NR2 and ND is better; higher Pearson correlation is better). Top 2 models per column are in bold (including tied models). These results are an average across 5696 predictions per model.
