Recent advances in the surgical treatment of hepatocellular carcinoma

Zenichi Morise, Norihiko Kawabe, Hirokazu Tomishige, Hidetoshi Nagata, Jin Kawase, Satoshi Arakawa, Rie Yoshida, Masashi Isetani

Abstract

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. The treatment of HCC is complex and complicated by the severity of associated chronic liver disease, the stage of HCC, and the clinical condition of the patient. Liver resection (LR) is one of the most efficient treatments for patients with HCC, with an expected 5-year survival of 38%-61% depending on the stage of the disease. Improved liver function assessment, increased understanding of segmental liver anatomy from advanced imaging studies, and surgical technical progress are important factors that have led to reduced mortality in patients with HCC. The indication for LR may be expanded due to emerging evidence from laparoscopic hepatectomies and combined treatments with newly developed chemotherapies. Liver transplantation (LT) is considered as an ideal treatment for removal of existing tumors and the injured/pre-neoplastic underlying liver tissue with impaired liver function and the risk of multicentric carcinogenesis that results from chronically injured liver. However, LT is restricted to patients with minimal risk of tumor recurrence under immunosuppression. The expansion of criteria for LT in HCC patients is still under trial and discussion. Limited availability of grafts, as well as the risk and the cost of transplantation have led to considerable interest in expansion of the donor pool, living donor-related transplantation, and combined treatment involving LR and LT. This highlight presents evidence concerning recent studies evaluating LR and LT in HCC patients. In addition, alternative therapies for the treatment of early stage tumors and the management of patients on transplant waiting lists are discussed.

Core tip: Liver resection (LR) is one of the most efficient treatments for patients with hepatocellular carcinoma (HCC). Advances in assessment and treatment, including emerging evidence from laparoscopic hepatectomies and combined treatments with newly developed chemotherapies, may lead to expanded indications for LR. Liver transplantation (LT) is an ideal treatment for chronically injured liver tissue with impaired liver function and risk of multicentric carcinogenesis. The expansion of criteria for LT in HCC patients and combined treatment involving LR and LT are under trial and discussion. This highlight presents and discusses recent studies concerning LR and LT in HCC patients.
INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the most common primary liver malignancy[1]. The treatment of HCC is complex and challenging due to its well-known association with chronic liver disease (CLD), which can be caused by viral infection, alcohol consumption, metabolic syndrome, etc. The parenchyma underlying chronically injured liver tissue can display various histologic changes, including steatosis, inflammation, fibrosis, and/or cirrhosis. Combined with the risk of multicentric carcinogenesis, these histologic changes limit the possibility of curative treatments, which include liver resection (LR), liver transplantation (LT), and the local ablation of small tumors[2].

LR is one of the most efficient treatments for HCC[3,4]. Considerable progress over the past ten years in screening, early radiologic diagnosis, treatment of the underlying liver disease, and surgical techniques has resulted in revision of the indications for LR[5]. Furthermore, improved liver function assessment, understanding of segmental liver anatomy using more accurate imaging studies, and surgical technical progress are the most important factors that have led to reduced mortality, with an expected 5-year survival of 38%-61%, depending on the stage of the disease[6]. Despite these advances, less than 30% of HCC patients are eligible for LR[5,6]. However, emerging evidence from laparoscopic hepatectomies[8] and the use of combined treatments with newly developed chemotherapies[7] may lead to expansion of the indication for LR (Table 1).

Impairment of liver function and the risk of multicentric carcinogenesis from chronically injured liver tissue lead to consideration of LT as the ideal treatment for removal of existing tumors and injured/preneoplastic underlying liver. However, LT is restricted to patients with minimal risk of tumor recurrence under immunosuppression[9]. Expansion of criteria for LT in HCC patients is still under trial and discussion[10,11]. The limited availability of donor grafts for LT, as well as the risk and cost of the procedure, has led to considerable interest for expansion of the donor pool and living donor-related transplantation[11], and combined treatments involving LR and LT[11,12].

This review presents and discusses recent advances in the surgical treatment of HCC (Table 2). Advances in the assessment of liver function are also described, along with discussion of patient management and combinatorial treatment options. In addition, a brief discussion is presented concerning nonsurgical methods that play an important role in HCC treatment, either alone or combined with surgical approaches. These methods include local ablation therapies, such as percutaneous or laparoscopic radiofrequency ablation (RFA)[13], as well as a newly developed and promising approach involving transarterial radioembolization with radioactive substances such as 131I-iodine-labeled Lipiodol[14] or microspheres containing yttrium-90[15].

LIVER RESECTION

The largest study concerning LR for the treatment of HCC is from the Liver Cancer Study Group in Japan, which involved 27062 resected HCC patients treated between 1992 and 2003[16]. This study reported 1-, 3-, and 5-year survival rates of 87.8%, 69.2%, 53.4%, and 27.7%, respectively, which are comparable to rates reported by other groups worldwide, without differences between Western and Eastern countries. Survival rates

Table 1 Treatment options for hepatocellular carcinoma within injured liver

Treatment Options	Description
Local ablation	Only for small tumors (in size and number) therapy
Liver resection	Most available and efficient treatment
	Applicable to < 30% of all HCC patients
	5-yr survival of 38%-61% depending on the tumor stage
Liver transplantation	Ideal treatment for removal of existing tumor and transplantation underlying injured/preneoplastic tissue
	Tumor progression while on waiting list
	Patients with advanced/extensive HCC have very poor outcomes

HCC: Hepatocellular carcinoma.

Table 2 Summary of recent advances in liver resection for hepatocellular carcinoma

Advanced Modalities	Description
CT: Computed tomography	HBV: Hepatitis B virus; HCV: Hepatitis C virus; IFN: Interferon; MELD: Model for end-stage liver disease; VTT: Venous tumor thrombosis; 5-FU: 5-Fluorouracil.

Table 2

Table 2 Summary of recent advances in liver resection for hepatocellular carcinoma

Established	Screening and early detection for high-risk patients (i.e., with HCV or HBV infection, alcoholic, metabolic chronic liver disease, etc.)
	Diagnosis with contrast-enhanced imaging for the detection of early lesions
	Assessment of liver function (Child-Pugh classification, indocyanine green retention test, MELD score)
	Modulation of residual liver function with preoperative portal vein embolization
	Anatomic resection removing undetectable disseminated tumor foci in the same portal territory

Under discussion

Three dimensional-CT-assisted preoperative surgical planning facilitates:

- Unconventional types of liver resection
- Laparoscopic liver resection could be beneficial:
 - For patients with severe liver dysfunction with lower morbidity
 - For repeat resection
 - As a bridging therapy for liver transplantation

Under trial or proposal

- Adjuvant and/or combination therapy for advanced tumor
 - Sorafenib
- Intraarterial 5-FU plus IFN therapy for hepatocellular carcinoma with VTT

HCC: Hepatocellular carcinoma.
as high as 60% at five years could have been achieved in Child-Pugh A patients with well-encapsulated tumors of ≤ 2 cm in diameter. Results from patients with good liver function and anatomic LR according to the architecture of the portal vein (although less than 10% of all patients) were comparable with those from patients with LT.

There are reports describing that significantly better overall and disease-free survival rates are achieved with anatomic LR for small solitary HCC compared to limited resection, without increasing the postoperative risk\(^{[17,18]}\). Intrahepatic metastasis of HCC along the portal vein and the presence of satellite nodules within 2 cm of the main nodule is the basis for anatomic LR\(^{[19]}\), which involves the complete removal of tumor-bearing portal territory. Anatomic LR has the potential to remove undetected cancerous foci (portal vein metastases and satellite nodules) disseminated from the main tumor, and thus is recommended when possible in many reports.

The indication for and extent of LR in patients with HCC is influenced both by tumor extension and the severity of liver dysfunction. For the treatment of HCC patients with CLD, the degree of invasive surgical stress, especially to the impaired liver, should be considered in addition to the oncologic therapeutic effects. Patients with severe CLD can present with various signs (overt and preliminary), such as (1) deterioration of protein synthesis and metabolism; (2) gastrointestinal tract congestion, ascites, pancytopenia due to portal hypertension and hypersplenism; and (3) susceptibility to infectious diseases and hepatopulmonary syndrome (hypoaxemia) due to increased shunt vessels\(^{[20]}\). Cirrhotic patients have high morbidity and mortality following anesthesia and surgery\(^{[21,22]}\) and the risk from abdominal operations increases according to the preoperative Child-Pugh classification\(^{[23]}\) of the patients\(^{[24]}\).

Major histologic changes that are observed in patients with HCC can range from mild fibrosis (F1) to cirrhosis (F4). Patients with cirrhosis have a lower rate of regeneration after LR, more frequent association with portal hypertension, and a higher risk of tumor multiplicity/recurrence\(^{[12,24]}\). Even in the absence of extensive fibrosis, steatosis and inflammation can also have a significant influence on the course after LR. The diseased liver parenchyma presents an operative risk due to the altered texture of the liver parenchyma, impaired liver regeneration, and deteriorated liver function, which lead to coagulation defects, increased risk of infection, etc.\(^{[25]}\). Moreover, there is a close relationship between the volume of resected liver and postoperative morbidity/mortality of LR in patients with CLD. Therefore, there is limited indication for LR in cases of large tumors or small but centrally located tumors\(^{[26]}\). LR in patients with HCC and CLD is complicated by the fact that it should be curative with the resection of the tumor vascular territories yet also preserve as much liver volume as possible to prevent postoperative liver failure.

Assessment and modulation of remnant liver function

A small remnant liver volume is associated with poor postoperative liver function and a high mortality/morbidity after LR\(^{[27]}\). Although the safety limit for the remnant liver volume in patients with normal liver is approximately 30% of the total liver volume (TLV), it is generally thought that a remnant liver volume of 40%-50% should be preserved in patients with CLD\(^{[28]}\). The liver is characterized by its capacity to ensure normal function with a reduced functional volume and the ability to regenerate. However, the extent of fibrosis in the remnant liver, portal flow, and other factors can affect the ability of the liver to regenerate. Thus, the volume of future liver remnant (FLR) that is adequate will vary from patient to patient. Although the aim of preoperative assessment of liver function is to prevent postoperative liver failure, determining the postoperative functionality of a reduced-volume FLR and its capacity to regenerate is difficult. As there are no reliable stress tests to assess potential liver function, preoperative assessment in patients with CLD involves a combined interpretation of several biologic, morphologic, histologic, and hemodynamic factors.

One widely used method of biologic assessment is the Child-Pugh classification, which provides scores from grade A to C and was originally designed for predicting the prognosis of patients with portal hypertension undergoing shunting operations\(^{[15]}\). Resection is contraindicated in grade C cirrhotic patients and restricted to very limited resection in grade B cirrhotic patients\(^{[29]}\). However, the risk from liver surgery is increased even in grade A cirrhotic patients with apparently normal liver function, which necessitated the development of more sophisticated, quantitative liver function tests. Among the various methods available, the indocyanine green (ICG) clearance rate represents the most common test for predicting mortality after hepatectomy\(^{[20,31]}\). A normal ICG rate in healthy patients is approximately 10%, and cutoff values predictive of safe major hepatectomies range from 14% to 17%\(^{[32,33]}\). Minor resections can be performed for ICG clearance rates of up to 22%\(^{[34]}\), limited hepatectomies (without sacrificing non-tumorous liver) for values up to 40%\(^{[29]}\), and limited wedge laparoscopic resections can possibly be tolerated for even higher values\(^{[35,36]}\). The model for end-stage liver disease (MELD) score, which has been validated as an accurate predictor of survival among different populations of patients with advanced liver disease\(^{[37,38]}\), has only been retrospectively studied in two series of cirrhotic patients who had undergone LR for HCC\(^{[37,38]}\). These studies indicated that a MELD score > 8 was associated with a higher risk of mortality, morbidity, and impaired long-term survival in these patients.

Preoperative portal vein embolization (PVE), first introduced by Makucheti et al\(^{[39]}\), has been widely recognized as an effective method for the preoperative volume modulation of small FLR. However, the degree of hypertrophy of the FLR after PVE is variable in patients with CLD\(^{[37,40]}\). The absence of early hypertrophy in non-embolized liver following PVE is considered to be an indicator of low regenerative capacity that would contraindicate LR. Thus, the response to PVE represents a...
produced blood loss, decreased portal clamp time, decreases advantages associated with laparoscopic LR, such as re
meta-analysis of 26 studies involving 1678 patients found

First successfully reported in 1992

Laparoscopic LR

injured liver and anatomic LR of combined territories for
sub-subsegment anatomic LR for small tumors in highly
allows for the adaptation of complicated anatomic LR to
planes and/or involving central tumors. Furthermore, it
planning that incorporates imaging is particularly help

tions/extensions, intrahepatic vascular reconstructions,
study of portal distribution and hepatic vein anatomy for
adequate venous drainage, and study of biliary distribution
for avoiding biliary fistula) [40]. Preoperative surgical
planning that incorporates imaging is particularly helpful
for procedures requiring unconventional resection planes and/or involving central tumors. Furthermore, it
allows for the adaptation of complicated anatomic LR to
a greater number of patients, such as the adaptation of sub-subsegment anatomic LR for small tumors in highly injured liver and anatomic LR of combined territories for deep centrally-located tumors.

Laparoscopic LR

First successfully reported in 1992 [51], laparoscopic LR is a less invasive procedure than conventional open LR for the treatment of hepatic lesions [52]. A comprehensive meta-analysis of 26 studies involving 1678 patients found that although laparoscopic LR procedures were associated with longer operating times, the oncologic outcomes were not different from open LR [53]. However, there were advantages associated with laparoscopic LR, such as reduced blood loss, decreased portal clamp time, decreases in overall and liver-specific complications, and shorter post-operative hospital stays. The recent technologic development of devices and accumulation of experience have led to an expansion of the indication for laparoscopic LR [54].

Laparoscopic hepatectomy has the benefit of earlier intake, recovery and discharge, and reduced postoperative pain [55]. The safety and feasibility of the laparoscopic approach and its short-term benefits for HCC patients with CLD have been demonstrated by many studies [56]. Tranchart et al [59] also reported better postoperative outcomes, without long- or short-term oncologic consequences, following laparoscopic LR of HCC for select patients. Laparoscopic LR may be particularly advantageous for patients with severe CLD, who often develop refractory ascites with open LR, which leads to fatal complications [57,58]. Laparoscopic LR has the advantage of minimal ascites [59], due to preservation of venous and lymphatic collateral circulation, which leads to lower risk of disturbance in water and/or electrolyte balance and hypoproteinemia that could trigger fatal liver failure. This feature could be the most remarkable specific advantage for laparoscopic LR. On the other hand, there are also disadvantages of laparoscopic hepatectomy, such as the motion restriction of the forearms on manipulation, the lack of sensation and 3-dimensional view, difficulty on handling large volume mass, the lack of good overview of operative field. Several strategies, such as uses of magnified view and multiple conversions of positioning during surgery for the use of gravity on the dissection (which is more easily used in laparoscopic than open operation), preoperative simulation with 3D-CT imagings, are applied to overcome these disadvantages. Therefore, there is a learning curve for laparoscopic hepatectomy, which surgeons should be experienced. Vignano et al [60] demonstrated a learning curve effect by outcomes improvement in operative time, conversion rate, blood loss, need of pedicle clamping and its duration, postoperative morbidity, and hospital stay and reported that the shape of the learning curve is similar to left-sided colonic surgery, changing its direction after the 60th consecutive case. They also mentioned the results suggest that Laparoscopic hepatectomy is reproducible in centers regularly performing liver surgery, but requires specific training to advanced laparoscopy.

Patients who undergo LR are exposed to three different types of stresses: (1) general, whole-body surgical stress; (2) reduced liver function due to resected liver volume; and (3) surgery-induced injury of liver parenchyma and surrounding area, caused by destruction of the collateral blood/lymphatic flow by laparotomy and mobilization of the liver, and parenchymal injury by compression of the liver. Reduction of surgery-induced injury with laparoscopic LR should lower the risk for HCC patients with severe CLD. Laparoscopic LR also results in improved vision and manipulation in a small operative field under the proper conditions, including repeat hepatectomy with adhesions [61]. These characteristics indicate
that laparoscopic LR may be superior to open LR under certain conditions. The laparoscopic procedure could also be an optional bridging therapy to LT for certain HCC patients with severe CLD.

Adjuvant and/or combined therapy for LR

Recurrence occurs in up to 80% of patients five years after LR [61]. Two-thirds of these are early recurrences, occurring within two years, which is considered as dissemination from the original tumor [82]. The factors related to this recurrence are tumor size, microvascular invasion, satellite nodules, α-fetoprotein levels, and nonanatomic resection. A large portion of delayed recurrences (after two years) may correspond to "de novo" tumors in the oncogenic chronically injured liver [80]. Delayed recurrences are associated with the presence of cirrhosis (F4), hepatits activity, and multi modularity, in addition to vascular invasion, and moderately or poorly differentiated HCC [82].

Several strategies have been tested to prevent recurrence, such as preoperative chemoembolization [64], chemotherapy, internal radiation [65], adoptive immunotherapy [66], and treatment with retinoids [67]. Treatment with interferon is favored based on results of two meta-analyses [68,69], though few good-quality studies are available. The efficacy of interferon and whether the effect is on early recurrence as an anti-cancerous agent or on delayed recurrence through the control of CLD activity, are still under discussion. The efficacy of sorafenib in advanced stages [83] has encouraged evaluation of its use in earlier phases of the disease, with trials ongoing. However, there is no proven neoadjuvant therapy that can decrease or delay the incidence of intrahepatic recurrence after LR [71]. Despite the fact that TACE can downstage HCC, prospective trials have failed to show any significant benefit of this treatment before LR [72,73]. Although recurrence following LR is associated with a poor outcome in most cases, there is growing evidence that some patients with only intrahepatic recurrence will benefit from more aggressive approaches [74,75]. Multimodality therapy of recurrence, including TACE, percutaneous ablative therapy, and re-resection could result in prolonged survival for recurrent patients, with an overall 5-year survival rate of 20% [76].

Vascular invasion of HCC, particularly portal and hepatic venous tumor thrombus (VTT), is one of the indicators of patient prognosis, and the development of tumor thrombus in a major branch of the veins is a frequent terminal feature of HCC. The prognosis of such patients is extremely poor, and survival is limited to a few months after diagnosis [76-78]. For these advanced HCCs, conventional therapies like TACE and percutaneous ablative therapy are not indicated due to lack of efficacy and associated complications [76,79]. LT is also a contra-indication for such cases [84]. Although several reports suggest LR is feasible for patients with VTT, the outcome is unsatisfactory, with a median survival of 6-12 mo [76,77,80,81], except for the cases with VTT located in the segmental or sectoral branches [83]. Several approaches, including combined radiotherapy and TACE, have been attempted to improve the outcome with unsatisfactory results [84-87]. There are recent reports showing that combination therapy with interferon-α and trans-arterial 5-fluorouracil is a promising candidate for treatment of advanced HCC with VTT and intrahepatic metastasis [88-90], and as a postoperative adjuvant [91] and a multimodal treatment [7] for resectable HCC. Several clinical trials are currently underway to further evaluate this combination therapy.

LIVER TRANSPLANTATION

LT is the ideal treatment for the removal of existing tumors and replacement of chronically injured and preneoplastic liver. Furthermore, it also prevents the development of postoperative complications associated with portal hypertension and liver failure. LT is not limited by liver function, and in select patients with limited tumors, survival is similar to LT for other indications [82,89]. However, patients with extensive HCC have very poor outcomes, whereas most patients with small tumor loads can be cured. Due to the shortage of available organs, there are discussions concerning the selection of patients with HCC for LT, and the control of tumors in patients on the waiting list [94]. Furthermore, an international consensus conference (involving 300 experts from five continents) was recently held in order to develop internationally accepted standards and guidelines [95].

Criteria for listing candidates

A meta-analysis conducted by Germani et al [96] found that the diameter of the largest nodule or total diameter of nodules was the best predictor of post-transplant recurrence and survival. Patients with HCC within the Milan criteria (MC: solitary HCC \leq 5 cm or up to three nodules of \leq 3 cm) [90] had a 5-year survival of 70% after LT, which matches survival for other indications, with recurrence in less than 10%. Mazzaferrro et al [97] recently showed that the MC is an independent prognostic factor for outcome after LT. The MC was recommended by the international consensus conference as the current benchmark for the selection of HCC patients for LT and the basis for comparison with other suggested criteria [98]. However, evidence suggesting good outcomes in some patients outside the MC has led to attempts to expand the criteria. At the University of California, San Francisco (UCSF), one of the first attempts was made to include single tumors \leq 6.5 cm or two to three tumors \leq 4.5 cm with a total tumor diameter \leq 8 cm (UCSF criteria) [99]. Although the study was retrospective and used post-transplant pathologic staging instead of pre-transplant image staging, retrospective analyses by the authors and others showed survival rates were equivalent to those of patients who underwent LT within the MC [98-101]. An additional multicenter study that used pre-transplant image staging found that survival rates were lower in patients within the UCSF criteria compared to those meeting the MC, though the difference was not statistically significant [102]. Independent
Morise Z et al. Surgical treatment of hepatocellular carcinoma

Table 3 Summary of recent advances in liver transplantation for hepatocellular carcinoma

Criteria for listing candidate	Established	Under discussion	Under trial or proposal
The Milan criteria: Solitary tumor of ≤ 5 cm or up to 3 nodules ≤ 3 cm	The UCSF criteria: Single tumors ≤ 6.5 cm or 2-3 tumors ≤ 4.5 cm, with a total tumor diameter ≤ 8 cm	Add parameters for biologic features of tumors related to risk of recurrence (AFP, PIVKA-II, etc.)	
5-yr survival of 70% with recurrence in less than 10%		Expansion of criteria for living donor-LT	
Management on the waiting list (about 40% dropout rate at 12 mo)	Local ablative therapy and TACE are performed without solid evidence	Different models have been developed to quantify the risk of death in neoplastic and non-neoplastic patients	Application of living donor-LT to shorten the waiting time
Candidate selection with information from pre-vertebral therapy (histologic specimens, response to locoregional therapy, etc.)			

AFP: α-fetoprotein; PIVKA: Protein induced by vitamin K absence; LT: Liver transplantation; TACE: Transarterial chemoembolization; UCSF: University of California, San Francisco; HCC: Hepatocellular carcinoma.

studies from the UCSF group and a group from the University of California at Los Angeles found similar results of LT in HCC cases, with 5-year survival rates of 80.9% (median follow-up: 26 mo) and 64% (mean follow-up: 6.6 years), respectively[102,103]. Although most studies have proposed expanded criteria based on tumor number and size as an estimate of tumor load, additional parameters concerning tumor biologic features related to risk of recurrence have also been proposed[109] (Table 3).

In addition to expanding the criteria for recipients of LT, the acceptance of marginal livers (advanced age or steatotic organs, non-heart beating, hepatitis C virus-infected) and domino or split LT have been considered. Living donor-LT has emerged as the most feasible alternative to cadaveric-LT for early HCC in patients with waiting times exceeding seven months[111]. However, a massive expansion of the criteria to include patients with larger tumor loads may significantly constrain the outcomes of transplantation. With the certain morbidity/mortality of the donor, it is of concern to put a donor at risk for an uncertain recipient prognosis[110].

Management on the waiting list

While on the waiting list for LT, HCC patients can experience tumor growth beyond the LT criteria resulting in a high cumulative probability of dropout from the waiting list. This probability ranges from between 7% and 11% at six months to approximately 38% at 12 mo after enrollment as determined by two reports from the late 1990s[106,109]. Accordingly, strategies to increase the donor pool and diminish the dropout rate due to tumor progression became a priority in many centers. Allocation policies for HCC patients awaiting LT remain controversial in the era of the MELD score. Different models have been developed to quantify the risk of death in neoplastic and nonneoplastic patients[107-111]. As the neoplastic risk assessment is not considered in MELD scoring, patients with unresectable HCC within the MC have been considered exceptions in the American allocation system. Patients with HCC fulfilling the MC enter the waiting list with a MELD score equal to 22 and receive incremental points for every three months spent on the waiting list[112,113]. The 22 threshold was set to offer HCC patients the same dropout probability as patients without malignancy[114].

For HCC patients listed within the MC, a delay of over six to 12 mo for LT without bridging treatment is a well-recognized risk factor for tumor progression and dropout from the list, or interval dissemination with post-transplant tumor recurrence[105,106,114,115]. If a longer wait-time is needed, the use of bridging treatments is recommended in many guidelines[116,117,118]. However, there is no evidence that bridging treatments are useful in patients with early stage HCC[109]. Although no specific nonsurgical bridging therapy is recommended over another[118], RFA could be the first-line treatment for lesions up to 3 cm, in which complete tumor necrosis has been shown in more than 50% of cases[119]. Percutaneous ethanol injection appears to show lower efficacy and can be reserved for small lesions located in sites considered “dangerous” for RFA (e.g., near the gallbladder or bowel loops). TACE may be preferred for treating lesions > 3 cm, as it may be more effective in well-vascularized large tumors with thick feeding arteries. Multimodal treatment strategies, including sequentially applied TACE and RFA, are also likely to be effective[117].

Belghiti et al[118] demonstrated that surgical resection before LT does not increase the surgical risk nor impair survival and stated that resection and transplantation could be associated rather than considered separately. The authors proposed that resection could be used as a bridge to transplantation, especially for tumors located in the upper part of the right liver, which can be easily and completely removed through a transthoracic incision. Similarly, some superficial tumors that are not easily accessible by a percutaneous approach could be resected through a laparoscopic approach. Additional studies have confirmed that LT for recurrence after LR does not increase the operative risk and offers a chance of long-term survival when HCC recurrence is limited[118-120]. Initial LR of HCC as a primary therapy in patients who otherwise would have received transplants offers a good quality of life and is less demanding than LT. Patients do not need long-term immunosuppression, and grafts can be reallocated to patients with no alternative to LT[116,118,119]. “Sal-
vage transplantation” was first proposed by Majno et al.[12] for tumor recurrence or deterioration of liver function in patients after LT as a primary therapy. This concept is applicable to a significant proportion of patients, with long-term survivals similar to those of patients who undergo LT as a primary treatment.[10-13] Moreover, the response to pre-LT locoregional therapies, including LR, and histologic analysis of specimens (from LR), either in “bridging” or “salvage” settings, can aid in the selection of patients who could most benefit from subsequent LT.

NONSURGICAL TREATMENTS

In addition to surgical treatments, local ablation therapies play important roles in HCC treatment, either alone or combined with surgical approaches. RFA is effective for treatment of early stage (small in number and size) HCC, with complete ablation of lesions smaller than 2 cm in more than 90% of cases[13]. The advantage of RFA treatment for HCC in cirrhotic patients is that it allows selective destruction of the tumor, sparing the surrounding parenchyma, and can be easily repeated in case of recurrence. In addition to tumor size, the use of RFA is limited in cases where the tumor is adjacent to a major blood vessel, or with subcapsular lesions that can undergo rupture and/or injure adjacent organs. However, the benefit of RFA in the treatment of HCC has been well demonstrated, with overall 5-year survival rates between 33% and 55%[12]. Rather than competing techniques, RFA and LR are effective therapeutic options that can be chosen based on the severity of CLD as well as the size and location of the tumor. Microwave coagulation therapy (MCT) also has been shown to be an effective thermal ablation procedure for the percutaneous treatment of HCC. Compared to RFA, this technique could theoretically provide a larger volume of necrosis and be more effective when treating nodules adjacent to large vessels; however, a clear advantage of MCT with respect to RFA has not been demonstrated[125,126] (Table 4).

There are also promising results involving the use of transarterial radioembolization with radioactive substances such as [125]iodine-labeled Lipiodol® or microspheres containing yttrium-90[13], which has been shown to be safe and feasible for the treatment of HCC in cirrhotic patients[125,126]. This treatment involves the delivery of high-energy and low-penetration radiation to the tumor area. Radioembolization can be safely performed in patients with VTT due to the minimally embolic effect of yttrium-90 microspheres[125]. The reported rate of complete tumor necrosis is 90% for patients with HCC < 3 cm[126], whereas the rate of complete necrosis after TACE varies widely in the literature, from 15% to 70%[127]. However, Y90 is contraindicated in patients with significant hepatopulmonary shunting because it could result in very high levels of pulmonary radiation exposure[128]. This new and promising treatment should be further examined and the 2010 Clinical Practice Guidelines from the AASLD state that radioembolization cannot be recommended as standard therapy for advanced HCC outside of clinical trials.

REFERENCES

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM.
Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893-2917 [PMID: 21351269 DOI: 10.1002/ijc.25516]

2. Rahbari NN, Mehrabi A, Mollberg NM, Müller SA, Koch M, Bütcher MW, Weitz J. Hepatocellular carcinoma: current management and perspectives for the future. Ann Surg 2011; 253: 453-469 [PMID: 21263310 DOI: 10.1097/SLA.0b013e3182049444]

3. El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 2008; 134: 1752-1763 [PMID: 18471552 DOI: 10.1053/j.gastro.2008.02.090]

4. Forner A, Reig ME, de Lope CR, Bruix J. Current strategy for staging and treatment: the BCLC update and future prospects. Semin Liver Dis 2010; 30: 61-74 [PMID: 20175304 DOI: 10.1055/s-0030-1247133]

5. Tonzilli G, Belghiti J, Kokudo N, Takayama T, Capussotti L, Nuzzo G, Vauthey JN, Choti MA, De Santibanes E, Donadon M, Morenghi E, Makuchii M. A snapshot of the effective in indications and results of surgery for hepatocellular carcinoma in major trunk, and multiple nodules. Ann Surg 2009; 250: 825-850 [PMID: 19916210 DOI: 10.1097/SLA.0b013e3181b3ed28]

6. Nagano H, Miyamoto A, Wada H, Ota H, Marubashi S, Takeda Y, Dono K, Umeshita K, Sakon M, Monden M. Interferon-alpha and 5-fluorouracil combination therapy for palliative hepatic resection in patients with advanced hepatocellular carcinoma, portal venous tumor thrombus in the major trunk, and multiple nodules. Cancer 2007; 110: 2493-2501 [PMID: 1794102]

7. Cucchielli A, Vitale A, Del Gaudio M, Ravaiali M, Ercolani G, Ceson C, Zanello M, Morelli MC, Cillo U, Grazi GL, Cucchetti A, Ascher NL, Roberts JP. Liver transplantation for hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology 2007; 45: 1156-1161 [PMID: 17362356 DOI: 10.1002/hep.21953]

8. Raoul JL, Guyader D, Bretagne JF, Heautot JF, Duvaufrier R, Bourguet P, Bekhechi D, Deugnyer YM, Gosselin M. Prospective randomized trial of chemoembolization versus intra-arterial injection of 131I-labeled-iodized oil in the treatment of hepatocellular carcinoma. Hepatology 1997; 26: 1156-1161 [PMID: 9362356 DOI: 10.1002/hep.10265]

9. Salem R, Lewandowski RJ, Mulcahy MF, Riaz A, Ryu RK, Ibrahim S, Atassi B, Baker T, Gates V, Miller FH, Sato KT, Wang E, Gupta R, Benson AB, Newmann SB, Omary RA, Abeccasis M, Kulik L. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138: 52-64 [PMID: 19766639 DOI: 10.1015/j.gastro.2009.09.006]

10. Ikai I, Arri S, Okazaki M, Okita K, Omata M, Kojiro M, Takayasu K, Nakanuma Y, Makuchii M, Matsuyma Y, Monden M, Kudo M. Report of the 17th Nationwide Follow-up Survey of Primary Liver Cancer in Japan. Hepat Res 2007; 37: 676-691 [PMID: 17617112]

11. Imamura H, Matsuyma Y, Miyagawa Y, Ishida K, Shimada R, Miyagawa S, Makuchii M, Kawasaki S. Prognostic significance of anatomical resection and des-gamma-carboxy prothrombin in patients with hepatocellular carcinoma. Br J Surg 1999; 86: 1032-1038 [PMID: 10460639 DOI: 10.1046/j.1365-2168.1999.01185.x]

12. Wakai T, Shirai Y, Sakata J, Kaneko K, Cruz PV, Akazawa K, Hatakayama K. Anatomical resection independently improves long-term survival in patients with T1-T2 hepatocellular carcinoma. Ann Surg Oncol 2007; 14: 1356-1365 [PMID: 17252289 DOI: 10.1245/s10434-004-9318-x]

13. Roayaie S, Blume IN, Thung SN, Guido M, Fiell MI, Hiotis S, Labow DM, Llovet JM, Schwartz ME. A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma. Gastroenterology 2009; 137: 850-855 [PMID: 19524573 DOI: 10.1015/j.gastro.2009.06.003]

14. Hoepner MM, Krowka MJ, Strassburg CP. Portopulmonary hypertension and hepatopulmonary syndrome. Lancet 2004; 363: 1461-1468 [PMID: 15121411 DOI: 10.1016/S0140-6736(04)16107-2]

15. Ziser A, Plevak DJ, Wiesen RH, Rakela J, Offord KP, Brown DL. Morbidity and benefits of primary liver resection and salvage transplantation for hepatocellular carcinoma. Am J Transplant 2010; 10: 619-627 [PMID: 20121741 DOI: 10.1111/j.1600-6143.2009.02984.x]

16. Yao FY, Ferrell L, Bass NM, Watson JJ, Bacchetti P, Venook A, Asher NL, Roberts JP. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology 2001; 33: 1394-1403 [PMID: 11391528 DOI: 10.1053/jhep.2001.24563]

17. Fujiaki M, Takada Y, Ogura Y, Ohke F, Kaido T, Teramukai S, Uemoto S. Significance of des-gamma-carboxy prothrombin in selection criteria for living donor liver transplantation for hepatocellular carcinoma. Ann J Transplant 2009; 9: 2362-2371 [PMID: 19656125 DOI: 10.1111/j.1600-6143.2009.02783.x]

18. Sarasini FP, Majno PE, Llovot JM, Bruix J, Menthia G, Hadenague A. Living donor liver transplantation for early hepatocellular carcinoma: A life-expectancy and cost-effectiveness perspective. Hepatology 2001; 33: 1027-1079 [PMID: 11343234 DOI: 10.1053/jhep.2001.23311]

19. Fuls D, Dokman S, Paradis V, Dion M, Durand F, Belghiti J. Benefit of initial resection of hepatocellular carcinoma followed by transplantation in case of recurrence: an intention-to-treat analysis. Hepatology 2012; 55: 132-140 [PMID: 21932887 DOI: 10.1002/hep.24680]

20. Livraghi T, Meloni F, Di Stasi M, Rolle E, Solbiati L, Tinelli C, Rossi S. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology 2009; 47: 82-89 [PMID: 18008357 DOI: 10.1002/hep.21953]

21. Raoul JL, Guyader D, Bretagne JF, Heautot JF, Duvaufrier R, Bourguet P, Bekhechi D, Deugnyer YM, Gosselin M. Prospective randomized trial of chemoembolization versus intra-arterial injection of 131I-labeled-iodized oil in the treatment of hepatocellular carcinoma. Hepatology 1997; 26: 1156-1161 [PMID: 9362356 DOI: 10.1002/hep.10265]

22. Salem R, Lewandowski RJ, Mulcahy MF, Riaz A, Ryu RK, Ibrahim S, Atassi B, Baker T, Gates V, Miller FH, Sato KT, Wang E, Gupta R, Benson AB, Newmann SB, Omary RA, Abeccasis M, Kulik L. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138: 52-64 [PMID: 19766639 DOI: 10.1015/j.gastro.2009.09.006]

23. Ikai I, Arri S, Okazaki M, Okita K, Omata M, Kojiro M, Takayasu K, Nakanuma Y, Makuchii M, Matsuyma Y, Monden M, Kudo M. Report of the 17th Nationwide Follow-up Survey of Primary Liver Cancer in Japan. Hepat Res 2007; 37: 676-691 [PMID: 17617112]

24. Takeda Y, Dono K, Umeshita K, Sakon M, Monden M, Kudo M. Report of the 17th Nationwide Follow-up Survey of Primary Liver Cancer in Japan. Hepat Res 2007; 37: 676-691 [PMID: 17617112]
Belghiti J. Risk of major liver resection in patients with underlying chronic liver disease: a reappraisal. Ann Surg 1999; 229: 210-215 [PMID: 10024102]

Belghiti J, Fuks D. Liver resection and transplantation in hepatocellular carcinoma. Liver Cancer 2012; 1: 71-82 [PMID: 21459575]

Belghiti J, Regimbeau JM, Durand F, Kianmanesh AR, Dondero F, Terris B, Sauvanet A, Farges O, Degos F. Resection of hepatocellular carcinoma: a European experience on 328 cases. Hepatogastroenterology 2002; 49: 41-46 [PMID: 11941881]

Torzilli G, Makuchi M, Inoue K, Takayama T, Sakamoto Y, Sugawara Y, Kubota K, Zucchi A. No-mortality liver resection for hepatocellular carcinoma in cirrhotic and noncirrhotic patients: is there a way? A prospective analysis of our approach. Arch Surg 1999; 134: 984-992 [PMID: 10487594]

Wakabayashi I, Ishimura K, Izuishi K, Karasawa Y, Maeta H. Evaluation of liver function for hepatic resection for hepatocellular carcinoma in the liver with damaged parenchyma. J Surg Res 2004; 116: 248-252 [PMID: 15013363]

Fan ST, Lai EC, Lo CM, Ng IO, Wong J. Hospital mortality of major hepatectomy for hepatocellular carcinoma associated with cirrhosis. Arch Surg 1995; 130: 190-203 [PMID: 7848092]

Lam CM, Fan ST, Lo CM, Wong J. Major hepatectomy for hepatocellular carcinoma in patients with an unsatisfactory indocyanine green clearance test. Br J Surg 1999; 86: 1012-1017 [PMID: 10466055]

Fan ST. Liver functional reserve estimation: state of the art and relevance for local treatments: the Eastern perspective. J Hepatobiliary Pancreatic Sci 2010; 17: 380-384 [PMID: 19865794 DOI: 10.1007/s00574-009-0229-9]

Belli G, Fantini C, Belli A, Limongelli P. Laparoscopic liver resection for hepatocellular carcinoma with chronic liver disease. World J Hepatol 2013; 5: 497-495 [PMID: 24073300]

Hsu KY, Chau GY, Lui WY, Tsay SH, King KL, Wu CW. Predicting morbidity and mortality after hepatic resection in patients with hepatocellular carcinoma: the role of Model for End-Stage Liver Disease score. Arch Surg 2009; 31: 2412-2419 [PMID: 19756859 DOI: 10.1001/s0026-049-0202-4]

Delis SG, Bakoyiannis A, Biliatis I, Athanassiou K, Tassopoulos N, Dervenis C. Model for end-stage liver disease (MELD) score, as a prognostic factor for post-operative morbidity and mortality in cirrhotic patients, undergoing hepatectomy for hepatocellular carcinoma. HPB (Oxford) 2009; 11: 351-357 [PMID: 19718364 DOI: 10.1111/j.1477-2578.2009.00676.x]

Makuchi M, Thai BL, Takayasu K, Kosuge T, Gunven P, Yamazaki S, Hasegawa H, Ozaki H. Preoperative portal embolization to increase safety of major hepatectomy for hilar bile duct carcinoma: a preliminary report. Surgery 1990; 107: 521-527 [PMID: 2333592]

Yamakado K, Takada K, Matsumura K, Nakatsuka A, Hirano T, Kato N, Sakuma H, Nakagawa T, Kawarada Y. Re-generation of the un-embolized liver parenchyma following portal vein embolization. J Hepatol 1997; 27: 871-880 [PMID: 9382975]

Ogata S, Belghiti J, Farges O, Varma D, Sibert A, Vilgrain V. Sequential arterial and portal vein embolizations before extended hepatectomy in patients with cirrhosis and hepatocellular carcinoma. Br J Surg 2006; 93: 1091-1098 [PMID: 16779884]

Yoo H, Kim JH, Ko GY, Kim KW, Gwon DI, Lee SG, Hwang S. Sequential transcatherter arterial chemoembolization and portal vein embolization versus portal vein embolization only before major hepatectomy for patients with hepatocellular carcinoma. Ann Surg Oncol 2011; 18: 1251-1257 [PMID: 21069467 DOI: 10.1245/s10434-010-1423-3]

Truant S, Oberlin O, Sergent G, Lefebvre G, Gambiez L, Ernst O, Pruvot FR. Renmiant liver volume to body weight ratio > or =0.5%: A new cut-off to estimate postoperative risks after extended resection in noncirrhotic liver. J Am Coll Surg 2007; 204: 223-33 [PMID: 17991010]

Chun YS, Ribero D, Abdalla EK, Madoff DC, Mortenson MM, Wei SH, Vauthy JN. Comparison of two methods of future liver remnant volume measurement. J Gastrointest Surg 2008; 12: 123-128 [PMID: 17924174]

Farges O, Belghiti J, Kianmanesh R, Regimbeau JM, Santoro R, Vilgrain V, Denys A, Sauvanet A. Portal vein embolization before right hepatectomy: prospective clinical trial. Ann Surg 2003; 237: 208-217 [PMID: 12880791]

Ueno S, Kubo F, Sakoda M, Hiwatashi K, Tatsuno M, Makuuchi M, Hiraoka K, Natsugoe S, Aikou T. EFicacy of anatomic resection vs nonanatomic resection for small nodular hepatocellular carcinoma based on gross classification. J Hepatobiliary Pancreat Surg 2008; 15: 493-500 [PMID: 18836803 DOI: 10.1007/s00534-007-1312-8]

Shi M, Guo RP, Lin XJ, Zhang YQ, Chen MS, Zhang CQ, Lau WY, Li JQ. Partial hepatectomy with wide versus narrow resection margin for solitary hepatocellular carcinoma: a prospective randomized trial. Ann Surg 2007; 245: 36-43 [PMID: 17197963]

Arii S, Tanaka S, Mitsunori Y, Nakamura N, Kudo A, Noguchi N, Irie T. Surgical strategies for hepatocellular carcinoma with special reference to anatomical hepatic resection and intraoperative contrast-enhanced ultrasonography. Oncology 2010; 78 Suppl 1: 125-130 [PMID: 20616594 DOI: 10.1159/000315240]

Poon RT, Fan ST, Ng IO, Lo CM, Liu CL, Wong J. Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer 2000; 89: 500-507 [PMID: 10953448]

Radtke A, Sotiropoulos GC, Molmenti EP, Schroeder T, Peitgen HO, Frilling A, Broering DC, Brelschi CE, Malago' M. Computer-assisted surgery planning for complex liver resections: when is it helpful? A single-center experience over an 8-year period. Ann Surg 2010; 252: 876-883 [PMID: 21037445 DOI: 10.1097/SLA.0b013e3181edd102]

Gagner M, Rheault M, Dubuc J. Laparoscopic partial hepatectomy for liver tumor. Surg Endosc 1992; 6: 97-98

Kaneko H, Tsuchiya M, Otsuka Y, Yajima S, Minagawa T, Watanabe M, Tamura A. Laparoscopic hepatectomy for hepatocellular carcinoma in cirrhotic patients. J Hepatobiliary Pancreat Surg 2009; 16: 433-438 [PMID: 19458892 DOI: 10.1007/s00534-009-1235-3]

Mirnezami R, Mirmezami AH, Chandrakumaran K, Abu Hilal M, Pearce NW, Primrose JN, Sutcliffe RP. Short- and long-term outcomes after laparoscopic and open hepatectomy: systematic review and meta-analysis. HPB (Oxford) 2011; 13: 295-308 [PMID: 21402329 DOI: 10.1111/j.1477-2578.2011.02295.x]

Tsuchiya M, Otsuka Y, Tamura A, Nitta H, Sasaki A, Wakabayashi G, Kaneko H. Status of endoscopic liver surgery in Japan: a questionnaire survey conducted by the Japanese Endoscopic Liver Surgery Study Group. J Hepatobiliary Pancreat Surg 2009; 16: 405-409 [PMID: 19458895 DOI: 10.1007/s00534-009-1119-1]

Viganó L, Tayer C, Laurent A, Cherqui D. Laparoscopic liver resection: a systematic review. J Hepatobiliary Pancreat Surg 2009; 16: 410-421 [PMID: 19495556 DOI: 10.1007/s00534-009-0120-8]

Tranchart H, Di Giuro G, Lainas P, Roudie J, Agostini H, Franco D, Dagher I. Laparoscopic resection for hepatocellular carcinoma: a matched-pair comparative study. Surg Endosc 2010; 24: 1170-1176 [PMID: 19915908 DOI: 10.1007/s00464-009-0745-3]

Belghiti J, Hiramatsu K, Benoist S, Massault P, Sauvanet A, Farges O. Seven hundred forty-seven hepatectomies in the
transcatheter arterial chemoembolization for patients with hepatocellular carcinoma and portal vein tumour thrombus.

Am J Clin Oncol 2002; 25: 189-193 [PMID: 11943901 DOI: 10.1097/00000421-200204000-00019]

86 Minagawa M, Makushki T, Takayama T, Ohtomo K. Selection criteria for hepatectomy in patients with hepatocellular carcinoma and portal vein tumour thrombus. Ann Surg 2001; 233: 379-384 [PMID: 11224266 DOI: 10.1097/00000421-200103000-00012]

87 Peng BG, He Q, Li JP, Zhou F. Adjunct transcatheter arterial chemoembolization improves efficacy of hepatectomy for patients with hepatocellular carcinoma and portal vein tumour thrombus. Am J Surg 2009; 198: 313-318 [PMID: 19285298 DOI: 10.1016/j.amjsurg.2008.09.026]

88 Sakon M, Nagano H, Dono K, Nakamori S, Umeshita K, Yamada A, Kawata S, Imai Y, Iijima S, Monden M. Combined intraarterial 5-fluorouracil and subcutaneous interferon-alpha therapy for advanced hepatocellular carcinoma with tumor thrombi in the major portal branches. Cancer 2002; 94: 435-442 [PMID: 11900229 DOI: 10.1002/cncr.10594]

89 Ota H, Nagano H, Sakon M, Eguchi H, Kondo M, Yamamoto T, Nakamura M, Damdinsuren B, Wada H, Marubashi S, Miyamoto A, Dono K, Umeshita K, Nakamori S, Wakasa K, Monden M. Treatment of hepatocellular carcinoma with major portal vein thrombosis by combined therapy with subcutaneous interferon-alpha and intra-arterial 5-fluorouracil; role of type I interferon receptor expression. Br J Cancer 2005; 93: 557-564 [PMID: 16108266 DOI: 10.1038/sj.bjc.6602742]

90 Nagano H, Wada H, Kobayashi S, Marubashi S, Eguchi H, Tanemura M, Tomimaru Y, Osuga K, Umeshita K, Doki Y, Mori M. Long-term outcome of combined interferon-alpha and 5-fluorouracil treatment for advanced hepatocellular carcinoma with major portal vein thrombosis. Oncology 2011; 80: 63-69 [PMID: 21659784 DOI: 10.1159/000328281]

91 Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362: 1907-1917 [PMID: 14667750]

92 Bruix J, Sherman M. Practice Guidelines Committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology 2005; 42: 1208-126 [PMID: 16250051]

93 Bruix J, Sherman M. American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53: 1020-1022 [PMID: 21374666 DOI: 10.1002/hep.24199]

94 Clavien PA, Lesurtel M, Bossuyt PM, Gores GJ, Langet B, Perrier A. Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. Lancet Oncol 2012; 13: e11-e22 [PMID: 22047762 DOI: 10.1016/S1470-2247(11)70175-9]

95 Germani G, Gurusamy K, Garovitch M, Tosu C, Fede G, Hemming A, Suh KS, Weber A, Burroughs AK. Which matters most: number of tumors, size of the largest tumor, or total tumor volume? Liver Transpl 2011; 17 Suppl 2: S88-S86 [PMID: 21584928 DOI: 10.1002/lt.22336]

96 Mazzaferrro V, Bhouri S, Sposito C, Bongini M, Langer M, Miceli R, Mariani L. Milan criteria in liver transplantation for hepatocellular carcinoma: an evidence-based analysis of 15 years of experience. Liver Transpl 2011; 17 Suppl 2: S44-S57 [PMID: 21695773 DOI: 10.1002/lt.22365]

97 Yao FY, Ferrell L, Bass NM, Bacchetti P, Ascher NL, Roberts JP. Liver transplantation for hepatocellular carcinoma: comparison of the proposed UCSF criteria with the Milan criteria and the Pittsburgh modified TNM criteria. Liver Transpl 2002; 8: 765-774 [PMID: 12200775]

98 Leung JY, Zhu AX, Gordon FD, Pratt DS, Mithofer A, Garrigan K, Terella A, Herli M, Cosimi AB, Chung RT. Liver transplantation outcomes for early-stage hepatocellular carcinoma: results of a multicenter study. Liver Transpl 2004; 10: 1343-1354 [PMID: 15497158]

99 Patel SS, Arrington AK, McKenzie S, Mailey B, Ding M, Lee W, Artinyan A, Nissen N, Colquhoun SD, Kim J. Milan Criteria and UCSF Criteria: A Preliminary Comparative Study of Liver Transplantation Outcomes in the United States. Int J Hepatol 2012; 2012: 253517 [PMID: 22957260 DOI: 10.1155/2012/253517]

100 Decaens T, Roudot-Thoraval F, Hadni-Bresson S, Meyer C, Gugenheim J, Durand F, Bernard PH, Boillot O, Sulpice L, Calmus Y, Hardwigen J, Ducerf C, Pageaux GP, Dharyan S, Chazouilleres O, Cherqui D, Duvoux C. Impact of UCSF criteria according to pre- and post-OLT tumor features: analysis of 479 patients listed for HCC with a short waiting time. Liver Transpl 2006; 12: 1761-1769 [PMID: 16964590 DOI: 10.1002/lt.20884]

101 Duffy JP, Vandanian A, Benjamin E, Watson M, Farmer DG, Glohrial RM, Lipshtuz G, Yersiz H, Lu DS, Lassman C, Tong MJ, Hiatt JR, Busuttil RW. Liver transplantation criteria for hepatocellular carcinoma should be expanded: a 22-year experience with 467 patients at UCLA. Ann Surg 2007; 246: 502-509; discussion 509-511 [PMID: 17717454 DOI: 10.1097/SLA.b013e318148c704]

102 Yao FY, Xiao L, Bass NM, Kerlan R, Ascher NL, Roberts JP. Liver transplantation for hepatocellular carcinoma: validation of the UCSF-expanded criteria based on preoperative imaging. Am J Transplant 2007; 7: 2587-2596 [PMID: 17968066 DOI: 10.1111/j.1600-0473.2007.01965.x]

103 Strong RW. Whither living donor liver transplantation? Liver Transpl Surg 1999; 5: 536-538 [PMID: 10545545]

104 Llovet JM, Fuster J, Bruix J. Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology 1999; 30: 1434-1440 [PMID: 10573322 DOI: 10.1002/hep.510300629]

105 Yao FY, Bass NM, Nikolai B, Daven TJ, Kerlan R, Wu V, Ascher NL, Roberts JP. Liver transplantation for hepatocellular carcinoma: analysis of survival according to the intention-to-treat principle and dropout from the waiting list. Liver Transpl 2002; 8: 873-883 [PMID: 12366027 DOI: 10.1053/jlt.2002.34923]

106 Tosoi C, Dupuis-Lozeron E, Majpo P, Berney T, Knoteman NM, Pneeger T, Morel P, Mentha G, Combesure C. A model for dropout assessment of candidates with or without hepatocellular carcinoma on a common liver transplant waiting list. Hepatology 2012; 56: 149-156 [PMID: 22271250 DOI: 10.1002/hep.25603]

107 Vitale A, Morales RR, Zanus G, Farinati F, Burra P, Angeli P, Frigo AC, Del Poggio P, Rapaccini G, Di Nolfo MA, Benvenuti L, Zoli M, Borzio F, Giannini EG, Caturelli E, Chiaramonte M, Trevisani F, Cillo U, Barcelona Clinic Liver Cancer staging and transplant survival benefit for patients with hepatocellular carcinoma: a multicentre, cohort study. Lancet Oncol 2011; 12: 654-662 [PMID: 21684210 DOI: 10.1016/S1470-2247(11)70144-9]

108 Avolio AW, Cillo U, Salizzoni M, De Carlis L, Colledan M, Gerunda GE, Mazzaferrro V, Tisone G, Romagnoli R, Caccamo L, Rossi M, Vitale A, Cucchetti A, Lupo L, Gruttadauria S, Criscuolo M, Trevisani F, Cillo U, Barcelona Clinic Liver Cancer staging and transplant survival benefit for patients with hepatocellular carcinoma: a multicentre, cohort study. Lancet Oncol 2011; 12: 654-662 [PMID: 21684210 DOI: 10.1016/S1470-2247(11)70144-9]

109 Vitale A, D’Amico F, Frigo AC, Grigolotto F, Brolese A, Zanus G, Neri D, Carraro A, D’Amico FE, Burra P, Russo F, Angeli P, Cillo U. Response to therapy as a criterion for awarding priority to patients with hepatocellular carcinoma.
Morise Z et al. Surgical treatment of hepatocellular carcinoma

awaiting liver transplantation. *Ann Surg Oncol* 2010; 17: 2290-2302 [PMID: 20217249 DOI: 10.1245/s10434-010-0993-4]

Avolio AW, Siciliano M, Barbarino R, Nure E, Ammacchiarico BE, Gassabirini A, Agnes S, Castagneto M. Donor risk index and organ patient index as predictors of graft survival after liver transplantation. *Transplant Proc* 2008; 40: 1899-1902 [PMID: 18675083 DOI: 10.1016/j.transproceed.2008.05.070]

Wiesner RH, Freeman RB, Mulligan DC. Liver transplantation for hepatocellular cancer: the impact of the MELD allocation policy. *Gastroenterology* 2004; 127: S261-S267 [PMID: 15508092 DOI: 10.1053/j.gastro.2004.09.040]

Roayaie K, Feng S. Allocation policy for hepatocellular carcinoma in the MELD era: room for improvement? *Liver Transpl* 2007; 13: S36-S43 [PMID: 17969067]

Freeman RB, Edwards EB, Harper AM. Waiting list removal rates among patients with chronic and malignant liver diseases. *Am J Transplant* 2006; 6: 1416-1421 [PMID: 16686765 DOI: 10.1111/j.1600-6143.2006.01321.x]

European Association for The Study of The Liver; European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. *J Hepatol* 2012; 56: 908-943 [PMID: 22424438]

Pompili M, Mirante VG, Rondinara G, Fassati LR, Picaglia F, Agnes S, Covino M, Ravaiol M, Fagiuoli S, Gasbarrini G, Rapaccini GL. Percutaneous ablation procedures in cirrhotic patients with hepatocellular carcinoma submitted to liver transplantation: Assessment of efficacy at explant analysis and of safety for tumor recurrence. *Liver Transplant* 2005; 11: 1117-1126 [PMID: 16122960]

Pompili M, Francica G, Ponziani FR, Iezzi R, Avolio AW. Bridging and downstaging treatments for hepatocellular carcinoma in patients on the waiting list for liver transplantation. *World J Gastroenterol* 2013; 19: 7515-7530 [PMID: 24282434 DOI: 10.3748/wjg.v19.i43.7515]

Belghiti J, Cortes A, Abdalla EK, Regimbeau JM, Prakash K, Durand F, Sommaclae D, Dondoro F, Lesurtel M, Sauvanet A, Farges O, Khanmanesh R. Resection prior to liver transplantation for hepatocellular carcinoma. *Ann Surg* 2003; 238: 885-892; discussion 892-893 [PMID: 14631225]

Cherqui D, Laurent A, Mocellin N, Tayar C, Luciani A, Van Nhieu JT, Decaens T, Hurtova M, Memeo R, Mallat A, Duvoux C. Liver resection for transplantable hepatocellular carcinoma: long-term survival and role of secondary liver transplantation. *Ann Surg* 2009; 250: 738-746 [PMID: 19801927 DOI: 10.1097/SLA.0b013e3181e5b92h]

Del Gaudio M, Ercolani G, Ravaiol M, Cescon M, Lauro A, Vivarrelli M, Zanello M, Cucchetti A, Vetrone G, Tuci F, Ramacciato G, Grazi GL, Pinna AD. Liver transplantation for recurrent hepatocellular carcinoma on cirrhosis after liver resection: University of Bologna experience. *Am J Transplant* 2008; 8: 1177-1185 [PMID: 18444925 DOI: 10.1111/j.1600-6143.2008.02229.x]

112 Majno PE, Sarasin FP, Mentha G, Hadengue A. Primary liver resection and salvage transplantation or primary liver transplantation in patients with single, small hepatocellular carcinoma and preserved liver function: an outcome-oriented decision analysis. *Hepatology* 2000; 31: 899-906 [PMID: 10733546]

Lencioni R, Cioni D, Crocetti L, Franchini C, Pina CD, Lera J, Bartolozzi C. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. *Radiology* 2005; 234: 961-967 [PMID: 15665266 DOI: 10.1148/radiol.2343040590]

Lu MD, Xu HX, Xie XY, Yin XY, Chen JW, Kuang M, Xu ZF, Liu GJ, Zheng YL. Percutaneous microwave and radiofrequency ablation for hepatocellular carcinoma: a retrospective comparative study. *J Gastroenterol* 2005; 40: 1054-1060 [PMID: 16322950 DOI: 10.1007/s00535-005-1671-3]

Boutros C, Somasundar P, Garrean S, Saied A, Espat NJ. Microwave coagulation therapy for hepatic tumors: review of the literature and critical analysis. *Surg Oncol* 2010; 19: e22-e32 [PMID: 19268571 DOI: 10.1016/j.suronc.2009.02.001]

Sangro B, Carpanese L, Ciamm R, Golferi R, Gasparini D, Ezzidinn S, Pappottka PM, Fiore F, Van Buskirk M, Bilbao JL, Ettorre GM, Salvadori R, Giampalma E, Ceatti O, Wilhelm K, Hoffmann RT, Izzo F, Innarraillegui M, Maini CL, Urigio C, Cappelli A, Vit A, Ahmadzadehfar H, Jakobs TF, Lastoria S. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. *Hepatology* 2011; 54: 868-878 [PMID: 21618574 DOI: 10.1002/hep.24451]

Vente MA, Wondergem M, van der Toel I, van den Bosch MA, Zonnenberg BA, Lam MG, van Het Schip AD, Nijsen JF. Yttrium-90 microsphere radioembolization for the treatment of liver malignancies: a structured meta-analysis. *Eur Radiol* 2009; 19: 951-959 [PMID: 18989675]

Kulik LM, Carr BI, Mulchay MF, Lewandowski RJ, Atassi B, Ryu RK, Sato KT, Benson A, Nemec AA, Gates VL, Abecassis M, Omany RA, Salem R. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. *Hepatology* 2008; 47: 71-81 [PMID: 18027884 DOI: 10.1002/hep.21980]

Riaz A, Kulik L, Lewandowski RJ, Ryu RK, Giakoumis Spear G, Mulchay MF, Abecassis M, Baker T, Gates V, Nayar R, Miller FH, Sato KT, Omany RA, Salem R. Radiologic-pathologic correlation of hepatocellular carcinoma treated with internal radiation using yttrium-90 microspheres. *Hepatology* 2009; 49: 1185-1193 [PMID: 19133645 DOI: 10.1002/hep.22247]

Gerunda GE, Neri D, Merenda R, Barbazza F, Zangrandi F, Meduri F, Bisello M, Vismasimi M, Gangemi A, Faccioli AM. Role of transarterial chemoembolization before liver resection for hepatocarcinoma. *Liver Transpl* 2000; 6: 619-626 [PMID: 10980062 DOI: 10.1001/journals.ltp.2000.8532]

El-Seraq HB. Hepatocellular carcinoma: recent trends in the United States. *Gastroenterology* 2004; 127: S27-S34 [PMID: 15508094]

- P-Reviewer: Abbasoglu O, Chiou YY, Zaniboni A
- S-Editor: Gou SX
- L-Editor: A
- E-Editor: Wang CH
