A Conductometric study of complexation reaction between dibenzyl-14-crown-4, with ZrO$^{2+}$ in some binary mixed non-aqueous solvents

Muhaned Mohammed Eteya

Department of Chemistry, Thi-Qar Education Directorate, Thi-Qar, Iraq.

E-Mail: theafmoh111@gmail.com

Abstract

In Some binary methanol mixtures, (MeOH), 1,2 dichloroethane (DCE), acetonitrile (AN), and tetrahydrofuran (THF), with dimethylformamide (DMF) at different temperatures using the conductometric process, the reaction of macrocyclic ligand to complexation, dibenzyl-14-crown-4 (DB14C4) with ZrO$^{2+}$ cation was examined. The conductance data show that in all solvent systems, the stoichiometry of the complex formed between (DB14C4) and ZrO$^{2+}$ cation is 1:1 (M:L). The stability order of (DB14C4.ZrO)$^{2+}$ complex in pure non-aqueous solvents was found to be: [AN], [DCE], [MeOH], [THF], [DMF]. A non-linear behaviour was observed improvements in log K_f of (DB14C4.ZrO)$^{2+}$ complex or Binary mixed solvent composition, It Was clarified as to the Interactions with solvents and even solvents in terms of the hetero-selective solving of the ecosystem affected by complexation response. The obtained results show that the stability of (DB14C4.ZrO)$^{2+}$ complex is sensitive to the composition of the mixed solvent. The values of thermodynamic parameters (ΔH° and ΔS°) for the formation of (DB14C4.ZrO)$^{2+}$ complex using van't Hoff maps, the stability constant was obtained from temperature dependence. The results show that in most cases, the (DB14C4.ZrO)$^{2+}$ complex is enthalpy destabilized but entropy balanced and the values and signs of thermodynamic parameters are often These are decided by nature and composition of the mixed solvents.

Keywords: Dibenzyl-14-crown-4; ZrO$^{2+}$cation;Mixed non-aqueous solvents; conductometry.

1. Introduction

Since the time Pedersen published the first report on crown compounds in 1967, [1] these compounds have been considered for a wide collection of applications including enzyme models, biophysics, and medicine [2]. Crown ethers are noted for their exceptional selectivity against different cations, making them perfect choices for the separation of desired cations.
metal ions from their Solvent separation and membrane conveying mixtures [3, 4]. Binding ability and crown ethers are selective to metal ions, depending on some factors: such as crown ether cavity size, metal ion length, atom type donor, crown ether conformation, solvent composition, etc. Solvent plays a significant function in the binding selectivity of the crown ethers for metal ions [5, 6]. And the Macrocyclic Polyethers synthesis and creating stable complexes between these ligands and different material cations were specified. And Crown ethers can bind guest molecules and metal cations because of the existence of their binding sites and the presence of a hydrophilic cavity delineated by a lipophilic envelope with a high-level quality specificity in 3-D cavities. A variety of physicochemical techniques such as calorimetry [7, 8], polarography [9], potentiometry [10, 11], NMR spectrometry [12, 13], and conductometry [14-16] have been used to study the complex creation of solutions between crown ethers and metal ions.

![Scheme1. Structure of Dibenzyl-14-crown-4 (DB14C4).](image)

Conductometry is a flexible and inexpensive tool for these investigations, between these different methods. The application of analytical techniques to the analysis of actinide compounds becomes ever more important. Chemistry of synchronization of the actinides is important for both fundamental and practical reasons and is different from that displayed by the elements located in the rest of the pieces table periodic. Further understanding of the factors influencing this behaviour that aid in the treatment of radioactive nuclear waste. Recent increases in the production of nuclear power, primarily based on uranium-based fuel, have resulted in the risk of releasing ultra-trace quantities of uranium in natural aquifers. ZrO$^{2+}$ as a heavy metal ion is considered to be nephrotoxic, and radiologically hazardous as a radionuclide. Although the total concentration of a particular uranium isotope determines the radiological effects, its chemical toxicity depends on the chemical type of its species that interacts with bio-molecules [17]. Uranium’s Capacity to create complexes was found in soil and the nuclear industry to clean up uranium pollution where chelating agents are specific constituents of fluids used to clean reactors [18]. The interaction between uranyl cation and several macrocyclic ligands has been analysed [19-21]. In the analysis underway, complexation of (Scheme 1) dibenzyl-14-crown-4 with uranyl (ZrO)${}^{2+}$ cation in acetonitrile–
methanol (AN–MeOH), acetonitrile -1,2 dichloroethane (AN - DCE), and acetonitrile–
dimethylformamide (AN–DMF), and acetonitrile-tetrahydrofuran (AN-THF) binary mixtures
of various temperatures. Use of a conductometric process to investigate the effect of solvent
properties and the composition of binary mixed solvents on the stability and stoichiometry of
complexes formed between solutions (ZrO)²⁺ and dibenzyl-14-crown-4.

2. Experimental
dibenzyl-14-crown-4 (Merck) and ZrO(NO₃)₂·6H₂O (Merck) were used without purification.
The solvents: acetonitrile, methanol, dimethylformamide, 1,2 dichloroethane, and
tetrahydrofuran all from Merck were used with the highest purity.

![Figure 1. Molar conductance-mole ratio plots for (DB14C4.ZrO)²⁺ in (AN–MeOH), binary
system (mol% AN=80.0) at different temperatures : (x: 15°C, ■: 25°C, △: 35°C, ◆: 45°C).](image)

The experimental method used to obtain the constant formation of (DB14C4.ZrO)²⁺ was as
follows: 20mL metal salt solution (1×10⁻⁴ mol. L⁻¹) was put in a titration cell, thermostated at
a specified temperature, and the solution's conductance was calculated. Then a step-by-step
increase of the crown ether solution (2 × 10⁻³ mol. L⁻¹) prepared in the same solvent was then
achieved by fast transfer to the titration cell using a micro-desktop, and the conductance of
the solution present in the cell was measured after each transfer at the desired temperature.
The conductivity measurements were performed in a Julabo (Model F12) water bath on a
Digital conductive Metrohm apparatus (Model 712), thermostat at a steady temperature held
inside ±0.1°C. The electrolytic conductance was measured using a cell consisting of two
platinum electrodes to which an alternating potential was applied. A conductometric cell with
a cell constant of 0.866 cm⁻¹ was used throughout the studies.
3. Results (Conductance studies)
Changes of molar conductivity (m) versus the ligand to cation molar ratio ([L]t / [M]t) for complexation of (DB14C4) with ZrO\(^{2+}\) was measured in pure [AN], [DCE], [MeOH], [THF] and [DMF] and also in (AN–MeOH), (AN-DCE), (AN–DMF), and (AN-THF) binary systems at different temperatures. Two typical series of molar conductance values in the action of molar ratio in (AN–MeOH) binary mixture (mol% AN=80.0) and pure (AN) are shown in figures 1 and 2, respectively. Also, fitting.

![Figure 2](image_url)

Figure 2. Molar conductance-mole ratio plots for (DB14C4.ZrO)\(^{2+}\) in pure (AN) at different temperatures: (x:15°C, ■: 25°C, ∆:35°C, ▲:45°C)

The stability constant of (DB14C4.ZrO)\(^{2+}\) complex in different solvent mixtures. And experimental curves for (DB14C4ZrO)\(^{2+}\) in an acetonitrile–methanol binary system (mol% AN=80.0) at are shown in figure 3 (the fitting data are given in the appendix in Supplementary material). Constant stability of (DB14C4.ZrO)\(^{2+}\) at each temperature was calculated from the changes of the molar conductance in the action of [DB14C4] / [ZrO]\(^{2+}\) molar ratios using a GENPLOT computer program[22]. The details of the calculation of the stability constants of complexes by the conductometric method have been described [23]. The values of stability constant (logKf) for (DB14C4.ZrO)\(^{2+}\) in various solvent systems are listed in table 1. The 1:1 complexation.

the reaction of a metal cation, M\(^{n+}\), with a crown ether is expressed through the following equilibrium: M\(^{n+}\) + L ↔ ML\(^{n+}\)

With equilibrium constant, Kf, given by

\[
K_f = \frac{[ML^{n+}] \cdot f_{ML}^{n+}}{[M^{n+}][L] \cdot f_{ML}^{n+} \cdot f_L}
\]
Where \([ML^{n+}]\), \([M^{n+}]\), and \([L]\) denote the molar concentrations of the complex, metal cation, and crown ether and ‘‘\(f\)’’ indicates the activity coefficient of the species indicated. Under the highly dilute conditions employed in these experiments, the \(f_{ML^{n+}}/f_{M^{n+}}f_{L}\) is essentially the unity and, therefore, the equilibrium constants obtained in this study are thermodynamic. For all the structures under investigation, \(lnKf\)'s van’t Hoff plots versus \(1/T\) were built. Plots of \(lnKf\) versus \(1/T\) in all cases were linear. The changes in standard

\[
\Delta H^\circ = \text{enthalpy for complexation}
\]

were obtained from the slope of the van’t Hoff plots assuming that \(\Delta C_p\) is equal to zero over the entire temperature range tested. The changes in standard entropy \((\Delta S^\circ)\) were calculated from the relationship \(\Delta G^\circ,298:15 = \Delta H^\circ - 298.15 \Delta S^\circ\). The values of thermodynamic parameters are summarized in table 2. The changes of \(logKf\) of (DB14C4.ZrO)\(^{2+}\) provided the composition of the (AN–MeOH) and AN–DMF binary solutions at different temperatures are shown in figures 4 and 5, respectively.

4. Discussion

Addition of (DB14C4 to ZrO)\(^{2+}\) in an acetonitrile-methanol binary system (mol\% AN=80.0) at different temperatures results in a decrease in molar conductivity (figure 1), which indicates that (DB14C4.ZrO)\(^{2+}\) in this solution is less mobile than free solvated (ZrO)\(^{2+}\). According to Figure 1, The slope of corresponding molar conductivity versus \([L]/[M]\) plots shifts at the point where the ligand to cation mole ratio is around 1, which is proof of the formation of a fairly stable 1:1 [M:L] complex in solution. Similar behaviour was observed for (DB14C4.ZrO)\(^{2+}\) in all of the other pure and binary mixed solvent systems. The fitting and experimental curves for (DB14C4.ZrO)\(^{2+}\) in the acetonitrile-methanol binary system (mol
per cent AN=80.0) Explain the 1:1 [M: L] complexation model in Figure 3; The fitting and experimental results are very well agreed with.

Table 1. LogK, values of (DB14C4.ZrO2)2+ in AN–MeOH, AN–DMF, AN–DCE, and AN–THF binary mixtures at different temperatures.

Medium	LogK, ± SD*	15°C	25°C	35°C	45°C
AN–MeOH					
Pure MeOH					
60.0% MeOH –40.0% AN	3.71 ± 0.04	3.83 ± 0.03	3.69 ± 0.03	3.56 ± 0.05	
40.0% MeOH –60.0% AN	3.41 ± 0.06	3.35 ± 0.04	3.23 ± 0.03	3.27 ± 0.16	
20.0% MeOH –80.0% AN	3.72 ± 0.04	3.61 ± 0.02	3.49 ± 0.01	3.56 ± 0.03	
Pure AN	3.54 ± 0.07	3.50 ± 0.02	3.42 ± 0.02	3.32 ± 0.02	
AN–DMF					
Pure DMF					
70.0% DMF–30.0% AN	2.80 ± 0.03	2.74 ± 0.03	2.80 ± 0.06	2.70 ± 0.01	
40.0% DMF–60.0% AN	2.70 ± 0.03	2.70 ± 0.03	2.66 ± 0.01	2.65 ± 0.01	
20.0% DMF–80.0% AN	2.83 ± 0.07	2.78 ± 0.09	2.71 ± 0.01	2.74 ± 0.13	
Pure AN	3.54 ± 0.07	3.50 ± 0.02	3.42 ± 0.02	3.32 ± 0.02	
AN–DCE					
90.0% DCE–10.0% AN	2.67 ± 0.02	2.70 ± 0.05	2.66 ± 0.02	2.66 ± 0.01	
80.0% DCE–20.0% AN	2.85 ± 0.06	2.83 ± 0.07	2.68 ± 0.02	2.54 ± 0.17	
60.0% DCE–40.0% AN	2.82 ± 0.07	2.81 ± 0.09	2.54 ± 0.15	2.83 ± 0.08	
30.0% DCE–70.0% AN	2.82 ± 0.08	2.83 ± 0.07	2.78 ± 0.08	2.75 ± 0.09	
Pure AN	3.54 ± 0.07	3.50 ± 0.02	3.42 ± 0.02	3.32 ± 0.02	
AN–THF					
Pure THF					
70.0% THF–30.0% AN	2.70 ± 0.11	2.80 ± 0.09	2.83 ± 0.07	2.63 ± 0.03	
40.0% THF–60.0% AN	2.86 ± 0.12	2.49 ± 0.13	2.83 ± 0.08	2.54 ± 0.03	
20.0% THF–80.0% AN	3.05 ± 0.08	2.76 ± 0.05	2.77 ± 0.04	2.77 ± 0.18	
Pure AN	3.54 ± 0.07	3.50 ± 0.02	3.42 ± 0.02	3.32 ± 0.02	

*SD =Standard deviation.

bComposition of binary mixtures is expressed in mol% per cent for each solvent system.

cThe data cannot be fitted in the equation.

THF binary mixtures at different temperatures.
Experimental and fitting curves superimposed. In pure acetonitrile (Figure 2), the addition of (DB14C4 to ZrO)2+ at different temperatures results in an increase in molar conductivity which shows that the complex formed between DB14C4 and uranyl cation is more mobile than free solvated (ZrO)2+. It is interesting to note that as the (DB14C4.ZrO)2+ mole ratio increases from 0 to 1 (Figure 2), the molar conductivity increases sharply, then further addition of the ligand results in a gradual decrease in molar conductivity. It seems that at first a 1:1 [M:L] complex is formed between (DB14C4) and (ZrO)2+ cation in pure (AN) at all temperatures, which is more mobile than free solvated (ZrO)2+, but further addition of the ligand results in the formation of a 1:2 [M:L2] complex in the solution which is less mobile than the 1:1 complex. Therefore, we suggest the following mechanism for complexation between uranyl cation and DB14C4 in this pure dipolar aprotic solvent at.

Table 2. Thermodynamic parameters for (DB14C4.ZrO2)2+ in (AN–MeOH), (AN–DMF), (AN–DCE), (AN–THF) binary mixtures.

Medium	$\Delta G^°_c \pm SD$ at 25°C (kJ mol$^{-1}$)	$\Delta H^°_c \pm SD$ (kJ mol$^{-1}$)	$\Delta S^°_c \pm SD$ (J mol$^{-1}$ K$^{-1}$)
AN–MeOH			
60.0% MeOH–40.0% ANb	22 ± 0	- 80 ± 35	c
40.0% MeOH–60.0% AN	19 ± 0	- 35 ± 15	c
20.0% MeOH–80.0% AN	21 ± 0	- 11 ± 7	c
Pure AN	20 ± 0	- 13 ± 2	23 ± 6
AN–DMF			
Pure DMF	15 ± 4	c	c
70.0% DMF–30.0% ANb	16 ± 0	- 4 ± 3	38 ± 10
40.0% DMF–60.0% AN	15 ± 0	- 3 ± 1	43 ± 3
20.0% DMF–80.0% AN	16 ± 0	- 6 ± 3	34 ± 10
Pure AN	20 ± 0	- 13 ± 2	23 ± 6
AN–DCE			
90.0% DCE–10.0% ANb	15 ± 0	c	46 ± 5
80.0% DCE–20.0% AN	16 ± 0	- 18 ± 4	c
60.0% DCE–40.0% AN	16 ± 0	c	c
30.0% DCE–70.0% AN	16 ± 0	c	c
Pure AN	20 ± 0	- 13 ± 2	23 ± 6
AN–THF			
70.0% THF–30.0% ANb	16 ± 0	c	c
40.0% THF–60.0% AN	14 ± 1	c	c
20.0% THF–80.0% AN	16 ± 0	c	c
Pure AN	20 ± 0	- 13 ± 2	23 ± 6
SD=standard deviation.

Composition of binary mixtures is expressed in mol% per cent for each solvent system.

With high uncertainty.

all temperatures:

$$\text{ZrO}^{2+} + \text{DB14C4} \leftrightarrow (\text{DB14C4.ZrO})^{2+} \quad (I)$$

$$(\text{DB14C4.ZrO})^{2+} + \text{DB14C4} \leftrightarrow [(\text{DB14C4})_2 \cdot \text{ZrO}]^{2+} \quad (II)$$

The findings obtained in this investigation show that the existence of the solvent system will alter the stoichiometry of the crown ether-metal cation complexes [19, 20]. As obvious from Table 1, Constant stability of (DB14C4.ZrO)$^{2+}$ in the binary mixed solvents at is AN–MeOH, AN–DMF, AN–DCE, and AN–THF. This can be interpreted by considering the inherent relative solvating ability of the pure solvents which form the mixtures. AN with a high donor ability (DN=14.1) relative to MeOH (DN=20.0), DMF (DN=26.6), THF (DN=20.0), DCE (DN=0.0), can solvate the ZrO$^{2+}$ cation strongly and rival the Ligand.

![Graph showing changes of the stability constant of (DB14C4.ZrO)$^{2+}$ with the composition of the AN–MeOH binary mixture at different temperatures](image)

Figure 4. Changes of the stability constant of (DB14C4.ZrO)$^{2+}$ with the composition of the AN–MeOH binary mixture at different temperatures: (x:15°C, ■:25°C, △:35°C, □:45°C).
Figure 5. Changes of the stability constant of (DB14C4.ZrO)2+ with the composition of the AN-DMF binary mixture at different temperatures : (x: 15°C, ■: 25°C, Δ: 35°C, ◆: 45°C).

For this cation in the solution. Also, the higher dielectric constant of AN (ε = 36), DMF (ε = 36.7) compared with MeOH (ε = 32.6), DCE (ε = 10.4), THF (ε = 7.6), A decrease in the electrostatic interactions in the solution between dibenzyl-14-crown-4 and ZrO2+ may result. As seen from figures 4 and 5, changes of stability constant (logKf) of (DB14C4.ZrO)2+ with the composition of (AN-MeOH) and (AN-DMF) binary systems are not linear. Non-linear behaviour was also observed in all other binary solutions. This behaviour can be attributed to changes that occur in the solvent mixture structure and thus alter the solvation properties of cyclic polyether, cation, and even the resulting complex in these solvent mixtures. Besides, the stereoselective solvation of the cation and ligand and its changes with the composition of the mixed solvents in these binary mixed solution systems may be successful in the complexation reaction between uranyl cation and DB14C4. We studied interactions among some binary mixed solvents [24]. For example, mixing of DMF with AN induces the mutual destruction of dipolar structures of these dipolar aprotic liquids and releases the free dipoles [25].

As a result, strong dipolar interactions between AN and DMF molecules are expected. Also, there is an interaction between AN and MeOH molecules (K_{acc} = 1.23) via hydrogen bonding in their binary mixtures [26]. In this complexing method, preferential cation, anion and ligand solving with well-mixed solvent composition and temperature. The preferential solution of ions by one of the components of a mixed solvent system depends on two factors: the relative ability of the donor-acceptor member molecules against the ion and the interactions between
solvent molecules themselves. Solvent-solvent interactions can also substantially alter the solvent properties of the components in mixed solvents when the concentration of these is comparable to the concentration difference of solvent-ion interactions for both the components [27].

Thermodynamic data which are included in Table 2 reveals that in most cases (DB14C4.ZrO)2+ is both enthalpy and entropy stabilized, therefore, both of these thermodynamic quantities are driving forces for the formation of this complex in these solutions. As is obvious from Table 2, in some cases the change in standard enthalpy for the complexation reaction between ZrO2+ and DB14C4 is negligible; therefore, it seems that the complexation processes in some solvent systems are thermic. As the values of standard entropy (c) and standard enthalpy (c) for the formation of (DB14C4.ZrO)2+ in the solution vary with parameters for example changes in the flexibility of the macrocyclic ligand during intracy process, and also with the extent of cation-solvent, ligand-solvent, and complex-solvent interactions and even with the solvent-solvent interactions, these thermodynamic quantities change with the nature and composition of the solvent systems [28-30]. The findings in this analysis suggest that thermodynamic parameters do not vary monotonically with the solvent composition (Table 2) due to variations in the contribution of important parameters such as solvation – a dissolving of the species involved in the reaction to the complexion (i.e., ZrO2+, DB14C4, the resulting complex and even NO3−), and also the conformational changes of the large macrocyclic ligand in binary solutions; thus, a monotonic relationship between those thermodynamic quantities and the solvent composition of binary mixed solutions should not be predicted. Somewhat similar thermodynamic behaviour has been observed for the complexation of DB14C4 with alkaline earth metal cations in AN–DMF binary mixture [31].

5. Conclusion
The results obtained for the complexation of ZrO2+ with DB14C4 in pure AN, MeOH, DMF, and THF and also in AN–MeOH, AN–DMF, AN–DCE, and AN–THF binary mixtures show that the stoichiometry, stability, and thermodynamics of complex formation The structure and composition of solvent systems shall be regulated by uranyl cation with a macrocyclic ligand. The conductance data show that in most cases DB14C4 forms a 1:1 [M: L] complex with ZrO2+. And the order of stability constant of (DB12C4.ZrO)2+ in the binary mixed solvents at 25˚C was found to be: AN–MeOH, AN–DMF, AN–DCE, and AN–THF. The findings show that solvents 'ability to contribute electrons and dielectric constant play a significant part in complexing. A non-linear relationship was observed between the stability constant of (DB14C4.ZrO)2+ and the composition of the binary solutions. Thermodynamic parameters do not vary monotonically with the solvent composition. Such actions are possible due to a change in binary solvent structure, as the medium's composition is varied. Complexation between ZrO2+ and DB14C4 is mainly stabilized by enthalpy and entropy, And The
Thermodynamic Principles quantities are affected by the existence and composition of the mixed solvents. The resolution of crown ethers is critical during the complexation process of macrocyclic ligands with metal cations, and the relative enthalpy and entropy changes can be better understood if ligand solvation is considered. Knowledge about the interaction of macrocyclic ligands with solvent is scarce, and additional ligand-solvent interaction studies are required to investigate the thermodynamic behaviour of the solution's macrocyclic complexes.

Acknowledgements

Financial and moral support was received from my personal efforts and I thank the University of Tehran for assistance.

References

1. Pedersen, C.J., the Polyethers of a cyclic and their metal salt complexes. Journal of the American Chemical Society, 1967. 89(26): p. 7017-7036.

2. Glendening, E.D., D. Feller, and M.A. Thompson, An ab initio inquiry on the selectivity of 18-crown-6 structure and alkali metal cation. Journal of the American Chemical Society, 1994. 116(23): p. 10657-10669.

3. Izatt, R.M., et al., Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chemical Reviews, 1991. 91(8): p. 1721-2085.

4. Izatt, R.M., et al., Thermodynamic and kinetic data for cation-macrocycle interaction. Chemical Reviews, 1985. 85(4): p. 271-339.

5. Agnihotri, P., et al., Study of the competitive binding of mixed alkali and alkaline earth metal ions with dibenzo-30-crown-10. Polyhedron, 2005. 24(9): p. 1023-1032.

6. Rounaghi, G. and S. Heydari, A thermodynamic study of complex formation between dicyclohexyl-18-crown-6 (DCH18C6) and La\(^{3+}\), UO\(_2\)\(^{2+}\), Ag\(^+\), and NH\(_4\)\(^+\) cations in acetonitrile-tetrahydrofuran binary media using the conductometric method. Russian Journal of Coordination Chemistry, 2008. 34(11): p. 836-841.

7. Lamb, J., et al., The relationship between complex stability constants and rates of cation transport through liquid membranes by macrocyclic carriers. Journal of the American Chemical Society, 1980. 102(22): p. 6820-6824.

8. Gherrou, A., H.-J. Buschmann, and E. Schollmeyer, Complex formation of crown ethers and cryptands analyzed by titration calorimetry with Ba\(^{2+}\) in the biphasic chloroform/water combination. Thermochimica Acta, 2005. 425(1-2): p. 1-5.

9. Chamsaz, M., G. Rounaghi, and M. Sovizi, Polarographic study of the interaction of Tl\(^+\), Pb\(^{2+}\) and Cd\(^{2+}\) cations with 18-crown-6 in binary non-aqueous solvents. Журнал неорганической химии, 2005. 50(3): p. 467-471.

10. Kudo, Y., et al., On the difference between ion-pair formation constants of crown ether-complex ions with picrate ion in water determined by solvent extraction and by potentiometry. Journal of molecular liquids, 2006. 123(1): p. 29-37.
11. Gokel, G.W., et al., Clarification of the relationship between hole-size cation and diameter The Ethers and something new Crown way to assess homogeneous constants of calcium cation binding equilibrium. Journal of the American Chemical Society, 1983. 105(23): p. 6786-6788.

12. Pankiewicz, R., et al., NMR, FT-IR and ESI-MS study of new lasalocid ester with 2-(hydroxymethyl)-12-crown-4 and its complexes with monovalent cations. Journal of molecular structure, 2005. 749(1-3): p. 128-137.

13. Rounaghi, G. and A.I. Popov, 133Cs NMR study of the cryptand-222-Cs+ complex in binary solvent mixtures. Polyhedron, 1986. 5(12): p. 1935-1939.

14. Rounaghi, G.H. and A. Ghaemi, Complexation of 4′-nitrobenzo-15-crown-5 with Mg 2+, Ca2+, Sr2+ and Ba2+ metal cations in acetonitrile-methanol binary solutions. Russian Journal of Inorganic Chemistry, 2009. 54(12): p. 1921-1926.

15. Gündüz, C., et al., The synthesis and complexation study of some novel 3-methoxyphenyl chromene crown ethers using conductometry. Dyes and pigments, 2006. 71(3): p. 161-167.

16. Rounaghi, G. and E. Razavipanah, Complex of 4′-nitrobenzo-15-Crown-5: Li+, Na+, K+, NH4+ cations in separate acetonitrile solutions-methanol. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008. 61(3-4): p. 313-318.

17. Markich, S.J., Uranium speciation and bioavailability in aquatic systems: an overview. The Scientific World Journal, 2002. 2: p. 707-729.

18. Sellers, R.M., The radiation chemistry of nuclear reactor decontaminating reagents. Radiation Physics and Chemistry (1977), 1983. 21(3): p. 295-305.

19. Fard, M.A., et al., Study of intricate formation between 18-crown-6, diaza-18-crown-6 for certain binary mixed aqueous and non-aqueous solvents, using uranyl cation (UO22+). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009. 64(1-2): p. 49-56.

20. Ronagi, G. and M. Chamsaz, Study of Complex Formation Between Diaza-15-Crown-5with Uranyl Cation in Some Binary Mixed Aqueous and Non-Aqueous Solvents. Asian Journal of Chemistry, 2009. 21.

21. Ronagi, G., R. Mohammadzadekakhki, and T. Heidari. Artificial neural network and support vector Machine applied for the simultaneous analysis of a mixture of nitrophenols by conductometric acid-base titration. in دومین سمینار دو میانه کمومتریکس ایران. 2009.

22. Genplot, A., Data Analysis and Graphical Plotting Program for Scientist and Engineers. Computer Graphic Service, Ltd., Ithaca, NY, USA, 1989.

23. Rounaghi, G., Z. Eshaghi and E. Ghamati, Thermodynamic study of complex formation between individuals 18-crown-6 and Potassium ion is used by the conductometric process in certain binary non-aqueous solvents. Talanta, 1997. 44(2): p. 275-282.
24. Ali, A., S. Hyder, and A. Nain, Studies of molecular interactions per viscosity in
discrete liquid mixtures and measurements of ultrasonic velocity to 303.15 K. Journal
of Molecular liquids, 1999. 79(2): p. 89-99.

25. Rounaghi, G., and al. A thermodynamic analysis of 18-crown-6 complexation in
acetonitrile-dimethylformamide binary media with Zn²⁺, Tl⁺, Hg²⁺ and UO₂²⁺
cations, and research the impact of anion on the constant stability of (18C6-Na+)
complex on methanol choices. Journal of Macrocyclic Chemistry and Inclusion
Phenomena, 2007. 59(3-4): line 363-369.

26. Herlem, G., et al., A new relation between the maxima conductivities of nonaqueous
concentrated electrolytes and chemical hardness of solvents and salts. Journal of
solution chemistry, 1999. 28(3): p. 223-235.

27. Szymańska-Cybulska, J. and E. Kamieńska-Piotrowicz, Cobalt (II) ion solvent in N,
N-dimethylformamide – solvent combined with methanol: Studies of calorimetry and
spectroscopy of vis. Journal of solution chemistry, 2006. 35(12): p. 1631-1643.

28. Rounaghi, G.H., S. Tarahomi, and M. Mohajeri, A conductometric study of
complexation reaction between dibenzo-24-crown-8 with yttrium cation in some
binary mixed non-aqueous solvents. Journal of Inclusion Phenomena and Macrocyclic
Chemistry, 2009. 63(3-4): p. 319-325.

29. Rounaghi, G. and R. Sanavi, Discussion on the complexing ability of macrocyclic
ligand, 12-crown-4 with Li⁺ cation in some binary mixed non-aqueous solvents.
Polish Journal of Chemistry, 2006. 80(5): p. 719-727.

30. Rounaghi, G.H., R.S. Khoshnood, and M.H.A. Zavvar, Study of intricate formation
N-phenylaza-15-crown-5 metallic cations with Mg²⁺, Ca²⁺, Ag⁺ and Cd²⁺ in some
binary mixed aqueous and non-aqueous solvents using the conductometric method.
Journal of Macrocyclic Chemistry and Inclusion Phenomena, 2006. 54(3–4): p. 247–
252.

31. Rounaghi, G.H., E.E. Shahri, and S. Abdolrasoul, Solvent Influence upon Complex
Formation between Dibenzo 24- Crown- 8 and Mg²⁺, Ca²⁺, Sr²⁺ and Ba²⁺ Cations in
Acetonitrile- Dimethylformamide Binary Mixtures Using the Conductometric
Method. Journal of the Chinese Chemical Society, 2004. 51(5A): p. 923-928.