Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Effects of limited medical resource on a Filippov infectious disease model induced by selection pressure

Wenjie Qin a, Sanyi Tang b,∗, Changcheng Xiang c, Yali Yang d

a College of Science, China Three Gorges University, Yichang 443002, PR China
b College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, PR China
c Department of Mathematics, Hubei University for Nationalities, Enshi 445000, PR China
d College of Science, Air Force Engineering University, Xi’an 710051, PR China

A R T I C L E I N F O

Keywords:
Filippov infectious disease model
Selective strategy
Medical resources limitation
Threshold policy
Sliding bifurcation

A B S T R A C T

In reality, the outbreak of emerging infectious diseases including SARS, A/H1N1 and Ebola are accompanied by the common cold and flu. The selective treatment measure for mitigating and controlling the emerging infectious diseases should be implemented due to limited medical resources. However, how to determine the threshold infected cases and when to implement the selective treatment tactics are crucial for disease control. To address this, we derive a non-smooth Filippov system induced by selective treatment measure. The dynamic behaviors of two subsystems have been discussed completely, and the existence conditions for sliding segment, sliding mode dynamics and different types of equilibrium such as regular equilibrium, pseudo-equilibrium, boundary equilibrium and tangent point have been provided. Further, numerical sliding bifurcation analyses show that the proposed Filippov system has rich sliding bifurcations. Especially, the most interesting results are those for the fixed parameter set as the bifurcation parameter varies, the sliding bifurcations occur sequentially: crossing → buckling → real/virtual equilibrium → buckling → crossing. The key factors which affect the selective treatment measures and the threshold value of infected cases for emerging infectious disease have been discussed in more detail.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the last few years, frequent outbreaks and quick spread of the emerging infectious disease become a worldwide public healthy problem. It endangers not only people’s health but also the stability of the whole society. In 2003, SARS (Severe Acute Respiratory Syndrome) killed 774 people, infected more than 8000 globally and threatened to spread around the world [1,2]. The A/H1N1 (Hemagglutinin 1, Neuraminidase 1) influenza virus, which caused the 2009 pandemic, continues to circulate in some parts of the world, causing variable levels of disease and outbreaks [3]. By September 14, 2014, a total of 4507 probable and confirmed cases, including 2296 deaths from Ebola virus disease (EVD) had been reported from five countries in West Africa-Guinea, Liberia, Nigeria, Senegal, and Sierra Leone [4]. In the early stages of the emerging infectious disease, it is deficient to recognize the emergence of these infectious systematically and comprehensively, the measures of

∗ Corresponding author. Tel.: +86 29 85310232.
E-mail address: sytang@snnu.edu.cn, sanyitang219@hotmail.com (S. Tang).

http://dx.doi.org/10.1016/j.amc.2016.02.042
0096-3003/© 2016 Elsevier Inc. All rights reserved.
disinfection and isolation are failed to protect and control infected people, so the patients have little resistance to infection of any kind and emerging infectious spread through the camps like wildfire.

The emerging infectious disease including SARS, A/H1N1, Ebola, Dengue fever [5] etc. are often accompanied by other viral diseases such as common flu. Moreover, in the early stages of emerging infectious diseases (taking SARS as an example in the rest of paper) outbreak, there is only a very few number of individuals infected by SARS, and the medical resources are enough at this stage. Meanwhile, the early symptoms are very similar to flu and there is no effective way to identify the infected patients. Thus, patients infected with different viruses can be got treatment in different areas of the hospital at the same time.

With the growing numbers of SARS infected cases, those pose a grave threat to public health. Meanwhile, various kinds of control strategies have constraints based on the limited medical resources such as doctors, vaccines, drugs, hospital beds, isolation places, medical devices, and so on, especially in rural areas in many developing countries [6–10]. The medical resource limitation seriously restricts the prevention and treatment for SARS. At this moment, the department of health or state has to cite the urgency of fighting SARS, adopts green passage policy that speeds for isolation and treatment for SARS, so the doctors have to focus their attentions on the SARS infected cases only. For the patients with common flu, the doctors can only prescribe medicines and advise them to go home for home treatment, which can significantly relieve the pressure of limited medical resources on hospital or doctors.

In order to describe the effects of limited medical resource and selection strategy discussed above, the number of the patients infected by SARS in a compartment has been chosen as an index for hospital or doctors to use decisions. That is, if the number of the patients infected by SARS is below the threshold level which can be determined analytically (see main text for more details), there is no limited medical resource and selection pressure; above the threshold, due to the limited resource, and doctors treat SARS only. This type of control strategy is called as threshold control policy [11,12], which can be described by Filippov systems [13,14]. Recently, non-smooth Filippov infectious disease models have been investigated by many researchers [10,15–18].

In the present work, a non-smooth Filippov infectious disease model with threshold strategy induced by selective treatment measure is derived. The sliding mode dynamics and the existence of all types equilibria have been discussed. Numerical sliding bifurcation analyses show that the proposed Filippov system has rich sliding bifurcations. The key factors which affect the selective treatment measures and the threshold value of infected cases for emerging infectious disease have been discussed in more detail. Our main results show that reducing the threshold value to an appropriate level could contribute to the efficacy on prevention and treatment of emerging infectious disease, which indicates that the selection pressures can be beneficial to prevent the emerging infectious disease under medical resource limitation.

2. Models and threshold level

Let \(S(t), I_1(t), I_2(t) \) and \(R(t) \) denote the numbers of susceptible, the patients with SARS, common flu and recovered individuals at time \(t \), respectively. For simplification, we assume that the people can only be infected either by SARS virus or by common flu virus. Further, based on the classical infectious disease model with limited capacity for treatment [9,10,19–25] we propose the following \(SI_1I_2R \) model as the basic model in this study

\[
\begin{align*}
\dot{S}(t) & = A - \mu S - \beta_1SI_1 - \beta_2SI_2, \\
\dot{I}_1(t) & = \beta_1SI_1 - \mu I_1 - v_1I_1 - \frac{p_1c_1I_1}{1 + p_1b_1I_1 + p_2b_2I_2}, \\
\dot{I}_2(t) & = \beta_2SI_2 - \mu I_2 - v_2I_2 - \frac{p_2c_2I_2}{1 + p_1b_1I_1 + p_2b_2I_2}, \\
\dot{R}(t) & = v_1I_1 + v_2I_2 + \frac{p_1c_1I_1 + p_2c_2I_2}{1 + p_1b_1I_1 + p_2b_2I_2} - \mu R.
\end{align*}
\]

(2.1)

The parameters of model (2.1) are summarized in Table 1. Obviously, two probabilities \(p_1, p_2 \in [0, 1] \). Note that some very special cases of model (2.1) have been studied in our previous work [10], and the main purpose in this work is to investigate the generalized cases and reveal the rich dynamics and important biological implications concerning emerging infectious disease control.

It follows from model (2.1) that the total recovery rate

\[
\frac{p_1c_1I_1 + p_2c_2I_2}{1 + p_1b_1I_1 + p_2b_2I_2}
\]

(2.2)

is the major concern for the doctors once the emerging infectious disease outbreaks. Intuitively, how to choose the treatment proportions \(p_1 \) and \(p_2 \) for the patients infected by different virus such that the total recovery rate reaches its maximal value? To address this question, we discuss the selective strategies in the following.

Conditional upon resource limitation, we first assume that medical treatment service for SARS is more than the patients infected by flu, that is

\[
\frac{c_1}{b_1} > \frac{c_2}{b_2}
\]

(2.3)
Based on the total recovery rate defined by (2.2), we define the function \mathcal{F} with respect to p_1 and p_2 as follows

$$\mathcal{F}(p_1, p_2) = \frac{p_1 c_1 I_1 + p_2 c_2 I_2}{1 + p_1 b_1 I_1 + p_2 b_2 I_2}. \tag{2.4}$$

Taking the derivatives of the function \mathcal{F} with respect to p_1 and p_2 respectively, one yields

$$\frac{\partial \mathcal{F}}{\partial p_1} = \frac{[c_1 + p_2 b_2 (b_2 c_1 - b_1 c_2)]I_1}{(1 + p_1 b_1 I_1 + p_2 b_2 I_2)^2}, \quad \frac{\partial \mathcal{F}}{\partial p_2} = \frac{[c_2 - p_1 b_1 (b_2 c_1 - b_1 c_2)]I_2}{(1 + p_1 b_1 I_1 + p_2 b_2 I_2)^2},$$

and it follows from inequality (2.3) that $\frac{\partial \mathcal{F}}{\partial p_1} > 0$, and consequently the function \mathcal{F} is monotonically increasing with respect to p_1. According to the sign of the function $\frac{\partial \mathcal{F}}{\partial p_2}$ with respect to I_1, we address the following interesting results concerning the selection strategies. To show this, we define the threshold value for SARS patients as follows

$$I_c = \frac{c_2}{b_2 c_1 - b_1 c_2} \tag{2.5}$$

which decides whether the hospital carries out the selective strategy or not. Thus, there are two cases:

- If $I_1 < I_c$, the function \mathcal{F} can obtain the maximum value at $p_1 = 1$, $p_2 = 1$.
- If $I_1 > I_c$, the function \mathcal{F} can obtain the maximum value at $p_1 = 1$, $p_2 = 0$.

Therefore, taking into account above facts, in the early stages of SARS outbreak ($I_1 < I_c$), the patients with flu can be treated simultaneously with SARS, i.e., $p_1 = p_2 = 1$. Then model (2.1) becomes

$$\begin{cases}
\dot{S}(t) = A - \mu_S S - \beta_1 SI_1 - \beta_2 SI_2, \\
\dot{I}_1(t) = \beta_1 SI_1 - \mu_1 I_1 - v_1 I_1 - \frac{c_1 I_1}{1 + b_1 I_1 + b_2 I_2}, \\
\dot{I}_2(t) = \beta_2 SI_2 - \mu_2 I_2 - v_2 I_2 - \frac{c_2 I_2}{1 + b_1 I_1 + b_2 I_2}, \\
\dot{R}(t) = v_1 I_1 + v_2 I_2 + \frac{c_1 I_1 + c_2 I_2}{1 + b_1 I_1 + b_2 I_2} - \mu_R R.
\end{cases} \tag{2.6}$$

With the increasing number of infected cases with SARS ($I_1 > I_c$), the doctors have to isolate and treat SARS patients only, i.e., $p_1 = 1, p_2 = 0$. Thus model (2.1) becomes

$$\begin{cases}
\dot{S}(t) = A - \mu_S S - \beta_1 SI_1 - \beta_2 SI_2, \\
\dot{I}_1(t) = \beta_1 SI_1 - \mu_1 I_1 - v_1 I_1 - \frac{c_1 I_1}{1 + b_1 I_1}, \\
\dot{I}_2(t) = \beta_2 SI_2 - \mu_2 I_2 - v_2 I_2, \\
\dot{R}(t) = v_1 I_1 + v_2 I_2 + \frac{c_1 I_1}{1 + b_1 I_1} - \mu_R R.
\end{cases} \tag{2.7}$$
To simplify models (2.6) and (2.7), we assume that the number of the patients infected by flu each year is a constant, i.e., \(I_2 = k \in \mathbb{Z}^+ \). Thus, models (2.6) and (2.7) can be rewritten as the following Filippov system \([13,14]\)

\[
\begin{align*}
\dot{S}(t) &= A - \mu S - \beta SI, \\
\dot{I}(t) &= \beta SI - vI - \frac{c_1 I}{1 + b_1 I + \varepsilon b_2 k}
\end{align*}
\]

(2.8)

with

\[
\varepsilon = \begin{cases}
1, & H(Z) < 0, \\
0, & H(Z) > 0,
\end{cases}
\]

(2.9)

where \(\mu = \mu_I + \beta I_k; v = \mu_I + v_1, I_c = c_2/(b_2 c_1 - b_1 c_2), \beta = \beta_I, I = I_1 \) and \(H(Z) = I - l_c \) with vector \(Z = (S, I)^T \). Model (2.8) with (2.9) is a description of the threshold control policy, which is referred to as an on-off control, see \([11,12]\) for more detailed discussion on Filippov system. Note that the special case (i.e. \(b_1 = 0 \)) has been investigated recently \([10]\).

Let

\[
F_{G_1}(Z) = \left(A - \mu S - \beta SI, \beta SI - vI - \frac{c_1 I}{1 + b_1 I + \varepsilon b_2 k} \right)^T,
\]

\[
F_{G_2}(Z) = \left(A - \mu S - \beta SI, \beta SI - vI - \frac{c_1 I}{1 + b_1 I} \right)^T.
\]

Then model (2.8) with (2.9) can be rewritten as the following generalized Filippov system \([13,14]\)

\[
\dot{Z}(t) = \begin{cases}
F_{G_1}(Z), & Z \in G_1, \\
F_{G_2}(Z), & Z \in G_2,
\end{cases}
\]

(2.10)

where

\[
G_1 = \{ Z \in \mathbb{R}_+^2 | H(Z) < 0 \}, \quad G_2 = \{ Z \in \mathbb{R}_+^2 | H(Z) > 0 \}.
\]

Furthermore, the discontinuity boundary (or manifold) \(\Sigma \) separating two regions \(G_1 \) and \(G_2 \) is described as \(\Sigma = \{ Z \in \mathbb{R}_+^2 | H(Z) = 0 \} \) and \(H(Z) \) is a smooth scalar function with non-vanishing gradient \(H_Z(Z) \) on \(\Sigma \).

The main characteristics of Filippov system (2.10) is that selective strategy is suppressed when the number of patients infected by SARS (i.e., \(I(t) \)) is below a previously chosen threshold policy \(l_c \). With this number \(I(t) \) increases and exceeds the threshold \(l_c \), the hospital will treat severe cases only since the shortage of medical resources, that is, the selective strategy is implemented.

The following definitions on all types of equilibria of Filippov system (2.10) \([26,27]\) are necessary throughout the paper.

Definition 2.1. A point \(Z \) is called a real equilibrium of Filippov system (2.10) if \(F_{G_1}(Z) = 0, H(Z) < 0 \) or \(F_{G_2}(Z) = 0, H(Z) > 0 \). Similarly, a point \(Z \) is called a virtual equilibrium if \(F_{G_1}(Z) = 0, H(Z) > 0 \) or \(F_{G_2}(Z) = 0, H(Z) < 0 \). Both the real and virtual equilibria are called regular equilibria.

Definition 2.2. A point \(Z_0 \) is called a pseudo-equilibrium if it is an equilibrium of the sliding mode of system (2.10), i.e., \(\alpha(Z)F_{G_1}(Z_0) + (1 - \lambda)F_{G_2}(Z_0) = 0, H(Z_0) = 0 \) and \(0 < \alpha(Z) < 1 \), and

\[
\alpha(Z) = \frac{\langle H_Z(Z), F_{G_1}(Z) \rangle}{\langle H_Z(Z), F_{G_1}(Z) - F_{G_2}(Z) \rangle},
\]

where \(\langle \cdot, \cdot \rangle \) denotes the standard scalar product.

Definition 2.3. A point \(Z_0 \) is called a boundary equilibrium of Filippov system (2.10) if \(H(Z_0) = 0 \) and \(F_{G_1}(Z_0) = 0 \) (or \(F_{G_2}(Z_0) = 0 \)).

Definition 2.4. A point \(Z_0 \) is called a tangency point of Filippov system (2.10) if \(Z_0 \in \Sigma_k \) and \(F_{G_1}H(Z_0) = 0 \) (or \(F_{G_2}H(Z_0) = 0 \)), where \(F_{G_i}H(Z) = \langle H_Z(Z), F_{G_i}(Z) \rangle \) is the Lie derivative \([28]\) for \(i = 1, 2 \).

3. Qualitative analysis of two subsystems

If \(I < l_c \), then the following system plays a key role in analyzing the Filippov system (2.10)

\[
\begin{align*}
\dot{S}(t) &= A - \mu S - \beta SI, \\
\dot{I}(t) &= \beta SI - vI - \frac{c_1 I}{1 + b_1 I + \varepsilon b_2 k},
\end{align*}
\]

(3.1)

and the basic reproduction number of subsystem (3.1) reads

\[
R_1 = \frac{\beta}{v + \frac{c_1}{1 + b_1 + \varepsilon b_2 k}} A.
\]
It is obvious that subsystem (3.1) always has a unique disease-free equilibrium $E_1^0 = (A/\mu, 0)$, which is globally asymptotically stable if $R_1 < 1$.

The endemic equilibria of subsystem (3.1) are solutions of

$$
\begin{align*}
A - \mu S - \beta SI &= 0, \\
\beta S - \nu - \frac{c_1}{1 + b_1 l_1 + b_2 l_2} &= 0,
\end{align*}
$$

which yields

$$
l^2 + m_1 l + n_1 = 0, \tag{3.2}
$$

where

$$
m_1 = \frac{\nu (\beta (1 + b_2 k) + \mu b_1) + c_1 \beta - A \beta b_1}{v \beta b_1}, \quad n_1 = \frac{\nu \mu (1 + b_2 k) + c_1 \mu (1 - R_1)}{v \beta b_1}.
$$

Noting that $n_1 < 0$ if and only if $R_1 > 1$, $n_1 = 0$ if and only if $R_1 = 1$, $n_1 > 0$ if and only if $R_1 < 1$.

For the simplicity and convenience of exposition, we denote

$$
l_i^1 = \frac{-m_1 + \sqrt{\Delta_i}}{2}, \quad l_i^2 = \frac{-m_1 - \sqrt{\Delta_i}}{2}, \quad \Delta_i = m_1^2 - 4 n_1, \quad S_i = \frac{A}{\mu + \beta l_i^1}, \quad i = 1, 2.
$$

Lemma 3.1. For subsystem (3.1), we have

1. If $R_1 > 1$, there exists a unique endemic equilibrium $E_1^1 = (S_1^1, l_1^1)$;
2. If $R_1 = 1$ and $m_1 < 0$, there exists a unique endemic equilibrium $E_1 = (S_1^1, l_1^1)$;
3. If $R_1 = 1$ and $m_1 > 0$, there exists no endemic equilibrium;
4. If $R_1 < 1, m_1 < 0$ and $\Delta_1 > 0$, there exists two endemic equilibria $E_1^1 = (S_1^1, l_1^1)$ and $E_2^1 = (S_2^1, l_2^1)$;
5. If $R_1 < 1, m_1 < 0$ and $\Delta_1 = 0$, two endemic equilibria $E_1^1 = (S_1^1, l_1^1)$ and $E_2^1 = (S_2^1, l_2^1)$ coalesce at a unique endemic equilibrium of multiplicity 2;
6. If $R_1 < 1, m_1 < 0$ and $\Delta_1 < 0$, there exists no endemic equilibrium;
7. If $R_1 < 1$ and $m_1 > 0$, there exists no endemic equilibrium.

Next, we will study the stability of the endemic equilibria of subsystem (3.1). The characteristic equation about the endemic equilibrium $E_i^1 = (S_1^1, l_1^1), i = 1, 2$ is given by

$$
\lambda^2 + H(l_i^1) \lambda + G(l_i^1) = 0, \tag{3.3}
$$

where

$$
H(l_i^1) = \mu + \beta l_i^1 - \frac{c_1 b_1 l_i^1}{(1 + b_1 l_i^1 + b_2 l_2)^2}, \quad G(l_i^1) = \frac{A \beta^2 l_i^1}{\mu + \beta l_i^1} - \frac{(\mu + \beta l_i^1) c_1 b_1 l_i^1}{(1 + b_1 l_i^1 + b_2 l_2)^2}. \tag{3.4}
$$

We can obtain the following lemmas from (3.3).

Lemma 3.2. If $R_1 > 1$, then the endemic equilibrium E_1^1 of system (3.1) is a stable node or focus when $H(l_i^1) > 0$; E_1^1 is an unstable node or focus when $H(l_i^1) < 0$, and system (3.1) has at least one closed orbit in Ω; E_1^1 is a center of the linear system when $H(l_i^1) = 0$.

Lemma 3.3. If $R_1 < 1, m_1 < 0$ and $\Delta_1 > 0$ and $A > A_1$, then the endemic equilibrium E_2^1 of system (3.1) is a saddle; and E_1^1 is an unstable node or focus when $H(l_i^1) < 0$; E_1^1 is a center of linear system when $H(l_i^1) = 0$.

The methods of proving **Lemmas 3.1–3.3** are similar to those in Refs. [23,24], see these references for more details.

If $I > I_0$, then the Filippov system (2.10) becomes

$$
\begin{align*}
\dot{S}(t) &= A - \mu S - \beta SI, \\
\dot{I}(t) &= \beta SI - \nu I - \frac{c_1 I}{1 + b_1 I + b_2 I},
\end{align*}
$$

and it has a unique disease-free equilibrium $E_2^0 = (A/\mu, 0)$, which is globally asymptotically stable if $R_2 < 1$. Here,

$$
R_2 = \frac{\beta}{v + c_1} \frac{A}{\mu}
$$

is the basic reproduction number of subsystem (3.5).
For convenience, we denote
\[
E_2^1 = (S_2^1, l_2^1) = \left(\frac{A}{\mu + \beta l_2^1}, -m_2 + \sqrt{\Delta_2} \right), \quad E_2^2 = (S_2^2, l_2^2) = \left(\frac{A}{\mu + \beta l_2^2}, -m_2 - \sqrt{\Delta_2} \right),
\]
where
\[
m_2 = \frac{v(\mu + \beta b_1) + c_1 \beta - A \beta b_1}{v \beta b_1}, \quad n_2 = \frac{v \mu + c_1 \mu}{v \beta b_1} \left(1 - R_2 \right), \quad \Delta_2 = m_2^2 - 4n_2.
\]

The characteristic equation about \(E_i^j(S_2, l_2) \) for \(i = 1, 2 \) is given by
\[
\lambda^2 + H(l_2^i)\lambda + G(l_2^i) = 0,
\]
where
\[
H(l_2^i) = \mu + \beta l_2^i - \frac{c_1 b_2 l_2^i}{(1 + b_1 l_2^i)^2}, \quad G(l_2^i) = \frac{A \beta^2 l_2^i}{\mu + \beta l_2^i} - \frac{(\mu + \beta l_2^i)c_1 b_2 l_2^i}{(1 + b_1 l_2^i)^2}.
\]

Similar conclusions as Lemmas 3.1–3.3 for subsystem (3.5) can be obtained, and those are not described here.

4. Basic properties of Filippov system (2.10)

4.1. Existence of sliding domain

It follows from Filippov convex method [13,14] that one can define the sliding vector field as a convex combination of the two vector fields
\[
F_{\xi}(Z) = \alpha(Z)F_{c_1}(Z) + \left(1 - \alpha(Z) \right)F_{c_2}(Z)
\]
with
\[
\alpha(Z) = \frac{\left\langle H_{\xi}(Z), F_{c_2}(Z) \right\rangle}{\left\langle H_{\xi}(Z), F_{c_2}(Z) - F_{c_1}(Z) \right\rangle}, \quad 0 \leq \alpha(Z) \leq 1.
\]

Noting that the control \(\alpha(Z) = 1 \) indicates that the flow is governed by \(F_{c_1} \) alone, which must be tangent to the switching surface \(\Sigma \). Analogously, \(\alpha(Z) = 0 \) shows a tangency of flow \(F_{c_2} \) with \(\Sigma \). Therefore, the sliding subset can be defined as
\[
\Sigma_s = \left\{ Z \in \Sigma : 0 \leq \alpha(Z) \leq 1 \right\}.
\]

The boundaries of the sliding subset are \(\partial \Sigma_s^+ = \{ Z \in \Sigma : \alpha(Z) = 0 \} \) and \(\partial \Sigma_s^- = \{ Z \in \Sigma : \alpha(Z) = 1 \} \) where one of the vector fields is tangent to \(\Sigma \) at the boundaries \(\partial \Sigma_s^+ \) or \(\partial \Sigma_s^- \). In particular, we can use the signs of \(\left\langle H_{\xi}(Z), F_{c_i}(Z) \right\rangle, i = 1, 2 \) to define the sewing region, escaping region and sliding region, see Refs. [29,30] for more details.

By simple calculation, we have
\[
\alpha(Z) = \frac{\left(1 + b_1 l_c + b_2 k \right) \left\{ c_1 - (\beta S - v)(1 + b_1 l_c) \right\}}{c_1 b_2 k},
\]

solving the inequality \(0 \leq \alpha(Z) \leq 1 \) with respect to \(S \), one yields
\[
\frac{1}{\beta} \left(\frac{c_1}{1 + b_1 l_c + b_2 k + v} \right) \leq S \leq \frac{1}{\beta} \left(\frac{c_1}{1 + b_1 l_c + v} \right), \quad l_c = \frac{c_2}{b_2 c_1 - b_1 c_2}.
\]

Therefore, the sliding segment of Filippov (2.10) can be defined as
\[
\Sigma_s = \left\{ (S, l_c) : \frac{1}{\beta} \left(\frac{c_1}{1 + b_1 l_c + b_2 k + v} \right) \leq S \leq \frac{1}{\beta} \left(\frac{c_1}{1 + b_1 l_c + v} \right), \quad l_c = \frac{c_2}{b_2 c_1 - b_1 c_2} \right\}.
\]

4.2. Sliding mode dynamics

Here we employ Utkin’s equivalent control method introduced in [14] to obtain the differential equation for sliding dynamics defined in the region \(\Sigma_s \). It follows from \(H = 0 \) that
\[
\frac{\partial H}{\partial Z} = l'_c = \beta S l_c - v l_c - \frac{c_1 l_c}{1 + b_1 l_c + \varepsilon b_2 k} = 0,
\]
and solving the above equation with respect to \(\varepsilon \) yields
\[
\varepsilon = c_1 - (1 + b_1 l_c)(\beta S - v)
\]
\[
\frac{1}{b_2 k(\beta S - v)}.
\]
According to Utkin's equivalent control method, we can obtain the dynamics defined in Σ_s which can be determined by the following scalar differential equation

$$\dot{S}(t) = A - \mu S - \beta SL_c, \quad L_c = \frac{c_2}{b_2c_1 - b_1c_2}.$$ \hspace{1cm} (4.4)

4.3. Equilibria of Filippov system (2.10)

For the simplicity and convenience of exposition, we denote real equilibrium as E_R, virtual equilibrium as E_V, pseudo-equilibrium as E_p, boundary equilibrium as E_B and tangent point as E_T, respectively.

Regular equilibrium: For convenience, we just consider the subsystem has two endemic equilibria. From Lemma 3.1, subsystem (3.1) has two endemic equilibria $E_1^1 = (S_1^1, l_1^1)$ and $E_1^2 = (S_1^2, l_1^2)$ provided that $R_1 < 1, m_1 < 0$ and $\Delta_1 > 0$. If $l_1^1 < l_c$, then both E_1^1 and E_1^2 are real equilibria for subsystem (3.1), denoted by E_{11}^R and E_{12}^R; While if $l_1^2 > l_c$, then both E_1^1 and E_1^2 become virtual equilibria for subsystem (3.1), denoted by E_{11}^V and E_{12}^V; Else if $l_1^2 < l_c < l_1^1$, then the equilibrium E_1^1 and E_1^2 become the virtual and real equilibria, denoted by E_{11}^V and E_{12}^V, respectively.

Analogously, subsystem (3.5) has two endemic equilibria $E_2^i = (S_2^i, l_c^i)$ for $i = 1, 2$ as $R_2 < 1, m_2 < 0$ and $\Delta_2 > 0$. And E_2^i could be a real or virtual equilibrium (denoted by E_{21}^R or E_{22}^V respectively) which depends on the size of l_c^1 and l_c^2.

Pseudo-equilibrium: For the existence of pseudo-equilibrium, we denote $E_p = (S_p, l_c)$. according to (4.4) the S_p component of the pseudo-equilibrium of sliding flow satisfies the following equation

$$A - \mu S_p - \beta SL_c = 0,$$

where $S_p = A/(\mu + \beta l_c) \in \Sigma_s$, and S_p is a unique positive steady state of (4.4). That is, if $S_p = A/(\mu + \beta l_c) \in \Sigma_s$ holds true, Filippov system (2.10) exists a unique pseudo-equilibrium E_p.

For the stability of pseudo-equilibrium $E_p = (S_p, l_c)$, we rewrite sliding mode equation (4.4) as

$$\dot{S}(t) = A - \mu S - \beta SL_c \equiv \phi(S),$$

it follows from (4.5) that

$$\frac{\partial \phi(S)}{\partial S} \bigg|_{S=S_p} = -\mu - \beta l_c < 0,$$

which indicates that the pseudo-equilibrium E_p is locally stable in Σ_s.

Boundary equilibrium: The boundary equilibria of Filippov system (2.10) satisfy equations

$$\begin{cases} A - \mu S - \beta SL_c = 0, \\ \beta S - v = \frac{c_1}{1+b_1 l_c + \epsilon b_2 k} = 0, \\ L_c = \frac{c_2}{c_1 b_2 - c_2 b_1}, \end{cases}$$

which indicates that if

$$A = \frac{1}{\beta} \left(\frac{c_1}{1+b_1 l_c + \epsilon b_2 k} + v \right),$$

then we have boundary equilibrium $E_B = (\frac{1}{\beta} \left[\frac{c_1}{1+b_1 l_c + \epsilon b_2 k} + v \right], l_c)$. We denote E_{11}^B or E_{12}^B provided $\epsilon = 1$, i.e., $l_c = l_1^1$ or $l_c = l_1^2$ (if l_1^1 or l_1^2 exists), and E_{21}^B or E_{22}^B provided $\epsilon = 0$, i.e., $l_c = l_2^1$ or $l_c = l_2^2$ (if l_2^1 or l_2^2 exists).

Tangent point: According to Definition 2.4, the tangent point E_T on sliding segment Σ_s satisfies equations

$$\begin{cases} \beta S - v = \frac{c_1}{1+b_1 l_c + \epsilon b_2 k} = 0, \\ L_c = \frac{c_2}{c_1 b_2 - c_2 b_1}, \end{cases}$$

and

$$\begin{cases} \beta S - v = \frac{c_2}{1+b_1 l_c + \epsilon b_2 k} = 0, \\ L_c = \frac{c_1}{c_1 b_2 - c_2 b_1}. \end{cases}$$

Hence, there may be two possible tangent points including $E_T^1 = (\frac{1}{\beta} \left[\frac{c_1}{1+b_1 l_c + \epsilon b_2 k} + v \right], l_c)$ and $E_T^2 = (\frac{1}{\beta} \left[\frac{c_1}{1+b_1 l_c + \epsilon b_2 k} + v \right], l_c)$.

The richness of equilibria of Filippov system (2.10) could result in a number of equilibrium bifurcations as the key parameter varies. Thus, in the coming section, we would like to investigate the local and global sliding bifurcations of system (2.10).

5. Sliding bifurcation analysis of Filippov system (2.10)

By employing numerical methods to investigate the qualitative behaviors of Filippov system (2.10), the sliding bifurcation analyses including local and global bifurcations of one parameter Filippov system (2.10) are provided in this section. Therefore, we fix all other parameters and choose the maximal recovery rate for the patients with flu (i.e., c_2) as a bifurcation parameter, noting that c_2 is directly related to the threshold value l_c.
5.1. Local sliding bifurcation

Throughout this section, we will investigate the local sliding bifurcation of Filippov system (2.10). Boundary equilibrium bifurcation, as a type of local sliding bifurcation in Filippov system, is characterized by the collision of pseudo-equilibrium, tangent point, and real equilibrium (or tangent point and real equilibrium) at the discontinuity surface when one parameter passes through a critical value, and includes boundary node, focus and saddle bifurcations which will be addressed in the following.

Noting that the boundary equilibrium bifurcation occurs at E_p if $F_{c_i}(E_p)$ is invertible (or equivalently the eigenvalues of $DF_{c_i}(E_p)$) have real part different from zero and $\{H_p(E_p), F_{c_j}(E_p)\} \neq 0$, $i, j = 1, 2; i \neq j$. Here the symbol $DF_{c_i}(E_p)$ is the characteristic polynomial of subsystems (3.1) or (3.5) about the boundary equilibrium E_p. These bifurcations are classified as boundary saddle, boundary node and boundary focus in [31]. It follows from Section 4.2 that Filippov system (2.10) maybe have boundary equilibria E^{11}_p and E^{21}_p if Γ_1^p and Γ_2^p exist for $i = 1, 2$. For the boundary equilibria E^{11}_p and E^{12}_p, by simple calculations we have

$$F_{c_1}H(E^{11}_p) = \left(\beta S^1_1 - \nu - \frac{c_1}{1 + b_1 l_1^1}\right) l_1^1 < 0,$$

(5.1)

and from Lemma 3.3, we know that $DF_{c_i}(E_p)$ possesses complex eigenvalues with nonzero real part $-H(\Gamma_1^p)/2$, $i = 1, 2$ if E^{11}_p is a saddle (a node, or a focus). Again, similar argument as above will yield for the boundary equilibria E^{12}_p and E^{22}_p. Hence, a boundary equilibrium bifurcation occurs at E^{ij}_p, $i, j = 1, 2$.

Boundary-saddle bifurcation: This type of bifurcation may occur for Filippov system (2.10) if three types of equilibria E_R, E_F and E_p collide together simultaneously as parameter c_2 passes through a critical value [31]. For example, when the parameter c_2 passes through a critical value $c_2^* \approx 3$, a saddle E^{22}_p, a tangent point E^2_p and a pseudo-equilibrium E_p collide together, so the boundary-saddle bifurcation occurs at E^{22}_p, as shown in Fig. 1(B). In this case, the critical value

$$c_2^* = \frac{f_2 c_1 b_2}{1 + b_1 l_2^2}.$$

(5.3)

A saddle E^{22}_p (an unstable real equilibrium), a stable pseudo-equilibrium E_p and an invisible tangent E^2_p can coexist for $c_2 < c_2^*$, as shown in Fig. 1(A) with $c_2 = 2.8$. They collide together simultaneously as $c_2 = c_2^*$ and are substituted by a virtual
equilibrium E_2^{12}, an invisible tangent E_1^2, while the pseudo-equilibrium E_p is disappeared, when the parameter $c_2 > c_2^{*}$. see Fig. 1(C) with $c_2 = 3.3$ for more details.

Boundary-node bifurcation: From Fig. 2, we can see that the stable note E_1^{11} and a tangent point E_1 collide together as the parameter c_2 passes through the critical value $c_2^{*} \approx 0.355$, the boundary node bifurcation occurs at E_2^{11}, where the critical value c_2^{*} is

$$c_2^{*} = \frac{l_1^1 c_1 b_2}{1 + b_1 l_1^1}.$$ \tag{5.4}

A stable note E_R^{11} and a tangent point E_1 coexist, as shown in Fig. 2(A) with $c_2 = 0.5$ when $c_2 > c_2^{*}$. They collide at $c_2 = c_2^{*}$ (see Fig. 2(B)) and are substituted by a pseudo-equilibrium E_p, a tangent point E_1 and a virtual equilibrium E_V^{11} as $c_2 < c_2^{*}$, see Fig. 2(C) with $c_2 = 0.1$ for more details.

Boundary-focus bifurcation: Similarly, a boundary focus bifurcation of Filippov system (2.10) occurs at E_2^{11} as $c_2^{*} \approx 0.635$, see Fig. 3, and

$$c_2^{*} = \frac{l_2^2 c_1 b_2}{1 + b_1 l_2^2}.$$ \tag{5.5}

A stable focus E_R^{21} and a tangent point E_2^2 coexist, as shown in Fig. 3(A) when $c_2 < 0.635$. They collide at $c_2 = c_2^{*}$ (see Fig. 3(B) with $c_2 = 0.5$) and are substituted by a pseudo-equilibrium E_p, a tangent point E_2^2 and a virtual equilibrium E_V^{21} when $c_2 > 0.635$, as shown in Fig. 3(C) with $c_2 = 0.7$.

5.2. Global sliding bifurcation

Filippov system (2.10) could have standard periodic solutions that lie entirely in regions G_1 or G_2 through a Hopf bifurcation, respectively [31,32]. Meanwhile, as mentioned in Refs. [26,31], Filippov system (2.10) may have additional two types of new periodic solutions: periodic solutions which have a sliding segment in sliding segment Σ_s (i.e., sliding periodic solutions) and those which have only isolated points in common with Σ_s (i.e., crossing periodic solutions). Noting that a crossing periodic solution can pass through the boundary of the sliding segment Σ_s. Accordingly, the orbits corresponding to periodic solutions will be called standard, sliding and crossing cycles. In this section, we focus on the global sliding bifurcations such as grazing bifurcation (i.e., touching bifurcation), buckling bifurcation and crossing bifurcation.

Grazing (or touching) bifurcation: It follows from the Refs. [26,31], a standard periodic solution can collide with the sliding segments, and this type of bifurcation is called grazing or touching bifurcation. Noting that Filippov system (2.10) has a stable periodic solution in the interior of region G_2, as shown in Fig. 4(A) with $c_2 = 0.5$. At this moment, Filippov system (2.10) has two tangent points E_1^1 and E_1^2 lying on the boundary of the sliding mode, subsystem (3.5) has an unstable
real equilibrium E^2 while subsystem (3.1) has one unstable virtual equilibrium E^V. As the parameter c_2 increases and passes through around 0.85, a grazing or touching bifurcation occurs, as shown in Fig. 4(B), which indicates that the standard period solution of Filippov system (2.10) collides with its tangent point E^2. As c_2 continues to increase the cycle becomes a sliding cycle, where a piece of sliding segment belongs to the cycle, as shown in Fig. 4(C) with $c_2 = 0.95$.

Especially, as the bifurcation parameter c_2 is increased to 1.6, the stable periodic cycle is disappeared, and pseudo-equilibrium E_P appears at $c_2 = 1.6$. Meanwhile, for subsystem (3.5), the real equilibrium E^2 becomes a virtual equilibrium E^V, the real/virtual equilibrium bifurcation occurs at $c_2 = 1.6$, as shown in Fig. 4(D). Meanwhile, Fig. 4(D) also shows that pseudo-equilibrium of Filippov system cannot coexist with the real equilibria.

Buckling bifurcation: This type of bifurcation is defined as a standard piece of the cycle starts to pass the invisible quadratic tangent point as the bifurcation parameter varies [31], as shown in Fig. 5(C). Fig. 5(B) clearly shows that Filippov system (2.10) has a stable sliding periodic solution, an invisible quadratic tangent point E^I_1, an unstable regular equilibria E^V and E^R. As c_2 increases and exceeds 0.7 the piece of the cycle starts to pass the invisible quadratic tangent point E^I_1, and consequently the cycle passes through the whole piece of the sliding segment Σ_s, and the sliding cycle does exist in region G_2 and sliding segment Σ_s, see Fig. 5(C) for details. It follows from Fig. 5(B)–(D) that a buckling bifurcation occurs at $c_2 = 1.05$. Similarly, Fig. 5(F)–(H) also shows there exists a buckling bifurcation as $c_2 = 2.7$, unlike 5(B)–(D), the sliding cycle as shown in Fig. 5(G) does exists in region G_1 and Σ_s.

Crossing bifurcation: Along with the variation of bifurcation parameter, a stable sliding periodic solution becomes a stable crossing periodic solution, this type bifurcation is called crossing bifurcation. It is interesting to note that a sliding cycle with a single sliding segment ending at E^I_1 does exists in both regions G_1, G_2 and sliding segment Σ_s, see Fig. 5(H). As c_2 increases and reaches 3.45 the sliding cycle only passes the tangent point E^I_1 on the sliding segment Σ_s. At this moment, the stable sliding periodic solution becomes a stable crossing periodic solution, as shown in Fig. 5(I) with $c_2 = 3.45$. Fig. 5(J) shows that the sliding crossing cycle becomes a crossing cycle as c_2 continues to increase and reach 4. Noting that the sliding segment Σ_s is located within the crossing cycle which exists in both regions G_1 and G_2. It follows from Fig. 5(H)–(J) that a crossing bifurcation occurs at $c_2 = 3.45$. Similarly, Filippov system (2.10) must exist one crossing bifurcation from Fig. 5(A) to (B).

In summary, as bifurcation parameter c_2 increases from 0.5 to 4 and all other parameters are fixed as those in Fig. 5, Filippov system (2.10) has rich sliding bifurcations, the following local and global sliding bifurcations occur sequentially: crossing \rightarrow buckling \rightarrow real/virtual equilibrium \rightarrow buckling \rightarrow crossing. Especially, as the bifurcation parameter c_2 changes around 1.6, the stable periodic cycle is disappeared, and pseudo-equilibrium E_P appears at $c_2 = 1.6$, all the orbits tend to the pseudo-equilibrium E_P, which is locally asymptotically stable. There exists a real/virtual equilibrium bifurcation for Filippov system (2.10) in such case.
6. Key parameters and biological significance

Previous analysis indicates that limited medical resources, the basic reproduction numbers R_i, $i = 1, 2$ and threshold values I_c (or the selective strategy) are significant factors affecting the spread of the emerging infectious disease. In this section, we first investigate how the limited medical resources (i.e., b_1) affects the dynamic behaviors of Filippov system (2.10) or the spread of SARS.

As the medical resource limitation (i.e., $b_1 \neq 0$) is taken into account, then the dynamical behaviors of both subsystems (3.1) and (3.5) of Filippov system (2.10) become much more complex. Meanwhile, the dynamic behavior of the Filippov system (2.10) could be dramatically affected by the existence of medical resource limitation. In fact, the sliding mode could change as threshold value I_c changes, as shown in Fig. 6(A), the length of sliding segment is increased with growing recovery rate c_1 from 0.6 to 1.5. Meanwhile, noting that Filippov system (2.10) does not have pseudo-equilibrium in this case $b_1 = 0$. However, with the medical resource limitation (i.e., $b_1 \neq 0$), there exists a pseudo-equilibrium E_P, which is globally stable with respect to the sliding segment Σ_s, as shown in Fig. 6(B). Those indicates that the emerging infectious disease will become endemic instead of elimination.

Meanwhile, as seen in Fig. 7, the rate of growth in the number of the patients with SARS is far more quickly before than after controlling. By comparing the red line with the blue one in Fig. 7, the limited medical resource has been a great influence on the time when the peak of patients appears and how long does the spread of SARS last. In fact, the blue line (with sufficient medical resources, i.e., $b_1 = 0$) shows that there is a peak of patients in rapid and a sharp decline, the spread of SARS lasts only for a short time. The red line (with limited resources, i.e., $b_1 = 2.5$) shows there is a delay in appearance
Fig. 5. Buckling and crossing bifurcations for Filippov system (2.10). Parameters are: $A = 0.9, \nu = 0.1, \beta = 2, b_1 = 1, b_2 = 2, c_1 = 6, k = 0.1, \mu = 0.052$.
Fig. 5. Continued

Fig. 6. The impacts of b_1 on the existence of pseudo-equilibrium of Filippov system (2.10). Parameters are: $A = 2.2$, $v = 1.2$, $\beta = 1$, $b_2 = 1$, $c_2 = 0.5$, $k = 10$, $\mu = 0.3$ and $c_1 = 0.6, 0.7, 0.8, \ldots, 1.5$.
of the peak of patients, and the peak value increases obviously, which indicates that the limited medical resources does not facilitate the treatment of infectious disease.

Therefore, in order to prevent and control the spread of emerging infectious disease, it is crucial to implement the selective strategy timely to control the basic reproduction numbers $R_i < 1, i = 1, 2$. Then, the key parameters and threshold value I_c which affect the basic reproduction numbers R_i and selective strategy are investigated, respectively.

Obviously, it follows from the expressions of the basic reproduction numbers R_i that they are monotonically decreasing functions with respect to c_1. Meanwhile, we can solve $R_{01} = 1$ with respect to c_1 and derive that

$$c_1^* = \frac{(A\beta - \mu \nu)(1 + b_2k)}{\mu},$$

so $R_{01}(c_1) < 1$ provided $c_1 > c_1^*$, as shown in Fig. 8(A). An improved the maximum cure rate for SARS will help prevent and control the spread of SARS.

Furthermore, the threshold value I_c is a monotonically decreasing function with respect to c_1. Therefore, in order to control the spread of SARS, it is crucial to reduce the threshold value I_c to I_c^*; here

$$I_c^* = \frac{c_2}{c_1b_2 - c_2b_1} = \frac{c_2\mu}{b_2(A\beta - \mu \nu)(1 + b_2k) - \mu c_2b_1}.$$

That is, the smaller the threshold value I_c is, the more beneficial to prevent and control SARS, as shown in Fig. 8(B). Those indicate that it is best to timely selective treatment for SARS infected cases so as not to miss the best timing of treatment.
7. Concluding remarks

In order to understand the effect of the delayed treating \((b_1 \neq 0)\) for the patients with emerging infectious disease on control strategy, we have deduced a non-smooth infectious disease model induced by selection pressures. Analysis of this model reveals rich dynamics including local and global sliding bifurcations. Our main results show that reducing the threshold value to an appropriate level could contribute to the efficacy on prevention and treatment of emerging infectious disease, which indicates that the selection pressures can be beneficial to prevent the emerging infectious disease under medical resource limitation.

Comparing the results for the model with \(b_1 = 0\) we have studied in Ref. [10] with \(b_1 \neq 0\), we conclude that the term \(b_1\) makes the dynamical behavior of the system change more interesting and complicated. By using theoretical techniques [26,27,31], the existence conditions for sliding segment, sliding mode dynamics and different types of equilibria such as regular equilibrium, pseudo-equilibrium, boundary equilibrium and tangent point have been provided. Further, numerical sliding bifurcation analyses show that the proposed Filippov system has more rich local and global sliding bifurcations than the case studied in Ref. [10], as shown in Figs. 1–5 for more details. Especially, the most interesting results are those for the fixed parameter set as the bifurcation parameter varies, the sliding bifurcations occur sequentially: crossing \(\rightarrow\) buckling \(\rightarrow\) real/virtual equilibrium \(\rightarrow\) buckling \(\rightarrow\) crossing.

According to the analyses of key parameters and biological significance, the results indicate that the dynamical behavior of the Filippov system (2.10) could be dramatically affected by the existence of medical resource limitation \((i.e., b_1 \neq 0)\), see Fig. 6(B) for more detail, the existence and stability of pseudo-equilibrium shows that the emerging infectious disease will become endemic. That is, the case shown in Figs. 4(D) and 5(E), which reveals that there are several hidden factors that can adverse affect the control strategy under medical resource limitation. Therefore, it is very necessary to implement the selective strategy in the control and treatment of SARS, see Fig. 8. Meanwhile, this points to the urgent need for improvement in medical facilities, access to rapid diagnosis and treatment with more effective drugs for SARS.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFCs: 11471201, 11171199, 11301320, 11371030), the Fundamental Research Funds for the Central Universities (GK201305010, GK201401004), the Youth Foundation of China Three Gorges University (KJ2015A006), and the National Science Foundation of Hubei province (2015CFB264).

References

[1] A.R. McLean, R.M. May, J. Pattison, R.A. Weiss, SARS: A Case Study in Emerging infections, Oxford University Press, Oxford, 2005.
[2] A. Mangili, M.A. Gendreau, Transmission of infectious diseases during commercial air travel, Lancet 365 (2005) 989–996.
[3] V. Soundararajan, K. Tharakaraman, R. Raman, S. Raguram, Z. Shriver, V. Saishekharan, R. Saishekharan, Extrapolating from the sequence the 2009 h1n1 ‘swine’ influenza virus, Nat. Biotechnol. 27 (2009) 510–513.
[4] WHO ebola response team, ebola virus disease in west Africa-the first 9 months of the epidemic and forward projections, N. Engl. J. Med. 371 (2014) 1481–1495.
[5] M. Derouich, A. Boutayeb, Dengue fever: Mathematical modelling and computer simulation, Appl. Math. Comput. 117 (2006) 528–544.
[6] L. Matrajt, M.E. Halloran, I.M. Longini Jr., Optimal vaccine allocation for the early mitigation of pandemic influenza, PLoS Comput. Biol. 9 (2013) e1002964.
[7] S.P. Sullivan, D.G. Koutsonanos, M.D.P. Martin, L.W. Lee, V. Zarnitsyn, S.O. Choi, N. Murthy, R.W. Compan, J. Skountzou, M.R. Prutsaxis, Dissolving polymer microneedle patches for influenza vaccination, Nat. Med. 16 (2010) 915–920.
[8] Vaccine-delivery patch with dissolving microneedles eliminates sharps boosts protection, <http://www.sciencedaily.com/releases/2010/07/100718204733.htm> (accessed 19.07.10).
[9] W.J. Qin, S.Y. Tang, R.A. Cheke, Nonlinear pulse vaccination in an SIR epidemic model with resource limitation, Abstr. Appl. Anal. (2013). Article ID 670263, 13pp.
[10] W.J. Qin, S.Y. Tang, The selection pressures induced non-smooth infectious disease model and bifurcation analysis, Chaos Solitons Fractals 69 (2014) 160–171.
[11] V.I. Utkin, Sliding Modes and Their Applications in Variable Structure Systems, Mir Publishers, Moscow, 1978.
[12] V.I. Utkin, Sliding Modes in Control and Optimization, Springer-Verlag, Berlin, 1992.
[13] A.F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, Dordrecht, 1988.
[14] V.I. Utkin, J. Guldner, J.X. Shi, Sliding Mode Control in Electromechanical Systems, Taylor Francis Group, London, 2009.
[15] Y.N. Xiao, X.X. Xu, S.Y. Tang, Sliding mode control of outbreaks of emerging infectious diseases, Bull. Math. Biol. 74 (2012) 2403–2422.
[16] A.L. Wang, Y.N. Xiao, Sliding bifurcation and global dynamics of a filippov epidemic model with vaccination, Int. J. Bifurc. Chaos 23 (2013) 1350144.
[17] A.L. Wang, Y.N. Xiao, A Filippov system describing media effects on the spread of infectious diseases, Nonlinear Anal. Hybrid Syst. 11 (2014) 84–97.
[18] A.L. Wang, Y.N. Xiao, R.A. Cheke, Global dynamics of a piece-wise epidemic model with switching vaccination strategy, Discret. Contin. Dyn. Syst. Ser. B 19 (2014) 2915–2940.
[19] W.D. Wang, S.G. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl. 291 (2004) 775–793.
[20] W.D. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci. 201 (2006) 58–71.
[21] Z.X. Hu, S. Liu, H. Wang, Backward bifurcation of an epidemic model with standard incidence rate and treatment rate, Nonlinear Anal. Real World Appl. 9 (2008) 2302–2312.
[22] Y. Zhang, X.N. Liu, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl. 348 (2008) 433–443.
[23] J.A. Cui, X.X. Mu, H. Wan, Saturation recovery leads to multiple endemic equilibria and backward bifurcation, J. Theor. Biol. 258 (2009) 275–283.
[24] H. Wan, J.A. Cui, Rich dynamics of an epidemic model with saturation recovery, J. Math. Biom. 2013. Article ID 314958, 9pp.
[25] L.H. Zhou, M. Fan, Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear Anal. Real World Appl. 13 (2012) 312–324.
[26] M.D. Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk, A.B. Nordmark, G.O. Tost, P.T. Pirjoinen, Bifurcations in nonsmooth dynamical systems, SIAM Rev. 50 (2008) 629–701.
[27] M. Guardia, T.M. Seara, M.A. Teixeira, Generic bifurcations of low codimension of planar Filippov systems, J. Differ. Equ. 250 (2011) 1967–2023.
[28] W. Słobodzianski, Sur les équations de Hamilton, Bull. Acad. R. Belg. 17 (1931) 864–870.
[29] C.A. Buzzi, P.R. Silva, M.A. Teixeira, A singular approach to discontinuous vector fields on the plane, J. Differ. Equ. 231 (2006) 633–655.
[30] C.A. Buzzi, T.D. Carvalho, P.R. Silva, Canard cycles and Poincar index of non-smooth vector fields on the plane, http://arxiv.org/pdf/1002.4169, 2010.
[31] Y.A. Kuznetsov, S. Rinaldi, A. Gragnani, One parameter bifurcations in planar Filippov systems, Int. J. Bifurc. Chaos 13 (2003) 2157–2188.
[32] S.M. Baer, B.W. Kooi, Y.A. Kuznetsov, H.R. Thieme, Multiparametric bifurcation analysis of a basic two-stage population model, SIAM J. Appl. Math. 66 (2006) 1339–1365.