Análise de Escores de Risco para Predição de Mortalidade em Pacientes Submetidos à Cirurgia Cardíaca por Endocardite

Analysis of Risk Scores to Predict Mortality in Patients Undergoing Cardiac Surgery for Endocarditis

Fernando Pivatto Júnior,1 Clarissa Carmona de Azevedo Bellagamba,1 Eduardo Gatti Planca,1 Fernando Schmidt Fernandes,1 Maurício Butzke,1 Stefano Boemler Busato,1 Miguel Gus1
Hospital de Clínicas de Porto Alegre,1 Porto Alegre, RS – Brasil

Resumo

Fundamento: Escores de risco estão disponíveis para uso na prática clínica diária, mas saber qual deles escolher é ainda incerto.

Objetivos: Avaliar o EuroSCORE logístico, o EuroSCORE II e os escores específicos para endocardite infecciosa STS-IE, PALSUSE, AEPEI, EndoSCORE e RISK-E na predição de mortalidade hospitalar de pacientes submetidos à cirurgia cardíaca por endocardite ativa em um hospital terciário de ensino do sul do Brasil.

Métodos: Estudo de coorte retrospectivo incluindo todos os pacientes com idade ≥ 18 anos submetidos à cirurgia cardíaca por endocardite ativa no centro do estudo entre 2007 e 2016. Foram realizadas análises de calibração (razão de mortalidade observada/esperada, O/E) e de discriminação (área sob a curva ROC, ASC), sendo a comparação das ASC realizada pelo teste de DeLong. P < 0,05 foi considerado estatisticamente significativo

Resultados: Foram incluídos 107 pacientes, sendo a mortalidade hospitalar de 29,0% (IC95%: 20.4-37.6%). A melhor razão de mortalidade O/E foi obtida pelo escore PALSUSE (1,01, IC95%: 0,70-1,42), seguido pelo EuroSCORE logístico (1,3, IC95%: 0,92-1,87). O EuroSCORE logístico apresentou o maior poder discriminatório (ASC 0,77), significativamente superior ao EuroSCORE II (p = 0,03), STS-IE (p = 0,03), PALSUSE (p = 0,03), AEPEI (p = 0,03) e RISK-E (p = 0,02).

Conclusões: Apesar da disponibilidade dos recentes escores específicos, o EuroSCORE logístico foi o melhor preditor de mortalidade em nossa coorte, considerando-se análise de calibração (mortalidade O/E: 1,3) e discriminação (ASC 0,77). A validação local dos escores específicos é necessária para uma melhor avaliação do risco cirúrgico. (Arq Bras Cardiol. 2020; 114(3):518-524)

Palavras-chave: Procedimentos Cirúrgicos Cardiovasculares/mortalidade; Endocardite/complicações; Mortalidade Hospitalar; Medicação de Risco.

Abstract

Background: Risk scores are available for use in daily clinical practice, but knowing which one to choose is still fraught with uncertainty.

Objectives: To assess the logistic EuroSCORE, EuroSCORE II, and the infective endocarditis (IE)-specific scores STS-IE, PALSUSE, AEPEI, EndoSCORE and RISK-E, as predictors of hospital mortality in patients undergoing cardiac surgery for active IE at a tertiary teaching hospital in Southern Brazil.

Methods: Retrospective cohort study including all patients aged ≥ 18 years who underwent cardiac surgery for active IE at the study facility from 2007-2016. The scores were assessed by calibration evaluation (observed/expected [O/E] mortality ratio) and discrimination (area under the ROC curve [AUC]). Comparison of AUC was performed by the DeLong test. A p < 0,05 was considered statistically significant.

Results: A total of 107 patients were included. Overall hospital mortality was 29,0% (95%CI: 20.4-37.6%). The best O/E mortality ratio was achieved by the PALSUSE score (1.01, 95%CI: 0.70-1.42), followed by the logistic EuroSCORE (1.3, 95%CI: 0.92-1.87). The logistic EuroSCORE had the highest discriminatory power (AUC 0.77), which was significantly superior to EuroSCORE II (p = 0.03), STS-IE (p = 0.03), PALSUSE (p = 0.03), AEPEI (p = 0.03), and RISK-E (p = 0.02).

Conclusions: Despite the availability of recent IE-specific scores, and considering the trade-off between the indexes, the logistic EuroSCORE seemed to be the best predictor of mortality risk in our cohort, taking calibration (O/E mortality ratio: 1.3) and discrimination (AUC 0.77) into account. Local validation of IE-specific scores is needed to better assess preoperative surgical risk. (Arq Bras Cardiol. 2020; 114(3):518-524)

Keywords: Cardiovascular Surgical Procedures/mortality; Endocarditis/complications; Hospital Mortality; Risk Assessment.

Correspondência: Fernando Pivatto Júnior • Hospital de Clínicas de Porto Alegre • Rua Ramiro Barcelos, 2350. CEP 90035-903, Porto Alegre, RS – Brasil
E-mail: fpivatto@gmail.com
Artigo recebido em 22/01/2019, revisado em 19/04/2019, aceito em 03/06/2019

DOI: https://doi.org/10.36660/abc.20190050
Introdução

Apesar dos avanços no tratamento, a endocardite infecciosa (EI) está associada à morbidade e mortalidade significativas. A correção cirúrgica da EI ativa está associada à maior taxa de mortalidade, devido à doença renal crônica agudizada. A cirurgia é atualmente realizada em 50 a 60% dos pacientes com EI. As indicações são: insuficiência cardíaca (geralmente relacionada à disfunção valvar), infecção não controlada (geralmente associada à extensão perivalvular e a defeitos de condução atrioventricular), e prevenção da embolia sistêmica. Embora essas indicações sejam claras, a sua aplicação prática baseia-se em grande parte na condição clínica, nas comorbidades, e no risco operatório do paciente.

Modelos de predição de risco para cirurgia cardíaca vêm sendo desenvolvidos para fornecer informações acerca dos riscos tanto para os médicos quanto para os pacientes, bem como para guiar a tomada de decisão. A avaliação do risco cirúrgico ajuda a medir a qualidade do serviço de saúde, e o perfil de risco é essencial para diferenciar os pacientes de acordo com a gravidade da condição de saúde. De acordo com isso, conhecer o risco do paciente pode permitir a implementação de estratégias individualizadas, visando prevenir complicações. Embora haja escores de risco disponíveis para uso na prática clínica diária, ainda há muita incerteza sobre qual deles escolher. Nesse contexto, o objetivo deste estudo foi avaliar o EuroSCORE logístico, o EuroSCORE II e escores específicos para a EI, STS-IE, PALSUSE, AEPEI, EndoSCORE e RISK-E, como preditores de mortalidade hospitalar em pacientes submetidos à cirurgia cardíaca em razão de EI ativa, em um hospital universitário terciário da região sul do Brasil.

Métodos

Este estudo de coorte retrospectivo incluiu todos os pacientes com ≥ 18 anos de idade que foram submetidos à cirurgia cardíaca em razão de EI ativa, no Hospital de Clínicas de Porto Alegre (HCPA), de 2007 a 2016. Apenas pacientes com EI definitiva diagnosticada com base nos critérios de Duke modificados foram incluídos. Os pacientes foram identificados através dos agendamentos cirúrgicos e da busca por palavras-chave no sistema eletrônico de registros médicos do HCPA. O presente estudo foi aprovado pelo Comitê de Ética em Pesquisa da instituição (protocolo nº 16-0632).

O risco cirúrgico pré-operatório foi calculado através da média do EuroSCORE logístico e do EuroSCORE II, além dos escores específicos STS-IE, PALSUSE, AEPEI, EndoSCORE e RISK-E (Tabela 1). A mortalidade durante a internação, independente do tempo de permanência, foi definida como mortalidade hospitalar. O clearance de creatinina (CC) foi estimado através da fórmula de Cockcroft-Gault.

A insuficiência renal aguda foi definida como qualquer um dos seguintes critérios: aumento ≥ a 0,3 mg/dL da creatinina em 48 horas ou aumento de ≥ 1,5 vezes da creatinina em relação ao valor basal, conhecido ou que se presume nos 7 dias anteriores; volume urinário < 0,5 mL/kg/h em 6 horas. O estado crítico no pré-operatório foi definido como a presença de qualquer uma das características a seguir durante a mesma internação hospitalar que a da cirurgia: taquicardia/fibrilação ventricular ou morte súbita recuperada; massagem cardíaca; ventilação e controle pulmão mecânica antes da sala anestésica; administração de inotrópicos; uso de balão de contrapulsação/dispositivo de assistência ventricular antes da sala anestésica ou insuficiência renal aguda (anúria ou oligúria < 10 mL/h). A EI ativa (ainda com tratamento anti-infeccioso) no momento da cirurgia, doença valvar crônica, arteriopatia extracardíaca, mobilidade reduzida (compostimento grave de mobilidade secundária à disfunção neuromuscular-esquelética), infarto do miocárdio recente (< 90 dias), hipertensão arterial pulmonar grave (pressão arterial pulmonar sistólica > 55 mmHg), disfunção renal grave (ClCr < 50 mL/min), e urgência de cirurgia também foram definidas conforme o EuroSCORE II.

Análise Estatística

Os dados foram coletados diretamente dos prontuários eletrônicos dos pacientes e analisados utilizando os softwares IBM SPSS 21.0, MedCalc 12.5 e OpenEpi 3.01. Os dados qualitativos foram exibidos por meio de frequência absoluta e relativa; média (desvio padrão) ou mediana (intervalo interquartil) foram utilizadas para as análises quantitativas. A normalidade da distribuição de cada variável foi avaliada por meio do teste Shapiro-Wilk. A comparação de cada variável no teste de Shapiro-Wilk da normalidade da distribuição foi realizada. Para calcular a RPM com intervalo de confiança (IC) de 95%, utilizamos o teste exato de Mid-p modificado por Miettinen. A comparação da ASC foi realizada pelo teste de DeLong. Valores de p < 0,05 foram considerados estatisticamente significantes.

Resultados

Durante o período estudado, foram incluídos 107 pacientes submetidos à cirurgia cardíaca na instituição durante a fase aguda da EI. A idade média dos pacientes foi de 58,1 ± 14,5 anos, sendo 24,3% mulheres. A EI aórtica isolada foi a forma predominante de EI (43,9%). As características dos pacientes e os detalhes cirúrgicos estão descritos na Tabela 2.

O tamanho mediano das vegetações foi de 14,0 mm (9,25-18,0). Trinta e um pacientes (29,0%) apresentaram pelo menos 1 evento embólico, diagnosticado com base nos sintomas ou incidentalmente: 13 (12,1%) para o sistema nervoso central (4,2%), 6 (5,6%) devido à disfunção neuromuscular-esquelética, 9 (8,4%) para o baço e 1 (0,9%) para o sistema nervoso periférico. Vinte e dois (20,6%) estavam em terapia controlada (geralmente associada à extensão perivalvular e a defeitos de condução atrioventricular; administração de inotrópicos; uso de balão de contrapulsação/dispositivo de assistência ventricular antes da sala anestésica; insuficiência renal aguda (anúria ou oligúria < 10 mL/h)). A EI ativa (ainda com tratamento anti-infeccioso) no momento da cirurgia, doença valvar crônica, arteriopatia extracardíaca, mobilidade reduzida (compostimento grave de mobilidade secundária à disfunção neuromuscular-esquelética), infarto do miocárdio recente (< 90 dias), hipertensão arterial pulmonar grave (pressão arterial pulmonar sistólica > 55 mmHg), disfunção renal grave (ClCr < 50 mL/min), e urgência de cirurgia também foram definidas conforme o EuroSCORE II.

A cirurgia foi realizada com um tempo médio de 12,5 (6,0-22,5) dias do início da antibioticoterapia. A principal indicação para cirurgia foi insuficiência cardíaca (76,6%). O procedimento mais frequentemente realizado foi a troca valvar aórtica mecânica (n = 26; 24,3%), seguida da troca...
Tabela 1 – Escores específicos para endocardite infecciosa analisados no presente estudo

ESCORES NÃO ESPECÍFICOS

EuroSCORE, 1999²	EuroSCORE II, 2012²
Endocardite ativa	Endocardite ativa
Idade	Idade
Estado crítico no pré-operatório	Angina CCS classe 4
Cr sérica > 200 µmol/L	Doença pulmonar crônica
Arteriopatia extracardíaca	Estado crítico no pré-operatório
Sexo feminino	Arteriopatia extracardíaca
FEVE	Sexo feminino
Disfunção neurologica	DMID
Cirurgia não coronariana	FEVE
Doença pulmonar	Classe funcional (NYHA)
Cirurgia cardíaca prévia	Mobilidade reduzida
IAM recente	Cirurgia cardíaca prévia
PSAP > 60 mmHg	IAM recente
Cirurgia na aorta torácica	Disfunção renal
Angina instável	PSAP
Urgência	Cirurgia na aorta torácica
Ruptura do septo ventricular	Urgência

ESCORES ESPECÍFICOS PARA EI

STS-IE, 2011²	PALSUSE, 2014¹⁰	AEPEI, 2017¹¹	EndoSCORE, 2017¹²	RISK-E, 2017¹³
Endocardite ativa	El de valva protética	IMC > 27Kg/m²	Idade	Insuficiência renal aguda
Anitima*	Idade	Estado crítico no pré-operatório	DPOC	Idade
Choque cardiogênico	Grande destruição intracardíaca³	eTFG < 50mL/min	Cr sérica ≥ 2mg/dL	Choque cardiogênico
Doença pulmonar crônica	Staphylococcus spp.	Classe Funcional IV (NYHA)	Sexo feminino	Complicações perianulares⁴
Hipertensão sistêmica	Cirurgia urgente	PSAP > 55 mmHg	FEVE	El de valva protética
DMID/DMNID	Sexo (feminino)	Número de valvas/próteses tratadas	Choque séptico	
Procedimento valvar múltiplo	EuroSCORE ≥ 10%	Microorganismo isolado na hemocultura	Trombocitopenia⁵	
Inotrópicos ou BIA no pré-operatório	Presença de abcesso	Microrganismo virulento⁶		
CRM prévia				
Cirurgia valvar prévia				
Insuficiência Renal (HD) ou Cr sérica > 2 mg/dL				
Urgência				

*Taquicardia ventricular sustentada, fibrilação ventricular, fibrilação atrial, flutter atrial ou bloqueio atrioventricular de terceiro grau. †Abscessos ou outros achados ecocardiográficos sugestivos de infecção invasiva (comunicação entre câmaras, dissecação da parede ou extensa deiscência da válvula). ‡Abscesso, pseudoaneurisma, fistula ou deiscência protética.

¹ < 150,000 plaquetas/mm³. /²Staphylococcus aureus ou fungos. IMC: índice de massa corporal; CRM: cirurgia de revascularização micárdica; CCS: Canadian Cardiovascular Society; DPOC: doença pulmonar obstructiva crônica; Cr: creatinina; eTFG: estimativa da taxa de filtração glomerular; HD: hemodiálise; DMID: diabetes mellitus insulino-dependente; DMNID: Diabetes mellitus não insulino-dependente; EI: endocardite infecciosa; FEVE: fração de ejeção do ventrículo esquerdo; IAM: infarto agudo do miocárdio; NYHA: New York Heart Association; PSAP: pressão sistólica da artéria pulmonar.
Tabela 2 – Características dos pacientes e variáveis cirúrgicas

VARIÁVEL	n = 107
Idade (anos)	58,1±14,5
Sexo feminino	28 (24,3)
Hipertensão arterial sistêmica	60 (56,1)
Classe funcional III/IV (NYHA)	53 (49,5)
Abscesso valvular	40 (37,4)
Cirurgia cardíaca prévia	35 (32,7)
Doença valvar degenerativa	31 (29,0)
HAP grave	31 (29,0)
Endocardite protética	31 (29,0)
Insuficiência renal aguda	30 (28,0)
Disfunção renal grave*	25 (26,0)
Diálise	22 (20,6)
Trombocitopenia	20 (18,7)
Estado crítico no pré-operatório	19 (17,8)
FEVE ≤ 50%	17 (15,9)
DMID	14 (13,1)
Endocardite infecciosa prévia	11 (10,3)
Valvulopatia reumática	10 (9,3)
Válvula aórtica bicuspide	8 (7,5)
Arteriopatia extradural	8 (7,5)
IAM prévio	8 (7,5)
Doença pulmonar crônica	7 (6,5)
Mobilidade reduzida	7 (6,5)
IAM recente	3 (2,8)
Angina CCS classe 4	1 (0,9)
Localização da endocardite infeccosa	
Valva aórtica	47 (43,9)
Valva mitral	35 (32,7)
Valvas aórtica + mitral	20 (18,7)
Valva tricuspide	4 (3,7)
Valvas tricuspide + mitral	1 (0,9)
Microorganismo causador identificado	72 (67,3)
Streptococcus viridans	19 (17,8)
Entercoccus sp.	10 (9,3)
Staphylococcus aureus	9 (8,4)
Magnitude da intervenção	
Outra que não CRM isolada	81 (75,7)
Dois procedimentos	25 (23,4)
Três procedimentos	1 (0,9)
Urgência	
Urgente	98 (91,6)
Emergente	9 (8,4)
CRM associada	8 (7,5)
Tempo de circulação extracorpórea (min)	84,0 (65,0-110,0)
Tempo de isquemia (min)	65,0 (51,0-84,0)

CRM: cirurgia de revascularização do miocárdio; CCS: Canadian Cardiovascular Society; DMD: diabetes melitus insulino-dependente; NYHA: New York Heart Association; HAP: hipertensão arterial pulmonar; FEVE: fração de ejeção do ventrículo esquerdo; IAM: infarto agudo do miocárdio. *Excluímos pacientes submetidos à hemodiálise no pré-operatório (n = 22; 20,6%) e aqueles cujos dados de peso corporal não estavam disponíveis (n = 11; 10,3%), o que tornou impossível calcular o clearance de creatinina. Dados expressos como média ± desvio padrão, n (%), ou mediana (intervalo interquartil).
muitas vezes, fatal, foi o microrganismo causador em apenas 8,4% dos casos, ao passo que, nas coortes de validação, esse percentual variou de 17,5 a 19,9%.

Esses dois fatores provavelmente explicam, ao menos em parte, a baixa precisão dos escores específicos para EI na nossa coorte. O mesmo ocorreu com outros itens incluídos nos escores específicos, tais como a classe funcional IV da NYHA no escore AEPEI (37,7 vs. 20,6%), FEVE ≤ 50% no EndoSCORE (35,9 vs. 15,9%), choque cardiogênico e trombocitopenia no RISK-E (17,9 e 29,2% no estudo original vs. 11,2 e 18,7% neste estudo, respectivamente); embora fortemente associados com a mortalidade, esses fatores não foram significativamente predominantes na nossa coorte.

O EuroSCORE II, o mais comumente utilizado para avaliação do risco pré-operatório na prática clínica atual, subestimou em 2,5 vezes a mortalidade observada e teve baixo poder discriminatório (ASC: 0,69). A coorte original do estudo EuroSCORE II tinha uma porcentagem muito baixa de pacientes com EI ativa (2,2%); consequentemente, é difícil generalizar os resultados do EuroSCORE II para as populações com EI. Em uma análise de 149 pacientes submetidos à cirurgia cardíaca em razão de EI ativa em dois centros de referência franceses, Patrat-Delon et al., observaram que, apesar de o EuroSCORE II ter bom poder discriminatório (ASC: 0,78; IC95%: 0,70-0,84), seus resultados deveriam ser interpretados com cautela durante a...
fase aguda da EI, porque esse escore subestimou a mortalidade pós-operatória em 5-10% na metade dos pacientes com mortalidade prevista de >10%. No Brasil, Oliveira et al.,22 conduziram o único outro estudo até hoje que avaliou o uso de predição em pacientes com EI ativa submetidos à cirurgia cardíaca. Nesse estudo, que incluiu 88 pacientes, o EuroSCORE II subestimou significativamente a mortalidade hospitalar, com uma razão de mortalidade O/E de 2,31 (IC95%: 1,41-3,58; p = 0,002). A análise da curva ROC não foi realizada.

Os pacientes com EI ativa já haviam sido sub-representados na coorte do EuroSCORE,4 na qual a EI ativa estava presente em apenas 3,6% de todos os pacientes submetidos à cirurgia cardíaca. Madeira et al.,21 em um estudo com 128 pacientes submetidos à cirurgia cardíaca devido a EI ativa, compararam o EuroSCORE e o EuroSCORE II para previsão de mortalidade perioropatória. Eles observaram que o padrão de calibração diferiu entre os dois escores: o EuroSCORE mostrou uma tendência progressiva superestimar, ao passo que o EuroSCORE II tendeu a subestimar a mortalidade. Por outro lado, assim como no presente estudo, Madeira et al.,24 em um estudo com 181 pacientes com EI (93,2% ativa), descreveram bom poder discriminatório (ASC: 0,84) e uma mortalidade esperada (27,1%) muito semelhante àquela observada (28,8%; razão O/E: 1,1).

A necessidade de uma ferramenta de estratificação específica, útil tanto para a informação pré-operatória ao paciente quanto para a tomada de decisão à beira do leito, surge das peculiaridades da cirurgia da EI em relação à cirurgia cardíaca em geral: os defeitos pós-operatórios podem ser influenciados não somente por questões anatômicas ou funcionais cardiovasculares, mas também por fatores microbiológicos e infecciosos sistêmicos.25 Mais recentemente, foram desenvolvidos novos escores de risco específicos para a EI. Eles incorporam alguns fatores específicos da EI (tais como culturas microbiológicas, formação de abscesso e sepse), que são conhecidos preditores independentes de mortalidade. Os escores específicos para EI vêm demonstrando maior precisão na predição de mortalidade do que os escores de risco tradicionais.26

Dentre os escores específicos para EI analisados, apenas o PALSUSE10 e o RISK-E11 tinham coortes de derivação limitadas a pacientes com EI ativa. O escore PALSUSE,30 que incorpora o EuroSCORE na sua composição, foi derivado de um estudo de coorte prospectiva com 437 pacientes que foram submetidos à cirurgia na fase aguda da EI. Os dados foram coletados em 26 hospitais espanhóis. A mortalidade hospitalar foi de 24,3%, variando de 0% em pacientes com um escore de 0 a 45,4% naqueles com um escore ≥ 4. A ASC foi de 0,84 (IC95%: 0,79-0,88), indicando capacidade discriminatória satisfatória. O RISK-E21 foi desenvolvido a partir de uma pesquisa realizada em três centros de saúde terciários da Espanha, que buscavam prever a mortalidade hospitalar em 424 pacientes com EI ativa aórtica/mitral submetidos à cirurgia cardíaca. A ASC foi de 0,82 (IC95%: 0,75-0,88). A probabilidade preditiva da mortalidade pós-operatória variou de 3% para um paciente com um escore de 0 a 97% para um paciente com o escore mais alto possível de 68. Uma comparação das ASCs apresentou desempenho preditivo superior estatisticamente significativo do RISK-E (p = 0,01), em relação ao EuroSCORE, EuroSCORE II, ou PALSUSE.

De 2000 a 2015, dados de 2.715 pacientes com endocardite (70,1% ativa) que foram submetidos à cirurgia em 26 centros cirúrgicos cardíacos italianos foram coletados retrospectivamente. Esse amplo estudo1 forneceu um modelo de risco logístico para prever a mortalidade precoce (dentro de 30 dias da cirurgia): o EndoSCORE. A ASC foi de 0,84 (IC95%: 0,81-0,86). No nosso estudo, esse escore foi testado para prever o risco de morte durante a internação, independentemente do tempo de permanência hospitalar, e 5 das 31 mortes (16,1%) ocorreram 30 dias após a cirurgia (mortalidade precoce: 24,3%). Essa diferença pareceu ter pouco efeito sobre o desempenho do escore, que igualmente subestimou a mortalidade precoce (razão O/E: 2,4; ASC: 0,77 [IC95%: 0,66-0,88]).

Embora o AEPEI11 seja um escore específico para EI, ele não inclui variáveis específicas de EI no seu modelo final. Ele foi desenvolvido a partir de um estudo prospectivo com 361 pacientes consecutivos que haviam sido submetidos à cirurgia em razão de EI (76,2% ativa) em oito centros cirúrgicos cardíacos europeus. Cinquenta e seis pacientes (15,5%) morreram após a cirurgia, e a ASC foi de 0,78 (IC95%: 0,73-0,82). Na população do estudo, o escore AEPEI teve poder discriminatório equivalente àquele do EuroSCORE II (p = 0,4) e mostrou superioridade em relação ao EuroSCORE logístico (p = 0,0026) e o escore PALSUSE (p = 0,047). Assim como o escore AEPEI, o STS-IE12 não inclui variáveis específicas para EI. Ele foi desenvolvido a partir do banco de dados de cirurgia cardíaca adulta da Society of Thoracic Surgeons (STS), que foi estabelecido em 1989, incluindo dados de 3 milhões de procedimentos cardíacos de mais de 90% dos centros cirúrgicos cardíacos da América do Norte. De 2002 a 2008, 19.543 cirurgias foram realizadas em pacientes com EI (51,5% ativa), com uma mortalidade de 8,2%. O STS-IE demonstrou boa capacidade preditiva, com uma ASC de 0,76.

Algumas limitações do nosso estudo devem ser mencionadas. Em primeiro lugar, o desenho retrospectivo pode ter influenciado a qualidade e a consistência dos dados coletados. O tamanho da amostra pequeno também é uma fonte de preocupação. Finalmente, o fato de o estudo ter sido conduzido em um único centro pode limitar a validade externa dos nossos achados.

Conclusões

Nossos resultados mostraram que, apesar da disponibilidade de escores recentes específicos para EI, e considerando-se o equilíbrio entre os índices, o EuroSCORE logístico pareceu ser o melhor preditor de risco de mortalidade nessa coorte de pacientes com EI, admitidos durante um período de 10 anos, levando-se em conta a calibração (razão O/E: 1,3) e a capacidade discriminante (ASC: 0,77). Esse achado tem implicações clínicas, já que o EuroSCORE II é o escore mais frequentemente utilizado na avaliação pré-operatória. Faz-se necessária a validação local de escores específicos para avaliar o risco pré-operatório dos pacientes com EI.
Potencial Conflito de Interesses

Declaro não haver conflito de interesses pertinentes.

Referências

1. Kang DH, Kim YJ, Kim SH, Sun BJ, Kim DH, Yun SC, et al. Early surgery versus conventional treatment for infective endocarditis. N Engl J Med. 2012;366:2466-73.

2. Gaca JG, Cheng S, Daneshmand MA, O'Brien S, Rankin JS, Brennan JM, et al. Outcomes for endocarditis surgery in North America: a simpliﬁed risk scoring system. J Thorac Cardiovasc Surg. 2011;141(1):98-106.e2.

3. Cahill TJ, Baddour LM, Habib G, Hoen B, Salaun E, Pettersson GB, et al. Challenges in infective endocarditis. J Am Coll Cardiol. 2017;69(3):325-44.

4. Que YA, Moreillon P. Infective endocarditis. Nat Rev Cardiol. 2011;8(6):322-36.

5. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Gasalta JP, Del Zotti F, et al. 2015 ESC Guidelines for the management of infective endocarditis: The task force for the management of infective endocarditis of the European Society of Cardiology (ESC). Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(34):3075-128.

6. Patrat-Delon S, Roussel A, Gacouin A, Revest M, Flichen F, Fouquet O, et al. EuroSCORE II underestimates mortality after cardiac surgery for infective endocarditis. Eur J Cardiothorac Surg. 2016;49(3):944-51.

7. Di Mauro M, Dato GMA, Barilli F, Gelosimos S, Santé P, Corte AD, et al. A predictive model for early mortality after surgical treatment of heart valve or prosthetic infective endocarditis. The EndoSCORE. Int J Cardiol. 2017 Aug 15;241:97-102.

8. Roques F, Nashef SA, Michel P, Gauducheau E, de Vincentiis C, Baudet E, et al. Risk factors and outcome in European cardiac surgery: analysis of the EuroSCORE multinational database of 19030 patients. Eur J Cardiothorac Surg. 2015;49(3):3075-128.

9. Nashef SAM. Death and quality in cardiac surgery. J Patient Saf Risk Manag. 2011;15;241:3075-128.

10. Madeira S, Rodrigues R, Tralhão A, Santos M, Almeida C, Marques M, et al. EuroSCORE II underestimates mortality after cardiac surgery for infective endocarditis. Eur J Cardiothorac Surg. 2016;49(3):944-51.

11. Varela L, López-Menéndez J, Redondo A, Fajardo ER, Miguelena J, Centella I, et al. Autonomous decision making in infective endocarditis: a simplified risk score. J Am Coll Cardiol. 2017;62(1):1-5.

12. Oliveira JLR, Santos MAD, Arnoni RT, Ramos A, Togna DD, Chorayeb SK, et al. Mortality predictors in the surgical treatment of active infective endocarditis. Braz J Cardiovasc Surg. 2016;30(2):345-51.

13. Li JS, Sexton DJ, Mick N, Nettles R, Fowler VG, Ryan T, et al. Proposed modifications to the Duke Criteria for the diagnosis of infective endocarditis. Clin Infect Dis. 2000;30(4):633-8.

14. Cockcroft DW, Gault H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31-41.

15. Summary of recommendation statements. Kidney Int Suppl. 2013;3(1):5-14.

16. Sullivan JM, Dean AG, Soe MM. OpenEpi: a web-based epidemiologic and statistical calculator for public health. Public Health Rep. 2009;124(3):471-4.

17. Sereide K. Receiver-operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research. J Clin Pathol. 2009 Jan;62(1):1-5.

18. Hafij-Tilaki K. Receiver Operating Characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med. 2013;4(2):627-35.

19. Nezic D, Spasic T, Micovic S, Kosevic D, Petrovic I, Lausevic-Vuk L, et al. Consecutive observational study to validate EuroSCORE II performances on a single-center, contemporary cardiac surgical cohort. J Cardiothorac Vasc Anesth. 2016;30(2):345-51.

20. Nashef SAM. Death and quality in cardiac surgery. J Patient Saf Risk Manag. 2010;16(4):130-4.

21. Fernández Guerreiro ML, González López JJ, Goyenechea A, Fraile J, de Górgolas M. Endocarditis caused by Staphylococcus aureus: a reappraisal of the epidemiologic, clinical, and pathologic manifestations with analysis of factors determining outcome. Medicine (Baltimore). 2009;88(1):1-22.

22. Górgolas M. Endocarditis caused by Staphylococcus aureus: a reappraisal of factors determining outcome. Medicine (Baltimore). 2009;88(1):1-22.