Understanding the Cu$^{2+}$ adsorption mechanism on activated carbon using advanced statistical physics modelling

Lotfi Sellaoui1 · Fatma Dhaouadi1 · Sonia Taamalli2 · Florent Louis2 · Abderrahman El Bakali2 · Michael Badawi3 · Adrián Bonilla-Petriciolet4 · Luis Silva5 · Kátia da Boit Martinello5 · Guilherme Luiz Dotto6 · Abdemottaleb Ben Lamine1

Abstract

Adsorption modeling via statistical physics theory allows to understand the adsorption mechanism of heavy metal ions. Therefore, this paper reports the analysis of the mechanism of copper ion (Cu$^{2+}$) adsorption on four activated carbons using statistical physics models. These models contain parameters that were utilized to provide new insights into the possible adsorption mechanism at the molecular scale. In particular, a monolayer adsorption model was the best alternative to correlate the Cu$^{2+}$ adsorption data at 25–55 °C and pH 5.5. Furthermore, the application of this model for copper adsorption data analysis showed that the removal of this heavy metal ion was a multi-cationic process. This theoretical finding indicated that Cu$^{2+}$ ions interacted via one functional group of activated carbon surface during adsorption. In this direction, the adsorption energy was calculated thus showing that Cu$^{2+}$ removal was endothermic and associated with physical interaction forces. Furthermore, these activated carbons showed saturation adsorption capacities from 54.6 to 87.0 mg/g for Cu$^{2+}$ removal, and their performances outperformed other adsorbents available in the literature. Overall, these results provide new insights of the adsorption mechanism of this water pollutant using activated carbons.

Keywords Adsorption · Cooper · Isotherms · Statistical physics

Introduction

Copper is a transition metal, electrically and thermally conductive, but it is also considered as an environmental pollutant (Kayalvizhi et al. 2022). Natural disasters (e.g., volcanic phenomena) and anthropogenic activities (e.g., metal industries, tanning factories, and automobile industries) contribute to the pollution caused by copper. This metal is toxic even at relatively low concentrations, and, consequently, the highest permissible concentration level of copper ions (Cu$^{2+}$) in marine water has been established as 4.8 µg/L. In comparison, the maximum Cu$^{2+}$ concentration for drinking water is 1300 µg/L, as reported by the WHO and EPA (Katyar et al. 2021; Kayalvizhi et al. 2022). Chronic exposure to this metal can affect vital organs such as the intestines, stomach, and liver. It can also generate diverse symptoms such as liver disease, gallbladder, and metabolic disturbances (Dou et al. 2019; Sun et al. 2022).

Consequently, the drinking water resources and effluents polluted with Cu$^{2+}$ must be treated to reduce their concentration thus avoiding environmental impacts and...
to protect human health. Various procedures have been reported to remove Cu$^{2+}$ ions from liquid phase. They include ion exchange, precipitation, electrolysis, reverse osmosis, flocculation, biochemical methods, and membrane-based filtration (Godiya et al. 2019; Nyström et al. 2020; Anbazhagan et al. 2021; Lemes and Tarley 2021). However, these removal methods have disadvantages such as unfavorable cost-effectiveness tradeoffs or the generation of toxic sediments and wastes (e.g., sludge) (Rukayat et al. 2021). In contrast, the adsorption process is a competitive technique compared to other methods due to its ease of handling, low cost, and removal efficacy even at low concentrations of heavy metal ions (Vocciante et al. 2014; Pan et al. 2019; Khan et al. 2021). Activated carbon is the most employed adsorbent in this process because it effectively removes inorganic and organic pollutants from wastewaters and industrial effluents. This adsorbent outperforms other materials reported for water treatment in terms of its production cost and the availability of a wide spectrum of preparation routes that is already exploited and commercialized at large industrial scale. The adsorption performance of activated carbon is governed by its pore structure and surface chemistry. The modification of activated carbon is aimed to optimize these properties (Bell et al. 2011), and this adsorbent can be obtained from different feedstock and preparation conditions, thus affecting its adsorption properties. Surface functionalization of activated carbons can be performed with several chemicals to tailor their performance for the removal of target pollutants.

Under this context, citric wastes can be an option to produce activated carbons since they are generated in large amounts by industries of juices and jams. During the production process of juices and jams, around 50–60% of the entire citric fruit is discarded. These wastes cannot be released into the environment since they generate CH$_4$. On the other hand, they are rich in lignin, cellulose, hemicellulose, and pectin, thus being an attractive feedstock for pyrolysis and their conversion into activated carbon (Lam et al. 2016, 2018).

The modeling of adsorption data of heavy metals and other water pollutants is important for water treatment design. Therefore, it is possible to apply classical models (e.g., Langmuir) to theoretically study the adsorption data. Unfortunately, this and other traditional models are not useful to understand the adsorption mechanism due to the limitations in their hypotheses. For instance, Langmuir model considers that each functional group can accept one ion for all adsorption systems. This assumption is an obstacle to provide proper interpretations of more complex adsorption mechanisms. The application of reliable models to analyze and explain the adsorption of heavy metal ions on activated carbon surfaces is paramount to develop effective and low-cost water treatment methods.

In this research, two homogeneous and heterogeneous models based on statistical physics theory were implemented to explain the adsorption mechanism of Cu$^{2+}$ on a set of activated carbons obtained from different citrus wastes, namely orange (OP), tangerine (MP), lemon (RLP), and lime (SLP). These models allowed to analyze the adsorption mechanism at the microscopic scale. New insights on steric and energetic parameters that governed the removal of this relevant water pollutant were developed for all tested activated carbons.

Description of experimental isotherms and statistical physics models

Preparation of AC and quantification of Cu$^{2+}$ adsorption isotherms

Cu$^{2+}$ adsorption isotherms were quantified with four activated carbons prepared from citrus waste (Dotto et al. 2011; Perondi et al. 2017). For the adsorbent preparation, 100 g of each citrus waste were located in a stainless reactor of 127×8.5 cm. The reactor was heated at 5 °C/min until 900 °C and remained at this temperature for 15 min. Then, the system was cooled until ambient temperature. All these steps were performed with N$_2$ flow of 0.2 L/min. Subsequently, the N$_2$ flow was replaced by CO$_2$ flow (2 kg/h for 15 min). Finally, the adsorbent samples were removed from the reactor, washed, and used in adsorption experiments. These adsorbents were labelled as AC CO$_2$-orange-OP, AC CO$_2$-tangerine-OP, AC CO$_2$-lemon-RLP, and AC CO$_2$-lime-SLP.

Typical batch equilibrium experiments were performed to obtain the Cu$^{2+}$ adsorption isotherms. Aqueous solutions (50 mL) with different initial Cu$^{2+}$ concentrations up to 150 mg/L were prepared from copper sulfate and the solution pH was adjusted to 5.5. Next, these solutions were placed in Erlenmeyer flasks located in a thermostated shaker. Adsorption isotherms were quantified at 25, 35, 45, and 55 °C using an activated carbon dosage of 0.5 g/L under constant stirring of 200 rpm for 5 h. The solid–liquid separation was performed by centrifugation and Cu$^{2+}$ concentration in the liquid was quantified by flame atomic absorption spectroscopy. Then, the equilibrium adsorption capacities were calculated via a mass balance for a stirred tank using the initial and final Cu$^{2+}$ concentrations used in the experiments and the corresponding adsorbent dosage. Figure 1 shows the
Solution temperature positively affected all adsorbed quantities of Cu²⁺ ions on these activated carbons, thus suggesting an endothermic removal process. All experimental isotherms followed the monotonic trend of adsorbed Cu²⁺ quantities as a function of equilibrium concentration until the saturation region was reached. This adsorbent saturation was caused by forming a layer of Cu²⁺ ions adsorbed on the surfaces of tested activated carbons. In this regard, homogeneous and heterogeneous monolayer models developed from statistical physics theory were implemented to analyze Cu²⁺ adsorption isotherms at the microscopic scale. The next two scenarios were tested in this modeling study:

Scenario 1 A homogeneous monolayer model (HMM) was considered where only one type of functional group participated in the adsorption of Cu²⁺ ions on tested adsorbents. It was assumed that only one adsorption energy was involved in the metal ion removal, which represented the interaction of Cu²⁺ ion–activated carbon surface. The adsorbed quantity calculated with this model is given by Sellaoui et al. (2018) and Dhaouadi et al. (2020a, b, c):

$$Q_e = \frac{nS_m}{1 + \left(\frac{C_m}{C_e} \right)^n}$$ \hspace{1cm} (1)

Scenario 2 A heterogeneous monolayer model (HMM) was also applied. Two functional groups participated in the adsorption of Cu²⁺ ions with two different adsorption energies: Cu²⁺ ion–adsorption site 1 and Cu³⁺ ion–adsorption site 2. In this model, the adsorbed quantity as a function of
the equilibrium concentration is defined as (Dhaouadi et al. 2020a, b, 2021):

\[
Q_e = \frac{n_1 S_{m1}}{1 + \left(\frac{C_1}{C_{1/2}}\right)^{n_1}} + \frac{n_2 S_{m2}}{1 + \left(\frac{C_2}{C_{1/2}}\right)^{n_2}}
\]

(2)

For these models, \(n_i\) and \(S_{m} (i=1, 2)\) are the numbers of \(\text{Cu}^{2+}\) ions adsorbed per functional group(s), \(S_{m}\) and \(S_{mi}\) are the densities of these surface functionalities, and \(C_{1/2}\) and \(C_i\) \((i=1, 2)\) are the concentrations at half-saturation, respectively.

Characterization results showed that these activated carbons contained different functional groups that can contribute to the adsorption of \(\text{Cu}^{2+}\) ions. Therefore, these adsorption models were consistent with the surface chemistry of these activated carbons. Note that these models were developed by applying a grand canonical ensemble of statistical physics with the aim of obtaining a better analysis of the adsorption mechanism of this pollutant. Overall, these models assumed that the adsorption of \(\text{Cu}^{2+}\) ions was a monolayer process, but with the contribution of one (homogeneous monolayer model) and two (heterogeneous monolayer model) functional groups in the removal of this cation (Dhaouadi et al. 2020b, 2021). In summary, these models can describe the role of these functional groups on the adsorption of this metallic ion and can also characterize the nature of their interactions (i.e., multi-interaction or multi-ionic process).

These models were employed to fit all \(\text{Cu}^{2+}\) ion adsorption isotherms, and their parameters were determined via a multivariable nonlinear regression with the Levenberg–Marquardt method. Determination coefficients \((R^2)\) and the trends of steric and energetic parameters indicated that the HMM model was the most suitable for analyzing the \(\text{Cu}^{2+}\) removal at the microscopic scale. Table 1 provides the results of \(\text{Cu}^{2+}\) adsorption data fitting for the

| Table 1 Results of the \(\text{Cu}^{2+}\) adsorption isotherm correlation with a homogeneous monolayer model |
|---|---|---|---|---|
| \(T(\degree C)\) | \(R^2\) | \(n\) | \(S_{m} (mg/g)\) | \(C_{1/2}(mg/L)\) | \(Q_s (mg/g)\) |
| AC \(\text{CO}_2\)-orange-OP | 25 | 0.992 | 1.13 | 48.35 | 0.38 | 54.63 |
| | 35 | 0.994 | 1.46 | 42.61 | 0.31 | 62.21 |
| | 45 | 0.989 | 1.70 | 37.88 | 0.19 | 64.39 |
| | 55 | 0.977 | 1.82 | 37.49 | 0.07 | 68.23 |
| AC \(\text{CO}_2\)-tangerine-MP | 25 | 0.999 | 1.07 | 53.20 | 0.35 | 56.92 |
| | 35 | 0.995 | 1.24 | 51.80 | 0.32 | 64.23 |
| | 45 | 0.989 | 1.83 | 37.65 | 0.27 | 68.89 |
| | 55 | 0.990 | 4.20 | 16.71 | 0.14 | 70.18 |
| AC \(\text{CO}_2\)-lemon-RLP | 25 | 0.998 | 0.63 | 115.75 | 0.39 | 72.92 |
| | 35 | 0.987 | 2.88 | 26.85 | 0.25 | 77.32 |
| | 45 | 0.984 | 2.90 | 28.55 | 0.22 | 82.79 |
| | 55 | 0.994 | 4.55 | 19.32 | 0.18 | 87.90 |
| AC \(\text{CO}_2\)-lime-SLP | 25 | 0.984 | 1.15 | 49.55 | 0.44 | 56.98 |
| | 35 | 0.993 | 1.56 | 40.03 | 0.31 | 62.44 |
| | 45 | 0.988 | 3.04 | 20.96 | 0.238 | 63.71 |
| | 55 | 0.988 | 3.16 | 21.42 | 0.232 | 67.68 |

Fig. 2 The impact of temperature on the parameters \(n\) and \(S_{m}\) for the \(\text{Cu}^{2+}\) adsorption at pH 5.5 using different activated carbons.
HMM model and their corresponding steric and energetic parameters for tested experimental conditions. In addition, the fitting of Cu^{2+} adsorption isotherms by the HMM model is illustrated in the Appendix.

Results and discussion

Evaluation of the number of Cu^{2+} ions adsorbed per functional group and their adsorption site densities

The impact of temperature on the number of adsorbed Cu^{2+} ions per functional group and their corresponding adsorption site densities for these activated carbons is represented in Fig. 2.

All parameters n were higher than unity except for AC CO$_2$-lemon-RLP adsorbent at 25 °C. This result indicated that the adsorption of this heavy metal was multi-cationic for these activated carbons, where the functional groups could adsorb several cations simultaneously (Dhaouadi et al. 2020a, b). Indeed, the exceptional case (i.e., $n = 0.63$) showed that Cu^{2+} ions could be adsorbed on the surface of AC CO$_2$-lemon-RLP via a combined interaction where one and two functional groups can participate in the removal with two different proportions (Dhaouadi et al. 2021). Thermally speaking, the temperature increased the number of Cu^{2+} ions adsorbed per functional group from 1.13 to 1.82, 1.07 to 4.20, 0.63 to 4.59, and 1.15 to 3.16 for the adsorbents AC CO$_2$-orange-OP, AC CO$_2$-tangerine-MP, AC CO$_2$-lemon-RLP, and AC CO$_2$-lime-SLP, respectively. Overall, these results indicated that the temperature played a relevant role to adsorb the Cu^{2+} ions.

Figure 2 indicated that the density of functional groups of these activated carbons reduced as a function of temperature. Moreover, this tendency was inversely proportional to the temperature.

Table 2 Cu^{2+} adsorption capacities of activated carbons obtained from different feedstock (Mariana et al. 2021)

Feedstock	Preparation conditions	Adsorption capacity, mg/g
Cauliflower leaves	600 120	75.99
Gingko leaf	800 90	310.0
Pinewood sawdust	700 120	419.1

AC CO$_2$-lemon-RLP via a combined interaction where one and two functional groups can participate in the removal with two different proportions (Dhaouadi et al. 2021). Thermally speaking, the temperature increased the number of Cu^{2+} ions adsorbed per functional group from 1.13 to 1.82, 1.07 to 4.20, 0.63 to 4.59, and 1.15 to 3.16 for the adsorbents AC CO$_2$-orange-OP, AC CO$_2$-tangerine-MP, AC CO$_2$-lemon-RLP, and AC CO$_2$-lime-SLP, respectively. Overall, these results indicated that the temperature played a relevant role to adsorb the Cu^{2+} ions.

Figure 2 indicated that the density of functional groups of these activated carbons reduced as a function of temperature. Moreover, this tendency was inversely proportional to the temperature.
The number of Cu^{2+} ions adsorbed per functional group. Thus, the increment of the parameter n as a function of temperature suggested a reduction of the occupied functional groups and, consequently, a decrement of the adsorption density and vice versa.

Performance evaluation of different activated carbons for Cu^{2+} adsorption

The performance of tested adsorbents was complemented via the calculation of adsorption capacities at saturation using the next expression:

$$Q_s = nS_m$$

The impact of thermal agitation on the adsorbed quantity at saturation Q_s for the different adsorbents is given in Fig. 3.

Figure 3 indicated that the adsorbed quantity at saturation for the four activated carbons increased with the solution temperature. This result confirmed that the solution temperature enhanced the mass transfer phenomena and the diffusion of Cu^{2+} ions inside the porous structure of these adsorbents. Thus, the increment of this quantity was associated with the number of adsorbed ions per functional group and the adsorption energy. Comparatively, the AC CO$_2$-lemon-RLP adsorbent showed the highest Cu^{2+} removal and was the most effective for this purpose. Furthermore, characterization results reported in Dotto et al. (2011) indicated that the acidic functionalities of these activated carbons were responsible for Cu^{2+} removal. In particular, FTIR analysis of activated carbon samples before and after Cu^{2+} adsorption indicated that the main acidic functional groups were OH and COOH. The absorption bands relative to these groups presented significant shifts after Cu^{2+} adsorption thus suggesting that OH and COOH were involved in the interactions with Cu^{2+} ions, and confirming the statistical physics calculations.

For illustration, Table 2 shows the Cu^{2+} adsorption capacities for different activated carbons reported in the literature. It was clear that these activated carbons can be an alternative to remove the Cu^{2+} ions from wastewaters and to contribute to the reduction of solid waste generation. They can also outperform other adsorbents reported in the literature. For instance, the Cu^{2+} adsorption capacities of 1-iron-modified flaxseed waste, sodium dodecyl sulfate-modified iron pillared montmorillonite, and activated carbons functionalized with magnetic iron oxide nanoparticles were 7.64, 20.6, and 41.6 mg/g (Li and Wu 2010; Gu et al. 2019; Cerrahoğlu Kaçakgil and Çetintaş 2021).

Cu^{2+} adsorption energy

Adsorption energy for the interaction Cu^{2+} ion-activated carbon surface was determined from the concentration values at half-saturation and the following equation (Dhaouadi et al. 2021):

$$\Delta E_{\text{int}(\text{FG-\text{Cu}^{2+})}} = R T \ln \frac{C_s}{C_{1/2}}$$

where $R = 8.314 \text{ J/mol·K}$ is the ideal gas constant, and C_s is the copper solubility. The adsorption energy for the interaction of acidic functional groups of these activated carbons and Cu^{2+} ions is depicted in Fig. 4.

All interaction energy values were lower than 40 kJ/mol, thus suggesting that this adsorption process was associated with physical forces. As stated, the acidic functional groups (e.g., OH and COOH) of these activated carbons were involved in the Cu^{2+} adsorption. Furthermore, this adsorption energy increased with solution temperature for all activated carbons.

Conclusions

A reliable modeling of adsorption data and the corresponding analysis of adsorption mechanism are paramount for the design of water treatment processes effective to remove heavy metals with activated carbons. Therefore, this study reports the statistical physics-based interpretation of Cu^{2+} adsorption using four activated carbons obtained from citrus wastes, which are low-cost feedstock to prepare new adsorbents. Steric and energetic parameters were calculated for the adsorption of this heavy metal using a monolayer adsorption model. Results showed that the Cu^{2+} adsorption was multi-cationic via one functional group (i.e., acidic surface functionalities). In addition, Cu^{2+} adsorption was endothermic and associated with physical interaction forces. At saturation, Cu^{2+} adsorption capacities ranged from 54.6 to 87.9 mg/g for these activated carbons. Finally, this advanced modeling provided interesting interpretations of the adsorption mechanism of this relevant water pollutant with low-cost activated carbons.
Appendix

The fitting data results of the experimental isotherms of Cu^{2+} ions are given:

Acknowledgements Sonia Taamalli, Florent Louis, and Abderrahman El Bakali appreciated the support from the LABEX CaPPA (Chemical and Physical Properties of the Atmosphere), which is funded by the French National Research Agency (ANR) through the PIA (Programme d’Investissement d’Avenir) under contract ANR-11-LABX-0005-01 and also the Regional Council “Hauts de France” and the “European Funds for Regional Economic Development.

Author contribution Conceptualization: Lotfi Sellaoui, Abdemottaleb Ben Lamine.

Methodology: Kátia da Boit Martinello, Fatma Dhaouadi, Michael Badawi, Adrián Bonilla-Petriciolet, Luis Felipe Oliveira Silva, Guilherme Luiz Dotto, Sonia Taamalli.

Writing—original draft preparation: Lotfi Sellaoui, Fatma Dhaouadi, Florent Louis, Abderrahman El Bakali.

Supervision: Lotfi Sellaoui.

Data availability Note applicable.
Declarations

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent to publish Not applicable.

Competing interests The authors declare no competing interests.

References

Anbazhagan S, Thiruvengadam V, Sukeri A (2021) An Amberlite IRA-400 Cl– ion-exchange resin modified with Prospopsis julitlua seeds as an efficient Pb2+ adsorbent: adsorption, kinetics, thermodynamics, and computational modeling studies by density functional theory. RSC Adv 11:4478–4488. https://doi.org/10.1039/DRA10128A

Bell JG, Zhao X, Uygur Y, Thomas KM (2011) Adsorption of chloroaromatics for dioxins on porous carbons: the influence of adsorbate structure and surface functional groups on surface interactions and adsorption kinetics. J Phys Chem C 115:2776–2789. https://doi.org/10.1021/jp1099893

CerrahogluKacagil E, Cetinbas S (2021) Preparation and characterization of a Bell JG, Zhao X, Uygur Y, Thomas KM (2011) Adsorption of chloroaromatics for dioxins on porous carbons: the influence of adsorbate structure and surface functional groups on surface interactions and adsorption kinetics. J Phys Chem C 115:2776–2789. https://doi.org/10.1021/jp1099893

Dhaouadi F, Sellaoui L, Badawi M, Reyne–Avila HE, Mendoza-Castillo DJ, Jaime-Leal JE, Bonilla-Petriciolet A, Lamine AB (2020a) Statistical physics interpretation of the adsorption mechanism of Pb2+, Cd2+ and Ni2+ on chicken feathers. J Mol Liq 319:114168. https://doi.org/10.1016/j.molliq.2020.114168

Dhaouadi F, Sellouli L, Chávez-González B, Elizabeth Reyne–Avila H, Díaz Muñoz LL, Mendoza-Castillo DI, Bonilla-Petriciolet A, Lima EC, Tapia-Picaco JC, Lamine AB (2020b) Application of a heterogeneous physical model for the adsorption of Cd2+, Ni2+, Zn2+ and Cu2+ ions on flamboyant pods functionalized with citric acid. Chem Eng J 417:127975. https://doi.org/10.1016/j.cej.2020.127975

Dhaouadi F, Sellouli L, Dotto GL, Bonilla-Petriciolet A, Erto A, Lamine AB (2020c) Adsorption of methylene blue on comminuted raw avocado seeds: interpretation of the effect of salts via physical monolayer model. J Mol Liq 305:112815. https://doi.org/10.1016/j.molliq.2020.112815

Dhaouadi F, Sellouli L, Reyne–Avila HE, Landin-Sandoval V, Mendoza-Castillo DI, Jaime-Leal JE, Lima EC, Bonilla-Petriciolet A, Lamine AB (2021) Adsorption mechanism of Zn2+, Ni2+, Cd2+, and Cu2+ ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12832-x

Dotto GL, Vieira MLG, Gonçalves JO, de Pinto LA, A. (2011) Removal of acid blue 9, food yellow 3 and FD&C yellow no 5 dyes from aqueous solutions using activated carbon, activated earth, diatomaceous earth, chitin and chitosan: equilibrium studies and thermodynamic. Quim Nova 34:1193–1199

Dou J, Gan D, Huang Q, Chen J, Deng F, Zhu X, Wen Y, Zhang X, Wei Y (2019) Functionalization of carbon nanotubes with chitosan based on MAL1 multicomponent reaction for Cu2+ removal. Int J Biol Macromol 136:476–485. https://doi.org/10.1016/j.biomac.2019.06.112

Godiaya CB, Cheng X, Li D, Chen Z, Lu X (2019) Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J Hazard Mater 364:28–38. https://doi.org/10.1016/j.jhazmat.2018.09.076

Gu S-Y, Hsieh C-T, Gandomi YA, Yang ZF, Li L, Fu CC, Jiang RS (2019) Functionalization of activated carbons with magnetic Iron oxide nanoparticles for removal of copper ions from aqueous solution. J Mol Liq 277:499–505. https://doi.org/10.1016/j.molliq.2018.12.018

Katiryar R, Patel AK, Nguyen T-B, Singhania RR, Chen CW, Dong CD (2021) Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Biore Tech 328:124829. https://doi.org/10.1016/j.biortech.2021.124829

Kayalvizhi K, Alhaiji NMI, Saravanakumar D, Mohamed SB, Kaviyarasu A, Ayeshamarian A, Al-Mohaimed AM, Abdel Gawwad MR, Elshikh MS (2022) Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads – a kinetic and thermodynamic study. Environ Res 203:118184. https://doi.org/10.1016/j.envres.2021.118184

Khan J, Lin S, Nizeyimana JC, Wu Y, Wang Q, Liu X (2021) Removal of copper ions from wastewater via adsorption on modified hematic (Fe2O3) iron oxide coated sand. J Clean Prod 319:128687. https://doi.org/10.1016/j.jclepro.2021.128687

Lam SS, Liew RK, Lim XY, Ani FN, Jusoh A (2016) Fruit waste as feedstock for recovery by pyrolysis technique. Int Biodeter Biodegradation 113:325–333. https://doi.org/10.1016/j.ibiod.2016.02.021

Lam SS, Liew RK, Cheng CK, Rasit N, Ooi CK, Ma NL, Ng JH, Lam WH, Chong CT, Chai HA (2018) Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. J Environ Manage 213:400–408. https://doi.org/10.1016/j.jenvman.2018.02.092

Lemes LFR, Tarley CRT (2021) Combination of supramolecular solvent-based microextraction and ultrasound-assisted extraction for cadmium determination in flaxseed flour by thermospray flame furnace atomic absorption spectrometry. Food Chem 357:129695. https://doi.org/10.1016/j.foodchem.2021.129695

Li S-Z, Wu P-X (2010) Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II). J Hazard Mater 173:62–70. https://doi.org/10.1016/j.jhazmat.2009.08.047

Mariana M, Khali H.P.S. A, Mistar EM, Yahya EB, Alfaatah T, Danish M, Amayreh M (2021) Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J Water Process Eng 43:102221. https://doi.org/10.1016/j.jwpe.2021.102221

Nystrom F, Nordqvist K, Herrmann I, Nordqvist K, Herrmann I, Hedström A, Viklander M (2020) Removal of metals and hydrocarbons from stormwater using coagulation and flocculation. Water Res 182:115919. https://doi.org/10.1016/j.watres.2020.115919

Pan J, Gao Y, Gao B, Guo K, Xu X, Yue Q (2019) One-step synthesis of easily-recoverable carboxylated biogas residues for efficient removal of heavy metal ions from synthetic wastewater. J Clean Prod 240:118264. https://doi.org/10.1016/j.jclepro.2019.118264

Perondi D, Poletto P, Restelatto D, Manera C, Silva JP, Jungen J, Collazzo GC, Detersm A, Godinho M, Vieira ACF (2017) Steam gasification of poultry litter biochar for bio-syngas production. Process Saf Environ Prot 109:478–488. https://doi.org/10.1016/j.psep.2017.04.029

Rukayat OO, Usman ME, Elizabeth OM, Aboseed OF, Faih IU (2021) Kinetic adsorption of heavy metal (copper) on rubber (Hevea Brasiliensis) leaf powder. S Afr J Chem Eng 37:74–80. https://doi.org/10.1016/j.sajce.2021.04.004

Sellouli L, Soetaredjo FE, Ismadji S, Benguerba Y, Dotto GL, Bonilla-Petriciolet A, Rodrigues AE, Ben Lamine A, Erto A (2018) Equilibrium study of single and binary adsorption of lead and mercury on bentonite-alginite composite: experiments and application of two theoretical approaches. J Mol Liq 253:160–168. https://doi.org/10.1016/j.molliq.2018.01.056

Sun H, Ji Z, He Y, Wang L, Zhan J, Chen L, Zhao Y (2022) Preparation of PAMAM modified PVDF membrane and its adsorption performance for copper ions. Environ Res 204:119143. https://doi.org/10.1016/j.envres.2021.119143

Vociante M, Troia M, Rodriguez-Estupiñán P, Giraldo L, D’Auria T, Moreno-Piraján JC, Erto A (2014) A rigorous procedure for the design of adsorption units for the removal of cadmium and nickel from process wastewaters. J Clean Prod 77:35–46. https://doi.org/10.1016/j.jclepro.2013.12.001

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.