Hepatoprotective activity of *Symplocos racemosa* bark on carbon tetrachloride-induced hepatic damage in rats

Dhananjay Wakchaure, Dilpesh Jain, Abhay Kumar Singhai, Rahul Somani

Department of Pharmacology, Sinhgad College of Pharmacy, Vadgaon (Bk), Pune, Departments of Pharmaceutical Science, Dr. HS Gour University, Sagar, Madhya Pradesh, India

ABSTRACT

The present study aims to evaluate the hepatoprotective activity of ethanol extract of *Symplocos racemosa* (EESR) bark on carbon tetrachloride (CCl4)-induced hepatic damage in rats. CCl4 with olive oil (1:1) (0.2 ml/kg, i.p.) was administered for ten days to induce hepatotoxicity. EESR (200 and 400 mg/kg, p.o.) and silymarin (100 mg/kg, p.o.) were administered concomitantly for fourteen days. The degree of hepatoprotection was measured using serum transaminases (AST and ALT), alkaline phosphatase, bilirubin, albumin, and total protein levels. Metabolic function of the liver was evaluated by thiopentone-induced sleeping time. Antioxidant activity was assessed by measuring liver malondialdehyde, glutathione, catalase, and superoxide dismutase levels. Histopathological changes of liver sample were also observed. Significant hepatotoxicity was induced by CCl4 in experimental animals. EESR treatment showed significant dose-dependent restoration of serum enzymes, bilirubin, albumin, total proteins, and antioxidant levels. Improvements in hepatoprotection and morphological and histopathological changes were also observed in the EESR treated rats. It was therefore concluded that EESR bark is an effective hepatoprotective agent in CCl4-induced hepatic damage, and has potential clinical applications for treatment of liver diseases.

Key words: Carbon tetrachloride, hepatoprotective, *Symplocos racemosa*, silymarin

INTRODUCTION

The liver is a vitally important organ, playing a pivotal role in regulating various physiological processes in the body. It possesses great capacity to detoxicate toxic substances and synthesize useful principles. Liver diseases are mainly caused by toxic chemicals, excess consumption of alcohol, infections, and autoimmune disorders. Most hepatotoxic chemicals damage liver cells mainly by inducing lipid peroxidation and other oxidative damages. Modern medicine knows no effective drugs that stimulate liver functions, offer protection to the liver from damage, or help to regenerate hepatic cells. In the absence of reliable liver protective drugs in modern medicine, there exists a challenge to explore the potential of hepatoprotective activity of plants on the basis of traditional use. Several medicinal plants are already known to play important roles in liver disorders. Others need to be studied for their therapeutic potential. A literature survey revealed the following plants, which have been recently reported as hepatoprotective: *Amaranthus spinosus*, *Saururus chinensis*, *Vernonia amygdalina*, and *Zanthoxylum armatum*.

Symplocos racemosa Roxb (Symplocaceae) is commonly known as “Lodhra” in Sanskrit or “Rodhra.” Its bark is useful in bowel complaints such as diarrhea, dysentery, eye diseases, liver complaints, fever, ulcer, scorpion sting, diabetes, and liver disorders. It has been scientifically reported as an antimicrobial, antitumor, anti-inflammatory, anti-ulcer, and gynaecological disorder. However, to this date, its possible hepatoprotective activity has not been scientifically investigated. Hence, the present study was undertaken to evaluate its possible hepatoprotective activity.
effects on carbon tetrachloride (CCl₄)-induced hepatic damage in rats.

MATERIALS AND METHODS

Collection of plant material and preparation of extract
Bark of *S. racemosa* was collected from the local area of Pune in the month of November and authenticated at the Agharkar Research Institute, Pune (Auth09-131). The bark was coarsely powdered and defatted with petroleum ether (60-80°C). The marc was subjected to maceration for seven days in ethanol (95%) with daily occasional shaking. This ethanol extract of *S. racemosa* (EESR) was evaporated to dryness under reduced pressure (% yield = 6% w/w).

Phytochemical analysis of ethanol extract of Symplocos racemosa
The EESR was analyzed for preliminary phytochemical tests for the presence of carbohydrates, alkaloids, glycosides, sterols, flavonoids, phenolics, and triterpenoids.[14]

HPTLC profile
EESR 10 mg was dissolved in 10 ml of methanol and sample of 5, 10, and 20 µl were applied as 8-mm wide bands, under a continuous flow of nitrogen, using CAMAG LINOMATE V automatic sample applicator. Sample was applied with a 100-µl syringe (Hamilton Bonaduz, Switzerland) at a constant application rate of 0.1 µl/s and the distance between adjacent bands was 15 mm. The plate was developed using the solvent system methanol : benzene : chloroform [4 : 4.5 : 3.5 (v/v)] and scanned by a densitometer (CAMAG) at 580 nm.

Experimental animals
Wistar rats (150-200 g) and albino mice (20-25 g) of either sex were procured from National Institute of Bioscience, Pune, and housed in an environmentally controlled room, maintained at uniform standard laboratory conditions. They were provided with food and water *ad libitum*. The animals were acclimatized for seven days before experiments were performed. The animal studies were approved by Institutional Animal Ethics Committee (SCOP/IAEC/Approval/2009-10/11) of Sinhgad College of Pharmacy, Pune-411041, India.

Acute oral toxicity test
The acute oral toxicity study for EESR was carried out according to OECD guidelines 423.[13] Swiss albino mice were fasted overnight, water also being withheld. The EESR was administered at a dose of 2 000 mg/kg. Animals were observed individually during the first 30 minutes and periodically during 24 hours, with special attention given during the first 4 hours and daily thereafter, for a total 14 days.

Experimental design
Wistar rats were divided into five groups (n = 5). Group I (Normal Control) served as control and received 2% acacia solution. Groups II (CCl₄ Control) to V were injected daily with a mixture of CCl₄ and olive oil (1 : 1) at a dose of 0.2 ml/kg, i.p. for 10 days. Group III (Silymarin) served as the standard group and were administered silymarin (100 mg/kg, p.o.). Groups IV (EESR200) and V (EESR400) were treated with 200 and 400 mg/kg, p.o. EESR, respectively, for 14 days.[14]

Evaluation of thiopentone-induced sleeping time
Thiopentone sodium (40 mg/kg, i.p.) was administered to all groups (I to V) of rats on the last day, and the time between loss of the righting reflex and its recovery was noted.[17] The hepatoprotective activity, expressed as percentage hepatoprotection (H), was calculated using the following equation,

\[H = \frac{1-(T-V)/(C-V)} {100} \]

Where, T = mean value of treatment group, C = mean value of CCl₄ control group, and V = mean value of normal control group.

Evaluation of biochemical parameters
All the rats were sacrificed on 14th day, 30 minutes after the administration of the last dose of test or standard drug under light ether anesthesia. Blood samples were collected by the retro orbital method, and allowed to stand for 30 minutes. Serum was separated at 2 500 rpm for 10 minutes and biochemical investigations (AST, ALT, alkaline phosphatase (ALP), bilirubin, albumin, and total proteins[22]) were carried out by spectrophotometric method (UV1800, Shimatsu, Japan) using commercial diagnostic kits (Biolab, India) (UV1800 is model number not wavelength).

Estimation of in vivo liver antioxidant property
The liver of each rat was isolated, washed, and perfused with chilled normal saline. Approximately 1 g was minced and homogenized in 10 ml of 0.15 M KCl solution in an ice bath using a tissue homogenizer. The homogenate was centrifuged at 800 g for 10 minutes at 4°C. The supernatant obtained was used for the estimation of malondialdehyde (MDA), glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) as described below.

Malondialdehyde
0.2 ml of 8.1% sodium dodecyl sulfate, 1.5 ml of 20% acetic acid solution adjusted to pH 3.5 with NaOH, and 1.5 ml of 0.8% aqueous thioribarbituric acid (TBA) were added to 0.2 ml of liver homogenate, the volume was made up to 4 ml with distilled water, heated at 95°C for 60 minutes, and cooled. To this, 5 ml of a (15 : 1, v/v) mixture of
n-butanol and pyridine were added, shaken vigorously, and centrifuged at 4 000 rpm for 10 minutes. The absorbance of the organic layer was read at 532 nm. MDA levels were calculated using the standard curve of malondialdehyde and its level expressed in nmol/mg of protein.\(^{[23]}\)

Glutathione

GSH was determined by the method of Beutler and Kelly. 0.2 ml of tissue homogenate was mixed with 1.8 ml of Ethylenediaminetetraacetic acid (EDTA) solution. To this, 3.0 ml precipitating reagent (1.67 g of metaphosphoric acid, 0.2 g of EDTA disodium salt, 30 g sodium chloride in 1 000 ml of distilled water) was added, mixed thoroughly, and kept for 5 minutes before centrifugation. To 2.0 ml of the filtrate, 40 ml of 0.3-M disodium hydrogen phosphate solution and 1.0 ml of DTNB (5, 5-dithio bis 2-nitrobenzoic acid) reagent were added and read at 412 nm. GSH activity was calculated using the standard calibration curve, and expressed as μg/mg of protein.\(^{[24]}\)

Catalase

To 100 μl of liver homogenate, 1.9 ml of phosphate buffer (pH 7) was added and absorbance was read at 240 nm. The reading was taken again 1 minute after adding 1 ml of 1 mM Hydrogen peroxide solution to the reaction mixture. One international unit of catalase utilized is that amount that catalyzes the decomposition of 1 mM H\(_2\)O\(_2\)/min/mg of protein at 37°C. Catalase activity was calculated using the standard calibration curve, and expressed as μg/mg of protein.\(^{[25]}\)

Superoxide dismutase

To 100 μl of 10% liver homogenate, 1 ml of sodium carbonate (1.06 g in 100 ml water), 0.4 ml of 24 mM NBT (nitroblutetrazolin), and 0.2 ml of EDTA (37 mg in 100 ml water) was added and the zero minute reading was taken at 560 nm. The reaction was initiated by addition of 0.4 ml of 1 mM hydroxyamine hydrochloride, incubated at 25°C for 5 minutes, and the reduction of NBT was measured at 560 nm. SOD level was calculated using the standard calibration curve, and expressed in μg/mg of protein.\(^{[26]}\)

Histopathological examination

A portion of liver tissue in each group was preserved in 10% formaldehyde solution for histopathological studies. Hematoxylin and eosin were used for staining; later, the microscopic slides of the liver cells were photographed.

Statistical analysis

Values were expressed as mean ± SEM. The data were analyzed using one-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison test.

RESULTS

Preliminary phytochemical screening

Preliminary phytochemical screening showed presence of carbohydrates, alkaloids, glycosides, steroids, flavonoids, phenolics, and triterpenoids constituents in EESR.

HPTLC analysis of ethanol extract of Symplocos racemosa

Optimized High Performance Thin Layer Chromatograme (HPTLC) of EESR at 580 nm in Figure 1 showed the presence of total nine components with their Rf value and concentration sequentially as Rf - 0.13 (17.45%), 0.23 (37.46%), 0.42 (1.51%), 0.54 (10.82%), 0.66 (5.97%), 0.73 (3.98%), 0.77 (11.15%), 0.85 (4.73%), and 0.90 (6.93%). Component number 2 at 0.23 Rf showed maximum concentration.

Acute toxicity study

EESR administered at a dose of 2 000 mg/kg did not show any signs or symptoms of toxicity or mortality during the observation period. The starting dose was selected as 1/10\(^{th}\) and 1/5\(^{th}\) of 2 000 mg/kg.

Assessment of biochemical parameters

Significant hepatotoxicity was observed after 10 days administration of CCl\(_4\), as indicated by increases in serum AST, ALT, ALP [Figure 2], and bilirubin [Figure 3], although decrease in albumin and total protein levels [Figure 4]. EESR (200 and 400 mg/kg, p.o.) exhibited an ability to counteract the CCl\(_4\)-induced hepatotoxicity by significantly decreasing the AST, ALT, ALP, and bilirubin levels, and increases in albumin and total protein levels, compared with CCl\(_4\) control rats. The results of EESR treatment were similar to that of the standard drug silymarin.

Assessment of thiopentone-induced sleeping time

Administration of CCl\(_4\) for 10 days resulted in significant (P<0.01) increase in thiopentone-induced sleeping time. Treatment with EESR (200 and 400 mg/kg, p.o) and silymarin (100 mg/kg, p.o) daily for 14 days reduced thiopentone-induced sleeping time compared with CCl\(_4\) control rats [Figure 5].

Assessment of in vivo antioxidant property

The administration of CCl\(_4\) for 10 days resulted in increase in liver MDA and decrease in GSH, CAT, and SOD levels compared with normal controls rats. Treatment with EESR (400 mg/kg, p.o) daily for 14 days showed significant decrease in liver MDA and increases in GSH, CAT, and SOD levels, whereas EESR (200 mg/kg, p.o) only increased GSH and CAT levels significantly compared with CCl\(_4\) control rats [Figures 6-9].
Liver of the normal control rats were without any pathological changes or abnormalities. CCl₄ control rats showed various degrees of pathological changes, starting from centrilobular necrosis of hepatic cells to central lobular fatty degeneration. Sections of liver taken from the rats treated with standard drug silymarin showed a hepatic architecture similar to that of normal control rats. In contrast, EESR (200 and 400 mg/kg, p.o.) attenuated the pathological changes and showed significant protection against CCl₄-induced hepatic damage [Figure 10].

DISCUSSION

The liver is a versatile organ concerned with regulation of the internal chemical environment. Damage to the liver by a hepatotoxic agent is therefore of grave consequence. In the present study, phytochemical investigation of EESR showed the presence of carbohydrates, alkaloids, glycosides, sterols, flavonoids, phenolics, and triterpenoids. It has been reported that plants possessing flavonoids are responsible for hepatoprotective activity due to their antioxidant property.[27]

CCl₄ is commonly used to induce hepatotoxicity in animal models.[28] Metabolic processes convert CCl₄ into
the trichloromethyl radical (CCl₃•) which interacts with
O₂ to yield the highly reactive trichloromethylperoxy
radical (CCl₃O₂•-). Both radicals are capable of binding to
proteins and lipids or abstracting a hydrogen atom from
unsaturated lipids, which induces lipid peroxidation and
leads to changes in the endoplasmic reticulum, reduction
in protein synthesis, and elevation of serum transaminase
enzyme levels.\[29,30\]

Normal liver functions are characterized by balanced
activities of the enzymes AST, ALT, and ALP (used
as serum marker enzymes), which are found in high
concentrations in the cytoplasm of liver cells. In hepatic
injury, the lysosomal instability due to CCl₄ leads to leakage
of these marker enzymes into the bloodstream.\[31\] In the
present study, significant increase in the serum marker
enzymes, nGSH, AST, ALT, and ALP, while decrease in
the level of albumin and total protein was observed in CCl₄
treated rats. EESR, like silymarin, significantly reduced the
elevated levels of liver enzymes, and increased the levels
of albumin and total protein, indicating hepatoprotection.
This might have been due to regeneration of hepatocytes
with no evidence of inflammatory infiltration.

Drug-induced liver injury (DILI) is a major health problem
that challenges not only healthcare professionals, but also
the pharmaceutical industry and drug regulatory agencies.

In general, the type of liver injury that leads to severe
DILI is a predominantly hepatocellular injury; when
sufficient to cause hyperbilirubinemia, it is an ominous
indicator of the potential for a drug to cause serious liver
injury. Serum bilirubin is one of the most sensitive tests
employed in the diagnosis of hepatic diseases. It provides
useful information about how well the liver is functioning.
Bilirubin, a chemical breakdown product of hemoglobin,
is conjugated with glucuronic acid in hepatocytes to increase
its water solubility. Unconjugated hyperbilirubinemia
may be the result of mass inhibition of the conjugation
reaction, and consequent release of bilirubin itself from
damaged hepatocytes.\[32\] Serum bilirubin levels decreased
significantly in rats treated with EESR (200 and 400 mg/
kg, p.o) and silymarin.

Liver is the primary site for the metabolism of xenobiotics
like barbiturates. Hepatic damage requires longer time
to inactivate thiopentone, resulting in prolonged loss of
righting reflex induced by short acting barbiturates.
EESR stimulates liver drug metabolizing enzymes and
The hepatoprotective and antifibrotic effects of bark showed administration of CCl₄. Administration of EESR 400 mg/kg significantly decreased the MDA formation in the liver tissues. These results suggest that EESR interacts with polyester fatty acids and inhibits the enhancement of lipid peroxidation processes leading to MDA formation.

A major defense mechanism involves the antioxidant enzymes, GSH, CAT, and SOD, which convert active oxygen molecules into nontoxic compounds. Decrease in SOD activity is a sensitive index of hepatocellular damage. SOD scavenges the superoxide anion to form hydrogen peroxide, thus diminishing toxic effects caused by the free radical. CAT is an enzymatic antioxidant widely distributed in all animal tissues; highest concentrations are found in erythrocytes and liver cells. CAT decomposes hydrogen peroxide and protects the tissues from highly reactive hydroxyl radicals. Therefore, reduction in the concentration of CAT may result in a number of deleterious effects due to the assimilation of superoxide radical and hydrogen peroxide. Glutathione is one of the most abundant tripeptide, non-enzymatic biological antioxidants present in proteins by means of the biuret reaction. J Biol Chem 1971;31:87-96.

A major defense mechanism involves the antioxidant enzymes, GSH, CAT, and SOD, which convert active oxygen molecules into nontoxic compounds. Decrease in SOD activity is a sensitive index of hepatocellular damage. SOD scavenges the superoxide anion to form hydrogen peroxide, thus diminishing toxic effects caused by the free radical. CAT is an enzymatic antioxidant widely distributed in all animal tissues; highest concentrations are found in erythrocytes and liver cells. CAT decomposes hydrogen peroxide and protects the tissues from highly reactive hydroxyl radicals. Therefore, reduction in the concentration of CAT may result in a number of deleterious effects due to the assimilation of superoxide radical and hydrogen peroxide. Glutathione is one of the most abundant tripeptide, non-enzymatic biological antioxidants present in proteins by means of the biuret reaction. J Biol Chem 1971;31:87-96.

REFERENCES

1. Sahani S. Evaluation of hepatoprotective efficacy of APCL-A polyherbal formulation in vivo in rats. Indian Drugs 1999;36:628-32.
2. Recknagel RO. A new direction in the study of carbon tetrachloride hepatotoxicity. Life Sci 1983;33:401-5.
3. Dubey SK, Batra A. Hepatoprotective activity from ethanol fraction of Thuja occidentalis. Asian J Res Chem 2008;1:32-8.
4. Hussain ZG, Amresha SS, Chandana VR. Hepatoprotective and antioxidant activity of Amaranthus spinosus against CCl₄ induced toxicity. J Ethnopharmacol 2009;125:364-6.
5. Lishu W, Dongyan C, Haisheng W, Lin D, Xuefeng Z, Tunhai X, et al. The hepatoprotective and antifibrotic effects of Saururus chinesis against carbon tetrachloride induced hepatic fibrosis in rats. J Ethnopharmacol 2009;126:487-91.
6. Adesanoye OA, Farombi EO. Hepatoprotective effects of Vernonia amygdalina (Asteraceae) in rats treated with carbon tetrachloride. Exp Toxicol Pathol 2010;62:197-206.
7. Ranawata L, Jigar B, Jagruti P. Hepatoprotective activity of ethanolic extracts of bark of Zanthoxyllum armatum DC in CCl₄ induced hepatic damage in rats. J Ethnopharmacol 2010;127:777-80.
8. Nadkarni KR. Indian Material Medica. Bombay: Popular Prakashan; 2002:2:1186.
9. Kumar GS, Jayaveera KN, Ashok Kumar CK, Umachagi PS, Vrushabendra BM, Kishore DV. Antimicrobial effects of Indian medicinal plants against acne-inducing bacteria. Tropical J Pharma Res 2007;6:717-23.
10. Raval BP, Suthar MP, Patel R. In-vitro cytotoxicity screening of Symlocos racemosa plant extract by MTT assay. Int J Pharma Res 2009;1:31-5.
11. Kambojia S, Keshava KR. Phytochemical and pharmacological studies on bark of Symlocos racemosa roxb. Iranian J Pharma Res 2004;3:44-8.
12. Arifullah HM, Narada KM, Amruthraj G. Effect of Symlocos racemosa (lodhra) on experimentally induced ulcers in rat. Indian J Pharmacol 1986;4:53-4.
13. Bhutani KK, Jadhav AN, Kalia V. Effect of Symlocos racemosa Roxb. on gonadotropin release in immature female rats and ovarian histology. J Ethnopharmacol 2004;94:197-200.
14. Khandelwal KR. Practical Pharmacognosy. 19thed. Pune: Nirali Prakashan; 2008. p. 149-56.
15. OECD Guidelines for testing chemicals, Guidelines 423, oral toxicity: Acute toxic class method. Paris, 2001.
16. Chandan BK, Saxena AK, Shukla S, Sharma N. Hepatoprotective potential of Aloe barbadensis against carbon tetrachloride induced hepatotoxicity. J Ethnopharmacol 2007;111:560-9.
17. Gujarati V, Patel N, Venkat RN, Nanda Kumar K, Gouda TS, Shah A. Hepatoprotective activity of alcoholic and aqueous extracts of leaves of Tylophora indica in rats. Indian J Pharmacol 2007;39:43-7.
18. Bergmeyer HU. Methods of enzymatic analysis. 2nd ed. New York: Academic Press; 1974;2:760-2.
19. Shephard MD, Peake MJ, Walmsley RN. Quantitative method for determining serum alkaline phosphatase isoenzyme activity II. Development and clinical application of method for measuring four serum alkaline phosphatase isoenzymes. J Clin Pathol 1986;39:1031-8.
20. Haslwood GA, King EJ. The estimation of bilirubin in blood plasma. Biochem J 1937;31:920-3.
21. Doumass BT, Watson WA, Briggs HG. Albumin standards and the measurement of serum albumin with bromocresol green. Clin Chem Acts 1971;31:87-96.
22. Gornall AG, Bardawill CJ, David MM. Determination of serum proteins by means of the biuret reaction. J Biol Chem 1949;177:751-66.
23. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8.
24. Buetler E, Duron O, Kelly BM. Improved method for determination of blood glutathione. J Lab Clin Med 1963;61:882-6.
25. Luck H. Catalase, in methods of enzymatic analysis. In: Bergmeyer HU, editor. New York: Academic Press; 1971;3:885-93.
26. Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 1978;186:189-96.
27. Di Carlo G, Mascolo N, Izzo AA, Capasso F. Flavonoids: Old and new aspects of a class of natural therapeutic drugs. Life Sci 1999;65:337-42.
28. Janbaz KH, Saeed SA, Gilani AH. Protective effect of rutin on paracetamol and CCl4 induced hepatotoxicity in rodents. Fitoterapia 2002;73:557-9.
29. Mujumdar AM, Upadhye AS, Pradhan AM. Effect of Azadirachta indica leaf extract on CCl4 induced hepatic damage in albino rats. Indian J Pharm Sci 1998;60:363-7.
30. Lee KJ, Jeong HG. Protective effect of Platycodi radix on carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol 2002;40:517-24.
31. Celik I, Temur A, Isik I. Hepatoprotective role and antioxidant capacity of pomegranate (Punica granatum) owers infusion against trichloroacetic acid-exposed in rats. Food Chem Toxicol 2009;47:145-51.
32. Saravanan R, Viswanathan P, Pugalendi KV. Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats. Life Sci 2006;78:713-6.
33. Singh B, Saxena AK, Chandran BK, Anand KK, Suri OP. Hepatoprotective activity of verbenaolin on experiemntal liver damage in rodents. Fitoterapia 1998;69:135-41.
34. Zimmermann R, Flohe L, Weser U, Hartmann HJ. Inhibition of lipid peroxidation in isolated inner membrane of rat liver mitochondria by superoxide dismutase. Febs Lett 1973;29:117-21.
35. Verma J, Behera BC, Makhija U. Antioxidant and hepatoprotective activity of a Lichen Usnea ghattensis in vitro. Appl Biochem Biotechnol 2008;10:185-9.
36. Jain A, Soni M, Deb L, Rout SP, Gupta VB, Krishna KL. Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of Momordica dioica Roxb. Leaves. J Ethnopharmacol 2008;115:61-3.
37. Curtis JJ, Mortiz M. Serum enzymes derived from liver cell fraction and response to carbon tetrachloride intoxication in rats. Gastroenterol 1972;62:84-92.
38. Chance B, Greenstein DS. The mechanism of catalase actions- steady state analysis. Arch Biochem Biophys 1992;37:301-39.
39. Prakash J, Gupta SK, Singh N. Chemopreventive activity of Withania somnifera in experimentally induced fibro sarcoma tumors in swiss albino rats. Phytother Res 2001;15:200-4.
40. Rathi A, Srivastava AK, Shirwalkar CA, Rawat AS, Mehrotra DS. Hepatoprotective potential of Fumaria indica Pugsley whole plant extracts fractions and an isolated alkaloid protopine. Phytomedicine 2008;15:470-7.

How to cite this article: Wakchaure D, Jain D, Singhai AK, Somani R. Hepatoprotective activity of Symlocos racemosa bark on carbon tetrachloride-induced hepatic damage in rats. J Ayurveda Integr Med 2011;2:137-43.
Source of Support: Nil, Conflict of Interest: None declared.