Antibiotic policy of Gastroenterology Surgery Center in Egypt

Noha El-Mashad¹, Eman Elsayed¹, Mohamed Elshobary², Yomna Ahmed Setate³ and Mohammed Elshaer¹*

¹Department of Clinical Pathology, Faculty of Medicine, Mansoura, Egypt
²Mansoura Gastroenterology Surgical Center, Egypt
³Mansoura Specialized Hospital, Egypt

*Corresponding author

ABSTRACT

Antimicrobial resistance is considered a major health threat for patients and healthcare providers. It challenges the control of infectious diseases, jeopardizes any medical progress and imposes huge treatment costs. This study aimed to design an effective antibiotic policy for treatment of different types of infections at Gastrointestinal Surgical Center, Mansoura, Egypt in order to reduce antibiotic resistance, and to minimize unnecessary costs. From 1/1/2019 to 31/12/2019, samples were obtained according to the site of infection, cultured on suitable media. Automated identification of isolates was performed by Vitek 2 system whereas antibiotic susceptibility testing was done by disc diffusion method. Isolates with multidrug resistance were also assessed for susceptibility by Vitek 2 system. Out of 3300 microbiologic samples, 1190 (36.1%) were positive. 862 of 1190 (72.4%) were gram-negative & 328 of 1190 (27.6%) gram-positive. The patterns of resistance observed were MRSA (37.1%), ESBL (8.5%) and Carbapenemases (8.9%). An antibiogram was designed for each infection type including the first-line therapy protocol. Antibiotic initiation or change should be done after sending appropriate cultures Once culture reports are available, the physician must step down to the narrowest spectrum antibiotic, the most efficient and cost-effective option.

Keywords
Carbapenemase, Drug resistance, Sensitivity tests, Drug resistance, Infection control

Article Info
Accepted: 22 March 2020
Available Online: 10 April 2020

Introduction

Antimicrobial resistance is considered a major health threat for patients and healthcare providers. It challenges the control of infectious diseases, jeopardizes any medical progress and imposes huge treatment costs. In the European Union, about 25000 patients die each year from infections caused by multidrug-resistant bacteria and the estimated costs are about 1.5 billion euros per year(1).

The rapid emergence of resistant bacteria is occurring worldwide, endangering the efficacy of antibiotics, which have transformed medicine and saved millions of
lives. Resistance has emerged even to newer, more potent antimicrobial agents such as carbapenems which can be attributed to the misuse or overuse of antibiotics. Hence the importance of inclusion of the antibiotic policy in the infection control program (2-5).

The antibiotic policy is the set of written guidance that is to assist and support clinicians with decisions regarding the optimal selection, dose and duration of an antimicrobial agent for the treatment of an infectious disease in the hospital. It covers empirical treatment, specific treatment, and also agents for prophylaxis (6, 7).

The basic principles are to be direct evidence-based medicine and using local antibiogram. An antibiotic policy is now more necessary than ever for clinical, epidemiological and economic reasons(7).

The Infection Prevention and Control Committee acts as an advisory body to the medical staff, analyzing the epidemiology of the infections, improving the appropriate use of antimicrobials and provide adequate training for healthcare workers(8).

The agreement of hundreds of professionals on indications, dosage and duration of antibiotic treatment, based on the best scientific evidence and local guides is complex, but it can be done. The key to this is that the Infection Committee develops antimicrobial policy through a multidisciplinary team and professional leadership, and has the institutional support to ensure that the proper use of antimicrobials (8).

This study aimed to design an effective antibiotic policy for treatment of different types of infections at Gastrointestinal Surgical Center, Mansoura, Egypt to reduce antibiotic resistance, and to minimize unnecessary costs.

Materials and Methods

This study included 3300 different samples from patients admitted to Gastrointestinal Surgery Center (GISC), Mansoura University, Egypt in the period from 1/1/2019 to 31/12/2019, with different signs and symptoms of infections. We classified GISC into 5 areas (according to the patients' distribution) including:

- Liver transplantation unit on the 7th floor
- Patient admission wards on the 5th & 6th floors
- Transplantation ICU on the 2nd floor
- Surgical ICU on the 2nd floor
- Outpatient clinics on the ground floor

Microbiological samples were collected according to the site of infection. Different sample types included blood, urine, sputum, wound swab, drain aspirate, peritoneal fluid aspirate, and throat swab.

Cultures on the suitable media were done in the microbiology laboratory. Culture media used included blood agar, MacConkey agar, SS agar. All cultures were carried out by significant colony count.

Automated identification of isolates was performed by Vitek 2 system whereas antibiotic susceptibility testing was done by disc diffusion method followed CLSI – 2012 guidelines. Isolates with multidrug resistance were also assessed for susceptibility by Vitek 2 system (9). Anaerobic culture is not a routine work in our laboratory and performed only by request, therefore the results were excluded.

Results and Discussion

Out of 3300 microbiologic samples, 1190 (36.1%) were positive. 862 of 1190(72.4%) were gram negative & 328 of 1190 (27.6%) gram-positive. The distribution of different samples obtained in GISC illustrated in Table
1. Most of the cultures were isolated from surgical drains (47.4%), urine (17.18%) and sputum (14.7%).

Table 2 presents the frequency of aerobic bacterial growth in each hospital ward; the majority was obtained from surgical wards (33.8%) followed by Surgical ICU (25.3%) and Outpatient Clinic (15.5%).

In Table 3, the majority of gram-negative bacteria were obtained from surgical drains (60.6%) while the majority of gram-positive bacteria were obtained from Sputum (26.8%).

The gram-negative bacteria obtained in our study were classified according to the infected site, as illustrated in Table 4.

The patterns of resistance observed were MRSA (37.1%), ESBL (8.5%) and Carbapenemases (8.9%) (Table 5).

The antibiogram obtained for each infection type is presented in Tables 6-9, whereas the first line therapy protocol is illustrated in Table 10.

The following antibiotics were reserved for use in resistant cases

- Linezolid (Oxazolidinone).
- Carbapenems (recently introduced types).
- Moxifloxacin (4th generation fluoroquinolone).
- Tigecycline (Glycylcyclines).

Table 1 Frequency of different samples in GISC

	Total cultured	Growth	No growth			
N	**%**	**N**	**%**	**N**	**%**	
Blood	317	9.6	105	8.8	212	10.0
Urine	586	17.8	205	17.2	381	18.1
Sputum	485	14.7	187	15.7	298	14.1
Wound	237	7.2	79	6.6	158	7.5
Drain	1565	47.4	578	48.6	987	46.8
Peritoneal	27	0.8	9	0.8	18	0.9
Throat	83	2.5	27	2.3	56	2.7
Total	3300	100	1190	100	2110	100.0
Table 2 Frequency of aerobic bacterial growth in each ward in GISC

Wards	Gram negative		Gram positive		Total
	N	%	N	%	
O.C Wards	134	15.5	53	16.2	187
Floors	291	33.8	114	34.8	405
ICU-Surgical	218	25.3	79	24.1	297
Transplantation	108	12.5	43	13.1	151
ICU-Transplant	111	12.9	39	11.9	150
Total	862	100	328	100	1190

Table 3 Distribution of microorganisms in each sample type in GISC

Sample Type	Gram negative		Gram positive		Total
	N	%	N	%	
Blood	54	6.3	51	15.5	105
Urine	127	14.7	78	23.8	205
Sputum	99	11.5	88	26.8	187
Wound	42	4.9	37	11.3	79
Drain	522	60.6	56	17.1	578
Peritoneal	9	1.0	0	0	9
Throat	9	1.0	18	5.5	27
Total	862	100	328	100	1190

Table 4 Frequency of aerobic bacterial growth in each ward in GISC

Wards	Gram negative		Gram positive		Total	
	N	%	N	%		
O.C Wards	134	15.5	53	16.2	187	
Surgical wards	Floors	291	33.8	114	34.8	405
	ICU	218	25.3	79	24.1	297
Transplantation	Transplantation	108	12.5	43	13.1	151
	ICU	111	12.9	39	11.9	150
Total	862	100	328	100	1190	
Table 5 Patterns of resistance

	N	%	
MRSA	65/175	37.1	Out of Staph aureus
ESBL	73/862	8.5	Out of gram negative bacteria
Carbapenem resistance	106/1190	8.9	Out of all culture growths

Table 6 Blood stream infection–antibiogram

Most common pathogens	Prevalence (%)	Antibiotic Sensitivity (%)
Staph aureus	33.3	Ampicillin/Sulbactam 66.7%, Piperacillin/Tazobactam 66.7%, Ampicillin 33.3%
E. coli	22.2	Ciprofloxacin 100%, Cefoxitin 100%, Cefepime 50%
Citrobacter	11.1	Gentamycin 100%, Ampicillin/Sulbactam 100%, Amikacin 100%, Imipenem 100%,
Serratia	22.2	Doxycycline 100%, Imipenem 100%
Other Gram -ve bacilli	11.1	Levofloxacin 100%, Doxycycline 100%, Imipenem 100%, Piperacillin/Tazobactam 100%

Table 7 Urinary tract infection–antibiogram

Most common pathogens	Prevalence (%)	Antibiotic Sensitivity (%)
Coagulase -ve staph	10.5	Levofloxacin 50%, Clindamycin 50%, Doxycycline 50%, Amikacin 50%
Staph aureus	5.3	Nitrofurantoin 100 % Imipenem 100%. Levofloxacin 50%, Clindamycin 50%, Doxycycline 50%,
E coli	21.1	Ampicillin 25%, Gentamicin 25%, Amikacin 25%, Piperacillin/Tazobactam25%,
Klebsiella	10.5	Cefoxitin 50%, Gentamycin 50%, Ciprofloxacin 50%, Levofloxacin 50%, Ceftazidime 50%, Cefepime 50%, Cefoperazone/Sulbactam 50%, Piperacillin/Tazobactam50%,
Citrobacter	5.3	Amikacin 100%, Imipenem 100%, Cefoperazone/Sulbactam 50%, Piperacillin/Tazobactam50%, Gentamicin 50%, Ciprofloxacin 50%,
Proteus	5.3	Ceftriazone 100%, Gentamycin 100%, Ciprofloxacin 100%, Ceftazidime 100%
Salmonella	5.3	Levofloxacin 100%, Piperacillin/Tazobactam 100%, Imipenem 100%, Cefoperazone/Sulbactam 100%,
Table 8 Sputum culture – antibiogram

Most common pathogens	Prevalence (%)	Antibiotic Sensitivity (%)
Coagulase-ve staph	18.8	Cefoperazone/Sulbactam 100%, Piperacillin 100%, Ampicillin/Sulbactam 66.7%, Doxycycline 66.7%, Levofloxacin 33.3%, Erythromycin 33.3%, Cefoxitin 33.3%
Staphylococcus aureus	12.5	Erythromycin 100%, Ampicillin/Sulbactam 50%, Doxycycline 50%, Piperacillin/Tazobactam 50%
E. coli	6.3	Amikacin 100%, Piperacillin/Tazobactam 100%, Cefoperazone/Sulbactam 100%, Doxycycline 100%, Cefoxitin 100%
Klebsiella	25.0	Piperacillin/Tazobactam 50%, Ciprofloxacin 25%, Clindamycin 25%
Citrobacter	12.5	Piperacillin/Tazobactam 100%, Ciprofloxacin 50%, Erythromycin 50%
Serratia	6.3	Ampicillin/Sulbactam 100%, Piperacillin/Tazobactam 100%, Ceftriaxone 100%, Ciprofloxacin 100%
Salmonella	18.8	Imipenem 33.3%, Cefoperazone 33.3%

Table 9 Wound culture – antibiogram

Most common pathogens	Prevalence (%)	Antibiotic Sensitivity (%)
Staphylococcus aureus	28.6	Piperacillin/Tazobactam 100%, Ciprofloxacin 50%, Erythromycin 50%, Vancomycin 100%, Piperacillin 50%
Pseudomonas	42.9	Doxycycline 100%, Gentamicin 33.3%, Imipenem 33.3%, Cefoperazone/Sulbactam 33.3%, Clindamycin 33.3%
Serratia	14.3	Imipenem 100%, Cefoperazone/Sulbactam 100%, Doxycycline 100%
Other Gram-ve bacilli	14.3	Imipenem 100%, Doxycycline 100%, Cefoperazone/Sulbactam 50%, Clindamycin 50%
Antibiotic resistance may occur even with the proper use of antibiotics, widespread and inappropriate use of antibiotics makes the situation even worse. In more developed countries, there are a number of contributing factors, such as over-the-counter antibiotics, poor patient compliance, and inappropriate selection of antibiotics and overprescribing.

The present study was limited by its retrospective design, important clinical conditions, previous administration of antibiotics and their duration and dosage were not available for analysis. Nonetheless, the strength of this study can be explained by its local nature, which reflects the magnitude of the problem of bacterial resistance in a single center in Egypt.

To our knowledge, this report is the first to instruct an antibiotic policy in single center in Egypt which may have important findings for practicing physicians and authorities involved in hospital formulary in the region regarding empirical antibiotic selection and utilization.

Conclusions are as follows:

Antibiotic initiation must be done after sending appropriate cultures
Choosing antibiotic therapy should follow the hospital policy whenever possible. If alternatives are chosen, the clinician must document the reason in the case records.

The need for antimicrobial therapy should be reviewed on a daily basis. For most infections, 5 – 7 days of antimicrobial therapy is sufficient.

All IV antibiotics may only be given for 48 – 72 hours, then switch to oral antibiotic(s) or switch to an IV narrow spectrum alternative.

Once culture reports are available, the physician shall step down to the narrowest spectrum antibiotic, the most efficient and most cost-effective option.

References

1. ECDC/EMEA Joint Working Group. ECDC/EMEA Joint Technical Report: The bacterial challenge: time to react. Stockholm: European Centre for Disease Prevention and Control; 2009. Available at:http://www.ecdc.europa.eu/en/publications/Publications/Forms/ECDC_DispForm.aspx?ID=444. Accessed April 8, 2018.

2. Gould IM, and Bal AM. New antibiotic agents in the pipeline and how they can overcome microbial resistance. Virulence. 2013; 4(2): 185–191.

3. Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol. 2013; 4: 47.

4. Wright GD. Something new: revisiting natural products in antibiotic drug
discovery. Can J Microbiol. 2014; 60(3): 147–154.
5. Golkar Z, Bagazra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Countries. 2014; 8(2):129–136.
6. MacDougall C, and Polk RE. Antimicrobial Stewardship Programs in Health Care Systems. Clin Microbiol Rev. 2005; 18(4): 638–656.
7. Cisneros JM, Pérez-Moreno MA, Gil-Navarro MV. The antibiotic policy. The Infection Committee and antimicrobial use. Infec Microbiol Clin., 2014; 32(8): 533–536.
8. Best Practices for Infection Prevention and Control Programs in Ontario In All Health Care Settings: Provincial Infectious Diseases Advisory Committee (PIDAC). (3rd edition). 2012. Available at: https://www.publichealthontario.ca/en/.../BP_IPAC_Ontario_HCSettings_2012.pdf. Accessed March 20, 2019.
9. CLSI Clinical and Laboratory Standards. Wayne, Pennsylvania: Performance standards for antimicrobial susceptibility testing (M100eS22). Clinical and Laboratory Standards Institute; 2012.

How to cite this article:
Noha El-Mashad, Eman Elsayed, Mohamed Elshobary, Yomna Ahmed Setate and Mohammed Elshaer. 2020. Antibiotic policy of Gastroenterology Surgery Center in Egypt. Int.J.Curr.Microbiol.App.Sci. 9(04): 2748-2755. doi: https://doi.org/10.20546/ijemas.2020.904.324