Induced autopolyploidy—a promising approach for enhanced biosynthesis of plant secondary metabolites: an insight

Saikat Gantait * and Eashan Mukherjee †

Abstract

Background: Induced polyploidy serves as an efficient approach in extricating genetic potential of cells. During polyploidization, multiple sets of chromosomes are derived from the same organism resulting in the development of an autopolyploid. Alterations owing to artificially induced polyploidy level significantly influence internal homeostatic condition of resultant cells.

Main text: Induced autopolyploidy transpires as a result of an increase in the size of genome without any change in elementary genetic material. Such autopolyploidy, artificially induced via application of antimitotic agents, brings about a lot of beneficial changes in plants, coupled with very few detrimental effects. Induced autopolyploids exhibit superior adaptability, endurance to biotic and abiotic stresses, longer reproductive period and enzyme diversity coupled with enhanced rate of photosynthesis and gene action in comparison to their diploid counterparts. However, reduced rate of transpiration and growth, delay in flowering are some of the demerits of autopolyploids. Inspite of these slight unfavourable outcomes, induced autopolyploidization has been utilized in an array of instances wherein genetic improvement of plant species is concerned, since this technique usually boosts the biomass of concerned economic parts of a plant. In other way, it is also evident that multiplication of genome bestows enhanced production of secondary metabolites, which has contributed to a significant commercial value addition especially for plants with medicinal importance, in particular.

Conclusion: This review makes an attempt to explore the system and success of antimitotic agents vis-à-vis artificial autopolyploidization, interfered with the biosynthesis-cum-production of secondary metabolites having cutting-edge pharmaceutical importance.

Keywords: Antimitotic agents, Autotetraploid, Biosynthetic pathway, Colchicine, Oryzalin

Background

Induced polyploidy serves as an effective tool in extricating a cell’s genetic potential. During polyploidization, when multiple sets of chromosomes are derived from the same organism, it results into the development of autopolyploidy. Induced multiple ploidy level affects a cell’s internal homeostatic condition. This may lead to meiotic instabilities, undesirably magnified linkage effects, chimeral tissues [1], poor sexual reproduction and other epigenetic changes in plants. Such aberrational problems are often associated with triploids and mixoploids whereby there persists a problem to pair chromosomes during meiosis. Despite these encumbrances, induced polyploidy provides several mileages in crop research and improvement. Firstly, duplication of the same genomic constituents produces genetically true-to-type individuals [2]. Genome re-duplication characterizes increased plant vigour and productivity through improved cellular activity status increasing cell size, stomatal size and number, nuclear size and activity [2, 3], gene

* Correspondence: saikatgantait@yahoo.com
† Saikat Gantait and Eashan Mukherjee contributed equally to this work.
Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252, India

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribition 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Main text

In vitro autopolyploidization

The general procedure of in vitro autopolyploidisation involves initial treatment of the explants with a suitable antimitotic agent followed by shaking the treated explants on an orbital shaker, before being inoculated into culture media. As an alternative approach, antimitotic agents could directly be added to the basal media containing the inoculated explants for possible polyploidization, although the earlier process is more effective and less time taking. Subsequent culture, growth, acclimatization and morphological assessment, along with confirmation of chromosome doubling through flow cytometry and chromosome counting, are performed accordingly (Fig. 1). The various factors affecting successful in vitro polyploidization are discussed in the following sections.

Influence of treatment condition

Treatment conditions determine the final outcome of the experiment as they affect the endogenous metabolic processes leading to the upregulation or downregulation of the biochemical production. In most of the experiments, the explants were dipped, soaked or immersed into the polyploidy inducing solution resulting in imbibition of the chemicals. Colchicine, a polyploidy inducer, was applied after dissolving the same in dimethyl sulfoxide (DMSO) solution. Xing et al. [9] documented the enhanced effectiveness of colchicine dissolved in ethanol. The purpose of this was to increase the permeability of antimitotic agent(s) facilitating their entry into the regenerative tissues of the plant parts. As low as 2% (v/v) DMSO was most commonly used (Table 1). Similarly, oryzalin was reported to be dissolved in ethanol [55] or DMSO (1%) [62]. Exposure condition of the explants to antimitotic chemicals was recorded to differ across various publications. ‘Cotton ball or plug method’ for colchicine treatment was followed in several of the experiments (Table 1). Other experimental investigations state the addition of colchicine into the Murashige and Skoog (MS) basal medium [72] alone or in supplementation with plant growth regulators (PGRs), like α-naphthalene acetic acid (NAA), N6-benzyladenine (BA) or thidiazuron (TDZ). Inoculation in liquid MS basal media (MSL) supplemented with colchicine were also reported (Table 1). In addition, it was found in some reports that inoculation was carried out by means of constant shaking, using an orbital shaker. In most of the cases, shaking was done at 100 rpm. Presumably, use of liquid basal media supplemented with orbital shaking increased the absorption of antimitotic agents by further increasing the per unit surface area exposure over time. However, such prolonged durations may harm young explants for instance delicate meristematic meristems, which can be avoided with the aid of the most effective chemical-soaked cotton plugging method. Dark conditions during the colchicine inoculation period were adopted in several investigations (Table 1). Such shock treatment imposed on explants undergoing high cell division (callus, seed) promotes redifferentiative meristematic activity and germination and in process exposure to polyploidy inducers. Outstandingly, high temperature treatments resulting in the development of 2n female gametes for production of triploids was carried out in Eucommia sp. [53]. Increased temperature interferes with spindle formation and affects chromosome multiplication during the process.

Influence of plant part(s)/explant

Appropriate selections of explants are imperative for effective polyploidization. The basic idea is that the explants must provide maximum conversion (polyploid cells) upon treatment that in turn would lead to generation of stable, high phytochemical yielding autopolyploid lines. Hence,
Table 1 Antimitotic agent(s) and their influence on autopolyploidization and subsequent secondary metabolites production (arranged in chronological order)

Plant spp.	Treatment condition	Treated plant part	Type, dosage and exposure duration of antimitotic agent(s)	Resultant ploidy level	Effect on secondary metabolite production	Reference
Catharanthus roseus Don.	Immersed in colchicine (dissolved in ethanol) soln.	Seed	Colchicine; 0.2%; 24 h	Diploid→Tetraploid (2n=4x=32)	Increase in terpenoid indole alkaloids (2-3-fold)	[9]
Centella asiatica (L.)	Soaked in colchicine solution	Shoot tip	Colchicine; 0.050–0.200%; 12–24 h	Diploid→Tetraploid (2n=4x=36)	Non-significant increase of 11% in total triterpenes production	[10]
Catharanthus roseus	NM	Shooty teratoma	Colchicine; 0.01%; 24–48 h	Diploid→Tetraploid (2n=4x=32)	2-fold increment in vincristine production	[11]
Solanum commersonii	Dipped in sterile and agitated (100 rpm at r.t.) H2O containing oryzalin (40 mg/l dissolved in 1 ml of DMSO)	Shoot tip	Oryzalin; 10 mg /l; 24 h	Diploid→Tetraploid (2n=4x=48)	Higher phenylpropanoid content (approx. 2-fold)	[12]
Solanum bulbocastanum	Dipped in sterile and agitated (100 rpm at r.t.) H2O containing oryzalin (40 mg/l dissolved in 1 ml of DMSO)	Shoot tip	Oryzalin; 10 mg /l; 24 h	Diploid→Tetraploid (2n=4x=48)	Similar or lower phenylpropanoids and metabolites compared to diploids	[13]
Rosa hybrida cv. Iceberg	NM	NM	Trifluralin; NM; NM	Triplloid→Hexaploid (2n=6x=42)	Increase in phenolic compounds	[14]
Echinacea purpurea (L.)	Colchicine soln. imbibition	Root tip	Colchicine; 0.25%; 24–72 h	Diploid→Tetraploid (2n=4x=44)	Increase in cichoric acid (45%) and chlorogenic acid (71%)	[15]
Stevia rebaudiana	H2O imbibed seed→ colchicine (dissolved in 1% DMSO) soln.	Seed	Colchicine; 0.6%; 24 h	Diploid→Tetraploid (2n=4x=44)	Increase in stevioside (approx. 2.4%)	[16]
Cichorium intybus L.	cotton covered meristem tip→ 3 droplets/treatment→ 4 times at treatment intervals	Shoot apical meristem	Colchicine; 0.05%; 8 h	Diploid→Tetraploid (2n=4x=36)	1.9-fold increase in total phenolic; 10-fold increase in chlorogenic acid	[17]
Allium sativum L.	Soaked in basal media (liquid B5 + 2% DMSO + colchicine)	Stem disc	Colchicine; 0.5%; 36 h	Diploid→Tetraploid (2n=4x=32)	Increase in allicin conc. (30.7%)	[18]
Pflafia glomerata (Spreng.) Pedersen	Basal media + colchicine	Nodal bud	Colchicine; 30 μM; 1 w	Diploid→Tetraploid (2n=4x=68)	Increase in β-ecdysone production (50%)	[19]
Drosophyllum kotschyi Boiss.	Colchicine soln→ cotton ball method→ SAM (2 leaf and 4 leaf stage)	Shoot apical meristem	Colchicine; 0.5%; 48 h	Diploid→tetraploid (2n=4x=40)	Increase in methoxylated hydroxylavones (approx. 19.41%)	[20]
Centella asiatica (L.)	Soaked in colchicine solution	Shoot tip	Colchicine; 0.050–0.200%; 12–24 h	Diploid→Tetraploid (2n=4x=36)	Increase in total triterpenoid (approx. 30.5%)	[21]
Echinacea purpurea (L.) Moench	Shoot regeneration media + colchicine	Petiole	Colchicine; 30–240 mg/l for 30 d or 120 mg/l for 7, 14, 21 or 28 d	Diploid→Tetraploid (2n=4x=44)	Increase in caffèic acid and alkalamides	[22]
Nigella sativa L.	Colchicine (dissolved in 2% DMSO) soln. treatment	Seed	Colchicine; 0.05%; 4 h	Diploid→Tetraploid (2n=4x=24)	Increase in thymoquinone conc. (46.3%)	[23]
Stevia rebaudiana Hortoni	NM	NM	Colchicine; NM; NM	Diploid→Tetraploid (2n=4x=44)	Increase in rebaudioside-A (6.21%) in tetraploid; Triploids and mixoploids	[24]
Thymus serlicitus	Immersed in colchicine soln. (dissolved in 2% DMSO)→ sterile H2O washing	Shoot tip	Colchicine; 0.3%; 12 h	Diploid→Tetraploid (2n=4x=36)	Increase in betulinic acid (69.73%), oleanolic acid (42.76%), ursolic acid (140.67%)	[25]
Stevia rebaudiana Hortoni	Treatment in field condition	NM	Colchicine; 2.5%; NM	Diploid→Tetraploid (2n=4x=44)	Increase in rebaudioside-A (6.21%)	[26]
Table 1 Antimitotic agent(s) and their influence on autopolyplodization and subsequent secondary metabolites production (arranged in chronological order) (Continued)

Plant spp.	Treatment condition	Treated plant part	Type, dosage and exposure duration of antimitotic agent(s)	Resultant ploidy level	Effect on secondary metabolite production	Reference
Tetradenia riparia	Submerged in colchicine soln.	Seed	Colchicine; 0.01 mg/l; 24 h	Diploid→tetraploid (2n=4x=44)	Increase in essential oil production (3.5-fold)	[27]
Echinacea purpurea L.	MS + 0.4 mg/l BA + 0.01 mg/l NAA + Colchicine	Petiole	Colchicine; 100 mg/l; 37 d	Diploid→tetraploid (2n=4x=64)	Increase in cichoric acid content in octaploid (13.76 and 29.84 mg/g) and tetraploid (10.38 and 22.32 mg/g) than diploid plantlets (8.21 and 18.42 mg/g) aboveground and underground parts, respectively	[28]
Miscanthus x giganteus	NM	NM	Colchicine; NM; NM	Triploid→hexaploid (2n=6x=114)	Lower phenolic compounds in hexaploids (1266 μg/g and 1349 μg/g) than triploids (1570 μg/g and 2268 μg/g)	[29]
Lippia integrifolia	(MS + 2.2 μM BA) + colchicine	Nodal segment	Colchicine; 0.01%; 15 d	Diploid→tetraploid (2n=4x=72)	Increase in total monoterpane (9%)	[30]
Pogastermon cablin	MSL + colchicine→ shaking at 100 rpm at 25°C	Cluster bud	Colchicine; 0.05%; 72 h	Tetraploid→octaploid (2n=8x=128)	Increase in patchoulic alcohol (2.6-fold)	[31]
Chamaemelum nobile L.	MSL + 1 μM NAA + 0.5 μM BAP + Colchicine; 25 °C; Dark for 12 h	Callus	Colchicine; 0.1%; 12 h	Diploid→tetraploid (2n=4x=36)	Increase in essential oil (2-fold)	[32]
Bacopa monnieri	Treated with colchicine (dissolved in 1% DMSO)	Leaf	Colchicine; 0.1%; 2 h	Diploid→tetraploid (2n=4x=128)	Increase in bacoside (more than 4-fold)	[33]
Capsicum frutescens L.	Immersed in colchicine soln. under dark condition; shaken at 100 rpm	Seed	Colchicine; 300 mg/l; 6 h	Diploid→tetraploid (2n=4x=48)	Increase in capsaicin (1.37-fold)	[34]
Aquilaria malaccensis Lamark	NM	Nodal segment	Trifluralin; 0.1 mM; 120 h	Diploid→tetraploid (2n=4x=28)	Presence of sesquiterpene, α-guaiene (29.2%)	[35]
Cannabis sativa L.	Through micropipette → 4 times at 6 h interval	Apical meristem	Colchicine; 0.2%; 24 h	Diploid→tetraploid (2n=4x=40)	Increase in cannabinoid (1.2-fold)	[36]
Anoectochilus formosanus Hayata	MSL + colchicine	Nodal stem	Colchicine; 100 mg/l; 3 d	Diploid→tetraploid (2n=4x=48)	Increase in total flavonoid (0.5-fold) and gastrodin (4-fold)	[37]
Trachyspermum ammi L.	MS + colchicine (Dissolved in distilled H2O + 2% DMSO)	Seed	Colchicine; 0.05%; 24 h	Diploid→tetraploid (2n=4x=36)	Increase in thymol in tetraploid (69.2%) over diploids (49.67%)	[38]
Linum album	MS + 0.4 mg/l KIN + colchicine→ shaking at 100 rpm	Nodal segment	Colchicine; 2.5 mM; 72 h	Diploid→tetraploid (2n=4x=60)	Increase in total phenolics (1.8-and 2.1-fold) and flavonoids (1.55- and 1.53-fold) in regenerated stem and leaf, respectively	[39]
Platycoodon grandiflorum	NM	Seedling	Colchicine; NM; NM	Diploid→tetraploid (2n=4x=36)	Increase in metabolite content (NM)	[40]
Dendrobium hybrids	Suspension culture + colchicine/ Amiprophos-methyl	Protocorm like body	Colchicine; 0.050%; 3 d Amiprophos-methyl; 2.5 μM; 3 d	Diploid→tetraploid (2n=4x=76)	Increase in shihundine and hircinol (NM)	[41]
Sphagmites calduludaccea (L.) Pruski	Incubation in MSL+ 2% DMSO + Colchicine→ shaking (100 rpm) at 25 °C	Shoot tip	Colchicine; 0.05%; 24 h	Diploid→tetraploid (2n=4x=100)	Increase in wedelolactone (1.66-fold)	[42]
Stevia rebaudiana Bertoni	Imbied in colchicine soln. (dissolved in 2% DMSO) in dark	Seed	Colchicine; 0.01%; 24 h	Diploid→tetraploid (2n=4x=44)	Increase in stevioside (2.5-fold) and rebaudioside-A (1.5-fold)	[43]
Plant spp.	Treatment condition	Treated plant part	Type, dosage and exposure duration of antimitotic agent(s)	Resultant ploidy level	Effect on secondary metabolite production	Reference
-------------------------------	---------------------	-------------------	---	------------------------	--	-----------
Eclipta alba (L.) Hassk.	MSL + colchicine + 2% DMSO → shaking at 100 rpm	Shoot tip	Colchicine; 0.1%; 24 h	Diploid → tetraploid (2n=4x=44)	Increase in wederolactone (approx. 3-fold)	[44]
Stevia rebaudiana Bertoni	Cotton plug method → colchicine-soaked cotton placed on bud	Axillary bud	Colchicine; 1.0%; 3 d	Diploid → tetraploid (2n=4x=44)	Increase in stevioside (2.5-fold)	[45]
Saphora tonkinensis Gapnep	Immersed in colchicine soln.	Adventitious bud (from epicotyl)	Colchicine; 0.2%; 30 h	Diploid → tetraploid (2n=4x=36)	Higher productivity of matrine and oxymatrine (1.31-fold)	[46]
Andrographis paniculata	Soaked in colchicine soln at 4 ± 1 °C → fresh colchicine soln. at 40 ± 1 °C	Seed	Colchicine; 0.01%; 40 min & 20 min	Diploid → tetraploid (2n=4x=100)	Increase in andrographolide (28%)	[47]
Salvia miltiorrhiza	MS + 0.5 mg/l TDZ + colchicine	Leaf segment	Colchicine; 0.5 mg/l; 3 w	Diploid → tetraploid (2n=4x=32)	Increase in dihydrotanshinone and total tanshinones (approx. 1.5-fold)	[48]
Blethisa striata (Thunb.) Reichb.	MSL + colchicine; dark at 25 ± 2 °C	Seed	Colchicine; 0.1%; 7 d	Diploid → tetraploid (2n=4x=64)	Increase in total phenolics (1.6 folds)	[49]
Andrographis paniculata (Burm. F.) wall. ex Nees	NM	NM	Colchicine; NM; NM	Diploid → tetraploid (2n=4x=100)	Increase in leaf metabolite (NM)	[50]
Stevia rebaudiana (Bertoni)	Inoculation in colchicine soln.	Adventitious bud	Colchicine; 0.20%; 12 h	Diploid → tetraploid (2n=4x=44)	Increase in steviol glycosides (approx. 1.27-fold)	[51]
Datura stramonium L.	Soaked in colchicine	Seed	Colchicine; 1%; 48 h	Diploid → tetraploid (2n=4x=48)	Increase in alkaloids (7.25%)	[52]
Eucommia sp.	High temperature induction of 2n female parent → 2n female gamete × haploid pollen	Megasporangium	High temperature; NM; NM	Diploid × haploid → triploid (3n=51)	Increase in chlorogenic acid (10.20%), aucubin (1.34%), geniposide (118.22%), geniposidic acid (22.04%)	[53]
Bacopa monnieri	MSL + colchicine soln. → shaking (100 rpm) at 25±2°C; 10 h PP; 20 μmol/mL Li	Nodal segment	Colchicine; 0.5%; 48 h	Diploid → tetraploid (2n=4x=128)	Increase in bacoside (2.3-fold)	[54]
Cannabis sativa	Dipped in MSL + oryzalin media (37.5 mM oryzalin dissolved in 80% ethanol) → tin foil cover of cultures → shaking (150 rpm)	Axillary bud	Oryzalin; 20–40 μM; 24 h	Diploid → tetraploid (2n=4x=40)	Increase in cannabidiol (9%)	[55]
garlic	Imbibed in colchicine soln. (5 drops of 4% DMSO added)	Clove	Colchicine; 0.6%; 24 h	Diploid → tetraploid (2n=4x=32)	Increase in diallyl disulfide (15.13%), allyl methyl trisulfide (24.61%) and diallyl trisulfide (15.57%)	[56]
Physalis peruviana L.	Soaking in colchicine soln.	Seed	Colchicine; 0.6%; 36 h	Diploid → tetraploid (2n=4x=48)	Increase in total flavonoid (88.7%)	[57]
Soaking in colchicine soln.	Germinated seed with 2–3 mm long root in colchicine soln.		Colchicine; 0.6%; 24 h	Increase in total anthocyanin (9.1%)		[59]
Soaking in colchicine soln.			Colchicine; 0.6%; 24 h	Increase in total phenolic (NM)		[58]
Citrus limon (L.) Osbeck	MS + colchicine; 25 ± 2 °C; 16 h PP; 50–60 μmol/m²/s Li	Seed with radicle	Colchicine; 0.025%; 24 h	Diploid → tetraploid (2n=4x=36)	Increase in essential oil and limonene (7%)	[58]
Eucalyptus polybractea RT Baker	Solid medium M1 + colchicine; dark; 25 °C; shaking at 40 rpm	Shoot tip	Colchicine; 0.5%; 4 d	Diploid → tetraploid (2n=4x=44)	Increase in essential oil (3%)	[59]
Plantago psyllium	Colchicine treatment (dissolved in 2% DMSO)	Terminal bud	Colchicine; 0.5%; 24 h	Diploid → tetraploid (2n=4x=24)	Increase in carotenoid (1.5-fold)	[60]
Plantago ovata	Soaking in colchicine soln.	Terminal	Colchicine	Diploid → tetraploid	Increase in carotenoid content	[61]
Table 1 Antimitotic agent(s) and their influence on autoployploidy induction and subsequent secondary metabolites production (arranged in chronological order) (Continued)

Plant spp.	Treatment condition	Treated plant part	Type, dosage and exposure duration of antimitotic agent(s)	Resultant ploidy level	Effect on secondary metabolite production	Reference
Thymus vulgaris L.	Oryzalin (dissolved in 1% DMSO) treatment ➔ sterile H2O washing ➔ culture in MS	Nodal segment	Oryzalin; 80 μM; 24 h	Diploid ➔ tetraploid (2n=4x=60)	Essential oil content increase (from 0.81 to 1.19%); increase in thymol (18.01%) and carvacol (0.49%)	[62]
Melissa officinalis L.	Soaked in colchicine soln.	Seedling	Colchicine; 0.1%; 24 h	Diploid ➔ tetraploid (2n=4x=64)	Increase in carotenoid content (2.9-fold)	[63]
Lippia alba	Inoculation in colchicine + MS medium	Nodal segment	Colchicine; 0.05%; 24 h	Diploid ➔ tetraploid (2n=4x=60)	Increase in flavonoid content (4.93-fold)	[64]
Zingiber officinale Roscoe cv. ‘Fengtou’ ginger	MSL + colchicine soln. ➔ shaking at 150 rpm at 23°C dark	Stem segment	Colchicine; 150 mg/l; 7 d	Diploid ➔ tetraploid (2n=4x=44)	Increase in carotenoids conc. (1.375-fold)	[65]
Panax ginseng Mayer	MSL + colchicine soln. ➔ shaking at 100rpm ➔ dark	Adventitious root	Colchicine; 100 mg/l; 1 d	Tetraploid ➔ mutant (tetraploid)	Increase in ginsenoside production (4.35-fold)	[66]
Stevia rebaudiana	Soaked in colchicine soln.	Seed	Colchicine; 0.2%; 24 h	Diploid ➔ tetraploid (2n=4x=44)	Increase in rebaudioside-A content (2.84%)	[67]
Artemisia cina	Soaked in colchicine soln.	Shoot	Colchicine; 100 mg/l	Diploid ➔ tetraploid (2n=4x=36)	Increase in quercetin content (1.34-fold); kaempferol content (1.47-fold)	[68]
Artemisia cina	NM	NM	Colchicine; NM; NM	Diploid ➔ tetraploid (2n=4x=36)	Increase in artemisinin content (NM)	[69]
Solanum tuberosum	In vitro colchicine treatment (Solanum tuberosum × Solanum kuratohanum)		Colchicine; NM; NM	Diploid ➔ tetraploid (2n=4x=48) (Allotetraploid)	Increase in sesquiterpenes (22-fold)	[70]
Oryzalin treatment	Diploid line (Solanum kuratohanum)		Oryzalin; NM; NM	Diploid ➔ tetraploid (2n=4x=48) (Autotetraploid)	Increase in sesquiterpenes (6-fold)	

2-IP 2-isopentenyl adenine; BS Gamborg’s BS media [71]; BA N6-benzyladenine; d days, DMSO dimethyl sulfoxide; LI light intensity; M1 media [woody basal salt mixture (2.3 g/l) + Murashige and Skoog modified vitamins (1000x) (1 ml/l) + Sucrose (25 g/l) + 2IP (3 μM) + Agar (7 g/l)]; m months; min minutes; MS Murashige and Skoog [72]; MSL MS Liquid Media; NAA α-naphthalene acetic acid; NM not mentioned; PP photoperiod; rpm rotation per minute; r.t. room temperature; SAM shoot apical meristem; TDZ thidiazuron; w weeks

2-IP 2-isopentenyl adenine; BS Gamborg’s BS media [71]; BA N6-benzyladenine; d days, DMSO dimethyl sulfoxide; LI light intensity; M1 media [woody basal salt mixture (2.3 g/l) + Murashige and Skoog modified vitamins (1000x) (1 ml/l) + Sucrose (25 g/l) + 2IP (3 μM) + Agar (7 g/l)]; m months; min minutes; MS Murashige and Skoog [72]; MSL MS Liquid Media; NAA α-naphthalene acetic acid; NM not mentioned; PP photoperiod; rpm rotation per minute; r.t. room temperature; SAM shoot apical meristem; TDZ thidiazuron; w weeks

young meristematic portions are more flexible to ployploidy induction, since they provide better permeability to the antimitotic chemicals; furthermore, as they contain fresh DNA as a result, duplication of genetic content becomes easier and more effective. Across the recently published research reports, it has been found that shoot tips, root tip, shoot apical meristem, petiole, nodal segments, callus, stem disc and leaf were successfully utilized as explants (Table 1). Seeds have also been used for the initiation of polyploidization experiments (Table 1). Other meristematic regions that were investigated into are terminal buds [60], adventitious buds [51], nodal buds [19], cluster buds [31] and axillary buds [55]. As a novel approach, diploid shooty teratomas obtained from Agrobacterium tumefasciens-mediated transformation were utilized for production of stable high vincristine, yielding tetraploid clones in Catharanthus roseus [11]. Clove explants in garlic were employed by Yousef and Elsadek [56]. Another unconventional explant that was utilized are protocorm-like bodies by [41] for tetraploid induction in Dendrobium hybrids. Tsudo et al. [32] have used callus for in vitro autoployploidy induction in Chamaemelum nobile L. Explant tissues should always receive uniform treatment otherwise it may lead to production of mixoploids having variable cytology [79]. Such results were found in the findings of Mansouri and Bagheri [36], although an
increase in cannabinoid content was found in mixoploids over tetraploids. From the different results obtained, shoot tip explants were the most effective during enhancement of phyto-biochemicals in induced autoploids (2–4-fold on average), whereas seeds and apical buds yielded similar improvements (1.5–2.5 times). Such effectivity could be attributed to their higher meristematic activity. Other explant sources (callus, leaf, somatic embryos, etc.) showing redifferentiative regeneration presented 2–4-fold increment in phytochemicals but there remains a chance of occurrence of somaclonal variants and hence reproducibility is compromised. It must be borne in mind that ameliorated secondary metabolite extraction through induced polyploidy asks for uniform and homogenized
phytochemical production and end-product realization. Divergent explants being in their divergent stages of physiological development ramify divergent responses. Differential responses of the explants engaged could be attributed to different factors such as physiological, morphological, biochemical or genetic factors [6]. Meristematic status as well as size of explants favours effective manipulation into desired experimental outcome [80]. Furthermore, different explants have different regenerative capabilities. Hence, apical meristems (shoot or root) with active cell divisional status are more amenable to ploidy alterations and in regeneration of autopolyploid shootlets. On the other hand, other explant sources (such as calli and somatic embryos) with varied tissue organizations might show experimental discrepancies into the realization of expected result.

Influence of type, dosage and exposure duration of antimitotic agent(s)

Antimitotic agents are those group of chemicals that impede spindle formation during mitotic cell division, thereby resulting in the restitution of nucleus to contain all the chromosomes. As a result, the chromosome number of the cell doubles. Conversion to higher ploidy levels comprised of diploids is altered to triploids, tetraploids and octaploids. In the majority of the studies, the usage of colchicine as an antimitotic chemical was reported. However, other mitotic-toxic substances such as oryzalin, trifluralin were also put into use. Colchicine is a slow penetrating chemical impacting epidermal layer, subepidermal layer or entire tissue depending upon its duration of exposure. It mostly affects the dividing cells through interception of spindle fibre formations. Frequent treatments are applied at brief intermissions to juvenile tissues since only a limited number of cells remain at their dividing stage at a particular point of time. ‘Cotton plug’ method [81] involving intermittent colchicine application presents an instance to the above situation. This method is advantageous in the sense that the chemical saturated cotton preserves moisture and ensures better contact with the chemical thereby effecting better cellular interaction and prospective ploidy level changes. However, it must be ensured that the ploidy inducing chemical is supplied regularly otherwise the explant might dry. Varied doses of colchicine were applied (0.01%, 0.05%, 0.1%, 0.2%, 0.25%, 0.3%, 0.5%, 0.6%, 1%, 1.5%, and 2.5%; w/v) for successful polyploidization (Table 1). Very lower (< 1%) concentrations of colchicine were less productive resulting in less frequent polyploidization, whereas higher (> 2%) concentrations exhibited detrimental effects on the exposed plant tissues. The most efficient dose of colchicine was recorded to be 0.1% in terms of higher frequency polyploid development and higher production of secondary metabolites from those polyploids as well. In comparison to colchicine, there are fewer reports utilizations of trifluralin, oryzalin or amiprophos-methyl as antimitotic agents for autopolyploid induction (Table 1). Even though these reports testified significant improvement in secondary metabolite productions in (trifluralin-, oryzalin- or amiprophos-methyl-induced) tetraploids (1.5–2-fold), but the enhancement were comparatively lower to that of the colchloids (colchicine-induced polyploids) (1.5–4-fold on an average). Preferences for the colchicine as an antimitotic agent account for its better action than other polyploidy inducing chemicals (such as trifluralin, oryzalin and amiprophos-methyl) due its better penetrance and quicker mobilization through the tissues. A careful study of the published reports established the fact that in case of successful colchicine treatment, usually lower concentrations were accompanied with longer exposure duration and vice versa. The treatment durations ranged from min to days. Shortest treatment being 20–40 min in Andrographis paniculata [47]. However, such a short exposure intensity was supported via ‘pre-treatment soaking’ in sterile water and subsequent ‘low temperature shock’ (Table 1). Such predisposition presumably improved seed germination and in process exposed the protruded shoot apical meristems to colchicine. In terms of exposure time, the longest duration was recorded as 37 days in Echinacea purpurea L. [28], wherein colchicine was added to the basal media resulting in high frequency tetraploids and octaploids along with augmented chichoric acid production. Addition of antimitotic agents to the basal media increased the exposure time which resulted in higher ploidy level in individual plants. However, low doses of colchicine were added to the media so as to prevent long time exposure-related injury to the tissues. Le et al. [66] have reported initial inoculation in colchicine supplemented basal media for the respective treatment durations and subsequent culturing in fresh colchicine free basal media. The most promising treatment duration was 24 h (Table 1), wherein maximum yield of secondary metabolites was recovered. For the other antimitotic agents (such as trifluralin, oryzalin and amiprophos-methyl), treatment duration could not be determined due to lack of comprehensive investigation. Rahman [35] reported 120 h of trifluralin exposure in Aquilaria malaccensis Lamarck. resulting in production of tetraploids, revealing the presence of sesquiterpenes. Similarly, oryzalin treatment was done mostly for 24 h except for Plankong et al. [34] wherein exposure for only 6 h in Capsicum frutescens L. resulted in tetraploids with elevated capsaicin levels. Different durations of treatments have shown to give different responses [80]. As discussed earlier, exposures of longer duration with lower doses of antimitotic agent have been more effective than exposures of shorter
duration coupled with higher concentrations. Both the extremities of doses stand unprofitable either due to non-effectivity or lethality [61, 79]. Different experimental results testify to the corollary that varied autoploidy like mixoploids and tetraploids have been obtained due differential durations of treatment [64]. Changes in secondary cellular metabolism inflicted due to varied colchicine durations were also reported in recent past [57, 63]. Such subtlety in results across the different published research investigations could be due to differences in chemical absorption in the different tissues of the explants over time and consequent chromosome multiplicative interactions. Differences in durations could also be accounted to explant variedness (size, meristematic tissue status, presence of external cell surface substances like cuticle, waxes, seed coat) and species dependent amenability to artificially induced ploidy changes [80].

Influence on secondary metabolite production

In medicinal plants, secondary metabolites produced per unit biomass are of immense economic importance. Necessarily, in this scenario, doubling of the genomic content of cells propounds functionalized genome multiplications, enhanced protein synthesis and thereby amplified secondary metabolite biosynthesis among the induced autotetraploids (Fig. 2). Alterations in cellular dynamics is positively influenced owing to pronounced increase in cell size, organelle size and numbers, transcriptome products, net photosynthetic rate and upraised metabolic pathways. Accumulation of favourable ‘like’ alleles in one organism coupled with induced doubling of chromosome number further aids in the pharma-chemical productivity and promotes partitioning of cell energy resources for secondary metabolism and trimming down of lengthy pathways via improvised enzyme kinetics [4]. This holds an evolutionary significance as energy saving plants are more favoured. Positive mutagenic changes like deletions, additions translocations or insertions restructure genomic architecture and invoke epigenetic permutations (DNA methylations, gene-silencing). Induced genome multiplications could also impinge cellular homeostatics due to imposed shock leading to inconsistent biochemical production [5, 82]. Table 1 represents a survey of available literature that reveal that there is an accrual in secondary metabolites production among the induced autoployploids. Such amelioration brought about was recorded to be 2–4 times. Secondary metabolites targeted were alkaloids [52], phenolic acids like, cichoric acid [15], caffeic acid [22], terpenoids [10], glycosides [51], essential oils [27] and flavonoids [37]. However, findings of Caruso et al. [13] revealed that similar or lower quantities of phenylpropanoids and metabolites were produced in induced tetraploids of *Solanum bulbocastanum* in comparison to their diploid counterparts. These results differ from the same researcher’s previous findings in *Solanum commersonii* [12] wherein the increment in phenylpropanoid content (~ 2 times) was observed. Thus, such investigations establish the fact that species-related differences eventually affect polyploidy induction with respect to phytometabolite synthesis. Claims of lower production of phenolic compounds were found in the experimental reports of Ghimire et al. [29], wherein hexaploids of *Miscanthus × giganteus* yielded less than their corresponding triploids. However, it was observed that there was quantitative alteration in the component phenolic acids that were produced in the hexaploids as compared to the triploids. Supposedly, there was modification in the gene expression in hexaploids leading to repression and/or de-repression of genes for phenolic acid biosynthesis. Such quantitative and non-quantitative changes leading to biosynthesis of novel phytochemicals originally not detected in their diploid parents were also reported most recently [64, 65, 70]. Cara et al. [70] in their experimental findings documented comparative variations in the secondary biometabolite productions among induced autoployploids and allopolyploids of *Solanum tuberosum* and *Solanum kurtzianum* (Table 1). Obtained altered secondary metabolism as exhibited in their results find relevance in stress resistance breeding due to identification and development of lines producing more amount of stress tolerance conferring osmolytes. Similar opinions of modulations in metabolism favouring plant species adaptability were opined by Kumar [82]. Li et al. [28] in their findings in *Echinacea purpurea* reported cichoric acid enhancement through tetraploid and subsequent octaploid induction. From the results, it can be deduced that the rate of increment in metabolite production increases in tetraploids and is further improved in octaploids. Hence, manifold multiplication of allelic constituents further improvises metabolism pathways through complementation in enzyme productions and action. Such polyploidy induction could be yet another remunerative approach for in vitro autopolyploidization-mediated crop improvement. However, the above-mentioned fact contradicts with opinions of Lavania et al. [4], wherein it was hypothesized that cytosine methylation in genomic regions in tandem with ploidy upliftment diminishes biometabolites production. Occasionally appearing mixoploids (organisms with differential chromosome numbers across cells; chimera) express variation in the gene expression in hexaploids leading to repression and/or de-repression of genes for phenolic acid biosynthesis. Such quantitative and non-quantitative changes leading to biosynthesis of novel phytochemicals originally not detected in their diploid parents were also reported most recently [64, 65, 70]. Cara et al. [70] in their experimental findings documented comparative variations in the secondary biometabolite productions among induced autoployploids and allopolyploids of *Solanum tuberosum* and *Solanum kurtzianum* (Table 1). Obtained altered secondary metabolism as exhibited in their results find relevance in stress resistance breeding due to identification and development of lines producing more amount of stress tolerance conferring osmolytes. Similar opinions of modulations in metabolism favouring plant species adaptability were opined by Kumar [82]. Li et al. [28] in their findings in *Echinacea purpurea* reported cichoric acid enhancement through tetraploid and subsequent octaploid induction. From the results, it can be deduced that the rate of increment in metabolite production increases in tetraploids and is further improved in octaploids. Hence, manifold multiplication of allelic constituents further improvises metabolism pathways through complementation in enzyme productions and action. Such polyploidy induction could be yet another remunerative approach for in vitro autopolyploidization-mediated crop improvement. However, the above-mentioned fact contradicts with opinions of Lavania et al. [4], wherein it was hypothesized that cytosine methylation in genomic regions in tandem with ploidy upliftment diminishes biometabolites production. Occasionally appearing mixoploids (organisms with differential chromosome numbers across cells; chimera) express variation in the gene expression in hexaploids leading to repression and/or de-repression of genes for phenolic acid biosynthesis. Such quantitative and non-quantitative changes leading to biosynthesis of novel phytochemicals originally not detected in their diploid parents were also reported most recently [64, 65, 70]. Cara et al. [70] in their experimental findings documented comparative variations in the secondary biometabolite productions among induced autoployploids and allopolyploids of *Solanum tuberosum* and *Solanum kurtzianum* (Table 1). Obtained altered secondary metabolism as exhibited in their results find relevance in stress resistance breeding due to identification and development of lines producing more amount of stress tolerance conferring osmolytes. Similar opinions of modulations in metabolism favouring plant species adaptability were opined by Kumar [82]. Li et al. [28] in their findings in *Echinacea purpurea* reported cichoric acid enhancement through tetraploid and subsequent octaploid induction. From the results, it can be deduced that the rate of increment in metabolite production increases in tetraploids and is further improved in octaploids. Hence, manifold multiplication of allelic constituents further improvises metabolism pathways through complementation in enzyme productions and action. Such polyploidy induction could be yet another remunerative approach for in vitro autopolyploidization-mediated crop improvement. However, the above-mentioned fact contradicts with opinions of Lavania et al. [4], wherein it was hypothesized that cytosine methylation in genomic regions in tandem with ploidy upliftment diminishes biometabolites production.
Throughout the different studies, it can also be concluded that enhancement in bio-metabolites productions upon induced chromosome doubling is not exactly twice but the ameliorations are more than their diploid counterparts (Table 1). Improvements in secondary biome-tabolites productions could be due to morphological, physiological as well as genetic manifestations engendered upon by induced autoploids. Some of such illustrative causes of autoploidy-mediated secondary metabolite augment-ation are increase in stomatal sizes and densities leading to increased photosynthates output [67], heterosis and gene redundancy imparting transgressive meliorism [56,
66, 68]. Shmeit et al. [62] reckoned that improved primary metabolism could be the presumptive cause of ameliorated secondary metabolism. Modified enzyme profiles and gene expressions also play role in this refinement.

Conclusions

Autopolyploidy is supposed to have an effect on the plant vigour in terms of biomass production and phytochemical biosynthesis. Proliferation in morphological traits and change in cytological structures coupled with novel proteomic features and accumulated secondary phyto-pharmaceuticals are major advantages established in induced autopolyploid cultures. Choice of suitable metaphase inhibitors or the polyploidy inducers is important as these are major players in the process. Of the different antimitotic agents, colchicine has proved to be better in producing stable and functional autopoloids in higher frequencies. Potency of colchicine is due to its better cell to cell mobilization and tissue permeation, thereby resulting in more microtubule blockage during divisional stages and producing autopolyploids. Of the different explants, meristematic shoot tips exhibited higher ploidy conversions. Optimized results were obtained at 0.1% for 24 h of colchicine resulting in desired ploidy level manipulations and improved secondary metabolism. Improvements in biometabolite synthesis stems from improvised enzymatic functioning. Formulation of optimized protocol in different medicinal crops of value enables coordinated in vitro omics studies, contributes to crop evolution studies and unravels unsolved taxonomic queries. This tool in conjunction with next-generation sequencing techniques, hairy root culture technologies and other biotechnological interventions will certainly help researchers in future plant breeding strategies. The demand for medicinally valued plants for treatment and cure of different diseases has increased worldwide. Hence, keeping in mind about the commercial and scientific realizations, ameliorated secondary bio-metabolite production via in vitro induced autopolyploidy emerges as a constructive strategy for morpho-physio-genetic crop improvement.

Abbreviations

BA N°5: Benzyladenine; DMSO: Dimethyl sulfoxide; MS: Murashige and Skoog; MSL: MS liquid media; NAA: α-Naphthalenic acid; TDZ: Thidiazuron

Acknowledgements

Authors acknowledge the e-library assistance from the Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India. We are further thankful to the anonymous reviewer(s) and the editor of this article for their critical comments and suggestions on the manuscript.

Authors’ contributions

SG conceived the idea of the review and surveyed the literature; SG and EM drafted the manuscript equally; SG scrutinized and corrected the manuscript to its final version. Both the authors read and approved the final version of the manuscript prior to its submission.

Funding

Self-funded.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 23 October 2020 Accepted: 22 December 2020 Published online: 08 January 2021

References

1. Ranney TG (2006) Polyploidy from evolution to new plant development. Combined Proc Int Plant Propagators’ Soc 56:137–142
2. Gantait S, Mandal N, Bhattacharya S, Das PK (2011) Induction and identification of tetraploids using in vitro colchicine treatment of Gerbera jamesonii bolus cv. Sicilla. Plant Cell Tiss Org Cult 106:485–493
3. Moghbel N, Borujeni MK, Bernard F (2015) Colchicine effect on the DNA content and stomata size of Glycyrrhiza globulifera and Carthamus tinctorius L. cultured in vitro. J. Genet Eng Biotechnol 13:1–6
4. Lavinia UC, Srivastava S, Lavinia S, Basu S, Misra NM, Mukai Y (2012) Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytokine methylation. Plant J 71:539–549
5. Iannicelli J, Guarrinello J, Tossi VE, Regaldo DD, Di Ciacco L, van Baren CM, Álvarez SP, Escandón AS (2020) The “polyploid effect” in the breeding of aromatic and medicinal species. Sci Hortic 260:108854
6. Salma U, Kundu S, Mandal N (2017) Artificial polyploidy in medicinal plants: advancement in the last two decades and impending prospects. J Crop Sci Biotechnol 209:19
7. Niazian M, Nalbasi AM (2020) Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell Tiss Org Cult 142:447–469
8. Dhawan OP, Lavinia UC (1996) Enhancing the productivity of secondary metabolites via induced polyploidy: a review. Euphytica 87:81–89
9. Xing SH, Guo XB, Wang Q, Pan QF, Tian YS, Liu P, Zhao JY, Wang GF, Sun XF, Tang KX (2011) Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don. Biomed Res Int 2011:793198
10. Kaensaksit T, Soontomchainaksaeng P, Soonthornchareonnnon N, Prathantranurag S (2011) In vitro induction of polyploidy in Centella asiatica (L) urban. Plant Cell Tiss Org Cult 107:187
11. Begum F (2011) Augmented production of vincristine in induced tetraploids of Agrobacterium transformed shotty tetarams of Catharanthus roseus. Med Plant 359–64
12. Caruso I, Lepore L, De Tommasi N, Dal Piaz F, Frusciante L, Aversano R, Garamone R, Carputo D (2011) Secondary metabolite profile in induced tetraploids of wild Solanum commersonii dun. Chem Biodivers 8:2226–2237
13. Caruso I, Dal Piaz F, Malafontna N, De Tommasi N, Aversano R, Zottelle WC, Scarano MT, Carputo D (2013) Impact of ploidy change on secondary metabolites and photochemical efficiency in Solanum bulbocastanum. Nat Prod Commun 8:1934578X1300801011
14. Amhadi T, Jafarkhani Kermani M, Mashayekhi K, Hasaniolo T, Sharifatpanahi ME (2013) Comparing plant morphology, fertility and secondary metabolites in Rosa hybrida cv. Iceberg and its chromosome-doubled progenies. Int Res J Appl Basic Sci 4:3843–3849
15. Abdoli M, Moieni A, Badi HN (2013) Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Echinaea purpurea (L.). Acta Physiol Plant 35:2075–2083
16. Yadav AK, Singh S, Yadav SC, Dhyani D, Bhardwaj G, Sharma A, Singh B (2013) Induction and morpho-chemical characterization of Stevia rebaudiana colchitoile. Indian J Agric Sci 83:159–165
17. Ghotbi Ravandi E, Rezanegad F, Zolala J, Dehghan E (2013) The effects of chromosome-doubling on selected morphological and phytochemical characteristics of Cichorium intybus L. J. Hortic Sci Biotech 88:701–709
18. Dixit V, Chaudhary BR (2014) Colchicine-induced tetraploidy in garlic (Allium sativum L.) and its effect on allin concentration. J. Hortic Sci Biotech 89: 585–591
19. Gomes SLS, Saldanha CW, Nieves CS, Trevizani M, Raposo NRB, Notini MM, de Oliveira Santos M, Campos JMS, Otoni WC, Viccini LF (2014) Karotype, genome size, and in vitro chromosome doubling of Paffia glomerata (Spreng.) Pedersen. Plant Cell Tiss Organ Cult 118:45–56
20. Zahedi AA, Hosseini B, Fattahi M, Dehghan E, Parastar H, Madani H (2014) Overproduction of valuable methoxylated flavones in induced tetraploid plants of Dracaopholium kotschyi Boiss. Bot Stud 55:22
21. Thong-on W, Animatu P, Pitiporn S, Soonthornchareonnont N, Prathantanurag S (2014) Field evaluation of in vitro-induced tetraploid and diploid Centella asiatica (L.) urban. J Nat Med 68:267–273
22. Xu CG, Tang TX, Chen R, Liang CH, Liu XY, Wu CL, Yang YS, Yang DP, Wu H (2014) A comparative study of bioactive secondary metabolite production in diploid and diploid Echinacea purpurea (L.) Moench. Plant Cell Tiss Organ Cult 116:323–332
23. Dixit V, Verma S, Chaudhary BR (2015) Changes in ploidy and its effect on thymoquinone concentrations in Nigella sativa L. seeds. J Hortic Sci Biotech 90:537–542
24. Hegde SN, Rameshing CN, Vasanhardha M (2015) Characterization of Stevia rebaudiana Bertoni polyploloids for growth and quality. Med Plant J 7:188–195
25. Tavan M, Miremadi M, Karimzadeh GH, Rahimzadeh GH (2015) Tetraploid induction changes in morphological, anatomical and phytochemical characteristics of Thymus persicus (Lamiaceae). Plant Cell Tiss Organ Cult 122:573–583
26. Rameshing CN, Hegde SN, Vasanhardha M (2015) Enhancement of stevioside glycosides in stevia (Stevia rebaudiana Bertoni) through induction of polyploidy. Curr Trend Biotechnol Pharma 9:141–146
27. Hannweg K, Visser G, de Jager K, Bertling I (2016) In vitro-induced polyploloidy and its effect on horticultural characteristics, essential oil composition and bioactivity of Tetradenia riparia. South Afr J Bot 105:186–191
28. Li Q, Yang Y, Wu H (2016) In vitro segregation of tetraploid and octoploid plantlets from colchicine-induced ploidier chimeras in Echinacea purpurea L. HortSci 51:549–557
29. Ghimire BK, Seong ES, Nguyen TX, Yoo JH, Seong ES, Nguyen TX, Yoo JH, Yu CY, Kim SH, Chung IM (2016) A comparative study of bioactive secondary metabolite production in diploid and diploid Cannabis sativa L. by colchicine treatment and essential oil productivity of its capitulum. In Vitro Cell Dev Biol-Planta 52:479–483
30. AV K, NS C, MA C, RH A, MB K (2017) In vitro enhancement of bacoside in its diploid. Plant Foods Hum Nutr 72:3–19
31. Shin JH, Ahn YG, Jung JH, Woo SH, Kim HH, Gorinstein S, Boo HO (2017) Identification and characterization of diploid and Tetraploid in Plantago grandiflorum. Plant Foods Hum Nutr 72:3–19
32. Grosso V, Farina A, Giorgi D, Nardi L, Diretto G, Lucetti S (2018) A high-throughput flow cytometry system for early screening of in vitro made polyploloids in Dunorobium hybrids. Plant Cell Tiss Organ Cult 132:57–70
33. Rahman SSBA (2017) Enhancement of key chemical constituents in Aquilaria malaccensis (Lamiaceae) using colchicine. Phytochem Anal 28:761–768
34. Mansouri H, Bagheri M (2017) Induction of polyploidy and its effect on essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tiss Organ Cult 130:543–551
35. Javadian N, Karimzadeh G, Sharifi M, Moieni A, Behmanesh M (2017) In vitro polyploloid induction: changes in morphology, podophyllotoxin biosynthesis, and expression of the related genes in Linum album (Linaceae). Planta 245:1165–1178
36. Gotsuo V, Farina A, Giorgi D, Nardi L, Diretto G, Lucetti S (2018) A high-throughput flow cytometry system for early screening of in vitro made polyploloids in Dunorobium hybrids. Plant Cell Tiss Organ Cult 132:57–70
37. Kundu S, Salma U, Ali MN, Mandal N (2018) In vitro tetraploidization for the augmentation of wdeloleactone in Sphagnum calemdulaces (L.) Pruski. Acta Physiol Plant 40:215
38. Zhang H, An S, Hu J, Lin Z, Liu X, Bao H, Chen R (2018) Induction, identification and characterization of polyploidy in Stevia rebaudiana Bertoni. Plant Biotechnol 35:81–86
39. Salma U, Kundu S, Hazra AK, Ali MN, Mandal N (2018) Augmentation of wdeloleactone through in vitro tetraploid induction in Eclipta alba (L.) Haskk. Plant Cell Tiss Organ Cult 133:289–298
40. Mahdi SA, Meena CM, Tholakabavi A (2018) Induction of genetic variability by colchicine treatment in Stevia rebaudiana Bertoni. Al-Qadisiyah J Pure Sci 23:161–173
41. Wei KH, Xu JP, Li CX, Yao J, Mao JH, Li MH (2018) In vitro induction and generation of tetraploid plants of Sophora tonkinensis Gapnev. Pharmacog Mag 14:149
42. Qi-Qing Li, ZHANG J, J-Hua LIU, Bo-Yang YU (2018) Morphological and chemical studies of artificial Andrographis paniculata polyploloids. Chin J Nat Med 16:81–89
43. Chen EG, Tsai KL, Chung HH, Chen JT (2018) Chromosome doubling-enhanced biomass and dihydroxyinosilhione I production in Salvia miltiorrhiza, a traditional Chinese medicinal plant. Molecules 23:3106
44. Li M, Ding B, Huang W, Pan J, Ding Z, Jiang F (2018) Induction and characterization of tetraploid seeds from seeds of Bletilla striata (Thunb.) Reichb. F. Biomed Res Int 2018:3246398
45. Basu S, Lodh D (2018) Artificial induction of polyploidy in Andrographis paniculata (Burm. F.) wall. Ex Nees. J Indian Bot Soc 97:21–28
46. Jiang ZW, Tang XL, Liu WH, Song CN (2018) A comparative morphological and transcriptomic study on autotetraploidy Stevia rebaudiana (Bertoni) and its diploid. Plant Physiol Biochem 143:154–164
47. Al-Taweel SK, Al-Ammari HA, Al-Rawi TK (2019) Induction and flow cytometry, GC-MS identification of tetraploid through colchicine treatments in Datura stramonium L. Plant Arch 19:241–250
48. Li Y, Yang J, Song L, Qi Q, Du K, Han Q, Kang X (2019) Study of variation in the growth, photosynthesis, and content of secondary metabolites in Eucosmias annuus. Trees 33:817–826
49. Intihma P, Sujupuli K (2019) Improvement of growth and bacoside production in Bacopa monnieri through induced autotetraploidy with colchicine. Peer J 7:e7966
50. Parsons JL, Martin SL, James T, Goliena G, Boudko EA, Hepworth SR (2019) Polyploidization for the genetic improvement of Cannabis sativa. Front Plant Sci 10:476
51. Yousef EAA, Eladek MA (2020) A comparative study of morphological and volatile oil composition characteristics in diploid and tetraploid garlic plants. Egypt J Hortic 46:295–308
52. Cękajlkožnig J, Ozden M (2019) Effects of colchicine application and ploidy level on fruit secondary metabolite profiles of goldenberry (Physalis peruviana L.). Appl Ecol Environ Res 18:289–302
53. Bhuvanaswari G, Thirunagasampandan R, Goguramnath M (2019) Effect of colchicine induced tetraploidy on morphology, cytology, essential oil composition, gene expression and antioxidant activity of Citrus limon (L.) Osbeck. Physiol Mol Biol Plants 26:271–279
54. Fernando SC, Goodger JQ, Chew BL, Cohen TJ, Woodrow IE (2019) Induction and characterisation of tetraploidy in Eucalyptus polycatec CRAPE Raker. Ind Crop Prod 140:111633
55. Sabzezari M, Hoveidamanesh S, Moradi es, Mohammadi M (2019a) Morphological, anatomical, physiological, and cytological studies in diploid and tetraploid plants of Plantago psyllium. Plant Cell Tiss Organ Cult 139:131–137
56. Sabzezari M, Hoveidamanesh S, Moradi es, Mohammadi M (2019b) Morphological, anatomical, physiological, and cytological studies in diploid and tetraploid plants of Inga psylphyz (Plantago ovata Forsk). Genet Resour Crop Evol 67:129–137
62. Shmeit YH, Fernandez E, Novy P, Kloucek P, Orosz M, Koskoska L (2020) Autopolyploidy effect on morphological variation and essential oil content in Thymus vulgaris L. Sci Hortic 263:109095

63. Talei D, Fotokian MH (2020) Improving growth indices and productivity of phytochemical compounds in lemon balm (Melissa officinalis L) through induced polyploidy. BioTechnol 101:215–226

64. Juliao SA, Ribeiro CDV, Lopes JML, Matos EMD, Reis AC, Peixoto PHP, Machado MA, Azevedo ALS, Graziul RM, Campos JMSD, Viccini LF (2020) Induction of synthetic polyploids and assessment of genoic stability in Lippia alba. Front Plant Sci 11:292

65. Zhou J, Guo F, Fu J, Xiao Y, Wu J (2020) In vitro polyploid induction using colchicine for Zingiber officinalis cv. ‘Fengtou’ ginger. Plant Cell Tiss Org Cult 142:87–94

66. Le KC, Ho TT, Lee JD, Paek KY, Park SY (2020) Colchicine mutagenesis from long-term cultured adventitious roots increases biomass and ginsenoside production in wild ginseng (Panax ginseng). Agronomy 10:785

67. Talei D, Nekouei MN, Mardi M, Kadkhodaei S (2020) Improving productivity of stevial glycosides in Stevia rebaudiana via induced polyploidy. J Crop Sci Biotech 23:301–309

68. Kasmiyati S, Kristiani EBE, Herawati MM (2020) Effect of induced polyploidy on plant growth, chlorophyll and flavonoid content of Artemisia cina. Biosaintifika: J Biol Biol Edu 12:90–96

69. Herawati MM, Pudjihartati E, Kurnia TD, Setiawan AW (2020) The agronomic performance and artemisinin content of colchicine-induced polyploid genotypes Artemisia cina. IOP Conf. Series: Mater Sci Eng 959:15pp. Joint Coference on Chemistry, Indonesia

70. Cara N, Piccoli PN, Bocato L, Marfil CF, Maueili RW (2020) Variation in the amino acids, volatile organic compounds and terpenes profiles in induced polyploids and in Solanum tuberosum varieties. Phytochem 180:112516

71. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

72. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–495

73. Gao SL, Zhu DN, Cai ZH, Xu DR (1996) In vitro induction and identification of autotetraploids of Dioscorea zingiberensis. In Vitro Cell Dev Biol-Plants 42:427–433

74. Kaurnskiri N, Soontornchainakhaeng P, Soonthorncharenon N, Prasarturanag S (2010) Mutation breeding of Centella asiatica (L.) urban for medicinal purposes. Planta Med 76:P182

75. Majdi M, Karimzadeh G, Malboobi MA, Omidbaigi R, Mirzaghaderi G (2010) Induction of tetraploidy to feverfew (Tanacetum parthenium Schlecht): morphological, physiological, cytological, and phytochemical changes. HortSci 45:16–21

76. Sanwal SK, Rai N, Singh J, Buragohain J (2010) Antioxidant phytochemicals and gingerol content in diploid and tetraploid clones of ginger (Zingiber officinalis). Sci Hortic 124:280–285

77. Touchell DH, Palmer IE, Ranney TG (2020) In vitro manipulation for crop improvement. Front Plant Sci 11:722

78. Eng WH, Ho WS (2019) Polyploidization using colchicine in horticultural plants: a review. Sci Hortic 246:604–617

81. Shahriari-Ahmadi F, Deghan E, Farsi M, Arzib M (2008) Tetraploid induction of Hyoscyamus muticus L. using colchicine treatment. Pak J Biol Sci 11:2653–2659.

82. Kumar S (2021) Impact of ploidy changes on secondary metabolites productions in plants. In: Srivastava AK, Kannaujiya VK, Singh RK, Singh D (eds) Evolutionary diversity as a source for anticancer molecules. Academic press, pp 29–46