Meta-learning for downstream aware and agnostic pretraining

Hongyin Luo1 Shuyan Dong2* Yung-Sung Chuang3 Shang-Wen Li2*

1MIT CSAIL, 2Amazon AI, 3National Taiwan University

{hyluo}@mit.edu, {shuyand,shangwel}@amazon.com, {chuangyungsung}@gmail.com

Abstract

Neural network pretraining is gaining attention due to its outstanding performance in natural language processing applications. However, pretraining usually leverages predefined task sequences to learn general linguistic clues. The lack of mechanisms in choosing proper tasks during pretraining makes the learning and knowledge encoding inefficient. We thus propose using meta-learning to select tasks that provide the most informative learning signals in each episode of pretraining. With the proposed method, we aim to achieve better efficiency in computation and memory usage for the pretraining process and resulting networks while maintaining the performance. In this preliminary work, we discuss the algorithm of the method and its two variants, downstream-aware and downstream-agnostic pretraining. Our experiment plan is also summarized, while empirical results will be shared in our future works.

1 Introduction and related works

Recently neural network pretraining, such as BERT (Devlin et al., 2019), OpenAI GPT (Radford et al., 2018), XLNet (Yang et al., 2019), and ELECTRA (Clark et al., 2019) has yielded significant performance improvement for various downstream applications in natural language processing. Usually, semantic and syntactic information is implicitly learned from the co-occurrence of words and sentences in datasets and encoded in the networks for general purposes. The entire networks or part of their layers are then finetuned for the downstream usage. To better leverage training corpora and discover all valuable information, ERNIE 2.0 (Sun et al., 2020) proposes a sequential multitask pretraining framework containing a variety of word-, structure-, and semantic-aware pretraining tasks. Although increasing the diversity of pretraining tasks continually improves model performance accuracy, the lack of mechanisms in selecting and scheduling tasks makes the training process, model serving, and memory footprint bulky. The model expressivity has to grow accordingly to encode information from all the tasks generally.

To address the challenge, we propose a framework using meta-learning to schedule tasks and make pretraining more efficient in this preliminary paper. Meta-learning is commonly used in learning model architectures, hyperparameters, or learning algorithms that are generalizable across tasks through episodic training (Finn et al., 2017; Vinyals et al., 2016; Snell et al., 2017; Luo et al., 2020; Li et al., 2021). Hence, we leverage meta-learning to formulate each pretraining batch as an episode, and select the pretraining task offering the most helpful training signals in the episode, instead of following predefined or sequential order of tasks, to update the model parameters. With the formulation, we explore two variants, downstream-aware and downstream-agnostic pretraining, that utilize loss evaluating training signals with or without labels in downstream applications. The episodic task selection is expected to encode lexical, syntactic, and semantic information across various tasks more efficiently. In this preliminary work, we introduce the detailed algorithm, implementation challenges and corresponding solutions, and experiment settings. We will share empirical results later.

2 Method and experiment plan

To make multitask pretraining more efficient, we propose a framework of utilizing meta-learning to schedule tasks used for network pretraining. We summarize the framework step-by-step in Algo-
Algorithm 1 Meta-learning based network pretraining

Inputs: Set of all source and target tasks \(S, T \); data distribution over each source and target task \(p^s(\tau), p^t(\tau); L_\tau \), the loss function evaluated on a subtask \(\tau \) sampled from \(p^s(\tau) \) or \(p^t(\tau) \); learning rates \(\alpha, \lambda \), number of batches \(M, N \).

Output: Optimized network parameters \(\theta \).

1. Initialize \(\theta \);
2. **while** not done **do**
 3. Sample \(M = |T| \) target subtasks (i.e., batches) \(\tau_T = \bigcup_{t=1}^M \tau_t \), where \(\tau_j \sim p^t(\tau) \) and \(j = 1...M \);
 4. **for** \(s \in S \) **do**
 5. Sample \(M \) subtasks \(\tau_s \sim p^s(\tau) \), \(i = 1...M \);
 6. \(u(s) = 0 \);
 7. **for all** \(\tau_s \) **do**
 8. Compute gradient for fast adaptation:
 9. \(\theta' = \theta - \alpha \nabla_\theta \tau_s(f(\theta)) \);
 10. Evaluate updated parameters on target subtasks: \(u(s) \leftarrow scorer(\theta', \tau_s) \)
 11. \(\hat{s} = \arg\max u(s) \)
 12. Sample \(N \) subtasks \(\tau_s \sim p^s(\tau) \), \(i = 1...N \);
 13. **for all** \(\tau_s \) **do**
 14. Compute gradient and update parameters:
 15. \(\theta = \theta - \lambda \nabla_\theta L_{\tau_s}(f(\theta)) \);

3. We will focus on four applications for the downstream tasks and the target pretraining tasks in the downstream-aware setting: relation extraction, semantic role labeling, general language and sentence understanding, and machine reading comprehension. In this setting, additional prediction heads will be added to the backbone network separately for different tasks. These heads are pretrained (in the downstream-aware setting) and finetuned (in both downstream-aware and downstream-agnostic settings) for evaluation. We will employ CoNLL04 (Roth and Yih, 2004), CoNLL-2005 (Carreras and Márquez, 2004), CoNLL-2004 (Sun et al., 2020) as the work provides good coverage of tasks for word-, structure-, and semantic-aware pretraining signals. Masked passage retrieval (Glass et al., 2020), text generation, and unsupervised question answering (Luo et al., 2021) tasks will also be investigated to provide generation and passage level pretraining losses.

1Similar to approaches in reinforcement learning, the epsilon-greedy algorithm can be used to choose between exploration and exploitation randomly.
In this work, we propose a meta-learning-based downstream-aware and downstream-agnostic pre-training method, where pretraining tasks are selected episodically from a list of candidate tasks to improve pretraining efficiency while maintaining the performance. We summarize the algorithm and our experiment plan. Empirical results will be shared in our future works.

3 Conclusion

In this work, we propose a meta-learning-based downstream-aware and downstream-agnostic pre-training method, where pretraining tasks are selected episodically from a list of candidate tasks to improve pretraining efficiency while maintaining the performance. We summarize the algorithm and our experiment plan. Empirical results will be shared in our future works.

References

Xavier Carreras and Luís Mármol. 2005. Introduction to the conll-2005 shared task: Semantic role labeling. In Proceedings of the ninth conference on computational natural language learning (CoNLL-2005), pages 152–164.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2019. Electra: Pre-training text encoders as discriminators rather than generators. In ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In NAACL.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML.

Michael Glass, Alfo Gliozzo, Rishav Chakravarti, Anthony Ferritto, Lin Pan, GP Shrivatsa Bhargav, Dinesh Garg, and Avirup Sil. 2020. Span selection pre-training for question answering. In ACL.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. 2019. Natural questions: A benchmark for question answering research. Transactions of the Association for Computational Linguistics, 7:453–466.

Shang-Wen Li, Jason Krone, Shuyan Dong, Yi Zhang, and Yaser Al-onaizan. 2021. Meta learning to classify intent and slot labels with noisy few shot examples. In 2021 IEEE Spoken Language Technology Workshop (SLT), pages 1004–1011.

Yinhao Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Hongyin Luo, Shang-Wen Li, and James Glass. 2020. Prototypical q networks for automatic conversational diagnosis and few-shot new disease adaption. In Interspeech.

Hongyin Luo, Shang-Wen Li, Seunghak Yu, and James Glass. 2021. Cooperative learning of zero-shot machine reading comprehension. arXiv preprint arXiv:2103.07449.

Sameer Pradhan, Alessandro Moscitti, Nianwen Xue, Olga Uryupina, and Yuchen Zhang. 2012. Conll-2012 shared task: Modeling multilingual unrestricted coreference in ontonotes. In Joint Conference on EMNLP and CoNLL-Shared Task, pages 1–40.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine comprehension of text. In EMNLP.

Dan Roth and Wen-tau Yih. 2004. A linear programming formulation for global inference in natural language tasks. Technical report, Department of Computer Science, University of Illinois at Urbana-Champaign.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for few-shot learning. In NeurIPS.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0: A continual pre-training framework for language understanding. In AAAI.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. 2016. Matching networks for one shot learning. In NeurIPS.

Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda. 2006. Ace 2005 multilingual training corpus. Linguistic Data Consortium, Philadelphia, 57:45.

Alex Wang, Yada Prusachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2019. Superglue: A stickier benchmark for general-purpose language understanding systems. In NeurIPS.
Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018. Glue: A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. In NeurIPS.