Research article

The complete mitochondrial genome of the sea spider *Nymphon gracile* (Arthropoda: Pycnogonida)

Lars Podsiadlowski*1 and Anke Braband2

Address: 1Department of Animal Systematics and Evolution, Institute of Biology, Freie Universität Berlin, Konigin-Luise-Str. 1-3, D-14195 Berlin, Germany and 2Department of Comparative Zoology, Institute of Biology, Humboldt Universität, Phillipstr. 13, D-10115 Berlin, Germany

Email: Lars Podsiadlowski* - lars@podsiadlowski.de; Anke Braband - phylogenetics@t-online.de

* Corresponding author

Abstract

Background: Mitochondrial genomes form units of genetic information replicating independently from nuclear genomes. Sequence data (most often from protein-coding genes) and other features (gene order, RNA secondary structure) of mitochondrial genomes are often used in phylogenetic studies of metazoan animals from population to phylum level. Pycnogonids are primarily marine arthropods, often considered closely related to chelicerates (spiders, scorpions and allies). However, due to their aberrant morphology and to controversial results from molecular studies, their phylogenetic position is still under debate.

Results: This is the first report of a complete mitochondrial genome sequence from a sea spider (*Nymphon gracile*, class Pycnogonida). Gene order derives from that of other arthropods so that presumably 10 single tRNA gene translocations, a translocation of the mitochondrial control region, and one large inversion affecting protein-coding genes must have happened in the lineage leading to *Nymphon gracile*. Some of the changes in gene order seem not to be common to all pycnogonids, as those were not found in a partial mitochondrial genome of another species, *Endeis spinosa*. Four transfer RNAs of *Nymphon gracile* show derivations from the usual cloverleaf secondary structure (truncation or loss of an arm). Initial phylogenetic analyses using mitochondrial protein-coding gene sequences placed Pycnogonida as sister group to Acari. However, this is in contrast to the majority of all other studies using nuclear genes and/or morphology and was not recovered in a second analysis where two long-branching acarid species were omitted.

Conclusion: Extensive gene rearrangement characterizes the mitochondrial genome of *Nymphon gracile*. At least some of the events leading to this derived gene order happened after the split of pycnogonid subtaxa. Nucleotide and amino acid frequencies show strong differences between chelicerate taxa, presumably biasing phylogenetic analyses. Thus the affinities between Pycnogonida and Acari (mites and ticks), as found in phylogenetic analyses using mitochondrial genes, may rather be due to long-branch attraction and independently derived nucleotide composition and amino acid frequency, than to a real sister group relationship.
Background
Due to their evolutionary history as derived endosymbionts, mitochondria have retained genetic material – the mitochondrial genome. Much of their original gene content was eliminated or transferred to the nucleus [1], while only a small proportion of genes has persisted to the present. In triploblastic animals the circular mitochondrial genome is sized around 11–20 kilobases and contains typically 37 genes: 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes [2]. Mitochondrial genomes serve as a simple model for modes and mechanisms of gene rearrangements and genome evolution and provide large datasets for phylogenetic analyses. The frequent use of mitochondrial genes for inferring phylogenetic relationships of animals is due to their universal distribution among taxa, strongly conserved regions in some genes (facilitating universal PCR primer sets) and the absence of paralog genes [3]. How ever, the incidental presence of nuclear copies of mitochondrial genome data from partial mitochondrial genomes suggest an affinity to Acari (mites and ticks) [13], thus implying a terrestrial origin of pycnognonids. Recently, neuroanatomical data suggest that pycnogonid chelifores are not positionally homologous to cheliceres [15], thus questioning pycnogonid affinities to Euchelicerata. However, how gene expression data do not support the this view [16]. We report here the first complete mitochondrial genome sequence for a member of the Pycnogonida, Nymphon gracile. We use these data to analyse chelicerate relationships and to evaluate hypotheses of the phylogenetic position of Pycnogonida. We also discuss ancestral and derived features of the mitochondrial genome of Nymphon gracile and the influence of AT-content and differences of amino acid frequencies on phylogenetic analyses.

Results and discussion
Mitochondrial genome organization
The mitochondrial genome of Nymphon gracile is a circular DNA molecule of 14,681 bp length [GenBank:DQ666063]. All 37 genes expected for animal mitochondrial genomes have been identified. Gene overlaps (7 bp) exist between nad4 and nad4L, as well as between atp8 and atp6, as is reported for many other mitochondrial genomes. Six out of thirteen protein-coding genes show incomplete stop codons (T or TA), which is probably compensated by posttranscriptional polyadenylation [17].

Gene order (Fig. 1, Tab. 1) of the mitochondrial genome differs in many positions from that of the horseshoe crab Limulus polyphemus, which is considered to represent the euarthropod ground pattern [18]. One large segment (about 3,500 bp) containing the protein-coding genes cox1, cox2, nad2 and the transfer RNA genes trnC, trnW, trnI were probably subject to an inversion. Maintaining their original gene order, these genes were found on the opposite strand in Nymphon gracile compared to other arthropods. Probably trnK and trnD were also involved in the same inversion, meanwhile separated from cox2 by six tRNA genes, which have different positions in other arthropods. Further translocation events of single tRNA genes may have led to their actual position in Nymphon gracile. Three tRNAs were lost from the inverted segment (trnQ, trnM, trnY) and translocated to other positions in the mitochondrial genome. Two tRNA genes (trnE and trnR) have interchanged their positions, making it impossible to decide which of them was translocated and which stayed in its position. Supposing that trnK and trnD have changed their position due to the large inversion mentioned above, altogether ten tRNA genes have undergone individual translocation events. Except from those involved in the inversion, no other protein-coding or rRNA gene has changed its position compared to the
Nymphon gracile

Figure 1
Gene order in pycnogonids (Nymphon gracile, this study; Endeis spinosa, according to [13]). Comparison to the ground pattern of Euarthropoda (here represented by Limulus polyphemus and Heptathela hangzouensis). Asterisks indicate that a gene is located on the opposite strand. Transfer RNA genes are depicted by their corresponding one-letter amino acid code. Colored genes have derived relative positions in the derived gene order of Nymphon gracile. Lines refer to putative independent translocation events.

The large non-coding region is present between nad3-trnE-trnR and trnY-trnF-nad5. This is very likely to be the mitochondrial control region, which for eukaryotes must have been translocated, too. As the strand bias of nucleotide frequencies is comparable to other arthropods (see below) the control region seems not to be inverted as it is assumed for scorpions and two web spider species [13].

A partial (5105 bp) mitochondrial genome of another species of Pycnogonida, Endeis spinosa [GenBank:AY731173], was published recently [5,13] and revealed no differences in gene order to Limulus polyphemus in the segment ranging from nad2 to nad3. Therefore we presume that the large inversion recorded in Nymphon gracile must have happened after the split between the two clades. Assuming a larger taxon sampling the derived gene order of Nymphon gracile may serve as an apomorphic character supporting a subtaxon of Pycnogonida. Six of the ten individually translocated tRNA genes of Nymphon gracile found their new position between trnK and cox2. In Endeis spinosa these two genes are adjacent, therefore these six tRNA translocations may also have happened after the split of the two clades.

Secondary structure of RNAs
Out of 22 transfer RNAs usually present in metazoan mitochondrial genomes we have identified 18 by tRNA-scan [19]. The remaining four show derivations from the typical cloverleaf structure: the DHU stem and loop is extremely short or missing in trnA, trnN and trnS1, while it is definitely missing in trnR (putative secondary structures are shown in Fig. 2). Such aberrant secondary structures are often found in metazoan mitochondrial tRNAs, some taxa even show derivations in the majority of their tRNA genes (e.g. some nematodes [20], or web spiders [21,22]). It is not clear if the function of such derived tRNAs is maintained in every case, as there are reports of recruitment of nuclear tRNAs into mitochondria [1]. In spiders however, it is very likely that tRNAs are functional, despite lacking the TΨC stem and loop [23]. trnS1 from the horseshoe crab Limulus polyphemus is also missing the complete DHU stem and loop, while all other tRNAs in this species could be folded into cloverleaf structures [24].

Nucleotide composition
Nucleotide compositions of protein-coding and ribosomal RNA genes clearly demonstrate a strand specific bias (Tab. 2). CG-skew is positive for all genes on (+)-strand and negative for genes on (-)-strand, AT-skew is positive or only slightly negative in (+)-strand genes, while strongly negative in (-)-strand genes. This is also true for genes which have changed from one strand to the other due to an inversion during pycnogonid evolution (cox1, cox2, nad2). Strand bias in nucleotide composition is
probably due to asymmetries during the replication of mitochondrial genomes, leading to different mutational pressures on both strands. In the literature the exact mechanisms are controversially discussed: one strand stays single-stranded during replication in the strand-displacement model [25], or is subject to extensive incorporation of ribonucleotides in the strand-coupled model [26]. Almost all arthropods show this strand bias [5,13]. In some species a reversal is seen, probably due to a strand swap of the mitochondrial control region (e.g. in scorpions and web spiders [5], as well as in an isopod [27]). As seen from the pycnogonid and spider examples, strand reversal of single genes leads to a quick reversal of strand bias, too. In performing phylogenetic analyses one has to take into account these findings and probably has to modify evolutionary models [5].

Phylogenetic analysis

Phylogenetic analysis using nucleotide sequences from all mitochondrial protein-coding genes (Fig. 3) reveals a strong support for a taxon comprised of *Nymphon gracile* and Acari (mites and ticks) from BI but not from ML bootstrap analysis. Similar results were published based on an analysis of five mitochondrial protein-coding genes [13]. This contradicts almost every other phylogenetic study which included pycnogonids (the only recent exception not based on mitochondrial genes is a combined analysis of 18S/28S sequences and morphological data, including

Gene	Strand	Position number	Size(bp)	Size (aa)	Start codon	Stop codon	Intergenic nucleotides
trnY	-	1–67	67	-	-	-	-
trnF	-	71–134	64	-	-	-	-
nadS	-	135–1809	1675	558	ATA	T	4
trnH	-	1814–1876	63	-	-	-	-
nad4	-	1879–3261	1383	460	ATG	TAA	-7
nad4L	-	3255–3535	281	93	ATG	TA	13
trnT	+	3549–3609	61	-	-	-	0
nad6	+	3610–4045	436	145	ATA	T	12
cob	+	4058–5180	1123	374	ATT	T	0
trnS2	+	5181–5244	64	-	-	-	8
nad1	-	5253–6167	915	304	ATG	TAA	0
trnL2	-	6169–6230	63	-	-	-	7
trnL1	-	6238–6299	62	-	-	-	*
rrnL	-	6300–7495	1196	-	-	-	*
trnN	-	7496–7556	61	-	-	-	-
trnQ	-	7563–7629	66	-	-	-	*
rrnS	-	7630–8396	768	-	-	-	*
trnD	-	8397–8460	64	-	-	-	13
trnK	-	8474–8540	67	-	-	-	8
trnG	-	8549–8611	63	-	-	-	0
trnP	-	8612–8674	63	-	-	-	4
trnM	-	8679–8743	65	-	-	-	9
trnV	+	8753–8820	68	-	-	-	2
trnA	-	8823–8882	60	-	-	-	11
trnS1	+	8894–8952	59	-	-	-	30
cox2	-	8983–9667	685	226	ATG	T	31
cox1	-	9699–11237	1539	512	ATA	TAA	15
trnC	+	11253–11314	62	-	-	-	1
trnW	-	11316–11385	70	-	-	-	-2
nad2	-	11394–12367	984	327	ATG	TAA	1
trnl	-	12369–12432	64	-	-	-	15
ATP8	+	12448–12598	159	52	ATT	TAA	-7
ATP6	+	12600–13214	615	204	ATG	TAA	1
cox3	+	13216–14004	789	262	ATA	TAA	17
nad3	+	14022–14367	346	115	ATC	T	0
trnE	+	14368–14434	67	-	-	-	0
trnR	+	14435–14490	56	-	-	-	192
CR		14491–14681	192	-	-	-	-

Gene boundaries of rRNA genes determined by sequence of adjacent genes.
Figure 2
Putative secondary structures of mitochondrial tRNA molecules from Nymphon gracile.
fossils [28], where Pycnogonida, Acari and Palpigradi together form one clade – but with extreme character conflict). Recent multigene analyses place pycnogonids outside Arachnida: either (1) as sister group to Euchelicerata (Xiphosura + Arachnida), e.g. with a combined alignment of EF-1α, EF-2, and RNA-Pol II [10], as well as with a combined dataset of nine genes and morphology [11]; or (2) in an unresolved trichotomy with Euchelicerata and Myriapoda (together forming the clade Paradoxopoda or Myriochelata), e.g. using a combined alignment of 18S and 28S [9].

As a consequence of an Acari-Pycnogonid clade one would have to assume that pycnogonids may either have had terrestrial ancestors, or that an independent transition to terrestrial life was undertaken by Acari on the one hand, and spiders and scorpions on the other hand (leaving the question open where to place the remaining arachnid taxa). At least the first hypothesis is contradicted by the fossil record: the oldest pycnogonid fossil is from the upper Cambrian, a time from which no terrestrial animal is known [29] – the first terrestrial arachnids were not found before the Silurian – a gap of about 70 million years.

To determine effects of long-branch attraction [30], a second analysis was performed, on a dataset where sequences from the long-branching acarids Varroa destructor and Lephotrombidium pallidum were omitted (Fig. 4). In the resulting tree Pycnogonida does not cluster with Acari, rather appears as sister taxon to Euchelicerata in the ML tree, but without good support from BI or ML bootstrap analysis.

Chelicerata, Euchelicerata and Arachnida as well find no good support from these inferences. So it is very likely that long-branch attraction is one major reason for the clustering of Pycnogonida and Acari in phylogenetic analysis of chelicerate relationships with mitochondrial genes, while the true position of Pycnogonida remains far from being resolved by our analyses.

AT content and amino acid usage in chelicerate mitochondrial genomes

As mentioned above, some of the arachnid taxa show a reversal in nucleotide frequency bias (the scorpion Centruroides limpidus, the spiders Ornithoctonus huwena and Habronattus oregonensis, and the mite Varroa jacobsoni), which may be one reason for misleading results in a phylogenetic analysis [5,13]. However, it was shown before that a reversal in strand bias seems not to be the cause for the affinity between Acari and Pycnogonida [13].

With the exception of Limulus polyphemus all chelicerates in our phylogenetic analysis show branch lengths two or three times longer than those of hexapods, crustaceans and myriapods (Fig. 3, Fig. 4). This implies that arachnid and pycnogonid species have undergone more change in nucleotide sequence than Limulus polyphemus and the remainder of arthropod taxa in our study. With the exception of the scorpion Centruroides limpidus all arachnid and pycnogonid species in our study show a higher AT content in protein-coding genes than Limulus polyphemus and the outgroup taxa (Tab. 3). This is more striking if only third codon positions are compared. Strong variation in AT content between species may also lead to perturbation of

Gene (+/- strand)	Proportion of nucleotides	%AT	AT skew	CG skew			
atp6 (+)	0.382	0.145	0.073	0.400	78.2	-0.023	0.328
atp8 (+)	0.510	0.116	0.000	0.374	88.4	0.154	1.000
cox1 (-)	0.263	0.123	0.169	0.446	70.8	-0.259	-0.158
cox2 (-)	0.308	0.123	0.143	0.426	73.4	-0.161	-0.077
cob (+)	0.373	0.150	0.120	0.357	73.0	0.021	0.108
nad1 (-)	0.256	0.079	0.163	0.503	75.8	-0.326	-0.348
nad2 (-)	0.318	0.070	0.116	0.496	81.4	-0.218	-0.246
nad3 (+)	0.387	0.139	0.067	0.408	79.5	-0.025	0.352
nad4 (-)	0.256	0.075	0.136	0.533	78.9	-0.351	-0.288
nad4L (-)	0.278	0.053	0.178	0.491	76.9	-0.278	-0.538
nad5 (-)	0.247	0.080	0.133	0.540	78.7	-0.372	-0.249
nad6 (+)	0.371	0.153	0.048	0.428	80.0	-0.071	0.523
rrnl(-)	0.347	0.074	0.134	0.446	79.3	-0.125	-0.288
rrrs (-)	0.350	0.078	0.167	0.405	75.5	-0.073	-0.363
total (+)	0.454	0.141	0.085	0.319	77.3	0.175	0.248

AT skew ((A%-T%)/(A%+T%)) and CG skew ((C%-G%)/(C%+G%)) according to [44]. Values from (-)strand genes in bold letters.
Figure 3
Maximum likelihood tree of chelicerate relationships – complete dataset. According to a nucleotide alignment (first and second codon positions) from 13 protein-coding genes. Numbers above branches indicate Bayesian posterior probabilities (upper) and bootstrap percentages of maximum likelihood analysis (lower). Branch lengths reflect substitutions per site.
Figure 4
Maximum likelihood tree of chelicerate relationships – reduced dataset. Alignment without the long-branching acarid species Varroa destructor and Leptotrombidium pallidum. Details of analyses and legends as in Fig. 3.
Table 3: Amino acid usage and AT content of mitochondrial protein-coding genes from various arthropods.

Taxon	Species	Ala	Arg	Asn	Asp	Cys	Gin	Gly	His	Ile	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val	AT%	AT%	
Acari	Ornithodoros mou.	123	51	163	57	33	66	87	207	71	386	511	115	288	368	131	318	186	99	130	209	71,30%	78,50%
	Rhipicephalus san.	117	44	206	58	34	56	79	163	65	462	487	136	318	394	120	355	142	80	129	139	77,90%	89,50%
	Varroa destructor	100	48	210	54	29	39	50	160	65	412	507	118	350	367	113	317	123	82	189	163	79,20%	91,70%
	Amblyomma trig.	103	41	200	52	31	51	83	161	63	494	469	141	311	436	106	352	154	80	130	130	78,30%	88,40%
	Haemaphysalis fl.	109	42	190	52	33	48	81	163	69	488	476	137	328	389	113	362	136	82	135	147	76,60%	85,50%
	Carios capensis	119	50	158	63	32	59	81	207	69	414	536	120	293	364	139	339	150	96	131	172	72,50%	79,90%
	Ixodes hexagonus	115	48	161	64	32	49	79	181	67	436	495	118	296	385	137	385	140	95	121	182	71,10%	75,70%
	Leptotrombidium p.	137	39	100	62	26	65	100	206	69	360	503	147	194	414	131	432	131	88	73	151	71,40%	82,10%
Araneae	Habronattus areg.	138	52	152	67	24	48	89	206	67	362	494	84	338	317	116	386	134	95	158	234	73,80%	86,10%
	Ornithoctonus huw.	147	53	109	74	23	48	96	213	73	358	469	97	273	355	134	402	139	99	127	260	69,70%	78,40%
	Heptathela han.	135	53	136	54	29	64	90	218	73	369	561	100	294	344	140	375	151	100	114	192	71,40%	82,10%
Scorpiones	Centruroides lim.	190	63	93	65	43	46	86	253	77	250	604	79	184	355	145	376	176	103	120	298	62,90%	68,10%
Pycnogonida	Nymphon gracile	125	53	160	69	35	46	80	188	71	362	494	123	286	420	136	370	158	82	139	218	76,60%	90,50%
Xiphosura	Limulus polyph.	176	62	147	59	49	67	86	237	78	346	565	83	212	330	152	387	178	110	121	221	66,30%	74,70%
Myriapoda	Narceus ann.	205	50	110	66	31	80	74	276	75	298	606	68	196	276	162	342	206	113	128	283	62,10%	67,90%
	Lithobius for.	193	60	125	70	34	68	76	256	74	331	557	85	246	306	137	357	199	102	140	239	65,70%	72,00%
Crustacea	Squilla mantis	225	62	132	74	42	73	82	259	80	272	560	83	235	317	136	324	210	97	152	243	68,10%	79,30%
	Triops can.	207	61	164	69	32	79	78	232	81	316	627	73	199	319	138	351	188	107	137	220	68,20%	77,70%
Hexapoda	Tricholepidion ger.	184	58	148	72	44	73	76	245	80	324	564	74	234	310	144	376	223	104	147	226	67,60%	76,90%

Bold numbers indicate strong differences (+/-25%) to *Limulus polyphemus* (underlined). This species was chosen for comparison, because in the phylogenetic analyses (Fig. 3, 4) it shows a branch length comparable to those of crustacean, myriapod and hexapod species, while the remainder of chelicerates was subject to a higher degree of nucleotide substitution. See methods for complete names of species.
phylogenetic analyses [31]. Independent evolution of higher AT content may lead to homoplastic similarities.

Looking at the amino acid composition of the protein-coding genes from chelicerates and other arthropods (Tab. 3), again strong differences are observed between *Limulus polyphemus* and the remainder of Chelicerata. Compared to mitochondrial proteins from *Limulus polyphemus* some amino acids are significantly less used in the pycnogonid species and most of the arachnids (Ala, Arg, Cys, Gln, Thr, Trp), while others are significantly more frequently used (Lys, Met). With a few exceptions, less used amino acids are coded by GC rich codons (Ala, Arg, Gly, Pro), while those more often used are coded by AT rich codons (Ile, Lys, Met, Phe, Asn). A similar effect is seen in a comparison of codon usage for the amino acids leucine and serine (Tab. 4). For the coding of leucine, UUG-codons are more frequently used in all chelicerate taxa than CUN-codons, but the difference is by far higher in those taxa, which show the highest AT-contents (The aracid taxa *Haemaphysalis flava*, *Amblyomma triguttatum*, *Varroa destructor*, *Rhipicephalus sanguineus* and the pycnogonid *Nymphon gracile*). In contrast AGN-codons and UCN-codons for serine show only moderate variance between the taxa.

Thus the noticed derivations in amino acid usage seem to be directly linked to AT-content: the higher the proportion of adenine and thymine, the stronger the differences in amino acid usage. And in fact, for some amino acids of adenine and thymine, the stronger the differences in AT content than to an underlying phylogenetic signal.

Conclusion

Ten individually translocated tRNA genes, a large inversion of a segment covering three protein-coding genes and five tRNA genes, and translocation of the control region lead to a derived gene order in *Nymphon gracile* compared to other arthropods, including another species of Pycnogonida (*Endeis spinosa*). If sequence data from more pycnogonid species becomes available, gene translocations may serve as phylogenetic markers, which probably resolve relationships between pycnogonid subtaxa. Phylogenetic analysis of chelicerate relationships using mitochondrial protein-coding genes supported a clade consisting of Pycnogonida and Acari. These results contradict other analyses performed with nuclear genes or morphological characters. Omitting some of the long-branching arachnid species from the analysis led to a tree with unresolved relationships between Myriapoda, Pycnogonida, Xiphosura and two arachnid clades. We hypothesize that phylogenetic analyses of chelicerate interrelationships based on mitochondrial protein-coding genes is biased by three misleading factors: (a) long-branch attraction, (b) derived AT bias in all chelicerate taxa except *Limulus polyphemus*, and (c) reversed strand bias in Scorpiones, two species of Araneae and the mite *Varroa destructor*. Thus from a mitogenomic point of view the exact phylogenetic position of Pycnogonida remains an open question, but a sister group relationship between Acari and Pycnogonida as suggested by Hassanin [13] is rather caused by long-branch attraction and higher AT content than to an underlying phylogenetic signal.

Methods

Samples and DNA extraction

Specimens of *Nymphon gracile* were sampled at Concarneau (France) and immediately preserved in pure ethanol (99.8%). DNA from the legs of a single specimen was extracted using the DNeasy Kit (Qiagen, Germany) following the manufacturers protocol.

PCR, sequencing and gene annotation

Fragments of six mitochondrial genes (*cox1*, *nad4*, *nad5*, *rrnl*, *rrns*) were PCR amplified using primers especially designed for this purpose. Primer sequences were as follows: *cox1f*: 5’-ACTAATCACA ARGAYATGG-3’/ *cox1r*: 5’-TAGTCTGAGT ANCGTCGWGG-3’ (annealing temperature: 45°C); *nad4f*: 5’-TTGAGGTTAY CAGCCYG-3’/ nad4r: 5’-ATAATGAGCY CAAAGARTA AGG-3’ (45°C); *nad5f*: 5’-AGAATTCACT AGGDTGRGAT GG-3’/ nad5r: 5’-AAAGACCCIT AAATAAAGCA TG-3’ (45°C); *rrns*: 5’-GCCACCTCGA TGTGGATT A-3’/16Sf: 5’-GCCACCTCGA TGTGGATT A-3’/16Sr: 5’-CCGCTCTG GAA CTCAATC-3’ (48°C); 12Sf: 5’-CACGACGCG GGTJAKAC-3’/12Sr: 5’-CACGACGCG GGTJAKAC-3’ (52°C). Primer design was performed on conserved regions of alignments using mitochondrial genes of various arthropod species [32]. All PCR experiments were done on Mastercycler and Mastercycler gradient (Eppendorf, Hamburg, Germany) using the HotMaster-Taq Kit (Eppendorf). PCR reaction volumes were 50 µl (42 µl sterilized distilled water, 5 µl 10× reaction buffer 1 µl dNTP mix, 1 µl primer mix (10 µM each), 1 µl DNA template, 0.2 µl = 1 u HotMasterTaq polymerase). Cycling protocol includes an initial denaturation step for 2 min at 94°C, 40 cycles of 30 sec at 94°C, 1 min at the appropriate annealing temperature (see above) and 90 sec at 68°C; in the end a final extension step for 1 min at 68°C. PCR products were gel purified (Qiaquick Gel purification kit, Qiagen, Hilden, Germany) and subsequently used for sequencing. Sequencing reactions were done using the DCTS quick start kit (Beckman-Coulter) and the CEQ.
8000 capillary sequencer (Beckman-Coulter). Sequence information from these PCR fragments was used to design PCR primer pairs to amplify missing parts between them. The PCR protocol described above was therefore modified with extension steps of 7 min, and a final extension step of 3 min.

Successful amplification of PCR products was obtained with the following primer pairs (annealing temperature and approximate length in brackets): Ng-12sr: 5'-AAAAAGAATA CTAGGGTCTAATTAC C-3'/Ng-cox1f: 5'- AGCGGGTTT ACTAATTGGT ATCC-3' (54°C, 2000 bp); Ng-cox1r: 5'- AAGAAGTTAC TAACAATATT AAAGCAGGG AG-3'/Ng-nad5f: 5'-TTTAACTATA TTCTTAGCTA GAGTGATGC TTC-3' (58°C, 5000 bp); Ng-nad5r: 5'-ATAAACAAT AACCCCAGCA G-3'/Ng-nad4f: 5'-GATTATAGGT TGAGGAAAAT CTC-3' (49°C, 1700 bp); Ng-16sr: 5'- CGGTCTGAAC TCAGATCATG TAA-3'/Ng-12sf: 5'- TTAAAGGATA AGATGGGCTA C-3' (48°C, 1500 bp). In addition for amplification of the part spanning from nad4 to rrnl a primer pair already published in [33] was used successfully: N4: 5'-GGAGCTTCAA CATGAGCTTT-3'/16S2: 5'-TITTAACATATA TCCTATGCTA GAGTGATTGC TTC-3' (58°C, 2000 bp). Sequencing of PCR products larger than 1000 bp was done using a primer walking strategy.

Primary analysis of nucleotide sequences was done using the Beckman CEQ 8000 software. Sequences were then aligned and assembled using Bioedit [34]. Protein-coding genes and ribosomal RNA genes were identified by blasting on NCBI entrez databases and by comparison with other arthropod mitochondrial genomes. Transfer RNA genes were identified using tRNAscan-SE 1.21 [19] and DOGMA [35].

Phylogenetic analysis

Phylogenetic analysis was performed using nucleotide sequences from mitochondrial protein-coding genes. Amino acid sequences from single genes were aligned by Clustal X [36] with default settings. After retranslation to nucleotides, ambiguously aligned parts were omitted from the analysis by making use of Gblocks 0.91b [37], using the "codons" option and default block parameters. Due to the results of a saturation analysis [38] on single codon positions, implemented in DAMBE, version 4.2.13 [39], third codon positions were eliminated from the alignment. The final alignment consisted of 5,711 bp for 20 taxa. A second alignment was obtained by the same procedure but omitting the two species of Acari with longest branches (Varroa destructor and Leptotrombidium pallidum), leading to an alignment consisting of 5,996 bp for 18 taxa.

Two different analyses were performed on both alignments. (1) A maximum likelihood tree was computed using PAUP* ver. 4.0b10 [40]. The model (GTR+I+gamma) and model parameters were chosen according to the AIC with modeltest 3.7 [41]. In addition 100 bootstrap replicates were performed. (2) Bayesian analysis was performed with MrBayes 3.1.2 [42]. 1,000,000 generations were run under the GTR model,
with gamma distribution and a proportion of invariant sites. The first 100 out of 1000 trees were discarded as burn-in. Mitochondrial genome data from other species than *Nymphon gracile* was obtained from the OGRE database [43]. NCBI GenBank accession numbers: *Squilla mantis*, [Genbank NC_006081]; *Triops cancricformis*, [Genbank NC_004465]; *Tricholepidion gerschi*, [Genbank NC_005347]; *Locusta migratoria*, [Genbank NC_00712]; *Narceus annularius*, [Genbank NC_003343]; *Lithobius forficatus*, [Genbank NC_002629]; *Limulus polyphemus*, [Genbank NC_003057]; *Centruroides limpidus*, [Genbank NC_006896]; *Heptathela hangzhouensis*, [Genbank NC_005924]; *Ornithoctonus huwena*, [Genbank NC_005925]; *Habronattus orygenesis*, [Genbank NC_005942]; *Leptotrombidium pallidum*, [Genbank NC_007601]; *Varroa destructor*, [Genbank NC_004454]; *Ornithodoros moubata*, [Genbank NC_004357]; *Carios capensis*, [Genbank NC_005291]; *Ixodes hexagonus*, [Genbank NC_002010]; *Haemaphysalis flava*, [Genbank NC_005292]; *Rhipicephalus sanguineus*, [Genbank NC_002074]; *Amblyomma triguttatum*, [Genbank NC_005963].

Abbreviations

Mitochondrial genes: *atp6, atp8*, ATP synthase subunits 6 and 8; *cob*, cytochrome oxidase b; *cox1-3*, cytochrome oxidase subunit 1-III; *nad1-6*, *nad4L*, NADH dehydrogenase subunits 1-6, 4L; *rrns, rrl*, small (12S) and large (16S) subunit ribosomal RNA; transfer RNA (tRNA) genes are listed as trnX, where X is replaced by the one letter amino acid code of the corresponding amino acid; CR, mitochondrial control region. EF-1 α/2; RNA-Pol II, RNA polymerase II. BI, Bayesian inference; ML, maximum likelihood; bp, base pairs.

Authors’ contributions

LP was primarily responsible for design and coordination of the study and conducted all the laboratory work. Analyses and manuscript draft was done in equal parts by both authors.

Acknowledgements

We thank T. Bartolomaeus (Freie Universität Berlin) and G. Scholtz (Humboldt Universität Berlin) for lab space and support of our study through all stages. Many thanks to C. Bleidorn (Univeristat Potsdam) and L. Vogt (Freie Universität Berlin) for helpful discussions regarding methodology and interpretation of results, as well as to two anonymous reviewers for improvement of the manuscript. This study was supported by German science foundation grants DFG Ba 1520/10-1 and DFG Scho 442/8-2 (SPP Deep Metazoan Phylogeny).

References

1. Adams KL, Palmer JD: Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. *Mol Phylogenet Evol* 2003, 29:380-395.

2. Wolstenholme DR: Genetic novelties in mitochondrial genomes of multicellular animals. *Curr Opin Genet Dev* 1992, 2:918-925.

3. Morita C, Dowling TE, Brown WM: Evolution of animal mitochondrial-DNA – relevance for population biology and systematics. *Annu Rev Ecol Syst* 1987, 18:269-292.

4. Bensasson D, Zhang D, Hardt DL, Hewitt GM: Mitochondrial pseudogenes: evolution's misplaced witnesses. *Trends Ecol Evol* 2001, 16:314-321.

5. Hassanin A, Leger N, Deutsch J: Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylegenetic inferences. *Syst Biol* 2005, 54:277-298.

6. Boore JL, Lavrov DV, Brown WM: Gene translocation links insects and crustaceans. *Nature* 1998, 392:667-668.

7. Cook CE, Yue Q, Alam K: Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. *Proc R Soc Lond B Biol Sci* 2005, 272:1325-1330.

8. Nardi F, Spinassi G, Boore JL, Carapelli A, Dallai R, Frati F: Hexapod origins: Monophyletic or paraphyletic? *Science* 2003, 299:1887-1889.

9. Mallatt JM, Garey JR, Shultz JW: Ecdysozoan phylogeny and Basian origin: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. *Mol Phylogenet Evol* 2004, 31:178-191.

10. Regier JC, Shultz JW, Kambic RE: Pancrustacean phylogeny: exapods are terrestrial crustaceans and maxillopods are not monophyletic. *Proc R Soc Lond B Biol Sci* 2005, 272:395-401.

11. Giribet G, Richter S, Edgecombe GD, Wheeler WC: The position of crustaceans within Arthropoda – evidence from nine molecular loci and morphology. *Crustacean Issues* 2005, 16:307-330.

12. Lavrov DV, Brown WM, Boore JL: Phylogenetic position of the Pentastomida and (pan)crustacean relationships. *Proc R Soc Lond B Biol Sci* 2004, 271:537-544.

13. Hassanin A: Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. *Mol Phylogenet Evol* 2006, 38:100-116.

14. Dunlop JA, Arango CP: Pycnogonid affinities: a review. *J Zool Syst Evol Res* 2005, 43:8-21.

15. Maxmen A, Browne WE, Martindale MQ, Giribet G: Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. *Nature* 2005, 437:114-118.

16. Jager M, Murienne J, Clabant C, Deutsch J, Le GH, Manuel M: Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider. *Nature* 2006, 441:506-508.

17. Ojala D, Montoya J, Antoari G: tRNA punctuation model of RNA processing in human mitochondria. *Nature* 1981, 290:470-474.

18. Stanol JL, Daehler LL, Brown WM: Mitochondrial gene arrangement of the horseshoe crab *Limulus polyphemus* L.: conservation of major features among arthropod classes. *Mol Biol Evol* 1997, 14:867-874.

19. Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res* 1997, 25:953-964.

20. Wolstenholme DR, Macfarlane JL, Wahlström JA: Bizarre tRNA's inferred from DNA sequences of mitochondrial genomes of nematode worms. *P Natl Acad Sci USA* 1987, 84:324-328.

21. Masta SE, Boore JL: The complete mitochondrial genome sequence of the spider *Habronattus orygenesis* reveals rearranged and extremely truncated tRNAs. *Mol Biol Evol* 2004, 21:893-902.

22. Qiu Y, Song D, Zhou K, Sun H: The mitochondrial sequences of *Heptathela hangzhouensis* and *Ornithoctonus huwena* reveal unique gene arrangements and atypical tRNAs. *J Mol Evol* 2005, 60:57-71.

23. Masta SE: Mitochondrial sequence evolution in spiders: intraspecific variation in tRNAs lacking the TPsiC Arm. *Mol Biol Evol* 2000, 17:1091-1100.

24. Lavrov DV, Boore JL, Brown WM: The complete mitochondrial DNA sequence of the horseshoe crab *Limulus polyphemus*. *Mol Biol Evol* 2000, 17:813-824.

25. Clayton DA: Replication of animal mitochondrial DNA. *Cell* 1982, 28:693-705.
26. Yang MY, Bowmaker M, Reyes A, Vergani L, Angeli P, Gringeri E, Jacobs HT, Holt IJ: Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 2002, 111:495-505.
27. Podsiadlowski L, Bartolomeus T: Major rearrangements characterize the mitochondrial genome of the isopod. Idotea baltica 2006, 40:893-899.
28. Giribet G, Edgecombe GD, Wheeler WC, Babbitt C: Phylogeny and systematic position of opiliones: A combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 2002, 18:5-70.
29. Waloszek D, Dunlop JA: A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian 'Orsten' of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 2002, 45:421-446.
30. Sanderson Mj, Shaffer HB: Troubleshooting molecular phylogenetic analyses. Annu Rev Ecol Syst 2002, 33:49-72.
31. Furno R, Rodriguez TF, Ayala Fj: Shared nucleotide composition biases among species and their impact on phylogenetic reconstructions of the Drosophilidae. Mol Biol Evol 2001, 18:1464-1473.
32. Podsiadlowski L, Bartolomeus T: Organization of the mitochondrial genome of mantis shrimp Pseudosquilla ciliata (Crustacea: Stomatopoda). Mar Biotechnol 2005, 7:618-624.
33. Roehrdanz RL, Degrugillier ME, Black WCI: Novel rearrangements of arthropod mitochondrial DNA detected with long-PCR: Applications to arthropod phylogeny and evolution. Mol Biol Evol 2002, 19:841-849.
34. Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999, 41:95-98.
35. Wyman SK, Jansen RK, Boore JL: Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20:3252-3255.
36. Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17:540-552.
37. Xia X, Xie Z, Salemi M, Chen L, Wang Y: An index of substitution saturation and its application. Mol Phylenet Evol 2003, 26:1-7.
38. Xia X, Xie Z: DAMBE: software package for data analysis in molecular biology and evolution. J Hered 2001, 92:371-373.
39. Swoford DL: Paup – A Computer-Program for phylogenetic Inference using maximum parsimony. J Gen Physiol 1993, 102:4A9.
40. Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics 1998, 14:817-818.
41. Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.
42. Jameson D, Gibson AP, Hudelot C, Higgins PG: OGRE: a relational database for comparative analysis of mitochondrial genomes. Nucleic Acids Res 2003, 31:202-206.
43. Perna NT, Kocher TD: Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 1995, 41:353-358.