Lower limit on the ultra-high-energy proton-to-helium ratio from the measurements of the tail of X_{max} distribution

Ivan I. Karpikov1, Grigory I. Rubtsov1, and Yana V. Zhezher1,2

1 Institute for Nuclear Research of the Russian Academy of Sciences, 117312, Moscow, Russia, 2 Faculty of Physics, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia

There are multiple techniques to determine the chemical composition of the ultra-high-energy cosmic rays. While most of the methods are primarily sensitive to the average atomic mass, it is challenging to discriminate between the two lightest elements: proton and helium. In this paper, the proton-to-helium ratio in the energy range from $10^{18.3}\text{eV}$ to $10^{19.3}\text{eV}$ is estimated using the tail of the distribution of the depth of the shower maximum X_{max}. Using the exponential decay scale Λ measured by the Telescope Array experiment we derive the constraint on the proton-to-helium ratio $p/\text{He} > 0.43 \ (68\% \text{ CL})$. The result is conservative with respect to the admixture of heavier elements. We evaluate the impact of the hadronic interaction model uncertainty. The implications for the astrophysical models of the origin of cosmic rays and the safety of the future colliders are discussed.

Keywords: proton-to-helium ratio – UHECR – X_{max} distribution – mass composition – Telescope Array experiment

I. INTRODUCTION

The mass composition of the ultra-high-energy cosmic rays lies among the key tasks of major present-day and upcoming experiments. The precise knowledge of the composition is important for understanding the cosmic-ray production mechanism in the sources and its population [1]. Moreover, composition at the highest energies is the decisive factor for the observable flux of cosmogenic photons [2, 3] and neutrinos [4, 5], see [6] for a review. The photons and neutrinos are most efficiently produced by the primary protons due to the highest energy per nucleon compared to heavier elements. The diversity of the models may be illustrated with the two antipodal examples namely the dip model [7–9] and the disappointing model [10]. The dip model has purely proton composition and as a consequence predicts observable fluxes of the cosmogenic photons and neutrino. The model is named after the dip spectral feature which is naturally explained with the electron-positron pair production by the primary protons due to the highest energy per nucleon compared to heavier elements. The diversity of the models may be illustrated with the two antipodal examples namely the dip model [7–9] and the disappointing model [10].

Another implication of the mass composition at ultra-high energies is the investigation of safety of the future colliders. In certain theoretical models characterized by additional spatial dimensions, the production of non-evaporating microscopic black holes becomes possible. This phenomenon was taken into consideration in the framework of the Large Hadron Collider (LHC) safety analysis [13, 14]. The proof of the LHC safety is based on the constraints on the black hole production derived from the stability of dense astrophysical objects, such as white dwarfs and neutron stars. The latter interact with the ultra-high-energy cosmic rays with the center of mass energies larger than ones achieved at LHC. One may ascertain the safety of the future 100 TeV colliders by studying the interaction of the cosmic rays of the highest energies. The primary protons again play an important role as the production of the black holes is determined by the energy per nucleon. It was shown that the charged stable microscopic black hole production may be excluded already, while the exclusion of the neutral black holes would require a precise knowledge of the proton fraction at the ultra-high energy [15].

One of the most common approaches is the measurement of the longitudinal shape of the extensive air showers (EAS). The depth of a shower maximum, or X_{max}, is used as a composition-sensitive variable [16]. The measurements of the mean X_{max} gives the estimate of the average atomic mass, while the study of the X_{max} distribution and its moments may resolve the multicomponent composition, see [17, 19] for review.

The tail of the X_{max} distribution may be studied independently on the main part of the distribution. It may be fit with an exponential function $\exp(-X_{\text{max}}/\Lambda)$, where Λ is called the attenuation length. The attenuation length is found to be sensitive to the proton-air interaction cross-section. The first results by this method were obtained by the Fly’s Eye Collaboration [20, 21] followed by the results of the Pierre Auger and Telescope Array Collaborations [22, 23]. It was shown in [24] that the attenuation...
length may be used to estimate the proton-to-helium ratio p/He. The latter estimate has only minor dependence on the hadronic interaction models and X_{max} experimental systematic uncertainties. The proton-to-helium ratio is directly measured below the knee and it allows to constrain different astrophysical models of the origin of cosmic rays [25, 26]. The measurements of the proton-to-helium ratio at the ultra-high energies may be used similarly to discriminate between different source models. As a recent example, a modified dip model [27] agrees with the measured spectrum of the ultra-high-energy cosmic rays for the value of proton-to-helium ratio $p/\text{He} = 5$. Furthermore, the value of p/He used jointly with the other composition studies will allow to pinpoint the flux of the primary protons. The latter is an important quantity as discussed above.

The present work is dedicated to the determination of proton-to-helium ratio of ultra-high-energy cosmic rays in the energy range from $10^{18.3}\text{eV}$ to $10^{19.3}\text{eV}$ based on the Telescope Array measurements of the attenuation length [22]. The data are compared to the Monte-Carlo simulations using the CORSIKA package [28] along with the QGSJET II-04 [29, 30] and EPOS-LHC [31] hadronic interaction models.

The paper is organized as follows. In Section II the analysis method is explained along with Monte-Carlo simulations. The results on proton-to-helium ratio are presented in Section III. The Section IV contains concluding remarks.

II. METHOD AND MONTE-CARLO SIMULATIONS

The method generally follows the work of Yushkov et. al [24] to derive the proton-to-helium ratio using the measurements of the attenuation length by Telescope Array collaboration [22].

At first, the simulated sets of extensive air showers initiated by primary protons, helium and carbon are produced with the use of the CORSIKA package [28]. Separate simulations are performed with QGSJET II-04 [30] and EPOS-LHC [31] hadronic interaction models. For each species 17 354 events are simulated in the energy range from $10^{18.3}\text{eV}$ to $10^{19.3}\text{eV}$ with the spectrum obtained by the Telescope Array collaboration defined by the spectral index -3.266 for $E < 10^{18.72}\text{eV}$ and -2.66 for $E > 10^{18.72}\text{eV}$ [32].

At the second step, the simulated sets are “mixed” in different proportions from $p/\text{He} = 0.01$ to $p/\text{He} = 100.0$. For each mixture the X_{max} distribution is fitted exponentially to derive the attenuation length for a mixed composition model.

An important constituent of this method is the choice of the starting point of the fit: it can be defined in many different ways. In the initial papers [20, 21] the lower range of X_{max} fit was fixed at the constant values $X_{\text{max}} = 760\text{ g/cm}^2$ and $X_{\text{max}} = 830\text{ g/cm}^2$, respectively. Yushkov et. al [24] have proposed another determination of lower fit range, which involves carbon X_{max} distribution: the lower limit is defined as a value at which only $\approx 0.5\%$ of the carbon-initiated showers get into the fitting range. In the present paper we are bound to the method used for the analysis of the data by Abbasi et. al [22], where the lower limit is defined as the $X_{i} = \langle X_{\text{max}} \rangle + 40\text{g/cm}^2$, where $\langle X_{\text{max}} \rangle$ is the average value of a given distribution.

Finally, after performing the fit of each mixture’s X_{max} distribution, Λ_{i} values are obtained as a function of p/He ratio. The constraints on the proton-to-helium ratio are then obtained by comparing these values with the experimental Λ value [22].

III. RESULTS

We present the X_{max} distributions and corresponding fits of exponential tails for proton, helium and carbon Monte-Carlo simulated sets in Figure 1.

As a function of proton-to-helium ratio in QGSJET II-04 and EPOS-LHC models is shown in Figure 1 with a black line. The plot includes the proton-to-helium ratio range from $p/\text{He} = 0.01$ to $p/\text{He} = 100$ with a step $\Delta = 10^{0.2}$. Comparing the Monte-Carlo function with the experimental value $\Lambda = 50.47 \pm 6.26\text{ g/cm}^2$ obtained by the Telescope Array collaboration [22] we arrive at the following lower limits on the proton-to-helium ratio:

$$p/\text{He} > 0.43 (68\% \text{ CL}) \quad \text{QGSJET II-04},$$

$$p/\text{He} > 0.63 (68\% \text{ CL}) \quad \text{EPOS-LHC}.$$
A is shown in Figure 2 by red triangles and green squares respectively. One may see that the constraints [1] are conservative to addition of the heavier elements as expected in [2].

One may further study the three-component mixture of protons, helium and carbon. By calculating Λ for all possible combinations we arrive to the following lower limits on the fraction of protons in the three-component mixture:

\[
\frac{p}{(p + He + C)} > 0.20 \text{ (68\% CL) QGSJET II-04},
\]

\[
\frac{p}{(p + He + C)} > 0.23 \text{ (68\% CL) EPOS-LHC}.
\]

IV. CONCLUSION

Let us finally discuss the possible applications of the obtained lower limit on the proton-to-helium ratio at the energies $10^{18.3} \text{eV} < E < 10^{19.3} \text{eV}$. First of all, we consider the properties of the sources of the ultra-high-energy cosmic rays in the view of the constraints [1]. The present limits constrain the models with helium domination in the energy range under study, e.g. the helium version of the disappointing model [10]. These models generally include the preferential acceleration of helium or an excessive helium abundance at the acceleration region. At the same time, the result is fully compatible with the original pure proton dip model [2][4] and with the modification of the dip model with $p/He = 5$ [27] as long as with the standard disappointing model [10] with $p/He \sim 1$.

Secondly, let us discuss the safety of the future colliders. The proof of the safety relies largely on the existence of non-zero flux of the ultra-high-energy protons [15]. One may see that this work established the existence of the primary protons at the 2σ level. Indeed, the following 95\% CL limits may be obtained repeating the analysis done for Equation (2):

\[
\frac{p}{(p + He + C)} > 0.09 \text{ (95\% CL) QGSJET II-04},
\]

\[
\frac{p}{(p + He + C)} > 0.11 \text{ (95\% CL) EPOS-LHC}.
\]

The results are in favor of the safe operation of the future colliders. Still the importance of issue demand higher confidence which may be achieved with the future precision measurements of the attenuation length.

ACKNOWLEDGEMENTS

We would like to thank L. Bezrukov, O. Kalashev, M. Kuznetsov, M. Pshirkov, A. Sokolov and S. Troitsky for helpful comments and suggestions. The authors are indebted to the members of the Telescope Array collaboration for inspiring discussions.

The present work is supported by the Russian Science Foundation grant No. 17-72-20291. The numerical part of the work is performed at the cluster of the Theoretical Division of INR RAS.

[1] R. Aloisio, V. Berezinsky and P. Blasi, JCAP 1410, no. 10, 020 (2014).
[2] G. Gelmini, O. E. Kalashev and D. V. Semikoz, J. Exp. Theor. Phys. 108, 1061 (2008).
[3] D. Hooper, A. M. Taylor and S. Sarkar, Astropart. Phys. 34, (2011) 340.
[4] V. S. Berezinsky and G. T. Zatsepin, Phys. Lett. 28B, 423 (1969).
[5] K. Kotera, D. Allard and A. V. Olinto, JCAP 1010, 013 (2010).
[6] T. Karg et al. [IceCube and Pierre Auger and Telescope Array Collaborations], JPS Conf. Proc. 9, 010021 (2016).
[7] V. Berezinsky, A. Z. Gazizov and S. I. Grigorieva, Phys. Rev. D 74, 043005 (2006).
[8] V. Berezinsky, A. Z. Gazizov and S. I. Grigorieva, Phys. Lett. B 612, 147 (2005).
[9] R. Aloisio, V. Berezinsky, P. Blasi, A. Gazizov, S. Grigorieva and B. Hnatyk, Astropart. Phys. 27, 76 (2007).
[10] R. Aloisio, V. Berezinsky and A. Gazizov, Astropart. Phys. 34, 620 (2011).
[11] K. Greisen, Phys. Rev. Lett. 16, 748 (1966)
[12] Z. T. Zatsepin and V. A. Kuz’min, Zh. Eksp. Teor. Fiz. Pis’ma Red. 4, 144 (1966)
[13] J. R. Ellis, G. Giudice, M. L. Mangano, I. Tkachev and U. Wiedemann, J. Phys. G 35, 115004 (2008), [arXiv:0806.3414 [hep-ph]].
[14] S. B. Giddings and M. L. Mangano, Phys. Rev. D 78, 035009 (2008), [arXiv:0806.3381 [hep-ph]].
[15] A. V. Sokolov and M. S. Pshirkov, Eur. Phys. J. C 77, no. 12, 908 (2017), [arXiv:1611.04949 [hep-ph]].
[16] T. K. Gaisser et al. [HiRes Collaboration], Phys. Rev. D 47, 1919 (1993).
[17] E. Barcikowski et al. [Pierre Auger and Yakutsk Collaborations], EPJ Web Conf. 53, 01006 (2013).
[18] W. Hanlon et al., JPS Conf. Proc. 19, 011013 (2018).
[19] K. H. Kampert and M. Unger, Astropart. Phys. 35, 660 (2012).
[20] R. Ellsworth et al. [Fly’s Eye Collaboration], Phys. Rev. D 26, 336 (1982).
[21] R. Baltrusaitis et al. [Fly’s Eye Collaboration], Phys. Rev. Lett. 52, 1380 (1984).
[22] R. U. Abbasi et al. [Telescope Array Collaboration], Phys. Rev. D 92, no. 3, 032007 (2015).
[23] P. Abreu et al. [Pierre Auger Collaboration], Phys. Rev. Lett. 109, 062002 (2012).
[24] A. Yushkov, M. Risse, M. Werner and J. Krieg, Astropart. Phys. 85, 29 (2016), [arXiv:1609.08586 [astro-ph.HE]].
[25] P. L. Biermann, T. K. Gaisser and T. Stanev, Phys. Rev. D 51, 3450 (1995), [astro-ph/9501001].
[26] Y. Ohira, K. Ioka, Astrophys. J Lett. 729, L13 (2011).
[27] R. Aloisio and V. Berezinsky, [arXiv:1703.08671 [astro-ph.HE]].
[28] D. Heck et al., Report FZKA-6019 (1998), Forschungszentrum Karlsruhe.
[29] S. Ostapchenko, Nucl. Phys. Proc. Suppl. 151, 143 (2006) [hep-ph/0412332].
[30] S. Ostapchenko, Phys. Rev. D 83, 014018 (2011).
[31] T. Pierog, I. Karpenko, J. M. Katzy, E. Yatsenko and K. Werner, Phys. Rev. C 92, no. 3, 034906 (2015), [arXiv:1506.0121 [hep-ph]].
[32] D. Ivanov, PoS ICRC 2015, 349 (2016).