Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

J Alvarez¹, M Boutchich¹, J P Kleider¹, T Teraji² and Y Koide²

¹ Laboratoire de Génie Electrique de Paris; CNRS UMR 8507; Supélec; Sorbonne Universités-UPMC Univ. Paris 06; Université Paris XI; 11 rue Joliot-Curie Plateau de Moulon, 91192, Gif-sur-Yvette, France
² Wide Bandgap Materials Group, Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

E-mail: jose.alvarez@lgep.supelec.fr

Received 7 April 2014, revised 13 July 2014
Accepted for publication 16 July 2014
Published 13 August 2014

Abstract
The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5–6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm⁻¹). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current–voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices.

Keywords: diamond, Schottky devices, leakage current, characterization, Raman, conducting probe AFM

1. Introduction
In the area of wide bandgap semiconductors, diamond remains an attractive material due fundamentally to its exceptional electronic, optical and physical properties [1,2]. These properties justify largely the research efforts that have been done at the level of the crystal growth to improve its quality in order to suit particular applications. In the field of high power electronics, diamond attracts attention because, inter alia, its high thermal conductivity (20 W cm⁻¹ K⁻¹), high carrier mobility (>3500 cm² V⁻¹ s⁻¹ for holes and electrons) and its remarkable high breakdown electric field (>10 MV cm⁻¹) [2]. The figure of merit of diamond ranks it as one of the most promising among the conventional and wide bandgap semiconductors (Si, SiC and GaN) [3]. Several research groups are currently working on homoepitaxial diamond Schottky barrier diodes (SBDs) based on vertical or lateral-type structures [4–10]. Vertical-type structure offers a small series resistance allowing low power loss and high current density operation in the forward bias regime. However, this structure can drastically impact the reverse current, in particular when for example crystal defects at the substrate surface propagate into the active diamond layer. In this sense, Tatsumi et al [4] correlated the increase of the reverse leakage current with the density of etch pits revealed by microwave plasma-assisted etching. In another approach based on non-destructive optical characterization, Ohmagari et al [11] applied cathodoluminescence (CL) mapping and found a...
correlation between the large reverse currents measured in certain Schottky devices and a localized band-A luminescence evidenced in the same devices. Both studies point out the crystal dislocations as the most probable electrical path through which the current can flow favouring the leakage current in the Schottky devices.

The following study builds on the work of Ohmagari et al [11], particularly in terms of non-destructive local characterization techniques that we combined in order to deepen the understanding of the leakage current origin in vertical-type diamond Schottky devices.

2. Experimental details

In this study we have specifically performed mapping experiments based on conducting probe atomic force microscopy (CP-AFM) and confocal micro-Raman/photoluminescence (PL) imaging, the main idea being to electrically evidence the leakage current by CP-AFM, and perform subsequently in the same local area a structural and an optoelectronic analysis using Raman and PL. For this purpose, a confocal microscope (alpha300R from Witec) coupling in the same set-up Raman, PL and CP-AFM was used. The Raman and PL measurements were performed with a frequency-doubled Nd:YAG laser operating at 532 nm as excitation source with up to 20 mW continuous wave output power. The spectra were recorded through a 300 mm imaging spectrometer equipped with both a 600 lines mm\(^{-1}\) and a 1800 lines mm\(^{-1}\) grating, and a back-illuminated CCD. A 100× dry and oil immersion objective with respectively a numerical aperture (NA) of 0.9 and 1.4, and a 50 µm core diameter multimode fibre acting as a pinhole were used to collect the Raman and PL signal. The expected lateral spatial resolution in the x–y plane in the particular case of Raman measurements can reach 150 nm (NA = 1.4) and 250 nm (NA = 1.4). Particular attention was paid to the incident laser power density to avoid local heating effects that can induce a shift of the Raman peaks. No notable effect was observed even at full power, nevertheless, despite the excellent properties of diamond as heat dissipator the mapping measurements were performed with an average power of 3 mW. Local electrical measurements through the CP-AFM technique were conducted with the home-made extension called ‘Resiscope’ [12] that was adapted to the existing AFM. This extension allows us to apply a stable dc bias voltage (from −10 to +10 V) to the sample and to measure the resulting current flowing through the tip as the sample surface is scanned in contact mode, yielding a local resistance map covering resistance values in the range 10\(^2\)–10\(^{12}\) Ω. Current–voltage (I–V) measurements are also permitted with this extension. Highly boron-doped (HBD) diamond- and platinum silicide-coated Si AFM cantilevers, with an intermediate spring constant of about 3 N m\(^{-1}\), proved to be the most suitable AFM tips for making electrical measurements on diamond layers.

In this study the diamond active layer involved in the fabrication of vertical-type SBDs was composed of a lightly boron-doped p-type diamond homoepitaxial film grown on a HBD type-Ib single-crystalline diamond (100) substrate obtained by high temperature high pressure (HPHT). The boron concentration and dimensions of the HPHT substrate were, respectively, 10\(^{20}\) cm\(^{-3}\) and 3.0 × 3.0 × 0.5 mm\(^3\). The diamond homoepitaxial film was grown on the HPHT substrate by microwave plasma-assisted chemical vapour deposition (MPCVD) technique. The total gas pressure, microwave power, methane concentration ratio and substrate temperature were 13.3 kPa, 500 W, 0.15% and 900 °C, respectively. Although the dopant gas line was not fed during the growth, a boron memory effect was evidenced in the grown homoepitaxial diamond layer. The final thickness of the diamond layer and its acceptor concentration was estimated around 0.5 µm and 10\(^{15}\) cm\(^{-3}\), respectively. The vertical SBDs consist of 150 µm diameter Au Schottky electrodes that were deposited on the epitaxial diamond surface which had previously been oxidized in an ozone environment (UV/ozone method). The ohmic contact based on a Ti/Au electrode was formed on the backside of the HBD HPHT substrate [11].

An important point in this study that should be underlined concerns the fact that the CP-AFM and micro-Raman/PL measurements were performed after the full removal of the Au Schottky electrodes from the diamond epitilayer surface. A double acid treatment based on aqua regia and a boiling mixture (nitric, sulfuric and perchloric acids) was employed to etch the metal and then oxidize the diamond surface [9].

3. Results and discussion

An illustration of the diamond surface with several circular SBDs is displayed in figure 1(a). Figures 1(b) and (c) display two examples of I–V curves illustrating a high rectification ratio and a leaky Schottky diode, respectively. Indeed, depending on the location of the Schottky electrodes the I–V characteristics can differ tremendously with rectification ratios in the range 1–10\(^4\) at ±3 V.

In what follows, we will focus only on the results of local characterizations that have been performed in the areas where the SBD devices showed the highest reverse current (rectification ratio ~1). As stated before, the local characterizations were carried out on the epitaxial diamond surface after the complete removal of the Au Schottky contacts. As an example, figure 2 illustrates a CP-AFM scan (30 × 30 µm\(^2\)) pointing out the surface topography (left map) and the corresponding electrical image (right map) of an area composed of crystal defects formed during the epitaxial diamond growth. The topography reveals various surface defects composed of growth striations, macro-steps (MSS) and etch patterns (EPs). The associated electrical image performed with an applied voltage of 7 V, shows predominantly high local resistance values (pink colour) except in a confined region where the local resistance decreases by six orders of magnitude (yellow colour).

In order to better correlate the surface topography features and the electrical ones, we decided to stack the CP-AFM image pair into one multilayer image. For this purpose the levels of opacity of both images were adjusted to conjointly discern the topography and the electrical features. Figure 3 illustrates four examples of stacked images, including the previous figure.
Figure 1. (a) Optical microscope view illustrating part of the sample surface and the circular SBDs (b) and (c) typical I–V characteristics measured on SBDs exemplifying a high rectification ratio and a leaky behaviour, respectively.

Figure 2. Surface topography image (left) and associated electrical image (right) of local crystal defects at the diamond surface measured by CP-AFM with an applied voltage of 7 V.

(figure 2), measured in four different locations at the sample surface, named b7, g2, c2 and g1. The same voltage (7 V) was applied for those different scans. The four images reveal very similar features in terms of surface topography and local resistance. Indeed, the surface morphologies reveal growth striations (also called growth bands) and MSs whose origins are commonly attributed to the differences in lateral growth rate and the effect of step bunching [13, 14]. The latter is reported as a consequence of the misorientation of the diamond substrate and the adsorption of impurities on the diamond surfaces during the growth [14, 15]. The EPs consist of square etch pits and rectangular flat-bottomed pits whose depths can reach up to 500 nm. These etch defective areas are commonly associated to basic crystal defects, such as dislocations, impurity/cluster point defects and growth sector boundaries [2, 14]. As regards to the electrical mapping a common singularity based on a strong decrease of the local resistance (5–6 orders of magnitude with respect to the surrounding) is evidenced in a confined area delimited by the EPs and the MS corner. The following confined area will hereinafter be referred as electrical ‘hot-spot’.

Raman imaging measurements have been performed in the same locations as the previous ones illustrated in figure 3. Focusing more specifically on the location named b7, figure 4 displays four maps extracted from the spectral features of the first-order diamond Raman line at 1332 cm$^{-1}$ and the background signal. In particular, the maps show the integrated intensity, the centre of mass (CM) and the full-width at half-maximum (FWHM) of the diamond line, and the PL/fluorescence background signal, respectively. The CM analysis is used here to describe the spectral centroid wavenumber computed around the diamond Raman line. It illustrates fundamentally the wavenumber shift of the diamond peak.

Due to the confocality of the system and the NA of the microscope objective, the integrated intensity map (figure 4(a)) reflects quite well the topography of the surface pointing out the local crystal defects observed previously by CP-AFM (figure 2 (topography image) and figure 3 (location b7)). Especially, the EPs and the MS corner are distinguishable and delimitate an area with a weaker integrated intensity compared to the rest.
of the map. The same area is also highlighted by the CM (figure 4(b)) and the FWHM (figure 4(c)) maps where a slight shift to lower wavenumbers and a slight FWHM widening of the diamond Raman line are evidenced. The PL background map (figure 4(d)) shows a noticeable signal forming a corona-like pattern, which involves the EPs and the MS crystal defect. The resulting Raman maps obtained for the location b7 can be transposed to the locations g2, c2 and g1 (not illustrated). Indeed, all the CMS and the FWHM maps reveal a singular area of a few tens of square micrometres (∼20 µm²) characterized by a tensile stress and a low crystal quality. In addition, the corona-like pattern is also observable underlying an impurity-related PL as the most probable origin.

Figure 5 shows the Raman spectra collected from three different regions. The map inset, which is a replica of figure 4(d), illustrates these three regions labelled A (surface between the white circle and the black ellipse), B (surface inscribed in the white circle) and C (outer surface of the black ellipse). For each region an averaged Raman spectrum was obtained integrating all spectra (pixels) enclosed in the delimited region. The resulting Raman spectra were then normalized with respect to the intensity of the first-order diamond Raman line and magnified in the zone of interest. The spectrum labelled A is characterized by a broad and strong PL background signal in the range 2.3–1.9 eV. The major PL bands are a yellow band peaked around 2.15 eV observable with the naked eye and a less intense component noticeable around 2 eV. The nature of these bands may be correlated with nitrogen impurities and platelet defects which are well known present in the diamond substrate. In the same spectrum the Raman band at 1550 cm⁻¹ (a) could be assigned to a non-diamond sp² carbon phase [16].

The spectra B and C display very similar spectral features in particular weak Raman signal bands centred at around 590 cm⁻¹ (i), 914 and 1040 cm⁻¹ (ii), their widths ranging from 80 to 150 cm⁻¹. In contrast to these bands, the diamond Raman line is much more intense (around 30–70 times larger) with a narrower line width (FWHM∼3.4–4 cm⁻¹) and shows a slight asymmetry in the line shape (see right-hand illustration in figure 5) pointing out a Fano-like effect [17]. This effect is well known in heavily doped p-type Ge and Si [18, 19], but also in p-type diamond [20, 21], and results from an overlapping between the inter-valence transitions and the one-phonon Raman line. The zoomed-in view of the diamond Raman line
in figure 5 reveals a shoulder on its high wavenumber side at 1370 cm$^{-1}$ (iii) as well as a very weak band at 1470 cm$^{-1}$ (iv), the latter feature being ascribed to an amorphous sp2 carbon phase [16]. Finally, unlike the spectrum C, the spectrum B also displays a slight shoulder peaked at 1200 cm$^{-1}$ (v) that could be linked to the incorporation of boron [20].

Comparing our spectra (B and C) to those published in several studies linked to boron-doped diamond it should be underlined that the Fano line shape and intensity observed in diamond, as well as the broad bands peaked at 590, 914 and 1040 cm$^{-1}$ may differ and change depending on the laser excitation wavelength, the laser polarization and the doping level [22–29]. In those studies a particular attention had been paid to the bands observed in the region below 1300 cm$^{-1}$ which are commonly assigned to boron impurities. Indeed, in the case of superconducting boron-doped diamond, Bourgeois et al [23] concluded through supercell calculations and Raman experiments that boron dimers can favourably induce vibrational modes in the range 400–600 cm$^{-1}$. Additionally, it also appears that boron dimers induce empty states in the band gap which remain electrically inactive. In another study, Blank et al [25] through polarized Raman experiments pointed out Raman bands at 588, 920 and 1042 cm$^{-1}$ for boron doping levels in the range 10^{17}–10^{19} cm$^{-3}$, they assigned these bands to phonon scattering induced by defects with the exception of the band at 920 cm$^{-1}$ attributed to the vibration of boron atoms. The same research group, Popova et al [27], also performed calculations in case of highly boron-doped diamond ($>10^{21}$ cm$^{-3}$) and reached the conclusion that the observed bands at 580 and 860–900 cm$^{-1}$ are linked to boron localized vibrations. Based on these observations, the inhomogeneous boron incorporation could explain the band intensity variations observed between the spectra B and C in the low-wavenumber region.

Focusing to the low-wavenumber bands (590, 914 and 1040 cm$^{-1}$) and more specifically to the intensity variations, the Raman maps were reconstructed at exactly the same locations as illustrated in figure 3. Figure 6 shows the integrated intensity maps of the Raman band at 590 cm$^{-1}$ performed at the locations b7, g2, c2 and g1. The four reconstructed maps highlight a confined area that exhibits a strong integrated signal with respect to its surrounding.
The integrated intensity ratio between the confined area and its surrounding can reach up to 800. Similar findings are obtained with the two other Raman bands (914 and 1040 cm\(^{-1}\)) after applying the same map reconstruction. It is particularly important to emphasize the analogies existing between the maps of figure 6 and those illustrated previously in figure 3, which reveal a close correlation between the highest intensity areas in terms of Raman band at 590 cm\(^{-1}\) and the giant drop of the local resistance evidenced in the hot-spots.

So far, all the illustrated Raman maps were collected near the surface at the same focal plane through a confocal pinhole. Additional depth information can be expected to be obtained through optical sectioning experiments, and more specifically confocal Raman depth profiling (CRDP).

Since the confocal microscope is sensitive to the depth of focus it becomes possible changing the distance sample–objective to record images with depth resolution. The CRDP technique was performed at the same locations illustrated in figure 6, in particular \(x-z\) scans were performed in the areas involving the highest integrated Raman signal levels that were identified as the hot-spot emplacement. Figure 7 displays a Raman depth scan performed at the location named b7 with an oil immersion objective allowing an axial resolution of 380 nm. The reduced images at the top are the \(x-y\) confocal Raman maps previously shown (figure 4(a) and figure 6 (location b7)) on which a white dashed arrow has been added to localize the \(x-z\) depth scan. Figures 7(a) and (b) show the reconstructed depth maps obtained, as the corresponding reduced maps above, integrating the intensity of the diamond Raman line and the low-wavenumber Raman band at 590 cm\(^{-1}\), respectively. The first common observation concerns the decrease of the Raman intensity as function of depth which can be understood as an effect of the absorption of the scattered light. If we compare both maps, from top to bottom, one can remark that the diamond Raman signal is detected first compared to the Raman signal at 590 cm\(^{-1}\) except in the central part of the map where both signals are simultaneously observed. To guide the eye, white dotted lines have been drawn to illustrate this point. The same white lines reasonably display the position of the sample surface. The depth shift existing in certain regions between the diamond signal and the Raman signal at 590 cm\(^{-1}\) serves to indirectly identify the homoepitaxial layer. Indeed, in principle the Raman signal at 590 cm\(^{-1}\) is expected to be very weak or even nonexistent in the homoepitaxial layer and, on the other hand, very intense in the diamond substrate due that is HBD. Black dotted lines have been added to the map to locate the interface between the homoepitaxial layer and the substrate.

Figure 7(c) completes the Raman depth analysis illustrating the width (FWHM) of the diamond Raman line. Due to the grating (600 lines mm\(^{-1}\)) involved in the following measurements, the widths appear much wider compared to those displayed in figure 4(c). Although the instrumental broadening, we can clearly evidence several linewidth regions corresponding to different crystalline qualities. Indeed, the broader diamond Raman lines are found at the edges of the hot-spots (FWHM\(\sim\)11 cm\(^{-1}\), red areas which coincide with the region labelled A in figure 5), in the HPHT substrate (FWHM\(\sim\)10.1 cm\(^{-1}\), green area between the black dotted line and the bottom of the depth scan) and in the hot-spot (FWHM\(\sim\)9.9 cm\(^{-1}\), cyan area discernible in the homoepitaxial layer between the white and the black dotted lines). The regions showing the narrowest width (FWHM\(\sim\)9.5 cm\(^{-1}\), purple areas) are identified in the homoepitaxial diamond layer surrounding the hot-spot. Lastly, the region above the white dotted line represents the out-of-focus information collected from the regions outside the focal plane.
The purpose of figure 7 is essentially to bring a qualitative description of the depth distribution of the Raman signal at 590 cm$^{-1}$ and the FWHM of the diamond Raman line. Both signals have been resolved in the homoepitaxial layer, and in particular at the hot-spot location, as well as in the HPHT substrate. Quantitative depth analysis is here not an easy task due that the Raman spectra collected at a given depth always contain features involving materials present above and below the focal point, and in addition the large refractive index of diamond ($n = 2.5$ for diamond) and the point spread function (PSF) of the optical system are two critical issues that must be also taken into account for a precise depth analysis.

In order to go a bit further from the electrical point of view, current–voltage ($I–V$) measurements were carried out locally with the CP-AFM set-up. More specifically the measurements were performed in the hot-spots identified in the locations b7, g2, c2 and g1 and also outside the specified hot-spot areas. In the latter case, we should point out that no electrical current was successfully measured in the range 0–10 V due that the current levels were below the detection limit (~ 1 pA). Figure 8 shows four series of $I–V$ curves measured in the hot-spots with a HBDD AFM tip. Due to the symmetry of the $I–V$ curves only the characteristics for a positive applied voltage are plotted. For illustration purposes, the $I–V$ properties are illustrated on a log–log scale. Indeed, for $V > 0.2$ V all the curves clearly display a linear behaviour pointing out a power law relationship, $I \propto V^m$, where m refers to the slope which reaches values close to 3. Conversely, the $I–V$ trends below 0.2 V are not clearly identified. Nevertheless, trap-controlled space-charge-limited current (SCLC) remains the determinant transport mechanism that justifies the trap-filled-limited (TFL) conduction regime observed for $V > 0.2$ V. TFL conduction mechanism can be understood as the result of the carrier injection that saturates all trap defects. Indeed, after the trap saturation the carrier injection accumulates in the allowed band provoking a steep increase of the current with a slope higher than 2. SCLC mechanisms in diamond have been described by several authors and used as an electrical method for probing the density of states above the valence band [30–34]. Some of these studies concluded with the presence of an exponential distribution of traps that extends up to the valence band.
Based on the following results, the first remark that can be made is that the high leakage current observed in several Schottky diodes is controlled by TFL conduction mechanisms taking place at the hot-spots. However, this implies that the metal used as a Schottky barrier behaves locally as an injecting point contact when in particular it interacts with the area of the hot-spot. The presence of interface dipoles, as the well-known H–C bonds on the surface of p-type diamond [35], can, for example, considerably contribute to reducing the Schottky barrier height expected at the hot-spot locations. The identification of the trap defects (point defects, dislocations, impurities and their possible complexes, etc) involved in the TFL conduction mechanism remains a difficult task, however in view of the above Raman results the boron impurities and its possible complexes might be strongly put forward. Boron atoms are in diamond the most successful p-type dopant whose concentration allows transitions from semiconducting to metallic and to superconducting properties. Nevertheless as investigated by Muret et al and Elsherif et al [36], some of the incorporated boron atoms do not act as acceptors, but rather as deep level traps. Some of these levels based on boron complexes are proposed to be due to the segregation of boron atoms into the defective areas (point, linear and planar defects) that were created or propagated during the diamond growth [37]. In this regard, the Raman maps of figure 4 ((a), (b) and (c)) highlight a local area where the diamond lattice appears to be more constrained. In addition, the same local areas are revealed by integrating the intensity of the low-wavenumber Raman bands (590, 914 and 1040 cm$^{-1}$) as displayed in figure 6. The link between these Raman bands and the electrical hot-spots are clearly established when one compares the reconstructed Raman maps in figure 6 and the CP-AFM maps in figure 3. Indeed, the area of the hot-spot coincides with an increase of the integrated intensity of the Raman bands at low-wavenumber which are commonly attributed to the incorporation of high amount of boron into the diamond lattice. Lastly, the depth Raman maps of figure 7 display in a qualitative manner that the hot-spot is located in the homoepitaxial layer, and that the low-wavenumber Raman bands characterizing the hot-spot are also clearly identified in the HBD diamond substrate. In addition, the FWHM depth analysis points out a comparable crystalline quality between the hot-spot and the diamond substrate, and conversely a much better quality is observed in the rest of the homoepitaxial layer surrounding the hot-spot.

The close correlation found by Ohmagari et al [11] between the band-A luminescence (assigned to the presence of dislocations) and the high leakage current is here not observable due to our experimental conditions which do not allow the excitation of the blue band-A (~2.8 eV). However as illustrated in many studies [38–40], the incorporation of boron in diamond layers also induces a broad green luminescence (~2.3 eV) which overlaps the band-A emission and can become the prominent PL band in case of high...
boron concentration. The intensities of both bands are also dependent on the growth sectors due to the defects/impurities propagate/incorporate themselves in a different way during the growth phase. The following remarks are in some way consistent with the results presented in this study given that the area of the hot-spots is constrained, confined in a region delimited by crystal defects (MS and etch pits) and boron-rich.

4. Conclusion

In conclusion, the origin of the high leakage current in vertical-type diamond Schottky devices was investigated through non-destructive local characterization techniques based on CP-AFM and confocal micro-Raman/PL imaging analysis that were performed in the same local areas. Electrical hot-spots of a few tens of square micrometres in size have been identified in a confined region delimited by crystal defects and correlated, in a first stage, with the constraints in the diamond lattice. However, a thorough analysis of the integrated intensity of the low-wavenumber Raman bands clearly established a close link between the electrical hot-spots and the amount of boron impurities locally incorporated.

The major unknown concerns how the boron is incorporated into the lattice and how it acts electrically. Indeed, boron can segregate into defective crystal sites, and from the electrical point of view some forms of boron can be inactive and act as deep traps. In this sense, $I-V$ characteristics performed at the hot-spots showed a trap-controlled space-charge-limited current as the main conduction mechanism that is responsible for the high leakage current observed in the SBD devices.

References

[1] Neves A J and Nazare M H 2001 Properties, Growth and Applications of Diamond (London: IEE)
[2] Koizumi S, Nebel C and Nesladek M 2008 Physics and Applications of CVD Diamond (Weinheim: Wiley-VCH)
[3] Okumura H 2006 Present status and future prospect of widegap semiconductor high-power devices Japan. J. Appl. Phys. 45 7565
[4] Tatsumi N, Ikeda K, Umezawa H and Shikata S 2009 Development of diamond Schottky barrier diode SEI Technical Review 68 54
[5] Umezawa H, Kato Y and Shikata S 2012 1 Ω on-resistance diamond vertical-Schottky barrier diode operated at 250 °C Appl. Phys. Express 6 011302
[6] Umezawa H, Nagase M, Kato Y and Shikata S 2012 High temperature application of diamond power device Diamond Relat. Mater. 24 201
[7] Nagase M, Umezawa H and Shikata S 2013 Vertical diamond Schottky barrier diode fabricated on insulating diamond substrate using deep etching technique IEEE Trans. Electron Devices 60 1416
[8] Teraji T, Koizumi S, Koide Y and Ito T 2007 Electric field breakdown of lateral Schottky diodes of diamond Japan. J. Appl. Phys. 46 L196
[9] Volpe P N et al 2010 High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer Phys. Status Solidi a 207 2088
[10] Achard J et al 2011 Thick boron doped diamond single crystals for high power electronics Diamond Relat. Mater. 20 145
[11] Ohmagari S, Teraji T and Koide Y 2011 Non-destructive detection of killer defects of diamond Schottky barrier diodes J. Appl. Phys. 110 056105
[12] Houzé F, Meyer R, Schneegans O and Boyer L 1996 Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes Appl. Phys. Lett. 69 1975

[13] Szurgot M 2010 Investigations of distributions of point defect clusters in lopeizite crystals by etch topography Microscopy: Science, Technology, Applications and Education vol 3, ed A Méndez-Vilas and J Díaz (Badajoz: Formatex Research Center) pp 2137–44

[14] Dhanaraj G, Byrappa K, Prasad V and Dudley M 2010 Handbook of Crystal Growth (Heidelberg: Springer)

[15] de Theije F K, Schermer J J and van Eekerveert W J P 2000 Effects of nitrogen impurities on the CVD growth of diamond step bunching in theory and experiment Diamond Relat. Mater. 9 1439

[16] Zaitsev A M 2000 Handbook of Diamond Technology ed W R Fahrner (Uetikon-Zürich: Trans Tech) pp 51

[17] Fano U 1961 Effects of configuration interaction on intensities and phase shifts Phys. Rev. 124 1866

[18] Cerdeira F and Cardona M 1972 Effect of carrier concentration on the Raman frequencies of Si and Ge Phys. Rev. B 5 1440

[19] Cerdeira F, Fjeldly T A and Cardona M 1973 Effect of free carriers on zone-center vibrational modes in heavily doped p-type Si: II. Optical modes Phys. Rev. B 8 4734

[20] Gonon P, Gheeraert E, Deneuville A, Fontaine F, Abello L and Lucazeau G 1995 Characterization of heavily B-doped polycrystalline diamond films using Raman spectroscopy and electron spin resonance J. Appl. Phys. 78 7039

[21] Ager J W, Walukiewicz W, McCluskey M, Plano M A and Landstrass M I 1995 Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition Appl. Phys. Lett. 66 616

[22] Mermoux M, Marcus B, Swain G M and Butler J E 2002 A confocal Raman imaging study of an optically transparent boron-doped diamond electrode J. Phys. Chem. B 106 10816

[23] Bourgeois E, Bustarret E, Achatz P, Omnes F and Blase X 2006 Impurity dimers in superconducting B-doped diamond: experiment and first-principles calculations Phys. Rev. B 74 094509

[24] Mermoux M, Jomard F, Tavares C, Omnes F and Bustarret E 2006 Raman characterization of boron-doped {1 1 1} homoepitaxial diamond layers Diamond Relat. Mater. 15 572

[25] Blank V D, Denisov V N, Kirichenko A N, Kuznetsov M S, Mavrin B N, Nosukhin S A and Terentiev S A 2008 Raman scattering by defect-induced excitations in boron-doped diamond single crystals Diamond Relat. Mater. 17 1840

[26] Crisci A, Mermoux M and Saubat-Marcus B 2008 Deep ultra-violet Raman imaging of CVD boron-doped and non-doped diamond films Diamond Relat. Mater. 17 1207

[27] Popova D M, Mavrin B N, Denisov V N and Skryleva E A 2009 Spectroscopic and first-principles studies of boron-doped diamond: Raman polarizability and local vibrational bands Diamond Relat. Mater. 18 850

[28] Sidorov V A and Ekimov E A 2010 Superconductivity in diamond Diamond Relat. Mater. 19 351

[29] Szirmai P, Pichler T, Williams O A, Mandal S, Baeserle C and Simon F 2012 A detailed analysis of the Raman spectra in superconducting boron doped nanocrystalline diamond Phys. Status Solidi b 249 2656

[30] Ashok S, Srikanth K, Badzian A, Badzian T and Messier R 1987 Space-charge-limited current in thin-film diamond Appl. Phys. Lett. 50 763

[31] Srikanth K, Ashok S, Badzian A, Badzian T and Messier R 1988 Electrical conduction in thin film diamond Thin Solid Films 164 187

[32] Mort J, Machonkin M A and Okumura K 1991 Density of states distribution in diamond thin films Appl. Phys. Lett. 59 455

[33] Werner M, Dorsch O, Hinze A, Obermeier E, Harper R E, Johnston C, Chalker P R and Buckley-Golder I M 1993 Space-charge-limited current flow and trap density in undoped diamond films Diamond Relat. Mater. 2 825

[34] Matsumue Y, Akiba Y, Hirose Y, Kurosu T and Iida M 1994 Japan. J. Appl. Phys. 33 L702

[35] Mönch W 1994 Barrier heights of metal contacts on H-terminated diamond: explanation by metal-induced gap states and interface dipoles Europhys. Lett. 27 479

[36] Muret P, Pernot J, Kumar A, Magaud L, Mer-Calafat C and Bergonz P 2010 Deep hole traps in boron-doped diamond Phys. Rev. B 81 235205

[37] Elsherif O S, Vernon-Parry K D, Evans-Freeman J H and May P W 2012 Electrical characterisation of defects in polycrystalline B-doped diamond films Mater. Sci. Forum 717–720 1315

[38] Goss J P and Briddon P R 2006 Theory of boron aggregates in diamond: first-principles calculations Phys. Rev. B 73 085204

[39] Kawarada H, Yokota Y, Mori Y, Nishimura K and Hiraki A 1990 Cathodoluminescence and electroluminescence of undoped and boron-doped diamond formed by plasma chemical vapor deposition J. Appl. Phys. 67 983

[40] Collins A T 1992 The characterisation of point defects in diamond by luminescence spectroscopy Diamond Relat. Mater. 1 457

[41] Wang C L, Hatta A, Jiang N, Won J H, Ito T, Hiraki A, Jin Z S and Zou G T 1998 Investigation on surface of boron-doped CVD diamond by cathodoluminescence spectroscopy Diamond Relat. Mater. 7 748