Genetically determined high activities of the TNF-alpha, IL23/IL17, and NFkB pathways were associated with increased risk of ankylosing spondylitis

Sode, Jacob; Bank, Steffen; Vogel, Ulla; Andersen, Paal Skytt; Sørensen, Signe Bek; Bojesen, Anders Bo; Andersen, Malene Rohr; Brandslund, Ivan; Dessau, Ram Benny; Hoffmann, Hans Jürgen; Glintborg, Bente; Hetland, Merete Lund; Locht, Henning; Heegaard, Niels Henrik; Andersen, Vibeke

Published in:
BMC Medical Genetics

DOI:
10.1186/s12881-018-0680-z

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Sode, J., Bank, S., Vogel, U., Andersen, P. S., Sørensen, S. B., Bojesen, A. B., ... Andersen, V. (2018). Genetically determined high activities of the TNF-alpha, IL23/IL17, and NFkB pathways were associated with increased risk of ankylosing spondylitis. BMC Medical Genetics, 19, [165]. https://doi.org/10.1186/s12881-018-0680-z

Download date: 09. Mar. 2020
Genetically determined high activities of the TNF-alpha, IL23/IL17, and NFkB pathways were associated with increased risk of ankylosing spondylitis

Jacob Sode 1,2,3,4, Steffen Bank 5,6*, Ulla Vogel 7, Paal Skytt Andersen 8,9, Signe Bek Sørensen 1,5,10, Anders Bo Bojesen 3, Malene Rohr Andersen 11, Ivan Brandslund 12, Ram Benny Dessau 13, Hans Jürgen Hoffmann 14,15, Bente Glimtborg 16,17, Merete Lund Hetland 17,18, Henning Locht 3, Niels Henrik Heegaard 2,19 and Vibeke Andersen 1,5,10,20

Abstract

Background: Ankylosing spondylitis (AS) results from the combined effects of susceptibility genes and environmental factors. Polymorphisms in genes regulating inflammation may explain part of the heritability of AS.

Methods: Using a candidate gene approach in this case-control study, 51 mainly functional single nucleotide polymorphisms (SNPs) in genes regulating inflammation were assessed in 709 patients with AS and 795 controls. Data on the patients with AS were obtained from the DANBIO registry where patients from all of Denmark are monitored in routine care during treatment with conventional and biologic disease modifying anti-rheumatic drugs (bDMARDs). The results were analyzed using logistic regression (adjusted for age and sex).

Results: Nine polymorphisms were associated with risk of AS ($p < 0.05$). The polymorphisms were in genes regulating a: the TNF-α pathway ($\text{TNF} -308 \ G > A$ (rs1800629), and $-238 \ G > A$ (rs361525); $\text{TNFRSF1A} -609 \ G > T$ (rs4149570), and $\text{PTPN22} -609 \ G > T$ (rs4149570); $\text{TNFRSF1A} -609 \ G > T$ (rs4149570)); b: the IL23/IL17 pathway ($\text{IL23R} G > A$ (rs11209026), and $\text{IL18} -137 \ G > C$ (rs187238)); or c: the NFkB pathway ($\text{TLR1} 743 \ T > C$ (rs4833095), $\text{TLR4} T > C$ (rs1554973), and $\text{LY96} -1625 \ C > G$ (rs11465996)). After Bonferroni correction the homozygous variant genotype of $\text{TLR1} 743 \ T > C$ (rs4833095) (odds ratios (OR): 2.59, 95% confidence interval (CI): 1.48–4.51, $p = 0.04$), and $\text{TNFRSF1A} -609 \ G > T$ (rs4149570) (OR: 1.79, 95% CI: 1.31–2.41, $p = 0.01$) were associated with increased risk of AS and the combined homozygous and heterozygous variant genotypes of $\text{TNF} -308 \ G > A$ (rs1800629) (OR: 0.56, 95% CI: 0.44–0.72, $p = 0.0002$) were associated with reduced risk of AS.

Conclusion: We replicated associations between AS and the polymorphisms in TNF (rs1800629), TNFRSF1A (rs4149570), and IL23R (rs11209026). Furthermore, we identified novel risk loci in TNF (rs361525), IL18 (rs187238), TLR1 (rs4833095), TLR4 (rs1554973), and LY96 (rs11465996) that need validation in independent cohorts. The results suggest that genetically determined high activity of the TNF-α, IL23/IL17, and NFkB pathways increase risk of AS.

Keywords: Ankylosing spondylitis, Single nucleotide polymorphism, SNP, Case-control study
Background
Ankylosing spondylitis (AS) is a type of spondyloarthritis in which hallmark clinical features are inflammation at entheses and subchondral bone of the pelvic and spinal joints with subsequent abnormal new bone formation at these sites. Ultimately, this leads to ossification of entheses and joints resulting in loss of joint mobility. The incidence varies between 0.1 and 1.8% with the highest incidence in Scandinavia. Onset is typically in young adults with a male predominance. Medications used include non-steroid anti-inflammatory drugs (NSAIDs), and biological disease-modifying anti-rheumatic drugs (bDMARDs), i.e. tumor necrosis factor-α inhibitors (anti-TNF) and more recently also an interleukin(IL)-17A inhibitor (secukinumab) [1].

The cause of AS is unknown but is believed to involve a combination of genetic and environmental factors [2]. The heritability is polygenic and estimated to exceed 90%, with the HLA-B27 allele as the major contributor accounting for approximately 25% of the heritability of AS [2]. The IL-17/IL-23 pathway and the TNF-α pathway are central in the pathogenesis of AS and alterations in these pathways have been shown in mouse models to affect development and severity of enthesitis [3, 4].

TNF-α can be activated by Pathogen-Associated Molecular Patterns (PAMPs) such as bacterial or viral DNA, flagellin, or lipopolysaccharide (LPS), through the NFkB pathway. PAMPs can be recognized by Toll-like receptors (TLRs) thereby initiating a kinase cascade which phosphorylates and degrades the NFkB inhibitor IkBα [5]. This releases NFkB which is transported from the cytosol to the nucleus where it initiates expression of pro- and anti-inflammatory cytokines including TNF-α and IL-17 (http://www.bu.edu/nf-kb/gene-resources/target-genes/). The TNF-α and NFkB pathway are intertwined and TNF-α can feedback stimulate NFkB by binding to TNF receptors (TNFR1 or TNFR2), resulting in a kinase cascade similar to, but distinct from, the pathway induced by TLRs [5].

The IL23/IL17 pathway can also stimulate TNF-α activity. The pro-inflammatory cytokine IL-17 enhances the production of other pro-inflammatory cytokines including TNF-α, and the secretion IL-17 itself can be enhanced by IL-23 [6].

PAMPs can also be recognized by intracellular Nod-like receptors (NLRs). In turn, NLRs can activate pro-inflammatory cytokines including IL-18 [7]. IL-18 is involved in the IL23/IL17 pathway and can enhance the production of IL-17 [8].

The aim of this study was to assess whether functional single nucleotide polymorphisms (SNPs) in genes involved in the TNF-α, IL23/IL17, NFκB, and other pro- and anti-inflammatory pathways were associated with risk of AS.

Methods
Patients and samples

The DANBIO registry includes prospectively collected clinical data on patients with inflammatory joint diseases including smoking status, disease characteristics e.g. HLA-B27 status, disease activity, treatment, and treatment outcomes. Patients from all of Denmark are monitored in routine care during treatment with conventional and biologic disease modifying anti-rheumatic drugs (bDMARDs) [9].

Screening for tuberculosis before initiation of treatment with biological drugs is routinely performed in Denmark. Left over blood clots (after whole blood analysis for Mycobacterium tuberculosis) were collected from all patients screened for tuberculosis at Statens Serum Institut (Copenhagen, Denmark) from 01.09.2009 to 31.01.2013; the Department of Respiratory Diseases B and the Department of Clinical Microbiology, Aarhus University Hospital (Aarhus, Denmark) from 01.01.2011 to 31.01.2014; the Department of Clinical Biochemistry, Herlev and Gentofte Hospital (Hellerup, Denmark) from 01.03.2012 to 31.01.2014; the Department of Biochemistry, Hospital of Lillebaelt (Vejle, Denmark); and the Department of Biochemistry, Hospital of Slagelse (Slagelse, Denmark) from 01.01.2014 to 31.01.2014. Furthermore, from 01.01.2013 to 31.12.2013 blood samples were collected from all patients with AS treated with or without anti-TNF drugs at the Department of Rheumatology, Frederiksberg Hospital (Frederiksberg, Denmark).

By linking the unique personal identification number of Danish citizens (CPR-number) from each blood sample with the clinical data from DANBIO, 709 patients with AS (ICD-10: M45.9) were identified. The control group consisted of 795 healthy blood donors recruited from Viborg, Denmark.

Genotyping

Fifty-one SNPs in genes involved in the TNF-α, IL23/IL17, NFκB, and other pro- and anti-inflammatory pathways were assessed. A list of all SNPs studied and genotype distribution is presented in Table 1 and SNPs associated with AS are summarized in Table 2.

DNA extraction (Maxwell 16 LEV Blood DNA Kit; Promega, Madison, WI, USA) was performed as described by Bank et al. [10]. For the healthy controls, DNA was extracted from EDTA-stabilized peripheral blood by either PureGene (Qiagen, Hilden, Germany) or Wizard Genomic (Promega, Madison, Wisconsin, USA) DNA purification kit according to the manufacturers’ instructions [11–17]. Competitive Allele-Specific Polymerase chain reaction (KASP™), an end-point PCR technology, was used by LGC Genomics for genotyping (LGC Genomics, Hoddesdon, United Kingdom) (http://www.lgcgenomics.com/).
Table 1. Odds ratios (OR) and 95% confidence interval (95CI) for genotypes studied among healthy controls and patients with ankylosing spondylitis (AS)

Gene	rs-number	Healthy controls	AS	Unadjusted	Adjusted, age & sex	Adjusted, age, sex & smoking	
		OR (95 CI)	p	OR (95 CI)	p	OR (95 CI)	p
TLR1	rs4833095						
TT	485	1.07 (0.86–1.33)	0.57	1.03 (0.82–1.29)	0.83	1.05 (0.78–1.42)	0.73
TC	261	2.51 (1.45–4.34)	0.00095	2.59 (1.48–4.51)	0.00081	2.86 (1.44–5.68)	0.0026
CC	20	1.17 (0.95–1.44)	0.15	1.14 (0.91–1.41)	0.25	1.18 (0.89–1.58)	0.26
TLR2	rs3804099						
TT	241	1.10 (0.87–1.40)	0.42	1.07 (0.84–1.37)	0.58	1.02 (0.73–1.42)	0.90
TC	393	1.21 (0.89–1.63)	0.22	1.24 (0.91–1.68)	0.17	1.30 (0.87–1.96)	0.20
CC	144	1.13 (0.90–1.41)	0.29	1.11 (0.89–1.40)	0.36	1.10 (0.80–1.50)	0.57
TLR2	rs11938228						
CC	327	0.89 (0.71–1.10)	0.27	0.86 (0.69–1.07)	0.17	0.80 (0.60–1.08)	0.15
AA	76	0.95 (0.66–1.36)	0.76	0.92 (0.63–1.33)	0.66	1.03 (0.62–1.69)	0.92
CA	368	0.90 (0.73–1.10)	0.30	0.87 (0.70–1.07)	0.19	0.84 (0.63–1.11)	0.22
TLR2	rs4696480						
AA	199	0.93 (0.72–1.19)	0.55	0.89 (0.69–1.15)	0.38	0.94 (0.60–1.18)	0.31
AT	417	1.21 (0.90–1.63)	0.20	1.16 (0.86–1.58)	0.33	1.18 (0.78–1.78)	0.44
TT	155	1.00 (0.79–1.27)	0.97	0.97 (0.76–1.23)	0.78	0.92 (0.67–1.27)	0.62
TLR4	rs5030728						
GG	359	1.03 (0.83–1.28)	0.80	1.01 (0.81–1.27)	0.91	0.93 (0.69–1.25)	0.62
GA	323	1.00 (0.70–1.43)	1.00	0.98 (0.68–1.42)	0.93	0.87 (0.53–1.42)	0.57
AA	78	1.02 (0.83–1.26)	0.83	1.01 (0.82–1.25)	0.94	0.91 (0.69–1.21)	0.53
TLR4	rs1554973						
TT	440	1.07 (0.86–1.33)	0.55	1.06 (0.85–1.32)	0.62	0.98 (0.73–1.32)	0.90
TC	272	0.59 (0.38–0.92)	0.02	0.55 (0.34–0.86)	0.01	0.68 (0.38–1.23)	0.20
CC	62	0.98 (0.80–1.21)	0.85	0.96 (0.78–1.19)	0.72	0.93 (0.70–1.24)	0.63
TLR4	rs12377632						
TT	306	1.01 (0.81–1.26)	0.96	1.05 (0.84–1.32)	0.66	1.07 (0.78–1.46)	0.67
TC	358	1.06 (0.77–1.47)	0.71	1.11 (0.80–1.55)	0.52	1.41 (0.92–2.17)	0.12
CC	102	1.02 (0.83–1.26)	0.86	1.06 (0.86–1.32)	0.58	1.14 (0.85–1.53)	0.37
TLR5	rs5744168						
CC	672	1.17 (0.95–1.44)	0.15	1.14 (0.91–1.41)	0.25	1.18 (0.89–1.58)	0.26
Table 1 Odds ratios (OR) and 95% confidence interval (95CI) for genotypes studied among healthy controls and patients with ankylosing spondylitis (AS) (Continued)

Gene	rs-number	Healthy controls	AS	Unadjusted OR (95 CI)	p	Adjusted, age & sex OR (95CI)	p	Adjusted, age & sex & smoking OR (95 CI)	p
CT	94	89		1.05 (0.77–1.43)	0.75	1.05 (0.77–1.45)	0.74	0.89 (0.58–1.37)	0.60
TT	5	2		0.44 (0.09–2.30)	0.33	0.45 (0.08–2.43)	0.35	0.04 (0.00–3.54)	0.16
CT or TT	99	91		1.02 (0.75–1.39)	0.89	1.02 (0.75–1.40)	0.88	0.84 (0.55–1.29)	0.43
TLR5	rs5744174								
TT	215	216							
TC	399	337		0.84 (0.66–1.07)	0.15	0.85 (0.67–1.09)	0.20	0.82 (0.60–1.14)	0.24
CC	144	138		0.95 (0.71–1.29)	0.76	1.02 (0.75–1.39)	0.91	0.87 (0.57–1.32)	0.51
TC or CC	543	475		0.87 (0.69–1.09)	0.23	0.90 (0.71–1.13)	0.36	0.84 (0.62–1.14)	0.26
TLR9	rs187084								
TT	262	237							
TC	366	335		1.01 (0.80–1.27)	0.92	1.03 (0.82–1.31)	0.78	1.09 (0.79–1.50)	0.60
CC	142	120		0.93 (0.69–1.26)	0.66	0.91 (0.67–1.24)	0.56	1.07 (0.71–1.61)	0.76
TC or CC	508	455		0.99 (0.80–1.23)	0.93	1.00 (0.80–1.25)	0.98	1.08 (0.80–1.46)	0.60
TLR9	rs352139								
GG	255	211							
GA	347	324		1.13 (0.89–1.43)	0.32	1.08 (0.85–1.38)	0.52	1.01 (0.73–1.40)	0.93
AA	167	139		1.01 (0.75–1.34)	0.97	0.96 (0.71–1.30)	0.79	0.80 (0.53–1.20)	0.27
GA or AA	514	463		1.09 (0.87–1.36)	0.45	1.04 (0.83–1.31)	0.72	0.94 (0.69–1.27)	0.68
LY96	rs11465996								
CC	344	341							
CG	337	298		0.89 (0.72–1.11)	0.30	0.91 (0.73–1.14)	0.42	0.89 (0.66–1.20)	0.45
GG	81	53		0.66 (0.45–0.96)	0.03	0.68 (0.46–1.00)	0.0498	0.65 (0.39–1.10)	0.11
CG or GG	418	351		0.85 (0.69–1.04)	0.11	0.87 (0.70–1.07)	0.18	0.84 (0.63–1.12)	0.24
CD14	Rs2569190								
GG	236	194							
GA	360	339		1.15 (0.90–1.46)	0.27	1.18 (0.92–1.51)	0.19	1.27 (0.91–1.78)	0.16
AA	170	157		1.12 (0.84–1.50)	0.43	1.20 (0.89–1.61)	0.24	1.46 (0.98–2.19)	0.06
GA or AA	530	496		1.14 (0.91–1.43)	0.26	1.18 (0.94–1.50)	0.15	1.32 (0.96–1.82)	0.08
TIRAP	rs8177374								
CC	556	521							
CT	185	159		0.92 (0.72–1.17)	0.49	0.99 (0.77–1.27)	0.94	1.38 (0.99–1.91)	0.06
TT	21	15		0.76 (0.39–1.49)	0.43	0.76 (0.38–1.53)	0.45	1.31 (0.55–3.12)	0.55
CT or TT	206	174		0.90 (0.71–1.14)	0.39	0.97 (0.76–1.23)	0.81	1.38 (1.00–1.89)	0.047
SUMO4	rs237025								
TT	215	195							
TC	362	358		1.09 (0.86–1.39)	0.48	1.08 (0.84–1.38)	0.55	1.04 (0.75–1.44)	0.80
CC	195	136		0.77 (0.57–1.03)	0.08	0.75 (0.55–1.01)	0.06	0.55 (0.36–0.84)	0.01
TC or CC	557	494		0.98 (0.78–1.23)	0.85	0.96 (0.76–1.22)	0.75	0.87 (0.64–1.19)	0.38
Table 1 Odds ratios (OR) and 95% confidence interval (95CI) for genotypes studied among healthy controls and patients with ankylosing spondylitis (AS) (Continued)

Gene rs-number	Healthy controls	AS	Unadjusted OR (95 CI)	p	Adjusted, age & sex OR (95 CI)	p	Adjusted, age, sex & smoking OR (95 CI)	p
NFKBIA rs696								
GG	298	259	1.06 (0.85–1.32)	0.63	1.06 (0.84–1.33)	0.64	1.02 (0.75–1.39)	0.88
GA	366	336	1.03 (0.74–1.43)	0.88	0.97 (0.69–1.36)	0.86	1.07 (0.67–1.69)	0.78
AA	101	90	1.05 (0.85–1.30)	0.65	1.04 (0.84–1.29)	0.73	1.03 (0.77–1.38)	0.84
NFKB1 rs28362491								
Ins/Ins	269	258	0.88 (0.70–1.10)	0.25	0.89 (0.70–1.12)	0.31	0.74 (0.54–1.01)	0.06
−/−	122	100	0.85 (0.62–1.17)	0.33	0.82 (0.59–1.13)	0.22	0.78 (0.51–1.19)	0.25
Ins/− or −/-	498	416	0.87 (0.70–1.08)	0.21	0.87 (0.70–1.08)	0.21	0.75 (0.56–1.01)	0.06
TNF rs1800629								
GG	527	549	0.56 (0.43–0.71)	0.0000032	0.58 (0.45–0.75)	0.000029	0.63 (0.45–0.89)	0.01
GA	223	129	0.35 (0.16–0.75)	0.01	0.39 (0.18–0.85)	0.02	0.19 (0.04–0.79)	0.02
AA	25	9	1.00 (1.00–1.00)	0.00	1.00 (1.00–1.00)	1.00	1.00 (1.00–1.00)	1.00
T NF rs361525								
GG	708	669	0.85 (0.70–1.03)	0.21	0.87 (0.70–1.08)	0.21	0.75 (0.56–1.01)	0.06
GA	60	30	0.53 (0.34–0.83)	0.01	0.52 (0.32–0.82)	0.0049	0.61 (0.33–1.12)	0.11
AA	3	0	1.00 (1.00–1.00)	0.00	1.00 (1.00–1.00)	1.00	1.00 (1.00–1.00)	1.00
TNFRSF1A rs4149570								
GG	307	217	1.35 (1.07–1.70)	0.01	1.33 (1.05–1.68)	0.02	1.46 (1.06–2.00)	0.02
GT	355	339	1.71 (1.26–2.33)	0.000060	1.79 (1.31–2.46)	0.00027	2.26 (1.48–3.47)	0.00017
TT	109	132	1.44 (1.16–1.78)	0.0010	1.44 (1.15–1.80)	0.0013	1.64 (1.21–2.22)	0.0014
TNFAIP3 rs6927172								
GG	473	415	1.06 (0.85–1.32)	0.61	1.06 (0.85–1.33)	0.61	1.03 (0.76–1.39)	0.85
CT	297	299	0.70 (0.42–1.19)	0.20	0.70 (0.41–1.19)	0.18	0.51 (0.23–1.10)	0.09
TT	86	53	1.02 (0.83–1.26)	0.83	1.00 (0.81–1.23)	0.97	1.14 (0.86–1.52)	0.35
TGFB1 rs1800469								
CC	383	344	1.12 (0.90–1.39)	0.30	1.08 (0.87–1.35)	0.48	1.28 (0.95–1.71)	0.11
CT	297	299	0.69 (0.47–1.00)	0.047	0.69 (0.47–1.02)	0.06	0.69 (0.40–1.17)	0.17
TT	86	53	1.01 (0.82–1.26)	0.91	1.00 (0.81–1.23)	0.97	1.14 (0.86–1.52)	0.35
PTPN22 rs2476601								
GG	588	557						
Table 1: Odds ratios (OR) and 95% confidence interval (95CI) for genotypes studied among healthy controls and patients with ankylosing spondylitis (AS) (Continued)

Gene name	rs-number	Healthy controls OR (95 CI)	Unadjusted	Adjusted, age & sex	Adjusted, age, sex & smoking				
GA	166	0.78 (0.60–1.01) 0.06	0.77 (0.59–1.00) 0.05	0.75 (0.52–1.09) 0.13					
AA	11	0.58 (0.21–1.57) 0.28	0.57 (0.20–1.58) 0.28	0.83 (0.21–3.28) 0.80					
GA or AA	177	0.76 (0.59–0.99) 0.04	0.76 (0.58–0.98) 0.04	0.76 (0.53–1.09) 0.13					
PPARC	rs1801282								
CC	548	0.87 (0.68–1.10) 0.23	0.85 (0.66–1.08) 0.18	0.87 (0.63–1.21) 0.42					
CG	207	1.15 (0.55–2.40) 0.71	1.33 (0.62–2.83) 0.46	1.54 (0.60–3.98) 0.37					
GG	14	0.88 (0.70–1.11) 0.29	0.88 (0.69–1.11) 0.27	0.91 (0.67–1.26) 0.58					
IL1B	rs4848306								
GG	246	1.08 (0.85–1.36) 0.52	1.09 (0.86–1.39) 0.48	1.16 (0.84–1.60) 0.38					
AA	151	0.95 (0.70–1.28) 0.72	0.96 (0.71–1.31) 0.81	0.88 (0.57–1.34) 0.55					
GA or AA	524	1.04 (0.83–1.30) 0.72	1.06 (0.84–1.33) 0.64	1.08 (0.79–1.46) 0.64					
IL1B	rs1143623								
GG	401	0.97 (0.78–1.20) 0.76	0.98 (0.79–1.22) 0.87	1.07 (0.80–1.44) 0.66					
CC	55	1.04 (0.69–1.56) 0.85	1.12 (0.74–1.69) 0.59	0.87 (0.48–1.57) 0.64					
GC or CC	371	0.98 (0.80–1.20) 0.83	1.00 (0.81–1.24) 0.98	1.04 (0.78–1.38) 0.79					
IL1B	rs1143627								
GG	340	1.00 (0.81–1.25) 0.98	1.00 (0.79–1.25) 0.97	1.05 (0.78–1.42) 0.75					
CC	97	0.99 (0.71–1.37) 0.94	1.01 (0.72–1.41) 0.95	0.85 (0.53–1.36) 0.50					
GC or CC	436	1.00 (0.81–1.23) 1.00	1.00 (0.81–1.24) 1.00	1.00 (0.76–1.34) 0.97					
IL1RN	rs4251961								
TT	298	1.09 (0.87–1.36) 0.47	1.04 (0.83–1.32) 0.71	1.22 (0.89–1.67) 0.21					
CC	112	1.13 (0.83–1.55) 0.44	1.05 (0.76–1.46) 0.76	1.41 (0.92–2.17) 0.12					
TC or CC	472	1.10 (0.89–1.36) 0.40	1.05 (0.84–1.30) 0.68	1.26 (0.94–1.71) 0.12					
IL4R	rs1805010								
AA	209	0.80 (0.63–1.02) 0.08	0.79 (0.62–1.02) 0.07	0.73 (0.52–1.02) 0.07					
AG	410	0.88 (0.65–1.19) 0.41	0.91 (0.67–1.24) 0.55	0.87 (0.58–1.33) 0.53					
GG	157	0.83 (0.66–1.04) 0.10	0.83 (0.65–1.05) 0.12	0.77 (0.56–1.06) 0.11					
AG or GG	567								
IL6	rs10499563								
TT	476	0.94 (0.76–1.17) 0.60	0.94 (0.75–1.18) 0.60	0.77 (0.57–1.05) 0.10					
TC	259	0.81 (0.48–1.36) 0.42	0.72 (0.42–1.25) 0.24	0.80 (0.39–1.63) 0.53					
CC	35	0.93 (0.75–1.14) 0.48	0.92 (0.74–1.14) 0.43	0.77 (0.57–1.04) 0.09					
Gene	rs-number	Healthy controls	AS	Unadjusted OR (95 CI)	p	Adjusted, age & sex OR (95 CI)	p	Adjusted, age, sex & smoking OR (95 CI)	p
--------	-----------	------------------	----	----------------------	--------	-------------------------------	--------	--	--------
IL6R	rs4537545								
CC	289	247		1.03 (0.82–1.29)	0.82	1.05 (0.83–1.32)	0.71	1.07 (0.79–1.47)	0.65
CT	369	324		1.13 (0.83–1.54)	0.44	1.18 (0.86–1.63)	0.30	1.17 (0.76–1.79)	0.48
TT	117	113		1.05 (0.85–1.30)	0.64	1.08 (0.86–1.34)	0.51	1.09 (0.81–1.47)	0.55
CT or TT	486	437		1.05 (0.85–1.30)	0.64	1.08 (0.86–1.34)	0.51	1.09 (0.81–1.47)	0.55
IL10	rs1800872								
CC	482	408		1.03 (0.83–1.29)	0.79	1.01 (0.80–1.27)	0.94	0.93 (0.68–1.26)	0.63
CA	258	225		1.42 (0.89–2.26)	0.14	1.35 (0.83–2.18)	0.22	1.47 (0.79–2.73)	0.22
AA	35	42		1.08 (0.87–1.33)	0.50	1.05 (0.84–1.30)	0.67	0.99 (0.74–1.33)	0.95
CA or AA	293	267		1.08 (0.87–1.33)	0.50	1.05 (0.84–1.30)	0.67	0.99 (0.74–1.33)	0.95
IL10	rs3024505								
CC	518	467		1.00 (0.80–1.26)	0.97	1.01 (0.80–1.28)	0.95	1.19 (0.87–1.61)	0.28
TT	22	24		1.21 (0.67–2.19)	0.53	1.32 (0.72–2.42)	0.37	1.80 (0.79–4.12)	0.16
CT or TT	243	224		1.02 (0.82–1.27)	0.84	1.04 (0.83–1.30)	0.76	1.23 (0.92–1.66)	0.17
IL12B	rs3212217								
GG	499	460		0.92 (0.74–1.16)	0.49	0.95 (0.75–1.19)	0.64	0.94 (0.69–1.29)	0.72
GC	235	200		0.91 (0.50–1.65)	0.76	0.94 (0.51–1.72)	0.84	0.57 (0.23–1.41)	0.22
CC	25	21		0.92 (0.74–1.15)	0.47	0.95 (0.76–1.19)	0.63	0.91 (0.67–1.23)	0.53
GC or CC	260	221		0.92 (0.74–1.15)	0.47	0.95 (0.76–1.19)	0.63	0.91 (0.67–1.23)	0.53
IL12B	rs6887695								
GG	385	324		1.22 (0.98–1.52)	0.07	1.24 (0.99–1.55)	0.06	1.31 (0.97–1.77)	0.07
GC	293	301		1.16 (0.81–1.66)	0.43	1.16 (0.80–1.69)	0.43	0.98 (0.59–1.61)	0.94
CC	72	70		1.21 (0.98–1.49)	0.07	1.22 (0.99–1.51)	0.06	1.24 (0.93–1.64)	0.14
GC or CC	365	371		1.21 (0.98–1.49)	0.07	1.22 (0.99–1.51)	0.06	1.24 (0.93–1.64)	0.14
IL12B1	rs401502								
CC	360	304		1.22 (0.98–1.51)	0.08	1.21 (0.96–1.51)	0.10	1.19 (0.88–1.61)	0.26
CG	303	311		0.95 (0.67–1.35)	0.79	0.97 (0.68–1.39)	0.87	1.18 (0.74–1.88)	0.48
GG	87	70		1.16 (0.94–1.42)	0.17	1.15 (0.93–1.43)	0.19	1.19 (0.89–1.58)	0.24
IL17A	rs2275913								
GG	340	307		0.99 (0.80–1.24)	0.94	0.98 (0.79–1.23)	0.89	0.90 (0.67–1.22)	0.51
GA	336	301		0.98 (0.70–1.36)	0.90	1.00 (0.71–1.40)	0.98	1.00 (0.63–1.57)	0.99
AA	95	84		0.99 (0.80–1.22)	0.92	0.99 (0.80–1.22)	0.89	0.92 (0.69–1.22)	0.57
IL18	rs187238								
GG	387	380							
Table 1 Odds ratios (OR) and 95% confidence interval (95CI) for genotypes studied among healthy controls and patients with ankylosing spondylitis (AS) (Continued)

Gene	rs-number	Healthy controls	AS	Unadjusted		Adjusted, age & sex		Adjusted, age, sex & smoking
		OR (95 CI)	p	OR (95 CI)	p	OR (95 CI)	p	
GC	312	259	0.85 (0.68–1.05)	0.13	0.83 (0.66–1.03)	0.09	0.74 (0.55–1.00)	0.049
CC	64	41	0.65 (0.43–0.99)	0.04	0.69 (0.45–1.06)	0.09	0.58 (0.32–1.04)	0.07
GC or CC	376	300	0.81 (0.66–1.00)	0.0499	0.80 (0.65–0.99)	0.04	0.71 (0.53–0.95)	0.02
IL18 rs1946518								
GG	282	259	0.99 (0.79–1.24)	0.91	0.96 (0.76–1.12)	0.71	0.89 (0.65–1.21)	0.45
GT	363	329	0.93 (0.68–1.29)	0.68	0.95 (0.68–1.31)	0.74	0.80 (0.51–1.24)	0.32
TT	113	97	0.97 (0.79–1.21)	0.81	0.96 (0.77–1.19)	0.68	0.86 (0.64–1.16)	0.32
IL23R rs11209026								
GG	680	646	0.59 (0.41–0.85)	0.0045	0.63 (0.43–0.91)	0.02	0.64 (0.38–1.05)	0.08
GA	89	50	1.00 (1.00–1.00)	1.00	1.00 (1.00–1.00)	1.00	1.00 (1.00–1.00)	1.00
AA	5	1	0.57 (0.40–0.82)	0.0021	0.60 (0.42–0.87)	0.01	0.63 (0.38–1.03)	0.06
IFNG rs2430561								
TT	199	181	1.02 (0.80–1.30)	0.88	1.01 (0.79–1.30)	0.92	1.08 (0.77–1.52)	0.65
TA	398	369	0.95 (0.70–1.29)	0.74	0.97 (0.71–1.32)	0.85	1.09 (0.72–1.64)	0.68
AA	161	139	1.00 (0.79–1.26)	0.99	1.00 (0.79–1.27)	0.99	1.08 (0.79–1.50)	0.62
IFNGR1 rs2234711								
TT	290	232	1.20 (0.96–1.51)	0.11	1.20 (0.95–1.51)	0.12	1.15 (0.84–1.57)	0.40
TC	361	348	1.13 (0.83–1.55)	0.43	1.09 (0.79–1.50)	0.60	1.11 (0.72–1.70)	0.65
CC	119	108	1.19 (0.96–1.47)	0.12	1.17 (0.94–1.46)	0.16	1.14 (0.84–1.53)	0.40
IFNGR2 rs8126756								
TT	553	522	0.82 (0.63–1.06)	0.13	0.83 (0.64–1.09)	0.18	0.86 (0.60–1.24)	0.42
TC	168	130	0.71 (0.54–1.48)	0.36	0.69 (0.32–1.49)	0.35	0.53 (0.18–1.54)	0.24
CC	18	12	1.00 (0.78–1.29)	0.98	1.00 (0.77–1.30)	0.99	1.01 (0.71–1.42)	0.97
IFNGR2 rs17882748								
CC	199	173	1.31 (1.07–1.61)	0.08	1.31 (1.07–1.61)	0.08	1.16 (0.86–1.57)	0.48
CT	391	341	1.09 (0.85–1.38)	0.48	1.09 (0.85–1.38)	0.48	1.05 (0.76–1.45)	0.76
TBX21 rs17250932								
TT	526	497	0.87 (0.69–1.08)	0.21	0.90 (0.72–1.14)	0.39	0.78 (0.56–1.07)	0.12
Power calculation
The Genetic Power Calculator was utilized for power analysis of discrete traits (http://zzz.bwh.harvard.edu/gpc/cc2.html). The lowest minor allele frequency (MAF) of the studied SNPs was 0.10. The ‘high-risk allele frequency’ was set to 0.10, the ‘prevalence’ was set to 0.0018 [18], D-prime was set to 1, type I error rate was set to 0.05 and number of cases and control-case ratio was 795:709. This cohort study had more than 80% chance of detecting a dominant effect with an odds ratio (OR) of 1.4 for AS.

Statistical analysis
Logistic regression was used to compare genotype distributions among patients with AS versus healthy controls. Crude odds ratio, odds ratio adjusted for age and sex, and odds ratio adjusted for age, sex, and smoking status were assessed (Table 1). A chi-square test was

Gene	rs-number	Healthy controls	AS	Unadjusted OR (95CI)	p	Adjusted, age & sex OR (95CI)	p	Adjusted, age, sex & smoking OR (95CI)	p
NLRP1	rs2670660								
AA		222	202	0.92 (0.73–1.18)	0.52	0.96 (0.75–1.23)	0.73	1.12 (0.80–1.56)	0.52
AG		390	328	1.10 (0.82–1.47)	0.53	1.11 (0.82–1.49)	0.51	1.12 (0.75–1.67)	0.59
GG		154	154	0.97 (0.78–1.22)	0.82	1.00 (0.79–1.26)	0.98	1.11 (0.81–1.52)	0.50
AG or GG	544	482		0.99 (0.79–1.22)	0.82	1.00 (0.79–1.26)	0.98	1.11 (0.81–1.52)	0.50
NLRP1	rs878329								
GG		217	206	0.89 (0.70–1.13)	0.34	0.89 (0.69–1.14)	0.35	0.99 (0.71–1.38)	0.93
GC		394	333	1.05 (0.79–1.41)	0.73	1.05 (0.78–1.41)	0.75	1.03 (0.69–1.54)	0.90
CC		155	155	0.94 (0.75–1.17)	0.57	0.93 (0.74–1.18)	0.56	1.00 (0.73–1.36)	0.98
GC or CC	549	488		0.97 (0.78–1.22)	0.82	1.00 (0.79–1.26)	0.98	1.11 (0.81–1.52)	0.50
NLRP3	rs10754558								
CC		294	248	1.08 (0.86–1.36)	0.50	1.06 (0.84–1.34)	0.61	1.10 (0.81–1.51)	0.54
CG		355	324	1.24 (0.91–1.69)	0.18	1.25 (0.91–1.71)	0.17	1.11 (0.71–1.72)	0.65
GG		111	116	1.12 (0.90–1.39)	0.30	1.11 (0.89–1.38)	0.36	1.11 (0.82–1.49)	0.51
GC or GG	466	440		1.18 (0.96–1.45)	0.12	1.23 (0.99–1.52)	0.06	1.24 (0.94–1.65)	0.13
NLRP3	rs4612666								
CC		435	360	1.20 (0.96–1.49)	0.11	1.23 (0.99–1.54)	0.07	1.28 (0.95–1.72)	0.10
CT		280	277	1.09 (0.72–1.66)	0.67	1.19 (0.78–1.82)	0.41	1.07 (0.59–1.94)	0.82
TT		53	48	1.18 (0.96–1.45)	0.12	1.23 (0.99–1.52)	0.06	1.24 (0.94–1.65)	0.13
CARDS	rs2043211								
AA		321	298	1.00 (0.80–1.24)	0.97	0.98 (0.79–1.23)	0.89	0.90 (0.67–1.22)	0.50
AT		342	316	0.89 (0.64–1.25)	0.52	0.89 (0.63–1.26)	0.50	0.91 (0.57–1.44)	0.68
TT		94	78	0.97 (0.79–1.20)	0.80	0.96 (0.78–1.19)	0.72	0.90 (0.67–1.19)	0.45
AT or TT	436	394		1.01 (0.82–1.25)	0.90	0.98 (0.79–1.21)	0.86	0.86 (0.64–1.14)	0.29

Sode et al. BMC Medical Genetics (2018) 19:165
Gene	Rs-number	Pathway	Model	OR (95% CI)	P-value / Bonferroni	Effect of minor-allele	Biological interpretation
TLR1	rs4833095	Pathogen recognition	CC vs TT	2.59 (1.48–4.51)	0.00081 / 0.04	743C increase TLR1 level in PBMC [56]	Increased TLR1 level was associated with increased risk of AS. This could indicate that a genetically determined high activity of the NFκB pathway, and thus high TNF-α and IL-17 activity, was associated with increased risk of AS.
TLR4	rs1554973	Pathogen recognition	CC vs TT	0.55 (0.34–0.86)	0.010 / 0.51	Unknown [67]	Increased MD-2 and TNF-α level was associated with a reduced risk of AS. In contrast to the other results this indicates that genetically determined high TNF-driven inflammatory response was associated with reduced risk of AS.
LY96	rs11465996	Pathogen recognition	GG vs CC	0.68 (0.46–1.00)	0.049 / 1.00	-1625G increase MD-2 and TNF-α levels in human U937 cells and whole blood leukocytes [57]	Increased MD-2 and TNF-α level was associated with a reduced risk of AS. In contrast to the other results this indicates that genetically determined high TNF-driven inflammatory response was associated with reduced risk of AS.
TNF	rs1800629	Cytokines	GA or AA vs GG	0.56 (0.44–0.72)	0.000047 / 0.00024	-308A increase expression in jurkat cells [65], reduce mRNA level in PBMC and serum [48] or no association was found [49]	Reduced TNF-α mRNA level was associated with reduced risk of AS. This could indicate that genetically determined high TNF-driven inflammatory response was associated with increased risk of AS.
TNF	rs361525	Cytokines	GA or AA vs GG	0.49 (0.31–0.78)	0.0024 / 0.12	-238A reduce expression in PBMC [49]	Reduced TNF-α expression was associated with reduced risk of AS. This indicates that genetically determined high TNF-driven inflammatory response was associated with increased risk of AS.
TNFRSF1A	rs4149570	Cytokines	GT or TT vs GG	1.44 (1.15–1.80)	0.0013 / 0.0066b	-609 T increase expression in PBMC [50]	Increased TNF-α receptor 1 expression was associated with increased risk of AS. This indicates that genetically determined high TNF-driven inflammatory response was associated with increased risk of AS.
PTPN22	rs2476601	Immune response	GA or AA vs GG	0.76 (0.58–0.98)	0.037 / 1.00	1858A reduce TNF-α level in serum [51]	Reduced TNF-α level was associated with reduced risk of AS. This indicates that genetically determined high TNF-driven inflammatory response was associated with increased risk of AS.
IL18	rs187238	Cytokines	GC or CC vs GG	0.80 (0.65–0.99)	0.044 / 1.00	-137C reduce IL-18 level in serum [53] and expression in PBMC [54]	Reduced IL-18 expression, and thus reduced IL-17 and TNF-α activity, was associated with reduced risk of AS. This indicates that a genetically determined high activity of the IL23/IL17 pathway was associated with increased risk of AS.
IL23R	rs11209026	Cytokines	GA or AA vs GG	0.60 (0.42–0.87)	0.0071 / 0.36	rs11209026A reduce IL-17 level in PBMC [52]	Reduced IL-17 level was associated with reduced risk of AS. This indicates that a genetically determined high activity of the IL23/IL17 pathway was associated with increased risk of AS.

OR Odds ratio
95% CI 95% confidence interval
PBMC peripheral blood mononuclear cell

The Bonferroni calculations were based on the 51 SNPs assessed in this study

The TNFRSF1A (rs4149570) TT vs GG: OR = 1.79, 95% CI: 1.31–2.41, p = 0.00027, Bonferroni = 0.014
used to test for deviation from Hardy-Weinberg equilibrium in the healthy controls and for haplotype analysis (Tables 3, 4, 5 and 6).

Statistical analyses were performed using STATA version 15 (StataCorp LP, College Station, TX, USA).

Results

Study population
Among the patients with AS the median age was 32 years (SD: 11.5) and 68% (483/709) were males. The healthy controls had a median age of 43 years (SD: 11.5) and 52% (411/384) were males. Among the patients 37% (118/323), 23% (73/323), and 41% (132/323) and among the controls 26% (207/788), 24% (189/788), and 50% (392/788) were current smokers, former smokers and never smokers, respectively. HLA-B27 staus was available for 498 patients of which 83% (411/498) were positive. Sixty percent (427/709) of the patients were treated with anti-TNF.

The genotype distributions among the healthy controls deviated from Hardy-Weinberg equilibrium for TLR1 (743 T > C (rs4833095)) (p = 0.03), TLR2 (−16,934 A > T (rs4696480)) (p = 0.02), TLR4 (rs1554973 T > C) (p = 0.03), TLR9 (1174 G > A (rs352139)) (p = 0.02) and TGFB1 (−509 C > T (rs1800469)) (p = 0.02). After correction for multiple testing, all SNPs studied were in Hardy-Weinberg equilibrium.

Polymorphisms associated with susceptibility of AS
In the age and sex adjusted analysis, the homozygous variant genotype of TLR1 743 T > C (rs4833095) (OR: 2.59, Table 3)

Table 3

Haplotype combinations	Haplotypes rs4696480 A > T	rs11938228 C > A	rs3804099 T>C	N_AS (%)	N_Control (%)	OR a (95% CI)	P-value	
11	T:T	AA	T:T	69 (11)	76 (10)	1.00	–	
22	A:A	CC	CC	72 (11)	74 (10)	1.07	0.68–1.70	0.82
33	A:A	CC	T:T	28 (4)	34 (5)	0.91	0.50–1.65	0.76
44	T:T	CC	CC	14 (2)	10 (1)	1.52	0.64–3.70	0.38
12	T:A	CA	CT	158 (24)	197 (27)	0.88	0.60–1.30	0.55
13	T:A	CA	T:T	76 (12)	103 (14)	0.81	0.52–1.26	0.37
14	T:T	CA	CT	59 (9)	49 (7)	1.33	0.80–2.19	0.31
23	A:A	CC	CT	77 (12)	89 (12)	0.95	0.61–1.49	0.91
24	T:A	CC	CC	52 (8)	55 (8)	1.04	0.63–1.72	0.90
34	T:T	CC	CT	51 (8)	44 (6)	1.28	0.76–2.14	0.43

OR Odds ratio

*OR was calculated for each haplotype combination by using the haplotype 11 as reference group

The biological effect of the three polymorphisms in TLR2 was unknown

The variant allele of rs3804099T T > C has been shown to decrease TNF-α, IL-1β & IL-6 level [68]

Statistical analyses were performed using STATA version 15 (StataCorp LP, College Station, TX, USA).

Polymorphisms associated with susceptibility of AS
In the age and sex adjusted analysis, the homozygous variant genotype of TLR4 743 T > C (rs4833095) (OR: 2.59, Table 4)

Table 4

Haplotype combinations	Haplotypes rs12377632 T > C	rs1554973 T > C	rs5030728 G > A	N_AS (%)	N_Control (%)	OR a (95% CI)	P-value	
11	C:C	T:T	G:G	95 (14)	101 (14)	1.00	–	
22	T:T	T:T	A:A	69 (10)	74 (10)	0.99	0.64–1.53	1.00
33	T:T	C:C	G:G	29 (4)	57 (8)	0.54	0.32–0.92	0.03
44	T:T	T:T	G:G	3 (0)	5 (1)	0.64	0.15–2.74	0.72
12	T:C	T:T	G:A	154 (23)	188 (25)	0.87	0.61–1.24	0.47
13	T:C	T:C	G:G	126 (19)	129 (17)	1.04	0.72–1.51	0.85
14	T:C	T:T	G:G	30 (5)	32 (4)	1.00	0.56–1.77	1.00
12	T:T	C:C	G:A	99 (15)	106 (14)	0.99	0.67–1.47	1.00
24	T:T	T:T	G:A	31 (5)	24 (3)	1.37	0.75–2.51	0.36
34	T:T	T:T	G:G	28 (4)	26 (4)	1.14	0.63–2.09	0.76

OR Odds ratio

*OR was calculated for each haplotype combination by using the haplotype 11 as reference group
95% CI: 1.48–4.51, \(p = 0.0008 \) and the combined homozygous and the heterozygous variant genotypes of \(\text{TNFRSF1A} -609 \ G > T \) (rs4149570) (OR: 1.44, 95% CI: 1.15–1.80, \(p = 0.001 \)) were associated with increased risk of AS. The homozygous variant genotype of \(\text{TLR4} \ T>C \) (rs1554973) (OR: 0.55, 95% CI: 0.34–0.86, \(p = 0.01 \)) and \(\text{LY96} -1625 \ C > G \) (rs11465996) (OR: 0.68, 95% CI: 0.46–1.00, \(p = 0.05 \)), and the combined homozygous and the heterozygous variant genotypes of \(\text{TNF} -308 \ G > A \) (rs1800629) (OR: 0.56, 95% CI: 0.44–0.72, \(p = 0.000005 \)), \(\text{TNF} -238 \ G > A \) (rs361525) (OR: 0.49, 95% CI: 0.31–0.78, \(p = 0.002 \)), \(\text{PTPN22} 1858 \ G > A \) (rs2476601) (OR: 0.76, 95% CI: 0.58–0.98, \(p = 0.04 \)), \(\text{IL18} -137 \ G > C \) (rs187238) (OR: 0.80, 95% CI: 0.65–0.99, \(p = 0.04 \)), and \(\text{IL23R} G>A \) (rs11209026) (OR: 0.60, 95% CI: 0.42–0.87, \(p = 0.01 \)) were associated with reduced risk of AS (Table 1).

After Bonferroni correction for multiple testing the homozygous variant genotype of \(\text{TLR1} 743 \ T > C \) (rs4848306) (OR: 2.59, 95% CI: 1.48–4.51, \(p = 0.04 \)) and \(\text{TNFRSF1A} -609 \ G > T \) (rs4149570) (OR: 1.79, 95% CI: 1.31–2.41, \(p = 0.01 \)) were associated with increased risk of AS and the combined homozygous and the heterozygous variant genotypes of \(\text{TNF} -308 \ G > A \) (rs1800629) (OR: 0.56, 95% CI: 0.44–0.72, \(p = 0.0002 \)) were associated with reduced risk of AS (Table 2).

SNPs associated with AS and the biological effect of the SNPs are summarized in Table 2.

Table 5

Haplotype combinations	N_{AS} (%)	N_{Control} (%)	OR^a (95% CI)	P-value
rs4848306-3737G>A [69, 70]				
rs1143623-1464G>C [69, 71]				
rs1143627-31T>C [69, 71, 72]				
11 A:A G:G T:T 125 (18) 148 (20) 1.00 – –				
22 G:G C:C C:C 52 (8) 54 (7) 1.14 0.73–1.79 0.65				
33 G:G C:C C:C 32 (5) 41 (5) 0.92 0.55–1.55 0.79				
44 G:G G:G T:T 5 (1) 3 (0) 1.97 0.46–8.42 0.48				
12 A:G G:C T:C 163 (24) 185 (24) 1.04 0.76–1.43 0.81				
13 A:G G:C T:C 141 (20) 147 (19) 1.14 0.82–1.58 0.50				
14 A:G G:C T:C 44 (6) 38 (5) 1.37 0.84–2.25 0.26				
23 G:G C:G C:T 84 (12) 92 (12) 1.08 0.74–1.58 0.70				
24 G:G C:G C:T 28 (4) 34 (4) 0.98 0.56–1.70 1.00				
34 G:G G:G T:C 14 (2) 16 (2) 1.04 0.49–2.21 1.00				

OR Odds ratio

The variant allele of −3737 G>A [69], −1464 G>C [70] and −31 T>C [71, 72] have been shown to decrease IL-1β level [69–72]

*aOR was calculated for each haplotype combination by using the haplotype 11 as reference group.

Table 6

Haplotype combinations	N_{AS} (%)	N_{Control} (%)	OR^a (95% CI)	P-value
rs361525 G>A^b				
rs1800629 G>A^c				
11 G:G G:G 523 (76) 469 (61) 1.00 – –				
22 G:G A:A 9 (1) 25 (3) 0.32 (0.15–0.70) 0.005				
12 G:G G:A 125 (18) 210 (28) 0.53 (0.41–0.69) < 0.0001				
13 G:A G:G 26 (4) 47 (6) 0.50 (0.30–0.81) 0.007				
14 G:A G:A 4 (1) 12 (2) 0.30 (0.10–0.93) 0.05				

OR Odds ratio

*aOR was calculated for each haplotype combination by using the haplotype 11 as reference group.

*bThe variant allele of TNF -238A rs361525A G > A has been shown to reduce expression of TNF-α [49]

*cThe variant allele of TNF -308A rs1800629 G > A has been shown to reduce mRNA level [48]
Discussion

In this case-control study, polymorphisms in α: the TNF-α (TNF (rs1800629 and rs361525), TNFRSF1A (rs4149570), and PTPN22 (rs2476601)), b: the IL23/IL17 (IL23R (rs11209026), and IL18 (rs187238)), or c: the NFkB (TLR1 (rs4833095), TLR4 (rs1554973), and LY96 (rs11465996)) pathways were associated with risk of AS.

The found associations for TNF (rs1800629) [19–22], TNFRSF1A (rs4149570) [23], and IL23R (rs11209026) [24–33] are in agreement with other case-control studies. Furthermore, Zhao et al. found that the variant allele of NLRP3 (rs4612666) was associated with increased risk of AS in Chinese patients [23]. In our study we found a trend for associations of the variant allele of NLRP3 (rs4612666) with increased risk of AS (p = 0.06). However, our results are in contrast to a meta-analysis of the PTPN22 (rs2476601) polymorphism that did not find an association with AS [34]. Finally, we identified novel risk loci in TNF (rs361525), IL18 (rs187238), TLR1 (rs4833095), TLR4 (rs1554973), and LY96 (rs11465996) that need validation in independent cohorts.

Most of the SNPs assessed in our study have known biological effects thus allowing a biological interpretation of the observed associations based on increased or reduced gene activity as summarized in Table 2 [35–47]. The associations observed for the TNF (rs1800629 and rs361525) polymorphisms suggest that reduced TNF-α mRNA level and expression of TNF-α was associated with reduced risk of AS [48, 49]. This is supported by our haplotype analysis which also suggests that the variant alleles of TNF rs1800629 and rs361525 were associated with reduced risk of AS. Likewise, the associations observed for the TNFRSF1A (rs4149570) polymorphism indicates that increased expression of the TNF-α receptor 1 was associated with increased risk of AS [50]. Furthermore, the associations observed for the PTPN22 (rs2476601) polymorphism suggests that reduced TNF-α serum level was associated with reduced risk of AS [51]. Taken together, this suggests that genetically determined high activity of the TNF-α pathway was associated with increased risk of AS.

IL-17 is known to induce the production of many cytokines including TNF-α [6]. IL-18 is a pro-inflammatory cytokine known to enhance the production of IL-17, TNF-α, and IL-1β [8]. In this study, the association observed for the IL23R (rs11209026) polymorphism suggests that reduced IL-17 serum level, and thus reduced TNF-α activity, was associated with reduced risk of AS [52]. Furthermore, the associations observed for the IL18 (rs187238) polymorphism indicates that reduced IL-18 expression, and thus reduced IL-17 and TNF-α activity, was associated with reduced risk of AS [53, 54]. The associations found in the IL23R (rs11209026) and the IL18 (rs187238) polymorphisms thus suggest that a genetically determined high activity of the IL23/IL17 pathway was associated with increased risk of AS. The two SNPs furthermore support that genetically determined high activity of the TNF-α pathway was associated with increased risk of AS. The observed associations between the polymorphisms in IL23R and IL18 and risk of AS are in line with previous studies pointing out the IL23/IL17 pathway as central to the pathophysiology of AS [3, 4, 55].

This study also suggests that the NFkB pathway may be involved in the etiology of AS. The associations observed for the TLR1 (rs4833095) polymorphism suggests that increased TLR1 level was associated with increased risk of AS [56]. High level of TLR1 may lead to increased NFkB activation and thus increased TNF-α and IL-17 activity, which is in line with the other results. However, in contrast to the other results, the associations observed for the IL18 (rs11465996) polymorphism suggests that increased MD-2 (IL18) and TNF-α level was associated with a reduced risk of AS [57]. Finally, the TLR4 (rs1554973) polymorphism was associated with reduced risk of AS which was supported by the haplotype results (Table 4). The biological effect of the TLR4 (rs1554973) polymorphism is unknown, however, the result supports the notion that the NFkB pathway may be involved in the etiology of AS.

Both TNF-α [58] and interleukin-17 inhibitors [59] have been shown to reduce inflammation and improve symptoms in patients with AS [60]. Furthermore, increased levels of TNF-α, IL-17, IL-23, IL-1β, and IL-6 have been found in sera and synovial fluid from AS patients [61–64]. The genetic associations between AS and the polymorphisms in TLR1, TLR4, LY96, TNF, TNFRSF1A, IL18, and IL23R found in this study, could potentially – in part – explain this altered cytokine milieu present in AS patients.

There are aspects of this study which should be interpreted with care. Conflicting results have been reported for the TNF (rs1800629) polymorphism [48, 49, 65]. Furthermore, the TNF polymorphisms, as well as the HLA-B27 locus, are located on chromosome 6, and there is a risk that even a minor linkage disequilibrium could have confounded our results [2]. TLR1 (rs4833095), TLR2 (rs4696480), TLR4 (rs1154973), TLR9 (rs352139), and TGFB1 (rs1800469) were not in Hardy-Weinberg equilibrium among the healthy controls. Due to the number of polymorphisms analyzed this is probably a type II error. The polymorphisms do not deviate from Hardy-Weinberg equilibrium when corrected for multiple testing. We cannot exclude that some of our positive findings may be due to chance due to the obtained p-values and the number of statistical tests performed. When the results were corrected for multiple testing only the variant allele of TLR1 (rs4833095) and TNFRSF1A (rs4149570) were associated with increased risk of AS and the
variant allele of TNF (rs1800629) was associated with reduced risk of AS.

A major strength of this study was that the cohort was rather large including 709 patients with AS and 795 healthy controls and the associations that we report were biologically plausible. Also, the validity of the diagnosis is expected to be high, since the patients were identified via a clinical database that the rheumatologist use for prospective monitoring of patients as part of routine care [66].

Conclusions

In conclusion, we replicated associations between AS and the polymorphism TNF (rs1800629), TNFRSF1A (rs4149570), and IL23R (rs11209026). Furthermore, we identified novel risk loci in TNF (rs361525), IL18 (rs187238), TLR1 (rs4833095), TLR4 (rs1554973), and IL16 (rs11465996) that need validation in independent cohorts. The results suggest that genetically determined high activity of the TNF-α, IL23/IL17, and NFκB pathways increase the risk of AS.

Acknowledgments

We thank Ewa Kogutowksa and Mette Errebo Ranne, Statens Serum Institut, for laboratory support; and Niels Steen Krog, Zitelab ApS, Copenhagen, Denmark for database management. We also thank Department of Medicine, Viborg Regional Hospital, Denmark and OPEN (Odense Patient data Explorative Network), Odense University Hospital, Denmark for supporting this work.

In memory of Niels Henrik Heegaard:

Co-author Niels H.H. Heegaard, Professor, MD, DMsc, DNaSc, died unexpectedly on September 26, 2017, at age 57. As director of the Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Dr. Heegaard advanced research in autoimmunology and neurodegenerative disease. He had an extensive international research network and published more than 200 papers in scientific journals, focusing on biomarkers such as autoantibodies, microRNA, and microparticle proteins. He was a patient and unpretentious collaborator who always sought to highlight the work of other collaborators and co-workers. Dr. Heegaard was characterized by humor, kindness, and optimism. He is survived by his wife and 2 children.

Funding

This study was funded by the Danish Rheumatism Association (A1923, A3017, and A3570 - www.Gigforeningen.dk) and Region of Southern Denmark’s PhD Fund, 12/7725 (www.Regionyddanmark.dk).

Availability of data and materials

The datasets used during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

JS, SB, UV, PSA, SBS, HL, NHH and VA designed the research study and PSA, ABB, MRA, IB, RBQ, HJH, BG and MLH collected the materials. JS and SB analysed the data and wrote the first draft. UV, PSA, SBS, HL, NHH and VA critically revised the manuscript. All authors agreed to be accountable for all aspects of the work and approved the final version of the manuscript.

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki and was approved by the Regional Ethics Committees of Central (M20100153) and Southern (5-2012/0113) Denmark and the Danish Data Protection Agency of Central (RM-J. 2010–41–4719) and Southern (RSD: 2008–58-0353) Denmark. For blood samples collected after routine TB screening, the Ethics Committees gave exemption from informed consent requirements because samples were taken as part of routine care and data were not identifiable. Written informed consent was obtained from patients donating blood samples at Frederiksberg Hospital as this involved collecting additional samples from patients.

Consent for publication

Not applicable.

Competing interests

VA receives compensation as a consultant and for being member of an advisory board for MSD and Janssen. BG has received research funding from Abbvie, Biogen, Pfizer. The other authors declare no conflicts of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1 Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark. 2 Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark. 3 Department of Rheumatology, Frederiksberg Hospital, Frederiksberg, Denmark. 4 Department of Rheumatology, Skåne University Hospital, Lund, Sweden. 5 National Research Centre for the Working Environment, Copenhagen, Denmark. 6 Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark. 7 Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark. 8 Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark. 9 Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Hellestrup, Denmark. 10 Department of Biochemistry, Hospital of Lillebaelt, Veje, Denmark. 11 Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark. 12 Department of Clinical Medicine, Aarhus University, Aarhus, Denmark. 13 Department of Respiratory Diseases B, Aarhus University Hospital, Aarhus, Denmark. 14 Department of Rheumatology, Gentofte and Herlev Hospital, Hellestrup, Denmark. 15 The DANBIO Registry, Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark. 16 Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. 17 Clinical Biochemistry, Clinical Institute, University of Southern Denmark, Odense, Denmark. 18 OPEN Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark.

Received: 17 May 2018 Accepted: 3 September 2018

Published online: 12 September 2018

References

1. Khan MA. Ankylosing spondylitis. In: Oxford University press; 2009. https://global.oup.com/academic/product/ankylosing-spondylitis-9780195368079?cc=dk&lang=en#.
2. Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis—insights into pathogenesis. Nat Rev Rheumatol. 2016;12(2):81–91.
3. Yago T, et al. IL-23 and Th17 disease in inflammatory arthritis. J Clin Med. 2017;6(9):E81.
4. Raychaudhuri SP, Raychaudhuri SK. Mechanistic rationales for targeting interleukin-17A in spondyloarthritides. Arthritis Res Ther. 2017;19(1):51.
5. Vestrepen L, et al. TLR4, IL-1R and TNF-RII signaling to NF-kappB: variations on a common theme. Cell Mol Life Sci. 2008;65(19):2964–78.
6. Hoeve MA, et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol. 2006;36(3):661–70.
7. Aguilera M, Darby T, Meiglar S. The complex role of inflamasomes in the pathogenesis of inflammatory bowel diseases - lessons learned from experimental models. Cytokine Growth Factor Rev. 2014;25(6):715–30.
8. Dinarello CA, et al. Interleukin-18 and IL-18 binding protein. Front Immunol. 2013;4:289.
9. Hetland ML. DANBIO—powerful research database and electronic patient record. Rheumatology (Oxford). 2011;50(1):69–77.
10. Bank S, et al. High-quality and -quantity DNA extraction from frozen archival blood clots for genotyping of single-nucleotide polymorphisms. Genet Test Mol Biomarkers. 2013;17(5):501–3.
11. Andersen V, et al. Polymorphisms in NF-kappB, PXR, LXR, PPARgamma and risk of inflammatory bowel disease. World J Gastroenterol. 2011;17(2):197–206.
12. Ernst A, et al. Common polymorphisms in the microsomal epoxide hydrolase and N-acetyltransferase 2 genes in association with inflammatory
36. Bank S, et al. Polymorphisms in the toll-like receptor and the IL-23/IL-17 signaling pathway and response to anti-TNF treatment in Danish patients with inflammatory bowel disease. Pharmacogenomics J. 2014;14(5):526–34.
37. Bank S, et al. Genetically determined high activity of IL-12 and IL-18 in ulcerative colitis and TLR5 in Crohn’s disease were associated with non-response to anti-TNF therapy. Pharmacogenomics J. 2018;18(1):87–97.
38. Bank S, et al. Effectiveness of anti-tumour necrosis factor-alpha therapy in Danish patients with inflammatory bowel diseases. Dan Med J. 2015;62(3):A4994.
39. Bank S. A cohort of anti-TNF treated Danish patients with inflammatory bowel disease, used for identifying genetic markers associated with treatment response. Dan Med J. 2015;62(5):B5087.
40. Sode J, et al. Anti-TNF treatment response in rheumatoid arthritis patients is associated with genetic variation in the NLRP3-inflammasome. PLoS One. 2014(9):e103361.
41. Sode J, et al. Genetic variations in pattern recognition receptor loci are associated with anti-TNF response in patients with rheumatoid arthritis. PLoS One. 2015(10):e0139781.
42. Sode J, et al. Confirmation of an IRAK3 polymorphism as a genetic marker predicting response to anti-TNF treatment in rheumatoid arthritis. Pharmacogenomics J. 2018;18(1):81–6.
43. Loft ND, et al. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis. Pharmacogenomics J. 2018;18(3):494–500.
44. Bek S, et al. Systematic review: genetic biomarkers associated with anti-TNF treatment response in inflammatory bowel diseases. Aliment Pharmacol Ther. 2016;44(6):554–67.
45. Banco S, et al. Systematic review and meta-analysis: pharmacogenetics of anti-TNF treatment response in rheumatoid arthritis. Pharmacogenomics J. 2017;17(5):403–11.
46. Loft ND, et al. Genetic polymorphisms associated with psoriasis and development of psoriatic arthritis in patients with psoriasis. PLoS One. 2018;13(2):e0191210.
47. Oliveira JM, et al. The –308 bp TNF gene polymorphism influences tumor necrosis factor expression in leprosy patients in Bahia state, Brazil. Infect Genet Evol. 2016;39:147–54.
48. Kaluza W, et al. Different transcriptional activity and in vitro TNF-alpha production in psoriasis patients carrying the TNF-alpha 238A promoter polymorphism. J Invest Dermatol. 2000;114(6):1180–3.
49. Wang GB, et al. A regulatory polymorphism in promoter region of TNFR1 gene is associated with Kawasaki disease in Chinese individuals. Hum Immunol. 2011;72(5):451–7.
50. Kariuki SN, Crow MK, Niewold TB. The PTNP22 C138T polymorphism is associated with skewing of cytokine profiles toward high interferon-alpha activity and low tumor necrosis factor alpha levels in patients with lupus. Arthritis Rheum. 2008;58(8):2819–23.
51. Oosting M, et al. Role of interleukin-23 (IL-23) receptor signaling for IL-17 responses in human Lyme disease. Infect Immun. 2011;79(11):4681–7.
52. Jaiswal PK, et al. Association of IL-12, IL-18 variants and serum IL-18 with bladder cancer susceptibility in north Indian population. Gene. 2013;519(1):128–34.
53. Dziedzieko V, et al. The impact of IL-18 gene polymorphisms on mRNA levels and interleukin-18 release by peripheral blood mononuclear cells. Postepy Hig Med Dosw (Online). 2012;66(9):1009–14.
54. Sherlock JP, et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18(7):1069–76.
55. Uciechowski P, et al. Susceptibility to tuberculosis is associated with TLR1 polymorphisms resulting in a lack of TLR1 cell surface expression. J Leukoc Biol. 2011;90(2):377–88.
56. Gu W, et al. Functional significance of gene polymorphisms in the promoter of myeloid differentiation-2. Ann Surg. 2007;246(1):151–8.
57. Maxwell LJ, et al. TNF-alpha inhibitors for ankylosing spondylitis. Cochrane Database Syst Rev. 2015;18(4):Cd005468.
58. Pavelka K, et al. Efficacy, safety, and tolerability of secukinumab in patients with active ankylosing spondylitis: a randomized, double-blind phase 3 study. MEASURE 3. Arthritis Res Ther. 2017;19(1):285.
59. Cheung PP. Anti-IL-17A in axial Spondyloarthritis-where are we at? Front Med (Lausanne). 2017;4:1.
60. Jandus C, et al. Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondyloarthritides. Arthritis Rheum. 2008;58(8):2307–17.
62. Singh R, Aggarwal A, Misra R. Th1/Th17 cytokine profiles in patients with reactive arthritis/undifferentiated spondyloarthropathy. J Rheumatol. 2007;34(11):2285–90.
63. Xueyi L, et al. Levels of circulating Th17 cells and regulatory T cells in ankylosing spondylitis patients with an inadequate response to anti-TNF-alpha therapy. J Clin Immunol. 2013;33(1):151–61.
64. Londono J, et al. The association between serum levels of potential biomarkers with the presence of factors related to the clinical activity and poor prognosis in spondyloarthritis. Rev Bras Reumatol. 2012;52(4):536–44.
65. Karimi M, et al. A critical assessment of the factors affecting reporter gene assays for promoter SNP function: a reassessment of −308 TNF polymorphism function using a novel integrated reporter system. Eur J Hum Genet. 2009;17(11):1454–62.
66. Ibfelt EH, et al. Validity and completeness of rheumatoid arthritis diagnoses in the nationwide DANBIO clinical register and the Danish National Patient Registry. Clin Epidemiol. 2017;9:627–32.
67. Gast A, et al. Association of inherited variation in toll-like receptor genes with malignant melanoma susceptibility and survival. PLoS One. 2011;6(9):e24370.
68. Zhang F, et al. Polymorphisms in toll-like receptors 2, 4 and 5 are associated with legionella pneumophila infection. Infection. 2013;41(5):941–8.
69. Chen H, et al. Single nucleotide polymorphisms in the human interleukin-1B gene affect transcription according to haplotype context. Hum Mol Genet. 2006;15(4):519–29.
70. Yoshida M, et al. Haplotypes in the expression quantitative trait locus of interleukin-1beta gene are associated with schizophrenia. Schizophr Res. 2012;140(1–3):185–91.
71. Wen AQ, et al. Clinical relevance of IL-1beta promoter polymorphisms (−1470, −511, and −31) in patients with major trauma. Shock. 2010;33(6):576–82.
72. Lind H, Haugen A, Zienolddiny S. Differential binding of proteins to the IL1B -31 T/C polymorphism in lung epithelial cells. Cytokine. 2007;38(1):43–8.

Ready to submit your research? Choose BMC and benefit from:

• fast, convenient online submission
• thorough peer review by experienced researchers in your field
• rapid publication on acceptance
• support for research data, including large and complex data types
• gold Open Access which fosters wider collaboration and increased citations
• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions