Kernels of splitting homomorphisms

Michael R. Klug

April 19, 2022

Abstract
Lei and Wu have given a description of the second homotopy group of a closed orientable 3-manifold in terms of the kernels of the epimorphisms from the fundamental group of a Heegaard splitting surface onto the fundamental groups of the two handlebody sides. In this note, we give a geometric derivation of this result and collect some observations about the relation between the various groups and the topology of the 3-manifold and the Heegaard splitting.

1 Introduction
The role of the fundamental group in 3-dimensional topology is central. In [17], Stallings put forth an approach to the 3-dimensional Poincaré conjecture by way of the group theory associated to a Heegaard splitting of a homotopy 3-sphere. This approach was furthered by Jaco [6] who proved that several group-theoretic statements involving free groups and surface groups were equivalent to the Poincaré conjecture.

Let M be a compact orientable 3-manifold and let $M = H_\alpha \cup H_\beta$ be a Heegaard splitting of M with $\Sigma = H_\alpha \cap H_\beta$ an orientable surface of genus g. Fix a point $*$ in Σ and consider the associated pushout diagram of groups, with morphisms induced by inclusions.

\[
\begin{array}{ccc}
\pi_1(\Sigma,*) & \longrightarrow & \pi_1(H_\alpha,*) \\
\downarrow & & \downarrow \\
\pi_1(H_\beta,*) & \longrightarrow & \pi_1(M,*)
\end{array}
\]

The maps from the surface group to the free groups of the handlebodies are surjective as any curve in a handlebody can be made to miss the spine of the handlebody and thereby can be homotoped to the boundary. The map $\phi: \pi_1(\Sigma) \rightarrow \pi_1(H_\alpha) \times \pi_1(H_\beta)$ is the splitting homomorphism associated to the Heegaard surface Σ. Jaco showed how all of the topology of M is encoded in the splitting homomorphism [6]. From here out, we will not generally mention the basepoints explicitly.

Building on the approach of Stallings and Jaco, Hempel [5] showed the condition in the following theorem is equivalent to the Poincaré conjecture and therefore, by the work of Perelman [14], [15], it follows:

Theorem 1. (Perelman)

For all integers $g \geq 0$ and any pair of surjective homomorphisms $\phi_1, \phi_2 : \pi_1(\Sigma) \rightarrow F_g \times F_g$ where Σ is a genus g closed orientable surface, and F_g is a rank g free group, there is an isomorphism

$$
\pi_1(\Sigma) \xrightarrow{\cong} \pi_1(\Sigma)
$$
and a pair of isomorphisms

\[F_g \cong F_g \]

such that the following commutes

\[
\begin{array}{ccc}
\pi_1(\Sigma) & \xrightarrow{\phi_1} & F_g \times F_g \\
\cong & & \cong \\
\pi_1(\Sigma) & \xrightarrow{\phi_2} & F_g \times F_g
\end{array}
\]

In other words, there is a unique surjective homomorphism \(\pi_1(\Sigma) \to F_g \times F_g \) up to pre- and post-composition with automorphisms (where post-composition is by automorphisms that are a product of automorphisms on the \(F_g \) factors).

More recently, a similar group-theoretic statement equivalent to the smooth 4-dimensional Poincaré conjecture has been given by Abrams, Gay, and Kirby [1]. In considering these connections, we wanted to understand how the basic topological invariants of a space can be seen from the perspective of splitting homomorphisms. Let

\[K_\alpha = \ker(\pi_1(\Sigma) \to \pi_1(H_\alpha)) \]

and

\[K_\beta = \ker(\pi_1(\Sigma) \to \pi_1(H_\beta)) \].

If the handlebodies \(H_\alpha \) and \(H_\beta \) are described using a Heegaard diagram, then \(K_\alpha \) and \(K_\beta \) are normally generated by the curves describing \(H_\alpha \) and \(H_\beta \), respectively. In this note, we give a geometric proof of a result of Lei and Wu [10] that shows how to compute \(\pi_2(M) \) in terms of \(K_\alpha \) and \(K_\beta \) (see Theorem 3).

2 Preliminary lemmas and general remarks

We say a surface \(F \) is of finite type if \(\pi_1(F) \) is finitely generated, otherwise we say that \(F \) has infinite type. Surfaces of finite type are up to homeomorphism determined by their genus, number of boundary components, and number of punctures. Surfaces of infinite type also admit a classification in terms of their genus, number of boundary components, and space of ends [9], [16].

For a surface of finite type \(F \) with genus greater than or equal to 2, together with a choice of hyperbolic metric on \(F \), there are at most finitely many many closed geodesics of length less than a given constant \(L \in \mathbb{R} \).

Theorem 2. If \(g \geq 2 \), then \(K_\alpha \cap K_\beta \) is a not-finitely-generated free group.

Proof. In [7], it is shown that \(K_\alpha \cap K_\beta \neq 1 \). Let \(\tilde{\Sigma} \) be the cover of \(\Sigma \) corresponding to \(K_\alpha \cap K_\beta \). Then \(\tilde{\Sigma} \) is noncompact since \(K_\alpha \cap K_\beta \) has infinite index in \(\pi_1(\Sigma) \). Therefore, \(K_\alpha \cap K_\beta \) is free since noncompact surfaces have free fundamental groups [8]. Since \(g \geq 2 \), the surface \(\tilde{\Sigma} \) obtains a hyperbolic metric by pulling back a hyperbolic metric on \(\Sigma \). Since \(K_\alpha \cap K_\beta \) is normal, the deck translations of the covering act on \(\tilde{\Sigma} \) as isometries. Let \(\gamma \) be a closed geodesic in \(\tilde{\Sigma} \). Then all of the infinite translates of \(\gamma \) have the same length as \(\gamma \). Thus, \(\tilde{\Sigma} \) is of infinite type, by the preceding discussion, and therefore \(K_\alpha \cap K_\beta \) is not finitely generated.

Recall that a 3-manifold \(M \) is called reducible if there is an embedded sphere in \(M \) that does not bound a 3-ball in \(M \), and irreducible otherwise. Equivalently, by the Sphere Theorem [13], \(M \) is irreducible if and only if \(\pi_2(M) = 0 \). A Heegaard splitting \(M = H_\alpha \cup_\Sigma H_\beta \) is called reducible if there is an essential simple closed curve in \(\Sigma \) that bounds embedded disks in both \(H_\alpha \) and \(H_\beta \); and irreducible otherwise. Haken’s lemma [4] asserts that any Heegaard splitting of a reducible 3-manifold is reducible.
Figure 1: This figure shows a genus 2 example. The basepoint is assumed to be on the boundary of the surface. The curves in red are the a_i curves and the curves in blue are the b_j curves. Note here that A and B are assumed to be normal subgroups, so the lack of a basepoint for the curves is irrelevant – i.e., if some choice of arcs to the basepoint results in based curves that are in A and B, respectively, then so too does any other choice of arcs.

Proposition 1. The Heegaard splitting $M = H_\alpha \cup_\Sigma H_\beta$ is reducible if and only if the subgroup $K_\alpha \cap K_\beta$ contains a nontrivial element that can be represented by an embedded curve. If M is reducible, then $K_\alpha \cap K_\beta$ contains a nontrivial element that can be represented by an embedded curve.

Proof. The first follows immediately from the definitions. The second part follows from Haken’s lemma.

Note that given any irreducible Heegaard splitting of an 3-manifold, the group $K_\alpha \cap K_\beta$ is a nontrivial subgroup of a surface group that, by Proposition 1, cannot contain any elements that can be represented by embedded curves. Other examples of this phenomenon, in fact finite index examples, are known (see [12], [11]).

The following lemma is immediate upon considering the “4g-gon with a hole” picture of a genus g surface with one boundary component.

Lemma 1. Let X be a topological space with basepoint $p \in X$ and let $A, B \leq \pi_1(X, p)$ be two normal subgroups. An element $\gamma \in \pi_1(X, p)$ is in $[A, B]$ if and only if there is a continuous map $f: (S, \partial S) \to (X, \gamma)$ where S is a genus g orientable surface with one boundary component such that the images of the curves a_i and b_j in Figure 1 are in the normal subgroups A and B respectively for $1 \leq i, j \leq g$.

Let F be a surface in a 3-manifold M. By *adding a tube* to F, we mean creating a new surface F', that is obtained from F by taking the symmetric difference of F with the boundary of an embedded $(D^2 \times [0, 1], D^2 \times \{0, 1\}) \to (M, F)$ such that the image of $D^2 \times (0, 1)$ is disjoint from F.

Lemma 2. Let F be a compact surface in S^3. There is a surface F' obtained from adding tubes to F such that F' is isotopic to the standard genus g Heegaard splitting surface of S^3. Moreover, if F is a surface in B^3 with $F \cap \partial B^3$ connected, then we can add tubes to F to obtain a standard surface as in Figure 2.
Figure 2: This figure shows a genus 3 example of the trivial surface in a 3-ball. The boundary of the surface is the equator and the surface is the result of stabilizing (as with Heegaard splittings) the equitorial disk three times.

Proof. Recall that any 3-manifold M with nonempty boundary has a handle decomposition with a 0-handle, 1-handles, and then 2-handles – one way of seeing this is that M admits a Morse function that is constant on the boundary and that has increasing index critical points. By carving out the 2-handles, we obtain a handlebody and therefore, from every 3-manifold with boundary, we can obtain a handlebody if we carve out enough tubes. Now let F be a surface in S^3. Note that carving tubes out of one side of F corresponds to adding 1-handles to the other side, and notice that adding 1-handles to a handlebody produces another handlebody (with higher genus). Therefore, by adding tubes to one side of F, we can obtain a new surface that bounds a handlebody on one side, and by adding tubes to the other side, we can obtain a surface that bounds handlebodies on both sides. The moreover statement is obtained from this result by adding a ball with a standard equator disk to the B^3 containing F, with the boundary of the disk glued to the boundary of F, and performing the above argument with all of the tubes not intersecting this trivial disk-ball pair.

Lemma 3. Let Σ be a Heegaard splitting surface of a closed orientable 3-manifold M, F be a compact connected surface, and $f : F \rightarrow M$ be a continuous map. Then f can be homotoped so that $f^{-1}(\Sigma)$ is connected.

Proof. First, homotope f such that it is an immersion transverse to Σ. Let γ_1 and γ_2 be two distinct connected components of $f^{-1}(\Sigma)$ such that there is an arc $a \subset F$ with endpoints in γ_1 and γ_2 respectively and such that $f(a)$ is entirely contained in H_α or H_β. Note that any properly embedded arc in a handlebody can be homotoped relative to its endpoints so as to be contained in the boundary of the handlebody. Therefore, by homotoping f close to a following this homotopy of a into Σ we obtain a new map with one fewer connected component in the inverse image of Σ. Repeating this process then gives the result.

3 $\pi_2(M)$ from splitting homomorphisms

The following result is given by Lei and Wu in [10], where it is stated that it follows from general methods in [2]. Here we provide a hands-on geometric argument.
Suppose that γ homotoping H by our construction of ϕ that is contained in H as in Figure 2, then, by Lemma 1, we have that $\gamma \in (K_\alpha \cap K_\beta)/[K_\alpha, K_\beta]$. With respect to this action, the above isomorphism is a $\mathbb{Z}_\pi_1(M)$-module isomorphism.

Proof. We first define a map $\phi: K_\alpha \cap K_\beta \rightarrow \pi_2(M)$. Notice that, given a curve $\gamma \in K_\alpha \cap K_\beta$ then by the definition of K_α and K_β, there exist disks $D_\alpha \subset H_\alpha$ and $D_\beta \subset H_\beta$ such that $\gamma = \partial D_\alpha = \partial D_\beta$. If D'_α and D'_β are other such disks, then the spheres $D_\alpha \cup \gamma D_\beta$ and $D'_\alpha \cup \gamma D'_\beta$ are homotopic with the homotopy fixing the basepoint, since π_2 of a handlebody is trivial and so the union of the disks can be extended to a map from a 3-ball. Therefore, we have a map ϕ which is seen to be a group homomorphism.

The surjectivity of ϕ is the content of Lemma [3] in the case where F is a sphere.

We will now show that the map ϕ descends to the quotient $K_\alpha \cap K_\beta/[K_\alpha, K_\beta]$. As a preliminary remark, observe that the commutator $[K_\alpha, K_\beta]$ is a subgroup of the intersection $K_\alpha \cap K_\beta$, because the kernels K_α, K_β are normal subgroups of $\pi_1(\Sigma)$. To see that $[K_\alpha, K_\beta] \leq \ker(\phi)$ note that by Lemma [4], there exists a surface S as in Figure [1] and a continuous map $f: (\Sigma, \partial S) \rightarrow ([K_\alpha, K_\beta])$ such that $f(a_i) \in K_\alpha$ and $f(b_j) \in K_\beta$. Therefore, we have immersed disks $D_{\alpha}^a, D_{\beta}^b$ with $\partial D_{\alpha}^a = f(a_i)$ and $\partial D_{\beta}^b = f(b_j)$. We thus have a capped surface (i.e., the result of adding to the a_i and b_j curves in Figure [1]) mapping into M with the boundary mapping to γ -- call the image \hat{S}. Now consider a neighborhood of \hat{S} which is topologically a ball. Thus, we obtain a map of a 2-sphere whose equator maps to γ and such that the two disks bounding the equator map to disks D_α and D_β in H_α and H_β, respectively. Then $\phi(\gamma) = 0$ since $D_\alpha \cup \gamma D_\beta$ bounds a ball.

We now prove injectivity of the resulting map

$$\phi: (K_\alpha \cap K_\beta)/[K_\alpha, K_\beta] \rightarrow \pi_2(M)$$

Suppose that $\gamma \in \ker(\phi)$ and let $g: B^3 \rightarrow M$ with $g(\partial B^3) = D_\alpha \cup \gamma D_\beta = \phi(\gamma)$. If $g^{-1}(\Sigma)$ is standard as in Figure [2] then, by Lemma [5], we have that $\gamma \in [K_\alpha, K_\beta]$. If $g^{-1}(\Sigma)$ is not standard, then, by homotoping g, we can add tubes to $g^{-1}(\Sigma)$, since such a tube maps to a thickened arc in M that is either contained in H_α or H_β (where as in the proof of Lemma [2] every arc can be homotoped to lie in the boundary). Therefore, by Lemma [6] we can make $g^{-1}(\Sigma)$ standard. Thus $\ker(\phi) \leq [K_\alpha, K_\beta]$ and therefore ϕ induces an isomorphism of abelian groups $K_\alpha \cap K_\beta/[K_\alpha, K_\beta] \cong \pi_2(M)$.

Now, consider the action of $\pi_1(M)$ on $(K_\alpha \cap K_\beta)/[K_\alpha, K_\beta]$ as in the statement of the result. By our construction of ϕ and the definition of the action of $\pi_1(M)$ on $\pi_2(M)$, we see that ϕ is in fact an isomorphism of $\mathbb{Z}[\pi_1(M)]$-modules, thus proving the result.

Remark 1. We have not been discussing the subgroup $K_\alpha K_\beta \leq \pi_1(\Sigma)$, which is another subgroup of interest (here $K_\alpha K_\beta$ denoted the join of K_α and K_β -- i.e., the smallest subgroup containing both of them). Note that $\pi_1(\Sigma)/K_\alpha K_\beta \cong \pi_1(M)$ (see [7]) and the cover of Σ corresponding to $K_\alpha K_\beta$ is the preimage of Σ in the universal cover for M. It then follows, as in Theorem [3] that either

1. $\pi_1(M)$ is finite and $K_\alpha K_\beta$ is isomorphic to the fundamental group of a closed orientable surface, or

2. $\pi_1(M)$ is infinite and $K_\alpha K_\beta$ is an infinitely generated free group.
References

[1] Aaron Abrams, David T. Gay, and Robion Kirby. Group trisections and smooth 4-manifolds. *Geom. Topol.*, 22(3):1537–1545, 2018.

[2] Ronald Brown and Jean-Louis Loday. Van Kampen theorems for diagrams of spaces (with an appendix by M. Zisman). *Topology*, 26(3):311–335, 1987.

[3] Peter Buser. *Geometry and spectra of compact Riemann surfaces*. Springer Science & Business Media, 2010.

[4] Wolfgang Haken. Some results on surfaces in 3-manifolds. *Studies in modern topology*, 5:39–98, 1968.

[5] John Hempel. *3-manifolds, Reprint of the 1976 original*. AMS Chelsea Publishing, Providence, RI, 2004.

[6] William Jaco. Heegaard splittings and splitting homomorphisms. *Trans. Amer. Math. Soc.*, 144:365–379, 1969.

[7] William Jaco. On certain subgroups of the fundamental group of a closed surface. *Proc. Cambridge Philos. Soc.*, 67:17–18, 1970.

[8] Ingebrigt Johansson. *Topologische Untersuchungen über unverzweigte Überlagerungsflächen*. Number 1. Kommisjon hos J. Dybwad, 1932.

[9] Béla Kerékjártó. *Vorlesungen über Topologie*, volume 8. J. Springer, 1923.

[10] Fengchun Lei and Jie Wu. The intersecting kernels of Heegaard splittings. *Algebr. Geom. Topol.*, 11(2):887–908, 2011.

[11] Charles Livingston. Maps of surface groups to finite groups with no simple loops in the kernel. *J. Knot Theory Ramifications*, 9(8):1029–1036, 2000.

[12] Justin Malestein and Andrew Putman. On the self-intersections of curves deep in the lower central series of a surface group. *Geom. Dedicata*, 149:73–84, 2010.

[13] Christos D Papakyriakopoulos. On Dehn’s lemma and the asphericity of knots. *Proceedings of the National Academy of Sciences of the United States of America*, 43(1):169, 1957.

[14] Grisha Perelman. The entropy formula for the Ricci flow and its geometric applications. *arXiv preprint math/0211159*, 2002.

[15] Grisha Perelman. Ricci flow with surgery on three-manifolds. *arXiv preprint math/0303109*, 2003.

[16] Ian Richards. On the classification of noncompact surfaces. *Transactions of the American Mathematical Society*, 106(2):259–269, 1963.

[17] John R. Stallings. How not to prove the Poincaré conjecture. *Ann. of Math. Studies*, pages 83–88, 1966.