Supplemental Material for “Perceived Age Discrimination across Age in Europe – From an Ageing Society to a Society for All Ages”

Contents

Sample 2

Measurements and Descriptive Statistics 3
The Three Age Discrimination Items 3
Validity Test of the three Age Discrimination Items 4

Analytical Strategy 4
Approximate Measurement Invariance 5
Local Structural Equation Modeling 6
Moderated Non-Linear Factor Analysis 7

Code for Analyses 8
Measurement Invariance across Countries 8
Perceived Age Discrimination across Age 10
Local Structural Equation Modeling 10
Moderated Non-Linear Factor Analysis 15
Approximate Measurement Invariance 18
Perceived Age Discrimination across Age in Single Countries 19

Output from Mplus Analyses 21
Approximate Measurement Invariance Across Countries 21
Moderated Non-Linear Factor Analysis 93
Approximate Measurement Invariance across Age 107

Statistical Software Used 137

References 138
Sample

The sample assessed in the European Social Survey (ESS), Round 4, included 56751 respondents between 15 and 105 years. Data were collected in 29 countries and the figure below shows kernel density plots of age for each of the 29 countries. Although age densities varied across countries, many countries had comparable age distributions. Turkey (TR) differed notably from the remaining countries, with a predominantly young sample.
Measurements and Descriptive Statistics

The Three Age Discrimination Items

Perceived age discrimination was assessed with three items, Table A1 shows descriptive statistics for the items. The items were strongly skewed, indicating that they should be treated as categorical. There was little missingness in the data (about 1.5% for each item). The table also shows a comparison of indicated experiences of age discrimination in narrowly defined age groups. Proportions who reported age discrimination (at any level) against themselves were substantially higher in the youngest age group (from 15 to 29 years) than in any other age group. Middle aged had the lowest scores for perceived age discrimination, older age groups moderately higher.

Table A1. Descriptive statistics for the three age discrimination items

Percent (excluding missing)	Prejudice	Lack of respect	Treated badly
0 - Never	66.5	63.5	72.1
1	16.3	18.6	16.2
2	09.8	10.2	07.2
3	05.4	05.9	03.5
4 - Very often	01.9	01.8	01.0

Percent missing data 01.6 01.6 01.5

Percent > 0 in each age group

Age Group	Prejudice	Lack of respect	Treated badly
15 to 19	53.5	55.4	42.6
20 to 24	49.0	53.1	40.4
25 to 29	40.7	46.2	33.8
30 to 34	30.6	36.2	26.0
35 to 39	26.5	31.3	22.9
40 to 44	26.2	27.8	21.3
45 to 49	27.5	29.4	22.2
50 to 54	30.4	31.6	24.0
55 to 59	32.5	32.9	25.9
60 to 64	31.9	34.0	27.7
65 to 69	31.5	35.4	27.0
70 to 74	32.1	36.0	29.0
75 to 79	31.4	34.3	27.3
80 to 84	32.8	36.0	28.2
85 to 89	30.0	32.0	28.1
Analyses used recoded 3-point scales due to few responses in the two highest categories. We note that the few responses indicating particularly frequent age discrimination were found primarily among the youngest age groups (close to 1% for prejudice because of age and lack of respect, lower for treated badly because of age) than in the oldest age groups (approximately 0.4 or lower for prejudice because of age and lack of respect, even lower for treated badly because of age).

Validity Test of the three Age Discrimination Items

We used structural equation models to conduct a simple test of the convergent and discriminant validity of the three age discrimination items. It was theoretically possible that responses could indicate a general tendency to claim being discriminated against (not just based on age). For instance, emotional problems might increase the tendency to blame conflicts in social interactions on discrimination (Major, Kaiser, & McCoy, 2003)

We compared fit for models with a factor representing perceived discrimination and regressed this factor on age and squared age (to reflect non-linear association between age and perceived discrimination). The first model estimated a factor with the three age discrimination items and two similar items in the ESS assessing prejudice because of gender (predsex) and prejudice because of ethnicity (predetn), all indicators were recoded to 3-point ordinal variables. The second and third model used four items (adding either prejudice because of gender or because of ethnicity), the fourth model used only the three age discrimination items to estimate the latent factor of perceived age discrimination.

Adding items on perceived discrimination because of gender and because of ethnicity, providing five indicators for the factor, resulted in a model with acceptable values for the comparative fit index (CFI) and the standardized root mean square residual (SRMR), but the root mean square error of approximation (RMSEA) was clearly too high for a fitting model; RMSEA = 0.10 even when running separate analyses of men and women. Dropping the item discrimination because of ethnicity did not improve model fit (RMSEA = 0.10). Dropping the item for perceived discrimination because of gender and keeping the ethnicity item in addition to the three age discrimination items improved fit (RMSEA = 0.06), since most respondents (84 %) did not experience discrimination because of ethnicity. However, a model using only the three age discrimination items as indicators of the factor (and keeping the two predictors as part of the model) gave a notably improved fit (RMSEA = .02; CFI = 1.00, SRMR = .001). These tests with several items on perceived discrimination (age, gender, ethnicity) were indicative of the discriminant and convergent validity of the three items for perceived age discrimination.

Analytical Strategy

We used three newly developed statistical methods to investigate measurement invariance: an alignment analysis to test for approximate measurement invariance across countries and
age groups, and two methods to test for measurement invariance across age as a continuous variable — local structural equation modeling (LSEM) and moderated non-linear factor analysis (MNLFA).

Approximate Measurement Invariance

Studies of measurement invariance typically investigate three types of invariance using confirmatory factor analysis: configural, metric, and scalar invariance. Configural invariance simply means that the factor structure (a factor and its indicators) will be the same across groups. More interesting to us was metric invariance, which assumes invariant factor loadings across groups. A higher level of invariance is scalar invariance, adding invariant intercepts for factor indicators to the invariant factor loadings already tested in metric invariance.

If both intercepts and factor loadings for perceived age discrimination can be fixed to be invariant across groups (countries or age groups), then the latent factor means are on the same scale and it would be possible to compare levels of perceived age discrimination across countries or age groups. That is, the relationship between the estimated factor and the observed variables would not depend on which country or age group an individual belongs to. Thus, scalar invariance would allow for comparisons of factor means, making it possible to draw conclusions about different degrees of perceived discrimination across groups (see Vandenberg & Lance, 2000). In practice, strong measurement invariance (identical factor loadings and identical indicator intercepts) across groups is unlikely when many groups are involved, as in comparisons of countries in the ESS (Asparouhov & Muthén, 2014).

One alternative might be to use partial measurement invariance with an exploratory adaption of the measurement model (Byrne, Shavelson, & Muthén, 1989; Steenkamp & Baumgartner, 1998), but this approach is unlikely to be very helpful when many groups are analysed (see Asparouhov & Muthén, 2014). A better solution can be to use the recently developed approach of approximate measurement invariance (Asparouhov & Muthén, 2014), which estimates approximately equal factor loadings and approximately equal indicator intercepts/thresholds across groups.

Approximate measurement invariance is “approximate” in the sense that it allows for statistically non-significant differences in factor loadings and intercepts across groups. By allowing for some wiggle room for parameters, approximate measurement invariance is more realistic than conventional scalar invariance and achieving approximate measurement invariance would allow for comparisons of the level of perceived age discrimination across countries and across age groups.

Asparouhov and Muthén (2014) refer to the computation of approximate measurement invariance in Mplus as an alignment method. The alignment is done automatically by the statistical software rather than depending on exploratory adaption of the model by the researcher. The alignment uses the configural model as a starting point (no factor loadings or intercepts are fixed to be equal across groups) and then adds restrictions to the model, making factor loadings and intercepts approximately equal, provided these restrictions are supported by the data. Invariance is tested for all indicators.
The algorithm for the alignment method defines a measurement parameter as approximately invariant if it is not statistically significantly different from the default model for all groups. For each measurement parameter the algorithm searches for the largest set of invariant groups. The algorithm develops a solution “where for each group in the invariant set of groups the measurement parameter in that group is not statistically significant[ly different] from the average value for that parameter across all groups in the invariant set” (Asparouhov & Muthén, 2014, p. 5). Moreover, “the algorithm is based on multiple pairwise comparison; that is, multiple testing is done and to avoid false non-invariance discovery we use smaller p-values than the nominal .05” (Asparouhov & Muthén, 2014, p. 5).

The final model will fit the data as well as the original configural model. The combination of approximate measurement invariance and good fit with the data should allow for computation of group-specific factor means (Asparouhov & Muthén, 2014). The moderate differences across groups in factor loadings and intercepts should have little effect on the estimated factor mean. An important byproduct of the alignment analysis is that it will identify which groups cannot have their factor loadings or intercepts/thresholds fixed at approximately the same value as the other groups.

The alignment method in Mplus can estimate approximate measurement invariance freely or apply a fixed alignment, the latter requiring the user to fix the factor mean for a baseline group to zero, potentially easing the alignment analysis (Asparouhov & Muthén, 2014). We refer to Asparouhov and Muthén (2014) for details on approximate measurement invariance based on an alignment analysis.

Local Structural Equation Modeling

In LSEM (see Hildebrandt, Wilhelm, & Robitzsch, 2009; Hildebrandt et al., 2016), the full sample is analysed repeatedly, but in each run individuals in the sample are weighted differently, dependent on their value along the moderator (age in our case). Respondents with an age equal to the focal point received a weight of 1.

Following Hildebrandt et al., we developed a bandwidth for the weighting procedure using a Gaussian kernel function. The density function given by the weighting procedure implied no upper or lower limit, meaning that the whole sample was included in each model, but respondents much older (younger) than the focal point had a very low weight.

As Hildebrandt et al. point out, observations near the focal point are also informative for the value of the focal point, though less than those occupying the focal point on the scale, but still more than distal observations. Thus, weighting has to be defined in a manner where weights are lower the further away (the older/younger) individuals are from the focal point. When using this approach, ages nearby the focal point will give information for the calculation and ages far distant from the focal point will have negligible influence on the estimation. Repeating this procedure across the scale of the moderator (age), moving the focal point slightly from model to model, we estimated in total 401 models for an analysis with LSEM.
We tested each factor loading for measurement invariance, the latent factor was identified by fixing its variance to 1. Age was centered, so that 0 for age was the average age of 47.5 years. Following Hildebrandt et al., we used focal points in the LSEM models varying from two standard deviations above to two standard deviations below 0 of centered age, giving focal points that represented ages from 10.5 to 84.5 years. The use of two SDs below and above the average implied that the first of the models estimated gave the largest weight to 15 years olds, since these were the youngest respondents. Respondents older than 84 were represented by their relatively high weights in models of respondents close to 2 SDs above the average.

As described by Hildebrandt et al (2016), the bandwidth \((bw)\) around each focal point is defined by the following equation:

\[
bw = 2 \times N^{(-1/5)} \times SD_M
\]

The bandwidth is thus computed by using a density function that reflects the sample size \((N)\) and the standard deviation of moderator \(SD_M\), where \(M\) in our case refers to the moderator age.

The difference \(z\) for an respondent \(i\) and the target value of \(M\) is scaled according to the bandwidth:

\[
z_i = (M_i - targetM)/bw
\]

Weights \((K)\) for each respondent are then calculated based on the distance \(z_i\). These weights are then rescaled to weights \((W)\) that vary between 0 and 1:

\[
K = (1/\sqrt{2\pi}) \times exp(-z_i^2/2)
\]

\[
W = K/.399
\]

Moderated Non-Linear Factor Analysis

We used MNFLA (Bauer, 2016) as a second method to analyze measurement invariance across age. Bauer refers to moderation of an item’s factor loading or threshold as differential item functioning (DIF). Following Bauer, we tested for DIF by comparing (a) models with DIF for a particular item and (b) a model with no DIF. These models were nested and we used the scaled nested Chi-square test (Satorra & Bentler, 2001) for model comparisons. We then kept DIF for the item resulting in the largest improvement in fit and added DIF for a second item, testing whether this improved fit. Finally, we used the model with the best fit to estimate factor scores for each respondent, accounting for measurement non-invariance.

We refer to Bauer (2016) for technical details of the MNLFA approach. The MNLFA code later in this supplemental material shows how we modeled DIF for items.
We first tested for measurement invariance across countries. The code `usevariables = predj_r lkrsp_r trtbd_r country` in the code chunk below refers to variables used in this part of the analysis. `predj_r` is the recoded 3-point version of the original ESS variable “predage” (prejudice because of age), `lkrsp_r` is the recoded 3-point version of the original variable “lkrspag” (lack of respect because of age), `trtbd_r` is the the recoded 3-point version of the original variable “trtbdag” (treated badly because of age). We first estimated traditional measurement invariance across all countries. The estimation was done with Mplus, using MplusAutomation (Hallquist & Wiley, 2016) in R to define the model and to call Mplus:

```r
# Mplus model for traditional invariance across countries
library(MplusAutomation)
setwd("~/Dropbox/Analyses/e01_Discrim_MI/Results/Countries")

# Develop and run Mplus model
# predj_r, lkrsp_r, trtbd_r refer to recoded 3-point ordinal indicators
mymodel <- mplusObject(
  TITLE = "Traditional measurement invariance, all countries;",
  VARIABLE = "
    usevariables = predj_r lkrsp_r trtbd_r country;
    categorical = predj_r lkrsp_r trtbd_r;
    classes=c(29);
    knownclass=c(country);
 ",
  ANALYSIS = "
    model = configural metric scalar;
    estimator = mlf;
    algorithm = integration;
    type = mixture;",
  MODEL = "
    %overall%
    discrim BY predj_r lkrsp_r trtbd_r;",
  OUTPUT = "
    tech1 tech8 cinterval;",
  rdata = ESSdata)

# Run mymodel
myresults<-mplusModeler(mymodel, modelout="CountriesMetricGroupAll.inp", run=1L)
```

Given the negative findings for metric invariance (p < .001), we tested for approximate measurement invariance across countries. The analysis of the full sample indicated substantial
non-invariance across countries and we exploratory developed two groups of countries based on tests with approximate measurement invariance, resulting in the following grouping:

Defining Country Groups

```r
ESSdata$country_group <-
  ifelse(ESSdata$cntry == "BE", 2, # Belgium (1)
  ifelse(ESSdata$cntry == "DE", 2, # Germany (6)
  ifelse(ESSdata$cntry == "DK", 2, # Denmark (7)
  ifelse(ESSdata$cntry == "EE", 2, # Estonia (8)
  ifelse(ESSdata$cntry == "FI", 2, # Finland (10)
  ifelse(ESSdata$cntry == "GR", 2, # Greece (13)
  ifelse(ESSdata$cntry == "NL", 2, # Netherlands (19)
  ifelse(ESSdata$cntry == "SE", 2, # Sweden (25)
  ifelse(ESSdata$cntry == "SK", 2, # Slovakia (27)
  ifelse(ESSdata$cntry == "UA", 2, 1)))))))) # Ukraine (29)
```

Thus, these countries are defined as belonging to Country Group 1:
Bulgaria, Switzerland, Cyprus, Czech Republic, Spain, France,
United Kingdom, Croatia, Hungary, Ireland, Israel, Latvia, Norway,
Poland, Portugal, Romania, Russia, Slovenia, Turkey.

Concluding the analysis of measurement invariance across countries, we estimated approximate measurement invariance for respondents in each country group separately, first with respondents in Country Group 1 (using Mplus, and R/MplusAutomation to call Mplus):

Approximate measurement invariance across countries (alignment analysis)
Country Group 1

```r
setwd("~/Dropbox/Analyses/e01_Discrim_MI/Results/Countries")

# Select countries dependent on which group in country_group
selectedgroup <- ESSdata[ which(ESSdata$country_group == 1),]

# Develop and run Mplus model
mymodel <- mplusObject(
  TITLE = "Approximate measurement invariance, Country Group 1;",
  VARIABLE = "
    usevariables = predj_r lkrsp_r trtbd_r country;
    categorical = predj_r lkrsp_r trtbd_r;
    classes=c(19);
    knownclass=c(country);",
  ANALYSIS = "
    type=mixture;
    estimator=mlf;
    algorithm=integration;
    estimator = mlf;
  
```

9
The estimation of approximate measurement invariance in Country Group 2 used the same code, only substituting

```r
selectedgroup <- ESSdata[ which(ESSdata$country_group == 1),]
```

with

```r
selectedgroup <- ESSdata[ which(ESSdata$country_group == 2),]
```

The output from the two alignment analyses across countries is reproduced towards the end of this supplemental material.

Perceveived Age Discrimination across Age

Tests of measurement invariance across age used three different approaches, the first two able to estimate measurement invariance across a continuous variable: LSEM and MNLFA.

Local Structural Equation Modeling

LSEM used an Mplus input template and MplusAutomation to generate 401 different input files, each with a different focal point in the LSEM analysis. The code below was used as a template to generate the 401 Mplus input files used for LSEM:

```r
![Template file for LSEM analysis, Country Group 1, using MplusAutomation in R]
```

```r
TITLE: LSEM [[mod]] of perceived age discrimination;
```
DATA:
File = "LSEM_ModelsGroup1.dat";

VARIABLE:
names = predj_r lkrsp_r trtbd_r c_age country pspwght;
missing = .;
usevariables = predj_r lkrsp_r trtbd_r country w;
useobservations = c_age NE -9999;
categorical = predj_r lkrsp_r trtbd_r;
weight = w;
cluster = country;

DEFINE:
! Rescale the standardized moderator to have -2 to +2 SD equal 100 to 500.
! Add a positive constant larger than the smallest negative value of std. variable.
! Multiply by 100 so that each iteration will increment .01 of the original scale.
age100 = (c_age + 33) * 100;

! Specify the LSEM weighting approach
! bandwidth = 2*N^(-1/5)*SDmod
bw = 2*37064^(-1/5)*100;

! Scaled distance = (moderator - target level of moderator)/bandwidth
! Note the inclusion of [[mod]] specifies this will vary from 10 to 50.
zx = (age100 - [[mod]])/bw;

! kernel weights = (1/(2pi)^.5)*exp(-scaled distance^2/2)
k = (1/(6.283185^.5))*exp((-(zx^2))/2);

! weight = k / .399.
w = k/.399;

ANALYSIS:
model=nocovariances;
type=complex;

MODEL:
discrim by predj_r* (b1);
discrim by lkrsp_r (b2);
discrim by trtbd_r (b3);
discrim@1;
[discrim@0];

[predj_r$1*] (i1_1);
[predj_r$2*] (i1_2);
MODEL CONSTRAINT:
NEW(pred lkrs trtb h2 c2 e2 pre_tr1 pre_tr2 lkr_tr1 lkr_tr2 trt_tr1 trt_tr2);

pred = b1;
lkrs = b2;
trtb = b3;

h2 = b1^2;
c2 = b2^2;
e2 = b3^2;

pre_tr1 = i1_1;
pre_tr2 = i1_2;

lkr_tr1 = i2_1;
lkr_tr2 = i2_2;

trt_tr1 = i3_1;
trt_tr2 = i3_2;

OUTPUT: sampstat;

Using the template above, the LSEM analysis of respondents in Country Group 1 was conducted with the following code:

```r
# MplusAutomation for LSEM, Country Group 1
library(MplusAutomation)
library(reshape)

# Select countries from Country Group 1
selectedgroup <- ESSdata[which(ESSdata$country_group == 1),]

# Prepare data file, then delete inpute file generated
library(foreign)
# setwd("~/Dropbox/Analyses/e01_Discrim_MI/Results/LSEM/ModelsGroup1")
prepareMplusData(selectedgroup,
```
filename =
"~/Dropbox/Analyses/e01_Discrim_MI/Results/LSEM/ModelsGroup1/LSEM_ModelsGroup1.dat",
keepCols = c("predj_r", "lkrsp_r", "trtbd_r", "c_age", "country", "pspwght")

table(ESSdata$country_group)

inp_templ<="~/Dropbox/Analyses/e01_Discrim_MI/e01_LSEMtemplate_group1.inp"
dir_models<="~/Dropbox/Analyses/e01_Discrim_MI/Results/LSEM/ModelsGroup1"

Create and run input files for each level of the moderator
createModels(inp_templ)
runModels(dir_models)

Extract model parameters with do.call() and rbind().
age1<-do.call("rbind",extractModelParameters(dir_models, dropDimensions=T))

Reduce to desired parameters (e.g., the model constraint section).
r.age1<-age1[age1$paramHeader=="New.Additional.Parameters",]
print(r.age1)
names(r.age1)
summary(r.age1)

Label the parameters with moderator levels,
rep() replicates the values in x
r.age1$mod<-rep(seq(-2,2,.01), each=12)
print(r.age1$mod)

Create long format file.
l.age1<- melt(r.age1, id.vars = c("mod","param"),measure.vars = c("est","se","est_se","pval"))

Create wide format file.
wideResults<-cast(l.age1,mod~param+variable)

Pull out model fit statistics. Can be used to plot trends.
fitage1<- extractModelSummaries(dir_models)
print(fitage1)

We then used ggplot2 in R to plot results from the LSEM analysis:

Plotting results from LSEM, Group 1

library(ggplot2)
library(reshape)
Plot for factor loadings

LSEM_CountryGroup1_fl.pdf <- ggplot(wideResults, aes(mod)) +
 geom_line(aes(y = PRED_est, color="green")) +
 geom_line(aes(y = LKRS_est, color="red")) +
 geom_line(aes(y = TRTB_est, color="blue")) +
 theme_bw() +
 theme(text = element_text(size=8), legend.position = "none") +
 ggtitle("Factor loadings") +
 labs(y=NULL, x="Age (centered)") +
 ylim(0.6,1.02) +
 ggsave("LSEM_CountryGroup1_fl_bw.pdf", device = "pdf",
 path = "~/Dropbox/Analyses/e01_Discrim_MI/Results/Plots/",
 scale = .2, dpi = 300, limitsize = TRUE)

Thresholds Prejudice because of age

LSEM_CountryGroup1_predj.pdf <- ggplot(wideResults, aes(mod)) +
 geom_line(aes(y = PRE_TR1_est, colour="Threshold 1")) +
 geom_line(aes(y = PRE_TR2_est, colour="Threshold 2")) +
 theme_bw() +
 theme(text = element_text(size=8), legend.position = "none") +
 ggtitle("Thresholds for prejudice") +
 labs(y=NULL, x="Age (centered)") +
 ylim(-0.6,1.1) +
 ggsave("LSEM_CountryGroup1_predj.pdf", device = "pdf",
 path = "~/Dropbox/Analyses/e01_Discrim_MI/Results/Plots/",
 scale = .2, dpi = 300, limitsize = TRUE)

Thresholds Lack of respect because of age

LSEM_CountryGroup1_lkrsp.pdf <- ggplot(wideResults, aes(mod)) +
 geom_line(aes(y = LKR_TR1_est, colour="Threshold 1")) +
 geom_line(aes(y = LKR_TR2_est, colour="Threshold 2")) +
 theme_bw() +
 theme(text = element_text(size=8), legend.position = "none") +
 ggtitle("Thresholds for lack of respect") +
 labs(y=NULL, x="Age (centered)") +
 ylim(-0.6,1.1) +
 ggsave("LSEM_CountryGroup1_lkrsp.pdf", device = "pdf",
 path = "~/Dropbox/Analyses/e01_Discrim_MI/Results/Plots/",
 scale = .2, dpi = 300, limitsize = TRUE)

Thresholds Treated badly because of age

LSEM_CountryGroup1_trtbd.pdf <- ggplot(wideResults, aes(mod)) +
 geom_line(aes(y = TRT_TR1_est, colour="Threshold 1")) +
 geom_line(aes(y = TRT_TR2_est, colour="Threshold 2")) +
 theme_bw() +
 theme(text = element_text(size=8), legend.position = "none") +
The resulting plot of the LSEM analysis is reproduced in the article, along with a similar plot for the analysis of data from Country Group 2 (see Figure 1 in the article).

Moderated Non-Linear Factor Analysis

Code for running MNLFA (for Country Group 1) is shown below, first with no DIF (full measurement invariance across age). The `MODEL CONSTRAINT` command in Mplus specified parameter constraints using labels defined for parameters in the `MODEL` command, labels defined for parameters not in the `MODEL` command are introduced using the NEW option of the `MODEL CONSTRAINT` command, and names of observed variables that are identified using the CONSTRAINT option of the VARIABLE command.

```r
# MNLFA with Mplus, no DIF (full MI) for all three items
library(MplusAutomation)
setwd("/Users/Christopher/Dropbox/Analyses/e01_Discrim_MI/Results/MNLFA")

# Select countries dependent on which group in country_group
selectedgroup <- ESSdata[ which(ESSdata$country_group == 1),]
```
mymodel <- mplusObject(
 TITLE = "e01 MNFLA, no DIF (full MI);",
 VARIABLE = "
 usevariables = predj_r2 lkrsp_r2 trtbd_r2 country c_age c_agesq pspwght;
 categorical = predj_r2 lkrsp_r2 trtbd_r2;
 constraint = c_age c_agesq;
 weight = pspwght;
 cluster = country;",
 ANALYSIS = "
 type = complex;
 estimator = mlr;
 link = logit;",
 MODEL = "
 discrim BY predj_r2*2.53025;
 discrim BY lkrsp_r2*6.52504;
 discrim BY trtbd_r2*4.80997;

 discrim ON c_age*-0.05025;
 discrim ON c_agesq*0.04353;

 [discrim@0];

 [predj_r2$1*1.33603];
 [lkrsp_r2$1*2.48037];
 [trtbd_r2$1*3.12506];

 discrim*999 (v_disc);

 model constraint:
 new(v_disc1*0.01080);
 new(v_disc2*-0.00116);
 v_disc = exp(v_disc1*c_age + v_disc2*c_agesq);",
 OUTPUT = "
 svalues;",
 SAVEDATA = "
 SAVE=fscores;
 file=mnlfa0.dat;",
 rdata = selectedgroup)

Run mymodel (run = 0L if input only, = 1L if run model)
resultsNoDIF <- mplusModeler(mymodel,
 modelout = "MNLFA_no_DIF_Group1.inp", run = 1L)

We then estimated models with DIF for a single item (shown with DIF for the item “prejudice
because of age):

```r
# MNLFA with Mplus, no DIF (full MI) for all three items
library(MplusAutomation)

setwd("/Users/Christopher/Dropbox/Analyses/e01_Discrim_MI/Results/MNLFA")

# Select countries dependent on which group in country_group
selectedgroup <- ESSdata[ which(ESSdata$country_group == 1), ]

mymodel <- mplusObject(
  TITLE = "e01 MNFLA DIF prejudice;",
  VARIABLE = 
    usevariables = predj_r2 lkrsp_r2 trtbd_r2 country c_age c_agesq pspwght;
categorical = predj_r2 lkrsp_r2 trtbd_r2;
  constraint = c_age c_agesq;
  weight = pspwght;
  cluster = country;",
  ANALYSIS = 
    type = complex;
estimator = mlr;
    link = logit;",
  MODEL = 
    discrim BY predj_r2*2.94342;
discrim BY lkrsp_r2*6.90506;
discrim BY trtbd_r2*5.30191;

discrim ON c_age*-0.04570;
discrim ON c_agesq*0.04126;

    [ discrim@0 ];

    [ predj_r2$1*1.69574 ];
[ lkrsp_r2$1*2.69708 ];
[ trtbd_r2$1*3.32651 ];

    discrim*999 (v_disc);

discrim BY predj_r2 (L);
predj_r2 ON c_age c_agesq ;

model constraint:  
NEW(v_disc1*0.01429);
NEW(v_disc2*-0.00602);
NEW (L0*2 L1*0 L2*0 );
```

Approximate Measurement Invariance

Supplementing MNLFA, we estimated approximate measurement invariance across age groups, first for respondents in Country Group 1, thereafter for respondents in Country Group 2.

Approximate measurement invariance in Country Group 1

library(MplusAutomation)

setwd("~/Dropbox/Analyses/e01_Discrim_MI/Results/AgeGroups")

Select countries dependent on which group in country_group
selectedgroup <- ESSdata[which(ESSdata$country_group == 1),]

mymodel <- mplusObject(
 TITLE = "e01 Countries, traditional measurement invariance;",
 VARIABLE = "
 usevariables = predj_r lkrsp_r trtbd_r age_group ;
 categorical = predj_r lkrsp_r trtbd_r;
 classes=c(15);
 knownclass=c(age_group);",
 ANALYSIS = "
 type=mixture;
 estimator=mlf;
 algorithm=integration;
 alignment = fixed(1);",
 MODEL = "
 %overall%
 discrim BY predj_r lkrsp_r trtbd_r;",
 OUTPUT = "
 svalues;",
 SAVEDATA = "
 SAVE=fscores;
 file=mnlfa_predjDIF.dat;",
 rdata = selectedgroup)

Run mymodel
resultsPrejDIF <- mplusModeler(mymodel,
 modelout = "MNLFA_predj_DIF_Group1.inp", run = 1L)
We used factor scores estimated by Mplus with approximate measurement invariance to plot the distribution of perceived age discrimination across age.

Perceived Age Discrimination across Age in Single Countries

The final analysis estimated factor scores across age for each country separately, using MNLFA models with DIF for prejudice because of age and for treated badly because of age:

```r
# Plot of factor scores from MNLFA of single countries
library(MplusAutomation)

# for (i in 1:length(country)) {
for (i in 1:29) {
    # The loop (originally set go from 1 to 29 had to be adjusted.
    # For six countries miterations had to be increased to 1000,
    # using the following loop:
    # for (i in c(2,13,14,15,23,28)) {
    # The model did not converge for Hungary,
    # but converged for the remaining 28 countries.

    # Select countries from Country Group 1, filename for data out
    selectedgroup <- ESSdata[ which(ESSdata$country == i),]
    myinputfile <- paste(i,"_country.inp",sep="")
    mydirout <- paste("~/Dropbox/Analyses/e01_Discrim_MI/Results/MNLFA_Countries/Country",i,sep="")

dir.create(file.path(mydirout))
setwd(file.path(mydirout))

mymodel <- mplusObject(
    TITLE = "MNFLA 2DIF country;",
    VARIABLE =",
    usevariables = predj_r2 lkrsp_r2 trtbd_r2 c_age c_agesq;
    categorical = predj_r2 lkrsp_r2 trtbd_r2;
    constraint = c_age c_agesq;",
    ANALYSIS = "
```
estimator = mlr;
miterations = 500;
 link = logit;",
MODEL = "
discrim BY predj_r2*2.94342;
discrim BY lkrsp_r2*6.90506;
discrim BY trtbd_r2*5.30191;

discrim ON c_age*-0.04570;
discrim ON c_agesq*0.04126;

[discrim@0];

[predj_r2$1*1.69574];
[lkrsp_r2$1*2.69708];
[trtbd_r2$1*3.32651];

discrim*999 (v_disc);

discrim BY predj_r2 (L_a);
predj_r2 ON c_age c_agesq;
discrim BY trtbd_r2 (L_b);
trtbd_r2 ON c_age c_agesq;

model constraint:
NEW(v_disc1*0.01429);
NEW(v_disc2*-0.00602);
 new(L_a0*2.519 L_a1*-0.099 L_a2*0.072);
 new(L_b0*2 L_b1*0 L_b2*0);
 v_disc = exp(v_disc1*c_age + v_disc2*c_agesq);
 L_a = L_a0 + L_a1*c_age + L_a2*c_agesq;
 L_b = L_b0 + L_b1*c_age + L_b2*c_agesq;",
OUTPUT = "
 svalues;",
SAVEDATA = "
SAVE = fscores;
file = VECTOR_1 ;",
rdata = selectedgroup)

Run mymodel
countrymodel <-
 mplusModeler(mymodel, modelout = myinputfile, run = 1L)
}
Output from Mplus Analyses

This section includes output of selected analyses conducted with Mplus. We note that the output from Mplus first prints the input. We have omitted parts of the lengthy outputs, and have reduced outputs of analyses that resemble previous outputs (e.g., approximate measurement invariance across countries in Country Group 2 after the a similar output for approximate measurement invariance across countries in Country Group 1). We include outputs from the following analyses:

1. Approximate measurement invariance across countries, Country Group 1. Most of the output is included. The output shows the estimated approximate measurement invariance across countries and which parameters were not approximately invariant. The output also shows the rank order of countries, and statistically significant differences between pairs of countries.

2. Approximate measurement invariance across countries, Country Group 2. The most important parts of the output are included.

3. MNLFA, Country Group 1. Most of the output is included.

4. MNLFA, Country Group 2. Most of the output is included.

5. Approximate measurement invariance across age groups, Country Group 1. The most important parts of the output are included.

6. Approximate measurement invariance across age groups, Country Group 2. The most important parts of the output are included.

Approximate Measurement Invariance Across Countries

Country Group 1

Country Group 1 included 19 countries, Mplus requires groups (countries) to be numbered, numbering is shown in parentheses. Country Group 1 included the following countries:

Bulgaria (2), Switzerland (3), Cyprus (4), Czech Republic (5), Spain (9), France (11), United Kingdom (12) Croatia (14), Hungary (15), Ireland (16), Israel (17), Latvia (18), Norway (20), Poland (21), Portugal (22), Romania (23), Russia (24), Slovenia (26), Turkey (28).

The code usevariables = predj_r lkrsp_r trtbd_r country in the input instructions refers to variables used. predj_r is the recoded 3-point version of the original ESS variable “predage” (prejudice because of age), lkrsp_r is the recoded 3-point version of the original variable “lkrspag (lack of respect because of age), trtbd_r is the the recoded 3-point version of the origina variable”trtbdag” (treated badly because of age).

Mplus VERSION 7.4 (Mac)
MUTHEN & MUTHEN
01/27/2017 12:52 PM
Approximate measurement invariance, Country Group 1;

SUMMARY OF ANALYSIS

Description	Value
Number of groups	1
Number of observations	37064
Number of dependent variables	3
Number of independent variables	0
Number of continuous latent variables	1
Number of categorical latent variables 1

Observed dependent variables

 Binary and ordered categorical (ordinal)
 PREDJ_R LKRSP_R TRTBD_R

Continuous latent variables
 DISCRIM

Categorical latent variables
 C

Knownclass C

Estimator MLF
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for Continuous Outcomes
 Maximum number of iterations 100
 Convergence criterion 0.100D-05

Optimization Specifications for the EM Algorithm
 Maximum number of iterations 500
 Convergence criteria
 Loglikelihood change 0.100D-02
 Relative loglikelihood change 0.100D-05
 Derivative 0.100D-02

Optimization Specifications for the M step of the EM Algorithm for Categorical Latent variables
 Number of M step iterations 1
 M step convergence criterion 0.100D-02
 Basis for M step termination ITERATION

Optimization Specifications for the M step of the EM Algorithm for Censored, Binary or Ordered Categorical (Ordinal), Unordered Categorical (Nominal) and Count Outcomes
 Number of M step iterations 1
 M step convergence criterion 0.100D-02
 Basis for M step termination ITERATION
 Maximum value for logit thresholds 15
 Minimum value for logit thresholds -15
 Minimum expected cell size for chi-square 0.100D-01
 Maximum number of iterations for H1 2000
 Convergence criterion for H1 0.100D-03
 Optimization algorithm EMA
Integration Specifications

Type: STANDARD
Number of integration points: 15
Dimensions of numerical integration: 1
Adaptive quadrature: ON
Link: LOGIT

Specifications for Alignment Analysis

Factor mean for reference group: FIXED
Simplicity function: SQRT
Factor variance metric: Reference group
Reference group: 5
Tolerance value: 0.100D-01
Number of random starts: 30
Maximum number of iterations: 5000
Convergence criterion: 0.100D-02
Cholesky: OFF

Input data file(s)
- CountriesAlignmentGroup1.dat
Input data format: FREE

SUMMARY OF DATA

Number of missing data patterns: 7
Number of \(y \) missing data patterns: 0
Number of \(u \) missing data patterns: 7

COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value: 0.100

PROPORTION OF DATA PRESENT FOR \(u \)

Covariance Coverage	PREDJ_R	LKRSP_R	TRTBD_R
PREDJ_R	0.991	--------	--------
LKRSP_R	0.984	0.992	--------
TRTBD_R	0.985	0.988	0.993
UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

PREDJ_R
Category 1 0.685 25164.000
Category 2 0.147 5406.000
Category 3 0.168 6169.000

LKRSP_R
Category 1 0.638 23459.000
Category 2 0.178 6534.000
Category 3 0.184 6765.000

TRTBD_R
Category 1 0.714 26299.000
Category 2 0.160 5897.000
Category 3 0.126 4623.000

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 189
Loglikelihood
HO Value -177655.768
Information Criteria
Akaike (AIC) 355689.536
Bayesian (BIC) 357299.891
Sample-Size Adjusted BIC 356699.249
(n* = (n + 2) / 24)

Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes

Pearson Chi-Square
Value 6287.304
Degrees of Freedom 322
P-Value 0.0000

25
Likelihood Ratio Chi-Square

Value 4025.835
Degrees of Freedom 322
P-Value 0.0000

Chi-Square Test for MCAR under the Unrestricted Latent Class Indicator Model

Pearson Chi-Square

Value 1058.214
Degrees of Freedom 552
P-Value 0.0000

Likelihood Ratio Chi-Square

Value 671.244
Degrees of Freedom 552
P-Value 0.0004

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL

Latent Classes

	Count	Proportion
1	2415.00000	0.06516
2	2490.00000	0.06718
3	2065.00000	0.05571
4	2354.00000	0.06351
5	2320.00000	0.06259
6	1819.00000	0.04908
7	2016.00000	0.05439
8	2567.00000	0.06926
9	1447.00000	0.03904
10	1542.00000	0.04160
11	1752.00000	0.04727
12	1545.00000	0.04168
13	1610.00000	0.04344
14	2360.00000	0.06367
15	2074.00000	0.05596
16	2219.00000	0.05987
17	1215.00000	0.03278
MODEL RESULTS

Latent Class 1 (17)	Estimate	S.E.	Est./S.E.	P-Value
DISCRIM BY				
PREDJ_R	2.742	0.158	17.304	0.000
LKRSP_R	37.660	42.504	0.886	0.376
TRTBD_R	3.469	0.265	13.067	0.000
Means				
DISCRIM	-0.677	0.108	-6.242	0.000
Thresholds				
PREDJ_R$1	0.090	0.175	0.514	0.607
PREDJ_R$2	1.405	0.160	8.775	0.000
LKRSP_R$1	-2.179	0.656	-3.321	0.001
LKRSP_R$2	18.133	22.669	0.800	0.424
TRTBD_R$1	0.461	0.245	1.880	0.060
TRTBD_R$2	2.470	0.237	10.404	0.000
Variances				
DISCRIM	2.407	0.333	7.218	0.000

Latent Class 2 (24)

DISCRIM BY	Estimate	S.E.	Est./S.E.	P-Value
PREDJ_R	2.776	0.130	21.330	0.000
LKRSP_R	8.325	1.356	6.142	0.000
TRTBD_R	3.886	0.267	14.540	0.000
Means				
DISCRIM	-0.228	0.053	-4.269	0.000
Thresholds				
PREDJ_R$1	-0.182	0.137	-1.329	0.184
PREDJ_R$2	1.644	0.140	11.743	0.000
LKRSP_R$1	-1.204	0.446	-2.700	0.007
LKRSP_R$2	3.704	0.631	5.869	0.000
Variable	Mean	Standard Error	z-Value	p-Value
----------	------	----------------	---------	---------
TRTBD_R$1	0.279	0.193	1.447	0.148
TRTBD_R$2	2.872	0.219	13.104	0.000

Variances

Variable	Variance	Standard Error	z-Value	p-Value
DISCRIM	0.992	0.120	8.239	0.000

Latent Class 3 (11)

DISCRIM

Variable	Mean	Standard Error	z-Value	p-Value
PREDJ_R	2.503	0.117	21.357	0.000
LKRSP_R	4.934	0.569	8.677	0.000
TRTBD_R	7.183	1.199	5.992	0.000

Means

Variable	Mean	Standard Error	z-Value	p-Value
DISCRIM	-0.548	0.067	-8.241	0.000

Thresholds

Variable	Mean	Standard Error	z-Value	p-Value
PREDJ_R$1	-0.360	0.149	-2.413	0.016
PREDJ_R$2	0.823	0.153	5.367	0.000
LKRSP_R$1	-1.327	0.264	-5.022	0.000
LKRSP_R$2	0.507	0.277	1.829	0.067
TRTBD_R$1	0.683	0.361	1.892	0.058
TRTBD_R$2	3.182	0.245	13.004	0.000

Variances

Variable	Variance	Standard Error	z-Value	p-Value
DISCRIM	0.569	0.084	6.777	0.000

Latent Class 4 (28)

DISCRIM

Variable	Mean	Standard Error	z-Value	p-Value
PREDJ_R	1.125	0.372	3.024	0.002
LKRSP_R	39.741	31.196	1.274	0.203
TRTBD_R	3.929	1.253	3.136	0.002

Means

Variable	Mean	Standard Error	z-Value	p-Value
DISCRIM	-1.084	0.225	-4.812	0.000

Thresholds

Variable	Mean	Standard Error	z-Value	p-Value
PREDJ_R$1	0.774	0.142	5.468	0.000
PREDJ_R$2	1.944	0.130	15.000	0.000
LKRSP_R$1	-3.614	2.021	-1.788	0.074
LKRSP_R$2	23.759	29.291	0.811	0.417
TRTBD_R$1	-0.092	0.547	-0.168	0.867
TRTBD_R$2	3.202	0.526	6.083	0.000
Latent Class 5 (12)

DISCRIM	5.053	2.993	1.688
	0.091		

DISCRIM BY

Variable	2.743	0.128	21.400	0.000
PREDJ_R				
LKRSP_R	4.478	0.479	9.355	0.000
TRTBD_R	4.417	0.397	11.138	0.000

Means

DISCRIM	-0.625	0.067	-9.320	0.000

Thresholds

Variable	0.080	0.135	0.590	0.555
PREDJ_R$1				
PREDJ_R$2	1.460	0.139	10.523	0.000
LKRSP_R$1	-1.575	0.252	-6.259	0.000
LKRSP_R$2	0.520	0.230	2.257	0.024
TRTBD_R$1	0.673	0.217	3.105	0.002
TRTBD_R$2	2.690	0.250	10.750	0.000

Latent Class 6 (3)

DISCRIM	0.852	0.107	7.948
	0.000		

DISCRIM BY

Variable	2.676	0.131	20.472	0.000
PREDJ_R				
LKRSP_R	4.957	0.634	7.824	0.000
TRTBD_R	4.744	0.418	11.355	0.000

Means

DISCRIM	-0.615	0.069	-8.957	0.000

Thresholds

Variable	-0.051	0.141	-0.365	0.715
PREDJ_R$1				
PREDJ_R$2	1.463	0.147	9.924	0.000
LKRSP_R$1	-1.032	0.282	-3.666	0.000
LKRSP_R$2	1.531	0.279	5.491	0.000
TRTBD_R$1	0.224	0.243	0.923	0.356
TRTBD_R$2	3.111	0.267	11.661	0.000

Variances

DISCRIM	0.593	0.080	7.405
	0.000		
Latent Class 7 (5)

Discrimination	Mean	Std. Dev	Lower Bound	Upper Bound
PREDJ_R	2.706	0.128	21.130	0.000
LKRSP_R	6.112	0.576	10.617	0.000
TRTBD_R	4.510	0.299	15.067	0.000

Means

Discrimination	Mean	Std. Dev	Lower Bound	Upper Bound
DISCRIM	0.000	0.000	999.000	999.000

Thresholds

Discrimination	Mean	Std. Dev	Lower Bound	Upper Bound
PREDJ_R$1	-0.265	0.089	-2.967	0.003
PREDJ_R$2	1.674	0.101	16.498	0.000
LKRSP_R$1	-1.770	0.226	-7.820	0.000
LKRSP_R$2	3.029	0.302	10.024	0.000
TRTBD_R$1	-0.137	0.134	-1.017	0.309
TRTBD_R$2	3.642	0.242	15.058	0.000

Variances

Discrimination	Variance	Std. Dev	Lower Bound	Upper Bound
DISCRIM	1.000	0.000	999.000	999.000

Latent Class 8 (9)

Discrimination	Mean	Std. Dev	Lower Bound	Upper Bound
PREDJ_R	2.816	0.129	21.881	0.000
LKRSP_R	7.684	1.231	6.240	0.000
TRTBD_R	3.722	0.265	14.056	0.000

Means

Discrimination	Mean	Std. Dev	Lower Bound	Upper Bound
DISCRIM	-0.985	0.081	-12.148	0.000

Thresholds

Discrimination	Mean	Std. Dev	Lower Bound	Upper Bound
PREDJ_R$1	-0.352	0.157	-2.247	0.025
PREDJ_R$2	1.719	0.151	11.400	0.000
LKRSP_R$1	-1.367	0.473	-2.891	0.004
LKRSP_R$2	3.693	0.596	6.197	0.000
TRTBD_R$1	0.158	0.204	0.772	0.440
TRTBD_R$2	3.144	0.221	14.245	0.000

Variances

Discrimination	Variance	Std. Dev	Lower Bound	Upper Bound
DISCRIM	1.668	0.216	7.735	0.000

Latent Class 9 (14)

Discrimination	Mean	Std. Dev	Lower Bound	Upper Bound
DISCRIM	0.000	0.000	999.000	999.000

DISCRIM BY
Variable	Mean	S.D.	t-value	p-value
PREDJ_R	2.520	0.145	17.430	0.000
LKRSP_R	12.462	5.190	2.401	0.016
TRTBD_R	4.878	0.379	12.882	0.000

Means

DISCRIM

-0.854 0.086 -9.975 0.000

Thresholds

Variable	Mean	S.D.	t-value	p-value
PREDJ_R$1	0.253	0.129	1.962	0.050
PREDJ_R$2	1.592	0.135	11.770	0.000
LKRSP_R$1	-1.763	0.878	-2.007	0.045
LKRSP_R$2	4.728	1.865	2.535	0.011
TRTBD_R$1	-0.186	0.230	-0.808	0.419
TRTBD_R$2	2.882	0.264	10.912	0.000

Variances

DISCRIM

1.281 0.186 6.876 0.000

Latent Class 10 (15)

DISCRIM BY

Variable	Mean	S.D.	t-value	p-value
PREDJ_R	2.555	0.116	22.003	0.000
LKRSP_R	4.656	0.555	8.385	0.000
TRTBD_R	5.816	0.916	6.352	0.000

Means

DISCRIM

-0.582 0.071 -8.240 0.000

Thresholds

Variable	Mean	S.D.	t-value	p-value
PREDJ_R$1	0.260	0.133	1.959	0.050
PREDJ_R$2	1.452	0.141	10.328	0.000
LKRSP_R$1	-1.310	0.254	-5.158	0.000
LKRSP_R$2	1.096	0.240	4.567	0.000
TRTBD_R$1	0.005	0.282	0.018	0.986
TRTBD_R$2	3.076	0.301	10.233	0.000

Variances

DISCRIM

0.644 0.108 5.938 0.000

Latent Class 11 (16)

DISCRIM BY

Variable	Mean	S.D.	t-value	p-value
PREDJ_R	2.596	0.123	21.058	0.000
LKRSP_R	5.484	0.793	6.915	0.000
TRTBD_R	5.057	0.485	10.417	0.000
Latent Class 12 (20)

Means	DISCRIM	-1.074	0.100	-10.715	0.000
Thresholds	PREDJ_R$1	-0.277	0.146	-1.899	0.058
	PREDJ_R$2	1.290	0.155	8.324	0.000
	LKRSP_R$1	-1.375	0.339	-4.053	0.000
	LKRSP_R$2	2.014	0.374	5.391	0.000
	TRTBD_R$1	0.335	0.259	1.296	0.195
	TRTBD_R$2	3.480	0.301	11.557	0.000
Variances	DISCRIM	2.017	0.278	7.255	0.000

Latent Class 13 (21)

Means	DISCRIM	-0.821	0.092	-8.963	0.000
Thresholds	PREDJ_R$1	-0.477	0.168	-2.843	0.004
	PREDJ_R$2	1.353	0.173	7.801	0.000
	LKRSP_R$1	-1.413	0.286	-4.943	0.000
	LKRSP_R$2	1.330	0.288	4.624	0.000
	TRTBD_R$1	0.708	0.281	2.518	0.012
	TRTBD_R$2	3.448	0.269	12.822	0.000
Variances	DISCRIM	0.846	0.123	6.889	0.000
Thresholds

Variable	Threshold 1	Threshold 2	Threshold 3	Threshold 4
PREDJ_R	0.035	1.622	-0.932	0.162
LKRSP_R	-0.932	2.719	2.719	2.727
TRTBD_R	0.162	2.727	2.719	2.727

Variances

Variable	Variance 1	Variance 2	Variance 3	Variance 4
DISCRIM	1.284	1.284	1.284	1.284

Latent Class 14 (22)

DISCRIM BY

Variable	Coefficient 1	Coefficient 2	Coefficient 3	Coefficient 4
PREDJ_R	2.676	0.122	21.884	0.000
LKRSP_R	7.478	1.264	5.916	0.000
TRTBD_R	4.527	0.333	13.607	0.000

Means

Variable	Mean 1	Mean 2	Mean 3	Mean 4
DISCRIM	-1.548	0.116	-13.294	0.000

Thresholds

Variable	Threshold 1	Threshold 2	Threshold 3	Threshold 4
PREDJ_R	-0.217	1.730	-1.636	-0.148
LKRSP_R	-1.636	3.321	3.321	3.232
TRTBD_R	0.162	2.727	2.719	2.727

Variances

Variable	Variance 1	Variance 2	Variance 3	Variance 4
DISCRIM	2.100	2.100	2.100	2.100

Latent Class 15 (23)

DISCRIM BY

Variable	Coefficient 1	Coefficient 2	Coefficient 3	Coefficient 4
PREDJ_R	2.431	0.157	15.443	0.000
LKRSP_R	11.753	3.206	3.666	0.000
TRTBD_R	5.045	0.351	14.361	0.000

Means

Variable	Mean 1	Mean 2	Mean 3	Mean 4
DISCRIM	-0.394	0.058	-6.751	0.000

Thresholds

Variable	Threshold 1	Threshold 2	Threshold 3	Threshold 4
PREDJ_R	0.107	0.117	0.914	0.360
Variable	1.830	0.120	15.219	0.000
-----------	--------	--------	--------	-------
	-1.744	0.674	-2.588	0.010
	4.980	1.355	3.676	0.000
	-0.336	0.228	-1.476	0.140
	2.824	0.257	10.991	0.000

Variances

| DISCRIM | 1.263 | 0.169 | 7.489 | 0.000 |

Latent Class 16 (2)

DISCRIM BY

Variable	2.849	0.143	19.863	0.000
	4.588	0.489	9.387	0.000
	3.861	0.322	11.972	0.000

Means

| DISCRIM | -0.945 | 0.086 | -10.956 | 0.000 |

Thresholds

Variable	-0.090	0.154	-0.584	0.559
	1.902	0.167	11.424	0.000
	-2.061	0.307	-6.722	0.000
	1.815	0.285	6.360	0.000
	-0.620	0.226	-2.737	0.006
	3.099	0.253	12.236	0.000

Variances

| DISCRIM | 1.931 | 0.262 | 7.358 | 0.000 |

Latent Class 17 (4)

DISCRIM BY

Variable	2.601	0.197	13.180	0.000
	108.777	120.434	0.903	0.366
	3.455	0.348	9.938	0.000

Means

| DISCRIM | -1.181 | 0.121 | -9.749 | 0.000 |

Thresholds

Variable	0.133	0.209	0.633	0.526
	1.539	0.195	7.904	0.000
	-50.202	56.262	-0.892	0.372
	39.733	46.886	0.847	0.397
	Mean 1	Mean 2	Mean 3	Mean 4
---------	--------	--------	--------	--------
TRTBD_R$1	-0.626	0.320	-1.959	0.050
TRTBD_R$2	3.009	0.314	9.568	0.000

Variances

	Mean 1	Mean 2	Mean 3	Mean 4
DISCRIM	1.174	0.179	6.551	0.000

Latent Class 18 (18)

DISCRIM BY

	Mean 1	Mean 2	Mean 3	Mean 4
PREDJ_R	2.766	0.119	23.180	0.000
LKRSP_R	22.757	29.357	0.775	0.438
TRTBD_R	3.552	0.264	13.444	0.000

Means

	Mean 1	Mean 2	Mean 3	Mean 4
DISCRIM	-0.849	0.167	-5.081	0.000

Thresholds

	Mean 1	Mean 2	Mean 3	Mean 4
PREDJ_R$1	-0.255	0.298	-0.856	0.392
PREDJ_R$2	1.807	0.273	6.627	0.000
LKRSP_R$1	-4.214	3.261	-1.292	0.196
LKRSP_R$2	11.753	16.608	0.708	0.479
TRTBD_R$1	0.107	0.394	0.272	0.785
TRTBD_R$2	3.262	0.352	9.263	0.000

Variances

	Mean 1	Mean 2	Mean 3	Mean 4
DISCRIM	1.436	0.232	6.202	0.000

Latent Class 19 (26)

DISCRIM BY

	Mean 1	Mean 2	Mean 3	Mean 4
PREDJ_R	2.754	0.131	21.088	0.000
LKRSP_R	10.456	3.561	2.936	0.003
TRTBD_R	4.015	0.355	11.325	0.000

Means

	Mean 1	Mean 2	Mean 3	Mean 4
DISCRIM	-0.559	0.067	-8.359	0.000

Thresholds

	Mean 1	Mean 2	Mean 3	Mean 4
PREDJ_R$1	-0.197	0.145	-1.355	0.175
PREDJ_R$2	1.285	0.155	8.266	0.000
LKRSP_R$1	-0.661	0.633	-1.044	0.296
LKRSP_R$2	5.014	1.470	3.410	0.001
TRTBD_R$1	0.415	0.212	1.959	0.050
TRTBD_R$2	3.089	0.268	11.534	0.000
Variances

DISCRIM 0.929 0.142 6.536 0.000

Categorical Latent Variables

Means

C#1 0.635 0.035 17.947 0.000
C#2 0.665 0.034 19.293 0.000
C#3 0.478 0.036 13.410 0.000
C#4 0.609 0.035 17.262 0.000
C#5 0.595 0.035 17.035 0.000
C#6 0.351 0.037 9.609 0.000
C#7 0.454 0.036 12.678 0.000
C#8 0.696 0.034 20.275 0.000
C#9 0.123 0.039 3.167 0.002
C#10 0.186 0.038 4.914 0.000
C#11 0.314 0.037 8.516 0.000
C#12 0.188 0.038 4.967 0.000
C#13 0.229 0.038 6.111 0.000
C#14 0.612 0.035 17.575 0.000
C#15 0.483 0.036 13.514 0.000
C#16 0.550 0.035 15.634 0.000
C#17 -0.052 0.041 -1.278 0.201
C#18 0.433 0.038 11.544 0.000

APPROXIMATE MEASUREMENT INVARIANCE (NONINVARIANCE) FOR GROUPS

Intercepts/Thresholds

PREDJ_R$1 17 24 11 (28) (12) 3 5 9 (14) (15) 16 20 21 22 (23) 2 4 18 26
PREDJ_R$2 17 24 (11) 28 12 3 5 9 14 15 (16) 20 21 22 23 2 4 18 (26)
LKRSP_R$1 17 24 11 28 12 3 5 9 14 15 16 20 21 22 23 2 4 18 26
LKRSP_R$2 17 24 11 28 12 3 5 9 14 15 16 20 21 22 23 2 4 18 26
TRTBD_R$1 17 24 11 28 (12) 3 5 9 14 15 16 20 21 22 (23) (2) (4) 18 26
TRTBD_R$2 17 24 11 28 (12) 3 5 9 14 15 16 20 21 22 23 2 4 18 26

Loadings for DISCRIM

PREDJ_R 17 24 (11) (28) 12 3 5 9 14 15 16 20 21 22 23 2 4 18 26
LKRSP_R 17 24 11 28 12 3 5 9 14 15 16 20 21 22 23 2 4 18 26
TRTBD_R (17) (24) 11 28 12 3 5 (9) 14 15 16 20 21 22 23 2 (4) (18) 26

FACTOR MEAN COMPARISON AT THE 5% SIGNIFICANCE LEVEL IN DESCENDING ORDER
Results for Factor DISCRIM

Ranking	Latent Class	Group Value	Factor Mean	Groups With Significantly Smaller Factor Mean
1	7	5	0.000	24 23 11 26 15 3 12 17 21 20 18 14 2 9 16 28 4 22
2	2	24	-0.228	23 11 26 15 3 12 17 21 20 18 14 2 9 16 28 4 22
3	15	23	-0.394	11 26 15 3 12 17 21 20 18 14 2 9 16 28 4 22
4	3	11	-0.548	21 20 18 14 2 9 16 28 4 22
5	19	26	-0.559	21 20 18 14 2 9 16 28 4 22
6	10	15	-0.582	21 20 14 2 9 16 28 4 22
7	6	3	-0.615	21 20 14 2 9 16 28 4 22
8	5	12	-0.625	20 14 2 9 16 28 4 22
9	1	17	-0.677	2 9 16 28 4 22
10	13	21	-0.758	2 9 16 4 22
11	12	20	-0.821	16 4 22
12	18	18	-0.849	4 22
13	9	14	-0.854	16 4 22
14	16	2	-0.945	4 22
15	8	9	-0.985	22
16	11	16	-1.074	22
17	4	28	-1.084	
18	17	4	-1.181	22
19	14	22	-1.548	

QUALITY OF NUMERICAL RESULTS

Condition Number for the Information Matrix: $0.644E-08$
(ratio of smallest to largest eigenvalue)

[Confidence intervals are omitted.]

[Suggested starting values omitted]

ALIGNMENT OUTPUT

INVARINACE ANALYSIS
Intercepts/Thresholds

Threshold PREDJ_R$1

Group	Group	Value	Value	Difference	SE	P-value
24	17	-0.182	0.090	-0.272	0.165	0.098
11	17	-0.360	0.090	-0.450	0.194	0.020
11	24	-0.360	-0.182	-0.178	0.130	0.170
28	17	0.774	0.090	0.684	0.206	0.001
28	24	0.774	-0.182	0.956	0.131	0.000
28	11	0.774	-0.360	1.134	0.164	0.000
12	17	0.080	0.090	-0.010	0.149	0.944
12	24	0.080	-0.182	0.262	0.078	0.001
12	11	0.080	-0.360	0.440	0.131	0.001
12	28	0.080	0.774	-0.694	0.136	0.000
3	17	-0.051	0.090	-0.142	0.167	0.397
3	24	-0.051	-0.182	0.131	0.086	0.127
3	11	-0.051	-0.360	0.309	0.140	0.028
3	28	-0.051	0.774	-0.825	0.137	0.000
3	12	-0.051	0.080	-0.131	0.088	0.135
5	17	-0.265	0.090	-0.355	0.189	0.060
5	24	-0.265	-0.182	-0.083	0.140	0.554
5	11	-0.265	-0.360	0.095	0.162	0.555
5	28	-0.265	0.774	-1.039	0.161	0.000
5	12	-0.265	0.080	-0.344	0.141	0.014
5	3	-0.265	-0.051	-0.213	0.147	0.146
9	17	-0.352	0.090	-0.442	0.183	0.016
9	24	-0.352	-0.182	-0.170	0.094	0.069
9	11	-0.352	-0.360	0.008	0.144	0.954
9	28	-0.352	0.774	-1.126	0.144	0.000
9	12	-0.352	0.080	-0.432	0.102	0.000
9	3	-0.352	-0.051	-0.301	0.109	0.006
9	5	-0.352	-0.265	-0.087	0.158	0.582
14	17	0.253	0.090	0.163	0.172	0.343
14	24	0.253	-0.182	0.435	0.099	0.000
14	11	0.253	-0.360	0.613	0.143	0.000
14	28	0.253	0.774	-0.521	0.135	0.000
14	12	0.253	0.080	0.173	0.100	0.083
14	3	0.253	-0.051	0.304	0.108	0.005
14	5	0.253	-0.265	0.518	0.138	0.000
14	9	0.253	-0.352	0.605	0.119	0.000
15	17	0.260	0.090	0.170	0.173	0.324
15	24	0.260	-0.182	0.442	0.101	0.000
15	11	0.260	-0.360	0.621	0.146	0.000
15	28	0.260	0.774	-0.514	0.138	0.000
15	12	0.260	0.080	0.181	0.101	0.073
15	3	0.260	-0.051	0.312	0.111	0.005
----	----	----	----	----		
5	4.260	-0.265	0.525	0.143	0.000	
9	4.260	-0.352	0.612	0.122	0.000	
14	4.260	0.253	0.008	0.113	0.946	
17	-0.277	0.090	-0.367	0.177	0.038	
24	-0.277	-0.182	-0.095	0.099	0.341	
11	-0.277	-0.360	0.084	0.145	0.565	
28	-0.277	0.774	-1.051	0.148	0.000	
12	-0.277	0.080	-0.356	0.104	0.001	
3	-0.277	-0.051	-0.225	0.112	0.045	
5	-0.277	-0.265	-0.012	0.152	0.938	
9	-0.277	-0.352	0.075	0.118	0.524	
14	-0.277	0.253	-0.530	0.121	0.000	
15	-0.277	0.260	-0.537	0.123	0.000	
17	-0.477	0.090	-0.567	0.188	0.003	
24	-0.477	-0.182	-0.295	0.122	0.015	
11	-0.477	-0.360	-0.117	0.158	0.460	
28	-0.477	0.774	-1.251	0.166	0.000	
12	-0.477	0.080	-0.557	0.122	0.000	
3	-0.477	-0.051	-0.425	0.131	0.001	
5	-0.477	-0.265	-0.212	0.172	0.219	
9	-0.477	-0.352	-0.125	0.135	0.356	
14	-0.477	0.253	-0.730	0.140	0.000	
15	-0.477	0.260	-0.737	0.141	0.000	
16	-0.477	-0.277	-0.200	0.142	0.159	
17	0.035	0.090	-0.055	0.165	0.738	
24	0.035	-0.182	0.217	0.086	0.012	
11	0.035	-0.360	0.395	0.140	0.005	
28	0.035	0.774	-0.739	0.139	0.000	
12	0.035	0.080	-0.044	0.087	0.610	
3	0.035	-0.051	0.087	0.096	0.369	
5	0.035	-0.265	0.300	0.148	0.043	
9	0.035	-0.352	0.387	0.108	0.000	
14	0.035	0.253	-0.218	0.108	0.044	
15	0.035	0.260	-0.225	0.110	0.040	
16	0.035	-0.277	0.312	0.112	0.005	
20	0.035	-0.477	0.512	0.131	0.000	
22	-0.217	0.090	-0.307	0.183	0.094	
24	-0.217	-0.182	-0.035	0.095	0.710	
11	-0.217	-0.360	0.143	0.147	0.332	
28	-0.217	0.774	-0.991	0.141	0.000	
12	-0.217	0.080	-0.297	0.104	0.004	
3	-0.217	-0.051	-0.166	0.110	0.131	
5	-0.217	-0.265	0.048	0.153	0.757	
9	-0.217	-0.352	0.135	0.114	0.239	
14	-0.217	0.253	-0.470	0.119	0.000	
Row	Column	a	b	c	d	e
-----	--------	-----	-----	-----	-----	-----
22	15	-0.217	0.260	-0.478	0.122	0.000
22	16	-0.217	-0.277	0.059	0.121	0.622
22	20	-0.217	-0.477	0.260	0.141	0.067
22	21	-0.217	0.035	-0.252	0.109	0.021
23	17	0.107	0.090	0.017	0.164	0.918
23	24	0.107	-0.182	0.289	0.086	0.001
23	11	0.107	-0.360	0.467	0.134	0.000
23	28	0.107	0.774	-0.667	0.125	0.000
23	12	0.107	0.080	0.027	0.087	0.754
23	3	0.107	-0.051	0.158	0.096	0.100
23	5	0.107	-0.265	0.372	0.128	0.004
23	9	0.107	-0.352	0.459	0.108	0.000
23	14	0.107	0.253	-0.146	0.100	0.144
23	15	0.107	0.260	-0.154	0.103	0.138
23	16	0.107	-0.277	0.384	0.110	0.000
23	20	0.107	-0.477	0.584	0.131	0.000
23	21	0.107	0.035	0.072	0.096	0.454
23	22	0.107	-0.217	0.324	0.108	0.003
2	17	-0.090	0.090	-0.180	0.177	0.309
2	24	-0.090	-0.182	0.092	0.083	0.266
2	11	-0.090	-0.360	0.270	0.144	0.060
2	28	-0.090	0.774	-0.864	0.136	0.000
2	12	-0.090	0.080	-0.170	0.091	0.061
2	3	-0.090	-0.051	-0.039	0.098	0.693
2	5	-0.090	-0.265	0.175	0.156	0.262
2	9	-0.090	-0.352	0.262	0.105	0.012
2	14	-0.090	0.253	-0.343	0.112	0.002
2	15	-0.090	0.260	-0.350	0.115	0.002
2	16	-0.090	-0.277	0.187	0.112	0.097
2	20	-0.090	-0.477	0.387	0.133	0.004
2	21	-0.090	0.035	-0.125	0.096	0.190
2	22	-0.090	-0.217	0.127	0.107	0.232
2	23	-0.090	0.107	-0.197	0.099	0.046
4	17	0.133	0.090	0.043	0.208	0.838
4	24	0.133	-0.182	0.315	0.140	0.025
4	11	0.133	-0.360	0.493	0.188	0.009
4	28	0.133	0.774	-0.641	0.198	0.001
4	12	0.133	0.080	0.053	0.138	0.701
4	3	0.133	-0.051	0.184	0.148	0.215
4	5	0.133	-0.265	0.398	0.204	0.052
4	9	0.133	-0.352	0.485	0.155	0.002
4	14	0.133	0.253	-0.120	0.159	0.450
4	15	0.133	0.260	-0.128	0.161	0.427
4	16	0.133	-0.277	0.409	0.161	0.011
4	20	0.133	-0.477	0.610	0.172	0.000
Approximate Measurement Invariance Holds For Groups:
17 24 11 3 5 9 16 20 21 22
2 4 18 26
Weighted Average Value Across Invariant Groups: -0.182
R-square/Explained variance/Invariance index: 0.917
Invariant Group Values, Difference to Average and Significance

Group	Value	Difference	SE	P-value
17	0.090	0.272	0.149	0.068
24	-0.182	0.000	0.050	0.996
11	-0.360	-0.178	0.115	0.122
3	-0.051	0.131	0.070	0.062
5	-0.265	-0.083	0.129	0.524
9	-0.352	-0.170	0.077	0.027
16	-0.277	-0.094	0.085	0.267
20	-0.477	-0.295	0.108	0.006
21	0.035	0.217	0.069	0.002
22	-0.217	-0.035	0.081	0.665
2	-0.090	0.092	0.068	0.177
4	0.133	0.315	0.129	0.015
18	-0.255	-0.072	0.207	0.726
26	-0.197	-0.015	0.074	0.843

Threshold PREDJ_R2

Group	Group	Value	Value	Difference	SE	P-value
24	17	1.644	1.405	0.239	0.154	0.122
11	17	0.823	1.405	-0.582	0.185	0.002
11	24	0.823	1.644	-0.821	0.138	0.000
28	17	1.944	1.405	0.539	0.188	0.004
28	24	1.944	1.644	0.300	0.134	0.025
28	11	1.944	0.823	1.121	0.165	0.000
12	17	1.460	1.405	0.056	0.141	0.693
12	24	1.460	1.644	-0.183	0.089	0.039
12	11	1.460	0.823	0.638	0.139	0.000
12	28	1.460	1.944	-0.483	0.139	0.001
3	17	1.463	1.405	0.058	0.160	0.716
3	24	1.463	1.644	-0.181	0.100	0.070
3	11	1.463	0.823	0.640	0.151	0.000
3	28	1.463	1.944	-0.481	0.144	0.001
3	12	1.463	1.460	0.002	0.101	0.981
5	17	1.674	1.405	0.269	0.180	0.134
5	24	1.674	1.644	0.030	0.147	0.839
5	11	1.674	0.823	0.851	0.171	0.000
5	28	1.674	1.944	-0.270	0.157	0.085
5	12	1.674	1.460	0.213	0.148	0.150
5	3	1.674	1.463	0.211	0.157	0.180
9	17	1.719	1.405	0.314	0.165	0.057
9	24	1.719	1.644	0.075	0.085	0.375
9	11	1.719	0.823	0.896	0.143	0.000
9	28	1.719	1.944	-0.225	0.139	0.106
9	12	1.719	1.460	0.259	0.096	0.007
---	---	----	----	----	----	----
9	3	1.719	1.463	0.256	0.107	0.017
9	5	1.719	1.674	0.046	0.156	0.770
14	17	1.592	1.405	0.188	0.164	0.252
14	24	1.592	1.644	-0.051	0.108	0.633
14	11	1.592	0.823	0.770	0.152	0.000
14	28	1.592	1.944	-0.352	0.140	0.012
14	12	1.592	1.460	0.132	0.112	0.238
14	3	1.592	1.463	0.129	0.122	0.287
14	5	1.592	1.674	-0.081	0.148	0.583
14	9	1.592	1.719	-0.127	0.114	0.267
15	17	1.452	1.405	0.047	0.166	0.777
15	24	1.452	1.644	-0.192	0.113	0.091
15	11	1.452	0.823	0.629	0.157	0.000
15	28	1.452	1.944	-0.492	0.145	0.001
15	12	1.452	1.460	-0.009	0.114	0.938
15	3	1.452	1.463	-0.011	0.126	0.929
15	5	1.452	1.674	-0.222	0.155	0.153
15	9	1.452	1.719	-0.267	0.121	0.027
15	14	1.452	1.592	-0.141	0.128	0.273
16	17	1.290	1.405	-0.115	0.172	0.503
16	24	1.290	1.644	-0.354	0.116	0.002
16	11	1.290	0.823	0.467	0.158	0.003
16	28	1.290	1.944	-0.654	0.157	0.000
16	12	1.290	1.460	-0.171	0.118	0.148
16	3	1.290	1.463	-0.173	0.129	0.179
16	5	1.290	1.674	-0.384	0.166	0.021
16	9	1.290	1.719	-0.429	0.122	0.000
16	14	1.290	1.592	-0.303	0.135	0.025
16	15	1.290	1.452	-0.162	0.139	0.242
20	17	1.353	1.405	-0.052	0.180	0.774
20	24	1.353	1.644	-0.291	0.129	0.025
20	11	1.353	0.823	0.530	0.166	0.001
20	28	1.353	1.944	-0.591	0.171	0.001
20	12	1.353	1.460	-0.108	0.128	0.401
20	3	1.353	1.463	-0.110	0.140	0.434
20	5	1.353	1.674	-0.321	0.182	0.078
20	9	1.353	1.719	-0.366	0.135	0.007
20	14	1.353	1.592	-0.239	0.148	0.107
20	15	1.353	1.452	-0.099	0.151	0.512
20	16	1.353	1.290	0.063	0.152	0.678
21	17	1.622	1.405	0.217	0.154	0.160
21	24	1.622	1.644	-0.022	0.091	0.807
21	11	1.622	0.823	0.799	0.145	0.000
21	28	1.622	1.944	-0.322	0.140	0.021
21	12	1.622	1.460	0.161	0.098	0.099
---	---	---	---	---	---	
21	3	1.622	1.463	0.159	0.107	0.139
21	5	1.622	1.674	−0.052	0.151	0.732
21	9	1.622	1.719	−0.097	0.096	0.310
21	14	1.622	1.592	0.029	0.115	0.798
21	15	1.622	1.452	0.170	0.119	0.154
21	16	1.622	1.290	0.332	0.124	0.007
21	20	1.622	1.353	0.269	0.136	0.048
22	17	1.730	1.405	0.325	0.174	0.062
22	24	1.730	1.644	0.086	0.104	0.407
22	11	1.730	0.823	0.907	0.156	0.000
22	28	1.730	1.944	−0.214	0.146	0.143
22	12	1.730	1.460	0.269	0.113	0.018
22	3	1.730	1.463	0.267	0.123	0.030
22	5	1.730	1.674	0.056	0.161	0.726
22	9	1.730	1.719	0.011	0.109	0.920
22	14	1.730	1.592	0.138	0.127	0.279
22	15	1.730	1.452	0.278	0.134	0.037
22	16	1.730	1.290	0.440	0.137	0.001
22	20	1.730	1.353	0.377	0.151	0.012
22	21	1.730	1.622	0.108	0.113	0.337
23	17	1.830	1.405	0.425	0.154	0.006
23	24	1.830	1.644	0.186	0.094	0.049
23	11	1.830	0.823	1.007	0.141	0.000
23	28	1.830	1.944	−0.114	0.126	0.368
23	12	1.830	1.460	0.370	0.101	0.000
23	3	1.830	1.463	0.367	0.110	0.001
23	5	1.830	1.674	0.156	0.136	0.249
23	9	1.830	1.719	0.111	0.100	0.269
23	14	1.830	1.592	0.238	0.113	0.036
23	15	1.830	1.452	0.378	0.118	0.001
23	16	1.830	1.290	0.540	0.124	0.000
23	20	1.830	1.353	0.477	0.140	0.001
23	21	1.830	1.622	0.208	0.104	0.044
23	22	1.830	1.730	0.100	0.114	0.380
2	17	1.902	1.405	0.498	0.179	0.005
2	24	1.902	1.644	0.259	0.113	0.022
2	11	1.902	0.823	1.080	0.163	0.000
2	28	1.902	1.944	−0.042	0.152	0.785
2	12	1.902	1.460	0.442	0.121	0.000
2	3	1.902	1.463	0.439	0.130	0.001
2	5	1.902	1.674	0.229	0.172	0.183
2	9	1.902	1.719	0.183	0.116	0.113
2	14	1.902	1.592	0.310	0.136	0.023
2	15	1.902	1.452	0.451	0.142	0.001
2	16	1.902	1.290	0.613	0.142	0.000
---	---	---	---	---	---	
2	20	1.902	1.353	0.549	0.154	0.000
2	21	1.902	1.622	0.281	0.121	0.021
2	22	1.902	1.730	0.172	0.131	0.189
2	23	1.902	1.830	0.072	0.122	0.553
4	17	1.539	1.405	0.134	0.186	0.470
4	24	1.539	1.644	-0.105	0.126	0.405
4	11	1.539	0.823	0.716	0.179	0.000
4	28	1.539	1.944	-0.405	0.184	0.028
4	12	1.539	1.460	0.078	0.128	0.542
4	3	1.539	1.463	0.076	0.139	0.586
4	5	1.539	1.674	-0.135	0.190	0.478
4	9	1.539	1.719	-0.180	0.130	0.166
4	14	1.539	1.592	-0.053	0.149	0.721
4	15	1.539	1.452	0.087	0.153	0.569
4	16	1.539	1.290	0.249	0.153	0.104
4	20	1.539	1.353	0.186	0.159	0.243
4	21	1.539	1.622	-0.083	0.132	0.531
4	22	1.539	1.730	-0.191	0.147	0.193
4	23	1.539	1.830	-0.291	0.144	0.043
4	2	1.539	1.902	-0.363	0.151	0.016
18	17	1.807	1.405	0.403	0.273	0.140
18	24	1.807	1.644	0.164	0.190	0.390
18	11	1.807	0.823	0.985	0.242	0.000
18	28	1.807	1.944	-0.136	0.261	0.601
18	12	1.807	1.460	0.347	0.206	0.091
18	3	1.807	1.463	0.345	0.207	0.097
18	5	1.807	1.674	0.134	0.275	0.627
18	9	1.807	1.719	0.088	0.187	0.637
18	14	1.807	1.592	0.215	0.222	0.332
18	15	1.807	1.452	0.356	0.224	0.112
18	16	1.807	1.290	0.518	0.217	0.017
18	20	1.807	1.353	0.455	0.225	0.043
18	21	1.807	1.622	0.186	0.200	0.352
18	22	1.807	1.730	0.078	0.205	0.704
18	23	1.807	1.830	-0.023	0.214	0.916
18	2	1.807	1.902	-0.095	0.200	0.636
18	4	1.807	1.539	0.269	0.201	0.182
26	17	1.285	1.405	-0.120	0.167	0.471
26	24	1.285	1.644	-0.359	0.106	0.001
26	11	1.285	0.823	0.462	0.152	0.002
26	28	1.285	1.944	-0.659	0.151	0.000
26	12	1.285	1.460	-0.176	0.110	0.109
26	3	1.285	1.463	-0.178	0.121	0.140
26	5	1.285	1.674	-0.389	0.164	0.018
26	9	1.285	1.719	-0.434	0.112	0.000
Approximate Measurement Invariance Holds For Groups:
17 24 28 12 3 5 9 14 15 20
21 22 23 2 4 18

Weighted Average Value Across Invariant Groups: 1.648
R-square/Explained variance/Invariance index: 0.832

Group	Value Difference	SE	P-value
17	1.405	0.135	0.072
24	1.644	0.056	0.941
28	1.944	0.115	0.010
12	1.460	0.064	0.003
3	1.463	0.080	0.021
5	1.674	0.128	0.841
9	1.719	0.066	0.278
14	1.592	0.088	0.529
15	1.452	0.094	0.037
20	1.353	0.114	0.010
21	1.622	0.070	0.707
22	1.730	0.086	0.339
23	1.830	0.070	0.009
2	1.902	0.094	0.007
4	1.539	0.114	0.340
18	1.807	0.189	0.397

Threshold LKRSP_R$1

Group	Group	Value	Value	Difference	SE	P-value
24	17	-1.204	-2.179	0.975	0.415	0.019
11	17	-1.327	-2.179	0.853	0.531	0.108
11	24	-1.327	-1.204	-0.123	0.361	0.734
28	17	-3.614	-2.179	-1.435	1.625	0.377
28	24	-3.614	-1.204	-2.410	1.768	0.173
28	11	-3.614	-1.327	-2.287	1.903	0.230
12	17	-1.575	-2.179	0.604	0.519	0.244
12	24	-1.575	-1.204	-0.371	0.325	0.254
---	---	---	---	---	---	---
12	11	-1.575	-1.327	-0.248	0.247	0.314
12	28	-1.575	-3.614	2.039	1.891	0.281
3	17	-1.032	-2.179	1.147	0.499	0.022
3	24	-1.032	-1.204	0.172	0.318	0.589
3	11	-1.032	-1.327	0.295	0.263	0.262
3	28	-1.032	-3.614	2.582	1.866	0.166
3	12	-1.032	-1.575	0.543	0.228	0.017
5	17	-1.770	-2.179	0.409	0.631	0.517
5	24	-1.770	-1.204	-0.566	0.459	0.217
5	11	-1.770	-1.327	-0.443	0.325	0.172
5	28	-1.770	-3.614	1.844	1.999	0.356
5	12	-1.770	-1.575	-0.195	0.308	0.526
5	3	-1.770	-1.032	-0.738	0.330	0.025
9	17	-1.367	-2.179	0.812	0.445	0.068
9	24	-1.367	-1.204	-0.163	0.355	0.646
9	11	-1.367	-1.327	-0.040	0.397	0.919
9	28	-1.367	-3.614	2.247	1.773	0.205
9	12	-1.367	-1.575	0.208	0.368	0.572
9	3	-1.367	-1.032	-0.335	0.360	0.353
9	5	-1.367	-1.770	0.403	0.487	0.408
14	17	-1.763	-2.179	0.417	0.724	0.565
14	24	-1.763	-1.204	-0.559	0.746	0.454
14	11	-1.763	-1.327	-0.436	0.808	0.590
14	28	-1.763	-3.614	1.851	1.780	0.298
14	12	-1.763	-1.575	-0.188	0.786	0.811
14	3	-1.763	-1.032	-0.731	0.780	0.349
14	5	-1.763	-1.770	0.008	0.878	0.993
14	9	-1.763	-1.367	-0.396	0.770	0.607
15	17	-1.310	-2.179	0.869	0.527	0.099
15	24	-1.310	-1.204	-0.106	0.343	0.758
15	11	-1.310	-1.327	0.017	0.262	0.949
15	28	-1.310	-3.614	2.304	1.888	0.222
15	12	-1.310	-1.575	0.265	0.231	0.251
15	3	-1.310	-1.032	-0.278	0.242	0.252
15	5	-1.310	-1.770	0.460	0.313	0.142
15	9	-1.310	-1.367	0.057	0.381	0.881
15	14	-1.310	-1.763	0.453	0.798	0.570
16	17	-1.375	-2.179	0.804	0.511	0.116
16	24	-1.375	-1.204	-0.171	0.355	0.629
16	11	-1.375	-1.327	-0.049	0.313	0.876
16	28	-1.375	-3.614	2.238	1.866	0.230
16	12	-1.375	-1.575	0.200	0.286	0.485
16	3	-1.375	-1.032	-0.343	0.291	0.238
16	5	-1.375	-1.770	0.395	0.377	0.295
16	9	-1.375	-1.367	-0.008	0.394	0.983
		X	X		X	X
---	---	-----	-----	---	-----	-----
16	14	-1.375	-1.763	0.387	0.793	0.625
16	15	-1.375	-1.310	-0.066	0.299	0.826
20	17	-1.413	-2.179	0.766	0.524	0.144
20	24	-1.413	-1.204	-0.209	0.356	0.556
20	11	-1.413	-1.327	-0.087	0.280	0.757
20	28	-1.413	-3.614	2.200	1.894	0.245
20	12	-1.413	-1.575	0.162	0.254	0.524
20	3	-1.413	-1.032	-0.381	0.267	0.153
20	5	-1.413	-1.770	0.357	0.337	0.290
20	9	-1.413	-1.367	-0.046	0.395	0.907
20	14	-1.413	-1.763	0.349	0.801	0.663
20	15	-1.413	-1.310	-0.104	0.269	0.700
20	16	-1.413	-1.375	-0.038	0.317	0.905
21	17	-0.932	-2.179	1.247	0.481	0.010
21	24	-0.932	-1.204	0.272	0.313	0.386
21	11	-0.932	-1.327	0.394	0.290	0.174
21	28	-0.932	-3.614	2.682	1.844	0.146
21	12	-0.932	-1.575	0.643	0.253	0.011
21	3	-0.932	-1.032	0.100	0.258	0.699
21	5	-0.932	-1.770	0.838	0.365	0.022
21	9	-0.932	-1.367	0.435	0.359	0.226
21	14	-0.932	-1.763	0.830	0.771	0.281
21	15	-0.932	-1.310	0.378	0.270	0.162
21	16	-0.932	-1.375	0.443	0.308	0.150
21	20	-0.932	-1.413	0.481	0.291	0.098
22	17	-1.636	-2.179	0.543	0.492	0.269
22	24	-1.636	-1.204	-0.432	0.407	0.289
22	11	-1.636	-1.327	-0.309	0.428	0.470
22	28	-1.636	-3.614	1.978	1.793	0.270
22	12	-1.636	-1.575	-0.061	0.404	0.880
22	3	-1.636	-1.032	-0.604	0.398	0.129
22	5	-1.636	-1.770	0.134	0.505	0.790
22	9	-1.636	-1.367	-0.269	0.440	0.542
22	14	-1.636	-1.763	0.127	0.799	0.874
22	15	-1.636	-1.310	-0.326	0.413	0.430
22	16	-1.636	-1.375	-0.260	0.429	0.544
22	20	-1.636	-1.413	-0.222	0.426	0.601
22	21	-1.636	-0.932	-0.704	0.401	0.080
23	17	-1.744	-2.179	0.435	0.533	0.414
23	24	-1.744	-1.204	-0.540	0.516	0.295
23	11	-1.744	-1.327	-0.417	0.591	0.480
23	28	-1.744	-3.614	1.870	1.728	0.279
23	12	-1.744	-1.575	-0.169	0.564	0.764
23	3	-1.744	-1.032	-0.712	0.555	0.200
23	5	-1.744	-1.770	0.026	0.675	0.969
---	---	---	---	---	---	
23	9	-1.744	-1.367	-0.377	0.548	0.492
23	14	-1.744	-1.763	0.018	0.845	0.983
23	15	-1.744	-1.310	-0.434	0.577	0.451
23	16	-1.744	-1.375	-0.369	0.574	0.521
23	20	-1.744	-1.413	-0.331	0.584	0.571
23	21	-1.744	-0.932	-0.812	0.544	0.136
23	22	-1.744	-1.636	-0.108	0.588	0.854
2	17	-2.061	-2.179	0.118	0.506	0.815
2	24	-2.061	-1.204	-0.857	0.341	0.012
2	11	-2.061	-1.327	-0.734	0.290	0.011
2	28	-2.061	-3.614	1.553	1.864	0.405
2	12	-2.061	-1.575	-0.486	0.260	0.062
2	3	-2.061	-1.032	-1.029	0.266	0.000
2	5	-2.061	-1.770	-0.291	0.351	0.407
2	9	-2.061	-1.367	-0.694	0.379	0.067
2	14	-2.061	-1.763	-0.298	0.788	0.705
2	15	-2.061	-1.310	-0.751	0.271	0.006
2	16	-2.061	-1.375	-0.686	0.316	0.030
2	20	-2.061	-1.413	-0.648	0.295	0.028
2	21	-2.061	-0.932	-1.129	0.286	0.000
2	22	-2.061	-1.636	-0.425	0.415	0.305
2	23	-2.061	-1.744	-0.317	0.568	0.577
4	17	-50.202	-2.179	-48.023	56.180	0.393
4	24	-50.202	-1.204	-48.998	56.215	0.383
4	11	-50.202	-1.327	-48.875	56.240	0.385
4	28	-50.202	-3.614	-46.588	56.040	0.406
4	12	-50.202	-1.575	-48.627	56.239	0.387
4	3	-50.202	-1.032	-49.170	56.235	0.382
4	5	-50.202	-1.770	-48.432	56.255	0.389
4	9	-50.202	-1.367	-48.835	56.215	0.385
4	14	-50.202	-1.763	-48.440	56.205	0.389
4	15	-50.202	-1.310	-48.892	56.240	0.385
4	16	-50.202	-1.375	-48.827	56.232	0.385
4	20	-50.202	-1.413	-48.789	56.237	0.386
4	21	-50.202	-0.932	-49.270	56.231	0.381
4	22	-50.202	-1.636	-48.566	56.220	0.388
4	23	-50.202	-1.744	-48.458	56.209	0.389
4	2	-50.202	-2.061	-48.141	56.236	0.392
18	17	-4.214	-2.179	-2.034	3.455	0.556
18	24	-4.214	-1.204	-3.009	3.396	0.376
18	11	-4.214	-1.327	-2.887	3.307	0.383
18	28	-4.214	-3.614	-0.600	3.555	0.866
18	12	-4.214	-1.575	-2.638	3.313	0.426
18	3	-4.214	-1.032	-3.181	3.328	0.339
18	5	-4.214	-1.770	-2.443	3.251	0.452
Approximate Measurement Invariance Holds For Groups:
17 24 11 28 12 3 5 9 14 15
16 20 21 22 23 2 4 18 26

Weighted Average Value Across Invariant Groups: -3.372

R-square/Explained variance/Invariance index: 0.190

Group	Value Difference	SE	P-value	
17	-2.179	1.193	0.520	
24	-1.204	2.168	0.246	
11	-1.327	2.046	0.280	
28	-3.614	0.241	0.917	
12	-1.575	1.797	0.342	
3	-1.032	2.340	0.885	
5	-1.770	1.602	0.405	
9	-1.367	2.005	0.245	
14	-1.763	1.610	0.413	
---	---	---	---	---
15	-1.310	2.063	1.892	0.276
16	-1.375	1.997	1.889	0.290
20	-1.413	1.959	1.892	0.301
21	-0.932	2.440	1.882	0.195
22	-1.636	1.736	1.887	0.357
23	-1.744	1.628	1.902	0.392
2	-2.061	1.311	1.890	0.488
4	-50.202	-46.830	54.375	0.389
18	-4.214	-0.841	3.728	0.821
26	-0.661	2.711	1.887	0.151

Threshold LKRSP_R$2

Group	Group	Value	Value	Difference	SE	P-value
24	17	-3.704	-18.133	14.429	22.576	0.523
11	17	-0.507	-18.133	17.626	22.629	0.436
11	24	-0.507	-3.704	3.197	0.581	0.000
28	17	-23.759	-18.133	-5.626	36.798	0.878
28	24	-23.759	-3.704	-20.055	29.057	0.490
28	11	-23.759	-0.507	-23.252	29.183	0.426
12	17	-0.520	-18.133	17.613	22.592	0.436
12	24	-0.520	-3.704	3.184	0.554	0.000
12	11	-0.520	-0.507	-0.013	0.232	0.956
12	28	-0.520	-23.759	23.239	29.173	0.426
3	17	-1.531	-18.133	16.602	22.605	0.463
3	24	-1.531	-3.704	2.173	0.555	0.000
3	11	-1.531	-0.507	-1.024	0.270	0.000
3	28	-1.531	-23.759	22.228	29.146	0.446
3	12	-1.531	-0.520	-1.011	0.199	0.000
5	17	-3.029	-18.133	15.104	22.670	0.505
5	24	-3.029	-3.704	0.675	0.677	0.319
5	11	-3.029	-0.507	-2.522	0.397	0.000
5	28	-3.029	-23.759	20.730	29.291	0.479
5	12	-3.029	-0.520	-2.509	0.360	0.000
5	3	-3.029	-1.531	-1.498	0.391	0.000
9	17	-3.693	-18.133	14.440	22.594	0.523
9	24	-3.693	-3.704	0.011	0.694	0.988
9	11	-3.693	-0.507	-3.186	0.546	0.000
9	28	-3.693	-23.759	20.066	29.052	0.490
9	12	-3.693	-0.520	-3.173	0.517	0.000
9	3	-3.693	-1.531	-2.162	0.520	0.000
9	5	-3.693	-3.029	-0.664	0.646	0.304
14	17	-4.728	-18.133	13.406	22.626	0.554
14	24	-4.728	-3.704	-1.024	1.895	0.589
14	11	-4.728	-0.507	-4.220	1.848	0.022
14	28	-4.728	-23.759	19.031	29.016	0.512
---	---	---	---	---	---	
14	12	-4.728	-0.520	-4.208	1.841	0.022
14	3	-4.728	-1.531	-3.197	1.839	0.082
14	5	-4.728	-3.029	-1.698	1.878	0.366
14	9	-4.728	-3.693	-1.034	1.882	0.583
15	17	-1.096	-18.133	17.037	22.620	0.451
15	24	-1.096	-3.704	2.608	0.566	0.000
15	11	-1.096	-0.507	-0.589	0.263	0.025
15	28	-1.096	-23.759	22.663	29.165	0.437
15	12	-1.096	-0.520	-0.576	0.191	0.003
15	3	-1.096	-1.531	0.435	0.227	0.056
15	5	-1.096	-3.029	1.933	0.368	0.000
15	9	-1.096	-3.693	2.597	0.530	0.000
15	14	-1.096	-4.728	3.631	1.841	0.048
16	17	-2.014	-18.133	16.119	22.605	0.476
16	24	-2.014	-3.704	1.690	0.590	0.004
16	11	-2.014	-0.507	-1.507	0.350	0.000
16	28	-2.014	-23.759	21.745	29.144	0.456
16	12	-2.014	-0.520	-1.494	0.302	0.000
16	3	-2.014	-1.531	-0.483	0.321	0.132
16	5	-2.014	-3.029	0.105	0.463	0.028
16	9	-2.014	-3.693	1.679	0.558	0.003
16	14	-2.014	-4.728	2.714	1.849	0.142
16	15	-2.014	-1.096	-0.918	0.324	0.005
20	17	-1.330	-18.133	16.803	22.613	0.457
20	24	-1.330	-3.704	2.374	0.576	0.000
20	11	-1.330	-0.507	-0.822	0.282	0.004
20	28	-1.330	-23.759	22.429	29.174	0.442
20	12	-1.330	-0.520	-0.810	0.228	0.000
20	3	-1.330	-1.531	0.201	0.263	0.444
20	5	-1.330	-3.029	1.700	0.402	0.000
20	9	-1.330	-3.693	2.364	0.541	0.000
20	14	-1.330	-4.728	3.398	1.845	0.066
20	15	-1.330	-1.096	-0.233	0.257	0.365
20	16	-1.330	-2.014	0.684	0.349	0.050
21	17	-2.719	-18.133	15.414	22.590	0.495
21	24	-2.719	-3.704	0.985	0.603	0.102
21	11	-2.719	-0.507	-2.212	0.371	0.000
21	28	-2.719	-23.759	21.040	29.128	0.470
21	12	-2.719	-0.520	-2.199	0.324	0.000
21	3	-2.719	-1.531	-1.188	0.337	0.000
21	5	-2.719	-3.029	0.310	0.475	0.514
21	9	-2.719	-3.693	0.974	0.568	0.086
21	14	-2.719	-4.728	2.009	1.854	0.279
21	15	-2.719	-1.096	-1.623	0.340	0.000
21	16	-2.719	-2.014	-0.705	0.403	0.080
21	20	-2.719	-1.330	-1.389	0.365	0.000
-----	-----	----------	---------	--------	-------	-------
22	17	-3.321	-18.133	14.812	22.603	0.512
22	24	-3.321	-3.704	0.383	0.658	0.560
22	11	-3.321	-0.507	-2.813	0.497	0.000
22	28	-3.321	-23.759	20.438	29.060	0.482
22	12	-3.321	-0.520	-2.801	0.460	0.000
22	3	-3.321	-1.531	-1.790	0.465	0.000
22	5	-3.321	-3.029	-0.292	0.596	0.625
22	9	-3.321	-3.693	0.373	0.630	0.554
22	14	-3.321	-4.728	1.407	1.867	0.451
22	15	-3.321	-1.096	-2.225	0.473	0.000
22	16	-3.321	-2.014	-1.307	0.512	0.011
22	20	-3.321	-1.330	-1.991	0.492	0.000
22	21	-3.321	-2.719	-0.602	0.517	0.245
23	17	-4.980	-18.133	13.153	22.589	0.560
23	24	-4.980	-3.704	-1.276	1.391	0.359
23	11	-4.980	-0.507	-4.473	1.328	0.001
23	28	-4.980	-23.759	18.779	29.003	0.517
23	12	-4.980	-0.520	-4.460	1.316	0.001
23	3	-4.980	-1.531	-3.449	1.315	0.009
23	5	-4.980	-3.029	-1.951	1.374	0.156
23	9	-4.980	-3.693	-1.287	1.375	0.349
23	14	-4.980	-4.728	-0.253	2.225	0.910
23	15	-4.980	-1.096	-3.884	1.319	0.003
23	16	-4.980	-2.014	-2.966	1.330	0.026
23	20	-4.980	-1.330	-3.650	1.325	0.006
23	21	-4.980	-2.719	-2.261	1.335	0.090
23	22	-4.980	-3.321	-1.659	1.355	0.221
2	17	-1.815	-18.133	16.318	22.618	0.471
2	24	-1.815	-3.704	1.889	0.561	0.001
2	11	-1.815	-0.507	-1.308	0.280	0.000
2	28	-1.815	-23.759	21.944	29.142	0.451
2	12	-1.815	-0.520	-1.295	0.215	0.000
2	3	-1.815	-1.531	-0.284	0.243	0.241
2	5	-1.815	-3.029	1.214	0.395	0.002
2	9	-1.815	-3.693	1.878	0.526	0.000
2	14	-1.815	-4.728	2.913	1.841	0.114
2	15	-1.815	-1.096	-0.719	0.241	0.003
2	16	-1.815	-2.014	0.199	0.332	0.549
2	20	-1.815	-1.330	-0.485	0.276	0.079
2	21	-1.815	-2.719	0.904	0.347	0.009
2	22	-1.815	-3.321	1.506	0.469	0.001
2	23	-1.815	-4.980	3.165	1.315	0.016
4	17	-39.733	-18.133	-21.599	51.318	0.674
4	24	-39.733	-3.704	-36.029	46.829	0.442
---	---	---	---	---	---	
4	11	-39.733	-0.507	-39.225	46.857	0.403
4	28	-39.733	-23.759	-15.974	53.408	0.765
4	12	-39.733	-0.520	-39.213	46.850	0.403
4	3	-39.733	-1.531	-38.202	46.848	0.415
4	5	-39.733	-3.029	-36.703	46.881	0.434
4	9	-39.733	-3.693	-36.039	46.831	0.442
4	14	-39.733	-4.728	-35.005	46.856	0.455
4	15	-39.733	-1.096	-38.636	46.854	0.410
4	16	-39.733	-2.014	-37.719	46.847	0.421
4	20	-39.733	-3.029	-36.703	46.881	0.434
4	21	-39.733	-2.719	-37.014	46.841	0.429
4	22	-39.733	-3.321	-36.412	46.833	0.437
4	23	-39.733	-4.980	-34.752	46.829	0.458
4	2	-39.733	-1.815	-37.918	46.846	0.418
18	17	-11.753	-18.133	6.380	27.902	0.819
18	24	-11.753	-3.704	-8.049	16.389	0.623
18	11	-11.753	-0.507	-11.246	16.516	0.496
18	28	-11.753	-23.759	12.006	32.960	0.716
18	12	-11.753	-0.520	-11.233	16.503	0.496
18	3	-11.753	-1.531	-10.222	16.482	0.535
18	5	-11.753	-3.029	-8.724	16.609	0.599
18	9	-11.753	-3.693	-8.060	16.392	0.623
18	14	-11.753	-4.728	-7.025	16.461	0.670
18	15	-11.753	-1.096	-10.657	16.509	0.519
18	16	-11.753	-2.014	-9.739	16.469	0.554
18	20	-11.753	-1.330	-10.423	16.461	0.528
18	21	-11.753	-2.719	-9.034	16.461	0.583
18	22	-11.753	-3.321	-8.432	16.411	0.607
18	23	-11.753	-4.980	-6.773	16.408	0.680
18	2	-11.753	-1.815	-9.938	16.478	0.546
18	4	-11.753	-39.733	27.980	48.419	0.563
26	17	-5.014	-18.133	13.119	22.588	0.561
26	24	-5.014	-3.704	-1.310	1.516	0.387
26	11	-5.014	-0.507	-4.507	1.452	0.002
26	28	-5.014	-23.759	18.745	29.030	0.518
26	12	-5.014	-0.520	-4.494	1.442	0.002
26	3	-5.014	-1.531	-3.483	1.444	0.016
26	5	-5.014	-3.029	-1.985	1.489	0.183
26	9	-5.014	-3.693	-1.321	1.504	0.380
26	14	-5.014	-4.728	-0.286	2.311	0.901
26	15	-5.014	-1.096	-3.918	1.448	0.007
26	16	-5.014	-2.014	-3.000	1.456	0.039
26	20	-5.014	-1.330	-3.684	1.450	0.011
26	21	-5.014	-2.719	-2.295	1.461	0.116
26	22	-5.014	-3.321	-1.693	1.488	0.255
Approximate Measurement Invariance Holds For Groups:
17 24 11 28 12 3 5 9 14 15
16 20 21 22 23 2 4 18 26
Weighted Average Value Across Invariant Groups: -6.695
R-square/Explained variance/Invariance index: 0.098

Group	Value Difference	SE	P-value
17	-18.133	21.236	0.590
24	-3.704	2.991	0.329
11	-0.507	6.188	0.053
28	-23.759	17.064	0.531
12	-0.520	6.175	0.051
3	-1.531	5.164	0.100
5	-3.029	3.666	0.269
9	-3.693	3.002	0.328
14	-4.728	1.967	0.567
15	-1.096	5.599	0.077
16	-2.014	4.681	0.136
20	-1.330	5.365	0.091
21	-2.719	3.976	0.203
22	-3.321	3.374	0.273
23	-4.980	1.715	0.592
2	-1.815	4.880	0.121
4	-39.733	33.037	0.464
18	-11.753	5.058	0.747
26	-5.014	5.058	0.747

Threshold TRTBD_R$1

Group	Group	Value	Value	Difference	SE	P-value
24	17	-0.279	-0.461	0.182	0.236	0.440
11	17	-0.683	-0.461	-0.222	0.364	0.542
11	24	-0.683	-0.279	-0.404	0.269	0.133
28	17	0.092	-0.461	0.553	0.561	0.324
28	24	0.092	-0.279	0.371	0.449	0.409
28	11	0.092	-0.683	0.774	0.488	0.112
12	17	-0.673	-0.461	-0.213	0.225	0.345
12	24	-0.673	-0.279	-0.395	0.115	0.001
12	11	-0.673	-0.683	0.009	0.264	0.972
12	28	-0.673	0.092	-0.765	0.453	0.091
3	17	-0.224	-0.461	0.236	0.259	0.360
----	----	----	----	----	----	----
3	24	-0.224	-0.279	0.055	0.134	0.683
3	11	-0.224	-0.683	0.458	0.278	0.100
3	28	-0.224	0.092	-0.316	0.438	0.471
3	12	-0.224	-0.673	0.449	0.145	0.002
5	17	0.137	-0.461	0.598	0.269	0.026
5	24	0.137	-0.279	0.416	0.203	0.040
5	11	0.137	-0.683	0.819	0.362	0.024
5	28	0.137	0.092	0.045	0.554	0.935
5	12	0.137	-0.673	0.810	0.224	0.000
5	3	0.137	-0.224	0.361	0.247	0.144
9	17	-0.158	-0.461	0.303	0.251	0.228
9	24	-0.158	-0.279	0.121	0.112	0.280
9	11	-0.158	-0.683	0.525	0.276	0.057
9	28	-0.158	0.092	-0.249	0.447	0.577
9	12	-0.158	-0.673	0.516	0.133	0.000
9	3	-0.158	-0.224	0.067	0.147	0.650
9	5	-0.158	0.137	-0.294	0.214	0.169
14	17	0.186	-0.461	0.646	0.264	0.014
14	24	0.186	-0.279	0.464	0.147	0.002
14	11	0.186	-0.683	0.868	0.292	0.003
14	28	0.186	0.092	0.094	0.441	0.832
14	12	0.186	-0.673	0.859	0.163	0.000
14	3	0.186	-0.224	0.410	0.174	0.018
14	5	0.186	0.137	0.049	0.234	0.835
14	9	0.186	-0.158	0.343	0.157	0.029
15	17	-0.005	-0.461	0.456	0.294	0.121
15	24	-0.005	-0.279	0.274	0.184	0.137
15	11	-0.005	-0.683	0.678	0.306	0.027
15	28	-0.005	0.092	-0.097	0.438	0.825
15	12	-0.005	-0.673	0.668	0.191	0.000
15	3	-0.005	-0.224	0.219	0.198	0.269
15	5	-0.005	0.137	-0.142	0.284	0.618
15	9	-0.005	-0.158	0.153	0.193	0.429
15	14	-0.005	0.186	-0.191	0.210	0.364
16	17	-0.335	-0.461	0.126	0.272	0.644
16	24	-0.335	-0.279	-0.056	0.150	0.707
16	11	-0.335	-0.683	0.347	0.278	0.212
16	28	-0.335	0.092	-0.427	0.449	0.341
16	12	-0.335	-0.673	0.338	0.159	0.033
16	3	-0.335	-0.224	-0.111	0.168	0.510
16	5	-0.335	0.137	-0.472	0.261	0.071
16	9	-0.335	-0.158	-0.178	0.164	0.278
16	14	-0.335	0.186	-0.521	0.187	0.055
16	15	-0.335	-0.005	-0.330	0.209	0.114
---	---	---	---	---	---	
20	24	-0.708	-0.279	-0.429	0.188	0.022
20	11	-0.708	-0.683	-0.026	0.288	0.929
20	28	-0.708	0.092	-0.800	0.466	0.086
20	12	-0.708	-0.673	-0.035	0.186	0.851
20	3	-0.708	-0.224	-0.484	0.203	0.017
20	5	-0.708	0.137	-0.845	0.285	0.003
20	9	-0.708	-0.158	-0.551	0.200	0.006
20	14	-0.708	0.186	-0.894	0.218	0.000
20	15	-0.708	-0.005	-0.703	0.238	0.003
20	16	-0.708	-0.335	-0.373	0.214	0.082
21	17	-0.162	-0.461	0.298	0.242	0.217
21	24	-0.162	-0.279	0.117	0.119	0.328
21	11	-0.162	-0.683	0.520	0.278	0.061
21	28	-0.162	0.092	-0.254	0.449	0.572
21	12	-0.162	-0.673	0.511	0.135	0.000
21	3	-0.162	-0.224	0.062	0.148	0.676
21	5	-0.162	0.137	-0.299	0.222	0.178
21	9	-0.162	-0.158	-0.005	0.133	0.971
21	14	-0.162	0.186	-0.348	0.164	0.034
21	15	-0.162	-0.005	-0.157	0.193	0.414
21	16	-0.162	-0.335	0.173	0.163	0.289
21	20	-0.162	-0.708	0.546	0.199	0.006
22	17	0.148	-0.461	0.609	0.281	0.030
22	24	0.148	-0.279	0.427	0.153	0.005
22	11	0.148	-0.683	0.831	0.291	0.004
22	28	0.148	0.092	0.056	0.438	0.898
22	12	0.148	-0.673	0.821	0.168	0.000
22	3	0.148	-0.224	0.372	0.177	0.035
22	5	0.148	0.137	0.011	0.251	0.964
22	9	0.148	-0.158	0.306	0.164	0.062
22	14	0.148	0.186	-0.038	0.183	0.837
22	15	0.148	-0.005	0.153	0.212	0.470
22	16	0.148	-0.335	0.483	0.191	0.011
22	20	0.148	-0.708	0.856	0.223	0.000
22	21	0.148	-0.162	0.310	0.167	0.064
23	17	0.336	-0.461	0.797	0.257	0.002
23	24	0.336	-0.279	0.615	0.128	0.000
23	11	0.336	-0.683	1.019	0.280	0.000
23	28	0.336	0.092	0.244	0.433	0.573
23	12	0.336	-0.673	1.010	0.144	0.000
23	3	0.336	-0.224	0.561	0.156	0.000
23	5	0.336	0.137	0.199	0.231	0.388
23	9	0.336	-0.158	0.494	0.141	0.000
23	14	0.336	0.186	0.151	0.162	0.352
23	15	0.336	-0.005	0.341	0.196	0.082
---	---	---	---	---	---	---
23	16	0.336	-0.335	0.671	0.170	0.000
23	20	0.336	-0.708	1.044	0.204	0.000
23	21	0.336	-0.162	0.499	0.147	0.001
23	22	0.336	0.148	0.188	0.167	0.260
2	17	0.620	-0.461	1.081	0.266	0.000
2	24	0.620	-0.279	0.899	0.144	0.000
2	11	0.620	-0.683	1.302	0.292	0.000
2	28	0.620	0.092	0.528	0.449	0.239
2	12	0.620	-0.673	1.293	0.159	0.000
2	3	0.620	-0.224	0.844	0.173	0.000
2	5	0.620	0.137	0.483	0.235	0.039
2	9	0.620	-0.158	0.777	0.156	0.000
2	14	0.620	0.186	0.434	0.180	0.016
2	15	0.620	-0.005	0.625	0.215	0.004
2	16	0.620	-0.335	0.955	0.187	0.000
2	20	0.620	-0.708	1.328	0.219	0.000
2	21	0.620	-0.162	0.782	0.161	0.000
2	22	0.620	0.148	0.472	0.185	0.011
2	23	0.620	0.336	0.284	0.162	0.080
4	17	0.626	-0.461	1.087	0.329	0.001
4	24	0.626	-0.279	0.905	0.233	0.000
4	11	0.626	-0.683	1.309	0.336	0.000
4	28	0.626	0.092	0.534	0.504	0.289
4	12	0.626	-0.673	1.300	0.234	0.000
4	3	0.626	-0.224	0.850	0.245	0.001
4	5	0.626	0.137	0.489	0.318	0.123
4	9	0.626	-0.158	0.784	0.243	0.001
4	14	0.626	0.186	0.441	0.256	0.085
4	15	0.626	-0.005	0.631	0.273	0.021
4	16	0.626	-0.335	0.961	0.256	0.000
4	20	0.626	-0.708	1.334	0.277	0.000
4	21	0.626	-0.162	0.788	0.241	0.001
4	22	0.626	0.148	0.478	0.259	0.065
4	23	0.626	0.336	0.290	0.239	0.225
4	2	0.626	0.620	0.006	0.250	0.980
18	17	-0.107	-0.461	0.354	0.411	0.390
18	24	-0.107	-0.279	0.172	0.278	0.537
18	11	-0.107	-0.683	0.575	0.359	0.109
18	28	-0.107	0.092	-0.199	0.549	0.717
18	12	-0.107	-0.673	0.566	0.291	0.052
18	3	-0.107	-0.224	0.117	0.283	0.679
18	5	-0.107	0.137	-0.244	0.399	0.541
18	9	-0.107	-0.158	0.050	0.282	0.858
18	14	-0.107	0.186	-0.293	0.303	0.335
18	15	-0.107	-0.005	-0.102	0.307	0.739
Approximate Measurement Invariance Holds For Groups:
17 24 11 28 3 5 9 14 15 16
20 21 22 18 26
Weighted Average Value Across Invariant Groups: -0.192
R-square/Explained variance/Invariance index: 0.681

Group	Value	Difference	SE	P-value			
17	-0.461	-0.269	0.235	0.252			
24	-0.279	-0.087	0.077	0.262			
11	-0.683	-0.491	0.242	0.043			
28	0.092	0.284	0.413	0.492			
3	-0.224	-0.032	0.110	0.769			
5	0.137	0.329	0.218	0.132			
9	-0.158	0.034	0.094	0.716			
14	0.186	0.378	0.127	0.003			
15	-0.005	0.187	0.159	0.240			
16	-0.335	-0.143	0.128	0.265			
20	-0.708	-0.516	0.168	0.002			
21	-0.162	0.030	0.101	0.769			
Threshold TRTBD_R$2	Group	Group	Value	Value	Difference	SE	P-value
-------------------	-------	-------	-------	-------	------------	-----	---------
24	17	-2.872	-2.470	-0.402	0.253	0.112	
11	17	-3.182	-2.470	-0.712	0.259	0.006	
11	24	-3.182	-2.872	-0.310	0.151	0.040	
28	17	-3.202	-2.470	-0.733	0.538	0.173	
28	24	-3.202	-2.872	-0.331	0.439	0.451	
28	11	-3.202	-3.182	-0.021	0.394	0.958	
12	17	-2.690	-2.470	-0.220	0.257	0.392	
12	24	-2.690	-2.872	0.182	0.193	0.344	
12	11	-2.690	-3.182	0.492	0.183	0.007	
12	28	-2.690	-3.202	0.513	0.449	0.254	
3	17	-3.111	-2.470	-0.642	0.282	0.023	
3	24	-3.111	-2.872	-0.239	0.201	0.234	
3	11	-3.111	-3.182	0.071	0.172	0.681	
3	28	-3.111	-3.202	0.091	0.430	0.832	
3	12	-3.111	-2.690	-0.422	0.227	0.063	
5	17	-3.642	-2.470	-1.173	0.329	0.000	
5	24	-3.642	-2.872	-0.771	0.302	0.011	
5	11	-3.642	-3.182	-0.461	0.313	0.141	
5	28	-3.642	-3.202	-0.440	0.568	0.439	
5	12	-3.642	-2.690	-0.953	0.323	0.003	
5	3	-3.642	-3.111	0.531	0.334	0.111	
9	17	-3.144	-2.470	-0.674	0.260	0.010	
9	24	-3.144	-2.872	-0.272	0.169	0.107	
9	11	-3.144	-3.182	0.038	0.147	0.794	
9	28	-3.144	-3.202	0.059	0.432	0.891	
9	12	-3.144	-2.690	-0.454	0.196	0.021	
9	3	-3.144	-3.111	0.032	0.197	0.870	
9	5	-3.144	-3.642	0.499	0.302	0.099	
14	17	-2.882	-2.470	-0.413	0.286	0.150	
14	24	-2.882	-2.872	-0.010	0.206	0.960	
14	11	-2.882	-3.182	0.300	0.186	0.107	
14	28	-2.882	-3.202	0.320	0.437	0.463	
14	12	-2.882	-2.690	-0.193	0.227	0.397	
14	3	-2.882	-3.111	0.229	0.231	0.322	
14	5	-2.882	-3.642	0.760	0.333	0.022	
14	9	-2.882	-3.144	0.261	0.208	0.208	
15	17	-3.076	-2.470	-0.606	0.311	0.052	
15	24	-3.076	-2.872	-0.204	0.229	0.374	
15	11	-3.076	-3.182	0.106	0.198	0.591	
Page	Column 1	Column 2	Column 3	Column 4	Column 5		
------	---------	---------	---------	---------	---------		
15	28	-3.076	-3.202	0.127	0.429	0.767	
15	12	-3.076	-2.690	-0.386	0.254	0.128	
15	3	-3.076	-3.111	0.036	0.249	0.886	
15	5	-3.076	-3.642	0.567	0.360	0.115	
15	9	-3.076	-3.144	0.068	0.227	0.764	
15	14	-3.076	-2.882	-0.193	0.259	0.455	
16	17	-3.480	-2.470	-1.010	0.317	0.001	
16	24	-3.480	-2.872	-0.608	0.252	0.016	
16	11	-3.480	-3.182	-0.298	0.234	0.203	
16	28	-3.480	-3.202	-0.277	0.457	0.544	
16	12	-3.480	-2.690	-0.790	0.272	0.004	
16	3	-3.480	-3.111	-0.369	0.272	0.175	
16	5	-3.480	-3.642	0.163	0.357	0.649	
16	9	-3.480	-3.144	-0.336	0.249	0.177	
16	14	-3.480	-2.882	-0.598	0.277	0.031	
16	15	-3.480	-3.076	-0.404	0.292	0.167	
20	17	-3.448	-2.470	-0.979	0.286	0.001	
20	24	-3.448	-2.872	-0.576	0.214	0.007	
20	11	-3.448	-3.182	-0.266	0.202	0.188	
20	28	-3.448	-3.202	-0.246	0.441	0.577	
20	12	-3.448	-2.690	-0.759	0.240	0.002	
20	3	-3.448	-3.111	-0.337	0.238	0.157	
20	5	-3.448	-3.642	0.194	0.330	0.556	
20	9	-3.448	-3.144	-0.305	0.212	0.150	
20	14	-3.448	-2.882	-0.566	0.244	0.020	
20	15	-3.448	-3.076	-0.373	0.262	0.156	
20	16	-3.448	-3.480	0.032	0.277	0.090	
21	17	-2.727	-2.470	-0.258	0.278	0.353	
21	24	-2.727	-2.872	0.144	0.206	0.483	
21	11	-2.727	-3.182	0.454	0.192	0.018	
21	28	-2.727	-3.202	0.475	0.451	0.292	
21	12	-2.727	-2.690	-0.038	0.225	0.866	
21	3	-2.727	-3.111	0.384	0.235	0.103	
21	5	-2.727	-3.642	0.915	0.331	0.006	
21	9	-2.727	-3.144	0.416	0.209	0.046	
21	14	-2.727	-2.882	0.155	0.238	0.516	
21	15	-2.727	-3.076	0.348	0.261	0.181	
21	16	-2.727	-3.480	0.752	0.279	0.007	
21	20	-2.727	-3.448	0.721	0.245	0.003	
22	17	-3.232	-2.470	-0.762	0.301	0.011	
22	24	-3.232	-2.872	-0.360	0.216	0.096	
22	11	-3.232	-3.182	-0.050	0.183	0.785	
22	28	-3.232	-3.202	-0.029	0.432	0.946	
22	12	-3.232	-2.690	-0.542	0.236	0.022	
22	3	-3.232	-3.111	-0.121	0.232	0.603	
		-3.232	-3.144	-0.088	0.212	0.677	
---	---	--------	--------	--------	-------	-------	
22	5	-3.232	-3.642	0.411	0.340	0.227	
22	9	-3.232	-3.144	-0.350	0.245	0.153	
22	14	-3.232	-2.882	-0.156	0.256	0.541	
22	15	-3.232	-3.448	0.216	0.241	0.369	
22	20	-3.232	-2.727	-0.504	0.247	0.041	
23	7	-2.824	-2.470	-0.355	0.276	0.199	
23	24	-2.824	-2.872	0.048	0.187	0.779	
23	1	-2.824	-3.182	0.356	0.165	0.030	
23	28	-2.824	-3.202	0.378	0.427	0.375	
23	2	-2.824	-2.690	-0.135	0.209	0.519	
23	3	-2.824	-3.111	0.287	0.214	0.180	
23	5	-2.824	-3.642	0.818	0.327	0.012	
23	9	-2.824	-3.144	0.319	0.190	0.093	
23	14	-2.824	-2.882	0.058	0.224	0.796	
23	15	-2.824	-3.076	0.251	0.240	0.296	
23	16	-2.824	-3.480	0.656	0.263	0.013	
23	20	-2.824	-3.448	0.624	0.228	0.006	
23	21	-2.824	-2.727	-0.097	0.220	0.660	
23	22	-2.824	-3.232	0.408	0.230	0.076	
2	17	-3.099	-2.470	-0.630	0.283	0.026	
2	24	-3.099	-2.872	-0.228	0.196	0.246	
2	11	-3.099	-3.182	0.082	0.169	0.625	
2	28	-3.099	-3.202	0.103	0.438	0.814	
2	12	-3.099	-2.690	-0.410	0.220	0.063	
2	3	-3.099	-3.111	0.012	0.219	0.957	
2	5	-3.099	-3.642	0.543	0.326	0.096	
2	9	-3.099	-3.144	0.044	0.193	0.819	
2	14	-3.099	-2.882	-0.217	0.227	0.338	
2	15	-3.099	-3.076	-0.024	0.242	0.921	
2	16	-3.099	-3.480	0.380	0.266	0.153	
2	20	-3.099	-3.448	0.349	0.230	0.130	
2	21	-3.099	-2.727	-0.372	0.231	0.107	
2	22	-3.099	-3.232	0.132	0.233	0.569	
2	23	-3.099	-2.824	-0.275	0.215	0.202	
4	17	-3.009	-2.470	-0.539	0.325	0.096	
4	24	-3.009	-2.872	-0.137	0.247	0.578	
4	11	-3.009	-3.182	0.173	0.225	0.441	
4	28	-3.009	-3.202	0.193	0.478	0.686	
4	12	-3.009	-2.690	-0.319	0.268	0.234	
4	3	-3.009	-3.111	0.102	0.267	0.702	
4	5	-3.009	-3.642	0.633	0.369	0.086	
4	9	-3.009	-3.144	0.135	0.246	0.585	
4	14	-3.009	-2.882	-0.127	0.273	0.643	
4	15	-3.009	-3.076	0.067	0.288	0.817	
4	16	-3.009	-3.480	0.471	0.308	0.126	
4	20	-3.009	-3.448	0.439	0.280	0.117	
4	21	-3.009	-2.727	-0.282	0.275	0.306	
4	22	-3.009	-3.232	0.223	0.276	0.419	
4	23	-3.009	-2.824	-0.185	0.257	0.472	
4	2	-3.009	-3.099	0.090	0.261	0.729	
18	17	-3.262	-2.470	-0.792	0.372	0.033	
18	24	-3.262	-2.872	-0.390	0.261	0.136	
18	11	-3.262	-3.182	-0.080	0.227	0.726	
18	28	-3.262	-3.202	-0.059	0.504	0.907	
18	12	-3.262	-2.690	-0.572	0.284	0.044	
18	3	-3.262	-3.111	-0.150	0.272	0.581	
18	5	-3.262	-3.642	0.381	0.408	0.350	
18	9	-3.262	-3.144	-0.118	0.258	0.647	
18	14	-3.262	-2.882	-0.380	0.291	0.192	
18	15	-3.262	-3.076	-0.186	0.293	0.526	
18	16	-3.262	-3.480	0.218	0.305	0.474	
18	20	-3.262	-3.448	0.186	0.282	0.508	
18	21	-3.262	-2.727	-0.534	0.289	0.064	
18	22	-3.262	-3.232	-0.030	0.281	0.916	
18	23	-3.262	-2.824	-0.437	0.275	0.111	
18	2	-3.262	-3.099	-0.162	0.277	0.559	
18	4	-3.262	-3.009	-0.253	0.307	0.411	
26	17	-3.089	-2.470	-0.619	0.291	0.034	
26	24	-3.089	-2.872	-0.217	0.217	0.318	
26	11	-3.089	-3.182	0.093	0.197	0.637	
26	28	-3.089	-3.202	0.114	0.455	0.803	
26	12	-3.089	-2.690	-0.399	0.238	0.093	
26	3	-3.089	-3.111	0.022	0.239	0.925	
26	5	-3.089	-3.642	0.554	0.338	0.101	
26	9	-3.089	-3.144	0.055	0.215	0.799	
26	14	-3.089	-2.882	-0.207	0.249	0.407	
26	15	-3.089	-3.076	-0.013	0.262	0.960	
26	16	-3.089	-3.480	0.391	0.287	0.174	
26	20	-3.089	-3.448	0.359	0.253	0.156	
26	21	-3.089	-2.727	-0.361	0.247	0.144	
26	22	-3.089	-3.232	0.143	0.250	0.568	
26	23	-3.089	-2.824	-0.265	0.235	0.260	
26	2	-3.089	-3.099	0.011	0.236	0.964	
26	4	-3.089	-3.009	-0.080	0.276	0.773	
26	18	-3.089	-3.262	0.173	0.294	0.556	

Approximate Measurement Invariance Holds For Groups:
17 24 11 28 12 3 5 9 14 15
16 20 21 22 23 2 4 18 26

63
Weighted Average Value Across Invariant Groups: -3.067
R-square/Explained variance/Invariance index: 0.783

Group	Value Difference	SE	P-value
17	-2.470	0.597	0.230
24	-2.872	0.195	0.105
11	-3.182	-0.115	0.081
28	-3.202	-0.135	0.396
12	-2.690	0.377	0.013
3	-3.111	-0.044	0.154
5	-3.642	-0.575	0.042
9	-3.144	-0.077	0.517
14	-2.882	0.185	0.268
15	-3.076	-0.009	0.963
16	-3.480	-0.413	0.049
20	-3.448	-0.381	0.026
21	-2.727	0.340	0.043
22	-3.232	-0.165	0.321
23	-2.824	0.243	0.089
2	-3.099	-0.032	0.829
4	-3.009	0.058	0.787
18	-3.262	-0.195	0.401
26	-3.089	-0.022	0.903

Loadings

Loadings for PREDJ_R

Group	Group	Value	Value	Value	Difference	SE	P-value
24	17	2.776	2.742	0.035	0.158	0.827	
11	17	2.503	2.742	-0.239	0.098	0.015	
11	24	2.503	2.776	-0.274	0.106	0.010	
28	17	1.125	2.742	-1.617	0.468	0.001	
28	24	1.125	2.776	-1.652	0.327	0.000	
28	11	1.125	2.503	-1.378	0.414	0.001	
12	17	2.743	2.742	0.001	0.128	0.992	
12	24	2.743	2.776	-0.033	0.078	0.670	
12	11	2.743	2.503	0.240	0.083	0.004	
12	28	2.743	1.125	1.618	0.372	0.000	
3	17	2.676	2.742	-0.066	0.123	0.592	
3	24	2.676	2.776	-0.100	0.098	0.307	
3	11	2.676	2.503	0.173	0.087	0.047	
3	28	2.676	1.125	1.551	0.391	0.000	
3	12	2.676	2.743	-0.067	0.095	0.478	
---	---	-----	-----	-----	-----	-----	
5	17	2.706	2.742	-0.036	0.120	0.762	
5	24	2.706	2.776	-0.071	0.078	0.362	
5	11	2.706	2.503	0.203	0.074	0.006	
5	28	2.706	1.125	1.581	0.379	0.000	
5	12	2.706	2.743	-0.038	0.083	0.653	
5	3	2.706	2.676	0.030	0.089	0.740	
9	17	2.816	2.742	0.075	0.149	0.617	
9	24	2.816	2.776	0.040	0.052	0.438	
9	11	2.816	2.503	0.314	0.099	0.002	
9	28	2.816	1.125	1.692	0.337	0.000	
9	12	2.816	2.743	0.073	0.072	0.312	
9	3	2.816	2.676	0.140	0.093	0.133	
9	5	2.816	2.706	0.111	0.072	0.126	
14	17	2.520	2.742	-0.222	0.137	0.105	
14	24	2.520	2.776	-0.256	0.137	0.062	
14	11	2.520	2.503	0.017	0.093	0.851	
14	28	2.520	1.125	1.395	0.416	0.001	
14	12	2.520	2.743	-0.223	0.123	0.069	
14	3	2.520	2.676	-0.156	0.134	0.246	
14	5	2.520	2.706	-0.185	0.115	0.107	
14	9	2.520	2.816	-0.296	0.133	0.026	
15	17	2.555	2.742	-0.187	0.098	0.057	
15	24	2.555	2.776	-0.222	0.097	0.023	
15	11	2.555	2.503	0.052	0.044	0.241	
15	28	2.555	1.125	1.430	0.406	0.000	
15	12	2.555	2.743	-0.188	0.076	0.014	
15	3	2.555	2.676	-0.121	0.081	0.136	
15	5	2.555	2.706	-0.151	0.067	0.025	
15	9	2.555	2.816	-0.262	0.090	0.004	
15	14	2.555	2.520	0.035	0.096	0.719	
16	17	2.596	2.742	-0.146	0.113	0.197	
16	24	2.596	2.776	-0.180	0.104	0.082	
16	11	2.596	2.503	0.093	0.073	0.201	
16	28	2.596	1.125	1.471	0.402	0.000	
16	12	2.596	2.743	-0.147	0.088	0.095	
16	3	2.596	2.676	-0.080	0.102	0.436	
16	5	2.596	2.706	-0.109	0.080	0.172	
16	9	2.596	2.816	-0.220	0.098	0.024	
16	14	2.596	2.520	0.076	0.126	0.547	
16	15	2.596	2.555	0.041	0.069	0.546	
20	17	2.692	2.742	-0.049	0.131	0.705	
20	24	2.692	2.776	-0.084	0.105	0.426	
20	11	2.692	2.503	0.190	0.101	0.060	
20	28	2.692	1.125	1.568	0.392	0.000	
20	12	2.692	2.743	-0.051	0.105	0.630	
---	---	---	---	---	---	---	
20	3	2.692	2.676	0.017	0.125	0.895	
20	5	2.692	2.706	-0.013	0.102	0.897	
20	9	2.692	2.816	-0.124	0.101	0.218	
20	14	2.692	2.520	0.172	0.146	0.240	
20	15	2.692	2.555	0.138	0.094	0.145	
20	16	2.692	2.596	0.096	0.115	0.402	
21	17	2.774	2.742	0.033	0.143	0.819	
21	24	2.774	2.776	-0.002	0.061	0.976	
21	11	2.774	2.503	0.272	0.092	0.003	
21	28	2.774	1.125	1.650	0.349	0.000	
21	12	2.774	2.743	0.031	0.081	0.699	
21	3	2.774	2.676	0.099	0.092	0.281	
21	5	2.774	2.706	0.069	0.074	0.350	
21	9	2.774	2.816	-0.042	0.057	0.464	
21	14	2.774	2.520	0.254	0.127	0.045	
21	15	2.774	2.555	0.220	0.084	0.009	
21	16	2.774	2.596	0.178	0.093	0.054	
21	20	2.774	2.692	0.082	0.100	0.413	
22	17	2.676	2.742	-0.066	0.121	0.586	
22	24	2.676	2.776	-0.100	0.084	0.235	
22	11	2.676	2.503	0.173	0.074	0.019	
22	28	2.676	1.125	1.551	0.381	0.000	
22	12	2.676	2.743	-0.067	0.089	0.453	
22	3	2.676	2.676	0.000	0.094	0.998	
22	5	2.676	2.706	-0.030	0.079	0.710	
22	9	2.676	2.816	-0.140	0.080	0.080	
22	14	2.676	2.520	0.156	0.116	0.179	
22	15	2.676	2.555	0.121	0.068	0.075	
22	16	2.676	2.596	0.080	0.082	0.332	
22	20	2.676	2.692	-0.016	0.107	0.879	
22	21	2.676	2.774	-0.098	0.080	0.221	
23	17	2.431	2.742	-0.311	0.148	0.035	
23	24	2.431	2.776	-0.346	0.160	0.030	
23	11	2.431	2.503	-0.072	0.107	0.502	
23	28	2.431	1.125	1.306	0.433	0.003	
23	12	2.431	2.743	-0.313	0.141	0.026	
23	3	2.431	2.676	-0.245	0.147	0.095	
23	5	2.431	2.706	-0.275	0.133	0.039	
23	9	2.431	2.816	-0.386	0.155	0.013	
23	14	2.431	2.520	-0.090	0.139	0.519	
23	15	2.431	2.555	-0.124	0.115	0.280	
23	16	2.431	2.596	-0.166	0.148	0.264	
23	20	2.431	2.692	-0.262	0.159	0.099	
23	21	2.431	2.774	-0.344	0.148	0.020	
23	22	2.431	2.676	-0.245	0.133	0.065	
Approximate Measurement Invariance Holds For Groups:
17 24 12 3 5 9 14 15 16 20
21 22 23 2 4 18 26

Weighted Average Value Across Invariant Groups: 2.697
R-square/Explained variance/Invariance index: 0.000

Group	Value	Difference	SE	P-value		
17	2.742	0.045	0.109	0.678		
24	2.776	0.080	0.062	0.197		
12	2.743	0.046	0.056	0.407		
3	2.676	-0.021	0.072	0.772		
5	2.706	0.009	0.049	0.855		
9	2.816	0.120	0.055	0.029		
14	2.520	-0.177	0.104	0.088		
15	2.555	-0.142	0.046	0.002		
16	2.596	-0.101	0.068	0.141		
20	2.692	-0.004	0.085	0.959		
21	2.774	0.078	0.055	0.156		
22	2.676	-0.021	0.054	0.702		
23	2.431	-0.266	0.122	0.030		
2	2.849	0.152	0.082	0.064		
4	2.601	-0.096	0.159	0.548		
18	2.766	0.069	0.030	0.020		
Group	Group	Value	Value	Difference	SE	P-value
-------	-------	-------	-------	------------	-------	---------
24	17	8.325	37.660	-29.335	42.442	0.489
11	17	4.934	37.660	-32.726	42.518	0.441
11	24	4.934	8.325	-3.391	1.431	0.018
28	17	39.741	37.660	2.081	46.811	0.965
28	24	39.741	8.325	31.416	31.327	0.316
28	11	39.741	4.934	34.807	31.171	0.263
12	17	4.478	37.660	-33.182	42.494	0.435
12	24	4.478	8.325	-3.847	1.393	0.006
12	11	4.478	4.934	-0.456	0.690	0.508
12	28	4.478	39.741	-35.263	31.200	0.258
3	17	4.957	37.660	-32.703	42.508	0.442
3	24	4.957	8.325	-3.368	1.452	0.020
3	11	4.957	4.934	0.023	0.797	0.977
3	28	4.957	39.741	-34.784	31.176	0.265
3	12	4.957	4.478	0.479	0.746	0.521
5	17	6.112	37.660	-31.548	42.510	0.458
5	24	6.112	8.325	-2.213	1.489	0.137
5	11	6.112	4.934	1.178	0.825	0.153
5	28	6.112	39.741	-33.628	31.205	0.281
5	12	6.112	4.478	1.635	0.770	0.034
5	3	6.112	4.957	1.156	0.875	0.187
9	17	7.684	37.660	-29.976	42.461	0.480
9	24	7.684	8.325	-0.641	1.750	0.714
9	11	7.684	4.934	2.750	1.317	0.037
9	28	7.684	39.741	-32.057	31.293	0.306
9	12	7.684	4.478	3.206	1.277	0.012
9	3	7.684	4.957	2.727	1.341	0.042
9	5	7.684	6.112	1.572	1.375	0.253
14	17	12.462	37.660	-25.198	42.865	0.557
14	24	12.462	8.325	4.136	5.335	0.438
14	11	12.462	4.934	7.527	5.186	0.147
14	28	12.462	39.741	-27.279	31.480	0.386
14	12	12.462	4.478	7.984	5.194	0.124
14	3	12.462	4.957	7.505	5.213	0.150
14	5	12.462	6.112	6.349	5.230	0.225
14	9	12.462	7.684	4.777	5.308	0.368
15	17	4.656	37.660	-33.004	42.514	0.438
15	24	4.656	8.325	-3.669	1.426	0.010
15	11	4.656	4.934	-0.278	0.735	0.705
15	28	4.656	39.741	-35.085	31.140	0.260
15	12	4.656	4.478	0.178	0.682	0.794
---	---	---	---	---	---	---
15	3	4.656	4.957	-0.301	0.791	0.704
15	5	4.656	6.112	-1.457	0.815	0.074
15	9	4.656	7.684	-3.028	1.311	0.021
15	14	4.656	12.462	-7.806	5.190	0.133
16	17	5.484	37.660	-32.176	42.518	0.449
16	24	5.484	8.325	-2.841	1.528	0.063
16	11	5.484	4.934	0.550	0.925	0.552
16	28	5.484	39.741	-34.257	31.151	0.271
16	12	5.484	4.478	1.006	0.882	0.254
16	3	5.484	4.957	0.527	0.973	0.588
16	5	5.484	6.112	-0.629	0.996	0.528
16	9	5.484	7.684	-2.200	1.422	0.122
16	14	5.484	12.462	-6.978	5.232	0.182
16	15	5.484	4.656	0.828	0.921	0.369
20	17	4.180	37.660	-33.480	42.505	0.431
20	24	4.180	8.325	-4.145	1.425	0.004
20	11	4.180	4.934	-0.754	0.747	0.313
20	28	4.180	39.741	-35.561	31.180	0.254
20	12	4.180	4.478	-0.298	0.687	0.665
20	3	4.180	4.957	-0.776	0.802	0.333
20	5	4.180	6.112	-1.932	0.816	0.018
20	9	4.180	7.684	-3.504	1.312	0.008
20	14	4.180	12.462	-8.281	5.206	0.112
20	15	4.180	4.656	-0.476	0.738	0.520
20	16	4.180	5.484	-1.304	0.931	0.161
21	17	5.801	37.660	-31.859	42.472	0.453
21	24	5.801	8.325	-2.524	1.527	0.098
21	11	5.801	4.934	0.867	0.945	0.359
21	28	5.801	39.741	-33.940	31.243	0.277
21	12	5.801	4.478	1.323	0.900	0.141
21	3	5.801	4.957	0.845	0.985	0.391
21	5	5.801	6.112	-0.311	1.014	0.759
21	9	5.801	7.684	-1.883	1.424	0.186
21	14	5.801	12.462	-6.660	5.231	0.203
21	15	5.801	4.656	1.145	0.941	0.224
21	16	5.801	5.484	0.317	1.090	0.771
21	20	5.801	4.180	1.621	0.945	0.086
22	17	7.478	37.660	-30.182	42.515	0.478
22	24	7.478	8.325	-0.847	1.783	0.635
22	11	7.478	4.934	2.544	1.343	0.058
22	28	7.478	39.741	-32.263	31.200	0.301
22	12	7.478	4.478	3.000	1.313	0.022
22	3	7.478	4.957	2.521	1.374	0.066
22	5	7.478	6.112	1.366	1.408	0.332
22	9	7.478	7.684	-0.206	1.691	0.903
22	14	7.478	12.462	-4.983	5.317	0.349
22	15	7.478	4.656	2.822	1.339	0.035
22	16	7.478	5.484	1.994	1.449	0.169
22	20	7.478	4.180	3.298	1.345	0.014
22	21	7.478	5.801	1.677	1.456	0.249
23	17	11.753	37.660	-25.907	42.684	0.544
23	24	11.753	8.325	3.428	3.444	0.320
23	11	11.753	4.934	6.819	3.220	0.034
23	28	11.753	39.741	-27.988	31.159	0.369
23	12	11.753	4.478	7.275	3.215	0.024
23	3	11.753	4.957	6.796	3.244	0.036
23	5	11.753	6.112	5.640	3.270	0.085
23	9	11.753	7.684	4.069	3.401	0.232
23	14	11.753	12.462	-0.709	5.868	0.904
23	15	11.753	4.656	7.097	3.221	0.028
23	16	11.753	5.484	6.269	3.300	0.058
23	20	11.753	4.180	7.572	3.232	0.019
23	21	11.753	5.801	5.952	3.278	0.069
23	22	11.753	7.478	4.275	3.410	0.210
2	17	4.588	37.660	-33.072	42.449	0.436
2	24	4.588	8.325	-3.737	1.386	0.007
2	11	4.588	4.934	-0.346	0.705	0.623
2	28	4.588	39.741	-35.153	31.264	0.261
2	12	4.588	4.478	0.110	0.628	0.861
2	3	4.588	4.957	-0.369	0.752	0.624
2	5	4.588	6.112	-1.525	0.773	0.048
2	9	4.588	7.684	-3.096	1.272	0.015
2	14	4.588	12.462	-7.874	5.196	0.130
2	15	4.588	4.656	-0.068	0.695	0.922
2	16	4.588	5.484	-0.896	0.890	0.314
2	20	4.588	4.180	0.407	0.693	0.557
2	21	4.588	5.801	-1.213	0.896	0.176
2	22	4.588	7.478	-2.890	1.311	0.027
2	23	4.588	11.753	-7.165	3.222	0.026
4	17	108.777	37.660	71.117	127.983	0.578
4	24	108.777	8.325	100.452	120.426	0.404
4	11	108.777	4.934	103.843	120.427	0.389
4	28	108.777	39.741	69.036	124.283	0.579
4	12	108.777	4.478	104.299	120.427	0.386
4	3	108.777	4.957	103.820	120.429	0.389
4	5	108.777	6.112	102.664	120.438	0.394
4	9	108.777	7.684	101.093	120.427	0.401
4	14	108.777	12.462	96.315	120.522	0.424
4	15	108.777	4.656	104.121	120.430	0.387
4	16	108.777	5.484	103.293	120.432	0.391
---	---	---	---	---	---	
4	20	108.777	4.180	104.596	120.429	0.385
4	21	108.777	5.801	102.975	120.422	0.392
4	22	108.777	7.478	101.299	120.434	0.400
4	23	108.777	11.753	97.024	120.435	0.420
4	2	108.777	4.588	104.189	120.422	0.387
18	17	22.757	37.660	-14.903	51.965	0.774
18	24	22.757	8.325	14.432	29.386	0.623
18	11	22.757	4.934	17.823	29.350	0.544
18	28	22.757	39.741	-16.984	43.428	0.696
18	12	22.757	4.478	18.279	29.355	0.533
18	3	22.757	4.957	17.800	29.357	0.544
18	5	22.757	6.112	16.644	29.365	0.571
18	9	22.757	7.684	15.073	29.379	0.608
18	14	22.757	12.462	10.295	29.835	0.730
18	15	22.757	4.656	18.101	29.350	0.537
18	16	22.757	5.484	17.273	29.359	0.556
18	20	22.757	4.180	18.576	29.356	0.527
18	21	22.757	5.801	16.956	29.362	0.564
18	22	22.757	7.478	15.279	29.377	0.603
18	23	22.757	11.753	11.004	29.554	0.710
18	2	22.757	4.588	18.169	29.357	0.536
18	4	22.757	108.777	-86.020	124.049	0.488
26	17	10.456	37.660	-27.204	42.559	0.523
26	24	10.456	8.325	2.131	3.770	0.572
26	11	10.456	4.934	5.522	3.577	0.123
26	28	10.456	39.741	-29.284	31.528	0.353
26	12	10.456	4.478	5.979	3.572	0.094
26	3	10.456	4.957	5.500	3.591	0.126
26	5	10.456	6.112	4.344	3.617	0.230
26	9	10.456	7.684	2.772	3.734	0.458
26	14	10.456	12.462	-2.005	6.225	0.747
26	15	10.456	4.656	5.801	3.578	0.105
26	16	10.456	5.484	4.973	3.616	0.169
26	20	10.456	4.180	6.276	3.582	0.080
26	21	10.456	5.801	4.655	3.630	0.200
26	22	10.456	7.478	2.978	3.743	0.426
26	23	10.456	11.753	-1.296	4.663	0.781
26	2	10.456	4.588	5.869	3.573	0.100
26	4	10.456	108.777	-98.320	120.461	0.414
26	18	10.456	22.757	-12.300	29.578	0.678

Approximate Measurement Invariance Holds For Groups:
17 24 11 28 12 3 5 9 14 15
16 20 21 22 23 2 4 18 26

Weighted Average Value Across Invariant Groups: 15.113
R-square/Explained variance/Invariance index: 0.157
Invariant Group Values, Difference to Average and Significance

Group	Value Difference	SE	P-value
17	37.660	39.606	0.569
24	8.325	5.770	0.239
11	4.934	5.643	0.071
28	39.741	29.059	0.397
12	4.478	5.656	0.060
3	4.957	5.667	0.073
5	6.112	5.692	0.114
9	7.684	5.748	0.196
14	12.462	7.488	0.723
15	4.656	5.650	0.064
16	5.484	5.680	0.090
20	4.180	5.662	0.053
21	5.801	5.684	0.101
22	7.478	5.752	0.184
23	11.753	6.337	0.596
2	4.588	5.653	0.063
4	108.777	116.562	0.422
18	22.757	28.425	0.788
26	10.456	6.588	0.480

Loadings for TRTBD_R

Group	Value	Value	Difference	SE	P-value	
24	17	3.886	3.469	0.417	0.323	0.196
11	17	7.183	3.469	3.714	1.186	0.002
11	24	7.183	3.469	3.297	1.198	0.006
28	17	3.929	3.469	0.460	1.347	0.733
28	24	3.929	3.886	0.043	1.176	0.971
28	11	3.929	7.183	-3.254	1.788	0.069
12	17	4.417	3.469	0.948	0.440	0.031
12	24	4.417	3.886	0.531	0.428	0.215
12	11	4.417	7.183	-2.766	1.234	0.025
12	28	4.417	3.929	0.488	1.283	0.704
3	17	4.744	3.469	1.275	0.446	0.004
3	24	4.744	3.886	0.858	0.449	0.056
3	11	4.744	7.183	-2.439	1.227	0.047
3	28	4.744	3.929	0.815	1.322	0.538
3	12	4.744	4.417	0.327	0.527	0.535
5	17	4.510	3.469	1.041	0.352	0.003
5	24	4.510	3.886	0.623	0.346	0.072
5	11	4.510	7.183	-2.673	1.205	0.026
5	28	4.510	3.929	0.581	1.272	0.648
5	12	4.510	4.417	0.093	0.439	0.833
---	---	---	---	---	---	---
5	3	4.510	4.744	-0.234	0.456	0.608
9	17	3.722	3.469	0.253	0.314	0.421
9	24	3.722	3.886	-0.164	0.272	0.546
9	11	3.722	7.183	-3.461	1.197	0.004
9	28	3.722	3.929	-0.207	1.197	0.863
9	12	3.722	4.417	-0.695	0.432	0.107
9	3	3.722	4.744	-1.022	0.449	0.023
9	5	3.722	4.510	-0.788	0.348	0.023
14	17	4.878	3.469	1.409	0.393	0.000
14	24	4.878	3.886	0.992	0.412	0.016
14	11	4.878	7.183	-2.305	1.215	0.058
14	28	4.878	3.929	0.949	1.345	0.481
14	12	4.878	4.417	0.461	0.494	0.351
14	3	4.878	4.744	0.134	0.456	0.769
14	5	4.878	4.510	0.368	0.418	0.378
14	9	4.878	3.722	1.156	0.411	0.005
15	17	5.816	3.469	2.347	0.910	0.010
15	24	5.816	3.886	1.930	0.920	0.036
15	11	5.816	7.183	-1.367	1.462	0.350
15	28	5.816	3.929	1.887	1.586	0.234
15	12	5.816	4.417	1.399	0.968	0.149
15	3	5.816	4.744	1.072	0.965	0.267
15	5	5.816	4.510	1.306	0.931	0.161
15	9	5.816	3.722	2.094	0.919	0.023
15	14	5.816	4.878	0.938	0.946	0.322
16	17	5.057	3.469	1.588	0.495	0.001
16	24	5.057	3.886	1.170	0.506	0.021
16	11	5.057	7.183	-2.126	1.241	0.087
16	28	5.057	3.929	1.128	1.366	0.409
16	12	5.057	4.417	0.640	0.583	0.273
16	3	5.057	4.744	0.313	0.558	0.575
16	5	5.057	4.510	0.547	0.519	0.292
16	9	5.057	3.722	1.335	0.505	0.008
16	14	5.057	4.878	0.179	0.498	0.719
16	15	5.057	5.816	-0.759	0.983	0.440
20	17	4.731	3.469	1.262	0.513	0.014
20	24	4.731	3.886	0.845	0.515	0.101
20	11	4.731	7.183	-2.452	1.251	0.050
20	28	4.731	3.929	0.802	1.343	0.551
20	12	4.731	4.417	0.314	0.582	0.590
20	3	4.731	4.744	-0.013	0.559	0.982
20	5	4.731	4.510	0.221	0.517	0.668
20	9	4.731	3.722	1.009	0.515	0.050
20	14	4.731	4.878	-0.147	0.510	0.774
20	15	4.731	5.816	-1.085	0.997	0.276
---	---	---	---	---	---	
20	16	4.731	5.057	-0.326	0.608	0.592
21	17	4.193	3.469	0.725	0.409	0.077
21	24	4.193	3.886	0.307	0.375	0.413
21	11	4.193	7.183	-2.989	1.224	0.015
21	28	4.193	3.929	0.264	1.229	0.830
21	12	4.193	4.417	-0.224	0.485	0.645
21		4.193	4.744	-0.550	0.512	0.282
21	5	4.193	4.510	-0.316	0.422	0.454
21	9	4.193	3.722	0.472	0.384	0.219
21	14	4.193	4.878	-0.684	0.480	0.154
21	15	4.193	5.816	-1.622	0.954	0.089
21	16	4.193	5.057	-0.863	0.565	0.127
21	20	4.193	4.731	-0.537	0.570	0.346
22	17	4.527	3.469	1.058	0.373	0.005
22	24	4.527	3.886	0.641	0.369	0.083
22	11	4.527	7.183	-2.656	1.209	0.028
22	28	4.527	3.929	0.598	1.282	0.641
22	12	4.527	4.417	0.110	0.453	0.809
22		4.527	4.744	-0.217	0.467	0.642
22	5	4.527	4.510	0.017	0.380	0.964
22	9	4.527	3.722	0.805	0.371	0.030
22	14	4.527	4.878	-0.351	0.431	0.415
22	15	4.527	5.816	-1.289	0.939	0.170
22	16	4.527	5.057	-0.530	0.531	0.318
22	20	4.527	4.731	-0.204	0.526	0.698
22	21	4.527	4.193	0.333	0.439	0.448
23	17	5.045	3.469	1.576	0.357	0.000
23	24	5.045	3.886	1.158	0.392	0.003
23	11	5.045	7.183	-2.138	1.195	0.074
23	28	5.045	3.929	1.116	1.366	0.414
23	12	5.045	4.417	0.627	0.475	0.186
23		5.045	4.744	0.301	0.424	0.479
23	5	5.045	4.510	0.535	0.392	0.172
23	9	5.045	3.722	1.323	0.389	0.001
23	14	5.045	4.878	0.167	0.427	0.696
23	15	5.045	5.816	-0.771	0.924	0.404
23	16	5.045	5.057	-0.012	0.410	0.977
23	20	5.045	4.731	0.314	0.481	0.515
23	21	5.045	4.193	0.851	0.462	0.065
23	22	5.045	4.527	0.518	0.406	0.202
2	17	3.861	3.469	0.392	0.372	0.292
2	24	3.861	3.886	-0.025	0.309	0.935
2	11	3.861	7.183	-3.322	1.214	0.006
2	28	3.861	3.929	-0.068	1.169	0.954
2	12	3.861	4.417	-0.556	0.465	0.232

75
2	3	3.861	4.744	-0.883	0.486	0.069
2	5	3.861	4.510	-0.649	0.391	0.097
2	9	3.861	3.722	0.139	0.319	0.663
2	14	3.861	4.878	-1.017	0.455	0.025
2	15	3.861	5.816	-1.955	0.940	0.037
2	16	3.861	5.057	-1.196	0.541	0.027
2	20	3.861	4.731	-0.870	0.547	0.112
2	21	3.861	4.193	-0.332	0.414	0.422
2	22	3.861	4.527	-0.666	0.411	0.105
2	23	3.861	5.045	-1.184	0.438	0.007
4	17	3.455	3.469	-0.014	0.366	0.969
4	24	3.455	3.886	-0.431	0.380	0.256
4	11	3.455	7.183	-3.728	1.214	0.002
4	28	3.455	3.929	-0.474	1.294	0.714
4	12	3.455	4.417	-0.962	0.491	0.050
4	3	3.455	4.744	-1.289	0.500	0.010
4	5	3.455	4.510	-1.055	0.417	0.011
4	9	3.455	3.722	-0.267	0.375	0.476
4	14	3.455	4.878	-1.423	0.470	0.002
4	15	3.455	5.816	-2.361	0.942	0.012
4	16	3.455	5.057	-1.602	0.550	0.004
4	20	3.455	4.731	-1.276	0.559	0.022
4	21	3.455	4.193	-0.739	0.461	0.109
4	22	3.455	4.527	-1.072	0.436	0.014
4	23	3.455	5.045	-1.590	0.446	0.000
4	2	3.455	3.861	-0.406	0.421	0.334
18	17	3.552	3.469	0.083	0.303	0.784
18	24	3.552	3.886	-0.334	0.292	0.253
18	11	3.552	7.183	-3.631	1.194	0.002
18	28	3.552	3.929	-0.377	1.240	0.761
18	12	3.552	4.417	-0.865	0.435	0.047
18	3	3.552	4.744	-1.192	0.449	0.008
18	5	3.552	4.510	-0.958	0.350	0.006
18	9	3.552	3.722	-0.170	0.289	0.556
18	14	3.552	4.878	-1.326	0.408	0.001
18	15	3.552	5.816	-2.264	0.917	0.014
18	16	3.552	5.057	-1.505	0.503	0.003
18	20	3.552	4.731	-1.179	0.515	0.022
18	21	3.552	4.193	-0.642	0.394	0.103
18	22	3.552	4.527	-0.975	0.372	0.009
18	23	3.552	5.045	-1.493	0.383	0.000
18	2	3.552	3.861	-0.309	0.341	0.364
18	4	3.552	3.455	0.097	0.369	0.793
26	17	4.015	3.469	0.546	0.397	0.168
26	24	4.015	3.886	0.129	0.347	0.710
Group	Value	Difference	SE	P-value		
-------	-------	------------	-----	---------		
11	7.183	2.416	1.100	0.028		
28	3.929	-0.837	1.154	0.468		
12	4.417	-0.349	0.370	0.345		
3	4.744	-0.023	0.384	0.953		
5	4.510	-0.257	0.294	0.383		
14	4.878	0.111	0.361	0.758		
15	5.816	1.049	0.861	0.223		
16	5.057	0.290	0.442	0.511		
20	4.731	-0.035	0.449	0.937		
21	4.193	-0.573	0.338	0.090		
22	4.527	-0.240	0.310	0.440		
23	5.045	0.278	0.328	0.397		
2	3.861	-0.905	0.280	0.001		
26	4.015	-0.751	0.323	0.020		

Average Invariance index: 0.464
ALIGNMENT RESULTS FOR DISCRIM

FIT FUNCTION VALUES FOR ALIGNMENT SIMPLICITY FUNCTION USING DIFFERENT STARTING VALUES IN ORDER OF BEST TO WORST.

VALUE	DRAW
-1002.2704	25
-1002.2704	1
-1002.2704	22
-1002.2704	27
-1002.2704	19
-1002.2704	12
-1002.2704	14
-1002.2704	7
-1002.2704	13
-1004.4717	17
-1004.4717	20
-1004.4717	4
-1004.4717	5
-1005.3375	11
-1005.3375	6
-1005.3375	28
-1005.3375	24
-1005.3375	16
-1005.3375	3
-1005.3375	8
-1005.3375	2
-1006.0412	18
-1007.5388	21
-1007.5388	23
-1007.5388	10
-1007.5388	9
-1007.5388	26
-1007.5388	30
-1007.6163	15
-1007.6163	29

Beginning Time: 12:52:54
Country Group 2

Country Group 2 included 10 countries (group number in parentheses):

Belgium (1), Germany (6), Denmark (7), Estonia (8), Finland (10), Greece (13), Netherlands (19), Sweden (25), Slovakia (27), Ukraine (29)

Mplus VERSION 7.4 (Mac)
MUTHEN & MUTHEN
01/25/2017 8:08 PM

INPUT INSTRUCTIONS

TITLE:
Approximate measurement invariance, Country Group 2;
DATA:
FILE = "CountriesAlignmentGroup2.dat";

VARIABLE:
NAMES = predj_r lkrsp_r trtbd_r country;
MISSING=.;

 usevariables = predj_r lkrsp_r trtbd_r country;
 categorical = predj_r lkrsp_r trtbd_r;
 classes=c(10);
 knownclass=c(country);

ANALYSIS:

 type=mixture;
 estimator=mlf;
 algorithm=integration;
 estimator = mlf;
 alignment = fixed(27);

MODEL:

 %overall%
 discrim BY predj_r lkrsp_r trtbd_r;

OUTPUT:

 tech1 tech8 align cinterval svalues;

*** WARNING
Data set contains cases with missing on all variables.
These cases were not included in the analysis.
Number of cases with missing on all variables: 64
1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS

Approximate measurement invariance, Country Group 1;

SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 19208

Number of dependent variables 3
Number of independent variables 0
Number of continuous latent variables 1
Number of categorical latent variables 1

Observed dependent variables

Binary and ordered categorical (ordinal)
 PREDJ_R LKRSP_R TRTBD_R

Continuous latent variables
 DISCRIM

Categorical latent variables
 C

Knownclass C

Estimator MLF
Information matrix OBSERVED

Optimization Specifications for the Quasi-Newton Algorithm for Continuous Outcomes
 Maximum number of iterations 100
 Convergence criterion 0.100D-05

Optimization Specifications for the EM Algorithm
 Maximum number of iterations 500
 Convergence criteria
 Loglikelihood change 0.100D-02
 Relative loglikelihood change 0.100D-05
 Derivative 0.100D-02

Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables

Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION

Optimization Specifications for the M step of the EM Algorithm for Censored, Binary or Ordered Categorical (Ordinal), Unordered Categorical (Nominal) and Count Outcomes

Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01

Maximum number of iterations for H1 2000
Convergence criterion for H1 0.100D-03
Optimization algorithm EMA

Integration Specifications
Type STANDARD
Number of integration points 15
Dimensions of numerical integration 1
Adaptive quadrature ON
Link LOGIT

Specifications for Alignment Analysis
Factor mean for reference group FIXED
Simplicity function SQRT
Factor variance metric Reference group
Reference group 27
Tolerance value 0.100D-01
Number of random starts 30
Maximum number of iterations 5000
Convergence criterion 0.100D-02

Cholesky OFF

Input data file(s)
CountriesAlignmentGroup2.dat
Input data format FREE

SUMMARY OF DATA

Number of missing data patterns 7
Number of y missing data patterns 0
Number of u missing data patterns 7
COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value 0.100

PROPORTION OF DATA PRESENT FOR U

Covariance Coverage	PREDJ_R	LKRSP_R	TRTBD_R
PREDJ_R	0.996		
LKRSP_R	0.991	0.995	
TRTBD_R	0.990	0.991	0.994

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

PREDJ_R
- Category 1: 0.628, 12013.000
- Category 2: 0.193, 3691.000
- Category 3: 0.179, 3426.000

LKRSP_R
- Category 1: 0.629, 12025.000
- Category 2: 0.203, 3875.000
- Category 3: 0.168, 3208.000

TRTBD_R
- Category 1: 0.734, 14024.000
- Category 2: 0.165, 3159.000
- Category 3: 0.100, 1915.000

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 99

Loglikelihood
- H0 Value -83762.101
Information Criteria

Akaike (AIC) 167722.202
Bayesian (BIC) 168500.647
Sample-Size Adjusted BIC 168186.030
\((n^* = (n + 2) / 24) \)

Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes

Pearson Chi-Square

Value	1831.590
Degrees of Freedom	170
P-Value	0.0000

Likelihood Ratio Chi-Square

Value	1341.015
Degrees of Freedom	170
P-Value	0.0000

Chi-Square Test for MCAR under the Unrestricted Latent Class Indicator Model

Pearson Chi-Square

Value	387.945
Degrees of Freedom	291
P-Value	0.0001

Likelihood Ratio Chi-Square

Value	245.037
Degrees of Freedom	291
P-Value	0.9766

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL

Latent Classes	Value	Proportion
1	2065.0000	0.10751
MODEL RESULTS

Estimate S.E.	Est./S.E.	P-Value		
DISCRIM	2.725	0.127	21.439	0.000
LKRSP_R	6.849	1.032	6.638	0.000
TRTBD_R	3.136	0.254	12.348	0.000

Means

| DISCRIM | -0.641 | 0.074 | -8.696 | 0.000 |

Thresholds

PREDJ_R$1	0.889	0.112	7.947	0.000
PREDJ_R$2	3.057	0.133	22.944	0.000
LKRSP_R$1	-1.001	0.304	-3.293	0.001
LKRSP_R$2	4.236	0.592	7.156	0.000
TRTBD_R$1	-0.252	0.150	-1.683	0.092
TRTBD_R$2	2.790	0.187	14.931	0.000

Variances

| DISCRIM | 1.459 | 0.193 | 7.562 | 0.000 |

Latent Class 2 (27)

| DISCRIM BY |
PREDJ_R	2.718	0.150	18.135	0.000
LKRSP_R	6.414	0.823	7.794	0.000
TRTBD_R	3.438	0.209	16.461	0.000

Means
Variable	Value1	Value2	Value3	Value4
DISCRIM	0.000	0.000	999.000	999.000

Thresholds

Variable	Value1	Value2	Value3	Value4
PREDJ_R$1	0.825	0.105	7.874	0.000
PREDJ_R$2	2.977	0.143	20.884	0.000
LKRSP_R$1	-0.484	0.206	-2.354	0.019
LKRSP_R$2	4.160	0.505	8.232	0.000
TRTBD_R$1	0.684	0.124	5.495	0.000
TRTBD_R$2	3.635	0.202	18.000	0.000

Variances

Variable	Value1	Value2	Value3	Value4
DISCRIM	1.000	0.000	999.000	999.000

Latent Class 3 (29)

DISCRIM BY

Variable	Value1	Value2	Value3	Value4
PREDJ_R	1.907	0.302	6.314	0.000
LKRSP_R	5.671	0.761	7.455	0.000
TRTBD_R	4.453	0.818	5.445	0.000

Means

Variable	Value1	Value2	Value3	Value4
DISCRIM	-0.333	0.080	-4.184	0.000

Thresholds

Variable	Value1	Value2	Value3	Value4
PREDJ_R$1	0.532	0.126	4.213	0.000
PREDJ_R$2	1.996	0.143	13.925	0.000
LKRSP_R$1	-0.653	0.286	-2.282	0.022
LKRSP_R$2	3.727	0.624	5.969	0.000
TRTBD_R$1	0.093	0.260	0.355	0.722
TRTBD_R$2	3.767	0.225	16.762	0.000

Variances

Variable	Value1	Value2	Value3	Value4
DISCRIM	1.706	0.507	3.367	0.001

Latent Class 4 (1)

DISCRIM BY

Variable	Value1	Value2	Value3	Value4
PREDJ_R	2.323	0.364	6.383	0.000
LKRSP_R	4.848	0.664	7.305	0.000
TRTBD_R	5.563	1.095	5.081	0.000

Means

Variable	Value1	Value2	Value3	Value4
DISCRIM	-0.367	0.081	-4.530	0.000

Thresholds
PREDJ_R$1	-0.483	0.162	-2.980	0.003		
PREDJ_R$2	0.992	0.165	6.001	0.000		
LKRSP_R$1	-0.185	0.306	-0.605	0.545		
LKRSP_R$2	2.261	0.393	5.759	0.000		
TRTBD_R$1	1.308	0.289	4.526	0.000		
TRTBD_R$2	3.930	0.280	14.024	0.000		

Variance

DISCRIM

	0.608	0.178	3.422	0.001		

Latent Class 5 (6)

DISCRIM BY

PREDJ_R	2.855	0.162	17.603	0.000		
LKRSP_R	4.988	0.569	8.766	0.000		
TRTBD_R	3.570	0.257	13.887	0.000		

Means

DISCRIM

	-0.385	0.068	-5.709	0.000		

Thresholds

PREDJ_R$1	0.070	0.180	0.388	0.698		
PREDJ_R$2	1.542	0.172	8.962	0.000		
LKRSP_R$1	-0.511	0.291	-1.755	0.079		
LKRSP_R$2	1.947	0.343	5.672	0.000		
TRTBD_R$1	1.551	0.217	7.137	0.000		
TRTBD_R$2	3.378	0.241	13.997	0.000		

Variance

DISCRIM

	0.526	0.063	8.306	0.000		

Latent Class 6 (7)

DISCRIM BY

PREDJ_R	2.722	0.166	16.364	0.000		
LKRSP_R	4.829	0.680	7.106	0.000		
TRTBD_R	4.284	0.521	8.224	0.000		

Means

DISCRIM

	-0.678	0.090	-7.511	0.000		

Thresholds

PREDJ_R$1	-0.339	0.195	-1.742	0.082		
PREDJ_R$2	1.345	0.195	6.900	0.000		
LKRSP_R$1	-0.619	0.316	-1.959	0.050		

87
Variable	Mean	SD	Lower CI	Upper CI	P
LKRSP_R$2	2.152	0.389	5.531	0.000	
TRTBD_R$1	1.336	0.260	5.138	0.000	
TRTBD_R$2	4.012	0.293	13.713	0.000	

Variances

Parameter	Mean	SD	Lower CI	Upper CI	P
DISCRIM	0.685	0.111	6.199	0.000	

Latent Class 7 (10)

DISCRIM BY

Variable	Mean	SD	Lower CI	Upper CI	P
PREDJ_R	2.720	0.145	18.753	0.000	
LKRSP_R	5.145	0.563	9.141	0.000	
TRTBD_R	3.892	0.321	12.142	0.000	

Means

Parameter	Mean	SD	Lower CI	Upper CI	P
DISCRIM	-0.301	0.066	-4.543	0.000	

Thresholds

Parameter	Mean	SD	Lower CI	Upper CI	P
PREDJ_R$1	-0.551	0.167	-3.291	0.001	
PREDJ_R$2	1.390	0.173	8.048	0.000	
LKRSP_R$1	-0.075	0.309	-0.244	0.807	
LKRSP_R$2	3.233	0.400	8.083	0.000	
TRTBD_R$1	1.259	0.223	5.634	0.000	
TRTBD_R$2	3.867	0.250	15.472	0.000	

Variances

Parameter	Mean	SD	Lower CI	Upper CI	P
DISCRIM	0.721	0.090	7.978	0.000	

Latent Class 8 (25)

DISCRIM BY

Variable	Mean	SD	Lower CI	Upper CI	P
PREDJ_R	2.923	0.185	15.761	0.000	
LKRSP_R	4.657	0.552	8.432	0.000	
TRTBD_R	3.613	0.266	13.578	0.000	

Means

Parameter	Mean	SD	Lower CI	Upper CI	P
DISCRIM	-0.595	0.081	-7.334	0.000	

Thresholds

Parameter	Mean	SD	Lower CI	Upper CI	P
PREDJ_R$1	-0.391	0.194	-2.015	0.044	
PREDJ_R$2	1.654	0.202	8.180	0.000	
LKRSP_R$1	-0.618	0.304	-2.035	0.042	
LKRSP_R$2	2.534	0.369	6.864	0.000	
TRTBD_R$1	1.261	0.224	5.622	0.000	
TRTBD_R$2	3.809	0.261	14.589	0.000	
Latent Class 9 (8)

DISCRIM BY
- PREDJ_R: 2.250 0.353 6.380 0.000
- LKRSP_R: 21.704 29.998 0.724 0.469
- TRTBD_R: 3.566 0.408 8.731 0.000

Means
- DISCRIM: -0.564 0.101 -5.564 0.000

Thresholds
- PREDJ_R$1: -0.209 0.189 -1.104 0.269
- PREDJ_R$2: 1.530 0.175 8.724 0.000
- LKRSP_R$1: -0.884 0.734 -1.204 0.229
- LKRSP_R$2: 12.788 20.156 0.634 0.526
- TRTBD_R$1: 1.253 0.341 3.672 0.000
- TRTBD_R$2: 3.910 0.333 11.728 0.000

Variances
- DISCRIM: 1.166 0.244 4.787 0.000

Latent Class 10 (19)

DISCRIM BY
- PREDJ_R: 1.815 0.341 5.319 0.000
- LKRSP_R: 5.288 0.729 7.254 0.000
- TRTBD_R: 5.400 1.276 4.234 0.000

Means
- DISCRIM: -0.496 0.100 -4.957 0.000

Thresholds
- PREDJ_R$1: -0.674 0.129 -5.203 0.000
- PREDJ_R$2: 0.714 0.131 5.449 0.000
- LKRSP_R$1: 0.103 0.322 0.320 0.749
- LKRSP_R$2: 2.907 0.496 5.865 0.000
- TRTBD_R$1: 0.988 0.296 3.333 0.001
- TRTBD_R$2: 4.062 0.286 14.215 0.000

Variances
- DISCRIM: 0.702 0.241 2.909 0.004

89
Categorical Latent Variables

Means

C#1	0.151	0.032	4.658	0.000
C#2	0.011	0.033	0.318	0.751
C#3	0.028	0.033	0.833	0.405
C#4	-0.010	0.034	-0.286	0.775
C#5	0.428	0.030	14.025	0.000
C#6	-0.104	0.034	-3.010	0.003
C#7	0.210	0.032	6.562	0.000
C#8	0.022	0.033	0.667	0.505
C#9	-0.070	0.035	-2.013	0.044

Approximate Measurement Invariance (Noninvariance) for Groups

Intercepts/Thresholds

PREDJ_R$1	(13)	(27)	(29)	1	(6)	7	10	25	8	19
PREDJ_R$2	(13)	(27)	29	(1)	6	7	10	25	8	19
LKRSP_R$1	13	27	29	1	6	7	10	25	8	19
LKRSP_R$2	13	27	29	1	6	7	10	25	8	19
TRTBD_R$1	(13)	27	(29)	1	(6)	7	10	25	8	19
TRTBD_R$2	(13)	27	29	1	6	7	10	25	8	19

Loadings for DISCRIM

PREDJ_R	13	27	29	1	6	7	10	25	8	19
LKRSP_R	13	27	29	1	6	7	10	25	8	19
TRTBD_R	13	27	29	1	6	7	10	25	8	19

Factor Mean Comparison at the 5% Significance Level in Descending Order

Results for Factor DISCRIM

Ranking	Latent Class	Group Value	Factor Mean	Groups With Significantly Smaller Factor Mean
1	2	27	0.000	10 29 1 6 19 8 25 13 7
2	7	10	-0.301	6 19 8 25 13 7
3	3	29	-0.333	19 8 25 13 7
4	4	1	-0.367	8 25 13 7
5	5	6	-0.385	8 25 13 7
6	10	19	-0.496	7
7	9	8	-0.564	
QUALITY OF NUMERICAL RESULTS

Condition Number for the Information Matrix 0.147E-06
(ratio of smallest to largest eigenvalue)

[Parts of the output omitted]

ALIGNMENT RESULTS FOR DISCRIM

FIT FUNCTION VALUES FOR ALIGNMENT SIMPLICITY FUNCTION USING DIFFERENT STARTING VALUES
IN ORDER OF BEST TO WORST.

VALUE	DRAW
-267.6079	11
-267.6079	27
-267.6079	2
-267.6079	22
-267.6079	30
-267.6079	21
-267.6079	19
-267.6079	12
-267.6079	28
-267.6079	8
-267.6079	9
-267.6079	16
-267.6079	6
-267.6079	26
-267.6079	1
-267.6079	17
-267.6079	15
-267.6079	3
-267.6079	13
-267.6079	23
-267.6079	5
-269.8490	20
-269.8490	29
-269.8490	18
-------	-------
-269.8490	10
-269.8490	14
-269.8490	24
-269.8490	7
-269.8490	25
-269.8490	4

[Part of output omitted]
Moderated Non-Linear Factor Analysis

Country Group 1

Mplus VERSION 7.4 (Mac)
MUTHEN & MUTHEN
01/30/2017 1:39 PM

INPUT INSTRUCTIONS

TITLE:
MNFLA 2DIF prejudice and treated badly;
DATA:
FILE = "MNLFA_predj_trtbd_DIF_Group1.dat";

VARIABLE:
NAMES = predj_r lkrsp_r trtbd_r predj_r2 lkrsp_r2 trtbd_r2 c_age agesq c_agesq pspwght country;
MISSING=.;
usevariables = predj_r2 lkrsp_r2 trtbd_r2 country c_age c_agesq pspwght;
categorical = predj_r2 lkrsp_r2 trtbd_r2;
constraint = c_age c_agesq;
weight = pspwght;
cluster = country;

ANALYSIS:

type = complex;
estimator = mlr;
link = logit;

MODEL:

discrim BY predj_r2*2.94342;
discrim BY lkrsp_r2*6.90506;
discrim BY trtbd_r2*5.30191;

discrim ON c_age*0.04570;
discrim ON c_agesq*0.04126;
[discrim@0];

[predj_r2$1*1.69574];
[lkrsp_r2$1*2.69708];
[trtbd_r2$1*3.32651];
discrim*999 (v_disc);

discrim BY predj_r2 (L_a);
 predj_r2 ON c_age c_agesq;
discrim BY trtbd_r2 (L_b);
 trtbd_r2 ON c_age c_agesq;

model constraint:
 NEW(v_disc1*0.01429);
 NEW(v_disc2*-0.00602);
 new(L_a0*2.519 L_a1*-0.099 L_a2*0.072);
 new(L_b0*2 L_b1*0 L_b2*0);
 v_disc = exp(v_disc1*c_age + v_disc2*c_agesq);
 L_a = L_a0 + L_a1*c_age + L_a2*c_agesq;
 L_b = L_b0 + L_b1*c_age + L_b2*c_agesq;

OUTPUT:
 svalues;
SAVEDATA:
 SAVE=fscores;
 file=MNLFA_predj_trtbd_DIFgroup1.dat;

*** WARNING
 Data set contains cases with missing on all variables except
 x-variables. These cases were not included in the analysis.
 Number of cases with missing on all variables except x-variables: 207
 1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS

MNFLA 2DIF prejudice and treated badly;

SUMMARY OF ANALYSIS

Number of groups	1
Number of observations	37064
Number of dependent variables	3
Number of independent variables	2
Number of continuous latent variables	1
Observed dependent variables

Binary and ordered categorical (ordinal)
PREDJ_R2 LKRSP_R2 TRTBD_R2

Observed independent variables
C_AGE C_AGESQ

Continuous latent variables
DISCRIM

Variables with special functions

Cluster variable COUNTRY
Weight variable PSPWGHT

Estimator MLR
Information matrix OBSERVED

Optimization Specifications for the Quasi-Newton Algorithm for Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05

Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-02
Relative loglikelihood change 0.100D-05
Derivative 0.100D-02

Optimization Specifications for the M step of the EM Algorithm for Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION

Optimization Specifications for the M step of the EM Algorithm for Censored, Binary or Ordered Categorical (Ordinal), Unordered Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Maximum number of iterations for H1 2000
Convergence criterion for H1 0.100D-03
Optimization algorithm: EMA
Integration Specifications
- Type: STANDARD
- Number of integration points: 15
- Dimensions of numerical integration: 1
- Adaptive quadrature: ON
- Link: LOGIT
- Cholesky: ON

Input data file(s):
- MNLFA_predj_trtbd_DIF_Group1.dat

Input data format: FREE

SUMMARY OF DATA
- Number of missing data patterns: 7
- Number of y missing data patterns: 0
- Number of u missing data patterns: 7
- Number of clusters: 19

COVARIANCE COVERAGE OF DATA
- Minimum covariance coverage value: 0.100

PROPORTION OF DATA PRESENT FOR U

Covariance Coverage	PREDJ_R2	LKRSP_R2	TRTBD_R2
PREDJ_R2	0.991	--------	--------
LKRSP_R2	0.984	0.992	--------
TRTBD_R2	0.985	0.988	0.993

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

PREDJ_R2		
Category 1	0.684	25130.941
Category 2	0.316	11611.111

LKRSP_R2

96
THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 18

Loglikelihood

H0 Value -49606.376
H0 Scaling Correction Factor 17.1703 for MLR

Information Criteria

Akaike (AIC) 99248.752
Bayesian (BIC) 99402.119
Sample-Size Adjusted BIC 99344.915
(n* = (n + 2) / 24)

MODEL RESULTS

Two-Tailed

	Estimate	S.E.	Est./S.E.	P-Value
DISCRIM BY				
PREDJ_R2	999.000	0.000	999.000	999.000
LKRSP_R2	7.298	0.901	8.097	0.000
TRTBD_R2	999.000	0.000	999.000	999.000
DISCRIM ON				
C_AGE	-0.049	0.008	-5.941	0.000
C_AGESQ	0.043	0.006	6.704	0.000
Logistic Regression Odds Ratio Results

PREDJ_R2 ON
- **C_AGE**: 1.034
- **C_AGESQ**: 0.975

TRTBD_R2 ON
- **C_AGE**: 0.960
- **C_AGESQ**: 1.046

Quality of Numerical Results

Condition Number for the Information Matrix: 0.518E-07

(ratio of smallest to largest eigenvalue)

98
[Parts of the output omitted.]
INPUT INSTRUCTIONS

TITLE:
MNFLA 2DIF prejudice and treated badly;
DATA:
FILE = "MNLFA_predj_trtbd_DIF_Group2.dat";

VARIABLE:
NAMES = predj_r lkrsp_r trtbd_r predj_r2 lkrsp_r2 trtbd_r2 c_age agesq c_agesq pspwght country;
MISSING=.;
usevariables = predj_r2 lkrsp_r2 trtbd_r2 country c_age c_agesq pspwght;
categorical = predj_r2 lkrsp_r2 trtbd_r2;
constraint = c_age c_agesq;
weight = pspwght;
cluster = country;

ANALYSIS:

 type = complex;
estimator = mlr;
 link = logit;

MODEL:

 discrim BY predj_r2*2.94342;
 discrim BY lkrsp_r2*6.90506;
 discrim BY trtbd_r2*5.30191;

 discrim ON c_age*-0.04570;
 discrim ON c_agesq*0.04126;

[discrim@0];
[predj_r2$1*1.69574];
[lkrsp_r2$1*2.69708];
[trtbd_r2$1*3.32651];

 discrim*999 (v_disc);
discrim BY predj_r2 (L_a);
 predj_r2 ON c_age c_agesq;
discrim BY trtbd_r2 (L_b);
 trtbd_r2 ON c_age c_agesq;

model constraint:
 NEW(v_disc1*0.01429);
 NEW(v_disc2*-0.00602);
 new(L_a0*2.519 L_a1*-0.099 L_a2*0.072);
 new(L_b0*2 L_b1*0 L_b2*0);
 v_disc = exp(v_disc1*c_age + v_disc2*c_agesq);
 L_a = L_a0 + L_a1*c_age + L_a2*c_agesq;
 L_b = L_b0 + L_b1*c_age + L_b2*c_agesq;

OUTPUT:
 svalues;
SAVEDATA:
 SAVE=fscores;
 file=MNLFA_predj_trtbd_DIF.dat;

*** WARNING
Data set contains cases with missing on all variables except x-variables. These cases were not included in the analysis.
Number of cases with missing on all variables except x-variables: 64
1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS

MNFLA 2DIF prejudice and treated badly;

SUMMARY OF ANALYSIS

Category	Value
Number of groups	1
Number of observations	19208
Number of dependent variables	3
Number of independent variables	2
Number of continuous latent variables	1

Observed dependent variables
Binary and ordered categorical (ordinal)
PREDJ_R2 LKRSP_R2 TRTBD_R2

Observed independent variables
C_AGE C_AGESQ

Continuous latent variables
DISCRIM

Variables with special functions

Cluster variable COUNTRY
Weight variable PSPWGHT

Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500
Convergence criteria
Loglikelihood change 0.100D-02
Relative loglikelihood change 0.100D-05
Derivative 0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Maximum number of iterations for H1 2000
Convergence criterion for H1 0.100D-03
Optimization algorithm EMA
Integration Specifications
Type: STANDARD
Number of integration points: 15
Dimensions of numerical integration: 1
Adaptive quadrature: ON
Link: LOGIT
Cholesky: ON

Input data file(s):
- MNLFA_predj_trtbd_DIF_Group2.dat
Input data format: FREE

SUMMARY OF DATA

Metric	Value
Number of missing data patterns	7
Number of y missing data patterns	0
Number of u missing data patterns	7
Number of clusters	10

COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value: 0.100

PROPORTION OF DATA PRESENT FOR U

Covariance Coverage	PREDJ_R2	LKRSP_R2	TRTBD_R2
PREDJ_R2	0.996		
LKRSP_R2	0.991	0.995	
TRTBD_R2	0.990	0.991	0.994

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

Variable	Category 1	Category 2
PREDJ_R2	0.618	0.382
LKRSP_R2	0.618	0.382
THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 18

Loglikelihood

\(H_0 \) Value -28648.396
\(H_0 \) Scaling Correction Factor 17.4490 for MLR

Information Criteria

Akaike (AIC) 57332.792
Bayesian (BIC) 57474.327
Sample-Size Adjusted BIC 57417.124
\((n^* = (n + 2) / 24) \)

MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
DISCRIM BY				
PREDJ_R2	999.000	0.000	999.000	999.000
LKRSP_R2	6.556	1.279	5.126	0.000
TRTBD_R2	999.000	0.000	999.000	999.000
DISCRIM ON				
C_AGE	-0.060	0.008	-7.665	0.000
C_AGESQ	0.045	0.009	5.081	0.000
PREDJ_R2 ON				
C_AGE	0.024	0.013	1.910	0.056
	C_AGESQ	0.015	-1.186	0.236
--------	---------	-------	--------	-------
TRTBD_R2 ON C_AGE	-0.006	0.029	-0.212	0.832
C_AGESQ	0.025	0.025	0.982	0.326
Intercepts DISCRIM	0.000	0.000	999.000	999.000
Thresholds PREDJ_R2$1	0.989	0.191	5.168	0.000
LKRSP_R2$1	2.809	0.718	3.911	0.000
TRTBD_R2$1	3.032	0.567	5.348	0.000
Residual Variances DISCRIM	999.000	0.000	999.000	999.000
New/Additional Parameters V_DISC1	0.024	0.024	0.968	0.333
V_DISC2	0.003	0.032	0.095	0.924
L_A0	1.948	0.150	13.003	0.000
L_A1	-0.066	0.018	-3.587	0.000
L_A2	0.044	0.024	1.820	0.069
L_B0	4.126	0.429	9.627	0.000
L_B1	0.080	0.040	1.999	0.046
L_B2	-0.103	0.032	-3.238	0.001

LOGISTIC REGRESSION ODDS RATIO RESULTS

PREDJ_R2 ON
| C_AGE | 1.025 |
| C_AGESQ | 0.982 |

TRTBD_R2 ON
| C_AGE | 0.994 |
| C_AGESQ | 1.025 |

QUALITY OF NUMERICAL RESULTS

Condition Number for the Information Matrix 0.972E-07
(ratio of smallest to largest eigenvalue)
[Parts of the output omitted.]
Approximate Measurement Invariance across Age

Country Group 1

Mplus VERSION 7.4 (Mac)
MUTHEN & MUTHEN
02/02/2017 12:48 PM

INPUT INSTRUCTIONS

TITLE:
Approximate measurement invariance across age, Country Group 1;
DATA:
FILE = "15AgeGroupsCountrygroup1.dat";

VARIABLE:
NAMES = predj_r lkrsp_r trtbd_r age_group;
missing=.;
usevariables = predj_r lkrsp_r trtbd_r age_group;
categorical = predj_r lkrsp_r trtbd_r;
classes=c(15);
knownclass=c(age_group);

ANALYSIS:
type=mixture;
estimator=mlf;
algorithm=integration;
alignment = fixed(1);

MODEL:
%overall%
 discrim BY predj_r lkrsp_r trtbd_r;

OUTPUT:
tech1 tech8 cinterval;

*** WARNING
Data set contains unknown or missing values for variable AGE_GROUP.
This variable is used to determine the KNOWNCLASS specification.
Number of such cases: 98

*** WARNING
Data set contains cases with missing on all variables.
These cases were not included in the analysis.
Number of cases with missing on all variables: 204

2 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS
e01 Countries, traditional measurement invariance;

SUMMARY OF ANALYSIS

Description	Value
Number of groups	1
Number of observations	36969
Number of dependent variables	3
Number of independent variables	0
Number of continuous latent variables	1
Number of categorical latent variables	1

Observed dependent variables

- Binary and ordered categorical (ordinal)
 - PREDJ_R LKRSP_R TRTBD_R

Continuous latent variables

- DISCRIM

Categorical latent variables

- C

Knownclass

- C

Estimator

- MLF

Information matrix

- OBSERVED

Optimization Specifications for the Quasi-Newton Algorithm for Continuous Outcomes

- Maximum number of iterations: 100
- Convergence criterion: 0.100D-05

Optimization Specifications for the EM Algorithm

- Maximum number of iterations: 500
- Convergence criteria:
 - Loglikelihood change: 0.100D-02
 - Relative loglikelihood change: 0.100D-05
 - Derivative: 0.100D-02

Optimization Specifications for the M step of the EM Algorithm for Categorical Latent variables

- Number of M step iterations: 1
- M step convergence criterion: 0.100D-02

108
Basis for M step termination: ITERATION

Optimization Specifications for the M step of the EM Algorithm for Censored, Binary or Ordered Categorical (Ordinal), Unordered Categorical (Nominal) and Count Outcomes

Specification	Value
Number of M step iterations	1
M step convergence criterion	0.100D-02
Basis for M step termination	ITERATION
Maximum value for logit thresholds	15
Minimum value for logit thresholds	-15
Minimum expected cell size for chi-square	0.100D-01
Maximum number of iterations for H1	2000
Convergence criterion for H1	0.100D-03
Optimization algorithm	EMA

Integration Specifications

Specification	Value
Type	STANDARD
Number of integration points	15
Dimensions of numerical integration	1
Adaptive quadrature	ON
Link	LOGIT

Specifications for Alignment Analysis

Specification	Value
Factor mean for reference group	FIXED
Simplicity function	SQRT
Factor variance metric	Reference group
Reference group	1
Tolerance value	0.100D-01
Number of random starts	30
Maximum number of iterations	5000
Convergence criterion	0.100D-02
Cholesky	OFF

Input data file(s)

15AgeGroupsCountrygroup1.dat

Input data format: FREE

SUMMARY OF DATA

Summary	Value
Number of missing data patterns	7
Number of y missing data patterns	0
Number of u missing data patterns	7

COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value: 0.100
PROPORTION OF DATA PRESENT FOR U

Covariance Coverage

	PREDJ_R	LKRSP_R	TRTBD_R
PREDJ_R	0.991		
LKRSP_R	0.984	0.992	
TRTBD_R	0.985	0.988	0.993

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

PREDJ_R

Category	Proportion	Count
Category 1	0.685	25086.000
Category 2	0.147	5401.000
Category 3	0.168	6159.000

LKRSP_R

Category	Proportion	Count
Category 1	0.638	23385.000
Category 2	0.178	6525.000
Category 3	0.184	6755.000

TRTBD_R

Category	Proportion	Count
Category 1	0.714	26227.000
Category 2	0.160	5884.000
Category 3	0.126	4614.000

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 149

Loglikelihood

H0 Value -168491.700

Information Criteria

Akaike (AIC) 337281.400
Bayesian (BIC) 338550.558
Sample-Size Adjusted BIC 338077.036
\[(n^* = (n + 2) / 24) \]

Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes

Pearson Chi-Square

Value 4389.016
Degrees of Freedom 255
P-Value 0.0000

Likelihood Ratio Chi-Square

Value 2709.507
Degrees of Freedom 255
P-Value 0.0000

Chi-Square Test for MCAR under the Unrestricted Latent Class Indicator Model

Pearson Chi-Square

Value 895.204
Degrees of Freedom 436
P-Value 0.0000

Likelihood Ratio Chi-Square

Value 686.572
Degrees of Freedom 436
P-Value 0.0000

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL

Latent Classes	1	1031.00000	0.02789
	2	2693.00000	0.07284
	3	3032.00000	0.08201
	4	2410.00000	0.06519
5 2811.00000 0.07604
6 2975.00000 0.08047
7 2138.00000 0.05783
8 1662.00000 0.04496
9 2125.00000 0.05748
10 445.00000 0.01204
11 3242.00000 0.08770
12 3031.00000 0.08199
13 3107.00000 0.08404
14 3147.00000 0.08513
15 3120.00000 0.08440

MODEL RESULTS

Two-Tailed	Estimate	S.E.	Est./S.E.	P-Value
Latent Class 1 (14)				
DISCRIM BY				
PREDJ_R	2.498	0.168	14.893	0.000
LKRSP_R	5.740	0.861	6.664	0.000
TRTBD_R	4.864	0.626	7.766	0.000
Means				
DISCRIM	-0.650	0.088	-7.381	0.000
Thresholds				
PREDJ_R$1	0.118	0.127	0.927	0.354
PREDJ_R$2	1.757	0.135	12.980	0.000
LKRSP_R$1	-0.624	0.312	-1.998	0.046
LKRSP_R$2	2.911	0.435	6.691	0.000
TRTBD_R$1	0.588	0.223	2.636	0.008
TRTBD_R$2	4.139	0.435	9.517	0.000
Variances				
DISCRIM	1.810	0.287	6.311	0.000
Latent Class 2 (2)				
DISCRIM BY				
PREDJ_R	2.514	0.139	18.109	0.000
LKRSP_R	6.266	0.699	8.960	0.000
TRTBD_R	3.487	0.287	12.131	0.000

112
Means	DISCRIM	-0.151	0.050	-3.009	0.003
Thresholds	PREDJ_R$1	0.175	0.104	1.689	0.091
	PREDJ_R$2	1.747	0.111	15.718	0.000
	LKRSP_R$1	-0.459	0.271	-1.698	0.089
	LKRSP_R$2	3.237	0.355	9.112	0.000
	TRTBD_R$1	0.755	0.160	4.705	0.000
	TRTBD_R$2	3.070	0.209	14.694	0.000
Variances	DISCRIM	1.170	0.149	7.864	0.000

Latent Class 3 (7)

DISCRIM BY	PREDJ_R	2.485	0.131	18.933	0.000
	LKRSP_R	4.756	0.454	10.475	0.000
	TRTBD_R	5.656	0.577	9.801	0.000
Means	DISCRIM	-0.734	0.076	-9.676	0.000
Thresholds	PREDJ_R$1	0.289	0.102	2.838	0.005
	PREDJ_R$2	1.781	0.107	16.597	0.000
	LKRSP_R$1	-0.522	0.198	-2.637	0.008
	LKRSP_R$2	2.386	0.232	10.288	0.000
	TRTBD_R$1	0.474	0.214	2.210	0.027
	TRTBD_R$2	3.913	0.317	12.328	0.000
Variances	DISCRIM	1.135	0.155	7.335	0.000

Latent Class 4 (11)

DISCRIM BY	PREDJ_R	2.501	0.135	18.553	0.000
	LKRSP_R	5.285	0.538	9.814	0.000
	TRTBD_R	5.220	0.516	10.124	0.000
Means	DISCRIM	-0.625	0.072	-8.740	0.000
Thresholds

Variable	PREDJ_R$1	PREDJ_R$2	LKRSP_R$1	LKRSP_R$2	TRTBD_R$1	TRTBD_R$2
	0.185	1.813	-0.757	2.653	0.607	3.999
	0.107	0.112	0.233	0.286	0.206	0.318
	1.722	16.121	-3.255	9.260	2.951	12.590
	0.085	0.000	0.001	0.000	0.003	0.000

Variances

| DISCRIM | 1.347 | 0.179 | 7.523 | 0.000 |

Latent Class 5 (10)

DISCRIM BY

DISCRIM	PREDJ_R	LKRSP_R	TRTBD_R
	2.422	7.894	4.139
	0.129	1.299	0.335
	18.796	6.078	12.344
	0.000	0.000	0.000

Means

| DISCRIM | -0.688 | 0.076 | -9.015 | 0.000 |

Thresholds

Variable	PREDJ_R$1	PREDJ_R$2	LKRSP_R$1	LKRSP_R$2	TRTBD_R$1	TRTBD_R$2
	0.192	1.773	-0.726	4.156	0.430	3.465
	0.099	0.105	0.308	0.612	0.171	0.230
	1.934	16.816	-2.356	6.794	2.522	15.045
	0.053	0.000	0.018	0.000	0.012	0.000

Variances

| DISCRIM | 1.584 | 0.222 | 7.144 | 0.000 |

Latent Class 6 (9)

DISCRIM BY

DISCRIM	PREDJ_R	LKRSP_R	TRTBD_R
	2.384	5.756	5.473
	0.147	0.503	0.552
	16.199	11.434	9.909
	0.000	0.000	0.000

Means

| DISCRIM | -0.707 | 0.074 | -9.594 | 0.000 |

Thresholds

| PREDJ_R$1 | 0.129 | 0.100 | 1.285 | 0.199 |
Variable	Value1	Value2	Value3	Value4
PREDJ_R$2	1.722	0.105	16.463	0.000
LKRSP_R$1	-0.719	0.242	-2.967	0.003
LKRSP_R$2	2.970	0.300	9.913	0.000
TRTBD_R$1	0.553	0.207	2.675	0.007
TRTBD_R$2	4.348	0.336	12.925	0.000

Variances

Variable	Value1	Value2	Value3	Value4
DISCRIM	1.452	0.190	7.658	0.000

Latent Class 7 (12)

DISCRIM BY

Variable	Value1	Value2	Value3	Value4
PREDJ_R	2.560	0.156	16.413	0.000
LKRSP_R	5.720	0.603	9.491	0.000
TRTBD_R	4.330	0.428	10.127	0.000

Means

Variable	Value1	Value2	Value3	Value4
DISCRIM	-0.663	0.078	-8.533	0.000

Thresholds

Variable	Value1	Value2	Value3	Value4
PREDJ_R$1	0.189	0.109	1.731	0.084
PREDJ_R$2	1.896	0.120	15.744	0.000
LKRSP_R$1	-0.658	0.264	-2.494	0.013
LKRSP_R$2	2.952	0.333	8.872	0.000
TRTBD_R$1	0.504	0.187	2.692	0.007
TRTBD_R$2	3.528	0.273	12.929	0.000

Variances

Variable	Value1	Value2	Value3	Value4
DISCRIM	1.727	0.237	7.295	0.000

Latent Class 8 (13)

DISCRIM BY

Variable	Value1	Value2	Value3	Value4
PREDJ_R	2.630	0.149	17.614	0.000
LKRSP_R	5.065	0.609	8.323	0.000
TRTBD_R	4.581	0.445	10.306	0.000

Means

Variable	Value1	Value2	Value3	Value4
DISCRIM	-0.740	0.086	-8.633	0.000

Thresholds

Variable	Value1	Value2	Value3	Value4
PREDJ_R$1	0.193	0.118	1.641	0.101
PREDJ_R$2	1.863	0.126	14.746	0.000
LKRSP_R$1	-0.615	0.243	-2.529	0.011
LKRSP_R$2	2.766	0.321	8.608	0.000
TRTBD_R$1 0.609 0.203 3.003 0.003
TRTBD_R$2 3.553 0.304 11.683 0.000

Variances
DISCRIM 1.773 0.255 6.950 0.000

Latent Class 9 (1)

DISCRIM BY
PREDJ_R 2.441 0.156 15.663 0.000
LKRSP_R 18.686 16.804 1.112 0.266
TRTBD_R 3.311 0.227 14.602 0.000

Means
DISCRIM 0.000 0.000 999.000 999.000

Thresholds
PREDJ_R$1 0.398 0.093 4.297 0.000
PREDJ_R$2 1.733 0.112 15.494 0.000
LKRSP_R$1 1.615 1.387 1.165 0.244
LKRSP_R$2 10.862 9.564 1.136 0.256
TRTBD_R$1 1.055 0.130 8.103 0.000
TRTBD_R$2 3.223 0.197 16.354 0.000

Variances
DISCRIM 1.000 0.000 999.000 999.000

Latent Class 10 (15)

DISCRIM BY
PREDJ_R 2.650 0.211 12.558 0.000
LKRSP_R 5.367 1.078 4.979 0.000
TRTBD_R 4.556 0.810 5.622 0.000

Means
DISCRIM -0.782 0.122 -6.412 0.000

Thresholds
PREDJ_R$1 0.147 0.157 0.938 0.348
PREDJ_R$2 1.957 0.190 10.301 0.000
LKRSP_R$1 -0.645 0.380 -1.697 0.090
LKRSP_R$2 2.901 0.545 5.319 0.000
TRTBD_R$1 0.302 0.285 1.061 0.289
TRTBD_R$2 3.910 0.589 6.643 0.000
Latent Class 11 (5)
DISCRIM
PREDJ_R 2.465 0.143 17.222 0.000
LKRSP_R 5.820 0.571 10.190 0.000
TRTBD_R 4.832 0.421 11.472 0.000

Means
DISCRIM -0.763 0.075 -10.137 0.000

Latent Class 12 (8)
DISCRIM
PREDJ_R 2.505 0.143 17.528 0.000
LKRSP_R 5.694 0.544 10.466 0.000
TRTBD_R 4.736 0.415 11.411 0.000

Means
DISCRIM -0.730 0.075 -9.798 0.000

Thresholds
PREDJ_R$1 0.344 0.102 3.374 0.001
PREDJ_R$2 1.967 0.110 17.931 0.000
LKRSP_R$1 -0.954 0.248 -3.846 0.000
LKRSP_R$2 2.744 0.303 9.061 0.000
TRTBD_R$1 0.442 0.191 2.319 0.020
TRTBD_R$2 3.517 0.238 14.775 0.000

Variances
DISCRIM 1.154 0.147 7.846 0.000

Variances
DISCRIM 1.264 0.161 7.858 0.000
Latent Class 13 (3)

DISCRIM BY
 PREDJ_R 2.501 0.133 18.811 0.000
 LKRSP_R 6.471 0.825 7.846 0.000
 TRTBD_R 3.272 0.253 12.935 0.000

Means
 DISCRIM -0.400 0.060 -6.681 0.000

Thresholds
 PREDJ_R$1 0.277 0.102 2.720 0.007
 PREDJ_R$2 1.831 0.107 17.041 0.000
 LKRSP_R$1 -0.769 0.288 -2.669 0.008
 LKRSP_R$2 3.126 0.388 8.057 0.000
 TRTBD_R$1 0.623 0.146 4.264 0.000
 TRTBD_R$2 3.046 0.190 16.007 0.000

Variances
 DISCRIM 1.333 0.169 7.901 0.000

Latent Class 14 (4)

DISCRIM BY
 PREDJ_R 2.563 0.155 16.513 0.000
 LKRSP_R 5.828 0.567 10.284 0.000
 TRTBD_R 3.965 0.343 11.552 0.000

Means
 DISCRIM -0.668 0.073 -9.186 0.000

Thresholds
 PREDJ_R$1 0.321 0.106 3.035 0.002
 PREDJ_R$2 2.037 0.115 17.732 0.000
 LKRSP_R$1 -0.917 0.260 -3.523 0.000
 LKRSP_R$2 3.126 0.314 8.800 0.000
 TRTBD_R$1 0.510 0.168 3.043 0.002
 TRTBD_R$2 3.128 0.204 15.362 0.000

Variances
 DISCRIM 1.175 0.155 7.585 0.000

Latent Class 15 (6)

DISCRIM BY
Variable	Mean	Std Err	t-Value	p-Value
DISCRIM	-0.784	0.076	-10.297	0.000

Thresholds

Variable	Threshold 1	Threshold 2
PREDJ_R$1	0.233	1.755
LKRSP_R$1	-0.599	2.314
TRTBD_R$1	0.399	4.759

Variances

| DISCRIM | 1.151 | 0.160 | 7.194 | 0.000 |

Categorical Latent Variables

Category	Mean	Std Err	t-Value	p-Value
C#1	-1.107	0.036	-30.824	0.000
C#2	-0.147	0.026	-5.595	0.000
C#3	-0.029	0.026	-1.122	0.262
C#4	-0.258	0.027	-9.521	0.000
C#5	-0.104	0.026	-4.009	0.000
C#6	-0.048	0.026	-1.857	0.063
C#7	-0.378	0.028	-13.462	0.000
C#8	-0.630	0.030	-20.739	0.000
C#9	-0.384	0.029	-13.362	0.000
C#10	-1.948	0.051	-38.433	0.000
C#11	0.038	0.025	1.529	0.126
C#12	-0.029	0.026	-1.135	0.256
C#13	-0.004	0.025	-0.165	0.869
C#14	0.009	0.025	0.341	0.733

Approximate Measurement Invariance (Noninvariance) for Groups

Intercepts/Thresholds

Variable	Groups
PREDJ_R$1	14 2 7 11 10 9 12 13 1 15 5 8 3 4 6
PREDJ_R$2	14 2 7 11 10 9 12 13 1 15 5 8 3 4 6
LKRSP_R$1	14 2 7 11 10 9 12 13 1 15 5 8 3 4 6
LKRSP_R$2	14 2 7 11 10 9 12 13 1 15 5 8 3 4 6
Loadings for DISCRIM

Latent Group Factor	TRTBD_R$1	TRTBD_R$2
Latent Group Factor	14 2 7 11 10 9 12 13 (1) 15 5 8 3 4 6	14 (2) 7 11 10 9 12 13 (1) 15 5 8 (3) (4) 6

FACTOR MEAN COMPARISON AT THE 5% SIGNIFICANCE LEVEL IN DESCENDING ORDER

Results for Factor DISCRIM

Ranking	Class	Value	Mean	Groups With Significantly Smaller Factor Mean
1	9	1	0.000	2 3 11 14 12 4 10 9 8 7 13 5 15 6
2	2	2	-0.151	3 11 14 12 4 10 9 8 7 13 5 15 6
3	13	3	-0.400	11 14 12 4 10 9 8 7 13 5 15 6
4	4	11	-0.625	8 7 5 6
5	1	14	-0.650	
6	7	12	-0.663	
7	14	4	-0.668	6
8	5	10	-0.688	
9	6	9	-0.707	
10	12	8	-0.730	
11	3	7	-0.734	
12	8	13	-0.740	
13	11	5	-0.763	
14	10	15	-0.782	
15	15	6	-0.784	

QUALITY OF NUMERICAL RESULTS

Condition Number for the Information Matrix 0.828E-06 (ratio of smallest to largest eigenvalue)

[Parts of the output omitted.]
ALIGNMENT RESULTS FOR DISCRIM

FIT FUNCTION VALUES FOR ALIGNMENT SIMPLICITY FUNCTION USING DIFFERENT STARTING VALUES
IN ORDER OF BEST TO WORST.

VALUE	DRAW
-517.9749	2
-517.9749	21
-517.9749	24
-517.9749	30
-517.9749	3
-517.9749	1
-517.9749	29
-517.9749	23
-517.9749	17
-517.9749	11
-517.9749	28
-519.2393	19
-519.2393	22
-519.2393	5
-519.2393	25
-519.2393	4
-519.2393	27
-519.2393	8
-519.2393	7
-519.2393	13
-519.2393	16
-519.2393	6
-519.2393	20
-519.2393	10
-519.2393	12
-519.2393	14
-519.2393	18
-519.2393	15
-519.2393	9
-519.2393	26

[Parts of the output omitted.]
TITLE:
Approximate measurement invariance across age, Country Group 2;
DATA:
FILE = "15AgeGroupsCountrygroup2.dat";

VARIABLE:
NAMES = predj_r lkrsp_r trtbd_r age_group;
 missing=.;
 usevariables = predj_r lkrsp_r trtbd_r age_group;
 categorical = predj_r lkrsp_r trtbd_r;
 classes=c(15);
 knownclass=c(age_group);

ANALYSIS:
 type=mixture;
 estimator=mlf;
 algorithm=integration;
 alignment = fixed(1);

MODEL:
 %overall%
 discrim BY predj_r lkrsp_r trtbd_r;

OUTPUT:
 tech1 tech8 cinterval;

*** WARNING
Data set contains unknown or missing values for variable AGE_GROUP.
This variable is used to determine the KNOWNCLASS specification.
Number of such cases: 63

*** WARNING
Data set contains cases with missing on all variables.
These cases were not included in the analysis.
Number of cases with missing on all variables: 63
2 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS
e01 Countries, traditional measurement invariance;

SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 19146
Number of dependent variables 3
Number of independent variables 0
Number of continuous latent variables 1
Number of categorical latent variables 1

Observed dependent variables

 Binary and ordered categorical (ordinal)
 PREDJ_R LKRSP_R TRTBD_R

Continuous latent variables
 DISCRIM

Categorical latent variables
 C

Knownclass C

Estimator MLF
Information matrix OBSERVED

Optimization Specifications for the Quasi-Newton Algorithm for Continuous Outcomes
 Maximum number of iterations 100
 Convergence criterion 0.100D-05

Optimization Specifications for the EM Algorithm
 Maximum number of iterations 500
 Convergence criteria
 Loglikelihood change 0.100D-02
 Relative loglikelihood change 0.100D-05
 Derivative 0.100D-02

Optimization Specifications for the M step of the EM Algorithm for Categorical Latent variables
 Number of M step iterations 1
 M step convergence criterion 0.100D-02
 Basis for M step termination ITERATION

Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered Categorical (Nominal) and Count Outcomes

Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION
Maximum value for logit thresholds 15
Minimum value for logit thresholds -15
Minimum expected cell size for chi-square 0.100D-01
Maximum number of iterations for H1 2000
Convergence criterion for H1 0.100D-03
Optimization algorithm EMA

Integration Specifications
Type STANDARD
Number of integration points 15
Dimensions of numerical integration 1
Adaptive quadrature ON
Link LOGIT

Specifications for Alignment Analysis
Factor mean for reference group FIXED
Simplicity function SQRT
Factor variance metric Reference group Reference group
Reference group 1
Tolerance value 0.100D-01
Number of random starts 30
Maximum number of iterations 5000
Convergence criterion 0.100D-02

Cholesky OFF

Input data file(s)
15AgeGroupsCountrygroup2.dat
Input data format FREE

SUMMARY OF DATA

Number of missing data patterns 7
Number of y missing data patterns 0
Number of u missing data patterns 7

COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value 0.100
PROPORTION OF DATA PRESENT FOR U

Covariance Coverage

	PREDJ_R	LKRSP_R	TRTBD_R
PREDJ_R	0.996	--------	--------
LKRSP_R	0.991	0.995	--------
TRTBD_R	0.990	0.991	0.994

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

PREDJ_R

Category	Proportion	Count
Category 1	0.628	11968.000
Category 2	0.193	3682.000
Category 3	0.179	3418.000

LKRSP_R

Category	Proportion	Count
Category 1	0.629	11982.000
Category 2	0.203	3867.000
Category 3	0.168	3198.000

TRTBD_R

Category	Proportion	Count
Category 1	0.734	13975.000
Category 2	0.166	3152.000
Category 3	0.100	1910.000

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 149

Loglikelihood

H0 Value
-90400.627

Information Criteria

Method	Value
Akaike (AIC)	181099.254
Bayesian (BIC)	182270.371
Sample-Size Adjusted BIC	181796.857
(n* = (n + 2) / 24)

Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes

Pearson Chi-Square

Value 1733.106
Degrees of Freedom 255
P-Value 0.0000

Likelihood Ratio Chi-Square

Value 1451.191
Degrees of Freedom 255
P-Value 0.0000

Chi-Square Test for MCAR under the Unrestricted Latent Class Indicator Model

Pearson Chi-Square

Value 737.522
Degrees of Freedom 436
P-Value 0.0000

Likelihood Ratio Chi-Square

Value 411.443
Degrees of Freedom 436
P-Value 0.7953

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL

Latent Classes

1	1701.00000	0.08884
2	1251.00000	0.06534
3	1741.00000	0.09093
4	1350.00000	0.07051
5	1409.00000	0.07359
6	1602.00000	0.08367
MODEL RESULTS

Latent Class 1 (6)	DISCRIM BY				
	PREDJ_R	1.768	0.146	12.101	0.000
	LKRSP_R	4.912	0.922	5.327	0.000
	TRTBD_R	3.398	0.403	8.440	0.000

Means

- DISCRIM: -1.156, 0.165, -7.018, 0.000

Thresholds

- PREDJ_R$1: -0.608, 0.231, -2.638, 0.008
- PREDJ_R$2: 1.001, 0.229, 4.369, 0.000
- LKRSP_R$1: -2.255, 0.706, -3.193, 0.001
- LKRSP_R$2: 0.947, 0.607, 1.561, 0.119
- TRTBD_R$1: -0.582, 0.433, -1.343, 0.179
- TRTBD_R$2: 1.934, 0.433, 4.469, 0.000

Variances

- DISCRIM: 0.937, 0.180, 5.220, 0.000

Latent Class 2 (2)

DISCRIM BY

- PREDJ_R: 1.736, 0.162, 10.684, 0.000
- LKRSP_R: 7.215, 2.435, 2.963, 0.003
- TRTBD_R: 2.275, 0.278, 8.173, 0.000

Means

127
Latent Class 3 (8)	Latent Class 4 (3)
DISCRIM	**DISCRIM**
-0.193	1.858
0.147	0.140
-1.319	13.255
0.187	0.000

Thresholds

PREDJ_R$1	-0.838	0.248	-3.378	0.001
PREDJ_R$2	0.765	0.247	3.098	0.002
LKRSP_R$1	-3.456	1.510	-2.289	0.022
LKRSP_R$2	2.277	1.266	1.799	0.072
TRTBD_R$1	0.121	0.328	0.369	0.712
TRTBD_R$2	2.356	0.344	6.853	0.000

Variances

| DISCRIM | 1.223 | 0.235 | 5.213 | 0.000 |
| DISCRIM | 13.706 | 56.357 | 0.243 | 0.808 |

Latent Class 4 (3)

DISCRIM	1.858	0.140	13.255	0.000
DISCRIM	4.888	0.937	5.219	0.000
DISCRIM	2.668	0.311	8.589	0.000

Means

| DISCRIM | -0.420 | 0.132 | -3.173 | 0.002 |

Thresholds

PREDJ_R$1	-0.723	0.307	-2.352	0.019
PREDJ_R$2	0.755	0.337	2.236	0.025
LKRSP_R$1	-12.819	27.774	-0.462	0.644
LKRSP_R$2	1.894	2.039	0.929	0.353
TRTBD_R$1	-0.585	0.630	-0.929	0.353
TRTBD_R$2	1.781	0.677	2.629	0.009
Variable	Estimate 1	SE 1	Estimate 2	SE 2	p-value
PREDJ_R$1	-0.784	0.233	-3.365	0.001	
PREDJ_R$2	0.741	0.234	3.161	0.002	
LKRSP_R$1	-2.556	0.731	-3.496	0.000	
LKRSP_R$2	1.333	0.635	2.101	0.036	
TRTBD_R$1	0.189	0.339	0.556	0.578	
TRTBD_R$2	2.531	0.358	7.068	0.000	

Variances

Variable	Estimate 1	SE 1	p-value
DISCRIM	1.258	0.231	

Latent Class 5 (11)

DISCRIM BY

Variable	Estimate 1	SE 1	p-value
PREDJ_R	1.870	0.141	
LKRSP_R	3.399	0.491	
TRTBD_R	3.269	0.390	

Means

Variable	Estimate 1	SE 1	p-value
DISCRIM	-1.209	0.176	

Thresholds

Variable	Estimate 1	SE 1	p-value
PREDJ_R$1	-0.764	0.250	
PREDJ_R$2	1.021	0.254	
LKRSP_R$1	-1.966	0.507	
LKRSP_R$2	1.139	0.462	
TRTBD_R$1	-0.679	0.445	
TRTBD_R$2	2.121	0.456	

Variances

Variable	Estimate 1	SE 1	p-value
DISCRIM	1.936	0.361	

Latent Class 6 (5)

DISCRIM BY

Variable	Estimate 1	SE 1	p-value
PREDJ_R	1.715	0.131	
LKRSP_R	4.417	0.636	
TRTBD_R	4.488	0.707	

Means

Variable	Estimate 1	SE 1	p-value
DISCRIM	-0.995	0.138	

Thresholds

Variable	Estimate 1	SE 1	p-value	
PREDJ_R$1	-0.499	0.206		
PREDJ_R$2	1.112	0.206		
LKRSP_R$1	-2.236	0.546		
LKRSP_R$2	0.818	0.480	1.703	0.089
TRTBD_R$1	-0.976	0.515	-1.894	0.058
TRTBD_R$2	2.075	0.485	4.283	0.000

Variances

| DISCRIM | 0.806 | 0.156 | 5.157 | 0.000 |

Latent Class 7 (4)

DISCRIM BY

PREDJ_R	1.763	0.176	9.998	0.000
LKRSP_R	6.784	1.957	3.466	0.001
TRTBD_R	2.804	0.371	7.552	0.000

Means

| DISCRIM | -0.841 | 0.166 | -5.066 | 0.000 |

Thresholds

PREDJ_R$1	-0.638	0.214	-2.981	0.003
PREDJ_R$2	0.884	0.214	4.137	0.000
LKRSP_R$1	-3.766	1.305	-2.886	0.004
LKRSP_R$2	1.304	0.820	1.590	0.112
TRTBD_R$1	-0.240	0.339	-0.708	0.479
TRTBD_R$2	2.278	0.351	6.493	0.000

Variances

| DISCRIM | 0.977 | 0.218 | 4.488 | 0.000 |

Latent Class 8 (7)

DISCRIM BY

PREDJ_R	1.869	0.135	13.864	0.000
LKRSP_R	4.232	0.668	6.336	0.000
TRTBD_R	2.995	0.338	8.862	0.000

Means

| DISCRIM | -1.129 | 0.160 | -7.059 | 0.000 |

Thresholds

PREDJ_R$1	-0.768	0.244	-3.148	0.002
PREDJ_R$2	0.935	0.245	3.819	0.000
LKRSP_R$1	-1.947	0.634	-3.072	0.002
LKRSP_R$2	1.166	0.553	2.106	0.035
TRTBD_R$1	-0.309	0.397	-0.780	0.435
TRTBD_R$2	1.958	0.403	4.863	0.000
Latent Class 9 (14)

DISCRIM
- **PREDJ_R**
 - DISCRIM: 1.771
 - PREDJ_R$: 1.771
- **LKRSP_R**
 - DISCRIM: 3.219
 - LKRSP_R$: -1.849
- **TRTBD_R**
 - DISCRIM: 4.905
 - TRTBD_R$: -0.990

Means
- DISCRIM: -1.249

Thresholds
- **PREDJ_R$:**
 - PREDJ_R$:1: -0.690
 - PREDJ_R$:2: 0.838
- **LKRSP_R$:**
 - LKRSP_R$:1: -1.849
 - LKRSP_R$:2: 0.774
- **TRTBD_R$:**
 - TRTBD_R$:1: -0.990
 - TRTBD_R$:2: 2.654

Variances
- DISCRIM: 1.978

Latent Class 10 (15)

DISCRIM
- **PREDJ_R**
 - DISCRIM: 1.780
 - PREDJ_R$: 0.838
- **LKRSP_R**
 - DISCRIM: 3.710
 - LKRSP_R$: -1.822
- **TRTBD_R**
 - DISCRIM: 9.543
 - TRTBD_R$: -4.191

Means
- DISCRIM: -1.218

Thresholds
- **PREDJ_R$:**
 - PREDJ_R$:1: -0.654
 - PREDJ_R$:2: 0.547
- **LKRSP_R$:**
 - LKRSP_R$:1: -1.822
 - LKRSP_R$:2: -0.141
- **TRTBD_R$:**
 - TRTBD_R$:1: -4.191
 - TRTBD_R$:2: 2.670

Variances
- DISCRIM: 1.588
Latent Class 11 (10)

DISCRIM BY
 PREDJ_R 1.505 0.362 4.156 0.000
 LKRSP_R 6.827 1.830 3.731 0.000
 TRTBD_R 3.457 0.869 3.977 0.000

Means
 DISCRIM -1.114 0.305 -3.648 0.000

Thresholds
 PREDJ_R$1 -0.492 0.199 -2.476 0.013
 PREDJ_R$2 0.885 0.199 4.444 0.000
 LKRSP_R$1 -3.345 1.292 -2.588 0.010
 LKRSP_R$2 1.509 0.874 1.726 0.084
 TRTBD_R$1 -0.562 0.431 -1.304 0.192
 TRTBD_R$2 2.025 0.447 4.535 0.000

Variances
 DISCRIM 1.528 0.684 2.234 0.025

Latent Class 12 (12)

DISCRIM BY
 PREDJ_R 1.790 0.135 13.273 0.000
 LKRSP_R 3.803 0.524 7.263 0.000
 TRTBD_R 3.634 0.492 7.393 0.000

Means
 DISCRIM -1.193 0.170 -7.006 0.000

Thresholds
 PREDJ_R$1 -0.676 0.235 -2.881 0.004
 PREDJ_R$2 1.274 0.250 5.099 0.000
 LKRSP_R$1 -2.296 0.549 -4.181 0.000
 LKRSP_R$2 0.926 0.502 1.844 0.065
 TRTBD_R$1 -1.012 0.500 -2.022 0.043
 TRTBD_R$2 2.136 0.474 4.503 0.000

Variances
 DISCRIM 1.927 0.347 5.559 0.000

Latent Class 13 (9)
DISCRIM BY

PREDJ_R	1.721	0.147	11.682	0.000
LKRSP_R	5.183	0.920	5.637	0.000
TRTBD_R	3.518	0.393	8.955	0.000

Means

DISCRIM	-1.061	0.164	-6.473	0.000

Thresholds

PREDJ_R$1	-0.857	0.227	-3.779	0.000
PREDJ_R$2	0.793	0.225	3.521	0.000
LKRSP_R$1	-2.268	0.736	-3.083	0.002
LKRSP_R$2	1.797	0.695	2.584	0.010
TRTBD_R$1	-0.571	0.461	-1.240	0.215
TRTBD_R$2	2.372	0.466	5.087	0.000

Variances

DISCRIM	1.287	0.244	5.268	0.000

Latent Class 14 (13)

PREDJ_R	1.791	0.139	12.878	0.000
LKRSP_R	5.796	1.939	2.990	0.003
TRTBD_R	3.140	0.407	7.722	0.000

Means

DISCRIM	-1.098	0.178	-6.172	0.000

Thresholds

PREDJ_R$1	-0.646	0.244	-2.655	0.008
PREDJ_R$2	1.108	0.250	4.422	0.000
LKRSP_R$1	-2.935	1.175	-2.497	0.013
LKRSP_R$2	1.361	0.768	1.771	0.077
TRTBD_R$1	-0.577	0.416	-1.387	0.166
TRTBD_R$2	1.816	0.438	4.148	0.000

Variances

DISCRIM	1.656	0.379	4.371	0.000

Latent Class 15 (1)

PREDJ_R	1.967	0.152	12.984	0.000
LKRSP_R	3.860	0.515	7.500	0.000
TRTBD_R 2.282 0.200 11.416 0.000

Means
DISCRIM 0.000 0.000 999.000 999.000

Thresholds
PREDJ_R$1 -1.111 0.108 -10.292 0.000
PREDJ_R$2 0.525 0.103 5.091 0.000
LKRSP_R$1 -1.511 0.224 -6.750 0.000
LKRSP_R$2 1.452 0.225 6.467 0.000
TRTBD_R$1 0.303 0.115 2.640 0.008
TRTBD_R$2 2.392 0.176 13.580 0.000

Variances
DISCRIM 1.000 0.000 999.000 999.000

Categorical Latent Variables

Means
C#1 0.464 0.039 11.901 0.000
C#2 0.157 0.042 3.775 0.000
C#3 0.488 0.039 12.475 0.000
C#4 0.233 0.041 5.700 0.000
C#5 0.276 0.041 6.808 0.000
C#6 0.405 0.039 10.243 0.000
C#7 0.275 0.041 6.771 0.000
C#8 0.496 0.039 12.794 0.000
C#9 -0.736 0.054 -13.697 0.000
C#10 -1.618 0.075 -21.518 0.000
C#11 0.370 0.040 9.308 0.000
C#12 0.059 0.043 1.385 0.166
C#13 0.457 0.039 11.703 0.000
C#14 -0.335 0.047 -7.065 0.000

APPROXIMATE MEASUREMENT INVARIANCE (NONINVARIANCE) FOR GROUPS

Intercepts/Thresholds
PREDJ_R$1 6 2 8 3 11 5 4 7 14 15 10 12 9 13 1
PREDJ_R$2 6 2 8 3 11 5 4 7 14 15 10 (12) 9 13 1
LKRSP_R$1 6 2 8 3 11 5 4 7 14 15 10 12 9 13 1
LKRSP_R$2 6 2 8 3 11 5 4 7 14 15 10 12 9 13 1
TRTBD_R$1 6 (2) 8 (3) 11 5 4 7 14 15 10 12 9 13 1
TRTBD_R$2 6 2 8 3 11 5 4 7 14 15 10 12 9 13 1

134
Loadings for DISCRIM

Predictor	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
PREDJ_R	6	2	8	3	11	5	4	7	14	15	10	12	9	13	1
LKRSP_R	6	2	8	3	11	5	4	7	14	15	10	12	9	13	1
TRTBD_R	6	2	8	3	11	5	4	7	14	15	10	12	9	13	1

FACTOR MEAN COMPARISON AT THE 5% SIGNIFICANCE LEVEL IN DESCENDING ORDER

Results for Factor DISCRIM

Ranking	Latent Class	Group Value	Mean Factor	Groups With Significantly Smaller Factor Mean
1	15	1	0.000	3 4 5 9 13 10 7 6 12 11 15 14
2	2	2	-0.193	3 4 5 9 13 10 7 6 12 11 15 14
3	4	3	-0.420	4 5 9 13 10 7 6 12 11 15 14 14
4	7	4	-0.841	9 13 7 6 12 11 14
5	6	5	-0.995	
6	13	9	-1.061	
7	14	13	-1.098	
8	11	10	-1.114	
9	8	7	-1.129	
10	1	6	-1.156	
11	12	12	-1.193	
12	5	11	-1.209	
13	10	15	-1.218	
14	9	14	-1.249	
15	3	8	-4.005	

QUALITY OF NUMERICAL RESULTS

Condition Number for the Information Matrix 0.117E-06
(ratio of smallest to largest eigenvalue)

[Parts of the output omitted.]

ALIGNMENT RESULTS FOR DISCRIM
FIT FUNCTION VALUES FOR ALIGNMENT SIMPLICITY FUNCTION USING DIFFERENT STARTING VALUES
IN ORDER OF BEST TO WORST.

VALUE	DRAW
-586.5920	6
-586.5920	5
-586.5920	21
-586.5920	29
-586.5920	30
-586.5920	9
-586.5920	27
-586.5920	24
-586.5920	13
-586.5920	20
-586.5920	2
-589.0512	15
-589.0512	10
-589.0512	16
-589.0512	26
-589.0512	22
-589.0512	19
-589.0512	12
-589.6308	7
-589.6308	14
-589.6308	8
-589.6308	28
-589.6308	17
-589.6308	3
-589.6308	11
-589.6308	18
-589.6308	4
-592.0900	25
-592.0900	1
-592.0900	23

[Parts of the output omitted.]
Statistical Software Used

Analyses were conducted with Mplus (version 7.4) and with R. We used knitr to develop this supplemental material. Below are details on the R software and R packages used.

```r
## R version 3.3.2 (2016-10-31)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: macOS Sierra 10.12.4
##
## locale:
## [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8

## attached base packages:
## [1] stats graphics grDevices utils datasets methods base

## other attached packages:
## [1] readr_1.0.0 gridExtra_2.2.1 ggplot2_2.2.1
## [4] foreign_0.8-67 reshape_0.8.6 MplusAutomation_0.6-4
## [7] car_2.1-4 lattice_0.20-34 haven_1.0.0
## [10] knitr_1.15.1

## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.10 nloptr_1.0.4 plyr_1.8.4
## [4] tools_3.3.2 boot_1.3-18 digest_0.6.12
## [7] lme4_1.1-12 gtable_0.2.0 evaluate_0.10
## [10] tibble_1.2 nlme_3.1-131 mgcv_1.8-17
## [13] texreg_1.36.23 Matrix_1.2-8 psych_1.6.12
## [16] yaml_2.1.14 parallel_3.3.2 SparseM_1.74
## [19] proto_1.0.0 codah_0.19-1 stringr_1.2.0
## [22] MatrixModels_0.4-1 rprojroot_1.2 grid_3.3.2
## [25] nnet_7.3-12 tcltk_3.3.2 rmarkdown_1.5
## [28] gsubfn_0.6-6 minqa_1.2.4 pander_0.6.0
## [31] magrittr_1.5 scales_0.4.1 backports_1.0.5
## [34] codetools_0.2-15 htmltools_0.3.6 MASS_7.3-45
## [37] splines_3.3.2 assertthat_0.1 pbkrtest_0.4-6
## [40] mnormt_1.5-5 colorspace_1.3-2 xtable_1.8-2
## [43] labeling_0.3 quantreg_5.29 stringi_1.1.2
## [46] lazyeval_0.2.0 munsell_0.4.3
```

137
References

Asparouhov, T., & Muthén, B. (2014). Multiple-Group Factor Analysis Alignment. Structural Equation Modeling, 1-45. doi:10.1080/10705511.2014.919210

Bauer, D. (2016). A More General Model for Testing Measurement Invariance and Differential Item Functioning. Psychological methods.

Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105(3), 456. doi:10.1037/0033-2909.105.3.456

Hallquist, M., & Wiley, J. (2016). MplusAutomation: Automating Mplus Model Estimation and Interpretation. R package version 0.6-4. https://CRAN.R-project.org/package=MplusAutomation.

Hildebrandt, A., Lüdtke, O., Robitzsch, A., Sommer, C., & Wilhelm, O. (2016). Exploring Factor Model Parameters across Continuous Variables with Local Structural Equation Models. Multivariate Behavioral Research, 00-00. doi: 10.1080/00273171.2016.1142856

Hildebrandt, A., Wilhelm, O., & Robitzsch, A. (2009). Complementary and competing factor analytic approaches for the investigation of measurement invariance. Review of Psychology, 16(2), 87-102.

Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 507-514. doi: 10.1007/BF02296192

Steenkamp, J.-B. E., & Baumgartner, H. (1998). Assessing measurement invariance in cross-national consumer research. Journal of Consumer Research, 25(1), 78-107. doi:10.1086/209528

Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3(1), 4-70. doi:10.1177/109442810031002