Cryptococcosis, a potentially fatal mycosis, is caused by members of the Cryptococcus neoformans and Cryptococcus gattii species complexes. In Latin America, cryptococcosis affects predominantly immunocompromised male patients, with HIV infection being the main predisposing risk factor [1]. Cryptococcal meningitis, which is the main presentation of cryptococcosis, remains a significant burden in adults from many regions of the world where there is a high HIV seroprevalence [2]. Despite great improvements in antiretroviral therapy, cryptococcosis is still associated with high morbidity and mortality [1,3]. In Latin America, 3.7 million people lives with HIV, of which ~40% do not have access to antiretroviral therapy. In 2019 alone, there were 120,000 new HIV infections, representing an increase of 7% of new diagnoses annually compared with 2010 [4]. Although there are few reports regarding the incidence and prevalence of cryptococcosis in the region, studies from Brazil and Colombia have reported an average annual incidence from 2.4 to 4.5 cases of meningal cryptococcosis per million inhabitants, in the general population, and 3000 to 3300 cases per million inhabitants with HIV [5].

1. Introduction

In Latin America, as is the case globally, cryptococcosis affects predominantly immunocompromised male patients, with HIV infection being the main predisposing risk factor [1]. Cryptococcal meningitis, which is the main presentation of cryptococcosis, remains a significant burden in adults from many regions of the world where there is a high HIV seroprevalence [2]. Despite great improvements in antiretroviral therapy, cryptococcosis is still associated with high morbidity and mortality [1,3]. In Latin America, 3.7 million people lives with HIV, of which ~40% do not have access to antiretroviral therapy. In 2019 alone, there were 120,000 new HIV infections, representing an increase of 7% of new diagnoses annually compared with 2010 [4]. Although there are few reports regarding the incidence and prevalence of cryptococcosis in the region, studies from Brazil and Colombia have reported an average annual incidence from 2.4 to 4.5 cases of meningal cryptococcosis per million inhabitants, in the general population, and 3000 to 3300 cases per million inhabitants with HIV [5].
per million HIV-infected people [5,6]. In reports from Argentina, Colombia, Guatemala, Mexico, and Venezuela, cryptococcosis has had a prevalence from 10 to 76% among the most frequent mycosis [7–12]. In addition, the mortality ranges between 30 and 60% of cases, although, in Brazil, it has been reported to be as high as 73% [13]. Together, these data show that cryptococcosis is still an important health threat in Latin America.

For the last few decades, several widely used molecular methods have been applied worldwide to determine the genotypes of clinical, environmental, and veterinary isolates of the members of the Cryptococcus neoformans sensu lato and Cryptococcus gattii sensu lato species complexes, the etiological agents of cryptococcosis, to study their geographical distribution, molecular epidemiology, and population genetics, which have contributed to a deeper understanding of these deadly pathogens. Among such molecular techniques, PCR fingerprinting [14], amplified fragment length polymorphisms (AFLP) [15,16], microsatellite typing [17], restriction fragment length polymorphisms (RFLP) [18], and multilocus sequence typing (MLST) [19] have allowed for the identification of eight major molecular types within the species complexes globally: VNI (AFLP1) and VNII (AFLP1A/B) for C. neoformans var. grubii serotype A isolates; VIV (AFLP2) for C. neoformans var. neoformans serotype D isolates; VNIII (AFLP3) for hybrids between the serotypes A and D; and VGI (AFLP4), VGII (AFLP5), VGIII (AFLP6), and VGIV (AFLP7) for C. gattii serotypes B and C isolates. More recently, additional molecular types, represented by fewer isolates, have been described in more restricted geographical regions, such as the molecular type VNB in C. neoformans, which was initially reported in Botswana [20], and the molecular type VGV in C. gattii, reported among environmental isolates in the Central Zambezian Miombo Woodlands [21]. Lately, whole genome sequencing (WGS) [22,23], a more recently developed and increasingly more affordable molecular technique, has been applied not only to identify major molecular types, but also to provide information about the genomic diversity between the genotypes of both C. neoformans and C. gattii species complexes, providing a much higher resolution than MLST, and serving as a basis for population genetics studies rather than simple strain typing. Although, in 2015, there was a proposal for naming seven separate species among the cryptococcal molecular types, named C. neoformans for VNI, VNII, and VNB; C. deneoformans for VNIV; C. gattii for VGI; C. deuterogattii for VGII; C. bacillisporus for VGIII; C. tetragattii for VGIv; and C. decagattii for VGIv and VGIIc/AFLP10 [24], the terms “C. neoformans species complex” and “C. gattii species complex” will be used through this review, as a consensus on the nomenclature of the cryptococcal species has not yet been achieved [25] and most reviewed publications do not utilize the seven-species name system, but rather the molecular types.

The above-mentioned molecular methods have been essential tools to study the C. neoformans/C. gattii species complexes, giving foundations to better understand the differences in the geographical and environmental distribution, the host preference, virulence, clinical manifestations, and antifungal susceptibility of the isolates between major molecular types/species [26–30]. The aim of this review was thus to gather and analyze publicly available data on the molecular epidemiology of C. neoformans and C. gattii species complexes in Latin America, in order to enable a more complete picture of the distribution of the molecular types in the region, their diversity, and their antifungal susceptibility profiles, which in turn will contribute to the comprehension of the global structure of these pathogens.

2. Materials and Methods

Data were obtained from the previous revision on cryptococcosis in Latin America, published by two authors of the current review, covering publications dating from 1999 to mid-2017 [1]. In addition, a new literature search was undertaken comprising studies published from mid-2017 to December 2020, focusing on the molecular epidemiology of Cryptococcus and cryptococcosis in Latin America, including publications in English and Spanish from PubMed, SciELO, and Google databases. The literature search was based on the keywords “cryptococcus”, “cryptococcosis”, “molecular type”, “PCR fingerprinting”,
“AFLP”, “microsatellite typing”, “RFLP”, “MLST”, “WGS”, or “antifungal susceptibility”, in combination with the names of 20 Latin American countries, which participate in the Latin American Cryptococcal Study Group (Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Uruguay, and Venezuela). In addition, researchers from the Latin American Cryptococcal Study Group were contacted to request data from studies that have not been included in the above-mentioned public databases. All publications, in which the major molecular type, independently of the technique used, and/or data on MLST of the isolates were provided, were included in the review.

Data obtained from MLST typing, performed using the International Society of Human and Animal Mycology (ISHAM) consensus MLST scheme for \(C. neoformans \) and \(C. gattii \), which includes six genetic loci, \(CAP59 \), \(GPD1 \), \(LAC1 \), \(PLB1 \), \(SOD1 \), and \(URA5 \) genes, and the intergenic spacer region IGS1 [19], were gathered. Based on the obtained sequence data, a dendrogram, per species complex, showing the genetic relationship between the isolates of \(C. neoformans \) and \(C. gattii \) from Latin America was constructed with the program MEGA 7.0 [31], using maximum likelihood analysis of the seven concatenated loci. To estimate the genetic diversity of the \(C. neoformans \) and \(C. gattii \) populations, the Simpsons diversity index (\(D \)) was calculated per species complex, as well as for the source of the isolates, considering the number of sequence types (STs) found and the frequency of each ST. The range of \(D \) is from 0 to 1, where high scores (close to 1) indicate high diversity and low scores (close to 0) indicate low diversity [32].

Data on antifungal susceptibility testing were also gathered and analyzed. Independently of the methodology applied, values of the range and the geometric mean of minimal inhibitory concentrations (MICs) for amphotericin B, 5-fluorocytosine, fluconazole, itraconazole, voriconazole, and/or posaconazole were considered for the analysis, when these values were specified per molecular type. As there are no clinical breakpoints for \(Cryptococcus \) spp., the epidemiological cut-off value (ECV) >95% per molecular type and per antifungal drug was assessed, when available, to define if the isolates are distributed or not among the wild-type population [27,28] (Table S1).

Most antifungal susceptibility data included in this review were obtained using the microdilution method in RPMI broth according to the M27-A3 guideline of the Clinical and Laboratory Standards Institute (CLSI) [33]. However, data obtained by other methods, such as the European Committee on Antimicrobial Susceptibility Testing-Subcommittee on Antifungal Susceptibility Testing (EUCAST-AFST) method E.Def.7.2. [34], E-test strips (bioMerieux, Marcy l’Étoile, France), the Casitone broth microdilution method [35], Sensititre YeastOne plates (Thermo Scientific, Waltham, MA, USA), the Vitek-2 Compact system (bioMerieux, France), and disk diffusion (Cecon-Sensifungidisc, São Paulo, Brazil), have also been reported.

3. Results
3.1. \(C. neoformans \) VNI and \(C. gattii \) VGII Predominate in Latin America

To date, 106 publications have reported the major molecular type of 5686 isolates of \(C. neoformans \) and \(C. gattii \) from Latin America, identified mostly by RFLP (57.14%). From those, 65 publications were retrieved from the revision on cryptococcosis in Latin America and 41 were found afterwards [15,17,18,20,32,35–135]. Most publications were exclusive for one country; however, some other publications reported data from two or more countries. Overall, molecular type data were available from 15 of the 20 Latin American countries (Table 1). No molecular data of cryptococcal strains from the Dominican Republic, El Salvador, Haiti, Nicaragua, and Panama have yet been reported.
Table 1. Distribution of the major molecular types of Cryptococcus neoformans and Cryptococcus gattii species complexes isolates reported from Latin American countries.

Country [Ref]	n	Source	VNI	VNI	VNI	VNIV	VGI	VGII	VGIII	VGIV	Total
Brazil [18,20,36-92]	2762	Cli	1537	2	21	409	18	-	-	-	2078
		Env	365	16	23	7	242	-	-	-	654
		Vet	3	-	-	-	-	-	-	-	17
Colombia [18,32,93-109]	1436	Cli	396	3	6	12	4	-	2	-	539
		Env	686	6	-	4	107	11	897		
Argentina [18,20,110-119]	644	Cli	532	15	6	2	2	-	-	-	600
		Env	19	-	-	-	-	2	-	-	44
Mexico [18,32,120,121]	321	Cli	209	21	12	7	5	26	7	298	
		Env	18	-	-	-	-	5	-	-	23
Cuba [17,35,122-124]	247	Cli	141	-	36	-	-	1	-	-	178
		Env	68	-	-	-	-	-	-	-	1
Venezuela [18,32,125,126]	101	Cli	70	10	1	5	12	3	-	-	101
Peru [18,127,128]	85	Cli	64	16	2	2	1	-	-	-	85
Costa Rica [129]	36	Cli	22	11	-	2	-	-	1	36	
Ecuador [130,131]	28	Cli	27	-	-	1	-	-	-	28	
Chile [18,125,132,133]	20	Cli	4	3	3	5	-	-	-	15	
		Env	4	-	-	-	-	-	-	-	4
		Vet	-	-	-	-	-	-	-	-	1
Guatemala [18]	15	Cli	14	-	-	-	-	-	1	15	
Bolivia [134]	1	Cli	-	-	-	-	-	-	-	1	
Honduras [15]	1	Cli	-	-	-	1	-	-	-	1	
Paraguay [32]	1	Cli	-	-	-	-	-	1	-	1	
Uruguay [135]	1	Env	-	-	-	-	-	1	-	1	
			Cl	3022	186	49	64	60	492	93	3976
			Env	1160	22	1	23	34	350	90	1691
			Vet	3	1	14	1	1	-	19	
Total	4185	208	50	87	95	856	184	21	5686		

1 Six clinical and seven environmental VNB isolates are included. 2 Mating type a was reported among the isolates. 3 Pediatric cases were reported among the clinical isolates. Cli: clinical; Env: environmental; Vet: veterinary.

From the isolates, dating back to 1961 [18], 3976 were recovered from clinical specimens (69.93%), followed by 1691 environmental samples (29.74%) and 19 veterinary (0.33%) cases. From the clinical isolates, it was determined that the molecular type VNI, corresponding to C. neoformans var. grubii, serotype A, predominantly causes cryptococcosis in Latin America (76.01%), followed by C. gattii molecular type VGII (12.37%). In the environment, although with slightly different proportions, the molecular types VNI (68.60%) and VGII (20.70%) also predominate, with different reservoirs for each species complex. While C. neoformans
species complex is mostly recovered from avian excreta, decaying organic matter, and soil, C. gattii species complex is associated with diverse species of both native and foreign trees.

Clinical case reports were uncommon, comprising only 16 publications, describing four VGI, five VGII, and three VGIII C. gattii cases, as well as four VNI C. neoformans cases. From them, cryptococcosis occurred rarely in HIV-infected people, but rather in patients with other risk factors, such as renal transplant and non-Hodgkin’s lymphoma, as well as in immunocompetent hosts, including children. Apart from meningitis, bone marrow involvement, primary cutaneous cryptococcosis, and a tongue lesion were also reported [48,59,60,72,74,86,91,101,108,115,117,118,124,131,132,134].

Together with a review of cryptococcosis in children from Colombia, where the authors reported the molecular type of the isolates (29 VNI, 3 VNII, and 2 VGII) [97], one study from Brazil reported six apparently healthy children (up to 12 years old) and seven adolescents/young adults aged 13 to 19 years presenting with cryptococcal meningitis by C. gattii VGII, from which five cases (38.4%) were fatal [51]. In addition to those studies, three case reports, caused by C. gattii, have been published in Latin America with the molecular data of this mycosis in pediatric patients. One VGII case of a 5-year-old boy from Brazil [48], one VGIII case of a 7-year-old girl from Argentina [117], both with successful outcomes, and one fatal VGII case of a 10-year-old boy from Colombia [108]. Remarkably, the cases from Argentina and Colombia were from indigenous, otherwise healthy kids, who had central nervous system involvement.

From the less frequently recovered veterinary isolates, reported in two articles and eight case reports from Brazil, Cuba, and Chile, the molecular type VGII was predominant (73.68%), followed by VNI (15.79%), VGIII (5.26%), and VGI (5.26%) (Table 1). When stated, veterinary cases were from seven cats, five dogs, two goats, a guinea pig, and a cheetah held in a zoo [55,62,70,71,76,81,123,133]. The combined analysis of the molecular data also showed that only in Mexico have all eight major molecular types been reported, while in Brazil and Argentina, there are no reports of VGIV isolates, and in Colombia, VNIII has not been reported (Figure 1). However, in Brazil, 13 VNB isolates, previously thought to be exclusive from Botswana, have been reported not only from the environment [75], but also from clinical cases [85]. Also in Brazil, a new singular cluster, denominated as AFLP1C, representing a unique molecular type, was identified in 23 isolates [77]. In addition, apart from VNIII, which is the most common hybrid found in C. neoformans, other inter- and intra-specific hybrids have been reported in Latin America. Fifteen isolates described as VNII/VNIV hybrids were reported from Argentina, another isolate with the same genotype VNII/VNIV, two isolates VNI/VGII, and one isolate VNI/VNII from Brazil, as well as five isolates VNI/VNII and one isolate VNI/VGII from Colombia [85,119,136,137].

When stated, mating type alpha was the most common mating type in both C. neoformans and C. gattii isolates from Latin America. In the region, mating type a has been reported in C. neoformans in only two clinical VNI isolates from Brazil [53]. In contrast, in C. gattii, mating type a is slightly more common. In Colombia, 15 environmental VGII isolates, 1 VGI, and 12 VGII clinical isolates were mating type a [94,95,106], as well as 17 clinical and 3 environmental VGII isolates from Brazil [61,68,77], as well as 2 VGIII clinical isolates recovered in Mexico [32].
3.2. In Latin America, C. neoformans Species Complex Is Genetically Less Diverse than C. gattii Species Complex

Taking advantage of the data analysis, unique nomenclature, and interlaboratory comparability of MLST, it was possible to gather 367 MLST profiles of C. neoformans and 400 of C. gattii isolates from Latin America, reported in 26 publications [20,32,61,66,68,73,75,79,81,84,87,90,91,98,100,106,109,117,123,124,128,138–142]. MLST studies with clinical and environmental C. neoformans isolates have been reported from Brazil (77.11%), Peru (12.53%), Colombia (9.54%), and Argentina (0.82%), while MLST studies with clinical, environmental, and veterinary C. gattii isolates have been reported from Brazil (65.25%), Colombia (26.25%), Mexico (5%), Argentina (1%), Venezuela (1%), and Uruguay (0.75%), as well as Cuba, Guatemala, and Paraguay with one isolate each (0.25%).

From the MLST profiles, the isolates were more frequently VNI (93.73%) among C. neoformans and more frequently VGII (74.75%) among C. gattii. While the number of isolates of C. neoformans and C. gattii studied so far in Latin America by MLST differs only slightly (367 vs. 400), there is a considerable difference in the number of identified STs (41 vs. 149). Thus, the genetic diversity, as calculated with the Simpson’s diversity index (D), is clearly lower in C. neoformans compared with C. gattii (0.7104 vs. 0.9755). In addition, when analyzing the diversity of the isolates in both populations, depending on the source,
it is evident that, in *C. neoformans*, the environmental isolates are more diverse than the clinical isolates, while in *C. gattii*, not only the clinical, but also the veterinary isolates are more diverse than those recovered from the environment (Table 2).

Table 2. Genotypic diversity of the *Cryptococcus neoformans* and *Cryptococcus gattii* species complexes populations from Latin America, according to multilocus sequence typing (MLST).

Population Group	Species Complex	MT	Clinical	Environmental	Veterinary	Total
C. neoformans	VNI	262	76	76	344	
	VNB		5	5	5	
	VNII	12		12		
	VNIV	6		6		
	n of isolates	280	81	367		
	n of STs	34	16	41		
	\(D^1\)	0.6149	0.7247	0.7104		
C. gattii	VGI	28		1		
	VGII	207	82	10		
	VGIII	37	32	69		
	VGIV	1		1		
	n of isolates	273	116	11		
	n of STs	125	116	8		
	\(D^1\)	0.9806	0.9195	0.9273		

\(^1\) *D*: Simpsons diversity index. \(^2\) Six *C. neoformans* isolates were from unknown source. MT: molecular type.

From the 41 STs identified in *C. neoformans* species complex, 5 STs contained more than 75% of the isolates, which included both clinical and environmental samples. ST93 was the most frequent ST (52.04%), followed by ST77 (11.17%), ST2 (4.90%), ST5 (4.63%), and ST23 (3%) (Figure 2a). In contrast, from the 149 STs identified in *C. gattii* species complex, the 5 more frequent STs contained only 30.5% of the isolates. ST25 was the most common ST (9%), followed by ST20 (6.5%), ST7 (6%), ST79 (5.25%), and ST40 (3.75%). While ST25, ST20, ST7, and ST79 grouped clinical and environmental isolates, ST40 grouped only clinical isolates (Figure 2b). Of note, ST20 and ST7 correspond to the sub-types VGIIa and VGIIb, respectively, which were responsible for the Vancouver Island outbreak, which started in 1999 and is still ongoing [143]. In 11 veterinary cases caused by *C. gattii*, 8 STs were identified. From those, ST185 has been identified as well in human and environmental samples, ST182, ST248, and ST309 in human samples, but ST198, ST442, ST486, and ST489 are, so far, exclusively veterinary.
Figure 2. Dendrograms showing the genetic relationship of clinical (red), environmental (green), and veterinary (yellow) (a) Cryptococcus neoformans species complex (n = 367) and (b) Cryptococcus gattii species complex (n = 400) isolates from Latin America, according to multilocus sequence typing (MLST) data. The five most common sequence types, ST93, ST77, ST2, ST5, and ST23 for C. neoformans, and ST25, ST20, ST7, ST79, and ST40 for C. gattii, are indicated in each dendrogram. Isolates from an unknown source are indicated in grey.
3.3. Most Isolates of C. neoformans and C. gattii Species Complexes from Latin America Show a Wild-Type Antifungal Susceptibility; However, Non-Wild-Type VNI, VGI, VGII, and VGIII Isolates Have Also Been Identified

The susceptibility to the commonly used antifungal drugs has been determined in 570 cryptococcal isolates from Latin America, based on data gathered from 23 publications [17, 32, 52, 54, 58-60, 63, 65, 66, 72, 77, 79, 81, 85, 89-91, 116, 117, 123, 124, 134]. From the 570 isolates, all have data on antifungal susceptibility to fluconazole, 434 to amphotericin-B, 296 to itraconazole, 251 to voriconazole, 250 to 5-fluorocytosine, and 192 to posaconazole. In order of frequency, the isolates were VNI (58.42%), VGII (19.47%), VGIII (10%), VNIV (6.32%), VNII (2.81%), VGI (1.23), VNB (1.05%), and VNIII (0.70%) (Tables 3 and 4), recovered mainly from Brazil (65.79%), followed by Argentina (14.56%); Cuba (10%); Colombia (6.49%); Mexico (2.46%); and Bolivia, Guatemala, Paraguay, and Venezuela with one isolate each (0.18%).

Table 3. Minimum inhibitory concentrations of amphotericin-B and 5-fluorocytosine for Cryptococcus neoformans and Cryptococcus gattii species complexes isolates from Latin America, according to the molecular type. Non-wild-type minimum inhibitory concentrations are underlined.

MT	n	Range (µg/mL)	GM (µg/mL)	Range (µg/mL)	GM (µg/mL)	Ref.
VNI	99	0.016–0.125	0.099	0.25–8	2.519	[77]
	26	0.03–0.25	0.060			[79]
	18	0.03–1	-	0.125–4	-	[89]
	75	0.03–2	0.348			[116]
	19	0.125–0.25	-	0.5–8	-	[17]
	7	0.125–0.25	-			[65]
	1	0.125	-			[72]
	17	0.5–1	0.670	0.5–8	2.770	[58]
	1	0.5	-	2	-	[91]
VNII	2	0.12	0.120			[116]
VNIII	4	0.06–0.5	0.173			[116]
VGI	1	0.06	-	8	-	[60]
	4	0.125–0.5	0.290			[54]
	1	0.125	-	8	-	[123]
	1	0.125	-	0.5	-	[124]
VGII	4	0.03–0.125	0.060			[79]
	7	0.03–0.25	-			[90]
	8	0.03–0.5	0.105	0.5–2	0.771	[89]
	18	0.06–0.25	0.079	1–8	3.700	[66]
	50	0.125–0.5	0.390			[54]
	2	0.125	-	2–4	-	[81]
	1	0.19	-			[65]
	10	0.5–1	0.710	1–16	4.92	[58]
	1	0.5	-	8	-	[59]
VGIII	54	0.125–2	0.030	0.5–8	2.095	[32]
	1	0.125	-	4	-	[134]
	2	0.25	-			[117]

Methodology to determine antifungal susceptibility: 1 M27-A3 guidelines of the Clinical and Laboratory Standards Institute (CLSI), 2 E-test strips, 3 European Committee on Antimicrobial Susceptibility Testing-Subcommittee on Antifungal Susceptibility Testing (AFST-EUCAST) method E.Def.7.2., 4 Sensititre YeastOne plates, and 5 Vitek-2.

MT: molecular type. n: number of studied isolates. GM: geometric mean.
Table 4. Minimum inhibitory concentrations of azoles for *Cryptococcus neoformans* and *Cryptococcus gattii* species complexes isolates from Latin America, according to the molecular type. Non-wild-type minimum inhibitory concentrations are underlined.

MT	n	Range GM	Range GM	Range GM	Range GM	Ref.				
VNI	99	0.125–8	<0.016–0.25	0.026	<0.016–0.125	0.022	<0.016–0.125	0.027	[77] 1	
	75	0.125–32	2.971							
	19	0.25–8	<0.016–0.5	-	<0.016–0.25	-	0.016–0.125	-	[17] 1	
	51	0.25–16	7.22							
	18	0.5–16	0.06–0.25	-	0.03–1	-			[89] 1	
	17	1–16	4.34	0.03–0.25	0.09	0.06–0.5	0.28			[56] 1
	1	1	-						[91] 1	
	26	2–8	4.57	0.03–0.25	0.07					[79] 1
	7	2–48							[65] 2	
	19	4–>64	-						[63] 2	
	1	32	-						[72] 1	
VNB	6	4–8	6.86						[85] 1	
VNI	2	1–2	1.414						[116] 1	
	14	1–8	2.5						[85] 1	
VNIII	4	2–4	2.378						[116] 1	
VNIIV	36	0.125–64	-						[35] 1	
VGI	1	2	-						[123] 1	
	1	2	-	0.125	-	0.063	-	0.125	-	[124] 1
	4	4–8	5.3						[54] 2	
	1	8	-	0.25	-	0.5	-			[60] 1
VGII	18	0.5–16	2.0785	0.031–0.25	0.0994	0.031–0.25	0.0853	0.031–0.25	0.0853	[60] 1
	8	0.5–16	4	0.125–0.25	0.1777	0.0031–1	0.148			[89] 1
	7	1–8	-	0.03–0.125	-					[90] 1
	10	1–16	7.46	0.03–0.5	0.22	0.06–0.5	0.28			[58] 1
	50	1–64	12.2						[54] 1	
	2	4–16	1		0.12–1	-			[81] 1	
	10	4–64	25.82						[85] 1	
	4	8–32	19	0.125–0.5	0.29					[79] 1
	1	8	-	0.25	-	0.5	-			[59] 1
	1	24	-	0.5	-					[65] 3
VGIII	54	1–128	8.239	<0.015–0.125	0.061	<0.008–1	0.033	0.015–0.25	0.057	[32] 1
	2	4–16	0.125	0.06–0.125	-					[117] 2
	1	32	-	0.25	-	0.25	-	0.5		[134] 3

Methodology to determine antifungal susceptibility: 1 M27-A3 guidelines of the CLSI, 2 AFST-EUCAST method E.Def.7.2., 3 E-test strips, 4 Casitone broth microdilution method, 5 Sensititre YeastOne plates, and 6 Vitek-2. MT: molecular type. n: number of studied isolates. GM: geometric mean.

Although most cryptococcal isolates in Latin America are wild-type to all antifungal drugs, in *C. neoformans*, among the molecular type VNI, non-wild-type isolates to amphotericin-B [58,89,116] and fluconazole [58,63,65,72,85,89,116] have been reported in Brazil and Argentina, to itraconazole in Brazil and Cuba [17,65], and to voriconazole in Brazil [89]. From the fluconazole non-wild-type VNI isolates, one was a case recovered from an HIV-positive patient with relapsing/refractory cryptococcosis that became fluconazole non-susceptible after 26 months (MIC from 16 to 32 µg/mL) and long-term use of
liposomal amphotericin-B [72]. Moreover, among the VNI isolates, even though the MIC was not reported, resistance to amphotericin-B and to itraconazole was found in three and six isolates, respectively, belonging to the ST93, the most common MLST genotype in Latin America [75]. By disk diffusion, five and one VNI isolates from Brazil were reported to be intermediate (I) and resistant (R) to fluconazole, respectively (inhibition haloes diameters of I: 19–14 mm and R: <14 mm) [52].

Similarly, in C. gattii, non-wild-type VGII isolates to fluconazole [54,85], itraconazole [81], and voriconazole [81,89] have been reported in Brazil. Among the molecular type VGIII, fluconazole non-wild-type isolates have been described in Argentina, Colombia, Cuba, and Mexico [32,117,134]. In addition, although there are no data on ECV for amphotericin-B in VGIII, one isolate from Colombia and one from Mexico, of this molecular type, have shown high MICs to this antifungal drug (2 and 1 µg/mL, respectively) [32]. In one clinical case from Brazil [60] and one veterinary case from Cuba [123], both caused by C. gattii molecular type VGI, 5-fluorocytosine non-wild-type isolates were reported as well. By disk diffusion, two VGII isolates from Brazil were reported to be resistant to fluconazole (inhibition halo diameter <14 mm) [52].

4. Discussion

Analysis of more than 5000 cryptococcal isolates recovered in Latin American countries, which have data on the major molecular type, allowed to establish a precise description of the molecular epidemiology of the C. neoformans/C. gattii species complexes in the region, together with the genetic diversity and antifungal susceptibility of the isolates. Regardless of the country, in Latin America, C. neoformans VNI is not only the main etiologic agent of cryptococcosis (~76%) but is also the most recovered molecular type from environmental reservoirs (~69%), as it occurs globally [26]. Cryptococcosis by C. gattii, which is significantly less frequent in the world (<20%) [26], is also less frequent in Latin America, and it is most commonly caused by the molecular type VGII (~13%), which differs from other regions, as VGI isolates prevail in Asia, Europe, and Oceania, and VGIV in Africa [30]. Although VGII also predominates among the C. gattii isolates causing disease in North America, as well as in the environment, its prevalence refers mostly to the VGIIa subtype, which is influenced by the great effort made to understand the cause of the Vancouver Island outbreak and its clonal expansion into the USA [144,145].

In Latin America, the incidence of cryptococcal meningitis by C. neoformans, which mirrors the high number of HIV infections in the region, is not reducing because there is still a significant percentage of patients with no access to antiretroviral therapy or, despite availability, there may be problems of adherence and retention in HIV care, as reported elsewhere [2]. The number of people with HIV/AIDS who are undiagnosed, lost to follow-up, and living in resource-limited areas leads in addition to a late or incorrect diagnosis, which worsens prognosis and increases mortality [1]. Cryptococcosis by C. gattii, on the other hand, is also an important public health problem in Latin America, as it affects mostly HIV-seronegative individuals, apparently immunocompetent and, although rare, children. Notably, pediatric cryptococcosis has been reported in 32 and 29% of all cases in certain areas of Brazil and Colombia, respectively, where there is a high prevalence of C. gattii VGII infection in immunocompetent patients, which represents a unique prevalence pattern of this mycosis in children in the world [51,96,97,146–148]. Together, this reaffirms the endemic occurrence of primary cryptococcosis and early cryptococcal infection in some Latin American countries, although genetic determinants, which can be risk factors for the affected patients, have not been fully studied.

In the environment in Latin America, C. neoformans prevails in soil enriched with excreta, mostly from pigeons and other birds, such as captive birds, as reported globally [26]. However, after the first report on the isolation of C. gattii from the Australian native tree Eucalyptus camaldulensis [149], both cryptococcal species, although mostly C. gattii, have been successfully recovered from detritus, plant material, tree hollows, decayed woods, and even houses built with wood of a large variety of trees in Latin America, including native trees
such as Acacia visco, Cassia grandis, Hymenaea courbaril, Moquilea tomentosa, Peltophorum dubium, Plathymenia reticulata, Tabebuia avellanedae, Tabebuia guayacan, Tabebuia rosea, Tipuana tipu, and Roystonia regia, as well as introduced trees such as Casuarina equisetifolia, Cedrus deodara, Corymbia ficifolia, Croton spp., Cupressus sempervirens, Delonix regia, E. camaldulensis, Eucalyptus tereticornis, Eucalyptus spp., Ficus spp., Grevillea robusta, Phoenix spp., Senna siamea, Terminalia catappa, and Ulmus campestris, among others [1,150–152]. Remarkably, as Latin American countries have a wide diversity of climates, landscapes, and ecosystems, both C. neoformans and C. gattii have been recovered from rainforest to desertic and dry environments, from urban and rural cities to native forest, and from sea-level to altitudes exceeding 2700 m [152–154]. Knowing the saprophytic source of cryptococcal species, the most recovered molecular types from clinical samples, VNI and VGII, also prevail in the environment in Latin America.

Even though cryptococcosis can occur in a very wide range of terrestrial and marine animals, including domestic, free-living, and wildlife, veterinary cases are more likely to go unrecognized, undiagnosed, and unreported compared with clinical cases [155]. In a greater extent than human cryptococcosis, most countries lack reliable information on the prevalence and incidence of animal cryptococcosis, which is not a reportable disease; hence, epidemiological investigations are further hampered. Yet, despite the few reports of cryptococcal infection in animals in Latin America, it is of note that C. gattii VGII is reported more frequently than C. neoformans VNI in causing veterinary cases, which is opposite to the prevalence of these two molecular types in human and environmental samples. However, owing to the small number of isolates analyzed, it is not possible to make assumptions about this discrepancy. As in clinical cases, a correlation between veterinary cases and the geographical distribution of C. neoformans and C. gattii has been reported in Australia [156], Vancouver Island (Canada) [143,145], and the USA [157,158]. The occurrence of veterinary cases in Latin America should be nevertheless emphasized, because, while cryptococcosis is not transmissible between animals or humans, animals act as crucial sentinels for human cryptococcal infection [155].

In Latin America, except for certain cases in Colombia, Brazil, and Mexico, clinical, environmental, and veterinary cryptococcal isolates are almost always mating type alpha, regardless of species complex and molecular type, which obeys the distribution of mating types globally [26,30]. The rare finding of mating type α in C. neoformans in Latin America may explain the extensive clonality, low diversity (D = 0.7104), and overrepresentation of certain genotypes (STs) in this population, as it may not be sexually recombining in the region. The presence of both mating types in a population, which may lead to sexual reproduction, has been described, for instance, in the highly diverse C. neoformans population in Africa, where 22% of the VNB and 1 to 4% of the VNI isolates are mating type α, reproduce sexually in the laboratory, and generate fertile progeny [73,159,160]. Similarly, the higher frequency of mating type α C. gattii isolates in Latin America may explain the higher diversity of this population (D = 0.9755) and may indicate that there is genetic recombination, which has already been described in the VGII and VGIII populations by MLST and WGS studies [32,68,135]. Sexual reproduction of cryptococcal species in the environment, however, remains a mystery.

The analysis of the antifungal susceptibility profiles of members of the C. neoformans/ C. gattii species complexes in Latin America showed that most VNI, VGI, VGII, and VGIII isolates distribute among the wild-type populations of each molecular type per drug. However, the presence of non-wild-type isolates to more than one antifungal drug, which has been reported from various countries in the region (Tables 3 and 4), emphasizes the importance of carrying out antifungal susceptibility testing. Amphotericin-B and fluconazole non-wild-type VNI isolates, as well as fluconazole non-wild-type VGII isolates, are of concern, not only because these molecular types are the most common in the region, but also because these antifungals are the drugs of choice for the induction phase of the therapy in most Latin American countries [1]. Susceptibility profiles, although they are not routinely determined in cryptococcal isolates in the region, can be utilized to choose
substitute treatments in patients failing to respond to first-line therapy [3,161]. For instance, voriconazole, posaconazole, and isavuconazole, which have shown to have a better in vitro activity against C. gattii than fluconazole, could represent valuable alternatives for the treatment of patients with fluconazole-resistant strains [161]. Even though there are no data on clinical breakpoints, the determination of MIC values is also recommended to monitor epidemiological trends [27,28]. As such, further research on antifungal susceptibility in C. neoformans and C. gattii species complexes is necessary to establish the relationship between MIC, drug dosing, and clinical outcome.

5. Conclusions

The increasing application of genotyping methods to study the etiological agents of cryptococcosis in Latin America has generated a large amount of data that have greatly contributed to the global study of the members of the C. neoformans/C. gattii species complexes, in order to discover their population structure; to recognize their great inter- and intra-species genetic diversity; to understand how these pathogenic yeasts are spreading around the world; and to better define the disease aspects of cryptococcosis, an important mycosis in the region. These results indicate that the identification of cryptococcal species, genotypes, and region of origin may be important when deciding on treatment options for cryptococcosis and to forecast the expansion of the molecular types/species complexes and possible reasons for their emergence and expansion in other regions of the world. Constant clinical and veterinary surveillance, and additional environmental sampling, together with the application of more advanced molecular techniques, such as WGS of a larger set of isolates, are needed to further expand our knowledge on the correlation of the genomic features of the cryptococcal species with their complex biological traits that make them successful pathogens.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/jof7040282/s1, Table S1: Data on the epidemiological cut-off values (ECVs) >95% per drug and molecular type as reported elsewhere.

Author Contributions: Conceptualization, C.F., W.M. and E.C.; methodology, C.F.; software, C.F.; validation, C.F., W.M. and E.C.; formal analysis, C.F.; investigation, C.F.; resources, C.F., W.M. and E.C.; data curation, C.F.; writing—original draft preparation, C.F.; writing—review and editing, C.F., W.M. and E.C.; visualization, C.F.; supervision, W.M. and E.C.; project administration, C.F.; funding acquisition, C.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding. The APC was funded by Universidad del Rosario, Dirección de Investigación e Innovación.

Data Availability Statement: The data supporting this review are from previously reported studies and datasets, which have been cited. The processed data are available from the corresponding author upon request.

Acknowledgments: To the Latin American Cryptococcal Study group, Argentina (Alicia Arechavala, Hospital de Infecciosas FJ Muñiz, Buenos Aires; Susana Córdoba, Mariana Mazza, Constanza Taverna, Guillermina Isla, Instituto Nacional de Enfermedades Infecciosas ANLIS Dr Carlos G Malbrán, Buenos Aires; Laura Chiapello, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET); Brazil (Kennio Ferreira-Paim, Mario Leôn Silva Vergara, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais; Marcia S. Melhem, Maria Walderez Szeszs, Marilena dos Anjos Martins, Lucas Xavier Bonfetti, Rogério Antonio de Oliveira, Lidiane de Oliveira, Dayane Christine Silva Santos, Instituto Adolfo Lutz, Secretaria da Saúde, São Paulo; Fabio Brito-Santos, Marcia S. Lazera, Luciana Trilles, Bodo Manke, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro); Chile (María Cristina Díaz, Programa de Microbiología y Micología, Facultad de Medicina, Universidad de Chile, Santiago); Colombia (Patricia Escandón, Instituto Nacional de Salud, Bogotá; María Clara Noguera, Universidad Metropolitana, Barranquilla; Jairo Lizarazo, Universidad de Pamplona, Hospital Universitario Erasmo Meoz, Internal Medicine Department, Cúcuta); Cuba (Maria Teresa Illnait-Zaragoz, Tropical Medicine Institute Pedro Kouri, Bacteriology-Mycology Department Research, Diagnosis and Reference Centre, Havana; Carlos Manuel Fernández Andreu, Gerardo Félix
Martínez Machín, Mexico (Laura Rosio Castaño, Universidad Nacional Autónoma de México); Peru (Beatriz Bustamante, Attending Physician, Hospital Cayetano Heredia, Lima, Perú; Clinical Mycology Laboratory, Instituto de Medicina Tropical Alexander von Humboldt-Cayetano Heredia University, Lima); Venezuela (Maribel Dolande, Giuseppe Ferrara, Instituto Nacional de Higiene Rafael Rangel, Ciudad Universitaria, Universidad Central de Venezuela, Caracas).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Firacative, C.; Lizarazo, J.; Illnait-Zaragozi, M.T.; Castaneda, E. The status of cryptococcosis in Latin America. *Mem. Inst. Oswaldo Cruz* 2018, 113, e170554. [CrossRef]

2. Williamson, P.R.; Jarvis, J.N.; Panackal, A.A.; Fisher, M.C.; Molloy, S.F.; Loyse, A.; Harrison, T.S. Cryptococcal meningitis: Epidemiology, immunology, diagnosis and therapy. *Nat. Rev. Neurol.* 2017, 13, 13–24. [CrossRef]

3. Mourad, A.; Perfect, J.R. The war on cryptococcosis: A Review of the antifungal arsenal. *Mem. Inst. Oswaldo Cruz* 2018, 113, e170391. [CrossRef] [PubMed]

4. UNAIDS. Available online: https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf (accessed on 13 January 2021).

5. Leimann, B.C.; Koifman, R.J. Cryptococcal meningitis in Rio de Janeiro State, Brazil, 1994-2004. *Cad. Saúde Pública* 2008, 24, 2582–2592. [CrossRef] [PubMed]

6. Escandon, P.; Lizarazo, J.; Agudelo, C.I.; Castaneda, E. Cryptococcosis in Colombia: Compilation and Analysis of Data from Laboratory-Based Surveillance. *J. Fungi* 2018, 4, 32. [CrossRef] [PubMed]

7. Barriga, G.; Asumir, C.; Mercado, N.F. Actualidades y tendencias en la etiología y epidemiología de las infecciones micóticas en pacientes con VIH/sida: Un estudio de casos en Colombia. *Infectio 2011*, 15, 92–97. [CrossRef]

8. Castro-Jiménez, M.A.; Rey-Benito, J.R.; Duque-Beltrán, S.; Pinilla-Guevara, C.A.; Bello-Pieruccini, S.; Agudelo-Mahecha, C.M.; Álvarez-Moneno, C.A. Diagnóstico de micosis oportunistas en pacientes con VIH/sida: Un estudio de casos en Colombia. *Rev. Médica del Inst. Mex. del Seguro Soc.* 2016, 54, 581–587.

9. Davel, G.; Canteros, C.E. Epidemiological status of mycoses in the Argentine Republic. *Rev. Argent. Microbiol.* 2007, 39, 28–33.

10. Gaona-Flores, V.A.; Campos-Navarro, L.A.; Cervantes-Tovar, R.M.; Alcalá-Martínez, E. The epidemiology of fungemia in an infectious diseases hospital in Mexico city: A 10-year retrospective review. *Med. Mycol.* 2016, 54, 600–604. [CrossRef]

11. Méndez-Tobar, L.J.; Mejía-Mercado, J.A.; Manzano-Gayosso, P.; Hernandez-Hernandez, F.; Lopez-Martinez, R.; Silva-Gonzalez, I. Frequency of invasive fungal infections in a Mexican High-Speciality Hospital. Experience of 21 years. *Rev. Médica del Inst. Mex. del Seguro Soc.* 2016, 54, 581–587.

12. Reviáinka, V.; Panizo, M.; Dolande, M.; Selgrad, S. Diagnóstico inmunológico de las micosis sistémicas durante cinco años 2002–2006. *Rev. Soc. Ven Microbiol.* 2007, 27, 112–119.

13. Moreira Tde, A.; Ferreira, M.S.; Ribas, R.M.; Borges, A.S. Cryptococcosis: Clinical epidemiological laboratory study and fungi varieties in 96 patients. *Rev. Soc. Bras. Med. Trop.* 2006, 39, 255–258. [CrossRef]

14. Meyer, W.; Mitchell, T.G. Polymerase chain reaction fingerprinting in fungi using single primers specific to minisatellites and simple repetitive DNA sequences: Strain variation in *Cryptococcus neoformans*. *Electrophoresis* 1995, 16, 1648–1656. [CrossRef] [PubMed]

15. Boekhout, T.; Theelen, B.; Diaz, M.; Fell, J.W.; Hop, W.C.; Abeln, E.C.; Dromer, F.; Meyer, W. Hybrid genotypes in the pathogenic yeast *Cryptococcus gattii*. *Microbiology* 2001, 147, 891–907. [CrossRef] [PubMed]

16. Hagen, F.; Illnait-Zaragozi, M.T.; Bartlett, K.H.; Swinne, D.; Geertsen, E.; Klaassen, C.H.; Boekhout, T.; Meis, J.F. In vitro antifungal susceptibilities and amplified fragment length polymorphism genotyping of a worldwide collection of 350 clinical, veterinary, and environmental *Cryptococcus gattii* isolates. *Antimicrob. Agents Chemother.* 2010, 54, 5139–5145. [CrossRef] [PubMed]

17. Illnait-Zaragozi, M.T.; Martinez-Machín, G.F.; Fernandez-Andreu, C.M.; Hagen, F.; Boekhout, T.; Klaassen, C.H.; Meis, J.F. Microsatellite typing and susceptibilities of serial *Cryptococcus neoformans* isolates from Cuban patients with recurrent cryptococcal meningitis. *BMC Infect. Dis.* 2010, 10, 1–7. [CrossRef] [PubMed]

18. Meyer, W.; Castañeda, A.; Jackson, S.; Huynh, M.; Castañeda, E. The IberoAmerican Cryptococcal Study Group Molecular typing of IberoAmerican Cryptococcus neoformans isolates. *Emerg. Infect. Dis.* 2003, 9, 189–195. [CrossRef] [PubMed]

19. Meyer, W.; Aanensen, D.M.; Boekhout, T.; Cogliati, M.; Diaz, M.R.; Esposto, M.C.; Fisher, M.; Gilgado, F.; Hagen, F.; Koacharen, S.; et al. Consensus multiplex-locus sequence typing scheme for *Cryptococcus neoformans* and *Cryptococcus gattii*. *Med. Mycol.* 2009, 47, 561–570. [CrossRef] [PubMed]

20. Litvintseva, A.P.; Thakur, R.; Vilgalys, R.; Mitchell, T.G. Multilocus sequence typing reveals three genetic subpopulations of *Cryptococcus neoformans* var. *grubii* (serotype A), including a unique population in Botswana. *Genetics* 2006, 172, 2223–2238. [CrossRef] [PubMed]

21. Farrer, R.A.; Chang, M.; Davis, M.J.; van Dorp, L.; Yang, D.H.; Shea, T.; Sewell, T.R.; Meyer, W.; Balloux, F.; Edwards, H.M.; et al. A new lineage of *Cryptococcus gattii* (VGG) discovered in the Central Zambezian Miombo Woodlands. *MBio* 2019, 10. [CrossRef]

22. Loftus, B.J.; Fung, E.; Roncaglia, P.; Rowley, D.; Amedeo, P.; Bruno, D.; Vamathavan, J.; Miranda, M.; Anderson, I.J.; Fraser, J.A.; et al. The genome of the basidiomycetous yeast and human pathogen *Cryptococcus neoformans*. *Science* 2005, 307, 1321–1324. [CrossRef] [PubMed]
45. Trilles, L.; Lazera Mdos, S.; Wanke, B.; Oliveira, R.V.; Barbosa, G.G.; Nishikawa, M.M.; Morales, B.P.; Meyer, W. Regional pattern of the molecular types of Cryptococcus neoformans and Cryptococcus gattii in Brazil. Mem. Inst. Oswaldo Cruz 2008, 103, 455–462. [CrossRef] [PubMed]

46. Costa Selo, P.; Lazera Mdos, S.; Santos, W.R.; Morales, B.P.; Bezerra, C.C.; Nishikawa, M.M.; Barbosa, G.G.; Trilles, L.; Nascimento, J.L.; Wanke, B. First isolation of Cryptococcus gattii molecular type VGII and Cryptococcus neoformans molecular type VNI from environmental sources in the city of Belem, Para, Brazil. Mem. Inst. Oswaldo Cruz 2009, 104, 662–664. [CrossRef] [PubMed]

47. Andrade-Silva, L.; Ferreira-Paim, K.; Silva-Vergara, M.L.; Pedrosa, A.L. Molecular characterization and evaluation of virulence factors of Cryptococcus laurentii and Cryptococcus neoformans strains isolated from external hospital areas. Fungal Biol. 2010, 114, 438–445. [CrossRef]

48. Pinto Junior, V.L.; Pone, M.V.; Pone, S.M.; Campos, J.M.; Garrido, J.R.; de Barros, A.C.; Trilles, L.; Barbosa, G.G.; Morales, B.P.; Bezerra Cde, C.; et al. Cryptococcus gattii molecular type VGII as agent of meningitis in a healthy child in Rio de Janeiro, Brazil: Report of an autochthonous case. Rev. Soc. Bras. Med. Trop. 2010, 43, 746–748. [CrossRef]

49. Souza, L.K.; Souza Junior, A.H.; Costa, C.R.; Faganello, J.; Vainstein, M.H.; Chagas, A.L.; Souza, A.C.; Silva, M.R. Molecular typing and antifungal susceptibility of clinical and environmental Cryptococcus neoformans species complex isolates in Goiania, Brazil. Mycoses 2010, 53, 62–67. [CrossRef]

50. Ferreira-Paim, K.; Andrade-Silva, L.; Mora, D.J.; Pedrosa, A.L.; Rodrigues, V.; Silva-Vergara, M.L. Genotyping of Cryptococcus neoformans isolated from captive birds in Uberaba, Minas Gerais, Brazil. Mycoses 2011, 54, e294–e300. [CrossRef]

51. Martins, L.M.; Wanke, B.; Lazera Mdos, S.; Trilles, L.; Barbosa, G.G.; Macedo, R.C.; Cavalcanti Mdo, A.; Eulalio, K.D.; Castro, J.A.; Silva, A.S.; et al. Genotypes of Cryptococcus gattii and Cryptococcus neoformans as agents of endemic cryptococcosis in Teresina, Piauí (northeastern Brazil). Mem. Inst. Oswaldo Cruz 2011, 106, 725–730. [CrossRef]

52. da Silva, B.K.; Freire, A.K.; Bentes Ados, S.; Sampaio Ide, L.; Santos, L.O.; Dos Santos, M.S.; De Souza, J.V. Characterization of clinical isolates of the Cryptococcus neoformans-Cryptococcus gattii species complex from the Amazonas State in Brazil. Rev. Iberoam. Micol. 2012, 29, 40–43. [CrossRef]

53. Freire, A.K.; dos Santos Bentes, A.; de Lima Sampaio, I.; Matsuura, A.B.; Ogusuku, M.I.; Salem, J.I.; Wanke, B.; de Souza, J.V. Molecular characterisation of the causative agents of Cryptococcosis in patients of a tertiary healthcare facility in the state of Amazonas-Brazil. Mycoses 2012, 55, e145–e150. [CrossRef] [PubMed]

54. Silva, D.C.; Martins, M.A.; Szeszs, M.W.; Bonfietti, L.X.; Matos, D.; Melhem, M.S. Susceptibility to antifungal agents and genotypes of Brazilian clinical and environmental Cryptococcus gattii strains. Diagn. Microbiol. Infect. Dis. 2012, 72, 332–339. [CrossRef] [PubMed]

55. Cardoso, P.H.; Baroni Fde, A.; Silva, E.G.; Nascimento, D.C.; Martins Mdos, A.; Szeszs, W.; Paula, C.R. Feline nasal granuloma due to Cryptococcus gattii type VGII. Mycopathologia 2013, 176, 303–307. [CrossRef]

56. Tsuji, R.A.; Paniago, A.M.; Lima Junior, M.S.; Alencar Dde, S.; Spositto, F.L.; Nunes Mde, O.; Trilles, L.; Chang, M.R. First environmental isolation of Cryptococcus gattii J.L.; Wanke, B. First isolation of Cryptococcus neoformans in indoor dust from typical wooden houses in the deep Amazonas of the Rio Negro basin. PLoS ONE 2015, 10, e0115866. [CrossRef]

57. Anzai, M.C.; Lazera Mdos, S.; Wanke, B.; Trilles, L.; Dutra, V.; de Paula, D.A.; Nakazato, L.; Takahara, D.T.; Simi, W.B.; Hahn, R.C. Cryptococcus gattii in a Plathymenia reticulata hollow in Cuiaba, Mato Grosso, Brazil. Mycoses 2014, 57, 414–418. [CrossRef]

58. Favalessa, O.C.; de Paula, D.A.; Dutra, V.; Nakazato, L.; Tadano, T.; Lazera Mdos, S.; Wanke, B.; Trilles, L.; Valderez Szeszs, M.; Silva, D.; et al. Molecular typing and in vitro antifungal susceptibility of Cryptococcus spp from patients in Midwest Brazil. J. Infect. Dev. Ctries. 2014, 8, 1037–1043. [CrossRef]

59. Favalessa, O.C.; Lazera Mdos, S.; Wanke, B.; Trilles, L.; Takahara, D.T.; Tadano, T.; Dias, L.B.; Vieira, A.C.; Novack, G.V.; Hahn, R.C. Fatal Cryptococcus gattii genotype AFLP6/VGII infection in a HIV-negative patient: Case report and a literature review. Mycoses 2014, 57, 639–643. [CrossRef]

60. Nascimento, E.; Bonifacio da Silva, M.E.; Martinez, R.; von Zeska Kress, M.R. Primary cutaneous cryptococcosis in an immunocompetent patient due to Cryptococcus gattii molecular type VGII in Brazil: A case report and review of literature. Mycoses 2014, 57, 442–447. [CrossRef]

61. Brito-Santos, F.; Barbosa, G.G.; Trilles, L.; Nishikawa, M.M.; Wanke, B.; Meyer, W.; Carvalho-Costa, F.A.; Lazera Mdos, S. Environmental isolation of Cryptococcus gattii VGII from indoor dust from typical wooden houses in the deep Amazonas of the Rio Negro basin. PLoS ONE 2015, 10, e0115866. [CrossRef]

62. Headley, S.A.; Di Santis, G.W.; de Alcantara, B.K.; Costa, T.C.; da Silva, E.O.; Pretto-Giordano, L.G.; Gomes, L.A.; Alifieri, A.A.; Bracarense, A.P. Cryptococcus gattii-induced infections in dogs from Southern Brazil. Mycopathologia 2015, 180, 265–275. [CrossRef] [PubMed]

63. Castro e Silva, D.M.; Santos, D.C.; Martins, M.A.; Oliveira, L.; Szeszs, M.W.; Melhem, M.S. First isolation of Cryptococcus neoformans genotype VNI MAT-alpha from wood inside hollow trunks of Hymenaea courbaril. Med. Mycol. 2016, 54, 97–102. [CrossRef] [PubMed]

64. Figueiredo, T.P.; Lucas, R.C.; Cazzaniga, R.A.; Franca, C.N.; Segato, F.; Taglialegna, R.; Maffei, C.M. Antifungal susceptibility testing and genotyping characterization of Cryptococcus neoformans and gattii isolates from HIV-infected patients of Ribeirão Preto, São Paulo, Brazil. Rev. Inst. Med. Trop. São Paulo 2016, 58, 69. [CrossRef] [PubMed]
Alves, G.S.; Freire, A.K.; Bentes Ados, S.; Pinheiro, J.F.; de Souza, J.V.; Wanke, B.; Matsuura, T.; Jackisch-Matsuura, A.B. Molecular typing of environmental *Cryptococcus neoformans*/*C. gattii* species complex isolates from Manaus, Amazonas, Brazil. *Mycoses* 2016, 59, 509–515. [CrossRef] [PubMed]

Herkert, P.F.; Hagen, F.; de Oliveira Salvador, G.L.; Gomes, R.R.; Ferreira, M.S.; Vicente, V.A.; Muro, M.D.; Pinheiro, R.L.; Meis, J.F.; Queiroz-Telles, F. Molecular characterisation and antifungal susceptibility of clinical *Cryptococcus deuterogattii* (AFLP6/VGII) isolates from Southern Brazil. *Eur. J. Clin. Microbiol. Infect. Dis.* 2016, 35, 1803–1810. [CrossRef] [PubMed]

Lomes, N.R.; Melhem, M.S.; Szszns, M.W.; Martins Mdos, A.; Buccheri, R. Cryptococcosis in non-HIV/non-transplant patients: A Brazilian case series. *Med. Mycol.* 2016, 54, 669–676. [CrossRef]

Souto, A.C.; Bonfietti, L.X.; Ferreira-Paim, K.; Trilles, L.; Martins, M.; Ribeiro-Alves, M.; Pham, C.D.; Martins, L.; Dos Santos, W.; Chang, M.; et al. Population genetic analysis reveals a high genetic diversity in the Brazilian *Cryptococcus gattii* VGII population and shifts the global origin from the Amazon rainforest to the semi-arid desert in the Northeast of Brazil. *PLoS Negl. Trop. Dis.* 2016, 10, e0004885. [CrossRef]

Aguiar, P.; Pedroso, R.D.S.; Borges, A.S.; Moreira, T.A.; Araujo, L.B.; Roder, D. The epidemiology of cryptococcosis and the characterization of *Cryptococcus neoformans* isolated in a Brazilian University Hospital. *Rev. Inst. Med. Trop. São Paulo* 2017, 59, e13. [CrossRef]

da Silva, E.C.; Guerra, J.M.; Torres, L.N.; Lacerda, A.M.; Gomes, R.G.; Rodrigues, D.M.; Resio, R.A.; Melville, P.A.; Martin, C.C.; Benesi, F.J.; et al. *Cryptococcus gattii* molecular type VGII infection associated with lung disease in a goat. *BMC Vet. Res.* 2017, 13, 41. [CrossRef]

de Abreu, D.P.B.; Machado, C.H.; Makita, M.T.; Botelho, C.F.M.; Oliveira, F.G.; da Veiga, C.C.P.; Martins, M.D.A.; Baroni, F.A. Intestinal Lesion in a Dog Due to *Cryptococcus gattii* Type VGII and Review of Published Cases of Canine Gastrointestinal Cryptococcosis. *MycoPathologia* 2017, 182, 597–602. [CrossRef]

de Carvalho Santana, R.; Schiave, L.A.; Dos Santos Quaglio, A.S.; de Gaitani, C.M.; Martinez, R. Fluconazole non-susceptible *Cryptococcus neoformans*, relapsing/refractory cryptococcosis and long-term use of liposomal amphotericin B in an AIDS patient. *MycoPathologia* 2017, 182, 855–861. [CrossRef]

Ferreira-Paim, K.; Andrade-Silva, L.; Fonseca, F.M.; Ferreira, T.B.; Mora, D.J.; Andrade-Silva, J.; Khan, A.; Dao, A.; Reis, E.C.; Almeida, M.T.; et al. MLST-based population genetic analysis in a global context reveals clonality amongst *Cryptococcus neoformans* var. *grubii* VNI isolates from HIV patients in Southeastern Brazil. *PLoS Negl. Trop. Dis.* 2017, 11, e0005223. [CrossRef] [PubMed]

Maciel, R.F.; Ferreira, L.S.; Wirth, F.; Rosa, P.D.; Aves, M.; Turra, E.; Goldani, L.Z. Corticosteroids for the management of severe intracranial hypertension in meningocencephalitis caused by *Cryptococcus gattii*: A case report and review. *J. Mycol. Med.* 2017, 27, 109–112. [CrossRef] [PubMed]

Andrade-Silva, L.E.; Ferreira-Paim, K.; Ferreira, T.B.; Vilas-Boas, A.; Mora, D.J.; Manzano, V.M.; Fonseca, F.M.; Buosi, K.; Andrade-Silva, J.; Prudente, B.D.S.; et al. Genotypic analysis of clinical and environmental *Cryptococcus neoformans* isolates from Brazil reveals the presence of VNB isolates and a correlation with biological factors. *PLoS ONE* 2018, 13, e0193237. [CrossRef] [PubMed]

Bianchi, R.M.; Santana de Cecco, B.; Schwerts, C.I.; Panzieria, W.; Pinto de Andrade, C.; Spananamberg, A.; Ravazzolo, A.P.; Ferreiro, L.; Driemeier, D. Pneumonia by *Cryptococcus neoformans* in a goat in the Southern region of Brazil. *Cienc. Rural.* 2018, 48. [CrossRef]

Herkert, P.F.; Meis, J.F.; Lucca de Oliveira Salvador, G.; Rodrigues Gomes, R.; Aparecida Vicente, V.; Dominguez Muro, M.; Lameira Pinheiro, R.; Lopes Colombo, A.; Vargas Schwarzbold, A.; Sakuma de Oliveira, C.; et al. Molecular characterization and antifungal susceptibility testing of *Cryptococcus neoformans* sensu stricto from southern Brazil. *J. Med. Microbiol.* 2018, 67, 560–569. [CrossRef]

Nunes, J.O.; Tsujisaki, R.A.S.; Nunes, M.O.; Lima, G.M.E.; Paniago, A.M.M.; Pontes, E.; Chang, M.R. Cryptococcal meningoencephalitis: 17 years of experience in a State of the Brazilian Pantanal. *Rev. Soc. Bras. Med. Trop.* 2018, 51, 485–492. [CrossRef]

Rocha, D.F.S.; Cruz, K.S.; Santos, C.; Menescal, L.S.F.; Neto, J.; Pinheiro, S.B.; Silva, L.M.; Trilles, L.; Braga de Souza, J.V. MLST reveals a clonal population structure for *Cryptococcus neoformans* molecular type VNI isolates from clinical sources in Amazonas, Northern-Brazil. *PLoS ONE* 2018, 13, e0197841. [CrossRef] [PubMed]

Wirth, F.; Azevedo, M.I.; Goldani, L.Z. Molecular types of *Cryptococcus* species isolated from patients with cryptococcal meningitis in a Brazilian tertiary care hospital. *Braz. J. Infect. Dis.* 2018, 22, 495–498. [CrossRef] [PubMed]

Brito-Santos, F.; Reis, R.S.; Coelho, R.A.; Almeida-Paes, R.; Pereira, S.A.; Trilles, L.; Meyer, W.; Wanke, B.; Lazerza, M.D.S.; Gremiao, I.D.F. Cryptococcosis due to *Cryptococcus gattii* VGII in southeast Brazil: The Host-Pathogen Interaction. *Braz. J. Microbiol.* 2019, 50, 495–500. [CrossRef] [PubMed]

Maruyama, F.H.; de Paula, D.A.J.; Menezes, I.G.; Favalessa, O.C.; Hahn, R.C.; de Almeida, A.; Sousa, V.R.F.; Nakazato, L.; Dutra, V. Genetic diversity of the *Cryptococcus gattii* species complex in Mato Grosso State, Brazil. *MycoPathologia* 2019, 184, 45–51. [CrossRef]
85. Ponzio, V.; Chen, Y.; Rodrigues, A.M.; Tenor, J.L.; Toffaletti, D.L.; Medina-Pestana, J.O.; Colombo, A.L.; Perfect, J.R. Genotypic diversity and clinical outcome of cryptococcosis in renal transplant recipients in Brazil. Emerg. Microbes Infect. 2019, 8, 119–129. [CrossRef]

86. Vechi, H.T.; Theodor, R.C.; de Oliveira, A.L.; Gomes, R.; Soares, R.D.A.; Freire, M.G.; Bay, M.B. Invasive fungal infection by Cryptococcus neoformans var. grubii with bone marrow and meningeal involvement in a HIV-infected patient: A case report. BMC Infect. Dis. 2019, 19, 220. [CrossRef]

87. Brito-Santos, F.; Trilles, L.; Firacative, C.; Wanke, B.; Carvalho-Costa, F.A.; Nishikawa, M.M.; Campos, J.P.; Junqueira, A.C.V.; Souza, A.C.; Lafer, M.D.S.; et al. Indoor dust as a source of virulent strains of the agents of cryptococcosis in the Rio Negro Micro-Region of the Brazilian Amazon. Microorganisms 2020, 8, 682. [CrossRef] [PubMed]

88. da Silva, L.B.; Bock, D.; Klafke, G.B.; Sanchhone, K.O.; Basso, R.P.; Benelli, J.L.; Poester, V.R.; da Silva, F.A.; Trilles, L.; Severo, C.B.; et al. Cryptococcosis in HIV/AIDS patients from Southern Brazil: Still a major problem. J. Mycol. Med. 2020, 30, 101044. [CrossRef]

89. Grizante Barioto, P.H.; Tonani, L.; Cocito, T.A.; Martínez, R.; Nascimento, E.; von Zeska Kress, M.R. Molecular typing, in vitro susceptibility and virulence of Cryptococcus neoformans/Cryptococcus gattii species complex clinical isolates from south-eastern Brazil. Mycoses 2020, 63, 1341–1351. [CrossRef]

90. Pinheiro, S.B.; Sousa, E.S.; Cortez, A.C.A.; da Silva Rocha, D.F.; Menescal, L.S.F.; Chagas, V.S.; Gomez, A.S.P.; Cruz, K.S.; Santos, L.O.; Alves, M.J.; et al. Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. Braz. J. Microbiol. 2020. [CrossRef]

91. Silva, L.M.; Ferreira, W.A.; Filho, R.; Lacerda, M.V.G.; Ferreira, G.M.A.; Saunier, M.N.; Macedo, M.M.; Cristo, D.A.; Alves, M.J.; Jackisch-Matsuura, A.B.; et al. New ST623 of Cryptococcus neoformans isolated from a patient with non-Hodgkin’s lymphoma in the Brazilian Amazon. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 20. [CrossRef] [PubMed]

92. Vilas-Boas, A.M.; Andrade-Silva, L.E.; Ferreira-Paim, K.; Mora, D.J.; Ferreira, T.B.; Santos, D.A.; Borges, A.S.; Melhem, M.S.C.; Silva-Vergara, M.L. High genetic variability of clinical and environmental Cryptococcus gattii isolates from Brazil. Med. Mycol. 2020, 58, 1126–1137. [CrossRef]

93. Escandón, P.; Sánchez, A.; Martínez, M.; Meyer, W.; Castañeda, E. Molecular epidemiology of clinical and environmental isolates of the Cryptococcus neoformans species complex reveals a high genetic diversity and the presence of the molecular type VGII mating type in Colombia. FEMS Yeast Res. 2006, 6, 625–635. [CrossRef] [PubMed]

94. Escandón, P.; Sánchez, A.; Firacative, C.; Castañeda, E. Isolation of Cryptococcus gattii molecular type VGIII, from Corymbia ficifolia detritus in Colombia. Med. Mycol. 2010, 48, 679–678. [CrossRef] [PubMed]

95. Firacative, C.; Torres, G.; Rodríguez, M.C.; Escandón, P. First environmental isolation of Cryptococcus gattii serotype B, from Cucuta, Colombia. Biomedica 2011, 31, 118–123. [CrossRef] [PubMed]

96. Lizarazo, J.; Chaves, O.; Peña, Y.; Escandón, P.; Agudelo, C.I.; Castañeda, E. Comparación de los hallazgos clínicos y de supervivencia entre pacientes VIH positivos y VIH negativos con criptococosis meníngea en un hospital del tercer nivel. Acta Médica. Colomb. 2012, 37, 49–61. [CrossRef]

97. Lizarazo, J.; Escandón, P.; Agudelo, C.I.; Castañeda, E. Cryptococcosis in Colombian children and literature review. Mem. Inst. Oswaldo Cruz 2014, 109, 797–804. [CrossRef] [PubMed]

98. Lizarazo, J.; Escandón, P.; Agudelo, C.I.; Firacative, C.; Meyer, W.; Castañeda, E. Retrospective study of the epidemiology and clinical manifestations of Cryptococcus gattii infections in Colombia from 1997–2011. PLoS Negl. Trop. Dis. 2014, 8, e3272. [CrossRef]

99. Noguera, M.C.; Escandón, P.; Castañeda, E. Cryptococcosis in Atlantico, Colombia: An approximation of the prevalence of this mycosis and the distribution of the etiological agent in the environment. Rev. Soc. Bras. Med. Trop. 2015, 48, 580–586. [CrossRef]

100. Cogliati, M.; Zani, A.; Rickerts, V.; McCormick, I.; Desnos-Ollivier, M.; Velagrakì, A.; Escandón, P.; Ichikawa, T.; Ikeda, R.; Bienvenu, A.L.; et al. Multilocus sequence typing analysis reveals that Cryptococcus neoformans var. neoformans is a recombinant population. Fungal Genet. Biol. 2016, 87, 22–29. [CrossRef]

101. Noguera, M.C.; Escandón, P.; Castañeda, E. Fatal Cryptococcus gattii genotype VGI infection in an HIV-positive patient in Barranquilla, Colombia. Rev. Inst. Med. Trop. São Paulo 2017, 59, e34. [CrossRef]

102. Vélez, N.; Escandón, P. Report on novel environmental niches for Cryptococcus neoformans and Cryptococcus gattii in Colombia: Tabebuia guayacan and Rayosetona regia. Med. Mycol. 2017, 55, 794–797. [CrossRef]

103. Anacona, C.; González, C.F.E.; Vásquez-A., L.R.; Escandón, P. First isolation and molecular characterization of Cryptococcus neoformans var. grubii in excreta of birds in the urban perimeter of the Municipality of Popayan, Colombia. Rev. Iberoam. Microl. 2018, 35, 123–129. [CrossRef] [PubMed]

104. Virviescas, B.C.; Aragón, M.; Vásquez, A.L.; González, E.; Escandón, P.; Castro, H. Molecular characterization of Cryptococcus neoformans recovered from pigeon droppings in Rivera and Neiva, Colombia. Rev. MVZ Córdoba 2018, 23, 6991–6997. [CrossRef]

105. Angarita-Sánchez, A.; Cárdenas-Sierra, D.; Parra-Giraldo, C.; Díaz-Carvajal, C.; Escandón-Hernández, P. Recuperación de Cryptococcus neoformans y C. gattii ambientales y su asociación con aislados clínicos en Cúcuta, Colombia. Rev. MVZ Córdoba 2019, 24, 7137–7144. [CrossRef]

106. Firacative, C.; Torres, G.; Meyer, W.; Escandón, P. Clonal dispersal of Cryptococcus gattii VGII in an endemic region of cryptococcosis in Colombia. J. Fungi 2019, 5, 32. [CrossRef] [PubMed]
107. Noguera, M.C.; Escandón, P.; Arévalo, M.; García, Y.; Suárez, L.E.; Castañeda, E. Prevalence of cryptococcosis in Atlántico, department of Colombia assessed with an active epidemiological search. Rev. Soc. Bras. Med. Trop. 2019, 52, e20180194. [CrossRef]

108. Noguera, M.C.; Escandón, P.; Arévalo, M.; Piedrahita, J.; Castañeda, E. Fatal neurococcidioidomycosis in a Colombian undergraduate patient. J. Infect. Dev. Ctries. 2019, 13, 1072–1075. [CrossRef]

109. Velez, N.; Escandon, P. Multilocus sequence typing (MLST) of clinical and environmental isolates of Cryptococcus neoformans and Cryptococcus gattii in six departments of Colombia reveals high genetic diversity. Rev. Soc. Bras. Med. Trop. 2020, 53, e20190422. [CrossRef]

110. Cattana, M.E.; Sosa Mde, L.; Fernandez, M.S.; Rojas, F.D.; Mangiaterra, M.; Giusiano, G. [Genotypes and epidemiology of clinical isolates of Cryptococcus neoformans/Cryptococcus gattii species complex from Corrientes, Argentina]. Rev. Argent. Microbiol. 2013, 45, 89–92.

111. Olivares, L.R.; Martinez, K.M.; Cruz, R.M.; Rivera, M.A.; Meyer, W.; Espinosa, R.A.; Martinez, R.L.; Santos, G.M. Genotyping of Cryptococcus neoformans in a pediatric patient in Argentina. Rev. Iberoam. Micr. 2019, 52, 183–188. [CrossRef]

112. Arenas, L.R.; Martinez, K.M.; Cruz, R.M.; Rivera, M.A.; Meyer, W.; Espinosa, R.A.; Martinez, R.L.; Santos, G.M. Genetic relatedness of Cryptococcus neoformans species complex from Northeast Mexico. Folia Microbiol. 2016, 61, 51–56. [CrossRef] [PubMed]

113. Illicito-Zaragozi, M.T.; Martinez-Machin, G.F.; Fernandez-Andreu, C.M.; Boekhout, T.; Meis, J.F.; Kaassen, C.H. Microsatellite typing of clinical isolates of Cryptococcus neoformans/Cryptococcus gattii species complex from Northeast Mexico. Folia Microbiol. 2016, 61, 51–56. [CrossRef] [PubMed]

114. Illicito-Zaragozi, M.T.; Martinez-Machin, G.F.; Fernandez-Andreu, C.M.; Boekhout, T.; Meis, J.F. Reactivation of a Cryptococcus gattii infection in a cheetah (Acinonyx jubatus) held in the National Zoo, Havana, Cuba. Mycoses 2011, 54, e889–e892. [CrossRef]

115. Illicito-Zaragozi, M.T.; Ortega-Gonzalez, L.M.; Hagen, F.; Martinez-Machin, G.F.; Meis, J.F. Fatal Cryptococcus gattii genotype AFLP infection in an immunocompetent Cuban patient. Med. Mycol. Case Rep. 2013, 2, 48–51. [CrossRef] [PubMed]

116. Calvo, B.M.; Colombo, A.L.; Fischman, O.; Santiago, A.; Thompson, L.; Lazera, M.; Telles, F.; Fukushima, K.; Nishimura, K.; Tanaka, R.; et al. Antifungal susceptibilities, varieties, and electrophoretic karyotypes of clinical isolates of Cryptococcus neoformans from Brazil, Chile, and Venezuela. J. Clin. Microbiol. 2001, 39, 2348–2350. [CrossRef]

117. Ferrara, G.; Panizo, M.M.; Urdaneta, E.; Alarcón, V.; García, N.; Moreno, X.; Capote, A.M.; Reviakina, V.; Doleande, M. Characterization by PCR-RFLP of the Cryptococcus neoformans and Cryptococcus gattii species complex from Venezuela. Investig. Clin. 2018, 59, 28–40. [CrossRef]

118. Bejar, V.; Tello, M.; García, R.; Guevara, J.M.; Gonzales, S.; Vergaray, G.; Valencia, E.; Abanto, E.; Ortega-Loayza, A.G.; Hagen, F.; et al. Molecular characterization and antifungal susceptibility of Cryptococcus neoformans strains collected from a single institution in Lima, Peru. Rev. Iberoam. Micr. 2015, 32, 88–92. [CrossRef] [PubMed]

119. van de Wiele, N.; Neyra, E.; Firacre, C.; Gilgado, F.; Serena, C.; Bustamante, B.; Meyer, W. Molecular epidemiology reveals low genetic diversity among Cryptococcus neoformans isolates from people living with HIV in Lima, Peru, during the Pre-HAART era. Pathogens 2020, 9, 665. [CrossRef]

120. Mata-Delgado, C.; Lozada-Alvarado, S.; Gross, N.T.; Jaikel-Viquez, D. Caracterización fenotípica y genotípica de aislamientos clínicos de los complejos de especies Cryptococcus neoformans y Cryptococcus gattii en Costa Rica. Rev. Panam. Enferm. Infect. 2019, 2, 58–63.
130. Sánchez, S.; Zambrano, D.; García, M.; Bedoya, C.; Fernández, C.; Illnait-Zaragozi, M.T. Caracterización molecular de los aislamientos de Cryptococcus neoformans de pacientes con HIV, Guayaquil, Ecuador. Biomedica 2017, 37, 425–430. [CrossRef]

131. Parra-Vera, H.J.; Espinoza, W.A.; Godoy-Martínez, P.; Silva-Rojas, G.A.; Aguilar-Buele, E.A.; Farfán-Can, G.G.; Buele, C.D. Primer reporte de Cryptococcus gattii en Ecuador. Revista Científica INSPILIP 2019, 3, 1–9.

132. Solar, S.; Díaz, V.; Rosas, R.; Valenzuela, S.; Pires, Y.; Díaz, M.; Noriega, L.; Porte, L.; Weitzel, T.; Thompson, L. Infección de sistema nervioso central por Cryptococcus gattii en paciente inmunocompetente: Desafíos diagnósticos y terapéuticos en un Centro Terciario de Referencia de Paciente Internacional en Santiago de Chile. INFOCUS 2015, 4, 116.

133. Vieille, P.; Cruz, R.; Leon, P.; Caceres, N.; Giusiano. G. Isolation of Cryptococcus gattii VGIII from feline nasal discharge. Med. Mycol. Case Rep. 2018, 22, 55–57. [CrossRef]

134. Thompson, L.; Porte, L.; Díaz, V.; Díaz, M.C.; Solar, S.; Valenzuela, P.; Norley, N.; Pires, Y.; Carreno, F.; Valenzuela, S.; et al. Cryptococcus bacillisporus (VGIII) meningoencephalitis acquired in Santa Cruz, Bolivia. J. Fungi 2021, 7, 55. [CrossRef] [PubMed]

135. Engelfilhler, D.M.; Hicks, N.D.; Gillece, J.D.; Roe, C.C.; Schupp, J.M.; Driebe, E.M.; Gilgado, F.; Carriconde, F.; Trilles, L.; Firacative, C.; et al. Cryptococcus gattii in North American Pacific Northwest: Whole-population genome analysis provides insights into species evolution and dispersal. MBio 2014, 5, e01464-14. [CrossRef] [PubMed]

136. Aminnejad, M.; Cogliati, M.; Duan, S.; Arabatzis, M.; Tintelnot, K.; Castaneda, E.; Lazera, M.; Velegraki, A.; Ellis, D.; Sorrell, T.C.; et al. Identification and characterization of VNI/VNII and novel VNII/VNIV hybrids and impact of hybridization on virulence and antifungal susceptibility within the C. neoformans/C. gattii species complex. PLoS ONE 2016, 11, e0163955. [CrossRef] [PubMed]

137. Aminnejad, M.; Diaz, M.; Araratiz, M.; Castañeda, E.; Lazera, M.; Velegraki, A.; Marriotte, D.; Sorrell, T.C.; Meyer, W. Identification of novel hybrids between Cryptococcus neoformans var. grubii VNI and Cryptococcus gattii VGII. Mycopathologia 2012, 173, 337–346. [CrossRef] [PubMed]

138. Velez, N.; Alvarado, M.; Parra-Giraldo, C.M.; Sanchez-Quitian, Z.A.; Escandon, P.; Castaneda, E. Genotypic diversity is independent of pathogenicity in Colombian strains of Cryptococcus gattii and Cryptococcus gattii in Galleria mellonella. J. Fungi 2018, 4, 82. [CrossRef] [PubMed]

139. Walraven, C.J.; Gerstein, W.; Hardison, S.E.; Wormley, F.; Lockhart, S.R.; Harris, J.R.; Fothergill, A.; Wickes, B.; Gober-Wilcox, J.; et al. Fatal disseminated Cryptococcus gattii infection in New Mexico. PLOS ONE 2011, 6, e28625. [CrossRef]

140. Firacative, C.; Trilles, L.; Meyer, W. MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS ONE 2012, 7, e37566. [CrossRef]

141. Hagen, F.; Colom, M.F.; Swanne, D.; Tintelnot, K.; Iatta, R.; Montagna, M.T.; Torres-Rodriguez, J.M.; Cogliati, M.; Velegraki, A.; Burggraf, A.; et al. Autochthonous and dormant Cryptococcus gattii infections in Europe. Emerg. Infect. Dis. 2012, 18, 1618–1624. [CrossRef]

142. Barcellos, VA.; Martins, L.M.S.; Fontes, A.C.L.; Reuwsaat, J.C.V.; Burggraaf, A.; et al. Autochthonous and dormant Cryptococcus gattii infections in Europe. Emerg. Infect. Dis. 2012, 18, 1618–1624. [CrossRef]

143. Kid, S.E.; Hagen, F.; Freels, R.L.; Huynh, M.; Bartlett, K.H.; Frye, M.; MacDougall, L.; Boekhout, T.; Kwon-Chung, K.J.; Meyer, W. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc. Natl. Acad. Sci. USA 2004, 101, 17258–17263. [CrossRef]

144. Centers for Disease Control and Prevention. Emergence of Cryptococcus gattii-Pacific Northwest, 2004–2010. MMWR Morb. Mortal. Wkly. Rep. 2010, 59, 856–868. [CrossRef]

145. Bartlett, K.H.; Cheng, P.Y.; Duncan, C.; Galanis, E.; Hoang, L.; Kidd, S.; Lee, M.K.; Lester, S.; MacDougall, L.; Mak, S.; et al. A decade of experience with Cryptococcus gattii in British Columbia. Mycopathologia 2012, 173, 311–319. [CrossRef] [PubMed]

146. Severo, C.B.; Xavier, M.O.; Gazzoni, A.F.; Severo, L.C. Cryptococcosis in children. Paediatr. Respir. Rev. 2009, 10, 166–171. [CrossRef] [PubMed]

147. Darze, C.; Lucena, R.; Gomes, I.; Melo, A. [The clinical laboratory characteristics of 104 cases of cryptococcal meningoencephalitis]. Rev. Soc. Bras. Med. Trop. 2000, 33, 20–26. [CrossRef]

148. Correa Mdo, P.; Oliveira, E.C.; Duarte, R.R.; Pardal, P.P.; Oliveira Fde, M.; Severo, L.C. Cryptococcosis in children in the State of Para, Brazil. Rev. Soc. Bras. Med. Trop. 2003, 36, 505–508. [CrossRef]

149. Ellis, D.H.; Pfeiffer, T.J. Natural habitat of Cryptococcus neoformans var. gattii. J. Clin. Microbiol. 1990, 28, 1642–1644. [CrossRef]

150. Lazera, M.S.; Pires, F.D.; Camillo-Coura, L.; Nishikawa, M.M.; Bezerra, C.C.; Trilles, L.; Wanke, B. Natural habitat of Cryptococcus neoformans var. neoformans in decaying wood forming hollows in living trees. J. Med. Vet. Mycol. 1996, 34, 127–131. [CrossRef] [PubMed]

151. Lazera, M.S.; Cavalcanti, M.A.; Trilles, L.; Nishikawa, M.M.; Wanke, B. Cryptococcus neoformans var. gattii-evidence for a natural habitat related to decaying wood in a potterry tree hollow. Med. Mycol. 1998, 36, 119–122. [CrossRef]

152. Mitchell, T.G.; Castañeda, E.; Nielsen, K.; Wanke, B.; Lazera, M.S. Environmental Niches for Cryptococcus Neoformans and Cryptococcus gattii. In Cryptococcus: From Human Pathogen to Model Yeast; Heitman, J., Kozel, T.R., Kwon-Chung, J.K., Perfect, J.R., Casadevall, A., Eds.; ASM Press: Washington, DC, USA, 2010.

153. Granados, D.P.; Castañeda, E. Influence of climatic conditions on the isolation of members of the Cryptococcus neoformans species complex from trees in Colombia from 1992–2004. FEMS Yeast Res. 2006, 6, 636–644. [CrossRef] [PubMed]
154. Escandón, P.; Quintero, E.; Granados, D.; Huerfano, S.; Ruiz, A.; Castañeda, E. [Isolation of Cryptococcus gattii serotype B from detritus of Eucalyptus trees in Colombia]. *Biomedica* 2005, 25, 390–397. [CrossRef]

155. Malik, R.; Krockenberger, M.B.; O’Brien, C.R.; Carter, D.; Meyer, W.; Canfield, P.J. Veterinary Insights into Cryptococcosis Caused by *Cryptococcus neoformans* and *Cryptococcus gattii*. In *Cryptococcus: From Human Pathogen to Model Yeast*; Heitman, J., Kozel, T.R., Kwon-Chung, K.J., Perfect, J.R., Eds.; American Society for Microbiology: Herndon, VA, USA, 2010; pp. 489–504.

156. Krockenberger, M.; Stalder, K.; Malik, R.; Canfield, P. Cryptococcosis in Australian Wildlife. *Microbiol. Aust.* 2005, 26, 69–73. [CrossRef]

157. Lockhart, S.R.; Iqbal, N.; Harris, J.R.; Grossman, N.T.; DeBess, E.; Wohrle, R.; Marsden-Haug, N.; Vugia, D.J. *Cryptococcus gattii* in the United States: Genotypic diversity of human and veterinary isolates. *PLoS ONE* 2013, 8, e74737. [CrossRef]

158. Singer, L.M.; Meyer, W.; Firacative, C.; Thompson, G.R., 3rd; Samitz, E.; Sykes, J.E. Antifungal drug susceptibility and phylogenetic diversity among *Cryptococcus* isolates from dogs and cats in North America. *J. Clin. Microbiol.* 2014, 52, 2061–2070. [CrossRef]

159. Litvintseva, A.P.; Marra, R.E.; Nielsen, K.; Heitman, J.; Vilgalys, R.; Mitchell, T.G. Evidence of sexual recombination among *Cryptococcus neoformans* serotype A isolates in sub-Saharan Africa. *Eukaryot. Cell* 2003, 2, 1162–1168. [CrossRef] [PubMed]

160. Litvintseva, A.P.; Carbone, I.; Rossouw, J.; Thakur, R.; Govender, N.P.; Mitchell, T.G. Evidence that the human pathogenic fungus *Cryptococcus neoformans* var. grubii may have evolved in Africa. *PLoS ONE* 2011, 6, e19688. [CrossRef]

161. Chen, S.C.; Meyer, W.; Sorrell, T.C. *Cryptococcus gattii* infections. *Clin. Microbiol. Rev.* 2014, 27, 980–1024. [CrossRef]