Molecular Cytogenetic Characterization and Fusarium Head Blight Resistance of Five Wheat-Thinopyrum intermedium Partial Amphiploids

Hui Wang
Harbin Normal University

Shuwei Cheng
Harbin Normal University

Yue Shi
Harbin Normal University

Shuxin Zhang
Harbin Normal University

Wei Yan
Harbin Normal University

Weifu Song
hei long jiang nong ye ke xue yuan: Heilongjiang Academy of Agricultural Sciences

Xuefeng Yang
hei long jiang nong ye ke xue yuan: Heilongjiang Academy of Agricultural Sciences

Qingjie Song
hei long jiang nong ye ke xue yuan: Heilongjiang Academy of Agricultural Sciences

Bo Jang
Harbin Normal University

Xiaoyue Qi
Harbin Normal University

Xinling Li
Harbin Normal University

Bernd Friebe
Kansas State University

Yanming Zhang (yanmingz@hrbnu.edu.cn)
Harbin Normal University https://orcid.org/0000-0002-7483-8311

Research

Keywords: Thinopyrum intermedium, Common Partial amphiploids, Fusarium head blight, In situ hybridization
Abstract

Background: Partial amphiploids created by crossing octoploid tritelytrigia (2n=8x=56, AABBDEEE) and Thinopyrum intermedium (2n=6x=42, StStJJJS J) are important intermediates in wheat breeding because of their resistance to major wheat diseases. We examined the chromosome compositions of five wheat-Th. intermedium partial amphiploids using GISH and multicolor-FISH.

Results: The result revealed that five lines had 10-14 J-genome chromosomes from Th. intermedium and 42 common wheat chromosomes, using the J-genomic DNA from Th. bessarabicum as GISH probe and the oligo probes pAs1-1, pAs1-3, AFA-4, (GAA) 10, and pSc119.2-1 as FISH probe. Five lines resembled their parent octoploid tritelytrigia (2n=8x=56, AABBDEEE) but had higher protein contents. Protein contents of two lines HS2-2 and HS2-5 were up to more than 20%. Evaluation of Fusarium head blight (FHB) resistance revealed that the percent of symptomatic spikelets (PSS) of these lines were below 30%. Lines HS2-2, HS2-4, HS2-5, and HS2-16 were less than 20%. Line HS2-5 with 14 J-genome chromosomes from Th. intermedium showed the best disease resistance, with PSS values of 10.8% and 16.6% in 2016 and 2017, respectively.

Conclusions: New wheat-Th. intermedium amphiploids with the J-genome chromosomes were identified and can be considered as a valuable source of FHB resistance in wheat breeding.

Background

Common wheat (Triticum aestivum L, 2n=6x=42, AABBDD) is represented by a narrow germplasm base, which causes vulnerability to biotic and abiotic stresses (Sears 1981; Jiang et al. 1993; Friebe et al. 1996; Oliver et al. 2006). This narrow gene pool minimizes opportunities for developing genetic resistance to diseases. However, wild relatives of wheat provide a valuable reservoir of genes for cultivar improvement via wide hybridization (Wang et al. 2003; Zhang et al. 2017). The wheatgrass, Th. intermedium (Host) Barkworth and D. R. Dewey (2n=6x=42) [syn. Agropyron intermedium (Host) Beauvoir, or Elytrigia intermedia (Host) Nevski, 2n=6x=42 StStJJJS J], is a perennial autoallo-hexaploid species that is an important source of genetic variability for improving cultivated wheat. It has been used extensively for hybridization with bread wheat and durum wheat, and numerous useful genes have been transferred to wheat. Many derivatives have been produced from wheat-Th. intermedium hybrids, such as octoploid and hexaploid partial amphiploids and chromosome addition, substitution and translocation lines (Chang et al. 2011; Wang et al. 2016). Th. intermedium provides resistance against a wide spectrum of fungal pathogens (wheat leaf rust, stripe rust, stem rust, powdery mildew and eyespot; immunity to smut, leaf blight, root rot) and barley yellow dwarf virus and stripe mosaic viruses (Friebe et al. 1996; Li and Wang 2009; Li et al. 2012; Zeng et al. 2013; Danilova et al. 2017; Cseh et al. 2019). Additionally, Th. intermedium is one of the most advanced examples of a recently domesticated perennial grain crop (DeHaan et al. 2018). At present, numerous intergeneric hybrids and cytogenetic stocks have been developed from wheat-Th. intermedium crosses, including partial amphiploids (Fedak and Han 2005; Sun
Fusarium head blight (FHB), caused mainly by the fungus *Fusarium graminearum* Schwabe, is a destructive disease of wheat and poses a serious threat to the health of consumers of wheat products (McMullen et al. 1997; Bai and Shaner 2004). Genetic studies in wheat have identified more than 200 useful loci for improvement of complex traits, such as FHB. Unfortunately, many of them remain unused or under-utilized in plant breeding programs mainly because of the complex nature of resistance (Buerstmayr et al. 2010; Brar et al. 2019). Extensive efforts have been made to utilize host resistance for managing this disease. At present, the most effective and widely used QTL for FHB resistance is located on chromosome 3BS of the Chinese wheat varieties Sumai 3 and Wangshuibai (Anderson et al. 2001; Zhang et al. 2004; Jia et al. 2018), which have been recently further investigated and several additional QTL enhancing the resistance were mapped (Lin et al. 2004). Among the QTL identified for resistance to FHB, only six have been formally designated, i.e., *Fhb1* derived from Sumai 3 (Cuthbert et al. 2006), *Fhb2* from Sumai 3 (Cuthbert et al. 2007), *Fhb3* from *Leymus racemosus* (Qi et al. 2008), *Fhb4* from Wangshuibai (Xue et al. 2010), *Fhb5* from Wangshuibai and Sumai 3 (Xue et al. 2011), *Fhb6* from *Elymus tsukushiensis* (Cainong et al. 2015), and *Fhb7* from *Thinopyrum ponticum* (Guo et al. 2015).

Recent investigations of several other wild relatives of wheat, such as diploid wheatgrass *Leymus racemosus*, *Th. intermedium*, and tetraploid wheatgrass *Th. junceiforme*, have been shown to be highly resistant to FHB (Chen et al. 2005; Becher et al. 2013; Kalih et al. 2014;). Additionally, some wheat-wild species, including accessions of the St genome of *Th. intermedium* and the E genome of *Th. elongatum*, have been shown highly resistant to FHB, making these species the most successful examples for introgression of elite genes from wild relatives for wheat improvement (Jauhar et al. 2009; Scoles et al. 2009; Zeng et al. 2013). Using sequence information obtained from the cloned gene, Rawat et al. (2016) studied the origin of *Fhb1* in wheat and related species, and sequenced *Fhb1* gene from a large set of diploid A-genome, S-genome and D-genome accessions. Using sequence data from *Th. elongatum*, Wang et al. (2020) mapped *Fhb7* and located it to a 245-kb genomic region. Thus, *Fhb7* resistance differs from *Fhb1* resistance, which depends on a reduction of pathogen growth in spikes, although both confer durable resistance.

Wheat-*Thinopyrum* partial amphiploids play an important role in the transfer of disease-resistant genes from wheatgrass species into common wheat (Li et al. 2003; Li and Wang 2009). To date, a number of wheat-*Th. intermedium* partial amphiploids have been developed, such as Zhong 1 to Zhong 5 (Sun et al. 1981), Otrastsyuskaya (OT), TE-3, TAI8335 (Fedak et al. 2000; Han et al. 2004; Yang et al. 2006;), TE253 and TE257 (Bao et al. 2014). The present study focused on the development of five wheat-*Th. intermedium* partial amphiploids by crossing octoploid tritylirrigia \(2n=8x=56,\) AABBDDEE with *Th. intermedium* and characterized their FHB resistance and genomic constitutions by means of genomic *in situ* hybridization (GISH) and multicolor fluorescence *in situ* hybridization (mcFISH).

Results
GISH and mcFISH analysis

Chromosome counts indicated that lines HS2-2, HS2-4, and HS2-5 had 56 chromosomes, and lines HS2-14 and HS2-16 had 54 chromosomes (Table 1). GISH analysis using *Th. intermedium* genomic DNA as a probe and common wheat genomic DNA as a blocker revealed that lines HS2-2, HS2-4, and HS2-5 had 14 *Th. intermedium* chromosomes and 42 wheat chromosomes. Lines HS2-14 and HS2-16 had 12 *Th. intermedium* chromosomes and 42 wheat chromosomes. In order to further distinguish the composition of them, both J-genomic DNA from *Th. bessarabicum* and multiplex oligo probes were used with common wheat Chinese Spring as a blocker in the *in situ* hybridization analysis. Based on the signal patterns and signal density produced by each oligo, A and D genome signal is often red or green dot at the arm and terminal of chromosome, B genome centromere usually appears a lot of green dot, so we can distinguish wheat genomes (Wang et al. 2017 and Du et al. 2017).

GISH analysis of line HS2-2 revealed that 10 chromosomes from *Th. intermedium* displayed a light-green fluorescence signals over most of their lengths except for the terminal and centromeric regions with the J-genome signals (Fig. 1a), and four chromosomes with no signals of J-genome and oligo-probes were St- or J^S-genome chromosomes from *Th. intermedium* (Fig. 1b). Line HS2-4 with the similar probe pattern of HS2-2 also had 10 chromosomes from *Th. intermedium* with light-green fluorescence signals as the J-genome (Fig. 1c), and four chromosomes with no signals of J-genome and oligo-probes were St- or J^S-genome chromosomes from *Th. intermedium* (Fig. 1d). Line HS2-5 had 14 J chromosomes from *Th. intermedium* with the light-green J-genome signals (Fig. 1e). Line HS2-14 and HS2-16 had 12 chromosomes from *Th. intermedium* and some chromosomes with the whole light-green J-genome signals (Figs. 2a and c). Analysis of mcFISH with the oligo-probes demonstrated that all the lines maintained the complete set of wheat chromosomes from the A, B, and D genomes (Figs. 1 b, d, f and Figs. 2 b, d).

The above results revealed that line HS2-2 and HS2-4 with 2n=8x=56 had 4 chromosomes of St- or J^S-genomic with 10 J-genome chromosomes from *Th. intermedium* and 42 wheat chromosomes. The genome composition of line HS2-5 was 42 wheat chromosomes plus 14 J-genome chromosomes from *Th. intermedium*. Lines HS2-14 and HS2-16 had 12 J-genome chromosomes from *Th. intermedium* and 42 wheat chromosomes. Therefore, these lines are identified as the wheat-*Th. intermedium* partial amphiploids.

Morphological characteristics and seed protein contents

In 2016 and 2017, results of morphological characteristics in the field are shown in Table 2. The average plant heights of lines HS2-2, HS2-4, and HS2-5 were lower than both parents, Ganmai 8 and *Th. intermedium*, but those of lines HS2-14 and HS2-16 were similar to their parents. Spike lengths of five lines were similar to the parent Ganmai 8. Number of tillers of the five lines was significantly less than the parent *Th. intermedium*, but similar to Ganmai 8 except for line HS2-14. Spikelet numbers per spike of the five lines were similar to the parent of Ganmai 8. Seeds of the main spikes from lines HS2-2 and HS2-4
were not significantly different from Ganmai 8, but higher than *Th. intermedium*. All lines had lower 1,000-kernal weight than Ganmai 8, but higher than *Th. intermedium*. Seed color of the five lines was red (Fig. 3). All the lines were resistant to lodging. Maturity of line HS2-14 and HS2-16 was similar to the local spring wheat cultivar Longmai 33. However, maturity of lines HS2-2, HS2-4, and HS2-5 was later than Longmai 33. Seed protein content of the five lines (18.3%-22.5%) was higher than the parent Ganmai 8 (18.1%), but lower than *Th. intermedium* (26.0%). Lines HS2-2, HS2-4, HS2-5, and HS2-14 had more than 19% protein content and lines HS2-2 and HS2-5 had the highest values of up to 22.5% and 20.7%, respectively (Table 2).

FHB resistance evaluation

In 2016 and 2017, the five partial amphiploids were tested for their FHB resistance in the field. In resistant plants, the fungal infection was restricted to the central inoculated spikelets and did not spread up or down across the spikes (Fig. 3). The field evaluation performed in both 2016 and 2017 showed that all the five lines exhibited an better resistance to FHB than the susceptible control Longmai 33 and the resistant control Sumai 3. Values of PSS for lines HS 2-2, HS2-4, HS2-5, and HS2-16 were less than 20% (Table 3). Line HS2-5 showed the best resistance, with the PSS values of 11% and 17% in both 2016 and 2017. Line HS2-2 had a better FHB resistance with the PSS values of 15% and 18% during 2016 and 2017. The values of PSS for lines 2-4 and HS2-16 were 18% and 20%, 16% and 19% in the two years, respectively. In contrast, line HS2-14 had the PSS values of 30% and 28% during 2016 and 2017 (Table 3).

Discussion

The production of partial amphiploids is a crucial intermediate step in transferring desirable genes from wheatgrass to wheat (Jiang et al. 1993; Fedak and Han 2005). Several wheat-*Th. intermedium* partial amphiploids have been developed and widely exploited as sources of disease resistance in wheat improvement (Bao et al. 2009, 2014; Tang et al. 2000; Zhang et al. 2013). Georgieva et al. (2011) obtained two intergeneric wheat/wheatgrass amphiploid lines H95 and 55(1-57) with high protein content and resistance to certain fungal diseases. B(Gilbert and Haber 2013; Rawat et al. 2016; Ceoloni et al. 2017; Kage et al. 2017; Ren et al. 2019). Jauhar and Peterson (2000) attempted to transfer FHB resistance of diploid *Th. elongatum* into durum wheat. After screening a series of wheat-*Th. elongatum* derived lines for FHB resistance, Fu(2012) indicated that the short arm of chromosome 7E of *Th. elongatum* conferred a high level of resistance to the spread of FHB. The resistance genes from *Th. ponticum* can be pyramided with the currently identified resistance genes in wheat to enhance the genetic diversity and provide more durable resistance of wheat to FHB. Liu et al. (2017) reported three common wheat-*Th. ponticum* derived cultivars Xinong 509, Xinong 511 and Xinong 529 with good FHB resistance, which carry a chromosome 7E segment of the decaploid *Th. ponticum*. Four FHB resistant wheat lines L658, L693, L696, and L699 were developed (Liu et al. 2015), which demonstrates the possibility of using *Th. intermedium* to develop novel wheat germplasm with different disease resistance.
In this study, five wheat-\textit{Th. intermedium} partial amphiploids derived from the octoploid trityrria (2n=8x=56, AABBDDEE) and \textit{Th. intermedium} showed the resistance to FHB. GISH and mcFISH results revealed that these lines had 10~14 J-genome chromosomes from \textit{Th. intermedium}. Line HS2-5 had the best resistance to FHB, which indicated that certain J-genome chromosomes of \textit{Th. intermedium} harbored genes for FHB resistance. Chen et al. (2010) reported that \textit{T. durum}×\textit{Th. distichum} hybrid lines, AFR4 and AFR5, expressed a significantly higher level of resistance to the spread of FHB compared to the other durum wheat-alien hybrid lines. GISH analysis revealed that all of the alien chromosomes present in lines AFR4 and AFR5 belong to the J-genome. Therefore, \textit{Th. bessarabicum} and \textit{Th. intermedium} as the donor for J-genome chromosomes can be used for breeding FHB resistance. In addition, lines HS2-2 and HS2-5 had not only the least PSS value, but also higher seed protein content (22.5% and 20.7%), indicating that these wheat-\textit{Th. intermedium} amphiploids are considered both as a “breeding bridge" in the transfer of genes from the intermedium wheatgrass to common wheat.

\textit{Th. intermedium}, as an allohexaploid species, is proposed to be formed by an ancient hybridization event between the diploid \textit{Pseudoroegneria strigosa} (2n = 2x = 14, StSt) and a segmental tetraploid carrying JF and JVs genomes (Cseh et al. 2019). The JF and JVs genomes represent ancestral genomes of the present JB genome of \textit{Th. bessarabicum} and the JE genome of \textit{Th. elongatum} respectively (Wang et al. 2015). The JVs genome is distinct from the JB genome as it retains the repetitive sequences from the V genome of \textit{Dasypyrum villosum} L. Candagy (Cseh et al. 2019). These genomes provide abundant genetic resources for their hybrid progenies.

Identification and tracking of these chromosomes is a prerequisite for directed chromosome engineering. The technologies of GISH and FISH can be used to differentiate and localize \textit{Th. intermedium}, \textit{Th. ponticum}, and \textit{Th. elongatum} chromosomes in wheat backgrounds (Xi et al. 2019). In this study, the multiplex oligos containing probe combined with the J-genome DNA as probe were used to discriminate chromosomes from \textit{Th. intermedium} in wheat backgrounds. The J-genome chromosomes signals of the five partial amphiploids lines showed two types of hybrid signals. One displayed a light-green fluorescence signals over most of their lengths except for the terminal and centromeric regions as detected by the J-genome probe, such as lines HS2-2, HS2-4 and HS2-5 (Fig 1 a, c, and e). This type of hybrid signals was identified by Cseh et al. (2019) with the genomic DNA as the probes from the diploid \textit{Ps. strigosa} (St) and \textit{Th. bessarabicum} (J). Another type of signals covered the entire chromosome with a whole light-green fluorescence signal, such as part of J-genome chromosomes of line HS2-16 (Fig 2c). Two types hybridization signals of the J-genome chromosomes indicated that among the five partial amphiploid lines developed, the characteristics of these J-genome chromosomes from \textit{Th. intermedium} were not exactly the same as \textit{Th. Bessarabicum}. In addition, compared with the conventional FISH probe, synthesized oligonucleotide probe has the advantages of low cost, high sensitivity and high resolution (Du et al. 2017). In this study, although oligo probe was used to distinguish wheat genome, there were some oligos probe specific signals on J-genome chromosome (Fig 1 and 2), which indicated that the further development of oligo probe of J-genome chromosome would help to improve the efficiency of accurately distinguishing J-genome chromosome.
Conclusions

Five wheat-*Th. intermedium* partial amphiploids with FHB resistance and good protein contents were developed by crossing octoploid tritelytrigia (2n=8x=56, AABBDDEE) with *Th. intermedium*. Their genomic constitutions was examined by means of GISH and multicolor-FISH. These wheat-*Th. intermedium* amphiploids with the J-genome chromosomes from *Th. intermedium* were identified and can be considered as a valuable source of FHB resistance in wheat breeding.

Methods

Plant materials

The plant materials used in this study included *Th. intermedium*, *Th. bessarabicum*, five lines of partial amphiploids and common wheat, Chinese Spring (CS). *Th. intermedium* (2n=6x=42 StStJJJ^S^J^S^) , Longmai 33 (2n=6x=42 AABBDD) and Sumai 3 (2n=6x=42 AABBDDE) were obtained from the Heilongjiang Academy of Agricultural Sciences, Harbin, China. *Thinopyrum bessarabicum* (2n = 2x = 14 JJ or J^b^b) was kindly supplied by Dr. Zengjun Qi, Nanjing Agricultural University, Nanjing, Jiangsu province, China. The lines of wheat-*Th. intermedium* partial amphiploids, HS2-2, HS2-4, HS2-5, HS2-14, and HS2-16, were developed from crosses between Ganmai 8 and *Th. intermedium* at the College of Life Science and Technology of Harbin Normal University, Harbin, Heilongjiang province, China. Ganmai 8 is an octoploid tritelytrigia partial amphiploids (AABBDDEE, 2n=8x=56) that were developed from the cross between common wheat line 91C-9 and the partial amphiploid line Yuan 16-3;2n=8x=56, AABBDDEE in Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi province, China. Chinese Spring wheat (2n=6x=42, AABBDD) were provided by the College of Life Science and Technology of Harbin Normal University.

FHB assessments

The experiment was conducted over two years in two fields: Minzhu field at Crop Resources Institute, Hongjiang Academy of Agriculture Sciences (126°27'E and 51°16.12'N), Harbin, China, in 2016 and 2017; field at Harbin Normal University (126°57'E and 45°87'N), China, in 2016 and 2017. We used a randomized complete block to design an experiment with three replications. The plot consisted of 2.0-m long rows, and the space between rows was 0.4 m. To determine FHB resistance, the field spikelet-cutting method was used to inoculate. Ten microliter of a macroconidial suspension (5000 macroconidia per ml) of the spore-derived isolate of *F. graminearum* No. 4 (provided by Plant Protection Institute, Honglongjiang Academy of Agriculture Sciences, Harbin, China) was injected into 10 random selected plants spikes at early anthesis each. The inoculated spikes were covered with plastic bags for 3 d to maintain the relative humidity and temperature. The data was recorded at 21 d after inoculation. The number of symptomatic spikelets and the total number of spikelets of every tagged spike were counted for the percent of symptomatic spikelets (PSS). Longmai 33 served as the susceptible controls and Sumai 3 served as the resistant control in both fields.
Morphological observation and protein content of measurement

During 2016 and 2017, each lines was grown in plots consisting of 2.0-m long rows, and spaced 0.4 m that were arranged in a randomized complete block design with three replicates in two fields. Thirty seeds were sown in a row in early April and harvested at end of July. The agronomic performances were investigated in two consecutive years in two fields. From each line, plant height (cm), spike length (cm), number of spikelets per spike, 1000-kernal weigh, awn, and maturity date were recorded in ten randomly sampled individuals from each plot during the growing seasons. Morphological observations were carried out as described previously (Li and Li 2006). Plant height was determined from the ground level to the top of the spike, and spike length was measured from the base of rachis to the top of the spike. In addition, number of spikelets per spike was enumerated and the spikes were threshed in a bench micro-thresher to determine thousand-kernel weight (g). One hundred seeds of each line with the same seed shape were placed into the sample cup. DA7200 Multifunctional Near Infrared Spectromete (Perten, Switzerland) was used for testing the protein content of seed and recorded the data. Simplicity software for data analysis.

Chromosome preparation

Seeds were germinated at 23.5°C for 24 h in moist filter paper in Petri dishes, incubated at 4°C for 48 h, and then returned to 23.5°C for 27.5 h. Root tips were treated with ice water at 0-4°C for 24 h, fixed in Carnoy’s fixative for 24 h, and stained in 1% acetic carmine for at least 5 h. Root tips were squashed in 45% acetic acid and observed under a light microscope (BH-2, Olympus, Tokyo, Japan, country).

In situ hybridization

Genomic DNA was isolated using a CTAB method (Doyle and Doyle 1987) from young leaves of the three putative diploid progenitors Th. bessarabicum and labeled with fluorescein-12-dUTP by the nick translation method to be used as the probes. Sheared genomic DNA from Chinese Spring (AABBDD, 2n=42) was used as the blocking DNA. The protocols of GISH and multicolor FISH using the synthesized probes were described by Wang et al. (2017). An oligonucleotide (oligo hereafter) multiplex containing oligos pAs1-1, pAs1-3, AFA-4, (GAA) 10, and pSc119.2-1, was used for identifying A, B and D genomes of wheat that was previously described by Wang et al. (2017) and Du et al. (2017). The oligo probes were synthesized by TsingKe biotechnology Co. Ltd. (Beijing, China). The synthetic oligo pAs1-1, pAs1-3, and AFA-4 were 5’ end-labelled with 6-carboxytetramethyl-rhodamine (TAMRA) for red signals. The synthetic oligo pSc119.2-1 and (GAA) 10 were 5’ end-labelled with 6-carboxyfluorescein (6-FAM) for green signals. Hybridization stringency (%) = 100 + hybridization temperature (T_h) – melting temperature (T_m) = 100 + 37 °C (T_h) - 105 °C (T_m) = 32%. Photographs were captured with a Leica DM6000B fluorescence microscope (Leica, Mannheim, Germany) equipped with a digital camera (Leica model DFC480).

Statistical analysis

Significant differences in the means of different genotypes for PSS were determined by the multiple samples t-test at P < 0.05 using IBM SPSS Statistics 19 software (SPSS Inc., Chicago, IL), and the
significance of differences in the same genotype indices between inoculated and non-inoculated plants was also determined by the independent samples t-test at $P < 0.05$ with the same software.

List Of Abbreviations

GISH: Genomic *in situ* hybridization; FISH: Fluorescence *in situ* hybridization; mcFISH: multicolor fluorescence *in situ* hybridization; PSS: Percent of symptomatic spikelets; FHB: Fusarium head blight;

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Written informed consent for publication was obtained from all participants.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Competing interests

The authors declare that they have no conflicts of interest.

Funding

This research was financially supported by The National Key Research and Development Program of China (2016YFD0100102) and Innovation Project of Master’s Degree in Harbin Normal University (HSDSSCX2019-16).

Authors’ contributions

YZ and XL conceived the project. HW and WY conducted the experiments and drafted the manuscript. SC, YS, SZ and QS performed GISH experiments and phenotyped the FHB. WS, XY, and SZ assisted in the oligo-FISH experiments. BF and YZ reviewed the manuscript. All authors reviewed and approved the manuscript.

Acknowledgements

We thank Dr. Zengjun Qi, Nanjing Agricultural University, Nanjing, China, for technical assistance of the oligonucleotide multiplex-based chromosome painting. We also thank Dr. Hongjie Li, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China, for his carefully and patiently revising the paper and giving constructive suggestions.
References

Anderson JA, Stack W, Liu, S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Mitchell, Fetch J, Song QJ, Cregan PB, Frohberg RC. DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet. 2001; 102(8):1164-1168. doi:10.1007/s001220000509

Bai G, Shaner G. Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 2004; 42(1):135-161. doi:10.1146/annurev.phyto.42.040803.140340

Bao Y, Li X, Liu S, Cui F, Wang H. Molecular cytogenetic characterization of a new wheat-\textit{Thinopyrum intermedium} partial amphiploid resistant to powdery mildew and stripe rust. Cytogenet Genome Res 2009; 126:390-395. doi:10.2290/ijms16012162

Bao Y, Wu X, Zhang C, Li X, He F, Qi X, Wang H. Chromosomal constitutions and reactions to powdery mildew and stripe rust of four novel wheat-\textit{Thinopyrum intermedium} partial amphiploids. J Genet Genomics 2014; 41(12):663-666. doi:10.1016/j.jgg.2014.11.003

Becher R, Miedaner T, Wirsel SGR. Biology, diversity, and management of FHB-causing Fusarium species in small-grain cereals. In Agricultural Applications Vol. 11, ed. F. Kempken (Berlin: Springer). 2013; pp. 199-241. doi:10.1007/978-3-642-36821-9_8

Brar GS, Brûlé-Babel AL, Ruan Y, Henriquez MA, Pozniak CJ, Kutcher HR, Hucl, PJ. Genetic factors affecting Fusarium head blight resistance improvement from introgression of exotic Sumai 3 alleles (including \textit{Fhb1}, \textit{Fhb2}, and \textit{Fhb5}) in hard red spring wheat. BMC Plant Biol 2019; 19(1):179. doi:10.1186/s12870-019-1782-2

Buerstmayr H, Ban T, Anderson JA. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 2010; 128(1):1-26. doi:10.1111/j.1439-0523.2008.01550.x

Cainong JC, Bockus WW, Feng Y, Chen P, Qi L, Sehgal SK, Danilova TV, Koo DH, Friebe B, Gill BS. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from \textit{Elymus tsukushiensis} into wheat. Theor Appl Genet. 2015;128(6):1-9. doi:10.1007/s00122-015-2485-1

Ceoloni C, Forte P, Kuzmanović L, Moscetti I, De Vita P, Virili ME, D’Ovidio R. Cytogenetic mapping of a major locus for resistance to fusarium head blight and crown rot of wheat on \textit{Thinopyrum elongatum} 7EL and its pyramiding with valuable genes from a \textit{Th. ponticum} homoeologous arm onto bread wheat 7DL. Theor Appl Genet. 2017; :1-20. doi:10.1007/s00122-017-2939-8

Chang ZJ, Zhang XJ, Yang ZJ, Zhan HX, Li X, Liu C, Zhang CZ. Characterization of a partial wheat-\textit{Thinopyrum intermedium} amphiploid and its reaction to fungal diseases of wheat. Hereditas 2011; 147(6):304-312. doi:10.1111/j.1601-5223.2010.02156.x

Chen P, Liu W, Yuan J, Wang X, Zhou B, Wang S, Zhang S, Feng Y, Yang B, Liu G, Liu D, Qi L, Zhang P, Friebe B, Gill BS. Development and characterization of wheat-\textit{Leymus racemosus} translocation lines with
resistance to Fusarium head blight. Theor Appl Genet 2005; 111(5):941-948. doi:10.1007/s00122-005-0026-z

Chen Q, Eudes F, Conner RL, Graf R, Comeau A, Collin J, Ahmad F, Zhou R, Li H, Zhao Y, Laroche A. Molecular cytogenetic analysis of a durum wheat × *Thinopyrum distichum* hybrid used as a new source of resistance to Fusarium head blight in the greenhouse. Plant Breed 2010; 120(5):375-380. doi:10.1046/j.1439-0523.2001.00630.x

Cseh A, Yang C, Hubbart-Edwards S, Edwards, Scholefeld D, Ashling SS, Burridge AJ, Wilkinson PA, King PI, King J, Grewal S. Development and validation of an exome-based SNP marker set for identification of the St, J’ and J’vs genomes of *Thinopyrum intermedium* in a wheat background. Theor Appl Genet 2019; 132(5):1-16. doi:10.1007/s00122-019-03300-9

Cuthbert PA, Somers DJ, Brulé-Babel A. Mapping of *Fhb2* on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (*Triticum aestivum* L.). Theor Appl Genet. 2007; 114(3):429-37. doi:10.1007/s00122-006-0439-3

Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brulé-Babel A. Fine mapping *Fhb1*, a major gene controlling fusarium head blight resistance in bread wheat (*Tritium aestivum* L.). Theor Appl Genet. 2006; 112(8):1465-1472. doi:10.1007/s00122-006-0249-7

Dai Y, Duan Y, Liu H, Chi D, Cao W, Xue A, Gao Y, Fedak G, Chen J. Molecular cytogenetic characterization of two *Triticum-Secale-Thinopyrum* trigeneric hybrids exhibiting superior resistance to Fusarium head blight, leaf rust, and stem rust race Ug99. Front Plant Sci 2017; 8:797. doi:10.3389/fpls.2017.00797

Danilova TV, Zhang G, Liu W, Friebe B. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and *Triticum* mosaic virus resistance gene *Wsm3* from *Thinopyrum intermedium* to wheat. Theor Appl Genet 2017; 130:549-556. doi:10.1007/s00122-016-2834-8

DeHaan L, Christians M, Crain J, Poland J. Development and evolution of an intermediate wheatgrass domestication program. Sustainability 2018; 10(5):1499. doi:10.3390/su10051499

Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 1987; 19:11-15. doi:10.3390/ijms140714860

Du P, Zhuang L, Wang Y, Li Y, Wang Q, Wang D, Dawadondup, Tan L, Shen J, Qi Z. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and *Thinopyrum bessarabicum* chromosomes. Genome. 2017; 60: 93 - 103. dx.doi.org/10.1139/gen-2016-0095

Fedak G, Chen Q, Conner RL, André L, Armstrong KW. Characterization of wheat-*Thinopyrum* partial amphiploids by meiotic analysis and genomic *in situ* hybridization. Genome 2000; 43(4):712-719. doi:10.1139/g00-027
Fedak G, Han F. Characterization of derivatives from wheat-\textit{Thinopyrum} wide crosses. Cytogenet Genome Res 2005; 109(1-3):360-367. doi:10.1159/000082420

Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 1996; 91(1):59-87. doi:10.1007/bf00035277

Fu S, Lv Z, Qi B, Guo X, Li J, Liu B, Han F. Molecular cytogenetic characterization of wheat-\textit{Thinopyrum elongatum} addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium Head Blight. J Genet Genomics 2012; 39:103-110. doi:CNKI:SUN:YCXB.0.2012-02-006

Georgieva M, Adél Sepsi, Tyankova N, Molnár-Láng M. Molecular cytogenetic characterization of two high protein wheat-\textit{Thinopyrum intermedium} partial amphiploids. J Appl Genet 2011; 52:269-277. doi:10.1007 /s13353-011-0037-1

Gilbert J, Haber S. Overview of some recent developments in fusarium head blight of wheat. Can J Plant Pathol 2013; 35:149-174 doi:10.1080/07060661.2013.772921

Guo J, Zhang X, Hou Y, Cai J, Kong L. High-density mapping of the major FHB resistance gene \textit{Fhb7} derived from \textit{Thinopyrum ponticum} and its pyramiding with \textit{Fhb1} by marker-assisted selection. Theor Appl Genet 2015; 128:2301-2316. doi:10.1007/s00122-015-2586-x

Han F, Liu B, Fedak G, Liu Z. Genomic constitution and variation in five partial amphiploids of wheat-\textit{Thinopyrum intermedium} as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet. 2004; 109:1070-1076. doi:10.1007/s00122-004-1720-y

Han FP, Fedak G, Benabdelmouna A, Armstrong K, Ouellet T. Characterization of six wheat\texttimes\textit{Thinopyrum intermedium} derivatives by GISH, RFLP, and multicolor GISH. Genome. 2003; 46:490-495. doi:10.1139/g03-032

He M, Xu Z, Zou M, Zhang H, Chen D, Pu Z, Hao S. The establishment of two sets of alien addition lines of wheatgrass. Sci China Ser B 1989; 6:57-67. doi:CNKI:SUN:JBXG.0.1989-06-005

Hu L, Li G, Zeng Z, Chang Z, Liu C, Zhou J, Yang Z. Molecular cytogenetic identification of a new wheat-\textit{Thinopyrum} substitution line with stripe rust resistance. Euphyrica 2011; 177:169-177. doi:10.1007/s10681-010-0216-x

Jauhar PP, Peterson TS, Xu SS. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome 2009; 52:467-483. doi:10.1139/G09-014

Jauhar PP, Peterson TS. Toward transferring scab resistance from a diploid wild grass, \textit{Thinopyrum elongatum} into durum wheat. In: Proceedings of the 2000 National Fusarium Head Blight Forum, pp. 201-204 (Erlanger, Kentucky). Accessed 2000.
Jia H, Zhou J, Xue S, Li G, Yan H, Ran C, Zhang Y, Shi J, Jia L, Wang X, Luo J, Ma Z. A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. Crop J 2018; 6:48-59. doi:10.1016/j.cj.2017.09.006

Jiang J, Friebe B, Gill BS. Recent advances in alien gene transfer in wheat. Euphytica 1993; 73:199-212. doi:10.1007/BF00036700

Kage U, Karre S, Kushalappa AC, McCartney C. Identification and characterization of a fusarium head blight resistance gene TaACT in wheat QTL-2DL. Plant Biotechnol J 2017; 15:447-457. doi:10.1111/pbi.12641

Kalih R, Maurer HP, Hackauf B, Miedaner T. Effect of a rye dwarfing gene on plant height, heading stage, and Fusarium head blight in triticale (× *Triticosecale* Wittmack). Theor Appl Genet 2014; 127:1527-1536. doi:10.1007/s00122-014-2316-9

Li G, Lang T, Dai G, Li D, Li C, Song X, Yang Z. Precise identification of two wheat-*Thinopyrum intermedium* substitutions reveals the compensation and rearrangement between wheat and *Thinopyrum* chromosomes. Mol Breed 2015; 35:2-10. doi:10.1007/s11032-015-0202-z

Li H, Chen Q, Conner RL, Guo B, Zhang Y, Graf RJ, Larache A, Jia X, Liu G, Chu C. Molecular characterization of a wheat-*Thinopyrum ponticum* partial amphiploid and its derivatives for resistance to leaf rust. Genome 2003; 46:906-913. doi:10.1139/g03-053

Li H, Cui L, Li H, Wang X, Murray TD, Conner RL, Wang L, Gao X, Sun Y, Sun S, Tang W. Effective resources in wheat and wheat-*Thinopyrum* derivatives for resistance to *Heterodera flipjevi* in China. Crop Sci 2012; 52:1209-1217. doi:10.2135/cropsci2011.11.0591

Li H, Wang X. *Thinopyrum ponticum* and *Th. intermedium*: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics 2009; 36:557-565. doi:10.1016/s1673-8527(08)60147-2

Li LH, Li XQ. The Basis of Descriptors and Data Standard for Wild relatives of Wheat. Beijing: Chinese Agricultural Press. 2006.

Lin F, Kong ZX, Zhu HL, Xue SL, Wu JZ, Tian DG, Wei JB, Zhang CQ, Ma ZQ. Mapping QTL associated with resistance to Fusarium, head blight in the Nanda2419×Wangshuibai population. I. Type II resistance. Theor Appl Genet. 2004; 109:1504-1511. doi:10.1007/s00122-004-1772-z

Lin Z, Cui Z, Zeng X, Ma Y, Zhang Z, Nakamura T, Ishikawa G, Nakamura K, Yoshida H, Xin Z. Analysis of wheat-*Thinopyrum intermedium* derivatives with BYDV-resistance. Euphytica 2007; 158:109-118. doi:10.1007/s10681-007-9435-1

Liu S, Wang H. Characterization of a wheat-*Thinopyrum intermedium* substitution line with resistance to powdery mildew. Euphytica 2005; 143:229-233. doi:10.1007/s10681-005-3862-7
Liu W, Seifers DL, Qi LL, Friebe B, Gill BS. A compensating wheat–Thinopyrum intermedium Robertsonian translocation conferring resistance to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci. 2011; 51:2382-2390. doi:10.2135/cropsci2011.03.0118

Liu XL, Wang YJ, Tian ZR, Wang C, Niu LH, Liu ZL, Zhang LD, Chen CH, Zhang RQ, Zhang H, Wang CY, Ji WQ. Molecular identification of FHB resistance gene in varieties derived from common wheat-Thinopyrum ponticum partial amphiploid. Sci Agric Sin 2017; 50:3908-3917. doi:10.3864/j.issn.0578-1752.2017.20.007

Liu ZH, Xu M, Xiang ZP, Li X, Chen WQ, Luo PG. Registration of the novel wheat lines L658, L693, L696, and L699, which are resistance to Fusarium head blight, stripe rust, and powdery mildew. J Plant Regist 2015; 9:121-124. doi:10.3198/jpr2014.01.0003crg

McMullen M, Jones R, Gallenberg D. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis. 1997; 81:1340-1348. doi:10.1094/PDIS.1997.81.12.1340

Oliver RE, Xu SS, Stack RW, Friesen TL, Jin Y, Cai X. Molecular cytogenetic characterization of four partial wheat-Thinopyrum ponticum amphiploids and their reactions to Fusarium head blight, tan spot, and Stagonospora nodorum blotch. Theor Appl Genet 2006; 112:1473-1479. doi:10.1007/s00122-006-0250-1

Qi LL, Pumphrey MB, Chen PD, Gill BS. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet. 2008; 117:1155-1166. doi:10.1007/s00122-008-0853-9

Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, Gill B. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 2016; 48:1576-1580. doi:10.1038/ng.3706

Rawat N. Map-based Cloning Reveals the Origin of Fhb1 Gene in Wheat. The largest Ag-Genomics Meeting in the world. 2016; January 08-13.

Ren JD, Wang Z, Du ZY, Che MZ, Zhang YB, Quan W, Wang YJ, Jiang X, Zhang ZJ. Detection and validation of a novel major QTL for resistance to Fusarium head blight from Triticum aestivum in the terminal region of chromosome 7DL. Theor Appl Genet 2019; 132:241-255. doi:10.1007/s00122-018-3213-4

Scoles G, Jauhar PP, Peterson TS, Xu SS. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome 2009; 52:467-483. doi:10.1139/G09-014
Sears ER, Evans LT, Peacock WJ. Transfer of alien genetic material to wheat. Wheat Science-Today and Tomorrow. 1981; pp. 75-89.

Sun SC. The approach and methods of breeding new varieties and new species from *Agrotriticum* hybrids. Acta Agron Sin 1981; (7):51-57.

Tang S, Li Z, Jia X, Larkin PJ. Genomic in situ hybridization (GISH) analyses of *Thinopyrum intermedium*, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor Appl Genet 2000; 100:344-352. doi:10.1007/s001220050045

Wang RC, Larson SR, Jensen KB, Bushman BS, DeHaan LR, Wang S, Yanac X. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species. Genome 2015; 58:63-70. doi:10.1139/gen-2014-0186

Wang RRC, Li XM, Hu ZM, Zhang JY, Larson SR, Zhang XY, Grieve CM, Shannon MC. Development of salinity tolerant wheat recombination lines from a wheat disomic addition line carrying a *Thinopyrum junceum* chromosome. Int J Plant Sci 2003; 164:25-33. doi:10.1086/344556

Wang Y, Wang H. Characterization of three novel wheat-*Thinopyrum intermedium* addition lines with novel storage protein subunits and resistance to both powdery mildew and stripe rust. J Genet Genomics 2016; 43:45-48. doi:10.1016/j.jgg.2015.10.004

Wang D, Du P, Pei Z, Zhuang L, Qi Z. Development and application of high resolution karyotypes of “wheat Chinese Spring” aneuploids. Crop J. 2017; 43, 1575–1587. doi: 10.3724/SP.J.1006.2017.01575

Wang HW, Sun SL, Ge WY, Zhao LF, Hou BQ, Wang K, Lyu ZF, Chen LY, Xu SS, Guo J, Li M, Su PS, Li XF, Wang GP, Bo CY, Fang XJ, Zhuang WW, Cheng XX, Wu JW, Dong LH, Chen WY, Li W, Xiao GL, Zhao JX, Hao YC, Xu Y, Gao Y, Liu WJ, Liu YH, Yin HY, Li JZ, Li X, Zhao Y, Wang XQ, Ni F, Ma X, Li AF, Xu SS, Bai GH, Nevo E, Gao CX, Ohm H, Kong LR. Horizontal gene transfer of *Fhb7* from fungus underlies Fusarium head blight resistance in wheat. Science 2020; 368(6493). doi:10.1126/science.aba5435

Xi W, Tang Z, Tang S, Yang Z, Luo J, Fu S. New ND-FISH-positive oligo probes for identifying *Thinopyrum* chromosomes in wheat backgrounds. Int J Mol Sci 2019; 20:2031:2-8. doi:10.3390/ijms20082031

Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z. Fine mapping *Fhb4*, a major QTL conditioning resistance to Fusarium infection in bread wheat (*Triticum aestivum* L.). Theor Appl Genet. 2010; 121:147-156. doi:10.1007/s00122-010-1298-5

Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L, Kong Z, Ma Z. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (*Triticum aestivum* L.). Theor Appl Genet. 2011; 123:1055-1063. doi:10.1007/s00122-011-1647-z

Yang ZJ, Li GR, Chang ZJ, Zhou JP, Ren ZL. Characterization of a partial amphiploid between *Triticum aestivum* cv. Chinese Spring and *Thinopyrum intermedium* ssp. *trichophorum*. Euphytica 2006; 149:11-
Zeng J, Cao W, Fedak G, Sun S, McCallum B, Fetch T, Xue A, Zhou Y. Molecular cytological characterization of two novel durum-\textit{Thinopyrum intermedium} partial amphiploids with resistance to leaf rust, stem rust and Fusarium head blight. Hereditas 2013; 150:10-16. doi:10.1111/j.1601-5223.2012.02262.x

Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, Li N, Rustgi S, Zhou H, Han F, Jiang J, von Wettstein D, Liu B. Persistent whole chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc National Acad Sci. 2013;110:3447-3452. doi:10.1073/pnas.1300153110

Zhang H, Mittal N, Leamy LJ, Barazani O, Song B. Back into the wild-apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 2017; (10):5-24. doi:10.1111/eva.12434

Zhang X, Zhou M, Ren L, Bai G, Ma H, Scholten OE, Guo P, Lu W. Molecular characterization of Fusarium head blight resistance from wheat variety Wangshuibai. Euphytica 2004; 139:59-64. doi:10.1007/s10681-004-2298-9

\textbf{Tables}

\textbf{Table 1 Chromosome compositions of the wheat-\textit{Th. intermedium} lines}

Line	Pedigree	2n=	No. of wheat chromosomes	No. of \textit{Th. intermedium} chromosomes
HS2-2	Ganmai8/\textit{Th. intermedium}	56	42	10 or 4
HS2-4	Ganmai8/\textit{Th. intermedium}	56	42	10 or 4
HS2-5	Ganmai8/\textit{Th. intermedium}	56	42	14 or 0
HS2-14	Ganmai8/\textit{Th. intermedium}	54	42	12 or 0
HS2-16	Ganmai8/\textit{Th. intermedium}	54	42	12 or 0

\textbf{Table 2 The morphological characters for the five wheat-\textit{Th. intermedium} lines, controls and their parents in 2017}
Line	Plant height (cm)	Spike length (cm)	Tiller Spikelet number	Seeds of main spike	1000-kernal weigh (g)	Seed protein content (%)	Maturity	
Longmai33	95^a	11.2^{ef}	4^b	19^a	46^b	41^{ab}	17.3^c	92^{bc}
Sumai3	82^b	8.5^f	5^b	16^a	48^a	34.5^b	15.2^c	80^c
Ganmai 8	97^a	13.8^c	4^b	18^a	46^b	36.3^b	18.1^c	95^b
Th. intermedium	82^b	27.4^{ab}	65^{ab}	20^a	25^d	8.2^c	26.0^{ab}	110^{ab}
HS2-2	75^b	14.5^{bc}	4^b	18^a	46^b	30.4^b	22.5^b	112^a
HS2-4	78^b	13.5^c	3^b	18^a	44^{bc}	31.4^b	20.0^b	112^a
HS2-5	80^b	13.2^c	3^b	17^a	29^{cd}	29.2^{bc}	20.7^b	112^a
HS2-14	92^{ab}	12.7^{de}	7^b	15^a	35^c	32.2^b	19.6^b	95^b
HS2-16	93^a	13.1^{cd}	5^b	14^a	32^c	33.3^b	18.3^{bc}	95^b

All indices are described by mean; means in a column followed by the same letter(s) are not significantly different at a 5% probability level.

Table 3 The evaluation of Fusarium head blight resistance in 2016 and 2017
Line	2016	2017		
	N	PSS	N	PSS
Longmai 33 (S)	30	0.82±0.02	30	0.85±0.02
Sumai 3(R)	30	0.30±0.01	30	0.31±0.02
HS2-2	30	0.15±0.02	30	0.18±0.03
HS2-4	30	0.18±0.02	30	0.20±0.02
HS2-5	30	0.11±0.01	30	0.17±0.04
HS2-14	30	0.30±0.03	30	0.28±0.03
HS2-16	30	0.16±0.03	30	0.19±0.03

All indices are described by mean ± standard error; N – number of plant spikes; PSS – the percent of symptomatic spikelets; means in a column followed by the same letters are not significantly different at $P < 0.05$.