Marine cyanobacteria are key primary producers, contributing significantly to the microbial food web and biogeochemical cycles by releasing and importing many essential nutrients cycled through the environment. A subgroup of these, the picocyanobacteria (Synechococcus and Prochlorococcus), have colonised almost all marine ecosystems, covering a range of distinct light and temperature conditions, and nutrient profiles. The intra-clade diversities displayed by this monophyletic branch of cyanobacteria is indicative of their success across a broad range of environments. Part of this diversity is due to nutrient acquisition mechanisms, such as the use of high-affinity ATP-binding cassette (ABC) transporters to competitively acquire nutrients, particularly in oligotrophic (nutrient scarce) marine environments. The specificity of nutrient uptake in ABC transporters is primarily determined by the peripheral substrate-binding protein (SBP), a receptor protein that mediates ligand recognition and initiates translocation into the cell. The recent availability of large numbers of sequenced picocyanobacterial genomes indicates both Synechococcus and Prochlorococcus apportion >50% of their transport capacity to ABC transport systems. However, the low degree of sequence homology among the SBP family limits the reliability of functional assignments using sequence annotation and prediction tools. This review highlights the use of known SBP structural representatives for the uptake of key nutrient classes by cyanobacteria to compare with predicted SBP functionalities within sequenced marine picocyanobacteria genomes. This review shows the broad range of conserved biochemical functions of picocyanobacteria and the range of novel and hypothetical ABC transport systems that require further functional characterisation.

Introduction

The marine picocyanobacteria (Prochlorococcus [1] and Synechococcus [2]) are the most abundant photosynthetic organisms in global oceans, playing a critical role in the planetary carbon cycle [3–5]. For growth and photosynthesis, picocyanobacteria must obtain a variety of elements in differing concentrations from the surrounding seawater [6]. This poses a significant challenge for these unicellular organisms in the open ocean, where the availability and speciation of macronutrients (e.g. nitrogen and phosphorus) and micronutrients (e.g. iron and zinc) can be highly variable [6].

The widespread distribution of picocyanobacteria is commonly attributed to the partitioning of ecotypes into distinct ecological niches [7,8]. Genetic adaptation to the nutrient shortage is postulated to be a critical process governing the diversification of both genera [8–16]. With up to 60% of the transport capacity within the already-streamlined picocyanobacterial genomes dedicated to nutrient acquisition systems such as the ATP-binding cassette (ABC) transporters [17–20]. While this mini-review
focusses on picocyanobacterial ABC transporters, other predicted transporters (e.g. permeases, ion channels, tripartite ATP-independent periplasmic transporters) may contribute to the uptake of other nutrients [9,11,21,22]. Studies have sought to assess whether changes in gene content among major lineages can provide insight into the global patterns of picocyanobacterial resource use [10,23–25]. Such knowledge is critical to address how climate change-driven changes to nutrient supply (e.g. enhanced stratification of upper ocean layers) may impact future distribution and productivity of picocyanobacterial populations [4,5,26–29].

Notably, omics-based platforms offer an unparalleled capacity to identify patterns of nutrient adaptation [22,25,30,31], including alternative metabolic strategies (mixotrophy), in picocyanobacteria [25,32,33]. Such approaches fundamentally depend on precise functional annotations of cellular nutrient acquisition systems. This is an important caveat as for some nutrient uptake protein families such as the substrate-binding protein (SBP) superfamily (an essential functional element of ABC transporters), evolution has diversified the SBP ligand binding cleft to recognise a myriad of substrates [34]. Consequently, SBPs can often share little (or no) sequence homology [35], limiting the reliability of phylogeny to predict function. Therefore, annotations of SBP function based on remote (<20%) sequence homology [36] limits confidence in predicted nutrient uptake function, resulting in discrepancies between their observed and predicted ligand chemistries [37–39].

Importantly, however, SBPs are structurally and mechanistically conserved with respect to their ligand preferences [36,40]. Modulation of the binding site chemistry, such as through amino acid substitutions, allows the affinity and specificity of SBPs to be tuned to particular ligands without drastically changing the overall architecture of the tertiary fold [41], exemplified in the promiscuity of function in extant [42] and ancestral SBPs [34]. Accordingly, functional differences may not be readily apparent based on phylogenetic relationships. Alternative approaches for classifying SBPs, such as structural comparisons of available SBP structures in the protein data bank (PDB) [36,40], can be extended to predict substrate specificity and molecular evolution of uncharacterised SBPs [34]. Similarly, the increasingly widespread use of deep learning-based protein structure prediction tools (e.g. AlphaFold [43] and RosettaFold [44]) represent an alternative way to test functional predictions [45]. In both cases, these approaches likely require further verification by functional or physiological studies.

This mini-review will focus on relating structurally characterised SBPs in cyanobacteria to predicted SBP annotations in the Cyanorak database, a repository of 97 picocyanobacterial genome sequences [46]. The review highlights the SBP functional space underpinning genomic annotations in marine picocyanobacteria and identify those requiring further validation for unambiguous functional assignment, essential to refining our understanding of how nutrient acquisition shapes ecological trajectories of picocyanobacterial communities.

Genomic survey of SBP componentry in picocyanobacteria

While structural studies remain a powerful tool for unambiguously determining protein function, few representative picocyanobacterial SBPs have structurally characterised orthologues. Text-based searches of the Cyanorak v2.1 database, comprising sequenced genomes of *Prochlorococcus* (*n* = 43) and *Synechococcus/Cyanobium* strains (*n* = 54) [46], identified 1257 SBPs organised into 26 distinct clusters of orthologous genes (CLOGs) and 12 CLOGs with unknown or hypothetical function associated with high-affinity ABC uptake systems [46]. In this review, each will be referred to by their Cyanorak cluster number (e.g. predicted chitobiose-binding protein ChiE, CK_1342).

Highly abundant picocyanobacterial SBPs (Figure 1) include those of unknown function (e.g. CK_264) and those predicted to mediate uptake of organic carbon (CK_1342, 1455). Other abundant SBPs, such as for the uptake of urea (CK_76) and phosphate (CK_43821) have been characterised using physiological assessments including growth- and uptake assays, and proteomic approaches [30,31,47]. In addition, other less prevalent SBP clusters currently have no known or predicted function.

As predicted picocyanobacterial SBPs are not uniformly distributed across all clades, the presence of specific clusters in distinct lineages could provide insight into environmental niche preferences (Figure 2). Some picocyanobacterial representatives from subcluster 5.2, including *Synechococcus* and *Cyanobium* isolates, possess all predicted SBP clusters in their genomes. Given most subcluster 5.2 isolates are found in coastal or estuarine waters [48], the high-nutrient environment likely led to less extensive genome streamlining [9,49,50] and thus a greater diversity of nutrient acquisition systems being retained [51]. The potential influence of the environment on phyletic distributions of SBP clusters in other picocyanobacterial clades highlights fundamental differences in their retained genetic capacity for high-affinity nutrient uptake, likely reflecting the adaptation of these taxa to specific environmental conditions. For example, every sequenced picocyanobacterial strain retains at
least one predicted SBP gene for the uptake of growth-limiting nutrients like phosphorus (e.g. CK_860), and trace metals like iron (e.g. CK_68), while the functional capacity for the predicted uptake of organic carbon (CK_1342, CK_1455) or osmoprotectants (CK_1944) occur in select strains, likely correlating with distinct environments [25,31,51–53].

Notably, almost all strains of picocyanobacteria harbour genetic capacity, based on genomic annotations, to uptake organic nutrients (e.g. organic phosphonates or sugars). Given marine picocyanobacteria predominate in oligotrophic regions of the world's oceans [4], a mixotrophic approach, where inorganic nutrient uptake is supplemented by scavenging organic nutrients via high-affinity ABC transporters, could impart a distinct evolutionary advantage to acquire essential, often limiting nutrients [11,32,54]. This more nuanced metabolic strategy has been hinted at since the publication of early genomes [18–21] and may directly explain the prevalence of ABC transporters in picocyanobacterial genomes [25].
The quantitative relationships between intra- and extracellular nutrient pools underpins the concept of ecological stoichiometry, driving ocean biogeochemistry [6]. While six essential elements (C, H, N, O, P, and S) comprise most of the organic matter (e.g. macromolecules, genetic material, biological membranes), all organisms require a suite of additional inorganic ions (e.g. trace metals) to ensure the proper functioning of biological machinery [6,8,55]. Ecological stoichiometry, exemplified by the Redfield ratio, links the availability of biogeochemical carbon, nitrogen, phosphorus and iron in the oceans [56], and underpins ecosystem models at the individual, population, community and global scales [57]. The specific uptake of key nutrient classes by picocyanobacteria via ABC transporters [17–20] relies on the SBP subunit, whose function can be determined by characterising individual protein structures and their associated atomic features. A summary of structurally characterised SBPs from cyanobacteria, is presented in Table 1.

SBP structures from cyanobacteria across core nutrient classes

The quantitative relationships between intra- and extracellular nutrient pools underpins the concept of ecological stoichiometry, driving ocean biogeochemistry [6]. While six essential elements (C, H, N, O, P, and S) comprise most of the organic matter (e.g. macromolecules, genetic material, biological membranes), all organisms require a suite of additional inorganic ions (e.g. trace metals) to ensure the proper functioning of biological machinery [6,8,55]. Ecological stoichiometry, exemplified by the Redfield ratio, links the availability of biogeochemical carbon, nitrogen, phosphorus and iron in the oceans [56], and underpins ecosystem models at the individual, population, community and global scales [57]. The specific uptake of key nutrient classes by picocyanobacteria via ABC transporters [17–20] relies on the SBP subunit, whose function can be determined by characterising individual protein structures and their associated atomic features. A summary of structurally characterised SBPs from cyanobacteria, is presented in Table 1.

SBPs for carbon uptake

As photoautotrophs, picocyanobacteria are typified by their ability to use photosynthesis to convert inorganic carbon (C\textsubscript{i}) into biologically useful (labile) forms of organic carbon that are then cycled through the
environment [6,58]. Marine environments act as vast reservoirs for C\textsubscript{i}, which ultimately originates from atmospheric carbon dioxide and dissolved carbonate minerals [59–61]. Carbon concentrations are generally highest in the photic zone due to the concentration of primary production in this region of the oceans [62]. Picocyanobacteria have been predicted to access organic carbon [25,33,63,64], with studies demonstrating the uptake of glucose (a molecule containing no growth-limiting elements) in marine picocyanobacteria [65,66], and light-mediated mixotrophy as a strategy to overcome inorganic nutrient limitation [67].

The structure of only one cyanobacterial carbon-binding protein, CmpA, from the freshwater Synechocystis sp. PCC 6803 has been published to date [68]. This protein binds C\textsubscript{i} (CO\textsubscript{3}2– and HCO\textsubscript{3}–) at the interdomain cleft (Figure 3). Binding occurs in a pH-dependent manner, with CmpA forming part of an operon induced under low CO\textsubscript{2} conditions [68]. For HCO\textsubscript{3}– binding occurs in an anionic cage, dependent on the presence of calcium (Ca2+) to balance the negative charge on the carbonate ion, reminiscent of concomitant metal-anion binding observed for other cyanobacterial binding proteins [69] and appears physiologically relevant. This is further

Table 1 Known SBP structures from cyanobacteriaa

Group	Substrate	Protein	Organism(s)	PDB codes	Structural Clusterb	Ref.	Putative gene orthologues in Cyanorakc
Carbon	Bicarbonate	CmpA	Synechocystis sp. PCC 6803	2I48, 2I49, 2I4B, 2I4C	F-I	[68]	CK_00009155
	Predicted chitobiose	MITs9220_121, ChiE	Synechococcus sp. MITs9220	6WP1, 6WP2	D-II	our unpublished data	CK_0001342
Nitrogen	Nitrate/nitrite	NrtA	Synechocystis sp. PCC6803	2G29, 2G27	F-I	[83]	CK_00003072/00002249
	Amino acids/amide	Ava_0465	Anabaena variabilis ATCC 29413	4NQR, 4NV3, 4OTZ, 4QYN, 4RDC	B-II	Unpublished	CK_0001489/00001014
Glutamate	Slr1257		Synechocystis sp. PCC 6803	1IIS, 1IIT, 1IWI	F-IV	[125]	
Glutamate	N/A		Nostoc punctiforme PCC 73102	2PYY	F-IV	[126]	
Phosphorous	Phosphite/Phosphonate	PnId1	Prochlorococcus marinus sp. MIT 9301	5LQ5, 5LQ8	F	[97,103]	CK_00000860/00006203/00066876
	Phosphite	PnId2	Prochlorococcus marinus sp. MIT 9301	5LV1	F	[97,103]	CK_00000860/00006203/00066876
	Phosphite	Tery_0366, PtxB	Trichodesmium erythraeum IMS101	5JVB, 5LQ1	F	[97]	
Sulfur	Zinc	ZnuA (or ZntC)	Synechocystis sp. PCC 6803	1PQ4, 2OV1, 2OV3, 6G7N, 6G7P, 6G7Q	A-I	[113,114]	CK_00002462/CK_00057079/00000068
	Iron, Fe(III)	Tery_3377	Trichodesmium erythraeum IMS101	2PT1, 2PT2, 3F11	D-IV	[69]	CK_00057079/00000068
	Iron, Fe(II)	FutA1	Synechocystis sp. PCC 6803	2VOZ, 2VP1	D-IV	[104]	CK_00000919
	Iron, Fe(III)/Fe (II)	FutA2	Synechocystis sp. PCC 6803	2VOZ, 2VP1	D-IV	[105]	CK_00002462
	Manganese	MntC	Synechocystis sp. PCC 6803	1XVL, 3UJP, 4IRM	A-I	[115]	CK_00057079/00000068

aThis table uses the same major nutrient classes as Figure 2 (i.e. C, N, P, S, metals, and other). SBPs for the uptake of particular substrates are shown, grouped by organism, along with their corresponding PDB identifiers and Cyanorak orthologues, if known;

bDesignated based on structural classifications of the Poolman group [36,40];

cDefined by Cyanorak cluster identifier [46].
supported by studies of allosteric regulation in related bicarbonate-binding proteins [70] and transcriptomic analysis [71].

As part of the carbon-concentrating machinery (CCM) in freshwater Synechocystis sp. PCC 6803 [68], CmpA assimilates dissolved C\(_{i}\). This elevates CO\(_2\) concentrations around RuBisCo within the carboxysome, facilitating CO\(_2\) fixation under low CO\(_2\) conditions [11,72]. In picocyanobacteria, CmpA (CK_9155) orthologs are only found in two sub-cluster 5.2 strains, Synechococcus WH5701 and Cyanobium PCC6307, suggesting CmpA-based CCM is not a prevalent function for marine picocyanobacteria. Given higher concentrations of carbonate within marine environments [73] and the divergent origin of marine picocyanobacterial CCM compared with other cyanobacteria [11], C\(_{i}\) uptake using high-affinity ABC transport machinery may not be necessary for picocyanobacteria in the marine context [11].

In contrast, many marine picocyanobacteria possess conserved SBPs predicted to uptake organic carbon (particularly sugars). These include CK_1342 — a cluster conserved across all Synechococcus strains yet largely absent from Prochlorococcus, and annotated to bind chitobiose (ChiE), CK_1455 (annotated to uptake glucosyl-glycerol/sucrose/trehalose) — a cluster conserved across all Synechococcus and Prochlorococcus LLIV strains, and a hypothetical sugar-binding protein cluster, CK_34148 present in a single Synechococcus clade IIIb strain (A15-28). Given the limited reliability of these gene annotations, these predicted functions may indeed be spurious and so a cautious interpretation of these annotations is warranted.

Our group recently solved two crystal structures (PDB ID: 6WPM, 6WPN) for a CK_1342 protein from an open ocean Synechococcus strain MITS9220, showing this protein conforms to other structural Cluster D proteins (Table 1) that interact with carbohydrates [36,40]. Ongoing ligand binding tests suggests zinc may be bound within the binding cleft (PDB ID: 6WPM) of one of the CK_1342 protein. We hypothesise that zinc

Figure 3. Structures of CmpA, NrtA and annotated ChiE.
(A) The overlaid cartoon representation of two related protein structures, CmpA (PDB ID: 2I48, wheat) and NrtA (PDB ID: 2G29, pink) (r.m.s.d = 0.812 Å), showing the defining hinge architecture of Cluster F (blue). (B) The cartoon representation of the annotated chitobiose-binding protein 3D structure (ChiE, CK_1342) from Synechococcus MITS9220 (PDB ID: 6WPM, green) showing defining hinge architecture of Cluster D (pink) and zinc in the binding cleft. (C) The ligand binding cleft for Ca\(^{2+}\)-mediated CmpA (wheat), NrtA (pink) with key substituted residues (underlined) and region of positive charge (blue dashed sector), and annotated ChiE (green) with zinc co-ordination site within the binding cleft.
may play a role in concomitant ligand binding of CK_1342 protein as seen for CmpA — a notion further reinforced by changes in the 3D structural elements between the zinc-free (PDB ID: 6WPN) and zinc-bound (PDB ID: 6WPM) forms. Uncovering evidence of SBPs involved in organic carbon uptake remains an important step in exploring the presence of mixotrophy in picocyanobacteria.

SBPs for nitrogen uptake

Nitrogen (N) is critical for protein and nucleic acid synthesis in picocyanobacteria and broadly regulates phytoplankton primary production [74]. Acquisition of inorganic N by most marine picocyanobacteria is performed by secondary membrane-bound transporters, such as nitrate permeases (NrtP or NapA) [18,75,76], or ammonium permease (Amt1) [77]. This contrasts with the active transport favoured by freshwater cyanobacteria, which utilise a high-affinity ABC transporter, NrtABCD [78–81]. The SBP component (NrtA) binds both nitrate (NO$_3^-$) and nitrite (NO$_2^-$) with comparable affinities ($K_D = 0.32 \mu$M and 0.34 μM, respectively) [82].

Despite facilitating N uptake, NrtA is more closely related in structure to CmpA of the bicarbonate uptake system (see Carbon section) [81,83] than to SBPs for other nitrogenous compounds, with both proteins belonging to a cluster (F-I) that specifically bind trigonal planar oxyanions [36,40].

Unlike CmpA (PDB ID: 2I48) where HCO$_3^-$-binding requires Ca$^{2+}$, in the case of NrtA (PDB ID: 2G29) the negative charge of NO$_3^-$ is balanced by substitution of basic residues (K269 and H196) to alter binding cleft chemistry (Figure 3). Comparing the binding clefts of CmpA and NrtA indicates anion selectivity is governed mainly by modulating charge such that binding occurs either via a co-ordinated metal ion (CmpA) or directly to charged sidechains (NrtA), indicating a level of sophistication in substrate preference that limits promiscuity in function.

As with organic carbon, picocyanobacteria are predicted to uptake organic N compounds, including amino acids, peptides, and quaternary amines [25,33,46]. Known structurally characterised SBPs from freshwater *Synechocystis*, include a glutamate-binding protein (PDB ID: 1II5, 1IIIT, 1IIW) and an amino acid/amide-binding protein from the filamentous *Anabaena* (PDB ID: 4NQR, 4NV3, 4OAT, 4OG2, 4OTZ, 4QYN, 4RDC). These SBPs are homologous to annotated SBP componentry for these nutrient sources in picocyanobacteria (e.g. clusters CK_1489, CK_7046, and CK_1944, respectively).

 Similarly, *A. variabilis* possesses what appears to be a highly promiscuous amino acid-binding protein (PDB ID: 316V), based on the function assigned in the PDB structure deposition. Orthologues of this amino-acid binding protein in marine picocyanobacteria occur in cluster CK_1489, an SBP predicted to bind acidic or polar amino acids. This SBP is conserved across all *Synechococcus* clades, except for a subcluster 5.2 strain (*Cyanobium* CB101) and all subcluster 5.3 strains. The phyletic distribution of this SBP in *Prochlorococcus* is mainly limited to low-light (LL) *Prochlorococcus* strains. Only one LL strain (MIT0601) lacks the SBP gene from this cluster, whereas the gene is almost entirely absent from high-light (HL) strains. Such a marked distribution indicates the cognate ligand for this cluster is likely present across different environments, but, stratified down the water column.

All sequenced picocyanobacteria, except *Prochlorococcus* LLII/III strains possess unvalidated SBP componentry annotated to uptake urea (UrtA, CK_76). Experimental evidence indicates picocyanobacteria display higher growth rates in the presence of urea [84], with some strains using urea as a sole nitrogen source [85] — further reinforced by characterisation of urease genes in *Prochlorococcus* PCC9511 [86] and *Synechococcus* WH7805 [87]. Some strains (e.g. from *Synechococcus* Clade IIIa) harbour ‘orphan’ urtA genes (that is, without additional ABC transporter subunits) close to phage-associated genes, indicating these SBPs may be propagated within the environment through lateral gene transfer events and possibly interact with alternative ABC transport machinery to facilitate urea uptake in these strains. The unresolved biological role and interacting partners for these orphan SBPs requires additional physiological and functional studies.

Like urea, additional organic nitrogen uptake may also occur through predicted cyanate transporters (CK_2165). The distribution of these transporters appears clade-specific in *Synechococcus* (Clade III) [22], however, these are yet to be functionally validated. As nitrogen is a major limiting nutrient in marine environments, mixotrophic strategies for the acquisition of organic nitrogen may be crucial for picocyanobacteria [33,63,88–90]. However, the identity of organic nitrogen species accessible to individual strains remains an open question. Additional structural or biochemical validation of hypothetical proteins, such as the conserved predicted urea uptake gene (CK_76), the ambiguous peptide or nickel transporter (CK_1014), and clade-specific cyanate transporter (CK_2165) would assist with confidently assigning functions to these SBPs and their associated metabolic pathways.
SBPs for phosphorus uptake

Phosphorus (P) is another important limiting nutrient across marine environments, serving as a principal element in cellular macromolecules and energy stores (e.g. DNA, RNA and ATP) [91-96]. Picocyanobacteria possess multiple phosphorus acquisition pathways for both inorganic (phosphate and phosphite) and organic (phosphonate) P compounds [93, 94, 97], reflecting their need for this essential nutrient.

Marine picocyanobacteria use the high-affinity Pst transport system to uptake phosphate [98]. The SBP in this system, PstS, is highly conserved in picocyanobacteria [11, 99], with some strains possessing multiple copies of the PstS (clusters CK_23, CK_43821). Differences in PstS copies between picocyanobacterial strains likely reflects adaptation to phosphorus availability. For example, Synechococcus WH8102, which originate from P-deplete environments [100] possesses two copies of PstS (CK_43821) and one copy of the additional PstS2 (CK_23) [11], while strains in P-replete waters (e.g. Synechococcus CC9311) have only a single copy of PstS2.

Quantitative PCR and radiolabelled uptake studies suggest freshwater Synechocystis use PstS proteins to sense changes in external inorganic phosphate concentrations [99]. Similarly, the cyanobacterial-specific SphX protein is also known to be up-regulated under phosphorus stress in Synechococcus WH8102 [31], and acts as a functional homologue in PstS-deficient freshwater strains [101]. Despite their possible role in general cellular stress responses [31, 52, 102], characterisation of PstS and SphX has only encompassed transcriptomic or proteomic responses to phosphorus stress [31, 52, 102], providing further scope to characterise these SBPs structurally.

All picocyanobacterial strains also possess the predicted phosphonate-binding protein PhnD1 (cluster CK_860), while some Prochlorococcus HLII/LLIV and Synechococcus clade II isolates also have a second, divergent copy, PhnD2 (CK_6203) [94]. A single Prochlorococcus HLII strain (MIT9314) even possesses a third copy (PhnD3, CK_56876), hypothesised to correspond to niche adaptation in low-phosphorus environments [46]. Prochlorococcus MIT9301 PhnD1 and PhnD2 proteins have been structurally characterised (PDB ID: 5LQ5/5LQ8 and 5LV1, respectively) (Figure 4) [94, 97], with PhnD1 shown to bind phosphate (PO_4^{3-}) with nanomolar affinities (K_D = 50-120 nM) [94, 97], and also recognise inorganic phosphate (K_D = 55-200 μM) and methylphosphonate (K_D = 40-110 μM), though with binding constants comparatively weaker than PO_4^{3-} [94, 97]. Conversely, Prochlorococcus MIT9301 PhnD2 displays nanomolar affinities for organic methylphosphonate (K_D = 80 nM) and low-micromolar affinity for PO_3^{-} (K_D = 2 μM) [94], but no measurable affinity for any other phosphorus source.

Between Prochlorococcus MIT9301 PhnD1 and PhnD2, the biggest change in the binding cleft (Figure 4) appears to be substitution of an asparagine residue in a conserved -serine-threonine-serine- motif (PhnD1, S126-T127-S128) to form -serine-threonine-asparagine- (PhnD2, S130-T131-N132), respectively. The substitution of asparagine favours interactions with hypophosphite (H_2PO_2^{-}) in related proteins, however, PhnD2 in Prochlorococcus displays no measurable affinity with hypophosphite [97]. All other key ligand-binding residues are contained at structurally conserved sites. Engagement of the carboxyl group of an aspartic acid (PhnD1, S126) appears to be substitution of an asparagine residue in a conserved -serine-threonine-serine- motif (PhnD1, S130-T131-N132) to form -serine-threonine-asparagine- (PhnD2, S130-T131-N132), respectively. The substitution of asparagine favours interactions with hypophosphite (H_2PO_2^{-}) in related proteins, however, PhnD2 in Prochlorococcus displays no measurable affinity with hypophosphite [97].

Despite broad structural conservation of PhnD proteins and their relatives (PtxB, HtxB), the precise molecular determinants of ligand binding, as discussed above, are due to the embellishments of the conserved fold around the binding cavity [97] and the protonation state of the ligand [103]. As with N, identifying the specific P-sources that can be utilised by different picocyanobacterial strains, via their multiple P acquisition pathways, would be a useful avenue of exploration to understand niche differentiation across the marine environment.

SBPs for trace metal uptake

Iron (Fe) is an essential micronutrient for optimal photosynthetic functioning in picocyanobacteria, and under certain circumstances can be growth-limiting [6, 9, 11]. Both marine (e.g. picocyanobacteria and the filamentous Trichodesmium erythraeum) and freshwater cyanobacteria (e.g. Synechocystis PCC 6803) use similar SBPs for Fe uptake such as the iron-deficiency induced protein A, IdiA (also referred as PutA) [69].
Two distinct iron-binding proteins (FutA1, FutA2) from Synechocystis PCC 6803 have been structurally characterised. These bind iron in two alternative oxidation states: FutA1 (PDB ID: 2PT1, 2PT2, 3F11) binds ferrous iron (Fe$^{2+}$) [104], while FutA2 (PDB ID: 2VOZ, 2VP1) binds ferric iron (Fe$^{3+}$) (Figure 5) [105]. Biochemical evidence indicates FutA1 does not behave as a classical SBP for nutrient uptake, but instead interacts intracellularly with photosystem II to alleviate photoinhibition during iron deficiency [106,107]. In contrast, FutA2 is exported to the periplasm via the twin-arginine (Tat) pathway [105], and likely functions as a typical periplasmic SBP for iron uptake. In Synechocystis PCC 6803, both FutA1 and FutA2 utilise a conserved tyrosine clamp motif to bind Fe. This consists of four tyrosine and one histidine residues which coordinate either ferrous or ferric iron [104,105] (Figure 5), raising the question of how these proteins balance the different oxidation states of Fe. The orthologous FutA1 protein from marine T. erythraeum has also been structurally characterised (PDB ID: 6G7N, 6G7P, 6G7Q) [69], however, the mechanisms by which these two cyanobacteria assimilate Fe appear different. In T. erythraeum, Fe binding is mediated by an organic siderophore (Fe-citrate) in contrast with the direct uptake of ionic iron by the FutA1/FutA2 proteins in Synechocystis PCC 6803 [108].

Figure 4. Structures of Prochlorococcus MIT9301 PhnD1 and PhnD2 in complex with phosphite.

Above, the overlaid structures of PhnD1 (PDB ID: 5LQ5, lilac) and PhnD2 (PDB ID: 5LV1, blue) (r.m.s.d = 1.05 Å) showing the defining hinge architecture of Cluster D (magenta). Below, the key ligand-binding residues for each of these proteins are shown (left) for PhnD1 and (right) for PhnD2.
While the mechanisms for iron acquisition by marine picocyanobacteria would be expected to mimic *T. erythraeum* more closely, there is evidence that siderophore-mediated uptake of Fe is rare among picocyanobacterial strains [11,109]. We speculate this correlate with an eco-physiological strategy reflective of the abundance of the higher oxidation state Fe$^{3+}$ relative to that of Fe$^{2+}$ (discussed further below). Within the Cyanorak database, three clusters corresponding to Fe-specific SBPs are annotated; IdiA1 (CK_57079), IdiA2 (CK_68) and IdiA3 (CK_57080). IdiA2 is widely distributed among picocyanobacteria, except for Prochlorococcus HLIV strains, *Synechococcus* clades V, VIII and subclusters 5.2 and 5.3. In contrast, IdiA1 is only found in *Synechococcus* clades III, VI, IX, and WPC, as well as IdiA2 lacking *Synechococcus* clades V, VIII, and subclusters 5.2 and 5.3. However, IdiA3 is found only in two *Synechococcus* clade VIII strains (RS9909 and RS9917). The presence of complementary predicted iron-binding proteins (IdiA1, IdiA2 and IdiA3) in picocyanobacterial strains reinforces the potential use of multiple iron acquisition strategies.

Unlike their freshwater counterparts, marine picocyanobacteria appear not to have SBPs to mediate the uptake of iron in its lower oxidation state (Fe$^{2+}$), possibly reflecting the fact that the uncomplexed, dissolved Fe$^{2+}$ is rapidly oxidised to Fe$^{3+}$ in surface ocean waters and extremely rare [110]. Instead, dissolved Fe in the oceans primarily exists in complex with organic compounds, including colloids and iron-binding ligands [110]. This may reflect greater competition for ferrous, rather than the less biologically useful ferric form, in marine
environments, coupled with a biochemical strategy inherently favouring the reduction in ferric iron. The impact of very low iron concentrations on evolved affinities and specificities for Fe-specific SBPs, alternative pathways for the uptake of reduced Fe [109], and the precise mechanisms of microbial-mediated feedback loops [109], remain highly topical areas for further investigation of trace metal acquisition, particularly iron.

Zinc and manganese

Zinc (Zn) and manganese (Mn) are essential micronutrients needed for the maintenance of photosynthetic apparatus, their environmental distribution varies [11,55,111,112], with free Mn concentrations even lower than those of Zn and generally higher at the ocean’s surface [55]. SBP componentry for zinc, ZnuA (formerly called ZntC, PDB ID: 1PQ4, 2OV1, 2OV3) and manganese, MntC (PDB: 1XVL, 3UJP, 4IRM) uptake has been demonstrated for *Synechocystis* PCC 6803, which conforms to the Zn and Mn-binding archetypes from other bacterial species, such as *E. coli* [113,114].

Synechocystis PCC 6803 ZnuA and MntC proteins employ similar coordination for each metal ion, engaging these in a histidine-rich binding pocket [113,115]. Specificity for each metal ion is governed by slightly different sidechains to satisfy each ion’s coordination geometry. *Synechocystis* PCC 6803 ZnuA use a triad of histidine residues (Figure 5), with the fourth Zn coordination bond satisfied by an exogenous water. MntC uses two histidine and two acidic sidechains co-ordinate the octahedral Mn ion, with one acidic sidechain contributing two coordination sites [108] (Figure 5). An additional structural embellishment, specific to Zn-binding proteins, is a histidine-rich loop that serves to increase available zinc concentrations close to the binding cleft [108,113,114].

In marine picocyanobacteria, the predicted Zn-binding protein is annotated as ZnuA (CK_2462) [116,117]. This specific cluster (CK_2462) is almost entirely absent from *Prochlorococcus* (except for strain MIT9303), and is found in select members of *Synechococcus* clades I, III, VIII, CRD1 and XX, and sub-clusters 5.2 and 5.3. In contrast, the predicted Mn-binding protein, MntC (CK_919), is found in all picocyanobacteria except one sub-cluster 5.2 strain (*Cyanobium* CB0205), with some strains (*Synechocystis* TAK9802 and BIOS-E4-1) encoding extra copies. Another SBP (CK_1600) annotated as either a Zn- or Mn-specific SBP is found in all strains except some from subcluster 5.2 and 5.3. The presence of a dedicated Mn-binding protein (CK_919) would indicate the latter (CK_1600) may bind Zn. However, physiological work has shown it is up-regulated under Fe stress [118], and competitively inhibited by cobalt (Co) [119]. The similarities in ligand-binding between Zn and Mn mean that conclusive resolution of substrate specificity will depend upon future structural and biochemical validation.

Additional trace metals

Picocyanobacterial biomass consists of around 30 naturally occurring elements. In addition to the macro- and micro-nutrients outlined above, picocyanobacteria also likely acquire microelements using a range of both SBP-mediated and other transport mechanisms [6]. For example, copper (Cu) uptake is mediated by a P1-type ATPase rather than via an ABC transporter [11]. Similarly, nickel (Ni) is also taken up by a variety of pathways, including two distinct permeases and two distinct ABC importers due to its essential as a catalyst in urea metabolism [120], however, currently only one *Cyanobium* strain (NS01) contains a predicted cobalt/nickel binding protein (CK_53501).

SBPs likely associated with uptake of other microelements include a predicted SBP (CK_8059) annotated to bind either peptides or nickel, widely distributed in all picocyanobacterial strains, except for *Prochlorococcus* LIII strains. In addition, less widely distributed SBPs include a predicted molybdenum-specific protein (CK_40935) found in three *Synechococcus* strains (CC9619, KORDI-100, and WH5701), and a predicted Fe siderophore/vitamin B12-binding protein (CK_51448) found in two *Prochlorococcus* (MIT9201 and MIT9202) and one *Synechococcus* (A15-127) strains. The target substrates of all of these SBPs remain experimentally uncharacterised. Given the crucial biochemical roles of trace metals, these SBPs are highly attractive candidates for further characterisation.

Conclusions and future research directions

Summary

Picocyanobacteria are highly abundant primary producers found across the global ocean [4,11]. The significant role played by the picocyanobacteria in global marine primary production (>25%) cannot be understated...
Despite this, the fundamental understanding of how additional metabolic preferences (particularly for mixotrophy) complements their photoautotrophic lifestyle remains largely uncharacterised. Relative to their small genome size, picocyanobacteria dedicate large portions of their transport capacity (up to 60%) to high-affinity ABC uptake systems [17,18]. Strain-level differences observed in the genomic representation of SBPs highlight that individual strains access different portions of the nutrient pool across distinct environments. This represents a significant knowledge gap between functional predictions based on gene annotations and what occurs in situ in complex and dynamic marine microbial communities.

Perspectives
- This review represents the first comprehensive use of protein structural data to define nutrient uptake functionality in picocyanobacteria. This alternative approach is particularly suitable given the low degree of sequence homology underpinning genomic annotations.
- The number and range of SBP gene clusters found in marine picocyanobacteria highlight their potential additional biochemical functionalities. Future research aimed at a systematic investigation of the predicted nutrient uptake capacity of picocyanobacteria, through structural verification of SBP substrate specificity, or the use of increasingly widespread structure prediction tools could aim to resolve ambiguity regarding their metabolic capabilities.
- Functional characterisation will further refine our understanding of how nutrient acquisition shapes ecological trajectories of picocyanobacterial communities to adapt to environmental niches, complementing ecosystem models of how these ubiquitous bacteria will respond to a changing ocean.
32 Moore, L.R. (2013) More mixotrophy in the marine microbial mix. Proc. Natl Acad. Sci. U.S.A. 110, 8323–8324 https://doi.org/10.1073/pnas.1305998110
33 Muñoz-Marín, M.C., Gómez-Baena, G., López-Lozano, A., Moreno-Cabezuelo, J.A., Diez, J. and García-Fernández, J.M. (2020) Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus. ISME J. 14, 1065–1073 https://doi.org/10.1038/s41396-020-0603-9
34 Clifton, B.E. and Jackson, C.J. (2016) Algal genetic reconstruction yields insights into adaptive evolution of binding specificity in solute-binding proteins. Cell Chem. Biol. 23, 236–245 https://doi.org/10.1016/j.chembiol.2015.12.010
35 Tam, R. and Saier, M.H. (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 57, 320–346 https://doi.org/10.1128/ir.57.3.320-346.1993
36 Berntsson, R.P.-A., Smith, S.H.J., Schmitt, L., Slotboom, D.-J. and Poolman, B. (2010) A structural classification of substrate-binding proteins. FEBS Lett. 584, 2606–2617 https://doi.org/10.1016/j.febslet.2010.04.043
37 Macbool, A., Horler, R.S.P., Muller, A., Wilkinson, A.J., Wilson, K.S. and Thomas, G.H. (2015) The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity. Biochem. Soc. Trans. 43, 1011–1017 https://doi.org/10.1042/BST20151345
38 Vetting, M.W., Al-Obaidi, N., Zhao, S., San Francisco, B., Kim, J., Wichelecki, D.J. et al. (2015) Experimental strategies for functional annotation and metabolism discovery: targeted screening of soluble binding proteins and unbiased panming of metabolomes. Biochemistry 54, 909–931 https://doi.org/10.1021/bi501388y
39 Huang, H., Carter, M.S., Vetting, M.W., Al-Obaidi, N., Patkosky, Y., Almo, S.C. et al. (2015) A general strategy for the discovery of metabolic pathways: D-threitol, L-threitol, and erythritol utilization in Mycobacterium smegmatis. J. Am. Chem. Soc. 137, 14570–3 https://doi.org/10.1021/jacs.5b08968
40 Scheepers, G.H., Lycklama, A., Nijeholt, J.A. and Poolman, B. (2016) An updated structural classification of substrate-binding proteins. FEBS Lett. 590, 4393–4401 https://doi.org/10.1002/2237-3488.201445
41 de Boer, M., Gouridis, G., Vietrov, R., Begg, S.L., Schuurman-Wolters, G.K., Husada, F. et al. (2019) Conformational and dynamic plasticity in substrate-binding proteins underlies selective transport in ABC importers. eLife 8, e44652 https://doi.org/10.7554/eLife.44652
42 Gouridis, G., Schuurman-Wolters, G.K., Ploetz, E., Husada, F., Vietrov, R., De Boer, M. et al. (2015) Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlpF. Nat. Struct. Mol. Biol. 22, 57–64 https://doi.org/10.1038/nsmb.2929
43 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O. et al. (2021) Highly accurate protein structure prediction with alphaFold. Nature 596, 583–589 https://doi.org/10.1038/s41586-021-03819-2
44 Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G.R. et al. (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 https://doi.org/10.1126/science.abj8754
45 Zhang, C., Freddolino, P.L. and Zhang, Y. (2017) COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acid Res. 45, 291–2299 https://doi.org/10.1093/nar/gko366
46 Garczarek, L., Guyet, U., Doré, H., Farrant, G.K., Hoebeke, M., Brillet-Guéguen, L. et al. (2021) Cyanorak v2.1: a scalable information system dedicated to the visualization and expert curation of marine and brackish picocyanobacteria genomes. Nucleic Acid Res. 49, D667–D676 https://doi.org/10.1093/nar/gkaa958
47 Watzler, B., Spät, P., Neumann, N., Koch, M., Sobolka, R., MacEk, B. et al. (2019) The signal transduction protein PIl controls ammonium, nitrate and urea uptake in cyanobacteria. Front. Microbiol. 10, 1–20 https://doi.org/10.3389/fmicb.2019.01428
48 Ahlgren, N.A. and Rocap, G. (2012) Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of dPCR assays for sensitive measurement of clades in the ocean. Front. Microbiol. 3, 1–24 https://doi.org/10.3389/fmicb.2012.00213
49 Kettler, G.C., Martiny, A.C., Huang, K., Zucker, J., Coleman, M.L., Rodrigue, S. et al. (2007) Patterns and implications of gene gain and loss in the development of Prochlorococcus. PLoS Genet. 3, 2515–2528 https://doi.org/10.1371/journal.pgen.0030231
50 Dulfesne, A., Ostrowski, M., Scanlan, D.J., Garczarek, L., Mazard, S., Paleik, B.P. et al. (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 9, R90 https://doi.org/10.1186/gb-2008-9-5-r90
51 Lauro, F.M., McDougald, D., Thomas, T., Williams, T.J., Egän, S., Neece, S. et al. (2009) The genomic basis of trophic strategy in marine bacteria. Proc. Natl Acad. Sci. U.S.A. 106, 15527–15533 https://doi.org/10.1073/pnas.0905710106
52 Moore, C.M., Mills, M.M., Langlois, R.M., Ainsley, A., Achtberg, E.P., La Roche, J. et al. (2008) Relative influence of nitrogen and phosphorus availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnol. Oceanogr. 53, 291–305 https://doi.org/10.4319/lo.2008.53.1.0291
53 Moore, L.R., Ostrowski, M., Scanlan, D.J., Feren, K. and Sweertins, T. (2005) Ecotypic variation in phosphorus-acquisition mechanisms within marine picocyanobacteria. Aquat. Microb. Ecol. 39, 257–269 https://doi.org/10.3354/ame039257
54 Morris, N., Levine, N.M., Fernandez, V.I. and Stocker, R. (2020) Mechanistic model of nutrient uptake explains dichotomy between marine oligotrophs and copiotrophs. PLoS Comput. Biol. 17, e1009023 https://doi.org/10.1371/journal.pcbi.1009023
55 Sunda, W.G. (2012) Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front. Microbiol. 3, 1–22 https://doi.org/10.3389/fmicb.2012.00204
56 Redfield, A.C. (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In James Johnstone Memorial Volume (Daniell, R.J., ed.), pp. 176–192, University Press of Liverpool, Liverpool, UK
57 Kretz, C.B., BELL, D.W., Lomas, D.A., Lomas, M.W. and Martiny, A.C. (2015) Influence of growth rate on the physiological response of marine Synechococcus to phosphate limitation. Front. Microbiol. 6, 1–6 https://doi.org/10.3389/fmicb.2015.00085
58 Corro-Gálvez, E., Sala, M.M., Marnasé, C., Gasol, J.M., Dachs, J. and Vila-Costa, M. (2019) Modulation of microbial growth and enzymatic activities in the marine environment due to exposure to organic contaminants of emerging concern and hydrocarbons. Sci. Total Environ. 678, 486–498 https://doi.org/10.1016/j.scitotenv.2019.04.361
59 Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J. et al. (2013) Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York (Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Arora, V.K., et al., eds), pp. 465–507, Cambridge University Press, NY, U.S.A.
2003) Morel, F.M.M. and Price, N. (2003) The biogeochemical cycles of trace metals in the oceans. Environ. Microbiol. 70, 4079–4087.

(2012) Kruip, J., Kahmann, U., Preisfeld, A. and Pistorius, E.K. (2012) Localization and function of the IdiA homologue Slr1295 in the marine cyanobacterium Synechocystis PCC 6803. Environ. Microbiol. 14, 1363–1377.

(2002) Adams, N.B.P., Robertson, A.J., Hunter, C.N., Hitchcock, A. and Bisson, C. (2019) Phosphite binding by the HtxB periplasmic binding protein depends on the protonation state of the ligand. J. Biol. Chem. 282, 24768–24777.

(2017) Martin, A.C., Lomas, M.W., Fu, W., Boyd, P.W., Chen, Y.L.L., Cutter, G.A. et al. (2017) Biogeochemical controls of surface ocean phosphate. Nat. Commun. 8, 1746.

(2015) Karl, D.M. (2015) Microbially mediated transformations of phosphorus in the sea: new views of an old cycle. J. Mol. Biol. 425, 3484–3498.

(2014) Huertas, M.J., López-Maury, L., Giner-Lamia, J., Sánchez-Riego, A.M. and Florencio, F.J. (2014) Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. J. Biol. Chem. 289, 1314–1324.

(2009) Ma, Z., Jacobsen, F.E. and Giedroc, D.P. (2009) Coordination chemistry of bacterial metal transport and sensing. J. Biol. Chem. 284, 14558–14565.

(2007) Paytan, A. and McLaughlin, K. (2007) The oceanic phosphorus cycle. Chem. Rev. 107, 563–576.

(2001) Adams, N.B.P., Robertson, A.J., Hunter, C.N., Hitchcock, A. and Bisson, C. (2019) Phosphite binding by the HtxB periplasmic binding protein depends on the protonation state of the ligand. J. Biol. Chem. 284, 14558–14565.

(2010) Koropatkin, N., Randich, A.M., Bhattacharya-Pakrasi, M., Pakrasi, H.B. and Smith, T.J. (2007) The structure of the iron-binding protein, Fua1, from Synechocystis 6803. J. Biol. Chem. 282, 24768–24777.

(2008) Badarau, A., Firbank, S.J., Waldron, K.J., Yanagisawa, S., Robinson, N.J., Banfield, M.J. et al. (2008) Fua2 is a ferric binding protein from Synechocystis PCC 6803. J. Biol. Chem. 283, 12520–7.

(2004) Töllö, J., Michel, K.P., Krup, J., Kammann, U., Preisfeld, A. and Pistorius, E.K. (2002) Localization and function of the IdiA homologue Stl295 in the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology 148, 3293–3305.

(2014) Michel, K.-P. and Pistorius, E.K. (2014) Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of IdiA and IsiA. Physiol. Plant. 120, 36–50.

(2019) Adams, N.B.P., Robertson, A.J., Hunter, C.N., Hitchcock, A. and Bisson, C. (2019) Phosphite binding by the Htb8 periplasmic binding protein depends on the protonation state of the ligand. Sci. Rep. 9, 10231.

(2008) Olson, R.J., Chisholm, S.W., Zettler, E.R. and Armbrust, E.V. (1988) Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry. Deep Sea Res. Part A Oceanogr. Res. Pap. 35, 425–440.

(1997) Mann, N.H. and Scanlan, D.J. (1997) The Spltx protein of Synechococcus sp. PCC 7942 belongs to a family of phosphate-binding proteins. Mol. Microbiol. 14, 595–596.

(2013) Reisetter, E.N., Krumhardt, K., Callinan, K., Roache-Johnson, K., Saunders, J.K., Moore, L.R. et al. (2013) Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MEDII: gene expression. Environ. Microbiol. 15, 2129–2143.

(2003) Adams, N.B.P., Robertson, A.J., Hunter, C.N., Hitchcock, A. and Bisson, C. (2019) Phosphite binding by the Htb8 periplasmic binding protein depends on the protonation state of the ligand. Sci. Rep. 9, 10231.

(2010) Pitt, F.D., Mazar, S., Humphreys, L. and Scanlan, D.J. (2010) Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium. J. Bacteriol. 192, 3512–3523.

(2009) Hopkinson, B.M. and Morel, F.M.M. (2009) The role of siderophores in iron acquisition by photosynthetic marine microorganisms. BioMetals 22, 659–669.

(2005) Wells, M.L., Price, N.M. and Bruland, K.W. (1995) Iron chemistry in seawater and its relationship to phytoplankton: a workshop report. Mar. Chem. 48, 157–182.

(2008) Morel, F.M.M. and Price, N. (2003) The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947.

(2014) Huertas, M.J., López-Maury, L., Giner-Lamia, J., Sánchez-Riego, A.M. and Florencio, F.J. (2014) Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life 4, 865–886.

(2009) Banerjee, S., Wei, B., Bhattacharya-Pakrasi, M., Pakrasi, H.B. and Smith, T.J. (2009) Structural determinants of metal specificity in the zinc transport protein ZnuA from Synechocystis PCC 6803. J. Biol. Chem. 333, 1061–1069.

(2007) Wei, B., Randich, A.M., Bhattacharya-Pakrasi, M., Pakrasi, H.B. and Smith, T.J. (2007) Possible regulatory role for the histidine-rich loop in the zinc transport protein, ZnuA. Biochemistry 46, 8734–8743.

(2009) Ruhlman, V., Anati, R., Melamed-Frank, M. and Adir, N. (2009) The mntC2 crystal structure suggests that import of Mn2+ in cyanobacteria is redox controlled. J. Mol. Biol. 384, 961–969.

(2012) Barrett, J.P., Millard, A., Kibbe, A.Z., Scanlan, D.J., Schmid, R. and Blüdauera, C.A. (2012) Mining genomes of marine cyanobacteria for elements of zinc homeostasis. Front. Microbiol. 3, 142.

(2008) Blüdauera, C.A. (2008) Zinc handling in cyanobacteria: an update. Chem. Biodivers. 5, 1990–2013.

(2011) Thompson, A.W., Huang, K., Saito, M.A. and Chisholm, S.W. (2011) Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability. ISME J. 5, 1580–1594.

(2012) Havoc, N.J. and Saito, M.A. (2012) Competitive inhibition of cobalt uptake by zinc and manganese in a Pacific Prochlorococcus strain: insights into metal homeostasis in a streamlined oligotrophic cyanobacterium. Limnol. Oceanogr. 63, 2229–2249.

(2012) Dupont, C.L., Johnson, D.A., Philippy, K., Paulsen, I.T., Brahamsha, B. and Palenik, B. (2012) Genetic identification of a high-affinity Ni transporter and the transcriptional response to Ni deprivation in Synechococcus sp. strain WH8102. Appl. Environ. Microbiol. 78, 7822–7832.
121 Jardillier, L., Zubkov, M. V., Pearman, J. and Scanlan, D.J. (2010) Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. *ISME J.* 4, 1180–1192 https://doi.org/10.1038/ismej.2010.36

122 Letunic, I. and Bork, P. (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. *Nucleic Acids Res.* 47, 256–259 https://doi.org/10.1093/nar/gkz239

123 Katoh, K. and Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780 https://doi.org/10.1093/molbev/mst010

124 Guindon, S., Dufayard, J. and Lefort, V. (2010) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Syst. Biol.* 59, 307–321 https://doi.org/10.1093/sysbio/syp010

125 Mayer, M.L., Olson, R. and Gouaux, E. (2001) Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. *J. Mol. Biol.* 311, 815–836 https://doi.org/10.1006/jmbi.2001.4884

126 Lee, J.H., Kang, G.B., Lim, H.H., Jin, K.S., Kim, S.H., Ree, M. et al. (2008) Crystal structure of the GluR0 ligand-binding core from *Nostoc punctiforme* in complex with l-glutamate: structural dissection of the ligand interaction and subunit interface. *J. Mol. Biol.* 376, 308–316 https://doi.org/10.1016/j.jmb.2007.10.081