Construction and validation of a first-generation *Bordetella bronchiseptica* long-oligonucleotide microarray by transcriptional profiling the Bvg regulon

Tracy L Nicholson*

Address: Respiratory Diseases of Livestock Research Unit; National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa 50010, USA

Email: Tracy L Nicholson* - tnicholson@nadc.ars.usda.gov

* Corresponding author

Abstract

Background: *Bordetella bronchiseptica* is a bacterial respiratory pathogen that infects a broad range of mammals, causing chronic and often subclinical infections. Gene expression in *Bordetella* is regulated by a two-component sensory transduction system, BvgAS, which controls the expression of a spectrum of phenotypic phases transitioning between a virulent (Bvg+) phase and a non-virulent (Bvg-) phase.

Results: Based on the genomic sequence and using the freely available software ArrayOligoSelector, a long oligonucleotide *B. bronchiseptica* microarray was designed and assembled. This long-oligonucleotide microarray was subsequently tested and validated by comparing changes in the global expression profiles between *B. bronchiseptica* RB50 and its Bvg-phase-locked derivative, RB54. Data from this microarray analysis revealed 1,668 Bvg-regulated genes, which greatly expands the BvgAS regulon defined in previous reports. For previously reported Bvg-regulated transcripts, the gene expression data presented here is congruent with prior findings. Additionally, quantitative real-time PCR data provided an independent verification of the microarray expression values.

Conclusion: The results presented here provide a comprehensive, genome-wide portrait of transcripts encompassing the BvgAS regulon, while also providing data validating the long-oligonucleotide microarray described here for studying gene expression in *Bordetella bronchiseptica*.

Background

Bordetellae are Gram negative bacterial respiratory pathogens. *Bordetella pertussis* and *Bordetella parapertussis* are the causative agents of whooping cough, are human-adapted variants of *Bordetella bronchiseptica*, which naturally infects a broad range of mammals causing chronic and often asymptomatic infections [1]. The majority of gene expression in *Bordetella* is regulated by a two-component sensory transduction system encoded by the *bvg* locus. The *bvg* locus comprises a histidine kinase sensor protein, BvgS, and a DNA-binding response-regulator protein, BvgA. In response to environmental cues, BvgAS controls expression of a spectrum of phenotypic phases transitioning between a virulent (Bvg+) phase and a non-virulent (Bvg-) phase. During the virulent Bvg+ phase, the BvgAS system is fully active and many of the known virulence factors are...
expressed, such as filamentous hemagglutinin (FHA), pertactin, fimbriae, adenylate cyclase-hemolysin toxin, and dermonecrotic toxin (DNT), as well as a type III secretion system (TTSS) in *B. bronchiseptica* [2]. Conversely, BvgAS is inactive during the Bvg phase, resulting in the maximal expression of motility loci, virulence-repressed genes (vrg genes), genes required for the production of urease, and in *B. bronchiseptica* RB50, a siderophore, alcaligin [3-5]. Previous studies involving phase-locked and ectopic expression mutants demonstrated that the Bvg+ phase promotes respiratory tract colonization by *B. pertussis* and *B. bronchiseptica* [6-9], while the Bvg phase of *B. bronchiseptica* promotes survival under conditions of nutrient deprivation [6,10].

The signals that activate BvgAS in nature are unknown. However, in the laboratory, BvgAS is active when the bacteria are grown at 37 °C and inactive when grown at temperatures below ~26°C or in medium containing MgSO4 or nicotinic acid at concentrations in the millimolar range. Although originally identified as a positive regulator of virulence gene transcription [11], it is now known that BvgAS controls expression of over a hundred different genes whose products are either proven or predicted to participate in a wide variety of cellular activities including many basic physiological functions [12-14]. Additionally, it is now understood that rather than functioning like an ON/OFF switch, BvgAS functions more like a "rheostat" capable of controlling gene expression of many phenotypic phases in response to subtle differences in environmental conditions [10].

The advent of microarray technology has enabled scientists to investigate biological questions, such as those pertaining to bacterial pathogenesis and host-pathogen interactions, in a global fashion. The cDNA microarray represents a popular array type in which double-stranded PCR products are spotted onto glass slides. However, construction of such microarrays presents a number of challenges, largely related to costs associated with ampiclon validation, tracking and maintenance. For example, the laborious and problematic tracking of PCR ampiclons leads to an estimated 10–30% misidentification [15]. Another limitation of cDNA microarrays is their inability, due to cross-hybridization, to reliably discriminate expression patterns of homologous genes [16]. With oligonucleotide arrays, problems related to clone tracking, homologous gene discrimination, and failed PCR ampiclons are avoided, thus making long-oligonucleotide microarrays a more cost- and management-efficient alternative to cDNA microarrays. Here we present the design and assembly of a long-oligonucleotide *B. bronchiseptica* gene-specific microarray using the currently available genomic sequence generated by the Sanger Institute [17] and the software package ArrayOligoSelector [18]. This long-oligonucleotide microarray was then tested and validated by evaluating changes in the global expression profiles between *B. bronchiseptica* strain RB50 and its Bvg phase-locked derivative, RB54.

Results and discussion

To construct a *B. bronchiseptica*-specific whole genome microarray, the freely available software program, Array-OligoSelector (AOS) [18], was used to generate 70-mer oligonucleotide probes for every ORF in the *Bordetella bronchiseptica* RB50 genome [17]. The rationale behind designing and utilizing oligonucleotide probes versus PCR amplicons as probes, and subsequently the 70-mer length of the oligonucleotide probes, was chosen for several reasons. Long oligonucleotides are a highly sensitive alternative to PCR products and provide a means to readily distinguish between genes with high degrees of sequence similarity, which is an issue for the *B. bronchiseptica* genome [17]. For example, except for the extreme 5' and 3' termini, the *fhaB* and *fhaS* genes are nearly identical [19]. Additionally, previous results involving an anchored set of oligonucleotides revealed a strong relationship between the oligonucleotide length and hybridization performance [18].

For each *B. bronchiseptica* ORF, the AOS program optimizes the oligonucleotide selection on the basis of uniqueness in the genome, sequence complexity, lack of self-binding and GC content. Candidate oligos closest to the 3' end of the gene are then chosen [18]. There are a number of missing array elements due to gene duplications, prophage duplications, and ORF assignments missing from the completed genome annotation [17]. These missing array elements and, in the case of gene duplications, their corresponding represented array elements are listed in Additional File 1- see Supplementary Table S1. A list of the final 4975 oligonucleotide array elements or probes representing the entire *B. bronchiseptica* genome is given in Additional File 1- see Supplementary Table S2.

To test the usefulness of the newly constructed long-oligonucleotide *Bordetella bronchiseptica* microarray, a direct comparison between the transcriptional profile of *B. bronchiseptica* RB50 and RB54, a *B. bronchiseptica* Bvg phase locked derivative of RB50, was performed. The rationale behind performing this comparison to validate and test the *B. bronchiseptica* long-oligonucleotide microarray is that this comparison will globally identify *B. bronchiseptica* genes regulated by BvgAS. Previous studies, including cDNA microarray studies, have identified 538 genes controlled by BvgAS [2,13,14], thus providing a substantial reportable reference set to validate gene expression data generated from the newly constructed *B. bronchiseptica* long-oligonucleotide microarray.
Utilizing the *B. bronchiseptica* long-oligonucleotide microarray, ratio data collected from microarray analysis involving the direct comparison between *B. bronchiseptica* RB50 and RB54 revealed 1,668 Bvg-regulated genes (identified using SAM with a false discovery rate of <0.1%). This is a substantial increase in the number of Bvg-regulated transcripts compared to the 538 Bvg-regulated genes recently reported by others using cDNA microarray analysis [14]. A complete list of the fold-change expression values from this comparison, along with dye swap experimental data, is provided in Additional File 1- Supplementary Table S3. One possible effect of using the *B. bronchiseptica* RB50 strain grown at 37°C to represent the Bvg+ phase, as opposed to using a Bvg+ phase-locked strain, is that some Bvg-activated genes could be missed in this analysis. Possible explanations for the large increase in Bvg-regulated transcripts detected in this study, compared to previous reports, may include (i) differences between strains used, for example wild-type versus phase-locked derivatives, (ii) differences between gene expression threshold cut-off values used in analysis, and (iii) for microarray studies, differences between array platforms, such as cDNA microarrays versus oligonucleotide microarrays. Gene expression profiles reported here of demonstrated Bvg-regulated transcripts are consistent with previous results (Figure 1).

Historically, numerous Bvg-activated genes have been described, such as TTSS genes, fimbrial genes, filamentous hemagglutinin, pertactin, adenylyl cyclase-hemolysin toxin, and dermonecrotic toxin [2]. Using the newly constructed oligonucleotide *B. bronchiseptica* microarray, all of these transcripts were found to be positively regulated by BvgAS (Figure 1). Along with other virulence-related transcripts classically characterized as Bvg-activated, three putative adhesion genes *fhaS* (+10.37-fold), *fhaL* (+8.04-fold), and *BB0110* (+8.58-fold) were found to be highly Bvg-activated, as well as a putative novel toxin, *BB3242* (+50.72-fold), containing an aerolysin and pertussis toxin domain (Table 1 and see Additional File 1- Supplementary Table S3). Seven ATP-binding cassette (ABC) transporters were found to be Bvg-activated, including *BB1593* (+83-fold) (Table 1 and see Additional File 1- Supplementary Table S3). In other bacteria, these transporters serve as important virulence factors based upon their role in nutrient uptake and in secretion of toxins and antimicrobial agents [20]. Five autotransporters were highly Bvg-activated, including two virulence-associated transcripts *vag8* and *sphB1* (Table 1 and see Additional File 1- Supplementary Table S3). The autotransporter *sphB1* has been implicated in the maturation process of FHA [21]. The Bvg-activated expression profile of these transporters implicates their importance in pathogenesis. Five genes involved in protein folding and ushering were highly Bvg-activated. These include *dsBG* (+35.29-fold) and *mucD*.
were preferentially activated in the Bvg- phase, along with Consistent with previous results, genes required for the tions [2,25]. Twenty-seven transcripts identified as serving roles in global regulatory functions were found to be Bvg-activated, including the conventionally characterized bvgAS and the TTSS regulator brrpL. (Table 1 and see Additional File 1- Supplementary Table S3). Other Bvg-activated transcripts in this group include the other TTSS regulators (BB1645, BB1646, and BB1642), three proposed two-component response regulatory proteins, and numerous proposed transcriptional regulators. Lastly, BB4228 (+15.70-fold), recently designated BopC and characterized as a novel type-III secretion effector [24], was found to be highly Bvg-activated.

The overall global transcriptional program observed during the Bvg phase supports previous data implicating a crucial role for the Bvg-phase in survival during environmental stress conditions [2,25]. Genes annotated to serve global regulatory functions were one of the functional categories with the highest number of Bvg-repressed transcripts. Transcripts in this category include forty-nine transcription factors and/or DNA-binding proteins, and ten two-component systems (Table 2 and see Additional File 1- Supplementary Table 3). Numerous genes involved in transport were identified as Bvg-repressed, including twenty-seven ABC transporters and TonB-dependent receptors, such as bfrG BB1294 (-2.86-fold) and bfeA BB1942 (-2.80-fold) (Table 2 and see Additional File 1- Supplementary Table S3). As mentioned earlier, these transporters serve important biological roles in other organisms, including participation in host-pathogen interactions as known virulence factors [20]. The Bvg-repressed expression profile of these genes highlights nutrient scavenging as a critical ability during Bvg growth and supports prior data demonstrating that the Bvg phase is optimized for growth under nutrient limiting conditions [2,25].

Consistent with previous results, genes required for the expression of the siderophore alcaligin [26] and urease [5] were preferentially activated in the Bvg phase, along with a putative hemolysin BB1186 (-2.83-fold) (Table 2 and see Additional File 1- Supplementary Table S3). Also consistent with previous reports, all of the genes known to be involved in chemotaxis, such as cheD (-10.59-fold) and cheW (-15.21-fold), and motility, such as flgB (-44.49-fold) and flgC (-32.10-fold), were Bvg-repressed [3] (Table 2 and see Additional File 1- Supplementary Table S3). Numerous genes involved in electron transport were Bvg-repressed along with numerous genes involved in protein folding and ushering, including a high number of universal stress proteins, congruent with the Bvg phase role in stress survival [6,25] (Table 2 and see Additional File S1- Supplementary Table S3).

Bordetella pertussis only infects humans and, as mentioned above, is responsible for causing an acute upper-respiratory disease known as whooping cough or pertussis. Due to its high degree of similarity to _B. pertussis_ and its broad host range, including animals conveniently used in laboratory studies, _B. bronchiseptica_ is widely used as a model for _Bordetella_ pathogenesis research. Data arising from the recent completion of the comparative sequencing of three different _Bordetella_ strains has revealed a loss or inactivation of a large number of genes in _B. pertussis_ [17]. Thus an intriguing question is how many of the _B. bronchiseptica_ Bvg-regulated genes are intact in _B. pertussis_. To determine this, the ORF sequence and _B. bronchiseptica_ (see Additional File S1- Supplementary Table S4).

Real-time quantitative PCR was performed to provide an independent assessment of microarray expression measurements for selected genes. Genes were chosen to reflect the full spectrum of fold-changes identified by microarray analysis. Specifically, transcripts identified as having little to no change in gene expression by microarray analysis and selected for qRT-PCR include BB0057 rpoA, BB4989 dnaA, BB1037, and BB3703 eno (Table 3). Bvg-activated genes identified by microarray analysis and selected for qRT-PCR include BB1619 bcrH1 and BB1622 bcrH2 (Table 3). On the polar end of the Bvg spectrum, genes identified as Bvg-repressed and selected for qRT-PCR include BB2522 and BB1315, a putative universal stress protein. Additionally, BB4835 rpoH, sigma-32, identified as Bvg-repressed (-3.09-fold) was also selected for qRT-PCR analysis since it had not been identified as Bvg-regulated by previous cDNA microarray studies [13,14]. Real-time quantitative PCR analysis of this gene set provided data consistent with the quantitative measures by microarray analysis, using the newly constructed _B. bronchiseptica_ oligonucleotide microarray ($r^2 = 0.94$) (Figure 2). Therefore, this real-time quantitative PCR data provides independent verification of the microarray results.

Given that BvgAS is the major virulence regulator in _Bordetella_, the information presented in this report should allow researchers to design future experiments targeting some newly identified Bvg-regulated genes and study their role in the pathogenesis of this organism. A recent study demonstrated that _Bordetella bronchiseptica_, _Bordetella parapertussis_ and _Bordetella pertussis_ all contain a higher number of transcription factors or regulatory elements
Table 1: Representative Bvg+ phase specific genes identified by microarray analysis.

Function	Gene	Product	Fold-Change ± SEM
Cell Adhesin	BB0110	putative adhesion	8.58 ± 3.21
	BB1658 fim3	serotype 3 fimbrial subunit precursor	32.47 ± 11.10
	BB1936 fhL	adhesion	8.04 ± 1.63
	BB2312 fhS	adhesion	10.37 ± 2.76
	BB2989 fimD	fimbrial adhesion	11.38 ± 3.76
	BB2992 fimA	fimbrial protein	33.75 ± 13.88
	BB2993 fimB	filamentous hemagglutin	11.37 ± 4.55
	BB3424	fimbrial protein	8.92 ± 2.64
	BB3425 fimN	fimbrial subunit precursor	11.95 ± 2.06
	BB3426 fimX	fimbrial protein	8.92 ± 2.64
	BB3674 fim2	serotype 2 fimbrial subunit precursor	21.89 ± 5.68
Cell Envelope	BB1289	putative integral membrane protein	26.29 ± 8.25
	BB1368	putative membrane protein	3.94 ± 0.56
	BB3119	putative membrane protein	19.27 ± 2.17
	BB3157	putative membrane protein	16.41 ± 5.54
	BB4029	putative glycosyl transferase	4.96 ± 0.32
	BB4266	putative membrane protein	6.84 ± 0.82
	BB4269	putative glycosyl transferase	2.23 ± 0.42
	BB4284	putative membrane protein	2.96 ± 0.14
Protein Folding and Ushering	BB2320	chaperone protein	11.20 ± 7.71
	BB3749 mucD	serine protease; trypsin activity	2.75 ± 0.41
	BB3803	putative peptidyl-prolyl cis-trans isomerase	4.65 ± 1.26
Global Regulatory Functions	BB0308	putative transcriptional regulator	5.67 ± 0.98
	BB1607	putative LysR-family transcriptional regulator	3.37 ± 0.55
	BB1638 bplL	putative RNA polymerase sigma factor	50.66 ± 15.58
	BB1642	putative regulator; catalytic activity	112.16 ± 97.97
	BB1645	putative anti-sigma factor; ATP binding	9.46 ± 3.00
	BB1646	putative antisigma factor antagonist	18.19 ± 6.08
	BB2051	putative regulatory protein	2.24 ± 0.59
	BB4374	putative ArsC-Family transcriptional regulator	5.78 ± 7.25
Metabolism	BB0457	probable enoyl-CoA hydrates; isomerase activity	5.72 ± 1.34
	BB0458	probable carboxymuconolactone decarboxylase	3.42 ± 0.79
	BB1476	putative glucosene dehydrogenase	2.88 ± 0.51
	BB1478	putative carbonic anhydrase precursor	4.05 ± 0.77
	BB1640	hypothetical protein; glutamate-cysteine ligase activity	63.92 ± 18.15
	BB1644 a'	alanine racemase, catalytic	253.96 ± 97.47
	BB2658	glutamate decarboxylase	2.78 ± 0.93
	BB3873	intracellular PHB depolymerase	3.23 ± 0.78
	BB4286 nasC	putative nicotinate-nucleotidesdehydroporphosphorylase	32.86 ± 6.48
Periplasmic, Exported, Lipoprotein	BB0324	bifunctional hemolysin-adenylatecyclase precursor	6.73 ± 2.52
	BB1280	putative exported protein	73.44 ± 37.80
	BB1292	putative exported protein	272.88 ± 93.88
	BB1641	putative exported protein	149.05 ± 97.51
	BB2398	putative exported protein	6.77 ± 1.38
	BB2873	putative membrane protein	26.85 ± 13.90
	BB3068	putative exported protein	10.90 ± 3.11
	BB3242	putative exported protein	48.75 ± 9.65
	BB3302	lipoprotein	5.09 ± 0.63
	BB3978 dnt	dermonecrotic toxin	8.63 ± 3.61
	BB4181	putative lipoprotein	3.40 ± 0.25
	BB4285	putative exported protein	49.73 ± 14.04
Transport	BB0325 cyoC	cycloolx-inactivating lyxine-acyltransferase	2.70 ± 0.27
	BB0325 cyoB	cycloolxin secretion ATP-binding protein; ABC transporter	2.10 ± 0.31
	BB0326 cyoD	cycloolxin secretion protein; transporter activity	3.48 ± 0.51
	BB0327 cyoE	cycloolxin secretion protein; subtilase activity	3.66 ± 1.57
	BB0419 sphB	autotransporter subilnin-like protease; subtilase activity	59.34 ± 42.26
	BB1593	putative ABC transport system, membrane protein	83.60 ± 28.88
	BB1643	putative inner membrane transport protein	39.61 ± 16.68
	BB1864 vag8	autotransporter	122.00 ± 79.14
	BB2270	autotransporter	4.71 ± 2.07
	BB3826 bID	probable TonB-dependent receptor for iron transport	2.68 ± 0.58
	BB3993 OmpQ	outer membrane porin protein OmpQ	24.34 ± 8.07
	BB1616 bopN	putative outer protein N	504.05 ± 189.58
	BB1620 bopD	putative outer protein D	457.16 ± 172.40
	BB1624 bsl	putative type III secretion protein	226.35 ± 80.58
	BB1628 bscN	putative ATP synthase in type III secretion	115.85 ± 37.00
	BB4228 bopC	hypothetical protein; characterized type III effector	15.70 ± 3.85

DNA microarray analysis was used to measure mRNA levels present in B. bronchiseptica RB50 compared to mRNA levels present in B. bronchiseptica RB54. Differences in mRNA levels are listed as mean fold-changes ± standard error. Fold-changes were calculated by averaging the data from three biological sample sets.

*Recently characterized [24].

(page number not for citation purposes)
Table 2: Representative Bvg*- phase specific genes identified by microarray analysis.

Function	Gene	Product	Fold-Change ± SEM
Cell Adhesin	BB1186	putative hemolysin, homophilic cell adhesion	-2.83 ± 0.18
Cell Envelope	BB0141 wmbD	putative membrane protein	-5.19 ± 0.08
	BB2618 fgl	peptidoglycan hydrolase	-28.12 ± 0.01
	BB2618 lpxB	lipid-A-disaccharide synthase; lipid A biosynthesis	-6.35 ± 0.02
	BB2879	putative membrane protein	-6.46 ± 0.02
	BB4840	putative outer membrane protein	-32.02 ± 0.01
Chemotaxis	BB2543 motA	chemotaxis protein MotA	-26.28 ± 0.02
	BB2544 motB	chemotaxis protein MotB	-19.70 ± 0.02
	BB2549 cheR	chemotaxis protein methyltransferase	-10.43 ± 0.03
	BB2552 cheZ	chemotaxis protein CheZ; catalytic activity	-38.44 ± 0.01
Motility	BB2553 flhB	flagellar biosynthetic protein FlhB	-44.48 ± 0.01
	BB2555 flhC	flagellar biosynthesis protein; RNA binding	-32.10 ± 0.00
	BB2559 flhB	flagellar basal-body rod protein FlhB; motor activity	-44.49 ± 0.01
	BB2560 flgC	flagellar basal-body rod protein FlgC; motor activity	-32.10 ± 0.00
	BB2585 fil	flagellum-specific ATP synthase Fil; ATP binding	-30.75 ± 0.01
Electron Transport	BB1283 cyoA	ubiquinol oxidase polypeptide II; copper ion binding	-5.11 ± 0.08
	BB2800 napA	periplasmic nitrate reductase precursor; iron ion binding	-11.34 ± 0.01
	BB3257 fkpB	FkbP-type peptidyl-prolyl cis-trans isomerase	-4.15 ± 0.01
	BB3927	putative cytochrome; electron transport activity	-5.58 ± 0.01
	BB4096	putative oxidoreductase	-4.90 ± 0.02
	BB4497 cydA	cytochrome D ubiquinol oxidase subunit II	-5.40 ± 0.02
	BB4498 cyaA	cytochrome D ubiquinol oxidase subunit I	-4.10 ± 0.02
	BB4945 ivd	isovaleryl-CoA dehydrogenase	-8.90 ± 0.01
Protein Folding and Ushering	BB0979	putative universal stress protein	-24.76 ± 0.02
	BB2875	universal stress family protein	-7.45 ± 0.01
	BB3257 KpnB	FlkB-type peptidyl-prolyl cis-trans isomerase	-4.15 ± 0.01
	BB4260	putative universal stress protein	-9.29 ± 0.01
Global Regulatory Functions	BB0725	putative transcriptional regulator	-7.82 ± 0.04
	BB1122	two-component system sensor kinase; signal transducer	-9.65 ± 0.01
	BB1187	putative LuxR-family transcriptional regulator	-11.60 ± 0.01
	BB2108	probable two-component response regulator	-10.74 ± 0.02
	BB2323	putative transcriptional regulator	-11.03 ± 0.03
	BB2540 flmA	RNA polymerase sigma factor; flagellar operon	-16.05 ± 0.01
	BB2542 flmC	flagellar transcriptional activator FlmC; DNA binding	-31.06 ± 0.01
	BB2559 cheB	protein-glutamate methyltransferase;two-component regulator	-18.56 ± 0.02
	BB3115	methyl-accepting chemotaxis signal transducer protein	-18.56 ± 0.02
	BB3966	probable LynR-family transcriptional regulator	-7.75 ± 0.02
Metabolism	BB0868 nmS	methylmalonate-semialdehyde dehydrogenase	-8.72 ± 0.02
	BB0978 gst	gamma-glutamyltranspeptidase precursor	-35.18 ± 0.02
	BB1367 cysG	siroheme synthase, heme biosynthesis	-8.67 ± 0.01
	BB2085 hemC	coproporphyrinogen III oxidase	-16.39 ± 0.01
	BB2147 hemN	porphobilinogen deaminase; synthase activity	-5.84 ± 0.01
	BB4409 hemL	glutamate-1-semialdehyde 2,1-aminomutase	-13.01 ± 0.01
Transport	BB0976	lactate permease family protein	-21.29 ± 0.01
	BB1174	putative ABC transport proteins; ATP-binding component	-5.52 ± 0.03
	BB1188	HlyD-family secretion protein; protein transporter activity	-6.27 ± 0.05
	BB1189	probable ABC transporter	-7.56 ± 0.06
	BB1191	putative outer membrane protein; transporter activity	-13.87 ± 0.02
	BB1294 bfG	putative TonB-dependent receptor	-2.86 ± 0.03
	BB1942 bfE	ferric enterobactin receptor	-2.80 ± 0.02
	BB2402	putative sulfate transporter	-6.92 ± 0.02
	BB3433	multidrug resistance protein	-4.14 ± 0.03
	BB2803 commA	putative heme export protein; heme transporter activity	-12.62 ± 0.01
	BB2804 commB	heme exporting protein B	-9.57 ± 0.01
	BB2805 commC	putative heme export protein	-13.01 ± 0.01
	BB4273 atoE	putative short-chain fatty acids transporter	-7.49 ± 0.01
	BB4495	probable ATP-binding component; ABC transporter	-33.13 ± 0.01

DNA microarray analysis was used to measure mRNA levels present in B. bronchiseptica RB50 compared to mRNA levels present in B. bronchiseptica RB54. Differences in mRNA levels are listed as mean fold-changes ± standard error. Fold-changes were calculated by averaging the data from three biological sample sets.
Comparison of gene expression measurements by microarray hybridization and quantitative real-time PCR. Changes in gene expression were log transformed (in base 2), and the real-time qRT-PCR log2 values (y axis) were plotted against the microarray data log2 values (x axis). The coefficient of determination (R²) is given.

Table 3: Fold-changes identified by quantitative real-time PCR.

Gene	Product	qRT-PCR	Microarray
BB0057 rpaA	DNA-directed RNA polymerase alpha chain	-2.03 ± 0.01	-1.09 ± 0.06
BB0110	putative adhesion	92.47 ± 0.35	8.58 ± 1.21
BB0376	putative membrane protein	6.23 ± 0.45	3.00 ± 0.72
BB0419 sphB1	auto transporter subtilisin-like protease	137.34 ± 6.96	59.34 ± 4.26
BB1037	LysR-family transcriptional regulator	-1.24 ± 0.01	-1.07 ± 0.15
BB1315	putative universal stress protein	-64.15 ± 0.35	-11.43 ± 0.03
BB1593	putative ABC transport system, membrane protein	1544.59 ± 8.49	83.60 ± 8.88
BB1619 bchH1	putative regulatory protein	2943.53 ± 16.33	340.10 ± 7.39
BB1622 bchH2	putative regulatory protein	1532.48 ± 11.25	286.50 ± 9.03
BB2108	probable two-component response regulator	-39.21 ± 1.24	-18.08 ± 0.01
BB2147 hemN	oxygen-independent coproporpyrinogen III oxidase	-23.10 ± 3.33	-5.84 ± 0.01
BB2320 dsbG	thiol:disulfide interchange protein precursor	358.29 ± 5.25	35.29 ± 1.68
BB2323	putative transcriptional regulator	-21.86 ± 3.46	-11.03 ± 0.01
BB2367	putative regulatory protein; transcription factor activity	-11.71 ± 2.15	-2.95 ± 0.11
BB2434 pckG	phosphoenolpyruvate carboxykinase (GTP)	-12.57 ± 1.46	-2.88 ± 0.04
BB2435	S-adenosylmethionine-dependent methyltransferase	-5.10 ± 0.24	-2.76 ± 0.04
BB2522	conserved hypothetical protein	-58.35 ± 0.35	-2.82 ± 0.03
BB3447 cycN	sulfate adenyltransferase subunit I; (ATP) activity	-12.50 ± 0.15	-2.00 ± 0.25
BB3703 eno	enolase; phosphopyruvate hydratase activity	-2.68 ± 0.14	-1.11 ± 0.08
BB4495	probable ATP-binding component of ABC-transporter	-30.63 ± 0.15	-33.12 ± 0.01
BB4506 rpoN	probable sigma (54) modulation protein	-11.66 ± 0.56	-3.38 ± 0.12
BB4507 rpoH	RNA polymerase sigma-32 factor	-6.33 ± 0.22	-3.09 ± 0.11
BB4989 dnaA	chromosomal replication initiator protein	1.94 ± 0.01	1.27 ± 0.19

Quantitative real-time PCR analysis was used to measure mRNA levels present in B. bronchiseptica RB50 compared to mRNA levels present in B. bronchiseptica RB54. Differences in mRNA levels detected by both qRT-PCR and Microarray are listed as mean fold-changes ± standard deviation. qRT-PCR fold-changes were calculated using the relative quantitative (ΔΔCT) method, as detailed in the Methods, from three biological sample sets.
the number of Bvg-regulated transcripts identified to date. Additionally, gene expression profiles of previously demonstrated Bvg-regulated transcripts are consistent with previous results and quantitative real-time PCR data provided an independent verification of the microarray expression values. The results presented here provide a comprehensive, genome-wide portrait of transcripts encompassing the BvgAS regulon, and provide data validating the use of the long-oligonucleotide microarray described here for studying gene expression in *Bordetella bronchiseptica*.

Methods

Microarray fabrication

Using ArrayOligoSelector [18], one 70-mer oligonucleotide probe was selected to represent each *B. bronchiseptica* RB50 ORF [17]. The 70-bp oligonucleotide probes were synthesized (Illumina, San Diego, CA), resuspended in 3×SSC to a final concentration of 60 pmol/μL, and spotted onto poly-L-lysine-coated microscope slides, using a BioRobotics Microgrid II microarrayer (Genomic Solutions, Ann Arbor, MI) as described elsewhere [29]. Each probe was printed three times per slide. All oligonucleotide sequences are listed (see Additional File 1, Supplementary Table S2).

Bordetella Culture and RNA Isolation

B. bronchiseptica strain RB50 was isolated from a naturally infected New Zealand White rabbit [6] and RB54 is a Bvg phase-locked derivative of RB50 [10]. *B. bronchiseptica* strains were maintained on Bordet-Gengou (BG) agar (Difco) containing 10% defibrinated sheep blood for determination of colony morphology and hemolytic activity. Three independent biological replicates of *B. bronchiseptica* RB50 and RB54, picked from well-isolated colonies on BG plates, were initially grown in Stainer-Scholte (SS) broth [30] supplemented with 40 μg/mL streptomycin. To ensure similar inocula and growth phase among all biological replicates, bacteria were then subcultured at a starting optical density at 600 nm (OD₆₀₀) of 0.02 into a 250-ml flask containing 50 ml SS broth and grown at 37°C with shaking at 275 rpm for 24 hours. At this time the OD₆₀₀ for the RB50 cultures were approximately 1 and the OD₆₀₀ for the RB54 cultures were approximately 3.5. Total cellular RNA was extracted using Trizol reagent (Invitrogen, Carlsbad, CA), treated with RNase-free DNase I (Invitrogen, Carlsbad, CA), and purified using RNase columns (Qiaegen, Valencia, CA) according to manufacturers’ recommended protocols.

Preparation of labeled cDNA

A 2-color hybridization format was used for the microarray analysis. For each biological replicate, RNA extracted from *B. bronchiseptica* RB50 was used to create Cy5-labeled cDNA and RNA extracted from *B. bronchiseptica* RB54 was used to create Cy3-labeled cDNA. Conversely, dye-swap experiments were performed analogously, in which RNA extracted from *B. bronchiseptica* RB50 was used to create Cy3-labeled cDNA and *B. bronchiseptica* RB54 was used to create Cy5-labeled cDNA. Fluorescently-labeled cDNA copies of the total RNA pool were prepared by direct incorporation of fluorescent nucleotide analogs during a first-strand reverse transcription (RT) reaction as follows: 5 μg total RNA and 4.4 μg of random oligonucleotide hexamers were incubated 2 minutes at 98°C, cooled on ice, combined with SuperScript III RTase buffer, 0.5 mM dATP, dGTP, dCTP, 0.2 mM dITP, 1.5 nmol Cy3- or Cy5-dUTP (Amersham), and 2 μL SuperScript III RTase (in a volume of 26 μL). This mixture was incubated 10 minutes at 25°C and 120 minutes at 50°C. The two differentially labeled reactions to be compared were mixed and buffer exchanged, purification, and concentration was accomplished by microcon-10 (Amicon) filtration.

Microarray hybridization and data analysis

Oligonucleotide microarrays were first prehybridized for 1 hour in 5×SSC, 1% BSA and 0.1% SDS at 42°C, followed by washing with H₂O and then with isopropanol and dried by centrifugation for 5 minutes at 50°C. Following prehybridization, 45 μL hybridization solution (labeled cDNA, 5 μg tRNA, 2×SSC, 25% formamide, 0.1% SDS) was applied to oligonucleotide microarrays and incubated in a humidified chamber overnight at 50°C. Arrays were subsequently removed from humidified chambers and quickly submerged and washed in 1×SSC and 0.05% SDS for approximately 2 minutes, followed by two additional washes for 2 minutes each in fresh 0.06×SSC. Slides were then dried by centrifugation for 5 minutes at 50°C, scanned using a GenePix 4000B microarray scanner, and analyzed with GenePix Pro software (Axon Instruments, Union City, CA). Spots were assessed visually to identify those of low quality and arrays were normalized so that the median of ratio across each array was equal to 1.0. Automatically and manually flagged spots, spots with the sum of medians (635/532) signal intensity less than or equal to 100, and spots with signal intensity below threshold (sum of median intensities plus one standard deviation above the mean background) were filtered out prior to analysis. Ratio data from the three biological replicates were compiled and normalized based on the total Cy3% intensity and Cy5% intensity to eliminate slide to slide variation. Gene expression data were then normalized to 16S rRNA. The statistical significance of the gene expression changes observed was assessed by using the significant analysis of microarrays (SAM) program [31]. A one-class unpaired SAM analysis using a false discovery rate of 0.063% (<0.1%) was performed. Hierarchical clustering of microarray data using Euclidean Distance metrics and Average Linkage clustering was performed using MeV software from TIGR [32].
Quantitative real-time PCR
DNase-treated total RNA (1 μg) from each biological replicate was reverse transcribed using 300 ng of random oligonucleotide hexamers and SuperScript III RTase (Invitrogen, Carlsbad, CA) according to manufacturer’s protocol. The resulting cDNA was diluted 1:1000 and 1 μL used in quantitative PCR reactions containing 300 nM primers and 2XSYBR Green PCR Master Mix (Applied Biosystems) using an Applied Biosystems 7300 real-time PCR detection system (Applied Biosystems, Foster City, CA). Primers were designed using Primer Express software (Applied Biosystems, Foster City, CA) and are listed in Additional File 1- Supplementary Table 4. To confirm the lack of DNA contamination, reactions without reverse transcriptase were performed. Dissociation curve analysis was performed for verification of product homogeneity. Threshold fluorescence was established within the geometric phase of exponential amplification and the cycle of threshold (Ct) determined for each reaction. The cycle of threshold (Ct) from all three biological replicates for each strain (RB50 and RB54) was compiled and the 16S RNA amplicon was used as an internal control for data normalization. Fold change in transcript level was determined using the relative quantitative method (ΔΔCt) [33].

Microarray accession numbers
Microarrays have been deposited in ArrayExpress under accession number E-MEXP-961.

Authors’ contributions
TLN performed B. bronchiseptica culturing, microarray design, microarray construction, microarray analysis, cluster analysis, quantitative real-time PCR analysis, data analysis, and drafted the manuscript. TLN read and approved the final manuscript.

Additional material

Additional file 1
Table S1. Missing array elements due to gene duplications, prophage duplications, and ORF assignments missing from the completed genome annotation. In the Gene Duplication category, the ORF number representing the array element for both genes is given. Table S2. Oligonucleotide sequence for each ORF/represented array element. Table S3. Fold-Change expression values from a direct comparison between the transcriptional profile of B. bronchiseptica RB50 and RB54. DNA microarray analysis was used to measure mRNA levels present in B. bronchiseptica RB50 compared to mRNA levels present in B. bronchiseptica RB54. Differences in mRNA levels are listed as mean fold-changes + standard error. Fold-changes were calculated by averaging the data from three biological sample sets. The fluorescent labels were exchanged in dye-swap experiments performed on all three biological replicates. ORF, Name, Product, Function, and General Category headings were parsed from both Sanger annotation files [17] and Cummings et al. [14]. Data presented in the SAM, Score(d), q-value, and localdr(%) columns were assessed by using the significant analysis of microarrays (SAM) program [31]. A one-class unpaired SAM analysis using a false discovery rate of 0.063% (<0.1%) was preformed. Table S4. Quantitative real-time PCR primers.

Click here for file [http://www.biomedcentral.com/content/supplementary/1471-2164-8-220-S1.xls]

Acknowledgements
The author would like to thank Peggy Cotter for the generous gift of the B. bronchiseptica Bvg- phase-locked derivative strain, RB54, and Brooke Peterson-Burch for his assistance with the installation and initial running of the AOS program. The author would also like to thank Eric Nicholson, Susan Brockmeier and Karen Register for critical review of the manuscript. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

References
1. Preston A, Parkhill J, Maskell DJ: The bordetellae: lessons from genomics. Nature reviews 2004, 2(5):379-390.
2. Cotter PA, Jones AM: Phosphorelay control of virulence gene expression in Bordetella. Trends in microbiology 2003, 11(8):367-373.
3. Akerley BJ, Monack DM, Falkow S, Miller JF: The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica. Journal of bacteriology 1992, 174(3):980-990.
4. Akerley BJ, Miller JF: Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. Journal of bacteriology 1993, 175(11):3468-3479.
5. McMillan DJ, Shojaei M, Chhatwal GS, Guzman CA, Walker MJ: Molecular analysis of the bvg-repressed urease of Bordetella bronchiseptica. Microbial pathogenesis 1996, 21(5):379-394.
6. Cotter PA, Miller JF: BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun 1994, 62(8):3381-3390.
7. Akerley BJ, Cotter PA, Miller JF: Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell 1995, 80(4):611-620.
8. Martinez de Tejada G, Cotter PA, Heininger U, Camilli A, Akerley BJ, Mekalanos JJ, Miller JF: Neither the Bvg- phase nor the vrg6 locus of Bordetella pertussis is required for respiratory infection in mice. Infect Immun 1998, 66(4):2762-2768.
