\mathcal{R}-parity violation in \mathcal{F}-theory

Thanos Karozas

Physics Department,
University of Ioannina.

HEP 2017: Recent Developments in High Energy Physics and Cosmology

8 April 2017, Ioannina, Greece
Outline

\(\mathcal{R} \)-Part:

\(\mathcal{R} \)-Parity, RPV-MSSM, Proton Decay, Motivation

\(\mathcal{F} \)-Part:

\(\mathcal{F} \)-theory, \(SO(12) \) point, Plots & Numerics, Summary

M. C. Romão, AK, S. F. King, G.K. Leontaris, A. K. Meadowcroft:

10.1007/\textit{JHEP}11(2016)081
Intro & Motivation
\(\mathcal{R} \)-parity

\(\star \) MSSM -\(\mathcal{R} \) parity violation (RPV or \(\mathcal{R} \)) superpotential:

\[
W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j e_k^c + \lambda'_{ijk} L_i Q_j d_k^c + \frac{1}{2} \lambda''_{ijk} u_i^c d_j^c d_k^c
\]

\(\star \) Add a new discrete symmetry to eliminate these terms, called "\(\mathcal{R} \)-parity"

(Farrat & Fayet, Phys. Lett. 76B (1978) 575–579.)

\[
P_R = (-1)^{3(B-L)+2s}
\]

- \(P_R = +1 \) for Standard Model (SM) particles.
- \(P_R = -1 \) for SUSY particles.
Matter parity

\[W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j e^c_k + \lambda'_{ijk} L_i Q_j d^c_k + \frac{1}{2} \lambda''_{ijk} u^c_i d^c_j d^c_k \]

\[\begin{aligned} &\text{B violation} \quad \{ \quad \{ \quad \{ \end{aligned} \]
\[\begin{aligned} &\text{L violation} \quad \{ \quad \{ \end{aligned} \]

★ An alternative symmetry with the same physical results is ”Matter parity” :

- \((L_i, e^c_i, Q_i, u^c_i, d^c_i) \rightarrow P_M = -1 \)
- \((H_u, H_d) \rightarrow P_M = +1 \)

★ This forbids all terms with an odd power of matter fields and thus forbids all the terms in \(W_{RPV} \).
RPV-SUSY

★ Plethora of new couplings (=48), provide a rich phenomenology:

- Single s-particle production is allowed.
- LSP is unstable (decays to leptons or jets)

(H. Dreiner et al: 1205.0557, Review: R.Barbier et al hep-ph/0406039, LHC-Run I Review: A. Redelbach, arXiv:1512.05956)

Figure: Examples of RPV processes: (a) Proton Decay via λ''_{112} and λ'_{112}, (b) Tau decay via two λ_{13k} insertions, (c) Neutralino decay via λ'_{111}.
Proton decay

- Proton decay (PD) requires both \mathcal{L} and \mathcal{B}.

$$\Gamma(p \rightarrow \pi^0 e^+) \sim |\lambda_1\lambda_{12}\lambda_{11}'| \frac{m_{\text{proton}}^5}{\tilde{m}_{sR}^4} < \frac{1}{10^{33}\text{yr}} \Rightarrow$$

$$|\lambda_1\lambda_{12}| < 5 \times 10^{-27} \left(\frac{\tilde{m}_{sR}}{1\text{TeV}}\right)^2.$$

- Very strict bound \rightarrow at least one of the couplings is zero.

 - Only B conservation \rightarrow \mathcal{L}MSSM
 - Only L conservation \rightarrow \mathcal{B}MSSM

(Dimopoulos et al, doi:10.1016/0370-2693(88)91418-9)

- Baryon-parity and lepton-parity are two possible solutions to maintain a stable proton and allow for RPV.

Example \rightarrow
Motivation

(AK, S.F.King, G.K.Leontaris, A.K.Meadowcroft, doi : 10.1007/JHEP10(2015)041)

Low Energy Spectrum	D_4 rep	$U(1)_{t_5}$	Z_2
Q_3, u_3^c, e_3^c	1$^+-$	0	$-$
u_2^c	1$^{++}$	1	$+$
u_1^c	1$^{++}$	0	$+$
$Q_{1,2}, e_{1,2}^c$	2	0	$-$
L_i, d_i^c	1$^+-$	0	$-$
ν_3^c	1$^+-$	0	$-$
$\nu_{1,2}^c$	2	0	$-$
H_u	1$^{++}$	-1	$+$
H_d	1$^{++}$		

Table: Low energy spectrum of a $SU(5) \times D_4 \times U(1)$ F-theory inspired model with a geometric parity. The fields $u_{1,2}^c$ have different assignment in comparison with the conventional matter parity. As a result \bar{B} terms: $u_1^c d_j^c d_k^c \rightarrow$ neutron-antineutron oscillations (Goity & Sher)
RPV in F-theory?

★ So far in F-theory... plethora of works on $SU(5)$ Yukawa couplings
(Vafa et al, Ibanez & Font, Hayashi et al, Leontaris & Ross, Palti et al, Marchesano et al....)

\[
10 \times 10 \times 5_H \rightarrow y_{top} \quad \checkmark
\]

\[
10 \times \bar{5}_M \times \bar{5}_H \rightarrow y_{bottom}, \quad y_{tau} \quad \checkmark
\]

★ What about RPV couplings...

\[
10 \times \bar{5}_M \times \bar{5}'_M \rightarrow y_{RPV} \quad \ldots?\]

★ A first estimation: we expect a similar behavior to y_{bottom} coupling.
\mathcal{F}-theory, the $SO(12)$ point and RPV

M. C. Romão, AK, S. F. King, G.K. Leontaris, A. K. Meadowcroft: 10.1007/JHEP11(2016)081
\textbf{\(\mathcal{F}\)-theory (Basic)}

★ \textbf{Geometrisation of Type II-B superstring} \hfill (Vafa 1996)

II-B: closed string spectrum obtained by combining left and right moving open strings with NS and R-boundary conditions.

★ \textbf{Geometrical Picture}:

- Take the 6-d compact space to be CY 3-fold base \(B_3\).

- Associate a torus \(\tau = C_0 + \frac{\nu}{g_s}\) at each point of \(B_3\).

\[\Rightarrow \text{Internal space elliptically fibered CY 4-fold } \mathcal{X} \text{ over } B_3 \]

\[\hookrightarrow \text{F-theory defined on the background } \mathcal{R}^{3,1} \times \mathcal{X} \]
Red points: pinched torus $\mapsto 7$-branes $\perp B_3$.
Singularities

★ Fibration is described by the Weierstraß Equation

\[y^2 = x^3 + f(z)x + g(z) \] \hspace{1cm} (1)

★ ★ The fiber degenerates at the zeros of the discriminant

\[\Delta = 4f^3 + 27g^2 \]

★ ★ ★ For each point of \(B_3 \), eq(1) describes a torus labeled by \(z \).

★ ★ ★ ★ The fiber degenerates at the zeros of the discriminant

\[\Delta = 0 \implies \text{singularity of internal mainfold} \]
Singularities & Gauge Symmetry

* Type of Manifold *singularity* is specified by the vanishing order of $f(z)$, $g(z)$ polynomials

** Singularities are classified in terms of *ADE* Lie groups. (Kodaira 1968)

\[\chi\text{-Singularities} \leftrightarrow \text{Gauge Symmetry} \]

*** The maximum symmetry enhancement is E_8,

\[
E_8 \rightarrow G_{GUT} \times SU(n)_{\perp}
\]

with $G_{GUT} = E_6, \ SO(10), \ SU(5)$ for $n = 3, 4, 5$.
in F-theory: 7-branes wrap certain class of 'internal' 2-complex dim. surface S associated to gauge group G_S (here taken to be $SU(5)$).
Matter resides along intersections with other 7-branes...

Along a matter curve Σ gauge symmetry is enhanced...
Yukawa couplings at Triple intersections...

Yukawa Coupling

\[\Sigma_1 \quad \Sigma_2 \quad \Sigma_3 \]

\[\text{SU}(5) \quad \mathbb{Z}_2 \quad \mathbb{Z}_1 \]

gauge symmetry ... further ... enhanced!
SU(5) : Singularity enhancement

★ Matter curves accommodating $\bar{5}$ are associated with $SU(6)$

\[
\Sigma_{\bar{5}} = S \cap S_{\bar{5}} \Rightarrow \quad SU(5) \rightarrow SU(6)
\]

\[
ad_{SU_6} = 35 \rightarrow \quad 24_0 + 1_0 + 5_6 + \bar{5}_{-6}
\]

★ Matter curves accommodating 10 are associated with $SO(10)$

\[
\Sigma_{10} = S \cap S_{10} \Rightarrow \quad SU(5) \rightarrow SO(10)
\]

\[
ad_{SO_{10}} = 45 \rightarrow \quad 24_0 + 1_0 + 10_4 + \bar{10}_{-4}
\]

★ Further enhancement in triple intersections → Yukawas:

\[
SO(10) \equiv E_5 \Rightarrow \quad E_6 \rightarrow 10 \times 10 \times 5
\]

\[
SU(6) \Rightarrow \quad SO(12) \rightarrow 10 \times \bar{5} \times \bar{5}
\]

⇒ RPV couplings → SO(12) point enhancement
\(S \)

- \(\mu \)-term
- \(E6 \) point (top Yukawa)
- \(SO(12) \) point (bottom Yukawa)

- \(5H \)
- \(10 \)
- \(5M \)
- \(5M' \)
Effective theory

★ The 4-d theory can be obtained by integrating out the 8-d theory over S

$$W = m_*^4 \int_S \text{Tr}(F \wedge \Phi)$$

- $F = dA - iA \wedge A$ is the field-strength of the gauge vector boson A.
- Φ is $(2,0)$-form on S.
- $m_* : F$-theory characteristic scale

★★ Away from the enh. point Φ breaks $SO(12) \rightarrow$ GUT group $SU(5)$:

$$SO(12) \rightarrow SU(5) \times U(1) \times U(1)$$
Fluxes

★ We also need fluxes

- \(\langle F \rangle \rightarrow \) chirality on the matter curves
- \(\langle F_Y \rangle \rightarrow \) breaks the GUT down to SM

★★ Collectively the total flux is:

\[
\langle F_{\text{total}} \rangle = i(dz_2 \wedge d\bar{z}_2 - dz_1 \wedge d\bar{z}_1)Q_P \\
+ i(dz_1 \wedge d\bar{z}_2 + dz_2 \wedge d\bar{z}_1)Q_S \\
+ i(dz_2 \wedge d\bar{z}_2 + dz_1 \wedge d\bar{z}_1)M_{z_1z_2}Q_F
\]

(2)

with the definitions

\[
Q_P = MQ_F + \tilde{N}_Y Q_Y
\]

(3)

\[
Q_S = N_a Q_{z_1} + N_b Q_{z_2} + N_Y Q_Y
\]

(4)
Sector	SM	q_F	q_{z_1}	q_{z_2}	q_S	q_P
a_1	$(\bar{3}, 1)_{-\frac{1}{3}}$	1	-1	0	$-N_a - \frac{1}{3} N_Y$	$M - \frac{1}{3} \tilde{N}_Y$
a_2	$(1, 2)_{\frac{1}{2}}$	1	-1	0	$-N_a + \frac{1}{2} N_Y$	$M + \frac{1}{2} \tilde{N}_Y$
b_1	$(\bar{3}, 1)_{\frac{2}{3}}$	-1	0	1	$N_b + \frac{2}{3} N_Y$	$-M + \frac{2}{3} \tilde{N}_Y$
b_2	$(3, 2)_{-\frac{1}{6}}$	-1	0	1	$N_b - \frac{1}{6} N_Y$	$-M - \frac{1}{6} \tilde{N}_Y$
b_3	$(1, 1)_{-1}$	-1	0	1	$N_b - N_Y$	$-M - \tilde{N}_Y$
c_1	$(\bar{3}, 1)_{-\frac{1}{3}}$	0	1	-1	$N_a - N_b - \frac{1}{3} N_Y$	$-\frac{1}{3} \tilde{N}_Y$
c_2	$(1, 2)_{\frac{1}{2}}$	0	1	-1	$N_a - N_b + \frac{1}{2} N_Y$	$\frac{1}{2} \tilde{N}_Y$

Table: Complete data of sectors present in the three curves crossing in an SO(12) enhancement point considering the effects of non-vanishing fluxes.
Coupling coefficients

★ Matter fields arise as fluctuations of the 8-dim fields

$$\Psi_{8D} = \phi_{4D} \times \psi_{\text{int}}$$

★★ Operator coefficients arise as overlaps of wavefunctions

$$\int_{8D} \Psi_1 \Psi_2 \Psi_3 = \int_{4D} \phi_1 \phi_2 \phi_3 (\int_S \psi_1 \psi_2 \psi_3)$$

★★★ Solve the eom for the zero mode wavefunctions (Font et al, 2012)

(Heckman et al, 2008)
Wavefunctions

★ Wavefunctions (WF) in holomorphic gauge:

\[\tilde{\psi}_{10M}^{(b) \text{hol}} = \tilde{v}(b) \chi_{10M}^{(b) \text{hol}} = \tilde{v}(b) \kappa_{10M}^{(b)} e^{\lambda_b \bar{z}_2 (\bar{z}_2 - \zeta_b \bar{z}_1)} \]

\[\tilde{\psi}_{5M}^{(a) \text{hol}} = \tilde{v}(a) \chi_{5M}^{(a) \text{hol}} = \tilde{v}(a) \kappa_{5M}^{(a)} e^{\lambda_a z_1 (\bar{z}_1 - \zeta_a \bar{z}_2)} \]

\[\tilde{\psi}_{5H}^{(c) \text{hol}} = \tilde{v}(c) \chi_{5H}^{(c) \text{hol}} = \tilde{v}(c) \kappa_{5H}^{(c)} e^{(z_1 - z_2)(\zeta_c \bar{z}_1 - (\lambda_c - \zeta_c) \bar{z}_2)} \]

where \(\lambda_\rho \) is the smallest eigenvalue of the matrix

\[
\begin{pmatrix}
-\rho_P & q_S & im^2q_{z_1} \\
q_S & -\rho_P & im^2q_{z_2} \\
-im^2q_{z_1} & im^2q_{z_2} & 0
\end{pmatrix}
\]

\(m_\rho \) is the smallest eigenvalue of the matrix

\[
\begin{pmatrix}
-\rho_P & q_S & im^2q_{z_1} \\
q_S & -\rho_P & im^2q_{z_2} \\
-im^2q_{z_1} & im^2q_{z_2} & 0
\end{pmatrix}
\]
\(b, \tau \) and RPV couplings

\[y_{b, \tau} = \pi^2 \left(\frac{m_*}{m} \right)^4 t_{abc} \kappa_1^{(b)} \kappa_5^{(a)} \kappa_5^{(c)} \]

\[y_{RPV} = \pi^2 \left(\frac{m_*}{m} \right)^4 t_{abc} \kappa_1^{(b)} \kappa_5^{(a)} \kappa_5^{(c)} \]

As we observe the flux dependence is hidden on the normalization factors.
Normalization factors

star fixed by imposing canonical kinetic terms

\[1 = 2m^4 \|v^{(e)}\|^2 \int (\chi^{(e)})^*_i \chi^{(e)}_i d\text{Vol}_S \]

double star partial results...

\[|\kappa_{10M}^{(b)}|^2 = -4\pi g_s \sigma^2 \cdot \frac{q_P(b)(-2\lambda_b + q_P(b)(1 + \zeta_b^2))}{\lambda_b(1 + \zeta_b^2) + m^4} \]

\[|\kappa_{5H}^{(c)}|^2 = -4\pi g_s \sigma^2 \cdot \frac{2(q_P(c) + \zeta_c)(q_P(c) + 2\zeta_c - 2\lambda_c) + (q_S(c) + \lambda_c)^2}{\zeta_c^2 + (\lambda_c - \zeta_c)^2 + m^4} \]

where \(\sigma = (m/m_{st})^2 \), with \(m_{st} \) the string scale.
Numerical analysis

★ The couplings can be written as:

\[
y_{b,\tau} = 2g_s^{1/2} \sigma \ y'_{b,\tau}
\]

\[
y_{RPV} = 2g_s^{1/2} \sigma \ y'_{RPV}
\]

★★ five parameters - \(N_a, N_b, M, N_Y\) and \(\tilde{N}_Y\)

★★★ constraint: elimination of Higgs colour triplets \(\rightarrow\) (Font & Ibanez et al.)

\[N_b = N_a - \frac{1}{3} N_Y\]

★★★★ At the GUT scale \(Y_{\tau}/Y_b = 1.37 \pm 0.1 \pm 0.2\) (G.Ross & M. Serna 2008)
Y_τ / Y_b

Figure: Ratio between bottom Yukawa and tau Yukawa couplings, shown as contours in the plane of local fluxes. The requirement for chiral matter and absence of coloured Higgs triplets fixes $N_b = N_a - \frac{1}{3} N_Y$
RPV (in absence of \(N_Y \) and \(\tilde{N}_Y \))

Figure: Dependency of the RPV coupling (in units of \(2g_s^{1/2}\sigma \)) on the \((N_a, N_b)\)-plane, in absence of hypercharge fluxes and for different values of \(M \).

Top: left \(M = 0.5 \), right \(M = 1.0 \). Bottom: left \(M = 2.0 \), right \(M = 3.0 \).
RPV allowed regions

$N_{\tilde{Y}} = +1$ and $N_Y = +1$

$N_{\tilde{Y}} = +1$ and $N_Y = -1$

$N_{\tilde{Y}} = -1$ and $N_Y = +1$

$N_{\tilde{Y}} = -1$ and $N_Y = -1$
Figure: Allowed regions in the parameter space for different RPV couplings with $\tilde{N}_Y = -N_Y = 1$. We have also include the corresponding contours for the $u^c d^c d^c$ operator (left) and $LL e^c$ (right).
Figure : Allowed regions in the parameter space for different RPV couplings with $N_Y = -\tilde{N}_Y = 1$. We have also include the corresponding contours for the $u^c d^c d^c$ operator (left) and QLd^c (middle and right). The scripts a, b and c refer to which sector each state 'lives'.

Thanos Karozas (UOI)
Bounds

* partial results in (Allanach, Dedes & Dreiner 1999)

\(ijk\)	\(\lambda_{ijk}\)	\(\lambda'_{ijk}\)	\(\lambda''_{ijk}\)
111	-	\(1.5 \times 10^{-4}\)	-
112	-	\(6.7 \times 10^{-4}\)	\(4.1 \times 10^{-10}\)
113	-	0.0059	\(1.1 \times 10^{-8}\)
121	0.032	0.0015	\(4.1 \times 10^{-10}\)
122	0.032	0.0015	-
123	0.032	0.012	\(1.3 \times 10^{-7}\)
131	0.041	0.0027	\(1.1 \times 10^{-8}\)
132	0.041	0.0027	\(1.3 \times 10^{-7}\)
133	0.0039	\(4.4 \times 10^{-4}\)	-
211	0.032	0.0015	-
212	0.032	0.0015	(1.23)
213	0.032	0.016	(1.23)
231	0.046	0.0027	(1.23)
232	0.046	0.0028	(1.23)
233	0.046	0.048	-
311	0.041	0.0015	-
312	0.041	0.0015	0.099
313	0.0039	0.0031	0.015
321	0.046	0.0015	0.099
322	0.046	0.0015	-
333	-	0.091	-
For $\tan\beta = 5$, $y_b(M_{GUT}) \simeq 0.03$.

(a) $\lambda L \bar{L} e^c$ region with $N_Y = 10$, $\tilde{N}_Y = 0.1$

(b) $\lambda L \bar{L} e^c$ region with $N_Y = -10$, $\tilde{N}_Y = 0.1$
(c) $\lambda' Q L d^c$ region with $N_Y = 0.1$, $\tilde{N}_Y = (d) \lambda'' u^c d^c d^c$ region with $N_Y = -0.1$, $\tilde{N}_Y = -10$
Summary

* \mathcal{R}-parity violation (RPV) in semi-local \mathcal{F}-theory SU(5) models is a generic feature without Proton Decay.

* RPV couplings in local \mathcal{F}-theory SU(5) models can be study in a $SO(12)$ point of enhancement.

* At the GUT scale may be naturally suppressed over large regions of the parameter space.

* LLe^c and $u^c d^c d^c$ (especially with the heaviest generations) type of RPV interactions from \mathcal{F}-theory are expected to be within current bounds.

* Study of other cases where generations resides in the same matter curve or mixed (2+1) cases.
Thank you!
For the bottom and tau coupling we have:

\[y_{b,\tau} = m_*^4 \, t_{abc} \int_S \det(\bar{\psi}^{(b)\text{hol}}_{10M}, \psi^{(a)\text{hol}}_{5M}, \psi^{(c)\text{hol}}_{5H}) d\text{Vol}_S \]

\[= m_*^4 \, t_{abc} \, \det(\bar{\nu}^{(b)}, \bar{\nu}^{(a)}, \bar{\nu}^{(c)}) \int_S \chi^{(b)\text{hol}}_{10M} \chi^{(a)\text{hol}}_{5M} \chi^{(c)\text{hol}}_{5H} d\text{Vol}_S. \]

A similar formula can be written down for the RPV coupling:

\[y_{\text{RPV}} = m_*^4 \, t_{abc} \int_S \det(\bar{\psi}^{(b)\text{hol}}_{10M}, \psi^{(a)\text{hol}}_{5M}, \psi^{(c)\text{hol}}_{5'M}) d\text{Vol}_S \]

\[= m_*^4 \, t_{abc} \, \det(\bar{\nu}^{(b)}, \bar{\nu}^{(a)}, \bar{\nu}^{(c)}) \int_S \chi^{(b)\text{hol}}_{10M} \chi^{(a)\text{hol}}_{5M} \chi^{(c)\text{hol}}_{5'M} d\text{Vol}_S. \]

\[t_{abc} \] is a group factor. Computing the Integral we have
The presence of a chiral state in a sector with root ρ is given if $\det m_\rho > 0$. Depending on the sign of N_Y, the above conditions define different regions of the flux density parameter space.

Region	$M < \frac{\tilde{N}_Y}{3}$	$\frac{\tilde{N}_Y}{3} < M < \frac{-\tilde{N}_Y}{6}$	$\frac{-\tilde{N}_Y}{6} < M < -\tilde{N}_Y$	$-\tilde{N}_Y < M$
$(N_a - N_b) < -\frac{N_Y}{2}$	None	None	None	None
$-\frac{N_Y}{2} < (N_a - N_b) < \frac{N_Y}{3}$	None	None	QLd^c	QLd^c, LLe^c
$\frac{N_Y}{3} < (N_a - N_b)$	None	$u^c d^c d^c$	QLd^c, $u^c d^c d^c$	All

Table: Regions of the parameter space and the respective RPV operators supported for $\tilde{N}_Y \leq 0$, $N_Y > 0$