Introduction

Glycan arrays are indispensable tools to screen carbohydrate interaction partners in high-throughput. They offer many different glycans, immobilized as spots on a solid surface. Since

[a] Dr. M. Mende, Dr. A. Tsouka, J. Heidepriem, G. Paris, Dr. S. Eickelmann, Dr. V. Bordoni, Dr. R. Wawrzinek, F. F. Fuchsberger, Prof. Dr. P. H. Seeberger, Dr. C. Rademacher, Dr. M. Delbianco, Dr. F. F. Loeffler
Department of Bioinformatic Systems
Max Planck Institute of Colloids and Interfaces
Am Muehlenberg 1, 14476 Potsdam (Germany)
E-mail: felix.loeffler@mpikg.mpg.de
[b] A. Tsouka, J. Heidepriem, Prof. Dr. P. H. Seeberger
Department of Chemistry and Biochemistry,
Freie Universität Berlin
Arnimalle 22, 14195 Berlin (Germany)
[c] Dr. D. S. Mattes
Institute of Microstructure Technology, Karlsruhe Institute of Technology
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen (Germany)
[d] Dr. A. Mallagaray
Institut für Chemie und Metabolomics, Universität zu Lübeck
Ratzeburger Allee 160, 23157 Lübeck (Germany)
[*] These authors contributed equally to this work.

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/chem.202001291.

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
This is an open access article under the terms of Creative Commons Attribution NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Part of a Special Collection to commemorate young and emerging scientists. To view the complete issue, visit: Young Chemists 2020.

Since the advent of glycan microarrays some 20 years ago,[1] they have become a standard tool[2] in the discovery of novel interactions. Applying this technology, various binding studies were already successfully carried out over the last years.[3] Since many pathogens infect a host by binding to cell-surface glycans using glycan binding proteins (GBPs), called lectins, the screening of such interactions represents a cornerstone in the field.[4] Intrinsic (per binding site) glycan–protein affinities are weak ($K_d \approx \mu M$–$m M$)[2a] and GBPs can often interact with diverse substrates, due to their rather low specificity. To improve weak binding and low specificity, binding domains of pathogens are often equipped with multiple, spatially defined glycan binding sites to enhance avidity.[5] This effect is known as multivalency and serves as a common strategy in nature to achieve high avidity between glycans and GBPs.

Still, multivalent effects are somewhat difficult to screen and not yet fully understood.[6] Therefore, multivalency, one of the key aspects in glycan recognition processes, is often neglected, since glycan density and spacing on a standard solid support is difficult to control.[7] Flexible and rapid methods for precise spatial distribution and orientation of glycans on a microarray need to be developed to screen GBPs for the identification of strong, selective, and reliable binders.[8]

To mimic the natural occurrence of glycans, many different multivalent scaffolds have been pre-synthesized in different shapes.[9] Peptide chemistry has been widely employed to attach sugars at specific positions onto chemically well-defined backbones, leading to multivalent glycoconjugates with controlled spatial arrangement.[10] A major challenge is the transfer of such methods to the preparation of spatially defined glycan
microarrays. Usually, arrays are printed on solid supports, ignoring the specific glycan spacing and density within each spot. As a result, glycans are attached to the surface in an uncontrolled way, which can result in reproducibility problems and the loss of glycan binding events due to mismatched spacing.[11] Additionally, an excess in glycan density can lead to suppression of the binding due to steric hindrance. Thus, only spatially defined glycan microarrays can solve this problem.

The simplest way to tune glycan density on the microarray is the direct printing of glycan containing solutions of various concentrations or by modifying the surface functionalization density.[11,12] This method provides good qualitative results regarding multivalency of GBPs, although the organization of the glycans remains random. Another, yet more defined approach for multivalent display of glycans on microarrays, is the printing of pre-synthesized or natural multivalent scaffolds. Those molecules already provide a defined multivalency of the glycan moieties. Through the printing process, the density can be regulated according to the applied concentration of the spotting solution. In this way, glycoconjugates, such as natural glycoproteins,[13] neo-glycoproteins/neo-glycopeptides,[14,15] glycoclusters,[15] glycan-conjugated DNA,[16] glycopolymers,[17] and glycomimetics[18] were used to fabricate microarrays, displaying multivalent carbohydrate structures. These approaches usually require labor-intensive multistep pre-syntheses for each compound. In addition, subsequent array printing can suffer from fluctuating compound solubility and density, immobilization efficiency, as well as sometimes poor spot morphology.

Hence, a promising strategy to generate defined multivalency in the microarray format is the on-chip synthesis, which means the step-wise synthesis directly on the final microarray surface. This should allow for a more rapid and reproducible production of such arrays. Since glycan synthesis is quite challenging, only disaccharides have been successfully synthesized directly on a surface using purely chemical approaches.[19] Alternatively, other approaches have been investigated to generate multivalent glycan structures on-chip. A remarkable example is the use of photopolymerization to grow brush-like glycopolymers with distinct multivalency on a solid support by varying the irradiation time.[20] Another method to create multivalency is the pre-immobilization of scaffolds that bear a distinct number of functional groups for glycan attachments.[11b]

Here, we present a flexible alternative, using our new combinatorial laser-induced forward transfer (cLIFT) technology.[21] In combination with copper(I)-catalyzed alkyne–azide cycloaddition (CuAAC), we synthesized neo-glycopeptides directly on a functionalized glass slide to manufacture microarrays. Since our approach does not require cumbersome pre-synthesis of individual scaffolds, it offers a rapid and flexible method for multivalent glycan structures synthesis, with a defined spot morphology and a controlled immobilization efficiency.

Results and Discussion

We applied the cLIFT technology, which is used for on-chip peptide synthesis (see Experimental Section).[21] In brief, different donor slides are produced (Figure 1A), containing different amino acid building blocks. These building blocks are laser-transferring to an acceptor, where the on-chip chemical synthesis is performed (Figure 1B). We synthesized arrays of different synthetic peptide sequences, containing various numbers of the alkyn-functionalized amino acid L-propargylglycine (Pra). Subsequently, we used CuAAC to attach azido-functionalized sugars to these distinct positions on the peptide backbone. Then, we studied the interactions of the fluorescently labeled lectins concanavalin A (ConA) and human langerin by fluorescence scanning. In addition, by varying the lectin concentration, we could determine the (surface) dissociation constant $K_{D,\text{surf}}$ of ConA regarding different neo-glycopeptide sequences.

On-chip peptide synthesis using the cLIFT technology

We used the two amino acid derivatives Fmoc-Pra-OPfp 1 and Fmoc-Gly-OPfp 2 to synthesize all sixteen variants of the possible peptide tetramers in a microarray format. The commercially
available 3D Fmoc-NH-β-Ala-PEGMA-co-MMA glass slides were used as acceptor slides for the peptide synthesis. Prior to the synthesis, the surface was functionalized with a PEG-based spacer (for details, see Experimental Section and Supporting Information), followed by the cLIFT synthesis of two glycines. This increases the distance of the to-be-synthesized molecules from the solid support to make them more accessible for subsequent GBP interaction studies. After attachment of the spacers and Fmoc deprotection, the free amino groups were used as the starting point for peptides synthesis. Two donor slides, one containing Fmoc-Pra-OPfp₁ (B) and the other Fmoc-Gly-OPfp₂ (G), were employed to synthesize the sixteen tetrapeptide combinations of the two amino acids (synthesis on solid support starts from the C-terminus, Figure 2, naming convention from N- to C-terminus: N-XXXX-C (array surface), X = B/G. Each dashed square represents one sequence as quadruplicate spots. (B) Structures of the peptides according to the position of the squares.

To assess the array synthesis quality, we first clicked in a carboxytetramethylrhodamine (TAMRA) azide fluorescent dye and analyzed the fluorescence intensity. For peptides containing one Pra (i.e., one dye molecule per scaffold), we observe highly similar staining intensities. This shows that the synthesis yield is comparable. Interestingly, for all other sequences with more than one Pra, we observe less intensity than in the latter case. This can be attributed to the FRET mechanism, causing self-quenching of multiple adjacent dye molecules (see Figure 3). For more information, see Supporting Information.

On-chip CuAAC for neo-glycopeptide formation

The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) has previously been exploited to fabricate glycopolymers or to install glycans or glycoconjugates on a solid support. Here, we used the CuAAC to attach a small collection of azide-functionalized saccharides onto the peptide tetramers (Figure 2) to form neo-glycopeptides. The sugar azides 3–10...
and 21 were synthesized from the unmodified monomer building blocks (see Figure 4 and supporting information). For each of the sugar azides, the CuAAC was performed on an individual array, using standard CuAAC conditions (Figure 3). We also approximated the theoretical spacing in a scaffold (see Supporting Information). Each array contains the peptide tetramer pattern shown in Figure 2 as three replicas, yielding a total of twelve neo-glycopeptide replicas for each combination of sugar azide and peptide tetramer (three sets of quadruplicate spots).

Lectin binding assays, fluorescence scanning, and analysis

We generated neo-glycopeptide arrays that result from the CuAAC between the mannose azides 3–6, glucose azides 7 and 8, galactose azide 21, and the peptide tetramer pattern shown in Figure 2. The arrays were incubated with fluorescently labeled concanavalin A (ConA), 100 μM in HEPES-buffer containing manganese and calcium ions. The galactose azide 21, as well as the plain peptides without any click modification served as negative controls (see Supporting Information).

The neo-glycopeptides bearing the glucosamine (β-GlcNTs) azide 9 and the human blood group B trisaccharide azide 10 respectively, were incubated with fluorescently labeled langerin, 63 μg/mL in HEPES-buffer, containing calcium ions. As a negative control, we used glucose azide 7, as well as the plain peptides without any click modification (see Supporting Information).

A fluorescence scan was performed and the staining intensity was analyzed. In Figure 4 (A and B: ConA; C: langerin), for each microarray with the respective sugar azide, the fluorescence staining intensity is presented after lectin incubation. The bar charts show the mean values of the in total twelve spots (three sets of quadruplicate spots) for each neo-glycopeptide (see Supporting Information).

General trends

We observed a strong spacing-, density-, and ligand-dependent binding. Comparing the binding of the four monovalent scaffolds (GGGB, GGBG, GBGG, BGGG) with only one Pra (i.e., sugar) unit, we observe very similar binding for each compound/lectin combination. Thus, these ligands seem to offer similar binding strength, which confirms our initial results with the dye-azide.

Furthermore, different ligands show large differences in binding strength and their spatial distance within the neo-glycopeptide has a significant impact.

Concanavalin binders

According to literature, ConA should only bind to α-Man 6 and α-Glc 7, not to β-Glc 8. For the following analysis of our results (Figure 4A), we considered the binding signal of the poly-glycine peptide GGGG as the background signal. Monovalent scaffolds of α-Man bind about twofold stronger than α-Glc. No sig-
significant binding to β-Glc could be detected. However, ConA binding to α-Man increases exponentially with linear increase in the number of sugars on the scaffold, which clearly indicates multivalent interaction: In comparison to monovalent α-Man structures, divalent α-Man scaffolds show a 7- to 17-fold signal increase, trivalent scaffolds an 18- to 30-fold, and the tetravalent a 37-fold increase.

Comparing α-Glc and α-Man scaffolds, binding to divalent α-Man > 5-fold higher than that to divalent α-Glc. Tri- and tetravalent α-Man scaffolds show a 7- to 10-fold higher signal over the respective α-Glc scaffolds.

In contrast to monovalent α-Glc scaffolds, the binding to di-, tri-, and tetravalent α-Glc scaffolds only increases 2- to 11-fold. Especially for some divalent scaffolds with two directly adjacent PRA in the sequence (GGBB, GBBG, BBGG, theoretical spacing ≈ 2.1 nm), we observed an only two-fold signal increase over the monovalent structures, indicating non-multivalent interaction. Binding to multivalent β-Glc scaffolds is generally very weak.

Furthermore, spacing plays an important role (see supporting information): Interestingly, scaffolds with two directly adjacent PRA in the sequence (GGBB, GBBG, BBGG, theoretical spacing ≈ 2.1 nm) show generally less binding, whereas non-adja
cent divalent carbohydrates (GBGB, BGBG, BGGB, theoretical spacing ≈ 0.7 nm and ≈ 2.3 nm) show stronger binding. Similarly, for trivalent binders, an intermittent glycine (BGBB, BBGB) increases the binding, in comparison to terminal glycines (GBBB, BBBG).

In addition, the orientation of the sugar-azides on the scaffold also have an effect. According to our simple spacing model, the scaffolds GBGB and BBGG should theoretically show the same results due to similar spacing. Yet, the latter shows less binding, which may be caused by the opposite orientation of the sugars on the scaffold.

Next, introducing a C3 alkyl spacer between the azide and the anomeric position of a glycan significantly increases binding (α-Man-C3 3 vs. α-Man 6; Figure 4 A vs. B). This alkyl spacer should increase the flexibility of the sugars on the scaffold, which makes it more accessible to the lectins. For monovalent α-Man-C6, we observe a 70-fold increase in binding in comparison to monovalent α-Man ligands, and a ∼ 30-fold for divalent, at ≈ 15-fold for trivalent, and a ∼ 10-fold increase for tetravalent ligands.

In comparison to monomannose 3, α-1,6-linked di-mannoside 5 is a similarly good binder. Yet, only for the tetravalent scaffold, α-1,6-linked di-mannoside is an even better binder. As already seen with α-Man 6, we observe for both compounds 3 and 5 a very similar spacing effect on binding.

Finally, α-1,2-linked di-mannoside 4 is our strongest observed binder for ConA. Only one dimer unit suffices to result in saturated binding at this ConA concentration. Due to saturation, further increase in valency has no effect.

Langerin binders

The tosylated glucosamine (β-GlcNTs) 9 was found to be a selective and strong binder for langerin,[25c] while blood group B trisaccharide 10 is known for a weak affinity to langerin.[26] We can confirm these results and see very similar effects of spacing and multivalent glycan display on the langerin binding as for the two ConA binders α-Man 6 and α-Glc 7.

K_D,surf determination

To assess the surface dissociation constant of ConA to our scaffolds, we generated eight microarrays, all containing the neo-glycopeptides based on monosaccharide 3. We incubated them with a dilution series (45–5760 nM) of fluorescently labeled ConA in a HEPES-buffer containing manganese and calcium ions, to determine the K_D,surf values for each of the sixteen neo-glycopeptides. The result of the fluorescence scan is shown in Figure 5. The fluorescence intensity for all ConA concentrations

![Figure 5](https://www.chemeurj.org)
is plotted against the respective peptide sequences. The curves follow the same binding trends as described above for monomannose 3 in Figure 4 for all the applied ConA concentrations. Using the data shown in Figure 5, we determined the surface dissociation constant K_{surf} for the different neo-glycopeptides (Table 1) by using a nonlinear curve fitting approach.

Entry	Neo-glycopeptide	Number of α-mannose	K_{surf} [μM]
1	GGGG	0	NB^[a]
2	GGBB	1	3.44 ± 0.56^[b]
3	GGBG	1	3.56 ± 0.54^[b]
4	GBGG	1	3.93 ± 0.74^[b]
5	BGGG	1	3.84 ± 0.53^[b]
6	GGBB	2	1.15 ± 0.08
7	GBGB	2	1.11 ± 0.10
8	BGGB	2	1.21 ± 0.13
9	BGBG	2	1.41 ± 0.12
10	BBGG	2	1.48 ± 0.18
11	GBBG	2	1.40 ± 0.13
12	BBBG	3	1.16 ± 0.07
13	BBGB	3	1.08 ± 0.09
14	BGBB	3	0.93 ± 0.42^[c]
15	BBBB	3	1.04 ± 0.07
16	BBBB	4	0.99 ± 0.07

[a] For the fitting curves see supporting information. [b] Since no sugar unit is present on this peptide, no binding of ConA can occur. NB = no binding. [c] Hypothetical fit values, since saturation was not reached (see supporting information). [d] A different fit model had to be used (standard model did not converge), causing a larger standard deviation.

With increasing number of mannose units on the peptide, the binding strength of ConA increases, leading to smaller K_{surf} values due to multivalency effects. The synthesized neo-glycopeptides reach dissociation constants in the low micromolar range between $\approx 1 \, \mu M$ and $2 \, \mu M$. In the literature, different dissociation constants K_{surf} have been reported. They are highly dependent on the usually not well-defined multivalent interaction and range from the micromolar to the low nanomolar range.^[27] Often, it is reported to be about $\approx 200 \, nm$, whereas we observed a five times lower value. We believe that this is mainly due to the protein resistance of the PEGMA-co-MMA functionalized glass slides for our microarray synthesis, which are known to be protein resistant.^[28] Only by introducing a poly(ethylene glycol)₂-spacer on these surfaces prior to the peptide scaffold synthesis, we could observe sufficient binding of ConA. Spacers and surface functionalization are known to sometimes have significant effects on lectin binding.^[29]

Conclusions

We have developed a flexible and facile approach to synthesize glycan microarrays for multivalent display. By synthesizing different peptides directly on-chip as scaffolds in the microarray format, we can attach different azido-sugars or other azido-functionalized molecules. This protocol circumvents the cumbersome pre-synthesis of individual multivalent scaffolds in multistep syntheses.

With these glycan microarrays, we observed that the binding of the lectins to different ligands is dependent on spacing and density. ConA binds strongly to α-mannose compounds 3–6, with the strongest binding to α-1,2-linked di-mannose 4. With our standard concentration, the binding to 4 already plateaued for monovalent scaffolds, whereas additional ligands on a scaffold did not increase its binding strength. Human langerin binds strongly to the β-GlicNTs azide 9, strongly depending on the number of ligands. Moreover, it also binds to the human blood group B trisaccharide azide 10, but in a much less spacing- and valency-dependent manner.

One current limitation of this approach is the synthesis surface: Since we used PEGMA-co-MMA functionalized glass slides for our arrays, which are known to be protein resistant,^[28] we had to introduce a PEG-spacer on the surface. Only then, we could observe significant binding of ConA. In a recent study, lectin interactions regarding different glycan array surface coatings, linkers/spacers, and densities were compared.^[29] A strong impact of α-Man density on ConA binding was observed, while many other lectin–glycan interactions did not show this dependency.

Besides the glass surface coating, also the molecular orientation on the scaffold has an impact on the multivalent display: The theoretical spacing between the two scaffolds BGBG and GBGB should be similar, yet, the binding strength differs, likely due to opposite orientation on the scaffold. In the future, we want to investigate this with molecular dynamics simulations. Furthermore, we also want to test different commercially available surfaces, which can offer better properties for probing weakly interacting binders. In addition, larger and longer scaffolds should increase the binding even further.

To our knowledge, this is the first time that multivalent glycan scaffolds with molecularly defined valency, length, and spacing have been synthesized directly on-chip. Since the technology is also available as a low-budget system, it can be employed by almost every laboratory in the world.^[21b] In the future, our laser-based synthesis approach will be automated with a robot.^[29] This will allow for an easy incorporation of additional building blocks to synthesize diverse peptide-based scaffolds to generate diverse arrays of glycopeptides. We believe that the results are valuable for the design and preparation of multivalent carbohydrate microarrays and their application for functional studies of glycan binding proteins and pathogen binding. We expect that with this approach, we can generate a multitude of different multivalent neo-glycopeptides, combining natural and synthetic amino acids with different glycan structures.

Experimental Section

Preparation of the donor and acceptor slides

Donor slide preparation: Microscope glass slides (Marienfeld Superior, Lauda-Königshofen/Baden-Württemberg, Germany; size 76 x 26 x 1 mm, ground edges, pure white glass) were covered on one
side with self-adhesive polyimide foil (Kapton, DuPont, USA; CMC Kletetechnik GmbH, Frankenthal/Rheinland-Pfalz, Germany; thickness of polyimide layer approx. 25 μm, thickness of glue layer approx. 45 μm). The transfer material was spin coated at 80 ррс on top of the polyimide foil, using a spin coater device (Schaefertecnologie GmbH, Langen/Hessen, Germany; KLM Spin-Coater SCC-200). Different spin coating solutions were prepared. Therefore, 3.00 mg of the L-amino acid building block pentafluorophenyl (OPf)−activated Fmoc-Gly-OPf (2 and 27.0 mg of inert polymer matrix (SLEC PLT 7552, Sekisui Chemical GmbH, Düsseldorf/Nordrhein-Westfalen, Germany) were dissolved in a mixture of 450 μL DCM and 50 μL DMF. In case of the non-activated Fmoc-Pra-OH, a solution containing 2.17 mg of L-amino acid, 27.0 mg of inert polymer matrix, 1.00 μL DIC, and 1.19 mg PfpOH in a mixture of 450 μL DCM and 50 μL DMF was applied, which forms the desired Fmoc-Pra-OPfp 1 in situ (see Supporting Information).

Acceptor slides: The 3D Fmoc-NH-β-Ala-PEGMA-co-MMA glass slides (25 nm thick coating, loading of functional groups 1 nmol/cm², estimated functional group spacing of 7–10 nm) were acquired from PEPperPRINT GmbH (Heidelberg/Baden-Württemberg, Germany). For the on-chip synthesis of the peptide tetramers, the slides were initially modified with a PEG-based spacer (as shown in the supporting information, to improve the accessibility of the surface bound molecules for the lectins).

cLIFT machine setup

We use a laser system, consisting of a 200 mW TOPTICA iBeam smart 488-S laser with a wavelength of 488 nm (TOPTICA Photonics AG, Gräfelfing/Bayern, Germany), which is passed through a 1:10 beam expander and a Racoon 11 laser scanning system (ARGES GmbH, Wackersdorf/Bayern, Germany), equipped with an F-Theta-lens (54LFTS110/322, Sil Optics GmbH, Wendelstein/Bayern, Germany). This setup facilitates to scan the focus of the laser beam in a 66 mm×66 mm plane, which enables reproducible irradiation of a surface at various positions for a high-quality cLIFT process (Figure 6). The slide holder table (lasing area) is equipped with three mechanical springs and a vacuum mechanism to ensure the same alignment of the acceptor slide when placing it in the holder.

cLIFT technique parameters

For the arrays with a pitch of 250 μm, we used 60 % laser power and a pulse duration of 6 ms per spot. The resulting spot diameter is about 150 μm.

General cLIFT process

The cLIFT process is conducted in the lasing area as seen in Figure 6. Therefore, the acceptor slide is placed on the slide holder with the functionalized side facing upwards. The donor slide is placed on top of the acceptor slide with the spin coated side facing down. When the donor slide is irradiated with the laser beam, the light passes through the microscope glass slide and hits the polyimide foil. The polyimide foil expands, hits the acceptor slide and, thereby, transfers small amounts of the inert polymer matrix with the activated amino acid as a tiny spot onto the acceptor slide.

General on-chip synthesis of peptides using cLIFT

After initial preparation of the donor and acceptor surfaces, our current protocol for the synthesis of 4-mer peptide (scaffold) arrays comprises 12 synthesis steps. One step for each peptide chain elongation (four), which we repeated three times to increase the coupling yield. Including more building blocks is simple and does not require significantly more time.

Peptide array synthesis: The commercially available 3D Fmoc-NH-β-Ala-PEGMA-co-MMA glass slide (PEPperPRINT GmbH, Heidelberg/Baden-Württemberg, Germany) was used as the acceptor slide for the peptide synthesis. Before starting the actual synthesis of the peptides, the whole slide was first functionalized with a PEG (EG)₃-based spacer (∼17 Å length, see supporting information), leading to free amino groups on the surface. Without this spacer, lectin binding is too weak for detection. The first layer of OPfp-activated and Fmoc-protected amino acids was transferred via cLIFT using two different donor slides to create a combinatorial pattern on the acceptor slide. The coupling reaction was accomplished by heating the slide in an oven under inert gas atmosphere at 90 °C for 1 h. Subsequently, the slide was washed with acetone (2×2 min in a petri dish on a shaker) and dried in a jet of air. The cLIFT transfer of the same amino acid pattern, the coupling step, and the washing procedure were repeated twice. Free remaining amino groups on the slide were capped (acetylated) by immersing the slide in 10 mL of capping solution (20 % DiPEA and 10 % acetic anhydride in DMF), first for 2 min in an ultrasonic bath and then for 30 min on a shaker. The capping solution was replaced by a freshly prepared one and shaking was continued for an additional 30 min. The slide was washed consecutively with DMF (3×5 min), MeOH (1×2 min), DCM (1×1 min), and dried in a jet of air. Terminal Fmoc-groups were removed by immersing the slide in 10 mL of Fmoc-deprotection solution (20 % piperidine in DMF) for 20 min on a shaker. The slide was washed consecutively with DMF (3×5 min), MeOH (1×2 min), DCM (1×1 min), and dried in a jet of air. For subsequent layers of amino acids, the whole process was repeated for each pattern to synthesize the desired peptides.
In case of the last amino acid within the peptide chain, the Fmoc-removal was accomplished before the capping step to have an acetyl group at the N-terminus instead of a bulky Fmoc-protecting group.

Synthesis of the sugar azides

The human blood group B trisaccharide 10 was obtained by enzymatic synthesis, compounds 3–9 and 21 were synthesized starting from the unprotected monosaccharides as shown in the supporting information.

General on-chip copper(I)-catalyzed alkyn-azole cycloaddition (CuAAC)

CuSO₄ (530 μg, 3.36 μmol, 2.00 equiv) and sodium ascorbate (998 μg, 5.04 μmol, 3.00 equiv) were added to a mixture of 100 μL DMSO and 100 μL water in a vial. The vial was shaken for 5 min and, afterwards, the precipitate was centrifuged and the remaining solution was passed through a syringe filter (0.2 μm, polypropylene). The sugar azide (1.68 μmol, 1.00 equiv) was dissolved in this solution and then applied on the acceptor surface (c = 8.4 μmol mL⁻¹). For the incubation, we used a 16-well format incubation chamber (PEPperPRINT GmbH, Heidelberg/Baden-Württemberg, Germany). The prepared solution (200 μL) was poured in one of the wells and then shaken overnight in the dark. The slide was washed with water (1 × 30 min) in a petri dish on a shaker and dried in a jet of air.

Concanavalin A (ConA) binding assay

Before starting the lectin incubation, the acceptor slide was first incubated with a blocking buffer for fluorescence scanning (Rockland, USA, MB-070). For the blocking step, we used a 16-well format incubation chamber (PEPperPRINT GmbH, Heidelberg/Baden-Württemberg, Germany) and for each well 250 μL of the blocking buffer were applied. The blocking step was done on a shaker for 30 min. After the blocking step, the incubation with the fluorescently labeled ConA lectin (Biotium, Inc., USA, CF®633 ConA) was accomplished. Therefore, the lectin was dissolved in a HEPES-buffer (50 mM HEPES, 100 mM NaCl, 1 mM CaCl₂, 1 mM MnCl₂, 10% blocking buffer, 0.05% Tween-20, pH 7.5) at a concentration of 100 μg mL⁻¹. For one well, 200 μL of this solution were applied. The incubation took place for 1 h on a shaker protected from light. The slide was washed in the wells of the incubation chamber with PBS-T (3 × 200 μL for 5 min) and then the whole glass slide was dipped into a TRIS buffer (1 mM TRIS, pH 7.4), to remove salt residues. The slide was dried in a jet of air and fluorescence scanning was used to detect the lectin binding.

Langerin binding assay

The acceptor slide was pre-swelled in PBS-T for 15 min on a shaker in a petri dish. Before starting the lectin incubation, the acceptor slide was first incubated with a blocking buffer for fluorescence scanning (Rockland, Limerick/Pennsylvania, USA; blocking buffer for fluorescent western blotting MB-087). For the blocking step, we used a 16-well format incubation chamber (PEPperPRINT GmbH, Heidelberg/Baden-Württemberg, Germany) and for each well 250 μL of the blocking buffer were applied. The blocking step was done on a shaker for 30 min. After the blocking step, the incubation with the FITC-labeled human langerin ECD (recombinantly expressed as described previously[32]) was accomplished. Therefore, the lectin was dissolved in a HEPES-buffer (50 mM HEPES, 100 mM NaCl, 10 mM CaCl₂, 1 mM MnCl₂, 10% blocking buffer, 0.05% Tween-20, pH 7.5) at a concentration of 63 μg mL⁻¹. For one well, 200 μL of this solution were applied. The incubation took place for 1 h on a shaker protected from light. The slide was washed in the wells of the incubation chamber with PBS-T (3 × 200 μL for 5 min) and then the whole glass slide was dipped into a TRIS buffer (1 mM TRIS, pH 7.4), to remove salt residues. The slide was dried in a jet of air and fluorescence scanning was used to detect the lectin binding.

Fluorescence scan

The fluorescence scan of the CF®633 ConA labeled neo-glycopeptides and the TAMRA labeled peptides were done on the high resolution microarray scanner GenePix 4000B (Molecular Devices, Sunnyvale/California, USA), using an excitation wavelength of 635 nm or 532 nm at 5 μm resolution, while the fluorescence scan of the FITC-langerin labeled neo-glycopeptides was done on the high resolution microarray scanner GenePix 4300A (Molecular Devices, Sunnyvale/California, USA) using an excitation wavelength of 488 nm at 5 μm resolution. For the analysis of the fluorescence images, we used the analysis software GenePix Pro 6.0 (Molecular Devices, Sunnyvale/California, USA). For the spots a circular shape was defined.

Synthesis and analysis of neo-glycopeptides (consisting of propargylglycine and glycine) regarding multivalency effects

The peptide tetramers (Figure 2), consisting of propargylglycine and glycine, were synthesized according to the general on-chip synthesis of peptides using cLIFT. Therefore, two donor slides were manufactured, one embedding Fmoc-Pra-OPfp 1 and the other one Fmoc-Gly-OPfp 2. The sugar azides 3–10, and 21 were then clicked to the alkyne side chains, following the general on-chip copper(I)-catalyzed alkyne-azole cycloaddition (CuAAC). For each of the sugar azides, the reaction was performed in a separate cavity of a 16-well format incubation chamber on the microarray. Each cavity contains the peptide tetramer pattern shown in Figure 2 as three replicas, yielding a total of twelve neo-glycopeptide replicas for each combination of a single sugar azide and one peptide tetramer (three sets of quadruplicates). To detect multivalency effects, the neo-glycopeptides resulting from the mannose azides 3–6, glucose 7 and 8 (and galactose 21 as a negative control) were incubated with fluorescently labeled ConA, using the above described ConA binding assay (16-well format incubation chamber) and the ones synthesized with the sugar azides 9 and 10 (and glucose 7 as a negative control) were incubated with fluorescently labeled langerin following the above described langerin binding assay. Consequently, for each neo-glycopeptide, twelve separate spots were generated on the microarray slide. After fluorescence scanning, the median of the fluorescence intensity was determined for each spot, using the microarray analysis software GenePix Pro 6.0. For each set of twelve medians, the mean value was calculated, where spot values that deviate more than 40% from the mean were omitted from the calculation (very few values were omitted). In case of the langerin binding, the GGGG sequence, where no sugar unit is present on the peptide, was used as the background signal and was subtracted from all other values.

K_{D,surf} determination experiments

The K_{D,surf} values were calculated for the binding of the CF®633 ConA lectin to the neo-glycopeptides (tetramers), containing the
α-mannopyranosyl residue. The peptide tetramers (Figure 2) consisting of propargylglycine and glyicine were synthesized according to the general on-chip synthesis of peptides using cLIFT. Therefore, two donor slides were manufactured, one embedding Fmoc-Pra-OPPf 1 and the other one Fmoc-Gly-OPPf 2. The mannose azide 6 was then clicked to the alkyne side chains, following the general on-chip copper(I)-catalyzed alkyn-alkyne cycloaddition (CuAAC). The concanavalin A (ConA) binding assay was then performed using different concentrations of the lectin (45 nm, 90 nm, 180 nm, 360 nm, 720 nm, 1440 nm, 2880 nm, and 5760 nm). The CuAAC as well as the binding assay were done in a 16-well format incubation chamber. For each peptide and each concentration, twelve separated spots were generated on the microarray slide. After fluorescence scanning, the median of the fluorescence intensity was determined for each spot, using the microarray analysis software GenePix Pro 6.0. For each set of twelve medians, the mean value was then calculated, where spot values that deviate more than 40% from the mean were omitted from the calculation (very few values were omitted, only for high ConA concentrations, where ConA precipitated). The results were plotted against the different peptide sequences on the microarray slide for each ConA concentration. The Kr values were determined by plotting the means for each peptide sequence against the concentration on a logarithmic scale. Then a nonlinear curve (Category: Growth/Sigmoidal; function: DoseResp; iteration algorithm: Levenberg (except BGBB, showing higher standard deviation)) was fitted and the Kr values were calculated using the software Origin 2019 (OriginLab, Northampton/Massachusetts, USA).

Acknowledgements

This research was supported by the German Federal Ministry of Education and Research [BMBF, grant number 13XP5050A], the MPG-FhG cooperation [Glyco3Display], and the Max Planck Society.

Conflict of interest

F.F.L is named on a patent application regarding the laser-induced forward transfer technique.

Keywords: click chemistry · combinatorial chemistry · laser-induced forward transfer · lectin · microarrays

[1] D. Wang, S. Liu, B. J. Trummer, C. Deng, A. Wang, Nat. Biotechnol. 2002, 20, 275–281.
[2] a) A. Geissner, P. H. Seeberger, Annu. Rev. Anal. Chem. 2016, 9, 223–247; b) C. D. Rillahan, J. C. Paulson, Annu. Rev. Biocatal. 2011, 80, 797–823.
[3] a) Z. Wang, Z. S. Chihoy, S. G. Ambre, W. Peng, R. McBride, P. R. de Vries, J. Glushka, J. C. Paulson, G.-J. Boons, Science 2013, 341, 379; b) C. Rüprecht, M. P. Bartetzko, D. Senf, P. Dallabonnadina, I. Boos, M. C. F. Andersen, T. Kotake, J. P. Knox, M. G. Hahn, M. H. Clausen, P. H. Seeberger, Small Molecule Microarrays: Methods and Protocols (Eds.: U. Muttamedrandi, S. Y. Qiao), Springer New York, New York, 2017, pp. 227–240; f) Y. Zhang, Q. Li, L. G. Rodrigues, J. C. L. Sander, J. Am. Chem. Soc. 2010, 132, 9653–9662; e) C.-H. Liang, S.-K. Wang, C.-C. Wang, C.-H. Wong, C.-Y. Wu, Angew. Chem. Int. Ed. 2011, 12, 1646–1650.
[4] a) M. Kilocazy, J. Q. Gerlach, R. Gough, M. E. Gallagher, M. Kane, S. D. Carrington, L. Joshi, Anal. Chem. 2012, 84, 3330–3338.
[5] a) R. W. T. Williams, D. S. E. Rasmussen, T. Kristensen, D. J. Mikkelsen, J. P. Knox, Proteomics 2002, 2, 1666–1671; b) S. Angeloni, J.L. Ridet, N. Kusy, H. Gao, F.Crevoisier, S. Guichard, S. Kochhar, H. Sigrist, N. Sprenger, Glycobiology 2004, 15, 31–41; c) X. Tian, J. Pali, I. Shinn, Chem. Asian J. 2012, 7, 2052–2060; d) J. C. Manimula, T. A. Roach, Z. Li, J. C. Gildersleeve, Angew. Chem. Int. Ed. 2006, 45, 3607–3610; Angew. Chem. 2006, 118, 3689–3692; e) J. C. Manimula, Z. Li, A. Jain, S. VedBrat, J. C. Gildersleeve, ChemBioChem 2005, 6, 2229–2241; f) E. W. Adams, J. A. Ueberfeld, D. M. Ratner, B. R. O’Keefe, D. R. Walt, P. H. Seeberger, Angew. Chem. Int. Ed. 2003, 42, 5317–5320; Angew. Chem. 2003, 115, 5475–5478; g) A. Walz, S. Odenbreit, J. Mahdavi, S. Ruhl, Glycobiology 2005, 15, 700–708; h) H. Tateno, A. Mori, N. Uchiyama, R. Yabe, I. Iwaki, T. Shikami, T. Angata, H. Narimatsu, J. Hayabashy, Glycobiology 2008, 18, 789–798; i) R. A. de Boer, C. H. Hokke, A. M. Deelder, M. Wuhrer, Glycoconjunct. J. 2008, 25, 75–84.
[6] a) X. Zhou, C. Turchi, D. Wang, J. Proteome Res. 2009, 8, 5031–5040; b) T. Fukuda, S. Onogi, Y. Miura, Thin Solid Films 2009, 518, 880–888; c) H. M. Brandenhorst, R. Ruijtenbeek, R. M. J. Liskamp, R. P. J. Pieters, ChemBioChem 2008, 9, 1836–1844; d) N. Parera, H. M. Brandenhorst, R. Kooij, C. Maierhofer, M. van der Kaaden, R. M. J. Liskamp, V. Wittmann, R. Ruijtenbeek, R. P. J. Pieters, ChemBioChem 2010, 11, 1896–1904.
[7] a) M. Giobanu, K.-T. Huang, J.-P. Dagueur, S. Barluenga, O. Chaloin, E. Schaeffer, C. G. Mueller, D. A. Mitchell, N. Wissinger, Chem. Commun. 2011, 47, 9321–9323; b) K.-T. Huang, K. Gorska, S. Alvarez-Barrueco, N. Wissinger, ChemBioChem 2011, 12, 56–60; c) K. Gorska, K.-T. Huang, O. Chaloin, N. Wissinger, Angew. Chem. Int. Ed. 2009, 48, 7695–7700; Angew. Chem. 2009, 121, 7831–7836; d) C. Kielar, F. V. Reddavide, S. Tubbenhauer, M. Cui, X. Xu, G. Grundmeier, Y. Zhang, A. Keller, Angew. Chem. 2013, 120, 15089–15093; e) H. Wawkes, D. Huang, P. Reynolds, L.

Chem. Eur. J. 2020, 26, 9954–9963 www.chemeurj.org 9962 © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Hammond, M. Ward, N. Gadegaard, J. F. Marshall, T. Iskratch, M. Palma, Faraday Disc. 2019, 219, 201–219.

[17] L. Moni, G. Pourceau, J. Zhang, A. Meyer, S. Vidal, E. Souteyrand, A. Domoni, F. Morvan, Y. Chevolot, J.-J. Vasseur, A. Marra, ChemBioChem 2009, 10, 1369–1378.

[18] a) K. Godula, D. Rabuka, K. T. Nam, C. R. Bertozzi, Angew. Chem. Int. Ed. 2009, 48, 4973–4976; Angew. Chem. 2009, 121, 5073–5076; b) K. Godula, C. R. Bertozzi, J. Am. Chem. Soc. 2012, 134, 15732–15742; c) K. Godula, C. R. Bertozzi, J. Am. Chem. Soc. 2010, 132, 9963–9965; d) C. Zilio, A. Bernardi, A. Palmioli, M. Salina, G. Tagliabue, M. Buscaglia, R. Consonni, M. Chiari, Sensors and Actuators B: Chemical 2015, 215, 412–420.

[19] L. Ban, M. Mrksich, Angew. Chem. Int. Ed. 2008, 47, 3396–3399; Angew. Chem. 2008, 120, 3444–3447.

[20] S. Bian, S. B. Zieba, W. Morris, X. Han, D. C. Richter, K. A. Brown, C. A. Mirkin, A. B. Braunschweig, Chem. Sci. 2014, 5, 2023–2030.

[21] a) F. F. Loeffler, T. C. Foertsch, R. Popov, D. S. Mattes, M. Schlageter, M. Sedlmayr, B. Riddler, F.-X. Dang, C. von Bojnič-Kninski, L. K. Weber, A. Fischer, J. Greifenstein, V. Bykovskaya, I. Buliev, F. R. Bischoff, L. Hahn, M. A. R. Meier, S. B. Bres, A. K. Powell, T. S. Balaban, F. Breitling, A. Nesterov-Mueller, Nat. Commun. 2016, 7, 11844; b) S. Eckelmann, A. Tsouka, J. Heidepriem, G. Paris, J. F. Zhang, V. Molinari, M. Mende, F. F. Loeffler, Adv. Mater. Technol. 2019, 4, 1900503.

[22] A. Shibata, E. Kinoshita-Kikuta, E. Kinoshita, T. Koike, Sensors 2017, 17, 1877.

[23] F. Pérez-Balderas, M. Ortega-Muñoz, J. Morales-Sanfrutos, F. Hernández-Mateo, F. G. Calvo-Flores, J. A. Calvo-Asín, J. 8. Isac-García, F. Santoyo-González, Org. Lett. 2003, 5, 1951–1954.

[24] S. Bian, J. He, K. B. Schesing, A. B. Braunschweig, Small 2012, 8, 2000–2005.

[25] a) B. Kang, P. Okwieka, S. Schöttler, S. Winzen, J. Langhanki, K. Mohr, T. Opatz, V. Mailänder, K. Landfester, F. R. Wurm, Angew. Chem. Int. Ed. 2015, 54, 7436–7440; Angew. Chem. 2015, 127, 7544–7548; b) M. K. Patel, B. Vijayakrishnan, J. R. Kooppe, J. M. Chalker, K. I. Doore, B. G. Davis, Chem. Commun. 2010, 46, 9119–9121; c) E.-C. Wamhoff, J. Schulze, L. Bellmann, M. Rentzsch, G. Bachem, F. F. Fuchsberger, J. Rademacher, M. Hermann, B. Del Frari, R. van Dalen, D. Hartmann, N. M. van Sorge, O. Seitz, P. Stoitzner, C. Rademacher, ACS Cent. Sci. 2019, 5, 808–820.

[26] H. Feinberg, A. S. Powlesland, M. E. Taylor, J. W. Weiss, J. Biol. Chem. 2010, 285, 13285–13293.

[27] a) E. A. Smith, W. D. Thomas, L. L. Kiessling, R. M. Corn, J. Am. Chem. Soc. 2003, 125, 6140–6148; b) B. Pandey, Y. H. Tan, K. Fujikawa, A. V. Demchenko, K. J. Stine, J. Carbohydr. Chem. 2012, 31, 466–503.

[28] V. Stadler, R. Kirmse, M. Beyer, F. Breitling, T. Ludwig, F. R. Bischoff, Langmuir 2008, 24, 8151–8157.

[29] J. S. Temme, C. T. Campbell, J. C. Gildersleeve, Faraday Disc. 2019, 219, 90–110.

[30] G. Paris, J. Heidepriem, A. Tsouka, M. Mende, S. Eckelmann, F. Loeffler, Automated laser-assisted synthesis of microarrays for infectious disease research, Proc. SPIE 10875, Microfluidics, BioMEMS, and Medical Microsystems XVII, 108750C (4 March 2019).

[31] J. Hanske, J. Schulze, J. Arzet, R. McBride, B. Loll, H. Schmidt, Y. Knirel, W. Rabisch, M. C. Wahl, J. C. Paulson, C. Rademacher, J. Biol. Chem. 2017, 292, 862–871.

Manuscript received: March 15, 2020
Revised manuscript received: April 17, 2020
Accepted manuscript online: April 21, 2020
Version of record online: June 11, 2020