Case Report

Bilateral congenital absence of the internal carotid arteries: a case report

Shazia Rahat Chaudhry, BA in Biology with a minor in Sociology, MD pending (expected March 2019)*, Stephany Barreto, MD, Sajeev R. Ezhapilli, MBBS DNB DABR

SUNY Upstate Medical University, 766 Irving Ave, Syracuse, NY 13210, USA

ARTICLE INFO

Article history:
Received 12 July 2018
Revised 29 July 2018
Accepted 3 August 2018

Keywords:
Internal carotid artery
Internal carotid agenesis

ABSTRACT

Congenital absence of the internal carotid artery is a rare occurrence. Even more infrequent are cases where the patient has a bilateral absence of the internal carotid arteries. Reported is a case of a 52-year-old woman who presented with optic nerve neuropathy, and was incidentally discovered to have a congenital bilateral absence of her internal carotid arteries. During computed tomography angiography imaging looking for cerebral venous thrombosis, related to her preexisting condition of bilateral elevated optic discs and residual left optic neuropathy, the findings were made. The absence of the arteries is not always recognizably symptomatic, with most findings being incidental through imaging studies only. This is because collateral flow allows for sufficient cerebral circulation. However, this condition puts such patients at higher risk for conditions such as aneurysms and subsequently strokes where the collateral flow exists.

© 2018 The Authors. Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

Bilateral congenital absence of the internal carotid arteries (ICA) is an uncommon condition, impacting less than 0.01% of the general population [1,2,3,4]. Absence of the ICA most often presents unilaterally in patients, thereby making instances of bilateral hypoplasia even more so intriguing [3]. This natural absence may be consequent of hypoplasia (incomplete development), agenesis (no development), or aplasia (no development despite the presence of developmental precursors).

The result of this absence is collateral blood flow, typically from the circle of Willis; for this reason, this abnormality is oftentimes asymptomatic and detected incidentally via imaging such as computed tomography (CT), angiography, or magnetic resonance imaging (MRI) [2,3]. However, symptoms that may present in some patients include recurrent headache, blurred vision, and convulsions [4]. This collateral flow may also occur through persistent embryonic vessels or through anastomotic branches of the external carotid artery (ECA) [2]. If there is a lack of adequate collateral flow, cerebrovascular accidents (CVA) and/or intracranial hemorrhage could occur and thereby this issue may present as cerebrovascular disease [5,6]. The presented case involves a 52-year-old female...
A 52-year-old female presented for a routine follow-up appointment related to her bilateral elevated optic discs and residual left optic neuropathy. She had constant headache, especially when laying down flat. A computed tomography angiography (CTA) of her head and neck was done (see Figs. 1–5). While inspecting the major branches of the aorta in the neck, the right common carotid originated from the brachiocephalic trunk and the left common carotid artery arose from the arch of the aorta. However, there was no bifurcation of the common carotid arteries at the expected level superior to the thyroid cartilage (see Fig. 1). The vessels identified in this area were determined to be the external carotid arteries as they followed the appropriate anatomical course and had the expected branches in the neck with no intracranial extension. The expected course of the intracervical and intracranial portions of the ICA failed to demonstrate any visible vessels (see Fig. 2). Additionally, petrous carotid canals were not identified on either side. These findings were representative of bilateral absence of the ICAs. The CTA head revealed patent anterior cerebral circulation, which was found to be from compensatory enlarged feeding posterior communicating arteries (PCOM), prominent basilar artery, posterior cerebral arteries (PCA) and codominant enlarged vertebral arteries (see Figs. 3–6). This patient also had hypoplastic left internal jugular vein, sigmoid, and transverse sinuses.

Discussion

Absences of carotid arteries have been documented as early as 1787 per postmortem examination, with a case in a living patient as early as 1954 via angiography [1,2]. Interestingly, the most documented cases involving absence of the ICA are unilateral and most commonly reported on the left side [1,7]. Our case report is of particular interest because it demonstrates bilateral absence of the vessels. The cause of congenital unilateral carotid absence has been attributed to disruption of the embryo by physical and hemodynamic pressure upon the embryo [2]. Such stresses are thought to include amniotic band constriction and folding of the embryo's neck region to one
Identification and detection of the absence of the ICA may be done via imaging studies including CT, MRI, carotid Doppler ultrasound or conventional as well as CT/MR angiography [7]. CTA was the imaging modality used in the presented case. A strong indicator for a congenital cause is the lack of, or a very small/hypoplastic, bony carotid canal observed during such imaging studies [2,4,9,10]. This is because the formation of the skull base begins at weeks 5–6 of fetal life, whereas the formation of the ICA is normally completed around week 6 of fetal life [1,2]. Thus, no canal is formed for the ICA when the skull forms. In cases where patients present with signs of lacking the ICA, carefully inspecting the carotid canal may assist in determining if the ICA simply is not visible due to other reasons unrelated to agenesis such as blockage. Based on review of other cases, many of the findings for the absence of the ICA have been discovered incidentally, just as in our reported case [7].

As not many cases are reported in pediatric patients, it is thought that there is enough collateral blood flow to the brain during this period, while symptoms leading discovery of this condition in adult population is due to inadequate collateral flow [2]. A reason for insufficient collateral flow could include development of atherosclerosis in vessels previously supporting blood flow in the absence of the ICA [2,8]. Additionally, the development of aneurysms is thought to be slow in children as this issue is not common [5]. However, in cases where symptoms, such as headache, do occur in adults, aneurysms have been reported in 24%-67% of ICA absent cases, in contrast with the general population which has an aneurysm rate of 2%-4% [1,11]. Thus, patients with absence of the ICA(s) are at higher risk of aneurysm and should be screened appropriately. In this case report, the patient had not presented with any specific symptoms apart from headache. Other issues are speculated to be associated with abnormalities of the ICA such as cerebrovascular disease [8]. In the case reported, the headaches were thought to be associated with the optic neuropathy, as no intracranial aneurysm was identified.
Conclusion

The reported bilateral absence of the ICA was discovered incidentally on CTA images of a 52-year-old female patient who initially came in for a routine medical follow up for an unrelated issue. Such absences are not common, and oftentimes remain undetected and unexplored due to sufficient collateral blood flow. Origins of such bilateral absence are congenital, with lack of proper channel and vessel development during the fetal period.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.radcr.2018.08.006.

REFERENCES

[1] Alurkar A, Karanam LS, Oak S, Kori S. Congenital absence of internal carotid artery with rare type of intercavernous anastomosis and ruptured cerebral aneurysm. J Clin Diagn Res 2016;10(4):TD03–4. doi:10.7860/jcdr/2016/17797.7549.
[2] Given CA, Huang-Hellinger F, Baker MD, Chepuri NB, Morris PP. Congenital Absence of the Internal Carotid Artery: Case Reports and Review of the Collateral Circulation. Am J Neuroradiol 2001;22(10):1953–9.
[3] Jeong SH, Hong HS, Park S, Kin DH, Lee HK. Congenital absence of the internal carotid artery. J Soonchunhyang Med Sci 2010;16(1):09–15.
[4] Valentino L, Ponticiello G, Romano L, Pugliese A. Unilateral congenital hypoplasia of the internal carotid artery in a newborn: a rare case report. J Pediatr Neonatal Individ Med 2015;4(1):e040121. doi:10.7363/040121.
[5] Damry N, Hanquinet S, Christophe C, Janssen F, Delatte P, Perlmutter N. Bilateral congenital absence of the internal carotid artery with a primitive transmaxillary arterial anastomosis. Pediatr Radiol 1994;24(3):200–3. doi:10.1007/bf02012191.
[6] Hosseini H, Ahdab R, Farhat W. Congenital agenesis of internal carotid artery with ipsilateral Horner presenting as focal neurological symptoms. Vasc Health Risk Manage 2011;7:37–40. doi:10.2147/vhrm.s16642.
[7] Taşar M, Yetişer S, Taşar A, Üğür Sel Gönül E, Sağlam M. Congenital absence or hypoplasia of the carotid artery: radioclinical issues. Am J Otolaryngol 2004;25(5):339–49. doi:10.1016/j.amjoto.2004.04.008.
[8] Amer S. Rare case of congenital absence of left internal carotid artery. Ann Indian Acad Neurol 2014;18(1):128–9 2015 Jan-Mar. doi:10.4103/0972-2327.144310.
[9] Anvekar B Dr Balaji Anvekar’s Neuroradiology Cases. S P Institute of Neurosciences, Solapur, Maharashtra, India. from http://www.neuroradiologycases.com/2012/04/ica-unilateral-congenital-absence.html.
[10] Furruq F, Biswas A, Thirunavukarasu S, Vivekandan R. Congenital absence of bilateral ICA: an unusual incidental finding in an adult male. BMJ Case Reports 2016. doi:10.1136/bcr-2016-216177.
[11] Neves WD, Kakudate MY, Cêntola CP, Garzon RG, D’Água AP, Sanches R. Agenesis of the internal carotid artery: a case report. Radiol Bras vol.41 no.1 São Paulo Jan./Feb. 2008 http://dx.doi.org/10.1590/S0100-39842008000100015.