Supporting Information

for

Nanocasting synthesis of BiFeO$_3$ nanoparticles with enhanced visible-light photocatalytic activity

Thomas Cadenbach, Maria J. Benitez, A. Lucia Morales, Cesar Costa Vera, Luis Lascano, Francisco Quiroz, Alexis Debut and Karla Vizuete

Beilstein J. Nanotechnol. **2020**, *11*, 1822–1833. doi:10.3762/bjnano.11.164

Additional figures and tables
Table S1: Calcination paths.

Path	Reaction regarding:	Reaction regarding
	complexing agents, solvents, molar ratio-0	molar ratio-1
Initial temperature (°C)	22	-
Heat rate 1 (°C/min)	1	-
Plateau 1 (°C)	200	-
Drying Time 1 (h)	2	-
Heat rate 2 (°C/min)	1	-
Plateau 2 (°C)	250	-
Drying Time 2 (h)	2	-
Heat rate 3 (°C/min)	4	4
Final Temperature (°C)	500	500
Final Calcination Time (h)	1	1
Figure S1: UV–vis spectra of Rhodamine B in dependence of irradiation time in the presence of 5.5 nm BiFeO$_3$ NP.

\[
\text{BiFeO}_3 + h\nu \rightarrow e^{-} + h^{+}
\]
\[
h^{+} + \text{H}_2\text{O} \rightarrow \cdot\text{OH}
\]
\[
h^{+} + \text{RhB} \rightarrow \text{degradation products}
\]
\[
\cdot\text{OH} + \text{RhB} \rightarrow \text{degradation products}
\]
\[
\cdot\text{O}^2^{-} + \text{RhB} \rightarrow \text{degradation products}
\]

Figure S2: Photocatalytic mechanism of RhB degradation using 5.5 nm BiFeO$_3$ nanoparticles.
Figure S3: Small-angle XRD pattern of SBA-15.

Figure S4: Nitrogen adsorption isotherms of SBA-15.
Table S2: Summary of BET analysis of SBA-15.

Pore Size	
Adsorption average pore diameter (4V/A by BET):	6.01773 nm
Desorption average pore diameter (4V/A by BET):	6.05495 nm
BJH Adsorption average pore diameter (4V/A):	6.2516 nm
BJH Desorption average pore diameter (4V/A):	5.8164 nm
D-H Adsorption average pore diameter (4V/A):	6.2643 nm
D-H Desorption average pore diameter (4V/A):	5.8198 nm

Surface Area	
Single point surface area at $P/P_0 = 0.300000000$	680.2137 m²/g
BET Surface Area:	699.0213 m²/g
Langmuir Surface Area:	3,573.7975 m²/g
t-Plot Micropore Area:	33.0353 m²/g
t-Plot external surface area:	665.9860 m²/g
BJH Adsorption cumulative surface area of pores	
between 1.7000 nm and 300.0000 nm diameter:	651.433 m²/g
Description	Value
--	-------------
BJH Desorption cumulative surface area of pores	
between 1.7000 nm and 300.0000 nm diameter:	716.5886 m²/g
D-H Adsorption cumulative surface area of pores	
between 1.7000 nm and 300.0000 nm diameter:	647.872 m²/g
D-H Desorption cumulative surface area of pores	
between 1.7000 nm and 300.0000 nm diameter:	714.5655 m²/g

Figure S5: TEM image of SBA-15.
Figure S6: TEM image of BiFeO$_3$@SBA-15.

Figure S7: XRD pattern of 5.5 nm BiFeO$_3$ NP after 5 catalytic cycles.