Handling Missing Data in Within-Trial Cost-Effectiveness Analysis: a Review with Future Recommendations

Andrea Gabrio∗1, Alexina Mason2, and Gianluca Baio1

1Department of Statistical Science, University College London, 1-19 Torrington Place, London WC1E 7HB, UK.
2Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London WC1H 9SH, UK.

Abstract

Cost-Effectiveness Analyses (CEAs) alongside randomised controlled trials (RCTs) are increasingly often designed to collect resource use and preference-based health status data for the purpose of healthcare technology assessment. However, because of the way these measures are collected, they are prone to missing data, which can ultimately affect the decision of whether an intervention is good value for money. We examine how missing cost and effect outcome data are handled in RCT-based CEAs, complementing a previous review (covering 2003-2009, 88 articles) with a new systematic review (2009-2015, 81 articles) focusing on two different perspectives. First, we review the description of the missing data, the statistical methods used to deal with them, and the quality of the judgement underpinning the choice of these methods. Second, we provide guidelines on how the information about missingness and related methods should be presented to improve the reporting and handling of missing data. Our review shows that missing data in within-RCT CEAs are still often inadequately handled and the overall level of information provided to support the chosen methods is rarely satisfactory.

Key words: Missing Data, Cost-Effectiveness Analysis, Randomised Controlled Trials

Tables: 1 Figures: 5 Words: 4900
Running Head: Handling missing data: a review and guidelines

∗E-mail: andrea.gabrio.15@ucl.ac.uk
1 Introduction

A well-known issue in Cost-Effectiveness Analysis (CEA), especially within a Randomised Controlled Trial (RCT) setting, is the presence of large proportions of missing data in either or both the outcome variables, i.e. the cost and the clinical effectiveness or utility measures. Removing the unobserved cases (a method usually referred to as “Complete Case Analysis”, CCA) generally leads to a loss in efficiency and possible serious biases in the parameter estimates (Rubin, 1987; Schafer, 1997; Little et al., 2010; Molenberghs et al., 2015). Consequently, the final conclusions of the study may be strongly influenced by the way in which missingness is handled, thus possibly reversing the decision about the cost-effectiveness of a new treatment compared to the standard option (Manca and Palmer, 2006;).

While the problem of missing data is widely discussed in the statistical literature, it has been relatively overlooked in the health economics one. Notable exceptions include Graves et al. (2002); Briggs et al. (2003); Oostenbrink and Al (2005); Burton et al. (2007); Lambert et al. (2008), mainly focussing on the cost measures; Richardson and Manca (2004); Wood et al. (2004); Groenwold et al. (2012); Powney et al. (2014); Simons et al. (2015); Rombach et al. (2016), with reference to health outcome measures; and Manca and Palmer (2006); Harkanen et al. (2014), who consider both outcomes.

Interestingly, recent reviews on the methods applied in within-trial CEAs (Noble et al., 2012; Diaz-Ordaz et al., 2014a) have concluded that CCA has historically represented the standard approach in health economics. As a result, we should be naturally sceptical about the conclusions achieved by CEAs performed in a context where missingness is not addressed in a principled way. This implies the incorporation of uncertainty about the missing values by combining available information from the observed data with statistical assumptions to build a well-defined statistical model. Within this framework, subsequent inferences are valid under these assumptions, which in turn can be varied to test their impact on the decision-making.

The objective of this article is twofold: first, we review the methods used to handle missingness in within-trial CEAs between 2003-2015 by updating and extending the work of Noble et al. (2012). This is done with a view to assessing whether the methods have evolved over time. Second, we provide some guidelines about the way in which missingness should be analysed and reported in the studies. The paper is structured as follows: illustrates Rubin’s classification of missing data mechanisms (Rubin, 1987). In 3 we provide a brief summary of the most popular missingness methods, while 4 presents the methodology used to select the review’s articles and the main results derived from the different analyses performed. In 5 we report a qualitative analysis of the way in which information about the missing data is provided in the studies and use these results to form some guidelines on the approach authors should follow when dealing with missingness in CEAs. Finally, 6 summarises our findings and recommendations.

2 Missing Data Mechanisms

When analysing partially observed data, it is essential to investigate the possible reasons behind missingness. This formally translates into an assumed missing data mechanism that is linked to the data generating process.

We consider a sample of \(i = 1, \ldots, n \) individuals and for each the relevant outcome is indicated as \(y_i \), which is unobserved for some individuals. Typically, trial data also include a set of covariates \(x_i = (x_{i1}, \ldots, x_{ij}) \), e.g. sex, age or co-morbidities. While in general these may be partially or fully observed, in this section we consider only the latter case. In addition, we define a missingness indicator \(m_i \) taking value 1 if the \(i \)-th subject is associated with missing outcome and 0 otherwise.

This setting can be modelled using two sub-models, or “modules”. The first module is the missing data mechanism, denoted as Model of Missingness (MoM). It describes a probability distribution for \(m_i \), as a function of some unobserved parameters \(\pi_i \) and \(\delta \), defining the probability of missingness in the outcome variable \(y_i \). The second module is the data generating
process of the outcome variable, denoted as Model of Analysis (MoA). This contains the main parameters of interest (e.g. the population average costs and benefits) and describes a probability model for the outcome \(y_i \). As a general example, we can think of a simple regression model where \(y_i \sim \text{Normal}(\mu_i, \sigma) \), and \(\mu_i = \beta_0 + \beta_1 x_i \). In this case, the parameters of the MoA are \(\beta = (\beta_0, \beta_1) \) and \(\sigma \).

The most accepted classification of missing mechanisms is given by Rubin (1987) and is based on three classes, according to how the missingness probability in the MoM is modelled. A simple graphical representation of the three classes is provided in Figure 1. Variables and parameters are denoted by nodes of different shapes and colours according to their nature. Parameters \((\beta_0, \beta_1, \sigma, \delta) \) are represented through grey circles. “Logical” quantities such as \(\mu_i \) and \(\pi_i \), which are defined as function of the parameters, are denoted by a double circle notation. Fully observed variables \((m_i) \) are represented with a white circle while partially observed variables \((y_i) \) are denoted by a darker grey circle. Finally, we show covariates \((x_i) \) as white squares to indicate that they are fully observed and not modelled. Rounded rectangles are used to show the extent of the two modules in terms of variables/parameters included. Arrows show the relationships between the nodes, with dashed and solid lines indicating logical functions and stochastic dependence, respectively.

FIGURE 1 HERE

Figure 1 (a) illustrates the class of ‘Missing Completely At Random’ (MCAR), in which the probability of missingness is fully independent of any other partially or fully observed variable. Consequently, in Figure 1 (a) MoA and MoM are not connected and \(\pi_i \) does not depend on any quantity in the MoA. This amounts to assuming that there is no systematic difference between partially and fully observed individuals in terms of the outcome \(y_i \). In other words, in this case we would be assuming that observed cases are a representative sample of the full sample.

Figure 1 (b) shows a case of ‘Missing At Random’ (MAR), in which the missingness probability may depend on a fully observed variable. As a result, MoA and MoM are connected by means of the predictor variable affecting both the mechanisms generating \(y_i \) and \(m_i \). Because of this relationship, the partially observed cases are systematically different from the fully observed cases; crucially, however, the difference is fully captured by \(x_i \).

Figure 1 (c) provides an example of ‘Missing Not At Random’ (MNAR). This is characterised by dependence of the probability of missingness on both the partially and fully observed variables. Thus, in Figure 1 (c) \(\pi_i \) depends on both the fully observed predictor \(x_i \) and the partially observed outcome \(y_i \). This means that the difference between fully and partially observed cases still depends on the missing values, even after taking \(x_i \) into account. Therefore it is necessary to make more structured assumptions about this relationship that go beyond the information contained in the data.

While intuitively helpful, this framework may be too simplistic in some cases. Since the scope of this section is to provide a broad overview for Rubin’s classification, we assumed the simplest case where missingness is present in a single response variable only, which may not hold in real applications. This is particularly likely in the context of CEA, in which we are concerned with a multivariate outcome, made of suitable measures of clinical benefits and costs, i.e. \(y_i = (e_i, c_i) \). Missingness can occur for either or both the relevant outcomes and this can lead to as many missingness mechanisms as the number of partially observed quantities (covariate missingness must also be considered). Additional complexity is given by whether data are obtained in a cross-sectional or longitudinal setting, static or time-varying covariates and more importantly the possible correlation between variables and missingness mechanisms and between the mechanisms themselves.

3 Methods to Handle Missing Data

There are many different statistical methods to account for missingness, each relying on different assumptions. It is important to carefully select the method in line with the setting-specific
assumptions we assume to hold. For the sake of simplicity here we only broadly categorise these methods. More in depth and complete presentation and analysis can be found for example in Schafer and Graham (2002); Molenberghs et al. (2015).

3.1 Complete Case Analysis

This is a popular method in within-trial CEA studies, despite its limitations due to the strong assumption that only the fully observed cases are needed in order to correctly make inference. The critical disadvantage is that missing cases are simply discarded, thus reducing efficiency and possibly biasing the parameter estimates.

3.2 Single Imputation

Single Imputation (SI) methods replace the missing data with a single predicted value, such as the unconditional or conditional mean or the last value observed for a given case. This category includes Last Value Carried Forward (?), Linear Extrapolation (?) and Conditional Imputation (?). Although sometimes valid, these methods are never recommended as they typically require stronger assumptions than MCAR and always fail to take account of the uncertainty underlying the imputation process, i.e. they do not recognise that the imputed values are estimated rather than known.

3.3 Multiple Imputation

A more sophisticated method is Multiple Imputation (MI, Schafer, 1999). The underlying idea is to fill-in each missing data with plausible simulated values, drawn from the conditional predictive distribution of the missing given the observed values. Thus, the set of imputations can properly represent the information about the missing values that is contained in the observed data for the chosen model. This is repeated K times, leading to K imputed datasets that can be analysed via complete-data methods. The individual estimates are then combined into a single quantity, e.g. using Rubin’s rules (Rubin, 1987); this captures the variability within and between imputations. However, the critical aspect is that valid inferences depend on the correct specification of the imputation model in terms of variable selection, distributions and correlations.

3.4 Sensitivity Analysis

Sensitivity Analysis (SA) is a technique used to determine how different input values in a model will impact the output, under a given set of assumptions. When applied to missing data this corresponds to exploring as many plausible missing data assumptions as possible and then assessing how consistent results are across the different scenarios. In particular, it is generally recommended to set MAR as the reference assumption and then explore different MNAR departures from MAR, to assess the robustness of the results to different plausible alternative missingness mechanisms. The purpose of such analysis is to account more fully for the uncertainty about the missingness. Usually SA is implemented through more advanced methods that are able to explicitly model a MNAR mechanism such as Selection or Pattern Mixture Models (Molenberghs et al., 2015; ?).

3.5 Others

There is a wide list of possible alternatives that could be explored such as Inverse Probability Weighting (?), Likelihood-based methods (McLachlan and Krishnan, 2008), Doubly Robust (Bang and Robins, 2005) or Full Bayesian methods (?).
4 Literature Review

4.1 Methods

Noble et al. (2012) (henceforth NHT) reviewed the methods used to handle missing cost measures in 88 articles published during the period 2003-2009. We extend their review, to include missing effects. Further, we use NHT’s strategy to identify papers in the subsequent period, 1 April 2009 to 31 December 2015. Articles were considered eligible for the review only if they were cost-effectiveness analyses within RCTs, used individual patient-level data and mentioned missing data in the text. We relied on the search engines of three online full-text journal repositories: Science-Direct.com, bmj.com, and The Database of Abstracts of Reviews of Effects (DARE) and NHS Economic Evaluation Database (NHS EED). The key words used in the search strategy were (cost effectiveness OR economic evaluation) AND missing data AND trial AND (randomised OR randomized). The on-line databases identified 1129 articles most of which were duplicates. After abstract review, 128 articles were considered, of which 81 fulfilled the eligibility criteria.

We present and compare the articles reviewed for the two periods by type of analysis performed. First, we look at the base-case methods implemented, i.e. those used in the main analysis embedding the assumptions about missing data. Second, we consider any alternative methods discussed; when present, these assess the robustness of the results obtained in the main analysis against departures from the initial assumptions on missingness.

4.2 Base-case Analysis

As shown in Figure 2 (a), NHT found that CCA was the most popular base-case method, used in 31% of the papers; 23% were unclear about the technique adopted. Single imputation methods were well represented, with mean imputation and conditional imputation used in 10% and 9% of the articles respectively. MI was found in 9% of the articles. Our analysis of the methods for missing effectiveness measures shows a similar pattern in Figure 2 (c). CCA was used in 27% of the cases and with a sizeable proportion of papers unclear about the technique adopted (24%). Single imputation methods are here dominated by LVCF (10%), while a slightly higher proportion uses MI (15%).

In 2009-2015, MI replaces CCA as the most frequently used base-case method in both costs and effects, at 33% and 34% respectively (Figures 2 (b) and (d)). However, CCA is still the method of choice in many papers (15% for costs and 21% for effects). The proportion of papers that are unclear about the chosen method is similar over the two time periods for costs, but halves in the later period for effects.

4.3 Robustness Analysis

With the term robustness analysis we refer to the specific concept introduced in §3.4, whose aim is to assess the impact of plausible alternative assumptions about the missing data on the results, with respect to the base-case scenario. This implies varying the structural assumptions about the missingness mechanisms underlying the model, as opposed to the more general definition of sensitivity analysis, which concerns with varying lower level assumptions (e.g. about the distribution associated with a variable in the model).

Despite having a key role for assessing uncertainty, in practice, robustness analyses are rarely performed in CEAs. This poses an important question related to the reliability of the findings, as they may be affected by the specific assumption about missing data. From both review periods it seems that a robustness analysis is infrequently used and typically involves only one alternative scenario. This is not likely to be an optimal choice as the main objective of this analysis is to explore as many plausible alternative missing data assumptions as possible.
NHT found that 75% (66/88) of the articles did not include any robustness analysis, with the remaining papers typically performing an analysis by comparing CCA and MI. Similar findings apply to missing effects, with about 76% (67/88) of the studies lacking any alternative missing data method. Similarly in the 2009-2015 review, we observe no robustness analysis in the majority of the articles for both costs (75% or 61/81) and effects (70%, 51/81).

Figure 3 provides a pictorial overview of the alternative methods used for cost and effect data. For costs most articles describe no alternative analysis. In the earlier period, the choice of alternative missingness methods seems well-spread across CCA, MI and the use of more than one method, with a slightly more frequent adoption of MI. By contrast, in the later period, more cases use CCA as a robustness method in combination with MI as the base-case method.

Figures 3 (c)–(d) describe the effects, with most of the articles not reporting any robustness analysis and with a significant increase in MI analyses, opposed to a decrease in CCA, between the two periods. We also observe a reduction over time in the number of unclear missing effects method analyses. Excluding this category, there is a similar pattern to the cost graphs towards CCA used as a robustness method in combination with MI as the base-case method.

FIGURE 3 HERE

5 Recommendations for Missing Data Analyses

We argue that in order to judge whether missing data in a CEA have been adequately handled, a full description of the missingness problem, details of the methods used to address it and a discussion on the uncertainty in the conclusions resulting from the missingness are required. With this in mind, we have assembled guidelines on how information relating to the missing data should be reported (Table 1). We define three broad categories (Description, Method, Limitations). For each, information that we consider vital for transparency is listed under ‘key considerations’, while other details that could usefully be provided as supplementary material are suggested under ‘optimal considerations’. Comparing the information provided in the articles in our review against this list, allows us to qualitatively assess the quality of the reporting of how missingness has been handled in CEA in the two time periods.

To gain a fuller understanding of the current state of play, we also classify the articles from the perspective of the strength of the assumptions about the missingness mechanism. This is related to the choice of method, since each is underpinned by some specific missing data assumption. We can view the quality judgement and strength of assumptions as two dimensions providing a general mapping of how the missingness problem is handled. This applies to both the level of knowledge about the implications of a given missingness assumption on the results and how these are translated into the chosen method. Details of our evaluation of both aspects are provided next, starting with the strength of assumptions.

5.1 Quality Evaluation Scheme

We group the methods into five categories, ordered according to the strength of the associated missingness assumptions. These are: Single Imputation (SI), typically requiring stronger assumptions than MCAR to hold; Complete Case Analysis, usually associated with MCAR; Multiple Imputation, generally based on MAR; and Unknown (UNK), a residual group in which we classify studies that do not explicitly mention the method used. We associate this class with the strongest level of assumptions, since the lack of any method description may implicitly suggest (over)confidence in a small effect of missingness on the results. By contrast, we define Sensitivity Analysis (SA) as the least restrictive approach, which can assess the robustness of the results to different alternative missingness mechanisms.

FIGURE 4 HERE
Using the list of key considerations in Table 1, first we determined whether no (all key considerations absent), partial (one or more key considerations absent) or full (all key considerations present) information has been provided for each component. From this we computed a numerical score to summarise the overall information provided on missingness, weighting the components in a ratio of 3:2:1. Finally, we converted the scores into grades A-E. Figure 4 shows the process and weights used. Although the importance between the different components is subjective, we believe that the chosen structure represents a reasonable and relatively straightforward assessment scheme.

TABLE 1 HERE

The resulting scores can be interpreted qualitatively as follows:

A (12) The highest quality judgement, identified by the upper thicker blue path in Figure 4, including only those studies that simultaneously provide all the key considerations for all the components. It is the benchmark for a comprehensive explanation and justification of the adopted missing data method.

B (9-11) Includes studies providing full details for either the description or the method and at least partial information for the other components. Studies with no information about the limitations are only included in this category if full detail is provided for both the other components.

C (6-8) Studies for which information about missingness is not well-spread across the components. All key considerations are provided either for the description or the method, but with only a partial or no content in the other components.

D (3-5) Indicates a greater lack of relevant information about missingness. Despite possibly including key considerations on any of the components, the information provided will at most be partial for the description in which case it will be combined with a total lack of content on either the method or the limitations.

E (0-2) The worst scenario where the overall information about the missing data is considered to be totally unsatisfactory. No description is given and we can observe at most only some of the key considerations for the method.

5.2 Grading the articles

Figure 5 gives a graphical representation of both aspects for the articles reviewed between 2009-2015 in terms of the assumptions and justifications (quality scores) on missingness. In both graphs, more studies lie in the lower than in the upper part, indicating that fewer studies can be classified as high quality in terms of the considerations about missingness. This is highlighted by a greater concentration of points at the bottom of the figures (grade E). As we move along the vertical axis, this tends to reduce up to the top level (grade A), where only very few cases are shown. Of particular interest is the (almost) total absence of articles that performed a sensitivity analysis (SA), clearly indicating very slow uptake of this technique.

A shift along the vertical axis in the graphs indicates an increase in the level of understanding about the implications on the results for different choices of the missing data assumptions. Therefore, we can argue that an upward movement in the plot will always improve the justification of a specific assumption. However, to be able to follow this path we may have to rely on more sophisticated methods that can match the given missingness assumption, i.e. if we think our data are MNAR, then CCA assumptions are less likely to hold. The aim of an optimal analysis should be to select a method that can be fully justified by matching the description of the missing data problem to the assumptions underpinning the chosen method, i.e. map onto the upper section of the graphs.

FIGURE 5 HERE
6 Discussion

The objective of this paper is to critically appraise the issue of missing data analysis in within-trial CEAs. In addition, we aim at providing a set of recommendations to guide future studies towards a more principled handling and reporting of missingness. It is important that assumptions about missing data are clearly stated and justified. A robustness analysis is also important, in order to explore the impact of plausible alternative missingness assumptions on the results of the CEA. Often, a variety of techniques and analyses are used but not reported because of space limits; on-line appendices and supplementary material could be used to report these alternatives.

6.1 Review

Figure 2 highlights a shift in the most popular base-case missingness method from CCA to MI, between the two periods of the review. The reasons behind this change may be related to some drawbacks of CCA and the relatively recent wide development of software to perform MI.

First, even under a strong missing data assumption such as MCAR, CCA remains inefficient because it ignores the predictive information contained in the partially observed cases. Non-negligible rates of missingness on a few variables of interest may cause large portions of the sample to be discarded. Second, CCA may cause serious biases in the parameter estimates. Indeed, the condition for validity of CCA does not fit neatly into Rubin’s classes (White and Carlin, 2010) in the important cases when: missing data affect the covariates; or the partially observed outcome has a longitudinal nature.

Arguably, a very important factor in the increasing popularity of MI is the recent availability of specific computer routines or packages (e.g. STATA or R; see ?). This probably led to some abuse of the method as noted by Molenberghs et al. (2015). On the one hand, MI generally allows the inclusion of a larger number of variables/predictors in the imputation model than used in the analysis model, which potentially makes the assumption of MAR more plausible and thus the overall analysis less likely to be biased. On the other, the performance of MI depends on the correct specification of the imputation model (i.e. complexity in the analysis model is reflected in the imputation model) and care is required in its construction. Although essential, these details can be overlooked and are not often included in the reporting of the analysis, undermining its reliability.

From the comparison of the base-case methods used for the costs and effects between 2009 and 2015 (Figure 2), we observe a marked reduction in the number of methods not clearly described for the effects, compared to those for the costs. In CEAs we typically observe effect data to be characterised by higher missing proportions than cost data, probably due to the different methodology used to collect them. While clinical effectiveness measures are usually collected through self-reported questionnaires, which are naturally prone to missingness, cost measures rely more on clinical patient files which may ensure a higher completeness rate. In addition, clinical outcomes are almost invariably the main objective of RCTs and as such they are usually subject to more advanced and standardised analyses. Arguably, costs are often considered as an add-on to the standard trial: for instance, sample size calculations are almost always performed with the effectiveness measure as the only outcome of interest. Consequently, missing data methods are less frequently well thought through for the analysis of the costs.

Our review identified only a few articles using more than one alternative method (Figure 3). This situation indicates a gap in the literature associated with an under-implementation of robustness analyses, which may significantly affect the whole decision-making process outcome, under the perspective of a body who is responsible for providing recommendations about the implementation of alternative interventions for health care matters. Limiting the assessment of missingness assumptions to a single case is unlikely to provide a reliable picture of the underlying mechanism. This, in turn, may have a significant impact on the CEA and mislead its conclusions, suggesting the implementation of non-cost-effective treatments. Robustness analysis represents an important tool to properly account for more structured uncertainty related
to the missing data and its implementation may provide a more realistic picture of the impact that the assumptions have on the final conclusions.

6.2 Guidelines

Generally speaking, most papers in our review achieved an unsatisfactory quality score under our classification (Figure 5). Indeed, our benchmark area on the top-right corner of the graphs, is barely reached by less than 7% of the articles, both for cost and effect data. The opportunity of reaching such a target might be precluded by the choice of the method adopted, which may not be able to support less restrictive assumptions about the missingness, even when this would be desirable. As a result, when simple methods cannot be fully justified it is necessary to replace them with more flexible ones that can relax assumptions and incorporate more alternatives. In settings such as those involving MNAR, sensitivity analysis might represent the only possible approach to account for the uncertainty due to the missingness in a principled way. However, due to the lack of studies either performing a SA or providing high quality scores on the assumptions, we argue that missingness is not adequately addressed in most studies. This could have the serious consequence of imposing too restrictive assumptions about missingness and affect the outcome of the decision making process.

The classification of the studies into ordered categories (Figure 4) according to the information provided on missing data (Table 1) is potentially a valuable tool for meta-analysis. It may be reasonable for analysts to assign different weights to the individual studies based on their specific information provided and methods adopted.

6.3 Conclusions

Given the common high proportion of missing cost and effect data in within-trial CEAs, many study conclusions could be based on imprecise economic evidences. This is a potentially serious issue for bodies such as the National Institute for Health and Care Excellence (NICE) who use these evaluations in their decision making, thus possibly leading to incorrect policy decisions about the cost-effectiveness of new treatment options.

Our review shows, over time, a significant change from more to less restrictive methods in terms of the assumptions on the missingness mechanism. This is an encouraging movement towards a more suitable and careful missing data analysis. Nevertheless, improvements are still needed as only a small number of articles provide transparent information or perform a robustness analysis.

Our guidelines could represent a valuable tool to improve missing data handling. By carefully thinking about each component in the analysis we are forced to explicitly consider all the assumptions we make about missingness and assess the impact of their variation on final conclusions. The main advantage is a more comparable formalisation of the uncertainty as well as a better indication of possible issues in assessing the cost-effectiveness of new treatments.

Acknowledgements

Dr Gianluca Baio is partially funded by a research grant sponsored by Mapi.
PhD student Andrea Gabrio is partially funded by a research grant sponsored by The Foundation BLANCEFLOR Boncompagni Ludovisi, née Bildt.
Figure 1: Graphical representation of Rubin’s missing data mechanism classes, namely MCAR (a), MAR (b) and MNAR (c). Variables and parameters are represented through nodes of different shapes and colours. Parameters are indicated by grey circles with logical parameters defined by double circles, while predictor variables are assumed fixed and drawn as white squares. Fully observed variables are denoted by white circles, partially observed variables by darker grey circles. Nodes are related to each other through dashed and solid arrows which respectively represent logical functions and stochastic dependence. MoA=Model of Analysis, MoM=Model of Missingness.
Figure 2: Review of the base-case methods used to handle missing cost and effect data between 2003-2009 and 2009-2015. Legend: Complete Case Analysis (CCA), Last Value Carried Forward (LVCF), Linear Extrapolation (Lin Ext), Mean Imputation (Mean), Conditional Imputation (Cond), Multiple Imputation (MI), any other method present in less than 4 articles (Others), unspecified method (Unclear). The category Unclear includes those articles for which it was not possible, based on the text, to understand the methodology used to deal with the missingness, while the category Others consists of the following methods: Random draw, Linear Mixed Effects Model, Expectation Maximisation algorithm, Input-Case Analysis, Assumed zeros, Two-part regression. The numbers to the right of the bars in the graphs are the numbers of papers including the corresponding method in the base-case analysis.
Figure 3: Comparison of methods used in the base-case analysis (x axis) and those used as alternatives in a robustness analysis (y axis) for the articles between 2003-2009 and 2009-2015 for missing costs and effects. Legend: unspecified methods (Unclear), other methods (Others), Linear Extrapolation (Lin Ext), Last Value Carried Forward (LVCF), Mean Imputation (Mean), Conditional Imputation (Cond), Complete Case Analysis (CCA), Multiple Imputation (MI). The category Unclear includes those articles for which it was not possible, based on the text, to understand the methodology used to deal with the missingness, while the category Others consists of the following methods: Random draw, Linear Mixed Effects Model, Expectation Maximisation algorithm, Input-Case Analysis, Assumed zeros, Two-part regression.
Figure 4: Diagram representation for the quality score categories. The table at the bottom shows how scores have been weighted according to the information provided on each component. In accordance with the table, different edges of the diagram correspond to different components. From left to right, the initial edges are related to the Description, edges in the middle to the Method, and final edges to the Limitations. Edges colour represents the different way the information provided in each analysis component is evaluated: Red=No information (N), Light Blue=Partial information (P), Blue=Full information (F). Final scores (0 - 12) with associated ordered categories (E - A) show the overall level of information provided for each combination of component and content evaluation.
Description

Key considerations
1. Report the number of individuals with missing data for each variable in the
reported analysis by treatment group.
2. Describe the missing data patterns for all variables included in the economic
analysis (is missingness on one variable associated with missingness on another
variable?, is there a longitudinal aspect to the data?)
3. Discuss plausible reasons why values are missing (e.g. death).

Optimal considerations
1. Provide supplementary material about the preliminary analysis on missingness
(e.g. descriptive plots and tables)

Method

Key considerations
1. Identify a plausible missingness assumption for the specific patterns and setting
analysed.
2. State the method and software used in the base-case analysis.
3. For more general methods provide details about their implementation 1
4. Perform a plausible robustness analysis; provide and discuss the results.

Optimal considerations
1. Provide supplementary material about the method implementation in the base-case
and robustness analysis (e.g. software implementation code)

1For example, in Multiple Imputation, state the imputation model specification and variables included, the number of imputations, post imputation checks.

Limitations

Key considerations
1. Acknowledge and quantify the impact of the missing data on the results.
2. State possible weaknesses and issues with respect to the method and assumptions.

Optimal considerations
1. Provide supplementary material about the method implementation in the base-case
and robustness analysis (e.g. software implementation code)

Table 1: List of the information content for each of the three components that we would like to observe in the studies in order to achieve a full analysis reporting of the missing data. The contents are divided into two subgroups: key and optimal considerations. The former are the statements to be considered as mandatory for transparency when conducting an economic evaluation in the presence of missing data. The latter are additional considerations that further extend the analysis reporting of the missing data through supplementary materials. The lack of even one single key considerations is considered to be a partial analysis reporting while a null analysis reporting is related to the absence of all key considerations.
Figure 5: Joint assessment, in the reviewed articles between 2009-2015, for missing costs and effects, of two components. The x-axis is the missingness method assumptions: Unknown (UNK), Single Imputation (SI), Complete Case Analysis (CCA), Multiple Imputation (MI) and Sensitivity Analysis (SA). The y-axis is the ordered classification for the quality judgement (scores) to support these assumptions: E, D, C, B, A.
References

Baio, G. (2013). *Bayesian Methods in Health Economics*. Chapman and Hall/CRC, University College London London, UK.

Bang, H. and Robins, J. (2005). Doubly robust estimation in missing data and causal inference models. *Biometrics*, 61:962–973.

Briggs, A., Clark, T., Wolstenholme, J., and Clarke, P. (2003). Missing, presumed at random: cost-analysis of incomplete data. *Health Economics*, 12:377–392.

Burton, A., Billingham, L., and Bryan, S. (2007). Cost-effectiveness in clinical trials: using multiple imputation to deal with incomplete cost data. *Clinical Trials*, 4:154–161.

Diaz-Ordaz, K., Kenward, M., Cohen, A., Coleman, C., and Eldridge, S. (2014a). Are missing data adequately handled in cluster randomised trials? a systematic review and guidelines. *Clinical Trials*, 11:590–600.

Diaz-Ordaz, K., Kenward, M., and Grieve, R. (2014b). Handling missing values in cost effectiveness analyses that use data from cluster randomized trials. *J.R. Statist. Soc.*, 177:457–474.

Faria, R., Gomes, M., Epstein, D., and White, I. (2014). A guide to handling missing data in cost-effectiveness analysis conducted within randomised controlled trials. *PharmacoEconomics*, 32:1157–1170.

Gelman, A., Rubin, D., J., C., and Stern, H. (1995). *Bayesian data analysis*. Chapman and Hall, London, UK.

Graves, N., Walker, D., Raine, R., Hutchings, A., and Roberts, J. (2002). Cost data for individual patients included in clinical studies: no amount of statistical analysis can compensate for inadequate costing method. *Health Economics*, 11:735–739.

Groenwold, R., Rogier, A., Donders, T., Roes, K., Harrell, F., and Moons, K. (2012). Dealing with missing outcome data in randomized trials and observational studies. *American Journal of Epidemiology*, 175:210–217.

Harkanen, T., Maljanen, T., Lindfors, O., Virtala, E., and Knekt, P. (2013). Confounding and missing data in cost-effectiveness analysis: comparing different methods. *Health Economics Review*, 3.

Lambert, P., Billingham, L., Cooper, N., Sutton, A., and Abrams, K. (2008). Estimating the cost-effectiveness of an intervention in a clinical trial when partial cost information is available: a bayesian approach. *Health Economics*, 17:67–81.

Little, R., DAgostino, R., Dickersin, K., Emerson, S., Farrar, J., Frangakis, C., Hogan, J., Molenberghs, G., Murphy, S., Neaton, J., Rotnitzky, A., Scharfstein, D., Shih, W., Siegel, J., and Stern, H. (2010). The prevention and treatment of missing data in clinical trials. panel on handling missing data in clinical trials. *Committee on National Statistics, Division of Behavioral and Social Sciences and Education*.

Manca, P. and Palmer, S. (2006). Handling missing values in cost effectiveness analyses that use data from cluster randomized trials. *Appl Health Econ Health Policy*, 4:65–75.

McLachlan, G. and Krishnan, T. (2008). *The EM Algorithm and Extensions*. John Wiley and Sons, Haboken, New Jersey.

Molenberghs, G., Fitzmaurice, G., Kenward, M., Tsiatis, A., and Verbeke, G. (2015). *Handbook of Missing Data Methodology*. Chapman and Hall, New York.
Noble, S., Hollingworth, W., and Tilling, K. (2012). Missing data in trial-based cost-effectiveness analysis: the current state of play. *Health Economics*, 21:187–200.

Oostenbrink, J. and Al, M. (2005). The analysis of incomplete cost data due to dropout. *Health Economics*, 14:763–776.

Powney, M., Williamson, P., Kirkham, J., and Kolarnunnage-Dona, R. (2014). Multiple imputation to deal with missing eq5d-3l data: Should we impute individual domains or the actual index? *Trials*, 15.

Ramsey, S., Willke, R., Briggs, A., Brown, R., Buxton, M., and Chawla, A. (2005). Good research practices for cost-effectiveness analysis alongside clinical trials: the ispor rct-cea task force report. *Value Health*, 8:521–533.

Richardson, G. and Manca, A. (2004). Calculation of quality adjusted life years in the published literature: a review of methodology and transparency. *Health Economics*, 13:1203–1210.

Rombach, I., Rivero-Arias, O., Gray, A., Jenkinson, C., and Burke, O. (2016). The current practice of handling and reporting missing outcome data in eight widely used proms in rct publications: a review of the current literature. *Qual Life Res*.

Rubin, D. (1987). *Multiple Imputation for Nonresponse in Surveys*. John Wiley and Sons, New York, USA.

Schafer, J. (1997). *Analysis of Incomplete Multivariate Data*. Chapman and Hall, New York, USA.

Schafer, J. (1999). Multiple imputation: a primer. *Statistical Methods in Medical Research*, 8:3–15.

Schafer, J. and Graham, J. (2002). Missing data: Our view of the state of the art. *Psychological Methods*, 7:147–177.

Simons, C., Arias, O., Yu, L., and Simon, J. (2015). Multiple imputation to deal with missing eq-5d-3l data: Should we impute individual domains or the actual index? *Qual Life Res*, 24:805–815.

White, I. and Carlin, J. (2010). Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values. *Statistics in Medicine*, 29:2920–2931.

Wood, A., White, I., and Thompson, S. (2004). Are missing outcome data adequately handled? A review of published randomized controlled trials in major medical journals. *Clinical Trials*, 1:368–376.
References

Araya, R., Flynn, T., Rojas, G., Fritsch, R., and Simon, G. (2006). Cost-effectiveness of a primary care treatment program for depression in low-income women in santiago, chile. *American Journal of Psychiatry*, 163:1379–1387.

Atthobari, J., Asselbergs, F., Boersma, C., de Vries, R., Hillege, H., van Gilst, W., Gansevoort, R., de Jong, P., de Jong-van den Berg, L., and Postma, M. (2006). Cost-effectiveness of screening for albuminuria with subsequent fosinopril treatment to prevent cardiovascular events: a pharmacoeconomic analysis linked to the prevention of renal and vascular endstage disease (prevend) study and the prevention of renal and vascular endstage disease intervention trial (prevend it). *Clinical Therapeutics*, 28:432–444.

Barrett, B., Byford, S., Crawford, M., Patton, R., Drummond, C., Henry, J., and Touquet, R. (2006). Costeffectiveness of screening and referral to an alcohol health worker in alcohol misusing patients attending an accident and emergency department: a decision-making approach. *Drug and Alcohol Dependence*, 81:47–54.

Bos, I., Hoving, J., van Tulder, M., Molken, M., Ader, H., de Vet, H., Koes, B., Vondeling, H., Bouter, L., and Mullner, M. (2003). Cost effectiveness of physiotherapy, manual therapy, and general practitioner care for neck pain: economic evaluation alongside a randomised controlled trial commentary: Bootstrapping simplifies appreciation of statistical inferences. *BMJ*, 326:911.

Brouwers, E., Bruijne, M., Terluin, B., and Verhaak, P. (2007). Cost-effectiveness of an activating intervention by social workers for patients with minor mental disorders on sick leave: a randomized controlled trial. *The European Journal of Public Health*, 17:214–220.

Burton, A., Billingham, L., and Bryan, S. (2007). Cost-effectiveness in clinical trials: using multiple imputation to deal with incomplete cost data. *Clinical Trials*, 4:154–161.

Byford, S., Barrett, B., Roberts, C., Clark, A., Edwards, V., Smethurst, N., and Gowers, S. (2007a). Economic evaluation of a randomised controlled trial for anorexia nervosa in adolescents. *British Journal of Psychiatry*, 191:436–440.

Byford, S., Barrett, B., Roberts, C., Wilkinson, P., Dubicka, B., Kelvin, R., White, L., Ford, C., Breen, S., and Goodyer, I. (2007b). Cost-effectiveness of selective serotonin reuptake inhibitors and routine specialist care with and without cognitive behavioural therapy in adolescents with major depression. *British Journal of Psychiatry*, 191:521–527.

Coast, J., Noble, A., Horrocks, S., Asim, O., Peters, T., and Salisbury, C. (2005). Economic evaluation of a general practitioner with special interests led dermatology service in primary care. *BMJ*, 331:1444–1449.

Coupe, V., Veenhof, C., van Tulder, M., Dekker, J., Bjlsma, J., and Van den Ende, C. (2007). The cost effectiveness of behavioural graded activity in patients with osteoarthritis of hip and/or knee. *Annals of the Rheumatic Diseases*, 66:215–221.
Delaney, B., Qume, M., Moayyedi, P., Logan, R., Ford, A., Elliott, C., McNulty, C., Wilson, S., and Hobbs, F. (2008). Helicobacter pylori test and treat versus proton pump inhibitor in initial management of dyspepsia in primary care: multicentre randomised controlled trial (mrc-cube trial). *BMJ*, 336:651–654.

Dennis, M., Godley, S., Diamond, G., Tims, F., Babor, T., Donaldons, J., Liddle, H., Titus, J., Kaminer, Y., Webb, C., Hamilton, N., and Funk, R. (2004). The cannabis youth treatment (cyt) study: main findings from two randomized trials. *Journal of Substance Abuse Treatment*, 27:197–213.

Djkgraaf, M., van der Zanden, B., de Borgie, C., Blanken, P., van Ree, J., and van den Brink, W. (2005). Cost utility analysis of co-prescribed heroin compared with methadone maintenance treatment in heroin addicts in two randomised trials. *BMJ*, 330:1297.

Dornelas, E., Magnavita, J., Beazoglou, T., Fischer, E., Oncken, C., Lando, H., Greene, J., Barbagallo, J., Stepnowski, R., and Gregonis, E. (2006). Efficacy and cost-effectiveness of a clinic-based counseling intervention tested in an ethnically diverse sample of pregnant smokers. *Patient Education and Counseling*, 64:342–349.

Drummond, M., Becker, D., Hux, M., Chancellor, J., Duprat-Lomon, I., Kubin, R., and Sagnier, P. (2003). An economic evaluation of sequential iv/po moxifloxacin therapy compared to iv/po co-amoxiclav with or without clarithromycin in the treatment of community-acquired pneumonia. *Chest*, 124:526–535.

Edwards, R., Ceilleachair, A., Bywater, T., Hughes, D., and Hutchings, J. (2007). Parenting programme for parents of children at risk of developing conduct disorder: cost effectiveness analysis. *BMJ*, 334:682.

Emmons, K., Puleo, E., Park, E., Gritz, E., Butterfield, R., Weeks, J., Mertens, A., and Li, F. (2005). Peer-delivered smoking counseling for childhood cancer survivors increases rate of cessation: the partnership for health study. *Journal of Clinical Oncology*, 23:6516–6523.

Fals-Stewart, W., Klostermann, K., Yates, B., O’Farrell, T., and Birchler, G. (2005). Brief relationship therapy for alcoholism: a randomized clinical trial examining clinical efficacy and cost-effectiveness. *Psychology of Addictive Behaviors*, 19:363–371.

Fals-Stewart, W. and Lam, W. (2008). Brief behavioral couples therapy for drug abuse: a randomized clinical trial examining clinical efficacy and cost-effectiveness. *Families, Systems and Health*, 26:377–392.

Furze, G., Dumville, J., Miles, J., Irvine, K., Thompson, D., and Lewin, R. (2009). prehabilitation prior to cagb surgery improves physical functioning and depression. *International Journal of Cardiology*, 132:51–58.

Gilbert, F., Grant, A., Gillan, M., Vale, L., Campbell, M., Scott, N., Knight, D., and Wardlaw, D. (2004). Low back pain: influence of early mr imaging or ct on treatment and outcome multicenter randomized trial. *Radiology*, 231:343–351.
Goodacre, S., Nicholl, J., Dixon, S., Cross, E., Angelini, K., Arnold, J., Revill, S., Locker, T., Capewell, S., Quinney, D., Campbell, S., and Morris, F. (2004). Randomised controlled trial and economic evaluation of a chest pain observation unit compared with routine care. *BMJ*, 328:254.

Graff, M., Adang, E., Vernooij-Dassen, M., Dekker, J., Jonsson, L., Thijssen, M., Hoefnagels, W., and Rikkert, M. (2008). Community occupational therapy for older patients with dementia and their care givers: cost effectiveness study. *BMJ*, 336:134–138.

Group, A. C. (2004). Long-term donepezil treatment in 565 patients with alzheimers disease (ad2000): randomised double-blind trial. *The Lancet*, 363:2105–2115.

Haddock, G., Barrowclough, C., Tarrier, N., Moring, J., O’Brien, R., Schofield, N., Quinn, J., Palmer, S., Davies, L., Lowens, I., McGovern, J., and Lewis, S. (2003). Cognitive-behavioural therapy and motivational intervention for schizophrenia and substance misuse: 18-month outcomes of a randomised controlled trial. *British Journal of Psychiatry*, 183:418–426.

Hartman, M., van Ede, A., Severens, J., Laan, R., van de Putte, L., and van der Wilt, G. (2004). Economic evaluation of folate supplementation during methotrexate treatment in rheumatoid arthritis. *The Journal of Rheumatology*, 31:902–908.

Hollinghurst, S., Redmond, N., Costelloe, C., Montgomery, A., Fletcher, M., Peters, T., and Hay, A. (2008a). Paracetamol plus ibuprofen for the treatment of fever in children (pitch): economic evaluation of a randomised controlled trial. *BMJ*, 337:1490.

Hollinghurst, S., Sharp, D., Ballard, K., Barnett, J., Beattie, A., Evans, M., Lewith, G., Middleton, K., Oxford, F., Webley, F., and Little, P. (2008b). Randomised controlled trial of alexander technique lessons, exercise, and massage (ateam) for chronic and recurrent back pain: economic evaluation. *BMJ*, 337:2656.

Hollis, J., McAfee, T., Fellows, J., Zbikowski, S., Stark, M., and Riedlinger, K. (2007). The effectiveness and cost effectiveness of telephone counselling and the nicotine patch in a state tobacco quitline. *Tobacco Control*, 16:53–59.

Hurskainen, R., Teperi, J., Rissanen, P., Aalto, A., Grenman, S., Kivela, A., Kujansuu, E., Vuorma, S., Yliskoski, M., and Paavonen, J. (2004). Clinical outcomes and costs with the levonorgestrel-releasing intrauterine system or hysterectomy for treatment of menorrhagia: randomized trial 5-year followup. *The Journal of the American Medical Association*, 291:1456–1463.

Jones, K., Colson, P., Holter, M., Lin, S., Valencia, E., Susser, E., and Wyatt, R. (2003). Cost-effectiveness of critical time intervention to reduce homelessness among persons with mental illness. *Psychiatric Services*, 54:884–890.

Katon, W., Schoenbaum, M., Fan, M., Callahan, C., Williams, J., Hunkeler, E., Harpole, L., Zhou, X., Langston, C., and Unutzer, J. (2006a). Cost-effectiveness of improving primary care treatment of late-life depression. *Archives of General Psychiatry*, 62:1313–1320.

Katon, W., Unutzer, J., Fan, M., Williams, J., Schoenbaum, M., Lin, E., and Hunkeler, E. (2006b). Costeffectiveness and net benefit of enhanced treatment of depression for older adults with diabetes and depression. *Diabetes Care*, 29:265–270.
Kattan, M., Stearns, S., Crain, E., Stout, J., Gergen, P., EvansIII, R., Visness, C.,
Gruchalla, R., Morgan, W., O’Connor, G., Mastin, J., and Mitchell, H. (2005). Cost-
effectiveness of a home-based environmental intervention for inner-city children with
asthma. *Journal of Allergy and Clinical Immunology*, 116:1058–1063.

Kendrick, T., Peveler, R., Longworth, L., Baldwin, D., Moore, M., Chatwin, J., Thornett,
A., Goddard, J., Campbell, M., Smith, H., Buxton, M., and Thompson, C. (2006a).
Cost-effectiveness and cost-utility of tricyclic antidepressants, selective serotonin re-
uptake inhibitors and lofepramine: randomised controlled trial. *British Journal of
Psychiatry*, 188:337–345.

Kendrick, T., Simons, L., Mynors-Wallis, L., Gray, A., Lathlean, J., Pickering, R., Harris,
S., Rivero-Arias, O., Gerard, K., and Thompson, C. (2006b). Cost-effectiveness of
referral for generic care or problem-solving treatment from community mental health
nurses, compared with usual general practitioner care for common mental disorders:
randomised controlled trial. *British Journal of Psychiatry*, 189:50–59.

Kilonzo, M., Vale, L., Cook, J., Milne, A., Stephen, A., and Avenell, A. (2007). A cost-
utility analysis of multivitamin and multimineral supplements in men and women aged
65 years and over. *Clinical Nutrition*, 26:364–370.

Kuyken, W., Byford, S., Taylor, R., Watkins, E., Holden, E., White, K., Barrett, B.,
Byng, R., Evans, A., Mullan, E., and Teasdale, J. (2008). Mindfulness-based cognitive
therapy to prevent relapse in recurrent depression. *Journal of Consulting and Clinical
Psychology*, 76:966–978.

Lam, D., McCrone, P., Wright, K., and Kerr, N. (2005). Cost-effectiveness of relapse-
prevention cognitive therapy for bipolar disorder: 30-month study. *British Journal of
Psychiatry*, 186:500–506.

Lewis, M., James, M., Stokes, E., Hill, J., Sim, J., Hay, E., and Dziedzic, K. (2007). An
economic evaluation of three physiotherapy treatments for non-specific neck disorders
alongside a randomized trial. *Rheumatology*, 46:1701–1708.

Manca, A., Dumville, J., Toregerson, D., Klaber Moffett, J., Mooney, M., Jackson, D., and
Eaton, S. (2007). Randomized trial of two physiotherapy interventions for primary care
back and neck pain patients: cost effectiveness analysis. *Rheumatology*, 46:1495–1501.

Manca, A., Sculpher, M., Ward, K., and Hilton, P. (2003). A cost-utility analysis of
tension-free vaginal tape versus colposuspension for primary urodynamic stress inconti-
tence. *An International Journal of Obstetrics and Gynaecology*, 110:255–262.

Mandelblatt, J., Cullen, J., Lawrence, W., Stanton, A., Yi, B., Kwan, L., and Ganz, P.
(2008). Economic evaluation alongside a clinical trial of psycho-educational interven-
tions to improve adjustment to survivorship among patients with breast cancer. *Journal
of Clinical Oncology*, 26:1684–1690.

Maniadakis, N., Dafni, U., Fragoulakis, V., Grimani, I., Galani, E., Fragkoulidi, A., and
Fountzilas, G. (2009). Economic evaluation of taxane-based first-line chemotherapy in
the treatment of patients with metastatic breast cancer in greece: an analysis alongside
a multicenter, randomized phase iii clinical trial. *Annals of Oncology*, 20:278–285.
Marson, A., Al-Kharusi, A., Alwaidh, M., Appleton, R., Baker, G., Chadwick, D., Cramp, C., Cockerell, O., Cooper, P., Doughty, J., Eaton, B., Gamble, C., Goulding, P., Howell, S., Hughes, A., Jackson, M., Jacoby, A., Kellett, M., Lawson, G., Leach, J., Licolaides, P., Roberts, R., Shackley, P., Shen, J., Smith, D., Smith, P., Smith, C., Vanoli, A., and Williamson, P. (2003a). The sanad study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. *The Lancet*, 363:1016–1026.

Marson, A., Al-Kharusi, A., Alwaidh, M., Appleton, R., Baker, G., Chadwick, D., Cramp, C., Cockerell, O., Cooper, P., Doughty, J., Eaton, B., Gamble, C., Goulding, P., Howell, S., Hughes, A., Jackson, M., Jacoby, A., Kellett, M., Lawson, G., Leach, J., Licolaides, P., Roberts, R., Shackley, P., Shen, J., Smith, D., Smith, P., Smith, C., Vanoli, A., and Williamson, P. (2003b). The sanad study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. *The Lancet*, 363:1000–1015.

Mary Davies, L., Anne Fargher, E., Tricker, K., Dawnes, P., Scott, D., and Symmons, D. (2007). Is shared care with annual hospital review better value for money than predominantly hospital-based care in patients with established stable rheumatoid arthritis? *Annals of the Rheumatic Diseases*, 66:658–663.

McCrone, P., Knapp, M., Proudfoot, J., Ryden, C., Cavanagh, K., Shapiro, D., Ilson, S., Gray, J., Goldberg, D., Mann, A., Marks, I., Everitt, B., and Tylee, A. (2004). Cost-effectiveness of computerised cognitive-behavioural therapy for anxiety and depression in primary care: randomised controlled trial. *British Journal of Psychiatry*, 185:55–62.

McKenna, C., Bojke, L., Manca, A., Adebajo, A., Dickson, J., Helliwell, P., Morton, V., Russell, I., Torgerson, D., and Watson, J. (2009). Shoulder acute pain in primary health care: is retraining gps effective? the sapphire randomized trial: a cost-effectiveness analysis. *Rheumatology*.

Melis, R., Adang, E., Teerenstra, S., van Eijken, M., Wimo, A., Achterberg, T., Lisdonk, E., and Rikkert, M. (2008). Multidimensional geriatric assessment: back to the future cost-effectiveness of a multidisciplinary intervention model for community-dwelling frail older people. *Journals of Gerontology Series A: Biological and Medical Sciences*, 63:275–282.

Munro, J., Nicholl, J., Brazier, J., Davey, R., and Cochrane, T. (2004). Cost effectiveness of a community based exercise programme in over 65 year olds: cluster randomised trial. *Journal of Epidemiology and Community Health*, 58:1004–1010.

Najafzadeh, M., Marra, C., Sadatsafavi, M., Aaron, S., Sullivan, S., Vandemheen, K., Jones, P., and Fitzgerald, J. (2008). Cost effectiveness of therapy with combinations of long acting bronchodilators and inhaled steroids for treatment of copd. *Thorax*, 63:962–967.

Nathoe, H., van Dijk, D., Jansen, E., Suyker, W., Diephuis, J., van Boven WJ., de la Riviere, A., Borst, C., Kalkman, C., Grobbee, D., Buskens, E., and de Jaegere PPT. (2003). A comparison of on-pump and off-pump coronary bypass surgery in low-risk patients. *New England Journal of Medicine*, 348:394–402.
Noyes, K., Dick, A., and Holloway, R. (2004). Pramipexole v. levodopa as initial treatment for parkinsons disease: a randomized clinical-economic trial. *Medical Decision Making*, 24:472–485.

Olmstead, T., Sindelar, J., and Petry, N. (2007). Cost-effectiveness of prize-based incentives for stimulant abusers in outpatient psychosocial treatment programs. *Drug and Alcohol Dependence*, 87:175–182.

Olsson, A., Casciano, R., Stern, L., and Svanger, P. (2004). A pharmacoeconomic evaluation of aggressive cholesterol lowering in sweden. *International Journal of Cardiology*, 96:51–57.

Oosternbrink, J., Rutten-van Molken, M., Al, M., Van Noord, J., and Vincken, W. (2004). One-year costeffectiveness of tiotropium versus ipratropium to treat chronic obstructive pulmonary disease. *European Respiratory Journal*, 23:241–249.

O’Reilly, J., Lowson, K., Young, J., Forster, A., Green, J., and Small, N. (2006). A cost effectiveness analysis within a randomised controlled trial of post-acute care of older people in a community hospital. *BMJ*, 333:228.

Patel, A., Knapp, M., Evans, A., Parez, I., and Kalra, L. (2004). Training care givers of stroke patients: economic evaluation. *BMJ*, 328:1102.

Petrou, S., Bischof, M., Bennett, C., Elbourne, D., Field, D., and McNally, H. (2006). Cost-effectiveness of neonatal extracorporeal membrane oxygenation based on 7-year results from the united kingdom collaborative ecmo trial. *Pediatrics*, 117:1640–1649.

Prinssen, M., Buskens, E., de Jong, S., Buth, J., Mackaay, A., Sambeek, M., and Blankenstein, J. (2007). Costeffectiveness of conventional and endovascular repair of abdominal aortic aneurysms: results of a randomized trial. *Journal of Vascular Surgery*, 46:883–890.

Raftery, J., Yao, G., Murchie, P., Campbell, N., and Ritchie, L. (2005). Cost effectiveness of nurse led secondary prevention clinics for coronary heart disease in primary care: follow up of a randomised controlled trial. *BMJ*, 330:707.

Ratcliffe, J., Thomas, K., MacPherson, H., and Brazier, J. (2006). A randomised controlled trial of acupuncture care for persistent low back pain: cost effectiveness analysis. *BMJ*, 333:626.

Reed, S., Radeva, J., Glendenning, G., Saad, F., and Schulman, K. (2004). Cost-effectiveness of zoledronic acid for the prevention of skeletal complications in patients with prostate cancer. *The Journal of Urology*, 171:1537–1542.

Revicki, D., Siddique, J., Frank, L., Chung, J., Green, B., Krupnick, J., Prasad, M., and Miranda, J. (2005). Cost effectiveness of evidence-based pharmacotherapy or cognitive behavior therapy compared with community referral for major depression in predominantly low-income minority women. *Archives of General Psychiatry*, 62:868–875.

Richardson, G., Bloor, K., Williams, J., Russell, I., Durai, D., Cheung, W., Farrin, A., and Coulton, S. (2009). Cost effectiveness of nurse delivered endoscopy: findings from randomised multi-institution nurse endoscopy trial (minuet). *BMJ*, 338:270.
Richardson, G., Kennedy, A., Reeves, D., Bower, P., Lee, V., Middleton, E., Gardner, C., Gately, C., and Rogers, A. (2008). Cost effectiveness of the expert patients programme (epp) for patients with chronic conditions. *Journal of Epidemiology and Community Health*, 62:361–367.

Richardson, G., Sculpher, M., Kennedy, A., Nelson, E., Reeves, D., Roberts, C., Robinson, A., Rogers, A., and Thompson, D. (2006). Is self-care a cost-effective use of resources? evidence from a randomized trial in inflammatory bowel disease. *Journal of Health Services Research and Policy*, 11:225–230.

Rocca, H., Kaiser, C., Bernheim, A., Zellweger, M., Jeger, R., Buser, P., Osswald, S., and Pfisterer, M. (2003). Cost-effectiveness of drug-eluting stents in patients at high or low risk of major cardiac events in the basel stent kosteneffektivitsts trial (basket): an 18-month analysis. *The Lancet*, 370:1552–1559.

Roijen, L., Van Straten, A., Al, M., Rutten, F., and Donker, M. (2006). Cost-utility of brief psychological treatment for depression and anxiety. *British Journal of Psychiatry*, 188:323–329.

Rosenheck, R., Kasprow, W., Frisman, L., and Liu-Mares, W. (2003). Cost-effectiveness of supported housing for homeless persons with mental illness. *Archives of General Psychiatry*, 60:940–951.

Schweikert, B., Jacobi, E., Seitz, R., Cziske, R., Ehlert, A., Knab, J., and Leidl, R. (2006). Effectiveness and costeffectiveness of adding a cognitive behavioral treatment to the rehabilitation of chronic low back pain. *The Journal of Rheumatology*, 33:2519–2526.

Scott, J., Palmer, S., Paykel, E., Teasdale, J., and Hayhurst, H. (2003). Use of cognitive therapy for relapse prevention in chronic depression: cost-effectiveness study. *British Journal of Psychiatry*, 182:221–227.

Seivewright, H., Green, J., Salkovskis, P., Barrett, B., Nur, U., and Tyrer, P. (2008). Cognitive-behavioural therapy for health anxiety in a genitourinary medicine clinic: randomised controlled trial. *British Journal of Psychiatry*, 193:332–337.

Severens, J., Prins, J., van der Wilt, G., van der Meer, J., and Bleijenberg, G. (2004). Cost-effectiveness of cognitive behaviour therapy for patients with chronic fatigue syndrome. *The Quarterly Journal of Medicine*, 97:153–161.

Sevick, M., Napolitano, M., Papandonatos, G., Gordon, A., Reiser, L., and Marcus, B. (2007). Costeffectiveness of alternative approaches for motivating activity in sedentary adults: results of project stride. *Preventive Medicine*, 45:54–61.

Simon, J., Gray, A., Clarke, P., Wade, A., Neil, A., and Farmer, A. (2008). Cost effectiveness of self monitoring of blood glucose in patients with non-insulin treated type 2 diabetes: economic evaluation of data from the digem trial. *BMJ*, 336:1177–1180.

Smeets, R., Severens, J., Beelen, S., Vlaeyen, J., and Knottnerus, J. (2009). More is not always better: costeffectiveness analysis of combined, single behavioral and single physical rehabilitation programs for chronic low back pain. *European Journal of Pain*, 13:71–81.
Smit, F., Willemse, G., Koopmanschap, M., Onrust, S., Cuijpers, P., and Beekman, A. (2006). Cost-effectiveness of preventing depression in primary care patients: randomised trial. *British Journal of Psychiatry*, 188:330–336.

Sullivan, S., Buxton, M., Andersson, L., Lamm, C., Liljas, B., Chen, Y., Pauwels, R., and Weiss, K. (2003). Cost-effectiveness analysis of early intervention with budesonide in mild persistent asthma. *Allergy and Clinical Immunology*, 112:1229–1236.

Taimela, S., Justen, S., Aronen, P., Sintonen, H., Laara, E., Malmivaara, A., Tiekso, J., and Aro, T. (2008). An occupational health intervention programme for workers at high risk for sickness absence. cost effectiveness analysis based on a randomised controlled trial. *Occupational and Environmental Medicine*, 65:242–248.

Teng, J., Mayo, N., Latimer, E., Hanley, J., Wood-Dauphinee, S., Cote, R., and Scott, S. (2003). Costs and caregiver consequences of early supported discharge for stroke patients. *Stroke*, 34:528–536.

Witt, C., Jena, S., Selim, D., Brinkhaus, B., Reinhold, T., Wruck, K., Liecker, B., Linde, K., Wegscheider, K., and Willich, S. (2006). Pragmatic randomized trial evaluating the clinical and economic effectiveness of acupuncture for chronic low back pain. *American Journal of Epidemiology*, 164:487–496.

Witt, C., Reinhold, T., Brinkhaus, B., Roll, S., Jena, S., and Willich, S. (2008). Acupuncture in patients with dysmenorrhea: a randomized study on clinical effectiveness and cost-effectiveness in usual care. *American Journal of Obstetrics and Gynecology*, 198:166.

Wolfs, C., Dirksen, C., Kessels, A., Severens, J., and Verhey, F. (2009). Economic evaluation of an integrated diagnostic approach for psychogeriatric patients: results of a randomized controlled trial. *Archives of General Psychiatry*, 66:313–323.

Wonderling, D., Vickers, A., Grieve, R., and McCarney, R. (2004). Cost effectiveness analysis of a randomised trial of acupuncture for chronic headache in primary care. *BMJ*, 328:747.

Wu, E., Birnbaum, H., Mareva, M., Le, T., Robinson, R., Rosen, A., and Gelwicks, S. (2006). Cost-effectiveness of duloxetine versus routine treatment for u.s. patients with diabetic peripheral neuropathic pain. *The Journal of Pain*, 7:399–407.

Zwanziger, J., Hall, W., Dick, A., Zhao, H., Mushlin, A., Hahn, R., Wang, H., Andrews, M., Mooney, C., Wang, H., and Moss, A. (2006). The cost effectiveness of implantable cardioverter-defibrillators: results from the multicenter automatic defibrillator implantation trial (madit)-ii. *Journal of the American College of Cardiology*, 47:2310–2318.
References

Aasa, M., Henriksson, M., Dellborg, M., Grip, L., Herlitz, J., Levin, L., Svensson, L., and Janzon, M. (2010). Cost and health outcome of primary percutaneous coronary intervention versus thrombolysis in acute st-segment elevation myocardial infarction results of the swedish early decision reperfusion study (swedes) trial. *American Heart Journal*, 160:322–328.

Andersson, E., Ljotsson, B., Hedman, E., Mattson, S., Enander, J., Andersson, G., Kaldor, V., Lindefors, N., and Ruck, C. (2015). Cost-effectiveness of an internet-based booster program for patients with obsessive-compulsive disorder: Results from a randomized controlled trial. *Journal of Obsessive-Compulsive and Related Disorders*, 4:14–19.

Asha, S., Chan, A., Walter, E., Kelly, P., Morton, R., Ajami, A., Wilson, R., and Honnefman, D. (2014). Impact from point-of-care devices on emergency department patient processing times compared with central laboratory testing of blood samples: a randomised controlled trial and cost-effectiveness analysis. *Emery Med J*, 31:714–719.

Barton, G., Fairall, L., Bachmann, M., Uebel, K., Timmerman, V., Lombard, C., and Zwarenstein, M. (2013). Cost-effectiveness of nurse-led versus doctor-led antiretroviral treatment in south africa: pragmatic cluster randomised trial. *Tropical Medicine and International Health*, 18:769–777.

Barton, G., Hodjekins, J., Mugford, M., Jones, P., Croudace, T., and Fowler, D. (2009a). Cognitive behaviour therapy for improving social recovery in psychosis: Cost-effectiveness analysis. *Schizophrenia Research*, 112:158–163.

Barton, G., Sach, T., Jenkinson, C., Doherty, M., Avery, A., and Muir, K. (2009b). Lifestyle interventions for knee pain in overweight and obese adults aged over 45: economic evaluation of randomised controlled trial. *BMJ*, 339:2273.

Berkhof, F., Hesselink, A., Vaessen, D., Uil, S., Kerstjens, H., and van der Berg, J. (2014). The effect of an outpatient care on-demand system on health status and costs in patients with copd. A randomized trial. *Respiratory Medicine*, 108:1163–1170.

Bijen, C., Vermeulen, K., Mourits, M., Arts, H., ter Brugge, H., van der Sijde, R., Wijnia, J., Bongers, M., van der Zee, A., and de Bock, G. (2011). Cost effectiveness of laparoscopy versus laparotomy in early stage endometrial cancer: A randomised trial. *Gynecologic Oncology*, 121:769–777.

Campbell, A., Nunes, E., Miele, G., Metthews, A., Polsky, D., Ghitza, U., Turrigiano, E., Bailey, G., VanVeldhuisen, P., Chapdelaine, R., Froias, A., Stitzer, M., Carroll, K., Winhusen, T., Clingerman, S., Perez, L., McClure, E., Goldman, B., and Crowell, A. (2012). Design and methodological considerations of an effectiveness trial of a computer-assisted intervention: An example from the nida clinical trials network. *Contemporary Clinical Trials*, 33:386–395.

Carr, A., Cooper, C., Campbell, M., Rees, J., Moser, J., Beard, D., Fitzpatrick, R., Gray, A., Dawson, J., Murphy, J., Bruhn, H., Cooper, D., and Ramsay, C. (2015). Clinical effectiveness and cost-effectiveness of open and arthroscopic rotator cuff repair [the uk rotator cuff surgery (ukuff) randomised trial]. *Health Technology Assessment*, 19.
CLOTS Trials Collaboration (2014). Effect of intermittent pneumatic compression on disability, living circumstances, quality of life, and hospital costs after stroke: secondary analyses from clots 3, a randomised trial. *Lancet Neurol*, 13:1186–1192.

Costa, M., Achten, J., Parsons, N., Edlin, R., Foguet, P., Prakash, U., and Griffin, D. (2012). Total hip arthroplasty versus resurfacing arthroplasty in the treatment of patients with arthritis of the hip joint: single centre, parallel group, assessor blinded, randomised controlled trial. *BMJ*, 344.

Cuthbertson, B., Rattray, J., Campbell, M., Gager, M., Roughton, S., Smith, A., Hull, A., Breeman, S., Norrie, J., Jenkinson, D., Hernandez, R., Johnston, M., Wilson, E., and Waldmann, C. (2009). The practical study of nurse led, intensive care follow-up programmes for improving long term outcomes from critical illness: a pragmatic randomised controlled trial. *BMJ*, 339.

Dakin, H., Wordsworth, S., Rogers, C., Abangma, G., Raftery, J., Harding, S., Lotery, A., Downes, S., Chakravarthy, U., and Reeves, B. (2014). Cost-effectiveness of ranibizumab and bevacizumab for age-related macular degeneration: 2-year findings from the ivan randomised trial. *BMJ*, 4.

D’Amico, F., Rehill, A., Knapp, M., Aguirre, E., Donovan, H., Hoare, Z., Hoe, J., Russell, I., Spector, A., Streater, A., Whitaker, C., Woods, R., and Orrell, M. (2015). Maintenance cognitive stimulation therapy: An economic evaluation within a randomized controlled trial. *JAMDA*, 16:63–70.

De Beurs, D., Bosmans, J., de Groot, M., de Keijser, J., van Duijn, E., de Winter, R., and Kerkhof, A. (2015). Training mental health professionals in suicide practice guideline adherence: cost-effectiveness analysis alongside a randomized controlled trial. *Journal of Affective Disorders*, 186:203–210.

Domino, M., Foster, E., Vitiello, B., Kratochvil, C., Burns, B., Silva, S., Reinecke, M., and March, J. (2009). Relative cost-effectiveness of treatments for adolescent depression: 36-week results from the tads randomized trial. *J. AM. ACAD. CHILD ADOLESC. PSYCHIATRY*, 48.

Duarte, A., Walker, J., Walker, S., Richardson, G., Hansen, C., Martin, P., Murray, G., Sculpher, M., and Sharpe, M. (2015). Cost-effectiveness of integrated collaborative care for comorbid major depression in patients with cancer. *Journal of Psychosomatic Research*, 79:465–470.

Felker, G., Ahmad, T., Anstrom, K., Adams, K., Cooper, L., Ezekowitz, J., Fiuzat, M., Houston-Miller, N., Januzzi, J., Leifer, E., Mark, D., Desvigne-Nickens, P., Paynter, G., Pina, I., Whellan, D., and O’Connor, C. (2014). Rationale and design of the guide-it study guiding evidence based therapy using biomarker intensified treatment in heart failure. *JACC : HEART FAILURE*, 2:457–465.

Forster, A., Dickerson, J., Young, J., Patel, A., Kalra, A., Nixon, J., Smithard, D., Knapp, M., Holloway, L., Anwar, S., and Farrin, A. (2013). A structured training programme for caregivers of inpatients after stroke (tracs): a cluster randomised controlled trial and cost-effectiveness analysis. *Lancet*, 382:2069–2076.
Fuller, N., Colagiuri, S., Schofield, D., Olson, A., Shrestha, R., Holzapfel, C., Wolfenstretter, S., Holle, R., Ahern, A., Hauner, H., Jebb, S., and Caterson, I. (2013). A within-trial cost-effectiveness analysis of primary care referral to a commercial provider for weight loss treatment, relative to standard carean international randomised controlled trial. *International Journal of Obesity*, 37:828–834.

Gillespie, P., O’Shea, E., Casey, D., Murphy, K., Devane, D., Cooney, A., Mee, L., Kirwan, C., CumCnCarthy, B., and Newell, J. (2013). The cost-effectiveness of a structured education pulmonary rehabilitation programme for chronic obstructive pulmonary disease in primary care: the prince cluster randomised trial. *BMJ*, 3.

Gillett, M., Dallosso, H., Dixon, S., Brennan, A., Carey, M., Campbell, M., Heller, S., Khunti, K., Skinner, T., and Davies, M. (2010). Delivering the diabetes education and self management for ongoing and newly diagnosed (desmond) programme for people with newly diagnosed type 2 diabetes: cost effectiveness analysis. *BMJ*, 341.

Godley, S., Garner, B., Passetti, L., Funk, R., Dennis, M., and Godley, M. (2010). Adolescent outpatient treatment and continuing care: Main findings from a randomized clinical trial. *Drug and Alcohol Dependence*, 110:44–54.

Green, J., Wood, A., Kerfoot, M., Trainor, G., Roberts, C., Rothwell, J., Woodham, A., Ayodeji, E., Barrett, B., Byford, S., and Harrington, R. (2011). Group therapy for adolescents with repeated self harm: randomised controlled trial with economic evaluation. *BMJ*, 342.

Group, P. M. C. (2014). Long-term effectiveness of dopamine agonists and monoamine oxidase b inhibitors compared with levodopa as initial treatment for parkinsons disease (pd med): a large, open-label, pragmatic randomised trial. *Lancet*, 384:1196–1205.

Group, T. (2009). Options for managing low grade cervical abnormalities detected at screening: cost effectiveness study. *BMJ*, 339.

Hedman, E., El Alaoui, S., Lindefors, N., Andersson, E., Ruck, C., Ghaderi, A., Kaldo, V., Lekander, M., Andersson, G., and Ljotsson, B. (2014). Clinical effectiveness and cost-effectiveness of internet- vs. groupbased cognitive behavior therapy for social anxiety disorder: 4-year follow-up of a randomized trial. *Behaviour Research and Therapy*, 59:20–29.

Heliovaara-Peippo, S., Hurskainen, R., Teperi, J., Aalto, A., Grennan, S., Halme, S., K., Jokela, M., Kivela, A., Tomas, E., Tuppurainen, M., and Paavonen, J. (2013). Quality of life and costs of levonorgestrel-releasing intrauterine system or hysterectomy in the treatment of menorrhagia: a 10-year randomized controlled trial. *American Journal of Obstetrics and Gynecology*, 535.

Henderson, C., Knapp, M., Fernandez, J., Beecham, J., Hirani, S., Beynon, M., Cartwright, M., Rixon, L., Doll, H., Bower, P., Steventon, A., Rogers, A., Fitzpatrick, R., Barlow, J., Bardsley, M., and Newman, S. (2013). Cost effectiveness of telehealth for patients with long term conditions (whole systems demonstrator telehealth questionnaire study): nested economic evaluation in a pragmatic, cluster randomised controlled trial. *BMJ*, 346.
Henderson, C., Knapp, M., Fernandez, J., Beecham, J., Hirani, S., Beynon, M., Cartwright, M., Rixon, L., Doll, H., Bower, P., Steventon, A., Rogers, A., Fitzpatrick, R., Barlow, J., Bardsley, M., and Newman, S. (2014). Cost-effectiveness of telecare for people with social care needs: the whole systems demonstrator cluster randomised trial. *Age and Ageing*, 0:1–7.

Higginson, I., McCrone, P., Burman, R., Silber, E., and Edmonds, P. (2009). Is short-term palliative care cost-effective in multiple sclerosis? A randomized phase ii trial. *Journal of Pain and Symptom Management*, 38:816–826.

Honkoop, P., Loijmans, R., Termeer, E., Snoeck-Stroband, J., van den Hout, W., Bakker, M., Assendelft, W., ter Riet, G., Sterk, P., Schermer, T., and Sont, J. (2014). Symptom- and fraction of exhaled nitric oxidedriven strategies for asthma control: A cluster-randomized trial in primary care. *J ALLERGY CLIN IMMUNOL*, 135:683–688.

Jones, L., FitzGerald, G., Leurent, B., Round, J., Eades, J., Davis, S., Gishen, F., Holman, A., Hopkins, K., and Tookman, A. (2013). Rehabilitation in advanced, progressive, recurrent cancer: A randomized controlled trial. *Journal of Pain and Symptom Management*, 46:315–325.

Kilonzo, M., Sambrook, A., Cook, J., Campbell, M., and Cooper, K. (2010). A cost-utility analysis of microwave endometrial ablation versus thermal balloon endometrial ablationhve. *Value in Health*, 13:528–534.

Knapp, M., King, D., Romeo, R., Schehl, B., Barber, J., Griffin, M., Rapaport, P., Livingston, D., Mummery, C., Walker, Z., Hoe, J., Sampson, E., Cooper, C., and Livingston, G. (2013). Cost effectiveness of a manual based coping strategy programme in promoting the mental health of family carers of people with dementia (the start (strategies for relatives) study): a pragmatic randomised controlled trial. *BMJ*, 347.

Kolu, P., Raitanen, J., Rissanen, P., and Luoto, R. (2013). Cost-effectiveness of lifestyle counselling as primary prevention of gestational diabetes mellitus: Findings from a cluster-randomised trial. *PLOS ONE*, 8.

Krist, M., van Beijsterveldt, A., Backx, F., and de Wit, G. (2013). Preventive exercises reduced injury-related costs among adult male amateur soccer players: a cluster-randomised trial. *Journal of Physiotherapy*, 59:15–23.

Kuyken, W., Hayes, R., Barrett, B., Byng, R., Dalgleish, T., Kessler, D., Lewis, G., Watkins, E., Brejcha, C., Cardy, J., Causley, A., Cowderoy, S., Evans, A., Gradinger, F., Kaur, S., Lanham, P., Morant, N., Richards, J., Shah, P., Sutton, H., Vicary, R., Weaver, A., Wilks, J., Williams, M., Taylor, R., and Byford, S. (2015). Eff ectiveness and cost-eff ectiveness of mindfulness-based cognitive therapy compared with maintenance antidepressant treatment in the prevention of depressive relapse or recurrence (prevent): a randomised controlled trial. *Lancet*, 386:63–73.

Ladapo, J., Elliott, M., Bogart, L., Kanouse, D., Vestal, K., Klein, D., Ratner, J., and Schuster, M. (2013). Cost of talking parents, healthy teens: A worksite-based intervention to promote parentadolescent sexual health communication. *Journal of Adolescent Health*, 53:595–601.
Lall, R., Hamilton, P., Young, D., Hulme, C., Hall, P., Shah, S., MacKenzie, I., Tunnicliffe, W., Rowan, K., Cuthbertson, B., McCabe, C., and Lamb, S. (2015). A randomised controlled trial and cost-effectiveness analysis of high-frequency oscillatory ventilation against conventional artificial ventilation for adults with acute respiratory distress syndrome: the oscar (oscillation in ards) study. *Health Technology Assessment*, 19.

Lamb, S., Gates, S., Williams, M., Williamson, E., Mt-Isa, S., Withers, E., Castelnuovo, E., Smith, J., Ashby, D., Cooke, M., Petrou, S., and Underwood, M. (2013). Emergency department treatments and physiotherapy for acute whiplash: a pragmatic, two-step, randomised controlled trial. *Lancet*, 381:546–556.

Lamb, S., Hansen, Z., Lall, R., Castelnuovo, E., Withers, E., Nichols, V., Potter, R., and Underwood, M. (2010). Group cognitive behavioural treatment for low-back pain in primary care: a randomised controlled trial and cost-effectiveness analysis. *Lancet*, 375:916–923.

Lambeek, L., Bosmans, J., Van Royen, B., Van Tulder, M., Van Mechelen, W., and Anema, J. (2010). Effect of integrated care for sick listed patients with chronic low back pain: economic evaluation alongside a randomised controlled trial. *BMJ*, 341.

Luik, A., Merkel, M., Hoeren, D., Riexinger, T., Kieser, M., and Schmitt, C. (2010). A randomized controlled noninferiority trial comparing isolation of the pulmonary veins with the cryoballoon catheter versus open irrigated radiofrequency ablation in patients with paroxysmal atrial fibrillation. *American Heart Journal*, 159:555–560.

Lynch, F., Dickerson, J., Saldana, L., and Fisher, P. (2014). Incremental net benefit of early intervention for preschool-aged children with emotional and behavioral problems in foster care. *Children and Youth Services Review*, 36:213–219.

Mak, S., Lee, M., Cheung, J., Choi, K., Chung, T., Wong, T., Lam, K., and Lee, D. (2015). Pressurised irrigation versus swabbing method in cleansing wounds healed by secondary intention: A randomised controlled trial with cost-effectiveness analysis. *International Journal of Nursing Studies*, 52:88–101.

Maljanen, T., Kenkt, P., Lindfors, O., Virtala, E., Tillman, P., and Harkonen, T. (2015). The cost-effectiveness of short-term and long-term psychotherapy in the treatment of depressive and anxiety disorders during a 5-year follow-up. *Journal of Affective Disorders*, 190:254–263.

Manca, A., Asseburg, C., Vergel, Y., Seymour, M., Meade, A., Stephens, R., Parmar, M., and Sculpher, M. (2012). The cost-effectiveness of different chemotherapy strategies for patients with poor prognosis advanced colorectal cancer (mrc focus). *Value in Health*, 15:22–31.

McCullister, K., Yang, X., and McKay, J. (2015). Cost-effectiveness analysis of a continuing care intervention for cocaine-dependent adults. *Drug and Alcohol Dependence*, 158:38–44.

Meuldijk, D., Carlier, I., van Vliet, I., van der Akker-Marle, M., and Zitman, F. (2012). A randomized controlled trial of the efficacy and cost-effectiveness of a brief intensified cognitive behavioral therapy and/or pharmacotherapy for mood and anxiety disorders: Design and methods. *Contemporary Clinical Trials*, 33:983–992.
Ninot, G., Moullec, G., Picot, M., Jaussent, A., Hayot, M., Desplan, M., Brun, J., Mercier, J., and Prefaut, C. (2011). Cost-saving effect of supervised exercise associated to COPD self-management education program. *Respiratory Medicine*, 105:377–385.

Noben, C., Smit, F., Nieuwenhuijsen, K., Ketelaar, S., Gartner, F., Boon, B., Sluiter, J., and Evers, S. (2014). Comparative cost-effectiveness of two interventions to promote work functioning by targeting mental health complaints among nurses: Pragmatic cluster randomised trial. *International Journal of Nursing Studies*, 51:1321–331.

Nyman, M., Gustafsson, M., Langius-Eklof, A., Johansson, J., Norlin, R., and Hagberg, L. (2013). Intermittent versus indwelling urinary catheterisation in hip surgery patients: A randomised controlled trial with cost-effectiveness analysis. *International Journal of Nursing Studies*, 50:1589–1598.

Parry, G., Cooper, C., Moore, J., Yadegarfar, G., Campbell, M., Esmonde, L., Morice, A., and Hutchcroft, B. (2012). Cognitive behavioural intervention for adults with anxiety complications of asthma: Prospective randomised trial. *Respiratory Medicine*, 106:802–810.

Peek, G., Mugford, M., Tiruvoipati, R., Wilson, A., Allen, E., Thalanan, M., Hibbert, C., Truesdale, A., Clemens, F., Cooper, N., Firmin, R., and Elbourne, D. (2009). Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. *Lancet*, 374:1351–1363.

Pennington, M., Grieve, R., Sekhon, J., Gregg, P., Black, N., and van der Meulen, J. (2013). Cemented, cementless, and hybrid prostheses for total hip replacement: cost effectiveness analysis. *BMJ*, 346.

Petrou, S., Dakin, H., Abangma, G., Benge, S., and Williamson, I. (2010). Cost-utility analysis of topical intranasal steroids for otitis media with effusion based on evidence from the Gnometrial. *Value in Health*, 13:543–551.

Pickard, R., Starr, K., MacLennan, G., Kilonzo, M., Lam, T., Thomas, R., Burr, J., Norrie, J., McPherson, G., McDonald, A., Shearer, K., Gillies, K., Anson, K., Boachie, C., N’Dow, J., Burgess, N., Clark, T., Cameron, S., and McClinton, S. (2015). Use of drug therapy in the management of symptomatic ureteric stones in hospitalised adults: a multicentre, placebo-controlled, randomised controlled trial and cost-effectiveness analysis of a calcium channel blocker (nifedipine) and an alpha-blocker (tamsulosin) (the Suspend trial). *Health Technology Assessment*, 19.

Prestmo, A., Hagen, G., Sletvold, O., Helbostad, J., Thingstad, P., Taraldsen, K., Lydersen, S., Halsteinli, V., Saltnes, T., Lamb, S., Johnsen, L., and Saltvedt, I. (2015). Comprehensive geriatric care for patients with hip fractures: a prospective, randomised, controlled trial. *Lancet*, 385:1623–1633.

Regier, D., Petrou, S., Henderson, J., Eddama, O., Patel, N., Strohm, B., Brocklehurst, P., and Edwards, AD.Azzopardi, D. (2010). Cost-effectiveness of therapeutic hypothermia to treat neonatal encephalopathy. *Value in Health*, 13:695–702.
Ryan, D., Price, D., Musgrave, S., Malhotra, S., Lee, A., Ayansina, D., Sheikh, A., Tarassenko, L., Pagliari, C., and Pinnock, H. (2012). Clinical and cost effectiveness of mobile phone supported self monitoring of asthma: multicentre randomised controlled trial. *BMJ*, 344.

Sabes-Figuera, R., McCrone, P., Hurley, M., King, M., Donaldson, A., and Risdale, L. (2012). Cost-effectiveness of zoledronic acid for the prevention of skeletal complications in patients with prostate cancer. *BMC Health Services Research*, 12:264.

Scott, D., Ibrahim, F., Farewell, V., O’Keeffe, A., Walker, D., Kelly, C., Birrell, F., Chakravarty, K., Maddison, P., Heslin, M., Patel, A., and Kingsley, G. (2015). Tumour necrosis factor inhibitors versus combination intensive therapy with conventional disease modifying anti-rheumatic drugs in established rheumatoid arthritis: Tacit non-inferiority randomised controlled trial. *BMJ*, 350.

Smit, F., Willemse, G., Meulenbeek, P., Koopmanschap, M., van Balkom, A., Spinhoven, P., and Cuijpers, P. (2009). Preventing panic disorder: cost-effectiveness analysis alongside a pragmatic randomised trial. *Cost Effectiveness and Resource Allocation*, 7:8.

Stoddart, A., Hanley, J., Wild, S., Pagliari, C., Peterson, M., Lewis, S., Sheikh, A., Krishnan, A., Padfield, P., and McKinstry, B. (2013). Telemonitoring-based service redesign for the management of uncontrolled hypertension (hits): cost and cost-effectiveness analysis of a randomised controlled trial. *BMJ*, 3.

Taylor, A., Thompson, T., Greves, C., Taylor, R., Green, C., Warren, F., Kandiyali, R., Aveyard, P., Ayres, R., Byng, R., Campbell, J., Ussher, H., Michie, S., and West, R. (20). A pilot randomised trial to assess the methods and procedures for evaluating the clinical effectiveness and cost-effectiveness of exercise assisted reduction then stop (ears) among disadvantaged smokers. *Health Technology Assessment*, 18.

Thompson, S., Ashton, H., Gao, L., and Scott, R. (2009). Screening men for abdominal aortic aneurysm: 10 year mortality and cost effectiveness results from the randomised multicentre aneurysm screening study. *BMJ*, 338.

Turner, D., Little, P., Raftery, J., Turner, S., Smith, H., Rumsby, K., and Mullee, M. (2010). Cost effectiveness of management strategies for urinary tract infections: results from randomised controlled trial. *BMJ*, 340.

Tyrer, P., Cooper, S., Salkovkis, Tyrer, H., Crawford, M., Byford, S., Dupont, S., Finnis, S., Green, J., McLaren, E., Murphy, D., Reid, S., Smith, G., Wang, D., Warwick, H., Petkova, H., and Barrett, B. (2014). Clinical and cost-effctiveness of cognitive behaviour therapy for health anxiety in medical patients: a multicentre randomised controlled trial. *Lancet*, 383:219–225.

Underwood, M., Lamb, S., Eldridge, S., Sheehan, B., Slowther, A., Spencer, A., Thorogood, M., Atherton, N., Bremner, S., Devine, A., Diaz-Ordaz, K., Ellard, D., Potter, R., Spanjers, K., and Taylor, S. (2013). Exercise for depression in care home residents: a randomised controlled trial with cost-effectiveness analysis (opera). *Health Technology Assessment*, 196:319–325.
Van Rossem, C., Spigt, M., Smit, E., Viechtbauer, W., Mijnheer, K., van Schayck, C., and Kotz, D. (2015). Combining intensive practice nurse counselling or brief general practitioner advice with varenicline for smoking cessation in primary care: Study protocol of a pragmatic randomized controlled trial. *Contemporary Clinical Trials*, 41:298–312.

Van Wijk, S., van Asselt, A., Rickli, H., Estlinbaum, W., Erne, P., Rickenbacher, P., Vuillomenet, A., Peter, M., Pfisterer, M., and Brunner-La Rocca, H. (2013). Cost-effectiveness of n-terminal pro-b-type natriuretic-guided therapy in elderly heart failure patients. *JACC*, 1:64–71.

Viksveen, P. and Relton, C. (2014). Depression treated by homeopaths: a study protocol for a pragmatic cohort multiple randomised controlled trial. *Homeopathy*, 103:147–152.

Wagner, T., Hattler, B., Bishawi, M., Baltz, J., Collins, J., Quin, J., Grover, F., and Shroyer, A. (2013). On-pump versus off-pump coronary artery bypass surgery: Cost-effectiveness analysis alongside a multisite trial. *Ann Thorac Surg*, 96:770–777.

Wake, M., Baur, L., Gerner, B., Gibbons, K., Gold, L., Gunn, J., Levickis, P., McCallum, Z., Naughton, G., Sanci, L., and Ukoumunne, O. (2009). Outcomes and costs of primary care surveillance and intervention for overweight or obese children: the leap 2 randomised controlled trial. *Preventive Medicine*, 339.

Ward, S., Wang, K., Serlin, R., Peterson, S., and Murray, L. (2009). A randomized trial of a tailored barriers intervention for cancer information service (cis) callers in pain. *Pain*, 144:49–56.

Yardley, L., Barker, F., Muller, I., Turner, D., Kirby, S., Mullee, M., Morris, A., and Little, P. (2012). Clinical and cost effectiveness of booklet based vestibular rehabilitation for chronic dizziness in primary care: single blind, parallel group, pragmatic, randomised controlled trial. *BMJ*, 344.

Yoo, S., Nyman, J., Cheville, A., and Kroenke, K. (2014). Cost effectiveness of telecare management for pain and depression in patients with cancer: results from a randomized trial. *General Hospital Psychiatry*, 36:599–606.

Zwerink, M., Am Kerstjens, H., van der Palen, J., van der Valk, P., Brusse-Keizer, M., Zielhuis, G., and Effing, T. (2015). (cost-)effectiveness of self-treatment of exacerbations in patients with copd: 2 years follow-up of a rct. *Respirology*.