Brown spaces and the Golomb topology

Abstract

A Brown space is a topological space X such that for all non-empty open subsets U and V of X, we have $\text{cl}_X(U) \cap \text{cl}_X(V) \neq \emptyset$. It is clear that Brown spaces are connected and not completely Hausdorff. Given $a, b \in \mathbb{N}$, whose greatest common divisor is 1, we consider the arithmetic progression $P_B(a, b) = \{b + an : n \in \mathbb{N} \cup \{0\}\}$. The family B_G of all such arithmetic progressions is a base for a topology τ_G on \mathbb{N}. In this paper we show that for every $d \in \mathbb{N}$, the set $P_B(1, d)$ is a Brown space which is dense in (\mathbb{N}, τ_G). In particular, (\mathbb{N}, τ_G) is a Brown space. We also show that for each prime number p and every natural number c, such that the greatest common divisor between p and c is 1, the set $P_B(p, c)$ is totally separated. We write some consequences of such result. For example the space (\mathbb{N}, τ_G) is not connected im kleinen at each of its points. This generalizes a result of Kirch AM. We also present a simpler proof of a result presented by Szczuka P. Some general properties of Brown spaces are also presented in this paper.

Introduction

We denote by \mathbb{N} and \mathbb{Z} by the sets of integers and of natural numbers, respectively, and we let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. We also denote by \mathbb{P} the set of prime numbers and consider that $\mathbb{P} \subset \mathbb{N}$. Given $a, b \in \mathbb{N}$, the symbol (a, b) denotes the greatest common divisor of a and b and we consider the infinite arithmetic progressions

$$P(a, b) = \{b + an : n \in \mathbb{N}_0\} = b + a\mathbb{N}_0,$$

and

$$P_B(a, b) = \{b + an : n \in \mathbb{N}_0\} = b + a\mathbb{N}_0,$$

provided that $(a, b) = 1$.

For $a \in \mathbb{N}$ and $b \in \mathbb{Z}$ we also consider the infinite arithmetic progressions

$$P_f(a, b) = \{b + az : z \in \mathbb{Z}\} = b + a\mathbb{Z}$$

and $M(a) = \{an : n \in \mathbb{N}\}$.

Clearly $P(a, b) = P_B(a, b) \cap \mathbb{N}_0$ and $P_B(a, b) = P_B(a, b)$ if and only if $(a, b) = 1$. Note that $M(a) = P(a, a)$. In 1955 Furstenberg \mathbb{N} showed that in the family $B_G = \{P_B(a, b) : (a, b) \in \mathbb{N} \times \mathbb{Z}\}$ is a base for a topology τ_f on \mathbb{Z}. The topological space (\mathbb{Z}, τ_f) is second countable and τ_f, and hence metrizable. Moreover each basic set $P_B(a, b)$ is open and closed in (\mathbb{Z}, τ_f), so this space is zero-dimensional and not connected.

In 1959 and 1962 Golomb SW4,5 showed in that the family $B_G = \{P_B(a, b) : (a, b) \in \mathbb{N} \times \mathbb{N} \land (a, b) = 1\}$

is a base for a topology τ_G on \mathbb{N}. Indeed $\tau_G = \{\emptyset\} \cup \{\{U \subset \mathbb{N} : \text{for each } b \in U \text{ there is } a \in \mathbb{N} \text{ such that } (a, b) = 1 \text{ and } P_B(a, b) \subset U\}$.

In,1 first edition was published in 1970, τ_G is called the “relatively prime integer topology”, though in this paper, as well as in all the papers by Szczuka P.$^{5-10}$ we call τ_G the Golomb topology and the topological space (\mathbb{N}, τ_G) is called the Golomb space. It is known that (\mathbb{N}, τ_G) is second countable, τ_G and connected Theorems 2 and 3,4 and Theorems 2 and 3.4 Using the fact that for every $p \in \mathbb{P}$, the set $M(p)$ is closed in (\mathbb{N}, τ_G), Golomb SW4 proved in both Theorem 1 & Theorem 1 that the set \mathbb{P} is infinite. The proof of the connectedness of (\mathbb{N}, τ_G), as presented by Golomb SW,4 uses Number Theory. As it is indicated in4,5 “a proof of the connectedness of (\mathbb{N}, τ_G), without reference to Number Theory, was presented by Brown M11 in the April 1953 meeting of the American Mathematical Society”, held in New York. Brown M11 studied the space (\mathbb{N}, τ_G), though he did not publish his work. The abstract of his talk, published in11 is the following one:

A countable connected Hausdorff space. The points are the positive integers. Neighborhoods are sets of integers $\{a + bx\}$, where a and b are relatively prime to each other $(x = 1, 2, 3, \ldots)$. Let $\{a + bx\}$ and $\{c + dx\}$ be two neighborhoods. It is shown that bd is a limit point of both neighborhoods. Thus, the closures of any two neighborhoods have a nonvoid intersection. This is a sufficient condition that a space be connected.

This abstract served Clark PL,12 in 2017, the authors of,12 to coin the following term:

Definition 1.1 A Brown space is a topological space X such that for all non-empty open subsets U and V of X, we have $\text{cl}_X(U) \cap \text{cl}_X(V) \neq \emptyset$. If X is a topological space and $Y \subset X$, we say that Y is a Brown space in X if Y is a subspace of X, is a Brown space.

The following result appears in [2, Proposition 6].

Theorem 1.2 Each Brown space X is connected.

Proof. If X is not connected, then there exist non-empty open and closed subsets U and V of X such that $X = U \cup V$ and $U \cap V = \emptyset$. Then $\text{cl}_X(U) \cap \text{cl}_X(V) = U \cap V = \emptyset$, a contradiction to the fact that X is a Brown space.

In this paper we will present some general properties of Brown spaces. We will give an explicit proof of the fact that (\mathbb{N}, τ_G) is a Brown space (Theorem 3.4). We will also show that, for every $d \in \mathbb{N}$, the subset $P_B(1, d)$ is a Brown space in (\mathbb{N}, τ_G) (Theorem 3.3). Since (\mathbb{N}, τ_G) is second countable, it is also Lindelöf. By the space (\mathbb{N}, τ_G) is not T_1.12 Since every second countable space is Lindelöf, 12 every
Lindelöf and T_2 space is $T_{1.5}$, and hence $T_{1.5}$, the space (\mathbb{N},τ_2) is not T_1. Without using all these results from General Topology (that lead to the fact that every non-empty countable connected T_2 space is a one-point-set), in both Theorem 4 and Theorem 4, Golomb SW proved that (\mathbb{N},τ_0) is not T_1 by showing that for the closed set $M(2)$ in (\mathbb{N},τ_0) that do not contain the point 1, there are no open subsets U and V in (\mathbb{N},τ_0) such that $1 \in U$, $M(2) \subset V$, and $U \cap V = \emptyset$.

Since compact T_2 spaces as well as locally compact and T_2 spaces are $T_{1.5}$, the space (\mathbb{N},τ_2) is not connected nor locally compact (compare with Theorem 5 and Theorem 5). The paper is divided in three sections. After this Introduction, in Section 2 we write the notation as well as some preliminary results that we will use in the paper. In this section we also write some general properties of Brown spaces. In Section 3 we write properties of the Golomb topology as well as of some subsets of it.

Notation and preliminary results

In this paper we will use notation and results from both Number Theory and from General Topology: Concerning Number Theory, if $c,d \in \mathbb{Z}$ and $c \neq 0$, then the symbol $c \mid d$ means that there exists $a \in \mathbb{Z}$ such that $d = ca$. If $c,d \in \mathbb{Z}$ and $m \in \mathbb{N} - \{1\}$, then the symbol $c \equiv d(modm)$ means that $m \mid (c - d)$. The next result is proved in.

Theorem 2.1 Let $a,b,q,r \in \mathbb{Z}$ be such that $a = bq + r$. Then $(a,b) = (b,r)$.

The following result was used in both [13, p. 169] and [1, p. 902] without proof. We will use it in Section 3 so, for completeness, we present a proof here.

Theorem 2.2 Let $b \in \mathbb{Z}$. If, $p \in \mathbb{P}$ is such that $(b,p) = 1$, then for each $n,s \in \mathbb{N}_0$, $(pn + b, p^s) = 1$. (3)

Proof. If $s = 0$, then

$$(pn + b, p^s) = (pn + b, p^0) = (pn + b, 1) = 1, \quad \text{for each } n \in \mathbb{N}_0.$$

If $s = 1$, then since $(p,b) = 1$, by Theorem 2.1,

$$(pn + b, p^s) = (pn + b, p) = (p,b) = 1, \quad \text{for each } n \in \mathbb{N}_0.$$ (4)

Now assume that there exist $x_0 \in \mathbb{N} - \{1\}$ and $n_0 \in \mathbb{N}_0$ such that $g = (pn_0 + b, p^0) > 1$. Let $q \in \mathbb{P}$ be such that $q \mid g$. Then $q \mid (pn_0 + b)$ and $q \mid p^0$, so $q = p$. Hence $q \mid (pn_0 + b)$ and $q \mid p$, so $q \mid (pn_0 + b, p)$. This implies, using (4) with $n = n_0$, that $q \mid 1$, a contradiction. Thus $(pn + b, p^s) = 1$, for every $n \in \mathbb{N}_0$.

Concerning General Topology, given a topological space X and $A \subset X$, we denote by $cl(A)$ and by $int(A)$ the closure and the interior of A in X, respectively. In particular, for $A \subset \mathbb{N}$, the symbol $cl(A) = \mathbb{N}$ denotes the closure of A in (\mathbb{N},τ_0). We consider the closed interval $[0,1]$ with its usual topology. Recall that a topological space X is said to be T_i if for each $x \in X$, the set $\{x\}$ is closed in X; $T_{0.5}$ Hausdorff if for every x, $y \in X$ such that $x \neq y$, there exist open sets U and V in X so that $x \in U$, $y \in V$ and $U \cap V = \emptyset$; T_1 or completely Hausdorff if for every x, $y \in X$ with $x \neq y$, there exist open sets U and V such that $x \in U$, $y \in V$ and $cl(U) \cap cl(V) = \emptyset$.

Theorem 2.3 No Brown space X, with at least two points, is $T_{2.5}$.

By Theorem 2.3 no connected T_1, with at least two points, is a Brown space.

Let X be a topological space and $x \in X$. We say that X is indiscrete in x or that X is an indiscrete point of X if the only open subset of X that contains x is X itself. We say that X is indiscrete if its topology is the indiscrete topology. Note that X is indiscrete if and only if every point of X is indiscrete. The following result is proved in [2, Proposition 6].

Theorem 2.4 Let X be a topological space. Then

- if X contains an indiscrete point, then X is a Brown space;
- if X is a Brown space, then X is regular if and only if X is indiscrete.

Note that a T_1 space contains no indiscrete points. By Theorem 2.4, no connected T_1 space, with at least two points, is a Brown space. We also have that if X is a connected regular space without indiscrete points, then X is not a Brown space. Hence the converse of Theorem 1.2 is not true.

We say that a topological property P is

- hereditary if for any space X that has the property P, every subspace of X also has the property P;
- multiplicative if for any family $\{X_s : s \in S\}$ of topological spaces with the property P, the Cartesian product $\prod_{s \in S}X_s$, with the product topology, also has the property P;
- factorizable if for any family $\{X_s : s \in S\}$ of topological spaces with the Cartesian product $\prod_{s \in S}X_s$, with the product topology, has the
property P then each factor X_s also has the property P.

Theorem 2.5 Let X and Y be topological spaces and $f : X \to Y$ be a continuous and surjective function. If X is a Brown space, then Y is a Brown space.

Proof. Let U and V be non-empty open subsets of Y. Since f is continuous and surjective, $f^{-1}(U)$ and $f^{-1}(V)$ are non-empty open subsets of X. Hence, since X is a Brown space, $cl_X(f^{-1}(U)) \cap cl_X(f^{-1}(V)) \neq \emptyset$. By continuity of X we have $\emptyset \neq cl_X(f^{-1}(U)) \cap cl_X(f^{-1}(V)) = f^{-1}(cl_Y(U)) \cap f^{-1}(cl_Y(V)) = f^{-1}(cl_Y(U) \cap cl_Y(V))$.

Hence $cl_X(U) \cap cl_X(V) \neq \emptyset$, so Y is a Brown space.

By Theorem 2.5 being a Brown space is a topological property. Moreover,

Theorem 2.6 Being a Brown space is both a multiplicative and a factorizable property.

Proof. Let $\{X_s : s \in S\}$ be a family of non-empty topological spaces. Let $X = \prod_{s \in S} X_s$ and assume that X has the product topology. For each $t \in S$ the projection $p_t : X \to X_t$ defined for any $x = (x_s)_s \in X$ by $p_t(x) = x_t$ is continuous and surjective. Hence if X is a Brown space then, by Theorem 2.5, X_t is a Brown space too. This shows that being a Brown space is a factorizable property.

Now assume that each X_s is a Brown space. Let U and V be two non-empty open subsets of X. Fix $x \in U$ and $y \in V$ and assume that $B = \prod_{s \in S} B_s$ and $C = \prod_{s \in S} C_s$ are basic subsets of X such that $x \in B \subset U$ and $y \in C \subset V$. For each $s \in S$, the sets B_s and C_s are non-empty and open in the Brown space X_s, so $cl_{X_s}(B_s) \cap cl_{X_s}(C_s) \neq \emptyset$. Then

$$cl_X(B) \cap cl_X(C) = \prod_{s \in S} cl_{X_s}(B_s) \cap \prod_{s \in S} cl_{X_s}(C_s) = \prod_{s \in S} (cl_{X_s}(B_s) \cap cl_{X_s}(C_s)) \neq \emptyset.$$

Hence $\emptyset \neq cl_X(B) \cap cl_X(C) \subset cl_X(U) \cap cl_X(V)$, so X is a Brown space. This shows that being a Brown space is a multiplicative property.

In Theorem 3.5 we will show that being a Brown space is not a hereditary property. If X and Y are topological spaces, $f : X \to Y$ is a quotient mapping and X is a Brown space then, by Theorem 2.5, Y is a Brown space too.

A topological space X is said to be

hereditarily disconnected if no non-empty connected subset of X contains more than one point;

totally separated if for every $x, y \in X$ with $x \neq y$, there exist open sets U and V in X such that $x \in U \subset X \cup V$ and $y \in V \subset X$ (and $U \cap V = \emptyset$);

zero-dimensional is X is T_1 and has a base consisting of open and closed sets.

Hereditarily disconnected spaces are also called **totally disconnected**. In [14] it is shown that zero-dimensional spaces are hereditarily disconnected. In [1] it is proved that if X is hereditarily disconnected and locally compact, then X is zero-dimensional. Note that a space X is hereditarily disconnected if and only if, for each $x \in X$, the component C_x of X that contains x is a one-point-set, namely $\{x\}$. Note also that X is totally separated if and only if, for every $x \in X$, the quasi-component Q_x of X that contains x is a one-point-set, namely $\{x\}$. Since $C_x \subseteq Q_x$ for each $x \in X$, totally separated spaces are hereditarily disconnected.

Let X be a topological space and $a, b \in X$. We say that X is **almost connected im kleinen** at x, if for any open subset U of X such that $x \in U$, there exists an open and connected subset U of X such that $x \in U \subset \subset U$.

Let X be a topological space and $x \in X$. We say that X is **locally connected at** X_s, if for any open subset U of X such that $x \in U \subset \subset U$.

Let X be a topological space and $x \in X$. We say that X is **connected im kleinen** at X_s, if for any open subset U of X such that $x \in U \subset \subset U$.

Let X be a topological space and $x \in X$. We say that X is **connected** if and only if, for each $x, y \in X$, there exists a connected subset U of X such that $x \in U \subset \subset U$.

We say that X is **almost connected im kleinen** if X is almost connected im kleinen at each of its points;

X is **locally connected** if X is locally connected at each of its points.

Clearly, if X is locally connected at x, then X is connected im kleinen at x. The converse of this implication is not true. We construct an example in \mathbb{R}^2, with the usual topology. For each $i \in \mathbb{N}$, let $q_i = \left(\frac{1}{i}, 0\right) \in \mathbb{R}^2$ and let $L_{i,n}$ be the straight line segment from q_{i-1} to q_i. For each $(i, n) \in \mathbb{N} \times \mathbb{N}$, we consider

$$p_{i,n} = \frac{1}{i + 1} \cdot \frac{1}{n} \in \mathbb{R}^2,$$

where $y = 1 - \frac{1}{i}$ is the equation of the straight line in \mathbb{R}^2 that contains the points $p_{i,n}$ and q_i. For each $i \in \mathbb{N}$, we define

$$X_i = \bigcup_{n \in \mathbb{N} \cup \{0\}} L_{i,n}.$$

Then $X_i = cl_X(\bigcup_{n \in \mathbb{N} \cup \{0\}} X_i)$ is a topological space which is compact, connected, connected im kleinen at $(0, 0)$ and not locally connected at $(0, 0)$. The space X_i, called the **infinite broom** in [5].

Citation: Acosta G, Madriz-Mendoza M. Domínguez JDC. Brown spaces and the Golomb topology. Open Acc J Math Theor Phy. 2018;1(6):242–247.

DOI: 10.15406/oajmtp.2018.01.00042
Now assume that X, is connected im kleinen at $(0,0)$, and not locally connected at $(0,0)$. In16 it is shown that if a topological space X is connected im kleinen at each of its points, then X is locally connected. Let

$$
Y = \left(\bigcup_{n=1}^{\infty} L_{n,\theta} \right) - \left\{ y_{i} : i \in \mathbb{N} \right\} \subseteq X_{a}.
$$

Note that X_{a} is almost connected im kleinen at any point $p \in Y$ and not connected im kleinen at such point p. Note also that if a T_{3} space is connected im kleinen at $x \in X_{a}$, then it is almost connected im kleinen at x.

Properties of the golomb space

In the space (\mathbb{N}, τ_{G}) a non-empty subset U of \mathbb{N} is open if and only if, for every $b \in U$, there exists $a \in \mathbb{N}$ such that $(a, b) = 1$ and $P_{G}(a, b) \subseteq U$ (compare with). Thus U is infinite. In particular any subset of \mathbb{N} with non-empty interior in (\mathbb{N}, τ_{G}) is infinite. Let $a, x \in \mathbb{N}$. In Szczuka17 presented some results that involve the set $\text{cl} (P(a, x))$. In the she showed that if $x_{1} = x (\text{mod} \, a)$, $x_{1} \leq a$ and $\langle a, x \rangle = 1$, then $P(a, x_{1}) \subseteq \text{cl} (P(a, x))$. In8 she showed that if a and x are odd and $\langle a, x \rangle = 1$, then $\text{cl} (P_{G}(a, x)) = \text{cl} (P_{G}(2a, x))$.

We show the following result.

Theorem 3.1 Let $a, x \in \mathbb{N}$ be so that $\langle a, x \rangle = 1$. Then $M(a) = \text{cl} (P_{G}(a, x))$.

Proof. Let $ab \in M(a)$ and let W be an open subset of (\mathbb{N}, τ_{G}) such that $ab \in W$. There exists $d \in \mathbb{N}$ such that $(d, ab) = 1$ and $P_{G}(d, ab) \subseteq W$. Assume first that $d = 1$. Then $P_{G}(a, x) = \{ x + n : n \in \mathbb{N}_{\geq 0} \}$ so if $x \leq ab$, then $ab \in P_{G}(a, x) \subseteq \text{cl} (P_{G}(a, x))$. If $ab < x$ then, since $P_{G}(d, ab)$ is infinite, there is $n \in \mathbb{N}_{\geq 0}$ such that $dn + ab \geq x$, so $ab + n \in P_{G}(ab, x) \subseteq W \cap P_{G}(a, x)$. This shows that $ab \in \text{cl} (P_{G}(a, x))$.

Now assume that $a \geq 2$. By showing that $P_{G}(d, ab) \cap P_{G}(a, x) \neq \emptyset$ we will obtain that $W \cap P_{G}(a, x) \neq \emptyset$. To prove that $P_{G}(d, ab) \cap P_{G}(a, x) \neq \emptyset$, assume first that $d = 1$. Then $ab + x \in P_{G}(a, x)$ and $ab + x = 1 \cdot x + ab \in P_{G}(d, ab)$. Now assume that $d \geq 2$. Since $d \geq 2$ and $a \geq 2$, an element $z \in P_{G}(d, ab) \cap P_{G}(a, x)$ satisfies the system of congruences

$$z = ab \pmod{a} \quad \text{and} \quad z = x \pmod{a}. \quad (5)$$

Hence, an element in $P_{G}(d, ab) \cap P_{G}(a, x)$ is a solution of the system (5). Conversely, every solution of the system (5) is an element of $P_{G}(d, ab) \cap P_{G}(a, x)$. Let us show, then, that the system (5) has a solution. If $(d, a) \neq 1$, then there exists $p \in \mathbb{P}$ such that $p | d$ and $p | a$. Then $p | d$ and $p | ab$, so $(d, ab) \neq 1$, a contradiction. Hence $(d, a) = 1$ and by the Chinese Remainder Theorem, the system (5) has a solution. This shows that $P_{G}(d, ab) \cap P_{G}(a, x) \neq \emptyset$. Hence $W \cap P_{G}(a, x) \neq \emptyset$ and then $ab \in \text{cl} (P_{G}(a, x))$.

Corollary 3.2 For every $d \in \mathbb{N}$, the set $P_{G}(1, d)$ is dense in (\mathbb{N}, τ_{G}).

Proof. Let $d \in \mathbb{N}$. Put $a = 1$. Then $(a, d) = 1$, $M(a) = \mathbb{N}$ and, by Theorem 3.1, $\mathbb{N} = M(a) \subseteq \text{cl} (P_{G}(a, d))$, so $P_{G}(a, d) = P_{G}(1, d)$ is dense in (\mathbb{N}, τ_{G}).

Theorem 3.3 For every $d \in \mathbb{N}$, the set $P_{G}(1, d)$ is a Brown space in (\mathbb{N}, τ_{G}). In particular, $P_{G}(1, d)$ is connected.

Proof. Let U and V be two non-empty open subsets of $P_{G}(1, d)$. Since $P_{G}(1, d)$ is open in (\mathbb{N}, τ_{G}), the sets U and V are open in (\mathbb{N}, τ_{G}). Let $x \in U$ and $y \in V$. There then exist $a, b \in \mathbb{N}$ such that $(a, x) = (b, y) = 1$ and $P_{G}(a, x) \subseteq U$ and $P_{G}(b, y) \subseteq V$. If $a = 1$, then $P_{G}(a, x) = \{ x + n : n \in \mathbb{N}_{\geq 0} \}$. Since $P_{G}(b, y)$ is infinite, there is $n_{0} \in \mathbb{N}$ such that $y + nb_{0} \geq x$ and then

$$y + nb_{0} \in P_{G}(a, x) \cap P_{G}(b, y) \subseteq U \cap V \cap P_{G}(a, x) \subseteq \text{cl}(U) \cap \text{cl}(V) \subseteq P_{G}(1, d) = \text{cl}(P_{G}(1, d)) \cap \text{cl}(U \cap V) \subseteq \text{cl}(U \cap V) \cap P_{G}(1, d) = \text{cl}(P_{G}(1, d)) \cap \text{cl}(U \cap V).
$$

Hence $\text{cl}(P_{G}(1, d)) \cap \text{cl}(U \cap V) \neq \emptyset$. Similarly, if $b = 1$ we have $\text{cl}(P_{G}(1, d)) \cap \text{cl}(U \cap V) \neq \emptyset$. Now assume that $a \geq 2$ and $b \geq 2$.

By Theorem 3.1, $M(a) \subseteq \text{cl}(P_{G}(a, x))$ and $M(b) \subseteq \text{cl}(P_{G}(b, y))$, so in particular, $\text{cl}(P_{G}(a, x)) \cap \text{cl}(P_{G}(b, y)) \subseteq P_{G}(1, d)$. Since $a \geq 2$ and $b \geq 2$, we have $d < ab$, so $ab \in P_{G}(1, d)$. Then

$$ab \in \text{cl}(P_{G}(a, x)) \cap \text{cl}(P_{G}(b, y)) \subseteq \text{cl}(U) \cap \text{cl}(V) \subseteq P_{G}(1, d) = \text{cl}(P_{G}(1, d)) \cap \text{cl}(U \cap V).$$

Hence $\text{cl}(P_{G}(1, d)) \subseteq \text{cl}(U \cap V) \neq \emptyset$, so $P_{G}(1, d)$ is a Brown space in (\mathbb{N}, τ_{G}). Since Brown spaces are connected, $P_{G}(1, d)$ is connected.

Now we present an explicit proof of what Brown M17 claimed in assertion (B) of Section 1.

Theorem 3.4 (\mathbb{N}, τ_{G}) is a Brown space. In particular, (\mathbb{N}, τ_{G}) is connected and it is not T_{1}.

Proof. Since $P_{G}(1, 1) = \mathbb{N}$ the result follows from Theorem 3.3 and the fact that Brown spaces are not T_{1}.

Now we prove the following result.

Theorem 3.5 Let $c, p \in \mathbb{P}$ be such that $p \in \mathbb{P}$ and $\langle p, c \rangle = 1$. Take $a, b \in P_{G}(p, c)$ such that $a < b$ and $m, n \in \mathbb{N}_{\geq 0}$ so that $a = pm + x, b = pn + x$ and $0 \leq m < n$. Then

$$U = \bigcup_{i=0}^{m} P_{G}(p^{i+1}, p^{i} + c) \quad \text{and} \quad V = \bigcup_{j=m+1}^{n} P_{G}(p^{j-1}, p^{j} + c) \quad (6)$$

are open subsets of (\mathbb{N}, τ_{G}) such that $a \in U, b \in V, U \cap V = \emptyset$.

\textbf{Citation:} Acosta G, Madriz-Mendoza M, Domínguez JDCA. Brown spaces and the Golomb topology. Open Acc J Math Theor Phy. 2018;1(6):242-247. DOI: 10.15406/oajmtp.2018.01.00042
and $P_d(p, c) = U \cup V$. In particular, $P_d(p, c)$ is not connected.

Proof. Since $p \in \mathbb{P}$ and $(p, c) = 1$, by Theorem 2.2,
$$(p^{\pm_1}, pi + c) = 1, \quad \text{for each } i \in \mathbb{N}_0.$$ Then we can consider the sets U and V indicated in (6), and they are open in (\mathbb{N}, τ_G). Since $0 \leq m < n < 2^i \leq p^a$, we have $m + 1 \leq n \leq p^a - 1$, so
$$a = pm + c = p^{\pm_1}(0) + pm + c \in P_d(p^{\pm_1}, pm + c) = U$$
and
$$b = pn + c = p^{\pm_1}(0) + pn + c \in P_d(p^{\pm_1}, pn + c) = V.$$ Hence $a \in U$ and $b \in V$, so U and V are infinite. Now assume that $a \in U \cap V$. Let $i \in \{0, 1, \ldots, m\}$ and $j \in \{m + 1, m + 2, \ldots, p^a - 1\}$ be such that $z \in P_d(p^{\pm_1}, pi + c)$ and $z \in P_d(p^{\pm_1}, pj + c)$. Since $p^{\pm_1} > 1$, it follows that
$$z = pi + (\text{mod} p^{\pm_1}) \text{ and } z = pj + (\text{mod} p^{\pm_1}).$$ Hence $pi + c = pj + (\text{mod} p^{\pm_1})$, so $pi = pj (\text{mod} p^{\pm_1})$. This implies that $i = j (\text{mod} p^{\pm_1})$. However, since the set $\{0, 1, \ldots, m, m + 1, \ldots, p^a - 1\}$ is a complete system of reminders modulus p^a and $i \leq m < m + 1 < j$, we have $i \neq j (\text{mod} p^{\pm_1})$. From this contradiction we infer that $U \cap V = \varnothing$.

Now we show that $U \cup V = P_d(p, c)$. If $z \in U$, then there exists $i \in \{0, 1, \ldots, m\}$ such that $z \in P_d(p^{\pm_1}, pi + c)$. Let $z_0 \in \mathbb{N}_0$ be such that $z = p^{\pm_1}z_0 + pi + c$. Then $z = p(p^{\pm_1}z_0 + i) + c \in P_d(p, c)$. Similarly, if $z \in V$, there is $j \in \{m + 1, m + 2, \ldots, p^a - 1\}$ such that $z \in P_d(p^{\pm_1}, pj + c)$. Let $z_1 \in \mathbb{N}_0$ be such that $z = p^{\pm_1}z_1 + pj + c$. Then $z = p(p^{\pm_1}z_1 + j) + c \in P_d(p, c)$. This shows that $U \cup V = P_d(p, c)$. To prove the other inclusion, let $z \in P_d(p, c)$. Then there exists $k \in \mathbb{N}_0$ such that $z = pk + c$. Using the Division Algorithm we obtain $s, t \in \mathbb{N}_0$ such that $k = p^s + t$ and $0 \leq t < p^a$. Hence
$$z = pk + c = p(p^s + t) + c = p^{\pm_1}s + pi + c.$$ Since $0 \leq t < p^a$ and $0 \leq m < p^a$, we obtain
$$t \in \{0, 1, \ldots, p^a - 1\} \cup \{m + 1, m + 2, \ldots, p^a - 1\}.$$ Hence, by (7),
$$z \in \left(\bigcup_{i=0}^{p^{a-1}} P_d(p^{\pm_1}, pi + c) \right) \cup \left(\bigcup_{j=m+1}^{p^{a-1}} P_d(p^{\pm_1}, pj + c) \right) = U \cup V.$$ This shows that $P_d(p, c) \subset U \cup V$. Hence, $U \cup V = P_d(p, c)$. This completes the first part of the proof. Since $P_d(p, c)$ has been written as the union of two non-empty open subsets of (\mathbb{N}, τ_G), which are disjoint, the set $P_d(p, c)$ is not connected.

Corollary 3.6 Let $c, p \in \mathbb{N}$ be such that $p \in \mathbb{P}$ and $(p, c) = 1$. Take $a, b \in P_d(p, c)$ such that $a \neq b$. Then there exist open sets U and V in (\mathbb{N}, τ_G) such that $a \in U$, $b \in V$, $U \cap V = \varnothing$ and $P_d(p, c) = U \cup V$.

Corollary: Brown spaces and the Golomb topology.

This completes the first part of the proof. Since $P_d(p, c)$ has been written as the union of two non-empty open subsets of (\mathbb{N}, τ_G), which are disjoint, the set $P_d(p, c)$ is not connected.
Proof. Assume first that $P(a,c)$ is connected. If $\Theta(a) \not\subseteq \Theta(c)$, then $a > 1$ and there exists $p \in \Theta(a) - \Theta(c)$. Hence $p \in \mathbb{P}$, $p \mid a$ and $p \nmid c$, so $\langle p,c \rangle = 1$. Since $p \mid a$, we have $P(a,c) \subseteq P_p(a,c)$. By Theorem 3.7, $P_p(a,c)$ is hereditarily disconnected, so $P(a,c)$ is a one-point-set, a contradiction. This shows that $\Theta(a) \subseteq \Theta(c)$.

Now assume that $\langle a,c \rangle = 1$ and that $P^c_p(a,c) = P(a,c)$ is connected. Then, by the first part of the theorem, $\Theta(a) \subseteq \Theta(c)$. If $a \geq 2$, then there is $p \in \mathbb{P}$ such that $p \mid a$. Then $p \mid c$, contradicting that $\langle a,c \rangle = 1$. Hence $a = 1$. In Theorem 3.3 we proved that $P_p(1,c)$ is connected.

In Theorem 3.3 Szczuka P. showed the following result:

Theorem 3.11 Let $a,c \in \mathbb{N}$. The arithmetic progression $P(a,c)$ is connected in (\mathbb{N},τ_G) if and only if $\Theta(a) \subseteq \Theta(c)$. In particular:

1. the progression $\{an : n \in \mathbb{N}\}$ is connected in (\mathbb{N},τ_G)
2. if $\langle a,c \rangle = 1$, then $P_p(a,c)$ is connected in (\mathbb{N},τ_G) if and only if $a=1$.

The proof of the “only if” part of Theorem 3.11 is much simpler is we know that the progressions $P_p(a,c)$ are hereditarily disconnected, as we presented in the proof of Theorem 3.10. In it is claimed that the fact that each set $P_p(1,c)$ is connected is obvious.

Acknowledgments

None.

Conflicts of interest

Authors declare that there is no conflict of interest.

References

1. Kirch AM. A countable, connected, locally connected Hausdorff space. *Amer Math Monthly*. 1969;76(2):169–171.
2. Szczuka P. The connectedness of arithmetic progressions in Furstenberg’s, Golomb’s and Kirch’s topologies. *Demonstration Math*. 2010;43(4):899–909.
3. Furstenberg H. On the infinitude of primes. *Amer Math Monthly*. 1955;62(58):353.
4. Golomb SW. A connected topology for the integers. *Amer Math Monthly*. 1959;66(8).
5. Golomb SW. *General Topology and its Relations to Modern Analysis and Algebra*, Proceedings of the Symposium held in Prague in Sep 1961. Academia Publishing House of the Czechoslovak Academy of Sciences;1962:179–186.
6. Szczuka P. Connections between connected topological spaces on the set of positive integers. *Cent Eur J Math*. 2013;11(5):876–881.
7. Szczuka P. Regular open arithmetic progressions in connected topological spaces on the set of positive integers. *Glasnik Matematicki*. 2014;49(69):13–23.
8. Szczuka P. The closures of arithmetic progressions in the common division topology on the set of positive integers. *Central European Journal of Mathematics*. 2014;12(7):1008–1014.
9. Szczuka P. The closures of arithmetic progressions in Kirch’s topology on the set of positive integers. *Int J Number Theory*. 2015;11(3):673–682.
10. Szczuka P. Properties of the division topology on the set of positive integers. *Int J Number Theory*. 2016;12(3):775–785.
11. Brown M. The April Meeting in New York. *Bull Amer Math Soc*. 1953;59(4):330–371.
12. Clark PL, Lebowitz Lockard N, Pollack P. A note on Golomb topologies.
13. Engelking R. *General Topology*, Revised and Completed Edition. *Sigma Series in Pure Mathematics*, 6. Heldermann Verlag, Berlin; 1989.
14. Fine B, Rosenberger G. *Number Theory: An Introduction via the Density of Primes*, Second Edition, Birkhäuser; 2016.
15. Willard S. *General Topology*, Reprint of the 1970 Original Addison-Wesley, Rending, MA., Inc., Mineola, New York: Dover Publications; 2004.
16. Pacheco-Juárez. Propiedades del Producto de Espacios Topológicos, Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla; 2009.
17. Steen LA, Seebach JA. *Counterexamples in Topology*, Reprint of the Second (1978) edition Original Springer-Verlag, New York: Dover Publications; 1995.