Low-energy penetrating craniocerebral nail injury is extremely rare, and usually has a better outcome than a gunshot injury because of a more localized primary injury. The main aspects of treatment include detailed assessment of vascular injury by imaging studies, followed by careful removal of the nail with hemorrhage control. However, penetrating craniocerebral nail injury accompanying post-traumatic cerebral infarction (PTCI) can be fatal, and needs to be treated aggressively. Herein, we present the case of a 91-year-old male who had sustained PTCI following a low-energy penetrating craniocerebral injury due to a nail without evidence of hematoma. The patient survived after a decompressive craniectomy, but permanent neurological damage occurred. This is the first case of profound PTCI following a low-energy penetrating craniocerebral nail injury and reminds clinicians of possibility this rare dreadful complication for care of head-injured patients.

Key Words : Post-traumatic cerebral infarction · Penetrating craniocerebral injury · Nail injury · Decompressive craniectomy · Brain edema.
count was 8690/uL at the time of discharge. The post-operative course was uneventful, and the patient was discharged on the 11th hospital day with a GCS of 5 and tracheostomy. The bone flap was not replaced at the time of discharge.

DISCUSSION

PTCI is a rare complication of severe traumatic brain injury, and is usually caused by blunt brain injury with intra- or extra-axial hematoma formation associated gross mechanical shift of the brain and herniation across the falx and/or tentorium. The patient presented herein developed PTCI after a low-energy frontal penetrating craniocerebral injury caused by a nail without vascular injury or hematoma. He survived after decompressive craniectomy with permanent neurological deficit.

Low-energy penetrating craniocerebral nail injury is rare, and only a few cases that have been due to suicide attempts have been reported. Unlike gunshot injuries in which skull fracture fragments can cause intracranial hemorrhage; intracranial hemorrhage is uncommon in the low-energy penetrating cranio cerebral nail injuries. CT angiography can help to exclude vascular injury and pseudoaneurysm formation that would result in serious bleeding after removal of the nail. In most cases, extraction of the nail can be safely done by gentle traction with or without craniotomy, and serious hemorrhage is unusual. Antibiotic treatment is generally recommended for preventing brain abscess in patients sustaining penetrating brain injuries. The prognosis of a penetrating cranio cerebral nail injury is relative good in most of the cases reported in the literature because of the relative low damage caused by the small diameter of the nails. However, the outcome may be catastrophic if the penetrating cranio cerebral nail injury is complicated by PTCI, as in our case.

PTCI occurs as a complication of severe traumatic brain injury with an incidence ranging from 1.9 to 8%. A variety of mechanisms may account for PTCI, including direct vascular compression due to focal mass effect from brain herniation and intra- or extra-axial hematoma, cerebral vasospasm, brain edema, thromboembolism, cerebrovascular injury, and systemic hypoperfusion. Among these mechanisms, mechanical shift of the brain and herniation across the falx leading to compression of the cerebral artery account for the majority of PTCI cases. Although penetrating brain injury is usually associated with vascular damage, no vascular injury was noted in the present case. We propose the mechanism of the PTCI in our patient that may be related to multiple factors. First, short-term distal artery spasm with decreased cerebral flow might have been induced by mechanical stimulation of the penetrating nail injury and undetected by angiography in the ER. Second, traumatic brain injury could have induced cerebral hypoperfusion which might have been mediated by endothelin-1 and its receptors as early as 2–4 hours after injury. Third, global hypoxia could have been further exacerbated by increased diffusion barriers and respiratory depression with hypoxia. Fourth, previous study has demonstrated that cytotoxic brain edema is caused by metabolic disturbances and occurs rapidly following traumatic brain injury. Although the brain edema in our patient clearly did not compress ipsilateral cerebral arteries but brain edema resulted in elevated intracranial pressure leading to vascular hypoperfusion and subsequent ischemic cerebral damage.

The overall mortality rate of PTCI is high, ranging from 21 to 75%, and reaches close to 100% if the territory of the MCA is involved. The territories of the PCA and MCA are the most commonly involved, and in 55% of patients with PTCI more than one vascular territory is involved. The infarction areas in the present case involved the right-side territories of the ACA, MCA, and PCA, and this was expected to carry a grave prognosis. This case revealed that early decompressive craniectomy may relieve devastating brain edema.

Decompressive craniectomy has been considered a “rescue” therapy for traumatic brain injury with unilateral hemispheric edema, which can immediately reduce increased intracranial pressure and decrease the subsequent cumulative ischemic burden. Although the optimal time to perform decompressive craniectomy for traumatic brain edema is still in debate, previous studies have shown that early decompressive craniectomy...
improved functional outcome and survival rate4,6,10. Because PTCI with large infarctions is associated with a poor clinical outcome, we believe that decompressive craniectomy, not only simple extraction of the penetrating nail, should be performed as soon as possible to alleviate the profound brain edema10,13.

CONCLUSION

We reported the first case of hemi-cranial cerebral infarction due to a low-energy frontal penetrating craniocerebral nail injury. Clinicians should have a high index of suspicion for this catastrophic complication in cases of penetrating craniocerebral nail injuries. Decompressive craniectomy should be considered, rather than simple nail extraction, to relieve intracranial hypertension and cerebral hypoperfusion in case of extensive PTCI.

References

1. Arutiunov AJ, Baron MA, Majorova NA: The role of mechanical factors in the pathogenesis of short-term and prolonged spasm of the cerebral arteries. J Neurosurg 40: 459-472, 1974
2. Beaumont A, Marmarou A, Hayasaki K, Barzo P, Fatourechi P, Corwin F, et al.: The permissive nature of blood brain barrier (BBB) opening in edema formation following traumatic brain injury. Acta Neurochir Suppl 76: 125-129, 2000
3. Dore-Duffy P, Wang S, Mehedi A, Katsyev V, Cleary K, Tapper A, et al.: Pericyte-mediated vasoconstriction underlies TBI-induced hypoperfusion. Neurol Res 33: 176-186, 2011
4. Guerra WK, Gaab MR, Dietz H, Mueller JU, Piek J, Fritsch MJ: Surgical decompression for traumatic brain swelling: indications and results. J Neurosurg 90: 187-196, 1999
5. Ham HY, Lee JK, Jang JW, Soo BR, Kim JH, Choi JW: Post-traumatic cerebral infarction: outcome after decompressive hemicraniectomy for the treatment of traumatic brain injury. J Korean Neurosurg Soc 50: 370-376, 2011
6. Howard JL, Cipolle MD, Anderson M, Sabella V, Shollenberger D, Li PM, et al.: Outcome after decompressive craniectomy for the treatment of severe traumatic brain injury. J Trauma 65: 380-385; discussion 385-386, 2008
7. Kishore K, Sahu S, Bharti P, Dahiya S, Kumar A, Agarwal A: Management of unusual case of self-inflicted penetrating craniocerebral injury by a nail. J Emerg Trauma Shock 3: 193-196, 2010
8. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, et al.: Diffusion limited oxygen delivery following head injury. Crit Care Med 32: 1384-1390, 2004
9. Mirvis SE, Wolf AL, Numaguchi Y, Corradino G, Joslyn JN: Posttraumatic cerebral infarction diagnosed by CT: prevalence, origin, and outcome. AJNR Am J Neuroradiol 11: 335-350, 1990
10. Selvanathan S, Goldschlager T, McMillen J, Campbell S: Penetrating craniocerebral injuries from nail-gun use. J Clin Neurosci 14: 678-683, 2007
11. Server A, Dullerud R, Haakonsen M, Nakstad PH, Johnsen UL, Magnaes B: Post-traumatic cerebral infarction. Neuroimaging findings, etiology and outcome. Acta Radiol 42: 254-260, 2001
12. Shehu BB, Hassan I: Delayed presentation of penetrating craniocerebral injury caused by a nail. Brain Inj 20: 1455-1458, 2006
13. Shenvy SN, Raja A: Unusual self-inflicted penetrating craniocerebral injury by a nail. Neurol India 51: 411-413, 2003
14. Son S, Kang DH, Kim BH, Choi NC: Incidentally discovered a self-inflicted nail in the brain of a schizophrenia patient. Psychiatry Investig 8: 272-274, 2011
15. Tawil I, Stein DM, Mirvis SE, Scalea TM: Posttraumatic cerebral infarction: incidence, outcome, and risk factors. J Trauma 64: 849-853, 2008
16. Weiner GM, Lacey MR, Mackenzie L, Shah DP, Frangos SG, Grady MS, et al.: Decompressive craniectomy for elevated intracranial pressure and its effect on the cumulative ischemic burden and therapeutic intensity levels after severe traumatic brain injury. Neurosurgery 66: 1111-1118; discussion 1118-1119, 2010