Sparse Network Coding with Overlapping Classes

Danilo Silva, Weifei Zeng, and Frank R. Kschischang
Department of Electrical and Computer Engineering, University of Toronto
Toronto, Ontario M5S 3G4, Canada
danilo@comm.utoronto.ca, weifei.zeng@utoronto.ca, frank@comm.utoronto.ca

Abstract

This paper presents a novel approach to network coding for distribution of large files. Instead of the usual approach of splitting packets into disjoint classes (also known as generations) we propose the use of overlapping classes. The overlapping allows the decoder to alternate between Gaussian elimination and back substitution, simultaneously boosting the performance and reducing the decoding complexity. Our approach can be seen as a combination of fountain coding and network coding. Simulation results are presented that demonstrate the promise of our approach.

I. INTRODUCTION

Network coding [1]–[5] is a promising approach to data dissemination over networks. In this past decade, several works have attempted to establish the potential of this simple and yet seemingly revolutionary idea in a variety of applications [6]–[11]. While the success of network coding for streaming media and wireless applications has been encouraging, it is still unclear whether this approach is beneficial for peer-to-peer file dissemination [12]. The present paper is an initial attempt to fill this gap.

One major issue is decoding complexity. In the file-downloading scenario, a large file of $km \log_2 q$ bits is to be distributed among cooperating peers in a network. The file is partitioned into k packets, each consisting of m symbols over a finite field F_q. If random linear network coding [4] is used to distribute the file, then each receiver has to solve a linear system with k equations in order to decode the file. This requires $O(k^3 + k^2 m)$ operations in F_q, which may be prohibitively expensive in practice.

1 Supported by CAPES Foundation, Brazil.
To reduce the decoding complexity, Chou et al. [5] proposed to group packets into disjoint generations, each containing d packets, and apply network coding only within each generation. The complexity issue is solved if d is small, but another problem is created: that of efficiently routing $L = k/d$ generations throughout the network.

Note that simply choosing a small k and compensating the file size by using a large packet length m, as done in [7], may not be a satisfactory solution. Transmitting such large packets (of, say, 1–4 MBytes [7]) over a dynamic peer-to-peer network—where peers may interrupt transmissions or leave the network at any time—is a highly nontrivial problem. Since each coded packet is essentially unique, interrupted transmissions are useless to a receiving peer, potentially causing a severe waste of bandwidth. Thus, we find it more realistic to assume that m is small and L is large.

Probably the most successful approach so far to routing pieces of a file through a peer-to-peer network is the BitTorrent protocol [13]. The drawback of this and similar protocols is that a large number of control messages must be exchanged between peers, mainly to resolve the problems of rare blocks and block reconciliation [14], [15]. Thus, the protocol overhead is substantial, and a significant amount of research has been devoted to trying to alleviate this problem [14].

The solution proposed by Maymounkov et al. [16], in the context of generation-based network coding, completely eliminates any protocol overhead: peers randomly choose the generation from which to transmit each packet. This scheme is called chunked coding. Intuitively, the scheme replaces protocol overhead with transmission overhead. While the scheme is shown to have a good performance asymptotically, the performance quickly deteriorates for practical values of d.

A related line of work is fountain coding [17]. By using optimized degree distributions, fountain codes such as LT or raptor codes can achieve a relatively small overhead with a low-complexity back-substitution decoder [17]. These schemes, however, are not compatible with network coding. To maintain the designed degree distributions, packets must travel intact throughout the network—otherwise, the decoder would fail miserably.

This paper investigates the following question: is it possible to use a true network coding approach and yet enjoy a low-complexity fountain-like decoder? The approach proposed here answers this question affirmatively, and can be seen as a combination of fountain coding and network coding. Our idea is to follow the approach of chunked coding, but instead use a larger number of overlapping generations (here called classes). Overlapping generations allow packets from decoded generations to be back-substituted into still undecoded generations, in the same spirit of a fountain decoder. This not only boosts the performance but also reduces the decoding complexity of the scheme.
The remainder of the paper is organized as follows. In Section II, we review previous work on network coding in a way that simplifies the description of our codes and emphasizes the existing connections. Section III presents our approach, including the description of the decoder and bounds on the decoding complexity. In Section IV, we present some code constructions, whose performance is evaluated in Section V and compared with that of chunked codes. Finally, Section VI presents some concluding remarks.

II. PRELIMINARIES

A. Random Linear Network Coding

Consider a communication network represented by a directed multigraph (cyclic or acyclic). The network is used to transport \(k \) data (or uncoded) packets \(u_1, \ldots, u_k \) from a single source node to multiple destination nodes. Packets are regarded as vectors of length \(m \) over a finite field \(\mathbb{F}_q \). Each edge in the network is assumed to transport a single packet, free of errors. To describe the operation of the network, we associate with each edge \(e \) a tuple \((P_e, t^-_e, t^+_e)\); if \(e \) is an edge from a node \(v^- \) to a node \(v^+ \), then this tuple indicates that packet \(P_e \) was transmitted by \(v^- \) at time \(t^-_e \) and was received by \(v^+ \) at time \(t^+_e \). We may also say that \(P_e \) is an outgoing packet of \(v^- \) and an incoming packet of \(v^+ \). For consistency, we assume that the data packets \(u_i \) were received by the source node at time \(-\infty\).

The computation performed at the nodes must satisfy the law of (causal) information flow: a packet transmitted by a node must be computed as a function of packets previously received by that node. A (causal) schedule for a network is a specification of all the time values \(t^-_e, t^+_e \) satisfying the constraint \(t^-_e < t^+_e \).

Given a network and a schedule, a network code is the specification of all functions computed at all nodes. In a linear network code [2], [3], all such functions are constrained to be \(\mathbb{F}_q \)-linear combinations. This implies that any packet \(P_e \) transmitted over the network can be expressed as a unique linear combination of data packets, say, \(P_e = \sum_{i=1}^{k} g_{e,i} u_i \). The coefficient vector \(g_e = (g_{e,1}, \ldots, g_{e,k}) \in \mathbb{F}_q^k \) is called the (global) coding vector of \(P_e \).

Let \(x_1, \ldots, x_N \) denote the outgoing packets of the source node, and let \(y_1, \ldots, y_n \) denote the incoming packets of some destination node. Due to the linearity of the network code, these packets can be related by

\[
Y = AX = ABU
\]

where \(U \in \mathbb{F}_q^{k \times m} \), \(X \in \mathbb{F}_q^{N \times m} \) and \(Y \in \mathbb{F}_q^{n \times m} \) are matrices whose rows are the packets \(u_i, x_i \) and \(y_i \), respectively, and \(A \in \mathbb{F}_q^{n \times N} \) and \(B \in \mathbb{F}_q^{N \times k} \). The matrix \(AB \) is called the transfer matrix of the network.
Note that successful decoding is possible if and only if \(\text{rank} \ AB = k \). In this case, the network code is said to be *feasible*. Let \(k^* \) denote the maximum rank of \(A \) among all choices of the network code. Clearly, a feasible network code exists only if \(k \leq k^* \), a condition we assume hereafter.

In *random linear network coding* [4], nodes choose the coefficients of the linear combinations uniformly at random from \(\mathbb{F}_q \) and independently from each other. As shown in [4], a random network code is feasible with high probability if the field size \(q \) is sufficiently large.

In order for the destination node to be able to undo the multiplication by \(AB \) (which is unknown a priori) and recover \(U \), the usual approach is to record the transfer matrix as part of the matrix \(Y \) through the use of packet headers; more precisely, the left portion of \(U \) is assumed to be a \(k \times k \) identity matrix. Note that this leaves space for only \(m' = m - k \) data symbols in each data packet, i.e., the effective throughput is scaled by \(\frac{m-k}{m} \). In practice, one must choose \(m' \gg k \).

Decoding corresponds to applying Gauss-Jordan elimination on \(Y \) to convert it to reduced row echelon form. Note that only \(k \) linearly independent rows of \(Y \) are effectively needed. Performing Gauss-Jordan elimination on a \(k \times (k + m') \) matrix requires \(k^2m' + \frac{1}{2}k^2(k-1) \) multiplications and a similar number of additions.\(^1\) We will ignore the number of additions since the time to perform an addition is usually negligible compared to the time to perform a multiplication. We also ignore the second term in the operation count since, as discussed above, \(m' \gg k \) in any realistic scheme. Thus we may say that the decoding complexity of random linear network coding is \(k \) operations per data symbol.

Due to the fact that the transfer matrix \(AB \) is dense, this scheme is also called *dense network coding*.

B. Sparse Network Coding with Disjoint Classes

For large \(k \), dense network coding is computationally too expensive in practice. A way to alleviate this problem is to ensure that \(AB \) has a sparse structure. The main difficulty is that this constraint must be not only imposed at the source node, but also coordinated among all the internal nodes—which must still be able to perform network coding.

An approach proposed in [5] is to divide packets into disjoint classes (or generations [5], groups [7], segments [10], chunks [16]). Suppose that \(k = Ld \). For \(i = 1, \ldots, k \), let us say that a packet \(u_i \) belongs to class \(\ell \) if \(i \in \{(\ell - 1)d + 1, \ldots, \ell d\} \). Now, the rule that is enforced at each network node is that *only packets of the same class are allowed to be combined*, producing a new packet of the same class. Under

\(^1\)Note that asymptotically fast methods are only useful for very large parameters (much larger than those consider in this paper).
this constraint, expression (1) can be rewritten as

\[Y^{(\ell)} = A^{(\ell)} B^{(\ell)} U^{(\ell)}, \quad \ell = 1, \ldots, L \]

where

\[U^{(\ell)} = \begin{bmatrix} u_{\ell d} \\ u_{(\ell-1)d+1} \\ \vdots \end{bmatrix} \quad \text{and} \quad Y^{(\ell)} = \begin{bmatrix} y_1^{(\ell)} \\ \vdots \\ y_{n_\ell}^{(\ell)} \end{bmatrix}, \]

and where \(y_j^{(\ell)}, j = 1, \ldots, n_\ell, \ell = 1, \ldots, L, \) are the received packets. Note that this is essentially splitting the network into \(L \) parallel smaller networks. Due to the block-diagonal structure of \(AB \), decoding can now be performed in \(\frac{1}{km} L d^2 m = d \) operations per symbol, which may be a dramatic improvement if \(L \) is large.

Increasing \(L \) also reduces the overhead in transmitting packet headers. Rather than \(k \) symbols per packet, the overhead is now only \(\lceil \log q L \rceil + d \) symbols per packet, corresponding to a class index plus a coding vector.

The performance of this scheme, however, reduces as \(L \) increases. This is mainly due to the following reasons. First, separating flows into disjoint classes reduces the diversity of source-destination paths, which may reduce the min-cut of the network (and therefore \(k^* \)). Second, the fact that fewer packets are combined together within each class may increase the probability of linear dependency among received packets. Third, differently from the \(L = 1 \) case, nodes have to choose the class from which to produce a new packet at each transmission opportunity. This implies that the induced network topology is chosen by the nodes on-the-fly, and poor choices may lead to a poor overall system. Fourth, the decoding condition is “\(L \) times more constrained;” decoding is successful if and only if \(\text{rank} A^{(\ell)} B^{(\ell)} = d \) for \(\ell = 1, \ldots, L \).

The first and second problems are mitigated if \(k \) and \(q \), respectively, are sufficiently large. For the third problem, different strategies have been proposed, most of which require exchange of control messages. We will focus here on the strategy proposed in [16], which eliminates any need for feedback: nodes simply choose classes uniformly at random among previously received classes. This scheme is referred to as chunked coding. The drawback of this approach is that it exacerbates the fourth problem. A node may unnecessarily receive packets from a class that has already been fully decoded, while other classes are still incomplete; this in turn requires \(n \) to be much larger than \(k \). The results in [16] show that the overhead \((n - k)/k \) can be made comparatively small by choosing \(d = \ln^2 k \) and letting \(k \) be sufficiently large. In practice, however, such a large \(d \) defeats the purpose of sparse network coding, since the decoding complexity becomes prohibitively large.
The bottom line for this approach of dividing packets into disjoint classes is that it simply postpones the scheduling problem: now classes have to be routed, rather than individual packets. Thus, if L is large, the same criticisms for any routing (non-network-coding) approach also apply here.

III. Sparse Network Coding with Overlapping Classes

In this section we present a novel scheme that attempts to overcome the drawbacks of chunked coding. From one perspective, the scheme can be seen as a fountain code that is fully compatible with network coding.

In the following, the term \textit{class} refers to a non-empty subset of \{1, \ldots, k\}. A class-based scheme for network coding is specified by a set of classes, $C = \{C_1, \ldots, C_L\}$, and a probability distribution on classes, \{p_1, \ldots, p_L\}. When C is understood, we may write class ℓ as a shorthand for class C_ℓ. Let $\text{supp}(g)$ be the support of a vector $g \in \mathbb{F}_q^k$, i.e., $\text{supp}(g) = \{i \in \{1, \ldots, k\} : g_i \neq 0\}$. For a packet $x \in \mathbb{F}_q^n$ with coding vector $g \in \mathbb{F}_q^k$, we say that x belongs to class ℓ if $\text{supp}(g) \subseteq C_\ell$. Let $\lambda(x)$ denote the set of indices of all the classes to which a packet x belongs, i.e., $\lambda(x) \triangleq \{\ell \in \{1, \ldots, L\} : \text{supp}(g) \subseteq C_\ell\}$. With a slight abuse of terminology, we will usually refer to a class ℓ to mean all the data packets belonging to that class.

Note that, in general, a packet u_i may belong to multiple classes; for instance, we might have $C_1 \cap C_2 = \{i\}$, which implies that $\{1, 2\} \subset \lambda(u_i)$. When two classes have non-empty intersection, we will say that these classes overlap.

Given a class-based network coding scheme $(C, \{p_\ell\})$, every node in the network (including the source node) performs, at each transmission opportunity, the following encoding procedure. First, a class index ℓ is randomly selected according to $\{p_\ell\}$. If no packets from that class have yet been received, then the process is repeated until an index ℓ is selected such that some packet from class ℓ has been received. Then, an outgoing packet is computed as a random linear combination of received packets from class ℓ.

Let $d_\ell = |C_\ell|$, for $\ell = 1, \ldots, L$. It should be clear that the chunked coding scheme described in Section [I-B] corresponds to the special case where C is a partition of \{1, \ldots, k\}, with $d_\ell = d = k/L$, and $\{p_\ell\}$ is uniform. In general, due to the presence of overlapping classes, we may have $\sum_{\ell=1}^L d_\ell > k$.

Let us now describe the decoding process. For $\ell = 1, \ldots, L$, let $Y(\ell)$ consist of the received packets from class ℓ, and let $r_\ell = \text{rank } Y(\ell)$. We view $Y(\ell)$, and therefore r_ℓ, as variables that are constantly updated as new packets are received; in particular, we call the tuple (r_1, \ldots, r_L) the state of the receiver. In the context of a decoding process, we say that a class ℓ is decodable if $r_\ell \geq d_\ell$ and that it has been decoded if all the data packets u_i belonging to ℓ have been recovered. Decoding starts from some
decodable class ℓ that has not yet been decoded. This class is decoded by Gaussian elimination. Then, similarly to the decoding of fountain codes, any data packets u_i belonging to C_ℓ are back-substituted into any overlapping classes, and the ranks r_1, \ldots, r_ℓ are recomputed. For instance, if u_i belongs to classes 1 and 2, and class 1 is decoded, then we may imagine that a new packet $y_{n_2+1}^{(2)} = u_i$ has been received. Unless class 2 has already been decoded, this has the effect of increasing r_2 by one unit. The process is then repeated until all classes have been decoded—which is to say that all data packets u_i have been obtained.

The essence of the decoding process is similar to solving a crossword puzzle: when a word is “decoded,” the recovered letters can be reused to help in the decoding of any overlapping words. Indeed, the idea of a crossword puzzle gives the basis for the simplest nontrivial overlapping scheme, which we call grid codes. A simple example of a grid code is given in Fig. 1b. A general definition will be presented in Section IV.

Example 1: Let $k = 4$. The 2×2 grid code of Fig. 1b can be seen as the chunked code $\{C_1, C_2\}$ of Fig. 1a with two extra classes C_3 and C_4. Let us assume that, in either case, packets from each class are received with equal probability and all received packets are innovative. Suppose that, initially, two packets from C_1 have been received, i.e., $r_1 = 2$, so that the decoder is in state $(2, 0, 0, 0)$. For the chunked code to succeed with no overhead, it is necessary that the next two received packets belong to C_2, an event that happens with probability $1/4$.

On the other hand, for the grid code to succeed, there is much more flexibility in the possible received packets; more precisely, all the receiver states $(2, 2, 0, 0)$, $(2, 1, 1, 0)$, $(2, 1, 0, 1)$ and $(2, 0, 1, 1)$ are decodable. For instance, suppose that the next two received packets belong to C_2 and C_3, i.e., the receiver state is $(2, 1, 1, 0)$. Decoding proceeds as follows. First, class 1 is decoded using Gaussian elimination, which yields uncoded packets u_1 and u_2. Since u_1 and u_2 are also from classes 3 and 4, respectively, the state is updated to $(2, 1, 2, 1)$. Now class 3 can be decoded, uncovering packet u_3. Since u_3 also belongs to class 2, the state becomes $(2, 2, 2, 1)$. Now class 2 is decoded, which finally reveals
the last packet u_4, completing the decoding. Thus, if the initial state is $(2, 0, 0, 0)$ and two more packets are received, the grid code succeeds with probability $4/10 > 1/4$.

Let us now examine the issue of decoding complexity. We first describe an alternative way to view the decoding process. Note that, for each new packet u_i that is recovered, one variable is effectively removed from the problem for all the remaining classes. Thus, rather than increasing r_1, \ldots, r_L at each decoding iteration, we can equivalently decrease d_1, \ldots, d_L. This has precisely the same effect in the decoding condition $r_\ell \geq d_\ell$. More precisely, let $d_\ell^{(i)}$ denote the size of class ℓ (in terms of remaining variables) after the ith decoding iteration. Initially, $d_\ell^{(0)} = d_\ell$, for all ℓ. After the ith iteration, when, say, class ℓ^* is decoded, we update $d_\ell^{(i)} = d_\ell^{(i-1)} - |C_\ell \cap C_{\ell^*}|$, for all classes that have not yet been decoded.

We keep $d_\ell^{(i)} = d_\ell^{(i-1)}$ for the decoded classes, since this tells us precisely the size of the problem that was solved for class ℓ, i.e., how many packets had to be decoded by Gaussian elimination. Thus, at the end of the decoding process, say, after iteration t, we should have $\sum_{\ell=1}^L d_\ell^{(t)} = k$, which is precisely the total number of variables. Using this description of the decoding process, we can provide the following bound on the decoding complexity.

Theorem 1: Let d_1, \ldots, d_L denote the sizes of all classes sorted in decreasing order. The worst-case decoding complexity χ, in operations per symbol, is upper bounded by

$$\chi \leq d_t + \frac{1}{k} \sum_{i=1}^{t-1} d_i (d_i - d_{i+1}) \leq d_t,$$

where t is the smallest integer such that $\sum_{i=1}^t d_i \geq k$.

Proof: Without loss of generality, suppose that classes are sorted according to the order in which they are decoded, i.e, class 1 is decoded first, then class 2, and so on. Let t be number of iterations after which decoding is complete. Class 1 is decoded first, after which $d_2 - d_2^{(1)}$ uncoded packets are forwarded to class 2. By examining the matrix of the linear system that has to be solved for class 2, it is easy to see that this system can be solved with precisely $d_2^{(1)} d_2 m = d_2^{(t)} d_2 m$ operations. In general, each class ℓ can be decoded with $d_\ell^{(t)} d_\ell m$ operations, giving a total complexity of

$$\frac{1}{k} \sum_{\ell=1}^L d_\ell^{(t)} d_\ell$$

operations per symbol.

To obtain a bound, we need to maximize the function $\sum_{\ell=1}^L d_\ell x_\ell$, subject to the constraints $0 \leq x_\ell \leq d_\ell$, $\ell = 1, \ldots, L$, and $\sum_{\ell=1}^L x_\ell = k$. It is clear that this function is maximized by choosing $x_\ell = d_\ell$, $i = 1, \ldots, t-1$, and $x_\ell = k - \sum_{i=1}^{t-1} d_\ell$, where t is the smallest integer such that $\sum_{i=1}^t d_i \geq k$. Thus,
we obtain

\[
\chi \leq \frac{1}{k} \sum_{i=1}^{t-1} d_{\ell_i}^2 + \frac{1}{k} \left(k - \sum_{i=1}^{t-1} d_{\ell_i} \right) d_{\ell_t} = d_{\ell_t} + \frac{1}{k} \sum_{i=1}^{t-1} d_{\ell_i} (d_{\ell_i} - d_{\ell_t})
\]

with equality if \(\ell_i = i, i = 1, \ldots, t \), and \(C_1, \ldots, C_t \) are disjoint.

The second expression follows from \(d_{\ell_t} \leq d_{\ell_1} \) and \(\sum_{i=1}^{t-1} d_{\ell_i} \leq k \). We have

\[
\chi \leq d_{\ell_t} + \frac{1}{k} \sum_{i=1}^{t-1} d_{\ell_i} (d_{\ell_i} - d_{\ell_t}) \leq d_{\ell_t}.
\]

Theorem 1 shows that the complexity is dominated by the largest \(t \) classes and is not increased by adding any number of classes that are smaller than the largest \(t \) classes. In particular, for a code with fixed-size classes, the complexity is never greater than that of the corresponding chunked code. For general codes, we should in fact expect a complexity much smaller than the bound of Theorem 1. This is because that bound is achieved when the first \(t \) classes to be decoded are the largest ones and are disjoint, while in practice we would expect smaller classes to be decoded first and be back-substituted into larger ones.

Evaluating the performance is a much harder issue. This is due to the fact that Gaussian elimination is combined with back substitution in a recurring manner, leading to an extremely intricate decoding process. Nevertheless, for simple cases, we can compute the performance exactly. Fig 2 shows the exact probability of successful decoding versus overhead for the \(2 \times 2 \) grid code of Fig. 1b. It can be seen that, for the same complexity, the performance of this grid code uniformly better than that of the corresponding chunked code.

IV. EXAMPLES OF CODES

In this section, we present some examples of codes with overlapping classes. The performance of these codes will be investigated in Section V.

Definition 1: Let \(k = dd' \). A \(d' \times d \) (rectangular) grid code \(\mathcal{C} = \{C_1, \ldots, C_L\} \) consists of \(L = d + d' \) classes given by

\[
C_i = \{(i-1)d + j \mid j = 1, \ldots, d\}, \quad i = 1, \ldots, d'
\]

\[
C_{d'+j} = \{(i-1)d + j \mid i = 1, \ldots, d'\}, \quad j = 1, \ldots, d.
\]
Fig. 2: Comparison between a 2×2 grid code and a chunked code with $d = 2$ and $k = 4$.

Note that, in a $d' \times d$ grid code, the first d' classes have size d and form a partition of $\{1, \ldots, k\}$, while the last d classes have size d' and also form a partition of $\{1, \ldots, k\}$.

When all classes have the same size, i.e., $d' = d$, we obtain square grid codes. These codes are, unfortunately, too restrictive, since we must have $k = d^2$. A way to span a higher number of packets with fixed-size classes is provided by diagonal grid codes. For convenience, in the next definitions, assume that packet and class indices are numbered starting at zero.

Definition 2: Let $k = L_0d$ and assume $L \leq (L_0)^2$. A (k, d, L) diagonal grid code with angle set $\Theta = \{\theta_0, \ldots, \theta_{L_0-1}\}$ consists of L classes given by

$$C_\ell = \{(i + j\theta_s)d + j \mod k \mid j = 0, \ldots, d - 1\}, \quad i = \ell \mod L_0, \ s = \lfloor \ell/L_0 \rfloor, \ \ell = 0, \ldots, L - 1.$$

A diagonal grid code with angle θ is a diagonal grid code with angle set $\Theta = \{0, \theta, 2\theta, \ldots\}$.

For $s = 0, \ldots, \lfloor L/L_0 \rfloor - 1$, the classes $C_{sL_0}, \ldots, C_{(s+1)L_0-1}$ form a partition of $\{0, \ldots, k - 1\}$. In particular, the L_0 classes with angle $\theta_s = 0$ correspond to a chunked code. An example of a diagonal grid code is given in Fig. 3.
The design of a diagonal grid code minimizes the maximum size of the intersection of two classes. It is easy to see that, if all the nonzero θ_s are relatively prime to L_0, then any two distinct classes overlap in at least $\lfloor L/L_0 \rfloor - 1$ and at most $\lceil L/L_0 \rceil - 1$ classes. To see that this value is optimal, consider a bipartite graph with packets and classes as nodes, and an edge connecting a packet to a class if that packet belongs to that class. It follows that the maximum degree of a packet must be at least the average degree $(Ld)/(L_0d) = L/L_0$.

Note that a diagonal grid code consists essentially of multiple layers of chunked codes each applied after the packets $0, \ldots, k-1$ undergo a certain (grid-like) permutation. Thus, the construction of Definition 2 can be generalized by using arbitrary permutations. For $s = 0, \ldots, \lceil L/L_0 \rceil - 1$, let π_s be a permutation of $\{0, \ldots, k-1\}$. Then we may consider a code with L classes of size d given by

$$C_\ell = \{\pi_s(id + j) \mid j = 0, \ldots, d-1\}, \quad i = \ell \mod L_0, \ s = \lfloor \ell/L_0 \rfloor, \ \ell = 0, \ldots, L-1$$

where $L_0 = k/d$. Without loss of generality, we will assume that π_0 is the identity permutation. If all the remaining permutations are chosen uniformly at random, we will call the resulting code a random-layer code.

For generality, in all the codes described above, we have left the probability distribution $\{p_\ell\}$ unspecified. However, in the case that all classes have a constant size d, it is quite natural to use a uniform distribution $p_\ell = 1/L$ for all ℓ. More generally, we see no reason to assign different probabilities for classes of the same size, and we will use this assumption in all the experiments in the next section.

V. PERFORMANCE EVALUATION

In this section, we use simulations to evaluate the performance of the codes described in the previous section.

We make the following assumptions:
1) All received packets are linearly independent whenever possible, i.e., \(\text{rank } A^{(\ell)} B^{(\ell)} = \min\{n_{\ell}, d_{\ell}\} \), for all \(\ell \).

2) The probability that a received packet belongs to class \(\ell \) is exactly equal to \(p_{\ell} \), for all \(\ell \).

Note the two assumptions above concern themselves with the network topology and the network code, and they are required if we wish to pursue an analysis that is independent of the network. Assumption 1 implies that the source node must generate a sufficient number of packets from each class \((N_{\ell} \geq d_{\ell})\) and that both the encoding at the source node and the network code must not introduce any linear dependence on any set of up to \(d_{\ell} \) received packets. Assumption 2 means that the network preserves the designed probability distribution on classes. Both assumptions should hold true if \(q \) and each \(d_{\ell} \) are sufficiently large. In order to satisfy this requirement, we assume that a parameter \(d_{\text{min}} \) is given such that any valid code must satisfy \(d_{\ell} \geq d_{\text{min}} \), for all \(\ell \). Specifically, we consider \(d_{\text{min}} = 25 \) in the following results. Note that the value of \(q \) does not affect code design.

Performance is evaluated in terms of the complexity-overhead tradeoff. Since the problem is inherently delay-tolerant—each receiver is interested in receiving the complete file with probability 1, no matter how long it takes—the two main figures of merit are the expected complexity and the expected overhead. Note that the figure of expected overhead automatically incorporates the probability of failure for each specific overhead, therefore eliminating the need to consider a three-dimensional tradeoff space.

Fig. 4 shows how complexity is traded off against overhead in a chunked coded. At one extreme, we have a dense code with a single class of size \(d = k \); this code has optimal overhead but prohibitively large complexity. At the other extreme we have a chunked code with class size \(d = d_{\text{min}} \), which attains the minimum possible complexity at the expense of a large overhead. As shown in Fig. 4 for small to moderate complexity, diagonal grid codes can outperform chunked codes by a large margin. Note that the complexity of diagonal grid codes is precisely equal to the class size \(d \). The number of classes \(L \) for each grid code has been tuned experimentally to maximize the performance for the given parameters. From left to right, the points in Fig. 4 correspond to \(L = 28, 12, 9, 2 \).

Fig 5 shows similar results for a scenario where \(k = 4096 \). As one can see, well-designed grid codes significantly outperform chunked codes. From left to right, the grid codes in the figure have \(L = 207, 92, 43 \). Fig 5 also shows the performance of codes with varying class sizes, referred to as mixed codes. From left to right, these codes are: a \((4096, 32, 200)\) diagonal grid code with an additional random class of size 2048; a \((4096, 64, 86)\) diagonal grid code with an additional random class of size 1024; and a \((4096, 128, 38)\) diagonal grid code with an additional random class of size 512. In all cases, the distribution \(\{p_{\ell}\} \) used is the uniform one. In comparison with their corresponding grid codes, the mixed
codes exhibit a significantly lower overhead with only a marginal increase in complexity. As discussed in Section III, this is due to the fact that the extra (large) class is typically decoded only after many other (smaller) classes have been decoded and back-substituted. The effect of a large class is analogous to that of a high degree check in LT codes: establishing a “bridge” between non-overlapping classes and thus allowing the decoding “ripple” [17] to be maintained for a longer time.

Our results show that, for a fixed expected complexity, the use of overlapping classes can reduce the expected overhead by up to 70%.

VI. CONCLUDING REMARKS

This paper presents a novel approach to network coding based on the concept of overlapping classes. The approach generalizes chunked coding and allows a propagative decoder that enjoys many of the benefits of fountain codes. Our proposed scheme, while still in its initial stages, seems to be a promising step towards a full network coding solution to peer-to-peer file distribution. More generally, our approach seems to be suitable for any application that would benefit from a combination of fountain coding and network coding.
We remark that, while our analysis assumes no feedback between nodes, nothing prevents a protocol based on our scheme from using control messages to aid the communication. By carefully designing the amount of protocol overhead, the overall performance of the scheme may be further increased.

Our main objective with this paper has been to suggest a new possible direction for research in network coding, as more questions remain open than have been answered here (especially in the theoretical side). In particular, the design of good codes with constant or non-constant class sizes (and possibly nonuniform distribution) is an important open problem. Due to the recursive nature of the decoding process, the development of analytical bounds on performance also remains elusive at this point. We hope to address both problems in our future work.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.
[3] R. Koetter and M. Médard, “An algebraic approach to network coding,” IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[4] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A random linear network coding approach to multicast,” IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[5] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. Allerton Conf. on Comm., Control, and Computing, Monticello, IL, Oct. 2003, pp. 40–49.

[6] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content distribution,” in Proc. 24th IEEE Int. Conf. on Computer Commun., Mar. 13–17, 2005, pp. 2235–2245.

[7] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive view of a live network coding p2p system,” in Proc. ACM Internet Measurement Conf., Rio de Janeiro, Brazil, Oct. 25–27, 2006.

[8] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, “XORs in the air: Practical wireless network coding,” IEEE/ACM Trans. Netw., vol. 16, no. 3, pp. 497–510, Jun. 2008.

[9] C. Fragouli, J. Widmer, and J.-Y. Le Boudec, “Efficient broadcasting using network coding,” IEEE/ACM Trans. Netw., vol. 16, no. 2, pp. 450–463, Apr. 2008.

[10] M. Wang and B. Li, “R2: Random push with random network coding in live peer-to-peer streaming,” IEEE J. Sel. Areas Commun., vol. 25, no. 9, pp. 1655–1666, 2007.

[11] A. Dimakis, P. Godfrey, M. Wainwright, and K. Ramchandran, “Network coding for distributed storage systems,” in Proc. 26th IEEE Int. Conf. on Computer Commun., Anchorage, AK, May 6–12, 2007, pp. 2000–2008.

[12] D. M. Chiu, R. W. Yeung, J. Huang, and B. Fan, “Can network coding help in P2P networks?” in Proc. NetCod, Apr. 2006.

[13] B. Cohen, “The BitTorrent protocol specification.” [Online]. Available: http://www.bittorrent.org

[14] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and improving a BitTorrent network’s performance mechanisms,” in Proc. 25th IEEE Int. Conf. on Computer Commun., Barcelona, Spain, Apr. 2006.

[15] J. Xu, J. Zhao, X. Wang, and X. Xue, “Swifter: Chunked network coding for peer-to-peer content distribution,” in Proc. IEEE Int. Conf. on Computer Commun., May 19–23, 2008, pp. 5603–5608.

[16] P. Maymounkov, N. J. A. Harvey, and D. S. Lun, “Methods for efficient network coding.” in Proc. Allerton Conf. on Comm., Control, and Computing, Monticello, IL, Sep. 2006, pp. 482–491.

[17] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2551–2567, Jun. 2006.