On perfect colorings of the halved 24-cube

Denis S. Krotov

Abstract

A vertex coloring of a graph is said to be perfect with parameters \((a_{ij})_i,j=1^k\) if for every \(i,j \in \{1, \ldots, k\}\) every vertex of color \(i\) is adjacent with exactly \(a_{ij}\) vertices of color \(j\). We consider the perfect 2-colorings of the distance-2 graph of the 24-cube \(\{0,1\}^{24}\) with parameters \(((20+c, 256-c) (c, 276-c))\) (i.e., with eigenvalue 20). We prove that such colorings exist for all \(c\) from 1 to 128 except 1, 2, 4, 5, 7, 10, 13 and do not exist for \(c = 1, 2, 4, 5, 7\). Keywords: perfect coloring, equitable partition, halved \(n\)-cube.

1 Introduction

We study the vertex 2-colorings of the vertices of the distance-2 graph of the 24-cube that are perfect colorings with the eigenvalue 20. These parameters are of interest by the following reasons.

At first, a known problem is the existence of perfect colorings of the 24-cube (i.e., its distance-1 graph) with parameters from the list \(((1, 23)(9, 15)), ((2, 22)(10, 14)), ((3, 21)(11, 13)), ((5, 19)(13, 11)), ((7, 17)(15, 9))\) (according to \([1, 3, 2]\), the question of the existence of perfect colorings of the \(n\)-cube with fixed parameters is closed for \(n < 24\)). Colorings with such parameters would correspond to colorings of the distance-2 graph with parameters from the class under study (see Section \([2]\) for the connection between perfect colorings of the distance-1 and distance-2 graphs).

At second, an interesting fact is combining two different-nature construction allows to cover a large specter of 121 parameter sets.

Let \(G\) be a simple graph; let \(I\) be a finite set, whose elements will be called colors. A coloring \(T : V(G) \to I\) is called perfect with parameter matrix \((s_{ij})_{i,j \in I}\), iff \(T\) is surjective and for every colors \(i\) and \(j\) every vertex of color \(i\) has exactly \(s_{ij}\) color-\(j\) neighbors.

By \(H_n\) we denote the hypercube of dimension \(n\), or \(n\)-cube (the vertices are the binary words of length \(n\); two words are adjacent iff they differ in exactly one position; the distance between two words is the number of positions in that they are different). The distance-2 graph of the hypercube will be denoted by \(\overline{H}_n\) (two words are adjacent iff they differ in exactly two positions); its degree is \(n(n-1)/2\). This graph has two connected components, which are known as halved \(n\)-cubes; we denote them \(\overline{H}_{n, \text{even}}\) and

* The research was partially supported by the RFBR grant 08-01-00673-a
to view of perfect colorings it is sufficient to consider only one of
them.

Usually, we will consider colorings into two colors, of 2-colorings; the parameter matrix
will be written as \((a, b)(c, d)\). Note that, arranging the colors, we can always set \(b \geq c\). If
the graph is regular of degree \(s\), then a necessary condition for the existence of a perfect
coloring with parameters \((a, b)(c, d)\) is \(a + b = c + d = s\). So, graph’s degree is an
eigenvalue of the parameter matrix. The second eigenvalue is \(a - c = d - b\); we will refer
this value as the eigenvalue of the perfect 2-coloring and of its parameters. Often, it is
convenient to consider a 2-coloring as the characteristic function of some set; in this case
1 will be considered as the first color; 0, as the second.

In this paper we study admissible parameters of perfect 2-colorings of \(H_{even}^{24}\) with the
eigenvalue 20, i.e., parameters of the form \(((20 + c, 256 - c)(c, 276 - c))\).

We will prove the following:

Theorem 1. Perfect colorings of \(H_{even}^{24}\) with the parameters \(((20 + c, 256 - c)(c, 276 - c))\) exist for \(c = 3, 6, 8, 9, 11, 12\), and all \(c\) from 14 to 128.

Theorem 2. There are no perfect colorings of \(H_{even}^{24}\) with the parameters \(((20 + c, 256 - c)(c, 276 - c))\) if \(c\) is 1, 2, 4, 5, or 7.

The values \(c = 10\) and 13 remain under the question; however, the proved facts allow
to observe the existence of gaps in the specter of admissible parameters. Theorems 1
and 2 will be proved in Sections 4 and 5. In Section 6 we will show that a perfect coloring
of \(H_n\) is a perfect coloring of \(\overline{H}_n\) and establish a relation between the parameters of these
colorings. In Section 7 observe the possibility to combine two different 2-colorings (of an
arbitrary graph) with the same eigenvalue provided the supports of one color are disjoint
for two colorings.

2 A connection between perfect colorings of the graphs \(H_n\) and \(\overline{H}_n\)

Lemma 1. A perfect coloring of \(H_n\) with matrix \(S\) is a perfect coloring of \(\overline{H}_n\) with
matrix \(1/2(S^2 - nE)\) (where \(E\) is the identity matrix).

Proof. Let us consider a perfect coloring \(T\) of \(H_n\) with parameter matrix \(S\). By the
color structure \(T(M)\) of some set \(M\) of vertices of \(H_n\) we call the collection from \(|I|\)
numbers each of them denoting the number of the vertices of the corresponding color in
\(M\). For an arbitrary vertex \(v\) of \(H_n\) the the color structure \(\{v\}\) consists of zeros in all
the positions except \(T(v)\), where the one is. Denote by \(D_1(v)\) and \(D_2(v)\) the set of vertices
at the distance 1 and 2 from \(v\), respectively. By the definition of a perfect coloring we
have \(T(V_1(v)) = ST(\{v\})\). Summarizing this formula over the neighborhood \(D_1(w)\) of
some fixed vertex \(w\), we get

\[
\sum_{v \in D_1(v)} \sum_{u \in D_1(v)} T(u) = \sum_{v \in D_1(v)} T(V_1(v)) = \sum_{v \in D_1(v)} ST(\{v\}) = S \sum_{v \in D_1(v)} T(\{v\}) = S^2 T(\{w\}).
\]
On the other hand, in the sum in the left the index u runs over twice the vertices of $D_2(w)$ and n times, the vertex w. Therefore, this sum also equals $nT(w) + 2T(D_2(w))$; so, we deduce

$$T(D_2(w)) = 1/2(S^2T\{w\} - nT(\{w\})),$$

which proves the statement. ▲

Note that each of the components of H_n can be colored in less than all colors; i.e., H_n^{even} (as well as H_n^{odd}) can be colored in lesser number of colors than H_n (see, e.g., Lemma 3).

The following table lists all admissible parameters of perfect 2-colorings of H_{24} that correspond to perfect 2-colorings of H_{24} with the eigenvalue $\lambda = 20$ ($20 = 1/2(8^2 - 24) = 1/2((-8)^2 - 24)$). The existence of colorings with the parameters marked by grey is an open question; for the other parameters, perfect colorings exist [1, 2].

H_{24}	$\lambda = -8$	0 24	1 23	2 22	3 21	4 20	5 19	6 18	7 17	8 16	
	8 16	9 15	10 14	11 13	12 12	13 11	14 10	15 9	16 8		
H_{24}	$\lambda = 8$	1 23	2 22	3 21	4 20	5 19	6 18	7 17	8 16		
	80 208	84 192	92 184	100 176	108 168	116 160	124 152	132 144	140 136	148 128	
$\lambda = 20$	16 260 32 244	48 228	64 212	72 204	80 196	88 188	96 180	104 172	112 164	120 156	128 148

3 Unifying two perfect colorings with common eigen-value

The following lemma, which is straightforward from the definitions, allow to unify disjoint supports of colors of different colorings with the same eigenvalue.

Lemma 2. Let C_1 and C_2 be two disjoint subsets of the vertex set $V(G)$ of a simple regular graph G; and let $C_1 \cup C_2 \neq V(G)$. Assume, that the characteristic functions χ_{C_1} and χ_{C_2} of C_1 and C_2 are perfect colorings of G with the same eigenvalue λ, i.e., with the parameters of type $(\lambda + i, s - \lambda - i; i, s - i)$ $(\lambda + j, s - \lambda - j; j, s - j)$ where s is graph’s degree. Then the characteristic function $\chi_{C_1 \cup C_2}$ of the union is a perfect coloring of G with the parameters $(\lambda + i + j, s - \lambda - i - j; i + j, s - i - j)$.

4 Codes and colorings. Proof of Theorem 1

In this section we construct a class of perfect 2-colorings of H_{24}^{odd} with the parameters announced in Theorem 1. The support of the first color of a coloring will be constructed as the union of cosets of one linear code and the neighborhoods of cosets of the Goley code.

The set of the binary n-words (i.e., $V(H_n)$) will be denoted by E^n and considered as an n-dimensional vector space over the two-element field with the modulo 2 calculations. The distance $\rho(\cdot, \cdot)$ between two words is, as usual, the number of positions in which these words differ (which coincides with the natural graph metric in H_n). Recall that, by definition, an (n, M, d) code is a set from M vertices of H_n such that the distance between
any two different words is not less than \(d\). The neighborhood \(\Omega(C)\) of some set \(C \subset E^n\) is the set of all the words at the distance 1 from \(C\).

Let \(C_8\) and \(C_8'\) be two \((8, 16, 4)\) codes such that \(C_8 \cap C_8' = \{00000000, 11111111\}\) (for definiteness, \(C_8\) and \(C_8'\) can be defined as containing 00101110 and 01001110 respectively and closed with respect to the addition and with respect to the cyclic permutation of the first seven coordinates). Define the code

\[
F = \{(x + y, x + z, x + y + z) | x \in C_8, y, z \in C_8'\}.
\]

The distance coloring of a code \(C\) is a function on \(E^n\) defined as the distance between the given vertex and \(C\).

Lemma 3. The distance coloring of the code \(F\) is a perfect coloring of \(H_{24}\) and \(\overline{H}_{24}\) with matrices, respectively,

\[
\begin{pmatrix}
0 & 24 & 0 & 0 & 0 \\
1 & 0 & 23 & 0 & 0 \\
0 & 2 & 0 & 22 & 0 \\
0 & 0 & 3 & 0 & 21 \\
0 & 0 & 0 & 24 & 0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
0 & 0 & 276 & 0 & 0 \\
0 & 23 & 0 & 253 & 0 \\
1 & 0 & 44 & 0 & 231 \\
0 & 3 & 0 & 273 & 0 \\
0 & 0 & 36 & 0 & 240
\end{pmatrix}.
\]

In particular, the generated coloring of \(\overline{H}_{24}^{\text{odd}}\) is a 2-coloring with parameters \(((23, 253)(3, 273))\).

Proof. It is known \([4, 18.7.4]\) that (1) defines an extended perfect \((24, 2^{12}, 8)\) code, the Goley code. This means that the distance from any vertex to \(F\) is not more than 4. Moreover, the words with even number of ones (from \(V(\overline{H}_{24}^{\text{even}})\)) have colors 0, 2, 4; with odd (from \(V(\overline{H}_{24}^{\text{odd}})\)), colors 1, 3. So, a color-4 vertex is adjacent in \(H_{24}\) with 24 color-3 vertices; a color-3 vertex is adjacent with color-2 and color-4 vertices only, the number of neighbor color-2 vertices being 3, because there is exactly one code vertex at the distance 3 from the given vertex; the other colors can be checked similarly. The parameters of the perfect coloring of \(\overline{H}_{24}\) follow from Lemma 1. ▲

So, \(\chi_{\Omega(F)}\) is the first 2-coloring from the parameter series of Theorem 1. Taking disjoint translations of \(\Omega(F)\) and using Lemma 2 we would be able to construct 2-colorings with other parameters. In order to do it, we need as much as possible cosets by \(F\) at the mutual distance 4 from each other. Consider the set

\[
D = \{(x + y, x + z, x + y + z) | x \in C_8, y, z \in B_8\},
\]

where \(B_8\) is the \((8, 128, 2)\)-code containing 00000000 and, consequently, including \(C_8'\) (\(C_8\) and \(C_8'\) are defined before the definition of \(F\)).

Lemma 4. The set \(D\) is a \((24, 2^{18}, 4)\) code.

Proof. We first observe the validness of the three simple inequalities

\[
\begin{align*}
\rho((u, v, w), (u', v', w')) & \geq \rho(u + v + w, u' + v' + w'), \\
\rho((u, v, w), (u', v', w')) & \geq \rho(u, u') + \rho(v + w, v' + w'), \\
\rho((u, v, w), (u', v', w')) & \geq \rho(v, v') + \rho(u + w, u' + w').
\end{align*}
\]
Consider words $r = (x + y, x + z, x + y + z)$ and $r' = (x' + y', x' + z', x' + y' + z')$, where $x, x' \in C_8$, $y, y', z, z' \in B_8$. If $x \neq x'$, then, using (2) and the code distance 4 of C_8, we get $\rho(r, r') \geq \rho(x, x') \geq 4$. If $x = x'$ and $y \neq y'$, then (3) implies $\rho(r, r') \geq \rho(x + y, x' + y') + \rho(y, y') = 2\rho(y, y') \geq 4$. The case $x = x', z \neq z'$ is similar. So, different choices of x, y, and z lead to different words with the mutual distance at least 4 from each other. The number of all such the words is $|C_8| \cdot |B_8|^2 = 2^{18}$.

Since F and D are linear subspaces and, obviously, $F \subset D$, we can partition D into 64 cosets by F; denote them F_1, F_2, \ldots, F_{64}. Lemma 4 implies that the neighborhoods of these cosets are mutually disjoint; therefore, applying Lemma 2, we can construct perfect colorings of \overline{H}_{24}^{odd} with parameters of type $((20 + 3i, 256 - 3i)(3i, 276 - 3i)), i = 1, \ldots, 64$. In order to cover the larger specter of parameters, we will need one more code:

$$L = \{(x, y, y + z)|x, y \in B, z \in C_1\}$$

Lemma 5. The characteristic function χ_L is a perfect coloring of \overline{H}_{24}^{even} with parameters $((28, 248)(8, 268))$.

Proof. Let as represent L as

$$L = \{(x, w)|x \in B, w \in C_{16}\}$$

where $C_{16} = \{(y, y + z)|y \in B, z \in C_1\}$ is a $(16, 2^{11}, 4)$ code.

1) Consider a code vertex (x, w) from C_{16}. The words of C_{16} adjacent with (x, w) in \overline{H}_{24}^{even} have the type $(x + e, w)$, where e is an arbitrary word with exactly two ones. Since the number of such the words e is 28, every code vertex is adjacent with exactly 28 code vertices and, consequently, with 248 non-code vertices.

2) Consider a non-code vertex (x, w) of \overline{H}_{24}^{even}. If $x \notin B$, then the code vertices of \overline{H}_{24}^{even} that are adjacent with (x, w) are of type $(x + e, w + e')$ where each of the words e and e' has exactly one one. The word e can be chosen in 8 ways, while e', in not more than one way (otherwise C_{16} contains two words at the distance 2 from each other). So, the number of code vertices that are adjacent with (x, w) does not exceed 8. If $x \in B$, then $w \notin C_{16}$, and the code vertices adjacent with (x, w) are of type $(x, w + e'')$ where e'' has exactly two ones. The number of ways to choose e'' is not more than 8 (otherwise C_{16} contains two words at the distance 2 from each other). So, every non-code vertex is adjacent with not more than 8 code ones. On the other hand, as follows from 1), the number of edges connecting code and non-code vertices equals $2^{18} \cdot 248$ (where 2^{18} the number of the code vertices), which coincides with $(2^{23} - 2^{18}) \cdot 8$, where $2^{23} - 2^{18}$ the number of the non-code vertices \overline{H}_{24}^{even}. We conclude that every non-code vertex is adjacent with exactly 8 code vertices and, consequently, with 268 non-code ones.

Let us consider the set

$$N = \{(x + 00000001, y + 00000001, z + 00000001)|x, y, z \in B\} \subset \overline{H}_{24}^{odd}$$

and partition it into the 8 cosets L_1, \ldots, L_8 by L. Since the distance from D to N is 3, we see that all the sets $\Omega(F_1), \Omega(F_2), \ldots, \Omega(F_{64}), L_1, \ldots, L_8$ are mutually disjoint and, applying Lemma 2 get the following:
Lemma 6. For any \(i \in \{0, 1, \ldots, 64\} \), \(j \in \{0, 1, \ldots, 8\} \), \(0 < i + j < 72 \), the characteristic function of the union of \(i \) sets from \(\Omega(F_1), \Omega(F_2), \ldots, \Omega(F_{64}) \) and \(j \) sets from \(L_1, \ldots, L_8 \) is a perfect coloring with parameters \(((20 + 3i + 8j, 256 - 3i - 8j)(3i + 8j, 276 - 3i - 8j)))\).

Since all the numbers from 1 to 128 except 1, 2, 4, 5, 7, 10, 13 can be represented as \(3i + 8j \), Theorem 1 is proved.

5 Proof of Theorem 2. The nonexistence

In this section we prove the nonexistence of perfect colorings with parameters \(((20 + c, 256 - c)(c, 276 - c))\) for \(c = 1, 2, 4, 5, 7 \). A set \(S \subset V(\overline{H}_{24}^{\text{even}}) \) is called a sphere iff it consists of all the 24 vertices at the distance 1 from some fixed vertex in \(V(\overline{H}_{24}^{\text{odd}}) \).

In the following proof the notion of type \(V_{24} \), where \(V \subset \{1, \ldots, 24\} \), means the binary length-24 word with the nonzero-position set \(V \).

Lemma 7. Assume that the characteristic function \(\chi_C \) of a set \(C \subset V(\overline{H}_{24}^{\text{even}}) \) is a perfect coloring of \(\overline{H}_{24}^{\text{even}} \) with parameters \(((20 + c, 256 - c)(c, 276 - c))\). If \(c \leq 7 \), then \(C \) is the union of spheres.

Proof. We consider only the two cases of \(((25, 251)(5, 271))\) and \(((27, 249)(7, 269))\), because the other cases are proved similarly.

In the first case, \(c = 5 \). Let us take an arbitrary \(v \) from \(C \) and show that it belongs to a sphere included to \(C \). W.l.o.g. we can assume \(v = 000000000000000000000000 \). A pair \(\{i, j\} \) of coordinates from 1 to 24 is called code iff \(\{i, j\}_{24} \in C \). As follows from the parameter matrix, there are exactly 25 code pairs. Moreover, \(c = 5 \) also implies that

\((*)\) a non-code pair intersects with at most four code pairs (the fifth neighbor will be \(v \)).

Consider the cases:

1) If some \(i \)th coordinate belongs to 23 code pairs, then the corresponding words together with \(v \) constitute a sphere, which proves the statement for this case.

2) If some \(i \)th coordinate belongs to less than 23 and more than 4 code pairs, then \(i \) belongs to some non-code pair, contradicting (*)

3) If some \(i \)th coordinate belongs to exactly 4 code pairs, then there is a code pair \(\{j, k\} \) disjoint with all of them. Then the non-code pair \(\{i, j\} \) contradicts (*)

4) Assume that there is no a coordinate that belongs to more than 3 code pairs. Since the number of code pairs is greater than 24, there is a coordinate \(i \) that belongs to some 3 code pairs \(\{i, j_1\}, \{i, j_2\}, \{i, j_3\} \). It is easy to count that among the remaining 20 coordinates there is \(j \) that belongs to two code pairs. Then the non-code pair \(\{i, j\} \) contradicts (*).

For the case \(c = 5 \), the claim of the lemma is proved.

Let us consider the case \(((27, 249)(7, 269))\), i.e., \(c = 7 \). In general, the idea of the proof is similar to the previous considered case, but now we will consider not one but two neighbor vertices of first color and show that for any coloring of the neighborhood of these two vertices the condition \(a = 27 \) contradicts to \(c = 7 \) (assuming that \(C \) is not the union of spheres).
By C' we denote the union of the spheres included in C; by C'', the set $C \setminus C'$. We have to prove that C'' is empty. Suppose the contrary. Let k be the maximum cardinality of the intersection of C and a sphere that contains at least one vertex from C''. Since such a sphere must contain a vertex not from C, we have

$$k \leq c = 7. \quad (5)$$

W.l.o.g. we can assume that $\bar{0} = 00000000000000000000000000000000 \in C''$ and $\{1, 2\}_{24}, \{1, 3\}_{24}, \ldots, \{1, k\}_{24} \in C$.

Let us consider three matrices whose rows are words of C from the neighborhoods of $\bar{0}$ and $\{1, 2\}_{24}$. The rows of the matrix A_1 are the weight-2 vectors different from $\{1, 2\}_{24}$ and non-adjacent with $\{1, 2\}_{24}$. The weight-2 (weight-4) vectors adjacent with $\{1, 2\}_{24}$ form the matrix A_2 (respectively, A_3). The vectors $\bar{0}$ and $\{1, 2\}_{24}$ themselves are not included to one of the matrices. The matrices A_1 and A_2 (as well as A_2 and A_3) have, summarily, $a - 1 = 26$ rows, which with $\{1, 2\}_{24}$ (respectively, $\bar{0}$) form the intersection of C and the neighborhood of $\bar{0}$ (respectively, $\{1, 2\}_{24}$). Denoting the height of A_i by h_i, we have

$$h_1 + h_2 = h_2 + h_3 = 26.$$

Moreover, from the definition of k we deduce

$$h_2 \leq 2k - 4,$$

because the rows of A_2 have the form $\{1, j\}_{24}$ (not more than $k - 2$ rows, because together with $\bar{0}$ and $\{1, 2\}_{24}$ they belong to the sphere centered in $\{1\}_{24}$ or $\{2, j\}_{24}$ (similarly).

Since every row of A_1 and A_2 contains exactly two ones, the total number of ones in A_1 and A_2 is 52. Thus, there is a column that contains (summarily in the two matrices) at least three ones, which means by the definition of k that

$$k \geq 4. \quad (6)$$

Every row of A_3 contains four ones. In summary, the number of ones in the three matrices equals

$$2h_1 + 2h_2 + 4h_3 = 2 \cdot 26 + 2(26 - h_2) + 2h_3 \geq 104 - 2(2k - 4) + 2h_3 = 112 - 4k + 2h_3 \quad (7)$$

($2h_3$ corresponds to the ones in the first two columns of A_3 and will be canceled in the following estimation).

Let us estimate this value from the other side. We call the columns with the numbers at most (more than) k the left (respectively, right) part of the matrix.

(a) The left part of A_1 contains at most $(k - 2)(k - 1)$ ones. Indeed, the first two columns of A_1 are zero; and, by the definition of k, any other column contains at most $k - 1$ ones.

(b) The left part of A_2 contains at most $4(k - 2)$ ones. Indeed, as noted above, A_2 has at most $2(k - 2)$ rows, every row containing exactly two ones.

(c) The right parts of the three matrices contain summarily at most $(24 - k)(7 - k)$ ones. Indeed, if for some $j > k$ the jth columns of A_1, A_2, and A_3 contain more than $7 - k$
ones, then the word \(\{1, j\}_{24} \not\in C \) has more than 7 neighbors from \(C \) (the corresponding rows plus \(0, \{1, 2\}_{24}, \{1, 3\}_{24}, \ldots , \{1, k\}_{24} \)), which contradicts to the parameter \(c = 7 \).

Let us consider separately two subcases:

I. \(\{1, 2\}_{24} \in C'' \). In this case we additionally have the following:

(d) The left part of \(A_3 \) contains at most \(2h_3 + (k – 2)(k – 1) \) ones. (Similarly to (a), but the first two columns consist of ones.)

In summary, estimating the total number of ones in \(A_1, A_2, \) and \(A_3 \) from (a)-(d) and taking into account \(\[\square\] \), we have

\[
112 – 4k + 2h_3 \leq (k – 2)(k – 1) + 4(k – 2) + 2h_3 + (k – 2)(k – 1) + (24 – k)(7 – k).
\]

I.e.,

\[
3k^2 – 29k + 52 \geq 0,
\]

which does not hold for the values \(k = 4, 5, 6, 7 \) satisfying \(\[\Box\] \) and \(\[\Box\] \). This contradiction proves the statement for the subcase I.

II. \(\{1, 2\}_{24} \in C' \). Then, \(C \) includes a sphere centered in \(\{1, 2, j\}_{24} \) for some \(j \). Consequently, \(A_3 \) contains all rows of type \(\{1, 2, j, i\}_{24}, i \in \{3, \ldots , 24\} \setminus \{j\} \); thus, every column of \(A_3 \) contains a one. Taking into account (c), we get the following:

(e) The right parts of \(A_1 \) and \(A_2 \) contain at most \((24 – k)(6 – k) \) ones summarily.

As noted above, the total number of ones in \(A_1 \) and \(A_2 \) is 52. On the other hand, as follows from (a), (b), and (e), it is not greater than

\[
(k – 2)(k – 1) + 4(k – 2) + (24 – k)(6 – k) = 2k^2 – 29k + 138.
\]

We deduce that \(2k^2 – 29k + 86 \geq 0 \), which is not true if \(5 \leq k \leq 7 \), but holds for \(k = 4 \).

Let us consider this remaining subcase. We have: \(\{1, 2\}_{24}, \{1, 3\}_{24}, \{1, 4\}_{24} \in C; \) moreover, \(\{1, 2\}_{24} \) belongs to a sphere included in \(C \). The center of the sphere has the form \(\{1, 2, j\}_{24} \) (it cannot contain only one one, because \(0 \in C'' \)). Then, \(\{1, j\}_{24} \in C; \) so, \(j \) is 3 or 4. Assume w.l.o.g. that \(j = 3 \). We claim that

(**) \(\{1, 4\}_{24} \in C'' \). Suppose, by contradiction, that \(\{1, 4\}_{24} \) belongs to a sphere included in \(C \). Similarly to the arguments above, the center of the sphere must have the form \(\{1, j, 4\}_{24} \) where \(j \) is 2 or 3. But the spheres with centers \(\{1, 2, 3\}_{24} \) and \(\{1, j, 4\}_{24} \) have nonempty intersection. A vertex from the intersection belongs to \(C \) and has at least 45 neighbors from \(C \) (1 + 45 is the cardinality of the union of the two spheres), which contradicts to \(a = 27 \). The claim (**) is proved.

So, interchanging the second and the fourth coordinates leads to the case I. \(\square \)

Lemma 8. Let \(C \subseteq V(\overline{H}_{24}^{\text{even}}) \) be the union of spheres; and let the characteristic function \(\chi_C \) be a perfect coloring of \(\overline{H}_{24}^{\text{even}} \) with \(((20 + c, 256 – c)(c, 276 – c)) \). Then either \(c \) is divisible by 3, or \(c \geq 25 \).

Proof. If \(C \) includes two intersecting spheres, then their union contains 46 vertices, and a common vertex is adjacent with the other 45 vertices of the union. Thus, \(20 + c \geq 45 \), i.e., \(c \geq 25 \).

If, otherwise, \(C \) consists of disjoint spheres, then every vertex from \(V(\overline{H}_{24}^{\text{even}}) \setminus C \) is adjacent with exactly three vertices from each neighbor sphere; thus, \(c \equiv 0 \) mod 3. \(\square \)
Since the values $c = 1, 2, 4, 5, 7$ contradict Lemmas 7 and 8, Theorem 2 is proved. Moreover, we can conclude that a perfect coloring with parameters $((23, 253)(3, 273))$ is unique up to graph automorphisms.

6 Conclusion

For the conclusion, we list all values of c from 1 to 128 in a table. The sign "−" means the nonexistence of perfect colorings with parameters $(20 + c, 256 − c; c, 276 − c)$ in \mathbb{H}_{24}; "+", the existence, "?" the question is open. A circle means that a coloring with these parameters can be constructed as a union of cosets of the neighborhood of the Goley code; a box, as a union of cosets of the linear code L.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	−	−	⊕	−	−	⊕	−	+	+	?	+	?	+	⊕	+	+
17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	
33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	
49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	
65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	
97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	
113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	

References

[1] D. G. Fon-Der-Flaass. Perfect 2-Colorings of a Hypercube. *Sib. Math. J.*, 48(4):740–745, 2007. [DOI: 10.1007/s11202-007-0075-4](http://dx.doi.org/10.1007/s11202-007-0075-4) translated from *Sib. Mat. Zh.*, 48(4):923–930, 2007.

[2] D. G. Fon-Der-Flaass. Perfect Colorings of the 12-Cube That Attain the Bound on Correlation Immunity. *Sib. Ehlektron. Mat. Izv.*, 4:292–295, 2007. (Russian). Online: http://semr.math.nsc.ru/v4/p292-295.pdf

[3] D. Fon-Der-Flaass. A bound on correlation immunity. *Sib. Ehlektron. Mat. Izv.*, 4:133–135, 2007. Online: http://semr.math.nsc.ru/v4/p133-135.pdf

[4] F. J. MacWilliams and N. J. A. Sloane. *The Theory of Error-Correcting Codes*. Amsterdam, Netherlands: North Holland, 1977.
О совершенных раскрасках половинчатого 24-куба*

Д. С. Кротов

Аннотация

Раскраска вершин графа называется совершенной с параметрами \((a_{ij})_{i,j=1}^k\), если для всех \(i, j \in \{1, ..., k\}\) каждая вершина цвета \(i\) смежна ровно с \(a_{ij}\) вершинами цвета \(j\). Рассматриваются совершенные раскраски в два цвета графа расстояний 2 гиперкуба \(\{0, 1\}^24\) с параметрами \(((20 + c, 256 - c)(c, 276 - c))\) (т. е., с собственным значением 20). Мы доказываем, что такие раскраски существуют при всех \(c\) от 1 до 128 кроме 1, 2, 4, 5, 7, 10, 13 и не существуют при \(c = 1, 2, 4, 5, 7\).

1 Введение

Мы изучаем раскраски в два цвета вершин графа расстояний два 24-мерного гиперкуба, являющихся совершенными раскрасками с собственным числом 20. Интерес именно к этим параметрам обусловлен следующими причинами.

Во-первых, известен вопрос существования совершенных раскрасок гиперкуба (то есть его графа расстояний 1) размерности 24 с параметрами \(((1, 23)(9, 15)), ((2, 22)(10, 14)), ((3, 21)(11, 13)), ((5, 19)(13, 11)), ((7, 17)(15, 9))\) (согласно [1, 3, 2], вопрос существования совершенных раскрасок \(n\)-куба с фиксированными параметрами полностью исследован для \(n < 24\)). Раскраски с этими параметрами соответствовали бы раскраскам графа расстояний 2 с параметрами из исследуемого класса (подробнее об связи параметров раскрасок графов расстояний 1 и 2 см. раздел [2]).

Во-вторых, интересен факт, что, комбинируя две совершенно разнородные конструкции, удается покрыть большой спектр из 121 набора параметров.

Пусть \(G\) – простой граф, \(I\) – конечное множество, элементы которого будем называть цветами. Отображение \(T : V(G) \to I\) называется совершенной раскраской с матрицей параметров \((s_{ij})_{i,j \in I}\), если оно сюрJECTивно и для каждой \(i, j\) у каждой вершины цвета \(i\) число соседей цвета \(j\) равно \(s_{ij}\).

Через \(H_n\) обозначим гиперкуб размерностью \(n\) (вершины гиперкуба, или \(n\)-куба, – двоичные слова длины \(n\); два слова смежны если и только если они различаются ровно в одной позиции; расстояние между двумя словами есть число позиций, в которых слова различны). Граф расстояний 2 гиперкуба будем обозначать через \(\Pi_n\) (два слова смежны если и только если они различаются ровно в двух позициях), его

*Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (проект 08-01-00673-а)
степень равна $n(n-1)/2$. Поскольку этотграф состоит из двух компонент связности, известные как половинчатые (halved) n-кубы обозначим их $\overline{H}_{n}^{\text{even}}$ и $\overline{H}_{n}^{\text{odd}}$, с точки зрения совершенных раскрасок достаточно рассматривать одну из компонент.

Как правило, мы будем рассматривать раскраски в два цвета, или 2-раскраски; матрицу параметров будем записывать в виде $((a, b)(c, d))$. Заметим, что, нужным образом упорядочив цвета, всегда можно добиться $b \geq c$. Если граф регулярный степени s, необходимыми условием существования совершенной раскраски с параметрами $((a, b)(c, d))$ является $a + b = c + d = s$. Таким образом, степень графа является собственным числом матрицы параметров. Вторым собственным числом матрицы является $a - c = d - b$, это значение будет считать собственным числом совершенной раскраски и её параметров. Часто удобно считать 2-раскраску характеристической функцией некоторого множества, в этом случае первым цветом договаримся считать 1, вторым - 0.

В данной работе исследуются возможные параметры совершенных раскрасок в два цвета графа $\overline{H}_{24}^{\text{even}}$ с собственным числом 20, т.е. параметры вида $((20 + c, 256 - c)(c, 276 - c))$. Результатом являются следующие два утверждения.

Теорема 1. Совершенные раскраски графа $\overline{H}_{24}^{\text{even}}$ с параметрами вида $((20 + c, 256 - c)(c, 276 - c))$ существуют при $c = 3, 6, 8, 9, 11, 12$ и всех c от 14 до 128.

Теорема 2. Не существует совершенных раскрасок графа $\overline{H}_{24}^{\text{even}}$ с параметрами вида $((20 + c, 256 - c)(c, 276 - c))$ при c равном 1, 2, 4, 5 или 7.

Значения 10 и 13 остаются под вопросом, однако, доказанное уже позволяет отметить разрывы в спектре допустимых значений. Теоремы 1 и 2 будут доказаны в разделах 4 и 5. В разделе 2 показано, что совершенная раскраска графа H_{n} является совершенной раскраской графа \overline{H}_{n} и установлена связь параметров этих раскрасок. В разделе 3 указано на возможность комбинирования 2-раскрасок (произвольного графа) с одинаковым собственным числом, при условии непересекаемости носителей одного из цветов.

2 Связь совершенных раскрасок графов H_{n} и \overline{H}_{n}

Лемма 1. Совершенная раскраска с матрицей S графа H_{n} является совершенной раскраской с матрицей $1/2(S^{2} - nE)$ графа \overline{H}_{n} на том же множестве вершин (E - единичная матрица).

Доказательство. Рассмотрим совершенную раскраску T графа H_{n} с матрицей параметров S. Цветовым составом $T(M)$ множества вершин M графа H_{n} назовём набор из $|P|$ чисел каждого из которых обозначает число вершин соответствующего цвета в множестве M. Для произвольной вершины v графа H_{n} цветовой состав множества $\{v\}$ состоит из нулей во всех позициях, кроме $T(v)$, где стоит единица. Обозначим через $D_{1}(v)$ и $D_{2}(v)$ множество вершин на расстоянии 1 и 2 от v, соответственно. По определению совершенной раскраски имеем $T(V_{1}(v)) = ST(\{v\})$. Посуммировав эту
формулу по окрестности $D_1(w)$ некоторой фиксированной вершины w, получим

$$
\sum_{v \in D_1(w)} \sum_{u \in D_1(v)} T(u) = \sum_{v \in D_1(w)} T(V_1(v)) = \sum_{v \in D_1(w)} ST\{\{v\}\} = S \sum_{v \in D_1(w)} T\{\{v\}\} = S^2 T\{\{w\}\}.
$$

С другой стороны, в сумме слева индекс u дважды пробегает вершины $D_2(w)$ и n раз — саму вершину w. Таким образом, эта сумма равна также $nT(w) + 2T(D_2(w))$, откуда

$$
T(D_2(w)) = 1/2(S^2 T\{\{w\}\} - nT\{\{w\}\}),
$$

что и требовалось доказать.

Отметим, что может оказаться, что в каждой компоненте связности графа \overline{H}_n будут встречаться не все цвета, то есть граф \overline{H}_n^{ven} (как и \overline{H}_n^{odd}) будет раскрашен в меньшее число цветов (см. например Лемму [3]).

В следующей таблице приведены все возможные параметры совершенных раскрасов в два цвета графа H_{24}, которые соответствуют совершенным раскрасам \overline{H}_{24} с собственным числом $\lambda = 20$ ($20 = \frac{s^2-24}{2} = \frac{(-8)^2-24}{2}$). Про существование раскрасок с параметрами, зазначёнными серым цветом, в настоящее время ничего не известно, раскраски с остальными параметрами существуют [1, 2].

H_{24}	\(\lambda = -8\)	H_{24}	\(\lambda = 8\)	H_{24}	\(\lambda = 20\)
$\lambda = -8$					
$\lambda = 8$					
$\lambda = 20$					

3 Объединение цветов двух раскрасов с общим собственным числом

Следующая лемма, вытекающая непосредственно из определений, позволяет объединять непересекающиеся носители цветов различных раскрасов с одинаковым общим собственным числом.

Лемма 2. Пусть C_1 и C_2 — два непересекающихся подмножества множества вершин $V(G)$ простого регулярного графа G, причём $C_1 \cup C_2 \neq V(G)$. И предположим, что характеристические функции χ_{C_1} и χ_{C_2} множеств C_1 и C_2 являются совершенными раскрасами G с одинаковым общим собственным числом λ, то есть с параметрами вида $(\lambda + i, s - \lambda - i; i, s - i)$ и $(\lambda + j, s - \lambda - j; j, s - j)$ где s — степень графа. Тогда характеристическая функция $\chi_{C_1 \cup C_2}$ объединения есть совершенная раскраска G с параметрами $(\lambda + i + j, s - \lambda - i - j; i + j, s - i - j)$.

4 Коды и раскраски. Доказательство теоремы [1]

В этом разделе мы построим класс совершенных раскрасок графа \overline{H}_{24}^{odd} с параметрами, анонированными в теореме [1] Носитель первого цвета будет строиться как объ-
единение смежных классов одного линейного кода и окрестностей смежных классов кода Голея.

Множество двоичных слов длины \(n \) (т.е. \(V(H_n) \)) будем обозначать через \(E^n \) и рассматривать как \(n \)-мерное векторное пространство над полем из двух элементов, с вычислениями по модулю 2. Под расстоянием \(\rho(\cdot, \cdot) \) между двумя словами будем, как обычно, подразумевать число позиций, в которых эти два слова различны (что совпадает с естественной метрикой в графе \(H_n \)). Напомним, что \((n, M, d)\)-кодом называется множество из \(M \) вершин \(H_n \), такое, что расстояние между любыми двумя различными вершинами не меньше \(d \). Окестростиность \(\Omega(C) \) некоторого множества \(C \) будем считать множество слов на расстоянии 1 от \(C \).

Пусть \(C_8 \) и \(C_8' \) - два \((8, 16, 4)\)-кода таких, что \(C_8 \cap C_8' = \{00000000, 11111111\} \) (для определённости, \(C_8 \) и \(C_8' \) можно определить как содержащие 00101110 и 01001110 соответственно и замкнутые относительно сложения и циклической перестановки первых семи координат). Определим код

\[
F = \{(x + y, x + z, x + y + z) | x \in C_8, y, z \in C_8'\}.
\]

Дистанционной раскраской кода \(C \) назовём функцию, сопоставляющую каждой вершине из \(H_n \) расстояние от неё до \(C \).

Лемма 3. Дистанционная раскраска кода \(F \) есть совершенная раскраска графов \(H_{24} \) и \(\overline{H}_{24} \) с матрицами, соответственно,

\[
\begin{pmatrix}
0 & 24 & 0 & 0 & 0 \\
1 & 0 & 23 & 0 & 0 \\
0 & 2 & 0 & 22 & 0 \\
0 & 0 & 3 & 0 & 21 \\
0 & 0 & 0 & 24 & 0
\end{pmatrix}
\quad \text{и} \quad
\begin{pmatrix}
0 & 0 & 276 & 0 & 0 \\
0 & 23 & 0 & 253 & 0 \\
1 & 0 & 44 & 0 & 231 \\
0 & 3 & 0 & 273 & 0 \\
0 & 0 & 36 & 0 & 240
\end{pmatrix}.
\]

В частности, порождённая раскраска графа \(\overline{H}_{24}^{\text{odd}} \) есть 2-раскраска с параметрами \((23, 253)(3, 273))\).

Доказательство. Известно [18, 7, 4], что \(\Pi \) задаёт расширенный совершенный \((24, 2^{12}, 8)\)-код, известный как код Голея. Это означает, что расстояние от любой вершины до кода не больше четырёх. Кроме того, вершины с чётным числом единиц (из \(V(\overline{H}_{24}^{\text{even}}) \)) имеют цвета 0, 2, 4, а с нечётным (из \(V(\overline{H}_{24}^{\text{odd}}) \)) – цвета 1, 3. Таким образом, вершины цвета 4 смежны в \(H_{24} \) с 24 вершинами цвета 3; вершины цвета 3 смежны только с вершинами цветов 2 и 4, причём смежных вершин цвета 2 ровно 3, поскольку на расстоянии 3 от данной находится только одна кодовая вершина; аналогично проверяются другие цвета. Параметры раскраски графа \(\overline{H}_{24} \) следуют из леммы \(\Pi \). ▲

Таким образом, \(\chi_{\Omega(F)} \) есть первая совершенная 2-раскраска из серии, описанной теоремой \(\Pi \). Взяв неперекрывающиеся свидети \(\Omega(F) \) и воспользовавшись леммой \(\Pi \), мы можем строить раскраски с другими параметрами. Для этого нам нужно набрать как можно больше смежных классов по \(F \) на расстоянии не менее 4 друг от друга. Рассмотрим множество

\[
D = \{(x + y, x + z, x + y + z) | x \in C_8, y, z \in B_8\}.
\]
где B есть $(8,128,2)$-код, содержащий 00000000 и, следовательно, включающий C'_8 (C_8 и C'_8 вводились перед определением кода F \(\Box\)).

Лемма 4. Множество D есть $(24, 2^{18}, 4)$-код.

Доказательство. Для начала отметим три простых неравенства

\[
\rho((u, v, w), (u', v', w')) \geq \rho(u + v + w, u' + v' + w'),
\]
\[
\rho((u, v, w), (u', v', w')) \geq \rho(u, u') + \rho(v + w, v' + w'),
\]
\[
\rho((u, v, w), (u', v', w')) \geq \rho(v, v') + \rho(u + w, u' + w').
\]

Рассмотрим слова $r = (x + y, x + z, x + y + z)$ и $r' = (x' + y', x' + z', x' + y' + z')$, где $x, x' \in C_8, y, y', z, z' \in B_8$. Если $x \neq x'$, то, воспользовавшись \(2\) и расстоянием 4 кода C_8, получаем $\rho(r, r') \geq \rho(x, x') \geq 4$. Если $x = x'$ и $y \neq y'$, то из \(3\) имеем $\rho(r, r') \geq \rho(x + y, x' + y') + \rho(y, y') = 2\rho(y, y') \geq 4$. Случай $x = x'$, $z \neq z'$ аналогичен. Таким образом, при разных выборах x, y и z мы будем получать разные слова с хотя бы 4 не равными расстоянием не менее 4 друг от друга. Число всех таких слов равно $|C_8| \cdot |B_8|^2 = 2^{18}$. \(\Box\)

Поскольку F и D есть линейные подпространства и, очевидно, $F \subset D$, мы можем разбить D на 64 смежных класса по F, обозначим их F_1, F_2, \ldots, F_{64}. Из леммы \(4\) следует, что окрестности этих смежных классов не пересекаются и, воспользовавшись леммой \(2\), мы можем строить совершенные раскраски графа \overline{H}_{24}^{odd} с параметрами вида $((20 + 3i, 256 - 3i)(3i, 276 - 3i))$, $i = 1, \ldots, 64$. Чтобы накрыть большую площадь параметров, нам понадобится еще один код:

\[
L = \{(x, y, y + z)|x, y \in B, z \in C_1\}
\]

Лемма 5. Характеристическая функция χ_L есть совершенная раскраска графа \overline{H}^{even}_{24} с параметрами $\{28, 248(8, 268)\}$.

Доказательство. Представим L в виде

\[
L = \{(x, w)|x \in B, w \in C_{16}\}
\]

где $C_{16} = \{(y, y + z)|y \in B, z \in C_1\}$ есть $(16, 2^{11}, 4)$-код.

1) Рассмотрим кодовую вершину (x, w) из C_{16}. Слова кода C_{16}, смежные вершине (x, w) в \overline{H}_{24}^{even}, имеют вид $(x + e, w)$, где e — произвольное слово с двумя единицами. Поскольку таких слов e ровно 28, каждая кодовая вершина смежна с 28 кодовыми и, следовательно, с 248 некодовыми.

2) Рассмотрим некодовую вершину (x, w) графа \overline{H}^{even}_{24}. Если $x \notin B$, то кодовые вершины графа \overline{H}^{even}_{24}, смежные вершине (x, w), имеют вид $(x + e, w + e')$, e и e' содержат по одной единице ровно. Слово e можно выбрать восьмью способами, а e' — не более чем одним (иначе в C_{16} найдутся два слова на расстоянии 2 друг от друга). Таким образом, число кодовых вершин, смежных (x, w), не превосходит 8. Если $x \in B$, то $w \notin C_{16}$, и кодовые вершины, смежные вершине (x, w), имеют вид $(x, w + e')$, где e' содержат ровно две единицы. Число способов выбора e' не более 8 (иначе в C_{16} найдутся два слова на расстоянии 2 друг от друга). Таким образом, каждая некодовая вершина смежна не более чем с 8 кодовыми. С другой стороны,
как следует из п.1, число рёбер, соединяющих кодовые и некодовые вершины, равно $2^{18} \cdot 248$ (т.е. 2^{18} – число всех кодовых вершин), что совпадает с $(2^{23} - 2^{18}) \cdot 8$, где $2^{23} - 2^{18}$ – число всех некодовых вершин графа \overline{H}_{24}^{even}. Получается, что каждая некодовая вершина смежна ровно с 8 кодовыми и, следовательно, с 268 некодовыми. ▲

Рассмотрим множество

$$N = \{(x + 00000001, y + 00000001, z + 00000001) | x, y, z \in B \} \subset \overline{H}_{24}^{odd}$$

и разобъём его на 8 смежных классов L_1, \ldots, L_8 по L. Поскольку расстояние от D до N равно 3, все множества $\Omega(F_1), \Omega(F_2), \ldots, \Omega(F_{64}), L_1, \ldots, L_8$ попарно не пересекаются и, применяя лемму 2, получаем следующее:

Лемма 6. Для любых $i \in \{0, 1, \ldots, 64\}, j \in \{0, 1, \ldots, 8\}, 0 < i + j < 72$, характеристическая функция объединения i множеств из $\Omega(F_1), \Omega(F_2), \ldots, \Omega(F_{64})$ и j множеств из L_1, \ldots, L_8 есть совершенная раскраска с параметрами $((20 + 3i + 8j, 256 - 3i - 8j)(3i + 8j, 276 - 3i - 8j))$.

Поскольку в виде $3i + 8j$ могут быть представлены все числа от 3 до 128, кроме 4, 5, 7, 10, 13, теорема П доказана.

5 Доказательство теоремы 2

Несуществование

В этом разделе мы доказываем несуществование совершенных раскрасок с параметрами $((20 + c, 256 - c)(c, 276 - c))$ при $c = 1, 2, 4, 5, 7$. Множество $S \subset V(\overline{H}_{24}^{even})$ назовём **сферой**, если оно состоит из всех 24 вершин на расстоянии один от некоторой вершины (центра сферы) из $V(\overline{H}_{24}^{odd})$.

В доказательстве следующей леммы будем обозначать двоичные слова длины 24 в виде V_{24}, где V – множество ненулевых позиций слова.

Лемма 7. Предположим, что характеристическая функция χ_c множества $C \subset V(\overline{H}_{24}^{even})$ является совершенной раскраской графа \overline{H}_{24}^{even} с параметрами $((20 + c, 256 - c)(c, 276 - c))$. Если $c \leq 7$, то C есть объединение сфер.

Доказательство.

Мы рассмотрим только два случая $((25, 251)(5, 271))$ и $((27, 249)(7, 269))$, поскольку остальные доказываются аналогично.

В первом случае $c = 5$. Возьмём произвольную вершину v из C и покажем, что она принадлежит некоторой сфере, полностью содержащейся в C. Без потери общности будем считать, что $v = 0000000000000000000000000$.

Пару координат $\{i, j\}$ от 1 до 24 назовём **кодовой**, если $\{i, j\}_{24} \in C$. Из параметров совершенной раскраски следует, что кодовых пар ровно 25. Кроме того, поскольку $c = 5$,

(*) некодовая пара может пересекаться не более чем с четырьмя кодовыми (пятым соседом является вершина v).

Рассмотрим случай:

1. Если в некоторой i-й координате пересекаются 23 кодовые пары, то соответствующие слова вместе с v образуют сферу, что доказывает утверждение.
2) Если в некоторой \(i \)-й координате пересекаются от 5 до 23 кодовых пар, то \(i \) содержится в некоторой некодовой паре, что противоречит (*).

3) Если в некоторой \(i \)-й координате пересекаются ровно 4 кодовые пары, то найдётся кодовая пара \(\{ j, k \} \), не пересекающаяся ни с одной из них. Тогда некодовая пара \(\{ i, j \} \) противоречит (*).

4) Пусть ни в одной координате не пересекаются 4 или более кодовых пар. Поскольку кодовых пар больше чем 24, найдётся координата \(i \), в которой пересекаются 3 кодовые пары \(\{ i, j_1 \}, \{ i, j_2 \}, \{ i, j_3 \} \). Легко посчитать, что среди оставшихся 20 координат найдётся такая \(j \), в которой пересекаются минимум две кодовые пары. Тогда пара \(\{ i, j \} \) противоречит (*).

Для случая \(c = 5 \) утверждение леммы доказано.

Рассмотрим случай \(((27, 249)(7, 269))\), т.е. \(c = 7 \). В целом смысл доказательства похож на предыдущий рассмотренный случай, только теперь мы рассматриваем не одну, а две соседних вершины первого цвета и показываем, что при любом способе раскраски окрестности этих двух вершин выполнение условия \(a = 27 \) влечёт противоречие с условием \(c = 7 \) (предпологая от противного, что \(C \) не есть объединение сфер).

Через \(C'' \) обозначим объединение сфер, полностью содержащихся в \(C \); а через \(C''' \) – его дополнение до \(C \). Нам нужно доказать, что \(C''' \) – пустое множество. Предположим противное. Обозначим через \(k \) максимальную мощность пересечения кода \(C \) и сферы, содержащей хотя бы одну вершину из \(C'' \). Поскольку такая сфера обязана содержать вершину не из \(C \), имеем

\[
 k \leq c = 7.
\]

Без потери общности можем считать, что \(\emptyset = 0000000000000000000000000000000000000 \in C'' \) и \(\{1, 2\}_{24}, \{1, 3\}_{24}, \ldots, \{1, k\}_{24} \in C \).

Из слов кода \(C \), принадлежащих окрестности \(\emptyset \) или \(\{1, 2\}_{24} \), как из строк составим три матрицы. Строки матрицы \(A_1 \) есть векторы веса 2, отличные от \(\{1, 2\}_{24} \) и не лежащие в окрестности \(\{1, 2\}_{24} \). Векторы веса 2 (4, принадлежащие окрестности \(\{1, 2\}_{24} \), составляют матрицу \(A_2 \) (соответственно \(A_3 \)). Сами векторы \(\emptyset \) и \(\{1, 2\}_{24} \) не включены ни в одну матрицу. Матрицы \(A_1 \) и \(A_2 \) (как и \(A_2, A_3 \) состоят в совокупности из \(a - 1 = 26 \) строк, которые вместе с \(\{1, 2\}_{24} \) (соответственно с \(\emptyset \)) составляют пересечение \(C \) и окрестности \(\emptyset \) (соответственно \(\{1, 2\}_{24} \)). Обозначив высоту матрицы \(A_i \) через \(h_i \), имеем:

\[
 h_1 + h_2 = h_2 + h_3 = 26.
\]

Кроме того, из определения \(k \) имеем

\[
 h_2 \leq 2k - 4,
\]

поскольку строки \(A_2 \) имеют вид \(\{1, j\}_{24} \) (не более \(k - 2 \), поскольку вместе с \(\emptyset \) и \(\{1, 2\}_{24} \) принадлежат одной сфере) или \(\{2, j\}_{24} \) (аналогично).

Так как строки \(A_1 \) и \(A_2 \) содержат по две единицы, число единиц в этих двух матрицах равно 52. Значит, в каком-то из столбцов содержится (суммарно в двух матрицах) не менее трёх единиц, что по определению \(k \) означает

\[
 k \geq 4.
\]
Строки \(A_3 \) содержат по четыре единицы, значит в совокупности в трёх матрицах имеем
\[
2h_1 + 2h_2 + 4h_3 = 2 \cdot 26 + 2(26 - h_2) + 2h_3 \geq 104 - 2(2k - 4) + 2h_3 = 112 - 4k + 2h_3 \quad (7)
\]
единиц (2п.единиц в первых двух столбцах \(A_3 \) выделяем отдельно, чтобы потом сократить).

Оценим это число с другой стороны. Назовём столбцы с номерами не больше (больше) \(k \) левой (соответственно правой) частью матрицы.

(a) Левая часть матрицы \(A_1 \) содержит не более \((k - 2)(k - 1) \) единиц. Действительно, первые два столбца этой матрицы пустые, а каждый из оставшихся содержит не более \(k - 1 \) единиц, по определению \(k \).

(b) Левая часть матрицы \(A_2 \) содержит не более \(4(k - 2) \) единиц. Это следует из уже рассмотренного состава матрицы.

(c) Правые части всех трёх матриц содержат в совокупности не более \((24 - k)(7 - k) \) единиц. Действительно, если в \(j \)-м столбце, \(j > k \), матрицы \(A_1, A_2, A_3 \) содержат больше чем \((7 - k) \) единиц, то слово \(\{1, j\}_{24} \notin C \) имеет более 7 соседей из \(C \) (соответствующие строки плюс 0, \(\{1, 2\}_{24}, \{1, 3\}_{24}, \ldots, \{1, k\}_{24} \), что противоречит параметру \(c = 7 \).

Далее рассмотрим отдельно два случая:

I. \(\{1, 2\}_{24} \in C'' \). В этом случае имеем также следующее:

(d) Левая часть матрицы \(A_3 \) содержит не более \(2h_3 + (k - 2)(k - 1) \) единиц, (Аналогично (a), только первые два столбца состоят из единиц.)

Итого, оценив суммарное число единиц в \(A_1, A_2, A_3 \) согласно \((a)-(d) \) и учитывая \((7) \), имеем
\[
112 - 4k + 2h_3 \leq (k - 2)(k - 1) + 4(k - 2) + 2h_3 + (k - 2)(k - 1) + (24 - k)(7 - k).
\]

То есть,
\[
3k^2 - 29k + 52 \geq 0,
\]
что неверно при значениях \(k = 4, 5, 6, 7 \), удовлетворяющих \((5) \) и \((6) \). Получили противоречие.

II. \(\{1, 2\}_{24} \notin C'' \). Тогда \(C \) включает в себя сферу с центром \(\{1, 2, j\}_{24} \) для некоторого \(j \). Следовательно, матрица \(A_3 \) содержит все строки вида \(\{1, 2, j, i\}_{24}, i \in \{3, \ldots, 24\} \setminus \{j\} \), и, как следствие, каждый столбец \(A_3 \) содержит не менее одной единицы. Учитывая (c), получаем

(e) Правые части \(A_1 \) и \(A_2 \) содержат в совокупности не более \((24 - k)(6 - k) \) единиц.

Как мы уже отмечали, число единиц в матрицах \(A_1 \) и \(A_2 \) равно 52. С другой стороны, как следует из (a), (b) и (e), оно не превосходит
\[
(k - 2)(k - 1) + 4(k - 2) + (24 - k)(6 - k) = 2k^2 - 29k + 138.
\]

То есть получаем \(2k^2 - 29k + 86 \geq 0 \), что не верно для \(5 \leq k \leq 7 \), но справедливо при \(k = 4 \).
Этот последний оставшийся подслучай рассмотрим отдельно. Имеем: \{1, 2\}_{24}, \{1, 3\}_{24}, \{1, 4\}_{24} \in C$, причём \{1, 2\}_{24} принадлежит некоторой сфере, полностью лежащей в C. Центр этой сферы имеет вид \{1, 2, j\}_{24} (он не может содержать одну единицу, поскольку 0 \in C^m). Поскольку тогда \{1, j\}_{24} \in C, j$ есть 3 или 4. Рассмотрим случай $j = 3$ (второй аналогичен). Покажем, что

(**) \{1, 4\}_{24} \in C^m$. Пусть, от противного, вершина \{1, 4\}_{24} принадлежит некоторой сфере, полностью лежащей в C. Аналогично уже рассмотренному случаю с вершиной \{1, 2\}_{24}, центр этой сферы обязан иметь вид \{1, j, 4\}_{24}, где j есть 2 или 3. Но тогда сферы с центрами \{1, 2, 3\}_{24} и \{1, j, 4\}_{24} пересекаются. Точка пересечения принадлежит C и имеет не менее 45 соседей из C (1 + 45 есть мощность объединения двух сфер), что противоречит параметру $a = 27$. Утверждение (** доказано.

Теперь, поменяв местами вторую и четвёртую координаты, мы приходим к уже рассмотренному случаю I. ▲

Лемма 8. Пусть $C \subset V(H_{24}^{even})$ есть объединение сфер, и характеристическая функция χ_C есть совершенная раскраска графа H_{24}^{even} с параметрами $(20 + c, 256 - c)(c, 276 - c))$. Тогда либо с кратно 3, либо $c \geq 25$.

Доказательство. Если C включает в себя две пересекающихся сферы, то их объединение содержит 46 вершин, а любой (из двух) общий элемент смежен с остальными 45 вершинами объединения. Отсюда $20 + c \geq 45$, т. е. $c \geq 25$.

Если, в противном случае, C состоит из непересекающихся сфер, то каждая вершина графа H_{24}^{even} не из C смежна с тремя вершинами из каждой соседней сферы, откуда $c = 0 \mod 3$. ▲

Поскольку значения $c = 1, 2, 4, 5, 7$ противоречат леммам 7 и 8 теорем 2 доказана. Кроме того, можно сделать вывод, что совершенная раскраска с параметрами $(23, 253)(3, 273)$ единственно с точностью до автоморфизма графа.

6 Заключение

В заключение приведём таблицу все возможных значений параметра c от 1 до 128. Знак "−" означает несуществование совершенной раскраски с параметрами $(20 + c, 256 - c; c, 276 - c)$ в H_{24}, "+" — существование, "?" — вопрос существования открыт. Если плюс объединён в кружок, то раскраску с данными параметрами можно построить объединением смежных классов окрестности кода Голея, если в прямоугольник — объединением смежных классов линейного кода L.

9
Список литературы

[1] Д. Г. Фон-Дер-Флаасс. Совершенные 2-раскраски гиперкуба // Сиб. мат. журнал. 2007, 48(4), 923–930.

[2] Д. Г. Фон-Дер-Флаасс. Совершенные 2-раскраски 12-мерного куба, достигающие границы корреляционной иммунности // Сиб. электрон. мат. изв. 2007, 4, 292–295. Online: http://semr.math.nsc.ru/v4/p292-295.pdf

[3] D. Fon-Der-Flaass. A bound on correlation immunity // Сиб. электрон. мат. изв. 2007, 4, 133–135. Online: http://semr.math.nsc.ru/v4/p133-135.pdf

[4] Ф. Дж. Мак-Вильямс, Н. Дж. А. Слоэн. Теория кодов, исправляющих ошибки. M.: Связь, 1979.

Адрес автора: Статья поступила
Институт математики 19 марта 2008 г.
им. С. Л. Соболева СО РАН, пр-т Академика Компьенга, 4,
630090 Новосибирск, Россия.
E-mail: krotov@math.nsc.ru