The effect of ionic strength, pH and natural organic matter on heteroaggregation of CeO$_2$ nanoparticles with montmorillonite clay minerals

Sujin Bae1, John J. Lenhart2, Yu Sik Hwang1,3

1Environmental Fate & Exposure Research Group, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
2Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
3Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea

ABSTRACT
An accurate assessment of the fate and transport of engineered nanoparticles (ENPs) in aquatic environments hinges on developing an understanding of interaction between ENPs and natural colloids. In this study, we investigated the effects of pH and natural organic matter (NOM) on homoaggregation of CeO$_2$ nanoparticles and their heteroaggregation with montmorillonite clay minerals. Time-resolved dynamic light scattering (TR-DLS) was employed to investigate the aggregation kinetics as function of electrolyte concentration in both homo- and heteroaggregation scenarios. The surface charge of CeO$_2$ nanoparticles changed from positive to negative with pH increase while montmorillonite was negatively charged over the range of pH 4−11. At low pH, the critical coagulation concentration (CCC) of the montmorillonite-CeO$_2$ mixtures shifted to a lower electrolyte concentration when compared to the homogenous system, indicating the negatively charged montmorillonite reduced the stability of positively charged CeO$_2$ via heteroaggregation. In contrast, at high pH, the mixtures were stable because both montmorillonite and CeO$_2$ nanoparticles were negatively charged. The presence of humic acid stabilized the systems against homo- and heteroaggregation. Our results suggest that the complex interactions between ENPs, natural colloids, and NOM should be considered to better understand the fate and transport of ENPs in realistic aquatic environments.

Keywords: CeO$_2$ nanoparticle, Heteroaggregation, Homoaggregation, Montmorillonite, Natural organic matter
showed increased electrostatic and steric repulsion owing to the partial adsorption of NOM to the nanoparticle surface enhanced particle stability [27, 28]. Despite the abundance of clays in the environment, only a few studies have evaluated the aggregation of nanoparticles with clay in aqueous environments [20, 29-34]. These studies indicate the clays can destabilize positively and negatively charged nanoparticles across a range of pH and electrolyte conditions [20, 29, 31, 33, 34]. For example, Zhou et al. [29] studied the interactions of two of nanoparticles, Ag and TiO₂ and montmorillonite to understand how heteroaggregation can change the stability of nanoparticle/montmorillonite mixtures and Wang et al. [31] evaluated the effects of kaolin particles on the aggregation of TiO₂ or AgNPs in aqueous environments. In addition, Li et al. [33] observed the heteroaggregation of CoO₂ with natural colloids (kaolin and goethite). The abundance of natural clay particles and NOM nearly guarantees that their interactions will influence the fate of nanoparticles in the environment. As noted previously, however, there is insufficient information on how natural materials such as clay and NOM influence NP aggregation and fate.

In this study, the effect of pH and NOM on the homo- and heteroaggregation of nanoparticles with clay was investigated. CeO₂ NPs were selected as a model NP due to their commercial applications, being routinely used in fuel additives, catalytic converter, and other uses [35, 36]. Montmorillonite was chosen as a naturally occurring clay mineral, being the most often researched clay mineral [20, 27, 29, 32, 37]. Generally, montmorillonite has sheet-like structure and the faces of the lamellae have immutable negative charges owing to isomorphic substitutions, and pH-dependent charges develop on the surface hydroxyls at the edges [29, 32, 37]. The Suwannee River humic acid (SRHA) was chosen as a representative NOM. Time-resolved dynamic light scattering (TR-DLS) measurements were used to study the aggregation as a function of electrolyte concentration in homo- and hetero-aggregation scenarios. The results of this study suggest that heteroaggregation of nanoparticles with clay is influenced by aqueous environments such as ionic strength, pH and NOM.

2. Materials and Methods

2.1. Materials

Montmorillonite (SWy-2) was purchased from the Clay Minerals Society (Wyoming, USA) and prepared by modifying Tombácz et al.’s method [20]. To begin, 10 g/L montmorillonite was dispersed in deionized water by sonicating for 15 min (60 W) with an ultrasonic probe (Ultrasonic Homogenizer, Cole-parmer Instruments, USA) to break agglomerates. The suspension was then mixed using magnetic stirrer for 4 h. The size fraction of < 2 μm was isolated by overnight gravity sedimentation. The supernatant was collected and the electrolyte concentration was adjusted to be 1 M NaCl to obtain the monocationic montmorillonite. After mixing this suspension for 2 h, the clay particles were separated through centrifugation at 2,000 g for 10 min (Sorvall Legend X1R, Thermo Fisher, Germany). The supernatant was discarded and replaced with fresh 0.01 M NaCl. The suspension was vigorously shaken and subsequently centrifuged. This final washing procedure was repeated 5 times. The suspension was then transferred to dialysis tubing (10000 eMWCO, Spectrum Laboratories, USA) and dialyzed against 0.01 M NaCl. The dialysate was changed daily until the conductivity of the clay suspension was the same as 0.01 M NaCl. The concentration of montmorillonite stock suspension was determined by gravimetric analysis.

Bare CeO₂ (99.9%, 10-30 nm) with spherical shape was obtained as powder from SkySpring nanomaterials (Houston, USA). CoO₂ nanoparticle stock suspension (100 mg/L) was prepared by mixing with deionized water while sonicating for 30 min (60 W) [38]. The stock suspension was freshly prepared prior to experimental use. Suwannee River humic acid II (SRHA) standard was purchased from the International Humic Substances Society (St. Paul, MN, USA). A SRHA stock solution was prepared by dissolving 300 mg/L of SRHA in deionized water and raising the solution pH to 10 with 0.1 N NaOH to increase the solubility of HA [39]. The SRHA stock was stirred overnight, and filtered through 0.45 um filter. The concentration of filtered SRHA was analyzed by a total organic carbon analyzer (TOC-VCPN, Shimadzu, Tokyo, Japan). The concentrated SRHA stock solution (121.1 mg/L TOC) was stored at 4°C in the dark.

2.2. Particle Characterization

The morphology and size of the montmorillonite and CoO₂ particles were characterized using a transmission electron microscope (TEM, JEOL JEM-2010, Japan). About 10 μL of sample was dropped on the carbon coated copper TEM grid (CF200-Cu, Electron Microscopy Science, USA) and allowed to dry for the analysis. The electrokinetic mobility (EPMs) and hydrodynamic diameter of montmorillonite and CoO₂ particles were measured using a ZetaSizer Nano ZS90 instrument (Malvern Instruments Inc, Worcestershire, UK) at 1 mM NaCl as a function of pH. The EPMs of the samples were measured in folded capillary cells (Malvern, Worcestershire, UK) and measurement were repeated 6 times. For the measurement of hydrodynamic diameter at each pH, montmorillonite or CoO₂ suspensions were transferred to disposable cuvette (Kartell, Milan, Italy). Ten measurements were carried out for each sample.

2.3. Aggregation Kinetics

The effect of pH on the homoaggregation kinetics of montmorillonite and CoO₂ was determined across a range of pH (4, 6, and 10). Samples were prepared by combining aliquots of the stock particle suspensions titrated to the appropriate pH with appropriate amounts of NaCl and deionized water. pH was controlling using 1 M HCl (pH 4) or 1 M NaOH (pH 10). In each case, the final concentrations of montmorillonite or CoO₂ was 50 mg/L according to a previous study [29]. The environmental relevant concentrations of CoO₂ was 50 mg/L, but a high concentration of CeO₂ NPs (50 mg/L) was used for accomplishing a proper measurement with DLS.

The aggregation of binary montmorillonite/CoO₂ was determined on suspensions prepared in the same manner as those used in the single particle systems. When measuring heteroaggregation, the montmorillonite and CeO₂ suspensions were added simultaneously. In addition, the effect of CoO₂ concentration on the heteroaggregation was performed in systems with 50 mg/L montmorillonite and 5 to 50 mg/L CoO₂. To investigate the impact of NOM on heteroaggregation, predetermined amounts of the SRHA stock solutions
were added to the montmorillonite to get a final concentration of 5 mg/L TOC. The pH values of the suspensions were adjusted to the desired pH and allowed to equilibrate overnight. No aggregation of montmorillonite was observed during the equilibrium time.

The homo- and hetero-aggregation kinetics were determined by monitoring the hydrodynamic diameter as a function of time through time-resolved DLS measurement (ZetaSizer Nano ZS90, Malvern Instruments). The instrument was equipped with a 633 nm laser with a detection angle of 90 degrees and the experiments were conducted at a fluid viscosity of 0.8872 cP and a temperature of 25 ± 0.5°C. The total volume of the prepared suspensions for these measurements remained fixed at 1 mL. Immediately upon sample preparation, the samples were rapidly mixed by hand and placed in the sample holder. The measurements of hydrodynamic diameter (Dh) were started immediately after sample insertion and continued for 25 min at intervals of 15 s. The initial aggregation rate (k) of suspensions can be determined by fitting the initial linear increase [40] using the following equation:

\[\frac{1}{N_0 \alpha} \left(\frac{dD_h(t)}{dt} \right)_{t \to 0} \propto k \]

where \(N_0 \) is the initial particle concentration. In this study all samples have the same particle concentration (i.e., 50 mg/L) and thus the attachment efficiency (\(\alpha \)) was calculated by normalizing the initial rate of increase in \(D_h(t) \) in a given electrolyte concentration by the initial rate of increase in \(D_h(t) \) under favorable (fast) aggregation conditions (i.e., diffusion-limited conditions), where the rate is independent of electrolyte concentration, as follows [40]:

\[a = \frac{k}{k_{fast}} = \frac{1}{N_0} \left(\frac{dD_h(t)}{dt} \right)_{t \to 0} = \frac{1}{N_0} \left(\frac{dD_h(t)}{dt} \right)_{t \to 0, fast} \]

3. Results and Discussion

3.1. Material Characterization

Transmission electron microscopy (TEM) was used to characterize the morphology of the montmorillonite and CeO2 particles (Fig. 1). Montmorillonite particles were present as lamellae structure with roughly 300 nm to 500 nm in size (Fig. 1(a)). This is consistent with the method of preparation and reported particle morphology [20]. Montmorillonite was negatively charged over the range of pH studied and exhibited a slight decrease from \(-2.3 \times 10^{-8} \text{ m}^{2}/\text{Vs}\) to \(-3.4 \times 10^{-8} \text{ m}^{2}/\text{Vs}\) as the pH increased from 4 to 11 (Fig. 2(a)). This was consistent with reported trends and reflects changes dissociation of the silica and alumina sites at the edges of the clay particles with increasing pH [29, 31]. The hydrodynamic diameter of the clay particles determined by DLS was approximately 410 nm (Fig. 2(b)) and this size did not vary across the range of pH values as the significant EPMs of these particles providing electrostatic stability. The individual CeO2 particles were spherical and

![Fig. 1. TEM images of (a) montmorillonite and (b) CeO2 nanoparticles.](image)

![Fig. 2. (a) Electrophoretic mobilities (EPMs) and (b) hydrodynamic diameter of montmorillonite and CeO2 at 1 mM NaCl as a function of pH. The error bars represent the standard deviation of repeated test.](image)
about 5-10 nm (Fig. 1(b)). The EPMs of CeO$_2$ was positive at low pH and with increasing pH it gradually decreased becoming negative at pH greater than about 7 (Fig. 2(a)). This pH corresponded with reported values of the pH$_{pzc}$ of CeO$_2$ [17]. At this pH, the absence of electrostatic interactions results in an unstable suspension and the formation of aggregates with hydrodynamic diameter greater than 1,000 nm (Fig. 2(b)).

3.2. Homoaaggregation of Montmorillonite and CeO$_2$

The attachment efficiency of montmorillonite and CeO$_2$ at pH 4, 6 and 10 are shown in Fig. 3. The stability of montmorillonite increased with increasing pH (Fig. 3(a)). When the pH increased from 4 to 10, the CCC of montmorillonite increased from 11.4 mM NaCl to 94.3 mM NaCl (Table 1). The observed trend in particle stability was counter to the measured EPMs, which of montmorillonite was more negative at pH 10 than it was at pH 4. As is well known, montmorillonite has a structure with permanent negative charges on basal plane (face) and pH-dependent charges on edge [20, 29, 37]. At low pH the basal plane of montmorillonite carries a negative charge while the edge carries a positive charge (pHPZC, edge~6.5) [29, 37]. However, the positive electric double layer (EDL) near the edge is hidden at low ionic strength due to the spillover of the dominant basal plane (face) EDL. The positive edge EDL can emerge at high ionic strength, where the EDL is sufficiently compressed [29, 37]. This charge heterogeneity can induce edge-to-face particle interactions which enhance aggregation and likely produced the relatively low CCC at pH 4 [29, 37]. At high pH values, the basal plane and edges both carry a negative charge and thus in the face of enhanced electrostatic repulsion the clay suspension was more stable at pH 10 than it was at pH 4 or 6.

Table 1. CCC of Montmorillonite, CeO$_2$ and a Mixture at Various pH

pH	CCC (mM) Montmorillonite	CCC (mM) CeO$_2$	CCC (mM) Montmorillonite-CeO$_2$
4	11.4	97.6	5.6
6	22.9	14.0	23.3
10	94.3	27.3	65.9

The attachment efficiency of CeO$_2$ as function of NaCl concentration exhibited different trends with pH than did montmorillonite (Fig. 3(b)). At pH 6, the CCC of CeO$_2$ was lower than at pH 4 or 10 (Table 1). This reflects that CeO$_2$ at low and high pH was more highly charged than at pH 6 (see Fig. 2(a)). The more extensive charge prevented particle aggregation due to the higher repulsive interactions. Thus, the more the pH of the solution departs from the particle’s PZC the higher the surface charge and the interparticle electrostatic repulsion. The reaction-limited and diffusion-limited regimes can be observed from the inverse stability profiles for both montmorillonite and CeO$_2$ (Fig. 3) indicating that their aggregation behavior was in qualitative agreement with DLVO theory.

3.3. Heteroaggregation of CeO$_2$ with Montmorillonite

Experiments evaluating the heteroaggregation of mixed CeO$_2$-montmorillonite particle systems were conducted across the same range of NaCl concentrations and pH values as those evaluated for the single-particle systems (Fig. 4). The CCC values of the montmorillonite-CeO$_2$ mixtures at pH 4, 6 and 10 were about 5.6, 23.3 and 65.9 mM NaCl, respectively, which signifies that the pH has an influence on the CCC (Table 1). At pH 4, the CCC of the montmorillonite-CeO$_2$ shifted to a lower electrolyte concentration when compared to the homogenous montmorillonite and CeO$_2$ suspensions (Fig. 4(a)). The EPMs of CeO$_2$ particles at pH 4 was 2.7×10^{-8} m2/Vs while that for montmorillonite was -2.3×10^{-8} m2/Vs (Fig. 2) and as a result the positively charged CeO$_2$ was able to interact with the negatively charged montmorillonite and thus enhanced aggregation. In contrast, at pH 10, the CCC of the two-particle system was between that for the montmorillonite and CeO$_2$ systems (Fig. 4(c)). Likely this reflects that at pH 10 both montmorillonite and CeO$_2$ are negatively charged and mixing the two does not significantly enhance aggregation. At pH 6, the montmorillonite-CeO$_2$ mixture stability was nearly identical to that for the single-particle systems (Fig. 4(b)). Since this pH was near the pH$_{pzc}$ of CeO$_2$, the CeO$_2$ particles were unstable and as mentioned in homoaaggregation, the aggregation of montmorillonite was favorable due to edge-to-face particle interactions at this pH. Therefore the CCC of the mixture was similar to that of the single-particle systems.
of montmorillonite and CeO$_2$.

The homo- and hetero-aggregation rates of montmorillonite, CeO$_2$ and the clay-NP mixtures are presented in Fig. S1. At pH 4, the homoaggregation rates of montmorillonite increased from 0.13 to 4.77 nm/s, as the NaCl increased from 5 to 50 mM, and that of CeO$_2$ increased from 0.03 to 0.50 nm/s, as the NaCl increased from 35 to 500 mM. Thus, under diffusion-limited conditions the aggregation rate of CeO$_2$ was lower than that of montmorillonite. On the other hand, the heteroaggregation rates of montmorillonite-CeO$_2$ mixtures increased from 0.04 to 2.83 nm/s, as the NaCl increased from 0.3 to 50 mM. As previously mentioned, due to the interaction between the positively charged CeO$_2$ and the negatively charged clay, the aggregation rate of montmorillonite-CeO$_2$ mixtures was higher than that of CeO$_2$ or montmorillonite under reaction-limited regime. The aggregation rate of the mixtures under the diffusion-limited regime approximated to that of pure montmorillonite. Similar trends in the aggregation rates were observed at pH 6 and pH 10. The Hamaker constant of CeO$_2$ (5.57 × 10$^{-20}$ J) in water is lower than that of montmorillonite (2.54 × 10$^{-15}$ J) [4, 22]. Therefore, consistent with its smaller Hamaker constant, the aggregation rate of CeO$_2$ was less than montmorillonite.

A similar phenomenon was reported for an oppositely charged nanoparticles and clay mixture, where pH is a key factor to determine the heteroaggregation. According to Zhou et al. [29], at pH 4, the CCC (10 mM) of the montmorillonite-TiO$_2$ shifted to a lower electrolyte concentration when compared to the homogenous montmorillonite (35 mM) and TiO$_2$ (25 mM) suspensions. In another study, kaolin clay particles reduced the energy barrier and increased the aggregation rate of TiO$_2$ nanoparticles, particularly at pH 4 [31].

As described in Section 2.3, the effect of nanoparticle concentration on heteroaggregation was also carried out at three different CeO$_2$ concentrations (i.e., 5, 25, and 50 mg/L). The NaCl concentrations were selected to correspond to conditions that provided similar attachment efficiencies (0.3–0.4) at pH 4, 6 and 10 in the mixed systems with equal particle concentrations. They were 3, 7, 20 mM NaCl, respectively for systems at pH 4, 6 and 10 (Fig. S2). As pH 4, the heteroaggregation of CeO$_2$ was not influenced by CeO$_2$ concentration (Fig. S2(a)), because the attractive electrostatic interactions due to the oppositely charged montmorillonite and CeO$_2$ dominates. At pH 6, the concentration of CeO$_2$ has little influence on the rate of particle aggregation. Likely, this reflects the instability of the negligibly charged CeO$_2$ particles at pH 6 was controlling. Only at pH 10 was any difference observed. At this pH, decreasing CeO$_2$ concentration decreased aggregation rate. This was consistent with the impact particle concentration has on the probability of particle collisions [41].

3.4. Role of HA

To investigate the NOM on the heteroaggregation behavior of CeO$_2$, the aggregation of CeO$_2$ in systems with montmorillonite precoated with SRHA was examined. When the effect of SRHA concentration on aggregation of montmorillonite was tested up to 10 ppm, the aggregation did not occur above 5 ppm (data not shown). The EPM values of montmorillonite precoated with SRHA exhibited a decrease of about 1 × 10$^{-8}$ m2/Vs (Fig. S3(a)). This suggests the negative charge of the adsorbed SRHA was sufficient in magnitude to shift the EPMs to lower values. This was consistent with observations by Tombácz [42]. The hydrodynamic sizes of montmorillonite precoated with SRHA was remained stable over the range of pH (Fig. S3(b)). In the absence of SRHA at 10 mM NaCl, the heteroaggregation rate decreased with increasing pH reflecting the CCC values of 5.6, 23.3 and 65.9 mM NaCl at pH 4, 6 and 10, respectively (Fig. 5). At a higher NaCl concentration of 100 mM NaCl, the heteroaggregation rate was consistently high, reflecting that this concentration exceeds the CCC value of the mixture. In the presence of SRHA, however, the heteroaggregation rate sharply decreased at 100 mM NaCl to less than 0.1 nm/s (Fig. 5). Since extremely low aggregation kinetics was observed even at high NaCl concentrations (over 0.1 M NaCl), the attachment efficiency profiles were not produced with NaCl in the presence of SRHA. Both particles in the presence of SRHA are highly negatively charged, preventing their homo- and hetero-aggregation due to the formation of electrostatic and steric repulsion. The stabilizing effect of NOM has also been reported in other studies [14, 17, 27-29, 31, 33, 34]. For example, according to Wang et al. [34], the CCC of the TiO$_2$-montmorillonite in the presence of NOM increased to 312 mM NaCl compared to that (40 mM NaCl) of the mixture in the absence of NOM. For this reason, the effect of natural clay colloids on stability of nanoparticles in aquatic environment depends considerably on the absence/presence of NOM.
4. Conclusions

The heteroaggregation between CeO₂ nanoparticles and montmorillonite clay minerals were significantly affected by pH and NOM. In particular, at low pH, the negatively charged montmorillonite significantly reduced the stability of positively charged CeO₂ nanoparticle via heteroaggregation behavior of oppositely charged particles. On the other hand, the presence of NOM greatly enhanced the stability of the montmorillonite-CeO₂ mixture due to increased electrostatic repulsion and steric hindrance. These results provide a basis for predicting the environmental fate and transport of nanoparticles in aquatic environments. However, further investigations are needed to fully elucidate the combined effects that multiple environmental factors may have on the fate and behavior of nanoparticles.

Acknowledgments

This research was supported by a fund (No. 2019R1A2C1089726) by the National Research Foundation of Korea (NRF) and by a fund (No. RE202101055) by the Korea Environment Industry & Technology Institute (KEITI).

Author Contributions

S.B. (Researcher) conducted the experiments, performed the analyses, and wrote the manuscript. J.J.L. (Professor) reviewed and edited the manuscript. Y.H. (Principal Researcher) interpreted the data and edited the manuscript. All authors have read and agreed to the published version of the manuscript.

References

1. Nazarenko Y, Han TW, Mainelis G. Potential for exposure to engineered nanoparticles from nanotechnology-based consumer spray products. J. Expo. Sci. Environ. Epidemiol. 2011;21:515-528.
2. Zhang Y, Lou YR, Aitken RJ, Reidiker M. Inventory of Engineered Nanoparticle-Containing Consumer Products Available in the Singapore Retail Market and Likelihood of Release into the Aquatic Environment. Int. J. Environ. Res. Public. Health. 2015;12:8717-8743.
3. Praetorius A, Scheringer M, Hungerbühler K. Development of environmental fate models for engineered nanoparticles: A case study of TiO₂ nanoparticles in the Rhine river. Environ. Sci. Technol. 2012;46:6705-6713.
4. Aiken GR, Kim HH, Ryan JN. Influence of dissolved organic matter on the environmental fate of metal, nanoparticles, and colloids. Environ. Sci. Technol. 2011;45:3196-3201.
5. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller RJZ. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 2010;44:1962-1967.
6. Olufoluegbe S, Kammer FVD, Hofmann T. Commercial titanium dioxide nanoparticles in both natural and synthetic water: Comprehensive multidimensional testing and prediction of aggregation behavior. Environ. Sci. Technol. 2011;45:10045-10052.
7. Baalousha M. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci. Total. Environ. 2009;407:2093-2101.
8. Omar FM, Aziz HA, Stoll S. Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and adsorption of Suwannee River humic acid. Sci. Total. Environ. 2014;468-469:195-201.
9. Loosli F, Coustumer PL, Stoli S. TiO₂ nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effect on nanoparticle stability. Water. Res. 2013;47:6052-6063.
10. Wang H, QJ J, Keller AA, Zhu M, Li F. Effects of pH, ionic strength and humic acid on the removal of TiO₂ nanoparticles from aqueous phase by coagulation. Colloids Surf. A. Physicochem. Eng. Asp. 2014;450:161-165.
11. Lead JR, Batley GE, Alvarez PJr, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review. Environ. Toxicol. Chem. 2018;37:2029-2063.
12. Chen Y, Huang Y, Li K. Temperature effect on the aggregation kinetics of CeO₂ nanoparticles in monovalent and divalent electrolytes. J. Environ. Anal. Toxicol. 2012;2:1-5.
13. Li K, Chen Y. Effect of natural organic matter on the aggregation kinetics of CeO₂ nanoparticles in KCl and CaCl₂ solutions: Measurements and modeling. J. Hazard. Mater. 2012;209:264-270.
14. Mashayekhi H, Ghosh S, Du P, Xing B. Effect of natural organic matter on aggregation behavior of CeO₂ fullerene in water. J. Colloid. Interface. Sci. 2012;374:111-117.
15. Zhang Y, Chen Y, Westerhoff P, Critenden J. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water. Res. 2009;43:4249-4257.
16. Lim M, Bae S, Jee YJ, Lee SK, Hwang YS. Aggregation behavior of silver and TiO₂ nanoparticles in aqueous environment. J. Korean. Soc. Water. Wastewater. 2013;27:571-579.
17. Quick JTK, Lynch I, Hoecke KV, et al. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh
18. Dominigos RF, Tufenkji N, Wilkinson KJ. Aggregation of titanium dioxide nanoparticles: Role of a fulvic acid. Environ. Sci. Technol. 2009;43:1282-1286.

19. Hoecke KV, Schamphelaere KACD, Meeren PV, Smagghe G, Janssen CR. Aggregation and ecotoxicity of CoO nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ. Pollut. 2011;159:970-976.

20. Tombácz E, Csányi C, Illes E. Polydisperse fractal aggregate formation in clay mineral and iron oxide suspensions, pH and ionic strength dependence. Colloid. Polym. Sci. 2001;279:494-502.

21. French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ. Sci. Technol. 2009;43:1354-1359.

22. Huynh KA, Chen KL. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ. Sci. Technol. 2013;47:5564-5571.

23. Pamies R, Cifre JGH, Espín VF, Collado-González M, Baños FGD, Torre JG. Aggregation behaviour of gold nanoparticles in saline aqueous media. J. Nanopart. Res. 2014;16:2376.

24. Béltéky P, Rónavári A, Igaz N, et al. Silver nanoparticles: aggregation behavior in biorelevant conditions and its impact on biological activity. Int. J. Nanomed. 2019;14:667-687.

25. Liu J, Dai C, Hu Y. Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid. Environ. Res. 2018;161:49-60.

26. Nowicki W, Nowicka G. Verification of the Schulze-Hardy Rule. J. Chem. Educ. 1994;71:624-626.

27. Furukawa Y, Watkins JL, Kim J, Curry KJ, Bennett RH. Aggregation of montmorillonite and organic matter in aqueous media containing artificial seawater. Geochem. Trans. 2009;10:1-11.

28. Harbour PJ, Dixon DR, Scales PJ. The role of natural organic matter in suspension stability: 1. Electrokinetico-rheology relationships. Colloids. Surf. A. Physicochem. Eng. Asp. 2007;295:38-48.

29. Zhou D, Abdel-Fattah AI, Keller AA. Clay particles destabilize engineered nanoparticles in aqueous environments. Environ. Sci. Technol. 2012;46:7520-7526.

30. Kim HJ, Phenrat T, Tilton RD, Lowry GV. Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J. Colloid. Interface. Sci. 2012;370:1-10.

31. Wang H, Dong Y, Zhu M, et al. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Water. Res. 2015;80:130-138.

32. Liu J, Hwang YS, Lenhart JT. Heteroaggregation of bare silver nanoparticles with clay minerals. Environ. Sci.: Nano. 2015;2:528-540.

33. Li X, He E, Zhang M, et al. Interactions of CoO nanoparticles with natural colloids and electrolytes impact their aggregation kinetics and colloidal stability. J. Hazard. Mater. 2020;386:121973.

34. Wang J, Zhao X, Wu F, et al. Impact of montmorillonite clay on the homo- and heteroaggregation of titanium dioxide nanoparticles (nTiO2) in synthetic and natural waters. Sci. Total. Environ. 2021;784:147019.

35. Kašpar J, Fornasiero P, Graziani M. Use of CoO-based oxides in the three-way catalysis. Catal. Today. 1999;50:285-298.

36. Recillas S, García A, González E, et al. Use of CoO, TiO2, and Fe3O4 nanoparticles for the removal of lead from water: Toxicity of nanoparticles and derived compounds. Desalination 2011;277:213-220.

37. Tombácz E, Szekeres M. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Appl. Clay. Sci. 2004;27:75-94.

38. Jang MH, Hwang YS. Effects of functionalized multi-walled carbon nanotubes on toxicity and bioaccumulation of lead in Daphnia magna. PLOS ONE. 2018;13(3):e0194935.

39. Brigante M, Zanini G, Avena M. On the dissolution kinetics of humic acid particles: Effects of pH, temperature and Ca2+ concentration. Colloids. Surf. A. Physicochem. Eng. Asp. 2007;294:64-70.

40. Holthoff H, Egelhaaf SU, Borkovec M, Sticher HG. Coagulation Rate Measurements of Colloidal Particles by Simultaneous Static and Dynamic Light Scattering. Langmuir. 1996;12:5541-5549.

41. Liu J, Legros S, Ma G, Veinot JG, Kammer F, Hofmann T. Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles. Chemosphere 2012;87:918-924.

42. Tombácz E, Libor Z, Illés E, Majzik A, Klumpp E. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Org. Geochem. 2004;35:257-267.