A Suitable Streptomycin-Resistant Mutant for Constructing Unmarked In-Frame Gene Deletions Using rpsL as a Counter-Selection Marker

Yu-Kuo Tsai¹, Ci-Hong Liou², Jung-Chung Lin², Ling Ma¹, Chang-Phone Fung³, Feng-Yee Chang¹,²,⁴*, L. Kristopher Siu¹,²,⁵*

¹Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan, ²Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ³Section of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan, ⁴Taiwan Centres for Disease Control, Taipei, Taiwan, ⁵Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan

Abstract

The streptomycin counter-selection system is a useful tool for constructing unmarked in-frame gene deletions, which is a fundamental approach to study bacteria and their pathogenicity at the molecular level. A prerequisite for this system is acquiring a streptomycin-resistant strain due to rpsL mutations, which encodes the ribosomal protein S12. However, in this study no streptomycin resistance was found to be caused by rpsL mutations in all 127 clinical strains of Klebsiella pneumoniae isolated from liver abscess patients. By screening 107 spontaneous mutants of streptomycin resistance from a clinical strain of K. pneumoniae, nucleotide substitution or insertion located within the rpsL was detected in each of these strains. Thirteen different mutants with varied S12 proteins were obtained, including nine streptomycin-dependent mutants. The virulence of all four streptomycin-resistant mutants was further evaluated. Compared with the parental strain, the K42N, K42T and K87R mutants showed a reduction in growth rate, and the K42N and K42T mutants became susceptible to normal human serum. In the mice LD₅₀ (the bacterial dose that caused 50% death) assay, the K42N and K42T mutants were ~1,000-fold less lethal (~2 × 10⁴ CFU) and the K87R mutant was ~50-fold less lethal (~1 × 10⁴ CFU) than the parental strain (~2 × 10⁵ CFU). A K42R mutant showed non-observable effects on the above assays, while this mutant exhibited a small cost (P<0.01) in an in vitro growth competition experiment. In summary, most of the K. pneumoniae strains with streptomycin resistance caused by rpsL mutations are less virulent than their parental strain in the absence of streptomycin. The K42R mutant showed similar pathogenicity to its parental strain and should be one of the best choices when using rpsL as a counter-selection marker.

Citation: Tsai Y-K, Liou C-H, Lin J-C, Ma L, Fung C-P, et al. (2014) A Suitable Streptomycin-Resistant Mutant for Constructing Unmarked In-Frame Gene Deletions Using rpsL as a Counter-Selection Marker. PLoS ONE 9(9): e109258. doi:10.1371/journal.pone.0109258

Editor: Christophe Herman, Baylor College of Medicine, United States of America

Received May 26, 2014; Accepted September 8, 2014; Published September 30, 2014

Copyright: © 2014 Tsai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This work was supported by grants from the National Health Research Institutes and the National Science Council of Taiwan (NSC 102-2314-B-016-053-MY3). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: fychang@ndmctsgh.edu.tw (FYC); lksiu@nhri.org.tw (LKS)

Introduction

Streptomycin, the first aminoglycoside antibiotic, was reported in 1944 [1] and can inhibit protein synthesis by binding to the 30S ribosomal subunit. The most common mechanisms contributing to streptomycin resistance are aminoglycoside-modifying enzymes and target gene mutations [2], while 16S rRNA methylases, which have recently emerged, confer high-level resistance to all clinically available aminoglycosides except streptomycin [3–5]. Adenylyl-transferase encoded by aadA and phosphoryltransferase encoded by strA or strB have been demonstrated to be responsible for streptomycin resistance and are widely disseminated among Enterobacteriaceae [2,6,7]. On the other hand, streptomycin resistance caused by its target genes is mediated by mutations in 16S rRNA encoded by rrs or ribosomal protein S12 encoded by rpsL [8]. However, a single mutation in an rrs gene has only a limited effect on bacteria with multicity rrs gene [9], such as that in Escherichia coli and Klebsiella pneumoniae. The mutations of the S12 protein have often been found to confer a high-level streptomycin resistance by preventing streptomycin binding and/or conferring ribosomal hyperaccuracy [8,10,11]. Some mutations could cause a strongly hyperaccurate phenotype and lead to streptomycin dependence [11]. The streptomycin-dependent mutants need streptomycin to keep their survival because their ribosomal proteins require the binding of streptomycin for properly function during protein synthesis [11]. K. pneumoniae is a common cause of infections. Most community-acquired K. pneumoniae infections cause pneumonia or urinary tract infections, while a distinct invasive syndrome that causes liver abscesses has been increasingly reported in the past two decades [12]. The construction of unmarked in-frame gene deletions in bacteria is a fundamental approach to study bacteria at a molecular level, including the study of their pathogenicity.
Counter-selection markers have been used for the positive selection of the deletion mutant, and the streptomycin counter-selection system is one of the most frequently used [13]. A prerequisite for this system is to acquire a streptomycin-resistant strain due to rpsL mutations. When both wild-type and mutant alleles of rpsL are expressed in the same strain, it confers a streptomycin-sensitive phenotype in streptomycin-resistant strains, which enables positive selection with streptomycin to detect the loss of the vector that contains the wild-type allele of rpsL. [13,14]. Previous studies have demonstrated that rpsL can be used as a counter-selection marker in various bacteria, such as K. pneumoniae [15–20], Vibrio cholerae [14], Babesia burgdorferi [21], Corynebacterium glutamicum [22], Streptococcus pneumoniae [23] or mycobacteria [24,25], but little is known about which streptomycin resistance-inducing rpsL mutations should be used. Previous studies have found that some rpsL mutations could reduce the virulence of bacteria [26,27], and an rpsL mutant of K. pneumoniae showing lower virulence than its parental liver abscess isolate has been selected for use with this technology [17–20]. However, our results demonstrated that rpsL mutations were rare in K. pneumoniae that was isolated from liver abscess patients, and previous studies have shown that different protein expression levels could be caused by rpsL mutations [26,28]. These results suggest that a low or no-cost rpsL mutant should be chosen for the use of rpsL as a counter-selection marker. In this study, thirteen different streptomycin resistance-inducing mutations of the S12 protein were obtained, and the costs of these mutations were evaluated.

Materials and Methods

Ethics Statement

All studies with human blood samples were conducted within the National Defense Medical Center (Taiwan), and blood samples from healthy volunteers were obtained after written informed consent was provided. K. pneumoniae strains isolated from patients with liver abscesses were received from already-existing collections [29,30]. The use of these samples was approved by the Institutional Review Board of the National Defense Medical Center (Taiwan), and the identification number is B-102-13. All samples were anonymized and identified only by study subject number.

All animal studies were conducted in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Research Council. The protocol was approved by the Institutional Animal Care and Use Committee of the National Defense Medical Center (Taiwan), and the identification number is IACUC-13-171.

Strains, Growth Rate, Streptomycin Susceptibility and Resistance Genes

The 127 strains of K. pneumoniae investigated were isolated from liver abscess patients from 2002 to 2009 [29,30], and 48, 55 and 24 isolates were collected from Taiwan, Singapore and Hong Kong, respectively. Unless otherwise noted, K. pneumoniae and its derivatives were cultured at 37°C in Luria-Bertani (LB) broth or brain heart infusion (BHI) broth with appropriate antibiotics. The growth rate was evaluated using a Bioscreen C MBR, an automated microbiology growth analysis system (Oy Growth Curves Ab, Helsinki, Finland). Cells from overnight cultures were transferred to fresh LB broth without or with streptomycin (50 or 500 µg/ml) to give an initial OD600 of 0.005. The cultures were incubated in the Bioscreen C system at 37°C with continuous shaking between measurements, and the growth was quantified every 20 min based on the OD600. Each experimental run was conducted with an associated negative control sample containing blank medium and a positive control sample with wild-type cells. The maximum doubling time was determined from the logarithms of the values measured in the mid-exponential phase. Minimal inhibitory concentrations (MICs) of streptomycin were determined using the E-test (Biodisk AB, Sweden). To evaluate the reasons for streptomycin resistance, aadA, strA and strB and rpsL were detected via PCR and then sequenced using primer pairs as shown in Table S1. The specific primers for aadA, strA and strB were designed based on the conserved regions of their open reading frames in previous studies [2,31], while the specific primers for rpsL were designed according to the conserved regions of its franking region in this study.

Selection and Identification of Spontaneous Mutations

K. pneumoniae NVT1001, capsular serotype 1, was one of the isolates from the liver abscess patients in Taiwan. This strain was grown in LB broth at 37°C to the late-exponential growth phase; the culture was then diluted 10⁻³-fold in 4 ml fresh LB broth. After being incubated at 37°C overnight until the stationary growth phase, at which point the viable cell number was estimated to be ~1.6×10⁸ cells/ml, the cells of 1 ml culture were harvested via centrifugation at 12,000 g for 5 min, washed prior to being resuspended in 0.1 ml sterile physiological saline (0.9% sodium chloride), and then spread on LB agar plates supplemented with 50 or 500 µg/ml streptomycin. The cells were incubated at 37°C, and spontaneous mutants were obtained from colonies that arose within 3 days. Independent cultures were grown and plated as described above. Only one mutant colony was picked from each culture every day. The DNA fragment containing the complete rpsL gene was amplified via PCR using the primers rpsL.for and rpsL.rev (Table S1) for the selected mutants. The mutations in the rpsL gene were identified via sequencing and comparison with the nucleotide sequence of the wild-type strain.

Construction of Revertants

Plasmid pUT-kmy, which consists of an R6K origin of replication, an mobRP4 origin of transfer, and a kanamycin resistance cassette [32], was ligated with a sacB gene to generate plasmid pUT-KB for constructing revertants. Plasmid pUT-KB is a suicide vector containing a counter-selection marker, sacB, which originates from Bacillus subtilis [13]. When this gene is expressed on the integrated pUT-KB, it confers a sucrose-sensitivity phenotype, which enables positive selection with sucrose to detect the loss of the vector.

The allelic exchange method was used to restore the wild-type rpsL gene in the K. pneumoniae K42R, K42N, K42T, and K87R mutants (Figure S1). Briefly, DNA fragments of the entire rpsL with their flanking regions were amplified from plasmid pUT-KB that was similarly digested, resulting in plasmid pRPsL-WT. For homologous recombination, plasmid pRPsL-WT was then transformed into E. coli S17-1 λpir [14] using the heat shock method and mobilized into the K. pneumoniae K42R, K42N, K42T and K87R mutants via conjugation. Single-crossover strains were selected from brilliant green containing inositol-nitrate-deoxycholate (BIND) plates supplemented with kanamycin (50 µg/ml), while the growth of the non-K. pneumoniae strains was effectively suppressed on the BIND plates [33]. The kanamycin-resistant transconjugant was selected, and the insertion of pRPsL-WT was verified via PCR. After being incubated in 20 ml BHI for 6 hours in the absence of
kanamycin at 37°C, the fully grown cultures were spread onto LB plates supplemented with 10% sucrose. After double crossover occurred, the sucrose-resistant and kanamycin-sensitive colonies were selected, and the restorations of wild-type rpsL gene were confirmed via DNA sequencing.

In Vitro Growth Competition Assay

Competitive growth in vitro was performed as previously described [34,35] with minor modifications. Briefly, cells were grown overnight in LB broth at 37°C to the stationary phase, and equal densities of K. pneumoniae NVT1001 and one of its streptomycin-resistant mutants were mixed and then diluted 217-fold into 4 ml of fresh LB broth each to a final concentration of ~6×10⁶ CFU/ml. This culture was incubated at 37°C with 200 rpm shaking for 24 hours to complete a growth cycle (~1.6×10⁶ cells/ml, ~17 generations). Each successive growth cycle was initiated by diluting the mixture 217-fold into 4 ml of fresh LB broth. After the initial mixing and each growth cycle, appropriate dilutions of the mixture were plated on LB agar plates for colony counts. The number of streptomycin-resistant bacteria was determined by plating the mixture on LB agar plates supplemented with 100 μg/ml streptomycin. The number of parental streptomycin-susceptible bacteria was calculated as the total number of bacteria minus the number of streptomycin-resistant bacteria. Each competition assay was performed in triplicates of four competition cycles, and the serial dilutions were plated in triplicate. The difference in fitness between two competing strains was calculated using the following function as previously described [34,35]:

$$S_i = \exp \left(\frac{r_t}{s_t} \right)^{1/17}$$

where r_t and s_t denote the number of drug-resistant and drug-susceptible cells at a given time t, respectively, and r_{t-1} and s_{t-1} denote the number of drug-resistant and drug-susceptible cells at the preceding time point, respectively. The quotient of the ratios of the cell numbers was standardized with the exponent 1/17 because cell numbers were determined approximately every 17 generations. S_i is called the selection coefficient at time t. S_i is equal to 0 if there is no difference in fitness between the competing strains. If antibiotic resistance reduces bacterial fitness, S_i is negative, while S_i is positive if resistance increases bacterial fitness. The data are presented as relative bacterial fitness (\bar{S}_i), which was defined by Sander et al. as $\bar{S}_i = 1+S_i$ [34].

Neutrophil Phagocytosis Assay

Phagocytosis was measured using a standard assay [36]. A FACScan (Becton Dickinson Immunocytometry Systems, San Jose, CA, USA) was used to measure the phagocytic rate. The labeling of bacteria with fluorescein isothiocyanate was performed as described by Heinzelmann et al. [36], and the isolation of neutrophils from three healthy volunteers was performed as previously described [37]. A mixture of labeled bacteria, the neutrophil suspension, the pooled normal human serum and PBS was incubated in a shaking water bath at 37°C. The percentage of neutrophils that had phagocytosed bacteria was counted at 15 and 30 min. An unincubated tube served as the 0 min time point. The experimental procedures and FACS settings have been described previously [38].

Serum Bactericidal Assay

Normal human serum (NHS) pooled from healthy volunteers was divided into equal volumes and stored at ~70°C prior to use. The serum bactericidal activity was measured using the method described by Podduch et al. [39], which was modified using a 10-fold reaction volume and 2-fold bacteria concentration [15]. Briefly, bacteria were grown in BHI broth until an OD₆₀₀ of 0.35 (~10⁸ cells/ml) was reached. The cultures were washed and then diluted 25-fold using phosphate buffered saline (PBS). Two hundred fifty microliters of the cell suspension and 750 μl of pooled human serum were placed into 1.5 ml Eppendorf tubes, mixed, and incubated at 37°C. To determine the number of viable bacteria, an aliquot of each bacterial suspension was removed immediately and after 3 hours of incubation. The number of viable bacteria was determined via dilution and plating on LB agar for colony counts. The results were expressed as a percentage of the inoculum, and strains with survival rates >100% in NHS after 3 hours of incubation were considered resistant; those with survival rates <100% were considered susceptible. NHS was decompensated via heating at 56°C for 30 min. The classical and lectin complement pathways were selectively blocked via chelation with 10 mM ethylene glycol-bis(β-aminoethyl ether)- N,N,N',N'-tetraacetic acid (EGTA) plus 10 mM MgCl₂ (NHS/MgEGTA) [40,42]. To selectively inhibit the alternative complement pathway, factor B was inactivated via the incubation of NHS at 50°C for 20 min (NHS50°C) [42,43].

Mouse Lethality Assay

Pathogen-free, 6- to 8-week old, male BALB/c mice were obtained from the National Laboratory Animal Center (Taiwan) and maintained in the pathogen-free vivarium of the Laboratory Animal Center of National Defense Medical Center (Taiwan). The tested bacteria were cultured overnight at 37°C in BHI broth and were then diluted (1:100) in fresh BHI broth. The culture was incubated until the mid-exponential growth phase, and the cells were then washed once, resuspended in PBS, and adjusted to the desired concentrations according to OD₆₀₀. The actual concentrations were verified by plating the cells to determine viable counts. Six mice for each group were injected intraperitoneally with 0.1 ml of the cell suspension, and the mice were monitored daily for 14 days to measure survival and the severity of illness.

Statistical Analysis

A two-tailed t-test or a log-rank test (for survival analysis) was used for statistical analysis. A P value of <0.05 was considered statistically significant.

Results

Streptomycin Susceptibility and Resistance Genes

The 127 K. pneumoniae strains obtained from the liver abscess patients in different geographic localities were investigated as described in the Materials and Methods. The minimal inhibitory concentrations (MICs) of streptomycin values ranged from 1 to 64 μg/ml, while the MIC₅₀ and MIC₉₀ of streptomycin were 3 and 6 μg/ml, respectively. Eighteen K. pneumoniae strains (MICs≥6 μg/ml) were used to study the mechanisms of streptomycin resistance (Table 1). The adaL gene or strA-strB genes were detected in the 6 strains that had MICs≥12 μg/ml. No streptomycin resistance was found to be caused by the rpsL mutations. K. pneumoniae NVT1001, with a 2 μg/ml streptomycin MIC value, was used to select spontaneous mutants with streptomycin resistance (Table 2).
Isolation and Characteristics of the S12 Mutants

Spontaneous mutants of *K. pneumoniae* that were resistant to streptomycin were selected on LB agar plates supplemented with 50 or 500 µg/ml streptomycin, and 107 mutants were isolated. The rpsL genes of all of these mutants were sequenced, and fourteen different mutations on the rpsL were obtained, which cause thirteen varied S12 protein (Table 2). The examination of streptomycin resistance for these different mutants using the E-test led to the identification of ten streptomycin-dependent mutants and four streptomycin-resistant mutants (Table 2). Different concentrations (6–96 µg/ml) of streptomycin were needed for the survival of the ten streptomycin-dependent mutants (Table 2).

Growth Rate and In Vitro Growth Competition Assay

Compared to the parental strain cultured in antibiotic-free LB broth, the ten streptomycin-dependent mutants showed 1.5- to 3.7-fold slower growth rates (*P*<0.01) when cultured in LB broth supplemented with 500 µg/ml streptomycin. Four of these ten mutants were also cultured in LB broth supplemented with 50 µg/ml streptomycin and the four streptomycin-dependent mutants showed 1.9- to 2.7-fold slower growth rates (*P*<0.01) compared to the parental strain cultured in antibiotic-free LB broth. When comparing the four streptomycin-resistant mutants to the parental strain, which were all cultured in antibiotic-free LB broth, the K42R mutant showed a similar growth rate, while the K42N, K42T and K87R mutants showed 1.1- to 1.3-fold slower growth rates (*P*<0.01) compared to the parental strain cultured in antibiotic-free LB broth. The growth phenotype of the streptomycin-resistant mutants can be restored by replacing the *rpsL* that without streptomycin. The growth competition experiment was used to further investigate the contribution of each complement pathway to complement-mediated bacterial killing. In comparison with culturing in decomplemented 75% NHS, the two mutants cultured in 75% NHS50° C showed a 1.2-fold smaller survival rate (*P*<0.05), while their survival rates were strongly reduced (*P*<0.01) in 75% NHS compared with the parental strain. Similar result was observed when comparing the survival rates of these two strains cultured in decomplemented 75% NHS. This result indicates that the smaller survival rate of K87R mutant in 75% NHS was mainly caused by its slower growth. The results of serum bactericidal assay have been further validated by testing the revertant strains (Table 4).

Virulence in Mice

To further assess the effects of the *rpsL* mutations on virulence, a mouse peritonitis model was used. A non-significant difference (log-rank test, *P*>0.05) was found between NVT1001 strain and its K42R mutant regarding the survival of 12 mice per strain, and their LD₅₀ (the bacterial dose that caused 50% death) were both ~2×10⁵ CFU (Figure 1A). When the experiment was performed at a higher dose (~2×10⁵ CFU) in 6 mice per strain, no mice survived within 14 days after being inoculated with the NVT1001 strain or its K42R mutant (data not shown). Compared with the NVT1001-inoculated mice, the mice (n=6 mice per strain) inoculated with the K42N or K42T mutants showed a ~1,000-fold increased LD₅₀ (~2×10⁶ CFU), while that inoculated with the K87R mutant showed a ~50-fold increased LD₅₀ (~1×10⁷ CFU) (Figure 1A). When the experiment was performed at a lower dose in 6 mice per strain, all mice survived within 14 days after being inoculated with K42N (~2×10⁵ CFU), K42T (~2×10⁶ CFU) or K87R (~2×10⁷ CFU) (data not shown). These results have been further confirmed via the intraperitoneal injection of 2×10⁶ CFU of each revertant (K42R, K42N, K42T or K87R revertant) in 6 mice per strain (Figure 1B). A non-significant difference (log-rank test, *P*>0.05) was found between these revertants and NVT1001 strain regarding mouse lethality.

Table 1. Streptomycin resistance and target genes in 18 *K. pneumoniae* strains with MIC values ranging from 6 to 64 µg/ml.

Gene	MIC (µg/ml)			
	6	12	16	64
aadA	0	2	0	2
strA-strB	0	0	0	2
None	12	0	0	0
Wild-type rpsL	12	2	2	2

*The *aadA*, *strA* and *strB* genes were not detected.

*The MIC (µg/ml) of streptomycin was determined using the E-test.

doi:10.1371/journal.pone.0109258.t001
Table 2. Characteristics of *K. pneumoniae* NVT1001 and its derived strains.

Strain	Description	Codon change	Isolation frequency	Streptomycin MIC (µg/ml)	Phenotype	Doubling time (min)
NVT1001	Clinical isolate (WT)					ND
K42R mutant	rpsL K42R	128A→G	2/107	>1,024	Sm^2	18.8±0.4
K42N mutant	rpsL K42N	129G→T	9/107	>1,024	Sm^2	19.1±0.4
K42T mutant	rpsL K42T	128A→C	5/107	>1,024	Sm^2	24.7±1.1
K87R mutant	rpsL K87R	263A→G	3/107	>1,024	Sm^2	20.4±0.6
P41L mutant	rpsL P41L	125C→T	1/107	>1,024; 96^c	Sm^2	20.2±0.4
K42O mutant	rpsL K42O	127A→C	3/107	>1,024; 96^c	Sm^2	21.5±0.9
K43E mutant	rpsL K43E	130A→G	2/107	>1,024; 96^c	Sm^2	24.7±1.1
+K87 mutant	rpsL +K87	262-264::AAA	1/107	>1,024; 96^c	Sm^2	22.2±0.4
D88E1 mutant	rpsL D88E	267C→A	1/107	>1,024; 96^c	Sm^2	21.5±0.9
D88E2 mutant	rpsL D88E	267C→G	5/107	>1,024; 96^c	Sm^2	25.4±1.1
P90Q mutant	rpsL P90Q	272C→A	2/107	>1,024; 8^f	Sm^2	24.7±1.1
P90R mutant	rpsL P90R	272C→G	1/107	>1,024; 6^f	Sm^2	26.4±1.1
P90L mutant	rpsL P90L	272C→T	36/107	>1,024; 8^f	Sm^2	26.4±1.1
G91D mutant	rpsL G91D	275G→A	30/107	>1,024; 8^f	Sm^2	26.4±1.1

Notes:
- **WT**: wild type
- Amino acid replacements are listed; +, an insertion.
- Numbering begins with the start codon (ATG) of the ORF.
- Sm^2^, streptomycin-sensitive; Sm^R^, streptomycin-resistant; Sm^D^, streptomycin-dependent.
- Doubling times were measured in Luria-Bertani broth without or with streptomycin (50 or 500 µg/ml) and are the average of three independent experiments. The doubling times of growth in the absence of streptomycin were further bolded when a significant (P<0.05) difference was found between NVT1001 and its derived strains. ND, not determined. These strains would not grow in either the presence or absence of streptomycin according to the results of the E-test.
- The minimal streptomycin concentration that enables growth was determined using the E-test, which was also used to determine the streptomycin MICs.

doi:10.1371/journal.pone.0109258.t002
Discussion

In the 18 *K. pneumoniae* strains that had MICs \geq6 μg/ml, streptomycin resistance genes could only be found in the 6 strains that had MICs \geq12 μg/ml. This result was similar to the previous study in which the streptomycin epidemiological cut-off values were recommended as WT \leq16 μg/ml for *Salmonella* and WT \leq 0 μg/ml for *E. coli* [2]. The *aadA* gene was found in the four *Klebsiella* strains exhibiting streptomycin MIC 12 or 16 μg/ml. The low-level resistance to streptomycin conferred by *aadA* can also be found in *Salmonella* and *E. coli* [2,7,44]. No streptomycin resistance was found to be caused by *rpsL* mutations in any of the 127 clinical strains of *K. pneumoniae*. This result suggests that the mutations of S12 protein were uncommon in *K. pneumoniae* that was isolated from liver abscess patients.

Compared with the parental strain in this study, the K42N and K42T mutants showed reduced virulence, while the K42R mutant showed similar virulence. These results are consistent with those reported in *Salmonella typhimurium* using the competition experiments in mice [27] and those reported in *Erwinia carotovora* using the potato tuber tests [26]. A reduced virulence of the streptomycin-resistant K87R mutant was further found in this study. Compared with the parental strain, the K87R mutant showed a 50-fold increase in the LD$_{50}$ in a mouse peritonitis model, while the K42N and K42T mutants showed a 1,000-fold increase. The reduced virulence of these mutants should be partially caused by metabolic fitness, which was indicated by their slower growth than the parental strain when cultured in LB broth and decomplemented 75% NHS. The slower growth rate may cause them to be more easily eliminated by the immune system in vivo.

In the serum bactericidal assay, the K42N and K42T mutants were found to become susceptible to serum, while the alternative pathway should be the crucial role in complement activation. Whether this result is due to different levels of protein expression caused by the *rpsL* mutations requires further study, while this difference has been found between the K42T mutant and its parental strain in *E. carotovora* using a quantitative proteomic analysis [26]. Becoming serum-susceptible should explain the lowest virulence found for the K42N and K42T mutants.

Table 3. Determination of relative fitness via in vitro growth competition assay.

Strain	Fitness (fit, ± SD)*	P valueb	Nc
Relative to NVT1001			
K42R mutant	0.97±0.027	0.0091	12
K42N mutant	0.82±0.011	<0.0001	12
K42T mutant	0.85±0.015	<0.0001	12
K87R mutant	0.94±0.010	<0.0001	12
Relative to its revertant			
K42R mutant	0.98±0.016	0.0005	12
K42N mutant	0.83±0.010	<0.0001	12
K42T mutant	0.86±0.013	<0.0001	12
K87R mutant	0.95±0.016	<0.0001	12

aFitness relative to *K. pneumoniae* NVT1001 or its revertant (with a fitness of 1); SD, standard deviation.

bP value, statistical significance of difference in fitness relative to *K. pneumoniae* NVT1001 or its revertant.

cN, number of fit, on which the average fit, value is based.

doi:10.1371/journal.pone.0109258.t003

Table 4. Effect of mutations on phagocytosis and susceptibility to normal human serum (NHS)d.

Strain	Ingested bacterial (%)d	Survival rate (%)e		
	15 min	30 min	75% NHS	Decomplemented
NVT1001	25.6±4.1	46.9±6.0	199±27	204±17
K42R revertant	ND	ND	194±16	183±11
K42N revertant	ND	ND	203±7	198±13
K42T revertant	ND	ND	201±20	183±5

dEach value represents the means of three independent experiments ± the standard deviation. Boldface numbers indicate a significant (P<0.05) difference between NVT1001 and its derived strains. ND, not determined.

eK. pneumoniae strains were incubated with neutrophils for 15 or 30 min.

fPercent survival of the cells after 3 h of serum contact. Decomplemented, NHS was decomplemented via heating at 56°C for 30 min.

doi:10.1371/journal.pone.0109258.t004
compared with the parental strain, as well as the K42R and K87R mutants, which all showed serum resistance.

Based on the in vitro and animal experiments, the K42R mutant only showed a small fitness cost in a highly sensitive in vitro growth competition experiment. This mutant is also found at the highest frequency in streptomycin-resistant clinical isolates of *Mycobacterium tuberculosis*, while the K87R mutant was also prevalent [9,45]. Because the properties of Arginine are very similar to that of Lysine, such as they both are positively-charged amino acids, this substitution could cause the subtle effect on protein structure and function [46].

Compared with the parental strain, all four streptomycin-resistant mutants exhibited reduced fitness, and three of them showed decreased virulence, while the ten streptomycin-dependent mutants needed streptomycin to maintain their growth. Only the K42R mutant showed similar pathogenicity to its parental strain as previously described in other *Enterobacteriaceae* [26,27,47].

This similar pathogenicity can also been found in a highly virulent *K. pneumoniae* strain; its K42R mutant has an LD$_{50}$<10 CFU in a mouse peritonitis model as its parental strain and was used to construct unmarked in-frame gene deletions in our previous study [15]. In conclusion, the streptomycin resistance caused by *rpsL* mutations usually made the bacteria less competitive than its wild-type strain in the absence of streptomycin. The K42R mutant should be one of the best choices when using *rpsL* as a counter-selection marker.

Supporting Information

Figure S1 Creation of revertant strains for *rpsL* mutants. (TIF)

Table S1 Oligonucleotide primers used in this study. (DOCX)

NHS*	Survival rate (%)b	
	K42N mutant	K42T mutant
75% NHS	13±3	17±9
75% NHSMgEGTA	32±6	43±10
75% NH550°C	95±10	98±14
Decomplemented 75% NHS	120±9	115±10

*NHSMgEGTA, NHS plus inhibition of the classical and lectin complement pathways; NH550°C, NHS with inhibition of the alternative complement pathway. NHS was decomplemented via heating at 56°C for 30 min.

bPercent survival of cells after 3 h of serum contact. Each value represents the means of three independent experiments ± the standard deviation. Boldface numbers indicate a significant (P, 0.05) difference in survival rate compared with the same strain incubated in 75% NHS.

Figure 1. The effect of *rpsL* mutations on mouse lethality. The survival after intraperitoneal injection with 2×107 to 2×108 CFU of *K. pneumoniae* NVT1001, streptomycin-resistant mutant (A) or the revertant (B) was documented over 14 days. The data points represent the percentage of mice surviving in each experimental group over time (n = 6 mice per strain), while the data illustrated for *K. pneumoniae* NVT1001 and the K42r mutant in Figure 1A are pooled from two independent experiments. The LD$_{50}$ of *K. pneumoniae* NVT1001 and the K42R mutant were similar, both approximately 2×105 CFU. The K42N, K42T and K87R mutants were all less virulent than NVT1001, while the LD$_{50}$ of the K42N and K42T mutants were approximately 2×105 CFU and the LD$_{50}$ of the K87R mutant was approximately 1×105 CFU.

doi:10.1371/journal.pone.0109258.g001

doi:10.1371/journal.pone.0109258.t005

g001
Author Contributions
Conceived and designed the experiments: YKT FYC LKS. Performed the experiments: YKT CHL. Analyzed the data: YKT CHL JCL LKM. Contributed reagents/materials/analysis tools: JCL LM CPF. Wrote the paper: YKT FYC LKS.

References
1. Schatz A, Bogle E, Waksman SA (1949) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc Soc Exp Biol Med 55: 66–69.
2. García-Migura I, Sundin M, Karlsrud S, Veldman K, Schroeter A, et al. (2012) Establishing streptomycin epidemiological cut-off values for Salmonella and Escherichia coli. Microb Drug Resist 18: 81–93.
3. Galimand M, Sabtcheva S, Courvalin P, Lambert T (2005) Worldwide dissemination of armA aminoglycoside resistance methylase gene is borne by composite transposon Tn5368. Antimicrob Agents Chemother 49: 2949–2953.
4. Doo Y, Arakawa Y (2007) 168 ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis 45: 88–94.
5. Durante-Mangoni E, Grammatikos A, Utili R, Falagas ME. (2009) Do we still need the aminoglycosides? Int J Antimicrob Agents 33: 201–205.
6. Maden I, Aaresrup FM, Olsen JE. (2000) Characterisation of streptomycin resistance determinants in Danish isolates of Salmonella Typhimurium. Vet Microbiol 75: 73–82.
7. Sundin M, Norström M. (2005) The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICS. J Antimicrob Chemother 56: 87–90.
8. Finken M, Kirschner P, Meier A, Reede A, Bottger EC. (1993) Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol 9: 1239–1246.
9. Hughes D, Andersson DI. (2001) Target alteration mechanisms mediating antibiotic resistance. In Antibiotic Development and Resistance, Hughes D and Andersson DI. (eds.), Taylor and Francis, London and New York, pp 23–36.
10. Chao CS, Jones AL. (1995) Molecular analysis of high-level streptomycin resistance in Erwinia amylovora. Phytopathology 85: 324–328.
11. Carter AP, Clemens WJ, Brodersen DE, Morgan-Warren RJ, Wimberly BT, et al. (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340–348.
12. Suo LK, Yeh KM, Lin JC, Fung CP, Hung HC, et al. (2010) Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis 12: 881–887.
13. Reyrat J-M, Pelvic V, Gicquel B, Rappuoli R. (1998) Counterselectable markers: untargeted tools for bacterial genetics and pathogenesis. Infect Immun 66: 4011–4017.
14. Skorupski K, Taylor RK. (1996) Positive selection vectors for allele exchange. Gene 169: 47–52.
15. Tsai YK, Fung CP, Lin JC, Chen JM, Chang FY. et al. (2011) Klebsiella pneumoniae outer membrane protein OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother 55: 1485–1493.
16. Wu Q, Stewart V. (1998) NasFED proteins mediate assasimulatory nitrate and nitrite transport in Klebsiella oxytoca M5a. J Bacteriol 180: 1311–1317.
17. Huang CJ, Wang ZC, Huang HY, Huang HD, Peng HL. (2013) YjcC, a c-di-GMP phosphodiesterase protein, regulates the oxidative stress response and virulence in Mycobacterium tuberculosis. J Bacteriol 192: 3144–3158.
18. Ohtomo R, Saito M. (2003) A new selective medium for detection of chromosomal drug resistance-conferring mutations. Antimicrob Agents Chemother 49: 1204–1211.
19. Nielsen KL, Pedersen TM, Udeoloulo SI, Petersen A, Skov RL. et al. (2012) Fitness cost: a bacteriological explanation for the demise of the first international multidrug-resistant Staphylococcus aureus epidemic. J Antimicrob Chemother 67: 1191–1198.
20. Podschun R, Sievers D, Foucher A, Ullmann U. (1993) Serotypes, hemagglutinins, siderophore synthesis, and serum resistance of Klebsiella pneumoniae isolates causing human urinary tract infections. J Infect Dis 168: 1413–1421.
21. Fine DP. (1977) Comparison of ethylerythrolactoacetate acid and its magnesium salt as reagents for studying alternative complement pathway function. Infect Immun 16: 124–128.
22. Fine DP, Marney SR Jr, Colley DG, Sergeant JS. (1971) Clshunt activation in human serum chelated with EGTA. J Immunol 107: 807–809.
23. Bugla-Ploskonska G, Korzeniowska-Kowal A, Guz-Regner K. (2011) Reptiles as an untapped tools for bacterial genetics and pathogenesis. Antonie van Leeuwenhoek 100: 563–574.
24. Sander P, Springer B, Bottger EC. (1998) Virulence of antibiotic-resistant Salmonella typhimurium. Proc Natl Acad Sci USA 95: 3949–3953.
25. Chumpolkwong N, Hori-Takemoto C, Hosaka T, Inaoka T, Kigawa T. et al. (2004) Effects of Escherichia coli ribosomal protein S12 mutations on cell-free protein synthesis. Eur J Biochem 271: 1127–1134.
26. Barnard AM, Simpson NJ, Lilley KS, Salmond GP. (2010) Mutations in rpsL that confer streptomycin resistance show pleiotropic effects on virulence and the production of a carbapenem antibiotic in Escherichia coli. Microbiology 156: 1323–1332.
27. Björkman J, Hughes D, Andersson DI. (1998) Virulence of antibiotic-resistant Salmonella typhimurium. PLoS Acet Natl Acad Sci USA 95: 3949–3953.
28. Chumpolkwong N, Hori-Takemoto C, Hosaka T, Inaoka T, Kigawa T. et al. (2004) Effects of Escherichia coli ribosomal protein S12 mutations on cell-free protein synthesis. Eur J Biochem 271: 1127–1134.
29. Siu LK, Fung CP, Chang FY, Lee N, Yeh KM. et al. (2011) Molecular typing and virulence analysis of serotype K1 Klebsiella pneumoniae strains isolated from liver abscess patients and stool samples from noninfectious subjects in Hong Kong, Singapore, and Taiwan. J Clin Microbiol 49: 3761–3763.
30. Yeh KM, Kurup A, Siu LK, Koh YL, Fung CP. et al. (2007) Capsular serotype K1 or K2, rather than wngA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. J Clin Microbiol 45: 466–471.
31. Gebreys RS, Atieh C. (2002) Molecular characterization of multidrug-resistant Salmonella enterica subsp. enterica Serovar Typhimurium isolates from swine. J Clin Microbiol 40: 2013–2022.
32. Yeh KM, Lin JC, Yip FY, Fung CP, Hung HC. et al. (2010) Revisiting the importance of virulence determinant wngA and its surrounding genes in Klebsiella pneumoniae causing pyogenic liver abscesses: exact role in serotype K1 capsule formation. J Infect Dis 201: 1259–1267.
33. Olomuro R, Saito M. (2003) A new selective medium for detection of Klebsiella from daily environments. Microbes Environ 18: 138–144.
34. Sander P, Springer B, Prammanathan T, Stumfels A, Kapper M. et al. (2002) Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob Agents Chemother 46: 1204–1211.
35. Sunde M, Norström M. (2005) The genetic background for streptomycin resistance in Klebsiella pneumoniae CG43. J Bacteriol 185: 788–800.