Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions

Lee Kroos and Dale Kaiser
Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305 USA

Certain developmental mutants of Myxococcus xanthus can be complemented extracellularly by wild-type cells. These mutants behave as if they are defective in cell–cell interactions that are required for development. There may be several different interactions because the mutants belong to four extracellular complementation groups (A, B, C, and D). We report here that B− and C− mutations change the pattern of gene expression during Myxococcus development as detected by transcriptional fusions to lacZ mediated by Tn5 lac. The mutant C locus reduced or abolished developmental β-galactosidase expression from 15 lac fusions that normally begin to be expressed in wild-type cells after 6 hr of development. Expression of these C-dependent lac fusions was restored to C− mutants by adding wild-type cells. The C− mutation did not affect the expression of 10 lac fusions that normally begin to be expressed before 6 hr of development, indicating that the C-mediated cell–cell interaction is required beginning at about 6 hr of development. Cells require the B+ function very early in development because a B− mutation reduced or abolished developmental β-galactosidase expression from all 26 lac fusions tested, including some that normally begin to be expressed at the onset of development. In a C− mutant and in a B− mutant, some lac fusions responded with reduced β-galactosidase expression, whereas other fusions, which would normally begin β-galactosidase expression at about the same time during development, expressed no β-galactosidase, indicating that developmental genes within a given temporal class display different sensitivities to the absence of cell–cell interactions. Requirements for B+ and C+ function, as well as the previously described A+ function, appear to lie on the same developmental pathway.

[Key Words: Operon fusion; β-galactosidase; Myxobacteria; multicellular development; cell interactions]

Received June 15, 1987; revised version accepted August 19, 1987.

Myxococcus xanthus is a gram-negative soil bacterium that undergoes multicellular development and cellular differentiation (Rosenberg 1984). Upon starvation at a high cell density on a solid surface, cells move to aggregation centers where they construct a fruiting body. Within a nascent fruiting body, many cells lyse, while other cells differentiate to become resting, ovoid spores (Wireman and Dworkin 1975). About 10³ cells participate in constructing a fruiting body, and the process requires about 20 hr from the removal of nutrient to the beginning of sporulation [Kroos et al. 1986]. The number of heat-resistant spores in fruiting bodies then increases over a period of several days. How is the behavior of cells coordinated during this process of multicellular fruiting body development?

Cell–cell interactions have been implicated in the control of M. xanthus development by several experiments (Hagen et al. 1978; Shimkets and Dworkin 1981; LaRossa et al. 1983; Janssen and Dworkin 1985). Hagen et al. (1978) isolated conditional sporulation mutants (groups A, B, C, and D) which behave as if they are defective in cell–cell interactions that are required for normal development. The mutants cannot sporulate alone, but can be rescued for sporulation by co-development with wild-type cells or with cells of a different mutant group. The rescue does not involve genetic exchange between cells, but rather occurs extracellularly. All members of a group behave as if they are defective in the same cell–cell interaction. Each group appears to arrest development at a different stage, expressing earlier developmental markers and not later ones, as if each group of mutants were blocked at a different point on a developmental pathway [LaRossa et al. 1983; Kaiser et al. 1985]. However, until recently, few markers that could be used to explore a developmental pathway were known for Myxococcus.

To identify new developmental markers, a transposable promoter-probe, called Tn5 lac, was constructed [Kroos and Kaiser 1984]. Tn5 lac contains a promoterless lacZ gene inserted near one end of the transposon Tn5.

840 GENES & DEVELOPMENT 1:840–854 © 1987 by Cold Spring Harbor Laboratory ISSN 0890-9369/87 $1.00
When Tn5 lac transposes into a transcription unit in the correct orientation, it generates a transcriptional fusion to lacZ, placing β-galactosidase expression under the control of the promoter for that transcription unit. Translation stop codons upstream of lac and development. These characteristic times of expression identified 36 insertions that specifically increased [β-galactosidase expression at some particular time during development. These characteristic times of expression ranged from minutes after starvation initiates development to 30 hr, when spores form. Restriction maps of Myxococcus DNA adjacent to the lac end of these Tn5 lac insertions indicated that at least 29 of them detect different transcription units [Kroos et al. 1986]. Although these 36 lac fusions were formed by insertion of Tn5 lac into transcription units whose activity rises during development, only seven of these insertions (Ω4408, Ω4414, Ω4425, Ω4427, Ω4442, Ω4473, Ω4491) cause detectible developmental abnormalities [Kroos et al. 1986]. A description of the developmental phenotypes of these mutant insertion strains will be published separately. The lac fusion strains provide 29 new markers of Myxococcus development.

Kuspa et al. (1986) used the set of lac fusions generated by Tn5 lac to examine extracellular complementation of group A mutants. Each of two [unlinked] A- mutations greatly reduced developmental β-galactosidase expression from 18 of 21 Tn5 lac insertions tested. The earliest A-dependent Tn5 lac insertion normally begins β-galactosidase expression at 1.5 hr of development, indicating an early developmental defect in A- mutants. Expression of the remaining three Tn5 lac insertions was unaffected by either of the A- mutations and these three insertions normally begin β-galactosidase expression at or before 5 hr of development. When wild-type cells were added to A- mutants that contain A-dependent Tn5 lac insertions and the mixtures were allowed to develop, an approximately normal pattern of developmental β-galactosidase expression was restored to the A- mutants. The rescue of β-galactosidase expression from an A-dependent Tn5 lac insertion in A- mutant cells formed the basis of an assay that detects substances released by wild-type cells, but not by A- cells, 1–2 hr after development is initiated. The results suggest that group A mutants fail to synthesize or to release adequate amounts of an extracellular signal that is required early for proper developmental gene expression and for the completion of fruiting body development.

To define more clearly the role of cell—cell interactions in the regulation of Myxococcus development, we have examined the effects of a B- mutation and a C- mutation on β-galactosidase expression from the same set of developmentally regulated lac fusions that had been examined with the A- mutants. The patterns of expression indicate that B+, like A+, is required very early in Myxococcus development, while C+ is required later. The results also suggest that A+, B+, and C+ act on the same regulatory pathway.

Results

Effects of a C- mutation on developmental gene expression

All of the mutations that belong to group C are clustered in the SpoC region of the Myxococcus genome [Shimkets et al. 1983]. Introduction of this locus, now called csg for C signal, as a 1.6-kbp fragment of DNA from csg+ strains can rescue all existing C- mutants, and Tn5 insertions in the 1.6-kbp fragment cause C- mutations when introduced into the M. xanthus chromosome as gene replacements [Shimkets and Asher 1987]. We used the insertion mutation csg-205 [Shimkets and Asher 1987] to construct C- derivatives of lacZ fusion strains to investigate how the loss of C+ function would affect the expression of developmentally regulated genes (Table 1 and Materials and methods).

The C- derivatives of all lacZ fusion strains, except the one noted in the legend to Table 1, showed a typical C+ phenotype; Figure 1 shows that the developmentally normal C+ lacZ fusion strains aggregate into compact translucent mounds by 12 hr, while their C- derivatives form larger, less compact translucent mounds and ridges beginning at about 18 hr. Also, by 12 hr, wild-type lacZ fusion strains form the parallel ridges of cells termed “ripples” (Shimkets and Kaiser 1982) in the areas between mounds, whereas their C- derivatives fail to form ripples. During normal Myxococcus development more than half the cells lyse (Wireman and Dworkin 1975). Figure 2 shows that whereas the number of rod-shaped cells falls 10-fold between 12 and 48 hr in the C+ strain, in the corresponding C- strains the number stays roughly constant. In C+ strains the translucent mounds begin to darken by 24 hr as sporulation begins, and eventually 2–4% of the number of cells initially plated become sonication- and heat-resistant viable spores (Table 2); however the C- derivatives of the same lacZ fusion strains sporulate at much reduced levels. Figure 1 shows that the large translucent mounds which the C- strains had formed by 18–24 hr later begin to spread out, lose their definition, and eventually disappear—apparently as the result of cell movement. Thus, the C- cells not only fail to lyse and to sporulate, but also are motile at a time when C+ cells have ceased to move.

To investigate the effect of the C- insertion mutation on expression of developmentally regulated genes, β-galactosidase was measured in a series of fusion strains. The C- Tn5 lac derivatives and their wild-type Tn5 lac parents were each plated on starvation agar to initiate development. After 6, 12, 18, 24, 36, 48, and 72 hr of incubation, each strain was scraped from the agar, suspended, sonicated to break open the cells, and assayed for β-galactosidase activity and total protein. The profiles of β-galactosidase specific activity versus time of development for C- and C+ versions of 26 different strains with developmentally regulated lac fusions are summarized in Table 3.

Comparison of β-galactosidase expression in C- and C+ strains revealed three different responses to the C- mutation: β-galactosidase expression was either...
Table 1. Tn5 lac insertion strains

Ω	Wild-type	C− derivative	B− derivative
4273	DK4290b	DK5218	DK5230
4400	DK4292	DK5247	DK5258
4401	DK4293	DK5229	DK5241
4403	DK4368	DK5270	—
4406	DK4294	DK5227	DK5239
4408	DK4300	DK5219	DK5233
4411	DK5200	DK5222	DK5234
4414	DK5279b	DK5287	DK5286
4427	DK5280b	DK5289	DK5288
4435	DK5204	DK5253	—
4445	DK4296	DK5248	DK5259
4455	DK5206	DK5223	DK5235
4457	DK5207	DK5221	DK5233
4459	DK4299	DK5251	DK5265
4469	DK4469	DK5224	DK5236
4473	DK4473	DK5245	—
4474	DK4474	DK5249	DK5267
4480	DK4480	—	DK5266
4491	DK5285b	DK5296a	DK5295
4492	DK4492	DK5271	DK5268
4494	DK4494	DK5244	DK5255
4497	DK4497	DK5252	—
4499	DK4499	DK5246	DK5257
4500	DK4500	—	DK5264
4506	DK4506	DK5272	DK5269
4514	DK4514	DK5225	DK5237
4521	DK4521	DK5220	DK5232
4529	DK4529	DK5228	DK5240
4530	DK4530	—	DK5260
4531	DK4531	—	DK5261

The site of Tn5 lac insertion is designated by Ω followed by a number. The set of Tn5 lac insertions has been described previously [Kroos et al. 1986]. In particular, Ω4273 is a Tn5 lac insertion in tps, the gene that encodes spore coat protein S. The wild-type strain that provides the genetic background for all these derivatives is DK1622, which is fully motile and fruiting competent [Kaiser 1979].

The C− derivative containing Tn5 lac Ω4491 did not show a typical C− phenotype. Rather, it showed the aggregation defect seen for Tn5 lac Ω4491 in a wild-type background [Kroos et al. 1986]; the aggregates are larger in number and smaller in size than normal and they appear 6–12 hours late. The B− derivative of Tn5 lac Ω4491 di show a typical B− phenotype which is described in the text.

"Normal", "reduced", or "abolished" compared to the corresponding C+ strain. The 10 strains presented in the upper section of Table 3 illustrate the first response. The lac fusions carried by these strains are expressed in C+ cells beginning at 0–5 hr of development and are expressed very similarly in the C− mutant and the C+ parent (Table 3 and Fig. 3a,b). Some fusion strains included in this class, like Ω4494 shown in Figure 3b, expressed β-galactosidase in the C− derivative parallel to that in the wild-type strain to the C+ peak, then, while specific activity falls in the C+ strain, it continues to increase in the C− strain. Strains containing Ω4457, Ω4521, Ω4455, Ω4411, Ω4469, Ω4273 also behave this way [Table 3]. Lysis and sporulation probably account for the decreased β-galactosidase specific activity observed for wild-type strains late in development [Kroos et al. 1986]. Lysis would expose β-galactosidase to proteases, and sporulation would sequester β-galactosidase in sonication-resistant spores. Since the C− mutants fail to lyse or to sporulate, β-galactosidase can continue to be synthesized in the mutants, at a time when in the wild-type it is either released to extracellular breakdown by lysis or sequestered in spores.

Reduced expression was the second response to a C− mutation, and it was observed in eight lac fusions that begin to express β-galactosidase before 16 hr of development in the corresponding C+ strains [Table 3, middle section]. In general, the fusions in this class increase β-galactosidase activity at a lower rate in C− than in C+ strains. Two insertion strains giving this response, Ω4514 (shown in Fig. 3c) and Ω4400 [Table 3], reach a lower β-galactosidase specific activity in the C− derivative at the time of peak expression in wild-type [compare columns 4 and 5 in Table 3]. However at later times the C− derivative did reach a level of activity similar to the wild-type peak. Figure 3d shows that the C+ strain with lac fusion Ω4427 begins to express β-galactosidase at 0 hr. The corresponding C− strain responds with reduced expression: The β-galactosidase specific activity in the C− and C+ strains was the same at 6 hr of development, but subsequent activity was lower in the C− derivative, reaching 57% of the C+ peak activity. For the remaining five lac fusion strains with reduced expression, β-galactosidase specific activity was less at each time in the C− derivative than in the corresponding C+ strain, reaching 27–53% of the wild-type peak activity [Ω4474, Fig. 3c, also Ω4499, Ω4414, Ω4473, and Ω4492, Table 3]. Although the C− mutation reduced the level of β-galactosidase expression from these eight lac fusion strains, it did not appreciably change the time that β-galactosidase activity began to rise, as measured by their "expression time" [these data are not included in Table 3].

A third response to the C− mutation was the "abolition" of β-galactosidase activity, described in the bottom section of Table 3. Eight lac fusion strains, whose C− counterparts would have begun expression at 11–30 hr of development gave this response. For all but two of the C− derivatives of these fusion strains, β-galactosidase expression increased before cells became sonication resistant, but maximum specific activity was observed only if spores were disrupted. See for example Ω4506 in Figure 3f; fusion strains Ω4406, Ω4459, Ω4529, Ω4435, and Ω4497 [Table 3] were similar. The remaining two fusion strains in which the C− mutation abolished expression are Ω4403, for which maximum β-galactosidase specific activity was detected in the wild-type strain without spore disruption, and Ω4401 for which β-galactosidase expression increased in the wild-type strain only after cells became sonication resistant.

Extracellular complementation of C− mutants

Normal morphological development of C− mutants can be "rescued" by adding wild-type cells in equal propor-
Figure 1. Morphological development of wild-type and mutants. Wild-type (wt), C-, and B- strains (all containing Tn5 lac Ω4499, which does not affect development) were spotted on starvation (TPM) agar as described in Materials and methods. Photomicrographs were taken at 4.2× magnification after the indicated number of hours at 32°C, except the t = 1.5 photo was taken at 2.5× magnification to show an entire spot.
Sporulation tests were performed as described in Materials and methods. In the extracellular complementation tests approximately 5 × 10⁶ spores arose from red strains DK1622 and DK5207. Only rods were observed for C- strains (Δ) DK5221 and DK5246 and B- strains (■) DK5233 and DK5257.

To what extent does extracellular complementation restore the normal pattern of developmental gene expression to C- mutants? Six different lac fusion strains were examined, three of whose expression was reduced in the C- derivative and three of whose expression was abolished in the C- derivative. Each C- lac fusion strain was mixed with an equal number of wild-type cells (DK1622, which does not produce β-galactosidase) and the mixture was plated for development and subsequent β-galactosidase measurements. The data reported in Table 2 show that β-galactosidase expression was restored with approximately correct timing and amount to all six C- lac fusion strains by mixing them with wild-type cells. Figure 4 shows examples of the β-galactosidase specific activity profiles obtained in these extracellular complementation experiments for two Tn5 lac insertion strains: φ4499, whose expression is reduced by C- and φ4435, whose expression is abolished by C-.

The earliest reduction of developmental gene expression by the C- mutation was observed at 6 hr: see φ4427, φ4400, and φ4499 in Table 3. Since expression from φ4499 in a C- mutant was restored to nearly wild-type levels between 6 and 12 hr of development in the mixture with wild-type cells (Fig. 4a), the C- mutation

Table 2. Sporulation of C- and B- mutants

Strain	Genotype	Sporulationa	Extracellular complementationa		
		Spores/ml	red Spores/ml	yellow Spores/ml	percent wt^c
DK1622	wild-type	2 × 10⁶	7 × 10⁶	1 × 10⁶	100
DK4499	Tn5 lac φ4499	4 × 10⁶	1 × 10⁶	1 × 10⁶	100
DK5207	Tn5 lac φ4457	2 × 10⁶	1 × 10⁶	5 × 10⁶	50
LS523	C-	300	7 × 10⁶	2 × 10⁶	200
DK5246	C-, Tn5 lac φ4499	20	9 × 10⁶	1 × 10⁶	60
DK5221	C-, Tn5 lac φ4457	600	7 × 10⁶	2 × 10⁶	200
M380	B-	<10	<10	<10	<1000
DK5257	B-, Tn5 lac φ4499	<10	900	20	0.002
DK5233	B-, Tn5 lac φ4457	<10	700	<2	<0.0002

* Sporulation tests were performed as described in Materials and methods. In the extracellular complementation tests approximately 5 × 10⁶ cells of the B+C+ red strain DK4696 were mixed with an equal number of cells of the yellow strains listed in the first column and the mixtures were plated for development as described in Materials and methods. The numbers of heat- and sonication-resistant spores formed by 3 days that were able to germinate and produce either red or yellow colonies are presented in the table. Some spores germinated to produce tan colonies in which case their origin as "red" or "yellow" was deduced from their drug resistance and Lac phenotypes, they are included in the "Red" and "Yellow" totals.

b The number of spores arising from yellow strains in the extracellular complementation test is expected to be half the number in the sporulation test because the total number of input cells is held constant between sporulation and complementation. Equal numbers of red DK4696 cells and yellow cells are mixed in the extracellular complementation test.

c Yellow spores as percent of the number produced by DK1622 alone.
can be complemented extracellularly at the time the C- defect is first evident. As shown in Figure 4a, complementation restores the C+ pattern of developmental gene expression to C- mutants. The fact that it was necessary to disrupt spores to detect the maximum \(\beta\)-galactosidase specific activity in mixtures of wild-type cells with C- Tn5 \(\text{lac}\) derivatives containing \(\Omega\)4435 and \(\Omega\)4401 (Fig. 4b and Table 4) reveals a C+ pattern of \(\beta\)-galactosidase expression for these two C- strains as well. Furthermore, rescued developmental \(\beta\)-galactosidase expression from \(\Omega\)4401 in C- cells is observed only after the spores have become sonication resistant, which parallels the expression of \(\Omega\)4401 in C+ cells.

Effects of a B- mutation on developmental gene expression.

The B group of conditional sporulation mutants is genetically heterogeneous; however, at least three of the B mutants described by Hagen et al. (1978) map to the same locus (Kuner 1980; Y. Cheng, unpubl.). The \(ssbA330\) allele, now called \(bsgA330\) for B signal, an insertion near the middle of the locus previously shown to carry the site of Tn5 \(\text{lac}\) insertion is designated by \(\Omega\) followed by a number.

Table 3. Effects of C- mutation on developmental gene expression

\(\Omega\)	Expression time in wild-type [hr]*	Wild-type S.A. at peak	S.A. in mutant at time of peak	\(\beta\)-Galactosidase expression in C-
4491	0	4	22	18
4457	0	11	53	73
4218	1	12	50	42
4494	2	13	150	270
4455	3	24	160	140
4445	4	46	520	560
4411	5	27	1700	1200
4469	5	28	190	190
4273	5	100	530	640
4427	5	2	65	55
4400	6	9	69	34
4499	6	6	94	23
4514	9	10	290	200
4414	10	23	1100	410
4473	13	20	1300	570
4474	15	4	150	20
4492	16	7	190	75
4406	11	3	220	17
4506	14	8	140	18
4403	15	4	190	10
4459	18	8	220	20
4529	23	4	180	8
4435	25	3	450	6
4497	30	6	140	11
4401	30	9	230	10

The site of Tn5 \(\text{lac}\) insertion is designated by \(\Omega\) followed by a number.

* The "expression time" is an estimate of when \(\beta\)-galactosidase specific activity begins to increase during development (Kroos et al. 1986). The expression times and specific activities reported were obtained for wild-type and C- Tn5 \(\text{lac}\) strains spotted on starvation agar and harvested in parallel in the same experiment. The time course of \(\beta\)-galactosidase specific activity changes during development for wild-type Tn5 \(\text{lac}\) strains in these experiments were in agreement with those published previously (Kroos et al. 1986). Furthermore, time courses for wild-type and C- strains were repeated for \(\text{lac}\) fusions in the table; all were found to be reproduced.

* Vegetative values are the specific activity (S.A.) of \(\beta\)-galactosidase in \(t = 0\) samples [i.e., cells sedimented from growth medium, suspended in starvation buffer, and immediately frozen]. The units of \(\beta\)-galactosidase specific activity are nmoles ONP/min·mg protein.

* Values are the highest \(\beta\)-galactosidase specific activities measured for wild-type [column 4] and C- [column 6] Tn5 \(\text{lac}\) strains during 72-hr developmental time courses.

* Values are the specific activities of C- Tn5 \(\text{lac}\) derivatives at the time when maximum \(\beta\)-galactosidase specific activity was observed for the corresponding wild-type Tn5 \(\text{lac}\) strain.

* The effect of a C- mutation on developmental \(\beta\)-galactosidase expression from each Tn5 \(\text{lac}\) insertion is summarized in this column. "Normal" indicates \(\beta\)-galactosidase expression began at the same time and reached a similar or higher specific activity in the C- Tn5 \(\text{lac}\) derivative as in the wild-type Tn5 \(\text{lac}\) strain. "Reduced" indicates \(\beta\)-galactosidase expression began at the same time but increased less rapidly and/or reached a lower maximum in the C- mutant than in wild type [see text]. "Abolished" indicates no developmental expression occurred in the C- mutant.

* The maximum \(\beta\)-galactosidase specific activity was observed when the 72-hr sample was sonicated with glass beads to disrupt spores. Sonication with glass beads did not change the \(\beta\)-galactosidase specific activities of 72-hr samples of C- Tn5 \(\text{lac}\) derivatives, as expected, since these samples contain very few spores.
cause a B− phenotype (Gill and Cull 1986), was introduced into a series of lac fusion strains (Table 1 and Materials and methods). Each strain gave a B− phenotype. Figure 1 shows that these B− derivatives form loose aggregates that fail to progress to the translucent mound stage and that even the loose aggregates disappear after 24 hr. Like the C− strains, the B− strains failed to ripple and failed to lyse or to form appreciable numbers of spores (Fig. 2 and Table 2). However, since the B− strains failed to form the large translucent mounds and ridges seen for wild-type and for C− strains, the B− mutants show less extensive aggregation than the C− mutants.

Profiles of β-galactosidase specific activity versus time of development for the B− and wild-type derivatives of the 26 different developmentally regulated Tn5 lac insertion strains (Table 1) are summarized in Table 5. Two types of responses to the B− mutation are evident. “Reduced” expression of β-galactosidase was observed in the B− derivatives of 14 lac fusion strains that normally begin expression at 0−14 hr of development (Table 5, upper section; and Fig. 5a−c). β-Galactosidase expression started in these B− strains at about the same time as in B+ strains. The average rate of β-galactosidase specific activity increase for B− derivatives was only 10−40% that observed for their B+ parents, though eventually the specific activity of these B− strains reached 30−90% of the peak observed in their B+ counterparts. While typically the β-galactosidase specific activity decreased in the B+ strains between 36 and 72 hr of development, it continued to increase or leveled off in the B− derivatives.

The second response to the B− mutation was the
Table 4.

Expression time in wild-type (hr)	Expression time in mutant mixed with wild-type cells	S.A. of mutant at peak
Ω 4499	6	94
4414	10	1100
4492	16	190
4403	15	190
4435	25	450
4401	30	230

The site of Tn5 lac insertion is designated by Ω followed by a number.

a From Table 3.
b The expression times and peak specific activities are from the type of experiment shown in Fig. 4 in which equal numbers of C- Tn5 lac cells and wild-type cells (which do not contain Tn5 lac) are mixed and plated for development.
c The maximum β-galactosidase specific activity was observed when the 72-hr sample was sonicated with glass beads to disrupt spores.

"abolition" of β-galactosidase activity, shown by 12 Tn5 lac fusion strains listed in the lower section of Table 5. The B+ derivatives of these fusion strains begin expression at 6-30 hr of development (Table 5 and Fig. 5d). Thus, in all 26 lac fusion strains tested, the B- mutation significantly reduced or abolished developmental β-galactosidase expression; no strain was unaffected by B. However, the B- mutation did not alter β-galactosidase expression levels during normal growth of the same 26 Tn5 lac insertion strains: The specific activities were comparable for B- and B+ strains in the t = 0 samples, which were prepared by sedimenting cells from growth medium, resuspending them in starvation buffer, and freezing them immediately, [see for example the t = 0 points in Fig. 5a-d].

Using the standard conditions for extracellular complementation described in Materials and methods, we were unable to observe rescue of development of cells carrying the B- allele, bsgA330. Sonication-resistant spores were observed microscopically in the mixture after 3 days, but very few of them were able to germinate on plates after heat treatment (Table 2). After 6 days of co development, the number of heat-resistant spores increased to 10⁶/ml, but <0.1% of them had arisen from B- cells in the mixture. The data of Table 2 show that the B- mutants also delayed and reduced sporulation of wild-type cells in the mixture. Neither was the expression of β-galactosidase restored to B- lac fusions during co development with wild-type cells, although slight increases above the levels seen for B- Tn5 lac cells alone were observed [data not shown]. On the other hand, Gill and Cull [1986] have reported rescue of a strain carrying bsgA330 using a different set of experimental conditions and Hagen et al. [1978] observed the rescue of two other B group mutations, B468 and B471. It seems likely that culture conditions which maximize rescue of A-, B-, or C- mutants are different because these functions are needed at different times in development: 1.5, 0, and 6, hr respectively. To facilitate comparisons, we have chosen one standard set of complementation conditions;
Table 5. Effects of a B- mutation on developmental gene expression

Ω	Expression time in wild-type [hr]	Wild-type S.A.	S.A. at wild-type peak	S.A. at mutant at time of wild-type peak	β-galactosidase expression in B- mutant	
4491	0	4	22	8	15	reduced
4457	0*	10	53	14	16	reduced
4521	2	13	150	110	130	reduced
4427	0	9	69	16	33	reduced
4408	1	12	50	20	35	reduced
4494	2	24	160	61	81	reduced
4455	3	40	520	180	190	reduced
4445	4	27	1700	480	620	reduced
4469	4*	87	370	160	250	reduced
4411	5	28	190	70	94	reduced
4273	5	2	65	11	20	reduced
4530	6	7	33	10	18	reduced
4514	9	10	290	97	210	reduced
4492	14*	8	77	14	24	reduced
4531	6	4	45	7	10	abolished
4400	6	2	240	6	7	abolished
4499	9*	6	83	9	9	abolished
4414	11	23	1100	25	28	abolished
4406	11	3	220*	7	7	abolished
4500	13	5	170	5	6	abolished
4506	14	8	140*	8	8	abolished
4474	15	4	150	3	4	abolished
4459	18	8	220*	8	9	abolished
4480	21	2	380*	5	5	abolished
4529	23	4	180*	5	5	abolished
4401	30	9	230*	7	7	abolished

The site of Tn5 lac insertion is designated by Ω followed by a number.

*See Table 3 legend, and replace C- (Table 3) with B- (Table 5).

Expression time, vegetative specific activity, and/or peak developmental specific activity of the wild-type Tn5 lac strain for these insertions may differ from those reported in Table 3 because the wild-type Tn5 lac profile was obtained in parallel with the B- Tn5 lac profile in a separate experiment from the C- Tn5 lac experiment reported in Table 3. For Tn5 lac insertions that also appear in Table 3 but are not marked with a superscript g, the wild-type Tn5 lac, C- Tn5 lac, and B- Tn5 lac profiles were all obtained in the same experiment. Time courses for wild-type and B- strains were repeated in two series of experiments for eight lac fusions in the table and were found to be reproducible.

these conditions are apparently less appropriate for B than for A [Kuspa et al. 1986] or C [above]. Further studies will be required to optimize conditions for rescue of B mutants.

Discussion

A+ and B+ are functions required earlier in development than C+

Both A+ and B+ appear to act in the first few hours of development. B+ is required at least partially for expression of all lac fusions tested, but is not required absolutely for expression of any of the fusions until 6 hr of development (Table 5). A+ is required absolutely for expression of all but three lac fusions and these three normally begin expression in the first 5 hr of development [Kuspa et al. 1986]. The requirement for C+ is clearly separated in time from the early requirements for A+ and B+. C+ is not required for expression of any lac fusions that normally begin expression before 6 hr of development [Table 3]. Fusion Ω4427 is interesting in this regard because it does not require C+ for β-galactosidase expression before 6 hr but does require C+ for normal expression after 6 hr. C+ is required at least partially for expression of all Tn5 lac insertions tested that normally begin expression after 6 hr of development and is required absolutely for expression at 11 hr of development and seven other fusions that are expressed of fusion Ω4406 that normally begins expression after 11 hr [Table 3]. Thus A+ and B+ are required several hours earlier than C+ during Myxococcus development.

The available data do not order A+ relative to B+ unambiguously, because both A+ and B+ appear to be required early for the expression of most lac fusions. However, the fact that Ω4408, Ω4455, and Ω4469 depend on B+ [Table 5], but not on A+ [Kuspa et al. 1986], suggests that B+ precedes A+.

Based on the expression of several biochemical markers of development, LaRossa et al. [1983] concluded previously that A- mutants appear to be blocked earlier in development than C- and B- mutants. Our results support the conclusion that A- mutants are blocked earlier than the C- mutant, but indicate that a B- mutation, bsgA330, affects developmental gene expression at least as early and most probably earlier than two un-
linked A− mutations. On grounds of morphology, the B− mutant arrests development at an earlier stage of aggregation than the C− mutant [Fig. 1]. Using bsgA330 but a different set of Tn5 lac insertions and different conditions for development, Gill and Cull [1986] also concluded that bsgA mutants are blocked very early because all five of their lac fusions were completely dependent on B. LaRossa et al. [1983] based their conclusions on the qualitative detection of protein S and myobacterial hemagglutinin. It is possible that they detected protein S because its expression is reduced but not abolished in a B− mutant strain as measured by β-galactosidase from Tn5 lac14273 (Table 5). Ω4273 is an insertion of Tn5 lac in the protein S gene [Kroos et al. 1986].

A+, B+, and C+ lie on the same dependent pathway

A+, B+, and C+ are essential steps in Myxococcus development: A−, B−, and C− mutants fail to sporulate or to complete aggregation, and they alter expression of β-galactosidase from fusions of lacZ to developmentally regulated promoters. The fact that A− and B− are required earlier in development than C− is compatible with two general types of regulatory circuits: a dependent pathway in which A+ and B+ precede C+; or multiple pathways connected to a common timer such that A+ and B+ are set to function at an earlier time than C+ [Jarvik and Botstein 1973; Hartwell et al. 1974]. The pattern of dependences on A+, B+, and C+ argue against a common timer and for a dependent regulatory pathway. For example, all 11 fusions that depend on C+ also depend on A+. All three fusions that are independent of A+ are also independent of C+. A third class, containing five fusions all normally expressed before 6 hr of development, depends on A+ but not on C+. In addition, no fusions were found to depend for developmental expression on C+ but not on A+. One might have expected to find such fusions if A+ and C+ were on separate pathways coordinated by a common timer.

The dependence classes for B+ and C+ are analogous to those for A+ and C+. Thus, all 12 fusions that were tested with both B+ and C+, and were found to depend at least partially on C+ for their expression, also depend at least partially on B+ [Tables 3 and 5]. Ten fusions were found to depend partially on B+ but not on C+, and
all of them normally begin expression before 6 hr of development. No fusions were found to depend on C+ but not on B+. Three fusions were found to depend partially on both B+ and C+ (Ω4427, Ω4514, and Ω4492). In all three cases the degree of development appears to be greater on B+ than on C+, in the sense that a smaller fraction of maximum β-galactosidase activity at the time of the wild-type peak was found in B− than in C− (compare Tables 3 and 5). Since B+ is required earlier than C+ during development (see above) and since each of 22 lac fusions showed greater dependence on B+ than on C+, our results argue that B+ functions before C+ on the same dependent developmental pathway.

Branches in the regulatory pathway

Although A+, B+, and C+ appear to function on the same dependent pathway during *Myxococcus* development, the observation that certain lac fusion strains that begin to express β-galactosidase at about the same time can differ in their dependence on A+, B+, and/or C+ suggests that the pathway is branched. In the diagram of Figure 6, each lac fusion is positioned along the x axis according to the time that it begins β-galactosidase expression in an A+ B+ C+ strain. Position on the y axis for each fusion represents its level of dependence on A+, B+, and C+, as measured by β-galactosidase expression during development. A higher vertical position implies dependence on more factors or an increased dependence on the same factor. For example, Tn5 lac Ω4514 normally begins expression at 9 hr of development; its x coordinate is 9 hr. β-Galactosidase expression from Ω4514 depends partially on both B+ and C+ (since β-galactosidase expression was reduced in the B− and C− mutants) and depends absolutely on A+ for its expression (since no expression was seen in A− mutants), therefore its y coordinate is the third level. Tn5 lac Ω4406 is placed to the right of Ω4514 because Ω4406 normally begins expression at 11 hr of development, and on the top level because it depends absolutely on A+, B+, and C+ for its expression. The position of some Tn5 lac insertions in the diagram is tentative because some combinations have not yet been tested, as indicated in the legend to Figure 6.

Figure 6 can be interpreted as a partial map of the regulatory pathway that controls *Myxococcus* development. In all, 22 of 31 lac fusions lie on the uppermost line in Figure 6, which follows a step-wise course, we will refer to this line as the “main” pathway. The main pathway leads to sporulation since nearly all of the fusions on this pathway begin to increase β-galactosidase expression after 10 hr of development continue to increase β-galactosidase specific activity in spores (i.e., in sonication-resistant cells). Expression of β-galactosidase from fusions on the main pathway is controlled by A+, B+, and/or C+ as shown. However, several sets of fusions that are expressed at about the same developmental time can nevertheless depend on A+, B+, and C+ to different extents. For example, expression of β-galactosidase from both Tn5 lac Ω4411 and Tn5 lac Ω4469 begins at about 5 hr of development, but expression from Tn5 lac Ω4411 [on the main pathway] requires A+ whereas expression from Tn5 lac Ω4469 does not require A+. This and similar cases can be accommodated by adding three branches below the main pathway as shown in Figure 6. A single pathway starts development since all fusions depend to some extent on B+ for their expression. The three branches diverge at about 0, 6, and 10 hr from the main pathway. The 0-hr branch is added because fusions Ω4408, Ω4455, and Ω4469 do not require A+ for their expression, whereas other fusions on the main pathway expressed at almost the same time do require A+ (Kuspa et al. 1986). The 6- and 10-hr branches in Figure 6 are introduced because some fusions display reduced β-galactosidase expression in the B− and/or C− mutant whereas other fusions that normally begin β-galactosidase expression at the same time of development display no expression in the B− and/or C− mutant.

Additional experiments are required to elucidate the mechanism by which B− and C− mutations reduce without abolishing the expression of certain developmentally regulated genes. One possibility is that the genes whose expression is reduced have two promoters, one completely dependent, the other completely independent. Another possibility is that the B− and C− mutants make lowered amounts or altered forms of an intercellular signal. Alternatively, cells may have secondary mechanisms that allow partial gene expression in the absence of a cell−cell interaction.

The fact that there exist mutants of *Myxococcus* that aggregate but do not sporulate, and other mutants that sporulate but do not aggregate, has suggested that aggregation and sporulation lie on separate branches of a developmental pathway (Morrison and Zusan 1979; Shimkets 1987). Aggregation of wild-type cells results in formation of translucent mounds by 12 hr of development (Fig. 1). The A−, B−, and C− mutants, which were selected for inability to sporulate, also are found to have defects in aggregation. This would suggest either that sporulation depends on aggregation, or that both depend on a common prior function(s). In particular, A− and B− mutants show little aggregation; C− mutants do construct mounds, but these have abnormal morphology and are unstable. These mutant phenotypes show that aggregation is regulated, either directly or indirectly, by A+, B+, and C+. However, lacking knowledge of individual aggregation functions, and their degree of dependence on A+, B+, and C+, it is not yet possible to place them on (or off) the diagram shown in Figure 6.

Extracellular rescue of the C− defect

The earliest effects of a C− mutation on developmentally regulated β-galactosidase expression from lac fusions were observed between 6 and 12 hr. During this period, cells are normally aggregating into compact mounds. Between these mounds, cells accumulate in low parallel ridges (ripples). C− mutants fail to form compact mounds or ripples by 12 hr of development, although they do form larger, looser and less regular mounds by 18−24 hr of development. Thus, morphological defects are manifest in C− mutants between 6 and 12 hr (Fig. 1), the same time that gene expression defects are first evident. When wild-type cells are mixed with
Gene expression in B- and C- mutants

Figure 6. Dependence of gene expression on A+, B+, and C+, and on time. The diagram summarizes the effects of two different A- mutations [Kuspa et al. 1986], a C- mutation, and a B- mutation on β-galactosidase expression from the same set of Tn5 lac insertions. The Tn5 lac insertions are placed along the x axis according to the point of developmental time at which they normally begin expression in wild-type cells. Tn5 lac insertions with similar expression times are grouped above arrows that depict the average expression time of the group. Tn5 lac insertions are placed along the y axis according to their dependence on A+, B+, and C+. For example, Tn5 lac insertions that displayed reduced expression in the B- mutant [Table 5] are placed above the level "partial requirement for B" in the diagram, whereas Tn5 lac insertions that failed to be expressed in the B- mutant are placed above the level "absolute requirement for B". The results for the A- and C- Tn5 lac derivatives are represented similarly. Horizontal lines connect Tn5 lac insertion with the same dependence pattern. Vertical lines mark the time at which requirements for A+, B+, and C+ are first manifest and they indicate the cumulative nature of the dependences. Brackets [] connect Tn5 lac insertions with related restriction maps [Kroos et al. 1986]. Superscript a, b, or c associated with an f~ number indicates the Tn5 lac insertion has not yet been tested in the A- mutants, the B- mutant, or the C- mutant, respectively. Tn5 lac f~4427 is starred because it exhibits no requirement for C+ before 6 hr of development, but a partial requirement for C+ after 6 hr [Fig. 3d], and so it appears twice in the diagram.

C- mutant cells in equal proportion, mounds and ripples that are normal in appearance form by 12 hr. We do not know the extent to which C- mutants participate in mound formation and rippling in the mixture with wild-type cells. However, we do know that sporulation of C- mutants in the mixture is restored to wild-type levels [Table 2]. Furthermore, an approximately normal pattern of developmental gene expression from six lac fusions in the C- mutant background was restored in the mixture with wild-type cells [Table 4]. Among the lac fusions rescued are those that are normally expressed at 6 hr of development in C+ strains, when the C- defect is first manifest [Fig. 4a]. These data argue that the wild-type cells rescue by providing an intercellular signal at about 6-12 hr of development that is missing in the C- mutants. The rescue of β-galactosidase expression from a lac fusion in a C- mutant provides a bioassay to explore the molecular basis of the observed extracellular complementation.

Materials and methods

Construction of C- and B- Tn5 lac derivatives

The C- and B- mutations used to construct Tn5 lac derivatives were each produced by insertion of a tetracycline resistance [Tc+] marker. The Tc+ marker gene originated from Tn10 [Foster et al. 1981] and confers on M. xanthus resistance to 15 μg/ml oxytetracycline [Avery and Kaiser 1983]. M. xanthus strain LS523 contains Tn5-132 Δcsg205 inserted in the csg locus [Shimkets and Asher 1987]. M. xanthus strain M380 contains...
the Tcr-encoding BglII fragment from Tn10 inserted in a unique BglII restriction site in the bsgA locus, which was called sbsA [Gill and Cull 1986] and renamed bsgA. Plate stocks of myxophages Mx8 c2p2 [Martin et al. 1978] were grown on donor strains LS523 [csg-205] and M380 [bsgA330] and used to transduce M. xanthus strain DK101 [sja1, Hodgkin and Kaiser 1979] to Tcr as described [Avery and Kaiser 1983]. This transduction replaced the resident C- or B- gene with a disrupted allele, and gave strains DK5216 (containing C- insertion csg-205) and DK5217 (containing B- insertion bsgA330). This initial transduction of the C- and B- mutations into DK101 was employed because we were then able to prepare higher titers of liquid stocks of Mx8 c2p2 on the DK101 derivatives than on the original sja1 strains LS523 and M380, facilitating transduction of the C- and B- mutations into a large number of Tn5 lac insertion-containing strains described by Kroos et al. [1986]. Liquid stocks of Mx8 c2p2 were prepared by infecting cells growing exponentially in CTT liquid medium [Hodgkin and Kaiser 1977] at a density of 2 x 10^8 cells/ml with a phage multiplicity of 0.01 and incubating at 32°C for 24–36 hr with shaking (L. Avery, unpubl.). All Tn5 lac insertion strains that were used as recipients either arose from P1 : : Tn5 lac infection of M. xanthus strain DK1622 [wild type] or the Tn5 lac insertion was transduced from the M. xanthus strain in which it was originally isolated into DK1622 using Mx8 c2p2 and selecting for kanamycin-resistant [Km+] strains [Kroos et al. 1986]. The Tc- transductants of the lac fusion strains was verified by transfer to CTT agar plates (Hodgkin and Kaiser 1977) containing 12.5 µg/ml oxytetracycline. For each strain constructed (Table 1), 10–15 Tc- transductants were transferred to CTT agar plates containing 40 µg/ml kanamycin sulfate to test for retention of the Tn5 lac insertion. All Tc- transductants were also Km+ for all strains constructed. Thus, no genetic linkage (i.e., <7–10%) was observed between any of the Tn5 lac insertions and the Tc markers in csg-205 and bsgA330 in the crosses that were performed (see Table 1). The Tc- Km+ transductants were all transferred to CTT agar plates containing 40 µg/ml 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-Gal) and TPM [10 mM Tris-HCl [pH 7.5], 1 mM K2HPO4, 8 mM MgSO4] agar plates containing 20 µg/ml X-Gal and examined after 1, 2, and 3 days at 32°C. For each cross, one transductant which displayed colony color (on the X-Gal plates) typical of the majority of the transductants from the cross was chosen for further study and given the strain number shown in Table 1. As described previously [Kuspa et al. 1986], in such crosses transductants with aberrant β-galactosidase expression arise at a low frequency (0.2%), possibly due to mutations in lacZ or transposition of Tn5 lac to a different chromosomal site, and the screen for colony color eliminates such aberrant transductants.

Since the B- mutation is caused by insertion of a Tc- marker, all Tc- transductants are expected to exhibit the mutant phenotype, and all B- Tn5 lac derivatives listed in Table 1 did display the expected developmental defect when plated on TPM agar as described below. In the case of the C- mutation, since the Tc- marker is encoded in a transposon [Tn5-132 Ω205] inserted in the csg locus, Tc- transductants could in principle arise from Tn5-132 which had transposed to new sites either in the donor strain [i.e., before the transduction] or in the recipient strain [i.e., during the transduction]. However, the frequency of transposition of Tn5 [or related transposons, like Tn5-132] is low compared with the frequency of homologous recombination in M. xanthus [Kuner and Kaiser 1981] and all the C- Tn5 lac derivatives listed in Table 1 displayed their expected developmental defects when plated on TPM agar as described below. As an additional verification of genotype, we showed that C- strains LS523 and DK5216, as well as three C- Tn5 lac derivatives [DK5250, DK5248, and DK5251], contain Tn5-132 at the expected site, Ω205, by isolating DNA from each strain [Avery and Kaiser 1983], digesting it with EcoRI, and showing that for each strain two fragments [3.8 and 27 kb in length] are detected by nick-translated [Davis et al. 1980] ColE1 :: Tn5-132 DNA in a Southern blot [Southern 1975] blot filter hybridization experiment [data not shown]. Each of the C- Tn5 lac derivatives possessed, in addition, a third hybridizable fragment due to the presence of Tn5 lac.

Quantitation of lysis and sporulation

To determine the number of rod-shaped cells and/or spores at different times during development, strains were grown, sedimented, and resuspended as described above. Cells were plated for development and harvested for quantitation of rods and spores according to the following procedure developed by K. Mayo [pers. comm.]. One 20-µl aliquot of cells was placed on the surface of a 1.5-mL TPM agar mini-plate formed in the well of a 24-well tissue culture plate [Falcon] for each developmental time point. After incubation at 32°C, each sample was harvested by adding 0.5 mL of TPM buffer to the well, dislodging the cell mat with a pasteur pipette to a 1.5-ml tube containing an additional 0.5 mL of TPM buffer, and washing the well with half of the 1-ml sample to ensure maximal recovery of the cell mat.

To quantitate both rods and spores in the sample, glutaraldehyde (2% vol/vol) was added to stabilize rod-shaped cells and render them sonication resistant. Samples were exposed to glutaraldehyde for at least 24 hr at 4°C prior to sonication for 30 sec. Control experiments showed that this sonication treatment did not disrupt glutaraldehyde-fixed, rod-shaped cells but was sufficient to release them from the cell mat. The sonication disaggregated clumps of spores and permitted counting of rods and spores in a Petroff–Hauser chamber using phase-contrast microscopy.

To quantitate spores that are both sonication and heat resistant, the sample was harvested as described above after 3 days at 32°C. Samples were incubated for 2 hr at 50°C and then sonicated for 45 sec. The heat and sonication treatments kill rod-shaped cells. Appropriate dilutions of the spore-containing samples were made in TPM buffer and mixed with 2.5 mL of CTT soft agar (0.7%) for plating on CTT agar (1.5%) plates. Plates were incubated for 6 days at 32°C to allow spores to germinate and form colonies which were then counted.

Measurement of developmental β-galactosidase expression

Expression of β-galactosidase from Tn5 lac insertion-containing M. xanthus strains was quantitated as described previously [Kroos et al. 1986]. Briefly, cells growing exponentially in CTT liquid medium were sedimented and resuspended in TPM buffer at a density of 5 x 10^9 cells/mL. A 0.1-ml aliquot was added to 0.3 mL of TPM and was stored at ~20°C for later determination of β-galactosidase activity in growing cells (t = 0 sample). For development, 20-µL aliquots were spotted on TPM agar plates, the spots were allowed to dry for 1 hr at room temperature, then plates were incubated at 32°C. At various times cells were scraped from the agar into TPM buffer and stored at ~20°C until all samples were collected. The specific activity of β-galactosidase [1 unit = 1 nmole o-nitrophenol produced per minute per milligram protein] in each sample was determined after sonication (rod-shaped cells but not spores are disrupted) or, in the cases noted in the text and tables, after sonication with 75- to 150-µm acid-washed glass beads [Sigma] to disrupt spores as described [Kroos et al. 1986].
Extracellular complementation of β-galactosidase expression

To determine whether wild-type [DK1622] cells could restore β-galactosidase expression from C⁻ or B⁻ Tn5 lac derivatives during codevelopment, the strains were grown, sedimented, and resuspended as described above. Equal volumes of the two cell types were mixed and 20-μl aliquots of the mixture were spotted for development on TPM agar plates. Samples were harvested and their β-galactosidase-specific activity was determined as described above. Since half the cells in the mixtures do not contribute β-galactosidase activity but do contribute to the total protein concentration of the sample, the total protein concentration was divided by 2 before calculating a specific activity.

Extracellular complementation of sporulation

To test whether codevelopment with wild-type cells could rescue sporulation of the C⁻ and B⁻ mutants, mixtures were made as described above and 20-μl aliquots of the mixture were spotted on TPM agar in 24-well tissue culture plates. Samples were harvested after 3 days of incubation at 32°C, heated for 2 hr at 50°C, sonicated for 45 sec, and plated as described above for the quantitation of heat- and sonication-resistant viable spores. The developmentally competent strain [DK4696, K. Mayo, pers. comm.] employed in these extracellular complementation tests carries the red-2 mutation which gives colonies of DK4696 a red color that is easily distinguished from the normal yellow color of most M. xanthus strains. The red strain DK4696 is B⁺ and C⁺ and develops normally. Use of a red strain as the wild-type partner in an extracellular complementation test with a yellow mutant strain reveals whether a colony has arisen from a wild-type spore (red colony) or a mutant spore (yellow colony). However, both the red strain and the yellow strains give rise to tan colonies by phase variation, which cannot be distinguished by their color. For experiments in which the yellow strain was kanamycin sensitive (Km⁺), the origin of the tan colonies could be inferred by transferring them to CTT agar plates containing 40 μg/ml kanamycin sulfate and incubating 3 days at 32°C. For experiments in which the yellow strain was kanamycin resistant, because it contains a Tn5 lac insertion, the origin of the tan colonies could be inferred by spraying them with a 1 mg/ml solution of 4-methylumbelliferyl-β-D-galactosidase (MUG) in dimethyl sulfoxide. Tan colonies that originated from the red strain fail to fluoresce under 366 nm UV illumination after being sprayed with MUG, while those that originated from yellow Tn5 lac-containing strains do fluoresce, since all M. xanthus strains that contain Tn5 lac express at least a low level of β-galactosidase during growth (Kroes et al. 1986). The use of MUG was suggested by P. Youngman (pers. comm.), and we find that it is more sensitive than X-Gal in plates for the detection of low levels of β-galactosidase expression in tan colonies of Myxococcus. The MUG method was found to be less sensitive for yellow colonies than for tan colonies.

Acknowledgments

We thank Ron Gill, Larry Shimkets, and Kristen Mayo for providing strains and Adam Kuspa for helpful discussions. This investigation was supported by grants GM-23441 and AGO-2908 from the National Institutes of Health [NIH]. Stipend support for L. Kroes was provided by NIH Training Grant GM-07599.

References

Avery, L. and D. Kaiser. 1983. In situ transposon replacement and isolation of a spontaneous tandem genetic duplication. Mol. Gen. Genet. 191: 99–109.
Burchard, R.P., A.C. Burchard, and J.H. Parish. 1977. Pigmentation phenotype instability in Myxococcus xanthus. Canad. J. Microbiol. 23: 1657–1662.
Davis, R.W., D. Botstein, and J.R. Roth. 1980. A manual for genetic engineering: Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. 251 pp.
Foster, T.J., M.A. Davis, D.E. Roberts, K. Takeda, and N. Kleckner. 1981. Genetic organization of transposon Tns10. Cell 23: 201–213.
Gill, R. and M. Cull. 1986. Control of developmental gene expression by cell-to-cell interactions in Myxococcus xanthus. J. Bacteriol. 168: 341–347.
Hagen, D.C., A.P. Bretscher, and D. Kaiser. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64: 284–296.
Hartwell, L.H., J. Culotti, J.R. Pringle, and B.J. Reid. 1974. Genetic control of the cell division cycle in yeast. Science 183: 46–51.
Hodgkin, J. and D. Kaiser. 1977. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl. Acad. Sci. 74: 2938–2942.
Kaiser, D., L. Kroos, and A. Kuspa. 1985. Cell interactions govern the temporal pattern of Myxococcus xanthus development. Cold Spring Harbor Symp. Quant. Biol. 50: 823–830.
Kroos, L., A. Kuspa, and D. Kaiser. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 112: 194–202.
Jarvik, J. and D. Botstein. 1973. A genetic method for determining the order of events in a biological pathway. Proc. Natl. Acad. Sci. 70: 2046–2050.
Kroes, L., D. Botstein, and A. Kuspa. 1985. Cell interactions for analysis of developmental and other nonselectable mutants. Proc. Natl. Acad. Sci. 82: 425–429.
Kuspa, A., L. Kroos, and D. Kaiser. 1986. Intercellular signalling is required for developmental gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. 81: 5816–5820.
Kuner, J. 1980. "Developmental genetics of Myxococcus xanthus." Ph.D. thesis. Department of Biology, Stanford University.
Kuner, J. and D. Kaiser. 1981. Introduction of transposon Tns into Myxococcus for analysis of developmental and other nonselectable mutants. Proc. Natl. Acad. Sci. 78: 425–429.
Kuspa, A., L. Kroos, and D. Kaiser. 1986. Intercellular signalling is required for developmental gene expression in Myxococcus xanthus. Dev. Biol. 117: 267–276.
LaRossa, R., J. Kuner, D. Hagen, C. Manoil, and D. Kaiser. 1983. Developmental cell interactions of Myxococcus xanthus: Analysis of mutants. J. Bacteriol. 153: 1394–1404.
Martin, S., E. Sodergren, T. Masuda, and D. Kaiser. 1978. Systemic isolation of transducing phages for Myxococcus xanthus. Virology 88: 44–53.
Morrison, C. and D. Zusman. 1979. Myxococcus xanthus mutants with temperature-sensitive, stage-specific defects: Evidence for independent pathways in development. J. Bacteriol. 140: 1036–1042.
Rosenberg, E. 1984. Myxobacteria development and cell interactions. Springer-Verlag, New York.
Shimkets, L.J. 1987. Control of morphogenesis in myxobacteria. Crit. Rev. Microbiol. 14: 195–227.
Shimkets, L.J. and M. Dworkin. 1981. Excreted adenosine is a cell density signal for the initiation of fruiting body formation in Myxococcus xanthus. Dev. Biol. 84: 51–60.
Shimkets, L. and D. Kaiser. 1982. Induction of coordinated movement of Myxococcus xanthus cells. J. Bacteriol. 152: 451–461.
Shimkets, L.J., R.E Gill, and D. Kaiser. 1983. Developmental cell interactions in Myxococcus xanthus and the spoC locus. Proc. Natl. Acad. Sci. 80: 1406–1410.
Shimkets, L.J. and S.J. Asher. 1987. Use of recombination techniques to examine the structure of the csg locus of Myxococcus xanthus. Mol. Gen. Genet. [in press].
Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.
Wireman, J.W. and M. Dworkin. 1975. Morphogenesis and developmental interactions in myxobacteria. Science 189: 516–522.
Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions.

L Kroos and D Kaiser

Genes Dev. 1987, 1:
Access the most recent version at doi:10.1101/gad.1.8.840

References
This article cites 24 articles, 12 of which can be accessed free at: http://genesdev.cshlp.org/content/1/8/840.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](http://genesdev.cshlp.org/content/1/8/840.full.html#ref-list-1).

Boost NGS microRNA profiling. Read about 3 methods tested. [EXIQON](http://genesdev.cshlp.org/content/1/8/840.full.html#ref-list-1). QIAGEN -