Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Protein engineering responses to the COVID-19 pandemic
Ching-Lin Hsieh and Jason S. McLellan

Abstract
Antigen design guided by high-resolution viral glycoprotein structures has successfully generated diverse vaccine candidates for COVID-19. Using conjugation systems to combine antigen design with computationally optimized nanoparticles, researchers have been able to display multivalent antigens with beneficial substitutions that elicited robust humoral immunity with enhanced neutralization potency and breadth. Here, we discuss strategies that have been used for structure-based design and nanoparticle display to develop COVID-19 vaccine candidates as well as potential next-generation vaccine candidates to protect against SARS-CoV-2 variants and other coronaviruses that emerge into the human population.

Addresses
Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA 78712
Corresponding author: McLellan, Jason S (jmclellan@austin.utexas.edu) (McLellan J.S.)

Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has caused more than 258 million infections and more than 5 million deaths worldwide. Global development of vaccines and therapeutics against SARS-CoV-2 has proceeded at an unprecedented pace in efforts to slow the ongoing pandemic. Attributed to the technological advances of structural and computational biology, researchers have been able to rapidly determine SARS-CoV-2 spike structures and leverage this information to engineer novel spike-based antigens as vaccine candidates. Understanding the structural basis of antibody–antigen interactions also helped epitope-driven antigen design, aimed at focusing humoral immunity toward sites of vulnerability on the SARS-CoV-2 spike glycoprotein. The spike is a trimeric class I viral fusion protein, and each protomer comprises an S1 and S2 subunit [1,2]. The receptor-binding domain (RBD) in the S1 subunit hinges between a ‘down’ conformation and a receptor-accessible ‘up’ conformation. By contrast, the fusogenic S2 subunit adopts a metastable prefusion conformation that is capped by the S1 subunit. Binding of the RBD to the angiotensin-converting enzyme 2 (ACE2) receptor triggers S1 dissociation and a large-scale rearrangement of S2 that facilitates fusion of the viral and host-cell membranes as S2 transitions to a stable postfusion conformation [3–5].

In this review, we first discuss the benefits of using structure-based design to optimize the RBD and stabilize the spike in the prefusion conformation, which has accelerated COVID-19 vaccine development. Secondly, we address the advantages of using chimeric spikes and nanoparticles to increase the breadth of the elicited immune response, counteracting potential spillover of SARS-like viruses from the subgenus Sarbecovirus.

RBD antigens
In early 2020, when the COVID-19 pandemic was just beginning, researchers quickly determined that the majority of neutralizing antibodies isolated from COVID-19 patients target the RBD of the spike glycoprotein [6,7]. As the compact size of the RBD lends itself to robust production in yeast, insect and mammalian cells, the RBD has been considered a prime target for vaccine development. Many studies have shown that RBD-directed antibodies can block binding of the ACE2 receptor, either by directly binding to the ACE2 binding site or by locking the RBD in a receptor-inaccessible down conformation [8–11]. Neutralizing RBD-directed antibodies were also shown to function through receptor mimicry, triggering premature S1 shedding and S2 transition to the postfusion conformation prior to viral attachment to cells [12–15].

In addition to eliciting a strong immune response, a good RBD subunit vaccine candidate should express well and have high physicochemical stability. Starr et al. applied deep mutational scanning (DMS) to the RBD using a yeast-surface-display platform to assess expression and ACE2-binding ability [16]. This led to the discovery of a mutation hotspot in proximity to a pocket that was
Examples of structure-based design and nanoparticle display of SARS-CoV-2 spike-based antigens. Schematic representation of monomeric, dimeric, trimeric RBDs, stem-helix trimer, S2-only antigen (top row), engineered trimeric spikes in the prefusion conformation (middle) and nanoparticles displaying 60 RBDs or 20 spikes (bottom). RBD monomer is depicted as a ribbon diagram with stabilizing substitutions [19,20] highlighted as spheres. RBD dimer, RBD trimer, stem helix trimer [58] and S2-only antigen are shown as molecular surfaces. For the RBD dimer [23], ACE2-binding sites (or receptor-binding motifs) are colored dark blue. All spike ectodomains are shown as molecular surfaces with proline substitutions [47], inter-protomer disulfide bond [49], inter-subunit disulfide bond [50,51,52] highlighted as spheres. The molecular clamp [59] derived from HIV gp41 HR1-HR2 (PDB ID: 1SZT) is depicted as a red molecular surface. The example of a chimeric spike [61] shown here comprises an NTD from HKU3-1 (green), an RBD from SARS-CoV (dark blue) and an S2 subunit from SARS-CoV-2 (light blue). One example of nanoparticles shown here is RBD-mi3 [72] (PDB ID: 7B3Y), wherein 20 copies of engineered 2-keto-3-deoxy-phosphogluconate (KDPG) aldolase trimer (ribbons) self-assemble to form a nanoparticle. 60 RBDs are conjugated to the mi3 surface via SpyTag:SpyCatcher system. The other example of nanoparticle display is I53-dn5 [77] (PDB ID: 6VFJ), wherein 20 copies of the trimeric component (light red) are used to display trimeric spikes.
previously demonstrated to bind linoleic acid [17]. Interestingly, I358F and F392W—the stabilizing substitutions that boosted expression—both introduce bulkier hydrophobic side chains that fill the loosely packed hydrophobic pocket (Figure 1). Using a similar yeast-surface-display system, Zahradník et al. independently discovered that the same substitution, I358F, is beneficial for RBD expression at elevated temperatures in yeast [18]. Based on structures of monomeric RBDs and trimeric spike ectodomains, Ellis et al. further computationally optimized the residues near the linoleic-acid-binding pocket [19], resulting in their identification of the Y365F and V395I substitutions (Figure 1), which lead to higher expression, less aggregation and improved stability of the RBD. Dalvie et al. transplanted conserved residues from other Sarbecoviruses into the SARS-CoV-2 RBD, generating two monodisperse RBD variants with lower tendency to aggregate under heat treatment [20]. In these variants, the substitutions LA52K and F490W facilitated higher expression and stability of the RBD, likely by reducing surface hydrophobicity near the ACE2-binding site (Figure 1). Although the wild-type monomeric RBD is effective in protecting non-human primates from SARS-CoV-2 challenge [21], the engineered RBD-LA52K–F490W protein elicited higher neutralizing titers against SARS-CoV-2 pseudoviruses than did the wild-type RBD [20].

Non-native dimerization motifs have been used to display divalent antigens and enhance immunogenicity and vaccine efficacy. For instance, Pan et al. demonstrated that the Fc (fragment crystallizable) region of IgGs could be fused with the RBD to facilitate dimer formation [22]. Notably, even when the Fc region was subsequently removed, a stable RBD dimer remained in yeast [18]. Based on structures of monomeric RBDs and trimeric spike ectodomains, Ellis et al. further computationally optimized the residues near the linoleic-acid-binding pocket [19], resulting in their identification of the Y365F and V395I substitutions (Figure 1), which lead to higher expression, less aggregation and improved stability of the RBD. Dalvie et al. transplanted conserved residues from other Sarbecoviruses into the SARS-CoV-2 RBD, generating two monodisperse RBD variants with lower tendency to aggregate under heat treatment [20]. In these variants, the substitutions L452K and F490W facilitated higher expression and stability of the RBD, likely by reducing surface hydrophobicity near the ACE2-binding site (Figure 1). Although the wild-type monomeric RBD is effective in protecting non-human primates from SARS-CoV-2 challenge [21], the engineered RBD-LA52K–F490W protein elicited higher neutralizing titers against SARS-CoV-2 pseudoviruses than did the wild-type RBD [20].

Trimerization motifs such as the T4 fibritin “faldon” domain have been widely used to stabilize class I viral fusion proteins in a biologically relevant trimeric form [24–26]. Researchers applied this strategy to the RBD by using glycine–serine linkers to genetically fuse the RBD with foldon (Figure 1), resulting in a trimeric RBD antigen that was evaluated in the COVID-19 vaccine candidate BNT162b1 [27]. Yu et al. also used foldon to form trimeric RBD and S1 antigens, both of which protected rhesus macaques against SARS-CoV-2 challenge [27,28]. Similarly, lambdoid phage 21 capsid-stabilizing protein (PDB ID: 1TD0) has been used to trimerize RBD and spike ectodomains [29]. While foldon is primarily composed of β-sheets, the GCN4 trimerization motif is α-helical, and can be fused in phase with the C-terminal heptad repeats of class I viral fusion proteins [24,30]. Hauser et al. further engineered an inter-protomer disulfide bond between GCN4 protomers to covalently stabilize the trimer and introduced three N-linked glycans on each GCN4 protomer to divert the immune response away from the trimerization motif [31]. A cocktail containing engineered GCN4-fused RBDs from SARS-CoV, SARS-CoV-2 and WIV-1-CoV induced polyclonal sera exhibiting broad neutralization activity, distinguishing it as a promising pan-Sarbecovirus vaccine candidate.

Stabilized spike antigens

Given that both NTD- and S2-targeted antibodies are neutralizing in vitro and protective in vivo [32–37], spike (S) immunogens may be advantageous in eliciting a broader immune response against coronaviruses than RBD alone. Full-length spike or spike ectodomain antigens also have more T-cell epitopes than RBD antigens [38]. Introducing two prolines at the short loop connecting the heptad repeat 1 (HR1) region and the central helix (CH) effectively stabilized the MERS-CoV and SARS-CoV spikes in the prefusion conformation [39,40]. This led several groups to introduce the same two proline substitutions at residues 986 and 987 to stabilize the SARS-CoV-2 spike [41–43]. This prefusion-stabilized construct, referred to as S–2P, facilitated rapid COVID-19 vaccine development, and is the antigen used in the Pfizer-BioNTech BNT162b2, Moderna mRNA-1273, and Janssen/J&J Ad.26.COV2.S vaccines [44–46]. Using the SARS-CoV-2 S–2P cryo-EM structure as a guide, our team designed and characterized 100 spike substitutions based on four strategies—proline, disulfide bond, salt bridge, and cavity-filling substitutions [47]. Specifically, in making proline substitutions, proline is preferentially placed in a loop or at the beginning of an α-helix to stabilize the spike in the prefusion conformation. For the disulfide bond strategy, a pair of cysteines are placed in regions that undergo conformational changes during the pre-to-post fusion transition. For the salt bridge strategy, an oppositely charged residue is introduced to counteract internal charge imbalance. Finally, for the cavity-filling strategy, a hydrophobic or aromatic residue is introduced to fill an adjacent cavity. After identifying a subset of beneficial substitutions, we characterized various
combinations to identify those with additive effects. Among these designs, the most promising antigen was HexaPro (Figure 1), which is composed of six proline substitutions throughout the region between the fusion peptide and HR1. HexaPro exhibited 10-fold higher expression than S-2P via transient transfections and was more resistant to both heat and physical stress. Interestingly, Jurasek et al. identified two of the same stabilizing prolines —A899P and A942P— which are part of the HexaPro substitutions [48]. Building on the base construct of HexaPro, Olmedillas et al. further introduced two cysteine substitutions—Y707C and T883C—to form an inter-protomer disulfide bond, and reverted Pro986 to Lys, fortifying the trimeric spike in a predominately closed conformation (Figure 1) [49]. Moreover, three groups independently engineered an inter-subunit disulfide bond (Cys383—Cys985) to covalently anchor the RBD to the apex of the neighboring S2 subunit (Figure 1) [50–52], which locks all RBDs in the down conformation. The addition of this inter-protomer disulfide bond (Cys383—Cys985) markedly improves spike thermostability, however, it does decrease spike expression levels.

Glycine is often observed in flexible loops or turns, and has been used as an alternative strategy to stabilize class I viral fusion proteins [53]. He et al. introduced two glycines at the same positions (residues 986 and 987) where the two prolines were introduced in the S–2P spikes, and also deleted the hepad repeat 2 (HR2) region, resulting in a stable construct named S2GΔHR2 [29]. Powell et al. deleted even more residues from the C-terminus of the ectodomain, leaving no stem helix (residues 1144–1213) at the base of S2 [54]. Removing these flexible regions seems to generate a more homogenous spike, but at the expense of losing important epitopes that have been shown to elicit neutralizing antibodies in mice and humans [36,37,55–58]. Instead of using foldon or the GCN4 trimerization motif, Watterson et al. re-purposed the HR1-HR2 six-helix bundle from the postfusion conformation of HIV-1 gp41 to clamp the SARS-CoV-2 spike in a trimeric conformation (Figure 1) [59,60]. Unfortunately, antibodies toward the gp41 six-helix bundle were elicited by vaccination with the molecular clamp spike, which resulted in false-positive HIV-1 tests in clinical trial participants, halting further clinical development.

To prepare for the potential spillover of additional coronaviruses from animal reservoirs, particularly for Sarbecoviruses that could use human ACE2 to enter and replicate in human cells, Martinez et al. designed four different chimeric spike constructs (Figure 1), each of which is composed of a combination of the NTD, RBD and S2 derived from either SARS-CoV-2, SARS-CoV-1 or bat Sarbecoviruses [61]. Priming and boosting mice with a cocktail of four chimeric spikes elicited strong neutralizing antibodies against SARS-CoV-2 variants of concern (VOCs) and bat Sarbecoviruses, and more importantly, protected the mice from heterotypic WIV-1-CoV infection.

Multivalent nanoparticle antigens

The use of multivalent protein nanoparticles to display viral antigens is an effective approach to enhancing the immunogenicity and breadth of the elicited antibody response [62]. Natural proteins that can form higher-order oligomers, such as ferritin (Fer) and lumazine synthase (LuS), were chosen to display RBDs or spike ectodomains [29,54,63–65]. Both Fer- and LuS-fused antigens can spontaneously self-assemble into an oligomeric nanoparticle. In addition, N-linked glycans can be introduced to the surface of Fer or LuS to improve the protein solubility and expression [64]. With the development of the SpyTag:SpyCatcher system [66], SpyTagged antigens can be easily linked to the surface of a nanoparticle that contains symmetry-matched SpyCatcher [64,67]. SpyTag and SpyCatcher were derived from the CnaB2 domain of the FbaB adhesion protein from *Streptococcus pyogenes* (Spy), a common human pathogen [66]. Thus, modifying SpyTag:SpyCatcher to avoid recognition by pre-existing Spy-targeting antibodies is beneficial for nanoparticles that use this “plug-and-display” system. Keeble et al. used proline substitution to stabilize a long loop in SpyCatcher and introduced negatively charged residues to balance the arginines present in engineered SpyTag, resulting in an optimized system named SpyTag003:-SpyCatcher003 [68]. These substitutions reduced the nanoparticle’s reactivity to preexisting human antibodies [67] and facilitated the rapid conjugation between the antigen and the nanoparticles. This optimization allows for complete conjugation within 30 min even when both protein partners are at low nanomolar concentrations, which is particularly useful for industrial production of large quantities of spike nanoparticles to fight the COVID-19 pandemic.

Advances in computational biology and protein design, led by the King and Baker laboratories, have had a major impact on designing and engineering artificial protein nanoparticles with a variety of symmetry axes to display antigens in their biologically relevant forms. I3-01 and its I3-01-derived RBDs in the down conformation. The addition of this flexible region, resulting in a stable construct named S2GΔHR2 [50–52], which locks all RBDs in the down conformation. The addition of this inter-protomer disulfide bond (Cys383—Cys985) markedly improves spike thermostability, however, it does decrease spike expression levels.

Glycine is often observed in flexible loops or turns, and has been used as an alternative strategy to stabilize class I viral fusion proteins [53]. He et al. introduced two glycines at the same positions (residues 986 and 987) where the two prolines were introduced in the S–2P spikes, and also deleted the hepad repeat 2 (HR2) region, resulting in a stable construct named S2GΔHR2 [29]. Powell et al. deleted even more residues from the C-terminus of the ectodomain, leaving no stem helix (residues 1144–1213) at the base of S2 [54]. Removing these flexible regions seems to generate a more homogenous spike, but at the expense of losing important epitopes that have been shown to elicit neutralizing antibodies in mice and humans [36,37,55–58]. Instead of using foldon or the GCN4 trimerization motif, Watterson et al. re-purposed the HR1-HR2 six-helix bundle from the postfusion conformation of HIV-1 gp41 to clamp the SARS-CoV-2 spike in a trimeric conformation (Figure 1) [59,60]. Unfortunately, antibodies toward the gp41 six-helix bundle were elicited by vaccination with the molecular clamp spike, which resulted in false-positive HIV-1 tests in clinical trial participants, halting further clinical development.

To prepare for the potential spillover of additional coronaviruses from animal reservoirs, particularly for Sarbecoviruses that could use human ACE2 to enter and replicate in human cells, Martinez et al. designed four different chimeric spike constructs (Figure 1), each of which is composed of a combination of the NTD, RBD and S2 derived from either SARS-CoV-2, SARS-CoV-1 or bat Sarbecoviruses [61]. Priming and boosting mice with a cocktail of four chimeric spikes elicited strong neutralizing antibodies against SARS-CoV-2 variants of concern (VOCs) and bat Sarbecoviruses, and more importantly, protected the mice from heterotypic WIV-1-CoV infection.

Multivalent nanoparticle antigens

The use of multivalent protein nanoparticles to display viral antigens is an effective approach to enhancing the immunogenicity and breadth of the elicited antibody response [62]. Natural proteins that can form higher-order oligomers, such as ferritin (Fer) and lumazine synthase (LuS), were chosen to display RBDs or spike ectodomains [29,54,63–65]. Both Fer- and LuS-fused antigens can spontaneously self-assemble into an oligomeric nanoparticle. In addition, N-linked glycans can be introduced to the surface of Fer or LuS to improve the protein solubility and expression [64]. With the development of the SpyTag:SpyCatcher system [66], SpyTagged antigens can be easily linked to the surface of a nanoparticle that contains symmetry-matched SpyCatcher [64,67]. SpyTag and SpyCatcher were derived from the CnaB2 domain of the FbaB adhesion protein from *Streptococcus pyogenes* (Spy), a common human pathogen [66]. Thus, modifying SpyTag:SpyCatcher to avoid recognition by pre-existing Spy-targeting antibodies is beneficial for nanoparticles that use this “plug-and-display” system. Keeble et al. used proline substitution to stabilize a long loop in SpyCatcher and introduced negatively charged residues to balance the arginines present in engineered SpyTag, resulting in an optimized system named SpyTag003:-SpyCatcher003 [68]. These substitutions reduced the nanoparticle’s reactivity to preexisting human antibodies [67] and facilitated the rapid conjugation between the antigen and the nanoparticles. This optimization allows for complete conjugation within 30 min even when both protein partners are at low nanomolar concentrations, which is particularly useful for industrial production of large quantities of spike nanoparticles to fight the COVID-19 pandemic.

Advances in computational biology and protein design, led by the King and Baker laboratories, have had a major impact on designing and engineering artificial protein nanoparticles with a variety of symmetry axes to display antigens in their biologically relevant forms. I3-01 and its variant mi3 are both single component, self-assembled non-native nanoparticles [69,70] that have been widely used in combination with the SpyTag:SpyCatcher system [20,29,63,67,71,72]. Two surface-exposed cysteines from I3-01—Cys76 and Cys100—were substituted with alanine to generate a more stable mi3 nanoparticle that was less prone to aggregation [70]. This highly versatile system allowed Cohen et al. to conjugate 4 or 8 different RBDs from human, bat and pangolin Sarbecovirus spikes to mi3, generating mosaic RBD nanoparticles (Figure 1) [71] that elicited an antibody response capable of recognizing multiple zoonotic RBDs and neutralizing heterologous Sarbecoviruses. Notably, a single injection...
of mosaic RBD nanoparticles elicited higher neutralizing antibody titers against heterotypic SARS-CoV than homotypic SARS-CoV-2 RBD nanoparticles. Considering the weak neutralizing activity of plasma IgGs from COVID-19 patients to zoonotic Sarbecoviruses and the fast adaptivity of this plug-and-display system, using nanoparticles to display newly emerging RBDs might be key to future pandemic preparedness.

Finally, two-component nanoparticles such as I53-50 provide an alternative way to display 60 RBDs or 20 trimeric spikes per particle [73,74]. The interface of two components, I53-50A and I53–50B, is stabilized by a chain of hydrophobic interactions and reinforced by salt bridges at the periphery [75]. Negatively charged residues were introduced to the interior surface of I53-50A to improve the overall antigen expression prior to assembly [76]. Both RBD-I53-50 and spike-I53-50 (Figure 1) elicited robust neutralizing antibodies and protected non-human primates from SARS-CoV-2 challenge [73,74]. One potential concern to displaying a high density of antigens on a nanoparticle is the restricted epitope accessibility for the antibodies, imparted by steric hindrance of neighboring antigens [77]. However, I53-50 nanoparticles displaying 60 RBDs induced sera exhibiting higher neutralization activity than did Fer displaying 24 RBDs [63]. Another independent study also showed that spike-I3-01 nanoparticles elicited higher neutralizing antibody responses than did spike-Fer [29]. These findings demonstrate that nanoparticles displaying more spikes per particle are attractive vaccine candidates.

Next generation pan-coronavirus antigens

While several antigen designs such as chimeric spikes and mosaic RBD nanoparticles have provided broader protection against SARS-CoV-2 VOCs and Sarbecoviruses, a major goal is to design a pan-coronavirus vaccine that protects against all existing human coronaviruses as well as coronaviruses that may emerge in the future. Identification of a conserved stem helix at the base of the S2 subunit may provide a new direction for epitope-focused designs (Figure 1) [36,37,55–58], which are likely to extend host immunity to all major betacoronaviruses. Moreover, a handful of comprehensive studies profiling the antibody response to the full spike using peptide-binding assays have discovered a few neutralization-sensitive epitopes in close proximity to the fusion peptide in the S2 subunit [78–81]. Interestingly, some cross-reactive and preexisting antibodies recognize cryptic sites that only become accessible when S1 dissociates from S2 [78]. Given the high sequence conservation of S2 among betacoronaviruses and the fact that neutralization-sensitive S2 epitopes could be cryptic [78,82], prefusion-stabilized S2-only antigens (Figure 1) may be promising universal coronavirus vaccine antigens.

Conflict of interest statement

J.S.M. is an inventor on U.S. patent no. 10, 960, 070 (“Prefusion Coronavirus Spike Proteins and Their Use”) and U.S. patent application no. 62/972,886 (“2019-nCoV Vaccine”). C.-L.H. and J.S.M. are inventors on U.S. patent application no. 63/032,502 (“Engineered Coronavirus Spike (S) Protein and Methods of Use Thereof”) and U.S. patent application no. 63/188,813 (“Stabilized S2 Beta-coronavirus Antigens”).

Acknowledgments

We thank Madeline R. Sponholtz and Ling Zhou for providing helpful comments on the manuscript. This work was funded in part by Welch Foundation grant F-0003-19620604 (JSM) and NIH grant R01-AI127521 (JSM).

References

Papers of particular interest, published within the period of review, have been highlighted as:

* of special interest

1. Siebert DN, Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM: The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 2003, 77:8801–8811.

2. Li F: Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology 2016, 3:237–261.

3. Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch BJ, Rey FA, Veesler D: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci USA 2017, 114:11157–11162.

4. Hoffmann M, Kleine-Webner H, Schroeder S, Krüger T, Erichsen S, Schiergens TS, Herler G, Wu NH, Nitsche A, et al.: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181:271–280.e8.

5. Wan Y, Shang J, Graham R, Baric RS, Li F: Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020, 94:1–9.

6. Piccoli L, Park Y-J, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, Silacci-Fregni C, Pinto D, Rosen LE, Bowen JE, et al.: Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 2020, 183:1024–1042.e21.

7. Robbiani DF, Gaebler C, Muecklos F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S, et al.: Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 2020, 584:437–442.

8. Schoof M, Faust B, Saunders RA, Sangwan S, Rezeli V, Hoppe N, Boone M, Billesbolle CB, Puchades C, Azumaya CM, et al.: An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science (New York, NY) 2020, 370:1473–1479.

9. Tortorici MA, Beltramello M, Lempp FA, Pinto D, Dang H v, Rosen LE, McCallum M, Bowen J, Minola A, Jacson S, et al.: Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science (New York, NY) 2020, 370:950–957.

10. Barnes CO, West APJ, Huey-Tubman KE, Hoffmann MAG, Sharaf NG, Hoffman PR, Koranda N, Gristick HB, Gaebler C, Muecklos F, et al.: Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell 2020, 182:828–842.e16.

11. Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He W-T, Limbo O, Smith C, Song G, Wohl J, et al.: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from
18. Zahradník J, Krishkesh D, Hejmo L, Krb M, Gi G, Nea-Marie J, Sld J, Ty M, Miki U, D WJ, et al.: Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science 2021, 371, eabe6230.

19. Wec AZ, Warpa D, Herbert AS, Maurer DP, Haslwanter D, Sakharkar M, Jangra RK, Dieterle ME, Liu A, Huang D, et al.: Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science (New York, NY) 2020, 369: 731–736.

20. Dalvie NC, Rodriguez-Aponte SA, Hartwell BL, Tostanoski LH, McLellan JS, Chen M, Joyce MG, Sastry M, Stewart-Jones GBE, Yang Y, Zhang B, Chen L, Srivatsan S, Zheng A, et al.: Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science (New York, NY) 2013, 342:592–598.

21. Battles MB, Mas V, Olmedillas E, Cano O, Vázquez M, Rodríguez L, Melero JA, McLellan JS: Structure and immunogenicity of pre-fusion-stabilized human metapneumovirus F glycoprotein. Nat Commun 2017, 8:1526.

22. Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vorstal M, Baum A, Pascall K, Quandt J, Maurus D, et al.: COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020, 586:594–599.

23. He L, Lin X, Wang Y, Abraham C, Sou C, Ngo T, Zhang Y, Wilson IA, Zhu J: Single-component, self-assembling, protein nanoparticles presenting the receptor binding domain and stabilized spike as SARS-CoV-2 vaccine candidates. Sci Adv 2021, 7:1–18.

24. Lee E, Sandgren K, Duette G, Stylianou V v, Khanna R, Eden J-S, Wilson IA, Zhu J: A universal design of betacoronavirus vaccines. Nat Commun 2020, 11:369.

25. Hauer BM, Sangesland M, Lam EC, Feldman J, Yousif AS, Caradonna TM, Balazs AB, Lingwood D, Schmidt A: Engineered receptor binding domain immunogens elicit pan-coronavirus neutralizing antibodies outside the receptor binding motif. Cell Rep 2021, https://doi.org/10.2139/ssrn.3773801.

26. Voss WN, Hou YJ, Johnson N v, Kim JE, Delidakis G, Horton AP, Bartzoka F, Paresi CJ, Tanno Y, Abbasi SA, et al.: Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma. bioRxiv : the preprint server for biology 2020, 2021.02.15.676041.

27. Suryadevara N, Shirihari S, Gilchuk P, VanBlargan LA, Binshtein E, Zost SJ, Nargi RS, Sutton RE, Winkler ES, Chen EC, et al.: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell 2021, 184:2316–2331. e15.

28. McCallum M, de Marco A, Lempp PA, Tortorici MA, Pinto D, Walls AC, Beltramello M, Chen A, Liu Z, Zatta F, et al.: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 2021, 184:2332–2347. e16.

29. Pinto D, Sauer MM, Czudnochowski N, Low JS, Tortorici MA, Housley MP, Noack J, Walls AC, Guarino B, et al.: Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science (New York, NY) 2021, 373: 1109–1116.

30. Zhou P, Yuan M, Song G, Beutler N, Sh abaani N, Huang D, He Y-T, Zhu X, Callaghan S, Yang P, et al.: A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Sci Transl Med 2021, https://doi.org/10.1126/scitranslmed.abea928.

31. Lee E, Sandgren K, Duette G, Stylianou V v, Khanna R, Eden J-S, Blyth E, Gottlieb D, Cunningham AL, Palmer S: Identification of
SARS-CoV-2 nucleocapsid and spike T-cell epitopes for assessing T-cell immunity. *J Virol* 2021, 95.

39. Kirchdoerfer RN, Wang N, Pallesen J, Wrapp D, Turner HL, Cottrell CA, Corbett KS, Graham BS, Mcellan JS; Ward AB: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. *Sci Rep* 2018, 8:15701.

40. Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W, et al.: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. *Proc Natl Acad Sci USA* 2017, 114:E7348–E7357.

41. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham BS, Mcellan JS: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. *Science* 2020, 367:1230. LP – 1235.

42. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D; Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. *Cell* 2020, 181:281–292.e6.

43. Fatima A, Shirin S, Raveen R, Michael S, Lynda C, Adolfo G-S, Sadoff J, le Gars M, Shukarev G, Heerwegh D, Truyers C, de Vries M, Solari L, et al.: A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. *Nat Commun* 2021, 12:1715.

44. Baden LR, el Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creese CB, et al.: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. *N Engl J Med* 2021, 384:403–416.

45. Sadoff J, le Gars M, Shukarev G, Heenwegh D, Tuyers C, de Groot AM, Stoop J, Leroux-Roels I, et al.: Interim results of a phase 1-2a trial of Ad26.COV2.S covid-19 vaccine. *N Engl J Med* 2021, 384:1824–1835.

46. Polack FP, Thomas SJ, Kitchin N, Marder B, Terrill DK, Thomas PS, Gurtman A, et al.: Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. *N Engl J Med* 2020, 383:2603–2615.

47. Hsieh C-L, Goldsmith JA, Schaub JM, DiVenere AM, Kuo H-C, Javanmardi K, Le KC, Wrapp D, Lee AG, Liu Y, *et al.*: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. *Science* 2020, 368:1501. LP – 1506.

48. The authors used a cryo-EM structure of the prefusion-stabilized SARS-CoV-2 spike [41] to rationally guide the design of 100 variants using a combination of four stabilizing strategies. The best construct, named HexaPro, contains six proline substitutions, exhibiting improved protein expression, stability and largely unaltered structure.

49. Juraszek J, Rutten L, Blokland S, Bouchier P, Voorzaat R, Ritschel T, Bakkens MGJ, Renault LLR, Langedijk JPM: Stabilizing the closed SARS-CoV-2 spike trimere. *Nat Commun* 2021, 12:244.

50. Olmedillas E, Mann CJ, Peng W, Wang Y-T, Avalos RD, Bedinger D, Valentine K, Shafee N, Schendel SL, Yuan M, et al.: Structure-based design of a highly stable, covalently-linked SARS-CoV-2 spike trimer with improved structural properties and immunogenicity. bioRxiv 2021.

51. Henderson R, Edwards RJ, Mansouri K, Janowska K, Stalls V, Gobeil S, Kopp M, Hsu A, Borgia M, Parks R, *et al.*: Controlling the SARS-CoV-2 spike glycoprotein conformation. *Nat Struct Mol Biol* 2020, 27:925–933.

52. Xiong X, Qu K, Ciazynska KA, Hosmillo M, Carter AP, Ebrahim S, Ke Z, Scheres SHW, Bergamaschi L, Grice GL, *et al.*: A thermostable, closed SARS-CoV-2 spike protein trimere. *Nat Struct Mol Biol* 2020, 27:934–941.

53. McCallum M, Walls AC, Bowen JE, Corti D, Veesler D: Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. *Nat Struct Mol Biol* 2020, 27:942–949.

54. Guenaga J, Garcés F, de Val N, Stanfield RL, Dubrovskaya V, Higgins B, Carrette B, Ward AB, Wilson JA, Wyatt RE: Glycine substitution at helix-to-coil transitions facilitates the structural determination of a stabilized subtype C HIV envelope glycoprotein. *Immunity* 2017, 46:792–803.e3.
8 Engineering and Design

Engineering of peptide–protein interaction. Proc Natl Acad Sci Unit States Am 2019, 116:26523. LP – 26533.

69. Hsia Y, Bale JB, Gonen S, Shi D, Sheffler W, Fong KK, Nattermann U, Xu C, Huang P-S, Ravichandran R, et al.: Design of a hyperstable 60-subunit protein icosahedron. Nature 2016, 535:136–139.

70. Bruun TUJ, Andersson A-MC, Draper SJ, Howarth M: Engineering a rugged nanoscaffold to enhance plug-and-display vaccination. ACS Nano 2018, 12:8855–8866.

71. Cohen AA, Gnanapragasam PNP, Lee YE, Hoffman PR, Ou S, * * Kabatani LM, Keeffe JR, Wu HJ, Howarth M, West AP, et al.: Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science 2021, 371:735–741. The authors used mi3 nanoparticles to display mosaic RBDs from SARS-CoV-2 and bat coronaviruses with spillover potential. Immunizing the mice with cocktails of mosaic RBD nanoparticles induced cross-reactive neutralizing antibodies against heterotypic Sarbecoviruses. The SpyTag003:SpyCatcher003 system allowed fast conjugation of the RBDs to the nanoparticles, providing a robust method for pandemic preparedness.

72. Tan TK, Rijal P, Rahikainen R, Keeble AH, Schimanski L, Hussain S, Harvey R, Hayes JWP, Edwards JC, McLean RK, et al.: A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses. Nat Commun 2021, 12:542.

73. Brouwer PJM, Brinkkemper M, Maisonnaise P, Dereuddre-Bosquet N, Groffen M, Claireaux M, de Gast M, Marlin R, Chesnais V, Diry S, et al.: Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell 2021, 184:1188–1200. e19. The authors used a two component, self-assembling nanoparticle system called i53-50 to present 20 copies of trimeric spikes, which protected non-human primates from SARS-CoV-2 challenge.

74. Walls AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O’Connor MA, Chen C, et al.: Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 2020, 183:1367–1382.e17. Similar to [73], the authors used i53-50 nanoparticles to present 60 RBDs to elicit potent neutralizing antibodies in mice carrying human antibody repertoires.

75. Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates TO, Gonen T, King NP, et al.: Accurate design of megadalton-scale two-component icosahedral protein complexes. Science (New York, NY) 2016, 353:389–394.

76. Brouwer PJM, Antanasijevic A, Berendsen Z, Yasmeen A, Fiala B, Bijl TPL, Bontjer I, Bale JB, Sheffler W, Allen JD, et al.: Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nat Commun 2019, 10:4272.

77. Ueda G, Antanasijevic A, Fallas JA, Sheffler W, Copps J, Ellis D, Hutchinson GB, Moyer A, Yasmeen A, Tsybovsky Y, et al.: Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. Elite 2020, 8, e57659.

78. Nk W, Nikhil F, H CG, Annachiara R, Ruth H, Saira H, Rachel U, * * Christopher E, Wa G, Bd J, et al.: Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 2020, 370:1339–1343. The authors detected preexisting humoral immunity from SARS-CoV-2-uninfected children and adolescents using a flow cytometry-based method and discovered cross-reactive antibodies preferentially recognizing the epitopes in the S2 subunit. These novel epitopes might provide a new direction for the development of pan-coronavirus vaccines.

79. Lu S, Xie X-X, Zhao L, Wang B, Zhu J, Yang T-R, Yang G-W, Ji M, Lv C-P, Xue J, et al.: The immunodominant and neutralization linear epitopes for SARS-CoV-2. Cell Rep 2021, 34:108666.

80. Ladner JT, Henson SN, Boyle AS, Engelbrektson AL, Fink ZW, Rahree F, D’Ambrozio J, Schaecher KE, Stone M, Dong W, et al.: Epitope-resolved profiling of the SARS-CoV-2 antibody response identifies cross-reactivity with endemic human coronaviruses. Cell Reports Medicine 2021, 2:100189.

81. Poh CM, Carissimo G, Wang B, Amrun SN, Lee CY-P, Chee RS-L, Fong S-W, Yeo NK-W, Lee W-H, Torres-Ruesta A, et al.: Two linear epitopes on the SARS-CoV-2 spike protein that elicit neutralizing antibodies in COVID-19 patients. Nat Commun 2020, 11:2806.

82. Shah P, Canziani GA, Carter EP, Chaiken I: The case for S2: the potential benefits of the S2 subunit of the SARS-CoV-2 spike protein as an immunogen in fighting the COVID-19 pandemic. Front Immunol 2021, 12:63765.