AT THE BOUNDARY OF MINKOWSKI SPACE

JACK MORAVA

Abstract. The Cayley transform compactifies Minkowski space \mathbb{M}, realized as self-adjoint 2×2 complex matrices following Penrose, as the unitary group $\mathbb{U}(2)$. Its complement is a compactification of a copy of a light-cone as it is usually drawn, constructed by adjoining a bubble or $\mathbb{C}P_1$ of unitary matrices with eigenvalue ± 1 at the ends of a lightcone at infinity.

The Brauer-Wall group of $\mathbb{U}(2)$ (i.e. of fields of certain kinds of graded C^*-algebras, up to projective equivalence) is $\mathbb{Z}_2 \times \mathbb{Z}$, defining an interesting class of nontrivial examples of Araki-Haag-Kastler backgrounds for quantum field theories on compactified Minkowski space. The second part of this paper extends such models to link presentations of more general spin four-manifolds.

PART I : THE WEYL/CAYLEY TRANSFORM

This work began as an exercise in linear algebra, i.e. to interpret stereographic projection

$$\mathbb{M} \ni \mathbf{X} \mapsto \mathcal{C} (\mathbf{X}) := \frac{\mathbf{X} - i \mathbf{1}}{\mathbf{X} + i \mathbf{1}} \in \mathbb{U}(2) \cong \mathbb{T} \times_{\pm 1} \mathbb{SU}(2) \cong \text{Spin}^c(3)$$

(regarded as defined on the Penrose-Minkowski space of self-adjoint 2×2 Hermitian matrices

$$\mathbf{X} := \begin{bmatrix} x_0 + x_1 & x_2 - i x_3 \\ x_2 + i x_3 & x_0 - x_1 \end{bmatrix}$$

with $x_s \in \mathbb{R}^{1,3}$) as a compactification. It was precipitated by David Mumford’s recent review of current cosmological literature, in particular by his beautiful image [24](Fig 1) of our past light-cone.

In §1 we show that this Cayley compactification has a stratification

$$\mathbb{U}(2) \cong \mathbb{M} \cup \mathbb{M}_\infty \cup \mathbb{B}$$

in which \mathbb{M}_∞ is a ‘light-cone at infinity’, and $\mathbb{B} \cong \mathbb{C}P_1$ is a two-sphere of unitary matrices with eigenvalues ± 1. The Cayley compactification of \mathbb{M} maps to Penrose’s, with the point at infinity on the light-cone at infinity blown up as a two-sphere $S^2 = \mathbb{C}P^1$, providing a plausible keystone or
linchpin [26] for constructions involving the Bondi-Metzner-Sachs group [22] of classical general relativity.

Section 3 discusses fields of C^*-algebras over this stratification as a homotopy-theoretic setting for algebraic quantum field theory. The second part of this paper goes on to argue that both the geometric categories of three-manifolds and the algebraic categories of Hilbert space operators have homological dimensions roughly three, and pair in ways evoking a duality between differential topology and quantum physics.

§1 Recollections and calculations

1.1 Let $\text{SL}_2(\mathbb{C}) \subset M_2(\mathbb{C})^\times$ be the subgroup of 2×2 complex matrices T with determinant one; note that the map $T \mapsto T^*$ which sends a matrix to its conjugate transpose or adjoint is an antihomomorphism, and that the determinant of the conjugate transpose of a matrix is the complex conjugate of the determinant of the original matrix. Then $\text{SU}(2) \subset \text{SL}_2(\mathbb{C})$ is the maximal compact subgroup, composed of matrices of the form

$$T = \begin{bmatrix} u & v \\ -\bar{v} & \bar{u} \end{bmatrix}$$

with $u = u_0 + iu_1, \ v = v_0 + iv_1 \in \mathbb{C}$ such that $\det T = |u|^2 + |v|^2 = 1$ (i.e. unit length elements of the quaternions $\mathbb{H} = \mathbb{C} \oplus \mathbb{C}j$), and let $U(2)$ be the group of invertible 2×2 complex unitary matrices U (such that $U^* = U^{-1}$); its Lie algebra \mathfrak{u} consists of antiHermitian complex 2×2 matrices. The exponential map of a connected compact Lie group is surjective, and any element of $U \in U(2)$ can be expressed uniquely [3](Ch 9) as

$$U = \begin{bmatrix} u & v \\ -\lambda \bar{v} & \lambda \bar{u} \end{bmatrix}$$

with $|u|^2 + |v|^2 = 1, \ \det U = \lambda = e^{i\alpha} \in \mathbb{T}, \ \alpha \in [-\pi, +\pi],$ defining a homeomorphism of $U(2)$ with $S^1 \times S^3$. However, the group extension

$$1 \longrightarrow \text{SU}(2) \longrightarrow \text{SU}(2) \times \pm_1 \mathbb{T} \cong U(2) \cong \text{Spin}^c(3) \overset{\det}{\longrightarrow} \mathbb{T} \longrightarrow 1$$

is nontrivial.

1.2 Let

$$M := \{M \in M_2(\mathbb{C}) \mid M = M^*\}$$

denote the real vector space of 2×2 complex Hermitian (self-adjoint) matrices

$$M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} = \begin{bmatrix} \bar{M}_{11} & \bar{M}_{21} \\ \bar{M}_{12} & \bar{M}_{22} \end{bmatrix} = \begin{bmatrix} \rho_+ & w \\ \bar{w} & \rho_- \end{bmatrix} = \begin{bmatrix} x_0 + x_1 & x_2 - ix_3 \\ x_2 + ix_3 & x_0 - x_1 \end{bmatrix}$$
(with \(w \in \mathbb{C} \), and \(\rho_{\pm}, x_i \in \mathbb{R} \)). Penrose coordinates \(\mathbb{R} \times \mathbb{R}^3 = \mathbb{R}^{1,3} \to \mathbb{M} \) identify

\[
\det M := q(M) = x_0^2 - (x_1^2 + x_2^2 + x_3^2) \in \mathbb{R}
\]

with the Lorentz-Einstein pseudometric of Minkowski space.

If \(M \in \mathbb{M} \) then its eigenvalues are real, so \(i1 \pm M \) is invertible. Let

\[
\sigma : \mathbb{M} \ni M \mapsto \frac{M - i1}{M + i1} = \sigma(M) \in \mathbb{U}(2)
\]

denote the Cayley transform: essentially, \(-i\) times Riemannian stereographic projection. This clearly satisfies \(\sigma(M)^* = \sigma(M)^{-1} \), and because

\[
1 - \sigma(M) = 1 - \frac{M - i1}{M + i1} = \frac{2i1}{M + i1},
\]

is invertible, a matrix in the image of \(\sigma \) cannot have 1 as an eigenvalue, so \(\sigma \) has a well-defined inverse

\[
\sigma^{-1}(U) := \frac{1 + U}{1 - U} \in \mathbb{M}
\]
on that image, guaranteeing that \(\sigma \) is an embedding.

The complement \(\mathbb{M}_\infty = \mathbb{U}(2) - \sigma(\mathbb{M}) \cong S^3/S^0 \) consists of unitary matrices which do have 1 as an eigenvalue; in particular, they can be written as \(\exp(iZ) \) with \(Z \) self-adjoint and zero as an eigenvalue.

1.3 If \(U \in \mathbb{M}_\infty \) then

\[
\det(U - 1) = \det \begin{bmatrix} u - 1 & v \\ -\lambda \bar{v} & \lambda \bar{u} - 1 \end{bmatrix} = 1 - (u + \lambda \bar{u}) + \lambda = 0,
\]

so Trace \(U = u + \lambda \bar{u} = 1 + \lambda = 1 + \det U \). For example, \(\lambda = 1 \) implies \(U = 1 \), but if \(\lambda = -1 \) then

\[
U = \begin{bmatrix} u & v \\ \bar{v} & -\bar{u} \end{bmatrix}
\]

has trace zero, so \(u = u_0 \) is real. There is thus a ‘bubble’, a two-sphere \(\mathbb{B} \subset \mathbb{U}(2) \)

\[
u_0^2 + v_0^2 + v_1^2 = 1,
\]
of such matrices.

1.4 The light-cone is the subset

\[
\mathbb{M}_0 := \{ M \in \mathbb{M} \mid \det M = 0 \} \cong \mathbb{R} \times \mathbb{C}_+ = (\mathbb{R} \times \mathbb{C}_+)/(0 \times \mathbb{C}_+)
\]
of Minkowski space. It can be parametrized by stereographic projection

\[
(x_0, z) \mapsto x_0(1, s(z)) = M_0(x_0, z)
\]
where

\[
\mathbb{C}_+ \ni z \mapsto s(z) := (1 + |z|^2)^{-1}(|z|^2 - 1, 2z) \in \mathbb{R}^3 \cong \mathbb{R} \times \mathbb{C},
\]

We regard \(\mathbb{R} \cong 0, \mathbb{C} \cong 0 \) as basepointed spaces, with one-point compactifications \(\mathbb{R}_+ = \mathbb{P}^1(\mathbb{R}) \cong S^1, \mathbb{C}_+ = \mathbb{P}^1(\mathbb{C}) \cong S^2 \)
\[(x_0, z) \mapsto M_0(x_0, z) = k \begin{bmatrix} |z| & u \\ \bar{u} & |z|^{-1} \end{bmatrix} \in \mathcal{M}_0 \]

with \(u = |z|^{-1}z \) and \(k = 2(|z| + |z|^{-1})^{-1}x_0 \).

Claim The composition \(\sigma^\perp := -\sigma \circ M_0 \),

\[
\sigma^\perp : \mathbb{R} \times \mathbb{C} \ni (x_0, z) \mapsto \frac{1 + iM_0}{1 - iM_0} \in \mathcal{M}_\infty \subset U(2)
\]

is an embedding, with the light-cone \(\mathcal{M}_\infty \) at infinity as its image, disjoint from \(\sigma(M) \).

In particular, \(\sigma^\perp(0, z) = 1 \). The map is well-defined, for

\[
\det(1-iM_0(x_0, z)) = \det \begin{bmatrix} 1 - ik|z| & -iku \\ -iku & 1 - ik|z|^{-1} \end{bmatrix} = (1-ik|z|)(1-ik|z|^{-1})+k^2
\]

\[
= 1 - ik(|z| + |z|^{-1}) = 1 - 2ix_0 \neq 0.
\]

This implies that

\[
1 - \sigma M_0 = 2(1 - iM_0)^{-1}
\]

is invertible, and hence that \(\sigma^\perp \) is an embedding since

\[
M_0 = i\frac{1 + \sigma M_0}{1 - \sigma M_0}.
\]

The image of \(\sigma^\perp \) is disjoint from \(\sigma(M) \), because

\[
\det(1 + \sigma M_0) = \det \frac{2iM_0}{1 - iM_0} = 0
\]

implies \(-\sigma M_0 \) has 1 as an eigenvalue.

1.5 Calculation now shows that

\[
(1-2ix_0)\sigma^\perp(x_0, z) = \left[\begin{array}{cc} 1 + ik|z| & iku \\ ik\bar{u} & 1 + ik|z|^{-1} \end{array} \right] \left[\begin{array}{cc} 1 - ik|z|^{-1} & iku \\ ik\bar{u} & 1 - ik|z| \end{array} \right] =
\]

\[
\left[\begin{array}{cc} 1 + ik(|z| - |z|^{-1}) & 2iku \\ 2ik\bar{u} & 1 + ik(|z|^{-1} - |z|) \end{array} \right] = 1 + 2ix_0V(z),
\]

where

\[
V(z) = (|z| + |z|^{-1})^{-1} \begin{bmatrix} |z| - |z|^{-1} & 2u \\ 2\bar{u} & |z|^{-1} - |z| \end{bmatrix}
\]

is Hermitian, satisfying \(V^2 = 1 \) and \(\text{Trace } V = 0 \). If \(z = re^{i\theta} \), then

\[
V(re^{i\theta}) = (r^2 + 1)^{-1} \begin{bmatrix} r^2 - 1 & 2re^{i\theta} \\ 2re^{-i\theta} & 1 - r^2 \end{bmatrix}.
\]
Evidently $P = \frac{1}{2}(1 + V)$ is an element of the space \mathbb{D} of projections with Trace $P = 1$ and $e = (z, 1) \in \mathbb{C}^2$ as eigenvector. We have

$$\sigma^\perp(x_0, z) = \frac{1 + 2ix_0V(z)}{1 - 2ix_0} = 1 + \frac{4ix_0}{1 - 2ix_0}P,$$

so Trace $\sigma^\perp = (1 - 2ix_0)^{-1} = 1 + \det \sigma^\perp$, i.e.

$$\det \sigma^\perp(x_0, z) = \frac{1 + 2ix_0}{1 - 2ix_0} = e^{i\alpha(x_0)} \in \mathbb{T}$$

with

$$x_0 = -\frac{1}{2}\tan \frac{1}{2}\alpha, \alpha(\pm \infty) = \pm \pi.$$

If we write $-\beta$ for $\frac{4ix_0}{1 - 2ix_0} = e^{-i\alpha} - 1$, then $\sigma^\perp(x_0, z) = 1 - \beta P$, so

$$\log(1 - \beta P) = -\sum_{n \geq 1} \frac{(\beta P)^n}{n} = \log(1 - \beta) \cdot P = -i\alpha P$$

and hence

$$\sigma^\perp(x_0, z) = \exp(-i\alpha P).$$

This identifies the space \mathbb{D} of projections with the bubble of unitary matrices with eigenvalues ± 1.

Let

$$\varepsilon := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$

then $V(z) \to \mp \varepsilon$ as $z \to 0$ resp ∞. Similarly, as $x_0 \to 0$, $\sigma^\perp(x_0, z) \to 1$, while

$$\sigma^\perp(x_0, z) \to -V(z) \in \mathbb{B} = \overline{\mathbb{M}}_\infty - \mathbb{M}_\infty$$

as $x_0 \to \pm \infty$, so $\sigma^\perp(x_0, z) \to \varepsilon$ as $(x_0, z) \to (\infty, \infty)$.

Remark If $\mathbb{B} = \begin{bmatrix} b_+ & w \\ \overline{w} & b_- \end{bmatrix} \in M_2(\mathbb{C})$ is Hermitian, with determinant zero and trace one, then it is a projection. Setting $r = (1 - b_+)^{-1}|w|$ identifies it with \mathbb{D}.

1.6 It follows that σ^\perp extends to a homeomorphism

$$\bar{\sigma}^\perp : \mathbb{R}_+ \times \mathbb{C}_+ \cong (\mathbb{R}_+ \times \mathbb{C}_+)/ (0 \times \mathbb{C}_+) \to \overline{\mathbb{M}}_\infty.$$

Note that the domain of this map can be expressed as

$$\mathbb{R}_+ \wedge (\ast \cup \mathbb{C}_+) \cong \Sigma(S^0 \vee S^2),$$

where Σ denotes the reduced suspension used in homotopy theory.
Corollary 2 The obvious inclusion induces an isomorphism $H^*(U(2), \mathbb{Z}) \cong H^*(\overline{M}_\infty, \mathbb{Z})$ in degrees below four; moreover, $\overline{M}_\infty - M_\infty \cong S^2$, $U/M_\infty \cong S^4$, while $H^*(U(2)/\mathbb{B}, \mathbb{Z}) = \mathbb{Z}$ when $* = 3, 4$ and is zero otherwise.

An exercise, with most grateful thanks to David Mumford:

As $t \to \infty$, a light ray $x_*(t) = (0, x) + t(1, v) \in \mathbb{R} \times \mathbb{R}^3$ (with $|v| = 1$) approaches
$$\begin{bmatrix} u \\ -\lambda \bar{v} \\ \lambda \bar{u} \end{bmatrix} = \frac{1}{1 - i\omega} \begin{bmatrix} z \\ -\bar{v} \\ -\bar{z} \end{bmatrix} \in U(2)$$
as above, with $\omega := x \cdot v$, $\lambda = C(\omega)$, $z = v_1 + i\omega$, $\nu = v_2 + iv_3$, ending on the line
$$v = -\frac{v_2 + iv_3}{1 + iv_1} (1 + iu), \quad |u|^2 + |v|^2 = 1.$$

§2 Some group actions

Definition $\text{Sl}_2(\mathbb{C}) \times \mathbb{M} \ni T, M \mapsto T(M) := TM^* \in \mathbb{M}$ defines a group action: for
$$ (T(M))^* = (TM^*)^* = TM^*T^* = T(M), $$
while
$$ S(T(M)) = S(TM^*)S^* = (ST)M(ST)^* = (ST)(M). $$

Moreover,
$$ \det(T(M)) = \det(TM^*) = \det T \cdot \det M \cdot \det T^* = \det M. $$

Corollary $\text{Sl}_2(\mathbb{C})$ is the double cover of the identity component of the (Lorentz) group of isometries of (\mathbb{M}, q).

The action of the subgroup SU(2) on \mathbb{M} preserves the decomposition of \mathbb{M} into $(\text{Time}) \times (\text{Space})$, factoring through the action of the rotation group $\text{SU}(2) \to \text{SO}(3)$ on the second term. Moreover, the conjugation action of $\text{SU}(2)$ on $M_2(\mathbb{C})$ defined by the composition
$$ \text{SU}(2) \to \text{Sl}_2(\mathbb{C}) \to \text{PGL}_2(\mathbb{C}) $$
preserves the matrix algebra structure.

By the remarks in the previous section, σ is equivariant with respect to the action of $\text{SU}(2)$ on $U(2)$ by conjugation.

2It is not clear to me how well this is understood in the physics community; cf. [12](§5.1). I learned of [10] only after posting an earlier version of this paper.
The action of SU(2) on $\mathbb{B} = \mathbb{M}_\infty - \mathbb{M}_\infty$, regarded as the space of projections in $M_2(\mathbb{C})$ with determinant zero and trace one, can be identified with its action via $\text{PGL}_2(\mathbb{C})$ on the space of projections with eigenvector $e = [z : 1] \in \mathbb{P}_1(\mathbb{C})$, defining a Hopf bundle at time-like infinity. This is reminiscent of (the other kind of Hopf) bifurcation.

§ 3 A sandbox for entanglement

3.1 The Brauer-Wall/Maycock group

$$0 \rightarrow H^3(Z, Z) \rightarrow (\text{BW} \cong \text{MC})(Z) \rightarrow H^1(Z, \mathbb{Z}_2) \rightarrow 0$$

(with composition $(b, s) + (b', s') := (b + \beta(s \cdot s') + b', s + s')$, [39] (Prop 2.5), β being the mod two Bockstein; represented by a truncation of the loopspace $\Omega^\infty k\mathbb{O}$) classifies Morita equivalence classes of fields of graded continuous trace class C^* algebras over a CW-space Z.

Contractibility of the group of invertible Hilbert space operators implies that bundles $H^1(Z, \text{PGL}_2(\mathbb{H}))$ of projective Hilbert spaces over Z – equivalently, locally coherent fields of quantum mechanical state spaces – are classified by elements of

$$H^3(Z, Z) \cong H^2(Z, B\mathbb{Z} \simeq \mathbb{T}) \cong H^1(Z, B\mathbb{T} \simeq \text{Gl}_2(\mathbb{H})/\mathbb{C}^\times).$$

Small H-spaces $H(V, 1) \rtimes_q H(\mathbb{Z}_2, 3)$ generalizing MC can be associated naturally to symmetric bilinear forms $q : V \times V \rightarrow \mathbb{Z}_2$ in characteristic two; cf. § 6.

For the purposes of this note, a Haag-Kastler background $[\mathcal{A}]$ on a connected locally compact space Z will be the projective equivalence class of a bundle of complex Hilbert spaces trivialized at infinity on its one-point compactification Z_+, as a toy model for quantum mechanics. Compactly supported cohomology groups $H^*_c(Z) := H^*(Z_+, +)$ (i.e. defined by the one-point compactifications of the components of Z) are useful in this context; the resulting functors are natural with respect to proper, but not general, homotopy equivalence.

Proposition A connected oriented three-manifold Y has a canonical Haag-Kastler background $[\mathcal{A}_Y]$ of C^* algebras defined by its orientation or volume form $[\omega_Y] \in H^3(Y, \mathbb{Z})$.

The light-cone \mathbb{M}_0, for example, is contractible, but its two ends imply a serious amount of compactly supported cohomology:

$$H^*_c(\mathbb{M}_0, Z) \cong \mathbb{Z} \text{ if } *=1, \cong \mathbb{Z}^2 \text{ if } *=3$$

and is otherwise zero; and, similarly, by §1.4, for \mathbb{M}_∞. A chiral structure on the light-cone [28] is defined by a choice of the isomorphism in degree three;
it is not clear to me that the two ends need necessarily to be glued by the identity map. Collapsing $M^\infty = M^\infty \cup B \to M^\infty+$ sends $H^3_c(M^\infty) \cong \mathbb{Z}^2 \to \mathbb{Z} \cong H^3_c(M^\infty)$. The decomposition $M^\infty = M^\infty - B$, together with the long exact sequence

$$\cdots \to H^*_c(X - Z, Z) \to H^*_c(X, Z) \to H^*_c(Z, Z) \to \cdots$$

for a closed subspace $Z \subset X$ then implies an exact sequence

$$0 \to H^2_c(B, Z) \cong \mathbb{Z} \to BW(M^\infty) \cong \mathbb{Z}^2 \to BW(M^\infty) \cong \mathbb{Z}_2 \times \mathbb{Z} \to H^2_c(B, \mathbb{Z}_2) \cong \mathbb{Z}_2 \to 0 .$$

The restriction of A to M is trivial since $BW(M^+) = 0$, but an algebra bundle of class $[A]$ over $U(2)$ nevertheless defines at least a precursor for a Haag-Kastler structure: it provides a sheaf of C^*-algebras and quantum-mechanical state spaces, though without any concerns about local causality. This is an issue of possible interest in questions of entanglement.

Corollary There is a canonical nontrivial equivalence class $[A]$ of bundles of \mathbb{Z}_2-graded C^*-algebras over $U(2)$, classified by

$$(-1, +1) \in \mathbb{Z}_2 \times \mathbb{Z} \cong H^1(U(2), \mathbb{Z}_2) \times H^3(U(2), \mathbb{Z}) \cong BW(U(2)) .$$

This bundle is supported on M^∞, in the sense that the restriction map $BW(U(2)) \to BW(M^\infty)$ is an isomorphism.

The final arrow in the exact sequence above similarly suggests that the spin part of the structure is supported on the bubble B. The Bockstein homomorphisms for both spaces are trivial.

3.2 Some questions: This document is a working draft; it is intended to provide a framework for questions like the following:

- Is there an analytic construction for (a bundle of class) $[A]$?
- Does the class $[A]$ contain a smooth representative?
- Can the action of SU(2) on $U(2)$ be extended to some algebra bundle representing $[A]$?

[More precisely: can $[A]$ be realized as the bundle of automorphisms of a field of (projective) Hilbert space representations of SU(2) over $U(2)$? If so, could these be related to (projective) representations of $Sl_2(\mathbb{C})$?]

The Bondi-Metzner-Sachs group $[22]$ is a semi-direct product

$$0 \to V \to BMS \to Sl_2(\mathbb{C}) \to 1 ,$$
where V is a vector space of real-valued functions on \mathbb{CP}^1 with the induced $\text{PGL}_2(\mathbb{C})$ action; it is the symmetry group of a generic asymptotically-flat solution of the equations of general relativity. It is tempting to imagine V as the group of smooth functions on \mathbb{R}, interpreted as conformal deformations of its metric.

• [25] How is a principal bundle $\text{PGL}^* (A) \to \mathbb{U}(2)$ related to $\mathbb{T} \times_{\pm 1} S^3(3)$?

PART II AN OCEAN OF THREE-MANIFOLDS

...Nehwon is a giant bubble rising through the waters of eternity with continents, islands, and the great jewels that at night are the stars all orderly afloat on the bubble’s inner surface . . .

F Leiber, Swords of Lankhmar

4.1 Following N Strickland [29] (§12-13) and GA Swarup [30, 31], the category (III), with compact connected closed base-pointed oriented three-manifolds Y as objects, and with degree one maps as morphisms, maps fully faithfully by $Y \mapsto \pi_1 Y$ to the category of groups π endowed with the three-dimensional level H_3 structure $\text{H}_3 Y \to \text{H}_3 B\pi_1(Y)$, and with homomorphisms of such oriented groups as morphisms. The three-sphere $S^3 = \text{SU}(2)$ is a distinguished point of this generalized stack, as is $S^1 \times S^2$, but the generic example of a prime object under connected sum is an acyclic three-manifold with fundamental group satisfying three-dimensional Poincaré duality. There is also an archipelago of manifolds such as Lens spaces, which have finite fundamental groups.

For example, the collapse map $S^1 \times S^2 \to S^1 \wedge S^2 \cong S^3$ has degree one. It changes the Kervaire semicharacteristic mod two [10].

4.2 On another hand, the Morita equivalence classes $\text{MC}(Y)$ define a sheaf of abelian groups on (III), and the Grothendieck category $$(\text{HK}) := \int_{Y \in (\text{III})} \text{MC}(Y)$$ of compact three-manifolds, together with the C^* algebra indexed by their orientations $[Y] \in H^3(Y, \mathbb{Z})$, defines an interesting class of background geometries for Araki-Haag-Kastler models. Bundle gerbes [17] and Deligne cohomology provide smooth versions of these things, in terms of connections and curvature.

\[\]
An element \((b, s) \in \text{MC}(Y)\) defines the class \(s \in H^1(Y, \mathbb{Z}_2)\) of a spin or fermionic structure, together with a class \(b \in H^3(Y, \mathbb{Z})\) which could perhaps be called a boson or baryon number, but that may be misleading. From here on we’ll restrict our attention to the cross-section \((\text{HK})_1\) of the category of Haag-Kastler models defined by normalizing at \(b = 1\).

5.1 More generally, let us consider the category \((\text{IV})\) with pairs \((Y \cong \partial X \subset X)\) as objects, with \(X\) a connected oriented smooth four-manifold bounded by \(Y \in (\text{III})\), and smooth maps of pairs with boundary restrictions of degree one, as morphisms. Forgetting the spanning manifold defines a fibration

\[
\partial : \int_{X \in (\text{IV})} \text{MC}(X) \to \int_{Y \in (\text{III})} \text{MC}(Y)
\]

of some kind of categories.

If \(X\) is simply-connected, the homology exact sequence of \((X, Y)\) reduces (using the universal coefficient theorem and Lefschetz duality as in Hatcher \([\S 3.3]\)) to a free three-term resolution

\[
0 \to H_2Y \to H_2X \to H_2X/Y \to H_1Y \to 0
\]

of \(H_1Y\) (coefficients are integral if unspecified), and thereby a contravariant class

\[
Q_{Y:X} : \in \text{Ext}^2_{\mathbb{Z}[\pi]}(\pi_{\text{ab}}, \pi_{\text{ab}})\]

\([11]\)(§5.3.13f). Here \(A^\dagger := \text{Hom}(A, \mathbb{Z})\) for finitely generated abelian groups, and \(\pi = \pi_1Y\). The diagram

\[
\text{Hom}(H_2X/Y, \mathbb{Z}) \to \text{Hom}(H_2X, \mathbb{Z}) \\
\text{Hom}(H_2X/Y, \mathbb{Z}) \to \text{Hom}(H_2X, \mathbb{Z}) \\
H_2X/Y \to H_2X \\
H_2X/Y \to H_2X \\
H_1Y \to 0
\]

identifies the unimodular intersection form \(Q := Q_{X/Y}\) on \(H_2X\) with that defined by the cup product on \(H_2X/Y\), yielding a presentation

\[
H_1Y = \pi_{\text{ab}} \cong \text{coker} Q, \quad H_2Y = \pi_{\text{ab}}/\text{tors} \cong \text{ker} Q
\]

of \(H_4Y\) in terms of a quadratic form.

5.2 Link calculus \([11, 18, 21, 27]\)(Ch 9 §I) presents any \(Y \in (\text{III})\) as the boundary \(Y \cong Y_L\) of a simply-connected four-dimensional handlebody \(X_L\) defined by a framed oriented link

\[
L = \bigcup_{\lambda \in \pi_0L} \lambda \subset \mathbb{R}^3_+,
\]
together with an identification of the intersection matrix of X_L and the $\pi_0 L \times \pi_0 L$ linking matrix of L.

It is helpful to know that the Stiefel-Whitney map

$$\text{Pic}_\otimes \otimes \mathbb{R}(Z) \ni \xi \mapsto w_1(\xi) \in H^1(Z, \mathbb{Z}_2)$$

classifies real line bundles, while Chern’s map

$$\text{Pic}_\otimes \otimes \mathbb{C}(Z) \ni \lambda \mapsto c_1(\lambda) \in H^2(Z, \mathbb{Z})$$
classifies complex line bundles. In a link presentation, equivalence classes $\lambda \in H_2 X_L \cong H^2(X/Y)_L \cong \text{Pic}_\otimes \otimes \mathbb{C}(X/Y)_L \cong \mathbb{Z}[\pi_0 L] := \Lambda \cong \mathbb{Z}^l$ correspond to line bundles λ over X trivialized on Y, or to the surfaces $[\sigma^{-1}(0)] \sim \delta \lambda \in H_2(X_L)$ defined by the Euler class of a generic section σ.

With \mathbb{Z}_2 coefficients, and in cohomology H for convenience, the exact sequence of §3 becomes a symmetric biextension

$$
\begin{array}{cccccc}
0 & \longrightarrow & H^1 X & \delta & \longrightarrow & [H^2 X/Y \sim H^2 X] & \longrightarrow & H^2 Y & \longrightarrow & 0 \\
& & \cong & & \cong & & \cong & & \cong & \\
0 & \longrightarrow & \text{Pic}_\otimes \otimes \mathbb{R}(Y) & \longrightarrow & [\text{Pic}_\otimes \otimes \mathbb{C}(X/Y) \otimes \mathbb{Z}_2, q_{X/Y}] & \longrightarrow & \text{Pic}_\otimes \otimes \mathbb{R}(Y) \to \longrightarrow & 0
\end{array}
$$

of \mathbb{Z}_2-vector spaces (with \to denoting vector space duality and $q := Q \otimes \mathbb{Z}_2$). The left-hand monomorphism sends a real vector bundle ξ on the boundary Y to a complex line bundle $\delta \xi$ on X; we may perhaps interpret it as bosonic \mathbb{C}^\times-gauge field on the interior created or supported by a fermionic field on the boundary:

A generic section σ of a real line bundle over Y defines a codimension one submanifold $\sigma^{-1}(0)$, whereas such a section of a complex line bundle over X defines (mod two) a submanifold of codimension two [13](lemma 5.49) but these submanifolds are both surfaces, making it geometrically natural to think of a class in $H^2(X, \mathbb{Z}) \otimes \mathbb{Z}_2$ as extending a class in $H^1(\partial X, \mathbb{Z}_2)$ when its associated complex field turns on.

6.1 This leads to matters of spin and statistics, which suggests a pullback

$$
\begin{array}{ccc}
(GR) & \longrightarrow & (HK) \\
\downarrow & & \downarrow \\
(IV)_{\text{Spin}^c} & \longrightarrow & (III)_{\text{Spin}}
\end{array}
$$

of our fibered category. The geometry of link calculus on Spin and Spinc manifolds is rich enough to support (renormalizable [1] quantum) variational problems of Seiberg-Witten, Higgs-Yamabe [42] and Salam-Weinberg.
type; the latter model involves mysterious \mathbb{T}-valued ‘mixing angles’ which parametrize interactions between fermions and their gauge bosons.

This may be commensurable with Penrose’s memorable fancy, that at future infinity fermions decay into bosons, powering a new big bang. A cobordism $Y = \partial X$ can be regarded as a creation operator $X : \emptyset \to Y$ which thinks of the four-manifold X as a bubble blown by its boundary Y, a solution extremizing a functional on a moduli space of membranes spanning a given boundary.

If Y is S^3 then X is a 4-ball with $X/Y = S^4$, and when $Y = S^1 \times S^2$ we have $X = S^1 \times B^3$, $X/Y \cong U(2)$, which recovers Penrose’s model. [In that case X is not simply connected, but can be made so by allowing a codimension two singularity in $Y \sim S^1 \times \ast S^2$, cf §1.6.]

6.2 This marks a place for a discussion of spin links which we defer to a later draft. The following needs expansion and details:

In a link presentation X_L, a generic section of complex line bundle λ defines the homology class δ_L of a (for example ‘weak neutral’) de Rham current, normal to its vanishing locus $\sigma^{-1}(0)$: a Dirac delta-function supported by the link, a model for a thunderbolt or crack of doom in the big bang.

Kirby and Taylor use the bilinear form $x, y \mapsto \langle x, 2y \rangle$ on $\text{Pic}_{\mathbb{R}} Y$ to show that the ξ-twisted Rokhlin (Theorem VI) invariant

$$\nu(\xi^* Y) \equiv \nu(Y) + 2\beta(\ast \xi) \pmod{16}$$

of a spin three-manifold is translated by a multiple of the EH Brown invariant $\nu(Y)$ (§4.2, 5.4), (§3.2, 4.11) of the surface Poincaré dual to ξ. Hopkins and Singer (App. E) study such refinements of the intersection matrix in terms of integral Wu classes; we hope to understand this better, in time.

References

1. S Agarwala, A perspective on regularization and curvature, Lett. Math. Phys. 93 (2010) 187 – 201. [https://arxiv.org/abs/0909.4117]
2. ——, The geometric β-function in curved space-time under operator regularization. J. Math. Phys. 56 (2015), no. 6/062302. [https://arxiv.org/abs/0909.4122]
3. M A Armstrong, Groups and Symmetry, Springer Undergraduate Texts (1988)
4. S Baseilhac, Some geometric comments on a "quantum" theorem of Kirby and Melvin, [https://imag.umontpellier.fr/~baseilhac/plong.pdf]
5. JL Brylinski, Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics 107, Birkhäuser (1993)
6. U Bunke, N Naumann, Secondary invariants for string bordism and topological modular forms. Bull. Sci. Math. 138 (2014) 912 – 970. [https://arxiv.org/abs/0912.4876]

visible at the base of Figure 1 in [24] if you look hard enough.
7. A Carlotto, The general relativistic constraint equations, Living Rev Relativ 24, 2 (2021). https://link.springer.com/content/pdf/10.1007/s41114-020-00030-z.pdf
8. J Dixmier, A Douady, Champs continus d’espaces hilbertiens et de C*-algèbres, Bull. Soc. Math. France 91 (1963) 227—284
9. P Donovan, M Karoubi, Graded Brauer groups and K-theory with local coefficients, IHES Publ. Math. 38 (1970) 5–25
10. G Gibbons, S Hawking, Kinks and topology change, Phys. Rev. Lett. 69 (1992) 1719–1721
11. R Gompf, A Stipsicz, 4-manifolds and Kirby calculus, AMS Grad Studies 20 (1999)
12. S Hawking, GFR Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, CUP 1973
13. J Hillman, On the homotopy types of closed 4-manifolds covered by $S^2 \times \mathbb{R}^2$, Topology Appl. 75 (1997) 287 – 295
14. MJ Hopkins, IM Singer, Quadratic functions in geometry, topology, and M-theory, J. Differential Geom. 70 (2005) 329 — 452. https://arxiv.org/abs/math/0211216
15. F Hoyle, JV Narlikar, Action at a distance in physics and cosmology 1974
16. A Jadczyk, On conformal infinity and compactifications of the Minkowski space, Advances in Applied Clifford Algebras: 21 (2011) 721–756, https://arxiv.org/abs/1008.4703
17. S Johnson, Constructions with bundle gerbes, https://arxiv.org/abs/math/0312175
18. R Kirby, P Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev for $sl(2, \mathbb{C})$, Invent. Math. 105 (1991) 473 — 545
19. ——, LR Taylor, $\{\text{Pin}\}$ structures on low-dimensional manifolds, in Geometry of low-dimensional manifolds, 2 (Durham, 1989) 177 -- 242, LMS Lecture Notes151, Cambridge (1990)
20. N Kitchloo, J Morava, Spin cobordism categories in low dimensions, Pure and Applied Mathematics Quarterly 6, 1 - 13 (2010), https://arxiv.org/abs/0908.3114
21. WBR Lickorish, A representation of orientable combinatorial 3-manifolds. Ann. of Math. 76 (1962) 531 – 540
22. P McCarthy, The Bondi-Metzner-Sachs group in the nuclear topology, Proc. Roy. Soc. London A 343 (1975) 489 -- 523
23. E Maycock Parker, The Brauer group of graded continuous trace C*-algebras, Trans. AMS 308 (1988) 115 -- 132
24. D Mumford, Ruminations on cosmology and time, Notices AMS 68 (2021) 1715 – 1725
25. T Nikolaus, C Sachse, C Wockel, A smooth model for the string group, Int. Math. Res. Not. IMRN 16 (2013) 3678 – 3721, https://arxiv.org/abs/1104.4288
26. C Payne-Gaposchkin, Myth and science: Hamlet’s Mill (1972) https://journals.sagepub.com/doi/abs/10.1177/002182867200300306
27. D Rolfsen, Knots and Links, Mathematics Lecture Series 7, Publish or Perish, Inc., Berkeley, Calif., 1976.
28. I E Segal, Mathematical cosmology and extragalactic astronomy, Pure and Applied Mathematics, Vol. 68, Academic Press, New York-London, 1976
29. S Sternberg, J Wolf, Charge conjugation and Segal’s cosmology, Il Nuovo Cimento 28A (1975) 253 – 271
30. N Strickland, A bestiary of topological objects, https://neil-strickland.staff.shef.ac.uk/courses/bestiary/bestiary.pdf
31. GA Swarup, Pseudo-isotopies of $S^1 \times S^1$, Math. Z. 121 (1971) 201–205
32. ——, On a theorem of C B Thomas, J. London Math. Soc. 8 (1974) 13 – 21
33. P Tod, The equations of conformal cyclic cosmology, Gen. Relativity Gravitation 47 (2015), no. 3, Art. 17
34. V Turaev, Cohomology rings, linking coefficient forms and invariants of spin structures in three-dimensional manifolds, Mat. Sb (162) (1983) 68 -- 83 Turaev, V. G.
34. ——, Euler structures, nonsingular vector fields, and Reidemeister-type torsions. Math. USSR-Izv. 34 (1990), 627 – 662
35. CTC Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1963/64) 187 – 199
36. H Weyl, *Space. Time. Matter*, Dover (1950)
37. Algebraic QFT: https://ncatlab.org/nlab/show/AQFT+on+curved+spacetimes
38. Haag-Kastler axioms, https://ncatlab.org/nlab/show/Haag-Kastler+axioms
39. Spinc: https://ncatlab.org/nlab/show/spin^c
40. Seiberg-Witten: https://en.wikipedia.org/wiki/Seiberg-Witten_invariants
41. Weak currents: https://en.wikipedia.org/wiki/Electroweak_interaction
42. Yamabe problem: https://en.wikipedia.org/wiki/Yamabe_problem

Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218