Binding of Regulatory Subunits of Cyclic AMP-Dependent Protein Kinase to Cyclic CMP Agarose

Andreas Hammerschmidt1*, Bijon Chatterji1, Johannes Zeiser2, Anke Schröder2, Hans-Gottfried Genieser3, Andreas Pich2, Volkhard Kaever1, Frank Schwede3, Sabine Wolter1†, Roland Seifert1*†

1 Institute of Pharmacology, Hannover Medical School, Hannover, Germany, 2 Institute of Toxicology, Hannover Medical School, Hannover, Germany, 3 Biolog Life Science Institute, Bremen, Germany

Abstract
The bacterial adenylyl cyclase toxins CyaA from Bordetella pertussis and edema factor from Bacillus anthracis as well as soluble guanylyl cyclase cGMP synthase the cyclic pyrimidine nucleotide cCMP. These data raise the question to which effector proteins cCMP binds. Recently, we reported that cCMP activates the regulatory subunits RIα and RIIα of cAMP-dependent protein kinase. In this study, we used two cCMP agaroses as novel tools in combination with immunoblotting and mass spectrometry to identify cCMP-binding proteins. In agreement with our functional data, RIα and RIIα were identified as cCMP-binding proteins. These data corroborate the notion that cAMP-dependent protein kinase may serve as a cCMP target.

Citation: Hammerschmidt A, Chatterji B, Zeiser J, Schröder A, Genieser H-G, et al. (2012) Binding of Regulatory Subunits of Cyclic AMP-Dependent Protein Kinase to Cyclic CMP Agarose. PLoS ONE 7(7): e39848. doi:10.1371/journal.pone.0039848

Editor: Andreas Hofmann, Griffith University, Australia

Received: May 11, 2012; Accepted: May 31, 2012; Published: July 9, 2012

Copyright: © 2012 Hammerschmidt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant of the Hannover Biomedical Research School to A.H. and Deutsche Forschungsgemeinschaft grant Se 529/5-2 to R.S. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The corresponding author Roland Seifert serves as Academic Editor for PLoS ONE. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: seifert.roland mh-hannover.de
† These authors contributed equally to this work.
† These authors also contributed equally to this work.

Introduction
Previous studies claimed that in addition to adenosin 3',5'-cyclic monophosphate (cAMP) and (cytidine 3',5'-cyclic monophosphate) cGMP [1,2], the cyclic pyrimidine nucleotide cCMP,5'-cyclic monophosphate (cCMP) may play a role as second messenger molecule [3]. However, studies on cellular effects of cCMP were not reproducible [4] and technical problems hampered the determination of tentative cytidylcyclase activity in mammalian cells [5,6]. Moreover, a postulated cCMP-specific phosphodiesterase could not be identified so far [7]. In fact, several known phosphodiesterases do not cleave cCMP [8]. With refined radiometric and liquid chromatography-mass spectrometry (LC-MS) methods we could recently show that the highly purified bacterial adenyl cyclase toxins CyaA from Bordetella pertussis and edema toxin from Bacillus anthracis, in addition to cAMP, produce cCMP [9]. Furthermore, the highly purified soluble guanylyl cyclase a1,β1, along with cGMP, produces cCMP in a nitric oxide-dependent manner [10]. In addition, the regulatory subunits of cAMP-dependent protein kinase A (PKA), RIα and RIIα, are activated not only by cAMP, but by cCMP as well [11]. These recent data indicate that cCMP may, indeed, play a role as second messenger.

The aim of our present study was to identify cCMP-binding proteins. As methodological approach, we synthesized and tested 2'-6-aminohexyl-2-cCMP (2'-AHC-cCMP) agarose and 4'-6-aminohexyl-cCMP (4'-AHC-cCMP) agarose and a corresponding control agarose (Figure 1). In 2'-AHC-cCMP agarose, the nucleoside 3',5'-cyclic monophosphate (cNMP) is linked to the matrix via the 2'-O-ribofuranosyl group, and in 4'-AHC-cCMP agarose via the 4'-NH group of the pyrimidine ring. Hence accessibility of the affininity ligand to proteins is different in the two matrices. Bound proteins were subsequently analyzed by immunoblotting and LC-MS. The cNMP-agarose approach is very useful at identifying cNMP-binding proteins [12]. Here, we show that in accordance with our enzymological data, cCMP-agarose binds RIα and RIIα.

Materials and Methods

Materials
2'-AHC-cCMP agarose was synthesized by analogy to other 2'-AHC-agarose matrices [13]. Syntheses of 4'-AHC-cCMP and 4'-AHC-cCMP agarose were in accordance to literature procedures [14,15]. Both cCMP agaroses were prepared with ligand densities of ~6 μM/mL of settled gel. cCMP (purity > 99.8%) was from Biolog Life Science Institute (Bremen, Germany). Anti-RIα Ig (sc-136231) was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). This antibody also recognizes RIIβ. All other reagents and cell culture media were purchased from standard suppliers.

Cell Culture
B103 rat neuroblastoma cells (kindly provided by Dr. E. Zorec-Shani, Tel-Aviv, Israel) [16] were cultured in MEM RAA medium supplemented with 10% (v/v) fetal bovine serum at...
Human HeLa cervix carcinoma cells were obtained from the American Type Culture Collection and were cultured in DMEM medium supplemented with 10% (v/v) fetal bovine serum at 37°C and 5% (v/v) CO₂. Human HEK293 embryonic kidney cells were from the American Type Culture Collection and were cultured in DMEM medium supplemented with 10% (v/v) fetal bovine serum, non-essential amino acids and sodium pyruvate at 37°C and 5% (v/v) CO₂. HL-60 human promyelocytic leukemia cells (kindly provided by Dr. P. Gierschik, Ulm, Germany) [17] were cultured in RPMI 1640 medium supplemented with 10% (v/v) horse bovine serum, non-essential amino acids and sodium pyruvate at 37°C and 5% (v/v) CO₂.

J774 mouse macrophages [18] were obtained from Dr. I. Just, Hannover, Germany and were cultured in DMEM medium supplemented with 10% (v/v) fetal bovine serum and 2 mM L-glutamine at 37°C and 5% (v/v) CO₂.

cCMP Agarose Affinity Chromatography

Cells were harvested and suspended in lysis buffer consisting of 40 mM β-glycerolphosphate, 100 mM NaF, 4 mM Na₃VO₄, 2% (m/v) Triton X-100, 100 mM NaCl, 60 mM NaPP i and 20 mM Tris/HCl, pH 7.5. Protein concentration was determined using the BCA protein assay. 2'-AHC-cCMP agarose, 4-AH-cCMP agarose and EtOH-NH agarose (30 μl each) were used as novel tools for identification of cCMP-binding proteins. Please, note the different attachments of the affinity ligand to the matrix in B and C.

Figure 1. Structures of agarose matrices. A, EtOH-NH agarose (control agarose); B, 2'-AHC-cCMP agarose; C, 4-AH-cCMP agarose. The matrices shown in this figure were used as novel tools for identification of cCMP-binding proteins. Please, note the different attachments of the affinity ligand to the matrix in B and C.

doi:10.1371/journal.pone.0039848.g001

Figure 2. Binding of the regulatory subunit Rlα of PKA to cCMP agarose. A and B, cell lysates of HeLa cells were incubated with 2'-AHC-cCMP agarose, 4-AH-cCMP agarose or EtOH-NH agarose (control agarose). In competition experiments, cCMP (2 mM) was added to cCMP agarose samples. Input designates cell lysate before incubation with agarose. C, cell lysates of HeLa cells were incubated with 2'-AHC-cCMP agarose or control agarose. Rlα was detected by immunoblotting with an antibody. Numbers at the left margins of immunoblots designate markers of molecular mass standards. Representative immunoblots are shown. A and B were from the same experiment, different exposures were shown. Similar data were obtained in three independent experiments.

doi:10.1371/journal.pone.0039848.g002
equilibrated three times with wash buffer consisting of 1 mM dithiothreitol, 1% (m/v) Triton X-100, 1 mM Na$_2$VO$_4$, 50 mM NaF, 154 mM NaCl and 20 mM Tris/HCl, pH 7.5. Agarose beads were incubated with 2 mg of cell lysate protein in wash buffer (total volume 500 µl) in the presence of 100 µM isobutyl-methylxanthine under rotation at 30 rpm at 4°C overnight. In order to detect non-specific binding, 2 mM cCMP was included in some samples. Samples were then centrifuged at 1,000 g for 3 min at 4°C, and beads were washed three times with 500 µl of wash buffer, followed by addition of 25 µl of 2× sample buffer. Samples were heated for 10 min at 95°C. For alkylation of cysteine residues 1 µL of an acrylamide solution (40%, m/v) was added and incubated at room temperature for 30 min. Proteins were subsequently separated by sodium dodecyl sulfate gel electrophoresis in gels containing 10% (m/v) acrylamide.

Immunoblotting

Gels were blotted onto nitrocellulose membranes. Membranes were incubated with anti-RIα Ig (1:500) over night, followed by a 2 h incubation with anti-mouse IgG from sheep (1:2,000). Bands were visualized using the Signal WestPico Luminol Enhancer and Stable Peroxidase Solution (Thermo Fisher Scientific, Rockford, IL, USA).
Sample Preparation for MS Analysis

Following photography for documentation, protein-containing gel lanes were cut into small pieces and destained with ACN (50%, v/v) in 20 mM NH₄HCO₃. Subsequently, ACN (100%) was added until gel pieces were dry and ACN was removed in a vacuum centrifuge. Trypsin was added at a concentration of 10 ng/μL in 20 mM NH₄HCO₃ and 10% (v/v) ACN and the protein digest was performed at 37°C over night. Peptides were extracted by incubation of samples with 50 μL of 10% (v/v) ACN and 0.5% (v/v) trifluoroacetic acid (TFA) at room temperature and shaking at 300 rpm for 30 min. The supernatant fluid was transferred into a new vial, and the extraction was repeated twice using increasing concentrations of ACN (30%, 50%). Following vacuum drying, samples were dissolved in 5 μL of 5% (v/v) ACN and 0.2% (v/v) TFA for matrix-assisted laser desorption/ionization (MALDI)-MS analysis. Samples (0.5 μL) were spotted onto a MALDI target plate (AB Sciex, Darmstadt, Germany) and mixed with 0.8 μL α-cyano-4-hydroxycinnamic acid (CHCA) (4 mg/mL in 50% ACN, 0.2% TFA) using the dried droplet method.

LC Analysis

Peptide separation was performed by reversed phase chromatography using a nano-LC system (Dionex, Idstein, Germany) which consists of an autosampler (Famos), a loading pump (Switchos), a gradient pump (Ultimate) and a microfraction collector (Probot). An aliquot of up to 20 μL of each sample was injected onto a C18 trap column (PepMap 300 μm x 5 mm, 3 μm, 100 Å, Dionex) with 2% (v/v) acetonitrile (ACN) in 0.1% (v/v) TFA and a flow rate of 30 μL/min. Peptides were eluted onto a separation column (PepMap, C18 reversed phase material, 75 μm x 150 mm, 3 μm, 100 Å, Dionex) and separated using eluent A with 5% (v/v) acetonitrile in 0.1% (v/v) TFA and eluent B with 80% (v/v) acetonitrile in 0.1% (v/v) TFA with a gradient from 10% to 40% eluent B in 134 min and 40% to 100% eluent B in 10 min. Samples were spotted directly onto a MALDI target plate (AB Sciex) that had been prespotted with CHCA matrix as described above. A sheath liquid of 50% (v/v) ACN was applied and subsequently spots were recrystallized using 50% (v/v) ACN and 0.1% (v/v) TFA.

Table 1. Identification of RIα and RIIα by MALDI-MS/MS: Summary.

Cell line	Accession no.	Protein name	MW (kDa)	Mascot Score (combined, best hit)	Identified peptides	Sequence coverage
HeLa	P10644	RIα	42.955	182	6	13%
HeLa	P13861	RIIα	45.490	80	4	14%
HEK293	P10644	RIα	42.955	170	6	12%
HEK293	P13861	RIIα	45.490	403	8	27%
HL-60	P10644	RIα	42.955	247	6	16%
HL-60	P13861	RIIα	45.490	272	5	18%
B103	P09456	RIα	43.068	428	9	22%
B103	P12368	RIIα	45.512	209	3	9%

Various cell types were cultured, harvested, lysed and analyzed by gel electrophoresis (see Figure 3). Gels were cut into small pieces and subsequently analyzed by MALDI-MS/MS. Figures 4 and 5 show representative MS spectra for peptide precursors from HEK cells, and Tables 2 and 3 provide details for the analysis of the spectra including amino acid sequences of identified peptides for RIα and RIIα.

doi:10.1371/journal.pone.0039848.g005
Identification of PKA RI

Results

MALDI-MS/MS and Protein Identification

Samples were analyzed by MALDI-MS using the (time-of-flight/time-of-flight) TOF/TOF 5800 mass spectrometer (AB Sciex). MS spectra were calibrated using external calibration with a peptide standard (AB Sciex). For internal calibration peptides with m/z values of 842.51 and 2211.103 descending from trypsin were used. MS/MS calibration was performed using fragments of the Coomassie Blue-stained gel of cell lysates of HL-60 cells following incubation with 4-AH-cCMP agarose. The gel shows two bands in the ~45 kDa region that were competed for by cCMP. The gel was cut into thin slices, proteins were digested and peptides were analyzed by MALDI-MS/MS. This analysis showed that highly abundant proteins, i.e. myosin-Ig, z-actinin-4 and cytoplasmic actin bound non-specifically to 4-AH-cCMP agarose, i.e. the binding of these proteins was not competed for by cCMP (Figure 3). In contrast, the bands in the ~45 kDa region that were competed for by cCMP were identified as RI and RII. Figure 4 and 5 show representative peptide precursor MS spectra for RI and RII from HEK293 cells, respectively. Table 1 provides a summary of the MALDI-MS/MS analysis of the ~45 kDa region of HeLa cells, HEK293 cells, HL-60 cells and B103 cells. In all four cell types, RI and RII were identified with sequence coverages ranging from 9–27%, the number of identified peptides ranging from 3–9 and highly significant combined Mascot score ranging from 80–428. Tables 2 and 3 list the amino acid sequences of peptides analyzed in Figures 4 and 5.

We further refined the analysis of proteins bound to 4-AH-cCMP agarose by separating peptides of the 45 kDa region using reversed phase chromatography prior to MALDI-MS/MS (LC-MALDI). Tables 4, 5, 6 show that in this analysis, RII was unequivocally identified in B103 cells, HEK293 cells and HL-60 cells as assessed by immunoblotting. Binding was specific since cCMP strongly inhibited RI binding to cCMP matrices, and the control agarose devoid of the cCMP moiety did not bind RI. In J774 mouse macrophages, 2'-AHC-cCMP agarose also bound RI in a specific manner as assessed by the use of cCMP as competing ligand and control agarose (Figure 2C). 4-AH-cCMP agarose was more effective than 2'-AHC agarose at binding RI (compare Figure 2A and 2B and 2C). Therefore, all further experiments were performed with 4-AH-cCMP agarose.

Identification of RI and RII by MALDI-MS/MS

Table S1 shows the sequence alignment of human RI and RII. The sequence identity between the two isoforms amounts to 38%, but the amino acid sequences are sufficiently different from each other to allow for unequivocal protein identification by peptide analysis via MALDI-MS/MS. Figure 3 shows the Coomassie Blue-stained gel of cell lysates of HL-60 cells following incubation with 4-AH-cCMP agarose. The gel shows two bands in the ~45 kDa region that were competed for by cCMP. The gel was cut into thin slices, proteins were digested and peptides were analyzed by MALDI-MS/MS. This analysis showed that highly abundant proteins, i.e. myosin-Ig, z-actinin-4 and cytoplasmic actin bound non-specifically to 4-AH-cCMP agarose, i.e. the binding of these proteins was not competed for by cCMP (Figure 3). In contrast, the bands in the ~45 kDa region that were competed for by cCMP were identified as RI and RII. Figure 4 and 5 show representative peptide precursor MS spectra for RI and RII from HEK293 cells, respectively. Table 1 provides a summary of the MALDI-MS/MS analysis of the ~45 kDa region of HeLa cells, HEK293 cells, HL-60 cells and B103 cells. In all four cell types, RI and RII were identified with sequence coverages ranging from 9–27%, the number of identified peptides ranging from 3–9 and highly significant combined Mascot score ranging from 80–428. Tables 2 and 3 list the amino acid sequences of peptides analyzed in Figures 4 and 5.

We further refined the analysis of proteins bound to 4-AH-cCMP agarose by separating peptides of the 45 kDa region using reversed phase chromatography prior to MALDI-MS/MS (LC-MALDI). Tables 4, 5, 6 show that in this analysis, RII was unequivocally identified in B103 cells, HEK293 cells and HL-60 cells as assessed by immunoblotting.

Table 2. MS/MS analysis results of the peptide precursors shown in Figure 4.

RIi	Observed	Mr(expt)	Mr(calc)	ppm	Score	Peptide
938.4357	937.4285	937.4254	3.31	58	RSVGQYDNR.G	
1150.6609	1149.6506	1149.6506	2.63	72	RAPASVLPAPITPLQ	
1359.6845	1358.6772	1358.6830	4.29	55	RNISHYEEQKLM	
1483.7928	1482.7255	1482.7215	2.68	108	RQLSHHPPPGPVR	
1555.7653	1554.7500	1554.7500	5.11	32	RGSFGEALMNYTPRA	
1692.9164	1691.8995	1691.8995	5.68	85	KGQYFGEALVTNKLPRA	
1746.9063	1745.8948	1745.8948	2.39	27	RAAICIVTSQSLWGLDR.V	
2307.0526	2306.0184	2306.0087	4.17	170	KADEHVIDQGGDDQNYVIER.G	

Sequence coverage 27%, Mascot score 403, 8 matched queries. Data analysis from Figure 5.

doi:10.1371/journal.pone.0039848.t002

Results

Identification of PKA RI by Immunoblotting

The cNMP agarose affinity approach has already been proven to be successful at identifying cNMP-binding proteins [12,15]. PKA RI is expressed in many cell types [1]. We probed both 2'-AHC-cCMP agarose and 4-AH-cCMP agarose in HeLa cells, a widely used cell culture model (Figure 2A and 2B). Both matrices bound RI as assessed by immunoblotting. Binding was specific since cCMP strongly inhibited RI binding to cCMP matrices, and the control agarose devoid of the cCMP moiety did not bind RI. In J774 mouse macrophages, 2'-AHC-cCMP agarose also bound RI in a specific manner as assessed by the use of cCMP as competing ligand and control agarose (Figure 2C). 4-AH-cCMP agarose was more effective than 2'-AHC agarose at binding RI (compare Figure 2A versus Figure 2B and 2C). Therefore, all further experiments were performed with 4-AH-cCMP agarose.

Table 3. MS/MS analysis results of the peptide precursors shown in Figure 5.

RIi	Observed	Mr(expt)	Mr(calc)	ppm	Score	Peptide
938.4357	937.4285	937.4254	3.31	58	RSVGQYDNR.G	
1150.6609	1149.6506	1149.6506	2.63	72	RAPASVLPAPITPLQ	
1359.6845	1358.6772	1358.6830	4.29	55	RNISHYEEQKLM	
1483.7928	1482.7255	1482.7215	2.68	108	RQLSHHPPPGPVR	
1555.7653	1554.7500	1554.7500	5.11	32	RGSFGEALMNYTPRA	
1692.9164	1691.8995	1691.8995	5.68	85	KGQYFGEALVTNKLPRA	
1746.9063	1745.8948	1745.8948	2.39	27	RAAICIVTSQSLWGLDR.V	
2307.0526	2306.0184	2306.0087	4.17	170	KADEHVIDQGGDDQNYVIER.G	

Sequence coverage 27%, Mascot score 403, 8 matched queries. Data analysis from Figure 5.

doi:10.1371/journal.pone.0039848.t003
Discussion

For many years, research on cCMP barely progressed because of non-reproducible results [3,4] technical difficulties in determination of the activity of cCMP-forming enzymes [5,6] lack of sufficiently sensitive and specific cCMP detection techniques and absence of experimental tools to detect cCMP-binding proteins [3]. Recently, we could unequivocally demonstrate that certain bacterial adenylyl cyclase toxins also produce cCMP [9] and recombinant soluble guanylyl cyclase \(\alpha_1 \beta_1 \) does so, too [10]. Moreover, we showed that the recombinant regulatory subunits R\(I_a \) and R\(I_b \) of PKA bind cCMP, resulting in dissociation of the R subunits from the catalytic subunits and subsequent protein phosphorylation [11]. Thus, a functional effect of cCMP on clearly defined proteins was finally shown.

Considering the success of the cNMP agarose approach to identify cNMP-binding proteins [12,15] the recent results on cCMP synthesis and cCMP effects on PKA prompted us to synthesize and test two cCMP agaroses (Figure 1) in order to identify cCMP-binding proteins. The application of both cCMP agaroses was straightforward, EtOH-NH agarose and competition with cCMP serving as specificity control (Figure 2 and 3). In immunoblotting experiments we detected R\(I_a \) (Figure 2). In MALDI-MS/MS analysis, a traditional approach analyzing gel slices (Figure 3, 4 and 5 and Tables 1, 2, 3) and in a more advanced approach applying additional reversed phase chromatography prior to MS analysis (Tables 4, 5, 6), we unequivocally identified R\(I_a \) and R\(I_b \) in several cell types as proteins specifically binding to 4-AH-cCMP agarose.

We were somewhat surprised that the cCMP-agarose approach worked so well considering the fact that cCMP is only a low-potency

Table 4. Identification of R\(I_a \) and R\(I_b \) by LC-MALDI-MS/MS in B103 cells.

Accession no.	MW (Da)	Protein name	Observed Mr(expt)	Mr(calc)	ppm	Score	Peptide
P09456	43068	cAMP-dependent protein kinase type Ii regulatory subunit	721.4604	720.4531	96.0	45	K.TMAALAKA + Oxidation (M)
743.3256	742.3183	K.altyfer	742.3286	742.4075	73.6	34	K.LWGDIDR.D
759.4175	758.4075	K.RQOSLQK.S	843.5252	843.4814	51.9	37	R.QOSLQK.S
890.5557	889.5485	889.5055	890.5557	890.5055	48.3	50	R.IJMGTLR.K
936.6090	935.6017	935.5522	936.6090	935.6017	49.7	55	K.HNIGALL.K
1046.5131	1045.4790	1046.5131	1046.5131	1046.5131	51.6	63	R.KMYEEFLSK.V
1174.6108	1173.5740	1174.6108	1173.5740	1173.5740	52.2	60	R.KMYEEFLSK.V
1271.7720	1270.7067	1271.7720	1270.7067	1270.7067	45.6	61	R.VLGPCDULKR.N + Propionamide (C)
1294.6943	1293.5837	1294.6943	1293.5837	1293.5837	79.9	104	R.SNEEUFVGR.L
1438.8260	1437.7286	1438.8260	1437.7286	1437.7286	62.7	57	R.SLRECELYQKM + Propionamide (C)
1450.8023	1449.6848	1450.8023	1449.6848	1449.6848	76.0	91	R.SNEEUFVGR.L
1458.7551	1457.6899	1458.7551	1457.6899	1457.6899	39.8	94	R.NVLSHLDONER.S
1474.7238	1473.7827	1474.7238	1473.7827	1473.7827	44.9	35	K.VSILESLOIWER.L
1859.8817	1858.8913	1859.8817	1858.9313	1858.9313	30.5	129	R.LTYADALPVEQFEDQGQ.K
1930.8989	1929.8956	1930.8989	1929.8956	1929.8956	2.0	159	R.GAIAEYTEDAASLYVR.K
1977.1696	1975.9851	1977.1696	1975.9851	1975.9851	89.7	69	R.TDSREDEISPPPPNVV.K
2059.0046	2057.9905	2059.0046	2057.9905	2057.9905	3.3	107	R.GAIAEYTEDAASLYVR.K
2087.0054	2085.9967	2087.0054	2085.9967	2085.9967	0.6	38	R.GAIAEYTEDAASLYVR.K
P12368	45512	cAMP-dependent protein kinase type Ii regulatory subunit	938.4172	937.4100	16.42	51	R.SVGQYDNLG
1051.6035	1050.5346	1051.6035	1050.5346	1050.5346	58.7	77	R.AASAYAVGDVD.W
1359.6910	1358.6830	1359.6910	1358.6830	1358.6830	0.56	34	R.NISHYEEQIYK.M
1571.6670	1570.7450	1571.6670	1570.7450	1570.7450	54.2	50	R.GSFGALMYNTPR.A + Oxidation (M)
1623.8324	1622.8264	1623.8324	1622.8264	1622.8264	0.79	70	R.GTYDILYKDNQTR.S
1692.8108	1691.8995	1692.8108	1691.8995	1691.8995	56.7	82	K.GQYYFELALVTNKPR.A
1732.7730	1731.8792	1732.7730	1731.8792	1731.8792	65.3	49	R.AATIVATSDGSLWGLD.R
2336.8967	2335.8895	2336.8967	2335.8967	2335.8967	55.5	125	K.TDEHVIDQDDGDGNFVYR.G
2677.1609	2676.1536	2677.1609	2676.1536	2676.1536	42.2	44	K.KVTDHEVIDQDDGDGNFVYR.G

Table 4. Identification of R\(I_a \) and R\(I_b \) by LC-MALDI-MS/MS in B103 cells.
activator of PKA [11]. RI\textsubscript{a} appears to possess considerable conformational flexibility since the attachment of the affinity ligand to the matrix, either via the 29-O-ribosyl group or the 4-NH group of the pyrimidine base worked. The higher efficacy of 4-AH-cCMP agarose compared to 29-AHC-cCMP agarose at binding RI\textsubscript{a} can be explained by the fact that the 29-OH group of cNMPs is important for interaction with the protein [19]. Thus, our data provide a compelling example for the notion that low-affinity interactions between a protein and a ligand cannot necessarily be dismissed as non-specific.

Table 5. Identification of RI\textsubscript{a} and RII\textsubscript{a} by LC-MALDI-MS/MS in HEK293 cells.

Accession no.	MW (Da)	Protein name			
P10644	42955	cAMP-dependent protein kinase type I\textsubscript{a} regulatory subunit			
Observed	Mr (expt)	Mr (calc)	Ppm	Score	Peptide
906.5111	905.5038	905.5004	3.76	35	RILMGSTLR.K + Oxidation (M)
1294.6105	1293.6032	1293.5837	15.1	100	RSENEEKVEGRL
1450.6728	1449.6656	1449.6848	–13.26	91	RRSENEVEVGR.L
1458.7145	1457.7072	1457.6899	11.9	83	KNLFSHLDNERS
1930.8883	1929.8810	1929.8956	–7.53	131	RAGSAYVTEEDAASYVRL

Table 6. Identification of RI\textsubscript{a} and RII\textsubscript{a} by LC-MALDI-MS/MS in HL-60 cells.

Accession no.	MW (Da)	Protein name			
P13861	45490	cAMP-dependent protein kinase type I\textsubscript{a} regulatory subunit			
Observed	Mr(expt)	Mr(calc)	Ppm	Score	Peptide
1150.6508	1149.6435	1149.6506	–6.18	84	RAPASVLPATPR.Q
1187.5758	1186.5685	1186.5578	9.03	103	KDGGNQVEIAR.C
1359.7075	1358.6984	1358.6830	11.3	58	RNIHYEEOQLKM
1483.7291	1482.7219	1482.7215	0.21	76	RQSLGHPPPEPGDR.V
1516.7294	1515.7221	1515.7277	–3.71	98	KSNKDGGNQVEIAR.C
1571.7419	1570.7347	1570.7450	–6.56	63	RGSFGEALMYNTPTRA + Oxidation (M)
1692.9087	1691.9014	1691.8995	1.14	95	KGOYFGEALVTNKPRA
2307.0486	2306.0413	2306.0087	14.1	158	KADEHVIDOOGDGDGNYFIVIER.G

Accession no.	MW (Da)	Protein name			
P10644	42955	cAMP-dependent protein kinase type I\textsubscript{a} regulatory subunit			
Observed	Mr(expt)	Mr(calc)	Ppm	Score	Peptide
743.3398	742.3326	742.3286	5.36	26	REYERL
1062.4757	1061.4684	1061.4739	–5.17	29	KMYEEFLSKV + Oxidation (M)
1294.6033	1293.5960	1293.5837	9.51	91	RSENEEKVEGRL
1450.7048	1449.6976	1449.6848	8.80	100	RRSENEVEVGR.L
1458.7072	1457.6999	1457.6899	6.85	95	KNVLFSHLDNERS
1859.9345	1858.9272	1858.9313	–2.20	98	RLTVDALEPVQEDGQK.I
1976.9853	1975.9781	1975.9851	–3.54	55	RTDSREDEISPPPPNPVK.I

Accession no.	MW (Da)	Protein name			
P13861	45490	cAMP-dependent protein kinase type I\textsubscript{a} regulatory subunit			
Observed	Mr(expt)	Mr(calc)	ppm	Score	Peptide
938.4013	937.3940	937.4254	–33.41	40	RSVGQYDNR.G
1187.4938	1186.4865	1186.5578	–60.11	75	KDGGNQVEIAR.C
1359.6887	1358.6814	1358.6830	–1.14	46	RNIHYEEOQLKM
1483.6348	1482.6275	1482.7215	–63.43	56	RQSLGHPPPEPGDR.V
2307.0242	2306.0169	2306.0087	3.53	68	KADEHVIDOOGDGDGNYFIVIER.G
impede with subsequent dissociation of the protein from the affinity matrix [12,15]. Evidently, in cCMP agarose matrices, steric ligand accessibility and the balance between sufficient binding affinity and subsequent protein elution are quite right. In intact cells, cCMP, due to its stability (see discussion below) [9] may accumulate in specific PKA-containing cell compartments so that sufficiently high cCMP concentrations for PKA activation build up. In fact, in a recent study, we have shown that in certain cells, overall cCMP concentrations are in the range of ~30 pmol/10^6 cells which is just three-fold lower than the corresponding cAMP concentration [20].

In previous studies we showed that cCMP induces vasodilatation and inhibition of platelet aggregation via cGMP-dependent protein kinase (PKG) and that cCMP also binds to purified PKG [11,21]. However, in none of the cell types studied here and with none of the experimental approaches did we identify PKG as protein binding to cCMP agarose. This apparent discrepancy may be due to the fact that the expression of PKG is too low in the cell types studied. As a consequence, binding of PKG to cCMP agarose may be below the detection limit of the currently available mass spectrometers. Thus, in future studies, PKG-enriched cells such as platelets and smooth muscle cells will have to be examined. Alternatively or additionally, there may be steric conflicts in the binding of PKG to the two cCMP agarose matrices. A hint towards steric problems may be the fact that in contrast to the situation with PKA, cCMP is only a partial activator of PKG [11]. Accordingly, it will be necessary to develop affinity matrices with different ligand densities, space lengths between the agarose and the cNMP and different attachment positions of the cNMP to the linker. Figure 1 illustrates some of the chemical possibilities to optimize affinity matrices.

It is also noteworthy that our studies did not identify cNMP-degrading phosphodiesterases as target proteins for cCMP. Previous studies claimed the existence of a specific cNMP-degrading phosphodiesterase [7] but its molecular identity remained elusive. Rather, in a recent study, we examined a broad panel of human phosphodiesterases and found none of them to cleave cCMP [8]. Our negative cCMP affinity matrix data regarding phosphodiesterases fit to the functional data. These data raise the question through which mechanism cCMP is inactivated if it is, indeed, a second messenger. Transmembrane export may be an inactivation mechanism but the affinity of the interaction of such transporters with cCMP may be too low to be detected by our affinity ligand approach [22,23]. In fact, transporters of the MRP family accept structurally very diverse substrates so that a specific interaction with an affinity ligand cannot necessarily be expected [23]. Lastly, in our study, we did neither detect Epc nor cNMP-regulated ion channels as cCMP-binding proteins [24,25]. As is the case for PKG and phosphodiesterases, such negative data do not exclude the existence of other cCMP-binding proteins. These proteins may simply have gone unnoticed in our analysis for various technical reasons including suitability of affinity matrices and sensitivity of MS detection methods.

In conclusion, in this study we provided proof of principle that the use of cCMP affinity matrices is a useful approach to identify cCMP-binding proteins. We anticipate that the systematic application of this approach in terms of the development of multiple matrices and the analysis of multiple cell types, together with refined LC-MS techniques, will lead to the identification of additional cCMP-binding proteins, some of which may turn out to be specific for cCMP.

Supporting Information

Figure S1 Sequence comparison of R1α and R1α. Amino acid sequences of human R1α and R1α were aligned, using the one-letter code. Sequences were aligned in http://www.uniprot.org/blast/. Sequence identity amounts to 30%. (JPG)

Acknowledgments

We thank Drs. D. Bertinetti and F. Herberg (University of Kassel, Kassel, Germany) for stimulating discussions and Mrs. K.Agternkamp, A. Garbe, M. Golombek and J. von der Ohe for expert technical assistance.

Author Contributions

Conceived and designed the experiments: AH BC AP VK SW RS. Performed the experiments: AH BC JZ AS SW. Analyzed the data: AH BC JZ AP VK SW RS. Contributed reagents/materials/analysis tools: HGG FS. Wrote the paper: AH BC JZ HGG AP VK FS SW RS.

References

1. Taylor SS, Yang J, Wu J, Haste NM, Radzio-Andzelm E, et al. (2004) PKA: a portrait of protein kinase dynamics. Biochim Biophys Acta 697: 239–269.
2. Hofmann F (2005) The biology of cyclic GMP-dependent protein kinase. J Biol Chem 280: 1–4.
3. Anderson TR (1982) Cyclic cytidine 3',5'-monophosphate (cyclic CMP) in cell regulation. Mol Cell Endocrinol 28: 373–385.
4. Bloch A, Dutschman G, Maue R (1974) Cytidine 3',5'-monophosphate (cyclic CMP). II. Initiation of leukemia L-1210 cell growth in vitro. Biochem Biophys Res Commun 59: 935–939.
5. Ceci SY, Ignarro LJ (1977) Cytidine 3',5'-monophosphate (cyclic CMP) formation in mammalian tissue. Science 198: 1063–1065.
6. Gaion RM, Krishna G (1979) Cytidylyl cyclase: the product isolated by the method of Cech and Ignarro is not cytidine 3',5'-monophosphate. Biochem Biophys Res Commun 86: 105–111.
7. Kuo JF, Bracket NL, Shoji M, Tse J (1978) Cytidine 3',5'-monophosphate (cyclic CMP) in cell regulation. Mol Cell Endocrinol 28: 373–385.
8. Reinecke D, Burhenn H, Sandner P, Kaeve R, Seifert R (2011) Human cNMP nucleotide phosphodiesterases possess a much broader substrate-specificity than previously appreciated. FEBS Lett 585: 3293–3292.
9. Gothe M, Dove S, Kees F, Schlossmann J, Greulich J, et al. (2010) Cytidylyl and uridylyl cyclase activity of Bacillus anthuscom edema factor and Burkittellia pseudomycyc CyaA. Biochimie 92: 5494–5503.
10. Beste KY, Burhenn H, Kaeve R, Stasch JP, Seifert R (2012) Nucleotidyl cyclase activity of soluble guanylyl cyclase γββ. Biochemistry 51: 194–204.
11. Walser S, Golombek M, Seifert R (2011) Differential activation of cAMP- and cGMP-dependent protein kinases by cyclic purine and pyrimidine nucleotides. Biochem Biophys Res Commun 415: 563–566.
12. Hanke SE, Bertinetti D, Badal A, Schwenberg S, Genieser HG, et al. (2011) Cyclic nucleotides as affinity tools: phosphorothioate cAMP analogues address specific PKA subproteomes. New Biotechnology 28: 294–301.
13. Corrie JE, Pizzio C, Makhina J, King RW (1992) Preparation and properties of an affinity support for purification of cyclic AMP receptor protein from Escherichia coli. Proc Esp Per 5: 417–420.
14. Scofield RE, Werner RP, Wold F (1977) N'-Aminoalkyl-cytidine derivatives: Ligands for ribonuclease affinity adsorbents. Anal Chem 707: 152–157.
15. Bertinetti D, Schwanberg S, Hanke SE, Schwede F, Bertinetti O, et al. (2009) Chemical tools selectively target components of the PKA system. BMC Chem 9: 3.
16. Schubert D, Heinermann M, Carlile W, Tarikus H, Kimes B, et al. (1974) Clonal characterization of human R1α and R1α. Nature 249: 224–227.
17. Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC (1978) Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Nat Acad Sci USA 75: 2458–2462.
18. Ralph P, Nakoinz I (1975) Phagocytosis and cytolysis by a macrophage tumour cell line. Nature 257: 393–394.
19. Kim K, Cheng CY, Saldanha SA, Taylor SS (2007) PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Cell 130: 1032–1043.
20. Burhenn H, Besle KY, Spangler CM, Voigt U, Kaeve R, et al. (2011) Determination of cytidine 3',5'-cyclic monophosphate and uridine 3',5'-cyclic
monophosphate in mammalian cell systems and in human urine by high-performance liquid chromatography/mass spectrometry. Naunyn-Schmiedeberg’s Arch Pharmacol 38: (Suppl.) 32 (P096).
21. Desch M, Schinner E, Kees F, Hofmann F, Seifert R, et al. (2010) Cyclic cytidine 3’,5’-monophosphate (cCMP) signals via cGMP kinase I. FEBS Lett 584: 3979–3984.
22. Sager G, Ravna AW (2009) Cellular efflux of cAMP and cGMP – a question about selectivity. Mini Rev Med Chem 9: 1009–1013.
23. Keppler D (2011) Multidrug resistance proteins (MRPs, ABCG5): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 201: 299–323.
24. Gloerich M, Bos JL (2010) Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 50: 353–375.
25. Biel M, Michalakis S (2009) Cyclic nucleotide-gated channels. Handb Exp Pharmacol 191: 111–136.