Residual calculation in He’s frequency–amplitude formulation

Yue Wu¹ and Yan-Ping Liu²

Abstract
He’s frequency–amplitude formulation and its modifications mainly depend upon the residual calculation. A suitable choice of a residual leads to an ideal result. This paper discusses some effective methods for the residual calculation, and a modification with a free parameter is suggested to effectively estimate the frequency of a nonlinear oscillator. Furthermore, an energy-based residual calculation is also suggested, which is deduced from a variational principle.

Keywords
He’s frequency–amplitude formulation, residual equation, Duffing oscillator, variational theory, semi-inverse method

Introduction
A nonlinear vibration problem arises everywhere from everyday life to an atom vibration. Recently, the nanoscale vibration for smart adhesion,¹,² nanoscale nonlinear transverse vibration in a nanofiber-reinforced concrete pillar,³ and the vibration of the micro-electromechanical systems⁴–⁷ have been caught much attention. The most important property of a nonlinear vibration system is the nonlinear relationship between the frequency and the amplitude. The self-cleaning of the Gecko’s feet and Lotus’ surface can be explained by the high frequency property of the water molecules on the surface.⁵ Gecko effect and Lotus effect can be explained by the geometric potential theory.⁸–¹⁴

There are many analytical methods to accurately determine the frequency–amplitude relationship of a nonlinear oscillator, for example, the variational iteration method (VIM),¹⁵–¹⁸ the homotopy perturbation method (HPM),¹⁹–²³ the Taylor series method,²⁴–²⁷ among which He’s frequency–amplitude formulation²⁸–³¹ has been proved to be the simplest and relatively effective, which was first proposed by a Chinese mathematician, Prof. Ji-Huan He, in his famous review article “Some asymptotic methods for strongly nonlinear equations” in 2006.²⁸ Though only few lines were given, the method caught an immediate attention due to its extreme simplicity and remarkable accuracy, and there was a very hot discussion in Computers & Mathematics with Applications (issue 8 of 2011) and Journal of Low Frequency Noise Vibration and Active Control (Issues 3–4 of 2019). There were many modifications available in literature, and this paper focuses on Ren–Hu’s modification.³²

Nonlinear oscillator and its variational formulation
We consider a nonlinear oscillator in the form

\[u'' + f(u) = 0, \quad u(0) = A, \quad u'(0) = 0 \] (1)

¹College of Economics and Management, Shanghai University of Political Science and Law, Shanghai, China
²Department of Environmental Engineering, Zhejiang Ocean University, Zhoushan, China

Corresponding author:
Yan-Ping Liu, Department of Environmental Engineering, Zhejiang Ocean University, Zhoushan, Zhejiang, China.
Email: liuyp@zjou.edu.cn

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
where \(f \) is a continuous function satisfying \(f(-u) = -f(u) \) and \(A \) is the amplitude.

Its variational formulation can be established by the semi-inverse method, which is

\[
J(u) = \int_0^{T/4} \left\{ \frac{1}{2} u'^2 - F(u) \right\} dt
\]

(2)

where \(F \) is the potential energy defined as

\[
\frac{\partial}{\partial u} F(u) = f(u)
\]

(3)

In equation (2), \(\frac{1}{2} u'^2 \) is the kinetic energy, so the variational principle is the Hamilton principle, so we have the following Hamilton invariant.

\[
\frac{1}{2} u'^2 + F(u) = H
\]

(4)

where \(H \) is a Hamilton constant. Equation (4) is equivalent to equation (1). To prove this, we differentiate equation (4) with respect to time

\[
\frac{d}{dt} \left[\frac{1}{2} u'^2 + F(u) \right] = \frac{d}{dt} (H)
\]

(5)

Considering \(H \) is a constant, we have

\[
u' u'' + \frac{\partial F(u)}{\partial u} u' = 0
\]

(6)

Equation (6) implies equation (1) or \(u' = 0 \), the latter has no physical meaning and can be ignored.

He’s frequency–amplitude formulation and its modification

He’s formulation is to choose two arbitrary frequencies \(\omega_1 \) and \(\omega_2 \) to produce two residual equations

\[
R_1(t) = f(A \cos \omega_1 t) - \omega_1^2 A \cos \omega_1 t
\]

(7)

and

\[
R_2(t) = f(A \cos \omega_2 t) - \omega_2^2 A \cos \omega_2 t
\]

(8)

The residuals in He’s frequency formulation are calculated as follows

\[
\bar{R}_1 = \frac{4}{T} \int_0^{T/4} R_1(t) \cos \omega_1 t dt
\]

(9)

and

\[
\bar{R}_2 = \frac{4}{T} \int_0^{T/4} R_2(t) \cos \omega_2 t dt
\]

(10)

The square of the frequency can be obtained as

\[
\omega_{He}^2 = \frac{\omega_2^2 \bar{R}_2 - \omega_1^2 \bar{R}_1}{\bar{R}_2 - \bar{R}_1}
\]

(11)
In Ren–Hu’s modification,32 the residuals are calculated as

\[
\bar{R}_1 = \frac{4}{T} \int_{0}^{T} R_1(t) \, dt \tag{12}
\]

and

\[
\bar{R}_2 = \frac{4}{T} \int_{0}^{T} R_2(t) \, dt \tag{13}
\]

Instead of equation (11), Ren and Hu suggested the following modification

\[
\omega_{\text{Ren–Hu}}^2 = \frac{\omega_1^2 \bar{R}_2 - \omega_2^2 \bar{R}_1}{R_2 - \bar{R}_1} \tag{14}
\]
The difference of He’s formulation and Ren–Hu’s modification lies on the calculation of the residuals. As illustrated in Figure 1, both methods can lead to a reasonable result.

Calculation of the residuals

Residual calculation plays an important role in He’s formulation, hereby gives an improvement

\[
R_1 = m\tilde{R}_1 + (1 - m)\tilde{R}_1 \quad (15)
\]

\[
R_2 = m\tilde{R}_2 + (1 - m)\tilde{R}_2 \quad (16)
\]

where \(m\) is a real number.

Figure 2. Comparison of approximate solution \(u\) with the exact solution.

\[A = 1 \text{ and } \alpha_0 = 1, \alpha_1 = 1, \alpha_2 = \alpha_3 = 0 \]
\[A = 1 \text{ and } \alpha_0 = 1, \alpha_1 = 10, \alpha_2 = \alpha_3 = 0 \]
\[A = 1 \text{ and } \alpha_0 = 1, \alpha_1 = 100, \alpha_2 = \alpha_3 = 0 \]
\[A = 1 \text{ and } \alpha_0 = 1, \alpha_1 = 1000, \alpha_2 = \alpha_3 = 0 \]
\[A = 1 \text{ and } \alpha_0 = 1, \alpha_2 = 10, \alpha_1 = \alpha_3 = 0 \]
\[A = 1 \text{ and } \alpha_0 = 1, \alpha_2 = 100, \alpha_1 = \alpha_3 = 0 \]
\[A = 1 \text{ and } \alpha_0 = 1, \alpha_2 = 1000, \alpha_1 = \alpha_3 = 0 \]
\[A = 1 \text{ and } \alpha_0 = 1, \alpha_2 = 100, \alpha_1 = \alpha_3 = 0 \]
\[A = 1 \text{ and } \alpha_0 = 1, \alpha_2 = 1000, \alpha_1 = \alpha_3 = 0 \]
As a result, He’s formulation can be modified as

$$
\omega^2 = \frac{\omega_2^2 R_2 - \omega_1^2 R_1}{R_2 - R_1} = \frac{\omega_2^2 (mR_2 + (1 - m)\tilde{R}_2) - \omega_1^2 (m\tilde{R}_1 + (1 - m)\tilde{R}_1)}{(mR_2 + (1 - m)R_2) - (mR_1 + (1 - m)\tilde{R}_1)}
$$ \hspace{1cm} (17)

By suitable choice of \(m \), a most accurate result can be obtained. For the simplest case, the frequency can be estimated by

$$
\omega = \frac{\omega_{He} + \omega_{Ren-Hu}}{2}
$$ \hspace{1cm} (18)

An example

Consider the following Duffing oscillator27,40–42

$$
u'' + \alpha_0 \nu + \alpha_1 \nu^3 + \alpha_2 \nu^5 + \alpha_3 \nu^7 = 0, \quad u(0) = A, \quad u'(0) = 0
$$ \hspace{1cm} (19)

![Graphs showing the comparison between exact solutions and approximations for Duffing oscillator](image-url)
By a simple calculation, we have

\[\omega_{He} = \sqrt{x_0 + \frac{3}{4} x_1 A^2 + \frac{5}{8} x_2 A^4 + \frac{35}{64} x_3 A^6} \]
(20)

\[\omega_{Ren-Hu} = \sqrt{x_0 + \frac{2}{3} A^2 x_1 + \frac{8}{15} A^4 x_2 + \frac{16}{35} A^6 x_3} \]
(21)

\[\omega = \sqrt{x_0 + \frac{1}{3} x_1 A^2 + \frac{5}{8} x_2 A^4 + \frac{35}{64} x_3 A^6 + \sqrt{x_0 + \frac{3}{4} A^2 x_1 + \frac{8}{13} A^4 x_2 + \frac{16}{35} A^6 x_3}} \]
(22)

Table 1 shows the accuracy of each frequency estimation and good accuracy can be obtained; and equation (22) gives a much better result.

The approximate analytical solution and the exact numerical solution of equation (19) are shown in Figure 2. The error between the approximate analytical solution and the exact numerical solution of equation (19) are shown in Figure 3.

Conclusion

This paper discusses the effect of residual estimation on the accuracy of the frequency obtained by He’s frequency formulation and its modification. Considering the calculation process for residuals in He’s formulation given in equation (11) and Ren–Hu’s modification given in equation (14) are equally simple, a more general frequency formulation is suggested with a free parameter by taking into account both He’s residuals and Ren–Hu’s ones. By suitable choice of the free parameter, the accuracy can be remarkably improved. The free parameter given in equation (17) can be optimally identified by the either the HPM19 or the VIM15 by using equation (17) as an initial guess, after one iteration, the free parameter can be effectively identified by requirement of no secular terms in the solution.
The present modification of He’s frequency formulation with a free parameter provides an auxiliary tool to further improvement of the accuracy without losing its simplicity, the method can be easily extended to other nonlinear vibrations with fractal derivatives, and we will discuss the application in a forthcoming paper.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Yue Wu https://orcid.org/0000-0002-0537-6651

References
1. Li X-X and He J-H. Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: the formation mechanism of nanofiber membrane in the electrospinning. Results Phys 2019; 12: 1405–1410.
2. Li XX, Li YY, Li Y, et al. Gecko-like adhesion in the electrospraying process. Results Phys 2020; 16: 102899.
3. Ji FY, He CH, Zhang JJ, et al. A fractal Bousinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar. Appl Math Modell 2020; 82: 437–448.
4. Ouakad HM and Sedighi HM. Static response and free vibration of MEMS arches assuming out-of-plane actuation pattern. Int J Non Linear Mech 2019; 110: 44–57.
5. Moory-Shirbani M, Sedighi HM, Ouakad HM, et al. Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential. Compos Struct 2018; 184: 950–960.
6. Sedighi HM, Koochi A, Keivani M, et al. Microstructure-dependent dynamic behavior of torsional nano-varactor. Measurement 2017; 111: 114–121.
7. Ouakad HM, Sedighi HM and Younis MI. One-to-one and three-to-one internal resonances in MEMS shallow arches. J Comput Nonlinear Dyn 2017; 12: 051025.
8. Yang ZP, Dou F, Yu T, et al. On the cross-section of shaped fibers in the dry spinning process: physical explanation by the geometric potential theory. Results Phys 2019; 14: 102347.
9. Yu DY, Tian D and Zhou CJ. Wetting and supercontraction properties of spider-based nanofibers. Therm Sci 2019; 23: 2189–2193.
10. Tian D, Zhou CJ and He JH. Sea-silk based nanofibers and their diameter prediction. Therm Sci 2019; 23: 2253–2256.
11. Zhou CJ, Tian D and He JH. Highly selective penetration of red ink in a saline water. Therm Sci 2019; 23: 2265–2270.
12. Li XX, Yang CF and He JH. Thermal property of rock powder-based nanofibers for high temperature filtration and adsorption. Therm Sci 2019; 23: 2501–2507.
13. Tian D, Li XX and He JH. Geometrical potential and nanofiber membrane’s highly selective adsorption property. Adsorpt Sci Technol 2019; 37: 367–388.
14. Wang XX, Xu L, Liu GL, et al. Smart adhesion by surface treatment: experimental and theoretical insights. Therm Sci 2019; 23: 2355–2363.
15. Anjum N and He JH. Laplace transform: making the variational iteration method easier. Appl Math Lett 2019; 92: 134–138.
16. He JH and Latifizadeh H. A general numerical algorithm for nonlinear differential equations by the variational iteration method. Int J Numer Methods Heat Fluid Flow. Epub ahead of print 2020. DOI: 10.1108/HFF-01-2020-0029.
17. He JH. A short review on analytical methods for to a fully fourth-order nonlinear integral boundary value problem with fractal derivatives. HFF. Epub ahead of print 2020. DOI: 10.1108/HFF-01-2020-0060.
18. He JH and Ain QT. New promises and future challenges of fractal calculus: from two-scale thermodynamics to fractal variational principle. Therm Sci. Epub ahead of print 2020. DOI: 10.2298/TSCI200127065H.
19. He JH. Homotopy perturbation method with an auxiliary term. Abstr Appl Anal 2012; 2012: 1–7.
20. He JH. Homotopy perturbation method with two expanding parameters. Indian J Phys 2014; 88: 193–196.
21. Adamu MY and Ogenyi P. New approach to parameterized homotopy perturbation method. Therm Sci 2018; 22: 1865–1870.
22. Ban T and Cui RQ. He’s homotopy perturbation method for solving time-fractional Swift-Hohenerg equation. Therm Sci 2018; 22: 1601–1605.
23. Wei CF. Application of the homotopy perturbation method for solving fractional Lane-Emden type equation. Therm Sci 2019; 23: 2237–2244.
24. He CH, Shen Y, Ji FY, et al. Taylor series solution for fractal Bratu-type equation arising in electrospinning process. *Fractals* 2020; 28: 2050011.

25. He JH. A simple approach to one-dimensional convection-diffusion equation and its fractional modification for E reaction arising in rotating disk electrodes. *J Electroanal Chem* 2019; 854: 113565.

26. He JH and Ji FY. Taylor series solution for Lane-Emden equation. *J Math Chem* 2019; 57: 1932–1934.

27. He JH. The simplest approach to nonlinear oscillators. *Results Phys* 2019; 15: 102546.

28. He JH. Some asymptotic methods for strongly nonlinear equations. *Int J Mod Phys B* 2006; 20: 1141–1199.

29. He JH. An improved amplitude-frequency formulation for nonlinear oscillators. *Int J Nonlinear Sci Numer Simul* 2008; 9: 211–212.

30. He JH. Comment on He’s frequency formulation for nonlinear oscillators. *Int J Nonlinear Sci Numer Simul* 2008; 9: 19–22.

31. He JH. Amplitude-frequency relationship for conservative nonlinear oscillators with odd nonlinearities. *Int J Appl Comput Math* 2017; 3: 1557–1560.

32. Ren ZF and Hu GF. He’s frequency-amplitude formulation with average residuals for nonlinear oscillators. *J Low Freq Noise Vibr Act Control* 2018; 38: 1050–1059.

33. He JH. Generalized variational principles for buckling analysis of circular cylinders. *Acta Mech* 2019; 231: 899–906.

34. He JH. A fractal variational theory for one-dimensional compressible flow in a microgravity space, *Fractals*. Epub ahead of print 2019. DOI: 10.1142/S0218348X20500243.

35. He JH. Variational principle for the generalized KdV-Burgers equation with fractal derivatives for shallow water waves. *J Appl Comput Mech* 2020; 6: 735–740.

36. Li XJ and He JH. Variational multi-scale finite element method for the two-phase flow of polymer melt filling process. *Int J Numer Methods Heat Fluid Flow* 2019; 30: 1407–1426.

37. He JH. A modified Li-He’s variational principle for plasma. *Int J Numer Methods Heat Fluid Flow* 2019. DOI: 10.1108/HFF-06-2019-0523.

38. He JH. Lagrange crisis and generalized variational principle for 3D unsteady flow. *Int J Numer Methods Heat Fluid Flow* 2019. DOI: 10.1108/HFF-07-2019-0577.

39. He JH and Sun C. A variational principle for a thin film equation, *J Math Chem* 2019; 57: 2075–2081.

40. Khatami I, Zahedi E and Zahedi M. Efficient solution of nonlinear duffing oscillator. *J Appl Comput Mech* 2020; 6: 219–234.

41. El-Dib Y. Stability analysis of a strongly displacement time-delayed duffing oscillator using multiple scales homotopy perturbation method. *J Appl Comput Mech* 2018; 4: 260–274.

42. Saeed A and Saeed U. Sine-cosine wavelet method for fractional oscillator equations. *Math Meth Appl Sci* 2019; 42: 6960–6971.