Micromanaging aerobic respiration and glycolysis in cancer cells

Ayla V. Orang, Janni Petersen, Ross A. McKinnon, Michael Z. Michael

ABSTRACT

Background: Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways.

Scope of review: This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments.

Major conclusions: Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.

Keywords Metabolism; Warburg effect; microRNA; Aerobic glycolysis; Cancer

1. INTRODUCTION

In the 1920s, Otto Warburg reported for the first time that while cells under normal conditions utilize glucose to derive 70% of required ATP through mitochondrial oxidative phosphorylation (OXPHOS), cancer cells metabolize glucose by glycolysis even in the presence of adequate oxygen supply [1,2]. Since then, aerobic glycolysis has been regarded as a hallmark of cancer that provides bioenergetic, biosynthetic and redox balance advantages for cancer cells [3]. Although Warburg’s seminal studies resulted in a misinterpretation that irreversible inactivation of mitochondrial respiration is the primary and sole cause of aerobic glycolysis in cancer cells, later it was reported that impaired respiration is inadequate to explain the metabolic shift [4]. The study of cancer cell glycolysis continues to surprise, revealing further associations between a metabolic switch in cancer cells, mutations in mitochondrial metabolic enzymes and altered mitochondrial function [5,6]. In addition, discoveries that associate oncogene and tumor suppressor gene dysfunction with metabolic reprogramming suggest that both environmental and genetic factors underlie the metabolic heterogeneity of tumors [7,8]. Moreover, in light of numerous microRNA-related studies, it is now important to consider the roles of these small non-coding RNAs in fine-tuning gene expression at different stages of tumourigenesis. Accumulating evidence supports the involvement of miRNAs in modulating cancer cell metabolism by directly and indirectly regulating genes associated with aerobic glycolysis [9].

microRNAs (miRNAs) are small non-coding RNAs that canonically play a major role in post-transcriptional gene repression. Themselves the products of RNA polymerase II or III dependent transcription, primary (pri)-miRNA transcripts are 5'-7-methylguanosine capped, spliced and 3'-polyadenylated and may give rise to one or more mature miRNAs. Some miRNAs may also derive from processed intronic sequences [10]. In the nucleus, pri-miRNAs are subjected to cleavage by Drosha releasing precursor (pre)-miRNA hairpin structures. Pre-miRNAs are then transported to the cytoplasm where cleavage by Dicer results in a 19–24 nucleotide double-stranded miRNA of which one strand, the mature miRNA, is transferred to the Argonaute (AGO) component of the RNA-induced silencing complex (RISC). AGO acts as a RISC effector protein modulating miRNA stability and translation [11,12].

Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia

*Corresponding author. Flinders Centre for Innovation in Cancer, Flinders Medical Centre, Bedford Park, SA 5042, Australia. Fax: +61 8 82045704.

E-mails: ayla.orang@flinders.edu.au (A.V. Orang), janni.petersen@flinders.edu.au (J. Petersen), ross.mckinnon@flinders.edu.au (R.A. McKinnon), michael.michael@flinders.edu.au (M.Z. Michael).

Received November 19, 2018 • Revision received January 22, 2019 • Accepted January 30, 2019 • Available online 6 February 2019

https://doi.org/10.1016/j.molmet.2019.01.014
This review summarizes recent knowledge of the causes and consequences of the Warburg effect, paying particular attention to the contribution of miRNAs. It also aims to further discuss complex interactions between metabolic pathways and mitochondrial function, as well as oncogenic and tumor suppressor mutations. Finally, in view of recent findings, future approaches that can be exploited for therapeutic benefit are discussed.

2. METABOLIC REPROGRAMMING

Proliferating cells and, indeed, cancer cells require constant cell division. In order to maintain this, there is an urgent need to provide a consistent energy source, macromolecular biosynthesis, and controlled redox status. Therefore, to optimize proliferation, growth, and survival, cancer cells redirect their metabolic pathways and alter the production and consumption of numerous metabolites [13,14].

To support cancer cell proliferation, glycolysis provides the precursors for major macromolecules including the carbohydrates, proteins, lipids, and nucleic acids needed to produce a new cell. Therefore, aerobic glycolysis impues cancer cells with ribose, amino acids and fatty acids [15,16]. The upregulation of glycolysis is mostly due to the increased expression of enzymes and transporters involved in glucose uptake, lactate production, and lactate secretion. These proteins include glucose transporters (GLUT1-4), hexokinase 2 (HK2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 6-phosphofructo-1-kinase (PFK1), aldolase (ALDO), triose-phosphate isomerase (TPI), phosphoglycerate kinase 1 (PGK1), phosphoglycerate mutase 1 (PGM1), enolase 1 (ENO1), pyruvate kinase (PKM2), lactate dehydrogenase (LDHA) and monocarboxylate transporters (MCTs).

There is substantial evidence regarding the importance of aberrant expression of oncomiR and tumor suppressor miRNAs targeting key players in aerobic glycolysis to give proliferation, growth, and invasion advantages to cancer cells (Figure 1). Such changes in miRNA activity reflect a mechanism by which cancer cells bypass checkpoints that determine thresholds of biosynthetic enzyme activities.

In addition to miRNAs directly targeting genes involved in cancer cell glycolysis, summarized in Table 1, several indirect mechanisms have been reported for miRNA-mediated regulation of glycolytic genes. Horie et al. [17] showed that forced expression of miR-133 decreases GLUT4 expression by directly targeting Kruppel-like factor 15 (KLF15) in cardiomyocytes. KLF15 is a transcription factor required for GLUT4 transcription. Also, miR-155 was reported to upregulate HK2 through signal transducer and activator of transcription 3 (STAT3) activation, as well as through miR-143 repression by targeting CCAAT-enhancer-binding protein β (CEBPβ). Moreover, miR-143 was found to target HK2 directly, linking inflammatory miR-155-related signaling with cancer-associated changes in metabolism [18,19]. PKM is one of the rate limiting enzymes in glycolysis. While PKM1 expression was shown to be active in normal cells, cancer cells switch PKM1 to the tumor-associated PKM2. Also, some miRNAs were reported to regulate pyruvatekinase (PKM) to PKM2 conversion in tumor cells. These miRNAs, including miR-1, miR-124, miR-133b, miR-137 and miR-340 were shown to directly inhibit cancer cell proliferation and may also explain the repressed PTB-1 expression associated with tumor progression in vivo [20–24].

Although several decades have passed since the first report on cancer metabolism, with many studies since, a definitive mechanism underpinning the Warburg metabolic shift has remained obscure. Moreover, how individually disrupted metabolic pathways converge to coordinate a global metabolic shift and facilitate the tumor phenotype remains to be fully elucidated.

3. INTER-CONNECTION BETWEEN AEROBIC GLYCOLYSIS AND MITOCHONDRIA

Whilst glycolysis accounts for the generation of almost two thirds of the ATP required for tumor cells, in most cancer cells mitochondria are still functional and generate the remaining energy requirements [92]. Mitochondria also contribute to pivotal roles in controlling anaplerotic and cataplerotic pathways within cancer cells. Indeed, several roles for mitochondria in carcinogenesis, other than ATP production for cellular demands, have been established [93]. As a result, functions including hypoxia resistance, apoptosis escape, reactive oxygen species (ROS) control, and bio-synthetic contributions are attributed to mitochondria. Mutations in mitochondrial TCA cycle genes, encoded by nuclear DNA, were found in various types of cancers. Mutational inactivation of these enzymes contributed to a metabolic shift through direct adaptation to decreased OXPHOS or, alternatively, by epigenetic modification caused by cytosolic and mitochondrial accumulation of oncometabolites such as 2-hydroxyglutarate (2HG) [94–98]. Studies of miRNA localization from nucleus to mitochondria have led to the discovery of mitochondria-related miRNAs (mitomiRs). A considerable body of literature demonstrated the miRNA contributions to every aspect of mitochondrial metabolism, respiration, and dynamics [99]. Additionally, ROS generated within mitochondria were found to be strictly regulated by several miRNAs (reviewed in [100]). miRNAs that regulate tricarboxylic acid (TCA) cycle transcripts include miR-183, miR-210 and miR-734a, which target isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH), respectively [101–103] (Figure 1). Moreover, several electron transport chain components are reportedly regulated by miRNAs. For instance, miR-338 and miR-181c downregulate cytochrome c oxidase complex COX4 and COX1, respectively. Hypoxically regulated miR-210 represses iron-sulfur cluster scaffold (ISCU) and COX10 translation [104–106]. Glutaminase (GLS) is a rate-limiting enzyme in glutamine metabolism which converts glutamine to glutamate. An increasing number of reports revealed cooperation of c-Myc and p53 with several miRNAs such as miR-23a/b, miR-125b, miR-30 and miR-504 in modulating GLS activity [107]. Based on these reports, it is clear that miRNAs target both nuclear miRNAs and mitochondrial miRNAs. Moreover, the Crabtree effect, originally identified in fermenting yeast, enables some cancer cells to switch between glycolysis and OXPHOS in spite of functional mitochondria and also challenges the “purely glycolytic cancer cell” paradigm. The Crabtree effect is considered to be a short-term and reversible mechanism and an adaptive response of mitochondria to the heterogeneous microenvironment of cancer cells [108]. Hence, there is still a need to fully determine whether changes in mitochondrial functionality, mediated by several miRNAs, contribute to cellular transformation. Otherwise it may be considered a secondary phenomenon, which arises from changes in cell glycolysis and/or other signaling pathways also regulated by miRNAs.

4. HYPOXIA AND GLYCOLYSIS

Hypoxia is a common feature in proliferating solid tumors. In normal cells, hypoxia leads to cellular adaptation, or p53-dependent apoptosis and cell death. However, cancer cells acquire mutations in p53 and other genes, along with changes in their metabolic pathways in order to survive and even proliferate under hypoxic stress. A key mediator of responses to hypoxia is hypoxia-inducible factor-1 (HIF-1), a
Figure 1: miRNAs targeting glycolytic and mitochondrial enzymes.
Hypoxia is a significant mediator of miRNA biosynthesis, at both the transcriptional and post-transcriptional levels [131]. A recently identified subset of miRNAs are known as “hypoxia regulated miRNAs” (also termed hypoxiomiRs or HRMs). Hypoxia regulates hypoxiomiRs in either a HIF-1 dependent or independent manner [132]. First reported by Kuhlshreiter et al. [111], hypoxia is capable of upregulating miRNA expression (Table 2 and Figure 2). Among these hypoxia-inducible miRNAs, miR-210 and miR-26 were found to have dynamic recruitment of HIF-1 to their promoters. Upon activation, HIF-1α translocates at the DNA, RNA, protein and DNA binding levels [112]. Translational regulation of HIF-1α could also be a consequence of activating the mechanistic target of rapamycin (mTOR) signaling pathway in cancer cells. Many miRNAs, such as miR-99a, were shown to repress HIF-1α expression by targeting mTOR [76].

Table 1 – Summary of miRNAs directly targeting glycolytic enzymes and transporters.

Gene	miRNAs	Diseases	References
GLUT1	miR-495, miR-1291, miR-138, miR-150, miR-532, miR-301a, miR-19a/b, miR-22, miR-132, miR-218, miR-340, miR-541	Renal Cell Carcinoma, Glioma, Breast Cancer, Prostate Cancer, Bladder Cancer, Oval Cell Carcinoma, Glioblastoma, Multiforme	[25–33]
GLUT2	miR-143		[34]
GLUT3	miR-195, miR-106a	Bladder Cancer, Glioblastoma	[35,36]
GLUT4	miR-223, miR-93, miR-150, miR-192, miR-108b	Cardiomyocytes, Polycystic Ovary Syndrome, Diabetes Mellitus	[37–40]
HK1	miR-138	Head and Neck Squamous Cell Carcinoma	[41]
HK2	miR-34a, miR-143, miR-125a/b, miR-487, miR-86, miR-4458, miR-495	Colorectal Cancer, Head and Neck Squamous Cell Carcinoma, Breast Cancer, Lung Cancer, Glioblastoma, Hepatocellular Carcinoma, Chronic Lymphocytic Leukemia, Primary keratinocytes, Osteocarcinoma, Prostate Cancer, Gastric Cancer	[18,41–53]
GPI	miR-34a, miR-302b, miR-17, miR-200 family	Colorectal Cancer, Primary Germ Cells, Breast Cancer	[42,54,55]
PP1K	miR-350, miR-320a, miR-108b, miR-26b, miR-206	Hepatocellular Carcinoma, Lung Adenocarcinoma, Renal Cell Carcinoma, Osteosarcoma, Breast Cancer	[56–61]
ALDOD4	miR-34c, miR-122, miR-15a, miR-16-1	Emphysematous Lung, Hepatocellular Carcinoma, Leukemia, Lung Cancer	[62–65]
GAPDH	miR-144a	Protease Cancer	[66]
TPI1	miR-15a, miR-16-1, miR-107, miR-195	Leukemia, Renal Cell Carcinoma, Lung Cancer, Bladder Cancer	[63,65,67,68]
PDK1	miR-107, miR-29a, miR-125b, miR-17-92 cluster	Renal Cell Carcinoma, Prostate Cancer, Lung Cancer, Pancreatic Cancer	[67,69–71]
PQM	Let-7g, miR-29a, miR-33b, miR-21	Cancer, Squamous Cell Lung Carcinoma	
END1	miR-17-92 cluster, miR-29a	Primory Human Hepatocytes, Lung Cancer, Renal Cell Carcinoma	[60,70,72,73]
PKM2	miR-34a, miR-122, miR-134a/b, miR-326, miR-99a, miR-128	Colorectal Cancer, Hepatocellular Carcinoma, Squamous Cell Carcinoma of Tongue, Glioblastoma, Cancer, Type 2 Diabetes, Prostate Cancer	[42,74–77]
LDHA	miR-375, miR-24, miR-23a, miR-210, miR-30a, miR-34a/c, miR-374a, miR-383, miR-4524a/b, miR-369, miR-410, miR-590	Maxillary Sinus Squamous Cell Carcinoma, Acute Myocardial Ischemia, Breast Cancer, Colon Rectal Cancer, Hypoxia-Induced Cardiomyocytes Dysfunction, Ovarian Cancer, Cervical Cancer, Gestational Diabetes Mellitus, Type 2 Diabetes	[78–88]
MCT1	miR-29a/b, miR-124, miR-376a-5p, miR-495	Pancreatic β Cells, Medulloblastomas, Type 2 Diabetes	[89–91]

transcription factor that plays a pivotal role in responding to decreased oxygen levels, initiating hypoxia-related processes such as OXPHOS repression and induced glycolysis [109]. Although prolyl-4-hydroxylase (PHD) and factor inhibiting HIF-1 (FIH-1, also known as HIF1AN) dependent regulation of HIF-1 is primarily thought to be the sole mechanism of HIF-1 regulation [110] it is now clear that hypoxia influences miRNA biogenesis and these miRNAs can regulate HIF-1α and HIF-1β expression [111]. HIF-1α is also regulated...
miRNA	Disease/cell line	Regulation of HIF/ mechanism	Regulation of miRNA by Hypoxia	References
miR-17-92	Lung Cancer, Cervical Adenocarcinoma, Inflammation, Colon Cancer, Brest Cancer, Hepatocarcinoma	Downregulation/targeting HIF-1a and HIF-2	Downregulation	[71,134,136,169,160,163,168]
miR-15b	Hemophilia, Nasopharyngeal Carcinoma	Downregulation/targeting HIF-2	Downregulation	[166,167]
miR-16	Nasopharyngeal Carcinoma	NA	Downregulation	[166]
miR-19a	Oral Squamous Cell Carcinoma, Human Atherosclerotic Lesions	NA	Downregulation/	[135,168]
miR-20a/b	Nasopharyngeal Carcinoma, Lung Cancer	Downregulation/targeting HIF-1a and HIF-2-2x	Upregulation	[71,166]
miR-21	Breast Cancer, Prostate Cancer	Upregulation	Upregulation	[111,150,169]
miR-22	Clear Cell Renal Cell Carcinoma, Coloorectal Cancer, Heart muscle, Oral Squamous Cell Carcinoma	Downregulation/targeting HIF-1a	Upregulated/	[132,135,170,171]
miR-23a/b	Colorectal Cancer, Breast Cancer	NA	Upregulated	[111,172]
miR-24	Colorectal Cancer, Breast Cancer	NA	Upregulated	[172]
miR-26a/b	Nasopharyngeal Carcinoma, Colorectal Cancer, Breast Cancer	NA	Downregulated	[166,172]
miR-27a/b	Heart Muscle, Colorectal Cancer, Breast Cancer	NA	Upregulated	[132,172]
miR-30 b/d/e	Oral Squamous Cell Carcinoma, Colorectal Cancer, Breast Cancer, Nasopharyngeal Carcinoma	NA	Downregulated	[135,166]
miR-28	Oral Squamous Cell Carcinoma	NA	Upregulated	[135,172]
miR-31	Colorectal Cancer, Human Corneal Epithelial Keratinocytes, Oral Squamous Cell Carcinoma	Upregulation/targeting FLH1	Upregulated	[135,145,147,173,174]
miR-33a	Melanoma	Downregulation/targeting HIF-1a	NA	[175]
miR-93	Colorectal Cancer, Breast Cancer	NA	Upregulation	[111]
miR-99a	Type 2 Diabetes	Downregulation/targeting HIF-1a	NA	[76]
miR-101	Oral Squamous Cell Carcinoma	NA	Downregulated	[135]
miR-103	Colorectal Cancer, Breast Cancer	NA	Upregulated	[111]
miR-106b	Colorectal Cancer, Breast Cancer	NA	Upregulated	[111]
miR-107	Ischemic Heart Disease, Colorectal Cancer, Colorectal Cancer, Breast Cancer	Downregulation/targeting HIF-1a	Upregulated	[111,151,152]
miR-122a	Oral Squamous Cell Carcinoma	NA	Downregulated	[135]
miR-125b	Colorectal Cancer, Breast Cancer	NA	Upregulated	[111]
miR-128	Prostate Cancer	Downregulation/targeting HIF-1a	NA	[77]
miR-135b	Prostate Cancer, Breast Cancer	Upregulation/targeting FIH-1	NA	[142,176]
miR-138	Clear Cell Renal Cell Carcinoma, Ovarian Cancer	Downregulation/targeting HIF-1a	NA	[177,178]
miR-141	Oral Squamous Cell Carcinoma	NA	Downregulated	[111]
miR-155	Cervical Adenocarcinoma, Nasopharyngeal Carcinoma	Downregulation/targeting HIF-1a	Upregulation	[159,166]
miR-181a/b/c	Colorectal Cancer, Breast Cancer, Nasopharyngeal Carcinoma, Heart Muscle	NA	Upregulated/	[111,132,166]
miR-184	Glioma	Upregulation/targeting FIH-1	NA	Downregulated
miR-186	Oral Squamous Cell Carcinoma, Gastric Cancer	Downregulation/targeting HIF-1a	NA	[146]
miR-192	Colorectal Cancer, Breast Cancer	NA	Downregulated	[135,179]
miR-195	Hypoxic Chondrocytes, Colorectal Cancer, Breast Cancer	NA	Upregulated	[111]
miR-197	Oral Squamous Cell Carcinoma	NA	Downregulated	[111,180]
miR-199a/b	Ovarian Cancer, Sickle Cell Disease, Lung Cancer exposed to arsenic, Heart muscle	Downregulation/targeting HIF-1a and HIF-2-2x	Downregulation	[135]
miR-204	Pulmonary Arterial Hypertension	Downregulation/targeting HIF-1a	NA	[183]
miR-206	Pulmonary Arterial Hypertension	Downregulation/targeting HIF-1a	NA	[148]
miR-210	Cervical Cancer, Head and Neck Paragangliomas, Hypotriphloid Human Kidney Cell Line, Ischemia, Breast Cancer, Nasopharyngeal Carcinoma, Oral Squamous Cell Carcinoma, Heart Muscle, Colorectal Cancer, Breast Cancer	NA	Upregulation	[111,132,135,154,166,184—186]
miR-213	Colorectal Cancer, Breast Cancer	NA	Upregulated	[111]
miR-361	Umbilical Vein Endothelial Cells (HUVEC)	Downregulation/targeting HIF-1a	NA	[187]
miR-374	Oral Squamous Cell Carcinoma	Upregulation/targeting TXNIP	NA	[135,188]
miR-422b	Oral Squamous Cell Carcinoma	NA	Downregulated	[135]
miR-424	Ovarian Cancer, Oral Squamous Cell Carcinoma	Upregulation/targeting CUL2	NA	[134,135,156]
to the nucleus and targets HREs of downstream genes, including miRNA encoding genes. Interestingly, hypoxia is also associated with miRNA downregulation. In that regard, the miR-17—92 cluster was downregulated by hypoxia in p53 wild type cells [133]. Similarly, Lei et al. [134] reported miR-20b upregulation in HIF1-knockdown cells. Other hypoxia-suppressed miRNAs are listed in Table 2. Nevertheless, contrasting reports, with miRNAs such as miR-26 and miR-19, demonstrate that hypoxia-dependent regulation of miRNAs is cell type and microenvironment dependent [111,135]. Among downregulated hypoxiamirs, HIF-1 was shown to downregulate miR-17 and miR-199a [136,137]. HIF-1 also regulates miRNA expression indirectly by mediating the expression of other transcription factors, examples being activation of miR-10b by HIF-1-dependent TWIST1 expression and regulation of miR-20a/b through vascular endothelial growth factor A (VEGFA) targeting by HIF-1 [138,139]. Besides miRNAs directly regulated by hypoxia, it is evident that hypoxia is post-transcriptionally involved in the regulation of hypoxiamir biogenesis, processing and function in both a HIF-dependent and independent manner. It was shown that hypoxia accelerates Ago2 assembly to RISC and its translocation to stress granules by upregulating Ago2 poly-(ADP-ribose)ylation and increasing its endonuclease activity [140]. Moreover, HIF-1 regulates expression of the prolyl 4-hydroxylase, alpha polypeptide I (P4HA1) by regulating miR-124 expression [142]. In fact, stress granule formation increased in a hypoxia-dependent manner. Nonetheless, ADP-ribosylaton of Ago2 in response to oxidative stress is not dependent on Dicer activity [142], might be processed by the endonuclease activity of Ago2, the levels of which are induced by hypoxia. Accordingly, Dicer was found to be downregulated by hypoxia, while miR-451 was upregulated [143,144].

HIF-1α may be directly targeted by miRNAs in various diseases, including cancer (Table 2). Besides direct translational repression, some miRNAs inhibit other factors that modulate HIF-1 expression and stability. As FIH-1 inhibits the transcriptional activation of HIF-1α; miRNAs that suppress FIH-1, such as miR-31, miR-135b, and miR-184, result in HIF-1 activation [142,145,146]. FIH-1 was also shown to regulate cell metabolism through reducing glycogen and attenuating AKT signaling [147], miR-92-1 suppresses HIF-1 degradation by targeting pVHL [148]. miR-206 targets the HIF-1/FHL-1 pathway on pulmonary artery smooth muscle cells to promote hypertension [149]. Increased expression of miR-21 was shown to increase HIF-1α and VEGF expression in prostate cancer possibly through a PTEN-dependant pathway [150]. miR-107 downregulates miRNA and protein levels of HIF-1α in endothelial progenitor cells while upexpression of HIF-1β also blocks the effects of miR-107 [151,152], miR-185 targets HIF-2α transcripts and, thus, indirectly moderates HIF-1 expression and stability [153]. Feedback loops have been reported in the miRNA regulation of HIF-1. miR-210 forms a positive feedback loop with HIF-1 where hypoxia-induced miR-210 further induces HIF-1α protein stability [154]. Kelly et al. [154] showed that miR-210 targets glycerol-3-phosphate dehydrogenase 1 like (GPD1L), a HIF-1 regulator, and overexpression of miR-210 results in decreased HIF-1 α proline hydroxylation and increased accumulation during hypoxia. What’s more, HIF-1 directly induces miR-210 expression, which then causes synthesis of cytochrome c oxidase 2/1 (SCO2/1) protein activation and enhanced TCA cycle function [155]. Hypoxia was shown to induce C/EBP levels, which, in turn, increase PU1 activation and binding to the miR-424 promoter to induce its expression. Upregulated miR-424 inhibits cullin 2 (CUL2) and leads to HIF-1 stabilization and nuclear translocation [156]. Overexpression of miR-494 and miR-21 significantly increases Akt phosphorylation and subsequently induces HIF-1 activity [150,157]. Recent evidence that the activities of non-coding RNAs, including oncogenic miR-21, can be manipulated by small molecules suggests that such processes may be druggable [158]. As a predominant oncomir, the miR-17—92 cluster has been heavily investigated for its association with hypoxia. Bertozzi et al. [159] showed that miR-17-5p reduced HIF-1α at low camptothecin exposure. miR-17 and miR-20a also target the 3’UTR of HIF-1α and HIF-2α in primary human macrophages [160]. All members of this cluster were shown to directly target HIF-1 in lung cancer [71]. miR-17 and miR-20a were downregulated by HIF-1 through a transcriptional and HIF-1β-independent manner and by downregulating c-Myc expression [136]. miR-20a is a hypoxia-responsive miRNA that targets HIF-1α in breast cancer, lung adenocarcinoma, colorectal cancer, and endometriotic stromal cells [71,138,160—162]. In the paralogous miR-106a ~ 363 cluster, miR-20b is known to target HIF-1α in hepatocellular carcinoma (HCC) and breast cancer cells [163,164]. Also, chromatin immunoprecipitation analyses revealed that miR-20b prevents HIF-1 binding to the VEGF promoter and, thus, modulates VEGFA expression [163].

Aberrant expression of miRNAs, which can result from hypoxia encountered during tumor progression, may play a critical role in HIF-1 regulation and altered downstream effects (Figure 2). Interestingly, some miRNAs that target HIF-1 were also reported to be modulated by hypoxia in both a HIF-dependent and independent manner. However, some anomalies regarding hypoxiamirs and miRNAs that regulate HIF-1 still exist. For instance, Bartoszewksa et al. [165] showed that HIF-1α is a direct target of miR-429 in HUEVEC cells and is induced during hypoxia. However, Sun et al. [157] showed that overexpression of miR-429 increases HIF-1α expression, under both hypoxia and normoxia, and couldn’t find a miR-429 target sequence in the 3’UTR of HIF-1α in liver cells. These inconsistencies likely depend on cellular context and experimental conditions. Moreover, as HIF is mainly post-translationally regulated, miRNA activity may be largely redundant in some systems. Table 2 summarizes the associations between hypoxia and miRNAs in different cancers. It has been proposed [92] that the observed Warburg effect is entirely attributable to the in vivo tumor hypoxia and is, in fact, a manifestation of the Pasteur Effect.

Table 2 (continued)

miR	Tumor Type	Downregulation/targeting HIF-1	Upregulation
miR-429	Human Endothelial Cells	NA	[165]
miR-494	Lung Cancer	NA	[157]
miR-519c	Hepatic Cancer	NA	[189]
miR-565	Oral Squamous Cell Carcinoma	Downregulation	[135]
5. METABOLIC CONSEQUENCES OF miRNA ASSOCIATIONS WITH DRIVER MUTATIONS AND TRANSFORMATION

While oncoproteins and tumor suppressor proteins are well-known for their roles in regulating cellular processes such as cell proliferation, they are also capable of affecting cancer cell metabolism. Activation of certain oncogenic signals is important for stimulating glycolysis. Various mutations in different oncogenes and tumor suppressors show that cancer cells alter metabolism to adapt to their microenvironment [190]. These fundamental genes include oncogenes such as KRAS, MYC, AKT, and MTOR, along with their inhibitors (PTEN and TSC1/2) and activator (EGFR). They also include tumor suppressor genes such as TP53, along with its negative regulator murine double mutant 2 (MDM2) and metabolic effector TP53-induced glycolysis and apoptosis regulator (TIGAR). Sirtuins are further regulatory molecules that can act both as oncogenes and tumor suppressors and will be discussed later. Accumulating evidence highlights the association of miRNAs with oncogenes and tumor suppressors. Some cancer associated genes, such as HIF1, MYC and TP53, regulate both the expression and functions of some miRNAs and are regulated by miRNAs. Table 5 and Figure 2 summarize recent findings on miRNA-mediated regulation of oncogenes and tumor suppressors.

5.1. KRAS proto-oncogene

The KRAS oncogene features as an early mutation in up to 45% of colorectal tumors, notable because it can drive many hallmarks of cancer [191]. KRAS-mediated transformation is linked with mitochondrial respiratory dysfunction and elevated NADPH oxidase (NOX)-mediated ROS generation [192,193]. Wang et al. [194] postulated that oncogenic KRAS influences complex I activity in the electron transport chain, most likely by downregulating complex I assembly factor protein (NDUFAF1) and, as a consequence, induces mitochondrial dysfunction. However, additional oncogenic signals and/or loss of tumor suppressors, including dysregulated miRNAs, are required for tumorigenesis. Unsurprisingly, KRAS is a target of multiple miRNAs, including let-7, miR-96, miR-134 and miR-143 (Summarized in Table 5). These miRNAs affect cancer cell metabolism, cell cycle arrest, apoptosis, cell migration and invasion, especially by modulating RAS/MAPK signaling (Figure 2).
KRAS is frequently mutated in human neoplasia including pancreatic, colorectal and lung cancer. The oncogenic KRASG12V variant, which leads to higher KRAS activity, was reported to be the most frequent mutation. However, despite low KRAS mutation frequency in glioblastoma and breast cancer cells, activation of the wild-type KRAS pathway is common in these cancers. Also, sequence variants in the KRAS 3'UTR (rs712) were found in gastric cancer, colorectal cancer, papillary thyroid cancer, breast cancer, and non-small cell lung cancer, which disrupt let-7 binding site and subsequent miRNA-mediated downregulation [195–199].

The expression of some miRNAs such as let-7, miR-126, miR-200c, miR-193b, and miR-4689 was found to be lower in KRAS mutant cells, as compared to tumors expressing wild-type KRAS [199–203], confirming the context dependent activity of miRNAs, even in regulating KRAS itself. Kopp et al. [200] reported that in breast cancer cells harboring the KRASG12C mutation, miR-200c targets KRAS transcripts and inhibits proliferation and cell cycle progression, while in KRAS wild type cells miR-200c affects proliferation through other targets. Despite different miR-126 expression levels in KRAS mutant and wild type colon cancer cells, Hara et al. [201] showed that over-expression of miR-126 does not alter KRAS expression and function. In contrast, Jiao et al. [204] showed KRAS regulation by miR-126 in pancreatic cancer. Such variations suggest that the activity of some miRNAs is subjected to changes through both transcriptional and post-transcriptional processes during tumorigenesis. Examples are erythrophoietin-producing A1 (EphA1) upregulating let-7 in multiple myeloma [205], EVI1 suppressing miR-96 in pancreatic ductal adenocarcinoma [206], KLF4 downregulating miR-134 in glioblastoma [207] and MYC associated factor X (MAX) inhibiting miR-193a in breast cancer [208]. Therefore, coordinated suppression of miRNAs, as is found in various cancers, would not only influence oncogenic KRAS activity but may also influence other genes involved in KRAS-related signaling to cooperatively initiate tumourigenesis, including genes in metabolic pathways.

5.2. MYC proto-oncogene

Overexpression of the c-MYC proto-oncogene plays pivotal roles in sustaining the transformed phenotype of most cancer cells [209]. The discovery that LDHA is among 20 putative targets of c-MYC provided evidence that c-MYC directly regulates glycolysis. Since then, other glycolytic genes including GLUTs, GAPDH, PKG, HK2, ENO1, PGAM, PGM, PKM2, and MCTs are also reported induced by c-MYC [210]. Along with its role in glycolysis, c-MYC was found to regulate mitochondrial biogenesis, respiration, and function [211]. Upregulation of some nuclear genes that encode proteins for mitochondrial function, mitochondrial DNA replication and transcription of mitochondrial DNA are known to be direct consequences of c-MYC overexpression [212]. c-MYC also contributes to mitochondrial biogenesis and gives rise to the synthesis of acetyl-CoA and fatty acid biosynthesis required for cancer cell proliferation. In parallel, c-MYC upregulates the glutamine catabolism required for biosynthetic processes by inducing GLS and the glutamine transporters, ASCT2 and SLC7A5 [213,214]. Overall, while c-MYC enhances glycolysis and consequently depletes pyruvate required for mitochondrial OXPHOS, it also confers the ability for cancer cells to utilize non-glucose substrates and maintain mitochondrial respiration to support cancer cell proliferation and progression.

c-MYC cooperates with HIF-1, or acts independently, to regulate glycolysis and OXPHOS [215]. In normal cells, MYC enhances glycolytic flux to OXPHOS. However, in cancer cells, c-MYC cooperates with HIF-1 and PKM2 to upregulate glycolysis and provide adequate metabolic intermediates for biomass synthesis [216]. While upregulation of HIF-1-mediated glycolysis was observed under hypoxic conditions, c-MYC regulates glycolytic genes independently under normal oxygen tension. In addition, while HIF-1 upregulates PDK1 under hypoxia, c-MYC cooperates with HIF-1 to further upregulate PDK1 and, thus, amplifies the hypoxic response. Therefore, under normoxia, c-MYC enhances glycolysis, but it cooperates with HIF-1 to upregulate PDK1 and reduce mitochondrial respiration under hypoxic conditions [217]. Intriguingly, elevated ENO1 was shown to form a negative feedback loop with activated c-MYC. c-MYC-induced ENO1 increases the expression of MBP1, a transcription factor, and suppresses c-MYC expression [218]. c-MYC both regulates miRNA expression and is, in turn, controlled by them (Tables 3 and 5). Several miRNAs have been shown to modulate c-MYC expression by different mechanisms (Figure 2). Let-7a, miR-22, miR-33b, miR-34a, miR-130a, miR-145, and miR-155 were found to suppress c-MYC after binding with canonical target sequences in the c-MYC 3’UTR [219–226]. miR-24 binds to a seedless, but highly complementary, sequence while miR-18-5p and miR-774 bind to the protein coding region of c-MYC mRNA [221,227,228]. Some other miRNAs, such as miR-363-3p act more indirectly. In HCC, miR-363-3p destabilizes c-MYC through targeting USP28, a ubiquitin protease of MYC, and promoting the degradation of pre-existing c-MYC protein [229]. Several reports indicate a coordinated and reciprocal relationship between c-MYC and miRNA expression levels. For instance, Liao et al. [228] showed a negative feedback and auto-regulatory role for c-MYC levels, as monitored by miR-185-3p. They confirmed that miR-185-3p is a genuine transcriptional target of c-MYC but also that miR-185-3p inhibits c-MYC translation by targeting the coding region of c-MYC transcripts.

C-MYC activates or represses a variety of genes, including miRNA genes, mainly through interactions with different complexes and proteins. c-MYC suppresses MIR122 gene transcription in liver tumors through association with a conserved promoter region upstream of the MIR122 gene. It also downregulates hepatocyte nuclear factor 3-beta (HNF3β), which normally activates miR-122 and enhances its stability [230,231]. miR-122 was reported to suppress c-MYC expression indirectly by targeting E2F1 and TDP2 (E2F dimerization partner 2) mRNA [232]. In addition, feedback regulation was reported for miR-17-5p/c-MYC/E2F1 in some cancers, including breast and prostate [233]. Nadiminty et al. [234] reported a LIN28/let-7/c-MYC loop that plays an important role in some cancers. Relief of c-MYC repression occurs when LIN28, a highly conserved RNA-binding factor, binds let-7 precursors and inhibits miRNA maturation [235]. There is a direct relationship between c-MYC, its dimerization partner, MAX, and the expression of some miRNAs such as let-7a and miR-22 [225,236]. c-MYC can also transcriptionally activate some miRNAs, including the miR-17-92 cluster, through interaction with MAX protein at the polyctronic promoter region [233,237]. Ting et al. [225] showed that increased miR-22 limits the amount of MAX protein available for c-MYC binding by directly targeting it and, therefore, affects the expression of downstream targets of the c-MYC/MAX complex. In contrast, interaction of c-MYC with MIZ-1 represses expression of some c-MYC target genes through displacement of p300 co-activator protein [238]. There is also a miRNA/c-MYC negative feedback loop in HCC with miR-148a-5p directly targeting c-MYC and, as previously mentioned, miR-363-3p indirectly destabilizing c-MYC by targeting ubiquitin specific peptidase 28 (USP28) [229]. Other miRNAs that are repressed transcriptionally and post-translationally by c-MYC are summarized in Table 3.

The activation of c-MYC alone is unable to transform cells. Therefore, there is cooperation between oncogenic partners, such as RAS, and
Summary of miRNAs regulated by the transcription factor MYC.

miRNA	Regulation	Disease/cells	References
miR-2b	Upregulation	Drosophila S2 Cells	[242]
miR-277	Upregulation	Drosophila S2 Cells	[242]
miR-92	Upregulation	Neuroblastoma, Burkitt Lymphoma	[233,243]
miR-106a	Upregulation	Neuroblastoma, Burkitt Lymphoma	[233,243]
Let-7a/c	Up/Downregulation	Neuroblastoma, Burkitt Lymphoma, Breast Cancer, Prostate cancer	[234,235,243,244]
miR-17	Upregulation	Neuroblastoma, Burkitt Lymphoma	[233,243]
miR-93	Upregulation	Neuroblastoma	[243]
miR-99	Upregulation	Neuroblastoma	[243]
miR-221	Upregulation	Neuroblastoma	[243]
miR-18	Upregulation	Burkitt Lymphoma	[233]
miR-19	Upregulation	Burkitt Lymphoma	[233]
miR-20	Upregulation	Burkitt Lymphoma	[233]
miR-15a	Downregulation	Lymphoma	[245]
miR-16	Downregulation	Lymphoma	[245]
miR-22	Downregulation	Lymphoma	[245]
miR-23a/b	Downregulation	Lymphoma, Prostate Cancer	[107]
miR-26a/b	Downregulation	Lymphoma, Burkitt Lymphoma, Prostate Cancer	[245–247]
miR-29	Downregulation	Lymphoma, lung Adenocarcinoma	[245,248]
miR-34	Downregulation	Lymphoma	[245]
miR-146a	Downregulation	Lymphoma	[245]
miR-150	Downregulation	Lymphoma	[245]
miR-195	Downregulation	Lymphoma	[245]
miR-141	Upregulation	Embryonic Stem Cells, Nasopharyngeal Carcinoma	[249,250]
miR-200	Upregulation	Embryonic Stem Cells	[249]
miR-429	Upregulation	Embryonic Stem Cells	[249]
miR-9	Upregulation	Breast Cancer	[251,252]
miR-185	Upregulation	Non-small Cell Lung Cancer	[228]
miR-122	Downregulation	Hepatocellular Carcinoma	[238–232]

Table 3 – Summary of miRNAs regulated by the transcription factor MYC.

inactivation of tumor suppressors such as p53 in c-MYC dependant tumor development [239–241]. Hence, along with passive adaptation of tumor cells, oncogenic mutations and transcriptional controls, such as the reciprocal association of c-MYC with several miRNAs, enhance the ability of cancer cells to consume non-glucose substrates and fuel mitochondria. This may explain the inefficiency of drugs which only target glycolysis and add another layer of complexity to therapeutic strategies.

5.3. PI3K/AKT pathway

The PI3K intracellular signaling pathway plays a critical role in cell apoptosis, proliferation, and protein synthesis. Its role in regulation of glucose uptake and metabolism is equally definitive. PI3K dysregulation was reported in several human cancers and several drugs targeting this pathway are currently in clinical trials [253]. Activation of PI3K leads to an upregulation of downstream effectors such as AKT and mTOR.

The evolutionarily conserved serine/threonine kinase, AKT, was reported to be one of the most prevalent and constitutively activated onco-proteins in malignant cells [254,255]. AKT is an important activity-dependent stimulus for cancer cell metabolism, influencing glycolysis by both direct and indirect mechanisms. AKT plays a central role in the regulation of cellular energy metabolism and glucose homeostasis. It stimulates ATP generation by accelerating both glycolytic and oxidative metabolism with a concomitant increase in oxygen consumption to preserve energy. AKT activation results in ROS generation and, therefore, contributes to tumourigenesis by inducing mutations and facilitating tumor-promoting signaling pathways and inducing mutations [256]. Elevated, AKT-mediated, glycolysis plays a major role in proliferation and survival of transformed cells. AKT increases glucose uptake, directly, by increasing the expression and plasma membrane translocation of glucose transporters (GLUT1, GLUT2, and GLUT4) [257]. It also maintains MMP and promotes the association of HK2 with the mitochondrial outer membrane by mediating HK2 phosphorylation and inhibiting glucose-6 phosphate dissociation from the mitochondrial membrane [258]. This may enhance enzymatic efficiency of the kinase, promote metabolic coupling between glycolysis and OXPHOS, increase ATP synthesis through OXPHOS and decrease susceptibility to apoptosis [256]. Indirectly, AKT activates PFK1 phosphorylation and activation by inducing PFK2 and releases forkhead box O1 (FOXO)-mediated repression of glycolysis. AKT also activates mTORC1 indirectly through phosphorylating and, thus, inactivating TSC2, an mTOR inhibitor [259–261]. The ability of AKT to increase glucose uptake and glycolysis in tumor cells may also require cooperation from other cancer-associated proteins, such as c-MYC and HIF-1. Although AKT-transformed cells show elevated levels of amino acid and lipid transporters that are linked to cell growth, constitutive activation of AKT renders cells dependent on an extra-cellular glucose supply for survival [256]. Together these findings demonstrate the coordinated regulation of glycolysis and OXPHOS by oncogenic AKT.

AKT, which is described as “Warburg’s kinase”, provides selective advantages to tumor cells by increasing both glycolysis and OXPHOS [262]. Several miRNAs were reported to modulate AKT expression directly by targeting AKT mRNA, and protein phosphorylation and/or indirectly regulating its upstream stimuli, such as EGFR and its upstream repressors, such as PTEN (Figure 2).

While some miRNAs, such as miR-637 in glioma, miR-302a and miR-29b in prostate cancer and miR-143 in bladder cancer, directly bind the AKT 3'UTR and inhibit its translation, some other miRNAs, reduce AKT phosphorylation without affecting total AKT levels. For instance, miR-126 reduces AKT phosphorylation by inhibiting by phosphatidylinositol 3-kinase regulatory subunit beta (p85β) [263–267] (Table 9). Other proteins and regulatory factors also contribute to regulating AKT activation in different cell types and conditions. For instance, the over-expression of Rictor, a target of miR-34a and mTORC2 component, causes activation of AKT in glioma stem cells [268]. Rictor activation results in mTORC2 activation and consequently, AKT is further activated by mTORC2 mediated phosphorylation [269]. In breast cancer cells miR-205, which is often downregulated in cancer, targets HER3 receptor transcripts and suppresses the activation of AKT [270]. Protein phosphatase 2 scaffold subunit Abeta (PPP2R1B) is another intermediate in AKT signal transduction, directly interacting with AKT, and is a target of miR-200c in esophageal cancer cells [271]. Al-Khalaf and Aboussoukhra [272] showed that miR-141 and miR-146b-5p target an RNA binding protein, AUF1, which has an important role in PI3K/AKT/mTOR pathway regulation. AUF1 binds to and stabilizes AKT mRNA and promotes AKT phosphorylation and activation. AUF1 was also reported to negatively regulate PTEN phosphatase and activate PI3K [273,274]. Additionally, some AKT-targeting miRNAs were shown to regulate drug sensitivity in cancer cells, such as miR-29b and miR-200c that influence chemotherapy responses in prostate and esophageal cancers, respectively [265,271].

However, the miRNAs that regulate AKT signaling do not act to fully repress AKT and its mediators. Rather, they fine tune expression in a context-specific manner. Therefore, it is likely that AKT is not exclusively regulated by specific miRNAs and further, it is not surprising that
some miRNAs, such as miR-153 which targets both PTEN and AKT [275,276], play complex pleiotropic roles in regulating PI3K/AKT signaling. Although a number of studies have reported EGFR gene amplification in some cancers, post-transcriptional modulation remains a significant cause of EGFR overexpression in cancer cells (Table 5). For instance, miR-7 was found to regulate expression of multiple effectors of the EGFR signaling pathway, as well as directly targeting EGFR mRNA. Zhou and Hu et al. [277] showed that miR-7 overexpression in epithelial ovarian carcinoma (EOC) cells results in reduced expression of EGFR without any changes in EGFR phosphorylation. A feedback loop between miR-7 and EGFR was reported [277,278], as increased EGFR activity results in extracellular-signal-activated kinase (ERK)-mediated degradation of YAN, which is a miR-7 repressor. Further, miR-7 binds to the YAN 3'UTR and represses its expression [279]. PTEN has a central role in cell cycle progression. Although mutual genetic loss of PTEN was reported in some cancers, epigenetic factors, including miRNAs, also regulate PTEN expression [280] (Table 5). Due to the unusually long 3'UTR of PTEN, it contains binding sites for many miRNAs, which can reduce its mRNA levels (including miR-32, miR-29, miR-26a/b, miR-217, miR-486, miR-193a, miR-519d) [281–289] or PTEN translation without affecting its mRNA levels (miR-93, miR-214, miR-221, miR-494, miR-21) [290–296].

Furthermore, miR-185 in HCC and miR-26a in low-grade glioma alter PTEN promoter methylation and play a subordinate role in PTEN gene regulation by targeting DNA (cytosine-5)-methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 histone methyltransferase (EZH2) [282,287]. Therefore, along with direct regulation of PTEN by the aforementioned miRNAs, several miRNAs regulate PTEN through indirect mechanisms. Examples include PTEN repression via miR-101 and miR-1 both targeting the PTEN activator, membrane-associated guanylate kinase inverted 2 (MAGI-2); as well as PTEN induction following the miR-185 targeting of PTEN silencer, DNMT1 [297–299]. High glucose was shown to affect some PTEN targeting miRNAs, such as stimulating miR-21 levels in renal cancer or lowering miR-32 levels in HCC, depending on the physiological status of the cells, which results in AKT activation or suppression, respectively [300,301]. PTEN dephosphorylates PI3K, generated by PI3K, to inhibit AKT activation. Suppression of PTEN, through miRNA-mediated mechanisms, enhances AKT phosphorylation and signaling and supports cell proliferation and survival [302]. PTEN inhibition also results in cystic vestibular schwannoma development and cancer cell invasion via induced metalloprotease-2 (MMP-2) [303]. Transforming growth factor beta 1 (TGF-β) mediated AKT activation is another consequence of reduced PTEN activity [289,304]. Decreased PTEN expression was also shown to impair p53-dependent responses in cancer cells [286]. Moreover, some miRNAs were shown to induce drug- and radioresistance by inhibiting PTEN. For instance, miR-21 induces daunorubicin resistance in leukemia, miR-214 induces cisplatin resistance in ovarian cancer cells and miR-221 induces TRAIL- and radioresistance in glioma cells by inhibiting PTEN [288,293,305]. Breast cancer metastases in the brain also display increased aggression due to suppression of PTEN by astrocyte exosomal miRNAs [306].

5.4. Mechanistic target of rapamycin kinase (mTOR)
Mechanistic target of rapamycin (mTOR), also known as mammalian target of rapamycin, consists of two divergent complexes: complex 1 (mTORC1) and mTORC2. mTORC1 acts as a metabolic hub, integrating extracellular stimuli with nutrient availability and cellular energy to coordinate responses. mTORC1 is mainly involved in cellular proliferation, translation and metabolic programming while mTORC2 regulates cell survival, cytoskeletal organization, and degradation of newly synthesized polypeptides [307,308].

mTOR is stimulated by loss of function of some inhibitors including LKB1, PML, PTEN, and TSC1/2 or activation of some oncogenes such as AKT and RAS [115,116,262,309]. Activated mTOR, in turn, dramatically enhances the translational machinery and ribosome biogenesis, increases cell growth in response to mitogens, growth factors and hormones, and upregulates some transcription factors [310]. It also activates several glycolytic enzymes such as GLUT1, LDHA, PKM2, and HK2 [311–313]. The connection between hypoxia and mTOR is of particular interest. Although it has been shown that mTOR is able to induce HIF-1 translation, mTOR activity is reduced in hypoxia, likely through negative feedback [314,315]. Hypoxia-mediated inhibition of mTOR could be through activation of tuberous sclerosis protein (TSC1/2) via AMPK, REDD1 or BNIP3 activation [117,309,316,317]. However, there is also evidence that hypoxia-mediated inhibition of mTOR is more prevalent in normal cells compared with cancer cells [318]. Therefore, it may be concluded that mutations in the mTOR signaling pathway account for the reduced hypoxia-mediated mTOR inhibition. It was discovered that mTOR, along with p53, shares the available serine for glutamine synthesis by stimulation of PKM2 protein synthesis, which links glycolysis to anaerobic pathways [319]. Moreover, mTOR suppresses autophagy and mitophagy and, therefore, produces ROS. AMPK-activated protein kinase (AMPK), an mTOR inhibitor, plays a vital role in metabolic flux and regulates GLUT4 expression, mitochondrial biogenesis and fatty acid oxidation. Complex interaction between mTOR, AKT, and AMPK to regulate GLUT4 translation has also been shown [320]. Activated AKT phosphorylates and inhibits AS160 Rab GTPase activating protein in the cytoplasm leading to increased translocation of the insulin-responsive glucose transporter, GLUT4 to the membrane [321]. Also, ADP and ATP play a critical role in the stability of AKT phosphorylation at residues T308 and S473 and, therefore, act as on/off switches as ATP binds to these phosphorylated sites and protects them against phosphatases. Consequently, AMPK regulates AKT phosphorylation by responding to the equilibrium of the adenylate pool [320,322]. On the other hand, Kumar et al. [333] reported that FRic−/− murine fat cells, with ablated Rictor, showed impaired insulin-stimulated GLUT4 translocation to the plasma membrane and decreased glucose transport.

Given the integral role that mTOR plays in oxygen and nutrient sensing, it is notable that several miRNAs may directly or indirectly influence mTOR activity. Increased expression of MTOR coexists with downregulation of several miRNAs in various types of cancer (Table 5 and Figure 2). Examples include miR-99a/b, miR-100, and miR-199b in cancers, including endometrial cancer, esophageal squamous cell carcinoma, and bladder cancer [324–327]. miR-99 and miR-100 were also reported to be endogenous inhibitors of mTOR protein abundance [328]. miR-7 was found to target mTOR directly and form a negative feedback loop by also directly repressing EGFR and thus results in pleiotropic inhibition of protein translation [329,330]. Chen et al. and Lin and Shao et al. [331,332] reported a significant inhibition of mTOR expression, at both RNA and protein levels, by miR-101. Also, miR-373 and miR-520c were reported to reduce mTOR mRNA and protein levels and increase MMP9, which consequently results in the increased migration and invasion capability of cancer cells [333]. A negative regulator of mTOR is TSC1/2 complex. miR-451 was found to target TSC1 and stimulate the stemness phenotype of myeloma cells through activation of the PI3K/AKT/mTOR pathway [334,335]. These findings further highlight the role of mTOR, situated at the crossroads of cancer-related signaling pathways. They show the interplay
between components of signaling cascades and miRNAs, with practical implications for cancer therapy.

5.5. Tumor protein p53 (TP53)

p53 is a transcription factor and tumor suppressor that plays critical roles in controlling cell cycle progression through DNA damage response and apoptosis, which has been shown to regulate both glycolysis and OXPHOS [190]. In general, p53 inhibits glycolysis transcriptionally by suppressing GLUT1, GLUT3, and PGM expression. Therefore, loss of p53 function in many cancers contributes to either glycolysis or the pentose phosphate pathway (PPP) [155,336]. Mutated p53 was shown to reduce oxygen consumption and mitochondrial respiration [337]. Moreover, p53 may affect mtDNA and mitochondrial respiration. First, diminished p53 activity reduces OXPHOS by eliminating its suppression of SC02, a protein essential for COX assembly and mitochondrial respiration [337]. Moreover, p53 may affect mtDNA by regulating the expression of ribonucleotide reductase subunit p53R2 and, ultimately, regulating mitochondrial oxidative respiration [338]. P53R2 plays important roles in both the biogenesis of mitochondria and mtDNA maintenance [339]. Although p53 induces oxidative stress by its pro-apoptotic function, it can also adversely impact redox maintenance [340]. Anti-oxidant roles of p53 include upregulation of GLS2 and subsequent increase in glutathione as well as enhanced stability of NRF2, an important antioxidant transcription factor, under oxidative stress [341,342]. Other p53 functions that regulate metabolism include induced PTEN expression, which inhibits the PI3K pathway and glycolysis, cooperation with the OCT1 transcription factor to modulate the balance between glycolysis and OXPHOS and reduced fatty acid oxidation in response to metabolic flux [343–345].

The identification of several miRNAs that target p53 implies complex regulation and may explain the development of malignancies in cells with wild-type p53, where miRNA-mediated repression of TP53 and its transactivational genes, such as CDKN1A, BBC3, DNM1L, and BAX, is sufficient to cause tumourigenesis [346,347]. p53 both regulates, and is regulated by, miRNAs. Many of these miRNAs were shown to directly target TP53 in different systems (summarized in Table 5). It is becoming clear that most of these miRNAs represent conservative regulation of p53 activity, targeting multiple components of the p53 pathway. Also, the functional overlap between these miRNAs indicates the potential for cumulative miRNA dysregulation influencing the p53 network during tumourigenesis. p53 suppresses glucose transporters and glycolytic enzymes by enhancing TIGAR [348]. TIGAR is best characterized by its negative regulation of fructose-2-6-bisphosphatase. Eventually, TIGAR directs glucose to PPP and enhances NADPH production [349]. miR-144 targets TIGAR and modulates autophagy, apoptosis and metastasis in lung cancer cells [350]. In order to survive, cancer cells can also render p53 inactive by point mutation or through degradation induced by the E3 ubiquitin ligase, MDM2 [351,352]. A side from gene mutations, promoter (de) methylation and proteolytic degradation, MDM2 is regulated by miRNAs, miRNAs such as miR-660 and miR-660 directly target MDM and modulate MDM:p53 interaction, aiding rapid stabilization and accumulation of p53. On the other hand, p53 trans-activates the expression of the miR-605 host gene PRKAG1 through binding to its promoter region, which results in a positive feedback loop and increased p53 activity [353,354]. Other miRNAs that suppress MDM2 include miR-509-5p in HCC and cervical cancer, miR-29a in non-small cell lung cancer (NSCLC), miR-143/145 in head and neck squamous cell carcinoma (HNSCC), miR-192, miR-215, miR-194, and miR-339-5p in renal cell adenocarcinoma, breast cancer, and colorectal cancer [355–358] (Figure 2).

In addition to the aforementioned functions of p53 in regulating cell metabolism, miRNA biosynthesis also involves p53-signaling components. p53 interacts with the Drosha complex and accelerates the processing of targeted primary miRNA sequences to precursor miRNA fragments [359]. Specific miRNAs are also transcriptionally regulated by p53 [355,356,361] (Table 4). Most of these p53-responsive miRNAs are involved in both positive and negative feedback loops. For instance, members of the miR-34 family are induced through p53 binding to their promoter in response to stress and, in turn, TP53 miRNA has been validated as a direct target of miR-34 [362,363]. miR-605 and miR-509-5p/MDM2/p53 are examples of positive feedback loops where p53 induces miRNA synthesis and miR-509-5p and miR-605 target MDM2 to increase p53 protein levels [353,355]; miR-17-5p/TP53INP1/p53 is another regulatory feedback loop. miR-17-5p targets TP53INP1 mRNA transcript which encodes a p53-induced nuclear protein and also is a direct target of p53; so, miR-17-5p functions as a mediator in a regulatory loop in colon and cervical cancer [361]. Other miRNAs that target tumor protein P53 inducible nuclear protein 1 (TP53INP1) include miR-130b in hepatocarcinoma, miR-155 in pancreatic cells, and miR-125b in endometrial carcinoma [364–366]. Therefore, both regulation of the p53 network by miRNAs, and p53 induction of miRNA levels, are tightly coordinated to enable response to stimuli. These findings show that the p53 network is more complex than previously envisioned and suggest that additional regulatory layers, incorporating miRNAs, provide derepression of TP53 enabling it to accumulate rapidly in response to cell stress. The aforementioned functions establish a new driver of the Warburg effect and demonstrate that p53 may act as a “brake” on glycolysis and neoplastic cell proliferation.

5.6. Sirtuins

Sirtuins are a conserved family of NAD+-dependent deacetylases. Advances in sirtuin biology have identified multiple targets for the seven mammalian sirtuins (SIRT1-7) and, recently, their participation in tumourigenesis and regulation of cancer cell metabolism [378]. SIRT1 is a nuclear protein that shuttles between the nucleus and cytoplasm, especially when insulin signaling is inhibited [379]. SIRT1 modulates several cellular pathways by deacetylating a subset of nuclear and cytosolic targets. AMPK and SIRT1 cooperate in the induction of glucogenogenesis, glycolysis and lipid catabolism, mitochondrial biogenesis and respiration by phosphorylation and then deacetylation of PPARgamma coactivator 1alpha (PGC1α) and FOXO transcription factors [380–383]. A homoeostatic and negative feedback loop has been reported among SIRT1, p53, FOXO3A, and FOXO1. During energy stress FOXO3A binds to p53 promoter, repressing SIRT1 expression, and in turn SIRT1 inhibits p53 activity by excessive deacetylation and also through FOXO3A activation [384–386]. In addition, SIRT1 is involved in the oxidative response, working together with HIF-1, p53, and Myc [387]. SIRT6 is another member of the sirtuin nuclear histone deacetylase (HDAC) family, which exerts both nuclear ADP-ribosyltransferase activity and deacetyltransferase activity with roles in epigenetic regulation of genomic stability, cellular metabolism, stress response, aging, and cancer [388–391]. Yin and Gao et al. [392] showed that neuronal SIRT6 overexpression significantly suppresses insulin-like factor 2 (IGF2) activity and other proteins such as AKT and mTOR at the chromatin level. SIRT6 activation results in inhibition of HIF-1, glycolysis, and respiration, as well as induction of homologous and non-homologous DNA repair. The latter function of SIRT6 occurs through ADP-ribosylation of poly(ADP-Ribose) polymerase 1 (PARP-1) [393,394]. SIRT6 regulates HIF-1 and c-Myc expression, at the
miRNAs regulated by the transcription factor p53.

miRNA	Regulation	Disease/cells	References
Let-7a/b	Downregulation	Colorectal Cancer	[367]
miR-17	Downregulation	Colorectal Cancer	[133]
miR-20a	Downregulation	Colorectal Cancer	[133]
mir-29	Upregulation	Colorectal Cancer	[368]
miR-200c	Upregulation	Mammary Gland, Colorectal Cancer	[369,370]
miR-183	Upregulation	Colorectal Cancer, Non-Small Cell Lungs, Ovary Clear Cell	
miR-34a/b/c	Upregulation	Cell Carcinoma, Ovary Clear Cell, Osteosarcoma, Pancreatic Cancer, Prostate Cancer, Ovarian Carcinoma	[369]
miR-605	Upregulation	Breast Cancer, Lung Carcinoma	[353]
miR-145	Upregulation	Breast Cancer, Colorectal Cancer	[241]
miR-192	Upregulation	Colorectal Cancer, Multiple Myeloma, Ovary Clear Cell Carcinoma, Osteosarcoma	[358,370,372,376]
miR-194	Upregulation	Multiple Myeloma, Colorectal Cancer	[358,376]
miR-215	Upregulation	Colorectal Cancer, Multiple Myeloma, Ovary Clear Cell Carcinoma, Osteosarcoma	[358,370,372,376]
miR-141	Upregulation	Colorectal Cancer	[370]
miR-519d	Upregulation	Hepatocellular Carcinoma	[236]
miR-107	Upregulation	Colorectal Cancer	[151,377]
miR-509	Upregulation	Cervical Cancer, Hepatocellular Carcinoma	[355]

miR-200c has been the most extensively studied member in this context. miR-34a was the first discovered SIRT1 targeting miRNA. miR-34 is a p53-regulated miRNA that most importantly regulates cell cycle. miR-34 downregulates SIRT1 expression by directly binding to its 3’UTR and indirectly through targeting nicotinamide phosphoribosyltransferase (NAMPT), the rate limiting enzyme in NAD biosynthesis [401–403]. Xu et al. [404] reported SIRT1 targeting by mir-22, which modulates the retinoblastoma signaling pathway. miR-204 targets SIRT1 in osteosarcoma cells and inhibits epithelial—mesenchymal transition (EMT) of the cancer cells [405]. Similarly, miR-200c has been reported to form a negative feedback loop with SIRT1, attenuating epithelial to mesenchymal transition (EMT) in breast cancer cells [406]. Likewise, miR-181a and miR-9 regulate SIRT1 and impact insulin signaling, glucose homeostasis and cell apoptosis [407–409]. miR-143, miR-93 and miR-217 lead to decreased glucose uptake, downregulated transcriptional level, through chromatin deacetylation and also regulates HIF-1 stability through an unknown mechanism [395]. Mostoslavsky et al. [396] reported a novel role for SIRT6 in glucose homeostasis in mice. Accordingly, subsequent studies confirmed its vital role in direct and indirect regulation of glucose uptake and metabolism. Nevertheless, SIRT6 was found to transcriptionally regulate some c-Myc targets involved in ribosomal biogenesis and glutamine utilization, rather than those involved in regulating cancer cell glycolysis [397]. In contrast to SIRT6 that acts independently, SIRT1 cooperates with c-Myc to suppress p53 activity and increase c-Myc-induced LDHA expression [395]. SIRT1 is a nucleolar sirtuin member that activates transcription by binding to RNA polymerase [398,399]. Vakhrusheva et al. [400] reported a p53 hyperacetylation state in SIRT7 knockout mice, which results in increased apoptosis and decreased resistance to oxidative stress.

The miRNA-mediated regulation of nuclear sirtuins, with an emphasis on SIRT1 and SIRT6, has highlighted their roles in glycolysis. SIRT1 has been the most extensively studied member in this context. miR-509 has been shown to target PGC1 and thereby indirectly modulate miR-23a expression [400]. However, the mechanism of SIRT1 regulation by miR-23a is not fully understood.

Post-transcriptional regulation of SIRT6 by miR-33a/b plays a vital role in regulation of cholesterol and lipid metabolism via acetylation of its targets [392,418–420]. Sharma et al. [421] reported a negative feedback loop between SIRT6 and miR-766 in dermal fibroblasts. SIRT6 expression is elevated in highly metabolic and proliferative cells and was reported to be a target of miR-125b/a inducing G1 cell cycle arrest [422].

SIRT2 is predominantly cytosolic but it also shuttles to the nucleus and is mainly enriched in the brain [423]. SIRT2 was reported to deacetylate histone H3, p300, FOXO1, FOXO3A, adenosomatous polyposis coli (APC), cell division cycle 20 (C2D20), p65, PGM, phosphoenolpyruvate carboxykinase 2 (PEPCK), and receptor-interacting protein 1 (RIP1) and, therefore, regulates cell cycle, genome integrity, energy homeostasis, gluconeogenesis, glycolysis, oxidative stress modulation, cell growth, and death [424–430]. miR-339 was shown to target SIRT2, increasing NF-KB and FOXO1 acetylation in neuroblastoma cells [431]. Moreover, in silico analysis revealed a longevity associated SNP of SIRT2 within the binding site of three miRNAs (called miRSNPs). Therefore, miR-3170, miR-92a-1-5p and, more importantly, miR-615-5p were predicted to target SIRT2 resulting in reduction in SIRT2 expression [432]. Li and Dai et al. [284] showed that SIRT2 is downregulated in glioma. SIRT2 acts as a tumor suppressor and inhibits glioma growth by targeting miR-21 expression through deacetylating p65 and blocking p65 binding to the miR-21 promoter. Regulation of miR-21 activity is particularly important as this miRNA displays significant oncogenic activity [433].

Three mitochondrial sirtuins are SIRT3, SIRT4, and SIRT5. SIRT3 is the major mitochondrial sirtuin, which promotes ATP production by regulating TCA cycle enzymes such as acetyl COA synthetase, IDH2, glutamate dehydrogenase 1 (GDH) and SDH during energy stress. GDH upregulation leads to an induction in glutamine metabolism which consequently produces more ATP and releases insulin [434–437]. It also upregulates Mn superoxide dismutase (MnSOD), downregulates ROS, HIF-1, and p53 and activates FOXO3A to modulate redox homeostasis and maintain mitochondrial membrane potential [438–442]. SIRT3-mediated regulation of OXPHOS components has been shown. The targets include components of complex I, II, III, and V and S (as NDUFA11/S8, SDHA/B and ATP5A1/B1/F1 [438,443,444]. Altogether, SIRT3 is capable of reversing the Warburg effect toward mitochondrial predominance and ATP synthesis. SIRT4 is another mitochondrial sirtuin which seems to function as a tumor suppressor by downregulating GDH through ADP-ribosylation activity and consequently suppressing glutamine utilization and the flow of amino acids into the TCA cycle [434]. Nasrin et al. [445] showed that reduced SIRT4 results in increased fatty acid oxidation and mitochondrial metabolism. They also demonstrated an increase in SIRT1 expression levels. miR-193 mediated suppression of SIRT3 leads to impaired energy metabolism and ATP synthesis in mycardium [446]. mir-23a was also shown to target PGC1 and thereby indirectly modulate SIRT3 expression [447]. Moreover, upregulation of miR-28-5p, resulting from oxidative stress, directly targets SIRT3 [448]. Liang et al. [449] reported SNPs in the miR-105 and miR-532 binding sites in the SIRT3 3’UTR that are associated with ovarian cancer treatment responses. In addition, Saby et al. [450] reported three miRNAs that are regulated by natural agents called isothiocyanates in colorectal cancer (CRC) cells. In silico analysis also revealed CRC-related SNPs within the 3’UTR of miR-33a/b.
Table 5 – Summary of miRNAs targeting metabolism-related oncogenes and tumor suppressors. S indicates references in Supplementary file.

miRNAs	Gene	Disease	References
Let-7	KRAS, MYC	Breast Cancer, Colorectal Cancer, Lung Cancer, Gliona, Malignant Mesoethelioma, Oropharyngeal-Squamous Cell Carcinoma, Pancreatic Ductal Adenocarcinoma, Gastric Cancer, Prostate Cancer, Burkitt Lymphoma, Malignant Bronchial Epithelial Cell, Pulmonary Hypertension	[1–8], [199,205,224,234,236]
miR-1	KRAS, EGFR, PTEN	Nasopharyngeal Carcinoma, Head and Neck Squamous Cell Carcinoma, Cardiovascular Disease	[9–11], [298]
miR-100	mTOR	Esophageal Squamous Cell Carcinoma, Bladder Cancer, Endometrial Endometrial Carcinoma, Breast Cancer	[12], [325–327]
miR-101	KRAS, MYC, AKT, mTOR, TIGAR	Hepatocellular Carcinoma, Osteosarcoma, Clear Cell Renal Cell Carcinoma, Prostate Cancer	[13–15], [331,332]
miR-105	SIRT3	Ovarian Cancer	[449]
miR-106a/b	SIRT1, PTEN	Pituitary Tumor, Breast Cancer	[16–18]
miR-107	EGFR	Non-Small Cell Lung Cancer	[19]
miR-10b	PTEN	Breast Cancer	[20]
miR-122/a	MYC, EGFR	Hepatocellular Carcinoma, Inflammatory Bowel Disease	[21], [231]
miR-124a	SIRT1	Neurogenic Pain	[22]
miR-125a/b	SIRT1, SIRT7, TP53	Hepatocellular Carcinoma, Age-Related Cataract, Multiple Myeloma, Non-Small Cell Lung Cancer, Colorectal Cancer, Neuroblastoma, Cataract	[23–28], [422]
miR-126	KRAS, AKT	Pancreatic Cancer, Squamous Tongue Cell Carcinoma, Gliona, Colorectal Cancer	[29,30], [204,263]
miR-1285	TP53	Neuroblastoma, Hepatoblastoma	[31]
miR-1294	MYC	Esophageal Squamous Cell Carcinoma	[32]
miR-1297	PTEN	Breast Cancer	[33]
miR-130a/b	MYC, PTEN	Osteosarcoma, Bladder Carcinoma, Non-small Cell Lung Cancer	[34–36], [233]
miR-132	SIRT1	Gliona, Type2 Diabetes Mellitus, Gastric Cancer, Colitis	[37–40]
miR-133a/b	EGFR, SIRT1	Pancreatic Cancer, Ovarian Cancer, Hepatocellular Carcinoma	[41,42]
miR-134	KRAS, EGFR	Renal Cell Carcinoma, Globlastoma, Non-Small Cell Lung Cancer, Colorectal Cancer	[43–45], [207]
miR-135a/b	MYC, EGFR	Renal Cell Carcinoma, Prostate Cancer	[46,47]
miR-137	EGFR	Globlastoma Multiforme, Thyroid Cancer	[48,49]
miR-138	SIRT1	Diabetic Vascular Smooth Muscle Cells, Intervertebral Disc Degeneration, Pancreatic Cancer, Osteosarcoma	[50–53]
miR-141	PTEN, AKT, TP53, SIRT4	Esophageal Cancer, Osteosarcoma, Multiple Myeloma, Pluripotent Stem Cells, Gliona, SIRT4	[25,54–57], [272]
miR-142	PTEN	Cutaneous Squamous Cell Carcinoma	[58]
miR-143	KRAS, EGFR, AKT, MDM2, SIRT1	Colorectal Cancer, Non-Small Cell Lung Cancer, Bladder Cancer, Head and Neck Squamous Cell Carcinoma, Pancreatic Cancer	[59–63], [266,357,410]
miR-144	PTEN, mTOR, TIGAR	Pancreatic Neuroendocrine Tumor, Preeclampsia, Salivary Adenoid Carcinoma, Renal Cell Carcinoma, Inflammation of Microglia, Lung Cancer	[64–67], [350]
miR-145	MYC, MDM2, SIRT1	Non-Small Cell Lung Cancer, Esophageal Squamous Cell Carcinoma, Ovarian Cancer, Oral Squamous Cell Carcinomas, Globlastoma, Head and Neck Squamous Cell Carcinoma, Pancreatic Cancer	[68–70], [266,357,410]
miR-146b	AKT	Osteosarcoma	[272]
miR-146a/b	PTEN, AKT, MYC	Osteosarcoma, Renal Cell Carcinoma, Hepatocellular Carcinoma	[71,72], [2,229]
miR-149	AKT	Hepatocellular Carcinoma, Neuroblastoma, Globlastoma Multiforme	[73–75]
miR-150	TP53	Lung Cancer	[76]
miR-152	PTEN, SIRT7	Hepatic Insulin Resistance, Human Dental Pulp Stem Cells	[77,78]
miR-153	PTEN, AKT	Prostate Cancer, Lung Cancer	[275,276]
miR-155	KRAS, MYC, PTEN, AKT, SIRT5, SIRT1	Gastric Carcinoma, hepatocellular Carcinoma, Waldenström Macroglobulinemia, Leukemia, Colorectal Cancer, Neurogenic Pain	[22,79–81], [220,301,450]
miR-15a/b, miR-16	TP53, mTOR, AKT, SIRT4	Multiple Myeloma, Gliona, Ischemia, Dermal Fibroblasts	[25,82–85]
miR-17	MYC, TP53	Neuroblastoma, Cervical Cancer	[86], [361]
miR-18/a	KRAS	Human Squamous Carcinoma, Colorectal Cancer, Liver Cancer, Ovarian Cancer	[87,88]
miR-181a/b/d	PTEN, KRAS, EGFR, AKT, SIRT1	Colorectal Cancer, Osteosarcoma, Oral Squamous Cell Carcinoma, Gliona, Cutaneous Squamous Cell Carcinoma, Acute Myeloid Leukemia, Globlastoma Multiforme, Hepatic Stellate Cells, Non-Alcoholic Fatty Liver Diseases	[89–97]
miR-1827	MDM2	Colorectal Cancer	[98]
miR-183	mTOR	Neurogenic Pain	[99]
miR-184	MYC	Non-Small Cell Lung Cancer, Nasopharyngeal Carcinoma	[100,101]
miR-185	MYC, PTEN, AKT	Colorectal Cancer, Breast Cancer, Hepatocellular Carcinoma, Idiopathic Pulmonary Fibrosis, Non-Small Cell Lung Cancer	[102–104], [228,297]
miR-192	MDM2	Colorectal Cancer, Multiple Myeloma	[358,376]
miR-193a/b	PTEN, KRAS, TSC1/2	Renal Cell Carcinoma, Colon Cancer, Breast Cancer, Pancreatic Ductal Adenocarcinoma, Cutaneous Squamous Cell Carcinoma, Amyotrophic Lateral Sclerosis	[105–108], [202,208]
miR-194	AKT, MDM2	Gall Bladder Cancer, Multiple Myeloma	[109], [358,376]
miR-195	SIRT3	Myocardium	[446]
miR-197	TP53	Non-Small Cell Lung Cancer	[110]
miR-199a/b	SIRT1, mTOR	Pluripotent Stem Cells, Hyperglycemia-Induced Pancreatic[β-Cell Loss, Endometrioid Endometrial Carcinoma	[111,112], [325]
miR-19a/b	PTEN, TP53	Bladder Cancer, Osteosarcoma, Myeloma, Liver Cancer, Breast Cancer	[113–116]
miR-200a/c	EGFR, TP53, KRAS, PTEN, SIRT1, MYC, AKT	Bladder Cancer, Breast Cancer, Multiple Myeloma, Nasopharyngeal Carcinoma, Colorectal Cancer, Hepatic Stellate Cell, Pluripotent Stem Cell, Lung Adenocarcinoma, Renal Cell Carcinoma, Ovarian Cancer, Esophageal Cancers	S [25,117—126], [271,334]
miR-203	MYC	Cutaneous Squamous Cell Carcinoma	S [127]
miR-204	SIRT1	Osteosarcoma, Spermatogonial Stem Cell, Hepatocellular Carcinoma	S [128,129], [405]
miR-205	PTEN	Ovarian Cancer	S [130]
miR-206	KRAS, EGFR	Gastric Cancer, Pancreatic Ductal Adenocarcinoma, Oral Squamous Cell Carcinoma, Head and Neck Squamous Cell Carcinoma	S [10,131—133]
miR-20/a/b	PTEN, AKT, SIRT1	Coronary Artery Disease, Diabetic Retinopathy, Diabetic Nephropathy	S [134—136]
miR-21	KRAS, MYC, PTEN	Lung Cancer, Breast Cancer, Diabetic Kidney Disease, Colorectal Cancer, Hepatocellular Carcinoma, Leukemia, Vestibular Schwannomas, Glioblastoma, Bladder Cancer, Radio-resistance Lung Cancer	S [5,137—142], [296,305]
miR-210	MYC	Colorectal Cancer, Glioblastoma, Cervical Cancer, Breast Cancer	S [143]
miR-212	SIRT1	Prostate Cancer	S [144]
miR-214	KRAS, PTEN, TP53	Non-Small Cell Lung Cancer, Ovarian Cancer, Breast Cancer, Ovarian Cancer Stem Cells	S [145—148], [291]
miR-215	MDM2	Colorectal Cancer, Multiple Myeloma	[358,376]
miR-216a/b	PTEN, KRAS	Acute Pancreatitis, Kidney Disorders, Ovarian Cancer, Nasopharyngeal Carcinoma	S [149—151], [289]
miR-217	KRAS, PTEN, SIRT1	Pancreatic Ductal Adenocarcinoma, Lung Cancer, Kidney Disorders, Podocyte Injury, Aging	S [152—154], [289,411]
miR-218	EGFR, mTOR	Non-Small Cell Lung Cancer, Prostate Cancer	S [155,156]
miR-22	MYC, PTEN, SIRT1	Leukemia, Clear Cell Renal Cell Carcinoma, Glioblastoma, Ischemia-Reperfusion Injury	S [157—161], [225]
miR-221	PTEN	Radiosensitive Cancer Cells, Glioblastoma	S [162], [293]
miR-222	PTEN, TP53	Radiosensitive Cancer Cells, Oral Squamous Cell Carcinoma	S [162], [346]
miR-224	KRAS, mTOR	Colorectal Cancer, Gastric Cancer	S [163,164]
miR-223/a/b	EGFR, SIRT1, SIRT1	Coronary Artery Disease, Colorectal Cancer, Diabetic Retinopathy	S [165,166], [450]
miR-24	MYC, TP53	Leukemia, Embryonic Stem Cells, Hepatocellular Carcinoma	S [167,168], [227]
miR-25	PTEN, TP53	Diabetic Nephropathy, Multiple Myeloma, Non-Small Cell Lung Cancer, Colorectal Cancer	S [25,169,170]
miR-26a	PTEN	Glioblastoma	[282]
miR-27a/b	KRAS, TP53, EGFR, SIRT5	Esophageal Squamous Cells Carcinoma, Colorectal Cancer, Renal Cell Carcinoma, Non-Small Cell Lung Cancer	S [47,171—173], [450]
miR-28	SIRT3	Primary human tenocytes	[448]
miR-29a/b/c	PTEN, AKT, MDM2	Colorectal Cancer, Gastric Cancer, Prostate Cancer, Breast Cancer, Non-Small Cell Lung Cancer	S [174—177], [265,288,356]
miR-300	TP53	Lung Cancer, Colorectal Cancer	S [178,179]
miR-301a	PTEN	Pancreatic Cancer, Malignant Melanoma	S [180,181]
miR-302a	AKT	Prostate Cancer	[264]
miR-30/b/c	TP53, KRAS	Colorectal Cancer, Breast Cancer, Non-Small Cell Lung Cancer, Multiple Myeloma, Cardiac Disease	S [170,182—184], [347]
miR-31	TP53	Breast Cancer	S [185]
miR-3151	TP53	Malignant Melanoma	S [186]
miR-32	PTEN	Hepatocellular Carcinoma	[287]
miR-320a	MYC	Hepatocellular Carcinoma	S [187]
miR-33	TP53	Hematopoietic Stem Cells	S [188]
miR-337	PTEN	Endometrial Carcinoma	S [189]
miR-338	mTOR	Colon Cancer	S [190]
miR-339	MDM2, SIRT2	Breast Cancer, Neuroblastoma	S [191], [431]
miR-33a/b/c	SIRT6, MYC	Liver Cancer, Osteosarcoma	[219,418]
miR-340	MDM2	Prostate Cancer	S [192]
miR-34a	MYC, EGFR, AKT, SIRT6, SIRT1	Hepatocellular Carcinoma, Prostate Cancer, Renal Cell Carcinoma, Non-Small Cell Lung Cancer, Glioma, Colorectal Cancer, Non-Alcoholic Fatty Liver Diseases, Pancreatic Cancer	S [193—197], [222,240,268,410]
miR-363	MYC	Prostate Cancer, Hepatocellular Carcinoma	S [198], [2]
miR-365a	KRAS	Cutaneous Squamous Cell Carcinoma	S [199]
miR-366	KRAS	Breast Cancer	S [198]
miR-367	MDM2	Hepatocellular Carcinoma	S [200]
miR-370	EGFR, PTEN	Gastric Cancer, Colorectal Cancer, Gastric Cancer	S [45,201,202]
miR-373	mTOR, SIRT1	Fibrosarcoma	[333]
miR-374/a	MDM2, PTEN	Bladder Cancer, Breast Cancer	S [203,204]
miR-377	SIRT1	Obesity	S [205]
miR-378	AKT	Breast Cancer	[206]
miR-380	TP53	Neuroblastoma	S [207]
miR-384	KRAS	Colorectal Cancer	S [208]
miR-409	AKT	Breast Cancer	S [209]
miR-421	SIRT3	Non-Alcoholic Fatty Liver Disease	S [210]
miR-429	MYC	Gastric Cancer, Breast Cancer	[110,211]
miR-449a/c	MYC	Glioblastoma, Gastric Carcinoma, Osteosarcoma, Prostate Cancer	S [212—214]
miR-451	MYC, AKT	Docetaxel-Resistant Lung Adenocarcinoma, Dilated Cardiomyopathy, Bladder Cancer, Non-Small Cell Lung Cancer, Glioblastoma	S [215—220]

(continued on next page)
genes, including SIRT5, may influence binding of these isothiocyanate-regulated miRNAs. Collectively, SIRTs play important roles in a wide range of metabolic pathways and interact with many transcriptional regulators, miRNAs targeting SIRTs (summarized in Table 5) may modulate SIRT-related signaling transduction and downstream effectors, providing insight into novel therapeutic strategies.

6. TOWARDS FUTURE APPLICATIONS FOR DISRUPTING CANCER CELL GLYCOLYSIS

Metabolomics provides a new exciting platform to explore potential anti-cancer drugs. A universally observed phenotype of malignant cells is their propensity to import glucose and secrete lactate, even in the presence of oxygen. The characterization of aerobic glycolysis

Table 5 — (continued)

miR	Gene(s)	Disease(s)
miR-451	TSG1/2	Multiple Myeloma, Hypertrophic Cardiomyopathy
miR-453	TP53	Lung Cancer
miR-454	Pten	Prostate Cancer
miR-458	Kras, Akt	Colorectal Cancer
miR-461	Pten, Mdm2, Sirt1	Cardiac Myocytes, Lung Cancer, Erythroleukemia
miR-467	Sirt3	Non-Small Cell Lung Cancer, Colorectal Cancer, Multiple Myeloma, Abdominal Aortic Aneurysm
miR-496	Akt, Mtor	Prostate Cancer
miR-5003	Mdm2	Breast Cancer
miR-502a	Egfr	Colorectal Cancer
miR-509	Egfr, Mdm2	Tongue Squamous Cell Carcinoma, Cervical Cancer, Hepatocellular Carcinoma, Prostate Cancer
miR-511	Ak3	Prostate Cancer
miR-519d	Ptenakt	Hepatocellular Carcinoma
miR-520	Egfr, Mtor, Sirt1	Gastric Cancer, Fibrosarcoma
miR-532	Kras, Sirt3	Lung Adenocarcinoma, Ovarian Cancer
miR-543	Sirt1	Hypertension, Gastric Cancer
miR-545	Egfr	Colorectal Cancer
miR-548	Ak3	Non-Small Cell Lung Cancer
miR-561	Myc	Gastric Cancer
miR-577	Pten	Glioblastoma
miR-579	Mdm2	Melanoma
miR-600	Tps3	Colorectal Cancer
miR-601	Sirt1	Pancreatic Cancer
miR-606	Mdm2	Breast Cancer, Lung Cancer, Colorectal Cancer
miR-610	Mdm2	Glioma
miR-613	Kras	Ovarian Cancer
miR-615	Akt	Pancreatic Ductal Adenocarcinoma
miR-622	Kras	Lung Cancer, Colorectal Cancer
miR-637	Akt	Glioma
miR-638	Akt	Lung Cancer
miR-641	Mdm2	Lung Cancer
miR-650	Akt	Rheumatoid Arthritis
miR-660	Mdm2	Lung Cancer
miR-7	Egfr, Mtor	Ovarian Cancer, Glioblastoma, Lung Cancer, Breast Cancer, Hepatocellular Carcinoma, Gastric Cancer
miR-718	Pten	Kaposis Sarcoma, Inflammation
miR-744	Myc	Hepatocellular Carcinoma
miR-758	Mtor, Mdm2	Hepatocellular Carcinoma
miR-766	Mdm2, Sirt6	Breast Cancer, Dermal Fibroblast
miR-768	Kras	Lung Cancer
miR-876	Egfr	Prostate Cancer
miR-9/a	Sirt1, Pten	Hepatic Stellate Cells, Non-Alcoholic Fatty Liver Disease, Acute Myeloid Leukemia, Colorectal Cancer, Nasopharyngeal Carcinoma, Non-Small Cell Lung Cancer
miR-92	Tps3	Multiple Myeloma, Pluripotent Stem Cells
miR-93	Ak3	Lung Cancer
miR-95	Pten	Radioresistance Lung Cancer
miR-96	Kras, Mtor	Pancreatic Ductal Adenocarcinoma, Pancreatic Cancer, Colorectal Cancer, Myocardial Hypertrophy
miR-98	Myc, Tps3	Breast Cancer, Lung Cancer
miR-99a/b	Mtor	Breast Cancer, Esophageal Squamous Cell Carcinoma, Cervical Cancer, Endometrioid Endometrial Carcinoma

www.molecularmetabolism.com
has led to dramatic advances in tumor imaging. Positron emission tomography (PET) scans, widely used for cancer diagnosis, exploit the ability of cancer cells to sequester excessive glucose from the blood stream. Ever since aerobic glycolysis was found to be a characteristic of tumor cells and was accepted as a hallmark of cancer, it has been proposed that suppressing aerobic glycolysis would be a promising strategy to treat cancer. As a consequence, several studies have reported the use of glycolytic enzyme inhibitors. For instance, lonidamine as a HK2 inhibitor, PEP analogues as PKM inhibitors, as well as FX-11 and panepoxydone as LDHA inhibitors, have been considered potential therapeutic agents (reviewed in [451,452]). However, as glycolysis is also a vital metabolic pathway in normal cells, inhibition of aerobic glycolysis remains challenging when identifying potential cancer-specific targets. Although a definitive explanation for Warburg’s observations is overdue, the control of this process by oncogenes and tumor suppressors, coupled with epigenetic factors including microRNAs, provides additional insight. So far, ample evidence supports associations between the metabolic shift in cancer cells and oncogene activation or inactivation of tumor suppressors. The elusively nature of metabolic rewiring and branching in cancer cells, along with influences upon other signaling pathways, raise concerns as to whether targeting a single component of this complex circuit will be sufficient to eradicate cancer cells with minimal side effects. Despite several reports of the involvement of miRNA-mediated gene regulation, there is still much to learn about how miRNAs contribute to the Warburg effect. Development of new miRNA-mediated strategies, that target metabolic pathways rather than single components, have the potential to enhance future cancer treatment. Systems biology approaches that iteratively couple massively parallel gene expression analytical technologies with high throughput functional screens, may identify additional miRNAs or miRNA-targets with promise for cancer diagnosis, prognosis and drug development. Polymorphisms in the miRNA binding sites of oncogenes are known to influence cancer predisposition and therapeutic response, which may further inform target selection [198,453]. Conversely, acquired somatic mutations in miRNA-binding sites may also lead to the reduced efficacy of miRNA-based therapies. Similarly, the demands of other tissues, such as the highly glucose-dependent nature of brain and retina, will necessitate tissue-specific delivery of anti-glycolysis miRNAs in a therapeutic context where administration already presents challenges. Regardless, multi-faceted solutions are required to provide hope for cancer patients who currently have limited options.

7. CONCLUSION

Aerobic glycolysis, a hallmark of cancer, is the consequence of specific driver mutations and re-equilibrated homeostasis in tumor cells. While cellular responses to the environment continue to involve the existing signaling pathways, longer adaptive responses invoke post-transcriptional and epigenetic control of gene expression. By regulating multiple cellular pathways and multiple components of individual pathways, microRNAs fine-tune expression to ensure high level buffering of adaptive responses. Through understanding of these regulatory processes should provide the capacity to suppress metabolism and inhibit cancer cell survival under stress. With the advent of RNA-based therapies and the development of drugs that modulate the activity of microRNA targets, or even microRNAs themselves, this review has highlighted metabolic processes that may be disrupted by novel therapeutic interventions.

AUTHORS’ CONTRIBUTIONS

AVO structured and drafted the article, she also designed and produced the tables and figures. MZM contributed to the structure, design of tables, writing and revision of the article. JP and RAM participated in revising the article critically for important content.

FUNDING

AVO is supported by a Research Training Program Scholarship through Flinders University. AVO and MZM were supported by research grants from Tour de Cure, Australia and Flinders Foundation. JP was supported by a research grant from Flinders Foundation. RAM is supported by the Beat Cancer Project, funded by Cancer Council SA and the South Australian Government. The funding bodies did not influence the content of this manuscript.

CONFLICT OF INTEREST

None declared.

ABBREVIATIONS

2HG 2-hydroxyglutarate
AG0 argonaute
ALDO aldolase
AMPK AMP-activated protein kinase
C/EBPβ CCAAT-enhancer-binding protein β
CDC20 cell division cycle 20
COX cytochrome c oxidase complex
CUL2 cullin 2
DNMT1 DNA (cytosine-5)-methyltransferase 1
EN01 enolase 1
EphA1 erythropoietin-producing hepatoma receptor A1
ERK extracellular-signal-regulated kinase
EZH2 enhancer of zeste homolog 2
FIH-1 factor inhibiting HIF-1
FOXO forkhead box O
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GDH glutamate dehydrogenase 1
GLS glutaminase
GLS hypoxia-inducible factor-1
GLUTS glucose transporters
GPD1L glycerol-3-phosphate dehydrogenase 1 like
HDAC histone deacetylase
Her2/Neu human epidermal growth factor receptor 2
HK2 hexokinase 2
HNF3β hepatocyte nuclear factor 3-beta
HRE hypoxia response element
IDH isocitrate dehydrogenase
IGF2 insulin-like factor 2
ISCU iron-sulfur cluster scaffold
KLF15 Kruppel-like factor 15
LDHA lactate dehydrogenase A
MAGI2 membrane-associated guanylate kinase inverted 2
MAX MYC associated factor X
MCT monocarboxylate transporters
MDH malate dehydrogenase
mirRNA microRNA
mitomiRs mitochondria-related microRNAs
Review

MMP-2 metalloproteinase-2
MnSOD Mn Superoxide Dismutase
mTOR mechanistic target of rapamycin
NOX NADPH oxidase
OXPHOS oxidative phosphorylation
PARP-1 poly(ADP-ribose) polymerase 1
PDH pyruvate dehydrogenase
PKD1 pyruvate dehydrogenase kinase
PEPCK phosphoenolpyruvate carboxykinase 2
PET positron emission tomography
PFK1 6-phosphofructo-1-kinase
PGC1α PPARgamma coactivator 1alpha
PGK1 phosphoglycerate kinase 1
PGM phosphoglycerate mutase
PHD prolyl-4-hydroxylase
PKM1/2 pyruvate kinase isozymes M1/M2
PPP2R1B protein phosphatase 2 scaffold subunit Abeta
pre-miRNA precursor microRNA
pri-miRNA primary microRNA
PTEN phosphatase and tensin homolog
RIP1 receptor-interacting protein 1
RISC RNA-induced silencing complex
ROS reactive oxygen species
SC02/1 synthesis of cytochrome c oxidase 2/1
SDH succinate dehydrogenase
SIRT sirtuin
STRELLA signal transducer and activator of transcription 3
TCA tricarboxylic acid
TGF-β transforming growth factor beta 1
TIGAR TP53-induced glycolysis and apoptosis regulator
TKL transketolase
TP53INP1 tumor protein P53 inducible nuclear protein 1
TPI triose-phosphate isomerase
TSC tuberous sclerosis proteins
USP28 ubiquitin specific peptidase 28
VEGFA vascular endothelial growth factor A
VHL Von Hippel-Lindau

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data to this article can be found online at https://doi.org/10.1016/j.molmet.2019.01.014.

REFERENCES

[1] Warburg, O., 1956. On respiratory impairment in cancer cells. Science 124(3215):259–270.
[2] Zhang, H., Wang, Y., Xu, T., Li, C., Wu, J., He, Q., et al., 2016. Increased expression of microRNA-148a in osteosarcoma promotes cancer cell growth by targeting PTEN. Oncology Letters 12(5):3208–3214.
[3] Vander Heiden, M.G., Cantley, L.C., Thompson, C.B., 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033.
[4] Rossignol, R., Gilkerson, R., Aggeler, R., Yamagata, K., Remington, S.J., Capaldi, R.A., 2004. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Research 64(3):985–993.
[5] Zheng, L., Cardaci, S., Herby, L., MacKenzie, E.D., Sciacovelli, M., Johnson, T.I., et al., 2015. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nature Communications 6:6001.
[6] Battless, C., Pollard, P.J., Tomlinson, I., 2011. SDH mutations in cancer. Biochimica et Biophysica Acta 1807(11):1432–1443.
[7] Cairns, R.A., Harris, I.S., Mak, T.W., 2011. Regulation of cancer cell metabolism. Nature Reviews Cancer 11(2):85–95.
[8] Varmus, H., Pao, W., Politi, K., Podsypanina, K., Du, Y.C., 2005. Oncogenes come of age. Cold Spring Harbor Symposia on Quantitative Biology 70:1–9.
[9] Singh, P.K., Mehla, K., Hollingsworth, M.A., Johnson, K.R., 2011. Regulation of aerobic glycolysis by microRNAs in cancer. Molecular and Cellular Pharmacology 30(3):125–134.
[10] Ruby, J.G., Jan, C.H., Bartel, D.P., 2007. Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86.
[11] Ha, M., Kim, V.N., 2014. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology 15(8):509–524.
[12] Valinezhad Orang, A., Safaralizadeh, R., Kazemzadeh-Bavili, M., 2014. Mechanisms of miRNA-mediated gene regulation from common down-regulation to miRNA-specific upregulation. International Journal of Genomics 2014:970607.
[13] Bauer, D.E., Harris, M.H., Plas, D.R., Lum, J.J., Hammerman, P.S., Rathmell, J.C., et al., 2004. Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. The FASEB Journal 18(11):1303–1305.
[14] Ramanathan, A., Wang, C., Schreiber, S.L., 2005. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proceedings of the National Academy of Sciences of the United States of America 102(17):5992–5997.
[15] Tong, X., Zhao, F., Thompson, C.B., 2009. The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Current Opinion in Genetics & Development 19(1):32–37.
[16] Menendez, J.A., Lupu, R., 2007. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews Cancer 7(10):763–777.
[17] Horie, T., Ono, K., Nishi, H., Iwanga, Y., Naka, K., Kinosita, M., et al., 2009. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochemical and Biophysical Research Communications 389(2):315–320.
[18] Jiang, S., Zhang, L.F., Zhang, H.W., Hu, S., Lu, M.H., Liang, S., et al., 2012. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. The EMBO Journal 31(8):1965–1998.
[19] Yao, M., Wang, X., Yang, T., Zhang, W., Cui, B., Liu, Q., et al., 2014. Dicer-mediated expression of miR-143 and miR-155 regulates hexokinase II associated cellular response to hypoxia. American Journal of Physiology—Lung Cellular and Molecular Physiology 307(11):L829–L837.
[20] Taniguchi, K., Ito, Y., Sugito, N., Kumazaki, M., Shinohara, H., Yamada, N., et al., 2015. Organ-specific PTB1-associated microRNAs determine expression of pyruvate kinase isoforms. Scientific Reports 5:8647.
[21] Sun, Y., Zhao, X., Zhou, Y., Hu, Y., 2012. miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncology Reports 28(4):1346–1352.
[22] Taniguchi, K., Sugito, N., Kumazaki, M., Shinohara, H., Yamada, N., Nakagawa, Y., et al., 2015. MicroRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer. Cancer Letters 363(1):17–27.
[23] Sugiyama, T., Taniguchi, K., Matsuhashi, N., Tajiri, K., Futamura, M., Takai, T., et al., 2016. MiR-133b inhibits growth of human gastric cancer cells by silencing pyruvate kinase muscle-splicer polypyrimidine tract-binding protein 1. Cancer Science 107(12):1767–1775.
[24] Taniguchi, K., Sakai, M., Sugito, N., Kumazaki, M., Shinohara, H., Yamada, N., et al., 2016. PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors. Oncotarget 7(14):18940–18952.
[25] Yamasaki, T., Seki, N., Yoshino, H., Itesako, T., Yamada, Y., Tatarano, S., et al., 2013. Tumor-suppressive microRNA-1291 directly regulates
glucose transporter 1 in renal cell carcinoma. Cancer Science 104(11): 1411–1419.

[26] Chow, T.F., Mankaros, M., Scroilas, A., Youssef, Y., Girgis, A., Mossad, S., et al., 2010. The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. The Journal of Urology 183(2): 743–751.

[27] Nie, S., Li, K., Huang, Y., Hu, Q., Gao, X., Jie, S., 2015. miR-495 mediates metabolic shift in glioma cells via targeting Glut1. Journal of Craniofacial Surgery 26(2): e155–e158.

[28] Chen, B., Tang, H., Liu, X., Liu, P., Yang, L., Xie, X., et al., 2015. miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Cancer Letters 356(2 Pt B): 410–417.

[29] Qiu, W., Ding, S.M., Cao, G., Wang, S.J., Zheng, X.H., Li, G.H., 2016. miR-132 mediates a metabolic shift in prostate cancer cells by targeting Glut1. FEBS Open Bio 6(7): 735–741.

[30] King, B.C., Esguerra, J.L., Golec, E., Eliasson, L., Kemper, C., Blom, A.M., et al., 2017. MiR-195-5p inhibits glioma cell proliferation and invasion by downregulating glucose metabolism by miR-34a. Biochemical and Biophysical Research Communications 469(1): 37–43.

[31] Li, P., Yang, X., Cheng, Y., Zhang, X., Yang, D., et al., 2017. MicroRNA-218 increases the sensitivity of bladder cancer to cisplatin by targeting Glut1. Cellular Physiology and Biochemistry 38(5): 2063 e1419.

[32] Karolina, D.S., Armugam, A., Tavintharan, S., Wong, M.T., Lim, S.C., et al., 2013. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 62(7): 2286.

[33] Zhou, P., Chen, W.G., Li, X.W., 2015. MicroRNA-143 acts as a tumor suppressor by targeting hexokinase 2 in cancer cells. Molecular Medicine Reports 11(5): 7414.

[34] White, N.M., Bui, A., Mejia-Guerrero, S., Chao, J., Soosaipillai, A., Youssef, Y., et al., 2010. Dysregulation of kallikrein-related peptidases in renal cell carcinoma: potential targets of miRNAs. Biological Chemistry 391(4): 411–423.

[35] Qi, M., Wu, B., Song, Y., Wang, Y., Li, T., 2012. MicroRNA-195-5p inhibits glycolysis and depletes stemness of glioblastoma stem-like cells. PLoS One 6(8): e22839.
Review

[61] Ge, X., Lyu, P., Cao, Z., Li, J., Guo, G., Xia, W., et al., 2015. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochemical and Biophysical Research Communications 463(4):1115–1121.

[62] Savarimuthu Francis, S.M., Davidson, M.R., Tan, M.E., Wright, C.M., Clarke, B.E., Duhig, E.E., et al., 2014. MicroRNA-34c is associated with erythema severity and modulates SERPINE1 expression. BMC Genomics 15:86.

[63] Calin, G.A., Cimmino, A., Fabbri, M., Ferracini, M., Wojcik, S.E., Shimizu, M., et al., 2006. MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America 103(13):5168–5171.

[64] Boesch-Saadatmandi, C., Wagner, A.E., Wolffram, S., Rimbach, G., 2012. Carotenoids and related compounds: role in health and disease. Molecular Nutrition & Food Research 56(1):74–87.

[65] Nana-Sinkam, S.P., Croce, C.M., 2014. MicroRNA regulation of tumorigenesis, cancer progression and interpatient heterogeneity: towards clinical use. Genome Biology 15(9):445.

[66] Sikand, K., Singh, J., Ebron, J.S., Shukla, G.C., 2012. Housekeeping gene selection advisory: glyceroldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin are targets of miR-644a. PLoS One 7(10):e47510.

[67] White, N.M., Newsted, D.W., Masui, O., Romaschin, A.D., Siu, K.W., Yousetf, G.M., 2014. Identification and validation of dysregulated metabolic pathways in metastatic renal cell carcinoma. Tumour Biology 35(3):1833–1846.

[68] Ichimi, T., Enokida, H., Okuno, Y., Kunimoto, R., Chiyomaru, T., Kawamoto, K., et al., 2009. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. International Journal of Cancer 125(2):345–352.

[69] Li, Y., Kong, D., Ahmad, A., Bao, B., Dyson, G., Sarkar, F.H., 2012. Epigenetic deregulation of miR-29a and miR-125b by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics 7(9):940–949.

[70] Muniyappa, M.K., Dowling, P., Henry, M., Mealeddy, P., Doolan, P., Gammell, P., et al., 2009. MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. European Journal of Cancer 45(7):3104–3118.

[71] Taguchi, A., Yanagisawa, K., Tanaka, M., Cao, K., Matsuyama, Y., Oto, H., et al., 2008. Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 miRNA cluster. Cancer Research 68(14):5540–5545.

[72] Leder, A., Raschzk, N., Schmidt, C., Arabacioglu, D., Butter, A., Kolano, S., et al., 2015. Micron-sized iron oxide-containing particles for microRNA-targeted manipulation and MRI-based tracking of transplanted cells. Biomaterials 51:129–137.

[73] Ramirez, C.M., Goedeke, L., Rottlum, N., Yoon, J.H., Cirera-Salinas, D., Mattison, J.A., et al., 2013. MicroRNA 33 regulates glucose metabolism. Molecular and Cellular Biology 33(15):2891–2902.

[74] Wong, T.S., Liu, X.B., Chung-Wai Ho, A., Po-Wing Yuen, A., Wai-Man Ng, R., 2011. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proceedings of the National Academy of Sciences of the United States of America 108(1):314–318.

[75] Pullen, T.J., da Silva Xavier, G., Kelsey, G., Rutter, G.A., 2011. miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Molecular and Cellular Biology 31(15):3182–3194.

[76] Li, K.K., Pang, J.C., Ching, A.K., Wong, C.K., Kong, X., Wang, Y., et al., 2009. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Human Pathology 40(9):1234–1244.

[77] Kinosita, T., Nohata, N., Yoshino, H., Hanazawa, T., Kikkawa, N., Fujimura, L., et al., 2012. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma. International Journal of Oncology 40(1):185–193.

[78] Li, D.F., Tian, J., Guo, X., Huang, L.M., Yu, X., Wang, C.C., et al., 2012. Induction of microRNA-24 by IFN-γ protects against ischemic injury in rat cardiomyocytes. Physiological Research 61(6):555–565.

[79] Bozentka, A., Vetter, G., Bhattler, M., Antoine, E., Roubert, C., Orsetti, B., et al., 2012. Estrogen and retinoic acid antagonistically regulate several microRNA genes to control aerobic glycolysis in breast cancer cells. Molecular Biology Systems 8(12):3242–3253.

[80] Kaller, M., Lifers, S.T., Oeljeklaus, S., Kuhlmann, K., Roh, S., Hoffmann, R., et al., 2011. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Molecular & Cellular Proteomics 10(8):M1101462.

[81] Wang, J., Wang, H., Liu, A., Fang, C., Hao, J., Wang, Z., 2015. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer. Oncotarget 6(23):19456–19468.

[82] Zhang, Y., Liu, G., Gao, X., 2017. Attenuation of miR-34a protects cardiomyocytes against hypoxic stress through maintenance of glycolysis. Bioscience Reports 37(6). BSRR20170925.

[83] Li, L., Kang, L., Zhao, W., Feng, Y., Liu, W., Wang, T., et al., 2017. miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Letters 400:89–98.

[84] Han, R.L., Wang, F.P., Zhang, P.A., Zhou, X.Y., Li, Y., et al., 2017. miR-338 inhibits ovarian cancer cell proliferation, invasion and aerobic glycolysis by targeting LDHA. Neoplasia 64(2):244–252.

[85] Zhang, R., Su, J., Xue, S.L., Yang, H., Ju, L.L., Ji, Y., et al., 2016. HPV E6/p53 mediated down-regulation of miR-34a inhibits Warburg effect through targeting LDHA in cervical cancer. American Journal of Cancer Research 6(2):322–328.

[86] Yi, M., Gao, N., He, T., Ji, J., Li, Z., Huang, P., 2015. miR-410 enhanced hESC-derived pancreatic endoderm transplant to alleviate gestational diabetes mellitus. Journal of Molecular Endocrinology 55(3):219–229.

[87] Chen, Y., Wang, X., Shao, X., 2015. A combination of human embryonic stem cell-derived pancreatic endoderm transplant with LDHA-repressing miRNA can attenuate high-fat diet induced type II diabetes in mice. Journal of Diabetes Research 2015:796912.

[88] Pullen, T.J., da Silva Xavier, G., Kelsey, G., Rutter, G.A., 2011. miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Molecular and Cellular Biology 31(15):3182–3194.

[89] Li, K.K., Pang, J.C., Ching, A.K., Wong, C.K., Kong, X., Wang, Y., et al., 2009. MiR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Human Pathology 40(9):1234–1243.

[90] Liang, D., Zhang, Y., Han, J., Wang, W., Liu, L., Ji, L., et al., 2015. Embryonic stem cell-derived pancreatic endoderm transplant with MCT1-suppressing miR-495 attenuates type II diabetes in mice. Endocrine Journal 62(10):907–920.

[91] Zu, X.L., Guppy, M., 2004. Cancer metabolism: facts, fantasy, and fiction. Biochemical and Biophysical Research Communications 313(3):459–465.

[92] Mathupala, S.P., Ko, Y.H., Pedersen, P.L., 2010. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochimica et Biophysica Acta 1797(6–7):1225–1230.

[93] Ward, P.S., Patel, J., Wise, D.R., Abdel-Wahab, O., Bennett, B.D., Coller, H.A., et al., 2010. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxoglutarate. Cancer Cell 17(3):225–234.

[94] Janeway, K.A., Kim, S.Y., Lodish, M., Nose, V., Rustin, P., Gaal, J., et al., 2011. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proceedings of the National Academy of Sciences of the United States of America 108(1):314–318.
[96] Linehan, W.M., Rouault, T.A., 2013. Molecular pathways: fumarate hydratase-deficient kidney cancer — targeting the Warburg effect in cancer. Clinical Cancer Research 19(13):3345–3352.

[97] Moreadith, R.W., Lehninger, A.L., 1984. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)H-dependent malic enzyme. Journal of Biological Chemistry 259(10):6215–6221.

[98] Chowdhury, R., Yeoh, K.K., Tian, Y.M., Hiltlengaus, L., Bagg, E.A., Rose, N.R., et al., 2011. The oncometabolite 2-hydroxylglutarate inhibits histone lysine demethylases. EMBO Reports 12(5):463–469.

[99] Li, P., Jiao, J., Gao, G., Prabhakar, B.S., 2012. Control of mitochondrial activity by miRNAs. Journal of Cellular Biochemistry 113(4):1104–1110.

[100] Ilaria, D., Marco, C., Elisa, D.P., Giulia, B., Massimo, D., Marta, P., 2015. Antioxidant mechanisms and ROS-related MicroRNAs in cancer stem cells. Oxidative Medicine and Cellular Longevity 2015:425708.

[101] Tanaka, H., Sasayama, T., Tanaka, K., Nakamizo, S., Nishihara, M., Mizukawa, K., et al., 2013. MicroRNA-183 upregulates HIF-1alpha by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells. Journal of Neuro-Oncology 111(3):273–283.

[102] Puissegur, M.P., Masure, N.M., Bertero, T., Pradelli, L., Grosso, S., Robbe-Sermesant, K., et al., 2011. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death and Differentiation 18(3):465–478.

[103] Shi, Q., Gibbons, G.E., 2011. Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. Journal of Neurochemistry 118(3):440–448.

[104] Aschrafi, A., Schwechter, A.D., Mameza, M.G., Natera-Naranjo, O., Gioio, A.E., Kaplan, B.B., 2008. MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 28(47):12581–12590.

[105] Jung, K.A., Lee, S., Kwak, M.K., 2017. NFE2L2/NRF2 activity is linked to transcriptional activity. Genes & Development 15(20):2675.

[106] Rodriguez-Enriquez, S., Juarez, O., Rodriguez-Zavala, J.S., Moreno-Sanchez, R., 2001. Multisite control of the Crabtree effect in ascites hepatoma cells. European Journal of Biochemistry 268(8):2512–2519.

[107] Semenza, G.L., 2012. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends in Pharmacological Sciences 33(4):207–214.

[108] Rahman, P.C., Hirota, K., Semenza, G.L., 2001. FH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes & Development 15(20):2675–2686.

[109] Kulshresththa, R., Ferracin, M., Wojcik, S.E., Garzon, R., Alder, H., Agostino-Perez, F.J., et al., 2007. A microRNA signature of hypoxia. Molecular and Cellular Biology 27(5):1859–1867.

[110] Keith, B., Johnson, R.S., Simon, M.C., 2012. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nature Reviews Cancer 12(1):9–22.

[111] Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., et al., 2000. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes & Development 14(4):391–396.

[112] Wiesener, M.S., Munchenbagen, P.M., Berger, I., Morgan, N.V., Roigas, J., Schwartz, A., et al., 2001. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Research 61(13):5215–5222.

[113] Shackelford, D.B., Vasquez, D.S., Corbeil, J., Wu, S., Leblanc, M., Wu, C.L., et al., 2009. mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proceedings of the National Academy of Sciences of the United States of America 106(27):11137–11142.

[114] Bernardi, R., Guernah, I., Jin, D., Grisendi, S., Alimonti, A., Teruya-Feldstein, J., et al., 2006. PML inhibits HIF-1alpha translation and neo-angiogenesis through repression of mTOR. Nature 442(7104):779–785.

[115] Trugayolas, J., Lei, K., Hurley, R.L., Manning, B.D., Reiling, J.H., Hafen, E., et al., 2004. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes & Development 18(23):2983–2994.

[116] Lim, J.H., Lee, E.S., You, H.J., Lee, J.W., Park, J.W., Chun, Y.S., 2004. Ras-dependent induction of HIF-1alpha785 via the Raf/MEK/ERK pathway: a novel mechanism of Ras-mediated tumor promotion. Oncogene 23(58):9427–9431.

[117] Jiang, B.H., Agani, F., Passantini, A., Semenza, G.L., 1997. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Research 57(23):5328–5335.

[118] Courtnay, R., Ngo, D.C., Malik, N., Verkeris, K., Tortorella, S.M., Karagiannis, T.C., 2015. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Molecular Biology Reports 42(4):841–851.

[119] Laugher, E., Taghavi, P., Chiles, K., Mahon, P.C., Semenza, G.L., 2001. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Molecular and Cellular Biology 21(12):3995–4004.

[120] Luo, W., Hu, H., Chang, R., Zhong, J., Knelab, M., O’Meally, R., et al., 2011. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145(5):732–744.

[121] Kaelin Jr., W.G., Ratcliffe, P.J., 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Molecular Cell 30(4):393–402.

[122] Gustafsson, M.V., Zheng, X., Pereira, T., Gradin, K., Jin, S., Lundkvist, J., et al., 2005. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Developmental Cell 9(5):617–628.

[123] Kaidi, A., Williams, A.C., Paraskeva, C., 2007. Interaction between betacatenin and HIF-1 promotes cellular adaptation to hypoxia. Nature Cell Biology 9(2):210–217.

[124] Yeung, S.J., Han, J., Lee, M.H., 2008. Roles of p53, MYC and HIF-1 in regulating glycolysis — the seventh hallmark of cancer. Cellular and Molecular Life Sciences 65(24):3981–3999.

[125] Fukuda, R., Zhang, H., Kim, J.W., Shimoda, L., Dang, C.V., Semenza, G.L., 2007. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129(1):111–122.

[126] Sutendra, G., Dromparis, P., Kinnaird, A., Stenson, T.H., Haromy, A., Parker, J.M., et al., 2013. Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene 32(13):1638–1650.

[127] Majmundar, A.J., Wong, W.J., Simon, M.C., 2010. Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell 40(2):294–309.

[128] Zhao, F., Zhan, H., Knut, T.V., Tong, X., Gruber, J.J., Swider, C.R., et al., 2010. Imitatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprogramming. Oncogene 29(20):2962–2972.

[129] Nallamshetty, S., Chan, S.Y., Loscalzo, J., 2013. Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radical Biology & Medicine 64:20–30.
Azzouzi, H.E., Leptidis, S., Doevendans, P.A., De Windt, L.J., 2015. Hypoxia-induced factor 1alpha downregulates miR-17/20a directly targeting p21 and STAT3: a role in myeloid leukemic cell differentiation. Cell Death & Differentiation 20(3): 406–418.

Chakravarthi, B.V., Pathi, S.S., Goswami, M.T., Cieslik, M., Zheng, H., Dale, A.L., et al., 2015. MicroRNA-135b regulates ERalpha, AR and HIF1AN expression of Clinical Endocrinology and Metabolism 97(8): E1515–E1523.

Kelly, T.J., Souza, A.L., Clish, C.B., Puigserver, P., 2011. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Molecular and Cellular Biology 31(13):2636–2706.

Johnson, R.F., Perkins, N.D., 2012. Nuclear factor-kappaB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends in Biochemical Sciences 37(8): 317–324.

Bartoszewska, S., Kochan, K., Piotrowski, A., Kamysz, W., Ochocka, R.J., 2015. The natural inhibitor of DNA topoisomerase I, poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Molecular Cell 42(4): 489–499.

Lee, Y.P., Kang, M., Harwig, A., Herrera-Carrillo, E., Jongejan, A., van Kampen, A., et al., 2015. Mechanistic insights on the dicer-independent AGO2-mediated processing of Argonases. RNA Biology 12(1):92–100.

Chen, T., Yao, L.Q., Shi, Q., Ren, Z., Ye, L.C., Xu, J.M., et al., 2014. MicroRNA-31 contributes to colorectal cancer development by targeting factor inhibiting HIF-1alpha (FIH-1). Cancer Biology & Therapy 15(5):516–523.

Yuan, Q., Gao, W., Liu, B., Ye, W., 2014. Upregulation of miR-184 enhances the malignant biological behavior of human glioma cell line A172 by targeting FIH-1. Cellular Physiology and Biochemistry 34(4):1125–1136.

Peng, H., Hamaanaka, R.B., Katsnelson, J., Hao, L.L., Yang, W., Chandel, N.S., et al., 2012. MicroRNA-31 targets FIH-1 to positively regulate corneal epithelial glycolen metabolism. The FASEB Journal 26(8):3140–3147.

Ghost, A.K., Shanafelt, T.D., Cimmino, A., Taccioli, C., Vollini, S., Liu, C.G., et al., 2009. Aberrant regulation of pHL levels by microRNA promotes the HIF/V EGFr axis in CLL B cells. Blood 113(22):5568–5574.

Yue, J., Guan, J., Wang, X., Zhang, L., Yang, Z., Ao, G., et al., 2013. MicroRNA-206 is involved in hypoxia-induced pulmonary hypertension targeting of the HIF-1alpha/Fih-1 pathway. Laboratory Investigation 93(7):748–759.
multiple genes essential for the survival of KRAS-mutant cells. Oncotarget 5(17):7635–7650.

[202] Jin, X., Sun, Y., Yang, H., Li, J., Yu, S., Chang, X., et al., 2015. Deregulation of the MiR-193b-KRAS axis contributes to impaired cell growth in pancreatic cancer. PloS One 10(4):e0125515.

[203] Hiraki, M., Nishimura, J., Takahashi, H., Wu, X., Takahashi, Y., Miyo, M., et al., 2015. Concurrent targeting of KRAS and AKT by MiR-4689 is a novel treatment against mutant KRAS colorectal cancer. Molecular Therapy Nucleic Acids 4.e231.

[204] Jiao, L.R., Frampton, A.E., Jacob, J., Pellegrino, L., Krell, J., Giamas, G., et al., 2014. MicroRNA-33b mapping the functional domains involved in down-regulation of the c-Myc target genes. Journal of Biological Chemistry 285(10):7324–7333.

[205] Anastasiou, D., Poulogiannis, G., Asara, J.M., Boxer, M.B., Jiang, J.K., Donnell, K.A., et al., 2009. c-Myc is dispensable for motility in 3T3 fibroblasts requires at least two cooperating oncogenes. Nature 435(7043):828–833.

[206] Lal, A., Navarro, F., Maher, C.A., Maliszewski, L.E., Yan, N., O’Day, E., et al., 2009. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3’UTR microRNA recognition elements. Molecular Cell 35(5):610–625.

[207] Zhang, Y., Kim, J., Lee, J.H., Iyer, V.R., 2008. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One 3(3):e1798.

[208] Lin, F., Ding, R., Zheng, S., Xing, D., Hong, W., Zhou, Z., et al., 2014. Decrease expression of microRNA-744 promotes cell proliferation by targeting c-Myc in human hepatocellular carcinoma. Cancer Cell International 14:58.

[209] Lin, Y., Challagundla, K.B., Sun, X.X., Zhang, Q., Dai, M.S., 2015. MicroRNA-130a associates with ribosomal protein L11 to suppress c-Myc expression in response to UV irradiation. Oncotarget 6(2):1101–1114.

[210] Chung, H.J., Levens, D., 2005. c-Myc expression: keep the noise down! Molecular and Cellular Biology 57(6):2378–2389.

[211] Fan, Y., Dickman, K.G., Zong, W.X., 2010. Akt and c-Myc differentially accelerates cell growth and invasion by targeting c-Myc in human gastric carcinoma cells. Oncology Reports 32(3):951–956.

[212] Land, H., Parada, L.F., Weinberg, R.A., 1983. Tumorigenic conversion of normal human keratinocytes to squamous cell carcinoma. Nature 304(5927):596–599.

[213] He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D., Sampson, V.B., Rong, N.H., Han, J., Yang, Q., Aris, V., Soteropoulos, P., et al., 2009. Mice lacking Myc develop normally but develop a spectrum of tumors when irradiated. Nature 435(7043):828–833.

[214] Sampson, V.B., Rong, N.H., Han, J., Yang, Q., Aris, V., Soteropoulos, P., et al., 2007. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Research 67(20):9762–9770.

[215] He, L., Thomson, J.M., Hemann, M.T., Hernandez-Monge, E., Mu, D., Goodson, S., et al., 2005. A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833.

[216] Bui, T.V., Mendell, J.T., 2010. Myc: master of microRNAs. Genes & Cancer 1(4):566–575.

[217] Chang, T.C., Zeltsel, L.R., Hwang, H.W., Chivukula, R.R., Wentzel, E.A., Dewe, M., et al., 2009. Lin-28B transcription is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America 106(10):3384–3389.

[218] Sampson, V.B., Rong, N.H., Han, J., Yang, Q., Aris, V., Soteropoulos, P., et al., 2007. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Research 67(20):9762–9770.

[219] He, L., Thomson, J.M., Hemann, M.T., Hernandez-Monge, E., Mu, D., Goodson, S., et al., 2005. A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833.

[220] Fan, Y., Dickman, K.G., Zong, W.X., 2010. Akt and c-Myc differentially accelerates cell growth and invasion by targeting c-Myc in human gastric carcinoma cells. Oncology Reports 32(3):951–956.

[221] Lal, A., Navarro, F., Maher, C.A., Maliszewski, L.E., Yan, N., O’Day, E., et al., 2009. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3’UTR microRNA recognition elements. Molecular Cell 35(5):610–625.

[222] Lin, F., Ding, R., Zheng, S., Xing, D., Hong, W., Zhou, Z., et al., 2014. Decrease expression of microRNA-744 promotes cell proliferation by targeting c-Myc in human hepatocellular carcinoma. Cancer Cell International 14:58.

[223] Lin, Y., Challagundla, K.B., Sun, X.X., Zhang, Q., Dai, M.S., 2015. MicroRNA-130a associates with ribosomal protein L11 to suppress c-Myc expression in response to UV irradiation. Oncotarget 6(2):1101–1114.

[224] Yang, X., Cai, H., Liang, Y., Chen, L., Wang, X., Si, R., et al., 2015. Inhibition of c-Myc by let-7b mimics multidrug resistance in gastric cancer cells. Oncology Reports 33(4):1723–1730.

[225] Ting, Y., Medina, D.J., Strair, R.K., Schara, D.G., 2010. Differentiation-associated miR-22 represses Max expression and inhibits cell cycle progression. Biochemical and Biophysical Research Communications 394(3):606–611.

[226] Wang, F., Xia, J., Wang, N., Zong, H., 2013. miR-145 inhibits proliferation and invasion of esophageal squamous cell carcinoma in part by targeting c-Myc. Oncology 36(12):754–758.

[227] Lal, A., Navarro, F., Maher, C.A., Maliszewski, L.E., Yan, N., O’Day, E., et al., 2009. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3’UTR microRNA recognition elements. Molecular Cell 35(5):610–625.

[228] Liao, J.M., Hu, L., 2011. Autoregulatory suppression of c-Myc by miR-185-3p. Journal of Biological Chemistry 286(39):33901–33909.

[229] Han, H., Sun, D., Li, W., Shen, H., Zhu, Y., Li, C., et al., 2013. A c-Myc-MicroRNA functional feedback loop affects hepatocarcinogenesis. Hepatology 57(6):2378–2389.

[230] Xu, H., He, J.H., Xiao, Z.D., Zhang, Q.Q., Chen, Y.Q., Zhou, H., et al., 2010. Liver-enriched transcription factors regulate microRNA-122 that targets CUTF1 during liver development. Hepatology (Baltimore, Md) 52(4):1431–1442.

[231] Coulouarn, C., Factor, V.M., Andersen, J.B., Durink, M.E., Thorgerisson, S.S., 2009. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatitis phenotype and gain of metastatic properties. Oncogene 28(40):3526–3536.

[232] Wang, B., Hsu, S.H., Wang, X., Kutay, H., Bid, H.K., Yu, J., et al., 2014. Reciprocal regulation of microRNA-122 and c-Myc in hepatocellular cancer: role of E2F1 and transcription factor dimerization partner 2. Hepatology 59(2):555–566.

[233] O’Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V., Mendell, J.T., 2005. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843.

[234] Nadiminty, N., Tummala, R., Lou, W., Zhu, Y., Zhang, J., Chen, X., et al., 2012. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. Journal of Biological Chemistry 287(2):1527–1537.

[235] Chang, T.C., Zeltsel, L.R., Hwang, H.W., Chivukula, R.R., Wentzel, E.A., Dewe, M., et al., 2009. Lin-28B transcription is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America 106(10):3384–3389.
[240] Xu, X., Chen, W., Miao, R., Zhou, Y., Wang, Z., Zhang, L., et al., 2015. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway. Oncotarget 6(6):3988–4004.

[241] Sachedeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al., 2009. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America 106(9):3207–3212.

[242] Qian, J., Zhang, Z., Ge, Q., Duan, X., Ma, F., et al., 2011. The full-length transcripts and promoter analysis of intergenic microRNAs in Drosophila melanogaster. Genomics 97(5):294–303.

[243] Schultz, J.H., Horn, S., Ott, T., Samans, B., Heukamp, L.C., Ellers, U.C., et al., 2008. MYCN regulates oncogenic MicroRNAs in neuroblastoma. International Journal of Cancer 122(3):699–704.

[244] Aceto, N., Sausgruber, N., Brinkhaus, H., Gaidatzis, D., Martiny-Baron, G., Mazzaro, G., et al., 2012. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nature Medicine 18(4):529–537.

[245] Chang, T.C., Yu, D., Lee, Y.S., Wentzel, E.A., Arking, D.E., West, K.M., et al., 2008. Widespread microRNA repression by Muc contributes to tumorigenesis. Nature Genetics 40(1):43–50.

[246] Sander, S., Bullinger, L., Klapproth, K., Kestler, H.A., Barth, T.F., et al., 2008. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112(10):4022–4021.

[247] Koh, C.M., Iwata, T., Zheng, Q., Bethel, C., Yegnasubramanian, S., De Marzo, A.M., 2011. MYC enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget 2(9):689–683.

[248] Rothenbühl, S., Tschan, M.P., Federonzi, E.A., Jaggi, R., Feyer, M.F., Gugger, M., et al., 2012. MicroRNA-29b is involved in the Src-14D signaling pathway and is dysregulated in human lung adenocarcinoma. Oncogene 31(38):4221–4232.

[249] Lin, C.H., Jackson, A.L., Guo, J., Linsley, P.S., Eisenman, R.N., 2009. Micro-regulated microRNAs attenuate embryonic stem cell differentiation. The EMBO Journal 28(20):3157–3170.

[250] Zhang, L., Deng, T., Li, X., Liu, H., Zhou, H., Ma, J., et al., 2010. microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network. Carcinogenesis 31(4):559–566.

[251] Khew-Goodall, Y., Goodall, G.J., 2010. Myc-modulated miR-9 makes more “Akt-energy” metabolism interactions and oncogenesis. Seminars in Cancer Biology 19(1):25–31.

[252] Guo, C., Sah, J.F., Beard, L., Willson, J.K., Markowitz, S.D., Guda, K., 2008. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes, Chromosomes and Cancer 47(11):939–946.

[253] Zhang, G.M., Bao, C.Y., Wan, F.N., Cao, D.L., Qin, X.J., Zhang, H.L., et al., 2015. MicroRNA-302a suppresses tumor cell proliferation by inhibiting AKT in prostate cancer. PLoS One 10(4):e0124410.

[254] Yang, B., Guo, Q., Nan, X.X., Wang, Z., Yin, Z., Yi, L., et al., 2015. Micro-ribonucleic acid 29b inhibits cell proliferation and invasion and enhances cell apoptosis and chemotherapy effects of cisplatin via targeting of DNM3b and AKT3 in prostate cancer. OncoTargets and Therapy 8:657–565.

[255] Noguchi, S., Mori, T., Hoshino, Y., Maruo, K., Yamada, N., Kitade, Y., et al., 2011. MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells. Cancer Letters 307(2):211–220.

[256] Que, T., Song, Y., Liu, Z., Zheng, S., Long, H., Li, Z., et al., 2015. Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1. Oncogene 34(38):4952–4963.

[257] Rathod, S.S., Rani, S.B., Khan, M., Muzumdar, D., Shiras, A., 2014. Tumor suppressive microRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways. FEBS Open Bio 4:485–495.

[258] Sarbassov, D.D., Guertin, D.A., Ali, S.M., Sabatini, D.M., 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101.

[259] Iorio, M.V., Casalini, P., Piovani, C., Di Leva, G., Merlo, A., Trizzi, T., et al., 2009. microRNA-205 regulates HER3 in human breast cancer. Cancer Research 69(6):2195–2200.

[260] Hamano, R., Miyata, H., Yamashita, M., Kurokawa, Y., Hara, J., Moon, J.H., et al., 2011. Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway. Clinical Cancer Research 17(9):3029–3038.

[261] Al-Khalaf, H.H., Abouessekra, A., 2014. MicroRNA-141 and microRNA-146b-5p inhibit the prometastatic mesenchymal characteristics through the RNA-binding protein AUF1 targeting the transcription factor ZEB1 and the protein kinase Akt. Journal of Biological Chemistry 289(45):31433–31447.

[262] Alesi, D.R., James, S.R., Downes, C.P., Holmes, A.B., Gaffney, P.R., Reese, C.B., et al., 1997. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase CAlphla. Current Biology 7(4):261–269.

[263] Liao, Y., Hung, M.C., 2010. Physiological regulation of Akt activity and stability. American Journal of Translational Research 2(1):19–42.
Yuan, Y., Du, W., Wang, Y., Xu, C., Wang, J., Zhang, Y., et al., 2015. Suppression of AKT expression by miR-153 produced anti-tumor activity in lung cancer. International Journal of Cancer 136(6):1333–1340.

Wu, Z., He, B., He, J., Mao, X., 2013. Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. The Prostate 73(6):596–604.

Zhou, X., Hu, Y., Dai, L., Wang, Y., Zhou, J., Wang, W., et al., 2014. MicroRNA-7 inhibits tumor metastasis and reverses epithelial-mesenchymal transition through AKT/ERK1/2 inactivation by targeting EGFRI in epithelial ovarian cancer. PLoS One 9(5):e86718.

Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinsion, M., et al., 2008. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research 68(10):3566–3572.

Giles, K.M., Barker, A., Zhang, P.M., Epis, M.R., Leedman, P.J., 2011. MicroRNA regulation of growth factor receptor signaling in human cancer cells. Methods in Molecular Biology 676:147–163.

Cully, M., You, H., Levine, A.J., Mak, T.W., 2006. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Reviews Cancer 6(3):184–192.

Tumaneng, K., Schlegelmilch, K., Russell, R.C., Yimlamai, D., Basnet, H., Kato, M., Putta, S., Wang, M., Yuan, H., Lanting, L., Nair, I., et al., 2009. TGF-β signaling through AKT/ERK1/2 inactivation by targeting EGFR in epithelial ovarian cancer. PLoS One 9(5):e96718.

Li, Y., Dai, D., Lu, Q., Fei, M., Li, M., Wu, X., 2013. Sirt2 suppresses glioma cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting PTEN. Tumour Biology 36(6):4747–4753.

Huse, J.T., Brennan, C., Hambardzumyan, D., Wee, B., Pena, J., Rouhanifard, S.H., et al., 2009. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes & Development 23(11):1327–1337.

Small, E.M., O’Rourke, J.R., Moresi, V., Sutherland, L.B., McAnally, J., Gerard, R.D., et al., 2010. Regulation of P3-kinase/Akt signaling by muscle-enriched microRNA-486. Proceedings of the National Academy of Sciences of the United States of America 107(9):4218–4223.

Li, Y.N., Dai, D., Lu, Q., Fei, M., Li, M., Wu, X., 2013. Sirt2 suppresses glioma cell growth through targeting NF-kB–miR-21 axis. Biochemical and Biophysical Research Communications 441(3):661–667.

Palumbo, T., Faucc, F.R., Azevedo, M., Xekouki, P., Iliopoulos, D., Stratakis, C.A., 2013. Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomamotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene 32(13):1651–1659.

Fornari, F., Milazzo, M., Chicco, P., Negrini, M., Marasco, E., Capranico, G., Rouhanifard, S.H., et al., 2012. microRNA-7 inhibits microRNA-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Research 72(1):228–237.

Yue, M., Yao, S., Hu, M., Li, W., Hao, T., Zhou, F., et al., 2014. HIV-1 Nef and KSHV oncogene K1 synergistically promote angiogenesis by inducing cellular miR-718 to regulate the PTEN/AKT/mTOR signaling pathway. Nucleic Acids Research 42(15):9862–9879.

Xie, Q., Yan, Y., Huang, Z., Zhong, X., Huang, L., 2014. MicroRNA-221 targeting PI3-K/Akt signaling axis induces cell proliferation and BCNU resistance in human glioblastoma. Neuropathology 34(4):455–464.

Wang, X., Zhang, X., Ren, X.P., Chen, J., Liu, H., Yang, J., et al., 2010. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation 122(13):1308–1318.

Liu, L., Jiang, Y., Zhang, H., Greenlee, A.R., Han, Z., 2010. Overexpressed miR-494 down-regulates PTEN gene expression in cells transformed by anti-angiogenesis. Life Sciences 86(5–6):192–198.

Cioffi, J.A., Yue, W.Y., Mendlinda-Loffredo, S., Hansen, K.R., Wackym, P.A., Hansen, M.R., 2010. MicroRNA-21 overexpression contributes to vestibular schwannoma cell proliferation and survival. Otolgy & Neurotology 31(9):1455–1462.

Qadir, X.V., Han, C., Lu, D., Zhang, J., Wu, T., 2014. miR-185 inhibits hepatocellular carcinoma growth by targeting the DNM1T/PTEN/Akt pathway. American Journal of Pathology 184(8):2355–2364.

Glass, C., Singla, D.K., 2011. ES cells overexpressing microRNA-1 attenuate apoptosis in the injured myocardium. Molecular and Cellular Biochemistry 357(1–2):135–141.

Sachdeva, M., Wu, H., Pu, P., Huang, L., Trieu, V., Mo, Y.Y., 2011. MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene 30(7):822–831.

Zhu, G., Chai, J., Ma, L., Duan, H., Zhang, H., 2013. Downregulated microRNA-32 expression induced by high glucose inhibits cell cycle progression via PTEN upregulation and Akt inactivation in bone marrow-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications 433(4):526–531.

Roccaro, A.M., Sacco, A., Chen, C., Runnels, J., Leleu, X., Azab, F., et al., 2009. microRNA expression in the biology, prognosis, and therapy of Waldenstrom macroglobulinemia. Blood 113(18):4391–4402.

Kaper, F., Dornhoefner, N., Giaccia, A.J., 2006. Mutations in the PI3K/PTEN/ TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. Cancer Research 66(3):1561–1569.

Moon, K.S., Jung, S., Seo, S.K., Jung, T.Y., Kim, I.Y., Ryu, H.H., et al., 2007. Cystic vestibular schwannomas: a possible role of matrix metalloproteinase-2 in cyst development and unfavorable surgical outcome. Journal of Neurosurgery 106(5):866–871.

Liu, Y., Lai, L., Chen, Q., Song, Y., Xu, S., Ma, F., et al., 2012. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. The Journal of Immunology 188(11):5500–5510.

Bai, H., Xu, R., Cao, Z., Wei, D., Wang, C., 2011. Involvement of miR-21 in resistance to daunorubicin by regulating PTEN expression in the leukemia K562 cell line. FEBS Letters 585(2):402–408.

Zhang, L., Zhang, S., Yao, J., Lowery, F.J., Zhang, Q., Huang, W.C., et al., 2015. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527(7576):100–104.

Guettin, D.A., Sabatini, D.M., 2007. Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22.

Yeckes, J.L., Manning, B.D., 2011. mTOR links oncogenic signaling to tumor cell metabolism. Journal of Molecular Medicine (Berlin) 89(3):221–238.

Brugarskas, J.B., Vazquez, F., Reddy, A., Sellers, W.R., Kaelin Jr., W.G., 2003. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4(2):147–158.

www.molecularmetabolism.com
Sun, Q., Chen, X., Ma, J., Peng, H., Wang, F., Zha, X., et al., 2011. Mammalian target of rapamycin up-regulation of pyruvate kinase isozyme type M2 is critical for aerobic glycolysis and tumor growth. Proceedings of the National Academy of Sciences of the United States of America 108(10):4129–4134.

Zha, X., Wang, F., Wang, Y., He, S., Jing, Y., Wu, X., et al., 2011. Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis. Cancer Research 71(1):13–18.

Buller, C.L., Loberg, R.D., Fan, M.H., Zhu, Q., Park, J.L., Vesely, E., et al., 2010. A GSK-3/3TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. American Journal of Physiology Cell Physiology 295(3):C836–C843.

Thomas, G.V., Tran, C., Mellilhoff, I.K., Welsbie, D.S., Chan, E., Fueger, B., et al., 2006. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nature Medicine 12(1):122–127.

Land, S.C., Tee, A.R., 2007. Hypoxia-inducible factor 1alpha is regulated by hypoxia-mediated antioxidant response. Molecular Cell 34(6):663–673.

Vadlakonda, L., Dash, A., Pasupuleti, M., Anil Kumar, K., Reddanna, P., 2013. p53 regulates mitochondrial respiration. The International Journal of Biochemistry & Cell Biology 59:167–181.

Valadkonda, L., Dash, A., Pasupuleti, M., Anil Kumar, K., Reddanna, P., 2013. The paradox of akt-mTOR intertactions. Frontiers in Oncology 3:165.

Sano, H., Eguez, L., Teruel, M.N., Fukuda, M., Chuang, T.D., Chavez, J.A., et al., 2010. Phosphate-activated glutaminase (GLS2), a p53-induced regulator of glutamine metabolism and reactive oxygen species. Journal of Cellular Physiology 227(2):867–876.

Fang, Y., Xue, J.L., Shen, Q., Chen, J., Tian, L., 2012. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology 55(6):1852–1862.

Webster, R.J., Giles, K.M., Price, K.J., Zhang, P.M., Matlick, J.S., Leedman, P.J., 2009. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. Journal of Biological Chemistry 284(9):5731–5741.

Lin, S., Shao, N.N., Fan, L., Ma, X.C., Pu, F.F., Shao, Z.W., 2014. Effect of microRNA-101 on proliferation and apoptosis of human osteosarcoma cells by targeting mTOR. Journal of Huazhong University of Science and Technology — Medical Sciences 34(6):889–895.

Chen, K., Fan, W., Wang, X., Ke, X., Wu, G., Hu, C., 2012. MicroRNA-101 mediates the suppressive effect of laminar shear stress on mTOR expression in vascular endothelial cells. Biochemical and Biophysical Research Communications 427(1):138–142.

Liu, P., Wilson, M.J., 2012. miR-520c and miR-373 upregulate MMP9 expression by targeting mTOR and SIRT1, and activate the Ras/Raf/MEK/Erk signaling pathway and NF-kappaB factor in human fibrosarcoma cells. Journal of Cellular Physiology 227(2):847–856.

Vaksmann, O., Stavnes, H.T., Kaern, J., Trope, C.G., Davidson, B., Reich, R., 2011. miRNA profiling along tumour progression in ovarian carcinoma. Journal of Cellular and Molecular Medicine 15(7):1593–1602.

Du, J., Liu, S., He, J., Liu, X., Qu, Y., Yan, W., et al., 2015. MicroRNA-451 regulates stemness of side population cells via P3K/Akt/mTOR signaling pathway in multiple myeloma. Oncotarget.

Feng, Z., Levine, A.J., 2010. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends in Cell Biology 20(7):427–434.

Matoba, S., Kang, J.G., Patino, W.D., Wragg, A., Boehm, M., Gavriliou, O., et al., 2006. p53 regulates mitochondrial respiration. Science 312(5780):1650–1653.

Kulawiec, M., Ayyasamy, V., Singh, K.K., 2009. p53 regulates miRNA copy number and miRcoRNA pathway. Journal of Carcinogenesis 8:8.

Bourdou, A., Minai, L., Serre, V., Jais, J.P., Sarzi, E., Aubert, S., et al., 2007. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase p53R2, causes severe mitochondrial DNA depletion. Nature Genetics 39(6):776–780.

Liu, Y., Borchert, G.L., Surazynski, A., Phang, J.M., 2008. Proline oxidase, a p53-induced gene, targets COX-2/PGSE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene 27(53):6729–6737.

Suzuki, S., Tanaka, T., Poyurovsky, M.V., Nagano, H., Mayama, T., Ohkubo, S., et al., 2010. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America 107(16):7461–7466.

Chen, W., Sun, Z., Wang, X.J., Jiang, T., Huang, Z., Fang, D., et al., 2009. Direct interaction between Nr2f2 and p21(Cip1/WAF1) upregulates the Nr2f2-mediated antioxidant response. Molecular Cell 34(6):663–673.

Ma, W., Sung, H.J., Park, J.Y., Matoba, S., Hwang, P.M., 2007. A pivotal role for p53: balancing aerobic respiration and glycolysis. Journal of Bioenergetics and Biomembranes 39(3):243–246.

Stambolic, V., MacPherson, D., Sas, D., Lin, Y., Snow, B., Jang, Y., et al., 2001. Regulation of PTEN transcription by p53. Molecular Cell 1401(2):209–219.

Torres, A., Torres, K., Pesci, A., Ceccaroni, M., Paskiwizki, T., Cassandrini, P., et al., 2012. Deregerulation of miR-100, miR-99a and miR-199b in tissues and plasma coexists with increased expression of mTOR kinase in endometrioid endometrial carcinoma. BMC Cancer 12:369.

Xu, C., Zeng, Q., Xu, W., Jiao, L., Chen, Y., Zhang, Z., et al., 2013. miRNA-100 inhibits human bladder urothelial carcinogenesis by directly targeting mTOR. Molecular Cancer Therapeutics 12(2):207–219.

Sun, J., Chen, Z., Tan, X., Zhou, F., Tan, F., Gao, Y., et al., 2013. MicroRNA-99a/100 promotes apoptosis by targeting mTOR in human esophageal squamous cell carcinoma. Medical Oncology 30(1):411.
Review

[346] Jiang, F., Zhao, W., Zhou, L., Zhang, L., Liu, Z., Yu, D., 2014. miR-222 regulates the cell biological behavior of oral squamous cell carcinoma by targeting PUMA. Oncology Reports 31(3):1255–1262.

[347] Li, J., Donath, S., Li, Y., Qin, D., Prabhakar, B.S., Li, P., 2010. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genetics 6(1):e1000795.

[348] Bensaad, K., Tsuruta, A., Selak, M.A., Vidal, M.N., Nakano, K., Bartrons, R., et al., 2006. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120.

[349] Green, D.R., Chipuk, J.E., 2006. p53 and metabolism: inside the TIGAR. Cell 126(1):30–32.

[350] Chen, S., Li, P., Li, J., Wang, Y., Du, Y., Chen, X., et al., 2015. MI-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting TIGAR. Cellular Physiology and Biochemistry 35(3):997–1007.

[351] Chen, L., Marechal, V., Levine, A.J., Chen, J., 1997. Proteolytic related protein-1 pathway. PLoS Genetics 6(1):e1000795.

[352] Xiao, J., Lin, H., Luo, X., Wang, Z., 2011. miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. The EMBO Journal 30(3):524–532.

[353] Fortunato, O., Boeri, M., Moro, M., Verri, C., Mensah, M., Conte, D., et al., 2014. Mir-660 is downregulated in lung cancer patients and its replacement inhibits lung tumorigenesis by targeting MDM2-p53 interaction. Cell Death & Disease 5:e1564.

[354] Shi, Z.J., Nong, X.Y., Li, Y.R., Sun, H.H., An, P.P., Wang, F., et al., 2014. Mir-509-5p joins the Mdm2/p53 feedback loop and regulates cancer cell growth. Cell Death & Disease 5:e1387.

[355] Avasarala, S., Van Scyoc, M., Wang, J., Sechler, M., Vandervest, K., Brezinski, C., et al., 2013. hsa-miR29b, a critical downstream target of non-canonical Wnt signaling, plays an anti-proliferative role in non-small cell lung cancer cells via targeting MDM2 expression. Biology Open 2(7):675–685.

[356] Zhang, J., Sun, G., Zhang, Z., Ge, S., Han, Z.G., Chen, W.T., 2013. Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epidermal cancers by impairing the MDM2-p53 feedback loop. Oncogene 32(1):61–69.

[357] Braun, C.J., Zhang, X., Saveliyeva, I., Wolff, S., Moll, U.M., Schepeler, T., et al., 2008. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Research 68(24):10094–10104.

[358] Suzuki, H.I., Yamasaki, K., Sugimoto, K., Iwamoto, T., Kato, S., Miyazono, K., 2009. Modulation of microRNA processing by p53. Nature 460(7254):529–533.

[359] Hu, W., Chen, C.S., Wu, R., Zhang, C., Sun, Y., Song, J.S., et al., 2010. Negative regulation of tumor suppressor p53 by microRNA miR-504. Molecular Cell 38(5):680–699.

[360] Wei, D., Li, Y.K., Liu, M., Li, X., Tang, H., 2012. MI-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life 64(8):697–704.

[361] Bommer, G.T., Gerin, I., Feng, Y., Kacorowksi, A.J., Kuick, R., Love, R.E., et al., 2007. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Current Biology 17(15):1298–1307.

[362] Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y., Shenfeld, N., Moskovitz, N., et al., 2007. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Molecular Cell 26(5):731–743.

[363] Ma, S., Tang, K.H., Chan, Y.P., Lee, T.K., Kwan, P.S., Castillo, A., et al., 2010. miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 7(6):694–707.

[364] Girohetti, M., Seux, M., Xie, M.J., Cano, C., Tomasini, R., Gommeaux, J., et al., 2007. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America 104(41):16170–16175.

[365] Jiang, F., Liu, T., He, Y., Yang, Y., Chen, X., Wang, H., et al., 2011. MiR-125b promotes proliferation and migration of type II endometrial carcinoma cells through targeting TP53INP1 tumor suppressor in vitro and in vivo. BMC Cancer 11:425.

[366] Saleh, O.D., Savage, J.E., Cao, L., Soule, B.P., Ly, D., DeGraff, W., et al., 2011. Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PLoS One 6(10):e24429.

[367] Ugalde, A.P., Ramsay, A.J., de la Rosa, J., Varela, I., Marino, G., Cadininiano, J., et al., 2011. Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. The EMBO Journal 30(11):2219–2232.

[368] Chang, C.J., Chao, C.H., Xia, W., Yang, Y.J., Xiong, Y., Li, C.W., et al., 2011. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology 13(3):317–323.

[369] Kim, T., Veronese, A., Pichiorri, F., Lee, T.J., Jeon, Y.J., Volinia, S., et al., 2011. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. Journal of Experimental Medicine 208(5):875–883.

[370] He, L., He, X., Lim, L.P., de Stanchina, E., Xian, Z., Liang, Y., et al., 2007. A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134.

[371] Georges, S.A., Biery, M.C., Kim, S.Y., Guo, J., Chang, A.N., et al., 2008. Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Research 68(24):10105–10112.

[372] Nalls, D., Tang, S.N., Rodova, M., Srivastava, R.K., Shankar, S., 2011. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 6(8):e24099.

[373] Fujita, Y., Kojima, K., Hamada, N., Ohhashi, R., Aka0, Y., Nozawa, Y., et al., 2008. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochemical and Biophysical Research Communications 377(1):114–119.

[374] Corney, D.C., Flesken-Nikitin, A., Godwin, A.K., Wang, W., Nikitin, A.Y., 2007. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Research 67(18):8433–8438.

[375] Pichiorri, F., Suh, S.S., Rocci, A., De Luca, L., Taccioli, C., Santhanam, R., et al., 2010. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18(4):387–391.

[376] Bohlig, L., Friedrich, M., Engeland, K., 2011. miR-34 activates the PANK1-miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins. Nucleic Acids Research 39(2):440–453.

[377] Law, S., Boss, O., Elliott, P.J., Lambert, P.D., 2008. Sirntrons: novel therapeutic targets to treat age-associated diseases. Nature Reviews Drug Discovery 7(10):841–853.

[378] Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., Horio, Y., 2007. Nucleocytoplasmic shuttling of the NAD+−dependent histone deacetylase SIRT1. Journal of Biological Chemistry 282(9):6823–6832.

[379] Canto, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Spiegelman, B.M., Puigserver, P., 2005. Nutrient control of glucose homeostasis through a PGC-1α and SIRT1. Nature 434(7029):113–118.
Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., et al., 2004. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015.

Jager, S., Handschin, C., St-Pierre, J., Spiegelman, B.M., 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proceedings of the National Academy of Sciences of the United States of America 104(29):12017–12022.

Nemoto, S., Fergusson, M.M., Finkel, T., 2004. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306(5704):2105–2106.

Xiong, S., Salazar, G., Patrushev, N., Alexander, R.W., 2011. FoxO1 mediates an autofeedback loop regulating SIRT1 expression. Journal of Biological Chemistry 286(7):5289–5299.

Chen, W.Y., Wang, D.H., Yen, R.C., Luo, J., Wu, W., Baeylin, S.B., 2005. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123(3):437–448.

Ferber, E.C., Peck, B., Delpuech, O., Bell, G.P., East, P., Schulze, A., 2012. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death & Differentiation 18(6):968–979.

Zhang, P., Tu, B., Wang, H., Cao, Z., Tang, M., Zhang, C., et al., 2014. Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proceedings of the National Academy of Sciences of the United States of America 111(29):10684–10689.

Van Meter, M., Kashyap, M., Rezazadeh, S., Geneva, A.J., Morello, T.D., Bou Kheir, T., Futoma-Kazmierczak, E., Jacobsen, A., Krogh, A., Bardram, L., 2011. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Molecular Cancer Therapeutics 10(8):1470–1480.

Menghini, R., Casagrande, V., Martelli, E., Terrinoni, A., Amati, F., et al., 2009. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120(15):1524–1532.

Li, N., Muthusamy, S., Liang, R., Sarojini, H., Wang, E., 2011. Increased expression of miR-199a regulates SIRT1 expression and epithelial to mesenchymal transition in osteosarcoma cells via targeting Sirtuin 1. Oncology Reports 34(1):399–406.

Yamakuchi, M., Ferlito, M., Lowenstein, C.J., 2008. miR-34a repression of SIRT1 regulates apoptosis. Proceedings of the National Academy of Sciences of the United States of America 105(36):13421–13426.

Choi, S.E., Fu, T., Seok, S., Kim, D.H., Yu, E., Lee, K.W., et al., 2013. Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 12(6):1062–1072.

Xu, D., Takeshita, F., Hiro, Y., Fukunaga, S., Kudo, Y., Tamaki, A., et al., 2011. miR-22 represses cancer progression by inducing cellular senescence. The Journal of Cell Biology 193(2):409–424.

Shi, Y., Huang, J., Zhou, J., Liu, Y., Fu, X., Li, Y., et al., 2015. MicroRNA-204 inhibits proliferation, migration, invasion and epithelial-mesenchymal transition in osteosarcoma cells via targeting Sirtuin 1. Oncology Reports 34(1):1187–1194.
MOLECULAR METABOLISM 23 (2019) 98–136 © 2019 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). www.molecularmetabolism.com

Review

[419] Najafi-Shoushtari, S.H., Kristo, F., Li, Y., Shioda, T., Cohen, D.E., Gerszen, R.E., et al., 2010. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328(5985):1566–1569.

[420] Rayner, K.J., Suarez, Y., Davalos, A., Parathath, S., Fitzgerald, M., L., Tamehiro, N., et al., 2010. MicroRNA-33 contributes to the regulation of cholesterol homeostasis. Science 328(5985):1570–1573.

[421] Sharma, A., Diecke, S., Zhang, W.Y., Fan, H., He, C., Mordwinkin, N.M., et al., 2013. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. Journal of Biological Chemistry 288(25): 18439–18447.

[422] Kim, J.K., Noh, J.H., Jung, K.H., Eun, J.W., Bae, H.J., Kim, M.G., et al., 2013. Sirtuin7 oncopgenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology 57(3):1055–1067.

[423] North, B.J., Rosenberg, M.A., Jeganathan, K.B., Hafner, A.V., Michan, S., 2008. The Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C.F., Rothgiesser, K.M., Erener, S., Waibel, S., Luscher, B., Hottiger, M.O., 2010. Kim, H.S., Vassilopoulos, A., Wang, R.H., Lahusen, T., Xiao, Z., Xu, X., et al., 2015. SIRT2 deacetylase regulates autacetylation of p300. Molecular Cell 32(3): 449–455.

[424] Black, J.C., Mosley, A., Kitada, T., Washburn, M., Carey, M., 2008. The International Journal of Biochemistry & Cell Biology 63:41

[425] Cell Death & Differentiation 19(11):1815–1825.

[426] Sundaresan, N.R., Gupta, M., Kim, G., Rajamohan, S.B., Isbaltan, A., Gupta, M.P., 2009. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. Journal of Clinical Investigation 119(9):2758–2771.

[427] Chen, Y., Zhang, J., Lin, Y., Lei, Q., Guan, K.L., Zhao, S., et al., 2011. Tumour suppressor SIRT3 deacylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Reports 12(6):534–541.

[428] Finley, L.W., Haas, A., Desquinet-Dumas, V., Wallace, D.C., Procaccio, V., Gygi, S.P., et al., 2011. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylation activity. PLoS One 6(8):e23295.

[429] Ahm, B.H., Kim, H.S., Song, S., Lee, I.H., Liu, J., Vassilopoulos, A., et al., 2008. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America 105(38):14447–14452.

[429] Someya, S., Yu, W., Hallowes, W.C., Xu, J., Vann, J.M., Leeuwenburgh, C., et al., 2010. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143(3):802–812.

[430] Jing, E., Emanuelli, B., Hirshey, M.D., Boucher, J., Lee, K.Y., Lombard, D., et al., 2011. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proceedings of the National Academy of Sciences of the United States of America 108(35):14608–14613.

[431] Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C.F., Steegborn, C., 2008. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. Journal of Biological Chemistry 38(3): 790–801.

[432] Crocco, P., Montesanto, A., Passarino, G., Rose, G., 2016. Poly...