Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited

Glenn Barnicha and Cédric Troessaertb

\textit{Physique Théorique et Mathématique}
\textit{Université Libre de Bruxelles}
\textit{and}
\textit{International Solvay Institutes}
\textit{Campus Plaine C.P. 231, B-1050 Bruxelles, Belgium}

\textbf{ABSTRACT.} It is shown that the symmetry algebra of asymptotically flat spacetimes at null infinity in 4 dimensions should be taken as the semi-direct sum of supertranslations with infinitesimal local conformal transformations and not, as usually done, with the Lorentz algebra. As a consequence, two dimensional conformal field theory techniques will play as fundamental a role in this context of direct physical interest as they do in three dimensional anti-de Sitter gravity.

aResearch Director of the Fund for Scientific Research-FNRS. E-mail: gbarnich@ulb.ac.be
bResearch Fellow of the Fund for Scientific Research-FNRS. E-mail: ctroessa@ulb.ac.be
In the study of gravitational waves in the early sixties [1, 2], a lot of efforts have been devoted to specifying both local coordinate and global boundary conditions at null infinity that characterize asymptotically flat 4 dimensional spacetimes. The group of non-singular transformations leaving these conditions invariant is the well-known Bondi-Metzner-Sachs group. It consists of the semi-direct product of the group of globally defined conformal transformations of the unit 2-sphere, which is isomorphic to the orthochronous homogeneous Lorentz group, times the abelian normal subgroup of so-called supertranslations.

What seems to have been largely overlooked so far is the fact that, when one focuses on infinitesimal transformations and does not require the associated finite transformations to be globally well-defined, the symmetry algebra is the semi-direct sum of the infinitesimal local conformal transformations of the 2-sphere with the abelian ideal of supertranslations, and now both factors are infinite-dimensional. This is already obvious from the details of the derivation of the asymptotic symmetry algebra by Sachs in 1962 [3].

Let $x^0 = u, x^1 = r, x^2 = \theta, x^3 = \phi$ and $A, B, \cdots = 2, 3$. Following [3] up to notation, the metric $g_{\mu\nu}$ of an asymptotically flat spacetime can be written in the form

$$ds^2 = e^{2\beta} \frac{V}{r} du^2 - 2e^{2\beta} dudr + g_{AB}(dx^A - U^A du)(dx^B - U^B du)$$

where $\beta, V, U^A, g_{AB}(\det g_{AB})^{-1/2}$ are 6 functions of the coordinates, with $\det g_{AB} = r^4 b$ for a function $b(u, \theta, \phi)$. Sachs fixes $b = \sin^2 \theta$, but the geometrical analysis by Penrose [4] suggests to keep it arbitrary throughout the analysis. In order to streamline the derivation below, it turns out convenient to use the parametrization $|b| = \frac{r^4}{4}e^{4\tilde{\phi}}$, which implies in particular that $g^{AB} \partial_\alpha g_{AB} = \partial_\alpha \ln \left(\frac{r^4}{4}e^{4\tilde{\phi}}\right)$.

The fall-off conditions for g_{AB} are

$$g_{AB}dx^A dx^B = r^2 \tilde{\gamma}_{AB} dx^A dx^B + O(r),$$

where the 2-dimensional metric $\tilde{\gamma}_{AB}$ is conformal to the metric of the unit 2-sphere, $\tilde{\gamma}_{AB} = e^{2\varphi} \gamma_{AB}$ and $\gamma_{AB} dx^A dx^B = d\theta^2 + \sin^2 \theta d\phi^2$. In terms of the standard complex coordinates $\zeta = e^{i\phi} \cot \frac{\theta}{2}$, the metric on the sphere is conformally flat, $d\theta^2 + \sin^2 \theta d\phi^2 = P^{-2} d\zeta d\bar{\zeta}$, $P(\zeta, \bar{\zeta}) = \frac{1}{2}(1 + \zeta \bar{\zeta})$. We thus have $\tilde{\gamma}_{AB} dx^A dx^B = e^{2\varphi} d\zeta d\bar{\zeta}$ with $\varphi = \varphi - \ln P$. In the following we denote by \tilde{D}_A the covariant derivative with respect to $\tilde{\gamma}_{AB}$ and by $\tilde{\Delta}$ the associated Laplacian.

In the general case, the remaining fall-off conditions are

$$\beta = O(r^{-2}), \quad U^A = O(r^{-2}), \quad V/r = -2r \partial_u \tilde{\varphi} + \tilde{\Delta} \tilde{\varphi} + O(r^{-1}).$$

The transformations that leave the form of the metric (1) invariant up to a conformal rescaling of g_{AB}, i.e., up to a shift of $\tilde{\varphi}$ by $\tilde{\omega}(u, x^A)$, are generated by spacetime vectors
satisfying
\[\mathcal{L}_\xi g_{rr} = 0, \quad \mathcal{L}_\xi g_{rA} = 0, \quad g^{AB} \mathcal{L}_\xi g_{AB} = 4\bar{\omega}, \]
\[\mathcal{L}_\xi g_{ur} = O(r^{-2}), \quad \mathcal{L}_\xi g_{uA} = O(1), \quad \mathcal{L}_\xi g_{AB} = O(r), \]
\[\mathcal{L}_\xi g_{uu} = -2r\partial_u\bar{\omega} - 2\bar{\omega}\Delta\bar{\varphi} + \bar{\Delta}\bar{\varphi} + O(r^{-1}). \]

The general solution to these equations is
\[\begin{cases}
\xi^u = f, \\
\xi^A = Y^A + I_A, \quad I^A = -f, B \int_r^\infty dr'(\epsilon^{2\beta} g^{AB}), \\
\xi^r = -\frac{1}{2}r(D_A\xi^A - f, B U^B + 2 f\partial_u\bar{\varphi} - 2\bar{\omega}),
\end{cases} \]

with \(\partial_r f = 0 = \partial_r Y \). In addition,
\[\partial_u f = f\partial_u\bar{\varphi} + \frac{1}{2}\psi - \bar{\omega} \iff f = e^{\bar{\varphi}} [T + \frac{1}{2}\int_0^u du' e^{-\bar{\varphi}}(\psi - 2\bar{\omega})], \]

where we use the notation \(\psi = D_A Y^A \) and where \(\partial_u T = 0 = \partial_u Y^A \). Finally \(Y^A \) is required to be a conformal Killing vector of \(\bar{\gamma}_{AB} \).

The Lie algebra \(\mathfrak{bms}_4 \) can be defined as the semi-direct sum of the Lie algebra of conformal Killing vectors \(Y^A \frac{\partial}{\partial x^A} \) of the Riemann sphere with the abelian ideal consisting of functions \(T(x^A) \) on the Riemann sphere. The bracket is defined through \((\hat{Y}, \hat{T}) = [(Y_1, T_1), (Y_2, T_2)]\)
\[\begin{align*}
\hat{Y}^A &= Y_1^B \partial_B Y_2^A - Y_1^B \partial_B Y_2^A, \\
\hat{T} &= Y_1^A \partial_A T_2 - Y_2^A \partial_A T_1 + \frac{1}{2}(T_1 \partial_A Y_2^A - T_2 \partial_A Y_1^A).
\end{align*} \]

Consider then the modified Lie bracket
\[[\xi_1, \xi_2] = [\xi_1, \xi_2] - \delta^0_{\xi_1} \xi_2 + \delta^0_{\xi_2} \xi_1, \]

where \(\delta^0_{\xi_1} \xi_2 \) denotes the variation in \(\xi_2 \) under the variation of the metric induced by \(\xi_1 \), \(\delta^0_{\xi_1} g_{\mu\nu} = \mathcal{L}_{\xi_1} g_{\mu\nu} \).

Let \(I \) be the real line times the Riemann sphere with coordinates \(u, x^A = (\zeta, \bar{\zeta}) \). On \(I \), consider the scalar field \(\bar{\varphi}, \bar{\omega} \) and the vectors fields \(\hat{\xi}(\bar{\varphi}, \bar{\omega}, T, Y) = f \frac{\partial}{\partial u} + Y^A \frac{\partial}{\partial x^A} \), with \(f \) given in (6) and \(Y^A \) an \(u \)-independent conformal Killing vector of the Riemann sphere.

When equipped with the modified bracket, both the vector fields \(\hat{\xi} \) and the spacetime vectors (5) provide a faithful representation of the direct sum of \(\mathfrak{bms}_4 \) with the abelian algebra of conformal rescalings, i.e., the space of elements of the form \((Y, T, \omega) \) where \([(Y_1, T_1, \bar{\omega}_1), (Y_2, T_2, \bar{\omega}_2)] = (\hat{Y}, \hat{T}, \hat{\omega}) \), with \(\hat{Y}, \hat{T} \) as before and \(\hat{\omega} = 0 \).

Depending on the options under consideration, there are then basically two options which define what is actually meant by \(\mathfrak{bms}_4 \).
The first choice consists in restricting oneself to globally well-defined transformations on the unit or, equivalently, the Riemann sphere. This singles out the global conformal transformations, also called projective transformations, and the associated group is isomorphic to \(SL(2, \mathbb{C})/\mathbb{Z}_2 \), which is itself isomorphic to the proper, orthochronous Lorentz group. Associated with this choice, the functions \(T(\theta, \phi) \), which are the generators of the so-called supertranslations, have been expanded into spherical harmonics. This choice has been adopted in the original work by Bondi, van der Burg, Metzner and Sachs and followed ever since, most notably in the work of Penrose and Newman-Penrose \([4, 5]\).

A lot of attention has been devoted to the conformal rescalings and the “edth” operator together with spin-weighted spherical harmonics have been introduced. After attempts to cut this version of the BMS group down to the standard Poincaré group, it has been taken seriously as an invariance group of asymptotically flat spacetimes. Its consequences have been investigated, but we believe that it is fair to say that this version of the BMS group has had only a limited amount of success.

The second choice that we would like to advocate here is motivated by exactly the same considerations that are at the origin of the breakthrough in two dimensional conformal quantum field theories \([6]\). It consists in focusing on local properties and allowing the set of all, not necessarily invertible holomorphic mappings. In this case, Laurent series on the Riemann sphere are allowed. The general solution to the conformal Killing equations is \(Y^\zeta = Y^\zeta(\zeta), Y^\bar{\zeta} = Y^\zeta(\bar{\zeta}) \) and the standard basis vectors are choosen as

\[
l_n = -\zeta^{n+1} \frac{\partial}{\partial \zeta}, \quad \bar{l}_n = -\bar{\zeta}^{n+1} \frac{\partial}{\partial \bar{\zeta}}, \quad n \in \mathbb{Z}
\]

At the same time, let us choose to expand the generators of the supertranslations with respect to

\[
T_{m,n} = \zeta^m \bar{\zeta}^n, \quad m, n \in \mathbb{Z}.
\]

In terms of the basis vectors \(l_l \equiv (l, 0) \) and \(T_{mn} \equiv (0, T_{mn}) \), the commutation relations for the complexified bms\(_4\) algebra read

\[
[l_m, l_n] = (m-n)l_{m+n}, \quad [\bar{l}_m, \bar{l}_n] = (m-n)\bar{l}_{m+n}, \quad [l_m, \bar{l}_n] = 0,
\]

\[
[l_l, T_{m,n}] = (\frac{l+1}{2} - m)T_{m+l,n}, \quad [\bar{l}_l, T_{m,n}] = (\frac{l+1}{2} - n)T_{m+n,l}.
\]

The complexified Poincaré algebra is the subalgebra spanned by the generators

\[
l_{-1}, l_0, l_1, \quad \bar{l}_{-1}, \bar{l}_0, \bar{l}_1, \quad T_{0,0}, T_{1,0}, T_{0,1}, T_{1,1}.
\]

The considerations above apply for all choices of \(\tilde{\varphi} \) which is freely at our disposal. In the original work of Bondi, van der Burg, Metzner and Sachs, and in much of the subsequent work, the choice \(\tilde{\varphi} = -\ln P \) was preferred. From the conformal point of
view, the choice $\tilde{\varphi} = 0$ is interesting as it turns $\tilde{\gamma}_{AB}$ into the standard flat metric on the Riemann sphere.

The consequences of local conformal invariance need to be taken into account when studying representations and our result means that two dimensional conformal field theory techniques should play a major role both in the classical and quantum theory of gravitational radiation. For instance, the representation theory based on the standard BMS group has been discussed in [7] and references therein, while related holographic considerations have appeared in [8, 9]. Furthermore, implications of the supertranslations in the context of asymptotic quantization [10, 11] have already been investigated. It should prove most interesting to extend these considerations to include the local conformal transformations.

A new perspective also arises for the problem of angular momentum in general relativity [12] since the factor algebra of \mathfrak{bms}_4 modulo the abelian ideal of infinitesimal supertranslations is now the infinite-dimensional Virasoro algebra rather than the Lorentz algebra.

Earlier work where the relevance of conformal field theories for asymptotically flat spacetimes at null infinity has been discussed by starting out from the correspondence in the (anti-) de Sitter case includes [13, 14, 15, 16, 17, 18]. In particular, a symmetry algebra of the kind that we have derived has been conjectured in [19].

A motivation for our investigation comes from Strominger’s derivation [20] of the Bekenstein-Hawking entropy for black holes that have a near horizon geometry that is locally AdS_3. More recently, a similar analysis has been applied in the case of an extreme 4-dimensional Kerr black hole [21]. Our hope is to make progress along these lines in the non extreme case. As a first step, we have computed the behavior of Bondi’s news tensor as well as the mass and angular momentum aspects under local conformal transformations in [22], where detailed proofs of all statements of this letter can also be found. The next step consists in the construction of the surface charges, generators and central extensions associated to \mathfrak{bms}_4.

Acknowledgements

The authors thank M. Bañados, G. Compère, G. Giri et, A. Gomberoff, M. Henneaux, C. Martínez, R. Troncoso and A. Virmani for useful discussions. This work is supported in parts by the Fund for Scientific Research-FNRS (Belgium), by the Belgian Federal Science Policy Office through the Interuniversity Attraction Pole P6/11, by IISN-Belgium and by Fondecyt project No. 1085322.
References

[1] H. Bondi, M. G. van der Burg, and A. W. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962) 21.

[2] R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A 270 (1962) 103.

[3] R. K. Sachs, “Asymptotic symmetries in gravitational theories,” Phys. Rev. 128 (1962) 2851–2864.

[4] R. Penrose, “Asymptotic properties of fields and space-times,” Phys. Rev. Lett. 10 (1963), no. 2, 66–68.

[5] E. T. Newman and R. Penrose, “Note on the Bondi-Metzner-Sachs Group,” J. Math. Phys. 7 (1966) 863–870.

[6] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory,” Nucl. Phys. B241 (1984) 333–380.

[7] P. J. McCarthy, “Real and Complex Asymptotic Symmetries in Quantum Gravity, Irreducible Representations, Polygons, Polyhedra, and the A, D, E Series,” Phil. Trans. R. Soc. Lond. A 338 (1992), no. 1650, 271–299.

[8] G. Arcioni and C. Dappiaggi, “Holography in asymptotically flat space-times and the BMS group,” Class. Quant. Grav. 21 (2004) 5655, hep-th/0312186.

[9] G. Arcioni and C. Dappiaggi, “Exploring the holographic principle in asymptotically flat spacetimes via the BMS group,” Nucl. Phys. B674 (2003) 553–592, hep-th/0306142.

[10] A. Ashtekar, “Asymptotic quantization of the gravitational field,” Phys. Rev. Lett. 46 (1981) 573–576.

[11] A. Ashtekar, “Asymptotic Quantization: Based on 1984 Naples Lectures,”. Naples, Italy: Bibliopolis (1987) 107 p. (Monographs and textbooks in physical science, 2).

[12] J. Winicour, General Relativity and Gravitation. 100 Years after the Birth of Albert Einstein., vol. 2, ch. 3. Angular Momentum in General Relativity, pp. 71–93. New York: Plenum, 1980.

[13] E. Witten, “Talk given at Strings ’98.” available at http://online.kitp.ucsb.edu/online/strings98/witten/
[14] L. Susskind, “Holography in the flat space limit,” [hep-th/9901079].

[15] J. Polchinski, “S-matrices from AdS spacetime,” [hep-th/9901076].

[16] J. de Boer and S. N. Solodukhin, “A holographic reduction of Minkowski space-time,” *Nucl. Phys.* **B665** (2003) 545–593, [hep-th/0303006].

[17] S. N. Solodukhin, “Reconstructing Minkowski space-time,” [hep-th/0405252].

[18] M. Gary and S. B. Giddings, “The flat space S-matrix from the AdS/CFT correspondence?,” [0904.3544].

[19] T. Banks, “A critique of pure string theory: Heterodox opinions of diverse dimensions,” [hep-th/0306074].

[20] A. Strominger, “Black hole entropy from near-horizon microstates,” *JHEP* **02** (1998) 009, [arXiv:hep-th/9712251].

[21] M. Guica, T. Hartman, W. Song, and A. Strominger, “The Kerr/CFT Correspondence,” *Phys. Rev.* **D80** (2009) 124008, [0809.4266].

[22] G. Barnich and C. Troessaert, “Aspects of the BMS/CFT correspondence,” [1001.1541].