High-Content Digital Microscopy with Python

Fabrice Salvaire

Abstract—High-Content Digital Microscopy enhances user comfort, data storage and analysis throughput, paving the way to new researches and medical diagnostics. A digital microscopy platform aims at capturing an image of a cover slip, storing information on a file server and a database, visualising the image and analysing its content. We will discuss how the Python ecosystem can provide such software framework efficiently. Moreover this paper will give an illustration of the data chunking approach to manage the huge amount of data.

Index Terms—high-content microscopy, digital microscopy, high-throughput scanner, virtual slide, slide viewer, multi-processing, HDF5, ZeroMQ, OpenGL, data chunking

1 INTRODUCTION

Since early times optical microscopy plays an important role in biology research and medical diagnostic. Nowadays digital microscopy is a natural evolution of the technology that provides many enhancements on user comfort, data storage and analysis throughput. First, in comparison to binocular microscopy where the low light emission intensity of the specimen causes sever stress to the eyes, the digital microscopy monitor display offers greater comfort to the users. Second, the digitization of the output allows to freeze and store information for short to long term storage, to compress the data, and to easily duplicate it, to protect its integrity (by checksum) and its confidentiality (by cryptography). On the other hand, optical microscopy implies conservation of the specimens themselves at low temperature and in the dark. Last, the automation of a high content application provides a considerable scale-up of data processing throughput, thus paving the way to new researches and medical diagnostics.

We will discuss in this paper how the Python ecosystem can provide efficiently a software framework for the digital microscopy. Our discussion will first present the data acquisition method, then we will describe the data storage and finally the image viewer.

2 DATA ACQUISITION

The first challenge of high-content digital microscopy is the quantity of data. Let us first evaluate how large the data is, and enlighten our reader of the reasons of such quantity of data. To reach the required resolution to see the details of a specimen, optical microscopes use objectives magnifying up to the diffraction limit which is about $100 \times$. Nowadays the pixel size for a CCD and sCMOS camera is about $6.5 \mu m$, thus we reach a resolution of $162.5 \mu m$ at a magnification of $40 \times$. Now consider a specimen put on a cover slip: a glass square surface of 18mm wide (we will later relate the support and the specimen by the more generic word slide, which corresponds to a larger glass surface). Consequently to cover this surface at such magnification we have to acquire an area larger than 100000px wide, thus of the order of 10 billion of pixels. This is roughly 300 times larger than the actual largest professional digital camera (36Mpx). In light of foregoing digital microscopy are big data similar to spatial images and involve a software framework similar to the well-known Google Map.

For scientific application, we preferably use monochrome camera so as to avoid the interpolation of a Bayer mosaic. Instead, to capture the entire colour spectrum at the same time, colours are captured sequentially by placing a filter of the colour’s corresponding wave length transmission in front of the camera. These shots are called colour fields of view here. Figure 1 shows the schematic of an application of this acquisition method called an epifluorescence microscope.

A camera like the Andor Neo sCMOS features a sensor of resolution $2560 \times 2160 \text{px}$ and a surface of $416 \times 351 \mu m$. Thus to cover the whole specimen surface we have to capture a mosaic of fields of view of size $43 \times 51 (2193 \text{ tiles})$ using an automated stagger. We will also refer to the fields of view as tiles or images according to the context.

To observe the specimen in several colours, two strategies can be used to acquire the mosaic: one is to acquire a mosaic per colour and the other is to acquire several colours per field of view. Both methods have advantages and drawbacks. One of the differences is the uncertainty that occurs on the registration of the colour fields of view. When capturing several colours per field of view at the same staging position, the relative positioning error is due to the optical path. When capturing a mosaic per colour, the error is also due to the reproducibility of the stagger. On the other hand the accuracy of the tile positions is always due to the stagger precision. So as to perform a field of view registration without black zone in the reconstructed image, we drive the stagger with a sufficient overlapping zone on both directions. Another irregularity on the mosaic is due to the camera alignment error according to the stagger axes that draw a sheared mosaic pattern (figure 2). The shearing...
Fig. 1: Schematic of an epifluorescence microscope. Specimens are labelled with fluorescent molecules so called fluorophores. In this example we are capturing an image for a fluorophore having an excitation wave length in the blue and an emission wave length in the green. The filters are used to restrict the excitation and filter the emission, respectively.

doesn’t have any serious effect on the reconstructed image since it only displaces systematically the fields of view in the mosaic frame.

Fig. 2: Field of View Mosaic showing a sheared effect due to the camera misalignment. The tiles are rotated in the stagger frame but not in the mosaic frame.

All these uncertainties can be studied using fluorescent beads with an appropriate density on the cover slip and an image registration algorithm.

The third dimension of a specimen can be observed using the vertical focus axis of the microscope so as to perform a so called z-stack of images that enlarge the depth of field virtually and thus improve the focus accuracy.

The Neo camera features a standard amplifier-DAC stage with a 12-bit resolution and another stage with a combination of two amplifier-DACs to achieve a 16-bit resolution for high dynamic image. Thus image pixels must be encoded using an unsigned 16-bit integer data type. It means a colour field of view weights 10.5 MB and our mosaic weights 23 GB per colour.

Depending of the intensity dynamic of the specimen and the zero-padding arising from the DAC, most of the pixels can have many zeros on the most significant bits. Therefore, the amount of data can be efficiently reduced using a lossless compression algorithm in conjunction with a bit shuffling to group the zeros together and form long zero sequences in the byte stream.

3 Virtual Slide Format and Storage

We can now define the data structure of an acquisition so called later a virtual slide. A virtual slide is made of a mosaic of fields of view and a set of attributes that constitute the so called slide header. Examples of attributes are a slide identifier, a date of acquisition or a type of assay.

The mosaic is a set of colour fields of view made of a mosaic index \((r,c)\), a stagger position \((x,y,z)\), a colour index \(w\) and an image array of unsigned 16-bit integers.

From this mosaic of field of views, we can imagine to reconstruct the slide image once and for all and produce a giant image, where we could use for this purpose the BigTIFF [BigTIFF] extension to the TIFF format. But if we want to keep raw data without information loss we have to imagine a way to store the original fields of view and process them online. This case is particularly important when the registration matters for the interpretation of the reconstructed image.

The HDF5 [HDF5] library and its h5py [h5py] Python binding are perfectly suited for this purpose. The content of an HDF5 file is self-defined and the library is open source which guaranties a long term access to the data. The structure of an HDF5 file is similar to a file system having folder objects so called groups and N-dimensional array objects so called dataset that corresponds here to files. Each of these objects can have attached attributes. This virtual file system provides the same flexibility than a real file system similar to a UNIX loop device. Figure 3 shows an example.

The h5py module provides a Pythonic API and map Numpy [Numpy] arrays to datasets and reciprocally. The Numpy library is well appropriate to store images in memory since it maps efficiently a C linear array data structure on Python. The following code snippet gives an overview of its usage:

```python
import numpy as np
import h5py
```
slide_file = h5py.File('slide.hdf5', 'w')
slide_file.attrs['slide_name'] = u'John Doe'
root_group = slide_file['/']
image_group = root_group.create_group('images')
n = 1000
image_dataset = image_group.create_dataset('
image1', shape=(100*n, 100*n), dtype=np.uint16)
data = np.arange(n*n, dtype=np.uint16).reshape((n,n))
image_dataset[n:2*n,n:2*n] = data

As usual when large data sets are involved, the HDF5 library implements a data blocking concept so called chunk which is an application of the divide-and-conquer paradigm. Indeed the data compression as well as the efficiency of the data transfer requires datasets to be split in chunks. This feature is a cornerstone for many features. It permits to read and write only a subset of the dataset (a hyperslab), providing means for Python to map concepts such view and broadcasting. Moreover it permits to implement a read-ahead and cache mechanism to speed up the data transfer from storage to memory.

Another cornerstone of the HDF5 library is the implementation of a modular and powerful data transfer pipeline shown on figure 4 whose aim is to decompress the data from chunks stored on disk, scatter-gather the data and transform them, for example to apply a scale-offset filter. The h5py module provides the classic GZIP compression as well its faster counterpart LZF [LZF] and other compression algorithms can be added easily as plugins.

![Figure 4: HDF5 Data Transfer Pipeline.](image)

The flexibility of HDF5 permits to use different strategies to store our fields of view according to our application. The guideline is to think how images will be retrieved and used. For example if we want to get the fields of view as a planar image then we should use the same shape for the dataset, i.e. if the image shape is \((H, W)\) then the dataset shape should be \((N_w, H, W)\) where \(N_w\) is the number of colour planes. Like this we can map directly the data from storage to memory. The planar format is usually more suited for analysis purpose, but if we want to privilege the display then we should choose an interleaved format. However we cannot use an interleaved format in practice if we consider there is an offset between the colour fields of view.

To store the mosaic we can use a dataset per field of view or pack everything in only one dataset. This second approach would be the natural choice if we had reconstructed the slide image. For example if the mosaic shape is \((R, C)\) then we can create a dataset of shape \((R N_w, H, W)\) with a chunk size of \((h, w)\) where \((H, W) = (n h, n w)\) and \(n \in \mathbb{Z}^+\). Figure 5 shows an example of a packed mosaic. The induced overhead will be smoothed by the fact the images are stored on disk as chunks.

![Figure 5: A dataset for a 2 × 2 mosaic, chunks are represented by dotted squares.](image)

However if we want to load at the same time a set of consecutive tiles, then we can use this linear dataset shape \((R C N_w, H, W)\) and index the image using the linearised index \(r C + c\). Figure 6 shows an example of a linearised mosaic.

For example the code to get the fields of view in the slice \([10, 20 : 30]\) would be:

```python
lower_index = 10*C + 20
upper_index = 10*C + 30
field_of_view_step = NW * H
lower_r = lower_index * field_of_view_step
upper_r = upper_index * field_of_view_step
memory_map = image_dataset[lower_r:upper_r, :]
```

And to get from here the wth colour plane of the ith field of view, the code would be:

```python
row_offset = i * field_of_view_step + w * H
colour_image = memory[row_offset:row_offset + H, :]
```

If the mosaic is sparse we can still pack the mosaic and use a bisection algorithm to perform a binary search to get the corresponding linear index used for the storage.

```
\begin{align*}
p(r, c) &= (r C + c)(N_w H) \\
P(r, c, w) &= p(r, c) + w H
\end{align*}
```

![Figure 6: A linear dataset for an acquisition having 3 colours where the pointer to a tile and a plane are shown.](image)

One can argue this approach is not natural, but encapsulating the slice computation in a virtual slide API allows for efficient ways to store and retrieve the data. A better approach would...
be to have a direct access to the chunks, but actually the HDF5 API does not provide such facility (it only provides direct chunk write up to now). Thus if we do not want to rewrite or extend the library, the hyperslab mechanism is a nice alternative. However if we dislike this packing method, we can still use the following dataset layout \((R,C,N_w,H,W)\) with this chunk layout \((1,1,1,H,W)\), where the slicing is more natural. Anyway the right approach is to test several dataset layouts and measure the I/O performance, using the tool \(h5perf\) provided with the HDF5 SDK. More details about chunking can be found in the reference [HDF5-Chunking].

This storage method can be easily extended to a more complicated acquisition scheme having \(z\)-stacks or a time dimension.

3.1 Remote Virtual Slide

We have now defined a framework to store our virtual slide based on top of the stack HDF5/h5py that relies on an HDF5 file stored on a local system or a network file system to work in a client-server manner. This framework works perfectly, but a network file system has some limitations in comparison to a real client-server framework. In particular a network file system is complex and has side effects on an IT infrastructure, for example the need to setup an authentication mechanism for security. Moreover we cannot build a complex network topology made of a virtual slide broadcast server and clients.

We will now introduce the concept of remote virtual slide so as to add a real client-server feature to our framework. We have two types of data to send over the network, the slide header and the images. Since images are a flow of bytes, it is easy to send them over the network and use the Blosc [Blosc] real-time compression algorithm to reduce the payload. For the slide header, we can serialise the set of attributes to a JSON [JSON] string, since the attributes data types are numbers, strings and tuples of them.

For the networking layer, we use the ZeroMQ [ZMQ] library and its Python binding PyZMQ [PyZMQ]. ZeroMQ is a socket library that acts as a concurrency framework, carries message across several types of socket and provides several connection patterns. ZeroMQ is also an elegant solution to the global interpreter lock [GIL] of the CPython interpreter that prevent real multi-threading. Indeed the connection patterns and the message queues offer a simple way to exchange data between processes and synchronise them. This library is notably used by IPython [IPython] for messaging.

The remote virtual slide framework is build on the request-reply pattern to provide a client-server model. This pattern can be used to build a complex network topology with data dealer, router and consumer.

4 Microscope Interconnection

As a first illustration of the remote virtual slide concept, we will look at the data flow between the automated microscope so called scanner and the software component, so called slide writer, whose aim is to write the HDF5 file on the file server. This client-server or producer-consumer framework is shown on figure 7. To understand the design of this framework, we have to consider these constrains. The first one is due to the fact that the producer does not run at the same speed than the consumer. Indeed we want to maximise the scanner throughput and at the same time maximise the data compression which is a time consuming task. Thus there is a contradiction in our requirements. Moreover the GIL prevents real time multi-threading. Thus we must add a FIFO buffer between the producer and the consumer so as to handle the speed difference between them. This FIFO is called slide proxy and acts as an image cache. The second constraint is due to the fact that the slide writer can complete its job after the end of scan. It means the slide writer will not be ready to process another slide immediately, which is a drawback if we want to scan a batch of slides. Thus we need a third process called slide manager whose aim is to fork a slide writer for each scan that will itself fork the slide proxy. Due to this fork mechanism, these three processes, slide manager, slide writer and slide proxy must run on same host so called slide server. For the other component, all the configurations can be envisaged.

The last component of this framework is the slide database whose aim is to store the path of the HDF5 file on the slide server so as to retrieve the virtual slide easily.

![Fig. 7: Virtual Slide Writer Architecture.](image)

5 Slide Viewer Graphic Engine

The slide viewer graphic engine works as Google Map using image tiles and follows our concept to reconstruct the slide image online. We can imagine several strategies to reconstruct the slide image. The first one would be to perform all the computation on CPU. But nowadays we have GPU that offer a higher level of parallelism for such a task. GPUs can be programmed using several API like CUDA, OpenCL and
OpenGL [OpenGL]. The first ones are more suited for an exact computation and the last one for image rendering. In the followings we are talking about modern OpenGL where the fixed pipeline is deprecated in favour of a programmable pipeline.

The main features of the slide viewer are to manage the viewport, the zoom level and to provide an image processing to render a patchwork of 16-bit images. All these requirements are fulfilled by OpenGL. The API provides a way to perform a mapping of a 2D texture to a triangle and by extension to a quadrilateral which is a particular form of a triangle strip. This feature is perfectly suited to render a tile patchwork.

The OpenGL programmable pipeline is made of several stages. For our topic, the most important ones are the vertex shader, the rasterizer and the fragment shader, where a fragment corresponds to a pixel. The vertex shader is mainly used to map the scene referential to the OpenGL window viewport. Then the rasterizer generates the fragments of the triangles using a scanline algorithm and discards fragments which are outside the viewport. Finally a fragment shader provides a way to perform an image processing and to manage the zoom level using a texture sampler. Figure 8 shows an illustration of the texture painting on the viewport.

A texture can have from one to four colour components (RGBA), which make easy to render a slide acquisition with up to four colours. To render more colours, we just need more than one texture by tile and a more complicated fragment shader. If the tiles are stored in a planar format then we have to convert them to an interleaved format, we call this task texture preparation. However we can also use a texture per colour but in this case we have to take care to the maximal number of texture slots provided by the OpenGL implementation, else we have to perform a framebuffer blending. The main advantage of using a multi-colour texture is for efficiency since the colour processing is vectorised in the fragment shader. However if we want to register the colour on-line, then the texture lookup is any more efficient.

To render the viewport, the slide viewer must perform several tasks. First it must find the list of tiles that compose the viewport and load these tiles from the HDF5 file. Then it must prepare the data for the corresponding textures and load them to OpenGL. The time consuming tasks are the last three ones. In order to accelerate the rendering, it would be judicious to perform these tasks in parallel, which is not simple using Python.

For the tile loading, we can build on our remote virtual slide framework in order to perform an intelligent read-ahead and to eventually prepare the data for the texture.

The parallelisation of the texture loading is the most difficult part and it relies of the OpenGL implementation. Modern OpenGL Extension to the X Window server (GLX) supports texture loading within a thread, but this approach cannot be used efficiently in Python due to the GIL. Moreover we cannot use a separate process to do that since it requires processes could share an OpenGL context, which is only available for indirect rendering (glXImportContextExt). Also we cannot be sure the multi-threading would be efficient in our case due to the fact we are rendering a subset of the mosaic at a time and thus textures have a short life time. And the added complexity could prove to be a drawback.

Since our mosaic can be irregular, we cannot found by a simple computation which tiles are in the viewport. Instead we use an R-tree for this purpose. All the tiles boundaries are filled in the R-tree. And to get the list of tiles within the viewport, we perform an intersection query of the R-tree with the viewport boundary.

5.1 Slide Viewer Architecture

Figure 9 shows the architecture of our slide viewer where the virtual slide API can access the data through the HDF5 file.
file or the remote framework. In our IT infrastructure, HDF5 files are stored on a file server that can provide a network file system to access files remotely. The remote virtual slide can be used in two different ways according to the machine where the process of the server side, called tile dealer, is executed. If this process runs on the same host as the slide viewer, then we can use it to implement a read-ahead mechanism to parallelise the tile loading. And if it runs on the file server, then we can use it as an alternative to the network file system in a similar way as a virtual slide broadcast service. This second example demonstrates the remote virtual slide is a fundamental software component in our framework that open the way to many things.

Another way to access efficiently the data, it to use a local cache to store temporally the virtual slide. Nowadays we can build on a very fast locale cache using a PCI-e SSD card, which commonly reach a read/write bandwidth of 1000MB/s and thus outperforms most of the hardware RAID.

The slide viewer implements two Least Recently Used caches to store the tiles and the textures. These caches are a cornerstone for the fluidity of the navigation within the slide, since it helps to reduce the viewer latency. Nowadays we can have on a workstation 64 GB of RAM for a decent cost, which open the way to a large in memory cache in complement to a PCI-e SSD cache. In this way we can build a 3-tier system made of a file server to store tara bytes of data, a PCI-e SSD cache to store temporally slides and an in memory cache to store a subset of the virtual slide.

5.2 Vertex and Fragment Shader

In modern OpenGL all the computations must be performed by hand from the viewport modelling to the fragment processing, excepted the texture sampling which is provided by the OpenGL Shading Language.

Since we are doing a two dimensional rendering, it simplifies considerably the viewport model and the coordinate transformation. OpenGL discards all the fragment that are outside the \([-1,1] \times [-1,1]\) interval. Thus to manage the viewport, we have to transform the slide frame coordinate using the following model matrix:

\[
\begin{pmatrix}
 x \\
 y \\
 z \\
 w
\end{pmatrix}
= \begin{pmatrix}
 \frac{2}{x_{sup}-x_{inf}} & 0 & 0 & -\frac{x_{inf}+x_{sup}}{x_{sup}-x_{inf}} \\
 0 & \frac{2}{y_{sup}-y_{inf}} & 0 & -\frac{y_{inf}+y_{sup}}{y_{sup}-y_{inf}} \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x_s \\
 y_s \\
 0 \\
 0
\end{pmatrix}
\]

where \([x_{inf},x_{sup}] \times [y_{inf},y_{sup}]\) is the viewport interval and \((x_s,y_s)\) is a coordinate in the slide frame.

OpenGL represents fragment colour by a normalised float in the range \([0,1]\) and values which are outside this range are clamped. Thus to transform our 16-bit pixel intensity we have to use this formula:

\[
\hat{I} = \frac{I_{inf}}{I_{sup} - I_{inf}}
\]

where \(0 \leq I_{inf} < I_{sup} < 2^{16}\). This normalisation can be used to perform an image contrast by adjusting the values of \(I_{inf}\) and \(I_{sup}\).

The fact OpenGL supports the unsigned 16-bit data type for texture permits to load the raw data directly in the fragment shader without information loss. According to the configuration of OpenGL, the RAMDAC of the video adapter will convert the normalised floats to an unsigned 8-bit intensity for a standard monitor or to 10-bit for high-end monitor like DICOM compliant models.

As soon as we have converted our pixel intensities to float, we can apply some image processing treatments like a gamma correction for example.

In the previous paragraphs, we told we can load in a texture up to four colour components using RGBA textures. Since monitors can only render three colour components (RGB), we have to transform a four components colour space to a three components colour space using a mixer matrix. This computation can be easily extended to any number of colours using more than one texture. The mixer matrix coefficients should be choose so as to respect the normalised float range.

Another important feature of the slide viewer is to permit to the user to select which colours will be displayed on the screen. This feature is easily implemented using a diagonal matrix so called status matrix with its coefficients set to zero or one depending of the colour status.

We can now write the matrix computation for the rendering of up to four colours:

\[
\begin{pmatrix}
 r \\
 g \\
 b
\end{pmatrix}
= \begin{pmatrix}
 m_{r0} & \ldots & m_{r3} \\
 m_{g0} & \ldots & m_{g3} \\
 m_{b0} & \ldots & m_{b3}
\end{pmatrix}
\begin{pmatrix}
 s_0 \\
 \vdots \\
 s_3
\end{pmatrix}
\]

If we consider a GPU with more than 1024 cores, then most of the rows of our display will be processed in parallel which is nowadays impossible to perform with a multi-core CPU. It is why our approach to render a mosaic of tiles is so efficient and the rendering is nearly done in real time.

5.3 Zoom Layer

When the texture must be magnified, it is important to enlarge the pixel without interpolation. In OpenGL it is achieved by using the \textit{GL_NEAREST} mode for the texture magnification filter.

Despite GPU are very powerful, there is a maximal number of tiles in the viewport that can be reasonably processed. The amount of memory of the GPU is an indicator of this limitation. If we consider a GPU with 2048MB, then we can load 66 textures having a layout of 2560 \times 2160px and a 16-bit RGB format. It means we can display a mosaic of 8 \times 8 at the same time. If we want to display more tiles at the same time, then we have to compute a so called \textit{mipmaps} which is a pyramidal collection of magnified textures. Usually we perform a geometric series that corresponds to divide by two the size of the texture recursively. Due to the power of the GPU, it is not necessary to compute the entire pyramid, but just some levels. In our case we can compute the levels 8 and 16. For higher levels according to the size of the mosaic, it could be more efficient to compute a reconstructed image.
These magnified textures can be computed online using CUDA or stored in the HDF5 files.

Our slide viewer implements a zoom manager in order to control according to the current zoom which zoom layer is active and to limit the zoom amplitude to an appropriate range. Moreover we can implement some excluded zoom ranges and force the zoom to the nearest authorised zoom according to the zoom direction.

5.4 Detection Layer

Our slide viewer is not limited to display raw images, but can also display tiles from an image processing pipeline. When the viewer render a viewport, it first looks which tiles compose the viewport, then for each tile, it looks if the OpenGL LRU cache has a texture for the corresponding tile and image processing pipeline, if the texture does not exists yet then it cascades the request to the tile LRU cache and finally it will asks the image processing pipeline to generate the image. The tile loading from the virtual slide corresponds to the so called raw image pipeline and each zoom layer owns its image pipeline. Moreover each pipeline can have its own fragment shader to customise the rendering.

5.5 Benchmark

Figure 10 show a reconstructed image made of 418 tiles. For a tile dimension of 1392×1040px and a four colours acquisition, our slide viewer needs around 2s to render the zoom layer 16 and 6s for the layer 8 (100 raw tiles) on a workstation with a Xeon E5-1620 CPU, a GeForce GTX-660 GPU and the HDF5 file stored on a local SATA hard disk. The required time to load a tile form the HDF5 file is around 50ms, thus the tile loading account for 80% of the full rendering time.

6 Conclusion

This paper gives an overview how the Python ecosystem can be used to build a software platform for high-content digital microscopy. Our achievement demonstrates Python is well suited to build a framework for big data. Despite Python is a high level language, we can handle a large amount of data efficiently by using powerful C libraries and GPU processing.

First we gave an overview how to store and handle virtual slides using Python, Numpy and the HDF5 library. Different methods to store the images of the fields of view within a dataset was discussed. In particular the case where we do not reconstruct an image of slide once and for all, but rather perform an on-line reconstruction from the raw images. Despite our method to store the images works well, it would be interesting to look deeper in the HDF5 library to see if we could do something still better.

We described the concept of remote virtual slide which is a client-server model build on top of our virtual slide framework. We gave two examples of utilisation of this client-server model, the scanner interconnection with the slide writer and the tile dealer. Also we shown how this architecture solve the GIL problem and enhance the performance.

Finally we described our slide viewer architecture based on the OpenGL programmable pipeline and a texture patchwork rendering. We gave an overview on the vertex and the fragment shader. Thanks to the power of GPU, this method can render more than three colours in quasi real time. Moreover we explained how to manage the zoom level efficiently so as to overcome the limited amount of RAM of the GPU.

In a near future, it would be interesting to see how the JIT Python interpreter PyPy will enhance the performance of this framework. Up to now the lake of support of C library like Numpy and Qt prevents to run the code with it.

The Git repository https://github.com/FabriceSalvaire/PyOpenGL4 provides an oriented object API on top of PyOpenGL to work with the OpenGL programmable pipeline. This module is used in our slide viewer.

REFERENCES

[BigTIFF] Ole Eichhorn of Aperio, http://bigtiff.org
[Blosc] Francesc Alted, http://blosc.org, https://github.com/Scichroma/blosc
[GIL] http://www.dabeaz.com/python/UnderstandingGIL.pdf
[HDF5] HDF Group, http://www.hdfgroup.org/HDF5
[JSON] http://www.json.org
[LZF] Andrew Collette and contributers, http://www.h5py.org
[IPython] http://ipython.org/ipython-doc/stable/messaging.html
[Numpy] Travis Oliphant and Numpy developers, http://www.numpy.org
[OpenGL] Khronos Group, http://www.opengl.org
[PyZMQ] https://github.com/zerosmq/pyzmq
[PyZMQ] iMatix Corporation, http://zeromq.org

Fig. 10: Cell displayed in the slide viewer. The slide was acquired with an epifluorescence-microscope at magnification $40 \times$ with a camera of resolution 1392×1040px and with four colours. The size of the part of the mosaic shown on the viewport is 19×22, which corresponds to 418 tiles and thus around 595 Mpx. The dimension of the visible surface is around 4.9×3.1 mm. Here the slide image is rendered at magnification $2.5 \times$ and the zoom layer corresponds to a magnification of level $2^4 = 16$ and thus to a texture of dimension 87×65 px. So there is around 2 Mpx to process.
