Activated chitosan microspheres as air cathode catalyst for high power production in microbial fuel cells

Zeng Ke, Yuan Ming, An Zhihao, Ma Jingying, Zhang Wenwen and Chen Donghui
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 200235, People’s Republic of China
E-mail: chendhui@163.com

Abstract
This study aimed to modify chitosan microspheres to have large specific surface area as cathode catalysts in microbial fuel cell. Nitrogen-rich chitosan microspheres were first prepared and were used as precursors to prepare the activated carbon materials. The activation effects of KOH and activation temperature on the graphitization degree, specific surface area and electrochemical performance were investigated. The materials were characterised through various microscopic analyses and the electrochemical properties of the materials as cathode catalyst were also investigated. Before and after the activation, the materials remained in microspheric morphology, shown by SEM measurement, while the specific surface area of the activated material increased significantly and reached 1562 m\(^2\)g\(^{-1}\) measured by BET. The graphitization degree of the material showed synchronized increase with calcination temperature, which was detected by Raman spectroscopy. The materials activated were rich in nitrogen, revealed by XPS for elemental analysis. When activated at the temperature of 850 °C, the material demonstrated lower internal resistance (0.6 Ω cm\(^{-2}\)), higher alternating current density (24.27 × 10\(^{-4}\) A·cm\(^{-2}\)) and the highest power density (1531 ± 51 mW·m\(^{-2}\)) which was 1.4 times that of the original carbon felt. It was illustrated by the electrochemical tests that the material prepared from the precursor chitosan microspheres as cathode catalyst has the high activity of oxygen reduction reaction in MFCs.

1. Introduction
Microbial fuel cells (MFCs) have received extensive attention from researchers as a new alternative energy source that can simultaneously degrade pollutants and generate electricity [1]. One of the key reactions in energy conversion is the oxidation-reduction reaction in MFCs [2]. However, due to the slow oxygen reduction reaction (ORR), the output power of MFCs is ultra low, so new materials for high-efficiency and low-cost electro-catalysts are required [3]. It has been proved that platinum-based catalysts have higher ORR performance. But their wide application is hindered by high cost and poor durability. At present, various ORR catalysts that can replace platinum-based catalysts have been developed, including transition metal composites [4, 5], non-noble metal oxides [6] and heteroatom-doped carbon-based composites [7, 8]. In summary, carbon-based materials are considered to be very probable catalysts. Different raw materials, such as black fungus, chicken feathers, sucrose and other biomass materials from a wide range of sources can be used as carbon precursors to prepare carbon-based materials in physical and chemical activation methods [9–12]. For example, carbon spheres synthesized from natural biopolymer (alginate) by heat treatment at 400°C–800°C under inert gas had a specific surface area 765 m\(^2\)g\(^{-1}\), which was conducive to the oxidation-reduction reaction [13]. Watermelon rind was used as a precursor to prepare nitrogen-containing multi-stage porous carbon. And the prepared carbon material was severed as the cathode catalyst in microbial fuel cells, generating the peak current 0.19 mA cm\(^{-2}\) [14]. Furthermore, carbon materials co-doped with multiple elements also have excellent properties. The CoO/MgO@NC composite was prepared by Bolong Liang et al as the air cathode catalyst in MFCs and the improved ORR performance was considered to be the multiple doping that reduces the electron...
magnetically until the solution became clear and transparent. Added 50 ml liquid paraffin phase, and glutaraldehyde as the crosslinking agent. Added 1 g of chitosan to the acetic acid solution and stirred evenly, then added 25 ml chitosan solution, stirred for 30 min, then stirred for 4 h after adding 0.7 ml glutaraldehyde solution, adjusted the pH to 10 with 1 mol sodium hydroxide and reacted for 2 h, and then dried in an oven to obtain chitosan microspheres. The dried chitosan microspheres were placed in a tube furnace full of inert gas and carbonized for 3 h. The carbonized chitosan microspheres were mixed with KOH solution at mass ratio 2:1 of KOH to the material and the most active sites for ORR, in this study, chitosan microspheres were prepared by a one-step high-temperature roasting method. Studies have shown that using nitrogen-doped active materials could increase the electron transmission speed and thereby increase electrochemical performance.

Over the years, the electrochemical performance of chitosan has been widely studied. It has been found that chitosan is a potential carbon precursor material since it can easily be prepared and has high nitrogen content and good biological compatibility. It was used as a nitrogen-doped catalyst with high-performance [4]. Studies have shown that the catalytic activity of ORR and reusability of carbon catalysts were greatly improved by nitrogen-doping [18, 19]. For example, a low-cost Fe–N–C catalyst was synthesized by using iron trichloride and chitosan as precursors and carbonized by direct pyrolysis and its maximum power density of the air cathode in MFC increased 33% compared with the pure AC catalyst [20]. Using chitosan and chitosan oligosaccharides as high-grade carbon sources, a new type of nitrogen-doped carbon-coated Li2ZnTi3O8 anode active material were prepared by one-step high-temperature roasting method. Studies have shown that using nitrogen-doped active materials could increase the electron transmission speed and thereby increase electrochemical performance.

The carbon material made by chitosan doped with N and P had a larger power density, which was five times that of no doped material [22]. Feng Yi Zheng developed catalysts doped with N and P using shrimp shells as carbon precursors, which had activity stronger active sites for promoting ORR and higher electro-catalytic activity [23]. In addition, directly using chitosan as a carbon precursor was another optional method for preparing activated carbon, by which chitosan was dissolved in diluted acid and then hydrothermally carbonized at suitable temperatures [24]. Yi Liu investigated the influence of KOH content and calcination temperature on the activation of ORR and obtained a carbon catalyst of non-microsphere chitosan precursor with high surface area [25]. However, modification and application of chitosan microspheres as air cathode catalysts have been rarely reported. Since the morphology of microspheres has its specialty which provides the largest specific surface area and the most active sites for ORR, in this study, chitosan microspheres were prepared firstly, as carbon precursors carbonized by the reverse suspension crosslinking method and activated with KOH at calcination temperatures. Its structure and morphology was characterised with various microscopic analyses, including SEM, BET, Raman spectroscopy, XPS. Using three-electrode system, the effects of activation temperature of the material on electrochemical performance of an air cathode catalyst, such as internal resistance, alternating current density and power density, were investigated by LSV, Tafel and EIS measurement. Finally, the prepared electrodes were applied to MFCs to investigate its electrical performance.

2. Materials and method

2.1. Construction and start-up of microbial fuel cell

In this study, a dual-chamber MFC was composed of two rectangular parallelepipeds with a built-in 100 ml cylinder. The two chambers were separated by proton exchange membrane, and the distance between two electrodes was about 4 cm, connected by 0.5 mm titanium wire, generating external resistance of 1000 Ω. The anode was made of carbon felt. The anaerobic sludge in the anode chamber came from the anode effluent of MFCs whose voltage has been stable for more than one year. After the voltage kept stable, the nutrient solution was directly replaced and no anaerobic sludge was injected. When the voltage was less than 50 mV, replace with fresh nutrient solution. In order to stabilize the electrochemical activity of microorganisms, it was cultured in a thermostat at 30 °C for 3 months. The anode adopted a sequential batch operation mode, and an aeration pump was utilized to inject air into the cathode chamber to maintain aerobic conditions in the cathode chamber. Saturated Ag/AgCl electrode was used to measure the anode and cathode potentials when the MFC was open.

2.2. Catalyst synthesis and cathode preparation

Using chitosan as a raw material, a carbon catalyst was prepared by means of inverse suspension cross-linking. Firstly chitosan microspheres were prepared by using liquid paraffin as oil phase, chitosan solution as water phase, and glutaraldehyde as the crosslinking agent. Added 1 g of chitosan to the acetic acid solution and stirred magnetically until the solution became clear and transparent. Added 50 ml liquid paraffin and 5 ml span-80 in a three-necked flask, and stirred evenly, then added 25 ml chitosan solution, stirred for 30 min, then stirred for 4 h after adding 0.7 ml glutaraldehyde solution, adjusted the pH to 10 with 1 mol sodium hydroxide and reacted for 2 h, and then dried in an oven to obtain chitosan microspheres. The dried chitosan microspheres were placed in a tube furnace full of inert gas and carbonized for 3 h. The carbonized chitosan microspheres were mixed with KOH solution at mass ratio 2:1 of KOH to the material [25]. Finally, the material was calcined at different high temperatures to obtain the activated material. The material calcined at 350 °C but not activated with KOH was marked as CS-350 °C, while the materials prepared at different activation temperatures were denoted as AC-X,
where X means the temperature. The cathode was made by coating method. Dispersed the material uniformly in ethanol and mixed with polytetrafluoroethylene dispersion solution, and then coated it on the carbon felt, finally dried in an oven for 12 h to make an electrode.

2.3. Characteristics and morphology
The morphology of the materials was examined via scanning electron microscope (SEM). Before measurement, the material was polymerized in ethanol solution for 30 min to disperse, and dried at 45 °C in an oven. The element characteristics of the material surface were analyzed via x-ray photoelectron spectroscopy (XPS), and the binding energy ranged from 0 eV to 1350 eV. First, performed a quick scan, and simply identified the characteristic peaks with high energy and short residence time. High-resolution scanning was utilized to collect quantitative and chemical state information on the peaks with low energy and long residence time. The XPS PEAK software was used to perform the fitting analysis on the elements and peaks. Raman spectroscopy used 632.8 nm laser excitation in the spectral range of 100 to 4000 cm$^{-1}$. The specific surface area of the material was determined by the nitrogen adsorption-desorption isotherm (ASAP2460/Samsung 3000, Micronology). The total pore volume of the material was calculated from the amount of nitrogen adsorbed when the relative pressure P/P_0 was 0 to 0.99 [26].

2.4. Electrochemical characteristics
Injected fresh nutrient solution into MFC and kept it open for 6 h. All microbial cells were initially stabilized, and then the power density curve and the polarization curve of the MFC were measured. External resistance changed from 10000 Ω to 100 Ω, and the replacements of each resistance were retained for 15 to 20 min to ensure a stable voltage configuration. Plotted the voltage current density to get a polarization curve. Calculated the power density according to $P = UI/S$, and plotted the power density-current density to get the power density curve. In the experiment, the electrochemical performance of the prepared cathode catalyst was evaluated via a three-electrode system, using Ag/AgCl as the reference electrode. The platinum sheet was the counter electrode, and the prepared cathode was the working electrode. Before the test, nitrogen was fed into the catholyte for 20 min to remove oxygen. The scan rate of Linear Sweep Voltammetry (LSV) was 0.2 mV s$^{-1}$, and the range was from OCP to -0.3 V. The frequency range of the electrochemical impedance spectroscopy (EIS) of the air cathode was 100 kHz–0.1 Hz under open circuit conditions. The cyclic voltammetry curve ranged from $+0.4$ V to -0.8 V at a scan rate of 10 mV s$^{-1}$. The Tafel diagram was obtained by scanning the over potential from 0 mV to 100 mV at a scan rate 1 mV s$^{-1}$ [27]. All the cathodes were subject to the same conditions during the test.

3. Results and discussion
3.1. SEM characterizations
The chitosan microspheres prepared by inverse suspension crosslinking were carbonized at 350 °C, and then activated by KOH at higher calcination temperature. When the calcination temperature increased from 750 °C to 900 °C, the yield of the product decreased from 50% to 25%. The temperature was the key factor that determined the structural characteristics of the chitosan microspheres. SEM characterizations were performed to evaluate the morphology of the microspheres. Figure 1(a) showed the morphology of chitosan microspheres before carbonization and figure 1(b) after the activation by KOH at calcination temperature 850 °C. Shown in
figures 1 (a)–(b), the appearance of the microspheres before and after high temperature activation did not change significantly. The results of subsequent BET and Raman tests show that there are some changes in the interior structure of the microspheres. Compared with other microsphere materials such as CS/Fe₃O₄/Gelatin/GO particles, PSF/Fe₃O₄ particles, CI/Fe₃O₄/Gelatin/NT microspheres, the microspheres after activation in the experiment keep regular spherical shape and clear edges [28–30].
3.2. BET study

The surface characterizations of all materials were measured by the nitrogen adsorption-desorption isotherms at 77 K, since the number of active sites for ORR were directly related to specific surface area of the material. The nitrogen adsorption-desorption isotherms were shown in figure 2. All of the adsorption isotherms were Type IV, with H4 type hysteresis loop, which was formed from slit-shaped pores and had the characteristics of activated

Materials	\(\text{S}_{\text{BET}} (\text{m}^2 \text{g}^{-1}) \)	References
Chitosan microsphere carbon	1561.85	This work
Alfalfa Leaf-Doped Carbon	883.67	[35]
Rapeseed meal- N and S-Doped	996.97	[36]
Silk gel-doped porous carbon	569.75	[37]
kapok fibres-Porous hollow carbon tube	825.6	[38]

Materials	\(\frac{I_D}{I_G} \) value of the materials.
CS-350	0.72
AC-750	0.98
AC-800	0.96
AC-850	0.92
AC-900	0.75

![Figure 4. XPS survey scan of chitosan microspheres (a), C1s (b) and N1s (c) both activated at 850 °C.](image)

3.2. BET study

The surface characterizations of all materials were measured by the nitrogen adsorption-desorption isotherms at 77 K, since the number of active sites for ORR were directly related to specific surface area of the material. The nitrogen adsorption-desorption isotherms were shown in figure 2. All of the adsorption isotherms were Type IV, with H4 type hysteresis loop, which was formed from slit-shaped pores and had the characteristics of activated
literature, the oxygen functional group was an important factor in improving the performance of carbon [31]. Obviously, all materials, except AC-750 and AC-800, had hysteresis loops. The rapid increase in nitrogen absorption rate at lower relative pressure (P/P0 < 0.4) indicated the existence of micropores, while at higher relative pressure (P/P0 ≥ 0.4–1.0) the hysteresis loop indicated the existence of mesopores [32]. Therefore, AC-750 and AC-800 were typical microporous carbon materials. Table 1 showed the structural parameters of all materials obtained by the calculation of the adsorption isotherm data. It can also be seen that the specific surface area of the sample increased with the increase of the temperature but decreased at the temperature 900 °C. AC-850 had the highest specific surface area (1562 m²g⁻¹) and the largest volume of pores (0.70 cm³g⁻¹), indicating that KOH was an effective activator for the chitosan. The specific surface area (982.18 m²g⁻¹) of the nitrogen-phosphorus co-doped catalyst obtained by heat treatment and activation with phosphoric acid was lower than that of AC-850 [33]. The specific surface area of other materials used in electrodes was shown in table 2, being lower than that of this work. Although a high activation temperature was beneficial to the reaction between the material and KOH, the excessively high temperature lead to decrease specific surface area due to the evaporation [34]. Thus it was necessary to find a suitable temperature for preparing the material. In summary, the activation at a proper temperature was beneficial to the increase of specific surface area but on the contrary higher ones led to the reduction of the specific surface area.

3.3. Raman spectroscopy study
Raman spectroscopy was used to characterize the surface crystal structure of the materials, shown in figure 3 where two characteristic peaks located at 1350 cm⁻¹ (D band) and 1600 cm⁻¹ (G band) respectively for each spectrum. Generally, the intensity I_D of D band indicates the concentration of disordered carbon and the intensity I_G of G band the concentration of graphitized carbon [39, 40]. The ratio I_D/I_G can represent the degree of graphitization of the materials and estimate defects [41]. As showed in table 3, the ratio I_D/I_G of non-activated CS-350 was 0.72 which was the lowest among all the materials. After activation, it increased, indicating that the degree of graphitization of the material decreased. In contract, it decreased at the temperature 900 °C, indicating that the disorder of the material decreases, which was consistent with the results of others [42]. Electrochemical properties showed that activation decreased the graphitization degree, and increased some activation sites of carbon materials, improving the ORR properties [43].

3.4. XPS study
XPS analysis was performed to determine the elements presented in the materials and the oxidation state. A survey scan of the materials followed by the narrow scan of individual elements was conducted. Figure 4(a) represented the XPS survey scan, which indicated the presence of C, O and N. Table 4 listed the contents of C, O and N elements in all materials. Obviously, all materials contained still nitrogen due to the existence of –NH3 groups in the chitosan precursor. Meanwhile it can be seen from figure 4(a) and table 4 that the nitrogen content decreased with the increase of the activation temperature, which was consistent with the reports in the literature [44].
Furthermore, figure 4(a) showed that the characteristic peaks of C1s (285.0 eV) appeared strongly and those for N1s (400.0 eV) stepped down with the increase of the temperature, almost died away at 900 °C. This was because –NH2 gradually decomposed into elemental N and H during high temperature activation [42] and KOH activation attacked the edge nitrogen atoms between graphene layers in nitrogen-containing carbon materials [45].

Various atomic percentages were listed in table 5. The C1s XPS spectrum of AC-850 was decomposed into five kinds of carbon structures: sp² hybridized carbon (284.5 eV), sp³ hybridized carbon (285.0 eV), C–N band (286.2 eV), CO group (286.6 eV) and C=O group (288.1 eV) [44], shown in figure 4(b) and table 5. It can be seen that the sp²/sp³ ratio of CS-350 was the highest, indicating the highest degree of graphitization. After activation, the ratio continues to increase with the increase of the activation temperature, which was consistent with the results of the Raman examination. In the other hand, after KOH activation, the percentage of C–N decreases, but the percentage of oxygen-containing functional groups (C–O and C=O) increased significantly. According to reports in the literature, the oxygen functional group was an important factor in improving the performance of carbon.
the catalyst, which proved that the electrochemical activity of the carbon material can be improved by activation, consistent with the results of electrochemical tests [46].

The N1s XPS spectrum of AC-850 was shown in figure 4(c). N1s had four peaks: pyridine-N (N1) (398.3 ∼ 399.4 eV), pyrrole-N (N2) (400.2 ∼ 400.8 eV), graphite-N (N3) (401.1 ∼ 402.1 eV) and oxidation-N (N4) (403.3 ∼ 410.1 eV). A large number of studies have shown that pyridine-N (N1) and graphite-N (N3) help electron transfer to enhance catalytic activity [47, 48]. Nitrogen-doped carbon materials provide more active
sites and improve the catalytic activity of ORR. In this study, AC-850 had more pyridine-N (N1) and graphite-N (N3), and larger specific surface area and pore volume, leading to its better electrochemical performance.

3.5. Electrochemical studies

3.5.1. Linear sweep voltammetry (LSV)

The LSV curve was used to evaluate the influence of the temperature on the oxygen reduction performance, and shown in figure 5. In the key potential ranged from −0.1 V to 0.1 V, AC-850 sample had a wider potential window, the highest limiting current density of 3.3 mA cm$^{-2}$, and a higher starting potential. The higher the limiting current density, the faster the reduction rate of cathode oxygen [49]. When the scan was close to end, the maximum current density of AC-850 reached 1.1 mA cm$^{-2}$, which was higher than those of the materials activated at other temperatures. The results of LSV showed that proper activation temperature was of great significance for improving the electro-catalytic activity and AC-850 had the best electrochemical performance for ORR.

3.5.2. EIS

Electrochemical impedance spectroscopy (EIS) is an effective method to identify different resistances, by which the internal resistance of the electrode can be studied [50]. The Nyquist curves of the air cathode were illustrated in figure 6. The equivalent circuit is composed of external ohmic resistance (R_{ohm}), electrolyte diffusion resistance (R_d), and charge transfer resistance (R_{ct}) [51]. Since the same kind of MFCs was used, R_{ohm} of all cathodes were almost the same. R_{ct} could be obtained from the semicircle on the left side of the figure 6, which represents the charge transfer resistance at the electrode and electrolyte interface. Comparing R_d shown in table 6 with BET data, it was found that R_d decreased with the increase of the specific surface area. It can be seen from table 6 that the R_d of the material activated by KOH at high temperature continuously decreases with the increase of temperature. A lower R_d was conducive to the rapid transfer of electrons and made the ORR catalytic activity higher. In the chart, the total resistance ($R_t = R_{ohm} + R_d + R_{ct}$) of AC-850 was also the smallest (11.11 Ω), which was 5.19 Ω lower than AC. The R_d of biochar using watermelon peel (49.18 Ω) as air cathode catalyst was much higher than that of AC-850 [14]. In short, activating carbon materials with KOH at high temperature can reduce the resistance of AC, thereby improving the performance of MFC.

Materials	R_{ohm} (Ω)	R_d (Ω)	R_{ct} (Ω)	R_t (Ω)
AC	11.24	1.45	3.69	16.38
AC-750	11.65	0.58	0.89	13.12
AC-800	11.46	0.46	0.65	12.57
AC-850	10.51	0.24	0.36	11.11
AC-900	12.25	0.52	0.31	13.08

Figure 7. Tafel plots of Chitosan microspheres as air cathode catalysts at different activation temperatures.
3.5.3. Tafel

Figure 7 showed the Tafel diagrams obtained by fitting overpotentials from 80 mV to 100 mV for all materials and carbon felts. Exchange current density \((i_0)\) was a key parameter of ORR activity. Table 7 showed the \(i_0\) of all air cathodes. The \(i_0\) of AC-850 reached \(24.271 \times 10^{-4} \text{Ac m}^{-2}\), which was \(18.758 \times 10^{-4} \text{Ac m}^{-2}\) higher than carbon felt \(5.513 \times 10^{-4} \text{Ac m}^{-2}\). The higher the \(i_0\) value, the faster the transfer rate; the smaller the activation hindrance, the faster the reaction. Tafel analysis of all materials was consistent with the conclusions drawn from other electrochemical analyses. The material obtained by KOH high-temperature activation has higher ORR catalytic activity by using chitosan as the carbon precursor. Studies have found that the mesoporous structure facilitates ORR through the transport of oxygen, while the microporous structure provides active sites to promote the catalytic activity \([52]\). This was consistent with our research results.

![Figure 8. Power density and cell voltage curves (a) and polarization curve (b) of materials as air cathode catalysts.](image)

Materials	Fitting equation\(R^2\)	\(i_0 \times 10^{-4} (\text{A cm}^{-2})\)
AC	\(y = 2.0538x - 3.2586(0.991)\)	5.513
AC-750	\(y = 0.6511x - 3.886(0.990)\)	13.01
AC-800	\(y = 0.5714x - 3.7195(0.991)\)	19.08
AC-850	\(y = 0.4628x - 2.6149(0.995)\)	24.271
AC-900	\(y = 0.6068x - 2.7977(0.994)\)	15.933

3.6. The performance of MFCs

In order to have a mature and stable potential, the polarization curve test was performed after the microbial fuel cell was stable for three cycles. Through the measurement of the polarization curve, the overall performance of the MFC cathode material was investigated and the carbon felt was used for comparative testing. Figure 8(a) showed the polarization curves and power density curve of MFC, and the polarization curves of all cathodes and anodes were shown in figure 8(b), where all anode curves showed the same trend, indicating that the anode resistance of MFCs was almost the same. The cathode curves had a certain deviation, indicating that the cathode was the main factor affecting the performance of MFCs. As the temperature increases, the power densities showed the same trend, but their values followed \(\text{AC-850} > \text{AC-800} > \text{AC-900} > \text{AC} > \text{AC-750}\). The voltage had the same reduction rate as the power density. It can be shown that an appropriate activation temperature could improve the electrochemical performance of AC. It can be seen from the figure 8(a) that the highest output power density of AC-850 electrode was \(1531 \pm 51 \text{mW m}^{-2}\), 140% higher than that of the carbon felt. Besides it
was higher than the maximum power density 892 mW m^{-2} obtained by nitrogen and phosphorus co-doped carbon material [23] and 189 mW m^{-2} by nanotube/chitosan composite cathode MFC [53]. The maximum power density of other materials was shown in Table 8, being lower than that of this work. This showed that the cathode materials prepared in this study has better electrochemical performance.

4. Conclusion

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Chen Donghui @ https://orcid.org/0000-0003-2304-3209

References

[1] Huggins T, Wang H, Kearns J, Jenkins P and Ren Z J 2014 Biochar as a sustainable electrode material for electricity production in microbial fuel cells Bioresour. Technology 157 114–9

[2] Shen H, Gracia-Espino E, Jingyuan M, Haodong T, Xamxikamr T and Wagberg T 2017 Atomically FeN$_2$ moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis Nano Energy 35 9–16

[3] Tang H, Cai S, Xie S, Wang Z, Tong Y, Pan M and Lu X 2016 Metal–Organic-framework-derived dual metal–nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells Adv. Sci. 3 1687–98

[4] Song Z, Wei S, Jia L, and Kexun I. 2018 Mesoporous MnO$_2$ structured by ultrathin nanosheet as electrocatalyst for oxygen reduction reaction in air cathode microbial fuel cell. J. Power Sources 401 158–64

[5] Garcia M J S, Santoro C, Kodali M, Serov A, Artushkova K, Atanassov P and Ieropoulos I 2019 Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine J. Power Sources 425 50–9

[6] Osgood H, Devaguptapu S V, Xu H, Cho J and Wu G 2016 Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media Nano Today 11 601–25

[7] Yang L, Zeng X, Wang W and Cao D 2018 Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells Adv. Funct. Mater. 28 1704537

[8] Primo A, Forneli A, Corma A and García H 2012 From biomass wastes to highly efficient oxygen evolution bifunctional catalysts in ceramic microbial fuel cells ChemSusChem 5 2174–8

[9] Yang W, Wang X, Rossi R and Logan B E 2020 Low-cost Fe, Co, Ni, and Mn nanoparticles by hydrothermal carbonization of chitosan J. Power Sources 446 227356

[10] Song Z, Wei S, Jia L, and Kexun I. 2018 Nitrogen-doped carbon-coated Li$_2$ZnTi$_3$O$_8$ anode material J. Power Sources 358 858–66

[11] Wang X, Fang J, Zhang H, Lu Q, Xu Z, Zhang X, Zhu W and Zhuang Z 2020 Converting biomass into efficient oxygen reduction reaction catalysts for proton exchange membrane fuel cells Science China Materials 63 524–32

[12] Liu Z, Nie H, Yang Z, Zhang J, Jin Z, Lu Y, Xiao Z and Huang S 2013 Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions Nanoscale 5 3283–8

[13] Tian Y, Banerjee S, Singh S and Kar K K 2019 Biowaste derived activated carbon electrocatalyst for oxygen reduction reaction: effect of chemical activation Int. J. Hydrogen Energy 45 16930–43

[14] Gao S, Chen Y, Fan H, Wei X, Hu C, Luo H and Qu L 2014 Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors J. Mater. Chem. A 2 8317–24

[15] Primoz A, Forneli A, Corma A and Garcia H 2012 From biomass wastes to highly efficient CO$_2$ adsorbents: graphitisation of chitosan and alginic biopolymers ChemSusChem 5 2207–14

[16] Zhong K, Li M, Yang Y, Zhang H, Zhang T, Tang J, Yan M and Yang Z 2019 Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells Appl. Energy 242 516–25

[17] Liang B, Zhao Y, Zong M, Huo S, Khan I U, Li K and Lv C 2020 Hierarchically porous N-doped carbon-CoO/MgO as superior cathode catalyst for microbial fuel cell Chem. Eng. J. 385 123861

[18] Ren P, Cai S, Ding Y and Wen Z 2019 Molten-salt-mediated synthesis of porous Fe-containing N-doped carbon as efficient cathode catalysts for microbial fuel cells Appl. Surf. Sci. 481 1206–12

[19] Chhetti B P, Parnell C M, Wayland H, Rangumagar A B and Gosh A 2018 Chitosan-derived NiO–MnO$_2$/C nanocomposites as non-precious catalysts for enhanced oxygen reduction reaction Chemistry Select 3 922–32

[20] Shi X, Feng Y, Wang X, Lee H, Liu J, Qu Y, He W, Kumar S M S and Ren N 2012 Application of nitrogen-doped carbon powders as low-cost and durable cathodic catalyst to air–cathode microbial fuel cells Bioresour. Technol. 188 89–93

[21] Feng L, Yan Y, Chen Y and Wang L 2011 Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells Energy Environ. Sci. 4 1482–9

[22] Yang W, Wang X, Rossi R and Logan B E 2020 Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells Chem. Eng. J. 380 122522

[23] Tang H, Chen C, Liu T and Tang Z 2020 Chitosan and chitosan oligosaccharides: advanced carbon sources are used for preparation of N-doped carbon–coated Li$_2$ZnTi$_3$O$_8$ anode material J. Electroanal. Chem. 858 113789

[24] Liang B, Li K, Liu Y and Kang X 2019 Nitrogen and phosphorus dual-doped carbon derived from chitosan: An excellent cathode catalyst in microbial fuel cell Chem. Eng. J. 358 1002–11

[25] Zhang F Y, Li R, Ge S, Xu W R and Zhang Y 2020 Nitrogen and phosphorus co-doped carbon networks derived from shrimp shells as an efficient oxygen reduction catalyst for microbial fuel cells J. Power Sources 446 227356

[26] Yang J, Cui J, Zheng M, Hu C, Tan S, Xiao Y, Yang Q and Liu Y 2011 One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan Chem. Commun. 48 380–2
[25] Liu Y, Zhao Y, Li K, Wang Z, Tian P, Liu D, Yang T and Wang J 2018 Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells J. Power Sources 378 1–9
[26] Rouquerol J, Avnir D, Fairbridge C W, Everett D H, Haynes J M, Pernicone N, Ramsay J D F, Sing K S W and Unger K K 1994 Recommendations for the characterization of porous solids (Technical Report) Pure Appl. Chem. 66 1739–58
[27] Dong H, Yu H, Xin W, Zhou Q and Feng J 2012 A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PtFe as catalyst layer in microbial fuel cell Water Res. 46 5777–87
[28] Fu Y, Yao J, Zhao H, Zhao G, Wan Z and Qiu Y 2018 Bidisperse magnetic particles coated with gelatin and graphite oxide: magnetorethology, dispersion stability, and the nanoparticle-enhancing effect Nanomaterials 8 714
[29] Han S, Choi J, Seo Y P, Park J I, Choi H I and Seo Y 2018 High-performance magnetorethological suspensions of pickering-emulsion-polymerized polystyrene/Fe3O4 particles with enhanced stability Langmuir 34 2807–14
[30] Fu Y, Yao J, Zhao H, Zhao G, Wan Z and Qiu Y 2018 Fabrication and magnetorethology of bidisperse magnetic microspheres coated with gelatin and multi-walled carbon nanotubes Smart Mater. Struct. 27 125001
[31] Williams P and Reed A 2006 Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste Biomass Bioenergy 30 144–52
[32] Wang Z, Zhang X, Liu X, Lv M, Yang K and Meng J 2011 Co-gelation synthesis of porous graphitic carbons with high surface area and their applications Carbon 49 161–9
[33] Bang I, Li K, Yi L and Kang X 2019 Nitrogen and phosphorus dual-doped carbon derived from chitosan: An excellent cathode catalyst in microbial fuel cell Chem. Eng. J. 358 1002–11
[34] Xing W, Huang C C, Zhuo S P, Yuan X, Wang G Q, Hulicova-Jurcakova D, Yan Z F and Lu G Q 2009 Hierarchical porous carbons with high performance for supercapacitor electrodes Carbon 47 1715–22
[35] Deng L, Yuan Y, Zhang Y, Wang Y, Chen Y, Yuan H and Chen Y 2017 Allafita leaf-derived porous heteroatom-doped carbon materials as efficient cationic catalysts in microbial fuel cells. Acc. Sustainable Chem. & Eng. 5 7966–73
[36] Zhang B, Chen R, Yang Z, Chen Y and Yuan Y 2020 Rapeseed meal-based autochthonous N and S-doped non-metallic porous carbon electrode material for oxygen reduction reaction catalysis Int. J. Hydrogen Energy 46 500–17
[37] Liu J, Wei L, Wang H, Lan G and Shen J 2021 Silk gel-based N self-doped porous activated carbon as an efficient electrocatalyst in neutral, alkaline and acidic medium Fuel 287 119485
[38] Tang J H, Wang Y J, Zhao W Q, Ye W Y and Zhou S G 2019 Porous hollow carbon tube derived from kapok fibres as efficient metal-free oxygen reduction catalysts Sci. China Technol. Sci. 62 1710–8
[39] Janes A, Kurig H and Lut E 2007 Characterisation of activated nanoporous carbon for supercapacitor electrode materials Carbon 45 1226–33
[40] Reina A, Jia X, Ho J, Nezich D and Kong J 2009 Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition Nano Lett. 9 30–5
[41] Jiang H, Wang Y, Hao J, Liu Y, Li W and Li J 2017 N co-functionalized three-dimensional porous carbon networks as efficient metal-free electrocatalysts for oxygen reduction reaction Carbon 122 64–73
[42] Hao P, Zhao Z H, Leng Y H, Tian J, Sang Y H, Boughton R, Wong C P, Liu H and Yang B 2015 Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors Nano Energy 15 9–23
[43] Li Y, Liu Q, Zhang S and Li G 2019 The vital balance of graphitization and defect engineering for efficient bifunctional oxygen electrocatalyst based on N-doping carbon/CNT frameworks Chem. Cat. Chem. 11 861–7
[44] Olejnizak A, Lezaniska M, Wloch J, Kucinska A and Lukaszewicz J P 2013 Novel nitrogen-containing mesoporous carbons prepared from chitosan J. Mater. Chem. A 1 8961–7
[45] Sun G L, Li B, Ran J B, Shen X Y and Tong H 2015 Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide–chitosan hydrogels for high performance supercapacitors Electrochim. Acta 171 13–22
[46] Kundu S, Wang Y, Xia W and Muhler M 2008 Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPr study J. Phys. Chem. C 112 16869–78
[47] Wang X R, Liu J Y, Liu Z W, Wang W C, Luo J, Han X P, Du X W, Qian S Z and Jing Y 2018 Identifying the key role of pyridinic-N–C bonding in synergistic electrocatalysis for reversible ORR/OER Adv. Mater. 30 1800005
[48] Zhu C, Shi Q, Wu B Z, Fu S and Lin Y 2018 Hierarchically porous M–N–C(M = Co and Fe) single-atom electrocatalysts with robust MNX active moieties enable enhanced ORR performance Adv. Energy Mater. 8 1801956
[49] Kumar R, Singh L, Wahid Z A, Mahapatra D M and Liu H 2018 Novel mesoporous MnCo2O4 nanorods as oxygen reduction catalyst at neutral pH in microbial fuel cells Bioresour. Technol. 254 1–6
[50] Zhang F, Pant D and Logan B E 2011 Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells Biosens. Bioelectron. 30 49–55
[51] Liu Y T, Li K X, Liu Y, Pu L T, Chen Z H and Deng S G 2013 The high-performance and mechanism of P-doped activated carbon as a catalyst for air-cathode microbial fuel cells J. Mater. Chem. A 2 21149–58
[52] Liu Y, Li K, Ge B, Pu L and Liu Z 2016 Influence of micropore and mesoporous in activated carbon air-cathode catalysts on oxygen reduction reaction in microbial fuel cells Electrochem. Acta 214 110–8
[53] Liu X, Yang C, Zhang L, Li L, Liu S, Yu J, You L, Zhou D, Xia C and Zhao J 2011 Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics Ecotoxicology 20 1422–31
[54] Jiao Y L, Hu Y S, Han L J and Zhou M H 2020 Activated carbon derived from rice husk as efficient oxygen reduction catalyst in microbial fuel cell Electroanalysis 32 2969–75
[55] Gong X, Peng L, Wang X, Wu L and Liu Y 2020 Duckweed derived nitrogen self-doped porous carbon materials as cost-effective electrocatalysts for oxygen reduction reaction in microbial fuel cells Int. J. Hydrogen Energy 45 15336–45
[56] Tian X, Zhou M, Tan C, Li M, Liang L, Li K and Su P 2018 KOH activated N-doped novel carbon aerogel as efficient metal-free oxygen reduction catalyst for microbial fuel cells Chem. Eng. J. 348 775–85