Supplementary Information

Supplementary Table 1. SNP identifier, chromosome, effect allele, reference allele, and position (based on version 37), and beta (model weight) for the 290 SNPs used in the calculation of PHS290. The effect-allele-frequency (EAF) was estimated from controls in the training dataset with age less than 70 years. The HGNC identifier and Variant Consequence for each SNP were extracted from dbSNP.

SNP ID	Chr	Effect	Ref	Position	beta	EAF	HGNC	Variant Consequence	
rs12262998	10	C	T	104428716	0.0254	0.6792			
rs10885396	10	T	C	114711755	0.0095	0.5434	TCF7L2	intron_variant	
rs4558107	10	A	G	122794926	0.0227	0.3932			
rs140783917	10	C	T	122834482	0.1275	0.9989			
rs10788167	10	T	A	123054018	0.0249	0.7674			
rs10749415	10	A	G	123185303	0.0602	0.9469			
rs12769682	10	C	G	126697494	0.0358	0.2720	CTBP2	intron_variant;non_coding_transcript_variant	
rs7075427	10	A	C	46104943	0.0069	0.9209			
rs11599847	10	T	C	47599029	-0.0171	0.9629	TCF7L2	intron_variant	
rs10993994	10	A	G	51549496	0.0227	0.3932			
rs12781100	10	T	C	838636	0.0543	0.1600			
rs11817544	10	C	A	80236999	0.0338	0.9413	LINC00856	non_coding_transcript_variant;intron_variant	
rs12412705	10	C	T	80835998	0.0180	0.0692	ZMIZ1	intron_variant	
rs1935581	10	C	T	90195149	0.0323	0.6297	RNLS	intron_variant;non_coding_transcript_variant	
rs11568818	11	T	C	102401661	0.0333	0.5494			
rs74911261	11	A	G	108357137	0.0598	0.0245	KDEL2	missense_variant;NMD_transcript_variant;non_coding_transcript_exon_variant	
rs138466039	11	T	C	125054793	0.0801	0.0103	PKNOX2	intron_variant;non_coding_transcript_variant	
rs878987	11	G	A	134266372	0.0241	0.1460	B3GAT1	intron_variant;non_coding_transcript_variant	
rs1881502	11	T	C	1507512	0.0107	0.1903	MOB2	intron_variant;non_coding_transcript_variant	
rs72853963	11	A	G	2224664	0.0190	0.1822			
rs11043143	11	T	C	2234093	0.0735	0.1948			
rs68010938	11	T	TA	47428209	0.0186	0.3047	non_coding_transcript_variant;intron_variant		
rs1048374	11	G	A	58902679	-0.0747	0.0037	non_coding_transcript_variant		
rs2277283	11	C	T	61908440	0.0356	0.3045	INCENP	missense_variant;non_coding_transcript_exon_variant	
rs12785905	11	C	G	66951965	0.0247	0.0389	KDM2A	intron_variant	
rs3018690	11	T	C	68882926	0.0297	0.4431			
rs11825796	11	A	G	68980788	-0.0164	0.2625			
rs12275055	11	G	A	68981359	0.0453	0.1652			
chr11_68985583	11	C	T	68985583	-0.0531	0.4928			
rsID	Chromosome	Position	p-value	q-value	Gene/Variant Description				
--------------	------------	----------	---------	---------	---				
rs11228580	11	69002342	0.0094	0.1655	intron_variant;non_coding_transcript_variant				
rs3918298	11	69463273	0.0824	0.0274	CCND1 intron_variant				
rs61890184	11	7547587	0.0334	0.1179	PPFIBP2 intron_variant				
rs56159348	11	76267331	0.0259	0.6783					
rs77121786	12	102446675	0.0341	0.1981	CCDC53 NMD_transcript_variant;intron_variant;non_coding_transcript_variant				
rs1270884	12	114685571	0.0239	0.4816	non_coding_transcript_variant;intron_variant;missense_variant;non_coding_transcript_variant;intron_variant;coding_sequence_variant				
rs2066827	12	12871099	0.0348	0.7603	CDKN1B intron_variant				
rs77216612	12	12877983	0.0030	0.7240					
rs7295014	12	133067989	0.0243	0.3349	FBRSL1 intron_variant				
rs10845938	12	14416918	0.0315	0.5489					
rs80130819	12	48419618	0.0519	0.9104					
rs56222401	12	49672714	0.0180	0.2499					
rs10875943	12	49676010	0.0178	0.2810					
rs113925811	12	53308932	0.0789	0.1267	KRT8 intron_variant				
rs187809440	12	53329231	0.2268	0.0003	KRT8 intron_variant				
rs7968403	12	65012824	0.0265	0.6390	RASSF3 intron_variant;NMD_transcript_variant;intron_variant;NMD_transcript_variant				
rs4842687	12	90156377	0.0303	0.7122					
rs1327653	13	51076440	0.0295	0.2546	DLEU1 non_coding_transcript_variant;intron_variant				
rs7489409	13	73716861	0.0414	0.1847					
rs7336001	13	73995877	0.0554	0.9055	LINC00393 intron_variant;non_coding_transcript_variant				
rs1004030	14	23305649	0.0146	0.5830					
rs6571758	14	37136194	0.0324	0.6195	PAX9 intron_variant;NMD_transcript_variant				
rs11849126	14	38144592	0.0026	0.6944	TTC6 intron_variant;NMD_transcript_variant				
rs4901313	14	53387109	0.0401	0.8151	FERMT2 intron_variant;NMD_transcript_variant				
rs8005621	14	61106699	0.0385	0.0947					
rs79133931	14	64687926	-0.1985	0.0010	SYNE2 intron_variant;NMD_transcript_variant;intron_variant				
rs2093202	14	68923908	0.0160	0.6143	RAD51B intron_variant;non_coding_transcript_variant				
rs767127	14	69134264	0.0238	0.4978	RAD51B intron_variant;non_coding_transcript_variant				
rs17565772	14	70756333	0.0246	0.4595					
rs11561564	15	40965044	0.0262	0.8413					
rs33984059	15	56385868	0.0808	0.9754	RFX7 missense_variant;NMD_transcript_variant				
rs74634457	15	66835704	0.0380	0.2563	ZWILCH intron_variant				
SNP	Chromosome	Position	Minor Allele	Major Allele	Minor Allele Frequency	Major Allele Frequency	Gene	Annotation	
--------------	------------	----------	--------------	--------------	------------------------	------------------------	--------------	--	
rs12913603	15	70668824	C	A	0.0195	0.4757		intergenic; coding: non coding transcript variant; NMD transcript variant	
rs7188897	16	54469331	C	T	0.0145	0.3503		coding: coding: coding: intron variant; coding: intron variant	
rs13380763	16	54678305	T	C	0.0265	0.8116		coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs11863709	16	57654576	A	C	0.0594	0.9467	GPR56	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs28709974	16	79847632	T	C	0.0517	0.5028		coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs8052913	16	82166181	T	C	0.0315	0.3854		coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs72811270	17	12585459	G	A	0.0382	0.1155		coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs4795646	17	30092898	C	T	0.0294	0.7716		coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs718961	17	36077099	C	G	0.0145	0.2274	HNF1B	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs11649743	17	36074979	G	A	0.0482	0.8100	HNF1B	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs11651052	17	36102381	C	G	0.0153	0.4697	HNF1B	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs11863709	17	36103565	G	A	0.0816	0.5295	HNF1B	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
chr17_4682067	17	46820676	C	T	0.0944	0.0410		coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs2960158	17	47380305	C	T	0.0114	0.7714	ZNF652	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs565189650	17	47398245	C	T	0.0493	0.0755	ZNF652	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs1293538	17	56426027	C	T	0.0172	0.5631	BZRAP1-AS1	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs684232	17	618965	T	C	0.0538	0.3546	VPS53	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs9889335	17	69115146	T	G	0.0288	0.4817	CASC17	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs148511027	17	69117532	G	T	0.0585	0.4745	CASC17	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs78378222	17	7571752	T	G	0.1025	0.0107	TP53	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs28441558	17	7803118	C	T	0.0623	0.0568	CHD3	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs8089411	18	51771322	C	T	0.0161	0.4421		coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs35283980	18	56745999	C	G	0.0131	0.3023		coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs533722308	18	60961193	C	T	0.0244	0.3634	BCL2	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs11876000	18	73035513	C	T	0.0228	0.4137		coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs9959454	18	76770820	A	G	0.0489	0.7318		coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs10412482	19	17228554	C	T	0.0338	0.7162	MYO9B	coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs17501397	19	32168343	C	T	0.0217	0.9097		coding: coding: coding: coding: coding: coding: coding: coding: coding:	
rs	Chrs	Genotype	Position	P-value	MAF	Gene	Description		
----	------	----------	----------	---------	-----	------	-------------		
rs59710626	19	G T	38548094	0.0094	0.8637	SIPA1L3	intron_variant;non_coding_transcript_variant		
rs4802297	19	G C	38738130	0.0368	0.4976	SPINT2	intron_variant		
chr19_41985587	19	A G	41985587	-0.0470	0.2589	intron_variant;non_coding_transcript_variant			
rs11673591	19	T A	41985931	0.0036	0.7391	intron_variant;non_coding_transcript_variant			
rs2659051	19	G C	51345568	0.0421	0.7945	intron_variant;non_coding_transcript_variant			
rs61752561	19	G A	51361382	0.1099	0.9565	KLK3	missense_variant;3_prime_UTR_variant;NMD_transcript_variant;intron_variant;non_coding_transcript_exon_variant;coding_sequence_variant;3_prime_UTR_variant;NMD_transcript_variant;non_coding_transcript_exon_variant		
rs61752561	19	C T	51361757	-0.1912	0.0735	KLK3	missense_variant;3_prime_UTR_variant;NMD_transcript_variant;non_coding_transcript_variant		
rs2847344	1	A G	10564675	0.0167	0.6902	PEX14	non_coding_transcript_variant;intron_variant		
rs1811698	1	C T	150772613	0.0468	0.8913	CTSK	intron_variant		
rs607518	1	A G	150954671	0.0242	0.2100	ANXA9	5_prime_UTR_variant		
rs10127983	1	T C	153923276	0.0390	0.3115	CRTC2	intron_variant;NMD_transcript_variant;non_coding_transcript_variant		
rs56103503	1	T C	154980351	0.0347	0.3841	ZBTB7B	intron_variant;non_coding_transcript_variant		
rs147847496	1	C T	155118588	0.0829	0.9783	intron_variant;intron_variant;non_coding_transcript_variant			
rs184104770	1	A C	155690186	-0.0083	0.0100	MSTO1	intron_variant;non_coding_transcript_variant		
rs80237341	1	C G	157119915	0.0593	0.0127	intron_variant;non_coding_transcript_variant;NMD_transcript_variant			
rs6660538	1	A C	163295678	0.0168	0.3681	NUF2	intron_variant;non_coding_transcript_variant;NMD_transcript_variant		
rs10803412	1	C T	163295678	0.0133	0.1711	CLCNKB	intron_variant		
rs4075646	1	T A	167135941	0.0405	0.0372	intron_variant;non_coding_transcript_variant			
rs507603	1	A C	179897070	0.0044	0.1580	intron_variant			
rs34295433	1	CTAAG C	183032447	0.0250	0.5325	LAMC1	intron_variant		
rs138638958	1	TTTTG T	204030362	0.0173	0.5364	3_prime_UTR_variant;non_coding_transcript_exon_variant;intron_variant;3_prime_UTR_variant;non_coding_transcript_exon_variant;intron_variant			
rs4245739	1	A C	204518842	0.0379	0.7297	MDM4	intron_variant		
rsID	Chrom	Allele 1	Allele 2	Position	Minor Allele Frequency	Major Allele Frequency	Gene(s)	Variant Type	
--------------	-------	----------	----------	----------	------------------------	------------------------	-------------------------------	-----------------------------------	
rs708723	1	C	T	205739266	0.0268	0.4366	RAB7L1	3_prime_UTR_variant;NMD_transcript_variant	
rs544780844	1	T	C	46251655	0.0301	0.1424			
rs7542260	1	T	C	5743196	-0.0044	0.0533			
rs56391074	1	AT	A	88210715	0.0170	0.3664			
rs11480453	20	C	CA	31347512	0.0280	0.6164			
rs6141551	20	C	T	34006970	0.0111	0.6137			
rs73909841	20	T	C	49548807	0.0352	0.9278			
rs6126986	20	C	T	52464719	0.0388	0.4825			
rs381331	20	A	G	62229989	0.0178	0.6224			
chr20_6223363	20	G	A	62233638	-0.0118	0.4016	GMEB2	intron_variant	
rs3787099	20	A	G	62307517	0.0800	0.9156			
rs1058319	20	C	T	62374389	0.0392	0.8611			
rs11701433	21	C	T	40296411	0.0187	0.3265			
rs61735792	21	A	G	42866332	0.1249	0.0139			
rs9978557	21	C	T	42882462	0.0600	0.9001			
rs1978060	22	G	A	19749525	0.0290	0.6086			
rs9625483	22	A	G	28888939	0.0625	0.0247			
rs138708	22	G	A	39138332	0.0418	0.9795			
rs34584683	22	T	A	40499107	0.0246	0.2073			
rs6003062	22	G	A	43499741	0.0026	0.9308			
rs5759167	22	G	T	43500212	0.0631	0.5003			
chrX_66751555	22	A	G	66751555	-0.0108	0.4232			
rs9615099	22	T	A	45698149	0.0191	0.7483			
rs17321482	23	C	T	11482634	0.0249	0.8710			
rs5972255	23	T	C	30896320	0.0085	0.2403			
rs4907775	23	G	A	51263200	0.0484	0.3575			
rs5943724	23	G	A	52695895	0.0081	0.6578			
rs4826594	23	A	G	54454406	-0.0046	0.0586			
chrX_66751555	23	G	A	66751555	-0.0288	0.1555			
rs5919393	23	T	C	66825357	0.0141	0.8457			
rs11795627	23	T	C	69957441	-0.0138	0.4819			
rs371707439	23	A	G	70139908	0.0217	0.1969			
rsID	Chromosome	Base	Alteration	Position	MAF	Allele Frequency	Gene	Variant Type	
------------	------------	------	------------	------------	-----	------------------	--------	--	
rs960417	23	A	G	9811095	0.0214	0.7182	SHROOM2	intron_variant	
rs73913932	23	G	A	10094526	0.0591	0.0742	GRHL1	intron_variant;non_coding_transcript_variant	
rs1990613	23	T	C	10781975	0.0401	0.5153	NOL10	intron_variant	
rs2165108	23	A	T	111861993	0.0385	0.0420		intron_variant;non_coding_transcript_variant;intron_variant	
rs11691517	23	T	G	111893096	0.0336	0.7489	BCL2L11	intron_variant;NMD_transcript_variant	
rs111595856	23	C	G	121003598	0.0639	0.0676		non_coding_transcript_variant	
rs10206072	23	A	T	121173466	0.0457	0.9009		non_coding_transcript_variant	
rs7602028	23	C	A	16016503	0.0135	0.7221		intron_variant;non_coding_transcript_variant;intron_variant	
rs164594905	23	T	C	169012955	0.0198	0.9921	STK39	intron_variant	
rs77167534	23	C	T	173319930	0.1191	0.9411	ITGA6	intron_variant	
rs34925593	23	C	T	174234547	0.0205	0.4899		intron_variant;non_coding_transcript_variant;intron_variant	
rs1861270	23	G	A	202126615	0.0202	0.7350	CASP8	non_coding_transcript_variant	
rs12621900	23	C	T	208118301	0.0236	0.7631		non_coding_transcript_variant	
rs9306894	23	G	A	20878105	0.0148	0.3690		intron_variant;non_coding_transcript_variant;intron_variant	
rs74001374	23	C	T	238411293	0.1019	0.9926	MLPH	intron_variant	
rs2292884	23	G	A	238443226	0.0354	0.2415	MLPH	intron_variant;missense_variant;splice_region_variant;intron_variant	
rs77559646	23	A	G	242135265	0.1676	0.0227	ANO7	non_coding_transcript_variant	
rs77482050	23	G	A	242139600	0.2496	0.9892	ANO7	missense_variant;stop_gained	
rs2074840	23	C	T	242141719	0.0210	0.3041	ANO7	splice_region_variant;synonymous_variant	
rs76832527	23	A	G	242157241	0.0458	0.1740	ANO7	missense_variant	
rs6738169	23	C	G	43064555	0.0286	0.7073		intron_variant	
rs7591218	23	A	G	43637998	0.0307	0.3130	THADA	intron_variant;NMD_transcript_variant	
rs28541770	23	C	G	43851282	0.0139	0.7124		missense_variant	
rs11125927	23	G	A	62752975	0.0327	0.1139		intron_variant	
rs58235267	23	G	C	63277843	0.0203	0.4733	OTX1	intron_variant	
chr2_63301164	23	A	G	63301164	-0.0327	0.4982		non_coding_transcript_variant	
rs139283528	23	G	A	63938756	0.1070	0.9882	WDPCP	intron_variant	
SNP	chrom	ref	alt	position	MAF 1	MAF 2	Gene	Variant	
--------------	-------	-----	-----	----------	-------	-------	-------------	--------------------------------	
rs74702681	2	T	C	66652885	0.0564	0.0225	MAT2A	intron_variant;non_coding_transcript_variant	
rs2028900	2	C	T	85767735	0.0384	0.5539			
rs11686272	2	T	G	8598444	0.0180	0.4473			
rs1283104	3	G	C	106962521	0.0154	0.3755	LINC00883	intron_variant;non_coding_transcript_variant	
rs151038334	3	C	T	107193337	0.0431	0.9157			
rs2271494	3	A	T	113300183	0.0182	0.6146			
rs78416326	3	G	C	127898501	0.0384	0.5539			
rs4857841	3	A	G	128046643	0.0427	0.2779	EEFSEC	intron_variant;non_coding_transcript_variant	
rs577952184	3	C	T	128213994	0.0182	0.6146			
rs6550597	3	A	G	141147414	0.0135	0.4413	ZBTB38	intron_variant	
rs2293607	3	T	C	169482335	0.0284	0.7525	TERC	non_coding_transcript_exon_variant;non_coding_transcript_exon_variant	
rs35006112	3	G	A	137562823	0.0182	0.6146			
rs1457063	3	A	G	137562823	0.0182	0.6146			
rs7650602	3	C	T	141147414	0.0135	0.4413			
rs6853490	4	G	A	95544718	0.0218	0.4364	PDLIM5	intron_variant;non_coding_transcript_variant;NMD_transcript_variant	
chr4_95562877	4	T	C	95562877	-0.0317	0.3507			
rs2242652	5	G	A	1280028	0.0198	0.8007	TERT		
rs	pos	ref	alt	effect	odds_ratio	P_value	gene	transcript variant	
------	-----	-----	-----	--------	------------	----------	------------	-------------------	
rs7725218	5	A	G	-0.0393	0.3501	TERT	intron_variant	non_coding_transcript_variant;intron_variant;NMD_transcript_variant;intron_variant	
rs71595003	5	A	G	0.0815	0.0285	TERT	intron_variant;NMD_transcript_variant;intron_variant		
rs2736098	5	T	C	0.0348	0.2626	TERT	intron_variant;NMD_transcript_variant;intron_variant		
rs2736108	5	T	C	0.0173	0.2944	TERT	intron_variant;NMD_transcript_variant;intron_variant		
rs10793821	5	T	C	0.0195	0.5760	TERT	intron_variant;NMD_transcript_variant;intron_variant		
rs71599622	5	T	G	0.0136	0.2826	TRIO	intron_variant;NMD_transcript_variant;non_coding_transcript_variant		
rs76551843	5	A	G	0.1520	0.9913	DOCK2	intron_variant;NMD_transcript_variant;non_coding_transcript_variant		
rs9686557	5	C	A	0.0216	0.4429	COL2A3	missense_variant		
rs61739424	5	G	A	0.0495	0.9624	COL2A3	intron_variant		
rs2672843	5	G	A	0.0207	0.4090	COL2A3	intron_variant		
rs4975758	5	G	C	0.0254	0.4757	GDNF	intron_variant		
rs10941370	5	T	C	0.0811	0.4452	GDNF	intron_variant		
rs1482675	5	T	C	0.0054	0.3113	FGF10	intron_variant		
rs9292122	5	A	G	0.0181	0.7106	RGS17	intron_variant		
rs2038542	6	C	T	0.0352	0.1455	RGS17	intron_variant;non_coding_transcript_variant		
rs2018336	6	T	C	0.0415	0.7696	RGS17	intron_variant;non_coding_transcript_variant;intron_variant;NMD_transcript_variant		
rs339351	6	C	A	0.0409	0.6990	RFX6	intron_variant		
rs3910736	6	T	C	-0.0212	0.3242	RGS17	intron_variant		
rs13215045	6	C	T	0.0202	0.6868	RGS17	intron_variant;non_coding_transcript_variant		
rs963800	6	C	T	0.0285	0.7868	SOD2	intron_variant;non_coding_transcript_variant		
rs4646284	6	TG	T	0.0942	0.2974	SOD2	intron_variant;non_coding_transcript_variant		
rs7769879	6	C	G	0.0325	0.3645	SLC2A3	intron_variant		
rs2814811	6	A	G	0.0187	0.4043	GMDS	intron_variant;non_coding_transcript_variant		
rs6927369	6	C	T	0.0333	0.8084	GMDS	intron_variant		
rs4269363	6	G	A	0.0167	0.5721	GMDS	intron_variant		
rs12665509	6	A	C	0.0150	0.4603	CASC15	intron_variant;non_coding_transcript_variant		
rs62407547	6	C	T	0.0212	0.2467	HCG17	intron_variant;non_coding_transcript_variant		
rs9275160	6	A	G	0.0371	0.3525	HCG17	intron_variant;non_coding_transcript_variant		
rs9469899	6	A	G	0.0333	0.3648	HCG17	intron_variant;non_coding_transcript_variant		
rs4714485	6	G	T	0.0384	0.2754	FOXP4	intron_variant		
rs9472120	6	C	T	0.0173	0.4902	FOXP4	intron_variant		
rs3910736	6	T	C	0.0212	0.3242	FGF10	intron_variant		
rs13215045	6	C	T	0.0202	0.6868	RGS17	intron_variant		
rs963800	6	C	T	0.0285	0.7868	SOD2	intron_variant		
rs4646284	6	TG	T	0.0942	0.2974	SOD2	intron_variant		
rs7769879	6	C	G	0.0325	0.3645	SLC2A3	intron_variant		
rs2814811	6	A	G	0.0187	0.4043	GMDS	intron_variant;non_coding_transcript_variant		
rs6927369	6	C	T	0.0333	0.8084	GMDS	intron_variant		
rs4269363	6	G	A	0.0167	0.5721	GMDS	intron_variant		
rs12665509	6	A	C	0.0150	0.4603	CASC15	intron_variant;non_coding_transcript_variant		
rs62407547	6	C	T	0.0212	0.2467	HCG17	intron_variant;non_coding_transcript_variant		
rs9275160	6	A	G	0.0371	0.3525	HCG17	intron_variant;non_coding_transcript_variant		
rs9469899	6	A	G	0.0333	0.3648	HCG17	intron_variant;non_coding_transcript_variant		
rs4714485	6	G	T	0.0384	0.2754	FOXP4	intron_variant		
rs9472120	6	C	T	0.0173	0.4902	FOXP4	intron_variant		
SNP	Chromosome	Position	MAF	Effect Allele	Gene	Variant Type			
--------------	------------	----------	-----	--------------	------	------------------------------			
rs9443189	6	76495882	0.0116	G	MYO6	intron_variant			
rs4513875	7	1928159	0.0240	T	MAD1L1	intron_variant			
rs11452686	7	20414110	0.0005	C	ITGB8	intron_variant;non_coding_transcript_variant			
rs9655205	7	20999211	0.0448	C	LINC01162	intron_variant;non_coding_transcript_variant			
rs35389879	7	21812043	0.0238	G	DNAH11	intron_variant			
rs6956484	7	27564862	0.0335	C	MYO6	intron_variant;NMD_transcript_variant			
rs10486567	7	2797653	0.0240	C	JAZF1	intron_variant;non_coding_transcript_variant			
rs4513875	7	2797653	0.0240	C	JAZF1	intron_variant;non_coding_transcript_variant			
rs11452686	7	2797653	0.0240	C	JAZF1	intron_variant;non_coding_transcript_variant			
rs9655205	7	2797653	0.0240	C	JAZF1	intron_variant;non_coding_transcript_variant			
rs35389879	7	2797653	0.0240	C	JAZF1	intron_variant;non_coding_transcript_variant			
rs6956484	7	2797653	0.0240	C	JAZF1	intron_variant;non_coding_transcript_variant			
rs	pos	ref	alt	freq	odds	p-value	Gene	Annotation	
------------	-----	-----	-----	------	------	---------	------------	--	
rs11467	8	A	G	0.0178	0.6294	TACC1	intron_variant;non_coding_transcript_variant;5_prime_UTR_variant		
rs870167	8	G	A	0.0256	0.0648				
rs4451364	9	A	G	0.0281	0.7642				
rs817872	9	C	T	0.0298	0.2772				
rs143655302	9	G	A	0.1524	0.9855				
rs2241167	9	A	G	0.0244	0.5134	STXBP1	intron_variant		
rs12634	9	T	G	0.0342	0.2361	TOR1B	3_prime_UTR_variant		
rs34540271	9	C	T	0.0132	0.6956	ADAMTS1	intron_variant		
rs10122990	9	C	A	0.0190	0.3753	HAUS6	intron_variant		
rs17694493	9	G	C	0.0260	0.1366	CDKN2B-AS1	non_coding_transcript_variant;intron_variant		
rs10122495	9	T	A	0.0032	0.2858				
rs139135938	20	TGGCA	GTGG	CAGC	0.0250	0.6818	RBBP8NL	intron_variant	
rs555607708	22	A	AG	0.1694	0.0024	CHEK2	frameshift_variant;intron_variant;3_prime_UTR_variant;NMD_transcript_variant		
rs145053401	3	C	CAT	0.0435	0.8924	MBNL1	non_coding_transcript_variant;intron_variant		
rs150184171	6	G	GT	0.0231	0.5643	TBPL1	intron_variant		
rs57588856	8	C	CA	0.0221	0.6435				
rs142727307	9	T	TG	0.0178	0.1115				
rs11338635	23	GA	G	0.0032	0.3563		intron_variant;non_coding_transcript_variant		
rs141811748	8	C	AAA	0.0487	0.1442				
Harrell’s concordance index

Conventional area under the curve (AUC) and optimal operating points are appropriate for analyses of binary discrimination. The present study used a survival analysis approach to evaluate association with age at diagnosis of clinically significant prostate cancer. Moreover, the survival analysis includes censoring, which conventional AUC cannot account for.

One proposed metric for survival analyses is the Harrell’s concordance index\(^1\). Briefly, individuals in the dataset are compared in pairs, and the concordance is the percentage of pairs for which the earlier time to event (in this study, age at diagnosis of clinically significant prostate cancer) occurs in the individual with higher score (in this study, PHS46 or PHS290). Where censoring in one or both individuals in a given pair interferes with assessing concordance, that pair is excluded from the index. There are limitations to the interpretation of the Harrell’s concordance index\(^2,3\), and it may not be ideal for situations like polygenic risk, where the extremes of genetic risk are of more clinical interest than the scores of individuals within, say, the 30\(^{\text{th}}\)-70\(^{\text{th}}\) percentiles.

Nevertheless, we calculated the Harrell’s concordance index for PHS46 and PHS290 in each testing dataset to evaluate whether PHS290 represented an improvement in concordance index for the endpoint of age at diagnosis of clinically significant prostate cancer. As before, 1,000 bootstrap samples were generated to yield 95% confidence intervals.

The concordance index improved in each testing dataset. In the ProtecT dataset, concordance index was 0.63 [95% CI: 0.60-0.65] for PHS46 and 0.67 [0.64-0.69] for PHS290. Corresponding concordance index results for the other datasets were as follows. African dataset: 0.62 [0.58-0.65] for PHS46 and 0.69 [0.63-0.74] for PHS290. Asian dataset: 0.62 [0.58-0.65] for PHS46 and 0.66 [0.63-0.69] for PHS290. COSM dataset: 0.58 [0.57-0.60] for PHS46 and 0.63 [0.62-0.65] for PHS290.

References for Supplemental Information

1 Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the Yield of Medical Tests. JAMA 1982; 247: 2543–2546.

2 Blanche P, Kattan MW, Gerds TA. The c-index is not proper for the evaluation of t-year predicted risks. Biostatistics 2019; 20: 347–357.

3 Longato E, Vettoretti M, Di Camillo B. A practical perspective on the concordance index for the evaluation and selection of prognostic time-to-event models. Journal of Biomedical Informatics 2020; 108: 103496.
Additional PRACTICAL Consortium Collaborators

Teuvo L J Tammela1,2
Anssi Auvinen3
Alison M Dunning4
Maya Ghoussaini5
Suzanne Chambers6,7
Lisa Horvath8,9
Leire Moya10,11
Gail P Risbridger12,13
Wayne Tilley14
Judith A Clements10,11
Markus Aly15,16,17
Tobias Nordström18,19
Jenny L Donovan20
Freddie C Hamdy21,22
Richard M Martin20,23,24
Stig E Bojesen25,26
Peter Iversen27
Martin Andreas Røder27
Ian M Thompson Jr28
Melissa C Southey29,30,31
Graham G Giles30,32,29
Roger L Milne30,32,29
Niclas Håkansson33
Stephanie Weinstein34
Fredrick R Schumacher35,36
Loic Le Marchand37
Xin Sheng38
Tim J Key39
Elaine A Ostrander40
Phyllis J Goodman41
Edward Giovannucci42
Neil Burnet43
Gill Barnett44
Bettina F Drake45
Géraldine Cancel-Tassin46,47
Stephen Chanock34
Gerald L Andriole48
Robert N Hoover34
Mitchell J Machiela34
Laura E Beane Freeman34
Michael Borre49,50
Dominika Wokó?orczyk51
Jan Lubinski51
Lovise Maehle52
Thérèse Truong53
Hui-Yi Lin54
Mariana C Stern55
Manuel Luedeker56
Thomas Schnoeller57
Neil E Fleshner58
Monique J Roobol114
Guido Jenster114
Maureen Sanderson115

1Department of Urology, Tampere University Hospital, FI-33521 Tampere, Finland
2Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland
3Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
4Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge, CB1 8RN, UK
5Open Targets, Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
6University of Technology, Sydney
7Cancer Council Queensland, Fortitude Valley, QLD 4006, Australia
8Chris O'Brien Lifehouse (COBLH), Camperdown, Sydney, NSW 2010, Australia
9Garvan Institute of Medical Research, Sydney NSW 2010, Australia
10Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD 4059, Australia
11Translational Research Institute, Brisbane, Queensland 4102, Australia
12Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
13Prostate Cancer Translational Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
14Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide, Adelaide, South Australia, Australia
15Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77 Stockholm, Sweden
16Department of Molecular Medicine and Surgery, Karolinska Institutet
17Department of Urology, Karolinska University Hospital, Solna, 171 76 Stockholm
18Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
19Department of Clinical Sciences at Danderyds Hospital, Karolinska Institutet, Stockholm, Sweden
20Population Health Sciences, Bristol Medical School, University of Bristol, BS8 2PS, UK
21Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
22Faculty of Medical Science, University of Oxford, John Radcliffe Hospital, Oxford, UK
23National Institute for Health Research (NIHR) Biomedical Research Centre, University of Bristol, Bristol, BS8 1TH, UK
24Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.
25Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
26Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, 2200 Copenhagen, Denmark
27Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, Copenhagen University Hospital, DK-2730 Herlev, Copenhagen, Denmark
28CHRISTUS Santa Rosa Hospital – Medical Center, San Antonio, TX, USA
29Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria 3168, Australia
30Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, VIC 3004, Australia
31Department of Clinical Pathology, The Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia.
32Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
Youyi Road, Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
Wenyi Road, The People’s Hospital of Liaoning Province, The People’s Hospital of China Medical University, Shenyang, 110016, China
Qingchun Road, Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, 310009, China
Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela 15706, Spain
Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, CB2 0SR, UK.
Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, 15706, Spain.
Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, 15706, Spain.
Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
University of Cantabria, 39005 Santander, Spain
CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
ISGlobal, Barcelona, Spain
IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
Universitat Pompeu Fabra (UPF), Barcelona, Spain
Department and Laboratory of Urology, Hospital Clinic. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona. Spain. C/Villarroel 170; 08036 Barcelona, Spain
Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm
SDS Life Science, Danderyd, Sweden
Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 171 77 Stockholm, Sweden
Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
Department of Epidemiology, Health Sciences Building, University of Washington
Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02184, USA
Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
CHU de Pointe-à-Pitre, Univ Antilles, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Pointe-à-Pitre, France
Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
Saarland Cancer Registry, 66119 Saarbrücken, Germany
Department of Urology and Alexandrovska University Hospital, Medical University of Sofia, 1431 Sofia, Bulgaria
Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria

The University of Texas M. D. Anderson Cancer Center, Department of Genitourinary Medical Oncology, 1515 Holcombe Blvd., Houston, TX 77030, USA

Department of Population Sciences, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, 626-256-HOPE (4673)

Ghent University, B-9000, Gent

Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Cancer Research Malaysia (CRM), Outpatient Centre, Subang Jaya Medical Centre, Subang Jaya, Selangor, Malaysia

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109-1024, USA

Department of Urology, University of Washington, 1959 NE Pacific Street, Box 356510, Seattle, WA 98195, USA

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany

Department of Urology, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia

Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2

Division of Radiation Oncology, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2

Department of Urology, University Hospitals Leuven, Herestraat 49, Box 7003 41, BE-3000 Leuven, Belgium

Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, BE-3000, Belgium

Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, Servicio Galego de Saúde, SERGAS, 15706, Santiago de Compostela, Spa

University of California San Diego, Moores Cancer Center, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA 92093-0012, USA

Case Western Reserve University, Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, 2103 Cornell Road, Wolstein Research Building, Suite 2530, Cleveland, OH, 44106 USA

Vanderbilt University Medical Center, Department of Thoracic Surgery, 609 Oxford House, 1313 21st Avenue South, Nashville, TN 37232-4682 USA

Department of Urology, Erasmus University Medical Center, 3015 CE Rotterdam, The Netherlands

Department of Family and Community Medicine, Meharry Medical College, 1005 Dr. DB Todd Jr. Blvd., Nashville, TN 37208 USA
Funding & Acknowledgements

CRUK and PRACTICAL consortium

This work was supported by the Canadian Institutes of Health Research, European Commission's Seventh Framework Programme grant agreement n° 223175 (HEALTH-F2-2009-223175), Cancer Research UK Grants C5047/A7357, C1287/A10118, C1287/A16563, C5047/A3354, C5047/A10692, C16913/A6135, and The National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative grant: No. 1 U19 CA 148537-01 (the GAME-ON initiative).

We would also like to thank the following for funding support: The Institute of Cancer Research and The Everyman Campaign, The Prostate Cancer Research Foundation, Prostate Research Campaign UK (now Prostate Action), The Orchid Cancer Appeal, The National Cancer Research Network UK, The National Cancer Research Institute (NCRI) UK. We are grateful for support of NIHR funding to the NIHR Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust.

The Prostate Cancer Program of Cancer Council Victoria also acknowledge grant support from The National Health and Medical Research Council, Australia (126402, 209057, 251533, , 396414, 450104, 504700, 504702, 504715, 623204, 940394, 614296,), VicHealth, Cancer Council Victoria, The Prostate Cancer Foundation of Australia, The Whitten Foundation, PricewaterhouseCoopers, and Tattersall’s. EAO, DMK, and EMK acknowledge the Intramural Program of the National Human Genome Research Institute for their support.

Genotyping of the OncoArray was funded by the US National Institutes of Health (NIH) [U19 CA 148537 for ELucidating Loci Involved in Prostate cancer SuscEptibility (ELLIPSE) project and X01HG007492 to the Center for Inherited Disease Research (CIDR) under contract number HHSN268201200008I].

This study would not have been possible without the contributions of the following: Coordination team, bioinformatician and genotyping centers: Genotyping at CCGE, Cambridge: Caroline Baines and Don Conroy

Funding for the iCOGS infrastructure came from: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund.

This study would not have been possible without the contributions of the following: Per Hall (COGS); Douglas F. Easton, Paul Pharoah, Kyriaki Michailidou, Manjeet K. Bolla, Qin Wang (BCAC), Andrew Berchuck (OCAC), Rosalind A. Eeles, Douglas F. Easton, Ali Amin Al Olama, Zsofia Kote-Jarai, Sara Benlloch (PRACTICAL), Georgia Chenevix-Trench, Antonis Antoniou, Lesley Mcguffog, Fergus Couch and Ken Offit (CIMBA), Joe Dennis, Alison M. Dunning, Andrew Lee, and Ed Dicks, Craig Luccarini and the staff of the Centre for Genetic Epidemiology Laboratory, Javier Benitez, Anna Gonzalez-Neira and the staff of the CNIO genotyping unit, Jacques Simard and Daniel C. Tessier, Francois Bacot, Daniel Vincent, Sylvie LaBoissiere and Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, Stig E. Bojesen, Sune F. Nielsen, Borge G. Nordestgaard, and the staff of the Copenhagen DNA laboratory, and Julie M. Cunningham, Sharon A. Windebank, Christopher A. Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility
Additional funding and acknowledgments from studies in PRACTICAL:

Information of the PRACTICAL consortium can be found at http://practical.icr.ac.uk/

Aarhus
This study was supported by Innovation Fund Denmark, the Danish Cancer Society and The Velux Foundation (Veluxfonden). The Danish Cancer Biobank (DCB) is acknowledged for biological material.

AHS
This work was supported by the Intramural Research Program of the NIH, National Cancer Institute, Division of Cancer Epidemiology and Genetics (Z01CP010119).

ATBC
The ATBC Study is supported by the Intramural Research Program of the U.S. National Cancer Institute, National Institutes of Health, and by U.S. Public Health Service contract HHSN261201500005C from the National Cancer Institute, Department of Health and Human Services.

BioVU
The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center’s BioVU which is supported by institutional funding and by the National Center for Research Resources, Grant UL1 RR024975-01 (which is now at the National Center for Advancing Translational Sciences, Grant 2 UL1 TR000445-06).

Canary PASS
PASS was supported by Canary Foundation and the National Cancer Institute’s Early Detection Research Network (U01 CA086402)

CAPS & STHM1
The Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden was supported by the Cancer Risk Prediction Center (CRisP; www.crispcenter.org), a Linneus Centre (Contract ID 70867902) financed by the Swedish Research Council, Swedish Research Council (grant no K2010-70X-20430-04-3), the Swedish Cancer Foundation (grant no 09-0677), the Hedlund Foundation, the Soederberg Foundation, the Enqvist Foundation, ALF funds from the Stockholm County Council. Stiftelsen Johanna Hagstrand och Sigfrid Linner's Minne, Karlsson's Fund for urological and surgical research. We thank and acknowledge all of the participants in the Stockholm-1 study. We thank Carin Cavalli-Bjöerkm and Ami Roennberg Karlsson for their dedicated work in the collection of data. Michael Broms is acknowledged for his skilful work with the databases. KI Biobank is acknowledged for handling the samples and for DNA extraction. Hans Wallinder at Aleris Medilab and Sven Gustafsson at Karolinska University Laboratory are thanked for their good cooperation in providing historical laboratory results.

CCI
This work was awarded by Prostate Cancer Canada and is proudly funded by the Movember Foundation - Grant # D2013-36. The CCI group would like to thank David Murray, Razmik Mirzayans, and April Scott for their contribution to this work.

CHIPGECSC
Orchid, Wuxi Second Hospital Research Funds, National Natural Science foundation of China for funding support to H Zhang (Grant No: 30671793 and 81072377), N Feng (Grant No: 81272831), SC Zhao (Grant No: 81072092 and 81328017), Liaoning Natural Science Foundation 2017, China, Item Number: 20170540536 to Zan Sun and Yong-Jie Lu. This work was conducted on behalf of the
CHIPGECS Consortia. We acknowledge the contribution of doctors, nurses and postgraduate research students at the CHIPGENCS sample collecting centers.

COH
SLN is partially supported by the Morris and Horowitz Families Endowed Professorship

CONOR
CONOR was supported by grants from the Nordic Cancer Union, the Swedish Cancer Society (2012/823) and the Swedish Research Council (2014/2269). The authors wish to acknowledge the services of CONOR, the contributing research centres delivering data to CONOR, and all the study participants.

COSM
COSM is funded by The Swedish Research Council (grant for the Swedish Infrastructure for Medical Population-based Life-course Environmental Research – SIMPLER), the Swedish Cancer Foundation.

CPCS1 / CPCS2
Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark We thank participants and staff of the Copenhagen General Population Study for their important contributions.

CPDR
Uniformed Services University for the Health Sciences HU0001-10-2-0002 (PI: David G. McLeod, MD)

EPIC
The coordination of EPIC was financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts (that recruited male participants) are supported by Danish Cancer Society (Denmark); German Cancer Aid, German Cancer Research Center (DKFZ), Federal Ministry of Education and Research (BMBF), Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); Health Research Fund (FIS), PI13/00061 to Granada; , PI13/01162 to EPIC-Murcia), Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, ISCIII RETIC (RD06/0020) (Spain); Swedish Cancer Society, Swedish Research Council and County Councils of Skåne and Västerbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; C570/A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford) (United Kingdom). For information on how to submit an application for gaining access to EPIC data and/or biospecimens, please follow the instructions at http://epic.iarc.fr/access/index.php

EPICAP
The EPICAP study was supported by grants from Ligue Nationale Contre le Cancer; Institut National du Cancer (INCa); Fondation ARC; Fondation de France; Agence Nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (ANSES); Ligue départementale du Val de Marne.

The EPICAP study group would like to thank all urologists, Antoinette Anger and Hasina Randrianasolo (study monitors), Anne-Laure Astolfi, Coline Bernard, Oriane Noyer, Marie-Hélène De Campo, Sandrine Margaroline, Louise N'Diaye, Sabine Perrier-Bonnet (Clinical Research nurses)
ERSPC
This study was supported by the Dutch Cancer Society (KWF94-869, 98-1657, 2002-277, 2006-3518, 2010-4800); The Netherlands Organisation for Health Research and Development (ZonMW-002822820, 22000106, 50-50110-98-311, 62300035), The Dutch Cancer Research Foundation (SWOP), and an unconditional grant from Beckman-Coulter-Hybritech Inc.

ESTHER
The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. The ESTHER group would like to thank Hartwig Ziegler, Sonja Wolf, Volker Hermann, Heiko Müller, Karina Dieffenbach, Katja Butterbach for valuable contributions to the study.

FHCRC
The FHCRC studies were supported by grants R01-CA056678, R01-CA082664, R01-CA092579, and K05-CA175147 from the US National Cancer Institute, National Institutes of Health, with additional support from the Fred Hutchinson Cancer Research Center (P30-CA015704). We thank all the men who participated in these studies.

Gene-PARE
The Gene-PARE study was supported by grants 1R01CA134444 from the U.S. National Institutes of Health, PC074201 and W81XWH-15-1-0680 from the Prostate Cancer Research Program of the Department of Defense and RSGT-05-200-01-CCE from the American Cancer Society. S.L.K. is supported by 1K07CA187546 from the U.S. National Cancer Institute.

HPFS
The Health Professionals Follow-up Study was supported by grants UM1CA167552, CA133891, CA141298, and P01CA055075. We are grateful to the participants and staff of the Physicians’ Health Study and Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY.

IMPACT
The IMPACT study was funded by The Ronald and Rita McAulay Foundation, CR-UK Project grant (C5047/A1232), Cancer Australia, AICR Netherlands A10-0227, Cancer Australia and Cancer Council Tasmania, NIHR, EU Framework 6, Cancer Councils of Victorian and South Australia, Philanthropic donation to Northshore University Health System. We acknowledge support from the National Institute for Health Research (NIHR) to the Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden Foundation NHS Trust. We acknowledge the IMPACT study steering committee, collaborating centres and participants.

IPO-Porto
The IPO-Porto study was funded by Fundação para a Ciência e a Tecnologia (FCT; UID/DTP/00776/2013 and PTDC/DTP-PIC/1308/2014) and FEDER (POCI-01-0145-FEDER-028245). MC (SFRH/BD/116557/2016) and MPS (SFRH/BD/132441/2017) are research fellows from FCT. We would like to express our gratitude to all patients and families who have participated in this study.

KARUPROSTATE
The Karuprostate study was supported by the Frech National Health Directorate, the Association pour la Recherche sur le Cancer, la Ligue Nationale contre le Cancer, the French Agency for Environmental and Occupational Health Safety (ANSES) and by the Association pour la Recherche sur les Tumeurs de la Prostate. We would like to thank Séverine Ferdinand for valuable contributions to the study.
KULEUVEN. F.C. and S.J. are holders of grants from FWO Vlaanderen (G.0684.12N and G.0830.13N), the Belgian federal government (National Cancer Plan KPC_29_023), and a Concerted Research Action of the KU Leuven (GOA/15/017). TVDB is holder of a doctoral fellowship of the FWO.

LAAPC
This study was funded by grant R01CA84979 (to S.A. Ingles) from the National Cancer Institute, NIH.

Malaysia
The study was funded by the University Malaya High Impact Research Grant (HIR/MOHE/MED/35 to A.R). We thank all associates in the Urology Unit, University of Malaya, Cancer Research Malaysia (CRM) and the Malaysian Men’s Health Initiative (MMHI).

MAYO
The Mayo group was supported by the US National Cancer Institute (R01CA72818)

MCC-Spain
The study was partially funded by the ""Accion Transversal del Cancer"", approved on the Spanish Ministry Council on the 11th October 2007, by the Instituto de Salud Carlos III-FEDER (PI08/1770, PI09/00773-Cantabria, PI11/01889-FEDER, PI12/00265, PI12/01270, PI12/00715, PI15/00069), by the Fundación Marqués de Valdecilla (API 10/09), by the Spanish Association Against Cancer (AECC) Scientific Foundation and by the Catalan Government DURSI grant 2009SGR1489. Samples: Biological samples were stored at the Parc de Salut MAR Biobank (MARBiobanc; Barcelona) which is supported by Instituto de Salud Carlos III FEDER (RD09/0076/00036). Also sample collection was supported by the Xarxa de Bancs de Tumors de Catalunya sponsored by Pla Director d’Oncologia de Catalunya (XBTC). ISGlobal is a member of the CERCA Programme, Generalitat de Catalunya. We acknowledge the contribution from Esther Gracia-Lavedan in preparing the data. We thank all the subjects who participated in the study and all MCC-Spain collaborators.

MCCS
Melbourne Collaborative Cohort Study (MCCS) cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further augmented by Australian National Health and Medical Research Council grants 209057, 396414 and 1074383 and by infrastructure provided by Cancer Council Victoria. Cases and their vital status were ascertained through the Victorian Cancer Registry and the Australian Institute of Health and Welfare, including the National Death Index and the Australian Cancer Database.

MD Anderson
Prostate Cancer Case-Control Studies at MD Anderson (MDA) supported by grants CA68578, ES007784, DAMD W81XWH-07-1-0645 and CA140388.

MEC
The MEC was supported by NIH grants CA063464, CA054281, CA098758, and CA164973.

MOFFITT
The Moffitt group was supported by the US National Cancer Institute (R01CA128813, PI: J.Y. Park).

NMHS
Funding for the Nashville Men's Health Study (NMHS) was provided by the National Institutes of Health Grant numbers: RO1CA121060

PCaP
The North Carolina - Louisiana Prostate Cancer Project (PCaP) and the Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study are carried out as collaborative studies supported by the Department of Defense contract DAMD 17-03-2-0052 and the American Cancer Society award RSGT-08-008-01-CPHPS, respectively. The authors thank the staff, advisory committees and research subjects participating in the PCaP study for their important contributions. We would like to acknowledge the UNC BioSpecimen Facility and the LSUHSC Pathology Lab for our DNA extractions, blood processing, storage, and sample disbursement (https://genome.unc.edu/bsp). The authors thank the staff, advisory committees and research subjects participating in the PCaP and HCaP-NC studies for their important contributions.

PCMUS
The PCMUS study was supported by the Bulgarian National Science Fund, Ministry of Education and Science (contract DOO-119/2009; DUNK01/2-2009; DFNI-B01/28/2012) with additional support from the Science Fund of Medical University - Sofia (contract 51/2009; 81/2009; 28/2010;).

PHS
The Physicians’ Health Study was supported by grants CA34944, CA40360, CA097193, HL26490 and HL34595. We are grateful to the participants and staff of the Physicians’ Health Study and Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY.

PLCO
This PLCO study was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH. The authors thank Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention at the National Cancer Institute, the screening center investigators and staff of the PLCO Cancer Screening Trial for their contributions to the PLCO Cancer Screening Trial. We thank Mr. Thomas Riley, Mr. Craig Williams, Mr. Matthew Moore, and Ms. Shannon Merkle at Information Management Services, Inc., for their management of the data and Ms. Barbara O’Brien and staff at Westat, Inc. for their contributions to the PLCO Cancer Screening Trial. We also thank the PLCO study participants for their contributions to making this study possible.

PRAGGA
PRAGGA was supported by Programa Grupos Emergentes, Cancer Genetics Unit, CHUVI Vigo Hospital, Instituto de Salud Carlos III, Spain. PRAGGA wishes to thank Víctor Muñoz Garzón, Manuel Enguíx Castelo, Sara Miranda Ponte, Carmen M Redondo, Manuel Calaza, Francisco Gude Sampedro, Joaquín González-Carreró and the staff of the Department of Pathology and Biobank of University Hospital Complex of Vigo, Instituto de Investigación Sanitaria Galicia Sur (IISGS), SERGAS, Vigo, Spain; Máximo Fraga, José Antúnez and the Biobank of University Hospital Complex of Santiago, Santiago de Compostela, Spain; and María Torres, Angel Carracedo and the Galician Foundation of Genomic Medicine.

PROCAP
PROCAP was supported by the Swedish Cancer Foundation (08-708, 09-0677). We thank and acknowledge all of the participants in the PROCAP study. We thank Carin Cavalli-Björkman and Ami Rönberg Karlsson for their dedicated work in the collection of data. Michael Broms is acknowledged for his skilful work with the databases. KI Biobank is acknowledged for handling the samples and for DNA extraction. We acknowledge The NPCR steering group: Pär Stattin (chair), Anders Widmark, Stefan Karlsson, Magnus Törnblom, Jan Adolfsson, Anna Bill-Axelson, Ove Andrén, David Robinson, Bill Pettersson, Jonas Hugosson, Jan-Erik Damber, Ola Bratt, Göran Ahlgren, Lars Egevad, and Roy Ehrnström.
We would like to acknowledge the support of the Ronald and Rita McAulay Foundation and Cancer Research UK. We also acknowledge support from the National Institute for Health Research (NIHR) to the Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden Foundation NHS Trust. We acknowledge the Profile study steering committee and participants.

This research was supported by Spanish Instituto de Salud Carlos III (ISCIII) funding, an initiative of the Spanish Ministry of Economy and Innovation partially supported by European Regional Development FEDER Funds (INT15/00070, INT16/00154, INT17/00133; PI19/01424; PI16/00046; PI13/02030; PI10/00164), and through the Autonomous Government of Galicia (Consolidation and structuring program: IN607B) given to A.Vega. We would like to thank the patients for their contribution to the study.

ProtecT would like to acknowledge the support of The University of Cambridge, Cancer Research UK. Cancer Research UK grants [C8197/A10123] and [C8197/A10865] supported the genotyping team. We would also like to acknowledge the support of the National Institute for Health Research which funds the Cambridge Bio-medical Research Centre, Cambridge, UK. We would also like to acknowledge the support of the National Cancer Research Prostate Cancer: Mechanisms of Progression and Treatment (PROMPT) collaborative (grant code G0500966/75466) which has funded tissue and urine collections in Cambridge. We are grateful to staff at the Welcome Trust Clinical Research Facility, Addenbrooke’s Clinical Research Centre, Cambridge, UK for their help in conducting the ProtecT study. We also acknowledge the support of the NIHR Cambridge Biomedical Research Centre, the NIR HTA (ProtecT grant) and the NCRI / MRC (ProMPT grant) for help with the bio-repository. The UK Department of Health funded the ProtecT study through the NIHR Health Technology Assessment Programme (projects 96/20/06, 96/20/99). The ProtecT trial and its linked ProMPT and CAP (The Cluster Randomized Trial of PSA Testing for Prostate Cancer) studies are supported by Department of Health, England; Cancer Research UK grant number C522/A8649, C11043/A4286, C18281/A8145, C18281/A11326, and C18281/A15064, Medical Research Council of England grant number G0500966, ID 75466 and The NCRI, UK. The epidemiological data for ProtecT were generated though funding from the Southwest National Health Service Research and Development. DNA extraction in ProtecT was supported by USA Dept of Defense award W81XWH-04-1-0280, Yorkshire Cancer Research and Cancer Research UK. The authors would like to acknowledge the contribution of all members of the ProtecT study research group. Richard Martin was supported by a Cancer Research UK Programme Grant (C18281/A19169) and the National Institute for Health Research Bristol Nutrition Biomedical Research Centre based at University Hospitals Bristol NHS Foundation Trust and the University of Bristol.

The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Department of Health of England. The bio-repository from ProtecT is supported by the NCRI (ProMPT) Prostate Cancer Collaborative and the Cambridge BMRC grant from NIHR.

We acknowledge support from the National Cancer Research Institute (National Institute of Health Research (NIHR) Collaborative Study: “Prostate Cancer: Mechanisms of Progression and Treatment (PROMPT)” (grant G0500966/75466).

We thank the National Institute for Health Research, Hutchison Whampoa Limited, the Human Research Tissue Bank (Addenbrooke’s Hospital), and Cancer Research UK. The authors would like
to thank those men with prostate cancer and the subjects who have donated their time and their samples to the Cambridge Biorepository, which were used in this research. We also would like to acknowledge to support of the research staff in S4 who so carefully curated the samples and the follow-up data (Jo Burge, Marie Corcoran, Anne George, and Sara Steam).

PROtEuS

PROtEuS was supported financially through grants from the Canadian Cancer Society [13149, 19500, 19864, 19865] and the Cancer Research Society, in partnership with the Ministère de l'enseignement supérieur, de la recherche, de la science et de la technologie du Québec, and the Fonds de la recherche du Québec - Santé. PROtEuS would like to thank its collaborators and research personnel, and the urologists involved in subjects recruitment. We also wish to acknowledge the special contribution made by Ann Hsing and Anand Chokkalingam to the conception of the genetic component of PROtEuS.

QLD

The QLD research is supported by The National Health and Medical Research Council (NHMRC) Australia Project Grants [390130, 1009458] and NHMRC Career Development Fellowship, Cancer Australia PdCCRS and Cancer Council Queensland funding to J Batra. The QLD team would like to acknowledge and sincerely thank the urologists, pathologists, data managers and patient participants who have generously and altruistically supported the QLD cohort.

RAPPER

RAPPER is supported by Cancer Research UK [C1094/A11728; C1094/A18504] and Experimental Cancer Medicine Centre funding [C1467/A7286], and the NIHR Manchester Biomedical Research Centre. The RAPPER group thank Dr. Holly Summersgill for project management.

SABOR

The SABOR research is supported by NIH/NCI Early Detection Research Network, grant U01 CA0866402-18. Also supported by the Cancer Center Support Grant to the Mays Cancer Center from the National Cancer Institute (US) P30 CA054174

SCCS

SCCS is funded by NIH grant R01 CA092447, and SCCS sample preparation was conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485). Data on SCCS cancer cases used in this publication were provided by the Alabama Statewide Cancer Registry; Kentucky Cancer Registry, Lexington, KY; Tennessee Department of Health, Office of Cancer Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana Tumor Registry; Mississippi Cancer Registry; South Carolina Central Cancer Registry; Virginia Department of Health, Virginia Cancer Registry; Arkansas Department of Health, Cancer Registry, 4815 W. Markham, Little Rock, AR 72205. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from
Genotyping of the OncoArray was funded by the US National Institutes of Health (NIH) [U19 CA 148537 for ELucidating Loci Involved in Prostate cancer SuscEptibility (ELLIPSE) project and X01HG007492 to the Center for Inherited Disease Research (CIDR) under contract number HHSN268201200008I]. Additional analytic support was provided by NIH NCI U01 CA188392 (PI: Schumacher).

The PRACTICAL consortium was supported by Cancer Research UK Grants C5047/A7357, C1287/A10118, C1287/A16563, C5047/A3354, C5047/A10692, C16913/A6135, European Commission's Seventh Framework Programme grant agreement n° 223175 (HEALTH-F2-2009-223175), and The National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative grant: No. 1 U19 CA 148537-01 (the GAME-ON initiative).

We would also like to thank the following for funding support: The Institute of Cancer Research and The Everyman Campaign, The Prostate Cancer Research Foundation, Prostate Research Campaign UK (now PCUK), The Orchid Cancer Appeal, Rosetrees Trust, The National Cancer Research Network UK, The National Cancer Research Institute (NCRI) UK. We are grateful for support of NIHR funding to the NIHR Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust.

This study would not have been possible without the contributions of the following:
Coordination team, bioinformatician and genotyping centres:
Genotyping at CCGE, Cambridge: Caroline Baines and Don Conroy

Additional funding and acknowledgments from studies in PRACTICAL:
Information of the PRACTICAL consortium can be found at http://practical.icr.ac.uk/

Aarhus
This study was supported by Innovation Fund Denmark, the Danish Cancer Society and The Velux Foundation (Veluxfonden).
The Danish Cancer Biobank (DCB) is acknowledged for biological material.

AHS
This work was supported by the Intramural Research Program of the NIH, National Cancer Institute, Division of Cancer Epidemiology and Genetics (Z01CP010119).

ATBC
The ATBC Study is supported by the Intramural Research Program of the U.S. National Cancer Institute, National Institutes of Health, Department of Health and Human Services.

BioVU
The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center’s BioVU which is supported by institutional funding and by the National Center for Research Resources, Grant UL1 RR024975-01 (which is now at the National Center for Advancing Translational Sciences, Grant 2 UL1 TR000445-06).

Canary PASS
PASS was supported by Canary Foundation and the National Cancer Institute's Early Detection Research Network)U01 CA086402)
CCI
This work was awarded by Prostate Cancer Canada and is proudly funded by the Movember Foundation - Grant # D2013-36.
The CCI group would like to thank David Murray, Razmik Mirzayans, and April Scott for their contribution to this work.

CHIPGECS
Orchid, Wuxi Second Hospital Research Funds, National Natural Science foundation of China for funding support to H Zhang (Grant No: 30671793 and 81072377), N Feng (Grant No: 81272831), SC Zhao (Grant No: 81072092 and 81328017), Liaoing Natural Science Foundation 2017, China, Item Number: 20170540536 to Zan Sun Sun and Yong-Jie Lu.
This work was conducted on behalf of the CHIPGECS Consortia. We acknowledge the contribution of doctors, nurses and postgraduate research students at the CHIPGENCS sample collecting centers.

COH
SLN is partially supported by the Morris and Horowitz Families Endowed Professorship

COSM
COSM is funded by The Swedish Research Council (grant for the Swedish Infrastructure for Medical Population-based Life-course Environmental Research – SIMPLER), the Swedish Cancer Foundation.

CPCS1 / CPCS2
Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
We thank participants and staff of the Copenhagen General Population Study for their important contributions.

CPDR
Uniformed Services University for the Health Sciences HU0001-10-2-0002 (PI: David G. McLeod, MD)

EPIC
The coordination of EPIC was financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts (that recruited male participants) are supported by Danish Cancer Society (Denmark); German Cancer Aid, German Cancer Research Center (DKFZ), Federal Ministry of Education and Research (BMBF), Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); Health Research Fund (FIS), PI13/00061 to Granada; , PI13/01162 to EPIC-Murcia), Regional Governments of Andalucia, Asturias, Basque Country, Murcia and Navarra, ISCIII RETIC (RD06/0020) (Spain); Swedish Cancer Society, Swedish Research Council and County Councils of Skåne and Västerbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; C8221/A29017 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford) (United Kingdom). For information on how to submit an application for gaining access to EPIC data and/or biospecimens, please follow the instructions at http://epic.iarc.fr/access/index.php

EPICAP
The EPICAP study was supported by grants from Ligue Nationale Contre le Cancer; Institut National du Cancer (INCa); Fondation ARC; Fondation de France; Agence Nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (ANSES); Ligue départementale du Val de Marne. The EPICAP study group would like to thank all urologists, Antoinette Anger and Hasina Randrianasolo (study monitors), Anne-Laure Astolfi, Coline Bernard, Oriane Noyer, Marie-Hélène De Campo, Sandrine Margaroline, Louise N'Diaye, Sabine Perrier-Bonnet (Clinical Research nurses).

ERSPC
This study was supported by the Dutch Cancer Society (KWF94-869,98-1657,2002-277,2006-3518, 2010-4800); The Netherlands Organisation for Health Research and Development (ZonMW-002822820,22000106,50-50110-98-311, 62300035), The Dutch Cancer Research Foundation (SWOP), and an unconditional grant from Beckman-Coulter-Hybritech Inc.

ESTHER
The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. The ESTHER group would like to thank Hartwig Ziegler, Sonja Wolf, Volker Hermann, Heiko Müller, Karina Dieffenbach, Katja Butterbach for valuable contributions to the study.

FHCRC
The FHCRC studies were supported by grants R01-CA080122, R01-CA056678, R01-CA082664, and R01-CA092579, and K05-CA175147 from the US National Cancer Institute, National Institutes of Health, with additional support from the Fred Hutchinson Cancer Research Center (P30-CA015704). We thank all the individuals who participated in these studies.

Gene-PARE
The Gene-PARE study was supported by grants 1R01CA134444 from the U.S. National Institutes of Health, PC074201 and W81XWH-15-1-0680 from the Prostate Cancer Research Program of the Department of Defense and RSGT-05-200-01-CCE from the American Cancer Society. S.L.K. is supported by 1K07CA187546 from the U.S. National Cancer Institute.

HPFS
The Health Professionals Follow-up Study was supported by grants UM1CA167552, CA133891, CA141298, and P01CA055075. We are grateful to the participants and staff of the Physicians’ Health Study and Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY.

IMPACT
The IMPACT study was funded by The Ronald and Rita McAulay Foundation, CR-UK Project grant (C5047/A1232), Cancer Australia, AICR Netherlands A10-0227, Cancer Australia and Cancer Council Tasmania, NIHR, EU Framework 6, Cancer Councils of Victorial and South Australia, Philanthropic donation to Northshore University Health System. We acknowledge support from the National Institute for Health Research (NIHR) to the Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden Foundation NHS Trust. We acknowledge the IMPACT study steering committee, collaborating centres and participants.

IPO-Porto
The IPO-Porto study was funded by Fundação para a Ciência e a Tecnologia (FCT; UID/DTP/00776/2013 and PTDC/DTB-PI/1308/2014) and FEDER (POCI-01-0145-FEDER-028245). MC (SFRH/BD/116557/2016) and MPS (SFRH/BD/132441/2017) are research fellows from FCT.
We would like to express our gratitude to all patients and families who have participated in this study.

KARUPROSTATE
The Karuprostate study was supported by the French National Health Directorate, the Association pour la Recherche sur le Cancer, la Ligue Nationale contre le Cancer, the French Agency for Environmental and Occupational Health Safety (ANSES) and by the Association pour la Recherche sur les Tumeurs de la Prostate. We would like to thank Séverine Ferdinand for valuable contributions to the study.

KULEUVEN
F.C. and S.J. are holders of grants from FWO Vlaanderen (G.0684.12N and G.0830.13N), the Belgian federal government (National Cancer Plan KPC_29_023), and a Concerted Research Action of the KU Leuven (GOA/15/017). TVDB is holder of a doctoral fellowship of the FWO.

LAAPC
This study was funded by grant R01CA84979 (to S.A. Ingles) from the National Cancer Institute, NIH.

Malaysia
The study was funded by the University Malaya High Impact Research Grant (HIR/MOHE/MED/35 to A.R).
We thank all associates in the Urology Unit, University of Malaya, Cancer Research Malaysia (CRM) and the Malaysian Men's Health Initiative (MMHI).

MCC-Spain
The study was partially funded by the "Accion Transversal del Cancer", approved on the Spanish Ministry Council on the 11th October 2007, by the Instituto de Salud Carlos III-FEDER (PI08/1770, PI09/00773-Cantabria, PI11/01889-FEDER, PI12/02625, PI12/01270, PI12/00715, PI15/00069), by the Fundación Marqués de Valdecilla (API 10/09), by the Spanish Association Against Cancer (AECC) Scientific Foundation and by the Catalan Government DURSI grant 2009SGR1489. Samples: Biological samples were stored at the Parc de Salut MAR Biobank (MARBiobanc; Barcelona) which is supported by Instituto de Salud Carlos III FEDER (RD09/0076/00036). Also sample collection was supported by the Xarxa de Bancs de Tumors de Catalunya sponsored by Pla Director d'Oncologia de Catalunya (XBTC). ISGlobal acknowledges support from the Spanish Ministry of Science and Innovation through the "Centro de Excelencia Severo Ochoa 2019-2023" Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program.
We acknowledge the contribution from Esther Gracia-Lavedan in preparing the data. We thank all the subjects who participated in the study and all MCC-Spain collaborators.

MCCS
Melbourne Collaborative Cohort Study (MCCS) cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further augmented by Australian National Health and Medical Research Council grants 209057, 396414 and 1074383 and by infrastructure provided by Cancer Council Victoria. Cases and their vital status were ascertained through the Victorian Cancer Registry and the Australian Institute of Health and Welfare, including the National Death Index and the Australian Cancer Database.

MD Anderson
Prostate Cancer Case-Control Studies at MD Anderson (MDA) supported by grants CA68578, ES007784, DAMD W81XWH-07-1-0645 and CA140388.

MEC
The MEC was supported by NIH grants CA063464, CA054281, CA098758, and CA164973.

MOFFITT
The Moffitt group was supported by the US National Cancer Institute (R01CA128813, PI: J.Y. Park).

NMHS
Funding for the Nashville Men’s Health Study (NMHS) was provided by the National Institutes of Health Grant numbers: R01CA121060

Oslo
CONOR was supported by grants from the Nordic Cancer Union, the Swedish Cancer Society (2012/823) and the Swedish Research Council (2014/2269).
The authors wish to acknowledge the services of CONOR, the contributing research centres delivering data to CONOR, and all the study participants.

PCaP
The North Carolina - Louisiana Prostate Cancer Project (PCaP) and the Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study are carried out as collaborative studies supported by the Department of Defense contract DAMD 17-03-2-0052 and the American Cancer Society award RSGT-08-008-01-CPHPS, respectively.
We would like to acknowledge the UNC BioSpecimen Facility and the LSUHSC Pathology Lab for our DNA extractions, blood processing, storage and sample disbursement (https://genome.unc.edu/bsp).
The Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study is carried out as a collaborative study supported by the American Cancer Society award RSGT-08-008-01-CPHPS. The authors thank the staff, advisory committees and research subjects participating in the PCaP and HCaP-NC studies for their important contributions.

PCMUS
The PCMUS study was supported by the Bulgarian National Science Fund, Ministry of Education and Science (contract DOO-119/2009; DUNK01/2-2009; DFNI-B01/28/2012) with additional support from the Science Fund of Medical University - Sofia (contract 51/2009; 81/2009; 28/2010;).

PHS
The Physicians’ Health Study was supported by grants CA34944, CA40360, CA097193, HL26490 and HL34595.
We are grateful to the participants and staff of the Physicians’ Health Study and Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY.

PLCO
This PLCO study was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH.
The authors thank Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention at the National Cancer Institute, the screening center investigators and staff of the PLCO Cancer Screening Trial for their contributions to the PLCO Cancer Screening Trial. We thank Mr. Thomas Riley, Mr. Craig Williams, Mr. Matthew Moore, and Ms. Shannon Merkle at Information Management Services, Inc., for their management of the data and Ms. Barbara O’Brien and staff at Westat, Inc. for their contributions to the PLCO Cancer Screening Trial. We also thank the PLCO study participants for their contributions to making this study possible.

PRAGGA
PRAGGA was supported by Programa Grupos Emergentes, Cancer Genetics Unit, CHUVI Vigo Hospital, Instituto de Salud Carlos III, Spain. PRAGGA wishes to thank Victor Muñoz Garzón, Manuel Enguiñacastelo, Sara Miranda Ponte, Carmen M Redondo, Manuel Calaza, Francisco Gude Sampedro, Joaquín González-Carreró and the staff of the Department of Pathology and Biobank of University Hospital Complex of Vigo, Instituto de Investigación Sanitaria Galicia Sur (IISGS), SERGAS, Vigo, Spain; Máximo Fraga, José Antúnez and the Biobank of University Hospital Complex of Santiago, Santiago de Compostela, Spain; and Maria Torres, Angel Carracedo and the Galician Foundation of Genomic Medicine.

PROCAP
PROCAP was supported by the Swedish Cancer Foundation (08-708, 09-0677). We thank and acknowledge all of the participants in the PROCAP study. We thank Carin Cavalli-Björkman and Ami Rönnberg Karlsson for their dedicated work in the collection of data. Michael Broms is acknowledged for his skilful work with the databases. KI Biobank is acknowledged for handling the samples and for DNA extraction. We acknowledge The NPCR steering group: Pär Stattin (chair), Anders Widmark, Stefan Karlsson, Magnus Törnblom, Jan Adolfsson, Anna Bill-Axelson, Ove Andrén, David Robinson, Bill Pettersson, Jonas Hugosson, Jan-Erik Damber, Ola Bratt, Göran Ahlgren, Lars Egevad, and Roy Ehrnström.

PROFILE
We would like to acknowledge the support of the Ronald and Rita McAulay Foundation and Cancer Research UK. We also acknowledge support from the National Institute for Health Research (NIHR) to the Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden Foundation NHS Trust. We acknowledge the Profile study steering committee and participants.

PROGReSS
This research was supported by Spanish Instituto de Salud Carlos III (ISCIII) funding, an initiative of the Spanish Ministry of Economy and Innovation partially supported by European Regional Development FEDER Funds (INT15/00070, INT16/00154, INT17/00133; PI19/01424; PI16/00046; PI13/02030; PI10/00164), and through the Autonomous Government of Galicia (Consolidation and structuring program: IN607B) given to A.Vega. We would like to thank the patients for their contribution to the study.

ProMPT / ProtecT
CRUK, NIHR, MRC, Cambridge Biomedical Research Centre

"ProtecT would like to acknowledge the support of The University of Cambridge, Cancer Research UK. Cancer Research UK grants [C8197/A10123] and [C8197/A10865] supported the genotyping team. We would also like to acknowledge the support of the National Institute for Health Research which funds the Cambridge Bio-medical Research Centre, Cambridge, UK. We would also like to acknowledge the support of the National Cancer Research Prostate Cancer: Mechanisms of Progression and Treatment (PROMPT) collaborative (grant code G0500966/75466) which has funded tissue and urine collections in Cambridge. We are grateful to staff at the Welcome Trust Clinical Research Facility, Addenbrooke’s Clinical Research Centre, Cambridge, UK for their help in conducting the ProtecT study. We also acknowledge the support of the NIHR Cambridge Biomedical Research Centre, the NIR HTA (ProtecT grant) and the NCRI / MRC (ProMPT grant) for help with the bio-repository. The UK Department of Health funded the ProtecT study through the NIHR Health Technology Assessment Programme (projects 96/20/06, 96/20/99). The ProtecT trial and its linked ProMPT and CAP (The Cluster Randomized Trial of PSA Testing for Prostate Cancer) studies are supported by Department of Health, England; Cancer Research UK grant number C522/A8649, C11043/A4286, C18281/A8145, C18281/A11326, and C18281/A15064, Medical Research Council of
England grant number G0500966, ID 75466 and The NCRI, UK. The epidemiological data for ProtecT were generated through funding from the Southwest National Health Service Research and Development. DNA extraction in ProtecT was supported by USA Dept of Defense award W81XWH-04-1-0280, Yorkshire Cancer Research and Cancer Research UK. The authors would like to acknowledge the contribution of all members of the ProtecT study research group.

Richard Martin was supported by a Cancer Research UK Programme Grant (C18281/A19169) and the National Institute for Health Research Bristol Nutrition Biomedical Research Centre based at University Hospitals Bristol NHS Foundation Trust and the University of Bristol.

The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Department of Health of England. The bio-repository from ProtecT is supported by the NCRI (ProMPT) Prostate Cancer Collaborative and the Cambridge BMRC grant from NIHR.

We acknowledge support from the National Cancer Research Institute (National Institute of Health Research (NIHR) Collaborative Study: “Prostate Cancer: Mechanisms of Progression and Treatment (PROMPT)” (grant G0500966/75466).

We thank the National Institute for Health Research, Hutchison Whampoa Limited, the Human Research Tissue Bank (Addenbrooke’s Hospital), and Cancer Research UK. The authors would like to thank those men with prostate cancer and the subjects who have donated their time and their samples to the Cambridge Biorepository, which were used in this research. We also would like to acknowledge to support of the research staff in S4 who so carefully curated the samples and the follow-up data (Jo Burge, Marie Corcoran, Anne George, and Sara Stearn).

PROtEuS
PROtEuS was supported financially through grants from the Canadian Cancer Society [13149, 19500, 19864, 19865] and the Cancer Research Society, in partnership with the Ministère de l’enseignement supérieur, de la recherche, de la science et de la technologie du Québec, and the Fonds de la recherche du Québec - Santé.
PROtEuS would like to thank its collaborators and research personnel, and the urologists involved in subjects recruitment. We also wish to acknowledge the special contribution made by Ann Hsing and Anand Chokkalingam to the conception of the genetic component of PROtEuS.

QLD
The QLD research is supported by The National Health and Medical Research Council (NHMRC) Australia Project Grants [390130, 1009458] and NHMRC Career Development Fellowship, Cancer Australia PdCCRS and Cancer Council Queensland funding to J Batra
The QLD team would like to acknowledge and sincerely thank the urologists, pathologists, data managers and patient participants who have generously and altruistically supported the QLD cohort.

RAPPER
RAPPER is supported by Cancer Research UK [C1094/A11728; C1094/A18504] and Experimental Cancer Medicine Centre funding [C1467/A7286], and the NIHR Manchester Biomedical Research Centre.
The RAPPER group thank Dr. Holly Summersgill for project management.

SABOR
The SABOR research is supported by NIH/NCI Early Detection Research Network, grant U01 CA0866402-18. Also supported by the Cancer Center Support Grant to the Mays Cancer Center from the National Cancer Institute (US) P30 CA054174
SCCS
SCCS is funded by NIH grant R01 CA092447, and SCCS sample preparation was conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485). Data on SCCS cancer cases used in this publication were provided by the Alabama Statewide Cancer Registry; Kentucky Cancer Registry, Lexington, KY; Tennessee Department of Health, Office of Cancer Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana Tumor Registry; Mississippi Cancer Registry; South Carolina Central Cancer Registry; Virginia Department of Health, Virginia Cancer Registry; Arkansas Department of Health, Cancer Registry, 4815 W. Markham, Little Rock, AR 72205. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry.

SCPCS
SCPCS is funded by CDC grant S1135-19/19, and SCPCS sample preparation was conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485).

SEARCH
SEARCH is funded by a programme grant from Cancer Research UK [C490/A10124] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The University of Cambridge has received salary support in respect of PP from the NHS in the East of England through the Clinical Academic Reserve.

SFPCS
SFPCS was funded by California Cancer Research Fund grant 99-00527V-10182

SNP Prostate Ghent
The study was supported by the National Cancer Plan, financed by the Federal Office of Health and Social Affairs, Belgium.

SPAG
Manchester Cancer Research Centre and MRC – Medical Research Council for PhD studentship work, MUG - Male Uprising in Guernsey, Hope for Guernsey and Wessex Medical Research for research support

STHM2
STHM2 was supported by grants from The Strategic Research Programme on Cancer (StratCan), Karolinska Institutet; the Linné Centre for Breast and Prostate Cancer (CRISP, number 70867901), Karolinska Institutet; The Swedish Research Council (number K2010-70X-20430-04-3) and The Swedish Cancer Society (numbers 11-0287 and 11-0624); Stiftelsen Johanna Hagstrand och Sigfrid Linnérs minne; Swedish Council for Working Life and Social Research (FAS), number 2012-0073 The authors acknowledge the Karolinska University Laboratory, Aleris Medilab, Unilabs and the Regional Prostate Cancer Registry for performing analyses and help to retrieve data. Carin Cavalli–Björkman and Britt-Marie Hune for their enthusiastic work as research nurses. Astrid Björklund for skilful data management. We wish to thank the BBMRI.se biobank facility at Karolinska Institutet for biobank services.
SWOG-PCPT / SWOG-SELECT
PCPT / SELECT is funded by Public Health Service grants U10CA37429 and 5UM1CA182883 from the National Cancer Institute.
The authors thank the site investigators and staff and, most importantly, the participants from PCPT who donated their time to this trial.

TAMPERE
The Tampere (Finland) study was supported by the Academy of Finland (251074), The Finnish Cancer Organisations, Sigrid Juselius Foundation, and the Competitive Research Funding of the Tampere University Hospital (X51003). The PSA screening samples were collected by the Finnish part of ERSPC (European Study of Screening for Prostate Cancer). TAMPERE would like to thank Riina Liikanen, Liisa Maeaettaenen and Kirsi Talala for their work on samples and databases.

Toronto
Prostate Cancer Canada Movember Discovery Grant (D2013-17) to RJH; Canadian Cancer Society Research Institute Career Development Award in Cancer Prevention (2013-702108) to RJH

UKGPCS
UKGPCS would also like to thank the following for funding support: The Institute of Cancer Research and The Everyman Campaign, The Prostate Cancer Research Foundation, Prostate Research Campaign UK (now Prostate Action), The Orchid Cancer Appeal, The National Cancer Research Network UK, The National Cancer Research Institute (NCRI) UK. We are grateful for support of NIHR funding to the NIHR Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. UKGPCS should also like to acknowledge the NCRN nurses, data managers and Consultants for their work in the UKGPCS. UKGPCS would like to thank all urologists and other persons involved in the planning, coordination, and data collection of the study. KM and AL were in part supported from the NIHR Manchester Biomedical Research Centre

ULM
The Ulm group received funds from the German Cancer Aid (Deutsche Krebshilfe).

WUGS
WUGS would like to thank the following for funding support: The Anthony DeNovi Fund, the Donald C. McGraw Foundation, and the St. Louis Men’s Group Against Cancer.