Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania

Article in Geospatial health · June 2009
DOI: 10.4081/gh.2009.220 · Source: PubMed

CITATIONS 48
READS 175

11 authors, including:

Stefan Dongus
Swiss Tropical and Public Health Institute
50 PUBLICATIONS 652 CITATIONS
See Profile

Dickson Raphael Nyika
Ministry of Agriculture
13 PUBLICATIONS 237 CITATIONS
See Profile

Hassan Mshinda
Tanzania Commission for Science and Technology
142 PUBLICATIONS 6,085 CITATIONS
See Profile

Laura Gosoniu
Nestlé S.A.
31 PUBLICATIONS 829 CITATIONS
See Profile

Some of the authors of this publication are also working on these related projects:

Agent-based model of mosquito host seeking behavior in presence of the LLINs View project

BERENIS - Swiss expert group on electromagnetic fields and non-ionising radiation View project

All content following this page was uploaded by Marcia C de Castro on 01 June 2014.
The user has requested enhancement of the downloaded file.
Urban agriculture and *Anopheles* habitats in Dar es Salaam, Tanzania

Stefan Dongus¹,²,³, Dickson Nyika³,⁴,⁵, Khadija Kannady⁴, Deo Mtasiwa⁴,⁶, Hassan Mshinda³, Laura Gosoniu¹, Axel W. Drescher¹, Ulrike Fillinger⁷, Marcel Tanner¹, Gerry F. Killeen³,⁸,⁹, Marcia C. Castro¹⁰

¹Department of Public Health and Epidemiology, Swiss Tropical Institute, University of Basel, P.O. Box, CH-4002 Basel, Switzerland; ²Department of Physical Geography, University of Freiburg, Werthmannstrasse 4, 79085 Freiburg, Germany; ³Ifakara Health Institute, Coordination Office, P.O. Box 78373, Kiko Avenue, Mikocheni B, Dar es Salaam, Tanzania; ⁴City Medical Office of Health, Dar es Salaam City Council, P.O. Box 63320, Dar es Salaam, Tanzania; ⁵Ministry of Agriculture and Food Security, P.O. Box 9192, Kilimo Road, Dar es Salaam, Tanzania; ⁶Ministry of Health and Social Welfare, P.O. Box 9083, Dar es Salaam, Tanzania; ⁷Disease Control and Vector Ecology Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK; ⁸Institute of Ecosystems Science, School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK; ⁹Liverpool School of Tropical Medicine, Vector Group, Pembroke Place, Liverpool, L3 5QA, UK; ¹⁰Department of Population and International Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA

Abstract. A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of *Anopheles* larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of *Anopheles* larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km²) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing *Anopheles* larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of *Anopheles* larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding *Anopheles* larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats.

Keywords: urban agriculture, *Anopheles* larvae, geographical information systems, malaria risk, malaria control, Tanzania.

Introduction

Urban agriculture

The consequences of rapid urbanisation pose enormous challenges for cities, particularly in develop-
oping countries of sub-Saharan Africa. Challenges associated with such growth as seen there include high rates of unemployment and scarcity of adequate shelter, food, water, sanitation and environmental protection (Hardoy et al., 2001; UNFPA, 2007; UN, 2008; Harpham, 2009). One response to the increasing demands is urban and periurban agriculture, i.e. the production (from crop to animal production), processing and distribution of food within and around urban areas (Mougeot, 2000). 

Farming in cities is a worldwide phenomenon (Smit et al., 1996), yet it has different functions in industrialised countries as compared to the developing ones. While its role has shifted to a mainly recreational one in the former, it remains an integral part of livelihood and food security in the latter (Drescher, 1998; Mougeot, 2000; Gerstl et al., 2002; Drescher et al., 2006). In Tanzania, the annual urban growth rate from 2005-2010 is projected to be 4.2% (UN, 2008) and urban agriculture (UA) appears to have developed and expanded in response to genuine need (Kyessi, 1997). People of varied socio-economic status levels practise UA throughout Tanzanian towns and cities (Sawio, 1993; Howorth et al., 2001).

In Dar es Salaam UA takes place on public land, private land, residential plots and industrial or institutional areas. In many cases, public land is used without formal agreement or illegally and without secure land rights (Jacobi et al., 2000). A large number of farmers of open spaces obtained their plots in the first half of the 1970s. During this period of economic crisis, the Tanzanian Government encouraged people in the city to cultivate every available piece of land (Stevenson et al., 1994). The decline of the economy worsened in the 1980s resulting in shortages of basic foodstuff. Urban dwellers responded by engaging in subsistence farming (Briggs, 1991) and by 1988, one in five people of working age in Dar es Salaam were involved in some form of UA (Smit et al., 1996). Currently, UA in Dar es Salaam consists of backyard gardening, livestock farming, community gardening, and market-oriented production on open spaces. Vegetables are the most important product (Jacobi et al., 2000) and most of the leafy vegetables consumed in Dar es Salaam comes from UA within the city (Stevenson et al., 1994). While backyard gardening is most important in terms of the number of households involved (Jacobi et al., 2000), open space production covers the largest area (4% of the urban area in 1999) (Dongus, 2001). UA thus plays an important role in providing food, maintaining green areas, and generating income, yet it may also entail health risks. First, crops can be contaminated with heavy metals or pathogens from industrial or domestic wastewater, from urban solid waste used as fertiliser, or from agro-chemical poisoning (Birley and Lock, 1998). Second, UA can provide suitable conditions for mosquito larval development in stagnant water bodies created by irrigation, water storage and drainage, increasing the risk of vector-borne diseases such as malaria (Birley and Lock 1998; Keating et al., 2003, 2004; Afrane et al., 2004).

**Urban malaria**

Malaria accounts for approximately 1 million deaths worldwide each year, mainly in sub-Saharan Africa (Hay et al., 2005; Snow et al., 2005; WHO, 2008). The residents of Dar es Salaam are at risk of contracting malaria (Keiser et al., 2004) and belong to the estimated 2.4 billion of urban population living in areas where malaria transmission is dominated by *Plasmodium falciparum*, cause of the most lethal form of the disease (Guerra et al., 2008). In malaria-endemic areas, urbanisation has major implications for disease transmission patterns (Lines et al., 1994; Warren et al., 1999). Although vector density is typically much lower in urban areas compared to periurban and rural areas (Robert et al., 2003), malaria transmission is nevertheless a significant problem (Trape et al., 1993; Keiser et al., 2004; Donnelly et al., 2005; Hay et al., 2005). In Dar es Salaam, over a million malaria cases are reported by the health facilities every year (Mtasiwa et al., 2003) though malaria is often grossly over-
reported (Makani et al., 2003; Wang et al., 2006; Reyburn et al., 2007), and a considerable part of the infections might result from travel to rural areas (Wang et al., 2006). Transmission is modest with one infectious bite per person per year, reflected by the moderate average prevalence of 12% (Geissbühler et al., 2009). In Dar es Salaam, 90% of all malaria cases are caused by *P. falciparum* with the main vectors being *Anopheles gambiae sensu strictu* Giles, *An. arabiensis* Patton, *An. funestus* Giles and *An. merus* Dönitz (Castro et al., 2004). However, all *Anopheles* species found in Dar es Salaam are potential malaria vectors (Geissbühler et al., 2009).

**UA and malaria**

The impact of UA on malaria transmission intensity in cities is not fully understood. In Kumasi, Ghana, higher adult anopheline densities were found in urban areas with agriculture than in those without. However, these UA areas were located in inland valleys that might have more mosquitoes due to their local ecology (Afrane et al., 2004). A report on malaria in Accra, Ghana, compared the prevalence in communities with and without UA concluding that proximity to irrigated, open-spaced, and commercial vegetable production may increase transmission (Klinkenberg et al., 2005), which could potentially play a role in malaria epidemiology (Klinkenberg et al., 2008). Other studies found that certain irrigation practices result in larger mosquito populations (Ijumba and Lindsay, 2001; Briet et al., 2003; Afrane et al., 2004; Dolo et al., 2004) but these do not necessarily lead to higher transmission levels (Ijumba and Lindsay, 2001; Dolo et al., 2004). In Bouaké, Côte d’Ivoire, Dossou-Yovo et al. (1994, 1998) found high anopheline densities but low sporozoite rates in areas bordering rice cultivation, concluding that rice fields did not seem to have notably modified malaria transmission. Robert et al. (1998) concluded from a study on market garden wells in Dakar, Senegal, that although wells served as breeding grounds for anophelines, these sites were not the only in sustaining the mosquito population. In Dar es Salaam, Wang et al. (2006) found that having a small urban agricultural land or garden near the living compound was not associated with malaria infection. However, these surveys were conducted after a long period of drought, when malaria prevalence was exceptionally low. The exact role of UA in malaria transmission thus remains unclear and needs further investigation (Afrane et al., 2004; Wang et al., 2006).

*Anopheles* breeding sites can be found in all kinds of urban land use, agricultural or not. A variety of studies have found that UA creates breeding sites for anophelines (Trape and Zoulani, 1987; Afrane et al., 2004; Matthys et al., 2006; Klinkenberg et al., 2008). However, a study in two Kenyan cities found no association between household level farming and vector breeding sites (Keating et al., 2004). Experiences in large-scale rice irrigation schemes in Mali showed the types and the density of breeding sites varied depending on the rice growing stages, and the related provision of shade (Klinkenberg et al., 2003). Therefore, water management such as intermittent irrigation as well as the adaptation of farming practices may significantly reduce the number of breeding sites in rice fields (van der Hoek et al., 2001; Keiser et al., 2002; Klinkenberg et al., 2003). In Dar es Salaam, Sattler et al. (2005) found that, where the groundwater table was high, seedbeds with small ridges tilled for growing plants with furrows dug between the ridges often contained shallow pools with *Anopheles* larvae. While rice fields, shallow wells and irrigation channels have also been found productive in this sense, malaria transmission in Dar es Salaam seems to be primarily associated with clusters of poorly drained and periurban areas, which often coincide with agricultural land use (Castro et al., 2004; Sattler et al., 2005).

This paper focuses on urban crop production investigating how the presence of *Anopheles* larvae is related to different UA characteristics as well as underlying geographical features in Dar es Salaam, Tanzania.
Materials and methods

Study area

Dar es Salaam is the largest city and de facto capital of Tanzania with an estimated 2.9 million inhabitants in 2007 (UN, 2008). Situated on the shores of the Indian Ocean, large parts of the city are located on coastal plains that are interrupted by a number of river valleys. It has a hot and humid tropical climate with two rainy seasons and is characterised as an area with endemic and perennial malaria (MARA/ARMA, 2002). Although the conditions for agriculture are not particularly favourable in terms of soil types and fertility (Sawio, 1998), UA is widespread (Jacobi et al., 2000).

The city region covers an area of almost 1,400 km² (Castro et al., 2004), divided into 73 administrative units called wards (Fig. 1). Three of those wards, Mikocheni, Buguruni and Kurasini, were chosen for sampling for this study. These areas are located within the urban area of Dar es Salaam between 1 and 10 km away from the city centre. The study area covers a total area of 16.8 km² and a population of 128,000 (Fig. 2) (National Bureau of Statistics, 2003). Most of the area is built-up but provides nevertheless excellent breeding sites for mosquitoes with varied aquatic habitats for their eggs, larvae and pupae (Castro et al., 2004; Sattler et al., 2005; Fillinger et al., 2008). The choice of these wards rested on two main reasons: (i) they are representative of Dar es Salaam’s geographic and socio-economic characteristics as well as of its urban land use (Dongus et al., 2007); and (ii) the relevant quality-controlled records of the distribution of aquatic-stage mosquitoes (Fillinger et al., 2008) are available from the Dar es Salaam Urban Malaria Control Programme (UMCP). This is the first operational community-based larviciding programme in modern Africa, described in detail elsewhere (Castro et al., 2004; Mukabana et al., 2006; Dongus et al., 2007; Fillinger et al., 2008).

The analysis is based on two datasets: (i) a specific UA survey, and (ii) the routine UMCP larval habitat survey (Fillinger et al., 2008).
UA survey data

Between late June 2005 and early January 2006, the three study wards were first visited and a cross-sectional survey of all agricultural areas used for crop production was conducted. The survey was fully integrated into a participatory mapping of the UMCP target areas (Dongus et al., 2007), which was almost exclusively conducted during the dry periods. Data on agricultural characteristics (the variables are listed and explained in Tables 1 and 2) were collected using specific forms. The boundaries

Table 1. Geographical and agricultural explanatory variables which were tested regarding response variables denoting absence/presence of Anopheles larvae in agricultural areas.

| Explanatory variable | Categories/values | Explanations |
|----------------------|-------------------|--------------|
| Topography           | Upland            | Subjective categorisation done in the field, relative to surroundings within a distance of 1 km. Validated by visual interpretation of a digital elevation model** (ITC Enschede and University of Dortmund, 2008). “Upland”: higher or same altitude than surroundings in all directions, “lowland”: lower altitude than surroundings in at least one direction, “slope”: area between upland and lowland. |
|                      | Slope             |              |
|                      | Lowland           |              |
| Land use             | Informal settlement | Data from 2002, available as geographical information systems (GIS) layer**. Selfexplaining category names. |
|                      | Other urban or industrial |
|                      | Planned residential |
|                      | Vacant or agriculture |
| Ward                 | Mikocheni         | The Dar es Salaam city region is subdivided into 73 wards. The three “wards” included in this study are located in the urban part of the city region (Fig. 1). Categories are the ward names. |
|                      | Buguruni          |              |
|                      | Kurasini          |              |
| Farming site         | Backyard garden   | “Backyard garden” (home garden): typically but not always near the home of the gardener, within residential areas, generally for subsistence production, maintained by individuals or households who have some access to land (either customary or legal) which they have arranged for themselves (Drescher et al., 2006). “Open space”: public or private unbuilt land, for example hazardous lands declared not suitable for construction, road and railway reserves, available land for community use, as well as residential, industrial or institutional plots under-utilised or awaiting development. Open spaces are often used for agricultural activities, generally marketoriented production, and cultivated by more than one farmer (Dongus, 2001). |
|                      | Open space        |              |
|                      | Unbuilt plot or nursery |
| Production type      | None              | Describes any kind of seedbed arrangements. “None”: plants grown on the plain ground, “raised beds”: plants grown on ridges with furrows in between, usually to keep the roots dry, “sunken beds”: seedbeds with slightly raised borders, usually to maximise water use. |
|                      | Raised beds (matuta) |
|                      | Sunken beds       |
|                      | Mixed raised and sunken beds |
| Soil type            | Sandy             | The soil type was determined by a simple finger test on the spot: rubbing the soil between fingertips in order to assess the texture. Twenty-nine observations lack any data for this variable. |
|                      | Loamy or clayey   |
| Manure               | None              | If a farmer was present, he or she was asked whether and what kind of manure is used. If no one was present, the type of manure used was determined visually or by its typical smell. |
|                      | Cow, poultry, pig, goat or other manure |
| Irrigation source    | Well              | If a farmer was present, he or she was asked whether and what kind of irrigation is used. If no one was present, the irrigation type was determined visually. |
|                      | Only rainfed      |
|                      | Tap water         |
|                      | Drain, ditch, standing groundwater, river, stream or other |

(continued)
### Explanatory variable

| Categories/values | Explanations |
|-------------------|--------------|
| Size              | All agricultural areas were digitised in a GIS, so their exact sizes are known. |
| 400 m²            |              |
| 101-400 m²        |              |
| ≤1-100 m²         |              |
| Distance to rivers/streams | Rivers/streams were digitised from the 1992 Dar es Salaam City Map 1:20,000. Inaccuracies were corrected on the basis of the 2002 aerial photographs. Buffer zones corresponding to the distance categories (e.g. ≤200 m) were assigned in the GIS. Agricultural areas were then assigned a certain distance category if their geometric centre (centroids) was located within the respective buffer zone. |
| ≤0-200 m          |              |
| 201-500 m         |              |
| >more than 500 m  |              |
| Distance to drains | Drains were digitised from 1992 Cadastral Maps 1:2,500. Inaccuracies due to new constructions were corrected on the basis of the 2002 aerial photographs and Google Earth imagery. Buffer zones corresponding to the distance categories (e.g. ≤200 m) were assigned in the GIS. Agricultural areas were then assigned a certain distance category if their geometric centre (centroids) was located within the respective buffer zone. |
| ≤0-200 m          |              |
| 201-500 m         |              |
| >more than 500 m  |              |
| Distance to large standing water bodies | Standing water bodies were digitised from the 1992 Dar es Salaam City Map 1:20,000. Inaccuracies e.g. due to new constructions were corrected on the basis of the 2002 aerial photographs and Google Earth imagery. Buffer zones corresponding to the distance categories (e.g. ≤200 m) were assigned in the GIS. Agricultural areas were then assigned a certain distance category if their geometric centre (centroids) was located within the respective buffer zone. |
| ≤0-200 m          |              |
| 201-500 m         |              |
| >500 m            |              |
| Cereals*          | Maize, sorghum |
| Rice*             | Rice         |
| Leafy vegetables* | E.g., Chinese cabbage, lettuce, spinach, sweet potato leaves, amaranth |
| Other vegetables* | E.g., cucumber, eggplant, tomatoes, watermelon, pumpkin, carrots, onion, sweet pepper, hot pepper, okra |
| Fruits*           | E.g., avocado, citrus, mango, pawpaw, pineapple, lemon, banana, cashew nuts, guava, passion |
| Oilseed crops*    | E.g., coconuts, sunflowers, groundnuts |
| Root crops*       | Sweet potato, cassava, cassava leaves, yams |
| Leguminous crops* | Cowpeas, pigeon peas |
| Sugar cane*       | Sugar cane |
| Other crops*      | E.g., flowers, tobacco, Guatemala grass |

* Variables for crops assigned based on the “Indicative Crop Classification” (Food and Agriculture Organization of the UN) (FAO, 2005)

** Information provided by ITC Enschede and Dortmund University
of each agricultural area were indicated on laminated A4 colour prints (scale 1:3,000) of digital aerial photographs with a ground resolution 0.5 m (produced by Geospace International, Pretoria, South Africa in 2002). Water bodies located within the agricultural areas were surveyed for the presence of Anopheles larvae utilising the same standardised operational protocols as that adopted by the UMCP larval surveillance team (Fillinger et al., 2008). All data were digitised using the geographical information systems (GIS) software MapInfo Professional® 7.0 (MapInfo Corporation, Troy, NY, USA).

**UMCP larval habitat data**

The UMCP larval habitat data comprise comprehensive longitudinal larval surveillance information with one data entry per four week period (variables used in this study are described in Tables 1 and 2). The UMCP data were collected on an operational basis as described in detail by Fillinger et al. (2008). Larval catchers were trained and routine supervision and spot checks were undertaken to monitor and assure the quality of the information. The data were stored in databases created in EpInfo™ software (Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA), and double-entered.

**Linking of UA data and UMCP larval data**

In order to not only receive information about larval presence in the agricultural areas for one point in time, but for both the dry and wet seasons, the UA survey data were matched with the UMCP larval data. The agricultural data of each area identified in the UA survey were matched with two observations from the UMCP larval database, representing data from the wet and dry seasons and collected nearest in time to the UA survey observation. This made it possible to incorporate the aspect of rainfall seasonality into the cross-sectional data. All UMCP larval observations, made between March 2005 and February 2006, were assigned either to a wet or a dry season period based on daily rainfall data from the Tanzania Meteorological Agency (http://www.meteo.go.tz) collected at the Dar es Salaam airport station. The wet season periods (average weekly rainfall above 25 mm) included March 9-May 28, 2005; October 18-November 25, 2005; and February 12-28, 2006. The dry season periods (average weekly rainfall below 2.5 mm) included May 29-October 17, 2005; and November 26, 2005 to February 11, 2006 (Fig. 3). The maximum time between the UA survey and the corresponding UMCP larval data was one month or less in 87% of the UMCP dry season observations (median = 12 days), and three months or less in 88% of the UMCP wet season observations (median = 59 days).

The UA survey found a total of 623 agricultural areas in the study area, with sizes ranging from 10 to almost 66,000 m², covering a total area of 0.9 km². From these, 201 areas had to be dropped because no observations were available for them in the UMCP larval database. These areas were mostly rainfed small gardens located in upland or slope areas (Fig.

| Response variable | Categories/values | Explanations |
|-------------------|------------------|--------------|
| Anopheles UA survey | Absent/present | Presence of Anopheles larvae (any stage). Data source: UA survey. Not distinguishing seasons. |
| Anopheles UMCP | Absent/present | Presence of Anopheles larvae (any stage). Data source: UMCP larval database. Distinguishing wet and dry seasons. |
| Anopheles late UMCP | Absent/present | Presence of late instar Anopheles larvae. Data source: UMCP larval database. Distinguishing wet and dry seasons. |
| Pupae UMCP | Absent/present | Presence of pupae (Anopheles and/or Culex). Data source: UMCP larval database. Distinguishing wet and dry seasons. |

Table 2. Response variables for which geographical and agricultural explanatory variables were tested.
In addition, 17 gardens were excluded because they only had observations for one of the two seasons. Another 33 areas had to be excluded because their corresponding UMCP larval data only covered periods after the commencement of larvicide use in March 2006 (Fillinger et al., 2008; Geissbühler et al., 2009). Unfortunately, these 33 areas, located in the valley of the Msimbazi River in Buguruni, constituted the largest agricultural cluster in the study area. Hence, the study sample comprised 372 individual agricultural areas covering a total of 0.2 km² (covering 1.2% of the total surface of the study area).

**Geographical data**

Available geographical data were assembled. Some of these were used for visual interpretation (e.g. roads and railway lines), while other data were utilised for statistical analysis (e.g. land use and hydrological information). Land use classes and distances to hydrological features (e.g. rivers) were assigned based on the centroid locations (geometric centres) of each agricultural area. In order to determine the distances, buffer zones were assigned around the various hydrological features (Table 1).

A digital elevation model (DEM) was used for visual interpretation and validation of the topographical data collected in the UA survey. The DEM as well as the roads and land use data were provided by the International Institute for Geo-Information Science and Earth Observation (ITC) Enschede, The Netherlands, and the University of Dortmund, Germany (2008).

**Statistical methods**

Statistical analysis was done with the STATA® software (version 9.0, Stata Corporation, College Station, TX, USA), and complemented with visual interpretation of maps produced with MapInfo and ArcGIS (version 9.2, ESRI, Redlands, CA, USA). Multiple models were fitted using a stepwise (backward selection and inclusion criteria: P <0.2) multivariate, logistic regression procedure with independent random effects. The following statistical model specifications were employed:

Let $Y_i$ be the binary response corresponding to the presence of *Anopheles* larvae at site $i$, $i = 1, \ldots, n$ taking value = 1 if *Anopheles* larvae are present and the value = 0 otherwise. Let $X_i = (X_{i1}, \ldots, X_{ip})^T$ be the
vector of \( p \) associated geographical and agricultural predictors observed at location \( i \). We assume that \( Y_i \) are Bernoulli distributed \( Y_i \sim Ber(p_i) \) with a presence probability \( p_i \) given by the equation

\[
\logit (p_i) = \beta_0 + \sum_{j=1}^{p} X_{ij} \beta_j
\]

To take into account potential clustering, random effects \( \varepsilon_i \) were introduced at each site \( i \), that is

\[
\logit (p_i) = \beta_0 + \sum_{j=1}^{p} X_{ij} \beta_j + \varepsilon_i
\]

The “\( \varepsilon_i \)” values were assumed independent and were modelled with a mean = 0 normal distribution with the variance \( \tau^2 \).

The response variables for all models denoted presence or absence of (i) *Anopheles* larvae, (ii) late instar (development stage) *Anopheles* larvae, and (iii) pupae of any kind of mosquito species. Three response variables were based on UMCP larval data, distinguishing wet and dry seasons, and one response variable was exclusively based on UA survey data. Almost all (99%; \( n = 367 \)) of the UA survey observations were made in the dry season, with only 1% (\( n = 5 \)) in the wet season (see Tables 1 and 2 for a list and description of the explanatory and response variables). Because of the small sample size, data from individual wards were combined in one model. Correlations between explanatory variables were assessed using Fisher and \( \chi^2 \) tests. Interaction terms between production type and types of crops were included in the regression models to test for heterogeneity in the effect of various crops.

**Fig. 4. Map of urban agricultural areas in Dar es Salaam.** Location and extent of urban agricultural areas in the three study wards. Background: aerial image from 2002.
Results

Typology of agricultural areas

The UA survey revealed that a total of 0.9 km² equal to 5.5% of the study area was used for urban crop farming at the time of the study. The most common farming sites were backyard gardens and open spaces (Table 1 and Fig. 4). Garden sizes ranged from as little as 15 m² to 15,000 m² (mean = 550 m², median = 202 m²). In planned residential areas large backyard gardens were most common, while small backyard gardens were more common in informal settlements. Areas designated for industrial purposes were often used for open-space farming. Less than 10% of all gardens were found in vacant land not considered to be part of residential or industrial areas. Most gardens were located in upland areas (70%), mainly with sandy soils. Half of the gardens in the lowland areas had loamy or clayey soils. Proximity to rivers was neither correlated to number of nor to sizes of gardens.

Slightly more than half of all gardens were irrigated. The non-irrigated gardens were particularly seen in informal settlements which thus relied on rainfall for water. Otherwise, 30% of the gardens were irrigated with tap water, which was the most common source of irrigation in planned residential areas, while 20% used dug earth wells or cemented ones as source of irrigation. Water from rivers, drains and standing groundwater was utilised in only 4% of all cases. In more than a third of the gardens, some kind of manure was applied as fertiliser with poultry and cow dung being the most popular ones. Almost two-thirds of all gardens, and more than 80% of those in informal settlements smaller than 100 m², did not have any specific production type; there were no seedbed arrangements and crops were simply planted into the plain soil. In contrast, 18% of the gardens consisted of sunken beds only, 13% of raised beds only, and another 4% had both sunken and raised beds.

The most common classes of crops grown were vegetables (leafy as well as non-leafy), fruit and root crops, that were found in about 60% of all gardens. Leguminous crops (42%), sugar cane (24%) and cereals (23%) were also frequently present. Oilseed crops were found in 7% of all gardens. Only 1% of gardens grew rice but this picture would have been different in the wet season when rice production is popular, especially in the river valleys. In most gardens, three or more different crop classes were present.

UA and Anopheles larvae

The UMCP survey results, which were linked to the UA survey data, found Anopheles larvae in 11% of all plots with agriculture during the wet periods, and in 17% of all plots (subunits of ten-cell-units; Dongus et al., 2007) with agriculture during the dry periods. The UA survey, mostly conducted during dry periods, showed a lower level of occupancy with Anopheles larvae (12%). The discrepancies may be a result of small temporal variations in larval density. Figure 3 shows the seasonality observed in the UMCP larval dataset and the period of the agricultural survey. Figure 5 shows a map of the agricultural areas with and without Anopheles larvae.

The largest number of breeding sites with Anopheles larvae in Dar es Salaam was not found to be related to agriculture but instead to drains, ditches, swamps and puddles in non-agricultural areas. During March 2005 to February 2006, 11% of all water bodies found by the UMCP in the studied wards were located in agricultural areas and 17% of all habitats containing Anopheles larvae were found in those areas. Therefore, although agricultural areas were not the most frequent potential habitat, they were more productive than the others. This is illustrated by the finding that throughout all seasons of the year, the proportion of habitats containing Anopheles larvae was higher in plots with agriculture compared to plots without agriculture. The average proportion over the year was 1.7 times higher in agricultural plots (95% confidence interval (CI) = 1.56-1.92). Figure 3 shows the propor-
Fig. 5. Agricultural areas and *Anopheles* larvae. Map of agricultural areas in the three study wards, indicating presence (red) and absence (dark green) of *Anopheles* larvae in the wet and the dry season periods, as well as agricultural areas excluded from the study (light green). Results from UA survey and UMCP larval data are combined.
tions of habitats containing larvae among all habi-
tats plotted against those found in agricultural plots.

Geographical features

Topography, location, hydrology and soil type were the most significant geographical features associated with the presence of Anopheles larvae. Plots with farming in lowland areas were far more likely to contain breeding sites with Anopheles larvae than upland farming areas (dry season: odds ratio (OR) = 14.56; 95% CI = 4.02-52.82; P <0.001) (Tables 3 and 4). Compared to the Mikocheni ward, the odds of finding Anopheles larvae were lower in the Buguruni gardens (dry season: OR = 0.02; 95% CI = 0.00-0.11; P <0.001), and also in Kurasini. During the dry season, the chance of finding late instar Anopheles larvae decreased at distances further than 500 m away compared to distances less than 200 m away from rivers (OR = 0.20; 95% CI = 0.06-0.63; P = 0.006). A similar relation applied for ponds. Gardens on loamy and clayey soils showed a higher chance for Anopheles larvae than those on sandy soils (OR = 9.28; 95% CI = 3.05-28.18; P <0.001). Regarding land use, gardens in planned residential areas had the lowest odds for late instar Anopheles larvae (wet season: OR = 0.14; 95% CI = 0.02-0.93; P = 0.042). Gardens in industrial areas and vacant land, not designated for any kind of construction purposes, were not significant.

Agricultural features

Gardens that fully relied on rainfall had a much lower chance to contain Anopheles larvae compared to gardens with any type of well for irrigation (Fig. 6D) (dry season: OR = 0.22; 95% CI = 0.06-0.73; P = 0.013). Approximately half of the agricultural breeding sites that contained Anopheles larvae in the UA survey were wells. The odds were even lower where tap water was used for irrigation (dry season: OR = 0.16; 95% CI = 0.04-0.58; P = 0.005; wet sea-
son: late instar: OR = 0.09; 95% CI = 0.01-0.55; P = 0.009). Although only approaching significance because of the low number of observations, other irrigation sources such as water from drains/ditches and standing groundwater in agricultural areas seemed to greatly increase the probability of Anopheles larvae presence.

While the exclusive presence of raised beds (matuta in Kiswahili, i.e. ridges for planting crops such as sweet potato that are often made on grounds with a high water table) was significant only regarding pupae (wet season: OR = 3.0; 95% CI = 1.06-8.48; P = 0.038), plots with only sunken beds were associated with a higher probability of Anopheles breeding in the dry season (OR = 5.37; 95% CI = 1.52-18.95; P = 0.009; all compared to gardens without any kind of seedbed arrangements). Plots with mid-sized gardens (101-400 m²) had a higher chance of late instar Anopheles larvae compared to larger agricultural areas (dry season: OR = 4.50; 95% CI = 1.49-13.56; P = 0.008). The smallest odds were found in small gardens of 100 m² maximum size (dry season: OR = 0.08; 95% CI = 0.01-0.82; P = 0.034).

The growing of sugar cane (OR = 4.25; 95% CI = 1.37-13.21; P = 0.012) and leafy vegetables in the dry season was associated with relatively high odds of larvae presence (though less with regard to vegetables). However, the cultivation of leguminous crops (wet season: late instar OR = 0.25; 95% CI = 0.08-0.81; P = 0.020) was correlated with a relatively low probability of larvae presence. Although not significant, the same may apply for the cultivation of fruit (dry season: OR = 0.37; 95% CI = 0.13-1.05; P = 0.062). Oilseed crops such as coconut trees, root crops, non-leafy vegetables and other crops were not significant. Crop diversity lead to different results depending on the season, i.e. in the dry season, the chance to find larvae decreased where three or more crop classes were present within an agricultural area, whereas the opposite was the case during the wet season. Lastly, interaction terms between type of production and type of crop were not significant, suggesting that there was no heterogeneity in the effect of varied crops.
Table 3. Results of multivariate logistic regression models (dry season).

| Variable                          | n   | Anopheles UA survey | Anopheles UMCP dry | Anopheles late UMCP dry | Pupae UMCP dry |
|-----------------------------------|-----|---------------------|--------------------|-------------------------|----------------|
|                                   |     | OR 95% CI           | OR 95% CI          | OR 95% CI               | OR 95% CI      |
| Topography                        |     |                     |                    |                         |                |
| Upland                            | 261 | 1                   | 1                  |                         |                |
| Slope area                        | 31  | 10.30 2.37, 44.81 *0.002 | 14.56 4.02, 52.82 *<0.001 |                         |                |
| Lowland                           | 80  |                     |                    |                         |                |
| Land use                          |     |                     |                    |                         |                |
| Informal settlement               | 130 |                     |                    |                         |                |
| Other urban/industrial            | 60  |                     |                    |                         |                |
| Planned residential               | 151 |                     |                    |                         |                |
| Vacant/agriculture                | 31  |                     |                    |                         |                |
| Location (ward)                   |     |                     |                    |                         |                |
| Mikocheni                         | 117 | 0.02 0.00, 0.11 *<0.001 | 0.12 0.03, 0.42 *<0.001 |                         |                |
| Buguruni                          | 103 |                     |                    |                         |                |
| Kurasini                          | 151 |                     |                    |                         |                |
| Distance to rivers                |     |                     |                    |                         |                |
| ≤200 m                            | 129 |                     |                    |                         |                |
| 201-500 m                         | 103 | 0.38 0.09, 1.58 0.182 | 0.50 0.18, 1.39 0.182 | 0.26 0.11, 0.64 *0.003 |                |
| >500 m                            | 140 | 2.46 0.78, 7.73 0.124 | 0.20 0.06, 0.63 0.006 | 0.20 0.09, 0.47 *<0.001 |                |
| Distance to drains                |     |                     |                    |                         |                |
| ≤200 m                            | 224 |                     |                    |                         |                |
| 201-500 m                         | 133 |                     |                    |                         |                |
| >500 m                            | 15  |                     |                    |                         |                |
| Distance to ponds                 |     |                     |                    |                         |                |
| ≤200 m                            | 47  |                     |                    |                         |                |
| 201-500 m                         | 98  | 0.28 0.08, 0.96 0.043 | 0.74 0.28, 1.93 0.538 |                         |                |
| >500 m                            | 227 | 0.26 0.09, 0.78 0.017 | 0.26 0.11, 0.66 0.004 |                         |                |
| Soil type                         |     |                     |                    |                         |                |
| Sandy                             | 255 |                     |                    |                         |                |
| Loamy or clayey                   | 88  | 9.28 3.05, 28.18 *<0.001 |                     | 3.34 1.52, 7.36 0.003 |                |
| Size of garden                    |     |                     |                    |                         |                |
| >400 m²                           | 116 |                     |                    |                         |                |
| 101-400 m²                        | 153 | 4.50 1.49, 13.56 0.008 | 3.12 1.24, 7.87 0.016 |                         |                |
| ≤100 m²                           | 103 | 2.61 0.65, 10.44 0.176 | 3.79 1.32, 10.90 0.013 |                         |                |
| Production type                   |     |                     |                    |                         |                |
| None                              | 244 |                     |                    |                         |                |
| Raised beds (matuta)              | 48  | 0.46 0.10, 2.13 0.319 | 0.57 0.16, 2.07 0.397 | 0.40 0.08, 1.90 0.248 |                |
| Sunken beds                       | 67  | 5.37 1.52, 18.95 0.009 | 3.29 1.34, 8.06 0.009 | 5.54 2.01, 15.33 0.001 |                |
| Mixed sunken/raised               | 13  | 16.24 2.07, 127.23 0.008 | 1.37 0.22, 8.38 0.740 | 6.68 0.84, 53.25 0.073 |                |
| Irrigation source                 |     |                     |                    |                         |                |
| Well                              | 76  |                     |                    |                         |                |
| Only rainfed                      | 169 | 0.22 0.06, 0.73 *0.013 | 1.12 0.45, 2.78 0.810 |                         |                |
| Tap water                         | 111 | 0.16 0.04, 0.58 *0.005 | 0.41 0.15, 1.13 0.086 |                         |                |
| Drain/river/st. water             | 16  | 4.58 0.77, 27.46 *0.095 | 4.08 0.95, 17.50 0.059 |                         |                |
| Crop diversity                    |     |                     |                    |                         |                |
| 0-2 crop classes                  | 107 |                     |                    |                         |                |
| 3-4 crop classes                  | 169 | 0.33 0.12, 0.91 0.032 | 1.83 0.72, 4.65 0.202 |                         |                |
| 5-8 crop classes                  | 96  | 0.20 0.05, 0.77 0.020 | 6.82 1.62, 28.62 0.009 |                         |                |
| Crop classes                      |     |                     |                    |                         |                |
| Cereals                           | 84  | 0.09 0.01, 0.57 0.043 |                         |                |
| Rice                              | 5   | 29.93 1.95, 459.64 0.015 | 2.84 1.07, 7.53 0.036 | 0.37 0.16, 0.86 0.021 |                |
| Leafy vegetables                  | 232 | 0.37 0.13, 1.05 *0.062 | 0.44 0.19, 1.00 0.050 |                         |                |
| Fruits                            | 234 | 0.37 0.13, 1.05 *0.062 | 0.44 0.19, 1.00 0.050 |                         |                |
| Leguminous crops                  | 158 | 4.25 1.37, 13.21 0.012 |                         |                |
| Sugar cane                        | 91  |                     |                    |                         |                |

R2 ***

0.46 0.25 0.22 0.28
Table 4. Results of multivariate logistic regression models (wet season).

| Variable                           | Anopheles UMCP wet | Anopheles late UMCP wet | Pupae UMCP wet |
|------------------------------------|--------------------|-------------------------|----------------|
|                                    | n                  | OR 95% CI                | P              | OR 95% CI    | P              | OR 95% CI    | P              |
| Topography                         |                    |                         |                |              |                |              |                |
| Upland                             | 261                | 1                       | 1              | 1            | 1              | 1              |                |
| Slope area                         | 31                 | 0.21 0.00, 16.29 0.479  |                |              |                |                |                |
| Lowland                            | 80                 | 24.80 0.46, 1349.15 0.115 |                |              |                |                |                |
| Land use                            |                    |                         |                |              |                |              |                |
| Informal settlement                | 130                | 1                       | 1              | 1            | 1              | 1              |                |
| Other urban/industrial             | 60                 | 26.46 0.51, 1380 0.104  | 1.44 0.32, 6.52 0.635 |                |                |                |                |
| Planned residential                | 151                | 1.36 0.08, 22.34 0.831  | 0.14 0.02, 0.93 0.042 |                |                |                |                |
| Vacant/agriculture                 | 31                 | 1.11 0.05, 25.28 0.946  | 0.92 0.20, 4.34 0.919 |                |                |                |                |
| Location (ward)                    |                    |                         |                |              |                |              |                |
| Mikocheni                          | 117                | 1                       |                |              |                |                |                |
| Buguruni                           | 103                | 0.00 0.00, 1.35 *0.060  |                |              |                |                |                |
| Kurasini                           | 151                | 0.24 0.01, 3.77 *0.307  |                |              |                |                |                |
| Distance to rivers                 |                    |                         |                |              |                |              |                |
| ≤200 m                             | 129                | 1                       |                |              |                |                |                |
| 201-500 m                          | 103                | 0.27 0.10, 0.74 0.011  |                |              |                |                |                |
| >500 m                             | 140                | 0.25 0.10, 0.60 0.002  |                |              |                |                |                |
| Distance to drains                 |                    |                         |                |              |                |              |                |
| ≤200 m                             | 224                | 1                       |                |              |                |                |                |
| 201-500 m                          | 133                | 0.34 0.05, 2.49 0.287  |                |              |                |                |                |
| >500 m                             | 15                 | 111.92 0.29, 42537 0.120 |                |              |                |                |                |
| Distance to ponds                  |                    |                         |                |              |                |              |                |
| ≤200 m                             | 47                 | 1                       |                |              |                |                |                |
| 201-500 m                          | 98                 | 3.60 1.53, 8.44 0.003  |                |              |                |                |                |
| >500 m                             | 227                | 8.56 1.87, 39.23 0.006  |                |              |                |                |                |
| Soil type                          |                    |                         |                |              |                |              |                |
| Sandy                              | 255                | 1                       |                |              |                |                |                |
| Loamy or clayey                    | 88                 | 1                       |                |              |                |                |                |
| Size of garden                     |                    |                         |                |              |                |              |                |
| >400 m²                            | 116                | 3.00 1.06, 8.48 0.038  |                |              |                |                |                |
| 101-400 m²                          | 153                | 3.60 1.53, 8.44 0.003  |                |              |                |                |                |
| ≤100 m²                            | 103                | 8.56 1.87, 39.23 0.006  |                |              |                |                |                |
| Production type                    |                    |                         |                |              |                |              |                |
| None                               | 244                | 1                       |                |              |                |                |                |
| Raised beds (matuta)               | 48                 | 3.00 1.06, 8.48 0.038  |                |              |                |                |                |
| Sunken beds                        | 67                 | 3.60 1.53, 8.44 0.003  |                |              |                |                |                |
| Mixed sunken/raised                | 13                 | 8.56 1.87, 39.23 0.006  |                |              |                |                |                |
| Irrigation source                  |                    |                         |                |              |                |              |                |
| Well                                | 76                 | 1                       |                |              |                |                |                |
| Only rainfed                        | 169                | 0.41 0.05, 3.48 0.415  | 0.26 0.05, 1.35 *0.109 |                |                |                |                |
| Tap water                           | 111                | 0.02 0.00, 1.64 0.080  | 0.09 0.01, 0.55 *0.009 |                |                |                |                |
| Drain/river/st. water              | 16                 | 6.03 0.19, 187.3 0.305  | 3.18 0.67, 15.13 *0.146 |                |                |                |                |
| Crop diversity                     |                    |                         |                |              |                |              |                |
| 0-2 crop classes                   | 107                | 1                       |                |              |                |                |                |
| 3-4 crop classes                   | 169                | 5.89 1.01, 34.25 *0.048 |                |              |                |                |                |
| 5-8 crop classes                   | 96                 | 16.01 1.74, 147.1 *0.014 |                |              |                |                |                |
| Crop classes                        |                    |                         |                |              |                |              |                |
| Cereals                            | 84                 | 1                       |                |              |                |                |                |
| Rice                               | 5                  | 0.25 0.08, 0.81 0.020  | 0.38 0.17, 0.85 0.019 |                |                |                |                |
| Leafy vegetables                   | 232                | 0.25 0.08, 0.81 0.020  | 0.38 0.17, 0.85 0.019 |                |                |                |                |
| Fruits                             | 234                | 2.89 1.31, 6.36 0.009  |                |              |                |                |                |
| Leguminous crops                   | 158                | 0.25 0.08, 0.81 0.020  | 0.38 0.17, 0.85 0.019 |                |                |                |                |
| Sugar cane                         | 91                 | 2.89 1.31, 6.36 0.009  |                |              |                |                |                |
| R² ***                             | 0.28               | 0.33                    | 0.15           |                |                |                |                |
Discussion

UA is only one among many other types of land use that can enable larval development of *Anopheles* mosquitoes in cities. More than 80% of all habitats with *Anopheles* larvae in urban Dar es Salaam are located in areas without agricultural activities. However, farming and the presence of *Anopheles* larvae are correlated. Cultivated areas are 1.7 times more likely than others to contain breeding habitats with *Anopheles* larvae. In order to explore the underlying reasons that lead to this situation, factors related to presence of *Anopheles* larvae in UA areas were investigated. Apart from geographical factors that have been examined previously (Balls et al., 2004; Sattler et al., 2005; Matthys et al., 2006; Zhou et al., 2007; Majambere et al., 2008), a range of agricultural features at a partly unprecedented level of detail in terms of crops was included in the analysis. Moreover, to our knowledge, this is the first comprehensive mapping of UA in an African city, notably the inclusion of backyard gardens.

Compared to findings from mountainous areas (Balls et al., 2004; Cohen et al., 2008), this study reveals that topography matters even at differences less than 10 m. As a matter of principle, the topography corresponds with the hydrological conditions in an area. Rivers and streams accumulate fine
grained soil particles in their floodplains. Loamy
and clayey soils are thus usually found in lowlands,
wheras more permeable sandy soils are more fre-
quent in upland areas. The groundwater table is
generally higher in lowland areas compared to their
surroundings. Therefore, areas in lowlands and in
close proximity to rivers or ponds are more likely to
contain breeding sites than others. This was partic-
ularly obvious in Kurasini (Fig. 5). All factors men-
tioned are beneficial for agriculture, and therefore
likely to be a main reason for the presence of agri-
culture in the first place, particularly the case in
floodplains that are unsuitable for construction pur-
poses. One can argue that such local ecological con-
ditions are simultaneously ideal for both Anopheles
larvae and for agriculture. Recent evidence from
coastal towns in Kenya supports this finding, show-
ing that agriculture per se had no detectable influ-
ence when such environmental variables were con-
trolled for (Keating et al., 2004). Furthermore, envi-
ronmental variables such as shade, substrate and
vegetation were the best predictors for the presence
of the three major vector species in these urban cen-
tres (Jacob et al., 2005). Untouched by any human
activity, the natural vegetation of such areas may
provide less favourable conditions for Anopheles
larvae (Lindblade et al., 2000; Munga et al., 2006),
especially if closed leafy canopies or other vegetation
of sufficient density prevent sunlight from reaching
the soil. The only natural vegetation still existing in
our study area occurred in a few isolated mangroves
in Kurasini.

Different geographic and socio-economic charac-
teristics of the three areas investigated may explain
the distinct results for each ward. Mikocheni had
the highest odds of finding gardens with larvae. This
might be explained by its very homogenous topog-
raphy with limited surface runoff, and thus higher
impact of loamy and clayey soils. The gardens in
Mikocheni were relatively large in size as enough
space was available in undeveloped industrial plots
and backyards in planned residential areas. In con-
trast to the other two wards, the larval data for
Mikocheni used in the analysis were predominantly
from the first half of the agricultural survey, coin-
ciding with a period of relatively high larval densi-
ties (Fig. 3). Buguruni showed the lowest odds of
finding larvae. To a large extent this can be
explained by the fact that the large agricultural area
located in the river valley that contains many poten-
tial habitats had to be excluded from the analysis.
This valley serves as natural drainage for the
remaining parts of the ward, mostly upland areas
with permeable sandy soils and limited space for
gardens due to the dense informal settlement struc-
ture. Kurasini had the most diverse terrain and the
highest impact from topography. The fact that the
probability to find larvae in gardens was found to
be lower than in Mikocheni may be explained by
the different runoff situation that concentrates sur-
face and ground water to particular areas and the
less favourable water-holding capacity by the pre-
dominantly sandy soils (89% of gardens in
Kurasini, only 45% in Mikocheni). Another reason
might be pollution by the petrol and harbour indus-
try in Kurasini.

Agriculture using raised beds (matuta) (Fig. 6C)
had no significant impact. This cannot be explained
by accidental disproportionate exclusion of such
areas in the analysis, such as the large areas in the
river valley in Buguruni. In fact, the excluded obser-
vations actually had a lower proportion of areas
with raised beds (8%, n = 19) than those included
(13%, n = 48). The presence of sunken beds with
slightly raised borders to maximise water use (Fig.
6B), however, was clearly correlated to increased
presence of larvae. Importantly, in plots with sunken
or raised beds, most of the larvae were in wells and
not found in seedbeds or in the ridges between them.
Nevertheless, considering contrary previous findings
(Sawio 1998; Castro et al., 2004, Sattler et al. 2005),
the importance of raised beds as Anopheles breeding
sites should not be underestimated.

Dug earth wells (Fig. 6D) often contained
Anopheles larvae, especially if they were large
enough to allow parts of the surface to remain
undisturbed by irrigation activities. The largest risk
factor related to irrigation, however, seemed to be a
groundwater table at such a high level that surface water does not drain away or evaporate for long periods. The majority of gardens in such areas contained *Anopheles* larvae. Soil moisture in general has been shown to play a crucial role (Patz et al., 1998). In contrast, purely rainfed gardens and those that are irrigated all year long by tap water were very unlikely to contain larvae suggesting minimal malaria risk. Although water in blocked drains or ditches sometimes contains *Anopheles* larvae, it is often polluted and a typical breeding site for *Culex* larvae, which probably contributes to the high odds of finding pupae in such habitats.

The size of an agricultural area appears to be a logical factor contributing to larval presence, as the likelihood of finding breeding sites increases with the size of an area. At the same time, the size of a garden is related to the number of farmers. While gardens less than 400 m² in size are usually cultivated by one farmer, open spaces are often cultivated by several farmers jointly, especially if larger than 1,000 m² (Jacobi et al., 2000; Dongus, 2001). In Dar es Salaam, while gardens with a size below 100 m² had a significantly smaller probability to contain larvae compared to larger gardens, the most likely gardens to have larvae were the mid-sized ones (100-400 m²) rather than the largest ones. A possible explanation for this observation might be the intensive use of irrigation in large agricultural areas where several farmers often share the same well. The water in such a well is disturbed much more frequently than in gardens cultivated by only one farmer making it a less attractive breeding site for *Anopheles*. This might also explain why areas with a high crop diversity have relatively high odds of *Anopheles* larvae in the wet season. These generally large areas require less irrigation in the wet season as compared to the dry season, which probably results in less frequent use of the wells. Therefore, the garden size might at the same time reflect an impact of the number of farmers using it.

Some crops are known to be associated with *Anopheles* proliferation, irrigated rice in particular (Dossou-Yovo et al., 1994; Dolo et al., 2004; Mboera et al., 2007; Sogoba et al., 2007). The results of this study probably underestimate the impact of rice cultivation for two reasons. First, the UA survey was mostly conducted during the dry season, when most of the numerous and large rice fields in Dar es Salaam are lying fallow, resulting in a sample size of rice fields (n = 5) too small to show any significant correlation. Second, almost all large rice growing areas had to be excluded from the study due to reasons explained in the material and methods section; therefore their impact during the wet season could not be measured. Cereals have been discussed by other authors regarding pollen of a certain variety of maize as a nutrition basis for larvae (Ye-Ebiyo et al., 2003) and in terms of increased malaria incidence (Kebede et al., 2005). Although there is a common belief that malaria vector mosquitoes breed in the leaf axils of maize plants, it has been shown that they do not (Birley and Lock, 1998). The only link our study could establish was that presence of cereals in a garden resulted in a reduced probability of finding pupae. This was also seen with respect to leafy vegetables, leguminous crops and fruit. The reason behind may be the clean environment that especially larger gardens often imply. Raised beds are often planted with root crops such as sweet potatoes in Dar es Salaam and have been suspected of being important *Anopheles* breeding sites as mentioned above (Castro et al., 2004). In this study, however, root crops did not influence the probability of finding *Anopheles* larvae. Sweet potatoes were planted in raised beds in 70% of the cases. Sugar cane cultivation and presence of larvae as well as pupae were positively correlated, presumably because of the high water requirements of this crop. However, another study in Tanzania found that irrigated sugar cane production does not have any negative impact (Ijumba et al., 2002). Where leafy vegetables and larvae were both found in one place, this was mostly due to the presence of wells ensuring regular irrigation of these crops. Leafy vegetables irrigated with tap water or which are directly rainfed were rarely related to habitats. Leguminous crops, and to some extent fruit trees, were negative-
ly related to larval presence. The cultivation of leguminous crops such as cowpeas may therefore be an indicator for dry areas that are unlikely to contain breeding sites. In the case of fruit trees, the shade provided by their leafy canopies might even be a factor reducing the suitability of water bodies as Anopheles breeding sites.

In summing up the findings above, it should be stated that the characteristics of gardens with high odds of containing Anopheles larvae comprised the following: a location in lowland areas, proximity to rivers or ponds, loamy or clayey soils, sunken beds, sizes between 100-400 m² (and therefore only one user), wells, and with regard to crops, the cultivation of sugar cane or leafy vegetables. Urban gardens with relatively low odds of containing Anopheles breeding sites were characterised by an upland location (unless there is a lack of runoff), sandy soils, informal and planned settlements, large distance to rivers and ponds, absence of wells, irrigation by tap water or rainfed production, no specific seedbeds, very small or very large size (unless there are rice fields in the wet season) and cultivation of leguminous crops or fruit trees.

The identified characteristics of gardens with the highest potential to host Anopheles breeding sites bear important implications for malaria control. Their features make it relatively easy to identify and access them. The majority of gardens possessed few of these characteristics, and many had none of them at all. An integrated vector control programme could consider two strategies. First, farmers could be trained and actively involved in environmental vector control (Sawio 1998; Mlozi et al., 2006; Mboera et al., 2007), for example by establishing farmer field schools (van den Berg and Knols, 2006; van den Berg et al., 2007) targeting farmers in agro-ecosystems most at risk of anopheline breeding. Agricultural extension services might play an important role in this respect, for example by promoting locally tailored environmental management practices such as planting of fruit trees as an additional crop to provide shade over water bodies (WHO, 1982; Rafatjah, 1988; Walker and Lynch, 2007) and by combining agriculture and forestry (agroforestry) in general (Swallow and Ochola, 2006). Shading wells could potentially eliminate this important Anopheles breeding site. Second, when needed, systematic larviciding should be used and targeted to productive habitats, particularly where environmental management practices cannot be applied.

Although there is an increased probability of finding Anopheles larvae in agricultural sites, breeding sites originated by UA account for less than 20% of all breeding sites of malaria vectors in Dar es Salaam in terms of their total number. UA thus is not the main reason for the presence of breeding Anopheles larvae and therefore malaria transmission in Dar es Salaam. Nevertheless, agriculture-related breeding habitats do have a high presence of larvae, and therefore represent a potential malaria risk factor that thoroughly needs to be considered by vector control programmes. Strategies comprising an integrated malaria control effort in malaria-endemic African cities may include involvement of farmers by planting shading trees near larval habitats.

Ethical considerations

This study did not involve human subjects. Research clearance was obtained from the Medical Research Coordination Committee of the National Institute for Medical Research in Tanzania (NIMR/HQ/R.8a/Vol. IX/279) and the Tanzanian Commission of Science and Technology (No. 2005-123-NA-2004-163 and No. 2006-115-ER-2004-163). This manuscript is published with kind permission of the Director of the National Institute for Medical Research of Tanzania, Dr Andrew Kitua. In order to achieve community consent and before starting any field work, the stakeholders and community leaders at the respective local government units were contacted. The goals of the activity were explained, and the survey team was introduced. All responsible UMCP staff members were present in such meetings.

Acknowledgements

We would like to thank the community members of the study areas in Dar es Salaam (Mikocheni, Buguruni and
Kurasini wards) and all members of the UMCP involved in the implementation of this study. We thank the Photogrammetry Unit at the Surveys and Mapping Division of the Ministry of Lands in Tanzania for providing us the digital aerial imagery used in this study. Further thanks go to the late Michael Kiamo who was one of the initiators of the UMCP, as well as Brigit Obrist, Penelope Vounatsou, Ben Moon and Aisha Msonde for their various inputs. We thank Richard Sluizas (ITC Enschede) and the University of Dortmund for kindly providing a DEM and other GIS data of Dar es Salaam. The underlying research was financially supported by the Bill and Melinda Gates Foundation; the United States Agency for International Development through its Environmental Health Project, its Dar es Salaam mission and the President’s Malaria Initiative; Valent BioSciences Corporation; the Swiss Tropical Institute; and the Wellcome Trust through Research Career Development Fellowship number 076806 to GFK. SD was funded by the Swiss National Centre of Competence in Research (NCCR) North-South.

References

Afrane YA, Klinkenberg E, Drechsel P, Owusu-Daaku K, Garms R, Kruppa T, 2004. Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana? Acta Trop 89, 125-134.

Balls MJ, Bodker R, Thomas CJ, Kisinza W, Msangeni HA, Lindsay SW, 2004. Effect of topography on the risk of malaria infection in the Usambara Mountains, Tanzania. Trans R Soc Trop Med Hyg 98, 400-408.

Birley MH, Lock K, 1998. Health and peri-urban natural resource production. Environ Urban 10, 89-106.

Briet OJT, Dossou-Yovo J, Akodo E, van de Giesen N, Teuscher TM, 2003. The relationship between Anopheles gambiae density and rice cultivation in the savannah zone and forest zone of Côte d’Ivoire. Trop Med Int Health 8, 439-448.

Briggs J, 1991. The peri-urban zone of Dar es Salaam, Tanzania: recent trends and changes in agricultural land use. T I Brit Geogr 16, 319-331.

Castro MC, Yamagata Y, Mtsiwa D, Tanner M, Utzinger J, Keiser J, Singer BH, 2004. Integrated urban malaria control: a case study in Dar es Salaam, Tanzania. Am J Trop Med Hyg 71, 103-117.

Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson ML, 2008. Topography-derived wetness indices are associated with household-level malaria risk in two communities in the western Kenyan highlands. Malar J 7, 40.

Dolo G, Briet OJT, Dao A, Traore SF, Bouare M, Sogoba N, Niare O, Bagayogo M, Sangare D, Teuscher T, Toure YT, 2004. Malaria transmission in relation to rice cultivation in the irrigated Sahel of Mali. Acta Trop 89, 147-159.

Dongus S, 2001. Urban vegetable production in Dar es Salaam (Tanzania) - GIS-supported analysis of spatial changes from 1992 to 1999. In: Drescher AW and Mäckel R (Eds). APT-Reports 12: Use of Resource Niches in African Ecosystems - New Research Results from Tanzania, the Chad and Namibia. Freiburg, Germany.

Dongus S, Nyika D, Kannady K, Mtsiwa D, Mshinda H, Fillinger U, Drescher AW, Tanner M, Castro MC, Killeen GF, 2007. Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania. Int J Health Geogr 6, 37.

Donnelly MJ, McCall PJ, Lengeler C, Bates I, D’Alessandro U, Barnish G, Konradsen F, Klinkenberg E, Townson H, Trape JF, Hastings IM, Mutero C, 2005. Malaria and urbanization in sub-Saharan Africa. Malar J 4, 12.

Dossou-Yovo J, Doannio JM, Diarrassouba S, Chauvancy G, 1998. The impact of rice fields on malaria transmission in the city of Bouaké, Côte d’Ivoire. Bull Soc Pathol Exot 91, 327-333.

Dossou-Yovo J, Doannio JM, Riviere F, Duval J, 1994. Rice cultivation and malaria transmission in Bouaké city (Côte d’Ivoire). Acta Trop 57, 91-94.

Drescher AW, 1998. Hausgärten in Afrikanischen Räumen - Bewirtschaftung nachhaltiger Produktionssysteme und Strategien der Ernährungssicherung in Zambia und Zimbabwe, Pfaffenweiler, Centaurus.

Drescher AW, Holmer RJ, Iaquinta DL, 2006. Urban home-gardens and allotment gardens for sustainable livelihoods: management strategies and institutional environments. In: Kumar BM and Nair PK (Eds). Tropical Homegardens: A Time-Tested Example of Agroforestry. Springer, New York, USA.

FAO, 2005. A system of integrated agricultural censuses and surveys. World Programme for the Census of Agriculture 2010, Volume 1. FAO Statistical Development Series. Food
and Agriculture Organization of the United Nations, Rome, Italy.

Fillinger U, Kannady K, William G, Vanek MJ, Dongus S, Nyika D, Geissbühler Y, Chaki PP, Govella NJ, Mathenge EM, Singer BH, Mshinda H, Lindsay SW, Tanner M, Mtasiwa D, de Castro MC, Killeen GF, 2008. A tool box for operational mosquito larval control: preliminary results and early lessons from the Urban Malaria Control Programme in Dar es Salaam, Tanzania. Malar J 7, 20.

Geissbühler Y, Kannady K, Chaki PP, Emidi B, Govella NJ, Mayagaya V, Kiama M, Mtasiwa D, Mshinda H, Lindsay SW, Tanner M, Fillinger U, de Castro MC, Killeen GF, 2009. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar es Salaam, Tanzania. PLoS ONE 4, e5107.

Gerstl S, Cissé G, Tanner M, 2002. Economic impact of urban agriculture on home gardeners in Ouagadougou. Urban Agriculture Magazine 7.

Guerra CA, Gikandi PW, Tatem AJ, Noor AM, Smith DL, Hay SI, Snow RW, 2008. The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Med 5, e38.

Hardoy JE, Mitlin D, Satterthwaite D, 2001. Environmental problems in an urbanizing world - finding solutions for cities in Africa, Asia and Latin America, London, Earthscan.

Harpham T, 2009. Urban health in developing countries: what do we know and where do we go? Health Place 15, 107-116.

Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW, 2005. Urbanization, malaria transmission and disease burden in Africa. Nat Rev Microbiol 3, 81-90.

Howorth C, Convery I, O’Keefe P, 2001. Gardening to reduce hazard: urban agriculture in Tanzania. Land Degrad Develop 12, 285-291.

Ijumba JN, Lindsay SW, 2001. Impact of irrigation on malaria in Africa: paddies paradox. Med Vet Entomol 15, 1-11.

Ijumba JN, Mosha FW, Lindsay SW, 2002. Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania. Med Vet Entomol 16, 28-38.

ITC Enschede and University of Dortmund, 2008. Digital elevation model of Dar es Salaam. Enschede & Dortmund, International Institute for Geo-Information Science and Earth Observation Enschede and University of Dortmund.

Jacob BG, Arheart KL, Griffith DA, Mbogo CM, Githeko AK, Regens JL, Githure JL, Novak R, Beier JC, 2005. Evaluation of environmental data for identification of Anopheles (Diptera: Culicidae) aquatic larval habitats in Kisumu and Malindi, Kenya. J Med Entomol 42, 751-755.

Jacobi P, Amend J, Kiango S, 2000. Urban agriculture in Dar es Salaam: providing an indispensable part of the diet. In: Bakker N, Dubbeling M, Gündel S, Sabel-Koschella U and de Zeeuw H (Eds) Growing Cities, Growing Food: Urban Agriculture on the Policy Agenda. Feldafing, Deutsche Stiftung für internationale Entwicklung (DSE), Zentralstelle für Ernährung und Landwirtschaft.

Keating J, Macintyre K, Mbogo CM, Githeko A, Regens JL, Swalm C, Ndenga B, Steinberg LJ, Kibe L, Githure JL, Beier JC, 2003. A geographic sampling strategy for studying relationships between human activity and malaria vectors in urban Africa. Am J Trop Med Hyg 68, 357-365.

Keating J, Macintyre K, Mbogo CM, Githure JL, Beier JC, 2004. Characterization of potential larval habitats for Anopheles mosquitoes in relation to urban land-use in Malindi, Kenya. Int J Health Geogr 3, 9.

Kebede A, McCann JC, Kiszewski AE, Ye-Ebiyo Y, 2005. New evidence of the effects of agro-ecologic change on malaria transmission. Am J Trop Med Hyg 73, 676-680.

Keiser J, Utzinger J, Caldas de Castro M, Smith TA, Tanner M, Singer BH, 2004. Urbanization in sub-saharan Africa and implication for malaria control. Am J Trop Med Hyg 71, 118-127.

Keiser J, Utzinger J, Singer BH, 2002. The potential of intermittent irrigation for increasing rice yields, lowering water consumption, reducing methane emissions, and controlling malaria in African rice fields. J Am Mosq Control Assoc 18, 329-340.

Klinkenberg E, McCall PJ, Hastings IM, Wilson MD, Amerasinghe FP, Donnelly MJ, 2005. Malaria and irrigated crops, Accra, Ghana. Emerg Infect Dis 11, 1290-1293.

Klinkenberg E, McCall PJ, Wilson MD, Amerasinghe FP, Donnelly MJ, 2008. Impact of urban agriculture on malaria vectors in Accra, Ghana. Malar J 7, 151.

Klinkenberg E, Takken W, Huibers F, Toure YT, 2003. The phenology of malaria mosquitoes in irrigated rice fields in Mali. Acta Trop 85, 71-82.

Kyessi A, 1997. City expansion and urban agriculture in Dar
es Salaam: lessons for planning. J Build Land Develop 4, 28-37.

Lindblade KA, Walker ED, Onapa AW, Katungu J, Wilson ML, 2000. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Trop Med Int Health 5, 263-274.

Lines J, Harpham T, Leake C, Schofield C, 1994. Trends, priorities and policy directions in the control of vector-borne diseases in urban environments. Health Policy Plan 9, 113-129.

Majambere S, Fillinger U, Sayer DR, Green C, Lindsay SW, 2008. Spatial distribution of mosquito larvae and the potential for targeted larval control in The Gambia. Am J Trop Med Hyg 79, 19-27.

Makani J, Matuwa W, Liyombo E, Snow RW, Marsh K, Warrell DA, 2003. Admission diagnosis of cerebral malaria in adults in an endemic area of Tanzania: implications and clinical description. Q J Med 96, 355-362.

MARA/ARMA, 2002. MARA LTTe for Africa. Johannesburg, South African Medical Research Council, Malaria Research Program.

Matthys B, Vounatsou P, Raso G, Tschanneen AB, Becket EG, Gosoniou L, Cissé G, Tanner M, N’Goran EK, Utzinger J, 2006. Urban farming and malaria risk factors in a medium-sized town in Côte d’Ivoire. Am J Trop Med Hyg 75, 1223-1231.

Mboera LEG, Mlozi MRS, Senkoro KP, Rwegoshora RT, Rumisha SF, Mayala BK, Shayo EH, Senkondo E, Mutayoba B, Mwingira V, Maere A, 2007. Malaria and agriculture in Tanzania: impact of land-use and agricultural practices on malaria burden in Mvomero district. Dar es Salaam, National Institute for Medical Research.

Mlozi MRS, Shayo EH, Senkoro KP, Mayala BK, Rumisha SF, Mutayoba B, Senkondo E, Maere A, Mboera LEG, 2006. Participatory involvement of farming communities and public sectors in determining malaria control strategies in Mvomero district, Tanzania. Tanzania Health Research Bulletin 8, 134-140.

Mougeot LJA, 2000. Urban agriculture: definition, presence, potentials and risks. In: Bakker N, Dubbeling M, Gündel S, Sabel-Koschella U and de Zeeuw H (Eds) Growing Cities, Growing Food: Urban Agriculture on the Policy Agenda. Feldafing, Deutsche Stiftung für internationale Entwicklung (DSE), Zentralstelle für Ernährung und Landwirtschaft.
Sawio CJ, 1993. Feeding the urban masses? Towards understanding of the dynamics of urban agriculture and land-use change in Dar es Salaam, Tanzania. Worcester, Massachusetts, Clark University.

Sawio CJ, 1998. Managing urban agriculture in Dar es Salaam. Cities Feeding People Report Series 20. Ottawa, IDRC.

Smit J, Ratta A, Nasr J, 1996. Urban Agriculture: Food, Jobs and Sustainable Cities, New York, United Nations Development Programme (UNDP).

Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI, 2005. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214-217.

Sogoba N, Doumbia S, Vounatsou P, Bagayoko MM, Dolo G, Traore SF, Maiga HM, Toure YT, Smith T, 2007. Malaria transmission dynamics in Niono, Mali: the effect of the irrigation systems. Acta Trop 101, 232-240.

Stevenson C, Kinabo J, Nyange D, 1994. Urban Horticulture in Tanzania. Urban Vegetable Promotion Project, Dar es Salaam.

Swallow B, Ochola S, 2006. Understanding the links between agriculture and health. Agroforestry, Nutrition, and Health. International Food Policy Research Institute, 2020 vision for food, agriculture and the environment, Focus 13, Brief 11 of 16, May 2006. Washington, International Food Policy Research Institute (IFPRI).

Trape JF, Lefebvre-Zante E, Legros F, Druilhe P, Rogier C, Bouganali H, Salem G, 1993. Malaria morbidity among children exposed to low seasonal transmission in Dakar, Senegal and its implications for malaria control in tropical Africa. Am J Trop Med Hyg 48, 748-756.

Trape JF, Zoulani A, 1987. Malaria and urbanization in central Africa: the example of Brazzaville. Part III: Relationships between urbanization and the intensity of malaria transmission. Trans R Soc Trop Med Hyg 81, 19-25.

UN, 2008. World Urbanization Prospects: The 2007 Revision Population Database. New York, United Nations, Department of Economic and Social Affairs, Population Division.

UNFPA, 2007. The State of the World Population.

Unleashing the Potential of Urban Growth. New York, United Nations Population Fund.

van den Berg H, Knols BG, 2006. The Farmer Field School: a method for enhancing the role of rural communities in malaria control? Malar J 5, 3.

van den Berg H, von Hildebrand A, Ragunathan V, Das PK, 2007. Reducing vector-borne disease by empowering farmers in integrated vector management. Bull World Health Organ 85, 561-566.

van der Hoeck W, Sakhthivadivel R, Renshaw M, Silver JB, Birley MH, Konradsen F, 2001. Alternate wet/dry irrigation in rice cultivation: a practical way to save water and control malaria and Japanese encephalitis? IWMI Research Report 47. Colombo, International Water Management Institute.

Walker K, Lynch M, 2007. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. Med Vet Entomol 21, 2-21.

Wang SJ, Lengeler C, Mtasiwa D, Mshana T, Manane L, Maro G, Tanner M, 2006. Rapid urban malaria appraisal (RUMA) II: epidemiology of urban malaria in Dar es Salaam (Tanzania). Malar J 5, 28.

Warren M, Billig P, Bendahmane D, Wijeyaratne P, 1999. Malaria in Urban and Peri-Urban areas in Sub-Saharan Africa. Environmental Health Project Activity. Washington, DC, USAID.

WHO, 1982. Manual on Environmental Management for Mosquito Control with Special Emphasis on Malaria Vectors. WHO Offset Publication no. 66. World Health Organization, Geneva, Switzerland.

WHO, 2008. World Malaria Report 2008. World Health Organization, Geneva, Switzerland.

Ye-Ebiyo Y, Pollack RJ, Kiszewski A, Spielman A, 2003. Enhancement of development of larval Anopheles arabiensis by proximity to flowering maize (Zea mays) in turbid water and when crowded. Am J Trop Med Hyg 68, 748-752.

Zhou G, Munga S, Minakawa N, Githeko AK, Yan G, 2007. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg 77, 29-35.