Characterization of Extramedullary Disease in B-ALL and Response to CAR T-cell Therapy

Tracking no: ADV-2021-006035R2

Elizabeth Holland (Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), United States) Bonnie Yates (National Cancer Institute, National Institutes of Health, United States) Constance Yuan (NCI/NIH, United States) Hao-Wei Wang (National Institutes of Health, United States) Maryalice Stetler-Stevenson (National Cancer Institute, National Institutes of Health, United States) Michael Laloggia (Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), United States) John Molina (Johns Hopkins University, United States) Daniel Lichtenstein (National Cancer Institute, United States) Daniel Lee (National Cancer Institute, United States) John Ligon (Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), United States) Haneen Shalabi (National Institutes of Health, United States) Mark Ahlman (National Institutes of Health, United States) Nirali Shah (Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), United States)

Abstract:
Chimeric antigen receptor (CAR) T-cells effectively eradicate medullary B-cell acute lymphoblastic leukemia (B-ALL) and can traffic to and clear central nervous system (CNS) involvement. CAR T-cell activity in non-central nervous system (CNS) extramedullary disease (EMD) has not been well-characterized. We systematically evaluated CAR T-cell kinetics, associated toxicities, and efficacy in B-ALL non-CNS EMD. We conducted a retrospective review of B-ALL patients with non-CNS EMD who were screened for/enrolled on one of three CAR trials at our institution (CD19, CD22, CD19/22). Non-CNS EMD was identified by histology or radiographic imaging at extramedullary sites excluding the cerebrospinal fluid and CNS parenchyma. Of approximately 180 patients with relapsed/refractory B-ALL screened across multiple early phase trials over an 8-year period, 38 (21.1%) presented with isolated non-CNS EMD (n=5) or combined medullary/non-CNS EMD (n=33) on FDG PET-CT imaging. A subset receiving CAR T-cells (18 infusions) obtained FDG PET-CT scans pre- and post-infusion to monitor response. At best response, 72.2% (13 of 18) of patients demonstrated a medullary MRD-negative complete remission and complete (CR, n=7) or partial (PR, n=6) non-CNS EMD response. Non-CNS EMD responses to CAR T-cells were delayed (n=3) and residual non-CNS EMD was substantial; rarely, discrepant responses (marrow without EMD response) were observed (n=2). Unique CAR-associated toxicities at non-CNS EMD sites were seen in select patients. CAR T-cells are active in B-ALL non-CNS EMD. Still, non-CNS EMD response to CAR T-cells may be delayed and sub-optimal, particularly with multifocal disease. Serial FDG PET-CT scans are necessary for identifying and monitoring non-CNS EMD.

Conflict of interest: No COI declared

COI notes:
Preprint server: No;

Author contributions and disclosures: E.H. and N.N.S wrote the first version of the manuscript. E.H., B.Y., M.L., D.L., and N.N.S., performed primary data analysis and evaluated correlative studies. C.Y., H-W.W., and M.S-S., performed flow cytometry and analyzed results. A.L., and M.A.A., provided radiology review and images for submission for publications. B.Y., J.C.M., D.W.L., J.A.L., H.S., and N.N.S., provided patient care and contributed critically to the manuscript. No non-author wrote the first draft or any part of the paper. All authors contributed to reviewing the final manuscript and have agreed to be co-authors.

Non-author contributions and disclosures: No;
Agreement to Share Publication-Related Data and Data Sharing Statement: Data can be made available upon request from the corresponding author.

Clinical trial registration information (if any):
Characterization of Extramedullary Disease in B-ALL and Response to CAR T-cell Therapy

Elizabeth M. Holland,1 Bonnie Yates,1 Alex Ling,2 Constance M. Yuan,3 Hao-Wei Wang,3 Maryalice Stetler-Stevenson,3 Michael LaLoggia,7 John C. Molina,1,4 Daniel A. Lichtenstein,1 Daniel W. Lee,1,5 John A. Ligon,1 Haneen Shalabi,1 Mark A. Ahlman,2 Nirali N. Shah1

1Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD; 2Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD; 3Laboratory of Pathology, NCI, NIH, Bethesda, MD; 4Department of Pediatric Oncology, Johns Hopkins Hospital, Baltimore, MD; 5Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Virginia, Charlottesville, VA

Corresponding author:
Nirali N. Shah, MD, MHSc
Pediatric Oncology Branch, CCR, NCI, NIH
Building 10, Room 1W3750
9000 Rockville Pike MSC 1104
Bethesda, MD 20892
Phone: 240-760-6199
Fax: 301-451-7010
Email: nirali.shah@nih.gov

Running title: CAR for EM ALL
Abstract (250 words): 250
Main Text (4000 words): 3970
Tables and Figures: 7

Key Points:
- A substantial fraction of patients with relapsed/refractory B-ALL will have non-CNS extramedullary disease (EMD).
- CAR T-cells may have limited efficacy in multifocal non-CNS EMD, and serial imaging is needed to identify and monitor for EMD.

Disclaimer: The content of this publication does not necessarily reflect the views of policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.
Abstract:
Chimeric antigen receptor (CAR) T-cells effectively eradicate medullary B-cell acute lymphoblastic leukemia (B-ALL) and can traffic to and clear central nervous system (CNS) involvement. CAR T-cell activity in noncontral nervous system (CNS) extramedullary disease (EMD) has not been well-characterized. We systematically evaluated CAR T-cell kinetics, associated toxicities, and efficacy in B-ALL non-CNS EMD. We conducted a retrospective review of B-ALL patients with non-CNS EMD who were screened for/enrolled on one of three CAR trials at our institution (CD19, CD22, CD19/22). Non-CNS EMD was identified by histology or radiographic imaging at extramedullary sites excluding the cerebrospinal fluid and CNS parenchyma. Of approximately 180 patients with relapsed/refractory B-ALL screened across multiple early phase trials over an 8-year period, 38 (21.1%) presented with isolated non-CNS EMD (n=5) or combined medullary/non-CNS EMD (n=33) on FDG PET-CT imaging. A subset receiving CAR T-cells (18 infusions) obtained FDG PET-CT scans pre- and post-infusion to monitor response. At best response, 72.2% (13 of 18) of patients demonstrated a medullary MRD-negative complete remission and complete (CR, n=7) or partial (PR, n=6) non-CNS EMD response. Non-CNS EMD responses to CAR T-cells were delayed (n=3) and residual non-CNS EMD was substantial; rarely, discrepant responses (marrow without EMD response) were observed (n=2). Unique CAR-associated toxicities at non-CNS EMD sites were seen in select patients. CAR T-cells are active in B-ALL non-CNS EMD. Still, non-CNS EMD response to CAR T-cells may be delayed and sub-optimal, particularly with multifocal disease. Serial FDG PET-CT scans are necessary for identifying and monitoring non-CNS EMD.
Introduction

Chimeric antigen receptor (CAR) T-cell therapy is effective in heavily pretreated patients with B-cell acute lymphoblastic leukemia (B-ALL). Complete remission (CR) rates following CD19- and CD22-directed CAR T-cell therapies range from 60-90% in children and young adults with multiply relapsed/refractory (r/r) disease.\(^1\)\(^-\)\(^6\) Studies of anti-CD19 CAR T-cell therapies in adults with B-cell non-Hodgkin lymphomas (NHL), while also effective, show lower response rates, with 40-50% of patients demonstrating response to therapy.\(^7\)\(^,\)\(^8\) Characterization of response to CAR T-cells in patients with B-ALL extramedullary disease (EMD), who may present with combined medullary and lymphomatous disease, has been limited.

Studies of B-ALL EMD have historically focused on identification and treatment of “sanctuary sites” in the central nervous system (CNS) and testes.\(^9\)\(^,\)\(^10\) An estimated 10-20% of patients with newly diagnosed B-ALL present with combined medullary/EMD.\(^11\)\(^,\)\(^12\) Because screening for EMD beyond lumbar puncture and testicular exam is not routine and has not been standardized in B-ALL disease assessment, this estimation likely underrepresents the true incidence of EMD, especially at sites outside the cerebrospinal fluid and CNS parenchyma (non-CNS EMD) and in those with r/r disease. Manifestations of non-CNS EMD are highly heterogenous and may evade early detection.\(^13\) At disease recurrence, nearly half of B-ALL patients present with isolated medullary disease, yet a substantial proportion (15-25%) relapse with some combination of medullary/extramedullary involvement.\(^9\) Approximately 20% present with isolated CNS disease and roughly 5% with isolated testicular relapse,\(^9\)\(^,\)\(^14\) but incidence of non-CNS EMD outside these well-established sites for B-ALL relapse is unknown.

Post-hematopoietic stem cell transplantation (HSCT) relapse with non-CNS EMD is also a relatively frequent occurrence with heterogeneous manifestations. Associated with dismal outcomes, non-CNS EMD relapse following HSCT potentially represents a limitation of surveillance of immunotherapy in the posttransplant setting.\(^15\)\(^-\)\(^17\) Patients who proceed to HSCT with unrecognized non-CNS EMD may have especially poor outcomes given the importance of achieving pre-HSCT MRD-negativity.\(^18\) The use of whole body imaging is well-established in adult solid tumors and lymphomas, but its role remains poorly defined in acute leukemias.\(^19\)\(^,\)\(^20\) A growing body of literature suggests that FDG PET-CT is feasible and may be high yield for detection of non-CNS EMD in children and young adults with leukemia.
While the majority of CAR T-cell outcomes in B-ALL emerge from treatment of medullary disease,1-6 CAR T-cells targeting CD19 and CD22 have demonstrated efficacy in clearing CNS disease, and experience is still being gained to optimize this approach.21,22 A limited number of case studies have demonstrated success in eradicating non-CNS EMD of the lymph nodes, breast, cervix, kidney, and skin with anti-CD19 CAR T-cells.23-26 While preliminary results from large trials have offered some insights, there remains a dearth of published experience with CAR T-cell therapy in patients with combined medullary/non-CNS EMD or isolated non-CNS EMD.27,28 Thus, understanding of CAR T-cell kinetics, associated toxicities, and efficacy in patients with non-CNS EMD warrants further investigation. We evaluated the response of non-CNS EMD to CAR T-cell therapy in patients enrolled on our phase I CAR T-cell trials. We also characterized sites of occult non-CNS EMD in patients referred to our center, analyzed CAR T-cell kinetics, and explored unique attributes of CAR T-cell toxicity in the setting of non-CNS EMD.

Methods

Study Population

We conducted an institutional review board (IRB) approved retrospective review (NCT03827343) of patients with B-ALL screened for and/or enrolled on one of three IRB approved CAR T-cell trials at the National Cancer Institute (NCT01593696, NCT02315612, NCT03448393) between 7/1/2012 and 5/1/2020. Patients included in this analysis had at least one 18-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (FDG PET-CT) scan and were evaluated for treatment with an anti-CD19, anti-CD22, or anti-CD19/22 bispecific CAR T-cell construct.

Objectives

The primary objective of this study was to systematically evaluate the response of non-CNS EMD to CAR T-cells, in relationship to bone marrow response. Secondary objectives included reporting on the presentation of non-CNS EMD in patients with r/r B-ALL, identifying optimal time to best response of non-CNS EMD with CAR T-cells, characterizing peripheral blood CAR T-cell expansion and persistence in patients with non-CNS EMD versus those...
without EMD, and describing unique CAR T-cell associated toxicities in patients with non-CNS EMD.

Disease Assessments

Restaging was performed at day 28 post-CAR T-cell infusion and continued until best response or progressive disease. Bone marrow aspirate and biopsy were assessed by morphology, with marrow classified as M1 (<5%), M2 (5-25%), or M3 (>25%) using standard definitions. Minimal residual disease (MRD) using flow cytometry (FC), performed by NCI Flow Cytometry, had a validated limit of detection of blasts of 0.002% of mononuclear cells.\(^{29,30}\) Cerebrospinal fluid was analyzed by routine cytopathology in addition to FC, which had a lower limit of detection of approximately 1.0%.

Non-CNS EMD, including testicular involvement, was assessed using FDG PET-CT imaging. A single nuclear medicine physician with 12 years of experience in oncology imaging performed a retrospective unblinded central review of all scans included in this study. Deauville score and maximum standardized uptake values (maxSUV) were used to identify and serially characterize sites of non-CNS EMD. Response of non-CNS EMD to CAR T-cells was centrally graded in terms of quantity and quality of sites resolved using the following designations: complete response (CR), which required full disease eradication, partial response (PR), stable disease (SD), and progressive disease (PD) (Supplemental Table 1).

Statistical Analyses

Standard descriptive statistics were used to describe patient disease and CAR T-cell response characteristics. All statistical tests were performed in Prism GraphPad using a threshold of significance \(p<0.05\).

Results

All Screened Patients with Non-CNS EMD (n=38)

Of approximately 180 patients with r/r B-ALL screened for early phase clinical trials during the study period, 38 (21.1%) had isolated non-CNS EMD (n=5) or combined medullary/non-CNS EMD (n=33) detectible on FDG PET-CT imaging upon presentation to our
institution (Figure 1A). The median age was 18.6 years (range, 4.7-30.7 years). In this heavily pretreated cohort, 27 (71.0%) had undergone prior HSCT, 23 (60.5%) had prior blinatumomab or inotuzumab ozogamicin exposure, and 13 (34.2%) had received prior CD19- or CD22-directed CAR T-cells. Review of the medical history revealed that at initial diagnosis a small number of patients had isolated non-CNS EMD (n=5), combined CNS/non-CNS EMD (n=2), or CNS only EMD (n=2), though this information was not documented in most cases (68.4%) (Table 1).

Sixty-five percent (n=25) of screened patients presented with multifocal non-CNS EMD. Sites of disease, described in detail in Table 2 and Figure 1B, were highly heterogenous and in some cases very extensive. Particularly unique sites of involvement included the breast (n=3, 10.5%), pancreas (n=8, 18.4%), kidney (n=16, 42.1%, with bilateral involvement in 13 patients), and skin (n=2, 5.3%) (Figure 1B). The majority of those screened had concurrent medullary relapse, though 5 (13.2%) patients demonstrated MRD-negativity in the bone marrow upon presentation to our institution (Table 1). More than half (n=20, 52.6%) had high burden medullary disease (M3), while few patients (n=3) had active CNS involvement (white blood cells (WBCs) ≥ 5 µL, cytospin positive for blasts) at the time of referral (Table 1).

Evaluation of non-CNS EMD by whole-body imaging was prompted by a recorded history of non-CNS EMD at some point in the disease course for most patients (n=23, 60.5%). Imaging was also indicated in cases of an incidental finding on an alternative imaging modality performed for another indication (n=8), abnormal physical exam (n=4), and isolated CNS relapse with suspected non-CNS EMD involvement (n=3) (Table 1). Of 38 screened patients referred specifically for CAR therapy, 30 were eligible for infusion on one of our CAR T-cell trials.

Cohort with Serial FDG PET/CT Scans (n=17, 18 infusions)

Serial FDG PET-CT imaging pre- and post-CAR T-cell infusion was obtained for 17 of 30 patients who proceeded to CAR infusion. Amongst the 13 patients who did not receive additional scans, 10 did not undergo post-CAR imaging due to resolution of non-CNS EMD with interval radiation therapy (n=1) or chemotherapy (n=1) prior to cell infusion or lack of CRS with evidence of medullary non-response to CAR (n=8). Two patients who did not receive serial scans had non-CNS EMD identified on post-CAR imaging prompted by clinical manifestations, while one patient had non-CNS EMD identified post-CAR only upon central review (Figure 1A). Results for the cohort with serial scans have been calculated out of 18 scan/patient pairs as one
patient was analyzed for two separate infusions of the same CAR product administered one year apart at initial therapy and disease recurrence.

Two patients were infused with anti-CD19 CAR T-cells, 8 received anti-CD22 CAR T-cells (8 patients, 9 infusions), and 7 received an anti-CD19/22 bispecific CAR construct. The pre-treatment scan occurred a median of 17.5 days before CAR T-cell infusion (range, 5-40 days). The first post-treatment scan was obtained a median of 28 days after infusion (range, 14-34 days). 18F-FDG was administered intravenously at median dose 6.95 mCi (IQR, 1.54 mCi), with images obtained a median of 63.5 minutes after radiotracer injection. Median blood glucose level prior to injection was 88.5 mg/dl.

Medullary/non-CNS EMD Response to CAR T-cells

All patients with non-CNS EMD assessed by serial imaging (n=18) had active medullary disease at CAR T-cell infusion. The majority (n=14) had multifocal non-CNS EMD. Seventy-two percent (n=13) simultaneously demonstrated a medullary CR to CAR T-cells and a CR or PR of non-CNS EMD at best response (Table 3). Best response was achieved at 28 days in 15 of 18 (83.3%) cases (Figure 1D). Ongoing responses were seen in 3 patients who received CD22 CAR T-cells, all of whom had detectible CAR T-cells at 3-, 4- and 6-months post-infusion. Fourteen patients in this cohort attained a medullary MRD-negative CR at best response. Of this subgroup, half (n=7) concurrently demonstrated a non-CNS EMD CR (Figure 1F), while 42.9% (n=6) showed only PR of non-CNS EMD at best response (Table 3). One patient showed non-CNS EMD PD at follow up despite attaining a medullary CR (Figure 1E). Of the 3 patients with stable medullary disease at follow-up, 1 had non-CNS EMD PR and 2 demonstrated non-CNS EMD PD. A single patient in this cohort showed PD of medullary and non-CNS EMD at best response.

Of the 7 patients with a non-CNS EMD CR, 3 had focal or loco-regional involvement only. Thus, 3 of 4 patients (75%) with focal non-CNS EMD achieved a CR while only 4 of 14 (28.6%) patients with multifocal EMD had a CR of non-CNS EMD (p=0.26). Regarding site-specific response, lymph node involvement responded to CAR T-cells more frequently than other sites: 11 of 13 (84.6%) patients with non-CNS EMD of the lymph nodes demonstrated a CR of some or all of the disease identified at presentation (Figure 1C).
Discrepant responses were observed on occasion: 1 patient attained a medullary MRD-negative CR but had non-CNS EMD PD at follow-up; another showed SD in the marrow and PR of non-CNS EMD. Two additional patients demonstrated non-CNS EMD PD with stable MRD-positive medullary disease after CAR T-cell infusion.

Among 17 patients (18 infusions) with non-CNS EMD, 5 proceeded to HSCT (HSCT-naïve, n=4; second HSCT, n=1) and 8 were not eligible for second HSCT or had progressive disease (n=4). With a median follow-up of 440.5 days (range, 47-1063 days) post-CAR infusion, 1 patient remains alive with residual disease. Others have died from complications of progressive disease (Table 3).

CAR T-cell Expansion in non-CNS EMD

CAR T-cell expansion in patients with non-CNS EMD (n=11) versus without non-CNS EMD (n=87) differed by CAR construct in those who exhibited symptoms of cytokine release syndrome (CRS). Patients with non-CNS EMD treated with anti-CD22 CAR T-cells demonstrated substantially higher absolute CAR T-cell expansion (n=7; median, 2167 cells/mL; range, 105.3-13653 cells/mL) than their counterparts without non-CNS EMD (n=51; median, 573.8 cells/mL; range, 0.65-11345 cells/mL) (p=0.04). Peak CAR T-cell expansion did not differ in those with versus without non-CNS EMD for either the CD19 or CD19/22 CAR constructs, though patient numbers were limited (Figure 2A-D).

CAR T-cell Persistence in non-CNS EMD

Given the limited persistence of our CD19 and CD19/22 CAR constructs, analysis of CAR T-cell persistence was performed exclusively in CD22 CAR patients who had confirmed non-CNS EMD at CAR infusion and subsequently experienced CRS. In 57 patients with CD22 CAR+ T-cells detectible in the peripheral blood by FC 1 month post-infusion, those with non-CNS EMD (n=7) had a higher proportion of T-cells that were CD22 CAR+ (median, 66.0%; range, 25.0-87.0%) than those without EMD (median, 24.2%; range, 1.0-90.4%) (p=0.0010) (Figure 2E). A substantial proportion of CD22 CAR patients proceeded directly to HSCT, limiting the availability of CAR T-cell persistence data more than 1-month post-infusion. For those with evaluable data 2 or 3 months post-infusion, there was no statistically significant
difference in CAR+ T-cell persistence among patients with or without non-CNS EMD (Figure 2F, G).

Unique CAR T-cell Associated Toxicities in non-CNS EMD

CRS occurred in 11 (61.1%) patients, with 8 experiencing maximum CRS grade 1-2. Site-specific CAR T-cell associated inflammatory toxicities manifested as swelling and erythema in patients with non-CNS EMD involving the orbit, breast, and lymph nodes (Table 4). Development of substantial lymphedema prompted subsequent evaluation to rule out a deep venous thrombosis in one patient. In those with pleural-based disease, pulmonary toxicity was evidenced by worsening or new development of pleural effusions, ground glass opacities, and new oxygen requirement (Figure 3A, C). Notably, one patient with a recent history of pleural disease, and full resolution following interim chemotherapy immediately prior to CAR T-cells, presented with these unique pulmonary toxicities post-CAR with evidence of CAR T-cell trafficking (Figure 3D). CAR T-cells were additionally identified in the pleural fluid of one patient during CRS (Figure 3B). Elevated serum creatinine levels suggestive of renal toxicity in patients with known leukemic infiltration of the kidneys could have been in part related to CRS (Table 4). All toxicities were transient and reversible with the exception of one patient in whom disease progression and CAR response occurred simultaneously and pulmonary toxicity was in part due to progressive leukemia.

Use of Pembrolizumab to Augment CAR Expansion and Response to non-CNS EMD

Based on the preliminary safety and efficacy of combining PD-1-directed immune checkpoint inhibition with CAR T-cells in other B-cell lymphomas,33 this combination has been explored in B-ALL.34 In 3 patients (2 after the data cut-off for the systematic review) with particularly difficult to treat non-CNS EMD and suboptimal CAR response, we attempted to augment CAR T-cell activity with this rational combination. Our patients tolerated therapy without serious immune-related adverse events, but also without response (Supplemental Table 2).

Discussion

Given the tremendous successes of CAR T-cells in eradication of leukemia and NHL,35 this study sought to both explore outcomes of non-CNS EMD in r/r B-ALL patients receiving
CAR T-cell therapy and ascertain the frequency and distribution of non-CNS EMD in r/r B-ALL. Our results shed light on the importance of monitoring for occult non-CNS EMD and on the potential efficacy and limitations of CAR T-cells in non-CNS EMD.

In evaluating the incidence of non-CNS EMD in patients referred to our trials, we found that approximately 21% of 180 B-ALL patients screened at our institution had non-CNS EMD identifiable on FDG PET-CT imaging, the majority of whom had relapsed after prior HSCT. Although this value was obtained from a heavily pretreated population with r/r disease where FDG PET-CT was prompted by patient history, clinical exam, or findings on alternative imaging, it potentially underrepresents the incidence of non-CNS EMD in B-ALL, as FDG PET-CT imaging is not routinely used in acute leukemia disease assessment. Notably, a relatively high percentage of patients with non-CNS EMD received prior immunotherapy. While patients referred to our center are generally more refractory, introducing a selection bias, close monitoring of non-CNS EMD recurrence post-immunotherapy is warranted, particularly given the experience with post-HSCT relapse. A limited number of case reports and retrospective reviews have examined the utility of FDG PET-CT in assessing medullary disease and non-CNS EMD, with sites identified in the soft tissue, head and neck lymph nodes, liver and pancreas. Cistarno et al describe a striking case of pediatric B-ALL with isolated lymph node involvement which evaded all routine monitoring and where PET-CT was ultimately required to facilitate a diagnosis, demonstrating an increased sensitivity for non-CNS EMD detection compared to other imaging modalities.

Few studies have systematically evaluated the sensitivity of FDG PET-CT for non-CNS EMD detection in acute leukemia. In patients with newly diagnosed or relapsed B-ALL or acute myeloid leukemia (AML) (n=79), Zhou et al found FDG PET-CT to be highly sensitive (93.3%), though not extremely specific (71.4%) in diagnosing EMD. The authors nonetheless underscore the importance of whole-body imaging in this population. Cunningham and Kohno concur, concluding from a review of 124 cases of FDG PET-CT use in leukemia that the extent of EMD was significantly underestimated in the absence of total body scanning. Collectively, the benefits of early, comprehensive disease assessment with non-invasive imaging technology may potentially outweigh the risks associated with additional radiation exposure in children. This may be particularly true in patients where identification of non-CNS EMD would inform the treatment approach or critically change risk (e.g., pre-HSCT). Continued technological
advances in FDG PET-CT imaging have allowed for reductions in radiation exposure, which may facilitate easier incorporation into the pediatric B-ALL population. PET-magnetic resonance imaging (MRI), an alternative whole-body imaging modality with reduced radiation exposure, has shown comparable sensitivity and specificity to FDG PET-CT in limited studies of pediatric lymphomas and solid tumors. Its role in B-ALL has not been studied but is worth exploring, acknowledging limitations both of cost and accessibility. Beyond imaging, experience using circulating tumor DNA (ctDNA) with colonoSEQ to predict post-CAR relapse risk in adult lymphomas may inform future studies in B-ALL seeking to evaluate the role of next-generation sequencing (NGS) for detecting non-CNS EMD. While most patients have progression of non-CNS EMD during routine follow up, incorporation of NGS, already used as a proxy of peripheral blood disease clearance, as a part of routine surveillance in B-ALL may facilitate early detection of non-CNS EMD relapse before presentation with fulminant disease.

In the setting of CAR T-cell therapy, we determined that clinical response of medullary and non-CNS EMD to CAR T-cells was concordant at best response in most patients, with nearly half of this heavily pretreated cohort ultimately demonstrating a medullary/non-CNS EMD CR. However, non-CNS EMD responses to CAR T-cells still varied: delayed non-CNS EMD response was substantial, as was residual non-CNS EMD following CAR T-cell infusion. Best non-CNS EMD response lagged behind medullary response until 3-6 months after treatment in several cases, and a considerable proportion of patients demonstrated only a non-CNS EMD PR at best response despite attaining a medullary CR. This suggests that optimal time to best response may differ in the bone marrow and at extramedullary sites, and furthermore, that the CR rate of non-CNS EMD is likely lower than that of isolated medullary disease. Patients with multifocal non-CNS EMD also appeared less likely to achieve a non-CNS EMD CR, but additional study in a larger dataset is needed to confirm this association. By systematically reviewing the role for FDG PET-CT in assessing non-CNS EMD response to CAR T-cells, with centralized radiology review, our results demonstrate that serial monitoring of non-CNS EMD in r/r B-ALL is essential to ensure that patients truly achieve an MRD-negative remission following novel cellular therapies.

This study additionally describes unique presentations of site-specific CAR T-cell toxicities in non-CNS EMD. Inflammatory complications seen in several patients were thought to correlate with CAR T-cell expansion. Specifically, we were able to identify CAR T-cells in
the pleural fluid of select patients with pulmonary toxicities. Cases reporting significant local inflammation of non-CNS EMD involving the optic nerve and skin have similarly confirmed CAR T-cell capability of trafficking to sites of B-ALL non-CNS EMD. While we were limited in our ability to look at site-specific CAR T-cell trafficking in most patients, our experience provides insights into the toxicity profile of CAR T-cells in non-CNS EMD and the impact of CAR T-cell kinetics and trafficking on clinical presentation.

Regarding CAR T-cell kinetics, patients with non-CNS EMD receiving CD22 CAR T-cells demonstrated substantially higher CAR T-cell expansion than those without EMD. Our results also suggested that CAR persistence is enhanced in patients with non-CNS EMD compared to those without any EMD, though further study in a larger cohort is needed to explore this association across alternative constructs. While the generalizability of these findings may be limited since the CD22 CAR was known to be more persistent than either the CD19 or CD19/22 CAR constructs, our observations illustrate that differences in CAR T-cell construct may critically impact outcomes and further study of outcomes of non-CNS EMD with FDA approved constructs is warranted. Investigating the mechanisms of CAR T-cell trafficking and exhaustion in non-CNS EMD will be essential to optimizing responses to CAR T-cells and may elucidate factors leading to the rare discrepant medullary/extramedullary responses to therapy seen in our study. Analysis of CAR T-cell product characteristics and markers of T-cell exhaustion may provide further insights into the variability between individual responses to non-CNS EMD, and additional studies are ongoing.

Incorporation of checkpoint blockade to reduce T-cell exhaustion and augment CAR T-cell efficacy in the immunosuppressive tumor microenvironment has been investigated in several small studies combining PD-1 inhibition with CD19-directed CAR T-cells for B-cell malignancies. While the experience with PD-1 inhibitors in adult B-cell lymphomas is more robust, Li et al have demonstrated limited success in using pembrolizumab or nivolumab after CD19 CAR T-cell therapy in children with relapsed ALL/lymphoma. In our limited experience, pembrolizumab (albeit incorporated at differing timepoints and for varying indications) was not effective in inducing CAR T-cell re-expansion or optimizing non-CNS EMD response. This combination warrants prospective study to gain a better understanding of the optimal timepoint for incorporation of immune checkpoint inhibition in relation to CAR T-cell infusion and an appropriate duration of therapy with the checkpoint inhibitor. Other bridging
strategies, such as radiation therapy (utilized by one patient in our series to eradicate disease pre-CAR), may have a unique role in debulking EMD pre- and/or post-CAR T-cells, but reports are limited47,52, and further study is needed.53

In addition to the limitations of heterogeneity across patients and CAR T-cell constructs, restricting the generalizability of our results, our heavily pretreated cohort may be skewed for a higher incidence of non-CNS EMD. Nonetheless, our analysis provides important insights into disease metrics for this population and may indicate a need to revise the current paradigm in B-ALL disease surveillance. In this regard, we provide our proposal for when specific evaluation of non-CNS EMD may be indicated (Figure 3E). The role of insurance coverage for FDG PET-CT in patients at high risk of EMD (e.g., history of EMD, clinical findings suspicious for EMD) must additionally be considered, as detection of occult non-CNS EMD may be particularly critical for those with r/r disease or in the peri-HCT setting. Our analysis of CAR T-cell persistence and trafficking to sites non-CNS EMD was also limited by availability of patient samples. Future studies incorporating serial biopsies to evaluate CAR T-cell trafficking and antigen expression in non-CNS EMD are needed to evaluate mechanisms of suboptimal response to therapy.

In summary, we raise awareness about the need to assess non-CNS EMD in B-ALL and highlight the potential strengths and limitations of CAR T-cell therapy in the setting of non-CNS EMD. Our results illustrate that CAR T-cells are active against B-ALL non-CNS EMD and constitute a promising option for patients with isolated or combined medullary/non-CNS EMD. Still, non-CNS EMD response to CAR T-cell therapy may lag behind medullary response and the CR rate of non-CNS EMD is likely lower than that of medullary disease with CAR T-cells, leading to worse outcomes overall. These findings reaffirm that serial monitoring of non-CNS EMD with FDG PET-CT is essential, and further investigation is warranted to best incorporate whole-body imaging in the B-ALL treatment paradigm. Elucidating factors leading to diminished CAR T-cell efficacy in the non-CNS EMD microenvironment will be crucial to optimization strategies for therapy in the future.
Data sharing statement:
Data can be made available upon request from the corresponding author: nirali.shah@nih.gov.

Acknowledgements:
We gratefully acknowledge the study participants and their families, referring medical care teams, the faculty and staff of the NIH Clinical Center who provided their expertise in the management of the study participants, and the data managers and research nurses and patient care coordinators involved with this work. This work was supported in part by the Intramural Research Program, Center of Cancer Research, National Cancer Institute and NIH Clinical Center, National Institutes of Health (ZIA BC 011823).

Authorship Contributions:
E.H. and N.N.S wrote the first version of the manuscript. E.H., B.Y., M.L., D.L., and N.N.S., performed primary data analysis and evaluated correlative studies. C.Y., H-W.W., and M.S-S., performed flow cytometry and analyzed results. A.L., and M.A.A., provided radiology review and images for submission for publications. B.Y., J.C.M., D.W.L., J.A.L., H.S., and N.N.S., provided patient care and contributed critically to the manuscript. No non-author wrote the first draft or any part of the paper. All authors contributed to reviewing the final manuscript and have agreed to be co-authors.

Disclosures:
This work was supported in part by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research and the Warren Grant Magnuson Clinical Center. D.W.L. consults for Harpoon Therapeutics and Juno Therapeutics and his institution receives clinical trial support from Kite Pharma. All funding was provided by the NIH Intramural Research Program (ZIA BC 011823, N. Shah) with the exception of the St Baldrick’s Foundation Scholar award provided to DWL.
References

1. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. *N Engl J Med*. 2014;371(16):1507-1517.

2. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. *N Engl J Med*. 2018;378(5):439-448.

3. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. *Lancet*. 2015;385(9967):517-528.

4. Gardner RA, Finney O, Annesley C, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. *Blood*. 2017;129(25):3322-3331.

5. Park JH, Riviere I, Gonen M, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. *N Engl J Med*. 2018;378(5):449-459.

6. Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. *Nat Med*. 2018;24(1):20-28.

7. Schuster SJ, Investigators J. Tisagenlecleucel in Diffuse Large B-Cell Lymphoma. Reply. *N Engl J Med*. 2019;380(16):1586.

8. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. *N Engl J Med*. 2017;377(26):2531-2544.

9. Cooper SL, Brown PA. Treatment of pediatric acute lymphoblastic leukemia. *Pediatr Clin North Am*. 2015;62(1):61-73.

10. Gaudichon J, Jakobczyk H, Debaize L, et al. Mechanisms of extramedullary relapse in acute lymphoblastic leukemia: Reconciling biological concepts and clinical issues. *Blood Rev*. 2019;36:40-56.

11. Geethakumari PR, Hoffmann MS, Pemmaraju N, et al. Extramedullary B lymphoblastic leukemia/lymphoma (B-ALL/B-LBL): a diagnostic challenge. *Clin Lymphoma Myeloma Leuk*. 2014;14(4):e115-118.

12. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. *Blood*. 2009;114(5):937-951.

13. Shahriari M, Shakibazad N, Haghpanah S, Ghasemi K. Extramedullary manifestations in acute lymphoblastic leukemia in children: a systematic review and guideline-based approach of treatment. *Am J Blood Res*. 2020;10(6):360-374.

14. Nguyen K, Devidas M, Cheng SC, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study. *Leukemia*. 2008;22(12):2142-2150.

15. Yu J, Ge X, Luo Y, et al. Incidence, risk factors and outcome of extramedullary relapse after allogeneic hematopoietic stem cell transplantation in patients with adult acute lymphoblastic leukemia. *Ann Hematol*. 2020;99(11):2639-2648.

16. Ge L, Ye F, Mao X, et al. Extramedullary relapse of acute leukemia after allogeneic hematopoietic stem cell transplantation: different characteristics between acute myelogenous leukemia and acute lymphoblastic leukemia. *Biol Blood Marrow Transplant*. 2014;20(7):1040-1047.
17. Gunes G, Goker H, Demiroglu H, Malkan UY, Buyukasik Y. Extramedullary relapses of acute leukemias after allogeneic hematopoietic stem cell transplantation: clinical features, cumulative incidence, and risk factors. *Bone Marrow Transplant*. 2019;54(4):595-600.

18. Zhao Z, Hu Y, Li J, Zhou Y, Zhang B, Deng S. Applications of PET in Diagnosis and Prognosis of Leukemia. *Technol Cancer Res Treat*. 2020;19:1533033820956993.

19. Chambers G, Frood R, Patel C, Scarsbrook A. (18)F-FDG PET-CT in paediatric oncology: established and emerging applications. *Br J Radiol*. 2019;92(1094):20180584.

20. Cunningham I, Kohno B. 18 FDG-PET/CT: 21st century approach to leukemic tumors in 124 cases. *Am J Hematol*. 2016;91(4):379-384.

21. Rubinstein JD, Krupski C, Nelson AS, O'Brien MM, Davies SM, Phillips CL. Chimeric Antigen Receptor T Cell Therapy in Patients with Multiply Relapsed or Refractory Extramedullary Leukemia. *Biol Blood Marrow Transplant*. 2020;26(11):e280-e285.

22. Wan X, Yang F, Yang X, et al. Successful chimeric antigen receptor T cells therapy in extramedullary relapses of acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. *Bone Marrow Transplant*. 2020;55(7):1476-1478.

23. Zhang H, Hu Y, Wei G, Wu W, Huang H. Successful chimeric antigen receptor T cells therapy in extramedullary relapses of acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. *Bone Marrow Transplant*. 2020;55(7):1476-1478.

24. Wang D, Shi R, Wang Q, Li J. Extramedullary relapse of acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation treated by CAR T-cell therapy: a case report. *Onco Targets Ther*. 2018;11:6327-6332.

25. Moskop A, Pommert L, Thakrar P, Talano J, Phelan R. Chimeric antigen receptor T-cell therapy for marrow and extramedullary relapse of infant acute lymphoblastic leukemia. *Pediatr Blood Cancer*. 2021;68(1):e28739.

26. Liu ZF, Chen LY, Wang J, et al. Successful treatment of acute B lymphoblastic leukemia relapse in the skin and testicle by anti-CD19 CAR-T with IL-6 knocking down: a case report. *Biomark Res*. 2020;8:12.

27. Talekar MK, Maude SL, Hucks GE, et al. Effect of chimeric antigen receptor-modified T (CAR-T) cells on responses in children with non-CNS extramedullary relapse of CD19+ acute lymphoblastic leukemia (ALL). *Journal of Clinical Oncology*. 2017;35(15).

28. Jacoby E, Bielorai B, Avigdor A, et al. Locally produced CD19 CAR T cells leading to clinical remissions in medullary and extramedullary relapsed acute lymphoblastic leukemia. *Am J Hematol*. 2018;93(12):1485-1492.

29. Cherian S, Miller V, McCullouch V, Dougherty K, Fromm JR, Wood BL. A novel flow cytometric assay for detection of residual disease in patients with B-lymphoblastic leukemia/lymphoma post anti-CD19 therapy. *Cytometry B Clin Cytom*. 2018;94(1):112-120.

30. Cherian S, Stetler-Stevenson M. Flow Cytometric Monitoring for Residual Disease in B Lymphoblastic Leukemia Post T Cell Engaging Targeted Therapies. *Curr Protoc Cytom*. 2018;86(1):e44.

31. Shah NN, Lee DW, Yates B, et al. Long-Term Follow-Up of CD19-CAR T-Cell Therapy in Children and Young Adults With B-ALL. *J Clin Oncol*. 2021;39(15):1650-1659.

32. Shalabi H, Yates B, Shahani S, et al. Abstract CT051: Safety and efficacy of CD19/CD22 CAR T cells in children and young adults with relapsed/refractory ALL. *Cancer Research*. 2020;80(16 Supplement):CT051-CT051.

33. Chong EA, Melenhorst JJ, Lacey SF, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. *Blood*. 2017;129(8):1039-1041.
34. Li AM, Hucks GE, Dinofia AM, et al. Checkpoint Inhibitors Augment CD19-Directed Chimeric Antigen Receptor (CAR) T Cell Therapy in Relapsed B-Cell Acute Lymphoblastic Leukemia. Blood. 2018;132(Supplement 1):556-556.
35. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. The Lancet. 2020;396(10254):839-852.
36. Kaya Z, Akdemir OU, Atay OL, et al. Utility of 18-fluorodeoxyglucose positron emission tomography in children with relapsed/refractory leukemia. Pediatr Hematol Oncol. 2018;35(7-8):393-406.
37. Arimoto MK, Nakamoto Y, Nakatani K, et al. Increased bone marrow uptake of 18F-FDG in leukemia patients: preliminary findings. Springerplus. 2015;4:521.
38. Tan G, Aslan A, Tazeler Z. FDG-PET/CT for detecting relapse in patients with acute lymphoblastic leukemia. Jpn J Clin Oncol. 2016;46(1):96-97.
39. Zhang S, Wang W, Kan Y, Liu J, Yang J. Extramedullary Infiltration of Acute Lymphoblastic Leukemia in Multiple Organs on FDG PET/CT. Clin Nucl Med. 2018;43(3):217-219.
40. Cistaro A, Saglio F, Asaftei S, Fania P, Berger M, Fagioli F. The role of 18F-FDG PET/CT in pediatric lymph-node acute lymphoblastic leukemia involvement. Radiol Case Rep. 2011;6(4):503.
41. Zhou WL, Wu HB, Wang LJ, Tian Y, Dong Y, Wang QS. Usefulness and pitfalls of F-18-FDG PET/CT for diagnosing extramedullary acute leukemia. Eur J Radiol. 2016;85(1):205-210.
42. Hirsch FW, Sattler B, Sorge I, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43(7):860-875.
43. Gatidis S, Schmidt H, Gucke B, et al. Comprehensive Oncologic Imaging in Infants and Preschool Children With Substantially Reduced Radiation Exposure Using Combined Simultaneous (1(8)F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Imaging: A Direct Comparison to (1(8)F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography. Invest Radiol. 2016;51(1):7-14.
44. Kwatra NS, Lim R, Gee MS, States LJ, Vossough A, Lee EY. PET/MR Imaging:: Current Updates on Pediatric Applications. Magn Reson Imaging Clin N Am. 2019;27(2):387-407.
45. Frank MJ, Hossain NM, Bukhari A, et al. Monitoring of Circulating Tumor DNA Improves Early Relapse Detection After Axicabtagene Ciloleucel Infusion in Large B-Cell Lymphoma: Results of a Prospective Multi-Institutional Trial. J Clin Oncol. 2021:JCO2100377.
46. O'Reilly M, Roddie C, Marzolini MAV, et al. Trafficking of CAR T cells to sites of subclinical leukaemia cutis. The Lancet Oncology. 2020;21(3).
47. Denton CC, Gange WS, Abdel-Azim H, et al. Bilateral retinal detachment after chimeric antigen receptor T-cell therapy. Blood Adv. 2020;4(10):2158-2162.
48. Hill B, Roberts ZJ, Rossi J, Smith M. Marked Re-Expansion of Chimeric Antigen Receptor (CAR) T Cells and Tumor Regression Following Nivolumab Treatment in a Patient Treated with Axicabtagene Ciloleucel (axi-cell; KTE-C19) for Refractory Diffuse Large B Cell Lymphoma (DLBCL). Blood. 2017;130:2825-2825.
49. Chong EA, Svoboda J, Dwivedy Nasta S, et al. Sequential Anti-CD19 Directed Chimeric Antigen Receptor Modified T-Cell Therapy (CART19) and PD-1 Blockade with Pembrolizumab
in Patients with Relapsed or Refractory B-Cell Non-Hodgkin Lymphomas. *Blood*. 2018;132(Supplement 1):4198-4198.

50. Jaeger U, Worel N, McGuirk JP, et al. PORTIA: A phase 1b study evaluating safety and efficacy of tisagenlecleucel and pembrolizumab in patients with relapsed/refractory diffuse larger B-cell lymphoma. *Blood*. 2019;134(5325):560-560.

51. Osborne W, Marzolini M, Tholouli E, et al. Phase I Alexander study of AUTO3, the first CD19/22 dual targeting CAR T cell therapy, with pembrolizumab in patients with relapsed/refractory (r/r) DLBCL. *Journal of Clinical Oncology*. 2020;38(15_suppl):8001-8001.

52. Marquez CP, Montiel-Esparza R, Hui C, et al. Use of cardiac radiation therapy as bridging therapy to CAR-T for relapsed pediatric B-cell acute lymphoblastic leukemia. *Pediatr Blood Cancer*. 2021;68(3):e28870.

53. Wright CM, LaRiviere MJ, Baron JA, et al. Bridging Radiation Therapy Before Commercial Chimeric Antigen Receptor T-Cell Therapy for Relapsed or Refractory Aggressive B-Cell Lymphoma. *Int J Radiat Oncol Biol Phys*. 2020;108(1):178-188.

54. Shah NN, Qin H, Yates B, et al. Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy. *Blood Adv*. 2019;3(15):2317-2322.

55. Mo G, Wang HW, Talleur AC, et al. Diagnostic approach to the evaluation of myeloid malignancies following CAR T-cell therapy in B-cell acute lymphoblastic leukemia. *J Immunother Cancer*. 2020;8(2).
Figures

Figure 1. Sites of non-CNS EMD and response to CAR T-cells. (A) Patients with non-CNS EMD identifiable during retrospective central review. (B) Manifestations of non-CNS EMD (by % of patients) identified during central review of FDG PET-CT imaging from 38 patients screened across multiple early phase trials at our institution over an 8-year period. (C) Non-CNS EMD in cohort of 17 patients (18 infusions) who obtained serial FDG PET-CT images pre- and post-CAR T-cell infusion, with sites of non-CNS EMD demonstrating a complete response (CR) to CAR T-cells represented in green. (D) Time to best response of medullary/non-CNS EMD in cohort of 17 patients (18 infusions) who obtained serial FDG PET-CT images pre-and post-CAR T-cell infusion. (E) FDG PET-CT scans obtained pre- and post-CD19/22 CAR T-cell infusion demonstrating a discrepant medullary/non-CNS EMD response. Patient 14 attained a medullary MRD-negative CR but showed non-CNS EMD PD, with new and worsening sites of non-CNS EMD identified in the adrenal gland, retroperitoneal lymph node, pancreas, and testes approximately 1 month post-CAR T-cell infusion. (F) FDG PET-CT scans obtained pre- and post-CD19/22 CAR T-cell infusion demonstrating a concurrent CR of medullary/non-CNS EMD at best response. Patient 13 presented to our institution with multifocal non-CNS EMD involving the lymph nodes, mediastinum, kidneys, and pancreas.

Figure 2. CAR T-cell kinetics and CD22 CAR T-cell persistence in patients with non-CNS EMD. (A) Peak absolute CAR T-cell expansion in patients with non-CNS EMD versus those without non-CNS EMD treated with anti-CD19 (B), -CD22 (D), and -CD19/22 (C) CAR T-cells. For CD22 CAR patients, substantially higher peak CAR T-cell expansion was demonstrated in patients with non-CNS EMD (n=7; median, 2167 cells/mL; range, 105.3-13653 cells/mL) as compared to those without non-CNS EMD (n=51; median, 573.8 cells/mL; range, 0.65-11345 cells/mL) (p=0.04). CD22 CAR T-cell persistence approximately: (E) 1 month (median, 26 days; range, 18-30 days), (F) 2 months (median, 58 days; range, 41-69 days), and (G) 3 months (median, 94 days; range 84-129 days) after CAR T-cell infusion.

Figure 3. Unique CAR T-cell associated toxicities and CAR T-cell expansion in select patients (n=2) with non-CNS EMD. (A) CT scans obtained pre- and post-CD22 CAR infusion demonstrating CAR T-cell associated pulmonary toxicity in a subject (Patient 6) with pleural-based non-CNS EMD. Clinically, CAR T-cell trafficking to non-CNS EMD was evidenced by development of new pleural effusions, ground glass opacities, and oxygen requirement. (B) Corresponding flow cytometry of pleural fluid prior to CD22 CAR infusion identified B-ALL comprising 88% of mononuclear cells (MNCs). B-ALL blasts (navy blue) expressed slightly dim CD45, CD19, CD10, partial CD34, CD22, dim CD38 and CD24. CD22 antibody binding capacity (ABC) was 912, a quantitative measure of antigen site density on the blast cell surface. Subsequently, flow cytometry performed at day +16 post CD22 CAR infusion showed an expansion of CD22 CAR T-cells (green), comprising 72% of T-cells, which persisted at day +27. The amount of B-ALL disease decreased to 58% of MNCs and 19% of MNCs at day +16 and day +27, respectively. CD22 ABC decreased post therapy from 912 to 611 and 269 at day +16 and day +27, respectively. Flow cytometry was also performed on bronchoalveolar lavage (BAL) post CAR infusion. The amount of B-ALL disease decreased from 52% of MNCs at day+7 to 30% of MNCs at day +31. At day +7, 1.8% of T-cells were CD22 CAR T-cells (green); they expanded to comprise 74% of T-cells at day +31. (C) CT scans obtained pre- and post-CD22
CAR infusion in a subject (Patient 39§) with pleural-based disease demonstrating delayed resolution (day +83) of CAR T-cell associated inflammatory toxicities. (D) Corresponding flow cytometry of pleural fluid prior to CD22 CAR T-cell therapy identified B-ALL comprising 86% of MNCs. B-ALL blasts (navy blue) expressed a spectrum of CD45 from dim to negative, bright CD10, CD34, CD22 and dim CD38; they were negative for CD19 and CD24. The CD22 ABC was 2,594. As expected, no CAR T-cells were detected by the flow cytometry assay. Subsequently, flow cytometry was performed on a bronchoalveolar lavage (BAL) specimen at day+54 post CD22 CAR infusion. Expansion of CD22 CAR T-cells was detected (green), comprising 85% of T-cells, and there was no evidence of B-ALL. Notably, Patient 39§ did not have non-CNS EMD identifiable on FDG PET-CT imaging during central review and was not included in the initial study cohort. (E) Generalized approach to indications for evaluation of non-CNS EMD in the peri-CAR T-cell setting.

Tables
Table 1. Demographics of 38 patients with non-CNS EMD identifiable by FDG PET-CT imaging at presentation to our institution.
Table 1. Demographics of 38 patients with non-CNS EMD identifiable by FDG PET-CT imaging at presentation to our institution.

Patients with non-CNS EMD n=38
Age at initial diagnosis, median (range), years
Age at presentation to our institution, median (range), years
Sex
EMD at Initial Diagnosis, n (%)
Prior Number of Lines of Therapy, median (range)
Prior HSCT, n (%) n=27
Prior Immunotherapy, n (%) n=23
Prior CAR T-cell therapy, n (%) n=13
Medullary Disease at Presentation, n (%)
CNS Status at Presentation, n (%)
Non-CNS EMD at Presentation, n (%)
Indication for FDG PET/CT, n (%)

CAR, chimeric antigen receptor; CNS, central nervous system; EMD, extramedullary disease; FDG PET-CT, 18-fluorodeoxyglucose positron emission tomography-computed tomography; HSCT, hematopoietic stem cell transplantation; non-CNS EMD, non-central nervous system extramedullary disease. MRD-negative: no disease detectible by flow cytometry. Low Burden includes M1 marrow (<5% blasts); high burden: M2 (5-25% blasts) and M3 (>25% blasts) marrow. CNS1: 0 blasts detectable on cytopsin; CNS2: WBCs < 5/μL, cytopsin positive for blasts; CNS3: WBCs ≥ 5 μL, cytopsin positive for blasts.

Table 2. Manifestations of non-CNS EMD in all subjects with-CNS EMD identifiable by FDG PET-CT imaging (n=38) at presentation to our institution.
Table 2. Manifestations of non-CNS EMD in all subjects with CNS EMD identifiable by FDG PET-CT imaging (n=38) at presentation to our institution.

Patient	Sites of non-CNS EMD Identified on FDG PET-CT
1	Retroperitoneal lymph node
2	Scalp soft tissue, mesenteric, periaortic, retroperitoneal lymph nodes, right kidney, left kidney, liver
3	Liver
4	Right kidney, left kidney
5	Mesenteric, retroperitoneal lymph nodes, right kidney, left kidney, extrusion from vertebral bone marrow into psoas
6	Mesenteric, peritoneal lymph nodes, mediastinum, pericardium, pleura, intramuscular lesion
7	Orbital bone, parotid gland, cervical, supraclavicular, axillary, peritoneal lymph nodes, pancreas
8a	Temporal bone, subcutaneous tissue surrounding external auditory canal, cervical, supraclavicular lymph nodes, pancreas
8b	Thoracic neural foramen, lumbar neural foramen (vertebral bodies)
9	Right kidney, left kidney, pleura
10	Supraclavicular, mesenteric lymph nodes, pleura, left kidney
11	Parotid gland, maxillary sinus, cervical, supraclavicular, mesenteric lymph nodes, mediastinum, liver, stomach, scrotum
12	Breast, subcutaneous left lower extremity lesions, extrusion from right extremity bone marrow to surrounding soft tissue
13	Cervical, axillary, retroperitoneal, mesenteric, inguinal, pelvic lymph nodes, mediastinum, right kidney, left kidney, pancreas
14	Retroperitoneal, pelvic wall lymph nodes, pancreas, testes
15	Breast, cervical, axillary lymph nodes, mediastinum
16	Liver
17	Inguinal, pelvic wall, popliteal lymph nodes, deep thigh lymph nodes, skin (leukemia cutis), bone
18	Right kidney, left kidney, testes
19	Right kidney, left kidney, spleen, pancreas
20	Right kidney, left kidney, spleen
21	Testes
22	Maxillary sinus, right kidney
23	Inguinal lymph nodes, spleen
24	Mesenteric, retroperitoneal lymph nodes, mediastinum, right kidney, left kidney, spleen, pancreas
25	Breast, retroperitoneal lymph nodes, spleen, pancreas
26	Extrusion from sternum to surrounding soft tissues
27	Left kidney
28	Spleen
29	Pancreas
30	Right kidney, left kidney
31	Inguinal lymph node
32	Testes
33	Right kidney, left kidney, pleura
34	Right kidney, left kidney
35	Spleen
36	Skin (leukemia cutis)
37	Spleen
38	Mediastinum, right kidney, left kidney

FDG PET-CT, 18-fluorodeoxyglucose positron emission tomography-computed tomography; non-CNS EMD, non-central nervous system extramedullary disease. *8a and 8b represent a single patient who received two separate infusions of the same CAR product at initial treatment and subsequent disease recurrence.
Table 3. Response of medullary/non-CNS EMD to CAR T-cells in 17 patients with 18 sets of FDG PET-CT scans pre- and post-CAR infusion.
Table 3. Response of medullary/non-CNS EMD to CAR T-cells in 17 patients with 18 sets of FDG PET-CT scans pre- and post-CAR infusion.

Patient	CAR	Pre-CAR, At Presentation to Our Institution	Post-CAR, Best Response	Overall Outcomes					
		MaxSUV, Non-CNS EMD	MaxSUV, Focal BM Disease	BM by Morphology (% of MNCs)	Non-CNS EMD at Best Response FDG PET/CT	SUV, Non-CNS EMD	Non-CNS EMD Response	BM Response (D+28)	
1	CD19	Retroperitoneal lymph node*	17.31	3.25†	0.04	No residual EMD	2.63	CR	CR
2	CD19	Scalp soft tissue, mesenteric, pectoral, retroperitoneal lymph nodes, right kidney*, left kidney, liver	15.20	Not available	0	Right kidney*	4.08	PR	CR
3	CD22	Liver	6.7	10.91	2.20	Liver*	9.18	PD	PD
4	CD22	Right kidney*, left kidney	8.70	4.91	0.05	Right kidney*, left kidney, vertebral bodies, rib, left humerus	8.93	PD	SD
5	CD22	Mesenteric, retroperitoneal lymph nodes, right kidney*, left kidney, extrusion from vertebral BM into psoas muscle	13.51	8.7	27.0	No residual EMD	2.20	CR (6 mo)	CR
6	CD22	Mesenteric, peritoneal lymph nodes, mediastinum, pericardium, pleura*, intramuscular lesion	8.97	6.80	44.0	Mesenteric, peritoneal, supraclavicular lymph nodes, pleura*, spleen, liver	6.93	PD	SD
7	CD22	Orbital bone, parotid gland, cervical, supraclavicular, axillary, peritoneal lymph nodes, pancreas*	12.09	7.9	93.3	Supraclavicular, axillary lymph nodes, orbital bone, parotid gland	2.50	PR (4 mo)	CR
8a	CD22	Temporal bone*, subcutaneous tissue surrounding external auditory canal, cervical, supraclavicular lymph nodes, pancreas	63.27	2.99†	0.50	No residual EMD	4.50	CR (3 mo)	CR
8b	CD22	Thoracic, lumbar neural foramen*	19.96	2.75†	0	No residual EMD	3.82	CR	CR
9	CD22	Right kidney, left kidney, pleura*	4.18	2.56†	56.6	No residual EMD	1.19	CR	CR
10	CD22	Supraclavicular, mesenteric lymph nodes, pleura, left kidney*	5.43	2.23†	53.3	Pleura, left kidney*	3.67	PR	CR
11	CD19/22	Parotid gland, maxillary sinus, cervical, supraclavicular, mesenteric lymph nodes, mediastinum, liver*, stomach, scrotum	22.5	15.40	0.35	Parotid gland, maxillary sinus, stomach, scrotum	2.9	PR	CR
12	CD19/22	Breast*, subcutaneous left lower extremity lesions, extrusion from right lower extremity BM to soft tissue	11.70	8.30	0.004	Breast*, subcutaneous left lower extremity lesions	4.74	PR	CR
13	CD19/22	Cervical, axillary*, retroperitoneal, mesenteric, inguinal, pelvic lymph nodes, mediastinum, right kidney, left kidney, pancreas	11.66	9.80	90.1	No residual EMD	2.09	CR	CR
14	CD19/22	Retroperitoneal, pelvic wall lymph nodes, pancreas*, testes	8.29	3.2	4.96	Retroperitoneal lymph node, pancreas*, adrenal gland, testes	11.67	PD	CR
15	CD19/22	Breast*, cervical, axillary lymph nodes, mediastinum	34.93	38.8	0.49	Breast*	11.58	PR	SD
16	CD19/22	Liver*	6.05	2.57†	0	No residual EMD	1.99	CR	CR
17	CD19/22	Inguinal, pelvic wall*, popliteal, deep thigh lymph nodes, skin, left foot periostium	10.39	2.07†	0.01	Inguinal lymph node*, left foot periostium	3.18	PR	CR

Note: * indicates site(s) unknown; † indicates non-CNS EMD.

Overall Outcomes:
- Died from progressive disease 82 days post-CAR.
- Died from progressive disease 730 days post-CAR.
- Died from progressive disease 913 days post-CAR.
- Died from progressive disease 157 days post-CAR.
- Died from progressive disease 863 days post-CAR.
- Died from progressive disease 710 days post-CAR.
- Died from progressive disease 622 days post-CAR.
- Died from progressive disease 424 days post-HSCT.
- Died from progressive disease 730 days post-CAR.
- Died from progressive disease 1063 days post-CAR.
- Died from progressive disease 457 days post-CAR.
- Died from progressive disease 330 days post-CAR.
- Died from progressive disease 395 days post-CAR.
- Died from progressive disease 240 days post-CAR.
- Died from progressive disease 174 days post-HSCT.
- Died from progressive disease 668 days post-HSCT.
- Died from progressive disease 720 days post-CAR.
- Died from progressive disease 346 days post-CAR.
- Died from progressive disease 353 days post-HSCT.
- Died from progressive disease 390 days post-CAR.
- Died from progressive disease 302 days post-CAR.
BM, bone marrow; CAR, chimeric antigen receptor; CR, complete response; FDG PET-CT, 18-fluorodeoxyglucose positron emission tomography-computed tomography; HSCT, hematopoietic stem cell transplantation; maxSUV, maximum standardized uptake value; MNCs, mononuclear cells; non-CNS EMD, non-central nervous system extramedullary disease; PD, progressive disease; PR, partial response; SD, stable disease. 8a and 8b represent outcomes for a single patient who received two separate infusions of the same CAR product at initial treatment and subsequent disease recurrence. *Site of non-CNS EMD corresponding to maxSUV. †Bone marrow maxSUV calculated as average maxSUV of vertebral bodies (L3, L4, L5) in absence of focal BM disease. In patients with no residual non-CNS EMD, maxSUV value at best response reflects physiologic FDG uptake at site of non-EMD identified on pre-CAR scan.

Patient 5 was previously reported in a manuscript. Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. *Nat Med. 2018;24(1):20-28.*

Patient 7 was reported as a case. Shah NN, Qin H, Yates B, et al. Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy. *Blood Adv. 2019;3(15):2317-2322.*

Patient 8a/8b was reported as a case. Mo G, Wang HW, Talleur AC, et al. Diagnostic approach to the evaluation of myeloid malignancies following CAR T-cell therapy in B-cell acute lymphoblastic leukemia. *J Immunother Cancer.* 2020;8(2).
Table 4. Unique CAR T-cell associated toxicities in a subset of patients (n=7) who obtained serial scans (n=17, 18 infusions). Of the patients (66.6%) without evidence of site-specific toxicity following CAR T-cell infusion, 6 did not show symptoms of CRS, 4 experienced CRS grade 1-2, and 2 experienced CRS grade 3.
Table 4. Unique CAR T-cell associated toxicities in a subset of patients (n=7) who obtained serial scans (n=17, 18 infusions). Of the patients (66.6%) without evidence of site-specific toxicity following CAR T-cell infusion, 6 did not show symptoms of CRS, 4 experienced CRS grade 1-2, and 2 experienced CRS grade 3.

Patient	CRS Max Grade (ASTCT)	Site-Specific Toxicities	Peak Peripheral Blood CAR % (% of T-cells)	Peak Site-Specific CAR+ % (% of T-cells)
1	2	Possibility of inflammation at site of retroperitoneal disease with transient appendiceal thickening identified on CT. Etiology of CT findings could not be confirmed with imaging alone.	1.6	–
5	1	Possibility of pain from inflammation at psoas site of disease with focal abnormality in paravertebral soft tissues potentially related to inflammatory process. Etiology of CT findings could not be confirmed with imaging alone.	60.0	–
6	2	Increased work of breathing and O₂ requirement with onset of CRS. Worsening bilateral pleural effusions and ground glass opacities demonstrated on CT.	89.5	Pleural fluid: 72, D+27 BAL: 74, D+33
7	3	O₂ requirement with onset of CRS and inflammation of orbital mass with eyelid swelling. Swelling of right upper extremity associated with inflammation in lymph nodes manipulated in prior mastectomy.	97.8	BAL: 90, D+28
9	2	O₂ requirement during CRS. Bilateral pleural effusions and ground glass opacities consistent with inflammation at site of pleural-based disease seen on CT. Rising serum creatinine with onset of CRS (peak, 0.88 mg/dL, D+11; baseline, 0.50-0.66 mg/dL) and acute kidney injury.	88.0	–
15	0	Pain and swelling associated with breast erythema during CRS and pain associated with swelling of axillary lymph node.	3.3	–
39§	1	Respiratory distress with O₂ requirement during CRS. Malignant bilateral pleural effusions with alveolar infiltrates demonstrated on CT during CRS.	90.2	BAL: 85.0, D+54

ASTCT, American Society of Transplantation and Cellular Therapy; BAL, bronchoalveolar lavage; CAR, chimeric antigen receptor; CRS, cytokine release syndrome; CT, computed tomography. Patient 39§ presented with unique pulmonary toxicities but did not have FDG-avid non-CNS EMD at the time of treatment and was not included in the serial scan study cohort.
CD19/22 CAR T-cell Peak Expansion

Peak Absolute CAR T-cell Expansion

- **A**: CD19 CAR
- **B**: CD22 CAR
- **C**: CD19/22 CAR

CD22 CAR T-cell Persistence at

- **1 Month**: Median % CD22 CAR+ (range) = 24.2 (1.0-90.4) for No EMD, 66.0 (25.0-87.0) for non-CNS EMD, p=0.001
- **2 Months**: Median % CD22 CAR+ (range) = 7.0 (0.20-45.0) for No EMD, 11.0 (1.0-88.4) for non-CNS EMD, p=0.24
- **3 Months**: Median % CD22 CAR+ (range) = 2.85 (0.23-41.0) for No EMD, 3.50 (0.50-23.8) for non-CNS EMD, p=0.75
