Eukaryotic DNA topoisomerase I (Top1p) has important functions in DNA replication, transcription, and recombination. This enzyme also constitutes the cellular target of camptothecin (CPT), which induces S-phase-dependent cytotoxicity. To define cellular pathways that regulate cell sensitivity to Top1p-induced DNA lesions, we described a yeast genetic screen for conditional 'top1T722A-hypersensitive' mutants with enhanced sensitivity to low levels of the CPT mimetic mutant 'top1T722A' (Reid, R. J., Fiorani, P., Sugawara, M., and Bjornsti, M. A. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 11440–11445; Fiorani, P., Reid, R. J., Schepis, A., Jacquiau, H. R., Guo, H., Thimmaiah, P., Benedetti, P., and Bjornsti, M. A. (2004) J. Biol. Chem. 279, 21271–21281). Here we report that 'top1' mutant 'ubc9–10' harbors a hypomorphic allele of 'UBC9', which encodes the essential SUMO (small ubiquitin-related modifier) E2-conjugating enzyme. The same conditional 'ubc9P123L' mutant was also isolated in an independent screen for enhanced sensitivity to a distinct Top1p poison, Top1NH26H. The 'ubc9–10' mutant exhibited a decrease in global protein sumoylation and increased sensitivity to a wide range of DNA-damaging agents independent of Top1p. Deletion of the Ulp2 SUMO protease failed to restore 'ubc9–10' cell resistance to Top1p poisons or hydroxyurea yet adversely affected wild-type TOP1 cell genetic stability and sensitivity to hydroxyurea. Moreover, although mutation of different consensus SUMO sites in the N terminus and linker region of yeast Top1p failed to recapitulate 'ubc9–10' mutant phenotypes, they revealed distinct and subtle effects on cell sensitivity to CPT. These results provide insights into the complexities of SUMO conjugation and the confounding effects of SUMO modification on Top1p function and cell sensitivity to genotoxic agents.

In eukaryotes, DNA topoisomerase I (Top1p) is a highly conserved enzyme that catalyzes the relaxation of positively and negatively supercoiled DNA (1–4). This nuclear enzyme is encoded by a single gene and plays critical roles in DNA replication, recombination, transcription, and chromosome condensation. Top1p is also the cellular target of several anticancer agents, including camptothecin (CPT) analogs, topotecan, and irinotecan (CPT-11) approved by the Food and Drug Administration, as well as additional compounds in preclinical and clinical development (5–9).

DNA topoisomerase I transiently cleaves a single strand of duplex DNA, creating a protein-linked nick in the DNA, which allows strand rotation to effect changes in DNA topology (1–4). The nucleophilic attack of the 5′-OH end of the cleaved DNA strand on the phosphotyrosyl linkage between Top1p and the 3′-DNA end restores the integrity of the DNA and liberates the enzyme. Camptothecin targets Top1p by reversibly stabilizing the covalent enzyme-DNA intermediate (10, 11). Although drug-stabilized Top1p-DNA ternary complexes are detected throughout the cell cycle, the cytotoxic activity of CPT is S-phase-dependent. The collision of advancing DNA polymerases with CPT-Top1p-DNA complexes converts readily reversible DNA nicks into irreversible DNA lesions, which trigger checkpoint activation and cell death. Several studies have established the increased CPT sensitivity of cells defective for various components of DNA damage and replication checkpoints such as yeast Rad9p, Rad53p, Mec1p, Tel1p, and human ATR and SMC1 (12–16). Additional studies in yeast indicate that pro-cise DNA replication (CDC45, DBP11) (17) and the repair of stalled replication forks (RAD52, SGS1, and SRS2) (18–20) are also critical determinants of CPT cytotoxicity.

Post-translational modification of Top1p has also been implicated in modulating enzyme activity and sensitivity to CPT. For instance, the covalent attachment of ubiquitin to lysine residues in Top1p following exposure of mammalian cells to CPT coincides with a rapid down-regulation of the enzyme and, in some cases, drug resistance (5, 21). In yeast, the deubiquitinating enzyme, Doa4p, functions to maintain free ubiquitin pools by recycling ubiquitin from proteins destined for vacuolar or proteasomal degradation (22, 23). Dysregulation of ubiquitin homeostasis in doa4 mutant strains results in enhanced sen-

Received for publication, January 26, 2005, and in revised form, April 6, 2005
Published, JBC Papers in Press, April 6, 2005, DOI 10.1074/jbc.M500947200

Hervé R. Jacquiau, Robert C. A. M. van Waardenburg, Robert J. D. Reid, Michael H. Woo, Hong Guo, Erica S. Johnson, and Mary-Ann Bjornsti

From the Department of Molecular Pharmacology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

The Journal of Biological Chemistry
Vol. 280, No. 25, Issue of June 24, pp. 23566–23575, 2005
Printed in U.S.A.
Covalently attached to ubiquitin conjugation adversely impact cell survival in response to drug concentrations. Rather, genetic evidence implicates such as yeast Ulp1p and Ulp2p (26–28). Ubc9p is the sole SUMO E2-conjugating enzyme and is ligase. Ubc9p in an ATP-dependent reaction, which is those required for ubiquitin conjugation (reviewed in Refs. 24, 25). In humans, four SUMO family members have been described, whereas in yeast, a single essential gene encodes the related Smt3 protein. As with ubiquitin, proteolytic processing of inactive SUMO/Smt3p precursors by a SUMO-specific protease generates the mature GG C terminus. Mature SUMO forms a thiolester linkage with a heterodimeric E1-activating enzyme (Aos1p/Uba2p in yeast) in an ATP-dependent reaction, which is then transferred to Ubc9p. SUMO conjugation to substrate proteins may be catalyzed by Ubc9p alone or in concert with an E3 ligase. Ubc9p is the sole SUMO E2-conjugating enzyme and is essential in yeast and mammalian cells. Sumoylation is also reversible due to the isopeptidase activity of SUMO proteases, such as yeast Ulp1p and Ulp2p (26–28).

A SUMO consensus site (ΨKXE) has been defined, where Ψ is a large hydrophobic residue and X is any amino acid (29). However, recent studies including proteomic approaches to analyze global protein sumoylation have defined lysine modifications in noncanonical SUMO sequences (30, 31).

Sumoylation of human Top1p has been demonstrated in response to high concentrations of CPT and other agents that poison Top1p and has been suggested to regulate the partitioning of the enzyme between the nucleus and nucleolus (6, 32–35). However, these results have generated some debate with a recent report concluding that sumoylation of human Top1p does not affect CPT-induced nucleolar clearance of the enzyme (36).

Yeast Top1p was also identified in recent global analyses of sumoylated proteins based on extremely sensitive detection methods (37, 38). These studies support the widely held view that sumoylation is a dynamic process with only a small percentage of target proteins sumoylated at a given time. The expression of a dominant negative UBC9 mutant in human breast cancer MCF7 cells has also been shown to increase cell sensitivity to the CPT analog, topotecan (39). However, other studies indicate that sumoylation of Top1p correlates with increased CPT cytotoxicity (35). These somewhat contradictory findings may be, in part, a consequence of the myriad of genetic alterations that attend the malignant transformation of the cancer cell lines used or reflect the complications of using high drug concentrations.

To investigate cellular pathways regulating cell sensitivity to CPT in an experimental system that avoids some of these issues, we developed a yeast genetic screen to isolate conditional mutants exhibiting enhanced sensitivity to low levels of a self-poisoning Top1T722A mutant enzyme (17, 40). A panel of conditional tah (top1T722A-hypersensitive) mutants were unable to tolerate low levels of CPT-induced DNA damage at the nonpermissive temperature of 36 °C because of alterations in processive DNA polymerization (cdc45–10, dbp11–10), ubiquitin homeostasis (doa4–10), or actin cytoskeletal architecture (sla1–10, sla2–10) (16, 17, 40). As with CPT poisoning of wild-type Top1p, Top1T722Ap exhibits reduced rates of DNA religation without obvious effects on DNA binding or cleavage (41). This cytotoxic mechanism contrasts with that of other self-poisoning mutant enzymes, such as Top1NT726Hp, where increased rates of DNA cleavage produce elevated covalent complexes (42). We recently reported that some tah mutants (cdc45–10, dbp11–10 and doa4–10) exhibit varying patterns of sensitivity to these distinct Top1p poisons (41). These results prompted a second screen for temperature sensitive (ts) mutants with enhanced sensitivity to DNA lesions resulting from elevated rates of DNA cleavage by Top1NT726Hp, termed nhh for top1NT726H-hypersensitive. Here we report the identification of the same ubc9–10 mutation in these two independent screens and discuss the function of Ubc9p in protecting cells from diverse Top1p poisons and DNA-damaging agents.

EXPERIMENTAL PROCEDURES

Chemicals, Yeast Strains, and Plasmids—CPT and 4,6-diamidino-2-phenylindole (DAPI) were purchased from Sigma. Stock solutions of CPT (4 mg/ml in Me2SO) were stored at −20 °C. Ethyl methanesulfonate was from Kodak (Eastman Kodak Company, Rochester, NY), whereas 5-fluoroarotic acid was purchased from U.S. Biological (Swampscott, MA).

Saccharomyces cerevisiae strains, listed in Table I, were isogenic with FY250 (MATa, ura3–52, his3Δ200, leu2Δ1, trp1Δ63), which was kindly provided by Fred Winston (Harvard Medical School, Cambridge, MA). Gene deletions were made by PCR (43). The URA3, ARS/CEV plasmids YCpSctop1, YCpSctop1T722A, and YCpScsnt726H and the corresponding LUB2 vectors, YCpSctop1-L, and YCpSctop1T722AL, which constitutively express the indicated TOP1 allele from the yeast TOP1 promoter, have been described previously (16, 44). The inclusion of an N-terminal FLAG epitope is indicated by an e prefix in the URA3 vectors, YCpSctop1 and YCpSctop1T722A (44, 45). Plasmids pHs416 and pHs415 (46) served as controls. A URA3, ARS/CEN plasmid-based yeast genomic DNA library, referred to as YCpFY250, was described (17). Substituting Arg for Lys600 in the consensus sumoylation site LK600KE in YCpSctop1K600R was accomplished by oligonucleotide-directed mutagenesis with the QuickChange mutagenesis kit (Stratagene, La Jolla, CA). The mutation of Lys residues within consensus sumoylation sites IKK65TE and IKK91K92Et to Arg was accomplished by PCR-based substitution of genomic TOP1 DNA. PCR-amplified sequences then replaced the corresponding wild-type residues in the genomic context.

TABLE I

Strain	Genotype	Ref.
FY250	MATa, ura3–52, his3Δ200, leu2Δ1, trp1Δ63	61
FY251	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63	61
EKY2	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, top1Δ1:His3	61
EKY3	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, top1Δ1:TRP1	61
RRY82	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, top1Δ1:TRP1, ubc9–10	This work
RRY82a	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, top1Δ1:TRP1, ubc9–10	This work
PTY30	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, top1Δ1:TRP1, ubc9Δ:his5+, YCpUBC9	This work
RWY10	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, top1Δ1:TRP1, ubp2Δ:his5+	This work
RWY11	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, top1Δ1:TRP1, ubc9–10, ubp2Δ:his5+	This work
HJY13	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, ubc9–10	This work
HJY14	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, ubc9–10	This work
HJY15	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, ubc9–10	This work
HJY16	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, ubc9–10	This work
HJY19	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, ubp2Δ:his5+	This work
HJY21	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, ubp2Δ:his5+	This work
HJY22	MATa ura3–52, his3Δ200, leu2Δ1, trp1Δ63, ubc9–10, ubp2Δ:his5+	This work

Stability to Top1p poisons and DNA-damaging agents.
Yeast ubc9 Mutant Sensitivity to DNA-damaging Agents

DNA Topoisomerase I Activity—Top1 protein levels in wild-type and \(\text{ubc9}^{-10} \) cells transformed with YCpScetop1 vectors were assessed in crude extracts prepared from exponential cultures grown at 26 or 36 °C for 6 h. For each strain, cell suspensions were harvested by centrifugation and resuspended in 2 ml/g of cells of TEEG buffer (20 mM Tris, pH 7.5, 0.2 mM KCl, 10 mM EDTA, 10 mM EGTA, 10% glycerol) supplemented with phosphatase inhibitor cocktails I and II (Sigma) and protease inhibitor Complete™ mixture (Roche Diagnostics GmbH, Mannheim, Germany). Following a freeze-thaw cycle at −80 °C, the cells were lysed by vortexing with glass beads and extracts were clarified by centrifugation. For correlation for total protein, DNA topoisomerase I catalytic activity was assessed in a plasmid DNA relaxation assay (47). Top1 protein levels and integrity were assessed in immunoblots using either monoclonal M2 antibody specific for the N-terminal FLAG epitope or a polyclonal antibody specific for yeast Top1p followed by chemiluminescence (Amersham Biosciences).

Yeast Ubc9 Antibodies and Western Blotting—Antibodies were raised in rabbits against a synthetic peptide spanning residues 134–145 of yeast Ubc9p. The resultant polyclonal antibodies were affinity-purified on Sepharose-4B conjugated to the same peptide using standard procedures (48). Antibody fractions were concentrated by Centriplus Amicon filtration and tested for their reactivity against purified yeast and human Ubc9p (the generous gift of Brenda Schulman, St. Jude Children’s Research Hospital).

Ubc9p Antibodies were used to assess Ubc9p in wild-type and \(\text{ubc9}^{-10} \) mutant strains. Western blots were probed with-reactive antibodies against purified yeast and human Ubc9p. The resultant polyclonal antibodies were affinity-purified on Sepharose-4B conjugated to the same peptide using standard procedures (48). Antibody fractions were concentrated by Centriplus Amicon filtration and tested for their reactivity against purified yeast and human Ubc9p (the generous gift of Brenda Schulman, St. Jude Children’s Research Hospital).

RESULTS

Ubc9p Affects Cell Sensitivity to DNA Topoisomerase I Poisons and Other DNA-damaging Agents—We previously described a yeast genetic screen to isolate \(ts \) mutants exhibiting enhanced sensitivity to CPT, using the self-poisoning \(\text{top1}^{T722A} \) mutant as a CPT mimetic (16, 17, 40). Conditional \(\text{tm} \) (\(\text{top1}^{T722A} \)-hypersensitive) mutants could not tolerate low levels of CPT-induced DNA damage at the nonpermissive temperature of 36 °C. However, several \(\text{tm} \) mutants exhibited varying patterns of temperature sensitivity to another self-poisoning \(\text{top1}^{N726H} \) mutant where elevated rates of DNA cleavage produce increased levels of covalent complexes (41). Thus, we initiated a second genetic screen for conditional \(\text{nhh} \) mutants. Here we report that the same \(\text{nhh} \) allele of \(\text{UBC9} \) was independently isolated in both the \(\text{tm} \) and \(\text{nhh} \) screens.

As detailed under “Experimental Procedures,” the \(ts \) phenotypes of the \(\text{tm} \) mutants segregated as recessive single gene defects in backcrosses with wild-type strains. Subsequent complementation and genetic analyses identified \(\text{UBC9} \) as \(\text{TAH12} \) and \(\text{NHH1} \), whereas DNA sequencing identified the same \(\text{ubc9}^{-10} \) allele from \(\text{TAH12} \) and \(\text{NHH1} \).

Tah12-Ubc9 Interaction—A yeast genetic screen to isolate \(\text{tah} \) mutants exhibiting temperature-sensitive growth in the presence of low levels of 5-Fluoro-trypsin (50) was described above. In all of the cases, immunostaining with tubulin-specific antibodies served as loading controls.
Ub9p is a highly conserved, essential E2 SUMO-conjugating enzyme that catalyzes the formation of an isopeptide linkage between a C-terminal Gly in SUMO (yeast Smt3p) and the ε-amino group of lysine residues in target proteins (24). The Pro123 residue mutated in ubc9–10 is also conserved and, in human Ube9p crystal structures, lies in a loop positioned over a cleft containing the active site Cys93 residue (51, 52). Pro123 is also N-terminal to an α-helix implicated in binding consens-
us SUMO sites in target proteins (51).

As shown in Fig. 1, A and B, and summarized in Table II, low level expression of wild-type TOP1 or the self-poisoning top1T722A or top1N726H mutants had little effect on wild-type UBC9 cell viability, either in the presence or absence of CPT. In contrast, ubc9–10 mutant cells were unable to tolerate either self-poisoning Top1 enzyme or CPT in the presence of wild-type Top1p at 36 °C. As with other tah mutants (16, 17, 53), ubc9–10 cells exhibited increased sensitivity to the ribonucleotide reductase inhibitor, HU, at 36 °C. However, the ubc9–10 mutant was unique among tah mutants in its conditional hypersensitivity to a wide range of DNA-damaging agents (alkylating agent methyl methanesulfonate, UV light, and bleomycin) (Table II and Fig. 2) with no detectable alterations in cell growth under a wide range of other environmental conditions (oligo-
mycin, cycloheximide, high salt, or glycerol) (data not shown). With the exception of X-rays (data not shown), ubc9–10 cells exhibited increased sensitivity to all of the DNA-damaging agents tested but not to other environmental stresses. Because UBC9 is an essential gene, these findings further indicate that the alterations in Ubc9P123Lp function, sufficient to sensitize cells to genotoxic stress, were insufficient to induce cell lethality in the absence of DNA damage.

Given the somewhat confounding reports that both increased sumoylation of human Top1p and decreased global sumoylation (induced by a dominant negative human UBC9 mutant) enhance the cytotoxic activity of CPT (35, 39), we next asked whether alterations in yeast Top1p activity or sumoylation could be detected in isogenic wild-type UBC9 and ubc9–10 mutant strains. To address this possibility, extracts were made of UBC9 and ubc9–10 cells transformed with YCpScTOP1 or YCpScTop1T722A vectors and cultured at 26 °C or shifted to 36 °C for 6 h. The specific activities of wild-type Top1p and mutant Top1T722Ap were unaffected by the temperature shift (Fig. 3), consistent with the lack of any alterations in Top1p protein levels detected in Western blots (data not shown). Moreover, under these conditions, we were unable to detect SUMO (Smt3p) modification of wild-type or mutant Top1 proteins, either in the immunoprecipitates of epitope-tagged Top1 proteins or whole cell extracts, using a polyclonal Smt3p antibody (data not shown). These results are not surprising, because recent proteomic analyses of sumoylated yeast proteins indicate that only a small percentage of a SUMO target may be sumoylated at any given time, necessitating more sensitive multidimensional protein identification technology and instrumenta-
tion to detect Top1p-Smt3p conjugates (37, 38). However, when cells overexpress wild-type Top1p or the self-poisoning Top1T722Ap from GAL1-promoted constructs, similar levels of Top1p sumoylation were detected.2 Thus, the extent of Top1p sumoylation did not change with the self-poisoning mutant enzyme.

Low constitutive expression of Top1T722Ap in ubc9–10 cells at 36 °C was, nevertheless, sufficient to induce a terminal phenotype of large-budded cells with an undivided nucleus (Table III), consistent with the cytotoxic activity of this self-
poisoning enzyme in S-phase. In the absence of Top1p poisons, ubc9–10 cells also exhibited an increase in large budded cells containing a single nuclear mass relative to wild-type UBC9 at 36 °C (42 versus 17%), albeit at lower levels than the 70% observed in ubc9–10 cells expressing Top1T722Ap at the nonpermissive temperature (Table III). However, as ubc9–10 cells expressing Top1p remained viable at 36 °C, the accumula-
tion of cells with this morphology indicated a decreased rate of S-phase transit. One possibility was the induction of suble-
thal levels of DNA damage sufficient to trigger S-phase checkpoints and slow the advance of replication forks. Indeed, as

2 X. L. Chen and E. S. Johnson, unpublished results.
with wild-type UBC9 cells, ubc9–10 cells treated with HU for 3–4 h exhibited no loss of viability at 26 or 36 °C, indicating an intact S-phase checkpoint (data not shown). However, when the RAD9 DNA damage checkpoint was deleted in ubc9–10

Table II

Yeast ubc9 Mutant Sensitivity to DNA-damaging Agents

Yeast strain	Cell viability at the nonpermissive temperature					
	top1T722A	CPT	HU	MMS	Bleo	UV
Wild-type	++	+++	+++	+++	+++	++
ubc9–10 (tah12)	+	+++	+	+	++	+

- Isogenic top1Δ yeast strains, wild-type for UBC9 or containing the ubc9–10 mutant allele, were used.
- For the conditions indicated, exponentially growing cells adjusted to an OD_{595} = 0.3 were serially 10-fold diluted and 4-μl aliquots were spotted onto plates. After 3 days at 26 or 36 °C, viability was scored as +++ for colonies at 10^{-3} dilution, +++ for colonies at 10^{-4}, ++ for colonies at 10^{-5}, + for colonies in undiluted samples, and − for no growth at 36 °C.
- To assess cell sensitivity to Top1 poisons, cells were transformed with plasmids YCpScTop1, YCpScTop1N726H, or YCpScTOP1. Individual transformants were plated on SC-uracil medium and incubated at 26 or 36 °C. Similar results were obtained for Top1N726H or Top1T722A-expressing cells. For CPT sensitivity, YCpScTOP1 transformants were plated on selective medium with 25 mM HEPES, pH 7.2, and 0 or 5 μg/ml CPT in a final 0.125% Me_{2}SO.
- Sensitivity to HU (5 mg/ml) and methyl methane sulfonate (MMS) (0.0125%) was assessed on YPD plates.
- Sensitivity to bleomycin (Bleo) was assessed by colony formation at 26°C following exposure to 0, 25, or 50 μg/ml Bleo for 24 h at 36°C.
- UV sensitivity was assessed by colony formation on YPD plates following irradiation with 0, 10 or 20 μJ/m² UV and growth at 36°C.

Table III

Morphology of ubc9–10 cells

Strain	°C	Top1 allele	% unbounded small budded cells	% large budded cells
ubc9-10	26	TOP1	70	19
	36	TOP1	54	17
	26	top1T722A	66	14
	36	top1T722A	53	22
ubc9-10	26	TOP1	69	9
	36	TOP1	41	17
	26	top1T722A	64	21
	36	top1T722A	19	11

- Based on the analysis of a minimum of 100 cells/sample, cells were scored as either having no small buds or large buds (where the diameter of the bud was greater than half of that of the mother cell) and tabulated as a percent of the total.

- Large budded cells were further distinguished as having a single DNA mass or segregated DNA masses.
cells, the double mutant remained viable at 36 °C. These results contrast with the synthetic lethal interactions observed between a rad9 null mutation and two other tah mutants, cdc45–10 and dpb11–10, both of which exhibit defects in Okazaki fragment maturation at 36 °C (17). These findings suggest that the defects in Ubc9p123Lp function, per se, did not induce lesions recognized by the Rad9 DNA damage checkpoint.

Even though steady-state levels of sumoylated Top1p were difficult to detect, we reasoned that mutation of lysine residues within consensus SUMO sites might alter transient cycles of Top1p SUMO conjugation and cell sensitivity to Top1p poisons. As reported for human Top1p (34), potential sumoylation sites within consensus SUMO sites might alter transient cycles of SUMO conjugation and cell sensitivity to Top1p poisons. Any direct alterations in Top1p protein sumoylation.

Mutation of lysine residues within consensus SUMO sites sites exist in the nonconserved N-terminal domain (IKKKTE, IKKKE) and in the extended pair of α-helices that comprise the linker domain (LKKKKKE), which connects the C-terminal active site tyrosine domain with the Top1 protein clamp. Because these domains have been implicated in protein-protein interactions and/or DNA binding by the enzyme (54–56), we asked whether mutating these lysines to arginine would either suppress or enhance ubc9–10 cell sensitivity to Top1p poisons. Mutation of Lys65, Lys91, Lys92 (Lys65,91,92), or Lys600 to Arg had no effect on the cytotoxic activity of the top1T722A mutant in ubc9–10 cells at 36 °C (Fig. 4A) or in wild-type UBC9 cells (Fig. 4, A and B). Indeed, in wild-type UBC9 cells, mutation of the N-terminal SUMO sites partially suppressed, rather than enhanced, the cytotoxic activity of Top1T722A in the presence and absence of CPT (Fig. 4, A and B, respectively). In the context of wild-type Top1p, the same mutations induced a slight but reproducible decrease in ubc9–10 cell viability when exposed to CPT at 36 °C (Fig. 4A). However, when enzyme activity in cell extracts was assessed in a plasmid DNA relaxation assay, no alterations in enzyme-specific activity or protein levels were detected (data not shown). Thus, whereas mutations of consensus SUMO sites had subtle and contrary effects on cell sensitivity to CPT, they failed to recapitulate the tah phenotype of ubc9–10 cells. Although these experiments do not exclude alterations in Top1p localization or the modification of nonconsensus SUMO sites, we were unable to attribute the enhanced sensitivity of ubc9–10 cells to Top1p poisons to any direct alterations in Top1p protein sumoylation.

UbC9P123Lp Activity and Protein Stability Is Thermolabile—To further investigate the defects in Ubc9p activity induced by mutation of Pro123 to Leu, global patterns of protein sumoylation were analyzed in extracts of isogenic wild-type UBC9 and mutant ubc9–10 strains expressing either wild-type Top1p or Top1T722Ap. In Fig. 5A, similar levels of Smt3p-protein conjugates were detected when cells were cultured at the permissive temperature of 26 °C. However, a 6-h shift of ubc9–10 cells to 36 °C resulted in a dramatic decrease in global sumoylation, whether cells expressed wild-type or self-poisoning Top1p proteins. The same results were obtained in a Top1 null background (data not shown). This dramatic decrease in overall protein sumoylation coincided with a decrease in Ubc9P123Lp protein levels upon shift to the nonpermissive temperature (Fig. 5B) independent of Top1p. Although Ubc9P123Lp protein and catalytic activity were significantly reduced at 36 °C, they sufficed to maintain cell viability in the absence of DNA damage. The synthetic lethal phenotype of ubc9–10 cells exposed to low levels of DNA damage might either 1) be a consequence of lower thresholds of global sumoylation necessary to maintain essential cellular function(s) than to effect DNA repair, or 2) derive from alterations in Ubc9P123L substrate specificity.
To begin addressing these possibilities, we first asked whether the thermostability of Ubc9P123Lp resulted from a loss in structural rigidity imparted by the proline at this position or from the insertion of a large hydrophobic leucine residue. As shown in Fig. 6, the latter seems to be the case because mutating Pro123 to Ala had no detectable effect on cell viability. When expressed from low copy YCp vectors, both ubc9P123L and ubc9P123A were able to maintain ubc9Δ viability and resistance to HU at 26 °C (Fig. 6A). However, in contrast to Ubc9P123Lp, Ubc9P123Ap maintained cell resistance to HU at 36 °C. Ubc9P123Ap also restored ubc9–10 cell resistance to low levels of Top1T722Ap at 36 °C (data not shown) and exhibited the same steady-state protein levels as wild-type Ubc9p in cells cultured at 26 and 36 °C (Fig. 6B). Thus, it appears that the introduction of Leu at position 123, rather than the loss of Pro, reduces Ubc9P123Lp stability at 36 °C. However, this ts phenotype could also be complemented by increased expression of ubc9P123L from a high copy YEp vector, which typically maintains in excess of 50 plasmids per cell. Under these conditions, the cells remained resistant to low concentrations of HU or Top1p poisons at 36 °C (Fig. 6A, data not shown) and the steady-state levels of Ubc9P123Lp at 36 °C approached those observed in ubc9–10 cells transformed with vector alone at 26 °C (Fig. 6B).

Protein sumoylation is a function of SUMO conjugation by Ubc9p and desumoylation by SUMO-specific peptidases (24). The Ulp1p protease is essential and functions in the maturation of Smt3p as well as in catalyzing SUMO deconjugation (27). Ulp2p functions, on the other hand, is only required at high temperature and appears to be restricted to deconjugation reactions in the nuclear compartment of the cell (28). Based on the gene dosage results obtained in Fig. 6, we asked whether up2Δ could complement the ts phenotype of ubc9–10 cells by restoring the equilibrium of SUMO conjugation dysregulated by Ubc9P123Lp instability at 36 °C. As has previously been reported, up2Δ strains were inviable at 36 °C (28) but the up2Δ, ubc9–10 double mutant was viable at all of the temperatures (Fig. 7). Thus, the decrease in Ubc9P123Lp-catalyzed conjugation at 36 °C restored the viability of cells deleted for the Ulp2p SUMO-protease. Similar results were reported for the up1pΔ, ubc9–1 mutant, where the ubc9–1 mutant is also inviable at 36 °C (28). However, the up1p null mutant failed to complement the ts phenotype of ubc9–10 cells. The double mutant exhibited the same hypersensitivity to HU and Top1p poisons as the single ubc9–10 mutant at 36 °C (Fig. 7 and data not shown). Along similar lines, overexpression of Smt3p from the GAL1 promoter also failed to complement the ts phenotypes of ubc9–10 cells or to increase the CPT resistance of wild-type cells expressing Top1p (data not shown).
Deletion of ULP2 Enhanced Cell Sensitivity to Increased TOP1 Gene Dosage and to HU in the Presence of Wild-type Top1p—Our analyses of ulp2Δ cell sensitivity to the self-poisoning Top1 mutant enzymes were complicated by the genetic instability of strains lacking Ulp2p. Consistent with previous reports of chromosomal instability (57), our ulp2Δ strains quickly acquired spontaneous revertants. For example, note the large number of papillae in the ulp2Δ strain plated on YPD at 36 °C in Fig. 7. This high background complicated our analysis of cells transformed with the various YCpTOP1 vectors. In contrast to the original ulp2 null mutants, ulp2Δ cells transformed with various YCp-based vectors and then cultured in selective medium at 26 °C were viable when plated at 36 °C. Surprisingly, however, this effect appeared to be exacerbated in ulp2Δ strains that were wild type for TOP1, suggesting that the defects in chromosome and plasmid stability evident in ulp2 null cells could be partially suppressed by deletion of TOP1. These findings prompted further study of possible genetic interactions between ulp2Δ and TOP1.

First, ulp2Δ deletion mutants of isogenic wild-type TOP1 and top1Δ strains were generated by PCR-based gene disruptions. Second, as shown in Fig. 8, under conditions where a low background of spontaneous revertants was evident at 36 °C, i.e., early passage of the mutant strains, the ulp2Δ, TOP1 strain was hypersensitive to HU at all of the temperatures, whereas the double ulp2Δ, top1Δ mutant was only inviable at 36 °C. Thus, the deletion of TOP1 suppressed the HU hypersensitivity of cells lacking Ulp2p.

To assess ulp2Δ cell sensitivity to self-poisoning Top1 mutants, we reasoned that short-term incubation of the resultant transformants might also avoid some of the genetic instability attendant with long term culturing. Surprisingly, we found that ulp2Δ, TOP1 strains were unable to tolerate any increase in TOP1 gene dosage at 26 °C, as evidenced by our inability to recover viable transformation colonies (Table IV). In contrast to ulp2Δ, top1Δ strains, which were readily transformed with all of the indicated YCpScTOP1 vectors, ulp2Δ, TOP1 strains could not tolerate low copy ARS/CEN vectors expressing catalytically active Top1 or Top1pT722A enzymes. Even increased dosage of the catalytically inactive Top1Y727Fp induced a slow growth phenotype of ulp2Δ, TOP1 cells at 26 °C. Moreover, this increased sensitivity to Top1 protein dosage was marginally suppressed by the mutation of the active site tyrosine (top1Y727F) or consensus SUMO sites (top1K65,91,92R or top1K600R). Transformants were obtained; however, they exhibited a slow growth phenotype when cultured at 26 °C (Table IV). Similar phenotypes were obtained with the ulp2Δ, ubch9–10 double mutant, although in this genetic background, mutation of consensus SUMO sites in Top1T722A also improved cell viability at 26 °C. Thus, although the decreased stability and activity of Ubc9p123Lp at 36 °C enhanced cell sensitivity to a wide range of DNA-damaging agents independent of TOP1 or Top1p sumoylation, the enhanced sensitivity of ulp2 Δ null mutants to HU and Top1 protein dosage was, in part, dependent on Top1p sumoylation.

Deletion of ULP2 does not restore ubch9–10 cell resistance to HU. Isogenic top1Δ strains harboring wild-type alleles of ULP2, UBC9, single ubch9–10 or ulp2 Δ mutations, or the double ulp2Δ, ubch9–10 mutations were streaked on YPD in the presence or absence of 5 mg/ml HU and incubated at 26 and 36 °C.

FIG. 7. Deletion of ULP2 does not restore ubch9–10 cell resistance to HU. Isogenic top1Δ strains harboring wild-type alleles of ULP2, UBC9, single ubch9–10 or ulp2 Δ mutations, or the double ulp2Δ, ubch9–10 mutations were streaked on YPD in the presence or absence of 5 mg/ml HU and incubated at 26 and 36 °C.

DISCUSSION

Independent yeast genetic screens for conditional hypersensitivity to distinct DNA topoisomerase I poisons defined the same Pro123 to Leu substitution in the essential SUMO E2-conjugating enzyme, Ubc9p. Alterations in the SUMO conjugation machinery have previously been reported to enhance cell sensitivity to DNA-damaging agents and in cells expressing human Top1p to CPT (5, 32, 34, 35, 39, 58). However, the results of our studies are significant for several reasons. First, the ubch9–10 mutant uncoupled the essential function of Ubc9p in maintaining cell viability at 36 °C from catalytic activities necessary to protect cells from a wide range of DNA-damaging agents. Mutation of Pro123 to a hydrophilic bulky residue Leu but not Ala impaired protein stability at 36 °C, resulting in a dramatic reduction in global sumoylation and enhanced cell sensitivity to Top1p poisons and genotoxic stress. The ubch9–10 mutant was viable at all temperatures in the absence of DNA damage yet exhibited at a 2–3 log drop in cell viability when exposed to low levels of Top1p poisons, UV light, bleomycin, or methyl methanesulfonate. Indeed, the ubch9–10 mutant was unique among previously reported tah mutants in exhibiting enhanced sensitivity to Top1T722Ap, which acts as a CPT mimic, and to Top1N726Hp, which acts as a Top1p poison by virtue of enhanced rates of DNA cleavage. However, this synthetic lethality was restricted to DNA-damaging agents because cell viability was unaffected by other environmental stress, such as high salt, growth on glycerol, or cycloheximide treatment. These findings suggest that cells can tolerate rather dramatic decreases in sumoylation and still retain viability. However, a higher threshold of SUMO conjugation is required for cells to tolerate genotoxic stresses.

The defect in global sumoylation imparted by Ubc9p123Lp sufficed to restore the viability of ulp2Δ cells at 36 °C. However, our studies also demonstrated that deletion of the Ulp2p SUMO-deconjugating enzyme failed to complement the tah phenotype or HU sensitivity of ubch9–10 cells. Thus, these data indicate that specific alterations in Ubc9p123Lp substrate specificity may also contribute to the increased sensitivity of ubch9–10 cells to DNA-damaging agents. Earlier studies demonstrated that Ulp2p functions to edit SUMO chains produced by the sumoylation of Smt3p polypeptides covalently attached to lysines in target proteins (59). Although Smt3p chains are not necessary for cell viability, their accumulation in ultraviolet light, methyl methanesulfonate. Indeed, the ulp2 Δ null mutants to HU and Top1p sumoylation, the enhanced sensitivity of ulp2 Δ null mutants to HU and Top1p protein dosage was, in part, dependent on Top1p sumoylation.

In contrast, our mutational analysis of consensus SUMO
sites in Top1p or Top1T722Ap failed to recapitulate the increased sensitivity of ubc9–10 cells to low levels of Top1p poisons. Although the N-terminal Top1p SUMO site mutations did induce contrary, albeit subtle effects on the sensitivity of isogenic UBC9 and ubc9–10 strains to Top1p poisons, the pronounced tah phenotype of ubc9–10 cells cannot be ascribed to a direct effect on Top1p sumoylation. Although we cannot exclude SUMO conjugation of noncanonical SUMO sites, the N-terminal sites examined in these studies correspond to similar consensus sites examined in human Top1p. Indeed, contrary effects of SUMO conjugation on human cell sensitivity to Top1p poisons have also been reported (33, 35). Consistent with the tah phenotype of ubc9–10 cells at 36°C, the expression of a dominant negative UBC9 mutant enhanced human cancer cell sensitivity to topotecan (39), although in another study (35), sumoylation of Top1p actually correlated with increased CPT cytotoxicity.

Recent proteomic screens using highly sensitive methodologies identified hundreds of sumoylated proteins in yeast, including Top1p, in the absence of DNA damage (37, 38). This large number is staggering and underscores both the complexity and transient nature of SUMO modification. Because the majority of these proteins are nuclear, these data further support an emerging view in the field that coupled cycles of SUMO conjugation and deconjugation may profoundly affect protein function in various multi-protein complexes. Indeed, this is consistent with 1) the rather subtle yet contradictory effects of SUMO site mutations on Top1p poisoning in isogenic wild-type UBC9 and ubc9–10 strains, 2) the more profound sensitivity of ubc9–10 cells to DNA-damaging agents, and 3) the dramatic effects of Top1p dosage on ulp2Δ cell genetic stability and sensitivity to HU.

Taken together, our studies refute a simple model where the balance of SUMO conjugation and deconjugation suffices to regulate Top1p activity and sensitivity to CPT. Rather, SUMO modification of different sites within the enzyme apparently have diverse and contradictory effects on Top1p activity and drug sensitivity. Given the function of Top1p in DNA replication, transcription, and recombination as well as chromosome condensation, it is tempting to speculate that transient cycles of Top1p sumoylation at a variety of sites may regulate the dynamic association of this protein with different multi-protein complexes to affect these processes. The challenge is to devise strategies with which to discern these interactions. Toward this end, the effects of SUMO pathway alterations on Top1 protein interactions and intracellular localization are being investigated. Several genetic approaches have also been pursued to address questions of Ubc9p substrate specificity and how this impacts cell sensitivity to Top1p poisons and gene dosage.

Acknowledgment—We thank Padma Thimmaiah, Andrew Larkin, and other members of the Bjorntsi laboratory for their assistance.

REFERENCES

1. Champoux, J. J. (2001) Annu. Rev. Biochem. 70, 369–415
2. Corbett, K. D., and Berger, J. M. (2004) Annu. Rev. Biochem. Biomol. Struct. 73, 95–118
3. Reid, R. J. D., Benedetti, P., and Bjørntsi, M.-A. (1998) Biochim. Biophys. Acta 1400, 289–300
4. Wang, J. C. (2002) Nat. Rev. Mol. Cell. Biol. 3, 430–440
5. Li, T. K., and Liu, L. F. (2001) Annu. Rev. Pharmacol. Toxicol. 41, 53–77
6. Li, T. K., Houghton, P. J., Desai, S. D., Darouei, P., Liu, A. A., Hars, E. S., Ruchelman, A. L., LaViole, E. J., and Liu, L. F. (2003) Cancer Res. 63, 8400–8407
7. Ruchelman, A. L., Singh, S. K., Wu, X., Ray, A., Yang, J. M., La, T. K., Liu, A., Liu, L. F., and LaViole, E. J. (2002) Bioorg. Med. Chem. Lett. 12, 3335–3338
8. Pommier, Y., Redon, C., Yao, V. A., Seiler, J. A., Sordet, O., Takemura, H., Antony, S., Meng, L., Liao, Z., Kohlhagen, G., Zhang, H., and Kohn, K. W. (2004) Mutat. Res. 552, 173–203
9. Rodríquez-Galindo, C., Radomski, R., Stewart, C. F., Furak, W., Santana, V. M., and Houghton, P. J. (2000) Med. Pediatr. Oncol. 35, 385–402
10. Porter, S. E., and Champoux, J. J. (1989) Nucleic Acids Res. 17, 8521–8532
11. Hertberg, R. P., Carna, M. J., and Hecht, S. M. (1989) Biochem. 28, 4629–4638
12. Redon, C., Pilch, D. R., Rogakou, E. P., Orr, A. H., Lowndes, N. F., and Bonner, W. M. (2003) EMBO Rep. 4, 1–7
13. Purutu, T., Takemura, H., Liao, Z. Y., Aune, G. J., Redon, C., Sedelnikova, O. A., Pilch, D. R., Rogakou, E. P., Celeste, A., Chen, H. T., Nussenzweig, A., Aladjem, M. I., Bonner, W. M., and Pommier, Y. (2003) J. Biol. Chem. 278, 20303–20312
