Using large scale structure data and a halo model to constrain Generalised Dark Matter

Daniel B Thomas,1⋆ Michael Kopp,2 and Katarina Marković3

1 Jodrell Bank Centre for Astrophysics, School of Physics & Astronomy, The University of Manchester, Manchester M13 9PL, UK
2 CEICO, Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Praha 8 Czech Republic
3 Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX, UK

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Constraints on the properties of the cosmological dark matter have previously been obtained in a model-independent fashion using the Generalised Dark Matter (GDM) framework. Here we extend that work in several directions: We consider the inclusion of WiggleZ matter power spectrum data, and show that this improves the constraints on the two perturbative GDM parameters, c_2^s and c_2^{vis}, by a factor of 3, for a conservative choice of wavenumber range. A less conservative choice can yield an improvement of up to an order of magnitude compared to previous constraints. In order to examine the robustness of this result we develop a GDM halo model to explore how non-linear structure formation could proceed in this framework, since currently GDM has only been defined perturbatively and only linear theory has been used when generating constraints. We then examine how the halo model affects the constraints obtained from the matter power spectrum data. The less-conservative wavenumber range shows a significant difference between linear and non-linear modelling, with the latter favouring GDM parameters inconsistent with ΛCDM, underlining the importance of careful non-linear modelling when using this data. We also use this halo model to establish the robustness of previously obtained constraints, particularly those that involve weak gravitational lensing of the cosmic microwave background. Additionally, we show how the inclusion of neutrino mass as a free parameter affects previous constraints on the GDM parameters.

Key words: (cosmology:) dark matter – (cosmology:) large-scale structure of Universe – cosmology: observations – cosmology: theory

1 INTRODUCTION

The ΛCDM cosmological model does a good job of reproducing the current cosmological observations. In this model, the standard model of particle physics is supplemented by a cosmological constant Λ and a dark matter particle. This dark matter particle is assumed to interact purely due to the influence of gravity and to have a negligible (initial) velocity dispersion, thus the name Cold Dark Matter (CDM). In perturbative calculations this is typically modelled as a pressure-less perfect fluid. As a result, many cosmological constraints on the dark matter density are, more correctly, constraints on the density of this pressure-less perfect fluid. More generally, CDM is evolved by solving the collision-less Boltzmann equation. This is done on large scales using cosmological perturbation theory (implemented in Boltzmann codes such as class and camb) and on smaller scales using N-body simulations and other non-linear methods.

Since we are entering the era of so-called “precision cosmology,” in which many cosmological parameters have been measured with 1% accuracy or better, it is timely to consider whether such an idealised and simple dark matter model is sufficient when analysing the data. There are many physical dark matter models that do not yield precisely CDM, for example Warm Dark Matter (WDM) (Dodelson & Widrow 1994; Armendariz-Picon & Neelakanta 2014; Piettella et al. 2015) or ultra light axions (Hu et al. 2000; Hlozek et al. 2015), which are one example of Fuzzy Dark Matter (FDM). In addition, recent work on the Effective Field Theory of Large Scale Structure (EFTofLSS) (Baumann et al. 2012) shows that even an ideal CDM candidate develops a more complicated energy momentum tensor, even on linear scales, once the non-linearities that inevitably form on small scales back-react on the large scales. This causes an effective pressure and viscosity on large scales. From a
non-cosmological perspective, despite a large number of direct and indirect detection experiments for dark matter, no convincing detections have been made, and many theoretically favoured regions of parameter space have been ruled out (Aprile et al. 2012, 2014; Buckley et al. 2013; Olive et al. 2014; The CRESST Collaboration et al. 2013; LUX Collaboration et al. 2015). Thus, there are strong reasons to go beyond the simplest ways of modelling dark matter.

In Kopp et al. (2016), the Generalised Dark Matter (GDM) model (first proposed in Hu (1998)) was examined in some detail, notably how it relates to particular physical models. GDM adds to the CDM energy momentum tensor a background pressure, pressure perturbation and anisotropic stress. Closure relations are then postulated to match qualitative properties of known models, like massive neutrinos, and in order to de-correlate background and perturbative properties. GDM encompasses WDM, FDM and the EFTofLSS effects as well as other physical models, so it is sufficiently versatile for examining dark matter properties in a model independent fashion. In Thomas et al. (2016), all GDM parameters were constrained using Cosmic Microwave Background (CMB) data, supported by additional data on the cosmological expansion history (see section 4.3 in this paper and references therein for comparison to earlier works constraining partial or similar parameters to those we consider here, such as Müller (2005); Calabrese et al. (2009); Xu & Chang (2013)). The results showed no evidence for any non-CDM properties of dark matter. This was expanded on in Kopp et al. (2018), where an improved freedom was given to one of the GDM parameters; this was used to demonstrate for the first time that there is no cosmological epoch where the data would favour a nonzero equation of state, and furthermore that there is no cosmological epoch where the data is consistent with zero dark matter density, thus showing the strength of the GDM approach to testing the CDM paradigm. An independent group subsequently verified (Kunz et al. 2016) some of the results in Thomas et al. (2016), as well as using some late time matter clustering data; we will comment further on this later in the paper. Further work constraining the GDM parameters is now ongoing by other groups, see e.g. Tutusaus et al. (2016).

It was noted in Thomas et al. (2016) that matter power spectrum data could not only improve the constraints on the GDM parameters, but also has the potential to break a degeneracy between two of them (see section 2). The robust use of such data requires a non-linear extension of the GDM model, which is not present in the literature. It was also noted in Thomas et al. (2016) that the inclusion of a non-linear extension to perturbation theory for ΛCDM makes a difference to the CMB lensing potential. This effect is of a similar magnitude, but opposite sign, to that of GDM with parameters saturating the constraints found in Thomas et al. (2016). In this paper we develop a halo model for GDM which allows us first to test the robustness of the results in Thomas et al. (2016), and second to use matter power spectrum data from the WiggleZ survey (Parkinson et al. 2012) to improve the constraints on the GDM parameters. The paper is laid out as follows: in section 2 we briefly review the GDM model and previous constraints, before constructing the GDM halo model in section 3. We then present the methodology for our constraints in section 4 and present our resulting constraints and robustness tests in section 5. We conclude in section 6.

2 BRIEF REVIEW OF GDM MODEL AND PREVIOUS CONSTRAINTS

The GDM model was first proposed as an extension to the standard CDM model in Hu (1998). Here we give brief details of the model, following Kopp et al. (2016); see both this work and Hu (1998) for further details of the model, its motivation and the different physical models that it can encompass. The standard CDM energy momentum tensor is given by

\[\mathcal{T}_{\mu \nu} = \rho u_\mu u_\nu, \]

i.e. the fluid is specified entirely by its density, \(\rho \), and velocity \(u^\mu \). This is then typically divided into a background part that is homogeneous and a perturbation. The GDM parameterisation adds pressure and anisotropic stress to this, giving

\[\mathcal{T}_{\mu \nu} = (\rho + P) u_\mu u_\nu + P g_{\mu \nu} + \Sigma_{\mu \nu}. \]

The pressure and density perturbations are divided into background quantities (denoted by an overbar) and perturbed quantities as usual, and the additional scalar perturbations of \(P \) and \(\Sigma_{\mu \nu} \) are controlled by the equation of state \(w \) (background pressure), the sound speed \(c_s^2 \) (pressure perturbation) and the viscosity \(c_{\text{vis}}^2 \) (anisotropic stress). The equation of state relates to the background quantities in the usual way: \(w = \bar{\rho} \bar{P} / \rho \bar{P} \), and the additional perturbations are governed by the closure equations

\[\Pi = c_s^2 \delta + (c_s^2 - c_a^2) \dot{\delta}, \]

\[\ddot{\Sigma} = -3 \dot{H} \Sigma + \frac{4}{1 + w} c_{\text{vis}}^2 \dot{\Theta}. \]

Here, \(\delta \) and \(\Theta \) are (a particular choice of) gauge invariant density and velocity perturbations for GDM, and \(\Pi \) and \(\Sigma \) are the pressure and (scalar) anisotropic stress perturbations. The adiabatic sound speed is \(c_s^2 = \delta P / \rho = w (3H / (1 + w)) \). Note that overdots refer to conformal time \(\eta \). See Kopp et al. (2016) for an in depth explanation of our notation and of this choice of closure equations. Note that \(w = c_s^2 = c_{\text{vis}}^2 = 0 \) recovers the pressureless perfect fluid, and therefore the standard ΛCDM cosmological model.

Both \(c_s^2 \) and \(c_{\text{vis}}^2 \) cause a decay in the gravitational potential power spectrum on scales below \(k_{\text{dec}}^{-1}(\eta) = \eta \sqrt{c_s^2 + \frac{w}{1 + w} c_{\text{vis}}^2} \) in a GDM dominated universe (Kopp et al. 2016). In addition, if \(c_s^2 \) is sufficiently larger than \(c_{\text{vis}}^2 \), then it causes oscillations in the density perturbation below the Jeans length. Although we refer to \(c_s^2 \) as the sound speed, this is technically only true if \(c_s^2 \gg c_{\text{vis}}^2 \) (see Kopp et al. (2016)). The viscosity \(c_{\text{vis}}^2 \) damps the density perturbations without causing any oscillations. As expected, the equation of state \(w \) changes the expansion history of the universe for a fixed \(\Omega_m \). In particular, in Kopp et al. (2016) it was shown that the main effect is to change the time of matter-radiation equality, and thus to change the relative heights of the peaks in the CMB. In addition, \(w \) changes the distance to the last scattering surface.
The aforementioned phenomenology of the parameters is all manifest in Thomas et al. (2016). In this work we took simple forms of the GDM parameters, giving them a single value with no time and scale dependence. We then constrained these parameters using Planck CMB data (temperature, polarisation and the lensing potential) (Planck Collaboration et al. 2015a), BAO data (Beutler et al. 2011; Anderson et al. 2014) and a H_0 prior from the HST key project (Riess et al. 2011). We found upper bounds on c_s^2 and c_{vis}^2 of 3.21×10^{-6} and 6.06×10^{-6} respectively (at the 99% confidence level), in line with the degeneracy expected if k_{dec} was primarily constrained by the CMB. We also put constraints on w and found degeneracies between w and H_0, Ω_m due to the effects above. In all cases we found no evidence for a non-zero value of any of these parameters. The first three rows of table 1 summarise the constraints obtained in previous work. The main conclusions of Thomas et al. (2016) were independently verified in Kunz et al. (2016). Furthermore, the assumption of a single time independent value for w was relaxed in Kopp et al. (2018), which showed that a non-vanishing dark matter background density is required at every epoch, thus showing the power of the GDM formalism for constraining extensions to ΛCDM.

In Thomas et al. (2016) it was noted that the phenomenology of the GDM model suggests that the use of late time clustering data, such as the matter power spectrum, could significantly improve the constraints on c_s^2 and c_{vis}^2. In principle, if the data is precise enough to determine oscillations in the decaying region, then such data could also break the k_{dec} degeneracy between c_s^2 and c_{vis}^2. However, the use of matter power spectrum data requires going beyond the scales where perturbation theory is valid. The GDM model as described in this section is only defined perturbatively and thus must be extended in order to be applicable on smaller scales. One of the main results of this paper is the development of a halo model extension to the GDM model (see section 3): As well as seeking to improve the constraints on GDM using matter power spectrum data, we also seek to understand how safe this process is, i.e. how robust it is to non-linear modelling. In Kunz et al. (2016), the authors used late time matter clustering data (weak lensing data) which probes the same underlying potential power spectrum as the matter power spectrum does. However, they did not consider a non-linear modelling of the GDM in that work; instead they used halofit (Smith et al. 2003) as a sanity check, whilst noting themselves that halofit has limitations when applied outside of a ΛCDM context. Our goal is thus not just to improve the constraints on the GDM parameters using matter power spectrum data, but also to be able to quantify how much we can trust any such results.

A further goal is to investigate the robustness of the constraints obtained in Thomas et al. (2016). More precisely, it was noted that even in ΛCDM, using halofit makes a small difference to the lensing potential and thus to the lensed temperature and polarisation C_ℓs. We thus wish to determine whether inclusion of a non-linear prescription for GDM would strengthen or weaken the constraints previously obtained. Nonlinearities typically act to increase the matter power spectrum, which is the opposite effect to that caused by increasing GDM parameters, see figure 1. Hence we expect that the constraints on c_s^2 and c_{vis}^2 could be weakened once nonlinearities are included.

Since we are focussing on the complexities introduced by the non-linearities and additional datasets, we will work with single, constant values of the GDM parameters as in Thomas et al. (2016). In particular, the assumption of time independence means that $c_s^2 = w$.

3 GDM HALO MODEL

As stated in section 2, the GDM model is only defined for linear perturbations and the homogeneous background, and thus cannot be constrained by all of the currently available cosmological data. One framework that has been used to make predictions on non-linear scales is the halo model (Cooray & Sheth 2002). The halo model is a semi-analytic
Examining the standard ΛCDM halo model, we can see that there are several obstacles to simply applying the framework “as is” to GDM. Firstly, due to the large drop in power on small scales when c_s^2 and c^2 are non-zero, the equation defining M_* does not necessarily have a solution. In addition, a lot of the formulas that are used are calibrated against ΛCDM N-body simulations. We thus implement the halo model for GDM using a similar approach to the Warm and Fuzzy code (Marsh 2016), which is designed for warm dark matter and axions (note that both of these can fit into the GDM parameterisation (Kopp et al. 2016)). In this approach, four modifications are made relative to a ΛCDM cosmology: A) a modified linear spectrum, B) a modified halo concentration, C) a mass dependent barrier related to critical density for spherical collapse, and D) a modified mass function to account for the non-Markovian corrections to standard Press-Schechter expression. We implement these corrections differently to the Warm and Fuzzy code; we detail our implementation here. Readers not interested in the construction and definition of our halo model can skip to section 4.

3.1 Modified linear spectrum

The simplest and most obvious modification is that the appropriate Λ-CDM linear theory power spectrum is used as an input for the halo model, rather than a ΛCDM spectrum. While this is done via fitting functions for the transfer functions in Warm and Fuzzy, we instead directly use the output from the full Boltzmann calculation from the modified class code.

3.2 Modified concentration

Following Marsh (2016), which itself follows Schneider et al. (2012) for WDM, we calculate the ΛCDM value of the concentration. We then apply a correction according to

$$c_{\text{GDM}} = c_{\Lambda\text{CDM}} \left(1 + \gamma_1 \frac{M_{1/2}}{M} \right)^{-\gamma_2},$$

where $\gamma_1 = 15$, $\gamma_2 = 0.3$ and $M_{1/2}$ is the half-mode mass defined by

$$M_{1/2} = \frac{4\pi\overline{\rho}^2}{3} \left(\frac{\pi}{k_{1/2}} \right)^3$$

Note that this functional form and the specific values were found to give good fits to FDM and WDM simulations. As GDM contains these two models as limiting cases we adopt this “as is” to GDM. The results are not sensitive to this guess. Furthermore, in the absence of non-perturbatively defined GDM model and cosmological GDM simulations, this is the best and most conservative choice we can make, as it is known to work in two limiting cases of the GDM model.

3.3 Mass dependent spherical collapse density δ_{crit} and how it relates to the mass function

The central object in the excursion set theory is the so-called multiplicity function $f(\sigma)$, determined by the first upcross
ing rate of the smoothed random field $\delta(x, R)$ through a barrier as a function of the smoothing scale R. These crossings are then identified with proto-halos of size R, and thus fixed mass M, so that $f(\sigma)$ determines the mass function dn/dM. In its most rudimentary form that mass function is mostly sensitive to the ratio

$$\frac{\delta_c(z, z_{\text{ini}}, R)}{\sigma_R(z_{\text{ini}})}$$

where $\sigma_R(z_{\text{ini}})$ is the standard deviation, Eq. (A6), of the (non-relativistic and participating in structure formation) matter perturbations smoothed on a scale R, and $\delta_c(z, z_{\text{ini}}, R)$ is the spherical collapse barrier. The redshift z_{ini} is a time where linear perturbation theory applies to all scales of interest and thus the statistics of the density field is gaussian, but well after radiation domination (i.e. such that a spherical collapse threshold can be obtained neglecting the radiation component).

It is important to note that the z-dependence in δ_c is determined by non-perturbative fluid dynamics, it is not a density field, or some linear extrapolation of it. Rather, δ_c assigns a collapse redshift z to each region (assumed for simplicity to be spherically symmetric tophat profiles) of the gaussian density field filtered at scale R at time z_{ini}; this collapse redshift z is then identified with the formation time of the halo of mass $M(R)$. This assignment involves some linear dynamics (at times not much later than z_{ini}) when the field is still linear, but more importantly it includes the fully non-perturbative collapse that defines the collapse redshift at the time z when formally the density contrast $\delta(z) \to \infty$. This formal divergence is then associated with the time of halo formation, and thus approximated as instantaneous event.

3.3.1 Standard ΛCDM linear extrapolation

Typically, the mass function is not written in terms of equation (8) but instead in terms of

$$\frac{\delta_{\text{crit}}}{\sigma_R(z)} = \frac{\delta_c(z, z_{\text{ini}}, R)}{\sigma_R(z_{\text{ini}})}$$

where

$$\delta_{\text{crit}} := \delta_c(z, z_{\text{ini}}, R) \frac{D(z)}{D(z_{\text{ini}})}.$$

This “linear extrapolation” from z_{ini} to z is possible, because in a purely CDM and Λ dominated universe the growth $D(z)$ is scale independent. Thus,

$$\frac{\delta_{\text{crit}}^{\Lambda\text{CDM}}(z, z_{\text{ini}}, R)}{\sigma_R(z_{\text{ini}})} = \frac{\delta_{\text{crit}}^{\Lambda\text{CDM}}(z) D(z)}{\sigma_R(z_{\text{ini}}) D(z_{\text{ini}})} = \frac{\delta_{\text{crit}}^{\Lambda\text{CDM}}(z, z_{\text{ini}}, R) D(z)/D(z_{\text{ini}})}{\sigma_R(z)} = \frac{\delta_{\text{crit}}^{\Lambda\text{CDM}}(z, z_{\text{ini}}, R)}{\sigma_R(z_{\text{ini}})}.$$

Writing things this way in ΛCDM is convenient because it happens (see Weinberg (2008), Chapter 8.2) that the linearly extrapolated δ_c, δ_{crit}, is a constant $\frac{\delta_{\text{crit}}^{\Lambda\text{CDM}}(z, z_{\text{ini}}, R)}{\sigma_R(z_{\text{ini}})} \approx 1.686$ in an EdS universe, and is only very mildly dependent on z (but still independent of R) in a ΛCDM dominated universe. More precisely

$$\delta_{\text{crit}}^{\Lambda\text{CDM}} \approx \frac{3}{20} (12 \pi)^{2/3} (1 + 0.012299 \log_{10}(\Omega_m(z))).$$

This is the reason why it is common in the literature to use this linearly extrapolated δ_c (denoted here by δ_{crit}) and the variance $\sigma_R(z)$ of a fictitious linearly extrapolated density field, even though there is no physical interpretation for such an extrapolation. In order to more clearly separate linear from non-linear physics, and to make the least amount of guessing to arrive at our GDM mass function, we avoid here using the linearly extrapolated δ_c, δ_{crit}, and let the excursion set theory unfold at z_{ini}. In other words, we are explicitly separating the purely linear effects of the GDM parameters on structure formation due to the initial density field in which halos begin to form (i.e. the accumulated changes to $P(k, z_{\text{ini}})$ from times $z > z_{\text{ini}}$), from the expected changes during the non-linear stages of collapse ($z < z_{\text{ini}}$). These latter effects are incorporated in the changes to the spherical collapse density $\delta_c^{\Lambda\text{GDM}}(z, z_{\text{ini}}, R)$ in the next section (3.3.2).

In order to proceed this way we rewrite the multiplicity function $f(\sigma)$, defined in Eq. (A5), appearing in the mass function (see appendix A) using (11). The relevant term appearing in the mass function is $\bar{B}(\sigma(z), z)$, see equation (A10). Inspired by equations (8) and (11) we multiply numerator and denominator by $\sigma(z_{\text{ini}})$, and define

$$\bar{B}' = \frac{\sigma(z_{\text{ini}})}{\sigma(z)} \bar{B} = \delta_{\text{crit}}^{\Lambda\text{CDM}}(z, z_{\text{ini}}, R) + \beta \frac{\sigma(z_{\text{ini}})}{\sigma(z)} = \delta_{\text{crit}}^{\Lambda\text{CDM}}(z, z_{\text{ini}}, R) + \beta \sigma(z_{\text{ini}}),$$

where $\beta' = \beta \sigma(z)/\sigma(z_{\text{ini}})$, the barrier is now written in terms of the “strongly time-dependent” spherical collapse barrier $\delta_c(z, z_{\text{ini}}, R)$ and z_{ini}, and in $f(\sigma)$, $\bar{B}(\sigma(z))$ is replaced with $\bar{B}'/\sigma(z_{\text{ini}})$, making it manifest that the excursion set theory is applied to the random field at z_{ini}. The Markovian part f_0 (see later) of the multiplicity function f of the mass function is thus given by (A9), replacing $\sigma(z)$ with $\sigma(z_{\text{ini}})$ and \bar{B} with \bar{B}',

$$f_0(\sigma(z_{\text{ini}}), z) = \frac{\bar{B}' - \sigma^2(z_{\text{ini}}) d\bar{B}'/d\sigma^2(z_{\text{ini}})}{\sigma(z_{\text{ini}})} \sqrt{\frac{2\alpha_{\delta}}{\pi}} e^{-\frac{\alpha_{\delta}(\sigma_{\text{crit}})}{\sigma(z_{\text{ini}})}}.$$

At this point, this mass function is generic and is not derived in the context of any particular extension to ΛCDM cosmology.

To consider how this mass function relates to the standard CDM case, note that if the $d\bar{B}'/d\sigma^2$ term is ignored then this mass function reduces exactly to equation (A9), just without the assumption of scale independent growth. This re-writing thus makes it clearer how scale dependent growth should manifest in the formalism. For the case of scale independent growth, the new derivative term $d\bar{B}'/d\sigma^2$ in (14) reduces to the previous form

$$\bar{B}' - \frac{\sigma_R(z_{\text{ini}})}{\sigma_{\text{crit}}^{\Lambda\text{CDM}}(z_{\text{ini}})} d\bar{B}'/d\sigma_{\text{crit}}^{\Lambda\text{CDM}}(z_{\text{ini}}) = \delta_{\text{crit}}^{\Lambda\text{CDM}} \sigma_{\text{crit}}^{\Lambda\text{CDM}}(z_{\text{ini}}),$$

thus the mass function reduces exactly to the standard form for the ΛCDM case.

3.3.2 GDM approach

We will now postulate the spherical collapse barrier $\delta_{\text{crit}}^{\Lambda\text{GDM}}$ for GDM by reversing the direction of definition in equation (11). While in ΛCDM, $\delta_{\text{crit}}^{\Lambda\text{CDM}}$ is defined via (11), leading to (10), we now assume for ΛGDM the validity of equation

\[\text{Large scale structure and GDM} \] 5

\[\text{MNRAS 000, 1–21 (2019)} \]
\[\delta_c^{\text{GDM}}(z, z_{\text{ini}}, R) := \delta_c^{\text{CDM}} \frac{\sigma_R(z_{\text{ini}})}{\sigma_R(z)} \]

(16)

but use it to define \(\delta_c^{\text{GDM}}(z, z_{\text{ini}}, R) \) while fixing \(\delta_c^{\text{CDM}} \) on the right hand side to be given by (12). In the following we will drop the superscript GDM and simply write \(\delta_c(z, z_{\text{ini}}, R) \) for the GDM spherical collapse barrier. The idea behind equation (16) is that this definition implements the intuitive idea that if in GDM power is removed in a scale dependent way at \(z < z_{\text{ini}} \) then the collapse should be inhibited compared to CDM, and thus the spherical collapse barrier should be increased. It is at this point unclear how to judge whether the threshold defined in this way is correct given the absence of spherical collapse simulations within a (still to be) non-linearly defined GDM model. However, in addition to increasing the threshold whenever power is removed in GDM compared to the CDM, this definition smoothly and naturally reduces to the ACDM prescription in the CDM limit of GDM, and can thus be considered conservative for small GDM parameters. The mean barrier for collapse at z in ACDM can be approximated by (and we postulate this to hold in GDM too)

\[\tilde{\beta}'(z, z_{\text{ini}}, R) = \delta_c(z, z_{\text{ini}}, R) + \tilde{\beta}(z) \sigma_R^2(z_{\text{ini}}) \]

(17)

where \(\tilde{\beta}(z) \) is a purely time dependent function. The multiplicity function (14) takes into account that the mean barrier \(\tilde{\beta} \) for a randomly selected point deviates from the spherical collapse barrier \(\delta_c \) because collapse is not spherically symmetric, and also that the barrier is diffusive, rather than 100% absorbing. The former is parameterized by \(\beta \), the latter by \(\alpha_R \). We saw above that a consistent choice in the context of scale dependent growth is \(\beta'(z) = \beta \sigma(z)/\sigma(z_{\text{ini}}) \). A conservative choice for the GDM mass function thus is

\[\tilde{\beta} = \beta \frac{\tilde{D}(z)}{D(z_{\text{ini}})}, \]

(18)

\[\tilde{D}(z) \equiv \sigma_{\text{Rmax}}(z), \]

(19)

where \(\text{Rmax} \) is the largest smoothing scale used in the halo model code, and for all reasonably small values of GDM parameters, \(\tilde{D} \) reduces to the growth function \(D \). We remove the scale dependence from \(\tilde{\beta} \) for two reasons. Firstly, it is not clear what it would mean to include scale dependence here; it is not done in any version of the excursion set that we know of. In addition, we wish our halo model to act like a standard ACDM halo model in the limit that the GDM parameters are zero. As we are working directly from a Boltzmann code and not performing the standard linear extrapolation to redshift zero, the radiation component of the universe will cause a scale dependent growth even in ACDM. Thus we explicitly remove the scale dependence from this term and use a growth factor that is defined to be scale-independent even in GDM.

In order to calculate the mass function for GDM (or any other cosmology with scale-dependent growth), we need to evaluate the \(d\tilde{\beta}'/d\sigma^2 \) term. The result is

\[\frac{d\tilde{\beta}}{d\sigma^2(z_{\text{ini}})} = \delta_c \frac{1}{2} \left(1 - \frac{\sigma_R^2(z_{\text{ini}})}{\sigma_R^2(z)} \frac{d\sigma_R^2(z)/dR}{\sigma_R^2(z)} \right) \]

(20)

Thus, the moving barrier term is given by

\[\tilde{B}' - \sigma^2(z_{\text{ini}}) \frac{d\tilde{B}'}{d\sigma^2(z_{\text{ini}})} = \delta_c \frac{1}{2} \left(1 + \frac{\sigma_R^2(z_{\text{ini}})}{\sigma_R^2(z)} \frac{d\sigma_R^2(z)/dR}{d\sigma_R^2(z)} \right), \]

(21)

which reduces to \(\delta_c \) in the case where the initial and final \(\sigma_R \) have the same shape. That is often taken to be exactly correct in a \(\Lambda \)CDM universe. More correctly, it depends on the value of \(z_{\text{ini}} \): for example, if \(z_{\text{ini}} = 50 \) since there is still enough radiation “contamination” left to modify the shape of the matter transfer function, such that the ratio \(\sigma_R(z_{\text{ini}}) \) is not \(R \) independent. The modification of the mass function is however less than 1% for ACDM and can be neglected, see figure A4. However for GDM, where in general growth is scale dependent even during matter domination, we do not expect the second term in the bracket to be close to 1.

We will assume that GDM does not change the values of \(\beta \) and \(\alpha_R \), which amounts to the assumption that collapse inhibition from asphericity and the scatter of the barrier due to environmental and stochastic processes are unchanged. In principle, these quantities could be measured in FDM and WDM simulations. We are not aware of any such measurements and so using the ACDM values seems to be the most sensible approach.

3.4 Non-Markovian corrections and asphericity of collapse

So far we only looked at the mass and time dependent spherical part of the collapse barrier. Now we turn to the mass and time dependent contributions to the barrier due to the asphericity of the collapse as well as the non-Markovian corrections to the mass function. For GDM, the Markovian part of the mass function, (A.9) is replaced by (14).

The non-Markovian corrections will be implemented in a similar fashion as done in Kopp et al. (2013). There a mass dependent spherical collapse barrier was obtained due to a modification of gravity that left the background cosmology unchanged. It was shown that the non-Markovian corrections could be included through a simple relation \(f(\sigma) = f_0(\sigma) f^{\text{ACDM}}(\sigma)/f_0^{\text{ACDM}}(\sigma) \), where \(f^{\text{ACDM}}(\sigma) \) includes the known and calculable non-Markovian corrections in ACDM. In our case we cannot use as reference ACDM because the background might be different in GDM due to \(w \). For that reason we will define another non-Markovian reference mass function \(f^{\text{ref}} \), using a mass-independent spherical collapse barrier closer to \(\delta_c^{\text{GDM}} \). We choose that mass-independent spherical collapse barrier to be \(\delta_c^{\text{max}} = \delta_c^{\text{GDM}}(M_{\text{max}}) \), i.e. the GDM spherical collapse barrier evaluated at the largest mass scale \(M_{\text{max}} \) used in the halo model code. The reference mass function thus corresponds to a fictitious GDM model in which the spherical collapse barrier is mass independent. The reason for choosing \(M_{\text{max}} \) is that this barrier will be similar to that of a GDM model with \(c_s^2 \) and \(c_{\text{vis}}^2 \) disappear. This way we don’t need to run class twice for each model. The reference multiplicity function is given by

\[f^{\text{ref}}(\sigma) = f_0^{\text{ref}}(\sigma) + f_m^{\text{ref}}(\sigma) + f_m^{\text{ref}}(\sigma) + f_m^{\text{ref}}(\sigma), \]

(22)
the mass function to be more non-Markovian for those small R. A random walk for varying k also be non-Markovian in nature, and it arises due to the ab-

2012; Marsh 2016). The origin of that correction is likely to (2012). If the power is sharply dropping for scales

stant GDM parameters.

-definition of f, defined to be the growth on the scale by replacing (1-halo term (see appendix A) in GDM, we need to define M, k, halo model reduces to a result of this paper. When the GDM parameters are zero, the matter power spectrum and comprises one of the main re-

providing diffusive barrier (17). As part of the halo model, this The last factor is the Markovian mass function for a mov-

We will also include a further correction to the mass function that has been observed to fit mass functions measured in warm dark matter simulations (Schneider et al. 2012; Marsh 2016). The origin of that correction is likely to also be non-Markovian in nature, and it arises due to the ab-

density field does not perform a random walk as function of R it can happen that the mass function suffers a cutoff, see Paranjape et al. (2012). If the power is sharply dropping for scales R < k−1 dec, then the density field at a fixed point no longer performs a random walk for varying R for R < k−1 dec. Thus we expect the mass function to be more non-Markovian for those small scales, implying a cutoff determined by mass scale related to k−1 dec. We follow the fit of Schneider et al. (2012), which works well for WDM.

The final expression for the multiplicity function entering (A5) then is

where M1/2, the half mode mass (6), is used instead of M(k−1 dec), see Schneider et al. (2012). To summarize: the first two factors take into account non-Markovian effects. The first one that the random walk below k−1 dec is highly non-

Markovian, the second one the standard non-Markovian corrections for a diffusive barrier of the form const1−const2σ2. The last factor is the Markovian mass function for a moving diffusive barrier (17). As part of the halo model, this provides a non-linear prescription for computing the GDM matter power spectrum and comprises one of the main re-

results of this paper. When the GDM parameters are zero, the mass function below k−1 dec is highly non-Markovian and is included for completeness, however note that it is irrelevant once the growth factor is normalised to unity to-

day. The reference wavenumber kref is set to be the largest wavenumber in the table used by class that is less than 0.002, and zref is set to be the smallest redshift in the table used by class that is greater than 50.

3.5 ΛCDM reference model for GDM halo model

In order to implement the halo model as described above, we need a reference ΛCDM cosmology when class is run for GDM (this is used to calculate the half mode mass; see equation 6). For this, we use the Eisenstein-Hu fitting formula, for a cosmology with the same Ωm, Ωk, ΩΛ, nσ and H0 as the GDM cosmology. The two key references for the fitting formulas are Eisenstein & Hu (1998) and Eisenstein & Hu (1997). The first of these includes the effect of baryon oscillation but not neutrinos, whereas the second takes an average over the oscillations but includes the damping effects of massive neutrinos. We implement the former of these, as used for HMCODE (Mead et al. 2015) to calculate the ΛCDM spectrum at the k- and z- values required in class, which are then stored in an array. This spectrum is normalised to have the same value as the class GDM spectrum at kref, as this scale should be above the scales that are affected by GDM.

The ΛCDM growth function from Lahav et al. (1991) is used as part of the Eisenstein-Hu formulas,

\[D(z) = \left(1 + \frac{\Omega_m(z)}{\Omega_m(z)+\Omega_{\Lambda}} \right)^{1/2} \left(1 + \frac{\Omega_m(z)}{\Omega_{\Lambda}/70} \right)^{-1} \]

\[\Omega_m(z) = \frac{\Omega_m(z+1)}{\Omega_m(z+1)+\Omega_{\Lambda}} \]

\[\Omega_{\Lambda}(z) = \frac{\Omega_{\Lambda}}{\Omega_m(z+1)+\Omega_{\Lambda}}. \]

Here, zeq is a parameter from the Eisenstein-Hu formulas and is included for completeness, however note that it is irrelevant once the growth factor is normalised to unity to-

day. The reference wavenumber kref is set to be the largest wavenumber in the table used by class that is less than 0.002, and zref is set to be the smallest redshift in the table used by class that is greater than 50.

3.6 Comparison to WDM and FDM halo models

3.6.1 Theoretical comparison

In Barkana et al. (2001) the cutoff of the mass function at small masses for WDM was achieved by an additional mass dependence of the barrier (see also Marsh (2016); Benson et al. (2013)). This mass dependence of δc (a steep increase for small masses) was argued to be caused by the velocity dispersion, however it is unlikely that this is the true physical mechanism that suppresses the mass function below M1/2 since WDM simulations have shown that the velocity dispersion is irrelevant for the large scale structure and the mass function (Schneider et al. 2013; Viel et al. 2012). This disparity was explained in Schneider et al. (2013) (p. 4 last paragraph before section 3) by splitting the effects of the velocity dispersion into two distinct time periods: the accumu-

lated effect from times z > zmi, (which manifests in the usual linear theory matter power spectrum cutoff), and the late time velocity dispersion (as should be present but turns out to be negligible in N-body simulations).

In our GDM halo model, we have allowed for the pos-

sibility of both a cut-off of the matter power spectrum due to accumulated effects with z > zmi and a steepening of the barrier due to effects related to times z < zmi. Physically,
\[\delta_{\text{AGDM}}(z, z_{\text{ini}}, R) \], equation (16), takes into account pressure and viscous effects that hinder collapse at \(z > z_{\text{ini}} \), whereas \(\sigma^2_R(z_{\text{ini}}) \) is the integrated effect due to \(z > z_{\text{ini}} \). If \(z_{\text{ini}} \) is chosen during matter domination (as in our halo model) then only the latter (integrated) effect matters for WDM, and the cutoff in the WDM mass function must originate independent of late time velocity dispersion effects on \(\delta_c \), since it is observed in simulations without any added velocity dispersion as in Schneider et al. (2012). Thus the correct implementation of the mass function cutoff due to non-Markovian behaviour caused by the linear theory power spectrum cutoff is not via the steep increase of the barrier for small masses when \(z_{\text{ini}} \) is chosen during matter domination. Instead it manifests through the phenomenological prefactor that is present in equation (23), which depends on \(M_{1/2} \). Furthermore, when the WDM halo model is expressed in terms of our halo model, and \(z_{\text{ini}} \) is deep in the matter dominated era (as our \(z_{\text{ini}} = 50 \)) then

\[\delta_{\text{AWDM}}(z, z_{\text{ini}}, R) \approx \delta_c(z, z_{\text{ini}}), \]

i.e. the spherical collapse threshold reduces to the scale-independent CDM spherical collapse threshold. This is a special (approximate) property of all GDM models in which the GDM parameters grow strongly with redshift, like the WDM scaling \((1 + z)^2 \) of pressure and viscosity, such that the late universe dynamics is guaranteed to be more CDM-like compared to early times. In more general GDM models, and in particular for constant GDM parameters, we do not expect this approximation to hold, which is why we allow our halo model to have both a cutoff due to integrated earlier time behaviour and a later time change of the dynamics modelled by a modified barrier.

Note that the mass dependence of \(\delta_{\text{AGDM}} \) we have introduced in section 3.3 for GDM, equation (16), is due to the evolution of the shape of the linear power spectrum after \(z_{\text{ini}} \). There is (approximately) no shape change for WDM and thus our mass function is very similar to the one used in Schneider et al. (2012). The difference is that we allow for evolution of the shape of the power spectrum after \(z_{\text{ini}} \) which is expected for constant GDM parameters, and thus we have mass dependent \(\delta_{\text{AGDM}} \), which then requires using a mass function that can deal with mass dependent barriers.

3.6.2 Qualitative numerical comparison

In principle, we can compare our non-linear matter power spectrum to the spectra in literature (e.g. Smith & Markovic (2011), Viel et al. (2012), Schneider et al. (2012) and (Marsh 2016). However, we note that we focus our work here on constant values of the GDM parameters, whereas WDM and FDM correspond to time and scale dependent parameters. Thus the impact of the non-linearities will be different, although we can nonetheless perform a qualitative comparison of how the halo model affects the predictions of our GDM model compared to how it affects the predictions for the specific cases of WDM and FDM.

For all models, we see the same qualitative behaviour that the non-linear corrections increase the matter power spectrum and reduce the differences between CDM and the modified matter content compared to the linear theory. However, there are differences in detail. For example, consider WDM with a mass of 0.25keV, where meaningful changes to the linear spectrum compared to CDM begin to occur on scales of \(k \geq 1\text{Mpc}^{-1} \), and these changes begin on even smaller scales as the mass increases. For FDM, in line with (Marsh 2016), the changes are on even smaller scales, similar to WDM with mass 1keV. Whereas, at \(k \geq 1\text{Mpc}^{-1} \), our GDM models consistent with Planck constraints differ from CDM by two orders of magnitude in linear theory. This means that the GDM linear spectrum differs from CDM on scales larger than those where the non-linear corrections matter for CDM, whereas these two scales are swapped for the WDM and FDM models studied in the literature. This is because we have time-independent GDM parameters, whereas WDM would correspond to having them decay as \(a^{-2} \), which causes their effects to appear only on small scales where nonlinearities are important. We expect that, once we allow for time dependent GDM parameters, the halo model will make a bigger difference relative to the linear spectrum, due to this reduced suppression in the linear theory at late times.

4 DESCRIPTION OF DATASETS AND METHODOLOGY

In this section we explain the data and methodology that were used to generate our results. We used the class code (Blas et al. 2011), modified as detailed in Thomas et al. (2016); Kopp et al. (2016), to evolve the GDM perturbation equations. We have added a module implementing the halo model as described in the previous section.

Our parameter constraints were obtained using the same basic methodology as in Thomas et al. (2016), see there for further details. We used the MCMC code MontePython (Audren et al. 2013) and established convergence of the chains using the Gelman-Rubin criterion (Andrew Gelman 1992). We constrain a 6 parameter CDM model \((\omega_m, \omega_b, H_0, n_s, \tau, \ln 10^{10} A_s)\), where \(\omega_c = \rho_c / \rho_m\) is the density of the dark matter fluid, which is CDM in the CDM case and GDM otherwise. We set uniform priors on \(\tau\) and \(H_0\) such that 0.01 < \(\tau\). The helium fraction was set to \(Y_{He} = 0.24667\) (Planck Collaboration et al. 2015b) and we assumed adiabatic initial conditions. We used two massless and one massive neutrino with mass 0.06 eV keeping the effective number of neutrinos to \(N_{eff} = 3.046\) (thus for simplicity we refer to “neutrino mass” during the analysis, although this is equivalent to the sum of the neutrino masses for this choice of parameters). The base parameter set is augmented by 3 GDM parameters \(\{w, c_2 G, c_3 G\}\) for the GDM runs, and additionally also the neutrino mass \(m_\nu\) (for the single massive neutrino species) for some runs.

We perform runs for CDM that are purely linear, linear+halofit and linear+halo model (where the halo model is as documented in the previous section, which is why it is

1 In Schneider et al. (2012) it was argued that this mass function cutoff is due to a non-hierarchical structure formation for masses below \(M_{1/2}\) that is in conflict with the excursion set picture. However, it might be possible to show that this effect is the same as the strongly non-Markovian random walk, responsible for a mass function cut-off in Paranjape et al. (2012), such that the cut-off can be understood within the excursion set theory.
important that our GDM halo model reduces to ΛCDM for
vanishing GDM parameters). The halofit (Smith et al. 2003; Takahashi et al. 2012) runs are performed using the halofit
model built into class. For GDM, we will perform purely
linear runs and linear+halo model runs, these runs will be
referred to as “HM” in the results table.

Our primary dataset is the Planck 2015 data release
(Planck Collaboration et al. 2015a) of the CMB anisotropies
power spectra, consisting of the low-l T/E/B likelihood and
the TT/TE/EE high-l likelihood with the full “not-lite” set
of nuisance parameters. These likelihoods combined are
referred to as Planck Power Spectra (PPS). We also use
BAO3 from 6dF Galaxy Survey (Beutler et al. 2011) and
the Baryon Oscillation Spectroscopic Survey Sloan Digital
Sky Survey (Anderson et al. 2014) (collectively referred to
as BAO hereafter), and the Planck CMB lensing likelihood
(Lens).

The key additional dataset that we use here that is
the WiggleZ matter power spectrum Parkinson et al. (2012)
(referred to as MPS in the results table). This includes
galaxy power spectrum measurements at four redshifts, z =
{0.22, 0.41, 0.60, 0.78}. We follow the procedure laid out in
(Parkinson et al. 2012) for the likelihood from this data,
as implemented in MontePython, with the following excep-
tions. We do not use the WiggleZ wiggleZ non-linear pre-
scription, as this is not valid for GDM. Instead, we will use
both halofit and our halo model for ΛCDM runs, as detailed
above. For AGDM, we will perform purely linear runs and
runs using our halo model. Note that the WiggleZ likelihood
processes the input theory spectrum, including convolving
with the window function and other transformations. In par-
ticular, an analytic marginalisation over the linear bias is
performed, see Parkinson et al. (2012) for details. We also
consider two different subsets of the whole WiggleZ data: a
conservative cut, where we use the provided k-bands up to
k = 0.1Mpc−1, and a less-conservative cut using the com-
plete data up to k = 0.3Mpc−1, the latter of which was used
by the WiggleZ collaboration for their AC Lomb constraints.

5 CONSTRAINTS

We divide our constraints into two groupings: those with-
out MPS data that focus on examining the robustness of
previous constraints, and those using MPS data that aim
to improve the constraints on GDM. The main results from
these two groupings are that the previously obtained con-
straints are indeed robust and that the MPS data improves
the constraints on and a factor of three. The con-
straints from the different runs can be found in table 1.

5.1 Robustness of previous results

Our first result follows from looking at table 1. Here we
show our previous constraints on the GDM parameters us-
ing the data combinations PPS and PPS+Lens, both with

and without the inclusion of the halo model (HM). It is
clear that the constraints are essentially independent of the
halo-model correction. This is because the halo model im-
plemented as described above only has a small effect in the
GDM matter power spectrum relative to the purely linear
theory for the scales relevant to the upper limits of the con-
straints (see figures 1 and 2). This is partly due to the choice
of constant GDM parameters; as explained above we expect
that the impact relative to the linear spectrum would be
more important if we chose time dependent forms for the
parameters, e.g. an a−2 time dependence, or general binned
functions. The relative effect of our halo model on the linear
spectrum is decreased as the and parameters are
increased, as can be seen by comparing the GDM and ΛCDM
halo model curves in figure 2. This is caused by the strong
effects on the linear spectrum from the kdec phenomenology,
which dominates over any changes to the matter power spec-
trum due to the non-linear effects. Thus, we expect that any
constraints on and obtained from the CMB temper-
ate, polarisation and lensing spectra on these scales are
actually more robust to potential non-linear complications
than the standard ΛCDM parameters.

Also in table 1 we show the constraints for the data
combination PPS+Lens+BAO, when the neutrino mass is
both fixed or varied (mν). The differences between the pos-
terior with and without the inclusion of the neutrino mass
can be seen in figure 3. The perturbative GDM parameters
and are affected little by the inclusion of the neutrino
mass, indeed the constraints improve very slightly, whereas
the inclusion of the neutrino mass does noticeably worsen
the constraints on the equation of state w. These effects are
both caused by the degeneracies between the neutrino mass
and the GDM parameters, which can also be seen in figure
3; we shall now explore these in more detail.

The neutrino mass correlates with and in the same way that they are correlated with each other: The neutrino velocity dispersion is
and (Lesgourgues & Pastor 2006), which causes a reduction in the
dense potential just like and . This is not sur-
prising since massive neutrinos can be described by a GDM
fluid (Blas et al. 2011). This similarity between the effects of
the neutrino mass and these GDM parameters can be seen
by comparing the second and third panels of the left plot
in figure 4, showing the ratio of the spectra to ΛCDM with
and without the lensing contribution. This is also shown in
the lower plots of figure 4, showing that all of these param-
eters result in a substantial reduction to the CMB lensing
potential spectrum. The right plots of figure 3 show the 3D
posterior of and . The lower of the two plots
is colour coded according to the probability density, which
peaks in the ΛCDM corner, as expected due to the lack of a
detection of GDM parameters and neutrinos mass. The up-
der of the two insets shows the 90% confidence level contour
in orange, which is shown to be well modelled by constant
and with the expression for , as expected if the degeneracy
is indeed due to the reduction of the lensing potential described
here.

Note that the geometry of this situation is slightly non-
trivial: we are dealing with a “corner” of a multi-dimensional
parameter space where the parameters are all required by
physics to be non-negative. As noted in Heavens & Sellentin

\footnote{For full details, see the Planck papers and wiki http://wiki.cosmos.esa.int/planck2015/index.php/.

\footnote{In appendix B we examine a possible subtlety with the use of BAO data, which would also be relevant if GDM were constrained using redshift space distortion data.}
mass cosmology (red dashed) line in the third and fourth different sets of parameters. Comparing the increased neutrino
4, which show the CMB temperature power spectrum for different parameters mean that if tighter constraints are put on the
C
CDM cosmology (red dashed) lines in the third panel on the left in figure 4. This can be seen by comparing the red (dashed) and blue (short-dashed) lines in the third panel on the left in figure 4. This ability of w, \omega_c to counteract these two effects of increasing \nu to drive the degeneracies between \nu, w and \omega_c.

Note that the degeneracies between \nu and the GDM parameters mean that if tighter constraints are put on the neutrino mass from other experiments, then using these results as a prior on CMB analysis could further improve the constraints on the GDM parameters.

5.2 Use of MPS data

5.2.1 Conservative cut - No detection of GDM

In the lower half of table 1 we show the constraints obtained when including the WiggleZ matter power spectrum data (MPS), for two ranges of wavenumbers: \k < 0.1hMpc^{-1} and \k < 0.3hMpc^{-1}. We discuss the former (more conservative) of these first. Note that for \Lambda CDM, the WiggleZ team found that the linear theory appears to give a better fit than halo\textit{fit} (see figure 3 in Parkinson et al. (2012)), and we obtain the same result both for halo\textit{fit} and the halo model, although the halo model has a smaller effect on the large scales than halo\textit{fit}. We will focus the discussion on the perturbative parameters \nu^2 and \nu^2_{\text{vis}} because the inclusion of the WiggleZ data has little effect on the constraints on w. This is because the effect of w for the scales under consideration is primarily a small change to the amplitude, with little change to the shape of the spectrum, see Kopp et al. (2016). Thus, the effect of w will be almost entirely removed by the marginalisation over the bias in the WiggleZ likelihood, although note that future matter power spectrum data could constrain w due to its effect on the peak location.

The inclusion of the matter power spectrum with the conservative cut has a strong effect on the perturbative parameters \nu^2 and \nu^2_{\text{vis}}; improving the constraints by a factor of three, see table 1. This can also be seen in figure 5, where the 1D posteriors narrow considerably when the WiggleZ data is included. As this figure shows, this improvement is the only significant change to the posteriors due to the extra data. The green contours in this figure are from the linear implementation of GDM, however we note that the changes due to the extra data are approximately independent of whether the linear or halo model implementation of GDM is used; this can be seen both from the constraints in table 1 and in the right panel of figure 5 by comparing the green (linear) and black dotted (halo model) contours. This is important because it implies that the constraints using the conservative

Likelihood	Model	\(10^3 w\)	\(10^6 \nu^2\) (upper bound)	\(10^6 \nu^2_{\text{vis}}\) (upper bound)				
(PPS+...)	(A-GDM+...)	95%	99%	95%	99%	95%	99%	
+ Lens		\(-0.040^{+0.473}_{-0.468}\)	\(-0.040^{+0.700}_{-0.701}\)	3.31	6.31	5.70	11.3	
+ Lens + BAO		\(0.066^{+0.434}_{-0.427}\)	\(0.066^{+0.654}_{-0.642}\)	1.92	3.44	3.27	5.99	
+ Lens + BAO		\(+ \nu\)	\(-0.029^{+0.477}_{-0.481}\)	\(-0.029^{+0.716}_{-0.490}\)	3.11	5.39	5.62	11.1
+ Lens + BAO		\(+ \nu\)	\(-0.08^{+0.448}_{-0.461}\)	\(-0.08^{+0.668}_{-0.649}\)	1.92	3.83	3.13	5.79
+ Lens + BAO		\(+ \nu\)	\(0.101^{+0.159}_{-0.143}\)	\(0.101^{+0.248}_{-0.201}\)	1.90	3.54	2.86	4.82
+ Lens + BAO + MPS (k < 0.1hMpc^{-1})		\(0.040^{+0.109}_{-0.108}\)	\(0.040^{+0.164}_{-0.157}\)	0.667	1.21	1.10	1.91	
+ Lens + BAO + MPS (k < 0.1hMpc^{-1})+ HM		\(0.045^{+0.106}_{-0.109}\)	\(0.045^{+0.161}_{-0.161}\)	0.633	1.11	0.953	1.83	
+ Lens + BAO + MPS (k < 0.3hMpc^{-1})		\(0.035^{+0.112}_{-0.112}\)	\(0.035^{+0.175}_{-0.168}\)	0.0616	0.103	0.0958	0.16	
+ Lens + BAO + MPS (k < 0.3hMpc^{-1})+ HM		\(0.046^{+0.113}_{-0.111}\)	\(0.046^{+0.169}_{-0.163}\)	0.201	0.254	0.333	0.428	
cut come from physics that is well understood, and is not sensitive to detailed considerations of the non-linear regime.

The improvement on the c_s^2 and c_{vis}^2 constraints is due to the decay of the matter power spectrum for $k > k_{\text{dec}}$, which creates a slope to the matter power spectrum that is inconsistent with the data for larger values of c_s^2 and c_{vis}^2. This can be seen in the upper panel of figure 6, which compares theoretical spectra with various upper limits of GDM parameters to the lowest redshift bin in the WiggleZ data. Note that in both panels of this figure the theory spectra are transformed in line with how the likelihood is computed, in order to be compared to the data. This includes convolving with the survey window function, marginalising over the linear bias and accounting for the difference in background to the fiducial cosmology. See Parkinson et al. (2012) for a full description and explanation of these processes. The upper panel of figure 6 compares GDM spectra computed with non-zero c_s^2 values corresponding to upper limits of previous constraints (“old”) and the constraints when the matter power spectrum data is included (“new”). There is a tension between the slope of the theoretical spectra and the data that is reduced when the lower value (associated to the constraints from the WiggleZ data) is used. The equivalent plot for non-zero c_{vis}^2 is essentially identical, since the

Figure 3. Posteriors for the neutrino mass and GDM parameters (plus other parameters of interest), where the red contours are for fixed neutrino mass and the blue contours are for when it is allowed to vary as an MCMC parameter. The 2D contours correspond to the 68% and 95% confidence levels. Changes to the 1D posteriors on the GDM parameters are visible when the neutrino mass is included as a parameter. This is due to the degeneracies that can be seen in the 2D posteriors; the neutrino mass is correlated with w due to their similar impacts on the expansion history, and with the sound speeds due their similar impacts on CMB lensing. The right panels show the 3D posterior for m_ν, c_s^2 and c_{vis}^2, which is peaked close to the origin and decreases further from this point, showing the expected degeneracy between all three parameters. For this posterior, the surfaces of constant confidence level are approximately planes, and are an extension of the k_{dec} phenomenology found in Thomas et al. (2016), see section 5.1 for details.
Figure 4. On the left, we show the effect of GDM parameters and neutrino mass on the temperature power spectrum (left panel), the matter power spectrum (upper right panel) and the lensing potential (lower right panel). In all cases θ is kept fixed, so that the peak position remains at the same l value. The three lower panels on the left show the ratio of the different spectra to the ΛCDM spectrum, where the lensing contribution has been removed from the second of these, and both the lensing and ISW contributions have been removed from the lowest panel. The full (green) and long-dashed (red) lines change the model by either turning on c_2^2 or increasing the neutrino mass from 0.06 eV to 0.35 eV, while keeping the DM abundance $\omega_b = \omega_{\Lambda}\Lambda$ fixed. Comparing the ratio of these models with the fiducial ΛCDM model in the second and third panels in the left plot shows why c_2^2 and $\sum m_\nu$ are degenerate: they reduce the amount of CMB lensing in a similar fashion. This is also clear by looking at the lower right plot displaying the lensing potential spectrum. The short dashed (blue) line maintains the increased neutrino mass and reduces the DM abundance, while at the same time increasing the DM equation of state from $w = 0.002$ to $w = 0.002$. This shows why w and $\sum m_\nu$ are degenerate: adjusting w can make the expansion history of the massive neutrino cosmology more similar to the fiducial ΛCDM model, which can be seen by comparing the long dashed (red) line with the short-dashed (blue) line in third and fourth panel. The thinner version of these lines in the plots indicate the models that have been calculated using the halo model. The change of $C_2^{\ell}\Omega$ for these models compared to ΛCDM is a direct consequence of the changes they cause for $P(k)$, see the upper right plot.

degeneracy between these parameters has not been broken (see below). In accordance with what was noted earlier, the use of the halo model makes little difference to the theoretical spectra in figure 6, and thus to the constraints obtained with and without the halo model. The constraining power here does not come from the measured amplitude of the matter power spectrum because of the marginalisation over the linear bias. We expect that these constraints could increase even further if the matter power spectrum is measured on larger scales, particularly the turnover around the peak. This would have the additional advantage of staying inside our conservative regime that we have seen is robust to non-linear modelling. Considering how the difference in slopes shown in figure 6 continues for $k > 0.1h\text{Mpc}^{-1}$, we expect that the less-conservative cut for the WiggleZ data will improve the constraints further, see below.

One of the motivations for considering matter clustering data for GDM constraints is the attempt to break the degeneracy between c_2^2 and c_{vis}^2, caused by the k_{dec} phenomenology. The scales we are looking at with the WiggleZ data here are insufficient to break this degeneracy, see figure 7: up to $k = 0.1h\text{Mpc}^{-1}$, there is little difference between c_2^2 and c_{vis}^2. Note that from Kopp et al. (2016) we expect the value where the oscillations start to be $k_f = 1/(0.2c_f\tau) \approx 0.2$, which is in agreement with what we have seen. Even on scales down to $k = 0.3h\text{Mpc}^{-1}$ (i.e. to the level of our less-conservative cut; see below), the difference between the spectra generated by the two parameters is not large, al-
though beyond \(k = 0.3 \, h \text{Mpc}^{-1} \) the difference between the linear spectra increases substantially. Interestingly, the non-linear spectra corrections act to recreate the degeneracy between the \(c_s^2 \) and \(c_{\text{vis}}^2 \) spectra on scales below approximately \(k = 0.5 \, h \text{Mpc}^{-1} \) (see figure 7). If this modelling of GDM non-linearities is accurate then this means that there is only a small range of scales (around \(k \approx 0.3 \, h \text{Mpc}^{-1} \)), in which data could allow us to distinguish the effects of these two parameters.

5.2.2 Non-conservative cut - Possible detection of GDM

As mentioned above, we also consider a less conservative cut, with \(k < 0.3 \, h \text{Mpc}^{-1} \). The constraints are presented in the
Comparison of GDM and CDM. For the two perturbative GDM parameters. The black curve shows the linear CDM spectrum. The blue (dashed) and green (solid) curves show the linear and non-linear spectra for non-zero c^2_{vis} and the red (dotted) and orange (solid) curves show the linear and non-linear spectra for non-zero c^2_{vis}. The values of c^2_{vis} and c^2_{vis} are chosen to produce the same value of k_{max}. Up to the level of our conservative cut ($k = 0.1 h$ Mpc$^{-1}$), there is little difference between the two linear spectra and between the two non-linear spectra, and this difference only begins to manifest close to the smallest scales in our less-conservative cut ($k = 0.3 h$ Mpc$^{-1}$). Note that on larger scales, the non-linear modelling acts to recreate the degeneracy between c^2_{vis} and c^2_{vis}.

Figure 6. Comparison of GDM and CDM theoretical spectra to WiggleZ data for the lowest redshift bin: In both plots, the red points show the data. Upper: GDM curves with $c^2_{\text{vis}} = 0$ and non-zero c^2_{vis} (but note that the plot for $c^2_{\text{vis}} = 0$ and non-zero c^2_{vis} is essentially identical, since the degeneracies between these parameters hasn’t been broken). The (dashed) blue and green curves correspond to the linear and halo-model predictions respectively, for parameters corresponding to our previous (linear) constraints in Thomas et al. (2016) ($c^2_{\text{vis}} = 0.000003$). The (solid) orange and yellow curves correspond to the linear and halo-model predictions respectively, with GDM parameters corresponding to the improved constraints in this paper when the MPS data is used with the conservative cut ($c^2_{\text{vis}} = 0.000001$). It can be seen that the previous constraints have some tension with the WiggleZ data, and thus that its inclusion improves the constraints on the GDM parameters by requiring smaller values of the parameters to reduce the tension. For all parameter choices here, the difference between the linear and non-linear spectra is small.

Lower: Theoretical spectra constructed using the best fit parameters from the MCMC runs with the less-conservative cut for the WiggleZ data. The spectra correspond to linear CDM (black dot-dashed), CDM with the halo model (orange dotted), linear GDM (blue dashed) and GDM with the halo model (green solid). The linear GDM best fit parameters are $c^2_{\text{vis}} = 6.284 \times 10^{-16}$ and $c^2_{\text{vis}} = 2.55 \times 10^{-8}$ and the GDM plus halo fit best parameters are $c^2_{\text{vis}} = 1.6 \times 10^{-7}$ and $c^2_{\text{vis}} = 4.3 \times 10^{-8}$. Similarly to WiggleZ (Parkinson et al. 2012), we get a better fit for linear CDM than when the halo model is included. The best fit model for linear GDM has small GDM parameters and a spectrum that is very similar to the CDM spectrum, as expected since the constraints in this case are consistent with CDM. For the GDM halo model case, the best fit model has a much larger sound speed, and thus deviates more from the CDM best fit. The linear GDM best fit parameters are $c^2_{\text{vis}} = 0.6284 \times 10^{-16}$ and $c^2_{\text{vis}} = 2.55 \times 10^{-8}$ and $c^2_{\text{vis}} = 1.6 \times 10^{-7}$ and $c^2_{\text{vis}} = 4.3 \times 10^{-8}$.
ence for a non-zero GDM parameter. This difference between the linear and halo model GDM results is further seen by looking at the right panel of figure 6. Here we plot the spectra generated using the best fit parameters from the different MCMC runs. The linear GDM best fit parameters are $c_{2}^\nu \approx 6.284 \times 10^{-10}$ and $c_{vis}^2 = 2.55 \times 10^{-9}$ and the GDM plus halofit best fit parameters are $c_{2}^\nu = 1.6 \times 10^{-7}$ and $c_{vis}^2 = 4.3 \times 10^{-8}$. The best fit model for linear GDM has small GDM parameters and a spectrum that is very similar to the ΛCDM spectrum, as expected since the constraints in this case are consistent with ΛCDM. For the GDM halo model case, the best fit model has a much larger sound speed, and thus deviates more from the ACDM best fit. Thus we can see the discrepancy between the linear GDM and halo model GDM manifesting here as well. Interestingly, the GDM halo model run returns a best fit spectrum that is closer to the linear ACDM spectrum than the halo model ΛCDM spectrum is. The χ^2 for the two GDM curves and the linear ACDM curve are almost indistinguishable, showing further that the inclusion of the halo model into GDM can compensate for higher values of the GDM parameters.

Despite the preference for a non-zero GDM parameter shown in the GDM+HM contours in the right panel of figure 5, the individual 1D posteriors (not shown here as their interpretation is dubious; see below) show no preference to be non-zero due to the degeneracy between the two parameters. This means that marginalising over the other parameter results in no "detection" of a non-zero value of either parameter. Despite the resulting large difference in upper bounds between the less-conservative results with and without the halo model, the maximal width of the contours along the 45° line marked in the plot is similar in the two cases.

The slope of the degeneracy in these contours is well understood as the direction along which k_{dec} remains fixed, and it is the direction perpendicular to this (the 45° line marked in the plot) that is most constrained by the data. In principle, it would be possible to create a new parameter that describes this direction (i.e. essentially $c_{2}^\nu \equiv c_{2} + 8/(15 c_{vis}^2)$), and then the second coordinate (i.e. $d \equiv (1 + 8/(15 c_{vis}^2/c_2^2))^{1/2}$, $0 \leq d \leq 1$) of this 2D space can be marginalised over, in order to create a 1D posterior for c_2^2. If we had chosen uniform priors on c_2^2 and d, we would expect the 1D-posterior of this new c_2^2-parameter to peak at non-zero values for the yellow contour in Fig.5, and to peak at zero for the blue contour. And thus this parameter would allow to compactly quantify the detection of perturbative GDM parameters. However, we note that our current choice of priors (uniform priors on $0 \leq c_2^2 < 0.1$ and $0 \leq c_{vis}^2 < 0.1$) would make c_2^2 peak at non-zero value for any sensible 2D posterior, in particular also for the blue contour in Fig.5. We will explore these issues in a forthcoming paper.

We note that this difference between the linear and non-linear results for the less-conservative cut is a strong justification of the motivation behind this paper, namely that correctly modelling these non-linear scales will be crucial for using late-time clustering data to constrain the GDM parameters. At the level of the modelling we have done here, we cannot be sure of our results with either the linear or non-linear modelling. Instead, we take these results to show that there is a need to look into the non-linear modelling in substantially more detail, before a detection of non-zero GDM parameters using late time clustering data could be claimed. Furthermore, even if the less-conservative linear contours agreed with the non-linear contours, then we would be hesitant to claim a detection of non-zero GDM parameters because of the caveats related to marginalising over parameter subspaces with special geometries. Nonetheless, our results show that late time matter clustering data can strongly constrain the GDM parameters, to the level where a detection is possible.

6 CONCLUSION

We have investigated how considerations around large scale structure can affect constraints on the generalised dark matter parameters. The main results of this work are the development of the halo model for GDM presented in section 3 and the improved constraints on the GDM parameters presented in table 1.

In section 3 we argued for modifying the ΛCDM halo model in a particular way, by backtracking the "linearly-extrapolated" critical density for collapse. This allows the mass dependence of the collapse barrier to be implemented in a natural way. This halo model reduces to a standard ΛCDM halo model in the case of scale independent growth, and produces qualitatively similar results to halofit. Having derived the halo model for GDM, we note that the non-linear corrections are much less significant for GDM (with constant c_2^2 and c_{vis}^2) than for ΛCDM, because the strong linear decay dominates over the corrections from the halo model.

We use this halo model to test the robustness of previously obtained constraints based on Planck CMB power spectra, as seems circumspect considering the magnitude of the ΛCDM non-linear corrections and difference between ΛCDM and GDM spectra in figure 1. We find that the GDM constraints change little, as expected from the aforementioned phenomenology of the GDM halo model. Interestingly, the perturbative GDM parameters c_2^2 and c_{vis}^2 are less sensitive to the non-linear corrections than the standard ΛCDM parameters, which will be increasingly important for future CMB lensing surveys, such as Simons Observatory (The Simons Observatory Collaboration 2018). We additionally checked the changes to previous GDM constraints when the neutrino mass is allowed to vary as a free parameter, primarily finding a worsening of the constraints on the equation of state (of GDM) ω, due to the degenerate effects on the expansion history. We also elucidate the three-way degeneracy between m_ν, c_2^2 and c_{vis}^2, and note that the geometry of this situation requires that marginalisation over these parameters is done carefully (Heavens & Sellentin 2018).

We examined the effect of including the WiggleZ matter power spectrum data when constraining the GDM parameters, finding a factor of three improvement on the sound speed c_s^2 and viscosity c_{vis}^2 constraints when a conservative cut in wavenumber k is used. When increasing the k-range that is included, these constraints improve by a further fac-

4 We should caution here that an MCMC code such as MontePython is not optimised in terms of finding the lowest possible value of the likelihood, so we expect that the best fit values we have found here are close to the absolute minimum, but not precisely the lowest values.
tor of three, for a total improvement from the use of matter power spectrum data of an order of magnitude. This shows the value of datasets that constrain the \(k_{\text{sec}} \) phenomenology of GDM. Since we analytically marginalise over the linear bias, we expect that once large scale structure measurements reach the peak of the matter power spectrum, the total constraining power will be sufficient to either constrain the GDM parameters to the point of cosmological irrelevance or yield a detection of beyond \(\Lambda \)CDM physics.\(^5\) These improved constraints are one of the key results of this work.

The results from extending the \(k \)-range that is included show some important features for future work. The first is that there is a difference between the constraints obtained by linear and non-linear modelling, thus showing the importance of robust non-linear modelling of the GDM model for the use of late time matter clustering data. This suggests that a re-evaluation of the tight constraints obtained in Kunz et al. (2016) could be interesting. This also shows that future surveys, combined with a more detailed analysis of the non-linear completion of GDM, have the potential to show that the matter power spectrum is not consistent with the \(\Lambda \)CDM. Furthermore, we have shown that GDM with the halo model yields a 2D contour that is clearly inconsistent with the \(\Lambda \)CDM point \((c_2^2 = c_{2\text{vis}}^2 = 0) \), although we advise caution in the interpretation of this due to the difference between the linear and non-linear results. Even in this case, neither \(c_2^2 \) nor \(c_{2\text{vis}}^2 \) is individually detected, due to the degeneracy between these two parameters, and we have noted that it is not straightforward to quantify a detection in such cases, because marginalisation in areas of parameter space with corners can lead to biases. Doing so requires a careful analysis of priors, see e.g. Heavens & Sellentin (2018).

We plan to explore this issue further in the future.

As the \(y_1, y_2 \) parameters in the halo model were originally calibrated for WDM, it may be preferable to treat them as nuisance parameters and vary them in an MCMC analysis for GDM. However, this further increases the computational demands of the already expensive codes and is unlikely to make a difference to our results as we have made no detection of GDM. Furthermore many other aspects of the halo model, like the precise form of the spherical collapse barrier, remain currently an educated guess and require a detailed study using numerical simulations of a suitably defined non-linear GDM model. Thus we leave an investigation into these issues for future work.

Throughout this work we used the simplest parameterisation of the GDM parameters; a single value with no redshift or scale dependence. We expect the halo model to have a larger impact for time dependent GDM parameters, although we leave this investigation to future work. In particular, we expect that for \(c^2 \propto a^{-2} \), corresponding to WDM and FDM, that the halo model has a larger impact. This is because the late universe GDM parameters will have a much smaller impact on the DM dynamics for fixed early universe values, so that the dynamics can be approximated by CDM in the late universe, allowing non-linearities to develop despite the small scale decay of the linear matter power spectrum imprinted during early times. The assumption of constant GDM parameters was relaxed in Kopp et al. (2018), where the equation of state \(w \) was measured in multiple redshift bins. The importance of the WiggleZ data considered here for the constraints on \(c_2^2 \) and \(c_{2\text{vis}}^2 \) suggest that this data could be crucial for putting strong constraints on redshift and scale dependent forms for \(c_2^2 \) and \(c_{2\text{vis}}^2 \). Given the results here for \(w \) when including \(m_\nu \), it would be interesting to revisit the results using time dependent \(w \) bins from Kopp et al. (2018). In particular, it may be the case that the neutrino mass is only degenerate with \(w \) over certain redshift ranges, and thus the time variation of \(w \) allows the degeneracy with \(m_\nu \) to be broken, and most of the constraining power on \(w \) to be recovered. In addition we note that if the GDM parameters are given specific time (and scale) dependence corresponding to either FDM or WDM, then it would be interesting to perform an in-depth quantitative comparison of the existing FDM and WDM halo models with the halo model presented here for general GDM models. That comparison is beyond the scope of this paper.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement n. 617656 “Theories and Models of the Dark Sector: Dark Matter, Dark Energy and Gravity”. The Primary Investigator is C. Skordis. DM acknowledges support from the UK Science & Technology Facilities Council through grant ST/N000668/1 and from the UK Space Agency through grant ST/N00180X/1. DBT acknowledges support from Science and Technology Facilities Council (STFC) grant ST/P000649/1. MCMC chains for this analysis were partially run on the Sciama High Performance Compute (HPC) cluster which is supported by the ICG, SEPNet and the University of Portsmouth. We thank the developers of class, montepython and getdist for making their codes public. We thank the WiggleZ collaboration for making their data and likelihood public, and thank D. Parkinson for help with understanding these. We thank C. Skordis and S. Ilić for helpful discussions. This research has made use of NASA’s Astrophysics Data System.

REFERENCES

Achitouv I., Wagner C., Weller J., Rasera Y., 2014, JCAP, 1410, 077
Achitouv I., Baldi M., Puchwein E., Weller J., 2016, Phys. Rev., D93, 103522
Anderson L., et al., 2014, MNRAS, 441, 24
Andrew Gelman D. B. R., 1992, Statistical Science, 7, 457
Aprile E., Alfonsi M., Arisaka K., et al., 2012, Physical Review Letters, 109, 181301
Aprile E., Agostini F., Alfonsi M., et al., 2014, Phys. Rev. D, 90, 062009
Armendariz-Picon C., Neelakanta J. T., 2014, J. Cosmology Astropart. Phys., 3, 49
Audren B., Lesgourgues J., Benabed K., Prunet S., 2013, J. Cosmology Astropart. Phys., 2, 1
Barkana R., Haiman Z., Ostriker J. P., 2001, ApJ, 558, 482
Barkana R., Haiman Z., Ostriker J. P., 2001, ApJ, 558, 482

\(^5\) Note that, being more precise, this “beyond \(\Lambda \)CDM physics” could just be a more careful and precise modelling of the \(\Lambda \)CDM universe, according to the EFTofLSS interpretation of GDM.
Large scale structure and GDM

APPENDIX A: ΛCDM HALO MODEL

Here we present the standard ΛCDM halo model, concepts and notation in detail, allowing us to focus on the development of the GDM halo model in the main text. The summary here draws on Cooray & Sheth (2002); Mead et al. (2015); Marsh (2016). As stated in the text, the halo model is a semi-analytic method for computing the matter power spectrum on non-linear scales. It starts by writing $\rho_{\text{m}}(x) = \sum_i (\rho_{\text{halo}}(x - x_i))$ with $(\rho_{\text{halo}}(x)) = \int dM M^2 dn/dM \delta^2(k,M)dM$, which gives the matter power spectrum, the Fourier transform of $(\langle \rho_{\text{halo}}(x) - \langle \rho_{\text{halo}}(x + r) - \rho_{\text{halo}} \rangle)$, as a sum of “1-halo” and “2-halo” terms,

$$P_m(k) = P_{1h}(k) + P_{2h}(k),$$ \hfill (A1)

where the 1-halo term corresponds to correlations within halos, and the 2-halo term corresponds to correlations between halos. Thus, the 2-halo term typically dominates on large scales and the 1-halo term typically dominates on small scales. As the density field is described as a superposition of (spherically symmetric) halos, for randomly distributed halos, the power spectrum would thus have the form of shot noise (that takes into account the internal structure of the halos). This is described by the 1-halo term

$$P_{1h}(k) = \frac{1}{\bar{\rho}_m} \int_0^\infty M^2 \frac{dn}{dM} \delta^2(k,M)dM,$$ \hfill (A2)

where $\bar{\rho}_m = 3\Omega_m H_0^2/8\pi G$ is the background matter density in the Universe and Ω_m is the background density today in units of the critical density. The integral is over the mass M, dn/dM is the mass function and $\delta(k,M)$ is the normalised Fourier transform of the halo density profile $\rho_{\text{halo}}(x)$. The 2-halo term is given by

$$P_{2h}(k) = \left[\frac{1}{\bar{\rho}_m} \int_{M_{\text{min}}}^{M_{\text{max}}} dM M b_i(M) \frac{dn}{dM} \right]^2 P_{1h}(k),$$ \hfill (A3)

where $b_i(M)$ is the linear bias. The 2-halo term tends towards the linear spectrum $P_{1h}(k)$ on large scales due to the consistency relation

$$\frac{1}{\bar{\rho}_m} \int_0^\infty dM M \frac{dn}{dM} p_i(M) = 1.$$ \hfill (A4)

Indeed, in our code we set the 2-halo term to be the linear spectrum because the loss of accuracy is very small (see figure A1, where we show the change in the ΛCDM spectrum as a result of this approximation) and reduces the computational time required for each call to the halo model code. We will now look more closely at the ingredients for the 1-halo term.
A1 Mass function

There are many mass functions in the literature, ranging from the original Press-Schechter formulation (Press & Schechter 1974), to the Sheth-Tormen model (Sheth & Tormen 1999) based on ellipsoidal collapse and models calibrated against up-to-date N-body simulations. Those various mass functions differ in their explicit functional form of the so-called multiplicity function $f(\sigma)$, from which the mass function can be calculated as

$$\frac{dn}{dM}dM = \frac{\bar{\rho}_m}{M} f(\sigma) \frac{d\ln\sigma^{-1}}{dM} dM,$$

where dn is the comoving halo number density and σ is the dimensionless matter power spectrum smoothed on a scale R.

$$\sigma^2_R(\zeta) = \frac{1}{2\pi^2} \int_0^{\infty} P_{\text{lin}}(k, \zeta) W^2(k R)^2 dk.$$ \hspace{1cm} (A5)

The scale R is related to the enclosed mass through

$$M = \frac{4\pi}{3} R^3 \bar{\rho}_m$$ \hspace{1cm} (A6)

such that M, R and σ can all be used interchangeably. A typical smoothing function is the spherical (real space) top hat,

$$W^2(x) = \frac{3}{\lambda^3} (\sin x - x \cos x).$$ \hspace{1cm} (A7)

We will use the mass function of Achitou, Corasaniti, Maggiore and Riotto (ACMR) (Corasaniti & Achitouv 2011; Maggiore & Riotto 2010), as this has been proven useful in other extensions of ΛCDM (Kopp et al. 2013; Achitou et al. 2014, 2016), and is physically well motivated. $f(\sigma)$ takes the form (22)

$$f(\sigma) = \frac{\bar{B} - \sigma^2 dB/d\sigma^2}{\sigma} \sqrt{\frac{2a_b}{\pi}} e^{-\frac{a_b}{2\sigma^2} B^2} + \ldots,$$

$$\bar{B} = \sigma_{\text{crit}}^2 + \beta \sigma^2,$$ \hspace{1cm} (A8)

where the parameters take the values $\beta = 0.12$ and $a_b = 0.7143$, and the barrier \bar{B} is composed of the spherical collapse barrier σ_{crit} and mass-dependent correction $\beta \sigma^2$. This latter takes into account that small halos (large σ) are more difficult to form (and therefore have higher \bar{B}) due to more likely asphericity. The ellipses stand for non-Markovian corrections of the mass function that arise through correlations of the density field at different smoothing scales, see equation (22). For CDM $\bar{B} - \sigma^2 dB/d\sigma^2 = \delta_{\text{crit}}$. The critical “linearly-extrapolated” (see section 3) density for spherical collapse, $\delta_{\text{crit}} \approx 1.686$ in an Einstein-deSitter universe. For a ΛCDM universe, we use a form with a mild redshift and cosmology dependence from Nakamura & Suto (1997)

$$\delta_{\text{crit}} = \frac{3}{20} (12\pi)^{\frac{1}{2}} (1 + 0.012299 \log \Omega_m(\zeta)).$$ \hspace{1cm} (A9)

In figure A2, we show the full halo mass function as developed in section 3, for ΛCDM and several choices for the GDM parameter c_2. We note that constant values of the GDM parameters, as used throughout this paper, have a strong effect on the mass function, since the pressure and viscosity have a continuous effect during collapse in addition to the initial cutoff in the power spectrum. This is in contrast to GDM parameters that have a time dependence, such as the a^{-2} dependence exhibited by the GDM parameters for WDM, where only the initial cutoff affects the mass function. Due to the speculative nature of our mass function, we have focussed on the matter power spectrum as a more robust observable; we leave it to future work to investigate the mass function and halo model in greater detail, and consider to what extent our constraints can be improved by e.g. galaxy cluster counts once the mass function has been validated in greater detail.

A2 Halo density profile

The Fourier transform of the halo density profile is given by

$$\tilde{\rho}(k, M) = \frac{1}{M} \int_0^{r_c} dr \frac{\sin(k r)}{k r} 4\pi r^2 \rho_{\text{halo}}(r, M).$$ \hspace{1cm} (A10)

Figure A1. Fractional change to the ΛCDM matter power spectrum when the full 2-halo term is used, rather than when it is approximated by the linear spectrum. The effect of including the full 2-halo term is less than 0.5% on the scales of interest.

Figure A2. The halo mass function as used in our halo model, for ΛCDM and 3 different GDM parameter choices, for redshift $z = 0$.

\textit{Figure A1.}
The most commonly used halo density profile is the Navarro-Frenk-White (NFW) profile (Navarro et al. 1996)
\[\rho_{\text{NFW}} = \frac{\rho_0}{(r/r_s)(1 + r/r_s)^2}, \]
where \(\rho_0 \) is a normalisation constant. The virial radius \(r_v \) defines the extent of the halo, \(M = \frac{4}{3} \pi \rho_v r_v^3 \), where \(\rho_v \) denotes the overdensity of the virialised halo with respect to the average background density in the universe. For a \(\Lambda \) CDM universe, we can use the approximate relation, again from Nakamura & Suto (1997),
\[\rho_v = 187.7 \Omega_{\text{m}}^{0.573}. \]

The scale radius \(r_s \) is typically related to the concentration \(c \equiv r_v/r_s \). There are several parameterisations used for the concentration, and we will use one that is used in Bullock et al. (2001); Pielorz et al. (2010).
\[c(M, z) = \frac{c_*}{1 + \frac{z}{\tilde{M}_*} r_v^2}, \]
with \(c_* = 10 \) and \(\alpha = 0.2 \). The parameter \(M_* \) is the solution to
\[\sigma^2(z = 0, M_*) = \sigma_{\text{crit}}(z = 0). \]

The Fourier transform of the NFW profile can be expressed as
\[\bar{u} = \left[\ln(1 + c) - c \right]^{-1} \left[\sin \eta \left[\hat{S}(1 + c) - \hat{S}(\eta) \right] + \cos \eta \left[\hat{C}(1 + c) - \hat{C}(\eta) \right] - \frac{\sin(\eta)}{(1 + c)} \right], \]
where \(\eta = kr_v/c \) and we have defined
\[C_i(x) = -\int_0^\infty \frac{L_t}{t} \cos t dt, \]
\[S_i(x) = \int_0^\infty \frac{L_t}{t} \sin t dt. \]

When calculating the 2-halo term precisely, the bias for the Markovian part of the ACMR mass function is given by
\[b_i(M) = 1 + a_{\beta} \delta - \frac{1}{\delta_{\text{crit}}} \frac{a_{\beta} \delta_{\text{crit}}}{\sigma^2}, \]
where the parameters take the same values as in the mass function above (Corasaniti & Achitouv 2011; Achitouv et al. 2016).

A3 Comment on large scale power

The 1-halo term contributes a constant power on large scales, which has the effect of increasing the matter power spectrum from the halo model above that of the linear theory, on scales where the density contrast is small and therefore the linear theory would be expected to apply. This effect is due to the un-compensated nature of the NFW profile, meaning that only positive density perturbations are included. Thus, there is a shot-noise-like term added by the 1-halo term on large scales, that is unphysical if the dark matter power spectrum is the desired output. On the other hand, a finite sample of galaxies would have an intrinsic shot-noise component, which could conceivably dominate over the linear power on very large scales. In principle, this problem could be remedied by using a compensated halo profile, however this results in the halo model having zero power on large scales. A good discussion of this issue is in Cooray & Sheth (2002).

This issue is considered further in Seljak & Vlah (2015). Following that work, we implement a compensation term for the 1-halo part of the halo model. Accordingly, the 1-halo term is multiplied by a compensation function \(F(k) \)
\[F(k) = 1 - \frac{1}{1 + k^2 R^2}, \]
where the compensation scale \(R \) is given by
\[R = \frac{26 \text{ Mpc}}{h} \left(\frac{\sigma_8(z)}{0.8} \right)^{0.15} = \frac{26 \text{ Mpc}}{h} \left(\frac{\sigma_8(z = 0)}{0.8} \frac{D(z)}{D(z = 0)} \right)^{0.15}, \]
and \(D(z) \) is the growth factor. Note that \(F(k) \to 0 \) as \(k \to 0 \), meaning that the 1-halo term vanishes as the 2-halo term tends towards the linear spectrum. Thus recovering the expected large scale result.

A4 Some relevant details of the numerical implementation

Here we just note a couple of details of the numerical implementation fo our halmodel in the class code for those who wish to duplicate our results. Note that the \(S_i \) and \(C_i \) integrals above have numerical solutions, see e.g. Mead et al. (2015) or Wikipedia. Also note that it is important to set the class parameter “P_{\Lambda CDM} 1/Mpc” to be sufficiently large; we use the value 30.0.

When sampling the mass function we work with a number of logarithmically spaced masses, where the upper limit of the mass range is given by \(10^{16} M_\odot \) and the lower mass limit is set to \(M_{\text{min}} = \log \left(\frac{4.0 \sigma_8}{3.0 \Omega_{\text{m}}} \right) \approx 10^8 M_\odot \). The number of masses was set to 150, but we note that we checked our results for convergence against these three parameters and our results are robust to sensible variations in these parameters.

Due to the computational expense of computing the halo model for all times and scales that are evolved in class, we implement \(k \) and \(z \) cutoffs on scales where the non-linearities are expected to be negligible. In particular, for \(k \) such that the dimensionless power spectrum \(\Delta^2(k, z) < A_{\text{crit}} \), we do not apply the corrections, and for \(z > z_{\text{cutoff}} \) we do not apply the corrections. For the work here, \(z_{\text{cutoff}} = 3.0 \) and \(A_{\text{crit}} = 0.001 \). See figure A3 for the numerical effect of removing these cutoffs on the temperature and lensing spectra: the effect is numerically negligible for the work here.

As noted earlier, one of the subtleties of calculating the non-linear within class is that the radiation contamination at late times prevents the growth from being exactly scale invariant, even for \(\Lambda \) CDM. In figure A4 we show the ratio between the smoothed matter power spectra at redshift zero and at our chosen value of \(\delta_{\text{ini}} = 50 \) for \(\Lambda \) CDM. This is normalised to be unity at the largest scale (lowest \(k \)-value). The scale dependence of the growth shown here is below 0.05% and thus negligible for the purposes of the halo model calculations considered here.
Figure A3. Plots showing the fractional change on the CMB spectra when the k (blue) and z (red) cutoffs are turned off. The upper panel shows the ratio of the lensed temperature spectra, and the lower panel shows the ratio of the lensing potential spectra. In all cases the change to the ΛCDM spectrum is below 0.05% for all scales of interest.

APPENDIX B: USE OF THE MATTER CONTINUITY EQUATION FOR REDSHIFT SPACE DISTORTIONS AND BAO RECONSTRUCTION

Both the use of redshift space distortions to calculate the growth of structure, and the use of reconstruction methods to improve recovery of the BAO peak, rely on the use of the continuity equation for the matter. This is something that is typically valid even in modified gravity theories, as it arises from the conservation of the matter energy-momentum tensor. However, once cold dark matter itself is changed, such as in the GDM model, then this relation no longer holds. Thus, CDM is assumed during such data analysis techniques.

In principle this could mean that our use of some BAO data for our constraints could be problematic,\footnote{Note however that one of the BAO datasets (6df) used in our constraints uses no reconstruction.} however we note that the expected effect should be small. Furthermore, the effect is expected to further improve our constraints, since it would increase the difference between GDM and ΛCDM, and thus the work here can be considered to be conservative. We now look briefly at the usual approach in order to see how the details might differ for GDM.

From number conservation, the real space density (δ_r) and redshift space density (δ_s) are related by

$$\delta_s = \delta_r + \mu^2 (-k^2 \theta), \quad (B1)$$

where $\mu = \hat{r} \cdot \hat{k}$ is the angle between the wavevector and line of sight and $\hat{v} = -i\hat{k} \theta$, where \hat{v} is the velocity perturbation of which θ is the scalar part. The standard continuity equation for pressureless CDM is given by

$$-k^2 \theta = \delta H f, \quad (B2)$$

where the $f = d \ln \delta / d \ln a$ is the growth rate. Thus the difference between the real and redshift space densities is expressed as

$$\delta_s = \delta_r (1 + \mu^2 H f). \quad (B3)$$

Instead, for GDM, the continuity equation is

$$-k^2 \theta = \frac{\delta}{1 + w} - k^2 \zeta - \frac{3H(w \delta - \Pi)}{1 + w} \quad (B4)$$

Note that we are working in conformal time and δ is the derivative with respect to conformal time. Specifying the Newtonian gauge to remove ζ, and dropping the time derivative term (as $\Phi = -h/6$ will be small), leaves us with the following replacement for equation B2,

$$-k^2 \theta = \frac{1}{1 + w} \delta H f - \frac{3H(w \delta - \Pi)}{1 + w} \quad (B5)$$

Interestingly, since Π is driven by w and c_s^2, this relation might be useful as a way to break the $c_s^2 - c_{vis}^2$ degeneracy if GDM model was fit directly to redshift-space correlation functions. We can consider several assumptions from here,
in order to obtain an approximate value for the size of the correction. One could assume that the pressure \(\Pi \) is small, in which case, if the growth rate is measured assuming CDM, then the quantity that has actually been measured \((f_{\Lambda CDM}) \) is

\[
f_{\Lambda CDM} = \frac{f - 3w}{1 + w}.
\]

(B6)

Alternatively, one could use \(\Pi = c_1^2 \delta + 3(c_1^2 - c_2^2)\mathcal{H}(1 + w)\theta \) and assume that the non-adiabatic pressure vanishes (i.e. that \(c_2^2 = c_1^2 \)). In this case the quantity that has actually been measured is \(\frac{f + 3(c_2^2 - w)}{1 + w} \), which for constant GDM parameters is \(\frac{f}{1 + w} \). In either case, for values of \(w \) consistent with our constraints from the Planck data, the difference between \(f_{\Lambda CDM} \) and \(f \) is small (less than a percent level change), so we expect that our constraints are not sensitive to this effect.\(^7\)

This paper has been typeset from a \LaTeX/\tex file prepared by the author.

\(^7\) However, note that relaxing the constancy of \(w \) and allowing \(w \) to vary freely with time, as done in (Kopp et al. 2018), increases the error bars on \(w \) in the late universe by a factor 100 such that the modelling error in this case would not necessarily be small.