Panel Data Modelling for Indian Food Grain Production

RAJARATHINAM ARUNACHALAM (arrathinam@yahoo.com)
Manonmaniam Sundaranar University https://orcid.org/0000-0002-3245-3181

Subh S S
Manonmaniam Sundaranar University https://orcid.org/0000-0002-6770-434X

Ramji Madhaiyan
Manonmaniam Sundaranar University https://orcid.org/0000-0002-4491-3093

Research Article

Keywords: Panel Regression Model, Least-Squares Dummy Variable, Fixed-Effect Model, Random-Effect Model, Wald Test, Hausman Test

Posted Date: December 2nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1133768/v1

License: ☑️ ☐ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.
Panel Data Modelling for Indian Food Grain Production

Rajarathinam, A¹, Suba, S.S². and Ramji.M.³

¹, ², ³Department of Statistics, Manonmaniam Sundaranar University, Tirunelveli – 627 012, Tamil Nadu State, India
E-Mail: rajarathinam@msuniv.ac.in¹, sssuba@gmail.com², 7jipgm@gmail.com³

Abstract: The present investigation was carried out to study the food grain production trends in different states in India based on Panel Regression Model for the period 2001-02 to 2020-2021. The results reveal that between state-to-state food grain production is highly significant the highest food grain production was registered in Uttar Pradesh followed by Punjab and Madhya Pradesh. Very lowest was registered in Kerala and Himachal Pradesh. The findings reveal that the highly significant fixed effect model was found to be suitable to study the trend and this model explains the 82 % of variations in food grain production. Over all increasing in food grain production is noted.

Keywords: Panel Regression Model, Least-Squares Dummy Variable, Fixed-Effect Model, Random-Effect Model, Wald Test, Hausman Test.

Conflicts of Interest: Authors have no Conflict of Interest

1. Introduction

Over the last few decades, regression modelling has traditionally been employed in agricultural production prediction and classification. For agricultural planning purposes, decision-makers need simple and reliable estimation techniques for crop production prediction. Multiple regressions, Discriminant analysis, factor analysis, principal component analysis, cluster analysis and logistic regression analysis are the most commonly used statistical techniques for the prediction and classification of agricultural-related production. In agricultural production time series data, the problems of multicollinearity, autocorrelation and extreme values are unavoidable. In such complex situations, regression models may not provide accurate predictions. Regression models need to fulfil regression assumptions such as autocorrelation and multiple colinearity between the independent variables, which causes the estimated regression models to be unfit and the estimated parameter values obtained based on these models to be inefficient. In most agricultural practices, crop production is influenced by a great variety of interrelated factors such as autocorrelation, and it is difficult to describe their relationships using conventional methods (Zaefizadah et al., [1]).
In this study, panel data regression model is used to combat the complicated relations and strong autocorrelation present in the crop production data.

Panel data is a combination of cross-sectional and time series data. Therefore, using a regression suited to panel data has the advantage of distinguishing between fixed and random effects. Fixed effects, effects that are independent of random disturbances, e.g. observations independent of time. Random effects, effects that include random disturbances. Panel data is more informative since it includes more information, but it has to be modeled correctly by taking into account fixed vs. random effects.

Panel data helps us to controls heterogeneity of cross-section units such as individuals, states, firms, countries etc., over time. Panel data estimation considers all cross-section units as heterogeneous. It helps us to get unbiased estimation. There are time invariant and state invariant variables which we observe or not. As compared to pure cross section and time series, panel data estimation is better to identify and measure effects of independent variables on dependent variables what we cannot measure using time series and cross section data. In addition to this “Panel data give more informative data, more variability, less colinearity among the variables, more degree of freedom and more efficiency”. It is also better estimation method to study the duration of economic states and the “dynamics of change”, over time. It is a good estimation method to ‘construct and test complicated behavioral models’, (Baltagi, [2]).

Based on the above discussion, the present study is aimed to study the trends in food grain production in different states in India over the period 2001-02 to 2020-2021 based on panel regression model.

2. Materials and Methods

2.1. Materials: The present investigation was carried out to study the trends in food grain production in India based on Panel Regression model. The cross-sectional time series data on food grain production for the period 2001-02 to 2020-2021 (twenty years) have been collected from Reserve Bank of India - Handbook of Statistics on Indian Economy (rbi.org.in). The food grain production in eighteen states of India viz. Andhra Pradesh, Karnataka, Kerala, Tamil Nadu, Gujarat, Chhattisgarh, Bihar, Haryana, Himachal Pradesh, Jharkhand, Madhya Pradesh, Maharashtra, Odisha, Punjab, Rajasthan, Uttar Pradesh, Uttarakhand and West Bengal have been considered.
2.2. **Methods:** Panel data are a type of data that contain observations of multiple phenomena collected over different time periods for the same group of individuals, units, or entities. In short, econometric panel data are multidimensional data collected over a given period.

A simple panel data regression model is specified as

\[Y_{it} = \alpha + \beta X_{it} + \nu_{it} \] (1)

where \(\nu_{it} \) are the estimated residuals from the panel regression analysis. Here, \(Y \) is the dependent variable, \(X \) is the independent or explanatory variable, \(\alpha \) and \(\beta \) are the intercept and slope, \(i \) stands for the \(i^{th} \) cross-sectional unit and \(t \) for the \(t^{th} \) month, and \(X \) is assumed to be non-stochastic and the error term to follow classical assumptions, namely, \(E(\nu_{it}) = N(0, \sigma^2) \). In this study, \(i \), the number of cross-sections is 18 (\(i=1, 2, 3, 4, \ldots, 18 \)), and \(t=1, 2, 3, \ldots, 20 \). Detailed discussions of panel data models were given in Hsiao, [3], Greene, [4] and Gujarathi, [5].

2.2.1. **Unit Root Test:** Unit roots for the panel data can be tested using either the Levin-Lin-Chu, [6] test or the Hadri, [7] LM stationarity test. The null hypothesis is that panels contain unit roots, and the alternative hypothesis is that panels are stationary. In the results, if the \(p \) value is less than 0.05, then one can reject the null hypothesis and accept the alternative hypothesis. Similarly, the unit root for the first difference can also be tested using a similar method.

2.2.2. **Constant Coefficients Model:** The Constant Coefficients Model (CCM) assumes that all coefficients (intercept and slope) remain unchanged across cross-sectional units, and over time. In other words, the CCM ignores the space and time dimensions of panel data. Put differently, under the CCM, the cross-sectional units are assumed to be homogeneous such that the values of intercept and slope coefficients are same irrespective of cross-sectional unit being considered. Accepting this homogeneity assumption (also called pooling assumption), the CCM uses the panel (or pooled) data set, and applies Ordinary Least Squares (OLS) method to estimate unknown parameters of the model. Thus, the CCM is nothing but straightforward application of OLS to a given panel or pooled data to obtain estimates for unknown parameters of the model (Bhaumik, [8]).
2.2.3. Individual Specific-Effect Model:

Here, it is assumed that there is unobserved heterogeneity across individuals and captured by α_i. The main question is whether the individual-specific effects α_i are correlated with the regressor; if they are correlated, a fixed effects model exists. If these factors are not correlated, a random effects model exists.

2.2.4. Fixed-Effect OR Least-Square Dummy Variable Regression Model:

Fixed effect regression model indicates that each unit has its own intercept. There will be heterogeneity among the unit due to individual intercepts. Here in fixed effect model the unit intercepts are time-invariant (do not vary over time) even if they might be different among cross-section units. However the fixed effect model believes that the coefficients of the independent variables do not vary across cross-section unit or over time. These fixed effects model can be implemented with the dummy variable technique. Therefore, the fixed effects model can be written as

$$Y_{it} = \alpha_i + \alpha_{2i}D_{2i} + \alpha_{3i}D_{3i} + \alpha_{4i}D_{4i} + \ldots + \alpha_{ni}D_{ni} + \beta_i X_{it} + v_{it}$$

where $D_{2i} = 1$ if the observation is from Karnataka State and is 0 otherwise, $D_{3i} = 1$ if the observation is from Kerala and is 0 otherwise, and $D_{4i} = 1$ if the observation is from Tamil Nadu and is 0 otherwise etc.. Here, α_i represents the intercept of Andhra Pradesh and α_2, α_3, and α_4 are different intercept coefficients that indicate how much the intercepts of Karnataka, Kerala, and Tamil Nadu differ from that of Andhra Pradesh state. Since the dummies are used to estimate the fixed effects, the model is also known as the least-squares dummy variable (LSDV) model; hence, one can conclude that the restricted panel regression model is invalid and that the LSDV model is valid (Bhaumik, [8]).

2.2.5. Random-Effect (RE) Model:

Random effects model is also called error component model (ECM). In this model the cross section units will have random intercept instead of fixed intercept. The rationale behind random effects model is that, unlike the fixed effect model, the variation across entities is assumed to be random and uncorrelated with the predictor or independent variables included in the model, the crucial distinction between the fixed and random effects is whether the unobserved individual effects embodies elements that are correlated with regressors in the model, not whether these effects are stochastic or not (Green, [4]). The RE model assumes that individual-specific effects α_i are random and one
should include α_i in the error term. Each cross-section has the same slope parameters and a
composite error term. So the model (1) become Random-Effect Model (REM):

$$y_{it} = x_i \beta + (\alpha_i + \nu_{it})$$

Let $\epsilon_{it} = \alpha_i + \nu_{it}$.

Here ϵ_{it}, α_i, and ν_i are normally distributed with zero means and constant variances σ^2_{ϵ}, σ^2_{α}
and σ^2_{ν}, respectively.

Hence: $\text{var}(\epsilon_{it}) = \sigma^2_{\alpha} + \sigma^2_{\nu}$, and $\text{cov}(\epsilon_{it}, \epsilon_{iu}) = \sigma^2_{\nu}$; therefore, $\rho_{\epsilon} = \text{cor}(\epsilon_{it}, \epsilon_{iu}) = \frac{\sigma^2_{\nu}}{\sigma^2_{\alpha} + \sigma^2_{\nu}}$.

Rho is the interclass correlation of the error or the fraction of the variance in the error term
due to individual-specific effects. These variable approaches 1 if individual effects dominate
the idiosyncratic error (Bhaumik, [8]).

2.2.6. Hausman test: The Hausman test (Hasman, [9]) is the standard procedure used in
empirical panel data analysis to distinguish between the fixed effects and random effects. In
the Hausman test the null hypothesis signifies that there is no significant difference in the
estimator of fixed effect model and random effect model. If we reject the null hypothesis the
fixed effect model will be the appropriate model. Rejecting the null hypothesis shows that
there might be correlation between the error term and dependent variable. The test statistic
can be calculated is given as follows:

$$H = \left(\hat{\beta}_{RE} - \hat{\beta}_{FE} \right) \left(V(\hat{\beta}_{RE}) - V(\hat{\beta}_{FE}) \right) \left(\hat{\beta}_{RE} - \hat{\beta}_{FE} \right)$$

Here, $\hat{\beta}_{RE}$ and $\hat{\beta}_{FE}$ are the vector of parameter estimates of random effect and fixed effect,
respectively. Under the null hypothesis, this statistic has asymptotically the chi-squared
distribution with the number of degrees of freedom equal to the rank of the matrix:

$$\left(V(\hat{\beta}_{RE}) - V(\hat{\beta}_{FE}) \right)$$

2.2.7. Wald Test: The Wald test (Wald, [10]) can determine which model variables make
significant contributions. The Wald test (also called the Wald chi-squared test) is a way to
determine if explanatory variables in a model are significant, meaning that they add
something to the model; variables that add nothing can be deleted without affecting the model
in a meaningful way. The test can be used for a multitude of different models, including those
with binary variables or continuous variables. The null hypothesis for the test is: some
parameter = some value.
2.2.8. Breusch-Pagan Lagrange Multiplier Test: The Breusch-Pagan-Godfrey test (Breusch and Pagan, [11]) is a Lagrange multiplier test of the null hypothesis of no heteroskedasticity, i.e., constant variance among residuals.

\textbf{Ho}: The null hypothesis of the test states that there is constant variance among residuals.

3. Results and Discussion

The results obtained in this paper based on applying different statistical tools related to panel regression models are discussed in subsequent sections.

3.1. Summary Statistics: The descriptive statistics results presented in Table 1 and depicted in Fig.1., reveal that state wise food grain production are normally distributed as indicated by Jarque-Bera statistic’s p-values except for the states Himachal Pradesh and Odisha. Highest food grain production was registered in Uttar Pradesh followed by Punjab and Madhya Pradesh. Very lowest production is registered in Kerala, and Himachal Pradesh. The Fig.2 depicts that highest food grain production is registered during year 2018-19 and the year wise production shows the increasing trend.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
Sr.No. & Name of State & Sum & Mean & Max. & Mini. & S.D & Jarque-Bera Prob. \\
\hline
1 & Andhra Pradesh & 303003.00 & 15150.15 & 20421.00 & 10365.40 & 3572.47 & 0.4094 \\
2 & Bihar & 253527.60 & 12676.38 & 17036.90 & 7704.40 & 2737.38 & 0.6372 \\
3 & Chhattisgarh & 129993.00 & 6499.65 & 9324.10 & 3274.70 & 1366.25 & 0.8944 \\
4 & Gujarat & 139058.80 & 6952.94 & 9179.60 & 3566.30 & 1446.41 & 0.7472 \\
5 & Haryana & 314500.40 & 15725.02 & 18274.20 & 12328.90 & 1886.79 & 0.4766 \\
6 & Himachal Pradesh & 29545.90 & 1477.30 & 1740.60 & 1017.20 & 170.97 & 0.0013 \\
7 & Jharkhand & 75343.20 & 3767.16 & 6001.30 & 1876.60 & 1301.33 & 0.5478 \\
8 & Karnataka & 220384.00 & 11019.20 & 14187.00 & 6562.10 & 2081.62 & 0.4980 \\
9 & Kerala & 11739.30 & 586.97 & 718.90 & 439.00 & 70.08 & 0.9303 \\
10 & Madhya Pradesh & 425622.00 & 21281.10 & 33523.10 & 10748.80 & 8469.48 & 0.3126 \\
11 & Maharashtra & 246466.90 & 12323.35 & 16069.20 & 8754.40 & 2034.96 & 0.6186 \\
12 & Odisha & 151779.00 & 7588.95 & 9459.00 & 3573.70 & 1280.89 & 0.0013 \\
13 & Punjab & 551900.70 & 27595.04 & 31691.90 & 23491.20 & 2260.11 & 0.7910 \\
14 & Rajasthan & 342927.50 & 17146.38 & 24313.10 & 7536.00 & 4165.03 & 0.6823 \\
15 & Tamil Nadu & 159365.50 & 7968.28 & 11478.50 & 4141.60 & 2423.01 & 0.5525 \\
16 & Uttar Pradesh & 931735.50 & 46586.78 & 58313.30 & 37836.30 & 5906.19 & 0.5973 \\
17 & Uttarakhand & 35634.70 & 1781.74 & 2003.50 & 1559.10 & 107.42 & 0.9087 \\
18 & West Bengal & 333035.80 & 16651.79 & 20106.70 & 14466.90 & 1250.53 & 0.0892 \\
\hline
\end{tabular}
\caption{State wise Food Grain Production Details}
\end{table}
The results presented in Table 2 reveal that the ANOVA F-test and Welch F-test statistic’s value values are significant indicating that the production is statistically significant in all the states.

Table 2: Analysis of Variance test for equality of production means

Method	Df	Value	Probability
Anova F-test	(17, 342)	251.0402	0.0000
Welch F-test*	(17, 124.252)	744.1693	0.0000

*Test allows for unequal cell variances

Table 3: Characteristics of the unit root test

Method	Individual Effect	Individual effects, linear trends		
	Statistic	Prob.**	Statistic	Prob.**
Levin, Lin & Chu t*	3.05481	0.0011	9.12116	0.0000

** Probabilities are computed assuming asymptotic normality.

Constant Coefficient Model (Panel OLS): The CCM es method is employed considering the food grain production (PRODN) as the dependent variable and X, time, as the independent variables; the results are presented in Table 4. The result reveals that the intercepts and slopes are positive and highly significant at the 1% level of significance. The positive slope indicates that the food grain production is an increasing trend. The model is highly significant at the1% level of significance with an incredibly low R^2 value of 15% which is very low. Additionally, the estimated Durbin-Watson value of 0.043090 is quite low, which suggests the presence of autocorrelation in the data.
Table 4: Characteristics of the fitted panel least-squares method

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	5384.438	1092.674	4.927761	0.0000
X	41.81541	5.246203	7.970603	0.0000
Root MSE	10315.66	R-squared	0.150714	
Mean dependent var	12932.12	Adjusted R-squared	0.148342	
S.D. dependent var	11209.18	S.E. of regression	10344.43	
Akaike info criterion	21.33182	Sum squared resid	3.83E+10	
Schwarz criterion	21.35341	Log likelihood	-3837.728	
Hannan-Quinn criter.	21.34041	F-statistic	63.53052	
Durbin-Watson stat	0.043090	Prob(F-statistic)	0.000000	

The estimated model assumes that the slope coefficients of time variables X are all identical in all eighteen states. Therefore, despite its simplicity, the CCM may distort the true relationship between the dependent variable — food grain production (PRODN)—and time, the independent variable X, across the states.

Fixed-Effect OR Least-Square Dummy Variable Regression Model: The result presented in Table 5 reveals that the fixed effect model explains the 82% of variations in the dependent variable. The model is highly significant at 1% level of significance. All the dummy variables also highly significant at 1% level of significant. The value of root mean square error is 2609.55 with the S.E. of regression is 2681.27.

Based on the statistical significance at the 1% level of significance of the estimated coefficients and the substantial increase in the R^2 value to 95% (significant at the 1% level of significance), one can conclude that the fixed effects model or the LSDSV regression model performs better than the panel least-squares regression model (CCM).

Table 5: Characteristics of the fixed effects or LSDSV regression model

PRODN=C(1)+C(2)*X+C(3)*(D2)+C(4)*(D3)+C(5)*(D4)+C(6)*(D5)+C(7)*(D6)+C(8)*(D7)+C(9)*(D8)+C(10)*(D9)+C(11)*(D10)+C(12)*(D11)+C(13)*(D12)+C(14)*(D13)+C(15)*(D14)+C(16)*(D15)+C(17)*(D16)+C(18)*(D17)+C(19)*(D18)

Coefficient	Std. Error	t-Statistic	Prob.	
C(1)	12278.95	652.44	18.82	0.0000
C(2)	273.45	24.51	11.15786	0.0000
C(3)	-9599.90	979.37	-9.802151	0.0000
C(4)	-25501.08	1296.10	-19.67522	0.0000
C(5)	-23588.71	1697.37	-13.89718	0.0000
C(6)	-30073.00	2136.06	-14.07871	0.0000
C(7)	-35995.23	2593.25	-13.88038	0.0000
C(8)	-35287.45	3060.65	-11.52941	0.0000
C(9)	-37707.76	3534.22	-10.66934	0.0000
C(10)	-57424.43	4011.77	-14.31400	0.0000
The cross-section fixed effects (as deviations from common intercept) in the context of fixed effect model are calculated and presented in the Table 6. The fixed effects are positive in Andhra Pradesh, Karnataka, Kerala, Tamil Nadu, Gujarat, Chhattisgarh, Bihar, Haryana and Madhya Pradesh. The fixed effect is negative in Himachal Pradesh, Jharkhand, Maharashtra, Odisha, Punjab, Rajasthan, Uttar Pradesh, Uttarakhand, and West Bengal have been considered. In Andhra Pradesh the fixed effect is 48704.08 which is highest in comparison to that of in other states.

Table 6: Cross-Section Fixed Effects Values

Sr.No.	CROSSID	Effect
1	1	48704.08
2	2	39104.18
3	3	23203.00
4	4	25115.36
5	5	18631.08
6	6	12708.84
7	7	13416.63
8	8	10996.32
9	9	-8720.35
10	10	-11899.43
11	11	145.56
12	12	-14281.14
13	13	-24484.48
14	14	-9947.343
15	15	-25864.95
16	16	-1893.496
17	17	-52167.48
18	18	-42766.37
The diagrammatic representation of fixed effects in all eighteen states is depicted in Fig. 3. Based on this result it is concluded that the Fixed effect model is better than CCM.

![Fixed effect in different states](image)

Fig.3. Fixed effect in different states

To confirm the presence of Fixed Effect, the Redundant Fixed Effect test has been carried out and the results are presented in Table 7.

Table 7: Results of Redundant Fixed Effects Test

Redundant Fixed Effects Tests	Statistic	d.f.	Prob.
Cross-section F	293.390789	(17,341)	0.0000
Cross-section Chi-square	989.629016	17	0.0000

PRODN=C(1)+C(2)*X

Coefficient	Std. Error	t-Statistic	Prob.
C(1)	5384.438	4.927761	0.0000
C(2)	41.81541	7.970603	0.0000

Root MSE 10315.66
Mean dependent var 12932.12
S.D. dependent var 11209.18
Akaike info criterion 21.33182
Schwarz criterion 21.35341
Hannan-Quinn criter. 21.34041
Durbin-Watson stat 0.043090
The test results reveal the Cross-section F and Chi-square statistic’s values are significant at 1 % level of significance indicates that the presence of fixed effects and it is different from one state to another.

Wald Test: To compare between fixed effect model with CCM, the Wald test has been carried out. The null hypothesis of the Wald test is $H_0=C(3)=C(4)=C(5)=...=C(18)=0$ i.e. all three dummy variables values are zero (there is no fixed effect). The result presented in Table 8 reveals that, since the F and Chi-square statistics values are significant at 1 % level of significance the null hypothesis $H_0=C(3)=C(4)=C(5)=...=C(18)=0$ is rejected which indicates that the values of the dummy variables are not equal to zero which confirms fixed effects or LSDV regression model is an appropriate model in comparisons to CCM.

Table 8: Characteristics of the Wald test

Test Statistic	Value	df	Probability
F-statistic	292.7218	(16, 341)	0.0000
Chi-square	4683.549	16	0.0000

Null Hypothesis: $C(3)=C(4)=C(5)=C(6)=C(7)=C(8)=C(9)=C(10)=C(11)=C(12)=C(13)=C(14)=C(15)=C(16)=C(17)=C(18)=C(19)$

Null Hypothesis Summary:

Normalized Restriction ($= 0$)	Value	Std. Err.
$C(3) - C(19)$	81870.55	7887.99
$C(4) - C(19)$	65969.37	7400.87
$C(5) - C(19)$	67881.74	6914.19
$C(6) - C(19)$	61397.45	6428.02
$C(7) - C(19)$	55475.22	5942.52
$C(8) - C(19)$	56183.00	5457.84
$C(9) - C(19)$	53762.70	4974.23
$C(10) - C(19)$	34046.02	4492.03
$C(11) - C(19)$	30866.94	4011.77
$C(12) - C(19)$	42911.94	3534.22
$C(13) - C(19)$	28485.23	3060.65
$C(14) - C(19)$	18281.89	2593.25
$C(15) - C(19)$	32819.03	2136.06
$C(16) - C(19)$	16901.42	1697.37
$C(17) - C(19)$	40872.88	1296.10
$C(18) - C(19)$	-9401.19	979.37

Restrictions are linear in coefficients.

Random-Effect Model: Finally, the random-effect model is estimated, and the results are presented in Table 9. The result reveal that the model is highly significant at 1 % level of significance with low R^2 value of 17 % with S.E. of regression 2845.515, RMSE, 2837.60. As in the case of fixed effect model, the random-effect model’s intercept and slope are highly
significant at 1 % level of significance. The rho value is 0.9385, which indicates that the
individual effects of cross-sections are 0.9%.

Table 9: Characteristics of the fitted random effects model

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-14867.17	3952.539	-3.761424	0.0002
X	154.0127	17.08422	9.014909	0.0000

Effects Specification

	S.D.	Rho
Cross-section random	10472.86	0.9385
Idiosyncratic random	2681.265	0.0615

Weighted Statistics

	Value	Description	Prob.
Root MSE	2837.599	R-squared	0.167746
Mean dependent var	739.1265	Adjusted R-squared	0.165422
S.D. dependent var	3114.779	S.E. of regression	2845.515
Sum squared resid	2.90E+09	F-statistic	72.15735
Durbin-Watson stat	0.565478	Prob(F-statistic)	0.000000

Unweighted Statistics

	Value	Description
R-squared	-0.934325	Mean dependent var
Sum squared resid	8.73E+10	Durbin-Watson stat

The cross-section random effects in the context of random effect model are calculated
and presented in the Table 10. The random effects are positive in Andhra Pradesh, Karnataka,
Kerala, Tamil Nadu, Gujarat, Chhattisgarh, Bihar, Haryana and Madhya Pradesh and Punjab.
The random effects are negative in Himachal Pradesh, Jharkhand, Maharashtra, Odisha,
Rajasthan, Uttar Pradesh, Uttarakhand, and West Bengal have been considered.

Table 10: Cross-Section Random Effects Values

Sr.No.	CROSSID	Effect
1	1	28307.42
2	2	21119.77
3	3	7651.421
4	4	11938.43
5	5	7856.217
6	6	4334.215
7	7	7420.576
8	8	7389.066
9	9	-9882.309
10	10	-10670.12
11	11	3716.420
12	12	-8282.265
13	13	-16071.39
14	14	799.1541
15	15	-12685.57
16	16	13588.47
17	17	-34140.40
18	18	-22389.11
The diagrammatic representation of random effect in all eighteen states is depicted in Fig. 4. Based on this result the presences of random effects in all four different districts are confirmed.

Breusch-Pagan Lagrange-Multiplier Test:

The result presented in Table 11 indicates that the Breusch-Pagan LM, Pesaran scaled LM and Pesaran CD tests statistic values are highly significant at 1% level of significance since both statistics p-values are equal to 0.0000, indicating that the null hypothesis of the test, “H₀: There is constant variance among residuals” is rejected. Hence, the above random effect model having the problem of heteroscedasticity.

Table 11: Characteristics of the residual cross-section dependence test

Test	Statistic	d.f.	Prob.
Breusch-Pagan LM	566.0751	153	0.0000
Pesaran scaled LM	23.61393		0.0000
Pesaran CD	3.092296		0.0020
Hausman Test: The Hausman test result presented in the following Table 12, reveals that the as the Chi-Sq. statistics value 0.0000 with 1 degree of freedom is highly significant at 1% value of significance, the null-hypothesis “H₀: Random Effect Model” is rejected. So, among the three models viz. CCM, Fixed effect and Random effect model, the fixed effect model is emerged as an appropriate model.

Table 12: Characteristics of the Hausman Test

Test Summary	Chi-Sq. Statistic	Chi-Sq.D.F.	Prob.
Cross-Section Random	46.2043	1	0.0000

The following fig 5. depicts and confirms that the coefficients of intercept and slope are lying in the 99% Confidence Interval (CI)

4. **Conclusion**

The present investigation was carried out to study the food grain production trends in different states in India based on Panel Regression Model for the period 2001-02 to 2020-2021. The result reveals that between state-to-state food grain production is highly significant the highest food grain production was registered in Uttar Pradesh followed by Punjab and Madhya Pradesh. Very lowest was registered in Kerala and Himachal Pradesh. The fixed effect model was found to study the trend and this model explains the 82% of variations in food grain production. Increases in food grain production have been observed.

REFERENCES

[1] Zaefizadah M., Khayatnezhad M. and Ghlaomin M., Comparison of Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) in Predicting the Yield Using its Components in the Hulless Barley, J. Agriculture and Environmental Sciences, 10(1), (2011), 60-64.

[2] Baltagi, B.H., Econometric Analysis of Panel Data.6th Edition, Wiley, New York, NY, https://link.springer.com/book/10.1007%2F978-3-030-53953-5, (2021).

[3] Hsiao, C., Analysis of Panel Data. Cambridge University Press, Cambridge, (2003).

[4] Greene, W.H., Econometric Analysis, Pearson Prentice Hall, Upper Saddle River, NJ, (2008).

[5] Gujarati, D.N., D.C.Porter, G.Sangeetha, Basic Econometrics, 5th edition. McGraw Hill Education, New York, NY, (2017).
[6] Levin, A., C.F. Lin, and C.S.J. Chu, Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties. Journal of Econometrics, 108, (2002), 1-24.

[7] Hadri, K., Testing for Units Roots in Heterogeneous Panel Data. Econometrics Journal, 3 (2000), 148-161.

[8] Bhaumik, S.K., Principles of Econometrics, 2nd edition, Oxford University Press, (2017).

[9] Hausman, J. A., Specification Tests in Econometrics, Econometrica, 46, (1978), 1251–1272.

[10] Wald, A, Test of statistical hypotheses concerning several parameters when the number of observations is large, Transactions of the American Mathematical Society, 54, (1943), 426-482, http://www.jstor.org/stable/1990256.

[11] Breusch, T., and A. Pagan The Lagrange Multiplier Test and its Application to Model Specification in Econometrics, Review of Economic Studies, 47, (1980), 239–253.