Trends in elastic properties of Ti–Ta alloys from first-principles calculations

Tanmoy Chakraborty1,2,* and Jutta Rogal1

1 Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany
2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America

E-mail: tchakra7@jhu.edu

Received 13 August 2020, revised 10 September 2020
Accepted for publication 21 September 2020
Published 16 October 2020

Abstract

The martensitic start temperature (M_s) is a technologically fundamental characteristic of high-temperature shape memory alloys. We have recently shown [Chakraborty et al 2016 Phys. Rev. B 94 224104] that the two key features in describing the composition dependence of M_s are the $T = 0$ K phase stability and the difference in vibrational entropy which, within the Debye model, is directly linked to the elastic properties. Here, we use density functional theory together with special quasi-random structures to study the elastic properties of disordered martensite and austenite Ti–Ta alloys as a function of composition. We observe a softening in the tetragonal shear elastic constant of the austenite phase at low Ta content and a non-linear behavior in the shear elastic constant of the martensite. A minimum of 12.5% Ta is required to stabilize the austenite phase at $T = 0$ K. Further, the shear elastic constants and Young’s modulus of martensite exhibit a maximum for Ta concentrations close to 30%. Phenomenological, elastic-constant-based criteria suggest that the addition of Ta enhances the strength, but reduces the ductile character of the alloys. In addition, the directional elastic stiffness, calculated for both martensite and austenite, becomes more isotropic with increasing Ta content. The reported trends in elastic properties as a function of composition may serve as a guide in the design of alloys with optimized properties in this interesting class of materials.

Keywords: Ti–Ta alloys, elastic properties, density functional theory, shape memory alloys

Supplementary material for this article is available online
(Some figures may appear in colour only in the online journal)

1. Introduction

Ti–Ta alloys are among the most promising candidates for high-temperature shape memory alloys (HTSMAs), materials which exhibit martensitic phase transformations to reversely convert heat into mechanical strain and that are currently being employed as, e.g., sensors or actuators in automotive and aerospace applications [1–3]. Among various types of shape memory alloys such as Ti–Mo [4–6] and Ti–Nb [7, 8], Ti–Ta solid solutions not only present advantages including relatively high transformation temperatures ($M_s > 373$ K) and a low tendency to form the hexagonal ω phase, which is detrimental for the shape memory effect and causes embrittlement [2], but also show excellent cold workability [9]. Theoretical and experimental investigations on Ti–Ta and Ti–Ta-based alloys demonstrated that the martensitic transformation temperature M_s, as well as other physical properties of the two phases are strongly composition dependent [2, 10–13].

Recently, we have shown that the relative phase stability at $T = 0$ K and the difference in the vibrational free energy contribution (which within the Debye model is derived from the elastic properties) between the martensite (orthorhombic,
The relative stability of the different competing phases in Ti-Ta alloys has been studied extensively in our previous work [11]. Wu et al. [14] studied the phase stability and also elastic properties, but of only the β phase in Ti-Ta alloys and without accounting for chemically disordered structures. A careful analysis of changes in the elastic properties of both, austenite and martensite, upon varying the Ta concentration can improve the mechanical stability of the austenite increases with increasing Ta content. This indicates that the mechanical behavior with a maximum value at intermediate Ta concentrations and then gradually stiffens upon further alloying with Ta. This indicates that the mechanical behavior of the austenite increases with increasing Ta content. The shear elastic constants of the martensite phase exhibit a non-linear behavior with a maximum value at intermediate Ta concentrations. The polycrystalline properties of the two phases derived from the single crystal elastic constants correspondingly reveal similar trends. Based on the empirical criteria proposed by Pugh [16], Pettifor [17], and most recently by Niu et al. [18], our results suggest that Ta enhances the strength of Ti-Ta binary alloys and lowers the ductility. We have also investigated the effect of Ta alloying on the anisotropy of both phases by calculating different anisotropy indices and direction-dependent Young’s moduli. The anisotropy of both phases decreases smoothly with increasing Ta content.

The paper is organized as follows: in section 2 we describe the computational details and the Voigt–Reuss–Hill (VRH) approximation for polycrystalline elastic moduli. In section 3 we present our ab initio results on the single crystal elastic and polycrystalline properties, as well as the elastic anisotropy. We conclude our findings in section 4.

2. Computational details

First principles DFT calculations were carried out using the Vienna ab initio simulation package (VASP) [19–21]. We use Perdew–Burke–Ernzerhof gradient corrected exchange–correlation functional (PBE-GGA) [22] for all calculations. Projector augmented wave [21, 23] potentials were used for all calculations including 3p and 5p electrons for Ti and Ta in the valence shell, respectively. A cutoff energy of 300 eV for the plane waves and Methfessel–Paxton scheme was used to integrate the Brillouin zone with a smearing of $\sigma = 0.05$ eV. With this setup, total energies are converged to within 4 meV/atom. We have used special quasi-random structure (SQS) method [24] as implemented in the modified version [25, 26] of the ATAT package [27] to model the chemical disorder of the martensite and austenite phases. We considered six different compositions with 12.5%, 18.75%, 25%, 31.25%, 37.5% and 43.75% Ta (details concerning the corresponding SQS supercells can be found in the supplementary material [https://stacks.iop.org/JPCM/33/035701/mmedia] (SM)).

The elastic constants of the martensite and austenite phases were calculated using the stress-strain method as implemented in VASP [28]. The cubic austenite and orthorhombic martensite phases have three (C_{11}, C_{12}, and C_{44}) and nine (C_{11}, C_{12}, C_{22}, C_{33}, C_{44}, C_{55}, C_{66}, C_{13} and C_{23}) independent elastic constants, respectively. For cubic systems, C_{11} represents the uniaxial deformation along the [001] direction, C_{12} is the shear stress at the (110) crystal plane along the [110] direction, and C_{44} represents a shear deformation on the (100) crystal plane. The elastic tensor matrix for the martensite (orthorhombic) phase is given by

$$
\begin{vmatrix}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\
C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{vmatrix}.
$$

For the austenite (cubic), $C_{11} = C_{22} = C_{33}$, $C_{12} = C_{13} = C_{23}$, and $C_{44} = C_{55} = C_{66}$. Using SQSs to describe the chemical disorder results in a lowering of the symmetry and minor differences in the elastic constants that are equivalent in the cubic phase. Correspondingly, the elastic constants for the β phase have been averaged as [29, 30]

$$
\begin{align*}
\overline{C_{11}}(\beta) &= \frac{(C_{11} + C_{22} + C_{33})}{3}, \\
\overline{C_{12}}(\beta) &= \frac{(C_{12} + C_{13} + C_{23})}{3}, \\
\overline{C_{44}}(\beta) &= \frac{(C_{44} + C_{55} + C_{66})}{3}.
\end{align*}
$$

The polycrystalline elastic moduli of the martensite and austenite phases have been computed within the VRH approximation [31–33]. The Voigt approximation [31] provides an upper bound of the bulk (B) and shear (G) modulus, whereas the Reuss approximation [32] represents a lower bound of B and G. The relationship between the elastic constants matrix C and the compliance matrix S elements with the polycrystalline bulk and shear moduli for the martensite and the austenite are given by [34, 35]:

- Austenite phase:
 \begin{align*}
 B_V &= B_R = (C_{11} + 2C_{12})/3, \\
 G_V &= (C_{11} - C_{12} + 3C_{44})/3, \\
 G_R &= 5(C_{11} - C_{12})C_{44}/[4C_{44} + 3(C_{11} - C_{12})].
 \end{align*}

- Martensite phase:
 \begin{align*}
 B_M &= B_R = (C_{11} + 2C_{12})/3, \\
 G_M &= (C_{11} - C_{12} + 3C_{44})/3, \\
 G_R &= 5(C_{11} - C_{12})C_{44}/[4C_{44} + 3(C_{11} - C_{12})].
 \end{align*}
Martensite phase:

\[B_V = \frac{1}{9} (C_{11} + C_{22} + C_{33}) + \frac{2}{9} (C_{12} + C_{23} + C_{13}) \]

\[G_V = \frac{1}{15} [C_{11} + C_{22} + C_{33} - (C_{12} + C_{23} + C_{13})] + \frac{1}{5} (C_{44} + C_{55} + C_{66}) \]

\[\frac{1}{B_R} = (S_{11} + S_{22} + S_{33}) + 2(S_{12} + S_{13} + S_{23}) \]

\[\frac{1}{G_R} = \frac{1}{15} [4(S_{11} + S_{22} + S_{33}) - 4(S_{12} + S_{13} + S_{23}) + 3(S_{44} + S_{55} + S_{66})] \]

where \(S_{11}, \ S_{12}, \) etc are the elements of the elastic compliance matrix with \(S = C^{-1} \). \(B_V, B_R, G_V, \) and \(G_R \) are the bulk modulus and shear modulus from the Voigt and Reuss equations, respectively. Polycrystalline elastic properties such as \(B \) and \(G \) can be calculated from the elastic constants using the VRH approximation

\[B = \frac{1}{2} (B_V + B_R) \]

\[G = \frac{1}{2} (G_V + G_R). \]

Furthermore, the Young’s modulus \((E) \) within the VRH framework is given by

\[E = \frac{9BG}{3B + G}. \]

3. Results

3.1. Composition dependent elastic constants

3.1.1. Single crystal elastic constants. In this section, we report the trends in elastic constants of the austenite and martensite as a function of composition. The elastic constants for pure bcc Ti and bcc Ta (see table S1 in the supplementary material) are in good agreement with previous \textit{ab initio} and experimental results [36, 37]. According to the Born–Huang criteria [38] a cubic phase is mechanically stable if

\[C_{11} > 0, \ C_{44} > 0, \ C_{11} > |C_{12}|, \ (C_{11} + 2C_{12}) > 0. \]

The austenite phase in Ti–Ta satisfies the Born–Huang stability criteria for all compositions studied, that is the austenite phase appears to be elastically stable (values are listed in table S2 of the supplementary material). The tetragonal shear constant \((C^\prime = (C_{11} - C_{12})/2) \) is strongly dependent on composition, increasing with increasing Ta content as shown in figure 1. This implies that alloying Ta stabilizes the bcc austenite phase, which is expected as Ta is a \(\beta \)-stabilizer. Below 12.5% Ta our calculations predict that the austenite phase will be mechanically unstable at \(T = 0 \) K as \(C' \) becomes negative, which is in agreement with the fact that bcc Ti is mechanically and dynamically unstable at \(T = 0 \) K [39, 40]. The top \(x \)-axis of figure 1 displays the corresponding change in the e/a ratio (the number of electrons per atom). The monotonic correlation between \(C' \) and e/a has been identified experimentally by Fischer et al [41] for bcc transition metals, and has also been recognized later theoretically for \(\beta \)-type Ti alloys such as Ti–Nb [42, 43], consistent with our findings for Ti–Ta. Similar results have also been reported for Ti–V solid solutions [15], where \(\approx 18\% \) V are required to mechanically stabilize the bcc phase in Ti–V alloys.

In the right graph of figure 1, the dependence of the trigonal shear constant \((C_{44}) \) on composition is shown. \(C_{44} \) also increases with increasing Ta concentration, but is much less sensitive to a change in composition (increase by only \(\approx 10\%) \) compared to \(C' \). Similar findings have also been reported for Ti–Nb [44, 45] and Ti–V [15], where \(C_{44} \) is also nearly independent of Nb and V alloying, respectively.

The mechanical stability criteria for the orthorhombic martensite phase are [38]

\[C_{11} > 0, \ C_{22} > 0, \ C_{33} > 0, \ C_{44} > 0, \ C_{55} > 0, \ C_{66} > 0, \]

\[[C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})] > 0, \]

\[(C_{11} + C_{22} - 2C_{12}) > 0, \ (C_{11} + C_{33} - 2C_{13}) > 0, \]

\[(C_{22} + C_{33} - 2C_{23}) > 0. \]

The elastic constants of the martensite are shown in figure 2 as a function of Ta concentration (values are provided in table S3 of the supplementary material). All criteria in equation (13) are satisfied implying the existence of a mechanically stable martensite phase over the entire composition range studied in this work. The elastic constants, apart from characterizing the mechanical and dynamical stability of materials, can often also be related to the crystallographic axes to obtain insights into the incompressibility along different directions. \(C_{11} \), for example, characterizes resistance to linear compression under uniaxial stress along the \(x \) direction [45, 46] which also represents atomic bonding along the \(x \) direction [47]. Between the austenite and martensite the orientation relationship (OR) is
The nine elastic constants of the orthorhombic martensite phase are shown by filled symbols as a function of Ta content. The primary, shear, and off-diagonal elastic constants are shown in red, blue, and dark green, respectively. C_{11}, C_{12}, C_{44} of the cubic austenite phase are also shown with open circles in red, blue, and dark green, respectively.

The trends in the bulk modulus (B), shear modulus (G), and Young's modulus (E) of the martensite (α^\prime, circle) and austenite (β, square) as a function of Ta content are shown in figure 3. At high Ta content, there seems to be an interesting pattern where the primary elastic constants (C_{11}, C_{22}, and C_{33}), off-diagonal elastic constants (C_{12}, C_{13}, and C_{23}), and the shear constants (C_{44}, C_{55}, and C_{66}) tend to converge to three distinct sets of values, respectively (i.e., to say, C_{11}, C_{12}, C_{44}), as shown in figure 2. One could imagine that these three sets qualitatively represent the three elastic constants of a cubic phase. This implies that the martensite is on the verge of a phase transformation, which is in good agreement with previous theoretical and experimental findings [11, 48–50]. It is further supported by the fact that both, the b/a and c/a, ratios of the martensite decrease with increasing Ta content [10], making the martensite phase more cubic.

3.1.2. Polycrystalline properties. Using the values of elastic constants together with VRH approximation we studied various polycrystalline properties of the martensite and the austenite phase as a function of composition. The corresponding values for the bulk (B), shear (G), and Young’s (E) moduli are shown in figure 3. The bulk modulus (top graph) increases linearly with increasing Ta content for both phases, and appears to be a simple linear interpolation between the bulk moduli of pure Ti and Ta. The shear modulus mainly depends upon the shear strain and is a measure of the stability of a phase upon shear. As shown in the middle panel of figure 3, G also increases linearly with Ta content for the cubic austenite phase. For the martensite phase, however, G initially increases linearly up to \sim25% Ta, then exhibits a plateau-like region up to \sim40% Ta, before it decreases upon further addition of Ta. This interesting behavior of G for the martensite phase originates in the corresponding shear elastic constants (C_{44}, C_{55}, and C_{66}) that show a similar trend, see figure 2. It is to be noted that although the value of G differs maximum among both the phases within the 25%–35% Ta content regime, at very low Ta content, $C_{22} \approx C_{33} > C_{11}$, indicative of the fact that the martensite phase reveals the largest incompressibility along the b and c axis, and that it is relatively compressible along the a axis. With increasing Ta content, C_{11} increases significantly, while C_{22} and C_{33} exhibit smaller changes. C_{11} is very similar in the martensite and austenite (open circles in figure 2) phases, which is reasonable since considering the OR between the two phases C_{11} corresponds to a deformation in the same crystallographic direction. Also, we see that at 43.75% Ta, the value of C_{11} for the austenite phase becomes higher than that of the martensite phase, indicative of a higher mechanical stability of the austenite phase at high Ta content.

The shear elastic constants C_{44}, C_{55}, and C_{66} in figure 2 show approximately the same value at 12.5% Ta. The similarities in shear moduli at low Ta content might be indicative of the tendency of Ti–Ta to transform into the energetically more stable hexagonal ω phase [11], for which $C_{44} = C_{55} = C_{66}$. For larger Ta concentrations, the shear moduli of the martensite maintain the trend $C_{44} > C_{55} > C_{66}$ over the entire investigated composition range. This indicates that the martensite phase possesses the greatest shear resistance within the (100) plane and that the softest shearing transformation is observed along the (001) plane. While C_{55} and C_{66} change only slightly, C_{44} exhibits a non-linear behavior with an increase up to about 30% Ta, followed by a slight decrease.
low and high Ta content the values tend to converge, which might be related to the expected phase transformations (α″, β) → α and α″ → β at low and high Ta content, respectively. The Young’s modulus reflects the stiffness of a material which in turn is connected to the bonding strength within the material. The dependence of E on the composition is shown in the lower panel of figure 3. The change in E with Ta alloying is similar to that in G for both phases, that is linear for the austenite and non-linear with a clear maximum for the martensite phase. The trends in B, G, and E of the austenite and martensite phase are very similar to that observed for Ti–Nb alloys [43, 44].

To investigate the brittle-ductile properties in these alloys, we follow a more recently discovered universal ductile-to-brittle criterion reported by Niu et al [18], which is essentially a renormalized hyperbolic correlation derived by dividing the Cauchy pressure by the Young’s modulus (revised Cauchy pressure) and plotting it as a function of Pugh’s ratio, G/B. According to Niu et al [18], the higher Pugh’s ratio the higher the material’s strength and consequently hardness. On the other hand, a higher value of the revised Cauchy pressure indicates a more ductile material. In figure 4, the corresponding results are shown for the martensite and austenite phases. With increasing Ta content both, the martensite and austenite, tend to increase strength i.e., loose their ductility. However, we also note that due to the non-linear elastic response of the martensite it becomes more ductile again upon further alloying Ta above ~40%. There is currently no existing experimental evidence to support our brittle-ductile findings, however, we note that β stabilizing elements, in general, tend to enhance the Pugh’s ratio e.g., in Ti–Nb [43], similar to our findings for Ti–Ta.

3.2. Elastic anisotropy

Elastic anisotropy plays a crucial role in the formation of microcracks in materials [51] as well as significantly impacts the mechanical properties of materials [52]. It is therefore important to study elastic anisotropy in materials to understand their durability that, in turn, can assist the design of improved materials. In this work, we have computed two important anisotropy indices: (1) universal elastic anisotropy (A^U) [53], which is also interpreted as a generalization of the Zener anisotropy index, and (2) Chung–Buessem percent shear anisotropy (A^C) [54]. These are defined as

$$A^U = 5\frac{G_V}{G_R} - \frac{B_V}{B_R} - 6 \geq 0, \quad (16)$$

$$A^C = \frac{G_V - G_R}{G_V + G_R}. \quad (17)$$

Both parameters have been extensively used in the materials community to study elastic anisotropy of materials [34, 46, 55–59]. For a perfectly isotropic crystal $A^U = A^C = 0$. There is no upper bound for A^U, whereas the maximum value of A^C is 1. The deviation from 0, for both parameters, is a measure of the anisotropic behavior of a material.

The calculated values of these two quantities for the austenite and martensite phases as a function of composition are shown in figure 5. Both indices (A^U and A^C) have large values for the two phases at low Ta concentrations suggesting a highly anisotropic nature. With increasing Ta content, A^U and A^C converge towards zero implying that the addition of Ta makes both phases more isotropic. The anisotropy appears to be less connected to the respective crystal phase, but more to the properties of the elements, since Ta is more isotropic than Ti.

The two, commonly used anisotropy indices are often not sufficient to fully depict the elastic behavior of different crystal phases. In order to further extend our description of the anisotropic behavior of the austenite and martensite phases we calculate the directional dependence of the Young’s modulus as a function of composition. This approach has been well established for various systems [34, 55, 60–62] to study the elastic anisotropy of materials. The direction-dependent Young’s modulus for the martensite (orthorhombic) is given by [63]

$$1/E = l_{11}^M S_{11} + 2l_{12}^M S_{12} + 2l_{13}^M S_{13} + l_{22}^M S_{22} + 2l_{23}^M S_{23} + l_{33}^M S_{33} + l_{34}^M S_{34} + l_{35}^M S_{35} + l_{36}^M S_{36}. \quad (18)$$

![Figure 4. A qualitative strength-ductile phase diagram of the martensite and the austenite as a function of Ta alloying. (a)–(f) Points represent 12.5%, 18.75%, 25%, 31.25%, 37.5% and 43.75% Ta content respectively.](image1)

![Figure 5. The universal anisotropy index (A^U) and the Chung–Buessem anisotropy index (A^C) of the martensite (circle) and austenite (square) as a function of Ta content.](image2)
Likewise, the direction-dependent Young’s modulus for the austenite (cubic) is given by [63, 64]

\[
\frac{1}{E_{hl}} = S_{11} - 2S_\lambda \frac{h^2k^2 + k^2l^2 + l^2h^2}{h^2 + k^2 + l^2},
\]

where \(S_\lambda = S_{11} - S_{12} - S_{44}/2\) and \(S_{ij}\) are the elastic compliance matrix elements as introduced above. \(l_1, l_2\) and \(l_3\) are the direction cosines, calculated using a spherical coordinate system i.e. \(l_1 = \sin[\theta]\cos[\phi]\), \(l_2 = \sin[\theta]\sin[\phi]\), and \(l_3 = \cos[\theta]\).

In Figure 6 we show the directional dependence of the Young’s modulus of the martensite as a function of composition. At low Ta content, the martensite phase reveals a strong anisotropy in the Young’s modulus that decreases smoothly with increasing Ta content, similar to the trend in the anisotropy indices discussed above. Likewise, in Figure 7 the directional dependence of the Young’s modulus of the austenite phase is shown as a function composition. The outcome is similar to what we already observe for martensite and again this is in good agreement with the findings from our anisotropy indices discussion. Similar behavior was also observed in \(\beta\)-type Ti–Nb alloys [44, 60] where it was found that at 18.75% Nb content the \(\beta\) phase shows strong anisotropy in the Young’s modulus, but at 31.25% Nb the anisotropy decreases drastically and the material becomes almost fully isotropic. The austenite phase exhibits the highest \(E\) values along the [111] axes and reveals exceptionally low Young’s modulus (\(\sim 30\) GPa) in the [100], [010] and [100] directions, similar to \(\beta\) Ti–Nb alloys [44, 60].

4. Summary

We have investigated trends in the elastic properties of the martensite and austenite phases in Ti–Ta alloys over a wide range of compositions. The tetragonal shear constant of the high-temperature austenite phase strongly stiffens with increasing Ta content, making the phase more stable, which is in agreement with our previous work and existing literature. Below 12.5% Ta, the austenite phase becomes unstable. The martensite phase exhibits an unexpected non-linear trend in the shear elastic constants, with a maximum at \(\sim 30\)%, whereas the shear and Young’s moduli of the austenite show a linear dependence on the composition, whereas the shear and Young’s moduli of the martensite again behave non-linear, similar to the single crystal shear elastic constants. This gives rise to different thermodynamic and mechanical properties observed in the two phases which may have potential applications in other sectors e.g. in the biomedical industry where materials with low Young’s modulus are desirable. Using a universal brittle-ductile phase diagram reveals that the addition of Ta enhances the strength but reduces the ductility in these alloys.

Furthermore, the anisotropy in the Young’s modulus is strongly composition dependent for both phases. With increasing Ta content the elastic properties become more isotropic independent of the phase which indicates that this originates mainly in the isotropic nature of Ta. This information is of particular interest in the study of microcrack formation.
The class of Ti–Ta alloys is not only of importance as HTSMAs, but might also show potential for biomedical applications, as sensors or actuators. The presented trends in the elastic properties of the martensite and austenite phases in Ti–Ta alloys can be helpful in the design of new materials and aid experimentalists in the identification of promising alloy compositions.

Acknowledgments

The work presented in this paper has been financially supported by the Deutsche Forschungsgemeinschaft (DFG) within the research unit FOR 1766 (High Temperature Shape Memory Alloys, http://www.for1766.de, Project No. 200999873, sub-project 3). The authors thank Ralf Drautz and Davide Sangiovanni for critical comments and helpful discussions.

ORCID iDs

Tanmoy Chakraborty https://orcid.org/0000-0001-8181-3473
Jutta Rogal https://orcid.org/0000-0002-6268-380X

References

[1] Ma J, Karaman I and Noebe R D 2010 Int. Mater. Rev. 55 257
[2] Buenconsejo P J S, Kim H Y, Hosoda H and Miyazaki S 2009 Acta Mater. 57 1068
[3] Firstov G S, Van Humbeck J and Koval Y N 2004 Mater. Sci. Eng.: A 388–400 18
[4] Miyazaki S, Kim H Y and Hosoda H 2006 Mater. Sci. Eng.: A 438–440 18
[5] Kim H Y, Ikehara Y, Kim J I, Hosoda H, Miyazaki S and Miyazaki S 2006 Acta Mater. 54 2419
[6] Kim H Y, Ohnatsu Y, Kim J I, Inamura T and MiyazakiHosoda S H 2006 Mater. Trans. 47 518
[7] Matsumoto H, Watanabe S and Hanada S 2006 Mater. Trans. 465 1070
[8] Inamura T, Fukui Y, Hosoda H, Wakashima K and Miyazaki S 2005 Mater. Sci. Eng. C 253 426
[9] Buenconsejo P J S, Kim H Y and Miyazaki S 2011 Scr. Mater. 64 114
[10] Chakraborty T, Rogal J and Drautz R 2016 Phys. Rev. B 94 224104
[11] Chakraborty T, Rogal J and Drautz R 2015 J. Phys.: Condens. Matter 27 115401
[12] Ferrari A et al 2019 Shape Mem. Superelasticity 5 6–15
[13] Ferrari A, Paulsen A, Langenkämper D, Piorunek D, Somsen C, Frenzel J, Rogal J, Eggerer G and Drautz R 2019 Phys. Rev. Mater. 3 103605
[14] Wu C Y, Xin Y H, Wang X F and Lin J G 2010 Solid State Sci. 12 2120
[15] Skripnyak N V, Ponomareva A V, belov M P and Abrikosov I A 2018 Mater. Des. 140 357
[16] Pugh S F 1954 London Edinburgh Dublin Phil. Mag. J. Sci. 45 823
[17] Petitfor D G 1992 Mater. Sci. Technol. 8 345
[18] Niu H, Chen X Q, Liu P, Xing W, Cheng X, Li D and Li Y 2012 Sci. Rep. 2 718
[19] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Blochl P E 1994 Phys. Rev. B 50 17953
[24] Zunger A, Wei S-H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
[25] von Pezold J, Dick, A Friák M and Neugebauer J 2010 Phys. Rev. B 81 094203
[26] Kofmann J, Hammerschmidt T, Maisel S, Müller S and Drautz R 2015 Intermetallics 64 44
[27] van de Walle A, Asta M and Ceder G 2002 Comput. Coupling Phase Diagr. Thermoch. 26 539
[28] Page Y L and Saxe P 2002 Phys. Rev. B 65 104104
[29] Tasnádi F, Odén M and Abrikosov I 2012 Phys. Rev. B 85 144112
[30] Gao M C, Suzuki Y, Schweiger H, Doğan Ö N, Hawk J and Widom M 2013 J. Phys.: Condens. Matter 25 075402
[31] Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Teubner)
[32] Reuss A 1929 Z. Angew. Math. Mech. 65 350
[33] Hill R 1952 Proc. Phys. Soc. 65 350
[34] Xiao B, Feng J, Zhou C T, Jiang Y H and Zhou R 2011 J. Appl. Phys. 109 023507
[35] Connétial D and Thomas O 2009 Phys. Rev. B 79 094101
[36] Ikehata H, Nagasako N, Furuta T, Fukomoto F, Miwa K and Abrikosov I A 2012 Phys. Rev. B 85 174113
[37] Allard S 1969 Metals, Thermal and Mechanical Data (International Tables of Selected Constants vol 16) (New York: Pergamon)
[38] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[39] Mei Z G, Shang S L, Wang Y and Liu Z K 2009 Phys. Rev. B 80 104116
[40] Hu C-E, Zeng Z-Y, Zhang L, Chen X-R, Cai L-C and Alfe D 2010 J. Appl. Phys. 107 093509
[41] Fischer E S and Dever D 1970 Acta Metall. 18 265
[42] Hu Q-M, Li S-J, Hao Y-L, Yang R, Johansson B and Vitos L 2008 Appl. Phys. Lett. 93 121902
[43] Lai M J, Xue X Y, Meng C S, Kou H C, Tang B, Chang H and Li J S 2013 Mater. Sci. Forum 747–748 890
[44] Gutiérrez Moreno J J, Papageorgiou D G, Evangelakis G A and Lekka C E 2018 J. Appl. Phys. 124 245102
[45] Ma H, Zhang J, Zhao B, Wei Q and Yang Y 2017 AIP Adv. 7 065007
[46] Ganeshraj C and Santhosh P N 2014 116 J. Appl. Phys. 144104
[47] Masys S and Jonauskas V 2013 J. Chem. Phys. 139 224705
[48] Dobromyslov A V and Elkin V A 2001 Scr. Mater. 44 905
[49] Dobromyslov A V and Elkin V A 2006 Mater. Sci. Eng.: A 438–440 324
[50] Zhou Y L, Niinomi M and Akahori T 2004 Mater. Sci. Eng.: A 371 283
[51] Tvergaard V and Hutchinson J W 1988 J. Am. Ceram. Soc. 71 157
[52] Tasnádi F, Abrikosov I A, Rogström L, Almer J, Johansson M P and Odén M 2010 Appl. Phys. Lett. 97 231902
[53] Ranganathan S I and Starzewski M O 2008 Phys. Rev. Lett. 101 055504
[54] Chung D H and Buessem W R 1967 J. Appl. Phys. 38 5
[55] Ravindran P, Fast L, Korzhavyi P A, Johansson B J and Eriksson O 1998 J. Phys. Appl. 31 4891
[56] Wills S-C, Fecher G H, Shahab Naghavi S and Felser C 2019 J. Appl. Phys. 125 082523
[57] Maxisch T and Ceder G 2006 Phys. Rev. B 73 174112
[58] Mao P, Yu B, Liu, Zhang, W and Fu Yu 2015 J. Appl. Phys. 117 115903
[59] Dong H, Chen C, Wang S, Duan W and Li J 2013 Appl. Phys. Lett. 102 182905
[60] Ma D, Friák M, Neugebauer J, Raabe D and Roters F 2008 Phys. Status Solidi b 245 2642
[61] Koval N E, Juaristi J I, Diez Muiño R and Alducin M 2020 *J. Appl. Phys.* **127** 145102

[62] Ghosh G 2015 *AIP Adv.* **5** 087102

[63] Nye J F 1985 *Physical Properties of Crystals* (Oxford: Oxford University Press)

[64] Lee J H, Park J H and Soon A 2016 *Phys. Rev. B* **94** 024108