Relation Helicobacter pylori with Pathogenesis of Stomach and Immune Responses

Alia Hussein Al–Mousawi¹, Bent alhuda Hussein Neamah¹, Roaa Mohammed Chessab¹, Hadeel Haider Aldujaili *¹, Jannat Mohammed Chessab²

¹ Department of pathological analysis techniques, University of Alkafeel, Iraq.
² Department of Medical Laboratory Techniques, Altoosi University Collage, Iraq.

* Corresponding Author e-mail: ¹ hadeel.haider@alkafeel.edu.iq

ABSTRACT

Background: Helicobacter pylori, a member of Epsilonproteobacteria, is a Gram-negative microaerophilic bacterium that colonizes gastric mucosa of about 50% of the human population. Although most infections caused by H. pylori are asymptomatic, the microorganism is strongly associated with serious diseases of the upper gastrointestinal tract such as chronic gastritis, peptic ulcer, duodenal ulcer, and gastric cancer, and it is classified as a group I carcinogen. The prevalence of H. pylori infections varies worldwide. Prevalence among middle-aged adults is over 80 percent in many developing countries, as compared with 20 to 50 percent in industrialized countries. The infection is acquired by oral ingestion of the bacterium and is mainly transmitted within families in early childhood. Humans can also become infected with Helicobacter heilmannii, a spiral bacterium found in dogs, cats, pigs, and nonhuman primates.

Conclusion: H. pylori infection stimulates the reaction of autoantibodies with gastric epithelial cells, and this leads to gastritis. These autoantibodies can be directly induced to epithelial cells by activating complement, inducing apoptosis or provoking an antibody-dependent cytotoxic reaction resulting in subsequent tissue destruction.

Keywords: Helicobacter pylori, IgG & IgA & CD4+ T Cell Responses.
prevalence among middle-aged adults is over 80 percent in many developing countries, as compared with 20 to 50 percent in industrialized countries. The infection is acquired by oral ingestion of the bacterium and is mainly transmitted within families in early childhood (3), (4). Humans can also become infected with Helicobacter heilmannii, a spiral bacterium found in dogs, cats, pigs, and nonhuman primates (5).

Pathogenesis

The gastric mucosa is well protected against bacterial infections. H. pylori is highly adapted to this ecologic niche, with a unique array of features that permit entry into the mucus, swimming and spatial orientation in the mucus, attachment to epithelial cells, evasion of the immune response, and, as a result, persistent colonization and transmission. The H. pylori genome (1.65 million bp) codes for about 1500 proteins (6), (7).

Among the most remarkable findings of two H. pylori genome-sequencing projects were the discovery of a large family of 32 related outer-membrane proteins (Hop proteins) that includes most known H. pylori adhesins and the discovery of many genes that can be switched on and off by slipped strand mispairing mediated mutagenesis. Proteins encoded by such phase-variable genes include enzymes that modify the antigenic structure of surface molecules, control the entry of foreign DNA into the bacteria, and influence bacterial motility. The genome of H. pylori changes continuously during chronic colonization of an individual host by importing small pieces of foreign DNA from other H. pylori strains during persistent or transient mixed infections (8), (9).

Upon infection, H. pylori uses urease and α-carbonic anhydrase to generate ammonia and HCO3- as this mitigates the effects of low pH (21), (22). Thanks to its flagella and distinctive shape, it has the ability to penetrate the mucus layer. H. pylori null mutant, but the defect in the production of flagella is that it is unable to colonize gnotobiotic piglets (23). Once established in the inner mucus layer, several outer membrane proteins, including BabA, Saba, AlpA, AlpB and HopZ, can mediate bacterial adhesion to gastric epithelial cells. It modulates gastric epithelial cell behavior resulting in cell polarity loss, release of nutrients and chemokines (eg interleukin (IL)-

Immune Responses to Helicobacter pylori Infection

Helicobacter pylori (H. pylori) infection is one of the most common infections among individuals worldwide (18). After entering the stomach, these aerobic spirochetes penetrate the gastric mucosal layer but do not cross the epithelial barrier of the stomach (19) they are considered a non-invasive species. Most H. pylori organisms live freely in the mucosal layer, but some organisms adhere to the apical surface of gastric epithelial cells, and very few have been shown to invade epithelial cells (20).

Upon infection, H. pylori uses urease and α-carbonic anhydrase to generate ammonia and HCO3- as this mitigates the effects of low pH (21), (22). Thanks to its flagella and distinctive shape, it has the ability to penetrate the mucus layer. H. pylori null mutant, but the defect in the production of flagella is that it is unable to colonize gnotobiotic piglets (23). Once established in the inner mucus layer, several outer membrane proteins, including BabA, Saba, AlpA, AlpB and HopZ, can mediate bacterial adhesion to gastric epithelial cells. It modulates gastric epithelial cell behavior resulting in cell polarity loss, release of nutrients and chemokines (eg interleukin (IL)-
8), and regulation of acid secretion by controlling gastrin and H+/K+ ATPase (24), (25).

Cellular responses are related to the humoral immune response in humans infected with *H. pylori*. Patients' IgA and IgG antibodies are chronically directed towards many different *H. pylori* antigens (26). The local antibody response directed to *H. pylori* antigens can also be detected with chronic *H. pylori* infection. These subjects had higher frequencies of total IgA and IgM-secreting cells compared with the uninfected, while the frequencies of IgG-secreting cells were almost the same in the different groups (27). It is noteworthy that *H. pylori* infection stimulates the reaction of autoantibodies with gastric epithelial cells, and this leads to gastritis. These autoantibodies can be directly induced to epithelial cells by activating complement, inducing apoptosis or provoking an antibody-dependent cytotoxic reaction resulting in subsequent tissue destruction (28).

IgA Response

IgA is a major defense mechanism that excludes symbionts and pathogens from the mucosal surface (29). Mucosal IgA includes antibodies that recognize antigens with high and low affinity binding patterns. In general, high-affinity IgA neutralizes invading pathogens and microbial toxins, high-affinity IgA is believed to appear in Peyer's patches (PPs) and mesenteric lymph nodes (MLNs) of mesenteric B cells that are stimulated through T-cell-dependent pathways, while from the likely appearance of low-affinity IgA in PPs, MLNs, and lamina propria from B cells is stimulated via T-cell-independent pathways (29).

The IgA response is strongly induced by the presence of commensal microbes in the gut (30), (31) and has been shown to enhance the maintenance of appropriate bacterial communities in certain parts of the intestine, unlike in the lungs, vagina and most of the gastrointestinal tract, healthy mammalian stomachs produce a very low proportion of globulin receptors. Polymeric immunoglobulin (pIgR) (32), (33) this is the receptor that mediates the transport of immunoglobulin A into the lumen of the gastrointestinal tract. Several studies in humans with *H. pylori* have shown that core pIgR expression by the gastric epithelium can be upregulated in response to gastritis due to increased local IFN-γ production (34).

However, although PIgR expression was significantly increased and plasma cell IgA infiltrated in response to *H. pylori* infection, there was no concomitant increase in gastric IgA secretion, a mono-non-secretory IgA that predominates in the stomachs of *H. pylori* infected individuals (35). Thus, the IgA present in the gastric lumen will be unstable and prone to degradation by proteases (36).

IgG Response

Some degree of systemic exposure to enteric commensal bacteria and an associated systemic immune response appears to be well tolerated and harmless and common in healthy humans where antibody responses can be detected against bacteria and commensal fungi in the gut, most *H. pylori* infection develop a systemic anti-*H pylori* IgG response (37). Recently the expression of neonatal Fc receptors in gastric epithelial cells has been explored, and this receptor has been shown to transport IgG to gastric secretion. These results indicate that *H. pylori* IgG antagonists can reach the gastric mucosa as well as exert some antibacterial and/or pro-inflammatory activities (36).

CD4+ T Cell Responses

As *H. pylori* is an extracellular bacterium, it is anti-*H. pylori*-specific CD8+ T-cell responses are insufficient to protect the host from this pathogen. CD4+ T-cell responses within PPs and MLNs are initiated by DC capture, processing and antigen presentation to naive T cells in PPs and MLNs in the stomach. Steady-state, mucosal CD4+ T cells are tolerant to bacteria-derived antigens (38). Remarkably, systemic CD4+ T cells are not tolerant to germ-derived antigens and maintain a naive state for these antigens (39).
It has recently been suggested that antigen-specific intestinal IgA plays an important role in inhibiting systemic CD4+ T-cell responses to commensal antigens by providing immune exclusion (38).

CONCLUSION

H. pylori infection stimulates the reaction of autoantibodies with gastric epithelial cells, and this leads to gastritis, these autoantibodies can be directly induced to epithelial cells by activating complement, inducing apoptosis or provoking an antibody-dependent cytotoxic reaction resulting in subsequent tissue destruction. Cellular responses are related to the humoral immune response in humans infected with *H. pylori*, Patients' IgA and IgG antibodies are chronically directed towards many different *H. pylori* antigens. Systemic CD4+ T cells are not tolerant to germ-derived antigens and maintain a naive state for these antigens. It has recently been suggested that antigen-specific intestinal IgA plays an important role in inhibiting systemic CD4+ T-cell responses to commensal antigens by providing immune.

REFERENCES

1. Roszczenko-Jasińska, P., Wojtyś, M. I., & Jagusztyn-Krynicka, E. K. (2020). Helicobacter pylori treatment in the post-antibiotics era—searching for new drug targets. *Applied Microbiology and Biotechnology*, 1-15.
2. Roessler, B. M., Rabelo-Gonçalves, E. M., & Zeitune, J. M. (2014). Virulence factors of Helicobacter pylori: a review. *Clinical Medicine Insights: Gastroenterology*, 7, CGast-S13760.
3. Feldman RA. Epidemiologic observations and open questions about disease and infection caused by Helicobacter pylori. In: Achtman M, Suerbaum S, eds. Helicobacter pylori: molecular and cellular biology. Wymondham, United Kingdom: Horizon Scientific Press, 2001:29-51.
4. Rowland M, Kumar D, Daly L, O'Connor P, Vaughan D, Drumm B. Low rates of Helicobacter pylori reinfection in children. *Gastroenterology* 1999;117:336-341.
5. Solnick JV, Schauer DB. Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. *Clin Microbiol Rev* 2001;14:59-97.
6. Tomb JF, White O, Kerlavage AR, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. *Nature* 1997;388:539-547.[Erratum, *Nature* 1997;389:412.]
7. Alm RA, Ling LS, Moir DT, et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. *Nature* 1999;397:176-180.[Erratum, *Nature* 1999;397:719.]
8. Falush D, Kraft C, Taylor NS, et al. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. *Proc Natl Acad Sci U S A* 2001;98:15056-15061.
9. Suerbaum S, Smith JM, Bapumia K, et al. Free recombination within Helicobacter pylori. *Proc Natl Acad Sci U S A* 1998;95:12619-12624.
10. Bridge DR, Scott Merrell D (2013) Polymorphism in the *Helicobacter pylori* CagA and VacA toxins and disease. *Gut Microbes* 4:101–117.; McLean MH, El-Omar EM (2014) Genetics of gastric cancer. *Nat Rev Gastroenterol Hepatol* 11:664–674.
11. Uotani T, Miftahussurur M, Yamaoka Y (2015) Effect of bacterial and host factors on Helicobacter pylori
eradication therapy. Expert Opin Ther Targets 19:1637–165
12. Noto JM, Gaddy JA, Lee JY, Piazuelo MB, Friedman DB, Colvin DC, Romero-Gallo J, Suarez G, Loh J, Slaughter JC, Tan S, Morgan DR, Wilson KT, Bravo LE, Correa P, Cover TL, Amieva MR, Peek RM (2013) Iron deficiency accelerates Helicobacter pylori–induced carcinogenesis in rodents and humans. J Clin Invest 123:479–492
13. Gaddy JA, Radin JN, Loh JT, Zhang F, Washington MK, Peek RM, Algood HMS, Cover TL (2013) High dietary salt intake exacerbates Helicobacter pylori-induced gastric carcinogenesis. Infect Immun 81:2258–2267
14. Savoldi A, Carrara E, Graham DY, Conti M, Tacconelli E (2018) Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization regions. Gastroenterology 155:1372–1382.e17
15. Matsumoto H, Shiota A, Graham DY (2019) Current and future treatment of Helicobacter pylori infections. Adv Exp Med Biol 1149:211–225
16. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514.
17. Sarowska J, Choroszy-KróI, Regulska-Iłow B, Frej-Madrzak M, Jama-Kmiecik A (2013) The therapeutic effect of probiotics. Adv Clin Exp Med 22:759–766
18. Marshall BJ, Warren JR. (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1:1311–1315.
19. Schreiber S, Konradt M, Groll C, Scheid P, Hanauer G, Werling HO, Josenhans C, Suerbaum S. (2004) The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci USA. 101:5024–5029.
20. Semino-Mora C, Doi SQ, Marty A, Simko V,Carlstedt I, Dubois A. (2003) Intracellular and interstitial expression of Helicobacter pylori virulence genes in gastric precancerous intestinal metaplasia and adenocarcinoma. J Infect Dis. 187:1165–1177.
21. Bauerfeind P, Garner R, Dunn BE, Mobley HL.(1997) Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut. 1997;40:25–30.
22. Wen Y, Feng J, Scott DR, Marcus EA, Sachs G. (2007). The HP0165-HP0166 two-component system (ArsRS) regulates acid-induced expression of HP1186 alpha-carboxy anhydrase in Helicobacter pylori by activating the pH-dependent promoter. J Bacteriol. 189:2426–2434.
23. Eaton KA, Suerbaum S, Josenhans C, Krakowka S. (1996). Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun. 64:2445–2448.
24. Wiedemann T, Hofbaur S, Tegtmeier N, Huber S, Sewald N, Wessler S, Backert S, Rieder G. (2012). Helicobacter pylori CagI-dependent induction of gastrin expression via a novel αvβ5-integrin-integrin linked kinase signalling complex. Gut. 61:986–996.
25. Saha A, Backert S, Hammond CE, Gooz M, Smolka AJ.(2010). Helicobacter pylori CagI activates ADAM17 to induce repression of the gastric H, K-ATPase alpha subunit. Gastroenterology. 139:239–248.
26. Perez-Perez GI, Dworkin BM, Chodos JE, Blaser MJ. (1988). Campylobacter pylori antibodies in humans. Ann Intern Med. 109:11–17.
27. Mattsson A, Quiding-Järbrink M, Löroth H, Hamlet A, Aalstedt I, Svennerholm A.(1998). Antibody-
secreting cells in the stomachs of symptomatic and asymptomatic Helicobacter pylori-infected subjects. Infect Immun. 66:2705–2712.

28. Claey s D, Faller G, Appelmelk BJ, Negrini R, Kirchner T. (1998) The gastric H+,K+-ATPase is a major autoantigen in chronic Helicobacter pylori gastritis with body mucosa atrophy. Gastroenterology. 115:340–347.

29. Cerutti A, Chen K, Chorny A. (2011) Immunoglobulin responses at the mucosal interface. Annu Rev Immunol. 29:273–293.

30. Benveniste J, Lespinats G, Salomon J. (1971). Serum and secretory IgA in axenic and holoxenic mice. J Immunol. 107:1656–1662.

31. Benveniste J, Lespinats G, Adam C, Salomon JC. (1971). Immunoglobulins in intact, immunized, and contaminated axenic mice: study of serum IgA. J Immunol. 107:1647–1655.

32. Kaneko T, Ota H, Hayama M, Akamatsu T, Katsuyama T. (2000). Helicobacter pylori infection produces expression of a secretory component in gastric mucous cells. Virchows Arch. 437:514–520.

33. Ahlstedt I, Lindholm C, Lönroth H, Hamlet A, Svennerholm AM, Quiding-Järbrink M. (1999). Role of local cytokines in increased gastric expression of the secretory component in Helicobacter pylori infection. Infect Immun. 67:4921–4925.

34. Meyer F, Wilson KT, James SP. (2000). Modulation of innate cytokine responses by products of Helicobacter pylori. Infect Immun. 68:6265–6272.

35. Quiding-Järbrink M, Sundström P, Lundgren A, Hansson M, Bäckström M, Johansson C, Enarsson K, Hermansson M, Johansson E, Svennerholm AM. (2009). Decreased IgA antibody production in the stomach of gastric adenocarcinoma patients. Clin Immunol. 131:463–471.

36. Birkholz S, Schneider T, Knipp U, Stallmach A, Zeitz M. (1998). Decreased Helicobacter pylori-specific gastric secretory IgA antibodies in infected patients. Digestion. 59:638–645.

37. Nurgalieva ZZ, Conner ME, Opekun AR, Zheng CQ, Elliott SN, Ernst PB, Osato M, Estes MK, Graham DY. B-cell and T-cell immune responses to experimental Helicobacter pylori infection in humans. Infect Immun. 73:2999–3006.

38. Feng T, Elson CO. (2011). Adaptive immunity in the host-microbiota dialog. Mucosal Immunol. 4:15–21.

39. Konrad A, Cong Y, Duck W, Borlaza R, Elson CO. (2006) Tight mucosal compartmentation of the murine immune response to antigens of the enteric microbiota. Gastroenterology. 2006;130:2050–2059.