Phylogenetic analyses place the monotypic Dryopolystichum within Lomariopsidaceae

Cheng-Wei Chen¹, Michael Sundue², Li-Yaung Kuo³, Wei-Chih Teng⁴, Yao-Moan Huang¹

¹ Division of Silviculture, Taiwan Forestry Research Institute, 53 Nan-Hai Rd., Taipei 100, Taiwan ² The Pringle Herbarium, Department of Plant Biology, The University of Vermont, 27 Colchester Ave., Burlington, VT 05405, USA ³ Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan ⁴ Natural photographer, 664, Hu-Shan Rd., Caotun Township, Nantou 54265, Taiwan

Corresponding author: Yao-Moan Huang (huangym@tfri.gov.tw)

Academic editor: T. Almeida | Received 1 February 2017 | Accepted 23 March 2017 | Published 7 April 2017

Citation: Chen C-W, Sundue M, Kuo L-Y, Teng W-C, Huang Y-M (2017) Phylogenetic analyses place the monotypic Dryopolystichum within Lomariopsidaceae. PhytoKeys 78: 83–107. https://doi.org/10.3897/phytokeys.78.12040

Abstract

The monotypic fern genus Dryopolystichum Copel. combines a unique assortment of characters that obscures its relationship to other ferns. Its thin-walled sporangium with a vertical and interrupted annulus, round sorus with peltate indusium, and petiole with several vascular bundles place it in suborder Polypodiinae, but more precise placement has eluded previous authors. Here we investigate its phylogenetic position using three plastid DNA markers, rbcL, rps4-trnS, and trnL-F, and a broad sampling of Polypodiinae. We also provide new data on Dryopolystichum including spore number counts, reproductive mode, spore SEM images, and chromosome counts. Our maximum-likelihood and Bayesian-inference phylogenetic analyses unambiguously place Dryopolystichum within Lomariopsidaceae, a position not previously suggested. Dryopolystichum was resolved as sister to a clade comprising Dracoglossum and Lomariopsis, with Cyclopeltis as sister to these, but clade support is not robust. All examined sporangia of Dryopolystichum produced 32 spores, and the chromosome number of sporophyte somatic cells is ca. 164. Flow cytometric results indicated that the genome size in the spore nuclei is approximately half the size of those from sporophyte leaf tissues, suggesting that Dryopolystichum reproduces sexually. Our findings render Lomariopsidaceae as one of the most morphologically heterogeneous fern families. A recircumscription is provided for both Lomariopsidaceae and Dryopolystichum, and selected characters are briefly discussed considering the newly generated data.

* Equal contribution

Copyright Cheng-Wei Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Keywords
Fern, morphology, Papua New Guinea, phylogeny, recircumscription, taxonomy, the Solomon Islands

Introduction

Dryopolystichum Copel., with its single species *D. phaeostigma* (Ces.) Copel., is distributed along streams in lowland forests in New Guinea, the Bismarck Archipelago, and the Solomon Islands (Copeland 1947; Fig. 1A). Christensen (1937) was the first to point out that *D. phaeostigma* had been independently described under three different genera or subgenera. All told, generic placements has included *Aspidium* (≡ *Tectaria*) (Cesati 1877, Baker 1891), *Dryopteris* (Christensen 1906, Alderwerelt van Rosenburgh 1908, Copeland 1911, Brause 1920, Alderwerelt van Rosenburgh 1924), and *Polystichum* (Rosenstock 1911). Copeland (1947) inaugurated the new monotypic genus *Dryopolystichum* in his *Genera Filicum*, and argued that it was closest to *Ctenitis*. Pichi Sermolli (1977) agreed, citing the ctenitoid rachis, free venation, and peltate indusium as critical characters. Holttum included the genus in his “Tectarioid Group” in his list of Malaysian pteridophytes (Holttum 1959), but then omitted it in his 1991 treatment of that group.

Although Copeland did not provide an etymological explanation, the name *Dryopolystichum* presumably reflects the combination of peltate indusium (which is similar to those of polystichoid ferns) and pinnate-pinnatifid lamina division (which is similar to that of most *Dryopteris*). Such a combination of characters resulted in taxonomic confusion giving that peltate indusia are never found in *Dryopteris*, and the laminae of *Dryopolystichum* do not include prominulous segment apices, the hallmark of polystichoid ferns (Little and Barrington 2003). A peltate indusium is diagnostic of polystichoid ferns, including *Phanerophlebia* and *Polystichum*, but also found in a few distantly related genera in Polypodiinae such as *Cyclodium*, *Cyclopeltis*, *Rumohra*, *Megalastrum*, and *Tectaria* (Kramer and Green 1990).

Despite recent advances in fern phylogenetics and classification, the position of *Dryopolystichum* remains unclear. The thin-walled sporangium with a vertical and interrupted annulus, round sori, and petiole with several vascular bundles suggest that this genus belongs to suborder Polypodiinae (= eupolypods I) (Sundue and Rothfels 2014, PPG I 2016). However, the remaining prominent features including pinnate-pinnatifid leaf dissection (Fig. 1B), peltate indusium (Fig. 1C), catadromous free veins (Fig. 1D), and sulcate rachis-costa architecture (Fig. 1E), do not clearly place it within any Polypodiinae family (Christensen 1937, Copeland 1947).

One other conspicuous character of *Dryopolystichum* not emphasized by previous authors is that the distal pinnae are decurrent onto the rachis, and the basal pinnules of its distal pinnae are served by veins that emerge from the rachis, rather than the pinna costa (Fig. 1D). This character is relatively uncommon in the Polypodiinae. It can be found in Dryopteridaceae, mostly in *Megalastrum*, and less commonly in *Stigmatopteris*, *Ctenitis*, and *Pleocnemia* (Moran et al. 2014, Moran and Labiak 2016).
Phylogenetic analyses place the monotypic *Dryopolystichum* within Lomariopsidaceae. It can also be found in some Tectariaceae such as *Pteridrys* and *Tectaria* (Ding et al. 2014). Among these genera, *Pleocnemia* seems morphologically the most similar to *Dryopolystichum* because its rachises are adaxially sulcate and narrowly winged laterally. *Pleocnemia*, however, lacks a peltate indusium (Holttum 1974).

Subsequent to its establishment as a new genus in *Genera Filicum* (Copeland 1947), and Sermolli’s (1977) contribution, no other substantial argument was made for generic placement of *Dryopolystichum*. More recent studies maintained *Dryopolystichum* as a distinct genus, placing it under Dryopteridaceae (Kramer and Green 1990, Smith et al. 2006, Christenhusz et al. 2011). The recently published community-derived classification for extant lycophytes and ferns also places *Dryopolystichum* in the Dryopteridaceae but without assigning it to subfamily (PPG I 2016).
To resolve the phylogenetic placement of *Dryopolystichum*, we employ a molecular phylogenetic approach using three chloroplast DNA regions, *rbcL*, *rps4-trnS*, and *trnL-F*. Based on our observations, we further provide new data on *Dryopolystichum* including spore counts, reproductive mode, spore SEM images, and a chromosome count. Finally, we discuss its diagnostic characters in the light of the inferred phylogeny.

Materials and methods

We examined the morphology of *Dryopolystichum phaeostigma* using material collected from the Solomon Islands (Braithwaite R.S.S.4557, SING; SITW10443, BSIP, TAIF, TNM) and Papua New Guinea (James & Sundue 1688, BISH, LAE, VT).

Living plants of SITW10443 were transplanted to the Dr. Cecilia Koo Botanic Conservation Center in Taiwan (KBCC). The collection of SITW10443 was made under the “Census and Classification of Plant Resources in the Solomon Islands” project (http://siflora.nmns.edu.tw/). Mitotic chromosomes were counted from these cultivated plants following the protocol of Chen et al. (2014).

Fertile pinnae of SITW10443 were air-dried in an envelope for one day to release the spores. The spores were observed and measured by a tabletop scanning electron microscope (TM-3000 Hitachi, Ibaraki, Japan). The sizes (the length of equatorial axes including the perine ornamentation) of 35 randomly selected spores were measured. Five intact sporangia were observed under a stereo microscope (Leica MZ6, Wetzlar, Germany) to count the number of spores per sporangium.

The genome sizes of spore and leaf nuclei of SITW10443 were examined by flow cytometry in order to infer the reproductive mode (Kuo et al. 2017). The genome size of spore nuclei should be half the genome size of leaf nuclei in the case of sexual and the same size in the case of apomictic reproduction (Kuo et al. 2017). We followed Kuo et al. (2017) for the extraction of leaf nuclei. For extraction of spore nuclei, we used an optimized bead-vortexing treatment with vertex duration of 1 minute and vertex speed of 1,900 rpm, as described by Kuo et al. (2017). An external standard was not necessary since we only need to compare the two phases of the life-cycle to each other.

DNA extraction, amplification and sequencing

Total DNA was extracted using a modified CTAB-Qiagen column protocol (Kuo 2015). Three plastid DNA regions, *rbcL*, *rps4-trnS* (*rps4* gene + *rps4-trnS* intergenic spacer), and *trnL-F* (*trnL* gene + *trnL-trnF* intergenic spacer), were amplified and sequenced using the primers “ESRBCL1F” and “1379R” for *rbcL* (Pryer et al. 2001, Schuettpelz and Pryer 2007), “RPS5F” and “TRNSR” for *rps4-trnS* (Nadot et al. 1995, Smith and Cranfill 2002), and “FernL 11r1” and “f” for *trnL-F* (Taberlet et al. 1991, Li et al. 2010).

The PCR amplifications were performed in 16 μl reactions containing ca. 10 ng template DNA, 1xTaq DNA Polymerase Master Mix RED solution (Ampliqon, Den-
Phylogenetic analyses place the monotypic *Dryopolystichum* within Lomariopsidaceae. The PCR reactions were carried out in a GeneAmp PCR System 9700 (Applied Biosystems, Carlsbad, California, USA). Thermocycling conditions were the same for PCRs of these three regions and comprised an initial denaturation of 2 minutes at 94°C followed by a core sequence of 35 repetitions of 94°C for 1 minute, 55°C for 1 minute, and 72°C for 1 minute followed by a final extension of 10 minutes at 72°C. Resulting PCR products were sequenced using the same PCR primers with BigDye™ terminator (Applied Biosystems, Carlsbad, California, USA). The newly generated sequences were deposited in GenBank. GenBank accession numbers and voucher information are provided in Appendix.

DNA alignment and phylogenetic analyses

Initial BLAST against the NCBI nucleotide database (Altschul et al. 1990) based on *rbcL* sequences indicated that *Dryopolystichum phaeostigma* is closely related to the species of Polypodiineae families, including Lomariopsidaceae, Nephrolepidaceae, Tectar-iaceae, and Dryopteridaceae. Accordingly, we assembled a data matrix including 250 species representing 36 genera from these families (Appendix). Sampling included all the four genera in which *D. phaeostigma* has been placed (i.e., *Dryopteris*, *Polystichum*, and *Tectaria*).

Sequences were aligned using Geneious v6.1.8 (Drummond et al. 2011) and then manually checked for errors. The three single-region (*rbcL*, *rps4-trnS*, and *trnL-F*) and dataset combining all three were independently subjected to both maximum likelihood (ML) and Bayesian inference (BI) phylogenetic analyses. Data matrices are available in TreeBASE, study number 20506, at https://treebase.org/. ML tree searches were conducted using RAxML (Stamatakis 2006) employing the GTRGAMMA substitution model through the CIPRES portal (Miller et al. 2010). Five independent searches for the ‘best tree’ and 1,000 bootstrap replicates were performed using a region-partitioned dataset. BI analyses were conducted using MrBayes 3.2.1 (Ronquist and Huelsenbeck, 2003) employing the same substitution model as in ML analysis. Each analysis consisted of two independent runs with four chains for 10^6 generations, sampling one tree every 1000 generations. Burn-in was set to 10000 based on our preliminary analysis. The convergences of MCMC runs were checked using Tracer v.1.6 (Rambaut et al. 2014).

We addressed the possibility of phylogenetic bias due to long branches following the recommendation of Siddal and Whiting (1999). Since *Dracoglossum* and *Lomariopsis* were resolved on long branches in preliminary analyses (not shown), we conducted two additional analyses in which each one of the two long-branched genera, *Dracoglossum* and *Lomariopsis*, was excluded to examine whether phylogenetic placement and branch support for *Dryopolystichum*’s placement changed. Since maximum parsimony (MP) phylogeny is considered to be more susceptible to long-branch attraction (Philippe et al. 2005), we analyzed the concatenated dataset under MP in order to compare those results with our ML phylogeny. The MP analyses were conducted using TNT (Goloboff et al. 2008) following the search strategy detailed in Sundue et al. (2014).
Results

Phylogenetic analyses

All single-region phylogenies resolved *Dryopolystichum phaeostigma* in Lomariopsidaceae, but with two slightly different topologies. The *rbcL* and *rps4-trnS* phylogenies placed *D. phaeostigma* sister to a clade of *Dracoglossum + Lomariopsis* with 93% and 72% maximum likelihood bootstrap percentages (BS), respectively (Suppl. materials 2, 3). In comparison, the *trnL-F* phylogeny placed *D. phaeostigma* sister to *Cyclopeltis* (BS = 74%), and *Dryopolystichum + Cyclopeltis* was sister to *Dracoglossum + Lomariopsis* (Suppl. material 4). There was no strongly supported conflict between the ML and BI phylogenies (Suppl. materials 1–4). Both the ML and BI phylogenies based on the combined dataset (Fig. 2, Suppl. material 1) reveal the same topology as those based on the *rbcL* and *rps4-trnS* regions. Bootstrap support and posteriori probability (PP) for the above relationships were generally very high except for the branches placing *D. phaeostigma*, where BS was ≤ 70% and PP were ≤ 0.9 in all the phylogenies.

Removing *Dracoglossum* from the analysis had little effect on the topology within Lomariopsidaceae, and BS supports for the generic placement of *Dryopolystichum* remained low (≤ 70%, data not shown). In contrast, the removal of *Lomariopsis* resulted in higher BS values for all clades within Lomariopsidaceae (≥ 99%, data not shown). MP analyses also resulted in a clade comprising all the Lomariopsidaceae genera and *Dryopolystichum*, but *Dryopolystichum* was resolved as sister to *Cyclopeltis* (data not shown).

Karyology, reproductive mode, and spore measurements

All examined sporangia (*SITW10443*) produced 32 normal spores, and the mean spore length was 64.1 ± 4.5 μm (Fig. 3). The chromosome number of the three sporophyte somatic cells observed was ca. 164 (Fig. 4). Results of flow cytometry revealed that the genome size of spore nuclei is approximately half of those of leaf nuclei (Fig. 5).

Discussion

Phylogenetic placement of *Dryopolystichum*

The reconstructed maximum likelihood and Bayesian inference phylogenies unambiguously resolved *Dryopolystichum* within Lomariopsidaceae (Fig. 2), a position not previously suggested (Kramer and Green 1990, Smith et al. 2006, Christenhusz et al. 2011, PPG I 2016). This placement is consistent in all our analyses. Nonetheless, the generic position of *Dryopolystichum* within Lomariopsidaceae remains poorly resolved.
Phylogenetic analyses place the monotypic *Dryopolystichum* within Lomariopsidaceae.

Figure 2. Simplified maximum likelihood phylogram of Polypodiineae obtained from the *rbcL* + *rps4-trnS* + *trnL-F* combined dataset. Maximum likelihood bootstrap percentages (BS) are provided at each node. Thickened lines indicate Bayesian inference posterior probability (PP) ≥ 0.9. Original phylogram with support values for all the nodes is available in Suppl. materials 1. Voucher information and GenBank accession numbers are shown in Appendix.

This uncertainty may be partially explained by the incongruence between *trnL-F* and the other analyzed regions, but our process of removing the long-branched genera showed that low BS was retrieved only when *Dryopolystichum* and *Lomariopsis* were...
both included in the analysis. These results may also be explained by the large amounts of missing data in *Lomariopsis*: 19 of the 25 species included were represented by trnL-F data alone. We recommend further phylogenetic study using an expanded dataset to resolve the intergeneric relationships within Lomariopsidaceae.
Phylogenetic analyses place the monotypic *Dryopolystichum* within Lomariopsidaceae.

Figure 5. Relative DNA contents of *Dryopolystichum phaeostigma* spore and leaf nuclei inferred by flow cytometry.

Recircumscription of Lomariopsidaceae

Phylogenetic analyses using DNA sequences have served as the basis for redrawing fern classifications in the 21st century (Smith et al. 2006, Christenhusz et al. 2011, PPG I 2016). With respect to family circumscription, one of the most dramatically changed families is Lomariopsidaceae (Tsutsumi and Kato 2006, Schuettpelz and Pryer 2007, Christenhusz et al. 2013). Just prior to the molecular era, Lomariopsidaceae was treated as one of the largest fern families with six genera and over 500 species (e.g., Kramer and Green 1990) and was strongly supported by the following combination of characters: rhizomes with ventral root insertion, dictyosteles with elongate ventral meristeles, and dimorphic leaves where the fertile leaves had acrostichoid sori (Holttum and Hennipman 1959, Kramer and Green 1990).

Subsequent molecular phylogenetic analyses demonstrated that most genera previously treated in Lomariopsidaceae should be transferred to Dryopteridaceae (Tsutsumi and Kato 2006, Schuettpelz and Pryer 2007). The combination of characters uniting the former Lomariopsidaceae are now interpreted to have evolved multiple times, and to be correlated with dorsiventrality of the rhizome (Moran et al. 2010, McKeown et al. 2012). Meanwhile, *Cyclopeltis* was transferred from Dryopteridaceae to Lomariopsidaceae as suggested by molecular phylogeny (Schuettpelz and Pryer 2007), although it has none of the characters formerly used to circumscribe Lomariopsidaceae (Holttum and Hennipman 1959, Kramer and Green 1990).

More recently, the neotropical genus *Dracoglossum* was established (Christenhusz 2007) and later transferred to Lomariopsidaceae from Tectariaceae based on a molecular phylogeny (Christenhusz et al. 2013). This pattern was also unexpected since there are essentially no shared morphological characters by *Dracoglossum* and *Lomariopsis*, except for the ribbon-like gametophyte (R. C. Moran pers. com.). Our finding, that *Dryopolystichum* belongs to Lomariopsidaceae, comes as a further surprise. With these
Table 1. Comparison of morphological characters of the five Lomariopsidaceae genera [based on Holttum and Hennipman (1959), Holttum (1991), Roubik and Moreno (1991), Moran (2000), Christenhusz (2007), Rouhan et al. (2007), and this study].

Genera	*Cyclopeltis*	*Dracoglossum*	*Dryopolystichum*	*Lomariopsis*	*Thysanosoria*
Habit	terrestrial	terrestrial	terrestrial	hemiepiphyte	hemiepiphyte
Rhizome	erect	short creeping	erect	climbing	climbing
Frond division*	pinnate	simple	pinnate-pinnatifid	pinnate	pinnate
Pinnae articulation	articulate	–	not articulate	articulate	articulate
Venation	free	reticulate, with included veinlet	free	free	free
Rachis-costa architecture	prominent	prominent	grooved	grooved or flat	grooved
Sporangia	form rounded sori	form rounded sori	form rounded sori	acrostichoid	form rounded sori
Indusia	peltate if present	peltate if present	peltate	absent	absent
Perine ornamentation	broad folds	narrow crests	narrow crests	various	broad folds

*matured plant, -not applicable

changes, Lomariopsidaceae is a family of five genera (*Cyclopeltis, Dracoglossum, Dryopolystichum, Lomariopsis*, and *Thysanosoria*) and ca. 70 species. As far as we can tell, none of the morphological traits commonly used unify these genera (Table 1). In the following paragraphs, we provide a recircumscription of both Lomariopsidaceae and *Dryopolystichum*, and then discuss selected characters in the light of our phylogenetic placement.

Taxonomic treatment

Lomariopsidaceae Alston, Taxon 5(2): 25. 1956.

Type. *Lomariopsis* Fée, Mém. Foug., 2. Hist. Acrostich.: 10. 1845.

Description. Habit erect, creeping, or climbing; rhizomes dictyostelic, the ventral meristele elongate in transverse section or not; scaly at least when young; scales non-clathrate, basally attached or shallowly peltate, margins entire, toothed, or ciliate; fronds monomorphic or dimorphic; petioles with multiple vascular bundles arranged in a U-shape; laminae simple, pinnate, or pinnate-pinnatifid, provided distally with proliferous buds or not; pinnae articulate to the rachis or not; veins free, ± parallel or pinnate; sori acrostichoid or discrete and then round, with peltate indusia or exindusiate; spores brown, olive or green, chlorophyllous or not, bilateral, monolete, perine loosely attached, variously winged or ornamented.

Five genera and an estimated 70 species. *Thysanosoria* is included based on its morphological similarity to *Lomariopsis* (Holttum and Hennipman 1959), but it has not been, to the present, subject to molecular phylogenetic analysis.
Phylogenetic analyses place the monotypic *Dryopolystichum* within Lomariopsidaceae

Dryopolystichum Copel., Gen. Fil. 125, t. 4. 1947.

Type. *Dryopolystichum phaeostigma* (Ces.) Copel., Gen. Fil. 125, t. 4. 1947.

Description. Habit terrestrial, on slopes along streams at lowland forests; rhizome short erect, stout and woody, apex densely scaly, blackish sclerenchyma strands visible in sections; scales dark brown, linear-lanceolate, entire, not clathrate; fronds approximate, stipe not articulate, scaly at base, scales similar to those on rhizome; lamina ovate, pinnate-pinnatifid, catadromous, subleathery, nearly glabrous, only very sparse narrow scales on rachis, costa, and costule; rachis and costa grooved adaxially, not connected to each other; veins free, pinate, veins of basal pinnules on upper pinnae emerge from the rachis rather than costa, all veins terminating in a prominent hydathode, not reaching frond margin; sori round, dorsally on veinlets near hydathode, indusiate; indusia round, persistent, superior, entire, brownish, thick; sporangia long-stalked, annulus with ca. 14 indurated cells, 32 normal spores in each sporangium; spores monolete, 64.1 ± 4.5 μm in lateral view, surface with broadly winged wall; 2n = ca. 164.

Monotypic.

Dryopolystichum phaeostigma (Ces.) Copel., Gen. Fil. 125, t. 4. 1947.

Aspidium phaeostigma Ces., Rend. Ac. Napoli 16: 26, 29. 1877.

Type. Papua New Guinea. Andai, Beccari 12533 (FI [FI013622]).

Dryopteris phaeostigma (Ces.) C.Chr., Index Filic. 284. 1905

Type. Based on *Aspidium phaeostigma* Ces.

Dryopteris tamatana C.Chr., Index Filic., Suppl. (1906-1912) 40. 1913.

Replaced: *Dryopteris kingii* Copel., Philipp. J. Sci., C 6: 73. 1911., not *Dryopteris kingii* (Bedd.) C.Chr., Index Filic. 273. 1905.

Type. Papua New Guinea. Tamata, C. King 149 (MICH [MICH1287049]).

Polystichum lastreoides Rosenst., Repert. Spec. Nov. Regni Veg. 9: 425. 1911.

Type. Papua New Guinea. C. King 194 (MICH [MICH1190927]).

Dryopteris ledermannii Brause, Bot. Jahrb. Syst. 56: 90. 1920.

Type. Papua New Guinea. Sepik, Ledermann 9619 (B [B_20_005865], L [L0063060], S [S-P-8581]).

Dryopteris cyclosorus Alderw., Nova Guinea 14: 21. 1924.

Type. Indonesia. Irian Jaya, H. J. Lam 1086 (BO [BO1529719, BO1529720], K [K000666126], L [L0051583], U [U0007385]).

Type. Based on *Aspidium phaeostigma* Ces.

Description. Equal to the genus.

Distribution. New Guinea, the Bismark archipelago, and the Solomon Islands.
Comparison of selected characters of *Dryopolystichum*

Perine architecture of *Dryopolystichum* is very similar to that of *Dracoglossum plan-tagineum* (Christenhusz 2007, Fig. 3). They are loosely attached, forming thin crests, and having a spiculate microstructure. Perine of *Cyclopeltis* and *Thysanosoria* are also similar in being loosely attached and having a spiculate microstructure, but they differ by having broader folds (Holttum and Hennipman 1959, Tryon and Lugardon 1991). The perine characters, however, are not shared by all the taxa of Lomariopsidaceae especially considering the variation of ornamentation existing in *Lomariopsis* (Rouhan et al. 2007). Moreover, these perine characters also appear in other Polypodiineae lineages particularly in bolbitidoid ferns (Moran et al. 2010) as well as in various Aspleniineae lineages (Sundue and Rothfels 2014, PPG I 2016).

Blackish sclerenchyma strands are visible in the rhizome sections of *Dryopolystichum* (Fig. 1F). These are also present in *Dracoglossum*, *Cyclopeltis*, and *Lomariopsis*, but similar characters are known from various groups throughout Polypodiineae (Hennipman 1977, Moran 1986, Hovenkamp 1998). Further studies might reveal variation in these strands to be of systematic value.

The rachis-costae architecture of *Dryopolystichum* is characterized by an adaxially sulcate rachis with grooves that do not connect to those of the pinna-costae. The rachis is also narrowly winged laterally. Both characters are seen in *Thysanosoria* and in some species of *Lomariopsis* (Holttum and Hennipman 1959, Moran 2000). In contrast, *Dracoglossum* and *Cyclopeltis* have non-winged and non-sulcate rachises (Holttum 1991, Christenhusz 2007).

The chromosome number in somatic cells of *Dryopolystichum phaeostigma* was ca. 164 (Fig. 4). The base numbers for Lomariopsidaceae genera (*Cyclopeltis*, *Dracoglossum*, and *Lomariopsis*) are 40 or 41 (Walker 1985, Kato and Nakato 1999, Moran 2000), suggesting that *D. phaeostigma* is a tetraploid.

Our flow cytometry and spore count results indicate that *Dryopolystichum phaeostigma* is sexually reproducing and has 32 spores per sporangium (Fig. 5). In Polypodiales, sporogenesis leading to the formation of 64 spores in a sporangium is by far the most common pattern of sexually reproducing species, e.g., Asple-niaceae (Gabacho et al. 2010), Athyriaceae (Kato et al. 1992, Takamiya et al. 1999), Davalliaceae (Chen et al. 2014), Dryopteridaceae (Lu et al. 2006), Polypo-diaeae (Wang et al. 2011), Pteridaceae (Huang et al. 2006), and Thelypteridaceae (Ebihara et al. 2014). Cases of sporogenesis resulting in 32 spores per sporangium are known from a few Polypodiales ferns but all belong to the suborders Lind-saeineae and Pteridinae, i.e., Lind-saeineae (Lin et al. 1990), Cystodiaceae (Gaston-y 1981), and Ceratopteris (Pteridaceae; Lloyd 1973). Our study provides the first confirmed case of a sexual reproduction with 32 spores per sporangium in the suborder Polypodiineae.
Phylogenetic analyses place the monotypic Dryopolystichum within Lomariopsidaceae. We have shown, based on molecular phylogenetic evidence, the placement of *Dryopolystichum* within Lomariopsidaceae. A revised description was provided for both Lomariopsidaceae and *Dryopolystichum* resulting from a review of literature and our own observations. Future studies using an expanded dataset are necessary to resolve intergeneric relationships in Lomariopsidaceae.

Acknowledgements

We are grateful to Kathleen Pryer’s lab for sharing the material of *Dracoglossum*. Peter Hovenkamp, Thais Almeida, David Barrington, and two anonymous reviewers provided valuable comments on an earlier draft of this manuscript. The curators and staffs of herbaria BSIP, SING, TAIF, and VT for providing access to their collections. We also thank Robbin Moran and Wita Wardani for checking specimens at NY and BO, respectively. Field work in Solomon Islands was supported by Taiwan International Cooperation and Development Fund (TH410-2012-085), Taiwan Forestry Research Institute (102AS-4.1.1-FI-G1), and Dr. Cecilia Koo Botanic Conservation Center (KBCC) for CWC.

References

Alderwerelt van Rosenburgh CRWK (1908) Malayan ferns: Handbook to the determination of the ferns of The Malayan Islands. Landsdrukkerij, Jakarta.

Alderwerelt van Rosenburgh CRWK (1924) Pteridophyta. Nova Guinea 14: 1–68.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215(3): 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Baker JG (1891) A summary of the new ferns which have been discovered or described since 1874. Annals of Botany 4: 455–500. doi: https://doi.org/10.1093/oxfordjournals.aob.a090650

Brause G (1920) Beiträge zur Flora von Papuasien. VII. Botanische Jahrbücher für Systematik, Pflanzen geschichte und Pflanzengeographie 56: 31–250.

Cesati V (1877) Prospetto delle Felci raccolte dal Signor O. Beccari nella Polinesia durante il suo secondo viaggio di esplorazione in que’ mari. Rendiconto dell’Accademia delle scienze fisiche e matematiche 16: 23–31.

Chen CW, Ngan LT, Hidayat A, Evangelista L, Nooteboom HP, Chiou WL (2014) First insights into the evolutionary history of the *Davallia repens* complex. Blumea 59(1): 49–58. https://doi.org/10.3767/000651914X683827
Christenhusz MJ (2007) *Dracoglossum*, a new Neotropical fern genus (Pteridophyta). Thaiszia, Journal of Botany 17: 1–10.

Christenhusz MJ, Zhang XC, Schneider H (2011) A linear sequence of extant families and genera of lycophytes and ferns. Phytotaxa 19(1): 7–54. doi: http://dx.doi.org/10.11646/phytotaxa.19.1.2

Christenhusz MJ, Jones M, Lehtonen S (2013) Phylogenetic placement of the enigmatic fern genus *Dracoglossum*. American Fern Journal 103(2): 131–138. doi: http://dx.doi.org/10.1640/0002-8444-103.2.131

Christensen C (1906) *Index Filicum; sive, enumeratio omnium generum specierumque Filicum et Hydropteridum ab anno 1753 ad finem anni 1905 descriptorium, adjecris synonymis principalibus, area geographica etc.* Hagerup, Copenhagen. doi: http://dx.doi.org/10.5962/bhl.title.402

Christensen C (1937) Taxonomic fern-studies. IV. Revision of the Bornean and New Guinean ferns collected by O. Beccari and described by Cesati V and Baker JG. Dansk Botanisk Arkv 9: 33–52.

Copeland EB (1911) Papuan ferns collected by the reverend Copland King. Philippine Journal of Science 6: 65–92.

Copeland EB (1947) Genera Filicum: the genera of ferns. Chronica Botanica Co, Waltham.

Ding HH, Chao YS, Callado JR, Dong SY (2014) Phylogeny and character evolution of the fern genus *Tectaria* (Tectariaceae) in the Old World inferred from chloroplast DNA sequences. Molecular Phylogenetics and Evolution 80: 66–78. https://doi.org/10.1016/j.ympev.2014.06.004

Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v5.4. http://www.geneious.com

Ebihara A, Nakato N, Matsumoto S, Chao YS, Kuo LY (2014) Cytotaxonomic studies on thirteen ferns of Taiwan. Bulletin of the National Science Museum. Series B, Botany 40: 19–28.

Gabancho LR, Prada C, Galán JG (2010) Sexuality and apogamy in the Cuban *Asplenium auritum–monodon* complex (Aspleniaceae). Plant Systematics and Evolution 289(3–4): 137–146. https://doi.org/10.1007/s00606-010-0339-5

Gastony GJ (1981) Spore morphology in the Dicksoniaceae. I. The genera *Cystodium*, *Thyropterus*, and *Culcita*. American Journal of Botany 68: 808–819. http://www.jstor.org/stable/2443187

Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24(5): 774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x

Hennipman E (1977) A monograph of the fern genus *Bolbitis* (Lomariopsidaceae). Leiden Botanical Series, 2.

Holttum RE (1959) List of Malaysian Pteridophytes. Flora Malesiana, Series 2, Pteridophyta, 1(1). Rijksherbarium/Hortus Botanicus, Leiden, II–III.

Holttum RE, Hennipman E (1959) *Lomariopsis* group. Flora Malesiana, Series 2, Pteridophyta, 1(4). Rijksherbarium/Hortus Botanicus, Leiden, 255–330.
Phylogenetic analyses place the monotypic *Dryopolystichum* within Lomariopsidaceae.

Holttum RE (1974) The fern-genus *Pleocnemia*. Kew Bulletin 29(2): 341–357. https://doi.org/10.2307/4108544

Holttum RE (1991) *Tectaria* group. Flora Malesiana, Series 2, Pteridophyta, 2. Rijksherbarium/Hortus Botanicus, Leiden, 1–132.

Hovenkamp P (1998) An account of the Malay-Pacific species of *Selliguea*. Blumea 43: 1–108.

Huang YM, Chou HM, Hsieh TH, Wang JC, Chiou WL (2006) Cryptic characteristics distinguish diploid and triploid varieties of *Pteris fauriei* (Pteridaceae). Canadian Journal of Botany 84(2): 261–268. https://doi.org/10.1139/B05-160

Kato M, Nakato N, Cheng X, Iwatsuki K (1992) Cytotaxonomic study of ferns of Yunnan, southwestern China. Journal of Plant Research 105(1): 105–124. https://doi.org/10.1007/BF02489407

Kato M, Nakato N (1999) A cytotaxonomic study of Hainan (S. China) pteridophytes with notes on polyploidy and apogamy of Chinese species. In: Zhang XC, Shing KH (Eds) Ching memorial volume. China Forestry Publishing House, Beijing, 1–19.

Kramer KU, Green PS (1990) Pteridophytes and gymnosperms. In: Kubitzki K (Ed.) The families and genera of vascular plants (Vol. 1). Springer-Verlag, Berlin, 1–404. https://doi.org/10.1007/978-3-662-02604-5

Kuo LY (2015) Polyploidy and biogeography in genus *Deparia* and phylogeography in *Deparia lancea*. PhD Thesis, Taiwan National University, Taipei.

Kuo LY, Huang YJ, Chang J, Chiou WL, Huang YM (2017) Evaluating the spore genome sizes of ferns and lycophytes: a flow cytometry approach. New Phytologist 213(4): 1974–1983. https://doi.org/10.1111/nph.14291

Li FW, Kuo LY, Huang YM, Chiou WL, Wang CN (2010) Tissue-direct PCR, a rapid and extraction-free method for barcoding of ferns. Molecular Ecology Resources 10(1): 92–95. https://doi.org/10.1111/j.1755-0998.2009.02745.x

Lin SJ, Kato M, Iwatsuki K (1990) Sporogenesis, reproductive mode, and cytotomy of some species of *Sphenomeris*, *Lindsaea*, and *Tapeinidium* (Lindsaeaceae). American Fern Journal 80(3): 97–109. https://doi.org/10.2307/1547175

Little DP, Barrington DS (2003) Major evolutionary events in the origin and diversification of the fern genus *Polystichum* (Dryopteridaceae). American Journal of Botany 90(3): 508–514. https://doi.org/10.3732/ajb.90.3.508

Lloyd RM (1973) Systematics of the genus *Ceratopteris* (Parkeriaceae), I. Sexual and vegetative reproduction in Hawaiian *Ceratopteris thalictroides*. American Fern Journal 63(1): 12–18. https://doi.org/10.2307/1546563

Lu JM, Cheng X, Wu D, Li DZ (2006) Chromosome study of the fern genus *Cyrtomium* (Dryopteridaceae). Botanical Journal of the Linnean Society 150(2): 221–228. https://doi.org/10.1111/j.1095-8339.2006.00462.x

McKeown M, Sundue M, Barrington D (2012) Phylogenetic analyses place the Australian monotypic *Revuattisia* in *Dryopteris* (Dryopteridaceae). PhytoKeys 14: 43. https://doi.org/10.3897/phytokeys.14.3446

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE), 2010, 1–8. IEEE. https://doi.org/10.1109/gce.2010.5676129
Moran RC (1986) The Neotropical fern genus Olfersia. American Fern Journal 76(4): 161–178. https://doi.org/10.2307/1547430
Moran RC (2000) Monograph of the Neotropical species of Lomariopsis (Lomariopsidaceae). Brittonia 52(1): 55–111. https://doi.org/10.2307/2666495
Moran RC, Hanks JG, Labiak P, Sundue M (2010) Perispore morphology of bolbitiidoid ferns (Dryopteridaceae) in relation to phylogeny. International Journal of Plant Sciences 171(8): 872–881. https://doi.org/10.1086/655856
Moran RC, Prado J, Sundue MA (2014) Megalastrum (Dryopteridaceae) in Andean South America, Part I. American Fern Journal 104(3): 109–178. doi: http://dx.doi.org/10.1640/0002-8444-104.3.109
Moran RC, Labiak PH (2016) Phylogeny and character evolution of the Neotropical fern genus Stigmatopteris (Dryopteridaceae). Brittonia 68(4): 476–488. https://doi.org/10.1007/s12228-016-9437-1
Nadot S, Bittar G, Carter L, Lacroix R, Lejeune B (1995) A phylogenetic analysis of monocotyledons based on the chloroplast gene rps4, using parsimony and a new numerical phenetics method. Molecular Phylogenetics and Evolution 4(3): 257–282. https://doi.org/10.1006/mpev.1995.1024
Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F (2005) Heterotachy and long-branch attraction in phylogenetics. BMC Evolutionary Biology 5(1): 50. https://doi.org/10.1186/1471-2148-5-50
Pichi Sermolli RE (1977) Tentamen Pteridophytorum genera in taxonomicum ordinem redigendi. Webbia 31(2): 313–512. https://doi.org/10.1080/00837792.1977.10670077
PPG I (2016) A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54(6): 563–603. https://doi.org/10.1111/jse.12229
Pryer KM, Smith AR, Hunt JS, Dubuisson JY (2001) RbcL data reveal two monophyletic groups of filmy ferns (Filibopsida: Hymenophyllaceae). American Journal of Botany 88(6): 1118–1130. https://doi.org/10.2307/2657095
Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Program distributed by the author. Available at: http://beast.bio.ed.ac.uk/tracer.
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. doi: https://doi.org/10.1093/bioinformatics/btg180
Rosenstock E (1911) Filices novo-guineenses Kingiæanae. Feddes Repertorium 9: 422–427. https://doi.org/10.1002/fdr.19111092703
Roubik DW, Moreno P (1991) Pollen and spores of Barro Colorado Island [Panama]. Monographs in Systematic Botany from the Missouri Botanical Garden 36.
Rouhan G, Hanks JG, McClelland D, Moran RC (2007) Preliminary phylogenetic analysis of the fern genus Lomariopsis (Lomariopsidaceae). Brittonia 59(2): 115–128. https://doi.org/10.1663/0007-196X(2007)59[115:PAOTF]2.0.CO;2
Schuettpelz E, Pryer KM (2007) Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56(4): 1037–1037. https://doi.org/10.2307/25065903
Siddall ME, Whiting MF (1999) Long-branch abstractions. Cladistics 15(1): 9–24. https://doi.org/10.1111/j.1096-0031.1999.tb00391.x
Phylogenetic analyses place the monotypic *Dryopolystichum* within Lomariopsidaceae

Smith AR, Cranfill RB (2002) Intrafamilial relationships of the thelypteroid ferns (Thelypteridaceae). American Fern Journal 92(2): 131–149. http://www.jstor.org/stable/1547658

Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55(3): 705–731. https://doi.org/10.2307/25065646

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21): 2688–2690. https://doi.org/10.1093/bioinformatics/btl446

Sundue MA, Rothfels CJ (2014) Stasis and convergence characterize morphological evolution in eupolypod II ferns. Annals of Botany 113: 35–54. https://doi.org/10.1093/aob/mct247

Sundue MA, Parris BS, Ranker TA, Smith AR, Fujimoto EL, Zamora-Crosby D, Morden CW, Chiou WL, Chen CW, Rouhan G, Hirai RY (2014) Global phylogeny and biogeography of grammitid ferns (Polypodiaceae). Molecular Phylogenetics and Evolution 81: 195–206. http://dx.doi.org/10.1016/j.ympev.2014.08.017

Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17(5): 1105–1109. https://doi.org/10.1007/BF00037152

Takamiya M, Takaoka C, Ohta N (1999) Cytological and reproductive studies on Japanese *Diplazium* (Woodsiaceae; Pteridophyta): apomictic reproduction in *Diplazium* with evergreen bi-to tripinnate leaves. Journal of Plant Research 112(4): 419–436. https://doi.org/10.1007/PL00013897

Tsutsumi C, Kato M (2006) Evolution of epiphytes in Davalliaceae and related ferns. Botanical Journal of the Linnean Society 151(4): 495–510. https://doi.org/10.1111/j.1095-8339.2006.00535.x

Tryon AF, Lugardon B (1991) Spores of the Pteridophyta: surface, wall structure, and diversity based on electron microscope studies. Springer-Verlag, New York, 1–648. https://doi.org/10.1007/978-1-4613-8991-0_1

Walker TG (1985) Cytotaxonomic studies of the ferns of Trinidad 2. The cytology and taxonomic implications. Bulletin of the British Museum (Natural History), Botany series 13(2): 149–249.

Wang RX, Shao W, Lu SG, Zhou SY, Liang SC (2011) Cytotaxonomic study of 12 species in the Polypodiaceae from southern China. American Fern Journal 101(4): 307–316. http://dx.doi.org/10.1640/0002-8444-101.4.307
Appendix

Individuals sampled in this study. For each individual, the species name and GenBank accession numbers \((rbcL, \ rps4-trnS, \ trnL-F) \) are provided. A n-dash (–) indicates unavailable information; new sequences are in bold.

Taxon	Genbank accession numbers		
	\(rbcL \)	\(rps4-trnS \)	\(trnL-F \)
Dryopteridaceae			
Arachniodes aristata (G.Forst.) Tindale	KJ464418	–	KJ464592
Arachniodes denticulata (Sw.) Ching	KJ464419	–	KJ464593
Arthrobotrya articulata J.Sm.	–	GU376714	GU376565
Arthrobotrya wilkesiana Copel.	–	GU376719	GU376569
Bolbitis acrostichoides (Afzel.) Ching	KJ464420	GU376644	GU376500
Bolbitis aliena (Sw.) Alston	–	GU376646	GU376502
Bolbitis angustipina (Hayata) H.Ito	–	GU376654	GU376509
Bolbitis appendiculata (Willd.) K.Iwats.	–	GU376647	GU376503
Bolbitis auriculata (Lam.) Alston	KJ464421	GU376649	GU376505
Bolbitis bipinnatifida (J.Sm.) K.Iwats.	–	GU376676	GU376530
Bolbitis flaviatilis (Hook.) Ching	–	GU376656	GU376510
Bolbitis gemmifera (Hieron.) C.Chr.	–	GU376657	GU376511
Bolbitis heteroclita (Pr.) Ching	–	GU376659	GU376513
Bolbitis heudelotii (Bory) Alston	–	GU376662	GU376515
Bolbitis humblotii (Baker) Ching	KJ464422	GU376663	GU376516
Bolbitis lonchophora (Kunze) C.Chr.	–	GU376664	GU376517
Bolbitis major (Bedd.) Hennipman	–	GU376665	GU376518
Bolbitis portoricensis (Sprengel) Hennipman	–	GU376670	GU376523
Bolbitis salicina (Hook.) Ching	–	GU376671	GU376525
Bolbitis semipinnatifida (Fée) Alston	–	GU376672	GU376526
Bolbitis serratifolia (Mertens) Schott	–	GU376673	GU376527
Bolbitis sinuata (C.Presl) Hennipman	–	GU376675	GU376529
Bolbitis tibetica Ching & S.K.Wu	–	GU376677	GU376531
Ctenitis eatonii (Baker) Ching	KJ709483	–	KJ196645
Ctenitis sinii (Ching) Ohwi	–	–	KJ196643
Ctenitis subglandulosa (Hance) Ching	–	–	KJ196655
Ctenitis yunnanensis Ching & Chu H.Wang	–	–	KJ196715
Cyclodium heterodon (Schrad.) T. Moore var. heterodon	KJ464425	–	KJ464596
Cyclodium rheophilum A.R.Sm.	KJ464426	–	KJ464597
Dryopteris apiciflora (Wall. ex Mett.) Kuntze	–	–	KJ196641
Dryopteris christensense (Ching) Li Bing Zhang	–	–	KJ196679
Dryopteris heterolaena C.Chr.	–	–	KJ196623
Dryopteris integriloba C.Chr.	–	–	KJ196701
Dryopteris mariformis Rosenst.	–	–	KJ196686
Dryopteris nidus (Baker) Li Bing Zhang	–	–	KJ196687
Dryopteris pattula (Sw.) Underw.	KJ464427	–	KJ464598
Dryopteris polita Rosenst.	–	–	KJ196700
Dryopteris squamiseta (Hook.) Kuntze	–	GU376678	KJ196632
Phylogenetic analyses place the monotypic *Dryopolystichum* within Lomariopsidaceae

Taxon	Genbank accession numbers		
Dryopteris wallichiana (Spreng.) Hyl.	KJ464428 GU376680 KJ464599		
Elaphoglossum amygdalifolium (Mett.) Christ	– GU376681 –		
Elaphoglossum burchellii (Baker) C.Chr.	– GU376682 GU376533		
Elaphoglossum decoratum (Kunze) T.Moore	KJ464429 GU376683 KJ464600		
Elaphoglossum guentheri Rosenst.	– GU376684 GU376555		
Elaphoglossum langdorffii T.Moore	– GU376685 GU376536		
Elaphoglossum lloense (Hook.) T.Moore	– GU376686 GU376537		
Elaphoglossum luridum Christ	– – GU376538		
Elaphoglossum squamipes (Hook.) T.Moore	– – GU376539		
Lastreopsis amplissima (C.Presl) Tindale	KJ464432 – KJ464604		
Lastreopsis decomposita (R.Br.) Tindale	KJ464439 – –		
Lastreopsis hispida (Sw.) Tindale	KJ464446 – KJ464614		
Lastreopsis killipii (C.Chr. & Maxon) Tindale	KJ464448 KF709505 –		
Lastreopsis marginata (F.Muell.) Tindale	KJ464449 GU376691 KJ464616		
Lastreopsis pocicophlebia (Hook.) Labiak, Sundue & R.C.Moran	KJ464423 GU376692 KJ464594		
Lastreopsis tenen (R.Br.) Tindale	KJ464467 GU376699 KJ464636		
Lastreopsis tripinnata (F.Muell. ex Benth.) Labiak, Sundue & R.C.Moran	KJ464491 GU376700 –		
Lastreopsis walleri Tindale	KJ464472 GU376701 –		
Lastreopsis warunuran (Domin) Tindale	KJ464474 GU376704 –		
Lomagramma brooksi Copel.	– GU376705 GU376542		
Lomagramma cordipinna Holttum	– GU376707 GU376543		
Lomagramma lomarioides (Blume) J.Sm.	– – GU376550		
Lomagramma matthewii (Ching) Holttum	KJ464476 – KJ464640		
Lomagramma perakensis Bedd.	– – GU376552		
Lomagramma pteroides J.Sm.	– – GU376555		
Lomagramma simanta C.Chr.	– – GU376556		
Lomagramma sumatrana Alderw.	– – GU376558		
Maxonia apiifolia (Sw.) C.Chr.	KJ464477 GU376709 KJ464641		
Megalastrum abundans (Rosenst.) A.R.Sm. & R.C.Moran	KJ464478 – KJ464642		
Megalastrum atrogriseum (C.Chr.) A.R.Sm. & R.C.Moran	KJ464479 GU376710 KJ464643		
Megalastrum connexum (Kaulf.) A.R.Sm. & R.C.Moran	KJ464481 – KJ464645		
Megalastrum lanatum (Fée) Holttum	KJ464483 – KJ464647		
Megalastrum litorale R.C.Moran, J.Prado & Labiak	– GU376651 GU376561		
Megalastrum macrotheca (Fée) A.R.Sm. & R.C.Moran	KJ464484 GU376697 KJ464648		
Megalastrum vastum (Kunze) A.R.Sm. & R.C.Moran	KJ464487 GU376658 KJ464651		
Mickelia bernoullii (Kuhn ex Christ) R.C.Moran, Labiak & Sundue	– GU376666 GU376506		
Mickelia guianensis (Aubl.) R.C.Moran, Labiak & Sundue	– GU376667 GU376548		
Mickelia heniotois (Maxon) R.C.Moran, Labiak & Sundue	– – GU376512		
Mickelia nicotianifolia (Sw.) R.C.Moran, Labiak & Sundue	– KF667557 GU376519		
Mickelia oligarchica (Baker) R.C.Moran, Labiak & Sundue	KJ464489 – GU376520		
Mickelia scandens (Raddi) R.C. Moran, Labiak & Sundue	– GU376696 GU376547		
Olfersia cervina Kunze	KJ464493 DQ153079 KJ464652		
Parapolystichum acuminatum (Houlston) Labiak, Sundue & R.C.Moran	KJ464430 KC777454 KJ464601		
Parapolystichum boivinii (Baker) Rouhan	KJ464435 – KJ464607		
Parapolystichum confine (Maxon ex C.Chr.) Labiak, Sundue & R.C.Moran	KJ464438 – –		
Taxon	Genbank accession numbers		
--	----------------------------		
	rbcL	rps4-trnS	trnL-F
Parapolystichum effusum (Sw.) Ching	KJ464441	–	–
Parapolystichum effusum (Sw.) Ching subsp. *divergens* (Willd. ex Schkuhr) Tindale	KJ464440	–	–
Parapolystichum excultum (Mett.) Labiak, Sundue & R.C.Moran	–	KF709501	GU376541
Parapolystichum glabellum (A.Cunn.) Labiak, Sundue & R.C.Moran	KJ464445	KF709503	KJ464613
Parapolystichum microsorum (Endl.) Labiak, Sundue & R.C.Moran	KJ464451	GU376712	KJ464617
Parapolystichum perrierianum (C.Chr.) Rouhan	KJ464455	–	KJ464623
Parapolystichum rufescens (Blume) Labiak, Sundue & R.C.Moran	KJ464461	–	KJ464629
Parapolystichum vogeli (Hook.) Rouhan	KJ464470	–	–
Parapolystichum windsorensis (D.L.Jones & B.Gray) Labiak, Sundue & R.C.Moran	KJ464473	–	KJ464639
Pleocnemia conjugata C.Presl	–	GU376713	KF709510
Pleocnemia cumingiana C.Presl	KJ196828	–	KJ196705
Pleocnemia dahlii (Hieron.) Holttum	KJ196829	–	KJ196706
Pleocnemia hemiteliiformis (Racib.) Holttum	KF709482	KF667560	KF709511
Pleocnemia irregularis (C.Presl) Holttum	KF709491	–	KF709513
Pleocnemia leueana (Gaudich.) C.Presl	KJ196830	–	–
Pleocnemia olivacea (Copel.) Holttum	KJ464495	–	–
Pleocnemia prediana Holttum	KJ464496	KF667561	–
Pleocnemia rufinervis Nakai	JF303976	KF667562	–
Pleocnemia winitii Holttum	EF460686	–	KF709515
Polybotrya alfredii Brade	KJ464497	KF667563	KJ464653
Polybotrya andina C.Chr.	KJ464498	KP271084	KJ464654
Polybotrya pubens Mart.	KJ464499	KP271085	–
Polystichum tsus-simense (Hook.) J.Sm. var. *mayebarae* (Tagawa) Sa.Kurata	AB575224	–	DQ150408
Pseudotectaria biflora (Mett.) Holttum	–	–	KF897951
Pseudotectaria decaryana (C.Chr.) Tardieu	–	–	KF897952
Rumohra adiantiformis (G.Forst.) Ching	KJ464500	–	KJ464655
Rumohra berteronana (Colla) J.J. Rodr.	KJ464503	–	KJ464657
Stigmatopteris ichthioasma (Sodiro) C.Chr.	KJ464504	–	KJ464658
Stigmatopteris kelifiana Lellinger	KJ464505	–	KJ464659
Stigmatopteris lechleri (Mett) C.Chr.	KJ464506	KP271087	KJ464660
Stigmatopteris orfida (Maxon) C.Chr.	KJ464507	–	KJ464661
Tenatophyllum koordersii Holttum	–	–	GU376566
Tenatophyllum ludens (Fée) Holttum	–	–	GU376567
Tenatophyllum wilkiesianum Holttum	KJ464508	–	–

Nephrolepiceae

Nephrolepis abrupta* (Bory) Mett.	HM748137	KF667559	–
Nephrolepis acutifolia* (Desv.) Christ.	HM748139	–	–
Nephrolepis biserrata* (Sw.) Schott	AB575227	GU376688	–
Nephrolepis brownii* (Desv.) Hovenkamp & Miyam.	KR816691	–	–
Nephrolepis cordifolia* (L.) C.Presl	AB575228	–	–
Nephrolepis davalliae* Alderw.	HM748147	–	–
Nephrolepis davalloides* Kunze	HM748148	GU376690	–
Nephrolepis exaltata* (L.) Schott	HM748149	–	–
Phylogenetic analyses place the monotypic *Dryopolystichum* within Lomariopsidaceae

Taxon	Genbank accession numbers		
Phylogenetic analyses place the monotypic Dryopolystichum within Lomariopsidaceae			
	rbcL	**rps4-trnS**	**trnL-F**
Nephrolepis falcata (Cav.) C.Chr.	HM748150	–	–
Nephrolepis falciformis J.Sm.	AB232404	–	–
Nephrolepis lauterbachii (Christ) Christ	HM748153	–	
Nephrolepis pectinata (Willd.) Schott	HM748155	–	
Nephrolepis pendula (Kaddi) J.Sm.	HM748156	–	
Nephrolepis radicans (Burn.) Kuhn	HM748157	–	
Nephrolepis rivularis (Vahl) Mett.	HM748158	–	
Nephrolepis undulata J.Sm.	HM748159	–	
	rbcL	**rps4-trnS**	**trnL-F**
Nephrolepis falcata (Cav.) C.Chr.	HM748150	–	–
Nephrolepis falciformis J.Sm.	AB232404	–	–
Nephrolepis lauterbachii (Christ) Christ	HM748153	–	
Nephrolepis pectinata (Willd.) Schott	HM748155	–	
Nephrolepis pendula (Kaddi) J.Sm.	HM748156	–	
Nephrolepis radicans (Burn.) Kuhn	HM748157	–	
Nephrolepis rivularis (Vahl) Mett.	HM748158	–	
Nephrolepis undulata J.Sm.	HM748159	–	
Lomariopsidaceae			
Cyclopetis crenata (Fée) C.Chr.	DQ054517	EF540718	DQ51448
Cyclopetis novoguineensis Rosenst.	KY397974	KY397978	KY397970
Cyclopetis semicordata (Sw.) J.Sm.	EF463234	KY397977	KY397969
Dracoglossum plantagineum (Jacq.) Christenh.	KC914564	KY397979	KY397971
Dracoglossum sinuatum (Fée) Christenh.	–	–	KU605106
Dryopolystichum phaeostigma (Ces.) Copel.	KY397972	KY397976	KY397968
Lomariopsis crassifolia Holtum	–	–	DQ396559
Lomariopsis guineensis (Underw.) Alston	–	KJ628952	DQ396560
Lomariopsis bederacea Alston	–	–	DQ396561
Lomariopsis jamaicensis (Underw.) Holtum	–	–	DQ396562
Lomariopsis japonensis (C.Martius) J.Sm.	–	–	DQ396563
Lomariopsis kunzeana (Underw.) Holtum	–	–	DQ396569
Lomariopsis latipinna Stolze	–	–	DQ395671
Lomariopsis lineata (C.Presl) Holtum	–	–	DQ396572
Lomariopsis longicaudata (Bonap.) Holtum	–	–	Q396573
Lomariopsis madagascariaca (Bonap.) Alston	–	–	DQ396575
Lomariopsis manetti (Underw.) Alston	–	–	DQ396577
Lomariopsis marginata (Schrad.) Kuhn	AY818677	–	DQ396578
Lomariopsis maxonii (Underw.) Holtum	–	–	DQ396580
Lomariopsis muriculata Holtum	–	–	DQ396582
Lomariopsis palustris (Hook.) Mett. ex Kuhn	–	HM748162	DQ396585
Lomariopsis pervillei Kuhn	–	–	DQ396586
Lomariopsis plicicina (Willemen) Mett. ex Kuhn	EF463235	–	DQ396588
Lomariopsis prieuriata Fée	–	–	DQ396590
Lomariopsis recurvata Fée	–	–	DQ396592
Lomariopsis rosii Holtum	–	–	DQ396594
Lomariopsis salicifolia (Kunze) Lellinger	–	–	DQ396595
Lomariopsis sorbifolia (L.) Fée	EF463236	–	–
Lomariopsis spectabilis Mett.	AB232401	–	KJ196685
Lomariopsis vestita E.Fourn.	–	–	DQ396598
Lomariopsis wrightii Mett.	–	–	DQ396600
Tectariaceae			
Arthropteris altescandens J.Sm.	KF667636	KF667550	KF667606
Arthropteris articulata (Brack.) C.Chr.	KC977367	KC977437	KC977411
Arthropteris beckleri (Hook.) Mett.	U05605	–	KF667607
Arthropteris cameroonensis Alston	KF667638	–	–
Taxon	Genbank accession numbers		
---	----------------------------------		
Arthropteris guinanensis H.G.Zhou & Y.Y.Huang	KC977364 KC977442 KC977404		
Arthropteris monocarpa (Cordem.) C.Chr.	HM748132 – KF897941		
Arthropteris orientalis (Gmel.) Posth.	HM748133 KC977435 KC977420		
Arthropteris palmistii (Desv.) Alston	AB575230 KC977427 KC977406		
Arthropteris paralela (Baker) C.Chr.	EF463266 KC977453 KC977425		
Arthropteris paucivenia (C.Chr.) H.M.Liu, Hovenkamp & H.Schneid.	EF463268 – KC977426		
Arthropteris repens (Brack.) C.Chr.	KC977368 KC977438 KC977412		
Arthropteris tenella (G.Forst.) J.Sm. ex Hook.f.	KC977363 KF011547 KC977424		
Hypoderris brauniana (H.Karst.) F.G.Wang & Christenh.	KF667647 – KF667618		
Hypoderris brownii J.Sm.	KF667642 – KF667611		
Hypoderris nicotianifolia (Baker) R.C.Moran, Labiak & J.Prado	KF667653 – KF667626		
Pteridrys australis Ching	KJ196892 – KJ196678		
Pteridrys crenidaria (Christ) C.Chr. & Ching	KF709488 – KF709517		
Pteridrys lofuentis (Christ) C.Chr. & Ching	EF406087 KF667566 –		
Pteridrys microthecia (Fée) C.Chr. & Ching	KJ196848 – KF709518		
Tectaria acerifolia R.C.Moran	KJ196875 – KF709519		
Tectaria angulata (Willd.) Copel.	KJ196876 – KJ196656		
Tectaria aurita (Sw.) S.Chandra	KJ196849 – KJ196631		
Tectaria barberi (Hook.) Copel.	KJ196846 – KJ196628		
Tectaria borneensis S.Y.Dong	KJ196854 KF667555 KJ196642		
Tectaria cicutaria (L.) Copel.	KF667649 – KF667620		
Tectaria coadunata (J.Sm.) C.Chr.	KJ196851 – KJ196661		
Tectaria crenata Cav.	KF667650 KF667656 KF667621		
Tectaria decurrens (C.Presl) Copel.	AB575232 – DQ514524		
Tectaria devesa (Kunze ex Mett.) Copel.	AB575233 KP271088 KF897956		
Tectaria dilacenata (Kunze) Maxon	KF887173 – KF897957		
Tectaria fauriei Tagawa	AB575234 – KJ196658		
Tectaria fernandensis C.Chr.	KF887174 – KF897958		
Tectaria gigantea (Blume) Copel.	KJ196853 – KJ196660		
Tectaria griffithii (Baker) Ching	KF667652 – KF667624		
Tectaria grossidentata Ching & Chu H.Wang	KJ196882 KP271089 KJ196667		
Tectaria harlandii (Hook.) C.M.Kuo	AB575231 – KJ196648		
Tectaria harlandii (Hook.) C.M.Kuo	KF887178 – KF897961		
Tectaria heracleifolia (Willd.) Underw.	KF887180 – KF897963		
Tectaria herpetocalo Ching & Chu H. Wang	KJ196884 – KJ196669		
Tectaria heterocarpa C.V.Morton	KF887181 – KF897964		
Tectaria impressa (Fée) Holtum	KJ196841 – KF897965		
Tectaria kusukusensis (Hayata) Lellinger	EF460681 – KF897968		
Tectaria labrusca (Hook.) Copel.	KJ196818 – KJ196692		
Tectaria luchunensis S.K.Wu	KJ196845 KP271090 KJ196627		
Tectaria maxelanii (Copel.) S.Y.Dong	KJ196810 – KJ196680		
Tectaria melanocaula (Blume) Copel.	KJ196832 – KJ196709		
Tectaria moneri (Baker) P.J.Edwards ex S.Y.Dong	KJ196893 KF667570 KF561675		
Phylogenetic analyses place the monotypic *Dryopolystichum* within Lomariopsidaceae.

Taxon	Genbank accession numbers		
	rbcL	*rps4-trnS*	*trnL-F*
Tectaria nayarii Mazumdar		–	KJ196699
Tectaria paradoxoa (Fée) Sledge	KF887189	–	KF897971
Tectaria phaeocaulis (Rosenst.) C.Chr.	AB232397	KF709499	KF897972
Tectaria pica (L.) C.Chr.	KF887191	GU376715	KF897973
Tectaria polymorpha (Wall. ex Hook.) Copel.	KJ196888	GU376716	KJ196657
Tectaria prolifera (Hook.) R.M.Tryon & A.F.Tryon	EF463273	–	KF897974
Tectaria pumilicarpa S.Y.Dong	KJ196822	KF667572	KJ196698
Tectaria pubens R.C.Moran	KF887193	KF667573	KF897975
Tectaria quinquefolia (Baker) Ching	KJ196885	–	KJ396622
Tectaria repanda (Willd.) Holtum	KJ196831	–	KJ196707
Tectaria sargentoides (Mett.) Christenh.	KF887194	KF667575	KF561672
Tectaria semipinnata (Roxb.) Morton	KJ196817	KF667577	KJ196691
Tectaria simonsii (Baker) Ching	AB575236	–	KF897977
Tectaria singaporiana (Wall. ex Hook. & Grev.) Ching	KF887196	–	KF897978
Tectaria subglabra (Holtum) S.Y.Dong	–	–	KJ196676
Tectaria subageniacea (Christ) Christenh.	KF887197	KF667576	KF561670
Tectaria subtrifyllea (Hook. & Arn.) Copel.	AB575237	–	KF897980
Tectaria tricuspis (Bedd.) Copel.	KJ196820	–	KJ196694
Tectaria variolosa (Wall. ex Hook.) C.Chr.	EF460690	–	KF897982
Tectaria vassa (Blume) Copel.	KF667655	–	KF667628
Tectaria vivipara Jermy & T.G.Walker	KF887201	–	KF897983
Tectaria zeilanica (Houtt.) Sledge	AB232395	–	KF709521
Triplophyllum crassifolium Holtum	KF887203	–	KF897985
Triplophyllum fraternum (Mett.) Holtum	KF667657	–	KF667630
Triplophyllum funestum (Kunze) Holtum	KF667631	–	KF667631
Triplophyllum glutinum J.Prado & R.C.Moran	KF887207	–	KF897989
Triplophyllum heudelotii Pic.Serm.	–	–	KF897990
Triplophyllum jenseniæ (C.Chr.) Holtum	KF667660	–	KF667633
Triplophyllum pentagonum (Bonap.) Holtum	KF667662	–	KF667635
Triplophyllum pilosisissmum (J.Sm. ex T.Moore) Holtum	–	–	KU05127
Triplophyllum securidiforme (Hook.) Holtum	–	–	KU05128
Triplophyllum vogelii (Hook.) Holtum	KF667661	–	KF667634

Oleandraceae

Oleandra articulata (Sw.) C.Presl	KF667644	KF709500	KF667613
Oleandra cunningii J.Sm.	KJ196816	–	KJ196690
Oleandra neriiformis Cav.	KJ196815	–	KJ196689
Oleandra pilosa Hook.	KF667646	–	KF667615

Davalliaceae

| Davallodes hirsuta (J.Sm.) Copel. | AY096196 | – | – |
| Davallodes yunnanensis (Christ) M.Kato & Tsutsumi | JX103718 | KC914565 | – |

Polypodiaceae

Campyloneurum minus Fée	KF667665	–	–
Microgramma lyopooides (L.) Copel.	KF667664	–	–
Niphidium longifolium (Cav.) C.V.Morton & Lellinger	KF667663	KF709495	–
Supplementary material 1

Figure S1. Maximum likelihood phylogram of Polypodiineae obtained from the combined \((rbcL + rps4-trnS + trnL-F)\) dataset.
Authors: Cheng-Wei Chen, Michael Sundue, Li-Yaung Kuo, Wei-Chih Teng, Yao-Moan Huang
Data type: statistical data
Explanation note: Maximum likelihood bootstrap percentages (BS) are provided at each node. Thickened lines indicate Bayesian inference posterior probability (PP) \(\geq 0.9\).
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Supplementary material 2

Figure S2. Maximum likelihood phylogram of Polypodiineae obtained from the \(rbcL\) dataset.
Authors: Cheng-Wei Chen, Michael Sundue, Li-Yaung Kuo, Wei-Chih Teng, Yao-Moan Huang
Data type: statistical data
Explanation note: Maximum likelihood bootstrap percentages (BS) are provided at each node. Thickened lines indicate Bayesian inference posterior probability (PP) \(\geq 0.9\).
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Supplementary material 3

Figure S3. Maximum likelihood phylogram of Polypodiineae obtained from the rps4-trnS dataset.
Authors: Cheng-Wei Chen, Michael Sundue, Li-Yaung Kuo, Wei-Chih Teng, Yao-Moan Huang
Data type: statistical data
Explanation note: Maximum likelihood phylogram of Polypodiineae obtained from the rps4-trnS dataset. Maximum likelihood bootstrap percentages (BS) are provided at each node. Thickened lines indicate Bayesian inference posterior probability (PP) ≥ 0.9.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Supplementary material 4

Figure S4. Maximum likelihood phylogram of Polypodiineae obtained from the trnL-F dataset.
Authors: Cheng-Wei Chen, Michael Sundue, Li-Yaung Kuo, Wei-Chih Teng, Yao-Moan Huang
Data type: statistical data
Explanation note: Maximum likelihood bootstrap percentages (BS) are provided at each node. Thickened lines indicate Bayesian inference posterior probability (PP) ≥ 0.9.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.