OCTONIONIC DIRAC EQUATION

Stefano De Leo\(^{(a,b)}\) and Khaled Abdel-Khalek\(^{(a)}\)

\(^{(a)}\) Dipartimento di Fisica - Università di Lecce

\(^{(b)}\) Istituto Nazionale di Physica Nucleare, Sezione di Lecce

- Lecce, 73100, Italy -

(Revised Version, July 1996)

In order to obtain a consistent formulation of octonionic quantum mechanics (OQM), we introduce left-right barred operators. Such operators enable us to find the translation rules between octonionic numbers and \(8 \times 8\) real matrices (a translation is also given for \(4 \times 4\) complex matrices). We develop an octonionic relativistic free wave equation, linear in the derivatives. Even if the wave functions are only one-component we show that four independent solutions, corresponding to those of the Dirac equation, exist.

I. INTRODUCTION

From the sixties onwards, there has been renewed and intense interest in the use of octonions in physics \cite{1}. The octonionic algebra has been in fact linked with a number of interesting subjects: structure of interactions \cite{2}, \(SU(3)\) color symmetry and quark confinement \cite{3,4}, standard model gauge group \cite{5}, Dirac-Clifford algebra \cite{6}, nonassociative Yang-Mills theories \cite{7}, space-time symmetries in ten dimensions \cite{8}, supersymmetry and supergravity theories \cite{9,10}. Moreover, the recent successful application of quaternionic numbers in quantum mechanics \cite{11-17}, in particular in formulating a quaternionic Dirac equation \cite{18-21}, suggests going one step further and using octonions as underlying numerical field.

In this work, we overcome the problems due to the nonassociativity of the octonionic algebra by introducing left-right barred operators (which will be sometimes called barred octonions). Such operators complete the mathematical material introduced in the recent papers of Joshi et al. \cite{8,9}. Then, we investigate their relations to \(\text{GL}(8,\mathbb{R})\) and \(\text{GL}(4,\mathbb{C})\). Establishing this relation we find interesting translation rules, which gives us the opportunity to formulate a consistent OQM.

The philosophy behind the translation can be concisely expressed by the following sentence: “There exists at least one version of octonionic quantum mechanics where the standard quantum mechanics is reproduced”. The use of a complex scalar product (complex geometry) \cite{22} will be the main tool to obtain OQM.

We wish to stress that translation rules don’t imply that our octonionic quantum world (with complex geometry) is equivalent to the standard quantum world. When translation fails the two worlds are not equivalent. An interesting case can be supersymmetry \cite{23}.

Similar translation rules, between quaternionic quantum mechanics (QQM) with complex geometry and standard quantum mechanics, have been recently found \cite{11}. As an application, such rules can be exploited in reformulating in a natural way the electroweak sector of the standard model \cite{14}. In section II, we discuss octonionic algebra and introduce barred operators. Then, in Section III, we investigate the relation between barred octonions and \(8 \times 8\) real matrices. In this section, we also give the translation rules between octonionic barred operators and \(\text{GL}(4,\mathbb{C})\), which will be very useful in formulating our OQM (full details of the mathematical material appear elsewhere \cite{23}). In section IV, we explicitly develop an octonionic Dirac equation and suggest possible difference between complex and octonionic quantum theories. In the final section we draw our conclusions.

II. OCTONIONIC BARRED OPERATORS

We can characterize the algebras \(\mathbb{R}, \mathbb{C}, \mathbb{H}\) and \(\mathbb{O}\) by the concept of division algebra (in which one has no nonzero divisors of zero). Octonions, which locate a nonassociative division algebra, can be represented by seven imaginary units \((e_1, \ldots, e_7)\) and \(e_0 \equiv 1:\)

\[
\mathbb{O} = r_0 + \sum_{m=1}^{7} r_m e_m \quad (r_0, \ldots, 7 \text{ reals}) .
\]

These seven imaginary units, \(e_m\), obey the noncommutative and nonassociative algebra

S. De Leo and K. Abdel-Khalek - pag. 1
\[e_m e_n = -\delta_{mn} + \epsilon_{mnp} e_p \quad (m, n, p = 1, \ldots, 7) \],

with \(\epsilon_{mnp} \) totally antisymmetric and equal to unity for the seven combinations 123, 145, 176, 246, 257, 347 and 365. The norm, \(N(O) \), for the octonions is defined by

\[N(O) = (O^\dagger O)^{\frac{1}{2}} = (O O^\dagger)^{\frac{1}{2}} = (r_0^2 + \ldots + r_7^2)^{\frac{1}{2}} \]

with the octonionic conjugate \(O^\dagger \) given by

\[O^\dagger = r_0 - \sum_{m=1}^{7} r_m e_m \]

The inverse is then

\[O^{-1} = O^\dagger / N(O) \quad (O \neq 0) \]

We can define an associator (analogous to the usual algebraic commutator) as follows

\[\{x, y, z\} \equiv (xy)z - x(yz) \]

where, in each term on the right-hand, we must, first of all, perform the multiplication in brackets. Note that for real, complex and quaternionic numbers the associator is trivially null. For octonionic imaginary units we have

\[\{e_m, e_n, e_p\} \equiv (e_m e_n e_p) - e_m (e_n e_p) = 2\epsilon_{mnp} e_s \]

with \(\epsilon_{mnp} \) totally antisymmetric and equal to unity for the seven combinations 1247, 1265, 2345, 2376, 3146, 3157 and 4567.

Working with octonionic numbers the associator is in general non-vanishing, however, the “alternative condition” is fulfilled

\[\{x, y, z\} + \{z, y, x\} = 0 \]

In 1989, writing a quaternionic Dirac equation, Rotelli introduced a barred momentum operator

\[-i \partial | i \psi \equiv -i \partial \psi \]

In a recent paper, based upon the Rotelli operators, partially barred quaternions have been used to formulate a quaternionic quantum mechanics.

A complete generalization for quaternionic numbers is represented by the following barred operators

\[q_1 + q_2 | i + q_3 | j + q_4 | k \quad [q_1, \ldots, 4 \in \mathcal{H}] \]

which we call fully barred quaternions, or simply barred quaternions. They, with their 16 linearly independent elements, form a basis of \(GL(4, \mathcal{R}) \) and are successfully used to reformulate Lorentz space-time transformations and write down a one-component Dirac equation.

Thus, it seems to us natural to investigate the existence of barred octonions

\[O_0 + \sum_{m=1}^{7} O_m | e_m \quad [O_{0,\ldots,7 \text{ octonions}}] \]

Nevertheless, we must observe that an octonionic barred operator, \(a | b \), which acts on octonionic wave functions, \(\psi \),

\[[a | b] \psi \equiv a \psi b \]

is not a well defined object. For \(a \neq b \) the triple product \(a \psi b \) could be either \((a \psi)b \) or \(a(\psi b) \). So, in order to avoid the ambiguity due to the nonassociativity of the octonionic numbers, we need to define left/right-barred operators.
We will indicate left-barred operators by $a\mid b$, with a and b which represent octonionic numbers. They act on octonionic functions ψ as follows

$$[a\mid b]\psi = (a\psi)b$$ \hspace{1cm} (13a)

In similar way we can introduce right-barred operators, defined by $a\{ b$,

$$[a\{ b]\psi = a(\psi b)$$ \hspace{1cm} (13b)

Obviously, there are barred-operators in which the nonassociativity is not of relevance, like

$$1\} a = 1\{ a \equiv 1 \mid a$$.

Furthermore, from eq. (8), we have

$$\{x, y, x\} = 0$$,

so

$$a\{ a = a\} a \equiv a \mid a$$.

Besides, it is possible to prove, by eq. (8), that each right-barred operator can be expressed by a suitable combination of left-barred operators. For further details, the reader can consult the mathematical paper [24]. So we can represent the most general octonionic operator by only 64 left-barred objects

$$\mathcal{O}_0 + \sum_{m=1}^{7} e_m \mathcal{O}_m = [\mathcal{O}_0, \ldots, 7 \text{ octonions}]$$. \hspace{1cm} (14)

This suggests a correspondence between our barred octonions and $GL(8, \mathcal{R})$ (a complete discussion about the above-mentioned relationship is given in the following section).

III. TRANSLATION RULES

In order to explain the idea of translation, let us look explicitly at the action of the operators $1\mid e_1$ and e_2, on a generic octonionic function φ

$$\varphi = \varphi_0 + e_1\varphi_1 + e_2\varphi_2 + e_3\varphi_3 + e_4\varphi_4 + e_5\varphi_5 + e_6\varphi_6 + e_7\varphi_7$$ \hspace{1cm} \varphi_0, \ldots, 7 \in \mathcal{R} \hspace{1cm} (15)

We have

$$[1\mid e_1] \varphi \equiv \varphi e_1 = e_1\varphi_0 - \varphi_1 - e_3\varphi_3 - e_5\varphi_5 + e_6\varphi_6 + e_7\varphi_7$$, \hspace{1cm} (16a)

$$e_2\varphi = e_2\varphi_0 - e_3\varphi_1 - \varphi_2 + e_1\varphi_3 + e_6\varphi_4 + e_7\varphi_5 - e_4\varphi_6 - e_5\varphi_7$$. \hspace{1cm} (16b)

If we represent our octonionic function φ by the following real column vector

$$\varphi \leftrightarrow \begin{pmatrix} \varphi_0 \\ \varphi_1 \\ \varphi_2 \\ \varphi_3 \\ \varphi_4 \\ \varphi_5 \\ \varphi_6 \\ \varphi_7 \end{pmatrix}$$, \hspace{1cm} (17)

we can rewrite the eqs. (16a-b) in matrix form,
by the 4 \times 4 combined action gives us
\begin{pmatrix}
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
\varphi_0 \\
\varphi_1 \\
\varphi_2 \\
\varphi_3 \\
\varphi_4 \\
\varphi_5 \\
\varphi_6 \\
\varphi_7
\end{pmatrix}
=
\begin{pmatrix}
-\varphi_1 \\
\varphi_0 \\
\varphi_3 \\
-\varphi_2 \\
\varphi_4 \\
-\varphi_5 \\
-\varphi_7 \\
\varphi_6
\end{pmatrix}
\quad (18a)

Following this procedure we can construct the complete set of translation rules [24].

Let us now discuss of the relation between octonions and complex matrices. Complex groups play a critical role in physics. No one can deny the importance of $U(1, \mathbb{C})$ or $SU(2, \mathbb{C})$. In relativistic quantum mechanics, $GL(4, \mathbb{C})$ is essential in writing the Dirac equation. Having $GL(8, \mathbb{C})$, we should be able to extract its subgroup $GL(4, \mathbb{C})$. So, we can translate the famous Dirac-gamma matrices and write down a new octonionic Dirac equation.

If we analyse the action of left-barred operators on our octonionic wave functions
\begin{equation}
\psi = \psi_1 + e_2 \psi_2 + e_4 \psi_3 + e_6 \psi_4
\end{equation}
we find, for example,
\begin{equation}
e_2 \psi = -\psi_2 + e_2 \psi_1 - e_4 \psi_4^* + e_6 \psi_6^*
\end{equation}
\begin{equation}
[e_3 \text{ } e_1] \psi \equiv (e_3 \psi) e_1 = \psi_2 + e_2 \psi_1 + e_4 \psi_4^* - e_6 \psi_6^*
\end{equation}
Obviously, the previous operators e_2 or $e_3 \text{ } e_1$ cannot be represented by matrices, nevertheless we note that their combined action gives us
\begin{equation}
e_2 \psi + (e_3 \psi) e_1 = 2e_2 \psi_1
\end{equation}
and it allows us to represent the octonionic barred operator
\begin{equation}
e_2 + e_3 \text{ } e_1
\end{equation}
by the 4 \times 4 complex matrix
\begin{pmatrix}
0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\quad (20b)

Following this procedure we can represent a generic 4 \times 4 complex matrix by octonionic barred operators. In Appendix B we give the full basis of $GL(4, \mathbb{C})$ in terms of octonionic left-barred operators. It is clear that, only, particular combinations of left-barred operators is allowed to reproduce the associative matrix algebra. In order to make our discussion smooth, we refer the interested reader to the mathematical paper [24]. We can quickly relate 1 \text{ } e_1 with the complex matrix $i \mathbb{1}_{4 \times 4}$ which will be relevant to an appropriate definition for the octonionic momentum operator [26].

The operator 1 \text{ } e_1 (represented by the matrix $i \mathbb{1}_{4 \times 4}$) commutes with all operators which can be translated by 4 \times 4 complex matrices. This is not generally true for a generic octonionic operator. For example, we can show that the operator 1 \text{ } e_1 doesn’t commute with e_2, explicitly
\begin{equation}
e_2 \{ 1 \text{ } e_1 \mid \psi \} \equiv e_2 (\psi e_1) = -e_1 \psi_2 - e_3 \psi_1 - e_5 \psi_3^* - e_7 \psi_5^*
\end{equation}
\begin{equation}
[1 \text{ } e_1] \{ e_2 \psi \} \equiv (e_2 \psi) e_1 = -e_1 \psi_2 - e_3 \psi_1 + e_5 \psi_3^* + e_7 \psi_5^*
\end{equation}
The interpretation is simple: e_2 cannot be represented by a 4 \times 4 complex matrix.

We conclude this section by showing explicitly an octonionic representation for the Dirac gamma-matrices [27]:

\begin{equation}
\begin{cases}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{cases}
\begin{cases}
\varphi_0 \\
\varphi_1 \\
\varphi_2 \\
\varphi_3 \\
\varphi_4 \\
\varphi_5 \\
\varphi_6 \\
\varphi_7
\end{cases}
=
\begin{cases}
-\varphi_1 \\
\varphi_0 \\
\varphi_3 \\
-\varphi_2 \\
\varphi_4 \\
-\varphi_5 \\
-\varphi_7 \\
\varphi_6
\end{cases}
\quad (18a)
\end{equation}
Dirac representation,

\[
\gamma^0 = \frac{1}{3} - \frac{2}{3} \sum_{m=1}^{3} e_m \mid e_m + \frac{1}{3} \sum_{n=4}^{7} e_n \mid e_n ,
\]

\[
\gamma^1 = -\frac{2}{3} e_6 - \frac{1}{3} (e_6 + e_5) e_3 - e_3 e_5 - \frac{1}{3} \sum_{p,s=1}^{7} e_{ps} e_p e_s ,
\]

\[
\gamma^2 = -\frac{2}{3} e_7 - \frac{1}{3} (e_7 + e_3) e_4 - e_4 e_3 - \frac{1}{3} \sum_{p,s=1}^{7} e_{ps} e_p e_s ,
\]

\[
\gamma^3 = -\frac{2}{3} e_4 - \frac{1}{3} (e_4 + e_7) e_3 - e_3 e_7 - \frac{1}{3} \sum_{p,s=1}^{7} e_{ps} e_p e_s ;
\]

IV. OCTONIONIC DIRAC EQUATION

In the previous section we have given the gamma-matrices in three different octonionic representations. Obviously, we can investigate the possibility of having a more simpler representation for our octonionic \(\gamma^\mu\)-matrices, without translation.

Why not

\[e_1, \ e_2, \ e_3 \text{ and } e_4 \mid e_4\]

or

\[e_1, \ e_2, \ e_3 \text{ and } e_4 \mid e_1\]

Apparently, they represent suitable choices. Nevertheless, the octonionic world is full of hidden traps and so we must proceed with prudence. Let us start from the standard Dirac equation

\[\gamma^\nu p^\nu \psi = m\psi ,\]

(we discuss the momentum operator in the paper of ref. [26], here, \(p^\nu\) represents the “real” eigenvalue of the momentum operator) and apply \(\gamma^\mu p^\mu\) to our equation

\[\gamma^\mu p^\mu (\gamma^\nu p^\nu \psi) = m\gamma^\mu p^\mu \psi .\]

The previous equation can be concisely rewritten as

\[p^\mu p^\nu \gamma^\mu (\gamma^\nu p^\nu \psi) = m^2 \psi .\]

Requiring that each component of \(\psi\) satisfy the standard Klein-Gordon equation we find the Dirac condition, which becomes in the octonionic world

\[\gamma^\mu (\gamma^\nu \psi) + \gamma^\nu (\gamma^\mu \psi) = 2g^{\mu\nu} \psi ,\]

(where the parenthesis are relevant because of the octonions nonassociative nature). Using octonionic numbers and no barred operators we can obtain, from [26], the standard Dirac condition

\[\{\gamma^\mu, \gamma^\nu\} = 2g^{\mu\nu} .\]

In fact, recalling the associator property [which follows from eq. (5)]

\[\{a, b, \psi\} = -\{b, a, \psi\} \quad [a, b \text{ octonionic numbers}],\]

we quickly find the following correspondence relation

\[(ab + ba)\psi = a(b\psi) + b(a\psi) .\]
We have no problem to write down three suitable gamma-matrices which satisfy the Dirac condition \([\gamma^1, \gamma^2, \gamma^3] \equiv (e_1, e_2, e_3)\),

\[
(\gamma^1, \gamma^2, \gamma^3) \equiv (e_1, e_2, e_3) ,
\]

but, barred operators like

\[
e_4 | e_4 \quad \text{or} \quad e_4) e_1
\]
cannot represent the matrix \(\gamma^0\). After straightforward algebraic manipulations, one can prove that the barred operator, \(e_4 | e_4\), doesn’t anticommute with \(e_1\),

\[
e_1(e_4\psi e_4) + e_4(e_1\psi)e_4 = -2(e_3\psi_2 + e_7\psi_4) \neq 0 \quad \left[\psi = \psi_1 + e_2\psi_2 + e_4\psi_3 + e_6\psi_4 \right] ,
\]

whereas \(e_4) e_1\) anticommutes with \(e_1\)

\[
e_1[(e_4\psi)e_1] + [e_4(e_1\psi)]e_1 = 0 ,
\]

but we know that \(\gamma^2 \neq 1\), whereas

\[
\{e_4[(e_4\psi)e_1]\}e_1 = \psi_1 - e_2\psi_2 + e_4\psi_3 - e_6\psi_4 \neq \psi .
\]

Thus, we must be satisfied with the octonionic representations given in the previous section.

We recall that the appropriate momentum operator in OQM with complex geometry \([26]\) is

\[
\mathcal{P}^\mu \equiv \partial^\mu \ | e_1 .
\]

Thus, the octonionic Dirac equation, in covariant form, is given by

\[
\gamma^\mu(\partial_\mu\psi e_1) = m\psi ,
\]

where \(\gamma^\mu\) are represented by octonionic barred operators \([22a-d]\). We can now proceed in the standard manner. Plane wave solutions exist \([p \equiv -\partial \ | e_1]\) commutes with a generic octonionic Hamiltonian and are of the form

\[
\psi(x, t) = \left[u_1(p) + e_2u_2(p) + e_4u_3(p) + e_6u_4(p) \right] e^{-pxe_1} \quad \left[u_1,...,4 \in \mathcal{C}(1, e_1) \right] .
\]

Let’s start with

\[
p \equiv (0, 0, p_z) ,
\]

from \([31]\), we have

\[
E(\gamma^0\psi) - p_z(\gamma^3\psi) = m\psi .
\]

Using the explicit form of the octonionic operators \(\gamma^0, \gamma^3\) and extracting their action (see appendix A) we find

\[
E(u_1 + e_2u_2 - e_4u_3 - e_6u_4) - p_z(u_3 - e_2u_4 - e_4u_1 + e_6u_2) = m(u_1 + e_2u_2 + e_4u_3 + e_6u_4)
\]

From \([32]\), we derive four complex equations:

\[
(E - m)u_1 = +p_zu_3 ,
(E - m)u_2 = -p_zu_4 ,
(E + m)u_3 = +p_zu_1 ,
(E + m)u_4 = -p_zu_2 .
\]

After simple algebraic manipulations we find the following octonionic Dirac solutions:

\[
E = +|E| \quad u^{(1)} = N \left(1 + e_4\frac{p_z}{|E| + m} \right) , \quad u^{(2)} = N \left(e_2 - e_6\frac{p_z}{|E| + m} \right) = u^{(1)}e_2 ;
\]

\[
E = -|E| \quad u^{(3)} = N \left(\frac{p_z}{|E| + m} - e_4 \right) , \quad u^{(4)} = N \left(e_2\frac{p_z}{|E| + m} + e_6 \right) = u^{(3)}e_2 ,
\]

with \(N\) real normalization constant. Setting the norm to \(2|E|\), we find

S. De Leo and K. Abdel-Khalek - pag. 6
\[N = (|E| + m)^{\frac{1}{2}}. \]

We now observe (as for the quaternionic Dirac equation) a difference with respect to the standard Dirac equation. Working in our representation (22a-d) and introducing the octonionic spinor
\[\bar{u} \equiv (\gamma_0 u)^* = u_1^* - e_2 u_2 + e_4 u_3 + e_6 u_4 \quad [u = u_1 + e_2 u_2 + e_4 u_3 + e_6 u_4] , \]
we have
\[\bar{u}(1)u(1) = u(1)\bar{u}(1) = \bar{u}(2)u(2) = u(2)\bar{u}(2) = 2(m + e_4 p_z) . \]
Thus we find
\[u(1)\bar{u}(1) + u(2)\bar{u}(2) = 4(m + e_4 p_z) , \]
instead of the expected relation
\[u(1)\bar{u}(1) + u(2)\bar{u}(2) = \gamma^0 E - \gamma^3 p_z + m . \]
Furthermore, the previous difference is compensated if we compare the complex projection of (36a) with the trace of (36b)
\[\left(u(1)\bar{u}(1) + u(2)\bar{u}(2) \right)_{QQM} \equiv Tr \left[u(1)\bar{u}(1) + u(2)\bar{u}(2) \right]_{CQM} = 4m , \]
which suggest to redefine the trace as “complex” trace. We know that spinor relations like (36a-b) are relevant in perturbation calculus, so the previous results suggest to analyze quantum electrodynamics in order to investigate possible differences between complex and octonionic quantum field. This could represent the aim of a future work.

V. CONCLUSIONS

In the physical literature, we find a method to partially overcome the issues relating to the octonions nonassociativity. Some people introduces a “new” imaginary units “\(i = \sqrt{-1}\)” which commutes with all others octonionic imaginary units, \(e_m\). The new field is often called complexified octonionic field. Different papers have been written in such a formalism: Quark Structure and Octonions [3], Octonions, Quark and QCD [4], Dirac-Clifford algebra [7], Octonions and Isospin [28], and so on. In literature we also find a Dirac equation formulation by complexified octonions with an embarrassing doubling of solutions: “... the wave functions \(\psi\) is not a column matrix, but must be taken as an octonion. \(\psi\) therefore consists of eight wave functions, rather than the four wave functions of the Dirac equation” [28]. In this paper we have presented an alternative way to look at the octonionic world. No new imaginary unit is necessary to formulate in a consistent way an octonionic quantum mechanics.

Nevertheless complexified ring division algebras have been used in interesting works of Morita [29] to formulate the whole standard model.

Having a nonassociative algebra needs special care. In this work, we introduced a “trick” which allowed us to manipulate octonions without useless efforts. We summarize the more important results found in previous sections:

P - Physical Contents :

P1 - We emphasize that a characteristic of our formalism is the absolute need of a complex scalar product (in QQM the use of a complex geometry is not obligatory and thus a question of choice). Using a complex geometry we overcame the hermiticity problem and gave the appropriate and unique definition of momentum operator;

P2 - A positive feature of this octonionic version of quantum mechanics, is the appearance of all four standard Dirac free-particle solutions notwithstanding the one-component structure of the wave functions. We have the following situation for the division algebras:

\[
\begin{array}{ccc}
\text{field} & \text{complex} & 4 \times 4 \\
\text{Dirac Equation} & \text{quaternions} & 2 \times 2 \\
& \text{octonions} & 1 \times 1
\end{array}
\]

P3 - Many physical result can be reobtained by translation, so we have one version of octonionic quantum mechanics where the standard quantum mechanics could be reproduced. This represents for the authors a first fundamental step towards an octonionic world. We remark that our translation will not be possible in all situations, so it is only partial, consistent with the fact that the octonionic version could provide additional physical predictions.
I - Further Investigations:

We list some open questions for future investigations, whose study lead to further insights.

I4 - The reproduction in octonionic calculations of the standard QED results will be a nontrivial objective, due to the explicit differences in certain spinorial identities (see section IV). We are going to study this problem in a forthcoming paper;

I5 - A very attractive point is to try to treat the strong field by octonions, and then to formulate in a suitable manner a standard model, based on our octonionic dynamical Dirac equation.

We conclude emphasizing that the core of our paper is surely represented by absolute need of adopting a complex geometry within a quantum octonionic world.

APPENDIX A

\(\gamma^0,3 \)-Action on Octonionic Spinors

In the following tables, we explicitly show the action on the octonionic spinor

\[u = u_1 + e_2 u_2 + e_4 u_3 + e_6 u_4 \quad [u_{1,\ldots,4} \in C(1,\ e_1)] , \]

of the barred operators which appear in \(\gamma^0 \) and \(\gamma^3 \). Using such tables, after straightforwards algebraic manipulations we find

\[
\begin{align*}
\gamma^0 u &= u_1 + e_2 u_2 - e_4 u_3 - e_6 u_4 , \\
\gamma^3 u &= u_3 - e_2 u_4 - e_4 u_1 + e_6 u_2 .
\end{align*}
\]

\[\gamma^0\text{-action} \]
\[
\begin{array}{c|cccc}
| & u_1 & e_2 u_2 & e_4 u_3 & e_6 u_4 \\
\hline
e_1 & -u_1 & e_2 u_2 & e_4 u_3 & e_6 u_4 \\
e_2 & -u_1^* & -e_2 u_2^* & e_4 u_3 & e_6 u_4 \\
e_3 & -u_1 & e_2 u_2 & e_4 u_3 & e_6 u_4 \\
e_4 & -u_1^* & e_2 u_2^* & -e_4 u_3^* & e_6 u_4 \\
e_5 & -u_1 & e_2 u_2 & e_4 u_3 & e_6 u_4 \\
e_6 & -u_1^* & e_2 u_2^* & e_4 u_3 & -e_6 u_4^* \\
e_7 & -u_1 & e_2 u_2 & e_4 u_3 & e_6 u_4 \\
\end{array}
\]

\[\gamma^3\text{-action} \]
\[
\begin{array}{c|cccc}
| & u_1 & e_2 u_2 & e_4 u_3 & e_6 u_4 \\
\hline
e_4 & e_4 u_1 & -e_6 u_2^* & -u_3 & e_2 u_4 \\
e_4 & e_4 u_1 & e_6 u_2 & -u_3^* & -e_2 u_4^* \\
e_7 & e_4 u_1 & e_6 u_2 & u_3 & -e_2 u_4^* \\
e_3 & -e_4 u_1^* & -e_6 u_2^* & -u_3 & e_2 u_4 \\
e_6 & e_4 u_1 & -e_6 u_2 & u_3 & -e_2 u_4^* \\
e_2 & -e_4 u_1^* & -e_6 u_2^* & -u_3 & -e_2 u_4 \\
e_5 & e_4 u_1 & e_6 u_2 & u_3 & -e_2 u_4^* \\
e_1 & -e_4 u_1^* & -e_6 u_2^* & -u_3 & e_2 u_4 \\
\end{array}
\]

S. De Leo and K. Abdel-Khalek - pag. 8
APPENDIX B

In the following charts we establish the connection between 4×4 complex matrices and octonionic left/right-barred operators. We indicate with R_{mn} (C_{mn}) the 4×4 real (complex) matrices with $1 (i)$ in mn-element and zeros elsewhere.

4 × 4 complex matrices and left-barred operators:

\[
R_{11} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
1 - e_1 \\
e_1
\end{array} \right]
\]

\[
R_{12} \leftrightarrow \frac{1}{6} \left[\begin{array}{c}
2 e_1 \ e_3 + e_3 \ e_1 - 2 \ | \ e_2 - e_2 + e_4 \ e_6 - e_6 \ e_4 + e_5 \ e_7 - e_7 \ e_5
\end{array} \right]
\]

\[
R_{13} \leftrightarrow \frac{1}{6} \left[\begin{array}{c}
2 e_1 \ e_5 + e_5 \ e_1 - 2 \ | \ e_4 - e_4 + e_6 \ e_2 - e_2 \ e_6 + e_7 \ e_3 - e_3 \ e_7
\end{array} \right]
\]

\[
R_{14} \leftrightarrow \frac{1}{6} \left[\begin{array}{c}
2 e_1 \ e_7 + e_7 \ e_1 - 2 \ | \ e_6 - e_6 + e_2 \ e_4 - e_4 \ e_2 + e_5 \ e_3 - e_3 \ e_5
\end{array} \right]
\]

\[
R_{21} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
e_2 + e_3 \\
e_1
\end{array} \right]
\]

\[
R_{22} \leftrightarrow \frac{1}{6} \left[\begin{array}{c}
1 + e_1 \ e_1 + e_4 \ e_4 + e_5 \ e_5 + e_6 \ e_6 + e_7 \ e_7 - \frac{1}{3} \ e_2 \ e_2 + e_3 \ e_3
\end{array} \right]
\]

\[
R_{23} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
- e_2 \ e_4 - e_3 \ e_5
\end{array} \right]
\]

\[
R_{24} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
e_3 \ e_7 - e_2 \ e_6
\end{array} \right]
\]

\[
R_{31} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
e_4 + e_5 \ e_1
\end{array} \right]
\]

\[
R_{32} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
- e_5 \ e_3 - e_4 \ e_2
\end{array} \right]
\]

\[
R_{33} \leftrightarrow \frac{1}{6} \left[\begin{array}{c}
1 + e_1 \ e_1 + e_2 \ e_2 + e_3 \ e_3 + e_6 \ e_6 + e_7 \ e_7 - \frac{1}{3} \ e_4 \ e_4 + e_5 \ e_5
\end{array} \right]
\]

\[
R_{34} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
e_5 \ e_7 - e_4 \ e_6
\end{array} \right]
\]

\[
R_{41} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
e_6 - e_7 \ e_1
\end{array} \right]
\]

\[
R_{42} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
e_7 \ e_3 - e_6 \ e_2
\end{array} \right]
\]

\[
R_{43} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
e_7 \ e_5 - e_6 \ e_4
\end{array} \right]
\]

\[
R_{44} \leftrightarrow \frac{1}{6} \left[\begin{array}{c}
1 + e_1 \ e_1 + e_2 \ e_2 + e_3 \ e_3 + e_4 \ e_4 + e_5 \ e_5\frac{1}{3} \ e_6 \ e_6 + e_7 \ e_7
\end{array} \right]
\]

\[
C_{11} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
1 \ e_1 + e_1
\end{array} \right]
\]

\[
C_{12} \leftrightarrow \frac{1}{6} \left[\begin{array}{c}
- 2 e_1 \ e_2 - e_3 - 2 \ | \ e_3 - e_2 \ e_1 + e_4 \ e_7 + e_6 \ e_5 - e_5 \ e_6 - e_7 \ e_4
\end{array} \right]
\]

\[
C_{13} \leftrightarrow \frac{1}{6} \left[\begin{array}{c}
- 2 e_1 \ e_4 - e_5 - 2 \ | \ e_5 - e_4 \ e_1 - e_6 \ e_3 - e_2 \ e_7 + e_7 \ e_2 + e_3 \ e_6
\end{array} \right]
\]

\[
C_{14} \leftrightarrow \frac{1}{6} \left[\begin{array}{c}
- 2 e_1 \ e_6 + e_7 + 2 \ | \ e_7 - e_6 \ e_1 - e_2 \ e_5 + e_4 \ e_3 + e_5 \ e_2 - e_3 \ e_4
\end{array} \right]
\]

\[
C_{21} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
- e_3 + e_2 \ e_1
\end{array} \right]
\]

\[
C_{22} \leftrightarrow \frac{1}{6} \left[\begin{array}{c}
1 \ e_1 - e_1 + e_4 \ e_5 - e_5 \ e_4 - e_6 \ e_7 + e_7 \ e_6 \frac{1}{3} \ e_2 \ e_3 - e_3 \ e_2
\end{array} \right]
\]

\[
C_{23} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
- e_2 \ e_5 + e_3 \ e_4
\end{array} \right]
\]

\[
C_{24} \leftrightarrow \frac{1}{2} \left[\begin{array}{c}
e_3 \ e_6 + e_2 \ e_7
\end{array} \right]
\]
\(\mathcal{C}_{31} \leftrightarrow \frac{1}{2} \left[-e_5 + e_4 \right] e_1 \]
\(\mathcal{C}_{32} \leftrightarrow \frac{1}{2} \left[e_5 \right] e_2 - e_4 \right] e_3 \]
\(\mathcal{C}_{33} \leftrightarrow \frac{1}{6} \left[1 \mid e_1 - e_1 + e_2 \right] e_3 - e_3 \right] e_2 - e_6 \right] e_7 + e_7 \right] e_6 \] - \frac{1}{3} \left[e_4 \right] e_5 - e_5 \right] e_4 \]
\(\mathcal{C}_{34} \leftrightarrow \frac{1}{2} \left[e_5 \right] e_6 + e_4 \right] e_7 \]
\(\mathcal{C}_{41} \leftrightarrow \frac{1}{2} \left[e_7 + e_6 \right] e_1 \]
\(\mathcal{C}_{42} \leftrightarrow \frac{1}{2} \left[-e_7 \right] e_2 - e_6 \right] e_3 \]
\(\mathcal{C}_{43} \leftrightarrow \frac{1}{2} \left[-e_7 \right] e_4 - e_6 \right] e_5 \]
\(\mathcal{C}_{44} \leftrightarrow \frac{1}{6} \left[1 \mid e_1 - e_1 + e_2 \right] e_3 - e_3 \right] e_2 + e_4 \right] e_5 - e_5 \right] e_4 \] - \frac{1}{3} \left[e_7 \right] e_6 - e_6 \right] e_7 \]

[1] F. Gürsey, Symmetries in Physics (1600-1980): Proc. of the 1st International Meeting on the History of Scientific Ideas, Seminari d’Història de les Ciències, Barcelona, Spain, 1987, p. 557.
[2] A. Pais, Phys. Rev. Lett. 7, 291 (1961).
[3] M. Günüydin and F. Gürsey, J. Math. Phys. 14, 1651 (1973); Phys. Rev. D 9, 3387 (1974).
[4] K. Morita, Prog. Theor. Phys. 65, 787 (1981).
[5] G. Dixon, Nuovo Cimento B105, 349 (1990).
[6] F. Gürsey, Yale Preprint C00-3075-178 (1978).
[7] J. D. Edmonds, Phys. Essay. 5, 56 (1992).
[8] A. Waldron and G. C. Joshi, Melbourne Preprint UM-P-92/60 (1992).
[9] G. C. Lassig and G. C. Joshi, Melbourne Preprint UM-P-95/09 (1995).
A. Ritz and G. C. Joshi, Melbourne Preprint UM-P-95/69 (1995).
[10] A. J. Davies and G. C. Joshi, J. Math. Phys. 27, 3036 (1986).
[11] T. Kugo and P. Townsend, Nucl. Phys. B221, 357 (1987).
[12] B. Julia, Lptens Preprint 82/14 (1982).
[13] S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields (Oxford, New York, 1995).
[14] S. L. Adler, Nucl. Phys. B415, 195 (1994).
[15] S. De Leo and P. Rotelli, Phys. Rev. D 45, 575 (1992); Nuovo Cimento B110, 33 (1995);
S. De Leo, Prog. Theor. Phys. 94, 11 (1995); Quaternions for GUTs, Int. J. Theor. Phys. (submitted).
[16] S. De Leo and P. Rotelli, Prog. Theor. Phys. 92, 917 (1994); Odd Dimensional Translations between Complex and Quaternionic Quantum Mechanics (to be published in Prog. Theor. Phys.).
[17] S. De Leo and P. Rotelli, Int. J. Mod. Phys. A 10, 4359 (1995); Mod. Phys. Lett. A 11, 357 (1996).
S. De Leo and P. Rotelli, Quaternionic Electroweak Theory, J. Phys. G (submitted).
[18] S. De Leo, Mod. Phys. Lett. A 4, 933 (1989).
[19] A. J. Davies, Phys. Rev. D 41, 2628 (1990).
[20] S. De Leo, One-component Dirac Equation, Int. J. Mod. Phys. A (to be published).
[21] S. De Leo, One-component Dirac Equation, Int. J. Mod. Phys. A (to be published).
[22] L. P. Horwitz and L. C. Biedenharn, Ann. Phys. (NY) 157, 432 (1984).
J. Rembielinski, J. Phys. A 11, 2323 (1978).
[23] K. Abdel-Khalek and P. Rotelli, Quaternionic Supersymmetry, in preparation.
[24] S. De Leo and K. Abdel-Khalek, Quaternionic Electroweak Theory, J. Math. Phys. (submitted),
hep-th/9607144.
[25] S. De Leo, Quaternions and Special Relativity, J. Math. Phys. (to be published).
[26] S. De Leo and K. Abdel-Khalek, Quaternionic Quantum Mechanics and Complex Geometry, Prog. Theor. Phys. (submitted).
[27] The eqs. [22a-d] represent the octonionic counterpart of the complex matrices given on pag. 49 of the book:
C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1985).

S. De Leo and K. Abdel-Khalek - pag. 10
[28] R. Penney, Nuovo Cimento B3, 95 (1971).
[29] K. Morita, Prog. Theor. Phys. 67, 1860 (1981); 68, 2159 (1982); 70, 1648 (1983); 72, 1056 (1984); 73, 999 (1984); 75, 220 (1985); 90, 219 (1993).