Relation of serum magnesium level to microvascular complications and the components of metabolic syndrome in patients with type 2 diabetes mellitus

Heba M. Yossefa, Nashwa S. Ghanema, Ula M. Al-Jarhia, Ollfat G. Shakerb

Departments of aInternal Medicine Diabetes and Endocrinology, bMedical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt

Correspondence to Nashwa S. Ghanem, MD, Assistant Professor of Internal Medicine Diabetes and Endocrinology, Faculty of Medicine, Cairo University, 01006850127, Cairo, Egypt; Tel: +20223649229; e-mail: nashwa.ghanem@yahoo.com

Received 15 April 2017
Accepted 2 July 2017

The Egyptian Journal of Internal Medicine 2017, 29:100–104

Background and aim

Diabetes mellitus is associated with magnesium (Mg) depletion in intracellular and extracellular compartments. Hypomagnesemia has been suggested to be associated with macrovascular and microvascular complications of diabetes. The effect of the metabolic syndrome (MetS) has markedly increased. Recently, there is increasing evidence that dietary Mg intake and supplementation are inversely associated with the risk for MetS and its components.

The aim of this study is to evaluate the relation of Mg level to diabetes, its microvascular complications, and MetS components in Egyptian patients with type 2 diabetes mellitus.

Patients and methods

The study involved 90 patients older than 35 years who were divided into two groups: 70 patients with type 2 diabetes and 20 patients as control. Patients’ group was subdivided into those with complications (neuropathy, retinopathy, and nephropathy) and those without complications. For every patient, history and clinical examination including blood pressure, waist circumference, testing for peripheral neuropathy, and fundus examination were done. Fasting blood sugar (FBS) and 2-h postprandial blood sugar (2-h PPBS), glycated hemoglobin (HbA1c), albumin/creatinine ratio, creatinine level, total cholesterol, high-density lipoprotein-cholesterol, triglycerides, and serum Mg were obtained.

Results

Serum Mg was significantly lower in diabetic patients than in control ($P=0.007$). Hypomagnesemia was detected in 56 (80%) patients and none of control. Mg was lower in patients with complications than in patients without; however, the difference was statistically insignificant. Statistically significant negative correlation between serum Mg with serum cholesterol, triglyceride, creatinine level, albumin/creatinine ratio, FBS, 2-h PPBS, and HbA1c was found.

Conclusion

Hypomagnesemia is prevalent in diabetic patients. It is associated with diabetic complications and poor glycemic control. High plasma triglycerides, total cholesterol, creatinine level, albuminuria, HbA1c, FBS, and 2-h PPBS are independent correlates of hypomagnesemia.

Keywords: diabetic complications, glycemic control, hypomagnesemia

Introduction

Magnesium (Mg) is one of the most abundant intracellular cations with an essential role in biological reactions, whose deficiency provokes biochemical and symptomatic alterations in humans [1].

Several evidences suggest that Mg depletion may play a role in the pathophysiology of diabetes mellitus (DM), hypertension, dyslipidemia, and insulin resistance [2].

The Atherosclerosis Risk in the Community study found a significant association between hypomagnesemia and the incidence of type 2 DM [3]. Mg depletion is frequent in diabetic patients, and the impairment of Mg homeostasis may relate to the onset and progression of diabetic complications [4], and Mg intake can delay the development and decrease the incidence of type 2 DM [5,6].

Furthermore, it has been suggested that reduced serum Mg could be the missing link to understand the epidemiological link between DM and metabolic syndrome (MetS) [7]. As patients with MetS are at high risk of DM, cardiovascular disease, and increased...
cardiovascular and all causes mortality, the knowledge of the MetS underlying mechanisms may help to produce interventions aimed to slow the growing dangerous epidemic [8,9].

Aim
The aim of the study is to evaluate the relation of Mg level to diabetes, its microvascular complications, and the correlation between Mg level and components of MetS in a random sample of Egyptian patients with type 2 DM.

Patients and methods
In this cross-sectional case–control study, 90 patients older than 35 years were involved, and they were divided into two groups: 70 patients with type 2 diabetes for 5 years or more (24 men and 46 women) and 20 patients as control (seven men and 13 women). All patients were selected from the outpatient clinic of Endocrinology and Diabetes department, Kasr El Aini Cairo University Hospital, and control were volunteers. Patients with known renal disease or obstructive uropathy; patients known to have endocrinal cause for obesity, for example, hypothyroidism or Cushing’s syndrome; and patients receiving antipsychotics, antiepileptic drugs, corticosteroids, diuretics, or any preparation containing Mg were excluded.

Ethical aspects
Research protocols were approved by the medical ethics committee of Kasr El Aini Medical School, Cairo University. A verbal consent was taken from all participants after the research protocols were explained carefully to them. Data were coded, and the participants’ names or identity was concealed in data collection forms or during statistical analysis.

Procedure
Patients’ group was subdivided into those with complications (neuropathy, retinopathy, and nephropathy) and those without complications. For every patient, history and clinical examination including blood pressure, waist circumference, testing for peripheral neuropathy, and fundus examination were done. Fasting blood sugar (FBS) and 2-h postprandial blood sugar (2-h PPBS), glycated hemoglobin (HbA1c), albumin/creatinine ratio, serum creatinine level, total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, and serum Mg (using spectrophotometer) were done.

Statistical analysis
Data were analyzed using Microsoft Office 2003 (Excel) and statistical package for the social science (SPSS, version 16; SPSS Inc., Chicago, Illinois, USA). Parametric data were expressed as mean and SD, and nonparametric data were expressed as number and percentage of the total. Determining the relation between two studied parameters was done using correlation coefficient. P value less than 0.05 is considered significant.

Results
Serum Mg level was significantly lower in diabetic patients with and without complications compared with control (1.38 ± 0.27 vs. 1.95 ± 0.33, respectively, $P=0.007$).

Hypomagnesemia was detected in 56 (80%) patients and none of control.

In the current study, FBS and 2-h PPBS, HbA1c, creatinine level, urinary albumin/creatinine ratio, cholesterol, and triglyceride were significantly higher and HDL was lower in diabetic patients than in control.

Regarding microvascular complications, 21 (30%) patients had retinopathy, 21 (30%) patients had neuropath, and 49 (70%) patients had nephropathy. The prevalence of hypomagnesemia was high among patients with microvascular diabetic complications, as 20 (95.2%) of 21 patients with retinopathy, 16 (76.1%) of 21 patients with neuropathy, and 51 (98%) of 52 patients with nephropathy had hypomagnesemia. Mg level was lower in patients with complications than in patients without; however, the difference was statistically insignificant.

We used the IDF diagnostic criteria for MetS assessment, and accordingly, all our patients had MS (among the studied 46 female patients, 24 of them had four criteria of MS and 22 had all criteria of MS, and among the 24 male patients, six of them had all criteria of MS and 18 had three criteria) [10].

In diabetic patients, statistically significant negative correlation was found between serum Mg level with serum cholesterol, triglyceride, creatinine, albumin/creatinine ratio, FBS, 2-h PPBS, and HbA1c; however, there was no significant correlation between serum Mg level and HDL, age, systolic, diastolic blood pressure, or waist circumference (Tables 1–3 and Figs 1–5).
Discussion

In this study, we found that serum Mg level is significantly lower in diabetic patients than in control, and hypomagnesemia is more prevalent in diabetics as it was detected in 56 (80%) of patients of this study and none of the control.

This is supported by many previous studies which have shown that mean plasma Mg levels are lower in patients with both type 1 and type 2 diabetes, prediabetes, and MetS compared with nondiabetic...
control [11–14] and in patients with diabetic complications [15].

Our study showed statistically significant negative correlation between serum Mg level and FBS, 2-h PPBS, and HbA1c (P=0.0001), which is similar to the results of two studies that concluded that hypomagnesemia was associated with poor glycemic control [16,17].

Regarding Mg and lipid profile, our results showed statistically significant negative correlation between serum Mg and serum cholesterol and triglyceride, which agree with the results of some authors [13,18] but not others [19,20].

The prevalence of hypomagnesemia among patients with microvascular diabetic complications was high in the current study, as 20 (95.2%) of 21 patients with retinopathy, 16 (76.1%) of 21 patients with neuropathy, and 51 (98%) of 52 patients with nephropathy had hypomagnesemia.

Our study showed that serum Mg level was lower in patients with retinopathy than in those without retinopathy (1.35±0.27 vs. 1.42±0.27, respectively); however, the difference was not statistically significant (P=0.249), which is supported by two different studies which found that diabetic patients with retinopathy had significantly lower serum Mg than those without retinopathy [21,22].

Baig et al. [15] found similar results and suggested that hypomagnesemia may act through inhibition of prostacyclin receptor function producing an imbalance between prostacyclin and thromboxane effect which has marked atherogenic potential responsible for microvascular complications.

We found that serum Mg was lower in patients with neuropathy than patients without neuropathy (1.34±0.23 vs. 1.39±0.29, respectively); however, the difference was not statistically significant (P=0.478). This is supported by Dasgupta et al. [16] who found that hypomagnesemia in diabetes was associated with retinopathy, nephropathy, and foot ulcers as evidence of neuropathy and Xu et al. [23] who concluded that in patients with type 2 DM with diabetic complications, the decrease in serum Mg level and the increase in urinary Mg level were independent of the presence of either urinary Mg level were independent of the presence of either diabetic nephropathy, retinopathy, or peripheral neuropathy.

Additionally, low Mg level can be because of reduced intestinal absorption caused by diabetic autonomic neuropathy [24]. Studies have found that intracellular Mg levels are lower in patients with diabetic peripheral neuropathy with improvement in the nerve conduction following supplementation [25,26].

Our study showed a highly significant increase (26.35 ± 11.23) in serum creatinine level and albumin/creatinine ratio in patients with nephropathy compared with patients without nephropathy (1.91±0.30 vs. 1.41±0.10, and 173.61±66.33 vs., respectively; P=0.001 and 0.041, respectively).

We found a statistically significant negative correlation between serum Mg level with serum creatinine level and albumin/creatinine ratio in spite of absence of significant difference between serum Mg levels in patients with and those without nephropathy. This is supported by Arpaci et al. [17], Corica et al. [27], and Corsonello et al. [28] who found that diabetic patients
with microalbuminuria or clinical proteinuria showed a significant decrease in serum ionized Mg compared with normoalbuminuria group.

In agreement with the current study results, Pham et al. [5,29] found that lower serum Mg levels are associated with more rapid decline of renal function in patients with type 2 DM and revealed in later study that serum Mg has significant negative correlation with estimated glomerular filtration rate. Other authors concluded that hypomagnesemia is a novel predictor of end-stage renal disease in patients with type 2 diabetic nephropathy [16] and found that serum Mg was inversely associated with microalbuminuria [17,30].

We found a highly significant increase in the mean±SD of systolic blood pressure, diastolic blood pressure, and waist circumference among the patient group when compared with that of the control group (P<0.01); however, there was no significant correlation between these parameters and serum Mg level. On the contrary, Corica et al. [27] found that waist circumference and high blood pressure are independently associated with low serum ionized Mg level.

Conclusion

Hypomagnesemia is prevalent in diabetic patients. It is associated with diabetic complications (retinopathy, neuropathy, and nephropathy) and poor glycemic control. High plasma triglycerides, total cholesterol, creatinine level, albuminuria, HbA1c, FBS, and 2-h PPBS are independent correlates of hypomagnesemia. Further studies are recommended to determine the effect of Mg supplementation on prevention of MetS, diabetes, and its complications.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Martin KJ, González EA, Slatopolsky E. Clinical consequences and management of hypomagnesemia. J Am Soc Nephrol 2009; 20:2291–2295.
2. Dong JY, Xun P, He K, Qin LQ. Magnesium intake and risk of type 2 diabetes meta-analysis of prospective cohort studies. Diabetes Care 2011; 34:2116–2122.
3. Schulze MB, Schultz M, Heidemann C, Schenkelwitz A, Hoffmann K, Boeing H. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med 2007; 167:956–965.
4. Pham PC, Pham PM, Pham SV, Miller JM, Pham PT. Hypomagnesemia in patients with type 2 diabetes. Clin J Am Soc Nephrol 2007; 2:366–373.
5. Pham PC, Pham PM, Pham PT. Patients with diabetes mellitus Type 2 and hypomagnesemia may have enhanced glomerular filtration via hypocalcemia. Clin Nephrol 2012; 78:442–448.
6. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27:1047–1053.
7. Belli RJ, He K. Magnesium physiology and pathogenic mechanisms that contribute to the development of metabolic syndrome. Magnes Res 2007; 20:107–129.
8. Sattar N, McConnachie A, Shaper AG, Blauw GJ, Buckley BM, de Craen AJ, et al. Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. Lancet 2008; 371:1927–1935.
9. Cuspidi C, Sala C, Zanchetti A. Metabolic syndrome and target organ damage: role of blood pressure. Expert Rev Cardiovasc Ther 2008; 6:731–743.
10. International Diabetes Federation. One adult in ten will have diabetes by 2030. World Diabetes Day 2011. Diabetes Federation’s 5th ed. of the Diabetes Atlas, 14 November 2011.
11. Kim DJ, Xun P, Liu K, Loria C, Yokota K, Jacobs DR Jr, et al. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care 2010; 33:2604–2610.
12. Limaye CS, Londhey VA, Nadkari MY, et al. Hypomagnesemia in critically ill medical patients. J Assoc Physicians India 2011; 59:19–22.
13. Kocot DL, Sztanke M, Wis-nieksa MN, Dlibrowski A, Andrzejewski A, Wallner G, et al. Plasma magnesium and calcium concentrations and selected biochemical parameters in patients with type 2 diabetes mellitus. Curr Issues Pharm Sci 2012; 25:126–131.
14. Barbagallo M, Dominguez-LJ. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys 2007; 459:40–47.
15. Baig MS, Shamsuddin M, Mahadevappa KL, Attar AH, Shaikh AK. Serum magnesium as a marker of diabetic complications. J Evol Med Dent Sci 2012; 1:119–233.
16. Dasgupta A, Sarma D, Saikia UK. Hypomagnesemia in type 2 diabetes mellitus. Indian J Endocrinol Metab 2012; 16:1000–1003.
17. Arpaci D, Tocoglu AG, Ergenc H, Korkmaz S, Ucar A, Tamer A. Associations of serum magnesium levels with diabetes mellitus and diabetic complications. Hippokratia 2015; 19:153–157.
18. Nasri H, Baradaran HR. Lipids in association with serum magnesium in diabetes mellitus patients. Bratisl Lek Listy 2008; 109:302–306.
19. Mishra S, Padmanaban P, Deepali GP, Sarkar G, Sumathi G, Toora BD. Serum magnesium and dyslipidemia in type-2 diabetes mellitus. Biomed Res 2012; 23:295–300.
20. Rasheed H, Eshai S, Ajaz H. Serum magnesium and atherogenic lipid fractions in type II diabetic patients of Lahore, Pakistan. Biol Trace Elem Res 2012; 148:165–169.
21. Kareem I, Jaweed SA, Bardapurkar JS, Patil VP. Study of magnesium, glycosylated hemoglobin and lipid profile in diabetic retinopathy. Indian J Clin Biochem 2004; 19:124–127.
22. Sharma A, Dabla S, Agarwal RP, Barjatyta H, Kochar DK, Kothari RP. Serum magnesium; an early predictor of course and complications of diabetes mellitus. J Indian Med Assoc 2007; 105:16–20.
23. Xu J, Xu W, Yao H, Sun W, Zhou Q, Cai L. Associations of serum and urinary magnesium with the pre-diabetes, diabetes and diabetic complications in the Chinese Northeast population. PLoS One 2013; 8:e56750.
24. Wältt MI, Zimmermann MB, Spinias GA, Hurrell RF. Low plasma magnesium in type 2 diabetes. Swiss Med Wkly 2003; 133:289–292.
25. De Lordes Lima M, Cruz T, Pousada JC, Rodrigues LE, Barbosa K, Canguvu V. The effect of magnesium supplementation in increasing doses on the control of type 2 diabetes. Diabetes Care 1998; 21:682–686.
26. De Leeuw I, Engelen E, De Block C, Van Gaal L. Long term magnesium supplementation influences favourably the natural evolution of neuropathy in Mg-depleted type 1 diabetic patients (T1dm). Magnes Res 2004; 17:109–114.
27. Corica F, Corsonello A, Lentile R, Cucinotta D, Di Benedetto A, Perticone F, et al. Serum ionized magnesium levels in relation to metabolic syndrome in type 2 diabetic patients. J Am Coll Nutr 2006; 25:210–215.
28. Corsonello A, Lentile R, Buemi M, Cucinotta D, Mauro VN, Maccione S, et al. Serum ionized magnesium levels in type 2 diabetic patients with microalbuminuria or clinical proteinuria. Am J Nephrol 2000; 20:187–192.
29. Pham PC, Pham PM, Pham PA, Pam SV, Pham HV, et al. Lower serum magnesium levels are associated with more rapid decline of renal function in patients with diabetes mellitus type 2. Clin Nephrol 2005; 63:429–436.
30. Xu B, Sun J, Deng X, Huang X, Sun W, Xu Y, et al. Low serum magnesium level is associated with microalbuminuria in Chinese diabetic patients. Int J Endocrinol 2013; 2013:80685.