Title
Viral pathogen discovery.

Permalink
https://escholarship.org/uc/item/8qn504pp

Journal
Current opinion in microbiology, 16(4)

ISSN
1369-5274

Author
Chiu, Charles Y

Publication Date
2013-08-01

DOI
10.1016/j.mib.2013.05.001

Peer reviewed
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease.

Addresses

1 Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
2 UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA

Corresponding author: Chiu, Charles Y (charles.chiu@ucsf.edu)

Current Opinion in Microbiology 2013, 16:468–478

This review comes from a themed issue on Host–microbe interactions: viruses

Edited by Carlos F Arias

For a complete overview see the Issue and the Editorial

Available online 29th May 2013

1369-5274 (c) 2013 The Author. Published by Elsevier Ltd.

Open access under CC BY license.

http://dx.doi.org/10.1016/j.mib.2013.05.001

Introduction

The identification of novel pathogens has a tremendous impact on infectious diseases, microbiology, and human health. Nearly all of the outbreaks of clinical and public health importance over the past two decades have been caused by novel emerging viruses, including Severe Acute Respiratory Syndrome (SARS) coronavirus [1], Sin Nombre hantavirus [2], 2009 pandemic influenza H1N1 [3,4], and the recently described coronavirus EMC [5–7] and H7N9 avian influenza viruses [8], with most originating from animal reservoirs. Changes in the environment, globalization, growth of wet (live animal) markets, and the rapid expansion of the human population into wildlife habitats all promote the rapid spread of previously unidentified pathogens that are capable of causing widespread and devastating epidemics of human illness [9]. Arthropods such as mosquitoes and ticks are vectors for emerging pathogens including West Nile virus [10,11], and the Severe Fever and Thrombocytopenia Syndrome (SFTS) [12,13] and Heartland bunyaviruses [14]. Moreover, the link between new viruses and disease is not only restricted to acute illnesses, but also can be seen in chronic disease states, as demonstrated by the strong association between infection by the novel Merkel cell polyomavirus (MCPyV) and a rare, highly aggressive skin tumor in elderly patients [15].

Currently available diagnostic tests for pathogens are generally narrow in scope and fail to detect an agent in a significant fraction of cases. Traditional methods such as culture, serology, or targeted nucleic acid-based testing, such as specific polymerase chain reaction (PCR), have limited utility in investigations where there is no a priori knowledge of the identity of potential infectious agents. Notably, in certain infectious diseases such as encephalitis, conventional testing fails to identify a pathogen in up to 70% of cases [16–18]. In contrast, state-of-the-art genomic technologies such as pan-microbial microarrays or unbiased next-generation sequencing (NGS) can be attractive tools for broad-based pathogen discovery. Nearly all infectious agents, with the sole exception of prions [19], contain either RNA or DNA, and are thus amenable to nucleic acid-based detection. In principle, these technologies are capable of comprehensively identifying all potential pathogens in clinical samples from humans and animals. This review will describe the genomic approaches for pathogen discovery currently being employed in the field, and highlight recent examples of their use in the discovery and characterization of novel viral pathogens (Table 1).

Genomic approaches for pathogen discovery

Pathogen discovery entails the use of genomic-based methods to identify novel microbes, followed by further investigation to determine potential associations with disease (Figure 1). As a pathogen discovery tool, consensus PCR uses degenerate primers to detect conserved sequences that are broadly shared between members of a group. This approach was recently used to identify novel paramyxoviruses in samples from large-scale surveys of bats and rodents [20–22] and emerging viruses such as coronavirus EMC, the cause of a new severe and
Table 1

Namea	Detection platform	NGS bioinformatics approach	Disease association	Strength of associationb
Coronavirus EMC	Culture and 454 NGS [7]	De novo genome assembly	Severe pneumonia (humans)	++
SFTS (severe fever with thrombocytopenia virus) bunyavirus [12,13]	Illumina NGS [12]	Subtraction and BLAST search	Severe fever with thrombocytopenia	++
Heartland bunyavirus	Culture and 454 NGS [14]	BLAST search and de novo gene assembly	Severe febrile illness	++
MCPyV (Merkel cell polyomavirus)	454 NGS [15]	Subtraction and BLAST search	Merkel cell carcinoma (MCC)	++
Bat paramyxoviruses	Consensus PCR [20–22]	N/A	–	–
Raccoon polyomaviruses	Consensus PCR and RCA [38]	N/A	Brain tumors (racoons)	++
HPyV6 and HPyV7 (human polyomaviruses 6 and 7) TSPyV (trichodysplasia spinulosa-associated polyomavirus)	RCA [40]	N/A	Trichodysplasia spinulosa	++
2009 pandemic influenza A/H1N1c	Microarray and Illumina NGS [51]	Subtraction and BLAST search	Febrile illness	++
	454 NGS [110,111]	BLAST search	Febrile illness	++
	Illumina NGS [112]	BLAST search	Febrile illness	++
TMAcV (titi monkey adenovirus)	Microarray and Illumina NGS [52]	BLAST search	Pneumonia (titi monkeys)	++
BASV (Bas-Congo virus), a rhabdovirus	Illumina NGS [58]	Subtraction, BLAST search, and de novo genome assembly	Acute hemorrhagic fever	++
Novel circoviruses and cycloviruses in humans and monkeys	454 NGS [59]	Subtraction and BLAST search	Diarrhea	–
Human klassevirus/salivirus	Illumina NGS [61]	Subtraction and BLAST search	Diarrhea	–
	454 NGS [60,62]	Subtraction and BLAST search	Diarrhea	–
MWPyV/HPy10/MXPyV (MW polyomavirus)	454 NGS [63]	Subtraction and BLAST search	Diarrhea	–
	Illumina NGS [64]	Subtraction and BLAST search	Diarrhea	–
	Illumina NGS [65]	BLAST search	WHIM syndrome	–
HPyV9 (human polyomavirus 9)	Illumina NGS [66]	Subtraction and BLAST search	–	–
	Consensus PCR [24]	N/A	–	–
Human bufavirus	454 NGS [67]	Subtraction and BLAST search	Diarrhea	–
HASTV-PS (human astrovirus Puget Sound)	454 NGS [68]	Subtraction and BLAST search	Encephalitis	++
Human enterovirus 109	Consensus PCR and Illumina NGS [69]	Subtraction and BLAST search	Acute respiratory illness	+
Dandenong arennavirus	454 NGS [70]	Subtraction and BLAST search	Fatal febrile illness in transplant patients	++
Lujo arennavirus	454 NGS [71]	Subtraction and BLAST search	Acute hemorrhagic fever	++
TDAV (Theiler’s disease-associated virus), a novel pegivirus	Illumina NGS [73]	BLAST search and de novo genome assembly	Hepatitis (horses)	++
Bat, canine, horse, and rodent hepacviruses and pegiviruses	454 NGS [74–77]	BLAST search	Respiratory infection (dogs)	–
Canine bocavirus 3	Illumina NGS [78]	BLAST search	Hemorrhagic diarrhea and vasculitis (dog)	–
Snake arennaviruses	Illumina NGS [79]	Subtraction and BLAST search	Inclusion body disease (snakes)	++
occasionally fatal respiratory disease in the Middle East and Europe [6], although many other examples of this strategy for viral discovery exist [23,24]. However, the identity of an infectious agent is often not known a priori, and a random, unbiased, and sequence-independent method for ‘universal’ amplification becomes necessary for pathogen discovery [25]. In the past, such universal amplification methods have been used in combination with conventional shotgun Sanger sequencing to detect novel human viruses such as human metapneumovirus in respiratory secretions [26], PARV-4, a novel parvovirus in blood from patients with acute viral infection syndrome [27], and novel astroviruses, parvoviruses, picornaviruses (cardioviruses and cosaviruses), and polyomaviruses in diarrheal stool [25,28–34]. One caveat with this approach may be the relatively low detection sensitivity of ~10^6 genome equivalents per milliliter [25]. A related strategy is the use of rolling circle amplification (RCA) [35,36], which has been successful in the unbiased detection and/or characterization of DNA viruses with circular genomes, such as novel papillomaviruses, circoviruses, and polyomaviruses [37–40].

DNA microarrays have been used for multiplexed detection of a defined set of known pathogens using conserved primers [41], or for broad pan-microbial detection by universal amplification [42–44]. Microarrays are miniaturized detection platforms consisting of short (25-mer to 70-mer) single-stranded oligonucleotide probes deposited onto a solid substrate. These probes are typically designed to target conserved sequences at different levels of the taxonomy (family, genus, and species), which allows detection of novel pathogens that share homology with known, previously characterized viruses. Fluorescently labeled clinical samples are hybridized to the microarray, and hybridization patterns are analyzed to identify the specific pathogens that are present (Figure 2a) [43–47].

Pan-microbial DNA microarrays currently in use include the ViroChip (University of California, San Francisco) [42,48], GreeneChip (Columbia University) [43], and the Lawrence Livermore Microbial Detection Array, or LLMDA (Lawrence Livermore National Laboratory) [44]. The ViroChip is a pan-viral DNA microarray and was originally employed to characterize the coronavirus responsible for the 2003 outbreak of SARS [1]. Since then, studies have employed the ViroChip to discover a number of novel viruses including a previously undescribed rhinovirus clade [49], human cardioviruses [50], and 2009 pandemic influenza H1N1 (Figure 2a) [51]. In 2011, the ViroChip was also used to identify a novel adenovirus that caused a fulminant pneumonia outbreak in a New World titi monkey colony, with serologic evidence of concurrent cross-species infection of a human researcher [52]. The GreeneChip is a pan-microbial array that includes ~30k 60-mer probes and is designed to broadly detect all viruses, as well as pathogenic bacteria, fungi, and protozoa on the basis of conserved 16S/18S sequences [43]. The LLMDA is yet another comprehensive pan-microbial detection array that targets all potential pathogens, with probes derived from their full genome sequences [44]. The GreeneChip and LLMDA have been used to detect Plasmodium falciparum in a patient with an unknown febrile illness [43] and porcine circovirus as a contaminant in a rotavirus vaccine [53], respectively. Although useful for the detection of a wide spectrum of pathogens, and for the detection of novel strains, microarrays are still limited by the genome sequence information available at the time of design.

NGS, otherwise known as massively parallel or deep sequencing, has emerged as one of the most promising strategies for the detection of novel infectious agents in clinical specimens [54,55]. This ‘needle-in-a-haystack’ approach involves analysis of millions of sequences derived from nucleic acid present in clinical specimens to detect sequences corresponding to candidate pathogens. Given low amounts of input nucleic acid in clinical samples, an unbiased, random method employing universal amplification is typically performed during NGS library generation [25,56], similar to that used in pan-microbial microarray assays [42]. Because of its unbiased nature, NGS can identify both known but unexpected agents and highly divergent novel agents. NGS is thus particularly attractive for the identification of novel
Genomic approaches to pathogen discovery. Clinical samples are subjected to pathogen enrichment and host depletion methods, followed by genomic analysis using consensus PCR, pan-microbial microarrays, and/or NGS. After a novel agent is identified, downstream studies are needed to establish a causal association between the candidate pathogen and disease.

emerging viruses, which can exhibit high inherent sequence diversity and rapid rates of mutation, recombination, or reassortment [57]. For example, NGS was recently used to identify and recover the genome of a novel, highly divergent rhabdovirus, Bas-Congo virus (BASV), associated with a 2009 hemorrhagic fever outbreak in the Congo, Africa (Figure 3a) [58]. In this study, the genome of BASV was de novo assembled from 140 million deep sequencing reads corresponding to an acute serum sample from an affected patient (Figure 3b). The discovery of BASV underscores the potential of NGS in facilitating early identification of pathogens causing unknown outbreaks in remote areas of the world before they gain a foothold in human populations.

In addition to the identification of BASV, the use of NGS technology has led to the discovery of many novel human viruses over the past decade, including, among others, the aforementioned MCPyV [15]; novel circoviruses/cycloviruses [59], koboviruses (klassevirus/salivirus) [60–62]; polyomaviruses such as the HPyV9 and WPyV/HPyV10/MXPyV [63–66]; a novel parvovirus named buffavirus [67]; a novel astrovirus associated with encephalitis [68]; a novel enterovirus species in tropical febrile illness [69]; as well as novel arenaviruses in a fatal outbreak of transplant recipients [70] and a hemorrhagic fever outbreak from South Africa [71]. In 2011, an unknown outbreak of fever and thrombocytopenia involving hundreds of patients occurred in rural China [12,13]. Unbiased NGS of pooled patient serum samples was used by one research group to identify the causal agent as a novel, highly divergent bunyavirus in the Phlebovirus genus referred to as Severe Fever and Thrombocytopenia Syndrome (SFTS) virus [12]. Furthermore, NGS has been used to enable whole-genome sequencing and assembly of highly divergent viruses identified from unknown cultures exhibiting cytopathic effect. Heartland virus, a presumed novel tick-borne bunyavirus in the Phlebovirus genus associated with two cases of severe febrile illness in hospitalized patients in Missouri [14], and Lone Star virus, another phlebovirus infecting the Amblyomma americanum tick [72], were both successfully sequenced from virally infected cell culture supernatants using NGS.

NGS approaches have also been successful in the identification of novel animal viruses, including the discovery of bats, dogs, horses, and rodents as reservoirs for novel flaviruses (pegiviruses and hepaciviruses distantly related to human hepatitis C) [73–77], a novel bocavirus in canine liver [78], and novel arenaviruses associated with inclusion body disease in snakes [79]. Recently, a novel flavivirus in the Pegivirus genus, named Theiler’s disease-associated virus (TDAV), was found by NGS to be the likely cause of an mysterious acute hepatitis in horses associated with the administration of equine blood products, a diagnosis that had eluded microbiologists for nearly a century [73]. Finally, infection by non-viral agents, such as Fusobacterium nucleatum bacteria in the setting of colon cancer, has also been detected by NGS [80].

Sample preparation methods

Both unbiased NGS, and, to a lesser extent, pan-microbial microarrays are affected by the level of host background, limiting sensitivity for detection of pathogen-derived sequences. In a study using NGS to investigate occult bacterial infection in tissues, microbial sequences were
Microarray and NGS analyses of pandemic 2009 influenza A(H1N1) infection in humans. (a) Heat map of ViroChip microarray hybridization patterns obtained from nasal swab samples from patients with influenza-like illness and asymptomatic negative controls (‘neg’). The samples (x-axis) and microarray probes (y-axis) are clustered using a hierarchical clustering algorithm [45]. High-intensity probes derived from swine influenza A(H1N1) and human influenza A(H1N1) sequences are observed in samples from patients infected by pandemic 2009 influenza A(H1N1), with higher relative signal intensity in the swine influenza A(H1N1) probes. In contrast, the ViroChip signature in nasal swabs from patients infected with seasonal H3N2 influenza consists primarily of influenza A(H3N2) probes. No microarray cross-hybridization is observed in patients infected with other respiratory viruses or negative controls. Note that the influenza probes on the ViroChip microarray shown here were designed before onset of the pandemic 2009 influenza A/H1N1 outbreak. (b) Computational pipeline for analysis of NGS data. Preprocessing and computational subtraction of host (human) sequences are then followed by alignment to pathogen reference databases. The percentages show the remaining proportion of reads after each step, beginning with 100% of the preprocessed reads. Abbreviations: DBs, databases; rRNA, ribosomal RNA; mRNA, messenger RNA.

Modified from [51] with permission.

only detected in 0.00067% of NGS reads, corresponding to fewer than 10 per million [80]. Pathogen enrichment or host depletion before microarray and deep sequencing analyses hence becomes critical to maximize sensitivity for identification of novel agents in clinical samples (Figure 1). For viruses, capsid purification procedures involving repeated freeze/thaw cycles, filtration, ultracentrifugation, and pnucl ease digestion have been developed to enrich host tissues or body fluids for infectious particles [78,81]. Strategies to deplete the sample of background host DNA can also be implemented, including the use of methyltransferase-specific DNAse to selectively degrade host genomes [82], removal of host ribosomal RNA [83], and/or removal of the most abundant host sequences by duplex-specific nuclease (DSN) normalization [84]. Another complementary approach is to perform target enrichment using biotinylated probes to enrich NGS libraries for sequences corresponding to pathogens, akin to now well-established techniques that have been developed in the cancer field [85]. This strategy can also potentially harness prior experience with microarrays for pathogen discovery by the use of previously validated microarray probes to enrich NGS libraries for microbial sequences.

The choice of NGS platforms on the market today for pathogen discovery is driven by two main parameters: read length and read depth. NGS reads must be long enough (typically at least 100–300 nt) to unambiguously identify the presence of a novel pathogen, and to discriminate reads from host or background flora. There must also be sufficient read depth, or number of sequence
Reads generated per run, to detect novel agents with a high degree of sensitivity. For pathogen discovery, the Roche 454 GS-FLX+ pyrosequencing™ platform has been widely applied given the long reads (currently up to 1 million single or paired-end reads with average read lengths of 400–500 nt with the GS-FLX+ Titanium™ platform) and high accuracy. More recently, Illumina NGS sequencing platforms (GAIx™, HiSeq™, and MiSeq™) have been used for pathogen discovery given the ~10–1000× improved read depth relative to 454, resulting in much greater sensitivity for the detection of viruses [86], and gradually improving read lengths (currently up to 150 nt paired-end reads for the HiSeq and 250 nt paired-end reads for the MiSeq). In fact, previous studies suggest that the limits of detection of viruses in clinical samples by NGS with Illumina sequencing are comparable to specific PCR [51,86]. The use of paired-end sequencing, or sequencing from each end of the DNA fragment in NGS libraries, can be particularly useful for pathogen discovery given that the forward and reverse reads can facilitate the design of PCR primers to confirm potential sequence ‘hits’ to novel microbes and de novo genome assembly [87]. Other NGS technologies, such as platforms by Ion Torrent (very fast run times of under three hours) and Pacific Biosciences (very long reads of up to 7 kb; average read lengths 3–4 kb) [88], have yet to be used widely for pathogen discovery, although one application may be rapid genome sequencing of emerging pathogens such as Escherichia coli O104:H4, associated with a recent foodborne outbreak of hemolytic-uremic syndrome in Germany [89,90]. One particular concern for all unbiased NGS technologies is the high potential for reagent and laboratory contamination, especially with the use of universal amplification methods [51,86,91].

Bioinformatics analysis challenges
Whereas for microarrays, specialized bioinformatics algorithms for pathogen detection are in routine use [43–47], analysis of NGS data for pathogen discovery poses enormous computational challenges. The most widely used strategy is computational subtraction, in which reads are first sequentially aligned to reference databases to filter out sequences corresponding to host background [92]. Sequences derived from microbes are then typically identified by nucleotide or translated amino acid alignments.
using BLAST [93]. This approach was previously used, for example, to detect pandemic 2009 influenza A(H1N1) in nasal swabs from affected patients with respiratory illness (Figure 2b) [51]. For highly divergent viruses, successful identification can sometimes only be made by searching for remote homologies of protein sequences using methods such as HMMER [94,95]. Dedicated bioinformatics analysis pipelines, such as PathSeq, used to detect Fusobacterium bacteria in colon cancer tissues [80], RINS, CaPSID, and READSCAN are now available for automated pathogen identification from NGS data [96–99], although their performance has yet to be rigorously tested on a large number of clinical samples. Ongoing limitations of available bioinformatics software for pathogen discovery include the data-intensive computing workloads that are not amenable to real-time analysis in the absence of ultra-rapid processing algorithms, the lack of a graphical user interface, the requirement for a minimum level of computer hardware and bioinformatics expertise, and the lack of a validated scoring system to permit confident identification of microbes from NGS data. In addition, existing reference sequence databases, such as NIH GenBank, can be heavily biased and fraught with annotation errors. Notably, over 40% of the GenBank viral database consists of overrepresented HIV or influenza sequences. Comprehensive, well-annotated reference databases for pathogens are thus needed in support of NGS-based pathogen discovery efforts.

Linking a novel pathogen to disease

The mere discovery of a candidate pathogen is only the first step in determining whether or not it is associated with disease. Clinical samples are colonized with a variety of commensal organisms (the ‘microbiome’) [100], and it is often difficult, if not impossible, to unambiguously identify a single causal infectious agent. Highly divergent, novel agents such as torque teno virus (TTV) [101,102] may be nonpathogenic and part of the normal microbial flora. Follow-up studies to establish causality are thus needed to establish a link between a candidate infectious agent and disease (Figure 1).

To assign causality, attempts should be made to address Koch’s postulates, which require that the agent be isolated in culture, or River’s modifications, which recognize the added significance of the generation of specific antibodies in response to infection [103]. For novel viruses, this begins with assembly of the entire genome, either de novo directly from NGS data [58,72,87] or by standard methods such as primer walking, probe enrichment [104], and/or specific PCR to fill in gaps [52]. Full or partial genomic sequence permits a detailed phylogenetic

Figure 4

Baboon and human infections from a novel adenovirus species. (a) A 1997 acute respiratory outbreak in a baboon colony. A novel adenovirus, named simian adenovirus C (SAdV-C), was discovered in association with an outbreak at a primate research facility that sickened 4 of 9 baboons and resulted in two cases of fatal pneumonia. (b) Serological testing of staff personnel at the facility and controls (five epidemiologically unrelated young children) for exposure to simian adenoviruses SAdV-B and SAdV-C. Neutralizing antibodies to SAdV-C are absent before the outbreak but detected in 6 of 6 staff personnel after the outbreak, indicating recent or prior exposure to the virus. Abbreviations: BAdV, baboon adenovirus; SAdV, simian adenovirus; Pre, pre-outbreak; Post, post-outbreak; N/A, not applicable. Modified from [105] with permission.
analysis of the novel agent, which can provide clues as to its potential host range and pathogenicity [58]. The availability of sequence information also facilitates the development of specific PCR-based or serological assays for detection. Epidemiological screening of the distribution of the candidate pathogen in diseased patients and asymptomatic controls by PCR, as well as assessment of the geographic and temporal distribution of infections, can help in establishing a link to disease. Serology can also play a critical role in determining pathogenicity, as increases in titer support the association of a given pathogen with infection. For example, serologic analyses of a novel adenovirus species named ‘simian adenovirus C (SAdV-C)’ associated with a pneumonia outbreak in a baboon colony (Figure 4a) were recently used to establish that staff personnel at the facility had also been exposed to this newly discovered virus (Figure 4b) [105]. Finally, development of a culture system and animal model for infection can directly confirm that a candidate novel agent plays a causal role in disease.

One advantage of using microarrays and NGS for pathogen discovery is that these same technologies can also be applied to evaluate the potential pathogenicity of newly identified novel agents. Host transcriptome analysis using gene expression microarrays [106] or RNA-Seq [107] can enable the characterization of associated host biomarkers in response to infection. Detailed NGS-based quasispecies analysis of novel pathogens that exhibit high mutation rates, such as RNA viruses [108,109], can also provide insights into how these agents infect and invade the host.

Conclusions
Although sometimes derided as a ‘fishing expedition’, pathogen discovery is, in actuality, a highly worthwhile scientific endeavor. Without a cause identified for many presumed infectious diseases, it is not possible to conduct downstream investigations in pathogenesis and host–microbial interactions, nor is it possible to design effective vaccines or antimicrobial drugs to combat the associated illness. Potential applications of pathogen discovery range from outbreak investigation of emerging pathogens, to screening of blood products, vaccines, and other biologics for viral contaminants, to clinical diagnosis of unknown acute or chronic infectious diseases. The current availability of state-of-the-art genomic technologies such as pan-microbial microarrays and NGS provides an unprecedented opportunity to ‘cast a wide net’ and survey the full breadth of as-yet undiscovered pathogens in nature that pose significant threats to human health.

Competing interests statement
The author’s research on viral pathogen discovery is partially supported by an award by Abbott Laboratories, Inc. The author has also filed provisional patent applications related to Lone Star virus, a novel bunyavirus in the *Amblyomma americanum* tick, and the novel baboon SAdV-C adenoviruses referred to in this article.

Acknowledgements
The author thanks Drs. Eric Delwart and Jerome Bouquet for thoughtful comments and the U.S. National Institutes of Health (grants R56-AI08953 and R01-HL105704), UC MEXUS-CONACYT Collaborative Grants Program, and Abbott Laboratories, Inc. for research funding and support.

References
1. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH et al.: Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003, 300:1394-1399.
2. Nichol ST, Spiropolou CF, Morzunov S, Rollin PE, Ksiazek TG, Feldmann H, Sanchez A, Childs J, Zaki S, Peters CJ: Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 1993, 262:914-917.
3. Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, Garten RJ, Gubareva LV, Xu X, Bridges CB, Uyeki TM: Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009, 360:2605-2615.
4. Shinde V, Bridges CB, Uyeki TM, Shu B, Balish A, Xu X, Lindstrom S, Gubareva LV, Deyde V, Garten RJ et al.: Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009. N Engl J Med 2009, 360:2616-2625.
5. Biermingham A, Chand MA, Brown CS, Arons E, Tong C, Langrish C, Hoschler KA, Brown M, Myers R et al.: Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. Euro Surveill 2012, 17:20290.
6. Zaki AM, van Boeheimen S, Bestebroer TM, Osterhaus AD, Fouchier RA: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012, 367:1814-1820.
7. van Boeheimen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, Osterhaus AD, Haagmans BL, Gorbalenya AE, Snijder EJ et al.: Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. Mbio 2012, 3.
8. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K et al.: Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 2013. [Epub ahead of print].
9. Chomel BB, Belotto A, Meslin FX: Wildlife exotic pets, and emerging zoonoses. Emerg Infect Dis 2007, 13:6-11.
10. Briese T, Jia XY, Huang C, Grady LJ, Lipkin WI: Identification of a Kunjin/West Nile-like flavivirus in brains of patients with New York encephalitis. Lancet 1999, 354:1261-1262.
11. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MS, Scherret JH et al.: Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 1999, 286:2333-2337.
12. Xu B, Liu L, Huang X, Ma H, Zhang Y, Du Y, Wang P, Tang X, Wang H, Kang K et al.: Metagenomic analysis of fever, thrombocytopenia and leukenia syndrome (FTLS) in Henan Province, China: discovery of a new bunyavirus. PLoS Pathog 2011, 7:e1002369.
13. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, Zhang L, Zhang QF, Popov VL, Li C et al.: Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med 2011, 364:1523-1532.
14. McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, Batten BC, Albarrin CG, Zaki SR, Rollin PE et al.: A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med 2012, 367:834-841.
15. Feng H, Shuda M, Chang Y, Moore PS: Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008, 319:1096-1100.

16. Bloch KC, Glaser C: Diagnostic approaches for patients with suspected encephalitis. Curr Infect Dis Rep 2007, 9:315-322.

17. Glaser CA, Gilliam S, Schnurr D, Forghani B, Honaramud T, Kshetrisuri N, Fischer M, Cosson CK, Anderson LJ: In search of encephalitis etiologies: diagnostic challenges in the California Encephalitis Project, 1998-2000. Clin Infect Dis 2003, 36:731-742.

18. Glaser CA, Honaramud S, Anderson LJ, Schnurr DP, Forghani B, Cosson CK, Schuster FL, Christie LJ, Tureen JH: Beyond viruses: clinical profiles and etiologies associated with encephalitis. Clin Infect Dis 2006, 43:1562-1577.

19. Prusiner SB: Prions. Sci Am 1984, 251:50-59.

20. Wilkinson DA, Tenenbaum S, Lebarbashen C, Lagadec E, Chotte J, Guillebaud J, Ramasindrazana B, Heraud JM, de Lamballerie X, Goodman SM et al.: Identification of novel paramyxoviruses in insectivorous bats of the Southwest Indian Ocean. Virus Res 2012, 170:159-163.

21. Drexler JF, Corman VM, Muller MA, Maganga GD, Vallo P, Binger T, Globo-Raush F, Rasche A, Yordanov S, Seebens A et al.: Bats host major mammalian paramyxoviruses. Nat Commun 2012, 3:796.

22. Kurth A, Kohl C, Brinkmann A, Ebiner A, Harper JA, Wang LF, Muhldorfer K, Wibbel G: Novel paramyxoviruses in free-ranging European bats. PLoS ONE 2012, 7:e38688.

23. Kapoor A, Li L, Victoria J, Onderline B, Mason C, Pandey P, Zaidi SZ, Delwart E: Multiple novel astrovirus species in human stool. J Gen Virol 2009, 90:2965-2972.

24. Scuda N, Hofmann J, Calvignac-Spencer S, Ruprecht K, Liman P, Kuhn J, Hengel H, Ehlers B: A novel human poliovirus closely related to the African green monkey-derived lymphoproliferative poliovirus. J Virol 2011, 85:4586-4590.

25. Allander T, Emerson SU, Engle RE, Purcell RH, Bukh J: A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci U S A 2001, 98:11609-11614.

26. van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouche R, Osterhaus AD: A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 2001, 7:719-724.

27. Jones MS, Kapoor A, Lukashov VV, Simmonds P, Hecht F, Delwart E: New DNA viruses identified in patients with acute viral infection syndrome. J Virol 2005, 79:8290-8296.

28. Allander T, Andreasson K, Gupta S, Bjorker A, Bogdanovic G, Persson MA, Dalianis T, Ramqvist T, Andersen B: Identification of a third human poliovirus. J Virol 2007, 81:4130-4136.

29. Jones MS, Lukashov VV, Ganoc RD, Schnurr DP: Discovery of a novel human picornavirus in a stool sample from a pediatric patient presenting with fever of unknown origin. J Clin Microbiol 2007, 45:2144-2150.

30. Kapoor A, Victoria J, Simmonds P, Siklas E, Chieochansin T, Naem A, Shaukat S, Sharif S, Alam MM, Angez M et al.: A highly prevalent and genetically diversified Picornaviridae genus in South Asian children. Proc Natl Acad Sci U S A 2008, 105:20482-20487.

31. Gaynor AM, Nissen MD, Whitey DM, Mackay IM, Lambert SB, Wu G, Brennan DC, Storch GA, Sloots TP, Wang D: Identification of a novel picornovirus from patients with acute respiratory tract infections. PLoS Pathog 2007, 3:e64.

32. Arthur JL, Higgins GD, Davidson GP, Ginrey RC, Ratcliffe RM: A novel bocavirus associated with acute gastroenteritis in Australian children. PLoS Pathog 2009, 5:e1000391.

33. Finkbeiner SR, Alfred AF, Tarr PL, Klein EJ, Kirkwood CD, Wang D: Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathog 2008, 4:e1000011.

34. Kapoor A, Siklas E, Simmonds P, Chieochansin T, Naem A, Shaukat S, Alam MM, Sharif S, Angez M, Zaidi S et al.: A newly identified bocavirus species in human stool. J Infect Dis 2009, 199:196-200.

35. Rector A, Tachezy R, Van Ranst M: A sequence-independent strategy for detection and cloning of circular DNA virus genomes by using multiply primed rolling-circle amplification. J Virol 2004, 78:4993-4998.

36. Dean FB, Nelson JR, Giesler TL, Lasken RS: Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 2001, 11:1089-1099.

37. Niel C, Diniz-Mendes L, Devaille S: Rolling-circle amplification of Torque teno virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup. J Gen Virol 2005, 86:1343-1347.

38. Dela Cruz FN Jr, Giannitti F, Li L, Woods LW, Del Valle L, Delwart E, Pesavento PA: Novel polyomavirus associated with brain tumors in free-ranging raccoons, western United States. Emerg Infect Dis 2013, 19:77-84.

39. Schowalter RM, Pastrana DV, Pumphrey KA, Moyer AL, Buck CB: Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe 2010, 7:509-515.

40. van der Meijden E, Janssens RW, Lauber C, Bouwes Bavink JV, Gorbalenya AE, Feltkamp MC: Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromised patient. PLoS Pathog 2010, 6:e1000124.

41. Mikhailovich V, Gryadunov D, Kolchinsky A, Makarov AA, Zasedatelev A: DNA microarrays for diagnosis of infectious diseases. Biossays 2008, 30:673-682.

42. Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL: Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci U S A 2002, 99:15687-15692.

43. Palacios G, Quan PL, Jabado OJ, Conlan S, Hirschberg DL, Liu Y, Zhai J, Renwick N, Hui J, Hegyi H et al.: Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis 2007, 13:73-81.

44. Gardner SN, Jaing CJ, McLoughlin KS, Slezak TR: A microbial detection array (MDA) for viral and bacterial detection. BMC Genomics 2010, 11:668.

45. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998, 95:14863-14868.

46. Alfred AF, Wu G, Wulan T, Fischer KF, Holbrook MR, Teish RB, Wang D: VIPR: a probabilistic algorithm for analysis of microbial detection microarrays. BMC Bioinformatics 2010, 11:384.

47. Urisman A, Fischer KF, Chiu CY, Kistler AL, Beck S, Wang D, DeRisi JL: E-Predict: a computational strategy for species identification based on observed DNA microarray hybridization patterns. Genome Biol 2005, 6:R78.

48. Chen EC, Miller SA, DeRisi JL, Chiu CY: Using a pan-viral microarray assay [Virchip] to screen clinical samples for viral pathogens. J Vis Exp 2011, 50: [Epub ahead of print].

49. Kistler A, Avila PC, Rouskin S, Wang D, Ward T, Yagi S, Schnurr D, Ganem D, DeRisi JL, Boushey HA: Pan-viral screening of respiratory tract infections in adults with and without asthma reveals unexpected human coronavirus and human rhinovirus diversity. J Infect Dis 2007, 196:817-825.

50. Chiu CY, Greninger AL, Kanada K, Kwok T, Fischer KF, Runckel C, Louis JK, Glaser CA, Yagi S, Schnurr DP et al.: Identification of cardioviruses related to Theiler's murine encephalomyelitis virus in human infections. Proc Natl Acad Sci U S A 2008, 105:14124-14129.

51. Greninger AL, Chen EC, Sittler T, Scheinerman A, Roubinian N, Yu G, Kim E, Pillai DR, Guyard C, Mazzulli T et al.: A metagenomic analysis of pandemic influenza A (2009 H1N1) infection in patients from North America. PLoS ONE 2010, 5:e13381.

52. Chen EC, Yagi S, Kelly KR, Mendoza SP, Tarara RP, Canfield DR, Maninger N, Rosenthal A, Skinner A, Bates KL et al.: Cross-species...
transmission of a novel adenovirus associated with a fulminating pneumonia outbreak in a new world monkey colony. PLoS Pathog 2011, 7:e1002155.

53. Victoria JG, Wang C, Jones MS, Jaing C, McLoughlin K, Gardner S, Delwart EL: Viral nucleocides in live-attenuated vaccines: detection of minority variants and an adventitious virus. J Virol 2010, 84:6033-6040.

54. Radford AD, Chapman D, Dixon L, Chantrey J, Darby AC, Hall N: Application of next-generation sequencing technologies in virology. J Gen Virol 2012, 93:1853-1868.

55. Tang P, Chiu C: Metagenomics for the discovery of novel human viruses. Future Microbiol 2010, 5:177-189.

56. Pyrc K, Jebbink MF, Berkhout B, van der Hoek L: Detection of new viruses by VDIDSCA. Virus discovery based on cDNA- amplified fragment length polymorphism. Methods Mol Biol 2008, 454:73-89.

57. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S: Rapid evolution of RNA genomes. Science 1982, 215:1577-1585.

58. Grard G, Fair JN, Lee D, Silkas E, Steffen I, Muyembe JJ, Sittler T, Veeraraghavan N, Ruby G, Wang C et al.: A novel rhadovirus associated with acute hemorrhagic fever in Central Africa. PLoS Pathogens 2012, 8:e1002924.

59. Li L, Kapoor A, Silkas B, Samide OS, Wang C, Shaukat S, Masroor MA, Wilson ML, Ndungo JB, Peeters M et al.: Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol 2010, 84:1674-1682.

60. Holtz LR, Finkbeiner SR, Zhao G, Kirkwood CD, Girone R, Pipas JM, Wang D: Klassivirus 1, a previously undescribed member of the family Picornaviridae, is globally widespread. Virol J 2009, 6:86.

61. Greninger AL, Runckel C, Chiu CY, Haggerty T, Parsonnet J, Ganem D, DeRisi JL: The complete genome of klassivirus – a novel picornavirus in pediatric stool. Virol J 2009, 6:82.

62. Li L, Victoria J, Kapoor A, Blinkova O, Wang C, Babrzadeh F, Mason CJ, Pandey P, Triki H, Bahri O et al.: A novel picornavirus associated with gastroenteritis. J Virol 2009, 83:12002-12006.

63. Siebrasse EA, Reyes A, Lim ES, Zhao G, Mkakosya RS, Manary MJ, Gordon JL, Wang D: Identification of MW polyomavirus, a novel polyomavirus in human stool. J Virol 2012, 86:10321-10326.

64. Yu G, Greninger AL, Isa P, Phan TG, Martinez MA, de la Luz Sanchez M, Contreras JF, Santos-Preciado JI, Parsonnet J, Miller S et al.: Discovery of a novel polyomavirus in acute diarrheal samples from children. PLoS ONE 2012, 7:e49449.

65. Buck CB, Phan QG, Rajii MT, Murphy PM, McDermott DH, McBride AA: Complete genome sequence of a tenth human polyomavirus. J Virol 2012, 86:10887.

66. Sauvage V, Foulongne V, Cheval J, Ar Gouili M, Pariente K, Dereure O, Manugueria JC, Richardson J, Lecuit M, Burguiera A et al.: Human polyomavirus related to African green monkey lymphotropic polyomavirus. Emerg Infect Dis 2011, 17:1364-1370.

67. Phan TG, Vo NP, Bonkoungou JI, Kapoor A, Barro N, O’Ryan M, Kapusinszky B, Wang C, Delwart E: Acute diarrhea in West African children: diverse enteric viruses and a novel parvovirus genus. J Virol 2012, 86:11024-11030.

68. Quan PL, Wagner TA, Briese T, Torgerson TR, Homig M, Tashmukhamedova A, Firth C, Palacios G, Bairet-De-Leon A, Paddock CD et al.: Astrovirus encephalitis in boy with X-linked agammaglobulinemia. Emerg Infect Dis 2010, 16:918-925.

69. Yozwiak NL, Skewes-Cox P, Gordon A, Saborio S, Kuan G, Balmaseda A, Ganem D, Harris E, DeRisi JL: Human enterovirus 10B: a novel interspecies recombinant enterovirus isolated from a case of acute pediatric respiratory illness in Nicaragua. J Virol 2010, 84:9047-9058.

70. Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, Conlan S, Quan PL, Hui J, Marshall J et al.: A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med 2008, 358:991-998.

71. Briese T, Paweska JT, McMullan LK, Hutchison SK, Street C, Palacios G, Khristova ML, Weyer J, Swanepoel R, Egholm M et al.: Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog 2009, 5:e1000455.

72. Swel A, Russell BJ, Naccache SN, Kabre B, Veeraraghavan N, Pilgard MA, Johnson BJ, Chiu CY: The genome sequence of Lone Star virus, a highly divergent bunyavirus found in the Amblyomma americanum tick. PLoS ONE 2013, 8:e62083.

73. Chandrani S, Skewes-Cox P, Zhong G, Gamem DE, Divers TJ, Van Blancard AJ, Tennant BC, Kistler AL: Identification of a previously undescribed divergent virus from the Flaviviridae family in an outbreak of equine serum hepatitis. Proc Natl Acad Sci U S A 2013, 110:E1407-E1415.

74. Kapoor A, Simmonds P, Cullen JM, Scheel T, Medina JL, Gianiitti F, Nishiuchi E, Brock KV, Burbelo PD, Rice CM et al.: Identification of a pegivirus (GBV-like virus) that infects horses. J Virol 2013. [Epub ahead of print].

75. Kapoor A, Simmonds P, Scheel TK, Hjelle B, Cullen JM, Burbelo PD, Chauhan LV, Duraisamy R, Sanchez Leon M, Jain K et al.: Identification of rodent homologs of hepatitis C virus and pegiviruses. MBio 2013, 4.

76. Kapoor A, Simmonds P, Gerald G, Qaisar N, Jain K, Henriquez JA, Firth C, Hirschg DL, Rice CM, Shields S et al.: Characterization of a canine homolog of hepatitis C virus. Proc Natl Acad Sci U S A 2010, 108:11608-11613.

77. Quan PL, Firth C, Conte JM, Williams SH, Zambrana-Torrelio CM, Anthony SJ, Ellison JA, Gilbert AT, Kuzmin IV, Niedzgoda M et al.: Bats are a major natural reservoir for hepaticiviruses and pegiviruses. Proc Natl Acad Sci U S A 2013. [Epub ahead of print].

78. Li L, Pesavento PA, Leutenegger CM, Estrada M, Coffey LL, Naccache SN, Samayao E, Chiu C, Qi J, Wang C et al.: A novel bocavirus in canine liver. Virol J 2013, 10:54.

79. Stenglein MD, Sanders C, Kistler AL, Ruby JG, Franco JO, Reavill DR, Dunker F, Derisi JL: Identification, characterization, and in vitro culture of highly divergent arenaviruses from box constrictors and annulated tree boas: candidate etiological agents for snake inclusion body disease. MBio 2012, 3:e00180-00112.

80. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J et al.: Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012, 22:892-296.

81. Delwart EL: Viral metagenomics. Rev Med Virol 2007, 17:115-131.

82. Ooyla SO, Gu Y, Manske M, Otto TD, O’Brien J, Alcock D, Maciniss B, Berriman M, Newbold CI, Kwiatkowski DP et al.: Efficient depletion of host DNA contamination in malaria clinical sequencing. J Clin Microbiol 2013, 51:745-751.

83. He S, Wurtzel O, Singh K, Froula JL, Yilmaz S, Tringe SG, Wang Z, Chen F, Lindquist EA, Sorek R et al.: Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat Methods 2010, 7:807-812.

84. Shagina I, Bogdanova E, Mamedov IZ, Lebedev Y, Lukyanov S, Shagin D: Normalization of genomic DNA using duplex-specific nuclease. Biotechniques 2010, 48:455-459.

85. Gnirtle A, Melninkov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C et al.: Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 2009, 27:182-189.

86. Cheval J, Sauvage V, Frangue L, Dacheux L, Guigon G, Dumey N, Pariente K, Rousseaux C, Dorange F, Berthet N et al.: Evaluation of high-throughput sequencing for identifying known and unknown viruses in biological samples. J Clin Microbiol 2011, 49:3268-3275.

87. Ruby JG, Bellare P, Derisi JL: PRICE: software for the targeted assembly of components of metagenomic sequence data. G3 (Bethesda) 2013. [Epub ahead of print].
88. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bartoni A, Swordlow HP, Gu Y: A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 2012, 13:341.

89. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin CS, Iliopoulos D et al.: Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 2011, 365:709-717.

90. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanski R, Ji Y, Zhang W et al.: Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS ONE 2011, 6:e22751.

91. Lysholm F, Wetterbom A, Lindau C, Darhan H, Bjerkner A, Fahlander K, Lindberg AM, Persson B, Allander T, Andersson B: Characterization of the viral microbiome in patients with severe lower respiratory tract infections, using metagenomic sequencing. PLoS ONE 2012, 7:e30875.

92. Weber G, Shendure J, Tanenbaum DM, Ferretti JJ, Kuroda Y, Littman DR, Liu D, Hasan M, Murphy-Zeiss J et al.: High-throughput sequencing of microbial quasispecies in human fecal samples reveals diversity, heterogeneity and frequent mixed infection of TT virus demonstrated by PCR with primers from coding and noncoding regions. Virolology 1999, 259:428-436.

93. Fredericks DN, Relman DA: Sequence-based identification of microbial pathogens: a reevaluation of Koch's postulates. Clin Microbiol Rev 1996, 9:18-33.

94. Wang D, Urichs A, Liu YT, Springer M, Kiaizek TG, Erdman DD, Mardis ER, Hickenbotham M, Magrini V, Eldred J et al.: Viral discovery and sequence recovery using DNA microarrays. PLoS Biol 2003, 1:52.

95. Chiu CY, Yagi S, Lu X, Yu G, Chen EC, Liu M, Dick EJ Jr, Carey KD, Erdman DD, Leland MM et al.: A novel adenovirus species associated with an acute respiratory outbreak in a baboon colony and evidence of coincident human infection. mBio 2013, 4:e00884-00013.

96. Ekins R, Chu FW: Microarrays: their origins and applications. Trends Biotechnol 1999, 17:217-218.

97. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.

98. Beenertwinkel N, Gunthard HF, Roth V, Metzner KJ: Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Front Microbiol 2012, 3:329.

99. Yin L, Liu L, Sun Y, Hou W, Lowe AC, Gardner BP, Salem M, Williams WB, Farmerie WG, Sleasman JW et al.: High-resolution deep sequencing reveals biodiversity, population structure, and persistence of HIV-1 quasispecies within host ecosystems. Retrovirology 2012, 9:108.

100. Nakamura S, Yang CS, Sakon N, Ueda M, Tough T, Yamashita A, Goto N, Takahashi K, Yasunaga T, Ikuta K et al.: Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. PLoS ONE 2009, 4:e6219.

101. Yuefeng H, Fan Y, Jie D, Jian Y, Ling Z, Lilian S, Jin Q: Direct pathogen detection from swab samples using a new high-throughput sequencing technology. Clin Microbiol Infect 2011, 17:241-244.