North American Xyleborini north of Mexico: a review and key to genera and species (Coleoptera, Curculionidae, Scolytinae)

Demian F. Gomez¹, Robert J. Rabaglia², Katherine E. O. Fairbanks³, Jiri Hulcr¹,4

¹ School of Forest Resources and Conservation, University of Florida, 136 Newins-Ziegler Hall, Gainesville, FL 32611, USA ² USDA-Forest Service, Forest Health Protection, 201 14 St, SW, Washington DC 20250, USA ³ Florida Department of Agriculture and Consumer Services, Division of Plant Industry, 1911 SW 34th Street, Gainesville, FL 32608, USA ⁴ Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA

Corresponding author: Demian F. Gomez (demiangomez@ufl.edu)

Academic editor: M. Alonso-Zarazaga | Received 26 February 2018 | Accepted 1 May 2018 | Published 19 June 2018

http://zoobank.org/9160854B-540D-402D-B676-5AFF0BCE899B

Citation: Gomez DF, Rabaglia RJ, Fairbanks KEO, Hulcr J (2018) North American Xyleborini north of Mexico: a review and key to genera and species (Coleoptera, Curculionidae, Scolytinae). ZooKeys 768: 19–68. https://doi.org/10.3897/zookeys.768.24697

Abstract

Bark and ambrosia beetles (Scolytinae) are the most successful group of invasive wood borers worldwide, and the most invasive among them are species in the tribe Xyleborini. This haplodiploid, highly inbred, fungus-farming group is represented by 30 non-native species in North America, of which at least five are serious pests. The few identification resources for Xyleborini that exist are becoming outdated due to new species arrivals and nomenclatural changes. Here we present a new comprehensive key to Xyleborini currently known from the continental United States. Compared to the previous key, the following species have been added to the North American fauna: Ambrosiodmus minor (Stebbing), Ambrosiophilus nodulosus (Eggers), Anisandrus maiche Kurentsov, Coptoborus pseudotenuis (Schedl), Cyclorhipidion fukiense (Eggers), Dryocoetoides reticulatus Atkinson, Dryoxylon onoharaense (Murayama), Euwallacea interjectus (Blandford), Xyleborinus andrewesi (Blandford), Xyleborinus artestriatus (Eichhoff), Xyleborinus octiesdentatus (Murayama), Xyleborus bispinatus Eichhoff, Xyleborus seriatus Blandford, Xyleborus spinulosus Blandford, and Xylosandrus amputatus (Blandford).

Keywords

ambrosia beetles, exotic species, invasive species, wood-boring insects
Introduction

Bark and ambrosia beetles (Curculionidae: Scolytinae) are considered one of the most injurious groups of insects in native and planted forests (Raffa et al. 2015). The vast majority breeds in dead or dying tissues and do not have economic impact. However, some species attack living trees, seedlings, or seeds of commercial importance causing severe damage (Raffa et al. 2015). Scolytines are among the most commonly intercepted taxa at United States ports of entry. True bark beetles (phloeophagous species) are intercepted more often than ambrosia-feeding species; however, ambrosia beetles of the tribe Xyleborini represent half of the 60 non-native scolytines established in the United States (Haack and Rabaglia 2013).

The Xyleborini, with 1177 recognized species, is the most species-rich tribe within Scolytinae (Smith and Hulcr 2015). This tribe of ambrosia beetles also includes some of the most abundant and widely distributed species (Rabaglia et al. 2006). The combination of fungus-farming, wide host range, and arrhenotokous inbreeding (haplodiploidy) makes the Xyleborini one of the most successful groups of colonizers in the world (Atkinson et al. 1990, Smith and Hulcr 2015).

In the last decade, several exotic species of Xyleborini have successfully established in North America. The detection and control of both native and exotic species relies on a solid understanding of the systematics and identity of species. Since the last review of North American Xyleborini (Rabaglia et al. 2006), 15 additional non-native species have been recorded in North America and several nomenclatural changes have been made. The aim of this article is to review the species of Xyleborini occurring in continental North America, diagnose the new species for the region, and provide illustrated keys to genera and species.

Materials and methods

Specimens examined were from the cryo-preserved collection University of Florida Forest Entomology lab managed by JH (University of Florida, Gainesville, Florida, USA), the Florida State Collection of Arthropods (Gainesville, Florida, USA), and/or collected by the authors during various state, regional, and national surveys. Distribution records are as reported in Wood and Bright (1992), Atkinson (2017), recent publications, and unpublished data from the authors. Diagnostic characters used in the keys and notes are for the identification of genera and species occurring in North America and may not be useful for taxa occurring in other regions. Antennal club types are described as Hulcr et al. (2007). Interstria 1 is defined as the sutural interstria. Table 1 includes the complete list of species of Xyleborini occurring in continental North America.

Synonyms listed for each genus and species are cited from Alonso-Zarazaga and Lyal (2009), Alonso-Zarazaga et al. (2017), Beaver 2011, Bright (2014), and Wood and Bright (1992). References to original descriptions and synonymies are cited from Bright and Rabaglia (1999), Hulcr and Cognato (2009), Wood and Bright
### Table 1. List of species of Xyleborini occurring in continental North America north of Mexico.

| Ambrosiodmus devexulus (Wood, 1978) | Xyleborinus artextriatus (Eichhoff, 1878) |
| Ambrosiodmus lecontei Hopkins, 1915 | Xyleborinus attenuatus (Blandford, 1894) |
| Ambrosiodmus lewisi (Blandford, 1894) | Xyleborinus gracili (Eichhoff, 1868) |
| Ambrosiodmus minor (Stebbing, 1909) | Xyleborinus octoidentatus (Murayama, 1931) |
| Ambrosiodmus obliquus (LeConte, 1878) | Xyleborinus saxaei (Ratzeburg, 1837) |
| Ambrosiodmus opinus (Wood, 1974) | Xyleborus affinis Eichhoff, 1868 |
| Ambrosiodmus rubricollis (Eichhoff, 1875) | Xyleborus bispinatus Eichhoff, 1868 |
| Ambrosiodmus tachygraphus (Zimmermann, 1868) | Xyleborus celus Eichhoff, 1868 |
| Ambrosiophilus atratus (Eichhoff, 1875) | Xyleborus ferrugineus (Fabricius, 1801) |
| Ambrosiophilus nodulosus (Eggers, 1941) | Xyleborus glabratus Eichhoff, 1877 |
| Anisandrus dispers (Fabricius, 1792) | Xyleborus horridus Eichhoff, 1869 |
| Anisandrus maiche Kurentsov, 1941 | Xyleborus impressus Eichhoff, 1868 |
| Anisandrus obsus (LeConte, 1868) | Xyleborus intrusus Blandford, 1898 |
| Anisandrus sayi Hopkins, 1915 | Xyleborus pfeili (Ratzeburg, 1837) |
| Cnestus mutiatus (Blandford, 1894) | Xyleborus planicollis Zimmermann, 1868 |
| Coptoborus pseudotenuis (Schedl, 1936) | Xyleborus pubescens Zimmermann, 1868 |
| Cyclorhipidion bodoanum (Reitter, 1913) | Xyleborus seriatus Blandford, 1894 |
| Cyclorhipidion fukiense (Eggers, 1941) | Xyleborus spinulosus Blandford, 1898 |
| Cyclorhipidion pelliculosum (Eichhoff, 1878) | Xyleborus viduus Eichhoff, 1878 |
| Dryocetoides reticulatus Atkinson, 2009 | Xyleborus voluculus (Fabricius, 1775) |
| Dryoxylon onoharaense (Murayama, 1934) | Xyleborus xylographus (Say, 1826) |
| Eucnolea fornicatus (Eichhoff, 1868) | Xylosandrus amputatus (Blandford, 1894) |
| Eucnolea interjectus (Blandford, 1894) | Xylosandrus compactus (Eichhoff, 1875) |
| Eucnolea similis (Ferrari, 1867) | Xylosandrus craniiculus (Motschulsky, 1866) |
| Eucnolea validus (Eichhoff, 1875) | Xylosandrus curtulus (Eichhoff, 1869) |
| Theoerus ricini (Eggers, 1932) | Xylosandrus germanus (Blandford, 1894) |
| Xyleborinus andrewesi (Blandford, 1896) | |

(1987, 1992), and Wood (1986). The type material collection information and repository correspond to Wood and Bright (1992). Abbreviations for location of type material are:

- **BMNH**: British Museum of Natural History, London;
- **CNCI**: Canadian National Collection of Insects, Ottawa;
- **FRI**: Forest Research Institute, Dehradun;
- **IRSNB**: Institut Royal des Sciences Naturelles de Belgique, Brussels;
- **IZM**: Institute of Zoology at Moscow, Moscow;
- **MCZ**: Museum of Comparative Zoology, Cambridge, MA;
- **NHMB**: Natural History Museum Budapest, Budapest;
- **NHMW**: Naturhistorisches Museum Wien, Wien;
- **NMNH**: National Museum of Natural History, Washington, DC;
- **SDEI**: Senckenberg Deutsches Entomologisches Institut, Müncheberg;
- **UZMC**: Universitets Zoologisk Museum, Copenhagen;
- **ZIN**: Zoological Institute of the Russian Academy of Sciences, St. Petersburg;
- **ZMFK**: Zoological Research Museum Alexander Koenig, Bonn; and
- **ZMUH**: Zoologisches Institut und Zoologisches Museum, Hamburg.
Photographs were taken by JH and DG using an Olympus SZX16 stereomicroscope. Each image is a composite of up to 50 separate images taken with a Canon EOS Rebel T3i camera, and later stacked using the Helicon Focus software (v 6.0, Helicon Soft).

**Systematics**

**Key to genera of female American Xyleborini north of Mexico**

1. Body conspicuously long, 3.5 times as long as wide; protibiae narrow with five large teeth on outer margin; elytral declivity deeply concave and densely pubescent, declivital surface and lateral margins not armed. ....... *Dryoxylon*
   - Body stout to slender, never 3.5 times as long as wide; protibiae broad and with more than 5 small denticles on the outer margin; elytral declivity usually not concave; if impressed, lateral margins armed with denticles ................. 2
2. Scutellum minute, conical; base of elytra at suture notched, with abundant setae................................................................. *Xyleborinus*
   - Scutellum flat, shiny, its surface flush with adjacent elytra, or scutellum rounded, surrounded by a moderately deep impressed area at the base of elytra ..... 3
3. Procoxae moderately to widely separated; intercoxal piece continuous, not longitudinally emarginate ................................................................. 4
   - Procoxae contiguous; intercoxal piece longitudinally emarginate ............. 5
4. Elytra wider than long, shorter than pronotum, truncate; pronotum with lateral carina ................................................................. *Cnestus*
   - Elytra never wider than long nor shorter than pronotum, usually not truncate; pronotum with lateral margins rounded ............... *Xylosandrus*
5. Pronotal asperities extending from apex to base .................................. *Ambrosiodmus*
   - Pronotal asperities confined to apical half, basal half flat, shiny, or dull ...... 6
6. Posterior face of antennal club with segments 2 and 3 at least partially visible (type 3) (Fig. 1) ................................................................. 7
   - Posterior face of antennal club with no sutures visible at or near apex (type 1 or 2) (Fig. 1) ................................................................. 12
7. Elytral punctures confused; elytral vestiture abundant and confused .......... ................................................................. *Cyclorhipidion*
   - Strial and interstrial punctures in rows; elytral vestiture confined to strial and interstrial rows ................................................................. 8
8. Elytra narrowly rounded at apex, sutural apex strongly emarginate (Fig. 7), body slender ................................................................. *Coptoborus*
   - Elytral apex broadly rounded, sutural apex entire, body stout ............... 9
9. Posterolateral margin of declivity costate and broad; pronotum subquadrate or rounded ................................................................. *Euwallacea*
   - Posterolateral margin of declivity rounded, costa blunt; pronotum rounded, never quadrate ................................................................. 10
Figure 1. Antennal club types in Xyleborini. First row, types of antennae; second row, examples of variation; third row, rear face; fourth row, lateral view. Modified from Hulcr et al. (2007).

10 Protibia stick-like, posterior face rugose .............................................. Dryocoetoides
- Protibia flattened, posterior face smooth.............................................. 11
11 Color black; segment 2 of antennal club non-corneous or corneous only on anterior face................................................................. Ambrosiophilus
- Color light-brown; segment 2 of antennal club corneous on both sides ...... ................................................................. Theoborus
12 Anterior margin of pronotum distinctly armed by several coarse serrations (flat teeth); body stout, < 2.2 times as long as wide ...................... Anisandrus
- Anterior margin of pronotum not armed by large serrations; if serrations present, they are not larger than asperities on anterior slope of pronotum; body more slender, > 2.3 times as long as wide ................................. Xyleborus
**Ambrosiodmus** Hopkins, 1915

*Phloeotrogus* Motschulsky, 1863. Synonymy Wood 1966.
*Brownia* Nunberg, 1963. Synonymy Wood 1980.

**Type species.** *Xyleborus tachygraphus* Zimmermann.

Species of *Ambrosiodmus* differ from other members of the tribe by the asperities covering the entire surface of the pronotum.

**Key to species of female Ambrosiodmus**

1. Declivital interstriae 2 either unarmed or granules smaller than those on 1 or 3 ......................................................... 2
   - Declivital interstriae 2 with tubercles as large as or larger than those on 1 or 3 ................................................................. 3
2. Declivital interstriae 1 feebly elevated, usually as high as 3, 2 feebly sulcate, its granules as large as those on 1; discal interstriae 3 to 4 times as wide as striae; color reddish brown to black; slightly larger, length 2.0–2.4 mm ..................
   - Declivital interstriae 1 not elevated, declivital granules absent; elytral punctures larger, deeper; discal interstriae twice as wide as striae; color very dark brown to black; smaller, length 1.8–2.1 mm .................. *devexulus* (Wood)
3. Interstitial punctures on elytral disc strongly confused to irregularly biserial, smooth to weakly granulate .......................................................... 4
   - Interstitial punctures on elytral disc weakly confused to uniseriate, finely granulate............................................................................................................ 5
4. Declivital interstriae all equally tuberculate, tubercles somewhat irregular in size, but those on 2 not distinctly larger than those on other interstriae; length 3.5 mm .................................................. *minor* (Stebbing)
   - Declivital interstriae 1 unarmed or bearing small granules, 2 strongly tuberculate; length 3.6–4.0 mm .................. *lewisi* (Blandford)
5. Declivital interstriae all equally granulate, granules somewhat irregular in size, but those on 2 not distinctly larger than those on other interstriae; 2.4–2.6 mm .................................................. *rubricollis* (Eichhoff)
   - Declivital interstriae 1 unarmed or bearing very small granules, 2 strongly granulate or tuberculate .................................................. 6
6. Sutural area of declivity feebly impressed, interstriae 1 armed by several fine granules; rare; 2.4 mm .................................................. *opimus* (Wood)
   - Sutural area of declivity moderately to strongly impressed, interstriae 1 unarmed; longer than 2.4 mm .................................................. 7
7. Strial punctures on disc coarse, deep; interstriae less than 1.5 times as wide as striae; reddish, slightly bicolored; smaller, 2.5–3.0 mm ....... *lecontei* Hopkins
   - Strial punctures on disc rather small, very shallow; interstriae more than 2 times as wide as striae; black; larger, 3.7–3.9 mm........ *tachygraphus* (Zimmermann)
**Ambrosiodmus devexulus (Wood, 1978)**

Fig. 2

*Xyleborus devexus* Wood, 1977. Preoccupied Schedl 1977.

*Xyleborus devexulus* Wood, 1978. Replacement name for *X. devexus* Wood.

*Xyleborus woodi* Schedl, 1979. Unnecessary replacement name.

**Type material.** Holotype female; Homestead, FL; NMNH.

**Distribution.** North America: Antilles, United States: Florida.

**Notes.** This species is very similar to *A. obliquus*, but it is distinguished by its smaller size, lack of declival granules, and interstriae 1 not elevated. It is only known from southern Florida, Puerto Rico, and the Dominican Republic.

**Ambrosiodmus lecontei Hopkins, 1915**

Fig. 2

*Xyleborus gundlachi* Eggers, 1931. Synonymy Wood 1972.

**Type material.** Holotype female; Keene, FL; USNM.

**Distribution.** North America: Antilles, United States: Alabama, Florida, Louisiana, South Carolina, Texas; South America: Brazil.

**Notes.** In North America, this species is distinguished by the smaller size and the much deeper, coarser strial punctures compared to *A. tachygraphus*.

**Ambrosiodmus lewisi (Blandford, 1894)**

Fig. 2

*Xyleborus lewisi* Blandford, 1894.

*Ozopemon tuberculatus* Strohmeyer, 1912. Synonymy Beaver and Liu 2010.

*Xyleborus tegalensis* Eggers, 1923. Synonymy Schedl 1950.

*Xyleborus lewekianus* Eggers, 1923. Synonymy Wood 1989.

**Type material.** Syntypes female; Japan; BMNH.

**Distribution.** Asia; North America (introduced): United States: Alabama, Georgia, Pennsylvania.

**Notes.** *Ambrosiodmus lewisi* was first reported in North America from southeastern Pennsylvania (Hoebeke 1991). This non-native species is the largest *Ambrosiodmus* in North America, and can be distinguished from *A. minor* by the tubercles on declival interstriae 2, which are distinctly larger than those on other interstriae.
Figure 2. Lateral and dorsal views of Ambrosiodmus species. From top left, Ambrosiodmus deveclus, A. lecontei, A. lewisi, and A. minor. Scale bar: 1.0 mm.

**Ambrosiodmus minor** (Stebbing, 1909)

Fig. 2

*Phloeosinus minor* Stebbing, 1909.
*Xyleborus crassus* Hagedorn, 1910. Synonymy Schedl 1962.

**Type material.** Syntypes female; Assam: labeled Kochujan, printed as Goalpara Sal Forests; FRI.

**Distribution.** Asia; North America (introduced): United States: Alabama, Florida, Georgia, Mississippi.
Notes. The first collection in North America of *A. minor* was in Florida in 2011 (Rabaglia and Okins 2011). Similar to *A. lewisi* but with tubercles on declivital interstriae 2 not distinctly larger than those on other interstriae.

Ambrosiodmus obliquus (LeConte, 1878)
Fig. 3

*Pityophthorus obliquus* LeConte, 1878.
*Xyleborus gilvipes* Blandford, 1898. Synonymy Wood 1975.
*Ambrosiodmus linderae* Hopkins, 1915. Synonymy Bright 1968.
*Xyleborus brasiliensis* Eggers, 1928. Synonymy Wood 1975.
*Xyleborus mexicanus* Eggers, 1931. Synonymy Wood 1972.
*Xyleborus pseudobrasiliensis* Eggers, 1941. Synonymy Bright 1985.
*Xyleborus illepidus* Schedl, 1941. Synonymy Wood 1975.
*Xyleborus melanarius* Schedl, 1978. Synonymy Wood 1989.

**Type material.** Holotype female; Enterprise, FL; MCZ.

**Distribution.** Africa; Central America: Costa Rica, Guatemala, Honduras, Panama; North America: Antilles Islands, Mexico, United States: Alabama, Delaware, District of Columbia, Florida, Georgia, Louisiana, Maryland, Mississippi, North Carolina, South Carolina, Tennessee, Texas, Virginia; South America: Brazil, Colombia, Ecuador, Peru.

Notes. Similar to *A. devexulus* but with less prominent punctures.

Ambrosiodmus opimus (Wood, 1974)
Fig. 3

*Xyleborus opimus* Wood, 1974.

**Type material.** Holotype female; Sebring, FL; NMNH.

**Distribution.** North America: United States: Florida; South America: Brazil.

Notes. Similar to *A. lecontei* in North America, but interstriae 1 armed by several fine granules in *A. opimus*.

Ambrosiodmus rubricollis (Eichhoff, 1875)
Fig. 3

*Xyleborus rubricollis* Eichhoff, 1875.
*Xyleborus taboensis* Schedl, 1952. Synonymy Wood 1989.
*Xyleborus strohmeyeri* Schedl, 1975. Synonymy Wood 1989.
Figure 3. Lateral and dorsal views of *Ambrosiodmus* species. From top left, *Ambrosiodmus obliquus*, *A. opimus*, *A. rubricollis*, and *A. tachygraphus*. Scale bar: 1.0 mm.

Type material. Holotype Female; Japan; IRSNB.

Distribution. Asia; Australia (introduced); Europe (introduced): Italy; North America (introduced): Mexico, United States: Alabama, Arkansas, Connecticut, Delaware, Florida, Georgia, Indiana, Louisiana, Maryland, Michigan, Mississippi, Missouri, North Carolina, Ohio, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, Virginia.

Notes. This non-native species, first found in Maryland (Bright 1968), is now well-established and commonly found in the mid-Atlantic and southeastern states. This species is distinguished from other *Ambrosiodmus* by the combination of the red color, the small size, and the equally granulate declivital interstriae.
Ambrosiodmus tachygraphus (Zimmermann, 1868)

Fig. 3

Xyleborus tachygraphus Zimmermann, 1868.

Type material. Holotype female; North Carolina; MCZ.

Distribution. North America: United States: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Illinois, Indiana, Kentucky, Louisiana, Maryland, Mississippi, New Jersey, North Carolina, Ohio, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, Virginia, West Virginia.

Notes. Widely distributed in the eastern United States. It is among the largest species of Xyleborini in North America.

Ambrosiophilus Hulcr & Cognato, 2009

Type species. Ambrosiodmus restrictus (Schedl).

Species of Ambrosiophilus differ from other members of the tribe by the black and robust body combined with the absence of asperities on a flat pronotal disc, and the rounded edge of elytral declivity.

Key to species of female Ambrosiophilus

1 Body larger (length 3.0–3.2 mm); declivital striae 1 and interstriae 2 weakly impressed and finely granulate ........................................ atratus (Eichhoff)
   – Body smaller (length 2.4–2.7 mm); declivital striae 1 impressed and interstriae 2 convex, with evenly spaced tubercles from base to apex...........................
      ...................................................................................... nodulosus (Eggers)

Ambrosiophilus atratus (Eichhoff, 1875)

Fig. 4

Xyleborus atratus Eichhoff, 1875.

Type material. Holotype female; Japan. ZMUH, lost.

Distribution. Asia; North America (introduced): United States: Alabama, Delaware, Florida, Georgia, Kansas, Kentucky, Louisiana, Maine, Maryland, Michigan, Mississippi, Missouri, North Carolina, Ohio, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, West Virginia; Oceania.

Notes. Ambrosiophilus atratus was first reported in eastern North America from Georgia, Maryland, Tennessee, Virginia and West Virginia (Atkinson et al. 1990). Diffsers from A. nodulosus by the absence of tubercles on the declivity.
Figure 4. Lateral and dorsal views of *Ambrosiophilus* species. From top left, *Ambrosiophilus atratus* and *A. nodulosus*. Scale bar: 1.0 mm.

*Ambrosiophilus nodulosus* (Eggers, 1941)

Xyleborus *nodulosus* Eggers, 1941.

Xyleborus *pernodulus* Schedl, 1957. Synonymy Browne 1961.

*Ambrosiophilus peregrinus* Smith & Cognato, 2015. Synonymy Smith et al. 2017.

**Type material.** Holotype female; Fukien [Fujian Province, China]; ZMFK.

**Distribution.** Asia; North America (introduced): United States: Georgia.

**Notes.** A recent introduction in the U.S. (Smith and Cognato 2015, Smith et al. 2017), *A. nodulosus* is likely to expand its distribution. Differs from *A. atratus* by its smaller size and by the presence of evenly spaced tubercles on the declivity.

*Anisandrus* Ferrari, 1867

**Type species.** *Anisandrus dispar* (Fabricius).

Species of *Anisandrus* differ from other members of the tribe by the combination of serrations on the frontal edge of pronotum, a tuft of setae at the base of the pronotum, the contiguous procoxae, and an obliquely truncate antennal club with the first segment of club covering the entire posterior side.
### Key to species of female *Anisandrus*

1. Posterolateral costa on declivity armed by 3–5 distinct tubercles..........................
   - Posterolateral costa on declivity, may appear undulating, but without distinct tubercles .......................................................... *obesus* (LeConte)

2. Anterior margin of pronotum armed by 2–6 serrations, median pair conspicuously larger than the others; declivity evenly convex, granules few and small; body length 2.5–2.7 mm .............................................. *sayi* Hopkins
   - Anterior margin of pronotum armed by 6–8 subequal serrations; declivital interstriae 1 slightly to conspicuously raised, granules numerous; body length smaller than 2.5 mm or larger than 3.2 mm ..............................................

3. Larger, body length 3.2–3.7 mm; declivital interstriae 1 slightly raised, 2 and 3 even; interstitial punctures on elytral disc confused to irregularly biseriate ....
   - Smaller, body length 1.8–2.3 mm; declivital interstriae 1 raised, 2 impressed, 3 raised with numerous distinct granules; interstitial punctures on elytral disc uniseriate .......................................................... *maiche* Kurentsov

### *Anisandrus dispar* (Fabricius, 1792)

Fig. 5

*Apate dispar* Fabricius, 1792.

*Bostrichus brevis* Panzer, 1793. Synonymy Eichhoff 1878.

*Bostrichus thoracicus* Panzer, 1793. Synonymy Hagedorn 1910.

*Scolytus pyri* Peck, 1817. Synonymy Hubbard 1897.

*Bostrichus tachygraphus* Sahlberg, 1834. Synonymy Eichhoff 1878.

*Bostrichus ratzeburgi* Kolenati, 1846. Synonymy Ferrari 1867.

*Anisandrus aequalis* Reitter, 1913. Synonymy Mandelshtam 2001.

*Anisandrus swainei* Drake, 1921. Synonymy Wood 1957.

*Xyleborus dispar rugulosus* Eggers 1922.

*Xyleborus cerasi* Eggers, 1937. Synonymy Schedl 1964.

*Xyleborus khinganensis* Murayama, 1943. Synonymy Knížek 2011.

**Type material.** Syntypes female; Germaniae; UZMC.

**Distribution.** Asia; Europe; North America (introduced): Canada: British Columbia, New Brunswick, Nova Scotia, Ontario; United States: California, District of Columbia, Idaho, Illinois, Indiana, Maine, Maryland, Massachusetts, Michigan, New Jersey, New York, North Carolina, Ohio, Oregon, Pennsylvania, Rhode Island, Utah, Virginia, Washington, West Virginia.
Notes. Representing the first non-native scolytine reported in North America (Rabaglia et al. 2006), *Anisandrus dispar* was likely unintentionally introduced before 1817 (Wood 1977). Found across North America from southern Canada through northern United States. Similar to *A. maiche* but larger.

*Anisandrus maiche* Kurentsov, 1941
Fig. 5

*Xyleborus maiche* Kurentsov, 1941.

**Type material.** Syntypes female; Ussuri, USSR [Russia]; IZL [ZIN], Leningrad [St. Petersburg].

**Distribution.** Asia; North America (introduced): United States: Ohio, Pennsylvania, West Virginia, and Wisconsin.

**Notes.** *Anisandrus maiche* was first reported in the US from Pennsylvania, Ohio, and West Virginia (Rabaglia et al. 2009). Similar to *A. dispar* but smaller. This non-native species was originally reported from western Pennsylvania and eastern Ohio, but is becoming increasingly common in northeastern states.

*Anisandrus obesus* (LeConte, 1868)
Fig. 5

*Xyleborus obesus* LeConte, 1868.
*Xyleborus serratus* Swaine, 1910. Synonymy Hopkins 1915.
*Anisandrus populi* Swaine, 1917. Synonymy Schedl 1964.

**Type material.** Lectotype female; Virginia; MCZ.

**Distribution.** North America: Canada: New Brunswick, Ontario, Quebec; United States: Connecticut, Illinois, Kentucky, Massachusetts, Michigan, Minnesota, New Jersey, New York, Ohio, Virginia, West Virginia, Wisconsin.

**Notes.** Distinguished from other *Anisandrus* by the presence of a series of tubercles on the posterolateral margin of the declivity.

*Anisandrus sayi* Hopkins, 1915
Fig. 5

*Xyleborus obesus* var. *minor* Swaine, 1910. Synonymy Wood 1957.
*Xyleborus neardus* Schedl, 1950. Synonymy Wood 1957.

**Type material.** Holotype female; Morgantown, WV; NMNH.
Figure 5. Lateral and dorsal views of *Anisandrus* species. From top left, *A. dispar*, *A. maiche*, *A. obesus*, and *A. sayi*. Scale bar: 1.0 mm.

**Distribution.** North America: Canada: New Brunswick, Ontario, Quebec; United States: Alabama, Connecticut, Delaware, District of Columbia, Georgia, Illinois, Indiana, Iowa, Kentucky, Maine, Maryland, Massachusetts, Michigan, Mississippi, Missouri, New Jersey, New York, North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, Texas, Virginia, West Virginia.
Notes. This is the most common species of *Anisandrus* in the northeastern U.S. Distinguished from other *Anisandrus* by the absence of significant sculpture on the elytral declivity. Wood (1957) synonymized *A. sayi* with *X. obesus* var. *minor*, but Swaine’s name is available and should have priority.

**Cnestus Sampson, 1911**

*Tosaxyleborus* Murayama, 1950. Synonymy Browne 1955.

**Type species.** *Cnestus magnus* Sampson

Species of *Cnestus* differ from other members of the tribe by the truncate elytra, which are shorter than the pronotum.

**Cnestus mutilatus** (Blandford, 1894)

Fig. 6

*Xyleborus mutilatus* Blandford, 1894.
*Xyleborus sampsoni* Eggers, 1930. Synonymy Wood 1989.
*Xyleborus banjoewangi* Schedl, 1939. Synonymy Kalshoven 1960.
*Xyleborus taitonus* Eggers, 1939. Synonymy Wood and Bright 1987.

**Type material.** Holotype female; Japan; BMNH.

**Distribution.** Asia; North America (introduced): United States: Florida, Georgia, Kentucky, Louisiana, Mississippi, Pennsylvania, South Carolina, Tennessee, Texas; Oceania.

**Notes.** *Cnestus mutilatus* was first collected in North America from Mississippi in 1999 (Schiefer and Bright 2004). This species is easily distinguished from other Xyleborini by the truncate and short elytra, with a circular declivity delimited by a distinct carina posteriorly and laterally.

**Coptoborus** Hopkins, 1915

**Type species.** *Coptoborus emarginatus* Hopkins

Species of *Coptoborus* differ from other members of the tribe by the type 3 antennal club, the light brown or yellowish color, and the narrowed or acuminate elytral apex.

**Coptoborus pseudotenuis** (Schedl, 1936)

Fig. 7

*Xyleborus pseudotenuis* Schedl, 1936.
*Xyleborus tenuis* Schedl, 1948. Synonymy Wood 1976.
Type material. Holotype female; Brasilien; Schedl Collection in NHMW.

Distribution. Central America: Costa Rica, Panama; North America: Mexico, United States: Florida; South America: Bolivia, Brazil, Ecuador, French Guiana, Peru, Venezuela.

Notes. Coptoborus pseudotenuis was first documented in the US based on a reared specimen from southern Florida in 2004 (Atkinson et al. 2010). Common in South America, either introduced or naturally spread to Florida. Distinguished from other Coptoborus by the slightly impressed interstria 2, 1 and 3 with 3–5 small denticles, and by the elevated apical margin of interstriae 1 and 2.

Cyclorhipidion Hagedorn, 1912

Terminalinus Hopkins, 1915. Synonymy Wood and Bright 1992. Kelantanius Nunberg, 1961. Synonymy Wood 1986.

Type species. Cyclorhipidion pelliculosum Hagedorn
Species of *Cyclorhipidion* differ from other members of the tribe by being overall pubescent and covered with minute, dense, confused punctures.

**Key to species of female *Cyclorhipidion***

1. Body length 1.82–2.16 mm; elytra pale yellowish brown; elytral declivity dull, almost flat, not impressed between interstriae 1 and 3; pronotum longer than wide; declival strial punctures large, shallow, distinct, with interior surfaces reticulate, separated by less than their diameter; denticles on declival interstriae 1 and 3 small and more or less uniform in size. 
   - bodoanum (Reitter)
2. Body length more than 2.40 mm; elytra chestnut brown to blackish brown; elytral declivity shining, impressed between interstriae 1 and 3; pronotum only slightly longer than wide or nearly quadrate; declival strial punctures smaller and reticulate, generally separated at least by their diameter or slightly more; denticles on declival interstriae 1 and 3 larger than others.
   - fukiense (Eggers)

2. Body length 2.45–2.76 mm; declival interstriae 2 slightly impressed; elytra chestnut-brown; strial punctures and interstitial punctures on elytral declivity of equal size, confused.
   - pelliculosum (Eichhoff)

3. Body length 3.07–3.36 mm; declival interstriae 2 noticeably impressed; elytra blackish brown; strial punctures on elytral declivity clearly distinct and larger than interstitial punctures, distinctly seriate.
   - pelliculosum (Eichhoff)
**Cyclorhipidion bodoanum** (Reitter, 1913)

Fig. 8

*Xyleborus bodoanus* Reitter, 1913.
*Xyleborus punctulatus* Kurentsov, 1948. Synonymy Mandelshtam 2001.
*Xyleborus californicus* Wood, 1975. Synonymy Knížek 2011.

**Type material.** Syntypes female; Ostsibirien: Sotka-gora; NHMB.

**Distribution.** Asia; North America (introduced): United States: Alabama, Arkansas, California, Delaware, Florida, Georgia, Kansas, Louisiana, Maryland, Michigan, Mississippi, Missouri, North Carolina, Ohio, Oklahoma, Oregon, South Carolina, Tennessee, Texas, Washington.

**Notes.** *Cyclorhipidion bodoanum* was first reported in the eastern US (Maryland, Delaware, South Carolina, and Arkansas) in 2000 (Vandenberg et al. 2000) but was originally known by its synonym *Xyleborus californicus* Wood. Distinguished from other *Cyclorhipidion* in North America by the size and the yellowish brown color.

**Cyclorhipidion fukiense** (Eggers, 1941)

Fig. 8

*Xyleborus fukiensis* Eggers, 1941.
*Xyleborus ganshoensis* Murayama, 1952. Synonymy Beaver 2011.
*Xyleborus tenuigraphus* Schedl, 1953. Synonymy Beaver and Liu 2010.

**Type material.** Holotype female; Fukien [Fujian Province, China]; ZMFK.

**Distribution.** Asia; North America (introduced): United States: Florida, Georgia.

**Notes.** This recently detected non-native species is very similar in general appearance to both *C. bodoanum* and *C. pelliculosum* except for body length, with an intermediate size (Hoebek et al. 2018).

**Cyclorhipidion pelliculosum** (Eichhoff, 1878)

Fig. 8

*Xyleborus pelliculosus* Eichhoff, 1878.
*Xyleborus seiryorensis* Murayama, 1930. Synonymy Knížek 2011.
*Xyleborus quercus* Kurenzov, 1948. Synonymy Knížek 2011.
*Xyleborus starki* Nunberg, 1956. Synonymy Knížek 2011.

**Type material.** Syntypes female; Japan; ZMUH, lost.
Figure 8. Lateral and dorsal views of *Cyclorhipidion* species. From top left, *Cyclorhipidion bodoanum*, *C. fukiense*, and *C. pelliculosum*. Scale bar: 1.0 mm.

**Distribution.** Asia; North America (introduced): United States: Delaware, Illinois, Kentucky, Maine, Maryland, Massachusetts, Missouri, New Jersey, North Carolina, Ohio, Pennsylvania, Rhode Island, Tennessee, Virginia.

**Notes.** *Cyclorhipidion pelliculosum* was first documented in the US from Pennsylvania in 1987 and from Maryland in 1989 (Atkinson et al. 1990). Distinguished from other *Cyclorhipidion* in North America by the larger size and the blackish brown color.

*Dryocoetoides* Hopkins, 1915

**Type species.** *Dryocoetoides guatemalensis* Hopkins.

Species of *Dryocoetoides* differ from other members of the tribe by the stick-like protibia, the posterior face of which is rugose.

*Dryocoetoides reticulatus* Atkinson, 2009

**Fig. 9**

**Type material.** Holotype female; United States; NMNH.

**Distribution.** North America: United States: Florida.
Notes. Distinguished from other Dryocoetoides by the clearly indicated punctures in the declivital striae, the uniseriate tubercles in the interstriae, and the dull declivity. Only known from south Florida (Atkinson 2009).

Dryoxylon Bright & Rabaglia, 1999

Type species. Xyleborus onoharaensis Murayama.

Species of Dryoxylon differ from other members of the tribe by the long body, the not impressed submentum, the narrow protibia with a few large teeth on outer margin, and by the deeply concave elytral declivity.

Dryoxylon onoharaense (Murayama, 1934)

Fig. 10

Xyleborus onoharaensis Murayama, 1934.
Dryoxylon onoharaensum Bright & Rabaglia, 1999 (incorrect subsequent spelling).
Dryoxylon onoharaense: Alonso-Zarazaga & Lyal, 2009. Correction for Dryoxylon ono-

haraensum Bright & Rabaglia.

Type material. Lectotype female; Japan; NMNH.

Distribution. Asia; North America (introduced): United States: Alabama, Arkansas, Delaware, Florida, Georgia, Louisiana, Maryland, Mississippi, North Carolina, Ohio, South Carolina, Tennessee, Texas, Virginia.
Notes. This is the only species of the genus. Bright and Rabaglia (1999) placed it in the Dryocoetini based on tibial characters, but molecular analyses place it within the Xyleborini (Jordal et al. 2000, Jordal 2002). Distinguished by the obliquely truncate antennal club, the narrow protibiae with a few large teeth on outer margin, and by the distinctly concave, densely pubescent, and unarmed elytral declivity.

*Euwallacea* Hopkins, 1915

**Type species.** *Xyleborus wallacei* Blandford.

Species of *Euwallacea* differ from other members of the tribe by the costate and broad posterolateral edge of declivity. In most species the pronotum is subquadrate.

**Key to species of female Euwallacea**

1. Body slender, length 1.8–2.5 mm; light reddish brown color; pronotum subquadrate from above; elytral declivity with striae 1 strongly diverging from suture on lower half, interstriae 1 with one to three small tubercles near base, and one large tubercle slightly below middle......................... *similis* (Ferrari)
   – Body stout; dark brown to black; pronotum subquadrate to subcircular; elytral declivity with striae parallel throughout, declivity without distinctive tubercles................................................................. 2

2. Body length 1.9–2.3 mm; elytra 1.2 times as long as wide; pronotum subcircular anteriorly (not subquadrate), anterior margin procured, coarsely serrate ................................................................. *fornicatus* (Eichhoff)
   – Body length 3.4–3.8 mm; elytra at least 1.5 times as long as wide; pronotum more nearly subquadrate................................................................................................. 3

*Figure 10.* Lateral and dorsal view of *Dryoxylon onoharaense*. Scale bar: 1.0 mm.
3 Body narrower, 3.7–3.9 mm; elytra 2 times as long as wide; elytral declivity steeply sloped from summit to apex, surface dull, punctures in striae deep, inter-striae 2 with tubercles mostly absent from the apical half.  

=Eichhoff=

- Body stout, 3.4–3.6 mm; elytra 1.5 times as long as wide; elytra gradually sloped from the base to the apex, surface shiny, punctures in striae shallow, interstriae 2 with tubercles present from the base to the apex.  

=validus (Eichhoff)=

---

**Euwallacea fornicatus (Eichhoff, 1868)**

Fig. 11

*Xyleborus fornicatus* Eichhoff, 1868.

*Xyleborus fornicatior* Eggers, 1923. Synonymy Beeson 1930 (as variety).

*Xyleborus whitfordiodendrus* Schedl, 1942. Synonymy Wood 1989.

*Xyleborus perbrevis* Schedl, 1951. Synonymy Wood, 1989.

*Xyleborus schultzei* Schedl, 1951. Synonymy Beaver 1991.

*Xyleborus tapatapaoensis* Schedl, 1951. Synonymy Wood 1989.

**Type material.** Syntypes: Ceylon; ZMUH, lost.

**Distribution.** Africa; Asia; Central America (introduced): Costa Rica, Panama; North America (introduced): Mexico, United States: California, Florida, Hawaii; Oceania (introduced); South America (introduced): Brazil.

**Notes.** This species is a complex of several distinct genotypes, the most common of which are known as the Tea shot hole borer, Polyphagous shot hole borer, and the Kuroshio shot hole borer (Stouthamer et al. 2017). The different lineages are supported by rapidly evolving mitochondrial genes and more conserved nuclear gene regions. Although these potential different species display morphological differences, reliable morphological diagnosis has not been established (Chen et al. 2016).

**Euwallacea interjectus (Blandford, 1894)**

Fig. 11

*Xyleborus interjectus* Blandford, 1894.

*Xyleborus pseudovalidus* Eggers, 1925. Synonymy Schedl 1958.

**Type material.** Holotype female; Japan, China [presumably syntypes]; BMNH.

**Distribution.** Asia; North America (introduced): United States: Florida, Georgia, Hawaii, Kentucky, Louisiana, South Carolina, Texas, Virginia.

**Notes.** The first American occurrence of this species was in Louisiana in 1984, originally confused with *E. validus* (Cognato et al. 2015). Specimens from Asia can be larger in size, up to 3.8 mm long, overlapping with *E. validus* body size.
Figure 11. Lateral and dorsal views of *Euwallacea* species. From top left, *Euwallacea fornicatus*, *E. interjectus*, *E. similis* and *E. validus*. Scale bar: 1.0 mm.

*Euwallacea similis* (Ferrari, 1867)

Fig. 11

*Bostrichus ferrugineus* Boheman, 1858. Synonymy Schedl 1960.
*Xyleborus similis* Ferrari, 1867.
*Xyleborus parvulus* Eichhoff, 1868. Synonymy Schedl 1959.
*Xyleborus dilatus* Eichhoff, 1876. Synonymy Schedl 1959.
*Xyleborus submarginatus* Blandford, 1896. Synonymy Eggers 1929.
*Xyleborus bucco* Schaufuss, 1897. Synonymy Schedl 1959.
*Xyleborus capito* Schaufuss, 1897. Synonymy Schedl 1959.
Xyleborus novaguineanus Schedl, 1936. Synonymy Wood 1989.
Xyleborus dilatatulus Schedl, 1953. Synonymy Wood 1989.

**Type material.** Holotype female; “Insula Keeling”. NHMW.

**Distribution.** Africa; Asia; North America (introduced): United States: Texas; Oceania; South America (introduced): Brazil.

**Notes.** The designation of Anodius denticulus Motschulsky, 1863 as a synonym of this species (Mandelshtam and Nikitskij 2010) is not considered valid (Alonso-Zarazaga pers. comm.). Wood designated a specimen of Xyleborus perforans as the lectotype of Anodius denticulus, not a specimen of X. similis (although they occurred on the same pin).

**Euwallacea validus** (Eichhoff, 1875)

Fig. 11

*Xyleborus validus* Eichhoff, 1875.

**Type material.** Syntypes female; Japan; IRSNB.

**Distribution.** Asia; North America (introduced): Canada: Ontario; United States: Alabama, Delaware, Georgia, Kentucky, Maryland, Michigan, Mississippi, New Jersey, New York, North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, Texas, Virginia, West Virginia.

**Notes.** *Euwallacea validus* was first collected in the US from Nassau County, New York in 1975 (Wood 1977) and later from Pennsylvania in 1980 (Wood 1982) and Louisiana in 1984 (Chapin and Oliver 1986). This species is distinguished from *E. interjectus* in North America by the larger size, the absence of tubercles from the apical half of the interstriae 2, and by uneven and tuberculate declivital costae.

**Theoborus** Hopkins, 1915

**Type species.** *Theoborus theobromae* Hopkins.

Species of *Theoborus* differ from other members of the tribe by the light-brown color, the type 3 antennal club, the pointed elytral declivity apex in dorsal view, and the smooth posterior face of protibia.

**Theoborus ricini** (Eggers, 1932)

Fig. 12

*Xyleborus ricini* Eggers, 1932.
*Xyleborus solitariceps* Schedl, 1954. Synonymy Wood 1989.
Figure 12. Lateral and dorsal view of *Theoborus ricini*. Scale bar: 1.0 mm.

**Type material.** Holotype female; “Congostaat”; NMNH.

**Distribution.** Africa (introduced); Central America: Costa Rica; North America: Antilles, Mexico, United States: Florida; South America: Brazil, Colombia, Venezuela.

**Notes.** It is unclear if this species was introduced from South America or is native to North America. Distinguished by the light-brown color, the short and steep elytral declivity with stout and short interstrial setae, and the smooth posterior face of protibia.

*Xyleborinus* Reitter, 1913

**Type species.** *Bostrichus saxesenii* Ratzeburg.

Species of *Xyleborinus* differ from other members of the tribe by the conical scutellum surrounded by setae.

**Key to species of female Xyleborinus**

1. Elytral apex strongly convergent .......................... *andrewesi* (Blandford)
2. Elytral apex broadly rounded ......................................................
2. Declival interstriae 1 with small denticles; 1 and 3 equally, weakly elevated.................................................................
3. Declival interstriae 1 without denticles and not elevated..................
3. Denticles on declival interstriae 1 and 3 larger, those on 3 pointed, spine-like, slightly incurved; denticles on ventrolateral area of the elytra large,
sharply pointed, spine-like, curved slightly downwards and to the suture; declivital interstriae 2 flattened; 2.5–2.8 mm............. *attenuatus* (Blandford)

– Denticles on declivital interstriae 1 and 3 smaller, obtusely pointed; denticles on ventrolateral areas of the elytra small, less pointed; declivital interstriae 2 slightly impressed; 2.0–2.4 mm. ......................... *saxesenii* (Ratzeburg)

4 Declivity flattened, declivital interstriae 3 slightly elevated with 3 pairs of small tubercles, the pair near the posterior margin largest and often blunt; 1.6–1.9 mm................................................. *gracilis* (Eichhoff)

– Declivity sulcate, interstriae 2 impressed, tubercles on interstriae 3 of equal size; longer than 2.0 mm................................................................. 5

5 Declivital interstriae 3 slightly elevated with 2–3 pairs of tubercles, with bases wider than their length; 2.0–2.5 mm. ......................... *artestriatus* (Eichhoff)

– Declivital interstriae 3 strongly elevated with 4 pairs of long, narrow, pointed spines increasing in size approaching posterior margin, 2.1–2.4 mm............ .................................................... *octiesdentatus* (Murayama)

*Xyleborinus andrewesi* (Blandford, 1896)

Fig. 13

*Xyleborus andrewesi* Blandford, 1896.

*Xyleborus persphenos* Schedl, 1970. Synonymy Beaver and Brownie 1978.

*Xyleborus insolitus* Bright, 1972. Synonymy Bright 1985.

*Cryptoxyleborus gracilior* Browne, 1984. Synonymy Beaver 1995.

**Type material.** Holotype female; India; BMHN.

**Distribution.** Africa; Asia; North America (introduced): Antilles, United States: Florida, Hawaii; Oceania.

**Notes.** *Xyleborinus andrewesi* was first reported in the US from Lee County, Florida (Okins and Thomas 2010). Distinguished by the narrow, strongly convergent (as opposed to rounded) posterior margin of elytra.

*Xyleborinus artestriatus* (Eichhoff, 1878)

Fig. 13

*Xyleborus artestriatus* Eichhoff, 1878.

*Xyleborus laticollis* Blandford, 1896. Synonymy Schedl 1958.

*Xyleborus rugipennis* Schedl, 1953. Synonymy Wood 1989.

*Xyleborinus beaveri* Browne, 1978. Synonymy Bright 2014.

**Type material.** Holotype female; ZMUH, lost.

**Distribution.** Asia; North America (introduced): United States: Georgia, Texas; Oceania.
Figure 13. Lateral and dorsal views of *Xyleborinus* species. From top left, *Xyleborinus andrewesi*, *X. artestriatus*, *X. attenuatus* and *X. gracilis*. Scale bar: 1.0 mm.

**Notes.** *Xyleborinus artestriatus* was reported for the first time in North America based on specimens from Georgia and Texas (Cognato et al. 2013). Distinguished by the wide denticles of interstriae 3 and the sulcate declivity.

*Xyleborinus attenuatus* (Blandford, 1894)

*Fig. 13*

*Xyleborus attenuatus* Blandford, 1894.
*Xyleborinus alni* Niisima, 1909. Synonymy Knížek 2011.

**Type material.** Holotype female; Nikko, Japan; BMNH.

**Distribution.** Asia; Europe (introduced); North America (introduced): Canada: British Columbia, Nova Scotia, Ontario, Quebec; United States: Maine, Maryland, Michigan, New York, Oregon, Pennsylvania, Washington.
Notes. Similar to *X. saxesenii*, but can be distinguished by the larger size and the pointed and hooked tubercles on the declivity (Holzschuh 1994, Hoebeke and Rabaglia 2007).

*Xyleborinus gracilis* (Eichhoff, 1868)

Fig. 13

*Xyleborus gracilis* Eichhoff, 1868.
*Xyleborus aspericauda* Eggers, 1941. Synonymy Bright 1985.
*Xyleborus neogracilis* Schedl, 1954. Synonymy Bright 1985.
*Xyleborus schoenherri* Schedl, 1981. Synonymy Bright 2014.

**Type material.** Lectotype; Brasilia; NMNH.

**Distribution.** Africa; Central America: Costa Rica, Honduras, Panama; North America: Mexico, United States: Florida, Louisiana, Missouri, North Carolina, South Carolina, Texas; South America: Argentina, Brazil, Colombia, Ecuador, Venezuela.

Notes. Distinguished from other *Xyleborinus* by the blunt tubercles of declival interstriae 3.

*Xyleborinus octiesdentatus* (Murayama, 1931)

Fig. 14

*Xyleborus octiesdentatus* Murayama, 1931.

**Type material.** Holotype; Kannanri, Korea; NMNH.

**Distribution.** Asia; North America (introduced): Alabama, Louisiana, Mississippi, South Carolina.

Notes. *Xyleborinus octiesdentatus* was reported for the first time from North America based on specimens from Alabama and Louisiana (Rabaglia et al. 2010). Distinguished from other *Xyleborinus* by the 4 pairs of long, pointed spines increasing in size towards apex, on interstriae 3.

*Xyleborinus saxesenii* (Ratzeburg, 1837)

Fig. 14

*Bostrichus saxesenii* Ratzeburg, 1837.
*Tomicus dohrni* Wollaston, 1854. Synonymy Eichhoff 1878.
*Tomicus decolor* Boieldieu, 1859. Synonymy Ferrari 1867.
*Xyleborus aesculi* Ferrari, 1867. Synonymy Eichhoff 1878.
*Xyleborus sobrinus* Eichhoff, 1875. Synonymy Schedl 1964.
*Xyleborus subdepressus* Rey, 1883. Synonymy Bedel 1888.
*Xyleborus frigidus* Blackburn, 1885. Synonymy Samuelson 1981.
Xyleborus floridensis Hopkins, 1915. Synonymy Wood 1962.
Xyleborus pecanis Hopkins, 1915. Synonymy Wood 1962.
Xyleborus quercus Hopkins, 1915. Synonymy Wood 1962.
Xyleborus arbuti Hopkins, 1915. Synonymy Wood 1957.
Xyleborus subspinosus Eggers, 1930. Synonymy Wood 1989.
Xyleborinus tsugae Swaine, 1934. Synonymy Wood 1957.
Xyleborinus librocedri Swaine, 1934. Synonymy Wood 1957.
Xyleborus pseudogracilis Schedl, 1937. Synonymy Wood 1989.
Xyleborus retrusus Schedl, 1940. Synonymy Wood 1989.
Xyleborus peregrinus Eggers, 1944. Synonymy Schedl 1980.
Xyleborinus pseudoangustatus Schedl, 1948. Synonymy Schedl 1964.
Xyleborus paraguayensis Schedl, 1948. Synonymy Wood 1989.
Xyleborus opimulus Schedl, 1976. Synonymy Wood 2007.
Xyleborus cinctipennis Schedl, 1980. Synonymy Wood 1989.

Type material. Syntypes female; “Südlichen Deutschland”; type location is indicated as presumably at SDEI by Wood and Bright (2007), unconfirmed.

Distribution. Africa (introduced); Asia, Europe (introduced), North America (introduced): Mexico, Canada: British Columbia, New Brunswick, Ontario, United States: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, Florida, Georgia, Hawaii, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Mississippi, Missouri, New Hampshire, New Jersey, New York, North Carolina, Ohio, Oregon, Pennsylvania, South Carolina, Tennessee, Texas, Utah, Virginia, Washington, West Virginia; Oceania (introduced); South America (introduced): Argentina, Brazil, Chile, Ecuador, Paraguay, Uruguay.

Notes. This species is widely distributed. Wood and Bright (1992) and most authors list this species as X. saxeseni, but Holzschuh (1994) points out that Ratzeburg's original description was saxesenii, with the ii ending. The synonymy stated by Wood (1989) between X. cinctipennis Schedl, 1980 with X. saxesenii, supported by Brockerhoff et al. (2003), Knížek (2011) and Alonso-Zarazaga et al. (2017), may be in error (Beaver pers. comm.).

Xyleborus Eichhoff, 1864

Anaeretus Dugès, 1887. Synonymy Hagedorn 1910.
Progenius Blandford, 1896. Synonymy Hagedorn 1910.
Mesoscolytus Broun, 1904. Synonymy Bain 1976.
Heteroborips Reitter, 1913. Synonymy Schedl 1934.
Boroxylon Hopkins, 1915. Synonymy Schedl 1952.
Notoxyleborus Schedl, 1934. Synonymy Wood 1986.
Figure 14. Lateral and dorsal views of *Xyleborinus* species. From top left, *Xyleborinus octiesdentatus* and *X. saxesenii*. Scale bar: 1.0 mm.

Type species. *Bostrichus monographus* Fabricius.

Species of *Xyleborus* differ from most (but not all) members of the tribe by the truncate antennal club, the first segment of which is corneous. Species of *Xyleborus* s. str. (Hulcr and Cognato 2013) have an inflated prosternal posterocoxal process. Some species currently placed in *Xyleborus* do not have this feature, but the proper genus placement of many such species is unclear.

**Key to species of female Xyleborus**

1 Area adjacent to scutellum impressed; pronotum nearly as broad as long, posterolateral areas distinctly, strongly asperate; 1.9–2.5 mm. ......*seriatus* Blandford
   – Area adjacent to scutellum not impressed, flush with elytral base; pronotum stout or elongate, posterolateral areas not asperate ........................................2

2 Declivital striae completely obscured by abundant, confused punctures and setae; body slightly more stout, 2.3–2.6 times as long as wide; 3.8–4.2 mm........
   ............................................................................................ *horridus* Eichhoff
   – Declivital striae obviously indicated or not, never obscured as above; body slender, more than 2.6 times as long as wide.............................................3

3 Tubercles on declivital interstriae 1 distinctly larger than tubercles on other interstriae.................................................................4
   – Tubercles on declivital interstriae 1 either similar in size to tubercles on other interstriae or absent (except at base or apex)...............................5

4 Elytral disc and declivity setose; all declivital interstriae armed by strong tubercles at base; declivital interstriae 1 armed by two very large pointed tubercles, declivital interstriae 3 armed by several smaller tubercles; declivity weakly sulcate; larger species, 3.6–4.5 mm................. *celsus* Eichhoff
– Elytral disc and declivity glabrous; all declivital interstriae armed by small granules, gradually decreasing in size toward apex; interstriae 1 near apex armed by one or two small tubercles; declivity flattened, convex at suture toward apex; smaller species, 2.0 mm..................*glabrus* Eichhoff

5 Tubercles on declivital interstriae 3 distinctly larger than tubercles on other interstriae; tubercles absent on interstriae 1 (one or two small denticles may be present at base or apex, but not on declivital face); declivity shallowly to strongly sulcate .................................................................6

– Tubercles on declivital interstriae 3 not distinctly larger than those on other interstriae; tubercles present on interstriae 1; declivity flat to convex........10

6 Anterior portion of pronotum flattened, weakly sulcate; 2.0–2.5 mm...........

...........................................................................................

– Anterior portion of pronotum convex, normal..............................7

7 Apex of declivity at interstriae 3 armed by two prominent, elongate tubercles; declivital setae spatulate; 1.8–2.6 mm....................*spinulosus* Blandford

– Apex of declivity at interstriae 3 unarmed; declivital setae hairlike ..........8

8 Declivital interstriae 1 unarmed, interstriae 3 with usually three prominent tubercles; declivity distinctly sulcate, interstriae 2 impressed, strial punctures less distinct; 2.0–2.5 mm.................................*impressus* Eichhoff

– Declivital interstriae 1 armed by one or two small denticles at base, interstriae 3 with one prominent tubercle near middle of declivity (minor denticles may also be present); declivity flat to subsulcate, interstriae 2 not impressed, strial punctures distinct .................................................................9

9 Discal interstrial setae regularly spaced, numerous; larger, more robust species; color dark reddish brown; 2.8–3.2 mm............ *bispinatus* Eichhoff

– Discal interstrial setae sparse or absent; smaller, more slender species; color light orange to reddish brown; 2.4–2.9 mm..........*ferrugineus* (Fabricius)

10 Surface of declivity opaque ...............................................................11

– Surface of declivity shining ..........................................................13

11 Anterior portion of pronotum flattened, weakly sulcate; 2.3–2.4 mm........

...........................................................................................

– Anterior portion of pronotum convex, normal............................12

12 Declivity broadly sloping, occupying posterior 30–40% of elytra, shagreened; declivital denticles on interstriae 1 and 3 small but conspicuous; 2.0–2.7 mm..................................................*affinis* Eichhoff

– Declivity steep, occupying posterior 15% of elytra; denticles on declivital interstriae 1 and 3 very small; 2.3–2.7 mm.............*xylographus* (Say)

13 Declivity steep, posterolateral margin rounded..................................14

– Declivity broadly sloping, posterolateral margin subacute.....................15

14 Discal interstriae twice the width of striae; some declivital tubercles with height and basal width greater than the diameter of strial punctures; declivital strial punctures small, deep; 2.2–2.7 mm.......................*intrusus* Blandford

– Discal interstriae less than 1.5 times width of striae; some declivital tubercles with height and basal width less than the diameter of strial punctures; de-
clivital strial punctures large, shallow; 2.3–2.7 mm. .......................... \textit{pubescens} \textit{Zimmermann}

15  

\begin{itemize}
\item Color reddish brown; declivity flattened to slightly convex, interstriae 2 moderately impressed, interstriae 1 near apex less elevated; punctures of declivital striae 1 and 2 small, anterolateral margin of punctures not raised; smaller, 2.1–2.8 mm.......................... \textit{volvulus} \textit{(Fabricius)}
\item Color usually black; declivity flattened, interstriae 2 impressed, especially from middle of declivity, interstriae 1 near apex distinctly elevated; punctures of declivital striae 1 and 2 large, shallow, anterolateral margin of punctures produced into a short ridge; larger, 3.0–3.6 mm.............. \textit{pfeilii} \textit{(Ratzeburg)}
\end{itemize}

\textbf{Xyleborus affinis} \textit{Eichhoff}, 1868

\begin{itemize}
\item \textit{Xyleborus affinis parvus} Eichhoff, 1878. Synonymy Schedl 1959.
\item \textit{Xyleborus affinis mascarensis} Eichhoff, 1878. Synonymy Wood 1960.
\item \textit{Xyleborus affinis fusocbrunneus} Eichhoff, 1878. Synonymy Schedl 1959.
\item \textit{Xyleborus sacchari} Hopkins, 1915. Synonymy Schedl 1959.
\item \textit{Xyleborus subaffinis} Eggers, 1933. Synonymy Schedl 1959.
\item \textit{Xyleborus societatis} Beeson, 1935. Synonymy Beaver 1991.
\item \textit{Xyleborus proximus} Eggers, 1943. Synonymy Schedl 1962.
\end{itemize}

\textbf{Type material.} Syntypes female; “America bor.”, Cuba; ZMUH, lost; 1 in NMNH.

\textbf{Distribution.} Africa (introduced); Asia (introduced); Central America: Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama; Europe (introduced), North America: Antilles, Canada: Quebec, Mexico, United States: Alabama, Arkansas, California, Delaware, District of Columbia, Florida, Georgia, Hawaii, Illinois, Kansas, Kentucky, Louisiana, Maryland, Massachusetts, Michigan, Mississippi, Missouri, New Jersey, New York, North Carolina, Ohio, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, Virginia, West Virginia; Oceania (introduced); South America: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Fr. Guiana, Guyana, Paraguay, Peru, Suriname, Trinidad, Uruguay, Venezuela.

\textbf{Notes.} This widely distributed species can cause economic damage in moist lowland areas of the Neotropics. This species is distinguished by the broadly sloping shagreened declivity and the small denticles in interstriae 1 and 3.

\textbf{Xyleborus bispinatus} \textit{Eichhoff}, 1868

\begin{itemize}
\item \textit{Type material.} Syntypes female; Brazil; IRSNB.
\end{itemize}
Figure 15. Lateral and dorsal views of *Xyleborus* species. From top left, *Xyleborus affinis*, *X. bispinatus*, *X. celsus* and *X. ferrugineus*. Scale bar: 1.0 mm.

**Distribution.** Central America: Belize, Costa Rica, Guatemala, Honduras, Panama; North America: Mexico, United States: Florida, Georgia, Louisiana, North Carolina, Texas; Oceania; South America: Argentina, Bolivia, Brazil, Colombia, Ecuador, Peru, Venezuela.

**Notes.** This species was removed from synonymy with *X. ferrugineus* by Kirkendall and Jordal (2006) and its taxonomic status is unclear.

*Xyleborus celsus* Eichhoff, 1868
Fig. 15

*Xyleborus biographus* LeConte, 1868. Synonymy Eichhoff 1878.

**Type material.** Syntypes female; “America boreali”. ZMUH, lost.
Distribution. North America: Canada: Ontario, United States: Alabama, Arkansas, Connecticut, Delaware, District of Columbia, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maryland, Michigan, Minnesota, Mississippi, Missouri, New Jersey, New York, North Carolina, Ohio, Oklahoma, Pennsylvania, South Carolina, Texas, Vermont, Virginia, West Virginia.

Notes. This species is distinguished by its large size and its two pairs of large pointed tubercles on declivital interstriae 1.

**Xyleborus ferrugineus** (Fabricius, 1801)

Fig. 15

*Bostrichus ferrugineus* Fabricius, 1801.
*Tomicus trypaanecoides* Wollaston, 1867. Synonymy Schedl 1960.
*Xyleborus fuscatus* Eichhoff, 1868. Synonymy Schedl 1960.
*Xyleborus confusus* Eichhoff, 1868. Synonymy Schedl 1957.
*Xyleborus retusicollis* Zimmermann, 1868. Synonymy Bright 1968.
*Xyleborus amplicollis* Eichhoff, 1869. Synonymy Schedl 1960.
*Xyleborus insularis* Sharp, 1885. Synonymy Schedl 1960.
*Xyleborus tanganus* Hagedorn, 1910. Synonymy Schedl 1960.
*Xyleborus soltai* Hopkins, 1915. Synonymy Bright 1968.
*Xyleborus nyssae* Hopkins, 1915. Synonymy Schedl 1960.
*Xyleborus hopkinsi* Beeson, 1929. Synonymy Schedl 1960.
*Xyleborus argentinensis* Schedl, 1931. Synonymy Schedl 1960.
*Xyleborus rufopiceus* Eggers, 1932. Synonymy Wood 1989.
*Xyleborus schedli* Eggers, 1934. Synonymy Schedl 1960.
*Xyleborus nesianus* Beeson, 1940. Synonymy Beaver 1991.
*Xyleborus notatus* Eggers, 1941. Synonymy Schedl 1960.
*Xyleborus subitus* Schedl, 1948. Synonymy Schedl 1960.

**Type material.** Lectotype female; “America meridionali”; UZMC.

**Distribution.** Africa (introduced); Asia; Central America: Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama; North America: Antilles, Canada: Ontario, Mexico, United States: Alabama, Arizona, Arkansas, California, Delaware, District of Columbia, Florida, Georgia, Hawaii, Illinois, Indiana, Kansas, Kentucky, Louisiana, Maryland, Massachusetts, Michigan, Mississippi, Missouri, New Jersey, New York, North Carolina, Ohio, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, Virginia, West Virginia; Oceania (introduced); South America: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Fr. Guiana, Guyana, Paraguay, Peru, Suriname, Trinidad, Uruguay, Venezuela.

**Notes.** This species was removed from synonymy with *X. bispinatus* by Kirkendall and Jordal (2006). It is distinguished from *X. bispinatus* by the smaller size, discal interstrial setae sparse or absent, and by its light orange to reddish brown color (Atkinson et al. 2013).
Xyleborus glabratus Eichhoff, 1877
Fig. 16

Type material. Syntype female; Japan. IRSNB.

Distribution. Asia; North America (introduced): United States: Alabama, Florida, Georgia, Mississippi, South Carolina.

Notes. In the US, X. glabratus was first detected in a survey trap near Port Wentworth, Georgia in 2002 (Rabaglia et al. 2006). The ambrosia fungus vectored by this species is responsible for the death of 300 million bay trees (Persea spp.) and other Lauraceae in the southeastern United States (Hughes et al. 2017). This species is distinguished by the dark color and the glabrous elytral disc and declivity with small granules in all interstriae decreasing in size toward apex.

Xyleborus horridus Eichhoff, 1869
Fig. 16

Xyleborus flohri Schedl, 1972. Synonymy Wood 1977.

Type material. Lectotype female; Mexico. IRSNB.

Distribution. Central America: Belize, El Salvador, Guatemala, Honduras, Panama; North America: Mexico, United States: Texas.

Notes. This species is distinguished by the presence of abundant, confused punctures and setae, which completely obscure declival striae.

Xyleborus impressus Eichhoff, 1868
Fig. 16

Type material. Lectotype female; “Amer. Bor.”; NMNH.

Distribution. North America: United States: Alabama, Arkansas, Florida, Georgia, Illinois, Indiana, Louisiana, Massachusetts, Mississippi, Missouri, New Jersey, North Carolina, Ohio, Oklahoma, South Carolina, Tennessee, Texas, Virginia.

Notes. This species was removed from synonymy with X. ferrugineus by Rabaglia (2005). It is distinguished by the presence of three prominent tubercles on declival interstriae 3, while interstriae 1 are unarmed.

Xyleborus intrusus Blandford, 1898
Fig. 16

Xyleborus howardi Hopkins, 1915. Synonymy Wood 1972.
Xyleborus fitchi Hopkins, 1915. Synonymy Bright 1968.
Xyleborus scopulorum Hopkins, 1915. Synonymy Wood 1972.

**Type material.** Lectotype female; Guatemala; BMNH.

**Distribution.** Central America: El Salvador, Guatemala, Honduras; North America: Antilles, Canada: British Columbia, Mexico, United States: Arizona, California, Colorado, District of Columbia, Georgia, Idaho, Maine, Maryland, Mississippi, Montana, New Jersey, New Mexico, North Carolina, Oregon, Pennsylvania, South Carolina, South Dakota, Utah, Virginia, West Virginia.

**Notes.** One of the few species of the genus restricted to conifers. Distinguished from other *Xyleborus* by the steep declivity which occupies the apical ¼ of the elytra, and broadly rounded posterolateral margin of the declivity. It is distinguished from *X. pubescens* by the larger declival denticles and smaller, deeply impressed declival strial punctures.

**Figure 16.** Lateral and dorsal views of *Xyleborus* species. From top left, *Xyleborus glabratus*, *X. horridus*, *X. impressus* and *X. intrusus*. Scale bar: 1.0 mm.
Xyleborus pfeilii (Ratzeburg, 1837)
Fig. 17

Bostrichus pfeilii Ratzeburg, 1837.  
Bostrichus alni Mulsant & Rey, 1856. Synonymy Hagedorn 1910.  
Xyleborus vicarius Eichhoff, 1875. Synonymy Schedl 1963.  
Xyleborus adumbratus Blandford, 1894. Synonymy Schedl 1963.

**Type material.** Syntypes female; “im Lüneburgschen und in Bayern”; not located, if extant, probably in SDEI.  

**Distribution.** Africa; Asia; Europe; North America (introduced): Canada: British Columbia; United States: Maryland, Oregon, Pennsylvania, Washington; South America: Brazil.  

**Notes.** Xyleborus pfeilii was first detected in North America in Maryland in 1992 (Vandenberg et al. 2000) and in Oregon in 1997–98 (Mudge et al. 2001). Distinguished from X. volvulus by its larger size. Wood and Bright (1992) suggest that this species may be a synonym of X. volvulus.

Xyleborus planicollis Zimmermann, 1868  
Fig. 17

**Type material.** Holotype female; Pennsylvania; MCZ.  

**Distribution.** North America: United States: Arkansas, Illinois, Indiana, Maryland, Michigan, Mississippi, Missouri, North Carolina, Pennsylvania, Texas, West Virginia.  

**Notes.** Distinguished by the flattened anterior portion of pronotum.

Xyleborus pubescens Zimmermann, 1868  
Fig. 17

Xyleborus pini Eichhoff, 1868. Erroneous identification.  
Xyleborus propinquus Eichhoff, 1869. Synonymy Wood 1973.

**Type material.** Lectotype female; “southern states”, USA; MCZ.  

**Distribution.** Central America: El Salvador; North America: Antilles, Canada: Ontario; United States: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Michigan, Mississippi, Missouri, New Jersey, New York, North Carolina, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, Virginia, West Virginia.  

**Notes.** This species and X. intrusus are common in pines. It can be distinguished from X. intrusus by the larger, shallow strial punctures and the smaller declivital denticles.
**Xyleborus seriatus** Blandford, 1894

*Fig. 17*

*Xyleborus orientalis* Eggers, 1933. Synonymy Mandelshtam 2007.  
*Xyleborus orientalis kalopanacis* Kurenzov, 1941. Synonymy Wood and Bright 1992.  
*Xyleborus orientalis aceris* Kurenzov, 1941. Synonymy Wood and Bright 1992.  
*Xyleborus perorientalis* Schedl, 1957. Synonymy Browne 1962.

**Type material.** Syntypes; Higo, Japan; BMNH.
**Distribution.** Asia; North America (introduced): United States: Massachusetts.

**Notes.** First found in Massachusetts in 2005 and 2006 (Hoebeke and Rabaglia 2008), *X. seriatus* is distinguished from other *Xyleborus* by the distinctly impressed area adjacent to the scutellum and the alternating series of longer and shorter setae on the elytra (Hoebeke and Rabaglia 2008). Both *X. orientalis kalopanacis* Kurenzov and *X. orientalis aceris* Kurenzov were listed as synonyms of *X. orientalis* by Wood and Bright (1992). Mandelshtam (2007) synonymised *X. orientalis* with *X. seriatus*, without mentioning Kurenzov’s subspecies.

### Xyleborus spinulosus Blandford, 1898

Fig. 18

*Xyleborus fusciseriatus* Eggers, 1934. Synonymy Wood 1979.
*Xyleborus spinosulus* Schedl, 1934. Synonymy Wood 1966.
*Xyleborus artespinulosus* Schedl, 1935. Synonymy Wood 1979.

**Type material.** Lectotype female; San Geronimo, Guatemala; BMNH.

**Distribution.** Central America: Costa Rica, Guatemala, Honduras; North America (introduced): Antilles Mexico, United States: Hawaii, Texas; South America: Argentina, Brazil, Colombia, Ecuador, Guyana, Peru, Venezuela.

**Notes.** *Xyleborus spinulosus*, native to Central America and lowland Mexico, was first found in the US in Texas in 1994 (Atkinson and Riley 2013). It is distinguished by its unique declivity, which is armed by spine-like tubercles.

### Xyleborus viduus Eichhoff, 1878

Fig. 18

**Type material.** Syntypes female; uncertain: Brasilia or America septentrionali (USA). ZMUH, lost.

**Distribution.** North America: United States: Alabama, Arkansas, Florida, Illinois, Indiana, Kansas, Maryland, Mississippi, Missouri, Oklahoma, Tennessee, Texas, West Virginia.

**Notes.** Distinguished by the impressed anterior portion of pronotum. Distinguished from *X. planicollis* by the impressed, shining, and tuberculate declivity.

### Xyleborus volvulus (Fabricius, 1775)

Fig. 18

*Bostrichus volvulus* Fabricius, 1775.
*Xyleborus torquatus* Eichhoff, 1868. Synonymy Wood 1960.
*Xyleborus alternans* Eichhoff, 1869. Synonymy Eggers 1929.
*Xyleborus badius* Eichhoff, 1869. Synonymy Wood 1960.
Figure 18. Lateral and dorsal views of Xyleborus species. From top left, Xyleborus spinulosus, X. viduus, X. volvulus and X. xylographus. Scale bar: 1.0 mm.

Xyleborus interstitialis Eichhoff, 1878. Synonymy Wood 1982.
Xyleborus guanajuatensis Dugès, 1887. Synonymy Wood 1983.
Xyleborus hubbardi Hopkins, 1915. Synonymy Schedl 1952.
Xyleborus schwarzi Hopkins, 1915. Synonymy Bright 1968.
Xyleborus rileyi Hopkins, 1915. Synonymy Bright 1968.
Xyleborus grenadensis Hopkins, 1915. Synonymy Wood 1972.
Xyleborus continentalis Eggers, 1920. Synonymy Beaver 2011.
Xyleborus silvestris Beeson, 1929. Synonymy Wood 1989.
Xyleborus vagabundus Schedl, 1948. Synonymy Wood 1972.
Xyleborus granularis Schedl, 1950. Synonymy Wood 1989.

**Type material.** Lectotype female; “America ligno Dom v. Rohr (presumably Cuba)”; UZMC.

**Distribution.** Africa; Asia; Central America: Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama; North America: Antilles, Mexico, United States: Florida, Hawaii; Oceania; South America: Argentina, Bolivia, Brazil, Colombia, Ecuador, Fr. Guiana, Guyana, Paraguay, Peru, Suriname, Trinidad, Uruguay, Venezuela.

**Notes.** Distinguished by the slightly convex to flattened declivity bearing prominent tubercles of varying sizes.

### Xyleborus xylographus (Say, 1826)

Fig. 18

**Bostrichus xylographus** Say, 1826.

**Xyleborus inermis** Eichhoff, 1868. Synonymy Eichhoff 1878.

**Xyleborus canadensis** Swaine, 1917. Synonymy Wood 1957.

**Type material.** Neotype female; North Carolina; CNCI.

**Distribution.** Asia (introduced); North America: Antilles, Canada: British Columbia, Ontario, Quebec; United States: Arkansas, California, District of Columbia, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, New Hampshire, New Jersey, New York, North Carolina, Ohio, Oklahoma, Oregon, Pennsylvania, South Carolina, Utah, Virginia, West Virginia, Wisconsin.

**Notes.** Distinguished by the lusterless and steep declivity, occupying no more than posterior 15% of elytra.

### Xylosandrus Reitter, 1913

**Apoxyleborus** Wood, 1980. Synonymy Wood 1984.

**Type species.** Xyleborus morigerus Blandford.

Species of *Xylosandrus* differ from other members of the tribe by widely separated procoxae.

### Key to species of female Xylosandrus

1. Elytral declivity sharply truncate, margin of declivity with posterolateral carina extending to suture, forming a complete circumdeclival ring; body length 2.7–2.9 mm............................................................... *amputatus* (Blandford)

   – Elytral declivity rounded or only obliquely truncate, margin of declivity with carina not extending beyond 7<sup>th</sup> interstriae..............................................2
2 Declivity without punctures or carina, surface with dense and confused granules, dull; body length 3.0 mm.; reddish brown ..........crassiusculus (Motschulsky)
– Declivital striae with punctures clearly impressed, in rows; declivital surface shining, granules in sparse rows when present; body length less than 2.7 mm; black or dark brown........................................................................................................3
3 Body length 2.0–2.3 mm; strial setae on declivity absent (only interstrial setae present); declivital striae at least weakly impressed, interstriae very slightly elevated; typically black..........................................................germanus (Blandford)
– Body length 1.7 mm or less; strial setae on declivity present, at least one-third as long as those on interstriae; declivital striae not impressed, interstriae flat........ 4
4 Elytra almost evenly arched from middle of disc to apex; setae on pronotal disc more evenly distributed, slightly more abundant on a transverse row in median area at the base; posterior portion of pronotum shining; body black, length 1.6–1.7 mm................................................... compactus (Eichhoff)
– Elytra more abruptly arched from base of declivity to middle of declivity; pronotal disc glabrous except for a dense, median tuft of setae extending from base about half distance to summit; posterior portion of pronotum mostly reticulate; body dark brown, length 1.6–1.8 mm........ curtulus (Eichhoff)

Xylosandrus amputatus (Blandford, 1894)

Fig. 19

Xyleborus amputatus Blandford, 1894.
Xyleborus melli Eggers, 1926. Synonymy Beaver 2010.

Type material. Holotype female; Japan: Higo; BMNH.

Distribution. Asia; North America (introduced): Florida, Georgia.

Notes. Xylosandrus amputatus was first discovered in the US from Florida in 2010 (Cognato et al. 2011). Distinguished by the truncate elytral declivity with a carina forming a complete circumdeclivital ring.

Xylosandrus compactus (Eichhoff, 1875)

Fig. 19

Xyleborus compactus Eichhoff, 1875.
Xyleborus morstatti Hagedorn, 1912. Synonymy Murayama and Kalshoven 1962.

Type material. Syntypes female; Japan; ZMUH, lost. 1 syntype Schedl Collection NHMW.

Distribution. Africa; Asia; North America (introduced): Antilles, United States: Alabama, Florida, Georgia, Hawaii, Illinois, Louisiana, Mississippi, North Carolina, Pennsylvania, Texas; Oceania (introduced); South America: Brazil, Fr. Guiana, Peru, Trinidad.
Notes. Commonly known as the black twig borer, *X. compactus* was first collected in the US at Ft. Lauderdale, Florida in 1941 (Wood 1982). It attacks healthy twigs of living trees and shrubs in the southeastern United States. Distinguished by the small size, the black color, and the shining declivity.

*Xylosandrus crassiusculus* (Motschulsky, 1866)

Fig. 19

*Phloeotrogus crassiusculus* Motschulsky, 1866.
*Xyleborus semiopacus* Eichhoff, 1878. Synonymy Wood 1969.
*Xyleborus semigranosus* Blandford, 1896. Synonymy Schedl 1959.
*Xyleborus ebriosus* Niisima, 1909. Synonymy Choo 1983.
*Dryocoetes bengalensis* Stebbing, 1908. Synonymy Beeson 1915.
*Xyleborus mascarenus* Hagedorn, 1908. Synonymy Eggers 1923.
*Xyleborus okoumeensis* Schedl, 1935. Synonymy Schedl 1959.
*Xyleborus declivigranulatus* Schedl, 1936. Synonymy Schedl 1959.

**Type material.** Syntypes female; Ceylon; IZM.

**Distribution.** Africa; Asia; Central America (introduced): Costa Rica, Guatemala, Panama; North America (introduced): Antilles, Canada: Ontario; United States: Alabama, Delaware, Florida, Georgia, Hawaii, Indiana, Kentucky, Louisiana, Maryland, Michigan, Mississippi, Missouri, North Carolina, Ohio, Oklahoma, Oregon, South Carolina, Tennessee, Texas, Virginia; Oceania (introduced); South America (introduced): Argentina, Brazil, Fr. Guiana, Uruguay.

**Notes.** A widely introduced species around the globe, *X. crassiusculus* has spread in the US along the lower Piedmont region and coastal plain to North Carolina, Louisiana, Florida, and beyond (Atkinson et al. 2012). The first US record is based on a specimen collected in South Carolina in 1974 (Anderson 1974, as *Xyleborus semiopacus*). Distinguished by the confused declivital granules giving the declivity a dull appearance. Causes economic damage in nurseries and stored hardwood lumber (Smith and Hulcr 2015).

*Xylosandrus curtulus* (Eichhoff, 1869)

Fig. 19

*Xyleborus curtulus* Eichhoff, 1869.
*Anisandrus zimmermanni* Hopkins, 1915. Synonymy Bright 2014.
*Xyleborus curtuloides* Eggers, 1941. Synonymy Wood 1982.
*Xyleborus biseriatus* Schedl, 1963. Synonymy Wood 1973.
*Xyleborus strumosus* Schedl, 1972. Synonymy Wood 1992.

**Type material.** Holotype female: Brazil; IRSNB.
**Distribution.** Central America: Costa Rica, Guatemala, Honduras, Nicaragua, Panama; North America: Antilles, Mexico, United States: Florida; South America: Argentina, Bolivia, Brazil, Colombia, Venezuela.

**Notes.** This species is currently only known from central and southern Florida in the United States. Distinguished by the dark brown body, the small size, and the hairy and shagreened declivity.
Xylosandrus germanus (Blandford, 1894)
Fig. 19

Xyleborus germanus Blandford, 1894.
Xyleborus orbatus Blandford, 1894. Synonymy Choo 1983.

Type material. Syntypes; Japan; BMNH.

Distribution. Asia; Europe (introduced); North America (introduced): Canada: British Columbia, Ontario, Quebec; United States: Alabama, Connecticut, Delaware, Florida, Georgia, Hawaii, Illinois, Indiana, Kentucky, Maine, Maryland, Massachusetts, Michigan, Mississippi, Missouri, New Hampshire, New Jersey, New York, North Carolina, Ohio, Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee, Vermont, Virginia, West Virginia.

Notes. Originating from Asia, X. germanus has now spread across much of North America, including the Northeast, South and Southeast, and the Pacific Northwest (Weber and McPherson 1982; LaBonte et al. 2005); it was first thought to have been introduced into the US in a Long Island area greenhouse in 1932 (Felt 1932). Distinguished by the black color and the lack of strial setae on declivity.

Acknowledgements
The authors thank James LaBonte and Tom Shahan from the Oregon Department of Agriculture for providing several images. The authors also thank Sarah Smith and Bjarte Jordal for the review of the manuscript. DG thanks A. Johnson, E. Hoebeke, and P. Skelley for their contributions to the manuscript. The project was supported by the NSF DEB 1256968, USDA Forest Service cooperative agreement CA-11420004-100, USDA Farm Bill Section 10007, the Florida Department of Agriculture – Division of Plant Industry, and the Florida Forest Service.

References
Alonso-Zarazaga MA, Lyal CHC (2009) A catalogue of family and genus group names in Scolytinae and Platypodinae with nomenclatural remarks (Coleoptera: Curculionidae). Zootaxa 2258: 112–127.
Alonso-Zarazaga MA, Barrios H, Borovec R, Bouchard R, Caldana R, Colonnelli E, Gültekin L, Hlaváč P, Korotyaev B, Lyal CHC, Machado A, Meregalli M, Pierotti H, Ren L, Sánchez-Ruiz M, Sforzi A, Silfverberg H, Skuhrovec J, Trýzna M, Velázquez de Castro AJ, Yunakov NN (2017) Cooperative Catalogue of Palaearctic Coleoptera Curculionoidea. Monografías electrónicas S.E.A. 8: 1–729.
Anderson DM (1974) First record of Xyleborus semiopacus in the continental United States (Coleoptera, Scolytidae). United States Department of Agriculture Cooperative Economic Insect Report 24: 863–864.
Atkinson TH (2009) A new species of *Dryocoetoides* Hopkins from southern Florida (Coleoptera: Curculionidae: Scolytinae). Zootaxa 2311: 66–68.

Atkinson TH (2017) Bark and Ambrosia Beetles www.barkbeetles.info

Atkinson TH, Riley EG (2013) Atlas and checklist of the bark and ambrosia beetles of Texas and Oklahoma (Curculionidae: Scolytinae and Platypodinae). Insecta Mundi 292: 1–46.

Atkinson TH, Carrillo D, Duncan RE, Peña JE (2013) Occurrence of *Xyleborus bispinatus* (Coleoptera: Curculionidae: Scolytinae) Eichhoff in southern Florida. Zootaxa 3669: 96–100. https://doi.org/10.11646/zootaxa.3669.1.10

Atkinson TH, Foltz JL, Wilkinson RC, Mizell RF (2012) Featured Creatures: *Xylosandrus crassiusculus* (Motschulsky) (Insecta: Coleoptera: Curculionidae: Scolytinae). DPI Circular 310.

Atkinson TH, Rabaglia RJ, Bright DE (1990) Newly detected exotic species of *Xyleborus* (Coleoptera: Scolytidae) with a revised key to species in eastern North America. The Canadian Entomologist 122: 92–104. https://doi.org/10.4039/Ent12293-1

Atkinson TH, Rabaglia RJ, Cognato AI (2010) Two newly detected bark and ambrosia beetles from southern Florida (Coleoptera: Curculionidae, Scolytinae). Zootaxa 2338: 63–68.

Beaver RA (2011) New synonymy and taxonomic changes in bark and ambrosia beetles. Coleopterologische Rundschau 81: 277–289.

Bright DE (1968) Review of the tribe Xyleborini in North America, save Mexico (Coleoptera: Scolytidae). The Canadian Entomologist 100: 1288–1323. https://doi.org/10.4039/Ent1001288-12

Bright DE (2014) A catalog of Scolytidae and Platypodidae (Coleoptera), Supplement 3 (2000–2010), with notes on subfamily and tribal reclassifications. Insecta Mundi 0356: 1–336.

Bright DE, Rabaglia RJ (1999) *Dryoxylon*, a new genus for *Xyleborus onoharaensis* Murayama, recently established in the southeastern United States (Coleoptera: Scolytidae). The Coleopterists Bulletin 53: 333–337.

Brockerhoff E, Knížek M, Bain J (2003) Checklist of indigenous and adventive bark and ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) of New Zealand and interceptions of exotic species (1952-2000). New Zealand Entomologist 44: 29–44.

Browne FG (1961) The generic characters, habits and taxonomic status of *Premnobius* Eichhoff (Coleoptera, Scolytidae). Fourth WATBRU Report 1961: 45–51.

Chapin JB, Oliver AD (1986) New records for *Xylosandrus* and *Xyleborus* species (Coleoptera: Scolytidae). Proceedings of the Entomological Society of Washington 88: 68–683.

Chen Y, Dallara PL, Nelson LJ, Coleman TW, Hishinuma SM, Carrillo D, Seybold SJ (2016) Comparative morphometric and chemical analyses of phenotypes of two invasive ambrosia beetles (*Euwallacea* spp.) in the United States of America. Insect Science 24: 647–662. https://doi.org/10.1111/1744-7917.12329

Cognato AI, Olson RO, Rabaglia RJ (2011) An Asian ambrosia beetle, *Xylosandrus amputatus* (Blandford) (Curculionidae: Scolytinae: Xyleborini), discovered in Florida, U.S.A. The Coleopterists Bulletin 65: 43–45. https://doi.org/10.1649/0010-065X-65.1.43

Cognato AI, Rabaglia RJ, Vandenberg NJ (2013) Another Asian ambrosia beetle, *Xyleborinus artestriatus* (Eichhoff 1878) (Coleoptera: Curculionidae: Scolytinae: Xyleborini), newly detected in North America. The Pan-Pacific Entomologist 89: 27–31. https://doi.org/10.3956/2012-53.1
Cognato AI, Hoebeke ER, Kajimura H, Smith SM (2015) History of the Exotic Ambrosia Beetles *Euwallacea interjectus* and *Euwallacea validus* (Coleoptera: Curculionidae: Xyleborinini) in the United States. Journal of Economic Entomology 108: 1129–1135. https://doi.org/10.1093/jee/tov073

Felt EP (1932) A new pest in greenhouse grown grape stems. Journal of Economic Entomology 25: 418.

Haack RA, Rabaglia RJ (2013) Exotic bark and ambrosia beetles in the USA: Potential and current invader. In: Peña JE (Ed.) Potential Invasive Pests of Agricultural Crops. CAB International, Boston, MA, 48–74.

Hoebeke ER (1991) An Asian ambrosia beetle, *Ambrosiodmus lewisi*, new to North America (Coleoptera: Scolytidae). Proceedings of the Entomological Society of Washington 93: 420–424.

Hoebeke ER, Rabaglia RJ (2007) First reported occurrence of *Xyleborinus alni* (Coleoptera: Curculionidae: Scolytinae) in the eastern United States, with notes on its recognition and tree hosts. Proceedings of the Entomological Society of Washington 109: 240–248.

Hoebeke ER, Rabaglia RJ (2008) *Xyleborus seriatus* Blandford (Coleoptera: Curculionidae: Scolytinae), an Asian ambrosia beetle new to North America. Zootaxa 110: 470–476.

Hoebeke ER, Rabaglia RJ, Knížek M, Weaver JS (2018) First records of *Cyclorhipidion fukiense* (Eggers) (Coleoptera: Curculionidae: Scolytinae: Xyleborini), an ambrosia beetle native to Asia, in North America. Zootaxa 4394: 243–250.

Holzschuh C (1994) Zur unterscheidung von *Xyleborinus saxesenii* (Ratzeburg) und *X. alni* (Niisima) (Coleoptera, Scolytidae). Entomologica Basiliensia 17: 311–318.

Hughes MA, Riggins JJ, Koch FH, Cognato AI, Anderson C, Formby JP, Dreaden TJ, Ploetz RC, Smith JA (2017) No rest for the laurels: symbiotic invaders cause unprecedented damage to southern USA forests. Biological Invasions 19: 2143–2157. https://doi.org/10.1007/s10530-017-1427-z

Hulcr J, Cognato AI (2009) Three new genera of oriental Xyleborina (Coleoptera: Curculionidae: Scolytinae). Zootaxa 2204: 19–36.

Hulcr J, Cognato AI (2013) Xyleborini of New Guinea, a Taxonomic Monograph (Coleoptera: Curculionidae: Scolytinae). Thomas Say Publications in Entomology: Monographs, Entomological Society of America, Annapolis, 176 pp.

Hulcr JS, Dole SA, Beaver RA, Cognato AI (2007) Cladistic review of generic taxonomic characters in Xyleborina (Coleoptera: Curculionidae: Scolytinae). Systematic Entomology 32: 568–584. https://doi.org/10.1111/j.1365-3113.2007.00386.x

Jordal BH, Normark BB, Farrell BD (2000) Evolutionary radiation of an inbreeding haplodiploid beetle lineage (Curculionidae, Scolytinae). Biological Journal of the Linnean Society 71: 483–499. https://doi.org/10.1111/j.1095-8312.2000.tb01270.x

Jordal BH (2002) Elongation Factor 1 α resolves the monophyly of the haplodiploid ambrosia beetles *Xyleborini* (Coleoptera: Curculionidae). Insect Molecular Biology 11: 453–465. https://doi.org/10.1046/j.1365-2583.2002.00354.x

Kirkendall LR, Jordal BH (2006) The bark and ambrosia beetles (Curculionidae, Scolytinae) of Cocos Island, Costa Rica and the role of mating systems in island zoogeography. Biological Journal of the Linnean Society 89: 729–743. https://doi.org/10.1111/j.1095-8312.2006.00698.x
LaBonte JR, Mudge AD, Johnson KJR (2005) Nonindigenous woodboring Coleoptera (Cerambycidae, Curculionidae: Scolytinae) new to Oregon and Washington, 1999–2002: consequences of the intercontinental movement of raw wood products and solid wood packing materials. Proceedings of the Entomological Society of Washington 107: 554–564.

Mandelstam MY, Nikitsky NB (2010) Review of Scolytidae (Coleoptera) type specimens from V. Mot. Bullettii Moskovskogo Obschestva Ispytatelei Prirody. Otdel Biologicheskii 115: 13–21.

Mudge AD, LaBonte JR, Johnson KJR, LaGasa EH (2001) Exotic woodboring Coleoptera (Micromalthidae, Scolytidae) and Hymenoptera (Xiphydriidae) new to Oregon and Washington. Proceedings of the Entomological Society of Washington 103: 1011–1019.

Okins KE, Thomas MC (2010) New North American record for Xyleborinus andrewesi (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist 93: 133–134. https://doi.org/10.1653/024.093.0122

Rabaglia RJ (2005) The validity of Xyleborus impressus Eichhoff as distinct from Xyleborus ferrugineus (F.). The Coleopterists Bulletin 59: 261–266. https://doi.org/10.1649/768

Rabaglia RJ, Okins KE (2011) Entomology section. Tri-ology 50(3): 6–9.

Rabaglia RJ, Vandenber NJ, Acciavatti RE (2009) First records of Anisandrus maiche Stark (Coleoptera: Curculionidae: Scolytinae) from North America. Zootaxa 2137: 23–28.

Rabaglia RJ, Dole SA, Cognato AI (2006) Review of American Xyleborina (Coleoptera: Curculionidae: Scolytinae) occurring north of Mexico, with an Illustrated Key. Annals of Entomological Society of America 99: 1034–1056. https://doi.org/10.1603/0013-8746(2006)99[1034:ROAXCC]2.0.CO;2

Rabaglia RJ, Knížek M, Johnson W (2010) First records of Xyleborinus octiesdentatus (Murayama) (Coleoptera, Curculionidae, Scolytinae) from North America. ZooKeys 56: 219–226. https://doi.org/10.3897/zookeys.56.528

Raffa KE, Gregoire JC, Lindgren BS (2015) Natural History and Ecology of Bark Beetles. In: Vega FE, Hofstetter RW (Eds) Bark Beetles: Biology and Ecology of Native and Invasive Species. Elsevier Inc., San Diego, 1–28. https://doi.org/10.1016/B978-0-12-417156-5.00001-0

Schiefer TL, Bright DE (2004) Xylosandrus mutilatus (Blandford), an exotic ambrosia beetle (Coleoptera: Curculionidae: Scolytinae: Xyleborini) new to North America. The Coleopterists Bulletin 58: 431–438. https://doi.org/10.1649/760

Smith SM, Cognato AI (2015) Ambrosiophilus peregrinus Smith and Cognato, new species (Coleoptera: Curculionidae: Scolytinae), an exotic ambrosia beetle discovered in Georgia, USA. The Coleopterists Bulletin 69: 213–220. https://doi.org/10.1649/0010-065X-69.2.213

Smith SM, Hulcr J (2015) Scolytus and other economically important bark and ambrosia beetles. In: Vega FE, Hofstetter RW (Eds) Bark Beetles: Biology and Ecology of Native and Invasive Species. Elsevier Inc., San Diego, 495–532. https://doi.org/10.1016/B978-0-12-417156-5.00012-5

Smith SM, Beaver RA, Cognato AI (2017) The ambrosia beetle Ambrosiophilus peregrinus Smith and Cognato, introduced to the USA, is Ambrosiophilus nodulosus (Eggers), new combination (Coleoptera: Curculionidae: Scolytinae). The Coleopterists Bulletin 71: 552–553. https://doi.org/10.1649/0010-065X-71.3.552

Stouthamer R, Rugman-Jones P, Thu PQ, Eskalen A, Thibault T, Hulcr J, Wang L, Jordal BH, Chen CY, Cooperband M, Lin CS, Kamata N, Lu S, Masuya H, Mendel Z, Rabaglia R, Sanguansub S, Shih H, Sittichaya W, Zong S (2017) Tracing the origin of a cryptic invader: phylogeography of the Euwallacea fornicatus (Coleoptera: Curculionidae: Scolytinae) spe-
cies complex. Agricultural and Forest Entomology 19: 366–375. https://doi.org/10.1111/afe.12215

Vandenberg NJ, Rabaglia RJ, Bright DE (2000) New records of two Xyleborus (Coleoptera: Scolytidae) in North America. Proceedings of the Entomological Society of Washington 102: 62–68.

Wood SL (1977) Introduced and exported American Scolytidae (Coleoptera). The Great Basin Naturalist 37: 67–74.

Weber BC, McPherson JE (1982) The distribution of Xylosandrus germanus in America north of Mexico (Coleoptera: Scolytidae). Great Lakes Entomologist 15: 171–174.

Wood SL (1982) The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6: 1–1359.

Wood SL (1986) A reclassification of the genera of Scolytidae (Coleoptera). Great Basin Naturalist Memoirs 10: 1–126.

Wood SL (1989) Nomenclatural changes and new species of Scolytidae (Coleoptera), part IV. Great Basin Naturalist Memoirs 49: 167–185. https://doi.org/10.5962/bhl.part.22642

Wood SL (2007) Bark and ambrosia beetles of South America (Coleoptera, Scolytidae). Monte L. Bean Life Science Museum, Brigham Young University, Provo, Utah, 900 pp.

Wood SL, Bright DE (1987) A Catalog of Scolytidae and Platypodidae (Coleoptera), Part 1: Bibliography. Great Basin Naturalist Memoirs 11: 1–833.

Wood SL, Bright DE (1992) A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic index, volumes A and B. Great Basin Naturalist Memoirs 13: 1–1553.