GEOMETRIC CORRECTION IN DIFFUSIVE LIMIT OF NEUTRON TRANSPORT EQUATION IN 2D CONVEX DOMAINS

YAN GUO AND LEI WU

Abstract. Consider the steady neutron transport equation with diffusive boundary condition. In [17] and [18], it was discovered that geometric correction is necessary for the Milne problem of Knudsen-layer construction in a disk or annulus. In this paper, we establish diffusive limit for a 2D convex domain. Our contribution relies on novel $W^{1,\infty}$ estimates for the Milne problem with geometric correction in the presence of a convex domain, as well as an $L^{m} - L^{\infty}$ framework which yields stronger remainder estimates.

Keywords: geometric correction, $W^{1,\infty}$ estimates, $L^{m} - L^{\infty}$ framework.

Contents

1. Introduction 2
1.1. Problem Formulation 2
1.2. Main Result 3
1.3. Background and Methods 3
1.4. Notation and Structure 3
2. Asymptotic Analysis 3
2.1. Interior Expansion 3
2.2. Local Coordinate System 4
2.3. Boundary Layer Expansion with Geometric Correction 8
2.4. Matching of Interior Solution and Boundary Layer 9
3. Regularity of ϵ-Milne Problem with Geometric Correction 11
3.1. Well-Posedness and Decay 12
3.2. Preliminaries of Regularity Estimates 14
3.3. Direct Estimates along Characteristics 14
3.4. Mild Formulation of Normal Derivative 23
3.5. Mild Formulation of Velocity Derivative 33
3.6. A Priori Estimate of Derivatives 34
3.7. Iteration and Estimate of Derivatives 34
3.8. Diffusive Boundary 40
4. Remainder Estimate 41
4.1. Preliminaries 42
4.2. L^{2} Estimate 42
4.3. L^{∞} Estimate - First Round 49
4.4. L^{2m} Estimate 53
4.5. L^{∞} Estimate - Second Round 56
5. Diffusive Limit 57
References 59

2010 Mathematics Subject Classification. 35L65, 82B40, 34E05.
1. Introduction

1.1. Problem Formulation. We consider the steady neutron transport equation in a two-dimensional convex domain with diffusive boundary. In the space domain $\vec{x} = (x_1, x_2) \in \Omega$ where $\partial \Omega \in C^2$ and the velocity domain $\vec{w} = (w_1, w_2) \in S^1$, the neutron density $u^\varepsilon(\vec{x}, \vec{w})$ satisfies

$$\left\{ \begin{array}{l}
\varepsilon \vec{w} \cdot \nabla_x u^\varepsilon + u^\varepsilon - \bar{u}^\varepsilon = 0 \text{ in } \Omega, \\
u^\varepsilon(\vec{x}_0, \vec{w}) = \mathcal{P}[u^\varepsilon](\vec{x}_0) + \varepsilon g(\vec{x}_0, \vec{w}) \text{ for } \vec{w} \cdot \vec{v} < 0 \text{ and } \vec{x}_0 \in \partial \Omega, \\
\end{array} \right. \quad (1.1)$$

where

$$\bar{u}^\varepsilon(\vec{x}) = \frac{1}{2\pi} \int_{S^1} u^\varepsilon(\vec{x}, \vec{w}) d\vec{w}, \quad (1.2)$$

$$\mathcal{P}[u^\varepsilon](\vec{x}_0) = \frac{1}{2} \int_{\vec{w} \cdot \vec{v} > 0} u^\varepsilon(\vec{x}_0, \vec{w})(\vec{w} \cdot \vec{v}) d\vec{w}, \quad (1.3)$$

\vec{v} is the outward unit normal vector, with the Knudsen number $0 < \varepsilon << 1$. Also, u^ε satisfies the normalization condition

$$\int_{\Omega \times S^1} u^\varepsilon(\vec{x}, \vec{w}) d\vec{w} d\vec{x} = 0, \quad (1.4)$$

and g satisfies the compatibility condition

$$\int_{\partial \Omega} \int_{\vec{w} \cdot \vec{v} < 0} g(\vec{x}_0, \vec{w})(\vec{w} \cdot \vec{v}) d\vec{w} d\vec{x}_0 = 0. \quad (1.5)$$

We intend to study the behavior of u^ε as $\varepsilon \to 0$.

Based on the flow direction, we can divide the boundary $\Gamma = \{(\vec{x}, \vec{w}) : \vec{x} \in \partial \Omega\}$ into the in-flow boundary Γ^-, the out-flow boundary Γ^+ and the grazing set Γ^0 as

$$\Gamma^- = \{(\vec{x}, \vec{w}) : \vec{x} \in \partial \Omega, \vec{w} \cdot \vec{v} < 0\} \quad (1.6)$$

$$\Gamma^+ = \{(\vec{x}, \vec{w}) : \vec{x} \in \partial \Omega, \vec{w} \cdot \vec{v} > 0\} \quad (1.7)$$

$$\Gamma^0 = \{(\vec{x}, \vec{w}) : \vec{x} \in \partial \Omega, \vec{w} \cdot \vec{v} = 0\} \quad (1.8)$$

It is easy to see $\Gamma = \Gamma^+ \cup \Gamma^- \cup \Gamma^0$. Hence, the boundary condition is only given for Γ^-.

1.2. Main Result.

Theorem 1.1. Assume $g(\vec{x}_0, \vec{w}) \in C^2(\Gamma^-)$ satisfying (1.5). Then for the steady neutron transport equation (1.1), there exists a unique solution $u^\varepsilon(\vec{x}, \vec{w}) \in L^\infty(\Omega \times S^1)$ satisfying (1.4). Moreover, for any $0 < \delta << 1$, the solution obeys the estimate

$$\|u^\varepsilon(\vec{x}, \vec{w}) - U_0^\varepsilon(\vec{x})\|_{L^\infty(\Omega \times S^1)} \leq C(\delta, \Omega)\varepsilon^{1-\delta}, \quad (1.9)$$

where $U_0^\varepsilon(\vec{x})$ satisfies

$$\left\{ \begin{array}{l}
\Delta_x U_0^\varepsilon = 0 \text{ in } \Omega, \\
\frac{\partial U_0^\varepsilon}{\partial \vec{v}} = \frac{1}{\pi} \int_{\vec{w} \cdot \vec{v} < 0} g(\vec{x}, \vec{w})(\vec{w} \cdot \vec{v}) d\vec{w} \text{ on } \partial \Omega, \\
\int_{\Omega} U_0^\varepsilon(\vec{x}) d\vec{x} = 0, \\
\end{array} \right. \quad (1.10)$$

in which $C(\delta, \Omega) > 0$ denotes a constant that depends on δ and Ω.

1.3. Background and Methods. Diffusive limit, or more general hydrodynamic limit, plays a key role in connecting kinetic theory and fluid mechanics. Since 1960s, this type of problems have been extensively studied in many different settings: steady or unsteady, linear or nonlinear, strong solution or weak solution, etc. We refer to the references [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] for more details. Among all these variations, one of the simplest but most important models - steady neutron transport equation with one-speed velocity in bounded domains, where the boundary layer effect shows up, has long been believed to be satisfactorily solved since Bensoussan, Lions and Papanicolaou published their remarkable paper [1] in 1979.

Unfortunately, their results are shown to be false due to lack of regularity for the classical Milne problem in [17] and [18]. A new approach with geometric correction to the Milne problem has been developed to ensure regularity in the cases of disk and annulus in [17] and [18]. However, this new method fails to treat more general domains.

Consider the boundary layer expansion with geometric correction

\[\mathcal{U}^\epsilon(\eta, \tau, \phi) = \bar{\mathcal{U}}_0^\epsilon(\eta, \tau, \phi) + \epsilon \mathcal{U}_1^\epsilon(\eta, \tau, \phi), \]

where \(\eta \) denotes the rescaled normal variable, \(\tau \) the tangential variable and \(\phi \) the velocity variable defined in (2.1), (2.2), (2.5), and (2.6). Thanks to the diffusive boundary condition, \(\bar{\mathcal{U}}_0^\epsilon = 0 \). As [17] stated, the boundary layer must formally satisfy

\[\sin \phi \frac{\partial \mathcal{U}_1^\epsilon}{\partial \eta} + \frac{\epsilon R_\kappa}{\epsilon \eta} \cos \phi \frac{\partial \mathcal{U}_1^\epsilon}{\partial \phi} + \mathcal{U}_1^\epsilon = 0, \]

where \(R_\kappa \) is the radius of curvature at boundary.

In the absence of the geometric correction \(\frac{\epsilon R_\kappa}{\epsilon \eta} \cos \phi \frac{\partial \mathcal{U}_1^\epsilon}{\partial \phi} \) as in [1], the key tangential derivative \(\frac{\partial \mathcal{U}_1^\epsilon}{\partial \tau} \) is not bounded for such a classical Milne problem. Therefore, the expansion breaks down. In the case when \(R_\kappa \) is constant, as in [17] and [18], \(\frac{\partial \mathcal{U}_1^\epsilon}{\partial \tau} \) is smooth, since the tangential derivative commutes with the equation. On the other hand, when \(R_\kappa \) is a function of \(\tau \), then \(\frac{\partial \mathcal{U}_1^\epsilon}{\partial \tau} \) relates to the normal derivative \(\frac{\partial \mathcal{U}_1^\epsilon}{\partial \eta} \), whose boundedness had remained open.

Our main contribution is to show \(\frac{\partial \mathcal{U}_1^\epsilon}{\partial \tau} \) is bounded when \(R_\kappa \) is not a constant for a general convex domain. Our proof is intricate and lies on the weighted \(L^\infty \) estimates for the normal derivative. We use careful analysis along the characteristic curves in the presence of non-local averaging \(\bar{\mathcal{U}}_1^\epsilon \) over \(\phi \). The convexity and invariant kinetic distance \(z(\eta, \tau, \phi) \) defined in (3-16), plays the crucial role. Our paper marks an important first step towards the study of diffusive expansions of neutron transport equations and other kinetic equations with boundary layer correction.

Moreover, we have to improve the remainder estimate to avoid higher-order expansion. This is done by a new \(L^{2m} - L^\infty \) framework. The main idea is to introduce a special test function in weak formulation to treat kernel and non-kernel parts separately, and further improve the \(L^\infty \) estimate by a modified double Duhamel’s principle. The proof relies on a delicate analysis using interpolation and Young’s inequality.

Applying these two new techniques, we successfully obtain the diffusive limit of neutron transport equation in a convex domain with diffusive boundary.

1.4. Notation and Structure. Throughout this paper, unless specified, \(C > 0 \) denotes a universal constant which does not depend on the data and can change from one inequality to another. When we write \(C(z) \), it means a certain positive constant depending on the quantity \(z \).

Our paper is organized as follows: in Section 2, we present the asymptotic analysis of the equation (1.1); in Section 3, we prove the weighted \(L^\infty \) estimates of derivatives in \(\epsilon \)-Milne problem with geometric correction; in Section 4, we prove the improved \(L^\infty \) estimate of remainder equation; finally, in Section 5, we prove the diffusive limit, i.e. Theorem 1.1.

2. Asymptotic Analysis

2.1. Interior Expansion. We define the interior expansion as follows:

\[U^\epsilon(x, \bar{w}) \sim U_0^\epsilon(x, \bar{w}) + \epsilon U_1^\epsilon(x, \bar{w}) + \epsilon^2 U_2^\epsilon(x, \bar{w}), \]
where \(U_0 \) can be determined by comparing the order of \(\epsilon \) by plugging (2.1) into the equation (1.1). Thus we have
\[
\begin{align*}
U_0^r - \bar{U}_0^r &= 0, \\
U_1^r - \bar{U}_1^r &= -\bar{w} \cdot \nabla \bar{U}_0^r, \\
U_2^r - \bar{U}_2^r &= -\bar{w} \cdot \nabla \bar{U}_1^r.
\end{align*}
\] (2.2)

Plugging (2.2) into (2.3), we obtain
\[
U_1^r = \bar{U}_1^r - \bar{w} \cdot \nabla \bar{U}_0^r.
\] (2.5)

Plugging (2.5) into (2.4), we get
\[
U_2^r - \bar{U}_2^r = -\bar{w} \cdot \nabla \bar{U}_1^r = -\bar{w} \cdot \nabla \bar{U}_1^r + \bar{w}^2 \Delta \bar{U}_0^r + 2w_1 w_2 \partial_{x_1 x_2} \bar{U}_0^r.
\] (2.6)

Integrating (2.6) over \(\bar{w} \in S^1 \), we achieve the final form
\[
\Delta \bar{U}_0^r = 0.
\] (2.7)

which further implies \(U_0^r(x, \bar{w}) \) satisfies the equation
\[
\begin{align*}
\Delta \bar{U}_0^r &= 0, \\
\bar{U}_0^r &= \bar{U}_0,
\end{align*}
\] (2.8)

In a similar fashion, for \(k = 1, 2 \), \(U_k^r \) satisfies
\[
\begin{align*}
U_k^r &= \bar{U}_k^r - \bar{w} \cdot \nabla \bar{U}_{k-1}^r, \\
\Delta \bar{U}_k^r &= -\int_{S^1} \bar{w} \cdot \nabla \bar{U}_{k-1}^r \, d\bar{w}.
\end{align*}
\] (2.9)

It is easy to see \(\bar{U}_k^r \) satisfies an elliptic equation. However, the boundary condition of \(\bar{U}_k^r \) is unknown at this stage, since generally \(\bar{U}_k^r \) does not necessarily satisfy the diffusive boundary condition of (1.1). Therefore, we have to resort to boundary layer.

2.2. Local Coordinate System. Basically, we use two types of coordinate systems: Cartesian coordinate system for interior solution, which is stated above, and local coordinate system in a neighborhood of the boundary for boundary layer.

Assume the Cartesian coordinate system is \(\bar{x} = (x_1, x_2) \). Using polar coordinates system \((r, \theta) \in [0, \infty) \times [-\pi, \pi) \) and choosing pole in \(\Omega \), we assume \(\partial \Omega \) is
\[
\begin{align*}
x_1 &= r(\theta) \cos \theta, \\
x_2 &= r(\theta) \sin \theta,
\end{align*}
\] (2.10)

where \(r(\theta) > 0 \) is a given function. Our local coordinate system is similar to polar coordinate system, but varies to satisfy the specific requirement.

In the domain near the boundary, for each \(\theta \), we have the outward unit normal vector
\[
\bar{\nu} = \left(\begin{array}{c}
r(\theta) \cos \theta + r'(\theta) \sin \theta \\
\sqrt{r(\theta)^2 + r'(\theta)^2} \\
r(\theta) \sin \theta - r'(\theta) \cos \theta \\
\sqrt{r(\theta)^2 + r'(\theta)^2}
\end{array} \right).
\] (2.11)

We can determine each point on this normal line by \(\theta \) and its distance \(\mu \) to the boundary point \((r(\theta) \cos \theta, r(\theta) \sin \theta) \) as follows:
\[
\begin{align*}
x_1 &= r(\theta) \cos \theta + \mu \frac{-r(\theta) \cos \theta - r'(\theta) \sin \theta}{\sqrt{r(\theta)^2 + r'(\theta)^2}}, \\
x_2 &= r(\theta) \sin \theta + \mu \frac{-r(\theta) \sin \theta + r'(\theta) \cos \theta}{\sqrt{r(\theta)^2 + r'(\theta)^2}},
\end{align*}
\] (2.12)

where \(r'(\theta) = \frac{dr}{d\theta} \). It is easy to see that \(\mu = 0 \) denotes the boundary \(\partial \Omega \) and \(\mu > 0 \) denotes the interior of \(\Omega \).
By chain rule, for any \(u = u(x_1, x_2) \) we have
\[
\frac{\partial u}{\partial x_1} = \frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial x_1} + \frac{\partial u}{\partial \mu} \frac{\partial \mu}{\partial x_1},
\]
(2.13)
\[
\frac{\partial u}{\partial x_2} = \frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial x_2} + \frac{\partial u}{\partial \mu} \frac{\partial \mu}{\partial x_2}.
\]
(2.14)
Hence, the key part is to calculate \(\frac{\partial \theta}{\partial x_1} \), \(\frac{\partial \mu}{\partial x_1} \), \(\frac{\partial \theta}{\partial x_2} \), and \(\frac{\partial \mu}{\partial x_2} \) in terms of \(\mu \) and \(\theta \). For simplicity, we may denote the transform (2.12) as follows.
\[
\begin{align*}
x_1 &= a(\theta) + \phi A(\theta), \\
x_2 &= b(\theta) + \phi B(\theta),
\end{align*}
\]
(2.15)
where
\[
a = r \cos \theta, \quad A = \frac{-r \cos \theta - r' \sin \theta}{(r^2 + (r')^2)^{1/2}},
\]
(2.16)
\[
b = r \sin \theta, \quad B = \frac{-r \sin \theta + r' \cos \theta}{(r^2 + (r')^2)^{1/2}}.
\]
(2.17)
Taking \(x_1 \) and \(x_2 \) derivative in (2.15) reveals that
\[
(a' + \phi A') \frac{\partial \theta}{\partial x_1} + A \frac{\partial \phi}{\partial x_1} = 1,
\]
(2.18)
\[
(b' + \phi B') \frac{\partial \theta}{\partial x_2} + B \frac{\partial \phi}{\partial x_2} = 0,
\]
(2.19)
\[
(a' + \phi A') \frac{\partial \theta}{\partial x_2} + A \frac{\partial \phi}{\partial x_2} = 0,
\]
(2.20)
\[
(b' + \phi B') \frac{\partial \theta}{\partial x_2} + B \frac{\partial \phi}{\partial x_2} = 1,
\]
(2.21)
where the superscript \(^'\) denotes the derivative with respect to \(\theta \). The detailed expression is as follows:
\[
a' = r' \cos \theta - r \sin \theta,
\]
(2.22)
\[
b' = r' \sin \theta + r \cos \theta,
\]
(2.23)
\[
A' = \frac{r^3 \sin \theta - 2(r')^2 \cos \theta - r''r^2 \sin \theta + 2r(r')^2 \sin \theta - r' \cos \theta}{(r^2 + (r')^2)^{3/2}},
\]
(2.24)
\[
B' = \frac{-r^3 \sin \theta - 2(r')^2 \cos \theta - r''r^2 \sin \theta + r' \sin \theta}{(r^2 + (r')^2)^{3/2}}.
\]
(2.25)
Then we can solve the linear system (2.18) to (2.21) by Cramer’s rule as
\[
\begin{align*}
\frac{\partial \theta}{\partial x_1} &= \begin{vmatrix} 1 & A \\ 0 & B \end{vmatrix} = B, \\
\frac{\partial \mu}{\partial x_1} &= \begin{vmatrix} a' + \mu A' & 1 \\ b' + \mu B' & 0 \end{vmatrix} = -\frac{b' + \mu B'}{C},
\end{align*}
\]
(2.26)
\[
\begin{align*}
\frac{\partial \theta}{\partial x_2} &= \begin{vmatrix} 0 & A \\ 1 & B \end{vmatrix} = -A, \\
\frac{\partial \mu}{\partial x_2} &= \begin{vmatrix} a' + \mu A' & 0 \\ b' + \mu B' & 1 \end{vmatrix} = \frac{a' + \mu A'}{C},
\end{align*}
\]
(2.27)
where \(C \) denotes the determinant of the system, which is also the Jacobian of the transform \((x_1, x_2) \to (\mu, \theta) \) as
\[
C = \begin{vmatrix} a' + \mu A' & 1 \\ b' + \mu B' & 0 \end{vmatrix}.
\]
(2.28)
Therefore, by (2.13) and (2.14), noting the fact that for smooth convex domain, the curvature

\[\kappa(\theta) = \frac{r^2 + 2r^2 - rr''}{(r^2 + r^2)^{3/2}}, \]

and

\[
\frac{\partial \theta}{\partial x_1} = \frac{(-r \sin \theta + r \cos \theta)(r^2 + r^2)^{1/2}}{(r^2 + r^2)^{3/2} + \mu(r'' - r^2 - 2r^2)}, \tag{2.29}
\]

\[
\frac{\partial \theta}{\partial x_2} = \frac{(r \cos \theta + r \sin \theta)(r^2 + r^2)^{1/2}}{(r^2 + r^2)^{3/2} + \mu(r'' - r^2 - 2r^2)}, \tag{2.30}
\]

\[
\frac{\partial \mu}{\partial x_1} = \frac{-\mu(r' \cos \theta + r' \sin \theta)(r^2 + r^2)^{1/2}}{(r^2 + r^2)^{3/2} + \mu(r'' - r^2 - 2r^2)}, \tag{2.31}
\]

\[
\frac{\partial \mu}{\partial x_2} = \frac{(r \cos \theta + r \sin \theta)(r^2 + r^2)^{1/2}}{(r^2 + r^2)^{3/2} + \mu(r'' - r^2 - 2r^2)}.
\tag{2.32}
\]

A further simplification shows that, we may denote above relation as follows:

\[
\frac{\partial \theta}{\partial x_1} = \frac{MP}{P^3 + Q\mu}, \quad \frac{\partial \theta}{\partial x_2} = \frac{NP}{P^3 + Q\mu}, \quad \frac{\partial \mu}{\partial x_1} = \frac{-N}{P}, \quad \frac{\partial \mu}{\partial x_2} = \frac{M}{P}, \tag{2.33}
\]

where

\[
P = (r^2 + r^2)^{1/2}, \quad Q = rr'' - r^2, \quad M = -r \sin \theta + r' \cos \theta, \quad N = r \cos \theta + r' \sin \theta. \tag{2.34}
\]

Therefore, by (2.13) and (2.14), noting the fact that for smooth convex domain, the curvature

\[
\kappa(\theta) = \frac{r^2 + 2r^2 - rr''}{(r^2 + r^2)^{3/2}}, \tag{2.39}
\]

and radius of curvature

\[
R_\kappa(\theta) = \frac{1}{\kappa(\theta)} = \frac{(r^2 + r^2)^{3/2}}{r^2 + 2r^2 - rr''}, \tag{2.40}
\]

we define substitutions as follows:

Substitution 1:
Let \(w'(x_1, x_2, w_1, w_2) \rightarrow w'(\mu, \theta, w_1, w_2) \) with \((\mu, \theta, w_1, w_2) \in [0, R_{\text{min}}] \times [-\pi, \pi] \times S^1 \) for \(R_{\text{min}} = \min_{\theta} R_\kappa \) as

\[
\begin{align*}
 x_1 &= r(\theta) \cos \theta + \mu \frac{-r(\theta) \cos \theta - r'(\theta) \sin \theta}{\sqrt{r(\theta)^2 + r'(\theta)^2}}, \\
 x_2 &= r(\theta) \sin \theta + \mu \frac{-r(\theta) \sin \theta + r'(\theta) \cos \theta}{\sqrt{r(\theta)^2 + r'(\theta)^2}},
\end{align*}
\tag{2.41}
\]
and then the equation (1.1) is transformed into

\[
\left\{ \begin{array}{l}
\epsilon \left(w_1 \frac{-r \cos \theta - r' \sin \theta}{(r^2 + r'')^{1/2}} + w_2 \frac{-r \sin \theta + r' \cos \theta}{(r^2 + r'')^{1/2}} \right) \frac{\partial u^\epsilon}{\partial \mu} \\
+ \epsilon \left(w_1 \frac{-r \sin \theta + r' \cos \theta}{(r^2 + r'')^{1/2}} + w_2 \frac{r \cos \theta + r' \sin \theta}{(r^2 + r'')^{1/2}} \right) \frac{\partial u^\epsilon}{\partial \theta} + u^\epsilon - \bar{u}^\epsilon = 0,
\end{array} \right.
\]

(2.42)

where

\[
\bar{w} \cdot \bar{\nu} = w_1 \frac{-r \cos \theta - r' \sin \theta}{(r^2 + r'')^{1/2}} + w_2 \frac{-r \sin \theta + r' \cos \theta}{(r^2 + r'')^{1/2}},
\]

(2.43)

and

\[
P[u^\epsilon](\bar{x}_0) = \frac{1}{2} \int_{\bar{w} \cdot \bar{\nu} > 0} u^\epsilon(\bar{x}_0, \bar{w})(\bar{w} \cdot \bar{\nu})d\bar{w},
\]

(2.44)

in a neighborhood of the boundary.

In order for the transform being bijective, we require the Jacobian \(C > 0\). Then it implies that \(0 \leq \mu < R_n(\theta)\), which is the maximum extension of the valid domain for local coordinate system. Since we will only use this coordinate system in a neighborhood of the boundary, above analysis reveals that as long as the largest curvature of the boundary is strictly positive and finite, which is naturally satisfied in a smooth convex domain, we can take the transform as valid for area of \(0 \leq \mu < \min \theta R_n\). For the unit plate, we have \(R_n = 1\) and the transform is valid for all the points in the plate except the center.

Noting the fact that

\[
\left(\frac{M}{T} \right)^2 + \left(\frac{N}{T} \right)^2 = \left(\frac{-r \cos \theta - r' \sin \theta}{(r^2 + r'')^{1/2}} \right)^2 + \left(\frac{-r \sin \theta + r' \cos \theta}{(r^2 + r'')^{1/2}} \right)^2 = 1,
\]

(2.45)

we can further simplify (2.42).

Substitution 2:

Let \(u^\epsilon(\mu, \theta, w_1, w_2) \rightarrow u^\epsilon(\mu, \tau, w_1, w_2)\) with \((\mu, \tau, w_1, w_2) \in [0, R_{\min}) \times [-\pi, \pi) \times \mathcal{S}^1\) as

\[
\begin{array}{rcl}
sin \tau & = & \frac{r \sin \theta - r' \cos \theta}{(r^2 + r'')^{1/2}}, \\
cos \tau & = & \frac{r \cos \theta + r' \sin \theta}{(r^2 + r'')^{1/2}},
\end{array}
\]

(2.46)

which implies

\[
\frac{d \tau}{d \theta} = \kappa(r^2 + r'')^{1/2} > 0,
\]

(2.47)

and then the equation (1.1) is transformed into

\[
\left\{ \begin{array}{l}
-\epsilon \left(w_1 \cos \tau + w_2 \sin \tau \right) \frac{\partial u^\epsilon}{\partial \mu} - \epsilon \frac{1}{R_n - \mu} \left(w_1 \sin \tau - w_2 \cos \tau \right) \frac{\partial u^\epsilon}{\partial \tau} + u^\epsilon - \bar{u}^\epsilon = 0,
\end{array} \right.
\]

(2.48)

where

\[
P[u^\epsilon](0, \tau) = \frac{1}{2} \int_{w_1 \cos \tau + w_2 \sin \tau > 0} u^\epsilon(0, \tau, \bar{w})(\bar{w} \cdot \bar{\nu})d\bar{w},
\]

(2.49)

in a neighborhood of the boundary. Note that here since \(\tau\) denotes the angle of normal vector, the domain of \(\tau\) is the same as \(\theta\), i.e. \([-\pi, \pi)\).
2.3. **Boundary Layer Expansion with Geometric Correction.** In order to define boundary layer, we need several more substitutions:

Substitution 3:
We further make the scaling transform for $u^*(\mu, \tau, w_1, w_2) \rightarrow u^*(\eta, \tau, w_1, w_2)$ with $(\eta, \tau, w_1, w_2) \in [0, R_{\text{min}}/\epsilon] \times [-\pi, \pi] \times S^1$ as

\[
\begin{cases}
\eta = \mu/\epsilon, \\
\tau = \tau, \\
w_1 = w_1, \\
w_2 = w_2,
\end{cases} \quad (2.50)
\]

which implies

\[
\frac{\partial u^*}{\partial \mu} = \frac{1}{\epsilon \partial \eta}. \quad (2.51)
\]

Then equation (1.1) is transformed into

\[
\begin{cases}
- \left(w_1 \cos \tau + w_2 \sin \tau \right) \frac{\partial u^*}{\partial \eta} - \frac{\epsilon}{R_\kappa - \epsilon \eta} \left(w_1 \sin \tau - w_2 \cos \tau \right) \frac{\partial u^*}{\partial \tau} + u^* - \bar{u}^* = 0, \\
u^*(0, \tau, w_1, w_2) = \mathcal{P}[u^*](0, \tau) + \epsilon g(\tau, w_1, w_2) \quad \text{for} \quad w_1 \cos \tau + w_2 \sin \tau < 0,
\end{cases} \quad (2.52)
\]

where

\[
\mathcal{P}[u^*](0, \tau) = \frac{1}{2} \int_{w_1 \cos \tau + w_2 \sin \tau > 0} u^*(0, \tau, \bar{w})^{(\bar{w} \cdot \bar{v})} d\bar{w}. \quad (2.53)
\]

Substitution 4:
Define the velocity substitution for $u^*(\eta, \tau, w_1, w_2) \rightarrow u^*(\eta, \tau, \xi)$ with $(\eta, \tau, \xi) \in [0, R_{\text{min}}/\epsilon] \times [-\pi, \pi] \times [-\pi, \pi]$ as

\[
\begin{cases}
\eta = \eta \\
\tau = \tau \\
w_1 = - \sin \xi \\
w_2 = - \cos \xi
\end{cases} \quad (2.54)
\]

We have the succinct form

\[
\begin{cases}
\sin(\tau + \xi) \frac{\partial u^*}{\partial \eta} - \frac{\epsilon}{R_\kappa - \epsilon \xi} \cos(\tau + \xi) \frac{\partial u^*}{\partial \tau} + u^* - \bar{u}^* = 0, \\
u^*(0, \tau, \xi) = \mathcal{P}[u^*](0, \tau) + \epsilon g(\tau, \xi), \quad \text{for} \quad \sin(\tau + \xi) > 0
\end{cases} \quad (2.55)
\]

where

\[
\mathcal{P}[u^*](0, \tau) = - \frac{1}{2} \int_{\sin(\tau + \xi) < 0} u^*(0, \tau, \xi) \sin(\tau + \xi) d\xi. \quad (2.56)
\]

Substitution 5:
Finally, we make the substitution for $u^*(\eta, \tau, \xi) \rightarrow u^*(\eta, \tau, \phi)$ with $(\eta, \tau, \phi) \in [0, R_{\text{min}}/\epsilon] \times [-\pi, \pi] \times [-\pi, \pi]$ as

\[
\begin{cases}
\eta = \eta \\
\tau = \tau \\
\phi = \tau + \xi
\end{cases} \quad (2.57)
\]

and achieve the form

\[
\begin{cases}
\sin \phi \frac{\partial u^*}{\partial \eta} - \frac{\epsilon}{R_\kappa - \epsilon \eta} \cos \phi \left(\frac{\partial u^*}{\partial \phi} + \frac{\partial u^*}{\partial \tau} \right) + u^* - \bar{u}^* = 0 \\
u^*(0, \tau, \phi) = \mathcal{P}[u^*](0, \tau) + \epsilon g(\tau, \phi), \quad \text{for} \quad \sin \phi > 0
\end{cases} \quad (2.58)
\]
where
\[\mathcal{P}[u^e](0, \tau) = \frac{1}{2} \int_{\sin \phi < 0} u^e(0, \tau, \tau) \sin \phi d\phi \quad (2.59) \]

We define the boundary layer expansion as follows:
\[\mathcal{U}^e(\eta, \tau, \phi) = \mathcal{U}^e_0(\eta, \tau, \phi) + \epsilon \mathcal{U}^e_1(\eta, \tau, \phi), \quad (2.60) \]
where \(\mathcal{U}^e_0 \) can be determined by comparing the order of \(\epsilon \) via plugging (2.60) into the equation (2.58). Thus, in a neighborhood of the boundary, we have
\[
\sin \phi \frac{\partial \mathcal{U}^e_0}{\partial \eta} + \frac{\epsilon}{R_\kappa - \epsilon \eta} \cos \phi \frac{\partial \mathcal{U}^e_0}{\partial \phi} + \mathcal{U}^e_0 - \mathcal{U}^e_0(\eta, \tau, \phi) = 0, \quad (2.61)
\]
\[
\sin \phi \frac{\partial \mathcal{U}^e_1}{\partial \eta} + \frac{\epsilon}{R_\kappa - \epsilon \eta} \cos \phi \frac{\partial \mathcal{U}^e_1}{\partial \phi} + \mathcal{U}^e_1 = \frac{1}{R_\kappa - \epsilon \eta} \cos \phi \frac{\partial \mathcal{U}^e_0}{\partial \tau}, \quad (2.62)
\]

where
\[\mathcal{U}^e_0(\eta, \tau, \phi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathcal{U}^e_0(\eta, \tau, \phi) d\phi. \quad (2.63) \]

2.4. Matching of Interior Solution and Boundary Layer.

The bridge between interior solution and boundary layer is the boundary condition of (1.1), so we first consider the boundary expansion:
\[
(U_0^e + \mathcal{U}^e_0) = \mathcal{P}[U_0^e + \mathcal{U}^e_0],
\]
\[
(U_1^e + \mathcal{U}^e_1) = \mathcal{P}[U_1^e + \mathcal{U}^e_1] + \mathcal{U}^e_0, \quad (2.64)
\]
\[
\mathcal{U}^e_0 = \mathcal{P}[\mathcal{U}^e_0], \quad (2.65)
\]
Noting the fact that \(\mathcal{U}^e = \mathcal{P}[\mathcal{U}_0^e] \), we can simplify above conditions as follows:
\[
\mathcal{U}^e_0 = \mathcal{P}[\mathcal{U}^e_0], \quad (2.66)
\]
\[
\mathcal{U}^e_1 = \mathcal{P}[\mathcal{U}^e_1] + (\vec{w} \cdot U_0^e - \mathcal{P}(\vec{w} \cdot U_0^e)) + \mathcal{U}^e_0, \quad (2.67)
\]
The construction of \(\mathcal{U}^e_0 \) and \(\mathcal{U}^e_1 \) is as follows:

Step 0: Preliminaries.

Assume the cut-off functions \(\psi_0 \in C^\infty[0, \infty) \) is defined as
\[
\psi_0(y) = \begin{cases} 1 & 0 \leq y \leq \frac{1}{2}, \\ 0 & \frac{3}{4} \leq y < \infty. \end{cases} \quad (2.68)
\]

Also, define the force as
\[
F(\epsilon; \eta, \tau) = - \frac{\epsilon}{R_\kappa(\tau) - \epsilon \eta}, \quad (2.69)
\]
and the length for \(\epsilon \)-Mihne problem as \(L = \epsilon^{-1/2} \). For \(\phi \in [-\pi, \pi] \), denote \(R\phi = -\phi \).

Step 1: Construction of \(\mathcal{U}^e_0 \).

Define the zeroth order boundary layer as
\[
\begin{align*}
\sin \phi \frac{\partial f_0^e}{\partial \eta} + F(\epsilon; \eta, \tau) \cos \phi \frac{\partial f_0^e}{\partial \phi} + f_0^e - f_0^e(\eta, \tau, \phi) &= 0, \quad (2.70)
\end{align*}
\]
with
\[
\mathcal{P}[f_0^e](0, \tau) = 0, \quad (2.71)
\]
and \(f_0^e(\eta, \tau, \phi) \) is defined as in Theorem 3.3. Thus, we have \(\mathcal{U}^e_0 \) is well-defined. It is obvious to see \(f_0^e = f_0^e_0 = 0 \) is the only solution.
Step 2: Construction of \mathcal{W}_1^ϵ and U_0^ϵ.
Define the first order boundary layer as

$$
\begin{aligned}
\mathcal{W}_1^\epsilon(\eta, \tau, \phi) &= \psi_0(\epsilon^{1/2}\eta) \left(f_1^\epsilon(\eta, \tau, \phi) - f_{1,L}^\epsilon(\tau) \right), \\
\sin \phi \frac{\partial f_1^\epsilon}{\partial \eta} + F(\epsilon; \eta, \tau) \cos \phi \frac{\partial f_1^\epsilon}{\partial \phi} + f_1^\epsilon - \bar{f}_1^\epsilon &= \frac{1}{R_\epsilon - c_\eta} \cos \phi \frac{\partial \mathcal{W}_0^\epsilon}{\partial \tau}, \\
f_1^\epsilon(0, \tau, \phi) &= \mathcal{P}[f_1^\epsilon](0, \tau) + g_1(\tau, \phi) \text{ for } \sin \phi > 0, \\
f_1^\epsilon(L, \tau, \phi) &= f_1^\epsilon(L, \tau, \phi).
\end{aligned}
$$

(2.72)

with

$$
\mathcal{P}[f_1^\epsilon](0, \tau) = 0,
$$

(2.73)

and $f_{1,L}^\epsilon$ is defined as in Theorem 3.3 where

$$
g_1(\bar{x}_0, \bar{w}) = \bar{w} \cdot \nabla_x U_0^\epsilon(\bar{x}_0) - \mathcal{P}[\bar{w} \cdot \nabla_x U_0^\epsilon(\bar{x}_0)] + g(\bar{x}_0, \bar{w}),
$$

(2.74)

with \bar{x}_0 and $(0, \tau)$ denoting the same boundary point, and

$$
\bar{w} = (-\sin(\phi - \tau), -\cos(\phi - \tau)),
\quad \bar{\nu} = (\cos \tau, \sin \tau).
$$

(2.75)

(2.76)

To solve (2.72), the data must satisfy the compatibility condition (3.30) as

$$
\int_{\sin \phi > 0} \left(g + \bar{w} \cdot \nabla_x U_0^\epsilon(\bar{x}_0) - \mathcal{P}[\bar{w} \cdot \nabla_x U_0^\epsilon(\bar{x}_0)] \right) \sin \phi d\phi + \int_0^L \int_{-\pi}^{\pi} e^{-V(s)} \frac{1}{1 - \epsilon s} \cos \phi \frac{\partial \mathcal{W}_0^\epsilon}{\partial \tau}(s, \tau, \phi) d\phi ds = 0,
$$

(2.77)

where $\frac{\partial V}{\partial \eta} = -F$ and $V(0) = 0$. Note the fact

$$
\int_{\sin \phi > 0} \left(\bar{w} \cdot \nabla_x U_0^\epsilon(\bar{x}_0) - \mathcal{P}[\bar{w} \cdot \nabla_x U_0^\epsilon(\bar{x}_0)] \right) \sin \phi d\phi = 0
$$

(2.78)

We can simplify the compatibility condition as follows

$$
\int_{\sin \phi > 0} g(\phi) \sin \phi d\phi - \pi \frac{\partial U_0^\epsilon(\bar{x}_0)}{\partial \bar{\nu}} + \int_0^L \int_{-\pi}^{\pi} e^{-V(s)} \frac{1}{1 - \epsilon s} \cos \phi \frac{\partial \mathcal{W}_0^\epsilon}{\partial \tau}(s, \tau, \phi) d\phi ds = 0.
$$

(2.79)

Then we have

$$
\frac{\partial U_0^\epsilon(\bar{x}_0)}{\partial \bar{\nu}} = \frac{1}{\pi} \int_{\sin \phi > 0} g(\tau, \phi) \sin \phi d\phi + \frac{1}{\pi} \int_0^L \int_{-\pi}^{\pi} e^{-V(s)} \frac{1}{1 - \epsilon s} \cos \phi \frac{\partial \mathcal{W}_0^\epsilon}{\partial \tau}(s, \tau, \phi) d\phi ds.
$$

(2.80)
Hence, we define the zeroth order interior solution $U_0^\epsilon(\vec{x}, \vec{w})$ as

$$
\begin{aligned}
U_0^\epsilon &= \bar{U}_0^\epsilon, \\
\Delta_\vec{x} \bar{U}_0^\epsilon &= 0 \text{ in } \Omega, \\
\frac{\partial \bar{U}_0^\epsilon}{\partial \vec{\nu}} &= \frac{1}{\pi} \int_{\sin \phi > 0} g(\tau, \phi) \sin \phi d\phi \text{ on } \partial \Omega, \\
\int_{\Omega} U_0^\epsilon(\vec{x}) d\vec{x} &= 0.
\end{aligned}
$$

(2.81)

Step 3: Construction of U_1^ϵ.
We do not expand the boundary layer to U_2^ϵ and just terminate at U_1^ϵ. Then we define the first order interior solution $U_1^\epsilon(\vec{x})$ as

$$
\begin{aligned}
U_1^\epsilon &= \bar{U}_1^\epsilon - \vec{w} \cdot \nabla_\vec{x} \bar{U}_0^\epsilon, \\
\Delta_\vec{x} \bar{U}_1^\epsilon &= -\int_{S^1} (\vec{w} \cdot \nabla_\vec{x} \bar{U}_0^\epsilon) d\vec{w} \text{ in } \Omega, \\
\frac{\partial \bar{U}_1^\epsilon}{\partial \vec{\nu}} &= 0 \text{ on } \partial \Omega, \\
\int_{\Omega} \bar{U}_1^\epsilon(\vec{x}) d\vec{x} &= 0.
\end{aligned}
$$

(2.82)

Note that here we only require the trivial boundary condition since we cannot resort to the compatibility condition in ϵ-Milne problem with geometric correction. Based on [17], this might lead to $O(\epsilon^2)$ error to the boundary approximation. Thanks to the improved remainder estimate, this error is acceptable.

Step 4: Construction of U_2^ϵ.
By a similar fashion, we define the second order interior solution as

$$
\begin{aligned}
U_2^\epsilon &= \bar{U}_2^\epsilon - \vec{w} \cdot \nabla_\vec{x} \bar{U}_1^\epsilon, \\
\Delta_\vec{x} \bar{U}_2^\epsilon &= -\int_{S^1} (\vec{w} \cdot \nabla_\vec{x} \bar{U}_1^\epsilon) d\vec{w} \text{ in } \Omega, \\
\frac{\partial \bar{U}_2^\epsilon}{\partial \vec{\nu}} &= 0 \text{ on } \partial \Omega, \\
\int_{\Omega} \bar{U}_2^\epsilon(\vec{x}) d\vec{x} &= 0.
\end{aligned}
$$

(2.83)

As the case of U_1^ϵ, we might have $O(\epsilon^3)$ error in this step due to the trivial boundary data. However, it will not affect the diffusive limit.

3. Regularity of ϵ-Milne Problem with Geometric Correction

We consider the ϵ-Milne problem with geometric correction for $f^\epsilon(\eta, \tau, \phi)$ in the domain $(\eta, \tau, \phi) \in [0, L] \times [-\pi, \pi) \times [-\pi, \pi)$ where $L = \epsilon^{-1/2}$ as

$$
\begin{aligned}
\sin \phi \frac{\partial f^\epsilon}{\partial \eta} + F(\epsilon; \eta, \tau) \cos \phi \frac{\partial f^\epsilon}{\partial \phi} + f^\epsilon - \bar{f}^\epsilon &= S^\epsilon(\eta, \tau, \phi), \\
f^\epsilon(0, \tau, \phi) &= h^\epsilon(\tau, \phi) + P[f^\epsilon](0, \tau) \text{ for } \sin \phi > 0, \\
f^\epsilon(L, \tau, \phi) &= f^\epsilon(L, \tau, R\phi),
\end{aligned}
$$

(3.1)

where $R\phi = -\phi$,

$$
P[f^\epsilon](0, \tau) = -\frac{1}{2} \int_{\sin \phi < 0} f^\epsilon(0, \tau, \phi) \sin \phi d\phi,
$$

(3.2)

$$
F(\epsilon; \eta, \tau) = -\frac{\epsilon}{R_\kappa(\tau) - \epsilon \eta},
$$

(3.3)
In this section, for convenience, we temporarily ignore the superscript on \(\epsilon \). We define the norms in the space \((\eta, \phi) \in [0, L] \times [-\pi, \pi]\) as follows:

\[
\|f(\tau)\|_{L^2 L^2} = \left(\int_0^L \int_{-\pi}^\pi |f(\eta, \tau, \phi)|^2 \, d\phi \, d\eta \right)^{1/2}, \quad (3.4)
\]

\[
\|f(\tau)\|_{L^\infty L^\infty} = \sup_{(\eta, \phi) \in [0, L] \times [-\pi, \pi]} |f(\eta, \tau, \phi)|, \quad (3.5)
\]

Similarly, we can define the norm at in-flow boundary as

\[
\|f(0, \tau)\|_{L^2} = \left(\int_{\sin \phi > 0} |f(0, \tau, \phi)|^2 \, d\phi \right)^{1/2}, \quad (3.6)
\]

\[
\|f(0, \tau)\|_{L^\infty} = \sup_{\sin \phi > 0} |f(0, \tau, \phi)|, \quad (3.7)
\]

Also define

\[
\langle f, g \rangle_{\phi}(\eta, \tau) = \int_{-\pi}^{\pi} f(\eta, \tau, \phi) g(\eta, \tau, \phi) \, d\phi \quad (3.8)
\]

as the \(L^2 \) inner product in \(\phi \). We further assume

\[
\|h(\tau)\|_{L^\infty} + \left\| \frac{\partial h}{\partial \phi}(\tau) \right\|_{L^\infty} + \left\| \frac{\partial h}{\partial \tau}(\tau) \right\|_{L^\infty} \leq C, \quad (3.9)
\]

and

\[
\|S(\tau)\|_{L^\infty L^\infty} + \left\| \frac{\partial S}{\partial \eta}(\tau) \right\|_{L^\infty L^\infty} + \left\| \frac{\partial S}{\partial \phi}(\tau) \right\|_{L^\infty L^\infty} + \left\| \frac{\partial S}{\partial \tau}(\tau) \right\|_{L^\infty L^\infty} \leq C e^{-K \eta}, \quad (3.10)
\]

for \(C > 0 \) and \(K > 0 \) uniform in \(\epsilon \) and \(\tau \).

As in [17, Section 6], in order to study problem with diffusive boundary, we first need to study the \(\epsilon \)-Milne problem with in-flow boundary for \(f(\eta, \tau, \phi) \) in the domain \((\eta, \tau, \phi) \in [0, L] \times [-\pi, \pi] \times [-\pi, \pi]\) as

\[
\begin{aligned}
\sin \phi \frac{\partial f}{\partial \eta} + F(\eta, \tau) \cos \phi \frac{\partial f}{\partial \phi} + f - \bar{f} &= S(\eta, \tau, \phi), \\
f(0, \tau, \phi) &= h(\tau, \phi) \quad \text{for} \quad \sin \phi > 0, \\
f(L, \tau, \phi) &= f(L, \tau, R \phi).
\end{aligned} \quad (3.11)
\]

Define a potential function \(V(\epsilon; \eta, \tau) \) satisfying \(V(\epsilon; 0, \tau) = 0 \) and \(\frac{\partial V}{\partial \eta} = -F(\epsilon; \eta, \tau) \).

Lemma 3.1. We have \(e^{-V(\epsilon; 0, \tau)} = 1 \) and

\[
e^{-V(\epsilon; L, \tau)} = 1 - \frac{\epsilon^{1/2}}{R_\kappa}. \quad (3.12)
\]

Proof. We directly compute

\[
V(\epsilon; \eta, \tau) = \ln \left(\frac{R_\kappa(\tau)}{R_\kappa(\tau) - \epsilon \eta} \right), \quad (3.13)
\]

and

\[
e^{-V(\epsilon; \eta, \tau)} = \frac{R_\kappa(\tau) - \epsilon \eta}{R_\kappa(\tau)}. \quad (3.14)
\]

Hence, our result naturally follows.

In the following, we will temporarily ignore \(\epsilon \) dependence. Note that all the estimates are uniform in \(\epsilon \), which further means uniform in \(L \). From now on, let \(C \) denote a finite universal constant that is independent of \(\epsilon \) and \(\tau \).

3.1. Well-Posedness and Decay

Since most of the results can be obtained via obvious modifications of [17, Section 4], we will only state the main theorems without proofs.
3.1.1. \(L^2 \) Estimates. We may decompose the solution
\[
f(\eta, \tau, \phi) = q(\eta, \tau) + r(\eta, \tau, \phi),
\]
where the hydrodynamical part \(q \) is in the null space of the operator \(f - \bar{f} \), and the microscopic part \(r \) is the orthogonal complement, i.e.
\[
q(\eta, \tau) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\eta, \tau, \phi) d\phi \quad \text{and} \quad r(\eta, \tau, \phi) = f(\eta, \tau, \phi) - q(\eta, \tau).
\]

Lemma 3.2. Assume (3.9) and (3.10) hold. Then there exists a solution \(f(\eta, \tau, \phi) \) of the equation (3.11), satisfying
\[
\|r(\eta, \tau, \phi)\|_{L^2 L^2} \leq C,
\]
\[
\langle \sin \phi, r \rangle_{\phi}(\eta, \tau) = -\int_{\eta}^{L} e^{V(\eta, \tau) - V(y, \tau)} \bar{S}(y, \tau) dy.
\]
Also for
\[
f_L(\tau) = q_L(\tau) = \frac{\langle \sin^2 \phi, f \rangle_{\phi}(L, \tau)}{\|\sin \phi\|_{L^2}^2}.
\]
we have
\[
|q_L(\tau)| \leq C,
\]
\[
\|q(\eta, \tau) - q_L(\tau)\|_{L^2} \leq C \left(\|r(\eta, \tau)\|_{L^2} + \int_{\eta}^{L} F(y, \tau) \|r(y, \tau)\|_{L^2} dy + \int_{\eta}^{L} \|S(y, \tau)\|_{L^\infty} dy \right),
\]
\[
\|q(\eta, \tau) - q_L(\tau)\|_{L^2 L^2} \leq C.
\]
The solution is unique among functions satisfying \(\|f(\eta, \tau, \phi) - f_L(\tau)\|_{L^2 L^2} \leq C \).

Theorem 3.3. Assume (3.9) and (3.10) hold. For the \(\epsilon \)-Milne problem (3.11), there exists a unique solution \(f(\eta, \tau, \phi) \) satisfying the estimates
\[
\|f(\eta, \tau, \phi) - f_L(\tau)\|_{L^2 L^2} \leq C
\]
for some real number \(f_L(\tau) \) satisfying
\[
|f_L(\tau)| \leq C.
\]

3.1.2. \(L^\infty \) Estimates.

Lemma 3.4. Assume (3.9) and (3.10) hold. The solution \(f(\eta, \tau, \phi) \) to the Milne problem (3.11) satisfies
\[
\|f(\eta, \tau, \phi) - f_L(\tau)\|_{L^\infty L^\infty} \leq C \left(1 + \|f(\eta, \tau, \phi) - f_L(\tau)\|_{L^2 L^2} \right).
\]

Theorem 3.5. Assume (3.9) and (3.10) hold. The unique solution \(f(\eta, \tau, \phi) \) to the \(\epsilon \)-Milne problem (3.11) satisfies
\[
\|f(\eta, \tau, \phi) - f_L(\tau)\|_{L^\infty L^\infty} \leq C.
\]

3.1.3. Exponential Decay.

Theorem 3.6. Assume (3.9) and (3.10) hold. There exists \(K_0 > 0 \) such that the unique solution \(f(\eta, \tau, \phi) \) to the \(\epsilon \)-Milne problem (3.11) satisfies
\[
\left\| e^{K_0 \eta} \left(f(\eta, \tau, \phi) - f_L(\tau) \right) \right\|_{L^\infty L^\infty} \leq C.
\]
3.2. Preliminaries of Regularity Estimates. It is easy to see \(V(\eta, \tau, \phi) = f(\eta, \tau, \phi) - f_L(\tau) \) satisfies the equation
\[
\begin{cases}
\sin \phi \frac{\partial V}{\partial \eta} + F(\eta, \tau) \cos \phi \frac{\partial V}{\partial \phi} + V - \bar{V} = S(\eta, \tau, \phi), \\
V(0, \tau, \phi) = p(\tau, \phi) \quad \text{for } \sin \phi > 0, \\
V(L, \tau, \phi) = V(L, \tau, R\phi).
\end{cases}
\] (3.28)

where
\[
p(\tau, \phi) = h(\tau, \phi) - f_L(\tau).
\] (3.29)

We intend to estimate the normal, tangential and velocity derivative. This idea is motivated by [4]. From now on, without specification, we temporarily ignore the dependence on \(\tau \) and all the estimates are uniform in \(\tau \). Define a distance function \(\zeta(\eta, \phi) \) as
\[
\zeta(\eta, \phi) = \left(1 - \left(e^{-V(\eta)} \cos \phi \right)^2\right)^{1/2}.
\] (3.30)

Note that the closer \((\eta, \phi)\) is to the grazing set, the smaller \(\zeta \) is. In particular, at grazing set, \(\zeta = 0 \). Also, we have \(0 \leq \zeta \leq 1 \).

Lemma 3.7. We have
\[
\sin \phi \frac{\partial \zeta}{\partial \eta} + F(\eta) \cos \phi \frac{\partial \zeta}{\partial \phi} = 0.
\] (3.31)

Proof. We may directly compute
\[
\frac{\partial \zeta}{\partial \eta} = \frac{1}{2} \left(1 - \left(e^{-V(\eta)} \cos \phi \right)^2\right)^{-1/2} \left(-2e^{-2V(\eta)} \cos^2 \phi \right) F(\eta) = -\frac{e^{-2V(\eta)} F(\eta) \cos^2 \phi}{\zeta},
\] (3.32)
\[
\frac{\partial \zeta}{\partial \phi} = \frac{1}{2} \left(1 - \left(e^{-V(\eta)} \cos \phi \right)^2\right)^{-1/2} \left(-2e^{-2V(\eta)} \cos \phi \right) (-\sin \phi) = \frac{e^{-2V(\eta)} \cos \phi \sin \phi}{\zeta}.
\] (3.33)

Hence, we know
\[
\sin \phi \frac{\partial \zeta}{\partial \eta} + F(\eta) \cos \phi \frac{\partial \zeta}{\partial \phi} = -\sin \phi \left(e^{-2V(\eta)} F(\eta) \cos^2 \phi \right) + F(\eta) \cos \phi \left(e^{-2V(\eta)} \cos \phi \sin \phi \right) = 0.
\] (3.34)

3.3. Direct Estimates along Characteristics. In this section, we will prove some preliminary estimates that are based on the characteristics of \(V \) itself instead of the derivative. Here, we have two formulations of the equation (3.28) along the characteristics:

- **Formulation I:** \(\eta \) is the principle variable, \(\phi = \phi(\eta) \), and the equation can be rewritten as
 \[
 \sin \phi \frac{dV}{d\eta} + V = S + \bar{V}.
 \] (3.35)

- **Formulation II:** \(\phi \) is the principle variable, \(\eta = \eta(\phi) \) and the equation can be rewritten as
 \[
 F(\eta) \cos \phi \frac{dV}{d\phi} + V = S + \bar{V}.
 \] (3.36)

These two formulations are equivalent and can be applied to different regions of the domain. Define the energy as follows:
\[
E(\eta, \phi) = e^{-V(\eta)} \cos \phi.
\] (3.37)

Along the characteristics, this energy is conserved. In the following, let \(0 < \delta_0 < \rho \) be a small quantity.
Lemma 3.8. Assume \(\|S\|_{L^\infty L^\infty} + \|\partial S/\partial \phi\|_{L^\infty L^\infty} \leq C \). For \(\sin \phi > \delta_0 \), we have
\[
\sin \phi \partial \mathcal{V}/\partial \eta(\eta, \phi) \leq C \left(1 + \frac{1}{\delta_0^3} \right). \tag{3.38}
\]

Proof. Using the \(\epsilon \)-Milne problem (3.25), we only need to show
\[
F(\eta) \cos \phi \partial \mathcal{V}/\partial \phi(\eta, \phi) \leq C \left(1 + \frac{1}{\delta_0^3} \right). \tag{3.39}
\]
We use Formulation I to rewrite the equation along the characteristics as
\[
\mathcal{V}(\eta, \phi) = \exp (-G_{\eta,0}) \left(p(\phi'(0)) + \int_0^n (S + \mathcal{V})(\eta', \phi'(\eta')) \frac{\sin \phi'(\eta')}{\sin \phi'(\eta')^2} \exp (G_{\eta',0}) \, d\eta' \right). \tag{3.40}
\]
where \(\phi'(\eta') = \phi'(\eta'; \eta, \phi) \) satisfying \((\eta', \phi') \) and \((\eta, \phi) \) are on the same characteristic with \(\sin \phi' \geq 0 \), and
\[
G_{t,s} = \int_s^t \frac{1}{\sin \phi'(\xi)} \, d\xi. \tag{3.41}
\]
for any \(s, t \geq 0 \). Note that
\[
\frac{\partial G_{t,s}}{\partial \phi} = \int_s^t \frac{1}{\sin \phi'(\xi)} \, d\xi = -\int_s^t \frac{\cos \phi'(\xi)}{\sin \phi'(\xi)} \frac{\partial \phi'(\xi)}{\partial \phi} \, d\xi. \tag{3.42}
\]
Taking \(\phi \) derivative on both sides of (3.40), we have
\[
\frac{\partial \mathcal{V}}{\partial \phi} = J_1 + J_2 + J_3 + J_4, \tag{3.43}
\]
where
\[
J_1 = \exp (-G_{\eta,0}) \left(\int_0^n \frac{\cos \phi'(\xi)}{\sin \phi'(\xi)} \, d\xi \right) \left(p(\phi'(0)) \right) \tag{3.44}
\]
\[
+ \int_0^n \frac{(S + \mathcal{V})(\eta', \phi'(\eta'))}{\sin \phi'(\eta')^2} \exp (G_{\eta',0}) \, d\eta', \tag{3.45}
\]
\[
J_2 = \exp (-G_{\eta,0}) \frac{\partial p(\phi'(0))}{\partial \phi}, \tag{3.46}
\]
\[
J_3 = \exp (-G_{\eta,0}) \left(\int_0^n \frac{(S + \mathcal{V})(\eta', \phi'(\eta'))}{\sin \phi'(\eta')^2} \exp (G_{\eta',0}) \, d\eta' \right) \left(-\frac{1}{\sin \phi'(\eta')} \int_0^{\eta'} \frac{\cos \phi'(\xi)}{\sin \phi'(\xi)} \, d\xi - \frac{\cos \phi'(\eta') \partial \phi'(\eta')}{\sin \phi'(\eta')^2} \frac{\partial \phi'(\eta')}{\partial \phi} \right) \, d\eta', \tag{3.47}
\]
\[
J_4 = \exp (-G_{\eta,0}) \frac{1}{\sin \phi'(\eta')} \frac{\partial S(\eta', \phi'(\eta'))}{\partial \phi} \exp (G_{\eta',0}) \, d\eta'. \tag{3.48}
\]
Then we divide the proof into several steps:

Step 1: Estimate of \(J_1 \).
We can directly compute
\[
J_1 = \mathcal{V}' \left(\int_0^n \frac{\cos \phi'(\xi)}{\sin \phi'(\xi)^2} \, d\xi \right). \tag{3.48}
\]
Since
\[
E(\eta, \phi) = e^{-V(\eta)} \cos \phi = e^{-V(\xi)} \cos \phi'(\xi), \tag{3.49}
\]
when taking \(\phi \) derivative on both sides of (3.49), we obtain
\[
\frac{\partial \phi'(\xi)}{\partial \phi} = \frac{\sin \phi}{\sin \phi'(\xi)} e^{V(\xi) - V(\eta)}. \tag{3.50}
\]
Hence, we have
\[\int_0^n \frac{\cos' (\xi) \cdot \partial \phi' (\xi)}{\sin' (\xi)} d\xi = \int_0^n \frac{\cos' (\xi) \sin \phi}{\sin' (\xi)} e^{V(\xi) - V(\eta)} d\xi. \tag{3.51} \]

Since \(\sin' \geq \sin \geq \delta_0 \), we naturally have
\[\left| \int_0^n \frac{\cos' (\xi) \sin \phi}{\sin' (\xi)} e^{V(\xi) - V(\eta)} d\xi \right| \leq C \eta \delta_0^3. \tag{3.52} \]

Since \(V \) decays exponentially, we obtain
\[|J_1| \leq e^{-K_0 \eta} C \eta \delta_0^3 \leq C \delta_0. \tag{3.53} \]

Step 2: Estimate of \(J_2 \).
For \(J_2 \), we can estimate
\[|J_2| = \left| \exp \left(-G_{\eta, \phi} \right) \frac{\partial p(\phi'(0))}{\partial \phi} \right| \leq \left| \frac{\partial p(\phi'(0))}{\partial \phi} \right|, \tag{3.54} \]

since for any \(\xi \in [0, \eta] \),
\[\frac{1}{\sin' (\xi)} \geq 1. \tag{3.55} \]

We may directly compute
\[e^{-V(\eta)} \cos \phi = e^{-V(0)} \cos \phi'(0) = \cos \phi'(0). \tag{3.56} \]

Taking \(\phi \) derivative on both sides, we get
\[\frac{\partial \phi'(0)}{\partial \phi} = \frac{\sin \phi}{\sin \phi'(0)} e^{-V(\eta)}, \tag{3.57} \]

which implies
\[\left| \frac{\partial p(\phi'(0))}{\partial \phi} \right| \leq \left| \frac{\partial p(\phi'(0))}{\partial \phi} \right| \leq (C + \| h \|_{W^{1, \infty}}) \left| \frac{\partial \phi'(0)}{\partial \phi} \right| \leq C e^{-V(\eta)} \leq C. \tag{3.58} \]

Hence, we have shown
\[|J_2| \leq C. \tag{3.59} \]

Step 3: Estimate of \(J_3 \).
Similar to the estimate of \(J_1 \), we have
\[|J_3| \leq C \left| \int_0^n \exp \left(-G_{\eta', \eta} \right) \left(\frac{C(\eta' + 1)}{\delta_0^3} \right) d\eta' \right| \leq C(\eta^2 + 1). \tag{3.60} \]

Considering \(F(\eta) \leq \epsilon \) and \(\eta \leq L = \epsilon^{-1/2} \), we have
\[|J_3| \leq \left| \frac{1}{F(\eta)} \right| \frac{C}{\delta_0}. \tag{3.61} \]

Step 4: Estimate of \(J_4 \).
Similar to the estimate of \(J_1 \), we have
\[|J_4| \leq C \delta_0 \left| \int_0^n \exp \left(-G_{\eta', \eta} \right) d\eta' \right| \leq C. \tag{3.62} \]

Step 5: Synthesis.
In summary, we have
\[|J| \leq C \delta_0^3 \left(1 + \left| \frac{1}{F(\eta)} \right| \right). \tag{3.63} \]
which implies
\[|F(\eta) \cos \phi \frac{\partial \mathcal{V}}{\partial \phi} | \leq C \left(1 + \frac{1}{\delta_0} \right), \tag{3.64} \]
and further
\[\left| \sin \phi \frac{\partial \mathcal{V}}{\partial \eta} \right| \leq C \left(1 + \frac{1}{\delta_0} \right). \tag{3.65} \]

Lemma 3.9. Assume \(\|S\|_{L_{\infty}} + \left\| \frac{\partial S}{\partial \phi} \right\|_{L_{\infty}} \leq C \). For \(\sin \phi < 0 \) with \(|E(\eta, \phi)| \leq e^{-V(L)} \), if it satisfies \(\min_{\phi'} \sin \phi' \geq \delta_0 \) where \((\eta', \phi')\) are on the same characteristics as \((\eta, \phi)\) with \(\sin \phi' \geq 0 \), then we have
\[\left| \sin \phi \frac{\partial \mathcal{V}}{\partial \eta}(\eta, \phi) \right| \leq C \left(1 + \frac{1}{\delta_0} \right). \tag{3.66} \]

Proof. We use Formulation I to rewrite the equation along the characteristics as
\[\mathcal{V}(\eta, \phi) = p(\phi'(0)) \exp(-G_{L,0} - G_{L,\eta}) \]
\[+ \int_{0}^{L} \frac{(S + \bar{\mathcal{V}})(\eta', \phi'(\eta'))}{\sin \phi'(\eta')} \exp(-G_{L,\eta'} - G_{L,\eta}) d\eta' \]
\[+ \int_{\eta}^{L} \frac{(S + \bar{\mathcal{V}})(\eta', \phi'(\eta'))}{\sin \phi'(\eta')} \exp(-G_{\eta', \eta} - G_{\eta', \eta}) d\eta'. \]

Then taking \(\eta \) derivative on both sides of (3.64) yields
\[\frac{\partial \mathcal{V}}{\partial \eta} = JJ = JJ_1 + JJ_2 + JJ_3 + JJ_4 + JJ_5 + JJ_6 + JJ_7, \tag{3.68} \]
where
\[JJ_1 = - \frac{(S + \bar{\mathcal{V}})(\eta, \phi)}{\sin \phi}, \tag{3.69} \]
\[JJ_2 = \int_{\eta}^{L} \frac{(S + \bar{\mathcal{V}})(\eta', \phi'(\eta'))}{\sin \phi'(\eta')} \exp(-G_{\eta', \eta}) \]
\[\left(\frac{\cos \phi'(\eta') \partial \phi'(\eta')}{\sin \phi'(\eta')} - \int_{\eta}^{\eta'} \frac{\cos \phi'(\xi) \partial \phi'(\xi)}{\sin \phi'^2(\xi)} d\xi \right) d\eta', \tag{3.70} \]
\[JJ_3 = \int_{\eta}^{L} \frac{\partial S(\eta', \phi'(\eta'))}{\partial \eta} \frac{1}{\sin \phi'(\eta')} \exp(-G_{\eta', \eta}) d\eta', \tag{3.71} \]
\[JJ_4 = \frac{\partial p(\phi'(0))}{\partial \eta} \exp(-G_{L,0} - G_{L,\eta}), \tag{3.72} \]
\[JJ_5 = p(\phi'(0)) \exp(-G_{L,0} - G_{L,\eta}) \left(- \int_{0}^{L} \frac{\cos \phi'(\xi) \partial \phi'(\xi)}{\sin \phi'^2(\xi)} d\xi - \int_{\eta}^{L} \frac{\cos \phi'(\xi) \partial \phi'(\xi)}{\sin \phi'^2(\xi)} d\xi \right), \tag{3.73} \]
\[JJ_6 = \int_{0}^{L} \frac{(S + \bar{\mathcal{V}})(\eta', \phi'(\eta'))}{\sin \phi'(\eta')} \exp(-G_{L,\eta'} - G_{L,\eta}) \]
\[\left(\frac{\cos \phi'(\eta') \partial \phi'(\eta')}{\sin \phi'(\eta')} - \int_{\eta'}^{L} \frac{\cos \phi'(\xi) \partial \phi'(\xi)}{\sin \phi'^2(\xi)} d\xi - \int_{\eta}^{L} \frac{\cos \phi'(\xi) \partial \phi'(\xi)}{\sin \phi'^2(\xi)} d\xi \right) d\eta', \tag{3.74} \]
\[JJ_7 = \int_{0}^{L} \frac{\partial S(\eta', \phi'(\eta'))}{\partial \eta} \frac{1}{\sin \phi'(\eta')} \exp(-G_{L,\eta'} - G_{L,\eta}) d\eta'. \tag{3.75} \]

We divide the proof into several steps:

Step 1: Estimate of \(JJ_1 \).
This is obvious, since \(S \) and \(\bar{\mathcal{V}} \) are bounded.
Step 2: Estimate of JJ_2.
We may directly compute
\[
\frac{\partial \phi'(\eta')}{\partial \eta} = -\frac{F(\eta) \cos \phi'(\eta')}{\sin \phi'(\eta')}
\]
(3.76)
Hence, we have
\[
\frac{\cos \phi'(\eta') \partial \phi'(\eta')}{\sin^2 \phi'(\eta')} \frac{\partial \phi'(\eta')}{\partial \eta} = -\frac{F(\eta) \cos^2 \phi'(\eta')}{\sin^2 \phi'(\eta')}
\]
(3.77)
Since $\sin \phi'(\eta') \geq \delta_0$, we know
\[
\left| \frac{\cos \phi'(\eta') \partial \phi'(\eta')}{\sin^2 \phi'(\eta')} \frac{\partial \phi'(\eta')}{\partial \eta} \right| \leq \epsilon \frac{\delta_0}{\delta_0}
\]
(3.78)
Thus, we obtain
\[
\left| \int_{\eta}^{\eta'} \frac{\cos \phi'(\xi) \partial \phi'(\xi)}{\sin^2 \phi'(\xi)} \frac{\partial \phi'(\xi)}{\partial \eta} d\xi \right| \leq \epsilon (\eta' - \eta) \frac{\delta_0}{\delta_0}
\]
(3.79)
Also, it is easy to see
\[
\exp(-G_{\eta',\eta}) \leq \exp\left(- (\eta' - \eta) \right).
\]
(3.80)
Since
\[
\sin \phi \geq \sin \phi'(\xi) \geq C \delta_0,
\]
(3.81)
we directly obtain
\[
|JJ_2| \leq \frac{C \epsilon}{\delta_0}
\]
(3.82)
Step 3: Estimate of JJ_3.
We compute
\[
\frac{\partial S(\eta', \phi'(\eta'))}{\partial \eta} = \partial_2 S \frac{\partial \phi'(\eta')}{\partial \eta} = -\partial_2 S \frac{F(\eta) \cos \phi'(\eta')}{\sin \phi'(\eta')},
\]
(3.83)
where ∂_2 denotes derivative with respect to the second argument in $S(\eta, \phi)$. Hence, this implies
\[
\left| \frac{\partial S(\eta', \phi'(\eta'))}{\partial \eta} \right| \leq \frac{\epsilon}{\delta_0}.
\]
(3.84)
Thus, we have
\[
|JJ_3| \leq \frac{\epsilon}{\delta_0}.
\]
(3.85)
Step 4: Estimate of JJ_4.
Since
\[
e^{-V(0)} \cos \phi'(0) = e^{-V(\eta)} \cos \phi,
\]
(3.86)
we have
\[
\frac{\partial \phi'(0)}{\partial \eta} = \frac{\cos \phi'(0) F(\eta)}{\sin \phi'(0)}
\]
(3.87)
Thus, we know
\[
\left| \frac{\partial p(\phi'(0))}{\partial \eta} \right| \leq ||p||_{W^{1, \infty}} \left| \frac{\partial \phi'(0)}{\partial \eta} \right| \leq \frac{C \epsilon}{\delta_0}.
\]
(3.88)
Hence, we have
\[
|JJ_4| \leq \frac{C \epsilon}{\delta_0}.
\]
(3.89)
Step 5: Estimate of $J J_5$.
This is basically identical to the estimate of $J J_2$. We have
\[
|J J_5| \leq \frac{C \epsilon}{\delta_0}
\] (3.90)

Step 6: Estimate of $J J_6$.
This is basically identical to the estimate of $J J_2$. We have
\[
|J J_6| \leq \frac{C \epsilon}{\delta_0}
\] (3.91)

Step 7: Estimate of $J J_7$.
This is basically identical to the estimate of $J J_2$. We have
\[
|J J_7| \leq \frac{C \epsilon}{\delta_0}
\] (3.92)

Step 8: Synthesis.
Summarizing all above, we have
\[
\left| \sin \phi \frac{\partial V}{\partial \eta} (\eta, \phi) \right| \leq C \left(1 + \frac{\epsilon}{\delta_0} \right).
\] (3.93)

Lemma 3.10. Assume $\|S\|_{L^\infty L^\infty} + \left\| \frac{\partial S}{\partial \eta} \right\|_{L^\infty L^\infty} \leq C$ and $\left| \frac{\partial \bar{V}}{\partial \eta} \right| \leq C(1 + |\ln(\epsilon)| + |\ln(\eta)|)$. For $\sin \phi \leq 0$ and $|E(\eta, \phi)| \geq e^{-V(\eta)}$, we have
\[
\left| \sin \phi \frac{\partial V}{\partial \eta} (\eta, \phi) \right| \leq C(1 + |\ln(\epsilon)|).
\] (3.94)

Proof. We use Formulation II to rewrite the equation as
\[
\dot{V}(\eta, \phi) = p(\phi_*(0)) \exp(-H_{\phi, \phi_*(0)}) + \int_{\phi^*}(S + \bar{V})(\eta_*(\phi_*), \phi_*) \exp(-H_{\phi, \phi_*})d\phi_*
\] (3.95)
where
\[
H_{\phi, \phi_*} = \int_{\phi_*}^\phi \frac{1}{F(\eta_*(\varpi)) \cos \varpi} d\varpi.
\] (3.96)
with $(\eta_*(\phi_*), \phi_*), (0, \phi_*(0))$ and (η, ϕ) are on the same characteristics. Then taking η derivative on both sides of (3.95) to obtain
\[
\frac{\partial V}{\partial \eta} (\eta, \phi) = JJ = JJ_1 + JJ_2 + JJ_3 + JJ_4 + JJ_5,
\] (3.97)
where

$$JJJ_1 = \frac{\partial p(\phi_*(0))}{\partial \eta} \exp(-H_{\phi, \phi}(0))$$

$$JJJ_2 = p(\phi_*(0)) \exp(-H_{\phi, \phi}(0)) \left(- \frac{\partial \phi_*(0)}{\partial \eta} \frac{1}{F(\eta_*(0)) \cos \phi_*(0)} + \int_{\phi_*(0)}^{\phi} \frac{F'(\eta_*(\omega))}{F^2(\eta_*(\omega)) \cos \omega \eta} d\omega \right)$$

$$JJJ_3 = -\frac{(S + \tilde{V})(0, \phi_*(0))}{F(0) \cos \phi_*(0)} \exp(-H_{\phi, \phi}(0))$$

$$JJJ_4 = \int_{\phi_*(0)}^{\phi} \frac{(S + \tilde{V})(\eta_*(\phi_*(0)), \phi_*)}{F(\eta_*(\phi_*(0))) \cos \phi_*(0)} \exp(-H_{\phi, \phi}(0)) \left(- \frac{F'(\eta_*(\phi_*(0)))}{F^2(\eta_*(\phi_*(0))) \cos \phi_*(0)} \frac{\partial \phi_*(0)}{\partial \eta} - \int_{\phi_*(0)}^{\phi} \frac{F'(\eta_*(\omega))}{F^2(\eta_*(\omega)) \cos \omega \eta} d\omega \right) d\phi_*,$$

$$JJJ_5 = \int_{\phi_*(0)}^{\phi} \frac{\partial (S + \tilde{V})(\eta_*(\phi_*(0)), \phi_*)}{\partial \eta} \frac{1}{F(\eta_*(\phi_*(0))) \cos \phi_*(0)} \exp(-H_{\phi, \phi}(0)) d\phi_*.$$

Then we divide the proof into several steps:

Step 1: Estimate of JJJ_1.

Since we know

$$e^{-V(0)} \cos \phi_*(0) = e^{-V(\eta)} \cos \phi,$$

taking η derivative on both sides of (3.103) implies

$$\frac{\partial \phi_*(0)}{\partial \eta} = -\frac{e^{V(0)-V(\eta)} F(\eta) \cos \phi}{\sin \phi_*(0)}.$$

which further yields

$$\left| \frac{\partial \phi_*(0)}{\partial \eta} \right| \leq \left| \frac{e^{V(0)-V(\eta)} F(\eta) \cos \phi}{\sin \phi} \right| \leq \left| \frac{C \epsilon}{\sin \phi} \right|,$$

due to

$$|\sin \phi_*(0)| \geq |\sin \phi|.$$

Hence, we have

$$\left| \frac{\partial p(\phi_*(0))}{\partial \eta} \right| \leq \|p\|_{W^{1,\infty}} \left| \frac{\partial \phi_*(0)}{\partial \eta} \right| \leq \left| \frac{C \epsilon}{\sin \phi} \right|.$$

Also, for $\sin \phi \leq \frac{1}{2}$ and $\eta \in [0, L]$, we always have

$$-H_{\phi, \phi}(0) = -\int_{\phi_*(0)}^{\phi} \frac{1}{F(\eta_*(\omega)) \cos \omega} d\omega \leq 0,$$

which further yields

$$\exp(-H_{\phi, \phi}(0)) \leq 1.$$

Then combining (3.107) and (3.109), we have

$$|JJJ_1| \leq \left| \frac{C \epsilon}{\sin \phi} \right|.$$

Step 2: Estimate of JJJ_2.

Based on the results in Step 1, we can easily verify

$$|p(\phi_*(0))| \leq C,$$

$$\left| \exp(-H_{\phi, \phi}(0)) \right| \leq 1,$$

$$\left| \frac{\partial \phi_*(0)}{\partial \eta} \right| \leq \left| \frac{C \epsilon}{\sin \phi} \right|. $$
Then since
\[e^{-V(\eta, \phi_*)} \cos \phi_* = e^{-V(\eta)} \cos \phi, \quad (3.114) \]
taking \(\xi \) derivative on both sides implies
\[\frac{\partial \eta_*(\phi_*)}{\partial \eta} = \frac{F(\eta) \cos \phi}{F(\eta_*(\phi_*)) \cos \phi_*} e^{V(\eta, \phi_*) - V(\eta)} = \frac{F(\eta)}{F(\eta_*(\phi_*))}. \quad (3.115) \]
Considering \(0 \leq \eta^* \leq L \), we may directly obtain
\[\left| \frac{F(\eta)}{F(\eta_*(\phi_*))} \right| \leq C, \quad (3.116) \]
which further leads to
\[\left| \frac{\partial \eta_*(\phi_*)}{\partial \eta} \right| \leq C. \quad (3.117) \]
On the other hand, for \(\sin \phi \leq 0 \) with \(|E(\eta, \phi)| \geq e^{-V(L)} \), we know
\[\left| e^{-V(\eta_*(\phi_*))} \cos \phi_* \right| = \left| e^{-V(\eta)} \cos \phi \right| \geq e^{-V(L)}, \quad (3.118) \]
which implies
\[|\cos \phi_*| \geq e^{V(\eta_*(\phi_*)) - V(L)} \geq e^{V(0) - V(L)} \geq C_0 > 0. \quad (3.119) \]
In total, we have shown
\[|\cos \phi_*| \geq C_0 > 0, \quad (3.120) \]
which naturally yields
\[\left| \frac{1}{F(0) \cos \phi_*(0)} \right| \leq \frac{C}{\epsilon}. \quad (3.121) \]
Also, we have
\[\left| \frac{F'\eta_*(\phi_*)}{F^2(\eta_*(\phi_*))} \right| = 1. \quad (3.122) \]
Hence, we have
\[|JJJ_2| \leq \left| \frac{C}{\sin \phi} \right|. \quad (3.123) \]

Step 3: Estimate of \(JJJ_3 \).
We may directly estimate
\[|JJJ_3| \leq \left| -\frac{(\xi + \xi') \phi_*(0)}{F(0) \cos \phi_*(0)} \right| \left| \exp(-H_{\phi, \phi_*(0)}) \right| \left| \frac{\partial \phi_*(0)}{\partial \eta} \right| \leq \frac{C}{\epsilon} \cdot 1 \cdot \frac{C_\epsilon \sin \phi}{\sin \phi} \leq \frac{C}{\sin \phi}, \quad (3.124) \]
based on the estimates from Step 1. Therefore, we have proved
\[|JJJ_3| \leq \left| \frac{C}{\sin \phi} \right|. \quad (3.125) \]

Step 4: Estimate of \(JJJ_4 \).
Using estimates in Step 1 and Step 2, we have
\[\left| -\frac{F'\eta_*(\phi_*)}{F^2(\eta_*(\phi_*)) \cos \phi_*} \frac{\partial \eta_*(\phi_*)}{\partial \eta} - \int_\phi^\phi \frac{F'\eta_*(\phi_*)}{F^2(\eta_*(\phi_*) \cos \phi_*)} \frac{\partial \eta_*(\phi_*)}{\partial \eta} \right| \leq \frac{1}{\cos \phi_*} \frac{\partial \eta_*(\phi_*)}{\partial \eta} + \frac{1}{\cos \phi_*} \frac{\partial \eta_*(\phi_*)}{\partial \eta} \leq C. \quad (3.126) \]
Then we know
\[|JJJ_4| \leq C \left| \int_\phi^\phi \frac{1}{F(\eta_*(\phi_*)) \cos \phi_*} \exp(-H_{\phi, \phi_*(0)}) \right| \leq \left| \exp(-H_{\phi, \phi_*(0)}) - 1 \right| \leq C. \quad (3.127) \]
Step 5: Estimate of \(JJJ_5\).
We decompose \(JJJ_5\) as

\[
JJJ_5 = \int_{\phi_s(0)}^{\phi_s} \frac{\partial S(\eta_*, \phi_*)}{\partial \eta} \frac{1}{F(\eta_*(\phi_*)) \cos \phi_* \exp(-H_{\phi,\phi_*}) d\phi_*}
+ \int_{\phi_s(0)}^{\phi_s} \frac{\partial \tilde{Y}(\eta_*, \phi_*)}{\partial \eta} \frac{1}{F(\eta_*(\phi_*)) \cos \phi_* \exp(-H_{\phi,\phi_*}) d\phi_*} = JJJ_{5,1} + JJJ_{5,2}.
\]

We may direct estimate

\[
|JJJ_{5,1}| \leq C \left| \int_{\phi_s(0)}^{\phi_s} \frac{1}{F(\eta_*(\phi_*)) \cos \phi_*} \exp(-H_{\phi,\phi_*}) d\phi_* \right| = C \left| \exp(-H_{\phi,\phi_*}) - 1 \right| \leq C. \tag{3.129}
\]

Note that we cannot estimate \(JJJ_{5,2}\) as above since \(\frac{\partial \tilde{Y}(\eta_*(\phi_*))}{\partial \eta}\) involves derivative of \(\tilde{Y}\) in the normal direction, which might contain singularity when approaching the boundary. Fortunately, this term lies in the integral along the characteristics, so we may substitute the principle variable \(\phi_* \rightarrow \eta_*\) back into formulation I as \((\eta_*, \phi_*(\eta_*)))\). This implies the substitution for derivative

\[
\frac{\partial}{\partial \eta} \rightarrow \frac{\partial}{\partial \eta} + \frac{\partial}{\partial \eta_*} \frac{\partial \eta_*}{\partial \eta} = \frac{\partial}{\partial \eta_*} \frac{F(\eta_*)}{F(\eta_*(\phi_*)) \cos \phi_*} \exp(-H_{\phi,\phi_*}) \frac{\partial \phi_*}{\partial \eta_*} d\eta_* \tag{3.130}
\]

Hence, for \(\eta^+\) denoting the intersection of characteristics with \(\sin \phi = 0\), we know

\[
JJJ_{5,2} = \int_{0}^{\eta^+} \left(\frac{\partial \tilde{Y}(\eta_*)}{\partial \eta} \frac{F(\eta_*)}{F(\eta_*(\phi_*)) \cos \phi_*} \exp(-H_{\phi,\phi_*}) \frac{\partial \phi_*}{\partial \eta_*} \right) d\eta_*
+ \int_{\eta}^{\eta^+} \left(\frac{\partial \tilde{Y}(\eta_*)}{\partial \eta} \frac{F(\eta_*)}{F(\eta_*(\phi_*)) \cos \phi_*} \exp(-H_{\phi,\phi_*}) \frac{\partial \phi_*}{\partial \eta_*} \right) d\eta_*
= \int_{0}^{\eta^+} \frac{\partial \tilde{Y}(\eta_*)}{\partial \eta} \frac{F(\eta_*)}{F(\eta_*(\phi_*)) \cos \phi_*} \exp(-H_{\phi,\phi_*}) \frac{\partial \phi_*}{\partial \eta_*} d\eta_*
+ \int_{\eta}^{\eta^+} \frac{\partial \tilde{Y}(\eta_*)}{\partial \eta} \frac{F(\eta_*)}{F(\eta_*(\phi_*)) \cos \phi_*} \exp(-H_{\phi,\phi_*}) \frac{\partial \phi_*}{\partial \eta_*} d\eta_*
= \int_{0}^{\eta^+} \frac{\partial \tilde{Y}(\eta_*)}{\partial \eta} \frac{F(\eta_*)}{F(\eta_*(\phi_*)) \sin \phi_* (\eta_*)} \exp(-H_{\phi,\phi_*}) d\eta_* \tag{3.132}
+ \int_{\eta}^{\eta^+} \frac{\partial \tilde{Y}(\eta_*)}{\partial \eta} \frac{F(\eta_*)}{F(\eta_*(\phi_*)) \sin \phi_* (\eta_*)} \exp(-H_{\phi,\phi_*}) d\eta_*,
\]

where

\[
\frac{\partial \phi_*}{\partial \eta_*} = \frac{F(\eta_*) \cos \phi_*(\eta_*)}{\sin \phi_*(\eta_*)} \tag{3.132}
\]

Since

\[
\left| \frac{\partial \tilde{Y}}{\partial \eta} \right| \leq C(1 + |\ln(\epsilon)| + |\ln(\eta)|), \tag{3.133}
\]

and \(\sin \phi_* \sim \sqrt{\epsilon(\eta_* - \eta^+)}\), we know above integral is finite, i.e.

\[
|JJJ_{5,2}| \leq C(1 + |\ln(\epsilon)|). \tag{3.134}
\]

Therefore, we know

\[
|JJJ_5| \leq C(1 + |\ln(\epsilon)|). \tag{3.135}
\]
Step 6: Synthesis.
In summary, we have shown
\[|JJJ| \leq C(1 + |\ln(\epsilon)|) + \frac{C}{\sin \phi}. \] (3.136)
which implies
\[\left| \sin \phi \frac{\partial \mathcal{Y}}{\partial \eta}(\eta, \phi) \right| \leq C(1 + |\ln(\epsilon)|). \] (3.137)
\[
\square
\]
Remark 3.11. Estimates in Lemma 3.10, Lemma 3.9 and Lemma 3.11 can provide pointwise bounds of derivatives. However, they are not uniform estimates due to presence of \(\delta_0 \) and \(\ln(\eta) \). We need weighted \(L^\infty \) estimates of derivatives to close the proof.

3.4. Mild Formulation of Normal Derivative. Consider the \(\epsilon \)-transport problem for \(\mathcal{A} = \zeta \frac{\partial \mathcal{Y}}{\partial \eta} \) as
\[
\begin{align*}
\sin \phi \frac{\partial \mathcal{A}}{\partial \eta} + F(\eta) \cos \phi \frac{\partial \mathcal{A}}{\partial \phi} + \mathcal{A} &= \mathcal{A} + S_{\mathcal{A}}, \\
\mathcal{A}(0, \phi) &= p_{\mathcal{A}}(\phi) \text{ for } \sin \phi > 0, \\
\mathcal{A}(L, \phi) &= \mathcal{A}(L, R\phi),
\end{align*}
\] (3.138)
where \(p_{\mathcal{A}} \) and \(S_{\mathcal{A}} \) will be specified later with
\[
\mathcal{A}(\eta, \phi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\zeta(\eta, \phi)}{\zeta(\eta, \phi_*)} \mathcal{A}(\eta, \phi_*) d\phi_*.
\] (3.139)

Lemma 3.12. We have
\[
\| \mathcal{A} \|_{L^\infty L^\infty} \leq C \left(\| p_{\mathcal{A}} \|_{L^\infty} + \| S_{\mathcal{A}} \|_{L^\infty L^\infty} \right)
\] (3.140)
\[
+ C|\ln(\epsilon)|^8 \left(\| \mathcal{Y} \|_{L^\infty L^\infty} + \| \frac{\partial \mathcal{P}}{\partial \phi} \|_{L^\infty} + \| S \|_{L^\infty L^\infty} + \| \frac{\partial \mathcal{S}}{\partial \eta} \|_{L^\infty L^\infty} + \| \frac{\partial \mathcal{S}}{\partial \eta} \|_{L^\infty L^\infty} \right).
\]
The rest of this subsection will be devoted to the proof of this lemma. We first introduce some notation. Define the energy as before
\[
E(\eta, \phi) = e^{-V(\eta)} \cos \phi.
\] (3.141)
Along the characteristics, where this energy is conserved and \(\zeta \) is a constant, the equation can be simplified as follows:
\[
\sin \phi \frac{d\mathcal{A}}{d\eta} + \mathcal{A} = \mathcal{A} + S_{\mathcal{A}}.
\] (3.142)
An implicit function \(\eta^+(\eta, \phi) \) can be determined through
\[
|E(\eta, \phi)| = e^{-V(\eta^+)}.
\] (3.143)
which means \((\eta^+, \phi_0) \) with \(\sin \phi_0 = 0 \) is on the same characteristics as \((\eta, \phi) \). Define the quantities for \(0 \leq \eta' \leq \eta^+ \) as follows:
\[
\phi'(\phi, \eta, \eta') = \cos^{-1}(e^{V(\eta') - V(\eta)} \cos \phi),
\] (3.144)
\[
R\phi'(\phi, \eta, \eta') = -\cos^{-1}(e^{V(\eta') - V(\eta)} \cos \phi) = -\phi'(\phi, \eta, \eta'),
\] (3.145)
where the inverse trigonometric function can be defined single-valued in the domain \([0, \pi]\) and the quantities are always well-defined due to the monotonicity of \(V \). Note that \(\sin \phi' \geq 0 \), even if \(\sin \phi < 0 \). Finally we put
\[
G_{\eta, \eta'}(\phi) = \int_{\eta'}^{\eta} \frac{1}{\sin(\phi'(\phi, \eta, \xi))} d\xi.
\] (3.146)
Similar to \(\epsilon \)-Milne problem, we can define the solution along the characteristics as follows:
\[
\mathcal{A}(\eta, \phi) = \mathcal{K}[p_{\mathcal{A}}] + \mathcal{T}[\mathcal{A} + S_{\mathcal{A}}],
\] (3.147)
where

Region I:
For \(\sin \phi > 0 \),
\[
K[p_{a\phi}] = p_{a\phi}(\phi'(0)) \exp(-G_{\eta,0}) \tag{3.148}
\]
\[
T[a\phi + S_{a\phi}] = \int_{0}^{\eta} \frac{(a\phi + S_{a\phi})(\eta', \phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(-G_{\eta,\eta'}) d\eta' \tag{3.149}
\]

Region II:
For \(\sin \phi < 0 \) and \(|E(\eta, \phi)| \leq e^{-V(L)} \),
\[
K[p_{a\phi}] = p_{a\phi}(\phi'(0)) \exp(-G_{L,0} - G_{L,\eta}) \tag{3.150}
\]
\[
T[a\phi + S_{a\phi}] = \int_{0}^{L} \frac{(a\phi + S_{a\phi})(\eta', \phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(-G_{L,\eta'} - G_{L,\eta}) d\eta' \tag{3.151}
\]
+ \[
\int_{\eta}^{L} \frac{(a\phi + S_{a\phi})(\eta', R\phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(-G_{\eta',\eta}) d\eta'.
\]

Region III:
For \(\sin \phi < 0 \) and \(|E(\eta, \phi)| \geq e^{-V(L)} \),
\[
K[p_{a\phi}] = p_{a\phi}(\phi'(\eta, 0)) \exp(-G_{\eta+0,0} - G_{\eta+,\eta}) \tag{3.152}
\]
\[
T[a\phi + S_{a\phi}] = \int_{0}^{\eta} \frac{(a\phi + S_{a\phi})(\eta', \phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(-G_{\eta+,\eta'} - G_{\eta+,\eta}) d\eta' \tag{3.153}
\]
+ \[
\int_{\eta}^{\eta} \frac{(a\phi + S_{a\phi})(\eta', R\phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(-G_{\eta',\eta}) d\eta'.
\]

Then we need to estimate \(K[p_{a\phi}] \) and \(T[a\phi + S_{a\phi}] \) in each case. We assume \(0 < \delta << 1 \) and \(0 < \delta_0 << 1 \) are small quantities which will be determined later.

3.4.1. Region I: \(\sin \phi > 0 \). Based on \cite{17} Lemma 4.7, Lemma 4.8], we can directly obtain
\[
|K[p_{a\phi}]| \leq \|p_{a\phi}\|_{L^\infty}, \tag{3.154}
\]
\[
|T[S_{a\phi}]| \leq \|S_{a\phi}\|_{L^\infty}. \tag{3.155}
\]

Hence, we only need to estimate \(I = T[a\phi] \). We divide it into several steps:

Step 0: Preliminaries.
We have
\[
E(\eta', \phi') = \frac{R_{\kappa} - \epsilon \eta'}{R_{\kappa}} \cos \phi'. \tag{3.156}
\]

We can directly obtain
\[
\zeta(\eta', \phi') = \frac{1}{R_{\kappa}} \sqrt{R_{\kappa}^2 - \left((R_{\kappa} - \epsilon \eta') \cos \phi'\right)^2} = \frac{1}{R_{\kappa}} \sqrt{R_{\kappa}^2 - (R_{\kappa} - \epsilon \eta')^2 + (R_{\kappa} - \epsilon \eta')^2 \sin^2 \phi'}, \tag{3.157}
\]
\[
\leq \sqrt{R_{\kappa}^2 - (R_{\kappa} - \epsilon \eta')^2} + \sqrt{(R_{\kappa} - \epsilon \eta')^2 \sin^2 \phi'} \leq C \left(\sqrt{\epsilon \eta'} + \sin \phi' \right), \tag{3.155}
\]
and
\[
\zeta(\eta', \phi') \geq \frac{1}{R_{\kappa}} \sqrt{R_{\kappa}^2 - (R_{\kappa} - \epsilon \eta')^2} \geq C \sqrt{\epsilon \eta'}. \tag{3.158}
\]
Also, we know for $0 \leq \eta' \leq \eta$,
\[
\sin \phi' = \sqrt{1 - \cos^2 \phi'} = \sqrt{1 - \left(\frac{R_\kappa - \epsilon \eta}{R_\kappa - \epsilon \eta'} \right)^2 \cos^2 \phi}
\]
\[
= \sqrt{(R_\kappa - \epsilon \eta')^2 \sin^2 \phi + (2R_\kappa - \epsilon \eta - \epsilon \eta')(\epsilon \eta - \epsilon \eta') \cos^2 \phi}
\]
\[
\frac{R_\kappa - \epsilon \eta'}{R_\kappa - \epsilon \eta'}.
\]
(3.159)

Since
\[
0 \leq (2R_\kappa - \epsilon \eta - \epsilon \eta')(\epsilon \eta - \epsilon \eta') \cos^2 \phi \leq 2R_\kappa \epsilon (\eta - \eta'),
\]
(3.161)
we have
\[
\sin \phi \leq \sin \phi' \leq 2 \sqrt{\sin^2 \phi + \epsilon (\eta - \eta')},
\]
(3.162)
which means
\[
\frac{1}{2 \sqrt{\sin^2 \phi + \epsilon (\eta - \eta')}} \leq \frac{1}{\sin \phi'} \leq \frac{1}{\sin \phi}.
\]
(3.163)

Therefore,
\[
- \int_{\eta'}^{\eta} \frac{1}{\sin \phi'(y)} \, dy \leq - \int_{\eta'}^{\eta} \frac{1}{2 \sqrt{\sin^2 \phi + \epsilon (\eta - y)}} \, dy
\]
\[
= \frac{1}{\epsilon} \left(\sin \phi - \sqrt{\sin^2 \phi + \epsilon (\eta - \eta')} \right)
\]
\[
= - \frac{\eta - \eta'}{\sin \phi + \sqrt{\sin^2 \phi + \epsilon (\eta - \eta')}}
\]
\[
\leq - \frac{\eta - \eta'}{2 \sqrt{\sin^2 \phi + \epsilon (\eta - \eta')}}.
\]
(3.164)

Define a cut-off function $\chi \in C^\infty[-\pi, \pi]$ satisfying
\[
\chi(\phi) = \begin{cases}
1 & \text{for } |\sin \phi| \leq \delta, \\
0 & \text{for } |\sin \phi| \geq 2\delta,
\end{cases}
\]
(3.165)

In the following, we will divide the estimate of I into several cases based on the value of $\sin \phi$, $\sin \phi'$, $\epsilon \eta'$ and $\epsilon (\eta - \eta')$. Let 1 denote the indicator function. We write
\[
I = \int_0^{\eta} \frac{1}{\sin \phi'(y)} \, dy + \int_0^{\eta} \frac{1}{\epsilon} \left(\sin \phi - \sqrt{\sin^2 \phi + \epsilon (\eta - \eta')} \right) - \sqrt{\sin^2 \phi + \epsilon (\eta - \eta')}
\]
\[
\leq - \frac{\eta - \eta'}{2 \sqrt{\sin^2 \phi + \epsilon (\eta - \eta')}}.
\]
(3.166)

Step 1: Estimate of I_1 for $\sin \phi \geq \delta_0$.
Based on Lemma 13.3 we know
\[
\left| \sin \phi \frac{\partial \gamma}{\partial \eta} \right| \leq C \left(1 + \frac{1}{\delta_0} \right) \left(\| \gamma \|_{L^\infty} + \frac{\partial h}{\partial \phi} \left|_{L^\infty} \right| + \frac{\partial S}{\partial \phi} \left|_{L^\infty} \right| + \frac{\partial S}{\partial \eta} \left|_{L^\infty} \right| \right).
\]
(3.167)

Hence, we have
\[
|I_1| \leq C \frac{\partial \gamma}{\partial \eta} \leq C \left(\| \gamma \|_{L^\infty} + \frac{\partial h}{\partial \phi} \left|_{L^\infty} \right| + \frac{\partial S}{\partial \phi} \left|_{L^\infty} \right| + \frac{\partial S}{\partial \eta} \left|_{L^\infty} \right| \right).
\]
(3.168)
Step 2: Estimate of I_2 for $0 \leq \sin \phi \leq \delta_0$ and $\chi(\phi_*) < 1$.

We have

$$I_2 = \frac{1}{2\pi} \int_{\eta}^{\pi} \left(\int_{-\pi}^{\pi} \zeta(\eta', \phi') (1 - \chi(\phi_*)) \psi'(\eta', \phi_*) \frac{1}{\sin \phi'} \exp(-G_{n, \eta'}) d\eta' \right) \frac{1}{\sin \phi} \exp(-G_{n, \eta}) d\eta'$$

(3.169)

Based on the ε-Milne problem of γ' as

$$\sin \phi_1 \frac{\partial \gamma'(\eta', \phi_*)}{\partial \eta'} + F(\eta') \cos \phi_* \frac{\partial \gamma'(\eta', \phi_*)}{\partial \phi_*} + \gamma'(\eta', \phi_*) - \bar{\gamma}'(\eta') = S(\eta', \phi_*),$$

we have

$$\frac{\partial \gamma'(\eta', \phi_*)}{\partial \eta'} = -\frac{1}{\sin \phi_*} \left(F(\eta') \cos \phi_* \frac{\partial \gamma'(\eta', \phi_*)}{\partial \phi_*} + \gamma'(\eta', \phi_*) - \bar{\gamma}'(\eta') - S(\eta', \phi_*) \right)$$

(3.170)

Hence, we have

$$\gamma' = \int_{-\pi}^{\pi} \zeta(\eta', \phi') (1 - \chi(\phi_*)) \frac{\partial \gamma'(\eta', \phi_*)}{\partial \eta'} d\phi_*$$

(3.172)

We may directly obtain

$$\left| \gamma'_1 \right| \leq \int_{-\pi}^{\pi} \zeta(\eta', \phi') (1 - \chi(\phi_*)) \frac{1}{\sin \phi_*} \left(\gamma'(\eta', \phi_*) - \bar{\gamma}'(\eta') - S(\eta', \phi_*) \right) d\phi_*$$

(3.173)

On the other hand, an integration by parts yields

$$\gamma'_2 = \int_{-\pi}^{\pi} \frac{\partial}{\partial \phi_*} \left(\zeta(\eta', \phi') (1 - \chi(\phi_*)) \frac{1}{\sin \phi_*} F(\eta') \cos \phi_* \right) \gamma'(\eta', \phi_*) d\phi_*,$$

(3.174)

which further implies

$$\left| \gamma'_2 \right| \leq \frac{C}{\delta \| L^\infty_{L^\infty} \| L^\infty_{L^\infty} \leq C(\delta) \| L^\infty_{L^\infty} \| L^\infty_{L^\infty} \| L^\infty_{L^\infty} \| L^\infty_{L^\infty} \|. $$

(3.175)

Since we can use substitution to show

$$\int_{0}^{\eta} \frac{1}{\sin \phi'} \exp(-G_{n, \eta'}) d\eta' \leq 1,$$

(3.176)

we have

$$\left| I_2 \right| \leq C(\delta) \left(\| L^\infty_{L^\infty} \| L^\infty_{L^\infty} \| S \| L^\infty_{L^\infty} \| L^\infty_{L^\infty} \right) \int_{0}^{\eta} \frac{1}{\sin \phi'} \exp(-G_{n, \eta'}) d\eta'$$

(3.177)

Step 3: Estimate of I_3 for $0 \leq \sin \phi \leq \delta_0$, $\chi(\phi_*) = 1$ and $\sqrt{\epsilon_T} \geq \sin \phi'$.

Based on (3.157), this implies

$$\zeta(\eta', \phi') \leq C \sqrt{\epsilon_T}. $$
Hence, we have

\[
\int_{-\pi}^{\pi} \frac{\zeta(\eta', \phi')}{\zeta(\eta', \phi_*)} \chi(\phi_*) \mathcal{A}(\eta', \phi_*) d\phi_* \leq C \int_{-\delta}^{\delta} \mathcal{A}(\eta', \phi_*) d\phi_* \leq C \delta \|\mathcal{A}\|_{L^\infty L^\infty}.
\]
(3.178)

Hence, we have

\[
|I_3| \leq C \delta \|\mathcal{A}\|_{L^\infty L^\infty} \int_0^\eta \frac{1}{\sin \phi'} \exp(-G_{0, \eta'}) d\eta' \leq C \delta \|\mathcal{A}\|_{L^\infty L^\infty}.
\]
(3.179)

Step 4: Estimate of \(I_4\) for \(0 \leq \sin \phi \leq \delta_0\), \(\chi(\phi_*) = 1\), \(\sqrt{c\eta'} \leq \sin \phi'\) and \(\sin^2 \phi \leq \epsilon(\eta - \eta')\).

Based on (3.157), this implies

\[
\zeta(\eta', \phi') \leq C \sin \phi'.
\]
(3.180)

Based on (3.164), we have

\[
-G_{n, \eta'} = - \int_\eta^{\eta'} \frac{1}{\sin \phi'(y)} dy \leq - \frac{\eta - \eta'}{2\sqrt{\epsilon(\eta - \eta')}} \leq - C \sqrt{\frac{\eta - \eta'}{\epsilon}}.
\]
(3.181)

Hence, we know

\[
|I_4| \leq C \int_0^\eta \left(\int_{-\pi}^{\pi} \frac{\zeta(\eta', \phi')}{\zeta(\eta', \phi_*)} \chi(\phi_*) \mathcal{A}(\eta', \phi_*) d\phi_* \right) \frac{1}{\sin \phi'} \exp(-G_{n, \eta'}) d\eta'
\]
\[
\leq C \int_0^\eta \left(\int_{-\delta}^{\delta} \frac{1}{\zeta(\eta', \phi_*)} \mathcal{A}(\eta', \phi_*) d\phi_* \right) \zeta(\eta', \phi') \sin \phi' \exp(-G_{n, \eta'}) d\eta'
\]
\[
\leq C \delta \|\mathcal{A}\|_{L^\infty L^\infty} \int_0^\eta \frac{1}{\sqrt{c\eta'}} \exp(-G_{n, \eta'}) d\eta'
\]
\[
\leq C \delta \|\mathcal{A}\|_{L^\infty L^\infty} \int_0^\eta \frac{1}{\sqrt{c\eta'}} \exp \left(- C \sqrt{\frac{\eta - \eta'}{\epsilon}} \right) d\eta'.
\]
(3.182)

Define \(z = \frac{\eta'}{\epsilon}\), which implies \(d\eta' = c dz\). Substituting this into above integral, we have

\[
|I_4| \leq C \delta \|\mathcal{A}\|_{L^\infty L^\infty} \int_0^{\eta/\epsilon} \frac{1}{\sqrt{z}} \exp \left(- C \sqrt{\frac{\eta}{\epsilon} - z} \right) dz
\]
\[
= C \delta \|\mathcal{A}\|_{L^\infty L^\infty} \left(\int_0^{1} \frac{1}{\sqrt{z}} \exp \left(- C \sqrt{\frac{\eta}{\epsilon} - z} \right) dz + \int_1^{\eta/\epsilon} \frac{1}{\sqrt{z}} \exp \left(- C \sqrt{\frac{\eta}{\epsilon} - z} \right) dz \right).
\]
(3.183)

We can estimate these two terms separately.

\[
\int_0^{1} \frac{1}{\sqrt{z}} \exp \left(- C \sqrt{\frac{\eta}{\epsilon} - z} \right) dz \leq \int_0^{1} \frac{1}{\sqrt{z}} dz = 2.
\]
(3.184)

\[
\int_1^{\eta/\epsilon} \frac{1}{\sqrt{z}} \exp \left(- C \sqrt{\frac{\eta}{\epsilon} - z} \right) dz \leq \int_1^{\eta/\epsilon} \exp \left(- C \sqrt{\frac{\eta}{\epsilon} - z} \right) dz \leq \int_1^{\infty} \exp \left(- C \sqrt{\frac{\eta}{\epsilon} - z} \right) dz \leq 2 \int_0^{\infty} e^{-Ct} dt < \infty.
\]
(3.185)

Hence, we know

\[
|I_4| \leq C \delta \|\mathcal{A}\|_{L^\infty L^\infty}.
\]
(3.186)

Step 5: Estimate of \(I_5\) for \(0 \leq \sin \phi \leq \delta_0\), \(\chi(\phi_*) = 1\), \(\sqrt{c\eta'} \leq \sin \phi'\) and \(\sin^2 \phi \geq \epsilon(\eta - \eta')\).

Based on (3.157), this implies

\[
\zeta(\eta', \phi') \leq C \sin \phi'.
\]
(3.187)

Based on (3.164), we have

\[
-G_{n, \eta'} = - \int_{\eta'}^{\eta} \frac{1}{\sin \phi'(y)} dy \leq - \frac{C(\eta - \eta')}{\sin \phi}.
\]
(3.188)
Hence, we have
\[|I_5| \leq C \| \mathcal{A} \|_{L^\infty L^\infty} \int_0^\eta \left(\int_{-\delta}^{\delta} \frac{1}{\zeta(\eta', \phi_*)} \, d\phi_* \right) \exp \left(-\frac{C(\eta - \eta')}{\sin \phi} \right) \, d\eta' \] (3.188)

Here, we use a different way to estimate the inner integral. We use substitution to find
\[
\int_{-\delta}^{\delta} \frac{1}{\zeta(\eta', \phi_*)} \, d\phi_* = \int_{-\delta}^{\delta} \frac{1}{\left(R_k^2 - (R_k - \epsilon \eta')^2 \cos \phi_*^2 \right)^{1/2}} \, d\phi_*
\] (3.189)

\[
\sin \phi_* \text{ small} \leq C \int_{-\delta}^{\delta} \frac{\cos \phi_*}{R_k^2 - (R_k - \epsilon \eta')^2 \cos \phi_*^2} \, d\phi_*
\]

\[
= C \int_{-\delta}^{\delta} \frac{\cos \phi_*}{R_k^2 - (R_k - \epsilon \eta')^2 + (R_k - \epsilon \eta')^2 \sin \phi_*^2} \, d\phi_*
\]

\[
y = \sin \phi_* \int_{-\delta}^{\delta} \frac{1}{R_k^2 - (R_k - \epsilon \eta')^2 + (R_k - \epsilon \eta')^2 y^2} \, dy.
\]

Define
\[
p = \sqrt{R_k^2 - (R_k - \epsilon \eta')^2} = \sqrt{2R_k \epsilon \eta' - \epsilon^2 \eta'^2} \leq C \sqrt{\epsilon \eta'},
\]

\[
q = R_k - \epsilon \eta' \geq C,
\]

\[
r = \frac{p}{q} \leq C \sqrt{\epsilon \eta'}.
\]

Then we have
\[
\int_{-\delta}^{\delta} \frac{1}{\zeta(\eta', \phi_*)} \, d\phi_* \leq C \int_{-\delta}^{\delta} \frac{1}{(p^2 + q^2 y^2)^{1/2}} \, dy
\]

\[
\leq C \int_{-2}^{2} \frac{1}{(p^2 + q^2 y^2)^{1/2}} \, dy \leq C \int_{-2}^{2} \frac{1}{(r^2 + y^2)^{1/2}} \, dy
\]

\[
\leq C \int_{-2}^{2} \frac{1}{(r^2 + y^2)^{1/2}} \, dy = \left(\ln(y + \sqrt{r^2 + y^2}) - \ln(r) \right)_{-2}^{2}
\]

\[
\leq C \left(\ln(2 + \sqrt{r^2 + 4}) - \ln r \right) \leq C \left(1 + \ln(r) \right)
\]

\[
\leq C \left(1 + |\ln(\epsilon)| + |\ln(\eta')| \right).
\]

Hence, we know
\[
|I_5| \leq C \| \mathcal{A} \|_{L^\infty L^\infty} \int_0^\eta \left(1 + |\ln(\epsilon)| + |\ln(\eta')| \right) \exp \left(-\frac{C(\eta - \eta')}{\sin \phi} \right) \, d\eta'
\] (3.194)

We may directly compute
\[
\left| \int_0^\eta \left(1 + |\ln(\epsilon)| \right) \exp \left(-\frac{C(\eta - \eta')}{\sin \phi} \right) \, d\eta' \right| \leq C \sin \phi \left(1 + |\ln(\epsilon)| \right).
\] (3.195)

Hence, we only need to estimate
\[
\left| \int_0^\eta |\ln(\eta')| \exp \left(-\frac{C(\eta - \eta')}{\sin \phi} \right) \, d\eta' \right|.
\] (3.196)
Hence, we only need to estimate
\[
\left| \int_0^\eta |\ln(\eta')| \exp \left(-\frac{C(\eta - \eta')}{\sin \phi} \right) \, d\eta' \right| \leq \left(\int_0^\eta \ln^2(\eta') \, d\eta' \right)^{1/2} \left(\int_0^\eta \exp \left(-\frac{2C(\eta - \eta')}{\sin \phi} \right) \, d\eta' \right)^{1/2}
\]
(3.197)
\[
\leq \left(\int_0^2 \ln^2(\eta') \, d\eta' \right)^{1/2} \left(\int_0^\eta \exp \left(-\frac{2C(\eta - \eta')}{\sin \phi} \right) \, d\eta' \right)^{1/2}
\]
\[
\leq \sqrt{\sin \phi}.
\]

If \(\eta \geq 2 \), we decompose and apply Cauchy’s inequality to obtain
\[
\left| \int_0^\eta |\ln(\eta')| \exp \left(-\frac{C(\eta - \eta')}{\sin \phi} \right) \, d\eta' \right|
\leq \int_0^2 |\ln(\eta')| \exp \left(-\frac{C(\eta - \eta')}{\sin \phi} \right) \, d\eta' + \int_2^\eta |\ln(\eta')| \exp \left(-\frac{C(\eta - \eta')}{\sin \phi} \right) \, d\eta'
\leq \left(\int_0^2 \ln^2(\eta') \, d\eta' \right)^{1/2} \left(\int_0^2 \exp \left(-\frac{2C(\eta - \eta')}{\sin \phi} \right) \, d\eta' \right)^{1/2} + \ln(2) \left| \int_2^\eta \exp \left(-\frac{C(\eta - \eta')}{\sin \phi} \right) \, d\eta' \right|
\leq C \left(\sqrt{\sin \phi + \sin \phi} \right) \leq C \sqrt{\sin \phi}.
\]

Hence, we have
\[
|I_5| \leq C(1 + |\ln(\epsilon)|) \sqrt{\delta_0} \|J\|_{L^\infty L^\infty}.
\]
(3.199)

Step 6: Synthesis.
Collecting all the terms in the previous steps, we have proved
\[
|I| \leq C(1 + |\ln(\epsilon)|) \sqrt{\delta_0} \|J\|_{L^\infty L^\infty} + C\delta \|J\|_{L^\infty L^\infty}
+ C \left(\left\| J' \right\|_{L^\infty L^\infty} + \left\| \frac{\partial J}{\partial \phi} \right\|_{L^\infty L^\infty} + \left\| \frac{S}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial S}{\partial \eta} \right\|_{L^\infty L^\infty} \right) + C(\delta) \left(\left\| J' \right\|_{L^\infty L^\infty} + \left\| S \right\|_{L^\infty L^\infty} \right).
\]
(3.200)

Therefore, we know
\[
|J| \leq \left\| p_{J'} \right\|_{L^\infty} + \left\| S_{J'} \right\|_{L^\infty} + C(1 + |\ln(\epsilon)|) \sqrt{\delta_0} \|J\|_{L^\infty L^\infty} + C\delta \|J\|_{L^\infty L^\infty}
+ C \left(\left\| J' \right\|_{L^\infty L^\infty} + \left\| \frac{\partial J}{\partial \phi} \right\|_{L^\infty L^\infty} + \left\| \frac{S}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial S}{\partial \eta} \right\|_{L^\infty L^\infty} \right) + C(\delta) \left(\left\| J' \right\|_{L^\infty L^\infty} + \left\| S \right\|_{L^\infty L^\infty} \right).
\]
(3.201)

3.4.2. Region II: \(\sin \phi < 0 \) and \(|E(\eta, \phi)| \leq e^{-V_L} \).

\[
K[p_{J'}] = p_{J'}(\phi(0)) \exp(-G_{L,0} - G_{L,\eta})
\]
(3.202)

\[
T[J' + S_{J'}] = \int_0^L \frac{(J' + S)(\eta, \phi(\eta))}{\sin(\phi(\eta))} \exp(-G_{L,\eta'} - G_{L,\eta}) \, d\eta' + \int_\eta^L \frac{(J' + S)(\eta, \phi(\eta))}{\sin(\phi(\eta))} \exp(-G_{\eta', \eta}) \, d\eta'.
\]
(3.203)

Based on [17] Lemma 4.7, Lemma 4.8, we can directly obtain
\[
|K[p_{J'}]| \leq \|p_{J'}\|_{L^\infty},
\]
(3.204)

\[
|T[S_{J'}]| \leq \|S_{J'}\|_{L^\infty L^\infty}.
\]
(3.205)

Hence, we only need to estimate \(II = T[J'] \). In particular, we can decompose
\[
T[J'] = \int_0^L \frac{J'(\eta', \phi(\eta'))}{\sin(\phi(\eta'))} \exp(-G_{L,\eta'} - G_{L,\eta}) \, d\eta' + \int_\eta^L \frac{J'(\eta', \phi(\eta'))}{\sin(\phi(\eta'))} \exp(-G_{\eta', \eta}) \, d\eta'
\]
(3.206)
\[
= \int_0^\eta \frac{J'(\eta', \phi(\eta'))}{\sin(\phi(\eta'))} \exp(-G_{L,\eta'} - G_{L,\eta}) \, d\eta' + \int_\eta^L \frac{J'(\eta', \phi(\eta'))}{\sin(\phi(\eta'))} \exp(-G_{\eta', \eta}) \, d\eta'.
\]
The integral $\int_0^L \cdots$ can be estimated as in Region I, so we only need to estimate the integral $\int_{\eta}^L \cdots$. Also, noting that fact that
\[\exp(-G_{L,0'} - G_{L,\eta}) \leq \exp(-G_{\eta',\eta}), \tag{3.207} \]
we only need to estimate
\[\int_{\eta}^L \frac{\delta'(\eta', R\phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(-G_{\eta',\eta}) \, d\eta'. \tag{3.208} \]
Here the proof is almost identical to Case I, so we only point out the key differences.

Step 0: Preliminaries.
We need to update one key result. For $0 \leq \eta \leq \eta'$,
\[\sin \phi' = \sqrt{1 - \cos^2 \phi'} = \sqrt{1 - \left(\frac{R_\kappa - \epsilon \eta}{R_\kappa - \epsilon \eta'}\right)^2 \cos^2 \phi} \tag{3.209} \]
\[= \sqrt{(R_\kappa - \epsilon \eta')^2 \sin^2 \phi + (2R_\kappa - \epsilon \eta - \epsilon \eta')(\epsilon \eta' - \epsilon \eta) \cos^2 \phi} \]
\[\leq |\sin \phi|. \tag{3.210} \]
Then we have
\[- \int_{\eta}^{\eta'} \frac{1}{\sin \phi'(y)} \, dy \leq - \frac{\eta' - \eta}{|\sin \phi|}. \tag{3.211} \]
In the following, we will divide the estimate of II into several cases based on the value of $\sin \phi$, $\sin \phi'$ and $\epsilon \eta'$. We write
\[II = \int_{\eta}^L 1_{\{\sin \phi \leq -\delta_0\}} + \int_{\eta}^L 1_{\{-\delta_0 \leq \sin \phi \leq 0\}} 1_{\{\chi(\phi) < 1\}} \tag{3.212} \]
\[+ \int_{\eta}^L 1_{\{-\delta_0 \leq \sin \phi \leq 0\}} 1_{\{\chi(\phi) = 1\}} 1_{\{\sqrt{\epsilon \eta'} \leq \sin \phi'\}} \]
\[+ \int_{\eta}^L 1_{\{-\delta_0 \leq \sin \phi \leq 0\}} 1_{\{\chi(\phi) = 1\}} 1_{\{\sqrt{\epsilon \eta'} \leq \sin \phi'\}} \]
\[= II_1 + II_2 + II_3 + II_4. \]

Step 1: Estimation of II_1 for $\sin \phi \leq -\delta_0$.
We first estimate $\sin \phi'$. Along the characteristics, we know
\[e^{-V(\eta')} \cos \phi' = e^{-V(\eta)} \cos \phi, \tag{3.213} \]
which implies
\[\cos \phi' = e^{V(\eta') - V(\eta)} \cos \phi \leq e^{V(L) - V(0)} \cos \phi = e^{V(L) - V(0)} \sqrt{1 - \epsilon^2}. \tag{3.214} \]
Based on Lemma 3.1, we can further deduce that
\[\cos \phi' \leq \left(1 - \frac{\epsilon^{1/2}}{R_\kappa}\right)^{-1} \sqrt{1 - \epsilon^2}. \tag{3.215} \]
Then we have
\[\sin \phi' \geq \sqrt{1 - \left(1 - \frac{\epsilon^{1/2}}{R_\kappa}\right)^{-2} \left(1 - \delta_0^2\right) \geq \delta_0 - \epsilon^{1/4} > \frac{\delta_0}{2}, \tag{3.216} \]
when ϵ is sufficiently small. Based on Lemma 3.9, we know
\[|\sin \phi \frac{\partial \gamma}{\partial \eta}| \leq C \left(1 + \frac{1}{\delta_0}\right) \left(\|\gamma\|_{L^\infty} + \left\|\frac{\partial S}{\partial \phi}\right\|_{L^\infty} + \left\|\frac{\partial S}{\partial \eta}\right\|_{L^\infty} + \left\|\frac{\partial S}{\partial \eta}\right\|_{L^\infty} \right). \tag{3.217} \]
Hence, we have
\[|II_1| \leq \left| \frac{1}{|\sin \phi|} \frac{\partial \phi'}{\partial \eta} \right| \leq \frac{C}{\delta_0} \left(\| Y \|_{L^\infty L^\infty} + \| S \|_{L^\infty L^\infty} + \| \frac{\partial S}{\partial \eta} \|_{L^\infty L^\infty} \right). \]
(3.218)

Step 2: Estimate of \(II_2 \) for \(-\delta_0 \leq \sin \phi \leq 0 \) and \(\chi(\phi_*) < 1 \).
This is similar to the estimate of \(I_2 \) based on the integral
\[\int_{\eta}^{L} \frac{1}{\sin \phi'} \exp(-G_{\eta', \eta}) \, d\eta' \leq 1. \]
(3.219)

Then we have
\[|II_2| \leq C(\delta) \left(\| Y \|_{L^\infty L^\infty} + \| S \|_{L^\infty L^\infty} \right). \]
(3.220)

Step 3: Estimate of \(II_3 \) for \(-\delta_0 \leq \sin \phi \leq 0 \), \(\chi(\phi_*) = 1 \) and \(\sqrt{\epsilon \eta'} \geq \sin \phi' \).
This is identical to the estimate of \(I_4 \), we have
\[|II_3| \leq C \delta \| \mathcal{A} \|_{L^\infty L^\infty}. \]
(3.221)

Step 4: Estimate of \(II_4 \) for \(-\delta_0 \leq \sin \phi \leq 0 \), \(\chi(\phi_*) = 1 \) and \(\sqrt{\epsilon \eta'} \leq \sin \phi' \).
This step is different. We do not need to further decompose the cases. Based on (3.211), we have,
\[-G_{\eta, \eta'} \leq -\frac{\eta' - \eta}{|\sin \phi|}. \]
(3.222)

Then following the same argument in estimating \(I_5 \), we obtain
\[|II_4| \leq C \| \mathcal{A} \|_{L^\infty L^\infty} \int_{\eta}^{L} \left(1 + |\ln(\epsilon)| + |\ln(\eta')| \right) \exp \left(-\frac{\eta' - \eta}{|\sin \phi|} \right) \, d\eta'. \]
(3.223)

If \(\eta \geq 2 \), we directly obtain
\[\left| \int_{\eta}^{L} |\ln(\eta')| \exp \left(-\frac{\eta' - \eta}{|\sin \phi|} \right) \, d\eta' \right| \leq \left| \int_{2}^{L} |\ln(\eta')| \exp \left(-\frac{\eta' - \eta}{|\sin \phi|} \right) \, d\eta' \right| \leq \ln(2) \int_{2}^{L} \exp \left(-\frac{\eta' - \eta}{|\sin \phi|} \right) \, d\eta' \leq C \sqrt{|\sin \phi|}. \]
(3.224)

If \(\eta \leq 2 \), we decompose as
\[\left| \int_{\eta}^{2} |\ln(\eta')| \exp \left(-\frac{\eta' - \eta}{|\sin \phi|} \right) \, d\eta' \right| \leq \left| \int_{\eta}^{2} |\ln(\eta')| \exp \left(-\frac{\eta' - \eta}{|\sin \phi|} \right) \, d\eta' \right| + \left| \int_{2}^{L} |\ln(\eta')| \exp \left(-\frac{\eta' - \eta}{|\sin \phi|} \right) \, d\eta' \right| \leq C \sqrt{|\sin \phi|}. \]
(3.225)

The second term is identical to the estimate in \(\eta \geq 2 \). We apply Cauchy’s inequality to the first term
\[\left| \int_{\eta}^{2} |\ln(\eta')| \exp \left(-\frac{\eta' - \eta}{|\sin \phi|} \right) \, d\eta' \right| \leq \left(\int_{\eta}^{2} |\ln(\eta')|^{1/2} \right)^{1/2} \left(\int_{\eta}^{2} \exp \left(-\frac{2(\eta' - \eta)}{|\sin \phi|} \right) \, d\eta' \right)^{1/2} \leq \left(\int_{0}^{2} |\ln(\eta')|^{1/2} \right)^{1/2} \left(\int_{\eta}^{2} \exp \left(-\frac{2(\eta' - \eta)}{|\sin \phi|} \right) \, d\eta' \right)^{1/2} \leq C \sqrt{|\sin \phi|}. \]
(3.226)

Hence, we have
\[|II_4| \leq C(1 + |\ln(\epsilon)|) \sqrt{|\delta_0|} \| \mathcal{A} \|_{L^\infty L^\infty}. \]
(3.228)
Step 6: Synthesis.

Collecting all the terms in previous steps, we have proved

\[
|II| \leq C(1 + |\ln(\epsilon)|) \sqrt{\delta_0} \|\mathcal{A}\|_{L^\infty L^\infty} + C\delta \|\mathcal{A}\|_{L^\infty L^\infty} + C(1 + |\ln(\epsilon)|) \sqrt{\delta_0} \|\mathcal{A}\|_{L^\infty L^\infty} + C\delta \|\mathcal{A}\|_{L^\infty L^\infty}
\]

(3.229)

Then the integral \(\int_0^\eta (\cdots)\) is similar to the argument in Region I, and the integral \(\int_\eta^{\eta'} (\cdots)\) is similar to the argument in Region II. Hence, combining the method in Region I and Region II, we can show the desired result, i.e.

\[
|\mathcal{A}|_{II} \leq \|p\phi\|_{L^\infty} + \|S\phi\|_{L^\infty L^\infty} + C(1 + |\ln(\epsilon)|) \sqrt{\delta_0} \|\mathcal{A}\|_{L^\infty L^\infty} + C\delta \|\mathcal{A}\|_{L^\infty L^\infty} + C(1 + |\ln(\epsilon)|) \sqrt{\delta_0} \|\mathcal{A}\|_{L^\infty L^\infty} + C\delta \|\mathcal{A}\|_{L^\infty L^\infty}
\]

(3.232)

Hence, when \(\epsilon\) is sufficiently small, we always have

\[
|\sin \phi| \leq \sqrt{1 - \left(1 - \frac{\epsilon^{1/2}}{R_\epsilon}\right)^2} \leq \epsilon^{1/4}.
\]

(3.235)

Then the integral \(\int_0^\eta (\cdots)\) is similar to the argument in Region I, and the integral \(\int_\eta^{\eta'} (\cdots)\) is similar to the argument in Region II. Hence, combining the method in Region I and Region II, we can show the desired result, i.e.

\[
|\mathcal{A}|_{II} \leq \|p\phi\|_{L^\infty} + \|S\phi\|_{L^\infty L^\infty} + C(1 + |\ln(\epsilon)|) \sqrt{\delta_0} \|\mathcal{A}\|_{L^\infty L^\infty} + C\delta \|\mathcal{A}\|_{L^\infty L^\infty} + C(1 + |\ln(\epsilon)|) \sqrt{\delta_0} \|\mathcal{A}\|_{L^\infty L^\infty} + C\delta \|\mathcal{A}\|_{L^\infty L^\infty}
\]

(3.238)

Hence, when \(\epsilon\) is sufficiently small, we always have

\[
|\sin \phi| \leq \epsilon^{1/4} \leq \delta_0.
\]

(3.236)
3.4.4. Estimate of Normal Derivative. Combining the analysis in these three regions, we have
\[
|\mathcal{A}| \leq \|p_{\mathcal{A}}\|_{L^\infty} + \|S_{\mathcal{A}}\|_{L^\infty} + C(1 + |\ln(\epsilon)|)\sqrt{\delta_0}\|\mathcal{A}\|_{L^\infty} + C\delta\|\mathcal{A}\|_{L^\infty} \\
+ \frac{C}{\delta_0}\left(\|\mathcal{N}_T\|_{L^\infty} + \left\|\frac{\partial \phi}{\partial \nu}\right\|_{L^\infty} + \left\|\frac{\partial S}{\partial \nu}\right\|_{L^\infty} + \left\|\frac{\partial S}{\partial \eta}\right\|_{L^\infty}\right) + C(\delta)\left(\|\mathcal{N}_T\|_{L^\infty} + \|S\|_{L^\infty}\right).
\] (3.239)
Taking supremum over all (η, ϕ), we have
\[
\|\mathcal{A}\|_{L^\infty} \leq \|p_{\mathcal{A}}\|_{L^\infty} + \|S_{\mathcal{A}}\|_{L^\infty} + C(1 + |\ln(\epsilon)|)\sqrt{\delta_0}\|\mathcal{A}\|_{L^\infty} + C\delta\|\mathcal{A}\|_{L^\infty} \\
+ \frac{C}{\delta_0}\left(\|\mathcal{N}_T\|_{L^\infty} + \left\|\frac{\partial \phi}{\partial \nu}\right\|_{L^\infty} + \left\|\frac{\partial S}{\partial \nu}\right\|_{L^\infty} + \left\|\frac{\partial S}{\partial \eta}\right\|_{L^\infty}\right) + C(\delta)\left(\|\mathcal{N}_T\|_{L^\infty} + \|S\|_{L^\infty}\right).
\] (3.240)
Then we choose these constants to perform absorbing argument. First we choose $0 < \delta << 1$ sufficiently small such that
\[
C\delta \leq \frac{1}{4}.
\] (3.241)
Then we take $\delta_0 = \delta |\ln(\epsilon)|^{-2}$ such that
\[
C(1 + |\ln(\epsilon)|)\sqrt{\delta_0} \leq \frac{1}{2},
\] (3.242)
for ϵ sufficiently small. Note that this mild decay of δ_0 with respect to ϵ also justifies the assumption in Case III and the proof of Lemma 3.9 that
\[
\epsilon^{1/4} \leq \frac{\delta_0}{2},
\] (3.243)
for ϵ sufficiently small. Here since δ and C are independent of ϵ, there is no circulant argument. Hence, we can absorb all the term related to $\|\mathcal{A}\|_{L^\infty}$ on the right-hand side of (3.240) to the left-hand side to obtain
\[
\|\mathcal{A}\|_{L^\infty} \leq C\left(\|p_{\mathcal{A}}\|_{L^\infty} + \|S_{\mathcal{A}}\|_{L^\infty}\right) \\
+ C|\ln(\epsilon)|^8 \left(\|\mathcal{N}_T\|_{L^\infty} + \left\|\frac{\partial \phi}{\partial \nu}\right\|_{L^\infty} + \|S\|_{L^\infty} + \left\|\frac{\partial S}{\partial \nu}\right\|_{L^\infty} + \left\|\frac{\partial S}{\partial \eta}\right\|_{L^\infty}\right).
\] (3.244)

3.5. Mild Formulation of Velocity Derivative. Consider the general ϵ-Milne problem for $\mathcal{B} = \zeta \frac{\partial \mathcal{N}}{\partial \nu}$ as
\[
\begin{cases}
\sin \phi \frac{\partial \mathcal{B}}{\partial \eta} + F(\eta) \cos \phi \frac{\partial \mathcal{B}}{\partial \phi} + \mathcal{B} = S_{\mathcal{B}}, \\
\mathcal{B}(0, \phi) = p_{\mathcal{B}}(\phi) \quad \text{for} \quad \sin \phi > 0, \\
\mathcal{B}(L, \phi) = \mathcal{B}(L, R\phi),
\end{cases}
\] (3.245)
where $p_{\mathcal{B}}$ and $S_{\mathcal{B}}$ will be specified later. This is much simpler than normal derivative, since we do not have \mathcal{B}. Then by a direct argument that
\[
|K[p_{\mathcal{B}}]| \leq \|p_{\mathcal{B}}\|_{L^\infty}, \\
|T[S_{\mathcal{B}}]| \leq \|S_{\mathcal{B}}\|_{L^\infty},
\] (3.246) (3.247)
we can get the desired result.

Lemma 3.13. We have
\[
\|\mathcal{B}\|_{L^\infty} \leq \|p_{\mathcal{B}}\|_{L^\infty} + \|S_{\mathcal{B}}\|_{L^\infty}.
\] (3.248)
3.6. A Priori Estimate of Derivatives.

Theorem 3.14. We have

\[\left\| \zeta \frac{\partial V}{\partial \eta} \right\|_{L^\infty} + \left\| \frac{\partial V}{\partial \eta} \right\|_{L^\infty} \leq C |\ln(\epsilon)|^8. \]

(3.249)

Proof. Collecting the estimates for \(\mathcal{A} \) and \(\mathcal{B} \) in Lemma 3.12 and Lemma 3.13, we have

\[\left\| \mathcal{A} \right\|_{L^\infty} \leq C \left(\left\| p_\mathcal{A} \right\|_{L^\infty} + \left\| S_\mathcal{A} \right\|_{L^\infty} \right) \]

(3.250)

and

\[\left\| \mathcal{B} \right\|_{L^\infty} \leq \left\| p_\mathcal{B} \right\|_{L^\infty} + \left\| S_\mathcal{B} \right\|_{L^\infty}. \]

(3.251)

Taking derivatives on both sides of (3.10) and multiplying \(\zeta \), based on Lemma 3.7, we have

\[p_\mathcal{A} = \epsilon \cos \phi \frac{\partial p}{\partial \phi} + p - \tilde{V}(0), \]

(3.252)

\[p_\mathcal{B} = \sin \phi \frac{\partial p}{\partial \phi}, \]

(3.253)

\[S_\mathcal{A} = \frac{\partial F}{\partial \eta} \mathcal{B} \cos \phi + \frac{\partial S}{\partial \eta} \]

(3.254)

\[S_\mathcal{B} = \mathcal{A} \cos \phi + F \mathcal{B} \sin \phi + \zeta \frac{\partial S}{\partial \phi}. \]

(3.255)

Since \(|F(\eta)| + \left| \frac{\partial F}{\partial \eta} \right| \leq \epsilon \), by absorbing \(\mathcal{A} \) and \(\mathcal{B} \) on the right-hand side of (3.250) and (3.251), we derive

\[\mathcal{A} \leq C |\ln(\epsilon)|^8, \]

(3.256)

\[\mathcal{B} \leq C |\ln(\epsilon)|^8. \]

(3.257)

\[\square \]

Theorem 3.15. For \(K_0 > 0 \) sufficiently small, we have

\[\left\| e^{K_0 \eta} \zeta \frac{\partial V}{\partial \eta} \right\|_{L^\infty} + \left\| e^{K_0 \eta} \frac{\partial V}{\partial \eta} \right\|_{L^\infty} \leq C |\ln(\epsilon)|^8. \]

(3.258)

Proof. This proof is almost identical to Theorem 3.14. The only difference is that \(S_\mathcal{A} \) is added by \(K_0 \mathcal{A} \sin \phi \) and \(S_\mathcal{B} \) added by \(K_0 \mathcal{B} \sin \phi \). When \(K_0 \) is sufficiently small, we can also absorb them into the left-hand side. Hence, this is obvious. \[\square \]

3.7. Iteration and Estimate of Derivatives. So far, all the estimates are a priori. Hence, we first need to confirm the derivatives are well-defined. We start from continuity of solutions. We consider the \(\epsilon \)-transport equation for \(V \) as

\[\left\{ \begin{array}{l} \sin \phi \frac{\partial V}{\partial \eta} + F(\eta) \cos \phi \frac{\partial V}{\partial \phi} + V = H, \\ V(0, \phi) = p(\phi) \text{ for } \sin \phi > 0, \\ f(L, \phi) = f(L, R \phi). \end{array} \right. \]

(3.259)

Lemma 3.16. Assume \(H \) is continuous in \([0, L] \times [-\pi, \pi]\). Then we have \(V \) is continuous in \([0, L] \times [-\pi, \pi]\)

Proof. As before, we can define the solution along the characteristics as follows:

\[V(\eta, \phi) = \mathcal{K}[p] + \mathcal{T}[H], \]

(3.260)

where
Region I:
For \(\sin \phi > 0\),
\[
K[p] = p(\phi'(0)) \exp(-G_{\eta,0}), \tag{3.261}
\]
\[
T[H] = \int_{0}^{\eta} \frac{H(\eta', \phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(-G_{\eta, \eta'}) d\eta'. \tag{3.262}
\]

Region II:
For \(\sin \phi < 0\) and \(|E(\eta, \phi)| \leq e^{-V(L)}\),
\[
K[p] = p(\phi'(0)) \exp(-G_{L,0} - G_{L,\eta})
\]
\[
T[H] = \left(\int_{0}^{L} \frac{H(\eta', \phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(-G_{L, \eta'} - G_{L, \eta}) d\eta' \right)
\]
\[
+ \int_{\eta}^{L} \frac{H(\eta', \phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(\eta') d\eta'.
\]

Region III:
For \(\sin \phi < 0\) and \(|E(\eta, \phi)| \geq e^{-V(L)}\),
\[
K[p] = p(\phi'(0)) \exp(-G_{L,0} - G_{L,\eta})
\]
\[
T[H] = \left(\int_{0}^{L} \frac{H(\eta', \phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(-G_{L, \eta'} - G_{L, \eta}) d\eta' \right)
\]
\[
+ \int_{\eta}^{L} \frac{H(\eta', \phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(\eta') d\eta'.
\]

When \((\eta, \phi)\) does not touch the boundary of each cases, we can directly use above mild formulation to see the continuity. Hence, we concentrate on the separatrix between these regions. We divide the proof into several steps:

Step 1: Separatrix between Region I and Case II.
In our formulation, there is no intersection between these two cases, so we do not need to worry about it.

Step 2: Separatrix between Region II and Region III.
The separatrix is the curve satisfying \(|E(\eta, \phi)| = e^{-V(L)}\). We have in Region II:
\[
K[p] = p(\phi'(0)) \exp(-G_{L,0} - G_{L,\eta})
\]
\[
T[H] = \left(\int_{0}^{L} \frac{H(\eta', \phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(-G_{L, \eta'} - G_{L, \eta}) d\eta' \right)
\]
\[
+ \int_{\eta}^{L} \frac{H(\eta', \phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(\eta') d\eta'.
\]

and in Region III:
\[
K[p] = p(\phi'(0)) \exp(-G_{L,0} - G_{L,\eta})
\]
\[
T[H] = \left(\int_{0}^{L} \frac{H(\eta', \phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(-G_{L, \eta'} - G_{L, \eta}) d\eta' \right)
\]
\[
+ \int_{\eta}^{L} \frac{H(\eta', \phi'(\eta'))}{\sin(\phi'(\eta'))} \exp(\eta') d\eta'.
\]

Since we know \(\eta^+ = L\) on this curve, above two formulations give exactly the same formula. Hence, it is continuous.

Step 3: Separatrix between Region I and Region III.
This is actually the segment of line \((\eta, 0)\) for \(0 < \eta < L\).

Direction 1: Approaching from Region I.
Consider \((\eta_*, \phi_*) \rightarrow (\eta, 0)\). Assume \((\eta_*, \phi_*)\) and \((\eta', \phi')\) are on the same characteristics. Then we have
\[
K[p] = p(\phi'(0)) \exp(-G_{\eta_*,0}) \tag{3.263}
\]
\[
T[H] = \int_{0}^{\eta_*)} \frac{H(\eta', \phi'(\eta'))}{\sin \phi'(\eta')} \exp(-G_{\eta_*, \eta'}) d\eta'. \tag{3.264}
\]
We can directly take limit \((\eta_*, \phi_*) \to (\eta', \phi')\) and obtain
\[
\mathcal{K}[p] \to p(\phi'(\eta, 0; 0)) \exp \left(- \int_0^\eta \frac{1}{\sin \phi'(y)} \, dy \right),
\]
(3.265)
\[
\mathcal{T}[H] \to \int_0^{\eta'} \frac{H(\eta', \phi'(\eta'))}{\sin \phi'(\eta')} \exp \left(- \int_{\eta'}^\eta \frac{1}{\sin \phi'(y)} \, dy \right) \, d\eta'.
\]
(3.266)

Here, we cannot further simplify these quantities.

Direction 2: Approaching from Region III.
Consider \((\eta_*, \phi_*) \to (\eta, 0)\). Assume \((\eta_*, \phi_*)\) and \((\eta', \phi')\) are on the same characteristics. Then we have
\[
\mathcal{K}[p] = p(\phi'(0)) \exp(-G_{\eta^+ \to 0} - G_{\eta^+ \to \eta_*})
\]
(3.267)
\[
\mathcal{T}[H] = \int_0^{\eta^+} \frac{H(\eta', \phi'(\eta'))}{\sin \phi'(\eta')} \exp(-G_{\eta^+ \to \eta'} - G_{\eta^+ \to \eta_*}) \, d\eta'
\]
(3.268)
\[
\quad + \int_{\eta_*}^{\eta^+} \frac{H(\eta', \phi'(\eta'))}{\sin \phi'(\eta')} \exp(-G_{\eta' \to \eta_*}) \, d\eta'.
\]

In this region, we always have \(\eta^+ < L\) and
\[
e^{-V(\eta^+)} = e^{-V(\eta_*)} \cos \phi_*.
\]
(3.269)

Also, it is easy to see
\[
\exp(-G_{\eta^+ \to \eta_*}) \leq e^0 = 1.
\]
(3.270)

Hence, considering
\[
e^{-V(\eta^+)} = e^{-V(\eta)} \cos \phi'(y),
\]
(3.271)
we have
\[
- \int_{\eta_*}^{\eta^+} \frac{1}{\sin \phi'(y)} \, dy = - \int_{\eta_*}^{\eta^+} \frac{1}{\sqrt{1 - e^{2V(y)} - 2V(\eta^+)}} \, dy
\]
(3.272)
\[
= - \int_{\eta_*}^{\eta^+} \frac{R_k - \epsilon y}{\sqrt{(R_k - \epsilon y)^2 - (R_k - \epsilon \eta^+)^2}} \, dy
\]
\[
= - \int_{\eta_*}^{\eta^+} \frac{R_k - \epsilon y}{\sqrt{\epsilon(\eta^+ - y)(2R_k - \epsilon y - \epsilon \eta^+)}} \, dy
\]
\[
\geq - C \int_{\eta_*}^{\eta^+} \frac{1}{\sqrt{\epsilon(\eta^+ - y)}} \, dy
\]
\[
= - 2C \sqrt{\frac{\eta^+ - \eta_*}{\epsilon}}.
\]

Therefore, we know
\[
\exp(-G_{\eta^+ \to \eta_*}) = \exp \left(- \int_{\eta_*}^{\eta^+} \frac{1}{\sin \phi'(y)} \, dy \right) \geq \exp \left(- 2C \sqrt{\frac{\eta^+ - \eta_*}{\epsilon}} \right).
\]
(3.273)

When \(\phi_* \to 0\), since
\[
e^{-V(\eta^+)} = e^{-V(\eta_*)} \cos \phi_*,
\]
(3.274)
we have \(\eta^+ \to \eta_*\), which further implies
\[
\exp(-G_{\eta^+ \to \eta_*}) \to e^0 = 1.
\]
(3.275)

Then we apply such result to \(\mathcal{K}[p]\) to obtain when \((\eta_*, \phi_*) \to (\eta, 0)\)
\[
\mathcal{K}[p] = p(\phi'(0)) \exp(-G_{\eta^+ \to 0} - G_{\eta^+ \to \eta_*}) \to p(\phi'(0)) \exp(-G_{\eta,0}).
\]
(3.276)
On the other hand, we consider $T[H]$. We directly obtain

$$
\int_0^{\eta^+} H(y', \phi'(y')) \sin \phi'(y') \exp(-G_{\eta', \eta'} - G_{\eta, \eta^+}) \, dy' \to \int_0^{\eta} H(y', \phi'(y')) \sin \phi'(y') \exp(-G_{\eta, \eta'}) \, dy'.
$$

(3.277)

Also, we know

$$
\left| \int_{\eta^+}^{\eta} \frac{H(y', \phi'(y'))}{\sin \phi'(y')} \exp(-G_{\eta', \eta'}) \, dy' \right| \leq \|H\|_{L^\infty} \left| \int_{\eta^+}^{\eta} \frac{1}{\sin \phi'(y')} \exp(-G_{\eta', \eta'}) \, dy' \right|
$$

(3.278)

$$
\leq \|H\|_{L^\infty} \left| \exp(-G_{\eta', \eta'}) \right|_{\eta^+}^{\eta} = \|H\|_{L^\infty} \left| \exp(-G_{\eta, \eta'}) - e^0 \right| \to 0.
$$

Therefore, we have

$$
T[H] \to \int_0^{\eta} \frac{H(y', \phi'(y'))}{\sin \phi'(y')} \exp(-G_{\eta, \eta'}) \, dy'.
$$

(3.279)

Synthesis:

Summarizing above two cases, we always have

$$
K[y] \to p(\phi'(0)) \exp(-G_{\eta, \phi}),
$$

(3.280)

$$
T[H] \to \int_0^{\eta} H(y', \phi'(y')) \sin \phi'(y') \exp(-G_{\eta, \eta'}) \, dy'.
$$

(3.281)

Hence, the solution is continuous.

Step 4: Triple Point $(L, 0)$.
This is the only point that three cases can be applied simultaneously. However, based on previous analysis, we know at this point, Case II and Case III provides exactly the same formula. Also, Case I and Case III is equivalent when taking limit $(\eta, \phi) \to (\eta, 0)$. Then this point is also continuous.

\[\square \]

Theorem 3.17. The derivatives of \mathcal{V} are well-defined a.e. and satisfies

$$
\left\| e^{r_{0}\zeta \frac{\partial}{\partial n}} \right\|_{L^\infty} + \left\| e^{r_{0}\zeta \frac{\partial}{\partial n}} \right\|_{L^\infty} \leq C |\ln(\epsilon)|^8.
$$

(3.282)

Proof. Based on the a priori estimate, it suffices to show the derivatives are well-defined. Consider the iteration of penalized ϵ-Milne problem for $\{y^m_\lambda\}_{m=0}^\infty$ with $y^0_\lambda = 0$ and for $m \geq 1$

$$
\begin{cases}
\sin \phi \frac{\partial y^m_\lambda}{\partial \eta} + F(\eta) \cos \phi \frac{\partial y^m_\lambda}{\partial \phi} + (1 + \lambda) y^m_\lambda - y^{m-1}_\lambda = S(\eta, \phi), \\
y^0_\lambda(0, \phi) = p(\phi) \text{ for } \sin \phi > 0, \\
y^m_\lambda(L, \phi) = y^m_\lambda(L, R\phi).
\end{cases}
$$

Here we require $\lambda > 0$. We divide the proof into several steps:

Step 1: $m \to \infty$ convergence.
Tracking along the characteristics, as we have shown in ϵ-Milne problem, we have $y^m_\lambda \in L^\infty([0, L] \times [-\pi, \pi])$. Hence, it is easy to see each y^m_λ is uniquely determined. Define $y^m = y^m_\lambda - y^{m-1}_\lambda$ for $m \geq 1$. Then y^m satisfies the equation

$$
\begin{cases}
\sin \phi \frac{\partial y^m}{\partial \eta} + F(\eta) \cos \phi \frac{\partial y^m}{\partial \phi} + (1 + \lambda) y^m - y^{m-1} = 0, \\
y^m(0, \phi) = 0 \text{ for } \sin \phi > 0, \\
y^m(L, \phi) = y^m(L, R\phi).
\end{cases}
$$

(3.284)

Based on previous analysis, we know

$$
\|y^m\|_{L^\infty} \leq \left(\frac{1}{1 + \lambda} \right) \|y^{m-1}\|_{L^\infty} \leq \left(\frac{1}{1 + \lambda} \right) \|y^1\|_{L^\infty}.
$$

(3.285)
Since \(\mathcal{V}^0 = \mathcal{V} \), we have \(\mathcal{V}^1 = \mathcal{V}^0 \). Applying Lemma 3.10 for \(H = 0 \), we know \(\mathcal{V}^1 \) is continuous. Using the proofs of Lemma 3.8, Lemma 3.9 and Lemma 3.10 with
\[
\mathcal{V} = \mathcal{V}^1, \quad \dot{\mathcal{V}} = 0, \quad p = 0,
\] (3.286)
we get \(\frac{\partial \mathcal{V}}{\partial \eta} \) and \(\frac{\partial \mathcal{V}}{\partial \phi} \) are a.e. well-defined. However, the estimates from these lemmas are not strong enough to show the convergence of this iteration. Then we can use estimates of \(\epsilon \)-Milne problem and the proofs of Lemma 3.12 and Lemma 3.13 with
\[
\mathcal{A} = \zeta \frac{\partial \mathcal{V}^1}{\partial \eta}, \quad \mathcal{A} = 0, \quad p_{\mathcal{A}} = \cos \phi \frac{\partial p}{\partial \phi} + \mathcal{V}^1(0, \phi), \quad S_{\mathcal{A}} = \zeta \frac{\partial S}{\partial \eta},
\] (3.287)
\[
\mathcal{B} = \zeta \frac{\partial \mathcal{V}^1}{\partial \phi}, \quad p_{\mathcal{B}} = \frac{\partial p}{\partial \phi}, \quad S_{\mathcal{B}} = \zeta \frac{\partial S}{\partial \phi},
\] (3.288)
to see
\[
\left\| \zeta \frac{\partial \mathcal{V}^1}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \zeta \frac{\partial \mathcal{V}^1}{\partial \phi} \right\|_{L^\infty L^\infty} + \left\| \mathcal{V}^1 \right\|_{L^\infty L^\infty} \leq C \left(\left\| S \right\|_{L^\infty L^\infty} + \left\| p \right\|_{L^\infty} + \left\| \frac{\partial S}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial S}{\partial \phi} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial p}{\partial \phi} \right\|_{L^\infty} \right).
\] (3.289)
and further
\[
\left\| \frac{\partial \mathcal{V}^1}{\partial \eta} \right\|_{L^\infty L^\infty} \leq C \left(\left\| \ln(|\epsilon|)^8 (1 + |\ln(\epsilon)| + |\ln(\eta)|) \right. \right).
\] (3.290)
Note that here the extra \(\lambda \) will not affect the result. Similarly, for each \(m > 1 \), \(\mathcal{V}^{m-1} \) can be regarded as known. Applying Lemma 3.10 for \(H = \mathcal{V}^{m-1} \), we know \(\mathcal{V}^m \) is continuous. Then we use the proofs of Lemma 3.8, Lemma 3.9 and Lemma 3.10 with
\[
\mathcal{V} = \mathcal{V}^m, \quad S + \dot{\mathcal{V}} = \mathcal{V}^{m-1}, \quad p = 0,
\] (3.291)
to confirm the derivatives \(\frac{\partial \mathcal{V}^m}{\partial \eta} \) and \(\frac{\partial \mathcal{V}^m}{\partial \phi} \) are a.e. well-defined. Then we utilize the proofs of Lemma 3.12 and Lemma 3.13 with
\[
\mathcal{A} = \zeta \frac{\partial \mathcal{V}^m}{\partial \eta}, \quad \mathcal{A} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \zeta(\eta, \phi) \frac{\partial \mathcal{V}^{m-1}(\eta, \phi)}{\partial \eta} d\phi, \quad p_{\mathcal{A}} = \mathcal{V}(0, \phi) - \mathcal{V}^{m-1}, \quad S_{\mathcal{A}} = 0,
\] (3.292)
\[
\mathcal{B} = \zeta \frac{\partial \mathcal{V}^m}{\partial \phi}, \quad p_{\mathcal{B}} = 0, \quad S_{\mathcal{B}} = 0,
\] (3.293)
to show
\[
\left\| \frac{\partial \mathcal{V}^m}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial \mathcal{V}^m}{\partial \phi} \right\|_{L^\infty L^\infty} \leq \delta \left(\left\| \zeta \frac{\partial \mathcal{V}^{m-1}}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \zeta \frac{\partial \mathcal{V}^{m-1}}{\partial \phi} \right\|_{L^\infty L^\infty} \right) + C \left\| \ln(|\epsilon|)^8 \right\|_{L^\infty L^\infty},
\] (3.294)
for \(0 < \delta << 1 \) and
\[
\left\| \frac{\partial \mathcal{V}^m}{\partial \eta} \right\|_{L^\infty L^\infty} \leq C \left(\left\| \ln(|\epsilon|)^8 (1 + |\ln(\epsilon)| + |\ln(\eta)|) \right. \right).
\] (3.295)
Therefore, combining (3.285) and (3.294), for fixed \(\delta \leq \frac{1}{1 + \lambda} \), we have
\[
\left\| \zeta \frac{\partial \mathcal{V}^m}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \zeta \frac{\partial \mathcal{V}^m}{\partial \phi} \right\|_{L^\infty L^\infty} \leq \delta^{m-1} \left(\left\| \zeta \frac{\partial \mathcal{V}^1}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \zeta \frac{\partial \mathcal{V}^1}{\partial \phi} \right\|_{L^\infty L^\infty} \right) + C m \left\| \ln(|\epsilon|)^8 \right\|_{L^\infty L^\infty} \left(\frac{1}{1 + \lambda} \right)^{m-1} \left\| \mathcal{V}^1 \right\|_{L^\infty L^\infty}
\] (3.296)
For fixed ϵ and $\lambda > 0$, when $m \to \infty$, we know
\[
\| \mathcal{X}^m \|_{L^\infty L^\infty} + \left\| \frac{\partial \mathcal{X}^m}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial \mathcal{X}^m}{\partial \phi} \right\|_{L^\infty L^\infty} \to 0, \quad (3.297)
\]
and further for any $N > 1$,
\[
\sum_{k=m}^{m+N} \left(\| \mathcal{X}^m \|_{L^\infty L^\infty} + \left\| \frac{\partial \mathcal{X}^m}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial \mathcal{X}^m}{\partial \phi} \right\|_{L^\infty L^\infty} \right) = 0. \quad (3.298)
\]
Hence, \mathcal{Y}_λ^m is a Cauchy sequence. Thus we have $\mathcal{Y}_\lambda^m \to \mathcal{Y}_\lambda$ strongly which satisfies
\[
\| \mathcal{Y}_\lambda \|_{L^\infty L^\infty} + \left\| \frac{\partial \mathcal{Y}_\lambda}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial \mathcal{Y}_\lambda}{\partial \phi} \right\|_{L^\infty L^\infty} \leq C \frac{\ln(\epsilon)}{\lambda} \| \mathcal{X}^1 \|_{L^\infty L^\infty}
\]
\[
\leq C \frac{\ln(\epsilon)}{\lambda} \left(\| S \|_{L^\infty L^\infty} + \| p \|_{L^\infty} + \left\| \frac{\partial S}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial S}{\partial \phi} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial h}{\partial \phi} \right\|_{L^\infty} \right)
\]
Hence, we know $\frac{\partial \mathcal{Y}_\lambda}{\partial \eta}$ and $\frac{\partial \mathcal{Y}_\lambda}{\partial \phi}$ are a.e. well-defined.

Step 2: $\lambda \to 0$ convergence.
We know \mathcal{Y}_λ satisfies the equation
\[
\begin{cases}
\sin \phi \frac{\partial \mathcal{Y}_\lambda}{\partial \eta} + F(\eta) \cos \phi \frac{\partial \mathcal{Y}_\lambda}{\partial \phi} + (1 + \lambda) \mathcal{Y}_\lambda - \mathcal{Y}_\lambda = S(\eta, \phi), \\
\mathcal{Y}_\lambda(0, \phi) = p(\phi) \text{ for } \sin \phi > 0, \\
\mathcal{Y}_\lambda(L, \phi) = \mathcal{Y}_\lambda(L, \Phi(\phi)).
\end{cases}
\]
Since its derivatives are a.e. well-defined, we can use the proof of Lemma 3.12 and Lemma 3.13 to show
\[
\| \mathcal{Y}_\lambda \|_{L^\infty L^\infty} + \left\| \frac{\partial \mathcal{Y}_\lambda}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial \mathcal{Y}_\lambda}{\partial \phi} \right\|_{L^\infty L^\infty} \leq C \frac{\ln(\epsilon)}{\lambda} \left(\| S \|_{L^\infty L^\infty} + \| p \|_{L^\infty} + \left\| \frac{\partial S}{\partial \eta} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial S}{\partial \phi} \right\|_{L^\infty L^\infty} + \left\| \frac{\partial h}{\partial \phi} \right\|_{L^\infty} \right), \quad (3.301)
\]
which is uniform in λ. Then we can define weak-* limit $\mathcal{Y}_\lambda \to \mathcal{Y}$ in weighted $W^{1,\infty}$, up to extracting a subsequence as $\lambda \to 0$. Also, the analysis of ϵ-Milne problem in [17] Section 4] reveals that $\mathcal{Y}_\lambda \to \mathcal{Y}$ weakly in $L^2 L^2$ as $\lambda \to 0$. Hence, $\frac{\partial \mathcal{Y}}{\partial \eta}$ and $\frac{\partial \mathcal{Y}}{\partial \phi}$ are a.e. well-defined. Therefore, we can apply the a priori estimates in Theorem 3.14 and Theorem 3.16 to obtain the desired result. \hfill \Box

Corollary 3.18. We have
\[
\left\| e^{K_\lambda \eta} \sin \phi \frac{\partial \mathcal{Y}}{\partial \eta}(\eta, \phi) \right\|_{L^\infty L^\infty} \leq C \left(\frac{\ln(\epsilon)}{\lambda} \right)^8. \quad (3.302)
\]
Proof. This is a natural result of Theorem 3.17 since $\zeta(\eta, \phi) \geq |\sin \phi|$. \hfill \Box

Now we pull τ dependence back and study the tangential derivative.

Theorem 3.19. We have
\[
\left\| e^{K_\lambda \eta} \frac{\partial \mathcal{Y}}{\partial \tau}(\eta, \tau, \phi) \right\|_{L^\infty L^\infty} \leq C \left(\frac{\ln(\epsilon)}{\lambda} \right)^8. \quad (3.303)
\]
Lemma 3.21. in-flow boundary (3.11). The following lemma in [17, Section 6] tells us the problem (3.1) can be reduced to the problem (3.1) with diffusive boundary, which satisfies the normalization condition (3.311). Furthermore, this order to obtain a unique solution, we need a normalization condition where R is the desired results of the solution to the ϵ-Milne problem (3.11) with in-flow boundary as ϵ-Milne problem (3.1). In summary, based on above analysis, we can utilize the known result for ϵ-Milne problem (3.1) among the functions satisfying (3.311) and $\|f(\eta, \tau, \phi) - f_L(\tau)\|_{L^2 L^2} \leq C$. In this subsection, we come back to the ϵ-Milne problem with diffusive boundary. In [17] Section 6], it has been proved that

Lemma 3.20. In order for the equation (3.1) to have a solution $f(\eta, \tau, \phi) \in L^\infty([0, L] \times [-\pi, \pi) \times [-\pi, \pi])$, the boundary data h and the source term S must satisfy the compatibility condition

$$\int_{\sin \phi > 0} h(\tau, \phi) \sin \phi d\phi + \int_\pi L \int_{-\pi} e^{-V(s)} S(s, \tau, \phi) d\phi ds = 0.$$

In particular, if $S = 0$, then the compatibility condition reduces to

$$\int_{\sin \phi > 0} h(\tau, \phi) \sin \phi d\phi = 0.$$

It is easy to see if f is a solution to (3.1), then $f + C$ is also a solution for any constant C. Hence, in order to obtain a unique solution, we need a normalization condition

$$P[f](0, \tau) = 0.$$

The following lemma in [17] Section 6] tells us the problem (3.1) can be reduced to the ϵ-Milne problem with in-flow boundary (3.11).

Lemma 3.21. If the boundary data h and S satisfy the compatibility condition (3.309), then the solution f to the ϵ-Milne problem (3.11) with in-flow boundary as $f = h$ on $\sin \phi > 0$ is also a solution to the ϵ-Milne problem (3.11) with diffusive boundary, which satisfies the normalization condition (3.311). Furthermore, this is the unique solution to (3.1) among the functions satisfying (3.311) and $\|f(\eta, \tau, \phi) - f_L(\tau)\|_{L^2 L^2} \leq C$.

In summary, based on above analysis, we can utilize the known result for ϵ-Milne problem (3.1) to obtain the desired results of the solution to the ϵ-Milne problem (3.1).

Theorem 3.22. There exists a unique solution $f(\eta, \tau, \phi)$ to the ϵ-Milne problem (3.1) with the normalization condition (3.311) satisfying

$$\|f(\eta, \tau, \phi) - f_L(\tau)\|_{L^2 L^2} \leq C.$$

Proof. Following a similar fashion in proof of Lemma 3.17 using iteration and characteristics, we can show $\frac{\partial W}{\partial \tau}$ is a.e. well-defined, so here we focus on the a priori estimate. Let $W = \frac{\partial W}{\partial \tau}$. Taking τ derivative on both sides of (3.28), we have W satisfies the equation

$$\sin \phi \frac{\partial W}{\partial \eta} + F(\eta) \cos \phi \frac{\partial W}{\partial \phi} + W - \tilde{W} = \frac{\partial S}{\partial \tau}(\eta, \tau, \phi) + \frac{R'_\kappa(\tau)}{R_\kappa(\tau) - c\eta}(F(\eta) \cos \phi \frac{\partial W}{\partial \phi}),$$

where R'_κ is the τ derivative of R_κ. Our assumptions on S verify

$$\|e^{K_\kappa \frac{\partial S}{\partial \tau}}(\eta, \tau, \phi)\|_{L^\infty L^\infty} \leq C.$$

For $\eta \in [0, L]$, we have

$$\frac{R'_\kappa(\tau)}{R_\kappa(\tau) - c\eta} \leq C \max_\tau R'_\kappa(\tau) \leq C.$$

Based on Corollary 3.18 and the equation (3.28), we know

$$\|e^{K_\kappa \frac{\partial W}{\partial \tau}}(\eta, \tau, \phi)\|_{L^\infty L^\infty} \leq C |\ln(\epsilon)|^8.$$

Therefore, the source term in the equation (3.304) is in L^∞ and decays exponentially. By Theorem 3.6, we have

$$\|e^{K_\kappa \frac{\partial W}{\partial \tau}}(\eta, \tau, \phi)\|_{L^\infty L^\infty} \leq C |\ln(\epsilon)|^8,$$

which is the desired estimate. \square
Theorem 3.23. The unique solution \(f(\eta, \tau, \phi) \) to the \(\epsilon \)-Milne problem (3.1) with the normalization condition (3.311) satisfying

\[
\| f(\eta, \tau, \phi) - f_L(\tau) \|_{L^\infty L^\infty} \leq C. \tag{3.313}
\]

Theorem 3.24. There exists \(K_0 > 0 \) such that the solution \(f(\eta, \tau, \phi) \) to the \(\epsilon \)-Milne problem (3.1) with the normalization condition (3.311) satisfies

\[
\left\| e^{K_0 \eta} \left(f(\eta, \tau, \phi) - f_L(\tau) \right) \right\|_{L^\infty L^\infty} \leq C. \tag{3.314}
\]

Theorem 3.25. The unique solution \(f(\eta, \tau, \phi) \) to the \(\epsilon \)-Milne problem (3.1) with the normalization condition (3.311) satisfies

\[
\left\| e^{K_0 \eta} \frac{\partial (f - f_L)}{\partial \tau}(\eta, \tau, \phi) \right\|_{L^\infty L^\infty} \leq C \ln(\epsilon)^8. \tag{3.315}
\]

4. Remainder Estimate

In this section, we consider the the remainder equation for \(u(\bar{x}, \bar{w}) \) as

\[
\begin{cases}
\epsilon \bar{w} \cdot \nabla_x u + u - \bar{u} = f(\bar{x}, \bar{w}) & \text{in } \Omega, \\
u(\bar{x}_0, \bar{w}) = \mathcal{P}[u](\bar{x}_0) + h(\bar{x}_0, \bar{w}) & \text{for } \bar{w} \cdot \bar{\nu} < 0 \text{ and } \bar{x}_0 \in \partial \Omega,
\end{cases}
\tag{4.1}
\]

where

\[
\bar{u}(\bar{x}) = \frac{1}{2\pi} \int_{S^1} u(\bar{x}, \bar{w}) d\bar{w},
\tag{4.2}
\]

\[
\mathcal{P}[u](\bar{x}_0) = \frac{1}{2} \int_{\bar{w} \cdot \bar{\nu} > 0} u(\bar{x}_0, \bar{w})(\bar{w} \cdot \bar{\nu}) d\bar{w},
\tag{4.3}
\]

\(\bar{\nu} \) is the outward unit normal vector, with the Knudsen number \(0 < \epsilon < 1 \). To guarantee uniqueness, we need the normalization condition

\[
\int_{\Omega \times S^1} u(\bar{x}, \bar{w}) d\bar{w} d\bar{x} = 0. \tag{4.4}
\]

Also, the data \(f \) and \(h \) satisfy the compatibility condition

\[
\int_{\Omega \times S^1} f(\bar{x}, \bar{w}) d\bar{w} d\bar{x} + \epsilon \int_{\partial \Omega} \int_{\bar{w} \cdot \bar{\nu} < 0} h(\bar{x}_0, \bar{w})(\bar{w} \cdot \bar{\nu}) d\bar{w} d\bar{x}_0 = 0. \tag{4.5}
\]

We define the \(L^p \) norm with \(1 \leq p < \infty \) and \(L^\infty \) norms in \(\Omega \times S^1 \) as usual:

\[
\| f \|_{L^p(\Omega \times S^1)} = \left(\int_{\Omega} \int_{S^1} |f(\bar{x}, \bar{w})|^p d\bar{w} d\bar{x} \right)^{1/p}, \tag{4.6}
\]

\[
\| f \|_{L^\infty(\Omega \times S^1)} = \sup_{(\bar{x}, \bar{w}) \in \Omega \times S^1} |f(\bar{x}, \bar{w})|. \tag{4.7}
\]

Define the \(L^p \) norm with \(1 \leq p < \infty \) and \(L^\infty \) norms on the boundary as follows:

\[
\| f \|_{L^p(\Gamma)} = \left(\int_{\Gamma} |f(\bar{x}, \bar{w})|^p |\bar{w} \cdot \bar{\nu}| d\bar{w} d\bar{\nu} \right)^{1/p}, \tag{4.8}
\]

\[
\| f \|_{L^\infty(\Gamma)} = \sup_{(\bar{x}, \bar{w}) \in \Gamma} |f(\bar{x}, \bar{w})|, \tag{4.9}
\]

\[
\| f \|_{L^\infty(\Gamma^+)} = \sup_{(\bar{x}, \bar{w}) \in \Gamma^+} |f(\bar{x}, \bar{w})|, \tag{4.10}
\]

\[
\| f \|_{L^\infty(\Gamma^-)} = \sup_{(\bar{x}, \bar{w}) \in \Gamma^-} |f(\bar{x}, \bar{w})|. \tag{4.11}
\]
4.1. Preliminaries. In order to show the \(L^\infty \) estimates of the equation (4.1), we start with some preparations with the transport equation.

Lemma 4.1. Assume \(f(\bar{x}, \bar{w}) \in L^\infty(\Omega \times S^1) \) and \(h(x_0, \bar{w}) \in L^\infty(\Gamma^-) \). Then for the transport equation
\[
\begin{cases}
\epsilon \bar{w} \cdot \nabla_x u + u = f(\bar{x}, \bar{w}) & \text{in } \Omega \\
u(\bar{x}_0, \bar{w}) = h(\bar{x}_0, \bar{w}) & \text{for } \bar{x}_0 \in \partial \Omega \text{ and } \bar{w} \cdot \bar{v} < 0,
\end{cases}
\]
(4.12)

there exists a unique solution \(u(\bar{x}, \bar{w}) \in L^\infty(\Omega \times S^1) \) satisfying
\[
\|u\|_{L^\infty(\Omega \times S^1)} \leq \|f\|_{L^\infty(\Omega \times S^1)} + \|h\|_{L^\infty(\Gamma^-)}.
\]
(4.13)

Proof. The characteristics \((X(s), W(s))\) of the equation (4.12) which goes through \((\bar{x}, \bar{w})\) is defined by
\[
\begin{aligned}
\frac{dX(s)}{ds} &= \epsilon W(s), \quad \frac{dW(s)}{ds} = 0, \\
(X(0), W(0)) &= (\bar{x}, \bar{w}).
\end{aligned}
\]
(4.14)

which implies
\[
X(s) = \bar{x} + (\epsilon \bar{w})s, \quad W(s) = \bar{w}.
\]
(4.15)

Along the characteristics, the equation (4.12) takes the form
\[
\begin{cases}
\frac{du}{ds} + u = f(\bar{x}, \bar{w}) & \text{in } \Omega \\
u(\bar{x}_b, \bar{w}) = h(\bar{x}_b, \bar{w}) & \text{for } \bar{w} \cdot \bar{v} < 0,
\end{cases}
\]
(4.16)

where
\[
t_b(\bar{x}, \bar{w}) = \inf\{t \geq 0 : \bar{x} - et\bar{w} \in \partial \Omega\},
\]
(4.17)

\[
x_b(\bar{x}, \bar{w}) = \bar{x} - et_b\bar{w}.
\]
(4.18)

We rewrite the equation (4.12) along the characteristics as
\[
u(\bar{x}, \bar{w}) = h(\bar{x} - et_b\bar{w}, \bar{w})e^{-t_b} + \int_0^{t_b} f(\bar{x} - (t_b - s)\bar{w}, \bar{w})e^{-(t_b - s)}ds.
\]
(4.19)

The existence and uniqueness directly follows from above formulation. Also, we have
\[
\|u\|_{L^\infty(\Omega \times S^1)} \leq \|h\|_{L^\infty(\Gamma^-)} + \|f\|_{L^\infty(\Omega \times S^1)}.
\]
(4.20)

Hence, our desired result is obvious. \(\square\)

4.2. \(L^2 \) Estimate. In this subsection, we start from the preliminary equation (4.1) and take \(\bar{u} \) and \(\mathcal{P}[u] \) into consideration.

Lemma 4.2. Define the near-grazing set of \(\Gamma^+ \) or \(\Gamma^- \) as
\[
\Gamma^\delta_\pm = \{(\bar{x}, \bar{w}) \in \Gamma^\pm : |\bar{w}(\bar{x})| \leq \delta\}.
\]
(4.21)

Then
\[
\left\|f1_{\Gamma^\delta_\pm \backslash \Gamma^\pm}\right\|_{L^1(\Gamma^\pm)} \leq C(\delta) \left(\|f\|_{L^1(\Omega \times S^1)} + \|\bar{w} \cdot \nabla_x f\|_{L^1(\Omega \times S^1)}\right).
\]
(4.22)

Proof. See the proof of [3 Lemma 2.1]. \(\square\)

Lemma 4.3. (Green’s Identity) Assume \(f(\bar{x}, \bar{w}), \ g(\bar{x}, \bar{w}) \in L^2(\Omega \times S^1) \) and \(\bar{w} \cdot \nabla_x f, \ \bar{w} \cdot \nabla_x g \in L^2(\Omega \times S^1) \) with \(f, \ g \in L^2(\Gamma) \). Then
\[
\int_{\Omega \times S^1} \left((\bar{w} \cdot \nabla_x f)g + (\bar{w} \cdot \nabla_x g)f\right)d\bar{x}d\bar{w} = \int_{\Gamma} fgd\gamma,
\]
(4.23)

where \(d\gamma = (\bar{w} \cdot \bar{v})ds \) on the boundary.

Proof. See the proof of [2 Chapter 9] and [3]. \(\square\)
Lemma 4.4. Assume \(f(\vec{x}, \vec{w}) \in L^\infty(\Omega \times S^1) \) and \(h(x_0, \vec{w}) \in L^\infty(\Gamma^-) \). Then for the transport equation \((4.1)\), there exists a unique solution \(u(\vec{x}, \vec{w}) \in L^2(\Omega \times S^1) \) satisfying
\[
\frac{1}{\epsilon^2} \| (1 - P)[u] \|_{L^2(\Gamma^+)}^2 + \| u \|_{L^2(\Omega \times S^1)}^2 \leq C \left(\frac{1}{\epsilon^2} \| f \|_{L^2(\Omega \times S^1)} + \frac{1}{\epsilon} \| h \|_{L^2(\Gamma^-)} \right).
\]

Proof. We divide the proof into several steps:

Step 1: Penalized equation.
We first consider the penalized equation
\[
\begin{cases}
\epsilon \vec{w} \cdot \nabla_x u_{j,\lambda} + (1 + \lambda) u_{j,\lambda} - \bar{u}_{j,\lambda} = f(\vec{x}, \vec{w}) \quad \text{in } \Omega, \\
u_{j,\lambda}(\vec{x}_0, \vec{w}) = \left(1 - \frac{1}{j} \right) p[u_{j,\lambda}](\vec{x}_0) + h(\vec{x}_0, \vec{w}) \quad \text{for } \bar{w} \cdot \bar{v} < 0 \quad \text{and } \vec{x}_0 \in \partial \Omega,
\end{cases}
\]
for \(\lambda > 0, j \in \mathbb{N} \) and \(j \geq \frac{2}{\lambda} \). We iteratively construct an approximating sequence \(\{ u^k_j \}_{k=0}^\infty \) where \(u^0_j = 0 \) and
\[
\begin{cases}
\epsilon \vec{w} \cdot \nabla_x u^k_{j,\lambda} + (1 + \lambda) u^k_{j,\lambda} - \bar{u}_{k-1,\lambda} = f(\vec{x}, \vec{w}) \quad \text{in } \Omega, \\
u^k_{j,\lambda}(\vec{x}_0, \vec{w}) = \left(1 - \frac{1}{j} \right) p[u^{k-1}_{j,\lambda}](\vec{x}_0) + h(\vec{x}_0, \vec{w}) \quad \text{for } \vec{x}_0 \in \partial \Omega \quad \text{and } \bar{w} \cdot \bar{v} < 0.
\end{cases}
\]
By Lemma 4.1, this sequence is well-defined and \(\| u^k_j \|_{L^\infty(\Omega \times S^1)} < \infty \). We rewrite equation \((4.26)\) along the characteristics as
\[
u^k_{j,\lambda}(\vec{x}, \vec{w}) = \left(h + \left(1 - \frac{1}{j} \right) p[u^{k-1}_{j,\lambda}] \right) (\vec{x} - \epsilon t_b \vec{w}) e^{-(1+\lambda)t_b} + \int_0^{t_b} (f + u^{k-1}_{j,\lambda})(\vec{x} - \epsilon (t_b - s) \vec{w}) e^{-(1+\lambda)(t_b-s)} ds.
\]
We define the difference \(v^k = u^k_{j,\lambda} - u^{k-1}_{j,\lambda} \) for \(k \geq 1 \). Then \(v^k_{j,\lambda} \) satisfies
\[
v^{k+1}_{j,\lambda}(\vec{x}, \vec{w}) = \left(1 - \frac{1}{j} \right) p[v^k_{j,\lambda}](\vec{x} - \epsilon t_b \vec{w}) e^{-(1+\lambda)t_b} + \int_0^{t_b} v^k_{j,\lambda}(\vec{x} - \epsilon (t_b - s) \vec{w}) e^{-(1+\lambda)(t_b-s)} ds.
\]
Since \(\| v^k_{j,\lambda} \|_{L^\infty(\Omega \times S^1)} \leq \| v^k_{j,\lambda} \|_{L^\infty(\Omega \times S^1)} \) and \(\| p[v^k_{j,\lambda}] \|_{L^\infty(\Gamma^+)} \leq \| v^k_{j,\lambda} \|_{L^\infty(\Gamma^+)} \), we can directly estimate
\[
\| v^{k+1}_{j,\lambda} \|_{L^\infty(\Omega \times S^1)} \leq e^{-(1+\lambda)t_b} \left(1 - \frac{1}{j} \right) \| v^k_{j,\lambda} \|_{L^\infty(\Omega \times S^1)} + \| v^k_{j,\lambda} \|_{L^\infty(\Omega \times S^1)} \int_0^{t_b} e^{-(1+\lambda)(t_b-s)} ds \leq \frac{1}{1 + \lambda} \| v^k_{j,\lambda} \|_{L^\infty(\Omega \times S^1)},
\]
Since \(j \geq \frac{2}{\lambda} \). Hence, we naturally have
\[
\| v^{k+1}_{j,\lambda} \|_{L^\infty(\Omega \times S^1)} \leq \left(1 - \frac{1}{j} \right) \| v^k_{j,\lambda} \|_{L^\infty(\Omega \times S^1)}.
\]
Thus, this is a contraction iteration. Considering \(v^1 = u^1 \), we have
\[
\| v^k_{j,\lambda} \|_{L^\infty(\Omega \times S^1)} \leq \left(1 - \frac{1}{j} \right)^{k-1} \| u^1_{j,\lambda} \|_{L^\infty(\Omega \times S^1)}.
\]
for \(k \geq 1 \). Therefore, \(u^k_{j,\lambda} \) converges strongly in \(L^\infty \) to the limiting solution \(u_{j,\lambda} \) satisfying
\[
\| u_{j,\lambda} \|_{L^\infty(\Omega \times S^1)} \leq \sum_{k=1}^{\infty} \| v^k_{j,\lambda} \|_{L^\infty(\Omega \times S^1)} \leq j \| u^1_{j,\lambda} \|_{L^\infty(\Omega \times S^1)}.
\]
Since \(u_{j,\lambda} \) satisfies the equation
\[
 u_{j,\lambda}(\vec{x}, \vec{w}) = h(\vec{x} - \epsilon t_b \vec{w}, \vec{w}) e^{-(1+\lambda)t_b} + \int_0^t f(\vec{x} - \epsilon (t_b - s) \vec{w}, \vec{w}) e^{-(1+\lambda)(t_b-s)} ds.
\]
Based on Lemma 4.1, we can directly estimate
\[
 \| u_{j,\lambda} \|_{L^\infty(\Omega \times S^1)} \leq \| f \|_{L^\infty(\Omega \times S^1)} + \| h \|_{L^\infty(\Gamma^-)}.
\] (4.33)

Combining (4.32) and (4.33), we can naturally obtain the existence and the estimate
\[
 \| u_{j,\lambda} \|_{L^\infty(\Omega \times S^1)} \leq \min \left(\| f \|_{L^\infty(\Omega \times S^1)} + \| h \|_{L^\infty(\Gamma^-)} \right).
\] (4.34)

This justifies the well-posedness of \(u_{j,\lambda} \). Note that when \(\lambda \to 0 \) or \(j \to \infty \), this estimate blows up. Hence, we have to find a uniform estimate in \(\lambda \) and \(j \).

Step 2: Energy Estimate of \(u_{\lambda,j} \).

Multiplying \(u_{j,\lambda} \) on both sides of (4.25) and integrating over \(\Omega \times S^1 \), by Lemma 4.3, we get the energy estimate
\[
 \frac{1}{2} \int_{\Gamma^+} \| u_{j,\lambda} \|^2 d\gamma + \lambda \| u_{j,\lambda} \|^2_{L^2(\Omega \times S^1)} + \| u_{j,\lambda} - \bar{u}_{j,\lambda} \|^2_{L^2(\Omega \times S^1)} = \int_{\Omega \times S^1} f_{u_{j,\lambda}}.
\] (4.35)

A direct computation shows
\[
 \frac{1}{2} \epsilon \int_{\Gamma^+} \| u_{j,\lambda} \|^2 d\gamma - \frac{1}{2} \epsilon \left(\frac{1}{1 - \frac{1}{j}} \right) \| \mathcal{P}[u_{j,\lambda}] + h \|_{L^2(\Gamma^-)}^2
\]
\[
 = \frac{1}{2} \epsilon \left(\| u_{j,\lambda} \|^2_{L^2(\Gamma^+)} - \left(\frac{1}{1 - \frac{1}{j}} \right) \| \mathcal{P}[u_{j,\lambda}] \|_{L^2(\Gamma^-)}^2 \right) = \frac{1}{2} \epsilon \| h \|^2_{L^2(\Gamma^-)} + \epsilon \left(\frac{1}{1 - \frac{1}{j}} \right) \int_{\Gamma^-} h \mathcal{P}[u_{j,\lambda}] \| \vec{w} \cdot \vec{v} \| d\gamma.
\]

Hence, we have
\[
 \frac{1}{2} \epsilon \left(\| u_{j,\lambda} \|^2_{L^2(\Gamma^+)} - \left(\frac{1}{1 - \frac{1}{j}} \right) \| \mathcal{P}[u_{j,\lambda}] \|_{L^2(\Gamma^-)}^2 \right) + \lambda \| u_{j,\lambda} \|^2_{L^2(\Omega \times S^1)} + \| u_{j,\lambda} - \bar{u}_{j,\lambda} \|^2_{L^2(\Omega \times S^1)}
\] (4.37)
\[
 = \int_{\Omega \times S^1} f_{u_{j,\lambda}} + \frac{1}{2} \epsilon \| h \|^2_{L^2(\Gamma^-)} + \epsilon \left(\frac{1}{1 - \frac{1}{j}} \right) \int_{\Gamma^-} h \mathcal{P}[u_{j,\lambda}] \| \vec{w} \cdot \vec{v} \| d\gamma.
\]

Noting the fact that
\[
 \epsilon \left(\| u_{j,\lambda} \|^2_{L^2(\Gamma^+)} - \| \mathcal{P}[u_{j,\lambda}] \|^2_{L^2(\Gamma^-)} \right) = \epsilon \| (1 - \mathcal{P})[u_{j,\lambda}] \|^2_{L^2(\Gamma^+)},
\] (4.38)

we deduce
\[
 \frac{1}{2} \epsilon \| (1 - \mathcal{P})[u_{j,\lambda}] \|^2_{L^2(\Gamma^+)} + \lambda \| u_{j,\lambda} \|^2_{L^2(\Omega \times S^1)} + \| u_{j,\lambda} - \bar{u}_{j,\lambda} \|^2_{L^2(\Omega \times S^1)}
\] (4.39)
\[
 \leq \int_{\Omega \times S^1} f_{u_{j,\lambda}} + \frac{1}{2} \epsilon \| h \|^2_{L^2(\Gamma^-)} + \epsilon \int_{\Gamma^-} h \mathcal{P}[u_{j,\lambda}] \| \vec{w} \cdot \vec{v} \| d\gamma.
\]

Applying Cauchy’s inequality, we obtain for \(\eta > 0 \) sufficiently small,
\[
 \epsilon \int_{\Gamma^-} h \mathcal{P}[u_{j,\lambda}] \| \vec{w} \cdot \vec{v} \| d\gamma \leq \frac{1}{\eta} \| h \|^2_{L^2(\Gamma^-)} + \epsilon^2 \eta \| \mathcal{P}[u_{j,\lambda}] \|^2_{L^2(\Gamma^-)},
\] (4.40)

which further implies
\[
 \frac{1}{2} \epsilon \| (1 - \mathcal{P})[u_{j,\lambda}] \|^2_{L^2(\Gamma^+)} + \lambda \| u_{j,\lambda} \|^2_{L^2(\Omega \times S^1)} + \| u_{j,\lambda} - \bar{u}_{j,\lambda} \|^2_{L^2(\Omega \times S^1)}
\] (4.41)
\[
 \leq \int_{\Omega \times S^1} f_{u_{j,\lambda}} + \left(1 + \frac{4}{\eta} \right) \| h \|^2_{L^2(\Gamma^-)} + \epsilon^2 \eta \| \mathcal{P}[u_{j,\lambda}] \|^2_{L^2(\Gamma^-)}.
\]
Now the only difficulty is $e^2 \eta \|P[u_j, \lambda]\|_{L^2(G^-)}^2$, which we cannot bound directly.

Step 3: Estimate of $\|P[u_j, \lambda]\|_{L^2(G^-)}^2$.

Multiplying $u_{j, \lambda}$ on both sides of (4.2), we have

$$\frac{1}{2} \tilde{w} \cdot \nabla_x (u_{j, \lambda}^2) = -\lambda u_{j, \lambda}^2 - u_{j, \lambda}(u_{j, \lambda} - \bar{u}_{j, \lambda}) + f u_{j, \lambda}.$$

(4.42)

Taking absolute value on both sides of (4.42) and integrating over $\Omega \times S^1$, we get

$$\|\tilde{w} \cdot \nabla_x (u_{j, \lambda}^2)\|_{L^1(\Omega \times S^1)} \leq \frac{2\lambda}{e} \|u_{j, \lambda}\|_{L^2(\Omega \times S^1)}^2 + \frac{2}{e} \|u_{j, \lambda} - \bar{u}_{j, \lambda}\|_{L^2(\Omega \times S^1)}^2 + \frac{2}{e} \int_{\Omega \times S^1} f u_{j, \lambda}.$$

(4.43)

Based on (4.41), we can further obtain

$$\|\tilde{w} \cdot \nabla_x (u_{j, \lambda}^2)\|_{L^1(\Omega \times S^1)} \leq \frac{1}{e} \left(1 + \frac{4}{\eta}\right) \|h\|_{L^2(G^-)}^2 + e\eta \|P[u_j, \lambda]\|_{L^2(G^-)}^2 + \frac{4}{e} \int_{\Omega \times S^1} f u_{j, \lambda}.$$

(4.44)

Hence, by Lemma 4.2, (4.41) and (4.44), we know for given $\delta > 0$

$$\|u_{j, \lambda}^2 \chi_{\Gamma \setminus \Gamma^\pm_\delta}\|_{L^1(\delta^\pm_\delta)} \leq C(\delta) \left(\|u_{j, \lambda}\|_{L^2(\Omega \times S^1)}^2 + \|\tilde{w} \cdot \nabla_x (u_{j, \lambda}^2)\|_{L^1(\Omega \times S^1)}^2\right)
\leq C(\delta) \left(\frac{1}{\delta} \left(1 + \frac{4}{\eta}\right) \|h\|_{L^2(G^-)}^2 + \frac{2\eta}{\delta} \|P[u_j, \lambda]\|_{L^2(G^-)}^2 + \frac{1}{\delta} \int_{\Omega \times S^1} f u_{j, \lambda}\right).$$

(4.45)

Noting the fact that

$$\|P[u_j, \lambda] 1_{\Gamma^+} \|_{L^2(G^-)} \leq \|u_{j, \lambda} 1_{\Gamma^+}\|_{L^2(G^-)},$$

and for δ sufficiently small, we have

$$\|P[u_j, \lambda] 1_{\Gamma^+} \|_{L^2(G^-)} \geq \frac{1}{2} \|P[u_j, \lambda]\|_{L^2(G^-)}.$$

(4.46)

Combining with (4.45), we naturally obtain

$$\|P[u_j, \lambda]\|_{L^2(G^-)}^2 \leq 2 \|P[u_j, \lambda] 1_{\Gamma^+}\|_{L^2(G^-)}^2 \leq 2 \|u_{j, \lambda} 1_{\Gamma^+}\|_{L^2(G^-)}^2 \leq C(\delta) \left(\frac{1}{\delta} \left(1 + \frac{4}{\eta}\right) \|h\|_{L^2(G^-)}^2 + \frac{2\eta}{\delta} \|P[u_j, \lambda]\|_{L^2(G^-)}^2 + \frac{1}{\delta} \int_{\Omega \times S^1} f u_{j, \lambda}\right).$$

(4.47)

For fixed δ, taking $\eta > 0$ sufficiently small, we obtain

$$\|P[u_j, \lambda]\|_{L^2(G^-)}^2 \leq C\left(\frac{1}{\delta} \|h\|_{L^2(G^-)}^2 + \frac{1}{\delta} \int_{\Omega \times S^1} f u_{j, \lambda}\right).$$

(4.48)

Plugging (4.48) into (4.41), we deduce

$$\frac{1}{2} \|1 - P[u_j, \lambda]\|_{L^2(G^-)}^2 + \lambda \|u_{j, \lambda}\|_{L^2(\Omega \times S^1)}^2 + \|u_{j, \lambda} - \bar{u}_{j, \lambda}\|_{L^2(\Omega \times S^1)}^2 \leq \frac{C(\delta)^2}{\lambda} \left(\int_{\Omega \times S^1} f u_{j, \lambda} + \|h\|_{L^2(G^-)}^2\right).$$

(4.49)

Step 4: Limit $j \to \infty$.

Naturally, based on (4.50), we deduce

$$\|u_{j, \lambda}\|_{L^2(\Omega \times S^1)}^2 \leq C\left(\frac{1}{\delta} \int_{\Omega \times S^1} f u + \frac{1}{\delta} \|h\|_{L^2(G^-)}^2\right).$$

(4.51)

Applying Cauchy’s inequality, we obtain for $C_0 > 0$ sufficiently small

$$\frac{1}{\delta} \int_{\Omega \times S^1} f u_{j, \lambda} \leq \frac{4}{C_0^2} \|f\|_{L^2(\Omega \times S^1)}^2 + C_0 \|u_{j, \lambda}\|_{L^2(\Omega \times S^1)}^2.$$

(4.52)
Combining (4.51) and (4.52), we obtain
\[\|u_{j,\lambda}\|_{L^2(\Omega \times S^1)}^2 \leq C \left(\frac{1}{\lambda^2} \|f\|_{L^2(\Omega \times S^1)}^2 + \frac{1}{\lambda} \|h\|_{L^2(\Gamma^-)}^2 \right), \] (4.53)
which further implies
\[\|u_{j,\lambda}\|_{L^2(\Omega \times S^1)} \leq C \left(\frac{1}{\lambda} \|f\|_{L^2(\Omega \times S^1)} + \frac{1}{\lambda^{1/2}} \|h\|_{L^2(\Gamma^-)} \right). \] (4.54)
Since this estimate is uniform in \(j \), we may take weak limit \(u_{j,\lambda} \to u_\lambda \) in \(L^2(\Omega \times S^1) \) as \(j \to \infty \). By Lemma 4.3 and weak semi-continuity, there exists a unique solution \(u_\lambda \) which further implies
\[\bar{u}_\lambda \in L^\infty \] and weak semi-continuity, there exists a unique solution \(u_\lambda \) which further implies
\[\bar{u}_\lambda \in L^\infty \] to the equation
\[\begin{cases} \epsilon \vec{w} \cdot \nabla_x u_\lambda + (1 + \lambda)u_\lambda - \bar{u}_\lambda = f(\vec{x}, \vec{w}) & \text{in } \Omega, \\ u_\lambda(x_0, \vec{w}) = \mathcal{P}[u_\lambda](\vec{x}_0) + h(\vec{x}_0, \vec{w}) & \text{for } \vec{w} \cdot \vec{v} < 0 \text{ and } \vec{x}_0 \in \partial \Omega, \end{cases} \] (4.55)
and satisfies
\[\|u_\lambda\|_{L^2(\Omega \times S^1)} \leq C \left(\frac{1}{\lambda} \|f\|_{L^2(\Omega \times S^1)} + \frac{1}{\lambda^{1/2}} \|h\|_{L^2(\Gamma^-)} \right). \] (4.56)
However, this estimate still blows up when \(\lambda \to 0 \), so we need to find a uniform estimate for \(u_\lambda \).

Step 5: Kernel Estimate.
Applying Lemma 4.3 to the solution of the equation (4.25). Then for any \(\phi \in L^2(\Omega \times S^1) \) satisfying \(\vec{w} \cdot \nabla_x \phi \in L^2(\Omega \times S^1) \) and \(\phi \in L^2(\Gamma) \), we have
\[\int_{\Omega \times S^1} u_\lambda \phi + \epsilon \int_{\Gamma} u_\lambda \phi d\gamma - \epsilon \int_{\Omega \times S^1} (\vec{w} \cdot \nabla_x \phi) u_\lambda + \int_{\Omega \times S^1} (u_\lambda - \bar{u}_\lambda) \phi = \int_{\Omega \times S^1} f \phi. \] (4.57)
Our goal is to choose a particular test function \(\phi \). We first construct an auxiliary function \(\zeta \). Since \(u_\lambda \in L^\infty(\Omega \times S^1) \), it naturally implies \(\bar{u}_\lambda \in L^\infty(\Omega) \) which further leads to \(\bar{u}_\lambda \in L^2(\Omega) \). We define \(\zeta(\vec{x}) \) on \(\Omega \) satisfying
\[\begin{cases} \Delta \zeta = \bar{u}_\lambda & \text{in } \Omega, \\ \frac{\partial \zeta}{\partial \vec{v}} = 0 & \text{on } \partial \Omega. \end{cases} \] (4.58)
A direct integration over \(\Omega \times S^1 \) in (4.57) implies
\[\int_{\Omega \times S^1} u_\lambda(\vec{x}, \vec{w}) d\vec{w} d\vec{x} = 0. \] (4.59)
Hence, in the bounded domain \(\Omega \), based on the standard elliptic estimate, there exists \(\zeta \in H^2(\Omega) \) such that
\[\|\zeta\|_{H^2(\Omega)} \leq C(\Omega) \|\bar{u}_\lambda\|_{L^2(\Omega)}. \] (4.60)
We plug the test function
\[\phi = -\vec{w} \cdot \nabla_x \zeta \] (4.61)
into the weak formulation (4.57) and estimate each term there. Naturally, we have
\[\|\phi\|_{L^2(\Omega)} \leq C \|\zeta\|_{H^1(\Omega)} \leq C(\Omega) \|\bar{u}_\lambda\|_{L^2(\Omega)}. \] (4.62)
Easily we can decompose
\[-\epsilon \int_{\Omega \times S^1} (\vec{w} \cdot \nabla_x \phi) u_\lambda = -\epsilon \int_{\Omega \times S^1} (\vec{w} \cdot \nabla_x \phi) \bar{u}_\lambda - \epsilon \int_{\Omega \times S^1} (\vec{w} \cdot \nabla_x \phi) (u_\lambda - \bar{u}_\lambda). \] (4.63)
We estimate the two terms on the right-hand side separately. By (4.58) and (4.61), we have
\begin{align*}
-\epsilon \int_{\Omega \times S^1} (\vec{w} \cdot \nabla_x \phi) \bar{u}_\lambda &= \epsilon \int_{\Omega \times S^1} \bar{u}_\lambda \left(w_1(w_1 \partial_{11} \zeta + w_2 \partial_{12} \zeta) + w_2(w_1 \partial_{12} \zeta + w_2 \partial_{22} \zeta) \right) \\
&= \epsilon \int_{\Omega \times S^1} \bar{u}_\lambda \left(w_1^2 \partial_{11} \zeta + w_2^2 \partial_{22} \zeta \right) \\
&= \epsilon \pi \int_{\Omega} \bar{u}_\lambda (\partial_{11} \zeta + \partial_{22} \zeta) \\
&= \epsilon \pi \|\bar{u}_\lambda\|_{L^2(\Omega)}^2 \\
&= \frac{1}{2} \epsilon \|\bar{u}_\lambda\|_{L^2(\Omega \times S^1)}^2.
\end{align*}

In the second equality, above cross terms vanish due to the symmetry of the integral over S^1. On the other hand, for the second term in (4.63), Hölder’s inequality and the elliptic estimate imply
\begin{align*}
-\epsilon \int_{\Omega \times S^1} (\vec{w} \cdot \nabla_x \phi) (u_\lambda - \bar{u}_\lambda) &\leq C(\Omega) \epsilon \|u_\lambda - \bar{u}_\lambda\|_{L^2(\Omega \times S^1)} \|\phi\|_{H^2(\Omega)} \\
&\leq C(\Omega) \epsilon \|u_\lambda - \bar{u}_\lambda\|_{L^2(\Omega \times S^1)} \|\bar{u}_\lambda\|_{L^2(\Omega \times S^1)}.
\end{align*}

We may decompose $\vec{w} = (\vec{w} \cdot \vec{v}) \vec{v} + \vec{w}_\perp$ to obtain
\begin{align*}
\epsilon \int_{\Gamma} u_\lambda \phi \, d\gamma &= \epsilon \int_{\Gamma} u_\lambda (\vec{w} \cdot \nabla_x \zeta) \, d\gamma \\
&= \epsilon \int_{\Gamma} u_\lambda (\vec{w}_\perp \cdot \nabla_x \zeta) \, d\gamma + \epsilon \int_{\Gamma} u_\lambda (\vec{w} \cdot \nabla_x \zeta) \, d\gamma \\
&= \epsilon \int_{\Gamma} u_\lambda (\vec{w}_\perp \cdot \nabla_x \zeta) \, d\gamma.
\end{align*}

Based on (4.60), (4.62), the boundary condition of the penalized neutron transport equation (4.55), the trace theorem, Hölder’s inequality and the elliptic estimate, we have
\begin{align*}
\epsilon \int_{\Gamma} u_\lambda \phi \, d\gamma &\leq \epsilon \int_{\Gamma} u_\lambda (\vec{w}_\perp \cdot \nabla_x \zeta) \, d\gamma \\
&= \epsilon \int_{\Gamma} \mathcal{P}[u_\lambda] (\vec{w}_\perp \cdot \nabla_x \zeta) \, d\gamma + \epsilon \int_{\Gamma} (1 - \mathcal{P}) [u_\lambda] (\vec{w}_\perp \cdot \nabla_x \zeta) \, d\gamma + \epsilon \int_{\Gamma} h(\vec{w}_\perp \cdot \nabla_x \zeta) \, d\gamma \\
&\leq \epsilon \|\bar{u}_\lambda\|_{L^2(\Omega \times S^1)} \left(\|u_\lambda\|_{L^2(\Gamma^+)} + \|h\|_{L^2(\Gamma^-)} \right).
\end{align*}

Also, we obtain
\begin{align*}
\lambda \int_{\Omega \times S^1} u_\lambda \phi &= \lambda \int_{\Omega \times S^1} \bar{u}_\lambda \phi + \lambda \int_{\Omega \times S^1} (u_\lambda - \bar{u}_\lambda) \phi = \lambda \int_{\Omega \times S^1} (u_\lambda - \bar{u}_\lambda) \phi \\
&\leq C(\Omega) \lambda \|\bar{u}_\lambda\|_{L^2(\Omega \times S^1)} \|u_\lambda - \bar{u}_\lambda\|_{L^2(\Omega \times S^1)},
\end{align*}

\begin{align*}
\int_{\Omega \times S^1} (u_\lambda - \bar{u}_\lambda) \phi &\leq C(\Omega) \|\bar{u}_\lambda\|_{L^2(\Omega \times S^1)} \|u_\lambda - \bar{u}_\lambda\|_{L^2(\Omega \times S^1)},
\end{align*}

\begin{align*}
\int_{\Omega \times S^1} f \phi &\leq C(\Omega) \|\bar{u}_\lambda\|_{L^2(\Omega \times S^1)} \|f\|_{L^2(\Omega \times S^1)}.
\end{align*}

Collecting terms in (4.64), (4.65), (4.67), (4.68), (4.69) and (4.70), we obtain
\begin{align*}
\epsilon \|\bar{u}_\lambda\|_{L^2(\Omega \times S^1)} &\leq C(\Omega) \left((1 + \epsilon + \lambda) \|u_\lambda - \bar{u}_\lambda\|_{L^2(\Omega \times S^1)} + \|u_\lambda\|_{L^2(\Gamma^+)} + \|f\|_{L^2(\Omega \times S^1)} \right) \\
&\quad + \epsilon \|u_\lambda\|_{L^2(\Gamma^+)} + \epsilon \|h\|_{L^2(\Gamma^-)}.
\end{align*}
When $0 \leq \lambda < 1$ and $0 < \epsilon < 1$, we get the desired uniform estimate with respect to λ as

$$
\epsilon \| \bar{u}_\lambda \|_{L^2(\Omega \times S^1)} \leq C(\Omega) \left(\| u_\lambda - \bar{u}_\lambda \|_{L^2(\Omega \times S^1)} + \epsilon \| u_\lambda \|_{L^2(\Gamma^+) + \| f \|_{L^2(\Omega \times S^1)}}
+ \epsilon \| (1 - P)[u_{j,\lambda}] \|_{L^2(\Gamma^+)} + \epsilon \| h \|_{L^2(\Gamma^-)} \right).
$$ \tag{4.72}

Step 6: Limit $\lambda \to 0$.

In the weak formulation (4.67), we may take the test function $\phi = u_\lambda$ to get the energy estimate

$$
\lambda \| u_\lambda \|_{L^2(\Omega \times S^1)}^2 + \frac{1}{2} \epsilon \int_{\Gamma} |u_\lambda|^2 \, d\gamma + \| u_\lambda - \bar{u}_\lambda \|_{L^2(\Omega \times S^1)}^2 = \int_{\Omega \times S^1} fu_\lambda.
$$ \tag{4.73}

Similar to (4.41), we have

$$
\frac{1}{2} \epsilon \| (1 - P)[u_\lambda] \|_{L^2(\Gamma^+)}^2 + \lambda \| u_\lambda \|_{L^2(\Omega \times S^1)}^2 + \| u_\lambda - \bar{u}_\lambda \|_{L^2(\Omega \times S^1)}^2 \leq \int_{\Omega \times S^1} f u_\lambda + \left(1 + \frac{4}{\eta} \right) \| h \|_{L^2(\Gamma^-)}^2 + \frac{\epsilon}{\eta} \| P[u_\lambda] \|_{L^2(\Gamma^-)}^2.
$$ \tag{4.74}

Also, based on Step 3, we know

$$
\| P[u_\lambda] \|_{L^2(\Gamma^-)} \leq C \left(\| u_\lambda \|_{L^2(\Omega \times S^1)} + \| \bar{w} \cdot \nabla u_\lambda \|_{L^1(\Omega \times S^1)} \right)
\leq C \left(\| u_\lambda - \bar{u}_\lambda \|_{L^2(\Omega \times S^1)} + \| \bar{u}_\lambda \|_{L^2(\Omega \times S^1)}^2 + \frac{1}{\epsilon} \left(1 + \frac{4}{\eta} \right) \| h \|_{L^2(\Gamma^-)}^2 + \frac{4}{\epsilon} \int_{\Omega \times S^1} fu_\lambda. \right)
$$ \tag{4.75}

Hence, this naturally implies

$$
\epsilon \| (1 - P)[u_\lambda] \|_{L^2(\Gamma^+)}^2 + \| u_\lambda - \bar{u}_\lambda \|_{L^2(\Omega \times S^1)}^2 \leq C \left(\epsilon^2 \| \bar{u}_\lambda \|_{L^2(\Omega \times S^1)}^2 + \int_{\Omega \times S^1} fu_\lambda + \| h \|_{L^2(\Gamma^-)}^2 \right).
$$ \tag{4.76}

On the other hand, we can square on both sides of (4.41) to obtain

$$
\epsilon^2 \| \bar{u}_\lambda \|_{L^2(\Omega \times S^1)} \leq C(\Omega) \left(\| u_\lambda - \bar{u}_\lambda \|_{L^2(\Omega \times S^1)}^2 + \epsilon^2 \| u_\lambda \|_{L^2(\Omega \times S^1)}^2 + \| f \|_{L^2(\Omega \times S^1)}^2
+ \epsilon^2 \| (1 - P)[u_{j,\lambda}] \|_{L^2(\Gamma^+)}^2 + \epsilon^2 \| h \|_{L^2(\Gamma^-)}^2 \right).
$$ \tag{4.77}

Taking η sufficiently small, multiplying a sufficiently small constant on both sides of (4.77) and adding it to (4.76) to absorb $\| (1 - P)[u_{j,\lambda}] \|_{L^2(\Gamma^+)}^2$, $\| u_\lambda \|_{L^2(\Omega \times S^1)}$ and $\| u_\lambda - \bar{u}_\lambda \|_{L^2(\Omega \times S^1)}$, we deduce

$$
\epsilon \| (1 - P)[u_{j,\lambda}] \|_{L^2(\Gamma^+)}^2 + \epsilon^2 \| \bar{u}_\lambda \|_{L^2(\Omega \times S^1)}^2 + \| u_\lambda - \bar{u}_\lambda \|_{L^2(\Omega \times S^1)}^2 \leq C(\Omega) \left(\| f \|_{L^2(\Omega \times S^1)}^2 + \int_{\Omega \times S^1} fu_\lambda + \| h \|_{L^2(\Gamma^-)}^2 \right).
$$ \tag{4.78}

Hence, we have

$$
\epsilon \| (1 - P)[u_{j,\lambda}] \|_{L^2(\Gamma^+)}^2 + \epsilon^2 \| u_\lambda \|_{L^2(\Omega \times S^1)}^2 \leq C(\Omega) \left(\| f \|_{L^2(\Omega \times S^1)}^2 + \int_{\Omega \times S^1} fu_\lambda + \| h \|_{L^2(\Gamma^-)}^2 \right).
$$ \tag{4.79}

A simple application of Cauchy’s inequality leads to

$$
\int_{\Omega \times S^1} f u_\lambda \leq \frac{1}{4C} \| f \|_{L^2(\Omega \times S^1)}^2 + C \epsilon^2 \| u_\lambda \|_{L^2(\Omega \times S^1)}^2.
$$ \tag{4.80}

Taking C sufficiently small, we can divide (4.79) by ϵ^2 to obtain

$$
\frac{1}{\epsilon} \| (1 - P)[u_{j,\lambda}] \|_{L^2(\Gamma^+)}^2 + \| u_\lambda \|_{L^2(\Omega \times S^1)} \leq C(\Omega) \left(\frac{1}{\epsilon^2} \| f \|_{L^2(\Omega \times S^1)}^2 + \frac{1}{\epsilon^2} \| h \|_{L^2(\Gamma^-)}^2 \right).
$$ \tag{4.81}

Since above estimate does not depend on λ, it gives a uniform estimate for the penalized neutron transport equation (4.29). Thus, we can extract a weakly convergent subsequence $u_{\lambda} \to u$ as $\lambda \to 0$. The weak lower semi-continuity of norms $\| \cdot \|_{L^2(\Omega \times S^1)}$ and $\| \cdot \|_{L^2(\Gamma^+)}$ implies u also satisfies the estimate (4.81). Hence, in the
weak formulation (4.57), we can take \(\lambda \to 0 \) to deduce that \(u \) satisfies equation (4.1). Also \(u_\lambda - u \) satisfies the equation

\[
\epsilon \vec{w} \cdot \nabla_x (u_\lambda - u) + (u_\lambda - u) - (\bar{u}_\lambda - \bar{u}) = -\lambda u_\lambda \quad \text{in} \quad \Omega,
\]

\[
(u_\lambda - u)(\vec{x}_0, \bar{w}) = 0 \quad \text{for} \quad \vec{x}_0 \in \partial \Omega \quad \text{and} \quad \bar{w} \cdot \vec{n} < 0.
\]

By a similar argument as above, we can achieve

\[
\|u_\lambda - u\|^2_{L^2(\Omega \times S^2)} \leq C(\Omega) \left(\frac{\lambda}{\epsilon} \|u_\lambda\|^2_{L^2(\Omega \times S^2)} \right).
\]

When \(\lambda \to 0 \), the right-hand side approaches zero, which implies the convergence is actually in the strong sense. The uniqueness easily follows from the energy estimates.

\[
\square
\]

4.3. \(L^\infty \) Estimate - First Round. In this subsection, we prove the \(L^2-L^\infty \) estimate. We consider the characteristics that reflect several times on the boundary.

Definition 4.5. (Stochastic Cycle) For fixed point \((t, \vec{x}, \vec{w}) \) with \((\vec{x}, \vec{w}) \notin \Gamma^0\), let \((t_0, \vec{x}_0, \vec{w}_0) = (0, \vec{x}, \vec{w})\). For \(\vec{w}_{k+1} \) such that \(\vec{w}_{k+1} \cdot \varpi(\vec{x}_{k+1}) > 0 \), define the \((k+1)\)-component of the back-time cycle as

\[
(t_{k+1}, \vec{x}_{k+1}, \vec{w}_{k+1}) = (t_k + t_b(\vec{x}_k, \vec{w}_k), \vec{x}_b(\vec{x}_k, \vec{w}_k), \vec{w}_{k+1})
\]

where

\[
t_b(\vec{x}, \vec{w}) = \inf \{ t > 0 : \vec{x} - ct \vec{w} \notin \Omega \}
\]

\[
x_b(\vec{x}, \vec{w}) = \vec{x} - ct_b(\vec{x}, \vec{w}) \vec{w} \notin \Omega
\]

Set

\[
X_{el}(s; t, \vec{x}, \vec{w}) = \sum_k \chi_{t_{k+1} \leq s < t_k} \left(\vec{x}_k - \epsilon (t_k - s) \vec{w}_k \right)
\]

\[
W_{el}(s; t, \vec{x}, \vec{w}) = \sum_k \chi_{t_{k+1} \leq s < t_k} \vec{w}_k
\]

Define \(\mu_{k+1} = \{ \vec{w} \in S^1 : \vec{w} \cdot \varpi(\vec{x}_{k+1}) > 0 \} \), and let the iterated integral for \(k \geq 2 \) be defined as

\[
\int_{\prod_{j=1}^{k-1} \mu_j} \prod_{j=1}^{k-1} \mathrm{d}\sigma_j = \int_{\mu_1} \cdots \left(\int_{\mu_{k-1}} \mathrm{d}\sigma_{k-1} \right) \cdots \mathrm{d}\sigma_1
\]

where \(\mathrm{d}\sigma_j = (\varpi(\vec{x}_j) \cdot \vec{w}) \mathrm{d}\vec{w} \) is a probability measure.

Lemma 4.6. For \(T_0 > 0 \) sufficiently large, there exists constants \(C_1, C_2 > 0 \) independent of \(T_0 \), such that for \(k = C_1 T_0^{5/4} \),

\[
\int_{\prod_{j=1}^{k-1} \mu_j} 1_{t_k(t, \vec{x}, \vec{w}, \vec{w}_1, ..., \vec{w}_{k-1}) < T_0} \prod_{j=1}^{k-1} \mathrm{d}\sigma_j \leq \left(\frac{1}{2} \right) C_2 T_0^{5/4}
\]

Proof. See \[\text{3}\] Lemma 4.1. \square

Theorem 4.7. Assume \(f(\vec{x}, \vec{w}) \in L^\infty(\Omega \times S^1) \) and \(h(x_0, \vec{w}) \in L^\infty(\Gamma^-) \). Then the solution \(u(\vec{x}, \vec{w}) \) to the transport equation (4.1) satisfies

\[
\|u\|_{L^\infty(\Omega \times S^1)} \leq C(\Omega) \left(\frac{1}{\epsilon^2} \|f\|_{L^2(\Omega \times S^1)} + \frac{1}{\epsilon^2} \|h\|_{L^2(\Gamma^-)} + \|f\|_{L^\infty(\Omega \times S^1)} + \|h\|_{L^\infty(\Gamma^-)} \right).
\]

Proof. We divide the proof into several steps:

Step 1: Mild formulation.

We rewrite the equation (4.1) along the characteristics as

\[
u(\vec{x}, \vec{w}) = h(\vec{x} - ct \vec{w}, \vec{w}) e^{-t_1} + \mathcal{P}[u(\vec{x} - ct_1 \vec{w}, \vec{w}) e^{-t_1}]
\]

\[
+ \int_0^{t_1} f(\vec{x} - \epsilon(t_1 - s_1) \vec{w}, \vec{w}) e^{-(t_1 - s_1)} s_1 + \int_0^{t_1} \bar{u}(\vec{x} - \epsilon(t_1 - s_1) \vec{w}) e^{-(t_1 - s_1)} s_1.
\]

\[
(4.91)
\]
Note that here $\mathcal{P}[u]$ is an integral over μ_1 at \vec{x}_1, using stochastic cycle, we may rewrite it again along the characteristics to \vec{x}_2. This process can continue to arbitrary \vec{x}_k. Then we get

$$u(\vec{x}, \vec{w}) = e^{-t_1} H + \sum_{l=1}^{k-1} \int_{\Pi_{j=1}^{l}} e^{-t_{l+1}} G \prod_{j=1}^{l} d\sigma_j + \sum_{l=1}^{k-1} \int_{\Pi_{j=1}^{l}} e^{-t_{l+1}} \mathcal{P}[u](\vec{x}_k, \vec{w}_{k-1}) \prod_{j=1}^{l} d\sigma_j$$

$$= I + II + III.$$

where

$$H = h(\vec{x} - \epsilon t_1 \vec{w}, \vec{w}) + \int_{0}^{t_1} f(\vec{x} - \epsilon(t_1 - s_1) \vec{w}, \vec{w}) e^{s_1} ds_1 + \int_{0}^{t_1} \tilde{u}(\vec{x} - \epsilon(t_1 - s_1) \vec{w}) e^{s_1} ds_1,$$

$$G = h(\vec{x}_1 - \epsilon t_{l+1} \vec{w}_1, \vec{w}_1) + \int_{0}^{t_1} f(\vec{x}_1 - \epsilon(t_{l+1} - s_{l+1}) \vec{w}_1, \vec{w}_1) e^{s_{l+1}} ds_{l+1} + \int_{0}^{t_1} \tilde{u}(\vec{x}_1 - \epsilon(t_{l+1} - s_{l+1}) \vec{w}_1) e^{s_{l+1}} ds_{l+1}.$$

We need to estimate each term on the right-hand side of (4.92).

Step 2: Estimate of mild formulation.

We first consider III. We may decompose it as

$$III = \sum_{l=1}^{k-1} \int_{\Pi_{j=1}^{l}} \mathcal{P}[u](\vec{x}_k, \vec{w}_{k-1}) e^{-t_{l+1}} \prod_{j=1}^{l} d\sigma_j$$

$$= \sum_{l=1}^{k-1} \int_{\Pi_{j=1}^{l}} 1_{t_k \leq T_0} \mathcal{P}[u](\vec{x}_k, \vec{w}_{k-1}) e^{-t_{l+1}} \prod_{j=1}^{l} d\sigma_j$$

$$+ \sum_{l=1}^{k-1} \int_{\Pi_{j=1}^{l}} 1_{t_k > T_0} \mathcal{P}[u](\vec{x}_k, \vec{w}_{k-1}) e^{-t_{l+1}} \prod_{j=1}^{l} d\sigma_j,$$

$$= III_1 + III_2,$$

where $T_0 > 0$ is defined as in Lemma 4.6. Then we take $k = C_1 T^{5/4}_0$. By Lemma 4.6, we deduce

$$|III_1| \leq C \left(\frac{1}{2} \right) C_2 T^{5/4}_0 \|u\|_{L^\infty(\Omega \times S^1)}.$$ (4.96)

Also, we may directly estimate

$$|III_2| \leq C e^{-T_0} \|u\|_{L^\infty(\Omega \times S^1)}.$$ (4.97)

Then taking T_0 sufficiently large, we know

$$|III| \leq \delta \|u\|_{L^\infty(\Omega \times S^1)},$$ (4.98)

for $\delta > 0$ small.

On the other hand, we may directly estimate the terms in I and II related to h and f, which we denote as I_1 and II_1. For fixed T, it is easy to see

$$|I_1| + |II_1| \leq \|f\|_{L^\infty(\Omega \times S^1)} + \|h\|_{L^\infty(\Gamma^-)}.$$ (4.99)

Step 3: Estimate of \tilde{u} term.

The most troubling terms are related to \tilde{u}. Here, we use the trick as in [18]. Collecting the results in (4.98)
and (4.99), we obtain

\[|u| \leq A + \left| \int_0^{t_1} \hat{u}(\vec{x} - (t_1 - s_1)\vec{w})e^{-(t_1 - s_1)}ds_1 \right| \]

\[+ \sum_{t=1}^{k-1} \left| \int_0^{t_1} \int_{\Omega} (\int_0^{t_1} \hat{u}(\vec{x} - (t_{l+1} - s_{l+1})\vec{w})e^{-(t_{l+1} - s_{l+1})}ds_{l+1}) \prod_{j=1}^{l} d\sigma_j \right|, \]

where

\[A = \|f\|_{L^\infty(\Omega \times \mathbb{S}^1)} + \|h\|_{L^\infty(\Gamma) + \delta \|u\|_{L^\infty(\Omega \times \mathbb{S}^1)}}. \]

By definition, we know

\[|I_2| = \left| \int_0^{t_1} \left(\int_{\mathbb{S}^1} u(\vec{x} - (t_1 - s_1)\vec{w}, \vec{w}_s) \right) e^{-(t_1 - s_1)}ds_1 \right|, \]

where \(\vec{w}_s \in \mathbb{S}^1 \) is a dummy variable. Then we can utilize the mild formulation (4.92) to rewrite \(u(\vec{x} - (t_1 - s_1)\vec{w}, \vec{w}_s) \) along the characteristics. We denote the stochastic cycle as \((t'_r, \vec{x}'_k, \vec{w}'_k)\) correspondingly and \((t'_0, \vec{x}'_0, \vec{w}'_0) = (0, \vec{x} - (t_1 - s_1)\vec{w}, \vec{w}_s)\). Then

\[|I_2| = |I_{2,1}| + |I_{2,2}| + |I_{2,3}|. \]

It is obvious that

\[|I_{2,1}| = \left| \int_0^{t_1} \left(\int_{\mathbb{S}^1} A \vec{w}_s \right) e^{-(t_1 - s_1)}ds_1 \right| \leq A \leq \|f\|_{L^\infty(\Omega \times \mathbb{S}^1)} + \|h\|_{L^\infty(\Gamma) + \delta \|u\|_{L^\infty(\Omega \times \mathbb{S}^1)}}. \]

Then by definition, we know

\[|I_{2,2}| = \left| \int_0^{t_1} \int_{\mathbb{S}^1} \int_0^{t'_1} \left(\int_{\mathbb{S}^1} u(\vec{x}' - (t'_1 - s'_1)\vec{w}) \right) e^{-(t'_1 - s'_1)}ds'_1 d\vec{w}_s \right| e^{-(t_1 - s_1)}ds_1. \]

We may decompose this integral

\[\int_0^{t_1} \int_{\mathbb{S}^1} \int_0^{t'_1} = \int_0^{t_1} \int_{\mathbb{S}^1} \int_{t'_1 - s'_1 \leq \delta} + \int_0^{t_1} \int_{\mathbb{S}^1} \int_{t'_1 - s'_1 \geq \delta} = I_{2,2,1} + I_{2,2,2}. \]

For \(I_{2,2,1} \), since the integral is defined in the small domain \([t'_1 - \delta, t'_1]\), it is easy to see

\[|I_{2,2,1}| \leq \delta \|u\|_{L^\infty(\Omega \times \mathbb{S}^1)}. \]
For $I_{2,2,2}$, applying Hölder’s inequality, we get

\[
|I_{2,2,2}| \leq \left| \int_0^{t_1} \int_{S^1} \int_{t'_1 - s'_1 \geq \delta} \tilde{u}(\tilde{x}' - \epsilon(t'_1 - s'_1)\tilde{w}_{s_1})e^{-(t'_1 - s'_1)}e^{-(t'_1 - s'_1)} ds'_1 d\tilde{w}_{s_1} ds_1 \right|
\]

\[
\leq \left(\int_0^{t_1} \int_{S^1} \int_{t'_1 - s'_1 \geq \delta} e^{-(t'_1 - s'_1)}e^{-(t'_1 - s'_1)} ds'_1 d\tilde{w}_{s_1} ds_1 \right)^{1/2} \left(\int_0^{t_1} \int_{S^1} \int_{t'_1 - s'_1 \geq \delta} 1 e^{-(t'_1 - s'_1)}e^{-(t'_1 - s'_1)} ds'_1 d\tilde{w}_{s_1} ds_1 \right)^{1/2}.
\]

Since $\tilde{w}_{s_1} \in S^1$, we can express it as $(\cos \phi, \sin \phi)$. Then we consider the substitution $(\phi, s'_1) \rightarrow (y_1, y_2)$ as

\[
y = \tilde{x}' - \epsilon(t'_1 - s'_1)\tilde{w}_{s_1},
\]

whose Jacobian is

\[
\frac{\partial(y_1, y_2)}{\partial(\phi, r')} = \begin{vmatrix}
\epsilon(t'_1 - s'_1) & \cos \phi \\
-\epsilon(t'_1 - s'_1) & \sin \phi
\end{vmatrix} = \epsilon^2(t'_1 - s'_1) \geq \epsilon^2 \delta.
\]

Therefore, we know

\[
|I_{2,2,2}| \leq \frac{1}{\epsilon^2 \delta} \|\tilde{u}\|_{L^2(\Omega \times S^1)}.
\]

Therefore, we have shown

\[
|I_2| \leq \delta \|u\|_{L^\infty(\Omega \times S^1)} + \frac{1}{\delta \epsilon} \|\tilde{u}\|_{L^2(\Omega \times S^1)}.
\]

After a similar but tedious computation, we can show

\[
|I_{2,3}| \leq \delta \|u\|_{L^\infty(\Omega \times S^1)} + \frac{1}{\delta \epsilon} \|\tilde{u}\|_{L^2(\Omega \times S^1)}.
\]

Hence, we have proved

\[
|I_2| \leq \delta \|u\|_{L^\infty(\Omega \times S^1)} + \frac{1}{\delta \epsilon} \|\tilde{u}\|_{L^2(\Omega \times S^1)} + \|f\|_{L^\infty(\Omega \times S^1)} + \|h\|_{L^\infty(\Gamma^-)}.
\]

In a similar fashion, we can show

\[
|II_2| \leq \delta \|u\|_{L^\infty(\Omega \times S^1)} + \frac{1}{\delta \epsilon} \|\tilde{u}\|_{L^2(\Omega \times S^1)} + \|f\|_{L^\infty(\Omega \times S^1)} + \|h\|_{L^\infty(\Gamma^-)}.
\]

Step 4: Synthesis.

Summarizing all above, we have shown

\[
|u| \leq \delta \|u\|_{L^\infty(\Omega \times S^1)} + \frac{1}{\delta \epsilon} \|\tilde{u}\|_{L^2(\Omega \times S^1)} + \|f\|_{L^\infty(\Omega \times S^1)} + \|h\|_{L^\infty(\Gamma^-)}.
\]

Since (\tilde{x}, \tilde{w}) are arbitrary and δ is small, taking supremum on both sides and applying Lemma 4.4, we have

\[
\|u\|_{L^\infty(\Omega \times S^1)} \leq C(\Omega) \left(\frac{1}{\epsilon} \|f\|_{L^2(\Omega \times S^1)} + \frac{1}{\epsilon^2} \|h\|_{L^2(\Gamma^-)} \right)
\]

\[
\leq C(\Omega) \left(\frac{1}{\epsilon} \|f\|_{L^2(\Omega \times S^1)} + \frac{1}{\epsilon^2} \|h\|_{L^2(\Gamma^-)} + \|f\|_{L^\infty(\Omega \times S^1)} + \|h\|_{L^\infty(\Gamma^-)} \right).
\]

This is the desired result. □
4.4. L^{2m} Estimate. In this subsection, we try to improve previous estimates. In the following, we assume $m > 2$ is an integer and let $o(1)$ denote a sufficiently small constant.

Theorem 4.8. Assume $f(\vec{x}, \vec{w}) \in L^\infty(\Omega \times S^1)$ and $h(x_0, \vec{w}) \in L^\infty(\Gamma^-)$. Then $u(\vec{x}, \vec{w})$ satisfies

$$
\frac{1}{\epsilon^2} \|(1 - \mathcal{P})[u]\|_{L^2(\Gamma^+)} + \|\bar{u}\|_{L^2_m(\Omega \times S^1)} + \frac{1}{\epsilon} \|\bar{u}\|_{L^2(\Omega \times S^1)} \leq C \left(o(1)\epsilon + \|u\|_{L^\infty(\Gamma^+)} + \frac{1}{\epsilon} \|f\|_{L^2(\Omega \times S^1)} + \frac{1}{\epsilon} \|f\|_{L^2_m(\Omega \times S^1)} + \frac{1}{\epsilon} \|h\|_{L^2(\Gamma^-)} + \|h\|_{L^\infty(\Gamma^-)} \right). \tag{4.118}
$$

Proof. We divide the proof into several steps:

Step 1: Kernel Estimate.

Applying Green’s identity to the solution of the equation (4.1). Then for any $\phi \in L^2(\Omega \times S^1)$ satisfying $\vec{w} \cdot \nabla \phi \in L^2(\Omega \times S^1)$ and $\phi \in L^2(\Gamma)$, we have

$$
\epsilon \int_\Gamma u \phi \, d\gamma - \epsilon \int_{\Omega \times S^1} (\vec{w} \cdot \nabla \phi)u + \int_{\Omega \times S^1} (u - \bar{u})\phi = \int_{\Omega \times S^1} f\phi. \tag{4.119}
$$

Our goal is to choose a particular test function ϕ. We first construct an auxiliary function ζ. Naturally $u \in L^{2m}(\Omega \times S^1)$ implies $\bar{u} \in L^{2m}(\Omega)$ which further leads to $(\bar{u})^{2m-1} \in L^{2m-1}(\Omega)$. We define $\zeta(\vec{x})$ on Ω satisfying

$$
\begin{cases}
\Delta \zeta = (\vec{u})^{2m-1} - \frac{1}{|\Omega|} \int_{\Omega} (\vec{u})^{2m-1} \, d\vec{x} & \text{in } \Omega, \\
\frac{\partial \zeta}{\partial \nu} = 0 & \text{on } \partial\Omega.
\end{cases} \tag{4.120}
$$

In the bounded domain Ω, based on the standard elliptic estimate, we have

$$
\|\zeta\|_{W^{2, \frac{2m}{2m-1}}(\Omega)} \leq C \|(\vec{u})^{2m-1}\|_{L^{\frac{2m}{2m-1}}(\Omega)} = C \|\bar{u}\|_{L^{2m}(\Omega)}^{2m-1}. \tag{4.121}
$$

We plug the test function

$$
\phi = -\vec{w} \cdot \nabla \zeta \tag{4.122}
$$

into the weak formulation (4.119) and estimate each term there. By Sobolev embedding theorem, we have

$$
\|\phi\|_{L^2(\Omega)} \leq C \|\zeta\|_{H^1(\Omega)} \leq C \|\zeta\|_{W^{1, \frac{2m}{2m-1}}(\Omega)} \leq C \|\bar{u}\|_{L^{2m}(\Omega)}^{2m-1}, \tag{4.123}
$$

$$
\|\phi\|_{L^{\frac{2m}{2m-1}}(\Omega)} \leq C \|\zeta\|_{W^{1, \frac{2m}{2m-1}}(\Omega)} \leq C \|\bar{u}\|_{L^{2m}(\Omega)}^{2m-1}. \tag{4.124}
$$

Easily we can decompose

$$
-\epsilon \int_{\Omega \times S^1} (\vec{w} \cdot \nabla \phi)u_\lambda = -\epsilon \int_{\Omega \times S^1} (\vec{w} \cdot \nabla \phi)\bar{u}_\lambda - \epsilon \int_{\Omega \times S^1} (\vec{w} \cdot \nabla \phi)(u_\lambda - \bar{u}_\lambda). \tag{4.125}
$$

We estimate the two term on the right-hand side of (4.125) separately. By (4.120) and (4.122), we have

$$
-\epsilon \int_{\Omega \times S^1} (\vec{w} \cdot \nabla \phi)\bar{u} = \epsilon \int_{\Omega \times S^1} \bar{u} \left(w_1 (w_1 \partial_{11} \zeta + w_2 \partial_{12} \zeta) + w_2 (w_1 \partial_{12} \zeta + w_2 \partial_{22} \zeta) \right) \tag{4.126}
$$

$$
= \epsilon \int_{\Omega \times S^1} \bar{u} \left(w_1^2 \partial_{11} \zeta + w_2^2 \partial_{22} \zeta \right)
= \epsilon \pi \int_{\Omega} \bar{u} (\partial_{11} \zeta + \partial_{22} \zeta)
= \epsilon \pi \|\bar{u}\|_{L^{2m}(\Omega)}^{2m}. \tag{4.127}
$$
In the weak formulation (4.119), we may take the test function

\[-\epsilon \int_{\Omega \times S^1} (\vec{w} \cdot \nabla_x \phi)(u - \bar{u}) \leq C\epsilon \| u - \bar{u}\|_{L^2(\Omega \times S^1)} \| \nabla_x \phi \|_{L^{2m-2}(\Omega)} \]

(4.127)

\[\leq C\epsilon \| u - \bar{u}\|_{L^2(\Omega \times S^1)} \| \zeta \|_{W^{2,2m-2}(\Omega)} \]

\[\leq C\epsilon \| u - \bar{u}\|_{L^2(\Omega \times S^1)} \| \bar{u}\|_{L^{2m}(\Omega)}^{2m-1} \cdot \]

Based on (4.121), (4.123), (4.124), Sobolev embedding theorem and the trace theorem, we have

\[\| \nabla_x \zeta \|_{L^{\frac{2m}{m-1}}(\Gamma)} \leq C \| \nabla_x \zeta \|_{W^{1,\frac{2m}{m-1}}(\Omega)} \leq C \| \zeta \|_{W^{2,2m-2}(\Omega)} \leq C \| \bar{u}\|_{L^{2m}(\Omega)}^{2m-1} \cdot \]

(4.128)

We may also decompose \(\vec{w} = (\vec{w} \cdot \vec{v})\vec{v} + \vec{w}_\perp \) to obtain

\[\epsilon \int_{\Gamma} u\phi d\gamma = \epsilon \int_{\Gamma} (\vec{w} \cdot \nabla_x \zeta) d\gamma \]

(4.129)

\[= \epsilon \int_{\Gamma} u(\vec{v} \cdot \nabla_x \zeta)(\vec{w} \cdot \vec{v}) d\gamma + \epsilon \int_{\Gamma} u(\vec{w}_\perp \cdot \nabla_x \zeta) d\gamma \]

\[= \epsilon \int_{\Gamma} u(\vec{w}_\perp \cdot \nabla_x \zeta) d\gamma. \]

Based on (4.121), (4.124) and Hölder’s inequality, we have

\[\epsilon \int_{\Gamma} u\phi d\gamma = \epsilon \int_{\Gamma} u(\vec{w}_\perp \cdot \nabla_x \zeta) d\gamma \]

(4.130)

\[\leq C\epsilon \| \vec{v}\|_{L^{2m}(\Omega \times S^1)} \left(\| (1 - \mathcal{P})[u]\|_{L^m(\Gamma^+)} + \| h\|_{L^m(\Gamma^-)} \right) \]

\[\leq C\epsilon \| \vec{v}\|_{L^{2m}(\Omega \times S^1)} \left(\| (1 - \mathcal{P})[u]\|_{L^m(\Gamma^+)} + \| h\|_{L^m(\Gamma^-)} \right) \cdot \]

Hence, we know

\[\epsilon \int_{\Gamma} u\phi d\gamma \leq C\epsilon \| \vec{v}\|_{L^{2m}(\Omega \times S^1)} \left(\| (1 - \mathcal{P})[u]\|_{L^m(\Gamma^+)} + \| h\|_{L^m(\Gamma^-)} \right) \cdot \]

(4.131)

Also, we have

\[\int_{\Omega \times S^1} (u - \bar{u}) \phi \leq C \| \phi\|_{L^2(\Omega \times S^1)} \| u - \bar{u}\|_{L^2(\Omega \times S^1)} \leq C \| \bar{u}\|_{L^{2m}(\Omega)} \| u - \bar{u}\|_{L^2(\Omega \times S^1)} \cdot \]

(4.132)

\[\int_{\Omega \times S^1} f \phi \leq C \| \phi\|_{L^2(\Omega \times S^1)} \| f\|_{L^2(\Omega \times S^1)} \leq C \| \bar{u}\|_{L^{2m}(\Omega)} \| f\|_{L^2(\Omega \times S^1)} \cdot \]

(4.133)

Collecting terms in (4.126), (4.127), (4.131), (4.132) and (4.133), we obtain

\[\epsilon \| \vec{v}\|_{L^{2m}(\Omega \times S^1)} \leq C \left(\epsilon \| u - \bar{u}\|_{L^2(\Omega \times S^1)} + \| u - \bar{u}\|_{L^2(\Omega \times S^1)} + \| f\|_{L^2(\Omega \times S^1)} \right) + \epsilon \| (1 - \mathcal{P})[u]\|_{L^m(\Gamma^+)} + \| h\|_{L^m(\Gamma^-)} \right), \]

(4.134)

Step 2: Energy Estimate.

In the weak formulation (4.119), we may take the test function \(\phi = u \) to get the energy estimate

\[\frac{1}{2} \epsilon \int_{\Gamma} |u|^2 d\gamma + \| u - \bar{u}\|_{L^2(\Omega \times S^1)}^2 = \int_{\Omega \times S^1} fu. \]

(4.135)
Hence, by (4.136), this naturally implies
\[\epsilon \|(1 - \mathcal{P})[u]\|_{L^2(\Gamma^+)}^2 + \|u - \bar{u}\|_{L^2(\Omega \times S^1)}^2 \leq o(1) \epsilon^2 \|\bar{u}\|_{L^2(\Omega \times S^1)}^2 + \int_{\Omega \times S^1}fu + \|h\|_{L^2(\Gamma^-)}^2. \] (4.136)

On the other hand, we can square on both sides of (4.134) to obtain
\[\epsilon^2 \|\bar{u}\|_{L^2(\Omega \times S^1)}^2 \leq C \left(\epsilon^2 \|u - \bar{u}\|_{L^2(\Omega \times S^1)}^2 + \|u - \bar{u}\|_{L^2(\Omega \times S^1)}^2 + \int_{\Omega \times S^1}fu + \|h\|_{L^2(\Gamma^-)}^2 \right), \] (4.137)

Multiplying a sufficiently small constant on both sides of (4.137) and adding it to (4.136) to absorb \(\|u - \bar{u}\|_{L^2(\Omega \times S^1)}^2 \) and \(\epsilon^2 \|\bar{u}\|_{L^2(\Omega \times S^1)}^2 \), we deduce
\[\epsilon \|(1 - \mathcal{P})[u]\|_{L^2(\Gamma^+)}^2 + \epsilon^2 \|\bar{u}\|_{L^2(\Omega \times S^1)}^2 \leq C \left(\epsilon^2 \|u - \bar{u}\|_{L^2(\Omega \times S^1)}^2 + \epsilon^2 \|(1 - \mathcal{P})[u]\|_{L^m(\Gamma^+)} \right) \]
\[+ \int_{\Omega \times S^1}fu + \|h\|_{L^2(\Gamma^-)}^2 + \epsilon^2 \|h\|_{L^m(\Gamma^-)}^2 \right). \] (4.138)

By interpolation estimate and Young’s inequality, we have
\[\|(1 - \mathcal{P})[u]\|_{L^m(\Gamma^+)} \leq \|(1 - \mathcal{P})[u]\|_{L^2(\Gamma^+)} \|(1 - \mathcal{P})[u]\|_{L^m(\Gamma^+)} \]
\[= \left(\frac{1}{\epsilon^{m-2}} \|(1 - \mathcal{P})[u]\|_{L^2(\Gamma^+)} \right) \left(\epsilon^{-m+2} \|(1 - \mathcal{P})[u]\|_{L^m(\Gamma^+)} \right) \]
\[\leq C \left(\frac{1}{\epsilon^{m-2}} \|(1 - \mathcal{P})[u]\|_{L^2(\Gamma^+)} \right) \left(\epsilon^{-m+2} \|(1 - \mathcal{P})[u]\|_{L^m(\Gamma^+)} \right) + o(1) \]
\[\leq C \left(\frac{1}{\epsilon^{m-2}} \|(1 - \mathcal{P})[u]\|_{L^2(\Gamma^+)} \right) + o(1) \epsilon^{\frac{m}{m-2}} \|(1 - \mathcal{P})[u]\|_{L^m(\Gamma^+)} \]
\[\leq C \left(\frac{1}{\epsilon^{m-2}} \|(1 - \mathcal{P})[u]\|_{L^2(\Gamma^+)} \right) + o(1) \epsilon^{\frac{m}{m-2}} \|(1 - \mathcal{P})[u]\|_{L^m(\Gamma^+)} \]. (4.139)

Similarly, we have
\[\|u - \bar{u}\|_{L^2(\Omega \times S^1)} \leq \|u - \bar{u}\|_{L^2(\Omega \times S^1)} + \|u - \bar{u}\|_{L^\infty(\Omega \times S^1)} \]
\[= \left(\frac{1}{\epsilon^{m-2}} \|u - \bar{u}\|_{L^2(\Omega \times S^1)} \right) \left(\epsilon^{-m+1} \|u - \bar{u}\|_{L^\infty(\Omega \times S^1)} \right) \]
\[\leq C \left(\frac{1}{\epsilon^{m-2}} \|u - \bar{u}\|_{L^2(\Omega \times S^1)} \right) \left(\epsilon^{-m+1} \|u - \bar{u}\|_{L^\infty(\Omega \times S^1)} \right) + o(1) \]
\[\leq C \left(\frac{1}{\epsilon^{m-2}} \|u - \bar{u}\|_{L^2(\Omega \times S^1)} \right) + o(1) \epsilon^{\frac{m}{m-2}} \|u - \bar{u}\|_{L^\infty(\Omega \times S^1)} \]. (4.140)

We need this extra \(\epsilon^{\frac{m}{m-2}} \) for the convenience of \(L^\infty \) estimate. Then we know for sufficiently small \(\epsilon \),
\[\epsilon^2 \|(1 - \mathcal{P})[u]\|_{L^m(\Gamma^+)}^2 \leq C \epsilon^2 \|u - \bar{u}\|_{L^2(\Omega \times S^1)}^2 + o(1) \epsilon^2 \|u\|_{L^\infty(\Gamma^+)}^2 \]
\[\leq o(1) \epsilon \|u\|_{L^2(\Gamma^+)}^2 + o(1) \epsilon^2 \|u\|_{L^\infty(\Gamma^+)}^2. \] (4.141)

Similarly, we have
\[\epsilon^2 \|u - \bar{u}\|_{L^2(\Omega \times S^1)}^2 \leq \epsilon^2 \|u - \bar{u}\|_{L^2(\Omega \times S^1)}^2 + o(1) \epsilon^2 \|u\|_{L^\infty(\Gamma^+)}^2 \]
\[\leq o(1) \|u - \bar{u}\|_{L^2(\Omega \times S^1)}^2 + o(1) \epsilon^2 \|u\|_{L^\infty(\Gamma^+)}^2. \] (4.142)
In (4.12), we can absorb \(\|u - \bar{u}\|_{L^2(\Omega \times S^1)}\) and \(\epsilon \| (1 - \mathcal{P})[u] \|_{L^2(\Gamma^+)}^2\) into left-hand side to obtain
\[
\epsilon \| (1 - \mathcal{P})[u] \|_{L^2(\Gamma^+)}^2 + \epsilon^2 \| \bar{u} \|_{L^2(\Omega \times S^1)}^2 + \| u - \bar{u} \|_{L^2(\Omega \times S^1)}^2 \leq C \left(o(1) \epsilon^2 + \frac{2}{\epsilon^2} \right) \| u \|_{L^2(\Omega \times S^1)}^2 + \| f \|_{L^2(\Omega \times S^1)}^2 + \int_{\Omega \times S^1} \left(\epsilon h \| u \|_{L^2(\Gamma^-)}^2 + \epsilon^2 \| h \|_{L^2(\Gamma^-)}^2 \right). \tag{4.143}
\]
We can decompose
\[
\int_{\Omega \times S^1} f u = \int_{\Omega \times S^1} f \bar{u} + \int_{\Omega \times S^1} (u - \bar{u}). \tag{4.144}
\]
Hölder’s inequality and Cauchy’s inequality imply
\[
\int_{\Omega \times S^1} f \bar{u} \leq \| f \|_{L^{2m/(m-1)}(\Omega \times S^1)} \| \bar{u} \|_{L^{2m/(1-m)}(\Omega \times S^1)} \leq \frac{C}{\epsilon^2} \| f \|_{L^{2m/(m-1)}(\Omega \times S^1)}^2 + o(1) \epsilon^2 \| \bar{u} \|_{L^{2m/(1-m)}(\Omega \times S^1)}^2, \tag{4.145}
\]
and
\[
\int_{\Omega \times S^1} f (u - \bar{u}) \leq C \| f \|_{L^2(\Omega \times S^1)}^2 + o(1) \| u - \bar{u} \|_{L^2(\Omega \times S^1)}^2. \tag{4.146}
\]
Hence, absorbing \(\epsilon^2 \| \bar{u} \|_{L^{2m/(1-m)}(\Omega \times S^1)}^2\) and \(\| u - \bar{u} \|_{L^2(\Omega \times S^1)}^2\) into left-hand side of (4.143), we get
\[
\epsilon \| (1 - \mathcal{P})[u] \|_{L^2(\Gamma^+)}^2 + \epsilon^2 \| \bar{u} \|_{L^2(\Omega \times S^1)}^2 + \| u - \bar{u} \|_{L^2(\Omega \times S^1)}^2 \leq C \left(o(1) \epsilon^2 + \frac{2}{\epsilon^2} \| u \|_{L^2(\Omega \times S^1)}^2 + \frac{1}{\epsilon^2} \| f \|_{L^{2m/(m-1)}(\Omega \times S^1)}^2 + \| h \|_{L^2(\Gamma^-)}^2 + \epsilon^2 \| h \|_{L^2(\Gamma^-)}^2 \right), \tag{4.147}
\]
which implies
\[
\frac{1}{\epsilon} \| (1 - \mathcal{P})[u] \|_{L^2(\Gamma^+)} + \frac{1}{\epsilon^2} \| \bar{u} \|_{L^2(\Omega \times S^1)} + \frac{1}{\epsilon^2} \| u - \bar{u} \|_{L^2(\Omega \times S^1)} \leq C \left(o(1) \epsilon^2 + \frac{2}{\epsilon^2} \| u \|_{L^2(\Omega \times S^1)} + \frac{1}{\epsilon^2} \| f \|_{L^{2m/(m-1)}(\Omega \times S^1)} + \frac{1}{\epsilon} \| h \|_{L^2(\Gamma^-)} + \frac{1}{\epsilon} \| h \|_{L^2(\Gamma^-)} \right). \tag{4.148}
\]

4.5. \(L^\infty\) Estimate - Second Round.

Theorem 4.9. Assume \(f(\bar{x}, \bar{w}) \in L^\infty(\Omega \times S^1)\) and \(h(x_0, \bar{w}) \in L^\infty(\Gamma^-)\). Then for the steady neutron transport equation (4.7), there exists a unique solution \(u(\bar{x}, \bar{w}) \in L^\infty(\Omega \times S^1)\) satisfying
\[
\| u \|_{L^\infty(\Omega \times S^1)} \leq C \left(\frac{1}{\epsilon^{1+\frac{1}{m}}} \| f \|_{L^2(\Omega \times S^1)} + \| f \|_{L^{2m/(m-1)}(\Omega \times S^1)} + \| f \|_{L^\infty(\Omega \times S^1)} \right) \tag{4.149}
\]
\[
+ \frac{1}{\epsilon^{1+\frac{1}{m}}} \| h \|_{L^2(\Gamma^-)} + \frac{1}{\epsilon^{1+\frac{1}{m}}} \| h \|_{L^2(\Gamma^-)} + \| h \|_{L^\infty(\Gamma^-)} \right). \]

Proof. Following the argument in the proof of Theorem 4.7, by double Duhamel’s principle along the characteristics, the key step is
\[
|I_{2,2.2}| \leq \left| \int_0^{t_1} \int_{S^1} \int_{t_1-t' \geq \delta} \bar{u}(\bar{x}' - \epsilon(t'_1 - s'_1)\bar{w}_s') e^{-(t'_1-s'_1)(t_1 - s_1)} ds' d\bar{w}_s' ds_1 \right| \tag{4.150}
\]
\[
\leq \left(\int_0^{t_1} \int_{S^1} \int_{t_1-t' \geq \delta} e^{-(t'_1-s'_1)(t_1 - s_1)} ds' d\bar{w}_s' ds_1 \right)^{\frac{2m}{2m-1}} \tag{4.149}
\]
\[
\times \left(\int_0^{t_1} \int_{S^1} \int_{t_1-t' \geq \delta} 1^{\frac{1}{2m}}(\bar{x}' - \epsilon(t'_1 - s'_1)\bar{w}_s') e^{-(t'_1-s'_1)(t_1 - s_1)} ds' d\bar{w}_s' ds_1 \right)^{\frac{2m}{2m-1}} \tag{4.149}
\]
\[
\leq \left(\int_0^{t_1} \int_{S^1} \int_{t_1-t' \geq \delta} 1^{\frac{1}{2m}}(\bar{x}' - \epsilon(t'_1 - s'_1)\bar{w}_s') e^{-(t'_1-s'_1)(t_1 - s_1)} ds' d\bar{w}_s' ds_1 \right)^{\frac{2m}{2m-1}} \tag{4.149}
\]
Then using the same substitution \((\phi, s'_1) \to (y_1, y_2)\) as
\[
\bar{y} = \bar{x}' - \epsilon(t'_1 - s'_1)\bar{w}_s', \tag{4.151}
\]
where the Jacobian is larger than \(\epsilon^2 \delta \), we know
\[
|I_{2,2}| \leq \frac{1}{\epsilon m} \frac{1}{\delta^{\frac{1}{2}}} \| \bar{u} \|_{L^2(\Omega \times S^1)}.
\]
Therefore, we can show
\[
\|u\|_{L^\infty(\Omega \times S^1)} \leq C \left(\frac{1}{\epsilon m} \big\| \bar{u} \big\|_{L^2(\Omega \times S^1)} + \big\| f \big\|_{L^\infty(\Omega \times S^1)} + \big\| g \big\|_{L^\infty(\Gamma^-)} \right).
\]
Considering Theorem 4.8, we obtain
\[
\|u\|_{L^\infty(\Omega \times S^1)} \leq C \left(\frac{1}{\epsilon^{1+\frac{1}{m}}} \big\| f \big\|_{L^2(\Omega \times S^1)} + \frac{1}{\epsilon^{2+\frac{1}{m}}} \big\| f \big\|_{L^\infty(\Omega \times S^1)} + \big\| f \big\|_{L^\infty(\Omega \times S^1)} \right) + o(1) \|u\|_{L^\infty(\Gamma^+)}.
\]
Absorbing \(\|u\|_{L^\infty(\Omega \times S^1)} \) into the left-hand side, we obtain
\[
\|u\|_{L^\infty(\Omega \times S^1)} \leq C \left(\frac{1}{\epsilon^{1+\frac{1}{m}}} \big\| f \big\|_{L^2(\Omega \times S^1)} + \frac{1}{\epsilon^{2+\frac{1}{m}}} \big\| f \big\|_{L^\infty(\Omega \times S^1)} + \big\| f \big\|_{L^\infty(\Omega \times S^1)} \right) + \frac{1}{\epsilon^{1+\frac{1}{m}}} \big\| h \big\|_{L^2(\Gamma^-)} + \frac{1}{\epsilon^{1+\frac{1}{m}}} \big\| h \big\|_{L^\infty(\Gamma^-)}.
\]

5. Diffusive Limit

Theorem 5.1. Assume \(g(\tilde{x}, \tilde{w}) \in C^2(\Gamma^-) \) satisfying (4.1). Then for the steady neutron transport equation (5.1), there exists a unique solution \(u^\epsilon(\tilde{x}, \tilde{w}) \in L^\infty(\Omega \times S^1) \) satisfying (4.4). Moreover, for any \(0 < \delta << 1 \), the solution obeys the estimate
\[
\|u^\epsilon - U_0^\epsilon\|_{L^\infty(\Omega \times S^1)} \leq C(\delta, \Omega) \epsilon^{1-\delta},
\]
where \(U_0^\epsilon \) is defined in (2.31).

Proof. We can divide the proof into several steps:

Step 1: Remainder definitions.
We define the remainder as
\[
R = u^\epsilon - \sum_{k=0}^{2} \epsilon^k U_k^\epsilon - \sum_{k=0}^{1} \epsilon^k \bar{u}_k^\epsilon = u^\epsilon - Q - \mathscr{Q},
\]
where
\[
Q = U_0^\epsilon + \epsilon U_1^\epsilon + \epsilon^2 U_2^\epsilon,
\]
\[
\mathscr{Q} = \bar{u}_1^\epsilon + \epsilon \bar{u}_2^\epsilon.
\]
Noting the equation (2.20) is equivalent to the equation (1.1), we write \(\mathcal{L} \) to denote the neutron transport operator as follows:
\[
\mathcal{L}[u] = \epsilon \bar{w} \cdot \nabla_x u + u - \bar{u}
\]
\[
= \sin \phi \frac{\partial u}{\partial \eta} - \frac{\epsilon}{R_\kappa - \epsilon \eta} \cos \phi \left(\frac{\partial u}{\partial \phi} + \frac{\partial u}{\partial \tau} \right) + u - \bar{u}
\]

Step 2: Estimates of \(\mathcal{L}[Q] \).
The interior contribution can be estimated as
\[
\mathcal{L}[Q] = \epsilon \bar{w} \cdot \nabla_x Q + Q - \bar{Q} = \epsilon^3 \bar{w} \cdot \nabla_x U_2^\epsilon.
\]
We have
\[
\|\mathcal{L}[Q]\|_{L^\infty(\Omega \times S^1)} \leq \|\epsilon^3 \bar{w} \cdot \nabla_x U_2^\epsilon\|_{L^\infty(\Omega \times S^1)} \leq C \epsilon \|\nabla_x U_2^\epsilon\|_{L^\infty(\Omega \times S^1)} \leq C \epsilon^3.
\]

\(\Box \)
This implies
\[
\|\mathcal{L}[Q]\|_{L^2(\Omega \times S^1)} \leq C\varepsilon^3, \tag{5.8}
\]
\[
\|\mathcal{L}[Q]\|_{L^{2m-\tau}(\Omega \times S^1)} \leq C\varepsilon^3, \tag{5.9}
\]
\[
\|\mathcal{L}[Q]\|_{L^\infty(\Omega \times S^1)} \leq C\varepsilon^3. \tag{5.10}
\]

Step 3: Estimates of $\mathcal{L}\mathcal{Q}$.
Since $\mathcal{Q}_0^\varepsilon = 0$, we only need to estimate $\mathcal{Q}_1^\varepsilon = (f_1 - f_1^L) \cdot \psi_0 = \nabla\psi_0$ where $f_1^L(\eta, \tau, \phi)$ solves the ε-Milne problem and $\nabla = f_1 - f_1^L$. The boundary layer contribution can be estimated as
\[
\mathcal{L}[\varepsilon\mathcal{Q}_1^\varepsilon] = \sin \phi \frac{\partial (\varepsilon\mathcal{Q}_1^\varepsilon)}{\partial \eta} - \frac{\varepsilon}{R_k - \varepsilon \eta} \cos \phi \left(\frac{\partial (\varepsilon\mathcal{Q}_1^\varepsilon)}{\partial \phi} + \frac{\partial (\varepsilon\mathcal{Q}_1^\varepsilon)}{\partial \tau} \right) + (\varepsilon\mathcal{Q}_1^\varepsilon) - (\varepsilon\bar{\mathcal{Q}}_1^\varepsilon), \tag{5.11}
\]
Then we turn to the crucial estimate in the second term of (5.11), by Theorem 3.25, we have
\[
\left\| -\varepsilon\frac{\psi_0 \varepsilon}{R_k - \varepsilon \eta} \cos \phi \frac{\partial \nabla}{\partial \tau} \right\|_{L^\infty(\Omega \times S^1)} \leq C\varepsilon^2 \left\| \frac{\partial \nabla}{\partial \tau} \right\|_{L^\infty(\Omega \times S^1)} \leq C\varepsilon^2 \| \ln(\varepsilon) \|^8. \tag{5.13}
\]
Also, the exponential decay of $\frac{\partial \nabla}{\partial \tau}$ by Theorem 3.25 and the rescaling $\eta = \mu/\varepsilon$ implies
\[
\left\| -\varepsilon\frac{\psi_0 \varepsilon}{R_k - \varepsilon \eta} \cos \phi \frac{\partial \nabla}{\partial \tau} \right\|_{L^2(\Omega \times S^1)} \leq \varepsilon^2 \left\| \frac{\partial \nabla}{\partial \tau} \right\|_{L^2(\Omega \times S^1)} \leq C\varepsilon^2 \| \ln(\varepsilon) \|^8. \tag{5.14}
\]
Similarly, we have
\[
\left\| -\varepsilon\frac{\psi_0 \varepsilon}{R_k - \varepsilon \eta} \cos \phi \frac{\partial \nabla}{\partial \tau} \right\|_{L^{2m-\tau}(\Omega \times S^1)} \leq C\varepsilon^3 \times \frac{\varepsilon^3}{\pi} \| \ln(\varepsilon) \|^8. \tag{5.15}
\]
For the third term in (5.11), we have
\[
\left\| \varepsilon^3 \psi_0 \nabla \right\|_{L^\infty(\Omega \times S^1)} \leq C\varepsilon^3. \tag{5.16}
\]
In total, we have
\begin{align}
\|\mathcal{L}[\partial]\|_{L^2(\Omega \times S^1)} & \leq C \epsilon^{\frac{5}{2}} |\ln(\epsilon)|^8, \\
\|\mathcal{L}[\partial]\|_{L^{2m}(\Omega \times S^1)} & \leq C \epsilon^{3} \cdot \frac{1}{|\ln(\epsilon)|^8}, \\
\|\mathcal{L}[\partial]\|_{L^\infty(\Omega \times S^1)} & \leq C \epsilon^2 |\ln(\epsilon)|^8.
\end{align}
(5.17) (5.18) (5.19)

Step 4: Diffusive Limit.
In summary, since \(\mathcal{L}[\partial] = 0 \), collecting estimates in Step 2 and Step 3, we can prove
\begin{align}
\|\mathcal{L}[R]\|_{L^2(\Omega \times S^1)} & \leq C \epsilon^{\frac{5}{2}} |\ln(\epsilon)|^8, \\
\|\mathcal{L}[R]\|_{L^{2m}(\Omega \times S^1)} & \leq C \epsilon^{3} \cdot \frac{1}{|\ln(\epsilon)|^8}, \\
\|\mathcal{L}[R]\|_{L^\infty(\Omega \times S^1)} & \leq C \epsilon^2 |\ln(\epsilon)|^8.
\end{align}
(5.20) (5.21) (5.22)

Also, based on our construction, it is easy to see
\begin{align}
R - \mathcal{P}[R] = - \epsilon^2 (\bar{w} \cdot \nabla_x U_1^0 - \mathcal{P}[\bar{w} \cdot \nabla_x U_1^0]),
\end{align}
(5.23)
which further implies
\begin{align}
\|R - \mathcal{P}[R]\|_{L^2(\Gamma^{-})} & \leq C \epsilon^2, \\
\|R - \mathcal{P}[R]\|_{L^\infty(\Gamma^{-})} & \leq C \epsilon^2, \\
\|R - \mathcal{P}[R]\|_{L^\infty(\Gamma^{-})} & \leq C \epsilon^2.
\end{align}
(5.24) (5.25) (5.26)

Also, the remainder \(R \) satisfies the equation
\begin{align}
\left\{ \begin{array}{l}
\epsilon \bar{w} \cdot \nabla_x R + R - \bar{R} = \mathcal{L}[R] \text{ for } \bar{x} \in \Omega, \\
R - \mathcal{P}[R] = R - \mathcal{P}[R] \text{ for } \bar{w} \cdot \nu < 0 \text{ and } \bar{x}_0 \in \partial \Omega.
\end{array} \right.
\end{align}
(5.27)

It is easy to verify \(R \) satisfies the normalization condition and compatibility condition (4.13) and (4.14). By Theorem 4.9 we have for \(m \) sufficiently large
\begin{align}
\|R\|_{L^\infty(\Omega \times S^1)} & \leq C \left(\frac{1}{\epsilon^{1+\frac{\delta}{4}}} \|\mathcal{L}[R]\|_{L^2(\Omega \times S^1)} + \frac{1}{\epsilon^{1+\frac{\delta}{2}}} \|\mathcal{L}[R]\|_{L^{2m}(\Omega \times S^1)} + \|\mathcal{L}[R]\|_{L^\infty(\Omega \times S^1)} \right) \\
& + \frac{1}{\epsilon^{1+\frac{\delta}{2}}} \|R - \mathcal{P}[R]\|_{L^2(\Gamma^{-})} + \frac{1}{\epsilon^{1+\frac{\delta}{4}}} \|R - \mathcal{P}[R]\|_{L^\infty(\Gamma^{-})} + \|R - \mathcal{P}[R]\|_{L^\infty(\Gamma^{-})},
\end{align}
(5.28)
\begin{align}
& \leq C \left(\frac{1}{\epsilon^{1+\frac{\delta}{4}}} \left(\epsilon^{\frac{5}{2}} |\ln(\epsilon)|^8 \right) + \frac{1}{\epsilon^{1+\frac{\delta}{2}}} \left(\epsilon^{3} \cdot \frac{1}{|\ln(\epsilon)|^8} \right) \right) \\
& + \frac{1}{\epsilon^{1+\frac{\delta}{2}}} (\epsilon^2) + \frac{1}{\epsilon^{1+\frac{\delta}{4}}} (\epsilon^2) + \frac{1}{\epsilon^{1+\frac{\delta}{4}}} (\epsilon^2) \\
& \leq C \epsilon^{1-\delta} |\ln(\epsilon)|^8 \leq C \epsilon^{1-\delta}.
\end{align}
(5.29)

Note that the constant \(C \) might depend on \(m \) and thus depend on \(\delta \). Since it is easy to see
\begin{align}
\left\| \sum_{k=1}^{2} \epsilon^k U_k + \sum_{k=0}^{\infty} \epsilon^k \dot{U}_k^0 \right\|_{L^\infty(\Omega \times S^1)} \leq C \epsilon,
\end{align}
(5.30)
our result naturally follows. This completes the proof of main theorem. □

References

[1] A. Bensoussan, J.-L. Lions, and G. C. Papanicolaou, *Boundary layers and homogenization of transport processes*, Publ. Res. Inst. Math. Sci., 15 (1979), pp. 53–157.
[2] C. Cercignani, R. Illner, and M. Pulvirenti, *The mathematical theory of dilute gases*, Springer-Verlag, New York, 1994.
[3] R. Esposito, Y. Guo, C. Kim, and R. Marra, *Non-isothermal boundary in the Boltzmann theory and Fourier law*, Comm. Math. Phys., 323 (2013), pp. 177–239.
Y. Guo, C. Kim, D. Tonon, and A. Trescases, *Regularity of the Boltzmann equation in convex domain*, Preprint, (2013).

E. W. Larsen, *A functional-analytic approach to the steady, one-speed neutron transport equation with anisotropic scattering*, Comm. Pure Appl. Math., 27 (1974), pp. 523–545.

E. W. Larsen, *Solutions of the steady, one-speed neutron transport equation for small mean free paths*, J. Mathematical Phys., 15 (1974), pp. 299–305.

E. W. Larsen, *Neutron transport and diffusion in inhomogeneous media I.*, J. Mathematical Phys., 16 (1975), pp. 1421–1427.

E. W. Larsen, *Asymptotic theory of the linear transport equation for small mean free paths II.*, SIAM J. Appl. Math., 33 (1977), pp. 427–445.

E. W. Larsen and J. D’Arruda, *Asymptotic theory of the linear transport equation for small mean free paths I.*, Phys. Rev., 13 (1976), pp. 1933–1939.

E. W. Larsen and G. J. Habetler, *A functional-analytic derivation of Case’s full and half-range formulas*, Comm. Pure Appl. Math., 26 (1973), pp. 525–537.

E. W. Larsen and J. B. Keller, *Asymptotic solution of neutron transport problems for small mean free paths*, J. Mathematical Phys., 15 (1974), pp. 75–81.

E. W. Larsen and P. F. Zweifel, *On the spectrum of the linear transport operator*, J. Mathematical Phys., 15 (1974), pp. 1987–1997.

Q. Li, J. Lu, and W. Sun, *A convergent method for linear half-space kinetic equations*, Preprint, (2015).

Q. Li, J. Lu, and W. Sun, *Diffusion approximations and domain decomposition method of linear transport equations: asymptotics and numerics.*, J. Comput. Phys., 292 (2015), pp. 141–167.

L. Wu and Y. Guo, *Geometric correction for diffusive expansion of steady neutron transport equation*, Comm. Math. Phys., 336 (2015), pp. 1473–1553.

L. Wu, X. Yang, and Y. Guo, *Asymptotic analysis of transport equation in annulus*, Preprint, (2016).