Anil Thapa

Oklahoma State University

[Based on arXiv: 2012.13420]

With Prof. Kaladi S. Babu

Jan 28, 2021
Motivation

Model (particle content, scalar sector, gauge sector)

Radiative ν mass generation

Low scale left-right
 - Constraints (Direct experimental constraints, $0\nu\beta\beta$, cosmological constraints, ..)
 - Fit to the data

High scale left-right consistency

Collider phenomenology

Conclusion
Sketch of Standard Model

Matter	$SU(3)_C \times SU(2)_L \times U(1)_Y$
$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$\sim (3, 2, \frac{1}{3})$
$\psi_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$\sim (1, 2, -1)$
$e_R \sim (1, 1, -2)$, $u_R \sim (3, 1, \frac{4}{3})$	
$d_R \sim (3, 1, -\frac{2}{3})$	

| Higgs | $H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}$ | $\sim (1, 2, 1)$ |

- In Standard Model $M_\nu = 0$. But, ν flavor mix. $\nu_{aL} \leftrightarrow \nu_{bL}$

$$|\nu_\alpha\rangle = \sum U_{\alpha i} |\nu_i\rangle \implies M_\nu \neq 0 \implies \text{New physics beyond SM}$$
\[U_{PNMS} = \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & e^{-i\delta}s_{13} \\ -c_{23}s_{12} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - c_{23}s_{12}s_{13}e^{i\delta} & c_{13}c_{23} \end{pmatrix} \]

	Normal Ordering (best fit)	Inverted Ordering (\(\Delta\chi^2 = 2.7\))		
	bfp ±1\(\sigma\)	3\(\sigma\) range	bfp ±1\(\sigma\)	3\(\sigma\) range
sin\(^2\)\(\theta_{12}\)	0.304\(^{+0.013}_{-0.012}\)	0.269 → 0.343	0.304\(^{+0.013}_{-0.012}\)	0.269 → 0.343
\(\theta_{12}/^\circ\)	33.44\(^{+0.78}_{-0.75}\)	31.27 → 35.86	33.45\(^{+0.78}_{-0.75}\)	31.27 → 35.86
sin\(^2\)\(\theta_{23}\)	0.570\(^{+0.018}_{-0.024}\)	0.407 → 0.618	0.575\(^{+0.017}_{-0.021}\)	0.411 → 0.621
\(\theta_{23}/^\circ\)	49.0\(^{+1.1}_{-1.4}\)	39.6 → 51.8	49.3\(^{+1.0}_{-1.2}\)	39.9 → 52.0
sin\(^2\)\(\theta_{13}\)	0.02221\(^{+0.00068}_{-0.00062}\)	0.02034 → 0.02430	0.02240\(^{+0.00062}_{-0.00062}\)	0.02053 → 0.02436
\(\theta_{13}/^\circ\)	8.57\(^{+0.13}_{-0.12}\)	8.20 → 8.97	8.61\(^{+0.12}_{-0.12}\)	8.24 → 8.98
\(\delta_{CP}/^\circ\)	195\(^{+51}_{-25}\)	107 → 403	286\(^{+27}_{-32}\)	192 → 360
\(\Delta m_{21}^2\)	7.42\(^{+0.21}_{-0.20}\)	6.82 → 8.04	7.42\(^{+0.21}_{-0.20}\)	6.82 → 8.04
\(10^{-5}\) eV\(^2\)				
\(\Delta m_{3\ell}^2\)	+2.514\(^{+0.028}_{-0.027}\)	+2.431 → +2.598	-2.497\(^{+0.028}_{-0.028}\)	-2.583 → -2.412
Parity is explicitly broken in standard model.

Left-right models were introduced primarily to understand the origin of parity violation.

Mohapatra, Pati, Senjanovic: 74-75
LR Symmetric Model

- **Gauge group:**

 \[SU(3)_C \otimes SU(2) \otimes SU(2) \otimes U(1)_{B-L} \]

- **Fermion Representation:**

 \[
 \begin{align*}
 & \left(\begin{array}{c} u \\ d \end{array} \right)_L \sim (2, 1, 1/3), & \left(\begin{array}{c} u \\ d \end{array} \right)_R \sim (1, 2, 1/3), & \left(\begin{array}{c} \nu_e \\ e \end{array} \right)_L \sim (2, 1, -1), & \left(\begin{array}{c} \nu_e \\ e \end{array} \right)_R \sim (1, 2, -1)
 \end{align*}
 \]

- **Higgs Representation**

 \[
 \Phi = \begin{pmatrix} \phi^0_1 & \phi^+_2 \\ \phi^-_1 & \phi^+_2 \end{pmatrix}, \quad \Delta_L = \begin{pmatrix} \Delta^+_L/\sqrt{2} & \Delta^{++}_L \\ \Delta^0_L & -\Delta^+_L/\sqrt{2} \end{pmatrix}, \\
 \Delta_R = \begin{pmatrix} \Delta^+_R/\sqrt{2} & \Delta^{++}_R \\ \Delta^0_R & -\Delta^+_R/\sqrt{2} \end{pmatrix}
 \]

- **Standard LR Model**

- **Under LR symmetry**

 \[
 Q_L \leftrightarrow Q_R, \quad \psi_L \leftrightarrow \psi_R, \quad \chi_L \leftrightarrow \chi_R, \quad \Phi \leftrightarrow \Phi^+, \quad \eta^+ \leftrightarrow \eta^+, \quad W_L \leftrightarrow W_R
 \]
Higgs Sector:
- $\Delta_L(1, 3, 2) + \Delta_R(3, 1, 2) + \Phi(2, 2, 0)$
- 2 charged and 2 doubly charged scalars

Fermion masses:
- $\langle \Phi \rangle \neq 0 \Rightarrow M_u, M_d, M_{\nu_D}$
- $\langle \Delta_R \rangle \neq 0, \langle \Delta_L \rangle \neq 0$
 \Rightarrow Majorana mass for ν
- $\langle \Phi \rangle \neq 0 \Rightarrow M_u, M_d, M_{\nu_D}$
- η^+ ensures Majorana mass for ν.

Phenomenology of the model is distinct with respect to neutrino physics, Higgs boson physics and collider signals.
\[
\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \kappa & 0 \\ 0 & \kappa' e^{i\alpha} \end{pmatrix}, \quad \langle \chi_L \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_L e^{i\theta_L} \end{pmatrix}, \quad \langle \chi_R \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_R \end{pmatrix}
\]

\[SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}\]

\[\langle \chi_R \rangle \neq 0 \Rightarrow M_{W_R}, M_{Z_R} \neq 0\]

\[SU(2)_L \otimes U(1)_Y\]

\[\langle \Phi \rangle \neq 0 \Rightarrow M_{W_L}, M_Z \neq 0\]

\[\langle \chi_L \rangle \neq 0\]

\[U(1)_{em}\]
Features of LRSM

- Parity is explicitly broken in SM. LR symmetric model restores parity.

- In LRSM hypecharge Y arises more coherently from less arbitrary quantity $B - L$.
In SM, electric charge is given by

$$Q = T_L^3 + \frac{Y}{2}$$

Y is an arbitrary parameter with no physical meaning.
In LR models,

$$Q = T_L^3 + T_R^3 + \frac{B - L}{2}$$

- ν_R exists as $SU(2)_R$ multiplet. $SU(2)_R$ breaking gives heavy Majorana right handed neutrino. Thus, smallness of left-handed neutrinos is naturally realized via see-saw mechanisms.
Interactions

- **Interaction of scalar η^+ with fermions**

 \[\mathcal{L}_Y \supset f_{ab} \left[(\psi^i_{aL} C \psi^j_{bL}) \epsilon_{ij} \eta^+ + (\psi^i_{aR} C \psi^j_{bR}) \epsilon_{ij} \eta^+ \right] + \text{H.c.} \]

- **Interaction of scalar Φ with fermions**

 \[\mathcal{L}_Y \supset y \bar{\psi}_L \Phi \psi_R + \tilde{y} \bar{\psi}_L \tilde{\Phi} \psi_R + \text{H.c.} \]

- **Self interaction of Higgs particles by Higgs potential**

 \[
 V(\phi, \chi_L, \chi_R, \eta) = V(\phi) + V(\chi_L, \chi_R) + V(\eta) + V(\text{cross-terms}) \\
 \supset \mu_4 \left[\chi_L^\dagger \phi \chi_R + \chi_R^\dagger \phi^\dagger \chi_L \right] + \mu_5 \left[\chi_L^\dagger \bar{\phi} \chi_R + \chi_R^\dagger \bar{\phi}^\dagger \chi_L \right] \\
 + \left(\alpha_4 \left[\chi_L^\dagger i \tau_2 \phi \chi_R \eta^- + \chi_R^\dagger i \tau_2 \phi^\dagger \chi_L \eta^- \right] + \text{H.c.} \right)
 \]
In the limit of $v_R >> v_L, \kappa, \kappa'$ and at the leading order in $\epsilon = \frac{\kappa'}{\kappa}$, $\epsilon' = \frac{v_L}{\kappa}$, expression for the Higgs state and their mass:

Higgs state	Mass
$H^+_1 \simeq (\cos \omega \epsilon - \sin \omega \epsilon') \phi^+_1 + \cos \omega \phi^+_2 - \sin \omega \chi^+_L$	$m^2_{H^+_1} \simeq \frac{v_R}{4} \{ (\alpha_3 - \rho_{12}) v_R - \sqrt{A} \}$
$H^+_2 \simeq -(\sin \omega \epsilon + \cos \omega \epsilon') \phi^+_1 - \sin \omega \phi^+_2 - \cos \omega \chi^+_L$	$m^2_{H^+_2} \simeq \frac{v_R}{4} \{ (\alpha_3 - \rho_{12}) v_R + \sqrt{A} \}$
$H^+_3 \simeq \eta^+$	$m^2_{H^+_3} \simeq \mu^2_\eta + \frac{\alpha_7}{2} v^2_R$
$A^0_1 \simeq (\cos \omega \epsilon + \sin \omega \epsilon') \phi^{0i}_1 + \cos \omega \phi^{0i}_2 + \sin \omega \chi^{0i}_L$	$m^2_{A^0_1} \simeq m^2_{H^+_1}$
$A^0_2 \simeq (\cos \omega \epsilon + \sin \omega \epsilon') \phi^{0i}_1 - \sin \omega \phi^{0i}_2 + \cos \omega \chi^{0i}_L$	$m^2_{A^0_1} \simeq m^2_{H^+_2}$
$h^0 \simeq \phi^{0r}_1 + \epsilon \phi^{0r}_2 + \epsilon' \chi^{0r}_L - \frac{\alpha_1 \kappa}{2 \rho_1 v_R} \chi^{0r}_R$	$m^2_{h^0} \simeq 2 \kappa^2 \left(\lambda_1 + 4 \epsilon \lambda_4 - \frac{\alpha_1^2}{4 \rho_1} \right)$
$H^0_1 \simeq (\cos \omega \epsilon + \sin \omega \epsilon') \phi^{0r}_1 - \cos \omega \phi^{0r}_2 - \sin \omega \chi^{0r}_L$	$m^2_{H^0_1} \simeq m^2_{H^+_1}$
$H^0_2 \simeq (\sin \omega \epsilon - \cos \omega \epsilon') \phi^{0r}_1 - \sin \omega \phi^{0r}_2 + \cos \omega \chi^{0r}_L$	$m^2_{H^0_2} \simeq m^2_{H^+_2}$
$H^0_3 \simeq \chi^{0r}_R + \frac{\alpha_1 \kappa}{2 \rho_1 v_R} (\phi^{0r}_1 + \epsilon \phi^{0r}_2 + \epsilon' \chi^{0r}_L)$	$m^2_{H^0_3} \simeq 2 \rho_1 v^2_R$

h^0 is the standard model-like Higgs.
\(\mathcal{L}_{gauge} = (D_{\mu} \chi_L)^\dagger D_{\mu} \chi_L + (D_{\mu} \chi_R)^\dagger D_{\mu} \chi_R + tr \left[(D_{\mu} \Phi)^\dagger D_{\mu} \Phi \right] \)

\[
D_{\mu} \chi_{L,R} = \partial_{\mu} \chi_{L,R} - \frac{1}{2} i g_{L,R} \vec{\tau} \cdot \vec{W}_{\mu L,R} \chi_{L,R} - \frac{1}{2} i g_{BL} \chi_{L,R} B_{\mu} ,
\]

\[
D_{\mu} \Phi = \partial_{\mu} \Phi - \frac{1}{2} i g_L \vec{\tau} \cdot \vec{W}_{\mu L} \Phi + \frac{1}{2} i g_R \Phi \vec{\tau} \cdot \vec{W}_{\mu R}
\]

- The mass eigenvalues are found in the limit of \(v_R >> \kappa, \kappa', v_L \) (\(\kappa_L = k^2 + \kappa'^2 + v_L^2 \) and \(\kappa_R = k^2 + \kappa'^2 + v_R^2 \))

\[
M_{W_1}^2 \approx \frac{1}{4} \frac{g^2_L}{\kappa_L^2}
M_{W_2}^2 \approx \frac{1}{4} \frac{g^2_R}{v_R^2}
W_1^+ = \cos \zeta \ W_L^+ + \sin \zeta \ W_R^+
W_2^+ = - \sin \zeta \ W_L^+ + \cos \zeta \ W_R^+
\]

- \(|\zeta| \leq 4 \times 10^{-3} \): strangeness changing nonleptonic decays of hadrons; \(b \to s \gamma \) decay.

\[
M_{Z_1}^2 \approx \frac{1}{4} \left(g_Y^2 + g_L^2 \right) \kappa_L^2
M_{Z_2}^2 \approx \frac{1}{4} \frac{g^4_R}{(g_Y^2 - g_R^2)} v_R^2
Z_1 = \cos \xi \ Z_L + \sin \xi \ Z_R
Z_2 = - \sin \xi \ Z_L + \cos \xi \ Z_R
\]

- \(\xi \leq 10^{-3} \) from electroweak precision observables, but automatically satisfied once the lower limit on the mass of \(Z_2 \) of about 5 TeV from LHC searches is imposed.
Fermion Masses

- $\langle \Phi \rangle \neq 0 \Rightarrow$ Quarks, charged leptons and Dirac neutrinos masses:

\[
M_u = \frac{1}{\sqrt{2}} (Y \kappa + \tilde{Y} \kappa' e^{-i\alpha}) , \quad M_d = \frac{1}{\sqrt{2}} (Y \kappa' e^{i\alpha} + \tilde{Y} \kappa) \\
M_\ell = \frac{1}{\sqrt{2}} (y \kappa' e^{i\alpha} + \tilde{y} \kappa) , \quad M_{\nu D} = \frac{1}{\sqrt{2}} (y \kappa + \tilde{y} \kappa' e^{-i\alpha}) .
\]

- $\kappa = \kappa' \Rightarrow M_u = M_d$

- Neutrino mass matrix spanning (ν, ν^c) read:

\[
\begin{pmatrix}
M_{\nu L} & M_{\nu D} \\
M_{\nu D}^T & M_{\nu}^R
\end{pmatrix}
\]

\[
M_{\nu}^{\text{light}} = M_{\nu}^L - M_{\nu D} (M_{\nu}^R)^{-1} M_{\nu D}^T = M_{\nu}^{II} - M_{\nu}^{I}
\]

- M_{ν}^L and M_{ν}^R will arise through one-loop and two-loop radiative correction.

$M_{\nu}^{I} \gg M_{\nu}^{II} \Rightarrow$ Type-I

$M_{\nu}^{II} \gg M_{\nu}^{I} \Rightarrow$ Type-II
Radiative ν_R Mass Generation

\[O_1 = c_1 \Psi_R \Psi_R (\chi_L^T \Phi \chi_R) \]
\[c_1 \sim \frac{(y_T^2 f \alpha_4)}{16\pi^2} \left(\frac{1}{M^2} \right) \]

\[O_2 = c_2 \Psi_R \Psi_R (\chi_R \chi_R) \]
\[c_2 \sim \frac{(y_T^2 f \alpha_4)}{(16\pi^2)^2} \left(\frac{\mu_4}{M^2} \right) \]

- The two-loop diagrams do not require electroweak symmetry breaking and dominate over the one-loop diagrams for the entire range of W_R^\pm mass.
Some more details

- **One-loop radiative corrections:**

 \[
 (M^R_{\nu})_{ab} = \frac{1}{8\pi^2} \left[f_{a\ell} M_\ell V_{5\beta}^+ \left(y_{\ell b} V_{1\beta}^{*} - \tilde{y}_{\ell b} V_{2\beta}^{*} \right) + (a \leftrightarrow b) \right] \log \left(\frac{m^2_{H^+_1}}{m^2_{H^+_\beta}} \right)
 \]

- **Two-loop radiative corrections:**

 \[
 (M^R_{\nu})_{ab} = \sqrt{2} \alpha_4 v_R \left(A_{1ab} + A_{2ab} + A_{3ab} \right)
 \]

 \[
 A_{1ab} = \left\{ f_{ac} \left[y^{*}_{\gamma\alpha} V_{2\gamma} \left\{ -V_{3\gamma} V_{1\beta} - V_{3\gamma} V_{2\beta} + V_{2\gamma} V_{3\beta} \right\} - \tilde{y}^{*}_{cd} V_{1\gamma} V_{3\beta} V_{1\gamma} \right] \right. \\
 \left. \left[y_{db} V_{1\beta}^{*} - \tilde{y}_{db} V_{2\beta}^{*} \right] + (a \leftrightarrow b) \right\} \int \frac{d^4 p}{(2\pi)^4} \frac{d^4 q}{(2\pi)^4} \frac{q \cdot p}{(q^2 - m^2_{H^+_1})(q^2 - m^2_{H^+_\beta})(p^2 - m^2_{H^+_1})(p^2 - m^2_{H^+_\beta})((p - q)^2 - m^2_{H^0})}
 \]

 \[
 A_{2ab} = \left\{ f_{ac} \left[y^{*}_{\gamma\alpha} V_{2\beta}^{*} - \tilde{y}^{*}_{cd} V_{1\beta}^{*} \right] \right. \\
 \left. \left[\tilde{y}_{db} V_{2\gamma} \left\{ -V_{3\gamma} V_{1\beta} - V_{3\gamma} V_{2\beta} + V_{2\gamma} V_{3\beta} \right\} \right] \\
 - y_{db} V_{1\gamma} V_{3\beta} V_{1\gamma}] + (a \leftrightarrow b) \right\} \int \frac{d^4 p}{(2\pi)^4} \frac{d^4 q}{(2\pi)^4} \frac{q \cdot p}{(q^2 - m^2_{H^+_1})(q^2 - m^2_{H^+_\beta})(p^2 - m^2_{H^+_1})(p^2 - m^2_{H^+_\beta})((p - q)^2 - m^2_{H^0})}
 \]

 \[
 A_{3ab} = \left\{ (y_{ca} V_{1\beta}^{*} - \tilde{y}_{ca} V_{2\beta}^{*}) \right. \\
 \left. f_{cd} \left[\tilde{y}_{db} V_{2\gamma} \left\{ -V_{3\gamma} V_{1\beta} - V_{3\gamma} V_{2\beta} + V_{2\gamma} V_{3\beta} \right\} \right] \\
 - y_{db} V_{1\gamma} V_{3\beta} V_{1\gamma}] + (a \leftrightarrow b) \right\} \int \frac{d^4 p}{(2\pi)^4} \frac{d^4 q}{(2\pi)^4} \frac{q \cdot p}{(q^2 - m^2_{H^+_1})(q^2 - m^2_{H^+_\beta})(p^2 - m^2_{H^+_1})(p^2 - m^2_{H^+_\beta})((p - q)^2 - m^2_{H^0})}
 \]

 \[
 I_{\eta\gamma\beta}^{\eta\gamma\beta} = \int \int \frac{d^4 p}{(2\pi)^4} \frac{d^4 q}{(2\pi)^4} \frac{q \cdot p}{(q^2 - m^2_{H^+_1})(q^2 - m^2_{H^+_\beta})(p^2 - m^2_{H^+_1})(p^2 - m^2_{H^+_\beta})((p - q)^2 - m^2_{H^0})}
 \]
Case with $M_{\nu_D} \ll M_\ell$ (low Scale LR) ⇒ Flavor structure simplifies, $y, \tilde{y} \propto M_\ell$.

$$(M_{\nu_R})_{ab} = \frac{2\sqrt{2} \alpha_4 v_R}{\kappa^2 (1 - \epsilon^2)^2 (16 \pi^2)^2} \left(f M_\ell^2 + M_\ell^2 f^T \right) \left\{ C_{\beta\gamma} G \left(\frac{m_{\eta_1}^2}{m_{H_0}^2}, \frac{m_{H^+}^2}{m_{H_0}^2} \right) + C'_{\beta\gamma} G \left(\frac{m_{\eta_1}^2}{m_{H_0}^2}, \frac{m_{H^0}^2}{m_{H_0}^2} \right) \right\}.$$
One-loop vs two-loop

- Maximum contribution to M_{ν_R} for $\alpha_4 = 3.0$ and $f_{\mu\tau} \approx f_{e\tau} = 1.0$.

M_{W_R} (TeV)	5	10	15	30	50	100	10^4
M_{ν_R} (GeV)	0.0042	0.010	0.020	0.05	0.11	0.36	4.2×10^3
Neutrino mass matrix is diagonalized by 6×6 unitary matrix:

$$ U^\dagger M_\nu U^\ast = \begin{pmatrix} m_{\nu j} & 0 \\ 0 & M_{N\alpha} \end{pmatrix} \leftrightarrow U = \begin{pmatrix} U_{\nu\nu} & U_{\nu N} \\ U_{\nu N} & U_{NN} \end{pmatrix} $$

$$ m_{\nu j} = \text{Diag} (m_1, m_2, m_3) \quad M_{N\alpha} = \text{Diag} (M_1, M_2, M_3) \, . $$

$$ U_{\nu N} \rightarrow \text{active-sterile mixing} \left(U_{\nu N} \sim \frac{M_{\nu D}}{M_N} \right) $$

$$ U_{\nu\nu}^\ast \text{ is the usual PMNS matrix characterizing the mixing among light neutrinos.} $$

$$ s_{12}^2 = \frac{|U_{e2}|^2}{1 - |U_{e3}|^2}, \quad s_{13}^2 = |U_{e3}|^2, \quad s_{23}^2 = \frac{|U_{\mu 3}|^2}{1 - |U_{e3}|^2} \, . $$
For multi-TeV range of M_{W_R} (within reach of collider experiments)

\Rightarrow MeV range of M_{ν_R}.

\Rightarrow fit to the ν-oscillation data with $M_{\nu_R} \sim (1 - 100)$ MeV.

\Rightarrow satisfy experimental, cosmology and astrophysics constraints.
Constraints on active-sterile neutrino mixing from visible final state particles in beta-decay, pion decay, kaon decay, muon decay, ...

| Mass | $|U_{eN}|^2$ | $|U_{\mu N}|^2$ | $|U_{\tau N}|^2$ |
|------|-------------|-----------------|-----------------|
| 1 MeV | 2.6×10^{-4} BD2 | 1.1×10^{-5} BOREXINO | 1.1×10^{-2} $\pi_{\mu 2}$ PSI |
| 5 MeV | 1.1×10^{-5} BOREXINO | 2.75×10^{-4} $\pi_{\mu 2}$ PSI | 2.06×10^{-4} $\pi_{\mu 2}$ PSI |
| 10 MeV | 3.5×10^{-6} BOREXINO | 2.06×10^{-4} $\pi_{\mu 2}$ PSI | 8.6×10^{-6} $\pi_{\mu 2}$ PIENU |
| 30 MeV | 4.4×10^{-7} PIENU | 8.6×10^{-6} $\pi_{\mu 2}$ PIENU | 2.35×10^{-4} $K_{\mu 2}$ KEK |
| 50 MeV | 1.2×10^{-7} PIENU | 2.35×10^{-4} $K_{\mu 2}$ KEK | 3.76×10^{-6} $K_{\mu 2}$ KEK |
| 100 MeV | 7.1×10^{-9} PIENU | 3.76×10^{-6} $K_{\mu 2}$ KEK | 5.1×10^{-4} CHARM |

- U_{eN}
- $U_{\mu N}$
- $U_{\tau N}$

- **Direct experimental constraints**
Neutrinoless Double Beta Decay $0\nu\beta\beta$

- **$0\nu\beta\beta$:** $(A, Z) \rightarrow (A, Z + 2) + 2e^-$: If observed \Rightarrow evidence of lepton number violation \Rightarrow Majorana neutrino.

- Can shed light on unresolved issues in neutrino physics.

- $0\nu\beta\beta$ decay provides limits on the active-sterile mixing as a function of sterile neutrino mass.

\[
\frac{1}{T_{1/2}^{0\nu}} = G_{01}^{0\nu} \left(|M_{\nu}^{0\nu} \eta_{\nu} + M_{N}^{0\nu} \eta_{NR}\eta_{NR}^L|^2 + |M_{N}^{0\nu} \eta_{NR}\eta_{NR}^R|^2 + |M_{\lambda}^{0\nu} \eta_{\lambda} + M_{\eta}^{0\nu} \eta_{\eta}|^2 \right)
\]

$G_{01}^{0\nu}$: Phase factor \quad $M_{\chi}^{0\nu}$: Nuclear matrix element

Isotope	$G_{01}^{0\nu}$ (yr^{-1})	Nuclear Matrix Elements			
^{76}Ge	5.77×10^{-15}	$2.58 - 6.64$	$233 - 412$	$1.75 - 3.76$	$235 - 637$
^{136}Xe	3.56×10^{-14}	$1.57 - 3.85$	$164 - 172$	$1.92 - 2.49$	$370 - 419$
η’s are dimensionless parameters obtained from Feynman amplitudes.

Low W_R^{\pm} mass $\Rightarrow \nu_R$ masses of a few MeV \Rightarrow momentum transfer can be much heavier than sterile neutrino mass:

$$\eta_\nu = \frac{1}{m_e} \sum_{i=1}^{3} U_{e i}^2 m_{\nu_i}$$

$$\eta_{NR}^R = \frac{1}{m_e} \left(\frac{M_{W_L}}{M_{W_R}} \right)^4 \sum_{i=4}^{6} U_{4i}^{*2} m_{N_i}$$

$$\eta_{NR}^L = \frac{1}{m_e} \sum_{i=4}^{6} U_{e i}^2 m_{N_i}$$

$$\eta_\lambda = \left(\frac{M_{W_L}}{M_{W_R}} \right)^2 \sum_{i=1}^{3} U_{e i} U_{4i}^{*}$$

$$\eta_\eta = \tan \xi \sum_{i=1}^{3} U_{e i} U_{4i}^{*}$$
Cosmological Constraints

- Sterile neutrino (1-100 Mev) can upset successful prediction of big bang cosmology.
 - if ν_R are long lived \Rightarrow contribute to effective number of neutrino species. (constrained by Planck data).
 \Rightarrow can overclose the universe.

- Structure of Right-handed neutrino:
 - In Low W_R regime $\Rightarrow \gamma, \tilde{\gamma} \propto M_\ell$:

 $$
 M^R_\gamma = J
 \begin{pmatrix}
 0 & \frac{m^2_\mu}{m^2_\tau} f_{e\mu} & f_{e\tau} \\
 \frac{m^2_\mu}{m^2_\tau} f_{e\mu} & 0 & f_{\mu\tau} \left(1 - \frac{m^2_\mu}{m^2_\tau}\right) \\
 f_{e\tau} & f_{\mu\tau} \left(1 - \frac{m^2_\mu}{m^2_\tau}\right) & 0
 \end{pmatrix}
 $$

 \Rightarrow Hierarchy between sterile neutrino. ($M_{N_1} << M_{N_2} \simeq M_{N_3}$)
• MeV mass sterile neutrino (N) can decay into $\bar{\nu}_i \nu_i \gamma$, $\nu_i e^+ e^-$, and $\nu_i \gamma$.

\[
\Gamma(N_\alpha \rightarrow e^+ e^- \nu) = 2 \sum_j |U_{j\alpha}|^2 \frac{G_F^2 M_5^5 N_\alpha}{192 \pi^3} \left[\left\{ \delta_{je} + \left(-\frac{1}{4} + \frac{1}{2} \sin^2 \theta_W \right) \right\}^2 + \frac{1}{4} \sin^4 \theta_W \right]
\]

\[
\Gamma(N_\alpha \rightarrow 3\nu) = 2 \sum_j |U_{j\alpha}|^2 \frac{1}{4} \frac{G_F^2 M_5^5 N_\alpha}{192 \pi^3} (1 + 2 + 1)
\]

\[
\Gamma(N_\alpha \rightarrow \nu \gamma) = 2 \times \left(\frac{\alpha M_5^3}{128 \pi^4} \right) \left[\left\{ f_{e\tau}^2 + f_{\mu\tau}^2 \right\} \left\{ 1 + \log \left(\frac{m_\tau^2}{m_\eta^2} \right) \right\}^2 + \frac{g^2 \zeta}{2M_{W_L}^2} \right]^2
\]

• Radiative decay by η^+ lead to a lifetime of order 1 sec. \Rightarrow consistent with big bang cosmology.
- Observation of ν flux from SN 1987A (Kamiokande and IMB) \implies \text{information about neutrinos}

- If $M_{\nu}^R \leq 10$ MeV and has charged current coupling \implies ν_R can be produced in the supernova core via $e^- p \rightarrow \nu_R n \implies \text{alters dynamics of supernova.}$

- Lower limit of 23 TeV on $W_{\nu_R}^\pm$ mass by demanding that the ν_R luminosity not exceed 10^{53} erg/sec for supernova 1987a.

 Barbieri and Mohapatra, 88.
However we find significantly weaker, with the lower limit on W_R^{\pm} as low as 4.6 TeV.

- Computed the exact cross section $(e^- + p \rightarrow \nu_R + n)$ for the production of ν_R inside supernova: 3.3 times smaller.

- Included an important interference effect between the W_R^{\pm} contribution and the $W_L^{\pm} - W_R^{\pm}$ mixed contribution in the production cross section.

- Average electron energy to be ~ 150 MeV, as opposed to 300 MeV.
Some More Details

- The effective interactions involving the leptons and quarks

\[
\mathcal{L} = \frac{4G_F \cos \theta_C}{\sqrt{2}} \left[-\sin \zeta \bar{d}_L \gamma^\mu u_L + \cos \zeta \frac{M_{WL}^2}{M_{WR}^2} \bar{d}_R \gamma^\mu u_R \right] (\bar{\nu}_R \gamma_\mu e_R)
\]

- Convert into hadronic Lagrangian; Strong interaction are parity conserving \(\Rightarrow\) interference leads to suppression factor

\[
\Rightarrow B = -\sin \zeta + \cos \zeta \frac{M_{WL}^2}{M_{WR}^2}
\]

- Scattering cross section for \(e^- (p_p) + p (p_p) \rightarrow \nu (p_\nu) + n (p_n)\)

\[
\frac{d \sigma}{dt} = \frac{1}{64\pi} \frac{G_F^2 \cos^2 \theta_C |B|^2}{(s - m_p^2 - m_e^2)^2 - 4m_p^2m_e^2} |M^2|
\]

\[
M = \bar{u}_\nu \gamma^\alpha (1 + \gamma_5) u_e \cdot \bar{u}_n \left(f_1 \gamma^\alpha + g_1 \gamma^\alpha \gamma_5 + if_2 \sigma_{\alpha\beta} \frac{q^\beta}{2M} + g_2 \frac{q^\alpha}{M} \gamma_5 \right) u_p
\]

\[
\sigma = 69.2 \times 10^{-41} \text{cm}^2 \text{ for electron energy of 150 MeV}
\]

\[
E_{e}^{\text{CM}} \text{ (MeV)}\]
Take $f_{e\mu} = 0$ ⇒ One ν_R mass is zero, while two other are Degenerate.
⇒ one of light neutrino mass is zero

Oscillation parameters	3σ allowed range	Model Fits	
	NuFit5.0	Fit1	Fit2
$\Delta m_{21}^2 (10^{-5} \text{ eV}^2)$	6.82 - 8.04	7.40	7.45
$\Delta m_{31}^2 (10^{-3} \text{ eV}^2)$	2.435 - 2.598	2.49	2.48
$\sin^2 \theta_{12}$	0.269 - 0.343	0.325	0.316
$\sin^2 \theta_{23}$	0.415 - 0.616	0.537	0.561
$\sin^2 \theta_{13}$	0.02032 - 0.02410	0.0221	0.0220
$\delta_{CP}/^\circ$	120 - 369	274	275

m_η (TeV)	m_{ν_R} (MeV)	M_{W_R} (TeV)	α_4	τ (s)	$m_{\beta\beta}$ (eV)	
Fit1	4.0	4.2	4.0	3.0	0.97	0.009
Fit2	4.0	10	6.0	4.0	0.072	0.017
No Fit to type-II scenario in Low scale LR.

\[
\begin{pmatrix}
M_{\nu}^L & M_{\nu}^D \\
M_{\nu D}^T & M_{\nu}^R
\end{pmatrix}
\]

\[M_{\nu}^{\text{light}} = M_{\nu}^L - M_{\nu D} (M_{\nu}^R)^{-1} M_{\nu D}^T = M_{\nu}^{I\text{I}} - M_{\nu}^I\]

In the limit of small mixing between scalars:

\[
M_{\nu} = \begin{pmatrix}
\varepsilon \kappa + v_L \\
\nu_R \\
M_{\nu}^T
\end{pmatrix}
\begin{pmatrix}
M_{\nu D} \\
\varepsilon^2 \nu_R \alpha_4 \mathcal{F}
\end{pmatrix}
\]

\[M_{\nu}^{I\text{I}} \lesssim \frac{\varepsilon^3 M_\ell}{\kappa} M_{\nu}^I; \quad \varepsilon = \frac{1}{16 \pi^2}\]

Fine-tuning to make \(M_{\nu D} = 0\) ⇒ type-II dominance; however cannot obtain correct neutrino oscillation pattern.
Model is consistent with high W_R^\pm mass, well above LHC reach; enough parameter to fit with neutrino oscillation data.

Dirac neutrino mass M_{ν_D} can be arbitrary and large, unlike low scale W_R^\pm scheme.

Simple assumption: take $\kappa' = 0$ and $y << \tilde{y}$

\[M_\ell = \frac{1}{\sqrt{2}} \tilde{y}_\kappa , \quad M_{\nu_D} = \frac{1}{\sqrt{2}} y_\kappa . \]

⇒ Same flavor structure as in low-scale LR
Neutrino Oscillation Fit

\begin{align*}
\sin^2 \theta_{12} & \quad \sin^2 \theta_{23} \\
\Delta m^2_{21} & \quad |\Delta m^2_{31}| \\
\end{align*}
The W_R^\pm gauge bosons as well as other new particles in the model can be produced at the LHC.

W_R boson can be resonantly produced when kinematically allowed, which then decays into jj.

Lower limit of 3.6 TeV on the W_R mass.
Collider Implications

- Focus on η^\pm and ν_R; Both can be light \Rightarrow opens possibility of production of ν_R via η^+.

- $M_{\nu_R} << M_{W_R}$ due to two loop suppression. Thus few GeV $M_{\nu_R} \Rightarrow$ very heavy M_{W_R}.

- $\eta^+\eta^-$ can be pair-produced via the Drell-Yan process mediated by the Z and photon.

- The $\eta^+ \rightarrow \ell_R^+\nu_R, \ell_L^+\nu_L$. The $\nu_R \rightarrow \ell_R + \ell_L + \nu_L$ through a virtual η^\pm. This would lead to interesting multi-lepton signals.
Collider Implications

- Three possibilities:
 - $pp \rightarrow \ell^+ \ell^- E_T$
 - $pp \rightarrow 4l + E_T$
 - $pp \rightarrow 6l + E_T$

- $pp \rightarrow 4l + E_T$

- $pp \rightarrow 6l + E_T$: no current searches available. Expect half the number of events with much suppressed background.

The current limit on mass of η^\pm is 410 GeV
Conclusion

- A simple and minimal left-right symmetric model which does not use the conventional Higgs triplets have been presented.

- Majorana masses for the ν_R are induced through two-loop diagrams involving a singly charged scalar field η^+, which do not rely on electroweak symmetry breaking, unlike the one-loop diagrams.

- This model naturally exhibits a hierarchy in the masses of ν_R and W_R. If the W_R gauge boson has a mass in the $(5 - 20)$ TeV range, the ν_R fields will have masses of a few tens of MeV.

- Model is consistent with low energy constraints, as well as constraints arising from cosmology and astrophysics.
The model presented admits type-I seesaw mechanism for the entire range of W_R mass ranging from a few TeV to the GUT scale of order 10^{16} GeV.

Model has excellent fits to neutrino oscillation parameters for low W_R scenario as well for high W_R scenario.

Collider implications arising from the production and decays of the η^+ scalar have been studied. The current limit on the η^+ mass is 410 GeV, which can be improved to 585 at the high luminosity run of the LHC.
Thank You