FAT SPECIFIC PROTEIN 27: A NOVEL LIPID DROPLET PROTEIN THAT ENHANCES TRIGLYCERIDE STORAGE

Vishwajeet Puri, Silvana Konda, Srijana Ranjit, Myriam Aouadi, Anil Chawla, My Chouinard, Abhijit Chakladar, Michael P. Czech

Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605

Running head: FSP27/CIDEc regulates lipid droplets

*Address correspondence to: E-mail: Michael.Czech@umassmed.edu.
Phone: (508) 856-2254, Fax: (508) 856-1617

Fat Specific Protein (FSP)27/Cidec is most highly expressed in white and brown adipose tissues, and increases in abundance by over 50 fold during adipogenesis. However, its function in adipocytes has remained elusive since its discovery over fifteen years ago. Here we demonstrate that FSP27/Cidec localizes to lipid droplets in cultured adipocytes and functions to promote lipid accumulation. Ectopically expressed FSP27-GFP surrounds lipid droplets in 3T3-L1 adipocytes and co-localizes with the known lipid droplet protein perilipin. Immunostaining of endogenous FSP27 in 3T3-L1 adipocytes also confirmed its presence on lipid droplets. FSP27-GFP expression also markedly increases lipid droplet size and enhances accumulation of total neutral lipids in 3T3-L1 preadipocytes as well as other cell types such as COS cells. Conversely, RNAi-based FSP27/CIDEc depletion in mature adipocytes significantly stimulates lipolysis and reduces the size of lipid droplets. These data reveal FSP27/Cidec as a novel adipocyte lipid droplet protein that negatively regulates lipolysis and promotes triglyceride accumulation.

Adipose tissue is a major determinant of whole body glucose homeostasis and insulin sensitivity, as evidenced by its ability to secrete bioactive peptides and control lipid storage (1-6). The nuclear receptor PPARγ promotes adipogenesis and enhances these functions, acting in mice and humans to increase insulin signaling and glucose tolerance (7-12). Several proteins that are highly and selectively expressed in adipocytes, such as the secreted proteins adiponectin and leptin as well as adipisin, are under the control of PPARγ (3-5,13,14). These and other adipocyte proteins are highly upregulated during adipogenesis and confer unique characteristics to these cells, including high capacity to store triglyceride and release fatty acids.

Fat Specific Protein (FSP)27, also denoted Cidec for the human homolog (15), was discovered over 15 years ago to be strikingly upregulated during adipogenesis and is highly expressed in both white and brown adipose tissues (15-18). However, the question of FSP27/Cidec function has remained unsolved. The results we present here demonstrate FSP27/Cidec to be a novel lipid droplet protein that shares many features characteristic of the lipid droplet protein perilipin (19,20), including the ability to enhance neutral lipid accumulation when expressed in 3T3-L1 preadipocytes or even COS cells. Our data also reveals that a mechanism whereby FSP27/Cidec functions to promote triglyceride deposition in adipocytes is by inhibiting lipolysis. FSP27 is thus a major new modulator of lipid droplet function that is required for optimal storage of triglycerides by adipocytes.

EXPERIMENTAL PROCEDURES

Materials: C57 BL/6J (male, 10 weeks old) mice were obtained from Jackson Labs. Human insulin was obtained from Eli Lilly Co. Fetal Bovine Serum was purchased from Atlanta Biologicals, Inc. (Lawrenceville, GA). Other reagents used were all of analytical reagent grade.

SiRNA: siRNA was purchased from Dharmacon, Inc (Chicago, IL). Scrambled, 5’-CAGUCCGUUUUGCGACUGG-3’; FSP27, 5’-CAACUAAGAAGCAUGUUU-3’.

Cell culture and siRNA transfection in 3T3-L1 adipocytes: 3T3-L1 fibroblasts were grown in DMEM supplemented with 10% FBS, 50 μg/ml streptomycin, and 50 U/ml penicillin and
differentiated into adipocytes as described previously (21). 3T3-L1 adipocytes were transfected with siRNA duplexes by electroporation on the fourth or eighth day following the induction of differentiation (day 4 or day 8) as described previously (21-23). The efficiency of siRNA electroporation using this method is greater than 95%, based on fluorescence microscopy of cells electroporated with Cy3-siRNA.

Transfections and plasmids: FSP27/CIDE plasmid DNA was procured from Open Biosystems. PCR was performed by using 5'-linker having Bal2 restriction and 3'-linker containing EcoR1 site. After cutting with the enzymes (Bal2 and EcoR1) purified PCR fragment was cloned into pEGFP-C1 vector (Clontech, USA). GFP-FSP27 cDNA was transfected in 3T3-L1 adipocytes using the Lipofectamine Plus Reagent (GIBCO Life Technologies, Rockville, Maryland). The efficiency of transfection using Lipofectamine Plus Reagent was very low. The transfection was also carried out by electroporating the adipocytes with 5 µg cDNA (200,000 cells/200 µl PBS) in a 0.4 cm cuvette at 180 V and 950 µF with a time constant of 20 msec on a Bio-Rad Gene Pulser II system.

Immunofluorescence in 3T3-L1 adipocytes: For determination of perilipin localization, cells were cultured on coverslips. Adipocytes were fixed in 4% paraformaldehyde (10 min), permeabilized with 0.05% Triton X-100 in PBS (15 min), blocked with 1% FBS in PBS (1 hour) and treated with Guinea pig anti perilipin polyclonal antibody (1:2000 dilution; Research Diagnostics Inc., Flanders, NJ) and a rabbit-anti-guinea pig Texas Red labeled secondary antibody (abCAM, Cambridge, MA). For FSP27 immunostaining, 3T3-L1 adipocytes plated on coverslips were washed twice with PBS and fixed in 4% formaldehyde for 25 min at room temperature, washed three times with PBS and then permeabilized with 0.5% Triton X-100 for 5 min and washed three times again with PBS. The cells were then exposed to affinity purified rabbit polyclonal FSP27 antibodies (obtained from Drs, Kasuga and Nishino, Kobe University Graduate School of Medicine, Kobe, Japan) for 60 min at room temperature after blocking with 2% BSA in PBS for 60 min at room temperature. Following three washes with PBS, the cells were treated with Alexa fluor 488 conjugated goat anti-rabbit IgG (Molecular Probes, Oregon, USA; 1:1000 dilution) for 60 min at room temperature. Fluorescence imaging was assessed by confocal microscopy.

Oil-red-O staining for intracellular triglycerides: Oil-red-O (0.4%) in isopropanol solution was freshly made, mixed with one-half volume of H2O and filtered through 0.45µm filter. To stain for triglycerides or neutral lipids, cells in the monolayer were first washed three times with PBS and then fixed in 4% formaldehyde solution in PBS (20 min). After six washes, fixed cells were stained with the freshly prepared Oil-red-O solution for 10 min at room temperature, followed by six washes with water. For quantitating Oil-red-O staining, imaging was performed using a wide-field fluorescence microscope with a 63X Nikon PlanApo objective. In any given experiment all pictomicrographs were exposed identically and subtracted for background where the background was determined by measuring the fluorescence intensity of a section of the image without cells. The fluorescence intensity of Oil-red-O was measured using Axiovision digital imaging software Version 4.1 (Carl Zeiss) by marking the periphery of individual cells.

Assay to measure Glycerol release: The cultured adipocytes were washed twice with PBS and incubated in Krebs-Ringer bicarbonate HEPES (KRH) buffer supplemented with 4% BSA in the presence or absence of epinephrine and theophylline. After three hours of incubation, the buffer was collected and glycerol contents were measured using free glycerol determination kit (Sigma) by following manufacturer’s protocol.

RNA isolation and quantitative RT-PCR. Total RNA was isolated from 3T3-L1 adipocytes or from 3T3-L1 adipocytes or from WAT using TRizol reagent (Invitrogen Corp.). cDNA was synthesized using oligo-dT primers and AMV reverse transcriptase (Roche Diagnostics Corp.) according to manufacturer’s instructions. Quantitative real-time PCR was performed in a LightCycler (Roche Diagnostics Corp.) using SYBR Green 1 PCR kit (Roche Diagnostics Corp.) and specific primers to amplify
the genes. Primer sequences may be obtained on request.

Confocal microscopy: Images were taken on a Zeiss Axiophot microscope equipped with a Hamamatsu digital camera and processed using Metamorph imaging software, version 6.1 (Universal Imaging, Downingtown, PA).

RESULTS AND DISCUSSION

FSP27/Cidec is a member of the CIDE family of proteins which share a conserved N-terminal CIDE-N domain and COOH-terminal CIDE-C domain (Fig. 1A). Three CIDEs have been reported in mouse (Cidea, Cideb and FSP27/Cidec) and human (CIDEA, CIDEB and CIDEC) (24). The CIDE-N domain of CIDE proteins has significant homology to the regulatory domains of the apoptotic DNA fragmentation factors, DFF40 (caspase activated-nuclease) and DFF45 (inhibitor) (16,25). The CIDE proteins, including FSP27/Cidec, can promote apoptosis when highly expressed ectopically in cultured cells (24). However, FSP27/Cidec was originally identified as a highly expressed, endogenous adipocyte-specific protein by subtractive cloning techniques that provided no insight into its function in these cells (16,25). We confirmed that FSP27/Cidec is highly expressed in mouse WAT and BAT, although detectable expression was also observed in mouse skeletal muscle and liver (data not shown). Our analysis of FSP27/CIDE expression in 3T3-L1 cells also indicated a 59 fold increase in FSP27/CIDE mRNA expression during adipogenesis, consistent with previous findings (16). The Novartis GNF gene atlas shows that the human homolog of FSP27, CIDE, is highly expressed in human white adipose tissue (15), with little or no expression detectable in other tissues.

Previous studies have suggested FSP27/Cidec may be partially localized with mitochondria in COS cells, based on expression of a fusion protein of FSP27/Cidec and green fluorescent protein (FSP27-GFP) (24). In order to obtain clues to FSP27/Cidec function specifically in adipose cells, we prepared a similar FSP27-GFP construct, and expressed this protein in fully differentiated 3T3-L1 adipocytes. Figure 1B shows a typical adipocyte expressing this construct. FSP27-GFP is strikingly localized to distinct spherical structures, as visualized by confocal microscopy at multiple optical planes and restored as a projected image. In the adipocyte shown in Figure 1B, it is also apparent that the spherical structures surrounded by FSP27-GFP are lipid droplets heavily stained with Oil-red-O, which partitions in neutral lipid (26,27). The efficiency of transfection using lipofectamine was very low. We also used an electroporation method for transfecting the cDNA, which increased the transfection efficiency with no difference in the results. Interestingly, a previous report listed FSP27/Cidec as one of many proteins found to be present in preparations of lipid droplets after their isolation from adipocytes (28). However, in those studies microscopic examination of FSP27/Cidec localization was not performed.

In order to confirm that endogenous FSP27/Cidec also localized to lipid droplets, immunofluorescence microscopy was performed on 3T3-L1 adipocytes using affinity purified FSP27/Cidec antibody. As shown in Figure 1C and D, FSP27/Cidec was observed concentrated around the lipid droplets. The pattern of FSP27/Cidec localization around the lipid droplets appeared to be discontinuous rather than a continuous ring (Fig. 1E). Some punctate cytoplasmic staining was also observed in these experiments, although this could be due to some nonspecific binding of the antibody.

We next attempted to resolve the discrepancy between the data shown in Figure 1 suggesting FSP27/Cidec is a lipid droplet protein in adipocytes, versus the published data indicating it partially colocalizes with mitochondria in COS cells (24). Careful high resolution confocal microscopy was performed on adipocytes expressing both FSP27-GFP and the mitochondria-localized MitoTracker Red 633 Dye. As shown in Figure 2A, FSP27-GFP is strikingly localized to distinct spherical structures visualized by confocal microscopy at various optical planes (Fig. 2A; also see Supplementary Fig. 1). Merged images at all optical planes through the cultured adipocytes again confirmed FSP27-GFP localizes to large spherical structures (Fig. 2B). Virtually no colocalization of FSP27-GFP with MitoTracker could be observed. We also failed to observe significant colocalization of expressed FSP27-GFP with mitochondria in COS cells (data not shown).
This disposition of FSP27-GFP is reminiscent of the first described endogenous lipid droplet-associated protein perilipin, which also localizes to the periphery of intracellular neutral lipid storage droplets in adipocytes (20,29,30). The localization of FSP27-GFP in fully differentiated adipocytes was thus compared with that of endogenous perilipin detected by immunofluorescence using anti-perilipin antibody. A 0.4 μm optical Z-section from a mature adipocyte is shown in Figure 2C, which depicts extensive co-localization of expressed FSP27-GFP with endogenous perilipin. Taken together, the data in Figures 1 and 2 reveal FSP27/Cidec as a novel lipid droplet protein with a cellular disposition similar to the known lipid droplet protein perilipin.

Perilipin is known to strongly enhance triacylglycerol storage by inhibiting lipolysis in adipocytes (31-36). Therefore, we tested the effect of FSP27-GFP expression in 3T3-L1 preadipocytes on total neutral lipid accumulation by staining the cells with Oil-red-O. These experiments revealed that preadipocytes expressing FSP27-GFP display lipid droplets of increased size compared to neighboring untransfected cells (Fig. 3A). In these transfected 3T3-L1 preadipocytes, FSP27-GFP was either associated with these lipid droplets in punctate structures or appeared as distinct rings around the periphery of lipid droplets (Fig. 3A). Quantification of the Oil-red-O intensity in cells transfected with FSP27/Cidec revealed significantly higher neutral lipid stores as compared to control, untransfected preadipocytes (Fig. 3C). A similar result was obtained when FSP27-GFP was expressed in COS cells (Figure 3B, C) or CHO cells (not shown). In all cases, FSP27-GFP expression increased lipid droplet size and increased total neutral lipid.

Consistent with the concept that perilipin has little or no effect on the triacylglycerol synthetic pathway while inhibiting triglyceride hydrolysis (31), adipocytes from perilipin null mice exhibit increased basal lipolysis and a blunted response to lipolytic agents such as catecholamines (37). We thus tested effects of either perilipin or FSP27/Cidec depletion on lipolysis in cultured adipocytes. As shown in Figure 4B, siRNA-directed silencing of either of these proteins elicited significant increases in glycerol release under basal conditions, as has been observed previously in perilipin deficient adipocytes (32). About an 80% decrease in FSP27 mRNA and a 90% decrease in perilipin mRNA expression was observed (Fig. 4C). Previous studies have revealed that upon stimulation of adipocytes by β-adrenergic agents, perilipin is rapidly phosphorylated and appears to be required for optimal responsiveness to lipolytic agents (32,38,39). Surprisingly, FSP27/Cidec or perilipin depletion did not compromise the responsiveness of 3T3-L1 adipocytes to either sub-maximal or maximal concentrations of epinephrine plus theophylline in the present experiments (Fig. 4B). It is possible that the failure of perilipin or FSP27/Cidec depletion to attenuate the stimulated lipolytic rates observed in response to catecholamine and theophylline is due to incomplete depletion of these proteins. Nonetheless, basal lipolysis is clearly upregulated by the partial loss of either of these proteins under the conditions of these experiments.

Interestingly, when FSP27/Cidec is depleted from fully differentiated, cultured adipocytes, the lipid droplets were uniformly dispersed into smaller structures than those displayed by control cells (Fig. 4A). This phenomenon also occurs upon chronic stimulation of lipolysis by catecholamines, but appears not to be required for optimal lipolytic rates under those conditions (40,41). These data are consistent with the hypothesis that FSP27/Cidec may function to promote the formation of the large lipid droplets seen in primary fat cells. The formation of lipid droplets from the endoplasmic reticulum requires a complex series of steps and components, and the size of droplets likely depends on a carefully controlled pathway (42,43). Our data to date do not permit us to determine the step or steps in this process that FSP27/Cidec regulates, a question that future studies will address. Also of interest is whether the apparent fragmentation of lipid droplets upon loss of FSP27/Cidec is directly related to the increase in lipolysis observed under these conditions. Nonetheless, the data in Figure 4 show that loss of FSP27/Cidec both enhances basal lipolytic rates and disperses lipid droplets in 3T3-L1 adipocytes. In a similar study, Nishino et al. have also observed that Cidec/FSP27 contributes to efficient energy storage in WAT by promoting formation of unilocular lipid droplets in adipocytes (personal communication).
Perilipin and other related lipid droplet proteins such as ADRP and TIP47 contain PAT domains involved in their lipid binding function, but other lipid droplet proteins do not seem to contain this domain (for overview, see ref. (44)). FSP27/Cidec does not contain a highly conserved PAT domain, nor does it apparently display protein kinase A phosphorylation sites characteristic of perilipin. Instead, FSP27/Cidec contains CIDE domains and shares significant sequence similarity to Cidea (25), a BAT protein in mouse that has been reported to be mitochondrial when expressed ectopically in cultured cells (45). Interestingly, Cidea is poorly expressed in WAT in the mouse such that its function seems to be mostly restricted to BAT in this animal. Cidea-null mice have a lean phenotype with resistance to diet-induced obesity and diabetes (45). This phenotype was attributed to the ability of Cidea to apparently inhibit the activity of the mitochondrial uncoupling protein UCP1. However, it will be interesting to further explore this hypothesis in light of the data presented here indicating a Cidea isoform, FSP27/Cidec, is a lipid droplet protein rather than a mitochondrial protein. Our results reveal the important function of FSP27/Cidec to augment lipid storage during and after adipogenesis, which in turn likely plays an important role in whole body energy homeostasis. It will be interesting in future studies to determine the structural basis for interaction of FSP27/Cidec with lipid droplets and to unravel its mechanism of action to negatively regulate lipolysis.

REFERENCES

1. Rosen, E. D., and Spiegelman, B. M. (2006) Nature 444, 847-853
2. Kershaw, E. E., and Flier, J. S. (2004) J Clin Endocrinol Metab 89, 2548-2556
3. Halaas, J. L., Gajiwala, K. S., MaffeI, M., Cohen, S. L., Chait, B. T., Rabinowitz, D., Lallone, R. L., Burley, S. K., and Friedman, J. M. (1995) Science 269, 543-546
4. Hu, E., Liang, P., and Spiegelman, B. M. (1996) J Biol Chem 271, 10697-10703
5. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G., and Lodish, H. F. (1995) J Biol Chem 270, 26746-26749
6. Yamada, T., Katagiri, H., Ishigaki, Y., Oghara, T., Imai, J., Uno, K., Hasegawa, Y., Gao, J., Ishihara, H., Niijima, A., Mano, H., Aburatani, H., Asano, T., and Oka, Y. (2006) Cell Metab 3, 223-229
7. Bergeron, R., Yao, J., Woods, J. W., Zycband, E. I., Liu, C., Li, Z., Adams, A., Berger, J. P., Zhang, B. B., Moller, D. E., and Doebber, T. W. (2006) Endocrinology 147, 4252-4262
8. Boden, G., and Zhang, M. (2006) Expert Opin Invest Drugs 15, 243-250
9. Lazar, H. L. (2002) J Thorac Cardiovasc Surg 123, 842-844
10. MacDougald, O. A., and Lane, M. D. (1995) Annu Rev Biochem 64, 345-373
11. Savkur, R. S., and Miller, A. R. (2006) Expert Opin Invest Drugs 15, 763-778
12. Tontonoz, P., Hu, E., and Spiegelman, B. M. (1995) Curr Opin Genet Dev 5, 571-576
13. Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R., and Burn, P. (1995) Science 269, 546-549
14. Pelletymounter, M. A., Cullen, M. J., Baker, M. B., Hecht, R., Winters, D., Boone, T., and Collins, F. (1995) Science 269, 540-543
15. Su, A. I., Cooke, M. P., Ching, K. A., Hakak, Y., Walker, J. R., Wiltshire, T., Orth, A. P., Vega, R. G., Sapinoso, L. M., Moqrich, A., Patapoutian, A., Hampton, G. M., Schultz, P. G., and Hogenesch, J. B. (2002) Proc Natl Acad Sci U S A 99, 4465-4470
16. Danesch, U., Hoeck, W., and Ringold, G. M. (1992) J Biol Chem 267, 7185-7193
17. Yu, S., Matsusue, K., Kashireddy, P., Cao, W. Q., Yeldandi, V., Yeldandi, A. V., Rao, M. S., Gonzalez, F. J., and Reddy, J. K. (2003) J Biol Chem 278, 498-505
18. Williams, P. M., Chang, D. J., Danesch, U., Ringold, G. M., and Heller, R. A. (1992) Mol Endocrinol 6, 1135-1141
19. Londos, C., Sztalryd, C., Tansey, J. T., and Kimmel, A. R. (2005) Biochimie 87, 45-49
20. Greenberg, A. S., Egan, J. J., Wek, S. A., Garty, N. B., Blanchette-Mackie, E. J., and Londos, C. (1991) J Biol Chem 266, 11341-11346
21. Jiang, Z. Y., Zhou, Q. L., Coleman, K. A., Chouinard, M., Boese, Q., and Czech, M. P. (2003) Proc Natl Acad Sci U S A 100, 7569-7574
22. Powelka, A. M., Seth, A., Virbasius, J. V., Kiskinis, E., Nicoloro, S. M., Guilherme, A., Tang, X., Straubhaar, J., Cherniack, A. D., Parker, M. G., and Czech, M. P. (2006) J Clin Invest 116, 125-136
23. Puri, V., Chakladar, A., Virbasius, J. V., Konda, S., Powelka, A. M., Chouinard, M., Hagan, G. N., Perugini, R., and Czech, M. P. (2007) J Lipid Res 48, 465-471
24. Liang, L., Zhao, M., Xu, Z., Yokoyama, K. K., and Li, T. (2003) Biochem J 370, 195-203
25. Inohara, N., Koseki, T., Chen, S., Wu, X., and Nunez, G. (1998) Embo J 17, 2526-2533
26. Schillabeer, G., Forden, J. M., and Lau, D. C. (1989) J Clin Invest 84, 381-387
27. Tobe, K., Kasuga, M., Kitasato, H., Takaku, F., Takano, T., and Segawa, K. (1987) FEBS Lett 215, 345-349
28. Brasaemle, D. L., Dolios, G., Shapiro, L., and Wang, R. (2004) J Biol Chem 279, 46835-46842
29. Blanchette-Mackie, E. J., Dwyer, N. K., Barber, T., Coxey, R. A., Takeda, T., Rondinone, C. M., Theodorakis, J. L., Greenberg, A. S., and Londos, C. (1995) J Lipid Res 36, 1211-1226
30. Greenberg, A. S., Egan, J. J., Wek, S. A., Moos, M. C., Jr., Londos, C., and Kimmel, A. R. (1993) Proc Natl Acad Sci U S A 90, 12035-12039
31. Brasaemle, D. L., Levin, D. M., Adler-Wailes, D. C., and Londos, C. (2000) Biochim Biophys Acta 1483, 251-262
32. Martinez-Botas, J., Anderson, J. B., Tessier, D., Lapillonne, A., Chang, B. H., Quast, M. J., Gorenstein, D., Chen, K. H., and Chan, L. (2000) Nat Genet 26, 474-479
33. Souza, S. C., de Vargas, L. M., Yamamoto, M. T., Lien, P., Franciosa, M. D., Moss, L. G., and Greenberg, A. S. (1998) J Biol Chem 273, 24665-24669
34. Szalay, C., Xu, G., Dorward, H., Tansey, J. T., Contreras, J. A., Kimmel, A. R., and Londos, C. (2003) J Cell Biol 161, 1093-1103
35. Tansey, J. T., Szalay, C., Gruia-Gray, J., Roush, D. L., Zee, J. V., Gavrilova, O., Reitman, M. L., Deng, C. X., Li, C., Kimmel, A. R., and Londos, C. (2001) Proc Natl Acad Sci U S A 98, 6494-6499
36. Zhang, H. H., Souza, S. C., Muliro, K. V., Kraemer, F. B., Obin, M. S., and Greenberg, A. S. (2003) J Biol Chem 278, 51535-51542
37. Souza, S. C., Muliro, K. V., Liscum, L., Lien, P., Yamamoto, M. T., Schaffer, J. E., Dallal, G. E., Wang, X., Kraemer, F. B., Obin, M., and Greenberg, A. S. (2002) J Biol Chem 277, 8267-8272
38. Clifford, G. M., Londos, C., Kraemer, F. B., Vernon, R. G., and Yeaman, S. J. (2000) J Biol Chem 275, 5011-5015
39. Clifford, G. M., McCormick, D. K., Vernon, R. G., and Yeaman, S. J. (1997) Biochem Soc Trans 25, S672
40. Londos, C., Brasaemle, D. L., Schultz, C. J., Adler-Wailes, D. C., Levin, D. M., Kimmel, A. R., and Rondinone, C. M. (1999) Ann N Y Acad Sci 892, 155-168
41. Hickenbottom, S. J., Kimmel, A. R., Londos, C., and Hurley, J. H. (2004) Structure 12, 1199-1207
42. Wolins, N. E., Brasaemle, D. L., and Bickel, P. E. (2006) FEBS Lett 580, 5484-5491
43. Wolins, N. E., Quaynor, B. K., Skinner, J. R., Schoenfish, M. J., Tzekov, A., and Bickel, P. E. (2005) J Biol Chem 280, 19146-19155
44. Beckman, M. (2006) Science 311, 1232-1234
45. Zhou, Z., Yon Toh, S., Chen, Z., Guo, K., Ng, C. P., Ponniah, S., Lin, S. C., Hong, W., and Li, P. (2003) Nat Genet 35, 49-56

FOOTNOTES
This work was supported by National Institutes of Health Grants DK30898 and DK60837. The authors gratefully acknowledge Dr. Stephen J. Doxsey for use of his confocal microscopy facility. FSP27 antibodies were a kind gift from Dr. Masato Kasuga and Dr. Naonobu Nishino from Kobe University Graduate School of Medicine, Kobe, Japan.

The abbreviations used are: siRNA, short interfering RNA; RNAi, RNA interference; PBS, phosphate-buffered saline; BAT, mouse brown adipose tissue; Cidec, cell death-inducing DNA fragmentation factor, alpha subunit-like effector C; PLIN, Perilipin.

FIGURE LEGENDS

FIGURE 1. **Expressed FSP27-GFP localizes to the surface of lipid droplets in 3T3-L1 adipocytes.**
A, Graphic representation of FSP27 showing N-terminal CID-E-N domain and COOH-terminal CID-E-C domain. CID-E-N domain of FSP27 has a significant homology to the CID-E-N domain of DFF-45 and DFF-40.
* B, Confocal microscopic image of mature 3T3-L1 adipocyte (day 8) expressing FSP27-GFP (left panel) after 48 hours of transfecting FSP27-GFP cDNA. The middle panel shows lipid droplets stained with Oil-red-O. Bar, 10 μm.
* C, Immunostaining of endogenous FSP27/Cidec in a 3T3-L1 adipocyte (day 9) using primary affinity purified antibodies against mouse FSP27. Bar, 10 μm.
* D, Inset from Fig. 1C is enlarged to show the localization of FSP27 around the lipid droplets.
* E, Z-section (1 micron) representing FSP27/Cidec immunostaining in a 3T3-L1 adipocyte. The inset from the left panel is enlarged in the right hand side panel showing discontinuous staining pattern of FSP27/Cidec (arrows). Bar, 10 μm.

FIGURE 2. **Expressed FSP27-GFP localizes on the surface of lipid droplets and co-localizes with perilipin in 3T3-L1 adipocytes.** A, Selected confocal Z-sections (3 micron each) of a 3T3-L1 adipocyte (day 4) expressing FSP27-GFP after 48 hours of transfecting FSP27-GFP cDNA. Mitochondria were stained with MitoTracker Deep Red 633 (Molecular Probes, Inc., Eugene, OR) according to the manufacturer’s protocol. Total 13 Z-sections of 3 micron each were obtained (Supplementary Fig. 1).
* Bar, 10 μM.
* B, Confocal images (merged optical planes) of a 3T3-L1 adipocyte (day 4) after 48 hours of expressing FSP27-GFP (left panel) and mitochondria stained with MitoTracker Deep Red 633 (middle panel). Bar, 10 μM. All the Z-sections are displayed individually in Supplementary Fig. 1.
* C, 4 micron Z-section of a confocal image of 3T3-L1 adipocyte showing colocalization of FSP27-GFP and perilipin. Bar, 10 μM.

FIGURE 3. **The expression of FSP27-GFP in 3T3-L1 preadipocytes and COS cells augments intracellular neutral lipid accumulation.**
* A and B, Confocal microscopic images of 3T3-preadipocytes (panel A) and COS cells (panel B) transfected with the FSP27-GFP cDNA construct. The cells were fixed and stained with Oil-red-O that stains neutral lipids. Bar, 10 μm.
* C, Semi-quantitative analysis of neutral lipids calculated by measuring Oil-red-O signal. Imaging was performed using a wide-field microscope with a 63X Nikon PlanApo objective. The fluorescence intensity was determined using Axiovision digital imaging software Version 4.1 (Carl Zeiss). Results are an average of 25 or more cells from different fields in each case from three independent experiments ± standard error (p < 0.0001; paired t-test). AU, Arbitrary Units.

FIGURE 4. **FSP27/Cidec depletion causes fragmentation of lipid droplets and increased basal lipolysis in mature adipocytes.** A, After depleting FSP27/Cidec in mature adipocytes (7 days after initiating differentiation) the cells were immunostained with anti-perilipin. The top right panel represents a confocal image of a FSP27-depleted adipocyte with fragmented lipid droplets where perilipin is still associated with the microdroplets. Top left panel shows control adipocytes. Lower panels are the phase contrast images of the respective cells in the top panels. Bar, 10 μm.
* B, Glycerol release was measured in 3T3-L1 adipocytes after siRNA-mediated depletion of FSP27 and perilipin. Approximately 70%
depletion for FSP27/Cidec and 90% depletion for perilipin mRNA expression was observed. For stimulation, sub-maximal (150 nM epinephrine + 60 μM theophylline) and maximal (1.5 μM epinephrine + 0.6 mM theophylline) doses of agents were used. Data are means ± standard error for more than three independent experiments (*p ≤ 0.05 (paired t-test) compared to scrambled with sub-maximal dose and †p ≤ 0.05 (paired t-test) compared to scrambled with maximal dose). C, Quantitation of FSP27 and perilipin knockdown using quantitative real-time PCR analysis. Data are means ± standard error for three independent experiments.
Figure 1, Czech
Figure 2, Czech
Figure 3, Czech
Figure 4, Czech
Fat specific protein 27: A novel lipid droplet protein that enhances triglyceride storage
Vishwajeet Puri, Silvana Konda, Srijana Ranjit, Myriam Aouadi, Anil Chawla, My Chouinard, Abhijit Chakladar and Michael P. Czech

J. Biol. Chem. published online September 19, 2007

Access the most updated version of this article at doi: 10.1074/jbc.M707404200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2007/09/21/M707404200.DC1