Subtle Cognitive Deficits Are Associated with Amyloid-β Positivity, but Not Severity of Self-Reported Decline: Results from the CoSCo Study

Seon Young Ryu¹ Yun Jeong Hong² SeongHee Ho³ Jee Hyang Jeong⁴ Kee Hyung Park⁵ SangYun Kim⁶ Min Jeong Wang⁶ Seong Hye Choi⁷ Dong Won Yang⁸

¹Department of Neurology, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; ²Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; ³Department of Neurology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; ⁴Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Republic of Korea; ⁵Department of Neurology, College of Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea; ⁶Department of Neurology, Seoul National University College of Medicine & Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; ⁷Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea

Keywords
Subjective cognitive decline · Subtle cognitive impairment · Amyloid-β · Alzheimer’s disease

Abstract
Introduction: Subjective cognitive decline (SCD) can be considered as the preclinical manifestation of Alzheimer’s disease (AD). The National Institute on Aging and the Alzheimer’s Association criteria for preclinical AD proposed that subtle cognitive changes appear along with AD biomarkers in the late stage of preclinical AD. The objective of this study was to explore whether subtle cognitive impairment (SCI) in individuals with SCD is associated with brain amyloid-β (Aβ) status and SCD severity. Methods: One hundred twenty individuals with SCD (mean age: 70.87 ± 6.10 years) were included in this study. SCI was defined as performance ≤ −1.0 SD on at least two neuropsychological tests. Participants underwent an amyloid positron emission tomography, which was assessed visually and quantitatively using standardized uptake value ratio (SUVR). The severity of SCD was assessed using two self-reported questionnaires: the SCD questionnaire based on the SCD-plus features and the Korean-Everyday Cognition (K-ECog) scale. Results: SCD individuals with SCI (n = 25) had more Aβ positivity than the SCD only group (n = 95) (44% vs. 15.79%; p = 0.002). In addition, the SCI group had a higher global SUVR than the SCD only group (p = 0.048). For self-reported questionnaires, there were no differences in SCD questionnaire total scores and K-ECog global and cognitive domain-specific scores between two groups. Conclusions: In SCD individuals, SCI was associated with higher Aβ positivity, but not with the severity of self-reported cognitive decline, compared to the SCD only group. These results suggest that the recognition of objectively defined subtle cognitive deficits may contribute to the early identification of AD in SCD.

© 2022 The Author(s). Published by S. Karger AG, Basel

Correspondence to:
Dong Won Yang, neuroman@catholic.ac.kr
Introduction

Subjective cognitive decline (SCD) is defined by complaints of persistent cognitive decline with normal cognitive performance [1, 2]. SCD is related to an increased risk of cognitive decline and Alzheimer’s disease (AD) dementia and biomarker abnormalities for AD. Therefore, SCD in cognitively unimpaired older individuals can be considered a preclinical stage of AD [1].

After the presentation of preclinical AD criteria by the National Institute on Aging–Alzheimer’s Association (NIA-AA) [3], the concept of “subtle cognitive decline” was introduced. The NIA-AA criteria of preclinical AD consist of three stages depending on AD biomarkers and subjective cognitive decline. Although subjective cognitive decline corresponding to stage 3 of preclinical AD by the NIA-AA criteria is referred to by various terms such as subjective cognitive change, subjective cognitive impairment (SCI), objectively defined subtle cognitive difficulties, and pre-mild cognitive impairment (MCI) [4–9] and has yet to be definitively operationalized, it may represent the first detectable cognitive impairment in AD. Subjective cognitive decline can both be or not be accompanied by SCI (i.e., subjective cognitive complaints) in cognitively unimpaired older adults [5, 10]. Therefore, it is important to examine the clinical relevance of subjective cognitive decline along with SCD. Recent studies have specifically investigated subtle cognitive decline [8, 11–14]. However, few studies have focused on subtle cognitive deficits in SCD [15]. The aim of this study was to determine whether SCI in individuals with SCD is associated with brain amyloid-β (Aβ) status and the severity of SCD using the cohort study to identify predictors for the clinical progression to MCI or dementia from SCD (CoSCo).

Materials and Methods

Participants

The present study is a part of the CoSCo study which is a multicenter, prospective observational study. One hundred twenty people aged 60 years or older (53 men, 67 women), with six or more years of education, were enrolled from six memory clinics in the Republic of Korea between November 2018 and November 2019. The participants underwent detailed neuropsychological tests, brain MRI, laboratory tests including apolipoprotein E (APOE) genotyping, and 18F-florbetaben brain Aβ positron emission tomography (PET).

SCD was defined based on the research criteria for SCD [1]: (1) complaining of persistent cognitive decline; (2) cognitive test scores ≥7th percentile of age- and education-adjusted norms on all subtests of a neuropsychological test battery; (2–1) in addition, we recruited SCD subjects between the 7th percentile and 50th percentile on verbal memory test to include SCD individuals with higher risk who may progress to MCI or AD dementia [16]; (3) criteria for MCI based on Petersen’s criteria [17] or dementia according to the Diagnostic and Statistical Manual of Mental Disorders V criteria [18] were not met. Participants were excluded if they had significant neurologic illnesses, major psychiatric disorders, or abnormal laboratory findings that affect cognitive function.

The study was approved by the Institutional Review Boards of each institution. All participants provided informed consent, and the study was conducted in accordance with the Declaration of Helsinki.

Neuropsychological Test

All participants completed the Korean version of the Mini-Mental State Examination (K-MMSE) [19] and detailed neuropsychological tests [20]. Neuropsychological testing included the following: (1) attention – Forward Digit Span Test; (2) language – the Korean version of the Boston Naming Test; (3) visuospatial function – the Rey Complex Figure Test (RCFT); (4) memory – the Seoul Verbal Learning Test (SVLT) delayed recall and RCFT delayed recall; and (5) frontal executive function – the Digit Symbol Coding, the Controlled Oral Word Association Test (COWAT) (phonemic), Trail Making Test-B, and the Stroop Test (color reading).

While subtle cognitive decline has yet to be definitively operationalized, the SCI in the present study was defined by adapting the method used in previous studies [10, 21]: cognitive performance of >1.0 SD below the normative mean on at least two out of the nine neuropsychological tests. The Patient Health Questionnaire-9 (PHQ-9) was used to measure participants’ depressive symptoms [22, 23]. The scores range from 0 to 27, with higher scores indicating more depressive symptoms. The Korean version of the Brief Encounter Psychosocial Instrument (BEPSI-K) [24], a modified version of the original BEPSI [25], was used to assess stress levels. The scores range from 1 to 5, with a higher score indicating a higher level of stress.

Assessment of SCD

The severity of SCD was assessed using two self-reported questionnaires: the SCD questionnaire based on the SCD-plus features and the Korean-Everyday Cognition (K-ECog) scale. The SCD questionnaire with 10 questions [26] based on the SCD-plus features that increase the likelihood of preclinical AD, as described by the SCD Initiative Working Group [1], was applied to assess subjective cognitive complaints. Table 1 shows items included in the SCD questionnaire and rating. The total of SCD questionnaire ranged from 0 to 29, with higher scores indicating greater perceived cognitive decline.

The 39-item K-ECog [27] was administered to all participants to measure SCD severity, along with the SCD questionnaire. The ECog scale was developed to measure functional abnormalities in the elderly [28]. The ECog was scored on a Likert scale (1 = “better or no change” to 4 = “consistently much worse”) for each item and provides a global score and six domain scores (i.e., everyday memory, language, visuospatial abilities, planning, organization, and divided attention), ranging from 1 to 4, respectively.

Brain MRI and Amyloid PET

Brain MRI scanning was performed using a 3.0-Tesla scanner, including T1- and T2-weighted images, fluid-attenuated inversion

 DOI: 10.1159/000523971 Ryu/Hong/Ho/Jeong/Park/Kim/Wang/Choi/Yang
recovery imaging, susceptibility-weighted imaging, and T1-weighted three-dimensional volumetric images. The severity of white matter hyperintensities (WMH) was evaluated using a visual rating scale by axial fluid-attenuated inversion recovery images and was rated as minimal (grade 1), moderate (grade 2), and severe (grade 3) [29]. The numbers of lacunes and cerebral microbleeds were counted as the previously described methods [30, 31]. Medial temporal lobe atrophy (MTA) was rated on a five-point scale (0–4 points) on T1-weighted coronal images [32]. MRI scans were evaluated by an experienced neurologist.

The participants underwent 18F-florbetaben PET, which was acquired in accordance with a standardized protocol [33]. Amyloid PET positivity was determined via a visual assessment in four brain areas (frontal cortex, lateral temporal cortex, posterior cingulate/precuneus, and parietal cortex) using a brain Aβ plaque load (BAPL) scoring system (1 = no BAPL, 2 = minor BAPL, 3 = significant BAPL; score 1 = negative, score 2 or 3 = positive) [34, 35] by a trained nuclear medicine specialist at each institution who was blinded to the clinical diagnosis. In addition, quantitative regional amyloid burden was measured using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8) and MATLAB 2014b (The MathWorks Inc., Natick, MA, USA) according to the previous methods [26]. The regional standardized uptake value ratio (SUVR) was obtained by calculating the median uptake over voxels in the regions of interest of PET images and dividing these values by those in the cerebellar cortex as the reference region. Global SUVR was calculated as the average of the 90 regional uptake values.

Statistical Analyses
Group differences (SCD only group vs. SCI) were assessed with two-sample t tests or Mann-Whitney U tests for continuous variables, and χ² or Fisher’s exact tests for categorical variables. Additional regression analyses between groups were performed to investigate the effects of demographic variables. Correlation analysis using Spearman’s correlation coefficients (ρ) was performed between SCD questionnaire and K-ECog scores across all participants. Comparisons of K-ECog cognitive domain-specific scores across all participants were performed using Friedman’s test with post hoc Wilcoxon signed-rank tests.

Statistical analyses were conducted using JMP Pro 11.0.0 (SAS Inc., Cary, NC, USA) and SPSS software package (version 19.0; SPSS Inc., Chicago, IL, USA). Significance was set at $p < 0.05$.

Results

Demographic Characteristics and Amyloid PET Results
Table 2 shows the clinical characteristics of the participants according to the absence or presence of SCI. There were no significant differences in age, sex, education, family history of dementia, and APOE ε4 carrier status between SCD individuals with and without SCI. With regard to cognitive measures, the SCI group had lower...
MMSE scores and showed lower performances in the RCFT copy, memory tests, and frontal/executive tests (Table 2). There were no differences in depressive symptoms, stress levels, severity of WMH, numbers of lacunes and microbleeds, and MTA between the two groups. For amyloid PET, SCD individuals with SCI had higher Aβ positivity ($p = 0.002$) and higher global SUVR values ($p = 0.048$) than the SCD only group. The results for Aβ positivity between the two groups remained significant after adjusting for age and education ($p = 0.014$).

Self-Reported Questionnaire Scores

The SCD questionnaire total scores were correlated with the K-ECog global (Spearman’s correlation coefficients $\rho = 0.474$, $p < 0.001$) and cognitive domain-specific scores ($\rho = 0.329–0.533$, $p < 0.001$). An overview of the group differences in the self-reported SCD questionnaire and the K-ECog scale is presented in Table 3. With regard to the SCD questionnaire, there were no differences in the SCD questionnaire total scores between the groups ($p = 0.733$). For SCD questionnaire items, most participants (97.50%) reported a decline in the memory domain as expected, and 54.17% of participants reported a cognitive decline in the nonmemory domain, while 42.50% of participants reported complaints in the language domain. The SCI group reported more complaints in the SCD visuospatial domain than the SCD only group (40.00% vs. 16.84%, $p = 0.012$), but there were no differences in com-

Table 2. Demographics and clinical characteristics of all SCD participants according to evidence of SCI

	SCD total (n = 120)	SCD only (n = 95)	SCI* (n = 25)	p value
Age, year	70.87±6.10	70.41±5.95	72.60±6.49	0.111†
Female	68 (56.67)	57 (60.00)	11 (44.00)	0.151
Education, year	11.18±4.06	11.03±4.17	11.76±3.62	0.397
Family history of dementia	43 (35.83)	37 (38.95)	6 (24.00)	0.166
APOE ε4 carriers	24 (20.00)	19 (20.00)	5 (20.00)	>0.999
K-MMSE	27.24±1.96	27.51±1.76	26.24±2.37	0.014
Depressive symptoms: PHQ-9	2.94±3.71	3.04±3.69	2.56±3.81	0.183
Stress levels: BEPSI-K	1.54±0.78	1.55±0.78	1.52±0.77	0.836
WMH, grade 1/2/3	85/30/5	70/21/4	15/9/1	0.326‡
Lacunes, n (0/1/2)	108/10/2	84/10/1	24/0/1	0.133‡
Microbleeds, n (0/1)	109/11	84/11	25/0	0.117‡
MTA, left (0–4 points)	1.21±0.95	1.13±0.90	1.52±1.08	0.123
MTA, right (0–4 points)	1.12±0.86	1.05±0.82	1.40±0.96	0.123
PET amyloid positivity	26 (21.67)	15 (15.79)	11 (44.00)	0.002
PET amyloid global SUVR	1.27±0.24	1.23±0.19	1.41±0.34	0.048
Neuropsychological tests§				
Forward digit span	0.60±1.10	0.66±1.06	0.36±1.27	0.193
Boston naming test	0.39±1.03	0.46±1.03	0.13±0.97	0.218
RCFT copy	0.24±0.62	0.31±0.56	0.05±0.76	0.038
SVLT delayed recall	0.67±0.45	−0.59±0.40	−0.98±0.50	0.001
RCFT delayed recall	−0.04±0.78	0.08±0.79	−0.46±0.63	0.002
Digit symbol coding	0.46±1.03	0.67±0.97	−0.33±0.86	<0.001‡
COWAT phonemic	0.18±1.03	0.31±1.05	−0.31±0.80	0.007
Trail making test-B	0.33±0.62	0.40±0.56	0.08±0.77	0.054
Stroop test color reading	0.13±0.82	0.27±0.74	−0.42±0.88	<0.001‡

Values are mean ± SD for continuous variables and numbers (%) for categorical variables. SCD, subjective cognitive decline; SCI, subtle cognitive impairment; APOE, apolipoprotein E; K-MMSE, Korean version of the Mini-Mental State Examination; PHQ-9, Patient Health Questionnaire-9; BEPSI-K, Korean version of the Brief Encounter Psychosocial Instrument; WMH, white matter hyperintensities; MTA, medial temporal lobe atrophy; SUVR, standardized uptake value ratio; RCFT, Rey Complex Figure Test; SVLT, Seoul Verbal Learning Test; COWAT, Controlled Oral Word Association Test. * SCI group, compared to the SCD only group, was defined as performance ≤ −1.0 SD on at least two neuropsychological tests. Mann-Whitney U (or †two-sample t) tests and χ² tests (or ‡ Fisher’s exact test) for comparisons between the SCD only group and SCD individuals with SCI were performed on continuous variables and categorical variables, respectively. § Each score is an age- and education-adjusted z-score.
plaints of other SCD cognitive domains between the groups. In addition, SCI group had less feeling of worse performance than peers than the SCD only group ($p = 0.017$), but there were no differences between the groups for the level of cognitive performance compared with peers ($p = 0.541$). For other SCD questionnaire items, there were no differences between the groups (Table 3).

Regarding the K-ECog scale, the average K-ECog global score of participants was 1.83 ± 0.57. Among cognitive domain-specific scores, the K-ECog memory scores (2.22 ± 0.74) were higher than the other domain-specific K-ECog scores ($p < 0.001$), and the K-ECog language scores (1.90 ± 0.65) were higher than the K-ECog visuospatial (1.61 ± 0.65) and K-ECog executive scores (1.67 ± 0.59) ($p < 0.001$). There were no differences in the K-ECog global scores and each domain-specific average K-ECog score (memory, language, visuospatial functioning, and executive functioning – planning, organization, and divided attention) between the two groups (Table 3).

Discussion

This study investigated the Aβ status by amyloid PET and self-reported cognitive decline status in SCD subjects with SCI compared to SCD only subjects within the CoS-
Co project. Subtle but detectable cognitive impairment that does not fulfill MCI criteria may exist as the first symptomatic phenomenon in the clinical spectrum of AD [3]. SCD could be the self-awareness of these subtle cognitive changes, but individuals with SCD may or may not present the subtle cognitive changes that represent the transitional phase preceding MCI. Therefore, it is important to investigate the clinical relevance of SCD and/or subtle cognitive changes in elderly individuals with medical help-seeking for subjective cognitive complaints.

Regarding the amyloid pathology in SCD, the present study investigated the Aβ status of SCD depending on the presence of SCI. Few studies have investigated subtle cognitive decline and Aβ status. One study showed that subtle executive deficits are related to higher brain Aβ deposition and lower grey matter volume in SCD [15]. Another study showed objective subtle cognitive difficulties were associated with faster amyloid deposition and early neurodegenerative changes relative to cognitively normal participants [8]. These results are consistent with the current results, which show more Aβ positivity in SCI participants with SCI. However, the previous studies have focused on the concept of subtle cognitive decline without mentioning the SCD status of the participants.

Self-reported cognitive decline is necessary for SCD classification. Regarding the severity of self-reported cognitive decline, few studies have investigated the clinical relevance of the severity of self-reported cognitive decline in SCD [36, 37]. In the current study focusing on subtle cognitive deficits, there were no differences in the severity of self-reported cognitive decline between SCD individuals with and without SCI. These results might suggest the limited role of self-reported cognitive decline in detecting subtle cognitive changes in elderly people with subjective cognitive complaints. However, due to the small sample size, our findings need to be replicated in further studies. In addition, 21% of total SCD participants were classified as SCI in the present study, comparable with other studies (22–23%) [10, 38]. However, due to relatively small number of SCI group, these findings also need to be replicated in larger samples. In the large sample study of the Alzheimer’s Disease Neuroimaging Initiative, 21% of cognitively normal participants had SCI irrespective of SCD [5]. Another issue in regard to SCD is that it may relate to psychiatric symptoms (e.g., depression, anxiety) and certain personality traits (e.g., neuroticism) [1, 39, 40]. Therefore, these affective factors and personality traits can be considered as the potential variables that can affect SCD on the studies.

To measure the severity of self-reported cognitive decline, we used two self-reported questionnaires. There were no differences in the severity of self-reported cognitive decline measured by the SCD questionnaire total scores and the K-ECog scores between SCD individuals with and without SCI. For SCD questionnaire items, the SCD only group had a greater feeling of worse performance than peers than the SCI group, but there were no differences in scoring on a Likert scale (range 1–5) for the level of cognitive performance compared with peers (Table 3). However, due to the small sample size, it is inconclusive whether “less feeling of worse performance than others” in the SCI group could suggest reduced self-awareness of SCD individuals with subtle cognitive deficits. In addition, the SCD Initiative Working Group proposed the inclusion of questions on subjective change in other cognitive domains, along with subjective memory decline in studies on SCD [1]. For the types of SCD cognitive complaints in the current study, the most common SCD was complaints in memory domain, followed by complaints in the language domain. Furthermore, the SCI group had more complaints of SCI visuospatial function than the SCD only group. Further studies are needed to determine whether there might be differences in the types of cognitive complaints in the nonmemory cognitive domain between SCD individuals with and without SCI.

Stage 3 of the NIA-AA preclinical AD criteria includes subtle cognitive decline, but there is no guidance on how this should be operationalized. Recent studies have defined subtle cognitive decline using cognitive composite measures of memory [41, 42] or global neuropsychological scores [43, 44], individual neuropsychological test scores by a score more than 1 SD below the normative mean on two of the six neuropsychological tests used in different cognitive domains [21], or sensitive memory process scores [11]. The subtle cognitive decline operationalization used in the current study used individual neuropsychological tests, an approach based on methods [11, 21] derived from the well-validated Jak/Bondi criteria for MCI [45], which balances reliability (reducing the possibility disproportionally impacted by only one poorly performed test in methods using a composite score) and sensitivity. Regarding MCI classification, some studies showed that conventional criteria for diagnosing MCI may be susceptible to false-positive cases [45–47]. Therefore, they suggested that using an actuarial neuropsychological method for MCI may yield AD biomarker association, more stable diagnoses, and prediction of progression than using a conventional diagnostic method [45].
There are some limitations to our study. This was the cross-sectional study limited to SCD individuals. Controls without both SCD and SCI were not included in this study. Therefore, we could not determine whether SCI reflects future cognitive decline, and there are some restrictions for evaluating the clinical relevance of SCD only group compared with controls. Our ongoing longitudinal CoSCo study which extends participants into control group will help verify these results and find out the long-term clinical significance of SCI. In addition, this was a relatively small sample of participants recruited from memory clinics. Therefore, the application of these results to a general population is limited. It is known that recruitment methods (population-based, community volunteer, or clinic-based samples) affect demographic (age, education, family history of dementia) and neuropsychological characteristics of the SCD participants among studies [48, 49]. In addition, clinic-based samples have more progression risk and AD-like feature than other samples although there are conflicting findings [50–52]. The study setting should be considered when evaluating SCD. Therefore, our results should be confirmed in larger samples, including those from the community. Furthermore, the assessment of functional limitations in everyday life is important when assessing cognitive functions. In this study, the ECog scale can assess functional abilities that are linked to specific cognitive abilities, because it was developed to capture relatively mild functional changes in measuring everyday function in older adults [28, 53]. However, evaluating instrumental activities of daily living in detail would be helpful for a functional assessment in SCD.

In conclusion, the present study, which investigated Aβ and self-reported cognitive decline status in SCD subjects, demonstrated that SCI is associated with Aβ positivity, but is not associated with the severity of self-reported cognitive decline, compared to SCD only subjects. These results suggest that the recognition of objectively defined subtle cognitive deficits may contribute to the early detection of AD in individuals with SCD. Therefore, elderly people with both SCD and subtle cognitive changes need to be further characterized using biomarkers, since they may represent the first detectable cognitive impairment in the clinical spectrum of AD.

Acknowledgments

We would like to thank Seunghyun Han of Data Center for Korean EEG, College of Nursing, Seoul National University, and Seung Wan Kang of iMediSync Inc. for contributing to the CoSCo study. In addition, we would like to thank Jeung Hee Cho of Department of Neurology, The Catholic University of Korea, Seoul St. Mary’s Hospital, for analyzing the amyloid PET scans.

Statement of Ethics

The study protocol was reviewed and approved by the Institutional Review Boards of each institution: The Catholic University of Korea, Seoul St. Mary’s Hospital (KC18ONDI0394), Ewha Womans University Mokdong Hospital (EUMC2018-08-022-005), Gachon University Gil Medical Center (GAIRB2019-231), Seoul National University Bundang Hospital (B-1808/486-004), and Inha University School of Medicine (INHAUH2018-08-006-005). All participants provided informed consent, and the study was conducted in accordance with the Declaration of Helsinki.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

This study was supported by a grant from the Ministry of Health and Welfare, HI18C0530. The funder had no role in study design; collection, analysis, and interpretation of data; writing of the report; and any restrictions regarding the submission of the report.

Author Contributions

S.Y.R. and D.W.Y. contributed to the design and concept of the study, S.H., J.H.J., K.H.P., M.J.W., S.H.C., and D.W.Y. contributed to the acquisition of data. S.H. evaluated MRI scans. S.Y.R. analyzed the data, performed interpretation of data, and wrote the first draft of the paper. D.W.Y. obtained funding and supervised the study. S.Y.R., Y.J.H., S.H., J.H.J., K.H.P., S.K., M.J.W., S.H.C., and D.W.Y. contributed to revising the manuscript for content and approved the final version.

Data Availability Statement

The data that support the findings of this study are openly available in (Open Science Framework) at https://osf.io/z6dc3/.
References

1. Jessen F, Amaroiglo RE, van Boxtel M, Breteler M, Ceccoli M, Chetelat G, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. *Alzheimers Dement.* 2014 May 3; 10(6):844–52.

2. Hong YJ, Lee JH. Subjective cognitive decline and Alzheimer’s disease spectrum disorder. *Dement Neurocogn Disord.* 2017 Jun; 16(2): 40–6.

3. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. *Alzheimers Dement.* 2011 May; 7(3):280–92.

4. Loewenstein DA, Loewenstein MT, Schinka JA, Barker W, Shen Q, Potter E, et al. An investigation of PreMCI: subtypes and longitudinal outcomes. *Alzheimers Dement.* 2012 May; 8(3):172–9.

5. Toledo JB, Bjerke M, Chen K, Rozycki M, Jack CR Jr, Weiner MW, et al. Memory, executive, and multimdomain subtle cognitive impairment: clinical and biomarker findings. *Neuropsychology.* 2015 Jul 14; 29(5):144–53.

6. Eipelbaum S, Genthon R, Cavedo E, Habert MO, Lamari F, Gagliardi G, et al. Preclinical Alzheimer’s disease: a systematic review of the cohorts underlying the concept. *Alzheimers Dement.* 2017 Apr; 13(4):454–67.

7. Chipe E, Salvadori N, Farotti L, Parnetti L. Biomarker-based signature of Alzheimer’s disease in pre-MCI individuals. *Brain Sci.* 2019 Aug 23;9(9):213.

8. Thomas KR, Banger J, Weigand AJ, Edmonds EC, Wong CG, Cooper S, et al. Objective subtle cognitive difficulties predict future amyloid accumulation and neurodegeneration. *Neurology.* 2020 Jan 28;94(4): e397–406.

9. Crocco EA, Curiel C, Citaigorodsky M, Grau GA, Garcia JM, Duara R, et al. Intrusion errors and progression of cognitive deficits in older adults with mild cognitive impairment and PreMCI states. *Dement Geriatr Cogn Disord.* 2021; 50(2):135–42.

10. Wolfsgruber S, Molinuevo JL, Wagner M, Teunissen CE, Rami L, Coll-Pardos N, et al. Prevalence of abnormal Alzheimer’s disease biomarkers in patients with subjective cognitive decline: cross-sectional comparison of three European memory clinic samples. *Alzheimers Res Ther.* 2019 Jan 17; 11(1):8.

11. Thomas KR, Edmonds EC, Eppig J, Salmon DP, Bondi MW. Using neuropsychological process scores to identify subtle cognitive decline and predict progression to mild cognitive impairment. *J Alzheimers Dis.* 2018; 64(1):195–204.

12. Pan F, Huang L, Chen KL, Zhao QH, Guo QH. A comparative study on the validations of three cognitive screening tests in identifying subtle cognitive decline. *BMC Neurol.* 2020 Mar; 20(1):78.

13. Stricker NH, Lundt ES, Albertson SM, Machulda MM, Pundumjee SB, Kremers WK, et al. Diagnostic and prognostic accuracy of the cogstate brief battery and auditory verbal learning test in preclinical Alzheimer’s disease and incident mild cognitive impairment: implications for defining subtle objective cognitive impairment. *J Alzheimers Dis.* 2020; 76(1):261–74.

14. Thomas KR, Osuna JR, Weigand AJ, Edmonds EC, Clark AL, Holmquist S, et al. Regional hyperperfusion in older adults with objectively-defined subtle cognitive decline. *J Cereb Blood Flow Metab.* 2021 May; 41(5): 1001–12.

15. Perez-Cordon A, Monte-Rubio G, Sanabria A, Rodriguez-Gomez O, Valero S, Abdelnour C, et al. Subtle executive deficits are associated with higher brain amyloid burden and lower cortical volume in subjective cognitive decline: the FACEHBI cohort. *Sci Rep.* 2020 Oct 20; 10(1):17721.

16. Hong YJ, Yoon B, Shim YS, Kim SO, Kim HJ, Choi SH, et al. Predictors of clinical progression of subjective memory impairment in elderly subjects: data from the clinical research centers for dementia of South Korea (CRE-DOs). *Dement Geriatr Cogn Disord.* 2015 Jun 18; 40(3–4):158–65.

17. Petersen RC. Mild cognitive impairment as a diagnostic entity. *J Intern Med.* 2004 Sep; 256(3):183–94.

18. American Psychiatric Association. *Diagnostic and statistical manual of mental disorders.* 5th ed. Washington, DC: American Psychiatric Association; 2013.

19. Kang Y, Na DL, Hahn SH. A validity study on the Korean mini-mental state examination (K-MMSE) in dementia patients. *J Korean Neurol Assoc.* 1997; 15:300–8.

20. Kang Y, Jahng SM, Na DL. Seoul neuropsychological screening battery II (SNB-II). Seoul, Korea: Human Brain Research and Consulting; 2012.

21. Edmonds EC, Delano-Wood L, Galasko DR, Salmon DP, Bondi MW. Alzheimer’s disease neuroimaging Initiative. Subtle cognitive decline and biomarker staging in preclinical Alzheimers disease. *J Alzheimers Dis.* 2015; 47(1):231–42.

22. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. *J Gen Intern Med.* 2001 Sep;16(9): 606–13.

23. Seo JG, Park SP. Validation of the patient health questionnaire-9 (PHQ-9) and PHQ-2 in patients with migraine. *J Headache Pain.* 2015; 16:65.

24. Yim JH, Bae JM, Choi SS, Kim SW, Hwang HS, Huh BY. The validity of modified Korean-translated BEPSI (brief encounter psycho-social instrument) as instrument of stress measurement in outpatient clinic. *Korean Acad Fam Med.* 1996;17(1):42–53.

25. Frank SH, Zynanski SJ. Stress in the clinical setting: the brief encounter psychosocial instrument. *J Fam Pract.* 1988 May; 26(5):533–9.

26. Hong YJ, Park KW, Kang DY, Lee JH. Prediction of Alzheimer’s pathological changes in subjective cognitive decline using the self-report questionnaire and neuroimaging biomarkers. *Dement Neurocogn Disord.* 2019 Mar; 18(1):19–28.

27. Song M, Lee SH, Jahng S, Kim SY, Kang Y. Validation of the Korean-everyday cognition (K-ECog). *J Korean Med Sci.* 2019 Mar; 34(9):67.

28. Farias ST, Mungas D, Reed BR, Cahn-Weiner D, Jagust W, Baynes K, et al. The measurement of everyday cognition (ECog): scale development and psychometric properties. *Neuropsychology.* 2008 Jul;22(4):531–44.

29. Noh Y, Lee Y, Seo SW, Jeong JH, Choi SH, Back JH, et al. A new classification system for ischemia using a combination of deep and periventricular white matter hyperintensities. *J Stroke Cerebrovasc Dis.* 2014 Apr; 23(4):636–42.

30. Wardlaw JM, Smith EE, Bessiels GJ, Cordonerier C, Fazekar F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. *Lancet Neurol.* 2013; 12(8):822–38.

31. Lim EY, Ryu SY, Shim YS, Yang DW, Cho AH. Coexistence of cerebral microbleeds and amyloid pathology in patients with cognitive complaints. *J Clin Neurol.* 2020 Jan;16(1):83–9.

32. Schellepsen P, Leys D, Barkhof F, Hugo D, Weinstein HC, Vermersch P, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. *J Neurol Neurosurg Psychiatry.* 1992 Oct;55(10):967–72.

33. Becker GA, Ichise M, Barthel H, Luthardt J, Patt M, Seese A, et al. PET quantification of 18F-florbetaben binding to beta-amyloid deposits in human brains. *J Nucl Med.* 2013 May; 54(5):723–31.

34. Barthel H, Gertz-H, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. *Lancet Neurol.* 2011;10(5):424–35.

35. Sabri O, Sibbagg MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. *Alzheimers Dis Cogn Stud.* 2015 Aug;18(8):964–74.

36. Chen G, Yang K, Du W, Hu X, Han Y. Clinical characteristics in subjective cognitive decline with and without worry: baseline investigation of the SILCODE Study. *J Alzheimers Dis.* 2019;72(2):443–54.
Verfaillie SCJ, Timmers T, Slot RER, van der Weijden CWJ, Wesselman LMP, Prins ND, et al. Amyloid-beta load is related to worries, but not to severity of cognitive complaints in individuals with subjective cognitive decline: the SCIENCe project. Front Aging Neurosci. 2019;11:7.

Eckerstrom M, Gothlin M, Rolstad S, Hessen E, Eckerstrom C, Nordlund A, et al. Longitudinal evaluation of criteria for subjective cognitive decline and preclinical Alzheimer’s disease in a memory clinic sample. Alzheimers Dement. 2017;8:96–107.

Reid LM, MacIlvich AM. Subjective memory complaints and cognitive impairment in older people. Dement Geriatr Cogn Disord. 2006;22(5–6):471–85.

Jessen F, Amariglio RE, Buckley RF, van der Flier WM, Han Y, Molinuevo JL, et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020;19(3):271–8.

Vos SJ, Xiong C, Visser PJ, Jasielec MS, Hansenab J, Grant EA, et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 2013;12(10):957–65.

Toledo JB, Weiner MW, Wolk DA, Da X, Chen K, Arnold SE, et al. Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition. Acta Neuropathol Commun. 2014 Mar 6;2:26.

Jack CR, Jr, Knopman DS, Weigand SD, Wiste HJ, Vemuri P, Lowe V, et al. An operational approach to national institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol. 2012 Jun;71(6):765–75.

Knopman DS, Jack CR Jr, Wiste HJ, Weigand SD, Vemuri P, Lowe V, et al. Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology. 2012 May 15;78(20):1576–82.

Bondi MW, Edmonds EC, Jak AJ, Clark LR, Delano-Wood L, McDonald CR, et al. Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. J Alzheimers Dis. 2014;42(1):275–89.

Edmonds EC, Delano-Wood L, Clark LR, Jak AJ, Nation DA, McDonald CR, et al. Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimers Dement. 2015 Apr;11(4):415–24.

Edmonds EC, McDonald CR, Marshall A, Thomas KR, Eppig J, Weigand AJ, et al. Early versus late MCI: improved MCI staging using a neuropsychological approach. Alzheimers Dement. 2019 May;15(5):699–708.

Rodriguez-Gomez O, Abdelnour C, Jessen F, Valero S, Boada M. Influence of sampling and recruitment methods in studies of subjective cognitive decline. J Alzheimers Dis. 2015 Sep 24;48 Suppl 1:S99–107.

Abdelnour C, Rodriguez-Gomez O, Alegret M, Valero S, Moreno-Grau S, Sanabria A, et al. Impact of recruitment methods in subjective cognitive decline. J Alzheimers Dis. 2017;57(2):625–32.

Mitchell AJ, Beaumont H, Ferguson D, Yadegarfar M, Stubbs B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatr Scand. 2014 Dec;130(6):439–51.

Perrotin A, La Joie R, de La Sayette V, Barre L, Mezenga F, Mutlu J, et al. Subjective cognitive decline in cognitively normal elders from the community or from a memory clinic: differential affective and imaging correlates. Alzheimers Dement. 2017 May;13(5):550–60.

Snitz BE, Wang T, Cloonan YK, Jacobsen E, Chang CH, Hughes TF, et al. Risk of progression from subjective cognitive decline to mild cognitive impairment: the role of study setting. Alzheimers Dement. 2018 Jun;14(6):734–42.

Farias ST, Mungas D, Harvey DJ, Simmons A, Reed BR, Decarli C. The measurement of everyday cognition: development and validation of a short form of the everyday cognition scales. Alzheimers Dement. 2011 Nov;7(6):593–601.