Combined Indexes of Serum NLR, CRP, LDH, IL-6 and D-Dimer Levels are a Biomarker of Disease Severity and Prognostic Predictor in Patients with Coronavirus Disease 2019

Jing Li
the First Affiliated Hospital of Bengbu Medical College

Mingyang Tang
Bengbu Medical College

Didi Liu
the First Affiliated Hospital of Bengbu Medical College

Fengchao Wang
the First Affiliated Hospital of Bengbu Medical College

Yanqing Yang (yyqing@mail.ustc.edu.cn)
the First Affiliated Hospital of Bengbu Medical College

Research Article

Keywords: Severe acute respiratory syndrome coronavirus 2, coronavirus disease, combination as biomarker, inflammatory markers

DOI: https://doi.org/10.21203/rs.3.rs-720667/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Coronavirus disease-2019 (COVID-19) has become a worldwide emergency and has had a severe impact on human health. Inflammatory factors have the potential to either enhance the efficiency of host immune responses or damage the host organs with immune overreaction in COVID-19. Therefore, there is an urgent need to investigate the functions of inflammatory factors and serum markers that participate in disease progression.

Methods: In total, 54 COVID-19 patients were enrolled in this study. Disease severity was evaluated by clinical evaluation, laboratory tests, and computed tomography (CT) scans. Data were collected at: admission, 3–5 days after admission, when severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detection became negative, and composite endpoint.

Results: We found that the positive rate in sputum was three times higher than that in throat swabs. Higher levels of C-reactive protein (CRP), lactate dehydrogenase (LDH), D-dimer (D-D), interleukin-6 (IL-6) and neutrophil-to-lymphocyte (NLR) or lower lymphocyte counts suggested more severe disease, and the levels of cytokines and serum markers were intrinsically correlated with disease progression. When SARS-CoV-2 RNA detection became negative, the receiver operating characteristic (ROC) curve demonstrated that LDH had the highest sensitivity independently, and four indicators (NLR, CRP, LDH, and D-D) when combined had the highest sensitivity in distinguishing critically ill patients from mild ones.

Conclusions: Monitoring dynamic changes in NLR, CRP, LDH, IL-6, and D-D levels, combined with CT imaging and viral RNA detection in sputum, could aid in severity evaluation and prognosis prediction and facilitate COVID-19 treatment.

Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which causes coronavirus disease-2019 (COVID-19), has resulted in an ongoing pandemic [1, 2]. Although most patients have a favorable prognosis, those with advanced age and those with chronic underlying diseases may have worse outcomes [3]. In critical cases of COVID-19, multiple organ dysfunction syndrome (MODS), which includes sepsis, septic shock, and failure of the renal and respiratory systems, progresses rapidly and is fatal [2].

SARS-CoV-2 can use its spike 1 (S1) protein to bind to cells that express the surface receptor of angiotensin-converting enzyme 2 (ACE2) [4]. Furthermore, transmembrane protease serine 2 (TMPRSS2) can cleave the ACE2 receptor and the S1 protein, thereby facilitating viral entry in to the cells [5]. Owing to active replication and release of the virus within the host cells, they undergo pyroptosis and release damage-associated molecular patterns (DAMPs). These DAMPs can trigger innate and adaptive immunity by recruiting monocytes, macrophages, and T cells to the site of infection [6]. Consequently, the released DAMPs and the initiated immune responses can switch B cells into specific plasma cells that secrete antigen-specific antibodies (e.g., IgM, IgA, IgG) for SARS-CoV-2 neutralization [6]. In patients who
recovered from COVID-19 pneumonia, the host immune interactions undergo many phases such as incubation, syndromic, and recovery periods, in which the virus initiates replication, reaches a peak at 5–6 days after symptom onset, and then gradually decreases, respectively [6]. Correspondingly, the host immune system initiates a cytokine storm or the release of a specific serum protein that is accompanied by disease progression, and a tide of cytokine storms (e.g., interleukin [IL]-6) may result in MODS and fatality [7]. The cytokine storm is considered the top reason for death among COVID-19 MODS patients [8, 9]. Therefore, accurate monitoring of inflammatory factors plays an important role in the judgment of disease progression and the selection of treatment strategies. Inflammatory factors can either enhance the efficiency of host immune responses or damage host organs with immune overreaction in COVID-19 [10]. Because the functions of inflammatory factors and serum markers that participate in disease progression are controversial, therefore warranting urgent exploration, this study aimed to determine the following aspects: (1) profiling the trends of inflammatory factors and serum markers between mild and severe cases and (2) assessing the specificity and sensitivity of COVID-19-associated inflammatory markers and their joint roles in severity evaluation that may further guide clinical treatment or prognosis prediction.

Methods

Study design and participants

We retrospectively reviewed patient database and focused on the changing trends in cytokines and serum markers and their associations with the severity and prognosis of COVID-19. A total of 54 patients with a COVID-19 diagnosis were hospitalized in the First Affiliated Hospital of Bengbu Medical College from January 2020 to March 2020. Hospitalization duration was longer than two weeks for all patients, and each patient underwent severity assessment during disease progression, including clinical evaluation, laboratory tests, and computed tomography (CT) scans. Data were collected at: admission, 3–5 days after admission, when viral RNA detection became negative, and composite endpoint. The study was approved by the Ethics Committee of the First Affiliated Hospital of Bengbu Medical College (approval no. 2020KY067).

Laboratory confirmation and treatment

We collected sputum and throat swab specimens from all patients at admission and used RT-PCR for the detection of RNA of SARS-CoV-2 (tested on an ABI 7500 system, USA). Viral RNAs were extracted using a commercial kit specific for SARS-CoV-2 (Da An Gene Co., Ltd., Guangzhou, China). The specimens were considered positive if the cycle of threshold (Ct) value of the ORF-1ab and the N gene was not higher than 40 and negative if the Ct value was undetermined. Specimens with a Ct value between 40 and 42 of double genes or single gene were repeated and considered positive if the repeat results were the same as the initial result. If the repeat Ct values were undetermined, they were considered negative. These detections were started at the admission time point and were repeated every 24 h. Specifically, laboratory tests included routine blood tests (SYSMEX, XE-5000), which revealed the whole content of blood cells
Criteria of clinical assessment

According to GCDT, we classified COVID-19 into three clinical subtypes: mild, moderate, and severe. Patients that just had slight clinical symptoms without radiological changes are classified as mild. Patients that had fever, respiratory distress, and a sign of pneumonia after CT image are classified as moderate. Patients that had any of the following are classified as severe: (1) respiratory rate > 30 times/min; (2) SpO2 ≤ 93%; (3) PaO2/ FiO2 ≤ 300 mmHg; or (4) CT scan showing pulmonary lesions developed quickly within 1–2 days. Patients that required mechanical ventilation because of respiratory failure, with signs of septic shock or even multiple organ failure are critically severe cases, which are also include in the severe group.

CT imaging findings, as indicators of disease severity, were classified into the following four types: (1) healthy type, which did not exhibit alterations on pulmonary imaging; (2) mild type, which manifested ground-glass opacities and consolidation as well as thin and small subpleural patches in either single or bilateral lobes; (3) progressive type, which showed large lesions and multiple lung lobes that were involved in the bilateral lungs, accompanied by bronchial retraction, bronchiectasis, and interlobular pleural thickening; and (4) severe type, in which the bilateral lungs exhibited diffuse lesions with uneven distribution of density and large areas of ground-glass opacities. Large lung lesions resulted in a "white lung," with or without thickened interlobular pleura, bilateral pleura, and pleural effusion. Specifically, CT imaging was critical dependence for clinical severity assessment (Supplemental Fig. 1). In this study, healthy, mild, progressive, and severe types of CT imaging were scored as 0, 1, 2, and 3, respectively.

Based on the clinical progression, the outcomes of COVID-19 were classified as 4 types: fully recovered, improved, exacerbation, and death.

Statistical analysis

We used SPSS (IBM SPSS software, Chicago, IL) and GraphPad Prism 5 (GraphPad Software, San Diego, CA) for statistical analysis. Since the data presented significant variance, we also used the two-tailed unpaired Student's t test to evaluate the differences between two groups, and the chi-square test for multiple group comparisons.

We used the receiver operating characteristic (ROC) curve to assess the sensitivity and specificity of disease-associated cytokine factors and serum markers, in which a more substantial area under the ROC curve (AUC) indicated a higher accuracy. Since these markers can reflect disease severity, we used the
ROC curve to evaluate the independent or joint sensitivity of the markers for disease progression. The judgment of disease progression was based on clinical assessment combined with CT imaging evaluation, regarding the mild/moderate type as negative (score: 0), whereas the severe/critically severe type was positive (score: 1). Hospitalization duration was more than two weeks, and the ROC curve calculations were repeated at three time points each week. In addition, we also adopted a linear correlation model to analyze the correlations between these serum markers. $P < 0.05$ was considered statistically significant. *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$; ns, no significant difference.

Results

Demographic characteristics

From January 2020 to March 2020, a total of 54 patients were hospitalized in the First Affiliated Hospital of Bengbu Medical College. In this patient cohort, there were 23 mild cases (42.6%), 22 moderate cases (40.7%), and 9 severe/critically severe cases (16.7%) according to the initial evaluation of clinical severity. In addition, age and sex distributions were as follows: 31 younger patients (57.3%, $y < 60$) and 23 older patients (42.7%, $y \geq 60$); 22 female patients (40.7%) and 32 male patients (59.3%). Their demographic characteristics are shown in Table 1.

Characteristics	Severe (n = 9)	Moderate (n = 22)	Mild (n = 23)	Total (n = 54)
Age				
$x \pm s, y$	65.44 ± 14.16	57.32 ± 14.82	55.17 ± 12.10	57.76 ± 13.83
distribution				
$< 60 y$	4(7.4%)	13(24.0%)	14(25.9%)	31(57.3%)
$\geq 60 y$	5(9.3%)	9(16.7%)	9(16.7%)	23(42.7%)
total	9(16.7%)	22(40.7%)	23(42.6%)	54(100%)
Sex				
Female-n(%)	1(1.9%)	9(16.7%)	12(22.2%)	22(40.7%)
Male-n(%)	8(14.8%)	13(24.0%)	11(20.4%)	32(59.3%)
total	9(16.7%)	22(40.7%)	23(42.6%)	54(100%)
Clinical classifications and their associated laboratory test and CT imaging results

In the total patient cohort, we tested the positivity of SARS-CoV-2 RNA at the first, second, and third weeks after hospitalization and stratified the positivity ratio into the mild, moderate, and severe groups. In this stratification, the mild group had fewer positivity days than the moderate and severe groups, but the comparison did not reach significance (Table 2). In addition, sputum had three times the positivity ratio than throat swabs, which were sampled and detected at the same time 68 times. This result suggests that the sputum test was more accurate and reliable (Fig. 1A-B). Curiously, the Ct value of the COVID-19 ORF1ab gene (second and third weeks) and the N gene (second week) in the sputum between the two groups indicated that the moderate and severe groups had lower virus replication than the mild group (Table 2).
Table 2
Results of Real-Time Polymerase Chain Reaction Testing for the COVID-19.

Sample types	Severe & Moderate (n = 13)	Mild (n = 23)	p value	
0–7 d.a.o				
Positive rate (n/N,%)	Throat 6/8(75%)	8/19(42.1%)	ns	
	Sputum 6/9(66.7%)	28/34(82.4%)	ns	
Ct values (mean, range)				
ORF 1ab gene	Throat 36.83(35–38)	34.56(28.5–39)	ns	
	Sputum 31.40(25–38)	34.87(24–41)	ns	
N gene	Throat 33.00(31–36)	33.75(28–41)	ns	
	Sputum 29.20(23–39)	32.52(25–41)	ns	
8–14 d.a.o				
Positive rate (n/N,%)	Throat 2/14(14.3%)	3/19(15.8%)	ns	
	Sputum 11/23(47.8%)	21/40(52.5%)	ns	
Ct values (mean, range)				
ORF 1ab gene	Throat 38.00(35–41)	39.83(39–41)	ns	
	Sputum 37.91(35–41)	33.91(21–41)	*	
N gene	Throat 34.30(31–37.6)	37.33(35–39)	ns	
	Sputum 34.77(31–38)	31.24(21–36)	**	
≥ 15 d.a.o				
Positive rate (n/N,%)	Throat 0/0(0%)	0/17(0%)	ns	
	Sputum 9/23(39.1%)	22/50(44%)	ns	
Ct values (mean, range)				
ORF 1ab gene	Sputum 39.25(33–41)	34.02(22–41)	*	
N gene	Sputum 33.50(29–36)	32.21(22–36)	ns	
Positive duration (Days)				
		13.69	11.46	ns

Note: d.a.h: Days after hospital admission; Ct: cycle of threshold; ns: no significant difference; *: P < 0.05; **: p < 0.01; ***: p < 0.001
Sample types

Severe & Moderate (n = 13)	Mild (n = 23)	p value	
Median num of specimens for each patient	6.23(3–13)	7.78(2–20)	ns

Note: d.a.h: Days after hospital admission; Ct: cycle of threshold; ns: no significant difference; *: P < 0.05; **: p < 0.01; ***: p < 0.001

In addition, the laboratory findings of blood cells and serum markers indicated that disease severity was negatively correlated with the counts of lymphocytes and monocytes and albumin levels but positively correlated with the levels of D-dimer, alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen, creatine kinase (CK), LDH, total bilirubin, IL-6, glucose and CRP (p < 0.05; Table 3). Notably, the reduction of lymphocyte or monocyte counts indicated the potential immune cell exhaustion that represented disease severity.
Table 3
Laboratory Findings of COVID-19 patients on Admission to Hospital.

Normal Range	Median (IQR)	Severe (n = 9)	Moderate (n = 22)	Mild (n = 23)	p value (Sev:Mod)	p value (Sev:Mil)
White blood cell count, ×10⁹/L	3.5–9.5	9.92	5.49 (**)	7.04	ns	
Red blood cell count, ×10¹²/L	4.3–5.8	4.03	4.31	4.17	ns	
Neutrophil count, ×10⁹/L	1.8–6.3	9.02	4.14 (***))	5.10(*)	ns	
Lymphocyte count, ×10⁹/L	1.1–3.2	0.57	0.94	1.33(**)	*	
Monocyte count, ×10⁹/L	0.1–0.6	0.28	0.34	0.50(*)	*	
Haemoglobin, g/L	130–175	123.44	131.32	132.48	ns	
Platelet count, ×10⁹/L	125–350	157.89	222.14	233.70(*)	ns	
Prothrombin time, s	9.8–12.1	14.39	11.91(**)	11.90(**)	ns	
Activated partial thromboplastin time, s	25–31.3	31.31	26.32(*)	26.36(*)	ns	
D-dimer, mg/L	0-0.55	26.91	1.94(**)	1.20(**)	ns	
Albumin, g/L	40–55	33.61	35.61	39.58(**)	**	
Alanine aminotransferase, U/L	9–60	265.33	40.77	27.83	ns	
Aspartate aminotransferase, U/L	15–45	562.78	47.27(*)	27.22(*)	ns	
Blood urea nitrogen, mmol/L	3.6–9.5	21.90	4.24(**)	4.05(***)	ns	
Dynamic profiling of blood cells and serum markers

COVID-19 progression is a dynamic process wherein lymphocytes and the levels of serum cytokines and markers change dynamically. Therefore, we evaluated the typical indexes involved in this progression as follows: lymphocyte count, neutrophil count, white blood cell count, CRP, LDH, D-D, and NLR. In those indexes, we found that lymphocyte count reduction and the severe group had significantly lower lymphocyte counts than the moderate and mild groups, and the lymphocyte quantity gradually recovered in the following two weeks and reached a healthy level in the third week (Fig. 2A). Serum levels of CRP, LDH, D-D, and NLR were increased but gradually decreased to the normal level with disease recovery (Fig. 2B-E). The CRP level in the severe group was high in the initial five days, sharply reduced on days 6–9, then interstitially rebounded to a high level on days 10–13, and finally reached the normal level on days 15–21 (Fig. 2B). The LDH level showed a steady declining trend in the severe and moderate groups, while it was consistently low in the mild group (Fig. 2C). Furthermore, the D-D level and NLR were high in the severe group; they gradually declined on days 1–10 and reached a steady level in the following 11–23 days; these indexes remained steady and relatively low in the mild and moderate groups (Fig. 2D, E). The

	Normal Range	Median (IQR)	p value (Mod:Mil)	p value (Sev:Mod)	p value (Sev:Mil)	
	Severe (n = 9)	Moderate (n = 22)	Mild (n = 23)	ns	ns	ns
Creatinine, µmol/L	57–111	276.67	60.82(*)	63.44(*)	ns	
Creatine kinase, U/L	50–310	321.89	160.68	126.95	ns	
Creatine kinase-MB, U/L	0–25	28.22	12.14(*)	13.19	ns	
Lactate dehydrogenase, U/L	120–250	1136.25	483.14(**)	357.71(***	ns	
Hypersensitive Troponin I, pg/mL	< 0.03	3.38	0.31	0.79(*)	ns	
Total bilirubin, mmol/L	2–22	21.32	12.78(*)	9.15(***	ns	
IL-6, pg/mL	< 7	90.09	20.17(**)	15.67(**)	ns	
Procalcitoninn, ng/mL	< 0.5	8.50	0.19(*)	0.23(*)	ns	
Glucose, mmol/L	3.9–6.1	10.68	8.50	6.86(*)	ns	
CRP, mg/L	0–10	150.44	66.05(**)	42.36(***	ns	
neutrophil count and white blood cell count were not steady and did not represent significant changing trends among the three subgroups (Fig. 2F, G).

Linear correlations between serum markers and blood cells

The linear correlation model showed that the serum markers and lymphocyte count had intrinsic correlations with disease progression. In correlation analysis, CRP and lymphocyte count (L), LDH and L, and NLR and L were negatively correlated (Fig. 3A-C), while the remaining markers (LDH and CRP, D-D and CRP, CRP and IL-6, NLR and CRP, neutrophil count and CRP, NLR and IL-6, procalcitonin and LDH, NLR and LDH, neutrophil count and NLR, neutrophil count and D-D, and NLR and procalcitonin) were positively correlated (Fig. 3D-N). These significant correlations indicated that the combined indexes might be better indicators of disease severity.

Independent and joint sensitivities of COVID-19-associated markers

In this study, we found that either higher levels of CRP, LDH, D-D, and NLR or lower lymphocyte counts suggested more severe disease. Therefore, we used the ROC curve to calculate their sensitivity in detecting COVID-19 progression, regarding the mild/moderate type as negative and the severe/critical severe type as positive. The ROC curve showed that CRP had the highest independent sensitivity in predicting the disease severity. The area under the curve (AUC) values from high to low were as follows: CRP (0.705), LDH (0.695), D-D (0.650), PCT (0.648), IL-6 (0.624), and NLR (0.590) (Fig. 4A). LDH combined with IL-6 had the highest joint sensitivity as a disease severity indicator. The joint sensitivities of these markers were as follows: LDH + IL-6 (0.729), CRP + PCT (0.719), D-D + IL-6 (0.719), CRP + LDH + IL-6 (0.710), LDH + D-D (0.705), and CRP + D-D (0.700) (Fig. 4B). Furthermore, when SARS-CoV-2 RNA detection became negative in sputum, as an indicator of virus positivity in patients, the ROC curve also demonstrated that LDH had the highest sensitivity in distinguishing critically ill patients from mild ones independently. The independent sensitivity from high to low was as follows: LDH (0.792), NLR (0.701), CRP (0.649), and D-D (0.617) (Fig. 4C). In addition, four indicators (NLR, CRP, LDH, and D-D) had the highest sensitivity in this study. The joint sensitivities were as follows: NLR + CRP + LDH + D-D (0.838), NLR + CRP + LDH (0.818), CRP + LDH (0.818), LDH + D-D (0.792), NLR + LDH (0.786), NLR + CRP (0.734), NLR + D-D (0.727), and CRP + D-D (0.656) (Fig. 4D).

Discussion

SARS-CoV-2 can infect multiple organs and result in MODS, and this virus causes COVID-19 [11, 12]. Although most patients had no syndromes or mild syndromes, fatal MODS can develop rapidly within a few days in severe cases [13]. Therefore, COVID-19 treatments essentially require practical evaluation of the disease condition and expected judgment of disease progression, and both the evaluation and judgment urgently require laboratory evidence for clinical guidance [14].
According to our paired detection results of sputum and throat swab samples of the same patients assessed 68 times, the accuracy of sputum detection is significantly higher than that of throat swabs. Upper respiratory tract samples are now widely used to detect viral RNA for the diagnosis of COVID-19, we must also remind that throat swabs are more suitable for broad-spectrum screening. For suspected cases, sputum and throat swab samples must be combined to improve the detection rate.

COVID-19 disease progression (incubation, syndromic, and recovery periods) involves virus-host interactions through which the host immune system recognizes and presents the virus-specific antigen to effective T and B cells and thereby clears the virus. In this process, pyroptosis of infected epithelial cells can release many DAMPs and PAMPs thereby attracting lymphocyte infiltration [6]. Furthermore, extensive and severe infection sites could rapidly attract excessive lymphocyte infiltration within a short time, thereby reducing the quantity of blood lymphocytes [15]. Specifically, this reduction was mainly attributed to the lymphocyte decrease and NLR increase in blood cell counts, and recovered patients usually had lymphocyte restoration. Moreover, the cell count of neutrophils increased 5–9 days after viral infection and then gradually decreased. This rise and fall of neutrophil counts may be associated with bacterial infection that stimulates the bone marrow to produce neutrophils instantly, and bacterial infections usually occur one week after the onset of viral infections. Therefore, a continuous reduction in lymphocyte counts and increased NLR indicate a worsening trend of disease progression, and an increased number of neutrophils suggests potential bacterial infection in COVID-19.

In this study, we also found that inflammatory cytokines and serum markers were correlated with COVID-19 tissue damage and lymphocyte counts. LDH is a cytoplasmic glycolytic enzyme expressed in almost every tissue and could represent the extent of tissue damage in COVID-19 [16, 17], in which severe pneumonia has a high level of LDH [18] and associated DAMPs and PAMPs. Alveolar macrophages can recognize the DAMPs and PAMPs released by the pyroptosis of endothelial cells, thereby initiating cytokine secretion (e.g., IL-1β, IL-18, and TNF-α). The IL-1β, TNF-α, and Toll-like receptor signaling pathways can activate innate immune cells and effective T cells to produce IL-6 [19], which circulates to the liver and induces an extensive range of acute-phase proteins, such as CRP, serum amyloid A (SAA), haptoglobin, fibrinogen, and α1-antichymotrypsin [20]. In addition, IL-6 can promote the final maturation of B cells into antigen-specific antibody-producing plasma cells [21]. Therefore, excessive inflammation [22], which occurs as a high level of LDH, may result in macrophage pyroptosis and lymphocyte exhaustion [23], and a large amount of IL-6 is produced in this process. Increased IL-6 expression [24] was correlated with high levels of CRP, SAA, and D-D (fibrinogen degradation product) and lymphocyte reduction (decreased lymphocyte count and increased NLR). It is difficult to define which one is the earliest and decisive factor, but our data demonstrate that CRP, LDH, and D-dimer levels are significantly higher in severe patients than in mild patients in the first two weeks. These indicators may lead to the formation of the cytokine storm in severe patients and COVID-19 exacerbation.

The inflammatory cytokines and serum markers analyzed in this study had individual specificity and may be used to evaluate specific disease progression time points, which may help better understand disease
progression [25]. However, this study contained only a limited sample size, which is a limitation. Therefore, studies with more samples are warranted for further validation.

Conclusions

In summary, our study validated the changing trends of lymphocytes that correlated with inflammatory cytokines and serum markers, in which decreased lymphocytes were correlated with increased CRP, LDH, and NLR. Therefore, when SARS-CoV-2 RNA detection became negative, LDH independently and combined indexes of NLR, CRP, LDH, and D-D jointly could best represent disease severity with the highest sensitivity. Monitoring the dynamic changes in NLR, CRP, LDH, IL-6, and D-D, combined with CT imaging and viral RNA detection in sputum, could aid in severity evaluation and prognosis prediction, thereby facilitating the treatment of COVID-19.

Abbreviations

SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; COVID-19, Coronavirus disease 2019; ACE2, angiotensin-converting enzyme 2; CT, Computed tomographic; L, Lymphocyte; NLR, neutrophil-to-lymphocyte ratio; D-D, D-dimer; LDH, lactate dehydrogenase; CRP, C-reactive protein; IL-6, Interleukin-6; PCT, Procalcitonin; GCDT, guidance of the COVID-19 Diagnosis and Treatment; RT-PCR, real-time polymerase chain reaction; Ct, cycle of threshold; ns, no significant difference.

Declarations

Acknowledgements

Not applicable.

Author contributions

J. Li, M. Tang and D. Liu take responsibility for the integrity of the data and accuracy of the data analysis; Y. Yang designed the research, wrote the manuscript, and supervised the project; F. Wang designed the study and supervised the project. All authors have read and approved the manuscript.

Funding

Design of the study and collection, analysis and interpretation of data by fund from the First Affiliated Hospital of Bengbu Medical College Science Fund for Outstanding Young Scholars (grant 2019byyfyyq05) and the Doctor Start-Up Fund.

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.
Ethics approval and consent to participate

The study was approved by the Ethics Committee of the First Affiliated Hospital of Bengbu Medical College (2020KY067). All adult subjects signed the informed consent form, and children's participation required mandatory parental informed consent.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Al-Qahtani AA. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Emergence, history, basic and clinical aspects. Saudi J Biol Sci. 2020; 27(10): 2531–2538. https://doi.org/10.1016/j.sjbs.2020.04.033.

2. Cascella M, Rajnik M, Aleem A, et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19), StatPearls, Treasure Island (FL), 2021.

3. Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract. 2020; 162: 108142. https://doi.org/10.1016/j.diabres.2020.108142.

4. Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020; 367(6485): 1444–1448. https://doi.org/10.1126/science.abb2762.

5. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181(2): 271–280 e8. https://doi.org/10.1016/j.cell.2020.02.052.

6. Tay MZ, Poh CM, Renia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020; 20(6): 363–374. https://doi.org/10.1038/s41577-020-0311-8.

7. Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID-19): a clinical update. Front Med. 2020; 14(2): 126–135. https://doi.org/10.1007/s11684-020-0767-8.

8. Zhou Y, Fu B, Zheng X, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. National Science Review. 2020; 7(6): 998–1002. https://doi.org/10.1093/nsr/nwaa041.

9. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020; 20(5): 269–270. https://doi.org/10.1038/s41577-020-0308-3.

10. Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun. 2020; 87: 59–73. https://doi.org/10.1016/j.bbi.2020.04.046.
11. Singal CMS, Jaiswal P, Seth P. SARS-CoV-2, More than a Respiratory Virus: Its Potential Role in Neuropathogenesis. ACS Chem Neurosci. 2020; 11(13): 1887–1899. https://doi.org/10.1021/acschemneuro.0c00251.

12. Dzieciatkowski T, Szarpak L, Filipiak KJ, et al. COVID-19 challenge for modern medicine. Cardiol J. 2020; 27(2): 175–183. https://doi.org/10.5603/CJ.a2020.0055.

13. Liu Y, Yan LM, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020; 20(6): 656–657. https://doi.org/10.1016/S1473-3099(20)30232-2.

14. Chaudhry AK, Sachdeva P. Coronavirus disease 2019 (COVID-19): a new challenge in untreated wastewater. Canadian Journal of Civil Engineering. 2020. https://doi.org/10.1139/cjce-2020-0240.

15. Faiq MA, Kumar A, Singh HN, et al. COVID-19: A Review on Molecular Basis, Pathogenic Mechanisms, Therapeutic Aspects and Future Projections. 2020. https://doi.org/10.20944/preprints202004.0091.v1.

16. Assiri A, Al-Tawq JA, Al-Rabeeah AA, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013; 13(9): 752–61. https://doi.org/10.1016/S1473-3099(13)70204-4.

17. Al Ghamdi M, Alghamdi KM, Ghandoora Y, et al. Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia. BMC Infect Dis. 2016; 16: 174. https://doi.org/10.1186/s12879-016-1492-4.

18. Zhang Y, Zheng L, Liu L, et al. Liver impairment in COVID-19 patients: A retrospective analysis of 115 cases from a single centre in Wuhan city, China. Liver Int. 2020; 40(9): 2095–2103. https://doi.org/10.1111/liv.14455.

19. Astuti I, Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr. 2020; 14(4): 407–412. https://doi.org/10.1016/j.dsx.2020.04.020.

20. Heinrich PC, Behrmann I, Muller-Newen G, et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998; 334 (Pt 2): 297–314. https://doi.org/10.1042/bj3340297.

21. Kishimoto T. The biology of interleukin-6. Blood. 1989; 74(1): 1–10.

22. Talukdar J, Dasgupta S, Nagle V, et al. COVID-19: Potential of Microalgae Derived Natural Astaxanthin As Adjunctive Supplement in Alleviating Cytokine Storm. Social Science Electronic Publishing. https://doi.org/10.2139/ssm.3579738.

23. Zhao Q, Meng M, Kumar R, et al. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int J Infect Dis. 2020; 96: 131–135. https://doi.org/10.1016/j.ijid.2020.04.086.

24. Liu F, Li L, Xu M, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020; 127: 104370. https://doi.org/10.1016/j.jcv.2020.104370.
Figures

Figure 1

Figure 1
Detection of SARS-CoV-2 RNA was performed in the 68 pairs of throat swabs and sputum of 25 COVID-19 patients. (A) The image shows the incidence of sputum positivity and throat swab positivity in the 68 paired tests, wherein only the sputum was positive but the throat swab was negative for 30 times, double negative for 25 times, and double positive for 13 times. Score 0: negative, score 1: positive. (B) The image shows their increasing trends. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; COVID-19: coronavirus disease.
Dynamic profiles of laboratory parameters in 54 patients with SARS-CoV-2 infection. Timeline charts illustrate the differences in lymphocyte counts (A), CRP level (B), LDH level (C), D-D level (D), NLR (E), neutrophil count (F), and white blood cell count (G) in the severe (red line), moderate (gray line), and mild (blue line) groups every other day. *P < 0.05, **P < 0.01, ***P < 0.001. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; CRP: C-reactive protein; LDH: lactate dehydrogenase; D-D: D-dimer; NLR: neutrophil-to-lymphocyte ratio

Figure 3
Linear correlations between the serum markers and blood cells Linear correlations between (A) CRP and lymphocyte count, (B) LDH and lymphocyte counts, and (C) NLR and lymphocyte count were negatively correlated, while (D) LDH and CRP, (E) D-D and CRP, (F) CRP and IL-6, (G) NLR and CRP, (H) neutrophil count and CRP, (I) NLR and IL-6, (J) procalcitonin and LDH, (K) NLR and LDH, (L) neutrophil count and NLR, (M) neutrophil count and D-D, and (N) NLR and procalcitonin were positively correlated. CRP: C-reactive protein; LDH: lactate dehydrogenase; D-D: D-dimer; NLR: neutrophil-to-lymphocyte ratio; IL-6: interleukin-6

Figure 4
Figure 4

Independent and joint sensitivities of COVID-19-associated markers (A) The ROC curve to evaluate the relationship between NLR, CRP, LDH, D-D, PCT, IL-6 and the progression of COVID-19 independently and (B) The joint sensitivity of these markers. (C) The ROC curve to evaluate the independent sensitivity of LDH, NLR, CRP and D-D with the timing of SARS-CoV-2 RNA detection became negative in sputum and (D) The joint sensitivities of these markers. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; COVID-19: coronavirus disease; CRP: C-reactive protein; LDH: lactate dehydrogenase; D-D: D-dimer; NLR: neutrophil-to-lymphocyte ratio; PCT: procalcitonin; ROC: receiver operating characteristic

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementalFigure.tif