Arrangements of human telomere DNA quadruplex in physiologically relevant K⁺ solutions

D. Renčíuk, I. Kejnovská, P. Školáková, K. Bednářová, J. Motlová and M. Vorličková*

Received June 5, 2009; Revised July 27, 2009; Accepted August 9, 2009

ABSTRACT

The arrangement of the human telomeric quadruplex in physiologically relevant conditions has not yet been unambiguously determined. Our spectroscopic results suggest that the core quadruplex sequence G₃(TTAG₃)₃ forms an antiparallel quadruplex of the same basket type in solution containing either K⁺ or Na⁺ ions. Analogous sequences extended by flanking nucleotides form a mixture of the antiparallel and hybrid (3 + 1) quadruplexes in K⁺-containing solutions. We, however, show that long telomeric DNA behaves in the same way as the basic G₃(TTAG₃)₃ motif. Both G₃(TTAG₃)₃ and long telomeric DNA are also able to adopt the (3 + 1) quadruplex structure: Molecular crowding conditions, simulated here by ethanol, induced a slow transition of the K⁺-stabilized quadruplex into the hybrid quadruplex structure and then into a parallel quadruplex arrangement at increased temperatures. Most importantly, we demonstrate that the same transitions can be induced even in aqueous, K⁺-containing solution by increasing the DNA concentration. This is why distinct quadruplex structures were detected for AG₃(TTAG₃)₃ by X-ray, nuclear magnetic resonance and circular dichroism spectroscopy: Depending on DNA concentration, the human telomeric DNA can adopt the antiparallel quadruplex, the (3 + 1) structure, or the parallel quadruplex in physiologically relevant concentrations of K⁺ ions.

INTRODUCTION

All healthy somatic cells have a defined number of possible cell divisions, the so-called Hayflick limit (1). More than thirty years ago it was proposed that this phenomenon (i.e. cellular senescence) is regulated by telomere shortening and the presence of a cellular enzyme responsible for telomere elongation, especially in cancer cells, was predicted (2,3). Both these predictions were confirmed (4). The enzyme, called telomerase, is usually active in cancer cells (5). Thus, telomere length predicts replication capacity of cells (6).

Telomeres contain a 3’ overhang of the G-rich DNA strand (7,8). The G-rich strand is able to form guanine quadruplexes, as was shown for the Tetrahymena telomeric sequence (TTGGG)ₙ (9) and the vertebrate telomeric sequence (TTAGGG)ₙ (10,11). Granotier et al. showed that a guanine quadruplex structure is present at the very ends of chromosomes (i.e. in the telomeric region) in vivo (12). Quadruplex formation in telomeric regions inhibits telomerase function (13). Thus, quadruplex stabilizing agents suppress telomere elongation (14) and proliferation of tumor cells (15). A number of ligands that specifically bind quadruplex DNA have been described (16) and the structure of a quadruplex–ligand complex has been determined (17). These agents may be of great importance for cancer treatment. To enhance the efficacy of these compounds, we must understand the structure and function of their target, the telomeric quadruplex.

In 1993, based on nuclear magnetic resonance (NMR) studies and molecular dynamics simulations, Wang and Patel proposed that the structure of quadruplex formed by human telomeric sequence AG₃(TTAG₃)₃ in sodium solution was an antiparallel guanine quadruplex (18). A year later, Balagurumoorthy and Brahmachari detected, using circular dichroism (CD) spectroscopy and chemical probing, intramolecular antiparallel quadruplexes formed by G₃(TTAG₃)₃ and (TTAG₃)₄ sequences both in sodium and potassium solutions (19). In 2002, Parkinson et al. (20) observed an intramolecular parallel quadruplex in crystals of AG₃(TTAG₃)₃ formed in the presence of potassium ions. However, platinum cross-linking studies in Na⁺ and K⁺ solutions demonstrated that AG₃(TTAG₃)₃ forms basket-type antiparallel quadruplex (21), similar to the structure observed by NMR in Na⁺ (18). ¹²⁵I-radioprobing confirmed the antiparallel basket arrangement in Na⁺, but a chair type quadruplex was present in K⁺ (22).

Several studies also demonstrated a mixture of parallel and antiparallel quadruplex in potassium solution (23,24), but it was later reported that AG₃(TTAG₃)₃ did not form a parallel quadruplex in solution (25). In 2006, a new quadruplex type was revealed by NMR: AG₃(TTAG₃)₃
and sequences with the same core but different flanking nucleotides form a hybrid (3 + 1) quadruplex with three parallel chains and one antiparallel quadruplex chain (26,27). Depending on the method and precise primary sequence, various arrangements of the human telomeric sequence in potassium solution have been reported (28–35). Recently, a new type of antiparallel quadruplex of the natural human telomeric sequence G3(T2AG3)3T in K⁺ containing solution was proposed based on NMR data (36). It contains only two guanine tetrads capped with several layers of stacked guanines and adenines on both ends of the tetrad core. The parallel quadruplex was only observed in solution in the presence of polyethylene glycol (PEG), which simulates the overcrowded solvent conditions present inside a cell (37) or in the presence of Sr²⁺ ions (38). Considering these sometimes conflicting results, the relevant structure of the human telomere quadruplex in potassium solution is unclear. Also, the structure of long telomeric sequences remains undetermined. This paper describes data that resolves these apparently conflicting results.

MATERIALS AND METHODS

Synthetic oligonucleotides were purchased from VBC Biotech (Vienna, Austria). Lyophilized oligonucleotides were dissolved in 1 mM Na phosphate buffer (pH 7) with 0.3 mM EDTA. Before any measurements were made, the DNA samples were thermally denatured in this buffer. The oligonucleotides were heated in the relevant solution for 3 min at 90°C and then slowly annealed over the course of 4 h to room temperature. CD measurements were done in a Jobin-Yvon CD6 dichrograph (Longjumeau, France) in 1 cm to 0.001 cm path-length quartz Hellma cells placed in a thermostated holder. The scan rate was 0.5 nm/s. The measurement conditions and the procedure used with foldaway 0.01 and 0.001 cm cells are specified in figure legends. Precise DNA concentrations were determined on the basis of UV absorption at 260 nm of the figure legends. Precise DNA concentrations were deter-

RESULTS AND DISCUSSION

Spectroscopic results reveal the same antiparallel folding of the basic G3(T2AG3)3 human telomeric quadruplex in Na⁺ and K⁺ solutions

The human telomeric sequence G3(T2AG3)3 yields a CD spectrum similar to that of AG3(T2AG3)3 in sodium solution; both are characteristic of antiparallel quadruplex as described by Wang and Patel (18). The spectrum contains positive peaks at 290 and 210 nm and a negative one at 265 nm (Figure 1). Addition of potassium ions to the sodium-stabilized quadruplex results in disappearance of the negative peak at 265 nm. Similar experiments with AG3(T2AG3)3 were previously explained by a structural transition of the antiparallel quadruplex to a hybrid (3 + 1) quadruplex structure (26,30,40). However, we argue that structures stabilized by Na⁺ and K⁺ ions have essentially the same antiparallel topology. Though CD spectroscopy does not provide direct evidence for the structural arrangement, the course of spectral changes enables one to clearly distinguish non-cooperative processes (structural changes within a single conformational state) from cooperative processes (conformational transitions between discrete structures separated by an energy barrier) (41,42).

The CD changes observed during addition of K⁺ to sodium-stabilized G3(T2AG3)3 were fast (no changes were observed with time) and nearly linear before saturation, thus non-cooperative (Figure 1A). In contrast, the transition from antiparallel to (3 + 1) arrangement should be a complicated process. The change in topology coupled with breaking and reunion of at least 12 hydrogen bonds and changes in glycosidic torsion angles should represent much higher energetic demands than the recently reported 1.4–2.4 kcal mol⁻¹ energy barrier that separates the Na⁺- and K⁺-stabilized quadruplexes (43). Any transition between the discrete conformational states that must overcome an energetic barrier should be cooperative. Similar non-cooperative CD spectral changes caused by Na⁺ for K⁺ exchange were also observed for the bimolecular quadruplex of G3T₄G₄ (Figure 1B), whereas both NMR (10) and X-ray crystallography (44) revealed the same topology for G₃T₄G₄ in both salts. This clearly shows that the extensive changes in the CD spectrum are not a consequence of a change in quadruplex topology. The same conclusion follows from Figure 1C, in which we show CD spectra of G3(T2AG3)3.T in the presence of Na⁺ and K⁺ ions. The spectral change is similar to that observed for G3(T2AG3)3. This 22-mer was shown to adopt an antiparallel quadruplex even in the presence of K⁺ ions (36). The spectrum did not substantially change at DNA concentrations used for NMR (discussed below). Thus, the spectrum observed in the presence of K⁺ ions
does not correspond to the \((3 + 1)\) quadruplex. The fast non-cooperative changes in CD spectrum after addition of K\(^+\) ions to the Na\(^+\)-stabilized quadruplexes probably reflect changes in stacking of quadruplex tetrads due to specific K\(^+\) ions coordination (45). The changes in stacking interactions are sensitively detected by CD (41).

A number of spectroscopic papers ascribe, in agreement with NMR results, the CD spectral changes caused by the exchange of Na\(^+\) for K\(^+\) ions to the transition from the basket-type antiparallel form to a hybrid \((3 + 1)\) quadruplex (26,40,46). However, direct evidence of a hybrid \((3 + 1)\) structure for the four-repeat human telomeric sequence in K\(^+\) solution has been provided only by NMR (26,27). In contrast, many experiments show that addition of potassium ions does not cause large structural changes: these analyses include structural and dynamics data based on single-molecule resonance energy transfer (23), studies incorporating \(^{125}\)I-radio-probing (22), NMR studies assisted by the incorporation of 8-bromoguanines (32), and studies of a comparably fast kinetics of conformational changes of short and long telomeric DNA (31). Also, platinum crosslinking of the same adenes and guanines in Na\(^+\)- and K\(^+\)-stabilized human telomere quadruplexes provided evidence that the same guanines occupy identical tetrads in both salts (21). The same conclusion follows from our previous paper (47): We showed that substitutions of adenine for particular guanines in Na\(^+\) or K\(^+\)-stabilized G\(_4\)(T\(_2\)AG\(_3\)\(_3\)) quadruplexes exert a similar effect on guanines forming the upper tetrad and those forming the bottom tetrad as expected for the antiparallel quadruplex model of Wang and Patel (18).

In spite of the above arguments, NMR measurements have unambiguously shown that the four-repeat human telomeric sequence forms the \((3 + 1)\) quadruplex in the presence of K\(^+\) ions. We explain this apparent discrepancy between optical and NMR observations in the following chapters.

Flanking nucleotides stabilize the hybrid \((3 + 1)\) quadruplex but long telomere DNA molecules form antiparallel structure like G\(_3\)(TTAG\(_3\)\(_3\))

The presence of multiple G-quadruplex conformations in K\(^+\) solution under conditions of NMR measurements makes structural elucidation difficult (26). To stabilize a single arrangement, several nucleotides were appended to either 5’ or both ends. Figure 2 shows the CD spectra of AG\(_3\)(T\(_2\)AG\(_3\)\(_3\)), TAG\(_3\)(T\(_2\)AG\(_3\)\(_3\)), TAG\(_3\)(T\(_2\)AG\(_3\)\(_3\))T\(_2\) and A\(_3\)G\(_3\)(T\(_2\)AG\(_3\)\(_3\))A\(_2\), studied earlier by NMR (26,27,48). The CD spectrum of the 22-mer AG\(_3\)(T\(_2\)AG\(_3\)\(_3\)) was similar to that of G\(_3\)(T\(_2\)AG\(_3\)\(_3\)) in K\(^+\) solution. The addition of the flanking nucleotides resulted in a shoulder on the short wavelength side of the 295 nm CD band. The height of this shoulder increased with the number of flanking nucleotides; two separated bands of comparable magnitude were observed at 260 and 295 nm for the 26-mer A\(_3\)G\(_3\)(T\(_2\)AG\(_3\)\(_3\))A\(_2\) (Figure 2). We previously observed a similar CD spectrum for G\(_3\)(T\(_2\)AG\(_3\)\(_4\)), which contains one redundant T\(_2\)AG\(_3\) repeat, and suggested that it corresponds to a quadruplex with three parallel and one antiparallel strands (28). Later, the hybrid \((3 + 1)\) structure was reported to be adopted by all the sequences mentioned in Figure 2 in K\(^+\) solution (26,27,48). Our data indicate that increasing the number of flanking nucleotides shifts the equilibrium towards the \((3 + 1)\) arrangement. The same was shown for addition of nucleotides to the 5’ end of telomeric oligonucleotides (49). However, this is not true for G\(_3\)(T\(_2\)AG\(_3\)\(_3\))T (36), implying that the identity of the appended nucleotides is also important.

The changes in equilibrium between the antiparallel and hybrid \((3 + 1)\) topology were also observed after addition of quadruplex stabilizing ligands (49,50). Ligands may not simply distinguish and stabilize the preferred topology, but might directly support the formation of a desired
topology and shift the equilibrium towards it (51). Stabilization of the parallel quadruplex by a ligand was also recently described (52).

The 26-mer A3G3(T2AG3)3A2 adopted the hybrid (3 + 1) quadruplex structure even under conditions of our spectroscopic measurements. This allowed us to show that there is a complicated K+ -induced transition to the (3 + 1) arrangement (Figures 3 and S1). The CD changes observed upon addition of K+ ions to the Na+-stabilized quadruplex of A3G3(T2AG3)3A2 consisted of two processes: The first was fast and was also observed with G3(T2AG3)3; the second corresponded to the slow transition into the hybrid (3 + 1) structure (Supplementary Figure S1). The second transition is cooperative and slow, consistent with a change in topology. This is contrast to G3(T2AG3)3. No changes were observed over time with G3(T2AG3)3 as K+ was gradually added (Figure 1) and changes upon one-shot addition of 100 mM K+ were fast (Figures 3A and Supplementary S1A).

It is to be noted that CD spectra of the oligonucleotides shown in Figure 2 differ even in Na+ solutions. The deep negative 260 nm band of AG3(T2AG3)3 diminished as flanking nucleotides were added. This may indicate destabilization of the antiparallel quadruplex arrangement.

The telomeric sequence in vivo is much longer then the four G tracts motifs usually studied. We previously suggested (28) that long telomeric sequences have a bead-like arrangement, similar to nucleosomes. Each bead is formed by a G3(T2AG3)3 quadruplex and the beads are linked by TTA triplets. The beads-on-a-string arrangement was later supported by other authors (53). Inserts in Figure 3 show that the long fragment G3(T2AG3)15 responded to Na+ for K+ ion exchange in the same way as the core G3(T2AG3)3 oligonucleotide: the negative 260 nm CD band of the Na+-stabilized quadruplex immediately diminished upon addition of 100 mM K+. Only slight changes occurred with time, but in contrast to the spectrum of A3G3(T2AG3)3A2, no positive band at 260 nm was observed in the spectrum of G3(T2AG3)15 even after a week (Figure 3B). Thus, G3(T2AG3)3 is the basic quadruplex motif; any flanking nucleotides are irrelevant for the arrangement of the long molecule. The same fast kinetics upon K+ addition was also reported for short and long (T2AG3)4 and (T2AG3)13 fragments (31). G3(T2AG3)16, containing one redundant repeat, yielded a spectrum very similar to that of G3(T2AG3)15 in both Na+ and K+ ions (data not shown). Thus, whereas flanking sequences dramatically influence the spectrum of the basic four-G-block telomeric sequence, redundant repeats exert nearly no effect on long telomeric DNA. We conclude that long human telomeric sequences adopt the antiparallel arrangement in K+ solutions under conditions of spectroscopic experiments.

Ethanol induces the transition from antiparallel to hybrid (3 + 1) and to parallel quadruplex in the presence of K+.

Ethanol is a very potent inducer of quadruplex formation (54). Ethanol, like polyethylene glycol, simulates the crowded environment inside cells. These compounds effectively change the DNA concentration by a mechanism of excluded volume and by changing the activity of water (55). Addition of ethanol to G3(T2AG3)3 or AG3(T2AG3)3 in 150 mM KCl led to a slow formation of a CD spectrum corresponding to (3 + 1) quadruplex and to a parallel quadruplex upon denaturation (Supplementary Figure S2). A similar result was observed in PEG solutions (37).

At low temperature and in the absence of K+ ions, low (20%) ethanol concentrations stabilized the antiparallel arrangement of G3(T2AG3)3 telomeric sequences (Figure 4). This was especially obvious with the longer...
sequences, which do not form quadruplex at low ionic strength. Further increase in ethanol concentration diminished the negative 260 nm peak but no structural transition occurred, even after thermal denaturation (not shown). The negative 260 nm CD band was disappeared immediately after the first K\(^+\) addition and then, at 2 mM K\(^+\) concentration, the CD spectrum corresponding to the (3 + 1) quadruplex appeared with slow kinetics. The structural rearrangement was facilitated by sequence length (Figure 4), as expected for a cooperative transition. Further increases in K\(^+\) concentration did not significantly change the CD spectra. However, the spectrum of the longest fragment analyzed, G\(_3\)(T2AG\(_3\))\(_{16}\), indicated a substantial amount of the parallel conformation after a 5-day incubation in the presence of 2 mM K\(^+\). Thermal denaturation (Figure 4) gave rise to the CD spectrum with a high-amplitude positive peak at 265 nm, characteristic of parallel quadruplex (Figure 4). The need for denaturation or an extremely long incubation time indicates a further energetic barrier between the hybrid (3 + 1) and the parallel quadruplex forms. The transition to a parallel quadruplex was greatly facilitated by increased temperature: at 37°C in 50% ethanol and 2 mM K\(^+\) the parallel quadruplex was formed within 24 h without denaturation (Supplementary Figure S3).

The conformational isomerization from the antiparallel to (3 + 1) and parallel quadruplex with the increasing molecule length may be facilitated by decreasing stability of the antiparallel quadruplex as length increases (28). Also, quadruplex units within the long molecule may interact to support formation of parallel arrangements. An experimental proof has been recently provided for the existence of intramolecular quadruplex–quadruplex interactions (56) between two contiguous quadruplex motifs, which influence their overall structure.

Human telomeric quadruplex folding is determined by DNA concentration

X-ray crystallography, NMR and CD spectroscopy evaluate DNA structure at different DNA concentrations. Using X-ray crystallography, AG\(_3\)(T2AG\(_3\))\(_3\) was shown to form a parallel quadruplex in K\(^+\) solution, whereas NMR revealed a hybrid (3 + 1) quadruplex. Our CD spectroscopic results showed that both G\(_3\)(T2AG\(_3\))\(_3\) and AG\(_3\)(T2AG\(_3\))\(_3\) adopt an antiparallel basket arrangement in K\(^+\)-containing solution at DNA concentrations usual for CD spectroscopy (0.05–1 mM; to be consistent with Δε expression, we state DNA concentration related to nucleosides).

Due to these discrepancies, we have studied the effect of human telomere DNA concentration on its structure. Using extremely short path-length cells we were able to obtain spectra at DNA concentrations up to 200 mM. Up to 40 mM, AG\(_3\)(T2AG\(_3\))\(_3\) provided a CD spectrum similar to those measured at low concentrations in 1 cm cells (Figure 5A). However, at higher concentrations the amplitude of the 295 nm positive peak decreased and a 260 nm positive peak was observed. These spectral characteristics are similar to those of the hybrid (3 + 1) arrangement observed in ethanol solutions (Figure 4). NMR studies of the hybrid (3 + 1) structure employed DNA strand concentrations of 5 × 10\(^{-3}\) to 5 × 10\(^{-4}\) M (27) or 3.5 × 10\(^{-3}\) to 1.0 × 10\(^{-4}\) M (26). In this concentration range, CD spectra have two positive peaks. At very high DNA concentrations, around 100 mM in nucleosides, the parallel quadruplex arrangement of AG\(_3\)(T2AG\(_3\))\(_3\) was stabilized as indicated by the high amplitude positive CD peak at 260 nm (Figure 5). It is to be noted that formation of intermolecular associates was observed at these extremely high concentrations (Figure 5, bottom insert), which might contribute to the positive 260 nm CD signal. However, the majority of oligonucleotides formed intramolecular structures at this concentration and the CD spectra did not reveal the presence of antiparallel...
quadruplex. We have tested various ways of preparing the concentrated samples, including preparation without annealing and omission of heating [to mimic NMR sample preparation (26,27)]. The sample preparation protocol used for the spectra shown in Figure 5 (i.e. denaturation in low salt and annealing in the presence of 0.15 M KCl) led to the lowest population of intermolecular associates in samples with DNA nucleoside concentrations close to 0.1 M. The spectra shown in Figure 5 indicate that human telomere DNA fragment AG3(T2AG3)3 can, depending on its concentration, adopt each of the three types of intramolecular quadruplex arrangements previously characterized at the atomic level (18,20,26,27). The plateau in the dependencies of \(\Delta \varepsilon \) at 260 and 295 nm on DNA concentration (Figure 5A) indicates that the (3 + 1) structure is probably an inevitable intermediate between parallel and antiparallel quadruplex arrangements. The spectra of G3(T2AG3)3 21-mer (Supplementary Figure S4) and the long telomeric sequence G3(T2AG3)15 (Figure 5B) were similarly dependent on concentration. The positive 260 nm CD band of G3(T2AG3)3T, which was shown by NMR to form antiparallel quadruplex, did not change with DNA concentration (Figure 1C). We recorded the spectra of the oligonucleotide at 11 mM and 55 mM concentrations to bracket the concentration range of the NMR analysis (36). The CD spectral shape was the same in K+ solution as with this oligonucleotide or with G3(T2AG3)3 at low DNA concentration. Thus, CD does not distinguish that the G3(T2AG3)3T quadruplex, formed at high DNA concentration, contains only two guanine tetrads as determined by NMR (36). It may be supposed that guanines in the deficient tetrad stack in a very similar way as in the standard three-tetrad quadruplex. This is supported by very high stability of the G3(T2AG3)3T quadruplex (36). As CD does not distinguish the three-tetrad from the two-tetrad quadruplex, it is possible that the K+-stabilized quadruplex of G3(T2AG3)3 transforms, with slow kinetics or at high DNA concentration, to the same quadruplex form as observed with G3(T2AG3)3T. Experiments are in progress to explore this possibility. In every case, however, the K+-stabilized quadruplex of G3(T2AG3)3 is antiparallel.

The concentration-dependent conformational transitions of the human telomere sequence are the same as those observed in the presence of ethanol. However, the DNA concentration used for these analyses, which leads to the structural changes, is too low to cause the crowding effect attributed to ethanol. The concentration-dependent structural changes are probably a consequence of weak interactions among the intramolecular quadruplexes. An analogous situation was observed with poly(dG)-poly(dC). Raman spectroscopy showed that the polynucleotide transformed in aqueous solution from B to A conformation depending on its concentration (57). This structural change took place in the same concentration region as observed in our work: The polymer adopted...
B-form at 10 mM and A-form at 200 mM DNA concentration. The authors note that a 0.2 M concentration of DNA in aqueous solution should not cause the dehydration needed to cause a B–A transition and suggested that the observed transition was a result of interduplex associations.

Figure 6 illustrates the observed structures of long telomere DNA molecules in physiologically relevant concentrations of K⁺. In the antiparallel arrangement, the tetrads of the beads are oriented parallel to the longitudinal axis of the molecule. This may be why elongation of the sequence does not, as it does for duplexes, contribute to stabilization of the quadruplex structure: Quadruplex stability actually decreases with the molecule length (28). For the (3 + 1) quadruplex, the bead tetrads are oriented across the longitudinal axis and are mutually
In the parallel arrangement, the loops are on the sides of the beads and the tetrads may stack on each other as suggested by Haider et al. (58). Regrettably, neither the high DNA concentrations, evaluated in narrow foldaway cells, nor ethanol conditions allow us to verify the dependence of the parallel quadruplex thermal stability on the molecule length.

The described polymorphism of the human telomere quadruplex is restricted to K+-containing solutions. No analogous CD changes took place within a comparable concentration range in Na+-solutions (Supplementary Figure S4).

CONCLUSIONS
We show that the arrangement of the human telomeric quadruplex strongly depends on DNA concentration. This explains why distinct structures were reported by various methods. CD spectroscopy revealed very similar antiparallel arrangements of G3(T2AG3)3 both in K+ and Na+ solution at low DNA concentrations. In contrast, NMR studies revealed a hybrid (3 + 1) arrangement in K+ for extended G3(T2AG3)3 analogs. The flanking nucleotides stabilized the hybrid (3 + 1) arrangement. However, the long telomeric sequences behave in the same way as the basic quadruplex unit G3(T2AG3)3. The data reported here show that human telomeric DNA can adopt, depending on concentration, antiparallel, (3 + 1) and parallel quadruplex arrangements in physiologically relevant solvent conditions. There is no doubt that nature can take advantage of this conformational variability. Determining the function of particular arrangements will be a challenge for future research.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS
The authors are indebted to Prof. Janos Sagi and Dr Jaroslav Kypr for careful reading the article and valuable comments.

FUNDING
Grant Agency of the Czech Republic (grant 204/07/0057, 204/00/D012) and the Grant Agency of the Academy of Sciences of the Czech Republic (grants IAA 10040701, AVOZ50040507, AVOZ50040702). Funding for open access charge: Grant Agency of the Academy of Sciences of the Czech Republic (grants IAA 10040701).

Conflict of interest statement. None declared.

REFERENCES
1. Hayflick,L. and Moorhead,P.S. (1961) Serial cultivation of human diploid cell strains. Exp. Cell Res., 25, 585–621.
2. Olovnikov,A.M. (1971) Principle of marginotomy in template synthesis of polynucleotides. Dokl. Akad. Nauk SSSR, 201, 1496–1499.
3. Watson,J.D. (1972) Origin of concatemeric T7 DNA. Nat. New Biol., 239, 197–201.
4. Harley,C.B., Futcher,A.B. and Greider,C.W. (1990) Telomeres shorten during aging of human fibroblasts. Nature, 345, 458–460.
5. Kim,N.W., Piatyszek,M.A., Prowse,K.R., Harley,C.B., West,M.D., Ho,P.L.C., Coviello,G.M., Wright,W.E., Weinrich,S.L. and Shay,J.W. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science, 266, 2011–2015.
6. Allsopp,R.C., Vaziri,H., Patterson,C., Goldstein,S., Younglai,E.V., Futcher,A.B., Greider,C.W. and Harley,C.B. (1992) Telomere
18. Wang, Y. and Patel, D.J. (1993) Solution structure of the human telomerase in K⁺ solution: An intramolecular (3+1) G-quadruplex scaffold. J. Am. Chem. Soc., 128, 9963–9970.

20. Vorlicekova, M., Chladkova, J., Kejnovska, I., Fialova, M. and Kypr, J. (2005) Guanine tetraplex topology of human telomere DNA is governed by the number of (TTAGGG) repeats. Nucleic Acids Res., 33, 5851–5860.

21. Qi, J.Y. and Shafer, R.H. (2005) Covalent ligation studies on the human telomere quadruplex. Nucleic Acids Res., 33, 3185–3192.

26. Ambrus, A., Chen, D., Bialis, T., Jones, R.A. and Yang, D.Z. (2006) Human telomeric sequence forms a hybrid-type G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res., 34, 2723–2735.

27. Liu, K.N., Phan, A.T., Kuryavyi, V., Lacroix, L. and Patel, D.J. (2006) Structure of the human telomere d(G[AGGG(TTAGGG)₃]) in K⁺ solution. J. Biol. Chem., 281, 11185–11191.

34. Dai, J.X., Carver, M. and Chaires, J.B. (2009) Energetics and kinetics of G-quadruplex formation of d(TTAGGG)₃ in a potassium solution. Nucleic Acids Res., 37, 4927–4940.

35. Rujan, I.N., Melenev, J.C. and Bolton, P.H. (2005) Vertebrate telomere repeat DNAs favor external loop propeller quadruplex structures in the presence of high concentrations of potassium. Nucleic Acids Res., 33, 2022–2031.

36. Lim, K.W., Amrane, S., Bouaziz, S., Xu, W.X., Mu, Y.G., Patel, D.J., Luu, K.N. and Phan, A.T. (2009) Structure of the Human Telomere in K⁺ Solution: A stable basket-type G-quadruplex with only two G-tetrad layers. J. Am. Chem. Soc., 131, 4301–4309.

42. Gray, R.D. and Chaires, J.B. (2006) Induction of parallel human telomeric G-quadruplex structures by 8-bromoguanosine substitutions, as determined by NMR in a K⁺ solution. J. Am. Chem. Soc., 128, 10306–10315.
48. Phan, A.T., Luu, K.N. and Patel, D.J. (2006) Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution. *Nucleic Acids Res.*, 34, 5715–5719.

49. Gaynutdinov, T.I., Neumann, R.D. and Panayutin, I.G. (2008) Structural polymorphism of intramolecular quadruplex of human telomeric DNA: effect of cations, quadruplex-binding drugs and flanking sequences. *Nucleic Acids Res.*, 36, 4079–4087.

50. Rezler, E.M., Senisamy, J., Bashyam, S., Kim, M.Y., White, E., Wilson, W.D. and Hurley, L.H. (2005) Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure. *J. Am. Chem. Soc.*, 127, 9439–9447.

51. De Cian, A. and Mergny, J.L. (2007) Quadruplex ligands may act as molecular chaperones for tetramolecular quadruplex formation. *Nucleic Acids Res.*, 35, 2483–2493.

52. Li, Q., Xiang, J., Li, X., Chen, L., Xu, X., Tang, Y., Zhou, Q., Li, L., Zhang, H., Sun, H. et al. (2009) Stabilizing parallel G-quadruplex DNA by a new class of ligands: two non-planar alkaloids through interaction in lateral grooves. *Biochimie*, 91, 811–819.

53. Yu, H.Q., Miyoshi, D. and Sugimoto, N. (2006) Characterization of structure and stability of long telomeric DNA G-quadruplexes. *J. Am. Chem. Soc.*, 128, 15461–15468.

54. Vorlickova, M., Bednarova, K. and Kypr, J. (2006) Ethanol is a better inducer of DNA guanine tetraplexes than potassium cations. *Biopolymers*, 82, 253–260.

55. Miyoshi, D. and Sugimoto, N. (2008) Molecular crowding effects on structure and stability of DNA. *Biochimie*, 90, 1040–1051.

56. Schonhoft, J.D., Bajracharya, R., Dhakal, S., Yu, Z.B., Mao, H.B. and Basu, S. (2009) Direct experimental evidence for quadruplex-quadruplex interaction within the human ILPR. *Nucleic Acids Res.*, 37, 3310–3320.

57. Nishimura, Y., Torigoe, C. and Tsuboi, M. (1985) An A-form poly(dG).poly(dC) in H2O solution. *Biopolymers*, 24, 1841–1844.

58. Haider, S., Parkinson, G.N. and Neidle, S. (2008) Molecular dynamics and principal components analysis of human telomeric quadruplex multimers. *Biophys. J.*, 95, 296–311.