Estimation the Shape Parameter of (S-S) Reliability of Kumaraswamy Distribution

A. S. Mohammed¹, Alaa M. Hamad ², Abbas Najim Salman³

¹, ², ³Department of Mathematics, College of Education for Pure Sciences (Ibn AL-Haitham) / University of Baghdad, Iraq, Baghdad

E-mail: sareej.s.m@ihoedu.uobaghdad.edu.iq;
 alaa_073@yahoo.com;abbasnajim66@yahoo.com

https://doi.org/10.26782/jmcms.2019.10.00078

Abstract

In this paper dealt with estimating the reliability in the (S-S) stress-strength of Kumaraswamy function distribution using different estimation methods, Maximum likelihood, Moment method, Shrinkage method depend on to Monte Carlo simulation Comparisons between estimation methods have been using mean square error criteria.

Keywords: Reliability, Stress-Strength (S-S), Kumaraswamy distribution, Maximum likelihood estimator, Moment estimator and Shrinkage estimator.

I. Introduction

The Kumaraswamy distribution like the Beta distribution [IV], but has the important feature of an invertible closed form cumulative distribution function The Kumaraswamy distribution was suggested by Poondi Kumaraswamy (1930 - 1988) [III]. The Kumaraswamy distribution is suitable for many natural phenomena that the results have minimum and upper limits in the biomedical and epidemiological research. Several studies have dealt with the Kumaraswamy distribution, in [IV] they produced a study in Estimation for parameters of the Kumaraswamy distribution based on general progressive type II censoring, in [II] they introduce and study the size-biased form of Kumaraswamy distribution, in [V] In this paper, the problem of estimating P[Y<X] for the kumaraswamy generalized class of distributions has been addressed.

The probability density function of the Kumaraswamy distribution is

\[f(x; \alpha, \theta) = \begin{cases} \alpha \theta x^{\alpha-1} (1 - x^\alpha)^{-1} & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases} \quad (1) \]
Where $\alpha, \theta > 0$ are the two shape and scale parameters respectively.

And the cumulative probability function is

$$F(x; \alpha, \theta) = 1 - (1 - x^\alpha)^\theta$$ \hspace{1cm} (2)

as a special case, when $\alpha = 1$, the cumulative probability function will be as bellow

$$F(x, \theta) = 1 - (1 - x)^\theta$$ \hspace{1cm} (3)

and the probability density function of the Kumaraswamy distribution will be as bellow:

$$f(x; \theta) = \theta (1 - x)^{\theta-1}$$ \hspace{1cm} (4)

The stress (Y) and the strength (X) in stress-strength (S-S) model will be considered as random variables, for a detailed study of the possible applications of the reliability parameter, it is suggested to read the interested reader [V].

Reliability function of (4) will be

$$R = P(Y < X) = \int f(x) f(y) \, dy \, dx$$

$$= \int_0^1 \int_0^x \theta_1 (1 - x)^{\theta_1-1} \theta_2 (1 - y)^{\theta_2-1} \, dx \, dy$$

$$R = \int_0^{\theta_2} \theta_1 (1 + x)^{-(\theta_1+1)} \, dx \int_0^x \theta_2 (1 + y)^{-(\theta_2+1)} \, dy$$

$$= \int_0^{\theta_2} \left(- \theta_1 (1 + x)^{-(\theta_1+1) - \theta_2} + \theta_1 (1 + x)^{-(\theta_1+1)} \right) \, dx$$

$$R = \frac{\theta_2}{\theta_1 + \theta_2}$$ \hspace{1cm} (5)

The aim of this paper is estimating the reliability (R) in the (S-S) stress-strength of Kumaraswamy when the stress and the strength are not identically independent follows the Kumaraswamy distribution (KD) using viruses methods, shrinkage estimation methods, Maximum likelihood and Moment method. We compare between the proposed estimation methods through Monte Carlo simulation depend on mean square error (MSE) criterion.

II. Estimation methods of $R = P(Y < X)$

II.i. Maximum Likelihood Estimator (MLE)

Assume that $x_1, x_2, ..., x_n$ to be a random sample of KD $(1, \theta_1)$ and $y_1, y_2, ..., y_m$ to be a random sample of KD $(1, \theta_2)$ then, the likelihood function $L(\theta_1, x_i, y_1)$ of the mentioned sample can be obtained below:
\[l = \prod_{i=1}^{m} f(x_i) \prod_{j=1}^{n} f(y_j) \quad (6) \]

\[l = \prod_{i=1}^{m} \theta_1^i x_i (1 - x_i)^{\theta_1 - 1} \prod_{j=1}^{n} \theta_2^j y_j (1 - y_j)^{\theta_2 - 1} \quad (7) \]

Taking the logarithm of both sides in the equation (7) then implies
\[\ln(l) = n \ln(\theta_1) + \sum_{i=1}^{m} (\ln x_i + (\theta_1 - 1) \ln(1 - x_i)) + m \ln(\theta_2) + \sum_{j=1}^{n} (\ln y_j + (\theta_2 - 1) \ln(1 - y_j)) \quad (8) \]

Derive the above equation w.r.t. \(\theta_i (i = 1, 2) \), and equating the result to zero, we conclude
\[\hat{\theta}_{1,\text{mle}} = \frac{-m}{\sum_{i=1}^{m} \ln(1 - y_i)} \quad (9) \]
\[\hat{\theta}_{2,\text{mle}} = \frac{\sum_{i=1}^{m} \ln(1 - y_i)}{\sum_{i=1}^{m} \ln(1 - y_i)} \quad (10) \]

By substituting \(\hat{\theta}_{i,\text{mle}} \) in equation (5), we get the reliability estimation for (S-S) model using the Maximum Likelihood method as in the following :-
\[\hat{R}_{\text{mle}} = \frac{\hat{\theta}_{2,\text{mle}}}{\hat{\theta}_{1,\text{mle}} + \hat{\theta}_{2,\text{mle}}} \quad (11) \]

II.i. Moment Method (MOM)

The moment method will be treated as in this subsection to estimate the parameter \(\theta_i \), \((i=1,2) \), the formula of rth moment about origin:[VI]
\[E(X^r) = \theta_1^r \mu^r(\theta_1 + 1) \mu(\theta_1 + 1) \mu(\theta_1 + 2) \]

When \(r=1 \) then
\[E(X) = \theta_1 \mu(\theta_1 + 2) \mu(\theta_1 + 1), \quad E(Y) = \theta_1 \mu(\theta_1) \mu(\theta_1 + 2) \]
\[E(X) = \bar{X}, E(Y) = \bar{Y} \]
\[\theta_1 = \bar{X} \mu(\theta_1 + 2) \mu(\theta_1 + 1) \]
\[\theta_2 = \bar{Y} \mu(\theta_2 + 2) \mu(\theta_2 + 1) \quad (12) \]

We obtain the estimation of the unknown shape parameters \(\theta_1, \theta_2 \), from equations (12), (13) as follows:
\[\hat{\theta}_{1,\text{MOM}} = \bar{X} \theta_1(\theta_1 + 1) \quad (14) \]
\[\hat{\theta}_{2,\text{MOM}} = \bar{Y} \theta_2(\theta_2 + 1) \quad (15) \]
By substituting $\hat{\theta}_{\text{mom}}$ in equation (5), we get the reliability estimation for (S-S) model using the moment estimation method as in the following:--

$$\hat{R}_{\text{mom}} = \frac{\hat{\theta}_{2\text{mom}}}{\hat{\theta}_{1\text{mom}} + \hat{\theta}_{2\text{mom}}}$$ \hspace{1cm} (16)

II.i.ii. Shrinkage Estimation Method (SHM)

The method of estimation of deflation is the Bayesian method based on previous information on the value of the parameter specified from previous experiments or previous studies. However, in some cases, only previous information is available from the initial guess value θ_0 [I]. Estimator $\hat{\theta}_{\text{mle}}$ through combine them by Shrinkage weight factor as bellow:

$$\hat{\theta}_{\text{sh}} = \varphi(\hat{\theta}_i)\hat{\theta}_{\text{mle}} + \left(1 - \varphi(\hat{\theta}_i)\right)\theta_0, \hspace{1cm} i = 1, 2$$ \hspace{1cm} (17)

Where $\varphi(\hat{\theta}_i), 0 \leq \hat{\theta}_i \leq 1$ represent shrinkage weight factor.

II.i.iii.a. Shrinkage weight function (sh1)

The shrinkage weight factor as a function of n and m respectively will be considered in the equation (16) as below

$$\varphi(\hat{\theta}_1) = K_1 = \frac{\sin(n)}{n} \hspace{1cm} \text{and} \hspace{1cm} \varphi(\hat{\theta}_2) = K_2 = \frac{\sin(m)}{m}$$

$$\hat{\theta}_{1\text{sh1}} = 1 \hat{\theta}_{1\text{mle}} + (1 - 1) \hat{\theta}_1$$ \hspace{1cm} (18)

$$\hat{\theta}_{2\text{sh1}} = 2 \hat{\theta}_{2\text{mle}} + (1 - 2) \hat{\theta}_2$$ \hspace{1cm} (19)

The identical (S-S) reliability using above shrinkage method sh1 will be

$$\hat{R}_{\text{sh1}} = \frac{\hat{\theta}_{2\text{sh1}}}{\hat{\theta}_{1\text{sh1}} + \hat{\theta}_{2\text{sh1}}}$$ \hspace{1cm} (20)

2.3.2 Constant shrinkage factor (Sh2)

In this subsection the constant shrinkage weight factor will be assumed as

$$\varphi(\hat{\theta}_1) = k_3 = 0.01, \hspace{1cm} \text{and} \hspace{1cm} \varphi(\hat{\theta}_2) = k_4 = 0.01$$

and so on, the following shrinkage estimators

$$\hat{\theta}_{1\text{sh2}} = k_3 \hat{\theta}_{1\text{mle}} + (1 - k_3) \hat{\theta}_{1\text{mom}}$$ \hspace{1cm} (21)

$$\hat{\theta}_{2\text{sh2}} = k_4 \hat{\theta}_{2\text{mle}} + (1 - 4) \hat{\theta}_{2\text{mom}}$$ \hspace{1cm} (22)

This involves the following estimates of shrinkage (Sh2) in reliability (S-S) in equation (5) using constant shrinkage factor:
II.iii.b. Beta shrinkage factor (sh3)

The Beta shrinkage weight factor will be supposed as
\[\varphi(\bar{\theta}_1) = k_5 = \text{beta}(n, m), \text{ and } \varphi(\bar{\theta}_2) = k_6 = \text{beta}(n, m) \]
and implies the following estimates of shrinkage
\[\hat{\theta}_{1sh3} = k_5 \hat{\theta}_{1mom} + (1 - k_5 \hat{\theta}_{1mle}) \]
(24)
\[\hat{\theta}_{2sh3} = k_6 \hat{\theta}_{2mom} + (1 - k_6 \hat{\theta}_{2mle}) \]
(25)

By substituting \(\hat{\theta}_{i_{sh3}} \) in equation (5), we get the reliability estimation for (S-S) model using the Beta weight factor as in the following :--
\[\hat{R}_{sh3} = \frac{\hat{\theta}_{2sh3}}{\hat{\theta}_{1sh3} + \hat{\theta}_{2sh3}} \]
(26)

III. Simulation Study

In this section, Monte Carlo simulation method has been used and the obtained results are compared to the numerical results that previously obtained in the section 2. The simulation process were done using unlike sample size = (30, 50 and 100) and built on 1000 replications by MSE measures to check the performance as in the following:-

Step1: the random sample generated for X and Y according to the uniform distribution over the interval (0,1) as \(u_1, u_2, \ldots, u_n \) and \(w_1, w_2, \ldots, w_m \).

Step2: transforming the above Kumaraswamy distribution KD with using (c.d.f.) as
\[F(x, \theta) = 1 - (1 - F(x))^{1/\theta} \]

And, by applying the same way, we get
\[y_j = [1 - (1 - F(y_j))^{1/\theta}] , j = 1, 2, 3, \ldots, m \]
Step 3: Calculate $\hat{\theta}_1^{\text{mle}}$, $\hat{\theta}_2^{\text{mle}}$, $\hat{\theta}_1^{\text{mom}}$, $\hat{\theta}_2^{\text{mom}}$, $\hat{\theta}_1^{\text{sh}1}$, $\hat{\theta}_2^{\text{sh}1}$, $\hat{\theta}_1^{\text{sh}2}$, $\hat{\theta}_2^{\text{sh}2}$, $\hat{\theta}_1^{\text{sh}3}$, $\hat{\theta}_2^{\text{sh}3}$ via equations (9), (10), (14), (15), (18), (19), (21), (22), (24) and (25) respectively.

Step 4: Calculate \hat{R}^{mle}, \hat{R}^{mom}, $\hat{R}^{\text{sh}1}$, $\hat{R}^{\text{sh}2}$ and $\hat{R}^{\text{sh}3}$ through equations (11), (16), (20), (23) and (26) respectively.

Step 5: Using $L=1000$ Replication, the MSE. Where, \bar{R} mention to suggested estimators of Reliability.

The outcomes are put it in the tables (1), (2), (3), (4), (5) and (6) below.

Table (1): Estimation when $\theta_1 = 1$, $\theta_2 = 1$

n	m	Mle	Mom	Sh1	Sh2	Sh3				
		Θ_1	Θ_2							
30	50	1.0343306	1.0318790	0.998736	0.999036	0.9998904	0.99998904	1.0033220	0.9991626	1.0035110
50	100	1.0324465	1.0235297	0.9971103	1.0064888	0.9972490	1.0062418	0.9973745	1.0066154	0.9973873

Table (2): Estimation when $R = 0.5$, $\theta_1 = 1$, $\theta_2 = 1$

n	m	\bar{R}^{mle}	\bar{R}^{mom}	$\bar{R}^{\text{sh}1}$	$\bar{R}^{\text{sh}2}$	$\bar{R}^{\text{sh}3}$
30	50	0.4996039	0.5011581	0.5010844	0.5011355	0.5011644
50	100	0.4993901	0.4983379	0.4979474	0.4983095	0.4984112
100	100	0.4950075	0.5020290	0.501825	0.5018807	0.5020355

Table (3): MSE values when $R = 0.5$, $\theta_1 = 1$, $\theta_2 = 1$

n	m	MSE $^{\text{mle}}$	MSE $^{\text{mom}}$	MSE $^{\text{sh}1}$	MSE $^{\text{sh}2}$	MSE $^{\text{sh}3}$	Best
100	30	0.4996416	0.4996416	0.4996416	0.4996416	0.4996416	0.4996575
50	100	0.4986776	0.5007312	0.5007312	0.5007312	0.5007312	0.5007312
Table 4: Estimation when $R = 0.5, \theta_1 = 2, \theta_2 = 2$

n	m	Θ_1	Θ_2	Θ_1	Θ_2	Θ_1	Θ_2	Θ_1	Θ_2
30	30	0.0038593	0.0133667	0.0011326	0.0012926	0.0014510	0.0014510		
	50	0.0034016	0.0012137	0.0010791	0.0011503	0.0012270	0.0012270		
	100	0.0027744	0.0009137	0.0007836	0.0008639	0.0009438	0.0009438		
50	30	0.0033794	0.0011234	0.0009934	0.0010633	0.0011352	0.0011352		
	50	0.0024290	0.0008451	0.0008218	0.0008011	0.0007815	0.0007815		
	100	0.0019024	0.0006483	0.0006305	0.0006142	0.0005992	0.0005992		
100	30	0.0026452	0.0009002	0.0007731	0.0008513	0.0009311	0.0009311		
	50	0.0019474	0.0006325	0.0006155	0.0005999	0.0005848	0.0005848		
	100	0.0014011	0.0004735	0.0004612	0.0004493	0.0004378	0.0004378		

Table 5: Estimation when $R = 0.5, \theta_1 = 2, \theta_2 = 2$

n	m	R_{MLE}	R_{Mom}	R_{Sh1}	R_{Sh2}	R_{Sh3}
30	30	0.5026585	0.4986342	0.4987321	0.4986636	0.4986134
	50	0.4986102	0.5017386	0.5011409	0.5016421	0.5018254
	100	0.4972914	0.5009116	0.5003044	0.5007698	0.5009221
50	30	0.5042406	0.497314	0.4979342	0.4974985	0.4973485
	50	0.5037805	0.4977626	0.4977985	0.4978310	0.4978514
	100	0.4989007	0.5002706	0.5002445	0.5002233	0.5002168
100	30	0.5018616	0.4996924	0.5002253	0.4998035	0.4996701
	50	0.5021172	0.4992779	0.4993125	0.4993417	0.4993536
Table (6): MSE values when $R = 0.5$, $\theta_1 = 2$, $\theta_2 = 2$

n	m	mse_{mle}	mse_{mom}	mse_{sh1}	mse_{sh2}	mse_{sh3}	Best
30	30	0.0040076	0.0019746	0.0016502	0.0018724	0.0020171	mse_{sh1}
	50	0.0032384	0.0016401	0.0014462	0.0015559	0.0016267	mse_{sh1}
	100	0.0023506	0.0011962	0.0010473	0.0011377	0.0011977	mse_{sh1}
50	30	0.0032942	0.0016181	0.0014325	0.0015370	0.0016054	mse_{sh1}
	50	0.0025377	0.0012956	0.0012625	0.0012330	0.0012142	mse_{sh1}
	100	0.0019983	0.0010303	0.0010043	0.0009805	0.0009653	mse_{sh1}
100	30	0.0028032	0.0014855	0.0012986	0.0014143	0.0014902	mse_{sh1}
	50	0.0018519	0.0009279	0.0009043	0.0008827	0.0008690	mse_{sh1}
	100	0.0011985	0.0005861	0.0005717	0.0005579	0.0005490	mse_{sh1}

Table (7): Estimation when $\theta_1 = 3$, $\theta_2 = 3$

Mle	Mom	Sh1	Sh2	Sh3						
Θ_1	Θ_2	Θ_1	Θ_2	Θ_1	Θ_2	Θ_1	Θ_2			
30	3.0906989	3.1394326	3.0083233	2.9804931	3.0110363	2.9857276	3.0091471	2.9820825	3.0092025	2.9812317
50	3.1297864	3.0858733	2.9816831	2.9837519	2.9865608	2.9842878	2.9831641	2.9847732	2.9825378	2.9848891
100	3.1245327	3.0264210	2.9968592	3.0010869	3.0010641	3.0012152	2.9981359	3.0013403	2.9978525	3.0013382
30	3.0493863	3.1231151	3.0076330	2.9867158	3.0078521	2.9912080	3.0080505	2.9880798	3.0080263	2.9875037
50	3.0747082	3.0782680	2.9882738	2.9868454	2.9887273	2.9873251	2.9891381	2.9877596	2.9892355	2.9878615
100	3.0665522	3.0315963	2.9985836	2.9982818	2.9990408	2.9984505	2.9992643	2.9986149	2.9992862	2.9986303
30	3.0226315	3.1279365	3.0021353	2.9835253	3.0022391	2.9882814	3.0023402	2.9849695	3.0023267	2.9843770
50	3.0292572	0.7299698	3.0026634	2.9932232	3.0027980	2.9936418	3.0029293	2.9940209	3.0029291	2.9940866
100	3.0357359	3.0497366	2.9960378	2.9871226	2.9962388	2.9874397	2.9964348	2.9877488	2.9964704	2.9878358

Table (8): Estimation when $R = 0.5$, $\theta_1 = 3$, $\theta_2 = 3$

n	m	R_{mle}	R_{mom}	R_{sh1}	R_{sh2}	R_{sh3}
30	30	0.5008083	0.5008083	0.5008083	0.5008083	0.5008083
	50	0.4996686	0.4996686	0.4996686	0.4996686	0.4996686
	100	0.4994749	0.4994749	0.4994749	0.4994749	0.4994749
50	30	0.4994811	0.4994811	0.4994811	0.4994811	0.4994811
	50	0.4994857	0.4994857	0.4994857	0.4994857	0.4994857

Copyright reserved © J. Mech. Cont. & Math. Sci.
A. S. Mohammed et al
IV. Numerical Results

i- when $n = 30$, the minimum mean square error (MSE) for the (S-S) reliability estimators of Kumaraswamy distribution is holds using the shrinkage estimator based on shrinkage weight function (\hat{h}_1) for $m = (30, 50, 100)$ and each α_1 and α_2 , this result indicates that, the shrinkage estimator of (S-S) reliability (\hat{h}_1) is the best and follows by shrinkage estimator.

ii- when $n = 50$, the minimum mean square error (MSE) for the (S-S) reliability estimators of the Kumaraswamy distribution is holds using the shrinkage estimator based on shrinkage weight function (\hat{h}_3) for $m = (30, 50, 100)$ and each α_1 and α_2 , and the best estimator was a beta shrinkage estimator (\hat{h}_1) when $m = 30$, this result indicates that, the shrinkage estimator of (S-S) reliability (\hat{h}_2) was at most the best and follows by shrinkage estimator (\hat{h}_3) and shrinkage estimator (\hat{h}_1).

n	m	mse_{mle}	mse_{mom}	$mse_{\hat{h}_1}$	$mse_{\hat{h}_2}$	$mse_{\hat{h}_3}$	Best
30	30	0.0041241	0.0025304	0.0021318	0.0024050	0.0025494	$mse_{\hat{h}_1}$
	50	0.0033056	0.0020807	0.0018553	0.0019798	0.0020465	$mse_{\hat{h}_1}$
	100	0.0029568	0.0017805	0.0015426	0.0016916	0.0017702	$mse_{\hat{h}_1}$
50	30	0.0033048	0.0020101	0.0017889	0.0019127	0.0019786	$mse_{\hat{h}_1}$
	50	0.0023114	0.0014046	0.0013695	0.0013831	0.0013220	$mse_{\hat{h}_3}$
	100	0.0019048	0.0011815	0.0011525	0.0011261	0.0011124	$mse_{\hat{h}_3}$
100	30	0.0028201	0.0017518	0.0015216	0.0016650	0.0017402	$mse_{\hat{h}_1}$
	50	0.0019100	0.0011323	0.0011046	0.0010792	0.0010660	$mse_{\hat{h}_3}$
	100	0.0012819	0.0007892	0.0007708	0.0007530	0.0007437	$mse_{\hat{h}_3}$

Table (9): MSE values when $R = 0.5$, $\theta_1 = 3$, $\theta_2 = 3$
iii- when n=100, the minimum mean square error (MSE) for the (S-S) reliability estimators of the Kumaraswamy distribution is holds using the shrinkage estimator based on shrinkage weight function \((\alpha_1\), \(\alpha_2\)) for \(m=30\) and \((\alpha_3\)) for all \(m=(50,100)\) and the best estimator was a beta shrinkage estimator \((sh1)\) when \(m=30\), this result indicates that, the shrinkage estimator of (S-S) reliability \((sh2)\) was at most the best and follows by shrinkage estimator \((sh3)\) and shrinkage estimator \((sh1)\).

Some methods of goodness of fit analysis are employed here; the measurement give an indication of best method is mean square error (MSE) from tables for all.

1- For all \(n=(30,50,100)\) and \(m=(30,50,100)\) in this work for minimum mean square error (MSE) for the stress-strength reliability estimator of Kumaraswamy function distribution after noted the mean square error in tables , the result indicates that shrinkage estimator \((1)\) is the best .

2- For all \(n=(30,50,100)\) and \(m=(30,50,100)\) the minimum mean square error (MSE) for the stress- strength reliability estimator of power function distribution ,we noticed that the shrinkage estimator is the best and follows by maximum likelihood estimator (MLE), moment estimator (MOM) and least square estimator (LS).

3- Of the various cases when \((n=30\) and \(m=30)\), \((\alpha_1=1\) and \(\alpha_2=1)\) then be moment estimator (MOM) batter then maximum likelihood estimator (MLE).

V. Conclusion

In this absence of real data, we study the performance of the estimator obtained from simulated and the tables, that to estimate the reliability of shrinkage estimator method special constant type shrinkage (Sh1) and (Sh3) is the best performance.

Reference

I. A. N. Salman, T.A. Taha, On Reliability Estimation for the Exponential Distribution Based on Monte Carlo Simulation, Ibn Al-Haitham Journal for Pure and Applied science, 10.30526/2017, P.P.(409-419).

II. Dreamlee Sharma, Tapan Kumar Chakrabarty, On Size Biased Kumaraswamy Distribution, Statistics, Optimization, and Information Computing, Vol 4, Sep 2016, pp 252-264

III. Kumaraswamy, P. A Generalized probability density function fordoubble-bounded random processes. Journal of Hydrology 1980,46(1), 79-88.

IV. Mostafa Mohie Eldin1, Nora Khalil2, Montaser Amein, Estimation of parameters of the Kumaraswamy distribution based on general progressive
type II censoring, American Journal of Theoretical and Applied Statistics, 2014; 3(6): 217-222.

V. Mohamed A. Hussain, Estimation of $P[Y<X]$ for the class of Kumaraswamy-G distributions, Australian Journal of Basic and Applied Sciences, 7(11) Sept 2013, Pages: 158-169.

VI. Muna Shaker Salman, Comparing Different Estimators of two Parameters Kumaraswamy distribution, Journal of Babylon University/Pure and Applied Science/ no.(2)/vol.(25):2017,395-402.

VII. Weerahandi, S., and Johnson, R.A.: Testing reliability in a stress-strength model when X and Y are normally distributed. Technometrics, 1992; 38: 83–91.