The comparative effects of doenjang prepared from fermented soybean or brown rice on the body weight and lipid metabolism in C57BL/6N mice fed with high fat diet were investigated. The animals were randomly divided and given experimental diets for eight weeks: normal control diet, high fat diet, and high fat diet supplemented with soybean doenjang, brown rice doenjang, brown rice-rice bran doenjang, or brown rice-red ginseng marc doenjang. At the end of the experimental period, the HF group exhibited a marked increase in body weight, body fat, plasma triglyceride concentration, and atherogenic index relative to the normal control diet group. However, diet supplementation of doenjang counteracted this high fat-induced hyperlipidemia through modulation of lipogenesis and adiponectin production. In general, compared with soybean doenjang, the brown rice-rice bran doenjang and brown rice-red ginseng marc doenjang were similarly effective in improving the lipid metabolism under high fat diet condition. These findings demonstrate that brown rice, in combination with rice bran or red ginseng marc, may be useful as a functional biomaterial for the preparation of doenjang with strong anti-obesity effect and hypolipidemic action.

Key Words: brown rice, soybean, doenjang, hypolipidemic effect, obesity

Doenjang, which literally means “thick paste”, is a Korean fermented soybean paste. It is produced through fermentation of soybeans using various microorganisms including Aspergillus species and Bacillus subtilis. Due to its unique and distinct flavor, doenjang is primarily used as a dipping condiment and flavor seasoning in soups and stews in Korea. In 2009, doenjang became an internationally accepted food when it was registered in CODEX Alimentarius, a collection of international food standards, guidelines, and practices. Since then, the availability and popularity of doenjang in the market worldwide have increased. For the past years, doenjang has received much attention due to its reported health benefits, such as stronger anti-mutagenic and anti-cancer activities compared to raw and cooked soybeans. It is also a good source of essential amino acids, minerals, and vitamins. Moreover, fermented soybean products were shown to have higher phenolic and protein contents and greater antioxidant activity than non-fermented ones. The increase in genistein and linoleic acid contents during fermentation of soybean is believed to be mainly responsible for the high biological activity of doenjang.

Rice is one of the most important food crops in the world and is mostly produced and consumed in Asia. In Korea, however, the consumption of rice has been declining due to the changing dietary habits. To increase the market value of rice, value-added rice products are continuously being developed and produced in the country. In the present study, we prepared doenjang using brown rice as the main component instead of soybean. Fermented brown rice and rice bran has been reported to exhibit strong anti-tumor and anti-cancer activities. It would be interesting to know whether doenjang made from brown rice only or in combination with other food crop would have comparable physiological effect with that of soybean doenjang.

Nowadays, because of high dietary fat intake and sedentary lifestyle, the incidence of obesity is rapidly increasing in epidemic proportions in both developed and developing countries. The need for functional foods that have body fat-lowering effect and hypolipidemic action has become stronger and more urgent. While a number of studies have been previously conducted on the anti-obesity and hypolipidemic effects of soybean, there were limited studies on the effect of doenjang on the lipid metabolism. Furthermore, doenjang prepared from brown rice has not been studied yet. Hence, this study was conducted to evaluate the comparative effects of doenjang made from fermented soybean, brown rice, or brown rice in combination with rice bran and red ginseng on the body weight and lipid metabolism in mice fed with high fat diet.

Materials and Methods

Materials and chemicals. The soybean (SB) doenjang and brown rice were purchased from a local market in Daegu, Korea. The rice bran and red ginseng marc were provided by Rice Processing Complex (RPC, Gimcheon, Korea) and Punggi Ginseng Farming Corp. (Yeongju, Gyeongbuk, Korea), respectively. The Aspergillus oryzae was obtained from NUC Electronics Co., Ltd. (Daegu, Korea). Chemicals such as ethanol, ketamine-HCl, magnesium chloride, calcium chloride, potassium phosphate buffer, triethanolamine, and Triton X-100 were purchased from Merck KGaA (Darmstadt, Germany). All other chemicals used were obtained from Sigma-Aldrich, Inc. (Steinheim, Germany).

Preparation of brown rice doenjang samples. The brown rice (BR) doenjang was prepared based on the manufacturing process for commercial doenjang as described by Park et al., with some modifications. Briefly, the brown rice was washed, soaked in water for 3 h at 4°C, and cooked using an electric rice cooker. After cooling, the rice was inoculated with Aspergillus oryzae (0.2%, w/w) and incubated for 3 days at 30°C. The resulting koji was added with salt (12%, w/w) and mixed using a food processor. The mixture was then fermented and ripened for 30 days at 30°C. For the preparation of brown rice-rice bran (BRB) and brown rice-red ginseng marc (BRG) doenjang...
samples, the same method was used. The rice bran and red ginseng marc were washed and steamed separately for 40 min. The cooked brown rice was added with rice bran (20%, w/w) or red ginseng marc (30%, w/w) prior to inoculation with A. oryzae. All doenjang samples were freeze-dried at −70°C prior to use. Their proximate compositions are shown in Table 1.

Animals and diets.

Forty-eight male C57BL/6N mice of 4 weeks of age, weighing 12 g, were purchased from Orient Inc. (Seoul, Korea). Each mouse was housed in a stainless steel cage in a room maintained at 25°C with 50% relative humidity and 12/12 h light/dark cycle. The animals were fed with pelleted chow diet for 2 weeks upon arrival and randomly divided into 6 dietary groups (n = 8). The first group was fed with a normal control diet (NC group), while the second group was fed with a high fat diet supplemented with soybean doenjang (HF + SB group), brown rice doenjang (HF + BR group), brown rice-bran doenjang (HF + BRB group), or brown rice-red ginseng marc doenjang (HF + BRG group). The composition of the experimental diets (Table 2) was based on the AIN-76 semisynthetic diet.(17) The FAS activity was determined based on the spectrophotometric method of Gibson and Hubbard.(17) The assay mixture contained 125 mM potassium phosphate buffer (pH 7.0), 10 mM EDTA, 10 mM β-mercaptoethanol, 33 μM acetyl-CoA, 100 μM malonyl-CoA, and 100 μM nicotinamide adenine dinucleotide phosphate (NADPH). The mixture was added with malonyl CoA and the change in absorbance at 340 nm at 30°C was recorded. The ME activity was measured using the method described by Ochoa.(18) The reaction mixture was composed of 0.4 M triethanolamine (pH 7.4), 30 mM m-alanine, 0.12 M MgCl2, and 3.4 mM NADP+. The absorbance was measured at 340 nm at 27°C.

The G6PD activity was determined based on the reduction of 6 mM NADP+ by G6PD in the presence of glucose-6-phosphate,(19) The enzyme activity was measured by monitoring the increase in absorption of the reaction mixture at 340 nm at 37°C. The activities of FAS, ME, and G6PD were expressed as nmol or μmol

Table 1. Proximate composition (% dry basis) of the doenjang samples

Composition	SB	BR	BRB	BRG
Moisture	4.52	4.91	4.96	5.23
Carbohydrate	45.55	74.72	68.77	70.79
Crude protein	23.42	7.82	9.45	8.15
Crude fat	0.91	0.41	1.13	0.16
Dietary fiber	4.36	2.47	4.16	3.04
Ash	21.24	9.67	11.53	12.63

1SB, soybean doenjang; BR, brown rice doenjang; BRB, brown rice and rice bran doenjang; BRG, brown rice and red ginseng marc doenjang.

Table 2. Composition of the experimental diets (%)

Component	NC	HF	HF + SB	HF + BR	HF + BRB	HF + BRG
Casein	20	20	17.58	19.12	18.96	19.09
DL-Methionine	0.3	0.3	0.3	0.3	0.3	0.3
Sucrose	50	50	45.24	42.32	42.91	42.7
Corn starch	15	—	—	—	—	—
Cellulose	5	5	4.54	4.73	4.56	4.67
Choline analog	0.2	0.2	0.2	0.2	0.2	0.2
Mineral mixture	3.5	3.5	1.37	2.52	2.34	2.23
Vitamin mixture	1	1	1	1	1	1
Lard	—	17	16.83	16.88	16.8	16.9
SB	—	—	—	10	—	—
BR	—	—	—	—	10	—
BRB	—	—	—	—	—	10
BRG	—	—	—	—	—	10
Total (%)	100	100	100	100	100	100

1NC, normal control diet; HF, high fat diet; HF + SB, high fat diet + soybean doenjang; HF + BR, high fat diet + brown rice doenjang; HF + BRB, high fat diet + brown rice and rice bran doenjang; HF + BRG, high fat diet + brown rice and red ginseng marc doenjang. 2AIN-76 mineral mixture. 3AIN-76 vitamin mixture.
The CPT activity was measured following the method of Bieber et al. The assay mixture contained 116 mM Tris-HCl (pH 8.0), 1.1 mM EDTA, 2.50 mM L-carnitine, 0.5 mM 5,5-dithiobis-2-nitrobenzoic acid, 75 mM palmitoyl-CoA, 0.2% Triton X-100. The reaction was initiated by the addition of 50 µl cytosol and incubated at 25°C for 2 min. The change in absorbance at 412 nm was measured and the activity was expressed as nmol or µmol CoASH or oxidized CoA/min/mg protein.

The hepatic β-oxidation activity was measured from the final product of NADH by palmitoyl substrates. The assay mixture contained 50 mM Tris-HCl (pH 8.0) 20 mM NAD+, 0.33 M DTT, 1.5% BSA (1.5 g/100 mL), 2% Triton X-100 (2 g/100 mL), 10 mM CoA, 1 mM FAD, 100 mM KCN and 5 mM palmitoyl-CoA. The reaction was initiated by the addition of 10 µl cytosol and incubated at 37°C for 5 min. The change in absorbance at 340 nm was measured and the activity was expressed as nmol reduced NADPH/min/mg protein.

Measurement of plasma adipokine concentrations. The leptin concentration was measured using an enzyme immunoassay (ELISA) kit (Sib-Bio, Montigny le Bretonneux, France). The levels of resistin, adiponectin, and tumor necrosis factor (TNF)-α were determined using enzyme-linked immunosorbent assay (ELISA) kits (Shibayagi Co., Gunma, Japan).

Statistical analysis. All data are presented as the mean ± SE. The data were evaluated by one-way ANOVA using a Statistical Package for Social Sciences software program (SPSS Inc., Chicago, IL) and the differences between the means were assessed using Tukey’s test. Statistical significance was considered at p<0.05.

Results

Body weight gain and organ weights. All animal groups exhibited similar body weight prior to feeding them with experimental diets (Table 3). The feed intake was also similar in all groups. At the end of the experimental period, a marked increase in the body weight was found in HF mice relative to that of the control group. However, diet supplementation of doenjang significantly suppressed this high fat diet-induced body weight gain. In particular, the HF + SB and HF + BRG groups showed similar final body weight and body weight gain with the control group. Although the HF + BR and HF + BRB showed higher body weight than the NC group, their final weights were still considerably lower than that of the HF group. Accordingly, the food efficiency ratio (FER) was highest in HF group and lowest in NC, HF + SB, and HF + BRG groups. There was no significant change in the weights of liver, heart, and kidney among the animal groups (Table 4). On the other hand, a substantial increase in the white adipose tissue weight was observed in HF group. Addition of SB, BR, and BRB doenjang in the diet resulted in a slight decrease in the weight of adipose tissues relative to the HF mice. The HF + BRG group, however, showed similar body fat weight with the NC group.

Plasma lipids. A substantial elevation in the plasma triglyceride concentration was found in HF group (Table 5). On the other hand, the triglyceride level decreased in all doenjang-fed mice, with the HF + BRG group having the lowest concentration. Significantly lower plasma total cholesterol level was also observed in HF + BRG group than that of the HF group. The HDL-cholesterol concentration markedly increased in all doenjang-fed groups relative to that of the NC group. Accordingly, the doenjang-fed groups showed significantly higher and lower HDL-cholesterol/total cholesterol ratio (HTR) and atherogenic index (AI), respectively, compared with the HF group. Moreover, the HF + SB, HF + BRB, and HF + BRG groups exhibited considerably lower free fatty acid concentration than the HF mice. No significant difference was found in the phospholipid content between the control and experimental-fed groups.

Table 3. Body weight gain and feed intake in mice fed with high fat diet supplemented with brown rice doenjang

Dietary group	Body weight	Feed intake (g/day)	FER[^1]		
	Initial weight (g)	Final weight (g)	Weight gain (g/day)		
NC	21.69 ± 0.30[^a]	32.29 ± 0.18[^a]	0.19 ± 0.01[^a]	3.23 ± 0.05[^a]	0.060 ± 0.005[^a]
HF	21.72 ± 0.46[^a]	38.82 ± 0.25[^d]	0.31 ± 0.01[^a]	3.19 ± 0.03[^a]	0.090 ± 0.003[^a]
HF + SB	21.55 ± 0.31[^a]	32.69 ± 0.38[^a]	0.20 ± 0.02[^a]	3.28 ± 0.05[^a]	0.061 ± 0.001[^a]
HF + BR	21.79 ± 0.33[^f]	34.91 ± 0.28[^g]	0.23 ± 0.02[^b]	3.27 ± 0.06[^a]	0.072 ± 0.005[^b]
HF + BRB	21.65 ± 0.42[^c]	33.73 ± 0.67[^a]	0.22 ± 0.02[^a]	3.25 ± 0.07[^a]	0.067 ± 0.001[^ab]
HF + BRG	21.56 ± 0.17[^a]	32.59 ± 0.43[^a]	0.20 ± 0.01[^ab]	3.25 ± 0.05[^a]	0.061 ± 0.002[^a]

[^1]NC, normal control diet; HF, high fat diet; HF + SB, high fat diet + soybean doenjang; HF + BR, high fat diet + brown rice doenjang; HF + BRB, high fat diet + brown rice and red ginseng marc doenjang. Values are means ± SE (n = 8). Means in the same column not sharing a common superscript are significantly different at p<0.05. FER, body weight gain/feed intake.

Table 4. Weights of organs and adipose tissues in mice fed with high fat diet supplemented with brown rice doenjang

Organ weight (g)[^2]	NC[^1]	HF	HF + SB	HF + BR	HF + BRB	HF + BRG
Liver	3.81 ± 0.06[^a]	3.99 ± 0.21[^a]	3.79 ± 0.12[^a]	3.81 ± 0.16[^a]	3.79 ± 0.16[^a]	3.58 ± 0.13[^a]
Heart	0.46 ± 0.01[^a]	0.48 ± 0.01[^a]	0.48 ± 0.01[^a]	0.50 ± 0.02[^a]	0.46 ± 0.02[^a]	0.47 ± 0.01[^a]
Kidney	1.20 ± 0.02[^a]	1.25 ± 0.01[^a]	1.22 ± 0.03[^a]	1.20 ± 0.02[^a]	1.23 ± 0.03[^a]	1.17 ± 0.02[^a]
White adipose tissue (g)						
Epididymal	4.76 ± 0.28[^a]	6.22 ± 0.17[^a]	5.59 ± 0.30[^ab]	5.47 ± 0.19[^ab]	5.53 ± 0.19[^ab]	4.81 ± 0.26[^a]
Perirenal	1.78 ± 0.14[^a]	3.01 ± 0.08[^b]	2.47 ± 0.33[^ab]	2.39 ± 0.10[^ab]	2.32 ± 0.13[^ab]	1.97 ± 0.12[^a]
Inginal	1.70 ± 0.07[^a]	2.81 ± 0.19[^a]	2.27 ± 0.24[^a]	2.39 ± 0.19[^ab]	2.24 ± 0.18[^ab]	1.90 ± 0.30[^a]

[^1]NC, normal control diet; HF, high fat diet; HF + SB, high fat diet + soybean doenjang; HF + BR, high fat diet + brown rice doenjang; HF + BRB, high fat diet + brown rice and red ginseng marc doenjang. Values are means ± SE (n = 8). Means in the same row not sharing a common superscript are significantly different at p<0.05.
Lipid-regulating enzyme and β-oxidation activities. The high fat diet significantly increased the activity of hepatic FAS, but diet supplementation with doenjang markedly decreased the enzyme activity (Table 6). The activities of ME, G6PD, and adipocyte FAS enzymes also decreased in doenjang-fed groups relative to those of the HF group. No significant difference was found in the CPT activity among the animal groups. All experimental-fed groups showed significantly higher β-oxidation activity than the control group.

Table 5. Plasma lipid profile in mice fed with high fat diet supplemented with brown rice doenjang

	NC1	HF	HF + SB	HF + BR	HF + BRB	HF + BRG
Triglyceride (mg/dL)	116.39 ± 6.48ab	146.17 ± 8.92bc	121.80 ± 4.70bc	131.58 ± 4.43bc	122.37 ± 6.22ab	107.52 ± 2.63abcd
Total cholesterol (mg/dL)	137.24 ± 5.26abc	158.66 ± 3.43abc	148.03 ± 5.80abc	149.21 ± 7.54abc	138.98 ± 4.17abc	132.28 ± 1.80abc
HDL-cholesterol (mg/dL)	83.33 ± 2.00a	86.41 ± 2.39a	94.75 ± 1.00a	92.39 ± 2.88a	93.48 ± 1.45a	95.47 ± 2.41a
HTR	60.72 ± 1.39a	54.46 ± 1.51	64.00 ± 0.67	61.92 ± 1.93	67.26 ± 1.04	72.17 ± 1.82i
AI	0.65 ± 0.04a	0.84 ± 0.05a	0.56 ± 0.02a	0.62 ± 0.05a	0.49 ± 0.02a	0.39 ± 0.04a
Free fatty acid (mmol/L)	0.60 ± 0.10abc	0.80 ± 0.05bc	0.51 ± 0.02bc	0.68 ± 0.07bc	0.56 ± 0.03bc	0.46 ± 0.08bc
Phospholipid (mmol/L)	1.30 ± 0.04abc	1.25 ± 0.03bc	1.34 ± 0.02bc	1.28 ± 0.02bc	1.30 ± 0.04abc	1.36 ± 0.01abc

1NC, normal control diet; HF, high fat diet; HF + SB, high fat diet + soybean doenjang; HF + BR, high fat diet + brown rice doenjang; HF + BRB, high fat diet + brown rice and rice bran doenjang; HF + BRG, high fat diet + brown rice, rice bran doenjang, and red ginseng marc doenjang. Values are means ± SE (n = 8).

Table 6. Lipid-regulating enzyme and β-oxidation activities in mice fed with high fat diet supplemented with brown rice doenjang

	NC1	HF	HF + SB	HF + BR	HF + BRB	HF + BRG
Hepatic lipid-regulating enzyme (nmol/min/mg protein)						
FAS	18.70 ± 0.24ab	22.43 ± 0.61ab	14.99 ± 0.83ab	15.99 ± 0.79ab	12.91 ± 0.43ab	12.68 ± 0.46ab
ME	29.76 ± 1.31ab	30.65 ± 1.75ab	23.87 ± 1.09ab	27.13 ± 0.89ab	24.01 ± 0.77ab	22.58 ± 1.30ab
G6PD	8.54 ± 0.41a	8.71 ± 0.22a	4.93 ± 0.20a	4.81 ± 0.22a	4.49 ± 0.26a	4.29 ± 0.07a
CPT	24.60 ± 0.96a	21.90 ± 0.75a	25.88 ± 1.20a	25.66 ± 0.77a	27.13 ± 1.79a	26.45 ± 1.83a
β-oxidation	1.75 ± 0.09a	2.35 ± 0.17a	2.62 ± 0.20a	2.43 ± 0.08a	2.53 ± 0.11a	2.85 ± 0.12a

Adipocyte lipid-regulating enzyme (nmol/min/mg protein)						
FAS	37.47 ± 2.50ab	47.03 ± 2.92b	28.23 ± 2.54a	34.72 ± 3.73ab	32.73 ± 3.25ab	30.48 ± 4.20ab
ME	300.60 ± 8.15abc	343.32 ± 19.44abc	277.43 ± 1.89abc	294.69 ± 9.26abc	278.79 ± 9.92abc	258.80 ± 2.62abc
G6PD	121.41 ± 5.11ab	138.90 ± 6.12ab	109.75 ± 4.21ab	118.91 ± 8.58ab	111.58 ± 2.37ab	108.92 ± 2.41ab
CPT	80.38 ± 10.54abcd	72.24 ± 10.02abcd	118.60 ± 7.38abcd	95.92 ± 2.37abcd	120.08 ± 13.14abcd	121.89 ± 12.51abcd

1NC, normal control diet; HF, high fat diet; HF + SB, high fat diet + soybean doenjang; HF + BR, high fat diet + brown rice doenjang; HF + BRB, high fat diet + brown rice and rice bran doenjang; HF + BRG, high fat diet + brown rice, rice bran doenjang, and red ginseng marc doenjang. Means in the same row not sharing a common superscript are significantly different at p<0.05.

Table 7. Plasma adipokine concentrations in mice fed with high fat diet supplemented with brown rice doenjang

	NC1	HF	HF + SB	HF + BR	HF + BRB	HF + BRG
Leptin (ng/mL)	1.32 ± 0.10a	1.84 ± 0.06a	1.50 ± 0.13ab	1.58 ± 0.11ab	1.41 ± 0.13ab	1.26 ± 0.10ab
Resistin (ng/mL)	15.47 ± 0.06b	16.18 ± 0.05b	15.46 ± 0.09b	15.74 ± 0.05b	14.75 ± 0.02b	15.33 ± 0.07b
Adiponectin (µg/mL)	3.23 ± 0.11b	2.23 ± 0.16b	3.82 ± 0.95b	3.50 ± 0.09b	4.00 ± 0.26b	4.13 ± 0.23b
TNF-α (ng/mL)	1.29 ± 0.04a	1.55 ± 0.02ab	1.21 ± 0.03ab	1.30 ± 0.02ab	1.22 ± 0.08ab	1.35 ± 0.02ab

1NC, normal control diet; HF, high fat diet; HF + SB, high fat diet + soybean doenjang; HF + BR, high fat diet + brown rice doenjang; HF + BRB, high fat diet + brown rice and rice bran doenjang; HF + BRG, high fat diet + brown rice, rice bran doenjang, and red ginseng marc doenjang. Means in the same column not sharing a common superscript are significantly different at p<0.05.

Discussion

The present study investigated the effect of dietary feeding of doenjang prepared from soybean, brown rice, or brown rice combined with rice bran and red ginseng marc on the body weight and lipid metabolism in mice under high fat diet condition. The results showed that doenjang could suppress the body weight gain, reduce the amount of body fat, and improve the plasma lipid profile in high-fat-fed mice. A recent investigation on the anti-obesity effects of soybean doenjang and non-fermented soybeans revealed that the former was more effective in decreasing visceral fat accumulation and adipocyte size in high-fat-fed rats, which was attributed to the higher content of aglycone isoflavonoids in doenjang. The fat-lowering effect of soybean doenjang could also be partly due to its high protein content. Soy protein was previously shown to reduce the body fat in obese mice and rats. Velasquez and Bhathena reported that soy protein and its isoflavones reduced body weight and fat mass in both humans and animal models, suggesting their beneficial role in obesity. Moreover, soybean doenjang was found to reduce the triglyceride and total cholesterol levels and increase the HDL-cholesterol.
concentration in rats fed with high fat and high cholesterol diet.\(^{(26)}\) Similarly, dietary feeding of fermented soybean and rice bran resulted in a significant decrease in the serum and hepatic triglyceride levels in high fat-fed rats.\(^{(27)}\) Baek et al.\(^{(28)}\) reported that fermented brown rice also exhibited hypocholesterolemic action in cholesterol-fed rats. They suggested that the cholesterol-lowering effect of fermented brown rice could be related to its high amount of carbohydrates that could be metabolized into short chain fatty acids, which were demonstrated to lower plasma cholesterol level. Results of the present study showed, for the first time, that doenjang made from brown rice in combination with rice bran or red ginseng marc has hypolipidemic effect and may be useful in the management of high fat-induced hyperlipidemia. Further studies on the composition and bioactive components of the doenjang samples are needed in order to better understand their therapeutic potential against high fat diet-induced hyperlipidemia and obesity.

While the BR doenjang effectively reduced the body weight and slightly decreased the body fat, the addition of red ginseng marc further enhanced its body weight-lowering action. It is interesting to note that the combination of brown rice and red ginseng marc in doenjang showed similar body weight-lowering effect with that of soybean doenjang. Furthermore, among the doenjang samples analyzed, the BRG doenjang appeared to be the most effective in improving the lipid metabolism and enhancing the lipid profile in mice. The BR doenjang showed a marginal effect only on the plasma lipid profile in mice, but its hypolipidemic action became more potent with the inclusion of red ginseng marc. Red ginseng marc, a fibrous by-product that is often discarded as a waste after the production of ginseng extract, contains lipid-soluble components that have various pharmacological properties, such as anti-cancer and immunomodulatory effect.\(^{(29,30)}\) In addition, fermented red ginseng marc was found to possess biologically active compounds that have strong anti-oxidant effect.\(^{(31)}\) Kim et al.\(^{(32)}\) reported that extracts from fermented red ginseng could reduce the triglyceride and total cholesterol levels in diabetic rats. They found that fermentation of red ginseng resulted in increased ginsenoside content. The triterpene saponins, such as ginsenosides Rg3 and Rh2, from red ginseng extract have been recently shown to exert anti-obesity effect in high-fat-fed mice through modulation of the lipid metabolism.\(^{(53)}\) This could be partly responsible for the strong hypolipidemic activity of BRG doenjang. Based on the results of this study, it seemed that the fermented red ginseng marc may have greater hypolipidemic activity compared with the fermented brown rice. However, the development of doenjang product from red ginseng marc alone may have low possibility due to the strong and distinct ginseng smell that doenjang consumers may find unfavorable.

The reduction in plasma triglyceride and total cholesterol levels found in doenjang-fed groups, particularly the HF + BRG group, might have led to the decreased levels of triglyceride, total cholesterol, and fatty acids observed in these animal groups. Furthermore, the marked increase in the body fat of HF mice could also be related to the increased activity of the FAS enzyme. It was previously shown that enhanced FAS gene expression was significantly associated with visceral fat accumulation in human subjects.\(^{(37)}\) Similarly, the down regulation of ME and G6PD gene expressions has been linked to decreased fat accumulation.\(^{(38)}\) Hence, the decrease in the amount of body fat in doenjang-fed groups, particularly the HF + BRG group, was probably due to the reduced activities of FAS, ME, and G6PD enzymes.

The reduction in plasma leptin, resistin, and TNF-\(\alpha\) and elevation in plasma adiponectin by the doenjang samples could also be partly responsible for their hypolipidemic effect in mice under high fat diet condition. The adipokines are protein hormones secreted by adipose tissues that are involved in the regulation of lipid and glucose metabolism.\(^{(39)}\) The production and release of leptin, resistin, and TNF-\(\alpha\) are associated with the progression of obesity.\(^{(40)}\) The adiponectin, on the other hand, is inversely related with obesity and has anti-atherosclerotic and anti-inflammatory properties.\(^{(41)}\) The marked increase in the amount of adipose tissues could have resulted in the elevation in the leptin, resistin, and TNF-\(\alpha\) concentrations, and decrease in adiponectin level in high fat-fed mice. On the other hand, the reduced leptin, resistin, and TNF-\(\alpha\) levels and enhanced adiponectin concentration found in doenjang-fed mice relative to the HF group suggest that the expressions and secretion of these adipokines were influenced by the reduced amount of body fat, leading to decreased concentrations of plasma triglyceride and cholesterol in these animals.

In conclusion, results of this study illustrate that dietary feeding of doenjang markedly suppressed the body weight gain, decreased the amount of body fat, and improved the lipid profile through inhibition of hepatic and adipocyte lipogenesis and modulation of adipokine production in high fat-fed mice. Compared with soybean doenjang, the brown rice doenjang showed relatively lower hypolipidemic activity. However, addition of rice bran or red ginseng marc in doenjang preparation significantly enhanced its physiological effect that was comparable with that of soybean. Brown rice, in combination with rice bran or red ginseng marc, may be useful as a functional biomaterial for the preparation of doenjang with strong preventive action against high fat diet-induced hyperlipidemia and obesity.

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center No. PJ008176), Rural Development Administration, Republic of Korea.

Abbreviations

AI	atherogenic index
BR	brown rice
BRB	brown rice-rice bran
BRG	brown rice-red ginseng marc
CPT	carnitine palmitoyl transferase
DTT	dithiothreitol
EDTA	ethylenediaminetetraacetic acid
EIA	enzyme immunoassay
ELISA	enzyme-linked immunosorbent assay
FAS	fatty acid synthase
G6PD	glucose-6-phosphate dehydrogenase
HDL	high density lipoprotein
HF	high fat
HTR	HDL-cholesterol/total cholesterol ratio
ME	malic enzyme
NADPH	nicotinamide adenine dinucleotide phosphate
NC	normal control
SB	soybean
TNF	tumor necrosis factor

Conflict of Interest

No potential conflicts of interest were disclosed.
References

1. Jo YJ, Cho IH, Song CK, Shin HW, Kim YS. Comparison of fermented soybean paste (Doenjang) prepared by different methods based on profiling of volatile compounds. J Food Sci 2011; 76: C368–C379.

2. Park KY, Jung KO. Fermented soybean products as functional foods: functional properties of doenjang (fermented soybean paste). In: Shi J, Ho CT, and Shahidi F, eds. Asian Functional Foods. Florida: CRC Press, 2005; 555–596.

3. Kwon DY, Daily JW 3rd, Kim HJ, Park S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr Res 2010; 30: 1–13.

4. Jung OK, Park SY, Park KY. Longer aging time increases the anticancer and antimetastatic properties of doenjang. Nutrition 2006; 22: 539–545.

5. Park KY, Jung KO, Rhee SH, Choi YH. Antimutagenic effects of doenjang (Korean fermented soypaste) and its active compounds. Mutat Res 2003; 523: 43–53.

6. Lee GI, Lee HM, Lee CH. Food safety issues in industrialization of traditional Korean foods. Food Control 2012; 24: 1–5.

7. Chai C, Ju HK, Kim SC, et al. Determination of bioactive compounds in fermented soybean products using GC/MS and further investigation of correlation of their bioactivities. J Chromatogr B Analyt Technol Biomed Sci 2012; 880: 42–49.

8. Katayama M, Yoshimi N, Yamada Y, et al. Preventive effect of fermented brown rice and rice bran against colon carcinogenesis in male F344 rats. Oncol Rep 2002; 9: 817–822.

9. Kuno T, Hirose Y, Hata K, et al. Preventive effect of fermented brown rice and rice bran on N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in rats. Int J Oncol 2004; 25: 1809–1815.

10. Putthaphaandoong S, Yamada Y, Hirata A, et al. Chemopreventive effect of fermented brown rice and rice bran (FBRA) on the inflammation-related colorectal carcinogenesis in ApCMin/+ mice. Oncol Rep 2010; 23: 53–59.

11. Tomita H, Kuno T, Yamada Y, et al. Preventive effect of fermented brown rice and rice bran on N-methyl-N-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats. Oncol Rep 2008; 19: 11–15.

12. Bray GA, Paeratakul S, Popkin BM. Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol Behav 2004; 83: 549–555.

13. Park KY, Hwang KM, Jung KO, Lee KB. Studies on the standardization of doenjang (Korean soybean paste) 1. Standardization of manufacturing method of doenjang by literatures. J Korean Soc Food Sci Nutr 2002; 31: 343–350.

14. American Institute of Nutrition. Report of the American Institute of Nutrition ad hoc committee on standards for nutritional studies. J Nutr 1977; 107: 1340–1348.

15. Hulcher FH, Olson WH. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J Lipid Res 1973; 14: 625–631.

16. Bradford MM. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.

17. Gibson DM, Hubbard DD. Incorporation of malonyl CoA into fatty acids by liver in starvation and alloxan-diabetes. Biochem Biophys Res Commun 1960; 3: 531–535.

18. Ochoa S. Malic dehydrogenase from pig heart. In: Colowick SP, Kaplan NO, eds. Methods in Enzymology. New York: Academic Press, 1955; 735–739.

19. Pihkänen E, Pihkänen O, Uotila L. Enzymatic determination of unbound D-mannose in serum. Eur J Clin Chem Clin Biochem 1997; 35: 761–766.

20. Bieber LL, Abraham T, Helmuth T. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem 1972; 50: 509–518.

21. Lazarow PB. Assay of peroxisomal beta-oxidation of fatty acids. Methods Enzymol 1981; 72: 315–319.

22. Kwak CS, Park SC, Song KY. Doenjang, a fermented soybean paste, decreased visceral fat accumulation and adipocyte size in rats fed with high-fat diet more effectively than nonfermented soybeans. J Med Food 2012; 15: 1–9.

23. Aoyama T, Fukui K, Nakamori T, et al. Effect of soy and milk whey protein isolates and their hydrolysates on weight reduction in genetically obese mice. Biosci Biotechnol Biochem 2000; 64: 2594–2600.

24. Aoyama T, Fukui K, Takamatsu K, Hashimoto Y, Yamamoto T. Soy protein isolate and its hydrolysate reduce body fat of diabetic obese rats and genetically obese mice (yellow KK). Nutrition 2010; 16: 349–354.

25. Velasquez MT, Bhatnena SJ. Role of dietary soy protein in obesity. Int J Med Sci 2007; 4: 72–82.

26. Lee JK, Kim JG. Effects of supplementation of Korean soybean paste (doenjang) on the lipid metabolism in rats fed a high fat and/or a high cholesterol diet. J Korean Public Health Assoc 2002; 28: 282–305.

27. Lim SI, Seong KS, Song SM, Hwang JT, Lee BY. Effects of rice bran and soybean fermented by Bacillus spp. on the lipid profiles of liver, serum, and feces in rats fed high fat diet. J Korean Soc Appl Biol Chem 2011; 54: 237–242.

28. Baek SH, Park S, Lee HG. Hypocholesterolemic action of fermented brown rice supplement in cholesterol-fed rats: cholesterol-lowering action of fermented brown rice. J Food Sci 2005; 70: S527–S531.

29. Lee SD, Yoo G, Chae HJ, et al. Lipid-soluble extracts as the main source of anticancer activity in ginseng and ginseng marc. J Am Oil Chem Soc 2009; 86: 1065–1071.

30. Lim TS, Na K, Choi EM, Chung YJ, Hwang JK. Immunomodulating activities of polysaccharides isolated from Panax ginseng. J Med Food 2004; 7: 1–6.

31. Jung HW, Kim JE, Seo JH, Lee SP. Physicochemical and antioxidant properties of red ginseng marc fermented by Bacillus subtilis HA with mugwort powder addition. J Korean Soc Food Sci Nutr 2010; 39: 1391–1398.

32. Kim HJ, Chae IG, Lee SG, Jeong HJ, Lee EJ. Effects of fermented red ginseng extracts on hyperglycemia in streptozotocin-induced diabetic rats. J Ginseng Res 2010; 34: 104–112.

33. Song YB, An YR, Kim SJ, et al. Lipid metabolic effect of Korean red ginseng extract in mice fed on a high-fat diet. J Sci Food Agric 2012; 92: 388–396.

34. Halminska MA, Marsh JB, Harrison EH. Differential effects of fish oil, safflower oil and palm oil on fatty acid oxidation and glycerolipid synthesis in rat liver. J Nutr 1991; 121: 1554–1561.

35. Kim HK, Choi S, Choi H. Suppression of hepatic fatty acid synthesis by feeding α-linolenic acid rich perilla oil lowers plasma triacylglycerol level in rats. J Nutr Biochem 2004; 15: 485–492.

36. Stefanovix-Racic M, Perdomo G, Mantell BS, Sipula IJ, Brown NF, O’Doherty RM. A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels. Am J Physiol 2008; 294: E969–E977.

37. Berndt J, Kovacs P, Ruschke K, et al. Fatty acid synthase gene expression in human adipose tissue: association with obesity and type 2 diabetes. Diabetologia 2007; 50: 1472–1480.

38. Zhao S, Wang J, Song X, Zhang X, Ge C, Gao S. Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr Metab (Lond) 2010; 7: 6.

39. Silva JV, Weiler HA, Murphy LJ. Plasma adipokines and body composition in response to modest dietary manipulations in the mouse. Obesity (Silver Spring) 2006; 14: 1320–1329.

40. Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans 2005; 33: 1078–1081.

41. Wang Y, Lam KS, Xu A. Adiponectin as a therapeutic target for obesity-related metabolic and cardiovascular disorders. Drug Dev Res 2006; 67: 677–686.