Binding Activity of Mosquitocidal Protein of *Pseudomonas Fluorescens* Migulab426 to the Midgut of Larvae and Pupae of *Culex Quinquefasciatus* (DIPTERA: CULICIDAE)

Usharani Brammacharry¹ and Muthuraj Muthaiah²*

¹Department of Biomedical Genetics, University of Madras, India
²State TB Training and Demonstration Centre, Government Hospital for Chest Diseases, India

Submission: November 24, 2016; Published: December 02, 2016

*Corresponding author: Muthuraj Muthaiah, State TB Training and Demonstration Centre, Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Puducherry, India, Email: muthuraj1970@gmail.com

Abstract

To study the mode of action of mosquitocidal protein of *Pseudomonas fluorescens* Migula B426 on larvae and pupae of *Culex quinquefasciatus*, the presence of specific receptors for the mosquitocidal protein of *P. fluorescens* Migula B426 on Brush-Border Membrane Vesicles (BBMF) from *C. quinquefasciatus* larva and pupa midgut cells was demonstrated by an in-vitro binding assay, immunofluorescence localization and immunohistochemical localization. The presence of 55kDa and 35kDa bands in western blot assay revealed that the binding of mosquitocidal protein to the midgut of treated larvae and pupae of *C. quinquefasciatus*.

The immunofluorescence localization study showed that the mosquitocidal protein binds preferentially to midgut of larva and pupae of mosquito species *C. quinquefasciatus*. The present investigation confirmed that the binding of mosquitocidal protein to the gut regions of the pupae (non-feeding stage) by degrading the cuticle and overcome the peritrophic membrane and thus found to be effective pupicidal activity. However, in the larvae of *C. quinquefasciatus*, the mosquitocidal protein is ingested orally and binds to the midgut epithelium causing the swelling of mitochondrial endoplasmic reticulum and enlargement of vacuoles, followed by lysis of epithelial cells, midgut perforation and the death of larvae. It is concluded that the endogenous chitinases of *P. fluorescens* Migula B426 is to weaken the insect’s peritrophic membranes allowing the more ready access of the bacterial proteins to the gut epithelium of the larvae and pupae of *C. quinquefasciatus*.

Keywords: *Pseudomonas fluorescens*; *Culex quinquefasciatus*; Midgut; Mosquitocidal protein; Larvae; Pupae

Introduction

Mosquitoes are vectors of tropical diseases such as malaria, yellow fever, and dengue. Control of mosquito vectors has been accomplished with bio insecticides developed from the bacteria *Bacillus thuringiensis* sub sp. *israelensis* and *Bacillus sphaericus*. The *B. thuringiensissubsp. israelensis* produces Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, and Cyt1Aa proteins, while *B. sphaericus* produces a binary protein. These insecticidal proteins are synthesized as inactive proproteins in the form of cytoplasmic crystalline inclusions that are solubilized and subsequently processed to active proteins by gut proteases in the larval midgut lumen.

The activated proteins bind to specific receptors on the microvilli of larval midgut epithelial cells and possibly undergo conformational changes followed by membrane insertion and pore formation, eventually resulting in the death of the larvae [1]. The Brush Border Membrane Vesicles (BBMV) isolated from lepidopteron midgut epithelium have been successfully used for the functional characterization of amino acid transport proteins [2] to analyze in vitro the activity of the insecticide fenoxycarb and, far more extensively, to study the mode of action of Cry1 proteins of *B. thuringiensis* [3,4]. The preparation of purified BBMV from the midgut of insects of interest is therefore fundamental to investigate several membrane phenomena.

The analysis of the in-vivo and in-vitro binding of the Cry4Aa, Cry4Ba, and Cry11Aa *B. thuringiensissubsp. israelensis* proteins in the midgut of the *An. gambiae* larvae have shown that these proteins are located in the apical microvilli of the posterior midgut with a mild binding being observed in the anterior
midgut, suggesting that in the posterior midgut are receptors present with higher affinity or at higher concentration [5]. The binding of the protein to the apical microvilli of the midgut or to the midgut vesicles has generally been correlated with insect’s susceptibility to the particular protein; however, binding does not necessarily mean that the Cry protein is toxic [6].

The mosquitocidal protein(s) of a novel P. fluorescens Migula B-426 strain and tested against 4th instar larvae and pupae of three species of vector mosquitoes, Anopheles stephensi Liston, Cx. quinquefasciatus Say and Aedes aegypti. The larvae and pupae of An. stephensi were the most susceptible to the formulation, followed by those of Cx. quinquefasciatus and Ae. aegypti in that order, and the dosage requirement for pupal mortality was less than that required for larval mortality. The LC$_{50}$ dosage requirements for larvae of these mosquito species were, respectively, 70.4, 511.5 and 757.3mg protein ml$^{-1}$ whereas for pupae they were, respectively, 2.0, 9.4 and 19.2mg protein ml$^{-1}$. The lethal vesicles were purified from the culture broth and its molecular masses were determined by high performance liquid chromatography [7].

In this study, we described the preparation of purified midgut BBMV using whole larvae and pupae of Cx. Quinquefasciatus as a starting material and investigated the in-vivo binding of the mosquitocidal protein of P. fluorescens Migula B426 to the mosquito larvae midgut, through immunohistochemical methods in order to determine the primary site of action of this protein.

Materials and Methods
Production of mosquitocidal protein from P. fluorescens Migula B426

The culture supernatant of Pseudomonas fluorescens was collected after 72h of growth in GPS medium and the proteins were precipitated with 30 - 80% ammonium sulphate. The precipitated protein was dialyzed and fractionated by gel filtration using sephacryl S300 columns (Amersham-Pharmacia, Sweden) in an FPLC system. The column was eluted with Tris-HCl, containing sodium chloride buffer at a rate of 0.5ml/m.

The thoroughly prewashed fractions displayed at 280nm a peak with a retention time of 17m. The fraction gave a single peak when checked by HPLC analysis, indicating homogeneity of the fraction. Pure protein was subjected to 10% Native page and single band was observed with a molecular weight of 90kDa. Thus the FPLC fractionated pure protein was found to be a monomer. Two prominent bands were observed on 10% SDS PAGE and their molecular weight was found to be 55kDa and 35kDa [8].

Binding of mosquitocidal protein to the midgut of larvae and pupae of Cx. quinquefasciatus

Mosquitocidal protein treatment and rising of polyclonal antibodies

Polyclonal antibodies were raised against the mosquitocidal protein by inoculating each of 200μg protein subcutaneously to 6-8 weeks old male BALB/C mice as per standard immunization protocol as indicated by Harlow et al. [9]. Blood from the challenged animals were collected after 20 days by tail vein puncture, serum was separated and the specificity were evaluated by ELISA and Western blot with 1:100, 1:1000 dilutions respectively [10].

Preparation of midguts from the larvae and pupae of Cx.quinquefasciatus

The mosquitocidal protein (1mg/ml) was exposed to the 4th instars larvae and pupae of Cx.quinquefasciatus and mortality was observed after 16 hours. The 4th instars larvae and pupae of Cx.quinquefasciatus were placed in sterile petridish. The paddles were removed from the larvae, thorax and the last abdominal segment was pulled in the opposite direction with the help of dissection needle to get the midgut. The isolated midguts from the treated untreated larvae and pupae of Cx.quinquefasciatus were washed in 0.5ml of PBS and resuspended in 0.2ml of PBS.

The guts were homogenized in ice-cold gut extracting (GET) buffer (10mM Tris-HCl, pH 8.0, 1mM EDTA, 300mM mannitol, 1mM PMSF). BBMVs were prepared according to the method of Woltersberger et al [11] with some modifications. An equal volume of ice-cold 24mM MgCl$_2$ was added to the gut homogenate and the mixture was kept on ice for 15m. After centrifugation at 2,500rpm in 4 °C for 5 min, the supernatant was transferred to another centrifuge tube. The pellet was suspended in ice-cold GET buffer with 0.5 volume of the gut homogenate. The mosquitocidal protein concentration was estimated by a modification of the Lowry et al. [12] method using bovine serum albumin as a standard.

Immunoblot assay

The midguts of untreated larvae and pupae were suspended in 4x Lammeli sample loading buffer. The samples were boiled for 5 minutes and separated by SDS-PAGE in Tris-glycine buffer (192mM glycine, 25mM Tris-HCl, pH 8.3) were electrophoretically transferred onto a nitrocellulose membrane in the MiniTrans-Blot electrophoretic transfer cell (Bio-Rad) using transferring buffer (190mM glycine, 20% methanol and 25mM Tris-HCl, pH 8.3) at constant voltage for overnight [13,14].

The membranes were washed thrice in the phosphate buffered saline containing 0.05% Tween 20 and blocked with BSA for 2 hours to block the non-specific binding sites. After blocking, the proteins immobilized on the membrane were probed with 1: 500 dilution of the polyclonal antibodies developed against the mosquitocidal protein for 5hours. The nitrocellulose membrane was washed thrice with PBS-0.05% Tween 20 and the immunocomplexes were incubated with horseradish peroxidase-conjugated rabbit anti-mouse IgG (whole molecule) as the secondary antibody for 2 h. The binding was visualized using TMB/H$_2$O$_2$ as the substrate.
In-vivo binding of mosquitocidal protein to the midgut of larvae and pupae of *Cx.quinquefasciatus*

The midguts of untreated treated 4th larvae and pupae of mosquito species *Cx.quinquefasciatus* were dissected at 4°C and the guts were fixed with neutral formaldehyde. Mosquito larvae and pupae guts were dehydrated in increasing isopropyl alcohol concentrations, rinsed in xylol and hydrated in decreasing concentrations of ethanol, washed in distilled water and balanced in Tris buffer saline (TBS) (66mM NaCl, 1.6mM KCl, 25mM Tris base, pH 7.4). Antigen unmasking was carried out with 1mg/ml of trypsin in 0.2N HCl for 5 min at room temperature.

The midguts were blocked with 3% BSA in TBS for 1h at a room temperature, rinsed with TTBS (0.5% Triton-X100 TBS), and incubated 1h at 37°C in a humid chamber with 1: 500 of the polyclonal antibody raised in mouse against the mosquitocidal protein diluted in TBS with 1% BSA, incubated for 40 min a 37°C in humid chamber with goat anti-mouse IgG fluorescence conjugated. The slides were washed three times in washing solution and mounted in DPX and observed under Fluorescence microscope [15].

Immunohistochemical localization of the mosquitocidal protein

Mosquitocidal protein treatments: The 4th instar larvae of *Cx.quinquefasciatus* mosquitoes under starvation for 20 hours were treated with 1mg/ml, which corresponded to approximately 500-fold the half lethal concentration for the mosquitocidal protein treatments. In early 4th instar larvae and pupae guts, mosquitocidal protein dilutions in demineralised water.

Preparation and sectioning of insect tissues: After exposure to the protein treatments, mosquito larvae were placed in neutral formaldehyde. After feeding *Cx.quinquefasciatus* larvae with the protein, guts were dissected at 4°C and the midgut was fixed in neutral formaldehyde. Mosquito larvae and their midguts were dehydrated in increasing isopropyl alcohol concentrations, rinsed in xylol and included in paraffin. 5μm sections were obtained and placed in carriers loaded with 2% 3-amino propyltriethoxy silane [4].

Antibodies: Mice polyclonal antibody against protein (90kDa) was prepared as indicated by Harlow et al. [9]. Sensitivity and specificity were evaluated by ELISA and Western blot with 1:100, 1:1000 dilutions, respectively, of the sera using standard techniques [10]. The immunodetection was performed in combination with a peroxidase-conjugated goat IgG fraction to mouse IgG (whole molecule) (Sigma Chemicals co).

Detection of mosquitocidal protein was performed through modifications of the technique developed by Bravo et al. [4]. The sections were de-paraffinized in 100% xylol and hydrated in decreasing concentrations of ethanol, washed in distilled water and balanced in Tris buffer saline (TBS) (66mM NaCl, 1.6mM KCl, 25mM Tris base, pH 7.4). Antigen unmasking was carried out with 1 mg/ml of trypsin in 0.2N HCl for 5 min at room temperature. Trypsin was inactivated by addition of 0.5mM PMSF with incubation for 5 min and then the endogenous peroxidase activity was blocked by incubating the tissue sections with 0.5% H2O2 for 30m and 6% H2O2 for 15m in methanol, at room temperature.

The tissue section boundaries were marked with hydrophobic pencil in order to achieve uniformity in the incubations. The tissue samples were blocked with 3% BSA in TBS for 1h at a room temperature, rinsed with TTBS (0.5% Triton-X100 TBS), and incubated 1h at 37°C in a humid chamber with 1:1000 of the polyclonal antibody raised in mouse against the mosquitocidal protein diluted in TBS with 1% BSA, incubated for 40 min a 37°C in humid chamber with 1:200 of peroxidase-conjugated goat IgG fraction to mouse IgG, and washed again with TBS.

Colour development was achieved with 3,3-diaminobenzidine (DAB) in chromogen solution in imidazole-HCl buffer pH 7.5 containing hydrogen peroxide and an antimicrobial agent (Liquid DAB large volume substrate-chromogen) for 3 min at room temperature. The counter staining of the tissue sections was performed with Harris hematoxilin for 10s and ammonical water for 10s; the tissues were dehydrated in increasing concentrations of ethanol and clarified in xylol; finally, the sections were covered with DPX (Sigma Chemicals co) mounting resin and analyzed by light microscopy.

Binding of mosquitocidal protein to brush-border membrane vehicle (BBMV)

Brush border membrane vehicle isolation: Toxicity assays were performed on early 4th instar larvae of *Cx.quinquefasciatus*, in 5cm diameter Petri dishes containing 10ml of 100mg per ml mosquitocidal protein dilutions in demineralised water. Dead larvae were counted after 24h, and lethal concentrations killing 50% of the population (LC50) were calculated by probit analysis [17].

Brush Border Membrane Vesicles were prepared from midguts of *Cx.quinquefasciatus* larvae following methods modified from those of Biber et al [18], Woltersberger et al [11], Houk et al. [19]. The 4th instar larvae were chilled on ice, midguts extruded by dissection under a binocular microscope, peritrophic membranes and Malpighian tubules removed, and midguts rinsed in ice-cold buffer A (0.3M mannitol/5mM EGTA/20mM Tris/HCl pH 7.4).

Midguts were then placed in 1ml cryogenic vials, frozen by immersing the vials in liquid nitrogen and stored at -70°C until required. BBMF were prepared freshly before each series of experiments. Midguts were thawed, pooled in ice-cold buffer A and ground with a 25-75μm clearance homogenizer (40 strokes). The homogenate was adjusted to 3ml and made up to 12mM MgCl2. The samples were allowed to stand on ice for 20m.
The mixture was then centrifuged at 3000xg in 1.5ml capacity polyethylene microfuge for 15m at 2 ºC.

The supernatant was collected and kept on ice. The pellets were suspended in buffer A and treated as above for the first midgut homogenization. The resulting supernatant was pooled with the first and centrifuged in the same rotor at 14100xg for 60m at 2 ºC. The resulting pellet was then suspended in the proportion of 1 midgut/ µl buffer A and kept on ice. Protein content was determined by the Bio-Rad protein assay with bovine serum albumin as standard. The protein yield was approximately 0.5-1 µg membrane protein/midgut.

Immunoblotting assay

| Table 1: | Protein profile of protein treated midguts of larvae and pupae. | Lane 1: Marker, Lane 2: Protein, Lane 3: Control larvae, Lane 4: Treated larvae, Lane 5: Controlpupae, Lane 6: Treated pupae. |

The BBMV were prepared from dissected midguts of 4 instar larvae of *Culexquinquefasciatus* by differential precipitation using MgCl₂ as described above in this chapter and stored at −70 ºC until used. *Culexquinquefasciatus* BBMV (300µg) were suspended in 50µl of PBS2 [137mM NaCl, 2.7mM KCl, 10mM Na2HP04 (pH 7.2)],PIPLC (phospholipase-C) (3 units) of from *Bacillus cereus* was added to the BBMV suspension and incubated for 90m at 30 ºC, as previously reported by Lawrence, et al. [23]. Membranes were recovered by centrifugation at 11000g for 20 m, and the supernatant was analysed for the presence of GPI-anchored proteins by SDS/10% PAGE and protein overlay as described above.

Then mosquitocidal protein was biotinylated using biotinyl-N-hydroxysuccinimide ester (catalogue number RPN28; Amersham Biosciences) according to the manufacturer’s directions. A matrix of agarose-streptavidin (200µl; Sigma-Aldrich) was incubated with 7µg of biotinylated protein overnight at 4 ºC. After incubation, the matrix was washed ten times with 1X PBS2 to remove any unbound protein. The solution containing GPI-anchored proteins (42µg) was incubated with the 200µl of protein-agarose matrix. The matrix was washed four times with 1X PBS2. The binding proteins were then eluted using 200µl of 1X PBS2, pH 9.5. The pH was adjusted to 7.2 and the samples were stored at 4 ºC in the presence of protease inhibitors [24].

ALP and APN specific activities

Specific ALP and APN enzymatic activities were measured using 1 mg/ml of p-nitro phenyl phosphate and leucine-p-nitroanilide (Sigma-Aldrich) as substrates respectively. BBMV proteins (5µg) were mixed with ALP buffer [0.5mM MgCl₂, 100mM Tris/HCl (pH 9.5)] containing 1.25mM of p-nitro phenyl phosphate and APN buffer [0.2M Tris/HCl (pH 8), 0.25M NaCl] containing 1mM of leucine-p-nitroanilide. Enzyme activities were monitored as the change in the absorbance at 450 nm for 3 min at 25 ºC [23].

Results

The 55kDa protein on the membrane was detected with the pooled antiserum against 55kDa protein (1:1000 dilutions) as primary antibodies and peroxidase-conjugated rabbit anti-mouse IgG as the secondary antibody. Thus the presence of 55kDa alone in the membrane confirmed that the protein is not degraded to 35kDa protein(Figure 1a). The presence of 55kDa and 35kDa bands in western blot revealed that the binding of mosquitocidal protein to the midgut of treated larvae and pupae...
of *Cx.quinquefasciatus* (Figure 1b, 1c). It has been reported that the binding of the protein to the midgut epithelium causes swelling of mitochondrial and endoplasmic reticulum and enlargement of vacuoles, followed by lysis of epithelial cells, midgut perforation and the death of the larvae.

The binding activity of the mosquitocidal protein to the midgut of larvae and pupae of *Cx.quinquefasciatus* were analysed by immunofluorescence localization in which regions of the midgut this protein binds. In addition, we analyzed the binding of mosquitocidal protein to the midgut epithelium of *Cx.quinquefasciatus* larvae and also determined the different regions of midgut epithelium of *Cx.quinquefasciatus* pupae. Figure 2 showed that the mosquitocidal protein binds preferentially to midgut of larvae and pupae of mosquito species *Cx.quinquefasciatus*.

Binding of the protein to mosquito larval tissues was observed after 15m exposure to the protein by a brownish staining at the apical microvilli, with the staining intensity remaining unchanged from this time onwards. Control larvae not exposed to the protein or those in which the polyclonal antibody against protein was omitted, did not show the brownish coloration (Figure 3) in none of the mosquito species tested. To determine if GPI-anchored proteins are also involved in the binding of protein to BBMV, we compared the binding of biotinylated-protein to BBMV or BBMV treated with PIPLC. PIPLC removes GPI-anchored proteins from membranes by cleaving the GPI anchor. Figure 4 shows that the binding of biotinylated-protein was greatly reduced after treatment of BBMV with PIPLC and, lane 3 in figure 4 shows a complete loss of BBMV binding to the 55kDa band and a substantial reduction in binding to the 55kDa band. This result suggests that a GPI anchored protein is involved in binding of protein to BBMV.

The alkaline phosphatase and amino peptidase activity was found to be decreased in the treated larvae and pupae than the control larvae and pupae (Figure 5a & 5b). The results revealed
that the binding of protein to the receptor molecules of Brush Border Membrane Vesicles of *C. quinquefasciatus* leading to the impairment of the enzymatic machinery of midgut cells and reduced the specific activity of the enzymes. It has also been reported that the GPI-anchored proteins like alkaline phosphatase and amino peptidase are important receptor molecules that mediates the toxicity in *Ae.aegypti* larvae and reducing the activity of enzymes.

Discussion

The present study revealed that the chitin is the target substrate for the mosquitocidal protein and it overcomes peritrophic membrane of the mosquito species and thereby supports the proposed mode of action for mosquitocidal metabolites. Thus, the present investigation confirmed that the mosquitocidal protein efficiently hydrolysis the cuticular protein chitin and overcome the peritrophic membrane which is a protective sleeve for the midgut epithelium mosquito species and binds to the gut regions of larvae and pupae of *C. quinquefasciatus*. The immunofluorescence studies further confirmed that the binding of mosquitocidal protein to the gut regions of the pupae (non-feeding stage) by degrading the cuticle and overcome the peritrophic membrane and thus found to be effective pupicidal activity.

However, in the larvae of *C. quinquefasciatus*, the mosquitocidal protein is ingested orally and binds to the midgut epithelium causes the swelling of mitochondrial, endoplasmic reticulum and enlargement of vacuoles, followed by lysis of epithelial cells, midgut perforation and the death of larvae. The results marker enzymes revealed that the binding of protein to the receptor molecules of brush border membrane vesicles of *C. quinquefasciatus* leading to the impairment of the enzymatic machinery of midgut cells and reduced the specific activity of the enzymes.

The immunohistochemical localization of the Cry11Bb protein observed in the basal membrane of *Ae. aegypti* and *An. albimanus* larvae was possibly due to the protein’s leakage or at least part of it from the midgut lumen to the basal area of the epithelium after disruption of the cellular integrity of the midgut tissue. The deterioration of the intercellular junctions could be a consequence of the damage caused by the Cry11Bb protein at the cellular membrane level, as this situation has also been observed in *Heliothis virescens* midgut after 3h exposure to the Cry1Ac [25].

Additionally, the Cry11Bb protein was observed in *C. quinquefasciatus* larval midgut 15m after treatment and 1h after exposure to the protein on the apical microvilli of the Malpighian tubules. It is unknown if the binding of the Cry11Bb protein to the Malpighian tubules contributes to mortality of mosquito larvae. The binding sites of several Cry proteins have been located on the Malpighian tubule epithelium of some insect species; however, their role in toxicity has not been fully characterized. Although Maddrell, et al. [26] reported important changes in the trans-epithelial potential difference of Rhodnius prolirus Malpighian tubules after treatment with B.thuringiensis protein and Reisner, et al. [27] located *B. thuringiensis* kurstaki δ-endoproteins on the Malpighian tubules of Calpodes ethlius larvae and described its effect as inhibitory of fluid secretion causing cytological alterations, which ended-up in cellular lysis and epithelial damage, Denol, et al. [28] reported binding of Cry1Ab1, Cry1Ac1, and Cry1Ba1 proteins to the Malpighian tubules of *Ostrinia nubilalis*, but did not suggest a relevant role in the mortality of this lepidopteran. It is possible that the damage caused by the Cry11Bb protein in the mosquito larva midgut intercellular junctions could have permitted protein leakage into the haemolymph to reach the Malpighian tubules, producing shrinking of their epithelium, and perhaps impairing their osmoregulatory functions before larval death.

The alkaline phosphatase and amino peptidase activity was found to be decreased in the treated larvae and pupae than the control larvae and pupae. The results revealed that the binding of protein to the receptor molecules of Brush Border Membrane Vesicles of *C. quinquefasciatus* leading to the impairment of the enzymatic machinery of midgut cells and reduced the specific activity of the enzymes. It has also been reported that the GPI-anchored proteins like alkaline phosphatase and amino peptidase are important receptor molecules that mediates the toxicity in *Ae.aegypti* larvae and reducing the activity of enzymes [14]. It has also been reported that after exposure of BBMV to cry1A proteins, these proteins were found to associate with the lipid rafts micro domains and the integrity of these micro domains was essential for in-vitro cry1 A pore forming activity [29].

Conclusion

The mosquitocidal protein of *P. fluorescens* Migula B426 showed active hydrolysis of chitin polymers and the enhancement of chitinase activity revealed that the invasion of mosquitocidal protein through the cuticular region of larvae and pupae. Thus, the present investigation confirmed that the mosquitocidal protein efficiently hydrolysis the cuticular protein chitin and overcome the peritrophic membrane which is a protective sleeve for the midgut epithelium mosquito species and binds to the gut regions of larvae and pupae of *C. quinquefasciatus*. The immunofluorescence studies further confirmed that the binding of mosquitocidal protein to the gut regions of the pupae (non-feeding stage) by degrading the cuticle and overcome the peritrophic membrane and thus found to be effective pupicidal activity.

This supports the hypothesis that the mosquitocidal protein alters the structural integrity of peritrophic membrane and binds to the gut regions of larvae and pupae of *C. quinquefasciatus*. The immunofluorescence studies and western blot analysis revealed the specific binding of mosquitocidal proteins to the epithelial cells of midgut regions of larvae and pupae of *C. quinquefasciatus*.

The alkaline phosphatase and amino peptidase activity was found to be decreased in the treated larvae and pupae than the
control larvae and pupae revealed that the binding of protein to the receptor molecules of Brush Border Membrane Vesicles of Cx.quinquefasciatus leading to the impairment of the enzymatic machinery of midgut cells and reduced the specific activity of Cx.quinquefasciatus leading to the impairment of the enzymatic machinery of midgut cells and reduced the specific activity of Cx.quinquefasciatus leading to the impairment of the enzymatic machinery of midgut cells and reduced the specific activity of Cx.quinquefasciatus leading to the impairment of the enzymatic machinery of midgut cells and reduced the specific activity of Cx.quinquefasciatus leading to the impairment of the enzymatic

Acknowledgement

Authors thank Dr. P. Jambulingam, Director, Vector Control Research Centre, Indian Council of Medical Research, Puducherry for his support and critical suggestions.

References

1. Knowles BH (1994) Mechanism of action of Bacillus thuringiensis insecticidal d-endoproteins. Adv Insect Physiol 24: 275-308.
2. Woltersberger M, Lüthy P, Maurer A, Parenti P, Sacchi, VF, et al. (1987) Preparation and partial characterization of amino acid transport by brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp Biochem Physiol MA 301-308.
3. Sacchi VF, Parenti P, Giordana B, Hanzot GM, Lüthy P (1986) Bacillus thuringiensis protein inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Lett 204: 213-218.
4. Bravo A, Hendricks K, Janssen S, Peferoen M (1992) Immunocytochemical analysis of specific binding of Bacillus thuringiensis insecticidal crystal proteins to lepidopteron and coleopteron midgut membranes. J Ultrastruct Pathol 60(3): 247-253.
5. Charles JF (1987) Ultra structural midgut events in culicidal larvae fed with Bacillus sphaericus spore/crystal complex. Ann Inst Pasteur Microbiol 138(4): 471-484.
6. Fonfedermann, Annette Dulleman, Cess vaawah (1995) Binding of the Cry IVD Protein of Bacillus thuringiensis subsp. israelensis to Larval Dipteran Midgut Ptd. Protein. App Environ Microbial 61(7): 2601-2605.
7. Prabakaran G, Palpy KP, Padmanabhan, V, Holti SL, Balaram K (2002) Isolation of a Pseudomonas fluorescens metabolite/exoprotein active against both larvae and pupae of vector mosquitoes. Pest Manag Sci 59(6): 1828-1837.
8. Usharani Brammacharry, Kummankottil Paily (2014) Gelatinase from Bacillus thuringiensis serovar. Medellin. Appl Microbial Biotechnol 40(6): 794-799.
9. Lowry OH, Rosen rough NJ, Randall AJ (1951) Pmein measurement with the folin phenol reagent. J Biol Chem 193(1): 265-275.
