Fig. S1: Lifetime of valid and invalid published PCR primers used to amplify *V. cholerae* pathogenicity genes. For each primer, total number of primers is plotted against the number of years it was still cited in the literature after its first publication. Dotted curve: invalid primers, full curve: valid primers (124 invalid primers and 57 valid primers with a 1-year lifetime are not shown). Note the large number of primers used one or two years only (5 valid and 4 invalid primers).
Fig. S2: Efficiency of PCR primers used to amplify genes of *V. cholerae* in Senderovich et al. 2010. A phylogenetic analysis was performed with every genetic variant of *ctxA* (A), *hapA* (B), *hlyA* (C), *ompU* (D), *ompW* (E), *sto* (F), *tcpA* (G), *tcpI* (H), *toxR* (I), *zot* (J) genes. Tms were computed for each variant gene sequence and each primer using OHM. Accession number, number of other sequences identical to or contained in the sequence used in this tree, species names, and Tms are indicated (forward and reverse primers in columns from left to right). For strain, biovar and serotype information, see Table S9. Tms are symbolized by a color code described in the box on the right. A predicted Tm lower than the lowest temperature mentioned in the box is symbolized by a grey square. White boxes when a partial sequence does not encompass a primer. Please note that OHM tends to underestimate the Tm of primers (as compared to other tools).

ctxA: the forward and reverse primers amplify every allele of the gene and are specific of *V. cholerae*.

hapA: the forward and reverse primers amplify every allele of the gene and are specific of *V. cholerae*. However, a slight variation of Tm is observed for the reverse primer and the sequence CP001236, and a lower Tm (50.8°C) should be used for the detection.

hlyA: the forward and reverse primers detect every known sequence of *V. harveyi* but cannot amplify every allele of the gene in *V. cholerae* (AF194418, D58374, AY427780).

ompU: the forward and reverse primers amplify every allele of the gene in *V. cholerae*, but also detect some sequences of *V. mimicus* (e.g. DQ356331).

ompW: the high variation of Tms (from 46 to 54°C) for the second couple is probably too large for a proper detection. Only the first couple is probably useful to amplify *ompW* in *V. cholerae*.

sto: the couple of primer amplifies only one allele (M85198) of the gene in *V. cholerae*.
tcpA: the reverse primer is the primer targeting the classical strain of *V. cholerae*. The one targeting the El tor strain was not studied because of its localization outside the CDS. As shown in this figure, the forward and reverse primers cannot amplify every allele of the gene in *V. cholerae*, but will detect two sequences of *V. mimicus* (AF315787, DQ356010). The Tms of the forward primer vary from 43.8 to 51.4°C, according to the method of computation of Tm, with a high Tm (51.4°C) for the sequences of *V. mimicus*. For the reverse primers, the Tms vary from 52.1 to 52.5°C. The efficiency of this primer cannot be appreciated for sequences of *V. mimicus* because only partial sequences are available for the target region.

tcpI: the forward and reverse primers amplify every allele of the gene.

toxR: the primers of the first (Nandi et al. 2000) and the second (Halpern et al. 2005) published couples amplify every allele of the gene in *V. cholerae*. However, a variation of Tm is observed for the forward primer of the second couple for sequence CP001485. The lowest Tm (45.8°C) should be used for the detection, but this condition can favor the amplification of sequences of *V. harveyi*. Indeed, because of the partial sequences, it is not possible to estimate the efficiency of couples for the outgroup sequences, and therefore their specificity toward *V. cholerae*. As a result, toxR is not a validated genetic marker for the detection of *V. cholerae*.

zot: the forward and the reverse primers amplify every allele of the gene in *V. cholerae*. A variation of Tm is observed for the forward primer and sequence AF220606. A low Tm (47.7°C) should be used for the detection. The specificity of this couple cannot be estimated because of the partial sequence of *V. mimicus*. The zot gene is therefore not validated for detecting *V. cholerae*.
Table S1: Summary of results obtained from the analysis of the complete list of sequences retrieved for *V. cholerae* pathogenicity genes.

Columns 1: pathogenicity island, 2: most frequently used gene name, 3: total number of sequences retrieved, 4: total number of unique sequences, 5: number of alternate gene and protein names found, 6: published and 7: valid primers retrieved from the literature.

Gene Sequences	Unique Sequences	Keywords	Primers	Valid Primers	
CTX Prophage					
ace	9	3	2	8	4
cep	7	3	2	3	2
ctxA	65	10	12	41	18
ctxB	205	24	17	23	0
orfU	9	3	1	9	7
zot	21	4	4	24	8
rstA	29	16	8	8	0
rstB	12	4	5	3	0
rstR	12	2	4	3	2
TCP Prophage					
acfA	19	7	3	0	0
acfB	10	4	3	6	4
acfC	9	1	2	1	1
tagE	18	7	4	0	0
aldA	30	14	7	6	2
int	13	4	6	5	4
tcpA	98	46	19	27	0
tcpB	40	11	3	3	0
tcpC	9	3	4	1	0
tcpD	7	1	3	1	1
tcpE	8	1	3	1	1
tcpF	10	5	4	5	5
tcpH	17	10	3	6	0
tcpI	10	3	5	7	4
tcpJ	10	4	5	4	0
tcpP	21	9	3	12	2
tcpQ	17	8	3	5	3
tcpR	8	1	3	0	0
tcpS	8	1	3	0	0
tcpT	8	2	3	0	0
toxT	15	7	7	13	4
Sum	780	230	159	230	73
Table S2: list of valid published primers.

Tms were calculated as described in the methods.

See also http://protein.bio.puc.cl/cardex/servers/dnaMATE/index.html for more details.

Gene	Valid Primer	Tm (°C)	Bas	Sal	Bre	San	Sug
ace	CCGCTTATCCACACGGCTATC	54.4	61.3	59.9	49.5	54.6	
	CCGCTTACCCACAGCTAT	51.8	58.4	58.1	48.6	53.3	
	TTTAAGCGTCCAGGCG	49.5	54.8	59.8	49.2	52.8	
	CGCCCTGAGGCGTTAAACCT	55.9	62.5	64.8	54.5	57.8	
cep	TTTAGCCTTACGAATTAAGCC	48.5	55.5	54.7	44.8	50.4	
	AACACAGCAAGAAACCGAGT	53.0	60.3	62.3	52.1	55.0	
ctxa	CTCAGACGGGATTTGTTAGGCACG	59.1	66.9	66.9	54.3	59.4	
	ATGATCATGCAAGAGGAACTC	50.4	57.4	55.6	46.7	51.5	
	AGACGGGATTTGTTAGGCACG	54.4	61.3	61.6	51.6	55.4	
	CGTTAATGATGTATTAGGGGCATA	52.3	60.1	58.3	47.2	52.8	
	TTTGTTAGGCGAGGATGTAGGAT	51.1	58.4	60.5	49.1	53.2	
	ACCTGCTACGTTATTTTCA	47.7	54.3	52.8	44.5	49.2	
	TCTATTCGTCGAGGCCCTATCG	55.7	63.5	57.2	49.4	55.9	
	TCAGACGGGATTTGTTAGGCC	51.8	58.4	58.9	48.7	52.2	
	ATCTACTGCTGTAAGGCCCTATTAC	54.0	61.8	53.4	47.3	53.3	
	GCCGAGTTTACAGCTCCCTGAGAAATAAAA	58.9	66.8	65.6	53.3	59.7	
	GCAAAGGAAACTCAGACGGG	55.9	62.5	61.1	51.4	55.3	
	ACTCAGACGGGATTTGTTAGGCG	54.8	62.1	60.7	51.3	55.0	
	ACGGGATTTGTTAGGCACG	51.1	57.3	59.8	49.2	52.3	
	TGTGTTGACCTCAATTAGTTGAGAAGTGCCC	61.8	71.2	71.3	57.6	62.0	
	TGATCATGCAAGAGGCAACTCA	50.5	57.4	58.2	48.2	52.7	
	AGTCAGGTGGTCTTATGCC	51.1	57.3	53.8	47.8	50.3	
	AACTCAAGCCCGATTGTTAGG	53.0	60.3	58.5	49.0	53.2	
	TGAATAAAAGACTCAGGTTG	47.7	54.3	52.8	44.5	49.2	
	TCTATTCGTCGAGGCCCTATT	50.5	57.4	51.5	45.8	51.0	
orfu	GTCACACCCAGTTACTTTTCC	52.4	59.4	57.2	48.0	52.8	
	CCTAAACAAATGAGCATGGC	50.5	57.4	58.5	46.9	51.5	
	ATGCGCTATTTCCTGCTTTTGTG	50.6	58.4	58.0	47.3	53.8	
	GGTGTATTTTGATGCTGATG	53.0	60.3	61.4	49.0	53.5	
	AGCTCAATACGAGGTTTATACGC	53.0	60.3	59.8	50.2	55.7	
	CAGAGCCCTGCTATTACTTATATTG	56.0	64.1	64.1	51.3	59.1	
	AGACCCTGCTATTACCTTTTATG	54.0	61.8	61.9	50.5	57.6	
zot	GCCCATAGACCACGATAA	48.0	53.8	53.1	44.6	47.9	
	GCCACTTATACCGCGCCAC	55.4	61.6	64.9	53.5	55.9	
	CTGCTTTTCCACAGGCACCG	55.4	61.6	62.4	52.5	57.1	
	CGCTTTAAGATGCGCCTTTT	54.8	62.1	68.6	54.8	59.8	
	CACGTGTGGGTGATGAGCCTATGC	57.4	65.2	64.9	52.7	58.3	
	CAAAGGCCAACATACAAAAACCAA	54.4	62.5	65.8	51.8	55.9	
	GATATCCCTGCTAACCGCGCTAAC	57.4	65.2	61.3	51.8	56.7	
	AGAGTAAGCAACAGTGATTGAAATCTCCGTAAC	64.5	74.7	74.7	59.6	64.5	
rstr	CTCTCTACGACAGCAAAGCTCTCCTAC	57.4	65.2	64.6	52.5	58.6	
	AGCCCTTATCAAAATGATA	45.6	52.3	53.7	43.4	47.8	
acfb	GATGAAAGACAGGAGAG	46.8	53.0	48.5	42.3	47.0	
	TTTGCTGAGCGCTATGTCG	51.8	58.4	58.7	48.8	53.7	
	GAGCGTGCTTTATCTAGTGGCTG	55.3	62.9	63.6	52.0	57.5	
	CAGCAACACAGCGACACAC	51.1	57.3	59.1	49.0	51.6	
aefc	CACTATTGTCGGCGAAAGC	49.7	56.4	59.3	46.6	50.6	
alda	GTCAATGGAAGTGCGACACAGTG	57.4	65.2	65.0	53.1	56.9	
	AACCAGGTTAGGTTTGTACC	52.4	59.4	56.9	49.2	50.8	
int	GATAAGAGATCAAAGCC	43.5	49.3	45.6	38.3	43.1	
	GAAGTGAAAGGAACGGATAGTG	51.7	59.3	55.9	46.0	51.2	
	TGCTTGTACACGATCAGATAG	53.5	61.1	56.9	49.0	54.1	
	CCAACCTTTGTGACGTT	48.9	55.2	55.2	45.2	48.5	
Gene	Sequence	Tagg	Tcpd	Tcep	Tcpf	Tcpi	
------	--	---------	---------	--------	---------	--------	
	ACCTACTTTAGGAAAAGAGCC	50.5	57.4	52.7	46.0	50.5	
tcpd	GCCTCTGTAATCAAGAC	48.0	53.8	53.0	44.7	48.8	
tcep	GCTCCTGACAATGGCGCTTTATTCA	56.0	64.1	64.6	52.6	57.4	
	ACTGTATAGCAAAAGCGATATTCAGAGA	53.2	61.6	57.0	49.0	56.0	
	GAGTTCACATTGCAGAAGACAGA	55.3	62.9	62.6	52.0	55.7	
	GACGCTACCCACTCGACAGA	53.8	60.5	60.8	50.6	54.3	
	GGAGTTATCTATGACCCCTGTT	50.4	57.4	51.3	45.3	49.1	
	AGGAGATGGAAGTTGGTG	51.1	57.3	54.6	47.7	50.3	
	GCAATAGTGCTCGAGCTCGTA	54.8	62.1	60.6	51.2	56.6	
	TAGCCTTAGTTCCTCAGCAGGCA	54.8	62.1	60.5	52.4	57.7	
	CGACTGCTTTATGCGGAAGT	51.8	58.4	59.4	49.4	55.7	
	GATGGTCAGATAAAAGACGCAGG	55.7	63.5	62.2	50.5	56.1	
	TAGCAAGGTTACCGGGATAACAA	56.0	64.1	64.6	53.0	56.5	
	TGGATTGTATCCCCGGA	49.7	56.4	58.9	47.3	49.7	
tcpp	ACCGTTAAATCAGCCCAAG	51.8	58.4	58.9	49.3	52.5	
	AGCCAATCTAGTAAACTTTGTTC	52.3	60.1	57.2	48.8	53.3	
	GCACAGGAGAGATGCAAA	51.8	58.4	58.8	49.5	53.3	
	TACCGTAATTGGCGTGGGAG	58.8	66.4	70.5	56.9	61.0	
	ACAAAATATCTGCCAACG	45.8	51.6	53.2	43.8	47.4	
	CTGGTGCTACATTGAGG	48.9	55.2	53.7	44.7	48.9	
	TCACCAAATATCTGCCA	49.7	56.4	58.7	48.2	50.8	
Table S3: Proportion of valid primers according to a threshold set for the computed melting temperature. Three conditions were used to determine valid primers from the theoretical Tms: no threshold (Tm>0°C), Tm above 50°C (Tm>50°C) and Tm above 55°C (Tm>55°C). The published primers, which are not valid with no threshold of Tms (Tm>0), are primers that are not specific to *V. cholerae* and/or cannot detect every allele of their target gene. In some cases (e.g. *tcpA* or *ctxB*), none of many published primers is valid because the sequence of the target gene is very variable into the species and primers were not designed in conserved regions. Generally, this observation corresponds to very well studied genes, which were resequenced many times, increasing the number of different sequences in public databases.

Gene	Published Primers	Valid Primers		
		Tm>0°C	Tm>50°C	Tm>55°C
ace	8	4	4	4
acfb	6	6	5	4
acfc	1	1	1	1
alda	6	2	2	2
cep	3	2	2	2
ctxa	41	18	18	18
ctxb	23	0	0	0
int	5	4	4	4
orfu	9	7	7	7
rsta	8	0	0	0
rsth	3	0	0	0
rstr	3	2	2	2
taga	4	0	0	0
tagd	1	1	1	1
tcpa	27	0	0	0
tcpb	3	0	0	0
tcpc	1	0	0	0
tcpd	1	1	1	1
tcpv	1	1	1	1
tcpf	5	5	5	5
tcph	6	0	0	0
tcpi	7	4	4	4
tcpj	4	2	2	0
tcpk	12	2	2	2
tcpq	5	3	3	3
toxt	13	4	4	4
zot	24	8	8	8
Total	**230**	**77**	**76**	**73**
Table S4: Alignments of published primers and sequences of the ctxB gene.

Local alignments of 23 ctxB primers with their target sequences, perfect matches are shown as dots. Hyphens correspond to INDELs or missing part of the sequence (partial sequences).

Columns: 1: strand, 2: Tm computed with OHM that is often slightly underrated, 3: alignment, 4: number of such target sequences. F is for forward primers, R for reverse ones.

Tm	Alignment	Nbr.	Tm	Alignment	Nbr.
49.8	ACTATCTTCAGCATATGCACATGG	22	4	AGATATTTTCGTATACAGAATCTCAG	20
44.2A..	1	38.6G..	4
42.9T..	1	50.9	TGATAGCCATCCTCCTTTTTCAG	22
47.4	TATCTTCAGCATATGCACATGCACAT	22	47.5G..	2
39.9A..	1	48.4	GATAGCCATCCTCCTTTTTC	22
38.2T..	1	43.4G..	2
56.0	GAGGAGCTCCATGTGCATATGCTG	1	51.0	AAAGCGATGAAAGGATGAAAG	22
44.2T..	1	49.1A..	1
38.5T..	1	48.8C..	1
30.8T..	1	50.7	GCCATGGAAGGATGAAAGGATAAC	22
0.0T..	1	48.7C..	1
53.2	AGGTGTTCCATGTGCATATGC	21	45.6ACCGA	1
48.6T..	1	52.4	GCCATGGAAGGATGAAAGG	22
44.8T..	1	50.0A..	1
43.9A..	1	49.5C..	1
51.4	TATGCACATGGAACACCTCAAA	20	52.2	TGAAGGATGAAAGGATAACCC	22
49.2C..	1	49.4C..	1
45.4A..	1	32.7ACCGA	1
40.3G..	1	54.8	TCCTCAGGGTATCCTCCTC	23
37.5A..	1	36.1ATCGGT	1
44.7	ACGCTCAAATATTACTGA	19	52.4	GATATGCAATCCTCAGGATACCC	22
43.3C..	1	47.4A..	1
43.1C..	1	38.4ACCGA	1
38.9C..	1	49.1	GCTTCAGTGAGTATGCAATCCTC	21
38.3A..	1	46.4T..	1
34.2G..	1	44.9A..	1
50.1	ACTGATGTTGTCAGAATTACAC	15	42.9TT..	1
48.9C..	1	48.8	CGATAGGGGCTTTTATTATCC	23
48.8C..	1	37.8G..	1
46.4G..	1	56.2	TAAATGCGGCAATCGCAGTGACGGT	23
44.7CA..	1	45.6T..	1
36.8G..	1	59.1	ATGCGCCGAATCGCAGTGACGGT	23
32.9A..	1	47.5T..	1
49.7	GGTATTTTCGCAACAAATCAC	18	62.2	TGCGCACAATCGCAGTGACGG	23
48.8C..	1	48.4T..	1
44.3G..	1	52.7	GCCATACTAATGCGCAGTACCGTG	23
44.3G..	1	51.0T..	1
43.6C..	1	34.3A..	1
34.3C..	1	34.3T..	1
Table S5: primers sets for *ctxA*, *ctxB* and *tcpA* genes.

Columns: 1: gene name, 2: forward primer, 3: reverse primer, 4: minimal melting temperature of the pair of primers (°C), 5: method used for the design. “Manual” corresponds to a design using the alignment of every genetic variant of the gene and a manual selection of conserved regions. Since Primaclade provided a large number of forward primers (and not 4 couples as Prifi), only partial Primaclade results are shown. The third column is filled by a double hyphen (--) for Primaclade, because this software returns only forward primers and not a couple of primers. For *ctxA*, only primers corresponding to valid published primers (and thus experimentally tested) were selected from the output of Primaclade.

Gene	Forward sequence	Reverse Sequence	Tm	Method
ctxB				
	TCGTATACAGAATCTGACCTGAA	GCCATACAAATTGCCCAATTGCGC	55.0	Manual
	TCGTATACAGAATCTGACCTG	ATTGCACTACTAATTTGCGC	59.4	Prifi
	GGTGTTTTTTTTAYAGTTTTACTATCTTCAGC	ATTTGCCATACTAATTTGCGC	59.4	Prifi
	GGTGTTTTTTTTAYAGTTTTACTATCTTCAGC	ATACGCTTTTTTTTGTTAACTAATTTGAC	59.2	Prifi
	TCGTATACAGAATCTGACCTG	ATACGCTTTTTTTTGTTAACTAATTTGAC	59.2	Prifi
	TACAGAATCTGACCTGAAAMAGAG	--	59.7	Primaclade
	ATCTCTGAAAMAGAGAGATG	--	59.6	Primaclade
	TAGCTGGAAAMAGAGAGATGCGCTAT	--	61.0	Primaclade
	GGAAMAGAGAGATGCTATCATTAC	--	59.9	Primaclade
	TTAAGAATGTTGMAAYTTTTCCAAGTA	--	61.4	Primaclade
	AAATGTTGMAAYTTTTCCAAGTAAG	--	60.4	Primaclade
	AAAAGCGATATGAGAGATGGAAG	--	60.9	Primaclade
	AACGATGAGAGATGGAAG	--	59.3	Primaclade
tcpA				
	CRCGAATAAGAAAAMCGGTCAAGGG	CCGACRCTCATTGRTATTTTCTC	55.6	Manual
	CATCTCTATATATATATATTGATGACGCTTGAC	GGATGTTCTCTAAGGAAATTTTACACCTGC	59.5	Prifi
	AAAATGAAATCAACCCCTTATTGATCATGCAAG	CAAGGAATTTTACACTTAGGATTTGAC	59.8	Prifi
	AAAATGAAATCAACCCCTTATTGATCATGCAAG	ATGATCTGGAAGCATCCTC	59.8	Prifi
	TTTCACCTCTCATTGATGTAGTGAAG	ATGATCTGGAAGCATCCTC	59.8	Prifi
	ATGATCTGGAAGGAAACTC	--	57.4	Primaclade
	CGTAAATGATGTAGGATGAGCACA	--	60.1	Primaclade
	CACCGTACTGTCTTTATTTGCA	--	54.3	Primaclade
	TCATCTCTGAGGCCCTATTACG	--	63.5	Primaclade
	TCATCTCTGAGGCCCTATTACG	--	58.4	Primaclade
	AGGGATTTTGTAGGACGGA	--	57.3	Primaclade
	TGATCTGGAAGGAAACTC	--	57.4	Primaclade
	TGAAATGAAATCAACCCCTTATTG	--	54.3	Primaclade
	TCATCTCTGAGGCCCTATT	--	57.4	Primaclade
Table S6: Examples of possible improvements for *ctxB* PCR primers.

Local alignments of primers with their target sequences, perfect matches are shown dots. Shorter primers contained into these primers are not shown. Columns: 1: Tm computed with OHM that is often slightly underrated, 2: consensus Tm computed with dnaMATE, 3: alignments, 4: number of target sequences. Primers can be improved by adding ambiguities shown in bold. Note that for the last primer, the last position could be simply removed.

Tm (°C)	Cons. Tm (°C)	Sequence alignment	Targets
49.8	52.7	ACTATCTTCAGCATATGCACATGG \A... \T... \ ACTATCTTCAGCATATGYAMATGG	21
44.2	50.1 – 53.7		1
42.9	50.1 – 53.7		1
44.9 – 49.8	50.3 – 53.7		24
42.2	50.3	AGATTTTCGTATACAGAATCTCTAG \	20
38.6	50.3 – 51.3		4
42.2 – 43.9	52.4 – 53.8		22
50.9	52.4	TGATAGCCATCTCTCTTTTCCAG \G... \ TGATAGCCATCTCTCTKTTTCAG	24
47.5	52.4 – 53.8		2
50.9 – 53.0	50.9	AAAGCGATTGAAAGGATGAAGG \A... \C... \ AAAGCGATTGAMAGGATGAAGGR	24
51.4	50.9 – 53.1		1
49.1	51.1		1
48.8	51.7 – 52.7		24
50.0 – 53.1	59.0	GCCATACATTGGCGCAATCGCATG	23
56.2	59.0	GCCATACATTGGCGCAATCGCATG	23
45.6	59.0	GCCATACATTGGCGCAATCGCATG	23
51.9 – 56.2	58.4 – 59.0		1
51.7 – 52.7	58.4 – 59.0		1
Table S7: Examples of possible improvements for tcpA.

Local alignments of primers with their target sequences, perfect matches are shown by dots. Shorter primers contained into these primers are not shown. Columns: 1: Tm computed with OHM that is often slightly underrated, 2: consensus Tm computed with dnaMATE, 3: alignments, 4: number of target sequences. Primers can be improved by adding ambiguities shown in bold.

Tm (°C)	Cons. Tm (°C)	Sequence alignment	Targets
39.5	51.5	ATGCAATTATTTAAACAGCTTTTTAAG	43
37.9	51.5 – 52.4	3
39.5 – 41.1	51.5 – 52.4	ATGCAATTAYTTAAACAGCTTTTTAAG	46
52.5	55.1	CACGATAAGAAAAACGGTCAAGGG	44
47.9	1	
45.3	1	
50.5 – 52.5	55.1 – 57.5	CRGATAAGAAAAACGGTCAAGGG	46
Table S8: Examples of possible improvements for other genes.

Local alignments of primers with their target sequences, perfect matches are shown dots. Columns: 1: gene name, 2: Tm computed with OHM that is often slightly underrated, 3: consensus Tm computed with dnaMATE, 4: alignments, 5: accession number of target sequences. Primers can be improved by adding ambiguities shown in bold.

Gene	Tm (°C)	Cons. Tm (°C)	Sequence alignment	Targets
cep	58.1	53.1	AACCCGAGGTAAAGAGTG	CP001486
	54.4			CP001236, AF220606
	58.1 – 58.3	51.7 – 53.1	AACCCGAGGTAAAGAGTG	CP001486, M83563
				AF220606
zot	54.1	51.6	AACCCGTTTTCTCTCTACCA	X64098, FJ209009, X74730, FJ209005, FJ209007
	47.7			FJ209006, FJ209008, FJ209010
	54.1 – 59.5	51.6 – 55.5	AACCCGTTTTCTCTCTACCA	AE003852, AF220606
				CP001235.PE1548
tcpQ	54.1	56.6	GAGGACTTGTCTGAATCTGCTCAT	FJ209011, X64098, FJ209009, X74730, FJ209005, FJ209007
	48.2			FJ209006, FJ209008, FJ209010
	51.5 – 54.1	53.9 – 56.6	GAGGACTTGTCTGAATCTGCTCAT	AE003852, AF220606
				CP001235.PE1548
orfU	58.8	58.7	AACCTCGGTCTCGCCCTCTGCATC	FJ209005, FJ209007, CP001235, FJ209010, FJ209006, FJ209009, X64098, FJ209011, X74730
	54.6			FJ209008
	58.8 – 60.5	58.7 – 61.2	AACCTCGGTCTCGCCCTCTGCATC	FJ209004
tcpB	56.5	51.7	CGTTGCCGTCAGTCTTTG	FJ209005, FJ209007, CP001235, FJ209010, FJ209006, FJ209009, X64098, FJ209011, X74730
	53.4			FJ209008
	52.0			FJ209004
	55.2 – 57.9	46.5 – 51.5	YGTTGGCGTCAGTCTTTG	FJ209005, FJ209007, CP001235, FJ209010, FJ209006, FJ209009, X64098, FJ209011, X74730
Table S9: Strains, biovars and serotypes of nucleic sequences.

Columns: 1: gene name, 2: accession number, 3: number of other sequences identical to or contained in the sequence, 4: species names, 5: biovar, serotype and strain information.

Accession number	Duplicates	Species	Biovar, Serotype and Strain
D30052.CTXA	30	Vibrio cholerae	O1 0402, O1 0403, O1 0404, O1 0405, O1 0406, O1 0407, O1 0408, O1 0409, O1 0410, O1 0502, O1 0503, O1 0504, O1 0505, O1 0506, O1 0507, O1 0508, O1 0601, O1 0602, O1 0603, O1 0604, O1 0605, O1 0606, O1 0702, O1 0706, O1 0709, O105 571-88, O139 0401, O141 203-95, O37 1322-69, O37 87
FJ748608.CTXA	0	Vibrio cholerae	non O1/O139 J31W
AJ375590.TOXA	0	Vibrio cholerae	Inaba
X00171.PE1	1	Vibrio cholerae	2125
X58786.PE1	14	Vibrio cholerae	Classical 569B, El Tor 2125, El Tor O1 B33, El Tor O1 N16961, El Tor O1 VC44, Inaba O1 VC04, MJ-1236, MTCC 3906, O1 O395, O139 JS9803, O139-Bengal 1854
AF175708.CTXA	0	Vibrio cholerae	KNIH002
AF390572.CTXA	10	Vibrio cholerae	Classical O1 GP8, Classical O1 H218, Classical O1 NIH35A3, Classical O1 NIH41, Classical O1 V154, Classical O1 VC44, El Tor O1 B33, El Tor O1 CO457, El Tor O1 VC106, El Tor O1 VC20, O27 65-96
AY376268	0	Vibrio cholerae	non O1/O139 F
AY376267	0	Vibrio cholerae	non O1/O139 B
DQ132785	0	Vibrio cholerae	
CP001486.PE458	3	Vibrio cholerae	El Tor O1 N16961, MJ-1236, O1 M66-2, Ogawa O1
M59466.PE1	0	Vibrio cholerae	DH5-alpha
CP001236.HAP	1	Vibrio cholerae	Ogawa O1 O395
AB435238	0	Vibrio mimicus	ES-39
AB071709.VFPA	0	Vibrio fluvialis	AQ0005
M64809.PE1	0	Vibrio proteolyticus	
EU675309	0	Vibrio tubiashii	RE22
FJ455120	0	Vibrio tubiashii	00-90-6
FJ455119	0	Vibrio tubiashii	X00-12-1; RE98
FJ455121	0	Vibrio tubiashii	ATCC 19105
US50548.PE1	0	Vibrio vulnificus	
CP000062.HLYA	0	Vibrio cholerae	Ogawa O1 O395
A3757090.HLYA	0	Vibrio cholerae	Inaba
Y00557.HLYA	2	Vibrio cholerae	O17, El Tor O1 N86, O1 M66-2
CP001486.PE34	7	Vibrio cholerae	ATCC 14035, CIP104154, Clin2200, El Tor N16961, Env25, M793, MJ-1236, O139
M36855.PE1	0	Vibrio cholerae	
GU809235	0	Vibrio cholerae	Env40
GU586279	0	Vibrio cholerae	Env8
GU809234	0	Vibrio cholerae	Env8Q
GU586281	0	Vibrio cholerae	Env34
AF194418.HLYA	0	Vibrio cholerae	3509
GU593975	0	Vibrio cholerae	Env4Q
DS8374.PE1	1	Vibrio cholerae	N037
AY427780.PE1	0	Vibrio cholerae	El Tor non O1/O139
GU586277	0	Vibrio cholerae	Env31Q
GU230682	0	Vibrio harveyi	STD-3-0945
GU230681	0	Vibrio harveyi	STD-3-0945
GU137288.VMHA	0	Vibrio mimicus	ATCC 33653
U68271.VMHA	0	Vibrio mimicus	ATCC 33653
GU137289.VMHA	0	Vibrio mimicus	03-4472g2
GU137291.VMHA	0	Vibrio mimicus	05-3478
GU137290.VMHA	0	Vibrio mimicus	CDC08-2487
EF187438	0	Vibrio mimicus	HX4
FJ222406	0	Vibrio mimicus	
AF348455	0	Vibrio mimicus	
CP001485.PE2734	2	Vibrio cholerae	El Tor O1 N16961, MJ-1236, O1 M66-2
CP001235.OMP6	2	Vibrio cholerae	Ogawa O1 O395
AF253529	0	Vibrio cholerae	El Tor
DQ356330	0	Vibrio mimicus	04-14
DQ356331	0	Vibrio mimicus	HX4
DQ846741	0	Vibrio mimicus	04-5
Accession	Organism	Strain/Reference	
-----------	-----------------------------------	------------------------	
EU285491	Vibrio tubiashii	ATCC 19109	
DQ846743	Vibrio mimicus	04-13	
EU285490	Vibrio tubiashii	ATCC 19105	
AE016795.PE1557	Vibrio vulnificus	CMCP6	
BA000357.VV2720	Vibrio vulnificus	YJ016	
DQ090545	Vibrio vulnificus	VV7-00	
DQ090544	Vibrio vulnificus	NCIMB 2136	
CP001805.PE989	Vibrio sp.	EX25	
CP000789.PE3292	Vibrio harveyi	ATCC BAA-1116; BB120	
FJ919231	Vibrio harveyi	zj2008	
CP001808.PE1228	Vibrio sp.	EX25	
CP000790.PE374	Vibrio harveyi	ATCC BAA-1116; BB120	
aompW	Vibrio cholera	ompW	
BA000332.VPA0096	Vibrio paraohaemolyticus	O3:K6, ATCC 17802	
DQ425109	Vibrio paraohaemolyticus	ZJ2003	
AY944132	Vibrio alginoleticus	H4901	
DQ075316	Vibrio alginoleticus	H4901	
GG991116	Vibrio alginoleticus	H4901	
CP001808.PE902	Vibrio sp.	EX25	
CP000790.PE2148	Vibrio harveyi	ATCC BAA-1116; BB120	
FJ9908286	Vibrio harveyi	ZJ2008	
FM954973.PE1234	Vibrio splendidus	LGP32	
M85198.STN	Vibrio cholera	NG1-36	
M97591.STO	Vibrio cholera	NG1-36	
tcpA	Vibrio cholera	tcpA	
AF030546	Vibrio cholera	non O1/O139 #151	
DQ132784.PE1	Vibrio cholera	non O1/O139 #208	
FJ209006.TCPA	Vibrio cholera	O27 M1112	
AF414371	Vibrio cholera	O36 VCE 22	
AF512421.TCPA	Vibrio cholera	EVC O1 ZI6061	
EU622531.TCPA	Vibrio cholera	EVC O1 LN9309, EVC O1 LN93097, EVC O1 ZI4042, HB84419, O1 ZI59	
AF512423.TCPA	Vibrio cholera	EVC O1 ZI4042	
AF209004.TCPA	Vibrio cholera	O80 M1098, O77 8-76	
AF452571	Vibrio cholera	O26 63	
FJ209009.TCPA	Vibrio cholera	O37 1322-69, O37 V52, non O1/O139 M1618	
X64098.TCPA	Vibrio cholera	Classical O1 Z17561	
M33514.TCPA	Vibrio cholera	Classical Z17561	
AF315787	Vibrio cholera	343CAS	
AB012946	Vibrio cholera	OXQ9065	
AY056618.TCPA	Vibrio cholera	O1 ZI24	
AF452580	Vibrio cholera	O191 366-96	
AF452573	Vibrio cholera	O48 AQ1875	
EU622527.TCPA	Vibrio cholera	O1 ZI22	
EU362122	Vibrio cholera	OS6 A199	
GU797082	Vibrio cholera	OS6 A217	
EU622526.TCPA	Vibrio cholera	O1 ZI20	
FJ209005.TCPA	Vibrio cholera	O105 577-88, O105 M1118, O4 VCE232	
AF452585	Vibrio cholera	O44 SCE188	
AF390571	Vibrio cholera	O27 365-96	
AF452574	Vibrio cholera	O49 507-94	
EU622525.TCPA	Vibrio cholera	ZI109	
AF139626	Vibrio cholera	O59 10259	
FJ209008.TCPA	Vibrio cholera	O141 203-93, O141 M1593	
GU797083	Vibrio cholera	OS6 K216	
GU797084	Vibrio cholera	non O1/O139 A213	
FJ209007.TCPA	Vibrio cholera	O115 523-80, O115 M1567	
AY056619.TCPA	Vibrio cholera	XJ90006	
Accession	Strain	Type	
-----------	--------	------	
DQ356010	Vibrio mimicus	HX4	
EU622529.TCPA	Vibrio cholerae El Tor O139 JS9803, O1 ZJ25, O139 HLJ9803, O139 JS9801, O139 JX98108, O139 LN1997	5	
AF512411.TCPA	Vibrio cholerae O139 GD9512, O139 NM1996	1	
EU649677.TCPA	Vibrio cholerae Y1	0	
EL622532.TCPA	Vibrio cholerae O1 ZJ65	0	
AF512408.TCPA	Vibrio cholerae O139 XJ93131	0	
X74730.TCPA	Vibrio cholerae EVC O1 FJ62168, EVC O1 GD1961, EVC O1 GD98224, EVC O1 GX9525, EVC O1 LN9337, EVC O1 SD76137, EVC O1 SD7783, EVC O1 SD7763, EVC O1 WUJANG2, EVC O1 XJ73329, El Tor E7946, El Tor O1 C6706, El Tor O1 H1, El Tor O1 N16961, El Tor O1 SC8511, El Tor O1 SC98107, El Tor O1 SM115, El Tor O139 FJ98352, El Tor O139 JX94484, MJ-1236, O1 M2140, O1 M66-2, O1 ZJ47, O139 63-93(MO45), O139 FJ9510, O139 MO10, O139 SD01001, O37 CO130, O44 S66-94, O53 S585	29	
EU649678.TCPA	Vibrio cholerae O139 XJ93006	0	
FJ209003.TCPA	Vibrio cholerae O1 M794	0	
AY052831.PE1	Vibrio cholerae SD95001	0	
EL622533.TCPA	Vibrio cholerae O1 ZJ75, O8 V54	1	
AF452570	Vibrio cholerae O8 153-94	0	
FJ209010.TCPA	Vibrio cholerae non O1/O139 M1619	0	
tcpI	Vibrio cholerae Ogawa O1 O395	3	
L25659.TCPJ	Vibrio cholerae Ogawa O1 O395	0	
X4098.TCPI	Vibrio cholerae Classical O1 Z17561	0	
CP001485.PE23461	Vibrio cholerae El Tor O1 H1, El Tor O1 N16961, MJ-1236, O1 M66-2	4	
toxR	Vibrio cholerae CECT 514T	2	
CP001235.TOXR	Vibrio cholerae Ogawa O1 O395	1	
CP001485.PE2314	Vibrio cholerae MJ-1236, O1 M66-2, El Tor O1 N16961	2	
GU230678.TOXR	Vibrio harveyi STD 3-0953	0	
GU230677.TOXR	Vibrio harveyi STD 3-0949	0	
EF693743.TOXR	Vibrio mimicus 1.1969	0	
AF170881	Vibrio mimicus ATCC 33655	0	
zot	Vibrio cholerae Classical O1 GP8, Classical O1 H218, Classical O1 NIH35AJ, Classical O1 NIH41, Classical O1 V154, Classical O1 VC44, El Tor O1 B33, El Tor O1 CO457, El Tor O1 VC106, El Tor O1 VC20, Ogawa O1 O395	14	
M83563.ZOT	Vibrio cholerae El Tor O1 N16961, KNIH002, MJ-1236, Ogawa O139	3	
CP001486.PE741	Vibrio cholerae El Tor O1 N16961, KNIH002, MJ-1236, Ogawa O139	3	
AF207857	Vibrio mimicus P15	0	
AF220606.ZOT	Vibrio cholerae El Tor O1 86015	0	
Table S10: List of softwares available for the design of primers. “Speciality” describes if softwares can design primers for specific molecular methods and “Input” reports the several types of format compatible with each software. “Parameter settings” presents common parameters of softwares and the methods used to compute melting temperature (Tm). “Option” shows if a program supports degenerated positions (IUPAC code), checks specificity (BLAST of primers) and coverage (BLAST of input sequences) of primers, and allows using target sequences and non-target sequences. qPCR: quantitative PCR, RFLP: Random Fragment Length PCR, SNP: Single Nucleotide Polymorphism.

Type	Primer properties determination	%GC	Amplicon size	Primer size	Secondary structure	Substrate concentrations	Basic method (Tm)	Salt-adjusted method (Tm)	Nearest neighbor method (Tm)	BLAST for input sequences	BLAST for primers	IUPAC code	Non-target sequences	Region selection
De novo primer design														
Primer properties determination		*												
Long-Range PCRs		*												
Multiplex PCRs		*												
qPCRs														
Regular PCRs		*												
RFLP			*											
SNP Genotyping / Mutagenesis		*	*											
GenBank ID	*													
Multiple amino acid sequences		*												
Multiple nucleic acid sequences		*												
Reference SNP ID														
Single amino acid sequence	*													
Single nucleic acid sequence	*	*												

18