devolatilization under subduction-zone conditions. Along high-
temperature geotherms clay-rich marls completely devolatilize
before reaching the depths at which arc magmatism is generated,
but along low-temperature geotherms, they undergo virtually no
devolatilization. And from 80 to 180 km depth, little devolatiliza-
tion occurs for all carbonate-bearing marine sediments. Infiltra-
tion of H$_2$O-rich fluids therefore seems essential to promote
subarc decarbonation of most marine sediments. In the absence
of such infiltration, volatiles retained within marine sediments
may explain the apparent discrepancy between subducted and
volcanic volatile fluxes and represent a mechanism for return of
carbon to the Earth’s mantle.

A premise of our work is that realistic modelling of metamorphic
devolatilization of subducted lithologies is only possible on the basis
of phase equilibria in chemical systems closely approximating actual
bulk compositions. Our studies on metamorphic devolatilization
of the other two main carbonate-bearing lithologies involved in
subduction zones (opxcarbonates and metabasalts) are considered
elsewhere2,7. Carbonate is abundant in two main pelagic marine
sediment lithologies2(1) siliceous limestones and (2) clay-carbo-
nates (marls). From the database of ref. 8 (see Supplementary
Information) we selected bulk compositions of silicate limestones
from the Marianas and Vanuatu trenches, a marl from the Antilles
trench and their average marine sediment bulk composition
(denoted ‘GLOSS’ in ref. 8). Our computations account for the
oxide components: SiO$_2$, Al$_2$O$_3$, FeO, MgO, CaO, Na$_2$O, K$_2$O, CO$_2$
and H$_2$O.

For each marine sediment bulk composition, the corresponding
phase diagram section (Fig. 1) was computed as a function of
pressure (P) and temperature (T) by free-energy minimization9.
The thermodynamic database of ref. 10 was used for the properties
of all end-member species, and mineral solutions were modelled as
described elsewhere2. Thermodynamic data for H$_2$O, CO$_2$ and their
mixtures were computed from the equation of state given in ref. 11.
To track metamorphic devolatilization along the top of subducted
slabs, we adopted the geotherms2,7 for the subduction zones of
northwestern and southeastern Japan (Fig. 1). These geotherms
are reasonable approximations for the respective extremal low-
temperature and high-temperature geotherms for subduction
zones (S. M. Peacock, personal communication).

Because of compositional degrees of freedom in the crystalline
and fluid phases, the phase diagram sections are dominated by
multivariate phase fields. Consequently, both mineral modes and
compositions vary continuously along geotherms (Fig. 2). Phase
relations along geotherms up to a pressure $P \approx 3$ GPa change
significantly (Fig. 1) because of intersection with numerous phase
field boundaries. However, at $P > 3$ GPa, the geotherms are
subparallel to the phase field boundaries (Fig. 1); consequently,
little reaction occurs along geotherms at $P > 3$ GPa. The differences
between these regimes are illustrated in Fig. 2. Accordingly, sig-
nificant changes in the mineralogy and mineral proportions occur
up to $\sim 800 ^\circ C$ ($P \approx 3$ GPa) whereas there is comparatively little
variation above $\sim 800 ^\circ C$.

The fluid composition (Fig. 2) is controlled by multivariate
equilibria involving carbonates and hydrous phases. The rise in
the mole fraction of CO$_2$, X_{CO2}, up to $\sim 750 ^\circ C$ correlates with
consumption of carbonates (Fig. 2), whereas the diminution in X_{CO2}
above $\sim 750 ^\circ C$ occurs because of aragonite production. To track
loss of volatiles we computed the percentage (by weight; wt%) of
H$_2$O and CO$_2$ for carbonate-bearing marine sediments as a function
of pressure and temperature (Fig. 3). In the lower-pressure half of
Fig. 3, the negative P–T slopes of the wt% H$_2$O isopleths reflect
negative slopes of phase field boundaries (Fig. 1). In contrast to
isopleths with negative slopes at lower pressures, isopleths are
subparallel to geotherms at $P > 2$–3 GPa (Fig. 3).

Siliceous limestones release about 1 wt% CO$_2$ and 1 wt% H$_2$O
along the high-temperature geotherm (Fig. 3c, d). Because less CO$_2$
and \(\text{H}_2\text{O} \) are released along lower-temperature geotherms, most of the volatile content of siliceous limestones is retained to depths of 180 km and thus such lithologies would undergo little devolatilization upon subduction. This conclusion is compatible with the existence of ultrahigh-pressure marbles\(^{13}\).

In contrast with siliceous limestones, \(\text{H}_2\text{O} \)-rich lithologies with low initial carbonate contents (that is, clay-rich marls) are predicted to undergo considerably more devolatilization (Fig. 3b). Along the high-temperature geotherm, all of the initial \(\text{CO}_2 \) (4 wt\%) and most of the initial \(\text{H}_2\text{O} \) (10–11 wt\%) is released by 90 km depth (that is, forearcs). For geotherms in the lower-temperature half of the area bounded by the limiting geotherms (Fig. 3b), relatively little \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) would be released. For various geotherms in the higher-temperature half of the area bounded by the limiting geotherms (Fig. 3b), there are significant differences in the amount of devolatilization.

For the carbonate-bearing protoliths considered here, the geotherms at 80–180 km are subparallel to the \(\text{H}_2\text{O} \) and \(\text{CO}_2 \) isopleths (Fig. 3); thus, little or no devolatilization is expected. Consequently, for closed-system behaviour, subducted carbonate-bearing marine sediments would not provide a source of volatiles for arc magmatism. However, decarbonation of marine sediments at these depths may be driven by infiltration of \(\text{H}_2\text{O} \)-rich fluids originating from intercalated hydrous pelagic or terrigenous sediments, and/or metabasalts in the subjacent slab. Computed\(^2\) and experimentally determined\(^14\) high-pressure phase equilibria imply that significant proportions of the initial \(\text{H}_2\text{O} \) in subducted oceanic metabasalts are released under forearcs and subarcs. Infiltration of the evolved fluid into the overlying subducted sediments would induce decarbonation. But because there are no major dehydration ‘pulses’ in subducted metabasalts under volcanic arcs\(^13\),\(^14\), no corresponding pervasive infiltration of water from dehydrating meta-

Figure 1 Phase equilibria computed for selected bulk compositions from the database of ref. 8. Further details are available in Supplementary Information. The computer programs, and the thermodynamic data and equations of state utilized by these programs, are available at www.erdw.ethz.ch/~jamie/perplex.html. Mineral abbreviations are: Ab, albite; Arg, aragonite; Cal, calcite; Car, Mg-Fe carpholite; Chl, chlorite; Coe, coesite; Cpx, clinopyroxene; Czo, clinozoisite; Dol, dolomite; Gln, glaucophane; Grt, Garnet; Ky, kyanite; Lws, lawsonite; Mgs, magnesite; Pg, paragonite; Qtz, quartz; Sa, Sanidine; Tpz, topaz.

With the exception of muscovite absence (denoted by (Ms)) in a high-temperature field of Vanuatu, muscovite + quartz/coesite + fluid is present in all phase fields. The shading denotes the variance of the phase fields. Univariant phase fields are denoted by thick lines. The semi-parallel thickest curves are geotherms for southeastern (right) and northwestern (left) Japan\(^{12}\). The subarc depth range is from ref. 18. Assemblages in the small phase fields below \(-1.5 \text{ GPa} \) are omitted for clarity.
Figure 2 Modal percentages of minerals and fluid composition. Modal percentages of minerals (left ordinate and solid lines) and fluid composition (right ordinate and dashed line) are shown for the average marine sediment bulk composition (‘GLOSS’ in ref. 8) along the high-temperature geotherm shown in Fig. 1. Phase abbreviations as in Fig. 1. The vertical line at ~770°C marks the quartz–coesite equilibrium.

Figure 3 Weight percentages of CO₂ and H₂O for selected marine sediment bulk rock compositions (see Fig. 1). a. Gloss; b. Antilles; c. Marianas; d. Vanuatu. Heavy curved lines are limiting geotherms (see Fig. 1). Values of the initial wt% CO₂ and H₂O are given in the insets (from ref. 8). The CO₂ and H₂O contents of the fluid phase can be determined by subtracting the data in these diagrams from the initial volatile contents of the protoliths.
basalts is expected in subarc. Barring extensive infiltration of externally derived fluids, our study implies marked devolatilization under forearcs (for clay-rich marls with high-temperature geotherms) or retention of H2O and CO2 to depths well beyond subarc (for siliceous limestones in all geotherms and clay-rich marls with low-temperature geotherms). Accordingly, most of the initial CO2 and H2O in subducted marine sediments will not be released beneath volcanic arcs. This inference is consistent with both the deficiency in the amount of CO2 released from arc volcanoes compared to the amount of CO2 contained within subducted carbonates (Table 1) and with the imbalance between subducted versus expelled H2O (ref. 1).

Our equilibrium analysis implicitly assumes that there is no significant kinetic overstepping and metastability of metamorphic reactions. Although significant disequilibrium has been suggested for the transformation of anhydrous oceanic basalts and gabbros to eclogites15, the catalytic effect of H2O (ref. 15) implies that equilibrium is more likely in dehydrating systems such as subducted sediments.

Melting is an alternative mechanism for release of volatiles from subducted sediment. Recent experiments using marine red clay16 suggest that sediment melting does not occur for the geotherms that we consider here. However, because metastable starting materials (for example, red clay) are unsuitable models for subduction-zone geotherms, confirmation of this conclusion requires experiments with more realistic initial mineral assemblages. Dissolution of minerals in supercritical fluids remains a possibility, albeit largely unquantified, alternative mechanism for devolatilization.

As shown in Fig. 2, fluids produced by metamorphism of subducted marine sediments are H2O-rich. Consequently, expulsion of such fluids to the overlying mantle wedge would not substantially affect the P–T conditions of melting (solids) of the mantle wedge compared to those expected in the presence of a pure H2O fluid.

Devolatilization of subducted sediment could contribute to seismicity along the tops of subducted slabs. The continuous nature of devolatilization is compatible with the spread of earthquake hypocentres along individual subduction zones17. However, correlation of slab seismicity with metamorphic devolatilization of subducted sediments needs to consider the marked differences in devolatilization for different bulk compositions and geotherms.

Table 1 Subduction zone carbon budget
Subducted carbon (Tmol yr⁻¹**)
Sediment carbonate²
Sediment organic carbon¹
Oceanic metasalts¹⁵
Total
Expelled carbon (Tmol yr**⁻¹**)
Carbon imbalance (Tmol yr**⁻¹**)

¹ *Tmol = 10¹² mol.
² (Subducted carbon) = (expelled carbon).

Supplementary information is available on Nature's World-Wide Web Site (http://www.nature.com) or as paper copy from the London editorial office of Nature.

Acknowledgements

We thank S. Peacock for advice about subduction zone geotherms, and G. Bebout, K. Caldeira and M. Schmidt for comments and suggestions. This work was supported by the MARGINS program of the NSF.

Correspondence and requests for materials should be addressed to D.M.K. (e-mail: kerrick@geosc.psu.edu).

Adjustment to climate change is constrained by arrival date in a long-distance migrant bird

Christiaan Both† & Marcel E. Visser†

† Zoological Laboratory, Groningen University, PO Box 14, 9750 AA Haren, The Netherlands

† Netherlands Institute of Ecology, PO Box 40, 6666 ZG Heteren, The Netherlands

Spring temperatures in temperate regions have increased over the past 20 years, and many organisms have responded to this increase by advancing the date of their growth and reproduction. Here we show that adaptation to climate change in a long-distance migrant is constrained by the timing of its migratory journey. For long-distance migrants climate change may advance the phenology of their breeding areas, but the timing of some species' spring migration relies on endogenous rhythms that are not affected by climate change. Thus, the spring migration of these species will not advance even though they need to arrive earlier on their breeding grounds to breed at the appropriate time. We show that the migratory pied flycatcher Ficedula hypoleuca has advanced its laying date over the past 20 years. This temporal shift has been insufficient, however, as indicated by increased selection for earlier breeding over the same period. The shift is hampered by its spring arrival date, which has not advanced. Some of the numerous long-distance migrants will suffer from