Translocation of PKCθ in T cells is mediated by a nonconventional, PI3-K– and Vav-dependent pathway, but does not absolutely require phospholipase C

Martin Villalba,1,2 Kun Bi,1 Junru Hu,1 Yoav Altman,1 Paul Bushway,1 Eric Reits,3 Jacques Neefjes,3 Gottfried Baier,4 Robert T. Abraham,5 and Amnon Altman1

1Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121
2Laboratory of Intracellular Signaling and Gene Regulation, Institut de Génétique Moléculaire de Montpellier-CNRS, 34293 Montpellier, France
3Department of Tumor Biology, Netherlands Cancer Center, 1066 CX Amsterdam, Netherlands
4Institute for Medical Biology and Human Genetics, University of Innsbruck, A-6020 Innsbruck, Austria
5Program in Signal Transduction Research, The Burnham Institute, La Jolla, CA 92037

PKCθ plays an essential role in activation of mature T cells via stimulation of AP-1 and NF-κB, and is known to selectively translocate to the immunological synapse in antigen-stimulated T cells. Recently, we reported that a Vav/Rac pathway which depends on actin cytoskeleton reorganization mediates selective recruitment of PKCθ to the membrane or cytoskeleton and its catalytic activation by anti-CD3/CD28 costimulation. Because this pathway acted selectively on PKCθ, we addressed here the question of whether the translocation and activation of PKCθ in T cells is regulated by a unique pathway distinct from the conventional mechanism for PKC activation, i.e., PLC-mediated production of DAG. Using three independent approaches, i.e., a selective PLC inhibitor, a PLCγ1-deficient T cell line, or a dominant negative PLCγ1 mutant, we demonstrate that CD3/CD28-induced membrane recruitment and COOH-terminal phosphorylation of PKCθ are largely independent of PLC. In contrast, the same inhibitory strategies blocked the membrane translocation of PKCα. Membrane or lipid raft recruitment of PKCθ (but not PKCα) was absent in T cells treated with phosphatidylinositol 3-kinase (PI3-K) inhibitors or in Vav-deficient T cells, and was enhanced by constitutively active PI3-K. 3-phosphoinositide-dependent kinase-1 (PDK1) also upregulated the membrane translocation of PKCθ, but did not associate with it. These results provide evidence that a nonconventional PI3-K– and Vav-dependent pathway mediates the selective membrane recruitment and, possibly, activation of PKCθ in T cells.

Introduction

Members of the PKC family play an important role in T cell activation (Altman et al., 1990). T cells express several members of the PKC family, but the relative contribution of distinct T cell–expressed PKC enzymes to T cell receptor (TCR)*/CD28-initiated signaling cascade is not well understood. However, recent work revealed that at least one Ca2+-independent PKC, PKCθ, which is selectively expressed in T cells, muscle, and a few other tissues (Baier et al., 1993), plays an important role in mature T cell activation (Altman et al., 2000; Isakov and Altman, 2002). Thus, PKCθ activates AP-1 (Baier-Bitterlich et al., 1996) and NF-κB (Coudronniere et al., 2000; Lin et al., 2000) and, accordingly, receptor-induced AP-1 and NF-κB activation is blocked in peripheral T cells from PKCθ knockout mice (Sun et al., 2000). Second, engagement of antigen-specific T cells by antigen-presenting cells (APCs) leads to a rapid, stable, and high-stoichiometry localization of PKCθ, but not other T cell–expressed PKCs, to the T cell-APC contact site (Monks et al., 1997). This contact site has recently been termed the supramolecular activation complex (SMAC) (Monks et al., 1998) or the immunological synapse (IS)
This clustering correlates with the catalytic activation of PKCθ, and it only occurs upon productive activation of T cells (Monks et al., 1997). PKCθ also positively regulates expression of the activation antigen, CD69, which is expressed in subsets of developing thymocytes and in activated T cells (Sun et al., 2000; Villalba et al., 2000a).

The selective mechanism that recruits PKCθ to the SMAC/IS during antigen stimulation remains elusive. In this regard, we found recently that Vav and Rac selectively promote the membrane and cytoskeleton translocation of PKCθ, and mediate its enzymatic activation by CD3/CD28 costimulation in a process that depends on actin cytoskeleton reorganization (Villalba et al., 2000a). A similar pathway mediates the antigen-induced translocation of PKCθ into lipid rafts (Bi et al., 2001; Villalba et al., 2001). Similarly, recent reports indicate functional cooperation between Vav and PKCθ in several T cell signaling pathways (Dienz et al., 2000; Hehner et al., 2000; Moller et al., 2001) and with the finding that Vav is essential for actin polymerization and TCR cap formation after TCR/CD3 ligation (Fischer et al., 1998; Holsinger et al., 1998; Wülfing et al., 2000). Because this effect was specific for PKCθ (Villalba et al., 2000a), we hypothesized that it may represent a novel mechanism, which is independent on the conventional PKC activation pathway mediated by phospholipase C-1 (PLCγ1). In this pathway, TCR-mediated tyrosine phosphorylation and subsequent activation of PLCγ1 (Granja et al., 1991; Park et al., 1991; Secrist et al., 1991; Weiss et al., 1991) lead to hydrolysis of inositol phospholipids and production of the second messenger, DAG. Membrane-associated DAG is an essential cofactor that binds, recruits, and subsequently activates PKCθ.
Ca²⁺-dependent conventional PKCs (cPKCs) and Ca²⁺-independent novel PKCs (nPKCs) in the plasma membrane (Nishizuka, 1995; Irvin et al., 2000; Zhang et al., 2000). PLCγ1 plays an important role in T cell activation, as T cells expressing a LAT mutant, which cannot recruit and activate PLCγ1, are deficient in several downstream signaling events, including Ca²⁺ mobilization and activation of the Ras/ERK pathway and NFAT (Irvin et al., 2000; Zhang et al., 2000). Similarly, a PLCγ1-deficient T cell line was recently found to display severe activation defects (Irvin et al., 2000).

In the present work, we examined the role of PLCγ1 in the membrane and lipid raft recruitment of PKCθ and its catalytic activation in T cells. Using three independent approaches to deplete or inhibit cellular PLCγ1 activity, we demonstrate that the membrane recruitment and activation of PKCθ (but not PKCα) are independent of PLCγ1. We further show that this mechanism involves Vav, phosphatidylinositol 3-kinase (PI3-K), and, indirectly, 3-phosphoinositide-dependent kinase-1 (PDK1). These results support the existence of a novel mechanism, which plays a role in the selective TCR-induced activation of PKCθ and, potentially, its recruitment to the T cell synapse.

Results
PLC-inhibiting strategies fail to block membrane recruitment and phosphorylation of PKCθ

To determine whether the reported Vav/Rac-mediated recruitment of PKCθ to the T cell membrane/cytoskeleton and its activation (Villalba et al., 2000a) are strictly dependent on activation of PLCγ1, we initially examined the effects of U73122 on the anti–CD3/CD28-induced translocation of PKCθ (or, for comparison, PKCα). This compound inhibits agonist-induced activation of PLC and the subsequent hydrolysis of inositol phospholipids in different cell types (Wang et al., 1994), including in TCR-stimulated T cells (Vassilopoulos et al., 1995). Combined anti-CD3/CD28 stimulation induced translocation of both PKC enzymes to the membrane, as evidenced by the approximately twofold increase in membrane expression of immunoreactive PKC (Fig. 1 A). As expected, U73122 pretreatment abolished the membrane translocation of PKCα and, in fact, even reduced its membrane expression below the basal level in unstimulated cells (Fig. 1 A). However, surprisingly, U73122 only minimally reduced the membrane translocation of PKCθ. As an additional control for the effectiveness of U73122 pretreatment, it also blocked the increase in intracellular calcium concentration induced by an anti-CD3 antibody (unpublished data). Conversely, PP2, an inhibitor specific for Src-family kinases, prevented the membrane translocation of PKCθ, but had only a minimal effect on PKCα translocation.

Similar results were obtained using activated human peripheral blood T cells. Thus, U73122 inhibited the anti–CD3/CD28-induced PKCθ translocation, but had no significant effect on PKCθ translocation (Fig. 1 B). On the other hand, the PI3-K inhibitors LY294002 (Fig. 1 B) or wortmannin (unpublished data) essentially blocked the translocation of PKCθ, but only had a minimal effect on PKCα.

Next, we compared the receptor-induced membrane translocation of PKCθ or PKCα in J.γ1, a PLCγ1-deficient cell line, versus J.γ1.WT-2, a PLCγ1-reconstituted cell line derived from this mutant (Irvin et al., 2000). In the J.γ1 cells, anti-CD3 plus anti-CD28 stimulation still induced PKCθ, but not PKCα, translocation (Fig. 1 C). Reconstitution of J.γ1 cells with wild-type PLCγ1 (J.γ1.WT-2) restored PKCα translocation, with a minimal effect on PKCθ translocation. Calculation of the PKC membrane/cytosol expression ratio for each group of cells makes it evident that: (a) Stimulation increases the relative membrane expression of both PKCθ and α in the PLCγ1-reconstituted cells; and (b) In the PLCγ1-deficient cells, stimulation still increases the relative membrane expression of PKCθ, but not PKCα.

Anti-CD3/CD28 stimulation induces a Vav/Rac-dependent (Villalba et al., 2001) PKCθ translocation to membrane lipid rafts, which also localize at the IS (Bi et al., 2001). Therefore, we wished to determine whether this lipid raft translocation of PKCθ requires PLCγ1. Detergent-insoluble glycolipid (DIG) or soluble fractions were isolated from unstimulated or anti–CD3/CD28-stimulated J.γ1 and J.γ1.WT-2 cells, and PKCθ expression in different fractions was examined by immunoblotting. As shown previously (Bi et al., 2001; Villalba et al., 2001), stimulation induced PKCθ translocation to the DIG-containing fractions (lipid rafts) in both cell lines (Fig. 1 D), albeit the distribution pattern of PKCθ among the relevant fractions (2–4) differed between the two cell lines. Nevertheless, the overall amount of PKCθ in fractions 2–4 was higher in J.γ1.WT-2 cells when compared with the PLCγ1-deficient J.γ1 cells, suggesting some role for PLCγ1. The same fractions were probed in parallel with a PLCγ1-specific antibody. As expected, the J.γ1 cells did not express detectable amounts of PLCγ1 and, in agreement with previous results (Zhang et al., 2000), stimulation induced translocation of PLCγ1 to the lipid rafts in the reconstituted (PLCγ1 wt-2) cells (Fig. 1 E).

Activation of PKC enzymes is associated with their autophosphorylation, events that regulate the enzymatic activity (Newton, 1997; Parekh et al., 2000). Although the regulation of PKCθ localization and/or activity by phosphorylation has not been analyzed in detail, a recent study indicated that an antibody specific for phosphorylated Thr-538 in the activation loop of PKCθ reacted specifically with the active, membrane-localized fraction of PKCθ (Bauer et al., 2001). We used another antibody specific for Ser-695 in the COOH-terminal tail of PKCθ, which is a potential autophosphorylation (Keranen et al., 1995) or heterophosphorylation (Ziegler et al., 1999; Parekh et al., 2000) site based on its homology with other PKC enzymes in order to assess the role of PLCγ1 in PKC phosphorylation. This site has very recently been implicated as a positive regulatory site in PKCθ (Liu et al., 2002). As expected, this antibody did not recognize PKCθ in unstimulated T cells, even though PKCθ was readily detected by a PKCθ-specific antibody (Fig. 2, two top panels). Anti-CD3 plus anti-CD28 stimulation induced the expected translocation of PKCθ to the insoluble fraction, which represents the pooled membranes and cytoskeleton. Unlike the PKCθ-specific antibody, the phospho-PKCθ–specific antibody only recognized PKCθ from activated cells, which was exclusively associated with the in-
soluble fraction. Importantly, pretreatment of the cells with a selective PLC inhibitor (U73122, two middle panels) or its nonfunctional analog (U73343, two bottom panels) had no significant effect on the induction and membrane translocation of phospho-PKC\(\theta\) (Fig. 2).

PLC\(\gamma_1\) is not required for Vav-dependent membrane clustering of PKC\(\theta\)

Based on recent findings that a functional interaction between the Vav/Rac pathway and PKC\(\theta\) is required for T cell activation (Dienz et al., 2000; Hehner et al., 2000; Villalba et al., 2000a; Moller et al., 2001), we considered the Vav/Rac pathway as a candidate for a selective PLC\(\gamma_1\)-independent mechanism that recruits PKC\(\theta\) to the membrane. Therefore, we next used a dominant negative PLC\(\gamma_1\) mutant (PLCz), which was previously found to inhibit PLC\(\gamma_1\)-dependent functions in various cells (Chen et al., 1996), to investigate whether the Vav-induced PKC\(\theta\) translocation depends on PLC\(\gamma_1\). Cells were cotransfected with the regulatory domain of PKC\(\theta\) fused to the NH\(_2\) terminus of green fluorescent protein (GFP) (Villalba et al., 2000a) plus combinations of empty vector, PLCz, and/or wild-type Vav. The intracellular localization of GFP (PKC\(\theta\)-GFP) and polymerized actin (F-actin) were analyzed by confocal microscopy (Fig. 3 A).

In agreement with our previous results (Villalba et al., 2000a), either Vav overexpression or anti-CD3 stimulation induced in parallel PKC\(\theta\) translocation to the membrane and F-actin accumulation, and these effects were further en-

Figure 2. Inhibition of PLC does not block PKC\(\theta\) COOH-terminal phosphorylation. Jurkat T cells (2 \(\times\) \(10^6\)) were left unstimulated or stimulated with anti-CD3 plus anti-CD28 antibodies (1 \(\mu\)g/ml each) for the indicated times. Cell aliquots were preincubated for 1 h with U73122 or U73343 (10 \(\mu\)M). Cytosol and insoluble fractions were prepared, resolved by SDS-PAGE, and blotted with anti-phospho-PKC\(\theta\) (p-PKC\(\theta\)) or anti-PKC\(\theta\) antibodies. The insoluble fraction represents the combined membrane and cytoskeleton fractions, which was not further fractionated in order to minimize dephosphorylation of p-PKC\(\theta\).

Figure 3. Vav-induced PKC\(\theta\) translocation does not depend on PLC\(\gamma_1\) activity.

(A) Jurkat-TAg cells were cotransfected with the indicated combinations of empty vector (Vector) or Vav (5 \(\mu\)g each), and/or dominant negative PLC\(\gamma_1\) (PLCz; 15 \(\mu\)g) together with a PKC\(\theta\) regulatory domain-GFP expression plasmid (5 \(\mu\)g). After 2 d, cells were fixed and GFP localization was analyzed by confocal microscopy. A portion of the cells in each group was stimulated for the final 10 min of culture with anti-CD3 (1 \(\mu\)g/ml). F-actin localization was analyzed by confocal microscopy. The right column panels in the resting or stimulated groups represent a threefold enlargement of a single cell marked with an arrow in the middle column panels. The bars in the lower right micrograph correspond to 20 \(\mu\)m. (B) PLCz blocks Vav- or anti-CD3–induced NFAT activation. Jurkat-TAg cells (10 \(\times\) \(10^6\)) were transfected with the indicated combinations of Vav (5 \(\mu\)g) and/or PLCz (15 \(\mu\)g) in the presence of NFAT-Luc (5 \(\mu\)g) and \(\beta\)-Gal (1.5 \(\mu\)g). Cells were left unstimulated or stimulated for the final 6 h of culture with anti-CD3 or with PMA (100 ng/ml) plus ionomycin (1 \(\mu\)g/ml). Luciferase activity was determined after 48 h of culture, and normalized to the activity of a cotransfected \(\beta\)-galactosidase plasmid. Data represent percentage of the response induced by PMA plus ionomycin, and are average ± standard deviation of two experiments performed in duplicate.
enhanced in anti-CD3 stimulated, Vav-transfected cells. Thus, in the latter case, a very pronounced actin capping and PKCε colocalization, as well as F-actin–enriched, lamelipodia-like structures were observed. Coexpression of PLCz did not reduce the anti-CD3–induced membrane translocation of GFP-PKCε, nor did it affect the membrane localization of GFP-PKCε (or its colocalization with F-actin) in cells that were additionally transfected with Vav, and were either unstimulated or stimulated. As a control for the effectiveness of the dominant negative PLCγ1 mutant, its overexpression under similar conditions blocked the anti-CD3– and/or Vav-induced nuclear factor of activated T cells (NFAT) activation (Fig. 3 B). This dichotomy is consistent with the notion that Vav activates multiple pathways mediated by different effectors (Collins et al., 1997; Bustelo, 2000; Krawczyk et al., 2000; Villalba et al., 2000b), of which only some may depend on intact PLCγ1/Ca2+ signals. Taken together, the results shown above (Figs. 1–3) suggest that CD3/CD28 engagement causes membrane translocation of PKCε via a nonconventional pathway, which appears to be, at least in part, PLCγ1-independent.

Defective membrane translocation of PKCε in Vav-deficient primary T cells

Next, we decided to study the components of the unique pathway involved in the membrane translocation of PKCε. First, we examined the role of Vav by comparing T cells from wild-type versus Vav-deficient T cells (Fig. 4). F-actin localization was determined in parallel. In order to expand the T cell population from the vav−/− mice, their lymph node cells were activated with an anti-CD3 mAb in the presence of IL-2, and then rested prior to restimulation. In T cells derived from vav−/− mice, combined CD3/CD28 engagement induced actin polymerization, with a tendency of F-actin to polarize in a cap-like structure in a fraction of the cells. In agreement with previous results (Fischer et al., 1998; Holsinger et al., 1998), this outcome was clearly reduced in stimulated T cells from vav+/− mice (Fig. 4 A).

Parallel analysis of endogenous PKCε localization demonstrated that CD3/CD28 engagement induced membrane translocation of PKCε in wild-type T cells. This membrane expression was not uniform, but rather restricted to certain parts of the membrane where the endogenous PKCε was found in one or more cap-like structure (Fig. 4 A). An overlay of the two images clearly demonstrated substantial colocalization of F-actin and PKCε in the stimulated T cells. This colocalization was observed in a larger fraction of the cells by comparison with the unstimulated cells. In contrast, the stimulated T cells from vav−/− mice did not differ significantly from their unstimulated counterparts with regard to PKCε localization. Although some colocalization of F-actin and PKCε was observed in these cells, it was markedly less pronounced than in the Vav-expressing T cells. This result is in agreement with our earlier finding that a dominant negative Vav mutant blocked the anti-CD3/CD28-induced...
membrane translocation of PKCθ (Villalba et al., 2000a). Quantification of these results clearly demonstrates the defect in both PKCθ and F-actin capping in the Vav-deficient T cells (Fig. 4 B).

The role of PI3-K in Vav-mediated membrane translocation of PKCθ

PKCθ–generated lipid products activate Vav and recruit it to the membrane by binding to its pleckstrin-homology (PH) domain (Han et al., 1998). Consistent with this finding, a PI3-K inhibitor blocked the membrane translocation of PKCθ in peripheral blood T cells (Fig. 1 B). Together, these findings suggest a role for PI3-K in activating the Vav pathway involved in PKCθ membrane translocation. To address this potential role, we examined the effect of a transfected membrane-targeted (constitutively active) p110 plasmid or a PI3-K inhibitor on the membrane and cytoskeleton translocation of cotransfected PKCθ in Jurkat-TAg cells. As a positive control, we cotransfected another group of cells with Vav, which induces PKCθ translocation to these subcellular compartments (Villalba et al., 2000a).

In empty vector–transfected cells, anti-CD3 stimulation induced membrane translocation of PKCθ, which was reduced by LY294002 pretreatment (Fig. 5 A, top). Similar to Vav, p110 overexpression also induced PKCθ translocation to the membrane as well as the cytoskeleton fractions in unstimulated cells, but no significant cooperation between Vav and p110 was observed; either Vav or p110 enhanced the ability of an anti-CD3 antibody to translocate PKCθ (Fig. 5 B). Expression of p110, as well as anti-CD3 stimulation, also enhanced the membrane and cytoskeleton translocation of Vav (Fig. 5 A, two bottom panels). The PI3-K inhibitor LY294002 markedly inhibited both the p110- and Vav-induced PKCθ translocation. However, it was less effective in Vav- plus p110-cotransfected cells, possibly reflecting the strong activating effect of this combined transfection and/or sufficient tyrosine kinase-mediated and PI3-K-independent Vav activation under these conditions.

Additional experiments demonstrated that a dominant negative Vav mutant, VavΔPH (Villalba et al., 2000a), blocked the membrane and cytoskeleton translocation of PKCθ induced by p110 or anti-CD3, and even reduced the basal expression of PKCθ in these compartments in unstimulated cells (Fig. 5 B). The specificity of this effect vis-à-vis p110 and receptor (CD3) stimulation is evident from the finding that VavΔPH had no effect on PMA-induced PKCθ translocation. Of interest, the majority of the transfected VavΔPH protein localized to the cytoskeleton, and this localization was not affected by p110 coexpression (Fig. 5 B, two bottom panels). This finding suggests that VavΔPH exerts its dominant negative effect by competing with endogenous Vav for binding to potential Vav targets in the cytoskeleton compartment, where Vav is translocated following activation (Fig. 5 A). In addition, combined anti-CD3/CD28–induced PKCθ translocation into the lipid rafts was also blocked by wortmannin and LY294002 (unpublished data). Taken together, these data lend further support for the notion that PI3-K functions upstream of Vav to regulate the membrane and lipid raft translocation of PKCθ (Villalba et al., 2000a, 2001). This pathway appears to be functional in Jurkat (Fig. 5) as well as normal peripheral blood T cells (Fig. 1 B).

PDK1 is indirectly involved in the membrane translocation of PKCθ

PDK1 associates with, and is responsible for, activation loop phosphorylation of different PKC enzymes (Chou et al., 1998; Dutil et al., 1998; Le Good et al., 1998; Balendran et al., 2000; Dutil and Newton, 2000; Sonnenburg et al., 2001). PDK1 and PKC need to be corecruited to the membrane through interaction with their respective membrane-localized allosteric activators in order for this phosphorylation to be efficient (Chou et al., 1998; Parekh et al., 2000; Toker and Newton, 2000; Sonnenburg et al., 2001). Calphostin C, which selectively blocks the allosteric activation of PKC by DAG, also inhibits serum-induced activation loop phosphorylation, as do PI3-K inhibitors (Parekh et al., 1999).
PKCδ translocation is indirectly mediated by PDK1. (A) Jurkat E6.1 cells (10⁶) were stimulated with anti-CD3 plus anti-CD28 antibodies or PMA for 8 min. Subcellular fractions were prepared and analyzed for endogenous PKCδ and PDK1 expression by immunoblotting with specific antibodies. (B) Jurkat-TAg cells were transiently cotransfected with an Xpress-tagged PKCδ expression vector plus c-Myc–tagged PDK1 or PKCδ plus VavΔPH. 40 h later, the cells were left unstimulated, or stimulated with anti-CD3 antibody. A fraction of the stimulated cells was pretreated for LY294002. Subcellular fractionation and immunoblotting were performed as in Fig. 5 and transfected PKCδ was detected by anti-Xpress immunoblotting. (C) Jurkat-TAg cells were transfected as in (B), and the cells were left unstimulated or stimulated with anti-CD3 or PMA. Transfected PKCδ and PDK1 expression in different fractions was determined by immunoblotting with the corresponding tag-specific antibodies.

These findings suggested an alternative mechanism for the membrane recruitment of PKCδ, i.e., its association with PDK1, which, by virtue of its PH domain, may localize PKCδ to the membrane. Therefore, we examined the relative localization of PDK1 and PKCδ in unstimulated or TCR-stimulated T cells.

When Jurkat T cells were stimulated with a combination of anti-CD3 plus -CD28 antibodies (or with PMA), endogenous PKCδ was clearly translocated to the membrane fraction; however, under the same conditions we could not detect similar translocation of endogenous PDK1 (Fig. 6 A), indicating that in T cells, PDK1 intracellular localization is not regulated by TCR/CD28 stimulation. To assess more directly whether PDK1 can influence the translocation of PKCδ, we cotransfected Jurkat-TAg cells with PKCδ plus PDK1 expression vectors. PDK1 coexpression enhanced the membrane and cytoskeleton translocation of PKCδ, and this effect was only partially sensitive to a PI3-K inhibitor (Fig. 6, B and C). Interestingly, this enhanced PDK1-induced translocation of PKCδ was largely reversed by coexpression of the dominant negative (ΔPH) Vav mutant. Even under these overexpression conditions, no PDK1 was detected in the membrane and cytoskeletal fractions of the stimulated cells (Fig. 6 C). In other functional assays we found that coexpression of PDK1 with PKCδ did not enhance the PKCδ-induced activation of NF-κB and AP-1 reporter genes (unpublished data). These results suggest that, although PDK1 may be involved in the maturation (perhaps via activation loop phosphorylation; Bauer et al., 2001) of PKCδ in a similar manner to other PKC enzymes (Chou et al., 1998; Dutil et al., 1998; Le Good et al., 1998; Dutil and Newton, 2000; Toker and Newton, 2000), it does not directly translocate PKCδ to the membrane by associating with it in T cells.

Discussion

Membrane translocation and subsequent activation of cPKCs and nPKCs requires their conserved C1 domain, which binds the second messenger DAG formed in the inner leaflet of the plasma membrane as a result of PLC activation by various receptors (or phorbol ester pharmacophores). The importance of this event was demonstrated by findings that mutations in the C1 domain of several members of the PKC family, e.g. PKCα (a cPKC) and PKCδ (a nPKC), abolish DAG/PLC binding in vitro and/or PMA-mediated membrane translocation (Szallasi et al., 1996; Medkova and Cho, 1999). Although DAG-mediated membrane recruitment could play a role in the translocation and activation of PKCδ as well, it is difficult to explain how DAG binding alone, which is relatively nonselective, could account for the highly specific recruitment of PKCδ to the core region of the SMAC (cSMAC) or the IS. This high degree of selectivity implicates an additional undefined mechanism that either cooperates with PLC-generated DAG, or acts exclusively, to recruit PKCδ to, and activate it in, specific membrane microdomains, i.e., the cSMAC (Monks et al., 1997, 1998) or lipid rafts (Bi et al., 2001; Villalba et al., 2001). This notion is supported by our earlier work demonstrating that a Vav/Rac pathway, which involves actin cytoskeleton reorganization, mediates the membrane recruitment and activation of PKCδ (but not, e.g., PKCα) in response to TCR/CD28 engagement (Villalba et al., 2000a).

In this study we sought to further define components of the selective pathway responsible for PKCδ membrane recruitment and, furthermore, the relative importance of the conventional PLC/DAG-mediated pathway in this event. First, we used three distinct approaches, i.e., a pharmacological PLC inhibitor, a PLCγ1-deficient T cell line, and a dominant negative PLCγ1 mutant to examine the role of PLC by comparing the behavior of PKCδ to that of a representative T cell–expressed cPKC, PKCα. Each of these PLC-inhibiting strategies inhibited the membrane recruitment and/or activation of PKCα, but had, at best, a small effect on PKCδ. In addition, we demonstrate that, like Vav
translocation suggests that Vav may function downstream of PDK1. However, the two could function in separate pathways, a notion supported by the finding that, unlike Vav (Dienz et al., 2000; Hehner et al., 2000), PDK1 did not cooperate with PKCα to activate NF-κB (unpublished data).

Our results do not completely rule out a requirement for DAG binding to the PKCα C1 domain in initiating its membrane binding and activation. It is possible that some residual level of basal DAG that remains even under conditions of blocked PLC activity is sufficient to initiate PKCα membrane binding. Albeit not sufficient for further recruitment of PKCα to specific membrane compartments such as the IS or lipid rafts, it may facilitate the interaction of PKCα with membrane or cytoskeletal component required for translocation of PKCα to the cSMAC and its full activation. Such a component could be some membrane-localized protein kinase that transphosphorylates PKCα or an adapter/scaffold protein that recruits it to specific membrane microdomains (Monks et al., 1997, 1998) or lipid rafts (Bi et al., 2001; Villalba et al., 2001). However, even if such a cooperative binding-activation mechanism exists, we still conclude that, unlike other PKCs, activated PLC and its lipid second messengers are not absolutely essential for PKCα IS translocation and activation.

In summary, our study defines a Vav-, PI3-K- and, indirectly PDK1-dependent pathway(s), which selectively regulates the IS recruitment and activation of PKCα in T cells. Thus, in addition to the conventional PLC/DAG-dependent pathway, the TCR/CD28 receptor system governs at least one additional pathway that positively regulates PKC function. Ongoing studies will define in more detail the molecular basis of this novel pathway.

Materials and methods

Antibodies and reagents

Rabbit (C-18) or goat (C-19) anti-PKCα, goat PDK1, and rabbit anti-PLCγ1 polyclonal antibodies were obtained from Santa Cruz Biotechnology. PKCβ- or α-specific mAbs were obtained from Transduction Laboratories. The anti–human CD3 mAb (OKT3), was purified as previously described (Villalba et al., 1999). The anti–human CD28 mAb was from Pharmingen. The anti–mouse CD3 and CD28 mAbs were a gift from Dr. M. Croft (La Jolla Institute for Allergy and Immunology, San Diego, CA). The anti–human Vav mAb was from Upstate Biotechnology. Donkey anti–rabbit or sheep anti–mouse IgG antibodies were obtained from Amersham Pharma-
cia Biotech. LS294002, Wortmannin, PP2, U73122, and U73343 were ob-
tained from Calbiochem. All other reagents were obtained from Sigma–
Aldrich. Vav+ mice were a gift from Dr. V. Tyskowicz (National Institute for Medical Research, London, UK) (Turner et al., 1997; Costello et al., 1999). An anti–phospho-PKCα antibody was generated by immunizing rabbits with a synthetic phosphopeptide corresponding to the sequence surrounding pSer-695 of PKCα. The homologous residue in other PKC enzymes is auto phosphorylated during activation of the enzyme (Keranen et al., 1995).
Phosphorylation of PKC

The c-Myc-tagged Vav and VavΔPH expression plasmids in the pEF vector, an expression vector encoding the regulatory domain of PKCβ fused to the NH₂ terminus of GFP, Xpress-tagged PKCβ, and the luciferase reporter gene plasmid driven by synthetic NFAT sites derived from the IL-2 promoter have been described (Villalba et al., 2000a). An HA-tagged, dominant negative PLCγ1 mutant (PLCg2) was a gift from Drs. Y. Abassi and K. Vuori (the Burnham Institute, San Diego, CA). This plasmid encodes the tandem SH2-SH2-SH3 domains of PLCγ1 (Chen et al., 1996). A constitutively active PI3-K plasmid (CD2p110) in the form of membrane targeted PI3-K catalytic subunit (Reif et al., 1996) was provided by Dr. D. Cantrell (Imperial Cancer Research Fund, London, England). A c-Myc–tagged PDK1 construct (Chou et al., 1996) was provided by Dr. Toshi Kawakami (La Jolla Institute for Allergy and Immunology, San Diego, CA). As controls for transfection efficiencies, α-β-galactosidase (β-gal) expression plasmid in the pEF vector was used (Villalba et al., 2000a).

Cell culture and transfection

Jurkat T cell lines were grown in RPMI-1640 medium (Life Technologies, Inc.) supplemented with 10% fetal bovine serum, 2 mM glutamine, 1 mM sodium pyruvate, 10 mM Hepes, MEM nonessential amino acid solution (Life Technologies) and 100 U/ml each of penicillin G and streptomycin. Cells in a logarithmic growth phase were transfected with the indicated amounts of plasmid DNAs by electroporation as described (Villalba et al., 1999, 2000a). Human peripheral blood mononuclear cells were prepared from healthy volunteers by Ficoll-Hypaque centrifugation. Cells were stimulated with an activating anti-CD3 mAb (OKT3; 1 µg/ml) plus recombinant human IL-2 (20 U/ml) for 5 d, and then deprived of OKT3 and IL-2 36 h prior to restimulation. Mouse T cells were obtained from lymph nodes of Vav−/− or normal littermate mice, and purified on mouse T cell enrichment columns (R&D Systems). The cells were activated and rested as above, except an anti–mouse CD3 mAb (2C11-145; 1 µg/ml) was used.

Luciferase and β-gal assays

Transfected Jurkat-TAG cells were harvested after 2 d, washed twice with PBS, and lysed. Luciferase or β-gal activities in cell extracts were determined as described (Villalba et al., 1999). The results are expressed as arbitrary luciferase units per arbitrary β-gal units. All experiments were performed in duplicate, and were repeated several times with similar results.

Subcellular fractionation

Subcellular fractionation of Jurkat T cells or peripheral blood mononuclear cells was performed as previously described (Villalba et al., 2000a). Briefly, Jurkat T cells were resuspended in ice-cold hypotonic lysis buffer, and incubated on ice for 15 min. The cells were transferred to a 1-ml syringe and then by-passing them five times through a 30-gauge needle. The lysates were centrifuged at 200 x g for 10 min to remove nuclei and cell debris, the supernatant was collected, and centrifuged at 13,000 x g for 40 min at 4°C. The supernatant (cytosol) was collected, and the pellet was re-suspended in 10 ml 0.32 M sucrose and transferred to Beckman ultracentrifuge tubes. The subcellular fractionation of activated human PBLs was luted to with Laemmli buffer, and identical cell equivalents separated by SDS-PAGE. The subcellular fractionation of activated human PBLs was luted to with Laemmli buffer, and identical cell equivalents separated by SDS-PAGE. The subcellular fractionation of activated human PBLs was luted to with Laemmli buffer, and identical cell equivalents separated by SDS-PAGE.

Purification of DIG fractions

Detergent-insoluble and soluble fractions were separated as described previously (Zhang et al., 1998; Bi et al., 2001) with some modifications. Briefly, Jurkat T cells (20 x 10⁶) were lysed in 1 ml MNE buffer (25 mM MES, pH 6.5, 150 mM NaCl, 5 mM EDTA, 30 mM sodium pyrophosphate, 1 mM sodium orthovanadate and 10 µg/ml protease inhibitors) containing 1% Triton X-100 for 20 min on ice and then incubated for 15 min at 4°C. The supernatants were then mixed with 1 ml 80% sucrose and transferred to Beckman ultracentrifuge tubes. 2 ml of 30% sucrose followed by 1 ml of 5% sucrose in MNE buffer were overlaid. Samples were subjected to ultracentrifugation (200,000 x g) for 18 h at 4°C in a Beckman SW50Ti rotor. 12 fractions were collected from the top of the gradient. Proteins from each fraction were TCA precipitated before separation by 10% SDS-PAGE.

Immunofluorescence and confocal microscopy

Jurkat cells were incubated with or without 1 µg/ml each of anti-CD3 and anti-CD28 mAbs for 10 min over poly-l-lysine–treated microscope slides at 37°C. Cells were then fixed for 20 min with 3.7% paraformaldehyde at room temperature, permeabilized for 2 min with 0.1% Triton X-100 in PBS, blocked for 15 min with 1% BSA in PBS, and then stained with phalloidin-TRITC (Sigma-Aldrich) for 30 min. After washing four times with 1% BSA in PBS, the cells were mounted using a drop of Aqua-Poly/mt (Polysciences). Samples were viewed with a Plan-Apochromat 63 x/1.4 objective on an Nikon microscope. Images were taken using BIORAD MRC 1024 laser scanning confocal imaging system.

Activated mouse T cells were similarly incubated over poly-l-lysine–treated microscope slides coated or not with 5 µg/ml of anti–mouse-CD3 plus-CD28 antibodies in Tris 50 mM, pH 9, for 1 h at 37°C, followed by 4 h at 4°C. Cells were then fixed and permeabilized as described above, and stained with a polyclonal anti-PKCB antibody (C-18) for 1 h. The cells were washed with 1% BSA in PBS, and then incubated with a secondary sheep anti–mouse IgG antibody coupled with Alexa 594 (Molecular Probes) plus phalloidin-FITC. The cells were subsequently washed and processed for confocal microscopy as described above. Microsoft PowerPoint software was used to prepare digital images of gel scans and micrographs.

We would like to thank Drs. Y. Abassi, D. Cantrell, M. Croft, T. Kawakami, A. Toker, V. Tybulewicz and K. Vuori, for mice and plasmids, and N. Weaver for manuscript preparation.

This work was supported by National Institutes of Health Grants CA35299 and GM50819 (A. Altman). M. Villalba is a Special Fellow of the Leukemia & Lymphoma Society (formerly The Leukemia Society of America, Inc.). This publication number 426 from the La Jolla Institute for Allergy and Immunology, San Diego, CA.

Submitted: 22 January 2002
Accepted: 1 March 2002

References

Aghazadeh, B., W.E. Lowry, X.Y. Huang, and M.K. Rosen. 2000. Structural basis for the relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell. 102:625–633.

Altman, A., T. Mustelin, and K.M. Coggleshall. 1990. T lymphocyte activation: a biological model of signal transduction. Crit. Rev. Immunol. 10:547–591.

Altman, A., N. Isakov, and G. Baier. 2000. PKCβ: a new essential superstar on the T cell stage. Immunol. Today. 21:567–575.

Baier, G., D. Telford, L. Giampa, K.M. Coggleshall, G. Baier-Bitterlich, N. Isakov, and A. Altman. 1993. Molecular cloning and characterization of PKCβ, a human novel member of the protein kinase C (PKC) gene family expressed predominantly in hematopoietic cells. J. Biol. Chem. 268:4997–5004.

Baier-Bitterlich, G., F. Überall, B. Bauer, F. Freaser, H. Wachter, H. Grünnicke, G. Utermann, A. Altman, and G. Baier. 1996. PKCδ isoenzyme selective stimulation of the transcription factor complex AP-1 in T lymphocytes. Mol. Cell. Biol. 16:1842–1850.

Baldenrand, A., G.R. Hare, A. Kieloch, M.R. Williams, and D.R. Alessi. 2000. Further evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is required for the stability and phosphorylation of protein kinase C (PKC) delta isoforms. FEBS Lett. 484:89–94.

Bauer, B., N. Krumbek, F. Freaser, F. Hochholdinger, M. Spitaller, W. Schwaiger, A. Simin, F. Überall, B. Schraven, and G. Baier. 2001. Complex formation and cooperation of PKCδ and Akt1/PKBα in the transactivation of the IKKβ1/2αβ and NFκB signaling cascade in T cells. J. Biol. Chem. 276:31627–31634.

Bi, K., Y. Tanaka, N. Courdoumine, S. Hong, K. Sugie, M.J.B. van Stipdonk, and A. Altman. 2001. Antigen-induced translocation of PKCβ to membrane rafts is required for T cell activation. Nat. Immunol. 2:556–563.

Buncele, X.R. 2000. Regulation and signaling properties of the Vav family. Mol. Cell. Biol. 20:1461–1477.

Chen, P., H. Xie, and A. Wells. 1996. Mitogenic signaling from the EGF receptor is attenuated by a phospholipase Cγ/protein kinase C feedback mechanism. Mol. Biol. Cell. 7:871–881.

Chou, M.M., W. Hou, J. Johnson, L.K. Graham, M.H. Lee, C.S. Chen, A.C. Newton, B.S. Schaffhausen, and A. Toker. 1998. Regulation of protein ki-
nase C zeta by PI 3-kinase and PDK-1. *Carr. Biol.* 8:1069–1077.

Collins, T., M. Deckert, and A. Altman. 1997. Views on *Vav*. *Immunol. Today* 18: 221–225.

Costello, P.S., A.E. Walters, P.J. Mee, M. Turner, L.F. Reynolds, A. Prisco, N. Sarner, R. Zamoyska, and V.L.J. Tybulewicz. 1999. The Rhodo-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-κB pathways. *Proc. Natl. Acad. Sci. USA.* 96:3055–3060.

Coudronniere, N., M. Villalba, N. Englund, and A. Altman. 2000. NF-κB activation induced by CD28 costimulation is mediated by PKCθ. *Proc. Natl. Acad. Sci. USA.* 97:3394–3399.

Dienz, O., S.P. Hefner, W. Droge, and M.L. Schmitz. 2000. Synergistic activation of NF-κB by functional cooperation between Vav and PKCθ in T lymphocytes. *J. Biol. Chem.* 275:24547–24551.

Durli, E.M., and A.C. Newton. 2000. Dual role of pseudosubstrate in the coordinated regulation of protein kinase C by phosphorylation and diacylglycerol. *J. Biol. Chem.* 275:10697–10701.

Durli, E.M., A. Toker, and A.C. Newton. 1998. Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). *Carr. Biol.* 8:1366–1375.

Fischer, K.D., Y.Y. Kong, H. Nishina, K. Tedford, L.E. Marengère, I. Kozieradzki, Krawczyk, C., K. Bachmaier, T. Sasaki, R.G. Jones, S.B. Snapper, D. Bouchard, I. Dienz, O., S.P. Hehner, W. Droge, and M.L. Schmitz. 2000. Vav synergizes with protein kinase Cq to mediate IL-4 gene transcription of phospholipase C-γ1 on serine and tyrosine residues in a T cell line. *Proc. Natl. Acad. Sci. USA.* 98:5343–5348.

Reif, K., C.D. Nobes, G. Thomas, A. Hall, and D.A. Cantrell. 1996. Phosphatidylinositol 3-kinase signaling activates a selective subset of Rac/Rho-dependent effectors pathways. *Curr. Biol.* 6:1445–1455.

Rozelle, A.L., I.M. Machesky, M. Yamamoto, M.H. Driessens, R.H. Insall, M.G. Roth, K. Luby-Phelps, G. Mariotti, A. Hall, and H.L. Yin. 2000. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. *Curr. Biol.* 10:311–320.

Rudd, C.E. 1996. Upstream-downstream: CD28 co-signaling pathways and protein kinase C lipid signaling. *Nature.* 429:527–534.

Secrist, J.P., L. Karnitz, and R.T. Abraham. 1991. T cell antigen receptor ligation induces tyrosine phosphorylation of phospholipase C-γ1. *J. Biol. Chem.* 266:12313–12319.

Sonnenburg, E.D., T. Gao, and A.C. Newton. 2001. The phosphoinositide-dependent kinase-1, phospholipase C-γ1, protein kinase C isozymes by a mechanism that is independent of phosphoinositide 3-kinase. *J. Biol. Chem.* 276:45289–45297.

Sun, Z., C.W. Arendt, W. Ellmeier, E.M. Schaeffer, M.J. Sunshine, L. Gandhi, J. Annes, D. Petrizilka, A. Kupfer, P.L. Schwartzberg, and D.R. Littman. 2000. PKCθ is required for TCR-induced NF-κB activation and TOR controls one of two kinase pathways acting upon nPKCδ and nPKCε. *FASEB J.* 14:2002–2008.

van Leeuwen, J.E., and L.E. Samelson. 1999. T cell antigen-receptor signal transduction. *Curr. Opin. Immunol.* 11:242–249.

Vassilopoulos, D., R.C. Smallridge, and G.C. Tsokos. 1995. Effects of an amino-steroid inhibitor of phosphoinositide C-dependent processes on the TCR-mediated signal transduction pathway in human T cells. *Clin. Immunol. Immu-noopathol.* 77:59–68.

Wyllie, M.S., S. Kasibhatla, L. Genestier, A. Mahboubi, D.R. Green, and A. Altman. 1999. PKCθ is a necessary component, and cooperates with calcineurin, to induce FasL expression during activation-induced T cell death. *J. Immunol.* 162:5813–5819.

Wyllie, M., N. Coudronniere, M. Deckert, E. Teixeiro, P. Max, and A. Altman. 2000a. Functional interactions between Vav and PKCθ are required for TCR-induced T cell activation. *Immunity.* 12:151–160.

Wyllie, M., J. Hernandez, M. Deckert, and A. Altman. 2000b. Vav modulation of the Ras/MEK/ERK signaling pathway plays a role in NFAT activation and CD69 upregulation. *Eur. J. Immunol.* 30:1587–1596.

Wyllie, M., K. Bi, F. Rodriguez, Y. Tanaka, S. Schonenberger, and A. Altman. 2001. Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. *J. Cell Biol.* 155:331–358.
Wang, X.D., J.G. Kiang, and R.C. Smallridge. 1994. A phospholipase C inhibitor, U73122, blocks TSH-induced inositol trisphosphate production Ca\(^{2+}\) increase and arachidonic acid release in FRTL-5 thyroid cells. Biochim. Biophys. Acta. 1223:101–108.

Weiss, A., G. Koretzky, R.C. Schatzman, and T. Kadlecek. 1991. Functional activation of the T-cell antigen receptor induces tyrosine phosphorylation of phospholipase C-\(\gamma\) 1. Proc. Natl. Acad. Sci. USA. 88:5484–5488.

Wülffing, C., A. Bauch, G.R. Crabtree, and M.M. Davis. 2000. The vav exchange factor is an essential regulator in actin-dependent receptor translocation to the lymphocyte-antigen-presenting cell interface. Proc. Natl. Acad. Sci. USA. 97:10150–10155.

Zhang, W., R.P. Trible, and L.E. Samelson. 1998. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity. 9:239–246.

Zhang, W., R.P. Trible, M. Zhu, S.K. Liu, C.J. McGlade, and L.E. Samelson. 2000. Association of Grb2, Gads, and phospholipase C-\(\gamma\) 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell antigen receptor-mediated signaling. J. Biol. Chem. 275:23355–23361.

Ziegler, W.H., D.B. Parekh, J.A. Le Good, R.D. Whelan, J.J. Kelly, M. Frech, B.A. Hemmings, and P.J. Parker. 1999. Rapamycin-sensitive phosphorylation of PKC on a carboxy-terminal site by an atypical PKC complex. Curr. Biol. 9:522–529.
