New targets for resolution of airway remodeling in obstructive lung diseases [version 1; peer review: 2 approved]

Ajay P. Nayak, Deepak A. Deshpande, Raymond B. Penn

Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA

Abstract

Airway remodeling (AR) is a progressive pathological feature of the obstructive lung diseases, including asthma and chronic obstructive pulmonary disease (COPD). The pathology manifests itself in the form of significant, progressive, and (to date) seemingly irreversible changes to distinct respiratory structural compartments. Consequently, AR correlates with disease severity and the gradual decline in pulmonary function associated with asthma and COPD. Although current asthma/COPD drugs manage airway contraction and inflammation, none of these effectively prevent or reverse features of AR. In this review, we provide a brief overview of the features and putative mechanisms affecting AR. We further discuss recently proposed strategies with promise for deterring or treating AR.

Keywords

airway remodeling, asthma, GPCR, smooth muscle

Open Peer Review

Approval Status

1
2

version 1
30 May 2018

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Rennolds Ostrom, Chapman University
 School of Pharmacy, California, USA

2. Omar Tliba, Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, The State University of New Jersey, New Jersey, USA

Any comments on the article can be found at the end of the article.
Corresponding author: Raymond B. Penn (raymond.penn@jefferson.edu)

Author roles: Nayak AP: Writing – Original Draft Preparation, Writing – Review & Editing; Deshpande DA: Conceptualization, Writing – Review & Editing; Penn RB: Conceptualization, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The work in Dr. Penn’s lab is supported by National Institutes of Health (NIH) grants HL58506, AI110007, HL136209, and HL114471. The work in Dr. Deshpande’s lab is supported by NIH grants AG041265 and AI126492. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2018 Nayak AP et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Nayak AP, Deshpande DA and Penn RB. New targets for resolution of airway remodeling in obstructive lung diseases [version 1; peer review: 2 approved] F1000Research 2018, 7(F1000 Faculty Rev):680 https://doi.org/10.12688/f1000research.14581.1

First published: 30 May 2018, 7(F1000 Faculty Rev):680 https://doi.org/10.12688/f1000research.14581.1
Airway remodeling in obstructive lung diseases

Airway remodeling (AR) can be defined as a progressive pathological reorganization of the cellular and molecular constitution of the airway wall. While the onset and rate of progression of structural changes in the airways have been subjects of immense debate, AR has been associated with each of the asthmatic phenotypes. Furthermore, the gradual deleterious transformation in lungs can affect airways of all sizes along the bronchial tree. Although the strategies for reversing airway contraction and mitigating airway inflammation have been mainstays of asthma therapy, AR has been clinically intractable. Consequently, a pressing need exists for defining the fundamental pathways contributing to AR pathology and for empowering both basic and clinical research to address this problem. For a comprehensive understanding of the conceptual and practical challenges in AR research, readers are encouraged to review the official research statement of the American Thoracic Society. In this current report, we provide an overview of the limitations of currently approved anti-asthma/chronic obstructive pulmonary disease (COPD) drugs in addressing AR and further describe the therapeutic potential of recently proposed approaches for targeting AR.

AR was first described in 1922 in patients whose death was attributed to asthma. Necropsy specimens from these patients revealed extensive bronchial mucus plugs and thickening of the airway wall. Numerous subsequent clinical investigations have revealed that AR encompasses broad structural changes in the airway that includes thickening of the airway wall, airway smooth muscle (ASM) hyperplasia and hypertrophy, edema, subepithelial fibrosis, increased extracellular matrix (ECM) deposition, immune cell and fibroblast accumulation, angiogenesis, altered matrix composition, goblet cell metaplasia, and mucus hypersecretion. A consensus has emerged that multiple cell types (including epithelium, ASM, fibroblasts, and immune cells) contribute to the development of AR in asthma and COPD (Table 1).

The role of the airway epithelium in triggering initial responses and sustaining architectural changes in asthmatic lungs is evident. In asthma, repetitive damage to the epithelium from exposure to noxious environmental agents and immune modulators promotes shedding of the epithelium. Consequently, the underlying epithelial-mesenchymal trophic unit may be persistently active and in a reparative state, thus promoting chronic and progressive remodeling of the airway. Remodeling manifests in the form of thickening of the epithelial layer, loss of cilia, compromised barrier function, mucus hypersecretion, and ECM remodeling of the subepithelial space. Moreover, the number of mucus-secreting goblet cells also increases in asthmatics. These features collectively contribute to anatomical changes that cause airway narrowing, increased fixed resistance, and mucus plugging of the bronchial lumen.

Physiological ASM function is crucial for maintaining adequate airflow. Changes in both ASM responsiveness and morphology occur with asthma, which affects airway resistance and airflow. A critical feature of AR is an increase in ASM mass that contributes significantly to asthma pathology. Furthermore, the increased ASM mass and increased airway wall thickness reduce airway lumen area, resulting in increased dynamic and fixed resistance. Asthmatic ASM can also acquire a synthetic phenotype, which is characterized by increased secretion of ECM, cytokines, and growth factors. Clinical outcomes

Lung cell type	Contribution to the pathophysiology of airway remodeling
Epithelial cells	Epithelial shedding
	Mucus secretion
	Subepithelial fibrosis
	Goblet cell hyperplasia
	Stimulating airway smooth muscle (ASM) proliferation through release of growth factors
	Recruitment of pro-inflammatory cells
	Promoting extracellular matrix (ECM) deposition
	Promoting angiogenesis
ASM cells	Increased ASM mass
	ASM migration and invasion of the epithelium
	Adoption of synthetic phenotype (for example, secretion of transforming growth factor-beta, chemokines, and ECM components)
	Interaction with immune cells through cell adhesion molecules
Fibroblasts	Differentiation into myofibroblasts and secretion of ECM components
	Accumulation in subepithelial regions
associated with bronchial thermoplasty intervention (application of controlled radiofrequency energy to the airway wall) suggest that reducing ASM area is sufficient to improve outcomes in asthmatics\(^\text{47}\).

Fibroblasts can contribute to AR through increased secretion of ECM\(^\text{28,29}\). Beyond contributing to increased airway wall thickness, ECM components can modulate cellular proliferation and migration. However, the role of fibroblast and ECM components in AR in the context of obstructive lung diseases is not fully understood.

The structural changes may contribute toward a gradual decline in lung function and potentially in loss of pulmonary elasticity, leading to hyperinflation and air trapping in lungs. Moreover, remodeling reduces effectiveness of bronchodilatory treatments\(^\text{30–32}\). A correlation between AR and disease severity has been established, but the clinical consequences of AR are yet to be fully understood\(^\text{33–36}\). This lack of knowledge also impacts drug discovery efforts. In the subsequent sections, we review the efficacy of current therapeutics in blunting or reversing AR and discuss novel therapeutic approaches to regulate progression of AR.

Overview of current therapeutics and their limitations

Current management of asthma focuses on reversing ASM contraction and mitigating airway inflammation. None of these approaches directly addresses the progressive pathology that causes remodeling in the lung (Table 2).

As noted earlier, bronchial thermoplasty has been shown to reduce ASM mass in conducting airways of some, but not all, severe asthmatics undergoing the procedure\(^\text{27,30,40}\). This procedure has been shown to significantly reduce collagen deposition in the basement membrane. Although bronchial thermoplasty has been shown to improve quality of life for severe asthmatics in the short term, the cost of the procedure, post-procedure exacerbations, and questions regarding long-term efficacy have limited its application\(^\text{41}\).

Among pharmacological options, β-agonists are the drug of choice for evoking bronchorelaxation in attempting to reverse an acute asthma attack or for providing bronchoprotection when used in combination with an inhaled corticosteroid as a maintenance therapy. However, there is no compelling evidence that β-agonists deter or reverse AR\(^\text{3}\). Signaling through cysteinyl leukotriene receptors (CysLTRs) and muscarinic acetylcholine receptors (mAChRs) has been established to promote outcomes that contribute to AR\(^\text{42–44}\). Antagonists of both receptors have shown some utility in preventing AR. Treatment with the CysLTR antagonist montelukast reversed ovalbumin-induced AR by decreasing goblet cell metaplasia, ASM mass, and subepithelial collagen deposition\(^\text{45,46}\). In a cohort of mild asthmatics, montelukast treatment showed reduced accumulation of myofibroblasts in the airway wall, suggesting some potential to mitigate AR\(^\text{47}\). Similarly, the long-acting mAChR antagonist, tiotropium, has demonstrated a robust ability in preventing AR in rodent (guinea pig and mouse) models of ovalbumin-induced asthma and lipopolysaccharide-induced COPD\(^\text{48–50}\). Overall, although some evidence suggests that mAChR and CysLTR antagonists may have utility in deterring AR, additional studies in humans are necessary to establish the true effectiveness of these drugs in preventing or reversing AR\(^\text{3}\).

Persistent asthma is commonly treated with inhaled corticosteroids either as a monotherapy or in combination with a β-agonist or mAChR antagonist. In epithelial cells, corticosteroids limit the inflammatory response and induce apoptosis\(^\text{51,54}\). In vitro, multiple corticosteroids have been shown to significantly inhibit fibroblast proliferation either alone or in combination with β-agonists\(^\text{53,56}\). Similar anti-proliferative effects have also been reported with corticosteroids in ASM cells stimulated with distinct mitogenic agents\(^\text{42,58}\). However, others have shown that corticosteroids have no effect on ASM proliferation\(^\text{59,60}\). While corticosteroids inhibit growth factor–stimulated proliferation of ASM cells sourced from healthy controls, this effect was lacking on ASM cells from asthmatics\(^\text{59}\). In animal models, dexamethasone has been shown to reduce goblet cell metaplasia; however, this treatment showed no effect on ASM mass and subepithelial fibrosis\(^\text{45}\). In humans, in conjunction with limiting inflammation and airway hyperresponsiveness, corticosteroid treatment can also reduce mucus secretion and limit ECM deposition and AR\(^\text{51–64}\). However, others have shown that corticosteroids have a mixed effect on the resolution of subepithelial fibrosis\(^\text{45–70}\).

Table 2. Current therapeutic targets for asthma management and their effect on airway remodeling.

Class of therapeutic drugs	Target	Effect on airway remodeling
β-agonists	β₂-AR (beta 2 adrenergic receptor)	Limited effect on airway remodeling\(^\text{3}\). Combination therapy with inhaled corticosteroid limits angiogenesis and fibroblast proliferation\(^\text{45,47,71}\).
Inhaled corticosteroids	Glucocorticoid receptor	Combination therapy with β-agonists limits angiogenesis\(^\text{47}\). Mixed anti-proliferative actions on airway smooth muscle cells and human fibroblasts\(^\text{45,56}\). Reduced mucus secretion and limited extracellular matrix deposition\(^\text{45–47}\).
Anti-leukotrienes	CysLTR (cysteinyl leukotriene receptor)	Moderate effect on airway smooth muscle mass, goblet cell metaplasia, and subepithelial collagen deposition\(^\text{45,40,67}\). Decreased accumulation of fibroblasts in lungs\(^\text{45}\).
Collectively, studies to date indicate a need for developing better therapeutic drugs for targeting AR pathology in obstructive lung diseases.

New targets and approaches for airway remodeling
In recent years, basic science research has begun to provide insight into the mechanisms, mediated by multiple cell types, that promote AR and these studies help to inform potential strategies for managing AR. Certain approaches that show promise in mitigating features of AR have recently been proposed (Table 3).

(Other) G protein–coupled receptor ligands
G protein–coupled receptors (GPCRs) play a substantial role in numerous normal physiological functions. Unsurprisingly, they can contribute towards the pathophysiology of various diseases. As noted earlier, GPCR agonists (of the β2-adrenergic receptor) and antagonists (of the mAChRs and CysLTR) are principal drugs in the management of asthma and COPD. In this section, we provide a brief overview of novel targets, the drugs that modulate them, and the potential of such drugs to address AR pathology.

Class of therapeutic drugs	Target	Potential effect on airway remodeling (AR)
G protein–coupled receptor modulators	E-prostanoid receptors	Suppression of airway smooth muscle (ASM) proliferation^{72–74}.
	Bitter taste receptors (TAS2Rs)	Regulation of ASM proliferation^{81–82}. Reversal of allergen-induced AR features, including ASM mass⁸². Alteration of mitochondrial function and induction of autophagy⁸⁴.
Biologics	Interleukin-5 (IL-5) cytokine	Reduced subepithelial fibrosis and extracellular matrix (ECM) deposition^{85,86}.
	Immunoglobulin E	Reduced thickening of reticular lamina⁸⁷.
Mitogen-activated protein kinase (MAPK) inhibitors	MEK1 (MAPK kinase)	Regulation of mucus secretion^{88,89}.
	p38	Reduced ASM mass and goblet cell metaplasia⁹⁰.
	c-Jun N-terminal kinases (JNKs)	Reduced mucus secretion and expansion of goblet cells^{91,92}. Reduced proliferation of ASM and epithelial cells⁹³.
	Transforming growth factor-beta-activated kinase 1 (TAK1)	Reduced synthesis of IL-8 in ASM cells and reduced proliferation^{94–96}.
Receptor tyrosine kinase inhibitors	Epidermal growth factor receptor	Reduced proliferation of ASM and epithelial cells^{96–98}. Regulation of mucus secretion^{99,100}. Reduced ASM thickening and goblet cell metaplasia¹⁰¹.
	Platelet-derived growth factor receptor (c-kit)	Reduced ASM proliferation¹⁰².
	Stem cell growth factor receptor	Attenuated collagen accumulation in lungs¹⁰³.
Non-receptor tyrosine kinase inhibitors	Spleen tyrosine kinase (Syk)	Reduced bronchial edema¹⁰⁴. Reduced expression of Gob-5¹⁰⁵.
	Janus kinase (JAK)	Reduced expression of Gob-5¹⁰⁵.
Other kinase inhibitors	TGF-β receptor type I (T-βRI) kinase	Diminished collagen deposition and reduced proliferation of ASM and epithelial cells in lungs¹⁰⁶.
	Rho-associated protein kinase (ROCK)	Curtailed ECM remodeling process¹⁰⁷.
Phosphodiesterase (PDE) inhibitors	PDEs	Marked reduction in subepithelial fibrosis and epithelial layer thickening¹⁰⁸. Reduced proliferation of ASM¹⁰⁹.

E-prostanoid receptor agonists. The role of prostaglandin E₂ (PGE₂) and E-prostanoid (EP) receptor subtypes in mitigating AR has been a subject of recent research. Early studies demonstrated that autocrine PGE₂, generated as a consequence of cytokine-induced cyclooxygenase-2 induction, significantly suppresses mitogen-induced ASM proliferation in vitro⁷². Furthermore, studies of cultured human ASM in our laboratory have demonstrated that exogenous PGE₂ shows relatively superior anti-mitogenic activity in comparison to multiple β-agonists with anti-mitogenic effects corresponding to drug efficacy in activating the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) axis^{77,78}. Application of PGE₂ in humans has been hindered by the ability of PGE₂ to signal through multiple receptor subtypes (EP1–4)^{74–76}, which contributes to undesirable side effects. It is now known that the cough response is mediated by PGE₂ activation of the EP3 receptor on vagal sensory nerves¹⁰. Additionally, studies in our lab have shown that EP3 receptor signaling has a pro-mitogenic role in ASM⁷⁴. To overcome the heterogeneity of PGE₂ signaling, the development of EP receptor subtype–specific modulators that specifically promote Gs-cAMP-PKA axis activity (via EP2 and EP4 subtypes) has been
purposed84,112-114. Currently, our lab is evaluating various strategies of targeting specific EP receptor subtypes in pre-clinical models of allergen-induced asthma84.

Bitter taste receptors. Recently, our laboratory showed that bitter taste receptor (TAS2R) agonists can limit proliferation of ASM cells in vitro112,122. Mechanistically, TAS2R agonists restrict ASM proliferation by inhibiting (1) the growth factor–activated protein kinase B (Akt) phosphorylation; (2) transcription factors AP-1, STAT3, E2 factor, and NFAT; and (3) genes associated with cell cycle progression.

The anti-mitogenic effects of TAS2R agonists further translate to pre-clinical asthma models as well. In a chronic allergen (ovalbumin or house dust mite) challenge model, treatment with bitter taste compounds (chloroquine and quinine) significantly reversed remodeling features83. Specifically, treatment with bitter compounds inhibited the expression of calponin, smooth muscle alpha-actin, and smooth muscle myosin heavy chain in lungs. Furthermore, levels of matrix metalloproteinase-8 (MMP-8) (neutrophil collagenase), pro-MMP-9 (gelatinase), and MMP-12 (macrophage metalloelastase) were significantly reduced in lungs following treatment with TAS2R agonists. Finally, allergen-induced expression of pro-fibrotic cytokine transforming growth factor-beta (TGF-\beta) as well as phospho-mothers against decapentaplegic homolog 2 (pSmad2) and fibronectin in the lung tissue was also curtailed by TAS2R agonists. Collectively, these studies indicate that TAS2R agonists, unlike current GPCR ligands used to treat asthma, address multiple features of asthma pathology, including AR. Advancements in the development of selective ligands for TAS2R subtypes will allow for a refined therapeutic approach in the near future.

Bitter tastants have also been shown to modulate function of ciliated epithelial cells115. Specifically, the motile cilia on human airway epithelia express TAS2Rs (T2R4, T2R43, T2R38, and T2R46). The organization of TAS2Rs on cilia with the distribution of the signaling machinery along the ciliary shaft and within the attached epithelial cell presents an interesting mechanical apparatus for signal transduction. Stimulation of TAS2Rs with bitter tastants induces transient Ca2+ flux within the epithelial cells and increases ciliary beat frequency. Functionally, promoting increased ciliary movement could be beneficial in the removal of excess mucus from the airways.

In recent years, the role of mitochondrial dysfunction in disease states, including obstructive lung diseases, has become increasingly clear116,117. Specifically, a role for autophagy/mitophagy in regulating mitochondrial function in pathophysiology of obstructive lung diseases is emerging. As noted earlier, our studies show that activation of TAS2Rs can promote anti-mitogenic activities. Further explorations into the mechanisms that underlie the anti-mitogenic effects of TAS2R agonists have uncovered an interesting role for bitter tastants in altering mitochondrial function and inducing autophagy42. TAS2R agonists can induce changes in mitochondrial membrane potential, increase reactive oxygen species generation, and promote mitochondrial fragmentation. These observations provide insight into the broader therapeutic potential of targeting mitochondrial function and promoting autophagy to restrict cellular proliferation.

Biologics

Asthma pathology is orchestrated by multiple immunologic mediators (cellular and secreted)119. Consequently, in recent years, therapies that target specific cytokines or immune cells to disrupt immune networks responsible for asthma pathology have gained significant interest. Targeting key cytokines with specific antibodies—biologics, including antibodies targeting interleukin-4 (IL-4), IL-5, and IL-13—can significantly limit recruitment of inflammatory cells to the lungs or blunt their pleiotropic effects. For instance, anti–IL-5 treatment can significantly reduce the number of circulating eosinophils in asthma and improve lung function115-117. Anti–IL-5 treatment has been shown to prevent the development of subepithelial fibrosis in a murine model of asthma and reduce incorporation of proteoglycans in the human airway wall115,116. However, antibodies targeting other cytokines or their receptors have not been studied in the context of AR122. Collectively, the data on the effects of biologics on AR are lacking and this is possibly due to the relatively recent development of these drugs. Future longitudinal studies that evaluate biologics in the context of remediation of AR features are needed to address the utility of these drugs as anti-AR agents.

Allergen-specific immunoglobulin E (IgE) isotype antibodies can cross-link on mast cells and basophils, causing degranulation and release of histamine, cytokines, and growth factors123. Biologics that block the interactions of IgE antibodies to the high-affinity FcεRI receptors on mast cells and antigen presenting cells can curtail the sensitization profile in asthmatics and reduce exacerbations. In severe asthmatics evaluated for 36 months, blocking IgE activity was sufficient to reduce the thickening of the reticular lamina, thereby having an impact on AR87.

Although biologics have become an increasingly important tool in the management of severe asthma, their application in the clinic has some drawbacks124-126. Application of cytokine-specific antibody therapy is limited by the heterogeneity of asthma phenotypes127. Non-atomic asthmatics are also not suitable for certain therapy (for example, anti-IgE). Biologics can also cause side effects such as hypersensitivity reactions, although the underlying mechanisms are unclear. Finally, there is also significant cost associated with the use of biologics.

Kinase inhibitors

Kinase enzymes modulate multiple cellular functions by regulating various signaling networks, including those regulating cellular proliferation and growth. Consequently, inhibitors that target various kinases have received increasing attention. Modulators of kinase functions account for one third of drugs in the development pipeline, and the majority of these represent cancer therapeutics128. In this section, we provide a brief overview of drugs that target distinct kinases. For a more comprehensive discussion of targeting kinases in the context of obstructive lung diseases, the reader is referred to129.

Mitogen-activated protein kinase inhibitors. Mitogen-activated protein kinases (MAPKs) have been studied extensively for their contribution to inflammatory gene expression and activation of multiple networks that contribute to the pathophysiology of obstructive lung diseases130. Extracellular signal-regulated
kinases (ERK1/2) are particularly interesting given that they are activated in multiple cell types that contribute to asthma and COPD pathology. Inhibition of ERK kinase (MAPK1, or MEK1) which is upstream of ERK1/2 can significantly reduce mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) expression in cultures of human bronchial epithelial cells subjected to chronic mechanical stress at the air-liquid interface. Other MAPKs, such as p38, c-Jun N-terminal kinase (JNK), and transforming growth factor beta-activated kinase 1 (TAK1), are activated in asthma and COPD, and inhibitors of these targets can mitigate various features of AR in both cell and animal asthma models. However, to date, no studies in humans have evaluated these inhibitors. Another limitation of kinase inhibitors is that these compounds are predominantly inhibitors of ATP-competitive and catalytic sites and block all enzymatic activity, including MAPK functions important for normal physiological activity in cells. Given the ubiquitous functions of the MAPK signaling pathway, development of substrate-selective MAPK inhibitors with the goal of targeting specific kinase functions associated with disease, while preserving kinase functions in normal cells, appears necessary to overcome limitations of off-target effects.

Receptor tyrosine kinase inhibitors. Receptor tyrosine kinases (RTKs) occupy a central role in critical signaling networks that promote asthma pathology, including remodeling. With inflammation, distinct RTKs and their ligands (for example, epidermal growth factor) are upregulated in human asthmatic airways and show a strong correlation with disease severity. RTKs can stimulate pathophysiological functions in ASM and epithelial cells. Thus, significant interest in advancing tyrosine kinase inhibitors for targeting RTKs has developed.

Activation of epidermal growth factor receptor (EGFR) is essential for mucus secretion and goblet cell metaplasia. It is also responsible for sustaining oxidative damage in the epithelial compartment through recruitment of neutrophils in a TGF-β-dependent manner. EGFR inhibitors tyrophostin AG1478 and BIBX1522 have been evaluated in vitro and in animal models of lung inflammation. Collectively, these studies report significant reductions in expression of mucus-associated MUC5AC gene and mucin secretion. More importantly, there is a concomitant reduction in collagen deposition and ASM proliferation. Although these observations are encouraging, some inhibitors of EGFR have failed to produce similar outcomes in clinical studies. Activation of platelet-derived growth factor receptor (PDGFR) has been shown to stimulate ASM proliferation in vitro and in vivo. Multiple drugs targeting PDGFR can mitigate ASM proliferation in vitro, although animal and human studies that address AR are lacking. In severe corticosteroid-dependent asthmatics, treatment with the tyrosine kinase inhibitor mastimib has shown improved outcomes; however, some adverse effects, including skin rash and edema, have also been reported. During airway inflammation, multiple cell types (immune and resident) can be stimulated to secrete angiogenic factors, including vascular endothelial growth factor (VEGF). These angiogenic factors can further stimulate increase in formation of new blood vessels from endothelial cells in the subepithelial mucosa. Although the contribution of neovascularization in AR is unclear, it has been suggested that newly formed vasculature is permeable, thus contributing to edema and limiting airflow. An antagonist of VEGFR-1 and VEGFR-2 (SU5416) has been shown to limit inflammatory responses in animals, although its impact on AR is unknown and studies in humans are lacking.

Because multiple RTKs contribute to pathology of AR, a novel strategy that targets multiple RTKs has gained momentum. In a pre-clinical murine model of ovalbumin-induced asthma, treatment with nintedanib—a small-molecule inhibitor that targets multiple RTKs (VEGFR, fibroblast growth factor receptor, and PDGFR)—significantly improved indices of remodeling and airway inflammation. This approach could be useful in targeting multiple redundant RTK networks that contribute to AR. Finally, inhibitors of non-RTKs, such as stem cell growth factor receptor (c-kit), spleen tyrosine kinase (SYK), the proto-oncogene tyrosine-protein kinase Src, and Janus kinase (JAK), have also been investigated in rodent models of asthma but have not yet progressed to studies in humans.

Other kinase inhibitors. Diverse stimuli (cytokines, viruses, growth factors, free radicals, and so on) can activate the transcription factor nuclear factor-kappa B (NF-kB) in multiple airway cell types. This transcription factor plays a key role in orchestrating immune responses and thus multiple intra- and inter-cell inflammatory signals. Although inhibitors that target activation of NF-kB have been shown to suppress certain synthetic functions of ASM and modulate pro-inflammatory outcomes in epithelial cells, specific NF-kB inhibitors have not translated into clinical trials for asthma and this is due to their multiple side effects. Inhibitors of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI-3K) that regulate cellular lipids and coordinate inflammatory pathways have undergone extensive investigation in asthma and COPD. However, data assessing AR indices are lacking. TGF-β plays an important role in cellular proliferation and differentiation and its expression increases in asthmatic airways, especially in the submucosal compartment. TGF-β has also been implicated in AR and can promote proliferation in ASM. TGF-β activates TGF-β receptor type I (T-βRI) kinase, which in turn activates Smad-dependent signaling that regulates expression of various genes. Small-molecule inhibitors of (T-βRI) kinase have yielded mixed results in studies assessing their effects on mechanisms mediating AR. T-βRI kinase inhibitors have been shown to diminish collagen deposition in lungs of rats challenged repeatedly with an allergen. In vitro, T-βRI inhibitors have demonstrated the ability to limit ASM proliferation, although their use in animal studies failed to inhibit TGF-β-induced increases in ASM mass. Clinical application of these inhibitors has been limited due to adverse effects, including cardiotoxicity in clinical trials for cancer therapy. Protein kinase C (PKC) is another target of interest given its ability to promote contractile signaling in ASM following activation of Gq-coupled GPCRs. PKC is also relevant to AR because of its role in ASM proliferation and mucus secretion in epithelium. Owing to severe toxicity, non-selective inhibitors of PKC have not progressed to clinical trials. Selective inhibitors of PKC isofoms have been developed for clinical studies for treatment of cancer, metabolic diseases, and psychiatric disorders, although adverse effects have been problematic and no clinical trials have been
conducted for treatment of obstructive lung diseases in humans. Finally, Rho-associated protein kinase (ROCK) inhibitors have been shown to mitigate multiple features of asthma, including AR in guinea pig and murine models. Although ROCK inhibitors have been approved for certain indications, clinical trials in asthma or COPD are lacking as issues regarding selectivity and toxicity have limited progression of these inhibitors to clinical application in airway diseases.

In summary, in vitro studies of pharmacological inhibition of multiple kinases that contribute to dysfunction in ASM and epithelium have yielded promising results. However, certain limitations have stalled progression of many drugs for clinical use. Specificity, efficacy, solubility issues, and poor pharmacokinetic profiles plague drug development. With chronic inhibitor treatment, compensatory signaling by other kinases may limit drug efficacy; this appears to be the case with p38 isoform inhibitors. Inhibition of any widely expressed kinase runs the risk of adverse effects. For example, given that NF-κB is crucial for mounting an immune response to microbial pathogens, blocking its activation could render patients susceptible to life-threatening infections. Current challenges in developing effective and safe kinase inhibitors hinge on improving the poor solubility, selectivity, and targeting of the current versions of these drugs.

Other small-molecule inhibitors
Phosphodiesterase (PDE) inhibitors have a beneficial effect of promoting ASM relaxation by increasing intracellular cAMP resulting in PKA-mediated ASM relaxation. In murine models of asthma, PDE inhibitors have also been shown to curtail inflammation and reduce AR. Inhibition of PDE3 (but not PDE4) has anti-proliferative action on mitogen-activated human ASM cells in vitro, but as with most potential anti-AR drugs, useful in vivo data are lacking. More recently, an inhibitor of PDE8 (PF-04957325) has been shown to regulate proliferation of ASM cells by enhancing cAMP accumulation generated specifically from the β2-AR/AC6 pathway.

The rapamycin derivative SAR-943 has been shown to limit the mitogen-induced proliferation of human ASM cells (but not human epithelial cells) in vitro and mitigate inflammation and AR in vivo in ovalbumin-challenged mice, yet no clinical studies for asthma or COPD have been reported.

Conclusions
The correlation between AR and obstructive lung disease severity suggests a strong pathogenic role of AR in these diseases. Thus, remediation of AR appears critical for improving the severity and progression of these diseases. A growing arsenal of small-molecule inhibitors and biologics in conjunction with non-pharmacological interventions such as bronchial thermoplasty has shown promise in addressing this unmet clinical need. As our understanding of mechanisms underlying AR improves, so will the drug development approaches as well as the phenotyping capabilities that accurately assess AR in humans. These advances will undoubtedly fulfill our need for more refined, efficacious, and safer drugs that enable us to finally control the entire spectrum of asthma pathology.

Abbreviations
AR, airway remodeling; β2-AR, beta 2 adrenergic receptor; ASM, airway smooth muscle; cAMP, cyclic adenosine monophosphate; c-kit, Stem cell growth factor receptor; COPD, chronic obstructive pulmonary disease; CysLTR, cysteinyl leukotriene receptor; ECM, extracellular matrix; EGFR, epidermal growth factor receptor; EP, E prostanoid; ERK1/2, extracellular signal-regulated kinases 1/2; GPCR, G protein–coupled receptor; FGF, fibroblast growth factor receptor; ICS, inhaled corticosteroids; IgE, immunoglobulin E; IL, interleukin; JAK, Janus kinase; JNK, c-Jun N-terminal kinase; mAChR, muscarinic acetylcholine receptor; MAPK, mitogen-activated protein kinase; MEK1, mitogen-activated protein kinase 1; MMP, matrix metalloproteinase; MUC5AC, mucin 5AC, oligomeric mucus/gel-forming; NF-κB, nuclear factor-kappa B; PDE, phosphodiesterase; PDGFR, platelet-derived growth factor receptor; PGE2, prostaglandin E2; PI-3K, phosphatidylinositol-4,5 bisphosphate 3-kinase; PKA, protein kinase A; PKC, protein kinase C; ROCK, Rho-associated proteinase kinase; RTK, receptor tyrosine kinase; Smad2: Mothers against decapentaplegic homolog 2; Syk, spleen tyrosine kinase; TAK1, Transforming growth factor-β-activated kinase 1; TAS2R, transforming growth factor-beta receptor type I kinase; VEGFR; vascular endothelial growth factor receptor

Competing interests
The authors declare that they have no competing interests.

Grant information
The work in Dr. Penn’s lab is supported by National Institutes of Health (NIH) grants HL58506, AI110007, HL136209, and HL114471. The work in Dr. Deshpande’s lab is supported by NIH grants AG041265 and AI126492.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References
1. James AL, Maxwell PS, Pearce-Pinto G, et al.: The relationship of reticular basement membrane thickness to airway wall remodeling in asthma. Am J Respir Crit Care Med. 2002; 166(2 Pt 1): 1590-5. Published Abstract | Publisher Full Text
2. Prakash YS, Halayko AJ, Gosens R, et al.: An Official American Thoracic Society Research Statement: Current Challenges Facing Research and Therapeutic Advances in Airway Remodeling. Am J Respir Crit Care Med. 2017; 195(2): e4–e19. Published Abstract | Publisher Full Text
3. HUBER HL, KOESSLER KK: THE PATHOLOGY OF BRONCHIAL ASTHMA. Arch Intern Med. 1922; 30: 689.

Publisher Full Text

4. Kuwano K, Bokstein CH, Paré PD, et al.: Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1993; 148(5): 1220–5.

PubMed Abstract | Publisher Full Text

5. Halwani R, Al-Muhesen S, Hamid Q: Airway remodeling in asthma. Curr Opin Pharmacol. 2010; 10(3): 236–45.

PubMed Abstract | Publisher Full Text

6. Fathy JV: Remodeling of the airway epithelium in asthma. Am J Respir Crit Care Med. 2001; 164(10 Pt 2): S46–51.

PubMed Abstract | Publisher Full Text

7. Davies DE: The bronchial epithelium in chronic and severe asthma, Curr Allergy Asthma Rep. 2001; 1(2): 127–33.

PubMed Abstract | Publisher Full Text

8. Holgate ST, Arshad HS, Roberts GC, et al.: A new look at the pathogenesis of asthma. Clin Sci (Lond). 2005; 118(7): 439–50.

PubMed Abstract | Publisher Full Text | Free Full Text

9. Loehman M, Davies DE, Blume C: Epithelial function and dysfunction in asthma. Clin Exp Allergy. 2014; 44(11): 1299–313.

PubMed Abstract | Publisher Full Text

10. Lambrecht BN, Hammad H: The bronchial epithelium in chronic and severe asthma. Curr Allergy Asthma Rep. 2010; 10(1): 82–6.

PubMed Abstract | Publisher Full Text

11. Aikawa T, Shimura S, Sasaki H, et al.: Airway remodeling in asthma. Tohoku J Exp Med. 2010; 222(2): 192–3.

PubMed Abstract | Publisher Full Text

12. Montaudon M, Lederlin M, Reich S, et al.: Bronchial remodeling in patients with asthma: comparison of quantitative thin-section CT findings with those in healthy subjects and correlation with pathologic findings. Radiology. 2009; 253(3): 844–53.

PubMed Abstract | Publisher Full Text

13. Niimi A, Matsumoto H, Takekura M, et al.: Clinical assessment of airway remodeling in asthma: utility of computed tomography. Clin Rev Allergy Immunol. 2004; 27(1): 45–58.

PubMed Abstract | Publisher Full Text

14. Aysola R, de Lange EE, Castro M, et al.: Demonstration of the heterogeneous distribution of asthma in the lungs using CT and hyperpolarized helium-3 MRI. J Magn Reson Imaging. 2010; 32(6): 1379–87.

PubMed Abstract | Publisher Full Text

15. Mortauon M, Lederlin M, Reich S, et al.: Bronchial measurements in patients with asthma: comparison of quantitative thin-section CT findings with those in healthy subjects and correlation with pathologic findings. Radiology. 2009; 253(3): 844–53.

PubMed Abstract | Publisher Full Text

16. Bosse Y, Paré PD, Seow CY: Airway wall remodeling in asthma from the epithelial layer to the adventitia. Curr Allergy Asthma Rep. 2008; 8(4): 357–66.

PubMed Abstract | Publisher Full Text

17. Pascoc CD, Seow CY, Hackett TL, et al.: Heterogeneity of airway wall dimensions in humans: a critical determinant of lung function in asthmatics and nonasthmatics. Am J Physiol Lung Cell Mol Physiol. 2017; 313(2): L425–L431.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

18. Akawa T, Shimura S, Sasaki H, et al.: Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest. 1992; 101(4): 916–21.

PubMed Abstract | Publisher Full Text

19. Kim KC, McCracken K, Lee BC, et al.: Airway goblet cell mucin: its structure and regulation of secretion. Eur Respir j 1997; 10(11): 2644–9.

PubMed Abstract | Publisher Full Text

20. Ting T, Allard B, Dupin I, et al.: House dust mites induce proliferation of severe asthmatic smooth muscle cells via an epithelial-dependent pathway. Am J Respir Crit Care Med. 2015; 191(5): 538–46.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

21. Grange CL, Lai UC, Ward JA, et al.: Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med. 2007; 356(13): 1327–37.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

22. Pavord ID, Cox G, Thomson NC, et al.: Safety and efficacy of bronchial thermoplasty in symptomatic, severe asthma. Am J Respir Crit Care Med. 2007; 176(12): 1185–91.

PubMed Abstract | Publisher Full Text

23. Wehm M, Kraft M: Bronchial thermoplasty for severe asthma. Am J Respir Crit Care Med. 2012; 185(7): 709–14.

PubMed Abstract | Publisher Full Text

24. Grange CL, Lai UC, Ward JA, et al.: Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med. 2007; 356(13): 1327–37.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

25. Kistemaker LE, Oenema TA, Meurs H, et al.: Regulation of airway inflammation and remodeling by muscarinic receptors: perspectives on anticholinergic therapy in asthma and COPD. Life Sci. 2012; 91(21-22): 1126–33.

PubMed Abstract | Publisher Full Text

26. Henderson WR Jr, Chiang GK, Tien YT, et al.: Reversal of allergen-induced airway remodeling by CysLT1 receptor blockade. Am J Respir Crit Care Med. 2006; 173(7): 718–28.

PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

27. Muiz MH, Devezi F, Bulut Y, et al.: The effects of low dose leukotriene receptor antagonist therapy on airway remodeling and cysteinyl leukotriene expression in a mouse asthma model. Exp Mol Med. 2006; 38(2): 109–18.

PubMed Abstract | Publisher Full Text

28. Kelly MM, Chakir J, Vethanayagam D, et al.: Montelukast treatment attenuates the increase in myofibroblasts following low-dose allergen challenge. Chest. 2006; 130(3): 741–53.

PubMed Abstract | Publisher Full Text

29. Kistemaker LE, Oenema TA, Meurs H, et al.: Regulation of airway inflammation and remodeling by muscarinic receptors: perspectives on anticholinergic therapy in asthma and COPD. Life Sci. 2012; 91(21-22): 1126–33.

PubMed Abstract | Publisher Full Text

30. Perez T, Zuidhof A, Valadas J, et al.: Tiotropium inhibits pulmonary inflammation and remodeling in a guinea pig model of COPD. Eur Respir J. 2011; 38(4): 783–90.

PubMed Abstract | Publisher Full Text

31. Kang JY, Rhee CK, Kim JS, et al.: Effect of tiotropium bromide on airway remodeling in a chronic asthma model. Ann Allergy Asthma Immunol. 2012;
66. Olivieri D, Gosses R, Zuidhof AB, et al.: Inhibition of allergen-induced airway remodeling by tiotropium and budesonide: a comparison. Eur Respir J. 2007; 30(4): 653–61.

67. Trigg CJ, Manolisas ND, Wang J, et al.: Placebo-controlled immunopathologic study of four months of inhaled corticosteroids in asthma. Am J Respir Crit Care Med. 1994; 150(1): 17–22.

68. Hoshino M, Takahashi M, Takai Y, et al.: Inhaled corticosteroids decrease subepithelial collagen deposition by modulation of the balance between matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 expression in asthma. J Allergy Clin Immunol. 1999; 104(2 Pt 1): 356–63.

69. Sont JK, Willems LN, Bel EH, et al.: Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guide to long-term treatment. The AMPFL Study Group. Am J Respir Crit Care Med. 1999; 159(4): 1043–51.

70. Chakir J, Shannon J, Molet S, et al.: Airway remodeling-associated mediators in moderate persistent asthma: effect of steroid on TGF-β1, IL-1α, IL-1β, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol. 2003; 111(6): 1293–8.

71. Orsda BE, Li X, Hickey B, et al.: Vascularity in asthmatic airways: relation to inhaled steroid dose. Thorax. 1999; 54(4): 289–95.

72. Belvisi MG, Saunders M, Yacoub M, et al.: Expression of cyclo-oxygenase-2 in human airway smooth muscle is associated with profound reductions in cell growth. Br J Pharmacol. 1998; 125(5): 1102–8.

73. Shinkai M, López-Boado YS, Rubin BK, et al.: Inhibition of allergen-induced airway responses and airway inflammation via TLR9 in an OVA-induced murine acute asthma model. J Allergy Clin Immunol. 2014; 133(4 Pt 1): 1043–51.

74. Kawakami Y, Uchiyama K, Irie T, et al.: Evaluation of aerosols of prostaglandins E1 and E2 as bronchodilators. Eur J Clin Pharmacol. 1973; 6(2): 127–32.

75. Walters EH, Davies BH: Dual effect of prostaglandin E1 on normal airways and human bronchial fibroblasts. Eur Respir J. 1999; 13:1–6.

76. Gauvreau GM, Watson RM, O'Byrne PM, et al.: Protective effects of inhaled PGE1 on allergen-induced airway responses and airway inflammation. Am J Respir Crit Care Med. 1999; 159(1): 31–6.

77. Dorscheid DR, Wojcik KR, Sun S, et al.: Mitogenic effects of cytokines on smooth muscle are critical to progression of the inflammatory response in asthma. J Immunol. 2003; 171(2): 1165–72.

78. Riccio AM, Mauri P, De Ferrari L, et al.: Galectin-3: an early predictive biomarker of modulation of airway remodeling in patients with severe asthma treated with oral glucocorticoids. Clin Transl Allergy. 2017; 7: 6.

79. Liu N, Li Q, Zhou XD, et al.: Chronic mechanical stress induces mucin SAP expression in human bronchial epithelial cells through ERK-dependent pathways. Mol Biol Rep. 2012; 39(2): 1019–28.

80. Shinkai M, López-Boado YS, Rubin BK: Clarithromycin has an immunomodulatory effect on ERK-mediated inflammation induced by Pseudomonas aeruginosa flagellin. J Antimicrob Chemother. 2007; 59(6): 1096–101.

81. Li N, Li Q, Zhou XD, et al.: Potential role of c-Jun NH2-terminal kinase in allergic airway inflammation and remodeling: effects of SP600125. Eur J Pharmacol. 2009; 596(1-2): 273–81.

82. Wu H, Fang L, Shen QY, et al.: SP600125 promotes resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model. Mol Immunol. 2015; 67(2 Pt B): 311–6.

83. Eynott PR, Nath P, Leung SY, et al.: Allergen-induced inflammation and airway smooth epithelial cell proliferation: role of Jun N-terminal kinase. J Allergy Clin Immunol. 2003; 111(6): 1293–8.
of asthmatics promote angiogenesis through elevated secretion of CXC-chemokines (ENA-78, GRO-α, and IL-8), PLoS One. 2013; 8(12): e81494.

167. Barbato A, Turato G, Baraldo S, et al.: Epithelial damage and angiogenesis in the airways of children with asthma. Am J Respir Crit Care Med. 2006; 174(9): 975–81.

168. Vrugt B, Wilson S, Bron A, et al.: Bronchial angiogenesis in severe glucocorticoid-dependent asthma. Eur Respir J. 2000; 16(8): 1014–21.

169. Tanaka H, Yamada G, Saito T, et al.: Increased airway vascularity in newly diagnosised asthma using a high-magnification bronchovideoscope, Am J Respir Crit Care Med. 2003; 168(12): 1495–9.

170. Nagy JA, Benjamin L, Zeng H, et al.: Vascular permeability, vascular hyperpermeability and angiogenesis in asthma. 2008; 11(2): 109–19.

171. Li X, Wilson JW: Increased vascularity of the bronchial mucosa in mild asthma. Am J Respir Crit Care Med. 1997; 156(1): 229–33.

172. Kim WS, Hong SW, Choi JP, et al.: Vascular endothelial growth factor is a key mediator in the development of T cell priming and its polarization to type 1 and type 17 T helper cells in the airways. J Immunol. 2009; 183(8): 5113–20.

173. Lee HY, Hur J, Kim IK, et al.: Effect of nintedanib on airway inflammation and remodeling in a murine chronic asthma model. Exp Lung Res. 2017; 43(5): 171–80.

174. Seow CJ, Chue SC, Wong WS: Piceatannol, a Syk-selective tyrosine kinase inhibitor, attenuated antigen challenge of guinea pig airways in vitro. Eur J Pharmacol. 2002; 443(1–3): 185–96.

175. Wilson R, Cahn A, Deans A, et al.: Safety, tolerability and pharmacokinetics (PK) of single and repeat nebulised doses of a novel phosphoinositide 3-kinase (PI3K) inhibitor, GS2269557, administered to healthy male subjects in a phase I study. Eur Respir J. 2008; 32(1): 226–31.

176. Doukas J, Eide L, Stbens K, et al.: Aquaporin 4 regulates PDGF-induced proliferation and receptor expression in human cultured airway smooth muscle cells. Am J Physiol. 2010; 299(3 Pt 1): L451–8.

177. Hirst SJ, Barnes PJ, Twort CH: PDGF isoform-induced proliferation and receptor expression in human cultured airway smooth muscle cells. Am J Physiol. 1996; 270(3) Pt 1: L415–28.

178. Goldsmith AM, Bentley JK, Zhou L, et al.: Masitinib, a c-kit/PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid-dependent obstructive pulmonary disease. J Immunol. 2010; 184(9): 5795–805.

179. Catley MC, Sukkar MB, Chung KF, et al.: Validation of the anti-inflammatory properties of small-molecule inhibitors of the PDGF receptor family in non-diseased human airway smooth muscle. Mol Pharmacol. 2006; 70(2): 677–705.

180. Newton R, Holden NS, Cathcart D, et al.: Inhibition of cytokine-induced neutrophil chemoattractant expression by a novel small-molecule inhibitor of the PDGF receptor β. J Immunol. 2001; 167(10): 5842–50.

181. Doukas J, Eide L, Stbens K, et al.: Aquaporin 4 regulates PDGF-induced proliferation and receptor expression in human cultured airway smooth muscle cells. Am J Physiol. 2010; 299(3 Pt 1): L451–8.

182. Goldsmith AM, Bentley JK, Zhou L, et al.: Masitinib, a c-kit/PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid-dependent obstructive pulmonary disease. J Immunol. 2010; 184(9): 5795–805.

183. Catley MC, Sukkar MB, Chung KF, et al.: Validation of the anti-inflammatory properties of small-molecule inhibitors of the PDGF receptor family in non-diseased human airway smooth muscle. Mol Pharmacol. 2006; 70(2): 677–705.

184. Newton R, Holden NS, Cathcart D, et al.: Inhibition of cytokine-induced neutrophil chemoattractant expression by a novel small-molecule inhibitor of the PDGF receptor β. J Immunol. 2001; 167(10): 5842–50.

185. Doukas J, Eide L, Stbens K, et al.: Aquaporin 4 regulates PDGF-induced proliferation and receptor expression in human cultured airway smooth muscle cells. Am J Physiol. 2010; 299(3 Pt 1): L451–8.

186. Goldsmith AM, Bentley JK, Zhou L, et al.: Masitinib, a c-kit/PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid-dependent obstructive pulmonary disease. J Immunol. 2010; 184(9): 5795–805.

187. Catley MC, Sukkar MB, Chung KF, et al.: Validation of the anti-inflammatory properties of small-molecule inhibitors of the PDGF receptor family in non-diseased human airway smooth muscle. Mol Pharmacol. 2006; 70(2): 677–705.

188. Newton R, Holden NS, Cathcart D, et al.: Inhibition of cytokine-induced neutrophil chemoattractant expression by a novel small-molecule inhibitor of the PDGF receptor β. J Immunol. 2001; 167(10): 5842–50.
181. Xie S, Sukkar MB, Issa R, et al.: Mechanisms of induction of airway smooth muscle hyperplasia by transforming growth factor-beta. Am J Physiol Lung Cell Mol Physiol. 2007; 293(1): L245–53. PubMed Abstract | Publisher Full Text | Free Full Text

182. Herbertz S, Sawyer JS, Staub A, et al.: Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 2015; 9: 4479–99. PubMed Abstract | Publisher Full Text | Free Full Text

183. Carlin S, Poronnik P, Cook D, et al.: An antisense of protein kinase C-zeta inhibits proliferation of human airway smooth muscle cells. Am J Respir Cell Mol Biol. 2000; 23(4): 555–9. PubMed Abstract | Publisher Full Text

184. Mochly-Rosen D, Das K, Grimes KV: Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov. 2012; 11(12): 937–57. PubMed Abstract | Publisher Full Text | Free Full Text

185. Schasfoort D, Box IS, Zuidhof AB, et al.: The inhaled Rho kinase inhibitor Y-27632 protects against allergen-induced acute bronchoconstriction, airway hyperresponsiveness, and inflammation. Am J Physiol Lung Cell Mol Physiol. 2008; 295(1): L214–9. PubMed Abstract | Publisher Full Text

186. Lee KY, Ito K, Hayashi R, et al.: NF-kappaB and activator protein 1 response elements and the role of histone modifications in IL-1beta-induced TGF-beta1 gene transcription. J Immunol. 2006; 176(1): 603–15. PubMed Abstract | Publisher Full Text

187. Dienstmann R, Roston J, Serra V, et al.: Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol Cancer Ther. 2014; 13(10): 2021–31. PubMed Abstract | Publisher Full Text

188. Norman P: Investigational p38 inhibitors for the treatment of chronic obstructive pulmonary disease. Expert Opin Investig Drugs. 2015; 24(3): 383–92. PubMed Abstract | Publisher Full Text

189. Johnstone TB, Smith KH, Koziol-White CJ, et al.: PDE8 Is Expressed in Human Airway Smooth Muscle and Selectively Regulates cAMP Signaling by β2-Adrenergic Receptors and Adenylyl Cyclase 6. Am J Respir Cell Mol Biol. 2018; 58(4): 530–41. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

190. Fujitani Y, Trifilett A: In vivo and in vitro effects of SAR 943, a rapamycin analogue, on airway inflammation and remodeling. Am J Respir Crit Care Med. 2003; 167(2): 193–8. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. **Omar Tliba**
 - Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, The State University of New Jersey, New Jersey, USA
 - **Competing Interests:** No competing interests were disclosed.

2. **Rennolds Ostrom**
 - Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, California, USA
 - **Competing Interests:** No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com