Benzoannelated \(A_3B\)-Phthalocyanines with Diethyleneglycol Substituents: Synthesis and Control of Aggregation

Alexey V. Yagodin, Alexander G. Martynov, Yulia G. Gorbunova, and Aslan Yu. Tsivadze

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia

@Corresponding author E-mail: Martynov.Alexandre@gmail.com

New benzoannelated phthalocyanine \(H_2A_3B\) has been synthesized by cross-condensation of 4,5-dibutoxyphthalonitrile \(A\) and naphthalonitrile \(B\) bearing two diethyleneglycol substituents. UV-Vis and \(^1\)H NMR measurements performed for \(H_2A_3B\) showed that the presence of free OH-groups in \(H_2A_3B\) enhances its aggregation in solution in comparison with its O-tetrahydropyranyl derivative \(H_2A_3Bt\), which can be considered as a way to control the physicochemical properties of asymmetric phthalocyanines.

Keywords: Benzoannelated phthalocyanine, UV-Vis spectroscopy, NMR spectroscopy, aggregation.

Introduction

One of the important trends in modern science is the search for approaches to obtaining functional hybrid organic-inorganic materials for the development of molecular electronics elements and other topical applications, such as nonlinear optics, sensors and catalysis.[1] In the development of such hybrid materials, oxides, metal nanoparticles and quantum dots, etc., are used as inorganic substrates, and macrocyclic compounds are often used as the organic component, among which phthalocyanines attract particular attention.[2–5] For example, the immobilization of phthalocyanines on the surface of quantum dots and nanoparticles leads to conjugates with improved nonlinear optical properties affording their application as optical limiters of laser radiation.[6,7]
Compared with the widely studied symmetrical phthalocyanines, the information about asymmetrical analogues is limited.\cite{8,9} At the same time, from the viewpoint of phthalocyanines immobilization on the surface of inorganic materials, asymmetric phthalocyanines are particularly interesting, because the introduction of various types of functional fragments and simultaneously anchoring groups for molecule attachment makes it possible to extend the applications of hybrid materials based on them. From this viewpoint, terminal OH-groups are particularly attractive due to wide possibilities of their post-synthetic modification to obtain anchoring groups with desired functionalities.\cite{10-12}

Here we report on synthesis and characterization of novel benzoannelated phthalocyanine $H_{2}A_{3}B_{t}$ obtained from 4,5-dibutoxyphthalonitrile A and naphthonitrilite B with two diethyleneglycol substituents bearing two terminal OH-groups. Further conversion of these OH groups into tetrahydropyryl derivatives afforded the protected ligand $H_{3}A_{3}B_{t}$ which had markedly lower tendency to aggregation in comparison with the starring $H_{2}A_{3}B_{t}$ molecule.

Experimental

The starting precursors, 4,5-di-n-butoxyphthalonitrile A\cite{13} and 6,7-bis[2′-(2”-hydroxyethoxy)ethoxy]-2,3-naphthonitrilite B\cite{14} were synthesized according to previously reported procedures. Chloroform (puriss) was dried over CaCl$_2$ and distilled over K$_2$CO$_3$. Pentanol (Aldrich) was distilled over Mg and stored under argon. All other reagents were used without purification as received from commercial suppliers. Column chromatography was performed on neutral alumina (Macherey-Nagel) and BioBeads S-X1 (BioRad).

Mass spectral data were acquired on Bruker Daltonics Ultraflex spectrometer with 2,4-dihydroxybenzoic acid as the matrix. Mass spectrometer operated in a positive ion mode using an m/z range of 500–5000 amu. NMR spectra were recorded with Bruker Avance 600 spectrometer. NMR spectra were referenced against the residual solvent signal. Deuterated chloroform was filtered through the layer of dry neutral alumina prior the preparation of samples. Ground state electronic absorption was measured on Jasco V770 spectrophotometer in quartz cells with 1, 2, 5 and 10 mm optical pathways.

Phthalocyanine $H_{2}A_{3}B_{t}$: A mixture of phthalonitrile A (431 mg; 1.6 mmol), naphthonitrilite B (122 mg; 0.32 mmol), and magnesium (91 mg; 3.84 mmol) was suspended in 13 mL of 1-pentanol and mixture was degassed and refluxed under argon atmosphere for 16 h. After that, reaction mixture was cooled to 100 °C, mixture of 1.5 mL CF$_3$COOH and 1.5 mL of water was added to produce metal-free ligand. The progress of demetalation was monitored by UV-Vis spectra. After 15 minutes demetalation was complete and dark-green reaction mixture was sonicated with the mixture of water and EtOH (6:4 v/v), the precipitate was filtered, washed with aqueous EtOH, washed off the filter with CHCl$_3$, and MeOH mixture and the filtrate was evaporated. The resulting mixture of metal-free complexes was separated via column chromatography on neutral alumina. Symmetrical phthalocyanine $H_{3}A_{3}B_{t}$ was eluted with CHCl$_3$ + 20 vol.% hexane, and target low-symmetry phthalocyanine $H_{2}A_{3}B_{t}$ was eluted with the mixture of CHCl$_3$ + 5 vol.% MeOH followed by size-exclusion chromatography in BioBeads S-X1 (elution with the mixture of CHCl$_3$ + 2.5 vol.% MeOH). Green solid, yield 90 mg (16 %). MALDI TOF MS, m/z: calculated for C$_{68}$H$_{50}$N$_{10}$O$_{8}$ – 1205.5, found 1204.7 – [M$^+$.]+ 1205.5, 1204.7. H NMR (CDCl$_3$, 300 K) δ ppm: 7.87, 7.71 and 7.33 (3s, 3x2H, 3H$_n$), 6.88 (s, 2H, 1,4-H$_A$), 6.23 (s, 2H, 5,8-H$_B$), 4.40–3.81 (m, 30H, 1-OCH$_2$ + α,β,γ,δ-OCH$_2$ + OH), 4.36–3.81 (m, 24H, 2,3-CH$_3$), 1.29–1.23 (m, 18H, CH$_2$), –3.59 (s, 2H, NH). UV-Vis (CHCl$_3$) λ_{max} (lg ε): nm 729 (5.17), 684 (5.11), 616 (4.47), 409 (4.60), 345 (4.97), 303 (4.73).

Results and Discussion

With the aim to synthesize low-symmetry benzoannelated phthalocyanine $H_{2}A_{3}B_{t}$ bearing anchor groups for their further immobilization on the surface of nanomaterials we used Mg-templated cross-condensation of phthalonitrilite A and B (Scheme 1). The use of magnesium as a template leads to increased yields compared to non-template reaction of cyclotetramerization.\cite{15} The resulting mixture of magnesium complexes was demetalated with trifluoroacetic acid without isolation of individual compounds and the resulting mixture of ligands was separated by column chromatography on alumina followed by fine purification using size-exclusion chromatography.

Further modification of the synthesized phthalocyanine with tetrahydropyryl protective groups was performed via reaction of $H_{2}A_{3}B_{t}$ with dihydropyran catalyzed with TsOH (Scheme 1). The resulting $H_{2}A_{3}B_{t}$ will be used as a precursor to novel sandwich complexes based on benzoannelated phthalocyanines similarly to our previous results.\cite{6}

Characterization of $H_{2}A_{3}B_{t}$ and $H_{2}A_{3}B_{t}$ was performed using MALDI TOF mass spectrometry, UV-Vis and NMR spectroscopy. While UV-Vis spectra of both phthalocyanines similarly to our previous results. $H_{2}A_{3}B_{t}$ had markedly different intensities and ratios of absorbances of Q-bands in concentrated solutions, which could be caused by aggregation of p-extended molecules (Figure 1). UV-Vis spectrum of $H_{2}A_{3}B_{t}$ showed a noticeable but less pronounced dependence of its character as a function of concentration.

The analysis of concentration dependencies of UV-Vis spectra vs. concentration of dissolved phthalocyanines was performed using the approximation proposed by N. Mataga,\cite{16} who suggested using the equation (1) to estimate the number of molecules, n, in the forming aggregate:

$$\log \left[C_0 \left(1 - \frac{e_{off}}{e_m} \right) \right] = \log (n \cdot K) + n \cdot \log \left[\frac{C_0 \cdot e_{off}}{e_m} \right]$$

(1)
Scheme 1. Synthesis of A_3B-type benzoannelated phthalocyanines together with labeling of protons used for assignment of NMR spectra.

Here K is the approximate value of stability constant of the aggregate, e_{eff} is the observed extinction coefficient at certain wavelength, equal to optical density A divided by concentration C_0 of the dissolved phthalocyanine and optical path. The value of e_m corresponds to extinction coefficient of the monomeric compound at this wavelength, which can be taken from the UV-Vis spectrum of the most diluted solution. Thus, plotting $\log[C_0 \cdot (1 - \frac{e_{\text{eff}}}{e_m})]$ vs. $\log[C_0 \cdot \frac{e_{\text{eff}}}{e_m}]$ should give a straight line with the slope close to the aggregation number, and indeed such linear dependencies were observed for Q-bands of both $H_2 A_3B$ and $H_2 A_3Bt$. Their slopes were equal to 1.54 and 1.76, suggesting that aggregation of both phthalocyanines leads mainly to dimeric species, however the approximate character of the equation (1) does not allow to use it to separate spectra of aggregated phthalocyanines into spectra of monomers and individual aggregates.

Further analysis was based on equation (2), which represents the exact dependency of optical density at a certain wavelength as a function of the concentration C_0, extinction

Figure 1. UV-Vis spectra of $H_2 A_3B$ and $H_2 A_3Bt$ in chloroform depending on concentration.

Figure 2. Graphical analysis of e_{eff} values for determination of aggregation number n, obtained for long wavelength Q-bands of $H_2 A_3B$ ($n = 1.54 \pm 0.11$, $R^2 = 0.980$) and $H_2 A_3Bt$ ($n = 1.75 \pm 0.06$, $R^2 = 0.995$).
coefficients of monomeric and dimeric species e_m and e_d, as well as the equilibrium constant of dimerization process K_d \[^{[17–19]}\]

$$A = \left(e_m - e_d \right) \frac{1}{2} \sqrt{1 + 8 \cdot C_o \cdot K_d} = \frac{C_o \cdot e_d}{2} \quad (2)$$

Thus, using nonlinear regression analysis we first determined e_m for all bands in UV-Vis spectra of H_2A_3B and H_2A_3Bt and found the K_d values in the range of concentrations $C_o \ ca. 4–200 \ \mu M$. The results of these calculations were in complete agreement with higher tendency of H_2A_3B, bearing free OH-groups to aggregation ($\lg K_d = 4.47$) in comparison with its O-protected derivative H_2A_3Bt ($\lg K_d = 3.64$).

Then, the array of concentration-dependent UV-Vis data for 31 wavelengths (from 600 to 750 nm with 5 nm step) was chosen, the values of e_m and K_d from the previous step were fixed, and all other parameters were varied until convergence was achieved. The calculated UV-Vis spectra of monomers and dimers for both phthalocyanines are given in Figure 3.

![Figure 3](image)

Figure 3. Calculated UV-Vis spectra of monomer and dimeric forms of H_2A_3B and H_2A_3Bt in chloroform.

The results of calculations showed that monomeric forms of both phthalocyanines reproduced the spectra of diluted solutions. They had typical appearance with split Q-bands and well-resolved vibronic satellites, while each of dimeric forms had only one broad structureless band with maximum at ca. 660 nm shifted hypsochemically with respect to Q-bands of monomeric compounds. Such spectral appearance is characteristic for the cofacial H-dimers, which however can have different degree of intermolecular overlap between neighboring aromatic systems (Figure 4).

To get more insight into the structure of these dimers we used variable-temperature 1H NMR spectroscopy. Measurements were performed for ca. 10 mM solutions of both phthalocyanines at 303 and 323 K (Figure 5). At this concentration the fraction of monomers in solutions of H_2A_3B and H_2A_3Bt is below 10%, thus the appearance of their NMR spectra is determined mainly by dimeric species.

In the case of H_2A_3Bt heating of the sample caused relatively small shifts of resonance signals of naphthalene protons (Figure 5a) and, generally the positions of these resonance signals were closer to their positions in the spectrum of the previously reported nonaggregating phthalocyanine H_2A_3B where six diisopropylphenoxy-groups were used as solubilizers instead of BuO-groups.\[^{[14]}\] This observation indicates that the dimer formed by H_2A_3Bt can be similar to that shown in Figure 4a, with overlapping macrocyclic cores and naphthalene groups arranged outward.

![Figure 5](image)

Figure 5. Aromatic area of 1H NMR spectra of H_2A_3B and H_2A_3Bt in CDCl$_3$ measured at 303 and 323 K. Labels of protons are given in Scheme 1.
To the contrast, 1H NMR spectrum of the phthalocyanine H$_2$A$_3$B at 303 K was characterized by spectacular up-field shifts of both phthalic and naphthalenic resonance signals in comparison with the spectrum of H$_2$A$_3$B$_t$ at the same temperature (Figure 5b). Upon the increase of the solution temperature from 303 to 323 K naphthalenic signals underwent a significant down-field shift, yet it did not afford complete disaggregation which is in line with higher stability of the dimeric form. The described behavior allows to propose the architecture of the dimer based on H$_2$A$_3$B as an assembly where naphthalene unit is located in vicinity to the tetrapyrrolic core of the neighboring molecule (Figure 4b), which results in up-field shift of 1,4-H$_2$ signals in comparison with H$_2$A$_3$B$_t$. The absence of such a strong shift in the case of O-protected derivative H$_2$A$_3$B$_t$ evidences that terminal OH-groups in H$_2$A$_3$B contribute to stabilization of aggregated form, probably due to the formation of intermolecular hydrogen bonds. The difference in architectures of aggregates formed by H$_2$A$_3$B and H$_2$A$_3$B$_t$ can be also responsible for the difference in extinction coefficients of dimers Q-bands which can be seen in Figure 2.

Conclusions

The influence of phthalocyanine aggregation on their photophysical properties is somewhat controversial. On one hand, it quenches excited states via nonradiative pathways, which can be a negative factor for fluorescent materials and photodynamic agents,[29] On the other hand, aggregation is known to enhance nonlinear optical properties of phthalocyanines improving their efficiency as optical limiters.[21–26] In the present work we showed how aggregation of benzoannelated phthalocyanines can be controlled by variation of functional groups at distant positions with respect to the tetrapyrrolic core. These results can contribute to elaboration of phthalocyanine-based materials with tuneable properties.[25]

Acknowledgements. This work was supported by Russian Science Foundation (grant 19-73-00332). Analytical measurements were performed using equipment of CKP FMI IPCE RAS and IGIC RAS

References

1. Faustini M., Nicole L., Ruiz-Hitzky E., Sanchez C. Adv. Funct. Mater. 2018, 28, 1704158.
2. Ragoussi M.-E., Torres T. Chem. – An Asian J. 2014, 9, 2676–2707.
3. Bottari G., de la Torre G., Torres T. Acc. Chem. Res. 2015, 48, 900–910.
4. Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakhnev A.A., Tomilova L.G., Dubinina T.V., Tsivadze A.Y., Gorburnova Y.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Logovska T.N., Korolev V.V., Zenkevich E.I., Blaudeck T., von Borczyskowski C., Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishin N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven'kov I.A., Mamardashvili N.Z., Kirtikyan T.S., Martirosyan G.G., Burmistrov V.A., Aleksandriiskii V.V., Novikov I.V., Prinom D.A., Grin M.A., Suvorov N.V., Tsiganok A.A., Fedorov A.Y., Kuzmina N.S., Nychev A.V., Orvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovjev A.B., Timashev P.S., Mitieva E.R., Gracheva Y.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Y.A., Kiselev A.N., Koifman M.O., Lebedeva N.S., Yuriya E.S. Macrocycles 2020, 13, 311–467.
5. Tolbin A.Y., Tomilova L.G., Zefirov N.S. Russ. Chem. Rev. 2007, 76, 681–692.
6. Oluwole D.O., Yagodin A.V., Mkizhe N.C., Sekhosana K.E., Martynov A.G., Gorburnova Y.G., Tsivadze A.Y., Nyokong T. Chem. Eur. J. 2017, 23, 2820–2830.
7. Oluwole D.O., Yagodin A.V., Britton J., Martynov A.G., Gorburnova Y.G., Tsivadze A.Y., Nyokong T. Dalton Trans. 2017, 46, 3191–3198.
8. Mack J., Kobayashi N. Chem. Rev. 2011, 111, 281–321.
9. Nemykin V.N., Dukin S.V., Dumoulin F., Hiri C., Gürek A.G., Ahsen V. Arkivoc 2014, 2014, 142–204.
10. Berthold H.J., Franke S., Thiem J., Schottet T. J. Org. Chem. 2010, 75, 3859–3862.
11. Berthold H.J., Schottet T., Hoffmann F., Thiem J. Synthesis 2010, 741–748.
12. Shokurov A.V., Yagodin A.V., Martynov A.G., Gorburnova Y.G., Selektor S.L. ECS J. Solid State Sci. Technol. 2020, 9, 015022.
13. Cidilina A., Svec I., Ludivova L., Kuneš J., Zimcik P., Nova kova V. J. Porphyrins Phthalocyanines 2016, 20, 1122–1133.
14. Yagodin A.V., Martynov A.G., Gorburnova Y.G., Tsivadze A.Y. Dyes Pigments 2020, 181, 108564.
15. Martynov A.G., Berezhnov G.S., Safonova E.A., Polovkova M.A., Gorburnova Y.G., Tsivadze A.Y. Macrocycles 2019, 12, 75–81.
16. Mataga N. Bull. Chem. Soc. Jpn. 1957, 30, 375–379.
17. Martynov A.G., Panova M.V., Gorburnova Y.G., Tsivadze A.Y. Macrocycles 2014, 4, 7–47.
18. Britton J., Martynov A.G., Oluwole D.O., Gorburnova Y.G., Tsivadze A.Y., Nyokong T. J. Porphyrins Phthalocyanines 2016, 20, 1296–1305.
19. Choi M.T.M., Li P.P.S., Ng D.K.P. Tetrahedron 2000, 56, 3881–3887.
20. Snow A.W. In: The Porphyrin Handbook, Vol. 17 (Kadish K.M., Smith K.M., Guilard R., Eds.), Elsevier, 2003, pp. 129–176.
21. Gorburnova Y.G., Grishina A.D., Martynov A.G., Krivenko T.V., Isakova A.A., Savel'ev V.V., Nefedov S.E., Akhila nimov E.V., Vannikov A.V., Tsivadze A.Y. J. Mater. Chem. C 2015, 3, 6692–6700.
22. Tolbin A.Y., Dzuban A.V., Shestov V.I., Gudkova Y.I., Brel V.K., Tomilova L.G., Zefirov N.S. RSC Adv. 2014, 5, 8253–8247.
23. Tolbin A.Y., Dzuban A.V., Shulishov E.V., Tomilova L.G., Zefirov N.S. New J. Chem. 2016, 40, 8262–8270.
24. Savel'ev M.S., Gerasimenko A.Y., Podgaetskii V.M., Tereshchenko S.A., Selishevsk S.V., Tolbin A.Y. Opt. Laser Technol. 2019, 117, 272–279.
25. Martynov A.G., Safonova E.A., Tsivadze A.Y., Gorburnova Y.G. Coord. Chem. Rev. 2019, 387, 325–347.

Received 16.05.2021
Accepted 23.07.2021