INTRODUCTION

Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency characterized by a clinical triad of immunodeficiency, thrombocytopenia, and eczema (1, 2). WAS is caused by mutations in the gene encoding Wiskott-Aldrich syndrome protein (WASP) that affect all hematopoietic stem cells including lymphocytes, monocytes, neutrophils and platelets (3). Various WASP gene mutations have been reported in patients with WAS and X-linked thrombocytopenia, a clinically mild allelic variant (4-9).

The treatment of WAS depends on the severity of the immunodeficiency. In severe cases of WAS, the immunodeficiency limits the life expectancy of the patient, and immune reconstitution is the treatment of choice. Imai et al. (10) demonstrated correlations between the clinical phenotype, the extent of the mutation, and the presence or absence of WASP and also recommended hematopoietic stem cell transplantation (HSCT) especially for the patients with WASP-negative WAS. Recently, there have been reports of successful treatment of WAS by unrelated HSCT with cord blood (CB) as well as bone marrow transplant when a matched sibling donor was unavailable (11-16). Although phenotypic corrections for immunologic and hematologic parameters have been reported, genotypic corrections for WAS with cord blood stem cell transplantation (CBSCT) have not been demonstrated.

In this report, we demonstrate 2 cases of WAS which were phenotypically and genotypically corrected with unrelated CBSCT.

CASE REPORT

Patient 1 (UPN 1) is a male who was diagnosed with WAS at the age of 5 months. He presented with incidentally detected thrombocytopenia (23,000/μL) with skin eczema and severe, recurrent otitis media and diarrhea on admission. The second male patient (UPN 2) presented with neonatal thrombocytopenia at birth and received intermittent intravenous immunoglobulin (IVIG). Thereafter he experienced skin ec-
zyma and recurrent infections such as cellulitis and pneumonia, until he visited our hospital at 3 months old. Flow cytometric analysis of peripheral blood mononuclear cells (PBMC) for these 2 patients revealed a defect in WASP, leading to the diagnosis of WAS. Subsequently, the nonsense mutations, Arg211stop and Arg13stop, were confirmed by genomic analysis (17). Before transplantation, these patients were treated with monthly infusions of IVIG as well as supportive treatment but there was no clinical improvement.

CBSCT was performed in a laminar air flow room with conventional supportive therapy. The pre-transplantation conditioning regimen for the 2 patients was 1 mg/kg of busulfan intravenously every 6 hr on days -9 through -6. This was followed by 50 mg/kg of intravenous cyclophosphamide on days -5 through -3 and 30 mg/kg of intravenous antithymocyte globulin (ATG) on days -3 through -1. Prophylaxis for acute graft versus host disease (GVHD) included continuous infusion of cyclosporine A beginning on day -1, targeting whole blood levels to be 200 to 400 ng/mL, and 1 mg/kg/dose of methylprednisone every 12 hr on days 5 through 19, and then a taper.

The degree of human leukocyte antigen (HLA) match confirmed by high resolution DNA typing between the infused CB and the patients was 4/6 for UPN 1 and 5/6 for UPN 2. Infused cell doses of TNC and CD34+ cells for UPN1 and UPN2 were 6.24 × 10^7/kg and 5.08 × 10^7/kg for TNC, respectively, and 1.33 × 10^5/kg and 4.8 × 10^5/kg for CD34+ cells, respectively.

T-, NK-, and B-cell enumeration and quantitative immunoglobulin studies (for immunoglobulin [Ig] G, A, M, D, and E) were performed. Cytofluorographic analyses of lymphocyte subpopulations were performed with murine monoclonal antibodies conjugated to either fluorescein (FITC) or phycoerythrin (PE) and then analyzed by flow cytometry (FACScan; Becton Dickinson, San Jose, CA, U.S.A.).

Heparinized venous blood samples from patients and family members were fractionated on a Ficoll-Hypaque gradient to isolate PBMCs. For mutational analysis, genomic DNA was extracted from the peripheral lymphocytes, and 12 WASP gene exons were amplified by polymerase chain reaction (PCR) followed by direct sequencing according to the protocol of Sasahara et al. (18).

Hematopoietic reconstitution following CBSCT was uneventful, with an absolute neutrophil count (ANC) of more than 500/μL on days 31 and 13 and a platelet count of more than 20,000/μL on days 58 and 50, for UPN 1 and UPN 2, respectively. Molecular chimerism studies using the VNTR method showed a complete donor cell type for these patients (data not shown). Acute GVHD did not occur, even after the infusion of HLA 1 or 2 antigen mismatched CB. UPN 1 experienced 1 episode of sepsis with B. cepacia during the pre-engraftment period without any complications. UPN 2 expe-

Table 1. Cord blood stem cell transplantation data in children with WAS

	UPN 1	UPN 2	
Age at transplantation (month)	16	20	
Degree of HLA mismatch	2	1	
Preparative regimen	Bu, Cy, ATG	Bu, Cy, ATG	
Infused cell dose	TNC (10^7/kg)	6.24	5.08
	CD34+ cell (10^5/kg)	1.33	4.8
Time to engraftment (day)	ANC (>500/μL)	31	13
	Platelet (>20,000/μL)	58	50
Follow-up duration (month)	60	55	

Table 2. Immunological laboratory data of pre-/post-transplantation in children with WAS

	Pre-transplant	Post-transplant								
	7 mo	16 mo	48 mo	60 mo	7 mo	12 mo	24 mo	55 mo		
Total eosinophil (per μL)	800	200	288	360	160	1,600	300	90	110	100
IgE (IU/mL)	786	44.4	25.7	134.9	66.1	1,713	216	84.77	84.77	41.9
IgG (mg/dL)	1,912	NA	589	1,010	1,030	NA	NA	NA	NA	1,087
IgA (mg/dL)	72.3	NA	29.2	104	105	NA	NA	NA	NA	172
IgM (mg/dL)	30.4	NA	270	254	246	NA	NA	NA	NA	198
IgD (mg/dL)	0.397	NA	70	81	NA	NA	NA	NA	NA	58.3

Lymphocyte subset

	Pre-transplant	Post-transplant								
	7 mo	16 mo	48 mo	60 mo	7 mo	12 mo	24 mo	55 mo		
T3 (CD3) (%)	47	NA	60.6	58	64	36	NA	43.3	62.6	70.1
T4 (CD4) (%)	30	NA	35.8	29	29	31	NA	29.3	33	43.9
T8 (CD8) (%)	7	NA	26	28	32	5	NA	13.1	22.3	23.9
T4/T8 ratio	5.7:1	NA	1.38:1	1.04:1	0.91:1	6.2:1	NA	2.2:1	1.5:1	1.8:1
B (CD19) (%)	32	NA	33.9	19	26	32	NA	49.7	25	23.2
NK (CD6/56) (%)	18	NA	6.19	19	9	31	NA	13.8	12.1	5.9

WAS, Wiskott-Aldrich Syndrome; NA, not available; mo, months.
sequence showing genetic correction of the WASP gene in UPN 1. DNA sequences are shown that encompass a single point mutation (C to T) or a correction in exon 7 of the WASP gene. The asterisk denotes a C to T transversion or the T to C correction.

Fig. 1. Sequence analysis showing genetic correction of the WASP gene in UPN 1. DNA sequences are shown that encompass a single point mutation (C to T) or a correction in exon 7 of the WASP gene. The asterisk denotes a C to T transversion or the T to C correction.

DISCUSSION

The gene responsible for WAS (WASP) consists of 12 exons with 1,823 bp. WASP encodes a 502 amino acid protein that is expressed selectively in hematopoietic stem cell-derived lineages (4). To date, approximately 100 mutations in the WASP gene have been described. These mutations consist of frameshift mutations, missense mutations, or splice-site mutations, which all give rise to aberrant transcription (4-9). A correlation between clinical phenotype and genotype was documented independently by several investigators (7, 9). Imai et al. (10) observed that patients with missense mutations were WASP-positive, but patients with nonsense mutations, large deletions, small deletions, and small insertions were WASP-negative. Patients with splice anomalies were either WASP-positive or WASP-negative. Lack of WASP expression was associated with susceptibility to bacterial, viral, fungal, and Pneumocystis jirovei infections and with severe eczema, intestinal hemorrhage, death from intracranial bleeding, and malignancies. They also revealed that the rates for overall survival and event-free survival were significantly lower in WASP-negative patients. Conclusively, they recommended HSCT to improve prognosis, especially for WASP-negative patients.

Recently, HSCT has been the principal modality for correction of immune deficiencies such as WAS. Since CB has been successfully transplanted to reconstitute patients with WAS, as first reported in 1994 (11-16), CB appears to be an alternative donor source compared with matched unrelated bone marrow with successful engraftment associated with no to mild acute GVHD and without development of chronic GVHD. In this study, we identified 2 WAS patients who had nonsense mutations in WASP and we successfully treated them by unrelated CBSCST with engraftment with no associated GVHD.

In CBSCST, the immunologic reconstitution resulted in consistent and stable T-cell, B-cell, and natural killer-cell development. The kinetics of recovery of phenotypic expression and function of the T cells occurred between 60 and 100 days and that of natural killer cells at approximately 180 days (19). The immunologic parameters, especially CD8 of our patients also demonstrated normal values after CBSCST.

Furthermore, following CBSCST, we found that UPN1 had a normal sequence at the mutation site in exon 7 of WASP gene. While CBSCST has been successfully performed for phenotypic correction including clinical features and immunologic parameters in WAS, our study emphasizes the evidence of genetic correction as well as phenotypic correction by CBSCST in WAS. To our knowledge, this is the first report documenting a genetic correction by CBSCST in WAS.

Collectively, our data demonstrate that CBs could be an important source of stem cells for the phenotypic as well as genotypic correction of genetic diseases such as WAS.

REFERENCES

1. Ochs HD, Rosen FS. The Wiskott-Aldrich syndrome. In: Ochs HD, Edward Smith CI, Puck JM, eds. Primary Immunodeficiency Diseases. New York, NY: Oxford University Press 1999; 292-305.
2. Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of Wiskott-Aldrich syndrome. J Pediatr 1994; 125: 876-85.
3. Snapper SB, Rosen FS. The Wiskott-Aldrich syndrome Protein (WASP): roles in signaling and cytoskeletal organization. Annu Rev Immunol 1999; 17: 905-29.
4. Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 1994; 78: 635-44.
5. Greer WL, Shehabeldin A, Schulman J, Junker A, Sinimovitch KA. Identification of WASP mutations, mutation hotspots and genotype-phenotype disparities in 24 patients with the Wiskott-Aldrich syndro-
6. Kwan SP, Hagemann TL, Blaese RM, Knutsen A, Rosen FS. Scanning of Wiskott-Aldrich syndrome (WAS) gene: identification of 18 novel alterations including a possible mutation hotspot at Arg86 resulting in thrombocytopenia, a mild WAS phenotype. Hum Mol Genet 1995; 4: 1995-8.

7. Wengler GS, Notarangelo LD, Berardelli S, Pollonni G, Mella P, Fas-th A, Ugazio AG, Parolini O. High prevalence of nonsense, frame shift, and splice-site mutations in 16 patients with full-blown Wiskott-Aldrich syndrome. Blood 1995; 86: 3648-54.

8. Zhu Q, Zhang M, Blaese RM, Derry JM, Junker A, Francke U, Chen SH, Ochs HD. The Wiskott-Aldrich syndrome and X-linked congenital thrombocytopenia are caused by mutations of the same gene. Blood 1995; 86: 3797-804.

9. Imai K, Morio T, Zhu Y, Jin Y, Itoh S, Kajiwara M, Yata J, Mizutani S, Ochs HD, Nonoyama S. Clinical course of patients with WASP gene mutations. Blood 2004; 103: 456-64.

10. Knutsen AP, Steffen M, Wassmer K, Wall DA. Umbilical cord blood transplantation in Wiskott-Aldrich syndrome. J Pediatr 2003; 142: 519-23.

11. Slatter MA, Bhattacharya A, Flood TJ, Abinun M, Cant AJ, Gennery AR. Use of two unrelated umbilical cord stem cells in stem cell transplantation for Wiskott-Aldrich syndrome. Pediatr Blood Cancer 2006; 47: 332-4.

12. Kobayashi R, Ariga T, Nonoyama S, Kanegane H, Tsuchiya S, Morio T, Yabe H, Nagatoshi Y, Kawa K, Tabuchi K, Tsuchida M, Miyawaki T, Kato S. Outcome in patients with Wiskott-Aldrich syndrome following stem cell transplantation: an analysis of 57 patients in Japan. Br J Haematol 2006; 135: 362-6.

13. Jo EK, Futatani T, Kanegane H, Kubota T, Lee YH, Jung JA, Song CH, Park JK, Nonoyama S, Miyawaki T. Mutation analysis of the WASP Gene in 2 Korean families with Wiskott-Aldrich syndrome. Int J Hematol 2003; 78: 40-4.

14. Sasahara Y, Kawai S, Kumaki S, Ohashi Y, Minegishi M, Tsuchiya S. Novel mutations, no detectable mRNA and familial genetic analysis of the Wiskott-Aldrich syndrome protein gene in six Japanese patients with Wiskott-Aldrich syndrome. Eur J Pediatr 2000; 159: 23-30.

15. Knutsen AP, Wall DA. Kinetics of T-cell development of umbilical cord blood transplantation in severe T-cell immunodeficiency disorders. J Allergy Clin Immunol 1999; 103: 823-32.