The Many Faces of G Protein Signaling*

Heidi E. Hamm†‡

From the Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Institute for Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611

A large number of hormones, neurotransmitters, chemokines, local mediators, and sensory stimuli exert their effects on cells and organisms by binding to G protein-coupled receptors. More than a thousand such receptors are known, and more are being discovered all the time. Heterotrimeric G proteins transduce ligand binding to these receptors into intracellular responses, which underlie physiological responses of tissues and organisms. G proteins play important roles in determining the specificity and temporal characteristics of the cellular responses to signals. They are made up of α, β, and γ subunits, and although there are many gene products encoding each subunit (20 α, 6 β, and 12 γ gene products are known), four main classes of G proteins can be distinguished: Gs, which activates adenyl cyclase; Gi, which inhibits adenyl cyclase; Gq, which activates phospholipase C; and G12 and G13, of unknown function.

G proteins are inactive in the GDP-bound, heterotrimeric state and are activated by receptor-catalyzed guanine nucleotide exchange resulting in GTP binding to the α subunit. GTP binding leads to dissociation of Go-GTP from Gβγ subunits and activation of downstream effectors by both Go-GTP and free Gβγ subunits. G protein deactivation is rate-limiting for turnover of the cellular response and occurs when the Gα subunit hydrolyzes GTP to GDP. The recent resolution of crystal structures of heterotrimeric G proteins in active and active conformations provides a structural framework for understanding their role as conformational switches in signaling pathways. As more and more novel pathways that use G proteins emerge, recognition of the diversity of regulatory mechanisms of G protein signaling is also increasing. The recent progress in the structure, mechanisms, and regulation of G protein signaling pathways is the subject of this review. Because of space considerations, I will concentrate mainly on recent studies; readers are directed to a number of excellent reviews that cover earlier studies.

G Protein Structure

Gs subunits contain two domains, a domain involved in binding and hydrolyzing GTP (the G domain) that is structurally identical to the superfamily of GTPases including small G proteins and elongation factors (1) and a unique helical domain that buries the GTP in the core of the protein (2, 3) (Fig. 1). The β subunit of heterotrimeric G proteins has a 7-membered β-propeller structure based on its 7 WD-40 repeats (4–6). The γ subunit interacts with β through an N-terminal coiled coil and then all along the base of β, making extensive contacts (Fig. 1). The β and γ subunits form a functional unit that is not dissociable except by denaturation. G protein activation by receptors leads to GTP binding on the Gα subunit. The structural nature of the GTP-mediated switch on the Gα subunit is a change in conformation of three flexible regions designated Switches I, II, and III to a well ordered, GTP-bound activated conformation with lowered affinity for Gβγ (7) (Fig. 1).

This leads to increased affinity of Go-GTP for effectors, subunit dissociation, and generation of free Gβγ that can activate a number of effectors.

Mechanism of Activation of G Proteins by Receptors

G protein-coupled receptors have a common body plan with seven transmembrane helices; the intracellular loops that connect these helices form the G protein-binding domain (Fig. 2). Although no high resolution structure of a G protein-coupled receptor has yet been determined, recently a low resolution electron diffraction structure of rhodopsin, a model G protein-coupled receptor, shows the position and orientation of the seven transmembrane α-helices (8, 9). Both mutagenesis and biochemical experiments with a variety of G protein-coupled receptors suggest that receptor activation by ligand binding causes changes in the relative orientations of transmembrane helices 3 and 6. These changes then affect the conformation of G protein-interacting intracellular loops of the receptor and thus uncover previously masked G protein-binding sites (10, 11) (reviewed in Ref. 12). When an activated receptor interacts with a heterotrimeric G protein, it induces GDP release from the G protein. It is thought that the receptor contact sites on the G protein are distant from the GDP-binding pocket, so the receptor must work “at a distance” to change the conformation of the protein (13). Because GDP is buried within the protein between the two domains of Go, this must necessarily involve changing some interdomain interactions. Upon GDP release and in the absence of GTP a stable complex between the activated receptor and the heterotrimer is formed. This so-called “empty pocket” conformation is of great interest, but its structure is as yet unknown.

What are the regions on G proteins that contact receptors, and how does G protein activation occur? The conformation of the GDP-bound heterotrimeric G proteins Gi and Go (5, 6) shows the overall shape of the GDP-bound heterotrimer and the residues on the surface that can interact with other proteins and provides the structural context for understanding a variety of biochemical and mutagenesis studies of receptor-interacting regions on G proteins. The N-terminal region of the α subunit and the C-terminal region of the γ subunit are both sites of lipid modification (reviewed in Ref. 14). These lipidated regions are relatively close together in the heterotrimer, suggesting a site of membrane attachment. There is good evidence for receptor contact surfaces on all three subunits.

On the α subunit, the best characterized receptor contact region is at the 4-6 loop (reviewed in Refs. 13 and 15). The last 7 amino acids of the α subunit are disordered in the heterotrimer crystal structures, and analysis of receptor-binding peptides selected from a combinatorial peptide library shows that these 7 residues are the most critical (16). Studies using chimeric Go subunits confirm that in fact the last 5 residues contribute importantly to specificity of receptor G protein interaction. Elegant mutagenesis studies have shown that the C terminus of the third intracellular loop of receptors binds to this C-terminal region on Goα subunits. In the case of Mus musculus rhodopsin coupling to Goα, the exact residues of the receptor that are critical for recognizing the C terminus of Goα have been elucidated (Val-385, Thr-386, Ile-389, and Leu-390) (17).

A larger region of the C-terminal region of Goα subunits, as well as the N-terminal helix, has been implicated in receptor contact. Alanine-scanning mutagenesis of Goα (18) and analysis of residues conserved in subclasses of G protein α subunits (19) both identify a number of residues in the C-terminal 50 amino acids of Goα that contact rhodopsin. Arg-310 located at the 4-6 loop of Goα is completely blocked from tryptic proteolysis in the presence of light-activated rhodopsin, suggesting that the 4-6 loop region contributes to receptor contact (20). The 4-6 loop has also been implicated in specific interaction of the 5HT1A 5-hydroxytryptamine receptor with Goα1 as well as in receptor-catalyzed Gi activation (21).

It is clear that the βγ subunits of heterotrimeric G proteins enhance receptor interaction with α subunits (reviewed in Ref. 15). Single Ala mutations in residues of the β subunit that contact the
bound nucleotides are magenta. In the inactive GDP-bound state the N-terminal helix is visible only in the GDP-bound structure. The Gα subunit is silver, and the bound nucleotides are magenta. The Gβ contact sites on Ga are indicated by space-filled residues. Polar residues are pink, hydrophobic residues are yellow, basic residues are blue, and acidic residues are red. The relative orientations of the β contact sites in the switch interface of Gα-GTP/β-S is very different from the Ga-GDP and result in decreased βγ binding. C, the Gβγ2 dimer (4). The Gβ subunit, in metallic pink, forms a seven-bladed propeller structure that contains a water-filled pore. The Gγ subunit, in blue, is an α-helical structure that lies along the bottom of Gβ. The N termini of Gβ and Gγ form a parallel coiled coil. When the subunits dissociate, Gβγ is free to activate a number of effectors as discussed in the text.

FIG. 2. Heterotrimeric G protein interactions with rhodopsin and the membrane lipid bilayer. The configuration of the α helices of rhodopsin are from Scherler and Baldwin et al. (8, 9). Transmembrane helices 1, 5, 6, and 7 at the front of the rhodopsin form are light green whereas transmembrane helices 2, 3, 4 at the back are dark green. The 11-cis-retinal prosthetic group that forms a Schiff base linkage with Lys-298 is magenta, and the membrane bilayer is green. The structures of the intracellular and extracellular loops are not known and are hand drawn to show helix connectivity. The intracellular loops that interact with heterotrimeric G protein are orange (intracellular loop 3 and putative fourth intracellular loop connecting transmembrane helix 7 with the palmitoylation site) and brown (intracellular loop 2). The Gα subunit is medium blue, the Gβ subunit is pink, and the Gγ is blue. The bound guanine nucleotide (GDP) is magenta. The receptor-binding surface of the G protein is rotated 20° toward the viewer. The receptor contacts on the heterotrimeric G protein discussed in the text are red and include amino acids 1–23 and 299–350 of Ga, a contact site within amino acids 280–340 of Gβ, and amino acids 60–71 of Gγ. Rhodopsin is palmitoylated at its C terminus, Gα is myristoylated and palmitoylated at its N terminus, and Gγ is farnesylated at its C terminus. The acyl groups on rhodopsin, Gα, and Gγ (cyan) are shown interacting with the membrane.

α subunit block receptor-mediated GTP/GDP exchange. This suggests that the β subunit must hold the α subunit rigidly in place for GDP release to occur. Direct binding interactions between receptor and βγ subunit have been reported (24–26). A cross-linking study demonstrated that the C-terminal 60-amino acid region of Gβ can be cross-linked to an α2-adrenergic receptor peptide corresponding to the intracellular third loop of the receptor (24). In addition, the C-terminal region of the γ subunit of G proteins has been shown to be involved in receptor coupling and specificity (25, 26).

Mechanisms of Effector Activation

Upon GTP binding to the α subunit, the α-GTP (a*) and βγ subunits dissociate (5, 7). In the GTP-bound, active conformation, a new surface is formed on Gα* subunits (27), and they interact with effectors with 20–100-fold higher affinity than in their GDP-bound state. The various Gα* interacts in a highly specific manner with the well studied, classical effector enzymes through this surface. Gα*, activates (and Gα*, inhibits) adenylyl cyclase, Gα*, activates photoreceptor cGMP phosphodiesterase, and Gα* activates phospholipase C-β. However, this conserved switch surface on Ga subunits does not explain the exquisite specificity of G protein α subunit effector interaction. A chimeric Gα/Gα, approach identified two other regions that underlie the specific interaction of Ga with phosphodiesterase γ (27). Similar regions are involved in effector interaction of Ga with PLC (80) and Gα with adenylyl cyclase (AC) (reviewed in Ref. 15).

Novel α Targets

The major classes of Gα, the Gα, Gβ, and Gγ families of α subunits, have well known cellular targets. More recently yeast two-hybrid screening has uncovered new targets. GAIP, a Ga-interacting protein and a member of the RGS family of GTPase-activating proteins (reviewed in Ref. 28), was first identified in this way; and recently two more putative α targets, nucleobindin (29) and a novel LGN repeat protein (30), were described by Insel and co-workers. So far, no physiological role of the latter two Ga targets has been determined.

Other effectors of G protein α subunits are being discovered. For example, Gα, directly stimulates the activity of Bruton’s tyrosine kinase in vitro as well as in vivo in lymphoma cells (31). Two Ga subunits without known effectors are Gα and Gα. They are reported to couple to thrombin, thromboxane, and angiotensin receptors (32). The cellular effects of mutant constitutively activated forms of these G proteins have been studied, and it is well established that they can regulate Na+/H+ exchange (33). They are involved in bradykinin activation of voltage-dependent Ca2+ channels via activation of Rac and Cdc42 (34). To understand the biological roles of Gα, knockout mice were produced (35). Homozygous Gα, knockout mice were never found, and although embryos were normal at embryonic day 8.5, they were resorbed before embryonic day 10.5. It appeared that lack of Gα, led to an impaired angiogenesis of endothelial cells and caused inability to develop an organized vascular system. In addition, Gα, and Gα, were embryonic fibroblasts showed greatly impaired migratory responses to thrombin, suggesting that chemotaxis was impaired. Interestingly, although Gα, shares 67% amino acid identity to Gα, it cannot substitute for Gα, at embryonic day 8.5.

βγ Targets

Once Gα-GTP has dissociated from Gβγ, free βγ is an activator of a dizzying array of proteins, and the list continues to increase (see Ref. 36 for review). Significantly, the conformation of free Gβγ is identical to Gβγ in the heterotrimer (4), suggesting that Gα inhibits Gβγ interactions with its effectors through the Gα-binding site on Gα. Evidence for this comes from the laboratory of Iyengar and co-workers (37), who found a peptide from ACII that bound to Gβγ and blocked its activation of various effectors, suggesting that part of the effector binding site is shared between ACII, G protein-activated inward rectifier K+ channel (GIRK), and PLCβ. Cross-linking and docking experiments localized the binding site to a part of the Gα-binding region (38). Besides the Gα-binding region, other

1 C. E. Ford, N. P. Skiba, H. Bae, Y. Daaka, E. Reuveny, L. R. Sherker, R. Rosal, G. Weng, C. S. Yang, R. Iyengar, R. J. Miller, Y. Y. Jan, R. J. Lefkowitz, and H. E. Hamm, submitted for publication.
2 The abbreviations used are: PLC, phospholipase C; AC, adenylyl cyclase; GIRK, G protein-activated inward rectifier K+ channel; MAP, mitogen-activated protein; GTPyS, guanosine 5'-3-O-thio triphosphate.
regions of Goβy subunits that have been implicated in effector interaction include the N-terminal coiled coil (39, 40) and blades 1 and 7 of the β-propeller of Goβ (41, 42).

Goβy has well defined effects on some isoforms of the classical second messenger enzymes, PLCβ2 and -β3 (reviewed by Ref. 43) and AC (Goβy stimulates Gaα2, activated ACII, -IV, and -VII whereas it inhibits ACI (44)). It also recruits the β-adrenergic receptor kinase to the plasma membrane where the kinase phosphorylates activated β-adrenergic receptors. It binds to the phosphoprotein phosducin, which is thought to sequester βγ and thereby regulate its availability via a cAMP-dependent protein kinase-regulated mechanism. Phosducin-like proteins have also been shown to bind to Goγ (45). Elucidation of the crystal structure of the phosducin-Goβy complex showed that there is a shared surface on the top of Goγ for interaction with Ga and phosducin but that a second site of interaction occurs between phosducin’s C terminus and β-propeller blades 1 and 7 at the side of Goγ (46). Interestingly, the phosphorylation site on phosducin, which regulates its affinity with Goβy, is far from the protein-protein interface.

In addition, Goβy serves as the direct activator of certain G protein-responsive K+, Ca2+, and perhaps also Na+ channels (for reviews, see Refs. 36, 47, and 48). KcACH is the inwardly rectifying K+ channel responsible for slowing heart beat in response to the parasympathetic transmitter acetylcholine. It is a homo- or heteromultimer of GIRK (49) monomers found in the heart and brain. Goβy subunits bind the N- and C-terminal intracellular domains of GIRKs and directly activate them (49–51). The Goβy subunit similarly plays an important modulatory role in certain prestin (52, 53), especially α1A, α1B, and to a lesser extent α1E but not α1C, α1D, or α1S isoforms (47). It has been shown that Goβy inhibits Ca2+ channel current by directly contacting two regions on Ca2+ channel α1 subunits: the intracellular I–II loop (55, 56) and the C terminus (57, 58).

Goγ also directly activates more than one phosphatidylinositol 3-kinase isoform (59). There is a unique Goγ-responsive phosphatidylinositol 3-kinase, P110γ, that does not have a p85 subunit or the N-terminal p85-binding region on the catalytic subunit (60, 61). Goγ has also been reported to activate a number of kinases as well, for example, the Raf1 protein kinase (62) and Bruton and Tsk tyrosine kinases (63).

In yeast, Goγ is the activator of a pheromone-stimulated MAP kinase pathway. It is known to bind to the N-terminal region of the scaffold protein Ste5 in yeast (64). Recently, Thorner and co-workers (65) showed that Ste5 contains a homodimerization domain, which is required for β binding. They demonstrated that Goγ interaction leads to oligomerization of this domain on Ste5. Most interestingly, dimerization of this domain by making a glutathione S-transferase fusion protein of Ste5 leads to Goγ-independent activation of the MAP kinase cascade. Recently, yeast Goγ was also shown to activate Cdc24, the exchange factor for the Rho-type GTPase Cdc42 (66). Goγy has also been reported to bind to other members of the Rho family of GTPases, Rho and Rac (67), as well as to the small G protein Arf (ADP-ribosylation factor), which is involved in coat formation and vesicular trafficking (68).

Given this very rich and expanding list of Goγy and Goγy effectors and effector activation mechanisms, a number of key questions are possible for future investigation. Understanding the physiological function of these are the various effectors activated, and what are the constraints that keep all of these effectors from being activated at the same time? Does more than one G protein-coupled signaling pathway need to be activated for enough Goγy to be generated to cause activation of these effectors? What is the specificity of Goγy effector interactions and what is the mechanism by which effector activation occurs? And finally what is the turnoff mechanism?

Determinants for Goγy Effector Interaction

There are multiple genes for Goβy and Goγ, and most Goγy pairs can form functional Goγy pairs (reviewed in Ref. 36). One of the first questions that was posed was whether different Goγy pairs regulated different effectors. The answer from a large number of biochemical experiments was: not much. Goy1 is better than the others at interacting with rhodopsin and phosducin in photoreceptor cells and somewhat worse than all the other Goγy pairs at interacting with other effectors. One series of studies that showed selectivity of Goγy pairs at interacting with receptors and effectors was done using antisense oligonucleotides to suppress the translation of particular proteins, and these showed a very high degree of selectivity (see below). Other evidence of specificity, using different techniques, is slowly emerging. Goβy, a recently discovered Goγ subunit found in the central nervous system (69), differentially couples to two MAP kinases pathways.

Goγ can inhibit ACI (44)). It also recruits the scaffold protein Ste5 in yeast (64). Recently, Thorner and co-workers (65) showed that Ste5 contains a homodimerization domain, which is required for effector activation mechanisms, a number of key questions are shown that there is a shared surface on the top of Goγy for interaction with Ga and phosducin but that a second site of interaction occurs between phosducin’s C terminus and β-propeller blades 1 and 7 at the side of Goγ (46). Interestingly, the phosphorylation site on phosducin, which regulates its affinity with Goβy, is far from the protein-protein interface.

In addition, Goβy serves as the direct activator of certain G protein-responsive K+, Ca2+, and perhaps also Na+ channels (for reviews, see Refs. 36, 47, and 48). KcACH is the inwardly rectifying K+ channel responsible for slowing heart beat in response to the parasympathetic transmitter acetylcholine. It is a homo- or heteromultimer of GIRK (49) monomers found in the heart and brain. Goβy subunits bind the N- and C-terminal intracellular domains of GIRKs and directly activate them (49–51). The Goβy subunit similarly plays an important modulatory role in certain prestin (52, 53), especially α1A, α1B, and to a lesser extent α1E but not α1C, α1D, or α1S isoforms (47). It has been shown that Goβy inhibits Ca2+ channel current by directly contacting two regions on Ca2+ channel α1 subunits: the intracellular I–II loop (55, 56) and the C terminus (57, 58).

Goγ also directly activates more than one phosphatidylinositol 3-kinase isoform (59). There is a unique Goγ-responsive phosphatidylinositol 3-kinase, P110γ, that does not have a p85 subunit or the N-terminal p85-binding region on the catalytic subunit (60, 61). Goγ has also been reported to activate a number of kinases as well, for example, the Raf1 protein kinase (62) and Bruton and Tsk tyrosine kinases (63).

In yeast, Goγ is the activator of a pheromone-stimulated MAP kinase pathway. It is known to bind to the N-terminal region of the scaffold protein Ste5 in yeast (64). Recently, Thorner and co-workers (65) showed that Ste5 contains a homodimerization domain, which is required for β binding. They demonstrated that Goγ interaction leads to oligomerization of this domain on Ste5. Most interestingly, dimerization of this domain by making a glutathione S-transferase fusion protein of Ste5 leads to Goγ-independent activation of the MAP kinase cascade. Recently, yeast Goγ was also shown to activate Cdc24, the exchange factor for the Rho-type GTPase Cdc42 (66). Goγy has also been reported to bind to other members of the Rho family of GTPases, Rho and Rac (67), as well as to the small G protein Arf (ADP-ribosylation factor), which is involved in coat formation and vesicular trafficking (68).

Given this very rich and expanding list of Goγy and Goγy effectors and effector activation mechanisms, a number of key questions are possible for future investigation. Understanding the physiological function of these is the growing family of PDZ domain-containing proteins, so named...
for the three proteins that contain them, postsynaptic density protein 95 (PSD-95), Drosophila discs large tumor suppressor (DrosophilaDlg), and zona occludens protein (ZO) (for review see Ref. 23). An unusual PDZ domain containing protein in Drosophila photoreceptors called Inad has 5 PDZ domains, each of which bind different signaling molecules of the G-protein-regulated visual cascade including rhodopsin, PLCγ, protein kinase C, and the transient receptor potential protein (TRP), a homologue of the calcium-induced calcium release channel (22, 73, 78, 79). Notably, Gα was missing from the complex. Another unusual PDZ domain-containing protein, Homer, contains a single PDZ domain, which binds to certain G protein-coupled metabotropic glutamate receptors in the brain (22). Other scaffold proteins are characterized by having multiple conserved domains such as phosphotyrosine-recognizing Src homology 2 (SH2) domains, SH3 domains, pleckstrin homology domains, Dbl homology domains, and domains with enzymatic activities, particularly activity controlling the GTP binding state of small G proteins such as guanine nucleotide exchange and GTPase-activating protein activity. Future studies may reveal more scaffolding or clustering mechanisms that may greatly increase the specificity of in vivo signal transduction by heterotrimeric G proteins.

Summary

Progress in areas of research that once might have seemed distant from the field of G protein signaling now shows that G proteins are involved in a broad range of cellular regulatory activities. The understanding of how the proteins interact (receptors, G proteins, and effectors, as well as other regulatory proteins) thus has enormous implications for physiology. The rapid progress in determining three-dimensional structures of G proteins, and more recently their regulators and effectors, has illuminated the search for the mechanisms of activation and regulation and has allowed structure-based mutagenesis to test these ideas. The structural and mechanistic studies will in the future also hopefully provide opportunities to alter those interactions in pathological situations.

Acknowledgment—I acknowledge Carolyn Ford for careful reading of the manuscript and help preparing the figures.

REFERENCES

1. Kjeldgaard, M., Nyborg, J., and Clark, B. F. (1996) FASEB J. 10, 1347–1368
2. Noel, J. P., Ham, H. E., and Sigler, P. B. (1993) Nature 366, 654–663
3. Lambright, D. G., Noel, J. P., Hamm, H. E., and Sigler, P. B. (1994) Nature 369, 362–621
4. Baldou, V., Hargrave, P., Baldwin, J., and Schertler, G. (1997) Nature 389, 203–206
5. Kunkel, M., and Peralta, E. (1995) Cell 83, 243–249
6. De Waard, M., Liu, H., Walker, D., Scott, V., Gurnett, C., and Campbell, K. (1996) J. Neurosci. 16, 991–1000
7. Wang, S., Coso, O., Lee, C., Gutkind, J., and Simonds, W. (1996) J. Biol. Chem. 271, 31357–31359
8. Page, K., Stephenson, B., and Dolph, A. (1997) J. Neurosci. 17, 1330–1338
9. Berman, D., and Gilman, A. (1998) J. Biol. Chem. 273, 1269–1272
10. Altenbach, C., Yang, K., Farrens, D., Farahbakhsh, Z., Khorana, H., and Lee, C. (1996) J. Biol. Chem. 271, 32032–32037
11. Farrens, D., Altenbach, C., Yang, K., Hubbell, W., and Khorana, H. (1996) J. Biol. Chem. 271, 35336–33339
12. Kiselev, O., Pronin, A., Ermolova, M., and Gautam, N. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 10152–10156
13. Yasuda, H., Lindorfer, M., Woodford, K., Fletcher, J., and Garrison, J. (1996) J. Biol. Chem. 271, 18588–18595
14. Skiba, N. P., Bae, H., and Ham, H. E. (1996) J. Biol. Chem. 271, 433–442