RELATIVISTIC ANTIHYDROGEN PRODUCTION

Helmar Meier\(^1\), Zlatko Halabuka\(^1\), Kai Hencken\(^1\), Dirk Trautmann\(^1\) and Gerhard Baur\(^2\)

\(^1\)Institut für Physik der Universität Basel, 4056 Basel, Switzerland
\(^2\)Institut für Kernphysik (Theorie), Forschungszentrum Jülich, 52425 Jülich, Germany

(October 15, 2017)

Antihydrogen has recently been produced in collisions of antiprotons with ions. While passing through the Coulomb field of a nucleus an antiproton will create an electron-positron pair. In rare cases the positron is bound by the antiproton and an antihydrogen atom produced. We calculate the production of relativistic antihydrogen atoms by bound-free pair production. The cross section is calculated in the semiclassical approximation (SCA), or equivalently in the plane wave Born approximation (PWBA) using exact Dirac-Coulomb wave functions. We compare our calculations to the equivalent photon approximation (EPA).

I. INTRODUCTION

Antihydrogen, the simplest bound state of antimatter, has first been produced and detected in 1995 at CERN in the Low Energy Antiproton Ring (LEAR) [1]. The synthesis of an antiproton and a positron has been done by passing relativistic antiprotons through a xenon target. Only a few electron-positron pairs are produced in these collisions. In rare cases the velocities of the outgoing positron and antiproton are sufficiently close together, so that the particles join. In lowest order the formalism for calculating the production of antihydrogen is the same as the one used to study bound-free pair production in ion-ion collisions. Bound-free pair production is an important process as it is one of the reactions limiting the luminosity of heavy ion beams in high energy colliders [2]. The equivalent-photon approach (Weizsäcker-Williams method) has been used for the calculations of antihydrogen in [3] and for electron capture by a heavy ion in [4,5]. It is of interest to perform exact calculations in the framework of SCA or, equivalently, PWBA (Weizsäcker-Williams method) has been used for the calculations of antihydrogen in [3] and for electron capture by a heavy ion in [4,5]. It is of interest to perform exact calculations in the framework of SCA or, equivalently, PWBA.

II. TOTAL CROSS SECTION

The total SCA cross section for pair production with electron capture in a heavy ion collision is given by [6]:

\[\sigma_{tot} = 8\pi \left(\frac{Z_P \alpha}{\beta} \right)^2 \int_{m_e}^{\infty} dE_i \int_{q_z}^{\infty} ds \sum_{\kappa_i, m_\kappa} \sum_{m_f} \left| \langle \psi_f(\vec{r}) | (1 - \alpha_3)e^{i\vec{q}\vec{r}} | \psi_i(\vec{r}) \rangle \right|^2 . \]

(1)

Throughout the paper we will set \(\hbar = c = 1\). The charge numbers of the projectile and target are denoted by \(Z_P\) and \(Z_T\); the velocity of the projectile in the target rest frame is given by \(\beta\). The momentum transfer from projectile to target is \(\vec{q}\) whose absolute value is given by \(s = |\vec{q}|\). The component of \(\vec{q}\) in the direction of the projectile is \(q_z = \frac{\vec{q}}{\beta} = \frac{E_i - E_f}{\beta}\). The total energy of the bound electron is \(E_f\); the one of the positron in the continuum \(|E_i|\). (Please note that \(E_i\) is negative.) The third component of the Dirac matrices is \(\alpha_3\). In our calculation \(\psi_f = \psi_{\kappa_f}^{m_f}\) is the Dirac-Coulomb wave function of a K-shell electron (\(\kappa_f = -1\), \(E_f = m_e c^2 1 - \zeta^2\) with \(\zeta = \alpha Z_T\) and magnetic quantum number \(m_f\)). \(\psi_i = \psi_{\kappa_i}^{m_i}\) is the wave function of an electron with negative energy \(E_i\) in the continuum describing the positron.

Because of charge-conjugation invariance the same formalism is used to calculate the production of relativistic antihydrogen in the bound-free process: \(\bar{p} + Z_P \rightarrow \bar{H}(1s) + Z_P + e^-\).

Using current-conservation we can write [6] as:

\[\sigma_{tot} = 8\pi \left(\frac{Z_P \alpha}{\beta} \right)^2 \int_{m_e}^{\infty} dE_i \int_{q_z}^{\infty} ds \sum_{\kappa_i, m_\kappa} \sum_{m_f} \left| \langle \psi_f(\vec{r}) | \left(\frac{1}{s^2 - (\beta q_z)^2} - \frac{\vec{\beta} \cdot \vec{a}}{s^2 - (\beta q_z)^2} \right) e^{i\vec{q}\vec{r}} | \psi_i(\vec{r}) \rangle \right|^2 . \]

(2)
It should be mentioned that (8) and (9) are not exactly equal if the wave functions are not exact eigenfunctions of the Dirac Hamiltonian $\hat{\mathcal{H}}$. The vector $\vec{\beta}_\perp$ is perpendicular to \vec{q} and defined by

$$\vec{\beta}_\perp = \vec{\beta} - \left(\frac{\vec{q} \cdot \vec{\beta}}{s} \right) \frac{\vec{q}}{s}.$$

(3)

The solutions of the Dirac equation in the Coulomb field

$$V(r) = -\frac{\zeta}{r}, \quad \zeta = \alpha Z_T$$

are given by (8,10)

$$\psi_\kappa^m = \begin{pmatrix} g_\kappa(r) \chi_\kappa^m(\vec{r}) \\ i f_\kappa(r) \chi_{-\kappa}^m(\vec{r}) \end{pmatrix}. \tag{5}$$

The angular dependence is expressed by the spin-angular functions

$$\chi_\kappa^m(\vec{r}) = \sum_{\tau = \pm 1} \frac{i^{l+m} \sqrt{2j+1}}{\sqrt{2} \Gamma(2\gamma(1)+\frac{3}{2})} \begin{pmatrix} l \tau & j \tau \end{pmatrix} Y_{\nu-\tau}(\vec{r}) \chi_\tau. \tag{6}$$

χ_τ are Pauli spinors and

$$j = |\kappa| - \frac{1}{2}, \quad l = j + \frac{1}{2} \text{ sgn}(\kappa).$$ \tag{7}

The radial functions g_κ and f_κ for the bound state are

$$\begin{pmatrix} g_{-1}(r) \\ f_{-1}(r) \end{pmatrix} = a_0 \begin{pmatrix} (2Z_T)^{\gamma(-1)+\frac{3}{2}} \frac{\Gamma(2\gamma(1)+1)}{\Gamma(2\gamma(1)+\frac{3}{2})} \\ \frac{1}{2\Gamma(2\gamma(1)+1)} \end{pmatrix} \begin{pmatrix} -1 + \frac{1}{2} \gamma(-1) \gamma(1) + \frac{3}{2} \gamma(1) \end{pmatrix} \begin{pmatrix} r \gamma(1-1) - \frac{2}{a_0} e^{-\frac{Z_T}{a_0}} \end{pmatrix} \tag{8}$$

with the Bohr radius denoted by a_0. For the continuum we use the radial functions

$$\begin{pmatrix} g_{E,\kappa}(r) \\ f_{E,\kappa}(r) \end{pmatrix} = \left(\frac{E + m_e}{E - m_e} \right)^{\frac{1}{2}} \frac{k}{\pi^2} N(kr)^{\gamma(k)-1} \times \left(\frac{\text{sgn}(E) \sqrt{\frac{E - m_e}{E + m_e}}}{\text{Re} \sqrt{\frac{E - m_e}{E + m_e}} \text{Im} e^{-i(kr+\phi)}} \right) \left[e^{-i(kr+\phi)} F_1(\gamma(k) + i\eta, 2\gamma(k) + 1, 2ikr) \right] \tag{9}$$

which are normalized according to

$$\int_0^\infty dr \ r^2 |g_{E,\kappa} g_{E',\kappa} + f_{E,\kappa} f_{E',\kappa}| = \delta(E - E'). \tag{10}$$

In (8) and (9) $\gamma(k), k, \eta$ and N are given by

$$\gamma(k) = \sqrt{k^2 - \zeta^2}, \quad k = \sqrt{E^2 - m_e^2}, \quad \eta = \frac{\zeta E}{k}, \quad N = \frac{2\gamma(k)e^{\frac{2}{a_0} \sqrt{\zeta^2}} |\Gamma(\gamma(k) + 1 + i\eta)|}{\Gamma(2\gamma(k) + 1)}. \tag{11}$$

We rewrite the expression in parenthesis in the matrix element of (9) in the spherical basis $(\vec{e}_0, \vec{e}_\perp)$ with $\vec{e}_0 = \frac{\vec{q}}{s}$ and use the expansion of the vector plane waves into electromagnetic multipoles. From the orthogonality of the spherical harmonics we get the incoherent sum over the multipoles. After some algebra one obtains a relatively simple expression for the cross section.

$$\sigma_{tot}^K = 32\pi^2 \left(\frac{Z\rho \alpha}{\beta} \right)^2 \int_{m_e}^\infty dE \int ds \left\{ \frac{T_i}{s^3} + \frac{\beta^2}{2} \frac{s}{s^2 - (\beta q_s)^2} \right\} \left(1 - \frac{q_s^2}{s^2} \right) T_\perp, \tag{12}$$

with T_i and T_\perp given by

2
The radial integrals are given by

\[T_i = \sum_{\kappa_i,l} \frac{(2j_i + 1)(2j_f + 1)}{4\pi} (2l + 1) \frac{1}{2} \left[1 + (-1)^{l_f + l + l_i} \right] J^i(E_i, s) \left(j \frac{f}{2} - j \frac{i}{2} \right)^2 , \]

(13)

\[T_{l\perp} = \sum_{\kappa_i,l} \frac{(2j_i + 1)(2j_f + 1)}{4\pi} (2l + 1) \left\{ \frac{1}{2} \left[1 + (-1)^{l_f + l + l_i} \right] \frac{1}{l(l+1)} \left[(\kappa_f + \kappa_i) I^+_{l} (E_i, s) \right]^2 \right. \]

\[- \left. \left(\frac{l}{l+1} \right)^\kappa \left[(\kappa_f - \kappa_i) I^-_{l+1} (E_i, s) + (l+1) I^-_{l} (E_i, s) \right] \right\} \left(j \frac{f}{2} - j \frac{i}{2} \right)^2 . \]

(14)

The radial integrals are given by

\[J^i(E_i, s) = \int_0^\infty dr r^2 j_i (sr) [g_{\kappa_f}(r)g_{E_i,\kappa_i}(r) + f_{\kappa_f}(r)f_{E_i,\kappa_i}(r)] , \]

(15)

\[I^\pm_i (E_i, s) = \int_0^\infty dr r^2 j_i (sr) [g_{\kappa_f}(r)f_{E_i,\kappa_i}(r) \pm f_{\kappa_f}(r)g_{E_i,\kappa_i}(r)] \]

(16)

and are evaluated quickly by the method presented in [11].

III. RESULTS

We focus our attention on the process $\overline{\nu} + Z_P \rightarrow \overline{\nu}(1s) + Z_P + e^-$. In Fig. 1 and Table I the total cross section for $Z_P = Z_T = 1$ is given as a function of the Lorentz γ-factor of the projectile in the target rest frame. The cross sections are calculated numerically with (12) - (16).

FIG. 1. The solid line shows the total cross section σ^K_T for antihydrogen production with a positron bound in the K-shell ($Z_P = Z_T = 1$) as a function of the Lorentz γ-factor of the projectile in the target rest frame. The dotted line presents the part of (12) containing $T_{l\perp}$. The cross section scales with Z_P^2.

TABLE I. The total cross section for antihydrogen production ($Z_P = Z_T = 1$) is given for different γ’s of the projectile in the target rest frame for the Fermilab experiment [12]. The K-shell capture cross section is denoted by $\overline{\nu}(1s)$ and the cross section for capture into all shells by $\overline{\nu}(all)$. The contribution of all higher shells is estimated to 20% of the K capture.

γtarget rest frame	$\sigma_{\overline{\nu}(1s)}$ [pb]	$\sigma_{\overline{\nu}(all)}$ [pb]
5	5.73×10^{-4}	6.88×10^{-4}
6	7.90×10^{-1}	9.48×10^{-1}
7	1.00	1.20

3
We compare our results with experimental data measured in the low energy region for \(\text{La}^{57+} \) target [14]. Our calculations for \(K \)-shell bound-free pair production of \(\text{La}^{57+} \) with projectile energies 0.405 GeV/u (\(\gamma = 1.43 \)), 0.956 GeV/u (\(\gamma = 2.026 \)), and 1.3 GeV/u (\(\gamma = 2.40 \)) yields \(\sigma^K / \sigma_T^K = 0.93 \times 10^{-7} \text{b}, 9.12 \times 10^{-6} \text{b}, \) and \(1.78 \times 10^{-5} \text{b}, \) respectively. Adding contribution from higher shells, which are assumed to be about 20% [13], we find good agreement with the experimental results. We also compare our results with those of Becker [15]. Our results agree well with the results given there for 1 GeV amu\(^{-1} \) (\(\gamma = 2.07 \)) and 15 GeV amu\(^{-1} \) (\(\gamma = 16.1 \)). Our results for \(Z_P = Z_T = 1 \) are \(\sigma^K_{\text{tot}} = 3.92 \times 10^{-2} \text{pb} \) and \(\sigma^K_{\text{tot}} = 2.55 \text{pb} \), respectively.

IV. CORRESPONDENCE TO EPA

To compare (12) with the photoproduction cross section we rewrite it as:

\[
\sigma^K_{\text{tot}} = 16\pi^2 \left(\frac{Z_P \alpha}{\beta} \right)^2 \int_{m_e + E_f}^{\infty} d\omega \int_0^\infty d(q^2_\perp) \frac{1}{q^2_\perp + \left(\frac{\omega}{\beta} \right)^2} \left\{ \frac{1}{q^2_\perp + \left(\frac{\omega}{\beta} \right)^2} T_l + \frac{\beta^2}{2} \right\} \left(\frac{q^2_\perp}{q^2_\perp + \left(\frac{\omega}{\beta} \right)^2} \right)^2 T_\perp \right\}
\]

(17)

with \(\omega = E_f - E_i \) and \(q^2_\perp = s^2 - q^2_z \); \(q_z = \frac{\omega}{\beta^2} \). \(\sigma^K_{\text{tot}} \) as a function of \(\omega \) is shown in Fig. 2.

FIG. 2. The cross section for antihydrogen production as a function of \(\omega \). The solid line shows the cross section for the Lorentz factor \(\gamma = 3 \) of the projectile in the target rest frame. The dashed line shows the cross section for \(\gamma = 6 \) and the dotted line for \(\gamma = 10 \).

The S-matrix element for photo-induced bound-free pair production (also known as photo-induced \(K \)-shell capture) in Coulomb gauge is given by

\[
S_{fi} = -ie \int_{-\infty}^{\infty} dt \langle \psi_f(\vec{r})|\hat{\alpha}\vec{e}_\mu e^{i\vec{k}\cdot\vec{r}}|\psi_i(\vec{r}) \rangle e^{i(E_f - E_i - \omega)t} .
\]

(18)

Using the multipole expansion for \(e^i\vec{r}\) we find the expression for the total cross section:

\[
\sigma^K_\perp(\omega) = \frac{8\pi^3\alpha}{\omega} T_\perp(\omega, q^2 = 0) ,
\]

(19)

where \(T_\perp \) is the same as in (14), with \(s = \omega \). Here we denote the four-momentum of the photon by \(q \). If in (17) \(T_l \) is omitted, we can define the photo-induced cross section for ‘virtual’ photons (see [3] Eq. (1)) as

\[
\sigma^V_\perp(\omega, q^2) = \frac{8\pi^3\alpha}{q^2_\perp + \left(\frac{\omega}{\beta} \right)^2} T_\perp(\omega, q^2) .
\]

(20)

The expression (17) can now be written as \(\sigma^K_{\text{tot}}(\sigma^V_\perp) \). At this stage we can introduce the equivalent photon approximation (EPA). In this approximation the \(q^2 \)-dependence of \(\sigma^V_\perp \) is neglected and (21) is replaced by the cross section for real photons [19]. Now the integral over \(q_\perp \) would diverge and we must introduce a suitable cutoff. Now we can write the cross section in the equivalent photon approximation as

\[
\sigma^K_{\text{EPA}} = \frac{Z_P^2 \alpha}{\pi} \int_{m_e + E_f}^{\infty} d\omega \int_0^\infty d(q^2_\perp) \frac{1}{\omega} \left[\frac{q^2_\perp}{q^2_\perp + \left(\frac{\omega}{\beta} \right)^2} \right]^2 \sigma^K_\perp(\omega) .
\]

(21)

\(T_\perp(\omega, q^2) \) as a function of the Lorentz-invariant variable \(Q^2 = -q^2 \) and \(\omega \) is given in Fig. 3. The momentum \(q^2_\perp \) is related to \(q^2 \) by

\[
q^2 = \omega^2 - q_z^2 - q^2_\perp = -\left(\frac{\omega}{\beta \gamma} \right)^2 - q^2_\perp .
\]

(22)

FIG. 3. \(T_\perp \) as a function of \(Q^2 = -q^2 \) for fixed \(\omega \)-values. The solid line shows \(T_\perp \) for \(\omega = 2.1 \), the dashed line for \(\omega = 3 \), the dotted line for \(\omega = 5 \) and the dash-dotted line for \(\omega = 10 \).
FIG. 4. T_i as a function of Q^2 for fixed ω-values. The solid line shows T_i for $\omega = 2.1$, the dashed line for $\omega = 3$, the dotted line for $\omega = 5$ and the dash-dotted line for $\omega = 10$.

From Fig. 3 one can extract the cutoff parameter for the EPA calculation. For the range of ω-values contributing significantly to the total cross section (see Fig. 3) T_\perp is almost constant up to $Q^2_{\max} \approx 4m_e^2$. Beyond this value it falls off rapidly. Therefore $q^2_{\perp\max}$ is given by $q^2_{\perp\max} = Q^2_{\max} - (\omega^2_e)^2$. In Fig. 4 we also show $T_i(\omega, q^2)$ as a function of $Q^2 = -q^2$ and ω which has a similar behavior as T_\perp. In Fig. 5 we compare EPA results with the SCA calculation (23).

FIG. 5. The solid line shows the full SCA calculation results. The dotted line shows EPA results with $q^2_{\perp\max} = 4m_e^2 - (\omega^2_e)^2$. For the photo-induced cross section in EPA calculation we used the expression (23).

In the high energy region EPA fits correctly the total cross section. For $\gamma >> 1$, the part of the integral for the total cross section in (12) containing T_i tends to a constant (see Fig. 3). Therefore for high energies of the colliding particles $\sigma_{\text{tot}} = \sigma_{\text{EPA}} + \sigma_{\text{const}}$. For high γ-values we are in agreement with the EPA results of (4,5). Due to the ω-dependence of the cutoff $q^2_{\perp\max} = 4m_e^2 - (\omega^2_e)^2$ the EPA formula is valid down to $\gamma = 3$. But in the low energy region ($\gamma < 3$) EPA fails. Further for small γ’s the contribution of T_i to the total cross section can no longer be neglected but has been ignored in the derivation of the EPA formula (21).

FIG. 6. The solid line presents the part of (12) containing T_i.

An analytical expression for the photo cross section (13) can be obtained from Sauter’s formula for the photoelectric effect (16) by means of crossing symmetry:

$$
\sigma^K_\gamma = 4\pi\alpha^6 \frac{Z_T^6}{m_e^2} \left[\frac{k_f}{(1 - \varepsilon_i)^4} \left(\varepsilon_i^2 - \frac{2}{3} \varepsilon_i + \frac{4}{3} - \frac{2 - \varepsilon_i}{k_i} \ln(k_i - \varepsilon_i) \right) \right], \tag{23}
$$

with $\varepsilon_i = \frac{E_i}{m_e}$ and $k_i = \sqrt{\varepsilon_i^2 - 1}$. It is an approximation for $\alpha Z_T << 1$ and relativistic velocities of the unbound electron. We compare the exact cross section (19) with the analytic result (23). Very good agreement is expected for $Z_T = 1$. This is shown in Fig. 6. With (19) it is also possible to calculate σ_γ for $\alpha Z_T \sim 1$ where (23) overestimates the cross section (see (11)).

FIG. 7. The solid line gives the results of the exact calculations (19) and the dotted line the approximated analytical expression (23) for $Z_P = Z_T = 1$.

V. CONCLUSION

We calculate bound-free pair production in the semiclassical approximation (SCA) using exact Dirac-Coulomb wave functions. We compare results for ion-ion collision with experimental and theoretical data of (4,5,14,15) and find good agreement with their results.

Our calculations have the advantage remaining valid also when the condition $Z\alpha << 1$ is not fulfilled, since exact Dirac wave functions are used. We give expressions for the cross sections already integrated over the angular variables of the free electron (or positron). The radial form factor integrals are evaluated quickly by means of recurrence relations as given in (11). Therefore we are able to sum over many partial waves and this allows the extension of our calculations up to high values of γ.

We compare the exact results which those of the equivalent photon approximation (EPA). We show that good agreement can be obtained already starting at $\gamma \geq 3$ if one uses an ω-dependent cutoff of $q^2_{\perp\max} = \sqrt{Q^2_{\max} - (\omega^2_e)^2}$ with $Q^2_{\max} \approx 4m_e^2$. This justifies the cutoff chosen in (4,5) at high γ-values. At high energies the contribution of the longitudinal photon tends to a constant. Therefore the total cross section is found to be of the form $\sigma_{\text{tot}} = \sigma_{\text{EPA}} + \sigma_{\text{const}}$.

1

5
[1] PS210 collaboration, W. Oelert, spokesperson, G. Baur et al: Phys. Lett. B 368 (1996) 251
[2] S. Datz et al: Nucl. and Instr. Meth. in Phys. Res. 124 B (1997) 129
[3] C. T. Munger, S. J. Brodsky, I. Schmidt: Physical Review D 49 (1994) 3228
[4] A. Aste, K. Hencken, D. Trautmann, G. Baur: Phys. Rev. A 50 (1994) 3980
[5] C. K. Agger, A. H. Sørensen: Phys. Rev. A 55 (1997) 402
[6] G. Baur: Phys. Lett. B 311 (1993) 2002
[7] A. J. Baltz: Phys. Rev. Lett. 78 (1997) 1231
[8] J. Eichler, W. E. Meyerhof: Relativistic Atomic Collisions: Academic Press (1995); J. Eichler: Theory Of Relativistic Ion-Atom Collisions: Physics Reports 193, Nos. 4 & 5 (1990) 165
[9] P. A. Amundsen, K. Aashamar: J. Phys. B 14 (1981) 4047
[10] M. E. Rose: Relativistic Electron Theory: Wiley, New York (1961)
[11] D. Trautmann, G. Baur, F. Rösel: J. Phys. B 16 (1983) 3005
[12] M. Mandelkern: letter of intent, experiment E862, Fermilab, : available at http://fnphyx-fnal.gov/e862/e862.html
[13] C. A. Bertulani, G. Baur: Phys. Rep. 163 (1988) 299
[14] A. Belkacem et al: Phys. Rev. Lett. 73 (1994) 2432
[15] U. Becker: J. Phys. B 20 (1987) 6563
[16] F. Sauter: Ann. Phys. (Leipzig) 11 (1931) 454
[17] W. R. Johnson, D. J. Buss, C. O. Carroll: Phys. Rev A 135 (1964) 1232
$T_{\perp}(\omega q^2)$ [natural units]

Q^2 [natural units]
$T_{\ell}(q^2)$ [natural units]

Q^2 [natural units]
\(\sigma \) (barn) vs. \(\gamma \)
