Genetic Variants of CD209 Associated with Kawasaki Disease Susceptibility

Ho-Chang Kuo1, Ying-Hsien Huang1, Shu-Chen Chien2,4, Hong-Ren Yu1, Kai-Sheng Hsieh1, Yu-Wen Hsu2,3, Wei-Chiao Chang2,3.5,6*

1 Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, 2 Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan, 3 Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan, 4 Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan, 5 Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, 6 Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan

Abstract

Background: Kawasaki disease (KD) is a systemic vasculitis with unknown etiology mainly affecting children in Asian countries. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN, CD209) in humans was showed to trigger an anti-inflammatory cascade and associated with KD susceptibility. This study was conducted to investigate the association between genetic polymorphisms of CD209 and the risk KD.

Methods: A total of 948 subjects (381 KD and 567 controls) were recruited. Nine tagging SNPs (rs8112310, rs4804800, rs11465421, rs1544766, rs4804801, rs2287886, rs735239, rs735240, rs4804804) were selected for TaqMan allelic discrimination assay. Clinical phenotypes, coronary artery lesions (CAL) and intravenous immunoglobulin (IVIG) treatment outcomes were collected for analysis.

Results: Significant associations were found between CD209 polymorphisms (rs4804800, rs2287886, rs735240) and the risk of KD. Haplotype analysis for CD209 polymorphisms showed that A/A/G haplotype (P = 0.0002, OR = 1.61) and G/A/G haplotype (P = 0.0365, OR = 1.52) had higher risk of KD as compared with G/G/A haplotype in rs2287886/rs735239/rs735240 pairwise allele analysis. There were no significant association in KD with regards to CAL formation and IVIG treatment responses.

Conclusion: CD209 polymorphisms were responsible for the susceptibility of KD, but not CAL formation and IVIG treatment responsiveness.

Introduction

Kawasaki disease (KD) is a systemic vasculitis which was first reported by Dr. Kawasaki in 1974 in English from Japan [1]. It mainly affects children less than 5-years-old world widely, especially in Asia, Japan, Korea and Taiwan have the highest incidence of KD worldwide from 66-234/100,000 children less than 5 years old [2,3,4]. The clinical characteristics and diagnosis criteria of KD include a prolonged fever (more than 5 days), bilateral non-purulent conjunctivitis, diffuse mucosal inflammation of oral cavity with strawberry tongue and fissure lips, polymorphous skin rashes over body surface, indurative angioedema of the hands and feet followed by desquamation in the sub-acute stage, and lymphadenopathy over neck [3,5]. Fever for more than 5 days with 4 of the 5 diagnostic criteria matches the diagnosis of KD [6]. The most common sequel of KD is coronary artery lesions (CAL) formation [7,8]. KD has become the most common cause of acquired heart disease in children of developed countries. The cause of KD is still unclear. Both genetic and environmental factors are considered to be important factors of KD. High dose intravenous immunoglobulin (IVIG) with aspirin is considered to be an effective treatment for KD [8]. The pharmacological mechanism of IVIG also remains unclear. The potential mechanisms of IVIG action include modulation of cytokine production, suppression of antibody synthesis and immune regulation [8]. IVIG therapy itself has greatly decreased the rate of aneurysms; however, some patients are unresponsive to the initial IVIG treatment. The incidence rate of IVIG resistance varies from 9.4–23% between countries [6].

IVIG is used to treat a wide range of autoimmune or immune related diseases. The immunosuppressive effects of IVIG are, in
part, attributed to terminal α2,6-linked sialic acid residues on the N-linked glycans of the IgG Fc (fragment crystallizable) domain. α2,6-linked sialylated IgG was reported to interact with dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN, CD209), and trigger an anti-inflammatory cascade that promotes the up regulation of inhibitory FcγRs on macrophages [9]. CD209 is a dendritic cell (DC)-specific C-type lectin superfamily receptor that has functions of pattern recognition receptor in the innate response to infection, DC migration, and the innate steps of T cell activation [10]. Several lines of evidence indicated the association between CD209 and infectious diseases, such as dengue fever, tuberculosis and AIDS [11,12,13,14]. Thus, CD209 may be important in the anti-inflammatory functions of IVIG. Yu et al. showed CD209 (rs4004803) promoter variants have effects on susceptibility to KD, but not IVIG treatment response [15]. Portman et al. revealed that Asians with the major allele “A” in rs2287886 of CD209 were more likely to be IVIG non-responders, but this allele is a minor allele in Hispanic and Caucasian ethnic groups [13,16]. In this study, we hypothesized that CD209 may be involved in the susceptibility to KD, CAL formation and IVIG treatment response in KD patients.

Materials and Methods

Subjects

All KD patients were children who fulfilled the diagnostic criteria for KD and were admitted between 2000 and 2012 as described in our previous studies [7,17,18,19]. This study was approved by the Institutional Review Board of Chang Gung Memorial Hospital (97-0029B). The IRB approved this consent procedure. Blood samples were collected after written informed consent was obtained from parents or guardians. The participant consent was recorded by decode method. We excluded patients who did not meet the diagnostic criteria for KD. CAL was defined as the internal diameter of the coronary artery greater than 3 mm (4 mm, if the subject was more than 5 year-old) or the internal diameter of a segment being at least 1.5 times than adjacent segment by echocardiogram [20,21,22]. IVIG responsiveness was defined as fever subside 48 hours after the completion of IVIG treatment and no fever (temperature, >38°C) recurrence for at least 7 days with marked improvement of inflammatory signs [18,23]. A total of 567 control subjects (without any history of Kawasaki disease) were recruited from patients of outpatient department who volunteered to participate in our study while receiving an allergen test and with a negative allergen test result.

Table 1. Basal characteristics of patients with Kawasaki disease and normal controls.

Characteristics	Patients with KD	Normal Control
Male gender, No. (%)	N = 381	N = 567
Mean (SD) age (years)	1.7 ± 1.6	5.7 ± 4.9
Age range (years)	0–11	0–51
CAL formation	126 (33.1%)	
IVIG resistance	49 (12.9%)	

CAL: coronary artery lesions; IVIG: intravenous immunoglobulin; SD: standard deviation.

DNA extraction

DNA was extracted by treating 0.5% SDS lysis buffer, and then adding protease K (1 mg/ml) for digestion of nuclear protein for 4 h at 60°C. After using Gentra extraction kit and followed by 70% alcohol precipitation, the total DNA was harvested.

Genotyping

Utilizing the Han Chinese in Beijing as a reference population sample from the haplotype map database (http://www.hapmap.org), we selected the nine tagging SNPs of CD209 (rs8112310, rs4804800, rs11465421, rs1544766, rs4804801, rs2287886, rs735239, rs735240, and rs4804804) with a minimum allele frequency of greater than 1% in the Beijing Han Chinese population. There are 4 SNPs (rs4804800, rs11465421, rs1544766, rs4804801) located on 3’ UTR, and 5 SNPs (rs8112310, rs2287886, rs735239, rs735240, rs4804804) near 5’ UTR. Genotyping was performed by using TaqMan Allelic Discrimination assay, and the polymerase chain reaction (PCR) was accomplished by using ABI StepOnePlus Thermal Cycler. Followed up in PCR, the fluorescence was detected and analyzed through the System SDS software version 2.2.2.

Statistical analysis

All statistical analysis was performed by using JMP 9.0 for windows. The genotypes and allele frequencies associated with the susceptibility of KD and disease outcomes (CAL and IVIG treatment response) were analysis by χ² test. Hardy-Weinberg equilibrium was also performed by the χ² test with 1 degree of freedom. Linkage disequilibrium (LD) was assessed for haplotype blocks were defined using the default setting of the Haploview software 4.1.

Results

Association between CD209 polymorphisms and susceptibility of Kawasaki disease

A total of 948 subjects (381 cases and 567 controls) were recruited in this study. The basal characteristics of KD patients and control subjects are shown in Table 1. Of the 381 KD patients, 126 (33.1%) patients had coronary artery lesion (CAL), and 49 (12.9%) patients suffered from persistent fever after they treated with IVIG. As shown in Table 2, Three SNPs (rs4804800, rs2287886, and rs735240) of CD209 showed significance with regards to susceptibility of KD. The GG genotype of SNP rs4804800 had 1.60-fold increased risk compared with AG and AA genotypes of KD (P = 0.0336, OR (95% CI) = 1.60 (1.04–2.46)). The variants of rs2287886 and rs735240 revealed protective effects, the GG genotype of rs2287886 and AA
Table 2. Genotype and allele frequencies of the CD209 gene in controls and patients with Kawasaki disease.

Genotype	Case (%) (n = 381)	Control (%) (n = 567)	MAF	P Valuea	OR (95% CI)b
			Case	Control	
rs8112310	AA 51 (13.7)	66 (12.2)	0.361	0.359	0.5292
	AT 168 (44.9)	256 (47.4)			
	TT 155 (41.4)	218 (40.4)			
rs4804800	GG 46 (12.8)	45 (8.4)	0.336	0.309	**0.0336***
	AG 149 (41.5)	240 (45.0)			
	AA 164 (45.7)	249 (46.6)			
rs11465421	TT 19 (5.4)	26 (4.6)	0.248	0.260	0.7292
	GT 136 (38.8)	174 (40.1)			
	GG 196 (55.8)	234 (53.9)			
rs1544766	GG 33 (8.8)	37 (6.7)	0.294	0.279	0.2404
	AG 154 (41.2)	232 (42.3)			
	AA 187 (50.0)	280 (51.0)			
rs4804801	AA 187 (50.0)	280 (51.0)	0.399	0.386	0.8011
	GT 136 (38.8)	174 (40.1)			
	GG 196 (55.8)	234 (53.9)			
rs2287886	GG 22 (6.0)	56 (10.9)	0.296	0.338	**0.0118***
	AG 174 (47.3)	237 (45.9)			
	AA 172 (46.7)	223 (43.2)			
rs735239	GG 9 (2.7)	10 (3.0)	0.160	0.193	0.8421
	AG 86 (26.4)	108 (32.6)			
	AA 231 (70.9)	213 (64.4)			
rs735240	AA 14 (3.9)	37 (7.3)	0.215	0.265	**0.0337***
	AG 128 (35.2)	195 (38.4)			
	GG 221 (60.9)	276 (54.3)			
rs4804804	AA 77 (22.9)	87 (20.7)	0.476	0.429	0.4550
	AG 166 (49.4)	187 (44.4)			
	GG 93 (27.7)	147 (34.9)			

*Significant (P<0.05) values are in bold.

aP values are calculated using the Pearson’s x² test for the recessive model.

bORs are for the recessive model (minor allele homozygotes versus heterozygotes and major allele homozygotes).

doi:10.1371/journal.pone.0105236.t002
Genotype	CAL (%) (n = 126)	Without (%) (n = 252)	MAF	P Value*	OR (95% CI)*	
rs8112310 AA	16 (13.0)	35 (14.1)	0.341	0.371	0.7711	0.91 (0.48–1.72)
AT	52 (42.3)	114 (46.0)				
TT	55 (44.7)	99 (39.9)				
rs4804800 GG	15 (12.6)	31 (13.1)	0.315	0.346	0.8997	0.96 (0.50–1.85)
AG	45 (37.8)	102 (43.0)				
AA	59 (49.6)	104 (43.9)				
rs11465421 TT	4 (3.4)	15 (6.6)	0.252	0.247	0.2142	0.50 (0.16–1.50)
GT	52 (43.7)	83 (36.2)				
GG	63 (52.9)	131 (57.2)				
rs1544766 GG	10 (8.1)	23 (9.3)	0.285	0.298	0.7155	0.87 (0.40–1.88)
AG	50 (40.7)	102 (41.1)				
AA	63 (51.2)	123 (49.6)				
rs4804801 AA	16 (13.8)	37 (15.7)	0.371	0.411	0.6421	0.86 (0.46–1.62)
AT	54 (46.5)	120 (50.8)				
TT	46 (39.7)	79 (33.5)				
rs2287886 GG	4 (3.3)	18 (7.4)	0.314	0.287	0.1239	0.43 (0.15–1.26)
AG	68 (56.2)	104 (42.6)				
AA	49 (40.5)	122 (50.0)				
rs735239 GG	2 (1.9)	7 (3.2)	0.175	0.151	0.4962	0.58 (0.12–2.79)
AG	33 (31.1)	52 (23.7)				
AA	71 (67.0)	159 (62.9)				
rs735240 AA	2 (1.67)	12 (5.0)	0.217	0.213	0.1230	0.32 (0.08–1.36)
AG	48 (40.0)	78 (32.5)				
GG	70 (58.3)	150 (62.5)				
rs4804804 AA	24 (22.6)	53 (23.2)	0.500	0.469	0.9029	0.97 (0.56–1.67)
AG	58 (54.8)	108 (47.4)				
GG	24 (22.6)	67 (29.4)				

*Significant (P<0.05) values are in bold.

P values are calculated using the Pearson’s x² test for the recessive model.

ORs are the recessive model (minor allele homozygotes versus heterozygotes and major allele homozygotes).

doi:10.1371/journal.pone.0105236.t003
Table 4. Genotype and allele frequencies of the CD209 gene in patients with Kawasaki disease responding or not responding to intravenous immunoglobulin treatment.

Genotype	Resistant (%) (n = 49)	Responsive (%) (n = 326)	MAF	P Value^a	OR (95% CI)^b
rs8112310	AA (9 (18.4))	41 (12.9)	0.418	0.351	0.2942 (0.69–3.36)
	AT (23 (46.9))	142 (44.5)			
	TT (17 (34.7))	136 (42.6)			
rs4804800	GG (7 (15.6))	38 (12.3)	0.367	0.330	0.5455 (0.55–3.13)
	AG (19 (42.2))	127 (41.2)			
	AA (19 (42.2))	143 (46.4)			
rs11465421	TT (1 (2.2))	18 (6.0)	0.189	0.259	0.3020 (0.05–2.52)
	GT (15 (33.3))	120 (39.9)			
	GG (29 (64.4))	163 (54.1)			
rs1544766	GG (5 (10.4))	27 (8.4)	0.323	0.289	0.6500 (0.46–3.45)
	AG (21 (43.8))	131 (40.9)			
rs4804801	AA (22 (45.8))	162 (50.6)			
	AT (11 (23.9))	42 (13.8)	0.457	0.389	0.0733 (0.94–4.13)
rs2287886	GG (3 (6.2))	19 (6.0)	0.271	0.299	0.9571 (0.29–3.64)
	AG (20 (41.7))	150 (47.8)			
rs735239	GG (2 (4.7))	7 (2.5)	0.131	0.163	0.4016 (0.23–4.96)
	AG (7 (16.7))	78 (27.6)			
rs735240	AA (33 (78.6))	197 (69.9)			
rs4804804	AA (13 (29.5))	63 (21.8)	0.511	0.472	0.2541 (0.75–3.03)
	AG (19 (43.2))	147 (49.0)			
	GG (12 (27.3))	79 (27.3)			

*Significant (P<0.05) values are in bold.

^aP-values are calculated using the Pearson’s x² test for the recessive model.

^bORs are for the recessive model (minor allele homozygotes versus heterozygotes and major allele homozygotes).

doi:10.1371/journal.pone.0105236.t004
genotype of rs735240 were associated with a lower risk of KD (Table 2). However, all significances disappeared if we performed Bonferroni correction \((P<0.0055)\).

CD209 polymorphisms had no association with CAL and IVIG treatment responsiveness

The related complications and IVIG treatment responses of KD were also examined in this study. Thus, we tested the relationship between CD209 genetic polymorphisms and CAL formation. As shown in Table 3, none of CD209 polymorphisms significantly associated with CAL formation. In addition, we didn’t find any association between the genetic variants of CD209 and the outcomes of IVIG treatment (Table 4).

CD209 haplotypes associated with Kawasaki disease susceptibility

We further calculated pairwise linkage disequilibrium (LD) (Fig. 1) and analyzed haplotypes of CD209. The CD209 haplotype rs8112310/rs4804800/rs11465421/rs1544766 (Block 1) had no significant association with KD susceptibility (Table 5). However, rs2287886/rs735239/rs735240 (Block 2) pairwise allele analysis showed that A/A/G haplotype \((P=0.0002, \text{OR (95\% CI)}=1.61 (1.25–2.08)) \) and G/A/G haplotype \((P=0.0365, \text{OR (95\% CI)}=1.52 (1.03–2.26)) \) had a higher risk of KD when compared with G/G/A haplotype (Table 6).

Figure 1. CD209 gene linkage disequilibrium and haplotype block structure in KD. The number on the cell is the LOD score of D’. doi:10.1371/journal.pone.0105236.g001

Table 5. Haplotype frequencies of the CD209 gene in controls and patients with Kawasaki disease.

rs8112310/rs4804800/rs11465421/rs1544766	Case (%) (\(n = 381 \))	Control (%) (\(n = 567 \))	OR (95\% CI)	\(P \) Value
A/G/G/G	184 (25.7)	211 (21.4)	1.23 (0.94–1.62)	0.1295
A/G/G/A	29 (4.1)	38 (3.9)	1.08 (0.64–1.82)	0.7690
T/G/G/G	12 (1.7)	15 (1.5)	1.13 (0.52–2.48)	0.7542
T/A/G/G	7 (1.0)	13 (1.3)	0.76 (0.30–1.95)	0.5701
A/A/G/A	35 (4.9)	57 (5.8)	0.87 (0.55–1.38)	0.5524
T/A/G/A	256 (35.8)	380 (35.8)	0.95 (0.75–1.22)	0.7081
T/A/T/A	185 (25.9)	262 (26.6)	Reference	

Haplotype frequency less than 1% was excluded. doi:10.1371/journal.pone.0105236.t005

SNPs of CD209 in Kawasaki Disease
Table 6. Haplotype frequencies of the CD209 gene in controls and patients with Kawasaki disease.

rs2287886/rs735239/rs735240	Case (%) (n = 381)	Control (%) (n = 567)	OR (95% CI)	P Value
A/A/G	468 (67.2)	521 (95.9)	1.61 (1.25–2.08)	0.0002**
A/A/A	10 (1.4)	13 (1.5)	1.38 (0.93–2.35)	0.4543
G/A/G	66 (9.5)	78 (8.9)	1.52 (1.03–2.26)	0.0365*
G/A/A	27 (3.9)	36 (4.1)	1.35 (0.78–2.33)	0.2809
G/G/A	124 (17.8)	223 (25.5)	Reference	

Haplotype frequency less than 1% was excluded.
*Significant (P<0.01) values are in bold.
**Significant (P<0.05) values are in bold.

doi:10.1371/journal.pone.0105236.t006

Discussion

IVIG therapy is used to treat a wide range of autoimmune and immune associated diseases including Kawasaki disease. The treatment effects of IVIG resulted from the terminal 2,6-linked sialic acid residues of the IgG Fc (fragment crystallizable) domain, which were known to be conjugated to the carbohydrate recognition domain (CRD) of the cell-surface lectin. Through this interaction, DC-SIGN and its murine orthologue SIGN-R1 (specific intracellular adhesion molecule-grabbing non-integrin R1) triggered down-stream expression of immunosuppressive cytokines and receptors. Consistent with this model, the anti-inflammatory effect of IVIG treatment is abolished in a murine knock-out of SIGN-R1 and can be restored by a knock-in with human CD209 [24].

CD209 is a transmembrane lectin receptor on dendritic cells with multiple immune modulation function [25]. CD209 can recognize many pathogens, such as viruses (HIV-1, dengue, and measles virus) [26,27,28], bacteria (Helicobacter pylori, Mycobacterium tuberculosis) [29], and fungi (Candida albicans and Aspergillus fumigatus) [30] contributing to the generation of pathogen-tailored immune responses and immunosuppressive responses by the MAPK pathway in DCs [31]. The pathogen which causes KD still remains unknown. The hypothesis that [32] is that risk of KD results from an undefined infectious process in a genetically predisposed individual with a “double hit model” (32). The genetic predisposition is suggested based on clinical and epidemiologic features [8,33]. Immune related genes including ITPKC, CD40, BLK and FcR2A were reported as important genetic predisposition of KD [34,35,36,37].

The polymorphism of CD209 has been previously reported as an important factor of KD susceptibility [15]. Portman’s study also showed a significant association between CD209 polymorphisms and IVIG treatment in the Asian group (N=64 vs. 12, responsiveness vs. non-responsiveness, respectively, p = 0.04) but not in the Caucasian group (158 vs. 62), Hispanic group (55 vs. 20) and group that pooled of all of the ethnicities (277 vs. 94) [16]. In this study, we conducted to investigate 9 tagging SNPs in a Taiwanese population including 332 with IVIG responsiveness and 49 with IVIG non-responsiveness. Our results indicated that CD209 polymorphisms were responsible for the susceptibility of KD, but not IVIG treatment responsiveness. Inconsistencies with regards to these results may be due to the limited case numbers, power of statistical test, and different ethnic populations.

In conclusion, our results provided evidence to support the potential role of CD209 in the susceptibility of KD in a Taiwanese population. The roles of genetic polymorphisms of CD209 in inflammatory signaling as well as KD development are still unclear. Functional studies are needed to validate these findings.

Acknowledgments

The authors acknowledge the technical support provided by the Genomic & Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Taiwan.

Author Contributions

Conceived and designed the experiments: HCK WCC. Performed the experiments: YHH HRY KSH YWH SCC. Analyzed the data: KSH. Contributed to the writing of the manuscript: HCK KSH WCC.

References

1. Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H (1974) A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 54: 271–276.
2. Huang WC, Hsuang LM, Chiang IS, Chang LY, Chiang BL, et al. (2009) Epidemiologic features of Kawasaki disease in Taiwan, 2003–2006. Pediatrics 123: e401–e405.
3. Wang CL, Wu YT, Liu CA, Kuo HC, Yang KD (2005) Kawasaki disease: infection, immunity and genetics. Pediatr Infect Dis J 24: 990–1004.
4. Nakamura Y, Yashiro M, Uehara R, Sadakane A, Tsuboi S, et al. (2012) Epidemiologic features of Kawasaki disease in Japan: results of the 2009–2010 nationwide survey. J Epidemiol 22: 216–221.
5. Newburger JW, Takashahi M, Gerber MA, Gewitz MH, Tani LY, et al. (2004) Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 114: 1708–1733.
6. Kuo HC, Yang KD, Chang WC, Gre LP, Hoieh KS (2012) Kawasaki disease: an update on diagnosis and treatment. Pediatr Neonatol 53: 4–11.
7. Liang CD, Kuo HC, Yang KD, Wang CL, Ko SF (2009) Coronary artery fistula associated with Kawasaki disease. Am Heart J 157: 584–588.
8. Burns JC, Glode MP (2004) Kawasaki syndrome. Lancet 364: 533–544.
9. Anthony RM, Ravetch JV (2010) A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fc. J Clin Immunol 30 Suppl 1: S9–14.
10. Zhou T, Chen Y, Hao L, Zhang Y (2006) DC-SIGN and immunoregulation. Cell Mol Immunol 3: 279–283.
11. Marzi A, Gramberg T, Simmons G, Moller P, Rennekamp AJ, et al. (2004) DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol 78: 12090–12095.
12. Vananberg FO, Chapman SJ, Khor CC, Tosh K, Floyd S, et al. (2006) CD209 genetic polymorphism and tuberculosis disease. PLoS One 3: e1388.
13. Koizumi Y, Kaseyama Y, Fujiyama Y, Miyashita M, Lwembe R, et al. (2007) RANTES-28G delays and DC-SIGN-139C enhances AIDS progression in HIV type 1-infected Japanese hemophiliacs. AIDS Res Hum Retroviruses 23: 713–719.
14. Sarkar R, Mitra D, Chakrabarti S (2013) Correction: HIV-1 Gpl20 Protein Downregulates Nef Induced IL-6 Release in Immature Dendritic Cells through Interplay of DC-SIGN. PLoS One 8: e71309.
15. Yu HR, Chang WP, Wang L, Lin YJ, Liang CD, et al. (2012) DC-SIGN (CD209) promoter -336 A/G (rs4804803) polymorphism associated with susceptibility of Kawasaki disease. ScientificWorldJournal 2012: 634855.

16. Portman MA, Wiener HW, Silva M, Shendre A, Shrestha S (2013) DC-SIGN gene promoter variants and IVIG treatment response in Kawasaki disease. Pediatr Rheumatol Online J 11: 32.

17. Kuo HC, Liang CD, Yu HR, Wang CL, Lin IC, et al. (2011) CTLA-4, Position 49 A/G Polymorphism Associated with Coronary Artery Lesions in Kawasaki Disease. J Clin Immunol 31(2): 240–244.

18. Kuo HC, Liang CD, Wang CL, Yu HR, Hwang KP, et al. (2010) Serum albumin level predicts initial intravenous immunoglobulin treatment failure in Kawasaki disease. Acta Paediatr 99: 1578–1583.

19. Yu HR, Kuo HC, Shen JM, Wang L, Lin IC, et al. (2009) A unique plasma proteomic profiling with imbalanced fibrinogen cascade in patients with Kawasaki disease. Pediatr Allergy Immunol 20: 699–707.

20. Shulman ST, De Inocencio J, Hirsch R (1995) Kawasaki disease. Pediatr Clin North Am 42: 1205–1222.

21. Kuo HC, Yu HR, Joo SH, Yang KD, Wang YS, et al. (2011) CASP3 gene single-nucleotide polymorphism (rs72689236) and Kawasaki disease in Taiwanese children. J Hum Genet 56: 161–165.

22. Kuo HC, Wang CL, Liang CD, Yu HR, Chen HH, et al. (2007) Persistent monocytosis after intravenous immunoglobulin therapy correlated with the development of coronary artery lesions in patients with Kawasaki disease. J Microbiol Immunol Infect 40: 395–400.

23. Kuo HC, Yang KD, Liang CD, Bong CN, Yu HR, et al. (2007) The relationship of eosinophilia to intravenous immunoglobulin treatment failure in Kawasaki disease. Pediatr Allergy Immunol 18: 354–359.

24. Yu X, Vasiljevic S, Mitchell DA, Crispin M, Scanlan CN (2013) Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J Mol Biol 425: 1253–1258.

25. Geijtenbeek TB, Kwon DS, Toremans R, van Vliet SJ, van Duijnhoven GC, et al. (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100: 587–597.

26. Pokuhyeva E, Zhang Y, Battisti AJ, Bator-Kelly CM, Chipman PR, et al. (2006) Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124: 485–493.

27. de Witte L, Abt M, Schneider-Schaules Y, van Kooyk Y, Geijtenbeek TB (2006) Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 80: 5477–5486.

28. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TB (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10: 1081–1089.

29. Cambi A, Gijzen K, de Vries JM, Toremans R, Joosten B, et al. (2003) The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 33: 532–538.

30. Mittal R, Balgheresi S, Enami C, Prasad Rao NV (2009) Enterobacter sakazakii targets DC-SIGN to induce immunosuppressive responses in dendritic cells by modulating MAPKs. J Immunol 183: 6588–6599.

31. Lidar M, Lipschitz N, Langewitz P, Shoenfeld Y (2009) The infectious etiology of vasculitis. Autoimmunity 42: 432–438.

32. Nakamura Y, Yasuho M, Ucha R, Oki I, Watanabe M, et al. (2008) Epidemiologic features of Kawasaki disease in Japan: results from the nationwide survey in 2005–2006. J Epidemiol 18: 167–172.

33. Onouchi Y, Goji T, Burns JC, Shimizu C, Newburger JW, et al. (2008) ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet 40: 33–42.

34. Onouchi Y, Otsuki K, Burns JC, Shimizu C, Terai M, et al. (2012) A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet 44: 317–321.

35. Kim JC, Kuo HC, Chang JS, Chang LY, Huang LM, et al. (2012) Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat Genet 44: 522–525.

36. Khor CC, Davila S, Breunis WB, Lee YC, Shimizu C, et al. (2011) Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet 43: 1211–1216.