THE UNSTABLE SPECTRUM OF THE NAVIER-STOKES OPERATOR IN THE LIMIT OF VANISHING VISCOSITY

ROMAN SHVYDKOY AND SUSAN FRIEDLANDER

Abstract. A general class of linear advective PDEs, whose leading order term is of viscous dissipative type, is considered. It is proved that beyond the limit of the essential spectrum of the underlying inviscid operator, the eigenvalues of the viscous operator, in the limit of vanishing viscosity, converge precisely to those of the inviscid operator. The general class of PDEs includes the equations of incompressible fluid dynamics. Hence eigenvalues of the Navier-Stokes operator converge in the inviscid limit to the eigenvalues of the Euler operator beyond the essential spectrum.

1. Introduction

The equations of motion governing an incompressible fluid with viscosity \(\varepsilon \) are the Navier-Stokes equations

\[
\begin{align*}
\frac{\partial q_{\varepsilon}}{\partial t} &= -(q_{\varepsilon} \cdot \nabla)q_{\varepsilon} - \nabla p_{\varepsilon} + \varepsilon \Delta q_{\varepsilon} + F_{\varepsilon}, \\
\nabla \cdot q_{\varepsilon} &= 0,
\end{align*}
\]

where \(q_{\varepsilon} \) denotes the \(n \)-dimensional velocity vector, \(p_{\varepsilon} \) denotes the pressure and \(F_{\varepsilon} \) is an external force vector. Here \(n \) can be any integer with \(n \geq 2 \), but the case \(n = 3 \) is of the most interest.

The same equations with zero viscosity are the Euler equations

\[
\begin{align*}
\frac{\partial q}{\partial t} &= -(q \cdot \nabla)q - \nabla p, \\
\nabla \cdot q &= 0.
\end{align*}
\]

An important connection between the Euler and the Navier-Stokes systems is the behavior of \((1.1) \) in the limit of vanishing viscosity (i.e. \(\varepsilon \to 0) \). This limit is likely to be crucial in the understanding of many physical problems of fluid flow, such as the transition to turbulence.

Date: October 4, 2018.

Friedlander’s research is partially supported by NSF grants DMS-0202767 and DMS-0503768. The authors thank Mathematisches Forschungsinstitut Oberwolfach for hospitality during our work.
It is clear, since the types of the two systems are very different (1.1) is parabolic and (1.2) is degenerate hyperbolic, that the limit of vanishing viscosity is a subtle and singular limit. There are a number of partial results for the nonlinear system as $\varepsilon \to 0$. The history of such results is briefly surveyed in the appendix of the book of Temam [8].

Open questions remain even for the linearized problem. In this present paper we address the connections between the spectra of the linearized Navier-Stokes operators in the inviscid limit and the spectrum of the linearized Euler operator. The results are closely tied to issues of linear, and even nonlinear, instabilities for fluid flows (c.f. Yudovich [12]).

Let $u(x,\varepsilon)$ be an arbitrary steady solution of (1.1):

\begin{align}
0 &= -(u \cdot \nabla) u - \nabla P + \varepsilon \Delta u + F_{\varepsilon}, \\
\nabla \cdot u &= 0.
\end{align}

We assume that $u(x,\varepsilon)$ and F_{ε} are infinitely smooth vector valued functions on the torus \mathbb{T}^n with regular dependence on $\varepsilon \in [0,\varepsilon_0)$ and that $\lim_{\varepsilon \to 0} F_{\varepsilon} = 0$. For the sake of simplicity we will present the proof of the theorems only for the case where $u(x)$ has no dependence on ε. The more general results follow from similar arguments.

The linearized Navier-Stokes equations for the evolution of a small perturbation velocity $v(x,t)$ are

\begin{align}
\frac{\partial v}{\partial t} &= -(u \cdot \nabla) v - (v \cdot \nabla) u - \nabla p + \varepsilon \Delta v, \\
\nabla \cdot v &= 0.
\end{align}

The corresponding linearized Euler equations are

\begin{align}
\frac{\partial v}{\partial t} &= -(u \cdot \nabla) v - (v \cdot \nabla) u - \nabla p, \\
\nabla \cdot v &= 0.
\end{align}

We will study general classes of differential operators on \mathbb{T}^n which include the operators of the fluid equations defined by (1.4) and (1.5). We will investigate the relationship between the unstable point spectrum of the inviscid operator and the eigenvalues of the viscous operator in the limit of vanishing viscosity.

For a general equilibrium $u(x)$ the Euler operator defined in (1.5) is non self-adjoint, non elliptic and degenerate. Hence, contrary to the case of the elliptic Navier-Stokes operator given by (1.4), standard spectral results for elliptic operators do not apply to the Euler operator. However in the past decade considerable progress has been made in understanding the structure of the spectrum of the Euler operator using
techniques of geometric optics. A survey of these results is given in
Friedlander and Lipton-Lifschitz [3]. In particular, Vishik [9] obtained
an explicit, and often computable, expression for the essential spectral
radius of the Euler evolution operator in terms of a geometric quan-
tity that can be considered as a "fluid" Lyapunov exponent. Recently
Shvydkoy [7] has extended these results to a general class of advective
PDEs with pseudodifferential bounded perturbation. The approach in
which the evolution operator is partitioned into high frequency and low
frequency parts will also be used in Section 3 of this present paper. We
make use of the decomposition of the inviscid operator proved in [7] to
obtain the analogous decomposition of the viscous operator (see Theo-
rem 3.1). This result requires certain explicit estimates on the symbols
of PDOs on the torus that we state in the appendix.

In Section 4 we prove the main result. We first prove a result for
spectral convergence in the inviscid limit for the semigroups. We then
prove that beyond the limit of the essential spectrum of the inviscid
operator the eigenvalues of the viscous operator converge precisely to
those of the inviscid operator. A key step is to use the decomposi-
tion established in Section 3 to split off a finite dimensional subspace
Corresponding to growing modes. An analogous argument was used
by Lyashenko and Friedlander [5] to obtain a sufficient condition for
instability in the limit of vanishing viscosity for a class of operators
satisfying certain compactness and accretive properties. The proper-
ties required in [5] do not hold in general for the Euler operator (1.5)
(although they do hold for the coupled rotating fluid/body system as
noted in [5]). The goal of this present paper is to adapt the argumen-
ts of [5] to a wider class of operators that include the generic Euler and
Navier-Stokes operators themselves.

2. Formulation of the result

We consider the following class of differential operators on \mathbb{T}^n:

\begin{equation}
L_\varepsilon f = -(u \cdot \nabla) f + A f + \varepsilon \Delta f.
\end{equation}

Here $u \in C^\infty(\mathbb{T}^n)$ is a divergence-free time independent vector field, f
takes values in \mathbb{C}^d, $d \in \mathbb{N}$, and A is a global pseudodifferential operator
(PDO) on \mathbb{T}^n given by

\begin{equation}
A f(x) = \text{Op}[a] f(x) = \sum_{k \in \mathbb{Z}^n} e^{ik \cdot x} a(x,k) \hat{f}(k),
\end{equation}

where $a(x,k)$ are smooth functions that determine the symbols of A.

The operator L_ε models the Euler equations with a small diffusion
term. The goal is to study the spectrum of L_ε and understand how it changes
in the limit $\varepsilon \to 0$. This is particularly interesting when L_ε is not a bounded perturbation
of a self-adjoint operator, which is the case for the Euler operator.
where $\hat{Z}^n = \mathbb{Z}^n \setminus \{0\}$. We assume that $a \in \mathcal{S}^0$ (see the appendix) is a $d \times d$-matrix valued symbol, which allows decomposition

$$a = a_0 + a_1,$$

where a_0 is 0-homogenous in ξ, and $a_1 \in \mathcal{S}^{-1}$. For instance, the linearized Navier-Stokes equation (1.4) has the right hand side of the form (2.1), where A has principal symbol (2.3)

$$a_0(x, \xi) = \left(2 \frac{\xi \otimes \xi}{|\xi|^2} - \text{id}\right) \partial u(x)$$

(see [7] for derivation).

We further consider a smooth linear bundle \mathcal{F} over $\hat{\mathbb{R}}^n = \mathbb{R}^n \setminus \{0\}$. We assume that \mathcal{F} is 0-homogenous. A function $f \in L^2(\mathbb{T}^n) = L^2$ is said to satisfy the frequency constraints determined by \mathcal{F} if $\hat{f}(k) \in F(k)$, for all $k \in \mathbb{Z}^n$, where $F(k)$ denotes the fiber over k (we consider the fiber $F(0)$ separately). The space of all such functions is denoted $L^2_{\mathcal{F}}$.

Let $\{G^\varepsilon_t\}_{t \geq 0}$ be a C^0-semigroup generated by L^ε over L^2. We assume that G^ε_t leaves $L^2_{\mathcal{F}}$ invariant so that the equation

$$f_t = L^\varepsilon f$$

is well-posed on $L^2_{\mathcal{F}}$.

The first order advective operator L^0 was treated in [7]. It was shown there (and previously in [9] for the Euler equation) that the action of G^0_t on shortwave localized envelopes of the form

$$f_\delta(x) = b_0(x) e^{i\xi_0 \cdot x/\delta}, \quad \delta \ll 1$$

is described by the asymptotic formula

$$G^0_t f_\delta(x) = B_t(\varphi_{-t}(x), \xi_0) f_\delta(\varphi_{-t}(x)) + O(\delta),$$

as $\delta \to 0$. In this formula φ_t is the integral flow of the steady field u, and B_t is the fundamental matrix solution of the amplitude equation

$$b_t = a_0(\chi_t(x_0, \xi_0)) b,$$

over the phase flow χ_t on $\Theta = \mathbb{T}^n \times \hat{\mathbb{R}}^n$ determined by the bicharacteristic system

$$\begin{cases}
x_t = u(x) \\
\xi_t = -\partial u^\top(x) \xi
\end{cases}$$

subject to the frequency constraint $b_0 \in F(\xi_0)$. One can modify the symbol a_0 in such a way that the action of L^0 on functions from $L^2_{\mathcal{F}}$ is the same, while (2.6) leaves \mathcal{F} invariant, i.e. $b(t) \in F(\xi(t))$ (see [7]). Thus one can consider (2.6) as a dynamical system over the bundle \mathcal{F}.
It was proved that the exponential instabilities of the amplitude equation (2.6) not only cause exponential instability of the semigroup G^0 via (2.5), but also create the essential spectrum of the semigroup operator G^0_t in the unstable region. More precisely, the following formula for the essential spectral radius holds:

$$r_{\text{ess}}(G^0_t) = e^{t\mu},$$

where μ is the maximal Lyapunov exponent of the dynamical system (2.6) (see [1]). The main result of this present article states that beyond this limit of the essential spectrum the eigenvalues of L^ε converge precisely to the eigenvalues of L^0 (and, of course, by spectral mapping the same is true for the semigroups). Even stronger, we show convergence of the corresponding spectral subspaces.

For a closed operator L we use the following notation:

$$\sigma^+_a(L) = \{\lambda \in \sigma(L) : \text{Re} \lambda > a\},$$

and we denote by $m_a(\lambda, L)$ the algebraic multiplicity of λ.

Theorem 2.1. Suppose that $\sigma^+_\mu(L^0) \neq \emptyset$. Then

(i) there exists $\varepsilon_0 > 0$ such that $\sigma^+_{\mu}(L^\varepsilon) \neq \emptyset$ for all $0 \leq \varepsilon < \varepsilon_0$,

(ii) for any $\lambda \in \sigma^+_{\mu}(L^0)$ and any sufficiently small $r > 0$ there is $\varepsilon_r > 0$ such that for all $\varepsilon < \varepsilon_r$ one has

$$m_a(\lambda, L^0) = \sum_{\lambda' \in \sigma^+_{\mu}(L^\varepsilon)} m_a(\lambda', L^\varepsilon),$$

(iii) we have the limit

$$\lim_{\varepsilon \to 0} \sum_{\lambda' \in \sigma^+_{\mu}(L^\varepsilon)} P_{\lambda'}^\varepsilon = P_0^0,$$

where P_λ^ε denotes the Riesz projection onto the spectral subspace corresponding to λ.

We note that (iii) \Rightarrow (ii) \Rightarrow (i). So, it suffices to prove only part (iii). The proof heavily relies on the results of the next section, and will be finished in Section 4. In the appendix we state some of the general facts on PDO’s in the way that is convenient to use in the subsequent arguments.

3. High frequency decomposition

In this section we identify the high frequency part of the semigroup operator G^ε_t. It is a PDO shifted by the flow φ_t, while the rest is
a sum of an operator of order $O(\sqrt{\varepsilon})$ and a compact operator that behaves like a PDO of order -1 uniformly in ε. We introduce the following notation. As before, we let φ_t denote the flow generated by u on \mathbb{T}^n, and χ_t the phase flow of the bicharacteristic equations \[(2.7) \] on $\mathbb{T}^n \times \mathbb{R}^n$. The fundamental matrix solution of the amplitude equation \[(2.6) \], which we denoted $B_t(x, \xi)$, is a smooth linear cocycle over the flow χ_t. We call it the b-cocycle. Clearly, the b-cocycle is a 0-homogenous in ξ symbol of class S^0.

We consider the operator of composition with the inverse flow φ_{-t}:

\[(3.1) \quad \Phi_t f = f \circ \varphi_{-t}, \]

and the orthogonal projector:

\[(3.2) \quad \Pi : L^2 \to L^2_F, \]

which, as one can easily see, is a Fourier multiplier with the symbol given by the orthogonal frequency projector onto the fiber $F(\xi)$.

The following decomposition was proved in [7] in the case of $\varepsilon = 0$:

\[(3.3) \quad G_t^0 = H_t^0 + U_t^0, \]

where

\[(3.4) \quad H_t^0 = \Pi \Phi_t \text{Op}[B_t] \]

and U_t^0 is a compact operator, which behaves like a PDO of order -1 (hence the asymptotic formula \[(2.5) \]). For any positive ε formula \[(3.3) \] can be generalized as follows.

Theorem 3.1. For any $0 \leq t < T$ and $0 \leq \varepsilon < \varepsilon_0$ the following decomposition holds:

\[(3.5) \quad G_t^\varepsilon = H_t^\varepsilon + \sqrt{\varepsilon} T_t^\varepsilon + U_t^\varepsilon, \]

where

\[(3.6) \quad H_t^\varepsilon = \Pi \Phi_t \text{Op}[\tau_t^\varepsilon], \]

\[(3.7) \quad \tau_t^\varepsilon(x, \xi) = B_t(x, \xi) \exp \left\{ -\varepsilon \int_0^t |\partial \varphi_s^{-1}(x)\xi|^2 ds \right\}, \]

the family $\{T_t\}_{0 \leq \varepsilon < \varepsilon_0, 0 \leq t < T}$ is uniformly bounded, and $\{U_t^\varepsilon\}_{0 \leq \varepsilon < \varepsilon_0, 0 \leq t < T}$ is uniformly compact.

By a uniform compact family we mean the following.

Definition 3.2. Let $\psi_N(\xi)$ be the characteristic function of the ball $\{|\xi| < N\}$. Define the projection multiplier $P_N f = (\psi_N \hat{f})^\vee$. We say
that a family of operators \(\{ U_\iota \}_{\iota \in I} \) on \(L^2 \), or its subspace invariant with respect to \(P_N \), is uniformly compact if
\[
\lim_{N \to \infty} \sup_{\iota \in I} \| U_\iota - U_\iota P_N \| = 0.
\]

The rest of the section is devoted to the proof of Theorem 3.1.

First, we notice that the theorem easily reduces to the case when \(\Pi = I \). Indeed, consider the semigroup \(G_\varepsilon^t \) defined on the whole \(L^2 \). If (3.5) holds on all \(L^2 \), then by applying \(\Pi \) and restricting to \(L^2_F \), we see that (3.5) holds on \(L^2_F \) too.

Using the fact that the \(b \)-cocycle solves the amplitude equations (2.6) we find the evolution equation for \(H_\varepsilon^t \) by straightforward differentiation:
\[
(3.9) \quad \frac{d}{dt} H_\varepsilon^t = -(u \cdot \nabla) H_\varepsilon^t + \Phi_\varepsilon \text{Op}[(a_0 \circ \chi t) \tau_\varepsilon^t] - \varepsilon \Phi_\varepsilon \text{Op}[[\partial \varphi_{-T}^t(x) \xi]^2 \tau_\varepsilon^t].
\]

We compare the second term on the right hand side with \(A H_\varepsilon^t \). First, the change of variables rule implies
\[
A \Phi_\varepsilon = \Phi_\varepsilon A',
\]
where \(A' = \text{Op}[a_0 \circ \chi t] + \text{Op}[a'_t] \) with \(a'_t \in S^{-1} \) uniformly in \(t < T \). The latter follows from the fact that \(\varphi_t \in C^\infty(\mathbb{T}^n) \) uniformly in \(-T < t < T \). Hence we obtain
\[
(3.10) \quad A H_\varepsilon^t = A \Phi_\varepsilon S_\varepsilon^t = \Phi_\varepsilon \text{Op}[a_0 \circ \chi t] \text{Op}[\tau_\varepsilon^t] + \Phi_\varepsilon \text{Op}[a'_t] \text{Op}[\tau_\varepsilon^t].
\]

Let us show that the symbols \(\tau_\varepsilon^t \) satisfy a uniformity condition in the \(x \)-variable.

Lemma 3.3. For any multi-index \(\alpha \) there exists a constant \(B_\alpha \) independent of \(0 < \varepsilon < \varepsilon_0 \) and \(t < T \) such that
\[
\sup_{x \in \mathbb{T}^n, \xi \neq 0} | \partial_\alpha^x \tau_\varepsilon^t (x, \xi) | \leq B_\alpha.
\]

Proof. By the Leibnitz rule,
\[
\partial_\alpha^x \tau_\varepsilon^t = \sum_{\alpha' \leq \alpha} \partial_\alpha^{x-\alpha'} B_i(x, \xi) \partial_\alpha' \exp \left\{ -\varepsilon \int_0^t | \partial \varphi_{-T}^s (x) \xi|^2 ds \right\}.
\]

Hence, by the uniform boundedness of the \(b \)-cocycle,
\[
| \partial_\alpha^x \tau_\varepsilon^t | \leq C_{t, \alpha} \sup_{\alpha' \leq \alpha, x, \xi} \left| \partial_\alpha' \exp \left\{ -\varepsilon \int_0^t | \partial \varphi_{-T}^s (x) \xi|^2 ds \right\} \right|.
\]

One can check by induction that if \(g = g(x_1, \ldots, x_n) \) is a smooth function, then
\[
\partial_\varepsilon^x (\exp(g)) = \exp(g) \sum (\partial_\varepsilon^x g)_{l_1} \ldots (\partial_\varepsilon^x g)_{l_\varepsilon}.
\]
where the sum is taken over a subset of indexes satisfying

$$|\gamma_1|l_1 + \ldots + |\gamma_r|l_r = |\alpha|.$$

In our case $g = -\varepsilon \int_0^t |\partial \varphi_s^{-\top}(x)\xi|^2 \, ds$. Then,

$$|\partial \varphi_s^{-\top}(x)| \leq C_{t, \alpha}^2 l_1 + \ldots + l_r \varepsilon l_{l_1 + \ldots + l_r}.$$

Using that $|\partial \varphi_s^{-\top}(x)| \geq c_t |\xi|$, we obtain

$$|\partial \alpha \partial \varphi_{\gamma_1} \ldots \partial \varphi_{\gamma_r}| \leq C_{t, \alpha}^3 |\xi|^{2(l_1 + \ldots + l_r)}.$$

Let us now consider the term

(3.13) $-\varepsilon \Phi \partial |\partial \varphi_s^{-\top}(x)\xi|^2 \partial_{\tau}^\varepsilon$

and compare it to

(3.14) $\varepsilon \Delta \Phi \partial |\partial \varphi_s^{-\top}(x)\xi|^2 \partial_{\tau}^\varepsilon$.

By the change of variables rule, we obtain

$$\partial |\partial \varphi_s^{-\top}(x)\xi|^2 \partial_{\tau}^\varepsilon = \Phi \partial |\partial \varphi_s^{-\top}(x)\xi|^2 \partial_{\tau}^\varepsilon.$$

By Theorem 5.1 with $m_1 = 2$, $m_2 = 0$, $N = 4$

$$\varepsilon \Phi \partial |\partial \varphi_s^{-\top}(x)\xi|^2 \partial_{\tau}^\varepsilon = \varepsilon \Phi \partial |\partial \varphi_s^{-\top}(x)\xi|^2 \partial_{\tau}^\varepsilon.$$
\(\lambda_\varepsilon = \varepsilon |\partial \varphi_t^{-\top}(x)\xi|^2 \tau_t^\varepsilon + \varepsilon \sum_{1 \leq |\gamma| < 6} \frac{(-1)^{|\gamma|}}{\gamma !} (\partial_{\xi}^\gamma |\partial \varphi_t^{-\top}(x)\xi|^2 (\partial_{x}^\gamma \tau_t^\varepsilon)) + \varepsilon \xi_6^\varepsilon. \)

Substitution of the first term on the right hand side of (3.15) into (3.14) gives us precisely (3.13). From (5.5), (3.11), and Theorem 5.2 we see that
\[
\varepsilon \Phi_t \text{Op} [\xi_6^\varepsilon] = \varepsilon T^{(1)}_{t,\varepsilon}, \]
with \{T^{(1)}_{t,\varepsilon}\} being uniformly bounded.

Now, for all \(|\gamma| = 1\) and any \(\alpha\) one has
\[
|\partial_x^\alpha (\varepsilon \partial_{\xi}^\gamma |\partial \varphi_t^{-\top}(x)\xi|^2 (\partial_{x}^\gamma \tau_t^\varepsilon))| \leq C_{t,\alpha} \varepsilon e^{-c \varepsilon} |\xi|^{2} \leq \sqrt{\varepsilon} C_{t,\alpha}
\]
uniformly for all \(0 \leq \varepsilon < \varepsilon_0\), \(0 \leq t < T\), \(x \in \mathbb{R}^n\). Hence, the terms with \(|\gamma| = 1\) add up to a term of the form \(\sqrt{\varepsilon} T^{(2)}_{t,\varepsilon}\), where \{T^{(2)}_{t,\varepsilon}\} is uniformly bounded.

The terms with \(|\gamma| = 2\) can be estimated as follows
\[
|\partial_x^\alpha (\varepsilon \partial_{\xi}^\gamma |\partial \varphi_t^{-\top}(x)\xi|^2 (\partial_{x}^\gamma \tau_t^\varepsilon))| \leq C_{t,\alpha} \varepsilon e^{-c \varepsilon} |\xi|^{2}.
\]
So, they contribute a term \(\varepsilon T^{(3)}_{t,\varepsilon}\). And finally, all the terms with \(|\gamma| > 2\) vanish.

Thus, the evolution equation (3.9) has the form
\[
\frac{d}{dt} H_t^\varepsilon = -(u \cdot \nabla) H_t^\varepsilon + \text{AH}^\varepsilon + \varepsilon \text{D} H_t^\varepsilon + \sqrt{\varepsilon} T^{(4)}_{t,\varepsilon} + U^{(4)}_{t,\varepsilon},
\]
where \{T^{(4)}_{t,\varepsilon}\} is uniformly bounded, and \{U^{(4)}_{t,\varepsilon}\} is uniformly compact. By the Duhamel principle one gets
\[
H_t^\varepsilon = G_t^\varepsilon + \int_0^t H_{t-s}^\varepsilon T^{(4)}_{s,\varepsilon} ds + \int_0^t H_{t-s}^\varepsilon U^{(4)}_{s,\varepsilon} ds.
\]
It remains to observe that by Lemma 3.3 and Theorem 3.2 the family \{H_t^\varepsilon\} itself is uniformly bounded, and hence, the integrals define operators \(T_t^\varepsilon\) and \(U_t^\varepsilon\) with the desired properties.

This finishes the proof of Theorem 3.1.
Then by the sharp Gårding inequality, for N large enough, we get
\begin{equation}
\|H_t^\varepsilon - H_t^\varepsilon P_N\| \leq 2 \sup_{x,\xi} |\tau_t^\varepsilon(x,\xi)| < \frac{1}{2} e^{t(\mu + \delta)},
\end{equation}
for all $0 \leq \varepsilon < \varepsilon_0$. By the uniform compactness we also have
\begin{equation}
\|U_t^\varepsilon - U_t^\varepsilon P_N\| < \frac{1}{3} e^{t(\mu + \delta)}.
\end{equation}

Let us fix N for which both (4.1) and (4.2) hold, and split the semigroup G_t^ε into the sum
\begin{equation}
G_t^\varepsilon = G_{t,\varepsilon}^- + G_{t,\varepsilon}^+,
\end{equation}
where we denote
\begin{align}
G_{t,\varepsilon}^- &= H_t^\varepsilon (I - P_N) + \sqrt{\varepsilon} T_t^\varepsilon + U_t^\varepsilon (I - P_N), \\
G_{t,\varepsilon}^+ &= H_t^\varepsilon P_N + U_t^\varepsilon P_N.
\end{align}
So, $G_{t,\varepsilon}^+$ is non-zero only on the finite-dimensional subspace $\text{Im} P_N$, and in view of (4.1) and (4.2), we have the estimate $\|G_{t,\varepsilon}^-\| < \frac{5}{6} e^{t(\mu + \delta)}$ for all sufficiently small ε. This implies that the resolvent $(G_{t,\varepsilon}^- - zI)^{-1}$ exists and has the power series expansion whenever $|z| > e^{t(\mu + \delta)}$.

Lemma 4.1. The convergence
\begin{equation}
\lim_{\varepsilon \to 0} (G_{t,\varepsilon}^- - zI)^{-1} = (G_{t,0}^- - zI)^{-1}
\end{equation}
holds in the strong operator topology uniformly on compact subsets of $\{|z| > e^{t(\mu + \delta)}\}$.

Proof. Observe that $L_t^\varepsilon f \to L_0^0 f$ for all $f \in C^\infty(\mathbb{T}^n)$, and $C^\infty(\mathbb{T}^n)$ is a core of the operator L_0^0. Hence, by [11, Theorem 7.2], $G_t^\varepsilon \to G_t^0$ strongly. It is straightforward to prove that $H_t^\varepsilon \to H_t^0$ strongly, which by virtue of the decomposition (3.5) also implies that $U_t^\varepsilon \to U_t^0$. We therefore obtain convergence $G_{t,\varepsilon}^- \to G_{t,0}^-$ in the strong operator topology.

Thus, the conclusion of the lemma follows from the preceding remarks. \qed

Observe that for any $|z| > e^{t(\mu + \delta)}$ and $0 \leq \varepsilon < \varepsilon_0$ the identity
\begin{equation}
G_t^\varepsilon f = zf
\end{equation}
can be written as
\begin{equation}
f + (G_{t,\varepsilon}^- - zI)^{-1} G_{t,\varepsilon}^+ f = 0.
\end{equation}
This is equivalent to the system of equations
\[
(4.9) \quad [P_N + P_N(G_{t,\varepsilon} - zI)^{-1}G_{t,\varepsilon}^+P_N]f_N' = 0,
\]
\[
(4.10) \quad f_N'' = -(G_{t,\varepsilon} - zI)^{-1}G_{t,\varepsilon}^+P_Nf_N',
\]
where \(f_N' = P_Nf\) and \(f_N'' = (I - P_N)f\). We see that \(f_N''\) can be found from (4.10) if \(f_N'\) is known. So, the original eigenvalue problem (4.7) is equivalent to the finite-dimensional equation (4.9), which in turn has a solution at \(z = z_0\) if and only if \(z_0\) is a root of the analytic function
\[
(4.11) \quad g(z, \varepsilon) = \det \| (e_j, e_k) + (P_N(G_{t,\varepsilon} - zI)^{-1}G_{t,\varepsilon}^+P_N e_j, e_k) \|_{j,k=1}^K,
\]
where \(\{e_1, \ldots, e_K\}\) is an orthonormal basis of \(\text{Im} P_N\). By Lemma 4.1.1 we have
\[
(4.12) \quad \lim_{\varepsilon \to 0} g(z, \varepsilon) = g(z, 0)
\]
uniformly on compact sets in \(\{|z| > e^{t(\mu+\delta)}\}\).

Lemma 4.2. The resolvents \((G_t^e - zI)^{-1}\) exist and are uniformly bounded on compact subsets of \(\{|z| > e^{t(\mu+\delta)}\}\), \(0 \leq \varepsilon < \varepsilon_0\), and the limit
\[
(4.13) \quad \lim_{\varepsilon \to 0}(G_t^e - zI)^{-1} = (G_t^0 - zI)^{-1}
\]
holds in the strong operator topology.

Proof. The existence of the resolvents follows readily from the convergence (4.12).

Let us fix \(z \notin \sigma(G_t^0)\) and observe that
\[
(4.14) \quad (G_t^e - zI)^{-1} = [I + (G_{t,\varepsilon} - zI)^{-1}G_{t,\varepsilon}^+]^{-1}(G_{t,\varepsilon} - zI)^{-1}.
\]
In view of Lemma 4.1 is suffices to show the convergence
\[
(4.15) \quad \lim_{\varepsilon \to 0}[I + (G_{t,\varepsilon} - zI)^{-1}G_{t,\varepsilon}^+]^{-1} = [I + (G_{t,0} - zI)^{-1}G_{t,0}^+]^{-1}.
\]

In the direct sum \(L^2 = \text{Im} P_N \oplus \text{Ker} P_N\) we have the following block-representation
\[
I + (G_{t,\varepsilon} - zI)^{-1}G_{t,\varepsilon}^+ = \begin{bmatrix} I + P_N(G_{t,\varepsilon} - zI)^{-1}G_{t,\varepsilon}^+P_N & 0 \\ (I - P_N)(G_{t,\varepsilon} - zI)^{-1}G_{t,\varepsilon}^+P_N & I \end{bmatrix}.
\]
So,
\[
[I + (G_{t,\varepsilon} - zI)^{-1}G_{t,\varepsilon}^+]^{-1} = \begin{bmatrix} I + P_N(G_{t,\varepsilon} - zI)^{-1}G_{t,\varepsilon}^+P_N & 0 \\ F_{t,\varepsilon} & I \end{bmatrix},
\]
where
\[
F_{t,\varepsilon} = -(I - P_N)(G_{t,\varepsilon} - zI)^{-1}G_{t,\varepsilon}^+P_N[I + P_N(G_{t,\varepsilon} - zI)^{-1}G_{t,\varepsilon}^+P_N]^{-1}.
\]
Since \(g(z, \varepsilon) \) is uniformly bounded away from 0 for small \(\varepsilon \), \(F_{t, \varepsilon} \) is uniformly bounded from above, and hence, so is the resolvent (4.14). The limit (4.15) now follows from the above formulas and Lemma 4.1. □

Lemma 4.2 already proves the spectral convergence result for the semigroups. In order to prove it for the generators as stated in Theorem 2.1 we argue as follows.

Let \(\lambda \in \sigma(L^0) \) be arbitrary. Find a \(\delta > 0 \) such that \(\text{Re} \lambda > \mu + \delta \), and let \(t > 0 \) be chosen as above to satisfy (4.1) and (4.2). Observe the following identity:

\[
(L^\varepsilon - \zeta I)^{-1} = (G_t^\varepsilon - e^{\zeta t} I)^{-1} \int_0^t e^{\zeta(t-s)} G_s^\varepsilon \, ds.
\]

It follows from Lemma 4.2 that the resolvents \((L^\varepsilon - \zeta I)^{-1}\) are uniformly bounded on a circle \(\Gamma \) of small radius \(r \) centered at \(\lambda \) that does not contain other points of the spectrum of \(L^0 \). Moreover,

\[
\lim_{\varepsilon \to 0} (L^\varepsilon - \zeta I)^{-1} = (L^0 - \zeta I)^{-1}.
\]

The Riesz projection on the spectral subspace corresponding to the part of the spectrum of \(L^\varepsilon \) inside \(\Gamma \) is given by

\[
P^\varepsilon = \sum_{\lambda' \in \sigma(L^\varepsilon) \at \lambda' \neq \lambda} \frac{1}{2\pi i} \int_{\Gamma} (L^\varepsilon - \zeta I)^{-1} d\zeta.
\]

Using (4.17) the limit \(P^\varepsilon \to P^0 \) follows from the dominated convergence theorem. This proves statement (iii) of our theorem, and hence, (ii) and (i).

4.1. Discussion. As we noted before, the Navier-Stokes operator given by the right hand side of (1.4) is a particular case of the general operator \(L^\varepsilon \). Thus the results of Theorem 2.1 apply to give the convergence of the unstable eigenvalues of the Navier-Stokes operator to eigenvalues the Euler operator outside the essential spectrum of the latter. Our results therefore extend the theorem of Vishik and Friedlander [10] proving that a necessary condition for instability in the Navier-Stokes equations as \(\varepsilon \to 0 \) is an instability in the underlying Euler equations.

When the function space \(L^2(T^n) \) is replaced by the function space \(H^m(T^n) \) it is possible to obtain in place of \(\mu \) an analogous quantity \(\mu_m \) which determines the essential spectral radius of \(G_t^0 \). The role of the \(b \)-cocycle defined by (2.5) is replaced by a new so-called \(b \xi^m \)-cocycle (see [6] [7]). All the arguments in this present paper remain valid for the convergence of the spectrum of the viscous operator as \(\varepsilon \to 0 \) and
the spectrum of the inviscid operator in $H^m(\mathbb{T}^n)$ with $\text{Re}\lambda > \mu_m$. In
the particular case of the two dimensional Euler equation in $H^1(\mathbb{T}^n)$
it can be shown that $\mu_1 = 0$, hence Theorem 2.1 implies that in this
example there is precise convergence of all the points of the unstable
spectra of the Navier-Stokes operators to that of the Euler operator in
the inviscid limit.

The results of Theorem 2.1 also apply to other fluid systems such as
the equations of geophysical fluid dynamics describing rotating, strat-
ified incompressible flows where the evolution operator is an advective
operator of the type L^0. We refer to [7] for an extended list of examples.

5. Appendix

In this section we recall a few facts about global pseudo-differential
operators (PDO) on the torus defined by

\begin{equation}
\text{Op}[\sigma]f(x) = \sum_{k \in \mathbb{Z}^n} e^{ik \cdot x} \sigma(x, k) \hat{f}(k),
\end{equation}

where $\mathbb{Z}^n = \mathbb{Z}^n \setminus \{0\}$, $f(x) \in \mathbb{C}^d$ and σ is a $d \times d$-matrix valued symbol of
class S^m. We write $\sigma \in S^m$ if $\sigma \in C^\infty(\mathbb{T}^n \times \mathbb{R}^n)$, where $\mathbb{R}^n = \mathbb{R}^n \setminus \{0\}$, and

\begin{equation}
|\partial_x^\alpha \partial_\xi^\beta \sigma(x, \xi)| \leq A_{\alpha, \beta} |\xi|^{m-|\beta|},
\end{equation}

for all $|\xi| \geq 1$, $x \in \mathbb{T}^n$, and all multi-indexes α, β. Even though in the
formula (5.1) we do not need to require symbols to be defined outside
the integer lattice, we do assume that they are smooth in $\xi \in \mathbb{R}^n$.
For such symbols the standard theorems of pseudo-differential calculus
hold as in the case of \mathbb{R}^n (see [2]). Below we state the composition rule
with an estimate on the remainder term, which can be deduced from a
careful examination of the proof given in [11].

For $a, b \geq 0$, and $\{A_{\alpha, \beta}\}$ given in (5.2), let us define

\[\tilde{A}_{a, b} = \sum_{|\alpha| \leq a, |\beta| \leq b} A_{\alpha, \beta} \]

Theorem 5.1. Suppose $\sigma \in S^{m_1}$ and $\tau \in S^{m_2}$ with the corresponding
norms $\{A_{\alpha, \beta}\}$ and $\{B_{\alpha, \beta}\}$. Then

\begin{equation}
\text{Op}[\sigma] \circ \text{Op}[\tau] = \text{Op}[\lambda],
\end{equation}

with $\lambda \in S^{m_1+m_2}$. Moreover, for all $N \in \mathbb{N}$, λ has the following
representation

\begin{equation}
\lambda = \sum_{|\gamma| < N} (-1)^{|\gamma|} \gamma! (\partial_\xi^\gamma \sigma)(\partial_x^\gamma \tau) + r_N,
\end{equation}
where \(r_N \in S^{m_1 + m_2 - N} \), and for \(N > m_1 + 3 \) satisfies the estimate
\[
|\partial_x^\alpha r_N(x, \xi)| \leq c\tilde{A}_{|\alpha|, N+n} B_{2N+|\alpha|-m_1-1, 0} |\xi|^{m_1 + m_2 + 1 - N},
\]
for \(|\xi| \geq 1 \), where \(c = c(\alpha, N, n, m_1, m_2) \) is independent of the symbols.

In (5.5) the restriction \(N > m_1 + 3 \) and one extra power of \(|\xi|\) is needed in order to obtain the explicit bound in terms of the norms of \(\sigma \) and \(\tau \). We also emphasize that the estimate (5.5) uses only the \(x \)-smoothness constant of \(\tau \), and not its \(\xi \)-smoothness.

We note that in the case of the torus the \(L^2 \)-norm of a PDO is bounded by the norm of only \(x \)-derivatives.

Theorem 5.2. Suppose \(\sigma \in S^0 \) satisfies (5.2). Then \(\text{Op}[\sigma] \) is bounded on \(L^2 \) and
\[(5.6)\]
\[\| \text{Op}[\sigma] \| \leq c\tilde{A}_{n+1, 0}\]
where \(c \) is independent of the symbol.

The proof uses Minkowski’s inequality, and is similar to that of the next lemma.

Lemma 5.3. Let \(U_\iota = \text{Op}[\sigma_\iota] \), \(\iota \in I \). Suppose there exists a constant \(A > 0 \) independent of \(\iota \) such that
\[(5.7)\]
\[|\partial_x^\alpha \sigma_\iota(x, \xi)| \leq A|\xi|^{-1}, \quad |\xi| \geq 1, \quad |\alpha| \leq n + 1,\]
holds for all \(\iota \in I \). Then the family \(\{U_\iota\}_{\iota \in I} \) is uniformly compact.

Proof. Let \(f \in L^2 \), \(\|f\| = 1 \), and \(\text{supp} \hat{f} \subset \{|k| \geq N\} \). We obtain
\[
\|U_\iota f\|^2 = \sum_{q \in \mathbb{Z}^n} \left| \sum_{|k| \geq N} \hat{\sigma}_\iota(q - k, k) \hat{f}(k) \right|^2
\]
\[\lesssim \sum_{q \in \mathbb{Z}^n} \left| \sum_{k \neq q, |k| \geq N} \hat{\sigma}_\iota(q - k, k) \hat{f}(k) \right|^2 + \sum_{|k| \geq N} \left| \hat{\sigma}_\iota(0, k) \hat{f}(k) \right|^2
\]
\[\leq A^2 \sum_{q \in \mathbb{Z}^n} \left(\sum_{k \neq q, |k| \geq N} \frac{\hat{f}(k)}{|k||q - k|^{n+1}} \right)^2 + A^2 \sum_{|k| \geq N} \frac{\hat{f}(k)^2}{|k|^2}
\]
\[\leq N^{-2} A^2 \left(\sum_{q \in \mathbb{Z}^n} |q|^{-n-1} \right)^2 + N^{-2} A^2 \lesssim N^{-2} A^2.
\]
This proves the lemma. \(\square \)
Lemma 5.4. Let \(\{ U_\iota \}_{\iota \in I} \) be as in Lemma 5.3. Let \(V_\kappa = \text{Op}[\tau_\kappa] \), \(\kappa \in K \), be another family such that there is a constant \(B > 0 \) independent of \(\kappa \) such that
\[
|\partial^\alpha_x \tau_\kappa(x, \xi)| \leq B, \quad |\xi| \geq 1, \quad |\alpha| \leq n + 1
\]
holds for all \(\kappa \in K \). Then the family \(\{ U_\iota V_\kappa \}_{\iota \in I, \kappa \in K} \) is uniformly compact.

Proof. Let \(N > 0 \), \(f \in L^2 \) with \(\text{supp} \hat{f} \subset \{ |k| \geq N \} \) be fixed. Let \(|q| < N/2 \). Using the Cauchy-Schwarz inequality we estimate
\[
|\hat{\langle V_\kappa \hat{f} \rangle}(q)| = \left| \sum_{|k| \geq N} \hat{\tau}_\kappa(q - k, k) \hat{f}(k) \right| \leq B \sum_{|k| \geq N} \frac{|\hat{f}(k)|}{|q - k|^{n+1}}
\]
\[
\leq B \sum_{|p| > N/2} \frac{|\hat{f}(q - p)|}{|p|^{n+1}} \leq B \|f\| \left(\sum_{|p| > N/2} |p|^{-2(n+1)} \right)^{1/2}
\]
\[
\lesssim N^{-1} \|f\|.
\]
So, for any fixed \(M > 0 \) we have
\[
\lim_{N \to \infty} \| P_M V_\kappa (I - P_N) \| = 0
\]
uniformly in \(\kappa \in K \). Observe that
\[
\| U_\iota V_\kappa - U_\iota V_\kappa P_N \| \leq \| U_\iota (I - P_M) V_\kappa (I - P_N) \| + \| U_\iota P_M V_\kappa (I - P_N) \|.
\]

Thus, using uniform compactness of \(U_\iota \)'s and uniform boundedness of \(V_\kappa \)'s, which follows from Theorem 5.2, we can choose \(M \) large enough to make the first summand small uniformly in \(N, \iota, \kappa \). Letting \(N \to \infty \) we make the second summand small too. This finishes the proof. \(\square \)

References

[1] Carmen Chicone and Yuri Latushkin, *Evolution semigroups in dynamical systems and differential equations*, American Mathematical Society, Providence, RI, 1999.

[2] D. Dickinson, T. Gramchev, and M. Yoshino, *First order pseudodifferential operators on the torus: Normal forms, diophantine phenomena and global hypoellipticity*, Ann. Univ. Ferrara, Nuova Ser., Sez. VII 41 (1996), 51–64.

[3] Susan Friedlander and Alexander Lipton-Lifschitz, *Localized instabilities in fluids*, Handbook of mathematical fluid dynamics, Vol. II, North-Holland, Amsterdam, 2003, pp. 289–354.

[4] Jerome A. Goldstein, *Semigroups of linear operators and applications*, The Clarendon Press Oxford University Press, New York, 1985.

[5] Andrei A. Lyashenko and Susan J. Friedlander, *A sufficient condition for instability in the limit of vanishing dissipation*, J. Math. Anal. Appl. 221 (1998), no. 2, 544–558.
[6] Roman Shvydkoy, *Cocycles, Mañé sequences, and hyperbolicity*, submitted.

[7] Roman Shvydkoy, *The essential spectrum of advective equations*, to appear in Comm. Math. Phys.

[8] Roger Temam, *Navier-Stokes equations*, AMS Chelsea Publishing, Providence, RI, 2001, Theory and numerical analysis, Reprint of the 1984 edition.

[9] Misha Vishik, *Spectrum of small oscillations of an ideal fluid and Lyapunov exponents*, J. Math. Pures Appl. (9) 75 (1996), no. 6, 531–557.

[10] Misha M. Vishik and Susan Friedlander, *Dynamo theory methods for hydrodynamic stability*, J. Math. Pures Appl. (9) 72 (1993), no. 2, 145–180.

[11] M. W. Wong, *An introduction to pseudo-differential operators*, World Scientific Publishing Co. Inc., Teaneck, NJ, 1991.

[12] V. I. Yudovich, *The linearization method in hydrodynamical stability theory*, Translations of Mathematical Monographs, vol. 74, American Mathematical Society, Providence, RI, 1989, Translated from the Russian by J. R. Schulenberger.

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, (M/C 249), Chicago, IL 60607

E-mail address: susan@math.uic.edu; shvydkoy@math.uic.edu