Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector

The IceCube Collaboration

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

DISCLAIMER
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.
Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector

R. Abbasi, Y. Abdou, M. Ackermann, J. Adams, M. Ahlers, K. Andeen, J. Auffenberg, X. Bai, M. Baker, S. W. Barwick, R. Bay, L. Bazo Alba, K. Beattie, J. J. Beatty, S. Bechet, J. K. Becker, K.-H. Becker, M. L. Benabderrahmane, J. Berderram, P. Berghaus, D. Berley, E. Bernardini, D. Bertrand, D. Z. Besson, M. Bissok, E. Blaufuss, D. J. Boersma, C. Bohm, J. Bolmont, S. Böser, O. Botner, L. Bradley, D. Breder, T. Burgess, T. Castermans, D. Chirkin, B. Christy, J. Clem, S. Cohen, M. D’Agostino, M. Dillingner, C. De Clercq, L. Demirörs, O. Depaepe, F. Descamps, P. Desiati, G. de Vries-Uiterweerd, T. DeYoung, J. C. Diaz-Velez, J. Dreyer, J. P. Dunn, M. R. Duvoo, W. R. Edwards, E. Ehrlich, J. Eisch, R. W. Ellsworth, O. Engdegård, S. Euler, P. A. Eusvén, O. Fadiran, A. R. Fazely, T. Feusels, K. Filimonov, C. Finley, M. M. Foerster, B. D. Fox, A. Franckowiak, R. Franke, T. K. Gaisser, J. Gallagher, E. Garipoglu, L. Gerhardt, L. Gladstone, A. Goldschmidt, J. A. Goodman, R. Gozzini, D. Grant, T. Griesel, A. Groth, S. Grullon, R. M. Gunasingha, M. Gurtner, C. Ha, A. Hallgren, F. Halzen, K. Han, K. Hanson, Y. Hasegawa, J. Heise, K. Helbing, P. Herquet, S. Hickford, G. C. Hill, K. D. Hoffman, K. Hoshina, D. Hubert, W. Huelsnitz, J.-P. Hübl, O. Hultgren, H. Hultsman, L. I. Imlay, M. Inaba, A. Ishihara, J. Jacobsen, G. S. Japaridze, H. Johansson, J. M. Joseph, K.-H. Kampert, A. Kappes, T. Karg, A. Karle, J. L. Kelley, P. Kenny, J. Kiryluk, F. Kislats, R. Klein, S. Klepser, S. Knops, G. Kohnen, H. Kolanoski, L. Köpke, M. Kowalski, T. Kowarik, M. Krasberg, K. Kuehn, T. Kuwabara, M. Labare, S. Lefebvre, K. Laihem, H. Landsman, R. Lauer, H. Leich, D. Lemarz, A. Lucke, J. Lundberg, J. Lünnemann, J. Madsen, P. Majumdar, M. Maruyama, K. Mase, S. M. Matis, C. McParland, K. Meagher, M. Merck, P. Mészáros, E. Middell, N. Milke, H. Miyamoto, A. Mohr, T. Montaruli, R. Morse, S. M. Movit, K. Münch, R. Nahnhauer, J. W. Nam, P. Nieden, D. Nygren, S. Odrowski, A. Olivas, M. Olivo, M. Ono, S. Panknin, S. Patton, C. Pérez de los Heros, J. Petrovic, A. Piegsa, D. Pieloth, A. C. Poli, R. Porrata, N. Potthoff, P. P. Price, M. Prikockis, G. T. Przybylski, K. Rawlins, P. Redl, E. Resconi, W. Rhode, M. Ribordy, A. Rizzo, J. P. Rodrigues, P. Roth, F. Rothmaier, C. Rott, C. Roucelle, D. Rutledge, D. Ryckbosch, H.-G. Sander, S. Sarkar, K. Satalecka, S. Schlenstedt, T. Schmidt, O. Schulz, M. Schunck, D. Seckel, B. Segundo, H. S. Seo, Y. Sestayo, S. Semmarine, A. Silvestri, A. Slipak, M. Spiczak, C. Spiering, M. Stamatiou, T. Stanev, G. Stephens, T. Stezelberger, R. G. Stokstad, M. C. Stoufer, S. Stoyanov, E. A. Strahler, T. Strazhevits, K.-H. Sulanke, G. W. Sullivan, Q. Swillens, I. Taboada, O. Tarasova, A. Tepe, S. Ter-Antonyan, C. Terranova, S. Tilav, M. Thuczykont, P. A. Toale, D. Tosi, D. Turčan, N. van Eijndhoven, Vandenbroucke, A. Van Overloop, B. Voigt, C. Walck, T. Waldenmaier, M. Walter, C. Wendt, S. Westerhoff, N. Whitehorn, C. H. Wiebusch, A. Wiedemann, G. Wikström, D. R. Williams, R. Wisniewski, H. Wissing, K. Woschnagg, X. W. Xu, G. Yodh, S. Yoshida

(IceCube Collaboration)
A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the WIMP-proton cross-sections for WIMP masses in the range 250 - 5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

Non-baryonic cold dark matter in the form of weakly interacting massive particles (WIMPs) is one of the most promising solutions to the dark matter problem [1]. The minimal supersymmetric extension of the Standard Model (MSSM) provides a natural WIMP candidate in the lightest neutralino $\tilde{\chi}^0_1$ [2]. This particle is weakly interacting only and, assuming R-parity conservation, is stable and can therefore survive today as a relic from the Big Bang. A wide range of neutralino masses, $m_{\tilde{\chi}^0_1}$, from 46 GeV [3] to a few tens of TeV [4] is compatible with observations and accelerator-based measurements. Within these bounds it is possible to construct models where the neutralino provides the needed relic dark matter density.

Relic neutralinos in the galactic halo may become gravitationally trapped in the Sun and accumulate in its center, where they can annihilate each other, producing standard model particles. These may decay, creating neutrinos which can escape and reach the Earth.

The search presented here aims at detecting neutralino annihilations indirectly by observing an excess of such high energy neutrinos from the Sun. Limits on the neutrino flux from the Sun have previously been reported by BAKSAN [5], MACRO [6], Super-Kamiokande [7], and AMANDA [8].

The IceCube detector [9] records Cherenkov light in the ice from relativistic charged particles created in neutrino interactions. In 2007 the detector consisted of an array of 22 vertical strings with 60 Digital Optical Modules (DOMs) each, deployed in the clear Antarctic ice at the South Pole at depths between 1450 m and 2450 m below the ice surface. The vertical spacing between DOMs is 17 m and the horizontal distance between strings is 125 m. Each DOM consists of a pressurized glass sphere containing a 25 cm photomultiplier tube (PMT) and a digitizer board. The PMT waveforms are stored when nearest or next-to-nearest DOMs fire within 1 μs. The trigger selects time windows when eight DOMs produce waveforms within 5 μs. The reconstructed first photon arrival times are used to determine the muon direction.

The background in the search for neutrinos from the Sun comes from air showers created by cosmic ray interactions in the atmosphere. The showers cause downwards going atmospheric muon events, triggering at several hundred Hz, and atmospheric muon neutrino events, triggering at a few mHz. When the Sun is below the horizon, the neutrino signal can be distinguished from

Non-baryonic cold dark matter in the form of weakly interacting massive particles (WIMPs) is one of the most promising solutions to the dark matter problem [1]. The minimal supersymmetric extension of the Standard Model (MSSM) provides a natural WIMP candidate in the lightest neutralino $\tilde{\chi}^0_1$ [2]. This particle is weakly interacting only and, assuming R-parity conservation, is stable and can therefore survive today as a relic from the Big Bang. A wide range of neutralino masses, $m_{\tilde{\chi}^0_1}$, from 46 GeV [3] to a few tens of TeV [4] is compatible with observations and accelerator-based measurements. Within these bounds it is possible to construct models where the neutralino provides the needed relic dark matter density.

Relic neutralinos in the galactic halo may become gravitationally trapped in the Sun and accumulate in its center, where they can annihilate each other, producing standard model particles. These may decay, creating neutrinos which can escape and reach the Earth.

The search presented here aims at detecting neutralino annihilations indirectly by observing an excess of such high energy neutrinos from the Sun. Limits on the neutrino flux from the Sun have previously been reported by BAKSAN [5], MACRO [6], Super-Kamiokande [7], and AMANDA [8].

The IceCube detector [9] records Cherenkov light in the ice from relativistic charged particles created in neutrino interactions. In 2007 the detector consisted of an array of 22 vertical strings with 60 Digital Optical Modules (DOMs) each, deployed in the clear Antarctic ice at the South Pole at depths between 1450 m and 2450 m below the ice surface. The vertical spacing between DOMs is 17 m and the horizontal distance between strings is 125 m. Each DOM consists of a pressurized glass sphere containing a 25 cm photomultiplier tube (PMT) and a digitizer board. The PMT waveforms are stored when nearest or next-to-nearest DOMs fire within 1 μs. The trigger selects time windows when eight DOMs produce waveforms within 5 μs. The reconstructed first photon arrival times are used to determine the muon direction.

The background in the search for neutrinos from the Sun comes from air showers created by cosmic ray interactions in the atmosphere. The showers cause downwards going atmospheric muon events, triggering at several hundred Hz, and atmospheric muon neutrino events, triggering at a few mHz. When the Sun is below the horizon, the neutrino signal can be distinguished from
the atmospheric muon background by selecting events with upward-going reconstructed muon tracks.

The dataset used in this analysis consists of $\sim 4.8 \cdot 10^9$ triggering events taken while the Sun was below the horizon, corresponding to 104.3 days of livetime between June 1st and September 23rd, 2007. The events were processed through several filters to reduce the content of atmospheric muon events and to enrich the dataset in muon-neutrino events. The analysis was performed in a blind manner such that the azimuth of the Sun was not looked at until the selection cuts were finalized.

Events were first required to have at least ten hit DOMs, and the zenith angle of the line-fit first-guess reconstructed track was required to be larger than 70°. Selected events were subjected to Log-Likelihood (LLH) fitting of muon tracks, which uses the probability distribution of the photon arrival times. Cuts were then placed on the zenith angle of this reconstruction ($90° < \theta_{\text{LLH}} < 120°$) and the width of the likelihood optimum ($\sigma_{\text{LLH}} < 10°$), to select upwards going events of good quality. Very loose cuts were placed on several kinematic quantities to remove a small number of outlying events. The final background reduction was then done using Support Vector Machines (SVMs), multi-variate learning machines used to classify events as signal-like or background-like. Twelve event observables, that correlated modestly with one another (correlation coefficient $|c| < 0.5$), were used to train two SVMs with six input observables each. The use of two SVMs allowed minimal correlation ($|c| < 0.3$) between the six observables for each SVM. Training was done with simulated signal events, and a set of real data, not used in the analysis, was taken as background. The observables describe the quality of the track reconstructions and the geometry and the time evolution of the hit pattern, most notably through the opening angle between the line-fit and the LLH tracks, σ_{LLH}, the mean minimal distance between the LLH track and the hit DOMs, and the number of hit strings. The SVM input distributions for data and simulated backgrounds were generally in good agreement.

Three types of background were simulated: atmospheric muon events from single and coincident air showers were simulated using CORSIKA, and atmospheric ν_μ events were simulated following the Bartol spectrum. Solar-WIMP signals were simulated with WimpSim. Two neutralino annihilation channels, W^+W^- (hard channel) which produces a harder neutrino energy spectrum, and $b\bar{b}$ (soft channel) which gives rise to a softer neutrino energy spectrum, were simulated for five masses $m_{\chi_0} = 250, 500, 1000, 3000, \text{ and } 5000$ GeV. The neutrinos were propagated through the Sun and to the Earth with full flavour oscillation. Absorption in the Sun is important for neutrinos with energies above a few hundred GeV. A muon and a hadronic shower were generated in the ice near the detector. At the vertices the mean energy of simulated signal muons ranges from about 30 GeV to about 150 GeV depending on signal model, see Table I. For the hard channel $<E_\mu>$ decreases for $m_{\chi_0} > 3$ TeV owing to neutrino absorption in the Sun and secondary neutrino generation. The muon contribution from tau decay was evaluated to be insignificant and tau vertices were therefore neglected.

Propagation of muons through the ice was simulated, and the Cherenkov light propagation from the muon to the DOMs was performed, taking into account measured ice properties.

Fig. 1 shows the distributions of the product of the

FIG. 1: The product $Q_1 \times Q_2$ of the output values of the two SVMs for the experimental data, a simulated signal ($m_{\chi_0} = 1000$ GeV, hard spectrum) and the background. The background has been scaled to match the data rate and it is shown divided into three components: atmospheric neutrinos and single and coincident atmospheric muons.

FIG. 2: Cosine of the angle between the reconstructed track and the direction of the Sun, Ψ, for data (squares) with one standard deviation error bars, and the atmospheric background expectation from atmospheric muons and neutrinos (dashed line). Also shown is a simulated signal ($m_{\chi_0} = 1000$ GeV, hard spectrum) scaled to $\mu_s = 6.8$ events (see Table I).
FIG. 3: Upper limits at the 90% confidence level on the muon flux from neutralino annihilations in the Sun for the soft (bb) and hard (W+W−) annihilation channels, adjusted for systematic effects, as a function of neutralino mass. The shaded area represents MSSM models not disfavoured by direct searches [21, 22]. A muon energy threshold of 1 GeV was used when calculating the flux. Also shown are the limits from MACRO [8], Super-K [7], and AMANDA [8].

FIG. 4: Upper limits at the 90% confidence level on the spin-dependent neutralino-proton cross-section σSD for the soft (bb) and hard (W+W−) annihilation channels, adjusted for systematic effects, as a function of neutralino mass. The shaded area represents MSSM models not disfavoured by direct searches [21, 22] based on σSI. Also shown are the limits from CDMS [21], COUPP [24], KIMS [24] and Super-K [7].

two SVM output values, Q1 × Q2. As can be seen in the figure the distribution of simulated background is in good agreement with data. The final event sample was selected by requiring Q1 × Q2 > 0.1. This cut increased the signal : background ratio by a factor of 8.

Simulations predict that the final data sample of 6946 events has an atmospheric νμ event content of 56%, and that the remainder consists of mis-reconstructed atmospheric muon events. The loose cuts maintain a large effective volume, defined as the detector volume with 100% selection efficiency, since the final signal determination was done on the basis of direction.

After calculating the Sun’s position, the observed number of events as a function of the angle to the Sun, Ψ, is compared to the atmospheric background expectation in Fig. 2. The angular distribution is consistent with the expected background and no excess of events from the Sun is observed.

Using likelihood-ratio hypothesis tests the observed Ψ distribution is fitted with a sum of distributions of the simulated signal and the expected background. Here, the expected background is determined by using real data with randomized azimuth direction of the Sun. We then follow the unified Feldman-Cousins approach [18] to construct the confidence intervals on the number of signal events μs. The upper 90% confidence limit ranges between μs = 6.4 and μs = 8.5 events depending on signal case, see Table I.

The 90% confidence upper limit on Φμ as a function of mχ0 is shown in Fig. 5 compared to other limits [6, 7, 8], and MSSM model predictions [20]. In the plot, the shaded area represents neutralino models not disfavoured by the direct detection experiments CDMS [21] and XENON-10 [22], based on their limit on the spin-independent neutralino-proton cross-section.

The limits on the annihilation rate can be converted into limits on the spin-dependent, σSD, and spin-independent, σSI, neutralino-proton cross-sections, allowing a more direct comparison with the results of di-
TABLE I: Upper limits on the number of signal events μ_s, the conversion rate $\Gamma_{\nu_\mu \rightarrow \mu}$, the neutralino annihilation rate in the Sun Γ_Λ, the muon flux Φ_μ, and the neutralino-proton scattering cross-sections (spin-independent, σ_{SI}, and spin-dependent, σ_{SD}), at the 90% confidence level including systematic errors. The sensitivity Φ_μ (see text) is shown for comparison. Also shown is the median angular error Θ, the mean muon energy $<E_\mu>$, the effective volume V_{eff}, and the μ_s effective area A_{eff}.

m_{χ}^0 (GeV)	Channel	μ_s (km$^{-3}$s$^{-1}$)	$\Gamma_{\nu_\mu \rightarrow \mu}$ (s$^{-1}$)	Γ_Λ (km$^{-2}$y$^{-1}$)	Φ_μ (km$^{-2}$y$^{-1}$)	σ_{SI} (cm2)	σ_{SD} (cm2)	Θ (deg)	$<E_\mu>$ (GeV)	V_{eff} (km3)	A_{eff} (m2)										
250	Hard	7.5	3.2	104	6.0	1024	8.8	10$^{-9}$	1.6	10$^{-9}$	3.7	10$^{-13}$	2.8	10$^{-12}$	3.2	10$^{-9}$	68.7	8.1	10$^{-3}$	1.3	10$^{-1}$
	Soft	8.5	2.8	104	1.4	1024	3.5	10$^{-9}$	5.7	10$^{-9}$	2.5	10$^{-13}$	2.6	10$^{-12}$	3.5	10$^{-9}$	28.8	1.1	10$^{-3}$	6.7	10$^{-6}$
500	Hard	6.8	1.0	105	1.6	1024	4.2	10$^{-2}$	7.9	10$^{-2}$	2.9	10$^{-13}$	3.0	10$^{-10}$	2.9	10$^{-9}$	111	2.4	10$^{-2}$	4.9	10$^{-4}$
	Soft	7.5	7.8	104	3.0	1024	1.3	10$^{-9}$	2.4	10$^{-9}$	1.8	10$^{-13}$	2.2	10$^{-12}$	3.2	10$^{-9}$	40.8	3.4	10$^{-2}$	2.6	10$^{-1}$
1000	Soft	6.8	6.7	104	1.2	1024	3.6	10$^{-2}$	6.3	10$^{-2}$	7.2	10$^{-13}$	8.7	10$^{-10}$	2.9	10$^{-9}$	146	3.5	10$^{-2}$	7.6	10$^{-4}$
	Hard	7.8	3.5	104	1.1	1024	7.9	10$^{-9}$	1.3	10$^{-9}$	5.3	10$^{-13}$	7.2	10$^{-10}$	3.1	10$^{-9}$	55.8	7.7	10$^{-3}$	6.9	10$^{-7}$
3000	Soft	6.4	6.1	105	1.5	1024	3.3	10$^{-2}$	6.1	10$^{-2}$	7.4	10$^{-12}$	9.9	10$^{-10}$	2.9	10$^{-9}$	149	3.7	10$^{-2}$	7.3	10$^{-4}$
	Hard	7.5	2.8	104	8.3	1024	6.7	10$^{-9}$	1.1	10$^{-9}$	1.1	10$^{-10}$	1.5	10$^{-8}$	3.1	10$^{-9}$	59.9	9.3	10$^{-8}$	8.6	10$^{-10}$
5000	Soft	6.8	7.0	103	2.0	1024	3.6	10$^{-9}$	6.6	10$^{-2}$	2.6	10$^{-13}$	3.6	10$^{-10}$	2.9	10$^{-9}$	142	3.4	10$^{-2}$	6.2	10$^{-4}$

In conclusion, we have presented the most stringent limits to date on neutralino annihilations in the Sun, improving on the 2001 AMANDA limits by at least a factor of six for hard channels. We also present the most stringent limits on the spin-dependent WIMP-proton cross-section for neutralino masses above 250 GeV. The full IceCube detector with the DeepCore extension is expected to test viable MSSM models down to 50 GeV.

We acknowledge support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, U. of Wisconsin Alumni Research Foundation, U.S. Department of Energy, NERSC, the LONI grid; Swedish Research Council, K. & A. Wallenberg Foundation, Sweden; German Ministry for Education and Research, Deutsche Forschungsgemeinschaft; Fund for Scientific Research, IWT-Flanders, BELSPO, Belgium; the Netherlands Organisation for Scientific Research; M. Riboldy is supported by SNF (Switzerland); A. Kappes and A. Groß are supported by the EU Marie Curie OIF Program. We thank J. Edsjö for DarkSUSY support.

[1] V. Rubin and W. K. Ford, Astrophys. J. 159, 379 (1970).
[2] M. Drees and M. M. Nojiri, Phys. Rev. D 47, 376 (1993).
[3] C. Amsler et al., Phys. Lett. B 667, 1 (2008).
[4] R. C. Gilmore, Phys. Rev. D 76, 043520 (2007).
[5] M. M. Boliev et al., Nucl. Phys. Proc. Suppl. 48, 83 (1996).
[6] M. Ambrosio et al., Phys. Rev. D 60, 082002 (1999).
[7] S. Desai et al., Phys. Rev. D 70, 083523 (2004).
[8] M. Ackermann et al., Astropart. Phys. 24, 459 (2006).
[9] A. Achterberg et al., Astropart. Phys. 26, 155 (2006).
[10] J. Ahrens et al., Nucl. Instrum. Meth. A 524, 169 (2004).
[11] S. S. Kerthi et al., Nuclear Comp. 13, 637 (2001).
[12] D. Heck et al., FZKA Report 6019 (1998).
[13] G. D. Barr et al., Phys. Rev. D 70, 023006 (2004).
[14] M. Blennow, J. Edsjo, T. Ohlsson, JCAP 01, 021 (2008).
[15] D. Chirkin and W. Rhode, hep-ph/0407075 (2004).
[16] J. Lundberg et al., Nucl. Instr. Meth. A 581, 619 (2007).
[17] M. Ackermann et al., J. Geophys. Res. 111, 02201 (2006).
[18] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
[19] G. Ingelman and M. Thunman, Phys. Rev. D 54, 4385 (1996).
[20] P. Gondolo et al., JCAP 0407, 008 (2004).
[21] Z. Ahmed et al., Phys. Rev. Lett. 102, 011301 (2009).
[22] J. Angle et al., Phys. Rev. Lett. 100, 021303 (2008).
[23] G. Wikström and J. Edsjo, JCAP 04, 009 (2009).
[24] H. S. Lee et al., Phys. Rev. Lett. 99, 091301 (2007).
[25] E. Behnke et al., Science 319, 993 (2008).
[26] E. Resconi for the IceCube coll., Nucl. Instrum. Meth. A 602, 7 (2009).