SUPPLEMENTARY MATERIAL

New Bioactive labdane diterpenoids from Marrubium aschersonii
Saoussen Hammamia, Zhenzhen Lib, Mingjie Huangb, Ridha El Moknic, Hatem Dhaouadia, and Sheng Yinb*

aResearch Unit Applied Chemistry and Environment 13ES63, Monastir University, Faculty of Sciences of Monastir, 5000 Monastir, Tunisia

bSchool of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China

cLaboratory of Botany and plant Ecology, Faculty of Sciences, University of Bizerta, Jarzouna, 7021, Bizerta, Tunisia

*Corresponding author. Email: yinsh2@mail.sysu.edu.cn

Abstract: A phytochemical investigation of the ethanol extract of Marrubium aschersonii Magnus (Lamiaceae) collected from Tunisia led to the isolation and identification of two new labdane diterpenoids, marrubaschs A (1) and B (2), along with two known compounds (3 and 4). Their structures were elucidated by spectral methods including HRESIMS and NMR techniques. All compounds were evaluated for their inhibitory effects on the nitric oxide (NO) production induced by lipopolysaccharide (LPS) in RAW 264.7 macrophage cells. Compound 2 exhibited weak inhibition of NO production with the IC\textsubscript{50} value of 35 ± 1.0 \textmu M.

Key words: Marrubium aschersonii; labdane diterpenoids; anti-inflammatory activities
CONTENTS:

S1. 1H NMR (400 MHz, CD$_3$OD) spectrum of marrubasch A (1)
S2. 13C NMR (100 MHz, CD$_3$OD) spectrum of marrubasch A (1)
S3. 1H–1H COSY spectrum of marrubasch A (1) in CD$_3$OD
S4. HSQC spectrum of marrubasch A (1) in CD$_3$OD
S5. HMBC spectrum of marrubasch A (1) in CD$_3$OD
S6. NOESY spectrum of marrubasch A (1) in CD$_3$OD
S7. Structure of leoleorin A.
S8. HRESIMS spectrum of marrubasch A (1)
S9. Selected 1H–1H COSY (→) and HMBC (←) correlations of marrubasch A (1)
S10. Selected NOESY (→→→) correlations of marrubasch A (1)
S11. 1H NMR (400 MHz, CDCl$_3$) spectrum of marrubasch B (2)
S12. 13C NMR (100 MHz, CDCl$_3$) spectrum of marrubasch B (2)
S13. 1H–1H COSY spectrum of marrubasch B (2) in CDCl$_3$
S14. HSQC spectrum of marrubasch B (2) in CDCl$_3$
S15. HMBC spectrum of marrubasch B (2) in CDCl$_3$
S16. NOESY spectrum of marrubasch B (2) in CDCl$_3$
S17. HRESIMS spectrum of marrubasch B (2)
S1. 1H NMR (400 MHz, CD$_3$OD) spectrum of marrubasch A (I)

S2. 13C NMR (100 MHz, CD$_3$OD) spectrum of marrubasch A (I)
S3. 1H-1H COSY spectrum of marrubasch A (1) in CD$_3$OD

S4. HSQC spectrum of marrubasch A (1) in CD$_3$OD
S5. HMBC spectrum of marrubasch A (I) in CD$_3$OD

S6. NOESY spectrum of marrubasch A (I) in CD$_3$OD
S7. Structure of leoleorin A.

S8. HRESIMS spectrum of marrubasch A (1)

ymaz-22 #374 RT: 2.99 AV: 1 NL: 7.70E6
T: FTMS + p ESI Full ms [200.00-600.00]
S9. Selected $^1\text{H} - ^1\text{H}$ COSY (→) and HMBC (→) correlations of marrubasch A (1)

S10. Selected NOESY (↔) correlations of marrubasch A (1)
S11. 1H NMR (400 MHz, CDCl$_3$) spectrum of marrubasch B (2)

S12. 13C NMR (100 MHz, CDCl$_3$) spectrum of marrubasch B (2)
S13. 1H-1H COSY spectrum of marrubasch B (2) in CDCl$_3$

S14. HSQC spectrum of marrubasch B (2) in CDCl$_3$
S15. HMBC spectrum of marrubasch B (2) in CDCl₃

S16. NOESY spectrum of marrubasch B (2) in CDCl₃
S17. HRESIMS spectrum of marrubasch B (2)

ymaz-16 #362 RT: 2.89 AV: 1 NL: 1.41E7
T: FTMS + p ESI Full ms [200.00-600.00]

RT: 2.89 AV: 1 NL: 1.41E7
T: FTMS + p ESI Full ms [200.00-600.00]