Serosurvey in two rural areas evidences recent and previously undetected WNV and SLEV circulation in Costa Rica

Previously undetected WNV and SLEV circulation in Costa Rica

Marta Piche-Ovares¹⁻², Mario Romero-Vega³, Diana Vargas-González², Daniel Barrantes-Murillo³, Claudio Soto-Garita¹, Jennifer Francisco-Llamas⁴, Alejandro Alfaro-Alarcón³, Carlos Jiménez² & Eugenia Corrales-Aguilar¹.

¹Virology-CIET (Research Center for Tropical Disease), Universidad de Costa Rica, San José, Costa Rica.
²PIET (Tropical Disease Research Program), Department of Virology, School of Veterinary Medicine, Universidad Nacional, Heredia, Costa Rica.
³Department of Pathology, School of Veterinary Medicine, Universidad Nacional, Heredia, Costa Rica.
⁴Laboratorio de Investigación en Vectores-CIET (Research Center for Tropical Disease), Universidad de Costa Rica, San José, Costa Rica.
⁵School of Nursing and Health Studies, University of Miami

*Corresponding author
E-mail: eugenia.corrales@ucr.ac.cr (ECA)
Abstract

West Nile virus (WNV) and Saint Louis encephalitis virus (SLEV) share similar virus transmission cycles that involve birds as amplifiers and mosquitoes as vectors. Mammals, including humans, are dead-end-hosts that may be asymptomatic or develop more severe symptoms. Costa Rica is a hyperendemic country for several flaviviruses such as Dengue (DENV) and Zika (ZIKV) and previous research showed limited and restricted SLEV and WNV circulation in horses, sloths, and monkeys. Nevertheless, actual seroprevalence and high transmission areas are not yet identified. To determine putative WNV and SLEV circulation, we sampled peri-domestic and domestic animals, humans, wild birds, and mosquitoes in rural households located in two DENV and ZIKV hyperendemic regions during the rainy and dry seasons of 2017-2018 and conducted PRNT assays for serology and RT-PCR for virus detection. At Cuajiniquil, serological evidence of WNV and SLEV was found in equines, humans, chickens, and wild birds. Also, 5 seroconversion events were recorded for WNV (2 equine), SLEV (1 human), and DENV-1 (2 humans). At Talamanca, a lack of WNV circulation was found, but evidence of SLEV circulation was recorded in equines, humans, and wild birds. No evidence of active viral infection was found in any mosquitoes or wild bird samples. This seroconversion evidence supports the active and recent circulation of SLEV and WNV in these two regions. This study provides clear-cut evidence of WNV and SLEV circulation and should be considered by the health and epidemiology authorities for future prevention and differential diagnostics.
Author summary

Mosquitoes serve as vectors for the transmission of infectious diseases such as WNV and SLEV. The natural virus cycle of these viruses is maintained between birds and mosquitoes. Yet, humans and horses are dead end-hosts and can develop severe diseases such as encephalitis. We aimed to elucidate if WNV or SLEV were silently circulating in two regions of the country that historically report numerous cases of other arboviruses such as Dengue and Zika. Eight households were sampled at each region twice during the rainy (high number of arbovirus related infections are reported) and dry season (lower number of infections reported) to record seroconversion events. Serum samples from different species were analyzed using serology and virus presence was detected through molecular methods for wild bird and mosquito pools samples. We found serological evidence of WNV and SLEV infection in horses, humans, wild birds, and chicken samples, but did not detect actual virus in any tissue or mosquito sample. Taken together, our result shows the active but silent circulation of those viruses at both sampling sites. Action to include these arboviruses into diagnostics and public health measures must be taken.
Introduction

Flavivirus genus is composed of single-stranded RNA viruses, which include Dengue virus (DENV), Saint Louis encephalitis virus (SLEV), Zika virus (ZIKV), West Nile virus (WNV), and Yellow Fever virus (YFV) [1, 2]. All of them are arboviruses that cause mosquito-borne diseases throughout the Americas and are responsible for thousands of deaths and hospitalizations every year [3, 4]. Many factors are recognized to contribute to the wide dissemination of those viruses, for instance poorly planned urbanization, geographical expansion of vectors, changing environmental conditions and deforestation [5-7].

The biological cycles of these viruses include a wide variety of susceptible species such as humans, rodents, horses, and non-human primates [8]. The clinical presentation of acute flavivirus infections in humans and animals ranges from mild illness (e.g., asymptomatic infection (50%-80%)) or self-limiting febrile episodes to severe and life-threatening diseases (hemorrhagic fever, shock syndrome, encephalitis, congenital defects) [9-11].

WNV and SLEV belong to the Japanese encephalitis sero-complex [12]. They are neurotropic flaviviruses that cause encephalitis, seizure disorders, and paralysis in humans and equines [10, 13-15]. These viruses are maintained in sylvatic cycles that use birds as amplifiers and mosquitoes of the *Culex* L. complex as vectors [16, 17]. Many species have been associated as primary vectors or moderate vectors in the United States (*Culex tarsalis, Cx. pipiens, Cx restuans, Cx. quinquefasciatus, Cx. stigmatosoma, and Cx. nigripalpus*) [16, 18, 19]. Also, migratory birds can serve
as dispersal vectors when they move seasonally and stop at different sites during their journey, establishing possible dispersal events [20]. Mammals, such as equines and humans, serve as dead-end hosts because of the low-level of viremia produced after infection [16, 21]. Severe cases can develop with high fever, neurological dysfunction, altered consciousness, encephalitis, or meningoencephalitis [14, 22].

WNV was introduced to North America from Israel in 1999, causing a widespread outbreak in equines, humans, and wild birds [23]. Following the first report of the virus in the USA, sporadic cases in humans were also reported through the continent (Canada, the Caribbean, and South America) [19, 24]. In Central America, massive avian deaths have not been yet reported, however serological evidence of the circulation of the virus in domestic and wildlife animals has been detected in El Salvador and Guatemala [25-27]. In North America, SLEV has been reported since 1930 [28]. More recently, in 2005 in Argentina, 9 deaths were associated with the virus [29]. In addition, Brazil and Argentina have reported sporadic cases of the disease in people that present mild symptoms like DENV disease, causing a misdiagnosis of the causal agent [30-32].

In Costa Rica, serological evidence of the circulation of WNV was found in equines from Guanacaste with a prevalence between 18-28% in 2004 [33]. In 2009, the first clinical case of WNV was reported in a horse also from Guanacaste, and since then annually new equine cases are reported, especially in the lowlands of the country at the rainy season [34, 35]. However, no bird mortality or human cases associate with the virus are so far recorded. Also, the country lacks information regarding which mosquitoes could be the possible vectors of WNV and SLEV.
However, some potential vectors are found present in the country as Cx. quinquefasciatus, Cx. thriambus, Cx. nigripalpus [36]. For SLEV, the only serological study was done by Medlin et al. 2016 in sloths (Choloepus hoffmanni and Bradypus variegatus) from the Caribbean region and antibodies against SLEV and WNV were found in those samples [37].

Costa Rica is endemic for other Flavivirus such as DENV and ZIKV [38, 39]. Molecular epidemiology shows the circulation of DENV 1-3 in humans and molecular and serological evidence of DENV-4 circulation was found in wild animal samples [40, 41]. The co-circulation of different Flavivirus adds complexity in the diagnosis because of significant cross-reactivity and similarities in the undifferentiated fever-like initial symptoms. [42]. The National Health Service of Costa Rica does not consider SLEV and WNV in their routinely diagnostic panel of arbovirus disease, therefore, their epidemiology, and/or local presence in the human population is still poorly studied. The continuous monitoring in endemic areas such as our country but also other tropical areas is crucial to evaluate the risk of transmission to humans and animals [42, 43]. An early detection and timely reporting are fundamental to evaluate the risk of transmission. Surveillance based on a regular sampling of equines, chickens as sentinels and domestic birds has demonstrated a good sensitivity in different countries [42, 43].

The present study aims to evidence the silent circulation of WNV and SLEV in two rural areas of Costa Rica that are hyperendemic for other Flaviviruses such as DENV and ZIKV. Humans, wild birds, equines, and mosquito samples were analyzed to better understand if the viral cycle was present in those areas. We sampled during the rainy and dry seasons of 2017-2018 and conducted PRNT
assays for serology and RT-PCR for virus detection. Here we report several seroconversion events in different species, but no evidence of active viral infection was found in any mosquitoes or bird samples. This seroconversion evidence supports the active and recent though silent circulation of SLEV and WNV in these two regions. This information must be taken in account by the health and epidemiology authorities to act for future prevention and differential diagnostics.

Methods

Study area

The study was conducted in two regions of Costa Rica where previous flaviviruses infections (DENV, ZIKV and WNV) were officially recorded by Ministerio de Salud de Costa Rica (National Health Service) and the Servicio de Salud Animal (Animal Health Service) [34, 44, 45]. The sampling process was performed during the rainy and dry seasons of 2017 and 2018. The first site was Cuajiniquil, located at the Pacific coast (10°15´06" N, 85° 41´07" O) in the province of Guanacaste in the northwest part of Costa Rica (Fig 1, A). The second site was Talamanca (9°37´14.99" N, 82 50´39.98" O) located at the South Caribbean (Fig 2, A).

Fig 1: Neutralizing antibodies detected against different Flaviviruses in Cuajiniquil, Costa Rica during the rainy and dry season. A: Geographic distribution of households positive for antibodies of WNV (blue dots) and SLEV (red dots). At each household at least one individual was positive against WNV B: Number of individuals (chickens, wild birds, horses, and humans) positive against different Flaviviruses during the rainy and dry season.
Fig 2: Neutralizing antibodies detected against different Flaviviruses in the Caribbean Coast of Costa Rica during the rainy and dry seasons. A: Geographic distribution of households positive for antibodies of SLEV. At each household at least one individual was positive against SLEV. No evidence of antibodies against WNV was found.

At each site, 8 households were chosen for sampling and serum samples from equines, humans, chickens, and wild birds were taken. At the same time, wild birds were captured using mist-nets and were identify using morphological examination by referring to published identification keys. Then a complete post-mortem analysis was performed. The criteria employed to define the sites for the survey were: (i) presence of at least an unvaccinated for WNV equine, (ii) a forest patch near the household, and (iii) that the household inhabitants were willing to participate and signed the informed consent. Two sampling processes were done at each site: during the rainy and the dry season. The objective was to record putative seroconversion events.

Sampling and classification of wild birds and mosquitoes, sampling of equines and humans

Birds were captured using mist-nets positioned at two sites (forest and peridomiciliary) in each household. At least, five birds per household were taxonomically identified (S1 text) and then euthanized by an intramuscular anesthesia overdose (ketamine 10 mg/kg + xylazine 1 mg/kg) [46, 47]. Blood sample was taken and stored at 4 °C until arrived at the laboratory where it was stored at -70 °C for later analysis. Then complete post-mortem analysis and histopathological
analysis were performed. Additionally, samples of most organs were aseptically collected (heart, lung, liver, spleen, intestine, kidney, brain, reproductive tract, eye, and proventriculus) and conserved in ARN later® (Thermo Scientific, cat AM0721). Also, a pool of organs was collected in ARN later® for Rt-PCR positivity initial screening.

Field sampling of mosquitoes was done in parallel. Encephalitis vector survey (EVS) traps (BioQuip Products Inc., California, USA) baited with CO₂ were placed during 12-16 hours in four different locations in each household: inside, peridomiciliary, barn, and forest. Mosquitoes were collected the next morning and transferred to the field lab on ice. A taxonomical identification to species level was done using published keys and compiled in S2 table [36, 48]. Mosquitoes were grouped according to the collection site and species (maximum 20 species per pool). Gravid females were analyzed individually to determine their blood preference.

Blood samples from equines were taken by puncture of the jugular vein, only animals older than 6 months were sampled. Gender, age, breed, and travel history were recorded. Chickens (Gallus gallus) samples were taken from the wing vein. The human sample was taken from peripheral venipuncture. Whole blood was centrifuged, and serum was stored -20 °C for serological analysis.

Serological Screening by plaque reduction neutralization tests (PRNT)

Flavivirus exposure was evaluated in sera obtained from horses, humans, domestic chickens, and wild birds by plaque reduction neutralization test (PRNT),
considered the gold standard for determining Flavivirus antibodies [49, 50]. For PRNT analysis, different flavivirus-envelope-protein-expressing yellow fever chimeric viruses donated by the CDC were used, except for ZIKV, in which an ATCC reference strain was used [51-53]. Serum samples were heat-inactivated at 56°C for 30 minutes. Then, they were used for an initial screening against WNV and SLEV using a 1:10 dilution [50, 54]. Briefly, samples were diluted 1:5 in MEM with 2% of FBS and mixed with an equal volume of each virus to an estimated end result of 10 UFP/well. The virus-antibodies mix was incubated 1 hour at 37°C in a 5% CO₂ atmosphere, then a 100 µl volume was inoculated into a VERO (ATCC® CCL-81™) cells monolayer previously seeded in 48 well-plate and incubated for an hour. Then it was removed and 500 µl of MEM with 2% of FBS and 1% of carboxymethylcellulose were added. After 5 days of incubation, plates were fixed with formalin (3.7%) during an hour and stained with crystal violet (1%). Sera that resulted in a 90% of neutralization relative to the average of the viral control (no sera), were considered WNV or SLEV reactive. Due to smaller volumes of sera, wild bird and chicken samples were tested in a 96 well-plate format using a similar protocol and fixated at 3 days [54].

Samples from humans and equines that were considered reactive (90% reduction of foci) were tested in a serial two-fold dilution that ranged from 1:20-1:1280 against WNV (YFV 17D/WNV Flamingo 383-99), DENV 1-4 (YFV 17D/DENV-1 PUO 359, YFV 17D/DENV-2 218, YFV 17D/DENV-3 PaH881/88, YFV 17D/DENV-4 1228), ZIKV (ATCC® VR-748), SLEV (YFV 17D/SLEV CorAn 9124), and YF (YFV 17D) in similar conditions as the previously described protocol. Wild
birds and chicken serum samples were only tested against WNV and SLEV because of the limited sera volume. A plaque reduction of ≥90% was considered positive, with the titer measurement as the highest serum dilution showing ≥90% of plaque relative to the average of the viral control. A 4-fold difference in titer between the different flaviviruses was required for unequivocally classifying that serum sample as specifically neutralizing that particular flavivirus. In case that a 4-fold dilution difference was not reached, the serum was classified as flavivirus positive.

RT-PCR in wild birds and mosquito samples

Viral ARN was extracted from avian tissue (pool of organs) and mosquito pools using the TRizol ® (Ambion, 15596018) method according to the manufacturer’s instructions. Reverse transcription was done using Revert Aid First Strand cDNA Synthesis Kit (Thermo Scientific cat K1622) with random hexamers primers. A negative (water) and positive control (GAPDH) were included, total ARN of the sample were measure using a NanoDrop™ 2000 (Thermo Scientific, ND-2000).

Firstly, a semi-nested PCR was performed using Flavivirus genus specific primers localized in the NS5 following this protocol previously described [55]. A positive control (YFV 17D) and negative control (water) were included. PCR products were analyzed and quantified using QIAxcel DNA screening gel (Qiagen, 929554), a 220 pb band was expected [55]. Positive samples from the nested PCR were purified using ExoSAP-IT™ (Applied Biosystems, 78201) following manufacturer instructions. Then, a Sanger sequencing of both strands was done by Macrogen Inc. (Seoul, South Korea). The resulting sequence was compared with entries in
GenBank database using the nucleotide basic alignment search tool (BLASTn) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and MEGA X software [56].

Mosquito blood meal preferences

To determine the bloodmeal preference, gravid females were taxonomically identified and processed individually. Mosquitoes were macerated in a 1.5 mL tube and DNA-RNA was extracted using NucleoSpin® TriPrep (740966.50, Macherey-Nagel). ARN that was obtained from these samples was analyzed against flaviviruses as previously described [55].

Bloodmeal preference was determined using a set of primers for cytochrome oxidase subunit I (COI), following the protocol of Townzen et al. 2008 [57]. PCR products were purified using ExoSAP-IT™ (Applied Biosystems, 78201) and subjected to nucleotide sequencing with forward and reverse primers at Macrogen Inc (Seoul, South Korea). The sequence was compared with entries in GenBank database using the nucleotide basic alignment search tool (BLASTn) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and MEGA X software [56].

Statistical analysis

Statistical analysis was conducted using R v3.6.2. A chi-square test was used to assess the correlation between gender and WNV and SLEV seropositivity. A Spearman rank correlation coefficient (Rs) was used to correlate WNV seropositivity and age and Flavivirus positivity α= 0.005.
Ethical statement

The study and associated protocols were designed based on national ethical legislation and approved by the Institutional Committee of Care and Use of Animals of the University of Costa Rica (CICUA-042-17), Committee of Biodiversity of the University of Costa Rica (VI-2994-2017), National System of Conservation Areas (SINAC): Tempisque Conservation Area (Oficio-ACT-PIM-070-17), La Amistad-Caribe Conservation Area (M-PC-SINAC-PNI-ACLAC-047-2018). The survey did not involve endangered or protected species.

After signing of an informed consent previously approved by the University of Costa Rica’s Ethic Scientific Committee (CEC or IRB in English) (CEC-VI-4050-2017), a blood sample was taken from humans for serology analysis.

Results

Several flaviviruses co-circulate in each sampled region, WNV and SLEV as silent ones.

Eight households were sampled at each arbovirus-hyperendemic region during the rainy and dry seasons of 2017-2018. At each household, serum samples from equines, humans, chickens, and wild birds were taken. At the same time, wild birds were captured using mist-nets and a complete post-mortem analysis was performed.

Serum samples from different species were analyzed using serology by PRNT ≥90% to record seroconversion events. A total of 106 equines, 34 humans, 39 chickens, and 140 wild birds were tested. In Cuajiniquil, Guanacaste (Fig 1, B)
during the rainy season, 36 (41.86%) of the equines, 1 (6.25%) human, and 1 (3.45%) chicken were indistinctively positive for neutralizing antibodies against WNV (4-fold dilution of difference) (Table 1 and 2). Also, serological evidence for SLEV was found in 11 (12.79%) equines, 1 (7.69%) wild bird and 1 (3.45%) chicken. This analysis also showed that 5 (31.25%) of the human samples has antibodies against DENV-1 (Table 2). At a later time point and during the dry season, samples were taken from the same individuum (except for wild birds and chickens) to record putative seroconversion events. Five seroconversions were detected: 2 for WNV in a horse, 1 for SLEV and 2 for DENV-1 in humans. Also, 1 (2.86%) wild bird found positive had neutralizing antibodies against WNV (Fig 1, B). No serological evidence of DENV-2,3,4, ZIKV, and YF was found. At this site 15 horses (17.44%), 4 humans (33.33%), 37 chickens (97.43%) and 86 (98.83%) wild birds were negative for all the analyzed viruses. The wild bird species that presented neutralizing antibodies against WNV was identified as *Campylorhynchus rufinucha*, a resident very common species in that area [46].

Table 1: Serological characterization of the samples. List of individuals with neutralization antibodies against WNV and SLEV in Cuajiniquil. Two seroconversion events for WNV were recorded.

Species	Animal identification	Age (years)	PRNT titer	
			WNV	SLEV
Equines	ESCA2	7	1:320	1:1280
	ESCA3	8	1:640	1:80
	ESCA4	6	1:640	1:80
	ESCA5*	6	>1:1280	<1:40
	ESCA6	3	1:1280	1:40
	ESCA7	6	1:20	1:160
	ESCA8	2	>1:1280	1:40
---	---	---	---	
ESCA9	5	1:160	1:640	
ESCA12	5	1:640	1:40	
ESCB2	3	1:160	1:20	
ESCB3	5	1:40	1:640	
ESCB4	3	1:160	1:40	
ESCB7	2	1:160	1:20	
ESCB8	5	1:640	1:40	
ESCC2	4	1:640	1:20	
ESCD1	4	1:1280	1:80	
ESCD2	3	1:160	1:20	
ESCD4	10	1:40	>1:1280	
ESCD5	10	>1:1280	<1:40	
ESCD8	8	1:640	1:20	
ESCD9	10	1:160	<1:40	
ESCD10	2	>1:1280	<1:40	
ESCD11	12	1:1280	<1:40	
ESCD15	22	1:320	1:80	
ESCD17	3	1:640	<1:40	
ESCD19	2	1:640	<1:40	
ESCD24	1,5	1:160	<1:40	
ESCD26	-	1:1280	<1:40	
ESCE1	3	1:320	1:20	
ESCF1	8	>1:1280	1:320	
ESCF3	12	1:640	1:160	
ESCF6	10	1:80	1:320	
ESCF9	10	1:160	1:40	
ESCF10	8	1:160	<1:40	
ESCF13	5	1:640	1:40	
ESCF14	12	1:640	1:160	
ESCF15	4	1:320	1:20	
ESCF16	2	1:40	1:640	
ESCF18	10	1:320	1:20	
ESCF20	6	1:160	<1:40	
ESCF21	8	1:320	1:40	
ESCF24	5	1:40	1:160	
ESCF25	8	1:20	1:320	
ESCF27	5	1:640	1:5120	
ESCF28	1	1:320	1:20	
ESCG2	10	1:40	1:640	
ESCG6	17	1:320	1:40	
ESCG7a	16	1:640	1:80	
Table 2: Neutralization titers in humans against different flaviviruses in the two regions. In Cuajiniquil antibodies against WNV, SLEV and DENV-1 and two seroconversions events, one for SLEV and one for DENV-1, were recorded.

Human identification	DENV-1	DENV-2	DENV-3	DENV-4	WNV	YFV	SLEV	ZIKV
Cuajiniquil								
HSCA1^a	1:320	1:160	1:40	<1:20	<1:20	<1:20	<1:20	<1:20
HSCA2	1:80	1:80	<1:20	<1:20	>1:640	<1:20	1:20	<1:20
HSCA3	>1:640	1:320	1:40	<1:20	<1:20	<1:20	<1:20	1:40
HSCC1	1:640	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20
HSCD2	1:640	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20
HSCD3	1:160	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20
HSCF2	1:160	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20
HSCH1^a	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20	1:320	<1:20
Talamanca								
HTAA2	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20
HTAD1	1:640	1:640	<1:20	<1:20	<1:20	<1:20	1:160	<1:20
HTAD2	1:160	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20
HTAE1	1:40	1:80	1:40	1:20	<1:20	<1:20	1:640	<1:20
HTAF1	1:160	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20
HTAF2	1:640	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20
HTAG1	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20	1:160	<1:20
HTAH1^a	>1:640	1:40	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20
HTAH2	1:640	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20	<1:20
HTAH3	1:320	1:160	1:20	<1:20	<1:20	<1:40	<1:20	<1:20

^a Seroconversion events, Bold: Positive, Ad: Adult.
wild birds (Table 2 and 3). Also, five (29.41%) human samples were positive against DENV-1 and two (11.76%) have neutralizing antibodies against DENV-1 and DENV-2 (Table 2). At this site 8 equines (40.00%), 7 humans (41.17%) and 86 wild birds (97.72%) were negative for all flavivirus and no serological evidence for DENV-3, DENV-4, ZIKV, and YF was found. Wild birds with SLEV-neutralizing antibodies were *Empidonax virescens*, a migratory species that migrate from Canada and *Myiozetetes similis*, a resident species of Costa Rica [46].

Table 3: Serological characterization of the samples. List of individuals with neutralization antibodies against SLEV in Talamanca. No evidence of WNV were recorded.

Species	Animal identification	Age (years)	WNV	SLEV
Equines				
ETAC1	12	<1:20	1:640	
ETAC2	9	1:20	1:160	
ETAD1	20	1:40	1:320	
ETAE1	10	1:40	1:160	
ETAE2	8	1:20	1:320	
ETAE3	13	1:20	1:160	
ETAE4	11	<1:20	1:160	
ETAE5	5	<1:20	1:160	
ETAF1	4.5	1:40	1:640	
ETAH2	7	1:40	1:160	
ETAH5	8	1:20	1:160	
ETAH6	8	<1:20	1:320	
Wild birds				
ATAH5 *Myiozetetes similis*	Ad	1:10	1:80	
ATAJ1 *Empidonax virescens*	Ad	1:10	1:80	

Bold: Positive, **Ad:** Adult.

A chi-square test of the equine serum samples was used to assess correlation between gender and WNV or SLEV seropositivity. The results showed no significant correlation between gender and WNV or SLEV seropositivity ($X^2 = 2.2512$, df=2, p=0.81).
Some serum samples were classified as Flavivirus positive (n=22, 25.58%) since they reacted with more than one of the viruses tested. These samples were analyzed by a Spearman correlation (R_s) to assess if age and Flavivirus positivity were related. This resulted in a moderate positive correlation ($R_s = 0.3625$ ($p=0.05$ $p<0.01$)) (Fig 3). Two main reasons could explain these results, first that animals throughout life have sequential infections by different flavivirus or that other flaviviruses that were not considered in this study are circulating in those areas.

Fig 3: Spearman positive correlation ($R_s = 0.3625$ ($p=0.05$ $p<0.01$)) between age and Flavivirus positivity. A: Association between the age and the WNV seropositivity in equines of the Pacific Coast. B: Association between the age and Flavivirus seropositivity in equines of the Pacific Coast.

No molecular evidence of active virus circulation was found in mosquitoes and wild bird samples.

To study the epizootic cycle of these arboviruses, mosquitoes and wild birds were sampled. A total of 140 wild birds were collected during the period of the study. The complete post-mortem and histopathological analysis show no associated lesions to arbovirus infections. In Cuajiniquil area 52 wild birds from 15 different species were captured; 2 species were migratory (S1 table). In Talamanca, 88 wild birds were captured from 29 different species, 6 species were migratory. This area is a very important point of migration from North America to South America [58]. Also, 1373 mosquitoes were captured in 128-night tramps. The most frequent species in the Cuajiniquil area (n=554) were *Deinocerites pseudes* (24.91%, n=138), *Cx. quinquefasciatus* (17.69%) and *Anopheles albimanus* (8.66%). In the area of
Talamanca (n=819), the most frequent species were *Cx. quinquefasciatus* (45.91%, n=376), *Cx. coronator* (11.60%, n=95), and *Mansonia titillans* (10.01%, n=82). The complete classification of the mosquitoes according to the location and the sampled season is available in S2 table.

Mosquitoes were grouped according to the collection site and species (maximum 20 species per pool). Gravid females were analyzed individually to determine their blood preference. Mosquito pools (n=164 for Cuajiniquil and n=198 for Talamanca), gravid females (n=32) and wild birds (n=140) were analyzed by a semi-nested RT-PCR using Flavivirus genus specific primers [55]. PCR products were analyzed and quantified using QIAxcel DNA screening gel (Qiagen, 929554). Two mosquito pools from Talamanca were detected positive for flavivirus (Table 3). Positive pools were submitted for nucleotide sequencing and showed 100% of homology to a mosquito flavivirus. In the case of wild bird samples, no positive PCR results were obtained.

Table 3: Mosquitoes positive in Flavivirus RT-PCR and its homology.

Pool identification	Household	Species	Homology	GenBank
TCC28	CTAC	*Culex (Melanoconion) sp*	Mosquito flavivirus	MN856966.1
TDC19	CTAD	*Aedes aegypti*	Aedes flavivirus	MK241496.1

The analyses of mosquito blood meals show a species diversity of feeding sources.

Mosquito blood meals preference was analyzed to establish the diversity of blood meals sources and participation of these identified species in the putative virus
cycle. Mosquitoes that were classified as gravid females were taxonomically identified using morphological characters and analyzed for their blood meal preference by detection of COI [57]. Twenty-three of the 32 mosquitoes led to positive DNA amplification: from Cuajiniquil *Cx. restrictor* (n=1), *Cx. quinquefasciatus* (n=1), *Anopheles albimanus* (n=1), and *Deinocerites pseudes* (n=1) and from Talamanca: *Cx. quinquefasciatus* (n=9), *Cx. corona* (n=3), *Cx. (Melanoconion) sp* (n=2), *Psorophora ferox* (n=1), *Cx. pseudostigmatosoma* (n=2), and *Mansonias titillans* (n=1).

After sequencing and blasting analyses, we detected dog (*Canis lupus familiaris*) (n=6, 31.57%), human (*Homo sapiens*) (n=5, 26.31%), equine (*Equus caballus*), (n=4, 1.05%), sheep (*Ovis aries*) (n=4, 21.05%), and wild bird (*Columbina passerina*) (n=1, 5.2%) blood used as feeding source. One sample showed a mixed blood pattern (dog/human).

Discussion

In this study we detected a silent circulation of WNV and SLEV in two regions of Costa Rica (Cuajiniquil and Talamanca). Nevertheless, we did not detect virus ARN in wild bird organs or mosquito pools. Therefore, an active circulation of those viruses could only be recorded by the seroconversion events that took place at both sampling sites and through neutralizing antibodies found in wild bird samples. Interestingly, our results show simultaneous circulation of several flaviviruses in the sampled areas: WNV, SLEV, and DENV-1 in Cuajiniquil and DENV-1 and DENV-2 in Talamanca. In these areas positive equines against WNV by IgM and human cases of DENV and ZIKV by the National Health authorities have previously been
reported [34, 44, 59]. It is tempting to speculate that human infections by WNV and SLEV have possibly been mistaken as DENV and ZIKV symptoms and thus misdiagnosed.

Serological analysis showed that neutralizing antibodies against WNV and SLEV are uniformly distributed in Cuajiniquil. There, in each household at least one of the sampled species had neutralizing antibodies (wild birds, chickens, equines, and/or humans). On the other hand, on the Caribbean side no evidence of previous contact with WNV was recorded but, serological evidence against SLEV was documented in wild birds, horses, and humans, and likewise each household had at least one species positive. Previous studies made in hamsters show that previous immunity with SLEV confers protection against clinical encephalitis and death after been infected with WNV [60]. This could explain the no case report of WNV disease in Talamanca. The strikingly high seropositivity to WNV in Cuajiniquil and SLEV at both regions reveals that these viruses are widely distributed.

We detected 4 wild birds with neutralizing antibodies (3 for SLEV and 1 for WNV) belonging to four different species. Three of them were resident wild birds (Campylorhynchus rufinucha, Myiozetetes similis, Turdus gray) suggesting a local contact with the virus. It is tempting to speculate that the virus cycle mosquito-bird-mosquito is thus locally well established. The species Empidonax virescen is a migratory species that was captured in Talamanca. This area is one of the most important sites for wild bird migration in the world [58]. During the yearly migration interval from October to November thousands of wild birds fly over here to South America [58, 61]. This migratory behavior could lead to the introduction of wild bird-
hosted flaviviruses but may bring even more new strains of SLEV and WNV to our country [20, 62].

WNV and SLEV share common mosquito vectors (Culex) and present comparable transmission cycles and clinical signs [15, 18, 63]. At both sampling areas, Cx. quinquefasciatus was one of the most abundant mosquito species collected, other species of Culex such as Cx. nigripalpus also were identified. This species has been proposed as a vector for WNV and SLEV in America [21, 64-66]. The blood meals detected, and the species distribution further confirms the presence of Culex species that serve as bridge vectors capable of transmitting WNV between wild birds and end-hosts e.g., humans and equines.

Furthermore, an important percentage of the equines at both sampling sites were classified as “Flavivirus positive”. This means that they present similar neutralizing antibodies titers for more than one flavivirus. This can be explained by two main reasons: i) that animals came in contact early in their lives with one virus and then have contact with other Flavivirus throughout life, thus sequential infections by different flaviviruses, this is supported by the moderate correlation obtained where older animals have more cross-reactivity compared with younger ones; ii) that other flaviviruses not evaluated in this study also co-circulate. For instance, in Brazil, Ecuador and Bolivia antibodies against Rocio Virus and Ileus were reported in equines [67, 68]. This emphasizes the importance of continued monitoring and detection of different flavivirus species in the country.

Costa Rica like the rest of Latin America, lacks information about the seroepidemiology of WNV and SLEV. Our study demonstrates an ongoing circulation of WNV in the region of Cuajiniquil and SLEV. Also, shows the co-
circulation of other Flaviviruses such as DENV and ZIKV, and suggests that others flaviviruses could be also silently circulating [39]. Regions with multiple Flaviviruses encounter a significant challenge in the clinical and serological diagnosis. Laboratory testing is crucial for accurate diagnosis because symptoms can overlap. Almost all ELISA kits are not completely devoid from cross-reactions to properly interpret results in these serological assays, and thus procure potential misinterpretation [42]. Molecular diagnosis by qRT-PCR of serum, plasma, and cerebrospinal fluid is of limited value for routine diagnosis, due to low level and short-lived viremia generated by these viruses [42]. The PRNT \(\geq 90\% \) technique is the gold standard for identifying antibodies against different Flaviviruses, but this technique is expensive, needs laboratory facilities and requires careful interpretation. Because of the above, flaviviruses serological diagnosis is a real challenge [42].

Active surveillance for WNV and SLEV must be prioritized and performed in flavivirus-endemic areas in mosquitoes, wild birds, and sentinel chickens to detect the virus before the outburst of disease or outbreaks in equines and humans. Also, WNV and SLEV must be considered as a differential diagnosis in patients suspected for DENV and ZIKV infection. Further studies must be done to establish the national seroprevalence and genotypes that are circulating in the country. Costa Rica as a tropical country has the potential of introduction and establishment of new flaviviruses that could cause a more complex epidemiologic scenario.

As prior studies show that a previous infection with ZIKV or DENV modulates a second infection with a different virus, increasing the probability of symptomatic and severe disease [69]. Therefore, there are still concerns in the cross-reaction
between them, their potential immune interplay, and the challenge for a correct diagnostic.

Acknowledgments

We thank to all the people who allowed us to sample at their homes. We thank the Arbovirus Reference Collection (ARC) from the Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Vector-Borne Diseases, Arboviral Diseases Branch, Diagnostic and Reference Team, Reference and Reagent Laboratory and Sanofi Pasteur for the chimeric viruses contribution.

Reference

1. Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, et al. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev. 2018;118(8):4448-82. Epub 2018/04/13. doi: 10.1021/acs.chemrev.7b00719. PubMed PMID: 29652486; PubMed Central PMCID: PMCPMC5937540.

2. Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, et al. ICTV Virus Taxonomy Profile: Flaviviridae. J Gen Virol. 2017;98(1):2-3. doi: 10.1099/jgv.0.000672. PubMed PMID: 28218572; PubMed Central PMCID: PMCPMC5370391.

3. Holbrook MR. Historical Perspectives on Flavivirus Research. Viruses. 2017;9(5). Epub 2017/04/30. doi: 10.3390/v9050097. PubMed PMID: 28468299; PubMed Central PMCID: PMCPMC5454410.

4. Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol. 2020;5(6):796-812. Epub 2020/05/04. doi: 10.1038/s41564-020-0714-0. PubMed PMID: 32367055.

5. Tabachnick WJ. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses. Annu Rev Virol. 2016;3(1):125-45. Epub 2016/07/22. doi: 10.1146/annurev-virology-110615-035630. PubMed PMID: 27482902.

6. Weaver SC. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. Trends Microbiol.
7. Gould EA, Higgs S. Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg. 2009;103(2):109-21. Epub 2008/09/16. doi: 10.1016/j.trstmh.2008.07.025. PubMed PMID: 18799177; PubMed Central PMCID: PMCPMC2915563.

8. Pandit PS, Doyle MM, Smart KM, Young CCW, Drape GW, Johnson CK. Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses. Nat Commun. 2018;9(1):5425. Epub 2018/12/21. doi: 10.1038/s41467-018-07896-2. PubMed PMID: 30575757; PubMed Central PMCID: PMCPMC6303316.

9. Daep CA, Muñoz-Jordán JL, Eugenin EA. Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus. J Neurovirol. 2014;20(6):539-60. Epub 2014/10/07. doi: 10.1007/s13365-014-0285-z. PubMed PMID: 25287260; PubMed Central PMCID: PMCPMC4331079.

10. Rosa R, Costa EA, Marques RE, Oliveira TS, Furtini R, Bomfim MR, et al. Isolation of Saint Louis encephalitis virus from a horse with neurological disease in Brazil. PLoS Negl Trop Dis. 2013;7(11):e2537. Epub 2013/11/21. doi: 10.1371/journal.pntd.0002537. PubMed PMID: 24278489; PubMed Central PMCID: PMCPMC3836713.

11. Platt DJ, Miner JJ. Consequences of congenital Zika virus infection. Curr Opin Virol. 2017;27:1-7. Epub 2017/11/06. doi: 10.1016/j.coovirol.2017.09.005. PubMed PMID: 29080429; PubMed Central PMCID: PMCPMC5814142.

12. Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB. Phylogeny of the genus Flavivirus. J Virol. 1998;72(1):73-83. doi: 10.1128/JVI.72.1.73-83.1998. PubMed PMID: 9420202; PubMed Central PMCID: PMCPMC109351.

13. Castillo-Olivares J, Wood J. West Nile virus infection of horses. Vet Res. 2004;35(4):467-83. doi: 10.1051/vetres:2004022. PubMed PMID: 15236677.

14. Hayes EB, Sejvar JJ, Zaki SR, Lanciotti RS, Bode AV, Campbell GL. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis. 2005;11(8):1174-9. doi: 10.3201/eid1108.050289b. PubMed PMID: 16102303; PubMed Central PMCID: PMCPMC3320472.

15. Diaz A, Coffey LL, Burkett-Cadena N, Day JF. Reemergence of St. Louis Encephalitis Virus in the Americas. Emerg Infect Dis. 2018;24(12). doi: 10.3201/eid2412.180372. PubMed PMID: 30457961; PubMed Central PMCID: PMCPMC6256408.

16. Colpitts TM, Conway MJ, Montgomery RR, Fikrig E. West Nile Virus: biology, transmission, and human infection. Clin Microbiol Rev. 2012;25(4):635-48. doi: 10.1128/CMR.00045-12. PubMed PMID: 23034323; PubMed Central PMCID: PMCPMC3485754.

17. Diaz LA, Flores FS, Quaglia A, Contigiani MS. Intertwined arbovirus transmission activity: reassessing the transmission cycle paradigm. Front Physiol.
18. Ciota AT. West Nile virus and its vectors. Curr Opin Insect Sci. 2017;22:28-36. Epub 2017/05/09. doi: 10.1016/j.cois.2017.05.002. PubMed PMID: 28805636.

19. Kramer L, Ciota A, Kilpatrick M. Introduction, Spread, and Establishment of West Nile Virus in the Americas. J Med Entomol. 2019;56(6):1448-55. Epub 2019/09/24. doi: https://doi.org/10.1093/jme/tjz151.

20. Viana DS, Santamaría L, Figuerola J. Migratory Birds as Global Dispersal Vectors. Trends Ecol Evol. 2016;31(10):763-75. Epub 20160806. doi: 10.1016/j.tree.2016.07.005. PubMed PMID: 27507683.

21. Day JF. Predicting St. Louis encephalitis virus epidemics: lessons from recent, and not so recent, outbreaks. Annu Rev Entomol. 2001;46:111-38. doi: 10.1146/annurev.ento.46.1.111. PubMed PMID: 11112165.

22. Chiu CY, Coffey LL, Murkey J, Symmes K, Sample HA, Wilson MR, et al. Diagnosis of Fatal Human Case of St. Louis Encephalitis Virus Infection by Metagenomic Sequencing, California, 2016. Emerg Infect Dis. 2017;23(10):1964-8. doi: 10.3201/eid2310.161986. PubMed PMID: 28930022; PubMed Central PMCID: PMCPMC5621550.

23. Briese T, Jia X-Y, Huang C, Grady LJ, Lan Lipkin W. Identification of a Kunjin/West Nile-like flavivirus in brains of patients with New York encephalitis. The Lancet. 1999;354(9186):1261-2. doi: https://doi.org/10.1016/S0140-6736(99)04576-6.

24. Hadfield J, Brito AF, Swetnam DM, Vogels CBF, Tokarz RE, Andersen KG, et al. Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain. PLoS Pathog. 2019;15(10):e1008042. Epub 2019/10/31. doi: 10.1371/journal.ppat.1008042. PubMed PMID: 31671157; PubMed Central PMCID: PMCPMC6822705.

25. Komar N, Clark GG. West Nile virus activity in Latin America and the Caribbean. Rev Panam Salud Publica. 2006;19(2):112-7. doi: 10.1590/s1020-49892006000200006. PubMed PMID: 16551385.

26. Morales-Betoule ME, Komar N, Panella NA, Alvarez D, López MR, Betoule JL, et al. West Nile virus ecology in a tropical ecosystem in Guatemala. Am J Trop Med Hyg. 2013;88(1):116-26. Epub 2012/11/13. doi: 10.4269/ajtmh.2012.12-0276. PubMed PMID: 23149586; PubMed Central PMCID: PMCPMC3541721.

27. Cruz L, Cardenas VM, Abarca M, Rodriguez T, Reyna RF, Serpas MV, et al. Short report: serological evidence of West Nile virus activity in El Salvador. Am J Trop Med Hyg. 2005;72(5):612-5. PubMed PMID: 15891137.

28. Bredeck JF. The Story of the Epidemic of Encephalitis in St. Louis. Am J Public Health Nations Health. 1933;23(11):1135-40. doi: 10.2105/ajph.23.11.1135. PubMed PMID: 18013860; PubMed Central PMCID: PMCPMC1558406.
29. Diaz LA, Ré V, Almirón WR, Fariñas A, Vázquez A, Sanchez-Seco MP, et al. Genotype III Saint Louis encephalitis virus outbreak, Argentina, 2005. Emerg Infect Dis. 2006;12(11):1752-4. doi: 10.3201/eid1211.060486. PubMed PMID: 17283629; PubMed Central PMCID: PMCPMC3372344.

30. Heinen LB, Zuchi N, Serra OP, Cardoso BF, Gondim BH, Dos Santos MA, et al. Saint Louis encephalitis virus in Mato Grosso, central Western, Brazil. Rev Inst Med Trop Sao Paulo. 2015;57(3):215-20. doi: 10.1590/S0036-46652015000300006. PubMed PMID: 26200961; PubMed Central PMCID: PMCPMC4544245.

31. Mondini A, Bronzoni RV, Cardeal IL, dos Santos TM, Lázaro E, Nunes SH, et al. Simultaneous infection by DENV-3 and SLEV in Brazil. J Clin Virol. 2007;40(1):84-6. Epub 2007/07/19. doi: 10.1016/j.jcv.2007.06.007. PubMed PMID: 17658293.

32. Lopez H, Neira J, Morales MA, Fabbri C, D'Agostino ML, Zitto T. Encefalitis por virus de San Luis en la ciudad de Buenos Aires durante el brote de Dengue 2009. Medicina. 2010;70:247-50.

33. Hobson-Peters J, Arévalo C, Cheah WY, Blitvich BJ, Tan CS, Sandis A, et al. Detection of antibodies to West Nile virus in horses, Costa Rica, 2004. Vector Borne Zoonotic Dis. 2011;11(8):1081-4. Epub 2011/03/21. doi: 10.1089/vbz.2010.0198. PubMed PMID: 21417920.

34. Jiménez C, Romero M, Piche M, Baldi M, Alfaro A, Chaves A, et al. Arboviral encephalitis in Costa Rican horses: 2009-2016. International Journal of Infectious Diseases. 2016;53:153. doi: https://doi.org/10.1016/j.ijid.2016.11.375.

35. Calderón-Arguedas O, Troyo A, Solano ME, Avendaño A. Culicidofauna Asociada con Contenedores Artificiales en la Comunidad "La Carpio", Costa Rica. Rev Costarric Salud Publica. 2009;18(1).

36. Vargas M. El mosquito un enemigo peligroso (Diptera: Culicidae). 1st ed. San José, Costa Rica: Universidad de Costa Rica; 1998.

37. Medlin S, Deardorff ER, Hanley CS, Vergneau-Grosset C, Siudak-Campfield A, Dallwig R, et al. Serosurvey of selected arboviral pathogens in free-ranging, two-toed sloths (Choloepus hoffmanni) and three-toed sloths (Bradypus variegatus) in Costa Rica, 2005-07. J Wildl Dis. 2016;52(4):883-92. Epub 2016/08/01. doi: 10.7589/2015-02-040. PubMed PMID: 27479900; PubMed Central PMCID: PMCPMC5189659.

38. Cerdas-Quesada CA, Retana-Salazar AP. Characterization and phylogenetic relationships of strains of Dengue type 1 virus from Costa Rica. Rev Biol Trop. 2007;55(2):365-72. doi: 10.15517/rtb.v55i2.6016. PubMed PMID: 19069751.

39. INCIENSA [Internet]. Informe de vigilancia de Arbovirus basada en laboratorio. 2019 [Cited 2020 Marzo 3] Available from: https://inciensa.sa.cr/vigilancia_epidemiologica/informes_vigilancia/2020/Virologia/Informe%20anual%20Arbovirus%202019%20MErev.pdf
40. Vicente-Santos A, Moreira-Soto A, Soto-Garita C, Chaverri LG, Chaves A, Drexler JF, et al. Neotropical bats that co-habit with humans function as dead-end hosts for dengue virus. PLoS Negl Trop Dis. 2017;11(5):e0005537. Epub 2017/05/18. doi: 10.1371/journal.pntd.0005537. PubMed PMID: 28545090; PubMed Central PMCID: PMCPMC5451070.

41. Soto-Garita C, Somogyi T, Vicente-Santos A, Corrales-Aguilar E. Molecular Characterization of Two Major Dengue Outbreaks in Costa Rica. Am J Trop Med Hyg. 2016;95(1):201-5. Epub 2016/05/02. doi: 10.4269/ajtmh.15-0835. PubMed PMID: 27139442; PubMed Central PMCID: PMCPMC4944690.

42. Lustig Y, Sofer D, Bucris ED, Mendelson E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front Microbiol. 2018;9:2421. Epub 2018/10/11. doi: 10.3389/fmicb.2018.02421. PubMed PMID: 30369916; PubMed Central PMCID: PMCPMC6194321.

43. Dente MG, Riccardo F, Bolici F, Colella NA, Jovanovic V, Drakulovic M, et al. Implementation of the One Health approach to fight arbovirus infections in the Mediterranean and Black Sea Region: Assessing integrated surveillance in Serbia, Tunisia and Georgia. Zoonoses Public Health. 2019;66(3):276-87. Epub 2019/02/05. doi: 10.1111/zph.12562. PubMed PMID: 30724030; PubMed Central PMCID: PMCPMC6850493.

44. Ministerio de Salud [Internet]. Análisis de situación de salud 2017-2018 [cited 10 February 2021]. Available from: https://www.ministeriodesalud.go.cr/index.php/vigilancia-de-la-salud/analisis-de-situacion-de-salud.

45. Servicio Nacional de Salud Animal [Internet]. Boletín Epidemiológico Febrero 2016 [cited 15 June 2020]. Available from: http://www.senasa.go.cr/informacion/centro-de-informacion/informacion/estado-sanitario/boletines-epidemiologicos

46. Garrigues R, Dean R. The Birds of Costa Rica: A Field Guide. 1st ed. New York: Cornell University Press; 2007.

47. American Veterinary Medical Association, Ad Hoc Committee on Panel on Euthanasia. Guidelines for the euthanasia of animals. Schaumburg (IL): AVMA; 2013. 121p.

48. Darsie RF. Key to mosquitoes of Costa Rica (Diptera: Culicidae). 1st United States of America: International Center for Disease Control; 1993.

49. Yeh JY, Lee JH, Park JY, Seo HJ, Moon JS, Cho IS, et al. A diagnostic algorithm to serologically differentiate West Nile virus from Japanese encephalitis virus infections and its validation in field surveillance of poultry and horses. Vector Borne Zoonotic Dis. 2012;12(5):372-9. Epub 2012/01/04. doi: 10.1089/vbz.2011.0709. PubMed PMID: 22217162; PubMed Central PMCID: PMCPMC3353748.

50. Komar N, Langevin S, Monath TP. Use of a surrogate chimeric virus to detect West Nile virus-neutralizing antibodies in avian and equine sera.
Vaccine Immunol. 2009;16(1):134-5. Epub 2008/11/12. doi: 10.1128/CVI.00220-08. PubMed PMID: 19005021; PubMed Central PMCID: PMCPMC2620674.

51. Guy B, Guirakhoo F, Barban V, Higgs S, Monath TP, Lang J. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine. 2010;28(3):632-49. Epub 2009/10/04. doi: 10.1016/j.vaccine.2009.09.098. PubMed PMID: 19808029.

52. Pugachev KV, Guirakhoo F, Trent DW, Monath TP. Chimeric vaccines against Japanese encephalitis, dengue, and West Nile. In: Levine MM et al, editors. New generation vaccines. New York, USA: Informa Healthcare 2010. p. 557-69

53. Johnson AJ, Langevin S, Wolff KL, Komar N. Detection of anti-West Nile virus immunoglobulin M in chicken serum by an enzyme-linked immunosorbent assay. J Clin Microbiol. 2003;41(5):2002-7. doi: 10.1128/jcm.41.5.2002-2007.2003. PubMed PMID: 12734241; PubMed Central PMCID: PMCPMC154686.

54. Simões M, Camacho LA, Yamamura AM, Miranda EH, Cajaraiville AC, da Silva Freire M. Evaluation of accuracy and reliability of the plaque reduction neutralization test (micro-PRNT) in detection of yellow fever virus antibodies. Biologicals. 2012;40(6):399-404. Epub 2012/09/30. doi: 10.1016/j.biologicals.2012.09.005. PubMed PMID: 23034357.

55. Scaramozzino N, Crance JM, Jouan A, DeBriel DA, Stoll F, Garin D. Comparison of flavivirus universal primer pairs and development of a rapid, highly sensitive heminested reverse transcription-PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences. J Clin Microbiol. 2001;39(5):1922-7. doi: 10.1128/JCM.39.5.1922-1927.2001. PubMed PMID: 11326014; PubMed Central PMCID: PMCPMC88049.

56. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018;35(6):1547-9. doi: 10.1093/molbev/msy096. PubMed PMID: 29722887; PubMed Central PMCID: PMCPMC5967553.

57. Townzen JS, Brower AV, Judd DD. Identification of mosquito bloodmeals using mitochondrial cytochrome oxidase subunit I and cytochrome b gene sequences. Med Vet Entomol. 2008;22(4):386-93. doi: 10.1111/j.1365-2915.2008.00760.x. PubMed PMID: 19120966.

58. La Sorte FA, Fink D, Hochachka WM, Kelling S. Convergence of broad-scale migration strategies in terrestrial birds. Proc Biol Sci. 2016;283(1823). doi: 10.1098/rspb.2015.2588. PubMed PMID: 26791618; PubMed Central PMCID: PMCPMC4795029.

59. Dolz G, Chaves A, Gutiérrez-Espeleta GA, Ortiz-Malavasi E, Bernal-Valle S, Herrero MV. Detection of antibodies against flavivirus over time in wild non-human primates from the lowlands of Costa Rica. PLoS One. 2019;14(7):e0219271. Epub 2019/07/05. doi: 10.1371/journal.pone.0219271. PubMed PMID: 31276532; PubMed Central PMCID: PMCPMC6611622.
60. Tesh RB, Travassos da Rosa AP, Guzman H, Araujo TP, Xiao SY. Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerg Infect Dis. 2002;8(3):245-51. doi: 10.3201/eid0803.010238. PubMed PMID: 11927020; PubMed Central PMCID: PMCPMC2732478.

61. Rappole JH, Derrickson SR, Hubálek Z. Migratory birds and spread of West Nile virus in the Western Hemisphere. Emerg Infect Dis. 2000;6(4):319-28. doi: 10.3201/eid0604.000401. PubMed PMID: 10905964; PubMed Central PMCID: PMCPMC2640881.

62. Reed KD, Meece JK, Henkel JS, Shukla SK. Birds, migration and emerging zoonoses: west nile virus, lyme disease, influenza A and enteropathogens. Clin Med Res. 2003;1(1):5-12. doi: 10.3121/cmr.1.1.5. PubMed PMID: 15931279; PubMed Central PMCID: PMCPMC1069015.

63. Hannon ER, Jackson KC, Biggerstaff BJ, Raman V, Komar N. Host Selection of Culex quinquefasciatus (Diptera: Culicidae) in Las Vegas, Nevada, United States. J Med Entomol. 2019;56(3):603-8. doi: 10.1093/jme/tjy237. PubMed PMID: 30668743.

64. Richards SL, Anderson SL, Lord CC, Smartt CT, Tabachnick WJ. Relationships between infection, dissemination, and transmission of West Nile virus RNA in Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol. 2012;49(1):132-42. doi: 10.1603/me10280. PubMed PMID: 22308781; PubMed Central PMCID: PMCPMC3320798.

65. Sallam MF, Michaels SR, Riegel C, Pereira RM, Zipperer W, Lockaby BG, et al. Spatio-Temporal Distribution of Vector-Host Contact (VHC) Ratios and Ecological Niche Modeling of the West Nile Virus Mosquito Vector, Culex quinquefasciatus, in the City of New Orleans, LA, USA. Int J Environ Res Public Health. 2017;14(8). Epub 2017/08/08. doi: 10.3390/ijerph14080892. PubMed PMID: 28786934; PubMed Central PMCID: PMCPMC5580596.

66. Colton L, Nasci RS. Quantification of West Nile virus in the saliva of Culex species collected from the southern United States. J Am Mosq Control Assoc. 2006;22(1):57-63. doi: 10.2987/8756-971X(2006)22[57:QOWNVI]2.0.CO;2. PubMed PMID: 16646323.

67. Mattar S, Komar N, Young G, Alvarez J, Gonzalez M. Seroconversion for West Nile and St. Louis encephalitis viruses among sentinel horses in Colombia. Mem Inst Oswaldo Cruz. 2011;106(8):976-9. doi: 10.1590/s0074-02762011000800012. PubMed PMID: 22241119.

68. Silva JR, Romeiro MF, Souza WM, Munhoz TD, Borges GP, Soares OA, et al. A Saint Louis encephalitis and Rocio virus serosurvey in Brazilian horses. Rev Soc Bras Med Trop. 2014;47(4):414-7. doi: 10.1590/0037-8682-0117-2014. PubMed PMID: 25229279.

69. Katzelnick LC, Narvaez C, Arguello S, Lopez Mercado B, Collado D, Ampie O, et al. Zika virus infection enhances future risk of severe dengue disease. Science. 2020;369(6507):1123-8. doi: 10.1126/science.abb6143. PubMed PMID: 32855339; PubMed Central PMCID: PMCPMC8274975.
Supporting information

S1 Table. List of captured wild birds species in the 2 sites of study in Costa Rica (Cuajiniquil and Talamanca) during 2017-2018

S2 Table. List of captured mosquitoes species by household, tramp, and number of individuals per pool.
