Tooth discoloration and glibenclamide therapy

Tooth discoloration in patients with neonatal diabetes after transfer onto glibenclamide: a previously unreported side effect

Janani Kumaraguru MBBS¹,², Sarah E. Flanagan PHD¹, Siri Atma W. Greeley MD PHD³, Roos Nuboer MD⁴, Julie Støy MD⁵, Louis H. Philipson MD PHD⁵, Andrew T. Hattersley DM FRCP¹,², Oscar Rubio-Cabezas MD¹,⁶

¹Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK
²Diabetes & Endocrinology Vascular Health Centre, Royal Devon & Exeter Hospital, Exeter, UK
³Department of Pediatrics, University of Chicago, Chicago, IL, USA
⁴Division of Diabetes, Sophia Children’s Hospital, Rotterdam, The Netherlands
⁵Department of Medicine, University of Chicago, Chicago, IL, USA
⁶Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain

Corresponding Author:
Dr. Oscar Rubio-Cabezas
Email: oscar.rubio-cabezas@pms.ac.uk

Submitted 17 February 2009 and accepted 3 May 2009.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objectives: To assess if tooth discoloration is a novel side effect of sulfonylurea therapy in patients with permanent neonatal diabetes due to mutations in KCNJ11.

Methods: Sixty-seven patients with a known KCNJ11 mutation who had been successfully transferred from insulin injections onto oral sulfonylureas were contacted and asked about the development of tooth discoloration following transfer.

Results: Altered tooth appearance was identified in 5 of the 67 patients. This was variable in severity, ranging from mild discoloration/staining (n=4) to loss of enamel (n=1), and was only seen in patients taking glibenclamide (glyburide).

Conclusion: These previously unreported side effects may relate to the developing tooth and/or to the high local concentrations in the children who frequently chewed glibenclamide tablets or took it as a concentrated solution. Given the multiple benefits of sulfonylurea treatment for patients with activating KCNJ11 mutations, this association warrants further investigation but should not preclude such treatment.
Activating mutations in KCNJ11, which encodes the Kir6.2 subunit of the ATP-sensitive potassium (K\textsubscript{ATP}) channel, are the most common known cause of permanent neonatal diabetes (1, 2). High-dose glibenclamide (glyburide) allows discontinuation of insulin and improves metabolic control in about 90% of cases (2, 3). Apart from transient diarrhea (4), no significant side effects have been reported. We report the development of tooth discoloration in five patients with a KCNJ11 mutation after successful transfer onto glibenclamide.

RESEARCH DESIGN AND METHODS
This study was conducted in accordance with the Declaration of Helsinki. Informed consent was obtained from all patients or their legal guardians. Genetic testing was performed at the Peninsula Medical School, Exeter, UK, or the University of Chicago, IL, USA, as previously described (1, 2). Following an observation by the authors of patient 1 (see below), the association between sulfonylurea treatment and tooth discoloration was further investigated by contacting the referring clinicians of another 66 patients with neonatal diabetes resulting from a KCNJ11 mutation who had successfully transferred onto sulfonylureas.

RESULTS
Tooth discoloration was identified in five patients, representing approximately 7.5% of the 67 subjects with a KCNJ11 mutation treated with sulfonylureas in the two centers. These subjects and their genotypes have previously been reported (1-3). A summary of their clinical characteristics is provided in Table 1.

Discoloration of the permanent teeth (markedly the incisors) was noted in patient 1 six months after transfer, whilst on high-dose glibenclamide. She used to chew the tablets. Although glibenclamide dose was decreased to 0.6 mg/kg/day without deterioration in metabolic control and the patient stopped chewing the pills, there has been no improvement in her teeth color. Patient 2 developed loss of enamel in the upper molars and discoloration of deciduous incisors over 4 years after transfer onto a glibenclamide syrup (2.5 mg/mL). Interestingly, no discoloration of the recently erupted permanent teeth has been noted. In patient 3, a yellowish discoloration of the deciduous teeth was noted approximately one month following transfer, during which time the tablets were being crushed and placed in liquid or food. A couple of months later, she began partially chewing or swallowing the tablets whole. The discoloration resolved since and has not recurred. Patient 4, who was swallowing her pills, was noted about 3 months after transfer to have a plaque-like yellowish discoloration affecting primarily the front teeth that is easily removed by routine cleaning every 3-4 months. Patient 5 was initially dissolving the pills in liquid but around the time he began chewing the pills, he was noted to have inconsistent grayish discoloring of his deciduous teeth that is much improved after thorough brushing of the teeth. None of the patients reported recent changes in food intake, drug use other than glibenclamide, family history or any other known risk factors for tooth discoloration that could explain the association.

CONCLUSIONS
We describe five patients with a KCNJ11 mutation developing tooth
discoloration 1-55 months after transfer from insulin onto glibenclamide. The severity of this novel side effect varied from easily removable tooth staining to non-reversible discoloration and loss of enamel.

Tooth discoloration has not previously been described despite widespread use of glibenclamide in adults. There are many possible explanations for this. Firstly, our patients are much younger than patients with type 2 diabetes and tooth discoloration is more noticeable in white deciduous than in the permanent teeth, which tend to be darker. Secondly, the doses used in children are usually higher than the maximum doses used in adults (3). However there seems to be no clear relationship between glibenclamide dose and the development of tooth discoloration within our cohort as patient 2 was on a low dose (0.1 mg/kg/day) and no tooth discoloration was noted in a further 62 patients with KCNJ11 diabetes who were successfully managed on similar doses of sulfonylureas. Thirdly, and most likely, the teeth may have been exposed to high local concentrations of glibenclamide because of tablets being chewed or taken in solution. In keeping with this, most evidence indicates that the cause of tooth staining is the precipitation of ingested chromogens onto dental surface (5). The possible pathogenic mechanism for the more severe effect on enamel seen in patient 2 however remains unclear. Many other pediatric liquid medicaments have an erosive effect on the primary enamel surface (6). In addition to this local effect, it may relate to a decrease in blood flow to the teeth as glibenclamide, a non-selective sulfonylurea, reduces blood flow to the dental pulp by 70% (7) by acting on vascular K_{ATP} channels (composed of Kir6.1 and SUR2B) (8). It might also be possible that loss of enamel is unrelated to sulfonylurea therapy as it was present in deciduous teeth but not in permanent teeth.

Clinicians should be aware of this novel side effect of glibenclamide therapy in patients with neonatal diabetes resulting from a KCNJ11 mutation. While the cause is uncertain patients should probably be advised not to chew tablets. Although the effect seems to have mainly a cosmetic consequence and should thus not preclude such treatment, this previously unreported association warrants further investigation.

ACKNOWLEDGMENTS

We thank Tehemina G. Richardson, DDS (Winnetka, IL, USA) for her helpful comments on patient 4. This work was funded by the Welcome Trust (Grant No. 067463/Z/2/Z), National Institutes of Health (NIH) grants DK-44752 and DK-20595, and a gift from the Kovler Family Foundation. SEF is the Sir Graham Wilkins, Peninsula Medical School Research Fellow. ATH is a Welcome Trust Research Leave Fellow. ORC is supported by an “Ayuda para contratos post-Formación Sanitaria Especializada” from the “Instituto de Salud Carlos III” (FIS CM06/00013).

Disclosure: The authors declare no conflicts of interest.
REFERENCES
1. Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, Howard N, Srinivasan S, Silva JM, Molnes J, Edghill EL, Frayling TM, Temple IK, Mackay D, Shield JP, Sumnik Z, van Rhijn A, Wales JK, Clark P, Gorman S, Aisenberg J, Ellard S, Njølstad PR, Ashcroft FM, Hattersley AT. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838-49, 2004. Erratum in: N Engl J Med 351:1470, 2004
2. Støy J, Greeley SA, Paz VP, Ye H, Pastore AN, Skowron KB, Lipton RB, Cogen FR, Bell GI, Philipson LH; United States Neonatal Diabetes Working Group. Diagnosis and treatment of neonatal diabetes: a United States experience. Pediatr Diabetes 9: 450-459, 2008
3. Pearson ER, Flechtner I, Njølstad PR, Malecki MT, Flanagan SE, Larkin B, Ashcroft FM, Klimes I, Codner E, Iotova V, Slingerland AS, Shield J, Robert JJ, Holst JJ, Clark PM, Ellard S, Sovik O, Polak M, Hattersley AT. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 355: 467-477, 2006
4. Codner E, Flanagan S, Ellard S, García H, Hattersley AT. High-dose glibenclamide can replace insulin therapy despite transitory diarrhea in early-onset diabetes caused by a novel R201L Kir6.2 mutation. Diabetes Care 28:758-9, 2005
5. Watts A, Addy M. Tooth discoloration and staining: a review of the literature. Br Dent J 190: 309-316, 2001
6. Babu KL, Rai K, Hedge AM. Pediatric liquid medicaments--do they erode the teeth surface? An in vitro study; part I. J Clin Pediatr Dent 32: 189-94, 2008
7. Berggreen E, Heyeraas KJ. Role of K+ATP channels, endothelin A receptors, and effect of angiotensin II on blood flow in oral tissues. J Dent Res 82: 33-37, 2003
8. Jackson WF. Potassium channels in the peripheral microcirculation. Microcirculation 12: 113–127, 2005
Table 1. Clinical details of the four patients with tooth discoloration who have KCNJ11-permanent neonatal diabetes and are on sulfonylurea therapy.

Case	1	2	3	4	5
Mutation	V59M	V59M	R201H	R201C	V59M
Ethnicity	Caucasian	Black	Caucasian	Caucasian	Caucasian
Birth weight (g)	3172	2700	2926	2812	2385
Gestational age (wk)	41	41	38	39	35
Age at diagnosis of diabetes	15 wks	5 wks	26 wks	4 wks	25 wks
Non-diabetic clinical features	Developmental delay	Developmental delay, epilepsy	None	ADHD	Developmental delay
Glycemic control before transfer	HbA1c : 9.2%	HbA1c : 7%	Fructosamine: 319 µmol/L*	HbA1c : 9.3%	HbA1c : 9.4%
Pre transfer insulin dose (U/kg/day)	1.3	0.6	0.5	0.9	0.5
Transfer to glibenclamide (glyburide):					
Age at transfer (yr)	18	2	3.0	6.6	2.5
Maximum glibenclamide dose (mg/Kg/day)	0.9	0.4	0.95	1.1	1.0
Duration on glibenclamide when tooth discoloration first noticed	6 mths	4.6 yr	1 mth	3 mths	14 mths
Glibenclamide dose when tooth discoloration noticed (mg/Kg/day)	0.9	0.1	0.7	0.8	0.8
Current age (yr)	20.3	6.8	6.0	8.9	4.5
Current glibenclamide dose (mg/Kg/day)	0.6	0.1	0.7	0.7	0.8
Current glycemic control (after transfer)	HbA1c : 6.1%	HbA1c : 6.3%	Fructosamine: 228 µmol/L*	HbA1c : 5.6%	HbA1c : 5.8%

*Because of thalassemia, fructosamine is used for monitoring glycemic control instead of HbA1c (Fructosamine normal range: 0 - 285 µmol/L)
ADHD: Attention deficit and hyperactivity disorder