Enterococcus innesii sp. nov., isolated from the wax moth Galleria mellonella

Harriet C. C. Gooch†, Raymond Kiu‡, Steven Rudder², David J. Baker², Lindsay J. Hall²,³,⁴,* and Anthony Maxwell¹,*

Abstract
Four bacterial strains were isolated from two different colony sources of the wax moth Galleria mellonella. They were characterized by a polyphasic approach including 16S rRNA gene sequence analysis, core-genome analysis, average nucleotide identity (ANI) analysis, digital DNA–DNA hybridization (dDDH), determination of G+C content, screening of antibiotic resistance genes, and various phenotypic analyses. Initial analysis of 16S rRNA gene sequence identities indicated that strain GAL7T was potentially very closely related to Enterococcus casseliflavus and Enterococcus gallinarum, having 99.5–99.9% sequence similarity. However, further analysis of whole genome sequences revealed a genome size of 3.69 Mb, DNA G+C content of 42.35 mol%, and low dDDH and ANI values between the genomes of strain GAL7T and closest phylogenetic relative E. casseliflavus NBRC 100478ᵀ of 59.0 and 94.5%, respectively, indicating identification of a putative new Enterococcus species. In addition, all novel strains encoded the atypical vancomycin-resistance gene vanC-4. Results of phylogenomic, physiological and phenotypic characterization confirmed that strain GAL7T represented a novel species within the genus Enterococcus, for which the name Enterococcus innesii sp. nov. is proposed. The type strain is GAL7T (=DSM 112306ᵀ=NCTC 14608ᵀ).

INTRODUCTION
Enterococci are Gram-positive facultative anaerobes that are often diplococci, and which belong to the phylum Firmicutes, class Bacilli, order Lactobacillales and family Enterococcaceae [1, 2]. They comprise a large genus of lactic acid bacteria that are tolerant to many stress conditions and can be found in a wide range of habitats including water (fresh and marine), soils, and as members of animal, human and plant microbial communities (i.e. microbiomes) [3]. From a clinical perspective, some species, such as Enterococcus faecalis and Enterococcus faecium, are associated with opportunistic infections, including bacteraemia, endocarditis and urinary tract and catheter infections [4–6]. Crucially, Enterococcus species have inherent resistance to many antimicrobial agents including cephalorins and β-lactams [7, 8]. They are also of further concern due to acquisition of multi-drug resistance traits, particularly rising rates of vancomycin-resistant Enterococcus strains [9], which are an increasingly common cause of infection in hospitals [10].

As highlighted above, Enterococcus species are also common animal microbiota members, and previous work has indicated that the greater wax moth, Galleria mellonella, is dominated by Enterococci [11, 12], like many other species of Lepidoptera [13]. Although Galleria is a pest of honeybee (Apis mellifera) hives worldwide [14], in recent years it has gained popularity as a model host for a range of human pathogens. It has the advantages of being inexpensive, easy to use, and able to grow at 37°C, while not being subject to the same regulations and ethical concerns as mammalian models such as mice [15–17]. It has also been of interest due to the ability of the larvae to metabolize polyethylene [18]. Previous research on endogenous Galleria and Enterococcus species indicates these bacteria may have a colonization-resistance function, either passively or actively, through the production of antimicrobial bacteriocins [11, 19].

In this study, we isolated four bacterial strains initially identified as Enterococcus casseliflavus based on 16S rRNA gene
alignments. However, on further inspection and characterization (genomic and phenotypic) we propose a novel and putative Enterococcus species: herein named Enterococcus innesii sp. nov. These data expand our knowledge of an important model organism-associated Enterococcus species, which encodes atypical vancomycin resistance genes and is therefore also of clinical importance.

ISOLATION AND ECOLOGY

Galleria mellonella larvae were obtained from a colony grown from larvae originally sourced from Livefood UK Ltd and maintained at the John Innes Centre Entomology Facility (Norwich, UK). Galleria larvae (TruLarv) were also purchased from BioSystems Technology. Larvae were flash-frozen in liquid nitrogen, and whole guts dissected under sterile conditions (three guts were pooled into each single sample). Each sample was then homogenized in 200 µl PBS, diluted 100-fold in PBS and 50 µl spread-plated on brain heart infusion (BHI) agar plates and incubated at 37 °C for 48 h. Individual bacterial colonies were selected and grown in BHI media. Three pure isolates from distinct single colonies were taken from Galleria mellonella larvae from the John Innes Centre Entomology Facility, and one was isolated from TruLarv larvae.

GENOMIC CHARACTERIZATION

The genomes of E. innesii GAL7T, E. innesii GAL9, E. innesii GAL10 and E. innesii TL2 were sequenced using the Nanopore MinION sequencing platform. Prior to this, FastDNA Spin Kit for Soil (MP Biomedicals) was used to extract genomic DNA from each isolate (grown up in BHI media for 48 h) following manufacturer’s instructions, with an extended 3 min bead-beating procedure as described previously [20]. The sequencing library was prepared via a modified Illumina Nextera Flex low input tagmentation approach using symmetrical 24 base barcoded primers [21]. Libraries were pooled and stringently size selected on a sageELF 0.75% cassette and fractions from 4 kb and above were pooled and put into a standard Nanopore Ligation reaction using the SQK-LSK109 kit and protocol and loaded onto a MinION following the recommended loading guidelines and run for 48 h. Basecalling was performed using Guppy version 3.6.0 (Oxford Nanopore Technologies) in high accuracy mode (model dna_r9.4.1_450bps_hac). Subsequently, high-quality pure culture genomes (genome size range: 3.6–3.8 Mb) were assembled via Unicycler version 0.4.9 [22] and further polished using Racon version 1.3.1 in the Unicycler pipeline, with a range of 13–18 in contigs and G+C content of ~42 mol% (Table 1). Genomes were further annotated using Prokka version 1.13, with ~3800–4100 CDS predicted for these for E. innesii strains.

Initially, the 16S rRNA sequences of 61 validated Enterococcus species (60 were Enterococcus type strains) were obtained from the web server of List of Prokaryotic names with Standing in Nomenclature (LPSN; May 2021) [23, 24]. Using in silico approaches, near-full-length 16S rRNA sequences (~1.5 kb) of E. innesii were extracted via bactspeciesID version 1.2 [25],

Strains	Genome size (bp)	Contigs	G+C (mol%)	rRNA	tRNA	CDS	GenBank accessions
Enterococcus alcedinis CCM8433T	2686367	29	37.59	2	50	2472	GCA_014653985
Enterococcus casseliflavus NBRC100478T	3498264	54	42.35	3	50	3339	GCA_001544095
Enterococcus devriesei DSM22802T	3320653	65	40.22	1	29	3119	GCA_001885905
Enterococcus gallinarum NBRC100675T	3774884	87	39.75	3	49	3600	GCA_001544275
Enterococcus gilvus BAA350T	4179913	5	41.41	21	70	4111	GCA_000407545
Enterococcus innesii GAL10	3678879	18	42.32	15	69	3868	GCA_018982735
Enterococcus innesii GAL7T	3692254	14	42.35	22	67	3866	GCA_018982785
Enterococcus innesii GAL9	3793471	13	42.22	18	64	4070	GCA_018982775
Enterococcus innesii TL2	3806372	17	42.25	20	63	4075	GCA_018982725
Enterococcus malodoratus ATCC43197T	4654237	10	39.56	16	54	4480	GCA_000407185
Enterococcus massiliensis AM1T	2712841	7	39.64	9	61	2612	GCA_001500995
Enterococcus pseudoavium NBRC100491T	2731874	59	40.06	3	48	2587	GCA_001544295
Enterococcus saccharolyticus ATCC13076T	2604038	2	36.70	6	38	2586	GCA_000407285
Enterococcus viikkiensis LMG26075T	2545311	45	40.26	4	40	2416	GCA_005405345
aligned with 16S rRNA sequences of other 61 public genomes using muscle version 3.8.31 [26], and a 16S rRNA-based maximum-likelihood phylogenetic tree was reconstructed via iQ-TREE version 2.0.5 with the GTR model at 1000 bootstrap replications while visualized with iTOL version 6 (Fig. 1) [27, 28]. *E. innesii* GAL7T was phylogenetically positioned among *E. casseliflavus*, *E. flavescens* (re-classified as *E. casseliflavus*) and *E. gallinarum* cluster due to its 16S rRNA sequence similarity (99.53–99.93%) [29]. However, when we compared the digital DNA–DNA hybridization (dDDH; via
the Type Strain Genome Server, TYGS) and average nucleotide identity (ANI) for genome-based species delineation purposes (via fastANI v1.3), the proposed *E. innesii* sp. nov GAL7\(^T\) represented a separate species from *E. casseliflavus* and *E. gallinarum* type strains. The dDDH was 59.0% (using TYGS formula d) and ANI 94.5%, when compared to its closest neighbour *E. casseliflavus* NBRC100478\(^T\), despite the high similarity of 16S rRNA sequences between the two species, both fell below the intra-species thresholds of 70% dDDH and 95% ANI (Fig. 2). In contrast, the ANI values among *E. innesii* strains (n=4) were 99.92–99.96%.

Next, 10 closest-related *Enterococcus* strains (vs *E. innesii*) identified by TYGS were further examined phylogenetically at a genomic level, with antibiotic resistance genes also screened (using the resfinder database), for the four novel *E. innesii* strains (Fig. 2) [30]. The pangenome of these 14 strains was investigated using Roary version 3.12.0 [31] at a 95% alignment was generated and used to build a core-genome blast p threshold at 70% identity for inference of core genes.

A total of 15629 genes were present in this pangenome with 564 core genes and 15065 accessory genes. Next, a core-gene analysis was generated and used to build a core-genome maximum-likelihood phylogenetic tree where it showed that *E. casseliflavus* NBRC100478\(^T\) was genomically distinct from *E. innesii*, further supported by single nucleotide polymorphism (SNP) analysis (using snp-dists version 0.7.0) that confirmed the SNP range (8–32 SNPs) among *E. innesii* strains (n=4) indicating strain distinction yet close genetic relatedness, while 11538–11540 SNPs were found when comparing *E. innesii* strains (n=4) and *E. casseliflavus* NBRC100478\(^T\) (Fig. 2) [32].

The vancomycin-resistance gene vanC-4 (NCBI accession: EU151752) was uniquely detected (nucleotide sequence identity: 98.52–98.58% at near 100% coverage) in all *E. innesii* strains using ABRicate version 1.0.1 with the resfinder database, which was not found in any other closely related *Enterococcus* type strains (Fig. 2) [30, 33]. Notably, we did not detect any other virulence or antibiotic resistance genes in any of the four *E. innesii* strains. Vancomycin resistant determinant vanC subtypes had been reported in *E. gallinarum*, (vanC-1), *E. casseliflavus* (vanC-2), and *E. flavescens* (vanC-3; *E. flavescens* has now been re-classified as *E. casseliflavus*), while *vanC-4* has only been reported once previously in *E. casseliflavus*. In this study, the authors described the *vanC-4* encoding clinically associated *E. casseliflavus* isolates as having ‘at least two genetic lineages with the distinct vanC genes, that is, a single subtype including previously known vanC-2/C-3, and a novel subtype vanC-4’. We therefore propose that this distinct ‘genetic lineage’ of *E. casseliflavus* may hypothetically be *E. innesii*, a novel species that uniquely encode vanC-4 gene [34, 35]. However, as these isolates described in this previous clinical study were not whole genome sequenced, we are unable to determine this conclusively. Furthermore, the vanC resistance gene was phenotypically demonstrated in *E. casseliflavus* and *E. gallinarum* as having intrinsic but low-level resistance to vancomycin at a minimum inhibitory concentration (MIC) of 4–32 µg ml\(^{-1}\) [36].

Subsequently, we screened through a larger public dataset of *Enterococcus* species via a targeted approach and found that three isolates previously designated as *E. casseliflavus* and *E. gallinarum* appeared to be *E. innesii* based on ANI (however, taxonomy check on NCBI were inconclusive for these isolates). These include *E. casseliflavus* NCTC4725 (ANI vs *E. casseliflavus* NBRC100478\(^T\): 94.88%; ANI vs *E. innesii* GAL7\(^T\): 97.02%), *E. gallinarum* FDAARGOS163 (ANI vs *E. gallinarum* NBRC100675\(^T\): 77.99%; ANI vs *E. innesii* GAL7\(^T\): 94.38%) and *E. gallinarum* 4928STDY7071463 (ANI vs *E. gallinarum* NBRC100675\(^T\): 78.08%; ANI vs *E. casseliflavus* NBRC100478\(^T\): 94.96%; ANI vs *E. innesii* GAL7\(^T\): 95.43%). Importantly, these three isolates NCTC4725 (ATCC27284;
Fig. 3. Phase-contrast microscopy showing *E. innesii* GAL7\(^T\) occurring in pairs and in chains.

PHENOTYPIC CHARACTERIZATION

Phenotypic characteristics were also investigated and included cell and colony morphology, motility, Gram-staining reaction, formation of endospores, oxygen relationship, growth at different temperatures, fermentation profiles of carbohydrates, catalase activity, oxidase activity, tolerance to NaCl, Voges–Proskauer reaction, urease production, pyrrolidonyl arylamidase production, hydrolysis of hippurate, deamination of arginine, pyruvate utilization, bile-esculin tolerance test, haemolysis test, fatty acid analysis and vancomycin susceptibility testing [40]. Motility tests were carried out on *E. innesii* GAL7\(^T\) using motility test medium (Merck). Media were prepared according to manufacturer’s instructions and outcomes were recorded after culturing for 48 h at 37°C. The susceptibility of *E. innesii* GAL7\(^T\) to antibiotic vancomycin was evaluated using MIC assays on BHI agar plates (carried out in three biological replicates) as described previously [41]. Aside from motility and vancomycin susceptibility tests, all phenotypic analyses were carried out by the Identification Service, Leibniz Institute DSMZ (Germany).

E. innesii cells were coccoid-shaped, 1.0–1.5 µm long, motile and occurred in pairs or in chains under phase-contrast microscopy (Fig. 3). All *E. innesii* strains were Gram-positive, asporogenous, and facultatively anaerobic. Biochemical characteristics were determined using API 50CHE strips for carbohydrate utilization profiles, after incubation for up to 48 h at 37°C (Table 2). They were capable of growth at 10–45°C with optimum at 30–37°C in BHI broth, with only weak growth at 45°C, and no growth at 5°C for up to 13 days. Growth was observed at NaCl concentrations from 0 to 8% (w/v), with optimum growth <6.5%. All strains were catalase- and oxidase-negative and showed no haemolytic activity. When compared to the closest related species *E. casseliflavus* (based on 16S rRNA analysis), *E. innesii* strains exhibited a distinctive metabolism in producing acid from glycerol, sorbitol, raffinose and 2-ketogluconate, while not producing acid from turanose (Table 2). Further phenotypic features were determined using the API rapidID32 STREP system on single strain *E. innesii* GAL7\(^T\) where cells were negative for urease production, hydrolysis of hippurate and pyruvate utilization (no detectable growth using sodium pyruvate as sole carbon source in mineral salt medium for 6 days at 37°C), while positive for Voges–Proskauer reaction, pyrrolidonyl arylamidase production and arginine dihydrolase. GAL7\(^T\) cells tested positive for aesculin hydrolysis in complex medium (Bacto-Peptone, 1 g l\(^{-1}\) aesculin). Moreover, similar to *E. gallinarum*, GAL7\(^T\) cells were positive for β-glucuronidase while closest relative *E. casseliflavus*, and related species *E. faecalis* and *E. faecium* were all negative for this enzyme (Table 2).

Cellular fatty acids were analysed after conversion into fatty acid methyl esters (FAMEs) using a modified protocol by Miller [42]. Mixtures of the FAMEs were then separated by gas chromatography and detected by a flame ionization detector using the Sherlock Microbial Identification System (MIDI) based on TSBA6 database. C\(_{14:0}\), C\(_{16:0}\), and C\(_{18:1}\)ω7\(^c\) were the major fatty acids in *E. innesii* GAL7\(^T\). Compared to the closest phylogenetic neighbours *E. casseliflavus* and *E. gallinarum* type strains (JCM8723\(^T\) and JCM8728\(^T\), respectively), *E. innesii* GAL7\(^T\) cells have a significantly higher C\(_{14:0}\) fatty acid content at 26.12%, apparently distinctive from *E. casseliflavus* (7.5%) and *E. gallinarum* (0.2%) as described previously [43].

Importantly, we determined that *E. innesii* GAL7\(^T\), which harboured putative atypical vancomycin resistance gene *vanC*-4, reduced susceptibility to vancomycin at MIC 4 µg ml\(^{-1}\) (vancomycin clinical breakpoint for Enterococci is >4 µg ml\(^{-1}\)). This is similar to the low-level vancomycin resistance reported previously in *E. casseliflavus* and *E. gallinarum*, strains that encode the *vanC* resistance gene [36, 44].

Based on the results of phylogenomic, physiological and biochemical studies presented above, strain GAL7\(^T\) is considered to represent a novel species of the genus *Enterococcus*, for which the name *Enterococcus innesii* sp. nov. is proposed.
Table 2. Distinctive phenotypic features between *E. innesii* strains (data from this study) and phylogenetically closely related *E. casseliflavus* [49] and *E. gallinarum* strains [49], also distantly related *E. faecalis* [49] and *E. faecium* strains [49].

Characteristics	*E. innesii* (*n*=4)	†*E. casseliflavus* (*n*=6)	†*E. gallinarum* (*n*=4)	†*E. faecalis* (*n*=6)	†*E. faecium* (*n*=5)
Acid production from:					
d-Xylose	+	+	+	−	−
Sucrose	+	+	+	+	v
Melibiose	+	+	+	−	v
Methyl α-glucoside	+	+	+	−	−
Melizitose	−	−	−	+(−)	−
Mannitol	+	+	+	+	+(−)
Inulin	+	+	+	−	−
Glucurate	+	+	+	+(−)	v
L-Arabinose	+	+	+	−	+
Glycerol	+w‡	−	+	+	+
Rhamnose	+	+(−)	−	−	−
Sorbitol	v	−	+	+(−)	−
Methyl α-D-mannoside	+	+(−)	−	−	−(+)
Raffinose	+	−	+	−	−
Glycogen	−	−	−(+)	−	−
Turanose	−	v	+	−	−
D-Tagatose	−	−	+	+	−
2-Keto-gluconate	+	−	−	v	−
Hydrolysis of:					
Aesculine	+§	+	+	+(−)	+
Hippurate	−§	−	+	+(−)	+
Presence of enzymes:					
Arginine dihydrolase	+§	+(−)	+	−	+
α-Galactosidase	+§	+	+	−	−
β-Galactosidase	+§	+	+	−	−
β-Glucuronidase	+§	−	+	−	−

* +, All strains positive; −, all strains negative; +(−), most strains positive; −(−), most strains negative; v, variable; +w, most strains weakly positive, none negative. All strains were positive for ribose, galactose, glucose, fructose, mannose, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, trehalose and gentiobiose. All strains were negative for erythritol, D-arabinose, L-xylose, adonitol, methyl β-D-xyllose, sorbose, dulcitol, inositol, xylitol, lyxose, D-fucose, L-fucose, D-arabitol, L-arabitol and 5-keto-gluconate.

†Determined with the API 50CH system.
‡Shaded area represents distinctive phenotypic features between *E. innesii* strain(s) and closely related *E. casseliflavus* and *E. gallinarum* strains as determined by API systems.
§Determined with API rapid ID32 STREP system on a single strain GAL7’.

* Determined with the API 50CH system.
† Determined with the API 50CHE system.
DESCRIPTION OF ENTEROCoccus INNesii SP. NOV.

Enterococcus innesii (in. ne´si.i N.L. gen. n. innesii, pertaining to British philanthropist John Innes JP and the John Innes Centre, Norwich, UK, where this bacterium was isolated).

Description is based on a single strain. Cells are Gram-positive, facultatively anaerobic, motile, non-haemolytic, asporogenous, cocoid-shaped, 1.0–1.5 μm long and usually occur in pairs or in chains. It grows at temperatures between 10–45 °C (optimum, 30–37 °C), at NaCl concentrations from 0 to 8.0% (optimum, 0–6.5%, at 37 °C) in BHI medium. Colonies formed on BHI after incubation for 48 h at 37 °C are non-pigmented, circular, smooth, shiny, diameter 1–2 mm, with entire margins. Negative for urease production, hydrolysis of hippurate, pyruvate utilization and catalase and oxidase production. Positive for Voges–Proksaer reaction, pyrrolidonyl arylamidase production, hydrolysis of aesculin and arginine dihydrolase. Acid is produced from l-arabinose, ribose, d-xylose, galactose, glucose, fructose, mannose, rhamnose, methyl α-d-mannoside, methyl α-glucoside, N-acetylglucosamine, amygdalin, arbutin, aesculin, salicin, cellobiose, maltose, lactose, melibiose, sucrose, trehalose, inulin, raffinose, gentibiose, gluconate, 2-ketogluconate, starch and glycerol. Acid is not produced from erythritol, rhamnose, methyl α- d-mannoside, methyl α-glucoside, dulcitol, inositol, melizitose, glycogen, xylitol, turanose, -acetylglucosamine, amygdalin, arbutin, aesculin, salicin, ribose, d-xylose, galactose, glucose, fructose, mannose, arginine dihydrolase. Acid is produced from l-arabinose, ribose, d-xylose, galactose, glucose, fructose, mannose, rhamnose, methyl α-d-mannoside, methyl α-glucoside, N-acetylglucosamine, amygdalin, arbutin, aesculin, salicin, cellobiose, maltose, lactose, melibiose, sucrose, trehalose, inulin, raffinose, gentibiose, gluconate, 2-ketogluconate, starch and glycerol. Acid is not produced from erythritol, d-arabinose, l-xylose, adonitol, methyl β-d-xylose, sorbose, dulcitol, inositol, melizitose, gyocogen, xylitol, turanose, d-tagatose, d-fucose, l-fucose, d-arabitol, l-arabitol and 5-ketogluconate. Resistant to 4 μg ml⁻¹ vancomycin. The major fatty acids are C₁₄:₀, C₁₆:₀ and C₁₈:₁ω₇c.

The type strain, GAL7T (=DSM 112306T=NCTC 14608T), was isolated from the gut of a wax moth Galleria mellonella. The type strain, GAL7T (=DSM 112306T=NCTC 14608T), was isolated from the gut of a wax moth Galleria mellonella, bacteria are caused by Enterococcus faeaceous. J Infect Dev Ctries 2015;9:1195–1203.

Nigo M, Munita JM, Arias CA, Murray BE. What’s new in the treatment of enterococcal endocarditis? Curr Infect Dis Rep 2014;16:431.

Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015;13:269–284.

Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther 2014;12:1221–1236.

Silfoui F, Arthur M, Rice L, Gutmann L. Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faeaceum. Antimicrob Agents Chemother 2001;45:2594–2597.

Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009;155:1749–1757.

Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 2012;10:266–278.

Jaroš J. Gut flora of Galleria mellonella suppressing ingested bacteria. J Invertebr Pathol 1979;34:192–198.

Allossius CN, Van Beek W, De Boek I, Wittouck S, Lebeer S. The microbiome of the invertebrate model host Galleria mellonella is dominated by Enterococcus. Anim Microbioms 2019;1:7.

Duployé A, Hornef EA. Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ 2018;6:e4629.

Kwadha CA, Ong’amo GO, Ndegwa PN, Raina SK, Fombong AT. The biology and control of the greater wax moth, Galleria mellonella. Insects 2017;8:E61.

Tsai C-J,Y, Loh JMS, Profitt T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 2016;7:214–229.

Lange A, Schäfer A, Bender A, Steimle A, Beier S, et al. Galleria mellonella: a novel invertebrate model to distinguish intestinal symbionts from pathobionts. Front Immunol 2018;9:2114.

Pereira MF, Rossi CC, da Silva GC, Rosa JN, Bazzolli DMS. Galleria mellonella as an infection model: an in-depth look at why it works and practical considerations for successful application. Pathog Dis 2020;78:ftaa056.

LeMoine CM, Grove HC, Smith CM, Cassone BJ. A very hungry caterpillar: polyethylene metabolism and lipid homeostasis in larvae of the greater wax moth (Galleria mellonella). Environ Sci Technol 2020;54:14706–14715.

Johnston PR, Rolf J. Host and symbiont jointly control gut microbiota during complete metamorphosis: Symbiont Jointly Control Gut Microbiota during Complete Metamorphosis. PLoS Pathog 2015;11:e1005246.

Alcon-Giner C, Dalby MJ, Caim S, Ketskemety J, Shaw A, et al. Microbiota supplementation with bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome: an observational study. Cell Rep Med 2020;1:100077.

Baker DJ, Aydin A, Le-Viet T, Kay GL, Rudder S, et al. CoronaHiT: high-throughput sequencing of SARS-CoV-2 genomes. Genome Med 2021;13:21.
22. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017;13:e1005595.

23. Parte AC. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–6.

24. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020;70:5607–5612.

25. Kiu R. BACTspeciesID: identify microbial species and genome contamination using 16S rRNA gene approach; 2020. https://github.com/raymondkiu/bactspeciesID

26. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797.

27. Letunic I, Bork P. Interactive Tree Of Life (iTOl) v4: recent updates and new developments. Nucleic Acids Res 2019;47:e256–259.

28. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020;37:1530–1534.

29. Naser SM, Vancanneyt M, Hoste B, Snaeuwaert C, Vandemeulebroecke K, et al. Reclassification of Enterococcus flavescens Pompei et al. 1992 as a later synonym of Enterococcus casseliflavus (ex Vaughan et al. 1979) Collins et al. 1984 and Enterococcus saccharominimus Vancanneyt et al. 2004 as a later synonym of Enterococcus italicus Fortina et al. 2004. Int J Syst Evol Microbiol 2006;56:413–416.

30. Bortolai V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020;75:3491–3500.

31. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015;31:3691–3693.

32. Seemann T, Klotz F, Page AJ. snp-dists: Pairwise SNP distance matrix from a FASTA sequence alignment; 2018. https://github.com/tseemann/snp-dists

33. Seemann T. ABRicate: Mass screening of contigs for antimicrobial and virulence genes; 2018. https://github.com/tseemann/abrivate

34. Clark NC, Teixeira LM, Facklam RR, Tenover FC. Detection and differentiation of vanC-1, vanC-2, and vanC-3 glycopeptide resistance genes in enterococci. J Clin Microbiol 1998;36:2294–2297.

35. Watanabe S, Kobayashi N, Quiñones D, Hayakawa S, Nagashima S, et al. Genetic diversity of the low-level vancomycin resistance gene vanC-2/vanC-3 and identification of a novel vanC subtype (vanC-4) in Enterococcus casseliflavus. Microb Drug Resist 2009;15:1–9.

36. Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin Microbiol Rev 2000;13:686–707.

37. Collins MD, Farrow JA, Jones D. Enterococcus mundtii sp. nov. Int J Syst Bacteriol 1986;36:8–12.

38. Sichtig H, Minogue T, Yan Y, Stefan C, Hall A, et al. FDA-ARGOS is a database with public quality-controlled reference genomes for diagnostic use and regulatory science. Nat Commun 2019;10:3313.

39. Shao Y, Forster SC, Tsali E, Vervier K, Strang A, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019;574:117–121.

40. Mattarelli P, Holzapfel W, Franz CMAP, Endo A, Felis GE, et al. Recommended minimal standards for description of new taxa of the genera Bilfdobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014;64:1434–1451.

41. Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001;48 Suppl:1–5.

42. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586.

43. Li YQ, Gu CT. Enterococcus pingfangensis sp. nov., Enterococcus dongliensis sp. nov., Enterococcus hulansensis sp. nov., Enterococcus nangangensis sp. nov. and Enterococcus songbeiensis sp. nov., isolated from Chinese traditional pickle juice. Int J Syst Microbiol 2019;69:3191–3201.

44. Brown DFJ, Wootton M, Howe RA. Antimicrobial susceptibility testing breakpoints and methods from BSAC to EUCAST. J Antimicrob Chemother 2016;71:1–3.

45. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019;10:2182.

46. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2009;37:D26–31.

47. Kiu R. Sequence-stats: generate sequence statistics from FASTA and FASTQ files; 2020. https://github.com/raymondkiu/sequence-stats

48. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069.

49. Collins MD, Jones D, Farrow JAE, Kilpperbalz R, Schleifer KH. Enterococcus avium nom. rev., comb. nov.; E. casseliflavus nom. rev., comb. nov.; E. durans nom. rev., comb. nov.; E. gallinarum comb. nov.; and E. malodoratus sp. nov.. Int J Syst Bacteriol 1984;34:220–223.