Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Theoretical Investigations of Cyclopentolate

Tuba Özdemir Öge¹*, Halil Gökçe²

¹ Vocational School of Health Services, Bartın University, 74100 Bartın, Turkey
² Vocational School of Health Services, Giresun University, 28200 Giresun, Turkey

Abstract

In this study, the structural and spectroscopic characterizations (FT-IR, Laser-Raman, ¹H and ¹³C NMR and UV-vis spectra) of cyclopentolate were performed using experimental and theoretical methods. Four conformational structures and optimized molecular geometries of the molecule were examined. The vibrational wavenumbers, proton and carbon-13 NMR chemical shifts, UV-Vis. parameters were theoretically obtained for the most stable form of the molecule and the HOMO-LUMO analyses were performed with DFT/B3LYP method at aug-cc-pVDZ basis set. The weak intra-molecular hydrogen bond interaction in O45-H46...N23 group was determined. The ¹H and ¹³C NMR chemical shifts were experimentally and theoretically investigated. The assignments of theoretical vibrational modes were obtained using VEDA 4 software in terms of potential energy distribution (PED). The theoretically and experimentally obtained data were found to be consistent with each other.

Keywords: Cyclopentolate, Vibrational spectroscopy, UV-Vis. spectral parameters, HOMO-LUMO analyses, NMR chemical shifts

Özet

Bu çalışmada siklopentolat molekülünün yapısal ve spektroskopik karakterizasyonları (FT-IR, Laser-Raman, ¹H ve ¹³C NMR ve görünür UV spektrumları) deneysel ve teorik yöntemler kullanılarak incelendi. Molekülün dört adet konformasyon yapısı ve optimize edilmiş moleküler geometrileri incelendi. En kararlı form için molekülün titreşimsel dalga-boyları, ¹H ve ¹³C NMR kimyasal kaymaları, görünür UV (UV-Vis) parametreleri teorik olarak elde edildi ve HOMO-LUMO analizleri DFT/B3LYP yöntemi ile aug-cc-pVDZ temel seti kullanılarak gerçekleştirilirdi. O45-H46...N23 grubundaki zayıf molekül-ici hidrojen bağ etkileşimi belirlendi. Teorik titreşim mod atamaları VEDA 4 yazılımı kullanılarak potansiyel enerji dağılımı (PED) cinsinden elde edildi. Teorik ve deneysel yöntemlerle elde edilen verilerin birbirleri ile tutarlı olduklarını belirtildi.

Anahtar Kelimeler: Siklopentolat, Titreşim spektroskopisi, Görünür UV. Spektrum parametreleri, HOMO-LUMO analizleri, NMR kimyasal kaymaları

*Corresponding Author: tozdemir@bartin.edu.tr
1. Introduction

Cycloplegia is the temporary paralysis of siliceous muscles that provide accommodation with the aid of various drops. Cycloplegia agents include atropine, homatropine, cyclopentolate, scopolamine and tropicamide (Özer, 2005). Cycloplegic drugs, also referred to as anticholinergics, block the muscarinic action of acetylcholine. This action inhibits cholinergic stimulation of the iris sphincter and ciliary muscle, which results in mydriasis and cycloplegia (Mindel, 1994). Drugs acting like acetylcholine at the receptor such as pilocarpine are called muscarinic agonists; and drugs blocking the action of acetylcholine at the receptor such as atropine, homatropine and cyclopentolate are called muscarinic antagonists (Vale and Cox, 1979). Cyclopentolate hydrochloride is a cycloplegic and mydriatic agent and an ester of a substituted benzeneacetic acid, having, N, N-dimethylaminoethanol as the alcohol moiety (Roy and Guillory, 1995). Cyclopentolate hydrochloride’s (CPH) IUPAC name is 2-(dimethylamino)-ethyl-1-hydroxy-α-phenylcyclopentaneacetate hydrochloride, molecular weight is 327.85 g/mol and molecular formula is C_{17}H_{25}NO_{3}.HCl (Frag et al, 2011). Cycloplegic drops have been applied to observe the effects of the drugs in various studies. Hung et al, evaluated the changes of intraocular pressure and refractive status among children (Hung et al, 2015). Farhood assessed the cycloplegic refraction among children. Their study aimed to evaluate the safety and efficacy of two cycloplegic regimens among hyperopic children (Farhood, 2012). Atropine 1% (regimen I) and cyclopentolate 1% (regimen II) eye drops were evaluated on fifty children. Li et al. investigated the effects of intravitreal injection of cyclopentolate on form deprivation myopia in guinea pigs (Zhou et al, 2015). Enantiomers, also known as optical isomers, represent each of the two molecules that are mirror images of each other. Different analytical techniques have been suggested in the literature to separate enantiomers and perform enantioselective analyses of chiral compounds (Izake, 2007; Mericko et al, 2007).

The aim of this study is to investigate the structural and spectroscopic analyses of cyclopentolate molecule used in eye treatments. Conformational analysis was performed, and four conformation energy values were calculated. The four conformational structures of the cyclopentolate molecule involve in-plane, out-of-plane OH bonds, and inward and outward oriented C=O bonds (Figure 1). The results of all spectroscopic analyses are given for conformation I in the study. The vibrational wavenumbers (FT-IR and Laser-Raman), UV analysis and ^{1}H and ^{13}C NMR chemical shifts of cyclopentolate were experimentally and theoretically studied. The recorded experimental data (FT-IR, Laser-Raman, UV, NMR chemical shifts) were supported with parameters computed using theoretical methods with the DFT/B3LYP/aug-cc-pVDZ level.
2. Experimental Analyses

Cyclopentolate was purchased from Sigma-Aldrich Corporation. The FT-IR spectrum of cyclopentolate was collected in the region of 400-4000 cm\(^{-1}\) at room temperature on a Perkin-Elmer Spectrum Two FT-IR Spectrometer with standard resolution of 0.5 cm\(^{-1}\) in the transmission mode in the solid phase of the sample. The samples were compressed into self-supporting pellets and introduced into an IR cell equipped with KBr window.

The Laser-Raman spectrum was recorded on a Renishaw Invia Raman Microscope Spectrophotometer in 100-4000 cm\(^{-1}\) region in the solid phase of the sample. The excitation line width, scan number and resolution of the diode laser were 785 nm, 100 and 1 cm\(^{-1}\), respectively.

The \(^1\)H and \(^13\)C NMR chemical shifts of the sample dissolved in DMSO-d\(_6\) were obtained by Bruker Biospin-Avance III 400 MHz NMR spectrometer at the temperature of 295 K. The chemical shifts were reported at a frequency of 400 MHz at ppm level relative to tetramethylsilane (TMS).

The ultraviolet visible spectrum of cyclopentolate dissolved in methanol was recorded using a UV-6100 Double Beam Spectrophotometer in the 200-400 nm region at room temperature. The spectral bandwidth is 2 nm.

3. Computational Procedures

The optimized molecular geometries, vibrational wavenumbers, proton and carbon-13 NMR chemical shifts, UV-Vis. electronic absorption parameters and HOMO-LUMO analyses of the title molecule were computed using B3LYP (Becke's three parameter exact exchange-functional (B3) combined with gradient-corrected correlational functional of Lee, Yang, Parr (LYP)) functional in density functional theory (DFT) with aug-cc-pVDZ basis set (Becke, 1993; Lee et al, 1988). The molecular geometric parameters, spectral properties and other molecular properties were performed using Gaussian 09W program package on a computing system (Frisch et al, 2009). GaussView5 program was used for visualization of the computed structural, spectroscopic and electronic properties (Dennington et al, 2019).

The calculated vibrational frequencies were scaled by 0.970 for the B3LYP/aug-cc-pVDZ level (Johnson, 2016). The assignments of vibrational wavenumbers and evaluation of potential energy distribution (PED) were performed using VEDA 4 program (Jamr’oz, 2004). The molecule was optimized in DMSO and methanol using conductor polarizable continuum model (CPCM) (Miertus et al, 1981) at the mentioned computational level to obtain \(^1\)H and \(^13\)C NMR isotropic chemical shifts and UV-Vis. parameters of cyclopentolate molecule. Then, \(^1\)H and \(^13\)C NMR chemical shifts of the title molecule
were studied using the gauge invariant atomic orbital (GIAO) approach (Ditchfield, 1974; Wolinski et al, 1990, London, 1937). The UV-Vis. spectroscopic analysis for the molecule was theoretically performed using the TD-DFT method (Runge and Gross, 1984). The HOMO and LUMO analyses were simulated at the aforementioned computational level.

4. Results and Discussions
4.1. Geometric Structure

The optimized molecular structures and computed molecular geometric parameters (bond lengths and angles) with the B3LYP/aug-cc-pVDZ level of cyclopentolate molecule are given in Figure 1 and Table 1, respectively. The molecular formula of cyclopentolate is C_{17}H_{25}NO_{3} and its chemical name is 2-(Dimethylamino)ethyl(2R)-(1-hydroxycyclopentyl)(phenyl)acetate.
Table 1. The optimized molecular geometric parameters for cyclopentolate.

Bond lengths (Å)	Literature	Calc.	Bond angles (°)	Calc.	Bond angles (°)	Calc.
C1-H2	-	1.095	H2-C1-C3	107.9	N23-C24-H25	109.2
C1-C3	-	1.523	H2-C1-C14	106.6	N23-C24-H26	112.0
C1-C14	-	1.521	H2-C1-C32	104.3	N23-C24-H27	110.5
C1-C32	-	1.580	C3-C1-C14	113.0	H25-C24-H26	108.2
C3-C4	-	1.405	C3-C1-C32	116.2	H25-C24-H27	107.9
C3-C5	-	1.405	C14-C1-C32	108.1	H26-C24-H27	109.1
C4-C6	-	1.397	C1-C3-C4	118.5	N23-C28-H29	109.5
C5-C8	-	1.398	C1-C3-C5	123.3	N23-C28-H30	109.7
C6-C10	-	1.398	C4-C3-C5	118.2	N23-C28-H31	112.4
C8-C10	-	1.398	C3-C4-C6	121.3	H29-C28-H30	108.1
C4-H7	-	1.091	C3-C4-H7	119.4	H29-C28-H31	108.3
C5-H9	-	1.087	C6-C4-H7	119.4	H30-C28-H31	108.7
C6-H11	c 1.5341	1.091	C3-C5-C8	120.7	C1-C32-C33	116.6
C8-H12	-	1.091	C3-C5-C9	119.6	C1-C32-C34	112.6
C10-H13	-	1.091	C8-C5-C9	119.7	C1-C32-O45	108.5
C14-O15	-	1.215	C4-C6-C10	120.0	C33-C32-C34	102.6
C14-O16	-	1.357	C4-C6-C11	119.8	C33-C32-O45	110.5
O16-C17	-	1.443	C10-C6-C11	120.2	C34-C32-O45	105.4
C17-H18	-	1.096	C5-C8-C10	120.6	C32-C33-C35	104.3
C17-H19	-	1.094	C5-C8-H12	119.4	C32-C33-H36	109.2
C17-C20 c 1.5341	1.526	C10-C8-H12	120.0	C32-C33-H37	112.1	
C20-H21 -	1.111	C6-C10-C8	119.3	C35-C33-H36	110.4	
C20-H22 -	1.098	C6-C10-H13	120.3	C35-C33-H37	113.5	
C20-N23 c 1.4625	1.467	C8-C10-H13	120.4	H36-C33-H37	107.4	
N23-C24 c 1.4629	1.465	C1-C14-O15	125.8	C32-C34-C38	104.6	
N23-C28 c 1.4623	1.465	C1-C14-O16	110.7	C32-C34-H39	110.7	
C24-H25 -	1.097	O15-C14-O16	123.4	C32-C34-H40	109.4	
C24-H26 -	1.109	C14-O16-C17	117.5	C38-C34-H39	113.3	
C24-H27 -	1.095	O16-C17-H18	106.2	C38-C34-H40	110.6	
C28-H29 -	1.097	O16-C17-H19	109.5	H39-C34-H40	108.2	
C28-H30 -	1.097	O16-C17-C20	109.3	C33-C35-C38	105.9	
C28-H31 -	1.109	H18-C17-H19	109.1	C33-C35-H41	110.4	
C32-C33 -	1.540	H18-C17-C20	109.3	C33-C35-H42	111.2	
C32-C34 -	1.537	H19-C17-C20	113.2	C38-C35-H41	110.2	
C33-C35 -	1.546	C17-C20-H21	107.8	C38-C35-H42	112.1	
C34-C38 -	1.546	C17-C20-H22	108.1	H41-C35-H42	107.0	
C35-C38 -	1.559	C17-C20-N23	114.3	C34-C38-C35	105.7	
C32-O45 a 1.444 b 1.428	1.433	H21-C20-H22	107.3	C34-C38-H43	110.4	
C33-H36 -	1.097	H21-C20-N23	111.5	C34-C38-H44	111.2	
C33-H37 -	1.096	H22-C20-N23	107.6	C35-C38-H43	110.4	
C34-H39 -	1.097	C20-N23-C24	112.6	C35-C38-H44	112.0	
C34-H40 -	1.097	C20-N23-C28	110.5	H43-C38-H44	107.2	
C35-H41 -	1.097	C24-N23-C28	110.7	C32-O45-H46	111.5	
C35-H42 -	1.098	C4-C3-C1-C32	-100.6	O45-H46-N23	164.1	
C38-H43 -	1.096	C5-C31-C14	-46.2	O15-C14-C1-C32	-74.9	
C38-H44 -	1.098	C14-C16-C17-C20	102.3	O16-C14-C1-C32	102.2	
O45-H46 -	0.980	C14-C16-C17-C17	-164.2	C14-C1-C32-O45	-59.1	
H46-N23 -	2.027	C14-C1-C32-C33	66.4	C1-C32-O45-H46	66.4	
C17-C20-N23-C24 -	-70.1	C16-C17-C20-N23	-62.4			
C17-C20-N23-C28 -	165.5	C32-C35-C38-C35	24.0			
C5-C3-C4-C6 -	-0.8	C33-C35-C38-C34	0.6			
C3-C1-C3-C32 -	-61.9	O15-C14-O16-C17	12.9			

a, b, c, d and e Taken from Refs. Hirschler, 1994; Angelova, 1992; Sroczyński, 2017; Trotter, 1960; Palafax, 2000, respectively.
In the literature, two molecular forms as R- and S- are available for cyclopentolate. These structures are also known as enantiomers or optical isomers. Szwed et al. (2013) used experimental and computational (optimized molecular geometries) methods to determine the absolute configurations of enantiomers of cyclopentolate molecule. They reported optimized molecular structures for the three lowest-energy conformers with the B3LYP/aug-cc-pVDZ level of (R)-cyclopentolate (Szwed et al., 2013). In this study, considering the molecular geometric forms obtained by Szwed et al. (2013), we determined the four conformational forms for the cyclopentolate molecule. In our study, as shown in Figure 1, the calculated energy values for four lowest-energy conformational forms of cyclopentolate molecule were obtained as -943.40481341 Hartrees (for conformer I), -943.40439951 Hartrees (for conformer II), -943.40431503 Hartrees (for conformer III) and -943.40317790 Hartrees (for conformer IV) with the B3LYP/aug-cc-pVDZ level, respectively. As indicated by these computed energy values, conformer I is the most stable molecular form. Therefore, in this study, detailed structural and spectroscopic analyses were performed for conformer I.

The C-C bond lengths in phenyl ring of the title molecule were calculated at the interval of 1.397-1.405 Å, while they recorded between 1.36-1.41 Å for benzene derivatives in the literature (Trotter, 1960). Additionally, the C-C and C-H bond lengths obtained with some quantum chemical computational levels of the benzene ring were calculated at the intervals of 1.3920-1.3990 Å (1.3920-1.3990 Å (exp.)) and 1.0831-1.1010 Å (1.0831-1.1010 Å (exp.)) by Palafox (2000) respectively. Similarly, the C32-C33, C32-C34, C33-C35, C34-C38, C35-C38 and C32-O45 bond lengths in 1-hydroxycyclopentyl group were computed as 1.540 Å, 1.537 Å, 1.546 Å, 1.546 Å, 1.559 Å and 1.433 Å, respectively.

Hirscher et al. (1994) reported values at the interval of 1.522-1.539 Å for C-C bond lengths and 1.444 Å for C-O bond length in 1-hydroxycyclopentyl group in (1R,3R)-2[(2R,4R,5R)-3-(p-chlorophenylsulfonyl)-4-methyl-5-phenyl-1,3-oxazolidin-2-yl]-5-(2-(1R,2S)-[(2R,4R,5R)-3-(p-chlorophenylsulfonyl)-4-methyl-5-phenyl-1,3-oxazo-lidin-2-yl]-1-hydroxycyclopentyl)-1-cyclopentanone (C42H44Cl2N2O8S2) molecule. Likewise, the C-C and C-O bond lengths in 1-hydroxycyclopentyl group of (±) diethyl ester of (1-hydroxycyclopentyl) (2-methylphenyl)methylphosphonic acid were measured between 1.510-1.533 Å and at 1.428 Å by Angelova et al. (1992) The C1-C3, C1-C14 and C1-C32 bond lengths were theoretically obtained at 1.523 Å, 1.521 Å, and 1.580 Å, respectively. The C-O bond lengths were calculated as 1.215 Å for C14-O15, 1.357 Å for C14-O16 and 1.443 Å for C17-O16. The C24,28-N23, C20-N23 and C17-C20 bond lengths in 2-(dimethylamino)ethyl group in the title molecule were computed at 1.465 Å, 1.467 Å and 1.526 Å. Sroczynski and Malinowski (2017) computed the N-CH3 bond lengths as 1.4629 Å and 1.4623 Å, the N-C bond length as 1.4625 Å and the CH2-CH2 bond length as 1.5341 Å in 2-(dimethylamino)ethyl group of 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthahalazinone molecule with the B3LYP/6-311++G(d,p) level (Sroczynski and Malinowski, 2017). The C-H bond lengths in the title molecule were calculated at the interval of 1.087-1.111 Å. Likewise, the O45-H46 bond length was computed as 0.980 Å.
Table 2. The experimental and computed vibrational wavenumbers and their vibrational assignments of cyclopentolate.

Exp. freq. (cm⁻¹)	Assignment (PED%)	The computed parameters					
		Mode	Freq.	Int	S_{IR}	S_{Raman}	χ_{Raman} (<10⁻⁶)
3230	vOH(100)	v₁₃₂ 3386	723.72	297.60	36.41		
3105	vCH(100) in phenyl	v₁₃₁ 3123	1.69	75.08	11.18		
3090	vCH(91) in phenyl	v₁₃₀ 3099	21.50	294.58	44.67		
3068	vCH(87) in phenyl	v₁₂₉ 3087	24.16	78.91	12.08		
3051	vCH(94) in phenyl	v₁₂₈ 3076	1.70	106.16	16.38		
3045	v_aCH₃(81)	v₁₂₇ 3069	4.45	27.06	4.20		
3039	v_aCH₃(97)	v₁₂₆ 3052	6.12	44.89	7.05		
3017	v_aCH₃(97) in cycl.	v₁₂₅ 3041	10.53	20.54	3.25		
3005	v_aCH₂(82)	v₁₂₄ 3029	15.49	37.24	5.95		
2990	v_aCH₂(98)	v₁₂₃ 3028	75.87	44.12	7.06		
2984	vCH(98)	v₁₂₂ 3022	13.03	52.42	8.43		
2979	v_aCH₂(86) in cycl.	v₁₂₁ 3009	4.09	120.98	19.63		
2958	v_aCH₂(55)+νCH₂(24)	v₁₂₀ 2998	5.01	25.49	4.17		
2964	v_aCH₂(82) in cycl.	v₁₁₉ 2994	0.44	213.06	34.98		
2953	v_aCH₃(98) in cycl.	v₁₁₈ 2993	4.51	30.09	4.95		
2943	v_aCH₃(81)	v₁₁₇ 2992	50.38	46.02	7.57		
2941	v_aCH₃(72)+νCH₃(21)	v₁₁₆ 2988	22.68	67.99	11.21		
2943	v_aCH₃(82)	v₁₁₅ 2986	13.18	28.76	4.75		
2937	v_aCH₃(95) in cycl.	v₁₁₄ 2980	24.42	399.70	66.36		
2932	v_aCH₃(91)	v₁₁₃ 2972	39.52	13.57	2.27		
2927	v_aCH₃(96) in cycl.	v₁₁₂ 2969	61.32	32.25	5.40		
2900	v_aCH₃(98)	v₁₁₁ 2962	14.83	50.40	8.48		
2985	vCH(87)	v₁₁₀ 2862	229.75	424.61	77.16		
2979	vCH(87)	v₁₀₉ 2854	35.41	46.67	8.53		
2974	v_aCH₃(92)	v₁₀₈ 2837	66.88	121.78	22.55		
1735	vC=O(87)	v₁₀₇ 1710	138.02	5.29	2.54		
1604	[vCC(52)+δHCC(16)] in phenyl	v₁₀₆ 1595	7.87	50.21	27.01		
1584	[vCC(56)+δCCC(23)] in phenyl	v₁₀₅ 1573	0.98	10.00	5.51		
1472	[δHCC(61)+δCCC(11)] in phenyl	v₁₀₄ 1470	15.45	0.42	0.25		
1456	δCH₂(77) in cycl.	v₁₀₃ 1463	3.79	1.82	1.12		
1452	δCH₃(41)+δCH₃(24)	v₁₀₂ 1450	14.09	1.30	0.81		
1452	δCH₃(49)+δCH₃(12)	v₁₀₁ 1446	10.29	11.54	7.24		
1440	δCH₃(24)+δCH₃(21) in cycl. and aliphatic	v₁₀₀ 1440	4.77	3.54	2.23		
1438	δCH₃(43) in cycl.	v₉₉ 1438	6.03	1.32	0.83		
1438	δCH₃(54) in cycl.	v₉₈ 1438	3.36	3.50	2.21		
1435	δCH₃(31)+δCH₃(30)	v₉₇ 1435	31.07	5.26	3.34		
1429	[δHCC(35)+vCC(10)] in phenyl	v₉₆ 1429	9.37	2.59	1.66		
1426	δCH₃(47) in cycl.	v₉₅ 1426	2.65	9.40	6.03		
Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Theoretical Investigations of Cyclopentolate

			δCH(75)	ν_{s}	1425	2.31	6.25	4.01
1417	1416	δCH(22)+δCH(20)	ν_{s3}	1422	3.22	4.34	2.79	
1399	-	δCH(38) (sym. bending)+δCH(13)	ν_{s2}	1406	1.47	4.58	3.00	
-	-	δHOC(37)+δCH(27) (sym. bending)	ν_{s1}	1386	41.04	1.07	0.71	
1375	1372	δHOC(34)+δCH(11) (sym. bending)	ν_{s0}	1379	25.58	2.71	1.83	
-	1361	wCH$_2$(25)+δH:C:C(13)	ν_{s9}	1362	10.10	0.59	0.40	
1354	-	wCH$_2$(19)	ν_{s8}	1350	71.97	0.99	0.69	
1322	-	δH:C:C(15)+wCH$_2$(15)+δHCC(10) in phenyl	ν_{s7}	1328	12.25	0.63	0.45	
-	-	wCH$_3$(34) in cycl.	ν_{s6}	1316	4.89	0.40	0.29	
1307	1299	[HCC(42)+HCC(40)] in phenyl	ν_{s5}	1311	2.12	1.01	0.73	
1289	-	wCH$_2$(29) in cycl.	ν_{s4}	1289	6.90	1.15	0.86	
-	-	wCH$_3$(21) in cycl.	ν_{s3}	1284	31.42	2.67	2.00	
-	-	wCH$_3$(15) in cycl.+HCC(15) in phenyl	ν_{s2}	1282	60.88	0.39	0.29	
-	-	δH:C:C(21)	ν_{s1}	1268	12.93	5.05	3.86	
1265	1264	wCH$_2$(32) in cycl.	ν_{s0}	1267	3.65	1.48	1.13	
-	-	tCH$_2$(30)+HOC(14)+CH$_3$(11)	ν_{s9}	1260	17.23	2.86	2.20	
1254	1258	wCH$_2$(15) in cycl.	ν_{s8}	1250	1.30	5.49	4.29	
1236	1234	tCH$_2$(22)	ν_{s7}	1239	8.61	3.61	2.85	
-	-	tCH$_3$(67) in cycl.	ν_{s6}	1215	2.38	2.44	1.98	
1199	-	tCH$_3$(14) in cycl.	ν_{s5}	1197	63.70	13.84	11.51	
1186	1186	vCN(15)	ν_{s4}	1188	12.37	9.16	7.70	
-	-	-	ν_{s3}	1180	34.31	4.08	3.46	
1177	-	tCH$_2$(22) in cycl.	ν_{s2}	1177	4.00	19.24	16.38	
-	1162	tCH$_2$(23) in cycl.+vC$_2$C$_2$(10)	ν_{s1}	1168	2.83	21.48	18.49	
-	1158	[HCC(70)+HCC(17)] in phenyl	ν_{s0}	1164	1.74	4.95	4.28	
1149	-	pCH$_3$(48)	ν_{s9}	1143	27.54	11.69	10.39	
-	-	[HCC(76)+HCC(14)] in phenyl	ν_{s8}	1136	0.05	3.93	3.52	
-	-	vC$_4$O$_4$(33)+HOCO(12)	ν_{s7}	1124	312.86	3.05	2.77	
1101	1090	vCC(22) in cycl.	ν_{s6}	1089	32.37	8.35	7.94	
1080	-	pCH$_3$(66)	ν_{s5}	1078	4.79	2.12	2.05	
-	-	[HCC(40)+HCC(36)] in phenyl	ν_{s4}	1067	10.50	1.37	1.34	
1061	1065	vCC(18) in cycl.	ν_{s3}	1059	15.09	8.17	8.08	
1049	1052	pCH$_3$(17)+vC$_{12}$C$_{20}$(10)	ν_{s2}	1053	2.14	5.01	4.99	
1034	1038	vC$_{29}$(9)+pCH$_3$(18)	ν_{s1}	1044	15.89	2.32	2.34	
1028	1031	[vC$_{21}$(1)+HCC(14)] in phenyl	ν_{s0}	1022	1.06	19.12	19.89	
-	-	vCN(43)+pCH$_3$(10)	ν_{s9}	1020	17.76	3.23	3.36	
1010	1007	vCC(28) in cycl.	ν_{s8}	1014	10.92	9.26	9.73	
-	-	[vCC$_{26}$(6)+HCC(14)+pCH$_3$(11)] in cycl.	ν_{s7}	1004	2.10	2.04	2.17	
991	990	vC$_{2}$O$_{2}$(21)+vCC(15) in cycl.	ν_{s6}	997	36.64	7.59	8.17	
-	-	tCH$_2$(19)+vC$_{2}$O$_{2}$(13)	ν_{s5}	986	14.98	15.76	17.23	
-	973	δphenyl(85)	ν_{s4}	980	1.69	34.95	38.53	
967	-	[tHCCC(57)+tCCCC(22)] in phenyl	ν_{s3}	967	0.35	1.76	1.98	
952	953	tHCCC(79) in phenyl	ν_{s2}	952	0.31	0.53	0.60	
There is weak intramolecular hydrogen bond interaction in cyclopentolate molecule. This intramolecular hydrogen interaction is O45-H46…N23. The H46…N23 bond length and O45-H46…N23 bond angle in this weak interaction were theoretically obtained as 2.027 Å and 164.1°.

The C3-C1-C14, C3-C1-C32 and C14-C1-C32 bond angles were calculated as 113.0°, 116.2° and 108.1°, respectively. The C-C bond angles in the phenyl ring of the title compound were calculated at the interval of 118.2°-121.3°, while these bond angles in 1-hydroxycyclopentyl group were theoretically obtained at the interval of 102.6°-105.9°. The C1-C32-O45, C33-C32-O45, C34-C32-O45, C1-C14-O15, C1-C14-O16, O15-C14-O16, C14-O16-C17 and O16-C17-C20 containing oxygen atoms were computed at 108.5°, 110.5°, 105.4°, 125.8°, 110.7°, 123.4°, 117.5° and 109.3°, while the C17-C20-N23, C20-N23-C24, C20-N23-C28 and C24-N23-C28 bond angles in 2-(dimethylamino)ethyl group were theoretically found at 114.3°, 112.6°, 110.5° and 110.7°, respectively.

It can be inferred from the optimized molecular structure and computed dihedral angles for conformer I that cyclopentolate is non-planar. As a result, the C4-C3-C1-C32, C5-C3-C1-C14, C3-C1-C32-C33 and O16-C14-C1-C32 dihedral angles were calculated as -100.6°, -46.2°, -61.9° and 102.2°, while the C14-O16-C17-C20, O16-C17-C20-N23, C17-C20-N23-C24 and C17-C20-N23-C28 dihedral angles were computed as 102.3°, -62.4°, -70.1° and 165.5°, respectively.

4.2. Vibrational Frequency Analyses

In the following discussion, the cyclopentolate molecule is experimentally examined. The observed and calculated vibrational frequencies, calculated FT-IR intensities, Raman scattering activities and vibrational assignments of the title molecule are given in Table 2. The experimental and simulated IR spectra of cyclopentolate are shown in Figure 2 and the experimental and simulated Raman spectra of cyclopentolate are shown in Figure 3. The computations of harmonic wavenumbers, IR intensities and Raman activities were performed with the B3LYP/aug-cc-pVDZ level. Cyclopentolate
Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Theoretical Investigations of Cyclopentolate

consists of 46 atoms and accordingly it has 132 modes of vibrations. The linear correlation coefficient (R^2) and root-mean-square deviation (RMSD) values between the experimental and computed vibrational frequencies were found as 0.99933 and 23.4 cm$^{-1}$ for IR wavenumbers and 0.99983 and 10.6 cm$^{-1}$ for Raman ones, respectively. The experimental and simulated IR and Raman spectra of the title compound are given in Figures 2 and 3, respectively. In the present research, C-H, C-O, C-C and C-N vibrations were examined. As seen from Table 2, the experimental and calculated vibrational wavenumbers are in good agreement.

4.2.1. C-H and O-H vibrations

The C-H stretching vibrations in phenyl ring are between 3100 and 3000 cm$^{-1}$ (Akyıldırım et al, 2017; Silverstein et al, 2005; Bilkan, 2017; Stuart, 2004; Lambert and Shurvell, 1987; Colthup et al, 1964). The C-H stretching bands in phenyl ring were observed at 3090 and 3105 cm$^{-1}$ in FT-IR spectrum and at 3068 cm$^{-1}$ in Laser-Raman spectrum. These bands were computed in the range of 3123-3069 cm$^{-1}$ in our calculations (Palafox, 2000). The C1-H2 stretching vibration was not observed in FT-IR and Laser-Raman spectra, whereas it was calculated at 2998 cm$^{-1}$. The HCC in-plane bending vibrational modes (δHCC) of phenyl ring were obtained at 1472 (IR)-1474 (R) (exp.)/1470 (cal.), 1429 (cal.), 1307 (IR)-1299 (R)/1311 (cal.), 1158 (R) (exp.)/1164 (cal.), 1136 (cal.) and 1067 (cal.) cm$^{-1}$ as generally combined with CC stretching vibrations of ring, whereas the HCCC out-of-plane bending vibrations (τHCCC) were found at 967 (IR) (exp.)/967 (cal.), 952 (IR)-953 (R) (exp.)/952 (cal.), 912 (R)/913 (cal.), 893 (IR)-890 (R) (exp.)/897 (cal.), 829 (R)/827 (cal.) and 690 (cal.) cm$^{-1}$ mainly as individual bands (Palafox, 2000).

The O-H stretching band in 1-hydroxycyclopentyl group of the title molecule was observed at 3230 cm$^{-1}$ in FT-IR spectrum, while it was computed at 3386 cm$^{-1}$. The OH in-plane bending vibrations (δHOC) were found at 1375 (IR)-1372 (R)/1379 (cal. with 34% contribution of PED) cm$^{-1}$ and 1386 (cal. with 37% contribution of PED) cm$^{-1}$. The OH out-of-plane bending mode (τHOCC) was not observed in both FT-IR and Laser-Raman spectra, whereas it was computed at 682 cm$^{-1}$ with 72% contribution of PED.
4.2.2. CO vibrations

The C=O stretching band in the carboxyl group gives strong absorption band in the region 1870-1540 cm\(^{-1}\) (Akyıldırım et al, 2017; Silverstein et al, 2005; Bilkan, 2017; Stuart, 2004; Lambert and Shurvell, 1987; Colthup et al, 1964). The C=O stretching vibration of cyclopentolate was observed at 1735 (IR) - 1734 (R) cm\(^{-1}\) and the computed scaled wavenumber value for this band was obtained at 1710 cm\(^{-1}\). The C-O stretching vibrations of cyclopentolate were observed at 991 (IR) - 990 (R), 867 (R) and 838 (R) cm\(^{-1}\). The computed values (with X% contribution of PED) for this C-O stretching bands (νC16O16, νC17O16 and νC32O45) were obtained at 1124 (33%), 997 (21%), 986 (13%), 900 (11%), 857 (22%) and 846 (22%) cm\(^{-1}\).

4.2.3. C-N vibrations

Mani et al. assigned C-N stretching absorption at 1169 cm\(^{-1}\) in FT-IR and 1120 cm\(^{-1}\) in FT-Raman (Mani et al, 2008). The C-N stretching vibrations were found in the region of 1260-763 cm\(^{-1}\) for cyclopentolate molecule in Table 2. The bands observed as mixed with other vibrational bands at 1186 (IR)-1186 (R), 1034 (IR)-1038 (R), 921 (IR)-920 (R), 750 (IR)-753 (R) cm\(^{-1}\) can be assigned to CN stretching modes. The computed values for CN stretching modes in 2-(dimethylamino)ethyl group of the title molecule were obtained at 763 (41%), 774 (16%), 934 (35%), 1020 (43%), 1044 (29%), 1188 (15%) and 1260 (14%) cm\(^{-1}\). These observed and calculated values coincide with similar structures in the literature (Sroczyński and Malinowski, 2017; Sert et al, 2017).

4.2.4. C-C vibrations

The CC stretching vibrations of aromatic rings usually occur at the interval of 1400-1650 cm\(^{-1}\) (Palafox, 2000; Hirschlerv et al (1994; Angelova et al, 1992; Sroczyński and Malinowski, 2017; Akyıldırım et al, 2017; Silverstein et al, 2005; Bilkan, 2017; Stuart, 2004; Lambert and Shurvell, 1987; Colthup et al, 1964; Mani et al, 2008; Sert et al, 2017; Temel et al, 2015). The νCC stretching bands in this region are called skeletal vibrations of aromatic ring. The CC bands can also be observed as combined with other vibrations (Akyıldırım et al, 2017) below 1400 cm\(^{-1}\) as given in Table 2. The vibrational bands observed at 1605 (IR)-1604 (R), 1584 (IR and R), 1307 (IR)-1299 (R), 1028 (IR)-1031 (R) cm\(^{-1}\) were assigned to the CC stretching vibration modes in phenyl ring. The vibrational bands observed at 1101 (IR)-1090 (R), 991 (IR)-990 (R), 929 (R), 750 (IR)-753 (R) and 703 (IR) cm\(^{-1}\) are assigned to the CC stretching vibration in 1-hydroxycyclopentyl ring. The vibrational bands observed at 589 (IR)-592 (R), 621 (R) and 973 (R) cm\(^{-1}\) were assigned to the CCC in-plane bending vibration modes (δphenyl). Similarly, the CCC torsional modes in phenyl ring gave rise to absorption bands at 410 (R) and 501 (IR)-502 (R) cm\(^{-1}\) (Palafox, 2000). The CCC in-plane bending vibrations (δcyclo) in 1-hydroxycyclopentyl group were found at 640 (R)/639 (cal. with PED contribution of 29%), 643 (IR)-644(R)/641 (cal. with PED contribution of 16%) and 861 (IR)-870 (R)/865 (cal. with PED contribution of 38%) cm\(^{-1}\). The CC stretching (vCC) and CCC torsional modes (τcyclo) in 1-hydroxycyclopentyl group are listed in Table 2.

4.2.5 CH\(_3\) and CH\(_2\) vibrations

The asymmetric and symmetric stretching vibrations of methyl and methylene (CH\(_3\) and CH\(_2\)) groups were expected to be in the range of 3000-2800 cm\(^{-1}\) (Roeges, 1994;
Ambujakshan et al., 2008; Gökce and Bahceli, 2013). The asymmetric stretching bands can sometimes rise up to 3050 cm\(^{-1}\). The experimental and calculated wavenumbers for scissoring, twisting and rocking modes for methyl and methylene groups are summarized in Table 2. In the present study, CH\(_3\) asymmetric stretching appeared at 3041, 3029, 2994, 2992, 2988 and 2986 cm\(^{-1}\) with various contributions of PED. The CH\(_3\) symmetric stretching bands appeared at 2880 and 2885 cm\(^{-1}\) in FT-IR spectra and at 2872 cm\(^{-1}\) in Laser-Raman spectra and they were calculated at 2854 and 2862 cm\(^{-1}\). The two asymmetric and two symmetric stretching modes for CH\(_2\) groups in aliphatic chain were obtained at 3051 (R) (exp.)/3052 (cal.) and 3039 (IR)-3045 (R) (exp./1379 (cal.) cm\(^{-1}\). The four CH\(_3\) rocking vibrational modes were found at 1149 (IR) (exp./1143 (cal. (48%)), 1080 (IR) (exp./1078 (cal. (66%)), 1034 (IR)-1038(R)/1044 (cal. (18%)) and 1020 (cal. (10%)) cm\(^{-1}\). These values are consistent with the experimental FT-IR values at 1149, 1080 and 1034 cm\(^{-1}\) and the Laser-Raman value at 1038 cm\(^{-1}\). The two CH\(_3\) torsional vibrational modes were found at 256 and 238 cm\(^{-1}\) by the B3LYP/aug-cc-pVDZ calculation. The scissoring, wagging, twisting and rocking modes for CH\(_2\) groups in aliphatic chain and 1-hydroxycyclopentyl were listed in Table 2.

4.3. \(^1\)H and \(^{13}\)C NMR Chemical Shift Analyses

NMR analysis, used in organic structure determination, is associated with the spin orientation direction. In NMR analysis, chemical shifts are measured in parts per million (ppm). \(^1\)H and \(^{13}\)C NMR chemical shift calculated with gauge-including atomic orbital (GIAO) approach using Gaussian09 software shows good agreement with the experimental chemical shift. Figure 4 shows the experimental \(^1\)H and \(^{13}\)C NMR chemical shift spectra of cyclopentolate. The experimental \(^1\)H and \(^{13}\)C NMR chemical shift values measured in DMSO-d6 solvent and the chemical shift values calculated at the B3LYP/aug-cc-pVDZ level in vacuum and DMSO solvent are shown in Table 3. The R\(^2\) and RMSD values between the experimental and computed \(^{13}\)C NMR chemical shifts were found as 0.99452 and 3.8 ppm, respectively.
Figure 4. The experimental 1H (bottom) and 13C (top) NMR chemical shift spectra of cyclopentolate.

Table 3. The experimental and computed 1H and 13C NMR isotropic chemical shifts (with respect to TMS, all values in ppm) in DMSO of cyclopentolate.

Atom	δ_{exp}	δ_{cal}	Atom	δ_{exp}	δ_{cal}
C1	55.018	64.600	H2	3.978	4.065
C3	136.693	139.343	H7	7.573	7.461
C4	130.166	130.788	H9	8.468	7.681
C5	130.166	128.689	H11	7.743	7.685
C6	128.330	126.450	H12	7.685	7.685
C8	128.330	126.201	H13	7.685	7.685
C10	127.557	125.906	H18	3.754	3.294
C14	172.076	179.336	H19	5.512	5.484
C17	59.759	60.796	H21	2.164	2.961
C20	59.054	60.353	H22	2.264	2.961
C24	42.835	40.243	H25	1.572	2.264
C28	42.835	46.103	H26	2.955	2.264
C32	82.780	89.952	H27	2.437	2.707
C33	36.593	34.734	H29	2.707	2.707
C34	38.298	38.752	H30	2.379	2.379
C35	23.250	23.633	H31	2.104	2.104
C38	23.123	24.318	H36	2.040	2.040

1H chemical shift values were computed at the intervals of 1.033-8.468 ppm in DMSO. The experimental chemical shifts of 1H are measured in the range of 1.419-10.959 ppm. The chemical shift for H2 is experimentally located at 3.978 ppm. The experimental chemical shifts of hydrogen atoms (H7, H9, H11, H12, H13) in phenyl ring are measured in the range of 7.250-7.461 ppm and they were calculated in the region of 7.573-8.468 ppm. The experimental chemical shifts of H18 and H19 hydrogen atoms are measured in the range of 4.294-4.484 ppm and H18 and H19 hydrogen atoms were calculated at 3.754 ppm and 5.512 ppm, respectively. The experimental chemical shifts of H21 and H22 hydrogen atoms were measured as 3.363 ppm and H21 and H22 hydrogen atoms were calculated at 2.164 ppm and 2.961 ppm, respectively. The experimental chemical shifts of H25, H26 and H27 hydrogen atoms were measured as 2.707 ppm and H25, H26 and H27 hydrogen atoms were calculated at 2.264 ppm, 1.572 ppm and 2.955 ppm.
Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Theoretical Investigations of Cyclopentolate

respectively. The experimental chemical shifts of H29, H30 and H31 hydrogen atoms were measured as 2.707 ppm and H29, H30 and H31 hydrogen atoms were calculated at 2.437 ppm, 2.379 ppm and 2.104 ppm, respectively. The experimental chemical shifts of hydrogen atoms (H36, H37, H41, H42, H43, H44, H39, H40) were measured in the range of 1.419-1.656 ppm and H36, H37, H41, H42, H43, H44, H39, H40 atoms were calculated at 2.040 ppm, 1.535 ppm, 1.427 ppm, 1.033 ppm, 1.843 ppm, 1.616 ppm, 1.778 ppm and 1.472 ppm, respectively. The largest deviation between the calculated and experimental 1H NMR chemical shifts (δexp.-δcal.) was observed for H46. The weakest interaction was observed for H46 with 4.685 ppm and the strongest interaction was observed for H46 with 10.959 ppm in experimental 1H chemical shift spectra. The experimental NMR chemical shifts of protons in phenyl and dimethylamino groups of cyclopentolate molecule were recorded at the interval of ~7.38-7.50 ppm and at ~2.8 ppm by Roy and Guillory (1996) respectively. These values are in a good agreement with the recorded and computed data in our study.

The 13C chemical shifts were calculated in the range of 24.318-179.336 in DMSO ppm, while they were experimentally recorded in the range of 23.123-172.076 ppm. The largest deviation between the calculated and experimental 13C NMR chemical shifts (δexp.-δcal.) was obtained for C1 with 9.582 ppm, whereas the smallest deviation was found for C35 with 0.383 ppm. The NMR chemical shift value for C14 carbon atom in ester group of cyclopentolate was obtained at 172.076 (exp)/179.336 (cal.) ppm, due to attached to electronegative oxygen atoms. Likewise, the C32 carbon atom bonded to O45 atom was given at 82.780 (exp.)/89.952 (cal.) ppm NMR signal. The NMR signals for aromatic sp2 carbons were recorded at the interval of 127.557-136.693 ppm, whereas the sp3 carbon atoms in aliphatic and 1-hydroxycyclopentyl groups were observed in the region of 23.123-59.759 ppm.

4.4. UV-Vis. Analysis

The UV-Vis. spectrum of cyclopentolate dissolved in methanol was recorded in the region of 200-600 nm. UV-Vis. calculation was performed using TD-DFT method in methanol. The simulated and measured UV-Vis. electronic absorption spectra are given in Figure 5. Additionally, the experimental and computed electronic absorption wavelengths, electronic transitions, oscillator strengths, excitation energies and major contributions are listed Table 5. The major contributions for the computed electronic wavelengths were obtained by GaussSum 3.0 program (O’boyle et al, 2008).

![Figure 5. The recorded (black) and simulated (blue) UV-Vis. spectra in methanol of cyclopentolate](image)

The wavelength recorded at 258 nm in experimental UV-Vis. spectrum can be assigned to n→π* transition. This transition can be ascribed from dimetilamino group to phenyl ring in cyclopentolate molecule. The calculated wavelength corresponding to this experimental value was obtained at 235.78 nm with 0.0291 values of oscillator strength. The
major contribution for these computed values were found as $H \rightarrow L$ (85%). Similarly, the wavelength recorded at 211 nm corresponds to $\pi \rightarrow \pi^*$ electronic transition that can be attributed to the phenyl ring. The computed wavelengths and oscillator strength values were found as 228.29 nm and 0.1017 (the band with the highest intensity in the computed UV-Vis. wavelengths), respectively. The major contributions computed for this computed value were obtained as $H_1 \rightarrow L$ (70%) and $H_1 \rightarrow L+3$ (10%). The other computed wavelengths and their major contributions were listed in Table 4. The experimental and computed wavelengths and electronic transitions are in good harmony (Szwed et al, 2013).

| Table 4. The experimental and computed UV-Vis. parameters and electronic transitions in methanol of cyclopentolate. |
| --- | --- | --- | --- | --- |
| The experimental wavelengths | The calculated parameters | | | |
| λ_{exp} (nm) | $\lambda_{\text{cal.}}$ (nm) | Excitation energy (eV) | Oscillator strength | Major contributions |
| 258 | 238.90 | 5.1898 | 0.0018 | $H_{1} \rightarrow L$ (50%), $H_{2} \rightarrow L$ (42%) |
| 235.78 | 235.85 | 5.2585 | 0.0291 | $H \rightarrow L$ (85%) |
| 211 | 228.29 | 5.4309 | 0.1017 | $H_{1} \rightarrow L$ (70%), $H_{1} \rightarrow L+3$ (10%) |
| 219.83 | 219.60 | 5.6460 | 0.0179 | $H_{4} \rightarrow L$ (22%), $H_{3} \rightarrow L$ (19%), $H_{4} \rightarrow L+3$ (16%), $H_{1} \rightarrow L$ (11%) |
| 219.16 | 219.60 | 5.6571 | 0.0258 | $H_{1} \rightarrow L+2$ (64%), $H_{1} \rightarrow L+1$ (17%), $H_{1} \rightarrow L+4$ (10%) |

4.5. HOMO-LUMO Analyses

The highest and the lowest occupied molecular orbitals (HOMO and LUMO) are also referred to as the frontier molecule orbitals (FMOs) (Fukui, 1982). The HOMOs and LUMOs are donor and acceptor groups filled and unfilled by electrons, respectively (Buyukuslu et al, 2010). The simulated HOMO and LUMO surfaces, energy values and their shapes for the title molecule are given in Figure 6. The calculated HOMO-1, HOMO, LUMO and LUMO+1 energy values are -6.8339 eV, -6.6306 eV, -0.7614 eV and -0.5714 eV, respectively at the DFT/B3LYP/aug-cc-pVDZ level. The energy gap between HOMO and LUMO is computed at 5.8692 eV. The energy gap between HOMO-1 and LUMO+1 is computed at 6.2625 eV. The HOMO is localized on the dimethylamino group excluding phenyl ring and 1-hydroxycyclopentyl group, while the LUMO is placed on overall molecular structure except (dimethylamino)-ethyl and 1-hydroxycyclopentyl groups. The HOMO and LUMO localizations on cyclopentolate are formed by n molecular orbitals on nitrogen atom and π^* molecular orbitals of aromatic ring, respectively. Similarly, the HOMO-1 is mainly localized on the bonding π molecular orbitals of aromatic ring, whereas the LUMO+1 is placed on anti-bonding π^* molecular orbitals of phenyl ring. As a result, the $n \rightarrow \pi^*$ electronic transition can be associated with HOMO\rightarrowLUMO and HOMO\rightarrowLUMO+1, whereas the $\pi \rightarrow \pi^*$ electronic transition can be assigned to HOMO-1\rightarrowLUMO and HOMO-1\rightarrowLUMO+1. These notations can be confirmed by electronic transitions observed and assigned in UV-Vis. spectrum of cyclopentolate.
5. Conclusion

In this research, conformational analysis was carried out to obtain the ground stable molecular structure with the minimum energy of cyclopentolate. As a result of conformational analysis, four molecular geometric forms in at the lowest energies were optimized with the B3LYP/aug-cc-pVDZ level. The computed molecular energy for the most stable conformer I was obtained as -943.4087 Hartrees. By considering conformer I, the structural, spectroscopic (IR, Raman, NMR and UV-Vis.) and HOMO-LUMO analyses for cyclopentolate were performed using theoretical computational methods. The computed spectral properties were compared with the experimental data. A weak intra-molecular hydrogen bond interaction in cyclopentolate molecule was observed in O45-H46…N23 (r(H46…N23)=2.027 Å and A(O45-H46…N23)=164.1°). Due to the influence of this interaction, the OH stretching band was observed at 3230 cm⁻¹. The electronic transitions in UV-Vis. spectra supported with charge transfers in the HOMO and LUMO analyses of the molecule were determined as π→π* (211 nm) and n→π* (258 nm).

6. References

Akyıldırım, O., Gökce, H., Bahçeli, S. and Yüksek, H. (2017). “Theoretical and spectroscopic (FT-IR, NMR and UV-Vis.) characterizations of 3-p-chlorobenzyl-4-(4-carboxybenzyl idenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one molecule”, Journal of Molecular Structure, 1127, 114-123.

Ambujakshan, K. R., Madhavan, V.S., Varghese, H.T., Panicker, C. Y., Temiz-Arpaç, O., Tekiner-Gulbas B. and Yıldız I. (2008). “Vibrational spectroscopic studies and ab initio calculations of 5-methyl-2-(p-methylaminophenyl)benzoxazole, Spectrochim”. Spectrochimica Acta Part A, 69, 782-788.

Angelova, O., Macicek, J., Vassilev, N.G., Momchilova, S. and Petrova, J. (1992). “Structures of threo (RR,SS) diethyl ester of 2-hydroxy-1,2-diphenylethylphosphonic acid and (±)diethyl ester of (1-hydroxycyclopentyl)(2-methylphenyl) methylphosphonic acid”, J. Crystallogr. Spectrosc. Res., 22, 253-258.

Becke, A.D. (1993). “Density-functional thermochemistry. III. The role of exact Exchange”, J. Chem. Phys. 98, 5648-5652.

Bilkan, M. T. (2017). “Structural and spectroscopic studies on dimerization and solvent-ligand complexes of Theobromine”. Journal of Molecular Liquids, 238, 523–532.

Colthup, N.B., Daly, L.H. and Wiberley, E. (1964). Introduction to Infrared and Raman Spectroscopy, Academic Press, New York.

Dennington, R., Keith, T. and Millam, J. (2009). GaussView, Version 5, Semichem Inc., Shawnee Mission KS.

Ditchfield, R. (1974). “Self-consistent perturbation theory of diamagnetism. I. A gauge-invariant LCAO method for N.M.R. chemical shifts”, Molecular Physics, 27, 789-807.

Farhood, Q. K. (2012). “Cycloplegic Refraction in Children with Cyclopentolate versus Atropine”, Journal of Clinical and Experimental Ophthalmol., 3(7), 1-5.
Frag, E. Y. Z., Mohamed, G.G., El-Dien F.A.N., and Mohamed, M. El-Badry. (2011). “The Use of Integrated Analytical Tools for Determination of Cyclopentolate and Naphazoline Hydrochlorides in Pure and Pharmaceutical Preparations”, Pharmaceutica Analytica Acta, 2(1), 1-6.

Frisch, M.J. et al. (2009). Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT.

Fukui, K. (1982). “Role of frontier orbitals in chemical reactions”, Science, 218, 747-754.

H. Buyukuslu, M. Akdogan, G. Yildirim and C. Parlak. (2010). “Ab initio Hartree-Fock and density functional theory study on characterization of 3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1H-indole”, Spectrochim. Acta Part A, 75, 1362-1369.

H. Gökce and S. Bahçeli. (2013). “The molecular structures, vibrational spectroscopies (FT-IR and Raman) and quantum chemical calculations of n-alkyltrimethylammonium bromides”, Opt. Spectrosc, 115, 632-644.

Hirschler, J., Berger, B. and Bolte, M. (1994). “A dimeric (phenylsulfonyl) oxazolidine”, Acta Crystallographica, C50, 1279-1281.

Hung, K. C., Huang, H.M. and Lin, P.W. (2015). “Changes of intraocular pressure and refractive status in children following cycloplegic refraction with 1% cyclopentolate and 1% tropicamide”, Taiwan Journal of Ophthalmology, 5, 124-127.

Izake, E.L. (2007). “Chiral discrimination and enantioselective analysis of drugs: An overview“, Journal of Pharmaceutical Sciences, 96, 1659-1676.

Jamr’oz, M.H. (2004). Vibrational Energy Distribution Analysis VEDA4, Warsaw.

Lambert, J. B., Shurvell, H. F., and Cooks, R. G. (1987). Introduction to Organic Spectroscopy, Macmillan Publish, New York, USA.

Lee, C., Yang, W. and Parr, R.G. (1988). “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B, 37, 785-789.

Li, T., Zhou, X., Chen, Z. and Zhou, X. (2015). “Effects of Cyclopentolate on Form Deprivation Myopia in Guinea Pigs”, Open Journal of Ophthalmology, 5, 10-18.

London, F. (1937). “Théorie quantique des courants interatomiques dans les combinaisons aromatiques”, J. Phys. Radium, 8, 397-409.

Mani, P., Umamaheswari, H., Joshua, B. D. and Sundaraganesan, N. (2008). “Molecular structure, vibrational spectra and NBO analysis of phenylisothiocyanate by density functional method”, Journal of Molecular Structure: THEOCHEM, 863, 44-49.

Mericko, D., Lehotay, J. and Cizmárik, J. (2007). “HPLC separation of enantiomers using chiral stationary phases”, Čes. slov. Farm, 56(3), 107-113.

Miertus, S., Scrocco, E. and Tomasi, J. (1981). “Electrostatic interaction of a solute with a continuum. Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects”, Chemical Physics, 55, 117-129.
Mindel, J. S. (1994). “Duane’s Foundations of Clinical Ophthalmology”, Vol. 3, JB Lippincott, Philadelphia.

O'boyle, M., Tenderholt, A. L. and Langner, K. M. (2008). “cclib: a library for package-independent computational chemistry algorithms”, Journal of Computational Chemistry, 29, 839-845.

Özer, A. (2005). “Görme Optiği ve Refraksiyon”, Tüm Optik ve Optometrik Meslekler Birliği Derneği.

Palafox, M. A. (2000). “Scaling Factors for the Prediction of Vibrational Spectra. I. Benzene Molecule”, International Journal of Quantum Chemistry, 77, 661-684.

Roeges, N. P. G. (1994). A Guide to the Complete Interpretation of Infrared Spectral of Organic Structures, John Wiley, Chichester.

Roy, A. K. and Guillory, J.K. (1995). “The kinetics and mechanism of the hydrolysis of cyclopentolate hydrochloride in alkaline solutions”, International Journal of Pharmaceutics, 120, 169-178.

Roy. A. K. and Guillory, J. K. (1996). “The effect of cyclodextrins on the aqueous stability of cyclopentolate hydrochloride”, International Journal of Pharmaceutics, 138, 37-43.

Runge, E. and Gross, E. K. U. (1984). “Gross, Density-functional theory for time-dependent systems”, Physical Review Letter, 52, 997-1000.

Russell D. Johnson III (Ed.). (2016). NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database, Number 101, Release 18, October, http://cccbdb.nist.gov/.

Sert, Y., Öztürk, N., Al-Omary, F. A. M., Alaşalvar, C., Al-Shehri, M. M., El-Emam, A. A. and Gökçe, H. (2017). “Experimental (FT-IR, Laser-Raman and NMR) and theoretical spectroscopic analysis of 3-[(N-methylanilino) methyl]5-(thiophen-2-yl)-1,3,4-oxadiazole-2(3H)-thione”, Computational and Theoretical Chemistry, 16(3) 1750024.

Silverstein, R. M., Webster, F. X. and Kiemle, D. J. (2005). Spectroscopic Identification of Organic Compound, 7th ed., John Wiley & Sons, Inc., USA.

Sroczyński, D. and Malinowski, Z. (2017). “Spectroscopic investigations (FT-IR, UV, 1H and 13C NMR) and DFT/TD-DFT calculations of potential analgesic drug 2-[2-(dimethylamino)ethyl]-6-methoxy-4-(pyridin-2-yl)-1(2H)-phthalazinone”, Journal of Molecular Structure, 1150, 614-628.

Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications, JohnWilley & Sons, England.

Szwed, K., Gorecki, M. and Frelek, J. (2013). “Enantioselective extraction system containing binary chiral selectors and chromatographic enantioseparation method for determination of the absolute configuration of enantiomers of cyclopentolate”, Chromatographia, 76, 1603-1611.

Temel, E., Alaşalvar, C., Gökçe, H., Güder, A., Albayrak, Ç., Alpaslan, Y. B., Alpaslan, G. and Dilek, N. (2015). “DFT calculations, spectroscopy and antioxidant activity studies
on (E)-2-nitro-4-[(phenylimino)methyl]phenol”,
Spectrochimica Acta A, 136, 534-546.

Trotter, J. (1960). “Bond lengths in benzene derivatives: Hybridization or resonance”,
Tetrahedron, 8, 13-22.

Vale, J. and Cox, B. (1978). “Drugs and the Eye”, Butterworth & Co (Publishers) Ltd.

Wolinski, K., Hinton, J.F. and Pulay, P. (1990). “Efficient implementation of the
gauge-independent atomic orbital method for NMR chemical shift calculations”, Journal of
the American Chemical Society, 112, 8251-8260.