ON THE SPACE OF ORIENTED AFFINE LINES IN \mathbb{R}^3

BRENDAN GUILFOYLE AND WILHELM KLINGENBERG

Abstract. We introduce a local coordinate description for the correspondence between the space of oriented affine lines in Euclidean \mathbb{R}^3 and the tangent bundle to the 2-sphere. These can be utilised to give canonical coordinates on surfaces in \mathbb{R}^3, as we illustrate with a number of explicit examples.

The correspondence between oriented affine lines in \mathbb{R}^3 and the tangent bundle to the 2-sphere has a long history and has been used in various contexts. In particular, it has been used in the construction of minimal surfaces [2], solutions to the wave equation [3] and the monopole equation [1].

The Euclidean group of rotations and translations acts upon the space of oriented lines \mathcal{L} and in this paper we freeze out this group action by introducing a particular set of coordinates on \mathcal{L}. Our aim is to provide a local coordinate representation for the correspondence, thereby making it accessible to further applications.

One application is the construction of canonical coordinates on surfaces S in \mathbb{R}^3 which come from the description of the normal lines of S as local sections of the tangent bundle of the 2-sphere. We illustrate this explicitly by considering the ellipsoid and the symmetric torus.

Definition 1. Let \mathcal{L} be the set of oriented (affine) lines in Euclidean \mathbb{R}^3.

Definition 2. Let $\Phi : TS^2 \to \mathcal{L}$ be the map that identifies \mathcal{L} with the tangent bundle to the unit 2-sphere in Euclidean \mathbb{R}^3, by parallel translation. This bijection gives \mathcal{L} the structure of a differentiable 4-manifold.

Let (ξ, η) be holomorphic coordinates on TS^2, where ξ is obtained by stereographic projection from the south pole onto the plane through the equator, and we identify (ξ, η) with the vector

$$\eta \frac{\partial}{\partial \xi} + \bar{\eta} \frac{\partial}{\partial \bar{\xi}} \in T_{\xi}S^2.$$

Theorem 1. The map Φ takes $(\xi, \eta) \in TS^2$ to the oriented line given by

$$z = \frac{2(\eta - \bar{\eta} \xi^2) + 2\xi(1 + \bar{\xi})r}{(1 + \bar{\xi})^2}$$

$$t = \frac{-2(\eta \bar{\xi} + \bar{\eta} \xi) + (1 - \xi^2 \bar{\xi}^2)r}{(1 + \bar{\xi})^2},$$

Date: December 7, 2002.

1991 *Mathematics Subject Classification.* Primary: 51N20; Secondary: 53A55.

Key words and phrases. twistor, holomorphic coordinates.

The first author was supported by the Isabel Holgate Fellowship from Grey College, Durham and the Royal Irish Academy Travel Grant Scheme.
where \(z = x^1 + ix^2, \ t = x^3, \ (x^1, x^2, x^3) \) are Euclidean coordinates on \(\mathbb{R}^3 = \mathbb{C} \oplus \mathbb{R} \) and \(r \) is an affine parameter along the line such that \(r = 0 \) is the point on the line that lies closest to the origin.

Proof. Stereographic projection from the south pole gives a map from \(\mathbb{C} \) to \(\mathbb{R}^3 \) by

\[
\begin{align*}
z &= \frac{2\xi}{1 + \xi \bar{\xi}} , \\
t &= \frac{1 - \xi \bar{\xi}}{1 + \xi \bar{\xi}} .
\end{align*}
\]

(0.3)

The derivative of this map gives

\[
\frac{\partial}{\partial \xi} = \frac{2(1 + \xi \bar{\xi})}{(1 + \xi \bar{\xi})^2} \frac{\partial}{\partial z} - \frac{2\xi}{(1 + \xi \bar{\xi})^2} \frac{\partial}{\partial \bar{\xi}} - \frac{2\bar{\xi}}{(1 + \xi \bar{\xi})^2} \frac{\partial}{\partial t} ,
\]

and similarly for its conjugate.

Thus

\[
\eta \frac{\partial}{\partial \xi} + \bar{\eta} \frac{\partial}{\partial \bar{\xi}} = \frac{2(\eta - \bar{\eta} \xi^2)}{(1 + \xi \bar{\xi})^2} \frac{\partial}{\partial z} + \frac{2(\bar{\eta} - \eta \bar{\xi}^2)}{(1 + \xi \bar{\xi})^2} \frac{\partial}{\partial \bar{\xi}} - \frac{2(\eta \bar{\xi} + \bar{\eta} \xi)}{(1 + \xi \bar{\xi})^2} \frac{\partial}{\partial t} .
\]

(0.4)

Consider the line in \(\mathbb{R}^3 \) given by equations (0.1) and (0.2). The direction of this line is

\[
\frac{2\xi}{1 + \xi \bar{\xi}} \frac{\partial}{\partial z} + \frac{2\bar{\xi}}{1 + \xi \bar{\xi}} \frac{\partial}{\partial \bar{\xi}} + \frac{1 - \xi \bar{\xi}}{1 + \xi \bar{\xi}} \frac{\partial}{\partial t} .
\]

When this unit vector is translated to the origin, it ends at the point \(\xi \in S^2 \) (cf. equation (0.3))

The fixed vector determining the line is seen to be (0.4), and, using the fact that the Euclidean inner product of the basis vectors is

\[
\left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{\xi}} \right) = \frac{1}{2} , \quad \left(\frac{\partial}{\partial \bar{\xi}}, \frac{\partial}{\partial \bar{\xi}} \right) = 1,
\]

\[
\left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{\xi}} \right) = \left(\frac{\partial}{\partial \bar{\xi}}, \frac{\partial}{\partial \bar{\xi}} \right) = \left(\frac{\partial}{\partial \bar{\xi}}, \frac{\partial}{\partial \bar{\xi}} \right) = \left(\frac{\partial}{\partial \bar{\xi}}, \frac{\partial}{\partial \bar{\xi}} \right) = 0 ,
\]

we compute that the line is orthogonal to the fixed vector given by (0.4). Thus \(r \) is an affine parameter along the line such that \(r = 0 \) is the point on the line that lies closest to the origin, and the proof is completed.

Consider the map \(\Psi : \mathcal{L} \times \mathbb{R} \rightarrow \mathbb{R}^3 \) which takes a line and a number \(r \) to a point on the line which is a parameter distance \(r \) from the point on the line closest to the origin.

Proposition 1. \(\Psi^{-1} \) takes a point \((z, t) \in \mathbb{R}^3\) to a sphere in \(\mathcal{L} \times \mathbb{R} \), the oriented lines containing the point:

\[
\begin{align*}
\eta &= \frac{1}{2}(z - 2t \xi - \bar{\xi}^2) , \\
r &= \frac{\bar{\xi}z + \xi \bar{\xi} + (1 - \xi \bar{\xi})t}{1 + \xi \bar{\xi}} .
\end{align*}
\]

Proof: This is comes from solving equations (0.1) and (0.2) for \(\eta \) and \(r \).

Alternatively, the second equation can be proved by finding the point \(p \) on the line with direction \(\xi \) through \((z, t) \in \mathbb{R}^3\) which minimises the distance to the origin. Then

\[
r^2 = |(z, t)|^2 - |p|^2 ,
\]

which gives the above expression for \(r \).
By throwing away the r information, the above formula gives the holomorphic sphere of lines through a given point $(z,t) \in \mathbb{R}^3$, as described in [1]. These are a 3-parameter family of global sections of $T S^2$ and the associated line congruence in \mathbb{R}^3 is normal to round spheres about the given point.

More generally any oriented surface S in \mathbb{R}^3 gives rise to a surface $\Sigma \subset \mathcal{L}$ through it’s normal line congruence. Such a Σ will, in general, not be holomorphic, nor be given by global sections of the bundle. However, locally, a surface can often be given by local non-holomorphic sections and the following examples illustrate this for two well-known surfaces.

The examples can be verified by substitution in equations (0.1) and (0.2) and then checking that the resulting surface, parameterised by its normal direction coordinate ξ, is indeed the one claimed.

Example 1. The triaxial ellipsoid with semi-axes a_1, a_2 and a_3 can be covered by coordinates ξ via

$$
\eta = \frac{a_1(\xi + \bar{\xi})(1 - \xi^2) + a_2(\xi - \bar{\xi})(1 + \xi^2) - 2a_3(1 - \xi \bar{\xi})}{2 \sqrt{a_1(\xi + \bar{\xi})^2 - a_2(\xi - \bar{\xi})^2 + a_3(1 - \xi \bar{\xi})^2}}
$$

$$
r = \sqrt{a_1 \left(\frac{\xi + \bar{\xi}}{1 + \xi \bar{\xi}} \right)^2 - a_2 \left(\frac{\xi - \bar{\xi}}{1 + \xi \bar{\xi}} \right)^2 + a_3 \left(\frac{1 - \xi \bar{\xi}}{1 + \xi \bar{\xi}} \right)^2}.
$$

These coordinates extend to $\xi \to \infty$ and so this is an example of a global non-holomorphic section of $\pi : T S^2 \to S^2$.

Example 2. The rotationally symmetric torus of radii a and b is given by

$$
\eta = \pm a \sqrt{\frac{\xi}{\xi(1 - \xi \bar{\xi})}}
$$

$$
r = b \pm 2a \sqrt{\frac{\xi}{1 + \xi \bar{\xi}}},
$$

This describes the torus as a double cover of the 2-sphere, branched at the north and south poles.

References

[1] N.J. Hitchin, *Monopoles and geodesics*, Comm. Math. Phys. 83 (1982), no. 4, 579-602.

[2] K. Weierstrass, *Untersuchungen über die Flächen, deren mittlere Krümmung überall gleich Null ist*, Monatsber. Akad. Wiss. Berlin (1866), 612-625.

[3] E. T. Whittaker, *On the partial differential equations of mathematical physics*, Math. Ann. 57 (1903), 333-355.

Brendan Guilfoyle, Department of Mathematics and Computing, Institute of Technology, Tralee, Clash, Tralee, Co. Kerry, Ireland.

E-mail address: brendan.guilfoyle@ittralee.ie

Wilhelm Klingenberg, Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, United Kingdom.

E-mail address: wilhelm.klingenberg@durham.ac.uk