Impact of age at menarche on obesity and
glycemic control in Japanese patients with
type 2 diabetes: Fukuoka Diabetes Registry

Akiko Sumi1, Masanori Iwase1,2*, Udai Nakamura1, Hiroki Fujii3, Toshiaki Ohkuma1,4, Hitoshi Ide1,5,
Tamaki Jodai-Kitamura1, Yuji Komorita1, Masahito Yoshinari1, Takanari Kitazono1

1Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 2Diabetes Center, Hakuyuji Hospital, 3Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan, 4The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia, and 5Division of General Internal Medicine, School of Oral Health Science, Kyushu Dental University, Kitakyushu, Fukuoka, Japan

Keywords
Age at menarche, Glycemic control,
Type 2 diabetes mellitus

*Correspondence
Masanori Iwase
Tel.: +81-92-642-5256
Fax: +81-92-642-5271
E-mail address:
iwase@intmed2.med.kyushu-u.ac.jp

J Diabetes Investig 2018; 9: 1216–1223
doi: 10.1111/jdi.12839

Clinical Trial Registry
University Hospital Medical Information
Network
UMIN000002627

ABSTRACT
Aims/Introduction: A younger age at menarche is associated with obesity and type 2 diabetes in adult life. The impact of early-onset menarche on obesity and glycemic control in type 2 diabetes has not been investigated. The present study examined the relationship between age at menarche and obesity and glycemic control in type 2 diabetes.

Materials and Methods: A total of 2,133 patients with type 2 diabetes aged ≥20 years were divided into groups according to age at menarche (≤11, 12, 13, 14 and ≥15 years). A retrospective cohort study examined the association of menarcheal age with adiposity and hemoglobin A1c.

Results: Age at menarche was inversely associated with body mass index (BMI) and abdominal circumference (P < 0.001). Each 1-year decrease in age at menarche was associated with a 0.25-kg/m2 and 0.6-cm increase in BMI and abdominal circumference, respectively, using a multivariate-adjusted model. Odds ratios for obesity and abdominal obesity significantly increased in participants with age at menarche ≤11 years after multivariable adjustments when age at menarche of 13 years was used as the reference (odds ratio 1.95, 95% CI 1.33–2.88, odds ratio 1.95, 95% CI 1.32–2.87, respectively). Younger age at menarche was significantly associated with higher hemoglobin A1c (P < 0.001); however, the association was not statistically significant after adjusting for BMI.

Conclusions: Age at menarche of ≤11 years was associated with obesity after adjusting for confounding factors, and poor glycemic control associated with high BMI in type 2 diabetes. Age at menarche should be considered during clinical assessments.

INTRODUCTION
There is a trend towards a younger age at which people are reaching puberty, possibly associated with the impact of Westernization. In Japan, the mean age at menarche decreased from 13.2 years in 1961 to 12.2 years in 2011 in school-aged girls1. Earlier-onset menarche is reported to be associated with obesity2–5, type 2 diabetes mellitus6–11, cardiovascular disease4–14, breast cancer15 and increased all-cause mortality4,13,16–18. It is therefore possible that age at menarche can provide important information to help prevent non-communicable diseases.

Obesity is a global health problem. Although the prevalence of obesity is lower in Japan than Western populations generally (prevalence of body mass index [BMI] ≥30: 3.7% in Japan vs 38.2% in the USA19), there has been an increase in the level of obesity in patients with type 2 diabetes in Japan (mean BMI increased from 24.1 kg/m2 in 2002 to 25.0 kg/m2 in 201320).

It is reported that a younger age at menarche is associated with obesity in later life2–5. This raises the question as to the association between age at menarche and obesity in patients with type 2 diabetes, and whether early-onset menarche is associated with plasma glucose levels and could be used to predict the future onset of type 2 diabetes6–11. Against this background, the present retrospective cohort study examined the
relationship between age at menarche and obesity and glycemic control in Japanese patients with type 2 diabetes.

METHODS

Study participants

The Fukuoka Diabetes Registry was designed as a prospective, multicenter, observational study to investigate the effects of modern therapy on the prognosis of Japanese patients with diabetes mellitus. Briefly, the Fukuoka Diabetes Registry cohort comprised patients aged ≥20 years who regularly attended educational research hospitals approved by the Japan Diabetes Society or certified diabetes clinics in Fukuoka Prefecture (UMIN Clinical Trial Registry 000002627) between April 2008 and October 2010. Exclusion criteria were people with drug-induced diabetes mellitus or receiving corticosteroid therapy; those who had undergone renal replacement therapy; those with serious diseases other than diabetes, such as advanced malignancy or decompensated liver cirrhosis; and those who were unable to visit a diabetologist regularly. Of the 2,263 women registered, after excluding those with type 1 diabetes, 2,133 female patients with type 2 diabetes mellitus remained, and were enrolled in the study. The study was approved by the Kyushu University Institutional Review Board and was carried out in accordance with the provisions contained within the Declaration of Helsinki. All patients provided written informed consent for participation in the study.

Clinical evaluation and laboratory measurements

Participants completed a self-administered questionnaire that sought information on age at diagnosis of diabetes, family history of diabetes, smoking habits, alcohol intake, physical activity, maximum bodyweight before enrollment, age at menarche and the occurrence of menopause. Smoking habits and alcohol intake were classified as either current use or not. Metabolic equivalent hours per week were calculated using Ainsworth’s methods. A dietary survey was carried out using a brief-type self-administered diet history questionnaire (Gender Medical Research, Inc., Tokyo, Japan) that sought information on the frequency of consumption of 58 items to assess the participants’ dietary intakes. The dietary intake estimates for total energy and dietary fiber were calculated using an ad hoc algorithm developed for the brief-type self-administered diet history questionnaire based on the Standard Tables of Food Composition in Japan. The medical records of participants were examined for medications including oral hypoglycemic agents and insulin therapy. Bodyweight and height were measured, and BMI was calculated. Obesity was defined as BMI ≥25 kg/m² according to the Japan Society for the Study of Obesity criteria. Abdominal circumference at the umbilical level was measured in the standing position. Abdominal obesity was defined as an abdominal circumference of ≥90 cm according to the Japan Society for the Study of Obesity criteria.

Blood tests were carried out in either the fasting or postprandial state. Hemoglobin A₁c (HbA₁c) was determined by high-performance liquid chromatography (Tosoh Corp., Tokyo, Japan), and serum C-peptide was determined using chemiluminescent immunoassays (Kyowa Medex, Tokyo, Japan). High-sensitivity C-reactive protein (HS-CRP) and serum adiponectin were determined by latex immunonephelometry (Siemens Healthcare Diagnostics, Tokyo, Japan; Mitsubishi Chemical Medience, Tokyo, Japan). β-Cell function (homeostatic model assessment of β-cell [HOMA2-%β] index) and insulin resistance (homeostatic model assessment of insulin resistance [HOMA2-IR] index) were estimated based on fasting glucose and C-peptide concentrations using a HOMA calculator (version 2.2.2; http://www.dtu.ox.ac.uk, accessed June 2012) after exclusion of individuals with unacceptable levels of plasma glucose (<3.0 mmol/L or >25 mmol/L) or C-peptide (<0.2 nmol/L or >3.5 nmol/L).

Statistical analysis

HOMA2-%β, HOMA2-IR, serum adiponectin and HS-CRP were log-transformed for statistical analyses because of their skewed distributions. They are presented with 95% confidence intervals (95% CI) that were back-transformed. Participants were divided into five categories according to age at menarche: ≤11, 12, 13, 14 and ≥15 years, as reported in previous studies. Baseline characteristics by categories of age at menarche were explored using one-way analysis of variance and analysis of covariance to compare means of continuous variables, and using χ²-tests to compare proportions of categorical variables. Trend associations for age at menarche were assessed using multivariable regression analyses, and included age, duration of diabetes, current smoking, current drinking, leisure-time physical activity, daily energy intake, oral hypoglycemic agent use and insulin use as covariates. Associations between age at menarche and the prevalence of obesity, history of obesity and abdominal obesity were tested using multivariable logistic regression analyses. All analyses were carried out using the SAS software package (version 9.4; SAS Institute Inc., Cary, NC, USA). A P-value <0.05 was considered statistically significant.

RESULTS

Participant characteristics

Baseline characteristics of the study participants by categories of age at menarche are shown in Table 1. The mean age at menarche was 13.7 ± 1.8 years. Those with a younger age at menarche were diagnosed with diabetes at a younger age, had a shorter duration of diabetes, were more likely to be premenopausal, had lower energy and dietary fiber intake, and exercised less. These statistical differences were absent after adjusting for age.

Associations between age at menarche and obesity

The age at menarche was inversely associated with BMI (P for trend <0.001; Table 2). The association remained statistically significant after multivariable adjustments including age, duration of diabetes, current smoking, current drinking, leisure-time physical activity, daily energy intake, oral hypoglycemic agent use and insulin use as covariates.
Table 1 | Clinical characteristics of the study participants by categories of age at menarche

	Total	Categories of age at menarche (years)	P for trend
		≤11 (11.0–15.0)	
n	2,133	169	
Age (years)	65.8 ± 10.4	53.2 ± 11.4	
Age at diabetes diagnosis (years)	51.0 ± 11.9	40.3 ± 12.9	
Duration of diabetes (years)	14.3 ± 9.8	12.4 ± 9.2	
Family history of diabetes (%)	61.5	68.6	
Menopause (%)	92.3	63.9	
Age at menopause (years)	49.4 ± 5.3	48.9 ± 5.4	
Reproductive years	35.5 ± 5.5	38.2 ± 5.4	
Current smoker (%)	6.8	10.7	
Current drinker (%)	16.5	17.2	
Energy intake (kcal/day)	1,509 ± 412	1,479 ± 384	
Dietary fiber intake (g/1,000 kcal)	83 ± 2.2	76 ± 2.1	
LTPA (MET h/week)	163 ± 16.4	134 ± 14.0	
Oral hypoglycemic agents (%)	63.5	63.9	
Insulin (%)	30.8	36.7	

Data are mean ± standard deviation or percentage. Numbers in parenthesis represent interquartile range. LTPA, leisure-time physical activity; NS, not significant.
Table 2 | Association of categories of age at menarche with adiposity, stratified by age in Japanese patients with type 2 diabetes

Categories of age at menarche (years)	≤11	12	13	14	≥15
Age at menarche (years)	10.7 (10.0–11.0)	12.0 (12.0–12.0)	13.0 (13.0–13.0)	13.9 (14.0–14.0)	15.8 (15.0–16.0)
BMI (kg/m²)	26.3 ± 6.1	24.7 ± 4.6	24.1 ± 4.5	23.4 ± 3.7	23.4 ± 3.8
Maximum BMI (kg/m²)	29.7 ± 6.3	28.2 ± 4.9	27.4 ± 4.7	26.7 ± 3.8	26.7 ± 3.9
Abdominal circumference (cm)	89.0 ± 14.3	87.0 ± 11.7	86.0 ± 12.4	84.8 ± 10.5	85.3 ± 11.2

Data are mean ± standard deviation. Numbers in parenthesis represent interquartile range. Multivariable adjustments include age, duration of diabetes, current smoking, current drinking, leisure-time physical activity, daily energy intake, oral hypoglycemic agent use and insulin use. BMI, body mass index; NS, not significant.
were obtained in participants aged <65 years, whereas there were no associations in those aged ≥65 years.

DISCUSSION

In the present study, age at menarche was inversely associated with adiposity in patients with type 2 diabetes. To the best of the authors’ knowledge, this is the first study to report on the association between age at menarche in patients with type 2 diabetes. It is reported that earlier-onset menarche is associated with obesity and the development of type 2 diabetes mellitus in later life. The present results extend the association between age at menarche and obesity to patients with type 2 diabetes. Although people with obesity and type 2 diabetes are strongly urged to modify their lifestyle habits, including diet and exercise, there were twice as many patients in the ≤11 years-of-age at menarche group compared with the 13 years-of-age at menarche group. It is possible that obesity contributes to worsened glycemic control in those with age at menarche ≤11 years.

In a meta-analysis of 10 studies including 246,671 women, mostly from Western populations, early menarche (<12 vs 12 years) was associated with 0.34 kg/m² higher BMI. Of 303,000 women in the China Kadoorie Biobank, increases in BMI and abdominal circumference per 1-year earlier onset of menarche were reported to be 0.19 kg/m² and 0.38 cm, respectively. In the current study, increases in BMI and abdominal circumference per 1-year earlier onset of menarche were 0.25 kg/m² and 0.6 cm in the multivariate-adjusted model. It appears that the impact of earlier-onset menarche on obesity is greater in the current study. This difference might be explained by the populations studied. For example, the general population vs patients with type 2 diabetes, or Western populations vs Asian populations, in whom those with type 2 diabetes are not typically obese.

The association between age at menarche and BMI was observed in both the <65 years and ≥65 years age groups. One of the mechanisms that has been proposed to explain the
Table 4 | Association of categories of age at menarche with glycemic control, insulin secretion, insulin resistance, adiponectin and microinflammation in Japanese patients with type 2 diabetes

Categories of age at menarche (years)
≤11
HbA1c (%)
All
<65 years
≥65 years
HbA1c (mmol/mol)
All
<65 years
≥65 years
HOMA2-%β
All
<65 years
≥65 years
HOMA2-IR
All
<65 years
≥65 years
Adiponectin (μg/mL)
All
<65 years
≥65 years
HS-CRP (mg/L)
All
<65 years
≥65 years

Data are mean ± standard deviation, percentage or odds ratios. Numbers in parenthesis represent interquartile range or 95% confidence. Multivariable adjustments include age, duration of diabetes, current smoking, current drinking, leisure-time physical activity, daily energy intake, oral hypoglycemic agent use and insulin use. BMI, body mass index; HbA1c, hemoglobin 1c; HS-CRP, high-sensitivity C-reactive protein; HOMA2-%β homeostasis model assessment of β-cell function; HOMA2-IR, homeostasis model assessment of insulin resistance; NS, not significant.
association between early age at menarche and obesity is that earlier-onset menarche might result in longer exposure to estrogen and adrenal steroids, which tend to maintain adiposity. Furthermore, an overlap between single-nucleotide polymorphisms implicated in the timing of puberty and in determining BMI in adulthood has been reported. These single-nucleotide polymorphisms include TCF7, which was shown to be a risk factor for obesity and type 2 diabetes, and LIN28B, which is associated with insulin sensitivity and oxidative stress-related β-cell apoptosis. Individuals who have these single-nucleotide polymorphisms tend to gain weight faster during infancy and early childhood, and show earlier-onset menarche.

Earlier age at menarche is associated with the future development of type 2 diabetes in Western and Asian populations, and was associated with elevated HbA1c, secondary to high BMI in the current study. These associations can be largely explained by increased adiposity. In the current study, earlier age at menarche was not associated with insulin secretion, but was associated with increased insulin resistance, reduced serum adiponectin and increased systemic inflammation (Table 4). However, adjusting for age and BMI removed these associations, being in line with HbA1c.

Analyses stratified according to age (<65 years and ≥65 years) showed that there were significant associations between age at menarche and history of obesity or abdominal obesity in participants aged <65 years, but not in those aged ≥65 years (Table 3). This might be due to the small number of participants who went through menarche at ≤11 years (n = 23) among those aged ≥65 years. In addition, there were no significant interactions between the age of the participant (<65 and ≥65 years) and their age at menarche.

The present study had some limitations. First, there is the possibility of recall bias regarding age at menarche, although previous studies report that recalling age at menarche is reliable over many years. Second, we could not clarify the influence of childhood or pubertal BMI on adulthood obesity because of a lack of information. Finally, the conclusions of the study should not be generalized to other ethnic populations, especially with high BMI, without caution.

In conclusion, age at menarche of ≤11 years was associated with obesity after adjusting for confounding factors, and poor glycemic control associated with BMI in type 2 diabetes. As obesity can accelerate the development and progression of diabetic complications, age at menarche should be a factor for consideration when determining clinical management of patients with obese type 2 diabetes.

ACKNOWLEDGMENTS
The authors thank Drs Yutaka Kiyohara, Yasufumi Doi, Toshiharu Ninomiya, Yoicho Hirakawa, Shigenobu Kanba, Dongchon Kang, Shuzo Kumagai, Shinako Kaizu, Chisa Matsumoto (Kyushu University), Michiaki Kubo (RIKEN), Nobutaka Tsutsu, Nobuhiro Sasaki (Fukuoka Red Cross Hospital), Kiyohide Nunoi, Yuichi Sato, Yuji Uchizono, Ayumi Yamauchi, Kaori Itoh, Chie Miyakawa (St. Mary’s Hospital), Sakae Nohara, Hirofumi Imoto, Kazushi Amano, Chie Kitaoka (Steel Memorial Yawata Hospital), Daisuke Gotoh, Toshitaka Himeno, Masae Toyonaga (Kyushu Central Hospital), Noriyasu Shinohara, Ayako Tsutsumi (Fukuoka Higashi Medical Centre), Yasuhiro Idewaki, Masahiro Nakano, Mina Matsu, Shoko Morimoto, Tomoko Hyodo (Hakujuiji Hospital), Masae Minami (Clinic Minami Masae), Miya Wada (Wada Miya Naika Clinic), Yoshifumi Yokomizo (Yokomizo Naika Clinic), Yohei Kikuchi, Masanori Kikuchi (Kikuchi Naika Clinic), Riku Nomiyama (Suzuki Naika Clinic), Shin Nakamura (Nakamura Naika Clinic), Kenji Tashiro (Oshima Eye Hospital), Motoataka Yoshinari (Yoshinari Naika Clinic), Kojiro Ichikawa (Fukutsu Naika Clinic) and Teruo Omae (Hisayama Research Institute For Lifestyle Diseases); clinical research coordinators Chiho Ohba, (Hisayama Research Institute For Lifestyle Diseases) and Yoko Nishikawa (Kyushu University); and administrative staff Tomoko Matak (Hisayama Research Institute For Lifestyle Diseases) and Junko Ishimatsu (Kyushu University). We thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. This work was supported, in part, by the Japan Society for the Promotion of Science KAKENHI (grant numbers 23249037 and 2369353 to MI and 16K00861 to HF) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. Hino T, Kato M, Akai S, et al. The change of interests of Japanese schoolgirls around puberty. Proceeding of 15th European Conference on Developmental Psychology. Pianoro, Bologna: Medimond-Monduzzi; 2012; 441–444.
2. Pierce MB, Leon DA. Age at menarche and adult BMI in the Aberdeen children of the 1950s cohort study. Am J Clin Nutr 2005; 82: 733–739.
3. Feng Y, Hong X, Wilker E, et al. Effects of age at menarche, reproductive years, and menopause on metabolic risk factors for cardiovascular diseases. Atherosclerosis 2008; 196: 590–597.
4. Lakshman R, Forouhi NG, Sharp SJ, et al. Early age at menarche associated with cardiovascular disease and mortality. J Clin Endocrinol Metab 2009; 94: 4953–4960.
5. Yang L, Li L, Millwood IY, et al. Adiposity in relation to age at menarche and other reproductive factors among 300 000 Chinese women: findings from China Kadoorie Biobank study. Int J Epidemiol 2017; 46: 502–512.
6. Lakshman R, Forouhi N, Luben R, et al. Association between age at menarche and risk of diabetes in adults: results from the EPIC-Norfolk cohort study. Diabetes 2008; 51: 781–786.
7. He C, Zhang C, Hunter DJ, et al. Age at menarche and risk of type 2 diabetes: results from 2 large prospective cohort studies. Am J Epidemiol 2010; 171: 334–344.
8. Pierce MB, Kuh D, Hardy R. The role of BMI across the life course in the relationship between age at menarche and diabetes, in a British Birth Cohort. Diabet Med 2012; 29: 600–603.
9. Elks CE, Ong KK, Scott RA, et al. Age at menarche and type 2 diabetes risk: the EPIC-InterAct study. Diabetes Care 2013; 36: 3526–3534.
10. Hwang E, Lee KW, Cho Y, et al. Association between age at menarche and diabetes in Korean post-menopausal women: results from the Korea National Health and Nutrition Examination Survey (2007-2009). Endocr J 2015; 62: 897–905.
11. Lim JS, Lee HS, Kim EY, et al. Early menarche increases the risk of Type 2 diabetes in young and middle-aged Korean women. Diabet Med 2015; 32: 521–525.
12. Prentice P, Viner RM. Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis. Int J Obes (Lond) 2013; 37: 1036–1043.
13. Charalampopoulos D, McLoughlin A, Elks CE, et al. Age at menarche and risks of all-cause and cardiovascular death: a systematic review and meta-analysis. Am J Epidemiol 2014; 180: 29–40.
14. Canoy D, Beral V, Balkwill A, et al. Age at menarche and risks of coronary heart and other vascular diseases in a large UK cohort. Circulation 2015; 131: 237–244.
15. Hsieh CC, Trichopoulos D, Katsouyanni K, et al. Age at menarche, age at menopause, height and obesity as risk factors for breast cancer: associations and interactions in an international case-control study. Int J Cancer 1990; 46: 796–800.
16. Jacobsen BK, Heuch I, Kvale G. Association of low age at menarche with increased all-cause mortality: a 37-year follow-up of 61,319 Norwegian women. Am J Epidemiol 2007; 166: 1431–1437.
17. Jacobsen BK, Oda K, Knutsen SF, et al. Age at menarche, total mortality and mortality from ischaemic heart disease and stroke: the Adventist Health Study, 1976-88. Int J Epidemiol 2009; 38: 245–252.
18. Tamakoshi K, Yatsuya H, Tamakoshi A, et al. Early age at menarche associated with increased all-cause mortality. Eur J Epidemiol 2011; 26: 771–778.
19. OECD.org. OECD OBESITY UPDATE 2017; 2017. Available from: http://www.oecd.org/health/obesity-update.htm Accessed September 21, 2017.
20. JDDM. Available from: http://jddm.jp/data/index-2013.html Accessed September 21, 2017.
21. Ohkuma T, Fujii H, Iwase M, et al. Impact of sleep duration on obesity and the glycemic level in patients with type 2 diabetes: the Fukuoka Diabetes Registry. Diabetes Care 2013; 36: 611–617.
22. Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000; 32: 5498–5504.
23. Kobayashi S, Honda S, Murakami K, et al. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J Epidemiol 2012; 22: 151–159.
24. Examination Committee of Criteria for Obesity Disease’ in Japan, Japan Society for the Study of Obesity. New criteria for ‘obesity disease’ in Japan. Circ J 2002; 66: 987–992.
25. LeBlanc ES, Kapphahn K, Hedlin H, et al. Reproductive history and risk of type 2 diabetes mellitus in postmenopausal women: findings from the Women’s Health Initiative. Menopause 2017; 24: 64–72.
26. Thankamony A, Ong KK, Ahmed ML, et al. Higher levels of IGF-I and adrenal androgens at age 8 years are associated with earlier menarche in girls. J Clin Endocrinol Metab 2012; 97: E786–E790.
27. Tong Y, Lin Y, Zhang Y, et al. Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med Genet 2009; 10: 15.
28. Perry JR, Day F, Elks CE, et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 2014; 514: 992–997.
29. Flom JD, Cohn BA, Tehranifar P, et al. Earlier age at menarche in girls with rapid early life growth: cohort and within sibling analyses. Ann Epidemiol 2017; 27: 187–193.e2.