Study on the Duration of High Jump Approach in Junior Female Athletes

Balaban Aura ¹, Rață Gloria ², Georgescu Andreea ³, Rață Bogdan Constantin ⁴*,
¹ National University of Physical Education and Sports, Bucharest, Romania
²,⁴ “Vasile Alecsandri” University of Bacău, Romania
³ Ovidius University, Constanța, Romania

DOI: 10.29081/gsjesh.2022.23.1.02

Keywords: approach run, high jump, duration, travel time, performance.

Abstract

The study aims to highlight the running time and the number of steps in the high jump at the National Athletics Championships in the category of Juniors I and II, held in the "Lia Manoliu" Athletics Hall in Bucharest, in the 2020 indoor competitive season. To the research six girls, 16-17 years old, participated. In the two competitions, the running time on the elk and the number of steps were recorded for each trial. The analysis of the data revealed differences in terms of the time to complete the moose, but also a constancy in the 6 jumpers. Differences were found between the number of steps taken by the elk and the maximum performance achieved by each jumper, a good Pearson correlation value calculated for the number of steps and the mean time recorded for running the elk (with values of .998 and .986), which confirms the research hypothesis.

1. Introduction

The current research aims to ensure a scientific reliability status in addressing training for female high jumpers, Junior category. The question that concerns us is how to obtain with our athletes a transition from the accumulated stage (which we consider obsolete and insufficient) to a new stage that will allow the achievement of new performance. This idea is particularly important in the training process designed for young jumpers and we are convinced that practical examples focused on how to address the technique of high jump approach in terms of both learning and training is the direction to be followed. Given that there are plenty of research

* E-mail: rbogy75@yahoo.com, corresponding author
studies that provide much information on the training of high jumpers, we believe that it should be applied in a particular way for each athlete.

The Fosbury flop quickly expanded because the landing sector has considerably developed allowing for safe landings. The generalisation of this technique after 1968 was due to several reasons: “it enables the jumper to utilize the speed that can be generated in the approach run-up; the rotations developed in the takeoff are used to the advantage of the jumper; it enables the jumper to clear the bar in an easy and efficient manner; and the basic technique can be mastered with relative ease for early success” (Humphrey & Nordquist, 2000, p. 174).

The high jump efficiency depends on the close dynamic relationship that is established between the system of spatial, temporal and energetic factors governed by the psychological ones developed by the human body during the four phases of a high jump (approach run, take-off, flight and landing). Tan and Yeadon (2007) consider that the curved approach used in the flop style allows reaching the required velocity for a vertical jump. Moreover, the approach length is customised and depends on each jumper’s gender, age, training level and performance level.

In the process of sports training, when jumping in height, the requirements, norms, principles of motor learning must be constantly observed, the concordance between the mental image of the movement and its practical execution must be verified, the aim must be to focus attention on the technical characteristics and correction, improving the sports result. Based on this idea, but especially the fact that the speed of high jumpers on the moose changes depending on the level of performance. We present in this study the level of speed on the jump of junior high jumpers in our country.

In order to jump as high as possible, an athlete must complete the following phases: approach run, take-off, flight and landing, which ensure the execution corresponding to the athlete’s own style. To make a proper running take-off in high jump, it is important to streamline its phases. For this purpose, the jumper needs to master and automatically control, during the approach run, the preparatory movements for the take-off. The approach velocity must increase until the last step; however, during the last 2 or 3 steps or even the last 4 steps, the jumper’s attention turns to the take-off, which requires a change in the structure and pace of the steps (Diacikov, 1956). The way of running in the direction of running the momentum depends on the experience of the jumper and the weight of the competition, ie the responsibility of the athlete to obtain a result of a certain value. According to specialists, the approach run involves sprinting from a control sign located at a distance that depends on each jumper’s particular features and movement ability. Some jumpers start the approach run with 3 short steps. The length of the approach run is 7 to 11 steps. The first part of the approach consists of a run perpendicular to the bar line; its length is 3 to 7 running steps and it is performed with a travel speed appropriate to the athletes’ coordination ability (approximately 6 to 8 m/s). The last 4 to 5 steps of the approach run are performed in the form of a circle arc and are well delimited in terms of travel speed and length. As regards the impulse curve, it
starts at about 6 m in front of the bar and outside the perpendicular projection of the pillars. The higher the approach run velocity, the greater the impulse radius. In beginners, this curve is about 8 m, and in advanced athletes, it is between 12 and 14 m. Important is the pace of the last 3 steps, which must be fast but must also place the athlete in the proper take-off position. “In order to jump up, the athlete must lower the center of mass prior to leaving the ground. This must happen gradually in the high jump. The lowering of the center of mass is from the hips and not the shoulders” (Humphrey, & Nordquist, 2000, p. 180).

In the process of learning the approach run as well as in the training process, the coach should consider the following methodological issues: the use and observance of landmarks during the approach (starting point, starting point of the approach on the circle arc, take-off point) must take into account the athlete’s level of training; the different stride length from one approach run to another and one training period to another changes the travel speed; starting the approach run at too high or too low speeds results in different stride lengths; a too fast or too slow approach run, or an approach run with consecutive accelerations changes the planting action on the take-off. The approach length must be prepared since the pre-competitive period and stabilised in the competitive period.

2. Material and methods.

Problem statement

Since the training process is constantly improving, which involves progress related to both individual performance and top sports performance (that ensures winning a national or international title), we consider that the current topic, which is focused on identifying the duration of travel time to perform the high jump approach, proposes an encouraging strategy for coaches to address the training process. Completing the high jump approach in a given time with a constant number of steps has an influence on the sports result. This issue gets coaches used to the study of the literature but especially to practical scientific research, a prevailing aspect in the achievement of superior results.

Research questions

The research aims to verify the hypothesis according to which maintaining consistency in terms of approach time and number of steps influences athletic performance.

Research purpose

The research purpose is to demonstrate that there are differences in the approach run duration and the number of steps taken by athletes during the attempts made at the progressive heights imposed by the regulation of the high jump event. In this regard, we initiated a study whose objective was to record the sports performance of Junior II female jumpers. To this end, we attended two final national competitions and recorded the approach run duration, the number of steps and the athletes’ results.

Research methods

The research methods used in this study were: literature review, pedagogical
observation, practical test (running high jump), recording and data processing method, analysis and interpretation method, comparative method.

Participants

The participants in this research were 6 female high jumpers aged 16-17 years from 6 sports clubs across the country. The athletes took part in the Junior I National Championship held in Bucharest from 21 to 22 February 2020 (Table 1) and the Junior II National Championship also held in Bucharest from 6 to 7 March 2020 (Table 2). Both events took place in the “Lia Manoliu” Athletics Hall during the 2020 indoor competition season.

In order to make the recordings, a written consent was obtained from each athlete, the research being carried out in accordance with the Helsinki Declaration on medical research involving human subjects and with the agreement of the CSS Ethics Commission in Bacău.

Assessment protocol

Identification of the travel time and number of steps taken by athletes to complete the approach run was achieved with the help of manual recording, using a timer and step counting for each jumper’s cleared (and recorded) height. The entry of the 6 jumpers in the competition according to their starting heights took into consideration their personal options.

3. Results and Discussions

This chapter is the most important in the paper, aiming to detail and prove the statements made in the previous chapters. With this purpose in mind, tables and figures can be used to support the information, and add more clarity to the demonstration.

Presentation of results

The results obtained by the 6 jumpers (Table 1 and Table 2) were recorded two weeks apart, a timeframe established in the competition calendar by the Romanian Athletics Federation.

Table 1. Results obtained in the Junior I National Championship (21-22.02.2020)

I	Club	1.45	1.50	1.55	1.59	1.63	1.67	1.70	1.73	1.76	Aat (s)
1	A.E LPS Deva	1.55	7	2.22	2.22	2.25					2.230
2	T.M CSS Steaua	1.59	6	1.97	1.96	1.92	1.94				1.945
3	E.E. LPS Deva	1.59	13	4.38	4.06	4.15					4.196
4	D.E Rapid Bucharest	1.63	7		2.34	2.29	2.31				2.313
5	A.F CSS Bacău	1.70	9	2.96	3.01	3.04	3.03	3.03	3.01		3.014
6	R.A CN ME Orade	1.76	7		2.33	2.34	2.32	2.30	2.33	2.30	2.320

Legend: I = înătuşilele Per. = performance obtained; Aat = average approach time

Table 1 shows the results recorded by the 6 jumpers who competed in the Junior I National Championship for the age group of 18-19 years, where 8 athletes
participated. However, we included only 6 in the study because they also took part in the second competition dedicated to Junior II category (16-17 years old).

Their performance ranges between 1.55 m and 1.76 m. One of the athletes achieved a performance of 1.55 m, 2 athletes jumped 1.59 m, one athlete recorded 1.63 m, one athlete jumped 1.70 m, and the winner managed to jump 1.76 m.

The number of steps taken for the approach run by the 6 high jumpers is 13 steps, 9 steps, 7 steps and 6 steps. Five of the 6 jumpers performed the approach run with an odd number of steps, and a single jumper performed it with an even number of steps.

The average approach time is different from one jumper to another. The highest average time (4.196 s) was recorded by the jumper who performed a greater number of steps (13 steps), and the shortest average time (1.945 s) was recorded by the jumper with the lowest number of steps (6 steps). It is noted that the jumpers who used a 7-step approach run had an approximately equal average time (2.230 s, 2.313 s and 2.320 s), while the jumper who used a 9-step approach run achieved an average time of 3.014 s.

Table 2 shows the results recorded by the 6 jumpers who competed in the Junior II National Championship.

Table 2. Results obtained in the Junior II National Championship (6-7.03.2020)

Initials	Club	Junior II National Championship, 6-7 March 2020	Consecutive heights (m)	Aat (s)						
		Per. No. of steps	1.55	1.59	1.63	1.67	1.70	1.73	1.76	
A.E.	LPS Deva	1.55 7	2.10							2.100
E.E.	LPS Deva	1.59 13	4.02	4.15						4.085
T.M.	CSS Steaua	1.59 6	1.98	2.00						1.990
D.E.	Rapid Bucharest	1.63 7	1.98	2.46	2.08					2.173
R.A.	CN ME Oradea	1.70 7	-	2.22	2.25	2.34	2.31			2.280
A.F.	CSS Bacău	1.76 9	3.08	3.24	3.10	3.02	3.18	3.12	3.12	3.120

Legend: Per. = performance obtained; Aat = average approach time

Their performance ranges between 1.55 m and 1.76 m. One of the athletes achieved a performance of 1.55 m, 2 athletes jumped 1.59 m, one athlete recorded 1.63 m, one athlete jumped 1.70 m, and the winner managed to jump 1.76 m. As can be seen, the results of the first 4 athletes in this competition are identical to those obtained in the first championship, but the best jumpers reversed their performance and therefore their places in the ranking.

The number of steps taken for the approach run by the 6 high jumpers is 13 steps, 9 steps, 7 steps and 6 steps. The number of steps used in this second national competition has remained the same for all 6 jumpers.

The average approach time is different from one jumper to another. The highest average time (4.085 s) was recorded by the jumper who performed a greater number of steps (13 steps), and the shortest average time (1.990 s) was recorded by the jumper with the lowest number of steps (6 steps). It is noted that the jumpers who used a 7-step approach run had an approximately equal average time (2.100 s,
2.173 s and 2.280 s), while the jumper who used a 9-step approach run achieved an average time of 3.120 s.

Discussions

In the preparatory stages of the high jump approach, properly performing the motor acts scheduled by coaches is extremely important in methodological terms because only in this way rational and economic executions and the timely achievement of technical skills can be ensured. Thus, emphasis will be placed on the correct execution of all exercises aimed at acquiring the basic mechanism, mastering a varied process of motor skills and abilities along with the ability to combine movements, which is the basis of technical training (including learning) even in top athletes. For this reason, special motor measures and methods are required to facilitate proper practice, which will mainly refer to the components of the basic technical mechanism (Teodorescu, 2006).

Analysing the results achieved by the 6 high jumpers in the two championships (Table 1 and Table 2), it can be easily noticed that the athletes ranked 6th and 5th have similar performance, their places in the ranking being reversed. These two jumpers alternately became national champions, one for Junior I category, and the other for Junior II category (Table 3), switching places between them in the two competitions. Given that each of the two jumpers won a gold medal and a silver medal, we believe that they are approximately equal in terms of training level. However, comparing the length and duration of the approach run, it can be seen that there is no equality because the competitor R.A. uses a 7-step approach run whose average duration is shorter, namely 2.320 s and 2.280 s, respectively, while the competitor A.F. uses a 9-step approach run whose average duration is longer, namely 3.014 s and 3.120 s, respectively (Table 3).

The jumper R.A. used the same number of steps (7 steps) in the two sports competitions, and her average approach time was shorter in the second competition (2.280 s), where she obtained a performance of 1.70 m, and longer in the first competition (2.320 s), where her performance was 1.76 m.

Table 3. Results of the first two ranked in the two championships

	Rank ing	Per.	No. of steps	Consecutive heights (m)	Aat (s)								
			1.45	1.50	1.55	1.59	1.63	1.67	1.70	1.73	1.76		
R.A.	I	1.76	7	-	-	-	2.33	2.34	2.32	2.30	2.33	2.30	2.320
A.F.	II	1.70	9	-	-	-	2.96	3.01	3.04	3.03	3.03	-	3.014
			3.08	3.24	3.10	3.02	3.18	3.12	3.12	-	-	3.120	
A.F.	I	1.76	9	-	-	-	2.22	2.25	2.34	2.31	-	-	2.280
R.A.	II	1.70	7	-	-	-	-	-	-	-	-	-	

Legend: I = Initials; Per. = performance obtained; Aat = average approach time

The jumper A.F. used the same number of steps (9 steps) in the two sports competitions, and her average approach time was shorter in the first competition.
(3.014 s), where she obtained a performance of 1.70 m, and longer in the second competition (3.120 s), where her performance was 1.76 m.

The data obtained after calculating Pearson’s correlation coefficient (r) are shown in Table 4 and Table 5.

Table 4. Pearson’s correlation calculated for the results obtained in the Junior I National Championship (21-22.02.2020)

Performance	No. of steps	Average approach time
Performance No. of steps	-.106	1
Average approach time	-.056	.998**

Table 5. Pearson’s correlation calculated for the results obtained in the Junior II National Championship (6-7.03.2020)

Performance	No. of steps	Average approach time
Performance No. of steps	.13	1
Average approach time	.152	.986**

At group level, the values of Pearson’s correlation coefficient, which measures a linear correlation between two sets of data, highlight:

- a very high correlation (where r ∈ [0.8; 1]) between the number of steps and the average approach time (.998 and .986, respectively) for the results obtained in the National Indoor Championships for both Junior I and Junior II categories. These values show that there is a very good correlation between the number of approach steps and the average approach time;

- an inexistent correlation (where r ∈ [0; 0.2]) between the performance value and the number of steps (.13) and between the performance value and the average approach time (.152) in the Junior II Indoor Championship. These values, which highlight the non-existence of correlations between performance, the number of steps and the approach time, indicate that these jumping phases do not entirely influence the performance value;

- a negative correlation (for an r greater than or equal to -0.5), which is considered as an inverse correlation, namely the two correlated variables vary in the opposite direction (when one increases, the other decreases). This type of correlation appeared in our study between performance and the number of steps (-.106) and between performance and the average approach time (-.056) during the Junior I Indoor Championship. These values emphasise the need for an optimal ratio between performance and the number of steps as well as between performance and the average approach time.
The specifications made by Bravo et al. (2003), who claim that the running length is from 16 to 18 m and the number of steps is between 8 and 12, but also by Leite (2013), who states that the number of steps, their length and the running pace are aimed at achieving the global jump, entitle us to consider that the jumpers included in our research are in a preparatory period that needs to undergo changes in both the length and duration of the approach run.

Chang & Kram, (2007), draw attention to the speed of travel on the take-off running / approach according to its curve of achievement, and Sung, 2003 showed that “the horizontal approach speed of the approach and the decrease of this speed during the detachment of the launching step increased with the escalation of the jump height”.

They believe that, when the approach curve is smaller, it is more difficult for the jumper to move fast in a normal step pattern. It is easy to see that using an approach run based on a slightly higher average time has led the two jumpers to win the competition. Adashevskiy et al. (2013) and Dapena et al. (2021) support the idea that travel speed during the approach run has an influence on the level of forces resulting from the take-off, which creates the possibility of turning the back to the bar and rotating the body over it.

All these aspects noticed by the authors who studied both the technique and the training process are strong points in addressing a new stage for the achievement of high results. There is also research focused on particular aspects related to the training of high jumpers. In order to highlight and enhance the technical aspects of the event, specialists used visual analysis systems (Krivetskiy, & Popov, 2012) and biomechanics (Leite, 2013), and performed mathematical analyses of the athlete’s trajectory during flight (Cooke, 2013). Other analysed parameters were: height and velocity of the centre of mass (Pavlović, 2017), ground reaction force, ground contact time, knee and hip flexion angle (Laffaye et al., 2005) or lower limb length (Laffaye, 2011). Research shows that the average force developed by a woman during the take-off is about 300 kg (Pavlović, 2015). This value changes depending on the weight or morphological structure that a female high jumper has in her lower limb (increases in muscle strength and bone density) (Kutáč, & Uchytil, 2018).

For the aspect investigated by us, namely the number of steps and the approach time, no studies have been found either in the national or international literature.

4. Conclusions

Will make comparisons between the results obtained with data values or statistics from other works with similar themes. Will make comparisons with other opinions and authors with similar research themes. (compulsory)

Given the results achieved by the female jumpers in the two competitions, we can claim that the hypothesis according to which maintaining consistency in terms of approach time and number of steps influences athletic performance has been confirmed. Following this study, differences have been found between athletes in terms of approach travel time but also a certain consistency for each jumper. This
aspect is demonstrated by the very high value of Pearson’s correlation calculated for the number of steps and the average time recorded for the approach run, which had the value .998 in the Junior I National Championship and .986 in the Junior II National Championship. Differences between the approach time and the maximum performance obtained by each jumper have also been found, which confirms and highlights the need to monitor this aspect during training.

Both the preparation and achievement of sports performance in the high jump event, as in most individual sports, require precision, programming, calculation and creation, therefore scientific research.

References

1. ADASHEVSKIY, V. M., IERMAKOV, S. S., & MARCHENKO, A. A. (2013). Biomechanics aspects of technique of high jump. Physical Education of Students, 2, 11-17. https://dx.doi.org/10.2139/ssrn.2444335.
2. BRAVO, J., RUF, H., & VELEZ, M. (2003). Saltos verticales: Atletismo 2 [Vertical jumps: Athletics 2]. Madrid: Real Federación Atletismo.
3. CHANG, Y.-H., & KRAM, R. (2007). Limitations to maximum running speed on flat curves. Journal of Experimental Biology, 210(Pt 6), 971- 982. https://doi.org/10.1242/jeb.02728.
4. COOKE, P. (2013). High jump analysis. Undergraduate Journal of Mathematical Modeling: One + Two, 5(1): http://dx.doi.org/10.5038/2326-3652.5.1.4.
5. DAPENA, J., MCDONALD, C., & CAPPAERT, J. (2021). A regression analysis of high jumping technique. Journal of Applied Biomechanics, 6(3), 246-261. https://doi.org/10.1123/ijsb.6.3.246.
6. DIACIKOV, V. M. (1956). Săriturile în atletism [Jumping in athletics]. București: Editura Tineretului pentru Cultură Fizică și Sport.
7. HUMPHREY, S., & NORDQUIST, D. (2000). High jump. În J. L. Rogers, USA Track & Field coaching manual (pp. 173-198). Champaign, IL: Human Kinetics.
8. KRIVETSKIY, I. Y., & POPOV, G. I. (2012). Innovative modeling method in technical training of high jumpers. Polish Journal of Sport and Tourism, 19(4), 253-255. https://doi.org/10.2478/v10197-012-0024-z.
9. KUTÁČ, P., & UCHYTIL, J. (2018). Differences in loading and morphological structure of the take-off and non-take-off limb in athletics jumping events. Journal of Human Kinetics, 65(1), 99-109. https://doi.org/10.2478/hukin-2018-0023.
10. LAFFAYE, G. (2011). Fosbury flop: Predicting performance with a three-variable model. The Journal of Strength and Conditioning Research, 25(8), 2143-2150. https://doi.org/10.1519/jsc.0b013e3181f0aab5.
11. LAFFAYE, G., BARDY, B. G., & DUREY, A. (2005). Leg stiffness and expertise in men jumping. Medicine & Science in Sports & Exercise, 37(4), 536-543. https://doi.org/10.1249/01.MSS.0000158991.17211.13.
12. LEITE, W. (2013). Biomechanical analysis of running in the high jump. Pedagogics, Psychology, Medical-Biological Problems of Physical Training and Sports, 2, 99-105. http://dx.doi.org/10.6084/m9.figshare.639261.
13. PAVLOVIĆ, R. (2015). The morphological status of the finalist in jumping disciplines at the Beijing Olympics. Sport Science, 5(2), 43-48 http://dx.doi.org/10.13140/RG.2.1.2210.7681.
14. PAVLOVIĆ, R. (2017). The differences of kinematic parameters high jump between male and female finalists World Championship Daegu, 2011. Turkish Journal of Kinesiology, 3(4), 60-69.
15. SUNG, R.J. (2003). Mechanical principles and motions for increasing the height of Fosbury flop. Korean Journal of Sport Biomechanics, 13 (3), 1-14. doi:10.5103/kjsb.2003.13.3-001.
16. TAN, J. C. C., & YEADON, M. R. (2007). Why do high jumpers use a curved approach? Journal of Sports Sciences, 23(8), 775-780. https://doi.org/10.1080/02640410400021534.
17. TEODORESCU S., (2006). Antrenament și competiție, [Training and competition]. București: Edit. MOROȘANU, p. 88.

Studiu Privind Durata Timpului de Deplasare pe Elan la Săritura în Înălțime Junioare

Balaban Aura ¹,
Rață Gloria ²,
Georgescu Andreea³,
Rață Bogdan Constantin ⁴,

¹ National University of Physical Education and Sports, Bucharest, Romania
²,⁴ ”Vasile Alecsandri” University of Bacău, Romania
³ Ovidius University, Constanta, Romania

Cuvinte cheie: elan, săritură în înălțime, durată, timp, performanță.

Rezumat

Studiul evidențiază evoluția timpul parcursului elanului și a numărului de pași înregistrat la săritura în înălțime la Campionatele Naționale de Atletism la categoria de Juniori I și II, desfășurate în sezonul competițional indoor 2020. La cercetare au participat șase fete, de 16 -17 ani. La cele două competiții s-a înregistrat și analizat timul de alergare pe elan și numărul de pași pentru fiecare încercare a celor 6 săritoare. Analiza datelor a evidențiat diferențe în ceea ce privește timpul de parcurgerea elanului, dar și o constantă a numărului de pași la cele 6 săritoare. S-au constatat diferențe între numărul de pași ai elenului și performanța maximă atinsă de fiecare săritoare, o bună valoare a corelației Pearson calculată pentru numărul de pași și timpul mediu înregistrat pentru alergarea pe elan (cu valori de . 998 și, respectiv,.986), ceea ce confirmă ipoteza cercetării.
1. Introducere

Cercetarea actuală își propune să asigure un statut de fiabilitate științifică în abordarea antrenamentului pentru săritori în înălțime feminin, categoria junior. Întrebarea care ne preocupă este cum să obținem cu sportivii noștri o trecere de la etapa acumulată (pe care o considerăm depășită și insuficientă) la o nouă etapă care să permită atingerea unor noi performanțe. Această idee este doar deosebit de importantă în procesul de antrenament conceput pentru tinerii săritori și suntem convinsi că exemplele practice concentrate pe modul de abordare a tehnicii abordării săriturii în înălțime atât în ceea ce privește învățarea, cât și antrenamentul este direcția de urmat. Având în vedere că există o mulțime de studii de cercetare care oferă multe informații despre antrenamentul săritorilor în înălțime, credem că acesta ar trebui aplicat într-un mod special pentru fiecare sportiv.

Procedeul Fosbury s-a extins rapid, deoarece sectorul de aterizare s-a dezvoltat considerabil, permitând aterizări în siguranță. Generalizarea acestei tehnici, după 1968 s-a datorat mai multor motive: „permite săritorului să utilizeze viteză care poate fi generată în cursa de apropiere; rotațiile dezvolate la decolare sunt făcute în avantajul săritorului; permite săritorului să treacă stânga într-un mod ușor și eficient; iar tehnică de bază poate fi stăpânită cu relativă ușurință pentru succesul timpurii” (Humphrey & Nordquist, 2000, p. 174).

Eficiența săriturii în înălțime depinde de relația dinamică strânsă, care se stabilește între sistemul de factori spațiali, temporali și energetici guvernați de cei psihologici dezvoltăți de corpul uman în cele patru faze ale unei sărituri în înălțime (alergare deelan, desprindere, zbătărie și aterizare). Tan și Yeadon (2007) consideră că abordarea curbă a elanului utilizată în stilul flop permite atingerea vitezei necesare pentru o desprindere verticală. Mai mult, lungimea abordării elanului este personalizată și depinde de sexul fiecărui săritor, vârsta, nivelul de antrenament și nivelul de performanță.

În procesul antrenamentului sportiv, la săriturile în înălțime, trebuie respectate în permanență cerințele, normele, principiile învățării motorii, trebuie verificată concordanța dintre imaginea mentală a mișcării și execuția ei practică. Scopul trebuie să fie focalizarea atenției asupra caracteristicilor tehnice, corectării și îmbunătățirii rezultatului sportiv. Pe baza acestei idei, dar mai ales a faptului că viteză săritorilor în înălțime pe elan se modifică în funcție de nivelul de performanța. Prezentăm în acest studiu nivelul de vitezei pe elan la săritura în înălțime, la junioare în țara noastră. Pentru a sări cât mai sus, un sportiv trebuie să parcurgă următoarele faze: alergare pe elan, bătaie-desprindere, zbătărie și aterizare, care să asigure execuția corespunzătoare stilului propriu al sportivului. Pentru a realiza o desprindere corectă în săritura în înălțime, este important ca sportivul să-și eficientizeze fazele. În acest scop, săritorul trebuie să stâpânească și să controleze automat, în timpul alergării de elan, mișcările pregătitoare pentru desprindere. “Viteză de elan trebuie să crească până la ultima treaptă; totuși, în timpul ultimilor 2 sau 3 pași sau chiar al ultimilor 4 pași, atenția săritorului se îndreaptă către desprindere, ceea ce necesită o schimbare în structura și ritmul pașilor” (Diacikov, 1956).

Modul de alergare în direcția realizării desprinderii depinde de experiența
săritorului și de greutatea competiției, adică de responsabilitatea sportivului de a obține un rezultat de o anumită valoare. Potrivit specialiștilor, alergarea de elan implică accelerarea de la un semn de control situat la o distanță care depinde de caracterele particulare și de capacitatea de mișcare a fiecărui săritor. Unii săritori încep elanul cu 3 pași scurti. Lungimea elanului este de 7 până la 11 pași. Prima parte a abordării constă într-o deplasare perpendiculară pe linia ștachetei; lungimea sa este de 3 până la 7 pași de alergare și se execută cu o viteză de deplasare adecvată capacității de deplasare a sportivilor (aproximativ 6 până la 8 m/s). Ultimii 4 până la 5 pași ai curbei de apropiere sunt executați sub forma unui arc de cerc și sunt bine delimitați din punct de vedere al vitezei de deplasare și al lungimii. În ceea ce privește curba de desprindere, aceasta începe la aproximativ 6 m în fața ștachetei și în afara proiecției perpendicular pe stâlpilor. Cu cât viteza de apropiere este mai mare, cu atât raza impulsului este mai mare. La începători curba de elan este de aproximativ 8 m, iar la sportivii avansați, este între 12 și 14 m. Important este ritmul ultimilor 3 pași, care trebuie să fie rapid, trebuie totuși să plaseze sportivul în poziția corectă de decolare. "Pentru a sări în înălțime, sportivul trebuie să coboare centru de greutate înainte de desprinderea de pe solul. Acest lucru trebuie să se întâmple treptat în elanul săriturii în înălțime. Coborârea centrului de masă se face de la șoldi și nu de la umeri" (Humphrey, & Nordquist, 2000, p. 180).

În procesul de învățare a cursei de abordare, precum și în procesul de antrenament, antrenorul trebuie să ia în considerare următoarele aspecte metodologice: utilizarea și respectarea reperelor în timpul abordării săriturii (punctul de pornire, punctul de pornire al apropierii pe arcul de cerc, de locul de desprindere); trebuie să țină cont de nivelul de pregătire al sportivului; lungimea pasului e diferită de la un elan la altul și de la o perioadă de antrenament la alta ceea ce modifică viteza de deplasare; pornirea în cursa de apropiere cu viteză prea mari sau prea mici are rezultate diferite a lungimi pașilor; o cursă de apropiere prea rapidă sau prea lentă sau o cursă de apropiere cu accelerății consecutive modifică acțiunea de așezare a talpii la desprindere. Lungimea elanului trebuie pregătită încă din perioada precompetițională și stabilizată în perioada competițională.

2. Material și metode

Problematica cercetării

Întrucât procesul de antrenament se îmbunătățește constant, ceea ce presupune progrese legate atât de performanța individuală, cât și de performanța sportivă de top (care asigură câștigarea unui titlu național sau internațional), considerăm că tema actuală, este axată pe identificarea duratei timpului de elan la săritura în înălțime și propune o strategie încurajatoare pentru ca antrenorii să abordeze procesul de antrenament în mod temeonic. Finalizarea abordării săriturii în înălțime într-un timp dat cu un număr constant de pași are o influență asupra rezultatului sportiv. Această cunoaștere îi obișnuiște pe antrenori cu necesitatea studiul literaturii de specialitate dar mai ales cu cercetarea științifică practică, aspect predominant în obținerea unor rezultate superioare
Ipoteza cercetării

Cercetarea de față și-a propus verificarea ipotezei conform căreia "menținerea constanței în ceea ce privește timpul de parcurgere a elanului și a numărului de pași influențează performanțele sportive ale săritoarelor.

Scopul cercetării

Scopul cercetării este de a demonstra faptul există diferențe în ceea ce privește timpul de deplasare și numărul de pași pe elan realizat de sportive, pe parcursul desfășurării încercărilor la înălțimile progresive impuse de regulament probei de săritură în înălțime. În această direcție am inițiat un studiu ce a avut ca obiect de cercetare înregistrarea prestației sportive a săritoarelor Junioare II. Pentru a da posibilitatea înregistrării prestației sportive am asistat la doua competiții naționale finale, și am înregistrat timpul de parcurgere al elanului, numărul de pași și rezultatele obținute.

Metodele cercetării

În lucrarea de față am utilizat următoarele metode de cercetare: metoda documentării, metoda observației pedagogice, metoda înregistrării și prelucrării datelor și metoda analizei și interpretării.

Subiecții cercetării

Cercetarea noastră a avut un număr de 6 adolescenți de vară categoria II-a de 16-17 ani, participați la Campionatul Național de Juniori I, București (21-22 februarie 2020) (tabel 1) și la Campionatul Național de Juniori II, București (6-7 martie 2020) (tabel 2), la proba de săritură în înălțime. Campionatul s-a desfășurat în Sala de atletism Lia Manoliu din București. Pentru a putea face înregistrările, am obținut acordul scris din partea săritoarelor, cercetarea desfășurându-se în conformitate cu Declarația de la Helsinki privind cercetarea pe subiecții umani și sub acordul comisiei de etică a CSS din Bacău.

Protocolul de evaluare

Cunoașterea timpului și numărului de pași cu care s-a parcurs elanul s-a realizat pe baza înregistrării manuale, cu cronometru a timpului și numărarea pașilor, realizat de fiecare săritor la fiecare înălțime trecută (înregistrată). Intrarea în concurs a celor 6 săritoare, în funcție de înălțimea de începere a fost făcută în funcție de opțiunea personală.

3. Rezultate și discuții

Prezentarea rezultatelor

Rezultatele obținute de cele 6 săritoare sunt prezentate în cele 2 tabele (Tabel 1 și Tabel 2) și au fost înregistrate la o distanță de două săptămâni, distanță stabilită în calendarul competițional de către Federația Română de Atletism.

În tabelul nr. 1, sunt prezentate rezultatele înregistrate de 6 săritoare ce au concurat în cadrul Campionatului Național de Juniori I destinat categoriei de vârstă de 18-19 ani, la care au participat 8 săritoare. Noi am inclus în studiu doar 6, întrucât acestea au participat și la cel de-al doilea concurs, destinat junioarelor II (16-17 ani).
Tabel 1. Rezultatele obținute la Campionatul Național de Juniori I, (21-22.02.2020)

Clubul	Iniț.	Nr. p.	Înălțimile succesive (m)	Mte. (s)
A.E LPS Deva	1,55	7	1,45 1,50 1,55 1,59 1,63 1,67 1,70 1,73 1,76	2,230
T.M CSS Steaua	1,59	6	1,97 1,96 1,92 1,94	1,945
E. E LPS Deva	1,59	13	4,38 4,06 4,15	4,196
D. E Rapid Buc.	1,63	7	2,34 2,29 2,31	2,313
A.F CSS Bacău	1,70	9	2,96 3,01 3,04 3,03 3,03	3,014
R. A C.N. M. E. Oradea	1,76	7	2,33 2,34 2,32 2,30 2,33 2,30 2,32	3,120

Legenda: Iniț. = inițialele sportivelor; Per. = performanța obținută; Nr.p. = număr de pași; Mte. = medie timp elan

Performanță obținută se situează (conf. tab. nr.1, fig. nr. 1) între 1,55 m și 1,76 m. Oa dintre săritoare a obținut o performanță sun 1,55 m, 2 săritoare au sărit 1,59 m, o săritoare a înregistrat 1,63 m, o săritoare a sărit 1,70 m și câștigătoarea a obținut performanța de 1,76 m.

Numărul pașilor prin care s-a realizat elanul, de către cele 6 săritoare în înălțime este de 13 pași, 9, pași, 7 pași și 6 pași. Cinci din cele șase săritoare realizează elanul cu un număr impar de pași, o singură săritoare realizează elanul cu un număr par de pași.

Media timpului înregistrat pe elan este diferită de la o săritoare la alta. Cea mai mare medie a timpului a fost înregistrată de o săritoare care are un elan mai mare număr de pași (13 pași) 4,196 s, iar timpul cel mai scurt a fost înregistrat de săritoarea cu cel mai mic număr de pași (6 pași). Se observă că săritoarele care au avut un elan de 7 pași de alergare au media timpului aproximativ egală (2,230 s; 2,313 s și 2,320 s), iar săritoarea cu 9 pași de elan a realizat o medie a elanului de 3,014 s.

Din tabelul 2, în urma susținerii Campionatului Național de Juniori II, de sală, rezultatele înregistrate evidențiază aspecte diferite.

Tabel 2. Rezultatele obținute la Campionatul Național de Juniori I, (6-7.03.2020)

Clubul	Iniț.	Nr. p.	Înălțimile succesive	Mte.
A. E LPS Deva	1,55	7	1,55 1,59 1,63 1,67 1,70 1,73 1,76	2,100
E. E LPS Deva	1,59	13	4,02 4,15	4,085
T. M CSS Steaua	1,59	6	1,98 2,00	1,990
D. E Rapid Buc.	1,63	7	1,98 2,46 2,08	2,173
R. A C.N. M. E. Oradea	1,70	7	2,22 2,25 2,34 2,31	2,280
A.F CSS Bacău	1,76	9	3,08 3,24 3,10 3,02 3,18 3,12 3,12	3,120

Legenda: Iniț. = inițialele sportivelor; Per. = performanța obținută; Nr.p. = număr de pași; Mte. = medie timp elan
Performanță obținută se situează între 1,55 m și 1,76 m. Una dintre sârtoare a obținut o performanță sun 1,55 m, 2 sârtoare au sărit 1,59 m, o sârtoare a înregistrat 1,63 m, o sârtoare a sărit 1,76 m și câștigătoarea a obținut performanța de 1,76 m. După cum se observă rezultatele primelor 4 sportive din acest concurs sunt identice ca în primul campionat, iar cele mai bune sârtoare ș-au inversat performanțele, deci ță locurile în clasament.

Numărul pașilor prin care se realizează de către cele 6 sârtoare în înălțime este de 13 pași, 9, pași, 7 pași și 6 pași. Numărul de pași folosit în acest al doilea concurs de nivel național a fost păstrat de toate cele 6 sârtoare.

Media timpului înregistrat pe elan este diferită de la o sârtoare la alta. Cea mai mare medie a timpului a fost înregistrată de o sârtoare ce are un elan mai mare număr de pași (13 pași) și anume 4,085 s, iar timpul cel mai scurt a fost înregistrat de sărătoarea cu cel mai mic număr de pași (6 pași), media fiind de 1,990 s. Se observă că sârtoarele care au avut un elan de 7 pași de alergare au media timpului aproximativ egală (2,100 s; 2,173 s și 2,280 s), iar sărătoarea cu 9 pași de elan a realizat o medie a elanului de 3,120 s.

Discuții

În etapele procesului de pregătire al elanului la săritura în înălțime, ”efectuarea corectă a actelor motrice programate de antrenori are o însemnătate metodică de prim ordin, întrucât numai în acest fel pot fi asigurate execuțiile raționale, economice, obținerea la timpul oportun al măiestriei tehnice” (Teoedoescu, 2006), și a performanței sportive.

Analizând performanțele celor șase sărătoare în înălțime, obținute în cele două campionate (tab. nr. 1 și tab. nr. 2) se observă, cu ușurință că primele sportivele clasate pe locul 6 și 5 au avut aceleasi performanțe, clasamentul a fost schimbat ca loc și performanță, doar între locul cinci și locul șase.

Interesantă considerăm evoluția celor două sărătoare, care au devenit prin alternanță campioane naționale unei de Junioare I și una de Junioare II (tabelul nr. 3), care ș-au schimbat locurile între ele la cele două competiții. Câștigarea de fiecare din cele două sărătoare a unei medalii de aur și una de argint ne face să considerăm că din punct de vedere al pregătirii sunt aproximativ egale

Tabel 3. Rezultatele primelor două clasate la cele două campionate
Locul ocuppăto

CAMP. NAȚIONAL JUNIORI I, 21-22 februarie 2020
RA
AF
CAMP. NAȚIONAL JUNIORI II, 6-7 martie 2020
AF
RA
Comparând însă lungimea și durata elanului se observă că nu există egalitate, concurenta RA sare cu 7 pași elan și durata elanului mai mică cu o medie de 2,320 s și respectiv 2,280 s, iar concurenta AF folosește un elan cu 9 pași, cu o medie a timpului mai mare de 3,014 s și respectiv 3,120 s (tab. nr.3).
Săritoarea RA a păstrat același număr de pași (7 pași) în cele două competiții sportive, iar durata timpului pe elan a fost mai scurtă în a doua competiție (2,280 s) unde a obținut o performanță de 1,70 m și mai lungă în prima competiție (2,320 s) unde a obținut performanța de 1,76 m.
Săritoarea AF a păstrat același număr de pași (9 pași) în cele două competiții sportive, iar durata timpului pe elan a fost mai scurtă în prima competiție (3,014 s) unde a obținut o performanță de 1,70 m și mai lungă în a doua competiție (3,120 s) unde a obținut performanța de 1,76 m.
În urma calculărilui Coeficientul de corelație Pearson – r, au reieșit datele prezentate în tabelul nr. 4 și 5.

Tabel 4. Corelația Pearson calculată pentru rezultatele obținute la Campionatul Național de Juniori I,(21-22.02 2020)

Perf	Nr_pasi	Medie_timp_elan	
Nr_pasi	-.106	1	
Medie_timp_elan	-.056	.998**	1

Tabel 5. Corelația Pearson calculată pentru rezultatele obținute la Campionatul Național de Juniori II,(6-7.03. 2020)

Perf	Nr_pasi	Medie_timp_elan	
Perf	1		
Nr_pasi	.13	1	
Medie_timp_elan	.152	.986**	1

La nivelul grupului valorile coeficientului de corelație Pearson, coeficient de corelație liniară arată că există:
- corelație foarte înaltă între (în care r ∈ [0.8; 1]) între numărul de pași și media timpului realizat pe elan (.998 și respective .986) atât în cadrul rezultatelor obținute în campionatul național de sală Junioare I cât și în cel de Junioare II. Această valoare arată că există o foarte bună corelație între numărul pașilor de elan și valoarea medie a timpului realizat în cadrul elanului;
- o corelație inexistență (în care r ∈ [0; 0.2]) între valoarea performanței și numărul de pași (.13) și între valoarea performanței și media timpului pe elan (.152), în campionatul de la nivelul Junioarelor II, de sală. Aceste valori ce ne evidențiază inexistența unor corelații între performanță și numărul de pași și timpul de elan arată că aceste faze ale săriturii nu influențează în totalitate valoarea performanței;
- **corelație negativă** (pentru r egal sau mai mare de -0,5) considerate ca și corelație inversă, adică cele două variabile corelate variază în sens contrar (când una crește, cealaltă scade). Acest tip de corelație a apărut în cazul nostrum între performanță și numărul de pași (-.106) și între performanță și caloarea medie a timpului (-.056) în campionatul Junioarelor I, de sală. Aceste valori subliniază faptul că între performanță și numărul de pași, ca și între performanță și valoarea medie a timpului trebuie să fie un raport optim.

Specificațiile făcute de (Bravo, Ruf, & Velez, 2003) care consideră că ”lungimea de rulare este de la 16 până la 18 m și numărul de pași merge de la 8 la 12 pași, și de (Leite, 2013), care notează că ”numărul de pași, lungimea și ritmul de funcționare se stabilesc, în scopul realizării săriturii globale” ne îndreptățesc să considerăm că săritoarele cuprins în cercetarea noastră se găsesc într-o perioadă de pregătire ce trebuie să suporte modificări atât în ceea ce privește lungimea elanului cât și timpul de realizare a acestuia.

Chang și Kram (2007), atrage atenția asupra vitezei de deplasare pe elan în funcție de curba de realizare a acestuia. Ei consideră că ”atunci când curba elanului este mai mică, este mai dificil ca săritorul să se deplaseze cu viteză, într-un model de pas normal”. Se observă cu ușurință că abordarea unui elan cu o medie a timpului puțin mai mare de cele două săritoare le-a adus obținerea unei performanțe ce le-a asigurat câștigarea competiției, aspect sesizat de Adashevskiy, Iermakov și Marchenko (2013) și Dapena și Ficklin (2007), care susțin ideea că ”viteza de deplasare pe elan influențează nivelul forțelor rezultate din bătaie-desprindere ce crează posibilitatea de răsucire spatelui spre ștachetă și cu rotarea corpului peste aceasta”.

Toate aceste aspecte sesizate de autorii ce au studiat atât tehnica cât și procesul de pregătire reprezintă puncte forte în abordarea unui nou stadiu al obținerii rezultate înalte. Mai există cercetări privind pregătirea săritorilor în înălțime, ce vizează anumite aspecte.

Pentru a evidenția și optimiza aspectele tehnice ale probei, specialiștii au utilizat sisteme de analiză vizuală (Krivetskiy, & Popov, 2012) și biomecanică (Leite, 2013) și au efectuat analize matematice cu privire la traiectoria sportivului în timpul zborului (Cooke, 2013). Alți parametri analizați au fost: înălțimea și viteza de deplasare a centrului de greutate (Pavlović, 2017), forța de reacție a solului, timpul de contact cu solul, unghiu de flexie al genunchiului și al șoldului (Laffaye, Bardy & Durey, 2005) sau lungimea membrului inferior (Laffaye, 2011).

Cercetările arată că valoarea medie a forței dezvoltate de o femeie în momentul desprinderii de pe sol este de aproximativ 300 kg (Pavlović, 2015). Această valoare se modifică în funcție de greutatea sau de structura morfologică pe care săritoarea în înălțime, le prezintă la nivelul membrului inferior (creșteri ale forței musculare și ale densității osoase), (Kutáč, & Uchytil, 2018).

Pentru aspectul studiat de noi și anume numărul de pași și timpul înregistrat pe elan nu am găsit studii, nici în literatura națională, nici în cea internațională.
4. Concluzii

În contextul de evoluție a rezultatelor înregistrate de sportive în cele două competiții putem susține că ipoteza conform căreia parcurgerea elanului la săritura în înălțime într-un timp de deplasare și un număr de pași constant, de săritoarele de înălțime influențează rezultatul sportiv s-a confirmat. În urma acestui studiu am constatat că, există diferențe în ceea ce privește timpul de deplasare pe elan între săritoare, dar există o anumită constantă a acestuia la fiecare săritoare. Acest aspect este demonstrat de valoarea corelației Pearson, valoare foarte înaltă calculată pentru numărul de pași și media timpului realizat pe elan, corelație ce a avut valoarea de .998 în Campionatul Național de sală Junioare I și de .986 în Campionatul Național de sală Junioare II. S-a constatat și existența diferențelor între timpul de elan și performanța maximă obținută de fiecare săritoare, fapt ce confirmă și subliniază necesitatea urmăririi în pregătire a acestui aspect. Pregătirea și obținerea performanței sportive în proba de săritură în înălțime, ca și în majoritatea sporturilor individuale, necesită precizie, programare, calculare și creație, necesită cercetare științifică.