Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
One of the major effects of the COVID-19 pandemic within nuclear medicine was to halt performance of lung ventilation studies, due to concern regarding spread of contaminated secretions into the ambient air. A number of variant protocols for performing lung scintigraphy emerged in the medical literature which minimized or eliminated the ventilation component, due to the persistent need to provide this critical diagnostic service without compromising the safety of staff and patients. We have summarized and reviewed these protocols, many of which are based on concepts developed earlier in the history of lung scintigraphy. It is possible that some of these interim remedies may gain traction and earn a more permanent place in the ongoing practice of nuclear medicine.

Semin Nucl Med 52:48-55 © 2021 Elsevier Inc. All rights reserved.

Introduction

As the COVID-19 pandemic evolved, and populations across the world were successively overrun by the virus, practitioners struggled to maintain healthcare in a manner safe for patients and medical workers alike. In the realm of nuclear medicine, one area that raised concern was performance of ventilation scintigraphy, an integral component of standard nuclear medicine protocols for the determination of pulmonary embolism, due to apprehension regarding spread of contaminated secretions into the ambient air. Nonetheless, the need for a diagnostic test to exclude pulmonary embolism (PE) remained acute both because symptoms of PE and COVID-19 pneumonia overlap, and because of an association between COVID-19 infection and thromboembolic disease. Widespread relinquishing of scintigraphy in favor of Computed Tomographic Pulmonary Angiography (CTPA) or other radiographic techniques was constrained, at least in part, by variably increased demand on the computed tomography (CT) scanner, heightened decontamination protocols, and inability to use intravenous contrast in some COVID-19 patients.

The purpose of this article is to survey the origin and implementation of several archetypal approaches to performance of lung scintigraphy during the COVID-19 pandemic, and to consider their potential impact on the future practice of lung scintigraphy.

Conceptual Basis of Lung Scintigraphy

In the development of nuclear medicine techniques for the evaluation of PE, perfusion scintigraphy was introduced as the initial method of assessing embolism in 1964, while sensitive, it was noted to be of low specificitiy. Presence of perfusion defects was insufficient to establish PE because they may be secondary, due to reflex vasoconstriction and provoked by regional hypoxia, rather than primary, as in the case of vascular embolism. This reflex is beneficial in that it prevents shunting blood through poorly oxygenated regions of lung thereby maintaining adequate oxygen concentration in pulmonary veins and the systemic arterial circulation.

The current method of lung scintigraphy for the diagnosis of PE therefore developed into an unusual examination that requires documentation of 2 disparate physiologic processes, pulmonary perfusion and ventilation, which are then contrasted to arrive at a final diagnosis. Perfusion scintigraphy, absent ventilation, can never achieve high specificity for PE. Although other schemata have been proposed, standard protocols for interpretation of lung scintigraphy promulgated...
by the Society of Nuclear Medicine and Molecular Imaging and the European Association of Nuclear Medicine both rely on a combination of perfusion and ventilation scintigraphy as critical components of the diagnostic process (Tables 1 and 2).

Challenge to Performing Ventilation During Covid-19 Pandemic

As a general rule, studies that cause aerosol or droplet formation were deferred during the COVID-19 pandemic, in order to not disperse potentially infectious patient secretions into the environment. These concerns were often magnified due to concurrent issues such as insufficient capacity to test for infection, uncertain understanding of how the disease was spread, and basic lack of personal protective supplies such as masks and gloves.

Indeed, escape of radiopharmaceutical from ventilation scintigraphy delivery systems has been frequently investigated over 3 decades, demonstrating presence of a variable degree of leakage from the aerosol device or patient airways into the examination room. A similar phenomenon has also been noted with the newest ventilation radiopharmaceutical, 99mTc-labeled carbon particles (Technegas), where activity was noted to persist in the imaging room air for over one hour following administration. Patient coughing, poor mouth seal, and incomplete nose closure have all been considered possible avenues of dispersal of patient secretions into the air.

A Plethora of Postpandemic Proposals

The potential spread of droplets or aerosolized secretions from the patient’s airways into the environment challenged nuclear medicine practitioners to expeditiously develop protocols for evaluating presence of PE while mitigating risk associated with ventilation scintigraphy. A number of suggestions regarding how to proceed with lung scintigraphy during the COVID-19 era were therefore presented in the nuclear medicine literature, which attempt to address the tension between potential spread of infection when ventilation scintigraphy is performed and the sub-optimal specificity of scintigraphy for detecting PE when ventilation is omitted. These reveal the determination on the part of nuclear medicine physicians to remain clinically relevant without compromising the safety of staff and patients. Interestingly, solutions to this novel problem often leverage concepts and techniques developed earlier in the history of nuclear medicine (Table 3) which will be referenced in the sections below.

Strategy A. Scintigraphy Should Not be Performed; Patients Should be Referred Outside of Nuclear Medicine

Advocates of this position hold the core belief that there is no value to perfusion scintigraphy alone, due to the low predictive value of a positive test, and they also believe that performance of ventilation scintigraphy during the COVID-19 pandemic entails unjustifiable risk to staff and other patients. This opinion was enunciated during the first pandemic wave in early 2020 and is certainly defensible in a situation of high prevalence of infection, unscreened patients, difficulty in procuring personal protective equipment (PPE), and absent caregiver immunity. In their view, any diagnostic information or other advantage derived from ventilation...
Table 3 Prior (Pre-COVID) Models of Scintigraphy for the Diagnosis of Thromboembolic Disease That Do Not Utilize Ventilation Scintigraphy and Their Application in the COVID-19 Era. After Zuckier44

Authors	Year	Population	Modality	Concept	COVID-19 Application
Miniati et al56	1996	General	Perfusion Planar SPECT-CT	Perfusion scintigraphy combined with pretest clinical probability	
Bajc et al58	2013	General	Perfusion Planar SPECT-CT	Das et al,49	
Sostman et al43	2008	General	Perfusion Planar + CXR SPECT-CT	Radiographic information used to evaluate airspace disease	
Lu et al44	2014	Oncology*	Perfusion Planar SPECT-CT	Burger et al,47	
Mazurek et al45	2015	Elderly#	Perfusion Planar SPECT-CT	Das et al,49, Voo et al,48, Lu et al50	
Sheen et al60	2018	Pregnancy~	Perfusion Planar PPE SPECT-CT	Zuckier et al,52, Lu et al,50, D.G.N. / B.D.N. 65	

*Population with high pretest probability of PE.
#Moderate pretest probability of PE.
~Low pretest probability of PE.

Scintigraphy that could not be obtained from complimentary examinations does not outweigh excess risk to healthcare workers and other patients in performing the study.

Patients who would otherwise be evaluated by ventilation and perfusion (V/Q) scintigraphy would instead be referred for non-nuclear medicine examinations such as CTPA or Doppler ultrasonography of the lower extremities which do not generate aerosol or droplets. These alternatives may not be optimal, or even feasible. Doppler ultrasonography for the detection of deep vein thrombosis has a low sensitivity for the diagnosis of PE.38 Many patients referred to nuclear medicine are precluded from receiving intravenous contrast due to allergy or renal dysfunction; one of the manifestations of COVID-19 infection is azotemia.13,14 Finally, the long-term effect of “closing shop” on subsequent resumption of normal operations remains unknown.34

Strategy C. Improve Specificity of Perfusion Scintigraphy by Performing Radiographic Imaging

In the past, several groups have used radiographic information as a replacement or surrogate for ventilation. Sostman evaluated a combination of perfusion scintigraphy and chest radiography, employing modified PIOPED II criteria. Sensitivity and specificity were 85% and 93%, respectively, though 21% of the studies were nondiagnostic.43 Using hybrid imaging, several groups have exploited the CT component of SPECT-CT, mining the radiographic information present to identify regions of lung that are hypoventilated, thereby serving much in the same, though less effective, manner as ventilation scintigraphy.44-46 CT is less comprehensive than ventilation scintigraphy in identifying some nondiembolic causes of decreased ventilation such as bronchospasm. Prior to COVID-19, Lu et al.43 performed perfusion SPECT-CT in a cohort of 106 oncology patients, using the CT findings to identify areas of abnormal lung ventilation such as pneumonia, emphysema, and COPD. For the diagnosis of PE, sensitivity of 91% and specificity of 94% were achieved against a composite gold standard including CTPA, Doppler ultrasound, D-dimer and 3-month follow-up. A similar finding was noted by Mazurek who studied 84 eligible subjects amongst 109 consecutive patients suspected of having PE using CT to evaluate the lungs; PE was confirmed in 26 individuals. In this study, most patients had a moderate pre-test clinical probability of PE. Perfusion SPECT-CT was noted to have a sensitivity of 100% and a specificity of 83%, based on 6-month follow-up.43 In a similar manner, Yildirim and Genc have retrospectively reviewed their experience for evaluation of PE in 305 patients, finding a 92% sensitivity and 76% specificity for perfusion-only SPECT-CT, recommending this test as the first-line diagnostic approach followed by ventilation SPECT-CT on the following day when perfusion defects are present.46 The concept of staged studies will be further elucidated in strategy E, below.

During the COVID-19 pandemic, several groups have reported using perfusion SPECT-CT, without ventilation, as a definitive examination for detection of PE.77-80 Of 6
The fundamental elements that determine predictive values are sensitivity and specificity of the test, as well the pretest (or a priori) probability of disease in a particular patient; this relationship is governed by Bayes’ Theorem. As a pragmatic matter, a high pretest probability will give the positive predictive value of an examination an additional boost.

In the pre-COVID-19 era, several authors have published results where they achieve adequate positive and negative predictive value of disease based on combining perfusion scintigraphy results with pretest probability. An early iteration of this approach was described in the PISA-PED study which combined clinical assessment with planar perfusion scintigraphy. Probability of PE was determined in 890 consecutive patients based on pretest probability (judged as very likely, possible or unlikely) and results of planar perfusion scintigraphy (described as normal, near-normal, abnormal compatible with PE or abnormal not compatible with PE). Pulmonary angiography and clinical/scintigraphic follow-up were performed in all patients with abnormal scans, yielding a sensitivity of 92% and specificity of 87%. Updating this concept, Bajc retrospectively studied the diagnostic performance of perfusion SPECT scored using a trinary categorization of PE, no PE, or disorder other than PE, in combination with clinical findings in 152 patients. The combination of clinical pretest probability and SPECT perfusion was compared to ground truth as determined by the referring physician, achieving a sensitivity of 90% and specificity of 95%.

In the period of COVID-19, this strategy has been utilized in the performance of perfusion SPECT-CT on oncology patients, a high-risk group, to boost the predictive value of a positive result to an actionable level of certainty, as we earlier noted with respect to studies by Das and Lu.

Strategy D. Leverage Pretest Probability to Improve Predictive Value of a Positive and Negative Test

In any clinical circumstance, many factors enter into the choice of which diagnostic test should be performed. The key operative metric in the diagnostic realm is positive or negative predictive value. This informs the clinicians of the likelihood of whether a positive or negative test result, viewed in the context of a particular patient, is true positive or true negative. Sufficiently high predictive value of a test grants the physician confidence to make difficult decisions (such as committing to long-term anticoagulation) based on the cost-benefit of therapy. Only with near certainty in the diagnosis of PE would a clinician be willing to recommend a therapy with inherent risk.

Safe Pulmonary Scintigraphy in the Era of COVID-19

Strategy E. Staged Examinations With Perfusion Scintigraphy First – The Inverted Q/V Lung Scan

We have noted that the historic function of ventilation scintigraphy is to adjudicate perfusion defects, that is to determine if they are reflexive and secondary to hypoventilation, or primary abnormalities due to a vascular insult. In the typical population of patients seen at lung scintigraphy, only a small fraction of patients will have perfusion defects. For this reason, under given circumstances, it may be reasonable to start with the perfusion study, and only if a defect is identified subsequently elucidate its etiology by performing ventilation scintigraphy or another technique.

Sheen et al reported on such a protocol in use at Montefiore Medical Center for evaluation of PE in pregnant women, a population with generally minimal underlying lung parenchymal disease. Perfusion scintigraphy was performed first, based on an observed low prevalence of segmental defects in
the population coupled with a desire to reduce their radiation exposure. In this protocol, the screening perfusion examination was typically performed with a reduced amount of activity, both to minimize exposure, and to facilitate subsequent performance of ventilation scintigraphy using a larger dosage of inhaled radiopharmaceutical, if required. The perfusion study, in essence, served as a screening examination and only if abnormal would a ventilation study, or other examination, be necessary for a final diagnosis. A retrospective analysis of this method in 225 patients demonstrated that over 85% of pregnant women studied by low-dose perfusion scintigraphy did not manifest segmental defects, thereby excluding PE and obviating the need for further evaluation; only the remaining 15% of patients, with segmental perfusion defects, were referred for alternate testing, frequently completion of the ventilation scan. A similar frequency was seen by Abele and Sunner, who studied pregnant patients by perfusion SPECT and found that only 13 of 74 subjects (18%) were indeterminate for PE and required further imaging (in their case by CTPA).

Yildirim suggested a similar approach in all patients who present for the scintigraphic evaluation of pulmonary embolism. Perfusion SPECT-CT is performed initially while ventilation SPECT-CT is acquired on a subsequent day only when the perfusion SPECT-CT study demonstrates defects; in their experience, these were seen in only 85 of 305 (28%) studies. In order to minimize use of ventilation scintigraphy during the COVID-19 period, we introduced a similar staged protocol for all referred patients in whom the chest radiograph was relatively clear without confluent opacities, in essence using planar perfusion scintigraphy as a screening examination. When less than a single segmental perfusion defect was noted, the patient was deemed free of PE. Only patients with one or more segmental perfusion defects required further imaging (such as CTPA or completion ventilation scintigraphy under vigilant COVID-precautions) to arrive at a definite diagnosis. In our experience, 42 (79%) of 53 patients, irrespective of whether infected with COVID-19 or not, had less than one segmental defect on perfusion scintigraphy and were deemed free of PE; only 21% required further follow up. An analysis of the 42 subjects with negative perfusion studies demonstrated a very low mortality prior to hospital discharge (1 patient with COVID-19 infection and respiratory failure expired during dialysis). In 6 instances where follow up examinations were performed at the behest of the referring physicians, absence of abnormalities was confirmed. An illustrative patient studied by this technique is displayed in Fig. 3. Lu et al. used a similar strategy to initially screen patients by planar perfusion scintigraphy which they followed up with perfusion SPECT-CT, if defects were noted. Other groups have expressed a similar sentiment to change the order of ventilation and perfusion imaging during the COVID-19 period.

The low prevalence of segmental defects in patients with relatively clear chest radiographs begs the question as to why an “inverted” perfusion ventilation protocol has not been more commonly proposed or performed, except in rare exceptions. This may be because of a desire to improve the stochastic properties of the perfusion images by making them sufficiently high-count, or due to the difficulty in ventilating sufficient counts to overwhelm the initial perfusion study. The advent of improved ventilation radiopharmaceutical agents may serve to remedy this latter difficulty.

Making Sense of the Spectrum

As noted above, a range of algorithms has been presented regarding how to perform ventilation scintigraphy in the time of COVID-19, including some which combine multiple strategies, such as Lu and Macapinlac or Yildirim and Genc. Some algorithms and opinions appear diametrically opposed to others. A closer look at the context and circumstances associated with these seemingly contradictory proposals reveals a basically consistent underlying understanding. It is important to remember that each opinion put forward reflects a reaction to the pandemic at a specific and unique location and time. Issues such as disease prevalence, availability of PPE, and availability of diagnostic testing vary between locales. A further dimension in the evaluation of PE is the a priori prevalence of disease in the population of patients studied which changes the predictive value of the examination. While it can be tempting to construe differences between authors as bona fide conceptual disagreements, it may be more likely that variation in approaches is due to situational differences and/or differences in the institutional tolerance for risk.
Conclusion

The solutions to reduce ventilation scintigraphy proposed during the recent COVID-19 pandemic had their origins in earlier concepts. It is important for nuclear medicine practitioners to be familiar with prior protocols published in the literature to afford them of options when needed. There are a range of approaches available and they should be carefully titrated against the particular situation at hand. We need to constantly weigh variables such as prevalence of COVID-19, availability of protective measures, and immunity of staff, to tailor and modify protocols as indicated.

Following the profound disruption caused by the COVID-19 pandemic, some of the temporary remedies that we have enacted, including reducing the necessity of ventilation scintigraphy through any of the several techniques that we have reviewed, may gain traction and permanently alter the ongoing practice of nuclear medicine.

Acknowledgments

In appreciation of the selfless contribution of our staff to patient care during the COVID-19 pandemic. In recognition of my colleagues at Montefiore Medical Center, under the leadership of Dr. Leonard M. Freeman, who have created a center of excellence for the scintigraphic evaluation of pulmonary embolism. In gratitude to Dr. Gregoire LeGal for constructive review of this paper.

References

1. Chopra V, Toner E, Waldhorn R, et al: How should U.S. hospitals prepare for coronavirus disease 2019 (COVID-19)? Ann Intern Med 172:621-622, 2020
2. Kooraki S, Hosseiny M, Myers L, et al: Coronavirus (COVID-19) outbreak: What the department of radiology should know. J Am Coll Radiol 17:447-451, 2020
3. Huang HL, Allie R, Guanasegaran G, et al: COVID19-Nuclear Medicine Departments, be prepared!. Nucl Med Commun 41:297-299, 2020
4. Lam WW, Loke KS, Wong WY, et al: Facing a disruptive threat: How can a nuclear medicine service be prepared for the coronavirus outbreak 2020? Eur J Nucl Med Mol Imaging 47:1645-1648, 2020
5. Zuckier LS, Gordon SR: COVID-19 in the Nuclear Medicine Department, be prepared for ventilation scans as well!. Nucl Med Commun 41:494-495, 2020
6. Pollack CV, Schreiber D, Goldhaber SZ, et al: Clinical characteristics, management, and outcomes of patients diagnosed with acute pulmonary embolism in the emergency department: initial report of EMPORIUM (Multicenter Emergency Medicine Pulmonary Embolism in the Real World Registry). J Am Coll Cardiol 57:700-706, 2011
7. Casey K, Iteen A, Nicolini R, et al: COVID-19 pneumonia with hemoptysis: Acute segmental pulmonary emboli associated with novel coronavirus infection. Am J Emerg Med 38, 2020. 1544 e1541-1544 e1543
8. Wang T, Chen R, Liu C, et al: Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol 7:e362-e363, 2020
9. Kollia K, Kyratoulis KG, Dimakakos E, et al: Thromboembolic risk and anticoagulant therapy in COVID-19 patients: Emerging evidence and call for action. Br J Haematol 189:846-847, 2020
10. Zhang Y, Xiao M, Zhang S, et al: Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med 382: e38, 2020
11. Helms J, Tacquard C, Severeac F, et al: High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med 46:1089-1098, 2020
12. Goh Y, Chua W, Lee JKT, et al: Operational Strategies to prevent coronavirus disease 2019 (COVID-19) spread in radiology: Experience from a Singapore Radiology Department after severe acute respiratory syndrome. J Am Coll Radiol 17:717-723, 2020
13. Ronco C, Reis T: Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol 16:308-310, 2020
14. Kunutos SK, Laulukanen JA: Renal complications in COVID-19: A systematic review and meta-analysis. Ann Med 52:345-353, 2020
15. Wagner HN Jr., Sabiston DC Jr., McAfee JG, et al: Diagnosis of massive pulmonary embolism in man by radiosotope scanning. N Engl J Med 271:377-384, 1964
16. Tetalman MR, Hoffer PB, Heck LL, et al: Perfusion lung scan in normal volunteers. Radiology 106:593-594, 1973
17. Medina JR, L’Heureux P, Lillehei JP, et al: Regional ventilation in the differential diagnosis of pulmonary embolism. Circulation 39:831-835, 1969
18. DeNardo GL, Goodwin DA, Ravassir R, et al: The ventilatory lung scan in the diagnosis of pulmonary embolism. N Engl J Med 282:1334-1336, 1970
19. Biello DR, Mattar AG, McKnight RC, et al: Ventilation-perfusion studies in suspected pulmonary embolism. AJR Am J Roentgenol 133:1033-1037, 1979
20. Parker JA, Coleman RE, Grady E, et al: SNM practice guideline for lung scintigraphy 4.0. J Nucl Med Technol 40:57-65, 2012
21. Bajc M, Schumichen C, Gruning T, et al: EANM guideline for ventilation/perfusion single-photon emission computed tomography (SPECT) for diagnosis of pulmonary embolism and beyond. Eur J Nucl Med Mol Imaging 46:2429-2451, 2019
22. National Center for Immunization and Respiratory Diseases (NCIRD)
23. Ossola A: Here are the coronavirus testing materials that are in short supply in the US. Quartz 2020. Available at: https://qz.com/1822596/
24. Bahl P, Doolan C, de Silva C, et al: Airborne or droplet precautions for health workers treating COVID-19? J Infect Dis 2020. Epub ahead of print
25. Ranney ML, Grifeth V, Jha AK: Critical supply shortages - The need for ventilators and personal protective equipment during the Covid-19 pandemic. N Engl J Med 382:e41, 2020
26. Macke A, Hart GC, Ibbert DA, et al: Airborne radioactive contamination following aerosol ventilation studies. Nucl Med Commun 15:161-167, 1994
27. Greaves CD, Sanderson R, Tindle WB: Air contamination following aerosol ventilation in the gamma camera room. Nucl Med Commun 16:901-904, 1995
28. Williams DA, Carlson C, McEnerny K, et al: Technetium-99m DTPA aerosol contamination in lung ventilation studies. J Nucl Med Technol 26:43-44, 1998
29. Avison M, Hart G: The use of a modified technique to reduce radioactive air contamination in aerosol lung ventilation imaging. J Radiol Prot 21:155-161, 2001
30. Achey B, Miller K, Erdman M, et al: Potential dose to nuclear medicine technologists from 99mTc-DTPA aerosol lung studies. Health Phys 86:585-587, 2004
31. Bradecki K, Borkowska E, Gorzkiewicz K, et al (99m)Tc activity concentrations in room air and resulting internal contamination of medical personnel during ventilation-perfusion lung scans. Radiat Environ Biophys 58:469-475, 2019
32. Mayes CD: Safe practice ventilation technique in lung scanning for pulmonary embolism. Nucl Med Commun 41:1328-1333, 2020
33. Koropouli GR, Zuckier LS: Complete nose closure and radioaerosol lung ventilation imaging. J Nucl Med 34:1833, 1993
34. Zuckier LS: To everything there is a season: Taxonomy of approaches to the performance of lung scintigraphy in the era of COVID-19. Eur J Nucl Med Mol Imaging:1-4, 2020
35. Currie G: COVID19 impact on nuclear medicine: An Australian perspective. Eur J Nucl Med Mol Imaging 47:1623-1627, 2020
36. Currie G: COVID19 impact on nuclear medicine: An Australian perspective. Eur J Nucl Med Mol Imaging 47:1623-1627, 2020
37. ACR. COVID-19: ACR statement on nuclear medicine ventilation imaging. J Nucl Med 34:1835, 1993
38. Das JP, Yeh R, Schoder H: Clinical utility of perfusion (Q)-single-photon emission computed tomography (SPECT)/CT for diagnosing pulmonary embolus (PE) in COVID-19 patients with a moderate to high pre-test probability of PE. Eur J Nucl Med Mol Imaging: 1-6, 2020
39. L. S. Zuckier
40. GROUP DE TRAVAIL SFNM: Explorations Pulmonaires ventilo- et perfusionnelles. Recommandations pour la réalisation de la scintigraphie pulmonaire dans le contexte d’épidémie due au virus Covid-19. Available at: https://www.sfnm.org/drive/CNFPCODIV-19/Recommandations_GT-ExplorationsPulmonaires30-03-2020.pdf.
41. BELNUC. Recommendations for performing V/Q scans in the context of COVID19. Available at: https://www.belnuc.be/belnuc-covid-19-recommendations/.
42. Society of Nuclear Medicine and Molecular Imaging. Updated statement: COVID-19 and ventilation/perfusion (V/Q) lung studies. 2020. Available at: https://www.snmmi.org/NewsPublications/NewsDetail.aspx?ItemNumber=34462
43. Sostman HD, Minnati M, Gottschalk A, et al: Sensitivity and specificity of perfusion scintigraphy combined with chest radiography for acute pulmonary embolism in PIOPED II. J Nucl Med 49:1741-1748, 2008
44. Lu Y, Lorenzoni A, Fox JJ, et al: Noncontrast perfusion single-photon emission CT/CT scanning: A new test for the expedited, high-accuracy diagnosis of acute pulmonary embolism. Chest 145:1079-1088, 2014
45. Mazurek A, Dauz M, Witkowska-Paterna E, et al: The utility of hybrid SPECT/CT lung perfusion scintigraphy in pulmonary embolism diagnosis. Respiration 90:393-401, 2015
46. Yildirim N, Genc M: The efficiency of hybrid perfusion SPECT/CT imaging in the diagnostic strategy of pulmonary thromboembolism. Hell J Nucl Med 23:304-311, 2020
47. Burger IA, Niemann T, Patrilli D, et al: Is there a role for lung perfusion [(99m)Tc]-MAA SPECT/CT to rule out pulmonary embolism in COVID-19 patients with contraindications for iodine contrast? Eur J Nucl Med Mol Imaging 47:2062-2063, 2020
48. Voo S, Dzidarevic S: Single photon emission computed tomography lung perfusion imaging during the COVID-19 pandemic: does nuclear medicine need to reconsider its guidelines? Nucl Med Commun 41:991-993, 2020
49. Das JP, Yeh R, Schoder H: Clinical utility of perfusion (Q)-single-photon emission computed tomography (SPECT)/CT for diagnosing pulmonary embolus (PE) in COVID-19 patients with a moderate to high pre-test probability of PE. Eur J Nucl Med Mol Imaging: 1-6, 2020
50. Lu Y, Macapinlac HA: Perfusion SPECT/CT to diagnose pulmonary embolism during COVID-19 pandemic. Eur J Nucl Med Mol Imaging 47:2064-2065, 2020
51. Nutt J, Mortensen J, Jensen CV, et al: Detection of pulmonary embolism with combined ventilation-perfusion SPECT and low-dose CT. Head-to-head comparison with multidetector CT angiography. J Nucl Med 50:1987-1992, 2009
52. Palmowski K, Oltmanns U, Kretzer M, et al: Diagnosis of pulmonary embolism: Conventional ventilation/perfusion SPECT is superior to the combination of perfusion SPECT and nonenhanced CT. Respiration 88:291-297, 2014
53. Le Roux PY, Robin P, Delluc A, et al: Additional value of combining low-dose computed tomography to V/Q SPECT on a hybrid SPECT-CT camera for pulmonary embolism diagnosis. Nucl Med Commun 36:922-930, 2015
54. Trevathan R: Sensitivity, specificity, and predictive values: Foundations, pitfalls, and pitfalls in research and practice. Front Public Health 5:307, 2017
55. Patton DD: Introduction to clinical decision making. Semin Nucl Med 8:273-282, 1978
56. Minnati M, Pistolesi M, Marinu C, et al: Value of perfusion lung scan in the diagnosis of pulmonary embolism. Results of the Prospective Investigative Study of Acute Pulmonary Embolism Diagnosis (PISA-PED). Am J Respir Crit Care Med 154:1387-1393, 1996
57. Minnati M, Monti S, Bauleo C, et al: A diagnostic strategy for pulmonary embolism based on standardised pretest probability and perfusion lung scanning: a management study. Eur J Nucl Med Mol Imaging 30:1450-1456, 2003
58. Bajc M, Minnati M, Jogi J, et al: Perfusion SPECT in patients with suspected pulmonary embolism. Eur J Nucl Med Mol Imaging 40:1432-1437, 2013
59. Minnati M, Sostman HD, Gottschalk A, et al: Perfusion lung scintigraphy for the diagnosis of pulmonary embolism. A reappraisal and review of the Prospective Investigative Study of Acute Pulmonary Embolism Diagnosis methods. Semin Nucl Med 38:450-461, 2008
60. Sheer JJ, Harramati LB, Natenzon A, et al: Performance of low-dose perfusion scintigraphy and CT pulmonary angiography for pulmonary embolism in pregnancy. Chest 153:152-160, 2018
61. Abele JT, Sunner P: The clinical utility of a diagnostic imaging algorithm incorporating low-dose perfusion scans in the evaluation of pregnant
patients with clinically suspected pulmonary embolism. Clin Nucl Med 38:29-32, 2013

62. Zuckier LS, Moadel RM, Haramati LB, et al: Diagnostic evaluation of pulmonary embolism during the COVID-19 pandemic. J Nucl Med 61:630-631, 2020

63. Kumar A, Moadel RM, Haramati LB, et al: Experience with a perfusion-only screening protocol for evaluation of pulmonary embolism during the COVID-19 pandemic surge. J Nucl Med 2021. Epub ahead of print

64. Schaefer WM, Knollmann D, Meyer PT: QV-SPECT CT in times of COVID-19: Changing the order to improve safety without sacrificing accuracy. J Nucl Med 2021

65. Deutschen Gesellschaft für Nuklearmedizin e.V., Berufsverband Deutscher Nuklearmediziner e.V. Coronavirus SARS-CoV-2: Mögliche Konsequenzen für die nuklearmedizinische Routine. 2020. Available at: https://www.nuklearmedizin.de/leistungen/docs/DGN_Corona_Empfehlung_app_01_200326.pdf

66. Poyhonen L, Turjanmaa V, Virjo A: 99mTc particle perfusion/99mTc aerosol ventilation imaging using a subtraction technique in suspected pulmonary embolism. Eur J Nucl Med 10:417-421, 1985

67. Wellman HN: Pulmonary thromboembolism: Current status report on the role of nuclear medicine. Semin Nucl Med 16:236-274, 1986

68. Jogi J, Jonson B, Ekberg M, et al: Ventilation-perfusion SPECT with (99m)Tc-DTPA versus technegas: A head-to-head study in obstructive and nonobstructive disease. J Nucl Med 51:735-741, 2010