Visual analytics in investigation of chirality-dependent thermal properties of carbon nanotubes

Vadim A. Shakhnov1, L.A. Zinchenko1, V. V. Makarchuk1, E.V. Rezchikova1, V. V. Kazakov1

1 Bauman Moscow State Technical University, Moscow, Russia

shakhnov@mail.ru

Abstract. In the paper, we present our approach to visual analytics application to investigation of thermal properties of carbon nanotubes. A thermal properties carbon nanotube framework is developed to investigate remarkable features of carbon nanotubes. Visual analytics is useful for comparison of their thermal properties and the corresponding analysis. The preliminary results are reported.

1. Introduction

Currently, many different mathematical models of nano-objects are used for calculation of their properties [1-5]. Using a mathematical model, a designer obtains a big numerical data file, that has to be analyzed. However, it is difficult to choose the best design solution from the two objects that are invisible. In our approach, data and designed objects are visualized [6]. A designer can analyze the obtained numerical and visual information simultaneously.

In the paper, we present an application of our approach to visual analytics support for research of carbon nanotube variation and its influence on thermal conduction phenomena. The outstanding thermal conductivity of carbon nanotubes attracts designers [1, 2, 7]. Carbon nanotubes FETs are promising candidates for the post silicon era. However, the fabrication of carbon nanotubes with the predefined performance is a big challenge [8]. Carbon nanotube specific variations, including nanotube diameter and chirality variations, influence the thermal conductivity of carbon nanotube [9].

A designer has to compare thermal properties of carbon nanotubes with different chiral indices. However, carbon nanotubes are invisible for a human eye. Therefore, special efforts are required to compare alternative design solutions.

We illustrate our approach for investigation of thermal properties of single-walled carbon nanotubes. In the paper, we proposed a novel approach based on visual analytics. The approach supports a nanotube devices design process and simplifies a design solution choice.

In the paper, we focus on design solution with the predefined diameter. First, we find all possible chiral indices for the given diameter and then visualize all possible design solutions with their thermal properties. The corresponding statistical data is reported as well.

The rest of the paper is structured as follows. The next section reviews the related works in the field of carbon nanotubes thermal conductivity. Section 3 presents our approach for visual analytics support in research of chirality-dependent thermal properties of carbon nanotubes. We use single-walled CNTs as our test case. Finally, conclusions are derived in Section 4.
2. Mathematical model of thermal conductivity of carbon nanotubes

The carbon film (graphene) and nanotubes are allotropes of carbon with unique transport properties [3, 4]. Nanotubes come in a variety of lengths \(L \) and diameters \(D \). The distance between the adjacent carbon atoms in carbon nanotubes is equal to \(d_0 = 0.142 \) nm. Therefore, the atomic structure of a single-walled CNT is well described by a pair of indices (chiral indices), \(n \) and \(m \). The diameter is calculated as follows:

\[
D = \frac{m^2 + n^2 + m \cdot n}{2} \cdot \frac{3d_0}{\pi} \quad (1)
\]

The CNT thermal conductivity is dependent on the temperature, the nanotube length \(L \) and the average phonon mean free path \(l_0 \) [1, 2]. If \(l_0 > L \) the ballistic conduction mechanism is dominant. A quantum of thermal conductance is given as follow:

\[
G_{th} = \frac{n^2 k_B T}{3h} = 9.46 \times 10^{-13} \frac{W}{K^2} T \quad (2)
\]

where \(k_B \) is the Boltzmann constant;
\(T \) is the temperature;
\(h \) is the Planck constant.

The thermal conductivity of nanotubes per unit length is calculated as follows:

\[
G = G_{th} N_p \quad (3)
\]

where \(N_p \) is the number of phonon channels in a nanotube.

The number of phonon channels \(N_p \) is equal to the triple number of atoms in the unit cell \(2N \), where \(N \) is calculated as follows:

\[
N = \frac{2(n^2 + m^2 + nm)}{d_R} \quad (4)
\]

where \(d_R \) is equal to the greatest common divisor of the numbers \((2n + m)\) and \((n + 2m)\).

According to [3, 4] a single-walled carbon nanotube with the chiral indices \((5, 5)\) and the diameter \(D = 0.678 \) nm contains 60 phonon channels and its thermal conductivity is given as follows:

\[
G = 60 G_{th} \quad (5)
\]

A single-walled carbon nanotube with the chiral indices \((10, 10)\) and the diameter \(D = 1.356 \) nm contains 120 phonon channels and its thermal conductivity is given as follows:

\[
G = 120 G_{th} \quad (6)
\]

Table I summaries the data for the thermal conductivity of two nanotubes.

It should be noted, that experimental data for the thermal properties of nanotubes has been published in [4]. In particular, the experimental value of thermal conductivity of the nanotube \((10, 10)\) is equal to

\[
G = 128 G_{th} \quad (7)
\]

Through inspecting other experimental data points [4], we can validate that the measured values lie very close to the curves proposed by (3).

3. Thermal properties carbon nanotube framework

We developed a framework for analysis and visualization of nanotubes transport properties [10]. Our framework has been implemented using C# programming language and Microsoft Visual Studio 2015. We use the libraries of Tao Framework, including the OpenGL library [11].

Our framework provides a comparison of thermal properties of two different nanotubes and supports nanotubes variation analysis. More details about the first feature can be found in [12].

In the paper, our focus is on nanotube variation visualization and its analysis.
Table 1. The thermal conductivity of nanotubes.

Indices	Temperature, K
n m	233 273 333

The thermal conductivity of the nanotube, G, W/K

| n m | 1.32×10^8 | 1.54×10^8 | 1.89×10^8 |

| n m | 2.64×10^8 | 3.09×10^8 | 3.78×10^8 |

3.1. Nanotubes variation analysis

Nanotubes parameters vary in diameter and chirality indices. In our framework, we provide three different types of diameters variation settings:

1. Min / Max (Figure 1).
2. Deviation, %.
3. Deviation, nm.

![Figure 1](image-url)

Figure 1. The variation tube analysis mode. Diameters vary from 1 nm to 5 nm, $m = 10$. \times depicts experimental measures [4] for the nanotube (10, 10).
Figure 2. Diameters variation for different chiral indices n.

For all settings, our framework calculates an average nanotube diameter and a nanotube diameter dispersion.

Our framework generates the following output information:
1. Nanotubes diameters variation.
2. The sorted nanotubes diameters.
3. Dispersion of nanotubes diameters.
4. A curve $D(n, m)$.
5. Chiral indices variations.
6. A curve $G(D)$.
7. A curve $G(n, m)$
8. A dispersion of nanotube thermal conductivity.

For a given tube, our framework shows the corresponding thermal conductivity, the diameter and the dot in the curve.

Figure 1 illustrates the variation nanotubes analysis mode of our framework. The curve shows a change of thermal conductivity for different chirality indices. Each blue dot corresponds to semiconductor dots. Green dots show metallic nanotubes. Transparency of each point allows us to estimate the density of the distribution of values in different areas. Figure 1 shows the case $m = 10$.

Figure 2 summaries a diameter variation for variation of the chiral index n, while Figure 3 shows all possible chirality indices n and m for the diameter variations from 1 nm to 5 nm.

Figure 3. Chirality indices variations for the diameter variations from the 1 nm to 5 nm.

Figure 4 shows thermal conductivity variation for diameter variations. It is obvious that tubes divided into clusters. Tubes with equal m are observed in different clusters. It is remarkable that metallic and semiconductor nanotubes are observed in each cluster.
Figure 4. Thermal conductivity variations

Figure 5 represents a dispersion of thermal conductivity for nanotube diameter variation from 4 nm to 5 nm. It is remarkable, that some values of thermal conductivity are missing.

Figure 5. Thermal conductivity dispersion.

4. Conclusion
In the paper, we have presented our approach to visual analytics support for investigation of carbon nanotube variations. We have illustrated our approach using the single walled carbon nanotubes thermal conductivity as our test case. Our tool visualizes variation of nanotubes parameters and performance. It is obvious that visual analytics is useful for investigation of thermal properties of carbon nanotubes.

It should be mentioned, that our approach uses only the visual information channel. However, the approach simplifies a nanotube design flow.

Acknowledgments
This work was partially supported by grant RFBR 15-29-01115 ofi-m.

References

[1] Brazhe R, Nefedov V 2014 Thermal conductivity of planar and nanotubular supercrystalline structures at temperatures below the Debye temperature. *Physics of Solid State*, vol 56, no. 3, pp. 626-630.

[2] Brazhe R, Nefedov V 2012 Thermal conductivity of carbon supercrystalline nanotubes. *Physics of Solid State*, 54, no. 7. S. 1435-1438.

[3] Eletskii A 1997 Carbon nanotubes. *Advances in Physical Sciences*, 1997, 9.

[4] Eletskii A 2009 Transport properties of carbon nanotubes. *Advances in Physical Sciences*, 179, 3, p. 225-242.

[5] Rieth M, Schommers W 2006 Handbook of Theoretical and Computational Nanotechnology. *American Scientific Publishers*.
[6] Shakhnov V, Zinchenko L, Rezchikova E 2014 Simulation and visualization in cognitive nanoinformatics. *International Journal of Mathematics and Computers in Simulation*, 1 pp. 141-147.

[7] Hills G, et al. 2015 Rapid Co-Optimization of Processing and Circuit Design to Overcome Carbon Nanotube Variations. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 7, pp. 1082-1095.

[8] Paul B, et al. 2007 Impact of a Process Variation on Nanowire and Nanotube Device Performance. *IEEE Transactions on Electron Devices*, 9, pp. 2369-2376.

[9] Marconnet A, Panzer M, and Goodson K 2013 Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. *Rev. Mod. Phys.*, 85, no. 8, pp. 1296 - 1327.

[10] Shakhnov V, Zinchenko L, Rezchikova E, Verstov V, Makarchuk V, Sorokin B, Kazakov V 2016 The use of cognitive information and communication technologies in the study of the transport properties of carbon nanotubes. *Design and technology of electronic means*, 1 pp. 8-13.

[11] Kazakov V, Verstov V, Zinchenko L, Averyanikhin A 2016 Problems of WPF applications for Visualization of Transport Properties of Carbon Nanotubes. *Technology engineering and information systems*, 2, pp. 34-41.

[12] Kazakov V, Verstov V, Zinchenko L, Makarchuk V 2016 Visual Analytics Support for Carbon Nanotube Design Automation. Biologically Inspired Cognitive Architectures (BICA) for Young Scientists. Volume 449, pp 71-78.