The Impact of Cognitive Style-based Learning Models on Students' Problem-Solving Abilities

Sutrisno*, Dwi Rahayuningsih, Heni Purwati
Department of Mathematics Education, Universitas PGRI Semarang, Indonesia

Abstract: Every student must possess problem-solving abilities. Solving students' problems is varied; several factors influence the difference between cognitive styles and learning models. This study aimed to determine differences in problem-solving abilities based on students' cognitive styles in the Concept Attention (CA) and Group Investigation (GI) learning model. This study was a quantitative study with the tenth-grade students of SMA Negeri 16 Semarang as the 2018/2019 academic year population. The sample was selected using cluster random sampling. The research data had been collected through documentation and tests and then were analyzed using nonparametric tests, specifically the Hildebrand test, since the data were not normally distributed. The results showed that students with Field Independent (FI) cognitive style's problem-solving ability were better than students with Field Dependent (FD) cognitive style, either in general, CA, or GI learning models. The CA learning model produced better problem-solving abilities than the GI learning model, both in general and in terms of the type of students' cognitive style.

INTRODUCTION
Mathematics is the subject that students must obtain from Elementary School to Senior High School. Learning mathematics in schools has a purpose, one of which is to have an attitude of appreciating the usefulness of mathematics in life, namely having curiosity, attention, and interest in learning mathematics, as well as being tenacious and confident in problem-solving (Hasratuddin, 2013; Purwasih et al., 2020; Samad et al., 2020). These goals are what enable mathematics was required to apply to a variety of learning in schools. However, in reality, mathematics is a difficult subject and is not easily mastered by students (Liberna, 2012). One effort to make students understand mathematics is to familiarise students with solving mathematical problems.

Problem-solving is a process for overcoming difficulties encountered to achieve the expected goals (Sumartini, 2015). Solving problems is essential for students because it is learning mathematics (Hidayat & Sariningsih, 2018; Li & Schoenfeld, 2019; Rahayu & Afriansyah, 2015). However, each student has a different level of problem-solving ability with other students.

Based on the PISA worldwide ranking in 2018, students' mathematical abilities in Indonesia are still below international standards, 71 out of 77 countries (FactsMaps, 2019). However, in other championship events, Indonesian students can win the championship. In the 59th International Mathematical
Problem-solving abilities in students are using in every field in mathematics, one of which is trigonometry. Trigonometry is one of the competencies complained by students because of the many formulas that are not only memorized but also require a high understanding of their application (Perangin-Angin & Banjarnahor, 2017; Purba & Sirait, 2017; Rahmadani et al., 2018). Thus, efforts are needed to improve the problem-solving ability of trigonometry material.

Cognitive style is thought to be one of the causes of students' problem-solving abilities. Purnomo et al. (2017), Syamsuddin (2020), and Wulandari (2017) suggest that cognitive style shows the consistency and inclination of individual characters in feeling, remembering, organizing, processing, thinking, and solving problems. When solving a problem, each student must have a different thought process, and the difference in thought processes is possible because of differences in each student's cognitive style (Ngilawajan, 2013; Panjaitan, 2013; Yahya, 2015). Mathematical problem-solving strategies are influenced by how students process, store, and use the information to respond to a problem. In education, this is called cognitive style (Akbar et al., 2020; Panjaitan, 2013; Purnomo et al., 2017). Ngilawajan (2013) and Wulandari (2017) also argue that there are many kinds of cognitive styles, including the Field Independent (FI) and Field Dependent (FD) cognitive styles.

This statement is in line with Udiyono & Yuwono (2018), which states that there are two cognitive styles: FI and FD. There are differences between students with FI and FD cognitive styles. FD students tend to depend on their environmental perceptions, have difficulty focusing, find main ideas, use prominent instruction, find it challenging to provide ambiguous information structures. While students with FI can see shadows separate from their forms, separate relevant things from irrelevant forms, provide information structures separate from those provided, rearrange information from the context of prior knowledge, and tend to be more appropriate in taking part in memory. Based on Fadliilah's research results, it is concluding that students with the FI cognitive style perform complete problem-solving compared to the FD cognitive style (Fadliilah et al., 2017).

Besides cognitive style, learning models are also thought to be one of the causes of problem-solving (Surisno et al., 2020). In learning mathematics, there are many learning models, one of which is the cooperative learning model. The cooperative learning model is a learning model expected by the teacher to form cooperative groups to maximize their learning and peers (Huda, 2017).

The Concept Attention (CA) learning model is a type of cooperative learning model that is essential to classifying, thinking, and listening to students (Bhargava, 2016; Putri, 2017; Sijabat et al., 2019). Sumartini (2015) states that this learning model has a syntax of data presentation and concept identification, testing the achievement of concepts, and analyzing thinking strategies. The research conducted by Wiyono (2013) states that the CA learning model produces better problem-solving abilities than conventional models.

In addition to the CA learning model, Group Investigation (GI) is also a type of cooperative learning consisting of several members responsible for mastering subject matter supported by other group members (Bundu et al., 2018). Richardo (2015) states six steps in
this learning model: topic selection, cooperative planning, implementation, analysis and synthesis, presentation of final results, and evaluation. Research conducted by Fadila et al., (2019) shows that the class using the GI model has better problem-solving abilities than the class using the conventional model. Therefore, it is hoping that both models could improve the problem-solving ability of trigonometry material.

The use of different learning models and viewpoints of different cognitive styles will also affect students' problem-solving abilities. Thus, research needs to be carried out to determine CA and GI learning models' impact on students' cognitive styles on problem-solving abilities.

METHOD

This study discussed the differences in problem-solving based on the Concept Attention (CA) and Group Investigation (GI) learning models' cognitive style. The CA and GI learning models' syntax is presented in Figure 1 and Figure 2, respectively.

![Figure 1. The Syntax of CA Learning Model](image1)

![Figure 2. The Syntax of GI Learning Model](image2)

The design used was a factorial experimental design, a modification of the true experimental design, by considering a moderator variable that affects a treatment (Lestari & Yudhanegara, 2017). The research sample consisted of two classes.

Problem-solving Abilities on Learning Models	Problem-solving Abilities on Cognitive Styles
Problem-solving abilities on CA (X₁₁)	Problem-solving abilities on CA with FI (X₁₁)
Problem-solving abilities on GI (X₂₁)	Problem-solving abilities on GI with FI (X₂₁)
Problem-solving abilities on FI (X₁₂)	Problem-solving abilities on CA with FI (X₁₁)
Problem-solving abilities on FD (X₂₂)	Problem-solving abilities on GI with FI (X₂₁)

The experimental class was taught using the CA and GI learning models. Each experimental class had been previously tested for the average equilibrium using the t-test. Before conducting the average test, a distribution normality test was performed using the Lilliefors test, and the similarity in variance was done using the Bartlett test. Then in the middle of the learning meeting, the GEFT test was held, and at the final session, a final evaluation was having.

The final stage was analyzing the tests' calculation results, both the GEFT test and the final evaluation. The final
analysis is used to see whether there are differences in problem-solving abilities between each group of students. In the final analysis, the distribution stage's normality is done first, namely, by using the Lilliefors test. Due to the non-normal distribution, a nonparametric test was performed using the Hildebrand test (Lestari, 2009). The Hildebrand test was developed from a factorial experimental design and derived from the existing formulas in two-way ANOVA with the same objective, namely knowing the difference in row factors, column factors, and interaction factors (Huhn & Leon, 1995).

RESULT AND DISCUSSION

This study's sample consisted of two tenth-grade classes subjected to the Concept Attention (CA) and Group Investigation (GI) learning models. It then examined each student's cognitive style and problem-solving abilities. The integration of indicators of problem-solving abilities with learning models is presented in Table 2. Before the CA and GI learning models were applied, the average balance test was conducted beforehand with the distribution normality and homogeneity variance tests.

Table 2. Integration of Indicators of Problem-solving Abilities with Learning Models

Indicators of Problem-solving Abilities	Concept Attention (CA)	Group Investigation (GI)
Understand the problem	Data Presentation	Selection of Topics
Make a problem plan	Concept Identification	Cooperative Planning
Implement a problem-solving plan	Concept Achievement Testing	Implementation
Re-check answers	Analysis of Thinking	Analysis and Synthesis
	Strategies	Presentation of Final Results

From the calculation the initial data in Table 4, obtained the Bartlett value (b) = .997 and the critical value (bₐ) = .940 for significance level (α) = 5 % with n₁ = 35 and n₂ = 33. Because b exceeds bₐ can be concluding H₀ is accepted, the two groups' variance is the same (homogeneous). After that, the average similarity test is done using the t-test. The t-test results are presented in Table 5.

Table 3. Distribution Normality Test of Initial Data

Sample	nᵢ	L₀obs	L₀ɑ	Test Decision
Experiment 1	35	.127	.15	Accepted H₀
Experiment 2	33	.144	.15	Accepted H₀

Table 4. Homogeneity of Variance of Initial Data

Sample	nᵢ	s²	b	bₐ	Test Decision
Experiment 1	35	42.081	.997	.940	Accepted H₀
Experiment 2	33	36.218			

Based on the calculation in Table 5, t-statistic (t₀obs) = 1.66 and the critical value (t₀) = 1.96 for significance level (α) = 5 % with the degree of freedom (df) = 66. Because t₀obs less than t₀, accepted H₀. Therefore, the average problem-solving ability of students between the two classes did not differ significantly, so that the
problem-solving abilities of students of both classes were the same.

After both classes received treatment as the design of this study, the final analysis was carried out based on tests of problem-solving abilities and cognitive styles. The first analysis is doing by testing the distribution normality. Similar to the initial data analysis, the final data analysis of the distribution normality test uses the Lilliefors test. The results of the distribution normality test are presented in Table 6.

Table 6. Distribution Normality Test of Final Data

Independent Variable	Group	L_{obs}	L_{a}	Test	Decision
Learning model	CA	.129	.167	H_{0}	Accepted
	GI	.160	.170	H_{0}	Accepted
Cognitive style	FD	.199	.159	H_{0}	Rejected
	FI	.115	.189	H_{0}	Accepted

Based on Table 6, it is known that there are groups that are not normally distributed, so the final analysis uses nonparametric statistics, namely the Hildebrand test (Lestari, 2009).

The Differences in Problem-Solving Abilities Based on Cognitive Style

There are differences in students’ problem-solving abilities with the FI and FD cognitive styles in this study. These results are obtained through calculations using the Hildebrand factor column test. The results are shown in Table 7.

Table 7. Hildebrand Test of Column Factors

Cognitive Style	Marginal Average	\chi^{2}_{obs}	\chi^{2}_{a}	Test	Decision
FI	33.32	6.67	3.84	H_{0}	Rejected
FD	22.52	6.67	3.84	H_{0}	Rejected

From the calculation in Table 7, \chi^{2}-statistic (\chi^{2}_{obs}) exceeds the critical value \chi^{2}_{a} for significance level (\alpha) = 5 \%, which is 6.669 > 3.841. Because of \chi^{2}_{obs} > \chi^{2}_{a}, rejected H_{0}, which means there are significant row differences. Because of the Average Marginal Ranking FI (\bar{R}_{1}) = 33.32 and FD (\bar{R}_{2}) = 22.52. In other words, students with FI cognitive styles are better than students with Filed Dependent cognitive style.

Students with the FD cognitive style believe their surroundings, difficult to focus, find the main points, and use prominent instructions, difficult to provide ambiguous information, challenging to compile new information and relate it to the previous one, difficult to retrieve information from memories (Udiyono & Yuwono, 2018). Students with FI cognitive style can imagine the original form of a part, separate related matters from unrelated forms, provide information separate from the others, rearrange information from the context of prior knowledge, and tend to be more appropriate in remembering things (Udiyono & Yuwono, 2018). Students with a FI cognitive style have characteristics that tend to be more confident with themselves than students with an FD cognitive style who are more confident with shared decisions or the results of group discussions.

Those factors caused students with the FI cognitive style to solve problem-solving problems better than students with the FD cognitive style. In line with Fadlliilah et al. (2017), Prabawa & Zenauni (2017), Purnomo et al. (2017), and Sari et al. (2019) researches, students with FI cognitive styles are better at solving problems than students with FD cognitive styles.

The Differences in Problem-Solving Abilities in the CA and GI Learning Models

In this study, there are also differences in students’ problem-solving abilities with the CA and GI learning models. These results were obtained through calculations using the Hildebrand row factor test (Lestari, 2009). The results are presenting in Table 8.
From the calculation in Table 8, \(\chi^2 \)-statistic (\(\chi^2_{\text{obs}} \)) exceeds the critical value \(\chi^2_a \) for significance level (\(\alpha \)) = 5 %, which is 8.01 > 3.84. Because of \(\chi^2_{\text{obs}} > \chi^2_a \), rejected H0, which means there are significant row differences. Because of CA's Marginal Ranking Average (\(R_\text{avg} \)) = 32.89 and GI (\(R_\text{avg} \)) = 20.88. In other words, the students’ problem-solving ability with the CA learning model is superior to the GI. That is reversing by the results of the analysis conducted by Noor (2011). His research found that GI’s learning model had better learning achievement than the CA learning model in Economics subjects.

There are differences in problem-solving ability from the classroom with the CA and GI learning models in this study. That is in line with Noor (2011), which states that there are differences in learning opportunities between the CA learning model and the GI learning model. The difference is caused by the different treatment of each class. The CA learning model is a learning model that is very important to learn how to classify, think, and listen to students (Bhargava, 2016). In contrast, the GI learning model is a model that emphasizes students' participation and activities to search for material lessons to be learned through available materials (Richardo, 2015).

Students who are giving the CA and GI learning models were active during learning. The CA learning model, which emphasizes the concept's achievement, is considered better in problem-solving than the GI learning model, which focuses more on discussing a problem. The learning objectives of individual students are more achieving by using the CA learning model. The concepts already reached at each meeting are considered more easily understood by students to be reapplying during the final evaluation in the form of a problem-solving ability test. Therefore, the CA learning model's problem-solving ability is better than the GI learning model.

The Difference in Problem-Solving Abilities in the CA and GI Learning Models based on the Cognitive Styles

There is no interaction between cognitive style and learning models on students' problem-solving abilities in this study. These results are obtained through calculations using the Hildebrand test of interactions between row and column factors. The results are presented in Table 9.

Learning Model	Cognitive style	\(\chi^2_{\text{obs}} \)	\(\chi^2_a \)	Test Decision
CA	FI	30.09	23.00	Accepted H0
	FD	21.27	3.84	
GI		24.45	3.84	Accepted H0

From the calculation in Table 9, \(\chi^2 \)-statistic (\(\chi^2_{\text{obs}} \)) less than the critical value \(\chi^2_a \) for significance level (\(\alpha \)) = 5 %, which is .372 < 3.841. Because \(\chi^2_{\text{obs}} < \chi^2_a \), accepted H0, there is no significant interaction between a row and column factors. It can be concluded that both the CA and GI learning models, students with the FI cognitive style, have better problem-solving abilities than the FD cognitive style. Students with a FI cognitive style are more focused on working on a problem than students with an FD cognitive style who tend to be more interested in the surrounding environment. Ulya (2015) also believes that the higher the level of students' cognitive style, the higher their mathematical problem-solving abilities. As a result, both in CA and GI learning models, students’ problem-solving abilities with the FI cognitive style is better than the FD, as is the case with
Khafid (2010), which states that cognitive style carries an effect on any learning outcomes regardless of learning models. High and low learning outcomes of students also affect the level of problem-solving abilities of students. As in the case of Winardi (2016), where the problem-solving abilities of students studied were high, at the same time, students' learning outcomes were also high. Based on Khafid’s (2010) research, it is possible that in the CA learning model, students with the FI cognitive style have better problem-solving abilities compared to students with FD cognitive style. That also happened in the GI learning model. In line with this, Khafid (2010) states that the FI cognitive style has better learning outcomes in the GI learning model than the FD cognitive style. As a result, in the GI learning model, students with the FI cognitive style are better at solving problems than the FD cognitive style. Besides, students with the CA learning model will always be better at solving problems than the GI learning model. Based on the discussion, some of the learning goals are not all achieved in the learning process.

This study provides insights for teachers in choosing the right learning model in their learning practices. Besides, students' cognitive style also needs to get more attention from teachers because it influences students' problem-solving abilities.

CONCLUSION

This study showed that the students' problem-solving abilities with the FI cognitive style were better than the FD. Furthermore, the CA learning model produced better problem-solving abilities than the GI learning model. Besides, it can also be shown that in the CA and GI learning models, students' problem-solving abilities with FI cognitive styles were better than students with FD cognitive styles. For students with FI and FD cognitive styles, the CA learning model produced better problem-solving abilities than the GI learning model.

Based on the analysis, it is suggested that teachers use the CA learning model to improve problem-solving abilities, and teachers should pay attention to students' cognitive styles in learning. Students with FD cognitive styles need to get more attention when studying.

REFERENCES

Akbar, M., Sa’dijah, C., & Sisworo, S. (2020). Profil siswa dalam memecahkan masalah matematika berdasarkan gaya kognitif dan gender. *Jurnal Kajian Pembelajaran Matematika*, 4(1), 27–39.

Bhargava, R. (2016). Effect of concept attainment model on achievement in social sciences. *International Journal of Science and Research*, 5(5), 699–701. https://doi.org/10.21275/v5i5.705160

Bundu, P., Suradi, & Jufri, M. (2018). Application of group investigation (GI) learning model in pendidikan IPS SD course, to improve students’ critical thinking skills. *IOSR Journal of Research & Method in Education*, 8(2), 41–46. https://doi.org/10.9790/7388-0802054146

FactsMaps. (2019). *PISA 2018 Worldwide Ranking - average score of mathematics, science and reading - FactsMaps*. Http://Factsmaps.Com/Pisa-2018-Worldwide-Ranking-Average-Score-of-Mathematics-Science-Reading/.

Fadila, A., Septiana, A., Amelia, V., Wahyuni, T., Wahyuni, & Sugito. (2019). The influence of group investigation learning implementation judging from learning motivation against students’ mathematical problem solving ability. *Journal of Physics: Conference Series*, 1155(1).
https://doi.org/10.1088/1742-6596/1155/1/012098

Fadliilah, N., Fiantika, F. R., & Handayani, A. D. (2017). Gaya kognitif field independent dan field dependent siswa SMP kelas VII dalam memecahkan masalah matematika pada materi segitiga dan segiempat berdasarkan gender. Simki-Techsain, 1(7), 1–12.

Hasratuddin. (2013). Membangun karakter melalui pembelajaran matematika. Jurnal Pendidikan Matematika Paradikma, 6(2), 130–141. https://doi.org/https://doi.org/10.2414/paradikma.v6i2.1066

Hidayat, W., & Sariningsih, R. (2018). Kemampuan pemecahan masalah matematis dan adversity quotient siswa SMP melalui pembelajaran open ended. Jurnal JNPM (Jurnal Nasional Pendidikan Matematika), 2(1), 109–118. https://doi.org/http://dx.doi.org/10.33603/jnpm.v2i1.1027

Huda, M. (2017). Cooperative learning. Pustaka Pelajar.

Huhn, M., & Leon, J. (1995). Nonparametric analysis of cultivar performance trials: Experimental results and comparison of different procedures based on ranks. Agronomy Journal, 87(4), 627–632. https://doi.org/10.2134/agronj1995.0021962008700040004x

Khafid, S. (2010). Pembelajaran kooperatif model investigasi kelompok, gaya kognitif, dan hasil belajar geografi. Jurnal Ilmu Pendidikan, 17(1), 73–78. https://doi.org/http://dx.doi.org/10.17977/jip.v17i1.2622

Lestari, F. C. (2009). Uji bredenkamp, hildebrand, kubinger, dan friedman. Jurnal Mat Stat, 9(2), 135–142.

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as “given” in STEM education. International Journal of STEM Education, 6(1). https://doi.org/10.1186/s40594-019-0197-9

Liberna, H. (2012). Peningkatan kemampuan berpikir kritis matematis siswa melalui penggunaan metode improve pada materi sistem persamaan linear dua variabel. Formatif: Jurnal Ilmiah Pendidikan MIPA, 2(23), 190–197. https://doi.org/http://dx.doi.org/10.3098/formatif.v2i3.101

Ngilawajan, D. A. (2013). Proses berpikir siswa SMA dalam field independent dan field dependent. Pedagogia, 2(1), 71–83. https://doi.org/http://doi.org/10.21070/pedagogia.v2i1.48

Noor, S. A. (2011). Pengaruh model pembelajaran group investigation dan concept attainment terhadap prestasi belajar ekonomi ditinjau dari minat belajar pada siswa kelas X SMA negeri di kabupaten Wonogiri. Universitas Sebelas Maret.

Panjaitan, B. (2013). Proses kognitif siswa dalam pemecahan masalah matematika. Jurnal Ilmu Pendidikan, 19(1), 17–25. https://doi.org/http://dx.doi.org/10.17977/jip.v19i1.3751

Perangin-Angin, E. G., & Banjarnahor, H. (2017). Pengaruh model pembelajaran problem posing berbantuan scaffolding terhadap kemampuan komunikasi matematis siswa kelas X SMA Negeri 1 Lubuk Pakam. Inspiratif: Jurnal Pendidikan Matematika, 3(1), 57–67. https://doi.org/10.24114/jpmi.v3i1.881

Prabawa, E. A., & Zaenuri, Z. (2017).
Analisis kemampuan pemecahan masalah ditinjau dari gaya kognitif siswa pada model project based learning bernuansa etnomatematika. *Unnes Journal of Mathematics Education Research, 6*(1), 120–129.

Purba, O. N., & Sirait, S. (2017). Peningkatan kemampuan pemecahan masalah pada materi trigonometri dengan model laps-heuristic pada kelas X SMA Shafiyyatul Amaliyah. *Jurnal Matematics Paedagogic, 2*(1), 31–39.

Purnomo, R. C., Sunardi, S., & Sugianti, T. (2017). Profil kreativitas dalam pemecahan masalah matematika ditinjau dari gaya kognitif field independent (FI) dan field dependent (FD) siswa kelas VII A SMP Negeri 12 Jember. *Jurnal Edukasi, 4*(2), 9–14. https://doi.org/10.19184/jukasi.v4i2.5203

Purwasih, R., Sariningsih, R., & Sari, I. P. (2020). Self efficacy terhadap kemampuan high order thinking mathematics siswa melalui pembelajaran berbantuan software geogebra. *AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 9*(1), 166–173. https://doi.org/10.24127/ajpm.v9i1.2663

Putri, D. P. (2017). Model pembelajaran concept attainment dalam meningkatkan pemahaman konsep matematika. *Jurnal Tatsqif, 15*(1), 97–130. https://doi.org/10.20414/j-tatsqif.v15i1.1319

Rahayu, D. V., & Afriansyah, E. A. (2015). Meningkatkan kemampuan pemecahan masalah matematik siswa melalui model pembelajaran pelangi matematika. *Mosharafa: Jurnal Pendidikan Matematika, 5*(1), 29–37.

Rahmedani, H., Roza, Y., & Murni, A. (2018). Analisis kebutuhan bahan ajar matematika berbasis teknologi informasi di SMA IT albayyinah pekanbaru. *JURING (Journal for Research in Mathematics Learning), 1*(1), 91–98. https://doi.org/10.24014/juring.v1i1.5230

Richardo, R. (2015). Eksperimentasi model pembelajaran kooperatif tipe investigasi kelompok (group investigation) terhadap hasil belajar matematika berdasarkan gaya belajar siswa. *Edu Research, 4*(1), 35–42.

Samad, I., Ahmad, H., & Febryanti. (2020). The ability to improve mathematical representation through media from lipa’ sa’be mandar. *Jurnal Sainsmat, 9*(1), 57–70. https://doi.org/https://doi.org/10.35580/sainsmat91141912020

Sari, A. P., Sudargo, S., & Sutrisno, S. (2019). Pengaruh model pembelajaran kooperatif tipe numbered heads together melalui pendekatan PAIKEM terhadap prestasi belajar ditinjau dari gaya kognitif. *AKSIOMA: Jurnal Matematika Dan Pendidikan Matematika, 10*(1), 48–59. https://doi.org/https://doi.org/10.26877/aks.v10i1.3665

Sijabat, F. T., Muchlis, E. E., & Yensy, N. A. (2019). Penerapan model pembelajaran concept attainment untuk meningkatkan aktivitas matematika siswa SMP. *Jurnal Penelitian Pembelajaran Matematika Sekolah (JP2MS), 3*(1), 13–20. https://doi.org/https://doi.org/10.33369/jp2ms.3.1.13-20

Sumartini, T. S. (2015). Mengembangkan self concept siswa melalui model pembelajaran concept attainment. *Mosharafa, 4*(2), 48–57.

Sutrisno, S., Zuliyawati, N., & Setyawati, R. D. (2020). Efektivitas model pembelajaran problem-based learning dan think pair share berbantuan geogebra terhadap kemampuan pemecahan masalah matematis. *Journal of Medives: Journal of Mathematics Education Research*.
The Impact of Cognitive Style

Sutrisno, D. Rahayuningsih, H. Purwati

IKIP Veteran Semarang, 4(1), 1–9. https://doi.org/https://doi.org/10.31331/medivesveteran.v4i1.930

Syamsuddin, A. (2020). Identifikasi kedalaman berpikir reflektif calon guru matematika dalam pemecahan masalah matematika melalui taksonomi berpikir reflektif berdasarkan gaya kognitif. *Jurnal Elemen*, 6(1), 128–145. https://doi.org/10.29408/jel.v6i1.174

Udiyono, & Yuwono, M. R. (2018). The correlation between cognitive style and students’ learning achievement on geometry subject. *Infinity Journal*, 7(1), 35–44. https://doi.org/10.22460/infinity.v7i1.p35-44

Ulya, H. (2015). Hubungan gaya kognitif dengan kemampuan pemecahan masalah matematika siswa. *Jurnal Konseling Gusjigang*, 1(2). https://doi.org/10.24176/jkg.v1i2.410

Winardi, W. (2016). Meningkatkan kemampuan pemecahan masalah dengan metode MMP dan pendekatan open-ended. *Seminar Nasional Matematika Dan Pendidikan Matematika*, 420–431.

Wiyono. (2013). Pemelajaran matematika model concept attainment meningkatkan kemampuan pemecahan masalah materi segitiga. *Journal of Educational Research and Evaluation*, 2(1), 50–54.

Wulantari, R. (2017). Analisis gaya kognitif siswa dalam pemecahan masalah matematika di SDN banyuajuh I Kamal Madura. *Widyagogik*, 4(2), 95–106. https://doi.org/https://doi.org/10.21107/widyagogik.v4i2.2883

Yahya, A. (2015). Proses berpikir lateral siswa SMA negeri 1 pamekasan dalam memecahkan masalah matematika ditinjau dari gaya kognitif field independent dan field dependent. *APOTEMA : Jurnal Program Studi Pendidikan*