C-reactive protein cut-off for early tocilizumab and dexamethasone prescription in hospitalized patients with COVID-19

Ana M. Camon1, Rodrigo Alonso1,16, Francisco J. Muñoz1, Celia Cardozo1, Javier Bernal-Maurandi1, Laia Albiach1, Daiana Agüero1, M. Angeles Marcos2,3,4, Juan Ambrosioni1, Marta Bodro1, Mariana Chumbita1, Lorena De la Mora1, Nicole Garcia-Pouton1, Gerard Dueñas1, Marta Hernandez-Meneses1, Alexy Inciarte1, Genoveva Cuesta2,3,4, Fernanda Meira1, Laura Morata1, Pedro Puerta-Alcalde5, Verónica Rico1, Sabina Herrera1, Montse Tuset1, Pedro Castro5, Sergio Prieto-González7, Alex Almuedo3,4,8, José Muñoz1,4,8, Josep Mensa1, Gemma Sanjuan2,5,7, J. M. Nicolas8, Ana Del Río1, Jordi Vila2,3,4, Felipe García1, José Antonio Martínez1, Carolina García-Vidal1, Alex Soriano12,5 & Hospital Clinic of Barcelona COVID-19 Research Group

Dexamethasone and tocilizumab have been associated with reduction in mortality, however, the beneficial effect is not for all patients and the impact on viral replication is not well defined. We hypothesized that C-reactive protein (CRP) could help in the identification of patients requiring anti-inflammatory therapy. Patients admitted for > 48 h in our hospital for a confirmed or suspected infection by SARS-CoV-2 from February 2020 to February 2021 were retrospectively evaluated. The primary outcome was mortality at 30 days. Demographics and the most relevant variables related with the outcome were included. CRP was stratified by percentiles. Univariate and multivariate analysis were performed. A total of 3218 patients were included with a median (IQR) age of 66 (74–78) years and 58.9% were males. The rate of intensive care unit admission was 24.4% and the 30-day mortality rate was 11.8%. Within the first 5 days from admission, 1018 (31.7%) patients received dexamethasone and 549 tocilizumab (17.1%). The crude analysis showed a mortality reduction in patients receiving dexamethasone when CRP was > 13.75 mg/dL and > 3.5 mg/dL for those receiving tocilizumab. Multivariate analysis identified the interaction of CRP > 13.75 mg/dL with dexamethasone (OR 0.57; CI 95% 0.37–0.89, \(P = 0.014 \)) and CRP > 3.5 mg/dL with tocilizumab (0.65; CI95%:0.44–0.95, \(P = 0.029 \)) as independent predictors of mortality. Our results suggest that dexamethasone and tocilizumab are associated with a reduction in mortality when prescribed to patients with a certain inflammatory activity assessed by C-reactive protein.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been detected around the world with more than 4 million related deaths1. A recent analysis of 44,415 confirmed cases in China described that 81% were asymptomatic or have a mild disease, 14% have a severe disease and 5% a critical disease with an overall mortality of 2.3%2. However, among patients that require hospitalization, the mortality rate is around 20%.3 The activation of the immune system includes the production of type-I interferon (IFN) mainly by plasmacytoid

1Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, C/ Villarroel 170, 08036 Barcelona, Spain. 2Department of Microbiology, Hospital Clinic of Barcelona, Barcelona, Spain. 3University of Barcelona, Barcelona, Spain. 4Institute for Global Health (ISGlobal), Barcelona, Spain. 5Department of Pharmacy, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain. 6Medical Intensive Care Unit, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain. 7Department of Internal Medicine, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain. 8Department of International Health, Hospital Clinic of Barcelona, Barcelona, Spain. 9Computer System Unit, Hospital Clinic, Barcelona, Spain. 16These authors contributed equally: Rodrigo Alonso. *A list of authors and their affiliations appears at the end of the paper. *email: viladomiu@me.com
Results

The population evaluated consisted of 3218 patients who were admitted to our hospital during the pandemic. The median (IQR) age was 66 (54–78) years and 58.9% were males. The most common co-morbidities were hypertension (46.3%), chronic heart disease (26.4%), chronic pulmonary disease (24.3%), diabetes mellitus (20.1%), solid neoplasia (15.6%), and chronic renal failure (12.3%). A total of 784 patients were admitted to the ICU (24.4%) and 330 required IMV (10.3%). Regarding therapeutic strategies, 549 (17.1%) patients received remdesivir, and 549 (17.1%) tocilizumab. The global 30-day mortality rate was 11.8%, and the characteristics associated with mortality are shown in Table 1.

Outcome.

We explored the mortality among patients that received dexamethasone or tocilizumab according to the CRP percentiles at admission. Figure 1 shows the results for dexamethasone and illustrates that the mortality rate was numerically higher in patients with a CRP ≤ 3.50 mg/dL (percentile 25) if treated with dexamethasone (P = 0.06, Chi-square test), similar in those with CRP between 3.51 and 13.75 mg/dL, and numeri-
Table 1. Characteristics of patients according to the primary outcome (mortality at 30 days). HIV: Human Immunodeficiency Virus.

Variable	Alive (N = 2835)	Dead (N = 381)	P value
Demographics and co-morbidity (%)			
Age > 66 years	1236 (43.8)	331 (86.9)	< 0.001
Male sex	1642 (58.2)	242 (63.5)	0.049
Chronic heart disease	638 (22.5)	210 (55.1)	< 0.001
Diabetes mellitus	529 (18.7)	117 (30.7)	< 0.001
Haematological disease	165 (5.8)	41 (10.8)	< 0.001
Chronic kidney disease	266 (9.4)	130 (34.1)	< 0.001
Chronic liver disease	203 (7.2)	32 (8.4)	0.383
Hypertension	1228 (43.3)	262 (68.8)	< 0.001
Solid tumour	395 (13.9)	108 (28.3)	< 0.001
Solid organ transplantation	62 (2.2)	13 (3.4)	0.137
HIV infection	35 (1.2)	6 (1.6)	0.623
Chronic lung disease	651 (23)	130 (34.1)	< 0.001
Clinical characteristics and biomarkers at admission (%)			
Temperature > 37ºC	1356 (48.6)	130 (28.2)	< 0.001
Oxygen saturation > 94%	1346 (48.4)	98 (28.7)	< 0.001
LDH > 305 U/mL	1283 (48)	210 (62.7)	< 0.001
Creatinine > 0.92 mg/dL	1280 (45.5)	284 (76.5)	< 0.001
Lymphocyte count > 800 cells/mm³	1444 (51.3)	134 (36.1)	< 0.001
C-reactive protein > 7.52 mg/dL	1323 (47.5)	248 (68.3)	< 0.001
Critical support and treatment (%)			
Intensive Care Unit admission	661 (23.3)	123 (32.3)	< 0.001
Invasive mechanical ventilation	267 (9.4)	63 (16.5)	< 0.001
Remdesivir	519 (18.3)	30 (7.9)	< 0.001
Dexamethasone the first 5 days	882 (31.1)	136 (35.7)	0.071
Tocilizumab the first 5 days	495 (17.5)	54 (14.2)	0.109

Figure 1. Mortality rate at 30 days in patients receiving or not dexamethasone (DXM) within the first 5 days from admission and stratified by the C-reactive protein (CRP) percentiles (fractions within the bars represents the number of dead patients/total number of patients in this category).
A numerically lower mortality rate was observed with tocilizumab when CRP was > 3.50 mg/dL, achieving statistical significance when CRP was > 13.75 mg/dL (P = 0.004, Chi-square test).

Risk factors for mortality. We assessed risk factors associated with 30-day mortality by a multivariate analysis. In this analysis, we included the interaction between dexamethasone or tocilizumab and CRP dichotomized by percentiles. Age > 66 years, co-morbidity, clinical condition (oxygen saturation and fever), creatinine levels, lymphocyte count, invasive mechanical ventilation, treatment with remdesivir, and the interactions between dexamethasone and CRP (cut-off 13.75 mg/dL) and between tocilizumab and CRP (cut-off of 3.5 mg/dL) were retained in the model as independent predictors of mortality (Table 2). The p value of the Hosmer–Lemeshow goodness of fit test was > 0.05, and the area under the ROC curve was 0.873 (95% CI 0.851–0.896, P = 0.0001) showing a good ability to predict mortality at 30 days. The separate adjusted OR (95% CI) of the association of tocilizumab and dexamethasone with 30-day mortality within each stratum of the corresponding cut-off-defined CRP variables are shown in Table 3. In both cases, over the proposed CRP cut-off points, treatment with either tocilizumab or dexamethasone was significantly associated with a reduction in the mortality rate. Below the proposed cut-offs, the ORs for mortality were not significant.

Discussion

The current cornerstone of COVID-19 treatment is the anti-inflammatory therapy to halt the inflammatory response triggered by SARS-CoV-2. However, we are far from understanding the exact role of persistent viral replication in the maintenance of immune stimulation and even its responsibility in the immune dysregulation leading to severe COVID-19. Therefore, immunosuppressants could be deleterious and the concept of “one size fits for all” probably is not valid for COVID-19 management.

Our results suggest that dexamethasone significantly reduces the mortality when the patient has an intense systemic inflammatory response measured as a CRP > 13.75 mg/dL, but at the same time, there was a hint of a possible higher mortality when it was administered in patients with low systemic inflammatory response after adjusting for the major risk factors already described in the literature. This is in line with the results obtained by Keller et al.12 showing that glucocorticoid treatment of patients with initial CRP ≥ 20 mg/dL was associated with significantly reduced risk of mortality or mechanical ventilation (odds ratio, 0.23; 95% CI, 0.080–0.70), while glucocorticoid treatment of patients with CRP < 10 mg/dL was associated with significantly increased risk of mortality or mechanical ventilation (OR, 2.6; 95% CI, 1.39–5.03). A similar retrospective study also identified a CRP ≥ 10 mg/dL as the cut-off point that predicts the beneficial effect of steroids37. Since high viral load38, prolonged viral shedding39 and the presence of RNAemia40 have been associated with worse outcomes in COVID-19, it seems prudent to adequately select the patients and the timing for using corticosteroids. Indeed, previous experience in viral pneumonia (Influenza virus, SARS-CoV and MERS) showed prolonged viral shedding and worse outcome among those patients receiving corticosteroids31,32. Data in SARS-CoV-2 is contradictory, while some authors reported longer viral shedding in corticosteroid group33,34, others did not35.
On the other hand, tocilizumab showed a beneficial effect among patients with a CRP cut-off point > 3.50 mg/dL, a significantly lower cut-off value in comparison to the one for dexamethasone (CRP > 13.75 mg/dL). As an inhibitor of the IL-6, tocilizumab is a selective immunosuppressor blocking exclusively one of the multiple pathways of the inflammatory response. This could explain that using this drug the potential to hamper the viral replication control by the host immune system is limited. In line with this hypothesis, Masia et al. 26 reported that after adjustment for the baseline viral load, the use of tocilizumab was not associated with a prolonged viral shedding, and it has been suggested that this is because tocilizumab does not reduce the activity of B lymphocytes. Indeed, it was previously documented that tocilizumab did not reduce the efficacy of influenza vaccine in patients with rheumatoid arthritis27. Interestingly, the efficacy of tocilizumab in the RECOVERY study15, was demonstrated including only patients with a CRP ≥ 7.5 mg/dL. More recently, a post-hoc analysis of the CORIMUNO-TOCI-I trial showed that the likelihood of suffering the primary end point (non-invasive or invasive ventilation requirement, or death) was also lower in the tocilizumab group (18% vs. 57%), when patients with CRP levels > 15 mg/dL were selected (HR 0.18; 95% CI 0.06–0.59) 28,29.

Our study has several limitations. The major drawback of our study is the retrospective nature. To reduce the potential bias, we have included in the multivariable analysis all the variables potentially implicated in the mortality to adjust for confounding. Secondly, only those treatments already accepted in the majority of the current guidelines or supported by large clinical trials have been evaluated (remdesivir, dexamethasone and tocilizumab), but not other treatments which definitive role is not yet clarified. Thirdly, some patients received both dexamethasone and tocilizumab and the potential effect of combined treatment was not evaluated. Fourthly, days from symptoms onset to admission or to treatment were not available; however, although the timing is important in COVID-19, our results suggest that inflammatory biomarkers by itself are helpful to prescribe dexamethasone or tocilizumab. Finally, viral load or a surrogate marker of the viral load was not available, and this is a critical information since we hypothesise that a potential harmful effect of immunomodulators in patients with low CRP maybe due to the worse control of viral replication as in other respiratory viruses.

Therefore, we propose to start tocilizumab to patients with CRP > 3.5 mg/dL and consider the addition of dexamethasone only to those cases in whom no clinical or biological improvement is observed in the next 48 h.

Variable	OR (95%CI)	P value
Age > 66 years	4.961 (3.367–7.307)	0.001
Chronic heart disease	1.629 (1.213–2.188)	0.001
Haematological disease	1.868 (1.197–2.915)	0.006
Chronic kidney disease	2.392 (1.706–3.354)	0.001
Solid tumour	1.459 (1.067–1.996)	0.018
Temperature > 37 °C	0.716 (0.541–0.947)	0.019
Oxygen saturation > 94%	0.490 (0.360–0.667)	0.001
Creatinine > 0.92 mg/dL	1.569 (1.134–2.172)	0.007
CRP > 3.5 mg/dL (p25)	1.683 (1.118–2.354)	0.013
CRP > 13.75 mg/dL (p75)	2.487 (1.689–3.661)	0.001
Lymphocyte count > 800 cells/mm³	0.711 (0.536–0.944)	0.018
Invasive mechanical ventilation	1.668 (1.046–2.659)	0.032
Remdesivir	0.531 (0.336–0.836)	0.006
CRP > 3.5 mg/dL (p25) by tocilizumab the first 5 days	0.682 (0.464–1.002)	0.052
CRP > 13.75 mg/dL (p25) by dexamethasone the first 5 days	0.435 (0.247–0.766)	0.004

Table 2. Independent variables associated with mortality at 30 days. Variables included in the model: age, sex, co-morbidity (Chronic heart diseases, Diabetes mellitus, Haematological disease, Chronic kidney disease, hypertension, Solid tumour and Chronic respiratory disease); LDH, creatinine, C-reactive protein, and lymphocyte count at admission [C-reactive protein was introduced by percentiles as well as the interactions between each percentile and tocilizumab or dexamethasone administration within the first 5 days (both variables were also individually included)]; Temperature, and Oxygen saturation at admission; And the need of intensive care admission and invasive mechanical ventilation. CRP, C-reactive protein. LDH, Lactate Dehydrogenase. P25-75, percentile 25–75.

C-reactive protein (mg/dL)	OR (95%CI) of mortality for patients receiving tocilizumab versus not receiving it	P value	C-reactive protein (mg/dL)	OR (95%CI) of mortality for patients receiving dexamethasone versus not receiving it	P value
≤ 3.5	1.42 (0.32–6.74)	0.640	≤ 13.75	1.30 (0.92–1.85)	0.13
> 3.5	0.65 (0.44–0.95)	0.029	> 13.75	0.57 (0.37–0.89)	0.014

Table 3. Odds ratios for the 2 strata of C-reactive protein (lower or equal or higher than the cut-off) from the significant interactions identified in the final model (calculated according to reference 16).
For patients with a CRP > 13 mg/dL we support the initial use of dexamethasone and tocilizumab. In any case, our data also suggest the need of an antiviral agent, and, consequently, we recommend monitoring, in parallel to inflammatory response, the viral load associated with a reduction in mortality when prescribed to patients with a certain inflammatory activity as assessed by C-reactive protein, a cheap and widely available biomarker. Personalized treatment following the cut-off points for prescription of tocilizumab (CRP > 3.50 mg/dL) or dexamethasone (CRP > 13.75 mg/dL) within the first 5 days from hospital admission should be considered.

Acknowledgements
“This work was financed by ad hoc patronage funds for research on COVID-19 from donations from citizens and organizations to the Hospital Clinic de Barcelona-Fundació Clinic per a la Recerca Biomèdica”.

Author contributions
A.M.P., R.A. and A.S. wrote the main manuscript text. All authors have seen and approved the final version of the manuscript and have contributed significantly to the work.

Received: 8 September 2021; Accepted: 8 March 2022
Published online: 28 March 2022

References
1. Hopkins, J. COVID-19 dashboard: By the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). https://coronavirus.jhu.edu/map.html.
2. Wu, Z. & McGoogan, J. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: The JAMA report. JAMA. 323, 1229–1233 (2020).
3. Cummings, M. J. et al. Randomized, double-blind, placebo-controlled trial of tocilizumab in patients with COVID-19. Lancet Respir. Med. 8, 359–366 (2020).
4. Wu, Z. & McGoogan, J. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA. 323, 1229–1233 (2020).
5. Johns, M., George, S., Taburyanskaya, M. & Poon, Y. K. A Review of the Evidence for Corticosteroids in COVID-19. J. Pharm. Pract. https://doi.org/10.1177/0897190021998502 (2021).
6. Group, R., et al. Dexamethasone in hospitalized patients with COVID-19. New Engl. J. Med. 384, 693–704 (2020).
7. Gupta, S. & Leaf, D. E. Tocilizumab in COVID-19: Some clarity amid controversy. Lancet Respir. Med. 7, 1099–1101 (2019).
8. Knight, S. R. et al. Risk stratification of patients admitted to hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ 370, (2020).
9. Galván-Román, J. M. et al. IL-6 serum levels predict severity and response to tocilizumab in COVID-19: An observational study. J. Allergy Clin. Immunol. 147, 72–80.e8 (2021).
10. Martínez-Sanz, J. et al. Effects of tocilizumab on mortality in hospitalized patients with COVID-19: A multicentre cohort study. Clin. Microbiol. Infect. 27, 238–243 (2021).
11. Keller, M. J. et al. Effect of Systemic Glucocorticoids on Mortality or Mechanical Ventilation in Patients With COVID-19. J Hosp Med 15, 489–493 (2020).
12. Pagani, M. et al. Determinants of the protective effect of glucocorticoids on mortality in hospitalized patients with COVID-19: Insights from the Cardio-COVID-Italy multicenter study. Int. J. Infect. Dis. https://doi.org/10.1016/j.ijid.2021.05.056 (2021).
13. Kleinbaum, D., Kupper, L., Muller, K. & Nizam, A. Logistic regression analysis (chapter 23) in Applied Regression Analysis and Other Multivariable Methods (Brooks/Cole Publishing Company, 511 Forest Lodge Road, Pacific Grove, CA 93950, USA, 2013).
14. Committee, W. et al. Corticosteroids in patients hospitalized for COVID-19 pneumonia who require oxygen: Observational comparative study using routine care data. Clin. Microbiol. Infect. 27, 603–610 (2021).
15. Magley, R. et al. Impact of SARS-CoV-2 viral load on risk of intubation and mortality among hospitalized patients with coronavirus disease 2019. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa851 (2020).
16. Munker, D. et al. Dynamics of SARS-CoV-2 shedding in the respiratory tract depends on the severity of disease in COVID-19 patients. Eur. Respir. J. https://doi.org/10.1183/13993003.0274-2020 (2021).
17. Veyer, D. et al. Highly sensitive quantification of plasma SARS-CoV-2 RNA sheds light on its potential clinical value. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa1196 (2020).
18. Moreno, G. et al. Corticosteroid treatment in critically ill patients with severe influenza pneumonia: A propensity score matching study. Intensive Care Med. 2, 395 (2018).
19. Brun-Buisson, C. et al. Early corticosteroids in severe influenza A/H1N1 pneumonia and acute respiratory distress syndrome. Am. J. Resp. Crit. Care 183, 1200–1206 (2011).
20. Huang, R. et al. Corticosteroid therapy is associated with the delay of SARS-CoV-2 clearance in COVID-19 patients. Eur. J. Pharmacol. 889, 173556 (2020).
21. Jin, L. et al. A novel prediction model for long-term SARS-CoV-2 RNA shedding in non-severe adult hospitalized patients with COVID-19: A Retrospective Cohort Study. Infect. Dis. Ther. 10, 897–909 (2020).
22. Jin, J. et al. Glucocorticoid therapy does not delay viral clearance in COVID-19 patients. Crit Care 24, 565 (2020).
23. Masià, M. et al. Impact of interleukin-6 blockade with tocilizumab on SARS-CoV-2 viral kinetics and antibody responses in patients with COVID-19: A prospective cohort study. EBioMedicine 60, 102999 (2020).
24. Morì, S. et al. Impact of tocilizumab therapy on antibody response to influenza vaccine in patients with rheumatoid arthritis. Ann. Rheum. Dis. 71, 2006–2010 (2012).
25. Mariette, X. et al. Effectiveness of tocilizumab in patients hospitalized with COVID-19. JAMA Intern Med. 181, 1241–1243 (2021).
26. Hermine, O. et al. Effect of tocilizumab vs usual care in hospitalized patients with COVID-19 and moderate or severe pneumonia. JAMA Intern Med 181, 32–40 (2021).
Competing interests

CGV has received honoraria for talks on behalf of Gilead Science, MSD, Novartis, Pfizer, Janssen, and Lilly, as well as a grant from Gilead Science and MSD. PPA has received honoraria for talks on behalf of Gilead Science and MSD. JM has received honoraria for talks on behalf of Merck Sharp and Dohme, Pfizer, Novartis, and Angellini. AS has received honoraria for talks on behalf of Merck Sharp and Dohme, Pfizer, Novartis, Gilead, Menarini, and Angellini, as well as grant support from Pfizer and Gilead. MT has received grants from Janssen, Gilead, ViV and Merck Sharp and Dohme. LM has received honoraria for talks on behalf of Merck Sharp and Dohme, Pfizer and Angellini. PC has received honoraria for talks on behalf of Merck Sharp and Dohme, has participated in Advisory Boards for Gilead and Alexion, and has received grant support from Pfizer and Gilead. Other authors do not declare conflict of interest.

Additional information

Correspondence and requests for materials should be addressed to A.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

Hospital Clinic of Barcelona COVID-19 Research Group

Infectious Diseases’ Research Group

J. L. Blanco10, J. Mallolas10, E. Martinez10, M. Martinez, J. M. Miró10, A. Moreno10, M. Solá10, A. Ugarte10, Ana Gonzalez-Cordón10, Montse Laguno10, Lorna Leaf10, John Rojas10, Berta Torres10 & all the staff members

10Department of Infectious Diseases, Hospital Clinic of Barcelona, Barcelona, Spain.

Medical Intensive Care Unit

S. Fernandez11, A. Tellez11, F. Fuentes11, M. Ayala11 & E. Sancho11

11Medical Intensive Care Unit, Hospital Clinic of Barcelona, Barcelona, Spain.

Department of International Health

D. Campubri12, M. T. de Alba12, M. Fernandez12, E. Ferrer12, B. Grau12, H. Marti12, M. Muelas12, M. J. Pinazo12, N. Rodriguez12, M. Roldan12, C. Subira12, I. Vera12, N. Williams12, A. Almuedo-Riera12 & all the staff members

12Department of International Health, Hospital Clinic of Barcelona, Barcelona, Spain.

Department of Internal Medicine

A. Aldea13, M. Camafort13, J. Calvo13, A. Capdevila13, F. Cardellach13, I. Carbonell13, E. Coloma13, A. Foncillas13, R. Estruch13, M. Feliu13, J. Fernández-Solá13, I. Fuertes13, C. Gabara13, I. Graña13, A. Ladino13, R. López-Altabo13, A. López-Soto13, I. Macaya13, F. Masanés13, A. Matas13, M. Navarro13, J. Marco-Hernández13, L. Miguel13, J. C. Milisenda13, P. Moreno13, J. Naval13, D. Nicolás13, H. Oberoi13, J. Padrosa13, M. Pellicer13, J. Ribot13, G. Rodriguez-Núñez13, E. Sacanella13, F. Seguí13, C. Sierra13, A. Tomé13, M. Torres13, H. Ventosa13, C. Zamora-Martinez13 & all the staff members

13Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain.
Department of Microbiology

M. Almela14, M. Alvarez14, J. Bosch14, J. Costa14, G. Cuesta14, B. Fidalgo14, J. González14, F. Marco14, S. Narvaez, C. Pitart14, E. Rubio14, A. Vergara14, M. E. Valls15, Y. Zboromyrska14 & all the staff members

14Department of Microbiology, Hospital Clinic of Barcelona, Barcelona, Spain.

Department of Farmacy

E. López15 & all the staff members

15Department of Pharmacy, Hospital Clinic of Barcelona, Barcelona, Spain.