W boson mass shift, dark matter and \((g-2)_\mu\) in ScotoZee model

Ritu Dcruz
Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA

Anil Thapa
Department of Physics, University of Virginia, Charlottesville, Virginia 22904-4714, USA

We present a singly charged scalar extension of the Scotogenic model, ScotoZee, which resolves the recently reported deviations in \(W\) boson mass as well as lepton \((g-2)\). The model admits a scalar or a fermionic dark matter while realizing naturally small radiative neutrino masses. The mass splitting of \(\sim 100\) GeV, required by the shift in \(W\) boson mass, among the inert doublets fields can be evaded by its mixing with the singlet scalar, which is also key to resolving \((g-2)\) anomaly within 1\(\sigma\). We establish the consistency of this framework with dark matter relic abundance while satisfying constraints from charged lepton flavor violation, direct detection as well as collider bounds. The model gives predictions for the lepton flavor violating \(\tau \to \ell\gamma\) processes testable in upcoming experiments.

Introduction: The CDF collaboration at Fermilab [1] reported a precision measurement of \(W\) boson mass, \(M_W^{\text{CDF}} = (80.335 \pm 0.0094)\) GeV, which is in tension with the Standard Model (SM) prediction, \(M_W^{\text{SM}} = (80.357 \pm 0.004)\) GeV [2], with an excess at 7\(\sigma\) level, which may be an indication of new physics (NP) beyond the Standard Model (SM). Some possible explanations to the \(W\) boson mass shift can arise at tree level [3–18], or at loop level [19–35], along with the prospect of reconciling the anomalous magnetic moment (AMM) of muon measurement at BNL in 2006 [91] at a combined 4\(\sigma\). The proposed ScotoZee model is a simple charged singlet \(S^+\) \((1,1; -)\) extension of the Scotogenic [97] model, which contains Majorana singlet fermions \(N_{R_1}, (1,0; -)\) and the scalar doublet \((\eta^+, \eta^0) \equiv \eta (2,1/2; -)\), under the gauge group \(SU(2)_L \times U(1)_Y \times Z_2 \). All the new particles are odd under \(Z_2\) while the SM particles are even, guaranteeing the stability of the DM candidate; the lightest among the new neutral \(Z_2\)-odd particles. The charged scalar singlet \(S^+\) not only gives corrections to anomalous magnetic moment of muon and electron through the mixing with charged doublet, but also serves as a portal to generate correct relic abundance for fermionic DM.

The effective Yukawa Lagrangian in the extended model can be written as

\[- \mathcal{L}_Y \supset Y_{ij} \bar{t}_L \eta N_{R_i} + f_{ij} \bar{t}_{R_i} S^- N_{R_j} + h.c. \] (1)

The \(Z_2\) symmetry, being exact, prevents \(\eta^0\) from obtaining a non-zero vacuum expectation value (VEV) and neutrinos remain massless at tree level. Moreover, the SM Higgs \(h\) is decoupled from the new \(CP\)-even \((\text{Re}(\eta^0) \approx H)\) and \(-\text{odd} (\text{Im}(\eta^0) \approx A)\) scalars. The charged scalars \(\{\eta^+, S^+\}\) mix giving rise to mass eigenstates \(\{H^+_1, H^+_2\}\). The masses of the scalar fields in the physical basis are given by

\[m^2_{\eta} = \lambda_1 v^2, \quad m^2_{H(A)} = \mu^2 + \frac{v^2}{2} (\lambda_3 + \lambda_4 \pm \lambda_5), \]

\[m^2_{H^+} = \frac{1}{2} \left(\mu_2 + \mu_3 \pm \sqrt{(\mu_2 - \mu_3)^2 + 2 \mu_2 v^2} \right), \] (2)

where \(\mu_2 = \mu_1^2 + \frac{\lambda_3}{2} v^2, \quad \mu_3 = \mu_5^2 + \frac{\lambda_5}{2} v^2\). Here \(\mu_1,s, \lambda_i\), and \(\mu\) are the bare-mass terms, quartic couplings, and

1 The scalar content is the same as the Inert Zee model [98, 99] with only right-handed neutrinos in contrast to vector-like singlets and doublets. The ScotoSinglet model [100] is a neutral scalar extension of the Scotogenic model. Neither models can resolve the discrepancy in \((g-2)_\mu\) [101].
cubic coupling, respectively. The mixing angle between the charged scalar fields is defined as

$$\sin 2\theta = \frac{-\sqrt{2} \mu v}{m_H^2 - m_{H^+}^2}, \quad (3)$$

with the VEV, $v \simeq 246$ GeV. In this work, we comply with the perturbative and vacuum stability conditions [105, 106] constraining the scalar couplings. The Majorana mass term $\frac{1}{2} M_N N_i N_j$ along with the scalar quartic term $\frac{\lambda}{2} (\phi^\dagger \phi)^2 + \text{h.c.}$ breaks the lepton number by two units generating one-loop neutrino mass (c.f. Fig. 1 (top)) M_ν expressed as

$$(M_\nu)_{ij} = \sum_k Y_{ik} \Lambda_k Y_{kj}^*, \quad \Lambda_k = \frac{M_N}{16\pi^2} \left[m_H^2 - M_{N_k}^2 \log \frac{m_H^2}{M_{N_k}^2} - (m_H \leftrightarrow m_A) \right]. \quad (4)$$

Here the lightest mass eigenstates $\{H, A\}$ and N_1 can serve as a viable bosonic and fermionic DM candidates. It is important to point out that unlike the Scotogenic model, where M_N can be at canonical seesaw scale of 10^9 GeV or the Yukawa coupling Y arbitrarily small, the $(g - 2)_\mu$ in the model requires the scale to be in the (sub) TeV range along with $O(0.1 - 1.0)$ Yukawa coupling. Thus, a successful explanation of $m_\nu \sim 0.1$ eV would naturally require m_H to be nearly degenerate with m_A.

Correction to W boson mass: The shift in W boson mass [107] can be evaluated as a function of the oblique parameters, S, T and U [108, 109] that quantify the deviation of a new physics model from the SM through radiative corrections arising from shifts in gauge boson self energies. The oblique parameters in our model get corrections from the extended Higgs sector which is same as in the Zee model [110] except for the Z_2 charge preventing the mixing with the SM Higgs doublet. Therefore, we use the expressions for S, T and U given in Ref. [111] under the alignment limit [112]. Note that the corrections to U at one-loop level is suppressed compared to S and T.

With the new precision measurement of M_W by CDF, some electroweak (EW) observables are expected to suffer from this deviation. We incorporate the global EW fit [4] with the new CDF data to quote the 2σ allowed ranges of oblique parameters. We confirm the necessity of mass splitting in 2HDM [24, 25] to accommodate the recent CDF results and show that the introduction of the charged singlet scalar allows the components of the doublet field to be degenerate as can be seen from Fig. 2. The splitting $\delta_{H^+} = m_{H^+} - m_H$ depends on the mixing angle, for instance, it can be at most ~ 140 GeV for $\sin \theta = 0.2$.

Anomalous Magnetic Moment: The charged scalar contributions to anomalous magnetic moment at one-loop [113] as shown in Fig. 1 (bottom) is

$$\Delta a_{H^+}^{m_T} = \frac{m_T^2}{16\pi^2} \left(|Y_{\ell i}|^2 \sin^2 \theta + |f_{\ell i}|^2 \cos^2 \theta \right) \cdot G[m_{H^+}, 2] + \frac{M_N}{m_\ell} \text{Re}(Y_{\ell i} f_{\ell i}^*) \sin 2\theta \cdot G[m_{H^+}, 1], \quad (5)$$
where,

\[
G[M, \varepsilon] = \int_0^1 \frac{x^5(x-1)}{m_\ell^2x^2 + (M^2 - m_\ell^2)x + M^2(1-x)} \, dx
\]

(6)

and \(\Delta a_{\ell \ell}^{H_1^\pm} = \Delta a_{\ell \ell}^{H_1^\pm} (\theta \to \frac{s}{2} + \theta) \). The dominant contribution to \(\Delta a_\mu \) comes from the Majorana neutrino mass enhancement aided by the mixing of the charged scalar mediators as shown in Fig. 1 (bottom). The sign of the product of Yukawa couplings and the mixing angle can be chosen independently. This in turn allows for the simultaneous explanations of \(\Delta a_\ell (\ell = e, \mu) \). Moreover, \(\Delta a_\mu \) provides an upper limit on the mass of Majorana neutrino (charged scalar) of order 15 (6.5) TeV with \(f, Y \sim O(1) \). The mass limit is relaxed in the case of \(\Delta a_e \).

Note that the Yukawa couplings and the masses of charged scalars are severely restricted by the charged lepton flavor violating (cLFV) processes such as radiative decay \(\ell_i \to \ell_j \gamma \) [114]; such processes are enhanced in our model by the mass insertion of Majorana neutrinos. Moreover, although trilepton decays such as \(\mu \to 3e \) do not occur at the tree level, they arise at the one-loop with large branching ratios [115]. The same is also true for \(\mu \to e \) conversion in the nuclei. We impose these constraints in our parameter scan.

DM Phenomenology: In addition to explaining \(W \) boson mass shift and \(\Delta a_\ell \), the proposed model can easily accommodate both the scalar (lightest of \(H \) and \(A \)) and fermionic (lightest among \(N_i \)) dark matter candidates (\(\chi \)). We consider both scenarios and analyze the parameter space by implementing the model in SARAH [119] and numerically evaluating the relic abundance using the software MicrOMEGAs [120]. The relic density of DM is achieved through standard thermal freeze-out mechanism.

For the case of Majorana fermion as a DM (\(\chi \equiv N \)) candidate, the annihilation channel which determines the observed relic abundance is \(\text{DM self-(co-)annihilation into charged leptons} \ell_i \ell_j^\mp \) (light neutrinos \(\nu_\alpha \nu_\beta \)) through \(t \)-channel processes mediated by the \(Z_2 \)-odd scalars, \(H_i^\pm (H, A) \) via Yukawa couplings \(Y \) and/or \(f \). The neutrino oscillation data determines the flavor structure of \(Y \) making it natural to select relatively small \(Y \) and heavy doublet scalar \(\eta \sim O \text{ (TeV)} \) such that the LFV constraints are relaxed. Thus, we choose \(f_{\alpha \beta} \sim O(1) \) \((i = 1, 2)\) and degenerate \(N_i \) to maximize the contribution to annihilation mode \(\chi \chi \to \ell \ell \) via \(s^\pm \); the allowed parameter space in the mass plane can be seen in Fig. 3 (top) along with the region resolving muon AMM for a specific choice of \(\kappa = Y^* f \sin \theta = 0.015 \).

In the case of scalar dark matter, which we choose to be the \(CP \)-even \(H \equiv \chi \) (nearly degenerate\(^2 \) with \(A \) and \(\lambda_5 < 0 \)), pair of DM can annihilate to \(W^+W^- \), \(ZZ \), \(\nu_\alpha \nu_\beta \), \(hh \), \(\ell \ell \), and \(qq \). The low mass regime suffer a strong constraint form LEP [117, 118, 122] which can be satisfied if one assumes \(m_\chi > M_Z/2, m^\pm_H > M_W/2 \) and \(m^+_H + m_\chi > M_W \). For larger DM mass, it predominantly annihilates to a pair of \(W^+W^- \) and \(ZZ \), for which the allowed region is \(m_\chi \gtrsim 500 \text{ GeV} \) and mass splitting \(\delta_{\chi^+} = m^+_H - m_\chi \lesssim 30 \text{ GeV} \) as shown in Fig. 3 (bottom). This can be relaxed by making the Higgs quartic coupling \(\gtrsim 1 \),

\(^2\) The mass splitting is of order \(O(100) \text{ keV} \) [121] to evade direct detection.
oscillation data and efficiently probe the model with LFV neutrino oscillation data.

The masses of the Majorana fermions and the charged scalars with are constrained by LFV processes. With the choice of nonzero \(f_{ii} \) for \(i = 1, 2 \) to explain both the AMMs as well as to obtain the observed relic density, the mass enhancement to \(\ell_i \to \ell_j \gamma \) severely restricts the parameter space. Such chirally enhanced contribution can be suppressed with a suitable choice of Yukawa couplings and masses of the Majorana fermions. For instance, chirally enhanced \(\mu \to e\gamma \) can be evaded with the choice of \(Y_{12} = Y_{21} \sim 0 \) or \(Y_{21} f_{11} \approx - Y_{12} f_{22} \) for \(M_{N_i} = M_{N_6} (= m_{\chi}) \). We then check the consistency of our fit by computing the branching fractions of \(\ell_i \to \ell_j \gamma \) and \(\ell_i \to 3\ell_j \) process at one-loop level and make testable predictions for fermionic DM (see Fig. 4). In the case of scalar DM, since the Yukawa coupling does not play any role in relic abundance, there is more freedom in the choice of parameters and yield no sizeable predictions.

Conclusions: In the light of recent experimental results confirming a 4.2σ discrepancy in the measurement of \((g-2)_\mu\) and a possible 7σ excess in the mass of \(W \) boson it is imperative to investigate new physics contributions for clarification. We propose the ScotoZee model, a simple charged singlet extension of the Scotogenic model, to show a direct correlation between these anomalies and the observed neutrino oscillation data as well as dark matter relic abundance. We explore the parameter space spanned by both the bosonic and fermionic dark matter candidates and provide a coherent resolution to electron and muon AMMs and \(\mathcal{M}_W \) anomaly while evading dangerous LFV processes like \(\mu \to e\gamma \) and \(\mu \to 3e \). In contrast to the IDM/Scotogenic models where the small mass splitting among the doublet fields required for the observed relic density is disfavored by the CDF measurement, the scalar DM candidate in our model survives due to the presence of the extra charged singlet which is essential in resolving \(\Delta \ell \). This model predicts large rates for LFV processes \(\tau \to \ell \gamma \) which can be tested in the future experiments.

Acknowledgements: We would like to thank Julian Hoeck, K.S. Babu, Vishnu P.K., and D. Raut for useful discussions. RD thanks the U.S. Department of Energy for the financial support, under grant number DE-SC 0016013.

FIG. 4: Scattered plot assuming the fermionic DM with the same parameter space given in Fig. 3 (top). Colored shaded regions are the current exclusion limits [127], whereas dashed-dotted lines represent the future projected sensitivities [128]. The orange (green) dots correspond to solutions that resolve \(\Delta \) and \(\Delta \) observed values within their 2σ measured values [129].

a choice strongly constrained by direct detection bound [123–126].

In this work we take the quartic couplings \(\lambda_3 + \lambda_4 + \lambda_5 \ll 1 \) to automatically satisfy direct detection bound obtained from the scalar DM interacting with nucleus at the tree level through the SM Higgs boson. Moreover, it is favored to take the couplings \(Y_{ij} \) small and \(M_N \sim \mathcal{O}(\text{TeV}) \) to be consistent with neutrino fit, which implies that the DM analysis is indistinguishable from the known inert doublet model (IDM). It turns out that the CDF measurement requires mass splitting among the inert doublet fields of \(\mathcal{O}(100) \) GeV, disfavouring the scalar DM candidates in the Scotogenic/IDM. However, the mixing between the charged scalars in this model allows the components of the doublet field to be degenerate (c.f. Fig 2), thereby admitting the \(\text{CP} \)-even \(H \) to be a viable DM candidate, as shown in Fig. 3 (bottom).

Neutrino Fit/ Lepton Flavor violation: The neutrino mass formula of Eq. (4), lepton \(g - 2 \) and the dark matter analysis have close-knot correlation through Yukawa couplings, Majorana fermions, and new scalars. As previously stated, \((g-2)_\mu\) sets an upper bound on the masses of the Majorana fermions and the charged scalars with \(f, Y \sim \mathcal{O}(1) \). Moreover, the maximum splitting among the doublet fields is restricted by the shift in \(W \)-boson mass, thereby forcing the parameter space to the region \(m_A \simeq m_H \), crucial in explaining the observed neutrino oscillation data.

In order to check the consistency with the neutrino oscillation data and efficiently probe the model with LFV observables, we adopt Casas-Ibarra parametrization [130] to rewrite the Yukawa matrix \(Y \) of Eq. (4) in terms of neutrino mass parameters

\[
Y = \sqrt{\Lambda^{-1}} R \sqrt{M_{\nu}^{\text{diag}}} U_{\text{PMNS}},
\]

where \(R \) is an arbitrary complex orthogonal matrix. The neutrino oscillation parameters are scanned within the 2σ allowed ranges [129] to obtain the Yukawa matrix.

As mentioned earlier, the product of Yukawa couplings \(Y_{ij} f_{ii} \) can explain \((g-2)_\mu\); however these couplings are constrained by LFV processes. With the choice of nonzero \(f_{ii} \) for \(i = 1, 2 \) to explain both the AMMs as well as to obtain the observed relic density, the mass enhancement to \(\ell_i \to \ell_j \gamma \) severely restricts the parameter space. Such chirally enhanced contribution can be suppressed with a suitable choice of Yukawa couplings and masses of the Majorana fermions. For instance, chirally enhanced \(\mu \to e\gamma \) can be evaded with the choice of \(Y_{12} = Y_{21} \sim 0 \) or \(Y_{21} f_{11} \approx - Y_{12} f_{22} \) for \(M_{N_i} = M_{N_6} (= m_{\chi}) \). We then check the consistency of our fit by computing the branching fractions of \(\ell_i \to \ell_j \gamma \) and \(\ell_i \to 3\ell_j \) process at one-loop level and make testable predictions for fermionic DM (see Fig. 4). In the case of scalar DM, since the Yukawa coupling does not play any role in relic abundance, there is more freedom in the choice of parameters and yield no sizeable predictions.

Acknowledgements: We would like to thank Julian Hoeck, K.S. Babu, Vishnu P.K., and D. Raut for useful discussions. RD thanks the U.S. Department of Energy for the financial support, under grant number DE-SC 0016013.
Appendix A: Scalar potential

The most general renormalizable scalar potential of the ScotoZee model is given by:

\[
V = \mu_2^2 \phi^\dagger \phi + \mu_3^2 S^- S^+ + \mu_4^2 \eta^\dagger \eta + \frac{\lambda_1}{2} (\phi^\dagger \phi)^2 + \frac{\lambda_2}{2} (\eta^\dagger \eta)^2 + \lambda_3 (\phi^\dagger \phi)(\eta^\dagger \eta) + \lambda_4 (\phi^\dagger \phi)(\eta^\dagger \eta) + \frac{\lambda_5}{2} (\phi^\dagger \phi)^2 + \text{h.c.}
\]

\[+ \frac{\lambda_6}{2} (S^- S^+)^2 + \lambda_7 (\phi^\dagger \phi)(S^- S^+) + \lambda_8 (\eta^\dagger \eta)(S^- S^+) + \frac{\mu}{2} \{\varepsilon_{\alpha\beta\phi^\dagger \phi^\dagger \eta^\dagger \eta^\dagger} S^- + \text{h.c.}\}.
\]

(8)

Appendix B: Oblique parameters

FIG. 5: Mixing angle θ as a function of charged scalar mass m_{H^+} for different mass splittings, $\delta_{H^+} = m_{H^+} - m_H$ (left) and the mass splitting δ_{H^+} as a function of neutral scalars for different choices of charged singlet scalar mass (right) explaining the upward shift in M_W reported by CDF measurement, consistent with the 2σ ranges of S and T.

* E-mail: rdcruz@okstate.edu
† E-mail: wtd8kz@virginia.edu

[1] CDF Collaboration, T. Aaltonen et al., “High-precision measurement of the W boson mass with the CDF II detector,” Science 376 no. 6589, (2022) 170–176.

[2] M. Awramik, M. Czakon, A. Freitas, and G. Weiglein, “Precise prediction for the W boson mass in the standard model,” Phys. Rev. D 69 (2004) 053006, [hep-ph/0311148].

[3] A. Strumia, “Interpreting electroweak precision data including the W-mass CDF anomaly,” [2204.04191].

[4] P. Asadi, C. Cesarotti, K. Fraser, S. Homiller, and A. Parikh, “Oblique Lessons from the W Mass Measurement at CDF II,” [2204.05283].

[5] E. Bagnaschi, J. Ellis, M. Madigan, K. Mimazu, V. Sanz, and T. You, “SMEFT Analysis of m_W,” [2204.05260].

[6] L. Di Luzio, M. Nardecchia, and C. Toni, “Light vectors coupled to anomalous currents with harmless Wess-Zumino terms,” [2204.05945].

[7] T.-K. Chen, C.-W. Chiang, and K. Yagyu, “Explanation of the W mass shift at CDF II in the Georgi-Machacek Model,” [2204.12898].

[8] P. Perez Fileviez, H. H. Patel, and A. D. Plascencia, “On the W-mass and New Higgs Bosons,” [2204.07144].

[9] A. Ghoshal, N. Okada, S. Okada, D. Raut, Q. Shafi, and A. Thapa, “Type III seesaw with R-parity violation in light of m_W (CDF),” [2204.07138].

[10] D. Borah, S. Mahapatra, and N. Sahu, “Singlet-Doublet Fermion Origin of Dark Matter, Neutrino Mass and W-Mass Anomaly,” [2204.09671].

[11] P. Athron, M. Bach, D. H. J. Jacob, W. Kotlarski, D. Stöckinger, and A. Voigt, “Precise calculation of the W boson pole mass beyond the Standard Model with FlexibleSUSY,” [2204.05285].

[12] E. d. S. Almeida, A. Alves, O. J. P. Eboli, and M. C. Gonzalez-Garcia, “Impact of CDF-II measurement of
M_W on the electroweak legacy of the LHC Run II,” [2204.10130].

13. A. Addazi, A. Marciano, A. P. Morais, R. Pasechnik, and H. Yang, “CDF II W-mass anomaly faces first-order electroweak phase transition,” [2204.10315].

14. J. Heeck, “W-boson mass in the triplet seesaw model,” [2204.10274].

15. M. Du, Z. Liu, and P. Nath, “CDF W mass anomaly from a dark sector with a Stueckelberg-Higgs portal,” [2204.09024].

16. Y.-P. Zeng, C. Cai, Y.-H. Su, and H.-H. Zhang, “Extra boson mix with Z boson explaining the mass of W boson,” [2204.09487].

17. Y. Cheng, X.-G. He, F. Huang, J. Sun, and Z.-P. Xing, “Dark photon kinetic mixing effects for CDF W mass excess,” [2204.10156].

18. C. Cai, D. Qiu, Y.-L. Tang, Z.-H. Yu, and H.-H. Zhang, “Corrections to electroweak precision observables from mixings of an exotic vector boson in light of the CDF W-mass anomaly,” [2204.11570].

19. X. Liu, S.-Y. Guo, B. Zhu, and Y. Li, “Unifying gravitational waves with W boson, FIMP dark matter, and Majorana Seesaw mechanism,” [2204.04834].

20. H. Song, W. Su, and M. Zhang, “Electroweak Phase Transition in 2HDM under Higgs, Z-pole, and W precision measurements,” [2204.05085].

21. T. Biekköter, S. Heinemeyer, and G. Weiglein, “Excesses in the low-mass Higgs boson-search and the W-boson mass measurement,” [2204.05975].

22. A. Crivellin, M. Kirk, T. Kitahara, and F. Mescia, “Correlating t → cZ to the W Mass and B Physics with Vector-Like Quarks,” [2204.05692].

23. Y. Heo, D.-W. Jung, and J. S. Lee, “Impact of the CDF W-mass anomaly on two Higgs doublet model,” [2204.05728].

24. H. Bahl, J. Braathen, and G. Weiglein, “New physics effects on the W-boson mass from a doublet extension of the SM Higgs sector,” [2204.05269].

25. Y. H. Ahn, S. K. Kang, and R. Ramos, “Implications of New CDF-II W Boson Mass on Two Higgs Doublet Model,” [2204.06485].

26. L. M. Carpenter, T. Murphy, and M. J. Snylie, “Changing patterns in electroweak precision with new color-charged states: Oblique corrections and the W boson mass,” [2204.08546].

27. O. Popov and R. Srivastava, “The Triplet Dirac Seesaw in the View of the Recent CDF-II W Mass Anomaly,” [2204.08568].

28. K. Ghorbani and P. Ghorbani, “W-Boson Mass Anomaly from Scale Invariant 2HDM,” [2204.09001].

29. C.-T. Lu, L. Wu, Y. Wu, and B. Zhu, “Electroweak Precision Fit and New Physics in light of W Boson Mass,” [2204.03796].

30. X.-F. Han, F. Wang, L. Wang, J. M. Yang, and Y. Zhang, “A joint explanation of W-mass and muon g-2 in 2HDM,” [2204.06505].

31. J. J. Heckman, “Extra W-Boson Mass from a D3-Brane,” [2204.05302].

32. J. Cao, L. Meng, L. Shang, S. Wang, and B. Yang, “Interpreting the W mass anomaly in the vectorlike quark models,” [2204.09477].

33. S. Lee, K. Cheung, J. Kim, C.-T. Lu, and J. Song, “Status of the two-Higgs-doublet model in light of the CDF m_W measurement,” [2204.10338].

34. H. Abouabid, A. Arhrib, R. Benbrik, M. Krab, and M. Ouchemhou, “Is the new CDF M_W measurement consistent with the two higgs doublet model?,” [2204.12018].

35. R. Benbrik, M. Boukidi, and B. Manaut, “W-mass and 96 GeV excess in type-III 2HDM,” [2204.11755].

36. S. Baek, “Implications of CDF W-mass and (g - 2)_μ on U(1)_{Lμ - Lτ} model,” [2204.09585].

37. A. Bhaskar, A. A. Madathil, T. Mandal, and S. Mitra, “Combined explanation of W-mass, muon g - 2, R_{K^*(s)} and R_{D^*(s)} anomalies in a singlet-triplet leptoquark model,” [2204.09031].

38. T. A. Chowdhury, J. Heeck, S. Saad, and A. Thapa, “W boson mass shift and muon magnetic moment in the Zee model,” [2204.08390].

39. K. Cheung, W.-Y. Keung, and P.-Y. Tseng, “Iso-doublet Vector Leptoquark solution to the Muon g - 2, R_{K^*}, R_{D^*}, and W-Mass Anomalies,” [2204.05942].

40. K. S. Babu, S. Jana, and V. P. K., “Correlating W-Boson Mass Shift with Muon g - 2 in the 2HDM,” [2204.05303].

41. H. M. Lee and K. Yamashita, “A Model of Vector-like Leptons for the Muon g - 2 and the W Boson Mass,” [2204.06024].

42. P. Athron, A. Fowlie, C.-T. Lu, L. Wu, Y. Wu, and B. Zhu, “The W boson Mass and Muon g - 2: Hadronic Uncertainties or New Physics?”, [2204.03996].

43. J. M. Yang and Y. Zhang, “Low energy SUSY confronted with new measurements of W-boson mass and muon-g-2,” [2204.04202].

44. X. K. Du, Z. Li, F. Wang, and Y. K. Zhang, “Explaining The Muon g - 2 Anomaly and New CDF II W-Boson Mass in the Framework of (Extra)Ordinary Gauge Mediation,” [2204.04286].

45. K.-Y. Zhang and W.-Z. Feng, “Explaining W boson mass anomaly and dark matter with a U(1) dark sector,” [2204.08067].

46. B.-Y. Zhu, S. Li, J.-G. Cheng, R.-L. Li, and Y.-F. Liang, “Using gamma-ray observation of dwarf spheroidal galaxy to test a dark matter model that can interpret the W-boson mass anomaly,” [2204.04688].

47. G. Cacciapaglia and F. Sannino, “The W boson mass weighs in on the non-standard Higgs,” [2204.05141].

48. Y.-Z. Fan, T.-P. Tang, Y.-L. S. Tsai, and L. Wu, “Inert Higgs Dark Matter for New CDF W-boson Mass and Detection Prospects,” [2204.03693].

49. C.-R. Zhu, M.-Y. Cui, Z.-Q. Xia, Z.-H. Yu, X. Huang, Q. Yuan, and Y. Z. Fan, “GeV antiproton/gamma-ray excesses and the W-boson mass anomaly: three faces of ~ 60 – 70 GeV dark matter particle?,” [2204.03767].

50. A. Batra, S. K. A., S. Mandal, and R. Srivastava, “W boson mass in Singlet-Triplet Scotogenic dark matter model,” [2204.09376].

51. G. Arcadi and A. Djouadi, “The 2HD+a model for a combined explanation of the possible excesses in the CDF M_W measurement and (g - 2)_μ with Dark Matter,” [2204.08406].

52. K. I. Nagao, T. Nomura, and H. Okada, “A model explaining the new CDF II W boson mass linking to muon g - 2 and dark matter,” [2204.07411].

53. J. Kawamura, S. Okawa, and Y. Omura, “W boson mass and muon g - 2 in a lepton portal dark matter
model,” [2204.07022].

[54] T.-P. Tang, M. Abdughani, L. Feng, Y.-L. S. Tsai, and Y.-Z. Fan, “NMSSM neutralino dark matter for W-boson mass and muon g − 2 and the promising prospect of direct detection,” [2204.04356].

[55] Q. Zhou and X.-F. Han, “The CDF W-mass, muon g-2, and dark matter in a U(1)Lμ − Lτ model with vector-like leptons,” [2204.13027].

[56] F. J. Botella, F. Cornet-Gomez, C. Miró, and M. Nebot, “Muon and electron g − 2 anomalies in a flavor conserving 2HDM with an oblique view on the CDF M_W value,” [2205.01115].

[57] J. Kim, “Compatibility of muon g − 2, W mass anomaly in type-X 2HDM,” [2205.01437].

[58] J. Kim, S. Lee, P. Sanayl, and J. Song, “CDF m_W and the muon g − 2 through the Higgs-phobic light pseudoscalar in type-X two-Higgs-doublet model,” [2205.01701].

[59] J. de Blas, M. Pierini, L. Reina, and L. Silvestrini, “Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits,” [2204.04204].

[60] C. Campagnari and M. Mulders, “An upset to the standard model,” Science 376 no. 6589, (2022) abna0101.

[61] M. Blennow, P. Coloma, E. Fernández-Martínez, and M. González-López, “Right-handed neutrinos and the CDF II anomaly,” [2204.04559].

[62] K. Sakurai, F. Takahashi, and W. Yin, “Singlet extensions and W boson mass in the light of the CDF II result,” [2204.04770].

[63] J. Fan, L. Li, T. Liu, and K.-F. Lyu, “W-Boson Mass, Electroweak Precision Tests and SMEFT,” [2204.04805].

[64] F. Arias-Aragón, E. Fernández-Martínez, M. González-López, and L. Merlo, “Dynamical Minimal Flavour Violating Inverse Seesaw,” [2204.04672].

[65] A. Paul and M. Valli, “Violation of custodial symmetry from W-boson mass measurements,” [2204.05267].

[66] J. Gu, Z. Liu, T. Ma, and J. Shu, “Speculations on the W-Mass Measurement at CDF,” [2204.05296].

[67] L. Di Luzio, R. Gröber, and P. Paradisi, “Higgs physics confronts the M_W anomaly,” [2204.05284].

[68] Y. Cheng, X.-G. He, Z.-L. Huang, and M.-W. Li, “Type-II Seesaw Triplet Scalar and Its VEV Effects on Neutrino Trident Scattering and W mass,” [2204.05031].

[69] M. Endo and S. Mishima, “New physics interpretation of W-boson mass anomaly,” [2204.05965].

[70] X. K. Du, Z. Li, F. Wang, and Y. K. Zhang, “Explaining The New CDF II W-Boson Mass Data In The Georgi-Machacek Extension Models,” [2204.05760].

[71] R. Balkin, E. Madge, T. Menzo, G. Perez, Y. Soreq, and J. Zupan, “On the implications of positive W mass shift,” [2204.05992].

[72] N. V. Krasnikov, “Nonlocal generalization of the SM as an explanation of recent CDF result,” [2204.06327].

[73] M.-D. Zheng, F.-Z. Chen, and H.-H. Zhang, “The WtWt-vertex corrections to W-boson mass in the R-parity violating MSSM,” [2204.06541].

[74] K.-S. Sun, W.-H. Zhang, J.-B. Chen, and H.-B. Zhang, “The lepton flavor violating decays of vector mesons in the MRSSM,” [2204.06234].

[75] Z. Péli and Z. Trócsányi, “Vacuum stability and scalar masses in the superweak extension of the standard model,” [2204.07010].

[76] S. Kanemura and K. Yagyu, “Implication of the W boson mass anomaly at CDF II in the Higgs triplet model with a mass difference,” [2204.07511].

[77] P. Mondal, “Enhancement of the W boson mass in the Georgi-Machacek model,” [2204.07844].

[78] H. B. T. Tan and A. Derevianko, “Implications of W-boson mass anomaly for atomic parity violation,” [2204.11991].

[79] V. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti, and T. Tong, “Beta-decay implications for the W-boson mass anomaly,” [2204.08440].

[80] D. Borah, S. Mahapatra, D. Nanda, and N. Sahu, “Type II Dirac Seesaw with Observable ∆Neff in the light of W-mass Anomaly,” [2204.08266].

[81] T. Yang, S. Qian, S. Deng, J. Xiao, L. Gao, A. M. Levin, Q. Li, M. Lu, and Z. You, “The physics case for a neutrino lepton collider in light of the CDF W mass measurement,” [2204.11871].

[82] R. Rahaman, “On two-body and three-body spin correlations in leptonic tZ production and anomalous couplings at the LHC,” [2204.12152].

[83] M. Pellen, R. Poncelet, A. Popescu, and T. Vitos, “Angular coefficients in W+γ production at the LHC with high precision,” [2204.12394].

[84] R. Dermisek, J. Kawamura, E. Lunghi, N. McGinnis, and S. Shih, “Leptonic cascade decays of a heavy Higgs boson through vectorlike leptons at the LHC,” [2204.13272].

[85] L.-B. Chen, L. Dong, H. T. Li, Z. Li, J. Wang, and Y. Wang, “One-loop squared amplitudes for hadronic tW production at next-to-next-to-leading order in QCD,” [2204.13500].

[86] P. Perez Fileviez, H. H. Patel, and A. D. Plascencia, “On the W-mass and New Higgs Bosons,” [2204.07144].

[87] R. S. Gupta, “Running away from the T-parameter solution to the W mass anomaly,” [2204.13690].

[88] J. Isaacson, Y. Fu, and C. P. Yuan, “ResBos2 and the CDF W Mass Measurement,” [2205.02788].

[89] G.-W. Yuan, L. Zu, L. Feng, Y.-F. Cai, and Y.-Z. Fan, “Hint on new physics from the W-boson mass excess—axion-like particle, dark photon or Chameleon dark energy,” [2204.04183].

[90] Muon g-2 Collaboration, B. Abi et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett. 126 no. 14, (2021) 141801, [2104.03281].

[91] Muon g-2 Collaboration, G. W. Bennett et al., “Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL,” Phys. Rev. D 73 (2006) 072003, [hep-ex/0602035].

[92] T. Aoyama et al., “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rept. 887 (2020) 1–166, [2006.04822].

[93] Planck Collaboration, P. A. R. Ade et al., “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astrophys. 571 (2014) A16, [1303.5076].

[94] WMAP Collaboration, E. Komatsu et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,”
95] Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, [1807.06209]. [Erratum: Astron.Astrophys. 652, C4 (2021)].

[96] Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.

[97] E. Ma, “Verifiable radiative seesaw mechanism of neutrino mass and dark matter,” Phys. Rev. D 73 (2006) 077301, [hep-ph/0601225].

[98] R. Longas, “Inert extension of the Zee model,” Nucl. Part. Phys. Proc. 267-269 (2015) 342-344.

[99] R. Longas, D. Portillo, D. Restrepo, and O. Zapata, “The Inert Zee Model,” JHEP 03 (2016) 162, [1511.01873].

[100] A. Beniwal, J. Herrero-García, N. Leerdam, M. White, and A. G. Williams, “The ScotoSinglet Model: a scalar singlet extension of the Scotogenic Model,” JHEP 21 (2020) 136, [2010.05937].

[101] A. Gaviria, R. Longas, and O. Zapata, “Charged lepton flavor violation and electric dipole moments in the inert Zee model,” JHEP 10 (2018) 188, [1809.06565].

[102] D. Hanneke, S. Fogwell, and G. Gabrielse, “New Measurement of the Electronic Magnetic Moment and the Fine Structure Constant,” Phys. Rev. Lett. 100 (2008) 120801, [0801.1134].

[103] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, “Measurement of the fine-structure constant as a test of the Standard Model,” Science 360 (2018) 191, [1812.04130].

[104] T. Aoyama, T. Kinoshita, and M. Nio, “Revised and Improved Value of the QED Tenth-Order Electron Anomalous Magnetic Moment,” Phys. Rev. D 97 no. 3, (2018) 036001, [1712.06060].

[105] N. G. Deshpande and E. Ma, “Pattern of Symmetry Breaking with Two Higgs Doublets,” Phys. Rev. D 18 (1978) 2574.

[106] K. Kannike, “Vacuum Stability Conditions From Copositivity Criteria,” Eur. Phys. J. C 72 (2012) 2093, [1205.3781].

[107] W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland, “The Oblique parameters in multi-Higgs-doublet models,” Nucl. Phys. B 801 (2008) 81-96, [0802.4353].

[108] M. E. Peskin and T. Takeuchi, “A New constraint on a strongly interacting Higgs sector,” Phys. Rev. Lett. 65 (1990) 964-967.

[109] M. E. Peskin and T. Takeuchi, “Estimation of oblique electroweak corrections,” Phys. Rev. D 46 (1992) 381-409.

[110] A. Zee, “A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation,” Phys. Lett. B 93 (1980) 389. [Erratum: Phys.Lett.B 95, 461 (1980)].

[111] J. Herrero-García, T. Ohlsson, S. Riad, and J. Wirén, “Full parameter scan of the Zee model: exploring Higgs lepton flavor violation,” JHEP 04 (2017) 130, [1701.05348].

[112] H. E. Haber and D. O’Neil, “Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U,” Phys. Rev. D 83 (2011) 055017, [1011.6188].

[113] J. P. Leveille, “The Second Order Weak Correction to (G-2) of the Muon in Arbitrary Gauge Models,” Nucl. Phys. B 137 (1978) 63-76.

[114] L. Lavoura, “General formulae for f(1) → f(2) gamma,” Eur. Phys. J. C 29 (2003) 191-195, [hep-ph/0302221].

[115] T. Toma and A. Vicente, “Lepton Flavor Violation in the Scotogenic Model,” JHEP 01 (2014) 160, [1312.2840].

[116] CMS Collaboration, A. M. Sirunyan et al., “Search for supersymmetric partners of electrons and muons in proton-proton collisions at √s = 13 TeV,” Phys. Lett. B 790 (2019) 140-166, [1806.05264].

[117] OPAL Collaboration, G. Abbiendi et al., “Search for chargino and neutralino production at s**(1/2) = 192-GeV to 209 GeV at LEP,” Eur. Phys. J. C 35 (2004) 1-20, [hep-ex/0401028].

[118] OPAL Collaboration, G. Abbiendi et al., “Search for anomalous production of dilepton events with missing transverse momentum in e+ e- collisions at s**(1/2) = 183-Gev to 209-GeV,” Eur. Phys. J. C 32 (2004) 453-473, [hep-ex/0309174].

[119] F. Staub, “SARAH,” [0806.0538].

[120] A. Pierce and J. Thaler, “Natural Dark Matter from an Unnatural Higgs Boson and New Colored Particles at the TeV Scale,” JHEP 08 (2007) 026, [hep-ph/0703056].

[121] DEAP Collaboration, B. Lehnert, “DEAP-3600 Recent Dark Matter Results,” in 53rd Rencontres de Moriond on Cosmology, pp. 311-314. 2018, [1812.04764].

[122] LUX-ZEPLIN Collaboration, D. S. Akerib et al., “Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment,” Phys. Rev. D 101 no. 5, (2020) 052002, [1802.06039].

[123] XENON Collaboration, E. Aprile et al., “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T,” Phys. Rev. Lett. 121 no. 11, (2018) 111302, [1805.12562].

[124] CDMS-II Collaboration, Z. Ahmed et al., “Dark Matter Search Results from the CDMSII Experiment,” Science 327 (2010) 1619-1621, [0912.3592].

[125] BaBar Collaboration, B. Aubert et al., “Searches for Lepton Flavor Violation in the Decays tau+ → e+ gamma and tau+ → mu+ gamma,” Phys. Rev. Lett. 104 (2010) 021802, [0908.2381].

[126] Belle, Belle-II Collaboration, K. Hayasaka, “Results and prospects on lepton flavor violation at Belle/Belle II,” J. Phys. Conf. Ser. 408 (2013) 012069.

[127] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou, “The fate of hints: updated global analysis of three-flavor neutrino oscillations,” JHEP 09 (2020) 178, [2007.14792].

[128] J. A. Casas and A. Ibarra, “Oscillating neutrinos and μ → e, γ,” Nucl. Phys. B 618 (2001) 171-204.
[hep-ph/0103065].