Research Paper
Evaluating the Anti-proliferative Effects of Nanoemulsion Containing Licorice Extract and Lavender Essential Oil on Cancer

Zohreh Karimi Taheri1, Mohammad Hosein Aarabi2, Ali Nazari-Alam3, Majid Nejati4, Mohammad Shayestehpour3, Hamid Reza Gilasi5, Afshin Salehi6, *Mohammad Esmaeil Shahaboddin1,7

1. Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
2. Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
3. Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
4. Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
5. Department of Biostatistics and Epidemiology, School of Health, Kashan University of Medical Sciences, Kashan.
6. Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
7. Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.

Citation: Karimi Taheri Z, Aarabi MH, Nazari-Alam A, Nejati M, Shayestehpour M, Gilasi H, et al. [Evaluation of Anti-proliferative Effects of Nanoemulsion Containing Licorice Extract and Lavender Essential Oil Against Cancer Cells and its Antimicrobial Properties: An in Vitro Study (Persian)]. Journal of Arak University of Medical Sciences (JAMS). 2021; 24(1):84-97. https://doi.org/10.32598/JAMS.24.1.6088.1

ABSTRACT

Background and Aim: Despite the anti-cancer and antimicrobial properties of licorice extract and lavender essential oil, some factors, such as low bioavailability and biodegradable, limit their therapeutic use. Using nanoparticles is a method to overcome these restrictions. This study aimed to investigate the anti-proliferative effects of nanoemulsion containing licorice extract and lavender essential oil on cancer cells; we also evaluated its antimicrobial properties in vitro.

Methods & Materials: In this experimental study, nanoemulsions, containing licorice extract and lavender essential oil were developed by the spontaneous emulsion method. The anti-proliferative effect of nanoemulsion was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetric method on two cell lines HepG2 and SK-MEL-3. To measure the antimicrobial effect of 4 standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Minimum Inhibitory Concentration (MIC) method was used.

Ethical Considerations: This study was approved by the Ethics Committee of Kashan University of Medical Sciences (Code: IR.KAUMS.MEDNT.REC.1396.106).

Results: The results of MTT test on HepG2 cells indicated that the concentrations of 630, 1250, and 2500 μg/mL nanoemulsions caused toxicity to the cell and led to the death of >50% of the cells (IC50=401μg/mL; P<0.05). Evaluating SK-MEL3 cells revealed that except for 75 μg of nanoemulsion, other concentrations induced death in >50% of the cells (IC50 = 82 μg/mL; P<0.05). In addition, nanoemulsions, with antimicrobial properties, were studied in 4 strains of bacteria; the highest antimicrobial properties were observed in Staphylococcus epidermidis.

Conclusion: Nanoemulsion containing licorice extract and lavender essential oil presents antimicrobial and antiproliferative effects on the two cell lines studied. The current study results indicated that the nano emulsification of lavender essential oil and licorice extract can enhance their biological impact; thus, they can be used as a drug formulation.

Keywords: Emulsions, Lavender, Licorice, Anti-infective agents, Anticancer agent

* Corresponding Author:
Mohammad Esmaeil Shahaboddin, PhD.
Address: Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
Tel: +98 (31) 55540021
E-mail: shahaboddin@kaums.ac.ir
Extended Abstract

1. Introduction

Licorice and lavender plants have anti-cancer [4, 13] and antimicrobial [5, 15] properties; however, due to their low bio-availability and degradability, their use as a medicine has limitations [16, 17]. One approach to overcome these restrictions is to use nanoparticles. Nanoemulsions ensure the protection of biological compounds and their controlled release [19]. This study aimed to evaluate the antiproliferative effects of nanoemulsions containing licorice extract and lavender essential oil on liver cancer cell lines (HepG2) and skin cancer cells (SK-MEL3). We also explored its antimicrobial properties on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis in vitro.

2. Materials and Methods

In this experimental study, nanoemulsions containing licorice extract and lavender essential oil were generated by the spontaneous emulsion method. To make the nanoemulsion, the aqueous phase, consisting of glycerol, polyethylene glycol solvent, and water, as well as the oil phase, including lavender essential oil, licorice extract, and emulsifiers (Tween 20 & Tween 80), were each prepared separately and combined and homogenized after heating. Single-Phase and transparent nanoemulsions were obtained. The antiproliferative effect of nanoemulsion on HepG2 and SK-MEL3 cell lines was investigated using MTT colorimetric method. Four standard bacterial strains and the Minimum Inhibitory Concentration (MIC) method were used to measure the antimicrobial effect. The last batch of nanoemulsion, in which no growth was observed, was considered as MIC. To analyze the obtained data, a one-way Analysis of Variance (ANOVA) was employed in SPSS at P<0.05.

3. Results

The results of the examination on HepG2 cells revealed that the IC50 level of nanoemulsion was 401 μg/mL (P<0.05). However, the concentration of 2500 licorice extracts could only kill 28% of the cells. The IC50 value for lavender essential oil was measured as 450 (P<0.05) (Figure 1). Examining SK-MEL3 cells suggested that the IC50 nanoemulsion concentration was 82 μg/mL (P<0.05). Lavender essential oil had similar toxicity to nanoemulsions; however, licorice extract was toxic only at the concentrations of 1250 and 2500 (P<0.05) (Figure 2).

In the study of nanoemulsion toxicity, the desired bacterial strains were subjected to concentrations of 0.625, 1.25, 2.5, 5, and 10 mg/mL nanoemulsion (Figure 1). The collected results indicated that the nanoemulsion presented an inhibitory effect on the growth of all bacterial used strains. The highest inhibitory effect concerned Staphylococcus aureus with MIC 5 mg/mL. The MIC for the other 3 strains was equal to 10 mg. Licorice extract did not affect Staphylococcus aureus and Escherichia coli but inhibited the growth of Pseudomonas and Staphylococcus epidermidis. The lavender essential oil also inhibited the growth of all strains except Pseudomonas (Table 1).

4. Discussion and Conclusion

The current study results revealed that the nanoemulsion is toxic to cancer cells. The anti-proliferative effect of licorice extract and lavender essential oil has been proven in previous studies [10, 20]. When cancer cells become malignant, they produce sustained ROS, leading to tumor growth and progression [21]. Using antioxidants, such as lavender essential oil, licorice extract, or nanoemulsions prepared from them can help improve the function of anti-cancer agents by reducing the amount of ROS.

Considering the effects of licorice and lavender, it was expected that the nanoemulsion form of licorice extract and

Table 1. The MIC of nanoemulsion, lavender essential oil, and licorice extract on 4 bacterial strains

Bacteria	MIC Rate (mg / ml)	Nanoemulsion	Essence	Licorice Extract
Staphylococcus aureus	10	5	-	
Escherichia coli	10	2.5	-	
Pseudomonas aeruginosa	10	2	1.25	
Staphylococcus epidermidis	5	5	5	

(-): No effect on bacterial growth.
was the same on other strains. The antibacterial effect of lavender essential oil was greater than nanoemulsion in all strains; however, licorice extract provided an inhibitory effect only on Pseudomonas and Staphylococcus epidermidis.

The antimicrobial effects of nanoemulsion highlighted that this nanoemulsion had the highest level of inhibition on the growth of Staphylococcus epidermidis; its inhibitory effect was the same on other strains. The antibacterial effect of lavender essential oil was greater than nanoemulsion in all strains; however, licorice extract provided an inhibitory effect only on Pseudomonas and Staphylococcus epidermidis.

The antimicrobial effects of nanoemulsion highlighted that this nanoemulsion had the highest level of inhibition on the growth of Staphylococcus epidermidis; its inhibitory effect

Figure 1. The percentage of HEPG2 cells surviving against different concentrations of nanoemulsion

A significant difference of >50% (P<0.05).

Figure 2. The survival percentage of SK-MEL3 cells against different concentrations of nanoemulsion

A significant difference of >50% (P<0.05).
Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Research Ethics Committee of Kashan University of Medical Sciences (Code: IR.KAUMS.MEDNT.REC.1396.106).

Funding

The paper was extracted from the MSc. thesis of the first author, Department of Clinical Biochemistry, Faculty of medicine, Kashan University of Medical Sciences (KAUMS, Grant No: 96203).

Authors’ contributions

Conceptualization and validation methodology of data analysis: Mohammad Esmaeil Shahaboddin, Mohammad Hossein Aarabi; Research, analysis, and sources: Ali Nazari-Alam, Mohammad Shayestehpour, Majid Nejati, Hamidreza Gilasi, and Afshin Salehi; Drafting: Zohreh Karimi Taheri.

Conflicts of interest

The authors declared no conflicts of interest.

Acknowledgements

We would like to thank the esteemed Vice Chancellor for Research and Technology of Kashan University of Medical Sciences.
بررسی اثرات ضد تکثیری نانوامولسیون حاوی شیرین بیان و لاواند بر علیه سلول‌های سرطانی و خواص ضد میکروبی آن

* نویسنده مسئول: دکتر محمد اسماعیل شهاب الدین

کاشان، دانشگاه علوم پزشکی کاشان، مرکز تحقیقات بیوشیمی و تغذیه در بیماری های متابولیک.

نشانی: +98 (35) 55540021

تلفن: shahaboddin@kaums.ac.ir

کیفیت نانوامولسیون حاوی عصاره شیرین بیان و اسانس لاواند دارای اثرات ضد سرطانی و ضد میکروبی است.

مطالعه تجربی نانوامولسیون حاوی عصاره شیرین بیان و اسانس لاواند به روش امولسیون خودبه‌خودی ساخته شد. اثر ضدتکثیری نانوامولسیون با استفاده از روش رنگ‌سنجی مورد بررسی قرار گرفت.

بررسی اثرات ضد میکروبی این نانوامولسیون با استفاده از چهار سویه باکتری استاندارد استفاده شد.

نتایج حاصل از این بررسی نشان داد که نانوامولسیون حاوی عصاره شیرین بیان و اسانس لاواند دارای اثرات ضد سرطانی و ضد میکروبی است. بیشترین خاصیت ضد میکروبی آن در باکتری استافیلوکوکوس اپیدرمیدیس مشاهده شد.

کلیدواژه‌ها: شیرین بیان، لاواند، نانو امولسیون، ضد میکروبی، ضد تکثیری
مقدمه
استفاده از گیاهان برای درمان به وسیله‌ی پیشینه تاریخی طلشته و گیاهان دارویی، یکی از سپسیون در طب سنتی بوده‌اند. مورد گیاهان دارویی بر نوع مشت شخصی شناختی که در صورت دارو اثرات آنتی، اکسیدان و ضد فلمتی قوی و توانایی بیشتری از رشد سرطان و دیگر توزیع و فارماکودینامیک هوش محققین، در این پژوهش بر آن شدیم تا اثرات انجام گرفت، نانوامولسیون حاوی عصاره گیاه شیرین بیان و مرکز تحقیقات بیوشیمی و تغذیه دانشگاه علوم پزشکی کاشان گرفتن مزایای نانوامولسیون، در مطالعه‌ای که توسط محققین با توجه اثرات مطلوب دو گیاه شیرین بیان و لاواند و با در نظر گرفتن تکثیری آن ها فردی و خوبی در آب و وزن مولکولی بالا سبب شده تا در برابر عوامل محیطی مانند اکسیداسیون، تبخیر و نور محافظت برای مثال، ترکیبات گیاهی فرّار و ناپایدار بوده و در صورتی که می‌توان با استفاده از روش نانو‌امولسیون، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، با استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های استفاده از فناوری نانو، پایداری و کارایی ترکیب مورد نظر را به نحو چشمگیری فرمولاسیون نانوامولسیون است که در واقع با استفاده از فناوری نانو، مقابله با این مشکل یکی از بهترین راه حل‌های ESTUDOS ANGUSTIFOLIA

1. Glycyrrhiza Glabra
2. Lavandula Angustifolia

در مرحله بعد از جلب نمونه‌ها به استاندارد میکروفلوئوریت بر اساس ترتیب ذکر شده و با استفاده از اولویت سرطانی و سلول‌های چهار نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوамولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر نانوامولسیون برای تعیین حداقل طیف‌سنجی‌ای که در آن هیچ گونه رشدی مشاهده نشد، در ظروف با حجم ۲۴ میلی‌لیتر NDA

دنیز همچنین نانوامولسیون با غلظت‌های مختلف و اسانس لاواند از عصاره و اسانس شیرین بیان هرکدام به صورت جداگانه قدرت جاذب‌کننده به عنوان ۱۰۰ مول/لیتر بیان گردید. در این روش، سلول‌های گاوی و القرنی در محیط کشت با حجم ۱۰ میلی‌لیتر دو و دوازده نانوامولسیون سلول‌های خونی و پوشیده کننده بیان در مقایسه با نانوامولسیون‌های دیگر نانوامولسیون‌های حاوی عصاره درون چاهک‌هایی با حجم صد میکرولیتر ریخته شد. در این روش، سلول‌های سرطانی در محیط کشت با حجم ۱۰ میلی‌لیتر دو و دوازده نانوامولسیون سلول‌های خونی و پوشیده کننده بیان در مقایسه با نانوامولسیون‌های دیگر نانوامولسیون‌های حاوی عصاره درون چاهک‌هایی با حجم صد میکرولیتر ریخته شد. در این روش، سلول‌های سرطانی در محیط کشت با حجم ۱۰ میلی‌لیتر دو و دوازده نانوامولسیون سلول‌های خونی و پوشیده کننده بیان در مقایسه با نانوامولسیون‌های دیگر نانوامولسیون‌های حاوی عصاره درون چاهک‌هایی با حجم صد میکرولیتر ریخته شد. در این روش، سلول‌های سرطانی در محیط کشت با حجم ۱۰ میلی‌لیتر دو و دوازده نانوامولسیون سلول‌های خونی و پوشیده کننده بیان در مقایسه با نانوامولسیون‌های دیگر نانوامولسیون‌های حاوی عصاره درون چاهک‌هایی با حجم صد میکرولیتر ریخته شد. در این روش، سلول‌های سرطانی در محیط کشت با حجم ۱۰ میلی‌لیتر دو و دوازده نانوامولسیون سلول‌های خونی و پوشیده کننده بیان در مقایسه با نانوامولسیون‌های دیگر NDA

4. Minimum Inhibitory Concentration

3. Spontaneous Emulsification

وهری کریمی طاهری و همکاران. بررسی اثرات ضد تکثیری نانوامولسیون حاوی شیرین بیان و لاواند بر علیه سلول‌های سرطانی و خواص ضد میکروبی آن. مجله شیمی و دارویی ۱۳۹۹ شماره ۵
کسوم ۳: درصد بقای سلول‌های میت ۵۰ (MTT) در برابر فلئت‌های مختلف نانوامولسیون.

نتایج حاصل از تست MTT روی سلول‌های HepG2 و استافیلوکوکوس اپیدرمیدیس، نشان می‌دهد که به‌طور مشابه، در غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۷۵ درصد سلول‌ها شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

پس از دریافت ۲۰ درصد بقای سلول‌های HepG2 و استافیلوکوکوس اپیدرمیدیس، نشان می‌دهد که به‌طور مشابه، در غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۷۵ درصد سلول‌ها شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

پس از دریافت ۲۰ درصد بقای سلول‌های HepG2 و استافیلوکوکوس اپیدرمیدیس، نشان می‌دهد که به‌طور مشابه، در غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۷۵ درصد سلول‌ها شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

پس از دریافت ۲۰ درصد بقای سلول‌های HepG2 و استافیلوکوکوس اپیدرمیدیس، نشان می‌دهد که به‌طور مشابه، در غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۷۵ درصد سلول‌ها شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

پس از دریافت ۲۰ درصد بقای سلول‌های HepG2 و استافیلوکوکوس اپیدرمیدیس، نشان می‌دهد که به‌طور مشابه، در غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۷۵ درصد سلول‌ها شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

پس از دریافت ۲۰ درصد بقای سلول‌های HepG2 و استافیلوکوکوس اپیدرمیدیس، نشان می‌دهد که به‌طور مشابه، در غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۷۵ درصد سلول‌ها شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

پس از دریافت ۲۰ درصد بقای سلول‌های HepG2 و استافیلوکوکوس اپیدرمیدیس، نشان می‌دهد که به‌طور مشابه، در غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۷۵ درصد سلول‌ها شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

پس از دریافت ۲۰ درصد بقای سلول‌های HepG2 و استافیلوکوکوس اپیدرمیدیس، نشان می‌دهد که به‌طور مشابه، در غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۷۵ درصد سلول‌ها شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌های استافیلوکوکوس اورئوس و اشریشیا پنج میلی گرم بر میلی لیتر باکتری استفاده اثر مهاری داشته است. بیشترین اثر مهاری (جدول شماره ۴۹) درصد سلول شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

بیشترین اثر مهاری (جدول شماره ۴۹) درصد سلول شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

بیشترین اثر مهاری (جدول شماره ۴۹) درصد سلول شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

بیشترین اثر مهاری (جدول شماره ۴۹) درصد سلول شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

بیشترین اثر مهاری (جدول شماره ۴۹) درصد سلول شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

بیشترین اثر مهاری (جدول شماره ۴۹) درصد سلول شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

بیشترین اثر مهاری (جدول شماره ۴۹) درصد سلول شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

بیشترین اثر مهاری (جدول شماره ۴۹) درصد سلول شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.

بیشترین اثر مهاری (جدول شماره ۴۹) درصد سلول شدید. در برابر غلظت میکروگرمی گیپ و گلیسیروریز، مقدار بیش از ۲۵ درصد سلول‌ها شدید.
حاوی عصاره شیرین بیان و اسانس لاواند و همچنین مطالعه خواص ضدتکثیری آن علیه سلول‌های سرطانی بود. نتایج به دست آمده نشان داد که این نانوامولسیون برای سلول‌های رده SK-MEL-3 و HepG2 سرطانی به شکل یکدیگر بیان شده و موجب مرگ می‌شود.

مطالعات متعددی در زمینه سمیت سلولی و اثر ضد سرطانی عصاره شیرین بیان و اسانس لاواند انجام شده است. به طور مثال، مطالعه خضرایی و همکاران نشان داده که عصاره گیاه شیرین بیان بر رده‌های سلولی سرطان معده و روده‌ای تأثیر معنی‌داری داشته و از طریق القای آپوپتوز در حالی که بر سلول‌های نرمال هیچ گونه تأثیر نداشت.

همچنین در مطالعه فو و همکاران، Licochalcone (PC3) اثر ضد توموری فلاونوئید استروژنی ۲۰ معنی‌دار و منفی ندارد. استخراج شده از ریشه گیاهی شیرین بیان بر سلول‌های پروستات MCF7 (از ریشه گیاهی شیرین بیان بر سلول‌های سرطان پستان) مطالعه شده و نشان داده شده است که غلظت بالای این عصاره برای سلول‌های سرطانی سمیت دارد.

در پژوهش دیگری که انجام شده در زمینه سمیت بر روی سلول‌های پستان MDA-MB-231 (MDA-MB-361, و T47D, MDA-MB-231) نشان داد که سلول‌های سرطانی در صورت استفاده از نانوامولسیون، اسانس لاواند و عصاره شیرین بیان به صورت تدریجی از تولید و تکثیر سلول‌های سرطانی جلوگیری می‌کنند.

مهم‌ترین نقطه در مطالعه می‌تواند تأثیر مهاری این ترکیبات بر سلول‌های سرطانی باشد که این ترکیبات شامل α-ocimeine و α-linalool و α-linalyl acetate و cineole هستند.

می‌تواند به عنوان یک حامی ضد سرطانی به‌شمار رود بیان شود که اثر مهاری اسانس لاواند و عصاره شیرین بیان به‌طور خودکار و به‌صورت طبیعی انجام می‌شود.

جدول ۱: میزان MIC (mg / ml) نانوامولسیون حاوی شیرین بیان و لاواند بر علیه سلول‌های سرطانی

بکتری	MIC (mg / ml)
استافیلوکوکوس اورئوس	5
اشریشیا کلایی	10
سودوموناس سرمینوس	1/25
استافیلوکوکوس اپیدرمیدس	5

(۱) به دست آمده‌ایعم دم‌اره بر رشد باکتری است.
پس از دهه‌ها استفاده از مهارکننده‌های میکروبی از محیط‌های متنوع از جمله غشاء‌های میکروبی، این مطالعه به منظور تولید نانومولسیون‌هایی برای مهارکننده‌های میکروبی انجام شد.

نتایج این مطالعه نشان داد که نانومولسیون حاوی عصاره گیاه شیرین بیان و اسانس گیاه لاواند در غلظت‌های مورد مطالعه دارای خواص ضد میکروبی بودند.

در ادامه مطالعه، بررسی اثر ضد میکروبی این نانومولسیون‌ها بر سرده‌های مختلف از جمله استافیلوکوکوس اورئوس، استافیلوکوکوس اپیدرمیدیس، اشریشیا کلی، و سودوموناس آئروژینوزا انجام شد.

نتایج نشان داد که این نانومولسیون بیشترین میزان مهارکننده‌ای را بر رشد استافیلوکوکوس اپیدرمیدیس داشته و اثر مهاری آن روی سایر سرده‌ها برابر بود. اسانس لاواند در مقایسه با نانومولسیون‌ها اثر بیشتری نداشت، اما عصاره شیرین بیان تنها بر سودوموناس آئروژینوزا و استافیلوکوکوس اپیدرمیدیس اثر مهاری داشت.

اثرات ضد میکروبی لاواند روی باکتری‌های استافیلوکوکوس اورئوس و استرپتوکوکوس پیوژنس در یک مطالعه بررسی و نشان داده شد که این گیاه خاصیت آنتی باکتریال دارد.

در مطالعه معصومی و همکاران در بررسی اثرات ضد میکروبی نانومولسیون اسانس آویشن شیرازی علیه باکتری‌های استافیلوکوکوس 2500 و اسانس آویشن شیرازی و نانومولسیون MIC میکروگرم بر میلی لیتر به دست آمد و تفاوتی بین اسانس خالص و نانومولسیون مشاهده نشد. نتایج حاصل این مطالعه با نتایج موجود در مطالعات پیشین یکسان بود.

نتایج این مطالعه نشان داد که نانومولسیون حاوی عصاره گیاه شیرین بیان و اسانس گیاه لاواند در غلظت‌های مورد مطالعه دارای خواص ضد میکروبی بودند و با توجه به میزان قابلیت تولید ATPase در بخش دوم این پژوهش، اثر ضد میکروبی نانومولسیون‌ها در مقایسه با اسانس و عصاره باید بررسی شود.

نتایج نشان داد که این نانومولسیون بیشترین میزان مهارکننده‌ای را بر رشد استافیلوکوکوس اپیدرمیدیس داشته و اثر مهاری آن روی سایر سرده‌ها برابر بود. اسانس لاواند در مقایسه با نانومولسیون‌ها اثر بیشتری نداشت، اما عصاره شیرین بیان تنها بر سودوموناس آئروژینوزا و استافیلوکوکوس اپیدرمیدیس اثر مهاری داشت.

اثرات ضد میکروبی لاواند روی باکتری‌های استافیلوکوکوس اورئوس و استرپتوکوکوس پیوژنس در یک مطالعه بررسی و نشان داده شد که این گیاه خاصیت آنتی باکتریال دارد.

در مطالعه معصومی و همکاران در بررسی اثرات ضد میکروبی نانومولسیون اسانس آویشن شیرازی علیه باکتری‌های استافیلوکوکوس 2500 و اسانس آویشن شیرازی و نانومولسیون MIC میکروگرم بر میلی لیتر به دست آمد و تفاوتی بین اسانس خالص و نانومولسیون مشاهده نشد. نتایج حاصل این مطالعه با نتایج موجود در مطالعات پیشین یکسان بود.

نتایج این مطالعه نشان داد که نانومولسیون حاوی عصاره گیاه شیرین بیان و اسانس گیاه لاواند در غلظت‌های مورد مطالعه دارای خواص ضد میکروبی بودند و با توجه به میزان قابلیت تولید ATPase در بخش دوم این پژوهش، اثر ضد میکروبی نانومولسیون‌ها در مقایسه با اسانس و عصاره باید بررسی شود.

نتایج نشان داد که این نانومولسیون بیشترین میزان مهارکننده‌ای را بر رشد استافیلوکوکوس اپیدرمیدیس داشته و اثر مهاری آن روی سایر سرده‌ها برابر بود. اسانس لاواند در مقایسه با نانومولسیون‌ها اثر بیشتری نداشت، اما عصاره شیرین بیان تنها بر سودوموناس آئروژینوزا و استافیلوکوکوس اپیدرمیدیس اثر مهاری داشت.

اثرات ضد میکروبی لاواند روی باکتری‌های استافیلوکوکوس اورئوس و استرپتوکوکوس پیوژنس در یک مطالعه بررسی و نشان داده شد که این گیاه خاصیت آنتی باکتریال دارد.

در مطالعه معصومی و همکاران در بررسی اثرات ضد میکروبی نانومولسیون اسانس آویشن شیرازی علیه باکتری‌های استافیلوکوکوس 2500 و اسانس آویشن شیرازی و نانومولسیون MIC میکروگرم بر میلی لیتر به دست آمد و تفاوتی بین اسانس خالص و نانومولسیون مشاهده نشد. نتایج حاصل این مطالعه با نتایج موجود در مطالعات پیشین یکسان بود.
نویسندگان اعلام می‌کنند که هیچ گونه تضاد منافع در خصوص پژوهش حاضر وجود ندارد.

تشکر و قدردانی

از مطالعه محترم تحقیقات و فناوری دانشگاه علوم پزشکی کاشان، صمیمانه تشکر و قدردانی می‌گویم.

زهره کریمی طاهری و همکاران. بررسی اثرات ضد تکثیری نانوامولسیون حاوی شیرین بیان و لاواند بر علیه سلول‌های سرطانی و خواص ضد میکروبی آن.
Reference

[1] Bent S. Herbal medicine in the United States: Review of efficacy, safety, and regulation. J Gen Intern Med. 2008; 23(6):854-9. [DOI:10.1007/s11606-008-0632-y] [PMID] [PMCID]

[2] Hosseinzadeh H, Nassiri-Ash M. Pharmacological effects of Glycyrrhiza spp. and its bioactive constituents: Update and review. Phytother Res. 2015; 29(12):1688-66. [DOI:10.1002/ptr.5487] [PMID]

[3] Nomura T, Fukai T, Akiyama T. Chemistry of phenolic compounds of licorice (Glycyrrhiza species) and their estrogenic and cytotoxic activities. Pure Appl Chem. 2002; 74(7):1199-206. [DOI:10.1351/pac200274071199]

[4] Basar N, Oridupa OA, Ritchie KJ, Nahar L, Osman NMM, Stafford A, et al. Comparative cytotoxicity of Glycyrrhiza glabra roots from different geographical origins against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cells. Phytother Res. 2015; 29(6):944-8. [DOI:10.1002/ptr.5329] [PMID]

[5] Nitalikar MM, Munde KC, Dhole BV, Shikalgar SN. Studies of antibacterial activities of Glycyrrhiza glabra root extract. Int J Pharm Tech Res. 2010; 2(1):899-901.

[6] Ghadiri MK, Gorji A. Lavender for medicine: A brief review of clinical effects. Avicenna. 2002; 1:23-7. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.11.66.684&rep=rep1&type=pdf&page=24

[7] Shiina Y, Funabashi N, Lee K, Toyoda T, Seikine T, Honjo S, et al. Relaxation effects of lavender aromatherapy improve coronary flow velocity in healthy men evaluated by transthoracic Doppler echocardiography. Int J Cardiol. 2008; 129(2):193-7. [DOI:10.1016/j.ijcard.2007.06.064] [PMID]

[8] Shahnaazi M, Nikjoo R, Yavariakia P, Mohammad-Allazadeh-Charandabi S. Inhaled lavender effect on anxiety and pain caused from intratracheal device insertion. J Caring Sci. 2012; 1(4):255. [doi: 10.5681/jcs.2012.035]

[9] SILVA GL, Luft C, Lunardelli A, Amaral RH, MELO DA, Donadio MV, et al. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil. An Acad Bras Cienc. 2015; 87(2 S):1397-408. [DOI:10.1590/0001-37652015.2015.0056] [PMID]

[10] Kozics K, Sranclikova A, Szedlackova E, Horvathova E, Melusova M, Melus V, et al. Antioxidant potential of essential oil of Lavandula angustifolia in vitro and ex vivo cultured liver cells. Neoplasma. 2015; 28:1397-408. [DOI:10.1002/ptr.5329] [PMID]

[11] Prusinowska R, Śmigielski KB. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L.). A review. Herba Pol. 2014; 60(2):56-66. [DOI:10.2478/hteo-2014-0010]

[12] Imre S, Ejsanj S, Miklos A, Tisza I, Dicher I, Tero-Vescan A, et al. Qualitative assay of essential oils of Lavender and Peppermint in commercial products through spectral and chromatographic methods. Farmacia. 2016; 64(6):857-62. https://farmaciajournal.com/wp-content/uploads/2016-06-art-09_imre_857-862.pdf

[13] Dallain S, Rezaei-Tavirani M, Nabuni M, Heidari-Keshel S, Azodi MZ, Zali H. Aqueous extract of lavender angustifolia inhibits lymphocytes proliferation of Hodgkin’s lymphoma patients. Iran J Cancer Prev. 2013; 6(4):201-8. [PMCID]

[14] Roller S, Ernest N, Buckle J. The antimicrobial activity of high-necrodane and other lavender oils on methicillin-sensitive and-resistant Staphylococcus aureus (MSSA and MRSA). J Altern Complement Med. 2009; 15(3):275-9. [DOI:10.1089/acm.2008.0268] [PMID]

[15] Hossain S, Heo H, De Silva B, Wimalasena S, Pathirana H, Heo G-J. Antibacterial activity of essential oil from lavender (Lavandula angustifolia) against pet turtle-borne pathogenic bacteria. Lab Anim Res. 2017; 33(3):195-201. [DOI:10.5625/ij.ar.2017.33.3.195] [PMID] [PMCID]

[16] Bakkali F, Averbeck S, Averbeck D, Idamaor M. Biological effects of essential oils-a review. Food Chem Toxicol. 2008; 46(2):446-75. [DOI:10.1016/j.fct.2007.09.106] [PMID]

[17] Raut JS, Karuppayil SM. A status review on the medicinal properties of essential oils. Ind Crops Prod. 2014; 62:250-64. [DOI:10.1016/j.indcrop.2014.05.055]

[18] Thakkar PJ, Madan P, Lin S. Transdermal delivery of diclofenac using water-in-oil microemulsion: Formulation and mechanistic approach of drug skin permeation. Pharm Dev Technol. 2014; 19(3):373-84. [DOI:10.1111/j.1572-0528.2013.00865] [PMID]

[19] El Ashbani A, Miladi K, Badri W, Sala M, Addi EA, Casabianca H, et al. Essential oils: From extraction to encapsulation. Int J Pharm. 2015; 483(1-2):220-43. [DOI:10.1016/j.ijpharm.2014.12.069] [PMID]

[20] Khazraei-Moradian S, Ganjaliikhan-Hakemi M, Andalib A, Yazdani R, Arasteh J, Kardar GA. The effect of licorice protein fractions on proliferation and apoptosis of gastrointestinal cancer cell lines. Nutr Cancer. 2017; 69(2):330-9. [DOI:10.1080/01635581.2017.1263347] [PMID]

[21] Fu Y, Chen J, Li Y-J, Zheng Y-F, Li P. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem. 2013; 141(2):1063-71. [DOI:10.1016/j.foodchem.2013.03.089] [PMID]

[22] Vlaicuavicić Š, Šibil F, Sinka I, Tupko I, Ocsovski J, Jovanović-Santa S. Chemical composition, antioxidant and anticancer activity of licorice from Fruska Gora locality. Ind Crops Prod. 2018; 112:217-24. [DOI:10.1016/j.indcrop.2017.11.050]

[23] Mehdinezhad Doghkolayi S, Mohammadi M. [The antioxidant and cytotoxic effects of lavandulla anguostifouliya on the 8305C cell line (Persian)]. New Cell Mol Biotechnol J. 2018; 8(32):91-8. [https://ncmbjau.ir/browse.php?a_id=1146&slc_lang=en]

[24] Gezici S. Promising anticancer activity of lavender (Lavandula angustifolia Mill.) essential oil through induction of both apoptosis and necrosis. Ann Pharmot. 2018; 7(2):38-45. [DOI:10.21276/ap.2018.7.2.5]

[25] Ziaei Herzariabi H, Nadeali N, Saeedi M, Sooasaei M, Jorjani ON, Momeni Z, et al. [The effect of lavender essential oil and nanoemulsion on Trichomonas vaginalis in vitro (Persian)]. Feyz. 2017; 21(4):326-34. [http://feyz.kuans.ac.ir/article-1-3154-en.html]

[26] Giovannini D, Gismondini A, Basso A, Canuti L, Braglia R, Canini A, et al. Lavandula angustifolia Mill. Essential oil exerts antibacterial and anti-inflammatory effect in macrophage mediated immune response to staphylococcus aureus. Immunol Invest. 2016; 45(11):1-28. [DOI:10.3109/08914167.2015.1085392] [PMID]

[27] Masoomi VO, Tajik H, Moradi M, Forough M, Shahabi N. [Antimicrobial effects of Zataria multiflora boiss. Essential oil nanoemulsion against Escherichia coli O157: H7 (Persian)]. Stud Med Sci. 2016; 27(7):608-17. [http://urjm.umsus.ac.ir/browse.php?a_code=A-10-2520-1&slc_lang=en]

[28] Sabbioni C, Ferranti A, Bugamelli F, Forti GC, Raggi MA. Simultaneous HPLC analysis, with isotopic elution, of glycyrrhizin and glycyr rhetic acid in liquorice roots and confectionery products. Phytochem Anal. 2006; 17(1):25-31. [DOI:10.1002/pca.877] [PMID] [PMCID]
[29] Bradley PR. British herbal compendium: A handbook of scientific information on widely used plant drugs. United Kingdom: British Herbal Medicine Association; 1992. https://books.google.com/books/about/British_Herbal_Compendium.html?id=lrUFBAAACAAJ