SUPPLEMENTARY MATERIAL

Determination and Comparison of Alkaloids and Triterpenes among Tissues after Oral Administration of Crude and Processed *Phellodendri Chinensis Cortex* by UPLC-QqQ-MS

Xuefei Lei1, Guoshun Shan1, Fan Zhang1, Pengpeng Liu1, Li Meng1, Tianzhu Jia1*

1 School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China

Abstract: *Phellodendri Chinensis Cortex* is widely used in the clinic of traditional Chinese medicine. In order to enlarge the range of application, it is necessary to processed with honey, salt-water, and rice-wine, respectively. We hope to elucidate the connotation of processing, an UPLC-QqQ-MS method was used for determination and comparison the tissue distribution of alkaloids and triterpenes after oral administration water-extracts of crude and processed products. The results showed that the berberine, phellodendrine, magnoflorine, limonin, and obacunone in crude and processed products were distributed in all tissues, especially in the small intestine and stomach. In this study, we can provide a scientific basis for explaining the processing connotation of *Phellodendri Chinensis Cortex* processed with salt-water and rice-wine, respectively.

Key words: *Phellodendri Chinensis Cortex*, Alkaloids, Triterpenes, Tissues, Processing, UPLC-QqQ-MS

Experimental

Materials and reagents

CHB was purchased from GAP Planting Base, Ya’an, Sichuan Province, China. It was identified and authenticated by Professor ZAI Yan-Jun according to the standards of Chinese Pharmacopoeia 2015. Department of Identification of Chinese medicine, Liaoning University of TCM, Dalian, China. The processed CHB comes from the same batch CHB. The voucher specimens were deposited in the Chinese Materia Medica Processing Engineering Center of Liaoning Province, Liaoning University of TCM. Standard substances (purity, 98%) of berberine, phellodendrine, magnoflorine, limonin, and obacunone were purchased from Must company (Sichuan, China). The Internal standard substance (IS) called carbamazepine (purity, 98%) was purchased from the National Institute for the control of Biological and Pharmaceutical Drugs (Beijing, China). Ultrapure water was produced by Milli-Q system (18.2 MΩ, Millipore, Billerica, USA). MS-grade acetonitrile, methanol, and HPLC-grade formic acid were purchased from Merck KGaA (Darmstadt, Germany). Brand Tower rice wine was purchased from Zhejiang Brand Tower Shaoxing Wine Co., Ltd. (Zhejiang, China). Pure natural honey was purchased from Shanghai Beisheng Biotechnology Co., Ltd. (Shanghai, China). Lodinefree salt was purchased from Dalian Salt Industry Co., Ltd. (Dalian, China).

UPLC-QqQ-MS condition

Chromatographic analysis was performed in a Waters ACQUITY H-CLASS UPLC system (Waters Corporation, Milford, MA, USA), Using an ACQUITY UPLC® BEH C18 column (50 mm × 2.1 mm, 1.7 μm, Waters). The mobile phase was consisted of (A) acetonitrile containing 0.1% formic acid and (B) water containing 0.1% formic acid, and the best elution conditions were as follows: 15% to 100% A (0−7 min), 100% to 100% A (7−8 min), 100% to 15% A (8−8.01 min), 15% to 15% A (8.01−10 min). The flow rate was set at 0.40 mL·min⁻¹. The temperature of column and auto-sampler room were set at 30 and 8 °C, respectively. The injection volume was 10 μL (Liu, 2015).

Mass spectrometry analysis was performed with a Waters XEVO TQD MS (Waters) with an electrospray ionization (ESI) source in positive ion mode. The desolvation gas (N2) flow rate was set at 900 L·h⁻¹ with a temperature of 450 °C, the source temperature was set at 150 °C, and the cone gas was set at 50 L·h⁻¹. The capillary and cone voltages were set at 3000 and 50 V, respectively. Collision energy was optimized based on the standards. Helium was used as the collision gas for collision-induced dissociation. Quantification was carried out using the multiple reactions monitoring (MRM) mode (Li, 2016; Tian, 2014). The mass spectrometric parameters

* Corresponding author: email: tianzhujia0411@163.com
of carbamazepine, berberine, phellodendrine, magnoflorine, limonin, and obacunone are shown in Table S1. The adduct formation of parent ion is \([M + H]^+\).

Table S1. The mass spectrometric parameters of carbamazepine, berberine, phellodendrine, magnoflorine, limonin, and obacunone.

No.	\(t_0/\text{min}\)	Compound	Parent ion(m/z)	Daughter ion(m/z)	Cone voltage (V)	Collision energy(V)
1	2.95	Carbamazepine	236.97	178.93	42.0	34.0
2	2.47	Berberine	335.95	320.22	62.0	28.0
3	0.82	Phellodendrine	342.01	191.99	46.0	24.0
4	0.99	Magnoflorine	342.01	264.99	46.0	22.0
5	3.68	Limonin	471.03	94.88	44.0	24.0
6	4.29	Obacunone	455.03	160.99	40.0	44.0

Preparation of Phellodendri Chinensis Cortex solution

Taked the appropriate amount of CHB in the casserole, soaked with 10 times the volume of distilled water for 30 min, and then decocted for 60 min and percolated. The residue was redissolved with 8 times the volume of distilled water to decocted for 60 min and percolated again, and combined two filtrates. The final concentration of CHB solution was 1 g/mL. The sample was stored in dry and dark place before use. Respectively, the processed CHB with rice-wine, salt-water and honey products solution were prepared with same method.

Animals

Healthy cleaning grade Sprague-Dawley (SD) rats (male, 190 g ± 10 g, 6-8 weeks old) were purchased from the Animal Center of Benxi Chang Sheng Biotechnology Co. Ltd., (certificate number: SCXK 2010-0001, Benxi, China) and conventionally raised a week before the experiment. The rats were maintained in an air-conditioned animal quarter at a temperature of 22 °C ± 2 °C, humidity of 50% ±10%, and 12 h light/12 h dark cycle. Rats were deprived of food overnight before the experiment but were allowed free access to water. All experiments were conducted in accordance with the Guidelines for the Care and Use of Laboratory Animals (Liu, 2017; Yuan, 2017).

Drug administration and tissue sampling

For tissue sample, 78 rats were divided into thirteen groups (n = 6 per group) randomly. Rats were oral administration crude, rice-wine processed CHB, salt-water processed CHB, and honey processed CHB water extract at a single dose of 8 g/kg, respectively. Heart, liver, spleen, lung, kidney, stomach, small intestine, and large intestine were collected at 30, 60, 180 min. Tissue samples were weighed rapidly, rinsed with physiological saline to remove the blood or content, blotted on filter paper, and then stored at −20 °C until use (Liu, 2017; Yuan, 2017).

Preparation of tissue sample

Each of the tissue samples was thawed and accurately weighed 0.2 g into an Eppendorf tube, and acquired tissue homogenate with 2 mL of ice-cold physiological saline under homogenate (homogenate 12 s/time, gap 20 s, 3–5 times). In order to eliminate interference of the protein, added 20 μL IS and 2 mL of methanol in 1 mL of tissue homogenate by vortexing for 2 min, and centrifuging at 10 000 r/min for 5 min. The supernatant was transferred into an Eppendorf tube, and evaporated to dryness with nitrogen. The residue was reconstituted in 100 μL methanol, vortexed for 20 s, and centrifuged at 12 000 r/min for 15 min. The 10 μL supernatant was injected onto the UPLC-QqQ-MS system for analysis (Liu, 2017; Yuan, 2017).

Method validation

Specificity

All of the blank tissue homogenates were prepared and analyzed to ensure no interfering peaks. And for the sake of evaluating the method selectivity, to compared the chromatograms of tissue homogenate spiked with the IS and
analytes, and tissue homogenate after an orally dose. There was no interference endogenous components signal detected at the corresponding retention time positions. So, the method has good specificity (Figure S1).

Calibration curves

The peak area of target compounds to IS vs. the nominal concentrations of the calibration standards by linear regression were used for calibration curves. There were five concentration levels in the procedure of generating the calibration curves of berberine, phellodendrine, magnoflorine, limonin, and obacunone in homogenates. The calibration curves show a good linear over the concentration in the range of 0.003 μg/mL to 0.300 μg/mL in tissue homogenates of berberine, phellodendrine, magnoflorine, limonin, and obacunone. The values of correlation coefficient r were over 0.9900.

Recovery and stability

The extraction recoveries of berberine, phellodendrine, magnoflorine, limonin, and obacunone were achieved by adding standards at three concentration levels to the tissue samples, and then compared the peak areas of the samples with those of the spike-post-extracted samples. Short-term stability was evaluated by assaying samples at three concentration levels, which were stayed at 25°C for 24 h. Long-term stability was assessed by assaying samples at three concentration levels, which were stored at -20°C for 30-day. The freeze-thaw stability of samples was studied on three concentration levels, which were kept at -20 to 25°C and operated in the same way for three freeze-thaw cycles. The extraction recoveries of berberine, phellodendrine, magnoflorine, limonin, and obacunone ranged from 78.4% to 112.8% in tissue samples, indicated that the method can provide reliable data. The RSD values of the stability results under the three conditions were less than 10%, which demonstrated that berberine, phellodendrine, magnoflorine, limonin, and obacunone were stable under the three conditions in tissue samples, indicated that there was no significant sample loss.

Precision and accuracy

The intraday precision and accuracy of the determination method were evaluated by examining the samples in three different concentration levels at the same day. And the interday precision and accuracy were assessed by using the same levels of the standard solutions on three consecutive days. The intra-and inter-day precision were expressed as the RSD, and the accuracy was expressed as RE. The RSD values of intraday and interday precision of berberine, phellodendrine, magnoflorine, limonin, and obacunone were less than 5%, and the RE values of accuracy were within ± 10%. So the accuracy and precision of the method were suitable for the determination analysis of the tissue samples.

Data analyses

UPLC-QqQ-MS system was applied to detect and determinate the berberine, phellodendrine, magnoflorine, limonin, and obacunone in different tissue samples. The calculated and identified of the parent and daughter ions of the compounds were using the MassLynx V4.1 software (Waters).
Figure S1. (A) Chromatograms of blank tissue homogenate. (B) Blank tissue homogenate with carbamazepine, berberine, phellodendrine, magnoflorine, limonin, and obacunone. (C) Stomach sample (3 h) after oral administration water-extract of crude.
Figure S2. The concentration-time plot of the berberine in the different tissues of the rats.

Figure S3. The concentration-time plot of the phellodendrine in the different tissues of the rats.

Figure S4. The concentration-time plot of the magnoflorine in the different tissues of the rats.
Figure S5. The concentration-time plot of the limonin in the different tissues of the rats.

Figure S6. The concentration-time plot of the obacunone in the different tissues of the rats.

The tissue concentrations of berberine, phellodendrine, magnoflorine, limonin, and obacunone determined at 30, 60, and 180 min after oral administration crude and processed CHB at a dose of 8 g/kg are shown in Tables S2-S6.

Table S2. The berberine concentration in the different tissues of the rats. (n=6)

Tissue	Time	Crude	HCHB	SCHB	RCHB
Liver	30	104.4217	410.8271	65.5768	20.2464
	60	131.4370	153.8332	74.5746	107.0698
	180	106.3134	194.0218	68.6355	16.8283
Heart	30	66.2763	400.6280	71.3424	24.1958
	60	114.5885	206.4429	58.6212	33.7793
	180	72.4911	124.7289	42.8373	14.6610
Spleen	30	103.4190	310.6363	66.1172	36.5853
	60	131.1319	103.4079	59.7792	18.1188
	180	117.3616	124.0953	40.9370	19.8129
Lung	30	149.0348	467.2259	54.9189	23.2697
	60	112.0110	245.9631	53.2644	23.3764
	180	54.1999	86.9260	38.1014	12.1902
Kidney	30	58.7610	324.2862	37.4777	30.4380
	60	95.6097	211.7687	50.1746	55.1813
	180	130.5615	84.9040	37.6781	22.7218
Large intestine	30	139.5100	262.6057	205.2503	73.7037
	60	178.0376	537.8791	103.1890	63.4292
	180	181.7229	330.1120	94.5199	25.4039
Table S3. The phellodendrine concentration in the different tissues of the rats. (n=6).

Tissue	Time (min)	Concentration (ng/g)	Crude	HCHB	SCHB	RCHB
Liver	30	3.9528	0.4588	3.7645	0.4346	
	60	10.4445	3.4651	4.9373	3.9501	
	180	30.6734	0.7784	2.7600	0.3438	
Heart	30	3.1798	8.6438	2.6687	6.9224	
	60	15.9055	17.2692	4.1238	2.1765	
	180	6.7920	8.1709	2.2295	0.6410	
Spleen	30	21.1106	75.1370	2.0425	2.1317	
	60	8.7969	5.4098	4.6859	1.0287	
	180	10.3843	7.2958	1.1526	0.8916	
Lung	30	34.5288	71.6405	7.6193	1.2320	
	60	8.0182	20.7293	3.0874	1.0408	
	180	3.5037	5.2904	1.1630	0.5574	
Kidney	30	11.0357	27.8661	1.1235	1.3093	
	60	10.8341	19.1161	2.3762	0.8259	
	180	8.8914	4.6653	1.3782	0.4741	
Large intestine	30	16.0711	41.4926	2.9662	5.5344	
	60	25.2001	42.0363	6.4893	3.1139	
	180	16.9170	39.2298	14.9615	1.1904	
Small intestine	30	105.9931	419.4512	24.8817	22.3776	
	60	145.3174	197.6970	82.8009	43.7448	
	180	101.6210	108.3339	56.5646	12.9879	
Stomach	30	228.8193	355.9423	24.9423	26.1392	
	60	136.4847	187.7474	32.9673	22.6369	
	180	37.7297	63.5049	21.7764	7.1977	

Table S4. The magnoflorine concentration in the different tissues of the rats. (n=6)

Tissue	Time (min)	Concentration (ng/g)
Liver	30	646.3930
	60	1487.4400
	180	456.8612
Stomach	30	1316.2220
	60	690.2532
	180	370.0151

3

4
Tissue	Time	Crude	HCHB	SCHB	RCHB
Liver	30	6.7436	0.2257	1.9362	0.1841
	60	5.3818	0.3672	2.1084	0.4025
	180	2.9446	0.1585	1.2076	0.1054
Heart	30	2.8608	4.7125	0.9356	1.0521
	60	6.8530	5.6498	1.1173	0.2663
	180	2.9741	1.1619	0.5671	0.1383
Spleen	30	15.0849	10.6224	0.5113	0.3692
	60	3.7940	2.0092	0.5700	0.0903
	180	0.8210	2.1724	0.2062	0.1096
Lung	30	12.6188	30.4378	0.4495	0.1651
	60	3.2977	8.1650	0.6459	0.1750
	180	1.0400	1.8676	0.2923	0.1107
Kidney	30	1.0929	14.2844	0.4370	0.2165
	60	6.4071	8.7009	0.5594	0.3229
	180	4.4833	1.8638	0.3352	0.1225
Large intestine	30	127.7029	281.5267	14.8977	5.2472
	60	90.0489	107.5155	34.9955	6.0131
	180	43.6132	70.5610	29.8930	1.9109
Stomach	30	159.0166	110.4691	8.9960	5.2296
	60	86.7040	94.7082	18.2441	2.6783
	180	14.7579	25.2223	6.5716	0.6283

Table S5. The limonin concentration in the different tissues of the rats. (n=6)
Time	Crude	HCHB	SCHB	RCHB
Liver				
30	1.8966	20.4280	11.0936	2.0839
60	3.9946	2.2800	2.6868	3.1820
180	1.6310	9.5893	1.0093	0.6094
Heart				
30	0.5837	2.2434	2.2036	3.2837
60	0.7719	2.4813	1.1360	0.7783
180	0.9479	3.8669	1.0351	0.3201
Spleen				
30	3.9511	7.8609	2.5865	1.3970
60	1.4869	0.7939	2.1110	0.7803
180	2.0918	4.2368	0.8526	0.7139
Lung				
30	1.5055	3.2933	2.3652	0.8173
60	0.6675	1.0908	0.9441	0.3647
180	0.4701	1.4002	0.5688	0.3354
Kidney				
30	0.4893	6.8524	1.6669	1.4845
60	0.7547	1.2624	1.0130	0.4669
180	1.1669	1.5638	0.3641	0.4149
Large				
30	3.2011	6.8514	11.6589	2.8695
---	---	---	---	---
intestine	60	1.2387	3.6317	4.3915
	180	1.1030	2.2733	2.7534
Small	30	6.3194	33.2384	14.7710
intestine	60	3.4546	18.3496	4.0921
	180	2.5101	9.0176	4.0594
Stomach	30	144.9751	113.3519	95.9906
	60	47.7622	82.6591	96.2987
	180	15.9948	33.1298	7.2015

References

1. Liu PP, Xu S, Zhang F and Jia TZ (2015). Change of alkaloids and limonoids in *Phellodendri Cortex* products before and after processing. Drug Clinic, 30: 18-23.
2. Li Y, Liu XG, Wang HY, Dong X, Gao W, Xu XJ, Li P and Yang H (2016). Pharmacokinetic studies of phellodendrine in rat plasma and tissues after intravenous administration using ultra-high performance liquid chromatography-tandem mass spectrometry. *J Chromatogr B Analyt Technol Biomed Life Sci.*, 1030: 95-101.
3. Liu YZ, Liu YQ, Jia R, Li J, Chang XW, Xu CX and Cai Q (2017). Determination and Tissue Distribution Comparisons of Atractylodin after Oral Administration of Crude and Processed *Atractylodes Rhizome*.
4. Pharmacogn Mag., 13: 413-417.
5. Tian X, Li Z, Lin Y, Chen M, Pan G and Huang C (2014). Study on the PK profiles of magnoflorine and its potential interaction in *Cortex phellodendri* decoction by LC-MS/MS. *Anal Bioanal Chem.*, 406: 841-9.
6. Yuan ZM, Chen Y, Gao H, Lv J, Chen GR and Wang J (2017). Comparative Pharmacokinetic Profiles of Three Protoberberine-type Alkaloids from Raw and Bile-processed *Rhizoma coptidis* in Heat Syndrome Rats. Pharmacogn Mag., 13: 51-57.