N–transitivity of Certain Diffeomorphism Groups

Peter W. Michor
Cornelia Vizman

Vienna, Preprint ESI 107 (1994) June 20, 1994

Supported by Federal Ministry of Science and Research, Austria
Available via anonymous ftp or gopher from FTP.ESI.AC.AT
n-TRANSITIVITY OF CERTAIN DIFFEOMORPHISM GROUPS

PETER W. Michor
CORNELIA VIZMAN

Erwin Schrödinger International Institute
of Mathematical Physics, Wien, Austria

October 2, 2001

ABSTRACT. It is shown that some groups of diffeomorphisms of a manifold act n-transitively for each finite n.

In this paper we show that the following groups of diffeomorphism of a manifold M act transitively of order n for each finite n: All diffeomorphisms with compact support (this is folklore, the first trace is in [8]) and all real analytic diffeomorphisms (from [7]). Furthermore all real analytic diffeomorphisms, or smooth ones with compact support, which preserve either a volume form, or a symplectic form, or are contact diffeomorphisms. The symplectic ones can also be chosen ‘globally hamiltonian’. For the smooth cases 1-transitivity is due to [3], n-transitivity to [1].

1. Proposition. Let M be a connected smooth manifold of dimension $\dim M \geq 2$. Then the group $\text{Diff}_c(M)$ of all smooth diffeomorphisms with compact support acts n-transitively on M, for each finite n. Thus for any two ordered sets of n different points (x_1, \ldots, x_n) and (y_1, \ldots, y_n) in M there is a smooth diffeomorphism f with compact support such that $f(x_i) = y_i$ for each i.

This result is folklore. In order to be complete and since we shall need an argument later on we include a short proof.

Proof. Let us first choose a finite $n \in \mathbb{N}$. Let $M^{(n)}$ denote the open submanifold of all n-tuples $(x_1, \ldots, x_n) \in M^n$ of pairwise distinct points. $\text{Diff}_c(M)$ acts on $M^{(n)}$ by the diagonal action, and we have to show, that this action is transitive.

Let us first assume that (x_1, \ldots, x_n) and (y_1, \ldots, y_n) are pairwise disjoint. For some $\varepsilon > 0$ let $c_i : (-\varepsilon, 1+\varepsilon) \to M$ be smooth curves with $c_i(0) = x_i$ and $c_i(1) = y_i$, which are embeddings and do not intersect each other. From a drawing it can be seen that this exists if $\dim M \geq 2$, since (x_1, \ldots, x_n) and (y_1, \ldots, y_n) are disjoint.

1991 Mathematics Subject Classification. 58D05, 58F05.

Key words and phrases. Diffeomorphisms, n-transitivity.
We choose pairwise disjoint tubular neighborhoods \(U_i \) of \(c_i(-\varepsilon, 1 + \varepsilon) \), extend the velocity vector fields of the curves to them, and use a smooth bump function to obtain vector fields \(X_i \) with compact support in \(U_i \) which coincides with the velocity vector field \(c_i^* \circ c_i^{-1} \) along each curve \(c_i \). Then the vector field \(X = X_1 + \ldots + X_n \) on \(M \) with compact support coincides with the velocity vector field \(c^* \circ c^{-1} \) along each curve \(c_i \) and the flow mapping \(\Phi_t^X \) maps each \(x_i \) to \(y_i \).

This argument shows that each \(\text{Diff}_e(M) \) -orbit in \(M^{(n)} \) is dense. We may replace in the argument the points \(y_i \) by points \(z_i \) in small open pairwise disjoint neighborhoods \(U_i \) of \(y_i \), not meeting \(\{x_1, \ldots, x_n\} \). Then the argument shows that each orbit contains an open set in \(M^{(n)} \), thus is open. Since the dimension of \(M \) is at least 2, \(M^{(n)} \) is connected, so there is only one orbit and the result on \(n \)-transitivity follows. \(\square \)

2. Lemma. Let \(M \) be a real analytic manifold. Then the group \(\text{Diff}^\omega(M) \) of all real analytic diffeomorphisms is dense in the group \(\text{Diff}^\infty(M) \) of smooth diffeomorphisms, in the Whitney \(C^\infty \)-topology.

Proof. By [2], theorem 3, there is a real analytic embedding \(i : M \to \mathbb{R}^k \) on a closed submanifold, for some \(k \). We use the constant standard inner product on \(\mathbb{R}^k \) to obtain a real analytic tubular neighborhood \(U \) of \(i(M) \) with projection \(p : U \to i(M) \). By [2], proposition 8, applied to each coordinate of \(\mathbb{R}^k \) the space \(C^\omega(M, \mathbb{R}^k) \) of real analytic \(\mathbb{R}^k \)-valued functions is dense in the space \(C^\infty(M, \mathbb{R}^k) \) of smooth functions, in the Whitney \(C^\infty \)-topology. If \(f : M \to M \) is a smooth diffeomorphism we may approximate \(i \circ f \) by real analytic mappings \(g \) in \(C^\omega(M, U) \), then \(p \circ g \) is real analytic \(M \to i(M) \) and approximates \(i \circ f \). Since the set of diffeomorphisms is open in the Whitney topology, this approximation becomes eventually a diffeomorphism. \(\square \)

3. Lemma. Let \(M \) be a real analytic manifold. Then for any real analytic vector bundle \(E \to M \) the space \(C^\omega(E) \) of real analytic sections of \(E \) is dense in the space \(C^\infty(E) \) of smooth sections. In particular the space \(\mathfrak{X}^\omega(M) \) of real analytic vector fields is dense in the space \(\mathfrak{X}(M) \) of smooth vector fields, in the Whitney \(C^\infty \)-topology.

Proof. Either repeat the proof of lemma 2 with some changes or use [6], 7.5. \(\square \)

4. Theorem. Let \(M \) be a connected real analytic manifold of dimension \(m \geq 2 \). Then the group \(\text{Diff}^\omega(M) \) acts \(n \)-transitively on \(M \), for each finite \(n \).

Proof. Let us fix a natural number \(n \). The group \(\text{Diff}^\omega(M) \) acts on the open submanifold \(M^{(n)} \) of all \(n \)-tuples \((x_1, \ldots, x_n) \in M^n \) of pairwise distinct points by the diagonal action. Again we have to show, that this action is transitive.

First we show that each \(\text{Diff}^\omega(M) \) -orbit in \(M^{(n)} \) is dense. Let \((x_1, \ldots, x_n) \) and \((y_1, \ldots, y_n) \) be in \(M^{(n)} \) and consider an open neighborhood of \((y_1, \ldots, y_n) \) in \(M^{(n)} \), which we may suppose to be of the form \(\prod_i U_i \), where \(U_i \) is a neighborhood of \(y_i \) in \(M \) for each \(i \). Then by proposition 1 there is a smooth diffeomorphism \(f : M \to M \) with \(f(x_i) = y_i \) for all \(i \), and by lemma 2 there exists a real analytic diffeomorphism \(g \in \text{Diff}^\omega(M) \) with \(g(x_i) \in U_i \) for each \(i \). So \(g : (x_1, \ldots, x_n) \in \prod_i U_i \).

Next we show that the orbit through \((x_1, \ldots, x_n) \in M^{(n)} \) in \(M^{(n)} \) contains an open neighborhood of \((x_1, \ldots, x_n) \). This will finish the proof: Since each orbit is dense, each orbit meets this nonempty open subset, so all orbits coincide.

October 2, 2001
We choose again a complete Riemannian metric \(g \) on \(M \). Then we let \((Y_{ij})_{j=1}^m \) be an orthonormal basis of \(T_x M \) with respect to \(g \), for all \(i \). Then we choose real analytic vector fields \(X_k \) for \(1 \leq k \leq N = nm \) which satisfy the following conditions:

\[
|X_k(x_i) - Y_{ij}|_g < \varepsilon \quad \text{for } k = (i-1)m + j, \\
|X_k(x_i)|_g < \varepsilon \quad \text{for all } k \notin [(i-1)m+1, im], \\
|X_k(x)|_g < 2 \quad \text{for all } x \in M \text{ and all } k.
\]

These fields exist by lemma 3. Since the fields are bounded with respect to a complete Riemannian metric, they have complete real analytic flows, see e.g. [4]. We consider the real analytic mapping

\[
f : \mathbb{R}^N \to M^{(n)}
\]

\[
f(t_1, \ldots, t_N) := \left((F_{t_1} X_1 \circ \cdots \circ F_{t_N} X_n)(x_1) \right) \\
\cdots \\
\left((F_{t_1} X_1 \circ \cdots \circ F_{t_N} X_n)(x_n) \right)
\]

which has values in the \(\text{Diff}^\omega(M) \)-orbit through \((x_1, \ldots, x_n) \). To get the tangent mapping at 0 of \(f \) we consider the partial derivatives

\[
\frac{\partial}{\partial t_k} |f(0, \ldots, 0, t_k, 0, \ldots, 0) = (X_k(x_1), \ldots, X_k(x_n)).
\]

If \(\varepsilon > 0 \) is small enough, this is near an orthonormal basis of \(T_{(x_1, \ldots, x_n)} M^{(n)} \) with respect to the product metric \(g \times \ldots \times g \). So \(T_0 f \) is invertible and the image of \(f \) contains thus an open subset. \(\square \)

5. Lemma. Let \(c : (-\varepsilon, 1 + \varepsilon) \to M^m \) be a smooth embedding. Then every 1-form (respectively \((m-1)\)-form) along \(c([0,1]) \) can be extended to an exact 1-form (respectively \((m-1)\)-form) on \(M \) with compact support in a tubular neighborhood of the image of \(c \).

Proof. There exists a tubular neighborhood of \(c(-\varepsilon, 1+\varepsilon) \), i.e. a diffeomorphism from \((-\varepsilon, 1+\varepsilon) \times \mathbb{R}^{m-1}\) to an open neighborhood \(U \) of the image of \(c \) in \(M \) which coincides with \(c \) on \((-\varepsilon, 1+\varepsilon) \times \{0\} \), and whose inverse \(u : U \to (-\varepsilon, 1+\varepsilon) \times \mathbb{R}^{m-1} \) we may use as a chart with \(u(c(t)) = (t,0) \).

(i) The case of a 1-form.

A 1-form along \(c \) is given by \(\omega(t) = \sum_{i=1}^m a_i(t) du^i |_{c(t)} \) for \(t \in [0, 1] \), where \(a_i : [0, 1] \to \mathbb{R} \) are smooth and we may extend them smoothly to \(a_i : (-\varepsilon, 1+\varepsilon) \to \mathbb{R} \).

Consider the function \(f : U \to \mathbb{R} \), given by

\[
f = A_1(u^1) + u^2 a_2(u^1) + \cdots + u^m a_m(u^1),
\]

where \(A_1(t) = \int_0^t a_1(s) ds \). Then \(df(c(t)) = \omega(t) \). Let \(h, k : \mathbb{R} \to \mathbb{R} \) be smooth bump functions such that \(\text{supp} h \subset (-\delta, \delta) \), \(\text{supp} k \subset (-\varepsilon, 1+\varepsilon) \), \(h = 1 \) in a neighborhood of 0, and \(k = 1 \) in a neighborhood of \([0, 1]\). Then

\[
F := k(u^1) h(u^2) \cdots h(u^m) f
\]

October 2, 2001
Theorem. Let \((M, \sigma)\) be a connected symplectic smooth manifold of dimension \(m \geq 2\). Then the group \(\text{Diff}_c(M, \sigma)\) of all smooth diffeomorphisms with compact support which preserve the symplectic form \(\sigma\) acts \(n\)-transitively on \(M\), for each finite \(n\).

If \(M\) is a real analytic manifold with a real analytic symplectic form \(\sigma\), then also the group \(\text{Diff}^\omega(M, \sigma)\) of real analytic symplectomorphisms acts \(n\)-transitively on \(M\), for each finite \(n\).

The \(n\)-transitivity of the group of smooth symplectomorphisms is due to [1], with essentially the same method. The proof will also show that the Lie subgroup of \(\text{Diff}_c(M, \sigma)\) whose Lie algebra is the Lie algebra of compactly supported globally Hamiltonian vector fields acts \(n\)-transitively on \(M\). This group has been identified as a Lie group in [11], for compact \(M\). Also in the real analytic case the subgroup of globally Hamiltonian real analytic symplectomorphisms act \(n\)-transitively.

Proof. First the smooth case. By the argument used at the end of the proof of proposition 1 it suffices to show, that there exists \(\varphi \in \text{Diff}_c(M, \sigma)\) with \(\varphi h(x_i) = y_i\), for any \((x_1, \ldots, x_n)\) and \((y_1, \ldots, y_n)\) in \(M^{(n)}\) which are pairwise disjoint sets in \(M\). We take again smooth curves \(c_i : (-\epsilon, 1+\epsilon) \to M\) with \(c_i(0) = x_i\) and \(c_i(1) = y_i\) which are embeddings and do not intersect. Let \(U_i\) be pairwise disjoint tubular neighborhoods of \(c_i((-\epsilon, 1+\epsilon))\).

The velocity field of the curve \(c_i\) defines the 1-form \(\alpha_i = i_{c_i^*}\sigma\) along the curve \(c_i\). Using lemma 6 we extend this form to an exact 1-form \(df_i\) on \(M\) with \(\text{supp} f_i \subset M\).
Let $f := f_1 + \cdots + f_n$ and consider the (globally) Hamiltonian vector field $\text{grad}^\sigma(f) = -\sigma^{-1}df$ with compact support corresponding to f. It coincides with the velocity field $c_1 \circ c^{-1} \circ [0,1])$. Hence the flow $F_t^{\text{grad}^\sigma(f)} \in \text{Diff}_c(M,\sigma)$ and $F_t^{\text{grad}^\sigma(f)}(x_i) = y_i$.

If M and σ are real analytic, we may approximate the smooth function f from above by a real analytic function g in the Whitney C^1-topology in such a way that:

1. The Hamiltonian vector field $\text{grad}^\sigma(g)$ is bounded with respect to some complete Riemannian metric and thus has a global real analytic flow $F_t^{\text{grad}^\sigma(g)} \in \text{Diff}_c(M,\sigma)$.

2. $F_t^{\text{grad}^\sigma(g)}(x_i)$ is near y_i for all i.

Thus it follows that each $\text{Diff}_c(M,\sigma)$-orbit in $M^{(n)}$ is dense. Similarly as in the proof of theorem 4 we will show that the orbit through $(x_1,\ldots,x_n) \in M^{(n)}$ is open, which finishes the proof of n-transitivity.

We choose again a complete Riemannian metric g on M. Then we let $(Y_{ij})_{j=1}^m$ be an orthonormal basis of T_xM with respect to g, for all i. Then we choose real analytic functions f_k for $1 \leq k \leq N = nm$ whose Hamiltonian vector fields satisfy the following conditions:

- $|\text{grad}^\sigma(f_k)(x_i) - Y_{ij}| < \varepsilon$ for $k = (i-1)m + j$.
- $|\text{grad}^\sigma(f_k)(x_i)| < \varepsilon$ for all $k \notin [(i-1)m + 1, im]$.
- $|\text{grad}^\sigma(f_k)(x)| < 2$ for all $x \in M$ and all k.

Since these conditions describe Whitney C^1 open subsets, such functions exist by [2], proposition 8. Now we may finish the proof as at the end of theorem 4. \qed

7. Contact manifolds. Let M be a smooth manifold of dimension $m = 2n + 1 \geq 3$. A contact form on M is a 1-form $\alpha \in \Omega^1(M)$ such that $\alpha \wedge (da)^n \in \Omega^{2n+1}(M)$ is nowhere zero. This is sometimes called an exact contact structure. The pair (M,α) is called a contact manifold (see [5]). The contact vector field $X_\alpha \in \mathfrak{X}(M)$ is the unique vector field satisfying $i_{X_\alpha} \alpha = 1$ and $i_{X_\alpha} da = 0$.

A diffeomorphism $f \in \text{Diff}(M)$ with $f^*\alpha = \lambda_f \alpha$ for a nowhere vanishing function $\lambda_f \in C^\infty(M,\mathbb{R} \setminus 0)$ is called a contact diffeomorphism. Note that then $\lambda_f = i_{X_\alpha}(\lambda_f) = i_{X_\alpha} f^*\alpha = f^*(i_{f^{-1}X_\alpha}) = f^*(i_{f^{-1}X_\alpha})$. The group of all contact diffeomorphisms will be denoted by $\text{Diff}(M,\alpha)$.

A vector field $X \in \mathfrak{X}(M)$ is called a contact vector field if $\mathcal{L}_X \alpha = \mu_X \alpha$ for a smooth function $\mu_X \in C^\infty(M,\mathbb{R})$. The linear space of all contact vector fields will be denoted by $\mathfrak{X}_\alpha(M)$ and it is clearly a Lie algebra. Contraction with α is a linear mapping again denoted by $\alpha : \mathfrak{X}_\alpha(M) \to C^\infty(M,\mathbb{R})$. It is bijective since we may apply i_{X_α} to the equation $\mathcal{L}_X \alpha = i_X da + da(X) = \mu_X \alpha$ and get $0 + i_{X_\alpha} da(X) = \mu_X X$; but the equation uniquely determines X from $\alpha(X)$ and μ_X. The inverse $f \mapsto \text{grad}^\sigma(f)$ of $\alpha : \mathfrak{X}_\alpha(M) \to C^\infty(M,\mathbb{R})$ is a linear differential operator of order 1.

Theorem. Let M be a connected smooth manifold of dimension $m \geq 2$, and let α be a contact form on M. Then the group $\text{Diff}_c(M,\alpha)$ of contact diffeomorphisms with compact support acts n-transitively on M for all finite n.

October 2, 2001
If M and α are real analytic then also the group $\text{Diff}^\omega(M, \alpha)$ of real analytic contact diffeomorphisms acts n-transitively on M for each finite n.

The n-transitivity of $\text{Diff}_c(M, \alpha)$ is due to [1].

Proof. By the argument used at the end of the proof of proposition 1 it suffices to show, that there exists $\varphi \in \text{Diff}_c(M, \mu)$ with \(\varphi(x_i) = y_i \), for any \((x_1, \ldots, x_n)\) and \((y_1, \ldots, y_n)\) in $M^{(n)}$ which are pairwise disjoint sets in M. For $\varepsilon > 0$ let again $c_i : (-\varepsilon, 1 + \varepsilon) \to M$ be smooth embeddings with $c_i(0) = x_i$, $c_i(1) = y_i$ which do not intersect. We choose pairwise disjoint tubular neighborhoods U_i of $c_i(-\varepsilon, 1 + \varepsilon)$. Let $f_i : M \to \mathbb{R}$ be a smooth extension of $\alpha(c_i' \circ c_i^{-1}) : c_i([0,1]) \to \mathbb{R}$ with support in U_i and \(f := \sum_{i=1}^n f_i \in C_c^\infty(M, \mathbb{R}) \). Then the contact vector field $\text{grad}^\alpha(f) \in \mathfrak{X}_\alpha(M)$ coincides with the velocity field $c_i' \circ c_i^{-1}$ on $c_i([0,1])$ for each i.

Hence $\text{Fl}^{\omega}_1 \in \text{Diff}_c(M, \alpha)$ and $\text{Fl}^{\omega}_1(x_i) = y_i$ for $i = 1, \ldots, n$.

If M and α are real analytic, we may approximate the smooth function f from above by a real analytic function g in the Whitney C^1-topology in such a way that:

1. The contact vector field $\text{grad}^\alpha(g)$ is bounded with respect to a complete Riemannian metric and so has a global real analytic flow $\text{Fl}^{\text{grad}^\alpha(g)}_1 \in \text{Diff}(M, \alpha)$, see [4].
2. $\text{Fl}^{\text{grad}^\alpha(g)}_1(x_i)$ is near y_i for all i.

Thus it follows that each $\text{Diff}^\omega(M, \alpha)$-orbit in $M^{(n)}$ is dense. Similarly as in the proof of theorem 4 we will show that the orbit through \((x_1, \ldots, x_n)\) in $M^{(n)}$ is open, which finishes the proof.

We choose again a complete Riemannian metric g on M. Then we let $\left(Y_{ij}\right)_{i,j=1}^n$ be an orthonormal basis of $T_{x_i}M$ with respect to g, for all i. Then we choose real analytic functions f_k for $1 \leq k \leq N = nm$ which satisfy the following conditions:

\[
\begin{align*}
|\text{grad}^\alpha(f_k)(x_i) - Y_{ij}|_g &< \varepsilon & \text{for } k = (i-1)m + j, \\
|\text{grad}^\alpha(f_k)(x_i)|_g &< \varepsilon & \text{for all } k \notin [(i-1)m + 1, im], \\
|\text{grad}^\alpha(f_k)(x_i)|_g &< 2 & \text{for all } x \in M \text{ and all } k.
\end{align*}
\]

Since these conditions describe Whitney C^1 open subsets, such functions exist by [2], proposition 8. Now we may finish the proof as at the end of theorem 4. \(\square \)

8. Theorem. Let (M, μ) be a connected smooth manifold of dimension $m \geq 2$ with a positive volume density. Then the group $\text{Diff}_c(M, \mu)$ of all smooth volume preserving diffeomorphisms of M with compact support acts n-transitively on M, for each finite n.

If M and μ are real analytic then also the group $\text{Diff}^\omega(M, \mu)$ of real analytic volume preserving diffeomorphisms acts n-transitively on M, for each finite n.

Proof. First the smooth case. By the argument used at the end of the proof of proposition 1 it suffices to show, that there exists $f \in \text{Diff}_c(M, \mu)$ with $f(x_i) = y_i$, for any (x_1, \ldots, x_n) and (y_1, \ldots, y_n) in $M^{(n)}$ which are pairwise disjoint sets in M.

Having fixed the points, we may find an orientable connected open subset U of M containing all points. Since we are going to construct a volume preserving diffeomorphism with support in U, for the smooth case we can replace M by U and...
without loss assume that M is orientable. But we shall need the setting $U \subset M$ later.

For some $\varepsilon > 0$ let $c_i : (-\varepsilon, 1 + \varepsilon) \to M$, $i = 1, \ldots, n$ be smooth embeddings with $c_i(0) = x_i$, $c_i(1) = y_i$ which do not intersect. We choose pairwise disjoint tubular neighborhoods U_i of $c_i(-\varepsilon, 1 + \varepsilon)$, $i = 1, \ldots, n$.

We can find a Riemannian metric g on M whose volume form is μ. Then the divergence of a vector field $X \in \text{Vect}(M)$ is $\text{div} X = \ast d \ast X^g$, where $X^g = g(X) \in \Omega^1(M)$ (here we view $g : TM \to T^*M$) and \ast is the Hodge star operator. The velocity field of the curve c_i defines an $(m-1)$-form $((c'_i \circ c_i^{-1})^g)$ along $c_i([0, 1])$. Using lemma 8 we extend it to an exact $(m-1)$-form $d\alpha_i$ on M with $\alpha_i \subset U_i$, and we put $\alpha = \sum_{i=1}^n \alpha_i \in \Omega^{m-2}(M)$. We consider the vector field

\begin{equation}
X_\alpha = (-1)^{m+1}(d\alpha)^2 = (-1)^{m+1}g^{-1} \ast d\alpha,
\end{equation}

i.e. by the relation $d\alpha = \ast X^g_\alpha$. Then X_α is divergence free, $\text{div} X_\alpha = \ast d \ast X^g = \ast d \ast X^g = 0$, and has compact support in the union of all U_i. It also coincides on $c_i([0, 1])$ with the velocity field of the curve c_i. Hence $\text{Fl}^{X_\alpha}_1 \in \text{Diff}_e(M, \mu)$ with $\text{Fl}^{X_\alpha}_1(x_i) = y_i$.

We treat now the real analytic case. The Riemannian metric g with volume form μ can be chosen real analytic. We also choose a complete Riemannian metric γ.

First we assume that M is orientable. We approximate the smooth $(m-2)$-form α from above by real analytic $(m-2)$-forms β in such a way that:

1. The real analytic vector field $X_\beta = (-1)^{m+1}g^{-1} \ast d\beta$ is bounded with respect to the complete Riemannian metric γ and thus has a global real analytic flow $\text{Fl}^{X_\beta}_1 \in \text{Diff}_e(M, \mu)$.

2. $\text{Fl}^{X_\beta}_1(x_i)$ is near $y_i = \text{Fl}^{X_\gamma}_1(x_i)$ for all i.

Since these conditions describe a Whitney C^1-open set, such real analytic forms β exist by lemma 3. Thus it follows that each $\text{Diff}_e(M, \mu)$-orbit in $M^{(n)}$ is dense. Similarly as in the proof of theorem 4 we will show that the orbit through $(x_1, \ldots, x_n) \in M^{(n)}$ is open, which finishes the proof.

We let $(Y_{ij})_{i=1}^m$ be an orthonormal basis of $T_{x_i}M$ with respect to the complete Riemannian metric γ, for all i. Then we choose real analytic $(m-2)$-forms β_k for $1 \leq k \leq N = nm$ whose vector fields $X_{\beta_k} = (-1)^{m+1}g^{-1} \ast d\beta_k$ satisfy the following conditions:

\begin{equation}
\begin{aligned}
|X_{\beta_k}(x_i) - Y_{ij}|_\gamma &< \varepsilon \quad \text{for } k = (i-1)m + j, \\
|X_{\beta_k}(x_i)|_\gamma &< \varepsilon \quad \text{for all } k \notin [(i-1)m+1, im], \\
|X_{\beta_k}(x_i)|_\gamma &< 2 \quad \text{for all } x \in M \text{ and all } k.
\end{aligned}
\end{equation}

Since these conditions describe Whitney C^1 open subsets, such $(m-2)$-forms exist by lemma 3. Now we may finish the proof as at the end of theorem 4.

Now we treat the case of non-orientable M. Let $\pi : \tilde{M} \to M$ be the real analytic connected oriented double cover of M, and let $\varphi : \tilde{M} \to M$ be the real analytic involutive covering map. Recall the orientable connected open subset $U \subset M$ containing all points x_i and y_i from above. The form α from above had compact

October 2, 2001
support in \(U \). The inverse image \(\pi^{-1}(U) \subset \tilde{M} \) is the disjoint union of two connected open subsets \(W_1 \) and \(W_2 \) such that \(\pi|_{W_p} : W_p \to U \) is a diffeomorphism for both \(p = 1, 2 \). We let \(x^p_i = (\pi|_{W_p})^{-1}(x_i) \) and \(y^p_i = (\pi|_{W_p})^{-1}(y_i) \), and we pull back both metrics to \(\tilde{M} \), so \(\tilde{g} := \pi^*g \) and \(\tilde{\gamma} := \pi^*\gamma \).

We approximate the smooth \((m - 2)\)-form \(\tilde{\alpha} := \pi^*\alpha \) by real analytic \((m - 2)\)-forms \(\beta \in \Omega^{m-2}(\tilde{M}) \) in such a way that the conditions \((2)\) and \((3)\) from above are satisfied now on \(M \) for \(x^p_i \) and \(y^p_i \).

\(\tilde{X}_\beta := (-1)^{m+1} \tilde{g}^{-1} \ast d\beta \) is bounded with respect to the complete Riemannian metric \(\tilde{g} \) and thus has a global real analytic flow \(\text{Fl}_{\tilde{X}\beta} \in \text{Diff}^\omega(\tilde{M}, \pi^*\mu) \).

\(\text{Fl}_{\tilde{X}\beta}^X(x^p_i) \) is near \(y^p_i = \text{Fl}_{\tilde{X}\beta}^X(x^p_i) \) for all \(i \), and for \(p = 1, 2 \).

Since these conditions describe a Whitney \(C^1 \)-open set, such real analytic forms \(\beta \) exist by lemma 3. Since \(\tilde{\alpha} = \pi^*\alpha \) is invariant under \(\varphi^* \), the real analytic vector field \(\frac{1}{2}(X_\beta + \varphi_*X_\beta) \) still satisfies both \((1)\) and \((2)\), is divergence free, invariant under the covering transformation \(\varphi \), thus it induces a real analytic vector field \(Z_\beta \in \mathfrak{X}(M) \) which is bounded with respect to \(\gamma \), such that \(\text{Fl}_{Z\beta}^X(x_i) \) is near \(y_i \) for each \(i \), and \(Z_\beta \) is now divergence free in the sense that \(\mathcal{L}_{Z_\beta} \mu = 0 \). Thus it follows that each \(\text{Diff}^\omega(M, \mu) \)-orbit in \(M^{(n)} \) is dense.

Next we will show that the orbit through \((x_1, \ldots, x_n) \in M^{(n)} \) is open, which finishes the proof. We choose real analytic \((m - 2)\)-forms \(\beta_k \in \Omega^{m-2}(M) \) for \(1 \leq k \leq N = nm \) whose vector fields \(X_{\beta_k} = (-1)^{m+1} \tilde{g}^{-1} \ast d\beta_k \) satisfy the following conditions, where we put \(Y^p_{ij} := T_{x^p_i} \pi^{-1} Y_{ij} \) for \(p = 1, 2 \):

\[|X_{\beta_k}(x^p_i) - Y^p_{ij}|_\tilde{g} < \varepsilon \quad \text{for } k = (i-1)m + j, p = 1, 2, \]

\[|X_{\beta_k}(x^p_i)|_\tilde{g} < \varepsilon \quad \text{for all } k \notin [(i-1)m + 1, im], p = 1, 2, \]

\[|X_{\beta_k}|_\tilde{g} < 2 \quad \text{for all } x \in \tilde{M} \text{ and all } k. \]

Since these conditions describe Whitney \(C^1 \) open subsets, such \((m - 2)\)-forms exist by lemma 3. Then the vector fields \[\frac{1}{2}(X_{\beta_k} + \varphi_*X_{\beta_k}) \] still satisfy the conditions \((4)\), are still divergence free and induce divergence free vector fields \(Z_{\beta_k} \in \mathfrak{X}(M) \) which satisfy the conditions \((4)\) on \(M \) as in the oriented case, and we may finish the proof as above. \(\square \)

References

1. Boothby, W.M., *The transitivity of the automorphisms of certain geometric structures*, Trans. Amer. Math. Soc. 137 (1969), 93–100.
2. Grauert, Hans, *On Levi's problem and the embedding of real analytic manifolds*, Annals of Math. 68 (1958), 460–472.
3. Hatakeyama Y., *Some notes on the groups of automorphisms of contact and symplectic structures*, Tôhoku J. Math. 18 (1966), 338–347.
4. Hirsch, Morris W., *Differential topology*, GTM 33, Springer-Verlag, New York, 1976.
5. Libermann, P.; Marle, C.M., *Symplectic geometry and analytic mechanics*, D. Reidel, 1987.
6. Kriegl, Andreas; Michor, Peter W., *A convenient setting for real analytic mappings*, Acta Mathematica 165 (1990), 105–159.

October 2, 2001
7. Michor, Peter W., Letter to Garth Warner, December 12, 1990.
8. Milnor, J., *Topology from the differentiable viewpoint*, University Press of Virginia, Charlottesville, 1965.
9. Morrow, J., *The denseness of complete Riemannian metrics*, J. Diff. Geo. 4 (1970), 225–226.
10. Nomizu, K.; Ozeki, H., *The existence of complete Riemannian metrics*, Proc. AMS 12 (1961), 889–891.
11. Ratiu, T.; Schmid, R., *The differentiable structure of three remarkable diffeomorphism groups*, Math. Z. 177 (1981), 81–100.
12. Vizman, C., *Coadjoint orbits in infinite dimensions*, Dissertation, Universität Wien, 1994.

P. Michor: Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
E-mail address: Peter.Michor@esi.ac.at

C. Vizman: University of Timisoara, Mathematics Department, Bulevardul Parvan 4, 1900-Timisoara, Romania

October 2, 2001