Pushing run-and-tumble particles through a rugged channel

Bram Bijnens and Christian Maes*

Instituut voor Theoretische Fysica, KU Leuven, Belgium
E-mail: christian.maes@kuleuven.be

Received 2 November 2020
Accepted for publication 11 January 2021
Published 4 March 2021

Abstract. We analyze the case of run-and-tumble particles pushed through a rugged channel both in the continuum and on the lattice. The current characteristic is non-monotone in the external field with the appearance of a current and nontrivial density profile even at zero field for asymmetric obstacles. If an external field is exerted against the direction of that zero-field current, then the resulting current decreases with persistence at small field and increases with persistence at large field. Activity in terms of self-propulsion increases the maximal current and postpones dying. We give an effective theoretical description with wider validity.

Keywords: active matter, transport properties, stochastic particle dynamics, fluctuation phenomena

*Author to whom any correspondence should be addressed.
1. Introduction

A nonequilibrium system, be it transient or stationary driven, is very sensitive to time-symmetric constraints and obstacles. Kinetic constraints or disorder indeed influence relaxation, diffusion and transport even for independent particles. For transport in out-of-equilibrium systems, even at small (and even zero) external driving, the frenetic contribution complements entropic considerations (as in the fluctuation–dissipation relation) to enter crucially in the current characteristic [1, 2]. Examples where the response to external fields, temperature or chemical affinities show negative differential susceptibility include [3–9]. In the present paper we revisit the set up of [3, 4] but for active particles as studied before, e.g. also in [10–15]: how does the current characteristic change as a function of the persistence?

Active matter consists of self-propelled particles, characterized by a coupling between motion and an internal degree of freedom, quantified by persistence [16–20]. Their dynamics model bacteria-motion and nanomotors or active colloids for their locomotion, possibly showing collective effects such as flocking or phase separation [21–26]. Also individually they differ in many ways from their passive counterparts [27–29]. The models are characterized as overdamped motion, while being nonMarkovian in the position variable by the presence of colored noise.

Pushing active particles can be understood in various ways. We use the more neutral words of ‘pumping’ or ‘pushing’ to include Janus-particles or active colloids but there are many specific ways in which also living organisms may respond to a signal and hence introduce bias into their movement [30]. We think about a fixed sensory gradient where a direction is preferred and remains the same for all individuals at all locations in space (e.g. from gravity). Or, when animals search for food, the direction may be taken of a target or source fixed in space.
As a model for self-propelled colloids, we take run-and-tumble particles (RTP), mimicking a behavior observed in chemotactic bacteria [31]. We have no very specific biological application in mind however, and we can as well take active colloids as susceptible to a global external driving as today can be realized in many ways. For a related approach and type of problem, see e.g. [32] showing glassy behavior in an active model. That is a form of kinetic arrest which is not unlike the trapping behavior we study in the present behavior, except that interactions will play no role here. It is the roughness of the channel that creates possible trapping.

Recently, there have appeared a growing number of studies of active systems exposed to disorder and obstacles, with [33] studying the influence of heterogeneity on large-scale collective properties, similarly for [34, 35] on flocking behavior and [10, 11, 36] for active particles running in a landscape of obstacles, typically randomly-placed disks, and [37–42] investigating diffusion properties of self-propelled particles in crowded or complex environments. Periodic arrays of obstacles were considered for (artificial) microswimmers in [43] and transport for active particles in periodic porous media was characterized in [12], for periodic arrays (for active Brownian particles) in [13–15]. In particular we mention [44, 45] for important new directions and [46] for modifier activation–inhibition switching in enzyme kinetics. Non-Boltzmann steady distribution and clustering have been studied for RTP in [17, 47–50]. New in the present paper is the study on the discrete lattice, incorporating the external field and activity at the same time, plus a general effective analysis able to summarize the properties of the rough substrate in terms of an effective mobility.

The plan is as follows: in the next section, we specify the question, after which we present an effective dynamics to predict the main features of RTPs being pushed through a rough (but general) channel. Section 3 describes the model dynamics more specifically in the continuum and on the discrete lattice through a channel with obstacles. The obstacles lead (possibly) to trapping, as has been analyzed in various scenarios for passive particles. In section 4 we present the results of simulations, where the main output is the current characteristic, function of the external field, and how it depends on persistence. Section 5 concludes with the discussion, also with reference to the predictions in section 2.

2. Question and effective analysis

Active particles in a constant external field have been mostly considered for the problem of sedimentation. The experimental system is for example treated by Palacci et al [51]. Enculescu and Stark [52] considered active Brownian motion with an external time-independent constant force, studying sedimentation. Tailleur and Cates [53] showed that for the run-and-tumble model the stationary state distribution in a linear potential has the exponential form. For that model, a closed form of the stationary state distribution has been derived by Szamel in [54]. In the present paper we investigate the current for RTP-motion driven through a rough channel, where the two-dimensional aspect matters for the periodic placement of obstacles.

In this section, we restrict ourselves to continuous space. (The aspects related to modeling RTP on the lattice in an external field will be given in section 3.2.)
RTP run on straight lines interrupted by tumbling at exponential times. At tumbling a new random direction is chosen. In an external field ϵ pointing in the x-direction with unit vector \mathbf{e}_x, the two-dimensional position \mathbf{r}_t, where the subscript t denotes time, follows the differential equation

$$\dot{\mathbf{r}}_t = c \dot{\theta}_t + \epsilon \mathbf{e}_x,$$

where $c > 0$ is the propulsion speed and $\dot{\theta}_t$ is a noise which is itself a Markov process taking values in the space of unit-vectors (points on the circle):

$$\dot{\theta}_t = \cos \theta_t \mathbf{e}_x + \sin \theta_t \mathbf{e}_y,$$

with angle θ_t undergoing a jump process with constant rate $k(\theta, \theta') = a$. In other words, at tumbling times, the particle randomly chooses a new angle to run. The particle feels the direction and stimulus intensity ϵ at every single point but its tumbling rate a is unaffected.

We think of a channel along the x-direction, where the interior surface is not smooth but periodic. We ask for the stationary particle current and how it gets influenced by c and a and the channel properties. In section 3 we will choose for hooks that block the motion. In general the dynamics (1) must be supplemented with boundary conditions indeed, but next we assume an effective one-dimensional and translation-invariant model where the roughness is replaced by a mobility μ.

Consider then the one-dimensional dynamics

$$\dot{x}_t = \psi(c \sigma_t + \epsilon),$$

where $\sigma_t = \pm 1$ flips at rate a, and for $\psi(E) = \mu(E)E$ when the force is E, where the effective mobility $\mu(E)$ depends on the persistence of the active particle and on the architecture of the unit cell. The idea is that (3) summarizes effectively the joint influence of the persistence and obstacles but coarse-grained to the translation-invariant scale. Note that the homogenized mobility μ refers to the current in the positive x-direction and needs not be symmetric at all as it summarizes the spatial escape rate and the roughness of the channel need not be left/right symmetric.

For computing the current we note already that taking the stationary average of (3) yields the current $j = (\psi(c + \epsilon) + \psi(-c + \epsilon))/2$ but we can do that more carefully by passing via the master equation for (3):

$$\begin{align*}
\partial_t \rho_+(x) &= -\psi(c + \epsilon) \partial_x \rho_+(x) - a (\rho_+(x) - \rho_-(x)) \\
\partial_t \rho_-(x) &= -\psi(-c + \epsilon) \partial_x \rho_-(x) + a (\rho_-(x) - \rho_+(x)),
\end{align*}$$

where ρ_\pm represents the density where $\sigma_t = \pm 1$. We do not indicate the time-dependence in the notation $\rho_\pm(x)$. Defining $\rho(x) = \rho_+(x) + \rho_-(x)$ for the total particle (probability) density and $m(x) = \rho_+(x) - \rho_-(x)$ for the chirality, we get

$$\begin{align*}
\partial_t \rho(x) &= -\frac{1}{2}[\psi(c + \epsilon) - \psi(-c + \epsilon)] \partial_x m(x) - \frac{1}{2} \frac{1}{2}[\psi(c + \epsilon) + \psi(-c + \epsilon)] \partial_x \rho(x) \\
\partial_t m(x) &= -\frac{1}{2} \psi(c + \epsilon) - \psi(-c + \epsilon) \partial_x \rho(x) - \frac{1}{2} \frac{1}{2} \psi(c + \epsilon) + \psi(-c + \epsilon) \partial_x m(x) - 2a m(x).
\end{align*}$$
Both $\rho = \rho_t$ and $m = m_t$ depend on time t obviously and we assume a well-localized initial condition ρ_0 so that at each finite moment $\rho_t(x)$ decreases exponentially in $x \to \pm \infty$. On the other hand, writing for short $\psi_+ = \psi(c+\varepsilon), \psi_- = \psi(-c+\varepsilon), \nabla \psi_+ = \psi'(c+\varepsilon), \nabla \psi_- = \psi'(-c+\varepsilon)$,

$$\partial_t \rho = \frac{1}{4}(\psi_+ - \psi_-)^2 \partial_{xx} \rho + \frac{1}{4}(\psi_+^2 - \psi_-^2) \partial_{xx} \rho + a(\psi_+ - \psi_-) \partial_x m - \frac{1}{2}(\psi_+ + \psi_-) \partial_{xt} \rho,$$

and hence

$$\partial_t \rho + 2a \partial_r \rho = \frac{1}{4}(\psi_+ - \psi_-)^2 \partial_{xx} \rho + \frac{1}{4}(\psi_+^2 - \psi_-^2) \partial_{xx} m - \frac{1}{2}(\psi_+ + \psi_-) \partial_{xt} \rho - a(\psi_+ + \psi_-) \partial_x \rho.$$

We still need

$$\partial_{xt} \rho = -\frac{1}{2}(\psi_+ - \psi_-) \partial_{xx} m - \frac{1}{2}(\psi_+ + \psi_-) \partial_{xx} \rho,$$

to eliminate $\partial_{xx} m$, after which we find the modification of the telegraph equation,

$$\partial_t \rho + 2a \partial_r \rho + \frac{1}{2}(\psi_+ + \psi_-) \partial_{xt} \rho = -\psi_+ \psi_- \partial_{xx} \rho - a(\psi_+ + \psi_-) \partial_x \rho,$$

purely in terms of the particle density $\rho(x,t)$. Note that when $\mu(E) = 1, \psi_+ = c + \varepsilon, \psi_- = -c + \varepsilon$ (no obstacles), the mobility does not depend on the force and the equations (3)–(5) become

$$\frac{d}{dt} (x - \varepsilon t) = c \sigma_t \partial_{tt} \rho + (2a + \varepsilon \partial_x) (\partial_t \rho + \varepsilon \partial_x \rho) = c^2 \partial_{xx} \rho$$

(hyperbolic when $4(\varepsilon^2 - c^2) < \varepsilon^2$). Those do not yet take into account the boundary conditions in the interior of the channel. Such one-dimensional models with bias and persistence have been studied analytically in [55]. We remember from there that the current as well as the diffusion coefficient are enhanced by persistence.

Our goal is to find the stationary current more generally from (5),

$$j = \lim_{t \uparrow \infty} \frac{d}{dt} \int dx \rho_t(x) x,$$

which is the asymptotic value of the mean velocity $v_t = \frac{d}{dt} \int dx \rho_t(x) x = \frac{d}{dt} \langle x_t \rangle$, when $t \uparrow +\infty$, and where $\rho_t(x)$ is the density at time t solving (5). We calculate (7) by multiplying (5) with x and integrating over x. The mean velocity v_t satisfies

$$\partial_t v_t + 2av_t = a(\psi_+ + \psi_-), \quad v_t = e^{-2at} v_0 + \frac{\psi_+ + \psi_-}{2}(1 - e^{-2at}),$$

where we used the assumption that the density decays fast at infinity $|x| \rho_t(x) \to 0$, to allow $\int dx x \partial_x \rho = -\int dx \rho = -1$. Asymptotically in time $t \uparrow \infty$, that becomes
Formula (8) gives the way the current-characteristic \(j = j(\varepsilon; c, a) \) is decided by the behavior of the effective mobility, which also depends on the persistence \(a \) (and on the local roughness). There are in fact two other length scales besides \(L \), which we can take as the size of the unit cell or obstacles: there is \(\varepsilon/a \) which is the bias length and \(c/a \) which is the persistence length.

Let us first take \(c \gg \varepsilon \). We see that \(j > 0 \) unless \(\mu(\varepsilon - c) \) is large enough. For example, for zero external field \(\varepsilon = 0 \), \(\mu(-c) > \mu(c) \) yields a negative current \(j(\varepsilon = 0) < 0 \) at zero field, which is very well possible if escape opposite to the field becomes easier than with the field. Larger persistence is then expected to increase the difference \(\mu(-c) - \mu(c) \) which lowers the current at small bias.

For large \(\varepsilon \gg c \) we have \(j \simeq \varepsilon \mu(\varepsilon) \), and the decay of the mobility in \(\varepsilon \) decides the characteristic for large pumping. We expect that trapping effects may become bigger for large \(\varepsilon \) leading to an exponential decay of \(\mu(\varepsilon) \), as we will discuss later. We may also expect that if there is a horizon of unblocked escape, larger persistence (in that direction) increases \(\mu(\varepsilon) \), and more for larger \(c \).

We see next more specifically for a channel with repeated obstacles how the predictions of the above effective analysis get realized, in particular when the unit cell is asymmetric.

3. Model with obstacles

We restrict ourselves to two types of obstacles, both time-symmetric but one which is spatially asymmetric (with one type of hook) and one which is spatially symmetric. The space is quasi-one dimensional, either continuous, in section 3.1, or discrete, in section 3.2. See figure 1 for the setup of the rough channel, showing three unit cells. We have also indicated the direction of the nonconservative external field of strength \(\varepsilon \).

In the numerical simulations, time is discrete with steps of size \(\Delta t \). The current \(j \) is measured during an interval \([0, t_{\text{max}}]\) after the system had time to relax. The stationary current is then obtained as

\[
j = \frac{\phi_r - \phi_l}{N t_{\text{max}}},
\]

where \(\phi_r \) and \(\phi_l \) are the number of particles leaving the unit cell through the left, respectively the right boundary of the unit cell. \(N \) is the number of samples where a particle is chosen with a random starting position within the unit cell.

3.1. Continuum model

The motion (1) is supplemented with boundary conditions. We refer to figure 1 for the basic architectures that are repeated periodically. For the obstacles (solid lines in the figures) the boundary conditions are hovering, meaning that when a particle hits these
boundaries it will continue by keeping (only) its velocity component parallel to the surface. Particles cannot move through obstacles. For the rest, when not at an obstacle, boundary conditions are periodic in the (horizontal) x-direction: if a particle leaves the unit cell at these boundaries it enters the unit cell at the opposing side.

The simulations use a unit cell with sides of unit length, the walls of the obstacles have half the length of the cell making them span over one-fourth of the area. Other parameters are $\Delta t = 0.001$, $t_{\text{max}} = 500$, $N = 10000$ and $c = 1$ unless stated otherwise.

3.2. Discrete model

For run-and-tumble motion on the discrete lattice, we deal with a random walk showing persistence and subject to an external bias [30, 55, 56]. Hopping is between lattice sites except that particles cannot cross the walls (the solid (red) lines in figure 2). The unit cell is again repeated periodically. Study of the current-characteristic for active particles on a discrete lattice with obstacles is new and requires some new elements to take care of.

The run-and-tumbling follows the same idea as in the continuum case but combining persistence with bias in a continuous time random walk in two dimensions requires more explanations. The (internal) spin direction also becomes discrete and can either point right, left, up or down. The tumbling is still uniformly to one of the other directions with a rate a, i.e. with uniform and symmetric transition rates k (right, left) = k (right, up) = k (right, down) = $\cdots = a$. The particle is persistent in one of the four directions and is subject also to an external field ε pointing to the right in the (horizontal) x-direction. We now specify the hopping rates. There will be each time four hopping rates, and each
is set to zero when an obstacle prevents the hopping (see again figure 2). The hopping
rates depend on the current direction of persistence (with amplitude c) and the external
field ϵ.

To better understand the logic of the formulæ that follow, we first consider a one-
dimensional integer lattice with sites j, for modeling a run-and-tumble particle in an
external field (without obstacles). For that purpose we propose the following rates.

When the direction of persistence is to the right (subscript $+$), we take rates

$$
k_+(j, j - 1) = \exp b_+, \quad k_+(j, j + 1) = \exp -b_+, \quad k_+(j, j - 1) = \left(\frac{c_+^2}{4} + \frac{(c_+^2 + 1)}{4} \right)^{-1}
$$

and similarly

$$
k_-(j, j + 1) = \exp b_-, \quad k_-(j, j - 1) = \exp -b_-, \quad k_-(j, j - 1) = \left(\frac{c_-^2}{4} + \frac{(c_-^2 + 1)}{4} \right)^{-1}
$$

for the hopping rates when the persistence is to the left (with subscript $-$); see figure 3
for a graphical representation. The master equation for the density $\rho_+(j)$, respectively $\rho_-(j)$ is

$$
\begin{align*}
\partial_t \rho_+(j) &= e^{b_+} (\rho_+(j - 1) - \rho_+(j)) + e^{-b_+} (\rho_+(j + 1) - \rho_+(j)) - a (\rho_+(j) - \rho_-(j)) \\
\partial_t \rho_-(j) &= e^{b_-} (\rho_-(j - 1) - \rho_-(j)) + e^{-b_-} (\rho_-(j + 1) - \rho_-(j)) - a (\rho_-(j) - \rho_+(j))
\end{align*}
$$

(10)

Clearly then, we should take $2 \sinh b_+ = c + \epsilon$ and $2 \sinh b_- = -c + \epsilon$ for mimicking
the run-and-tumble motion $\dot{x}_t = c \sigma_t + \epsilon$ on \mathbb{R}, with $\sigma_t = \pm 1$ tumbling at rate a. Observe
that on the lattice, particles are still allowed to go against the direction of persistence in the same way as they can go against the external field. In the continuum limit (scaling time and space in the same way) we obtain the correct run-and-tumble dynamics. There exist other versions of lattice dynamics of RTP, in particular for $\epsilon = 0$ where we can simply take one-way rates depending on the direction of persistence; see for example [55, 57]. However, in our model, we can easily put $c = 0$ and keep the motion of a biased random walker for $\epsilon \neq 0$.

We extend the above idea to the two-dimensional lattice, e.g. in figure 2. It is important that when the external field is zero $\epsilon = 0$ the hopping rates in the three other directions from the direction of persistence are just equal. We now put subscripts r, ℓ, u, d for the direction of persistence, indicating right, left, up or down respectively. We then denote $p = r, \ell, u, d$ for the persistence direction, and get the hopping rates

$$k_p(j, j + \hat{e}_x) = e^{\alpha_r} p, \quad k_p(j, j - \hat{e}_x) = e^{\beta_r} p, \quad k_p(j, j + \hat{e}_y) = e^{\gamma_r} p, \quad k_p(j, j - \hat{e}_y) = e^{\lambda_r} p,$$

with

$$\begin{align*}
\sinh \alpha_r &= \frac{c + \epsilon}{2}, \\
\sinh \beta_r &= -\frac{c + \epsilon}{2}, \\
\sinh \gamma_r &= \frac{c}{2}, \\
\sinh \lambda_r &= \frac{c}{2}, \\
\sinh \alpha_\ell &= \frac{-c + \epsilon}{2}, \\
\sinh \beta_\ell &= \frac{-c + \epsilon}{2}, \\
\sinh \gamma_\ell &= \frac{c}{2}, \\
\sinh \lambda_\ell &= \frac{c}{2}, \\
\sinh \alpha_u &= \frac{-c + \epsilon}{2}, \\
\sinh \beta_u &= \frac{-c + \epsilon}{2}, \\
\sinh \gamma_u &= \frac{c}{2}, \\
\sinh \lambda_u &= \frac{c}{2}, \\
\sinh \alpha_d &= \frac{-c + \epsilon}{2}, \\
\sinh \beta_d &= \frac{-c + \epsilon}{2}, \\
\sinh \gamma_d &= \frac{c}{2}, \\
\sinh \lambda_d &= \frac{c}{2}.
\end{align*}$$

explicitly in terms of the physical amplitudes c and ϵ. The above may seem complicated updating formulæ but we claim they are the physically correct ones for RTP in an external field on a two dimensional lattice.

Again the unit cell has sides of unit length, there are 10 rows and 10 columns of lattice sites, leading to an inter site distance $\delta_x = \delta_y = 0.1$. The walls are placed between lattice points prohibiting hopping over them. The asymmetric hooks consist of a barrier between columns 10 and 1 for the 5 bottom rows of the lattice and one in columns 5 to 10 between rows 5 and 6. The symmetric hooks, on the other hand, have one barrier between columns 5 and 6 for rows 1 to 5 and a second one above columns 3 to 8 between row 5 and 6. The other parameters used in the simulations are $\Delta t = 0.01$, $t_{\text{max}} = 500$, $N = 10000$ and $c = 0.5$ or 1 unless mentioned otherwise.

4. Results

The current characteristic gives the dependence of the stationary current on the external field ϵ, on the persistence time a^{-1} and on the coupling amplitude c.

Our findings are summarized in figure 4 for the continuum model and in figure 5 for the discrete case. To the left, we see the case for an asymmetric trap as in figure 1(a) and to the right for a spatially symmetric obstacle as in figure 1(b).
Figure 4. The current-field characteristic for different persistence values in the continuum with $c = 1$. (Left) Asymmetric hook as in figure 1(a). Note the current is negative for zero field, and still lower for higher persistence at low bias, while the current increases with the bias at larger field. (Right) Symmetric hook as in figure 1(b). The current depends less on the persistence at small field values, but still increases with persistence at large fields.

We find the following behavior (in the continuum and on discrete lattice):

(a) For small enough (including zero) external field and for asymmetric trapping there appears a current opposite the external field. In fact, for zero field and in a closed box with asymmetric trapping there appears a density gradient.

(b) Taking the external field opposite to the zero-field current, there exists a threshold value $\varepsilon_c > 0$ so that for $0 \leq \varepsilon < \varepsilon_c$ the current decreases with persistence time a^{-1}. If the field is exerted along the zero-field current direction, the current increases with persistence. At any rate, for $\varepsilon_c < \varepsilon$ the current increases with the persistence. This ε_c depends on the coupling amplitude c and occurs around $\varepsilon = O(c)$; see figure 6.

For example, compared to the passive case and with the external field opposite the zero-field current, the induced current in the active case is first smaller and later gets larger. The dying of the current is postponed longer for greater activity.

(c) The effect of persistence becomes more important for larger speed c. For fixed persistence, the current grows with c.

(d) For large external field ε (pushing against the obstacles), the current decays exponentially. The rate at which that decay takes place is function of the other parameters. A rather good fitting is found for $\varepsilon > c$ with

$$j(\varepsilon) = b_1 e^{-B_2 \varepsilon},$$

as can be seen in figure 7 for propulsion speeds $c \in [0.5, 1.3]$. The decay constant B_2 is approximately constant, $1.1 < B_2 < 1.2$ for $\varepsilon < 2$, and $1.2 < B_2 < 1.3$ for $\varepsilon > 2$ at $a \in [0.2, 0.6]$. Interestingly, a fitting which is mimicking the success of [4] where passive particles are pushed through a rugged channel, is not working. There, the

https://doi.org/10.1088/1742-5468/abe29e
Figure 5. The current-field characteristic for different persistence values for the asymmetric hook as in figure 1(a). $c = 1$ for (a) and (b) and $c = 0.5$ for (c) and (d). (Left) The current characteristic is similar to the continuum figure 4(a), except in the large field regime where persistence matters less. (Right) The current switches from decreasing to increasing with the persistence time a^{-1}, around some value ε_c.

decay rate is proportional to the inverse temperature. Applying here a fitting with a decay rate proportional to the *effective* inverse temperature $\sim a/c^2$,

$$j(\varepsilon) \propto e^{-B_2 \varepsilon a/c^2}$$

is not working so well at all, as B_2 in (12) would still strongly depend on the propulsion speed c at those large levels of persistence a^{-1}. The crossover to passive behavior occurs for $c/a \approx L$.

https://doi.org/10.1088/1742-5468/abe29e
5. Discussion and conclusions

We refer to our findings in the previous section, and we discuss how they are clarified from the effective model in section 2.

(a) Asymmetric traps yield a nonzero current in zero fields. The active system is clearly not in equilibrium even at $\varepsilon = 0$. The current generation (opposite to the trap) is similar to what happens in the case of the Parrondo paradox or for flashing ratchets where the nonequilibrium condition conspires with asymmetry [58–60]. That ratchet effect was also found recently in [45] for active particles and appears to be consistent with the analysis in [61] for RTPs in one dimension with an asymmetric potential. Here the point is foremost that particles starting inside the trap
Pushing run-and-tumble particles through a rugged channel

Figure 8. RTPs trapped in the right-hook of figure 2 typically leave the unit cell to the left, especially at high persistence (here: $a = 0.5$ and $c = 1$). To evaluate the effect of the starting position, the current (9) is only measured until $t_{\text{max}} = 10$.

Typically contribute to the current in the opposite direction; see figure 8. Particles in the trap tend to leave the unit cell to the left, as they need persistence in a direction opposite the wall, ending up in the left half of the cell. The analytical analogue is that $\mu(-c) > \mu(c)$ in (8) and as announced there.

(b) The initial decrease in the small-field current (including $j_{E=0}$) when the field is opposite the zero-field current is related to the previous remark, as for small field and higher persistence, there is a substantial contribution of negative flux due to particles that are trapped. For higher persistence, the particles may go for a longer time against the field and it thus takes a larger field to fully trap them. As $a \to \infty$ the particle becomes passive and $j_{E=0} = 0$.

(c) For large external field ε, the effective field $\varepsilon \pm c$ is always positive and trapping occurs finally inside the hook. The current goes down exponentially fast in the ratio ε/aL as the mobility $\mu(E)$ is exponentially small in E. That is globally similar to the passive case [4], except that the decay rate is not given by the effective temperature; cf figure 7.

What we see here in general is nonequilibrium response where a positive correlation between current and frenesy in the original dynamics produces a negative contribution; see e.g. [62]. From the results in the present paper we conclude that persistence in self-propulsion is able to postpone the trapping-effect. At large enough pumping, RTPs obtain an increased current for higher activity. Refinements where the tumbling rate depends on the neighborhood of an obstacle or on the direction of the external field [31] can be considered in further studies.

An important conclusion is that an implementation of these effects on a lattice is possible. It requires a specific choice of rates to have the master equation correspond to the one in the continuum. It implies that a coarse-grained approach to directional

https://doi.org/10.1088/1742-5468/abe29e
Pushing run-and-tumble particles through a rugged channel

locking and to the influence of trapping on the current characteristic is possible, as was also shown via the effective description in section 2.

Acknowledgments

B B is grateful for the opportunity of the student internship at the Institute for Theoretical Physics in Leuven, during which the present study was completed.

References

[1] Maes C 2020 Frenesy: time-symmetric dynamical activity in nonequilibria Phys. Rep. 850 1–33
[2] Maes C 2018 Non-Dissipative Effects in Nonequilibrium Systems (Springer Briefs in Complexity) (Berlin: Springer) (https://doi.org/10.1007/978-3-319-67780-4)
[3] Zia R K P, Praestgaard E L and Mouritsen O G 2002 Getting more from pushing less: negative specific heat and conductivity in nonequilibrium steady states Am. J. Phys. 70 384
[4] Baerts P, Basu U, Maes C and Safaverdi S 2013 The frenetic origin of negative differential response Phys. Rev. E 88 052109
[5] Jack R L, Kelsey D, Garrahan J P and Chandler D 2008 Negative differential mobility of weakly driven particles in models of glass formers Phys. Rev. E 78 011506
[6] Bénichou O, Illien P, Oshanin G, Sarracino A and Voituriez R 2014 Microscopic theory for negative differential mobility in crowded environments Phys. Rev. Lett. 113 268002
[7] Falasco G, Cometto T, Penocchio E and Esposito M 2018 Negative differential response in chemical reactions (arXiv:1812.11245v1)
[8] Reichhardt C and Reichhardt C J O 2020 Directional clogging and phase separation for DiskFlow through periodic and diluted obstacle arrays (arXiv:2009.11372v1)
[9] Sarracino A, Cecconi F, Puglisi A and Vulpiani A 2016 Nonlinear response of inertial tracers in steady laminar flows: differential and absolute negative mobility Phys. Rev. Lett. 117 174501
[10] Reichhardt C and Reichhardt C J O 2018 Clogging and depinning of ballistic active matter systems in disordered media Phys. Rev. E 97 052613
[11] Reichhardt C and Reichhardt C J O 2014 Active matter transport and jamming on disordered landscapes Phys. Rev. E 90 012701
[12] Alonso-Matilla R, Chakrabarti B and Saintillan D 2019 Transport and dispersion of active particles in periodic porous media Phys. Rev. Fluids 4 043101
[13] Pattanayak S, Das R, Kumar M and Mishra S 2019 Enhanced dynamics of active Brownian particles in periodic obstacle arrays and corrugated channels Eur. Phys. J. E 42 62
[14] Kreuter C, Siems U, Nicolab P, Leiderer P and Erbe A 2013 Transport phenomena and dynamics of externally and self-propelled colloids in confined geometry Eur. Phys. J. Spec. Top. 222 2023
[15] Ribeiro H E, Ferreira W P and Potiguar F Q 2020 Trapping and sorting of active matter in a periodic background potential Phys. Rev. E 101 032126
[16] Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Active Brownian particles Eur. Phys. J. Spec. Top. 202 1
[17] Bechinger C, Di Leonardo R, Lowen H, Reichhardt C, Volpe G and Volpe G 2016 Active particles in complex and crowded environments Rev. Mod. Phys. 88 045006
[18] Ramaswamy S 2017 Active matter J. Stat. Mech. 054002
[19] Fodor É and Cristina Marchetti M 2018 The statistical physics of active matter: from self-catalytic colloids to living cells Physica A 504 106
[20] Gompper G et al 2020 The 2020 motile active matter roadmap J. Phys.: Condens. Matter 32 193001
[21] Toner J, Tu Y and Ramaswamy S 2005 Hydrodynamics and phases of flocks Ann. Phys. 318 170
[22] Kumar N, Soni H, Ramaswamy S and Sood A K 2014 Flocking at a distance in active granular matter Nat. Commun. 5 4688
[23] Schwarz-Linek J, Valeriani C, Cacciuto A, Cates M E, Marenduzzo D, Morozov A N and Poon W C K 2012 Phase separation and rotor self-assembly in active particle suspensions Proc. Natl Acad. Sci. USA 109 4052
[24] Redner G S, Hagan M F and Bashar A 2013 Structure and dynamics of a phase-separating active colloidal fluid Phys. Rev. Lett. 110 055701

https://doi.org/10.1088/1742-5468/abe29e
Pushing run-and-tumble particles through a rugged channel

[25] Stenhammar J, Wittkowski R, Marenduzzo D and Cates M E 2015 Activity-induced phase separation and self-assembly in mixtures of active and passive particles Phys. Rev. Lett. 114 018301

[26] Cates M E and Tailleur J 2015 Motility-induced phase separation Annu. Rev. Condens. Matter Phys. 6 219

[27] Malakar K, Jemseena V, Kundu A, Vijay Kumar K, Sabhapandit S, Majumdar S N, Redner S and Dhar A 2018 Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension J. Stat. Mech. 043215

[28] Basu U, Majumdar S N, Rosso A and Schehr G 2018 Active Brownian motion in two dimensions Phys. Rev. E 98 062121

[29] Demaere T and Maes C 2018 Active processes in one dimension Phys. Rev. E 97 032604

[30] Codling E A, Plank M J and Benhamou S 2008 Random walk models in biology J. R. Soc. Interface. 5 813–34

[31] Berg H C and COH E 2004 Motion (Heidelberg: Springer)

[32] Berthier L and Kurchan J 2013 Non-equilibrium glass transitions in driven and active matter Nat. Phys. 9 310–4

[33] Chepizhko O and Peruani F 2015 Active particles in heterogeneous media display new physics Eur. Phys. J. Spec. Top. 224 1287–302

[34] Morin A, Desreumaux N, Causin J-B and Bartolo D 2017 Distortion and destruction of colloidal flocks in disordered environments Nat. Phys. 13 63–7

[35] Quint D A and Gopinathan A 2015 Topologically induced swarming phase transition on a 2D percolated lattice Phys. Biol. 12 046008

[36] Sándor C, Libál A, Reichhardt C and Olson Reichhardt C J 2017 Dynamic phases of active matter systems with quenched disorder Phys. Rev. E 95 032606

[37] Morin A, Lopes Cardozo D, Chikkadi V and Bartolo D 2017 Diffusion, subdiffusion, and localization of active colloids in random post lattices Phys. Rev. E 96 042611

[38] Zeitz M, Wolff K and Stark H 2017 Active Brownian particles moving in a random Lorentz gas Eur. Phys. J. E 40 23

[39] Bertrand T, Zhao Y, Bénichou O, Tailleur J and Voituriez R 2018 Optimized diffusion of run-and-tumble particles in crowded environments Phys. Rev. Lett. 120 198103

[40] Chepizhko O and Franosch T 2019 Ideal circle microswimmers in crowded media Soft Matter 15 452–61

[41] Bhattacharjee T and Datta S S 2019 Confinement and activity regulate bacterial motion in porous media Soft Matter 15 9920

[42] Jukaszeit T, Crozo O A and Bell S 2019 Diffusion of active particles in a complex environment: role of surface scattering Phys. Rev. E 100 012610

[43] Volpe G, Buttini G, Vogt D, Kümenner H-J and Bechinger C 2011 Microswimmers in patterned environments Soft Matter 7 8810–5

[44] Reichhardt C and Reichhardt C J O 2020 Directional locking effects for active matter particles coupled to a periodic substrate Phys. Rev. E 102 042616

[45] Reichhardt C J O and Reichhardt C 2017 Ratchet effects in active matter systems Annu. Rev. Condens. Matter Phys. 8 51

[46] Ge H, Qian M and Qian H 2012 Stochastic theory of nonequilibrium steady states. Part II: applications in chemical biophysics Phys. Rep. 510 87–118

[47] Dhar A, Kundu A, Majumdar S N, Sabhapandit S and Schehr G 2019 Run-and-tumble particle in one-dimensional confining potentials: steady-state, relaxation, and first-passage properties Phys. Rev. E 99 032132

[48] Tailleur J and Cates M E 2008 Statistical mechanics of interacting run-and-tumble bacteria Phys. Rev. Lett. 100 218103

[49] Sevilla F J, Arzola A V and Cital E P 2019 Stationary superstatistics distributions of trapped run-and-tumble particles Phys. Rev. E 99 021245

[50] Mallmin E, Blythe R A and Evans M R 2019 A comparison of dynamical fluctuations of biased diffusion and run-and-tumble dynamics in one dimension J. Phys. A: Math. Theor. 52 425002

[51] Palacci J, Cotrir-Rizomme C, Ybert C and Bocquet L 2010 Sedimentation and effective temperature of active colloidal suspensions Phys. Rev. Lett. 105 088304

[52] Enculescu M and Stark H 2011 Active colloidal suspensions exhibit polar order under gravity Phys. Rev. Lett. 107 058301

[53] Tailleur J and Cates M E 2009 Sedimentation, trapping, and rectification of dilute bacteria Europhys. Lett. 86 60002

[54] Szamel G 2014 Self-propelled particle in an external potential: existence of an effective temperature Phys. Rev. E 90 012111

[55] Pottier N 1996 Analytic study of the effect of persistence on a one-dimensional biased random walk Physica A 230 563–76

https://doi.org/10.1088/1742-5468/abe29e
Pushing run-and-tumble particles through a rugged channel

[56] Patlak C S 1953 Random walk with persistence and external bias Bull. Math. Biophys. 15 311–38
[57] Dandekar R, Chakraborti S and Rajesh R 2020 Hard core run and tumble particles on a one dimensional lattice (arXiv:2006.05980v1)
[58] Parrondo J M R 1998 Reversible ratchets as Brownian particles in an adiabatically changing periodic potential Phys. Rev. E 57 7297
[59] Hänggi P and Marchesoni F 2009 Artificial Brownian motors: controlling transport on the nanoscale Rev. Mod. Phys. 81 387–442
[60] Cubero D and Renzoni F 2016 Brownian Ratchets: From Statistical Physics to Bio and Nano-Motors (Cambridge: Cambridge University Press)
[61] Ben Dor Y, Kafri Y and Tailleur J 2018 Forces in dry active matter lecture notes from les Houches summer school on active matter and non-equilibrium statistical physics (arXiv:1811.08829v1)
[62] Maes C 2020 Response theory: a trajectory-based approach Front. Phys. 8 1–27