Espessura do Tecido Subcutâneo como Preditor Independente de Ruído em Imagem de TC Cardíaca

Subcutaneous Tissue Thickness is an Independent Predictor of Image Noise in Cardiac CT

Henrique Lane Staniak 1, Rodolfo Sharovsky 1, Alexandre Costa Pereira 2, Cláudio Campi de Castro 3, Isabela M. Benseñor 1,3, Paulo A. Lotufo 1,3, Márcio Sommer Bittencourt 1

Hospital Universitário - Universidade de São Paulo 1, São Paulo, SP; Hospital das Clínicas - Universidade de São Paulo 2, Faculdade de Medicina - Universidade de São Paulo 3, São Paulo, SP – Brasil

Resumo

Fundamento: Há poucos dados sobre a definição de parâmetros simples e robustos para predizer artefato de imagem em tomografia computadorizada (TC) cardíaca.

Objetivos: Avaliar o valor da simples medida da espessura do tecido subcutâneo (espessura pele-esterno) como preditor de artefato de imagem em TC cardíaca.

Métodos: O estudo avaliou 86 pacientes submetidos a angiotomografia computadorizada cardíaca (ATCC) com sincronização prospectiva com ECG e avaliação de escore de cálcio coronário com 120 kV e 150 mA. A qualidade da imagem foi medida objetivamente pelo artefato de imagem na aorta em ATCC, sendo ‘artefato baixo’ definido como aquele < 30 UH. Os diâmetros torácicos anteroposterior e laterolateral, o artefato de imagem na aorta e a espessura pele-esterno foram medidos como preditores de artefato em ATCC. A associação de preditores e artefato de imagem foi avaliada usando-se correlação de Pearson.

Resultados: A dose média de radiação foi 3,5 ± 1,5 mSv. O artefato de imagem média na ATCC foi de 36,3 ± 8,5 UH, sendo o artefato de imagem média fase sem contraste do exame de 17,7 ± 4,4 UH. Todos os preditores foram independentemente associados com artefato em ATCC. Os melhores preditores foram espessura pele-esterno, com correlação de 0,70 (p < 0,001), e artefato de imagem na fases em contraste, com correlação de 0,73 (p < 0,001). Ao avaliar a habilidade de predizer artefato de imagem baixo, as áreas sob a curva ROC para o artefato de imagem na fases em contraste e para a espessura pele-esterno foram 0,837 e 0,864, respectivamente.

Conclusão: Tanto espessura pele-esterno quanto artefato de escore de cálcio são preditores simples e precisos de artefato de imagem em ATCC. Tais parâmetros podem ser incorporados aos protocolos de TC padrão para ajustar adequadamente a exposição à radiação. (Arq Bras Cardiol. 2014; 102(1):86-92)

Palavras-chave: Esterno / efeitos de radiação; Lesões por radiações; Tomografia computadorizada; Artefatos.

Abstract

Background: Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist.

Objectives: To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT.

Methods: 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation.

Results: The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CTA was 36.3 ± 8.5 UH, and the mean image noise in non-contrast scan was 17.7 ± 4.4 UH. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively.

Conclusion: Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure. (Arq Bras Cardiol. 2014; 102(1):86-92)

Keywords: Sternum / radiation effects; Radiation injuries; Computed tomography; Artifacts.
Introdução

A angiotomografia computadorizada cardíaca (ATCC) é uma ferramenta útil e segura para avaliar as artérias coronárias e a estrutura cardíaca. Embora a ATCC seja segura, o uso de radiação representa um pequeno risco, o que vem causando preocupação, devido ao número crescente de exames médicos envolvendo radiação. Após exposição à radiação, pacientes jovens e mulheres apresentam maior risco de complicações em longo prazo.

A redução da exposição à radiação tem sido o objetivo de muitos avanços recentes em ATCC, como o uso de modulação da corrente do tubo, ATCC com sincronização prospectiva com ECG e novos modos de aquisição, assim como o ajuste de KV e mA usados durante a aquisição da imagem. Além disso, estudos mostraram que a combinação de técnicas e a exposição estimada com base em cálculos complexos são úteis para otimizar a exposição à radiação. Mais recentemente, o uso de técnicas de reconstrução iterativas tem sido proposto para uma possível economia da dose de radiação.

Embora eficiente, o uso inadequado ou excessivo de tais técnicas pode afetar a qualidade da imagem, resultando em scars limitados ou inadequados. O principal efeito adverso de reduzir a dose de radiação é o aumento de artefato de imagem causado pela diminuição do número de fótons que atingem os detectores.

A principal causa de aumento de artefato na ATCC é a presença das estruturas extracardíacas interpostas. Portanto, muitos protocolos baseiam-se em medidas associadas à constituição corporal dos pacientes, como índice de massa corporal (IMC), circunferência torácica e diâmetro torácico, para o ajuste dos parâmetros de radiação. Atualmente as diretrizes recomendam o uso do diâmetro anteroposterior (AP) e latero-lateral para a estimativa da dose de radiação, embora tal estratégia não tenha ainda sido validada ou comparada a outras técnicas.

Este estudo teve por objetivo avaliar a associação da IMC e dos diâmetros torácicos AP e laterolateral com a quantidade de artefato em imagens de ATCC. Além disso, levantou-se a hipótese de que a medida da espessura do tecido subcutâneo ao nível do esterno e o artefato em imagens sem contrastes se correlacionaram melhor com o artefato de imagem.

Métodos

O estudo arrolou 86 pacientes consecutivos submetidos a ATCC com sincronização prospectiva com ECG e avaliação do escore de cálcio com o mesmo potencial de tubo e corrente de tubo, seguindo-se o mesmo protocolo de injeção. Todas as ATCCs coronárias foram realizadas para avaliação da doença arterial coronária conhecida ou suspeita. Este estudo foi aprovado pela comissão de ética local institucional e todos os participantes assinaram o termo de consentimento livre e informado. As características dos pacientes e suas informações clínicas foram coletadas prospectivamente como parte de um banco de dados institucional.

Todos os pacientes com frequência cardíaca acima de 60 bpm receberam beta bloqueadores orais antes da aquisição de imagem. As ATCC foram realizadas com 64 canais multidetectores (Brilliance 64, Philips Healthcare, Best, Holanda). As imagens da fase sem contraste foram adquiridas com 120 kV e 30 mA. Depois, todos os pacientes foram também submetidos à avaliação do escore de cálcio potencial de tubo de 120 kV e corrente de tubo de 55 mA. A ATCC com realce por contraste foi realizada com colimação de 64 x 0,625 mm, tempo de rotação do gantry de 400 milissegundos, com corrente de tubo de 150 mA e potencial de tubo de 120 kV. A espessura do corte foi de 0,8 mm e o incremento de 0,4 mm. O contraste iodado (100 ml - Ultravist 370, Bayer, Alemanha) foi injetado com dupla cabeça (Medrad Inc., EUA) a uma velocidade de 6 ml/secundo, e seguido por injeção de 60 ml de solução salina na mesma velocidade, usando-se um calibre de 18 na veia antecubital. Monitoramento automático de bolus foi realizado com delimitação de uma região circular de interesse na aorta descendente, sendo a aquisição disparada quando o valor médio naquele região atingisse 150 unidades Hounsfield (UH). Imagem obtida a 75% intervalo R-R foi usada para reconstrução de imagem e análise das coronárias. As imagens foram reconstruídas usando-se projeção retrógrada filtrada e kernel padrão.

Fatores relacionados às características do paciente e aos protocolos de injeção que afetam o contraste da aorta foram considerados. O estudo arrolou pacientes com frequências cardíacas semelhantes, variando de 50 bpm a 60 bpm, sem história de insuficiência cardíaca. O mesmo protocolo de injeção foi usado para toda a amostra, com total de 100 ml de contraste iodado a 6 ml/secundo, seguido de 60 ml de solução salina na mesma velocidade, usando-se calibre 18 na veia antecubital. O artefato de imagem na tomografia computadorizada (TC) foi definido como o desvio padrão medido com a região de interesse de 1 cm² na aorta ascendente (Figura 1A). O diâmetro AP do tórax foi medido na imagem transversal axial digital do tórax com uma linha passando pelo meio do coração (Figura 1B). A espessura pele-esterno foi a medida da pele ao esterno no nível intermamário médio (Figura 1C), e o diâmetro laterolateral do tórax foi tomado no topograma de pele ao nível do hemidiafragma esquerdo (Figura 1D). O artefato de imagem na aorta foi medido como unidades de desvio padrão em região de interesse de 1 cm² no escore de cálcio prospectivo, usando-se um potencial de tubo fixo de 120 kV e corrente tubo de 55 mA (Figura 1E). O IMC foi calculado como o peso em quilogramas dividido pelo quadrado da altura em metros.

Análise estatística

Todas as variáveis contínuas foram avaliadas quanto à normalidade e apresentadas como média ± desvio padrão quando significativos. Os dados não apresentaram normalidade e foram transformados. A relação entre artefato de imagem na TC cardíaca e IMC, diâmetro AP do tórax, espessura pele-esterno, diâmetro laterolateral do tórax e artefato da aorta na imagem do escore de cálcio foi avaliada usando-se...
a correlação de Pearson e regressão linear. Para comparar as correlações de Pearson, utilizou-se a aproximação de Fisher. Modelos de regressão linear multivariada foram construídos para identificar a melhor combinação de preditores para estimar o artefato de ATCC. Para definir o melhor modelo de predição, o mais baixo valor de R² ajustado foi usado. Além disso, o artefato de imagem foi dicotomizada como ‘artefato baixo’, quando o DP < 30 UH, e ‘artefato alto’, quando o DP > 30, como em relatos anteriores\(^{19,20}\). A análise da curva receiver-operating characteristic (ROC) para predizer imagens de ‘artefato baixo’ foi realizada para cada preditor. Um valor de p inferior a 0,05 foi considerado significativo. Aplicou-se o ajuste de Bonferroni para múltiplas comparações. O programa Stata, versão 12 (Stata Corp), foi usado para todas as análises e estatísticas.

Resultados

A Tabela 1 apresenta as características dos pacientes. A dose média total de radiação, incluindo ATCC e escore de
cálculo, foi de 3,5 ± 1,5 mSv. O artefato de imagem médio na TC foi de 36,3 ± 8,5 UH, sendo o artefato de imagem médio no scan em contraste de 17,7 ± 4,4 UH.

Todos os parâmetros individuais mostraram-se significativamente associados com o artefato na ATCC. A Tabela 2 apresenta os valores de correlação de Pearson, e a Figura 2 mostra a matriz de correlação. Na comparação por pares, o artefato de imagem do escore de cálcio, o IMC e a espessura pele-esterno apresentaram correlação mais significativa com o artefato de ATCC do que qualquer dos diâmetros do tórax (p < 0,001 para todas as comparações). A correlação do artefato do escore de cálcio com o desfecho mostrou tendência a ser mais significativa do que o IMC (p = 0,05), enquanto que as correlações de artefato do escore de cálcio e espessura pele-esterno (p = 0,16), assim como de espessura pele-esterno e IMC (p = 0,13), não diferiram significativamente. Na análise multivariada, o melhor modelo preditivo incluiu a associação de artefato do escore de cálcio e espessura pele-esterno, com R² ajustado de 0,61 (p < 0,0001).

De maneira semelhante, o melhor preditor independente de ‘baixo artefato’ foi a espessura pele-esterno, com área sob a curva ROC (AUC) de 0,86 [intervalo de confiança (IC) 95%: 0,79 – 0,94] (Figura 3), seguida de artefato de escore de cálcio (AUC de 0,84; IC 95%: 0,75 – 0,93), IMC (AUC de 0,80; IC 95%: 0,69 – 0,91), diâmetro AP do tórax (AUC de 0,62; IC 95%: 0,49 – 0,75), e diâmetro laterolateral do tórax (AUC de 0,59; IC 95%: 0,47 – 0,73) (Figura 2).

Discussão

O presente estudo avaliou dois novos parâmetros (artefato do escore de cálcio estimado e espessura pele-esterno) para melhor prever o artefato de imagem na ATCC com realce por contraste versus os parâmetros atualmente recomendados de diâmetros torácicos, embora os resultados das novas medidas em comparação ao IMC não tenham atingido significância estatística. Nosso estudo demonstrou que ambos os parâmetros são melhores preditores de artefato de imagem do que as medidas de diâmetro torácico atualmente recomendadas. Além disso, os dois parâmetros melhoraram a previsão de artefato de imagem quando associados com o atual melhor preditor (IMC). Por fim, eles também apresentaram o melhor desempenho para discriminar ATCCs com ‘baixo artefato’, definido como um DP < 30 UH.

Embora o melhor modelo inclua os dois parâmetros, o aumento no R² ao se combinar esses dois parâmetros é pequeno, e acreditamos que um modelo mais parcimonioso incluindo apenas uma das duas variáveis ou IMC em um modelo univariado seria mais adequado para os ajustes de exposição rotineira à radiação.

A identificação de um único parâmetro como melhor preditor de artefato de imagem tem sido o objetivo de publicações recentes17,20,21. Tais estudos enfocaram a medida do tecido subcutâneo como preditor de artefato de imagem. Gao e cols.20 usaram uma medida de atenuação de raio X de tórax para as imagens da fase sem contraste de pacientes
submetidos a ATCC. Seus dados sugerem que tal medida seja melhor preditor de artefato de imagem de ATCC do que IMC ou peso. No estudo de Schuhbaeck e cols.21 utilizou-se uma medida mais avançada de toda a parede torácica ao nível da raiz da aorta, tendo os autores concluído ser tal medida significativamente melhor do que os outros preditores, incluindo IMC. Por fim, Ghoshhajra e cols.17 mediram a área torácica para os mesmos propósitos. A principal limitação de tais estudos foi a inclusão de diferentes protocolos de aquisição com diferentes exposições à radiação. Como esses parâmetros foram definidos tendo por base as características dos pacientes, os dois estudos devem ter superestimado a associação das medidas com o artefato final da ATCC.

Nosso estudo restringiu a análise a pacientes semelhantes submetidos ao mesmo protocolo de aquisição (mesmos kV, mA, taxa de contraste e modo de aquisição). Na nossa amostra,
houve exclusão dos pacientes com insuficiência cardíaca, sendo a aquisição de imagem realizada com uma frequência cardíaca semelhante (variação, 50-60 bpm), ajustando-se os fatores que poderiam afetar o realce por contraste da aorta. A principal razão para essa escolha é que kV, mA e modo de aquisição são, em geral, escolhidos com base no peso, IMC e frequência cardíaca dos pacientes. Com tal restrição, evitamos a associação espúria entre preditores e desfecho, devido ao viés de indicação de selecionar os parâmetros mais apropriados antes da aquisição de imagem com base nas características dos pacientes.

Estudos prévios demonstraram que parâmetros baseados na imagem são mais precisos do que outras características dos pacientes, como IMC. Nosso estudo também mostrou que a espessura pele-esterno e a medida direta do artefato em imagens sem contraste corroboram esses dados anteriores. Essas medidas simples levam menos de um minuto para serem realizadas como parte de um fluxo de aquisição de ATCC usual sem radiação ou custo adicional.

Como demonstrado por Ghoshhajra e cols.¹⁷, esses tipos de medidas levam a melhor uso da radiação. Não apenas ocorre redução da exposição à radiação na maioria dos casos, mas medidas precisas podem levar ao uso de doses maiores em certos casos, o que deveria ser o objetivo do exame de imagem cardíaca²¹. Entre as várias técnicas de redução de radiação, a introdução recente da seleção do potencial de tubo com base em atenuação automatizada permitiu uma redução de 25% na exposição à radiação²¹. Esse método é usado em atenuação de imagem como parte de um algoritmo automático para definir exposição à radiação. A espessura pele-esterno pode ser vista como uma versão simplificada do conceito de atenuação torácica como preditor de artefato de imagem. No entanto, informação adicional se faz necessária para definir os ajustes apropriados em mA e kV das medidas atuais.

Nosso estudo, entretanto, deve ser considerado no contexto de seu desenho. Em primeiro lugar, a fim de permitir uma correlação precisa entre as medidas dos pacientes e a estimativa de artefato, apenas um protocolo fixo foi usado. Conseguentemente, a definição de ajustes adequados de mA e kV dessas medidas não pode ser avaliada nos dados atuais. Em segundo lugar, ainda que simples, tais medidas acrescentam um passo na aquisição de imagem. Em terceiro, isso só pode ser usado em pacientes submetidos a um exame em contraste antes da TC cardíaca. Em casos em que não se realiza o exame sem contraste, o artefato sem contraste não pode ser calculado, mas a espessura pele-esterno ainda pode ser medida nas imagens da fase com contraste.

Conclusão

Tanto a espessura pele-esterno quanto o artefato do escore de cálcio são preditores simples e precisos de artefato de imagem de ATCC. Tais parâmetros podem ser incorporados a protocolos de TC padrão para adequadamente ajustar a exposição à radiação.
Contribuição dos autores

Conceção e desenho da pesquisa: Staniak HL, Sharovsky R, Bensenor I, Lotufo PA, Bittencourt MS; Obtenção de dados: Staniak HL, Sharovsky R, Bittencourt MS; Análise e interpretação dos dados: Staniak HL, Sharovsky R, Pereira AC, Bittencourt MS; Análise estatística: Staniak HL, Sharovsky R, Pereira AC, Bensenor I, Lotufo PA, Bittencourt MS; Redação do manuscrito: Staniak HL, Bittencourt MS; Revisão crítica do manuscrito quanto ao conteúdo intelectual: Staniak HL, Sharovsky R, Pereira AC, Castro CC, Bensenor I, Lotufo PA, Bittencourt MS.

Referências

1. Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, et al. ACCF/ AHA/ASE/ASNC/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography: A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56(22):1864-94.

2. Brenner DJ, Hall EJ. Computed tomography-an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277-84.

3. Gerber TC, Carr JJ, Arai AE, Dixon RL, Ferrari VA, Gomes AS, et al. Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation. 2009;119(7):1056-65.

4. Einstein AJ, Henschel MJ, Rajapakulan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA. 2007;298(3):317-23.

5. Hausleiter J, Meyer T, Herrmann F, Hadamitzky M, Körbs M, Gerber TC, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301(5):500-7.

6. Hausleiter J, Meyer TS, Martuscelli E, Spagnoletti P, Yamamoto H, Carrascosa P, et al. Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography: the multicenter, multivendor, randomized PROTECTION-III study. JACC Cardiovasc Imaging. 2012;5(5):484-93.

7. Qin J, Liu Y, Fang Y, Zhu JM, Wu Z, Zhu KS, et al. 320-detector CT coronary angiography with prospective and retrospective electrocardiogram gating in a single heartbeat: comparison of image quality and radiation dose. Br J Radiol. 2012;85(1015):945-51.

8. Bischoff B, Hei H, Meyer T, Hadamitzky M, Martinoff S, Schomig A, et al. Impact of a reduced tube voltage on CT angiography and radiation dose: results of the PROTECTION I study. JACC Cardiovasc Imaging. 2009;2(8):940-6.

9. Imaik K, Ikeda M, Kawaura C, Aoyama T, Enchi Y, Yamauchi M. Dose reduction and image quality in CT angiography for cerebral aneurysm with various tube potentials and current settings. Br J Radiol. 2012;85(1017):e673-81.

10. Stark G, Lött C, Cederblad Å, Forsell-Aronsson E, Sjöström L, Alpsten M. A method to obtain the same levels of CT image noise for patients of various sizes, to minimize radiation dose. Br J Radiol. 2002;75(890):140-50.

11. Smedby Ö, Fredrikson M, De Greer J, Borgen L, Sandberg M. Quantifying the potential for dose reduction with visual grading regression. Br J Radiol. 2013;86(1021):20130784.

12. Bittencourt M, Schmidt B, Seltmann M, Muschiol G, Ropers D, Daniel W, et al. Iterative reconstruction in image space (IRIS) in cardiac computed tomography: initial experience. Int J Cardiovasc Imaging. 2011;27(7):1081-7.

13. Desai GS, Thabet A, Elias AV, Sahani DV. Comparative assessment of three image reconstruction techniques for image quality and radiation dose in patients undergoing abdominopelvic multidetector CT examinations. Br J Radiol. 2013;86(1021):20120161.

14. Tatsumi F, Matsu M, Nakai G, Inada Y, Kanazawa S, Takeda Y, et al. The effect of adaptive iterative dose reduction on image quality in 320-detector row CT coronary angiography. Br J Radiol. 2012;85(1016):e378-82.

15. Qi LP, Li Y, Tang L, Li XL, Li XT, Cui Y, et al. Analysis of evaluation dose and image quality in chest CT using adaptive statistical iterative reconstruction with the same group of patients. Br J Radiol. 2012;85(1018):e906-11.

16. Yoshimura N, Sakur A, Kubo T, Lin PJ, Clouse ME, Hatah H. Correlation between image noise and body weight in coronary CTA with 16-row MDCT. Acad Radiol. 2006;13(3):324-8.

17. Ghoshhajra BB, Engel LC, Major GP, Verdini D, Siddhu M, Karolyi M, et al. Direct chest area measurement: a potential anthropometric replacement for BMI to inform cardiac CT dose parameters? J Cardiovasc Comput Tomogr. 2011;5(4):240-6.

18. Voros S, Rivera JJ, Berman DS, Blankstein R, Budolfi MJ, Cury RC, et al; Society for Atherosclerosis Imaging and Prevention Cardiovascular Computed Tomography and Prevention Councils; Society of Cardiovascular Computed Tomography. Guideline for minimizing radiation exposure during acquisition of coronary artery calcium scans with the use of multidetector computed tomography: a report by the Society for Atherosclerosis Imaging and Prevention Tomographic Imaging and Prevention Councils in collaboration with the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr. 2011;5(2):75-83.

19. Ghafourian K, Younes D, Simprini LA, Weigold WG, Weissman G, Taylor AJ. Scout view X-ray attenuation versus weight-based selection of reduced peak tube voltage in cardiac CT angiography. JACC Cardiovasc Imaging. 2012;5(6):589-95.

20. Gao J, J Li, Earls J, Li T, Wang Q, Dai R, Individualized tube current selection for 64-row cardiac CTA based on analysis of the scout view. Eur Radiol. 2011;79(2):266-71.

21. Schuhbaeck A, Schafer M, Marwan M, Gauss S, Muschiol G, Lell M, et al. Patient-specific predictors of image noise in coronary CT angiography. J Cardiovasc Comput Tomogr. 2013;7(1):39-45.

22. Arq Bras Cardiol. 2014; 102(1):86-92

Potencial Conflito de Interesses

Declaro não haver conflito de interesses pertinentes.

Fontes de Financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação Acadêmica

Não há vinculação deste estudo a programas de pós-graduação.