ABSTRACT
The genus *Himatanthus* Wild. ex Schult. (Apocynaceae) includes about 13 species and five subspecies widely distributed in South America, especially Brazil. The phytochemical reports on this genus have revealed mainly triterpenes and iridoids. The plants are traditionally used as anthelmintic, antitumor, and antiinflammatory agents. The most used parts of the plant are its bark, leaves, and latex. This review emphasizes the phytochemical constituents and medicinal properties, which may help in future research. The research was conducted with data obtained from books about medicinal plants, theses, dissertations, and articles in refereed journals.

Key words: Biological effects, botanical, ethnopharmacology, folk medicine, *Himatanthus*, phytochemistry

INTRODUCTION
The Apocynaceae family includes approximately 550 genera and 3700–5100 species distributed in all continents except Antarctica. It is a rich source of secondary metabolites, because of which many of the genera belonging to it, such as *Rauwolfia*, *Catharanthus*, *Allamanda*, *Strophantus*, and *Himatanthus*, are used on a large scale for medicinal use by small communities and/or pharmaceutical industry.[1]

In this review, we will be focused on the folk medicine uses, biological effects, and phytochemistry of the genus *Himatanthus* Wild. Ex Schult., in order to provide a basis for several different research areas, such as the botanic, pharmaceutical, medical, and chemical fields.

MATERIALS AND METHODS
The method used for this study was based on bibliographical research into books about medicinal plants, theses, dissertations, and articles in refereed journals. Presentations at conferences and symposia were not considered. We performed extensive research in the Periodicals Portal of Capes (Coordination for the Improvement of Higher Education Personnel), which has several databases such as Chemical Abstracts, PubMed, Web of Science and Science Direct (consultation period: February to May 2014). The key word used in the research was *Himatanthus*; information on the plant parts used, the uses in folk medicine, the biological activities, and the chemical constituents was collected.

Data were compiled and organized into a table [Table 1], and the *Himatanthus* species have been arranged in alphabetical order.

RESULTS AND DISCUSSIONS
The genus *Himatanthus* Wild. Ex Schult., initially included in the genus *Plumeria*, has large bracts involving the floral buttons, determinants for the separation of genus. The presence of these bracts has inspired the naming of this genus, which means “flower robe.”[16]

It encompasses 13 species: *H. articulatus* (Vahl) Woodson, *H. attenuatus* (Benth.) Woodson, *H. bracteatus* (A.DC.) Woodson, *H. dracicus* (Mart.) Plumel, *H. fallax* (Muell. Arg.) Plumel, *H. lancifolius* (Muell. Arg.) Woodson, *H. obovatus* (Muell. Arg.) Woodson, *H. phagoedanicus* (Mart.) Woodson, *H. semilunatus* Markgraf, *H. speciosus* (Muell. Arg.) Plumel, *H. stenophyllus* Plumel, *H. sucuba* (Spruce) Woodson, and *H. tarapotensis* (Schumann ex Markgraf) Plumel.[22,60] There are also five varieties of these species: *H. bracteatus* var. *bracteatus*, *H. bracteatus* var. *revolutus*, *H. obovatus* var. *obovatus*, *H. obovatus* var. *puberulus*, and *H. obovatus* var. *velutinus*. [22,60] They all occur in Brazil and some other countries in South and Central America.[22,60]

From among the 13 species of *Himatanthus*, four did not have any research records concerning their chemical composition and medicinal properties: *H. attenuatus*, *H. semilunatus*, *H. speciosus*, and *H. tarapotensis*. The research results with the other species are summarized in Table 1.

The *H. bracteatus*, *H. fallax*, and *H. stenophyllus* species have only reports of chemical composition studies, and the presence of the iridoid plumieride in the bark of these species is common.[12,21] This substance and the isopluvieride, generally, are present in the bark, latex, leaves, and/or roots of the species of *Himatanthus*.[2,10,21,23,36,41,59] This kind of spiro lactone iridoid is not commonly found in nature. Some studies revealed that plumieride exhibits antimicrobial[41] and antioxidant effects,[62] arrests spermatogenesis in male rats without noticeable side effects, and presents cytotoxicity.[14] The *H. articulatus*, *H. dracicus*, *H. lancifolius*, *H. obovatus*, *H. phagoedanicus*, and *H. sucuba* species presented chemical and biological studies, and in general the barks are the most studied, followed by the leaves.

Although the presence of alkaloids in the barks of *H. articulatus* is reported,[2] only from the barks of *H. lancifolius* were they isolated and identified,[24,25]...
Table 1: List of *Himatanthus* species and plant parts used, folk medicine uses, biological properties, and chemical constituents

Species	Plant parts used	Folk medicine uses	Biological properties	Chemical constituents	References
H. articulatus	Latex	Antifungal, antibacterial, antiulcerogenic, antitumor, antiinflammatory, analgesic, antisyphilitic, antimalarial, tonic, aphrodisiac	Inhibits *Candida albicans*; antigenotoxic effect (protective against ADN damage induced by hydrogen peroxide)	α-amyrin cinnamate and β-amyrin acetate, lupeol, lupeol cinnamate, cycloartenol	[2-9]
	Bark	Vermifuge, laxative, antitussive, tonic, antisyphilitic, antiinflammatory, trypanocidal, leishmanicidal	Methanol extract inhibits *Bacillus subtilis*; Cytotoxic effect (antiproliferative activity against NCI-H460, HT-29, MCF-7, RXF-393, and OVCAR-3 cells); trypanocidal effect (*Trypanosoma cruzi*), leishmanicidal (*Leishmania donovani*)	Saponins, alkaloids, flavonoids, tannins. lupeol acetate, lupeol cinnamate, stigmasterol, sitosterol, plumericin, 1β-O-β-D-glucopyranosylplumieric acid, plumeride-1β-O-β-D-glucopyranosyl, isopluumericin, methyl-myo-inositol Ursolic acid	
	Leaf	Vermifuge, laxative, antitussive, tonic, antiinflammatory, analgesic, antitumor, trypanocidal, leishmanicidal	Methanol extract inhibits *Staphylococcus aureus* and *B. subtilis*; trypanocidal effect (*T. cruzi*), leishmanicidal (*Leishmania donovani*)	Ursolic acid	
H. bracteatus	Latex	-	-	-	[10]
	Bark	-	-	-	
	Leaf	-	-	-	
H. drasticus	Latex	Antitumor, gastric and intestinal disorders, worms, arthritis, irregular menstruation, female infertility, rheumatism, bruises, herpes	Antitumor (induced by ethanol and indomethacin); immunomodulator; antitumor activity of latex proteins (sarcoma 180 and Walker 256 carcinosarcoma); analgesic and antiinflammatory	Lupeol cinnamate, lupeol acetate, α-amyrin cinnamate, α-amyrin acetate, β-amyrin, plumieride, isopluumericid, protopluumericin A, cafeoilplumieride, acid derivative of 3-methoxy-3,4-dihydroplumieride	[1-11,20]
	Bark	Antitumor, gastric and intestinal disorders, worms, arthritis	Cytotoxic against *Artemia salina*; antinociceptive	-	
	Leaf	Antitumor, gastric and intestinal disorders, worms, arthritis	Methanol extract with antitumor activity and low toxicity	-	
	Root	Purgative and vermifuge	-	-	
H. fallax	Bark	-	-	-	[21]
H. lancifolius	Latex	Skin diseases, asthma, syphilis, stimulating uterine contractions, assist conception, menstrual regulation, anthelmintic and febrifuge; constipation; if used in excess can cause menstrual cramps and gastrointestinal disorders; and children, diarrhea and dehydration	Alkaloidal fraction has antioxidant, cytotoxic action (tumor cells); antimicrobial, antulcer, antispasmodic, gastroprotective, antiinflammatory, immunomodulatory; inhibits acetylcholinesterase, inhibits *S. aureus* including MRSA strains, *Staphylococcus epidermidis*, *Entencoccus faecalis*, *Escherichia coli*, *Pantoea agglomerans*, *Acinetobacter baumannii*, and *S. aureus* canine	Uleine, yohimbine, epi-uleine, ajmaline, and demethoxyaspidospermine (indole alkaloids); sitosterol; glycosyplumieride	[22-35]
	Bark	Febrifuge, stimulating menstruation, abortive	Alkaloidal fraction has antioxidant, cytotoxic action (tumor cells); antimicrobial, antulcer, antispasmodic, gastroprotective, antiinflammatory, immunomodulatory; inhibits acetylcholinesterase, inhibits *S. aureus* including MRSA strains, *Staphylococcus epidermidis*, *Entencoccus faecalis*, *Escherichia coli*, *Pantoea agglomerans*, *Acinetobacter baumannii*, and *S. aureus* canine	Uleine, yohimbine, epi-uleine, ajmaline, and demethoxyaspidospermine (indole alkaloids); sitosterol; glycosyplumieride	
	Leaf	Galactogogues	-	-	[1,5,22, 36,37]
	Root	Disoders of the uterus and ovaries	-	-	
H. obovatus	Latex	Treatment of gastric ulcers	-	-	
Table 1: Contd...

Species	Plant parts used	Folk medicine uses	Biological properties	Chemical constituents	References
Bark	-	Extract in ethyl acetate has no action against *Aspergillus fumigatus*, *Candida albicans*, *Cryptococcus neoformans*; inhibits in vitro replication of human peripheral blood lymphocytes stimulated by phytohemagglutinin	Lupeol acetate, α-amyrin cinnamate, α-amyrin acetate, β-amyrin; plumieride and isoplumieride		
Leaf	Treatment of tumors; depurative for the treatment of high pressure, skin blemishes, pimples and rashes	Extract in ethyl acetate has no action against *Aspergillus fumigatus*, *Candida albicans*, *Cryptococcus neoformans*; inhibits in vitro replication of human peripheral blood lymphocytes stimulated by phytohemagglutinin	Isoquercitrin; lignans: pinoresinol,isoriciresinol, hydroxyprosoiresinol, lariciresinol and olivil; norisoprenoids: blumenol C, blumenol A; iridoid: plumieride; mixture of terpenes: lupeol acetate, α-amyrin and β-amyrin acetate, germanicol, stigmasterol, sitosterol, campesterol; glycolit inositol (after acetylation of the crude ethanolic extract)		
Wood	-	Extract in ethyl acetate has no action against *A. fumigatus*, *C. albicans*, *C. neoformans*	-		
Root	Stimulating menstruation, purgative and febrifuge	Leishmanicidal (*L. donovani*); extract in ethyl acetate has no action against *A. fumigatus*, *C. albicans*, *C. neoformans*	Plumericin, isoplumericin, fulvoplumierin		[31,38-40]
H. phagedaenicus	Latex	Anthelmintic, herpetic diseases, ulcers, psoriasis, and warts	-		
Bark	Cathartic, depurative, anthelmintic	Spasmogenic action	Amyrin acetate and lupeol acetate; sitosterol; iridoids plumericin, allamandin, isoplumericin, plumieride; sucrose	3-β-O-acetyl-12-eno, o 3-β-O-acetyl-olean-12-eno, 3-β-O-acetyl-lupeol, plumericin, allamandin, isoplumericin, glucosyl-octadecyl-plumieride coumarate	
Wood	-	Inhibition of diuresis in the rat induced water drinking, increased blood glucose levels in alloxan-diabetic rats, increased pain induced by acetic acid in mice; spasmogenic action	-		
H. stenophyllus	Latex	Anthelmintic, skin disorders, especially in relieving the itch; antitumor; antifungal, antianemic, treatment of gastritis and arthritis	-		[10]
Leaf	-	-	-		
H. sucuuba	Latex	Anthelmintic, skin disorders, especially in relieving the itch; antitumor; antifungal, antianemic, treatment of gastritis and arthritis	Selective cytotoxic; antimicrobial; analgesic and antiinflammatory; potent leishmanicidal activity against intracellular amastigotes of *Leishmania amazonensis*; immunoregulatory	Cis-polyisoprene; Na, Al, K, Mn, Fe, Se, Ti, V, Cr, Co, Ni, Cu, Zn, Ba, Zr, Th, Pb, Ca (354 μg/g), Mg (250 μg/g); xylose, arabinose, glucose, galactose; glutamic acid; myo-inositol; gallic acid; flavonoids myricetin and quercitin, catechol; fulvoplumierin, plumericin, isoplumericin, plumeride, isoplumericin, 15-desmethylophumieride acid, 15-demethylplumericin; α - and β-amyрин cinnamates, α- and β-amyрин acetates, lupeol cinematone, and lupeol acetate	[8,41-58]
Bark	Wound healing, antitumor, antiarthritic, anthelmintic, laxative, and hallucinogen; antiluercerogenic, aphrodisiac; analgesic, antitussive; treatment of boils, edemas	Antimicrobial, cytotoxic, analgesic, antiinflammatory; selective inhibitor of monoamine oxidase B enzyme; healing, antibacterial against *Clostridium histolyticum* and *Bacteroides fragilis*; low reproductive and teratogenic toxicity in rats; immunoregulatory; action on blood pressure and smooth muscle; capillary permeability; Antitumor in different cell lines	Plumericinoid C; allamandin, fulvoplumierin, plumericin and plumericin; plumeride, isoplumericin, 15-desmethylophumieride acid; confluentic acid and 2’-O-methylperlatolic acid; vanillic acid, p-coumaric acid, 4-hydroxy-3-methoxybenzoic acid and 4-hydroxybenzoic acid (phenolic compounds); α- and β-amyрин cinnamates, lupeol cinematone, lupeol acetate, lupeol β-phenyl-propionate	Plumericin, isoplumericin, plumeride and isoplumericin; α- and β-amyрин cinnamates, α- and β-amyрин acetates, lupeol cinematone and lupeol acetate	
Leaf	Constipation, antitumor, antifungal, antianemic, anthelmintic, and in the treatment of gastritis and arthritis	Cytotoxic; mild analgesic activity in the abdominal contractions test			
these are indole and have antimicrobial, gastroprotective, antiinflammatory, and antioxidant properties and showing cytotoxic activity against tumor cells.[26–30] However, there are no data on the ethnomedical use of the plant as an antitumor agent.[23,30,31]

H. articulatus latex is popular as an antifungal and antitumor agent, these effects evidenced by biological studies.[4] Their bark showed cytotoxic and trypanocidal and leishmanicidal effects, also reported in folk medicine.[2,3,6] Leishmaniasis is a parasitic disease responsible for considerable mortality and morbidity, affecting many people every year.[4] *Leishmania donovani* is the causative agent of visceral leishmaniasis, which is fatal in the absence of treatment.[4] Its various side effects and resistance to available drugs, in addition to the increase in new cases, have led to an urgent need for new therapeutic agents. This activity was also determined in *H. articulatus* leaves, *H. obovatus* roots, and *H. sucuuba* latex,[4,34,36] which are certainly promising sources of treatment.

There are studies of *H. dracicus* latex evaluating its antulcerogenic, antitumor, analgesic, and antiinflammatory activities, which somehow justify their popular uses in the treatment of cancer, gastric disorders, rheumatism, and bruises.[1,11–18] *H. sucuuba* is the most studied species, with a record of chemical composition of the latex, bark, leaves, roots and leaves, and the presence of triterpene amyrin cinnaamate.[41,43–46] Latex, bark, and leaves have antitumor action, justifying the popular use for the same purpose.[41,46–50] The latex and bark showed antimicrobial and analgesic effects, which are reasons for some popular uses of the plant: In treatment of arthritis, boils, and edema.[41,46,48–50]

Biological studies on *H. obovatus* roots have no relation with the ethnobotanical information about the plant.[36] However, the popular use of the leaves as antitumor agent[36] can be justified by the presence of iridoids and triterpene esters.

The triterpenoids are considered promising anticancer drugs due to their diverse pharmacological activities, including antiangiogenic, antiinflammatory, and antioxidant effects and the ability to increase cell differentiation.[44] These compounds, along with iridoids, are certainly responsible for most of the plant's medicinal properties reported in both folk medicine and biological studies.

CONCLUSION

Among the nine species studied, six species were evaluated chemically and biologically. The most studied species was *H. sucuuba*.

In general, the species are traditionally used as an anthelmintic, antitumor, and antiinflammatory agent. There were no evaluation studies of anthelmintic activity for any species of the genus; however, there are several studies evaluating antitumor and antiinflammatory activities.

Regarding the chemical composition, the genus is distinguished by the presence of triterpene esters and iridoids, predominantly in the bark and leaves. These compounds exhibit valuable pharmacological properties such as antimicrobial, antioxidant, antiinflammatory, and antitumor properties, which warrant further exploration.

The chemical and pharmacological data presented in this study should inspire further study of the species of *Himatanthus* for future use in therapies, including treatment of leishmaniasis.

Table 1: Contd...

Species	Plant parts used	Folk medicine uses	Biological properties	Chemical constituents	References
Root	-	-	Antimicrobial	Plumericin, isoplumericin; β-dihydroplumericin lupeol, β-amyrin cinnaamate, lupeol cinnaamate, lupeol acetate; allamandin β-amyrin cinnaamate, germanicano, myo-inositol	
Flower	-	-	-	-	

Information not found in the literature

Acknowledgment

We have not received substantial contributions from noncontributors, and no contributor has been omitted.

Financial support and sponsorship

Nil.

Conflicts of interest

There is no conflicts of interest with this article.

REFERENCES

1. Moragas CJ. Study of the Genus Himatanthus: Plant Anatomy, Phytochemical, Pharmacological and Biotransformation. PhD Thesis. Brasil: Universidade Federal do Rio de Janeiro; 2006. p. 287.
2. Barreto AS, Carvalho MG, Nery IA, Gonzaga L, Kaplan MA. Chemical constituents from *Himatanthus articulatus*. J Braz Chem Soc 1998;9:430-4.
3. Rebouças Soide O, Givrich I, Dos Santos MS, Rodrigues P, Gomes MD, de Oliveira SQ, et al. Antiproliferative effect of a traditional remedy, *Himatanthus articulatus* bark, on human cancer cell lines. J Ethnopharmacol 2011;137:926-9.
4. Sequeira EJ, Vital MJ, Pohl AAM, Paradosi IC, Caipero GS. Antibacterial and antifungal activity of extracts and exudates of the Amazonian medicinal tree *Himatanthus articulatus* (Vahl) Woodson [common name: sucuba]. Mem Inst Oswaldo Cruz 2009;104:659-61.
5. Mesquita ML, Desrivios J, Bano C, Fournet A, Paula JE, Grellier P, et al. Antileishmanial and trypanocidal activity of Brazilian Cerrado plants. Mem Inst Oswaldo Cruz 2005;100:783-7.
6. Rebouças SO, Silva J, Grifith AA, Nunes EA, Janisik K, Febus AB. The antigenotoxic activity of latex from *Himatanthus articulatus*. Braz J Pharmacol 2012;22:389-96.
7. Elizabetsky E, Castilhos C. Plants used as analgesics by Amazonian caboclos as a basis for selecting plants for investigation. Int J Crude Drug Res 1990;28:309-20.
8. Van Den Berg ME. Medicinal plants of the Amazon: Contribution to its systematic knowledge. Belem: Adolfo Ducke Collection; 1993. p. 125.
9. Millikan W. Plants used in the treatment of malaria in Roraima state – Preliminary report. Kew: Royal Botanic Garden; 1995. p. 67.
10. Ferreira JL, Amaral AC, Araujo RB, Carvalho JR, Proença CE, Fagala SA, et al. Pharmacognostical comparison of three species of *Himatanthus*. Int J Bot 2009;5:171-7.
11. Colares AV, Cardeiro LN, Costa JG,Silveira ER, Campos AR, Cardoso AH, Phytochemical and biological preliminary study of *Himatanthus dracicus* (Mart.) Plumel (Janagupa). Pharmacogn Mag 2004;4:7-37.
12. Leite GO, Penha AR, Silva GC, Colares AV, Rodrigues FF, Costa JG, et al. Gastroprotective effect of medicinal plants from Chapada do Araripe, Brazil. J Young Pharm 2009;1:5-4.
13. Sousa EL. Atividade Antitumoral de *Himatanthus dracicus* (Mart.) Plumel-Apocynaceae (Janagupa). Dissertation. Brazil: Federal University of Pernambuco, Recife, Pernambuco; 2009. p. 93.
14. Lucetti DL, Lucetti EC, Bandeira MA, Veras HN, Silva AH, Leal LK, et al. Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from *Himatanthus dracicus* (Mart.) Plumel. J Inflamm (Lond) 2010;7:60.
15. Sousa EL, Grangeiro AR, Bastos IV, Rodrigues GC, Silva MJ, Andes FB, et al. Antitumor activity of leaves of *Himatanthus dracicus* (Mart.) Plumel – *Apocynaceae* (Janagupa) in the treatment of sarcoma 180 tumor. Braz J Pharmacol 2010;46:199-203.
16. França-WD, Sousa NC, Cardoso JI, Cury PM. Analysis of the action of *Himatanthus dracicus* in progression of urethane-induced lung cancer in mice. Einstein 2011;9:350-3.
17. Mousinho KC, Oliveira CD, Ferreira JR, Carvalho AA, Magalhães HI, Bezerra DR, et al. Antitumor effect of laticifer proteins of *Himatanthus dracicus* (Mart.) Plumel – *Apocynaceae*. J Ethnopharmacol 2011;137:421-6.
18. Matos EJ. Plants of the Northeast Popular Medicine: defined and confirmed properties. Fortaleza, CE: UFC Edições; 1999. p. 78.
19. Lorenzi H, Matos EJ. Medicinal plants in Brazil: native and exotic. Nova Odessa: Plantarum Institute; 2008. p. 68-9.
20. Colares AV, Cardeiro LN, Costa JG, Campos AR, Cardoso AH. Gastroprotective effect of *Himatanthus dracicus* (Mart.) Plumel (Janagupa) latex. Infima Pharma Sci 2008;20:34-6.
21. Abdel-Kader MS, Wisse J, Evans R, van der Werff H, Kingston DG. Bioactive iridoids and a new lignan from Allamanda cathartica and *Himatanthus fallax* from the Suriname rainforest. J Nat Prod 1997;60:1294-7.
22. Plumel MF. Geographical distribution of *Himatanthus em* like Tropical America. CR Soc Biogeogr 1990;60:103-27.
Himatanthus (Apocynaceae): Review

Luiz Goeldi, et al.: Látex macromolecule, microfilaments and carbohydrates. Acta (Muell Arg.) Woodson

Professor of Pharmacognosy at the Federal University of Paraná, Brazil: Federico J. C. Formaggio, et al.: Contribution to the taxonomic study of the stem of Himatanthus succuuba (Spruce ex Müll. Arg.) Woodson, Apocynaceae. Braz J Pharmacog 2005;15:110-4.

Vilegas LF, Fernández ID, Maldonado H, Torres R, Zavala E, Vasiberg AJ, et al.: Evaluation of the wound-healing activity of selected traditional medicinal plants from Perú. J Ethnopharmacol 1997;55:190-200.

Di Stasi LC, Hiruma-Lima CA, Medicinal plants in the Amazon and Atlantic Forest. São Paulo: Unesp Publisher; 2002. p. 604.

Perdue GB, Blomster RN. South American plants III: Isolation of fulvoplumierin from Himatanthus succuuba (Müll Arg.) Woodson. Apocynaceae. J Pharm Sci 1978;67:1322-3.

Endo Y, Hayashi H, Sato T, Maruno M, Ono T, Nozoe S. Confluent acid and 2’-O-methylsterolactone, monoamine oxidase B inhibitors in a Brazilian plant, Himatanthus succuuba. Chem Pharm Bull (Tokyo) 1994;42:1198-201.

Fernandes MZ, Fernandes RM, Sousa MC, Lopes JB. Determination of acute toxicity of Himatanthus succuuba (Spruce) Woodson [Apocynaceae] in mice. Rev Bras Farmacogn 2002;8:98-100.

Souza WM, Mota AC, Siani AC, Rezende CM, Felman J, Pinto AC. Contribution to the study of Himatanthus succuuba (Spruce) Woodson. Latex macromolecules, microfilaments and carbohydrates. Acta Amazon 2003;33:105-10.

Morel AE, Gehrber NB, Porto C, Dalcol I. Study on the antimicrobial activity of Himatanthus succuuba. Fitoterapia 2004;75:750-3.

Barreto AS, Amaral AC, Silva JR, Schripsema J, Rezende CM, Pinto AC. 15-demethylisoplumieride acid, a new iridoid isolated from the bark of Plumeria rubra and latex of Himatanthus succuuba. Quim Nova 2007;30:1135-6.

Soares DC, Andrade AL, Delorenzi JC, Silva JR, Freire-de-Lima L, Falcao CA, et al. Leishmanicidal activity of Himatanthus succuuba latex against Leishmania amazonensis. Parasitol Int 2010;59:173-7.

Walterbenenger B, Rollinger JM, Gissler UJ, Stuppern H, Gelbrich T. Plumeriomerid from the Amazonian traditional medicinal plant Himatanthus succuuba. Acta Crystallogr C 2011;67(Pt 10):c209-12.

Plumel MM. The genre Himatanthus (Apocynaceae). Taxonomic revision: Brandea. Bol Herb Brasedeau 1991;1:5-120.

Forzza RC. Catalog of plants and fungi of Brazil. Vol. 1. Rio de Janeiro: Andrea Jakobsson; 2001. p. 626.

Tiwari TN, Pandey VB, Dubey NK. Plumeriomerid from Allamanda cathartica as an antidermatophytic agent. Phytother Res 2002;16:393-4.

Singh D, Arya PV, Sharma A, Aggarwal VP, Dobhal MP, Gupta RS. Antioxidant potential of plumeriomerid against CCL4-induced peroxidative damage in rats. Antioxidants 2013;4:398-813.

Paris C, Loseau PM, Bories C, Breard J. Mitofusine induces apoptosis-like death in Leishmania donovani promastigotes. Agents Chemother 2004;48:862-9.

Laszczyn MN. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med 2009;75:1549-60.

ABOUT AUTHORS

Fabiana P. Soares, Professor of Pharmacognosy at the University of Fortaleza (UNIFOR), pharmaceutical and PhD in Development and Technological Innovation in Medicines (PPGDITM), Federal University of Ceará (UFC), Brazil.

Larissa F. Cavalcante, Degree in Pharmacy, University of Fortaleza (UNIFOR), Brazil.

Niria Rodrigues Romero, Professor of Pharmaceutical Chemistry at the Federal University of Ceará (UFC), pharmaceutical, PhD in Chemistry and coordinator of Pharmacy course at the UFC, Brazil.

Mary A. M. Bandeira, Professor of Pharmacognosy at the Federal University of Ceará (UFC), pharmaceutical, PhD in Chemistry; director of “Francisco José de Abreu Matos” Medicinal Plants Horto of the UFC, Brazil.