ON THE MULTICOLOR RAMSEY NUMBER OF A GRAPH WITH m EDGES

KATHLEEN JOHST* AND YURY PERSON

Abstract. The multicolor Ramsey number \(r_k(F) \) of a graph \(F \) is the least integer \(n \) such that in every coloring of the edges of \(K_n \) by \(k \) colors there is a monochromatic copy of \(F \). In this short note we prove an upper bound on \(r_k(F) \) for a graph \(F \) with \(m \) edges and no isolated vertices of the form \(k^{6m^{2/3}} \) addressing a question of Sudakov [Adv. Math. 227 (2011), no. 1, 601–609]. Furthermore, the constant in the exponent in the case of bipartite \(F \) and two colors is lowered so that \(r_2(F) \leq 2^{(1+o(1))2^{1/2}m^{2/3}} \) improving the result of Alon, Krivelevich and Sudakov [Combin. Probab. Comput. 12 (2003), no. 5–6, 477–494].

1. Introduction

The by now classical theorem of Ramsey [11] states that no matter how one colors the edges of the large enough complete graph \(K_n \) with two colors, say red and blue, there will always be a monochromatic copy of \(K_t \) in it. The smallest such \(n \) is called the Ramsey number, denoted by \(r(t) \) or \(r(K_t) \). First lower and upper bounds on \(r(t) \) were obtained by Erdős and Szekeres [8]: \(r(t) \leq \left(\frac{2t-2}{t-1} \right) \) and by Erdős [6]: \(r(t) \geq 2^{t/2} \). Despite numerous efforts by various researchers, the best lower and upper bounds remain asymptotically \(2^{(1+o(1))t/2} \) and \(2^{(1+o(1))2t} \), for the currently best bounds see Conlon [5] and Spencer [12].

Thus, one turned to the study of Ramsey numbers of graphs other than complete graphs \(K_t \). The multicolor Ramsey number for \(k \) colors of a graph \(F \), denoted \(r_k(F) \), is defined as the smallest number \(n \) such that in any coloring of \(E(K_n) \) by \(k \) colors there is a monochromatic copy of a graph \(F \) in one of the \(k \) colors. Much attention was drawn by the conjectures of Burr and Erdős [2] about Ramsey numbers of graphs \(F \) whose maximum degree is bounded by a constant and which are \(d \)-degenerate for some constant \(d \) stating that these Ramsey numbers are linear in \(r(F) := |V(F)| \). While the first conjecture has been resolved positively by Chvátal, Rödl, Szemerédi and Trotter [4], the latter one is still open and the best bound is due to Fox and Sudakov [10] being \(r_2(F) \leq 2^{c_d \sqrt{m} n} \) for \(c_d \) depending on \(d \) only.

A related conjecture of Erdős and Graham [7] states that among all graphs \(F \) with \(m = \binom{t}{2} \) edges and no isolated vertices the Ramsey number \(r(t) \) of the complete graph \(K_t \) is an upper bound on \(r_2(F) \). A relaxation conjectured by Erdős [3] states that at least \(r(F) \leq 2^{c \sqrt{m}} \) should hold for any graph \(F \) with \(m \) edges and no isolated vertices and some absolute constant \(c \). This was verified by Alon, Krivelevich and Sudakov [1] who showed that if \(F \) is bipartite, has \(m \) edges and no isolated vertices

* This paper forms part of the first author’s Master’s thesis at Freie Universität Berlin.

Date: November 26, 2013.
then \(r(F) \leq 2^{16\sqrt{m}+1} \), and for nonbipartite \(F \) showing \(r(F) \leq 2^{7\sqrt{m}\log_2 m} \). Finally, the general case was settled by Sudakov [14] who proved \(r(F) \leq 2^{250\sqrt{m}} \).

In his concluding remarks in [14], Sudakov mentions that the methods used to settle the general case are not extendible to more colors and it would be interesting to understand the growth of \(r_k(F) \). It is easy to see that there is an upper bound on \(r_k(F) \) of the form \(k^{4v(F)} \) by finding a monochromatic copy of \(K_{2m} \supset F \) using the classical color focussing argument. In this note we prove to the best of our knowledge a first nontrivial upper bound \(r_k(F) \leq k^{6km^{2/3}} \).

Theorem 1. Let \(F \) be a graph with \(m \) edges and no isolated vertices. Then, for \(k \geq 3 \) it holds

\[
r_k(F) \leq k^{3.2^{-1/3}km^{2/3}+k(2m)^{1/3}} 8m.
\]

Further we study the case when \(F \) is bipartite and show an upper bound \(r_k(F) \leq k^{(1+o(1))2\sqrt{mk}} \).

Theorem 2. Let \(F \) be a bipartite graph with \(m \) edges and no isolated vertices. Then, for \(k \geq 2 \) it holds

\[
r_k(F) \leq 2^{6m^{8/3}k^{2\sqrt{km}+1/2}}.
\]

Note that in the case \(k = 2 \), Theorem 2 is an improvement of the above mentioned result of Alon, Krivelevich and Sudakov [1] to \(r(F) \leq 2^{(1+o(1))2\sqrt{km}} \). Remarkably, this upper bound is asymptotically the “same” as the upper bound \(2^{(1+o(1))2k} \) for \(r(k) \) with \(m = \binom{k}{2} \).

The methods we use are slight modifications of the arguments of Fox and Sudakov from [9] and of Alon, Krivelevich and Sudakov [1]. The paper is organized as follows. In the next section, Section 2 we collect some results and observations used in our proofs, in Section 3 we prove Theorem 2 and in Section 4 we show Theorem 1.

2. Some auxiliary results

Here we collect several results from [9] and one small graph theoretic estimate. The first prominent lemma we use is the so-called dependent random choice lemma, stating that in a bipartite dense graph one finds a large vertex subset in one class, most of whose \(d \)-tuples have many common neighbours on the other side.

Lemma 3 (Dependent Random Choice, Lemma 2.1[9]). If \(\varepsilon > 0 \) and \(G = (V_1, V_2; E) \) is a bipartite graph with \(|V_1| = |V_2| = N \) and at least \(\varepsilon N^2 \) edges, then for all positive integers \(a, d, t, x \), there is a subset \(A \subset V_2 \) with \(|A| \geq 2^{-\frac{t}{2}} x \) \(N \), such that for all but at most \(2\varepsilon^{-ta} \left(\frac{N}{a} \right)^t \binom{N}{d} \left(\frac{a}{N} \right)^a \) \(d \)-sets \(S \) in \(A \), we have \(|N(S)| \geq x \).

The following lemma allows one to embed a graph \(H \) with bounded degree and bounded chromatic number into a dense graph \(G \) given along with a nested sequence of sets, where the parts of \(H \) are supposed to be embedded into.

Lemma 4 (Lemma 4.2 in [9]). Suppose \(G \) is a graph with vertex set \(V_1 \), and let \(V_1 \supset \ldots \supset V_q \) be a family of nested subsets of \(V_1 \) such that \(|V_q| \geq x \geq 4n \), and for \(1 \leq i < q \), all but less than \((2d)^{-d} \left(\frac{x}{4} \right)^n \) \(d \)-sets \(U \subset V_{i+1} \) satisfy \(|N(U) \cap V_i| \geq x \). Then, for every \(q \)-partite graph \(H \) with \(n \) vertices and maximum degree at most \(\Delta(H) \leq d \), there are at least \(\left(\frac{q}{4} \right)^n \) labeled copies of \(H \) in \(G \).
We will also need the following Turán-type result, from which the currently best known upper bound on the Ramsey number of a bounded degree bipartite graph follows.

Theorem 5 (Theorem 1.1 from [9]). Let H be a bipartite graph with n vertices and maximum degree $\Delta \geq 1$. If $\varepsilon > 0$ and G is a graph with $N \geq 32\varepsilon^{-\Delta} n$ vertices and at least $\varepsilon \binom{N}{2}$ edges, then H is a subgraph of G.

Finally we need one simple observation, whose proof we provide here for completeness.

Proposition 6. Let $F = (V, E)$ be a graph with m edges. Then there exists a subset $U \subseteq V$ with $|U| < \frac{m}{d}$ such that $\Delta(F \setminus U) \leq d$.

Proof. Let v_1 be a vertex of maximum degree in $F_1 := F$ and set $d_1 := \Delta(F)$. We delete v_1 from F denoting the new graph by F_2. We proceed inductively, deleting from F_i a vertex of maximum degree v_i, setting $d_i := \Delta(F_i)$ and defining the new graph $F_{i+1} := F_i - v_i$ and stop with $F_{|V(F)|+1} = \emptyset$. Let j be the smallest integer with $\Delta(F_{j+1}) \leq d$. Thus, till we obtained F_{j+1} we must have deleted j vertices, each of degree larger than d. Moreover, by the construction of the sequence of v_is, we have $m = |E(F)| = \sum_{i=1}^{|V(F)|} \Delta(F_i)$. Therefore, $jd < m$ and the claim follows with $U := \{v_1, \ldots, v_j\}$. \qed

Often we try to avoid using floor and ceiling signs as they will not affect our calculations.

3. Multicolor Ramsey number of bipartite graphs with m edges

The idea of the proof of Theorem 2 is quite simple. Given a coloring of $E(K_N)$, we will perform a color focussing argument by considering the densest color class and taking a vertex with maximum degree in it. Then we iterate on the colored neighborhood of that vertex. After less than km/d steps we arrive at the situation, where we can embed all m/d vertices from U (of high degree in F) onto the vertices specified in the focussing process, the remaining graph $F - U$ has maximum degree at most d (by Proposition 6) and is bipartite, and thus can be embedded in one round, by Theorem 5.

Proof of Theorem 2. Given a bipartite graph F with m edges and no isolated vertices. We choose with foresight $d = \sqrt{km}$. By Proposition 6, let U be a set of $t = \lfloor m/d \rfloor = \lfloor \sqrt{m/k} \rfloor$ vertices such that $\Delta(F \setminus U) \leq d$. Further observe that $|V(H)| \leq 2m$.

Let us be given an arbitrary but fixed k-edge coloring of the graph $G := K_N$ with the colors $1, \ldots, k$, where $N = 32dk^{d+kt}m$.

We will construct a sequence of sets $A_1 \supseteq A_2 \supseteq \ldots \supseteq A_t$ and a sequence of colors $c(1), \ldots, c(s)$ as follows. First we set $A_1 = [N]$ and let $c(1)$ be a densest color in $G[A_1]$. Since we used k colors there exists a vertex $v_1 \in A_1$ connected to at least $\frac{|A_1|-1}{k}$ vertices in color $c(1)$. We denote the set of these vertices by A_2. Then we proceed inductively as follows. Given a sequence of sets $A_1 \supseteq A_2 \supseteq \ldots \supseteq A_{i+1}$ and the corresponding sequences of vertices v_1, v_i and colors $c(1), \ldots, c(i)$, we do the following. Let $c(i + 1)$ be the densest color in $G[A_{i+1}]$. If $c(i + 1)$ occurs at most t times in the sequence $c(1), \ldots, c(i + 1)$ of colors constructed so far, then we choose $v_{i+1} \in A_{i+1}$ such that v_{i+1} is connected to at least $\frac{|A_{i+1}|-1}{k}$ vertices in color
c(i + 1) and we denote these vertices by A_{i+2}. Otherwise we stop. It is clear that we stop after at most $kt + 1$ steps, that is with $i + 1 \leq kt + 1$.

Next we identify t vertices v_{j_1}, \ldots, v_{j_t} such that $c(j_1) = \ldots = c(j_t) = c(i + 1)$. Observe that all vertices v_{j_t} are connected in color $c(i + 1)$ to each other and also to all vertices in A_{i+1}. Moreover, at least $\frac{1}{k} \binom{|A_{i+1}|}{2}$ edges of $G[A_{i+1}]$ are colored in $c(i + 1)$. Therefore, we can embed the vertices from U in F onto v_{j_1}, \ldots, v_{j_t}, and then one needs to find an embedding $F \setminus U$ into $G[A_{i+1}]$ in color $c(i + 1)$. But this is asserted to us by Theorem 5, as long as

$$|A_{i+1}| \geq 32dk^d |V(F) \setminus U|.$$

Since $i + 1 \leq kt + 1$ we obtain $|A_{i+1}| \geq \frac{N}{km} - 1$, and since we can assume that F is not a matching (otherwise Theorem 5 implies the result immediately), we have $|V(F)| < 2m$ and therefore

$$|A_{i+1}| \geq 32dk^d 2m - 1 \geq 32dk^d |V(F) \setminus U|.$$

Thus, $r_k(F) \leq N = 32dk^d+2 2m \leq 2^6 \sqrt{km}^3 k^2 \sqrt{km} = k^{(1+o(1))2\sqrt{km}}$.

As an immediate consequence we get.

Corollary 7. Let F be a bipartite graph with m edges and without isolated vertices, then $r_2(F) \leq 2^{(1+o(1))2\sqrt{km}}$.

4. **Multicolor Ramsey number of general graphs with m edges**

In this section we heavily rely on the tools developed by Fox and Sudakov in [9]. There they showed that $r_k(F) \leq k^{2k\Delta q}n$ for a graph F with n vertices, $\Delta(F) = \Delta$ and $\chi(F) = q$ (more generally, it holds for k not necessarily isomorphic graphs F_1, \ldots, F_k with the same properties). Their proof combines Lemmas 3 and 4.

Our proof strategy is in fact a slight modification of their argument intertwined with the process of first embedding high degree vertices. The idea of embedding high degree vertices already occurs in [1]. More precisely, since we are given a general graph F with m edges, we first seek to embed vertices of high degree (which will be done in a similar way as in the proof of Theorem 2). However, this time we are going to use Lemma 3 instead of Theorem 5 repeatedly. The authors in [9] show $r_k(F) \leq k^{2k\Delta q}n$ by applying iteratively Lemma 3 roughly qk times, “loosing” each time roughly a factor of $k^{-k\Delta}$. Afterwards one identifies a long enough nested sequence to perform embedding (Lemma 4). In our case however, we first need to reduce the maximum degree of F, and only then we will apply Lemma 3. However, its applications intertwine with the focussing argument similar to the previous section, as each color might get filled up differently quickly.

Proof of Theorem 1. We choose with foresight $d = (m/4)^{1/3}$ and $\ell = |m/d| = \lfloor (2m)^{2/3} \rfloor$. Furthermore, we set $x = k^{-(2d+2)kd-k\Delta} N$ and $N = k^{(2d+2)kd+kd} 8m$.

Take a given graph F with m edges and no isolated vertices. By Proposition 6, let U be a set of at most ℓ vertices such that $\Delta(F \setminus U) \leq d$. Further observe that $|V(H)| \leq 2m$ and $\chi(F \setminus U) \leq d + 1$.

Let an arbitrary but fixed coloring of the edges of the graph $G := K_N$ by k colors be given.

We set $A_1 = [N]$ and construct a sequence of sets $A_1 \supseteq A_2 \supseteq \ldots \supseteq A_s$ and a sequence of colors $c(1), \ldots, c(s - 1)$ inductively as follows.
Given a sequence of sets $A_1 \supset A_2 \supset \ldots \supset A_\ell$ and the sequence of colors $c(1), \ldots, c(\ell-1)$, we do the following. Let $c(i)$ be the densest color in $G[A_i]$. If $c(i)$ occurs at most ℓ times in the sequence $c(1), \ldots, c(\ell)$ of colors constructed so far, then we choose $v_i \in A_i$ such that v_i is connected to at least $\frac{|A_i|-1}{k}$ vertices in color $c(i)$ and we denote these vertices by A_{i+1} (and we refer to this step as focusing). If, however, the color $c(i)$ occurs more than ℓ times then we call $c(i)$ saturated. As long as the saturated color $c(i)$ occurs at most $t + d$ times among $c(1), \ldots, c(i)$, we consider a balanced bipartition of $A_i = A_{i,1} \cup A_{i,2}$ (assume $|A_{i,1}| \leq |A_{i,2}|$) such that at least $\frac{1}{2}|A_{i,1}| |A_{i,2}|$ edges are colored by the color $c(i)$ (simply take a random balanced bipartition). Furthermore, we apply now Lemma 3 with $\varepsilon = \frac{1}{k}$, $a = 1$ and $t = 2d$ and thus we find a subset $A_{i+1} \subset A_{i,2} \subset A_i$ with $|A_{i+1}| \geq 2^{-1}k^{-2d} |A_{i,2}| \geq k^{-2d-2}|A_i|$ (use $|A_{i,1}| \leq |A_{i,2}|$), such that all but at most

$$2 \cdot k^{2d} \left(\frac{x}{|A_{i,2}|} \right)^{2d} \left(\frac{|A_{i+1}|}{|A_{i,2}|} \right)^{d} \left(\frac{|A_{i,2}|}{d} \right)$$

(1)

d-sets S in A_{i+1} have at least x common neighbors in $G[A_i]$ in color $c(i)$ (actually in $A_{i,1}$). We refer to such a step as nesting. Moreover, we can use $|A_{i,2}| \geq \frac{1}{2} k^{-k\ell-2d+2k(d-1)}N$ to simplify and bound (1) as:

$$\frac{x}{|A_{i,2}|} \left(\frac{x}{d} \right)^d \leq \left(\frac{2k}{d} \right)^d \frac{x}{|A_{i,2}|} \left(\frac{x}{d} \right)^d \leq (2d)^{-d} \frac{x}{d}.$$

We stop constructing a sequence once we end up with colors $c(1), \ldots, c(s)$ and sets $A_1 \supset \ldots \supset A_{s+1}$ and there is one color c which occurs $\ell + d$ times. Clearly, $s \leq \ell + k(d-1) + 1$, since we first focus in one color t times before it gets saturated and then we need to nest d times in some color, before we stop the sequence construction. By the choice of N, x, ℓ and d we can clearly proceed for $kt + k(d-1) + 1$ steps if necessary.

Let $c \in [k]$ be the color which occurs $\ell + d$ times and let v_{i_1}, \ldots, v_{i_k} be the vertices which got selected in the first ℓ steps when the color c was chosen (these were focussing steps) and let $A_{i_{t+1}}, \ldots, A_{i_{t+d}}$ be the sets with majority color c during the nesting steps. Next we show how to find a c-colored copy of F, whose vertices are embedded onto v_{i_1}, \ldots, v_{i_k} and into the sets $A_{i_{t+1}}, A_{i_{t+1}+1}, \ldots, A_{i_{t+d+1}}$ (where $i_{t+d} = s$).

By Proposition 6, we have a set U of ℓ vertices of high degree which get embedded onto v_{i_1}, \ldots, v_{i_k} and then all we need to do is to embed a copy of $F \setminus U$ into the nested sequence $A_{i_{t+1}}, A_{i_{t+1}+1}, \ldots, A_{i_{t+d+1}}$ in color c. But this can be done by Lemma 4. This shows that $r_k(F) \leq N$. \hfill \square

Corollary 8. Let F be a graph with m edges and without isolated vertices. Then $r_k(F) \leq k^{6k^2m/3}$. \hfill \square

5. Concluding Remarks

In this note we showed a first nontrivial upper bound on $r_k(F)$ to be $k^{6k^2e(F)^{2/3}}$. Certainly, there should be a room for improvement, maybe even to $k^{O(\sqrt{e(F)})}$, thus generalizing the result of Sudakov. Another interesting direction would be to improve the result of Sudakov to $r_2(F) \leq 2^{(1+o(1))2\sqrt{2m}}$ by obtaining asymptotically the same upper bound as the best one known for $r_2(K_{\ell})$ with $\binom{\ell}{2} = m$. This was noted by us to hold if F is bipartite.
After the completion of this paper we learned that Conlon, Fox and Sudakov obtained a result similar to our Theorem 1 independently [13].

References

[1] N. Alon, M. Krivelevich, and B. Sudakov, Turán numbers of bipartite graphs and related Ramsey-type questions, Combin. Probab. Comput. 12 (2003), no. 5-6, 477–494, Special issue on Ramsey theory. 1, 1, 4

[2] S. A. Burr and P. Erdős, On the magnitude of generalized Ramsey numbers for graphs, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. 1, North-Holland, Amsterdam, 1975, pp. 215–240. Colloq. Math. Soc. János Bolyai, Vol. 10. 1

[3] F. Chung and R. Graham, Erdős on graphs, A K Peters Ltd., Wellesley, MA, 1998, His legacy of unsolved problems. 1

[4] C. Chvátal, V. Rödl, E. Szemerédi, and W. T. Trotter, Jr., The Ramsey number of a graph with bounded maximum degree, J. Combin. Theory Ser. B 34 (1983), no. 3, 239–243. 1

[5] D. Conlon, A new upper bound for diagonal Ramsey numbers, Ann. of Math. (2) 170 (2009), no. 2, 941–960. 1

[6] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294. 1

[7] P. Erdős and R. L. Graham, On partition theorems for finite graphs, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, North-Holland, Amsterdam, 1975, pp. 515–527. Colloq. Math. Soc. János Bolyai, Vol. 10. 1

[8] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463–470. 1

[9] J. Fox and B. Sudakov, Density theorems for bipartite graphs and related Ramsey-type results, Combinatorica 29 (2009), no. 2, 153–196. 1, 2, 3, 4, 5, 4

[10] , Two remarks on the Burr-Erdős conjecture, European J. Combin. 30 (2009), no. 7, 1630–1645. 1

[11] F. P. Ramsey, On a problem in formal logic, Proc. Lond. Math. Soc. 30 (1930), 264–286. 1

[12] J. Spencer, Ramsey’s theorem—a new lower bound, J. Combinatorial Theory Ser. A 18 (1975), 108–115. 1

[13] B. Sudakov, personal communication. 5

[14] B. Sudakov, A conjecture of Erdős on graph Ramsey numbers, Adv. Math. 227 (2011), no. 1, 601–609. 1

Freie Universität Berlin, Institut für Mathematik, Berlin, Germany
E-mail address: kathleen.johst@fu-berlin.de

Goethe-Universität, Institut für Mathematik, Robert-Mayer-Str. 10, 60325 Frankfurt am Main, Germany
E-mail address: person@math.uni-frankfurt.de