Augment and Reduce:
Stochastic Inference for Large Categorical Distributions

Adji Bousso Dieng

Columbia University
In the City of New York
Collaborators

- Francisco J. R. Ruiz
- Michalis Titsias
- David M. Blei

Augment and Reduce: Stochastic Inference for Large Categorical Distributions
F. J. R. Ruiz, M. Titsias, A. B. Dieng, and D. M. Blei
Under review at ICML, 2018.
Categorical Distributions: Applications

Categorical distributions are ubiquitous in Statistics and Machine Learning

→ discrete choice models
→ language models
→ recommendation systems
→ reinforcement learning
Categorical Distributions: Example Parameterization

One widely applied parameterization of a categorical is the softmax,

\[p(y = k \mid \psi) = \text{softmax}(\psi)\big|_k = \frac{e^{\psi_k}}{\sum_{k'} e^{\psi_{k'}}} \]

Transforms reals into probabilities

Can be costly because of normalization ... \(\mathcal{O}(K) \)

A computational burden when learning with categorical distributions
A Closer Look at Softmax

→ Draw random standard Gumbel errors i.i.d.,

\[\varepsilon_k \sim \text{Gumbel}(\varepsilon \mid 0, 1) \]

→ Define a utility for each outcome \(k \),

\[\psi_k + \varepsilon_k \]

→ Choose the outcome with the largest utility,

\[y = \arg \max_k (\psi_k + \varepsilon_k) \]

→ Integrate out the error terms (\(\varepsilon_k \)'s) to find the marginal \(p(y \mid \psi) \)

Softmax is the marginal!!
The Augmented Model

→ The augmented model is

\[p(y = k, \varepsilon \mid \psi) = \phi(\varepsilon) \prod_{k' \neq k} \Phi(\varepsilon + \psi_k - \psi_{k'}) \]

→ Nice property: The log-joint has a summation over the categories,

\[\log p(y = k, \varepsilon \mid \psi) = \log \phi(\varepsilon) + \sum_{k' \neq k} \log \Phi(\varepsilon + \psi_k - \psi_{k'}) \]

→ This enables fast unbiased estimates,

- Sample a subset of outcomes \(S \subseteq \{1, \ldots, K\} \setminus \{k\} \)
- Compute an estimate of the log-joint

\[\log \phi(\varepsilon) + \frac{K - 1}{|S|} \sum_{k' \in S} \log \Phi(\varepsilon + \psi_k - \psi_{k'}) \]

→ This has \(O(|S|) \) complexity
The Inference Algorithm: Variational EM

→ We are not interested in the log-joint, but in the log-marginal

→ Variational inference relates both quantities,

\[\log p(y | \psi) \geq \mathbb{E}_{q(\varepsilon)} [\log p(y, \varepsilon | \psi) - \log q(\varepsilon)] \]

→ Maximize the bound using variational EM

- E step: Optimize w.r.t. the distribution \(q(\varepsilon) \)
- M step: Take a gradient step w.r.t. \(\psi \)

→ The complexity is controlled by the user (via \(|S|\))
We can compute the optimal $q(\varepsilon)$ distribution,

$$
q^*(\varepsilon) = \text{Gumbel}(\log \eta^*, 1), \quad \eta^* = 1 + \sum_{k' \neq k} e^{\psi_{k'} - \psi_k}
$$

This is $\mathcal{O}(K)$. Instead, set

$$
q(\varepsilon) = \text{Gumbel}(\log \eta, 1)
$$

Estimate the optimal natural parameter in $\mathcal{O}(|S|)$,

$$
\tilde{\eta} = 1 + \frac{K - 1}{|S|} \sum_{k' \in S} e^{\psi_{k'} - \psi_k}
$$

(to update η, take a step in the direction of the natural gradient)
Scale All Categorical Distributions!

→ Choose other distributions for ε to get other models,

 - Gaussian for multinomial probit
 - Logistic for multinomial logistic

→ Form Monte Carlo gradient estimators using reparameterization

→ Useful for both E and M steps
Empirical Evidence

→ Baselines:
 - Exact Softmax for MNIST and Bibtex
 - OVE – Also a lower bound but only applicable to softmax

→ Time complexity (top) and Predictive performance (bottom)

dataset	OVE (Titsias, 2016)	A&R [this paper]		
	softmax	multi. probit		
	log lik	acc		
MNIST	0.336 s	0.337 s	0.431 s	0.511 s
Bibtex	0.181 s	0.188 s	0.244 s	0.246 s
Omniglot	4.47 s	4.65 s	5.63 s	5.57 s
EURLex-4K	5.54 s	5.65 s	6.46 s	6.23 s
AmazonCat-13K	2.80 h	2.80 h	2.82 h	2.91 h

A&OE

dataset	exact log lik	exact acc	softmax log lik	softmax acc	A&R [this paper] log lik	A&R [this paper] acc	multi. probit A&R [this paper] log lik	multi. probit A&R [this paper] acc	multi. logistic A&R [this paper] log lik	multi. logistic A&R [this paper] acc
MNIST	-0.261	0.927	-0.276	0.919	-0.271	0.924	-0.302	0.918	-0.287	0.917
Bibtex	-3.188	0.361	-3.300	0.352	-3.036	0.361	-4.184	0.346	-3.151	0.353
Omniglot	-		-5.667	0.179	-5.171	0.201	-7.350	0.178	-5.395	0.184
EURLex-4K	-		-4.241	0.247	-4.593	0.207	-4.193	0.263	-4.299	0.226
AmazonCat-13K	-		-3.880	0.388	-3.795	0.420	-3.593	0.411	-4.081	0.350
Empirical Evidence

→ Quality of the bound

- MNIST
 - ELBO
 - Softmax A&R
 - OVE
 - Softmax (exact)

- Biblax
 - ELBO
 - Softmax A&R
 - OVE
 - Softmax (exact)

- Omniglot
 - ELBO
 - Softmax A&R
 - OVE
 - Softmax (exact)

- EURLex-4K
 - ELBO
 - Softmax A&R
 - OVE
 - Softmax (exact)

- AmazonCat-13K
 - ELBO
 - Softmax A&R
 - OVE
 - Softmax (exact)
Take Home: The A&R Recipe

→ Choose a distribution for ε

→ Augment your model with ε to get an augmented model—

$$
\mathcal{L} = \log p(y = k, \varepsilon \mid \psi) = \log \phi(\varepsilon) + \sum_{k' \neq k} \log \Phi(\varepsilon + \psi_k - \psi_{k'})
$$

→ Reduce cost to $\mathcal{O}(|S|)$ with an estimate of the log-joint,

$$
\mathcal{L} \approx \mathcal{\tilde{L}} = \log \phi(\varepsilon) + \frac{K - 1}{|S|} \sum_{k' \in S} \log \Phi(\varepsilon + \psi_k - \psi_{k'})
$$

→ Use stochastic variational EM with the bound

$$
\log p(y \mid \psi) \geq \mathbb{E}_{q(\varepsilon)} [\mathcal{L} - \log q(\varepsilon)]
$$

A&R is a principled method that scales up training for models involving large categorical distributions using latent variable augmentation and stochastic variational inference.