ABSTRACT

OBJECTIVE: To compare the retinal nerve fiber layer (RNFL) thickness changes in patients of primary open-angle glaucoma after trabeculectomy versus anti-glaucoma medication.

METHODS: This quasi-experimental study was conducted from 10th February, 2017 to 28th February, 2018 on 60 patients presenting to the Institute of Ophthalmology, Mayo Hospital, Lahore, Pakistan using non-probability consecutive sampling. Patients were assigned to two equal groups: group A (n=30) patients underwent trabeculectomy while group B (n=30) patients were put on anti-glaucoma medication. Pre-treatment and three months post-treatment RNFL thickness was recorded and then analyzed using SPPSv.18.0.

RESULTS: Out of 60 patients, Group A (n=30) had 14 (46.71%) males and 16 (53.31%) females, while Group B (n=30) had 16 (53.31%) males and 14 (46.71%) females. The mean age was 55.901±4.221 and 55.431±3.971 years in Group A and Group B respectively (p=0.661). In age group, 16 (53.31%) each in Group A and Group B were <55 years. Hypertensive status showed 9 (30.01%) hypertensive patients in Group A and Group B respectively. Mean change in RNFL thickness was 0.028±0.012 μm and 0.013±0.007 μm in Group A and Group B respectively (p<0.001). Pre and post-treatment (pre:post) RNFL thickness (μm) in males, females, hypertensive, non-hypertensive, age <55 years, and age ≥ 55 years was 0.201±0.175 μm:0.226±0.155, 0.205±0.159:0.233±0.019, 0.193±0.015:0.223±0.013, 0.206±0.015:0.233±0.018, 0.208±0.015:0.232±0.021, and 0.196±0.016:0.228±0.015 for Group A and 0.211±0.018:0.224±0.019, 0.201±0.015:0.215±0.014, 0.214±0.015:0.226±0.016, 0.205±0.018:0.218±0.017, 0.206±0.017:0.219±0.015, and 0.209±0.019:0.221±0.020 for Group B respectively.

CONCLUSION: Trabeculectomy increases thickness of retinal nerve fiber layer more than anti-glaucoma medication.

KEY WORDS: Retina (MeSH); Glaucoma, Open-Angle (MeSH); Trabeculectomy (MeSH); Nerve Fibers (MeSH); Heidelberg Retinal Tomography (Non-MeSH).

INTRODUCTION

Glaucoma is an irreversible and progressive optic neuropathy causing structural changes to the optic nerve head (ONH) and retinal nerve fiber layer (RNFL) along with loss of visual field, the most important risk factor for which is raised Intraocular pressure (IOP). RNFL changes always precede changes in ONH parameters and visual field defects. One of the most important cause of permanent blindness around the globe is glaucoma.
This quasi-experimental study was conducted from 10th February, 2017 to 28th February, 2018 after obtaining ethical approval from the Institutional Review Board of King Edward Medical University, Lahore, Pakistan. Patients presenting to the outpatient department of Mayo Hospital, Lahore were screened for inclusion and exclusion criteria. Patients (n=60) between 40-70 years of age and diagnosed with primary open angle glaucoma at various stages requiring surgical or augmentation of medical therapy were selected by non-probability consecutive sampling. Patients who were diagnosed with secondary glaucoma or any coexisting ocular pathology except for refractive errors were excluded from study. Demographic data of patients was recorded and pre-treatment RNFL thickness was measured with HRT. Among all 60 patients, 30 were assigned as Group A patients and underwent trabeculectomy while 30 were put in group B, which were put on anti-glaucoma medication. Post treatment retinal nerve fiber layer thickness was measured on HRT after three months and findings recorded on proforma. In trabeculectomy, a fistula was created between anterior chamber of eye and subtenon space facilitating the flow of aqueous and reducing intra ocular pressure. Group B patients were started on double agent anti-glaucoma medication (Dorzolamide HCl & Timolol Maleate eye drops, twice daily). The data was entered and analyzed in SPSS v.18.0. The quantitative data like age and pre and post treatment retinal nerve fiber layer thickness were presented as mean and standard deviation. The qualitative data like gender was presented as frequency and percentage. Independent sample T test was applied for comparison of mean retinal nerve thickness change in both study groups. Paired Sample T-test was used for comparison of pre- and post-treatment RNFL thickness and Chi-Square was applied for categorical variables, p-value ≤ 0.05 was considered significant.

RESULTS

The mean age of patients in group A was 55.901±4.221 years and in group B it was 55.431±3.971 years. In group A, mean change in RNFL thickness on HRT was 0.028±0.012 microns while in group B it was 0.013±0.007 microns (Table I).

In group A, mean change in RNFL thickness in male patients was 0.026±0.011 microns and in female patients it was 0.014±0.007 microns (p=0.595). Mean change in RNFL thickness in hypertensive patients was 0.030±0.012 microns while it was 0.027±0.012 microns in non-

Variable	Group A n = 30	Group B n = 30	P-Value	P-Value
Gender				
Male (n=30)	0.026±0.011	0.013±0.007	0.595	0.661
Female (n=30)	0.029±0.013	0.014±0.006		
Hypertensive Status				
Hypertensive (n=14)	0.030±0.012	0.012±0.008	0.482	0.714
Non-Hypertensive (n=46)	0.027±0.012	0.013±0.006		
Age Group (years)				
<55 (n=30)	0.024±0.013	0.013±0.007	0.047	0.913
≥55 (n=30)	0.032±0.009	0.013±0.006		

TABLE I: DISTRIBUTION ACCORDING TO AGE, GENDER, HYPERTENSION AND RNFL THICKNESS IN BOTH GROUPS

Parameter	Group A	Group B	P-Value
Age (years)	55.901±4.221	55.431±3.971	0.661***
Mean Change in RNFL Thickness (µ)	0.028±0.012	0.013±0.007	< 0.001**
Gender	Male 16 (53.33%)	14 (46.67%)	0.606**
	Female 14 (46.67%)	16 (53.33%)	
Hypertensive Status	Hypertensive 9 (30%)	5 (16.67%)	0.222***
	Non-Hypertensive 21 (70%)	25 (83.33%)	
Age Group (years)	<55 16 (53.33%)	14 (46.67%)	0.999***
	≥55 14 (46.67%)	16 (53.33%)	

*Retinal Nerve Fiber Layer; **Independent sample T-test; *** Chi-Square's test.
hypertensive patients (p=0.482). The mean change in RNFL thickness in those aging below 55 years was 0.024±0.013 microns and it was 0.032±0.009 microns in those aging 55 years or above (Table II). In group B, mean change in RNFL thickness was 0.013±0.007 microns in male patients while it was 0.014±0.006 microns in female patients (p=0.661). In hypertensive patients, mean change in RNFL thickness in hypertensive patients was 0.012±0.008 microns while in non-hypertensive patients it was 0.013±0.006 microns (p=0.714). Mean change in RNFL thickness in those younger than 55 years was 0.013±0.007 microns while it was 0.013±0.006 microns in those aging ≥55 years (p=0.913) (Table II). The pre- and post-treatment RNFL thickness in both groups as per gender, hypertensive status and age group has been explained in Table III.

DISCUSSION

The above results showed that retinal nerve fiber layer thickness increases in response to treatment of glaucoma whether surgical or medical. However, the increase in retinal nerve fiber layer thickness was more in patients who underwent trabeculectomy as compared to those who were on anti-glaucoma medications. The increase in thickness of retinal nerve fiber layer was almost double in trabeculectomy group as compared to anti-glaucoma medication group. The increase in retinal nerve fiber layer thickness was also observed in all sub groups i.e. male and female patients, hypertensive and non- hypertensive patients, patients aging 55 years or above and below 55 years of age.

Raghu N et al.14 have studied the effect of filtration surgery on thickness of retinal nerve fiber layer. They studied 11 patients pre- and post-trabeculectomy. They documented a significant increase in average (p=0.019) and inferior (p=0.038) RNFL thickness after one week of surgery only to decrease back to pre-operative level after 3 months. However our study showed an increase in RNFL thickness at 3 months. Maneesang S, et al.15 have studied the RNFL thickness changes pre and 3 months post filtration surgery for lowering the intraocular pressure. In their study 19 patients were included in whom the average RNFL thickness decreased from 59.58±17.59 microns to 57.19±14.97 microns contrary to our study. The thickness in four quadrants did not change significantly.

In a study,16 researchers evaluated the changes in RNFL after lowering of intraocular pressure either by medical or surgical means. They selected 21 patients and followed them before and after the glaucoma treatment. In their study, lowering the intraocular pressure either medically or surgically did not affect the average RNFL thickness. Quadrant analysis also showed no noticeable change in RNFL thickness in all four quadrants.

Park and associates17 have studied the short term behavior of retinal nerve fiber layer on Heidelberg retinal tomography after glaucoma filtration surgery. They studied 13 eyes of 13 patients pre operatively and two months post operatively on Heidelberg retinal tomography. They noted that mean retinal nerve fiber layer thickness in those patients increased from 0.135±0.129 microns preoperatively to 0.162±0.091 microns after two months of surgery. The results of this study were synonymous with our research although the followup period was more in our study.

Yamada and colleagues18 used scanning laser polarimetry to evaluate the changes in retinal nerve fiber layer after glaucoma filtration surgery. They selected 46 eyes of 46 patients who had undergone uneventful filtration surgery resulting greater than 30% reduction of intraocular pressure. They concluded that postoperatively the retinal nerve fiber layer thickness increased in superotemporal and inferotemporal regions and this increase was statistically significant (P<0.05). Present study also showed a statistically significant increase in RNFL thickness after surgical therapy.

In a study,19 researchers have studied the retinal nerve fiber layer changes on optical coherence tomography after trabeculectomy. They noted a statistically significant increase in retinal nerve fiber layer thickness after trabeculectomy (P<0.0001). This study showed similar results to above mentioned research although no comparisons with medical therapy were made. Quadrant wise analysis also showed a significant elevation in retinal nerve fiber layer thickness in superior, temporal and nasal segments.

Koraszewska-Matuszeuska and associates20 have studied the changes in retinal nerve fiber layer inpatients of

| Table III: Pre and Post-operative Retinal Nerve Fiber Layer Thickness Profiles in Both Groups |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Variable | Group A (n=30) | Group B (n=30) | P-value** | |
| Pre-Treatment RNFL Thickness | Post-Treatment RNFL Thickness | Pre-Treatment RNFL Thickness | Post-Treatment RNFL Thickness | |
| (μ) | (μ) | (μ) | (μ) | |
| Male (n=30) | 0.201±0.175 | 0.226±0.155 | <0.001 | 0.211±0.018 |
| Female (n=30) | 0.205±0.159 | 0.233±0.019 | <0.001 | 0.201±0.015 |
| Hypertensive (n=14) | 0.193±0.015 | 0.223±0.013 | <0.001 | 0.214±0.015 |
| Non-Hypertensive (n=46) | 0.206±0.015 | 0.233±0.018 | <0.001 | 0.205±0.018 |
| Aged below 55 Years (n=30) | 0.208±0.015 | 0.232±0.021 | <0.001 | 0.206±0.017 |
| Aged 55 Years or above (n=30) | 0.196±0.016 | 0.228±0.015 | <0.001 | 0.209±0.019 |

*Retinal Nerve Fiber Layer; **Paired Sample T-test
juvenile glaucoma after filtration surgery for lowering the intraocular pressure. In their study, average RNFL thickness increased from 60.61 microns to 63.09 microns after surgery. Also average superior half thickness increased from 74.14 microns to 78.33 microns and in inferior half it increased from 70.54 microns to 72.42 microns. Though this study was conducted on patients of juvenile glaucoma in contrast to our study population of adult onset glaucoma, the results are strikingly aligned.

Rebolleda G studied the changes in retinal nerve fiber layer thickness after deep sclerectomy for lowering the intraocular pressure. They did not found any statistically significant changes in RNFL after sclerectomy.

Our study sample size was 60 with a single followup at 3 months which is small enough to make conclusive recommendations on the effects of glaucoma therapy on thickness of retinal nerve fiber layer. However, it gives an idea on which large randomized controlled trials with longer duration and multiple follow-ups can be based for a better understanding.

CONCLUSION

Surgical management (trabeculectomy) leads to more increase in retinal nerve fiber layer thickness as compared to medical therapy.

REFERENCES

1. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: A review. JAMA 2014;311(18):1901-11. DOI: 10.1001/jama.2014.3192.
2. Vranka JA, Kelley MJ, Acott TS, Keller KE. Extra cellular matrix in trabecular meshwork: Intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res 2015;133:112-25. DOI: 10.1016/j.exer.2014.07.014.
3. Gracitelli CPB, Abe RY, Tatham AJ, Rosen PN, Zangwill LM, Boer ER et al. Association between progressive retinal nerve fiber layer loss and longitudinal changes in quality of life in glaucoma. JAMA Ophthalmol 2015;133(4):384-90. DOI: 10.1001/jamaophthalmol.2014.5319.
4. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014;121(11):2081-90. DOI: 10.1016/j.ophtha.2014.05.013.
5. Kapetanakis VV, Chan MPY, Foster PJ, Cook DJ, Owen CG, Rudnicka AR. Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): A systematic review and metaanalysis. Br J Ophthalmol 2016;100:86-93. DOI: 10.1136/bjophthalmol-2015-307223.
6. Schultz SK, Iverson SM, Shi W, Greenfield DS. Achieving single-digit intraocular pressure targets with filtration surgery in eyes with progressive normal tension glaucoma. J Glaucoma 2016;25(2):217-22. DOI: 10.1097/IJG.000000000000145.
7. Quaranta L, Riva I, Gerardi C, Oddone F, Floriano I, Konstas AGP. Quality of life in glaucoma: A review of the literature. Adv Therap 2016;33(6):959-81. DOI: 10.1007/s12325-016-0333-6.
8. Behzad A, Lin SC, Ying H, Jane K. A role for antimitabolites in glaucoma tube surgery: Current evidence and future directions. Curr Opin Ophthalmol 2016;27(2):164-9. DOI: 10.1097/ICO.0000000000000244.
9. Harwerth RS, Quigley HA. Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol 2006;124(6):853-9. DOI: 10.1001/archopht.124.6.853.
10. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 2016;123(12):2498-508. DOI: 10.1016/j.ophtha.2016.08.041.
11. Mendez-Hernandez C, Rodriguez-Unah I, Rosa MG, Arribas-Pardo P, Garcia-Feijoo J. Glaucoma diagnostic capacity of optic nerve head haemoglobin measures compared with spectral domain OCT and HRT III confocal tomography. Act Ophthalmol 2016;94(7):697-704. DOI: 10.1111/aos.13050.
12. Banister K, Boachie C, Bourne R, Cook J, Burr JM, Burr JM, et al. Can automated imaging for optic disc and retinal nerve fiber layer analysis aid glaucoma detection. Ophthalmolodogy 2016;123(5):930-8. DOI: 10.1016/j.ophtha.2016.01.041.
13. Laura SH, Wolfgang S, Robert L, Folkert H, Anslem J, Kruse FE, et al. Confocal laser scanning tomography to predict visual field conversion in patients with ocular hypertension and early glaucoma. J Glaucoma 2016;25(4):371-6. DOI: 10.1097/JG.0000000000000171.
14. Raghu N, Pandav SS, Kaushik S, Ichhpujani P, Gupta A. Effect of trabeculectomy on RNFL thickness and optic disc parameters using optical coherence tomography. Eye 2012;26(8):1131-7. DOI: 10.1038/eye.2012.115.
15. Maneesang S, Jatutong O, Lemsoomboon W. The assessment of retinal nerve fiber layer thickness changing after glaucoma surgery by Optical Coherence Tomography, Pharmongkutklao Hospital. J Med Assoc Thai 2012;95(5):75-9.
16. Chang PT, Sekhon N, Budenz DL, Feuer WJ, Park PW, Anderson DR. Effect of lowering intraocular pressure on Optical Coherence Tomography measurement of peripapillary retinal nerve fiber layer thickness. Ophthalmology 2007;114(12):2252-8. DOI: 10.4103/0974-620x.127910.
17. Park KH, Kim DM, Youn DH. Short term change of optic nerve head topography after trabeculectomy in adult glaucoma patients as measured by Heidelberg retinal tomograph. Korean J Ophthalmol 1997;11:1-6. DOI: 10.3341/
kjo.1997.11.1.1.

18. Yamada N, Tomita G, Yamamoto T, Kitazawa Y. Changes in nerve fiber layer thickness following a reduction of intraocular pressure after trabeculectomy. J Glaucoma 2000;9(5):371-5. DOI: 10.1097/00061198-200000000-00005.

19. Aydin A, Wollstein G, Price LL, Fujimoto JG, Schumann JS. Optical coherence tomography assessment of retinal nerve fiber layer thickness changes after glaucoma surgery. Ophthalmology 2003;110(8):1506-11. DOI: 10.1016/S0161-6420(03)00493-7.

20. Koraszewska-Matuszeuska B, Samochowiec-Donocik E. Evaluation of retinal nerve fiber layer thickness in eyes with juvenile glaucoma after trabeculectomy. Klin Oczna 2004;106(suppl 3):443-4.

21. Rebolledo G, Munoz-Negrete FJ, Noval S. Evaluation of changes in peripapillary nerve fiber layer thickness after deep sclerectomy with optical coherence tomography. Ophthalmology 2007;114(3):488-93. DOI: 10.1016/j.ophtha.2006.06.051.

AUTHORS’ CONTRIBUTIONS

Following authors have made substantial contributions to the manuscript as under:

AR: Conception and study design, acquisition of data, drafting the manuscript, final approval of the version to be published

AAK: Acquisition of data, critical review, final approval of the version to be published

MS: Analysis and interpretation of data, drafting the manuscript, final approval of the version to be published

Authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

CONFLICT OF INTEREST

Authors declared no conflict of interest

GRANT SUPPORT AND FINANCIAL DISCLOSURE

NIL

DATA SHARING STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non Commercial 2.0 Generic License.

KMUJ web address: www.kmuj.kmu.edu.pk
Email address: kmuj@kmu.edu.pk