Indistinguishability and correlations of photons generated by quantum emitters undergoing spectral diffusion

Konstantin E. Dorfman & Shaul Mukamel

University of California, Irvine, California 92697-2025.

Photon-based quantum information processing is based on manipulating multi photon interference. We focus on the Hong-Ou-Mandel (HOM) dip in the photon coincidence rate which provides a direct measure of interference of indistinguishable photons linked to their Bose statistics. The effect has been first observed with entangled photons generated by parametric down conversion and then extended to independent emitters. Fluctuations caused by coupling between emitters and a bath can erode the interference which causes the dip. Here we show how the magnitude and shape of the HOM dip is affected by spectral diffusion induced by coupling to a brownian oscillator bath. Conditions for maintaining and controlling the interference are specified.

The ultrafast optical control of quantum interference of single photons is of fundamental interest with broad applications to entanglement generation\(^1\), quantum computing\(^2\)–\(^4\), communication\(^5\), and information processing\(^6\)–\(^8\). The HOM dip in the photon coincidence counting (PCC) rate\(^9\) is an ultimate measure of photon indistinguishability\(^9,10\). It has been observed in a broad variety of systems including remote frequency-detuned organic molecules\(^11,12\), quantum wells\(^13\), quantum dots\(^14\)–\(^16\), nano crystals\(^17\), nitrogen vacancies in diamond\(^18\)–\(^20\) and carbon nanotubes\(^21\). We examine photon interference in the setup shown in Fig. 1a. A pair of photons is generated by two remote two-level molecules \(a\) and \(b\) with ground \(g\) and excited state \(e\) for \(a\) and \(b\). These photons then enter a beam splitter and are subsequently registered by time-and-frequency gated detectors \(s\) and \(r\). There are two types of possible outcomes: two photons registered in one detector (\(s\) or \(r\)) or coincidence where one photon is detected in each. The ratio between these outcomes reflects the Bose statistics and degree of distinguishability of photons. If the two photons incident on the beam splitter are indistinguishable the PCC vanishes. This is known as the HOM dip. The dip is displayed by varying the position of the beam splitter which causes delay \(T\) between the two photons. The normalized PCC rate varies between 1 for completely distinguishable photons and 0 when they are totally indistinguishable. For classical fields and 50\%:50 beam splitter the PCC rate may not be less than 1/2. We denote the photons to be indistinguishable (distinguishable) if the PCC rate is smaller (larger) than 1/2.

PCC is typically measured using pure time-domain detection\(^22,23\). Originally performed with entangled photons generated by parametric down conversion (PDC)\(^1\) the shape of the dip vs delay is usually related to the two-photon state envelope which is governed by an effective PDC Hamiltonian\(^24\). Bath induced fluctuations can become important for remote emitters and have been introduced phenomenologically\(^25\). Here we present a microscopic theory for PCC with bath fluctuations by formulating the signal in the joint field-matter space.

Results

Generation and detection of PCC by two remote emitters. The time-and-frequency gated PCC signal is described by the two pairs of loop diagrams shown in Fig. 1c. Each loop represents molecule (\(a\) or \(b\)) which undergoes four field-matter interactions and each detector interacts twice with the field. Fig. 1c shows that after interacting with pump (with its ket) at time \(t_2\) molecule \(a\) evolves in the coherence \(\rho_{eg}\) during time interval \(t'_2\). The second interaction of the pump with the bra then brings the molecule into a population state \(\rho_{gg}\) which evolves during interval \(t_1\) until the first interaction with spontaneous emission mode occurs with ket. The molecule then evolves into the coherence \(\rho_{ega}\) during \(t'_1\) until the second bra-interaction of spontaneous mode. During population and coherence periods, the characteristic timescale of the dynamics is governed by population relaxation and dephasing, respectively.
All relevant single-molecule information is given by the four point dipole correlation function $F_a(t_1, t_2, t_3, t_4) = \langle V_{ge}(t_1) V_{qg}^+(t_2) V_{ge}(t_3) V_{qg}^+(t_4) \rangle_a$, where V and V' are the lowering and raising dipole transition operators, respectively. Diagrams i in Fig. 1c represent non-interfering term given by a product of two independent fluorescence contributions of the individual molecules. Diagrams ii represent interference described in the joint space of the two molecules and involve the interference of eight quantum pathways (four with the bra and four with the ket) with different time orderings. Each molecule creates a coherence in the field between states with zero and one photon $|0\rangle_1 \leftrightarrow |1\rangle_0$. By combining the contributions from a pair of molecules we obtain a photon population $|1\rangle_1 \leftrightarrow |1\rangle_0$ that can be detected. We focus on the SD in the “hole burning” limit (HBL) (see Methods for the precise conditions and Section S3 of SI). This is relevant to the crystals which store information in the form of reversible notches that are created in their optical absorption spectra at specific frequencies. Long storage times, high efficiencies, and many photon qubits in each crystal can be achieved in this limit.

We have calculated the PCC signal (see Methods) for the output fields E_3 and E_4 of the beam splitter (see Fig. 1a) that contains all relevant field matter interactions (see Section S3 of SI) using the SD in HBL. It first assumes that the dephasing is much faster than the fluctuation timescale, i.e. $t^{'}_k \ll \Lambda^{-1}_k$, $k = 1, 2, 3, 4$. Second, if excitation pulse duration σ^{-1}_p and the inverse spectral σ^{-1}_s, and temporal σ^{-1}_t, $j = r, s$ gate bandwidths of the detectors and much shorter than the fluctuation time scales, one may neglect the dynamics during the delay between population evolution and its detection. Under these conditions the PCC signal is given by
Figure 2 | Effect of gating spectrograms on photon indistinguishability in the absence of spectral diffusion. PCC signal for $\Lambda_a = \Lambda_b = 0$ given by Eq. (4) vs the delay between the detection $t_s = t_r$ for different values of the time - (a) and frequency - (b) gating bandwidths for the fixed frequency $\sigma_{t} = 1$ MHz - (a) and time $\sigma_{f} = 1$ MHz - (b) bandwidths, $j = r, s$. The parameters are chosen as $\omega_{p}^{s} = 3.2$ GHz, $\omega_{p}^{0} - \omega_{p}^{s} = 10$ MHz, $T = 10$ ns, $\sigma_{p} = 3$ MHz, $\Delta_a = \Delta_b = 25$ MHz, $\omega_{p} = \omega_{p}^{0} + \lambda_{b}$.

$$R^{4d}(\Gamma, \Gamma; T) = R_0 C_{a}^{s}(\Gamma_{c}) C_{b}^{s}(\Gamma_{c}) \times \left[1 - \frac{U_{r}^{s}(\Gamma, t_{s} - T) U_{r}^{s}(\Gamma, t_{r}, T)}{C_{r}^{s}(\Gamma_{c}) C_{r}^{s}(\Gamma_{c})} \cos U(\Gamma, \Gamma; T) e^{-\Gamma t_{s} - T} \right] e^{-\Gamma t_{r} - T}$$

(1)

where expressions in the last line represent permutation of the molecules a and b, $\Gamma_{c} = \{ \tilde{t}_b, \tilde{t}_r \}$ represents a set of gating parameters for the detector $j = r, s$, $C_{a}^{s}(\Gamma_{c})$ is the time-and-frequency resolved fluorescence of molecule a, b corresponding to diagram i in Fig. 1c.

$$C_{a}^{s}(t, \omega) = C_{a0}^{s}(t)e^{-\frac{(\omega_{p}^{0} - \omega)^{2}}{2\sigma_{t}^{2}} - \frac{(\omega_{p}^{0} - \omega)^{2}}{2\sigma_{f}^{2}}},$$

(2)

$\omega_{p}^{s} = \omega_{p}^{0} - \lambda_{b}$ is the mean absorption and fluorescence frequency. $U_{r}^{s}(\Gamma_{c}, t_{s} - T)$ and $U_{r}^{s}(\Gamma_{c}, t_{r} - T)$ are the interference contribution $\pi = a, b, j = r, s$ corresponding to diagram ii in Fig. 1c

$$U_{r}^{s}(\Gamma_{c}, t_{s} - T) = U_{r}^{s}(t_{s} - T) e^{-\frac{(\omega_{p}^{s} - \omega)^{2}}{2\sigma_{t}^{2}} - \frac{(\omega_{p}^{s} - \omega)^{2}}{2\sigma_{f}^{2}}}$$

(3)

$$U(\Gamma_{r}, \Gamma_{s}; t) = \omega_{p}(\tilde{t}_r - t) + \omega_{p}(\tilde{t}_s - t) + \alpha(\Delta_{A}^{s}/\Delta_{A})[2F_{s}(\tilde{t}_r) - F_{s}(\tilde{t}_s)] + F_{s}(\tilde{t}_r - t) - (a = b, r = s),$$

$F_{s}(t) = e^{-\Lambda_{f} t + \Lambda_{s} t - 1}, \alpha = a, b$ and all the remaining parameters are listed in Eqs. (S24)–(S31) of the SI. The contribution of Eq. (2) enters signal in Eq. (1) as the amplitude square coming from each molecule in the presence of fluctuations. The interference term (3) generally cannot be recast as a product of two amplitudes. The following we simulate the results of Eqs. (1)–(3) using the typical parameters of the TPI experiments.

Variation of the HOM dip with gating. We first examine the effect of time and frequency gating on photon indistinguishability and PCC. In the absence of the SD and using identical detectors $\sigma_{t}^{a} = \sigma_{t}^{b}$, $\sigma_{f}^{a} = \sigma_{f}^{b}$ the signal (1) for $t_{j} = t_{s} - t_{r}$ is reduced to

$$R^{4d}(\Gamma; T) \sim 1 - \eta \cos(\omega_{ab} t_{d} + \Omega_{c} T) e^{-\frac{\gamma T^{2}}{2} - \frac{1}{2}(\Delta_{c}^{2} + \Delta_{s}^{2}) T^{2} - \frac{1}{2}(\Delta_{c}^{2} + \Delta_{s}^{2}) T^{2}}$$

(4)

where the parameters η, Ω_{c} and σ_{f} are given in Eqs. (S32)–(S35) of the SI. Eq. (4) is commonly derived in the field space alone by adding a phenomenological Gaussian function of the time delay. In the present analysis the Gaussian shape is characteristic to the harmonic bath.

Fig. 2a depicts Eq. (4) vs the delay between detectors $\tilde{t}_s - \tilde{t}_r$ for different values of the time gate bandwidth σ_{f} and fixed spectral gate bandwidth σ_{p}. If the time gate bandwidth is smaller than the splitting $\omega_{p}^{0} - \omega_{p}^{s} = 10$ MHz the HOM dip is shallow and does not go below 1/2 which implies that photons generated by the two molecules are distinguishable. If the time gate bandwidth is larger than the splitting, the HOM dip drops below 1/2 indicating that the photons are indistinguishable. Similarly in Fig. 2b we fix the time gate bandwidth σ_{f} and vary the frequency gate σ_{p}. As σ_{p} is increased the photons gradually become more indistinguishable and the dip becomes larger. In the original HOM experiment the PCC was plotted vs the delay T. Here we fix T and vary the delay between the detectors $t_{j} = t_{s} - t_{r}$. In the absence of fluctuations both T and t_{d} enter the signal (4) in a similar way. However once fluctuations are included Eq. (1), t_{d} is directly connected to fluctuations whereas the delay T is not. Below we study the PCC variation with t_{d} holding T fixed.

Narrowband spectral filters are typically used in the experiments with broadband laser pulses. The broadband excitations degrade the quantum interference. This can be easily explained since the in addition to selecting a well defined frequency, the narrow frequency gate makes the ultrashort pulse longer and therefore two such photons are more likely to overlap in time and harder to distinguish, enhancing the HOM dip. In the present application we use narrowband excitation pulse and the degree of distinguishability is controlled by the interplay of spectral and temporal gating widths through the Wigner function. Therefore if the time gate is narrow, the broad frequency gate makes photons less distinguishable increasing the visibility of HOM dip.

Time-and-frequency resolved fluorescence with spectral diffusion. The simplest way to observe SD is by time-and-frequency resolved fluorescence. The molecular transition frequency is coupled linearly to an overdamped Brownian oscillator that represents the bath (see Fig. 1b). The absorption and emission lineshape functions for a pair of molecules are given by

$$R^{4d}(t, T) \sim 1 - \eta \cos(\omega_{ab} t_{d} + \Omega_{c} T) e^{-\frac{\gamma T^{2}}{2} - \frac{1}{2}(\Delta_{c}^{2} + \Delta_{s}^{2}) T^{2} - \frac{1}{2}(\Delta_{c}^{2} + \Delta_{s}^{2}) T^{2}}$$

(4)
of Eq. (2) is given in Fig. 3e. Fig. 3d and 3f show the same signals for molecule b. Because of the different reorganization energies λ_a, λ_b and relaxation rates Λ_a, Λ_b the Stokes shift dynamics and dispersion are different. Even when the absorption frequencies are the same $\omega_a =\omega_b$ the fluorescence can show a different profile due to SD. This affects the distinguishability of the emitted photons as will be demonstrated below.

Combined effect of gating and SD on the HOM dip. We depict the 2D fluorescence (2) in Fig. 4a. The vertical line marks the pump frequency $\omega_p = \omega_p^0$ - tuned midway between absorption and fluorescence at long time (see Eqs. (5-6)), the Stokes shift is ~ 1 kHz. Fig. 4b shows the same for $\omega_p = \omega_p^0 + \lambda_b$ where we have a larger Stokes shift ~ 2 kHz. At $\omega_p = \omega_p^0 + 2\lambda_b$ the Stokes shift ~ 3 kHz as shown in Fig. 4c. Fig. 4d-f show the PCC signal (1) for the parameters corresponding to Fig. 4a-c, respectively. The HOM dip is less pronounced as the degree of indistinguishability drops from 0.275 - Fig. 4d, to 0.3 - Fig. 4e further to 0.375 in Fig. 4f.

The distinguishibility is also affected by the molecular transition frequencies. Fig. 4g shows that for fixed time and frequency gate bandwidths $\sigma_p = \sigma_p^0 = 100$ MHz, $j = r, s$ the photons are distinguishable as long as $\omega_k^0 - \omega_k^b > 110$ MHz and are indistinguishable otherwise. The effect of the time delay T caused by the position of the beam splitter is depicted in Fig. 4h. For $T < 10$ ns (>100 MHz bandwidth) the photons are indistinguishable, after that they become distinguishable. The SD timescale is one the key parameters affecting the degree of indistinguishability. Using Eq. (12) we fixed the absorption linewidth Γ_a and varied Λ_a and Δ_a the PCC signal (1) depicted in Fig. 4i shows that if the molecules have nearly degenerate transition frequencies $\omega_k^b - \omega_k^a = 1$ MHz for slower fluctuations $\Lambda_a = 0.5$ MHz, $\Lambda_b = 1$ MHz the photons are indistinguishable. Increasing the SD rate of one of the molecules increases the degree of distinguishability, e.g. for $\Lambda_a = 10$ MHz the HOM dip becomes 0.225, which is still less than classical 1/2 limit. However for fast SD $\Lambda_a = 18$ MHz, the HOM dip becomes 0.625 and photons are clearly distinguishable even though both time and frequency gates are broader than the difference in transition frequencies.

We further illustrate the effect of frequency and time gating in the presence of spectral diffusion. Fig. 4j shows that if two molecules have different SD timescales ($\Lambda_a = 15$ MHz and $\Lambda_b = 1$ MHz) and the frequency gate bandwidth is narrow ($\sigma_p = 50$ MHz) the photons are rendered distinguishable and HOM dip is 0.6. By increasing the σ_p the photons become indistinguishable and HOM dip is 0.48 for $\sigma_p = 120$ MHz and 0.35 for $\sigma_p = 200$ MHz. In all three cases we kept the time gate fixed at $\sigma_T = 100$ MHz. Alternatively we change the time gate bandwidth while keeping the frequency gate fixed at $\sigma_p = 100$ MHz. Fig. 4k shows that initially indistinguishable photons at $\sigma_T = 80$ MHz with HOM dip 0.675 become indistinguishable at $\sigma_T = 110$ MHz with HOM dip 0.45 and at $\sigma_T = 150$ MHz with HOM dip 0.275. Thus, if the presence of the bath erodes the HOM dip the manipulation of the detection gating allows to preserve the quantum interference.

Discussion

To put our ideas into more practical perspective and connect with quantum processing technologies, we note that recent progress in long-term quantum memories using HBL where entanglement is achieved with telecom photons, proved the possibility of quantum internet[20,21]. Simultaneous time and frequency detection can be achieved using high-speed photodiode which converts fast optical signal into a fast electrical signal, fast oscilloscopes to observe the waveform, wide bandwidth spectrum analyzers and other elements. Short pulse characterization using time-frequency map such as frequency-resolved optical gating (FROG)20, spectral phase interferometry for direct-field reconstruction (SPIDER)22 are well established tools for ultrafast metrology23,24. Extending these techniques to a single photon time and frequency resolved detection is challenging.
and can be achieved if combined with on-chip tunable detectors or upconversion processes.

In summary, we have employed a time-ordered superoperator Green's function formalism to calculate the PCC from two remote emitters coupled to a bath. In the absence of a bath, time gating is sufficient to reveal quantum interference. Even if the emitters have well-resolved transition frequencies with splitting $\Delta \omega$ quantum interference manifests if the temporal resolution Δt is higher than $2\pi/\Delta \omega$. Once the bath is included, time- and-frequency gating is necessary to resolve the dip. We showed how various model parameters affect the indistinguishability.

Methods

Coincidence measurements. The PCC signal is defined via the four point correlation function of the time- and-frequency gated electromagnetic fields E_j and E_i incident on the detector:

$$R_4^{(j)}(\Gamma ; \Gamma') = \int_{-\infty}^{\infty} dt_i \int_{-\infty}^{\infty} dt_j \int_{-\infty}^{\infty} dt_k \int_{-\infty}^{\infty} dt_l \langle E_i^{(j)}(t_i) E_i^{(j)}(t_i) E_j^{(j)}(t_j) E_j^{(j)}(t_l) \rangle. \quad (7)$$

where $\langle \ldots \rangle \equiv \text{tr}(\ldots \rho)$ is tracing with respect to ρ - the total field plus matter density operator. The fields in the output 3, 4 and input 1, 2 ports of the 50:50 beamsplitter are related by

$$E_3(t) = E_j(t) - E_j(t+T) \frac{1}{\sqrt{2}}, \quad E_4(t) = E_i(t) - E_i(t-T) \frac{1}{\sqrt{2}}, \quad (8)$$

where $\pm \delta t$ is small difference of path length in the two arms. In Section S1 and S3 of the SI we show that Eq. (7) may be recast as

$$R_4^{(j)}(\Gamma ; \Gamma') = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\Gamma \int_{-\infty}^{\infty} d\Gamma'$$

$$W_{p_0}(\Gamma, \Gamma'; 0) W_{p_0}(\Gamma, \Gamma'; 0) R_{p_0}(\Gamma, \Gamma') +$$

$$W_{p_0}(\Gamma, \Gamma'; -T) W_{p_0}(\Gamma, \Gamma'; T) R_{p_0}(\Gamma, \Gamma'; 0)$$

$$+ (s \leftrightarrow r, T \leftrightarrow -T). \quad (9)$$

Here $\Gamma = \{ \ell, s, r \}$ represents the set of parameters of the matter plus field incident on the detector $j = s, r, s$. Eq. (9) is given by the spectral and temporal overlap of the Wigner function $W_{p_0}(\Gamma, \Gamma')$, Eq. (S3) (Section S1) and bare signal pathways R_{p_0} and $R_{p_0}^{(S1)}$ (Section S1) of SI. The detector provides a window of observation centered at time t_i and frequency ω_i, $j = s, r, s$ and ω_i can be varied independently. However, the temporal $\partial E_0^{(j)} / \partial t_i$ and spectral $\partial E_0^{(j)} / \partial \omega_i$ resolutions are not independent and must satisfy $\partial E_0^{(j)} / \partial t_i \geq 1^{\omega_i}$. We assume a point-size detector and omit all effects of spatial resolution only retaining temporal and spectral gating.
Spectral diffusion. For an electronic system coupled to a harmonic bath the matter correlation function obtained by the second order cumulant expansion (see Section S2 of SI)

\[F_2(t_2,t_1) = \langle \hat{a}^\dagger(t_2) \hat{a}(t_1) \hat{a}(t_1) \hat{a}^\dagger(t_2) \rangle , \tag{10} \]

where \(\omega_\text{a} \) is \(\omega_\text{a} \), is the absorption frequency, \(\Phi_0(t_1,t_2,t_3,t_4) \) is the four-point lineshape function \(\Phi_0(t_1,t_2,t_3,t_4) = g_\text{a}(t_2-t_1) \cdot g_\text{a}(t_4-t_3) \cdot g_\text{a}(t_1-t_3) \cdot g_\text{a}(t_1-t_4) \). We shall use the overdamped Brownian oscillator model for the spectral density. The lineshape function then depends on two parameters: the reorganization energy \(\lambda_\text{a} \), and the fluctuation relaxation rate \(\Lambda_\text{a} \) (see Section S2 of the SI) in the high temperature limit \(k_B T >> h \omega_\text{e} \), we have

\[g_\text{a}(t) = \frac{\lambda_\text{a}^2}{\Lambda_\text{a}} \left(e^{-\lambda_\text{a} t/\Lambda_\text{a}} + 1 \right) . \tag{11} \]

For a given magnitude of fluctuations \(\Lambda_\text{a} \), \(a = a(\Lambda_\text{a}) \), the FWHM of the absorption linewidth \[\Gamma_\text{a} = 2.355 + 1.76(\lambda_\text{a}/\Lambda_\text{a}) + 0.88(\lambda_\text{a}/\Lambda_\text{a})^2 \Lambda_\text{a} . \tag{12} \]

1. Hong, C. K., Ou, Z. Y. & Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
2. Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
3. O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2003).
4. Pooley, M. A. et al. Controlled-not gate operating with single photons. Appl. Phys. Lett. 101, 211103 (2012).
5. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H. & Zeilinger, A. Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000).
6. Braunstein, S. L. & Kimble, H. J. Dense coding for continuous variables. Phys. Rev. A 61, 042302 (2000).
7. Peruzzo, A., Liang, P. A., Politi, A., Rudolph, T. & O’Brien, J. L. Multimode quantum interference of photons in multiphoton integrated devices. Nat. Commun. 2, 224 (2011).
8. Bylander, I., Robert-Philip, I. & Abram, I. Interference and correlation of two independent photons. Eur. Phys. J. D 22, 295–301 (2003).
9. Legero, T., Wilk, T., Kuhn, A. & Rempe, G. Time-resolved two-photon quantum interference. Appl. Phys. B 77, 797–802 (2003).
10. Trebšia, J.-B., Tamarat, P. & Lounis, B. Indistinguishable near-infrared single photons from an individual organic molecule. Phys. Rev. A 82, 063803 (2010).
11. Lettow, R. et al. Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett. 104, 123605 (2010).
12. Sanaka, K. et al. Entangling single photons from independently tuned semiconductor nanomitters. Nano Lett. 12, 4611–4616 (2012).
13. Santori, C., Fattiov, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).
14. Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photon. 4, 632–635 (2010).
15. Ates, S. et al. Two-photon interference using background-free quantum frequency conversion of single photons emitted by an inas quantum dot. Phys. Rev. Lett. 109, 147405 (2012).
16. Cullen, L., Brokmann, X., Spinicelli, P. & Hermere, J.-P. Emission characterization of a single cdse-zns nanocrystal with high temporal and spectral resolution by photoluminescence autocorrelation spectroscopy. Phys. Rev. Lett. 100, 027403 (2008).
17. Bernien, H. et al. Two-photon quantum interference from separate nitrogen vacancy centers in diamond. Phys. Rev. Lett. 108, 043604 (2012).
18. Sipahigil, A. et al. Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 108, 143601 (2012).
19. Woltzers, J., Sadaiz, N., Schell, A. W., Schröder, T. & Benson, O. Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry. Phys. Rev. Lett. 110, 027401 (2013).
20. Walden-Newman, W., Surpaya, I. & Strauf, S. Quantum light signatures and nanoscale spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett. 12, 1934–1941 (2012).
21. Glauber, R. Quantum Theory of Optical Coherence: Selected Papers and Lectures. (Wiley, 2007).
22.erry, C. & Knight, P. Introductory Quantum Optics. (Cambridge University Press, 2003).
23. Dorfman, K. E. & Mukamel, S. Photon coincidence counting in parametric down-conversion: Interference of field-matter quantum pathways. Phys. Rev. A 86, 023805 (2012).