Boxer crabs induce asexual reproduction of their associated sea anemones by splitting and intraspecific theft

Yisrael Schnytzer Corresp. 1, Yaniv Giman 1, Ilan Karplus 2, Yair Achituv 1

1 The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
2 Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel

Corresponding Author: Yisrael Schnytzer
Email address: newsroolchy@gmail.com

Crabs of the genus Lybia have the remarkable habit of holding a sea anemone in each of their claws. This partnership appears to be obligate, at least on the part of the crab. The present study focuses on Lybia leptochelis from the Red Sea holding anemones of the genus Alicia (family Aliciidae). These anemones have not been found free living, only in association with L. leptochelis. In an attempt to understand how the crabs acquire them we conducted a series of behavioral experiments and molecular analyses. Laboratory observations showed that the removal of one anemone from a crab induces a “splitting” behavior, whereby the crab tears the remaining anemone into two similar parts, resulting in a complete anemone in each claw after regeneration. Furthermore, when two crabs, one holding anemones and one lacking them, are confronted, the crabs fight, almost always leading to the “theft” of a complete anemone or anemone fragment by the crab without them. Following this, crabs “split” their lone anemone into two. Individuals of Alicia sp. removed from freshly collected L. leptochelis were used for DNA analysis. By employing AFLP (Fluorescence Amplified Fragments Length Polymorphism) it was shown that each pair of anemones from a given crab is genetically identical. Furthermore, there is genetic identity between most pairs of anemone held by different crabs, with the others showing slight genetic differences. This is a unique case in which one animal induces asexual reproduction of another, consequently also affecting its genetic diversity.
Boxer crabs induce asexual reproduction of their associated sea anemones by splitting and intraspecific theft

Yisrael Schnytzer a, Yaniv Giman a, Ilan Karplus b and Yair Achituv a,*

a The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
b Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Israel

*Corresponding author:
Dr. Yisrael Schnytzer
The Mina & Everard Goodman Faculty of Life Sciences
Bar-Ilan University
Ramat-Gan 5290002
Israel
Tel. 972-3-5318570; Fax 972-3-7384058; Email: yair.achituv@biu.ac.il
ABSTRACT

Crabs of the genus *Lybia* have the remarkable habit of holding a sea anemone in each of their claws. This partnership appears to be obligate, at least on the part of the crab. The present study focuses on *Lybia leptochelis* from the Red Sea holding sea anemones of the genus *Alicia* (family Aliciidae). This species of sea anemone have not been found freely living, only in association with *L. leptochelis*. In an attempt to understand how the crabs acquire them, we conducted a series of behavioral experiments. Laboratory observations showed that the removal of one sea anemone from a crab induces a “splitting” behavior, whereby the crab tears the remaining sea anemone into two similar parts, resulting in a complete sea anemone in each claw after regeneration. Furthermore, when two crabs, one holding sea anemones and one lacking them, are confronted, the crabs fight, almost always leading to the “theft” of a complete sea anemone or sea anemone fragment by the crab without them. Individuals of *Alicia* sp. removed from freshly collected *L. leptochelis* were used for DNA analysis. By employing fluorescence amplified fragment length polymorphism (AFLP) it was shown that each pair of sea anemones from a given crab is genetically identical. Furthermore, there is genetic identity between most pairs of sea anemone held by different crabs, with the others showing slight genetic differences. This is a unique case in which one animal induces asexual reproduction of another and in doing so presumably limits the genetic diversity within a population of *Alicia* sp. held by boxer crabs.
Boxer crabs of the genus *Lybia* have the remarkable habit of carrying a sea anemone in each of its claws by means of delicate hooks, slightly embedded in the sea anemone column (Duerden 1905; Guinot 1976; Schnytzer et al. 2013). *Lybia* gain both nutritional and protective benefits from their sea anemones (Duerden 1905; Karplus et al. 1998; Schnytzer et al. 2013). Although crab-cnidarian associations are generally characterized by a small crab and a larger cnidarian associate who is regarded as the clear host (Thiel and Baeza 2001), in this case, the crab is the larger of the two associates, making the host-symbiont identification harder to define. Due to this "inverted" situation, the crab which is the larger of the two associates effectively controls the movement of its "host" sea anemone. Previous studies have often suggested that the crab-held sea anemones gain in addition to mobility, transport to further food sources and oxygen (Duerden, 1905; Karplus et al., 1998; Schnytzer et al. 2013). However, in a previous study, we showed that the crabs regulate the food intake of their sea anemones, and consequently control their growth, maintaining small, "bonsai" sea anemones for their use (Schnytzer et al. 2013).

The association between boxer crabs and sea anemones occurs in two genera, *Lybia* and *Polydectus*, both members of the subfamily Polydectinae Dana, 1852 (Guinot 1976; Guinot et al., 1995; Chen and Hsueh 2007). We studied *Lybia leptochelis* from the Red Sea. The sea anemones held by *L. leptochelis* have been identified as an unrecognized *Alicia* that has not been found freely living (D.G. Fautin and A.L. Crowther, pers. comms. 2008). The partnership between *L. leptochelis* and *Alicia* sp. appears to be obligate, at least on part of the crab, as we have never observed a crab in nature without sea anemones (n > 100), including juvenile crabs not long after settling from their planktonic larval stage (Schnytzer et al. 2013). In contrast to *L. leptochelis*, the sea anemone that is mostly associated with *Lybia* crabs is *Triactis producta* (Duerden 1905; Cutress 1977; Karplus et al. 1998). *T. producta* is widely distributed in tropical seas, and in the Red Sea it is found growing on the base of branching corals in shallow waters (Fishelson 1970; Persobs). Most *Lybia* inhabit the upper infralittoral zone in and around coral reefs, with access to *T. producta*, including *L. leptochelis*. However, in the Red Sea they are only found holding *Alicia* sp. (Schnytzer et al. 2013). When deprived of their sea anemones, the crabs make no use of their delicate claws but use their first walking legs, and sometimes the second and third ones, for the gathering of food and other behaviors usually performed by the claws (Duerden 1905; Karplus et al. 1998; Schnytzer et al. 2013). Crabs held in the laboratory without
sea anemones, but provided with *ad libitum* food are able to survive for several months (Schnytzer et al. 2013). However, due to their “sea anemone holding” adapted claws, their inability to gather food and defend themselves in typical crab fashion, makes them unlikely to survive for long in the wild without the sea anemones.

Sea anemones are diverse and successful anthozoans, found in all marine habitats and at all depths and latitudes. Their ecological success is undoubtedly enhanced by their propensity for engaging in symbiotic relationships with other animals, such as unicellular photosynthetic algae, hermit crabs, mollusks, and clown fish (Daly et al. 2008). The life cycles of many sea anemones regularly feature, along with sexual reproduction, some form of asexual propagation (reviews by Chia 1976; Shick 1991). The occurrence and mode of asexual propagation, whether via budding, fission, pedal laceration, or apomictic parthenogenesis, varies among families, genera, and even sister-species within the same genus (Chia 1976; Francis 1988; Shick 1991), suggesting that asexual multiplication has a complex evolutionary history among sea anemones (McFadden et al. 1997). Like many facultative asexual organisms (Hughes 1989), members of a given species of sea anemone can exhibit different life histories, as different as clonal versus solitary, in response to a combination of genetic and environmental variation (e.g. Sebens 1979, 1980; Shick et al. 1979; Bucklin 1985; Lin et al. 1992; Tsuchida and Potts 1994a, b). In this study, we investigated a unique behavior of forced asexual reproduction in a sea anemone by its crab symbiont.

Our laboratory observations have shown that the *Lybia* larvae hatch from their egg without sea anemones, ruling out vertical transfer. It has been anecdotally reported (Duerden 1905; Karplus et al. 1998) that *Lybia edmondsoni* tear *T. producta* into two fragments, which later regenerate. Karplus et al. (1998) observed that if *Lybia* lose both sea anemones it may resort to intraspecific theft. Sea anemone theft has been documented both in intraspecific (Giraud 2011) and interspecific (Ross 1979) hermit crab confrontations. This behavior is very size dependent, whereby the larger of the two crabs will succeed in stealing a sea anemone (Ross 1979; Giraud 2011).

In the present study, we examined three hypotheses: 1. the pair of sea anemone held by a crab is an outcome of splitting a single sea anemone; 2. crabs deprived of sea anemones will steal a whole sea anemone, or fragment, from a conspecific organism; 3. these interactions affect the genotype structure of field populations of sea anemones.
To test these hypotheses, we conducted behavioral experiments intended on empirically testing the anecdotal reports of sea anemone “splitting” and intraspecific theft. In addition, we performed a genetic analysis using amplified fragment length polymorphism (AFLP; Vos et al. 1995) of sea anemone pairs held by *L. leptochelis* right after collection from the sea to assess the genetic relationship between each pair and to the population as a whole. AFLP is an efficient, fast and low cost DNA fingerprinting method (Bensch and Åkesson 2005; Meudt and Clarke 2007), particularly when studying organisms with limited prior knowledge of their genome (Uthicke and Conand 2005). In addition, there is an increasing interest in the use of AFLP on marine invertebrates (Uthicke and Conand 2005; Peng et al. 2012; Goncalves et al. 2014), particularly cnidarians (Amar et al. 2008; Reitzel et al. 2008; Chomsky et al. 2009; Douek et al. 2011; Brazeau et al. 2013). If the crabs in nature behave like those observed in the laboratory, namely, frequent “splitting” and theft of sea anemones, we would expect to see high levels of genetic identity between each sea anemone pair. The ultimate aim of this study is to explore splitting and intraspecific theft, which forces asexual reproduction, consequently leading to reduced genetic variability in sea anemones held by boxer crabs.
Materials and methods

Collection of animals

Individuals of *Lybia leptochelis* and their symbiotic sea anemones *Alicia* sp. were collected from the shallow infra littoral zone at two separated beaches in Eilat, Israel during 2007-08 and again during 2013. The sites were approximately 3 km apart, Tur-Yam (29° 31' 49.69 N; 34° 55' 36.39" E) and Red Rock Beach (29° 31' 01.40" N; 34° 55' 13.34" E). Only intact crabs were collected. Oviparous females were not collected. Female crabs were observed carrying eggs from >4 mm carapace width (CW; unpublished data), and therefore female crabs at least this size were defined as adults. The collected crabs had a CW between 5 to 11 mm. The sea anemones held by the crabs were ≤ 2.5 mm pedal disc diameter (PDD). Using a small hand-held net, the crabs were collected and then individually placed in 0.5 L bottles filled with fresh sea water from the collection site, kept in a thermally insulated box and transported to Bar-Ilan University, Ramat Gan, Israel. The animals were collected and maintained within the guidelines of the Israel Nature and National Parks Authority (Permit no. 26103/2006/7/13).

Sea anemone removal

For the splitting experiment, each of the crabs had one sea anemone removed. For the theft experiment both sea anemones from half of the crabs were removed. The removal process was based on the protocol presented by Karplus et al. (1998). The crab was held in a glass Petri dish with enough sea water to cover it. The crab was then placed under a binocular microscope for constant monitoring. A solution of 7.5% MgCl$_2$ in distilled water was used to relax the sea anemones and prevent their contraction during removal. The solution was pipetted into the Petri dish in 500-μL increments every 2 min. Removal of the sea anemones took between 50 and 80 min. On some rare occasions, it was possible to remove the sea anemone from the crab's claws without MgCl$_2$ sedation. All the crabs, including those that did not have their sea anemones removed, were treated equally by the crab handler (i.e., sedation and contact with delicate forceps) to control for possible effects of crab "harassment".

Animal measurement
The crabs with and without sea anemones and the lone sea anemones were photographed in small Petri dishes half filled with water placed on millimeter paper. The sea anemones were photographed after settling on the bottom of the dish. The CW of each crab was measured from the two furthest points on each side of the carapace (anterolateral lobes), and the PDD of each sea anemone was measured using Image J (NIH freeware) software.

Experimental set up - general

All the crabs used for the behavioral experiments were individually maintained in the laboratory in small seven liter aquaria. Each aquarium was provided with a standard corner filter and a 5 cm long black PVC pipe lengthwise cut, which served as a shelter. The crabs and their sea anemones were fed every two days *ad libitum* with frozen adult *Artemia*. For further details of the general setup, day/night lighting regime, temperature and water quality in the aquaria see Schnytzer et al. (2013).

Crab sea anemone field data

Over the course of three years we documented the size of 54 *L. leptochelis*, 22 male and 32 females, which sea anemones they held and their size. We measured the crab and sea anemone sizes (as detailed above) right after collection from the sea.

Sea anemone splitting experiment

To empirically test the hypothesis that when left with one sea anemone, *L. leptochelis* will split the other, we conducted the following experiment: twenty two *L. leptochelis* (14 males and 8 females) had one sea anemone removed (as detailed above). We performed this for both left (10 trials) and right (12 trials) held sea anemones. Upon removal of one sea anemone, the crab was placed in a small aquarium (18×10×10 cm) and monitored with a video camera (VHS HI8, Sony or Lumix TS2, Panasonic) for a period of 2-3 hours. The trials were conducted in a closed room, behind a black curtain in order to minimize human interference. In the event that the crab split the sea anemone within this time frame the trial was terminated and the crab was returned to its normal holding aquarium. In the event that the crab did nothing, the video recording was terminated after three hours and the crab was returned to its normal holding aquarium. However, the crabs that did not split the sea anemone in the initial monitoring period were examined twice...
a day for a period of two weeks. In any event of splitting, the crabs and their sea anemones were measured 10-14 days after the splitting and their morphology was assessed for regeneration (base, column, mouth and tentacles). See above section for measurement details.

Sea anemone theft experiment

To assess the stealing behavior of *L. leptochelis*, 44 specimens of *L. leptochelis* were grouped into 22 pairs, comprising of crabs of similar size and same gender (14 male pairs and 8 female pairs; new cohort, not crabs used in previous splitting experiments). The crabs ranged in size from 4-10 mm CW, with a maximal difference of 0.3 mm between each pair. Male-female pair trials were conducted during the preliminary stages of the study. Their behavior was identical to same sex pairs. However, following sea anemone theft/attempts, the fight was often followed by mating. Thus, to avoid confounding behavioral factors, only same sex trials were conducted. Each crab was only tested once. Each pair consisted of one crab holding both of its sea anemones, and the other had both removed. The crabs without sea anemones had them removed between two to five days prior to the contest. All the crabs were handled in the same manner, even if sea anemones were not removed, to control for the harassment effect. White Styrofoam boards placed between each crab aquarium prevented the crabs from coming into visual contact with their conspecifics. A black canvas sheet was hung over the experimental setup, minimizing the visual contact between the observer and the animals. The rest of the holding conditions were as mentioned above. The contests were conducted in part under daylight conditions (14 trials), and in part under night conditions (8 trials). The night trials were conducted under a dim red light, as it does not appear to have an effect on their behavior (Schnytzer et al. 2013). In general, *Lybia* crabs are more active at night (Karplus et al. 1998; unpublished data). However, during the preliminary stages of this study we observed that the crabs were equally active when placed into the same small aquarium, so the trials were conducted under both light regimens. In the trials conducted under daylight conditions, identification of the individual crabs was conducted based on observable differences in their coloration. For the night trials, the crabs were marked with a small piece of plastic affixed to the dorsal surface of their carapace with a cyano-acrylate ester based adhesive (Super Glue).

In each trial, two crabs were introduced into an aquarium (23×23×20 cm), each inside a separate transparent glass cylinder on opposing sides of the aquarium. After 10 minutes of acclimation, the cylinders were slowly and simultaneously removed. In the event that no contact
was made between the crabs after a period of 45 minutes the trial was terminated. The behavioral interactions between the crabs were recorded with a digital video camera (VHS HI8, Sony or Lumix TS2, Panasonic). Typically, during the preliminary trials, we observed that after coming into contact, whether theft occurred or not, each crab would retreat into a corner of the aquarium and no longer approached the other, thus the trials were terminated at this stage. At the end of each trial, the crabs were returned to their original aquaria for a period of two weeks. During this period, daily observations were made for the monitoring of sea anemone splitting activity.

DNA extraction

For AFLP analysis, DNA was extracted from fresh material. Genomic DNA was extracted using a High Pure PCR Template Preparation Kit (Roche; Germany) according to the manufacturer’s protocol. Due to their small size, DNA was extracted from the entire sea anemone. DNA concentration was determined by a NanoDrop ND1000 (Thermo Fisher Scientific Inc. NY) at 260 nm.

Amplification and "fingerprinting"

Eight pairs of sea anemones removed from *L. leptochelis* from the two above mentioned Eilat beaches were analyzed (specimens 1–5 from Tur-Yam; 6–8 from Red-Rock Beach). We employed AFLP genotyping (Vos et al. 1995) with modifications according to Huys and Swings (1999) and Amar et al. (2008), in which radioactive labeling was replaced with fluorescent dyes. Restriction enzyme digests were performed on 250 ng of genomic DNA for 3 h at 37 °C using two restriction enzymes (MseI and EcoRI), followed by the ligation of respective double strand adapters (EcoRI adaptor E1-CTCGTAGACTGCGTACC and E2-AATTGGGTACGCAGTCTAC, and MseI adaptors M1- GACGATGAGTCCTGAGTAA and M2-TACTCAGGACTCAT). The E1 and M1 oligonucleotides were used as primers for pre-selective PCR amplification using 1 µl of ligation products for the second selective amplification. The PCR product was diluted 1:50, and 5 µl was used for the second amplification. We used three pairs of fluorescent labeled primers (VIC, FAM, and NED, Applied Biosystems, California, U.S.A) as follows:

(E=GACTGCGTACCAATTCCXXX and M=GATGAGTCCTGAGTAA+XXX) : VIC-E+ACC: 5' 3' with M+CTC: 5' 3'; NED- E+ACA: 5' 3' with M+CTC: 5' 3'; and FAM- E+AGC: 5' 3' with M+CTT: 5' 3'. The process was repeated twice (duplicates) for each sample to attain maximum accuracy.
AFLP analysis

DNA sequencing was performed at the Instrumentation and Service Center of the George S. Wise Faculty of Life Sciences, Tel-Aviv University. The samples were analyzed using a Genetic Analyzer 3100 (ABI PRISMA, Applied Biosystems). The samples were diluted and 0.3-0.5µl of size standard Lis 600 was added to the PCR product in the presence of formamide. Fluorescent-labeled PCR products appear as peaks and were first analyzed using GeneScan ABI PRISM 3.7 software (PE Biosystems; Oda et al. 1997) to determine peak sizes in base pairs, according to the size marker. Each PCR peak obtained from the samples was then aligned and converted into a binary system. The results were transferred to binary scores (0, 1) using AFLP Macro2 software. Nei’s genetic distance (Nei, 1978) was calculated using POPGENE version 1.31 (http://www.ualberta.ca/~fyeh). The binary results were then converted to NEXUS format and the maximum parsimony option of PAUP was used to build a dendrogram of the sea anemone population.

Statistical analysis

The sea anemone asymmetry index represents the relative difference in the pedal disc diameter of the two sea anemones held by a crab, either directly from the sea or those split in the lab. The sea anemone asymmetry index (\(\text{Ianem} \)) was calculated by subtracting the pedal disc diameter of the smaller sea anemone (PDDs) from the larger one (PDDb) and dividing the difference by the larger sea anemone pedal disc diameter.

\[
\text{Ianem} = \frac{(\text{PDDb} - \text{PDDs})}{\text{PDDb}}
\]

Correlation analyses between field collected crabs and sea anemone sizes (CW/mm for crabs and PDD/mm for sea anemones) was conducted by using a Pearson’s product moment correlation test. A Welch two sample t-test was used to test for differences between the size of male and female held sea anemones, to test whether or not gender has an effect on the asymmetry index. Binomial probability tests were carried out on the splitting and theft scores to determine whether the proportion of outcomes differed significantly from the expected 50% chance level. In the splitting experiment, multiple linear regression analyses were performed to assess the effect of crab gender, sea anemone size, and handedness on the time duration from the moment a sea anemone was removed until the remaining one was split. Further multiple regressions were done.
to test whether the asymmetry index was predicted by crab gender, time to split, sea anemones size and handedness. In the theft experiment, a multiple regression was performed to test if crab gender and fight outcome had an effect on fight duration. A two-way ANOVA was performed to test whether crab gender, initiator of fight (with or without sea anemones), or the interaction between them, had an effect on lag to start of fight. In case of non-normal distribution, data were log transformed. Data were checked for normality using a Kolmogorov-Smirnov test. All statistical tests used in this study employed a significance level of $\alpha = 0.05$. The analyses were conducted using SPSS 15.0 or R (https://www.r-project.org/).

Results

Crab-sea anemone field measurements

During the course of this study, all *L. leptochelis* collected or observed in nature, well over one hundred specimens, were found holding a pair of *Alicia* sp. (Fig.1). The sea anemones held in the left and right claws are significantly correlated in size (Pearson’s product-moment correlation, $r = 0.90$, $t_{52} = 14.883$, $P < 0.0001$; Fig. 2). In addition, the sea anemones significantly correlate to the size of the crab holding them (Pearson’s product-moment correlation, $r = 0.72$, $t_{52} = 7.4546$; $P < 0.0001$; Fig. 3). There is a highly significant difference between the size of sea anemones held by males ($X \pm SD = 1.37 \pm 0.51$ PDD/mm) vs. females ($X \pm SD = 1.92 \pm 0.57$ PDD/mm; Welch two sample t test; $t_{42.156} = 3.6513$, $P < 0.001$). In contrast, gender had no effect on the asymmetry index (male: $X \pm SD = 9.69 \pm 9.39$ %, female: $X \pm SD = 12.85 \pm 10.22$ %; Welch two sample t test, $t_{42.73} = 1.1513$, $P = 0.256$).

Sea anemone splitting experiment

Seventeen out of the twenty two crabs holding a single sea anemone split it within six days after the removal of one of their two sea anemones. The sea anemones were split into two clones which subsequently regenerated into two intact sea anemones (Table 1). The splitting behavior was a highly significant response to sea anemone removal, performed in 77% of the trials (binomial test, $P = 0.02$, $N = 22$). The five crabs that did not split their sea anemones within the two week duration of the experiment were composed of both large and small individuals of both
genders and their single sea anemone pedal disc diameter overlapped with that of sea anemones which were split by the crabs (Table 1).

Time from the removal of one sea anemone until the splitting of the remaining one was highly variable, ranging from one hour to six days with a mean (±SD) of 29.2 ± 35.2 hours until sea anemone splitting. Time to split was not well predicted by crab gender (males: X ± SD = 25.5 ± 41.32 min; females: X ± SD = 36.0 ± 21.5 min), sea anemone size or handedness (multiple linear regression; Table 2A).

The actual splitting process was observed several times in its entirety and lasted between 1 min and over 2 hours. Typically, the actual process of splitting lasted approximately 20 minutes, taking the following course: the crab held the sea anemone across the column, with the pedal disc facing upward and the oral disc and tentacles facing downward. The crab then took hold of the sea anemone with its free claw, thus holding the sea anemone in the aforementioned downward conformation between both claws (Fig. 4A-B; Video 1). Next, the crab slowly began stretching the sea anemone between both claws in an outward motion, utilizing its front walking legs in order to surgically tear the sea anemone in half (Fig. 4C). Occasionally, the crab momentarily ceased the stretching to re-grasp the sea anemone in what appears to be the most centered conformation possible, so that the final splitting will produce two equal parts. Once the sea anemone has been re-grasped, the crab initiated the stretching once again, slowly pulling the sea anemone from the center outwards. Once the majority of the sea anemone was split into two, there were often final strands of sea anemone tissue connecting each newly split sea anemone, which were torn by the front walking legs (Fig. 4D-E). Once the splitting process was complete the crab had two identical clones held in each claw (Fig. 4F).

Overall, following splitting and sea anemone regeneration, the pedal disc surface area of the two new sea anemones increased substantially (X ± SD = 10.0 ± 23.2 %) in comparison to the single sea anemone prior to splitting. However, in some cases, the combined pedal disc surface area of the two new sea anemones was similar or even smaller than that of the original sea anemone. This phenomenon is reflected in the large standard deviation of the increase in pedal disc surface area following splitting.

The sea anemone asymmetry index calculated for the two sea anemones resulting from the splitting process was overall small (X ± SD = 8.5 ± 8.7 %). The asymmetry index ranged however from 0 to 26% reflecting the high value of the standard deviation of the calculated
index. The multiple linear regression model (Table 2B) shows that both crab gender and time to split from sea anemone removal were significantly related to the asymmetry index, sea anemone size was weakly related, and handedness was unrelated.

Sea anemone theft experiment

In 73% of the staged encounters between crabs with and without sea anemones, intense fighting took place, culminating in sea anemone theft (binomial test, $P = 0.05$, $N = 22$; Table 3). In 44% of the contests, an entire sea anemone was stolen, in 37% a sea anemone fragment was taken, and in the remaining 18% the crab without sea anemones came away with two sea anemone fragments (Table 3). Out of the six remaining trials which did not end in sea anemone theft, in five cases the crabs refrained from fighting, in two of them they did not move over a period of 45 minutes (no contact) and in the three remaining cases the crabs only made gentle leg contact before separating. The only trial in which there was aggressive contact, but no theft occurred was the shortest recorded contest (1:23 min) where the crabs mainly collided into each other but lacked the typical contest structure described below.

Crabs of both genders with and without sea anemones were equally likely to initiate a fight (binomial test, $P = 0.6291$, $N = 17$). Contests between crabs started on average 15.5 ± 6.5 minutes after the acclimation period. A two-way ANOVA revealed that neither crab gender (males: $X \pm SD = 16.2 \pm 7.5$; females: $X \pm SD = 14.3 \pm 4.3$), nor whether the initiator was deprived or in possession of sea anemones had a significant effect on time until the start of fighting (Table 4).

Typically, after being placed together and the cylinders removed, one contestant would approach the other. For the sake of illustration, we will describe a crab with sea anemones approaching one without them. As the crab with sea anemones came within a close proximity of the crab without sea anemone, the crab with sea anemones held its sea anemones at a distance away from the other crab (Fig. 5A). Next, the initiator gently touched the other crab with the tip of its first walking leg for about a minute (Fig. 5B). Following this gentle leg contact, the two crabs typically proceeded to move into a back to back configuration (Fig. 5C). Following this, the crabs rapidly locked their walking legs and commenced a close physical struggle grasping one another with their legs forming a tight ball. It is important to note that during these phases both crabs distanced their claws (holding sea anemones or vacant) as far as possible from the
other (Fig. 5D). Next, the crab without sea anemones strived to move into a dominant position, typically on top of the crab holding sea anemones (Fig. 5E). The crab without sea anemones then proceeded to try and hold one of the opposing crab’s claws and lock it with the aid of its walking legs. No use was made of its unoccupied delicate claws (Fig. 5F). Upon achieving a claw lock of the opposing crab (Fig. 5G), the crab without sea anemones proceeded to remove the sea anemone held by the other crab. At first, it made use of its first walking leg to pry at the claw holding the sea anemone. After it has been pried open sufficiently, the attacking crab for the first time used its vacant claw to take hold of the sea anemone (Fig. 5H). Sometimes, an entire sea anemone was taken and sometimes only a fragment was torn off. We never witnessed a contest where two whole sea anemones were stolen. Typically, after a whole or partial sea anemone has been taken the contestants broke off and “returned to their corners” (Video 2).

The fight duration was extremely variable, ranging from between less than a minute to 40 minutes with average (±SD) durations of 17.5 ± 12.4 minutes per fight. A multiple linear regression model failed to show a connection between fight duration and crab gender (males: X ± SD = 17.7 ± 11.5; females: X ± SD = 17.2 ± 15.0) or contest outcome (i.e., removal of a complete sea anemone or a sea anemone fragment) (Table 5). Sea anemone splitting was observed in all instances where a complete or a fragment of the sea anemone was stolen (Table 3). In the event that two fragments were stolen, splitting was not observed.

AFLP

Sixteen sea anemones from eight crabs were analyzed. The three sets of fluorescent labeled primers (VIC, NED, and FAM) revealed 43, 30 and 71 bands, respectively (total = 144 bands). The sizes of the amplified fragments ranged between 60 to 430 bps. The majority of the bands were monomorphic, and only 24.9% (FAM = 15.5%; NED = 26.6%; VIC = 32.5%) were polymorphic. The fingerprint profiles of all sea anemone pairs taken from a single crab were identical. Between the pairs, six out of the eight sea anemones pairs (four from Tur-Yam and two from Red-Rock) were identical, and the two other pairs (one from Tur-Yam and the other from Red-Rock) exhibited independent banding patterns from the other six. A maximum parsimony dendogram (Fig. 6), as well as Nei’s (1978) mean genetic distance analyses (Table 6), revealed the presence of three genotypes.
Discussion

Symbiotic sea anemones

L. leptochelis from the Gulf of Eilat represent a unique case among *Lybia* crabs with regard to their symbiotic sea anemones. Most *Lybia* crabs are found holding the sea anemone *Triactis producta*, while *L. leptochelis* from the Gulf of Eilat hold a pair of *Alicia sp.* (Schnytzer et al. 2013). Free living specimens of this unidentified species of *Alicia* were not found in or around the crab's habitat over the course of some four years of research in the area, and there is no previous description of them in the literature.

All crabs found in nature during this study were holding a pair of *Alicia sp.* Even the smallest crabs found (2 mm CW), probably not long after the megalopa settled, already possessed a pair of minute sea anemones. In a previous study we showed that *L. leptochelis* steal food from their held sea anemones, thus regulating their growth and subsequent size (Schnytzer et al. 2013). Indeed, there is a significant correlation between crab and sea anemone sizes (Fig. 3), suggesting an optimal carrying size. Females hold significantly larger sea anemones than males of similar size. Currently, we can only speculate on the nature of this ‘sexual dimorphism’. Perhaps it aids in heightened protection provided by larger sea anemones, an evident advantage to egg carrying females. *Lybia* crabs are presumably obligatory symbionts of their held sea anemones as most previous studies also report that all wild caught crabs were found holding a pair of sea anemones (Duerden 1905; Karplus et al. 1998; Yanagi and Iwao 2012; Schnytzer et al. 2013). Only one study reported collecting several *L. tessellata* without sea anemones (Borradaiile 1902).

Interestingly, the sea anemone most commonly associated with *Lybia* crabs (Karplus et al. 1998; Yanagi and Iwao 2012), *T. producta*, is found freely living in Eilat (Fishelson 1970; persobs), yet they have never been observed in association with *L. leptochelis*. Similar to our case, Duerden (1905) reported that the sea anemones, *Sagartia* and *Bunodeopsis*, held by *Melia tessellate* (=*Lybia edmondsoni*; see Ross 1974) were not found freely living around the crabs habitat, during a careful search made over the course of three months. The apparent "rarity" of *Alicia sp.* in conjunction with all the observed crabs holding sea anemones gives rise to the
question of how they obtain them. Of course we cannot rule out the possibility that the sea
anemones do occur in or around the crab’s habitat and have yet to be found.

Sea anemone splitting

Duerden (1905) and later Karplus et al. (1998) provided anecdotal evidence of Lybia crabs
splitting sea anemones. We have empirically shown for the first time that in the vast majority of
cases, a crab which has one sea anemone removed will split the other into two new ones. As our
data show, this behavior appears to be independent of any crab or sea anemone physical
characteristics, suggesting this is a dominant and widespread behavior. By splitting a sea
anemone, the crab effectively induces asexual reproduction of the sea anemone. Indeed, all split
sea anemones were observed fully regenerated within a matter of days. Consequently, sea
anemone splitting appears to be a well-orchestrated behavior, conducted with apparent care for
the final outcome, i.e. two new viable sea anemones (Fig. 4 and Video 1). Fission, i.e.
programmed physical separation, is a well-known form of sea anemone asexual reproduction
(Geller et al. 2005; Sherman and Ayre 2008). However, as the classic definition implies, this is
usually a self-regulated form of asexual reproduction. To our knowledge, there are no other
known examples of other marine organism which physically induce this behavior in sea
anemones. Commonly, animals associated with sea anemones will either reside around or within
them, such as clownfish (Karplus 2014) or a wide range of crustaceans (Jonsson et al. 2001;
Duris et al. 2013; Fernandez-Leborans 2013). Alternatively, animals which carry sea anemones
on them, such as hermit crabs (Williams and McDermott 2004) will either locate them freely
living or engage in interpecific and intraspecific theft (Ross 1979; Giraud 2011; see below for
further details). Crustaceans commonly place their associated sea anemone one their shell,
carapace or walking legs (Guinot et al. 1995). The habit of physically holding sea anemones in
their claws appears to be unique to the order Polydecdinae (Duerden 1905; Guinot 1976), a
factor which may explain why this splitting behavior arose and is unknown among other crabs.
Interestingly, our analysis revealed that time to split had a significant, albeit small, positive effect
on the asymmetry index, indicating that a shorter time to split results in more equally sized sea
anemones. Although this experiment was confined to laboratory conditions, we may cautiously
assume that splitting sea anemones is presumably part of the crab-sea anemone acquisition
mechanism in nature (see AFLP results below). As mentioned above, our field data also supports this claim in that there is a highly significant correlation between sea anemone pair size held by crabs caught in the wild (Fig. 2).

Sea anemone theft

There is only one report in the literature of sea anemone theft in Lybia crabs. Karplus et al. (1998) reported on one observation of sea anemone theft. This isolated case was observed when two small L. edmondsoni with sea anemones were introduced into an aquarium with a large conspecific deprived of sea anemones. Our experiment shows for the first time that this is a highly common behavior, occurring in the vast majority of instances, irrespective of sex, in which two crabs are placed together, one holding sea anemones and the other without. Interestingly, the initiation of contact was irrespective of sea anemone possession. One might have thought that this would be less likely due to the apparent “high value” of their sea anemones. These encounters exhibited a similar sequence of behaviors in all the trials we conducted. Upon initial contact, the initiator always “feels” the opponent’s leg. In the three trials where contact was made but no fight was initiated, the crabs separated after this leg contact phase. Pre-fight assessment is a well-known behavior, often dictating whether or not animals will commence fighting (Arnott and Elwood 2009). As can be seen quite clearly in the example video (Video 2), these battles are at times quite violent in their appearance. However, in no instances did we observe a crab being injured or killed. Unlike splitting, intraspecific sea anemone theft has been observed in hermit crabs, yet intraspecific theft is far less common. In hermit crabs, it is always the hermit crab lacking sea anemones which initiates the fight, and the larger of the two who prevails (Ross 1979, 1983; Giraud 2011). In many cases amongst crustaceans, there is a clear size advantage regarding resource acquisition (Jaroensutasinee and Tantichodok 2002; Pratt et al. 2003; Arnott and Elwood 2009). In contrast, this appears not to be the case with boxer crabs. Lybia crabs presumably acquire their sea anemones sometime after settling from the larval stage. Although quite difficult to find, we did manage to collect three tiny specimens (2-3 mm CW), and after removing their sea anemones we conducted three preliminary contests between them and fully grown crabs (8-10 mm CW). In all cases it was the small crab which initiated the fight, and in all instances it managed to come away with a sea anemone fragment or a full sea
anemone (Video 3). As is evident in the video the small crab is quite determined to get a sea
anemone, and despite the great difference in size it manages in much the same way as larger
crabs to succeed. Although these are preliminary observations and under laboratory conditions,
they are insightful into the possible mechanism of sea anemone acquisition in nature by small
individuals. Following our observations in the splitting experiment, the crabs that stole a
complete sea anemone or a fragment proceeded to split it up to two weeks after the contest.
Interestingly, the crabs that stole two fragments, holding one in each claw, would not split.
Presumably the instinct to split is not induced when both claws are occupied.

AFLP

Genetic markers have been successfully used to determine the asexual origin of broods of sea
anemone (Schaefer 1981; Carter and Thorp 1979; Gashout and Ormond 1979; Monteiro et al.
1998). The rationale behind the use of molecular markers to study asexual reproduction is that it
is extremely unlikely that two sexually produced individuals will be identical over a large
number of polymorphic loci. Putative clone mates are, thus, those individuals in the population
analyzed that have identical multiloci genotypes when the cumulative probability of that identity
is very small (Monteiro et al. 1998). Using amplified fragment-length polymorphism (AFLP)
markers (Vos et al. 1995), a well-established method for cnidarian genotyping (Amar et al. 2008;
Douek et al. 2011; Brazeau et al. 2013), we demonstrate that the *Alicia* sp. population held by *L.
leptochelis* has a particularly small number of genotypes. Remarkably, each pair of sea anemones
held by a single crab is identical, strongly suggesting that they are clones obtained by splitting a
single sea anemone into two new ones. This is congruent with our behavioral observations of
theft and splitting among the crabs, indicating that crab induced splitting is a major reproductive
strategy of the sea anemone. Furthermore, the significant size correlation between sea anemone
pairs from wild caught crabs adds credence to this assertion. It is still unclear how, where and
when the crab obtains its sea anemones in nature. It is reasonable to assume that although
splitting and theft occurs in nature, it does not exhibit the full picture of the acquisition
mechanism. The AFLP profiles of 6 out of 8 sea anemone pairs were identical, containing
representative pairs from both locations sampled. Of the remaining two genotypes, one originates
from Tur-Yam and the other from Red-Rock. These beaches are approximately 3 km apart,
separated by a large man made barrier in between them, the Eilat port complex, spanning
approximately 850 meters.
The remaining two genotypes are from each location (Fig. 6 and Table 6). Due to strict collection regulations and a general scarcity of the animals, we limited the genetic part of the study to a small sample size. Thus the scarcity of the less frequent genotypes at each of the two sample localities may be due to a sampling bias, not fully reflecting the sea anemones population level genetic profile. Brazeau et al. (2013) found that even when using a small sample size, in a limited geographic area, AFLP is a powerful tool for investigating genetic differences among individuals and warrants strong reconsideration as a tool in population genomic analysis, particularly when sampling is constrained. Another crab induced behavior which presumably contributes to the maintenance of a crab specific sea anemone genotype is molting. Over 20 times (unpublished data) throughout the course of this study we observed molting. Typically, a newly molted crab was found in its aquaria with sea anemones in its claws while the exuviae was deprived of them. Upon the completion of molting, the crab would retake its sea anemones from the claws of the exuviae, each to its original claw (Video 4).

Conclusions

We have shown that the *Lybia*-sea anemone acquisition mechanism is composed of a unique behavioral repertoire. Both sea anemone theft and splitting are highly significant behaviors in laboratory held *L. leptochelis*. The genetic analysis of sea anemone pairs from wild caught crabs show genetic identity within the pairs and also between pairs, this provides further support to the hypothesis that the genetic profile of the sea anemone population are modulated to some extent by the crab behavior. This association is a rare and perhaps unique example of one animal which not only regulates the feeding and growth of its associate (Schnytzer et al. 2013), but also controls its asexual reproduction. The exploration of the genetic profiles of the so far not found freely living *Alicia* sp. as well as expanding the study to further *Lybia* populations would greatly enhance our understanding of the role played by the crabs through splitting and theft in affecting the genetic diversity of their cnidarian associates.

Acknowledgments

We thank the staff at the Interuniversity Institute for Marine Sciences in Eilat for their hospitality and assistance with the field work. We thank D.G. Fautin, A.L. Crowther and D. Guinot for identifying the animals. We are grateful to Adi Schnytzer, Jennifer Benichou Cohen Israel and
Dr. Yury Kaminer for helping with the statistical analysis, and E. Costi for helping to set up the lighting system and for technical support with the aquarium room. A special thanks to RivQua Bar-Noy for drawing the illustrations. This research is part of the MSc thesis requirements for Yisrael Schnytzer and Yaniv Giman under the supervision of Yair Achituv and Ilan Karplus at The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel.

References

Amar KO, Douek J, Rabinowitz C, Rinkevich B (2008) Employing of the amplified fragment length polymorphism (AFLP) methodology as an efficient population genetic tool for symbiotic cnidarians. Mar Biotechnol 10:350-357

Arnott G, Elwood RW (2009) Assessment of fighting ability in animal contests. Anim Behav 77:991-1004

Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899-2914

Borradaile LA (1902) Marine crustaceans III The Xanthidae and some other crab in: Gardiner JS (Ed) The Fauna and Geography of the Maldives and Laccadive Archipelagos Vol 1 Part 3 University Press Cambridge pp.237-271

Brazeau DA, Lesser MP, Slattery M (2013) Genetic structure in the coral Montastraea cavernosa: Assessing genetic differentiation among and within mesophotic reefs. PLoS ONE 8: e65845

Bucklin A (1985) Biochemical genetic variation growth and regeneration of the sea anemone Metridium of British shores. J Mar Biol Assoc UK 65:141-157

Carter MA, Thorp CH (1979) Reproduction of Actinia equina L var mesembryanthemum. J Mar Biol Assoc UK 59:989-1001

Chen SY, Hsueh PW (2007) Polydectus cupulifer (Latreille 1812) (decapoda xanthidae): First record from Taiwan. Crustaceana 80:411-415

Chia FS (1976) Sea anemone reproduction: Patterns and adaptive radiations in: Mackie GO (Ed) Coelenterate Ecology and Behavior. Plenum Press New York pp:261-270

Chomsky O, Douek J, Chadwick NE, Dubinsky Z, Rinkevich B (2009) Biological and population-genetic aspects of the sea anemone Actinia equina (Cnidaria: Anthozoa) along the Mediterranean coast of Israel. J Exp Mar Biol Ecol 375:16-20
Cutress CE (1977) Corallimorpharia Actiniaria Ceriantharia in: Devaney DM Eldredge LG (Eds) Reef and Shore Fauna of Hawaii. Bishop Museum Press Honolulu pp:130-147

Daly M, Chaudhuri A, Gusmão L, Rodriguez E (2008) Phylogenetic relationships among sea anemones (Cnidaria : Anthozoa : Actiniaria). Mol Phylogenet Evol 48:292-301

Douek J, Amar KO, Rinkevich B (2011) Maternal-larval population genetic traits in Stylophora pistillata a hermaphroditic brooding coral species. Genetica 139:1531-1542

Duerden JE (1905) On the habits and reactions of crabs bearing actinians in their claws. Proc Zool Soc Lond 2:494-511

Duris Z, Ates AS, Ozalp HB, Katagan T (2013) New records of Decapod Crustaceans (Decapoda: Pontoniinae and Inachidae) associated with sea anemones in Turkish waters. Med Mar Sci 14:49-55

Fernandez-Leborans G (2013) A review of cnidarian epibionts on marine crustacea. Oceanol Hydrobiol Stud 42:347-357

Fishelson L (1970) Littoral fauna of Red Sea - Population of non-scleractinian anthozoans of shallow waters of Red Sea (Eilat). Mar Biol 6:106-116

Francis L (1988) Cloning and aggression among sea anemones (Coelenterata Actiniaria) of the rocky shore. Biol Bull 174:241-253

Gashout SE, Ormond RFG (1979) Evidence for parthenogenetic reproduction in the sea anemone Actinia equina L. J Mar Biol Assoc UK 59:975-987

Geller JB, Fitzgerald LJ, King CE (2005) Fission in sea anemones: Integrative studies of life cycle evolution. Integr Comp Biol 45:615-622

Giraud C (2011) Intraspecific competition stealing and placement of the symbiotic sea anemone Calliactis tricolor by the hermit crab Dardanus pedunculatus. Student Research Papers Fall 2011 UCB Moorea Class: Biology and Geomorphology of Tropical Islands Berkeley Natural History Museum University of California at Berkeley Berkeley CA

Gonçalves MM, de Almeida Regitano LC, Dami C, Salgado CC, de Freitas PD, Teixeira AKG, Galetti-Junior PM (2014) Inheritance of AFLP markers and genetic linkage analysis in two full-sib families of the marine shrimp Litopenaeus vannamei (Crustacea Decapoda). Advances in Bioscience and Biotechnology 2014

Guinot D (1976) Constitution de quelques groupes naturels chez les crustaces decapodes brachyyoures I La superfamille des Bellioidea et trois sous-familles de Xanthidae(Polydectinae)
Dana Trichiinae de haan Actaeinae Alcock). Mem Memoir Mus Natl Hist Series A Zoologie 97:1-308

Guinot D, Doumenc D, Chintiroglou CC (1995) A review of the carrying behavior in brachyuran crabs with additional information on the symbioses with sea anemones. Raffles Bull Zool 43:377-416

Hughes RN (1989) Functional Biology of Clonal Animals. Chapman and Hall New York

Huys G, Swings J (1999) Evaluation of a fluorescent amplified fragment length polymorphism (FAFLP) methodology for the genotypic discrimination of Aeromonas taxa. FEMS Microbiol Lett 177:83-92

Jaroensutasinee M, Tantichodok P (2002) Effects of size and residency on fighting outcomes in the fiddler crab Uca vocans hesperiae (decapoda brachyura ocypodidae). Crustaceana 75:1107-1117

Jonsson LG, Lundalv T, Johannesson K (2001) Symbiotic associations between anthozoans and crustaceans in a temperate coastal area. Mar Ecol Prog Ser 209:189-195

Karplus I (2014) Symbiosis in Fishes: The Biology of Interspecific Partnerships. Wiley-Blackwell

Karplus I, Fiedler GC, Ramcharan P (1998) The intraspecific fighting behavior of the Hawaiian boxer crab Lybia edmondsoni - Fighting with dangerous weapons? Symbiosis 24:287-301

Lin J, Chen CP, Chen IM (1992) Sexual and asexual reproduction of Anthopleura dixoniana (Anthozoa Actiniaria) - periodicity and regulation. Mar Biol 112:91-98

McFadden CS, Grosberg RK, Cameron BB, Karlton DP, Secord D (1997) Genetic relationships within and between clonal and solitary forms of the sea anemone Anthopleura elegantissima revisited: Evidence for the existence of two species. Mar Biol 128:127-139

Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications analyses and advances. Trends Plant Sci 12:106-117

Monteiro FA, Russo CAM, Solé-Cava AM (1998) Genetic evidence for the asexual origin of small individuals found in the coelenteron of the sea anemone Actinia bermudensis McMurrich. Bull Mar Sci 63:257-264

Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583-590
Oda S, Oki E, Maehara Y, Sugimachi K (1997) Precise assessment of microsatellite instability using high resolution fluorescent microsatellite analysis. Nucleic Acids Res 25:3415-3420

Pratt AE, McLain DK, Lathrop GR (2003) The assessment game in sand fiddler crab contests for breeding burrows. Anim Behav 65:945-955

Peng M, Chen XL, Jiang WM, Yang CL, LI YM (2012) The population genetic diversity of different geographical Pteria penguin revealed by faflp analysis. Acta Hydrobiologica Sinica 36:102-108

Reitzel AM, Darling JA, Sullivan JC, Finnerty JR (2008) Global population genetic structure of the starlet sea anemone Nematostella vectensis: multiple introductions and implications for conservation policy. Biol Invasions 10:1197-1213

Ross DM (1974) Behavior patterns in associations and interactions with other animals in: Muscatine L Lenhoff HM (Eds) Coelenterate Biology Academic Press London San Francisco and New York pp:281-312

Ross DM (1979) Stealing of the symbiotic sea anemone Calliactis parasitica in intraspecific and interspecific encounters of 3 species of Mediterranean pagurids. Can J Zool 57:1181-1189

Ross DM (1983) Symbiotic relations in: Vernberg FJ Vernberg WB (Eds) The Biology of Crustacea Vol 7 Behavior and Ecology Academic Press New York pp:163-212

Schaefer W (1981) Reproduction and sexuality of Cereus pedunculatus and Actinia equina (Anthozoa Actiniaria). Helgol Meer 34:451-461

Schnytzer Y, Giman Y, Karplus I, Achituv Y (2013) Bonsai sea anemones: Growth suppression of sea anemones by their associated kleptoparasitic boxer crab. J Exp Mar Biol Ecol 448:265-270

Sebens KP (1979) Energetics of asexual reproduction and colony formation in benthic marine invertebrates. Am Zool 19:683-697

Sebens KP (1980) The regulation of asexual reproduction and indeterminate body size in the sea anemone Anthopleura elegantissima (Brandt). Biol Bull 158:370-382

Sherman CDH, Ayre DJ (2008) Fine-scale adaptation in a clonal sea anemone Evolution 62:1373-1380

Shick JM (1991) A Functional Biology of Sea anemones. Chapman and Hall New York

Shick JM, Hoffmann RJ, Lamb AN (1979) Asexual reproduction population structure and genotype-environment interactions in sea anemones. Am Zool 19:699-713
Thiel M, Baeza JA (2001) Factors affecting the social behaviour of crustaceans living symbiotically with other marine invertebrates: A modelling approach. Symbiosis 30:163-190

Tsuchida CB, Potts DC (1994a) The effects of illumination food and symbionts on growth of the sea anemone *Anthopleura elegantissima* (Brandt 1835) II. Clonal growth. J Exp Mar Biol Ecol 183:243-258

Tsuchida CB, Potts DC (1994b) The effects of illumination food and symbionts on growth of the sea anemone *Anthopleura elegantissima* (Brandt 1835) I. ramet growth. Journal of Experimental Marine Biology and Ecology 183:227-242

Uthicke S, Conand C (2005) Amplified fragment length polymorphism (AFLP) analysis indicates the importance of both asexual and sexual reproduction in the fissiparous holothurian *Stichopus chloronotus* (Aspidochirotida) in the Indian and Pacific Ocean. Coral Reefs 24:103-111

Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407-4414

Williams JD, McDermott JJ (2004) Hermit crab biocoenoses: a worldwide review of the diversity and natural history of hermit crab associates. J Exp Mar Biol Ecol 305:1-128

Yanagi K, Iwao K (2012) Mystery of the sea anemone held by the boxer crab *Lybia tessellata* (in Japanese). Midoriishi - Report of the Akajima Marine Science Laboratory 23:31-36
Figure 1

Lybia leptochelis collected directly from the sea holding typically similar sized *Alicia* sp. anemones.
Figure 2

Correlation between left and right held anemones as observed in nature.

Lybia leptochelis hold significantly similar sized *Alicia sp.* anemones in each claw. ($r = 0.90$, $t_{52} = 14.883$, $P > 0.0001$). PDD = pedal disc diameter measurements are in mm.
Figure 3

Correlation between held anemones (average of left and right anemones) and crab size as observed in nature.

\(r = 0.72, t_{52} = 7.4546, P < 0.0001 \). PDD = pedal disc diameter. CW = Carapace width measurements are in mm.
Figure 4

Sequence of anemone splitting behavior.

This particular trial took approximately 1.2 hours until splitting was completed. Time presented in hh:mm format. (A) - *Lybia leptochelis* holding an *Alicia* sp. in one claw the second is vacant. (B) - Typical anemone splitting conformation with pedal disc up and oral disc/tentacles down. (C) - Stretching of the anemone between both claws and use of front walking legs to tear it down the middle. (D) - Tearing of anemone into two. (E) - Final strands of anemone tissue are cut with front walking legs. (F) - *L. leptochelis* holding two identical clones of the original *Alicia* sp. anemone.
Figure 5

Sequence of anemone theft behaviour line drawing from video.

Time presented in mm:ss. Please refer to the results section for elaboration on theft sequence.
A
00:00

B
01:10

C
01:45

D
01:46

E
01:51

F
02:31

G
04:10

H
07:00

Manuscript to be reviewed
Figure 6

Genetic relatedness of *Alicia* sp. anemone pairs taken from *Lybia leptochelis*.

The Maximum Parsimony dendogram is the combined results of 3 different primer combinations. Collection location: Ty – Tur Yam; Rr – Red rock. Each pair of letters represents a pair of anemones originating from a single *L. leptochelis*.
Anemone splitting by *Lybia leptochelis* following removal of one of its anemones.
Crab Number	Crab Gender	Crab Carapace Width (mm)	Remaining Anemone Size; held by left (L) or right (R) claw	Anemone Splitting	Time to split (hours)	Size of Anemone held in right claw 10-14 days following splitting	Size of Anemone held in left claw 10-14 days following splitting	Asymmetry index
1	F	---	0.9 (R)	---	---	1.1	---	---
2	M	4.2	+	4	0.8	0.8	0.8	0
3	M	4.1	1.1 (L)	+	4	0.8	0.8	0
4	F	4.7	1.1 (R)	+	48	0.8	0.8	0
5	M	4.5	1.1 (L)	+	36	1.0	0.9	10%
6	M	4.4	1.1 (L)	---	---	---	1.1	---
7	M	4.7	1.2 (R)	+	4	0.8	0.8	0
8	M	4.7	1.2 (R)	+	4	0.8	0.8	0
9	M	4.1	1.3 (R)	+	36	1.1	0.9	18%
10	F	6.3	1.3 (L)	+	36	---	---	---
11	F	6.3	1.4 (L)	---	---	---	---	---
12	M	1.4 (L)	+	12	---	---	---	---
13	M	8.0	1.5 (L)	+	12	1.3	1.2	7.7%
14	M	1.6 (R)	---	---	---	1.8	---	---
15	F	1.6 (R)	+	24	1.4	1.2	14.3%	---
16	M	1.6 (R)	+	244	1.1	0.9	18%	---
17	F	1.7 (R)	+	24	1.5	1.1	26.6%	---
18	F	10.1	1.8 (R)	+	72	1.1	1.2	8.3%
19	M	8.6	1.8 (R)	---	---	2.0	---	---
20	M	8.0	2.0 (L)	+	1	1.4	1.3	7.1%
21	M	2.1 (R)	+	24	---	---	---	---
22	F	2.5 (R)	+	12	---	---	---	---

+ - crab split anemone
Table 2 (on next page)

Multiple linear regression model of (A) Time to split and (B) Asymmetry index.
Factor	Coefficient	SE	t
Constant	5.3369	2.3896	2.233
Crab gender	-2.1798	1.1833	-1.842
Anemone size	-1.0365	1.2963	-0.800
Handedness	0.2399	0.9300	0.258

\(F_{3,6} = 1.852, R^2_{Adj} = 0.2211, P = 0.2385 \)

Factor	Coefficient	SE	t
Constant	-0.285792	0.067879	-4.210**
Crab gender	0.197162	0.042242	4.667**
Time to split	0.003594	0.000705	5.098**
Anemone size	0.072579	0.030737	2.361^
Handedness	0.006401	0.022159	0.289

\(F_{4,5} = 8.351, R^2_{Adj} = 0.7657, P = 0.01941 \)

** P < 0.001; ^ P = 0.065
Table 3 (on next page)

Theft of anemones during encounters between *Lybia leptochelis* with and without sea anemones.
Crab Pair Number and Gender	Fight Initiator	Minutes till Beginning of Fight	Fight Duration (minutes)	Fight Outcome	Splitting
1 F	+A	17	40	Theft of an anemone fragment.	+
2 F	+A	11	31	Theft of a complete anemone.	+
3 F	----	----	----	-	-
4 M	+A	21	32	Theft of a complete anemone.	+
5 M	----	----	----	No theft.	----
6 M	----	----	----	No theft.	----
7 M	----	----	----	No theft.	----
8 F	----	----	----	No theft.	----
9 F	-A	12	14	Theft of an anemone fragment.	+
10 M	-A	15	32	Theft of two anemone fragments	-
11 M	-A	19	32	Theft of a complete anemone.	+
12 M	+A	12	25	Theft of an anemone fragment.	+
13 F	-A	12	6.5	Theft of a complete anemone.	+
14 M	-A	1.66	3.66	Theft of a complete anemone.	+
15 M	-A	19	1.23	No theft.	----
16 F	+A	12	1.66	Theft of an anemone fragment.	+
17 M	+A	12	17	Theft of two anemone fragments.	-
18 M	+A	20	12	Theft of an anemone fragment.	+
19 M	-A	32	7.5	Theft of an anemone fragment.	+
20 M	+A	12	13	Theft of a complete anemone.	+
21 F	+A	22	10	Theft of a complete anemone.	+
22 M	+A	15	20	Theft of two anemone fragments.	-

+A – crab holding anemones; -A – crab without anemones;
Table 4 (on next page)

Two-way ANOVA investigating the effect of crab gender and fight initiator on time until start of fight.
Source of variation	df	Sum	F	P
Constant	1	288.0	5.89	0.031
Crab gender	1	40.61	0.83	0.379
Initiator	1	16.33	0.33	0.573
Crab gender X initiator	1	27.08	0.55	0.470
Error	13	636.1		

Initiator – Crab with or without anemones
Table 5 (on next page)

Multiple linear regression model of fight duration.
Factor	Coefficient	SE	t
Constant	16.4062	6.4844	0.0264
Crab gender	0.5742	7.3154	0.9387
Complete anemone	1.5742	7.3154	0.8332
Two fragments	6.0196	9.9692	0.5572

\[F_{3,12} = 0.158, R^2_{Adj} = -0.2025, P = 0.923 \]
Table 6 (on next page)

Pairwise unbiased (Nei, 1978) genetic identities (above diagonal) and genetic distances (below diagonal) between *Alicia sp.* anemone removed from single crab. Collection location and pair of crab are indicated: Ty – Tur Yam; Rr – Red rock; each capit
Pop ID	RrH	TyB	TyC	TyD	TyE	RrF	RrG	TyA
RrH	0.7931	0.7931	0.7931	0.7931	0.7931	0.7931	0.8759	
TyB	0.2318	1.0000	1.0000	1.0000	1.0000	1.0000	0.8759	
TyC	0.2318	0.0000	1.0000	1.0000	1.0000	1.0000	0.8759	
TyD	0.2318	0.0000	0.0000	1.0000	1.0000	1.0000	0.8759	
TyE	0.2318	0.0000	0.0000	0.0000	1.0000	1.0000	0.8759	
RrF	0.2318	0.0000	0.0000	0.0000	0.0000	1.0000	0.8759	
RrG	0.2318	0.0000	0.0000	0.0000	0.0000	0.0000	0.8759	
TyA	0.1325	0.1325	0.1325	0.1325	0.1325	0.1325	0.1325	

Ty – Tur Yam; Rr – Red rock.