Software

TCP: a tool for designing chimera proteins based on the tertiary structure information
Takashi Yoneya* and Reina Nishida

Address: Research Planning and Administration Department (Tokyo), Research Division, Kyowa Hakko Kirin Co., Ltd., 3 Miyahara, Gunma, 370-1295, Japan
Email: Takashi Yoneya* - takashi.yoneya@kyowa-kirin.co.jp; Reina Nishida - reina.nishida@kyowa-kirin.co.jp
* Corresponding author

Abstract

Background: Chimera proteins are widely used for the analysis of the protein-protein interaction region. One of the major issues is the epitope analysis of the monoclonal antibody. In the analysis, a continuous portion of an antigen is sequentially substituted into a different sequence. This method works well for an antibody recognizing a linear epitope, but not for that recognizing a discontinuous epitope. Although the designing the chimera proteins based on the tertiary structure information is required in such situations, there is no appropriate tool so far.

Results: In light of the problem, we developed a tool named TCP (standing for a Tool for designing Chimera Proteins), which extracts some sets of mutually orthogonal cutting surfaces for designing chimera proteins using a genetic algorithm. TCP can also incorporate and consider the solvent accessible surface area information calculated by a DSSP program. The test results of our method indicate that the TCP is robust and applicable to various shapes of proteins.

Conclusion: We developed TCP, a tool for designing chimera proteins based on the tertiary structure information. TCP is robust and possesses several favourable features, and we believe it is a useful tool for designing chimera proteins. TCP is freely available as an additional file of this manuscript for academic and non-profit organization.

Background
Chimera proteins are widely used for the analysis of the protein-protein interaction region. One of the major issues is the epitope analysis of the monoclonal antibody, and there are conventional methods for the analysis. The prediction of the epitopes in silico is convenient and various algorithms are developed so far. Most of these programs use primary sequence information and properties of amino acid residues [1-6], and therefore, they are applicable to the prediction of the continuous linear epitopes. Recently, Moreau et al. proposed the PEPOP which searches the candidates of peptide antigens using tertiary structure information [7]. Many useful antibodies recognize tertiary structures, i.e. the discontinuous epitopes, and algorithms which predict the discontinuous ones are required. To address the problem, some algorithms, e.g. CEP [8], DiscoTope [9] and PEPITO [10], are developed. On the other hand, there are also experimental methods for the epitope analysis, e.g. parallel peptide syntheses [11] and peptide arrays [12]. A well-established method is a phage display [13,14]. This method uses a large size of a peptide library which is presented on a phage protein. The phage clones in the library which have high affinities for the antibody of interest are selected and concentrated iter-
Chapter 1: Introduction to Python

Chapter 2: Data Structures in Python

Chapter 3: Functions in Python

Chapter 4: Control Flow in Python

Chapter 5: Object-Oriented Programming in Python

Chapter 6: Exceptions and Error Handling in Python

Chapter 7: File Handling in Python

Chapter 8: Network Programming in Python

Chapter 9: GUI Programming in Python

Chapter 10: Web Scraping with Python

Chapter 11: Data Visualization with Python

Chapter 12: Scientific Computing with Python

Chapter 13: Machine Learning with Python

Chapter 14: Data Science with Python
planes. To evaluate the similarity, a function, Sim, is defined as follows.

$$\text{Sim}(P_i, P_j) = \left| M_i \cdot M_j \right| = \left| \frac{1}{N} \sum_{n=1}^{N} (S_{i,n}S_{j,n}) \right|$$

$M_i \cdot M_j$ is the dot product of M_i and M_j. As shown in Figure 1, the more different the separating patterns are, the $\text{Sim}(M_i, M_j)$ value approaches zero. Based on the score, the newly created plane is evaluated whether it is different from the already selected ones or not. Although the concept is explained with a single plane case, the pattern vector is expanded for the combination of three planes. All of the CS sets which are generated in the selection process are sorted by the fitness values and the Sim score is evaluated from top to bottom. If the Sim score is less than a threshold, the CS set is selected as a unique one.

Implementation

TCP was implemented with Perl as a set of three command-line programs, and outputs the colour-coded sequences as a rich text file and a set of script files for RasMol [27,28], which is one of the most popular 3D molecular graphics viewers, to display the colour-coded tertiary structures (Figure 2, Table 1). In the colour-coding process, the result of a DSSP program [29] can be incorporated. DSSP is a popular program defining the secondary structures and the ASA from the atomic coordinates in a PDB file. TCP shows the buried residues in grey based on a threshold of the ASA calculated by DSSP (Figure 3). Although the execution time depends on the TR and parameters, it takes a few minutes under the default condition with a standard PC, such as a 2.4 GHz Pentium 4 processor with a 512 MB RAM. The web interface is also developed and it is coded with PHP and runs on Linux and Apache. The colour-coded structures are displayed on a browser with a Chime plug-in [30] (Figure 4).

Figure 1

The Sim score between two CSs. It is presumed that a TR has 16 CAs and they are randomly distributed around the centroid (A). The TR is divided by four CSs (P_1, P_2, P_3 and P_4) defined by the indicated normal vectors and including the centroid. The S_i values of the CAs are shown in (B). If the TR is divided by two planes and the angle between the normal vectors is zero, i.e. P_i and P_j, the Sim score is $\text{Sim}(P_i, P_j) = |-16/16| = 1$. Similarly, if the angles between the vectors are π/2 (i.e. P_1 and P_2) and π/4 (i.e. P_1 and P_3), the Sim scores are $\text{Sim}(P_1, P_2) = |-16/16| = 1$, $\text{Sim}(P_1, P_3) = |0/16| = 0$ and $\text{Sim}(P_1, P_4) = |8/16| = 0.5$, respectively.
Table 1: The colour relationship between the combination of the three CSs and each CS

Fusion	CS1	CS2	CS3
red	red	red	red
green	green	red	red
cyan	red	green	red
magenta	green	green	red
yellow	red	red	green
purple	green	red	green
greenblue	red	green	green
blue	green	green	green

Fusion, CS1, CS2 and CS3 correspond to a, b, c and d of Figure 2, respectively.

Results

Exploration of the CS sets with five proteins

At first, human FGF1 was used to test our algorithm and the PDB identifier is 1EVT. FGF1 is a well-known globular protein which was originally isolated as a stimulation factor of fibroblasts [31]. Hereinafter, the polypeptide is specified as "PDB identifier:Chain". For example, the notation 1EVT:A means the chain A of 1EVT. Our algorithm found sets of three mutually orthogonal CSs and the colour-coded figures using one of the CS sets are shown in Figure 2. This result indicates that the TR was almost equally divided into two portions by each CS, and into eight by the combination of the three CSs. To evaluate whether our algorithm is applicable to various shapes of proteins, it was tested with four other polypeptides, 1EVT:C, 1TNR:A, 1TNR:R and 1YYH:A. As shown in Figure 5, Table 2 and Table 3, TCP found sets of three CSs which divided the TRs almost equally into two portions by each CS and into eight by the combinations. It is noteworthy that 1EVT:C and 1TNR:R were almost equally divided in spite of the elongated shapes. Therefore, TCP should be applicable to various shapes of proteins. The numbers of residues in the divided portions of 1EVT:A and 1TNR:R are listed in Table 4. Although the 1EVT:A was almost equally divided into eight portions by most of the CS sets, the 1TNR:R was almost equally divided by a CS set. It indicates that the equal partition of the TR is not a common result even if the TRs are divided by the mutually orthogonal three CSs, and the number of the CS sets which divide the TR equally into eight parts highly depends on the structures of the TRs.

The performance comparison between the GA-based method and the random search

The performance of the GA-based method was compared with a simple random search (RA) method. The %CV values of the eight portions divided by the best CS sets and the execution times are shown in Table 5. The number of the generating CS sets in the RA-based method was adjusted with the maximum number of the CS sets in the GA-based method. As shown in Table 5, the GA-based method found the better CS sets for all polypeptides in a short time, and therefore, it overcame the RA-based method.

The relationship between the Sim score and the number of the selected CS sets

We also tested how many CS sets were selected on the five proteins with various thresholds. As shown in Figure 1, the rough idea of the angle is obtained from the thresholds by assuming the random distribution of the CAs. The five thresholds, 0.01, 0.333, 0.5, 0.667 and 0.75, correspond to π/2, π/3, π/4, π/6 and π/8, respectively. Although zero corresponds to π/2, 0.01 was used instead. Because the numbers of the target residues were odd number except for 1TNR:A, the scores of the four proteins were always greater than zero and only one CS set was selected if the thresholds was zero. The test was repeated ten times with the five proteins, and the counts of the selected CS sets were averaged (Table 6). Interestingly, the threshold affected the number of the selected CS sets but the difference of the TR did not. The shapes of the five proteins are various as described so far, and it means that the shapes of the TRs do not affect the number of the selected CS sets. It is a favourable feature because the algorithm is applicable to various shapes of proteins with the same parameter, and a universal parameter giving preferable numbers of the CS sets is adjustable by the Sim score.

Analysis of the antigen-antibody complexes

We show some examples analysing the antigen-antibody complexes. First, the complexes of the camel antibody heavy chain fragment (cHC) with the bovine carbonic anhydrase (bCA) or the chicken egg lysozyme (cEL) were analyzed (Figure 6). The residues whose CAs are located within 8 Å of the CAs of the cHC are shown by space fill. The fourteen residues of bCA, which are in the greenblue area, are closely located to the cHC (Figure 6A and 6C). The fourteen residues of the cEL, the thirteen residues of them are in the pink area and a residue of them is in the blue one, are closely located to the cHC (Figure 6B and 6D).

Table 2: The numbers of residues divided into eight portions by a combination of three CSs

Chain	R	G	C	M	Y	P	GB	B	%CV
1EVT:A	17	17	16	16	16	17	17	16	2.96
1EVT:C	21	21	22	25	23	26	23	26	7.39
1TNR:A	17	19	19	19	17	18	18	18	3.93
1TNR:R	18	18	17	17	17	16	17	18	4.01
1YYH:A	24	24	25	25	25	23	23	24	3.24

The colour labels, R, G, C, M, Y, P, GB and B, represent red, green, cyan, magenta, yellow, purple, greenblue and blue, respectively. The values in the row labelled with 1EVT:A are the actual counts of the residues shown in...
Figure 2
The colour-coded structures of human FGF1. The colour-coded tertiary structures (A) and the primary sequences (B) of 1EVT:A divided by three CSs. The colour relationship between the eight and the two portions is summarized in Table 1. The numbers of residues in the eight and the two parts are shown in Table 2 and Table 3, respectively.
Figure 3
The use of the solvent accessible surface area (ASA). The colour-coded tertiary structures (A) and the primary sequences (B) of 1EVT:A divided with a set of three CSs. The residues having the smaller ASA than the thresholds are coloured grey. The ASAs are calculated by DSSP. The result of DSSP is not incorporated in a. The thresholds of the ASAs in b, c and d are 0, 10 and 30 Å² respectively.
Figure 4

The screenshots of the web interface. The parameter setup screen (A) and the resultant colour-coded structures (B). At first, a PDB file and a DSSP file (option) are uploaded to the server. TCP parses the PDB file and the DSSP file, and displays the parameter setup menu (A). A user selects the target chain, the target region (TR), etc., and submits the parameters. TCP analyzes the TR and displays the result in the web-browser (B). The upper part shows the colour-coded 3D structures and the primary sequences. By using the web interface, four figures of the TR divided by the combination of the three CSs and each CS can be seen at once. The lower part shows the centroids and the normal vectors defining the CSs, and the numbers of residues in each part. The set of the CSs can be changed by the pull-down menu. In this example, the target is 1EVT:A and the threshold of the ASA is 0 Å^2.

TCP (A Tool for Designing Chimera Proteins)

1EVT.pdb

Parameter Setup

Target Chain	Start	End
A	1	11

TCP (A Tool for Designing Chimera Proteins)

1EVT.pdb : A

CS	S	E	N
A	1	11	11

TCP (A Tool for Designing Chimera Proteins)

1EVT.pdb

Parameter Setup

Minimum Accessible Surface Area	Start	End
	10	11

TCP (A Tool for Designing Chimera Proteins)

1EVT.pdb

Parameter Setup

Background Color	Display
	selected whole

TCP (A Tool for Designing Chimera Proteins)

1EVT.pdb

Parameter Setup

Target Region	Start	End
	10	11

TCP (A Tool for Designing Chimera Proteins)

1EVT.pdb

Parameter Setup

Side View	Top View
Although the greenblue area of the bCA and the pink one of the cEL are matched with the interaction surfaces well, we should note that these are the specific examples and one or two borders are located in the binding areas in the most cases. Next, the complex structure of a domain of the GM-CSF receptor common beta chain (CB) and the Fab fragment of the monoclonal antibody was analyzed. As shown in Figure 7, ten amino acid residues of the CB are closely located to the Fab. These residues disperse to the three parts, greenblue, yellow and blue, in Figure 7 B-a (hereinafter, it is represented as B-a), and the interaction surface includes two borders of the CS sets. In the two-part designs, these residues belong to the green part in the B-d and disperse to the both parts in the B-b and the B-c.

Description of the software

TCP has two types of the interface, a stand-alone command line program and a web-based server-client system. As shown in Figure 4, TCP displays the colour-coded primary sequences as the FASTA format and the tertiary structure images in the web browser. The command-line program also outputs the results but the primary sequences are written down in a rich-text file and the tertiary structures are output as the RasMol scripts. A benefit of the web-interface is that the tertiary structures of the four designs by a CS set are displayed at once and the selected CS set can be changed by the pull-down menu. Most parameters, i.e. the target chain, the target region, the threshold of the Sim score, the threshold of the ASA, the background colour, the style and the region to display the structures, can be set by the user (Figure 4A), and these parameters are also set in the command-line program as the command-line arguments. The changes of the target region and/or the thresholds of the Sim score require the exploration of the CS sets, and therefore the execution takes a few minutes. The execution to change the other parameters, i.e. the threshold of the ASA and the display parameters of the tertiary structures, is completed in a moment.

How to use the results

The TCP outputs two types of designs consisting of two and eight parts. If a set of three designs dividing the TR into two parts are adopted, six kinds of chimera proteins, i.e. two for each design, should be prepared (Figure 8). In this case, the antibody binds three of the six chimera proteins if the antibody does not recognize the borders. If the antibody recognizes one or two borders, the antibody binds two or one chimera proteins, respectively. Based on the binding patterns, the epitope region should be assigned. If a design dividing the TR into eight parts is adopted, two methods are considerable. One is the preparation of the eight chimera proteins which contain an original portion and seven orthologous portions. If an epitope is located on the borders, the antibody binds none of the chimera proteins and therefore, the epitope should not be assigned by this method. Another is the preparation of the eight chimera proteins which contain
an orthologous portion and seven original portions. In this case, the obtained information is the same from the three two-part designs, but two more chimera proteins should be prepared. Therefore, we recommend preparing the chimera proteins based on each CS and use of the eight-part design to choose a CS set.

Discussion

There is no doubt about the usefulness of chimera proteins for epitope analysis [21-23] and a simple tool for the design is required. The usefulness of the chimera proteins was demonstrated not only for the epitope analysis of the monoclonal antibodies [22,23] but also for the common allergen epitopes [21]. We developed TCP as an easy to use program for the purpose and proved the robustness using five real protein structures so far. TCP outputs some sets of four designs, i.e. three two-part designs and an eight-part design. Users could choose the preferred designs based on their purposes and prior information. The application was explained without considering the location of each residue so far. As shown in Figure 3, the residues having small ASAs are coloured grey with various thresholds. The buried residues are less probable to be parts of the epitope. In addition, substitutions of the buried residues may break the tertiary structure. Therefore, it is better to substitute the residues located only at the surface, and the ASA information should be useful for designing the chimera proteins. And then, the information of the sequence conservation is also useful because the con-

Table 6: The numbers of the selected the CS sets with various Sim scores as the thresholds

Chain	Thresholds of the Sim score				
	0.010	0.333	0.500	0.667	0.750
1EVT:A	2.0	2.9	5.5	11.5	19.4
1EVT:C	2.0	3.0	4.4	12.0	17.7
1TNRA:	1.5	3.4	5.7	11.3	16.7
1TNR:R	1.4	2.4	4.3	11.0	17.2
1YYH:A	1.1	2.1	3.1	6.6	9.9

The tests were repeated ten times with various thresholds of the Sim scores, and the results were averaged.

The %CV of the eight portions divided by the best CS set and the execution times (seconds) are shown. The tests were repeated ten times by a personal computer with a 2.4 GHz Celeron D processor and 1.024 Mb RAM, and the results were averaged.
Figure 6
Analysis of the complexes of the camel antibody heavy chain fragment (cHC) with bovine carbonic anhydrase (bCA) or chicken egg lysozyme (cEL). A, B: The complex structures of the cHC with the bCA (A) or the cEL (B). The cHC, 1G6V.K in A and 1ZVH:A in B, are coloured white. The bCA (1G6V:A in A) and the cEL (1ZVH:L in B) are coded by eight colours. The residues whose CAs are located within 8 Å of the CAs of the antibodies are shown by space fill. C, D: The colour-coded amino acid sequences of the bCA (C) and the cEL (D). The residues shown by space fill in A and B are underlined in C and D, respectively.
served residues could be set aside if the antibody does not recognize the orthologue. To use such extra information, the divided patterns by several CS sets should be examined, and therefore, an appropriate threshold of the Sim score should be set to reduce the sets to the appropriate numbers.

Although we used not only single domain polypeptides but also multi domain ones for the evaluations, the TR is mostly narrowed down to a single domain by truncations prior to preparing the chimera proteins, and therefore, a single domain is generally used as the TR. The majority of the domains are less than 200 residues [32,33]. If the epitope region is narrowed down until an eighth part of the TR using the chimera proteins designed by TCP, the typical examples are shown in Figure 6, the number of residues in the region is at most 25 residues in many cases. Furthermore, the number of residues becomes smaller if the buried residues are set aside. But in many cases, the epitope regions would include one or two borders, like Figure 7. Even if the epitope is not narrowed down until an eighth part, the information that the epitope locates on the border is obtained. This information is also useful for the estimation of the epitope region. In the case of Figure 7, the monoclonal antibody would bind one of the chimera proteins based on the Figure 7 B-d (hereinafter, it is represented as B-d), and would not bind the both chimera proteins based on the B-b and the B-c. If such results were

Figure 7

Analysis of the complex structure of a domain of the GM-CSF receptor common beta chain (CB) and the Fab fragment of the monoclonal antibody. A: The complex structure of the CB and the Fab fragment. The heavy chain (1EGJ:H) and light chain (1EGJ:L) of the Fab are coloured green and yellow, respectively. The CB (1EGJ:A) is coloured blue and the residues whose CA are located within 8 Å of the CA of the Fab are coloured red. B: The colour-coded structure of 1EGJ:A. The black arrow indicates the binding region of the Fab. C: The amino acid sequences of the colour-coded structures shown in B. The asterisks indicate the red-coloured residues in A.
obtained, it is deduced that the epitope region is located in the green portion of the B-d and on the border of the B-b and the B-c. Because the regions which closely located to the both borders of the B-b and the B-c are quite restricted in the green portion of the B-d, the epitope would be deduced as the quite restricted area. As described with some examples of the antigen-antibody complex, epitopes would be narrowed down quite well in many cases, and we believe the TCP is a useful tool for the analysis of protein-protein interactions.

Conclusion
We developed TCP, a tool for designing chimera proteins based on the tertiary structure information. As described so far, TCP is robust and possesses several favourable features. We also showed the results of the analysis of three different antibody-antigen complexes. These results should help to imagine the practical use of our program. In conclusion, we believe TCP is a useful tool for many experimental scientists.

Availability and requirements
TCP is freely available as Additional file 1 of this manuscript for academic and non-profit organizations. It requires Perl and RasMol and runs on Window and Linux as a set of command-line programs. The web interface runs on Linux and requires Apache, Perl and PHP for the server and a Chime plug-in is required for the client.

Authors' contributions
TY conceived the study, designed and programmed the command-line program, and drafted this manuscript. RN designed and programmed the web interface. All authors read and approved the final manuscript.
Additional material

Additional file 1
TCP_package. A complete package of the TCP program.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2105-10-9-S1.zip]

Acknowledgements
The authors thank Nobuaki Takahashi, Kaname Kimura, Keichi Tsuchiya, Kumiko Nakazawa, Mari Muto, Youhei Furuya, Tomomasa Hyodou and Takayuki Onuma of Kyowa Hakko Kirin for fruitful discussions and valuable comments. The present work is partially supported by grants for the Development of New Functional Antibody Technologies from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

References
1. Hopp TP, Woods KR: Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci 1981, 78:3824-3828.
2. Parker JM, Guo D, Hodges RS: New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 1986, 25:5425-5432.
3. Jameson BA, Wolf H: The antigenic index: a novel algorithm for predicting antigenic determinants. Comput Appl Biosci 1988, 4:181-186.
4. Maksyutov AZ, Zagrebelsnaya ES: ADEPT: a computer program for prediction of protein antigenic determinants. Comput Appl Biosci 1993, 9:291-297.
5. Alix AJ: Predictive estimation of protein linear epitopes by using the program PEOPLE. Vaccine 1999, 18:311-314.
6. Ondorico M, Pellequer JL: BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. J Mol Recognit 2003, 16:20-22.
7. Moreau V, Fleury C, Piquer D, Nguyen C, Novaki N, Villard S, Laune D, Granier C, Molina F: PEPITO: computational design of immunogenic peptides. BMC Bioinformatics 2008, 9:71.
8. Kulkarni-Kale U, Ghoshe S, Kalaskar AS: CEP: a conformational epitope prediction server. Nucleic Acids Res 2005, 33:W168-W171.
9. Haste Andersen P, Nielsen M, Lund O: Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 2006, 15:2558-2567.
10. Sweredoski MJ, Baldi P: PEPTITe: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics 2008, 24:1459-1460.
11. Transtafyllopoulos B, Trimbick G, Meij NL, Gysen HM: Use of the multitip peptide synthesis technique for the generation of antipeptide sera. Cell Biol Phys 1992, 21:33-52.
12. Laune D, Molina F, Ferriere S, Villard S, Bes C, Rienier F, Chardes T, Granier C: Application of the Spot method to the identification of peptides and amino acids from the antibody partner that contribute to antigen binding. J Immunol Methods 2002, 267:53-70.
13. Smith GP, Petrenko VA: Phage Display. Chem Rev 1997, 97:391-410.
14. Barbas CF, Burton DR, Scott JK, eds: Phage Display: A Laboratory Manual Plainview, NY, Cold Spling Harbor Laboratory Press; 2001.
15. Pizzi E, Cortese R, Tramontano A: Mapping epitopes on protein surfaces. Biopolymers 1995, 36:675-680.
16. Enshel-Sejffers D, Denisov D, Grosman B, Smelyanskim L, Meyuhas R, Gross G, Denisova G, Gershoni JM: The mapping and reconstruction of a conformational discontinuous B-cell epitope of HIV-1. J Mol Biol 2003, 334:87-101.
17. Halperin I, Wolfson H, Nussinov R: SiteLight: binding-site prediction using phage display libraries. Protein Sci 2003, 12:1344-1359.
18. Schreiber A, Humbert M, Benz A, Dietrich U: 3D-Epitope-Explorer (3DEX): localization of conformational epitopes within three-dimensional structures of proteins. J Comput Chem 2005, 26:879-887.
19. Moreau V, Granier C, Villard S, Laune D, Molina F: Discontinuous epitope prediction based on mimotope analysis. Bioinformatics 2006, 22:1088-1095.
20. Mayrose I, Shlomi T, Rubinstein ND, Gershoni JM, Ruppin E, Sharan R, Pupko T: Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic Acids Res 2007, 35:69-78.
21. Karisola P, Alenius H, Mikkola J, Kalkkinen N, Helin J, Pentikainen OT, Repo S, Reunala T, Turjanmaa K, Johnson MS, Palosuo T, Kullomaa MS: The major conformational IgE-binding epitopes of hepatitis C virus envelope glycoprotein E1 (Hep e6.02) are identified by a novel chimera-based allergen epitope mapping strategy. J Biol Chem 2002, 277:22656-22661.
22. Lekcharoensuk P, Morozov I, Paul PS, Thanthumnyom N, Wajjawa W, Meng XJ: Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2. J Virol 2004, 78:8135-8145.
23. Schoolmeester A, Vanhoorebeke K, Katsutani S, Depaerste H, Feys HB, Heemskerk JM, Hoylaerts MF, Deckmyn H: Monoclonal antibody IAC-1 is specific for activated alpha2beta1 and binds to amino acids 191 to 201 of the integrin alpha2b domain. Blood 2004, 104:390-396.
24. Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, Abola EP: Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr 1998, 54:1078-1084.
25. RCSB Protein Data Bank [http://www.rcsb.org/]
26. Mitchell M: An Introduction to Genetic Algorithms The MIT Press; 1996.
27. Sayle RA, Milner-White EJ: RASMOl: molecular graphics for all. Trends Biochem Sci 1995, 20:374.
28. RasMol and OpenRasMol [http://www.openrasmoll.org/]
29. Kabsch W, Sander C: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22:2577-2637.
30. MDL Chimera [http://www. pymol.com/]
31. Burgess VH, Maciag T: The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 1989, 58:575-606.
32. Sowdhamination R, Rufino SD, Blundell TL: A database of globular protein structural domains: clustering of representative family members into similar folds. Fold Des 1996, 1:209-220.
33. Wheelan SJ, Marchler-Bauer A, Bryant SH: Domain size distributions can predict domain boundaries. Bioinformatics 2000, 16:613-618.

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK

Your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp