Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99?

Frédéric Checler*, Elissa Afram, Raphaëlle Pardossi-Piquard, and Inger Lauritzen

From the Université Côte d’Azur, Institut de Pharmacologie Moléculaire et Cellulaire UMR7275 CNRS, Laboratoire d’Excellence Distalz, Sophia-Antipolis, Valbonne, France

*For correspondence: Frédéric Checler, checler@ipmc.cnrs.fr.

Received for publication, October 9, 2020, and in revised form, February 26, 2021 Published, Papers in Press, March 1, 2021, https://doi.org/10.1016/j.jbc.2021.100489

Alzheimer’s disease (AD) is the most frequent age-related neurodegenerative disease. After initial clinical characterization, histopathological analysis revealed the presence of two major anatomical lesions signing this pathology: senile plaques that are extracellular protein aggregates and neurofibrillary tangles that are intracellular neuronal lesions (1–3). Senile plaques are mainly composed of the small 4 kDa amyloid beta peptide (Aβ) (4) and neurofibrillary tangles of hyperphosphorylated and cleaved forms of the microtubule-associated protein tau (5, 6). The cloning of the Aβ precursor, the β-amyloid precursor protein (APP), in the late 80s was a key step in the understanding of the pathology. APP was found to be localized on chromosome 21 (7), thus explaining the development of early-onset dementia and the presence of senile plaques in Down syndrome patients carrying an extra copy of APP due to a duplication of this chromosome (8). Furthermore, the identification of APP mutations responsible for autosomal dominant form of AD (FAD), including the “Dutch” (9) “London” (10) and “Swedish” mutations (11), showed that the functional consequences of these mutations were to augment the load of Aβ and/or to shift Aβ production to more aggregating Aβ peptides (12, 13). The role of Aβ in AD etiology was further confirmed by the discovery few years later of the first mutations in presenilins that were found to be involved in Aβ production and, similarly to APP mutations, seemed to exacerbate Aβ accumulation in cells, animal models as well as in AD-affected human brains (14–16). A last, but very important genetic evidence of a key role of Aβ in AD etiology was the recent findings of the Icelandic APP mutation that was shown to be protective by reducing cognitive decline and Aβ load by about 40% (17).

Thus, this set of histopathological, genetic, and biochemical data concurred to support the view that Aβ accumulation could be the etiological cause of the pathology, as stated in the amyloid cascade hypothesis that was proposed in 1992 by Hardy and Higgins (18). Indeed, mutations in three distinct proteins, namely APP, PS1, and PS2, are all responsible for FAD and have in common to modulate both APP processing and Aβ production. In this context, one can understand the huge efforts aimed at determining the mechanisms and enzymes involved in Aβ production and designing potent, specific, and bioavailable inhibitors of these enzymes (19, 20) or Aβ neutralizing antibodies. However, until so far, the outcomes of these Aβ-centered strategies have been extremely disappointing in our quest for meaningful treatments (21, 22) (Table 1). This has led to question the validity of the amyloid cascade hypothesis (23) or to discuss in a more cautious and balanced manner the ins, outs, and limitations of the procedures of clinical trials (24). It remains that before “throwing out the baby and the bath water,” one should try to reconcile undoubted genetic evidences linking APP processing to AD and failures of Aβ-based clinical trials. In this context, a way to reconcile these observations could be to envisage the possible contribution of other APP-derived fragments distinct from Aβ itself to AD pathology. Indeed, growing evidence proposes that the direct precursor of Aβ (see below), the β-secretase-derived

Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aβ) to explain Alzheimer’s disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aβ levels, either by blocking its production (γ- and β-secretase inhibitors) or by neutralizing it once formed (Aβ-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aβ-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aβ-based clinical trials could be to envision the pathological contribution of the direct precursor of Aβ, the β-secretase-derived C-terminal fragment of APP, βCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.

β-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme.
fragment, C99, could be an early and main contributor to AD. Thus, in this review, we address the possibility that the failure of Aβ-centric clinical trials could be explained, at least partly, by their lack of effect on C99. To go further, we describe clues and evidences suggesting that γ-secretase should be considered as a beneficial C99-inactivating enzyme and argument against therapeutic strategies targeting this enzyme. We instead propose alternative strategies seeking to circumvent C99 accumulation, which would then have the advantage to reduce both C99 and Aβ levels.

APP processing and APP mutations

Aβ is derived from APP that undergoes sequential limited proteolysis catalyzed by proteases called “secretases” (Fig. 1A) (25). In the nonamyloidogenic pathway, cleavage by α-secretase and γ-secretase ends up with the production of three fragments: a large secreted N-terminal fragment (sAPPα), a small soluble peptide p3, and the APP intracellular domain (AICD) (Fig. 1A). In the amyloidogenic pathway, a first cleavage of APP by the β-secretase is followed by γ-secretase cleavage. Again, the cleavage by β-secretase generates a large soluble extracellular secreted domain (sAPPβ) and the remaining membrane stub, the β-secretase-derived fragment, C99, undergoes γ-secretase cleavage, thus liberating Aβ and its C-terminal counterpart AICD (Fig. 1B). Other noncanonical cleavages on APP have also been more recently described (26). Among them, the η-secretase activity, carried by the matrix metalloproteinases (MT1-MMP and MT5-MMP), cleaves APP in its extracellular domain, thus producing a soluble fragment (sAPPη) and a membrane-bound C-terminal fragment, ηCTF. This latter fragment can subsequently be processed by α- or β-secretase, which will generate Aα and C83 and Aβ and C99, respectively (Fig. 1C) (27, 28).

Until so far, 28 pathogenic APP mutations have been identified with all, except the Swedish mutation, lying within the sequence of C99 (www.alzforum.org/mutations). The Swedish variant (APPsw, KM670/671NL), although not located within C99 but two residues upstream, strongly increases the levels of this fragment, as well as those of Aβ peptides, by boosting β-secretase cleavage (12, 13, 29). All pathogenic APP mutations lie either close to the α-secretase cleavage site (the middle part of the Aβ domain of C99), within the γ-secretase cleavage sites, or near the β-secretase cleavage site (N-terminal part), thus modifying the cleavages of APP by either of these secretases. While the knowledge about the exact effects of the pathogenic APP mutations is still limited, it seems that mutations close to the β-secretase (such as the Swedish and Leuven (E682K) mutations) favor C99 production, those close to the α-secretase site (such as the Flemish [E693Q] or Arctic [E693G] mutations) lead to the generation of particular aggregation-prone Aβ species, while mutations lying within the γ-secretase cleavage site elevate the Aβ42/Aβ40 ratio. In all cases, the development of AD pathology linked to these mutations is believed to be caused by an excessive Aβ deposition (30). Nevertheless, the recent study by Xu et al. (31) showed that most (20 out of 28) APP mutations not only alter Aβ production, but are also less efficiently processed by γ-secretase and thereby also enhance the levels of C99.

The β-secretase

The nature of β-secretase was described in 1999 in four independent works and was referred to as BACE1 (β-site APP cleaving enzyme), memapsin 2 or AS2 (32–35). BACE1 is an aspartic protease cleaving mainly within the Golgi and endosomes due to its optimal enzymatic activity at acidic pH (36). It cleaves APP at two distinct sites called the β and β′ site, respectively. While only the cleavage on the β-site (Asp1) leads to Aβ production (Fig. 1B), BACE1 is considered to cut APP primarily at the β′-site (Glu11) (Fig. 1B), thus generating the C99 fragment and a truncated nonpathological Aβ peptide (Aβ 11-x) (36). Until so far, no mutations have been found in β-secretase, but the Swedish and the Leuven APP mutations are known to shift the cleavage from the β′-site to the β-site, thus leading to a much higher C99 and Aβ production (12, 13, 37, 38). Inversely, the Icelandic mutation (A673T) seems to be protective against AD by decreasing β-secretase cleavage and thus reducing by 40% the amyloidogenic fragments sAPPβ and Aβ (17, 39).

The γ-secretase and role of PS mutations

The first hint of the identity of the protease yielding the C-terminal end of Aβ, the γ-secretase, was the discovery in 1995 of presenilin 1 (PS1) (40–42) and its family member presenilin 2 (PS2) (43, 44) proposed to constitute this enzyme (Fig. 2A). The definitive demonstration that presenilins could be involved in γ-secretase activity came from subsequent functional characterization showing that their depletion fully prevents Aβ production (45, 46). However, later studies revealed that γ-secretase is a multiprotein complex built of not only PS1 or PS2 but also of nicastrin, the anterior pharynx defective 1 (Aph1), and presenilin enhancer 2 (PEN2) (47–49) proposed to constitute this enzyme (Fig. 2A). The definitive demonstration that presenilins could be involved in γ-secretase activity came from subsequent functional characterization showing that their depletion fully prevents Aβ production (45, 46). However, later studies revealed that γ-secretase is a multiprotein complex built of not only PS1 or PS2 but also of nicastrin, the anterior pharynx defective 1 (Aph1), and presenilin enhancer 2 (PEN2) (47–49) proposed to constitute this enzyme (Fig. 2A). The definitive demonstration that presenilins could be involved in γ-secretase activity came from subsequent functional characterization showing that their depletion fully prevents Aβ production (45, 46). However, later studies revealed that γ-secretase is a multiprotein complex built of not only PS1 or PS2 but also of nicastrin, the anterior pharynx defective 1 (Aph1), and presenilin enhancer 2 (PEN2) (47–49) proposed to constitute this enzyme (Fig. 2A).
Strategy	Drug/specific target	Aβ modulation in treated AD patients	FDA statute and participants	Side effects/cognitive readout	Reference
Active immunotherapy	AN-1792 (synthetic Aβ42, Janssen)	≥ 60–70% Aβ load reduction in the brain	Discontinued in 2002 (mild to moderate AD patients)	Meningoencephalitis	(208)
Passive immunotherapy	CAD106 (multiple copies of Aβ1-6 peptide, Novartis)	1.3% Aβ reduction in brain PET scan (florbetapir) 2–3-fold increase in plasma Aβ40 at 450 mg	Discontinued in 2019 (asymptomatic carriers of APOE-4)	Worsens cognition, headache, nasopharyngitis, paresthesia, hypertension, back pain...	(210)
	Crenezumab (monomers, oligomers, and fibrils of Aβ, Roche)	≥ 70% Aβ42 increase in CSF at 15 mg/kg	Phase II ongoing in asymptomatic carriers of PS mutations	Lack of efficacy in mild to moderate AD	(211)
	Solanezumab (monomeric and soluble forms of Aβ, Eli Lilly)	170– and 18-fold increase in plasma Aβ40 and Aβ42 respectively no Aβ modulation in brain PET scan (florbetapir) at 400 mg	Phase III ongoing in asymptomatic people who have biomarker evidence of brain amyloid deposition	Lack of efficacy in mild to moderate AD and in asymptomatic carriers of APP and PS mutations	(212)
	Aducanumab (oligomers, and fibrils of Aβ, Biogen)	80% Aβ reduction in brain PET scan (florbetapir) at 10 mg/kg	Phase III ongoing in an open-label extension study in mild to moderate AD patients	One of the two trials (EMERGE) was positive with a significant reduction in cognitive decline in mild to moderate AD a biologics license application was submitted to the FDA for approval on July 2020	www.alzforum.org/therapeutics/aducanumab
	Gantenerumab (oligomers, and fibrils of Aβ, Roche)	≥ 15%, 35% and 78% Aβ reduction in brain PET scan (florbetapir) at 60, 200 and 1200 mg respectively	Phase III ongoing in an open-label extension study in mild to moderate AD patients (SCarlet RoAD, Marguerite RoAD, and GRADUATE) and in asymptomatic carriers of APP and PS mutations (Dian-Tu)	A directional trend for slower clinical decline in mild to moderate AD	(213)
	BAN2401 (soluble Aβ protofibrils, Biogen)	≥ 120% Aβ40 increase in plasma 300 fold Aβ42 increase in CSF 93% Aβ reduction in brain PET scan (florbetapir) at 10 mg/kg	Phase III ongoing in early asymptomatic AD patients (Clarity AD) and in asymptomatic people who have biomarker evidence of brain amyloid deposition (AHED 3–45)	47% and 30% reduction in cognitive decline as judged by the ADAS-Cog and the ADCOMS resepectively	(214)
β-secretase inhibitors	Verubecestat (MK-8931Merck)	≥ 57–84% Aβ reduction in CSF at 12–60 mg	Discontinued in 2018 (prodromal, mild to moderate AD patients)	Worsens cognition, anxiety, depression, and sleep problems	(215)
	Atabecstat (Janssen)	≥ 67–90% Aβ reduction in CSF at 10–50 mg	Discontinued in 2018 (asymptomatic people)	Worsens cognition, elevated liver enzymes, depression, anxiety, and sleep problems	(216)
	Lanabecestat (AZD3293,Eli Lilly)	≥64% to 78% Aβ reduction in plasma at 15–50 mg ≥51% to 76% Aβ reduction in CSF at 15–50 mg	Discontinued in 2018 (prodromal and mild AD patients)	Lack of efficacy on cognition, neuropsychiatric adverse events, weight loss, hair color changes	(217)
	Uminibecestat (Novartis)	≥ 90% Aβ reduction in CSF at 85 mg	Discontinued in 2019 (asymptomatic carriers of APOE-4)	Worsens cognition, brain atrophy and weight loss	(218)
	Elenbecestat (Biogen)	±5.8% and ±13.6% Aβ reduction in brain PET scan (florbetaben and florbetapir respectively) at 50 mg	Discontinued in 2019 (prodromal, mild to moderate AD patients)	Weight loss, skin rashes and neuropsychiatric adverse events	(219)
to understand the pathogenic mechanisms linked to these mutations, their exact functional consequences remain enigmatic and are probably not explained by one common mechanism. Two main, but not exclusive, hypotheses have been proposed and are still hotly debated. First, Hardy and Selkoe proposed, accordingly to the amyloid cascade hypothesis, that the effect of PS mutations should be a gain of function of γ-secretase (52). However, later studies revealed that most PS mutations are actually loss-of-function mutants, and a revised version of this hypothesis became focused on the relative levels of Aβ42 to Aβ40 (Aβ42/Aβ40) rather than absolute increases in Aβ42 (53). It was suggested that partial loss of PS mutations shifts the cleavage specificity of the mutant enzyme to favor Aβ42 production and that even a minor increase in Aβ42 levels could be sufficient for seed formation (54, 55). In that way, loss of function should be considered as gain of “toxic function” because of a relative increase in more aggregation-prone Aβ (56).

On the other hand, Shen and Kelleher proposed an alternative hypothesis “the presenilin hypothesis,” stating that loss of general PS function should be the trigger of neurodegeneration and defects in cognitive function (57). They proposed that pathogenic PS mutations behave as dominant-negative mutation due to a mechanism in which mutant PS interferes with the activity of wild-type PS, thereby reducing their physiological functions (58, 59). In agreement with this hypothesis, the extensive work of Sun and colleagues (60), in which 138 pathogenic PS mutations were analyzed, revealed that most than 90% of them led to reduced production of Aβ42 and Aβ42, and this is in a dominant negative manner (60). This conclusion of Sun and colleagues was based on purified γ-secretases harboring PS mutations and assay of C99 cleavage in vitro or in a cell-based assay. In contrast, Szaruga and colleagues (61) measured γ-secretase activity in brain extracts from patients carrying PS1 mutations (one healthy and one disease allele) and found a variable effect on endopeptidase cleavage but a consistent reduction in carboxypeptidase activity, seen as Aβ38/Aβ42. These data therefore seemed to fit with the postulate that a qualitative shift in Aβ profiles toward the generation of longer aggregation-prone peptides (>Aβ42) should be the common denominator of AD (61) and were in agreement with the earlier work from Saito and Saido, demonstrating a particular high toxicity of Aβ43 (62) and the initial statements of a role of aggregating-prone Aβ in seed formation (63–65). However, arguing against a direct and unique role of the Aβ42/Aβ40 ratio was the findings in the work of Sun and colleagues that observed that the age of onset of FAD did not seem to correlate well with the change in this ratio (60) in contradiction to what was previous proposed (66). A recent study indicated that the pathogenicity of PS1 mutations could be related to an intracellular mislocalization of the γ-secretase complex composed of these mutants (67, 68). Indeed, in contrary to wild-type PS1 having a broad cellular distribution, mutated PS1 was found to be restricted to endosomal/lysosomal compartments (67, 68). Hence, it was postulated that mutated PS would favor intraneuronal Aβ

Strategy	Drug-specific target	Drug name	FDA status and participants	Side effects/cognitive readout	Reference
γ-secretase inhibitors	Semagacestat (Eli Lilly)	Discontinued in 2011 (AD patients)	A reduction in plasma at ≥47% to 64.6% newly Aβ reduction in CSF (110)	Worsens cognition, skin cancer and infections.	(114)
	Avagacestat (Bristol-Myers Squibb)	Discontinued in 2012 (pro-dromal AD)	A reduction in CSF at ≥40% Aβ reduction in plasma and CSF 125 mg	Worsens cognition, skin cancer and infections.	(116)
	Naproxen (Procter & Gamble)	Continued	No Aβ42 modulation in CSF	Discontinued in 2019 (asymptomatic carriers of Aβ and PS mutations)	(124)
γ-secretase modulators	Tarenabant (Myriad Genetics)	Discontinued in 2009 (mild to moderate AD patients)	No Aβ2 modulation in plasma and CSF	Lack of efficacy, diarrhea, nausea, vomiting, and rash	(126)
	Selmic Celtic (Eli Lilly)	Continued	No Aβ reduction in brain extracts	Lack of efficacy, diarrhea, nausea, vomiting, and rash	(127)
		Continued	No Aβ reduction in brain extracts	Lack of efficacy, diarrhea, nausea, vomiting, and rash	(128)

ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale; ADCOMS, Alzheimer’s Disease Composite Score; CSF, cerebrospinal fluid; FDA, Food and Drug Administration; MCI, mild cognitive impairment.
production, which could be particularly toxic (69–71). Moreover, the acidity of endosomal/lysosomal compartments could be less propitious for carboxypeptidase activity, thus leading to the generation of longer and more aggregating Aβ. Moreover, the acidity of endosomal/lysosomal compartments could be particularly propitious for Aβ aggregation and thus toxicity.

A more recent hypothesis suggests that the pathogenicity of PS mutations could also be linked, or at least partly, to their effect on C99 accumulation. Indeed, although few studies have investigated the effects of FAD mutations on C99 levels, recent studies seem to reveal a consistent increase in C99 in the absence of overexpression (73). Whether this effect on C99 is explained by a loss of function (reduced γ-secretase activity) and/or other PS-associated side effects remains unclear. Indeed, accumulating evidence indicates that both PS1 and PS2 are involved in essential cellular processes, independently of their role in γ-secretase, and proposed to be due notably to their function as chaperons and/or control of calcium release from the endoplasmic reticulum (for reviews see (75, 76)). Some of these functions have been suggested to be modified by FAD mutations, although again, many contrasting findings have been reported. Indeed, most studies on noncatalytic functions of PS have been carried out on knockout models, thus in the absence of PS, whereas fewer works have investigated the impact of FAD mutations on these functions. One of the most consistently described noncatalytic functions of PS is their involvement in the regulation of both autophagy and lysosomal function (75, 76) known also to be involved in C99 degradation (see below). Whether these γ-secretase-independent functions contribute to, or are responsible for, C99 accumulation, in cells expressing PS mutations, remains to be established.

Physiological function of γ-secretase

FAD cases correspond to only a very small subset of patients (about 1%) (77). Thus, both Aβ and C99 accumulation in FAD could reflect an exacerbated process or a dysfunction occurring only in few cases. The situation seems to be different in sporadic AD (SAD) that corresponds to most cases. In SAD, Aβ accumulation is mostly believed to be linked to age-related impairment in Aβ clearance, rather than to an increased Aβ biogenesis. Thus, Aβ should be considered firstly as a physiological product derived from normal processing of APP (78, 79). Although little is still known about the exact physiological role of Aβ, the peptide is known to regulate synaptic activity, to have antimicrobial and tumor suppressing properties (for review see (80)), and to be neuroprotective in some pathological conditions (81–83). Thus, to some extent the failure of clinical trials aimed at either inhibiting Aβ production or neutralizing Aβ once formed could be explained, at least in part, by the abolition of such Aβ-mediated physiological functions.

If considering Aβ as a physiological product, this implies that a main role of γ-secretase should be to generate bioactive molecules involved in important vital processes. Indeed, this point of view fits with genetic evidences indicating that the
invalidation of γ-secretase in mice is lethal (84) and that the conditional knockout of PS1 leads to neurodegeneration at the adulthood (85). Of course, these observations are probably explained by the numerous, more than 150, other γ-secretase proteolytic targets involved in physiological processes (86). Indeed, similar to APP, most of γ-secretase substrates are type I transmembrane proteins, which undergo “Regulated Intramembrane Proteolysis (RIP), a proteolytic process in which γ-secretase-mediated cleavage occurs inside the membrane ending up with the production of an intracellular fragment that shuttles to the nucleus and acts as a transcription factor (87, 88). The seminal example of RIP was described for Notch that undergoes γ-secretase-mediated cleavage, thereby generating the Notch Intracellular Domain (NICD) (89), a key player of embryonic development (90). For instance, this lack of Notch cleavage (91) is believed to explain the lethal embryologic defects observed in PS-invalidated mouse embryos (84). In addition, numerous other substrates (the list is far from being exhaustive) have been reported to undergo RIP including cadherins (N and E Cadh-ICDs) (92), alcademeins (93), CD44 (94), or more recently TREM2 (95). Generally, the generation of the intracellular domain of these proteins is essential in the transcriptional regulation of physiological processes such as neurite outgrowth, cell adhesion and migration, or synaptogenesis (96, 97). This phenomenon is also described for APP for which the intracellular domain AICD has been found to form a transcriptional active complex with Fe65 and Tip60 (98, 99) that regulates key proteins involved in the control of cell death (p53) (100), Aβ degradation (Neprilysin) (101, 102), as well as tau phosphorylation (GSK3β) (103, 104). Thus, γ-secretase cleavage should be considered as a necessary step in the formation of both Aβ and AICD. Besides this role, γ-secretase cleavage has also been proposed to behave as a “membranous proteasome” essential for the inactivation of the buildup of toxic membranous stubs (105). It remains unclear, whether this “proteasome-like activity” is nonselective and inactivates all substrates equally, or if some substrates are cleaved by specific protease complexes. Recent evidences seem to indicate at least some substrate specificity and that not only the exact protein composition of the secretase complex, but also the cellular context, subcellular localization, and the presence of nonessential cofactors (106) can be key determinants for this control. For instance, protease heterogeneity has been shown to be related to the exact protein composition of the protease and alternative splicing of Aph1 leads to further complexity (107, 108). For instance, in
mice the knockout of the 3 Aph1 subunits led to an important increase in some, but not all, membrane-bound fragments and APP-dependent neurodegeneration (107, 108). Hu and colleagues demonstrated that nicastrin is required for APP processing but not Notch processing, whereas Aph1 is necessary for the processing of both APP and Notch (109). Selectivity also seems to be determined by the subcellular localization of the protease, since, as described above, PS1- or PS2-containing complexes do not have the same cellular localization and do not cleave APP identically (67, 68). Interestingly, mutations in PS1 change the localization toward that of PS2-containing complexes (67).

Challenges and complications of targeting γ-secretase in AD

After the discovery of γ-secretase, a huge amount of research was carried out to develop potent and bioavailable γ-secretase inhibitors (GSIs), but the clinical trials based on these inhibitors all failed (Table 1). Indeed, none of them led to improvement of AD-linked cognitive decline and even sometimes they worsened them. In most of these trials, Aβ levels in plasma or cerebrospinal fluid (CSF) were significantly decreased, thus clearly indicating that a reduction in total Aβ was not sufficient to restore cognitive function. This was the case for Semagacestat, the first GSI tested in late-stage clinical trials for AD, which was reported to reduce Aβ levels by more than 60% in the plasma (110), and new Aβ synthesis was decreased by more than 80% in CSF (111). More alarming, many trials were readily stopped because of increased risk of developing skin cancer and infections, which was supposed to be tightly linked to a defective Notch signaling in the presence of the inhibitors (112). Therefore, several groups started to screen for drugs having a higher affinity for APP than toward Notch, such as Avagacestat, initially reported to be 140-fold more selective for APP than Notch (113), although its Notch sparing ability remains controversial (114, 115). Avagacestat led to a 40% Aβ reduction in CSF (Table 1), but demonstrated similar side effects in clinical trials (116). Therefore, due to the huge number of different γ-secretase substrates, it has appeared difficult to target specifically and exclusively the γ-secretase-mediated APP cleavage.

Furthermore, data from preclinical trials proposed that the lack of efficacy, or even worsening, of cognitive function in these trials was also linked to the progressive accumulation of APP-CTFs in the presence of GSIs (117). To avoid such effects, therapeutic development became focused on γ-secretase modulators (GSMs) that were expected to be safer, since they interact with γ-secretase complex through the allosteric binding site, thereby modifying the enzyme activity but not blocking it (118). The concept of γ-secretase modulation was discovered with some nonsteroidal anti-inflammatory drugs (NSAIDs) such as flurbiprofen, indomethacin, and ibuprofen, which are considered as GSIs, because they induce conformational changes in PS1 and shift the cleavage of C99 toward shorter Aβ species such as Aβ37 and Aβ38 (16, 119). In that way, GSMS do not lead to increased APP-CTFs levels. Indeed,
in AD animal models, the chronic treatment with GSMs did not lead to the worsening of cognitive function observed with GSIs (117). Moreover, GSMs are also safer because they reduce the level of Aβ42 and increase shorter Aβ peptides without affecting Notch signaling (120, 121). Nonetheless, the first GSMs tested in clinical trials, Rofecoxib (122), Tarenflurbil (123) or Naproxen (124), did not show efficacy, but the lack of effects seemed to be related to a very poor blood–brain barrier crossing ability of these drugs (Table 1).

Thus, taken together, γ-secretase-based strategies have so far been unsuccessful, even if GSMs seem to be more promising (125). Still, if considering γ-secretase as a C99-inactivating enzyme, we believe that one should carefully question the validity of targeting this enzyme.

C99 is toxic and γ-secretase inhibitors potentiate pathogenic phenotypes

Emerging data propose a pathological role of the intraneuronal accumulation of C99 (Table 2). Indeed, a very recent work showed that the accumulation of C99, rather than that of Aβ, correlates with neuronal vulnerability in AD-affected patients (126). To distinguish between C99 and Aβ in situ, which can be very challenging because the two of them have common epitopes, the group of Drs Bustos and Greengard developed a sophisticated technique adapted from the proximity ligation assay (PLA) and using both N- and C-terminal directed antibodies. This link between neuronal vulnerability and C99 in human AD was an important observation previously supported by many animal models. The first evidence of C99 accumulation in AD mouse models came from studies on the widely used 3xTg-AD model (APPsw/ TauP301L/ PS1M146V) developed by the group of La Ferla (127). In the original work, the authors used N-terminal Aβ antibodies and claimed that these mice harbor intracellular Aβ accumulation (127). However, years later our own work, using different and complementary approaches, indicated that this accumulated material corresponded to C99 and not to Aβ (128). Indeed, as stated above, it is challenging to discriminate between Aβ and C99 in situ. Hence, only a detailed characterization using N- and C-terminal antibodies, pharmacological treatments (β- and γ-secretase inhibitors), and/or genetic approaches (as PS mutations) can allow this discrimination. Most and even recent studies do not provide this detailed characterization, which may explain the lack of information concerning C99 in the literature. In the 3xTgAD model, C99 accumulates early and much before Aβ can be detected (128). Of importance, C99 accumulation was found to also occur in many other transgenic models including Tg-CRN D8 (129) and J A20 (130) mice carrying the APPsw mutation, known to increase C99 production, but also in mice displaying the APPE693Q Dutch mutation (131), in which a C99 overproduction is not expected to occur. Interestingly, and importantly, C99 accumulation also occurs in the knock-in models APP-NL and APP-NL-F, harboring the Swedish (KM 670/671 NL) mutation alone (APP-NL) or in combination with the I706F mutation (APP-NL-F), respectively (132, 133) (Table 2) indicating that C99 accumulation was not just an artificial phenotype linked to APP overexpression, as earlier described for other events taking place in transgenic mouse models that sometimes express very high levels of APP (132). The presence of the Swedish mutation could indeed, at least to some extent, explain the C99 accumulation in these knock-in mice. However, recent studies clearly showed that humanizing APP (substituting the three amino acids G676R, F681Y, and R684H) in mice or rats is sufficient to increase C99 levels (134–136). In animals displaying rodent APP, the protein was found to be mainly processed by a-secretase, thus generating almost only C83, whereas the presence of human APP increases β-secretase cleavage and leads to enhanced C99 levels (134). These data thus reveal a different APP processing of human and rodent APP, which could explain the higher levels of C99 in human as compared with rodents (137) and may be one of the reasons for the C99 accumulation observed even in SAD cases (126, 137, 138). Overall, these findings ruled out the possibility that it could be “model specific” but rather suggest that it should be a common and early alteration in AD.

In AD mouse models, such as in 3xTg-AD mice, C99 accumulation was described to be both the cause and the consequence of endosomal perturbations, ultimately leading to failure of lysosomal and autophagic processes (139). A similar link between C99 accumulation and lysosomal dysfunction was described in the mouse bearing the Dutch mutation APPE693Q (131). Moreover, in fibroblasts from Down syndrome patients or from the mouse model Ts65Dn, C99 were found to induce enlargement of Rab5 positive early endosomes, aberrant endocytosis, and impaired endosomal transport (140). Interestingly, these alterations were fully Aβ-independent, since they were rescued by β-secretase inhibitors or partial BACE1 genetic depletion and were enhanced by GSIs (139–142). Of utmost interest, C99 accumulation has also been associated to endolysosomal dysfunction in human cellular AD models. Indeed, the earlier mentioned transcriptomic analysis of induced pluripotent stem cells (iPSCs) harboring AD-related APP or PS1 mutations indicated similar changes in endocytosis-associated genes (73). Strikingly, these mutations brought divergent data concerning Aβ, but they all displayed increases in C99 levels as well as endosomal dysfunction (73). The use of notably a BACE inhibitor, GSMs and GSIs, showed that endosomal pathology was linked to C99 and not to the changes in Aβ (73). Resembling data were obtained in another study using iPSCs-derived neurons obtained from AD patients harboring APP or PS1 mutations, which displayed both C99 accumulation and dysfunction of the endosomal–lysosomal network (143). As a difference to the work of Kwarts and colleagues, mutations in APP but not in PS1 led to early endosomal (Rab5 associated) pathology, but all mutations led to enlarged late endosomes and defective lysosomal degradation. These effects were APP-dependent, reversed by BACE inhibition, and exacerbated by GSIs. These results agree with the consistent data linking C99 to a dysfunction in the endolysosomal network occurring even in the presence of physiological APP levels (144). Whether C99 accumulation in these systems is linked to the partial loss of
function of γ-secretase or to other PS but γ-secretase-indepen-
dent mechanisms, such as impaired lysosomal-autophagic
degradation, as discussed earlier in this review, remains to be
established. Related to endolysosomal dysfunction, the path-
genicity of C99 could also be due to its propensity to
aggregate and to spread through exosomes, small vesicles
secreted from cells (145). Indeed, exosomes originate from
endosomes and C99 is detected in these vesicles (145–147). Our
recent work showed the possible presence of C99 existing
as oligomers (C99 homomers and heteromers composed of
C99/C83) in exosomes, the levels of which were drastically
enhanced upon γ-secretase inhibition (145). The latter state-
ment is of importance due to the proposed role of exosomes in
prion-like transmission of neurotoxic molecules (148).

In addition to endosomal and lysosomal alterations, mito-
chondrial dysfunction is a key feature of AD with altered
mitochondrial potential, increased levels of reactive oxygen
species (ROS) (149–151), as well as a defect in clearance of
abnormal mitochondria (mitophagy) (152, 153). Our recent
work proposed that in cellular models, C99 can trigger all
these alterations (137). In agreement, mitochondrial structure
alterations and mitophagy defects were observed in young
preplaque 3xTg-AD mice, as well as in virus-induced C99
expressing mice (AAV10-C99 mice) and notably following GSI
treatment (137). Other studies have demonstrated C99 accu-
maluation in mitochondria-associated membranes (MAMs)
(154, 155) and have proposed its contribution to neutral lipid
accumulation (155) and cholesterol trafficking (156).

Neuroinflammation is also a key feature of AD, but little is
known about its molecular triggers. The contribution of C99
to neuroinflammation was proposed as early as in 1998 in
mice, in which the intracerebroventricular injection of re-
combinant C99 (CT105) was found to induce reactive gliosis
and neurodegeneration (157). CT105 was also found to
interact with inflammatory cytokines and produce a synergistic
effect on working memory (158). Two more recent works also
proposed a link between intraneuronal accumulation of C99
and astrocytic activation and astrogliosis in 3xTgAD and
APP^{E693Q} mice, respectively (128, 131). Furthermore, in pre-
plaque TgCRND8 mice, C99 was shown to correlate with a
TNFα augmentation and microglial activation (129).

Does C99 accumulation also trigger functional and cognitive
alterations? It is well established that AD is characterized by a
hippocampal altered long-term potentiation (LTP) and
depression (LTD) (159), as well as network activity dysfunc-
tions (160). All of these electrophysiological signatures are
linked to memory consolidation and learning ability and
appear altered before senile plaques and neurodegeneration in
human AD (161) and many mouse models. The first evidence of
a neurotoxic effect of C99 on synaptic function was
demonstrated years ago in a transgenic mouse model
expressing directly the C99 fragment (162). These mice were
found to develop both LTP and memory alterations, as well as
neuroinflammation and neuronal loss. Our own recent studies
in AAV10-C99 mice showed that LTP was significantly
reduced in preplaque mice and that GSIs did not reverse LTP
alterations (139). Synaptic alterations also seemed to be
temporarily and spatially correlated to C99 accumulation in
3xTgAD mice (163) and in the Danish dementia mouse model,
in which a deficiency in the BRI2 protein leads to increased
APP levels and in which LTP alterations and memory defects
were rescued by the pharmacological inhibition of β-secretase,
but not γ-secretase (164). Hippocampal network oscillations,
as well as theta/gamma coupling alterations, were reported at
early “Aβ-free” stages in the Tg-CRND8 mouse (165). In this
study, these early network defects occurred in C99-accumulat-
ing regions and were fully rescued by β-secretase
inhibition (130). In contrast, another recent study reported an
absence of rescue of network alterations by β-secretase inhibi-
tion in the j20 model, although the levels of both C99 and Aβ
were clearly reduced (133). These data show that synaptic
function is governed by complex mechanisms that may be
difficult to rescue. First of all, in these studies β-secretase
inhibition led to a decrease in C99 and Aβ, but it also led to a
concomitant increase in C83 that maybe could contribute to
these alterations, although this was not discussed by the au-
thors. Second of all, and maybe more importantly, the lack of
rescue by BACE1 inhibitors could be due to the suppression of
important cell signaling pathways involved in synaptic func-
tion, due to the inactivation of other BACE1 substrates, such as
Neuregulin-1 and Sez6 (166, 167). In the same way, studies
investigating the role of C99 accumulation in AD-related
memory impairment in mouse AD models have reported
conflicting data. In 3xTgAD mice, C99 accumulation seems
to trigger both electrophysiological hippocampal defects and mild
cognitive dysfunction (163, 168). Similar defects were observed
in CT105-expressing mice (162). However, the studies from
knock-in models seem to argue for an Aβ-rather than a C99-
dependent contribution to synaptic alterations. In fact, the two
knock-in models APP-NL and APP-NL-F, harboring the
Swedish (KM670/671NL) mutation alone (APP-NL), or in
combination with the I706F mutation (APP-NL-F), respec-
tively, both accumulate C99 (132), but only the APP-NL-F,
displaying higher Aβ levels, develops late-stage cognitive
dysfunction (132, 169). Moreover, the knock-in mouse APP-
NL-G-F harboring a third mutation, the E693G Arctic muta-
tion, which generates a particular high level of oligomerized
Aβ, displays cognitive dysfunction at a much younger age.
Thus, taken together, these observations could suggest either
that only Aβ is toxic or that Aβ and C99 contribute differen-
tly to the pathology. Whereas Aβ, as a soluble peptide, could be
expected to act mainly outside cells, the toxic effect of
membrane-embedded C99 should be intracellular. It is
possible that intraneuronal C99 is a trigger of a more slowly
developing pathological process that might be more prominent
in transgenic mice that display higher levels of C99 than
knock-in mice.

In 3xTgAD mice, these electrophysiological defects are not
only accompanied by alterations in spatial learning and
memory, but are also associated to a decrease in spontaneous
activity that is reminiscent to apathy (168), a phenotype
considered as an early neuropsychiatric symptom in AD pa-
tients (170, 171). Several observations suggested that this
apathy-like behavior could be linked to C99 accumulation.
This phenotype not only appears at a stage much before Aβ could be detected, but it similarly occurs in a 2xTg-AD model (harboring APPswe and Tau P30L), which was found to accumulate identical amounts C99 to the 3xTgAD mouse, but which display very low Aβ levels even at late stages (168).

Is β-secretase a good drug target?

BACE1 cleavage of APP represents the rate-limiting step of Aβ production, and targeting this enzyme would provide advantage to prevent production of both Aβ and C99. To date, there is no evidence of AD-linked mutations on BACE1, but a clue of an indirect importance of BACE1 in AD came from genetic studies showing that APP mutations lying close to the β-secretase cleaving site strongly affect the cleavage by this enzyme and can either cause early-onset AD (the Swedish and Leuven mutations) or be protective (the Icelandic mutation). BACE1 has also been shown to have a role in SAD as its expression was reported to be increased in AD patients. Thus, BACE1 protein was found to be increased 3-fold in cortical areas of AD patients as compared with age-matched controls (172), and these data were confirmed at the mRNA level in the frontal cortex of SAD patients (172, 173). Yang and colleagues also showed a significant elevation of BACE1 in temporal cortex and hippocampal samples from a cohort of clinically diagnosed and neuropathologically confirmed AD patients (174). This study used fluorimetric analysis assays and in vitro proteolysis to confirm that this increase in BACE1 expression led to enhanced functional enzyme. At that stage, most of the

Figure 3. Schematic models for C99 accumulation. A, displays a schematic model of C99 fate in the absence or presence of γ-secretase cleavage. In physiological conditions, γ-secretase cleavage of C99 (blue/red sticks) leads to the generation of Aβ and AICD, whereas when γ-secretase activity is impaired (inhibitors or PS mutations), C99 accumulates and aggregates. B, displays a schematic view of C99 generation and accumulation in conditions of blocked γ-secretase. APP (long blue/red bar) maturates and traffics through the Golgi to the plasma membrane (blue arrows), where a small part of it is processed by α-secretase (non-amyloidogenic pathway). APP that escapes α-secretase-mediated cleavage is endocytosed into early endosomes and some of it is recycled to the plasma membrane, either directly or through the Golgi network (open black arrows). Within early endosomes, some APP is cleaved by β-secretase generating C99 (short blue/red bar), which then can undergo γ-secretase cleavage, thereby releasing the Aβ peptide and AICD. Some C99 escapes from γ-secretase cleavage and is incorporated in ILVs (intra luminal vesicles), which are either released as exosomes after the fusion of multivesicular bodies (MVBs) with the plasma membrane (1) or degraded after their fusion of MVBs with lysosomes or with autophagosomes, which then fuse with lysosomes (2). The presence of APP and PS mutations or γ-secretase inhibitors and/or lowered lysosomal degradation lead to lysosomal, autolysosomal, and exosomal C99 accumulation. C99 has also been found to accumulate in MAMs and mitochondria.
Figure 4. C99 toxicity. C99 accumulation can be a consequence of either the presence of FAD mutations or a lowered degradation (possibly linked to risk factors). C99 firstly accumulates in endosomes and can itself be a direct cause of a dysfunction of the endosomal–lysosomal–autophagic (EAL) degradation pathway, thus leading to a vicious pathological cycle, in which more C99 accumulates, aggregates, and becomes neurotoxic by causing synaptic dysfunction, inflammation, mitochondrial dysfunction, and exosomal spread. Therapeutic strategies aimed at reducing C99 levels could be through either BACE1 inhibitors and/or BACE1 aptamers, which should be expected to reduce its production or autophagic/lysosomal activators or other drugs interfering with C99 degradation, which should increase its degradation.

Studies attempted to correlate BACE1 expression to Aβ load. However, some later studies analyzed C99 levels and reported also an increase in both FAD and SAD brains (137, 138, 175). Of most interest, the recent work from Pulina and colleagues quantifying both C99 and Aβ in either controls, mildly or severely-affected AD brains, showed that C99 accumulates specifically in vulnerable neurons and correlated with the degree of cognitive alterations, whereas Aβ load was increased in both vulnerable and resistant brain regions in AD (126). The latter data are to be put back into context with the consistent former observations that Aβ expression and distribution within brain areas do not fully match neuronal loss, cognitive defects severity, and dementia AD progression (176–178). It should be emphasized that two recent studies documented former observations that Aβ load was increased in both vulnerable and resistant brain regions in AD (126). The latter data are to be put back into context with the consistent former observations that Aβ expression and distribution within brain areas do not fully match neuronal loss, cognitive defects severity, and dementia AD progression (176–178).

As stated above, BACE1 mainly cleaves APP at the β site to generate C89 and can therefore be considered to be protective. In addition, BACE1 is also able to cleave Aβ40 and Aβ42 into the nonamyloidogenic (180) and neuroprotective (181) Aβ34. A recent study also proposed another neuroprotective role of BACE1, since the inhibition of this enzyme was found to enhance the levels of both γ-secretase and Aγ, the latter was proposed to be neurotoxic (27). Thus, in AD, the shift from a beneficial to a deleterious BACE1 cleavage could be due to the age-dependent augmentation of BACE1 expression occurring in sporadic AD or to the expression of a subset of pathogenic mutations in FAD, thereby enhancing C99 levels above physiological threshold (32).

All clinical trials targeting BACE-1 that have entered in phase III have been reported to decrease significantly and dose-dependently Aβ levels in the brain, plasma, or CSF (Table 1). However, all of them have been terminated mostly due to reported toxicity. Indeed, many studies have demonstrated serious adverse effects such as an abnormal elevation in liver enzymes and clinical worsening (Table 1). The reasons for these side effects observed in human trials are not well established, but could be related to the high number of BACE1 substrates being involved in vital functions. BACE1 is known to cleave nearly 40 different neuronal membrane proteins (182) and some of these substrates, such as Sez6 or neuron myelination like neuregulin-1, are known to be essential for synaptic function (183). Indeed, several studies reported that BACE1 inhibition triggers synaptic and cognitive dysfunctions (166, 167). BACE1 inhibitors could also cross over with not only its homologue BACE2, but also with cathepsin D, another aspartyl protease (184, 185). Inhibition of cathepsin D would be expected to be highly deleterious because of its role in lysosomal degradation. Of note, cathepsin D is one of the key enzymes involved in C99 degradation (139, 186) and would therefore also be expected to slow down the degradation of C99 (139, 186). It is therefore of high importance to identify inhibitors that target BACE1 but no other acidic proteases. Moreover, ideally these inhibitors should specifically decrease the processing of APP but not that of other BACE1 substrates.

Until yet, one of the main obstacles of BACE1 inhibitors is linked to their limited drug availability due to their peptidic feature and high molecular size. Small molecules may be less efficient than APP to fill the large substrate pocket, but higher sized molecules may display reduced bioavailability. These drugs need to cross the brain barrier, but also the cell membrane to reach endosomes, which are the main sites for β-secretase (36). Great advances in the field have been the recent development of nonpeptidic inhibitors with promising pharmacological properties, but still these drugs have not demonstrated convincing effects on cognitive function. This has been the case for the clinical trial with the small-molecule β-secretase inhibitor Umibecestat, which was administrated to preasymptomatic carriers of APOE4 and led to more than 90% reduced Aβ levels.
Alternative strategies to decrease C99 buildup

Besides being processed by γ-secretase, a part of C99 is eliminated by degradation through the autophagic/lysosomal pathway (92, 143) and in some AD models, C99 accumulation is a consequence of a defective lysosomal clearance (139). Endosomal–lysosomal–autophagic dysfunction is indeed one of the earliest and major features of AD and has been proposed to be caused by both FAD mutations (as described above) and risk factors associated with SAD (for review see (188)). Thus, the activation of this degradation pathway could be expected to reduce C99 levels and to be beneficial. Rapamycin, a specific inhibitor of mTOR and a well-known inducer of autophagy, has been reported to ameliorate tau pathology, reduce amyloid–β (Aβ) deposition, and improve cognition in preclinical studies (189, 190). However, rapamycin, as well as other autophagic activators, enhances autophagy without increasing lysosomal function that may be associated with an accumulation of nondigested autophagic vacuoles. Thus, a better way to enhance degradation could be to activate both autophagy and lysosomal function by overexpressing or pharmacologically activating the transcription factor EB (TFEB), the main regulator of the lysosomal/autophagic degradation pathway (191). TFEB activates the different steps of autophagy, from its initiation to the fusion of autophagosomes with lysosomes, but it also stimulates the biogenesis of lysosomal hydrolases and regulates lysosomal acidification (191). Indeed, in animals, TFEB activation has been found to efficiently decrease C99 levels (192–194) and to ameliorate cognitive function, whereas it does not seem to produce any harmful effects in wild-type animals (143). The recent findings concerning TFEB activation by a curcumin analog are promising, because of the lack so far of specific TFEB-activating molecules. Earlier studies have proposed cyclodextrin, a modifier of cholesterol efflux used for the treatment of Niemann–Pick disease, as a TFEB activating drug. However, a recent work has demonstrated conflicting data concerning this molecule (195). Whereas short-term treatment was found to lead to activated autophagic degradation, long-term treatment had an opposite effect probably caused by the effect of cyclodextrin on membrane lipids (195). In addition, pharmacological treatments such as acidic nanoparticles, PLGA (poly lactic-co-glycolic acid), called acidic nanoparticles (196) could constitute an alternative way to increase lysosomal function. These nanoparticles localize to lysosomes, where they degrade, and subsequently release their acidic components to acidify the local lysosomal environment (197). Acidic nanoparticles have notably been proven efficient in cellular and animal models of Parkinson’s disease (197).

Finally, recent works have proposed novel mechanisms involved in C99 degradation and have provided new potential drug targets. For instance, it was demonstrated that the selective phosphorylation of presenilin 1 at ser367 could be a way to increase autophagic degradation of C99. Indeed, this phosphorylation of PS1 was found to facilitate autophagic–lysosomal fusion, an effect that was mediated through the interaction of phosphorylated PS1 with Annexin 2 and snare proteins. These findings therefore proposed that drugs designed to selectively increase phosphorylation of presenilin1 at ser367 could be a way to circumvent C99 accumulation (198, 199). Other works have shown that lysosomal/autophagic degradation of C99 can be promoted by its binding to the adipocyte differentiation protein AMAP, which could therefore also constitute a new drug target (200, 201). The γ-secretase complex, often via the presenilins, binds to many endogenous proteins, which will influence γ-secretase cleavage in distinct ways (202, 203). γ-Secretase has also been found to bind APP-CTFs, thereby stabilizing them for nonspecific degradation (204). A recent study proposed that ILE1, a member of the FAM3 superfamily, interferes with these chaperone properties and thereby enhances C99 degradation (204). ILE1 and molecules having similar properties may therefore also be plausible targets for future therapies.

Besides the strategies aimed at reducing C99 levels by enhancing its degradation, two other alternative strategies are possible. Firstly, the design of aptamers (so-called chemical antibodies) and the successful outcomes of their use in pathological conditions (205) allow to envisage this strategy to preclude side effects of BACE1 inhibitors on its physiological substrates. These chemical probes should be designed to prevent direct physical interaction of BACE1 with its targeted APP sequence in order to selectively hamper BACE1-mediated production of C99. Secondly, C99 levels could be reduced by repressing the transcriptional of APP. Indeed, a recent study has showed such effects of the compound Posiphen, which normalized C99 levels, but also reversed early endosome enlargement in Ts65Dn mice (206). This study not only re-affirms the link between C99 and endosomal perturbation but also indicates that the upstream regulation of its precursor APP could be a potential track to circumscribe C99 accumulation and subsequent cellular alterations.

Conclusion and perspectives

Taken together, two lines of conclusions can be drawn from the above-described observations. First, studies on a vast number of γ-secretase substrates have mostly if not always shown that their catalytic processing leads to the conversion into bioactive fragments, the generation of which governs a large spectrum of vital functions (96, 97). This is probably also the case of γ-secretase cleavage on APP leading to the generation of physiological levels of Aβ and AICD. Second, a network of consistent evidence suggests that, first, both FAD and SAD are associated with C99 accumulation; second, that C99, independently of Aβ, behaves as an early pathogenic trigger in AD, and third, that all C99-associated biochemical, anatomical, and cognitive alterations are drastically potentiated by γ-secretase inhibitors (Fig. 3). C99 accumulation is believed to begin mainly in endosomes and has been shown to be a direct cause of endolysosomal network dysfunction, thus leading to a vicious pathological cycle, in which C99
accumulates, aggregates and becomes neurotoxic by causing synaptic dysfunction, inflammation, mitochondrial pathology, and exosomal spread (Fig. 4). The causes of this AD-related C99 accumulation could be an increased production (presence of APP mutations in FAD or enhanced BACE expression in SAD), a loss of γ-secretase cleavage (FAD PS and APP mutations) or a decreased degradation due to a defective lysosomal–autophagic degradation (early feature linked to FAD mutations and risk factors in SAD).

Our conclusion reconciles genetic grounds indicating a strong link between βAPP and AD pathology and the systematic failure of Aβ-centric clinical assays. So far, evidence points to a particularly important role of C99 at early stages of AD, but these findings do not preclude the undoubted role of Aβ and particularly at later stages. The toxic effect of C99 could also be completely different from that of Aβ. While the membrane-embedded C99 could affect mostly intracellular pathways, Aβ could be expected to act mostly extracellularly. We propose that γ-secretase is an important C99-inactivating enzyme and that the consistent failure, and sometimes the deleterious worsening, of clinical trials based on γ-secretase inhibition could be linked, at least partly, to the impairment of C99 inactivation. GSIs are certainly more promising than GSIs, because they are not expected to increase C99 levels. However, the lack of C99 inactivation in the presence of these molecules still might be problematic. Future studies are needed to clarify this issue.

If one considers the fate of C99, secretases could overall be seen either as direct C99 inactivators, such as γ-secretase as stated above, α-secretase that cleaves C99 to generate C83 (207), and even β-secretase that mainly cleaves βAPP at the β’ site, thereby precluding C99 production (Fig. 1B). In that sense, our point of view is that therapeutic strategies targeting secretases would not be the best way to tackle AD. Indeed, besides the complexity and the high number of substrates other than APP, inhibiting these cleavages would also impair C99 degradation.

Thus, in conclusion, we here suggest that γ-secretase is a crucial enzyme involved in not only the production of physiologically active fragments but also the inactivation of neurotoxic C99. We propose alternative strategies aiming to reduce the levels of C99, either by interfering with its production or by promoting its degradation (Fig. 4).

Acknowledgments—This work was partly supported by the “Foundation Alzheimer,” the “Fondation pour la Recherche Médicale” and the French National Foundation for Alzheimer’s Disease and Related Disorders. This work has been developed and supported through the LABEX (excellence laboratory, program investment for the future) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer’s disease) and the University hospital Federation (FHU) OncoAge.

Author contributions—All the authors contributed to the writing of this article

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are: Aβ, amyloid β; AD, Alzheimer’s disease; AICD, APP intracellular domain; APh, anterior pharynx defective; BACE, β-site APP cleaving enzyme; βAPP, amyloid precursor protein; CSF, cerebrospinal fluid; CTF, C-terminal fragment; EAL, endosomal–lysosomal–autophagy; ER, endoplasmic reticulum; FAD, familial Alzheimer’s disease; GSM, γ-secretase modulators; LTP and LTD, long-term potentiation and depression; MAM, mitochondrial membrane associated; NCT, nicasrin; PEN, PS enhancer; PS, presenilin; ROS, reactive oxygen species; SAD, sporadic Alzheimer’s disease; TFEB, transcriptional factor EB.

References
1. Calderon-Garciduenas, A. L., and Duyckaerts, C. (2017) Alzheimer disease. Handbook Clin. Neurol. 145, 325–337
2. DeTure, M. A., and Dickson, D. W. (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener 14, 32
3. Sengoku, R. (2020) Aging and Alzheimer’s disease pathology. Neuropharmacology 40, 22–29
4. Glenner, G. G., and Wong, C. W. (1984) Alzheimer disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. BBRC 120, 885–890
5. Brion, J. P., Flamant-Durand, J., and Dustin, P. (1986) Alzheimer’s disease and tau proteins. Lancet 2, 1098
6. Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D., and Crowther, R. A. (1989) Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neurom 3, 519–526
7. Kang, J., Lemaire, H.-G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K.-H., Multhaup, G., Beyreuther, K., and Müller-Hill, B. (1987) The precursor of Alzheimer’s disease amyloid protein resembles a cell-surface receptor. Nature 325, 733–736
8. Head, E., and Lott, I. T. (2004) Down syndrome and beta-amyloid deposition. Curr. Opin. Neurol. 17, 95–100
9. Levy, E., Carman, M. D., Fernandez-Madrid, I., Power, M. D., Lieberburg, I., Van Drinen, S. G., Bots, G. T. M., Luyenkijk, W., and Frangione, B. (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126
10. Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidami, L., Giuffra, L., Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, K., Roques, P., Talbot, C., et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706
11. Mullan, M., Crawford, F., Axelman, K., Houdien, H., Lilius, L., Winblad, B., and Lannfelt, L. (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nat. Genet. 1, 345–347
12. Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A. Y., Seubert, P., Vigo-Pelfrey, C., Lieberburg, I., and Selkoe, D. J. (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 356, 672–674
13. Cai, X.-D., Golde, T. E., and Younkin, S. G. (1993) Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259, 514–516
14. Wolfe, M. S. (2020) Unraveling the complexity of gamma-secretase. Semim. Cell Dev. Biol. 105, 3–11
15. Escamilla-Avala, A., Wouters, R., Sannerud, R., and Annaert, W. (2020) Contribution of the Presenilins in the cell biology, structure and function of gamma-secretase. Semim. Cell Dev. Biol. 105, 12–26
16. Lleo, A., Berezovska, O., Growdon, J. H., and Hyman, B. T. (2004) Clinical, pathological, and biochemical spectrum of Alzheimer disease associated with PS1 mutations. Am. J. Geriatr. Psychiatry 12, 146–156
17. Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., Stefansson, H., Sulem, P., Gudbjartsson, D., Maloney, J.,
Hoyte, K., Gustafson, A., Liu, Y., Lu, Y., Bhangale, T., et al. (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. *Nature* **488**, 96–99

18. Hardy, J. A., and Higgins, G. A. (1992) Alzheimer’s disease: The amyloid cascade hypothesis. *Science* **256**, 184–185

19. Nie, P., Vartak, A., and Li, Y. M. (2020) gamma-Secretase inhibitors and modulators: Mechanistic insights into the function and regulation of gamma-Secretase. *Semin. Cell Dev. Biol.** **105**, 43–53

20. Moussa-Pacha, N. M., Abdin, S. M., Omar, H. A., Alniss, H., and Al-Tel, T. H. (2020) BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. *Med. Res. Rev.* **40**, 339–384

21. Huang, Y. M., Shen, J., and Zhao, H. L. (2019) Major clinical trials failed to demonstrate efficacy of new drugs in Alzheimer’s disease. *Med. Res. Rev.* **49**, 65–140

22. Hardy, J. A., and Higgins, G. A. (1992) Alzheimer disease Beta-secretase activity. *BACE1. Mol. Neurodegener.* **2**, 22

23. Zhuo, L., Brouwers, N., Benilova, I., Vandersteent, A., Mercken, M., Van Laere, K., Van Damme, P., Demedts, D., Van Leuven, F., Sleevers, K., Broersen, K., Van Bockhoven, C., Vandenbergh, R., and De Strooper, B. (2011) Amyloid precursor protein mutation E682K at the alternative beta-secretase cleavage beta-site increases Aβeta generation. *EMBO Mol. Med.* **3**, 291–302

24. Seubert, P., Olstersdorf, T., Lee, M. G., Barbour, R., Blomquist, C., Davis, D. L., Bryant, K., Fritz, L. C., Galasko, D., Thal, L. J., Lieberburg, I., and Schenk, D. B. (1993) Secretion of b-amyloid precursor protein cleaved at the amino terminus of the b-amyloid peptide. *Nature* **361**, 260–263

25. Maloney, J. A., Bainbridge, T., Gustafson, A., Zhang, S., Kyausk, R., Steiner, P., van der Brug, M., Liu, Y., Ernst, J. A., Watts, R. J., and Atwal, J. K. (2014) Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. *J. Biol. Chem.** **289**, 15990–15999

26. Schellenberg, G. D., Bird, T. D., Wijmans, E. M., Orr, H. T., Anderson, L., Nemes, E., White, J. A., Bonnycastle, L., Weber, J. L., Alonso, M. E., Potter, H., Heston, L. L., and Martin, G. M. (1992) Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. *Science* **258**, 668–671

27. St. George-Hyslop, P., Haines, J., Roge, E., Mortilla, M., Vaula, G., Pericak-Vance, M., Focin, J. F., Montesi, M., Bruni, A., Sorbi, S., Rainero, I., Pinelli, L., Pollen, D., Polinsky, R., Nee, L., et al. (1992) Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. *Nat. Genet.* **2**, 330–334

28. Van Bockhoven, C., Backhoven, H., Cruts, M., De Winter, G., Bruylant, M., Cras, P., and Martin, J. I. (1992) Mapping of a gene predisposing to early-onset Alzheimer’s disease to chromosome 14q24.3. *Nat. Genet.* **2**, 335–339

29. Roge, E. I., Sherrington, R., Roge, E. A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., Tsuda, T., Mar, L., Sorbi, S., Nacmias, B., Piacentini, S., Amaducci, L., et al. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. *Nature* **376**, 775–778

30. Sherrington, R., Roge, E. I., Liang, Y., Roge, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Focin, J. F., Bruni, A. C., Montesi, M. P., et al. (1995) Cloning of a bearing gene causing missense mutations in early-onset familial Alzheimer’s disease. *Nature* **375**, 754–760

31. De Strooper, B., Safig, P., Craessaerts, K., Vanderstichele, H., Ghede, G., Annaert, W., Von Figura, K., and Van Leuven, F. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. *Nature* **391**, 387–390

32. Herrema, A., Seroels, L., Annaert, W., Collen, D., Schoonjans, L., and De Strooper, B. (2000) Total inactivation of g-secretase activity in presenilin-deficient embryonic stem cells. *Nat. Cell. Biol.* **2**, 461–462

33. Edlbauer, D., Winkler, E., Regula, J. T., Pesold, B., Steiner, H., and Haass, C. (2003) Reconstitution of g-secretase activity. *Nat. Cell. Biol.* **5**, 486–488

34. Kimberly, W. T., LaVoie, M. J., Ostaszewski, B. L., Ye, W., Wolfe, M. S., and Selkoe, D. J. (2003) g-secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1 and pen-2. *Proc. Natl. Acad. Sci. U. S. A.* **100**, 6382–6387

35. Takasugi, N., Tomita, T., Hayashi, I., Tsurooka, M., Niimura, M., Takahashi, Y., Thiraukar, S., Hornburg, D., Evans, L. D., Doan, M., Dovey, H. F., Frigon, N., Hong, J., Jacobson-Croak, K., and Liu, Y., et al. (2003) The role of presenilin cofactors in the g-secretase complex. *Nature* **422**, 438–441

36. Lu, P., Bai, X. C., Ma, D., Xie, T., Yan, C., Sun, L., Yang, G., Zhao, Y., Zhou, R., Scherer, S. H. W., and Shi, Y. (2014) Three-dimensional structure of human gamma-secretase. *Nature* **512**, 166–170

37. Wolfe, M. S. (2020) Substrate recognition and processing by gamma-secretase. *Biochem. Biophys. Acta Biomembr* **1862**, 183016
52. Hardy, J., and Selkoe, D. (2002) The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 297, 353–356
53. Selkoe, D. J., and Hardy, J. (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608
54. Selkoe, D. J., and Wolfe, M. S. (2007) Presenilin: Running with scissors in Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 104, 403–409
55. Heilig, E. A., Gutti, U., Tai, T., Shen, J., and Kelleher, R. J., 3rd. (2013) Restricted location of PSEN2/gamma-secretase determines substrate gamma-secretase complexes to distinct cellular compartments. J. Neurosci. 33, 11606–11617
56. Saito, T., Suemoto, T., Brouwers, N., Sleegers, K., Funamoto, S., Mihira, W., Michiels, C., Groot, A. J., Wouters, R., Dillen, K., Ratovitsky, T., Prada, C.-M., Kim, G., Seekins, S., Yager, D., Slunt, H. H., De Strooper, B., and Chavez-Gutierrez, L. (2015) Qualitative changes in vitro protein similar to that in the senile plaques of Alzheimer’s disease neuronal cytoplasm and generates an intracellular Abeta pool. Neuron 132, 1023–1032
57. Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Davenport, F., Ratovitsky, T., Prada, C.-M., Kim, G., Seekins, S., Yager, D., Slunt, H. H., Wang, R., Seeger, M., Levey, A. I., Gandy, S. E., et al. (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Ab1-42/1-40 production in human presenilin-gamma-secretase underlie familial Alzheimer’s disease. J. Exp. Med. 212, 2003–2013
58. Schener, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T. D., Hardy, J., Hutton, M., Kukull, W., Larson, E., Levy-lahad, E., Vitanen, M., Peskind, E., Poirier, P., et al. (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 2, 864–870
59. Sannerud, R., Esselens, C., Ejsmont, P., Mattera, R., Rochlin, L, Tharke, C., de Baets, G., De Wever, V., Habets, R., Baert, V., Vermeire, W., Michiels, C., Groot, A. J., Wouters, R., Dillem, K., et al. (2016) Restricted location of PSEN2/gamma-secretase determines substrate specificity and generates an intracellular Abeta pool. Cell 166, 193–208
60. Cacquevel, M., Aeschbach, L., Houacine, J., and Fraering, P. C. (2012) Alzheimer’s disease-linked mutations in presenilin-1 result in a drastic loss of activity in purified gamma-secretase complexes. PLoS One 7, e35133
61. Chui, D. H., Dobo, E., Makifuchi, T., Akiyama, H., Kawakatsu, S., Petit, A., Checler, F., Araki, W., Takahashi, K., and Tabira, T. (2001) Apoptotic neurons in Alzheimer’s disease frequently show intracellular Abeta42 labeling. J. Alzheimers Dis. 3, 231–239
62. Li, N., Liu, K., Qiu, Y., Ren, Z., Dai, R., Deng, Y., and Qing, H. (2016) Effect of presenilin mutations on APP clefting; insights into the pathogenesis of FAD. Front. Aging Neurosci. 8, 51
63. Shoji, M., Golde, T. E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, M., Cai, D. X., McKay, D. M., Tintner, R., Frangione, B., and Younkin, S. G. (1992) Production of the Alzheimer amyloid b protein by normal proteolytic processing. Science 258, 126–129
64. Haass, C., Hung, A. Y., Schlossmacher, M. G., Oltersdorf, T., Teplow, D. B., and Selkoe, D. I. (1993) Normal cellular processing of the b-amyloid precursor protein results in the secretion of the amyloid b peptide and related molecules. Nature 365, 109–116
65. Brodsky, R., Spires-Jones, T. L., and Durrant, C. S. (2020) The physiological roles of tau and Abeta: Implications for Alzheimer’s disease pathogenesis and therapeutics. Acta Neuropathol. 140, 417–447
66. Sevall, J., Amoyel, A., Robert, P., Fournie-Zaluski, M. C., Roques, B., and Checler, F. (2009) Aminopeptidase A contributes to the N-terminal truncation of amyloid beta-peptide. J. Neurochem. 109, 248–256
67. Castellani, R. J., Lee, H. G., Perry, G., and Smith, M. A. (2006) Antioxidant protection and neurodegenerative disease: The role of amyloid-beta and tau. Am. J. Alzheimers Dis. Other Dement. 21, 126–130
68. Brothers, H. M., Gosztyla, M. L., and Robinson, S. R. (2018) The physiological roles of amyloid-beta peptide hint at new ways to treat Alzheimer’s disease. Front. Aging Neurosci. 10, 118
69. Shen, J., Bronson, R. T., Chen, D. F., Xia, W., Selkoe, D., and Tonegawa, S. (1997) Skeletal and CNS defects in presenilin-1 deficient mice. Cell 89, 629–639
70. Saura, C. A., Choi, S.-Y., Beglopoulos, V., Malkani, S., Zhang, D., Rao, B. S. S., Chattarji, S., Kelleher, R. J., III, Kandel, E. R., Duff, K., Kirkwood, A., and Shen, I. (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42, 23–36
71. Shi, J., Milbrandt, J., and Lichtenhaller, S. F. (2020) The substrate repertoire of gamma-secretase/presenilin. Semin. Cell Dev. Biol. 105, 27–42
72. Kuhnle, N., Dederer, V., and Lemberg, M. K. (2019) Intramembrane proteolysis: Lessons from amyloid precursor protein processing. J. Neurochem. 117, 779–796

JBC REVIEWS: γ-Secretase: a beneficial C99-inactivating enzyme
gamma-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer’s disease. Science 324, 639–642.

80. Axh, H., Serneels, L., Radaelli, E., Muyldermans, S., Vincke, C., Pepermans, E., Muller, U., Chavez-Gutierrez, L., and De Strooper, B. (2017) Inactivation of gamma-secretases leads to accumulation of substrates and non-Alzheimer neurodegeneration. EMBO Mol. Med. 9, 1088–1099.

81. Hu, C., Zeng, L., Li, T., Meyer, M. A., Cui, M. Z., and Xu, X. (2016) Nicastin is required for amyloid precursor protein (APP) but not Notch processing, while anterior pharynx-defective 1 is dispensable for processing of both APP and Notch. J. Neurochem. 136, 1246–1258.

82. Fleisher, A. S., Raman, R., Siemers, E. R., Becerra, L., Clark, C. M., Dean, R. A., Farlow, M. R., Galvin, J. E., Peskind, E. R., Quinn, J. F., Sheraiai, A., Sowell, B. B., Aisen, P. S., and Thal, L. J. (2008) Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Arch. Neurol. 65, 1031–1038.

83. Bateman, R. J., Siemers, E. R., Mawueneya, K. G., Wen, G., Browning, K. R., Sigurdson, W. C., Yarasheski, E. K., Friedrich, S. W., Demattos, R. B., May, P. C., Paul, S. M., and Holtzman, D. M. (2009) A gamma-secretase inhibitor decreases amyloid-beta production in the central nervous system. Ann. Neurol. 66, 48–54.

84. Doody, R. S., Raman, R., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., Kieburtz, K., He, F., Sun, X., Thomas, R. G., Aisen, P. S., Alzheimer’s Disease Cooperative Study Steering Committee, Siemers, E., Sutherman, G., Mohns, R., and Semagacestat Study Group (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med. 369, 341–350.

85. Albright, C. F., Dockens, R. C., Meredith, J. E., Jr., Olson, R. E., Slemon, R., Lentz, K. A., Wang, J. S., Denton, R. R., Pilcher, G., Rhyne, P. W., Raybon, J. J., Barten, D. M., Burton, C., Toyn, J. H., Sankaranarayanan, S., et al. (2013) Pharmacodynamics of selective inhibition of gamma-secretase by avagacestat. J. Pharmacol. Exp. Ther. 344, 686–695.

86. Chavez-Gutierrez, L., Bammens, L., Beniola, V., Vandersteen, A., Bengoechea, M., Borgers, M., Lismont, S., Zhou, L., Van Cleywensibreugel, S., Esselmann, H., Wiltfang, J., Serneels, L., Karren, E., Gijsen, H., Schymkowitz, J., et al. (2012) The mechanism of gamma-Secretase dysfunction in familial Alzheimer disease. EMBO J. 31, 2261–2274.

87. Crump, C. J., Castro, S. V., Wang, F., Pozdnyakov, N., Ballard, T. E., Sidors, S. B., Bales, K. R., Johnson, D. S., and Li, Y. M. (2012) BMS-708,163 targets presenilin and lacks notch-sparing activity. Biochemistry 51, 7209–7211.

88. Coric, V., van Dyck, C. H., Salloway, S., Andreasen, N., Brody, M., Richter, R. W., Soininen, H., Thein, S., Shiovitz, T., Pilcher, G., Colby, S., Rollin, L., Dockens, R., Pachai, C., Portelius, E., et al. (2012) Safety and tolerability of the gamma-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch. Neurol. 69, 1430–1440.

89. Mitani, Y., Yarimizu, I., Saita, K., Uchino, H., Akashiba, H., Shitaka, Y., Ni, K., and Matsuoka, N. (2012) Differential effects between gamma-secretase inhibitors and modulators on cognitive function in amyloid precursor protein-transgenic and nontransgenic mice. J. Neurosci. 32, 2037–2050.

90. Bursavich, M. G., Harrison, B. A., and Blain, J. F. (2016) Gamma-secretase modulators: New Alzheimer’s drugs on the Horizon? J. Med. Chem. 59, 7389–7409.

91. Takeo, K., Tanimura, S., Shinoda, T., Osawa, S., Zahariev, I. K., Takegami, N., Ishizuka-Katsura, Y., Shinya, N., Takagi-Niido, S., Tomi-naga, A., Ohsawa, N., Kinuma-Somay, T., Shirouzu, M., Yokoshima, S., Yokoyama, S., et al. (2014) Allosteric regulation of gamma-secretase activity by a phenylimidazole-type gamma-secretase modulator. Proc. Natl. Acad. Sci. U. S. A. 111, 10544–10549.

92. Xia, W. (2019) gamma-Secretase and its modulators: Twenty years and beyond. Neurosci. Lett. 701, 162–169.

93. kukar, T. L., Ladd, T. B., Bann, M. A., Fraering, P. C., Narlawar, R., Mahdavi, G. M., Healy, B., Chapman, R., Welzel, A. T., Price, R. W., Moore, B., Rangachari, V., Cusack, B., Eriksen, J., Jensen-West, K., et al. (2008) Substrate-targeting gamma-secretase modulators. Nature 453, 925–929.
122. Reines, S., Block, G., Morris, J., Liu, G., Nessly, M., Lines, C., Norman, B., and Baranak, C. (2004) Rosfocoxib: No effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. *Neurology* **62**, 66–71.

123. Green, R. C., Schneider, L. S., Amato, D. A., Beelen, A. P., Wilcock, G., Swabb, E. A., Zavitz, K. H., and Tarenflurbil Phase 3 Study Group (2009) Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized controlled trial. *JAMA* **302**, 2557–2564.

124. Meyer, P. F., Tremblay-Mercier, J., Leoutsakos, J., Madjar, C., Lafaille-Boit, P., Jimenez, F., Green, R. C., Schneider, L. S., Amato, D. A., Beelen, A. P., Wilcock, G., Swabb, E. A., Zavitz, K. H., and Tarenflurbil Phase 3 Study Group (2009) Effects of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized controlled trial. *JAMA* **302**, 2557–2564.

125. Mekala, S., Nelson, G., and Li, Y. M. (2020) Recent developments of small molecule gamma-secretase modulators for Alzheimer’s disease. *RSC Med. Chem.* **11**, 1003–1022.

126. Pulina, M. V., Hopkins, M., Haroutunian, V., Greengard, P., and Bustos, V. (2020) C99 selectively accumulates in vulnerable neurons in Alzheimer’s disease. *Alzheimers Dement.* **16**, 273–282.

127. Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, G., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., and LaFerla, F. (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Ab and synaptic dysfunction. *Neurof.** **39**, 409–421.

128. Lauritzen, I., Pardossi-Piquard, R., Bauer, C., Brigham, E., Abraham, J. D., Randals, S., Fraser, P., St-Georges-Hyslop, P., Le Thuc, O., Espin, V., Chami, L., Dunys, J., and Checler, F. (2012) The beta-secretase-derived C-terminal fragment of betaAPP, C99, but not Abeta, is a key contributor to early intraneuronal lesions in triple-transgenic mouse hippocampus. *J. Neurosci.* **32**, 16243, 1655a.

129. Cavanagh, C., Colby-Milley, J., Bouvier, D., Farso, M., Chabot, J. G., Johnson, E. C. B., Ho, K., Yu, G. Q., Das, M., Sanchez, P. E., Djukic, B., Tambini, M. D., Yao, W., and D... 2533–2581.

130. Mondragon-Rodriguez, S., Gu, N., Manseau, F., and Williams, S. (2018) Alzheimer’s transgenic model is characterized by very early brain network alterations and beta-CTF fragment accumulation: Reversal by beta-secretase inhibition. *Front. Cell Neurosci.* **12**, 121.

131. Kaur, G., Pawlik, M., Gandy, S. E., Ehrlich, M. E., Schneider, L. S., Amato, D. A., Beelen, A. P., Wilcock, G., Swabb, E. A., Zavitz, K. H., and Tarenflurbil Phase 3 Study Group (2009) Effects of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized controlled trial. *JAMA* **302**, 2557–2564.

132. Pasagoria, M., Alcolea, D., Sanchez-Valle, R., Guardia-Laguarta, C., Colombo-Cadena, M., Badiola, N., Suarez-Calvet, M., Llado, A., Barrera-Ocampo, A. S., Pepeu-Lealta-Falla, D., Blesa, R., Molinuevo, J. L., Clarimon, J., Ferrer, I., Gelpi, E., et al. (2013) Distinct patterns of APP processing in the CNS in autosomal-dominant and sporadic Alzheimer disease. *Acta Neuropathol.* **125**, 201–213.

133. Lauritzen, I., Pardossi-Piquard, R., Bourgeois, A., Pagnotta, S., Biferi, M. G., Barkats, M., Lacor, P., Klein, W., Bauer, C., and Checler, F. (2016) Intraneuronal aggregation of the beta-CTF fragment of APP (C99) induces Abeta-independent lysosomal-autophagic pathology. *Acta Neuropathol.* **132**, 257–276.

134. Jiang, Y., Mullany, K. A., Peterhoff, C. M., Che, S., Schmidt, S. D., Boyer-Boit, A., Gisinger, S. D., Cataldo, A. M., Mathews, P. M., and Nixon, R. A. (2010) Alzheimer’s-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 1650–1655.

135. Jiang, Y., Rigollios, A., Peterhoff, C. M., Pawlik, M., Sato, Y., Blewes, C., Stavrides, P., Smiley, J. F., Gisinger, S. D., Mathews, P. M., Levy, E., and Nixon, R. A. (2016) Partial BACE1 reduction in a down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: Role of APP-CTF. *Neurol. Aging* **39**, 90–98.

136. Nixon, R. A. (2017) Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer’s disease: Inseparable partners in a multifactorial disease. *FASEB J.* **31**, 2729–2743.

137. Hung, C. O. Y., and Lively, F. J. (2018) Altered gamma-secretase processing of APP disrupts lysosome and autophagosome function in monogenic Alzheimer’s disease. *Cell Rep.* **25**, 3647–3660.e3642.

138. Lauritzen, I., Pardossi-Piquard, R., Bourgeois, A., Bifert, C., and Checler, F. (2019) Does intraneuronal accumulation of carboxyl-terminal fragments of the amyloid precursor protein trigger early neurotoxicity in Alzheimer’s disease? *Curr. Alzheimer Res.* **16**, 453–457.

139. Lauritzen, I., Bifert, C., Bourgois, A., Pardossi-Piquard, R., Biferi, M. G., Barkats, M., and Checler, F. (2019) Targeting gamma-secretase triggers the selective enrichment of oligomeric APP-CTFs in brain extracellular vesicles from Alzheimer cell and mouse models. *Transl. Neurodegener.* **8**, 35.

140. Vingtdeux, V., Hamdane, M., Loyens, A., Gele, P., Drobeck, H., Begard, S., Galas, M. C., Delacourte, A., Beauvillain, J. C., Buee, L., and Sergeant, N. (2007) Alkalizing drugs induce accumulation of amyloid precursor protein by-products in luminal vesicles of multisecular bodies. *J. Biol. Chem.* **282**, 18197–18205.

141. Miranda, A. M., Lasiecka, Z. M., Xu, Y., Neufeld, J., Shahrir, S., Simoes, S., Chan, R. B., Oliveira, T. G., Small, S. A., and Di Paolo, G. (2018) Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures. *Nat. Commun.* **9**, 291.

142. Jadick, M., and Walker, L. C. (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. *Nature* **501**, 45–51.

143. Wang, X., Wang, W., Li, L., Perry, G., Lee, H. G., and Zhu, X. (2014) Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures. *Nat. Commun.* **5**, 25.

144. Jacob, M., and Walker, L. C. (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. *Nature* **501**, 45–51.

145. Wang, X., Wang, W., Li, L., Perry, G., Lee, H. G., and Zhu, X. (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. *Biochim. Biophys. Acta* **1842**, 1240–1247.

146. Bussiere, R., Lacampagne, A., Reiken, S., Liu, X., Scheuerman, V., Zalk, R., Martin, C., Checler, F., Marks, A. R., and Chami, M. (2017) Amyloid beta production is regulated by beta2-adrenergic signaling-mediated post-translational modifications of the tyrosine receptor. *J. Biol. Chem.* **292**, 10153–10168.

147. Lacampagne, A., Liu, X., Reiken, S., Bussiere, R., Meli, A. C., Lauritzen, I., Teich, A. F., Zalk, R., Saint, N., Arancio, O., Bauer, C., Duprat, F., Briggs, C. A., Chakroverty, S., Stuttzmann, G. E., et al. (2017) Post-translational remodeling of the tyrosine receptor induces calcium leak leading to Alzheimer’s disease-like pathologies and cognitive deficits. *Acta Neuropathol.* **134**, 749–767.

148. Manczak, M., Calkins, M. J., and Reddy, P. H. (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: Implications for neuronal damage. *Hum. Mol. Genet.* **20**, 2495–2509.
153. Reddy, P. H., Yin, X., Manczak, M., Kumar, S., Pradeepkiran, J. A., Vijayan, M., and Reddy, A. P. (2018) Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. *Hum. Mol. Genet.* 27, 2502–2516

154. Pera, M., Larrea, D., Guardia-Laguarta, C., Montesinos, J., Velasco, K. R., Agrawal, R. R., Xu, Y., Chan, R. B., Di Paolo, G., Mehler, M. F., Perumal, G. S., Macaluso, F. P., Freyberg, Z. Z., Acin-Perez, R., Enriquez, J. A., *et al.* (2017) Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. *EMBO J.* 36, 3556–3571

155. Del Prete, D., Suski, J. M., Oules, B., Debayle, D., Gay, A. S., Lacas-Gervais, S., Bussiere, R., Bauer, C., Pinton, P., Paterlini-Brechot, P., Wieckowski, M. R., Checler, F., and Chami, M. (2017) Localization and processing of the amyloid-beta protein precursor in mitochondria-associated membranes. *J. Alzheimer’s Dis.* 55, 1549–1570

156. Montesinos, J., Pera, M., Larrea, D., Guardia-Laguarta, C., Agrawal, R. R., Velasco, K. R., Yun, T. D., Stavrovskaya, I. G., Xu, Y., Koo, S. Y., Sneed, A. M., Sproul, A. A., and Area-Gomez, E. (2020) The Alzheimer’s disease-associated C99 fragment of APP regulates cellular cholesterol trafficking. *EMBO J.* e103791

157. Song, D.-K., Won, M.-H., Jung, J.-S., Lee, J.-C., Kang, T.-C., Suh, H.-W., Huh, S.-O., Paek, S.-H., Kim, Y.-H., Kim, S.-H., and Suh, Y.-H. (1998) Behavioral and neuropsychological changes induced by central injection of carboxyl-terminal fragment of β-amyloid precursor protein in mice. *J. Neurochem.* 71, 875–887

158. Matsumoto, Y., Watanabe, S., Suh, Y. H., and Yamamoto, T. (2002) Effects of intrahippocampal CT105, a carboxyl terminal fragment of beta-amyloid precursor protein, alone/with inflammatory cytokines on working memory in rats. *J. Neurochem.* 82, 234–239

159. Selkoe, D. J. (2002) Alzheimer’s disease is a synaptic failure. *Science* 298, 789–791

160. Palop, J. J., and Mucke, L. (2016) Network abnormalities and interneuron dysfunction in Alzheimer disease. *Nat. Rev. Neurosci.* 17, 777–792

161. Nistico, R., Pignatelli, M., Piccinin, S., Mercuri, N. B., and Collingridge, G. (2012) Targeting synaptic dysfunction in Alzheimer’s disease therapy. *Mol. Neurobiol.* 46, 572–587

162. Nalbantoglu, J., Tirado-Santiago, G., Lahsaïnl, A., Poirier, J., Goncalves, G., S., Gu, N., Cavanagh, C., Jackson, J., Chabot, J. G., Quirion, R., Houle, C., Karanian, D. A., Ambroise, C., Brulet, J. W., Beck, E. M., Rossner, S., Brase, S., and Lichtenthaler, S. F. (2012) Secretome protein expression of Ab peptides by neurons. *Nat. Neurosci.* 15, 949–956

163. Reddy, P. H., Yin, X., Manczak, M., Kumar, S., Pradeepkiran, J. A., Vijayan, M., and Reddy, A. P. (2018) Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. *Hum. Mol. Genet.* 27, 2502–2516

164. Bourgeois, A., Lauritzen, I., Lorivel, T., Bauer, C., Checler, F., and Par-...
186. Boland, B., Smith, D. A., Mooney, D., Jung, S. S., Walsh, D. M., and Platt, F. M. (2010) Macroautophagy is not directly involved in the metabolism of amyloid precursor protein. *J. Biol. Chem.* **285**, 37415–37426

187. Lopez Lopez, C., Tariot, P. N., Caputo, A., Langbaum, J. B., Liu, F., Riviere, M. E., Langlois, C., Rouzade-Dominguez, M. L., Zalesak, M., Hendrix, S., Thomas, R. G., Viglietta, V., Lenz, R., Ryan, J. M., Graf, A., et al. (2019) The Alzheimer’s Prevention Initiative Generation Program: Study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease. *Alzheimers Dement. (N Y)* **5**, 216–227

188. Dourelon, P., Kilinc, D., Malmanche, N., Chapuis, J., and Lambert, J. C. (2019) The new genetic landscape of Alzheimer’s disease: From amyloid cascade to genetically driven synaptic failure hypothesis? *Acta Neuropathol.* **138**, 221–236

189. Caccamo, A., Magri, A., Medina, D. X., Wisely, E. V., Lopez-Arnada, M. F., Silva, A. J., and Oddo, S. (2013) mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. *Aging Cell* **12**, 370–380

190. Spilman, P., Podlutskaya, N., Hart, M. J., Dehay, B. (2016) Nanoparticles restore lysosomal acidocalcisome-mediated lysosome acidiﬁcation via TRPML1 by regulating vATPase-ﬂux network regulating lysosomal biogenesis and function. *Science* **352**, 473–477

191. Xiao, Q., Yan, P., Ma, X., Liu, H., Perez, R., Zhu, A., Gonzales, E., Tripoli, D. L., Czerniakiewski, L., Ballabio, A., Crittio, R. J., Diwan, A., and Lee, J. M. (2015) Neuronal-targeted TEBF accelerates lysosomal degradation of APP, reducing Abeta generation and amyloid plaque pathogenesis. *J. Neurosci.* **35**, 12137–12151

192. Song, J. X., Malampati, S., Zeng, Y., Durairajan, S. S. K., Yang, C. B., Boland, B., Smith, D. A., Mooney, D., Jung, S. S., Walsh, D. M., and Spilman, P., Podlutskaya, N., Hart, M. J., Debnath, J., Gorostiza, O., Lee, J. H., McBrayer, M. K., Wolfe, D. M., Haslett, L. J., Kumar, A., Sato, R. S., Banerjee, S., Balakrishna, N., and Nishimura, M. (2014) The FAM3 superfamily member ILEI ameliorates Alzheimer’s disease-like pathology by destabilizing the penucinata amyloid-beta precursor. *Nat. Commun.* **5**, 3917

193. Zhou, J., and Rossi, J. (2017) Apatmers as targeted therapeutics: Current potential and challenges. *Nat. Rev. Drug Discov.* **16**, 181–202

194. Chen, X. Q., Salehi, A., Pearn, M. L., Overk, C., Nguyen, P. D., Kle-schevnikov, A. M., Macececmchi, M., and Mobley, W. C. (2021) Targeting increased levels of APP in Down syndrome: Posiphen-mediated reductions in APP and its products reverse endosomal phenotypes in the Ts65Dn mouse model. *Alzheimers Dement.* **17**, 271–292

195. Flammang, B., Pardossi-Piquard, R., Sevalle, J., Debye, L., Dabert-Gay, A. S., Thevenet, A., Lauritzen, I., and Checler, F. (2012) Evidence that the amyloid-beta protein precursor intracellular domain, AICD, derives from beta-secretase-generated C-terminal fragment. *J. Alzheimers Dis.* **30**, 145–153

196. Nicoll, J. A. R., Wilkinson, D., Holmes, C., Steart, P., Markham, H., and Weller, R. O. (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-b peptide: A case report. *Nat. Med.* **9**, 448–452

197. Holmes, C., Boche, D., Wilkinson, D., Yadegarfar, G., Hopkins, V., Bayer, A., Jones, R. W., Bullock, R., Love, S., Neil, J. W., Zotova, E., and Nicoll, J. A. (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: Follow-up of a randomised, placebo-controlled phase I trial. *Lancet* **372**, 216–223

198. Boche, D., Donald, J., Love, S., Harris, N., Neil, J. W., Holmes, C., and Nicoll, J. A. (2010) Reduction of aggregated Tau in neuronal processes but not in the cell bodies after Abeta42 immunisation in Alzheimer’s disease. *Acta Neuropathol.* **120**, 13–20

199. Vandenberge, R., Riviere, M. E., Caputo, A., Sovago, I., Maguire, R. P., Farlow, M., Marotta, G., Sanchez-Valle, R., Scheltens, P., Ryan, J. M., and Graf, A. (2017) Active Abeta immunotherapy CAD106 in Alzheimer’s disease: A phase 2b study. *Alzheimers Dement. (N. Y.)* **3**, 10–22

200. Cummings, I. L., Cohen, S., van Dyck, C. H., Brody, M., Curtis, C., Cho, W., Ward, M., Friesenham, M., Rabe, C., Brunstein, F., Quartino, A., Honigberg, L. A., Fuji, R. N., Clayton, D., Mortensen, D., et al. (2018) Aby: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. *Neurology* **90**, e1889–e1897

201. Honig, L. S., Vellas, B., Woodward, M., Boada, M., Bullock, R., Borrie, M., Hager, K., Andreason, N., Scarpini, E., Liu-Seifert, H., Case, M., Dean, R. A., Hake, A., Sundell, K., Poole Hoffmann, V., et al. (2018) Trial of solanezumab for mild dementia due to Alzheimer’s disease. *N. Engl. J. Med.* **378**, 321–330

202. Ostrowski, S., Depta, D., Thrufjell, L., Barkhof, F., Bohrmann, B., Brooks, D. J., Klunk, W. E., Ashford, E., Yoo, K., Xu, Z. X., Loetscher, H., and Santarelli, L. (2012) Mechanism of amyloid removal in patients with
Alzheimer disease treated with gantenerumab. Arch. Neurol. 69, 198–207

215. Klein, G., Delmar, P., Voyle, N., Rehal, S., Hofmann, C., Abi-Saab, D., Andjelkovic, M., Ristic, S., Wang, G., Bateman, R., Kerchner, G. A., Baudler, M., Fontoura, P., and Doody, R. (2019) Gantenerumab reduces amyloid-beta plaques in patients with prodromal to moderate Alzheimer’s disease: A PET substudy interim analysis. Alzheimers Res. Ther. 11, 101

216. Logovinsky, V., Satlin, A., Lai, R., Swanson, C., Kaplow, J., Osswald, G., Klein, G., Delmar, P., Voyle, N., Rehal, S., Hofmann, C., Abi-Saab, D., J. Biol. Chem. 20

217. Kennedy, M. E., Stamford, A. W., Chen, X., Cox, K., Cumming, J. N., Wessels, A. M., Tariot, P. N., Zimmer, J. A., Bragg, S. M., Andersen, S. W., Landry, J., Willis, B. A., Shcherbinin, S., Mullen, J., Barker, P., Schumi, J., Shering, C., et al. (2020) Efficacy and safety of Lanabecestat for treatment of early and mild Alzheimer disease: The AMARANTH and DAYBREAK-ALZ randomized clinical trials. JAMA Neurol. 77, 199–209

218. Neumann, U., Ufer, M., Jacobson, L. H., Rouzade-Dominguez, M. L., Huledal, G., Kolly, C., Luond, R. M., Machauer, R., Veenstra, S. J., Hurth, K., Rueeger, H., Tintelnot-Blomley, M., Staufenbiel, M., Shimshek, D. R., Perrot, L., et al. (2018) The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer’s disease. ENDOE Mol. Mol. Med. 10

219. Lynch, S. Y., Kaplow, J., Zhao, J., Dhadda, S., Luthman, J., and Albala, B. (2018) Elenbecestat, E2609, a Bace inhibitor: Results from a phase-2 study in subjects with mild cognitive impairment and mild-to-moderate dementia due to Alzheimer’s disease. Alzheimer’s Dement. 14(suppl), P1623

220. Imbimbo, B. P., and Watling, M. (2019) Investigational BACE inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs 28, 967–975

221. Galasko, D. R., Graff-Radford, N., May, S., Hendrix, S., Cottrell, B. A., Sagi, S. A., Matther, G., Laughlin, M., Zavitz, K. H., Swabb, E., Golde, T. E., Murphy, M. P., and Koo, E. H. (2007) Safety, tolerability, pharmacokinetics, and Abeta levels after short-term administration of R-flurbiprofen in healthy elderly individuals. Alzheimer Dis. Assoc. Disord. 21, 292–299

222. Hamm, V., Heraud, C., Bott, J. B., Herbeaux, K., Strittmatter, C., Mathis, C., and Goutagny, R. (2017) Differential contribution of APP metabolites to early cognitive deficits in a TgCRND8 mouse model of Alzheimer’s disease. Sci. Adv. 3, e1601068

223. Kim, S., Sato, Y., Mohan, P. S., Peterhoff, C., Pensalfini, A., Rigoglioso, A., Jiang, Y., and Nixon, R. A. (2016) Evidence that the rabs5 effector APPL1 mediates APP-beta-CTF-induced dysfunction of endosomes in Down syndrome and Alzheimer’s disease. Mol. Psychiatry 21, 707–716

224. Xu, W., Weissmiller, A. M., White, J. A., 2nd, Fang, F., Wang, X., Wu, Y., Pearn, M. L., Zhao, X., Sawa, M., Chen, S., Gunawardena, S., Ding, J., Moberly, W. C., and Wu, C. (2016) Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration. J. Clin. Invest. 126, 1815–1833

225. Jiang, Y., Sato, Y., Im, E., Berg, M., Bardi, M., Dájri, S., Kumar, A., Mohan, P. S., Bandypadhyay, U., Diaz, A., Cuervo, A. M., and Nixon, R. A. (2019) Lysosomal dysfunction in down syndrome is APP-dependent and mediated by APP-betaCTF (C99). J. Neurosci. 39, 5255–5268