An IoT Based Obstacle Avoidance Robot Using Ultrasonic Sensor and Arduino

Rajesh Mothe¹, S. Tharun Reddy², G. Sunil³, and Chintoju Sidhardha⁴

¹Center for Embedded Systems and IoT, Department of CSE, S R University, Warangal, India
²³Department of CSE, S R Engineering College, Warangal, India
⁴Department of CSE, Sumathi Reddy Institute of Technology for Women, Warangal, India

E-mail: mraji210@gmail.com

Abstract: With the advance of technology in term of speed and modularity, the automation of robotic system comes into reality. In this paper an obstacle detection robot system explained for different purposes and applications. The ultrasonic and infrared sensors are actualized to distinguish obstacles on the robot's way by imparting signs to an interfaced microcontroller. The miniature regulator diverts the robot to move a substitute way by inciting the motors in request to keep away from the distinguished obstacle. The exhibition assessment of the framework shows an exactness of 85 percentage and 0.15 likelihood of disappointment individually. Taking everything into account, an obstacle discovery circuit was effectively actualized utilizing the infrared and ultrasonic sensors that were mounted on the panel.

Keywords: IoT, Robot, Arduino, Ultrasonic sensor, Obstacle.

1. Introduction

The application and multifaceted design of flexible robots are step by step building up every day. They are consistently advancing into authentic settings in different fields, for instance, military, clinical fields, space examination, and customary housekeeping [1]. Development being a critical characteristic of adaptable robots in obstacle avoiding and way affirmation significantly influences how people react and see an independent structure. PC vision and range sensors are basic article recognizable proof systems used in versatile robots' ID. PC distinguishing proof method is more intensive and exorbitant procedure than the range sensors' strategy. The use of radar, infrared (IR) and ultrasonic sensors to operate an obstacle recognition system began as precisely on time as the barrier recognition system. 1980's [2]. Regardless of the way that, in the wake of testing these advances it was contemplated that the radar development was the most suitable for use as the other two advancement choices were slanted to environmental restrictions, for instance, storm, ice, vacation day, and earth. The measuring device approach was furthermore a monetarily sensible development each for this and what is to come back [3]. The sensors don't seem to be restricted to recognisable evidence of an obstacle. Different sensors can be used to eliminate various features for plant representation in plants, allowing a self-administering robot to provide the right fertiliser in the most ideal way, indicating different plants as explained by [4][5].

There are different IOT innovations in cultivating which incorporates gathering of ongoing information on current climate that incorporate nuisance invasion, mugginess, temperature, precipitation and so forth. At that point information that is being gathered can be utilized to mechanize the cultivating methods and can be educated on choice to extemporize amount and quality to decrease danger and squander, and limit the activities expected to keep up the harvests [6]. For model, ranchers currently can screen soil dampness and temperature of ranch from distant region and even apply the activities required for exactness cultivating [7].

2. Methodology and Implementation

The procedure examined in this paper makes out of following stages. Furthermore, the detected information is taken care of two Arduino board lastly prepared by the Arduino programming [8]. The block diagram of the system is shown in Figure 1.
Figure 1: Block diagram of system

The framework advancement required an Arduino UNO for handling the sensor (Echo ultrasonic sensor) information and flagging the actuator (DC engines) to impel. The Bluetooth module is required for correspondence with the framework and its parts [9]. The entire framework is associated through the bread board. The subtleties of these instruments are given below:

2.1 Ultrasonic Sensor

Figure 2. There is an ultrasonic sensor around a vehicle that is used to recognise any obstacle. The ultrasonic sensor transmits sound waves and reflects sound from an object. At the point where an object is episode of ultrasonic waves, energy impression occurs up to 180 degrees [10]. In the event that the obstacle is close to the episode energy is reflected back very before long. In the event that the item is far, at that point the reflected sign will take some limited quantity of time to arrive at the recipient.
2.2 Arduino Board

The Arduino is an open-source instrumentation and programming that will create a shopper to try and do powerful activity in it [11]. The Arduino may be a microcontroller. These microcontroller gadgets facilitate in sleuthing and dominant the articles within the constant circumstances also, climate. These sheets are accessible less expensive in the market. There are various developments acted in it also, still it is going on [12]. The Arduino board is shown in below figure 3.

![Arduino Board](image)

Figure 3: Arduino Board

2.3 DC Motors

In a regular DC motor, there are perpetual magnets on the outside also, a turning armature inside[13]. Right when you run power into this electromagnet, it makes an alluring field in the armature that attracts and spurns the magnets in the stator [14]. So, the armature turns through 180 degrees. Appeared in below figure 4.

![DC Motor](image)

Figure 4: DC Motor
3. Results and Discussion

This proposed structure includes the gear like Arduino UNO, unbearable sensing element, bread board, signals for seeing the obstacles and illuminating the consumer with reference to the obstacle, Red LEDs, Switches, Jumper interface, power bank, Male and feminine header sticks, any versatile and stickers to create the appliance wearable for the purchasers as a band for sporting. The contraption's wiring is performed in Associate in Nursing after-way. The crystal rectifier ground ringer is connected to the Arduino GND. The + ve is connected to the LED's Arduino pin 5 and the switch's middle leg. The Buzzer is linked to the regular leg of the switch.

Toward the end, after all the affiliations are done to the Arduino board move the code to Arduino board and force different modules utilizing a force bank or the force deftly. The side point of view on the arranged model is showed up in underneath figure 5.

Figure 5: Side view for designed model for Obstacle Detection

The ultrasonic sensing element here used as a French telephone. The ultrasonic waves are sent by the transmitter once the items are perceived. each the transmitter and beneficiary location within the ultrasonic sensing element. we have a tendency to figure the time stretch between the given and got sign. The parcel between the issue and sensing element is settled utilizing this. Right after we increment the separation between the article and therefore the sensing element the thought edge can diminish. sensing element has consolidation of sixty degree. The last robot framework is appeared underneath figure 6.
The created framework was tried by putting obstacle at different separations over its way. The reactions of sensors were assessed separately, since they were situated on various piece of self-ruling robot.

4. Conclusion

Discovery and evasion framework for an automatic automaton System. 2 sets of heterogonous sensors were used to acknowledge obstacles on the method of the transportable automaton. grade of truth and least probability of disappointment were nonheritable. The assessment on the free framework shows that it's equipped for evading obstacles, capability to remain far away from crash and alter its position. Clearly, with this arrangement more noteworthy convenience can be added to this intend to perform various limits with close to zero intervention of individuals. Finally, using an IR, the robot was made to be controlled far away. beneficiary and a distant regulator. This undertaking will be useful in unfriendly climate, protection and security parts of the nation.

References

[1] J Seja and M Banshidhar 2013 Obstacle detection and avoidance by a mobile robot. National Institute of Technology, Rourkela. B.Sc. thesis. 1-9.

[2] E Daniel Wang Obstacle Avoidance Algorithms and Sensors for Autonomous Robots. www2.ece.gatech.edu/academic/courses/ece4007/10fall/ECE4007L03/.../ewang9.doc.

[3] L Navarro-Serment, C Paredis and P Khosla 1999 A beacon system for the localization of distributed robotic teams. Proceedings of the International Conference on Field and Service Robotics. 232–237.
[4] T Bailey, E Nebot, J Rosenblatt and H Durrant-Whyte 1999 *Robust distinctive place recognition for topological maps*. Proceedings of the International Conference on Field and Service Robotics. 347-352.

[5] N Harper and P McKerrow 1999 *Detecting plants for landmarks with ultrasonic sensing*. Proceedings of the International Conference on Field and Service Robotics, 144-149.

[6] R Chatila, G Andrade, S Lacroix and A Mallet 1999 *Motion control for a planetary rover*. Proceedings of the International Conference on Field and Service Robotics. 381-388.

[7] A. Soto, M. Saptharishi, A. Ollennu, J. Dolan and P. Khosla. 1999. Cyber-ATVS: dynamic and distributed reconnaissance and surveillance using all terrain UGVs. Proceedings of the International Conference on Field and Service Robotics. pp. 329-334.

[8] Sumit Badal, Srinivas Ravela, Bruce Draper, Allen Hanson, “A Practical Obstacle Detection and Avoidance System”, Computer Vision Laboratory, University of Massachusetts.

[9] Nils Gageik, Thilo Müller, Sergio Montenegro, “Obstacle Detection and Collision Avoidance Using Ultrasonic Distance Sensors for An Autonomous Quadrocopter” University of Würzburg, Aerospace Information Technology (Germany) Würzburg September 2012.

[10] Mothe R, Tharun Reddy S, Chythanya KR, and Supratha Reddy Y 2019 *Challenges, open research issues and tools in bigdata analytics*. Int J Recent Technol Eng 8 2 11 2634-2641.

[11] Chythanya KR, Kumar KS, Rajesh M, and Tharun Reddy S 2020 *Sensor Cloud: A Breakdown information on the Utilization of Wireless Sensor Network by Means of Cloud Computing*. Test Eng Manage 82 13945-13954.

[12] Seena Naik K, Sudarshan E 2019 *Smart healthcare monitoring system using raspberry Pi on IoT platform*. ARPN J Eng Appl Sci 14 4 872-876.

[13] Sandeep CH, Naresh Kumar S, and Pramod Kumar P 2018 *Security challenges and issues of the IoT system*. Indian J Public Health Res Dev 9 11 748-753.

[14] Sheshikala M, Mohmmad S, and Shabana 2018 *Survey on multi level security for IoT network in cloud and data centers*. J Adv Res Dyn Control Syst 10 134-146.