Strain-induced shift in the elastically soft direction of epitaxially grown fcc metals

V. Ozoliņš, C. Wolverton, and Alex Zunger
National Renewable Energy Laboratory, Golden, CO 80401
(October 20, 1997)

The theory of epitaxial strain energy is extended beyond the harmonic approximation to account for large film/substrate lattice mismatch. We find that for fcc noble metals (i) directions (001) and ⟨111⟩ soften under tensile biaxial strain (unlike zincblende semiconductors) while (ii) (110) and (201) soften under compressive biaxial strain. Consequently, (iii) upon sufficient compression (201) becomes the softest direction (lowest elastic energy), but (iv) (110) is the hardest direction for large tensile strain. (v) The dramatic softening of ⟨001⟩ in fcc noble metals upon biaxial tensile strain is caused by small fcc/bcc energy differences for these materials. These results can be used in selecting the substrate orientation for effective epitaxial growth of pure elements and A_bB_y superlattices, as well as to explain the shapes of coherent precipitates in phase separating alloys.

PACS numbers: 62.20.Dc, 68.60.-p, 81.10.Aj

When a material is compressed hydrostatically, its energy rises steeply because all three crystal axes are deformed (dashed line in Fig. 1). When the same material is confined coherently onto a substrate (“coherent epitaxy”) with lattice constant \(a_s\), the energy rises less steeply (solid line in Fig. 1) since it is deformed only along the crystal axes in the substrate plane and allowed to relax (and thus, lower its energy) in the third direction \(\hat{G}\). This “epitaxial softening” can be quantified by the dimensionless parameter

\[
q(a_s, \hat{G}) = \frac{\Delta E^{epi}(a_s, \hat{G})}{\Delta E^{bulk}(a_s)},
\]

(1)

giving the ratio between the epitaxial increase in energy due to biaxial deformation to \(a_s\), and the hydrostatic increase in energy due to triaxial deformation to the same \(a_s\). Because the biaxial strain energy \(\Delta E^{epi}(a_s, \hat{G})\) depends on the strain direction \(\hat{G}\), so does \(q(a_s, \hat{G})\). In growing coherent epitaxial films it is desirable to minimize \(\Delta E^{epi}(a_s, \hat{G})\) (or, equivalently, for a fixed \(a_s\) minimize \(q(a_s, \hat{G})\)), so as to avoid or reduce dislocations and other strain-induced film/substrate defects. It is hence important to select substrates \(a_s\) and growth directions \(\hat{G}\) that entail minimal strain energy. Harmonic continuum elasticity theory \(\hat{G}\) makes definitive predictions for the \(a_s\) and \(\hat{G}\)-dependence of epitaxial strain energy: (i) \(q(a_s, \hat{G})\) does not depend on \(a_s\), and (ii) the “softest direction” is ⟨001⟩ if \(\Delta = |C_{44} - \frac{1}{2}(C_{11} - C_{12})| > 0\), while if \(\Delta < 0\) then the softest direction is ⟨111⟩. For most fcc metals and semiconductors \(\Delta > 0\), whereas \(\Delta < 0\) for ionic salts (PbS, AgBr, NaCl, KCl) and several bcc metals (Nb, V, Mo, Cr). The selection of substrate orientation for many years has been guided by these predictions of harmonic elasticity, summarized compactly by the expression:

\[
q_{harm}(\hat{G}) = 1 - \frac{B}{C_{11} + \Delta \gamma_{harm}(\hat{G})},
\]

(2)

where \(B = \frac{1}{3}(C_{11} + 2C_{12})\) is the bulk modulus and \(\gamma_{harm}(\hat{G})\) is a purely geometric function of the spherical angles formed by \(\hat{G}\):

\[
\gamma_{harm}(\phi, \theta) = \sin^2(2\phi) + \sin^4(\theta)\sin^2\theta
= \frac{4}{5}\sqrt{\pi}[K_0(\phi, \theta) - \frac{2}{\sqrt{21}}K_4(\phi, \theta)].
\]

(3)

\(K_0(\phi, \theta)\) are Cubic harmonics \(\hat{G}\) (linear combinations of spherical harmonics forming irreducible representations of the cubic group), and the spherical angles \(\phi\) and \(\theta\) are measured with respect to Cartesian axes oriented along the edges of the conventional fcc cubic cell. Figures 1(b) and 2(c) show \(q_{harm}(\hat{G})\) of Au and Cu, demonstrating that ⟨001⟩ and ⟨111⟩ are, respectively, the softest and hardest directions.

One expects to find corrections to the harmonic behavior predicted by Eq. (2) due to the fact that strong deformations may alter the electronic charge density (and thus, the elastic response) beyond the validity of conventional harmonic elasticity theory. However, the theory of elasticity itself does not indicate when and how expres-
The goal of the present work is to propose a simple analytic formula for the total energy as a function of biaxial distortion, 

\[ E(\delta) = E_{\text{harm}}(\delta) + \sum_{l=0}^{\text{max}} b_l(\delta) K_l(\delta), \]

where \( b_l(\delta) \) is now a function of \( \delta \), and the angular momenta \( l \) include 0, 1, ..., \( \text{max} \). The analytical representation of Eq. (4) allows us to explore the elasticity to include third-order elastic constants is not sufficient (the dotted line in Fig. 2) shows the behavior of the strain energy predicted by a 3rd order polynomial fit to a few data points around \( a_{\text{eq}} = 3.56 \) Å. The goal of the present work is to propose a simple analytic formula for \( q(\delta, \hat{G}) \) [and therefore \( E_{\text{epi}}(\delta, \hat{G}) \)] which works for arbitrary strain magnitude and direction \( \hat{G} \).

We have calculated \( E_{\text{epi}}(\delta, \hat{G}) \) and \( q(\delta, \hat{G}) \) for Ag, Au, Cu and Ni along six principal directions \( [001], [111], [110], [113], [201] \) and \( [221] \) using the local density approximation (LDA) as implemented by the linear augmented plane wave (LAPW) method. This approach gives the total energy as a function of biaxial distortion, including all anharmonic effects. We find that our results can be fitted accurately to a generalization of the Kubo harmonic expansion of Eq. (3):

\[ q(\delta, \hat{G}) = q_{\text{harm}}(\hat{G}) + \sum_{l=0}^{\text{max}} b_l(\delta) K_l(\hat{G}), \]

where \( b_l(\delta) \) is now a function of \( \delta \), and the angular momenta extended beyond the harmonic limit \( (l = 0, 4) \) to include \( l = 0, 8, 10, \ldots \). The analytical representation of Eq. (4) allows us to explore the elastic soft and elastic hard directions for any strain, even outside the regime of harmonic elasticity. We find that for \( fcc \) noble metals \( q(\delta, [001]) \) and \( q(\delta, [111]) \) soften as \( \delta \) contracts (compressive strain). Consequently, upon sufficient compression (001) is no longer the softest direction, but rather (201) is (e.g., Ag, Au). Also, upon sufficient expansion, (111) is no longer the hardest direction, which is now (110) (e.g., Cu, Ni). Finally, the dramatic softening of \( q(\delta, [001]) \) upon biaxial expansion reflects the existence of low-energy “excited” bcc and bct crystal forms. These results can better guide the selection of substrate orientation for effective epitaxial growth.

We have performed LDA calculations for biaxial compression \( (\delta < a_{\text{eq}}) \) of Au and Ag, for biaxial expansion \( (\delta > a_{\text{eq}}) \) of Ni, while for Cu we considered both expansion and compression. Table I gives the calculated LDA elastic constants, which are typically 10-20% higher than the experimental values for Cu, Ag and Au. Larger discrepancy in the case of fcc Ni is due to the neglect of spin-polarization effects in our LAPW calculations. Figure 3 shows a line plot of \( q(\delta, \hat{G}) \) vs. \( \delta \) for a few directions \( \hat{G} \), while Fig. 2 shows a parametric plot of \( q(\delta, \hat{G}) \) vs. \( \hat{G} \) for a few substrate lattice constants \( a_s \). We find several surprising predictions relative to the expectations of harmonic elasticity. Although the harmonic expression \( q_{\text{harm}}(\hat{G}) \) [Eq. (2)] is exactly satisfied at the equilibrium lattice constant \( a_s = a_{\text{eq}} \) [where \( \lim_{\delta \to a_{\text{eq}}} b_l(\delta) = 0 \) in Eq. (4)], these ceases to be so as \( \delta \) deviates from \( a_{\text{eq}} \). This is apparent from the dependence of \( q \) on \( \delta \) (absent in the harmonic theory), from the crossing of \( q \) for different \( \hat{G} \) values, and from the development of new lobes and minima in Fig. 2 with the change in \( \delta \). Such effects occur at \( \Delta \delta/a \) < 4%, suggesting a rather small range of validity of the harmonic approximation. Furthermore, in the harmonic elasticity theory, if (001) is the softest direction then (111) must be the hardest direction, and vice versa. Figure 3 shows that this does not hold for sufficiently deformed films: the hardest direction in Ni and
Cu for $a_s \gg a_{eq}$ is (201), while the hardest directions for Ag and Au at $a_s \ll a_{eq}$ are (111) and (001).

The new results for fcc noble metals, apparent from our self-consistent LDA calculations, are:

(i) $q(a_s, [001])$ and, to a lesser extent, $q(a_s, [111])$ soften as $a_s$ expands (tensile biaxial strain).

(ii) $q(a_s, [110])$ and $q(a_s, [201])$ soften as $a_s$ is compressed.

(iii) As a result of (i) and (ii) above, we find that upon sufficient compression, (001) is no longer the elastically softest direction, but (201) and, to a lesser extent, (110) are. The hardest direction upon compression is still (111).

(iv) Upon sufficient expansion, (111) is no longer the hardest direction, but (110) is (Cu, Ni). The softest direction upon expansion is still (001).

We find that result (i) is a reflection of the existence of a low-energy bcc and bct “excited” structures. Indeed, (001) strain applied to fcc lattice defines a Bain path transforming fcc into bcc via the body-centered tetragonal structure. This intermediate structure is characterized by tetragonal unit cell dimensions $a$ and $c$. When minimizing the total energy of a (001) biaxially deformed solid with respect to the out-of-plane lattice vector $c$ at each in-plane lattice parameter $a_s$, one finds an “epitaxial (001) Bain path” (solid line in Fig. 1). For noble metals having the fcc structure ($c/a = \sqrt{2}$) at equilibrium, this deformation path contains the bcc ($c/a = 1$) saddle point, and the bct ($c/a = 0.96$ in the case of Cu) local minimum. The low amplitude of the epitaxial Bain path relative to the hydrostatic path (Fig. 1) defines the softness of $q(a_s, [001])$ via Eq. (1), and therefore is a direct manifestation of the small fcc/bcc and fcc/bct energy differences. Indeed, the epitaxial softening function at $c/a = 1$ is given by

$$q(a_s, [001]) = \frac{\Delta E^\text{bcc/fcc}}{\Delta E^\text{bulk}/a_s},$$

where $\Delta E^\text{bcc/fcc} = E^\text{bcc}(V^\text{eq}) - E^\text{fcc}(V^\text{eq})$. Since in fcc noble metals $V^\text{bcc} \approx V^\text{fcc}$, the bcc point is reached at $a_s \approx 2/3a_{eq}$ (see Fig. 3).

A similar argument explains the softening of $q(a_s, [111])$, since the epitaxial (111) Bain path also connects cubic fcc ($c/a = \sqrt{6}$) and bcc ($c/a = \sqrt{6}/4$) structures. This property of the (001) and (111) Bain paths is caused by the cubic symmetry of the crystal at the bcc point $c/a = 1$, requiring it to be a local extremum of the total energy. It is interesting that in zincblende solids (two interpenetrating fcc lattices), tetragonal (001) expansion does not lead to an extremal point in $\Delta E^\text{ep}/a_s(001)$ since the crystal at the “bcc point” $c/a = 1$ does not possess higher symmetry than at $c/a \neq 1$. As a consequence, $\Delta E^\text{ep}/a_s(001)$ is a monotonically increasing function of $a_s$, and (001) tensile strain does not lead to a softening of $q(a_s, [001]).$

The consequences of our findings are as follows: (a) Films of fcc noble metals under tensile biaxial strain possess the lowest strain energy for strain direction (001), while large compressive biaxial strains will have lower strain energy for (201). (b) When growing an $S_pL_q$ superlattice with components having small ($S$) and large ($L$) lattice constants (e.g., $S = Cu, L = Au$), the system rich in $L$ ($q \gg p$) will have a low (001) elastic strain energy due to easy expansion of $S$, while a system rich in $S$ ($q \ll p$) will have a low (201) elastic energy due to easy compression of $L$.

This work has been supported by the Office of Energy Research, Basic Energy Sciences, Materials Science Division, U.S. Department of Energy, under contract DE-AC36-83CH10093.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
 & Ag & Au & Cu & Ni \\
\hline
Calc. & Expt. & Calc. & Expt. & Calc. & Expt. & Calc. & Expt. \\
\hline
C$_{11}$ & 1.52 & 1.24 & 2.14 & 1.86 & 2.30 & 1.88 & 3.30 & 2.47 \\
C$_{12}$ & 1.09 & 0.93 & 1.73 & 1.57 & 1.58 & 1.21 & 2.20 & 1.47 \\
C$_{44}$ & 0.61 & 0.46 & 0.37 & 0.42 & 0.99 & 0.75 & 1.36 & 1.25 \\
\hline
\end{tabular}
\caption{The calculated and experimental (Ref. 17) elastic constants of fcc Ag, fcc Au, fcc Cu and fcc Ni (in Mbar).}
\end{table}

1. For recent advances in heteroepitaxy see M. H. Francombe, J. Vac. Sci. Technol. A 12, 928 (1994); J. R. Arthur, Surf. Sci. 299/300, 818 (1994); H. Lüth, Surf. Sci. 299/300, 867 (1994); F. Capasso and A. Y. Cho, Surf. Sci. 299/300, 878 (1994).

2. J. Hornstra and W. J. Bartels, J. Cryst. Growth 44, 513 (1978).

3. E. Anastassakis, J. Appl. Phys. 68, 4561 (1990); J. Cryst. Growth 114, 647 (1991).

4. D. M. Wood and A. Zunger, Phys. Rev. Lett. 61, 1501 (1988); Phys. Rev. B 38, 12 756 (1988); Phys. Rev. B 40, 4062 (1989).

5. D. M. Wood, J. Vac. Sci. Technol. B 10, 1675 (1992), and references therein.

6. D. B. Laks, L. G. Ferreira, S. Froyen, and A. Zunger, Phys. Rev. B 46, 12 587 (1992).

7. A. Zunger, in Handbook of Crystal Growth, Vol. 3, edited by D. T. J. Hurle (Elsevier, Amsterdam, 1994), p. 997.

8. P. M. Marcus and F. Jona, Phys. Rev. B 51, 5263 (1995).

9. D. J. Bottomley and P. Fons, J. Cryst. Growth 160, 406 (1996).

10. A. L. Altman and A. P. Cracknell, Rev. Mod. Phys. 37, 19 (1965).

11. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964); W. Kohn and L. J. Sham, Phys. Rev. A 136, 1133 (1965).

12. S.-H. Wei and H. Krakauer, Phys. Rev. Lett. 55, 1200 (1985), and references therein.

13. E. C. Bain, Trans. Am. Inst. Min. Metall. Eng. 70, 25 (1924).

14. P. Alippi, P. M. Marcus, and M. Scheffler, Phys. Rev. Lett. 78, 3892 (1997).

15. T. Kraft, P. M. Marcus, M. Methfessel, and M. Scheffler, Phys. Rev. B 48, 5886 (1993).

16. P. J. Craievich, M. Weinert, J. M. Sanchez, and R. E. Watson, Phys. Rev. Lett. 72, 3076 (1994).

17. H. B. Huntington, in Solid State Physics, eds. F. Seitz and D. Turnbull (Academic Press, New York, 1958), p. 274.