Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic \textit{Saccharomyces cerevisiae}

Jin Hou\textsuperscript{†}, Fan Suo\textsuperscript{†}, Chengqiang Wang, Xiaowei Li, Yu Shen and Xiaoming Bao\textsuperscript{*}

Abstract

**Background:** Efficiently utilizing all available carbon from lignocellulosic feedstock presents a major barrier to the production of economically feasible biofuel. Previously, to enable xylose utilization, we introduced a cofactor-dependent xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway, or a cofactor-independent xylose isomerase (XI) pathway, into \textit{Saccharomyces cerevisiae}. The resulting strains metabolized xylose with high efficiency. However, in both pathway recombinant strains, the cofactor imbalance caused accumulation of the byproducts glycerol and/or xylitol and reduced the ethanol production efficiency.

**Results:** In this study, we introduced NADH oxidase from \textit{Lactococcus lactis} into both XI and XR-XDH pathway recombinant strains. To reduce byproduct accumulation while maintaining xylose metabolism, we optimized the expression level of NADH oxidase by comparing its expression under the control of different promoters and plasmids. In recombinant XI strains, NADH oxidase was expressed at different levels, regulated by the \textit{GPD2} promoter or \textit{TEF1} promoter in the 2 \textmu{} plasmid. The expression under the control of \textit{GPD2} promoter decreased glycerol production by 84\% and increased the ethanol yield and specific growth rate by 8\% and 12\%, respectively. In contrast, in the recombinant XR-XDH strains, such expression level was not efficient enough to decrease the byproduct accumulation. Therefore, higher NADH oxidase expression levels were tested. In the strain expressing NADH oxidase under the control of the \textit{TEF1} promoter in the centromeric plasmids, xylitol and glycerol production were reduced by 60\% and 83\%, respectively, without significantly affecting xylose consumption.

**Conclusions:** By fine-tuning NADH oxidase expression, we decreased the glycerol or/and xylitol production in both recombinant XI and XR-XDH xylose-metabolizing yeast strains. The optimal NADH oxidase expression levels depend on metabolic pathways. Similar cofactor engineering strategies could maximize the production of other redox dependent metabolites.

**Keywords:** NADH oxidase, Xylose metabolism pathways, Cofactor, Glycerol, Xylitol

Background

Efficient utilization of all available carbon from lignocellulosic feedstock presents a major barrier to economical biofuel production [1]. Xylose is the second predominant sugar in lignocellulosic feedstock after glucose. However, \textit{Saccharomyces cerevisiae}, which is ubiquitously employed in ethanol production, cannot naturally metabolize xylose. Consequently, throughout the past few decades, the introduction of xylose metabolic pathways into \textit{S. cerevisiae} has been extensively researched [2,3]. Two pathways have been studied widely for D-xylose utilization. In fungi and xylose-metabolic yeasts, D-xylose is reduced to xylitol by NAD(P) H-dependent xylose reductase (XR), encoded by \textit{XYL1} and xylitol is then oxidized to D-xylulose by NAD\textsuperscript{+}-dependent xylitol dehydrogenase (XDH), encoded by \textit{XYL2} [4,5]. The resulting D-xylulose is converted to xylulose-5-phosphate by endogenous xylulose kinase (XK). Alternatively, some bacteria and fungi can directly convert D-xylose to xylulose via the cofactor-independent xylose isomerase (XI) pathway. Both pathways have been successfully introduced into \textit{S. cerevisiae}, allowing the recombinant strains to produce ethanol from xylose (Figure 1) [6-11]. Xylose metabolism

* Correspondence: bxm@sdu.edu.cn
\textsuperscript{†}Equal contributors
State Key Laboratory of Microbial Technology, Shandong University, Shanda Nan Road 27, Jinan 250100, China

© 2014 Hou et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
has been improved by over-expressing the endogenous xylulose kinase genes and the genes involved in the non-oxidative pentose phosphate pathway [12,13].

Introducing the Scheffersomyces stipitis XR-XDH pathway into S. cerevisiae has enabled the yeast to effectively utilize xylose [4,5,14]. Our previous work also demonstrated efficient xylose uptake by strains expressing this pathway [12,15]. However, the different cofactor dependence of XR and XDH leads to cofactor imbalance and xylitol accumulation. Recent studies have focused on metabolic engineering to balance intracellular cofactors or on modifying the cofactor specificities of XR or XDH to establish an oxidation-reduction cycle [16-20]. Several strategies have been implemented for balancing intracellular cofactors in recombinant S. cerevisiae. These include manipulating ammonia assimilation from being NADPH dependent to being NADH dependent by replacing GDH1 (which encodes NADPH-dependent glutamate dehydrogenase) with GDH2 (which encodes NADH-dependent glutamate dehydrogenase), expressing the Kluvyeromyces lactis GDP1 gene, which encodes a fungal NADP+-dependent D-glyceraldehyde-3-phosphate dehydrogenase, expressing the gapN gene from Streptococcus mutants, which encodes a non-phosphorylating NADP+-dependent GAPDH, and over-expressing the truncated POSIX gene, which encodes cytosolic NADH kinase [15,19,21,22].

An alternative pathway for xylose catabolism is the isomerase-based pathway. This pathway is cofactor independent, and therefore could lead to higher theoretical ethanol yields. However, only a few xylose isomerase genes have been successfully expressed in S. cerevisiae, derived from organisms such as Piromyes sp. [6,23], Orpinomyces sp. [24], Clostridium phytofermentans [25] and Prevotella ruminicola [26]. Further engineering strategies, such as adaptive evolutionary engineering [8] and over-expressing downstream pathways [7,27], have been implemented to improve xylose consumption and cell growth.

Recently, we obtained a new XI (xylA) gene from bovine rumen. The activity of this XI in S. cerevisiae was slightly higher than the XI from Piromyes sp. [28]. We also engineered the host strain to over-express the endogenous xylulose kinase gene (XKS1) and the genes in non-oxidative pentose phosphate pathway, eliminating the respiration by deleting cytochrome C oxidase subunit IV encoding gene COX4, and adaptive evolution [13]. The recombinant strain showed high xylose metabolism capability and high ethanol yield under both aerobic and anaerobic conditions. However, although no xylitol was accumulated, substantial amounts of glycerol were produced as the major byproduct [28].

In industrial ethanol processes, up to 4% of the sugar feedstock is converted into glycerol by S. cerevisiae, which is an unwanted loss of carbon source [29,30]. Glycerol synthesis plays important roles in yeast osmoregulation and in regulating intracellular redox balance [31]. It is produced from dihydroxyacetone phosphate (DHAP) through the catalysis of glycerol-3-phosphate dehydrogenase (GPD, encoded by genes GPD1 and GPD2) and glycerol-3-phosphate phosphatase (GPP, encoded by genes GPP1 and GPP2). Researchers have expended considerable effort in minimizing glycerol formation. One approach is to delete one or both of GPD1 and GPD2 as well as the genes involved in glycerol transport, such as FPS1 [32,33]. Because cells lacking the GPD1 and GPD2 genes cannot grow anaerobically, the promoter of GPD1 has been engineered in GPD2 deletion background [34]. Alternative approaches aim at manipulating the redox cofactor metabolism to reduce cytosolic NADH accumulation [35]. For example, Nissen et al. deleted GDH1 (encoding NADPH-dependent glutamate dehydrogenase), while overexpressing GLN1 and GLT1 (encoding glutamine synthetase and glutamate synthase, respectively). Their engineered strains demonstrated

![Figure 1 Glucose and xylose metabolic pathways in recombinant S. cerevisiae.](http://www.biomedcentral.com/1472-6750/14/13)
reduced glycerol yield and increased ethanol yield [36]. Guo et al. simultaneously deleted GPD1 and introduced the non-phosphorylating NADP⁺-dependent GAPDH gene gapN into strains overexpressing the trehalose synthesis genes TPS1 and TPS2, thereby obtaining a high ethanol-yielding strain [32]. Zhang et al. combined the expression of NADP⁺-dependent GAPDH gene gapN with either a NAD⁺-dependent fumarate reductase gene frdA, or an acetylating NAD⁺-dependent acetaldehyde dehydrogenase for reoxidizing NADH [37].

Water-forming NADH oxidase can oxidize cytosolic NADH to NAD⁺, accompanied by hydrogen, when oxygen is available. Previous studies have demonstrated the capability of NADH oxidase expression to reduce xylitol production during xylose metabolism [20], but in this approach, aerobic cultivation combined with oxygen-limited fermentation has to be performed to supply oxygen for NADH oxidase, which results in low ethanol production. However, if the ethanol yield is enhanced by purely anaerobic cultivation, the NADH oxidase reaction is deprived of its required oxygen. In our previous work, we demonstrated that respiration-deficient xylose-metabolizing strains can efficiently produce ethanol from xylose and glucose under both aerobic and anaerobic conditions [12]. Therefore, in the present study, we expressed water-forming NADH oxidase derived from Lactococcus lactis in our respiration-deficient xylose-metabolizing strains (Figure 1). The fermentation process is aerobically controlled to supply oxygen for NADH oxidase without compromising ethanol production. The impact on byproduct accumulation and ethanol production was studied in both recombinant XI strains and recombinant XR-XDH strains. To decrease the byproduct accumulation without affecting yeast growth and sugar metabolism, different NADH oxidase expression levels were compared by expressing the noxE gene controlled by different promoters in the 2 µ or centromeric plasmids under glucose and xylose co-cultivation conditions.

Results

NADH oxidase expression decreases glycerol production in recombinant XI strains

As mentioned previously, glycerol is the main byproduct of xylose metabolism in recombinant XI strains [7]. We therefore aimed to suppress glycerol production by expressing the NADH oxidase gene. Two different NADH oxidase expression levels were selected under the control of either the TEF1 or GPD2 promoter in the 2 µ plasmid. The relative transcription of noxE in XITN was about 13 fold higher than that in XIGN (Figure 2A). The specific enzyme activities of NADH oxidase in XITN and XIGN were 1.85 and 0.08 U mg⁻¹ protein, respectively (Table 1). As a consequence of NADH oxidase expression, the intracellular NADH/NAD⁺ ratio decreased by 67% and 23% in XITN and XIGN, respectively, relative to XICO (Figure 2B).

We then studied the impact of NADH oxidase expression on glucose and xylose co-cultivations. As shown in Figure 3 and Table 2, expressing NADH oxidase under the strong constitutive TEF1 promoter in the 2 µ plasmid completely suppressed glycerol production, but also significantly reduced glucose and xylose metabolism, and decreased the ethanol yield by about 17% (relative to the control strain). This may be because the strong NADH oxidase expression in XITN depleted the pool of NADH (Figure 2B). When NADH oxidase was regulated by the GPD2 promoter in the 2 µ plasmid, the glycerol yield reduced by 84% in XIGN, while the ethanol yield and specific growth rate increased by 8% and 12%, respectively (Figure 3B and Table 2). The biomass yield also increased slightly, without significantly affecting the xylose consumption. These results show that expressing NADH oxidase under the control of the GPD2 promoter.
in recombinant XI strains can effectively reduce glycerol production and increase the ethanol yield.

NADH oxidase expression decreases xylitol and glycerol accumulation in recombinant XR-XDH strains

We also investigated the effect of NADH oxidase expression in recombinant XR-XDH strains (Figure 3 and Table 3). Controlling NADH oxidase expression under the GPD2 promoter was much less effective than in the recombinant XI strains; the glycerol and xylitol yields were reduced by only 50% and 15%, respectively (Figure 4B and Table 3). This suggested that the NADH oxidation level in XRGN was not sufficiently high to suppress byproduct accumulation. However, increased expression under the TEF1 promoter led to a large reduction of ethanol yield and inhibited glucose or xylose consumption, indicating that NADH oxidation level in XRTN was not sufficiently high to suppress byproduct accumulation. However, increased expression under the TEF1 promoter led to a large reduction of ethanol yield and inhibited glucose or xylose consumption, indicating that NADH oxidation level in XRTN was not sufficiently high to suppress byproduct accumulation.

Discussion

In the presence of oxygen, water-forming NADH oxidase can oxidize cytosolic NADH to NAD+, with simultaneous reduction of O2 to H2O. Although NADH oxidase expression is known to reduce xylitol production during xylose metabolism, it requires aerobic cultivation combined with oxygen-limited fermentation; otherwise the enzyme cannot function [20]. However, aerobic cultivation reduces ethanol production. Our respiratory-deficient strain can

| Table 1 NADH oxidase activities in recombinant strains of S. cerevisiae |
|-----------------------------|-----------------------------|
| Strain | Description | NADH oxidase activity (U mg⁻¹ total protein) |
| XI, pYX242-WS | 0 |
| XI, pYX242-GPD2nox | 0.08 ± 0.01 |
| XI, pYX242-TEF1nox | 1.85 ± 0.06 |
| XR-XDH, pYX242-WS | 0 |
| XR-XDH, pYX242-GPD2nox | 0.05 ± 0.00 |
| XR-XDH, pRS315-TEF1nox | 0.17 ± 0.00 |
| XR-XDH, pYX242-HXK2nox | 0.57 ± 0.03 |
| XR-XDH, pYX242-TEF1nox | 1.92 ± 0.12 |

Figure 3 Aerobic batch cultivations of recombinant XI strains with a mixture of 20 g/L glucose and 20 g/L xylose. The experiments were performed in duplicate. (A), XICO; (B), XIGN; and (C), XITN. Symbols: •, glucose; ■, xylose; ●, ethanol; ▲, glycerol; ×, biomass. Measurements are the average value ± standard error from independent duplicate cultivations.
Table 2 Physiological parameters of recombinant *S. cerevisiae* strains from batch cultivations on glucose and xylose

| Strain | μ<sub>max</sub> (h<sup>-1</sup>)<sup>a</sup> | Consumed xylose in 72 h (g L<sup>-1</sup>) | Sugar consumption rate (g L<sup>-1</sup> h<sup>-1</sup>)<sup>b</sup> | Yield on sugars (g g<sup>-1</sup>)<sup>c</sup> | Carbon balance |
|--------|-----------------|-----------------|-----------------|-----------------|----------------|
|        |                 |                 | Glucose | Xylose | Biomass | Ethanol | Glycerol |
| XICO   | 0.17            | 20.14           | 1.34     | 0.48   | 0.10    | 0.35    | 0.084    | 0.92    |
| XIGN   | 0.19            | 18.81           | 1.33     | 0.46   | 0.12    | 0.38    | 0.021    | 0.97    |
| XITN   | 0.16            | 4.50            | 0.73     | 0.14   | 0.10    | 0.29    | 0.003    | 0.90    |

Average values from independent duplicate cultivations. In all cases, the standard error is less than 3%.

<sup>a</sup>Maximum specific growth rate (h<sup>-1</sup>).

<sup>b</sup>Specific volumetric rate of glucose or xylose (g L<sup>-1</sup> h<sup>-1</sup>).

<sup>c</sup>Biomass, ethanol or glycerol yield on consumed sugars (g g<sup>-1</sup> sugar).

Table 3 Physiological parameters of recombinant *S. cerevisiae* strains from batch cultivations on glucose and xylose

| Strain | μ<sub>max</sub> (h<sup>-1</sup>)<sup>a</sup> | Consumed xylose in 78 h (g L<sup>-1</sup>) | Sugar consumption rate (g L<sup>-1</sup> h<sup>-1</sup>)<sup>b</sup> | Yield on sugars (g g<sup>-1</sup>)<sup>c</sup> | Xylitol yield (g g<sup>-1</sup>)<sup>d</sup> | Carbon balance |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|
|        |                 |                 | Glucose | Xylose | Biomass | Ethanol | Glycerol | Xylitol | |
| XRCO   | 0.17            | 18.53           | 1.37     | 0.37   | 0.085  | 0.35    | 0.121    | 0.53    | 0.90    |
| XRGN   | 0.18            | 18.47           | 1.39     | 0.37   | 0.094  | 0.37    | 0.035    | 0.45    | 0.86    |
| XRTN2  | 0.16            | 13.79           | 1.20     | 0.29   | 0.080  | 0.36    | 0.023    | 0.21    | 0.82    |
| XRHN   | 0.17            | 10.69           | 1.18     | 0.24   | 0.098  | 0.35    | 0         | 0.03    | 0.91    |
| XRTN   | 0.15            | 3.31            | 0.98     | 0.08   | 0.094  | 0.29    | 0         | 0       | 0.84    |

Shown are the average values from independent duplicate cultivations. In all cases, the standard error is less than 3%.

<sup>a</sup>Maximum specific growth rate (h<sup>-1</sup>).

<sup>b</sup>Specific volumetric rate of glucose or xylose (g L<sup>-1</sup> h<sup>-1</sup>).

<sup>c</sup>Biomass, ethanol or glycerol yield from consumed sugars (g g<sup>-1</sup> sugar).

<sup>d</sup>Xylitol yield on xylose (g g<sup>-1</sup> xylose).
expression in XRTN2 was insufficient to eliminate byproducts, but was sufficiently high to affect substrate metabolism.

Comparing the optimal modified strains in both pathways, the recombinant XI strain XIGN accumulated little byproduct, and demonstrated a higher xylose consumption rate and ethanol yield than the recombinant XR-XDH strain XRTN2. Therefore, the performance of the recombinant XI strain surpassed that of the recombinant XR-XDH strain. Additionally, our recombinant rumen XI strains XIGN performed similarly to an \textit{S. cerevisiae} strain expressing \textit{Piromyces} sp. \textit{xylA} \cite{8,11,13} in terms of ethanol production, but accumulated considerably less glycerol. Consequently, the recombinant XI strain emerges as a preferable choice for lignocellulosic feedstock utilization.

**Conclusion**

In this study, we investigated the impact of NADH oxidase on two xylose metabolism pathways: the cofactor independent XI pathway and the cofactor dependent XR and XDH pathway. According to our results, NADH oxidase expression decreases glycerol and xylitol accumulation in respiration-deficient xylose-metabolizing \textit{S. cerevisiae}. By controlling the promoter strength of \textit{noxE} gene and the plasmid copy number, we obtained an efficient xylose-metabolizing strain that accumulated little byproduct. Such fine-tuned cofactor engineering is an attractive strategy for bioprocessing, and is applicable to production of other redox dependent metabolites.

**Methods**

**Plasmids and strains construction**

The primers used in this study are listed in Table 4. The \textit{noxE} gene (GenBank Accession no. 4796799) was amplified from the genomic DNA of \textit{Lactococcus lactis subsp. MG1363}. A 2 \(\mu\) plasmid pYX242-WS (constructed from pYX242 by inserting the \textit{TEF1} promoter in front of the \textit{polyA} terminator) and a centromeric plasmid pRS315 were used for \textit{noxE} gene expression. Ligation was performed using T4 DNA ligase or a one-step enzymatic DNA assembly protocol \cite{42}. The \textit{noxE} gene was constructed under the control of \textit{TEF1}, \textit{GPD2} or \textit{HXK2} promoters and \textit{polyA} terminator in pYX242-WS \cite{42}, or the \textit{TEFI} promoter and \textit{polyA} terminator in pRS315 (Table 5). The genetic reference strain was BSPX042 (\textit{ura3-52}, \textit{XKS1::loxP-TEF1p}, \textit{gre3 (-241,+338)}::\textit{TP11p-...
as described in our previous work [28] (Table 5). The recombinant yeast strains and plasmids used in this study are listed in Table 5. The leucine auxotrophic strain, obtained by deleting the \textit{LEU2} gene in BSPX042, was named BSLS000. The recombinant XR-XDH and XI strains were constructed by transforming the pJX1 (\textit{XYL1} and \textit{XYL2} genes from \textit{S. stipitis}) and pJX7 (\textit{xylA} gene from bovine rumen, GenBank Accession no. JF496707) plasmids, respectively, into BSLS000. The empty plasmid pYX242-WS or plasmids containing the \textit{noxE} gene was then transformed into the recombinant XR-XDH or XI strains, to construct XICO (XI, pYX242-WS), XITN (XI, pYX242-TEF1nox), XIGN (XI, pYX242-GPD2nox), XRHN (XR-XDH, pYX242-HXK2nox) and XRTN2 (XR-XDH, pRS315-TEF1nox) (Table 5).

**Growth conditions**

\textit{E. coli} recombinant cells were grown in Luria-Bertani medium (5 g/L yeast extract, 10 g/L tryptone, 10 g/L NaCl, pH 7.0) in the presence of ampicillin (100 mg/L) at 37°C. Recombinant strains of \textit{S. cerevisiae} were cultured in SD medium (1.7 g/L yeast nitrogen base, 5 g/L (NH₄)₂SO₄) with amino acid lacking uracil and/or leucine and 20 g/L glucose at 30°C, with rotation at 200 rpm.

**Batch cultivations**

Preculture was prepared by inoculating the strains in 400 mL SD medium containing 20 g/L glucose in 1 L shake flasks. The batch cultivations were carried out in 1.4 L fermenters (Infors AG, Switzerland) with a working volume of 1 L and controlled at 30°C, 600 rpm and 0.1 vvm. The pH was maintained at 5.0 by automatic addition of 1 M H₂PO₄ or 1 M NaOH. The quantity of CO₂ and O₂ in the exhaust gases was measured with a
Table 5 Plasmids and strains used in this study

| Strain/plasmid | Genotype/properties | Source of reference |
|---------------|---------------------|---------------------|
| S. cerevisiae | MATa SUC2 MAL8C ura3-52 | Peter Kötter |
| CEN.PK113-SD  | (−241, +338) : TIP1p::RKO1-KO1T-PGK1p::TAL1-TAL1t-FBA1p::KL1-TKL1t-ADH1p::RPE1-RPE1t-loxp, coex4::loxP, adaptive evolution, ura3-52 | [28] |
| BSXP042      | pYX242, leu2::loxP-KanMX-loxp | This study |
| BSLS000      | BSLS000, pJX7 & pYX242-TEF1nox | This study |
| XCO          | BSLS000, pJX7 & pYX242-WS | This study |
| XITN         | BSLS000, pJX7 & pYX242-TEF1nosx | This study |
| XIGN         | BSLS000, pJX7 & pYX242-GPD2nosx | This study |
| XRNO         | BSLS000, pJX7 & pYX242-WS | This study |
| XRTN         | BSLS000, pJX7 & pYX242-TEF1nosx | This study |
| XRGN         | BSLS000, pJX7 & pYX242-GPD2nosx | This study |
| XRHN         | BSLS000, pJX7 & pYX242-HXK2nosx | This study |
| XRTN2        | BSLS000, pJX7 & pRS315-TEF1nosx | This study |

Plasmids

| pYX242-WS     | 2 µm plasmid with TEF1 promoter and Poly A terminator, LEU2 marker | This study |
| pRS315        | Centromeric plasmid with LEU2 marker | ATCC77144 |
| pYX242-TEF1nosx | pYX242-WS, naxE gene with TEF1 promoter, LEU2 | This study |
| pYX242-GPD2nosx | pYX242-WS, naxE gene with GPD2 promoter, LEU2 | This study |
| pYX242-HXK2nosx | pYX242-WS, naxE gene with HXK2 promoter, LEU2 | This study |
| pRS315-TEF1nosx | pRS315, naxE gene with TEF1 promoter, LEU2 | This study |
| pJX1          | YCplac33, YX1::TEF1 promoter, YX1 with TDK3 promoter | [12] |
| pJX7          | YEpplac195, 2 µm, Ru-xylA with TEF1 promoter, URA3 | [28] |

NADH oxidase activity measurement

Samples were harvested during the mid-exponential phase of the cultivation and centrifuged immediately (4,000 g at 1°C for 5 min). Cell-free extracts were prepared using a Fast Prep cell homogenizer. NADH oxidase activity was assayed spectrophotometrically in 50 mM potassium phosphate buffer (pH 7.0), 0.3 mM β-NADH and 0.3 mM EDTA at 340 nm, as previously described [43]. Protein concentrations were measured following the Bradford method. One unit (U) of enzyme activity was defined as the oxidation of 1.0 µmol NADH per min.

NAD⁺ and NADH quantification

Samples were taken and quenched in 30 mL pure methanol in pre-weighed tubes maintained at −40°C. The cells were then collected by centrifugation at −20°C at 12,000 g for 5 minutes. Next, 1 mL of 17% (v/v) alcoholic 1 M KOH (for NADH extraction) or 1 mL 35% (v/v) HClO₄ (for NAD⁺ extraction) was added to the cell pellet. The extracts were frozen by liquid nitrogen, thawed and then neutralized by adding 2 M HCl (for NADH extraction) or 2 M KOH (for NAD⁺ extraction). The cellular debris was removed by centrifuging at 12,000 g for 5 min. Supernatants were transferred to new tubes and stored at −80°C. Intracellular NAD(H) concentrations were determined by HPLC as previously described [44].

Real-time quantitative PCR (qPCR)

Total RNA was isolated using UNIQ-10 spin column RNA extraction kits (Sangon Biological Engineering, China). The first cDNA strand was synthesized using the Prime-Script™ RT Reagent Kit (TaKaRa, Japan) and was used for qPCR amplification in the Light Cycle PCR System (SYBR Green Real-time PCR Master Mix, Japan). The reference gene was ACT1. The gene-specific primers are listed in Table 4.
Abbreviations
XI: Xylose isomerase; XR: Xylose reductase; XD: Xyitol dehydrogenase; 
NADH: Reduced form of nicotinamide adenine dinucleotide; 
DHAP: Dihydroxyacetone phosphate; GDP: Glycerol-3-phosphate dehydrogenase; 
GPP: Glycerol-3-phosphate phosphatase; 
EDTA: Ethylenediaminetetraacetic acid.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JH designed the study, performed the data analysis and wrote the manuscript. SF performed the experiments and edited the manuscript. WC and LX performed some experiments. YS participated in design and drafted the manuscript. BX participated in the design and coordination and drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgments
This work was supported by the National Key Basic Research Program (2011CB707405), the National High-Technology Research and Development Program of China under Grant (2012AA022106), the National Natural Science Foundation of China (31300037, 30970091, 31070096 and 31270151), and Independent Innovation Foundation of Shandong University, IFSDDU (2012 TB003). We thank Dr. Peter Kötter (Johann Wolfgang Goethe-University, Frankfurt, Germany) for supplying the CEN.PK113-5D strains and Prof. Jian Kong (Shandong University, Jinan, China) for providing the Lactococcus lactis nacE gene.

Received: 1 July 2013 Accepted: 8 February 2014
Published: 14 February 2014

References
1. Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF: Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 2007, 108:147–177.
2. Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martin I, Gorwa-Grauslund MF: Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007, 74:5937–5953.
3. Jeffries TW: Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 2005, 17:330–336.
4. Scalinatini G, Otero JM, Van Vleet JR, Jeffries TW, Olsson L, Nielsen J: Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEBS Lett 2012, 582:582–597.
5. Wallfischon M, Anderlund M, Bao X, Hahn-Hagerdal B: Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 1997, 48:2018–224.
6. Kuper M, Harhangi HR, Stave AK, Winkler AA, Chen X, Hou J, Bao X: Development of efficient xylose fermentation in recombinant Saccharomyces cerevisiae. Metab Eng 2012, 14:617–622.
7. Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G: Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 2012, 14:611–622.
32. Guo ZP, Zhang L, Ding ZY, Shi GY: Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Metab Eng 2011, 13(1):49–59.
33. Yu KO, Kim SW, Han SO: Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate. J Biotechnol 2010, 150(2):209–214.
34. Pagliardini J, Hubmann G, Alfenore S, Nevoigt E, Bideaux C, Guillouet SE: The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae. Microb Cell Fact 2013, 12(1):29.
35. Hou J, Lages NF, Oldiges M, Vemuri GN: Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab Eng 2009, 11(4–5):253–261.
36. Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J: Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2000, 2(1):69–77.
37. Zhang L, Tang Y, Guo ZP, Ding ZY, Shi GY: Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae. Biotechnol Lett 2011, 33(7):1375–1380.
38. van Dijken JP, van den Bosch E, Hermans JJ, de Miranda LR, Scheffers WA: Alcoholic fermentation by ‘non-fermentative’ yeasts. Yeast 1986, 2(2):123–127.
39. Verduyn C, Postma E, Scheffers WA, van Dijken JP: Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 1990, 136(3):395–403.
40. Rigoulet M, Agulianu H, Averet N, Broust O, Camougrand N, Grandier-Vazille X, Larsson C, Pahlman IL, Manon S, Gustafsson L: Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem 2004, 256–257(1–2):73–81.
41. Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L: The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 1997, 16(9):2179–2187.
42. Wang C, Shen Y, Zhang Y, Suo F, Hou J, Bao X: Improvement of L-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae. Biomet Res Int 2013, 2013:61204.
43. Vemuri GN, Etteman MA, McSweeney JE, Olsson L, Nielsen J: Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2007, 104(7):2420–2427.
44. Jones DP: Determination of pyridine dinucleotides in cell extracts by high-performance liquid chromatography. J Chromatogr 1981, 225(2):446–449.

doi:10.1186/1472-6750-14-13

Cite this article as: Hou et al.: Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae. BMC Biotechnology 2014 14:13.