A journey into the proton structure
Progresses and challenges

Francesco Giovanni Celibertoa,b,c,*

aEuropean Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Strada delle Tabarelle 286, Villazzano, I-38123, Trento, Italy
bFondazione Bruno Kessler (FBK), Via Sommarive 18, Povo, I-38123, Trento, Italy
cINFN-TIFPA Trento Institute of Fundamental Physics and Applications, Via Sommarive 14, Povo, I-38123, Trento, Italy

\textbf{ARTICLE INFO}

\textbf{Abstract}

Unraveling the inner dynamics of gluons and quarks inside nucleons is a primary target of studies at new-generation colliding machines. Finding an answer to fundamental problems of Quantum ChromoDynamics, such as the origin of nucleon mass and spin, strongly depends on our ability of reconstructing the 3D motion of partons inside the parent hadrons. We present progresses and challenges in the extraction of TMD parton densities, with particular attention to the ones describing polarization states of gluons, which still represent a largely unexplored field. Then, we highlight connections with corresponding parton densities in the high-energy limit, the so-called unintegrated gluon distributions or UGDs and, more in general, to recent developments in high-energy physics.

1. Unveiling the multidimensional structure of the proton

The advent of new-generation particle accelerators [1–20], such as the High-Luminosity Large Hadron Collider (HL-LHC) [21] and the Electron-Ion Collider (EIC) [22–24], will start a new era in the search for long-waited signals of New Physics beyond the Standard Model (SM) of particle physics. At the same time, it has opened up a great window of opportunities for precision studies of the dynamics of strong interactions, responsible for the strong nuclear force, that “bind us all”. Among these analyses, deepening our knowledge of the proton content represents a primary target of efforts made by a very active scientific community, whose richness and spread grow over time. The most powerful tool to gather information about the inner structure of the proton is the so-called language of parton correlators, that allows us to address the distribution of proton elementary constituents (quark and gluons, generally called partons) in space, momentum and energy. Of special interest are the \textit{transverse-momentum-dependent} (TMD) parton distribution functions, which permit us to unravel the proton content in a three-dimensional representation, namely via a faithful \textit{3D tomographic imaging}. A TMD-like description is needed to find an answer to more fundamental questions, such as understanding the origin of the proton spin [25].

From a physical viewpoint, TMD PDFs (or simply TMDs) come out as 3D generalizations of 1D collinear PDFs, since they account for struck-parton transverse-momentum effects. A TMD description is required in order to correctly depict observables sensitive to the intrinsic transverse motion of colliding partons. The latter, quantified by TMDs, leaves its imprint on transverse momenta of particles tagged in the final state. It can be accessed through experimental measurements of semi-inclusive final states featuring observed transverse momenta or transverse imbalances much smaller than the reference hard scale(s).

To achieve a complete tomographic reconstruction of the proton, the information encoded in TMDs needs to be complemented by the one carried by another family of 3D maps: the \textit{generalized parton distributions} (GPDs). While TMDs give us access to the proton 3D content in momentum space, GPDs permit us to unveil the 3D dynamics of partons in the position space. More in particular, information on the transverse position of a parton in the parent hadron is gathered from exclusive reactions with the proton being deflected at small angles. GPDs quantify the parton transverse-spatial distribution via a Fourier transform of the transverse momentum transferred to the proton.

Formally, both TMDs and GPDs are projections of more general distributions, defined in terms of the fully unintegrated and off-diagonal correlator. These quantities are known as \textit{generalized} TMDs (GTMDs) and they are often referred as “mother” distributions of TMDs and GPDs [26–36]. However, beyond this purely formal link, no general relations between TMDs and GPDs are known. Some non-trivial connections have been found only via models [37–39]. Striking examples are the so-called \textit{chromodynamic lensing} relations [37, 40–42] connecting time-reversal effects in single-spin asymmetries and spatial distortions of the GPDs in the impact-parameter space (see also Ref. [43]). These functional relations do not hold anymore when higher Fock states and/or higher-order diagrams are considered in models [39, 44–46].

2. TMD gluon distribution functions

Unpolarized and polarized gluon TMDs at twist-2 (leading twist) for a spin-1/2 target were identified for the first...
Figure 1: 3D tomographic reconstruction of the unpolarized (left) and Boer–Mulders (right) gluon TMD distributions in the proton, as functions of the gluon transverse momentum, at the initial energy scale, $\mu_0 = 1.64$ GeV, and for $x = 10^{-3}$. Plots refer to replica 11.

TMDs turn out to be process-dependent due to the presence of transverse gauge links (Wilson lines) [60–62]. Whereas quark TMDs depend on $[\pm]$ staple links that determine the direction of future- or past-pointing Wilson lines, gluon TMDs exhibit a more involved gauge-link dependence, since they are sensitive to combinations of two or more staple links. As a consequence, they feature a more complicated level of modified universality.

There exist two principal gluon gauge links, known as f-type and the d-type structures. In the context of low-x investigations they are often called Weiszäcker–Williams and dipole links, respectively. The antisymmetric f_{abc} QCD color structure is typical of the f-type time-reversal odd (T-odd) gluon-TMD correlator, while the symmetric d_{abc} structure determines the d-type T-odd one. This makes f-type (d-type) gluon TMDs dependent on $[\pm, \pm]$ ($[\pm, \mp]$) gauge-link combinations. Much more intricate, box-loop structures rise along with reactions in which multiple color exchanges connect both the initial and final state [63]. This fact, however, bring to violations of the TMD factorization [64, 65]).

More in general, a rigorous proof of the validity of TMD factorization relies on establishing proper factorization theorems affording us a precise definition of initial-scale and evolved densities, thus defining their universality properties and evolution equations. These theorems needs to be proven process by process. Up to now, TMD theorems have been obtained for a few reactions sensitive to quark TMDs: Drell–Yan and semi-inclusive deep inelastic scattering at low observed transverse momenta [66, 67], as well as lepton annihilations into two almost back-to-back hadrons [66–68]. The factorization for the inclusive production of single hadrons has been discussed only recently [69–71].

Conversely, proper factorization theorems for gluon-TMD sensitive processes are almost completely lacking, so that factorization is usually assumed in phenomenological studies. TMD factorization is expected to hold for gluon-induced color-singlet final states, such as Higgs-boson hadroproduction [53, 72, 73]. Quite recently, a factorization formula was derived for the inclusive hadroproduction of pseudoscalar quarkonium states [74] in the color-singlet channel [75–78]. This led to an enhancement of the description of the quarkonium production mechanism that now includes TMD-like inputs, known as shape functions [74, 79, 80]. However, the bound-state nature of a quarkonium particle, instead of a point-like object, makes it difficult to extend that result to gluon-TMD studies through other quarkonia, such as vectors [79, 81–84].

From a phenomenological perspective, the gluon-TMD field is an almost uncharted territory. First studies of the unpolarized and the Sivers TMDs were performed Refs. [73, 82, 83] and [85–88], respectively. Thus, exploratory analyses
of gluon TMDs by means of flexible for the nonperturbative content of these densities are required. Progresses along this direction were proposed in the spectator-model approach [47, 89, 90], which was formerly adopted to model quark TMDs [39, 91–95]. In the gluon-TMD case, it assumes that the struck nucleon with mass \(m_H \) and momentum \(\kappa_H \) emits a gluon with momentum \(\kappa_T \), transverse momentum \(\kappa_T \) and longitudinal fraction \(x \). The remainders are effectively modeled by and effective on-shell particle with mass \(m_X \) and spin 1/2. Within this framework, taken and at the diagrammatic tree level, all the initial energy-scale twist-2 TMDs can be calculated. Spectator-model gluon T-even functions were recently resented in Refs. [57, 96, 97].

In particular, the nucleon-gluon-spectator vertex was modeled as

\[
\gamma_{ab}^\mu = \delta_{ab} \left[\eta_1(p^2)^\gamma^\mu + \eta_2(p^2)^i \frac{i}{2m_H} \sigma^{\mu\nu} \kappa_\nu \right],
\]

where the \(\eta_{1,2} \) form factors are two dipolar functions of \(\kappa_T^2 \). In our model the spectator mass is not a fixed parameter, but it ranges from \(m_H \) to +\(\infty \) and it is weighted through a spectral function \(\Xi^{[s.m.]}(m_H) \), which reproduce both the small- and the moderate-x behavior of gluon collinear PDFs. The analytic expression of the spectral function contains seven parameters and reads

\[
\Xi^{[s.m.]}(m_H) = \mu^{2a} \left(\frac{A}{B + \mu^{2b}} + C \frac{e^{-(y_H-\mu p_y)C}}{\sigma^2} \right).
\]

In Ref. [96] model parameters were fixed by by making a simultaneous fit of unpolarized and helicity TMDs, \(f_1^g \) and \(g_1^h \), to their collinear counterparts from NNPDF [98, 99] at the initial scale of \(\mu_0 = 1.64 \text{ GeV} \). We made use of the replica method [100, 101] to determine the statistical uncertainty of our fit. Further details on the fitting procedure and quality can be found in Ref. [96]. Since our tree-level approximation does not depend on the gauge link, our model T-even TMDs are process-universal. A preliminary application of our T-even gluon TMDs to the hadroproduction of pseudoscalar quarkonium states were presented in Ref. [96], while the extension of our framework to the T-odd case was discussed in Refs. [102–106].

With the aim of unveiling the 3D dynamics of gluons inside the proton, we investigate the following distributions which describe the 2D \(\kappa_T \)-density of gluons for distinct combinations of their polarization and the nucleon spin. For an unpolarized proton, we identify the unpolarized distribution

\[
x F_u^g(x, \kappa_x, \kappa_y) = x f_1^g(x, \kappa_T^2)
\]

as the distribution of an unpolarized gluon with \(x \) and \(\kappa_T \), whereas the Boer–Mulder distribution

\[
x F_{-\rho}(x, \kappa_x, \kappa_y) = \frac{x}{2} \left(f_1^g(x, \kappa_T^2) - \frac{\kappa_T^2 - \kappa_T^2}{2m_H} h_1^g(x, \kappa_T^2) \right)
\]

stands for the density of a linearly-polarized gluon in the transverse plane with \(x \) and \(\kappa_T \).

Contour plots in Fig. 1 exhibit \(\kappa_T \)-patterns of \(x F \) densities in Eqs. (3) and (4) at \(\mu_0 = 1.64 \text{ GeV} \) and \(x = 10^{-3} \) for an unpolarized proton moving towards the reader. For the sake of simplicity, results are shown for the most representative replica, namely the number 11. The color code quantifies the weight of the oscillation of each density along the \(\kappa_{x,y} \) directions. The unpolarized distribution in Eq. (3) possesses a cylindrical symmetry, while the Boer–Mulders density in Eq. (4) has a dipolar behavior. The departure from the cylindrical symmetry is larger at low-x, namely in a regime where the Boer–Mulders function is expected to give a relevant contribution [57, 58]. To better visualize these oscillations,
we present in Fig. 2 ancillary, slice panels portraying the corresponding distributions at \(\kappa_x = 0 \) and for \(x \) ranging from \(10^{-3} \) down to \(10^{-3} \). We clearly observe that both our functions increase as \(x \) lowers. This is in line with the well-known pattern in \(x \) of collinear PDFs, from which we have extracted the small-\(x \) behavior via our fit procedure.

From an analytic perspective, in our model the \(f_2^p/h_1^{kg} \) ratio is asymptotically constant in the \(x \rightarrow 0^+ \) limit. This consistently matches the prediction genuinely, coming from the linear Balitsky–Fadin–Kuraev–Lipatov (BFKL) evolution \([107–110]\), that at small-\(x \) the “number” of unpolarized gluons equals the linearly-polarized one, up to higher-twist effects \([111–116]\). In this way, a first intersection point between our model gluon TMDs and the high-energy dynamics has been revealed.

3. Prospects

We reported progresses on accessing the core of the proton via TMD gluon distributions. The presented results are relevant to explore the multidimensional structure of the proton, where the intrinsic motion of partons plays a key role to describe observables sensitive to different combinations of parton and hadron spins. In the low-\(x \) domain, a key role is played by the connections between TMD and BFKL effects. The high-energy resummation allows us to shed light on the proton structure at small-\(x \) via single-forward emissions. In particular, it gives us direct access to the un-integrated gluon distribution (UGD) in the proton, whose evolution is regulated by the BFKL Green’s function. Pioneering analyses of the UGD were performed through the study of: deep-inelastic-scattering structure functions \([117, 118]\), light vector-meson helicity amplitudes and cross sections \([58, 119–132]\), forward Drell–Yan \([133–136]\) and single-forward quarkonium \([137–145]\) final states. Starting from the information on the gluon motion carried by the UGD, determinations of small-\(x \) improved collinear PDFs were obtained \([98, 146, 147]\). The connection between the unpolarized and linearly polarized gluon TMDs, \(f_2^p \) and \(h_1^{kg} \), and the UGD was investigated in Refs. \([57, 148–150]\). Future studies of the proton structure at new-generation colliding machines will benefit from the recently discovered property of natural stability of the high-energy resummation \([151]\) (see also Refs. \([152–214]\)). Finally, to get a complete 3D picture of the proton, the information about small-\(x \) gluon dynamics needs to be complemented by the valence-quark one at moderate- and large-\(x \). A key role along this direction will be played by new data collected via future fixed-target programs, such as the JLab CLAS12 \([215–222]\) and the LHC one \([223–227]\) with possible polarized targets \([228–230]\).

Acknowledgments

This work was supported by the INFN/NINPHA project. The author thanks Alessandro Bacchetta, Marco Radici and Pieter Taelens for collaboration, and the Università degli Studi di Pavia for the warm hospitality.

References

[1] M. Begel, et al., Precision QCD, Hadronic Structure & Forward QCD, Heavy Ions: Report of Energy Frontier Topical Groups 5, 6, 7 submitted to Snowmass 2021 arXiv:2209.14872.

[2] S. Dawson, et al., Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics, in: 2022 Snowmass Summer Study, 2022. arXiv:2209.07518.

[3] T. Bose, et al., Report of the Topical Group on Physics Beyond the Standard Model at Energy Frontier for Snowmass 2021, in: 2022 Snowmass Summer Study, 2022. arXiv:2209.13128.

[4] L. A. Anchordoqui, et al., The Forward Physics Facility: Sites, experiments, and physics potential, Phys. Rept. 968 (2022) 1–50. arXiv:2109.10985, doi:10.1016/j.physrep.2022.04.004.

[5] J. L. Feng, et al., The Forward Physics Facility at the High-Luminosity LHC, 2022. arXiv:2203.05896.

[6] M. Hentschinski, et al., White Paper on Forward Physics, BFKL, Saturation Physics and Diffraction, in: 2022 Snowmass Summer Study, 2022. arXiv:2203.08129.

[7] D. Acosta, E. Barberis, N. Hurley, W. Li, O. M. Colin, D. Wood, X. Zuo, The Potential of a TeV-Scale Muon-Ion Collider, in: 2022 Snowmass Summer Study, 2022. arXiv:2203.06538.

[8] I. Adachi, et al., The International Linear Collider: Report to Snowmass 2021 arXiv:2203.07222.

[9] O. Brunner, et al., The CLIC project arXiv:2203.09186.

[10] A. Arbuzov, et al., On the physics potential to study the gluon content of proton and deuteron at NICA SPD, Prog. Part. Nucl. Phys. 119 (2021) 103858. arXiv:2011.15065, doi:10.1016/j.ppnp.2021.103858.

[11] V. M. Abazov, et al., Conceptual design of the Spin Physics Detector arXiv:2102.00442.

[12] G. Bernardi, et al., The Future Circular Collider: a Summary for the US 2021 Snowmass Process arXiv:2203.06528.

[13] S. Amoroso, et al., Snowmass 2021 whitepaper: Proton structure at the precision frontier, in: 2022 Snowmass Summer Study, 2022. arXiv:2203.13923.

[14] F. G. Celiberto, M. Fucilla, D. Yu. Ivanov, M. M. A. Mohammed, A. Papa, High-energy QCD at colliders: semi-hard reactions and un-integrated gluon densities: Letter of Interest for SnowMass 2021, in: 2022 Snowmass Summer Study, 2021.

[15] S. Klein, et al., New opportunities at the proton energy frontier arXiv:2009.03838.

[16] A. Canepa, M. D’Onofrio, Future Accelerator Projects: New Physics at the Energy Frontier (FERMILAB-PUB-22-248-PPD).

[17] K. M. Black, et al., Muon Collider Forum Report arXiv:2209.01318.

[18] J. de Blas, et al., The physics case of a 3 TeV muon collider stage arXiv:2203.07261.

[19] C. Aimé, et al., Muon Collider Physics Summary arXiv:2203.07256.

[20] N. Bartosik, et al., Simulated Detector Performance at the Muon Collider, in: 2022 Snowmass Summer Study, 2022. arXiv:2203.07964.

[21] E. Chapon, et al., Prospects for quarkonium studies at the high-luminosity LHC, Prog. Part. Nucl. Phys. 122 (2022) 103906. arXiv:2012.14161, doi:10.1016/j.ppnp.2021.103906.

[22] A. Accardi, et al., Electron Ion Collider: The Next QCD Frontier: Understanding the glue that binds us all, Eur. Phys. J. A 52 (9) (2016) 268. arXiv:1212.1701, doi:10.1140/epja/i2016-16268-9.

[23] R. Abdul Khalek, et al., Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report, Nucl. Phys. A 1026 (2022) 122447. arXiv:2103.05419, doi:10.1016/j.nuclphysa.2022.122447.

[24] R. Abdul Khalek, et al., Snowmass 2021 White Paper: Electron Ion Collider for High Energy Physics, in: 2022 Snowmass Summer Study, 2022. arXiv:2203.13199.

[25] J. Ashman, et al., A Measurement of the Spin Asymmetry and Determination of the Structure Function g(1) in Deep Inelastic Muon-Proton Scattering, Phys. Lett. B 206 (1988) 364. doi:10.1016/0370-2693(88)91523-7.

[26] X.-d. Ji, Viewing the proton through ‘color’ filters, Phys. Rev. Lett. 91 (2003) 062001. arXiv:hep-ph/0304037, doi:10.1103/PhysRevLett.
A journey into the proton structure: Progresses and challenges

C. Lorce, B. Pasquini, Quark Wigner Distributions and Orbital Angular Momentum, Phys. Rev. D 84 (2011) 014015.

C. Lorce, B. Pasquini, Structure analysis of the generalized correlation functions for a spin-1/2 hadron, JHEP 08 (2008) 038.

C. Lorce, B. Pasquini, M. Vanderhaeghen, Unified framework for T-odd transverse-momentum dependent parton distributions within a 3Q light-cone picture of the nucleon, JHEP 05 (2011) 041.

C. Lorce, B. Pasquini, Quark Wigner Distributions and Orbital Angular Momentum, Phys. Rev. D 84 (2011) 014015.

V. Bertone, Matching generalised transverse-momentum-dependent distributions onto generalised parton distributions at one loop, Eur. Phys. J. C 82 (10) (2022) 941.

M. G. Echevarria, P. A. Gutierrez Garcia, I. Scimemi, GTMDs and transversesinglespinasymmetries,Phys.Rev.D66(2002)114005.

M. Burkard, B. Pasquini, Modelling the nucleon structure, Eur. Phys. J. A52 (6) (2016) 161.

M. G. Echevarria, P. A. Gutierrez Garcia, I. Scimemi, GTMDs and transversesinglespinasymmetries,Phys.Rev.D66(2002)114005.

M. Burkard, Chromodynamic lensing and transverse single spin asymmetries, Nucl. Phys. A 735 (2004) 185–199.

S. Meissner, A. Metz, K. Goeke, Relations between generalized and transverse momentum dependent parton distributions, Phys. Rev. D 76 (2007) 034002.

M. Burkard, D. Hwang, Sivers asymmetry and generalized parton distributions in impact parameter space, Phys. Rev. D 69 (2004) 074032.

A. Bacchetta, M. Radici, Constraining quark angular momentum through semi-inclusive measurements, Phys. Rev. Lett. 107 (2011) 212001.

B. Pasquini, B. Pohl, Nucleon spin densities in a light-front constituent quark model, Phys. Lett. B 653 (2007) 23–28.

P. J. Mulders, J. Rodrigues, Transverse momentum dependence in gluon distribution and fragmentation functions, Phys. Rev. D63 (2001) 094021.
A journey into the proton structure: Progresses and challenges

doi: 10.1103/PhysRevD.88.014002.

[66] J. C. Collins, D. E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B193 (1981) 381. [Erratum: Nucl. Phys.B213,545(1983)].

doi: 10.1016/0550-3213(81)90339-4.

[67] J. Collins, Foundations of perturbative QCD, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32 (2011) 1–624.

[68] A. Bacchetta, M. G. Echevarria, P. J. G. Mulders, M. Radici, A. Signori, Effects of TMD evolution and partonic flavor on e^+e^- annihilation into hadrons, JHEP 11 (2015) 076.

arXiv:1508.04042, doi: 10.1007/JHEP11(2015)076.

[69] Z.-B. Kang, D. Y. Shao, F. Zhao, QCD resummation on single hadron transverse momentum distribution with the thrust axis, JHEP 12 (2020) 127.

arXiv:2007.14425, doi: 10.1007/JHEP12(2020)127.

[70] Y. Makris, F. Ringer, W. I. Waalewijn, Joint thrust and TMD resummation in electron-positron and electron-proton collisions, JHEP 02 (2021) 070.

arXiv:2009.11871, doi: 10.1007/JHEP02(2021)070.

[71] M. Boglione, A. Simonelli, Kinematic regions in the $b\to c\bar{c}$ factorized cross section in a 2-jet topology with thrust, JHEP 02.

arXiv:2109.11497, doi: 10.1007/JHEP02(2022)013.

[72] D. Boer, W. J. den Dunnen, C. Pisano, M. Schlegel, Determining the Higgs spin and parity in the diphoton decay channel, Phys. Rev. Lett. 111 (3) (2013) 032002.

arXiv:1304.2554, doi: 10.1103/PhysRevLett.111.032002.

[73] D. Gutierrez-Reyes, S. Leal-Gomez, I. Scimemi, A. Vladimirov, Linearly polarized gluons at next-to-next-to-leading order and the Higgs transverse momentum distribution, JHEP 11 (2019) 121.

arXiv:1907.09687, doi: 10.1007/JHEP11(2019)121.

[74] M. G. Echevarria, F. Scarpa, M. Schlegel, Studies of gluon TMDs and their evolution using quarkonium-pair production at the LHC, Eur. Phys. J. A45.

arXiv:1908.00446, doi: 10.1103/PhysRevD.88.014002.

[75] C.-H. Chang, Hadronic Production of J/ψ Associated With a Gluon, Nucl. Phys. B 172 (1980) 425–434.

doi: 10.1016/0550-3213(80)90175-3.

[76] M. B. Einhorn, S. D. Ellis, Hadronic Production of the New Resonances: Probing Gluon Distributions, Phys. Rev. D 12 (1975) 2007.

doi: 10.1103/PhysRevD.12.2007.

[77] C.-H. Chang, Hadronic Production of J/ψ and Υ by Gluons, Phys. Rev. D 23 (1981) 1521–1530.

doi: 10.1103/PhysRevD.23.1521.

[78] R. Baier, R. Ruckl, Hadronic Production of J/ψ and Υ from Inelastic Photoproduction of J/ψ and Upsilon by Gluons, Phys. Rev. D 23 (1981) 1521–1530.

doi: 10.1103/PhysRevD.23.1521.

[79] R. D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli, Parametrization of deep inelastic structure functions, JHEP 05 (2002) 062.

arXiv:hep-ph/0204232, doi: 10.1088/1126-6708/2002/05/062.

[80] R. D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli, Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data, Eur. Phys. J. C 78 (4) (2018) 321.

arXiv:1710.05935, doi: 10.1103/PhysRevD.94.094022.

[81] R. D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, Resonant PDF’s with small-x resummation: evidence for BFKL dynamics in HERA data, Eur. Phys. J. C 78 (4) (2018) 321.

arXiv:1710.05935, doi: 10.1103/PhysRevD.94.094022.

[82] R. D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, Resonant PDF’s with small-x resummation: evidence for BFKL dynamics in HERA data, Eur. Phys. J. C 78 (4) (2018) 321.

arXiv:1710.05935, doi: 10.1103/PhysRevD.94.094022.
A journey into the proton structure: Progresses and challenges

[106] A. Bacchetta, F. G. Celiberto, M. Radici, A. Signori, Phenomenology of gluon TMDs from γp production, Zenodo, in press arXiv: 2208.06252.

[107] V. S. Fadin, E. Kuraev, L. Lipatov, On the Pomeranchuk Singularity in Asymptotically Free Theories, Phys. Lett. B 60 (1975) 50–52. doi:10.1016/0370-2693(75)90524-9.

[108] E. A. Kuraev, L. N. Lipatov, V. S. Fadin, Multi - Reggeon Processes in the Yang-Mills Theory, Sov. Phys. JETP 44 (1976) 443–450.

[109] E. A. Kuraev, L. N. Lipatov, V. S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199–204.

[110] I. Balitsky, L. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822–829.

[111] A. Metz, J. Zhou, Distribution of linearly polarized gluons inside a large nucleus, Phys. Rev. D 84 (2011) 051503. doi:10.1103/PhysRevD.84.051503.

[112] F. Dominguez, J.-W. Qiu, B.-W. Xiao, F. Yuan, On the linearly polarized gluon distributions in the color dipole model, Phys. Rev. D 85 (2012) 045003. doi:10.1103/PhysRevD.85.045003.

[113] C. Marquet, E. Petreska, C. Roiesnel, P. Taels, Quantum Chromodynamics at small Bjorken-x, Ph.D. thesis, Antwerp U. (2017).

[114] C. Marquet, C. Roiesnel, P. Taels, Transverse-momentum-factorization of exclusive processes beyond leading twist: ρT, ρL meson electroproduction, JHEP 11 (2013) 062. doi:10.1007/JHEP11(2013)062.

[115] A. D. Bolognino, F. G. Celiberto, D. Yu. Ivanov, A. Papa, W. Schäfer, A. Szczurek, Hadron structure at small-x via unintegrated gluon densities arXiv: 2202.08513.

[116] A. D. Bolognino, F. G. Celiberto, D. Yu. Ivanov, A. Papa, W. Schäfer, A. Szczurek, Exclusive emissions of polarized ρ mesons at the EIC and the proton content at low x, Zenodo, in press arXiv: 2207.05726.

[117] A. Csek, W. Schäfer, A. Szczurek, Exclusive production of ρ meson in gamma-proton collisions: df/dt and the role of helicity flip process arXiv:2202.06576.

[118] A. Luszczak, M. Luszczak, W. Schäfer, Unintegrated gluon distributions from the color dipole cross section in the BKG saturation model, Phys. Lett. B 835 (2022) 137582. doi:10.1016/j.physletb.2022.137582.

[119] L. Motyka, M. Sadzikowski, T. Stebel, Twist expansion of Drell-Yan structure functions in color dipole approach, JHEP 05 (2015) 087. doi:10.1007/JHEP05(2015)087.

[120] D. Brzemiński, L. Motyka, M. Sadzikowski, T. Stebel, Twist decomposition of Drell-Yan structure functions: phenomenological implications, JHEP 01 (2017) 005. doi:10.1007/JHEP01(2017)005.

[121] L. Motyka, M. Sadzikowski, T. Stebel, Lamb-Tung relation breaking in Z0 hadroproduction as a probe of parton transverse momentum, Phys. Rev. D95 (11) (2017) 114025. doi:10.1103/PhysRevD.95.114025.

[122] E. G. Celiberto, D. Gordo Gómez, A. Sabio Vera, Forward Drell-Yan production at the LHC in the BFKL formalism with collinear corrections, Phys. Lett. B786 (2018) 201–206. doi:10.1016/j.physletb.2018.09.045.

[123] A. Arroyo García, M. Hentschinski, K. Kutak, QCD evolution based evidence for the onset of gluon saturation in exclusive photoproduction of vector mesons, Phys. Lett. B 795 (2019) 569–575. doi:10.1016/j.physletb.2019.05.061.

[124] M. Hentschinski, E. Padró Molina, Exclusive J/ψ and Ψ(2S) photo-production as a probe of QCD low x evolution equations, Phys. Rev. D 103 (7) (2021) 074008. doi:10.1103/PhysRevD.103.074008.

[125] V. P. Gonçaless, F. S. Navarra, D. Spiering, Exclusive ρ and J/ψ photoproduction in ultraperipheral pA collisions: Predictions of the gluon saturation models for the momentum transfer distributions, Phys. Lett. B 791 (2019) 299–304. doi:10.1016/j.physletb.2019.03.087.

[126] J. Ceplia, J. G. Contreras, M. Krelina, Coherent and incoherent J/ψ photonic production in an energy-dependent hot-spot model, Phys. Rev. C 97 (2) (2018) 024901. doi:10.1103/PhysRevC.97.024901.

[127] V. Guzey, E. Kryshen, M. Strikman, M. Zhalov, Nuclear suppression from photon suppression in the Large Hadron Collider, Phys. Lett. B 816 (2021) 136202. doi:10.1016/j.physletb.2021.136202.

[128] L. Jenkovszky, V. Libov, M. V. T. Machado, The reggeometric pomeron and exclusive production of J/ψ(2S) in ultraperipheral collisions at the LHC, Phys. Lett. B 824 (2022) 136836. doi:10.1016/j.physletb.2021.136836.

[129] C. Flore, J.-P. Lansberg, H.-S. Shao, Y. Yedeklina, Large-pT inclusive photoproduction of J/ψ in electron-proton collisions at HERA and the EIC, Phys. Lett. B 811 (2020) 135926. doi:10.1016/j.physletb.2020.135926.

[130] A. Colpani Serri, Y. Feng, C. Flore, J.-P. Lansberg, M. A. Ozcelik, H.-S. Shao, Y. Yedeklina, Revisiting NLO QCD corrections to total
inclusive J/ψ and Y photoproduction cross sections in lepton-proton collisions, Phys. Lett. B 835 (2022) 137556. arXiv:2112.05086, doi: 10.1016/j.physletb.2022.137556.

[164] M. Bonvini, F. Giuli, A new simple PDF parametrization: improved description of the HERA data, Eur. Phys. J. Plus 134 (10) (2019) 531. arXiv:1902.11125, doi: 10.1148/epjplplus.1301-1287-x.

[165] H. Abdolmaleki, et al., Impact of low-x resummation on QCD analysis of HERA data, Eur. Phys. J. C 78 (8) (2018) 621. arXiv:1802.00664, doi: 10.1140/epjc/s10052-18-6099-8.

[166] F. Dominguez, C. Marquet, B.-W. Xiao, F. Yuan, Universality of Unintegrated Gluon Distributions at small x, Phys. Rev. D 83 (2011) 105005. arXiv:1101.0715, doi: 10.1103/PhysRevD.83.105005.

[167] F. G. Celiberto, D. Yu. Ivanov, B. Murdaca, A. Papa, Mueller–Navelet small-x Sudakov resummation from the BFKL evolution, Phys. Rev. D 104 (5) (2021) 054039. arXiv:2007.13915, doi: 10.1103/PhysRevD.104.054039.

[168] F. G. Celiberto, F. Caporale, D. Yu. Ivanov, B. Murdaca, A. Papa, Mueller–Navelet jets in next-to-leading order BFKL, Phys. Rev. D 105 (5) (2022) 054014. arXiv:2107.04609, doi: 10.1103/PhysRevD.105.054014.

[169] F. G. Celiberto, D. Yu. Ivanov, B. Murdaca, A. Papa, Inclusive charged light di-hadron production at 7 and 13 TeV LHC in the full NLA BFKL approach, in: 25th Low-x Meeting, 2017. arXiv:1709.01128.

[170] F. G. Celiberto, D. Yu. Ivanov, B. Murdaca, A. Papa, Inclusive dihadron production at the LHC in NLA BFKL, in: 17th conference on Elastic and Diffractive Scattering, 2017. arXiv:1709.04758.

[171] F. Caporale, G. Chachamis, B. Murdaca, A. Sabio Vera, Balitsky-Fadin-Kuraev-Lipatov Predictions for Inclusive Four-Jet Production at the LHC, Phys. Rev. D 94 (5) (2016) 054014. doi:10.1103/PhysRevD.94.054014.

[172] F. Caporale, G. Chachamis, B. Murdaca, A. Sabio Vera, Inclusive dijet hadroproduction with a rapidity veto constraint, Nucl. Phys. B 935 (2018) 412–434. arXiv:1806.08360, doi: 10.1016/j.nuclphysb.2018.09.002.

[173] F. G. Celiberto, A. Papa, Mueller-Navelet jets at the LHC: Hunting data with azimuthal distributions, Phys. Rev. D 106 (11) (2022) 114004. arXiv:2207.05015, doi: 10.1103/PhysRevD.106.114004.

[174] F. G. Celiberto, D. Yu. Ivanov, B. Murdaca, A. Papa, High energy resummation in dihadron production at the LHC, Phys. Rev. D 94 (3) (2016) 034013. arXiv:1604.08813, doi: 10.1103/PhysRevD.94.034013.

[175] F. G. Celiberto, D. Yu. Ivanov, B. Murdaca, A. Papa, Dihadron Production at LHC: BFKL Predictions for Cross Sections and Azimuthal Correlations, AIP Conf. Proc. 1819 (1) (2017) 060005. arXiv:1611.04611, doi: 10.1063/1.4977161.

[176] F. G. Celiberto, D. Yu. Ivanov, B. Murdaca, A. Papa, Dihadron production at the LHC: full next-to-leading BFKL calculation, Eur. Phys. J. C 77 (6) (2017) 382. arXiv:1701.05077, doi: 10.1140/epjc/s10052-17-4949-6.

[177] F. G. Celiberto, D. Yu. Ivanov, B. Murdaca, A. Papa, Inclusive charged light di-hadron production at 7 and 13 TeV LHC in the full NLA BFKL approach, in: 25th Low-x Meeting, 2017. arXiv:1709.01128.

[178] F. G. Celiberto, D. Yu. Ivanov, B. Murdaca, A. Papa, Inclusive dihadron production at the LHC in NLA BFKL, in: 17th conference on Elastic and Diffractive Scattering, 2017. arXiv:1709.04758.
A journey into the proton structure: Progresses and challenges

[202] H. Avakian, B. Parsamyan, A. Prokudin, Spin orbit correlations and the structure of the nucleon, Riv. Nuovo Cim. 42 (1) (2019) 1–48. arXiv:1909.13664, doi:10.1007/jncr2019-91055-3.

[203] S. J. Brodsky, et al., Strong QCD from Hadron Structure Experiments: Newport News, VA, USA, November 4–8, 2019, Int. J. Mod. Phys. E 29 (08) (2020) 2030006. arXiv:2006.06802, doi:10.1142/S0218301320300064.

[204] T. B. Hayward, et al., Observation of Beam Spin Asymmetries in the Process $e p \rightarrow e' \pi^+ \pi^- X$ with CLAS12, Phys. Rev. Lett. 126 (2021) 152501. arXiv:2101.04842, doi:10.1103/PhysRevLett.126.152501.

[205] S. J. Brodsky, F. Fleuret, C. Hadjidakis, J. P. Lansberg, Physics Opportunities of a Fixed-Target Experiment using the LHC Beams, Phys. Rept. 522 (2013) 239–255. arXiv:1202.6585, doi:10.1016/j.physrep.2012.10.001.

[206] J. P. Lansberg, S. J. Brodsky, F. Fleuret, C. Hadjidakis, Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams, Few Body Syst. 53 (2012) 11–25. arXiv:1204.5793, doi:10.1007/s00601-012-0445-8.

[207] J.-P. Lansberg, H.-S. Shao, Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC), Nucl. Phys. B 900 (2015) 273–294. arXiv:1504.06531, doi:10.1016/j.nuclphysb.2015.09.005.

[208] D. Kikola, M. G. Echevarria, C. Hadjidakis, J.-P. Lansberg, C. Lorcé, L. Massacrier, C. M. Quintans, A. Signori, B. Trzcinski, Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC), Few Body Syst. 58 (4) (2017) 139. arXiv:1702.01546, doi:10.1007/s00601-017-1299-x.

[209] C. Hadjidakis, et al., A fixed-target programme at the LHC: Physics case and projected performances for heavy-ion, hadron, spin and astroparticle studies, Phys. Rept. 911 (2021) 1–83. arXiv:1807.00603, doi:10.1016/j.physrep.2021.01.002.

[210] C. A. Aidala, et al., The LHCSpin Project, PoS DIS2019 (2019) 233. arXiv:1901.08002, doi:10.22323/1.352.0233.

[211] M. Santimaria, V. Carassiti, G. Ciullo, P. Di Nezza, P. Lenisa, S. Mariani, L. L. Pappalardo, E. Steffens, The LHCspin projectarXiv:2111.04515.

[212] B. Passalacqua, P. Di Nezza, P. Lenisa, L. L. Pappalardo, The LHCspin project: A polarized fixed target for LHC, Nuovo Cim. C 45 (5) (2022) 121. doi:10.1393/ncic/12822-22121-9.