G2 chromosomal radiosensitivity in Danish survivors of childhood and adolescent cancer and their offspring

GB Curwen*1,2, JF Winther3, EJ Tawn1, V Smart1, CA Whitehouse1, GS Rees1, JH Olsen3, P Guldberg4, C Rechnitzer5, H Schrøder6, PE Bryant2, X Sheng7, HS Lee7, R Chakraborty7 and JD Boice Jr8,9

1Westlakes Research Institute, Moor Row, Cumbria CA24 3JY, UK; 2University of St Andrews, St Andrews, Fife KY16 9AJ, UK; 3Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen DK-2100, Denmark; 4Institute of Cancer Biology, Danish Cancer Society, Copenhagen DK-2100, Denmark; 5The Late Effect Clinic, Juliane Marie Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen DK-2100, Denmark; 6Department of Pediatrics, University Hospital of Aarhus, Aarhus DK-8200, Denmark; 7Center for Genome Information, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; 8International Epidemiology Institute, Rockville, MD 20850, USA; 9School of Medicine, Vanderbilt University, Nashville, TN 37232, USA

In order to investigate the relationship between chromosomal radiosensitivity and early-onset cancer, the G2 chromosomal radiosensitivity assay was undertaken on a group of 23 Danish survivors of childhood and adolescent cancer, a control group comprising their partners and a group of 38 of their offspring. In addition, the previously reported in-house control group from Westlakes Research Institute (WRI) was extended to 27 individuals. When using the 90th percentile cutoff for the WRI control group, the proportion of individuals with elevated radiosensitivity was 11, 35, 52 and 53% for the WRI control, partner control, cancer survivor and the offspring groups, respectively, with significant differences between the WRI control group and the cancer survivor group (P = 0.002) and the offspring group (P < 0.001). However, while the comparisons with the WRI control group support an association of chromosomal radiosensitivity with cancer predisposition, when the partner control group was used to define the radiosensitivity cutoff point, no significant differences in radiosensitivity profiles were found between the partner control group and either the cancer survivor group or the offspring group. The failure to distinguish between the G2 aberration profiles of the apparently normal group of partners and the cancer survivor group suggests that any association with cancer should be viewed with caution, but also raises questions as to the suitability of the partners of cancer survivors to act as an appropriate control group. Heritability of the radiosensitive phenotype was examined by segregation analysis of the Danish families and suggested that 67.3% of the phenotypic variance of G2 chromosomal radiosensitivity is attributable to a putative major gene locus with dominant effect.

British Journal of Cancer (2005) 93, 1038–1045. doi:10.1038/sj.bjc.6602807 www.bjcancer.com
Published online 11 October 2005
© 2005 Cancer Research UK

Keywords: chromosomal radiosensitivity; childhood and adolescent cancer; inherited predisposition

The association between chromosomal radiosensitivity and increased susceptibility to cancer has been demonstrated for a number of cancer-prone heritable conditions, most notably ataxia telangiectasia (Parshad and Sanford, 2001). The cell-cycle-based G2 radiosensitivity assay gives the best discrimination and involves irradiating cells in vitro during the G2 stage of the cell cycle and observing unreppaired damage, in the form of chromatid breaks and gaps, at the subsequent metaphase. The assay was first developed using fibroblasts (Sanford et al, 1989) and subsequently applied to lymphocytes (Scott et al, 1996). In addition to the rare well-defined cancer susceptibility syndromes, enhanced G2 chromosomal radiosensitivity has been demonstrated in a high proportion of unselected breast cancer patients (Scott et al, 1994, 1999; Parshad et al, 1996; Patel et al, 1997; Riches et al, 2001), a group of breast cancer patients with a known family history of the disease (Baeyens et al, 2002) and a heterogeneous group of adult cancer patients (Terzoudi et al, 2000). This led to the suggestion that G2 radiosensitivity could be a marker of cancer predisposing genes of low penetrance (Scott et al, 1999). Further support for this hypothesis came from a study of first-degree relatives of those with breast cancer, which demonstrated Mendelian heritability of the chromosomal radiosensitivity phenotype (Roberts et al, 1999; Scott, 2000). In addition, the proportion of adults showing increased G2 chromosomal radiosensitivity has been shown to be higher among those with cancers having an inherited component, such as colon cancer, compared to those with cancers with a predominantly environmental aetiology, such as cervical cancer (Baria et al, 2001). In a study of head and neck cancer patients, evidence of increased G2 chromosomal radiosensitivity was observed in young patients, thus indicating a genetic contribution to risk for early-onset cases, whereas for older patients, the proportion exhibiting enhanced sensitivity was the same as that for a normal healthy control group (Papworth et al, 2001). Using a slightly different technique, chromosomal radiosensitivity has also
been reported for patients with glioma and it was suggested that the apparent broad association of mutagen sensitivity with diverse cancers indicates that multiple genes in various DNA repair pathways may be contributing to the integrated phenotype (Bondy et al, 2001). Baria et al (2002) tested the relationship between chromosomal radiosensitivity and early-onset cancer in a pilot study of patients diagnosed before the age of 20 years and found that 44% of the young cancer patients exhibited increased chromosomal radiosensitivity compared to 15 and 10% of young and adult normals, respectively. This led to the suggestion that a substantial proportion of the patients studied may have a genetic predisposition to cancer mediated through low penetrance genes involved with responding to damage to the genome. However, it was recognised that support for this hypothesis would require the demonstration of heritability of chromosomal radiosensitivity in blood relatives of young cancer patients.

In order to further investigate the heritability of chromosomal radiosensitivity and its relationship with early-onset cancer, we have performed a pilot study using the G2 assay to examine the radiosensitivity profile of a group of survivors of childhood and adolescent cancer and their offspring, with the partners of the cancer survivors providing a control group for comparison. In addition, our previously published in-house control group from Westlakes Research Institute (WRI) in Cumbria, UK (Smart et al, 2003), was extended by the addition of samples from new individuals.

MATERIALS AND METHODS

Study group

Blood samples were obtained from 28 Danish survivors of childhood and adolescent cancer (labelled as T01–T28) who had been treated with radiotherapy, their partners and 44 offspring. This work forms part of a pilot study for the investigation of a range of genetic endpoints associated with germ cell mutagenesis and cancer susceptibility (Boice et al, 2003). These former patients were selected from the Danish survivor cohort identified from the files of the nation-wide population-based Danish Cancer Registry. The Danish survivor cohort consists of 4676 cancer survivors diagnosed with cancer under 20 years of age between 1943 and 1996 who lived to be at least 15 years of age. Patients included in the cohort were those alive or born after 1 April 1968 when the national Central Population Register (CPR) was established with personal identification numbers for all citizens, thus permitting linkage among registers. Through linkage to the CPR containing updated information on vital status, migration and first-degree relatives, all patients and liveborn children of eligible survivors were identified. No attempt was made to identify an offspring control group, nor to distinguish between the sexes, since previous studies have found no correlation between induced aberration yields and donor age, or any influence of gender (Baria et al, 2002). Approval for the study was obtained from the Danish Scientific Ethical Committee and the Danish Data Protection Agency.

Eligible survivors were contacted by letter to determine their willingness to participate in the study. The survivors and their families were invited to the State Hospital, Rigshospitalet, Copenhagen (for those living in the eastern part of Denmark) or the Skejby Hospital, Aarhus (for those living in the western part of Denmark) to complete a short questionnaire and to have blood drawn. Each of the 28 families who agreed to participate gave informed consent. Detailed information on cancer type was abstracted from medical records. To ensure anonymity, each family was assigned a study number and this was used for all blood samples and questionnaires. The blood samples were further coded to avoid identification of cancer survivor, partner and offspring within each family group. Blood samples were drawn from participating families on Monday and the samples transported directly from Copenhagen to WRI by courier, arriving early Tuesday morning. Samples were hand inspected at customs and, to ensure they had not been exposed to X-rays, a piece of dental film was included with each batch. A total of 100 blood samples were collected and sent to the UK in 10 shipments over 13 months between March 2002 and April 2003. Each shipment also contained a blood sample from one healthy adult Danish volunteer to act as the control for the transportation system. This volunteer remained the same throughout the study. In addition, repeat blood samples from one healthy adult WRI volunteer were obtained in parallel for seven of the shipments to act as the internal assay control. Some of the samples received at ship eight failed to culture successfully and this resulted in three families (T16–T18) and the associated transport and internal assay controls being excluded from the study. A further family (T11) was excluded since offspring samples were not available and another (T14) because the final diagnosis of the survivor was not cancer. Thus, only 23 out of the 28 Danish cancer survivor families proved suitable for analysis, that is, a total of 84 samples, together with the nine samples from the transport control and the six samples from the internal assay control.

Minisatellite analysis on four stable loci was undertaken to confirm biological paternity and maternity for all the offspring samples collected.

In addition to the cancer survivor families, one sample from each of eight additional healthy control volunteers was taken at WRI to increase the previously reported WRI control group of 19 individuals (Smart et al, 2003) to 27 individuals, a number more comparable with that of the cancer survivor group.

The G2 assay

The G2 assay was performed according to the method previously described by Smart et al (2003), which was based on modified versions of the work performed by Sanford et al (1989) and Scott et al (1999). Peripheral blood was drawn into lithium heparin vacutainers and cultures (2 ml blood) were set up in prewarmed (37°C) and pregassed (5% CO2/95% air) RPMI medium supplemented with 15% foetal calf serum, 1% L-glutamine and 1% phytohaemagglutinin (M-form) to a total volume of 20 ml. Each culture was set up in triplicate, one flask for the determination of the spontaneous aberration frequency and two flasks to be irradiated for the determination of the induced aberration frequency. A single foetal calf serum batch was used for the entire period of the study.

Flasks were placed upright in a humidified, CO2-gassed incubator. After 48 h, 15 ml of medium was carefully removed and replaced with 15 ml of fresh pregassed, prewarmed medium. At 72 h, the cells were transported in a portable incubator at 37°C and irradiated (or sham irradiated) with 0.5 Gy, 300 kV X-rays. Following a 30 min recovery time, 0.2 ml colcemid (10 μg ml−1) was added, and at 90 min after irradiation, the contents of the culture flasks were transferred to centrifuge tubes and plunged into ice chippings. Subsequent centrifugation, hypotonic treatment (0.075% KCl) and fixation (methanol: glacial acetic acid, 3:1) were carried out at 4°C. Fixed cells were stored at −20°C overnight, or longer, prior to slide-making.

Metaphase slides were made according to standard procedures and stained with Giemsa. Slides from the family samples together with those from the transport and internal assay control samples were further coded prior to cytogenetic analysis. The eight additional WRI control samples were analysed in conjunction with another ongoing study according to the same criteria. For each irradiated and unirradiated sample, 100 well-spread metaphases were analysed. Chromatid-type aberrations were scored according to previously outlined criteria (Smart et al, 2003), with breaks being defined as misaligned discontinuities and gaps as single aligned discontinuities wider than the width of a chromatid. For each irradiated sample, the total number of chromatid gaps
and breaks was determined and the spontaneous aberration yield subtracted to give the induced G2 aberration yield. Two scorers were used to eliminate scorer bias, with each scorer analysing 50 metaphases per sample.

Statistical methods

The distributions of aberrations among metaphase cells were analysed for approximation to the Poisson distribution and standard errors were calculated taking into account overdispersion as described previously (Smart et al., 2003). For the WRI control group, repeat sampling had been undertaken on nine of the previously reported 19 individuals (Smart et al., 2003), and for the calculation of the group mean, individual means were used together with single sample results of the remaining 10 and additional eight new samples. The standard error for this group was calculated adjusting for overdispersion plus the additional intridual variation. Aberration frequencies were tested for heterogeneity using the X^2 test. The nonparametric Mann–Whitney U-test was used to compare median induced aberration frequencies between controls and the other donor groups. The 90th percentile values for induced aberrations per 100 cells were calculated for the WRI control group and the partner control group and used as the cutoff points for determining the proportions of radiosensitive individuals in the other groups. Using the WRI control group value, Fisher’s exact tests were used to compare the proportion of radiosensitive individuals in the WRI control group with each of the three family groups. Similarly, using the 90th percentile for the partner group, comparisons were made with the cancer survivor group and the offspring group.

The segregation analysis was performed by using the Statistical Analysis for Genetic Epidemiology software (SAGE, 2004). This programme uses a regressive model, in which distribution of the residuals from the genotype means follow multivariate normality (after Box–Cox transformation). In constructing pedigree likelihood, the parent–offspring relationship is explained in the transmission parameter (τ_g), which is the probability that a parent of genotype g transmits allele A to his/her offspring. We constructed different disease transmission models by constraining τ_g, general model ($0 \leq \tau_{AA}, \tau_{AB}, \tau_{BB} \leq 1$), Mendelian model ($0 \leq \tau_{AA} = 1$, $\tau_{AB} = 0.5$, $\tau_{BB} = 0$) and sporadic model ($\tau_{AA} = \tau_{AB} = \tau_{BB}$). The Mendelian model was accepted when (1) the general model did not show a significantly better fit to the data than the Mendelian model and (2) the general model fitted significantly better than the sporadic model. The Akaike information criterion (AIC) (Akaike, 1974) was used to compare the models. In addition to the sex covariate (0 for male, 1 for female), residual correlations from the family members were also included in the model such that residual polygenic effects can be tested ($0 \leq \rho_{pa}, \rho_{pb} \leq 1$, where ρ_{pa} is correlation between parent–offspring pairs and ρ_{pb} is correlation between siblings). For the most parsimonious model, the contribution of the genetic factor to the total phenotypic variance was computed from the ratio of genetic variance (i.e., variability of genotypic means across the putative genotypes) to the total phenotypic variance (an indicator of the heritability of radiosensitivity, attributed to the putative genetic factor inferred by the segregation analysis).

RESULTS

The radiation-induced G2 aberration frequencies for the transport and internal assay controls are shown in Table 1. Analysis of the transport samples indicated a significant intraindividual variation in induced aberration yields ($\chi^2 = 24.06, P = 0.002$). The Danish volunteer who provided these samples became pregnant during the course of the study and was pregnant at sample shipments 6–10. Analysis of the samples provided pre-pregnancy (shipments 1–5) revealed no significant intraindividual variation ($\chi^2 = 6.70, P = 0.153$) and a mean induced aberration frequency of 81.00 ± 3.17 per 100 cells, while for those provided during pregnancy, there was a statistically significant difference ($\chi^2 = 14.39, P = 0.002$) and a mean induced aberration frequency of 95.50 ± 6.71 per 100 cells. No significant difference was found between the induced aberration frequencies for the samples provided by the internal assay control ($\chi^2 = 5.91, P = 0.315$), thus indicating that there was no intrinsic assay effect.

Details of the cancer survivors together with individual radiation-induced G2 aberration frequencies for all family members are given in Table 2. Group information on the donor characteristics and the induced aberration frequencies for the WRI controls, partner controls, cancer survivors and the offspring are provided in Table 3. Standardisation of the G2 assay had previously been established using 57 blood samples from 19 healthy WRI adult volunteers (Smart et al., 2003). The addition of eight samples from new recruits to this group did not significantly affect previous findings. Intraindividual variation was not significant for seven out of nine volunteers (with one of the two that were significant being border-line) and interindividual variation among all 27 individuals remained highly statistically significant ($\chi^2 = 60.05, P < 0.001$). Comparison of the median induced aberration frequencies revealed no significant difference between the WRI control and partner control groups, but significant differences were observed when the WRI control group was compared to the cancer survivor group ($P = 0.009$) or the offspring group ($P = 0.001$). Although the mean values for the partner control group and the cancer survivor group were similar, that for the offspring group was higher (Table 3), this being mainly driven by one high induced yield of 404 aberrations per 100 cells. Confirmation of this unusually high value was obtained by analysing the second irradiated blood sample and a check was made on other samples irradiated at the same time in order to rule out any error in the irradiation procedure.

Distributions of aberration frequencies for the WRI control and three family groups are illustrated in Figure 1. Using the 90th percentile cutoff point for the WRI control group of 122 aberrations per 100 cells for a radiosensitive/non-radiosensitive response, the proportion of individuals with elevated G2 radio-
sensitivity was 11, 35, 52 and 53% for the WRI control, partner control, cancer survivor and the offspring groups, respectively. While the difference between the WRI control group and the partner control group did not reach statistical significance ($P = 0.084$), significant differences were found between the WRI control group and the cancer survivor group ($P = 0.002$) and the WRI control group and the offspring group ($P < 0.001$). However, when the 90th percentile value of 160 aberrations per 100 cells for the partner control group was used as the cutoff point for increased radiosensitivity, 13, 4 and 18% of the partner control, cancer survivor and offspring groups, respectively, were classified radiosensitive, while no individual from the WRI control group

Table 2	Characteristics of childhood and adolescent cancer survivors, their partners and offspring, with G_2 induced aberration frequencies					
Gender	Primary cancer	Age at the time of treatment (years)	Age at the time of sampling (years)	Aberrations in 100 cells	Age at the time of sampling (years)	Aberrations in 100 cells
T01 F	Hodgkin’s disease	15	35	122	28	84
T02 F	Hodgkin’s disease	11	34	125	31	85
T03 M	Rhabdomyosarcoma	9	34	103	32	115
T04 F	Hodgkin’s disease	15	36	98	39	162
T05 M	Hodgkin’s disease	10	36	73	31	153
T06 F	Teratoma	1 mth	33	160	36	114
T07 F	Hodgkin’s disease	19	29	109	30	100
T08 M	Neuroblastoma	7 mths	32	134	33	105
T09 M	Wilms’ tumour	7	33	130	36	112
T10 F	Wilms’ tumour	4	25	80	26	86
T12 F	Hodgkin’s disease	14	25	128	31	115
T13 F	Lymphoepithelioma	20	30	124	36	100
T15 M	Pineocytoma	19	35	98	33	154
T19 M	Hodgkin’s disease	17	35	76	35	132
T20 F	Hodgkin’s disease	17	33	146	33	94
T21 F	Hodgkin’s disease	19	35	90	37	166
T22 M	Wilms’ tumour	1	31	130	36	88
T23 M	Wilms’ tumour	5	32	145	36	101
T24 F	Lymphoblastic lymphoma	14	36	154	37	141
T25 F	Neuroblastoma	1	36	129	37	189
T26 F	Hodgkin’s disease	19	37	120	43	131
T27 F	Wilms’ tumour	2	36	104	40	100
T28 F	Wilms’ tumour	2	34	121	35	79

F = female; M = male; mths = months. *Offspring in birth order. †Secondary cancers.

Table 3	Characteristics of WRI control, partner control, cancer survivor and offspring groups, with median and mean G_2 induced aberration frequencies				
Group	Number of individuals	Male/female	Median age in years (range)	Median aberration frequency per 100 cells (range)	Mean aberration frequency ± s.e. per 100 cells
WRI controls	27	11/16	30 (20–54)	95.43 (59–154)	100.39 ± 2.88
Partner controls	23	15/8	35 (26–43)	112.00 (79–189)	117.65 ± 1.00
Cancer survivors	23	8/15	34 (25–37)	122.00 (73–160)	117.35 ± 2.95
Offspring	38	22/16	4.5 (4 mths–14)	123.50 (73–404)	130.95 ± 2.30

WRI = Westlakes Research Institute; s.e. = standard error; mths = months.
displayed enhanced radiosensitivity. Using the partner control group to define the radiosensitivity cutoff point resulted in no significant differences in the proportion of sensitive individuals between the partner control group and either the cancer survivor group (P = 0.608) or the offspring group (P = 0.729).

Heritability of the radiosensitivity phenotype was examined by segregation analysis (Table 4). The offspring with the high value of 404 aberrations per 100 cells was not included in this analysis. Compared to the general transmission model, the Mendelian model was not rejected (X^2 = 1.74, P = 0.628). The sporadic model with equal transmission probability was rejected by the likelihood ratio test (X^2 = 11.6, P = 0.009). In addition, the Mendelian model showed a smaller AIC value than either the general or the sporadic model. Therefore, the Mendelian model was accepted over the other two models. We further compared the autosomal dominant model with the additive model. Based on the AIC criterion, the autosomal dominant model provided a better fit with a smaller AIC value (779.46). Neither gender covariate (P = 0.497) nor residual familial correlation (converged into zero) turned out to provide significant effects.

The most parsimonious model (last column of Table 4) predicted from this analysis suggests a major gene locus at which the dominant allele (labelled as A) confers a genotypic mean induced frequency of 143.53 aberrations per 100 cells (same for AA and AB genotypes), with the recessive homozygotes (RR) having a mean of 97.82 induced aberrations per 100 cells. With frequencies of 0.450 and 0.550, for the dominant and recessive phenotypes, respectively (shown in the top panel of Table 4), the genetic variance attributable to this putative locus becomes 517.13, with residual variance within each genotype being 250.94 (shown in Table 4). Thus, the estimate of the variance of chromosomal radiosensitivity attributable to the putative dominant major gene locus becomes: 517.13/(517.13 + 250.94) = 0.673, suggesting that more than two-thirds of the phenotypic variance of chromosomal radiosensitivity is attributable to a putative major gene locus (with dominant effect). This heritability estimate is also consistent with an alternative prediction from a variance component analysis of the data of the 23 nuclear families, performed by the SOLAR software (Almasy and Blangero, 1998). For the unadjusted induced G0 aberration frequency, the heritability estimate by this variance component method was 0.607 ± 0.215 (significantly different from zero, P = 0.006), which is not substantially different from the value of 0.670 predicted from the parameter estimates of the model fitting from SAGE.

DISCUSSION

The G0 chromosomal radiosensitivity assay requires stringent technical conditions if reproducible results are to be obtained (Scott et al, 1996; Bryant et al, 2002). Assay reproducibility has been previously demonstrated in our laboratory (Smart et al, 2003) and this had been confirmed in the present study by the analysis of sequential samples from the internal assay control (Table 1). Problems with reproducibility of results associated with storage conditions and transportation of blood samples from distant sources have been reported (Scott et al, 1999), although reproducibility has been shown not to be an issue for samples transported over short distances (Robert et al, 1999; Smart et al, 2003). In order to minimise any potential effect of transportation, samples were sent to WRI from Denmark in secondary packaging (consisting of a screw-cap polyethylene tube to prevent breakage and contain any spillage), at ambient temperature by road and by air and in the possession of a personal courier at all times. Hence, they were not subjected to any significant temperature fluctuations, a factor that has been suggested as a possible cause of intraindividual variability (Bryant et al, 2002). In addition, any potential variation associated with transport was monitored by the inclusion of a sample from a Danish control with each shipment. While the first five samples provided by the Danish control gave no indication of intraindividual variability, which could have been associated with transportation, the final four samples gave variable results (Table 1). However, since the volunteer was pregnant when the last four samples were taken, this variability could be associated with the accompanying hormonal changes. Support for this view comes from in vitro studies, which indicate that female reproductive hormones can influence radiation-induced yields of chromosome aberrations (Robert et al, 1997; Ricoul et al, 1998), and in vivo studies in mice (Ricoul and Dutrillaux, 1991) and humans (Ricoul et al, 1997), which report fluctuating radiation-induced chromosome aberration frequencies throughout pregnancy.

Consideration of the three family groups, that is, cancer survivors, their partners and their offspring, revealed no statistical differences in the chromosomal radiosensitivity profiles between the groups (Table 3, Figure 1), and thus, based on the family comparisons, we have not been able to demonstrate an association between increased G0 chromosomal radiosensitivity and predisposition to childhood or adolescent cancer. However, when comparisons were made with the WRI control group of healthy volunteers, a clear distinction in radiosensitivity profile is observed for both the cancer survivors and their offspring (Table 3, Figure 1, and their offspring group).
Figure 1). Using the 90th percentile cutoff for the WRI controls as a measure of enhanced radiosensitivity suggests that 52% of the cancer survivors and 53% of their offspring are exhibiting enhanced sensitivity compared with 11% of the WRI controls. On this basis, our results would seem to confirm previous work on enhanced sensitivity compared with 11% of the WRI controls. Although a transportation effect cannot be ruled out for the enhanced radiosensitivity profiles seen in all three family groups, it is possible that the partners form a distinct group with heightened radiosensitivity. A check of patient and partner questionnaires and cancer registries confirmed that none of the partners had suffered from cancer. However, cancer survivors may be more likely to attract partners with some knowledge of cancer because the partners have experienced it within their own families. Thus, the partner control group may comprise a greater proportion of individuals with cancer predisposition than a control group taken randomly from a healthy population.

One of the offspring had an unusually high value of 404 induced aberrations per 100 cells. To our knowledge, this is substantially higher than that estimated by Roberts et al. (1999), who used a single major gene with two alleles combining in an additive manner to give three phenotypes (Roberts et al., 1999; Scott, 2000). Segregation analysis of family members suggested that 82% of the variability in G2 radiosensitivity could be accounted for by a model with a single major gene with two alleles combining in an additive manner to give three phenotypes (Roberts et al., 1999; Scott, 2000). However, although this model explained the majority of the patterns of segregation observed in the breast cancer families, there were a few families for which the inclusion of a second bi-allelic gene gave a better fit to the data.

Our segregation analysis results are different in two respects. Firstly, we found that the one-locus model is most parsimonious (i.e., a second loci is not needed), with alleles having a dominant–recessive relationship with regard to the effect on the induced G2 aberration yield. Secondly, the contribution of this locus to the total variance of the G2 aberration yield in our data appears to be lower than that estimated by Roberts et al. (1999). Owing to the limited sample sizes, these differences may not be real, but some methodological differences between the two studies can be recognised. Firstly, unlike our sample of nuclear families, which were not preselected based on G2 radiosensitivity, per se, Roberts et al. (1999) include in their analyses families with index cases who showed either most sensitivity or had modal values of G2 radiosensitivity. Even though these authors controlled for this ascertainment bias in their pedigree analysis, their single selection method of ascertainment correction may not be adequate (Ewens, 1991). Any unaccounted ascertainment bias due to enrichment by extremely G2-sensitive individuals would influence the heritability estimate in an upward direction, and this could account for the difference between their value of 82% and our value of 67% for the proportion of the variance attributed to the putative major gene. Secondly, based on the distribution of G2 radiosensitivity of all nonindex cases, Roberts et al. (1999) used a log-transformation of their original measurements prior to a segregation analysis. In contrast, our unselected families provide a good fit to normality (by a Q–Q plot analysis, data not shown), needing no transforma-

Table 4
Model parameters from segregation analysis of G2 radiosensitivity in 23 nuclear families of survivors of childhood cancer patients

Parameter	General	Equal r (sporadic)	Mendelian	Autosomal dominant	Most parsimonious
q_A	0.253	0.608	0.280	0.260	0.258
ψ_{AA}	0.064*	0.369*	0.079*	0.067*	0.067*
ψ_{AB}	0.378*	0.477*	0.403*	0.385*	0.383*
ψ_{BB}	0.559*	0.154*	0.518*	0.548*	0.550*
t_A	1.000	0.608	1.000	1.000	1.000
t_B	0.666	0.608	0.500	0.500	0.500
β_A	156.63	148.71	156.29	143.16	143.53
β_B	140.41	107.89	139.51	143.16	143.33
Residual variance	237.84	153.88	226.92	249.41	250.94
Major gene heritability (h^2)	0.673				
λ (Box–Cox parameter)	0.55	0.09	0.49	0.46	0.55
Residual $\rho_{sp} = \rho_{ss}$	0.000	0.000	0.000	0.000	
Gender cov	2.79	7.26	2.74	3.10	
Number of parameters	140.41	107.89	139.51	143.16	143.33
$–2 \ln L$	765.02	776.23	766.37	767.46	767.92
AIC	783.02	792.23	766.37	767.46	767.92
P-value	0.001*		0.245*	0.296*	0.794*

q_A = frequency of disease allele; $\psi = \text{genotype frequencies}; r = \text{transmission probability of allele A}; \beta = \text{genotype dependent mean}; AIC = \text{Akaike information criterion}; \rho_{sp} = \text{correlation between parent–offspring pairs}; \rho_{ss} = \text{correlation between siblings}. Values in brackets indicate that the estimate reached its boundary. *Dependent parameter. aParameter is fixed to the shown value. bLikelihood ratio test compared with the general model. cCompared with the Mendelian model. dCompared with the autosomal dominant model.
REFERENCES

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC 19: 616–623

Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62: 1198–1211

Baeyens A, Thierens H, Claes K, Poppe B, Messiaen L, De Ridder L, Vral A (2002) Chromosomal radiosensitivity in breast cancer patients with a known or putative genetic predisposition. Br J Cancer 87: 1359–1358

Baria K, Warren C, Eden OB, Roberts SA, West CM, Scott D (2002) Chromosomal radiosensitivity in young cancer patients: possible evidence of genetic predisposition. Int J Radiat Biol 78: 341–346

Baria K, Warren C, Roberts SA, West CM, Scott D (2001) Chromosomal radiosensitivity as a marker of predisposition to common cancers? Br J Cancer 84: 892–896

Boice Jr JD, Tawn EJ, Winther JF, Donaldson SS, Green DM, Mertens AC, Mulvihill JJ, Olsen JH, Robison LL, Stovall M (2003) Genetic effects of radiotherapy for childhood cancer. Health Phys 85: 65–80

Bondy ML, Wang LE, El-Zein R, de Andrade M, Selman MS, Brunner JM, Levin VA, Alfred Yung WK, Adatto P, Wei Q (2001) Gamma-radiation sensitivity and risk of glioma. J Neurol Neurosurg Psychiatry 69: 1535–1537

Bryant PE, Gray L, Riches AC, Steel CM, Finnen P, Howe O, Kesterton I, Vral A, Curwen GB, Smart V, Tawn EJ, Whitehouse CA (2002) The G2 chromosomal radiosensitivity assay. Int J Radiat Biol 78: 863–866

Chakraborty R, Hanis CL (1998) Nonrandom sampling in human genetics: estimation of familial correlations, model testing, and interpretation. Stat Med 6: 629–646

Ewens WJ (1991) Ascertainment biases and their resolution in biological surveys. In Handbook of Statistics, Vol 8: Statistical Methods in Biological and Medical Sciences, Rao CR, Chakraborty R (eds) pp 29–61. Amsterdam – New York: North-Holland

Hanis CL, Chakraborty R (1984) Nonrandom sampling in human genetics: familial correlations. IMA J Math Appl Med Biol 1: 193–213

Papworth R, Slevin N, Roberts SA, Scott D (2001) Sensitivity to radiation-induced chromosome damage may be a marker of genetic predisposition in young head and neck cancer patients. Br J Cancer 84: 776–782

Parshad R, Price FM, Bohr VA, Cowsans KH, Zujewski JA, Sanford KK (1996) Deficient DNA repair capacity, a predisposing factor in breast cancer. Br J Cancer 74: 1–5

Parshad R, Sanford KK (2001) Radiation-induced chromatid breaks and deficient DNA repair in cancer predisposition. Crit Rev Oncol Hematol 37: 87–96

Patel RK, Trivedi AH, Arora DC, Bhavadekar JM, Patel DD (1997) DNA repair proficiency in breast cancer patients and their first-degree relatives. Int J Cancer 73: 20–24

Riches AC, Bryant PE, Steel CM, Greig A, Robertson AJ, Preece PE, Thompson AM (2001) Chromosomal radiosensitivity in G2-phase lymphocytes identifies breast cancer patients with distinctive tumour characteristics. Br J Cancer 85: 1157–1161

Ricoul M, Dutrillaux B (1991) Variations of chromosome radiation sensitivity in fetal and adult mice during gestation. Mutat Res 250: 331–335

Ricoul M, Lebeau J, Sabatier L, Dutrillaux B (1998) Increased radiation-induced chromosome breakage after progesterone addition at the G1/S-phase transition. Mutat Res 409: 177–183

Ricoul M, Sabatier L, Dutrillaux B (1997) Increased chromosomal radiosensitivity during pregnancy. Mutat Res 374: 73–78

Roberts CJ, Morgan GR, Danford N (1997) Effect of hormones on the variation of radiosensitivity in females as measured by induction of chromosomal aberrations. Environ Health Perspect 105(Suppl 6): 1467–1471

Roberts SA, Spreadborough AR, Bulman B, Barber JB, Evans DG, Scott D (1999) Heritability of cellular radiosensitivity: a marker of low-penetrance predisposition genes in breast cancer? Am J Hum Genet 65: 784–794

SAGE (2004) Statistical Analysis for Genetic Epidemiology Release 5.0

Sanford KK, Parshad R, Gantt R, Tarone RE, Jones GM, Price FM (1989) Factors affecting and significance of G2 chromatin radiosensitivity in predisposition to cancer. Int J Radiat Biol 55: 963–981

Scott D (2000) Chromosomal radiosensitivity, cancer predisposition and response to radiotherapy. Strahlenther Onkol 176: 229–234

Scott D, Barber JB, Spreadborough AR, Burrill W, Roberts SA (1999) Increased chromosomal radiosensitivity in breast cancer patients: a comparison of two assays. Int J Radiat Biol 75: 1–10

Scott D, Spreadborough A, Levine E, Roberts SA (1994) Genetic predisposition in breast cancer. Lancet 344: 1444

Scott D, Spreadborough AR, Jones LA, Roberts SA, Moore CJ (1996) Chromosomal radiosensitivity in G2-phase lymphocytes as an indicator of cancer predisposition. Radiat Res 145: 3–16

ACKNOWLEDGEMENTS

We thank the childhood and adolescent cancer survivors and their families for agreeing to participate in this study and volunteering blood samples. Keith Binks, Westlakes Research Institute, provided useful statistical advice. Permissions were granted from the Danish Data Protection Agency (2001–11–113) and the Danish Scientific Ethical Committee ([KF] 01 – 150/01 and [KF] 11 – 129/02). We are grateful for the support provided by British Nuclear Fuels plc, the Danish Cancer Society, the International Epidemiology Institute and Westlakes Research Institute.
Smart V, Curwen GB, Whitehouse CA, Edwards A, Tawn EJ (2003) Chromosomal radiosensitivity: a study of the chromosomal G2 assay in human blood lymphocytes indicating significant inter-individual variability. *Mutat Res* 528: 105 – 110

Terzoudi GI, Jung T, Hain J, Vrouvas J, Margaritis K, Donta-Bakoyianni C, Makropoulos V, Angelakis P, Pantelias GE (2000) Increased G2 chromosomal radiosensitivity in cancer patients: the role of cdk1/cyclin-B activity level in the mechanisms involved. *Int J Radiat Biol* 76: 607 – 615