In vitro Antibacterial Activity of Himalayan Lichenized Fungi

Vinod Kumar1*, Manish Tripathi2, Chandra Shekhar Mathela1 and Yogesh Joshi2

1Department of Chemistry, Kumaun University, Nainital 263 001, Uttarakhand, India
2Department of Botany, Kumaun University, Almora 263 601, Uttarakhand, India

Abstract

The increase in the new strains of multi drug-resistant pathogens, the standard drugs have become less effective, thereby increasing the demand for the search of novel natural bioactive compounds from lichenized fungi. Despite rich diversity of lichenized fungi in Kumaon Himalaya, only a few of them have been screened for their biological activities. Present communication deals with antimicrobial activity of ethyl acetate extracts of Everniastrum cirrhatum, Usnea longissima, Flavoparmelia caperata and Ramalina conduplicans against five pathogenic bacteria. Among these, U. longissima and F. caperata extracts have revealed significant activity against all the bacteria while U. longissima was more active against Escherichia coli (13.0 mm; MIC=7.5 mg/mL) and Bacillus subtilis (11.6 mm; MIC=7.5 mg/mL). The F. caperata extract was active against E. coli (15.3 mm; MIC=15 mg/mL). Hence, there is an interest in the potential uses of antibiotics derived from lichenized fungi for pharmaceutical purposes.

Keywords: Lichenized fungi; Usnea longissima; Flavoparmelia caperata; Antibacterial activity; Kumaun Himalaya

Introduction

India is a rich centre of biodiversity contributing nearly 15% of the 13,500 species of lichenized fungi [1]. Of these, several lichenized fungi of the Himalayan region are said to effectively cure dyspepsia, bleeding piles, bronchitis, scabies, stomach disorders and many disorders of blood and heart [2-4]. Flavoparmelia caperata is part of Ayurvedic and Unani medicines under the name ‘Chharlara’ as carminative and aphrodisiac and considered useful in treatment of intestinal worms and burns [5]. Everniastrum cirrhatum relieves headache [6,7]. Ramalina conduplicans was put on wounds to stop bleeding, cure jaundice [8,9]. U. longissima has been used in the treatment of bone fractures and strains, and ulcers [10,11]. It is also used as a simple drug to stimulate menstruation or induce abortion. Reports on floristic, monographic, revisionary, pollution monitoring studies of lichenized fungi exist but little attention has been paid to the detailed chemical analysis and biological activity of lichenized fungi native to high altitude region of Himalaya.

Lichenized fungi are known to produce a great variety of bioactive secondary metabolites. Recent developments in analytical techniques have resulted in the identification of about 1050 lichen substances [12] viz. usnic acid, phenolic compounds, anthraquinones, dibenzofurans, depsides, depsidones, depsides, triterpenes, γ-lactones and pulvinic acid derivatives [13]. These exhibit a multiple biological activity, such as: antiviral, antibiotic, antitumor, allergenic, plant growth inhibitory and enzyme inhibitory [14-16].

The aim of present study is to investigate the antibacterial activity of extracts from Himalayan lichenized fungi viz. E. cirrhatum, U. longissima, F. caperata and R. conduplicans.

Experimental Section

Plant materials

Lichenized fungi were collected from Kumaun (Uttarakhand) Himalaya during March 2015. The lichen specimens were identified with the help of published flora [17]. Voucher specimens have been deposited in Department of Botany, Kumaun University, and Almora.

Keywords: Lichenized fungi; Usnea longissima; Flavoparmelia caperata; Antibacterial activity; Kumaun Himalaya

Introduction

India is a rich centre of biodiversity contributing nearly 15% of the 13,500 species of lichenized fungi [1]. Of these, several lichenized fungi of the Himalayan region are said to effectively cure dyspepsia, bleeding piles, bronchitis, scabies, stomach disorders and many disorders of blood and heart [2-4]. Flavoparmelia caperata is part of Ayurvedic and Unani medicines under the name ‘Chharlara’ as carminative and aphrodisiac and considered useful in treatment of intestinal worms and burns [5]. Everniastrum cirrhatum relieves headache [6,7]. Ramalina conduplicans was put on wounds to stop bleeding, cure jaundice [8,9]. U. longissima has been used in the treatment of bone fractures and strains, and ulcers [10,11]. It is also used as a simple drug to stimulate menstruation or induce abortion. Reports on floristic, monographic, revisionary, pollution monitoring studies of lichenized fungi exist but little attention has been paid to the detailed chemical analysis and biological activity of lichenized fungi native to high altitude region of Himalaya.

Lichenized fungi are known to produce a great variety of bioactive secondary metabolites. Recent developments in analytical techniques have resulted in the identification of about 1050 lichen substances [12] viz. usnic acid, phenolic compounds, anthraquinones, dibenzofurans, depsides, depsidones, depsides, triterpenes, γ-lactones and pulvinic acid derivatives [13]. These exhibit a multiple biological activity, such as: antiviral, antibiotic, antitumor, allergenic, plant growth inhibitory and enzyme inhibitory [14-16].

The aim of present study is to investigate the antibacterial activity of extracts from Himalayan lichenized fungi viz. E. cirrhatum, U. longissima, F. caperata and R. conduplicans.

Experimental Section

Plant materials

Lichenized fungi were collected from Kumaun (Uttarakhand) Himalaya during March 2015. The lichen specimens were identified with the help of published flora [17]. Voucher specimens have been deposited in Department of Botany, Kumaun University, and Almora.

Keywords: Lichenized fungi; Usnea longissima; Flavoparmelia caperata; Antibacterial activity; Kumaun Himalaya

Introduction

India is a rich centre of biodiversity contributing nearly 15% of the 13,500 species of lichenized fungi [1]. Of these, several lichenized fungi of the Himalayan region are said to effectively cure dyspepsia, bleeding piles, bronchitis, scabies, stomach disorders and many disorders of blood and heart [2-4]. Flavoparmelia caperata is part of Ayurvedic and Unani medicines under the name ‘Chharlara’ as carminative and aphrodisiac and considered useful in treatment of intestinal worms and burns [5]. Everniastrum cirrhatum relieves headache [6,7]. Ramalina conduplicans was put on wounds to stop bleeding, cure jaundice [8,9]. U. longissima has been used in the treatment of bone fractures and strains, and ulcers [10,11]. It is also used as a simple drug to stimulate menstruation or induce abortion. Reports on floristic, monographic, revisionary, pollution monitoring studies of lichenized fungi exist but little attention has been paid to the detailed chemical analysis and biological activity of lichenized fungi native to high altitude region of Himalaya.

Lichenized fungi are known to produce a great variety of bioactive secondary metabolites. Recent developments in analytical techniques have resulted in the identification of about 1050 lichen substances [12] viz. usnic acid, phenolic compounds, anthraquinones, dibenzofurans, depsides, depsidones, depsides, triterpenes, γ-lactones and pulvinic acid derivatives [13]. These exhibit a multiple biological activity, such as: antiviral, antibiotic, antitumor, allergenic, plant growth inhibitory and enzyme inhibitory [14-16].

The aim of present study is to investigate the antibacterial activity of extracts from Himalayan lichenized fungi viz. E. cirrhatum, U. longissima, F. caperata and R. conduplicans.

Experimental Section

Plant materials

Lichenized fungi were collected from Kumaun (Uttarakhand) Himalaya during March 2015. The lichen specimens were identified with the help of published flora [17]. Voucher specimens have been deposited in Department of Botany, Kumaun University, and Almora.
in Dimethyl Sulfoxide (DMSO) to prepare desired concentrations. Inoculums of the microbial strains (1 × 10⁶ CFU/mL) were plated using sterile swabs into petri dishes (90 mm) with 20 mL of Nutrient Agar, and then discs of Whatman paper-42 were soaked in sample solution (15 mg/mL) and placed onto inoculated petri dishes. Standard antibiotic streptomycin (15 mg/mL) was used as positive control and DMSO as negative control. The petri dishes were pre-incubated for 3 h at room temperature, allowing the complete diffusion of the samples and then, incubated at 37°C ± 1°C for 24 h [19]. The zones of inhibition were measured.

Antibacterial activity evaluation by agar dilution method

The evaluation of MICs was done using the agar dilution method with slight modifications described by the National Committee for Clinical Laboratory Standards [20]. Equal volume of each microbial strain culture, containing approximately 1 × 10⁶ CFU/mL, was applied onto MHB supplemented with the extract at concentration ranging from (0.46-30 mg/mL) in tubes. These cultures were then incubated at 37°C for 24 h then cultures were finally inoculated on nutrient agar media to determine the growth of bacteria. Controls of bacteria without the extract were also applied. The concentration at which no visible growth was observed is considered as MICs.

Statistical analysis

Data were subjected to one-way Analysis of Variance (ANOVA) and the means were compared by Duncan Multiple Range tests at a level of significance of p<0.05 using SPSS 16.0 statistical software. The Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were performed using PAST statistical computer software package for evaluating correlation between antibacterial activity and extract.

Results and Discussion

The antibacterial activity data of lichenized fungal extract against five bacteria are presented in Tables 1 and 2. The maximum zone of inhibition was recorded against E. coli (19.0 mm), K. pneumonia (16.3 mm) and B. subtilis (15.3 mm). Activity data revealed U. longissima and F. caperata to be more active against almost all the bacteria. U. longissima showed higher activity against Gram-negative bacteria E. coli (13.0 mm; MIC=7.5 mg/mL) and Gram-positive bacteria B. subtilis (11.6 mm; MIC=7.5 mg/mL), while F. caperata was more active against E. coli (15.3 mm; MIC=15 mg/mL) followed by K. pneumonia (13.6 mm; MIC=15 mg/mL). The extract of E. cirrhatum was effective against E. coli (19.0 mm; MIC=15 mg/mL). The extract of R. conduplicans was found more active against B. subtilis (15.3 mm; MIC=15 mg/mL) and K. pneumonia (15.0 mg/mL). It is interesting to note that the growth of S. typhimurium remained unaffected by any of the lichenized fungal extracts. The activity of extracts was noticed in the following descending order E. coli> K. pneumonia>B. subtilis>P. aeruginosa>S. typhimurium.

The inhibition data were subjected to PCA and HCA analysis (Figures 1 and 2). Group I, composed of the Gram-negative bacteria (E. coli and K. pneumonia), is characterized by high sensitivity to the extracts (13-19 mm). Group II is represented by Gram-positive bacteria B. subtilis distinguishable in the PCA as a distinct group (8.3-15.3 mm). Group III, which constitutes Gram-negative bacteria P. aeruginosa and S. typhimurium was characterized by relatively resistant to all the extracts, especially S. typhimurium strain which showed high resistance to the extracts (<7 mm).

Secondary metabolites derived from natural products possess various benefits including antimicrobial properties against pathogenic and spoilage microbes. Major groups of compounds that are responsible for antimicrobial activity from plants include phenolics, phenolic

Lichenized fungi	Diameter of inhibition zone (mean ± SD) mm*				
	B. subtilis	P. aeruginosa	E. coli	S. typhimurium	K. pneumonia
E. cirrhatum	8.3 ± 1.1a	10.0 ± 1.7b	19.0 ± 3.0c	7.3 ± 1.5g	13.3 ± 2.0d
F. caperata	12.0 ± 1.0e	12.3 ± 1.5f	15.3 ± 2.5g	7.3 ± 1.5g	13.6 ± 1.1h
R. conduplicans	15.3 ± 2.5i	11.0 ± 1.0j	10.6 ± 0.5k	6.6 ± 1.1l	10.0 ± 1.0m
U. longissima	11.6 ± 0.5n	7.6 ± 0.5o	13.0 ± 0.5p	7.0 ± 1.0q	16.3 ± 1.1r
Streptomycin (Reference antibiotic)	31.3 ± 1.1s	21.6 ± 1.1t	20.0 ± 0.5u	24.0 ± 1.0v	21.3 ± 0.5w

*Mean (± SD) value (at 15 mg/mL) followed by different letters in the same column differ significantly at p ≥ 0.05 according to Duncan test.

Lichenized fungi	Minimum inhibitory concentration (mg/mL)				
	B. subtilis	P. aeruginosa	E. coli	S. typhimurium	K. pneumonia
E. cirrhatum	15.0	30.0	15.0	30.0	15.0
F. caperata	15.0	15.0	15.0	30.0	15.0
R. conduplicans	15.0	15.0	15.0	30.0	15.0
U. longissima	7.5	30.0	7.5	30.0	15.0
Streptomycin (Reference antibiotic)	3.7	3.7	0.9	3.7	3.7

Lichenized fungi	Chemical constituents	References
E. cirrhatum	Salazinic acid, protolichesterinic acid	[17]
F. caperata	Usnic acid, atraric acid, arabinitol, abranol, orcinol, lichesterol, ergosterol, protocetraric acid, caperatic acid	[21,22]
R. conduplicans	Usnic acid, salazinic acid, sekkialic acid	[17,23]
U. longissima	Usnic acid, 8-hydroxydiffractiac acid, isostrepsilic acid	[17,23]

Table 1: Antibacterial activity of lichenized fungal extracts against test organisms.

Table 2: Minimum Inhibitory Concentration (MIC) of lichenized fungal extracts.

Table 3: The major constituents present in the lichenized fungi.
Figure 1: PCA of the antimicrobial activity of lichenized fungal extract against five bacteria (1: B. subtilis; 2: P. aeruginosa; 3: E. coli; 4: S. typhimurium; 5: K. pneumoniae; A: E. cirtatum; B: F. caperata; C: R. conduplicans; D: U. longissima; E: Streptomycin).

Figure 2: HCA based on the Euclidean distance between groups of the antibacterial activity of lichenized fungal extract.
acids, quinones, saponins, flavonoids, tannins, courmarins terpenoids, and alkaloids. Variations in the structure and chemical composition of these compounds result in differences in their antimicrobial action. Antimicrobial activity depends not only on chemical composition but also on lipophilic properties, the potency of functional groups or aqueous solubility and the mixture of compounds. This action involves membrane disruption by lipophilic compounds resulting in inhibition of electron transport, protein translocation, phosphorylation, and other enzymatic activity which ultimately destroy the cell membrane integrity resulting in the death of microorganisms [21-24]. The major other enzymatic activity which ultimately destroy the cell membrane of electron transport, protein translocation, phosphorylation, and membrane disruption by lipophilic compounds resulting in inhibition aqueous solubility and the mixture of compounds. This action involves but also on lipophilic properties, the potency of functional groups or Antimicrobial activity depends not only on chemical composition and alkaloids. Variations in the structure and chemical composition of these compounds result in differences in their antimicrobial action. Further investigations of antimicrobial potential of these particular lichenized fungi in relation to human pathogens can be of pharmacological importance. Hence, there is an interest in the potential uses of antibiotics derived from lichenized fungi for the pharmaceutical industry.

Conclusion

There has been recurrence on the natural product chemistry researches in the recent years for new bioactive molecules that can replace synthetic additives and their potential use in the food and pharmaceutical industries. The results of the present study showed that some of the lichenized fungi extracts possess significant antibacterial activity. Further investigations of antimicrobial potential of these particular lichenized fungi in relation to human pathogens can be of pharmacological importance. Hence, there is an interest in the potential uses of antibiotics derived from lichenized fungi for the pharmaceutical industry.

Acknowledgements

The authors are grateful to Head, Department of Botany, Almora for providing laboratory facilities and thanks to Head, Department of Bio-technology, Bhimtal, Kumaun University for providing bacterial strains.

References

1. Negi HR, Kareem K (1996) Lichens: The unsung heroes. Amrut 1: 3-6.
2. Negi HR (2000) On the patterns of abundance and diversity of macro-lichens of Chopota-Tunganath in the Garhwal Himalaya. J Biosci 25: 367-378.
3. Saklani A, Uperti DK (1992) Folk uses of some lichens in Sikkim. J Ethnopharmacol 37: 229-333.
4. Schmitt I, Lumbsch HT (2004) Molecular phylogeny of the Pertusariaceae supports secondary chemistry as an important systematic character set in lichen-forming ascomycetes. Mol Phylogenet Evol 33: 45-55.
5. Pennington CW (1963) The Tarahumara of Mexico: their environment and material culture. University of Utah Press, Salt Lake City, UT.
6. Biswas K (1947) The lichen flora of India. J R Asiatic Soc. Bengal Sci 13: 75-113.
7. Nadkarni KM, Nadkarni AK (1955) Indian materia medica. Popular Book Depot, India.
8. Bostock J, Riley HT (1855) The natural history of Pliny the elder. Taylor and Francis, London.
9. Yavuz M (2013) Lichens in the prescibions of Pliny the Elder. Ottenia-Studilisi Comunci Stintete Naturi 29: 115-119.
10. Chopra RN, Chopra IC, Handa KL, Kapur LD (1958) Indigenous drugs of India, U.N. Dhar & Sons Ltd., India.
11. Lal B, Uperti DK (1995) Ethnobotanical notes on three Indian lichens. Lichenologist 27: 77-79.
12. Molnar K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites. Z Naturforsch C 65: 157-173.
13. Sochting U (1999) Lichens of Bhutan. Biodiversity and Use. Copenhagen Botanical Institute. Department of Mycology, University of Copenhagen, Denmark.
14. Lawrey JD (1995) The chemical ecology of lichen mycoparasites. Can J Bot 73: 603-608.
15. Shukla V, Joshi GP, Rawat MSM (2010) Lichens as a potential natural source of bioactive compounds: A review. Phytochem Rev 9: 303-314.
16. Verma N, Behera BC, Joshi A (2012) Studies on nutritional requirement for the culture of lichen Ramalina nervulosa and Ramalina pacificatonhance the production of antioxidant metabolites. Folia Microbiol 57: 107-114.
17. Awasthi DD (2007) A compendium of macro lichens from India, Nepal and Sri Lanka. Bishen Singh Mahendra Pal Singh, Dehra Dun, India.
18. Clinical and Laboratory Standards Institute (2009) Performance Standards for Antimicrobial Susceptibility Tests; Approved Standard-Twelfth Edition, Document M02-A10, CLSI, Wayne, PA.
19. Das K, Tiwari RKS, Shrivastava DK (2010) Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J Med Plants Res 4: 104-111.
20. National Committee for Clinical Laboratory Standards (2001a) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standards-Tenth Edition, NCCLS Document M02-A5. NCCLS, Wayne, PA.
21. Rankovic B, Misic M, Sukdolak S (2009) Antimicrobial activity of extracts of the lichens Cladonia furcata, Parmelia caperata, Parmelia pertusa, Hypogymnia physodes and Umbilicaria polyphylla. Biologia 64: 53-58.
22. Culberson CF (1969) Chemical and botanical guide to lichen products, University of North Carolina Press, USA.
23. Elix JA (2014) A catalogue of standardized chromatographic data and biosynthetic relationships for lichen substances. Canberra.
24. Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 48: 412-429.