WILLMORE SPHERES IN THE 3-SPHERE REVISITED

SEBASTIAN HELLER

Abstract. Bryant [1] classified all Willmore spheres in 3-space to be given by minimal surfaces in \mathbb{R}^3 with embedded planar ends. This note provides new explicit formulas for genus 0 minimal surfaces in \mathbb{R}^3 with $2k+1$ embedded planar ends for all $k \geq 4$. Peng and Xiao claimed these examples to exist in [6], but in the same paper they also claimed the existence of a minimal surface with 7 embedded planar ends, which was falsified by Bryant [2].

1. Surfaces

Let $\phi : \hat{\Sigma} \to S^3$ be a compact, smooth, conformally parametrised, and immersed surface such that for a suitable chosen point $p \in S^3$, with its stereographic projection $\pi_p : S^3 \setminus \{p\} \to \mathbb{R}^3$, the composition

$$f = \pi_p \circ \phi : \Sigma = \hat{\Sigma} \setminus \phi^{-1}\{p\} \to \mathbb{R}^3$$

is a minimal surface in \mathbb{R}^3. We call such minimal surfaces f minimal surfaces with embedded planar ends. It was shown by Bryant [1] that all Willmore spheres in the 3-sphere are of this type. Conversely, every ϕ as above is a Willmore sphere. By definition, (immersed) Willmore surfaces $\phi : \hat{\Sigma} \to S^3$ are the critical points for the Willmore functional

$$W(\phi) = \int_\Sigma (H^2 - K + 1)dA,$$ \hspace{1cm} (1)

where 1 is the sectional curvature of the round 3-sphere, H is the mean curvature, dA and K are the area form and the curvature of the induced metric of ϕ. The Willmore energy of a Willmore sphere is given by $4\pi(n-1)$, with n being the number of ends of $f = \pi_p \circ \phi$.

Remark. Peng and Xiao claim the existence of a minimal surface with 7 embedded planar ends in [6] and remark that the existence for $n = 2k+1 \geq 9$ follows by a long but straight forward computation. Though the $n = 7$ case was falsified by Bryant [2], we show that the surfaces predicted in [6] do exist for $n \geq 9$ by giving a simple and explicit parametrization.

Let X be a Riemann surface, and $g : X \to \mathbb{K}^r$ be a smooth map, where $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, and $r \in \mathbb{N}$. We denote by

$$dg = \partial g + \bar{\partial} g$$

the decomposition of the differential dg of g into its complex linear part ∂g and its complex antilinear part $\bar{\partial} g$. For a minimal surface $f : \Sigma \to \mathbb{R}^3$ there exists a holomorphic line bundle $S \to \Sigma$ with $S^2 = K_\Sigma$ and two holomorphic sections $s_1, s_2 \in H^0(\Sigma, S)$ such that

$$\partial f = (s_1^2 + s_2^2, is_1^2 - is_2^2, -2is_1s_2).$$ \hspace{1cm} (2)

This is called the Weierstrass representation, and the two spinors (s_1, s_2) are the Weierstrass data of f. In the case a minimal surface $f : \Sigma \to \mathbb{R}^3$ with embedded planar ends its Weierstrass data are meromorphic spinors on $\hat{\Sigma}$ with first order poles at $\phi^{-1}(p)$, see for example [3] and the references therein. Moreover, ∂f has no residues at the embedded planar ends.

Date: March 17, 2020.
1.1. Existing examples in the literature. Peng and Xiao \[6\] considered the following ansatz
\[
s_1 = \frac{z^{k-2}}{(z^2 - a)(z^2 - b)} \sqrt{dz} \quad \text{and} \quad s_2 = \frac{(z^k - a)(z^k - b)}{2(z^2 - a)(z^2 - b)} \sqrt{dz}
\]
for the Weierstrass data of a minimal surface of the \((2k+1)\)-punctured sphere
\[
\Sigma = \mathbb{C}P^1 \setminus \{z \in \mathbb{C} \mid z(z^k - 1)(z^k - \lambda) = 0\},
\]
where \(a, b, c, \lambda \in \mathbb{C}\) are pairwise distinct and satisfy the following algebraic condition:
\[
0 = \text{res}_p s_1^2 = \text{res}_p s_1 s_2 = \text{res}_p s_2^2
\]
holds at every point \(p \in \{z \in \mathbb{C} \mid z(z^k - 1)(z^k - \lambda) = 0\}\). Peng and Xiao \[6\] claim that a solution \((a, b, c, \lambda)\) always exist implying via \((2)\) the existence of immersed minimal surface \(s\) with \(2n\) curve of degree \(k\) for the Weierstrass data of a minimal surface of the \((2k+1)\)-punctured sphere.

Moreover, \(\Psi\) is a holomorphic curve with simple poles at \(p\) and \(\partial f\) has no residues at the ends \(\partial F\) solve Equation \((3)\). We obtain a minimal surface \(f\) with embedded planar ends by reversing the above construction. Consider a genus 0 minimal surface \(\Psi\) rises to a minimal surface with embedded planar ends by reversing the above construction.

Moreover, \(\Psi\) is again a null curve, i.e., for every local holomorphic lift \(\hat{\Psi}\) of \(\Psi\) \(\partial \hat{\Psi}\) gives a local lift of a well-defined holomorphic curve
\[
\psi^2 : \Sigma \to \mathcal{Q}_\Omega \subset PW;
\]
the second associated curve of \(\psi\). It is a null curve with respect to \(\frac{1}{2} \Omega \wedge \Omega\). A curve into a projective space is called nondegenerate if it is not contained in any hyperplane. The Klein correspondence (see \[3\]) states

2. Curves

The following description of genus 0 minimal surfaces with embedded planar ends is due to Bryant \[2\], see also \[3\]. Consider a genus 0 minimal surface \(f : \mathbb{C}P^1 \setminus \{p_1, ..., p_n\} \to \mathbb{R}^3\) with \(n\) embedded planar ends. As \(\partial f\) has no residues at the ends \(p_1, ..., p_n\), the surface \(f\) is the real part of a meromorphic map \(F : \mathbb{C}P^1 \to \mathbb{C}^3\) with simple poles at \(p_1, ..., p_n\). Since \(f\) is conformally parametrised \(F\) is a null curve, i.e., with respect to the standard symmetric inner product \(\langle ., . \rangle\) on \(\mathbb{C}^3\) we have \(\langle \partial F, \partial F \rangle = 0\). Consider \(\mathbb{C}^5\) with the inner product
\[
\langle ., . \rangle = -e_0^* \otimes e_4^* - e_4^* \otimes e_0^* + e_1^* \otimes e_4^* + e_2^* \otimes e_3^* + e_3^* \otimes e_2^*,
\]
the 3-quadric
\[
Q^3 = P\{v \in \mathbb{C}^5 \setminus \{0\} \mid \langle v, v \rangle = 0\}
\]
and the conformal embedding
\[
\Psi : \mathbb{C}^3 \to Q^3; \quad (z_1, z_2) \mapsto [\frac{1}{2}(z_1^2 + z_2^2 + z_3^2), z_1, z_2, z_3, 1].
\]
For a minimal sphere \(f = \mathbb{R}(F)\) with \(n\) embedded planar ends, \(\Psi \circ F : \mathbb{C}P^1 \to Q^3\) is an unbranched rational curve of degree \(n\). Moreover, \(\Psi \circ F\) is again a null curve, i.e., for every local holomorphic lift \(\hat{\Psi}\) of \(\Psi \circ F\) the condition \(\langle \hat{\Psi}, \hat{\Psi} \rangle = 0 = \langle \partial \hat{\Psi}, \partial \hat{\Psi} \rangle\) holds. Conversely, every (nondegenerate) unbranched null curve gives rise to a minimal surface with embedded planar ends by reversing the above construction.

Let \(V = \mathbb{C}^4\) be equipped with the 2-form \(\Omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4\). Consider the 5-dimensional space
\[
W = \{\eta \in \Lambda^2 V \mid \Omega(\eta) = 0\} \text{ equipped with the non-degenerated symmetric inner product } \frac{1}{2} \Omega \wedge \Omega, \text{ and the corresponding 3-quadric } Q_\Omega \text{ of null lines in } PW. \text{ Identifying } (W, \frac{1}{2} \Omega \wedge \Omega) \cong (\mathbb{C}^5, \langle ., . \rangle) \text{ yields } Q_\Omega \cong Q^3. \text{ A holomorphic curve } \psi : \Sigma \to C \to \mathbb{C}^3 \text{ is a contact curve if } \Omega(\hat{\psi} \wedge \partial \hat{\psi}) = 0 \text{ holds for every local holomorphic lift } \hat{\psi} \text{ of } \psi. \text{ Then, with respect to a local holomorphic coordinate } z, \text{ the map } z \mapsto \hat{\psi} \wedge \frac{\partial \hat{\psi}}{\partial z} \text{ gives a local lift of a well-defined holomorphic curve}
\]
that every nondegenerate null curve is given by a nondegenerate contact curve in $\mathbb{C}P^3$. For $\Sigma = \mathbb{C}P^1$ and ψ of degree d its second associated curve ψ^2 is unbranched if and only if the total branch order of ψ is $d - 3$. This is a direct consequence of the Plücker relations applied to the duality between ψ and its third associated curve, see [4]. Hence, to construct genus 0 minimal surfaces with $2k + 1$ embedded planar ends, we have to construct rational contact curves of degree $2k$ with total branch order $2k - 3$.

2.1. Rational contact curves of degree $2k$ with total branch order $2k - 3$. For $k \in \mathbb{N}\setminus\{3\}$ consider the map $\psi: \mathbb{C}P^1 \to \mathbb{C}P^3$ defined via the lift

$$
\hat{\psi}(z) = \left(\frac{1}{6}(-6 + 13k - 9k^2 + 2k^3 + \frac{12(-3+2k)}{3-3k}z^k + 3k(-3+2k)z^k - 6z^{2k})}{z^2(-1 + k + z^k)} \right). \quad (4)
$$

This is a nondegenerate rational curve of degree $2k$ if $k \in \mathbb{N}\setminus\{3\}$. It can be directly verified that it is a contact curve, i.e., $\Omega(\psi \wedge \frac{\partial \psi}{\partial \bar{z}}) = 0$. For $k \in \mathbb{N}\setminus\{3\}$ its branch points are at the k-th roots of unity and at $z = \infty$. The branch order at the roots of unity is 1, and at $z = \infty$ the branch order is $k - 3$. Hence, the total branch order is $2k - 3$. The construction fails for $k \leq 3$: for $k = 1$, the curve is of degree 2 and branched at $z = 0$ and $z = 1$. Thus, its second associate curve cannot be unbranched. For $k = 2$, the degree of the curve is $2 \neq 4$. For $k = 3$ and $k = 0$, the formula [1] gives a point in $\mathbb{C}P^3$. For $k = 4$ we obtain the first valid example

$$
\hat{\psi}(z) = (z^3, 5 + 20z^4 - z^8, 5z + 5z^5, 3z^2 + z^6).
$$

Together with the examples of unbranched null curves of even degree $d \geq 4$ and the nonexistence results of Bryant in [2], this shows:

Theorem. There exist a Willmore sphere $\phi_n: \mathbb{C}P^1 \to S^3$ with Willmore energy $4\pi(n-1)$ if and only if $n \in \mathbb{N}\setminus\{2, 3, 5, 7\}$.

For completeness, we state the formula for the genus 0 minimal surfaces $f = \Re(F)$ with $(2k + 1)$ embedded planar ends corresponding to the contact curve (4). Note that these surfaces are only determined up to Goursat transformations [4], see also [2]. We leave it as an exercise for the interested reader to verify that we have reobtained the surfaces of Peng and Xiao [5] up to a Goursat transformation and reparametrisation. The meromorphic map $F: \mathbb{C}P^1 \to \mathbb{C}^3$ is given by

$$
F(z) = \left(\frac{-12\sqrt{-1}(3k)z^2(2-3k+z^2)}{-12\sqrt{-1}(3k)(-1+k)z^2(-3-2k)(-6(-1+k)(-3+2k)z^2(-3-3k)z^2(-3+k)(-6+k+2k)^2z^{12}-12z^6))}{4z(-3+k)(-1+k)z^2(3-2k)(-6(-1+k)(-3-2k)z^2(-3-3k)z^2(-3+k)(-6+k+2k)^2z^{12}-12z^6))} \right).
$$

References

[1] R. L. Bryant, A duality theorem for Willmore surfaces, J. Diff. Geo. 20 (1984), no. 1, 23–53.

[2] R. L. Bryant, Surfaces in conformal geometry, Proc. of symposia in pure math., 48 (1988), 227–240.

[3] R. L. Bryant, Notes on projective, contact, and null curves, arxiv:1905.06117.

[4] E. Goursat, Sur un mode de transformation des surfaces minima. Acta Math., Vol 11, 135–186, 1887.

[5] R. Kusner and N. Schmitt, The Spinor Representation of Minimal Surfaces, arxiv.org/abs:ga/9512003.

[6] C.K. Peng and L. Xiao, Willmore surfaces and minimal surfaces with flat ends, Geometry and Topology of Submanifolds X, 259–265 (2000).

Institute of Differential Geometry, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover

E-mail address: seb.heller@gmail.com