Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Dynamics of an SEIR model with infectivity in incubation period and homestead-isolation on the susceptible

Jianjun Jiao *, Zuozhi Liu, Shaohong Cai

School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, PR China

A R T I C L E I N F O

Article history:
Received 1 April 2020
Received in revised form 22 April 2020
Accepted 22 April 2020
Available online 25 April 2020

Keywords:
An SEIR epidemic model
Homestead-isolation on the susceptible
Infectivity in incubation period
Infection-free

A B S T R A C T

In this paper, we present an SEIR epidemic model with infectivity in incubation period and homestead-isolation on the susceptible. We prove that the infection-free equilibrium point is locally and globally asymptotically stable with condition $R_0 < 1$. We also prove that the positive equilibrium point is locally and globally asymptotically stable with condition $R_0 > 1$. Numerical simulations are employed to illustrate our results. In the absence of vaccines or antiviral drugs for the virus, our results suggest that the governments should strictly implement the isolation system to make every effort to curb propagation of disease during the epidemic.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The establishing and analyzing mathematical models play important roles in the control and prevention of disease transmission. Compartment model is the base and also a powerful mathematical framework for understanding the complex dynamics of epidemics. At present, Many researchers [1–3] are increasingly interested in the influence of these behavioral factors on the spread of infectious diseases. Cooke and Driessche [4] proposed and investigated a classical SEIR epidemic model, which has became the most important model in diseases control. Therefore, ODEs, PDEs and SDEs are employed to study SEIR epidemic models, and some results could be found in literatures [5–8]. Zhao et al. [9] investigated an extended SEIR epidemic model with non-communicability in incubation period. National Health Commission of the People’s Republic of China declared that the incubation period of the COVID-19 is about ten days, the incubation period is infectious [10]. The COVID-19 outbreak in China presents that physical protection and social isolation are critical to controlling the epidemic in the absence of vaccines or antiviral drugs for the virus.

* Supported by National Natural Science Foundation of China (11761019,11361014), the Science Technology Foundation of Guizhou Province, China (20175736-001,2008038), the Project of High Level Creative Talents in Guizhou Province, China (No.20164035),and Major Research Projects on Innovative Groups in Guizhou Provincial Education Department (No.[2018]019).

* Corresponding author.

E-mail address: jiaojianjun05@126.com (J. Jiao).

https://doi.org/10.1016/j.aml.2020.106442
0893-9659/© 2020 Elsevier Ltd. All rights reserved.
2. The model

Inspired by the above discussions, we consider an SEIR epidemic model with infectivity in incubation period and homestead-isolation on the susceptible.

\[
\begin{align*}
\frac{dS(t)}{dt} &= \Lambda - \beta (1 - \theta_1)S(t)[I(t) + \theta_2 E(t)] - \mu S(t), \\
\frac{dE(t)}{dt} &= \beta (1 - \theta_1)S(t)[I(t) + \theta_2 E(t)] - (\delta + \mu)E(t), \\
\frac{dI(t)}{dt} &= \delta E(t) - (\gamma + \sigma + \mu)I(t), \\
\frac{dR(t)}{dt} &= (\gamma + \theta_3 \sigma)I(t) - \mu R(t),
\end{align*}
\]

where \(S(t)\) represents the numbers of the susceptible population at time \(t\). \(E(t)\) represents the numbers of the exposed population at time \(t\). \(I(t)\) represents the numbers of the infected population at time \(t\). \(R(t)\) represents the numbers of the recovered population at time \(t\). \(\Lambda > 0\) represents the enrolling rate. \(\beta > 0\) represents the infective effect of the exposed in incubation period. \(\theta \sigma > 0\) represents the natural death rate. \(\delta > 0\) represents the transition rate from \(E\) to \(I\). \(\gamma > 0\) represents the transition rate from \(I\) to \(R\). \(\sigma > 0\) represents hospitalized rate of \(I\) for the disease. \(\theta_3 > 0\) represents the recurred rate of \(I\), and \(\delta > \theta_2(\gamma + \sigma + \mu)\).

3. The dynamics

In this paper, We only consider the following system for \(R(t)\) being not involved in the first, second and third equations of (2.1).

\[
\begin{align*}
\frac{dS(t)}{dt} &= \Lambda - \beta (1 - \theta_1)S(t)[I(t) + \theta_2 E(t)] - \mu S(t), \\
\frac{dE(t)}{dt} &= \beta (1 - \theta_1)S(t)[I(t) + \theta_2 E(t)] - (\delta + \mu)E(t), \\
\frac{dI(t)}{dt} &= \delta E(t) - (\gamma + \sigma + \mu)I(t),
\end{align*}
\]

Then, one equilibrium point of system (3.1) can be easily obtained \(P^0(0,0)\) with \(S^0 = \frac{A}{\mu}\), and another equilibrium point \(P^*(S^*, E^*, I^*)\) of system (3.1) is also obtained, where \(S^* = \frac{\Lambda \beta (1 - \theta_1)[\delta + \theta_2(\gamma + \sigma + \mu)] - \mu(\gamma + \sigma + \mu)(\delta + \mu)}{(\gamma + \sigma + \mu)(\delta + \mu)}, \ E^* = \frac{\Lambda \beta (1 - \theta_1)[\delta + \theta_2(\gamma + \sigma + \mu)] - \mu(\gamma + \sigma + \mu)(\delta + \mu)}{(\gamma + \sigma + \mu)(\delta + \mu)}, \ I^* = \frac{\Lambda \delta (1 - \theta_1)[\delta + \theta_2(\gamma + \sigma + \mu)] - \mu(\gamma + \sigma + \mu)(\delta + \mu)}{(\gamma + \sigma + \mu)(\delta + \mu)}\) with \(\Lambda \beta (1 - \theta_1)[\delta + \theta_2(\gamma + \sigma + \mu)] > \mu(\gamma + \sigma + \mu)(\delta + \mu)\). Then, we define the basic reproduction number of system (3.1) as

\[R_0 = \frac{\Lambda \beta (1 - \theta_1)[\delta + \theta_2(\gamma + \sigma + \mu)]}{\mu(\gamma + \sigma + \mu)(\delta + \mu)}.\]

Theorem 3.1. The equilibrium point \(P^0(\frac{A}{\mu}, 0, 0)\) system (3.1) is locally asymptotically stable if only if \(R_0 < 1\).

Proof. System (3.1) is linearized at equilibrium point \(P^0(\frac{A}{\mu}, 0, 0)\), and its Jacobian matrix \(J^0\) is

\[
J^0 = \begin{pmatrix}
-\mu & -\beta (1 - \theta_1) \theta_2 S^0 & -\beta (1 - \theta_1) S^0 \\
0 & \beta (1 - \theta_1) \theta_2 S^0 - (\delta + \mu) & \beta (1 - \theta_1) S^0 \\
0 & \delta & - (\gamma + \sigma + \mu)
\end{pmatrix}.
\]

We can easily have \(f^0(\lambda) = \text{det} [\lambda I - J^0]\), where

\[
f^0(\lambda) = (\lambda + \mu) \{[\lambda + (\delta + \mu) - \beta (1 - \theta_1) \theta_2 S^0][\lambda + (\gamma + \sigma + \mu) - \delta \beta (1 - \theta_1) S^0],
\]

\[
\]
For all t of system (3.1) is locally asymptotically stable if only if

$$V(0, \theta_1) = 1.$$

If $\lambda(1 - \theta_1)[\delta + \theta_2(\gamma + \sigma + \mu)] > 0$, then

$$a_0 = \mu(AB - C) = -\mu(\gamma + \sigma + \mu)(\delta + \mu) > 0,$$

and $a_3 = 1 > 0$. Therefore, a_0, a_1, a_2, a_3 satisfy the condition (i) of Routh–Hurwitz criterion. While $a_0 < \mu(\delta + \mu)(\gamma + \sigma + \mu)$, $a_1 > \mu(\gamma + \sigma + \mu)$ and $a_2 > (\delta + \mu)$, hence, $a_1a_2 - a_0a_3 > 0$. Obviously, a_0, a_1, a_2, a_3 satisfy the condition (ii) of Routh–Hurwitz criterion. Therefore, equilibrium point $P_0(\mu, 0, 0)$ of system (3.1) is locally asymptotically stable if only if $R_0 < 1$.

Theorem 3.2. The equilibrium point $P_0(\mu, 0, 0)$ system (3.1) is globally asymptotically stable if only if $R_0 < 1$.

Proof. From system (3.1), we can obtain that

$$\frac{d}{dt}(S(t) + E(t) + I(t)) \leq \lambda - \mu S(t).$$

This implies that

$$\limsup_{t \to \infty}(S(t) + E(t) + I(t)) \leq \frac{\lambda}{\mu}.$$

For $t \geq 0$, (3.6) shows that

$$\Sigma = \{(S(t), E(t), I(t)) \in R^3_+ \mid S(t) + E(t) + I(t) \leq \frac{\lambda}{\mu}\},$$

is a positive invariant set of system (3.1).

Lyapunov functions are defined as

$$V_1(t) = \int_{\frac{A}{\mu}}^{S(t)} (1 - \frac{\lambda}{\mu u})du, \quad V_2(t) = E(t) + \frac{\delta + \mu}{\delta}I(t).$$

For all $t \geq 0$, the derivatives of $V_1(t)$ and $V_2(t)$ are

$$\frac{dV_1(t)}{dt} = (1 - \frac{\lambda}{\mu S(t)})(\lambda - \theta_1S(t)[I(t) + \theta_2E(t)] - \mu S(t))$$

$$= -(\frac{A}{\mu S(t)})^2 - \theta_1S(t)[I(t) + \theta_2E(t)] + \frac{\lambda(1 - \theta_1)\beta[I(t) + \theta_2E(t)]}{\mu},$$

where $a_0 = \mu(AB - C)$, $a_1 = [(AB - C) + \mu(A + B)]$, $a_2 = \mu + A + B$, $a_3 = 1$ with $A = (\delta + \mu) - \beta(1 - \theta_1)\theta_2S^0$, $B = \gamma + \sigma + \mu$, $C = \delta\beta(1 - \theta_1)S^0$.

According to Routh–Hurwitz criterion, equilibrium point $P_0(\mu, 0, 0)$ of system (3.1) is locally asymptotically stable if only if (i) $a_0, a_1, a_2, a_3 > 0$, and (ii) $a_1a_2 - a_0a_3 > 0$. Therefore, a_0, a_1, a_2, a_3 satisfy the condition (i) of Routh–Hurwitz criterion. While $a_0 < \mu(\delta + \mu)(\gamma + \sigma + \mu)$, $a_1 > \mu(\gamma + \sigma + \mu)$ and $a_2 > (\delta + \mu)$, hence, $a_1a_2 - a_0a_3 > 0$. Obviously, a_0, a_1, a_2, a_3 satisfy the condition (ii) of Routh–Hurwitz criterion. Therefore, equilibrium point $P_0(\mu, 0, 0)$ of system (3.1) is locally asymptotically stable if only if $R_0 < 1$.
Proof. System (3.1) is linearized at equilibrium point \(\Lambda \) that is globally asymptotically stable. For \(R_0 < 1 \), we have
\[
\frac{dV(t)}{dt} = \frac{dV_1(t)}{dt} + \frac{dV_2(t)}{dt} = -\frac{(A - \mu S(t))^2}{\mu S(t)} - \frac{(\delta + \mu)(\gamma + \sigma + \mu)}{\delta}(1 - R_0)I(t) \leq 0. \tag{3.11}
\]
As we know that \(\frac{dV(t)}{dt} = 0 \) holds if and only if \(S(t) = S^0, E(t) = 0, I(t) = 0 \). From system (3.1), we know that \(\{(\frac{A}{\mu}, 0, 0)\} \) is the largest invariant set in the region \(\Sigma_0 = \{(S(t), E(t), I(t)) \in R^3_+ | \frac{dV(t)}{dt} = 0 \} \) for \(t \geq 0 \). Lyapunov–LaSalle asymptotic stability theorem in [11] implies that equilibrium \((\frac{A}{\mu}, 0, 0) \) of system (3.1) is globally asymptotically stable.

Theorem 3.3. If \(R_0 > 1 \), Equilibrium point \(P^*(S^*, E^*, I^*) \) of system (3.1) is locally asymptotically stable.

Proof. System (3.1) is linearized at equilibrium point \(P^*(S^*, E^*, I^*) \) and its Jacobian matrix \(J^* \) is
\[
J^* = \begin{pmatrix}
-\mu - \beta(1 - \theta_1)(I^* + \theta_2E^*) & -\beta(1 - \theta_1)\theta_2S^* & -\beta(1 - \theta_1)S^* \\
\beta(1 - \theta_1)(I^* + \theta_2E^*) & \beta(1 - \theta_1)\theta_2S^* \mp (\delta + \mu) & \beta(1 - \theta_1)S^* \\
0 & \delta & -(\gamma + \sigma + \mu)
\end{pmatrix}. \tag{3.12}
\]
We can easily have \(f^*(\lambda) = \text{det}[\lambda I - J^*] \), where
\[
f^*(\lambda) = [\lambda + \mu + \beta(1 - \theta_1)(I^* + \theta_2E^*)] \\
\times \{[\lambda + (\delta + \mu) - \beta(1 - \theta_1)\theta_2S^*][\lambda + (\gamma + \sigma + \mu)] - \delta\beta(1 - \theta_1)S^* \} + \beta(1 - \theta_1)(I^* + \theta_2E^*)[\beta(1 - \theta_1)\theta_2S^*(\lambda + \gamma + \sigma + \mu) + \delta\beta(1 - \theta_1)S^*]. \tag{3.13}
\]
(3.13) is obviously a cubic polynomial, we can replace the coefficient of (3.13) with \(a_3, a_2, a_1, a_0 \). Therefore, (3.13) can be rewritten as
\[
f^*(\lambda) = a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0, \tag{3.14}
\]
where
\[
a_0 = A(BC - D) + (A - \mu)[B - (\delta + \mu)C + D],
a_1 = BC - D + AB + AC + (A - \mu)[B - (\delta + \mu)],
a_2 = A + B + C, a_3 = 1, \quad A = \mu + \beta(1 - \theta_1)[I^* + \theta_2E^*] > 0, \quad B = (\delta + \mu) - \beta(1 - \theta_1)\theta_2S^* > 0, \quad C = \gamma + \sigma + \mu > 0, \quad D = \delta\beta(1 - \theta_1)S^* > 0.
\]
According to Routh–Hurwitz criterion, equilibrium point \(P^*(S^*, E^*, I^*) \) of system (3.1) is locally asymptotically stable if only if \((i) a_0, a_1, a_2, a_3 > 0 \) and \((ii) a_1a_2 - a_0a_3 > 0 \). Obviously, \(a_2 > 0 \) and \(a_3 > 0 \). If
\[
\Lambda\beta(1 - \theta_1)[\delta + \theta_2(\gamma + \sigma + \mu)] > \mu(\gamma + \sigma + \mu)(\delta + \mu),
\]
then,
\[
a_0 = A(BC - D) + (A - \mu)[(B - (\delta + \mu)C + D] = \beta(1 - \theta_1)[\delta - \theta_2(\gamma + \sigma + \mu)]\{\Lambda\beta(1 - \theta_1)[\delta + \theta_2(\gamma + \sigma + \mu)] - \mu(\gamma + \sigma + \mu)(\delta + \mu)\} > 0,
\]
\[
a_1 = BC - D + AB + AC + (A - \mu)[B - (\delta + \mu)] > [\delta + (\gamma + \sigma + \mu)][\delta + \theta_2(\gamma + \sigma + \mu)]
\]
\[
\frac{\beta(1 - \theta_1)\theta_2(\gamma + \sigma + \mu)(\delta + \mu)}{\delta + \theta_2(\gamma + \sigma + \mu)}\{\Lambda\beta(1 - \theta_1)[\delta + \theta_2(\gamma + \sigma + \mu)] - \mu(\gamma + \sigma + \mu)(\delta + \mu)\}
\]
Therefore, a_0, a_1, a_2, a_3 satisfy the condition (i) of Routh–Hurwitz criterion. Then, a_0 < (A - \mu)D, a_1 > AB + (A - \mu)[B - (\delta + \mu)] and a_2 > \gamma + \sigma + 2\mu, hence, a_1 a_2 - a_0 a_3 >\frac{\mu \delta (\delta + \mu)}{\delta + \theta_2 (\gamma + \sigma + \mu)} + \mu \beta (1 - \theta_1)(\delta + \mu) I^* > 0. Obviously, a_0, a_1, a_2, a_3 satisfy the condition (ii) of Routh–Hurwitz criterion. Therefore, equilibrium point E^*(S^*, E^*, I^*) of system (3.1) is locally asymptotically stable if only if \lambda (1 - \theta_1)[\delta + \theta_2 (\gamma + \delta + \mu)] > \mu (\gamma + \delta + \mu)(\delta + \mu).

Theorem 3.4. Equilibrium point P^*(S^*, E^*, I^*) of system (3.1) is globally asymptotically stable if and only if R_0 > 1.

Proof. Lyapunov functions are defined as

\[V_3(t) = \int_{S^*}^{S(t)} (1 - \frac{S^*}{u}) du, \]

and

\[V_4(t) = E(t) - E^* - E^* \ln \frac{E(t)}{E^*} + \frac{\delta + \mu}{\delta} [I(t) - I^* - I^* \ln \frac{I(t)}{I^*}]. \]

For all t \geq 0, the derivatives of V_3(t) and V_4(t) are

\[\frac{dV_3(t)}{dt} = (1 - \frac{S^*}{S(t)}) [A - \beta (1 - \theta_1) S(t)(I(t) + \theta_2 E(t)) - \mu S(t)] = \mu (S^* - S(t))(1 - \frac{S^*}{S(t)}) + (\delta + \mu) E^*(1 - \frac{S^*}{S(t)})[1 - \frac{S(t)(I(t) + \theta_2 E(t))}{S^*(I^* + \theta_2 E^*)}], \]

and

\[\frac{dV_4(t)}{dt} = (1 - \frac{E^*}{E(t)}) \frac{dE(t)}{dt} + \frac{\delta + \mu}{\delta} [1 - \frac{I^*}{I(t)}] \frac{dI(t)}{dt} - \frac{(\delta + \mu) E(t) I^*}{\delta} + \frac{(\delta + \mu)(\gamma + \sigma + \mu) I^*}{\delta} = (\delta + \mu) E^* \left\{ \frac{S(t)[S(t) + \theta_2 E(t)]}{S^*[I^* + \theta_2 E^*]} \right\} \right) - \beta (1 - \theta_1) S(t)[I(t) + \theta_2 E(t)] + 1 - \frac{I(t)}{I^*} - E(t) I^* + 1). \]

Then,

\[\frac{dV(t)}{dt} = \frac{dV_3(t)}{dt} + \frac{dV_4(t)}{dt} = -\frac{\mu (S^* - S(t))^2}{S(t)} + (\delta + \mu) E^* [3 - \frac{S^*}{S(t)} - \frac{S(t) I(t) E^*}{S^* I^* E(t)} - \frac{E(t) I^*}{I(t) E^*}] \leq -\frac{\mu (S^* - S(t))^2}{S(t)} - (\delta + \mu) E^* \frac{(S^* - S(t))^2}{S^* S(t)} \leq 0. \]

Therefore, \(\frac{dV(t)}{dt} = 0 \) holds if only if \(S(t) = S^*, E(t) = E^*, I(t) = I^* \). Applying Lyapunov–LaSalle asymptotic stable theorem in [11], \{ (S^*, E^*, I^*) \} is the largest invariant set in \(\mathbb{S}_0 \), and it is globally asymptotically stable. This completes the proof.
Fig. 1. Threshold analysis of parameter θ_1 and the basic reproduction number R_0 of system (2.1) with $S(0) = 100, E(0) = 15, I(0) = 20, \Lambda = 10, \beta = 0.2, \theta_2 = 0.1, \mu = 0.3, \delta = 0.3, \gamma = 0.2, \sigma = 0.2$. (a) $I(t)$ changes with parameter θ_1; (b) Time series of $S(t), E(t)$, and $I(t)$ change with parameter $\theta_1 = 0.7$; (c) Time series of $S(t), E(t)$, and $I(t)$ change with parameter $\theta_1 = 0.9$.

4. Conclusion and simulations

In this work, we consider an SEIR epidemic model with infectivity in incubation period and homestead-isolation on the susceptible. The basic reproduction number of system (2.1) is obtained as

$$R_0 = \frac{\Lambda \beta (1 - \theta_1) [\delta + \theta_2 (\gamma + \sigma + \mu)]}{\mu (\gamma + \sigma + \mu) (\delta + \mu)}.$$

We have proved that the infection-free equilibrium point P_0 is locally and globally asymptotically stable if only if $R_0 < 1$. We also have proved that if $R_0 > 1$, equilibrium point P^* is locally and globally asymptotically stable. If it is assumed that $S(0) = 100, E(0) = 15, I(0) = 20, \Lambda = 10, \beta = 0.2, \theta_2 = 0.1, \mu = 0.3, \delta = 0.3, \gamma = 0.2, \sigma = 0.2$, we employ with computer aided techniques to obtain the threshold $\theta_1^* \approx 0.85$ of parameter θ_1 (see (a) in Fig. 1.). If we select $\theta_1 = 0.7$, the basic reproduction number of system (2.1) $R_0 = 1.7619 > 1$, it can be seen that the equilibrium point P^* is globally asymptotically stable.(see (b) in Fig. 1.). If we select $l = 0.9$, the basic reproduction number of system (2.1) $R_0 = 0.5873 < 1$, it can be seen that the equilibrium point P^0 is globally asymptotically stable.(see (c) in Fig. 1.). The proofs and the numerical simulations are employed to illustrate that the strategies of the homestead-isolation on the susceptible are very important in the epidemics of infectious diseases. Our results suggest that the governments should strictly implement the isolation system to make every effort to curb propagation of disease.

CRediT authorship contribution statement

Jianjun Jiao: Writing-orginal draft. Zuozhi Liu: Simulations. Shaohong Cai: Writing - review & editing.

References

[1] K.M. Ariful Kabir, Kazuki Kuga, Jun Tanimoto, Analysis of SIR epidemic model with information spreading of awareness, Chaos Solitons Fractals 119 (2019) 118–125.
[2] G. Lv, Z. Lu, Global asymptotic stability for the SEIRS models with varying total population size, Math. Biosci. 296 (2018) 17–25.
[3] J. Jiao, S. Cai, L. Li, Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports, Physica A 449 (2016) 145–159.
[4] K. Cooke, P. Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol. 35 (1996) 240–260.
[5] A. Abta, A. Kaddar, H.T. Alaoui, Global stability for delay SIR and SEIR epidemic models with saturated incidence rates, Electron. J. Differential Equations 396 (2012) 956-965.
[6] S. Han, C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett. 98 (2019) 114–120.
[7] Q. Liu, et al., Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence, Physica A 476 (2017) 58–69.
[8] B. Tian, R. Yuan, Traveling waves for a diffusive SEIR epidemic model with non-local reaction, Appl. Math. Model. 50 (2017) 432–449.
[9] Danling Zhao, Jianbin Sun, et al., An extended SEIR model considering homepage effect for the information propagation of online social networks, Physica A 512 (2018) 1019–1031.
[10] National health commission of the people’s Republic of China, 2020, Available at: http://www.nhc.gov.cn/. (26 January 2020).
[11] R. Xue, F. Wei, Persistence and extinction of a stochastic SIS epidemic model with double epidemic hypothesis, Ann. Appl. Math. 33 (2017) 77–89.