Ultrafast Photoclick Reaction for Selective 18F-Positron Emission Tomography Tracer Synthesis in Flow
Fu, Youxin; Helbert, Hugo; Simeth, Nadja A; Crespi, Stefano; Spoelstra, Gerbren B; van Dijl, Jan Maarten; van Oosten, Marleen; Nazario, Luiza Reali; van der Born, Dion; Luurtsema, Gert
Published in: Journal of the American Chemical Society
DOI: 10.1021/jacs.1c02229

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Fu, Y., Helbert, H., Simeth, N. A., Crespi, S., Spoelstra, G. B., van Dijl, J. M., van Oosten, M., Nazario, L. R., van der Born, D., Luurtsema, G., Szymanski, W., Elsinga, P. H., & Feringa, B. L. (2021). Ultrafast Photoclick Reaction for Selective 18F-Positron Emission Tomography Tracer Synthesis in Flow. Journal of the American Chemical Society, 143(27), 10041-10047. Advance online publication. https://doi.org/10.1021/jacs.1c02229

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Ultrafast Photoclick Reaction for Selective 18F-Positron Emission Tomography Tracer Synthesis in Flow

Youxin Fu,‡ Hugo Helbert,‡ Nadja A. Simeth, Stefano Crespi, Gerbren B. Spoelstra, Jan Maarten van Dijl, Marleen van Oosten, Luiza Reali Nazario, Dion van der Born, Gert Luurtsema, Wiktor Szymanski,* Philip H. Elsinga,* and Ben L. Feringa*

Cite This: J. Am. Chem. Soc. 2021, 143, 10041–10047

ABSTRACT: The development of very fast, clean, and selective methods for indirect labeling in PET tracer synthesis is an ongoing challenge. Here we present the development of an ultrafast photoclick method for the synthesis of short-lived 18F-PET tracers based on the photocycloaddition reaction of 9,10-phenanthrenequinones with electron-rich alkenes. The respective precursors are synthetically easily accessible and can be functionalized with various target groups. Using a flow photo-microreactor, the photoclick reaction can be performed in 60 s, and clinically relevant tracers for prostate cancer and bacterial infection imaging were prepared to demonstrate practicability of the method.

Positron emission tomography (PET) is a key molecular imaging technique, characterized by unparalleled sensitivity. It targets the tissue of interest with tracers functionalized with radioactive, short half-life positron-emitting nuclides for detection by gamma cameras. Therefore, the development of radiopharmaceuticals for PET is highly dependent on our ability to introduce radionuclides efficiently and rapidly into the target chemical structures. The workhorse radionuclide for PET is fluorine-18, which is characterized by a half-life suitable for radiosynthesis and biodistribution ($t_{1/2} = 109.8$ min). Emission of low-energy positrons ($E_{\text{mean}} = 0.64$ MeV) accompanies the decay of 18F, allowing for relatively high image resolution. Consequently, 18F is the most widely used radionuclide for the clinical labeling of PET radiopharmaceuticals. Labeling methods to introduce 18F can be divided into direct and indirect techniques. Most direct labeling strategies rely on the use of 18F to functionalize a wide range of substrates, introducing 18F-aryl, 18F-alkyl, 18F-CF$_3$ or, very recently, 18F-SO$_2$ groups. These new direct labeling strategies greatly expanded the applicability of the method in the past years; however, the need for elevated reaction temperatures or the low functional group tolerance stimulated recent efforts toward milder direct labeling methods involving chelation of 18F or 18F-exchange reactions on heteroatoms like Si and B.

Hence, indirect labeling is often the preferred option for particularly sensitive substrates. This approach is based on the fluorination of a prosthetic group that is subsequently attached to a tracer in a bioorthogonal reaction.

Due to the limited half-life of 18F, this final coupling step has to be very efficient and fast. Hence, the copper-catalyzed azide−alkyne cycloaddition (CuAAC) reaction became an attractive labeling method. Its metal-free labeling variants, such as strain-promoted click chemistry (SPAAC) and tetrazine trans-cyclooctadiene cycloadditions (IEDDA), were introduced in an attempt to address the issues related to slow reaction rate and copper toxicity. Considering the challenge to develop very fast, clean, and selective methods for indirect labeling, photochemical click reactions would provide a particularly appealing alternative.

Highly beneficial is that photoclick reactions can combine important requirements to provide a practical indirect labeling protocol, such as high functional group tolerance, ambient reaction conditions, and easy operation in a photoflow reactor, and, importantly, one might achieve extremely high reaction rates without the need for additional reagents or catalysts. The outstanding possibilities offered by photochemical reactions have recently been recognized in several radiochemical applications, i.e., a methylation protocol for 18F-PET ligand synthesis, photo-redox catalysis for 18F−C bond formation, photoactivatable aryl azides, and photo-triggered reaction of tetrazoles for radiosynthesis of 89Zr-labeled proteins.

However, so far a very limited number of photochemical transformations has been utilized as a key step in the indirect labeling of 18F-PET tracers and none of them provides the modularity and selectivity typical of click reactions.

The photoclick reactions showed for PET tracer synthesis often lack in functional group tolerance or are performed with short irradiation wavelength that can be absorbed by, or damage, common biomolecules. With these challenges in mind, we were aiming to identify and evaluate a fast photoclick reaction that can be conveniently used for the versatile preparation of 18F-PET tracers under visible light irradiation.
An interesting candidate for such a process is provided by photocycloaddition between 9,10-phenanthrenequinones (PQs) and suitably substituted alkenes (see Figure 1B). This “photoclick” [4+2] cycloaddition was already discovered in the 1940s. However, the need for long reaction times hampered its application in synthesis. Recently, using a suitable high-power LED light source able to excite PQ (λ_{max} at 395 nm), the transformation was performed in the minute range in a biological environment. We envisioned that this fast and clean photoclick reaction holds tremendous potential for indirect labeling of tracers with short-lived radioisotopes to produce 18F-PET radiopharmaceuticals (Figure 1B). Here, we present the development of the PQ photoclick reaction into highly efficient batch and flow methodology for ultrafast radiosynthesis and its application for the preparation of 18F-labeled compounds, including a prostate cancer biomarker and a bacterial infection imaging tracer.

By irradiation of PQ with 395 nm light in the presence of electron-rich vinyl ethers (VEs, see Figure 2), the photocycloaddition, proceeding via the triplet state of PQ, furnishes PQ-VE adducts. Establishing the reaction conditions between PQ and VE1 (Figure 2A) allowed the synthesis of the corresponding photocycloadduct PQ-VE1 (see SI, Figure S59) after only 180 s of irradiation (see SI, sections 2 and 4, for photoproduct PQ-VE1 synthesis and characterization by 1H and 13C NMR and HRMS). We also discovered ultra-fast reactivity of cyclic vinyl ethers (Figure 2A). Moreover, control experiments using light−dark cycles showed that changes in the absorption spectrum and product formation follow exclusively a photochemical pathway (see SI, Figure S43).

To explore the scope of the photocycloaddition and enable even higher reaction rates for PET labeling, we investigated the reactivity with PQ of a series of hitherto unexplored cyclic VEs: 3,4-dihydro-2H-pyran-2-methanol (VE2), 2,3-dihydrofur-an (DF), and 2,3-dihydropyran (DP, Figure 2A) were reacted under 395 nm light irradiation with the diketone (for detailed information, see SI, section 4). All substrates showed high reactivity toward PQ and formed adducts exhibiting strong blue fluorescence, even visible by naked eye. The photoclick reactions were monitored by fluorescence spectroscopy (Figure 2A) and reached completion in less than 5 min. Formation of the cycloaddition products was confirmed by NMR and high-resolution mass spectroscopy (see SI, sections 2−4). Gratifyingly, the cyclic vinyl ethers VE2, DF, and DP exhibited significantly higher reaction rates compared to the linear vinyl ether (VE1). The full conversion could be achieved in around 90 s for the cyclic vinyl ethers and 180 s for VE1, respectively. Indeed, the electron properties of the vinyl ether greatly influence the reaction rate (see Figure 2A). The computed energies (SMD(MeCN)-ωB97X-D/def2-SVP level) of the HOMO of the various traps match the observed rates found in the experiments (see Figure 2B and SI, section 5).

The cyclic vinyl ethers are more nucleophilic than the linear analogs and, consequently, more prone to react with the lowest unoccupied β-spin orbital of the triplet PQ.

We then proceeded to extend the scope of this fast photoclick reaction to the fluorinated vinyl ethers F-VE1 (linear) and F-VE2 (cyclic; see Figure 2A). The conversion of both substrates with PQ was monitored by fluorescence spectroscopy (Figure 2A), showing a similar trend as observed for the VE compounds, with the cyclic compound reacting faster (full conversion in 1 min for F-VE2 and 3 min for F-VE1). Formation of the cycloaddition products was confirmed.
These results indicate that F-VEs show excellent reactivity toward PQ, quickly and selectively generating the desired fluorogenic photocycloadducts. With the “cold” reaction conditions in hand, we synthesized the 18F-radiolabeled analogs of the two F-VEs. The fluorination of the corresponding tosylates was performed by rapid (3 min) nucleophilic substitution with azeotropically dried 18F-\(\text{F}^-\)/K222, and the products were purified by distillation, affording 18F-VE1 and 18F-VE2 in moderate to good radiochemical yield (58% and 37%, respectively; for experimental details see SI, section 6). Both compounds could be directly used for the subsequent photoclick reaction. Irradiation of PQ in the presence of both 18F-VE linkers (cf. Figure 3A) showed full conversion of the radioactive starting material; however, the expected 18F-VE-PQ was not formed. (For experimental details of optimization, see also SI, section 4.)

\(^1\)H NMR analysis of the reaction between VE2 and PQ revealed that, without an excess of the trap, namely the VE, photooxidation degraded the product. Consequently, the photochemical reactions at equimolar ratios or with excess of PQ (such as in the radiolabeling experiments) were performed with deoxygenated solvents. To our delight, degradation of the product was prevented, and F-VE2-PQ remained unaffected by NMR and high-resolution mass spectroscopy (see SI, section 2).

Figure 2. (A) Comparison of the conversion of the photocycloaddition of PQ with different VE over time followed by fluorescence spectroscopy (1 cm cuvette, 2 mL sample volume, 25 °C, sample interval 10 s. Concentration: 2.5 μM (PQ), 25 μM (VE), \(\lambda_{ex} = 365\) nm, \(\lambda_{obs} = 403\) nm). (B) Frontier orbitals of the species involved in the reaction (HOMO of VE and lowest unoccupied \(\beta\)-spin orbital of the triplet PQ) at the SMD(MeCN)-\(\omega\)B97X-D/def2-SVP level.
even after 10 min of irradiation (see SI, Figure S51, F-VE2-PQ). Applying oxygen-free conditions to the radiolabeling procedure with 18F-VE1 resulted in 18F-labeled product 18F-VE1-PQ in high radiochemical conversion (RCC, 69%) in 5 min. The use of cyclic 18F-VE2 resulted in lower conversion to the product (RCC 20% to 18F-VE2-PQ) compared to the linear VE.

To improve the efficiency of the photoclick reaction and to further reduce the reaction time, the reaction was optimized in a microfluidic flow photoreactor (for details regarding the optimization condition, see SI, section 6). This allowed us to have highly efficient irradiation (effective light penetration) and to automate the protocol. Toward this goal, a commercially available FlowSafe synthesis module20 was equipped with two 395 nm LEDs (see Figure 3B). Indeed, performing the reaction this way enhanced the irradiation efficiency significantly and allowed us to achieve high conversions even at residence times as short as 60 s. The high conversion observed in batch for the synthesis of 18F-VE1-PQ could be improved even further in flow, affording the desired product in 77% RCC (Figure 3C).

We subsequently explored if the substituted PQ derivatives perform equally well in this developed ultrafast click methodology, envisioning the embedding of PQ derivatives into targeting moieties of future tracers for reaction with the vinyl prosthetic groups. A carboxylic acid on the PQ moiety as a handle for further synthetic functionalization and linear 18F-VE1 was selected as the reaction partner in the photo-induced cyclization reaction. First, the effect of the amide substitution on PQ was assessed by performing the labeling of compound 18F-VE1-PQ-Amide. The expected product was formed in satisfactory radiochemical conversion (RCC 49%, Figure 3C) after only 60 s of irradiation in flow. In order to test the labeling of potential probes via a direct attachment using an amide linkage, a well-established prostate-specific membrane antigen (PSMA) binding motif was connected to the PQ core structure as a model substrate. PSMA is a biological marker of prostate cancer that is often targeted for diagnosis in PET imaging.$^{20,49-51}$ (Figure 3C). Most of the PET probes developed to target PSMA share the same lysine-urea-glutamate binding motif.20

Finally, driven by a clinical need to detect bacterial infections, non-invasively and with high sensitivity,$^{22-34}$ the labeling of the antibacterial agent vancomycin was undertaken. A suitable PQ derivative, PQ-Vanco, was synthesized (for details see SI) and isolated as a mixture of functional isomeric products, as reported before for the vancomycin system (see SI for the fragmentation pattern assignment).35,36 Gratifyingly, application of our labeling strategy in vivo resulted in lower conversion to the crude final product, to be performed in less than 10 min. From a practical point of view, the method holds tremendous potential as a novel radiolabeling procedure for 18F-tracers. Moreover, exploiting the fluorochromophore properties of the photocycloadduct offers prospects toward the development of other (multimodal) imaging protocols.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c02229.

Experimental procedures and characterization data for all new compounds, photophysical and chemical studies,
details regarding the computational calculation, and detailed protocols of radiochemistry (PDF)

■ AUTHOR INFORMATION

Corresponding Authors

Witkor Szymanski — Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; † orcid.org/0000-0002-9754-9248; Email: w.szymanski@umcg.nl

Philip H. Elsinga — Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; ‡ orcid.org/0000-0003-3635-4305; Email: p.h.elsinga@umcg.nl

Ben L. Feringa — Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; † orcid.org/0000-0003-0588-8435; Email: b.l.feringa@rug.nl

Authors

Youxin Fu — Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; † orcid.org/0000-0001-6942-6534

Hugo Helbert — Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; † orcid.org/0000-0001-8130-883X

Stefano Crespi — Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; † orcid.org/0000-0002-0279-4903

Gerbrin B. Spoelstra — Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; † orcid.org/0000-0002-7063-2834

Jan Maarten van Dijl — Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; † orcid.org/0000-0002-5688-8438

Marleen van Oosten — Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; † orcid.org/0000-0002-7061-6324

Luiza Reali Nazario — Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, 9713 GZ Groningen, The Netherlands; † orcid.org/0000-0002-4983-5047

Dion van der Born — FutureChemistry, 6708 PW Wageningen, The Netherlands; † orcid.org/0000-0001-7381-1160

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.1c02229

Author Contributions

Y.F. and H.H. contributed equally.

Notes

The authors declare the following competing financial interest(s): Dion van der Born is an employee of Future Chemistry which produces the FlowSafe equipment used in this work.

■ ACKNOWLEDGMENTS

Bram Maas is kindly acknowledged for operating the cyclotron and providing the 18F. We thank Renze Snee (University of Groningen) for his help with the HRMS measurements. We gratefully acknowledge the generous support from the Horizon 2020 Framework Program (ERC Advanced Investigator Grant No. 694345 to B.L.F.), the Marie Sklodowska-Curie Actions (Individual Fellowship 838280 to S.C.), the Alexander-von-Humboldt Foundation (Feodor Lynen Fellowship to N.A.S.), the Ministry of Education, Culture and Science of The Netherlands (Gravitation Program No. 024.001.035 to B.L.F.), and The Netherlands Organization for Scientific Research (NWO, VIDI grant no. 723.014.001 for W.S.). This research was supported by NWO domain TTW and Stryer European Operations Ltd.

■ REFERENCES

(1) Radiopharmaceuticals; Calabrà, F., Schillaci, O., Eds.; Springer International Publishing, 2020.
(2) Preshlock, S.; Tredwell, M.; Gouverneur, V. 18 F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem. Rev. 2016, 116 (2), 719–766.
(3) Kong, J.; Liang, S. H. Aliphatic [18F]Fluorination Chemistry for Positron Emission Tomography. In Fluorination; Springer Singapore, 2020; pp 1–14.
(4) Zheng, Q.; Xu, H.; Wang, H.; Du, W.-G. H.; Wang, N.; Xiong, H.; Gu, Y.; Noodlemen, L.; Sharpless, K. B.; Yang, G.; Wu, P. Sulfur [18F]Fluoride Exchange Click Chemistry Enabled Ultrafast Late-Stage Radiosynthesis. J. Am. Chem. Soc. 2021, 143 (10), 3753–3763.
(5) Brooks, A. F.; Topczewski, J. J.; Ichishii, N.; Sanford, M. S.; Scott, P. J. H. Late-Stage [18F]Fluorination: New Solutions to Old Problems. Chem. Sci. 2014, 5 (12), 4545–4553.
(6) Wright, J. S.; Kaur, T.; Preshlock, S.; Tanzy, S. S.; Winton, W. P.; Sharninghausen, L. S.; Wiesner, N.; Brooks, A. F.; Sanford, M. S.; Scott, P. J. H. Copper-Mediated Late-Stage Radiofluorination: Five Years of Impact on Preclinical and Clinical PET Imaging. Clin. Transl. Imaging 2020, 8 (3), 167–206.
(7) Campbell, M. G.; Mercier, J.; Genicot, C.; Gouverneur, V.; Hooker, J. M.; Ritter, T. Bridging the Gaps in 18 F PET Tracer Development. Nat. Chem. 2017, 9 (1), 1–3.
(8) Neumann, C. N.; Hooker, J. M.; Ritter, T. Concerted Nucleophilic Aromatic Substitution with [18F]- and [19F]- Nature 2016, 534 (7607), 369–373.
(9) Rickmeier, J.; Ritter, T. Site-Specific Deoxyfluorination of Small Peptides with [18F]Fluoride. Angew. Chem., Int. Ed. 2018, 57 (43), 14207–14211.
(10) Xu, P.; Zhao, D.; Berger, F.; Hamad, A.; Rickmeier, J.; Petzold, R.; Kondratiiu, M.; Bohdan, K.; Ritter, T. Site-Selective Late-Stage Aromatic [18F]Fluorination via Aryl Sulfonyl Nitrates. Angew. Chem., Int. Ed. 2020, 59 (5), 1956–1960.
Fluoropeptides Using CuI Catalyzed 1,3-Dipolar Cycloaddition and Radiopharmaceuticals. Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers of Sensitive Biomolecules for Positron Emission Tomography. Angew. Chem., Int. Ed. 2017, 56 (36), 6047–6050.

Tillmanns, J.; Siessmeier, T.; Buchholz, H. G.; Bartenstein, P.; oborate- and 18F-SiFA-Based Radiopharmaceuticals in PET Nuclear Unorthodox to Established: The Current Status of 18F-Trifluor-Wängler, C.; Jurkschat, K.; Perrin, D. M.; Schirrmacher, R. From Tetrahedron Lett. 2015, 56 (34), 4174–4177.

G. M.; Yapp, D.; Lin, K.-S.; Benard, F.; Perrin, D. M. A. Angew. Chem., Int. Ed. 2016, 55 (36), 11749–11752.

Labelling. Carboxylic Acids in Aqueous Solution: Application in Protein Labeling. J. Org. Biomol. Chem. - Eur. J. 2016, 47 (3), 435–442.

Reiner, T.; Kellher, E. J.; Earley, S.; Marinelli, B.; Weissleder, R. Synthesis and In Vivo Imaging of a 18F-Labeled PARP1 Inhibitor Using a Chemically Orthogonal Scavenger-Assisted High-Performance Method. Angew. Chem., Int. Ed. 2011, 50 (8), 1922–1925.

(11) Fersing, C.; Bouhlel, A.; Cantelli, C.; Garrigue, P.; Lisowski, V.; Guillet, B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [18F]Fluoride: Will [18F]AlF Replace 68Ga for Metal Chelate Labeling? Molecules 2019, 24 (16), 2866.

(12) Bernard-Gauthier, V.; Bailey, J. J.; Liu, Z.; Wängler, B.; Wängler, C.; Jurkschat, K.; Perrin, D. M.; Schirrmacher, R. From Unorthodox to Established: The Current Status of 18F-Trifluorborate- and 18F-SiFA-Based Radiopharmaceuticals in PET Nuclear Imaging. Bioconjugate Chem. 2016, 27 (2), 267–279.

(13) Schirrmacher, R.; Bradtmüller, G.; Schirrmacher, E.; Thews, O.; Tillmanns, J.; Siessmeier, T.; Buchholz, H. G.; Bartenstein, P.; Wängler, B.; Niemeny, C. M.; Jurkschat, K. 18F-Labelling of Peptides by Means of an Organosilicon-Based Fluoride Acceptor. Angew. Chem., Int. Ed. 2006, 45 (36), 6047–6050.

(14) Liu, Z.; Pourhaghiarian, M.; Radtke, M. A.; Lau, J.; Pan, J.; Dias, G. M.; Yapp, D.; Lin, K.-S.; Bénard, F.; Perrin, D. M. An Organothionitrofluoroborate for Broadly Applicable One-Step 18F-Labeling. Angew. Chem., Int. Ed. 2014, 53 (44), 11876–11880.

(15) Jacobson, O.; Kiesewetter, D. O.; Chen, X. Fluorine-18 Radiochemistry, Labeling Strategies and Synthetic Routes. Bioconjugate Chem. 2015, 26 (1), 1–18.

(16) Krishnan, H. S.; Ma, L.; Vazquez, N. S.; Liang, S. H. 18F-Labeling of Proteins. Nat. Protoc. 2009, 4 (4), 442–447.

(28) Li, Z.; Cai, H.; Hassink, M.; Blackman, M. L.; Brown, R. C. D.; Conti, P. S.; Fox, J. M. Tetracaine-Trans-Cyclooctene Ligation for the Rapid Construction of 18F Labeled Probes. Chem. Commun. 2010, 46 (42), 8043.

(29) Wang, M.; Svatunek, D.; Rohlfing, K.; Liu, Y.; Wang, H.; Giglio, B.; Yuan, H.; Wu, Z.; Li, Z.; Fox, J. Conformationally Stratified Trans-Cyclooctene (STCO) Enables the Rapid Construction of 18F-PET Probes via a Tetrazine Ligation. Theranostics 2016, 6 (6), 887–895.

(30) Denk, C.; Svatunek, D.; Filip, T.; Wanek, T.; Lumps, D.; Fröhlich, J.; Kuntner, C.; Mikula, H. Development of a 18F-Labeled Tetrazine with Favorable Pharmacokinetics for Bioorthogonal PET Imaging. Angew. Chem., Int. Ed. 2014, 53 (36), 9655–9659.

(31) Length, F. Heavy Metal Pollution and Human Biotoxic Effects. Int. J. Phys. Sci. 2007, 2 (5), 112–118.

(32) Gaetke, L. Copper Toxicity, Oxidative Stress, and Antioxidant Nutrients. Toxicology 2003, 189 (1–2), 147–163.

(33) Kumar, G. S.; Lin, Q. Light-Triggered Click Chemistry. Chem. Rev. 2020, DOI: 10.1021/acs.chemrev.0c00799.

(34) Pipal, R. W.; Stout, K. T.; Musacchio, P. Z.; Ren, S.; Graham, T. J. A.; Verhoog, S.; Gantert, L.; Lobih, T. G.; Schmitz, A.; Lee, H.; Hesk, D.; Hostetler, E. D.; Davies, I. W.; MacMillan, D. W. C. Metallaphotoredox Aryl and Allyl Radiomethylation for PET Ligand Discovery. Nature 2021, 589 (7843), 542–547.

(35) Chen, W.; Huang, Z.; Tay, N. E. S.; Giglio, B.; Wang, M.; Wang, H.; Wu, Z.; Nicewicz, D. A.; Li, Z. Direct arene C-H fluorination with 18F via organic photoredox catalysis. Science 2019, 364 (6446), 1170–1174.

(36) Guillou, A.; Earley, D. F.; Patra, M.; Holland, J. P. Light-Induced Synthesis of Protein Conjugates and Its Application in Photoradiosynthesis of 90Zr-Radiolabeled Monoclonal Antibodies. Nat. Protoc. 2020, 15 (1), 3579–3594.

(37) Guillou, A.; Earley, D. F.; Holland, J. P. Light-Activated Protein Conjugation and 89Zr-Radiolabelling with Water-Soluble Desferrioxamine Derivatives. Chem. - Eur. J. 2020, 26 (32), 7185–7189.

(38) Fay, R.; Linden, A.; Holland, J. P. PhotoTag: Photoactivatable Fluorophores for Protein Labeling. Org. Lett. 2020, 22 (9), 3499–3503.

(39) Fay, R.; Holland, J. P. Tuning Tetrabenzole Photochemistry for Protein Labeling and Molecular Imaging. Chem. - Eur. J. 2021, 27, 4893.

(40) Choi, J. H.; Oh, D.; Kim, I. S.; Kim, H.-S.; Kim, E.-M.; Lim, S. T.; Sohn, M.-H.; Kim, D. H.; Jeong, H.-J. Light-Triggered Radiochemical Synthesis: A Novel 18 F-Labelling Strategy Using Photoinducible Click Reaction to Prepare PET Imaging Probes. Contrast Media Mol. Imaging 2018, 4617493.

(41) Li, Z.; Qian, L.; Li, L.; Bernhammer, J. C.; Huyhn, H. V.; Lee, J.-S.; Yao, S. Q. Tetrabenzo PhotoClick Chemistry: Reinvestigating Its Suitability as a Bioorthogonal Reaction and Potential Applications. Angew. Chem. Int. Ed. 2016, 55 (5), 10041–10047.

(42) Liu, Z.; Cai, H.; Hassink, M.; Blackman, M. L.; Brown, R. C. D.; Conti, P. S.; Fox, J. M. Tetracaine-Trans-Cyclooctene Ligation for the Rapid Construction of 18F Labeled Probes. Chem. Commun. 2010, 46 (42), 8043.

(43) Reiner, T.; Kellher, E. J.; Earley, S.; Marinelli, B.; Weissleder, R. Synthesis and In Vivo Imaging of a 18F-Labeled PARP1 Inhibitor Using a Chemically Orthogonal Scavenger-Assisted High-Performance Method. Angew. Chem., Int. Ed. 2011, 50 (8), 1922–1925.
(48) Li, J.; Kong, H.; Huang, L.; Cheng, B.; Qin, K.; Zheng, M.; Yan, Z.; Zhang, Y. Visible Light-Initiated Bioorthogonal Photoclick Cycloaddition. *J. Am. Chem. Soc.* 2018, 140 (44), 14542–14546.

(49) Afshar-Oromieh, A.; Zechmann, C. M.; Malcher, A.; Eder, M.; Eisenhut, M.; Linhart, H. G.; Holland-Letz, T.; Hadachik, B. A.; Giesel, F. L.; Debus, J.; Haberkorn, U. Comparison of PET Imaging with a 68Ga-Labelled PSMA Ligand and 18F-Choline-Based PET/CT for the Diagnosis of Recurrent Prostate Cancer. *Eur. J. Nucl. Med. Mol. Imaging* 2014, 41 (1), 11–20.

(50) Fendler, W. P.; Eiber, M.; Beheshiti, M.; Bomanji, J.; Ceci, F.; Cho, S.; Giesel, F.; Haberkorn, U.; Hope, T. A.; Kopka, K.; Krause, B. J.; Mottaghy, F. M.; Schöder, H.; Sunderland, J.; Wan, S.; Wester, H.-J.; Fanti, S.; Herrmann, K. 68Ga-PSMA PET/CT: Joint EANM and SNMMI Procedure Guideline for Prostate Cancer Imaging: Version 1.0. *Eur. J. Nucl. Med. Mol. Imaging* 2017, 44 (6), 1014–1024.

(51) Jadvar, H. PSMA PET in Prostate Cancer. *J. Nucl. Med.* 2015, 56 (8), 1131–1132.

(52) Welling, M. M.; Hensbergen, A. W.; Bunschoten, A.; Velders, A. H.; Roestenberg, M.; van Leeuwen, F. W. B. An Update on Radiotracer Development for Molecular Imaging of Bacterial Infections. * Clin. Transl. Imaging* 2019, 7 (2), 105–124.

(53) Ordonez, A. A.; Sellmyer, M. A.; Gowrishankar, G.; Ruiz-Bedoya, C. A.; Tucker, E. W.; Palestro, C. J.; Hammoud, D. A.; Jain, S. K. Molecular Imaging of Bacterial Infections: Overcoming the Barriers to Clinical Translation. *Sci. Transl. Med.* 2019, 11 (508), No. eaax8251.

(54) Van Oosten, M.; Schäfer, T.; Gazendam, J. A. C.; Ohlsen, K.; Tsompanidou, E.; De Goffau, M. C.; Harmsen, H. J. M.; Crane, L. M. A.; Lim, E.; Francis, K. P.; Cheung, L.; Olive, M.; Ntzachristos, V.; Van Dijl, J. M.; Van Dam, G. M. Real-Time in Vivo Imaging of Invasive- and Biomaterial-Associated Bacterial Infections Using Fluorescently Labelled Vancomycin. *Nat. Commun.* 2013, 4 (1), 2584.

(55) Staroske, T.; Williams, D. H. Synthesis of Covalent Head-to-Tail Dimers of Vancomycin. *Tetrahedron Lett.* 1998, 39 (27), 4917–4920.

(56) Reefling, F.; Bispo, M.; López-Álvarez, M.; van Oosten, M.; Feringa, B. L.; van Dijl, J. M.; Szmański, W. A Facile and Reproducible Synthesis of Near-Infrared Fluorescent Conjugates with Small Targeting Molecules for Microbial Infection Imaging. *ACS Omega* 2020, 5 (35), 22071–22080.