The Response of Culturally Important Plants to Experimental Warming and Grazing in Pakistan Himalayas

Saira Karimi1,4, Muhammad Ali Nawaz2, Saadia Naseem1, Ahmed Akrem3, Olivier Dangles4, Zahid Ali1*

1 Department of Biosciences, COMSATS University Islamabad (CU), Islamabad, Pakistan
2 Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
3 Department of Botany, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
4 CEFE, UMR 5175, CNRS, Université de Montpellier, Université Paul Valéry Montpellier, EPHE, IRD, Montpellier, France

Corresponding author: zahidali@comsats.edu.pk

Running Title: Climate warming may benefit the growth of medicinal plants in absence of Herbivory

Abstract

The response of wild plants towards climate warming is taxa specific, but overgrazing could also be a determining factor for the alpine ecosystems. Overgrazing and climate warming are important drivers of alpine grassland degradation worldwide. Local indigenous peoples will be the first impacted by such degradation due to impacts on animal production and the availability of local
medicinal plants. Studies on plant responses to overgrazing and climate change are rarely performed to assess threats to these biological and cultural systems. Long-term observations or manipulative experiments are promising, but rarely use strategies to evaluate the sensitivity and vulnerability of such ecosystems to climatic change. We studied the combined effects of overgrazing and increased temperatures on culturally important medicinal plants of Khunjerab National Park, Pakistan. Three experimental treatments were used (control, warming through an open-top chamber, and exclusion of grazing animals vs. the control). These experimental plots were installed at different elevations (3352-4969 m) and were monitored routinely. Grazing reduced vegetation cover & biomass by 2.3% and 6.26%, respectively, but that was not significant due to the high variability among study plots. However, warming significantly increased the overall percentage cover and biomass of all target plant species, ranging from 1±0.6% in Bistorta officinalis to 18.7 ± 4.9% in Poa alpina. Thus, warming may increase the availability of therapeutic plants for indigenous people while overgrazing would have deteriorating effects locally. This research illustrates that vegetation sensitivity to warming and overgrazing is likely to affect man–environment relationships, and traditional knowledge on a regional scale.

Keywords: Climate change, indigenous people, Khunjerab National Park, medicinal plants, open-top chambers

Introduction

Climate change is altering the structure and function of high elevation ecosystems. Mountains are amazingly diverse ecosystems that hold high proportions of endemic species [1–5]. These systems
are particularly vulnerable to climate change with most species distribution models projecting drastic changes in community composition and distribution range[6]. Importantly, climate change impacts high altitude regions by a combination of stressors such as land and water degradation due to farming [7]. These stressors have profound effects on the habitability of the mountainous ecosystem and the human communities that depend on them (IPCC 2019), in the inter-tropical region (Himalayas, Andes, Eastern Africa). In the Himalayas, an increase of 3.7 °C is expected in global mean surface temperatures between 2018–2100 (relative to 1986–2005). That is expected to cause substantial effects on the water cycle, biodiversity, and livelihood of the local population [8]. This concern is reinforced by increasing evidence that the rate of warming is magnified with elevation, with ecosystems at high altitude (> 4000 m) showing more rapid changes in temperature than those at lower elevation [4]. In addition to warming of mean temperatures, there is often a greater increase in the daily temperature variations [9] with potential effects on wildlife and humans.

Overgrazing disturbs plant species composition, biomass and vegetation characteristics [10]. These changes can lead to specified selective palatability issues for grazing animals and changes in nutrient availability [11]. At higher elevations, the climatic zone does not permit tillage crop farming. Therefore animals provide food to an increasingly dense human population in this area of Pakistan by transforming grass and herbage into milk and meat [5]. In recent years larger herds of cows, horses, and sheep have been introduced in many high-altitude regions over the world [12,13], which previously did not support large grazing herds [14,15]. Changes in the agricultural system by the introduction of new crops and the replacement of native species of grazers by species from other environments could be complex in the removal of certain endogenous plants as well as overall plant cover reduction. Warming and grazing both have
substantial impacts on the natural elements of high-altitude ecosystems, with potentially vital consequences for local livelihoods [16]. In cold habitats such as the high Himalayas, plant leaves are generally rich in nutrients to counteract the negative effects on plant growth induced by this harsh environment [17] and are therefore highly palatable for cattle. For instance, as a result of extensive surveys to evaluate the nutritional status of higher altitude plants, it was proposed that higher altitude plants always had higher N content per unit leaf area when compare with contrasting altitudes a this increased with altitude in herbaceous plants [18]. Beyond grazing, one of the greatest services provided by plant communities to indigenous people of mountainous regions is their use for traditional medicine. The therapeutic effect of some mountain plant species is well known in many regions [12,19–22], yet detailed ethnobotanical studies are scarce [23].

While a great deal of research has been conducted to predict warming and overgrazing effects on alpine biodiversity, there is an important need to combine traditional indigenous knowledge with modern scientific knowledge [20]. In particular, these predictions have yet to incorporate perspectives that assess threats to the linked biological and cultural systems of local people [24–26]. Here, we provide an example of integrating plant community responses to grazing and warming with benefit-relevant indicators to assess how people's access to culturally important plant species may be affected in the future.

This study was performed in Khunjerab National Park (KNP) located in the Pakistani Himalayas. This region is interesting to study the combined effect of warming and grazing on culturally important plant communities for several reasons. First, the medicinal plants of the Eastern Himalaya are an invaluable resource for the local communities and also Pakistan [27]. Second scientists have been gathering climatic data from this remote area for over 50 years, indicating that the average temperatures have increased by 1.5 °C, more than twice the global
average increase (World Economic Forum 2020). Third, the mountainous areas of KNP are extensively used as feeding grounds for both wild ungulates (yaks) and domestic animals (goats, sheep, and cattle) with most families keep mixed herds [29]. Livestock pressure is progressing as the human population is growing as animal production is the primary means of productivity. Merging traditional knowledge with manipulative experiments is a helpful approach to test the sensitivity of such ecosystems to climate change [17]. The specific objectives of this study were to 1) document the indigenous knowledge of culturally important medicinal plants and their occurrence through ethnobotanical surveys; 2) quantify the effects on these plants of climate change (warming) and grazing through manipulative experimentations.

Materials and Methods

Study Area

The current study was conducted at the Khunjerab National Park (KNP) which is situated in the Hindukush-Himalaya (HKH) mountain ranges near the border with China (36.37° N, 74.41°E). The KNP is spread over an area of 4455 km² with altitudes ranging from 2439m to 4878m above sea level. [30,31]. The climate is defined by warm summers starting from May and it lasts till early August at some lower altitudes (3340m) while at higher altitudes it ends in late July Winters are harsh and cold. The maximum temperature recorded in May goes up to 25ºC in the warm year [32] while in winter it drops down below 0ºC from October (3590m) [15,33,34]. Annual precipitation ranges from 200 to 900 mm per year [31,35]. Being alpine KNP harbors the following vegetation altitudinal zones: 1) The *sub nival zone (> 4500 m)* is made of snow and bare desert, covering about 30% of the park’s area. Characteristic plant species are *Saussurea simpsoniana, Primula*
macrophylla Oxytropis microphylla, Potentilla desertorum, and Hedinia tibetica [36].

2) Alpine meadows (3500–4500 m) are rich in herb biomass and therefore serve as important habitat for livestock (sheep, goats, cattle’s and yoks) and wild herbivores such as ibex (Capra ibex sibrica), golden marmot (Marmota caudata aurea), and Marco Polo sheep (Ovis ammon polii). Dominant plant taxa are Primula macrophylla, Plantago lanceolate, Saxifraga sp, Potentilla multifida, Poa alpine and Carex spp.

3) The sub alpine Steppe (< 3500m) is vegetated mainly with Artemisia and Primula plant genera. Some grasses such as Poa and Carex sp. are also found in relatively moist places [37]. The tremendous increase in the population of inland herbivores (> 5026) and their reliance on rangelands has placed immense burden on the highland rangelands [38].

The HKH region harbors a rich indigenous knowledge which serves as a source of sustainable rangeland management [24]. The region is also home to the most versatile cultures, languages, traditional wisdom, and religions. The significant aspect of livelihood in HKH is inherent to mountain specificities (limited accessibility, unique richness, greater fragility socioeconomic inequalities, indigenous knowledge, and vulnerability). It is home to native people who are most marginalized socially and economically and vulnerable to ongoing environmental changes [20,39,40], in particular global warming [1,41–43], [44,45]. Traditional knowledge may help local people to find solutions helping them to cope with impending changes [42,46,47].

Ethnobotanical Surveys

We designed questionnaires to obtain information about how accessible and/or useful are medicinal plant species for local people in the HKH region. We visited three distinct valleys of KNP (Khunjerab, Ghunjerab, Shimshal) and negotiated with local community coordinators to enlist the people interested in the survey. Socio-economic and demographic data about interviewed people are given in supplementary S2 Table. Partially structured interviews were formulated to
collect information about key medicinal properties of plants, frequency of use, and the perceived impacts of climate change on their life cycle, growing period, and occurrence. The composed ethnomedicinal data was quantitatively reviewed by the index of Relative Frequency Citation (RFC), calculated as the ratio between the number of informants mentioning the use of a given species and the total number of informants participating in the survey [37].

Warming and Grazing Experiments

As part of the Multi-Site Experiment in Rangeland and Grassland Ecosystem (MERGE) project, a three-year experiment was established in 2015 and visited biannually year for maintenance and collection of data the observations. The project included the installation of an experimental set up at five different sites along an altitudinal gradient ranging from 3590 to 4696 m (Fig 1a). Within each fenced area, we selected two plots with similar slope and soil features. Each site consisted of a fenced area (un-grazed) of 5 x 5 m, which was designed as a randomized block design (RBD) and laid out four subplots of 2.5 x 2.5 m. Among those, we selected two subplots for warming treatment using fiberglass open-top chambers (OTC) (Fig 1b). They were hexagonal with a 32 cm height having an outer edge of 1.5 x 1.5 m and a central portion of 1 x 1 m open at the top [48]. The OTCs were kept on the subplots in each summer season. The warming effect of OTC at 10 cm above the soil surface was between 1.7–2.3°C on average. All recordings of plant community composition and abundance were performed during the peak blooming season (Fig 1d) which starts from late March and lasts until late August [15]. Two subplots (grazing with manual clipping and control (no warming) were considered to employ grazing treatment. Inside the fence, grazing treatment was simulated by manual clipping of the vegetation to the average height of plants eaten by herbivores outside. Clipping was done during the peak season (June–Aug). The grazing levels
were permanently marked at the starting year and each plant species growth was recorded individually from the clipped point.

Fig. 1 close to here

Fig 1. Landscape of the study region and the Multisite Experimentation at Rangeland and Grassland Ecosystem (MERGE) site at Khunjerab National Park (KNP), Pakistan. (a) pastures used for grazing herds of local communities. (b) Warming experimental setup with *Silene gonosperma* inside an open top chamber (OTC). (c) Some livestock herds (yolks, sheeps) grazing on the pastures near the experimental site in July 2017. (d) *Astragalus penduncularis* in full bloom at the grazing treatment. (e) Inventoring field observations of *Artemisia rupestris*. (f-g) Plant collection.

Data Sampling and Analysis

During the experimental years (2016–2018), we used the quadrat sampling method [49] to measure plant metrics such as percentage cover, plant height, and aboveground biomass. The percentage cover of the selected plant species was recorded individually at the start of the experiment (2016) by visualizing the numbers of grids of quadrat covered by a plant species. In each 1 x 1 m subplot, the percent cover for each plant species was estimated to the nearest 5% for each species rooted inside the plot using the Daubenmire method [50]. Plant height of at least five individuals of each species was measured in both the OTCs and control plots, as the distance between the ground and the highest photosynthetic part. In all experimental sites, individual plant species were identified and sampled carefully for taxonomic classification (Fig 1f). Inventory was updated each year to
record the new observations (2016–2018). We clipped the vegetation from OTC and the above-ground biomass of the plant species was measured by air drying samples at 37°C for 72 hours.

We conducted one–way ANOVA to examine the difference between percentage cover and biomass of plant species under warming and grazing treatments. A Post-hoc Tukey test was applied to compare the responses of plant species to a specific treatment (S3 Table a&b). To assess the change in the relative distribution of plant species within the plant communities we used non-metric multidimensional scaling (NMDS) ordination analyses [51] on plant species that were present across the plot at each site (3590m–4696m) so that we could characterize plant community changes for each warming and grazing treatment groups (see supplementary S2 Fig.). We used Bray–Curtis dissimilarity measure to deal with relative abundance data as it allows using both presence/absence and abundance data. The vegan package R (metaMDS) was used for analysis. All data analyses were carried out using R version 3.5.3 (2019).

This study is part of Ph.D. research project titled “Developing strategies and baseline protocols to predict climate change impacts on selected plants and prevalence of associated allergic diseases in Pakistan”. Here it is confirmed that this specific study involved plant material and interviewed people of the study area. The consent of agreement of the interviewed people was taken verbally by 1st and 2nd author. The work has been performed at all times with ethical oversight by an ethics committee and was reviewed and approved prior to start of the work, by Institutional Ethics Review Board (No. CIIT/BIO/ERB/17/53) and Institutional Biosafety Committee (No. CIIT/BIO/ERB/17/04) of COMSATS Institute of Information Technology (CIIT) Islamabad.

Results
Ethnobotanical Survey
We interviewed a total of 80 informants who identified approximately 50 medicinal plant species widely spread in the area (see supplementary S1 Table). Those interviews also allowed us to collect detailed information about the therapeutic properties of plant species along with their altitudinal range of occurrence, time of blooming, part used for remedies, and potential climate change effect on their availability (Table 1). Overall, people use plants to treat various diseases such as high blood pressure, stomachache, wounds, cold/fever, rheumatism, asthma, diarrhea, hepatitis, and diabetes (see supplementary S1 Fig.).

Table 1 close to here

Table 1. Ecological and Ethnobotanical Information on the Plant Species Assessed During the Study Period
Plant species and Authority	Family	Local name	Altitudinal range (m)	Period of availability	Part used	Medicinal Properties	Climate change effect (according to local people)	RFC*
Artemisia santolinifolia Turcz.ex Krasch	Asteraceae	Roon	3343-4039	Whole year	Whole plant	Worm, digestion, diarrhea, malaria	Increased availability due to extended growth period	0.9375
*Artemisia rupestris L.	Asteraceae	Khich	4059-4676	Whole year	Whole plant	Digestion, insect repellent elevates immunity, skin diseases	Late blooming	0.9375
*Taraxacum officinale L.	Asteraceae	Yamook	3346-4059	Whole year	Stems, leaves, dried twigs	Asthma, cardiac diseases	No effect	0.4375
Smelowskia calycina (Steph.)	Brassicaceae	Zakh	4096	July-Oct	Flower, leaves	Blood pressure troubles and diabetes	Berries are not that juicy	0.1875
Silene gonosperma (Rupr.)Bocquet	Caryophyllaceae	Gulch	3359-4693	May-Aug	Whole plant	Fever	Vegetation has increased	0.2125
*Astragalus penduncularis Royle ex Benth	Fabaceae	Zhoop	3346-4696	May-July	Leaves and Flower	Diabetes, antiaging, anti-inflammatory	Availability increased	0.2875
Oxytropis glabra DC	Fabaceae	Zarth sprag	4034	March-Aug	Leaves	Internal wound, anti-aging	No effect	0.5125
*Comastoma pulmonarium (Turcz) Toyok	Gentianaceae	Shalay char	4696	May-Au	Leaves and Flower	Pneumonia, sore throat and fever.	Not observed	0.4125
Peganum harmala L.	Nitrariaceae	Ispandur	3343	May-Jul	Seeds	Fever and joint pain	No effect	0.1
Plantago major L	Plantaginaceae	Sepgilk	4059	May-Sep	Leaves and Seeds	Ulcers, skin wounds & dysentery	Ripe late	0.475
*Poa alpina L.	Poaceae	Noz	3346-4076	Mar-Oct	Whole plant	Denser vegetation	Less vegetation	0.1
Bistorta officinalis	Polygonaceae	onbu	4690	May-Aug	Root	Wounds	Less vegetation	0.1
*Primula macrophylla D.Don	Primulaceae	Banafsha	4676	Whole year	Leaves and Flower	Allieve pain, analgesic	Forage available	0.175
*Potentilla hololeuca (Boiss)Hook.f	Rosacea	Zatsprig	3343-4696	May-Jul	Leaves and Flower	Menstrual cramps	No effect	0.3625
Saxifraga sp	Saxifragaceae	Sit bark	4693	June-Aug	Leaves	Diarrhea, and minor skin problems	No effect	0.15
Pedicularis kashmiriana Pennell	Scrophulariaceae	Push	4690	Jun-Aug	Whole plant	Stomach aches	Shifted towards high altitude	0.1125
Hedinia tibetica (Thomson) Oestenf	Scrophulariaceae	tibet	4690	Jun-Aug	Whole plant	Pain and swelling, muscle weakness	Range shift from low altitude towards high	0.1625

(*) represents most preferable forage species, RFC: Relative frequency citation indicates Artemisia species having a relatively high frequency of citation among other species.
Based on the collected information, we screened out 17 highly important and common plant species, which we categorized based on their percentage of use (Fig. 2). *Artemisia rupestris* (AR) was the most cited plant due to its availability and medicinal potential. Other widely cited plant genera include *Poa alpina* (PA) and *Oxytropis glabra* (OX).

Fig. 2 close to here

Fig 2. Percentage of Informant Citation Frequency Concerning the Medicinally and Culturally Important Species in KNP

The frequency is expressed as percentage a plant is mentioned by the informants. *Artemisia rupestris* (AR), *Poa alpina* (PA), *Oxytropis glabra* (OX), *Plantago major* (PM), *Tamaricaria officinalis* (TM), *Comastoma pulmonarium* (CP), *Potentilla hololeuca* (PT), *Carex divisa* (CP), *Astragulus penduncularis* (AS), *Silene gonospermum* (SG), *Smelowskia calycina* (SG), *Primula macrophylla* (MC), *Hedinia tibetica* (HD), *Saxifraga* (SG), *Pedicularis kashmiriana* (PC), *Bistorta officinalis* (BT), *Peganum hermala* (PH).

Culturally Important Plant Response to Warming and Grazing

Experimental warming had an overall positive effect on the biomass of most plant species (+1.3% on average), yet this trend was not significant due to the large inter-site variability in species responses (Fig. 3a, see supplementary S3 Table a). Instead, vegetation cover increased
significantly in warmed plots, on average by 5.5% as compared to control plots (Fig 3b, S3 Table b). Plant cover increase in response to warming was highly variable among taxa, ranging from $1 \pm 0.6\%$ for *Bistorta officinalis* to $18.7 \pm 4.2\%$ for *P. alpina* (Fig 3b). Overall, our NMDS analysis revealed that plant communities showed higher differences among sites than among warming treatments, reinforcing the idea that plant response was dependent on altitude (see supplementary S2 Fig.).

Compared to the control plots, grazing treatments had an overall negative effect on plant biomass and percentage cover (Fig 3c & 3d). Yet, once again, this general trend was not significant due to the high variability in plant response among sites. The extent of increase ranged from $0.1 \pm 0.5\%$ in *Carex divisa* to $4.14 \pm 1.04\%$ in *A. rupestris*.

Fig. 3 close to here

Fig 3. Effects of warming and grazing treatments on the biomass and percentage cover of plant species during the experimental year 2016–2018.

The data represents mean±standard errors of all plant species. (a) shows the warming effect of biomass. (b) shows the warming effect on percentage cover. (c) shows the grazing effect on biomass. (d) shows the grazing effect on percentage cover. Different letters denote statistically significant differences as calculated by post hoc Tukey’s test at $P < 0.05$,

Artemisia rupestris (AR), *Poa alpine* (PA), *Oxytropis glabra* (OX), *Plantago major* (PM), *Tamaricaria officinalis* (TM), *Comastoma pulmonarium* (CP), *Potentilla hololeuca* (PT), *Carex divisa* (CD), *Astragulus penduncularis* (AS), *Silene gonospermum* (SG), *Smelowskia*
calycina (SW), Primula macrophylla (MC), Hedinia tibetica (HD), Saxifraga (FR), Pedicularis kashmiriana (PC), Bistorta officinalis (BS), Peganum hermala (PH).

We further assessed the response to experimental warming and grazing for the five plant species that were most cited by surveyed people (A. rupestris, Astragulus penduncularis, P. alpina, P. hololeuca and P. macrophylla). These responses were divided into four categories: combined positive effects of warming and grazing (+W, +G), combined negative effects of warming and grazing (−W, −G) and antagonistic effects (−W, +G or +W, −G) (Fig 4, Table 1). The mean percentage cover of species was affected positively by warming and negatively by grazing (Fig 4, +W, −G zone). One species, A. rupestris, was favored by both warming and grazing. However, for P. alpina and P. hololeuca, increased in cover as a response to warming at some sites made them more susceptible to grazing. P. macrophylla did not show any significant response to either grazing or warming except at one site (aggressively grazed) where it was negatively affected by both treatments (Fig 4).

![Fig. 4 close to here](image)

Fig 4. Susceptibility Zones of Five Most Frequent and Culturally Important Plant Species into Under Combined Impacts of Warming (W) and Grazing (G) Treatments

The susceptibility zones are combined with positive effects (+W, +G), combined negative effects (−W, −G), and antagonistic effects (−W, +G or +W, −G). Polygons join the dots of the presence of a species in the respective zone. (a) Biomass (b) Percentage cover.
Discussion

According to the Intergovernmental Panel for Climate Change [52] indigenous, local and traditional knowledge systems and practices, including indigenous people holistic view of community and environment, are a major resource for adapting to climate change. HKH culture and livelihoods depend on local medicinal plants for medicine, food, grazing, wood, etc. and several studies have shown the importance of traditional plant use for indigenous people in the Himalayas [15,33,37,53]. Our study confirms that the HKH region is rich in indigenous knowledge about culturally important plants that are used for various human diseases (Table 1, Fig. 2) as well as livestock fodder and forage. For example, local mountain communities tend to graze their animals on selective nutritious plant species [54]. Our survey revealed that local people had extensive knowledge about plant identity, occurrence in the area, population trends in recent years, and their medicinal and nutritional properties. Plant species from *Asteraceae* (e.g. *Artemisia rupestris, Artemisia santinofolia, Artemisa rutifolia*) were particularly important for the family medication (cited by 25% of respondents) as reported in previous studies [30,33]. For example, a whole plant decoction of *Artemisia* is used for the treatment of fever, stomach pain, vomiting, and skin ulcers, under both pharmacological and clinical information [55–57]. Interestingly, our study revealed that the *Asteraceae* family had the highest RFC value (0.9) due to their increased availability in warming treatments. This plant group may, therefore, be an ally for people facing global warming. Interestingly, our study revealed that the *Asteraceae* family had the highest RFC value (0.9) due to their increased availability in warming treatments. This plant group may, therefore, be an ally for people facing global warming.
The impact of local climate change on traditional livelihood is strong and evident but can be analyzed for both positive and negative aspects. Warming may have positive impacts on overall vegetation richness and productivity in cold areas [2,58–60] as supported by our results. Previous warming experiments and studies carried out to assess the effect of temperature on alpine ecosystems using OTCs generally concluded that warming enhances the plant vegetation cover and height [21,39,48,61]. This pattern is consistent with our results that showed a positive effect of warming on plant community biomass. Such an increase in biomass was highly taxa-specific, favoring some species upon others, and thereby modifying community composition. This taxa-specific pattern of plant community responses to warming has been stressed in other studies performed in challenging environmental conditions such as the Arctic [11,35,61–63]. Flower production response to warming was positive in 41% of plants but had no effects on the other taxa. Interestingly, our result further showed that *P. alpina*, *A. rupestris*, *A. pendularis*, *P. multifida*, and *P. macrophylla* can survive in warmer conditions at high elevations, suggesting that they may expand their range if herbivory is controlled. This reinforces the idea that in some cases, warming may generate new opportunities for people living under cold conditions [64]. While previous studies suggested that overgrazing is one of the major drivers of rangeland degradation [18,65–70]. Our results only partly supported this assumption, while grazing treatments did have an overall negative effect on plant biomass and percentage cover, the general trend was not significant due to the high variability in plant response among the sites. This may be explained by the high heterogeneity in cattle spatial distribution at the landscape scale. Except for two highly palatable species (*P. alpina* and *A. rupestris*), the percent cover of most culturally important plants in KNP were not significantly lower outside cattle exclusion plots, suggesting that coordinated management of cattle herds among local communities may help in keeping the negative impact of
grazing at sustainable levels. A constant increase in species covers though the time can occur under moderate grazing conditions [65,71] thus assuring the availability of culturally and medicinally important plant species.

Conclusions

Overall, our study is the first to provide experimental evidence at Khunjerab National Park, of the combined effect of warming and grazing on culturally important plants. Our results provide valuable information for the evaluation and prediction of grasslands sensitivity to future threats. Local knowledge can be rapidly and efficiently gathered using systematic tools, and it can provide a jumping pad to policymakers for designing mitigation and adaptation strategies for climate change in a region that is undergoing rapid change and for which scientific data are meager. However, the prevailing indigenous knowledge in the study area is facing an uncertain future. As an example, the nature of traditional knowledge is making it more difficult to learn and then transfer it accurately. Furthermore, practicing traditional therapies are not being respected by new generations. Other challenges include low literacy rate in the study area, no proper documentation of indigenous knowledge, and the introduction of modern allopathic medicines, rapid technological advancement, and environmental degradation.

Acknowledgments

We are highly thankful to local influential persons, hunters, and guides who facilitated and supported the survey team. The English language of the manuscript has been improved by Prof. Dr. Richard Goodman which is acknowledged.
Authors Contributions

SK conducted the practical work, interviewed the people, compiled the literature, and wrote the manuscript. MN helped SK in the practical work execution, interviewed the people and data collection from KNP. SN helped in manuscript organization, and improved the final manuscript. AA reviewed the manuscript. OD helped in data compilation & statistical analyses and manuscript writing. ZA designed the strategy, supervised the overall research work, and improved the manuscript.

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

SK highly thankful for partial financial support by the Snow Leopard Foundation (SLF) and Forest & Wildlife Department of Gilgit-Baltistan, Pakistan and Pakistan Sciences Foundation, PSF-NSLP Project No. 663 for collection of medicinal plants. Higher Education Commission (HEC) Pakistan supported SK under the umbrella of HEC-IRSIP scholarship program.

References

1. Washington R. Mountains and climate. Geography Review. 1996.
2. Cuni-Sanchez A, Omeny P, Pfeifer M, Olaka L, Mamo MB, Marchant R, et al. Climate change and pastoralists: perceptions and adaptation in montane Kenya. Clim Dev. 2019;11: 513–524. doi:10.1080/17565529.2018.1454880

3. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC. Climate change threats to plant diversity in Europe. Proc Natl Acad Sci U S A. 2005;102: 8245–50. doi:10.1073/pnas.0409902102

4. Khan H, Baig S. High Altitude Wetlands of the HKH Region of Northern Pakistan – Status of Current Knowledge, Challenges and Research Opportunities. Wetlands. 2017;37: 371–380. doi:10.1007/s13157-016-0868-y

5. Joshi S, Jasra WA, Ismail M, Shrestha RM, Yi SL, Wu N. Herders’ Perceptions of and Responses to Climate Change in Northern Pakistan. Environ Manage. 2013;52: 639–648. doi:10.1007/s00267-013-0062-4

6. Moret P, Muriel P, Jaramillo R, Dangles O. Humboldt’s Tableau Physique revisited. 2019;116. doi:10.1073/pnas.1904585116

7. Karfakis P, Lipper L, Smulders M. The assessment of the socio- economic impacts of climate change at household level and policy implications. Agric Dev Econ Div FAO. 2012; 133–150.

8. Kraaijenbrink PDA, Bierkens MFP, Lutz AF, Immerzeel WW. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature. 2017;549: 257–260. doi:10.1038/nature23878
9. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. The velocity of climate change. Nature. 2009;462: 1052–1055. doi:10.1038/nature08649

10. Mulder CPH, Bazeley-White E, Dimitrakopoulos PG, Hector A, Scherer-Lorenzen M, Schmid B. Species evenness and productivity in experimental plant communities. Oikos. 2004;107: 50–63. doi:10.1111/j.0030-1299.2004.13110.x

11. Austrheim G, Speed JDM, Martinsen V, Mulder J, Mysterud A. Experimental Effects of Herbivore Density on Aboveground Plant Biomass in an Alpine Grassland Ecosystem. Arctic, Antarct Alp Res. 2014;46: 535–541. doi:10.1657/1938-4246-46.3.535

12. Yineger H, Yewhalaw D, Teketay D, Edwards S, Koros K, Kaburia H, et al. Ethnomedicinal plant knowledge and practice of the Oromo ethnic group in southwestern Ethiopia. J Ethnobiol Ethnomed. 2008;4: 11. doi:10.1186/1746-4269-4-11

13. Ben Salem H, Rekik M, Lassoued N, Darghouth M-A. Global Warming and Livestock in Dry Areas: Expected Impacts, Adaptation and Mitigation. Clim Chang - Socioecon Eff. 2011; 341–366. doi:10.5772/24734

14. Bagchi S, Mishra C, Bhatnagar Y V. Conflicts between traditional pastoralism and conservation of Himalayan ibex (Capra sibirica) in the Trans-Himalayan mountains. Anim Conserv. 2004;7: 121–128. doi:10.1017/S1367943003001148

15. Shedayi AA, Xu M, Hussain F, Sadia S, Naseer I, Bano S. Threatened plant resources: Distribution and ecosystem services in the world’s high elevation park of the karakoram ranges. Pakistan J Bot. 2016;48: 999–1012.

16. Kraft NJB, Godoy O, Levine JM. Plant functional traits and the multidimensional nature
of species coexistence. Proc Natl Acad Sci U S A. 2015;112: 797–802. doi:10.1073/pnas.1413650112

17. Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, et al. Elevation-dependent warming in mountain regions of the world. Nature Climate Change. Nature Publishing Group; 2015. pp. 424–430. doi:10.1038/nclimate2563

18. Liu H, Mi Z, Lin L, Wang Y, Zhang Z, Zhang F, et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. 2017; 1–6. doi:10.1073/pnas.1700299114

19. Cuesta F, Muriel P, Llambi LD, Halloy S, Aguirre N, Beck S, et al. Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography (Cop). 2017;40: 1381–1394. doi:10.1111/ecog.02567

20. Yin L. The Traditional Knowledge Associated to Biodiversity in an Age of Climate Change. Earth Sci. 2018;7: 209. doi:10.11648/j.earth.20180705.12

21. Malhotra SK, Welfare F. Impact of climate change on Medicinal and aromatic plants: Review Impact of climate change on medicinal and aromatic plants: Review. 2016.

22. Fang Z, Byg A. Eastern Himalayan alpine plant ecology, Tibetan ethnobotany, and climate change. Glob Environ Chang. 2009;19: 147–155. doi:10.1016/J.GLOENVCHA.2009.01.008

23. Chandra Sekar K, Rawat B. Diversity, utilization and conservation of ethnomedicinal plants in Devikund - A high altitude, sacred wetland of Indian Himalaya. Med Plants. 2011;3: 105–112. doi:10.5958/j.0975-4261.3.2.017
24. Immerzeel WW, Van Beek LPH, Bierkens MFP. Climate change will affect the asian water towers. Science (80-). 2010;328: 1382–1385. doi:10.1126/science.1183188

25. Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol. 2000;20: 1729–1742. doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y

26. Son HN, Chi DTL, Kingsbury A. Indigenous knowledge and climate change adaptation of ethnic minorities in the mountainous regions of Vietnam: A case study of the Yao people in Bac Kan Province. Agric Syst. 2019;176. doi:10.1016/j.agsy.2019.102683

27. Aumeeruddy-Thomas Y, Shengji P, Pei S. Applied Ethnobotany: case-studies from the Himalayan region. People plants Work Pap. 2003;12: 39. Available: http://peopleandplants.org/storage/working-papers/WP12.pdf

28. There is a third pole on earth, and it’s melting quickly | World Economic Forum. [cited 16 Mar 2020]. Available: https://www.weforum.org/agenda/2016/08/the-third-pole-what-it-is-and-how-it-could-affect-the-lives-of-a-billion-people/

29. Tambe S, Rawat GS. Ecology, economics, and equity of the pastoral systems in the Khangchendzonga National Park, Sikkim Himalaya, India. Ambio. 2009;38: 95–100. doi:10.1579/0044-7447-38.2.95

30. Qureshi R, Khan WA, Bhatti GR, Khan B, Iqbal S, Ahmad MS, et al. First report on the biodiversity of Khunjerab National Park, Pakistan. Pakistan J Bot. 2011;43: 849–861.

31. Abbas G, Abbas Q, Khan S, Hussain I, Najumal-ul-Hassan S. Medicinal Plants Diversity and their Utilization in Gilgit Region, Northern Pakistan. Int J Plant Soil Sci. 2015;5: 234–
32. Khan B, Ablimit A, Nawaz MA, Ali R, Khan MZ, Karim R. Pastoralist experience and tolerance of snow leopard, wolf and lynx predation in Karakoram. J Biodivers Environ Sci. 2014;5: 214–229. Available: http://www.innspub.net

33. Khan B, Abdukadir A, Qureshi R, Mustafa G. Medicinal Uses of Plants By the Inhabitants of Khunjerab National Park, Gilgit, Pakistan. Pakistan J Bot. 2011;43: 2301–2310.

34. Khan B, Ablimit A, Khan G, Jasra AW, Ali H, Ali R, et al. Abundance, distribution and conservation status of Siberian ibex, Marco Polo and Blue sheep in Karakoram-Pamir mountain area. J King Saud Univ - Sci. 2016;28: 216–225. doi:10.1016/j.jksus.2015.02.007

35. Hussain D, Kuo C-Y, Hameed A, Tseng K-H, Jan B, Abbas N, et al. Spaceborne Satellite for Snow Cover and Hydrological Characteristic of the Gilgit River Basin, Hindukush Karakoram Mountains, Pakistan. Sensors (Basel). 2019;19. doi:10.3390/s19030531

36. Chaudhary P, Bawa KS. Local perceptions of climate change validated by scientific evidence in the Himalayas. Biol Lett. 2011;7: 767–770. doi:10.1098/rsbl.2011.0269

37. Abbas Z, Khan SM, Abbasi AM, Pieroni A, Ullah Z, Iqbal M, et al. Ethnobotany of the Balti community, Tormik valley, Karakoram range, Baltistan, Pakistan. J Ethnobiol Ethnomed. 2016;12: 38. doi:10.1186/s13002-016-0114-y

38. Ishaq S, Ali H, Ahmad B, Khan MZ, Begum F, Hussain A, et al. Dynamics of above ground herbaceous biomass in high altitude rangelands of Pakistan. J Anim Plant Sci.
39. Pucko C, Beckage B, Perkins T, Keeton WS. Species shifts in response to climate change: Individual or shared responses? The Journal of the Torrey Botanical Society. Torrey Botanical Society; pp. 156–176. doi:10.2307/41262029

40. Son HN, Chi DTL, Kingsbury A. Indigenous knowledge and climate change adaptation of ethnic minorities in the mountainous regions of Vietnam: A case study of the Yao people in Bac Kan Province. Agric Syst. 2019;176: 102683. doi:10.1016/j.agsy.2019.102683

41. Abate R, Kronk Warner E. Climate Change and Indigenous Peoples. Climate Change and Indigenous Peoples. Edward Elgar Publishing; 2013. doi:10.4337/9781781781001806

42. Sharma E, Molden D, Rahman A, Khatiwada YR, Zhang L, Singh SP, et al. Introduction to the Hindu Kush Himalaya Assessment. The Hindu Kush Himalaya Assessment. Springer International Publishing; 2019. pp. 1–16. doi:10.1007/978-3-319-92288-1_1

43. Xu J, Badola R, Chettri N, Chaudhary RP, Zomer R, Pokhrel B, et al. Sustaining Biodiversity and Ecosystem Services in the Hindu Kush Himalaya. The Hindu Kush Himalaya Assessment. 2019. doi:10.1007/978-3-319-92288-1_5

44. Byg A, Salick J. Local perspectives on a global phenomenon-Climate change in Eastern Tibetan villages. Glob Environ Chang. 2009. doi:10.1016/j.gloenvcha.2009.01.010

45. Bond MO, Anderson BJ, Henare THA, Wehi PM. Effects of climatically shifting species distributions on biocultural relationships. People Nat. 2019;1: 87–102. doi:10.1002/pan3.15

46. Bouisset C, Clarimont S, Degrémont I. Climate Change and Vulnerability in Local Areas:
Attitudes to Evolving Risks and Adaptation in Two Pyrenean Valleys. Rev géographie Alp. 2018; 0–13. doi:10.4000/rga.4902

47. Berkes F, Folke C. Indigenous Knowledge for Biodiversity Conservation. AMBIO VOL 22 NO 2-3, MAY 1993. 1993;22.

48. Mohan JE, Wadgymar SM, Winkler DE, Anderson JT, Frankson PT, Hannifin R, et al. Plant reproductive fitness and phenology responses to climate warming: Results from native populations, communities, and ecosystems. Ecosystem Consequences of Soil Warming. Elsevier Inc.; 2019. doi:10.1016/b978-0-12-813493-1.00004-1

49. Corti R, Larned ST, Datry T. A comparison of pitfall-trap and quadrat methods for sampling ground-dwelling invertebrates in dry riverbeds. Hydrobiologia. 2013;717: 13–26. doi:10.1007/s10750-013-1563-0

50. Hulvey KB, Thomas K, Thacker E. A Comparison of Two Herbaceous Cover Sampling Methods to Assess Ecosystem Services in High-Shrub Rangelands: Photography-Based Grid Point Intercept (GPI) Versus Quadrat Sampling. Rangelands. 2018;40: 152–159. doi:10.1016/j.rala.2018.08.004

51. Florencio M, Serrano L, Gómez-Rodríguez C, Millán A, Díaz-Paniagua C. Inter- and intra-annual variations of macroinvertebrate assemblages are related to the hydroperiod in Mediterranean temporary ponds. Hydrobiologia. 2009;634: 167–183. doi:10.1007/s10750-009-9897-3

52. IPCC 2019. 2019 — Ipcc. 2019 [cited 1 Jun 2020]. Available: https://www.ipcc.ch/2019/

53. Muthu C, Ayyanan M, Raja N, Ignacimuthu S. Medicinal plants used by traditional healers
in Kancheepuram district of Tamil Nadu, India. J Ethnobiol Ethnomed. 2006;2: 43. doi:10.1186/1746-4269-2-43

54. Aziz MA, Khan AH, Adnan M, Ullah H. Traditional uses of medicinal plants used by Indigenous communities for veterinary practices at Bajaur Agency, Pakistan. J Ethnobiol Ethnomed. 2018;14. doi:10.1186/s13002-018-0212-0

55. Joshi R, Satyal P, Setzer W. Himalayan Aromatic Medicinal Plants: A Review of their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities. Medicines. 2016;3: 6. doi:10.3390/medicines3010006

56. Nigam M, Atanassova M, Mishra AP, Pezzani R, Devkota HP, Plygun S, et al. Bioactive compounds and health benefits of Artemisia species. Natural Product Communications. SAGE Publications Inc.; 2019. doi:10.1177/1934578X19850354

57. Sharifi-Rad J, Sureda A, Tenore GC, Daglia M, Sharifi-Rad M, Valussi M, et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules. MDPI AG; 2017. doi:10.3390/molecules22010070

58. Bidart-Bouzat MG, Imeh-Nathaniel A. Global Change Effects on Plant Chemical Defenses against Insect Herbivores. J Integr Plant Biol. 2008;50: 1339–1354. doi:10.1111/j.1744-7909.2008.00751.x

59. Frankel JA. Climate Change Perception and Changing Agents in Africa & South Asia. Vernon Pres:ilmington, Delaware; 2008. Available: https://books.google.com.pk/books?hl=en&lr=&id=E4mEDwAAQBAJ&oi=fnd&pg=PA133&dq=traditional+use+warming+grazing+mountainous+people+climate+change&ots=tyLwpArjIF&sig=IK8b5ZOyT2HRa6WYpJ3Qa2dkF44#v=onepage&q&f=false
60. Trosper RL, Parrotta JA. Introduction: The Growing Importance of Traditional Forest-Related Knowledge. Springer, Dordrecht; 2012. pp. 1–36. doi:10.1007/978-94-007-2144-9_1

61. Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, et al. Global warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Summary for Policymakers. Edited by Science Officer Science Assistant Graphics Officer Working Group I Technical Support Unit.

62. Kaarlejärvi E, Eskelinen A, Olofsson J. Herbivory prevents positive responses of lowland plants to warmer and more fertile conditions at high altitudes. McArthur C, editor. Funct Ecol. 2013;27: 1244–1253. doi:10.1111/1365-2435.12113

63. Bjorkman AD, Myers-Smith IH, Elmendorf SC, Normand S, Rüger N, Beck PSA, et al. Plant functional trait change across a warming tundra biome. Nature. 2018;562: 57–62. doi:10.1038/s41586-018-0563-7

64. Ecology of High Altitude Waters - Dean Jacobsen, Olivier Dangles - Google Books. [cited 20 Jan 2020]. Available: https://books.google.com.pk/books?id=glExDwAAQBAJ&pg=PA199&lpg=PA199&dq=with+large+grazing+herds+(Mishra+et+al.+2002).&source=bl&ots=wWjOPsX08L&sig=ACfU3U1OguSoCd-Q4ZP-j-2zW40zQs3jHA&hl=en&sa=X&ved=2ahUKEwiZhuqMsJHnAhXOjqQKHDcLRCeQQ6A
EwAXoECAoQAQ#v=onepage&q=with large grazing herds (Mishra et al. 2002). &f=false

65. Løkken JO, Hofgaard A, Dalen L, Hytteborn H. Grazing and warming effects on shrub growth and plant species composition in subalpine dry tundra: An experimental approach. Kühn I, editor. J Veg Sci. 2019;30: 698–708. doi:10.1111/jvs.12752

66. Hoffmann AA, Hallas RJ, Dean JA, Schiffer M. Low potential for climatic stress adaptation in a rainforest Drosophila species. Science. 2003;301: 100–2. doi:10.1126/science.1084296

67. Klein JA, Harte J, Zhao X-Q. EXPERIMENTAL WARMING, NOT GRAZING, DECREASES RANGELAND QUALITY ON THE TIBETAN PLATEAU. Ecol Appl. 2007;17: 541–557. doi:10.1890/05-0685

68. Wang S, Fan J, Li Y, Huang L. Effects of grazing exclusion on biomass growth and species diversity among various grassland types of the Tibetan Plateau. Sustain. 2019;11. doi:10.3390/su11061705

69. Liu J, Liu D, Xu | Kun, Lian-Ming Gao |, Xue-Jun Ge |, Burgess KS, et al. Biodiversity explains maximum variation in productivity under experimental warming, nitrogen addition, and grazing in mountain grasslands. 10094 | Ecol Evol. 2018;8: 10094–10112. doi:10.1002/ece3.4483

70. Zhang Y, Gao Q, Dong S, Liu S, Wang X, Su X, et al. Effects of grazing and climate warming on plant diversity, productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai-Tibetan Plateau. Rangel J. 2015;37: 57–65. doi:10.1071/RJ14080
Guo R, Zhou J, Zhong X, Gu F, Liu Q, Li H. Effect of simulated warming on the functional traits of Leymus chinensis plant in Songnen grassland. AoB Plants. 2019;11. doi:10.1093/aobpla/plz073

Supporting Information

S1 Table docx. Plant Species Composition at MERGE Experimental Sites

A variety of plant species in experimental sites at different elevations. Each site was categorised according to the number of species present. Majority of selected species were present at each site, but there was a representative species of each elevation. *Bistorta officinalis* is present only at highest altitude (4696m), similarly *Plantago major* (3690m) is present on site 5, lower altitude.

S2 Table docx. Specific Characteristic of Local Informants

Demographic features of informants interviewed for ethnobotanical information of culturally important plants. In the survey, their gender, age and socio economical details were recorded.

S3 Table A. docx. Warming Effect on Aboveground Biomass of Plant Species

Data represents the mean±SE of various plant species biomass in response to warming effect. Means followed by similar letter are not significantly different from each other as determined by Post-Hoc Tukey’s at p<0.05. Warming overall increased the above ground biomass of plant species but this response was taxa specific.

S3 Table b docx. Warming Effect on Percentage Cover of Plant Species
Data represents the mean±SE of various plant species percentage cover in response to warming effect. Means followed by different letters are significantly different from each other as determined by Post-Hoc Tukey’s at p<0.05.

S1 Fig pdf. Ethnobotanical dominant families and treated ailments

(A) percentage of ailments treated by understudy medicinal plant families. (b) percentage of dominant culturally important plant families present in the study area

S2 Fig pdf. Changes in the distribution and occurrence of plant species in response to climate warming over a 3–years experimental period along the elevation gradient of (3590–4696m).

The relative abundance of plant species (presence/absence) shown by paths of mean values in Non-metric multi-dimensional scaling (NMDS) using Bray and Curtis dissimilarity index in R.

OTC = Open top chamber, OTC1, OTC2, two OTC per site

Site 1 4,696m near china boarder, Site 2= 4,059m Site 3= 4022m Site4=3,990m Site 5= 3,590m
