Chemical Composition, Antioxidant, and Antimicrobial Activities of the Essential Oils From *Artemisia annua* L. Growing Wild in Tajikistan

Farukh S Sharopov\(^1\)\(^2\), Aminjon Salimov\(^3\), Sodik Numonov\(^1\)\(^2\), Abduahad Safomuddin\(^4\), Mahinur Bakri\(^2\), Tojjidin Salimov\(^5\), William N Setzer\(^6\)\(^7\), and Maidina Habasi\(^1\)\(^2\)

Abstract

The aerial parts of *Artemisia annua* L. were collected from Varzob, Rudaki, and Hisor regions of Tajikistan. The essential oil was obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry. The essential oils of aerial parts of *A. annua* were dominated by the monoterpenoids like camphor (32.5%-58.9%), 1,8-cineole (13.7%-17.8%), camphene (4.5%-8.4%), and α-pinene (1.9%-7.3%). Hierarchical cluster analysis of *A. annua* essential oils indicated the existence of 3 *A. annua* chemotypes: camphor/1,8-cineole, camphor, and artemisia ketone. The essential oils of *A. annua* show weak antioxidant activity and average antibacterial activity. In our opinion, the antibacterial activity of *A. annua* essential oils is related to the presence of 1,8-cineole. To our best knowledge, this is the first report concerning the chemical composition, chemotypic variation, antioxidant, and antimicrobial activities of the essential oils obtained from the aerial parts of *A. annua*, growing wild in Tajikistan.

Keywords

chemotype, *Artemisia annua*, essential oil, cluster analysis, camphor, 1,8-cineole

Received: January 21st, 2020; Accepted: April 13th, 2020.

Introduction

Artemisia annua L., also known as Qinghao, Sweet Wormwood, Sweet Annie, Sweet Sagewort, Annual Wormwood, is an annual herb in the Asteraceae family and is widely distributed in Asia, Europe, and North America.\(^1\) *Artemisia annua* has been used as an important ethnomedicinal herb for many years, especially in China against fever and malaria for over 100 years. It has been described for the treatment of malaria, cough, and cold in ancient pharmacopoeias of various Asian and European countries. This herb is described as a dietary food and used as a traditional herbal medicine against inflammatory diseases, infections by fungi, bacteria and viruses, gastric ulcer, and cancer among others.\(^2\) It is also used for the treatment of diarrhea and has antihelmintic, antipyretic, antiseptic, antispasmodic, carminative, stimulant, tonic, and stomachic properties.\(^3\)\(^6\)

Recently, studies are more focused to evaluate its anticancer and antiviral potential against human cancer cells and human immunodeficiency virus, respectively.\(^7\)\(^8\) The genus *Artemisia* occupies a top position for its bioprospection.\(^9\) The genus *Artemisia* is known to possess a rich phytotoxic diversity.\(^10\)\(^12\) *Artemisia annua* is a rich source of biologically active artemisinin, which is widely used in the treatment of malaria.\(^13\)\(^14\)

Artemisia annua also represents great interest in the production of its essential oil. The essential oil composition of *A. annua* has been extensively investigated by gas chromatography (GC) and GC–mass spectrometry (MS) methods. 1,8-Cineole, artemisia ketone, camphor, and 1,8-cineole are major components found in *A. annua* essential oil.\(^1\)\(^8\)

\(^1\)Research Institution "Chinese-Tajik Innovation Center for Natural Products", Dushanbe, Tajikistan
\(^2\)Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
\(^3\)V.I. Nikitin Institute of Chemistry of the Tajikistan Academy of Sciences, Dushanbe, Tajikistan
\(^4\)Faculty of Chemistry, National University of Tajikistan, Rudaki, Dushanbe, Tajikistan
\(^5\)Institute of Veterinary of the Academy of Agricultural Sciences of Tajikistan, Kahorov, Tajikistan
\(^6\)Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA
\(^7\)Aromatic Plant Research Center, USA, Lehi, UT

Corresponding Author:
Farukh S Sharopov, Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe, 734063, Tajikistan.
Email: shfarukh@mail.ru
camphor, α-pinene, β-caryophyllene, germacrene D, and artemisia alcohol have been commonly reported as principal components in the essential oils of \textit{A. annua}. Due to the presence of valuable components such as 1,8-cineol, linalool, β-cymene, thujone, and camphor in the essential oil of \textit{A. annua}, its essential oil is useful for its beneficial pharmacological properties. More than 100 \textit{Artemisia} species, including \textit{A. annua}, grow in Tajikistan. In this respect, there is a great interest in assessing the potential of Tajik \textit{Artemisia} species, including \textit{A. annua}, for new sources of bioactive phytochemicals. Due to the rich and diverse composition of biologically active substances, it has great importance in food and pharmacy. To our best knowledge, there is no previous work of the chemical composition and biological activity of \textit{A. annua} growing in Central Asia, especially in Tajikistan. In addition, in order to delineate the chemotypes of \textit{A. annua} essential oils, a cluster analysis has been carried out using the reported chemical compositions of \textit{A. annua} essential oils from numerous geographical locations around the world.

Results and Discussion

The aerial parts of \textit{A. annua} were collected from the Varzob, Rudaki, and Hisor regions of Tajikistan. The essential oils were obtained by hydrodistillation and analyzed by GC–MS. The essential oils of aerial parts of \textit{A. annua} were dominated by the monoterpane hydrocarbons and their oxygenated derivatives. The major components of the essential oil were camphor (32.5%-58.9%), 1,8-cineole (13.7%-17.8%), camphene (4.5%-8.4%), and α-pinene (1.9%-7.3%). The chemical composition of the essential oil of \textit{A. annua} is represented in Table 1.

\textit{Artemisia} ketone, camphor, 1,8-cineole, α-pinene, β-caryophyllene, germacrene-D, β-cymene, α-cymol, and artemisia alcohol were reported as the major components (≥10%) of the essential oils of \textit{A. annua} and are different from species growing in other geographic locations. Also, bisabolol, bisabolol oxide B, and α-cubebene were found as major components of the \textit{A. annua} essential oils. Analyses in the published research data showed that many species of the \textit{Artemisia} genus, including \textit{A. annua}, \textit{A. vulgaris}, \textit{A. diffusa}, \textit{A. santonionum}, \textit{A. spicigera}, \textit{A. afra}, \textit{A. asiatica}, \textit{A. austriaca}, and \textit{A. pedemontana}, contain bornane derivatives (camphor, borneol and bornyl acetate) and 1,8-cineole as the major components.

A dendrogram of the hierarchical cluster analysis of \textit{A. annua} essential oil compositions on the global phytogeographic origin is represented in Figure 1. In the present work, the hierarchical cluster analysis of \textit{A. annua} essential oils indicates the existence of 3 \textit{A. annua} chemotypes: camphor/1,8-cineole (cluster I), camphor (cluster II), and artemisia ketone (cluster III). Cluster I can be divided into 2 subgroups: Ia (high in β-caryophyllene, artemisia ketone, and germacrene D) and Ib (low in β-caryophyllene, artemisia ketone, and germacrene D). There are also 2 subgroups for cluster II: Iia (high in artemisia ketone, germacrene D, and β-caryophyllene), Iib (high in 1,8-cineole); and 2 sub-groups for cluster III: IIIa (high in camphor), IIIb (high in 1,8-cineole). Radulovic and co-authors had

Sample region	Percent composition	1	2	3
Varzob	930 Tricycylene	0.3	0.1	0.1
	935 α-Thujene	0.4	0.1	0.1
	941 α-Pinene	7.3	2.8	1.9
	947 2,4(10)-Thujadiene	0.1	0.1	0.1
	953 Camphene	8.4	5.4	4.5
	975 Sabinene	2.8	0.8	0.6
	977 β-Pinene	1.4	0.3	0.3
	987 Dehydro-1,8-cineole	0.3	0.1	0.1
	994 Myrcene	3.3	0.3	0.6
	1005 α-Phellandrene	0.1	0.2	0.2
	1018 α-Terpine	2.0	0.1	0.1
	1022 p-Cymene	0.6	0.2	0.2
	1030 1,8-Cineole	17.8	16.7	13.7
	1031 Limonene	0.3	0.2	0.2
	1061 γ-Terpine	3.0	0.3	0.3
	1066 cis-Sabinene hydrate	0.6	0.2	0.5
	1092 Terpinolene	0.7	0.4	0.4
	1101 trans-Sabinene hydrate	0.2	0.3	0.3
	1105 6,7-Epoxymyrcene	1.3	0.3	0.3
	1138 Camphor	32.5	58.9	51.5
	1140 trans-Pinocarveol	1.2	1.2	1.2
	1154 Pinocarvone	1.7	4.2	3.5
	1170 Borneol	1.2	2.1	2.1
	1181 Terpinen-4-ol	2.9	1.7	5.2
	1186 Myrtrenal	0.5	1.0	1.0
	1214 trans-Carveol	2.8	2.8	2.8
	1227 cis-Sabinene hydrate acetate	0.3	0.4	0.4
	1288 Bornyl acetate	0.2	0.1	0.1
	1300 trans-Pinocarvyl acetate	0.5	0.5	1.2
	1325 Myrtenyl acetate	0.1	0.1	0.1
	1373 Benzyl 2-methylbutyrate	0.2	0.2	0.2
	1381 α-Copaene	0.4	0.2	0.2
	1420 β-Caryophyllene	3.3	2.9	4.9
	1430 β-Copaene	0.1	0.1	0.1
	1453 α-Humulene	0.2	0.2	0.2
	1462 (E)-β-Farnesene	0.6	0.7	0.8
	1476 γ-Gurjunene	0.2	0.2	0.2
	1482 Germacrene D	1.2	0.1	0.1
	1487 β-Selinene	2.0	2.0	2.0
	1585 Caryophyllene oxide	0.9	0.3	0.3
Total identified	99.9	99.3	98.7	

The calculated indices relative to the alkanes for the HP-5 ms column.

Sample #1 from Varzob region.
Sample #2 from Rudaki region.
Sample #3 from Hisor region.
Sharopov et al. previously performed an agglomerative hierarchical cluster analysis of *Artemisia annua* essential oils indicating the existence of 5 different *A. annua* chemotypes: camphor and camphor/1,8-cineole types, artemisia ketone/α-pinene/1,8-cineole and artemisia ketone/camphor/1,8-cineole types, camphor/artemisia ketone/germacrene D type, germacrene D/β-caryophyllene, and germacrene D/β-caryophyllene/1,8-cineole/artemisia ketone types. Bilia and co-authors have classified *A. annua* essential oils on the basis of the concentration of 3 main components (artemisia ketone, 1,8-cineole, and camphor) and defined 6 groups: (1) Vietnamese oil with 3.3%-21.8% camphor and 0.3%-18.9% germacrene D, (2) Chinese oil with high content of artemisia ketone (64%), (3) Indian oil with 11.5%-58.8% of artemisia ketone, (4) French oil with 2.8%-55% artemisia ketone, 1.2%-11.6% 1,8-cineole, and 15% germacrene D, (v) North American oil with 35.7%-68% artemisia ketone and 22.8%-31.5% 1,8-cineole, (vi) Iranian oil with 48% camphor and 9.4% 1,8-cineole. Our results are in agreement with previous data on the chemotypification of *A. annua* based on its oil composition. In the present work, *A. annua* essential oils were classified into 3 convenient chemotypes: camphor/1,8-cineole, camphor, and artemisia ketone. The essential oil from Varzob in this work belongs to the camphor/1,8-cineole chemotype, while the essential oils from Hisor and Rudaki are in the chemotype dominated by camphor. Thus, there is significant chemical variation in essential oil compositions within Tajikistan.

The essential oils of *A. annua* have demonstrated good antioxidant capacity, in particular, as radical scavengers. Antioxidant capacities were 7.7-10.9 μmol/mL Trolox equivalents in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and 25.9-38.1 μmol/mL Trolox equivalents in the 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay for the essential oil of *A. annua*.

In the present work, the essential oils of *A. annua* has shown weak antioxidant activity compared with the positive control.

Figure 1. Hierarchical cluster analysis of *Artemisia annua* essential oils. Cluster I (purple and green) is a camphor/1,8-cineole mixed chemotype; cluster II (red), the largest cluster, is dominated by camphor; and cluster III (blue) has artemisia ketone as the major component.
which was evaluated by DPPH and ABTS methods. The half-maximal inhibitory concentration (IC$_{50}$) values for the essential oils were 5-6.5 mg/mL for DPPH and 2.4-3.5 mg/mL for ABTS, respectively. The IC$_{50}$ values of the positive control (ascorbic acid) were 0.003 mg/mL for DPPH and 0.007 mg/mL for ABTS, respectively.

Antibacterial activity of $A. annua$ essential oil was tested against both Gram-positive ($Staphylococcus aureus$) and Gram-negative ($Pseudomonas aeruginosa$ and $Escherichia coli$) bacteria. Its activity was very similar to the bactericidal activity of $Origanum vulgare$ essential oil and gentamicin (0.12 mg/mL) (positive control). Results of antimicrobial activity of essential oil of $A. annua$ are represented in Table 2.

The essential oil isolated from $A. annua$ was previously found to have antimicrobial effects against $E. coli$, $S. aureus$, $Streptococcus faecalis$, $P. aeruginosa$, $Klebsiella pneumoniae$, $Bacillus subtilis$, $Bacillus licheniformis$, $Candida albicans$, and $Saccharomyces cerevisiae$. Microbial inhibition zone ranged from 10 to 45 mm at 10 µL for various concentrations (1/4 and 1/8 dilution) of the oils for 24-48 hours. According to the literature data, 1,8-cineole is responsible for the antibacterial activity in essential oils; it exhibited comparatively strong activity against Gram-negative and Gram-positive bacteria.

In conclusion, camphor (32.5%), 1,8-cineole (17.8%), camphene (8.4%), and α-pinene (7.3%) were the major components of the essential oil obtained from the aerial parts of $A. annua$, growing wild in Tajikistan. The hierarchical cluster analysis of $A. annua$ essential oils on the global phytogeographic origin indicates the existence of 3 $A. annua$ chemotypes: camphor/1,8-cineole, camphor, and artemisia ketone. Present investigated essential oils of $A. annua$ from Tajikistan belong to the camphor/1,8-cineole (Varzob) and camphor (Hisor and Rudaki) chemotypic variations. The essential oil of $A. annua$ showed weak antioxidant activity and average antibacterial activity. Although neither camphor nor 1,8-cineole show pronounced antibacterial activity, and they may accentuate the activities of minor essential oil components in a synergistic manner.

Experimental Section

Plant Material

The aerial parts of $A. annua$ L. were collected from 3 regions of Tajikistan: sample #1 from the Varzob region on July 2017, during the start of the flowering stage; sample #2 from the Rudaki region on August 2019, during the period of plant flowering; and sample #3 from the Hisor region on July 2019, during the start of the flowering stage. Raw material was identified with regards to specimens (accession number 360) in the Herbarium of the Institute of Botany, Plant Physiology and Genetics of the Tajikistan Academy of Sciences.

Isolation of the Essential Oil

The aerial parts (3 × 300 g) of $A. annua$ were dried at 25°C in the shade and subjected to hydrodistillation, using a Clevenger-type apparatus for 3 hours. Yield of essential oils was 0.4%-0.6%.

GC–MS Analysis

GC–MS analysis was performed on the essential oil of $A. annua$ (3 analysis of each essential oil) using an Agilent 6890 GC with Agilent 5973 MSD and HP-5ms capillary column as described previously by us. Identification of the essential oil components was based on retention indices and mass spectral fragmentation patterns with those reported in the literature and our own in-house database.

Antioxidant Activity

The antioxidant activity of the essential oils of $A. annua$ was evaluated by DPPH and ABTS assays. DPPH and ABTS assays were performed as described earlier by us.

Antimicrobial Activity

The antimicrobial activities of the essential oils were determined against $S. aureus$ (ATCC 23235), $P. aeruginosa$ (ATCC 50838), and $E. coli$ (ATCC 8739).
Hierarchical Cluster Analysis

The A. annua leaf essential oil compositions from this work and those from the literature were treated as operational taxonomic units. The percentage composition of 39 major essential oil components was used to determine the chemical relationship between the various A. annua essential oil samples by agglomerative hierarchical cluster analysis using the XLSTAT software, version 2018.1.1.6097 (Addinsoft, Paris, France). Euclidean distance was used to measure dissimilarity, and Ward’s method was used for cluster definition.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: the authors are grateful for financial support to the Central Asian Drug Discovery & Development Center of Chinese Academy of Sciences (Grant No. CAM 201808), Foreign young scholar (Grant No. 2018FYB0004) Chinese Academy of Sciences PIFI (Grant No. 2019PB0043) and the National Natural Science Foundation of China (Grant No. U1703235)

ORCID ID

Farukh S Sharopov https://orcid.org/0000-0003-0378-8887
William N Setzer https://orcid.org/0000-0002-3639-0528

References

1. Ćavar S, Maksimović M, Vidic D, Parić A. Chemical composition and antioxidant and antimicrobial activity of essential oil of Artemisia annua L. from Bosnia. Ind Crops Prod. 2012;37(1):479-485. doi:10.1016/j.indcrop.2011.07.024
2. Gouveia SC, Castilho PC. Artemisia annua L.: Essential oil and acetone extract composition and antioxidant capacity. Ind Crops Prod. 2013;45:170-181. doi:10.1016/j.indcrop.2012.12.022
3. Risaliti I, Pini G, Donato R. Development of Artemisia annua essential oil liposomes with antifungal activity against Candida species. Planta Med. 2019;85:1-02
4. Wu Y, Jiang X, Zhang L, Zhou Y. Ultrasonic-Assisted Extraction, Comparative Chemical Composition and Biological Activities of Essential Oils of Fresh and Dry Aboveground Parts of Artemisia annua L. Journal of Essential Oil Bearing Plants. 2018;21(6):1624-1635. doi:10.1080/0972060X.2019.1574244
5. Gupta PC, Dutta B, Pant D, Joshi P, Lohar DR. In vitro antibacterial activity of Artemisia annua Linn. growing in India. Int J Green Pharmacy. 2009;2:255-259.
6. Duarte MCT, Leme EE, Delarmelina C, Soares AA, Figueira GM, Sartoratto A. Activity of essential oils from Brazilian medicinal plants on Escherichia coli. J Ethnopharmacol. 2007;111(2):197-201. doi:10.1016/j.jep.2006.11.034
7. Sadiq A, Hayat MQ, Ashraf M. Ethnopharmacology of Artemisia annua L: A Review. In: Aftab T, Ferreira JFS, Khan MMA, Naem M, eds. Artemisia annua Pharmacology and Biotechnology. Berlin Heidelberg Springer-Verlag; 2014:9-25.
8. Deb M, Kumar D. Bioactivity and efficacy of essential oils extracted from Artemisia annua against Tribolium castaneum (Herbst. 1797) (Coleoptera: Tenebrionidae): An eco-friendly approach. Ecotoxicol Environ Saf. 2020;189:109988 doi:10.1016/j.ecoenv.2019.109988
9. Pandey AK, Singh P. The genus Artemisia a 2012–2017 literature review on chemical composition, antimicrobial, insecticidal and antioxidant activities of essential oils. Medicines. 2017;4(3):E68:68. doi:10.3390/medicines4030068
10. Sangwan NS, Kumar R, Srivastava S, Kumar A, Gupta A, Sangwan RS. Recent developments on secondary metabolite biosynthesis in Artemisia annua L. J Plant Biol. 2010;37:1-24.
11. Abad MJ, Bedoya LM, Apaza I, Bermejo P. The Artemisia L. genus: a review of bioactive essential oils. Molecules. 2012;17(3):2542-2566. doi:10.3390/molecules17032542
12. Mucciarelli M, Caramiello R, Maffei M, Chiala F. Essential oils from some Artemisia species growing spontaneously in north-west Italy. Flavour Fragr J. 1995;10(1):25-32. doi:10.1002/ffj.2730100105
13. Radulović NS, Randjelović PJ, Stojanović NM, et al. Toxic essential oils. Part II: chemical, toxicological, pharmacological and microbiological profiles of Artemisia annua L. volatiles. Food Chem Toxicol. 2013;58:37-49. doi:10.1016/j.fct.2013.04.016
14. Numonov S, Sharopov F, Salimov A, et al. Assessment of Artemisinin Contents in Selected Artemisia Species from Tajikistan (Central Asia. Medicines. 2019;6(1):23-29. doi:10.3390/medicine6010023
15. Donato R, Santomauro F, Bilia AR, Flamini G, Sacco C. Antibacterial activity of Tuscan Artemisia annua essential oil and its major components against some foodborne pathogens. LWT - Food Science and Technology. 2015;64(2):1251-1254. doi:10.1016/j.lwt.2015.07.014
16. Perazzo FF, Carvalho JCT, Carvalho JE, Rehder VLG. Central properties of the essential oil and the crude ethanol extract from aerial parts of Artemisia annua L. Pharmaceutical Res. 2003;48(5):497-502. doi:10.1016/S1043-6618(03)00216-0
17. Malik AA, Ahmad J, Suryapani S, Abdin MZ, Mir SR, Ali M. Volatiles of Artemisia annua L. as influence by solid application of organic residues. Res J Med Plant. 2012;6:433-440.
18. Senkal BC, Kiralan M, Yaman C. The effect of different harvest stages on chemical composition and antioxidant capacity of essential oil from Artemisia annua L. J Agric Sci. 2015;21:71-77.
19. Rasooli I, Rezaee MB, Moosavi ML, Jaimand K. Microbial Sensitivity to and Chemical Properties of the Essential Oil of Artemisia
annua L. Journal of Essential Oil Research. 2003;15(1):59-62. doi:10.1080/10412905.2003.9712268

20. Mohammadreza VR. Variation in the essential oil composition of Artemisia annua L. of different growth stages cultivated in Iran. Bot Res J. 2008;1:33-35.

21. Rana VS, Abirami K, Blázquez MA, Maiti S. Essential oil composition of Artemisia annua L. at different growth stages. J Spic Arom Crops. 2013;22:181-187.

22. Bilia AR, Santomauro F, Sacco C, Bergonzi MC, Donato R. Essential oil of Artemisia annua L: an extraordinary component with numerous antimicrobial properties. Evid Based Complement Alternat Med. 2014;2014:1-7. doi:10.1155/2014/159819

23. Woordenbag HJ, Pras N, Chan NG, et al. Artemisinin, related sesquiterpenes, and essential oil in Artemisia annua during a vegetation period in Vietnam. Planta Med. 1994;60(3):272-275. doi:10.1055/a-2006-959474

24. Li Y, HBH, Zheng XD, Zhu JH, Liu LP. Composition and antimicrobial activity of essential oil from the aerial part of Artemisia annua. J Med Plant Res. 2011;5:3629-3633.

25. Woordenbag HJ, Bos R, Salomons MC, Hendriks H, Pras N, Malingré TM. Volatile constituents of Artemisia annua L. (Asteraceae). Flavour Fragr J. 1993;8(3):131-137. doi:10.1002/fj.2730080303

26. XJ X, Song H, Zhu X, Xu GQ, HG A, DQ W. Analysis of chemical constituents of the volatile oil from Artemisia annua L. by GC/MS and Heuristic evolving latent projection. Fine Chem. 2008;12:1-15.

27. Konovalov DA, Khamilonov AA. Biologically active compounds of Artemisia annua. essential oil. Farm. farmakol.. 2016;4(4):4-33. doi:10.19136/2307-9266-2016-4-4-4-33

28. Chalchat J-C, Garry R-P, Lamy J. Influence of Harvest Time on Yield and Composition of Artemisia annua Oil Produced in France. J Essent Oil Res. 1994;6(3):261-268. doi:10.1080/10412905.1994.9698374

29. Juteau F, Masotti V, Bessière JM, Dherbomez M, Viano J. Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitterapia. 2002;73(6):532-535. doi:10.1016/S0367-326X(02)00175-2

30. Libbey LM, Sturtz G. Unusual Essential Oils Grown in Oregon II. Artemisia annua L. Journal of Essential Oil Research. 1989;1(5):201-202. doi:10.1080/10412905.1989.9697786

31. Charles DJ, Cebeert E, Simon JE. Characterization of the Essential Oil of Artemisia annua L. J Essent Oil Res. 1991;3(1):33-39. doi:10.1080/10412905.1991.9697903

32. Patel RP, Niranjan KA, Ramesh KR, Rajeswara RBR. Essential oil composition and nutrient analysis of Artemisia annua grown in Hyderabad. Future trends in medicinal and aromatic plants; 2009.

33. Verdian-rizi MR, Sadar-Ebrahimi E, Hadjiakhoondi A, Fazeli MR, Pirali Hamedani M. Chemical composition and antimicrobial activity of Artemisia annua L. essential oil from Iran. J Med Plant. 2008;7:58-62.

34. Massiha A, Khoshhkolgh-Pahlaviani MM, Issazadeh K, Bidarigh S, Zarrabi S. Antibacterial activity of essential oils and plant extracts of Artemisia (Artemisia annua L.) in vitro. Zabedian J Res Med Sci. 2013;15:14-18.

35. Rajeswara Rao BR, Syamasundar KV, Patel RP. Chemical profile characterization of Artemisia annua L. essential oils from South India through GC-FID and GC-MS analyses. J Essent Oil Bear Plant. 2014;17:1249-1256.

36. Tzenkova R, Kamenarska Z, Draganov A, Aranassov A. Composition of Artemisia Annua Essential Oil Obtained from Species Growing Wild in Bulgaria. Biotechnol Biotechnol Equip. 2010;24(2):1833-1835. doi:10.2478/V10133-010-0030-6

37. Jain N, Srivastava SK, Aggarwal KK, Kumar S, Syamasundar KV. Essential Oil Composition of Artemisia annua L. ‘Asha’ from the Plains of Northern India. J Essent Oil Res. 2002;14(4):305-307. doi:10.1080/10412905.2002.9699863

38. Héthelyi EB, Cseko IB, Grósz M, Márk G, Palinkás JJ. Chemical Composition of the Artemisia annua Essential Oils from Hungary. J Essent Oil Res. 1995;7(1):45-48. doi:10.1080/10412905.1995.9698460

39. Holm Y, Laakso I, Hiltunen R, Galambosi B. Variation in the essential oil composition of Artemisia annua L. of different origin cultivated in Finland. Flavour Fragr J. 1997;12(4):241-246. doi:10.1002/(SICI)1099-1026(199707)12:4<241::AID-FFJ641>3.0.CO;2-Z

40. Omer EA, Hussein EAA, Hendawy SF, El-din AAE, El-Gendy AG. Effect of nitrogen and potassium fertilizers on growth, yield, essential oil and artemisinin of Artemisia annua L. plant. Int Res J Horticult. 2014;2(2):11-20. doi:10.12966/irjh.04.01.2014

41. Sangwan RS, Sangwan NS, Jain DC, Kumar S, Ranade SA. RAPD profile based genetic characterization of chemotypic variants of Artemisia annua L. Biochem Med Biol Int. 1999;47(6):935-944. doi:10.1080/152164990202053

42. Cafferata LF, Gatti WQ, Mijalosky S. Secondary gaseous metabolites analyses of wild Artemisia annua L. Molec Med Chem. 2010;21:48-52.

43. Khodakov GV, Kotikov IV. Component composition of the essential oil from Artemisia annua and A. sativaria. Chem Nat Com. 2009;6(6):759-761.

44. De Magalhães PM, Pereira B, Sartoratto A. Yields of antimalarial Artemisia annua L. species Future for Medicinal and Aromatic Plants. Can Int Dev Agency. 2004

45. Huang X, Chen S-ru, Zhang Y, et al. Chemical Composition and Antifungal Activity of Essential Oils from Three Artemisia Species Against Alternaria solani. J Ecol Oil Bear Plants. 2019;22(6):1581-1592. doi:10.1080/0972060X.2019.1708812

46. Santomaufo F, Donato R, Pini G, Sacco C, Ascrizzi R, Bilia AR. Liquid and vapor-phase activity of Artemisia annua essential oil against pathogenic Malassezia spp. Planta Med. 2018;84(3):160-167. doi:10.1055/s-0043-118912

47. Goel R, Singh V, Gupta AK, Mallavarapu GR, Kumar S. Constituents of the Essential Oil of Artemisia annua Variety Sanjeevani Compared with Those of its Parental Varieties Arogya and Jeevanii. Biotechnol Biotechnol Equip. 2010;24(2):1833-1835. doi:10.2478/V10133-010-0030-6

48. Padalia RC, Verma RS, Chauhan A, Chanotiya CS, Yadav A. Variation in the volatile constituents of Artemisia annua
var. CIM-Arogya during plant ontogeny. *Nat Prod Commun.* 2011;6(2):1934578X1100600-242. doi:10.1177/1934578X1100600221

49. Ma C, Wang H, Lu X, Li H, Liu B, Xu G. Analysis of *Artemisia annua* L. volatile oil by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. *J Chromatogr A.* 2007;1150(1-2):50-53. doi:10.1016/j.chroma.2006.08.080

50. Tellez MR, Canel C, Rimando AM, Duke SO. Differential accumulation of isoprenoids in glanded and glandless *Artemisia annua* L. *Phytochemistry.* 1999;52(6):1035-1040. doi:10.1016/S0031-9422(99)00308-8

51. Woerdenbag H, Bos R, Salomons M, Hendriks H, Pras N, Maligré T. Volatile Constituents of *Artemisia annua*. *Planta Med.* 1992;58(S1):682 doi:10.1055/s-2006-961701

52. Viuda-Martos M, El Gendy AE-NGS, Sendra E, et al. Chemical composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants. *J Agric Food Chem.* 2010;58(16):9063-9070. doi:10.1021/jf101620c

53. Nibret E, Wink M. Volatile components of four Ethiopian *Artemisia* species extracts and their in vitro antitrypanosomal and cytotoxic activities. *Phytotherapy.* 2010;17(5):369-374. doi:10.1016/j.phymed.2009.07.016

54. Soylu EM, Yiğitbaş H, Tok FM, et al. Chemical composition and antifungal activity of the essential oil of *Artemisia annua* L. against foliar and soil-borne fungal pathogens. *J Plant Dissec Protect.* 2005;112(3):229-239.

55. Lopez-Lutz D, Alviano DS, Alviano CS, Kołodziejczyk PP. Screening of chemical composition, antimicrobial and antioxidant activities of *Artemisia* essential oils. *Phytochemistry.* 2008;69(8):1732-1738. doi:10.1016/j.phytochem.2008.02.014

56. Sharifi-Rad J, Salehi B, Varoni EM, et al. Plants of the *Melaleuca* genus as antimicrobial agents: from farm to pharmacy. *Phytother Res.* 2017;31(10):1475-1494. doi:10.1002/ptr.5880

57. Sharopov FS, Wink M, Setzer WN. Radical scavenging and antioxidant activities of essential oil components—an experimental and computational investigation. *Nat Prod Commun.* 2015;10(1):1934578X1501000-1934578X15011156. doi:10.1177/1934578X1501000135

58. Setzer WN, Vogler B, Schmidt JM, Leahy JG, Rives R. Antimicrobial activity of *Artemisia douglasiana* leaf essential oil. *Fittoterapia.* 2004;75(2):192-200. doi:10.1016/j.fitote.2003.12.019

59. Schmidt JM, Noletto JA, Vogler B, Setzer WN. Abaco bush medicine: chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. *J Herbs Spices Med Plants.* 2007;12(3):43-65. doi:10.1300/J044v12n03_04

60. Khalifaev PD, Sharopov FS, Safomuddin A, et al. Chemical Composition of the Essential Oil from the Roots of *Ferula kuhistanica* Growing Wild in Tajikistan. *Nat Prod Commun.* 2018;13(2):219-222. doi:10.1177/1934578X1801300226

61. Sharopov FS, Numonov SR, Safomuddin A, et al. Chemical composition of essential oil from *Cercis griffithii* growing in Tajikistan. *Chem Nat Compd.* 2018;54(5):1002-1003. doi:10.1007/s10060-018-2535-4

62. Adams R. Identification of essential oil components by gas chromatography / mass spectrometry. Illinois: 4th Allured Publishing Co. Carol Stream; 2007.