On anti-Ramsey numbers for complete bipartite graphs and the \textit{Turán} function

Elliot Krop* \hspace{1cm} Michelle York†

April 28, 2013

Abstract

Given two graphs G and H with $H \subseteq G$ we consider the anti-Ramsey function $AR(G, H)$ which is the maximum number of colors in any edge-coloring of G so that every copy of H receives the same color on at least one pair of edges. The classical Turán function for a graph G and family of graphs \mathcal{F}, written $ex(G, \mathcal{F})$, is defined as the maximum number of edges of a subgraph of G not containing any member of \mathcal{F}. We show that there exists a constant $c > 0$ so that $AR(K_n, K_{s,t}) - ex(K_n, K_{s,t}) < cn^{2-\frac{1}{t}}$, for $s \leq t$ by a result of Kővari, Sós, and Turán.

2000 Mathematics Subject Classification:

Keywords: Ramsey theory, generalized Ramsey theory, rainbow-coloring, anti-Ramsey, extremal function, Turán function

1 Introduction

For basic graph theoretic terminology and definitions see Diestel \cite{Di}. For specific definitions, we follow \cite{1}. Given a graph H and an edge-coloring c of H, we say that c is \textit{rainbow} if no two edges of H receive the same color. Given a copy A of $K_{s,t}$ for $t \geq s$, let $X(A)$ and $Y(A)$ denote the parts of A of order s and t, respectively and call them the \textit{interior} and the \textit{exterior}. For any $l > s$, consider the set of vertices $U = \{u_1, \ldots, u_l\}$, and let $T \subseteq \binom{U}{s}$, the set of s-tuples of U. Let $T = \{x_1, \ldots, x_k\}$ where x_i is an s-tuple for $1 \leq i \leq k$. If $x_1 \cap x_2 \neq \emptyset, \ldots, x_{k-1} \cap x_k \neq \emptyset$, and S is a graph containing T so that S can be partitioned into k edge-disjoint copies A_1, \ldots, A_k of $K_{s,t}$ with $X(A_i) = x_i$ for $1 \leq i \leq k$, then we call S a $K_{s,t}$-\textit{string} of length k. Furthermore, if $x_1 \cap x_k \neq \emptyset$, then we call S a $K_{s,t}$-\textit{ring} of length k. If S is a $K_{s,t}$-string and there exists a vertex $x \notin \{x_1, \ldots, x_k\}$, adjacent to s vertices of x_1 and a vertex of x_k which is not in x_1, then we call S a $K_{s,t}$-\textit{string-tie}.

Let G be a graph and $c : E(G) \to \mathbb{Z}$ a coloring of $E(G)$. A \textit{representing graph} of c is a spanning subgraph L of G containing exactly one edge of each color of c.

Given a multigraph G we define the \textit{edge-multiplicity} $m(G)$ as the maximum number of edges between two vertices x and y.

*Department of Mathematics, Clayton State University, (ElliotKrop@clayton.edu)

†Department of Mathematics, Clayton State University, (myork1@student.clayton.edu)
The Turán function for a graph \(G \) and family of graphs \(\mathcal{F} \), written \(ex(G, \mathcal{F}) \), is defined as the maximum number of edges of a subgraph of \(G \) not containing any member of \(\mathcal{F} \).

The anti-Ramsey function for graphs \(G \) and \(H \subseteq G \), written \(AR(G, H) \), is the maximum number of colors in any edge-coloring of \(G \) so that every copy of \(H \) receives the same color on at least one pair of edges.

2 Brief History

The anti-Ramsey function and its relation to the Turán function were studied by Erdős, Simonovits, and Sós in [3], where they showed that \(AR(K_n, H) - ex(K_n, \mathcal{H}) = o(n^2) \) with \(\mathcal{H} = \{ H - e : e \in E(H) \} \). Since then, many authors have worked on determining the asymptotic order of \(AR(G, H) \) (see [4] for example). We follow the investigation of Axenovich and Jiang [1] who were able to determine that \(AR(K_n, K_{2,n}) = (\frac{\sqrt{2}}{2})n^\frac{3}{2} + O(n^{\frac{3}{4}}) \) and \(AR(K_{n,n}, K_{2,n}) = \sqrt{7} - 2n^{\frac{3}{2}} + O(n^{\frac{3}{4}}) \). We show that if we exclude all rainbow complete bipartite graphs of fixed order, we can extend the previous technique and produce a general upper bound that follows the result from [5].

Theorem 2.1. \(ex(K_n, K_{s,t}) \leq cn^{2 - \frac{1}{4}} \) where \(s \leq t \) and \(c \) depends on \(s \) and \(t \).

3 Excluding Rainbow Complete Bipartite Graphs

The following proposition was shown in [3]:

Proposition 3.1. \(ex(G, \mathcal{H}) + 1 \leq AR(G, \mathcal{H}) \leq ex(G, \mathcal{H}) \)

Proof. For the upper bound, any representing subgraph of an \(H \)-free coloring of \(E(G) \) is a subgraph of \(G \) containing no \(H \) subgraph. The number of colors used in a representing graph is equal to the number of edges of the representing graph = \(AR(G, H) \). However, this number of colors is also the number of edges avoiding \(H \).

For the lower bound, we consider a subgraph \(G' \) in \(G \) that has \(ex(G, \mathcal{H}) \) edges which does not contain any member of \(\mathcal{H} \) as a subgraph. Color the edges of \(G' \) using distinct colors. Color the rest of \(G \) by some other color (all same color). The resulting coloring contains no rainbow copy of \(H \) and uses \(ex(G, \mathcal{H}) + 1 \) colors. \(\square \)

The arguments in the following two lemmas are similar to the case when \(s = 2 \) which can be found in [1].

Lemma 3.2. If \(c \) is a coloring of \(E(K_n) \) with no rainbow \(K_{s,t} \), then \(c \) does not contain a rainbow \(K_{s,t-1}\)-string-tie.

Proof. Let \(M \) be a rainbow \(K_{s,t-1} \) string-tie in \(c \) that is of minimum length. Let the interior \(X = \{ x_1, \ldots, x_k \} \) where \(x_i \) are \(s \)-tuples and let the copies of \(K_{s,t-1} \) that form \(P \) be labeled \(B_1, \ldots, B_k \) where \(X(B_i) = \{ x_i \} \). Suppose \(M \) is obtained from a string \(P \) of length \(k \) by adding a vertex \(x \) (not in \(P \)) and making it adjacent to a vertex \(u_k \in x_k \backslash x_1 \), and the vertices \(s_1 \subseteq x_1 \) where \(|s_1| = s - 1 \). If \(k = 2 \), then \(M \) is a rainbow \(K_{s,t} \). Let us assume that \(k \geq 3 \). Let \(M_1 = B_1 \cup x_{s_1} \) and
deletion. Notice that the resulting graph is simple with n edges, so it must contain a cycle C_H edges and edge multiplicity s. Thus, xu_2 completes a rainbow $K_{s,t}$-string-tie with either M_1 or M_2 which is shorter than M and a contradiction.

Lemma 3.3. If H is a graph not containing a $K_{s,t}$-string-tie, then H is not a $K_{s,t}$-ring.

Proof. Suppose that H is a $K_{s,t}$-ring of length k, $X(H) = \{x_1, \ldots, x_k\}$ where x_i are s-tuples and all the copies of $K_{s,t}$ forming H are B_1, \ldots, B_k with $B_i = \{x_i\}$. Suppose first that the $Y(B_i)$ are pairwise disjoint so that $|Y(H)| = kt > k(s-1)+1 \geq |X(H)|$. By the pigeonhole principle, there exists $w \in Y(H) \setminus X(H)$. Without loss of generality, assume $w \in Y(B_1)$. Note that for $s_1 \subseteq x_1$ where $|s_1| = s-1$ and a vertex $u_k \in x_k \setminus x_1$, $\bigcup_{i=2}^k B_i \cup \{ws_1, wu_k\}$ is a $K_{s,t}$ string-tie.

Next, assume that there exists $l_1 < l_2$ such that $Y(B_{l_1}) \cap Y(B_{l_2}) \neq \emptyset$. Without loss of generality, suppose $l_1 = 1$ and l_2 is as small as possible. Let $v \in Y(B_{l_1}) \cap Y(B_{l_2})$. Let $l_3 = \max\{i \in [k]: v \in Y(B_i)\}$. Notice that $l_3 \geq l_2$. By the above observation, we have $l_2 - 1 \geq 2$ and $l_3 \leq k - 1$. Since the vertices in $X(H)$ are all distinct, v is not a member of at least one of $\{x_2, \ldots, (x_{l_2}, x_{l_2+1})\}$ or $\{x_{l_3+1}, \ldots, x_{k}, (x_1, x_2)\}$. Without loss of generality, suppose the statement holds for the first set. By our choice of l_2, we have $v \notin Y(\bigcup_{i=2}^{l_2-1} B_i)$ and hence $v \notin \bigcup_{i=2}^{l_2-1} B_i \cup \{vx_2, v(x_{l_2}, x_{l_2+1})\}$ contains a $K_{s,t}$-string-tie.

The next lemma is the key step to generalizing beyond the exclusion of $K_{2,t}$.

Lemma 3.4. If $G' \subseteq G$, $|G| = n$, and G' does not contain a $K_{s,t}$-ring where $t \geq s$, then $\|G\| \leq ex(G, K_{s,t}) + st(n-1)$.

Proof. We argue by contradiction and assume that H is a maximal collection of pairwise edge-disjoint $K_{s,t}$ in G' and that H contains k copies of $K_{s,t}$. Note that H contains kst edges and that removing the edges of H from G' leaves no copies of $K_{s,t}$. Combining this observation with our assumption produces

\[
ex(G, K_{s,t}) + st(n-1) < e(G') \leq ex(G, K_{s,t}) + kst
\]

from which we see that $k > n - 1$.

Next we construct a graph F so that $V(F) = V(G')$ and for every member A of H where $X(A) = \{u_i, \ldots, u_s\}$, we create the path $u_{i_1} \ldots u_{i_s}$ in F. We note that two such paths may intersect on at most $s-1$ vertices and produce no more than $s-2$ multiple edges of multiplicity 2. Thus, F is a loopless multigraph with $k(s-1)$ edges and edge multiplicity $m(F) \leq k$. For every pair of vertices of F with at least two edges, we delete all but one edge between those vertices. Since the maximum number of multiple edges is $k(s-2)$, we are left with at least k edges after the deletion. Notice that the resulting graph is simple with n vertices and $k > n - 1$ edges, so it must contain a cycle C. The edges of C are incident to vertices $X(A)$ where A are members of H, and therefore a subgraph containing vertices of C forms a $K_{s,t}$-ring in G' which is a contradiction.

Theorem 3.5. For $s \leq t$ there exists a constant c, so that

$$AR(K_n, K_{s,t}) - ex(K_n, K_{s,t-1}) \leq cn$$
Proof. Given a $K_{s,t}$-free coloring c of $E(K_n)$ with $AR(K_n, K_{s,t})$ colors and a representing graph H of c, we apply lemmas 3.2-3.4 in sequence, to obtain the result.

The above theorem together with Theorem 2.1 immediately gives the following

Corollary 3.6. $AR(K_n, K_{s,t}) \leq cn^{2-\frac{1}{s}}$ where c depends on s and t.

Note: We can extend our result to $K_{n,n}$ by repeating the above argument as in [1], to produce $AR(K_{n,n}, K_{s,t}) \leq cn^{2-\frac{1}{s}}$ where c depends on s and t.

References

[1] M. Axenovich, T. Jiang, Anti-Ramsey numbers for small complete bipartite graphs, *Ars Combinatoria* 73 (2004), 311-318.

[2] R. Diestel, *Graph Theory, Third Edition*, Springer-Verlag, Heidelberg Graduate Texts in Mathematics, Volume 173, New York, 2005.

[3] Erdős, P., Simonovits, M. and Sós, V. T. (1975) Anti-Ramsey theorems. In *Infinite and finite sets* (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, North-Holland, Amsterdam, Vol. 10 of *Colloq. Math. Soc. Janos Bolyai*, pp. 633643.

[4] T. Jiang, D.B. West, Edge-colorings of complete graphs that avoid polychromatic trees, *Discrete Mathematics* Volume 274, Issues 1-3, 6 January (2004), Pages 137-145.

[5] T. Kővari, V.T. Sós, and P. Turán, On a problem of K. Zarankiewicz, *Colloq. Math. 3* (1954), 50-57.