Complete mitochondrial genome of *Rivularia auriculata* (Gastropoda, Viviparidae) with phylogenetic consideration

Chunxia Zhang\(^a\), Jing Guo\(^{a,b}\), Huirong Yang\(^c\) and Jia-En Zhang\(^{a,d,e,f}\)

\(^a\)College of Natural Resources and Environment, South China Agricultural University, Guangzhou, PR China; \(^b\)Henry Fok College of Life Sciences, Shaoguan University, Shaoguan, PR China; \(^c\)College of Marine Sciences, South China Agricultural University, Guangzhou, PR China; \(^d\)Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, PR China; \(^e\)Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangzhou, PR China; \(^f\)Guangdong Provincial Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, Guangzhou, PR China

ABSTRACT

Complete mitochondrial genome sequence of *Rivularia auriculata* has a circular genome of 16,552 bp, which is comprised 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. The nucleotide composition of the light strand is 43.16% of A, 26.78% of T, 20.18% of C, and 9.88% of G. All genes are encoded on the heavy strand except seven tRNA genes (Met, Tyr, Cys, Trp, Gin, Gly, and Glu) on the light strand. All the protein-coding genes start with ATC initiation codon except ND4 starts with GTG, and two types of inferred termination codons are TAA and TAG. There are 26 intergenic spacers and 4 gene overlaps. It is indicated that *R. auriculata* has closer genetic relationship with *Viviparus chui* (88.64% nucleotide sequence identity between them) than the other snail species.

Rivularia auriculata is a kind of rare species of China, which mainly distributes in Xiangjiang River basin of Hunan province, and also scatters in neighboring provinces. The species belongs to the family Viviparidae and the order Architaenioglossa. Due to the destruction of its natural habitats and decreasing of its populations, *R. auriculata* was listed as Extinct Species by China Red Data Book of Endangered Animals. This presents a major obstacle for conservation efforts.

So far there are only a few researches on the population dynamics and morphological structure of *R. auriculata* (Zhou 1996; Pan et al. 2010), and no mitochondrial genomes of genus *Rivularia* in NCBI PubMed. Therefore, we sequenced the complete mitochondrial genome of *R. auriculata* by using the next-generation sequencing (NGS) techniques for its further population genetics and polymorphism studies. *R. auriculata* samples were collected from Poyang Lake in Jiangxi province of China (28°74′ N, 116°41′ E). Specimen (voucher no. zcx20181109-10) was preserved in 95% ethanol and stored at −40 °C refrigerator in the Key laboratory of Eco-circular Agriculture in South China Agricultural University, Guangzhou, China. The procedure referred from Green and Sambrook (2012) was carried out in the total genomic DNA extraction.

We sequenced and characterized the complete mitochondrial genome of *R. auriculata*. The mitochondrial DNA sequence of *R. auriculata* with the annotated genes was deposited in GenBank (accession number: MN264502). Complete mitochondrial genome sequence of *R. auriculata* is a circular one of 16,552 bp containing a total of 37 genes, including 13 protein-coding genes, 2 ribosomal RNA genes (12S-rRNA and 16S-rRNA), and 22 transfer RNA genes (tRNA). All of them are encoded on the heavy strand except seven tRNA genes (Met, Tyr, Cys, Trp, Gin, Gly, and Glu) on the light strand. All the protein-coding genes start with ATC initiation codon except ND4 starts with GTG, and two types of inferred termination codons are TAA and TAG. There are 26 intergenic spacers and 4 gene overlaps. It is indicated that *R. auriculata* has closer genetic relationship with *Viviparus chui* (88.64% nucleotide sequence identity between them) than the other snail species.

KEYWORDS

Rivularia auriculata; mitochondrial genome; NGS technique

CONTACT Jia-En Zhang jeanzh@scau.edu.cn College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
two tRNA genes vary from 60 to 70 bp in length, and all fold into the typical cloverleaf secondary structure. There are 26 intergenic spacers (total 1567 bp) varying from 1 to 946 bp in length and 4 gene overlaps (total 17 bp), the larger of which is 7 bp between the CYTB and ND5 genes. The tandem repeat sequences are observed in inter genetic space of tRNAThr (TGT).

Phylogenetic analysis covered mitochondrial genomes of R. auriculata and the other 14 species that are from the order Bellamya, Cipangopaludina, Margarya, Rivularia, Viviparus, Pomacea, Marisa, and Obscurella, belong to Architaenioglossa (Figure 1), and Littorina saxatilis was used as an outgroup. Maximum likelihood (ML) method was adopted for phylogenetic analysis (Figure 1). The GTR + I + G model was selected by the Akaike information criterion in jModelTest2.1.7 (https://code.google.com/p/jmodeltest2/). The phylogenetic tree was visualized with MEGA version 6.06 (Tamura et al. 2013). It is indicated that R. auriculata has closer genetic relationship with Viviparus chui (88.64% nucleotide sequence identity between them than the other snail species (Figure 1).

Disclosure statement

The authors report no conflicts of interest. The authors themselves are responsible for the content and writing of the article.

Funding

This work was financially supported by grants from the National Natural Science Foundation of China [No. 31870525, No. 41871034, and No. U1113006] and Science and Technology Planning Project of Guangdong Province [No. 2019B030301007, No. 2015B090903077].

References

Green MR, Sambrook J. 2012. Molecular cloning: a laboratory manual. 4th ed. New York (NY): Cold Spring Harbor Laboratory Press.
Pan H, Ouyang S, Huang P, Zhao D, Ruan L, Wu X. 2010. Population dynamics, annual production of Rivularia auriculata in Junshan Lake. Ecol Sci. 29(5):456–460.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30(12):2725–2729.
Wolstenholme DR. 1992. Animal mitochondrial DNA: structure and evolution. Int Rev Cytol. 141:173–216.
Yang H, Zhang JE, Deng ZX, Luo H, Guo J, He S, Luo M, Zhao B. 2016. The complete mitochondrial genome of the golden apple snail Pomacea canaliculata (Gastropoda: Ampullariidae). Mitochondrial DNA B. 1(1):45–47.
Yang H, Zhang JE, Guo J, Deng Z, Luo H, Luo M, Zhao B. 2016. The complete mitochondrial genome of the giant African snail Achatina fulica (Mollusca: Achatinidae). Mitochondrial DNA A. 27:1622–1624.
Yang H, Zhang JE, Luo H, Luo M, Guo J, Deng Z, Zhao B. 2016. The complete mitochondrial genome of the mudsnail Cipangopaludina cathayensis (Gastropoda: Viviparidae). Mitochondrial DNA A. 27:1892–1894.
Zeng T, Yin W, Xia R, Fu C, Jin B. 2015. Complete mitochondrial genome of a freshwater snail, Semisulcospira libertina (Cerithioidea: Semisulcospiridae). Mitochondrial DNA. 26(6):897–898.
Zhou Y. 1996. Morphological studies on the reproductive organs and spermatozoa of Rivularia auriculata Martens (Gastropoda). Acta Zool Sin. 42(4):343–349.