Supplemental Information for:

Technical considerations in Hi-C scaffolding and evaluation of chromosome-scale genome assemblies

Kazuaki Yamaguchi, Mitsutaka Kadota, Osamu Nishimura, Yuta Ohishi, Yuki Naito, Shigehiro Kuraku

Supplemental Methods

Sample source
Adult P. picta was provided by the Laboratory for Animal Resources and Genetic Engineering, RIKEN BDR. Animal breeding and experiments were conducted in accordance with the guidelines of the Institutional Animal Care and Use Committee (IACUC), RIKEN Kobe Branch.

Sequencing and assembly using short shotgun reads
To obtain a new Illumina shotgun sequencing library of short reads, 500 ng of genomic DNA (gDNA) was sheared using an E220 Focused-ultrasonicator (Covaris), to obtain DNA fragments of variable length distributions. The gDNA was extracted from a previously reported individual (Hara et al., 2018). The sheared DNA was denatured at 90°C for 5 min, size-selected by Agencourt AMPure XP (Beckman Coulter), and enriched for GC-rich regions of gDNA (Tilak, Botero-Castro, Galtier, & Nabholz, 2018). The GC-enriched DNA was used for paired-end library preparation with a KAPA LTP Library Preparation Kit (KAPA Biosystems). The optimal number of PCR cycles for the library was determined using a Real-Time Library Amplification Kit (KAPA Biosystems) by preliminary qPCR-based quantification using an aliquot of adaptor-ligated DNAs. To amplify and enrich the library, 6 cycles of PCR amplification were performed. Small molecules in the prepared libraries were removed by size selection using Agencourt AMPure XP. The library was sequenced on a HiSeq 1500 platform (Illumina), operated...
by the HiSeq Control Software v2.0.12.0 using a HiSeq SR Rapid Cluster Kit v2 (Illumina) and HiSeq Rapid SBS Kit v2 (Illumina), to obtain 127-nt-long paired-end reads (PE127). Base calling was performed with RTA v1.17.21.3, and the fastq files were generated by bcl2fastq v1.8.4 (Illumina). Registration information for the library is given in Table S1. Removal of low-quality bases from paired-end reads was processed by TrimGalore v0.3.3 with the options “--stringency 2 --quality 20 --length 25 --paired --retain_unpaired”. Short-read assembly of the Madagascar ground gecko (Paroedura picta) was performed using Platanus v1.2.4, as described previously (Hara et al., 2018), using the newly obtained GC-rich reads and previously reported reads (Hara et al., 2018) (Table S1). These reads were all derived from a single individual of an unknown sex, and the total sequencing coverage amounted to 77.7-fold the genome size quantified using flow cytometry (1.84 pg). Scaffolding with mate-pair reads and gap closure were also performed using the program Platanus v1.2.4. The resulting genome assembly is designated as Assembly 13 in this article (see Figure S2).

Sequencing and assembly using Chromium linked-reads

Ultra high molecular weight gDNA was extracted from female blood for the preparation of the Chromium linked-read library using the CHEF Mammalian Genomic DNA Plug Kit (BioRad, Cat. No. #1703591). Next, 7.2 ng of the gDNA was used for the preparation of the Chromium genome library. The library was constructed according to the user guide of the Chromium Genome Library Kit v2 Chemistry using the Chromium Genome Library Kit & Gel Bead Kit v2 (10x Genomics, Cat. No. #120258) and the Chromium Genome Chip Kit v2 (10x Genomics, Cat. No. #120257). The library was sequenced on a HiSeq X (Illumina) platform to obtain 151 nt-long paired-end reads (PE151). Registration information for the library is given in Table S1. De novo assembly was performed by the program Supernova v2.0 using Chromium linked-reads, with the input read number set to 336 million. The sequencing coverage was 56 times the genome size. The resulting genome assembly is designated as Assembly 7 in this article (see Figure S2).

Scaffolding using RNA-seq reads and Chromium linked-reads

The genome assembly sequences generated by the program Platanus were used as a reference for RNA-seq read mapping using the program HISAT2 v2.1.0 (Figure S2). The mapping output was used in the scaffolding with the program P_RNA_scaffolder
The RNA-seq library used in this step was previously reported (Hara et al., 2015) (Table S2). The output of the scaffolding using RNA-seq reads mentioned above was used as a reference in mapping Chromium linked-reads using the program BWA v0.7.17. Based on the linked-read mapping information, misconnections in the sequences scaffolded by the programs Platanus and P_RNA_scaffolder were corrected by the program Tigmint v1.1.2 (Jackman et al., 2018). The output sequences were scaffolded by the program ARKS v1.1.0 with the linked-read mapping information (Coombe et al., 2018). The resulting genome assembly is designated as Assembly 1 in this article (see Figure S1).

Hi-C library preparation and sequencing
A Hi-C library was constructed as previously reported (Kadota et al., 2020) using the restriction enzyme HindIII. A whole embryo of *P. picta* at stage 28 that had been kept frozen at –80°C after dissection and after snap freezing in liquid nitrogen was cryopulverized and fixed in 1% formaldehyde solution. Fixed tissue containing 10 μg of DNA was used for the preparation of Hi-C DNA via *in situ* restriction digestion and ligation. The Hi-C library was constructed from 2 μg of post-ligated DNA with 5 cycles of PCR amplification. Quality controls of the post-ligated DNA (QC1) and the Hi-C library (QC2) were performed as described previously (Kadota et al., 2020). In each of these QCs, the expected shift of DNA length distributions was confirmed in the samples (Figure S1). The prepared Hi-C library was sequenced with PE127 on a HiSeq 1500 platform, and 101 million read pairs were obtained (Table S1).

Hi-C scaffolding
Each of the three genome assemblies (Assemblies 1, 7, and 13 in Figure S2) was used as a reference for Hi-C read mapping and chromosome-scale scaffolding, which were performed using the program 3d-dna (v180922) (Dudchenko et al., 2017). In the scaffolding, five different input sequence length thresholds were applied (Figure S2). The resulting 15 scaffolding outputs, as well as the original assemblies (before scaffolding), were assessed based on sequence length distribution (Figure S3) and protein-coding gene completeness. The contact map of the Hi-C reads link was checked to the plausible assembly, and some unnatural contacts were manually curated using Juicebox v1.11.08 (Durand et al., 2016). For Assembly 6, which was judged to be the best among all assemblies, the “review” of the scaffolding results was
performed with the chromatin contact map on Juicebox by referring to the two following types of independent information: 1) gene mapping results with FISH for *Gekko hokouensis* (Srikulnath, Uno, Nishida, Ota, & Matsuda, 2015) and 2) nucleotide sequence similarity between different scaffolding outputs visualized by SyMAP (Soderlund, Bomhoff, & Nelson, 2011). After Assembly 6 was chosen as the optimal output, contaminated sequences were removed from this genome assembly, for public release, as reported previously (Hara et al., 2018). The resulting sequences were deposited in DDBJ/NCBI under the BioProject PRJDB5392.

Assessment of BUSCO results

The telomere-to-telomere human genome assembly CHM13 v1.0 (https://github.com/nanopore-wgs-consortium/chm13) was assessed using the version (5.0.0) of BUSCO (Simão, Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015) and the Tetrapoda ortholog set on the gVolante webserver (Nishimura, Hara, & Kuraku, 2019). Based on the output of BUSCO, we identified OrthoDB entries for the 79 genes that were recognized as “missing” by BUSCO, as well as their human ortholog sequences in NCBI RefSeq (as of April 5, 2021). For each of these 79 cases, the presence of a continuous nucleotide sequence harboring a complete intact open reading frame was scanned with BLASTN 2.5.0+ or TBLASTN 2.5.0+ (Altschul et al., 1997) in the CHM13 genome assembly, and manually confirmed later (Table S3).
Figure S1. Pre-sequencing quality control of the Madagascar ground gecko Hi-C library. (a) Quality control of the Hi-C DNA (QC1) comparing pre-digestion, digested, and ligated DNA (Hi-C DNA) with a TapeStation Genomic DNA ScreenTape (Agilent Technologies). (b) Quality control of the Hi-C library (QC2) comparing library DNA with and without NheI restriction enzyme digestion with TapeStation High Sensitivity D1000 ScreenTape (Agilent Technologies).
Figure S2. Madagascar ground gecko genome assemblies. The bold numbers 1 to 18 are the identifiers of the constructed genome assemblies. Assembly 1 was constructed using the short-read assembly program Platanus (Kajitani et al., 2014), the transcript-based scaffold P_RNA_Scaffold (Zhu et al., 2018), and ARKS (Coombe et al., 2018), a scaffold that processes 10x Genomics Chromium linked-reads and was used as the input assembly for Hi-C scaffolding with the program 3d-dna, with five different input sequence length thresholds (1,000, 3,000, 5,000, 10,000, and 15,000 bp), to produce Assemblies 2–6. Assembly 7 was initially constructed with Supernova, a program for processing 10x Genomics Chromium linked-reads, and was later scaffolded with 3d-dna, to produce Assemblies 8–12. Assembly 13 was initially constructed by Platanus (Hara et al., 2018) and was later scaffolded with 3d-dna, to produce Assemblies 14–18. See Supplemental Methods for details of the assembly and scaffolding processes.
Figure S3. Basic sequence length statistics of Hi-C scaffolding output for the Madagascar ground gecko genome. (a) Length distribution of the scaffold sequences in the individual genome assemblies. The numbers 1–18 indicated on the left correspond to the identifiers of the genome assemblies shown in Figure S2. (b) Proportion of the sum length of scaffold sequences >1 Mbp compared with the total sequence length in the assembly. (c) N50 scaffold length of the individual genome assemblies. (d) Length of the largest scaffold in the individual genome assemblies.
Supplemental Tables

Table S1. Libraries prepared for Madagascar ground gecko genome sequencing

Library ID	Library type	Accession ID	Starting DNA amount (ng)	Peak insert length (bp)	Number of PCR cycles	Read length (bp)
P079_01_1’	Paired-end shotgun	DRR089867, DRR089870	1,000	379	0	151, 171
P079_01_2’	Paired-end shotgun	DRR089868, DRR089871	2,000	481	0	151, 171
P079_01_3’	Paired-end shotgun	DRR089869, DRR089872, DRR089873	4,000	615	0	151, 171, 301
P091_01_1’	Mate-pair	DRR089874, DRR089875	4,000	663	10	301, 171
P101_01_1’	Mate-pair	DRR089878, DRR089879	4,000	487	8	301, 171
P101_01_2’	Mate-pair	DRR089880, DRR089881	4,000	485	10	301, 171
P101_01_3’	Mate-pair	DRR089876, DRR089877	4,000	494	8	301, 171
P104_01_5’	Mate-pair	DRR089882, DRR089883	12,000	411	10	301, 171
P377_04_1	Paired-end shotgun (GC-rich)	DRR288659	500	319	6	127
P461_02_1	Chromium linked-read	DRR288658	0.9**	478	10†	151
P312_02_1	Hi-C	DRR288660	2,000	317	5	127

*Reported in a previous publication (Hara et al., 2018). **Amount of gDNA loaded onto the Chromium Genome Chip. †Number of PCR cycles using the Chromium i7 Sample index.
Library ID	Library type	Accession ID	Starting RNA amount (ng)	Peak insert length (bp)	Number of PCR cycles	Read length (bp)
P061_01_2	RNA-seq	DRR047248	40	226	6	171
P061_01_1	RNA-seq	DRR047249	40	542	6	171
P076_01_2	RNA-seq	DRR047250	40	542	6	251
P076_01_1	RNA-seq	DRR047251	1,100	243	4	151
P080_01_1	RNA-seq	DRR047252	2,200	662	2	151
P080_03_1	RNA-seq	DRR047253	1,000	365	6	151
P080_02_1	RNA-seq	DRR047254	1,000	376	6	151
Table S3. Manual assessment of automated completeness assessment results by BUSCO

OrthoDB group ID	Human gene symbol (Gene ID)	Presence of the full ORF in the human genome	
89910at32523	ABCG1 (9619)	Yes	
163158at32523	ACAT1 (38)	Yes	
146229at32523	ADIPOR2 (79602)	Yes	
119446at32523	ALG9 (79796)	Yes	
103667at32523	ANKRD6 (22881)	Yes	
147451at32523	ARSB (411)	Yes	
37139at32523	BOC (91653)	Yes	
266661at32523	C3orf38 (285237)	Yes	
267504at32523	CACFD1 (11094)	Yes	
142624at32523	CCDC13 (152206)	Yes	
84377at32523	COL1A2 (1278)	Yes	
176420at32523	COL3A1 (1281)	Yes	
129804at32523	COL4A1 (1282)	Yes	
75528at32523	COL4A2 (1284)	Yes	
127708at32523	COL4A3 (1285)	Yes	
96920at32523	COL4A4 (1286)	Yes	
68937at32523	COL5A2 (1290)	Yes	
184179at32523	COL9A1 (1297)	Yes	
242674at32523	COL9A3 (1299)	Yes	
245810at32523	COLQ (8292)	Yes	
170550at32523	CPB2 (1361)	Yes	
255236at32523	CPSF7 (79869)	Yes	
280970at32523	CSRP1 (1465)	Yes	
290134at32523	CTNNBIP1 (56998)	Yes	
62739at32523	DLL1 (28514)	Yes	
200948at32523	DUS4L (11062)	Yes	
79372at32523	E4F1 (1877)	Yes	
232302at32523	ECHS1 (1892)	Yes	
115831at32523	EDEM2 (55741)	Yes	
Chromosome Position	Gene Symbol	Gene Name	Verified
---------------------	-------------	-----------	----------
154353at32523	EIF2AK1	EIF2AK1 (27102)	Yes
190153at32523	EIF3G	EIF3G (8666)	Yes
113562at32523	EMILIN3	EMILIN3 (90187)	Yes
283389at32523	ENDOG	ENDOG (2021)	Yes
137199at32523	EXO1	EXO1 (9156)	Yes
132426at32523	FAM126B	FAM126B (285172)	Yes
133800at32523	FAM149A	FAM149A (25854)	Yes
66945at32523	FBLN1	FBLN1 (2192)	Yes
113162at32523	HAS3	HAS3 (3038)	Yes
265292at32523	HNRNPH	HNRNPH (3189)	Yes
133315at32523	HYAL2	HYAL2 (8692)	Yes
16711at32523	JAG2	JAG2 (3714)	Yes
215217at32523	KERA	KERA (11081)	Yes
89901at32523	KLHL17	KLHL17 (339451)	Yes
255366at32523	LSM11	LSM11 (134353)	Yes
92894at32523	MAML3	MAML3 (55534)	Yes
195716at32523	MC5R	MC5R (4161)	Yes
259403at32523	MMAB	MMAB (326625)	Yes
295209at32523	MPZL2	MPZL2 (10205)	Yes
40350at32523	NDST1	NDST1 (3340)	Yes
254990at32523	NHEJ1	NHEJ1 (79840)	Yes
150210at32523	NPRL2	NPRL2 (10641)	Yes
155481at32523	NPTX2	NPTX2 (4885)	Yes
180371at32523	OPTN	OPTN (10133)	Yes
207120at32523	PDZD3	PDZD3 (79849)	Yes
54439at32523	PIK3R6	PIK3R6 (146850)	Yes
109060at32523	PPARG	PPARG (5468)	Yes
85764at32523	PRDM5	PRDM5 (11107)	Yes
134671at32523	PRDM6	PRDM6 (93166)	Yes
130632at32523	PYROXD2	PYROXD2 (84795)	Yes
208381at32523	REN	REN (5972)	Yes
213362at32523	ROGDI	ROGDI (79641)	Yes
177255at32523	SGK2	SGK2 (10110)	Yes
122940at32523	SLC13A1	SLC13A1 (6561)	Yes
195601at32523	SLC25A19	SLC25A19 (60386)	Yes
Gene Symbol	Description	Presence	
--------------	---------------------------	----------	
SLC25A42	Yes		
SLC38A4	Yes		
SPAST	Yes		
SPICE1	Yes		
SUFU	Yes		
TFCP2L1	Yes		
TM4SF19	Yes		
TMEM177	Yes		
TMEM216	Yes		
TMEM237	Yes		
TMEM82	Yes		
TPH1	Yes		
VSIG10	Yes		
WIPF1	Yes		
ZBTB43	Yes		
References

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research, 25*(17), 3389-3402. doi:10.1093/nar/25.17.3389

Coombe, L., Zhang, J., Vandervalk, B. P., Chu, J., Jackman, S. D., Birol, I., & Warren, R. L. (2018). ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers. *BMC Bioinformatics, 19*(1), 234. doi:10.1186/s12859-018-2243-x

Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., . . . Aiden, E. L. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. *Science, 356*(6333), 92-95. doi:10.1126/science.aal3327

Durand, N. C., Shamim, M. S., Machol, I., Rao, S. S., Huntley, M. H., Lander, E. S., & Aiden, E. L. (2016). Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. *Cell Syst, 3*(1), 95-98. doi:10.1016/j.cels.2016.07.002

Hara, Y., Takeuchi, M., Kageyama, Y., Tatsumi, K., Hibi, M., Kiyonari, H., & Kuraku, S. (2018). Madagascar ground gecko genome analysis characterizes asymmetric fates of duplicated genes. *BMC Biology, 16*(1), 40. doi:10.1186/s12915-018-0509-4

Hara, Y., Tatsumi, K., Yoshida, M., Kajikawa, E., Kiyonari, H., & Kuraku, S. (2015). Optimizing and benchmarking de novo transcriptome sequencing: from library preparation to assembly evaluation. *BMC Genomics, 16*, 977. doi:10.1186/s12864-015-2007-1

Jackman, S. D., Coombe, L., Chu, J., Warren, R. L., Vandervalk, B. P., Yeo, S., . . . Birol, I. (2018). Tigmint: correcting assembly errors using linked reads from large molecules. *BMC Bioinformatics, 19*(1), 393. doi:10.1186/s12859-018-2425-6

Kadota, M., Nishimura, O., Miura, H., Tanaka, K., Hiratani, I., & Kuraku, S. (2020). Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding? *Gigascience, 9*(1). doi:10.1093/gigascience/giz158

Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., . . . Itoh, T. (2014). Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. *Genome Research, 24*(8), 1384-1395. doi:10.1101/gr.170720.113

Nishimura, O., Hara, Y., & Kuraku, S. (2019). Evaluating Genome Assemblies and Gene Models Using gVolante. *Methods Mol Biol, 1962*, 247-256. doi:10.1007/978-1-4939-9173-0_15
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics, 31*(19), 3210-3212. doi:10.1093/bioinformatics/btv351

Soderlund, C., Bomhoff, M., & Nelson, W. M. (2011). SyMAP v3.4: a turnkey synteny system with application to plant genomes. *Nucleic Acids Research, 39*(10), e68. doi:10.1093/nar/gkr123

Srikulnath, K., Uno, Y., Nishida, C., Ota, H., & Matsuda, Y. (2015). Karyotype Reorganization in the Hokou Gecko (Gekko hokouensis, Gekkonidae): The Process of Microchromosome Disappearance in Gekkota. *PLoS One, 10*(8), e0134829. doi:10.1371/journal.pone.0134829

Tilak, M. K., Botero-Castro, F., Galtier, N., & Nabholz, B. (2018). Illumina Library Preparation for Sequencing the GC-Rich Fraction of Heterogeneous Genomic DNA. *Genome Biol Evol, 10*(2), 616-622. doi:10.1093/gbe/evy022

Zhu, B. H., Xiao, J., Xue, W., Xu, G. C., Sun, M. Y., & Li, J. T. (2018). P_RNA_scaffolder: a fast and accurate genome scaffolder using paired-end RNA-sequencing reads. *BMC Genomics, 19*(1), 175. doi:10.1186/s12864-018-4567-3