Complete genome sequence of *Sulfurimonas autotrophica* type strain (OK10T)

Johannes Sikorski¹, Christine Munk²,²,³, Alla Lapidus², Olivier Duplex Ngatchou Djao⁴, Susan Lucas⁵, Tijana Glavina Del Río², Matt Nolan⁵, Hope Tice², Cliff Han², Jan-Fang Cheng², Roxanne Tapia²,², Lynne Goodwin²,⁵, Sam Pitluck², Konstantinos Liolios⁶, Natalia Ivanova², Konstantinos Movromatis², Natalia Mikhailova², Amrita Pati², David Sims², Linda Meincke³, Thomas Brettin², John C. Detter²,³, Amy Chen⁵, Krishna Palaniappan², Miriam Land²,⁶, Loren Hauser²,⁶, Yun-Juan Chang²,⁶, Cynthia D. Jeffries²,⁶, Manfred Rohde⁴, Elke Lang¹, Stefan Spring¹, Markus Göker¹, Tanja Woyke², James Bristow², Jonathan A. Eisen²,⁷, Victor Markowitz⁵, Philip Hugenholtz², Nikos C. Kyrpides⁵, and Hans-Peter Klenk¹

¹ DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
² DOE Joint Genome Institute, Walnut Creek, California, USA
³ Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
⁴ HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
⁵ Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
⁶ Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
⁷ University of California Davis Genome Center, Davis, California, USA

*Corresponding author: Hans-Peter Klenk

Keywords: mesophilic, facultatively anaerobic, sulfur metabolism, deep-sea hydrothermal vents, spermidine, Gram-negative, *Helicobacteriaceae*, *Epsilonproteobacteria*, GEBA

Sulfurimonas autotrophica Inagaki *et al.* 2003 is the type species of the genus *Sulfurimonas*. This genus is of interest because of its significant contribution to the global sulfur cycle as it oxidizes sulfur compounds to sulfate and by its apparent habituation of deep-sea hydrothermal and marine sulfidic environments as potential ecological niche. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the second complete genome sequence of the genus *Sulfurimonas* and the 15th genome in the family *Helicobacteriaceae*. The 2,153,198 bp long genome with its 2,165 protein-coding and 55 RNA genes is part of the *Genomic Encyclopedia of Bacteria and Archaea* project.

Introduction

Strain OK10T (= DSM 16294 = ATCC BAA-671 = JCM 11897) is the type strain of *Sulfurimonas autotrophica* [1], which is the type species of its genus *Sulfurimonas* [1,2]. Together with *S. paralvinellae* and *S. denitrificans*, the latter of which was formerly classified as *Thiomicrospira denitrificans* [3]. There are currently three validly named species in the genus *Sulfurimonas* [4,5]. The autotrophic and mixotrophic sulfur-oxidizing bacteria such as the members of the genus *Sulfurimonas* are believed to contribute significantly to the global sulfur cycle [6]. The genus name derives from the Latin word ‘*sulphur*’, and the Greek word ‘*monas*’, meaning a unit, in order to indicate a “sulfur-oxidizing rod” [1]. The species epithet derives from the Greek word ‘*auto*’, meaning self, and from the Greek adjective ‘*trophicos*’ meaning nursing, tending or feeding, in order to indicate its autotrophy [1]. *S. autotrophica* strain OK10T, like *S. paralvinellae* strain G025 (= DSM 17229), was isolated from the surface of a deep-sea hydrothermal sediment on the Hatoma Knoll in the Mid-Okinawa Trough hydrothermal field [1,2]. Thus, the members of the genus *Sulfurimonas* appear to be free living, whereas the other members of the family *Helicobacteriaceae*, the genera *Helicobacter*...
and Wolinella, appear to be strictly associated with the human stomach and the bovine rumen, respectively. Here we present a summary classification and a set of features for S. autotrophica OK10T, together with the description of the complete genomic sequencing and annotation.

Classification and features

There exist currently no experimental reports that indicate further cultivated strains of this species. The type strains of S. denitrificans and S. paralvinellae share 93.5% and 96.3% 16S rRNA gene sequence similarity with strain OK10T. Further analysis also revealed that strain OK10T shares high similarity (99.1%) with the uncultured clone sequence PVB-12 (U15104) obtained from a microbial mat near the deep-sea hydrothermal vent in the Loihi Seamount, Hawaii [7]. This further corroborates the distribution of S. autotrophica in hydrothermal vents. The 16S rRNA gene sequence similarities of strain OK10T to metagenomic libraries (env_nt) were 87% or less, indicating the absence of further members of the species in the environments screened so far (status August 2010).

Figure 1 shows the phylogenetic neighborhood of S. autotrophica OK10T in a 16S rRNA based tree. The sequences of the four 16S rRNA gene copies in the genome differ from each other by up to four nucleotides, and differ by up to three nucleotides from the previously published sequence (AB088431).

The cells of strain OK10T are Gram-negative, occasionally slightly curved rods of 1.5–2.5 × 0.5-1.0 μm (Figure 2 and Table 1) [1]. On solid medium, the cells form white colonies [1]. Under optimal conditions, the generation time of S. autotrophica strain OK10T is approximately 1.4 h [1,2]. The reductive tricarboxylic acid (rTCA) cycle for autotrophic CO2 fixation is present in strain OK10T, as shown by PCR amplification of the respective genes [28]. Moreover, the activities of several rTCA key enzymes (ACL, ATP dependent citrate lyase; POR, pyruvate:acceptor oxidoreductase; OGOR, 2-oxoglutarase:acceptor oxidoreductase; ICDH, isocitrate dehydrogenase) have been determined, also in comparison to S. paralvinellae and S. denitrificans [28]. There were no enzyme activities for the phosphoenolpyruvate and ribulose 1,5-bisphosphate (Calvin-Benson) pathways detected in strain OK10T [28], though the latter is apparently active in S. thermophila [28]. Also, so-
Sulfurimonas autotrophica type strain (OK10)

Luble hydrogenase activity was not found in strain OK10T [28]. With respect to sulfur oxidation, enzyme activity for SOR (sulfite oxidoreductase) but not for APSR (adenosine 5′-phosphate sulfate reductase) and TSO (thiosulfate-oxidizing enzymes) were detected [28]. A detailed comparison of these enzyme activities to S. paralvinellae and S. denitrificans is given in Takai et al. [28]. Elemental sulfur, thiosulfate or sulfide is utilized as the sole electron donor for chemolithoautotrophic growth with O₂ as electron acceptor. Thereby thiosulfate is oxidized to sulfate [1]. Organic substrates and H₂ are not utilized as electron donors and only oxygen is utilized as an electron acceptor [28]. Strain OK10T requires 4% sea salt for growth [1] and is not able to reduce nitrate [2].

Figure 2. Scanning electron micrograph of S. autotrophica OK10T

Chemotaxonomy

The major cellular fatty acids found in strain OK10T are C₁₄:₀ (8.4%), C₁₆:₁cis (45.2%), C₁₆:₀ (37.1%) and C₁₈:₁trans (9.4%) [1]. Further fatty acids were not reported [1]. The only polyamine identified in S. autotrophica is spermidine [29]. Spermidine was also found in another representative of the order Campylobacterales, Sulfuricurvum kuijense. For comparison, Hydrogenimonas thermophila, the type species and genus of the family Hydrogenimonaceae in the order Campylobacterales, contains both spermidine and spermine as the major polyamines [29]. The cellular fatty acid composition of S. autotrophica was compared with that of other autotrophic Epsilonproteobacteria from deep-sea hydrothermal vents: Nautilia profundica AmHᵀ, Lebetimonas acidiphila Pd55ᵀ, Hydrogenimonas thermophila EP1-55-1%ᵀ, and Nitriruptor tergarcus MI55-1ᵀ [30]. It was found that S. autotrophica strain OK10T has much higher levels of the fatty acid C₁₆:₁cis (45.2%) than other Epsilonproteobacteria from hydrothermal vents express (3.6%-28.8%) [2,30]. On another hand, the percentage of C₁₈:₁trans was the lowest in S. autotrophica: (9.4%), while other Epsilonproteobacteria contained 20.0%-73.3% [30]. C₁₄:₀ (8.4%) was also more abundant in strain OK10T than in other strains [30].
Table 1. Classification and general features of *S. autotrophica* OK10\(^1\) according to the MIGS recommendations [18]

MIGS ID	Property	Term	Evidence code
	Domain	Bacteria	TAS [19]
	Phylum	Proteobacteria	TAS [20]
	Class	Epsilonproteobacteria	TAS [21,22]
	Order	Campylobacterales	TAS [23,24]
	Family	Helicobacteraceae	TAS [24,25]
Current classification	Genus	*Sulfurimonas*	TAS [1,2]
	Species	*Sulfurimonas autotrophica*	TAS [1]
	Type strain	OK10	TAS [1]
	Gram stain	negative	TAS [1]
	Cell shape	short rods, occasionally slightly curved rods	TAS [1]
	Motility	by monotrichous, polar flagellum	TAS [1]
	Sporulation	non-sporulating	TAS [1]
	Temperature range	10°C - 40°C	TAS [1]
	Optimum temperature	23°C - 26°C	TAS [1]
	Salinity	4% NaCl	TAS [1]
	Oxygen requirement	aerobic	TAS [1]
	Carbon source	CO\(_2\)	TAS [1]
	Energy source	chemolithoautotrophic, S\(^0\), Na\(_2\)\(_2\)\(_2\)O\(_3\) and Na\(_2\)S _9H\(_2\)O	TAS [1]
	Habitat	hydrothermal deep-sea sediments	TAS [1]
	Biotic relationship	free living	NAS
	Pathogenicity	not reported	NAS
	Biosafety level	1	TAS [26]
	Isolation	Mid-Okinawa Trough hydrothermal sediments	TAS [1,7]
	Geographic location	Japan, Hatoma Knoll	TAS [1,7]
	Sample collection time	2003 or before	TAS [1]
	Latitude	27.27	TAS [1]
	Longitude	127.17	TAS [1]
	Depth	sediment surface	TAS [1]
	Altitude	not reported	NAS

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [27]. If the evidence code is IDA, then it was directly observed by one of the authors or an expert mentioned in the acknowledgements.

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position [31], and is part of the *Genomic Encyclopedia of Bacteria and Archaea* project [32]. The genome project is deposited in the Genome OnLine Database [13] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.

http://standardsingenomics.org
Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
		Four genomic libraries: Sanger 8 kb pMCL200 library, 454 pyrosequence standard library, 454 pyrosequence paired end (PE) library, Illumina standard library
MIGS-28	Libraries used	
MIGS-29	Sequencing platforms	ABI3730, 454 GS FLX Titanium, Illumina GAII
MIGS-31.2	Sequencing coverage	3.7 × Sanger; 121.7 × pyrosequence, 30.0 × Illumina
MIGS-30	Assemblers	Newbler version 2.0.00.20-PostRelease-11-05-2008-gcc-3.4.6, phrap
MIGS-32	Gene calling method	Prodigal 1.4, GenePRIMP
	INSDC ID	CP002205
	Genbank Date of Release	September 15, 2010
	GOLD ID	Gc01373
	NCBI project ID	31347
	Database: IMG-GEBA	2502082114
MIGS-13	Source material identifier	DSM 16294
	Project relevance	Tree of Life, GEBA

Growth conditions and DNA isolation

S. autotrophica strain OK10, DSM 16294, was grown in DSMZ medium 1011 (M medium) [33] at 24°C. DNA was isolated from 0.5-1 g of cell paste using MasterPure Gram Positive DNA Purification Kit (Epicenter MGP04100) following the standard protocol as recommended by the manufacturer, with modification st/LALM for cell lysis as described in Wu et al. [32].

Genome sequencing and assembly

The genome was sequenced using a combination of Sanger, 454 and Illumina sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website. Illumina sequencing data was assembled with VELVET [34], and the consensus sequences were shredded into 1.5 kb overlapped fake reads and used for the assembly with 454 and Sanger data. Contigs resulting from a 454 Newbler (2.0.00.20-PostRelease-11-05-2008-gcc-3.4.6) assembly were shredded into 2 kb fake reads, which were assembled with Sanger data. The Phred/Phrap/Consed software package was used for sequence assembly and quality assessment. After the shotgun stage, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected with Dupfinisher or transposon bombing of bridging clones (Epicentre Biotechnologies, Madison, WI). Gaps between contigs were closed by editing in Consed, custom primer walk or PCR amplification (Roche Applied Science, Indianapolis, IN) [35]. A total of 790 additional custom primer reactions were necessary to close gaps and to raise the quality of the finished sequence. Illumina reads were also used to improve the final consensus quality using an in-house developed tool - the Polisher [36]. Together, the combination of the Illumina and 454 sequencing platforms provided 155.4 × coverage of the genome. The error rate of the completed genome sequence is less than 1 in 100,000.

Genome annotation

Genes were identified using Prodigal [37] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [38]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, Uniprot, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [39].

Genome properties

The genome consists of a 2,153,198 bp long chromosome with a 35.2% GC content (Table 3 and Figure 3). Of the 2,220 genes predicted, 2,165 were protein-coding genes, and 55 RNAs; seven pseudogenes were also identified. The majority of the protein-coding genes (69.1%) were assigned with a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.
Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	2,153,198	100.00%
DNA coding region (bp)	2,043,048	94.88%
DNA G+C content (bp)	758,696	35.24%
Number of replicons	1	
Extrachromosomal elements	0	
Total genes	2,220	100.00%
RNA genes	55	2.48%
rRNA operons	4	
Protein-coding genes	2,165	97.52%
Pseudo genes	7	0.32%
Genes with function prediction	1,534	69.10%
Genes in paralog clusters	141	6.35%
Genes assigned to COGs	1,590	71.62%
Genes assigned Pfam domains	1,656	74.59%
Genes with signal peptides	429	19.32%
Genes with transmembrane helices	563	25.36%
CRISPR repeats	0	

Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Sulfurimonas autotrophica type strain (OK10)

Table 4. Number of genes associated with the general COG functional categories

Code	value	%age	Description
J	143	8.1	Translation, ribosomal structure and biogenesis
A	0	0.0	RNA processing and modification
K	70	4.0	Transcription
L	82	4.6	Replication, recombination and repair
B	0	0.0	Chromatin structure and dynamics
D	22	1.2	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	30	1.7	Defense mechanisms
T	158	8.9	Signal transduction mechanisms
M	126	7.1	Cell wall/membrane/envelope biogenesis
N	77	4.3	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	69	3.9	Intracellular trafficking and secretion
O	89	5.0	Posttranslational modification, protein turnover, chaperones
C	141	8.0	Energy production and conversion
G	62	3.5	Carbohydrate transport and metabolism
E	121	6.8	Amino acid transport and metabolism
F	49	2.8	Nucleotide transport and metabolism
H	107	6.0	Coenzyme transport and metabolism
I	36	2.0	Lipid transport and metabolism
P	103	5.8	Inorganic ion transport and metabolism
Q	12	0.7	Secondary metabolites biosynthesis, transport and catabolism
R	158	8.9	General function prediction only
S	119	6.7	Function unknown
-	630	28.4	Not in COGs

Acknowledgements

We would like to gratefully acknowledge the help of Petra Aumann for growing *S. autotrophica* cultures and Susanne Schneider for DNA extraction and quality analysis (both at DSMZ). This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725, as well as German Research Foundation (DFG) INST 599/1-2.

References

1. Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K. *Sulfurimonas autotrophica* gen. nov., sp. nov., a novel sulfur-oxidizing epsilonproteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. *Int J Syst Evol Microbiol* 2003; **53**:1801-1805. PubMed doi:10.1099/ijs.0.02682-0

2. Takai K, Suzuki M, Satoshi N, Masayuki M, Yohey S, Inagaki F, Koki H. *Sulfurimonas paralvinellae* sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the *Epsilonproteobacteria* isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of *Thiomicrospira denitrificans* as *Sulfurimonas denitrificans* comb. nov. and emended description of the genus *Sulfurimonas*. *Int J Syst Evol Microbiol* 2006; **56**:1725-1733. PubMed doi:10.1099/ijs.0.64255-0
3. Hoor T. A new type of thiosulfate oxidizing, nitrate reducing microorganism: *Thiomicrospira denitrificans* sp. nov. *Neth J Sea Res* 1975; 9:344-350. doi:10.1016/0077-7579(75)90008-3

4. Euzéby JP. List of bacterial names with standing in nomenclature: A folder available on the Internet. *Int J Syst Bacteriol* 1997; 47:590-592. PubMed doi:10.1099/00207713-47-2-590

5. Garrity G. NamesforLife. BrowserTool takes expertise out of the database and puts it right in the browser. *Microbiol Today* 2010; 7:1

6. Sievert SM, Scott KM, Klotz MG, Chain PS, Hausler LJ, Hemp J, Hügler M, Land M, Lapidus A, Larimer FW, *et al.* Genome of the epsilonproteobacterial chemolithoautotrophic *Sulfurimonas denitrificans*. *Appl Environ Microbiol* 2008; 74:1145-1156. PubMed doi:10.1128/AEM.01844-07

7. Moyer CL, Dobbs FC, Karl DM. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. *Appl Environ Microbiol* 1995; 61:1555-1562. PubMed

8. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Mol Biol Evol* 2000; 17:540-552. PubMed

9. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. *Bioinformatics* 2002; 18:452-464. PubMed doi:10.1093/bioinformatics/18.3.452

10. Stamatakis A, Hoover P, Rougemont J. A Rapid Bootstrap Algorithm for the RAxML Web Servers. *Syst Biol* 2008; 57:758-771. PubMed doi:10.1080/10635150802429642

11. Yarza P, Richter M, Peiljes J, Euzéby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rosselló-Móra R. The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. *Syst Appl Microbiol* 2008; 31:241-250. PubMed doi:10.1016/j.syapm.2008.07.001

12. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? *Lect Notes Comput Sci* 2009; 5541:184-200. doi:10.1007/978-3-642-02008-7_13

13. Liolios K, Mavromatis K, Tavernarakis N, Kyriakis NC. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Res* 2008; 36:D475-D479. PubMed doi:10.1093/nar/gkm884

14. Baar C, Eppinger M, Raddatz G, Simon J, Lanz C, Klimmek O, Nandakumar R, Gross R, Rosinus A, Keller H, *et al.* Complete genome sequence and analysis of *Wolinella succinogenes*. *Proc Natl Acad Sci USA* 2003; 100:11690-11695. PubMed doi:10.1073/pnas.1932838100

15. Baltrus DA, Amieva MR, Covacci A, Lowe TM, Merrell DS, Ottemann KM, Stein M, Salama NR, Guillemín K. The complete genome sequence of *Helicobacter pylori* Strain G27. *J Bacteriol* 2009; 191:447-448. PubMed doi:10.1128/JB.01416-08

16. Sikorski J, Lapidus A, Copeland A, Rio TGD, Nol-an M, Lucas S, Chen F, Tice H, Cheng JF, Saunders E, *et al.* Complete genome sequence of *Sulfurospirillum deleyianum* type strain (5175T). *Stand Genomic Sci* 2010; 2:149-157. doi:10.4056/sigs.671209

17. Pati A, Gronow S, Lapidus A, Copeland A, Rio TGD, Nolan M, Lucas S, Tice H, Cheng JF, Han C, *et al.* Complete genome sequence of *Arcobacter nitrofigilis* type strain (CI2). *Stand Genomic Sci* 2010; 2:300-308. doi:10.4056/sigs.912121

18. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, *et al.* The minimum information about a genome sequence (MIGS) specification. *Nat Biotechnol* 2008; 26:541-547. PubMed doi:10.1038/nbt1360

19. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains *Archaea*, *Bacteria*, and *Eucarya*. *Proc Natl Acad Sci USA* 1990; 87:5673-5677. PubMed doi:10.1073/pnas.87.12.5457

20. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), *Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 1*. Springer, New York 2001;119-169.

21. Validation List No. 107. List of new names and new combinations previously effectively, but not validly, published. *Int J Syst Evol Microbiol* 2006; 56:1-6. PubMed doi:10.1099/ijs.0.64188-0

22. Garrity GM, Bell JA, Lilburn T. Class V. *Epsilonproteobacteria* class. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM. *Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria)*. Springer, New York, 2005, p. 1145.
23. Garrity GM, Lilburn T. Order I. Campylobacterales ord. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part C, Springer, New York, 2005, p. 1145.

24. Validation List No. 107. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2006; 56:1-6. PubMed doi:10.1099/ijs.0.64188-0

25. Garrity GM, Bell JA, Lilburn TC. Family II. Helicobacteraceae fam. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part, Springer, New York, 2005, p. 1168.

26. Classification of. Bacteria and Archaea in risk groups. www.baua.de TRBA 466.

27. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25-29. PubMed doi:10.1038/75556

28. Takai K, Campbell BJ, Cary SC, Suzuki M, Oida H, Nunoura T, Hirayama H, Nakagawa S, Suzuki Y, Inagaki F, et al. Enzymatic and genetic characterization of carbon and energy metabolisms by deep-Sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria. Appl Environ Microbiol 2005; 71:7310-7320. PubMed doi:10.1128/AEM.71.11.7310-7320.2005

29. Hamana K, Sato W, Gouma K, Yu J, Ino Y, Umemura Y, Mochizuki C, Tatatsuka K, Kigure Y, Tanaka N, et al. Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermine within the classes Deltaproteobacteria and Epsilonproteobacteria. Ann Gunma Health Sci 2006; 27:1-16.

30. Smith JL, Campbell BJ, Hanson TE, Zhang CL, Cary SC. Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 2008; 58:1598-1602. PubMed doi:10.1099/ijs.0.65435-0

31. Klenk HP, Göker M. En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 2010; 33:175-182. PubMed doi:10.1016/j.syapm.2010.03.003

32. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 2009; 462:1056-1060. PubMed doi:10.1038/nature08656

33. List of growth media used at DSMZ: http://www.dsmz.de/microorganisms/media_list.php.

34. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821-829. PubMed doi:10.1101/gr.074492.107

35. Sims D, Brettin T, Detter J, Han C, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Chen F, Lucas S, et al. Complete genome sequence of Kytococcus sedentarius type strain (541T). Stand Genomic Sci 2009; 1:12-20. doi:10.4056/sigs.761

36. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goldsman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008.

37. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal Prokaryotic Dynamic Programming Genefinding Algorithm. BMC Bioinformatics 2010; 11:119. PubMed doi:10.1186/1471-2105-11-119

38. Pati A, Ivanova N, Mikhailova N, Ovchinikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: A gene prediction improvement pipeline for microbial genomes. Nat Methods 2010; 7:455-457. PubMed doi:10.1038/nmeth.1457

39. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271-2278. PubMed doi:10.1093/bioinformatics/btp393