Some Results on Prime Cordial Labeling of Lilly Graphs

A. Parthiban1 and Vishally Sharma2
Department of Mathematics, Lovely Professional University, Punjab, India
E-mail: \{mathparthi, vishuuph\}@gmail.com

Abstract.
A PCL of G is a bijective map g from V to $\{1, 2, 3, \ldots, |V|\}$ in such a way that if an edge st is given label 1 if $GCD(g(s), g(t)) = 1$ & 0 otherwise, then the edges given 0 & 1 differ by at most 1 i.e: $|e_g(0) - e_g(1)| \leq 1$. If a graph permits a PCL, then it is called a PCG. In this paper, we prove that lilly graph admits a PCL. Further, we have shown that lilly graph under some graph operations like switching of a vertex, duplication of a vertex, degree splitting graph and barycentric subdivision admits a PCL which may find its application in the development of artificial intelligence.

Keywords: Prime Cordial Labeling, Lilly Graph, Vertex Switching, Barycentric Subdivision, Degree Splitting Graph.

1. Introduction
Graph labeling is a widely used and fastest growing area in the field of mathematics and computer science. Now a days, when data security is a major area of concern, various researchers and scientist are working to develop the techniques and softwares that can resolve the issues. Graph labeling is used in many areas of science and technology. A lot of graph labeling techniques are discussed in [4], we enlist a few of them which are finding their use in different aspects of artificial intelligence [6].

1. Radio labeling is finding its application in fast communication in sensor networks.
2. The designing of fault tolerance system with particularized degree, facility graph is used.
3. The concept of chromatic number is widely used in solving many complex problems in computer which is also a type of graph labeling.
4. Mobile Adhoc Networks (MANETS) problems can also be resolved by using graph labeling.
5. Automatic routing with graph labeling is done when each network usually path, cycle, circuit, walk and connected graph represent a fixed network and labeling is done with a constant which helps routing to involuntary detect the next node in the network.
6. Behavior trees are used in robotics.

For number theory concepts, refer to [2] and for terms and terminology related to graph theory that have not been defined here, we refer to Hararay [5]. For detail survey on various

1 Corresponding author
2 Ph.D Scholar
graph labeling, refer to [4]. Cahit [3] is the introducer of cordial labeling. For the sake of simplicity, by 'PCL' we mean a prime cordial labeling and by 'PCG' we mean a prime cordial graph.

2. Main Results

2.1. Basic Definitions and Results

In this section, we discuss the PCL of lilly graphs. First we recall some basic definitions for the sake of completeness.

After Cahit [3], various researchers introduced a lot of graph labeling techniques with some type of restrictions and/or variations in the cordial theme. The notion of PCL was introduced by Sundaram, Ponraj & Somasunaram [8].

Definition 1. A PCL of G_1 is a map (bijective) h from V to $\{1, 2, 3, \ldots, |V|\}$ so that if an edge st is given label 1, if $gcd(h(s), h(t)) = 1$ and 0, if $gcd(h(s), h(t)) > 1$, then the absolute difference of number of edges tagged with 0 & 1 is at most 1 i.e; $|e_h(0) - e_h(1)| \leq 1$. The graph that permits a PCL is called a PCG.

Definition 2. Duplicating a vertex x_i in G_1 with a vertex x_i' gives rise to a formation of G' with $N(x_i) = N(x_i')$.

Definition 3. ([9]) Switching a vertex s of a graph G_1 results in a formation of a new graph G_s, by deleting edges incident to s in G_1 & adding the edges that are obtained by joining the vertex s to the vertices which are not adjacent to s in G_1.

Definition 4. Let $e = st$ be an edge of G_1. By subdivision of an edge e we mean when e is replaced by edges $e' = sw$ and $e'' = wt$. If every edge of graph G_1 is subdivided then the graph thus obtained is called barycentric subdivision of graph G_1.

Trees constitute an important class of graphs in graph theory. Many researchers are working on trees for different kind of graph labeling. J. Baskar Babujee in [1] proved that full binary tree admits a prime cordial labeling. Motivated by [1], [7], and [9], we attempt to contribute some results on particular type of a tree namely lilly graph.

Definition 5. ([7]) Lilly graph I_n, $n \geq 2$ is constructed by 2 stars $2K_{1,n}, n \geq 2$ joining 2 path graphs $2P_n, n \geq 2$ with sharing of a common vertex. i.e; $I_n = 2K_{1,n} + 2P_n$.

Result 1. $GCD(n, n + 2^k) = 1$, for an odd integer n & positive integer k.

![Figure 1. Lilly graph I_4](image-url)
2.2. PCL of Lilly Graphs

Theorem 1. Lilly graph I_n permits a PCL.

Proof. Let $u_1, u_2, ..., u_{4n-1}$ denotes vertices of I_n. Construct a function (bijective) $f : V(G) \to \{1, 2, ..., 4n - 1\}$:

Fix $f(u_{3n}) = 2, f(u_{2n+1}) = 4, f(u_i) = f(u_{i-1}) + 2; \ 2n + 2 \leq i \leq 3n - 1, f(u_{3n+1}) = 3, f(u_{3n+2}) = 9, f(u_j) = f(u_{j-1}) + 2; \ 3n + 3 \leq j \leq 4n - 1, f(u_1) = f(u_{3n-1}) + 2, f(u_i) = f(u_{i-1}) + 2; \ 2 \leq i \leq n - 1, f(u_n) = 1, f(u_{n+1}) = 5, f(u_{n+2}) = 7, f(u_{n+3}) = f(u_{4n-1}) + 2, f(u_j) = f(u_{j-1}) + 2; \ n + 4 \leq j \leq 2n.

Observe that $\text{gcd}(f(u_{3n}), f(u_j)) \neq 1$, for $1 \leq i \leq n - 1$, $\text{gcd}(f(u_{3n+1}), f(u_{n+2})) \neq 1$, and $\text{gcd}(f(u_i), f(u_{i+1})) \neq 1$, for $2n \leq i \leq 3n - 1$.Keep above in view, these edges will contribute (bear) 0 and the rest of the edges of I_n will contribute 1 (since the gcd of their end vertices is equal to 1). Evidently, $e_f(0) = e_f(1) = 2n - 1$ which shows that I_n is a PCG.

![Figure 2. PCL of lilly graph I_5](image)

Theorem 2. Switching of a pendant vertex in I_n admits a PCL for $n \geq 4$.

Proof. Let $u_1, u_2, ..., u_{4n-1}$ represents the vertices of I_n. Here, $u_1, u_2, ..., u_n, u_{n+1}, ..., u_{2n}, u_{2n+1}, u_{4n-1}$ represents the pendant vertices. Obtain G by switching a pendant vertex in I_n say u_k where $k \in \{1, 2, ..., 2n, 2n + 1, 4n - 1\}$. Clearly, $|V(G)| = 4n - 1$ & $|E(G)| = 8n - 6$. Construct a map (bijective) $f : V(G) \to \{1, 2, ..., 4n - 1\}$ as:

Case 1: When $k \in \{1, 2, ..., 2n\}$

Set $f(u_k) = 2, f(u_{3n}) = 6$. Assign all available even labels out of $\{1, 2, ..., 4n - 1\}$ to $u_1, u_2, ..., u_{k-1}, u_{k+1}, ..., u_{2n}$ as a result of which two vertices out of $u_1, u_2, ..., u_{k-1}, u_{k+1}, ..., u_{2n}$
will not be able to be labeled, since there are exactly \(\frac{4n}{2} - 1 \) number of even labels available. For unlabeled star pendant vertices we assign the labels 3 and 9.

Next, fix \(f(u_{3n-1}) = 1, f(u_{3n+1}) = 15 \) and \(f(u_{3n+2}) \) be the largest prime \(p \leq 4n - 1 \), and assign the unused (odd) labels out of \(\{1, 2, ..., 4n - 1\} \) to unlabeled vertices in increasing order of indices with respect to increasing order of labels.

Observe \(\gcd(f(u_{3n}), f(u_i)) > 1 \), \(\forall 1 \leq i \leq 2n \), \(\gcd(f(u_{3n}), f(u_{3n+1})) > 1 \) and \(\gcd(f(u_k)) \) with all pendant vertices of star except for the those that are labeled with 3 and 9, will be greater than 1.

Clearly there are exactly \(4n - 3 \) number of edges that will bear 0 labels and for the rest of the edges, the \(\gcd \) of their end vertices will be equal to 1.

Evidently, \(|e_f(0) - e_f(1)| \leq 1 \).

Case 2: When we switch pendant vertices of path in lilly graph. i.e: \(u_{2n+1} \) or \(u_{4n-1} \). Without loss of generality, let us switch \(u_{2n+1} \)

Fix \(f(u_{2n+1}) = 2, f(u_{3n}) = 6, f(u_1) = 4, f(u_2) = 8 \)

\(f(u_i) = f(u_{i-1}) + 2; \quad 3 \leq i \leq 2n - 3 \),

\(f(u_{2n-2}) = 3, f(u_{2n-1}) = 5, f(u_{2n}) = 9, f(u_{3n-1}) = 1 \) and \(f(u_{3n+1}) \) be the largest prime \(p \leq 4n - 1 \). Assign the unused labels out of \(\{1, 2, ..., 4n - 1\} \) in the increasing order.

Observe \(\gcd(f(u_{3n}), f(u_i)) > 1, \forall i = 1, 2, ..., 2n, 2n + 1 \) and \(i \neq 2n - 1 \), \(\gcd(f(u_{2n+1}), f(u_i)) > 1 \), for \(1 \leq i \leq 2n - 3 \).

The edges formed using these vertices will bear 0 label which are \(4n - 3 \) in count. The \(\gcd \) of the end vertices of the rest of the edges is qual to 1. Evidently, \(e_f(0) = e_f(1) = 4n - 3 \) which justifies \(|e_f(0) - e_f(1)| \leq 1 \). We see in both cases that lilly graph is invariant under the graph operation of switching of any pendant vertex for PCL.

Figure 3. Switching of \(u_1 \) in lilly graph \(I_5 \)

Theorem 3. Switching of an apex vertex in \(I_n \) admits a PCL.
Figure 4. Switching of u_{11} in lilly graph I_5

Proof. Let $u_1, u_2, \ldots, u_{4n-1}$ represent the vertices of I_n. Obtain G by switching the apex vertex of I_n namely u_{3n}. Construct a map (bijective) $f : V(G) \rightarrow \{1, 2, \ldots, 4n-1\}$ as:

Fix $f(u_{3n}) = 1$, $f(u_{2n+1}) = 2$,

$f(u_i) = f(u_{i-1}) + 2$; $2n + 2 \leq i \leq 3n - 1$,

$f(u_{3n+1}) = f(u_{3n-1}) + 2$,

$f(u_j) = f(u_{j-1}) + 2$; $3n + 2 \leq j \leq 4n - 1$.

Assign unused labels to the remaining vertices in any order. Observe that $\gcd(f(u_3), f(u_i)) > 1$ for $2n + 1 \leq i \leq 3n - 2$ and for $3n + 1 \leq i \leq 4n - 2$, and for rest of the edges, since the \gcd of their end vertices is equal to 1, therefore those edges will be labeled with label 1. Clearly, $e_f(0) = e_f(1) = 2n - 4$. Therefore G is a PCG.

Theorem 4. Duplication of apex vertex in I_n admits a PCL for $n \geq 3$.

Proof. Let G_1 be obtained by duplicating the apex vertex of I_n namely u_{3n}, by a vertex namely v. $V(G) = V(I_n)U\{v\} \& E(G) = E(I_n)U\{u_i v; 1 \leq i \leq 2n, i = 3n - 1, 3n + 1\}$. Construct a map (bijective) $f : V(G) \rightarrow \{1, 2, \ldots, 4n\}$ as:

Fix $f(u_{3n}) = 2$, $f(v) = 4$, $f(u_{4n-1}) = 3$, $f(u_{4n-2}) = 6$.

Assign unused even labels to all u_i’s where $i \in \{1, 2, \ldots, n\} \cup \{3n + 1\} \cup \{3n + 2, \ldots, 4n - 3\}$ in any order.

Next, assign $f(u_{n+1}) = 1$, $f(u_{n+2}) = 5$,

$f(u_i) = f(u_{i-1}) + 2$; $n + 3 \leq i \leq 3n - 1$.

Observe that $\gcd(f(u_{3n}), f(u_i)) > 1$, $\forall 1 \leq i \leq n$,

$\gcd(f(u_i), f(u_{i+1})) > 1$, $\forall 3n \leq i \leq 4n - 2$,

$\gcd(f(v), f(u_i)) > 1$, $\forall 1 \leq i \leq n$, and $\gcd(f(v), f(u_{3n+1})) > 1$.

The \gcd of the end vertices of the remaining edges of G is equal to 1. we find that $e_f(0) = e_f(1) = 3n$ which proves that G is prime cordial.
Figure 5. Switching of u_9 in lilly graph I_3

Figure 6. Duplication of u_{3n} in I_4

Theorem 5. The duplication of any pendant vertex in I_n for $n \geq 2$ permits a PCL.

Proof. Let $u_1, u_2, ..., u_{4n-1}$ represents the vertices of I_n, where $u_1, u_2, ..., u_{2n}, u_{2n+1}, u_{4n-1}$ are pendant vertices. Obtain G by duplicating any pendant vertex of I_n say u_k & let the newly introduced vertex be named v. Construct a map (bijective) $f : V(G) \rightarrow \{1, 2, ..., 4n\}$ as:

- Fix $f(v) = 1$, $f(u_{3n}) = 2$, $f(u_1) = 4,$
- $f(u_i) = f(u_{i-1}) + 2$, for $2 \leq i \leq n,$
- $f(u_{2n+1}) = f(u_n) + 2$, $f(u_j) = f(u_{j-1}) + 2$, for $2n + 2 \leq j \leq 3n - 1,$
- $f(u_{n+1}) = 3$, $f(u_i) = f(u_{i-1}) + 2$, for $n + 2 \leq i \leq 2n$
- $f(u_{3n+1}) = f(u_{2n}) + 2$, $f(u_j) = f(u_{j-1}) + 2$, for $3n + 2 \leq j \leq 4n - 1.$

Clearly, $e_f(0) = 2n - 1$
and $e_f(1) = 2n$ which proves that G is prime cordial.

\[\text{Figure 7. Duplication of } u_3 \text{ in lilly } I_4\]

Theorem 6. The duplication of arbitrary path vertex (except pendant and apex) in a lilly graph permits a PCL.

Proof. Let $u_1, u_2, \ldots, u_{4n-1}$ represents the vertices of I_n. Obtain G by duplicating any path vertex of I_n say u_k with a vertex say v, where $k \in \{2n+2, 2n+3, \ldots, 3n-1\}U\{3n+1, 3n+2, \ldots, 4n-2\}$.

Define a (bijective) $f : V(G) \to \{1, 2, \ldots, 4n\}$ as:

- $f(u_3n) = 2, f(v) = 1, f(u_{3n+1}) = 3, f(u_{3n+2}) = 9, f(u_1) = 4,$
- $f(u_i) = f(u_{i-1}) + 2, \forall 2 \leq i \leq n,$
- $f(u_{2n+1}) = f(u_n) + 2,$
- $f(u_i) = f(u_{i-1}) + 2, \forall 2n + 2 \leq i \leq 3n - 1.$

Assign unused labels out of the available labels to the unlabeled vertices in increasing order, to the vertices beginning with u_{3n+3} and heading up to u_{4n-1}. Next assign the unused labels to u_i's where $n+1 \leq i \leq 2n$, in any order.

Observe that $gcd(f(u_3n), f(u_i)) > 1$, $\forall 1 \leq i \leq n,$

$gcd(f(u_i), f(u_{i+1})) > 1$, for $2n + 1 \leq i \leq 3n - 1$, &

$gcd(f(u_{3n+1}), f(u_{3n+2})) > 1$.

The edges due to above vertices will bear 0 label. For the rest of the edges- since the gcd of their end vertices is equal to 1 therefore, those edges shall be labeled with label 1. Evidently, $e_f(1) = 2n$ and $e_f(0) = 2n$, which proves that G is prime cordial.

\[\text{Theorem 7. Degree splitting graph of } I_n, n \geq 4 \text{ permits a PCL.}\]

Proof. Let $u_1, u_2, \ldots, u_{4n-1}$ represents the vertices of I_n. Let G denotes the degree splitting graph of I_n. $V(G) = V(I_n) \cup \{v, w\}$ & $E(G) = E(I_n) \cup \{u_i v; 1 \leq i \leq 2n\} \cup \{u_{2n+1} v, u_{4n-1} v\} \cup \{u_i w; 2n + 2 \leq i \leq 4n - 2, i \neq 3n\}$. Construct a (bijective) $f : V(G) \to \{1, 2, \ldots, 4n + 1\}$ as:
The edges due to above vertices will bear label 0. For the rest of the edges, the \(\gcd \) of their end vertices is equal to 1, therefore those edges shall be labeled with label 1.

Assign unused labels out of the available labels to the unlabeled vertices in increasing order with respect to the increasing order of indices.

Observe that \(\gcd(u_{3n}), \gcd(u_i) > 1 \), \(\forall 1 \leq i \leq 2n - 2 \),
\(\gcd(u_{2n+1}), \gcd(u_{2n+3}) > 1 \), \(\gcd(u_{2n+2}), \gcd(u_{2n+3}) > 1 \),
\(\gcd(v), \gcd(u_i) > 1 \), \(\forall 1 \leq i \leq 2n - 2 \).

The edges due to above vertices will bear label 0. For the rest of the edges, the \(\gcd \) of their end vertices is equal to 1, therefore those edges shall be labeled with label 1.

Evidently, \(e_f(1) = 4n - 2 \) and \(e_f(0) = 4n - 2 \) which proves that \(G \) is prime cordial.

\[\square \]

Theorem 8. Barycentric subdivision of lilly graph permits a PCL.

Proof. Let \(u_1, u_2, ..., u_{4n-1} \) represents the vertices of \(I_n \). Let \(G \) be formed by taking the barycentric subdivision of \(I_n \). Clearly, \(V(G) = V(I_n) \cup \{ v_1, v_2, ..., v_{2n}, v_{2n+1}, ..., v_{4n-2} \} \) and \(E(G) = \{ u_{3n}v_i; 1 \leq i \leq 2n \} \cup \{ v_1u_i; 1 \leq i \leq 2n \} \cup \{ u_iv_i; 2n+1 \leq i \leq 4n-2 \} \cup \{ v_1u_{i-1}; 2n+2 \leq i \leq 4n-2 \} \). Construct a (bijective) \(f : V(G) \to \{1, 2, ..., 8n - 3\} \) as:

\[f(u_{3n}) = 2, f(u_2) = 3, f(v_2) = 1, f(u_{2n}) = 5, f(v_1) = 4, f(v_i) = f(v_{i-1}) + 2, \text{ for } 2 \leq i \leq 2n - 1. \]

Now Assign even labels to \(u_i \)’s for \(1 \leq i \leq 2n - 1 \), \(i \neq 2 \), in any order.

Next, fix \(f(u_{2n+1}) = 7, f(v_{2n+1}) = 9, f(u_i) = f(u_{i-1}) + 4, \text{ for } 2n + 2 \leq i \leq 3n - 1, \)
\(f(v_i) = f(v_{i-1}) + 4, \text{ for } 2n + 2 \leq i \leq 3n - 1, \)
\(f(v_{3n}) = f(v_{3n+1}) + 2, f(u_{3n}) = f(v_{3n}) + 2, \)
\(f(v_i) = f(v_{i-1}) + 4, \text{ for } 3n + 1 \leq i \leq 4n - 2, \)
\(f(u_i) = f(u_{i-1}) + 4, \text{ for } 3n + 1 \leq i \leq 4n - 1. \)

Evidently, \(e_f(1) = 4n - 2 \) and \(e_f(0) = 4n - 2 \) which proves that \(G \) is prime cordial. \[\square \]
Conclusion
We have shown the PCL of lilly graph with various graph operations namely switching a vertex, duplication of vertex by a vertex, degree splitting graph and barycentric subdivision. Observe
that lilly graph is a type of tree, so it is an interesting task to investigate PCL for more tree graphs. Further there is a scope for studying the prime cordial labeling of lilly graph with some other graph operations. We believe that the concept of PCL may play a vital role in the area of robotics and artificial intelligence which is for the future work.

References

[1] Babujee B. J, Shobhna L, Prime and Prime Cordial labeling for some special graphs, *International Journal of Contemporary Mathematical Sciences*, (2010), 2347-2356.

[2] Burton David, Elementary Number Theory, *Wm. C. Brown Company Publishers, second edition* (1980).

[3] Cahit I, Cordial graphs: A weaker version of graceful and harmonious Graphs, *Ars Combinatoria*, (1987), 201-207.

[4] Gallian J.A, A Dynamic Survey of Graph Labeling, *Electronic Journal of Combinatorics* (2009), DS6.

[5] Hararay F, Graph Theory, *Addison Wesley Reading*, (1972).

[6] Prasanna N. L, Applications of Graph Labeling in Communication Networks, *Orient. J. Comp. Sci. and Technol*, (2014).

[7] Samuel Edward A and Kalaivani S, Square sum labeling for some lilly related graphs, *International Journal of Advanced Technology and Engineering Exploration*, (2017), 68-72.

[8] Sundaram M, Pouraj R, Somasundaram S, Prime Cordial Labeling of Graohs, *Journal of Indian Academy of Mathematics*, (2005), 373-390.

[9] Vaidya S.K.Shah N.H, Further Results on Divisor Cordial Labeling, *Annals of Pure and Applied Mathematics*, (2013), 150-159.