I. INTRODUCTION

According to the standard estimates of the energy balance of the present-day Universe, the relative energy densities of the Dark Energy and Dark Matter (DM) are close to $\Omega^\Lambda_0 = 0.7$ and $\Omega^\DM_0 = 0.25$, respectively, while the visible (more precisely, baryonic) matter is represented by a modest less than 5% of the total energy density [1, 2]. Both Dark Energy and DM represent somehow mysterious components, but for different reasons. The main candidate to be Dark Energy is a cosmological constant (CC), however the cosmological constant problem is considered as one of the most difficult problems of the modern fundamental physics. The main CC problem is due to the conflict between the overall value of CC which is likely causing an acceleration of the present-day universe, and several much greater contributions to it which can be evaluated at the particle physics scale (see [3] for a review). At the moment, no solution of this problem is known. On the other hand, there is another difficulty, which is known as a problem of coincidence. The problem is to explain why the universe started to accelerate only recently. This problem can be solved or at least alleviated in the two distinct ways. First, one can replace the CC term by some artificially designed substance (e.g. quintessence) which can adjust its energy density according to the expansion of the universe. Indeed, the unique way to increase Ω^Λ_0 is by the expense of Ω^\DM_0, and from the first sight this idea does not look realistic. The well-known reason is that the DM is required by a well-established set of observational data (see, e.g., books [4, 6] and reviews [7, 12]). At the same time it is interesting to verify the mentioned possibility without prejudice, especially taking the bounds for Ω's of Dark Matter and Dark Energy (in the present case, a cosmological constant), into consideration an arbitrary warmness of Dark Matter. An equivalent equation of state has been used by Sakharov to predict the oscillations in the matter power spectrum. Two kind of tests are accounted for in what follows, namely the ones coming from the dynamics of the conformal factor of the homogeneous and isotropic metric and also the ones based on linear cosmic perturbations. The RRG model demonstrated its high effectiveness, permitting to explore a large volume in the space of mentioned parameters in a rather economic way. Taking together the results of such tests as Supernova type Ia (Union2 sample), $H(z)$, CMB (R factor), BAO and LSS (2dfGRS data), we confirm that ΛCDM is the most favored model. At the same time, for the 2dfGRS data alone we found that an alternative model with a very small quantity of a Dark Matter is also viable. This output is potentially relevant in view of the fact that the LSS is the only test which can not be affected by the possible quantum contributions to the low-energy gravitational action.

We use the framework of a recently proposed model of reduced relativistic gas (RRG) to obtain the bounds for Ω's of Dark Matter and Dark Energy (in the present case, a cosmological constant), taking into consideration an arbitrary warmness of Dark Matter. An equivalent equation of state has been used by Sakharov in the famous work [17], where the oscillations in the matter power spectrum have been used by A.D. Sakharov to predict the oscillations in the matter power spectrum. Two kind of tests are accounted for in what follows, namely the ones coming from the dynamics of the conformal factor of the homogeneous and isotropic metric and also the ones based on linear cosmic perturbations. The RRG model demonstrated its high effectiveness, permitting to explore a large volume in the space of mentioned parameters in a rather economic way. Taking together the results of such tests as Supernova type Ia (Union2 sample), $H(z)$, CMB (R factor), BAO and LSS (2dfGRS data), we confirm that ΛCDM is the most favored model. At the same time, for the 2dfGRS data alone we found that an alternative model with a very small quantity of a Dark Matter is also viable. This output is potentially relevant in view of the fact that the LSS is the only test which can not be affected by the possible quantum contributions to the low-energy gravitational action.

Keywords: Warm Dark Matter; Ideal Relativistic Gas; Cosmic Perturbations; Quantum effects of vacuum.

PACS numbers: 98.80.-k, 98.80.Cq, 98.80.Bp, 98.80.Es
spectrum were discovered for the first time.

The idea of RRG is to treat WDM as an approximately Maxwell-distributed ideal gas of massive particles. As far as the large-scale description of the Universe concerns mainly the equation of state of the DM, it is not supposed to be sensitive to the non-collisional nature of the DM particles and to their anisotropic distribution at the astrophysical scale. Hence, there can not be much difference between the RRG description from one side and the one based on relativistic Fermi distribution from another one. The same is expected to be true, up to some extent, for the more complete approach based on the Boltzmann-Einstein system of equations [6].

The expression “approximately Maxwell” concerning the RRG model means we take an approximation where all DM particles have equal kinetic energies. As it was shown in [15], qualitatively and numerically the equation of state suffers only a very small modification from this approximation. At the same time, the model based on RRG admits simple analytical form for the equation of state and even enables one to analytically solve the Friedmann equation. The analysis of cosmic perturbations in the framework of RRG model and LSS data provided [16] an upper bound on the DM warmness which is very close to the one obtained from much more complicated analysis based on the standard Boltzmann-Einstein system [19–22]. Thus, the RRG model represents a really useful tool for exploring the new cosmological models with the WDM. At the same time, it looks interesting to check this model on such sets of observational data as CMB, BAO and others.

There is also a special motivation for us to explore the possibility of an alternative values of Ω_{DM} with the WDM, which is related to the potentially relevant quantum effects of vacuum. The backgrounds of the cosmological and astrophysical applications of the theory with renormalization-group based quantum corrections were established in [24, 25]. In the recent paper [27], it was shown, from a general considerations based on covariance and dimensional arguments, that the form of these quantum corrections can be defined up to a single free parameter ν. The recent analysis of the galaxies rotation curves in [23] in the theory without DM, but with the mentioned quantum corrections to the Newton law was surprisingly successful. It was shown that such quantum corrections can compete with CDM in explanation of the rotation curves. The small amount of sufficiently warm DM does not affect these results and, therefore, we can think about weakening the standard restrictions to the DM in the theory with quantum corrections. On the other side, the cosmological model based on the same renormalization-group quantum corrections has been considered in [24, 25]. The analysis of cosmic perturbations in this model [25] (see also [28]) demonstrated that the quantum contributions almost do not affect the power spectrum, such that their impact on the LSS (2dHGRS) data is very weak. Therefore, if such quantum corrections do exist, the LSS data alone should manifest such possibility even in the zero-order approximation, that means without taking into account the quantum effects. At the same time, we should expect the quantum corrections to be relevant for other test, especially for lensing, Supernova, $H(z)$ and CMB. In order to take this into account, one has to consider the 2dHGRS test separately. The positive result for the zero-order approximation is the case when the LSS part alone should be compatible with an alternative model, with smaller Ω_{DM}, while the full set of tests should uniformly indicate to the ΛCDM as unique possible option without taking quantum effects into account. This is the only one possible output which can actually leave the chance for relevant effects of quantum corrections at the astrophysical and cosmological scale.

We will present in this paper the RRG model of a WDM, characterized by the dark matter fractional density measured today Ω_{dm0} and also by the parameter b, which specifies the degree of warmness of the DM component. The model will be confronted against background observational data (Supernova type Ia, Baryonic Acoustic Oscillation, Cosmic Microwave background R parameter and the age of the universe as function of z, $H(z)$) and the matter power spectrum at the linear regime. We will see that the background tests, in general, favor a scenario of the ΛCDM model, with $b \approx 0$, and $\Omega_{dm0} \approx 0.25$, even if for a given specific tests some particularities may appear. However, the matter power spectrum alone favors a model with a very small value of Ω_{dm0}, giving the room for some degree of warmness. In view of the discussion presented above this result can be seen as a sign for a possibility of a new concordance scenario if the quantum corrections are taken into account.

The paper is organized as follows. In Sect. 2 we present a brief necessary review of the RRG model. The contents of this section is essentially the same as [16] and we include it only for making all considerations in the paper more consistent. In Sect. 3, we discuss linear perturbations of matter including baryon component. The observational data which are used in our analysis are presented in Sect. 4. Finally, in Sect. 5 we draw our conclusions and discuss further perspectives for exploring an alternative concordance model with quantum corrections.

II. BACKGROUND NOTIONS OF THE RRG MODEL FOR WDM

In this section we present the necessary elements of the RRG model [15, 16].
A. Equation of state and zero-order cosmology

Consider the cosmological model which is based on the relativistic gas of massive particles representing WDM, plus baryonic matter, radiation and cosmological constant. As a simplification, it is assumed that the relativistic gas is composed by particles with equal kinetic energy, or equal speed $\beta = v/c$. By elementary means one can obtain the following equation of state, which links the pressure P and energy density ρ of such gas,

$$P = \frac{\rho}{3} \left[1 - \left(\frac{mc^2}{\varepsilon} \right)^2 \right] = \frac{\rho}{3} \left(1 - \frac{\rho_d^2}{\rho^2} \right). \quad (1)$$

In this formula ε is the kinetic energy of the individual particle, $\varepsilon = mc^2/\sqrt{1-\beta^2}$. Furthermore, $\rho_d = \rho_{dm}^0 (1 + z)^3$ is the mass (static energy) density. One can use one or another form of the equation of state (1), depending on the situation. For example, in order to explore the evolution of the conformal factor $a = a(t)$ in this model, one can take the second expression in (1) and using the conservation law find that the relative energy density for the relativistic gas is given by the expression

$$\Omega_{dm}(a) = \frac{\Omega_{dm0}}{a^3 \sqrt{1 + b^2}} \sqrt{1 + \frac{b^2}{a^2}}, \quad (2)$$

where Ω_{dm0} is the present-day dark matter density, and b is related to particles speed. Indeed, $b \approx 0$ means that the particles are nonrelativistic. Furthermore, for small velocities one can easily obtain the relation $b \approx \beta$ [10]. Finally, by using the equations presented above and the ones for other components, the Hubble parameter can be presented in the form

$$H^2(a, \Omega_{dm0}, \Omega_{de}, b, \Omega_{r}) = H_0^2 \left[\frac{\Omega_{dm0}}{a^3 \sqrt{1 + b^2}} \sqrt{1 + \frac{b^2}{a^2} + \frac{\Omega_{de0}}{a^3} + \frac{\Omega_{r0}}{a^4} + \Omega_{\Lambda}} \right], \quad (3)$$

where we assume that

$$\Omega_{\Lambda} = 1 - \Omega_{dm0} - \Omega_{de0} - \Omega_{r0}$$

and use the value $\Omega_{r0} h^2 = 2.42 \times 10^{-5}$. In this work we consider only the space-time manifolds with the flat space section.

If taken alone, the RRG model provides a natural interpolation between the radiation-dominated and matter-dominated universe regimes. Due to the adiabatic expansion, the relativistic gas is cooling down and the universe can look as filled by ultrarelativistic gas at the early stage of expansion and almost as a dust at the final stage of this expansion. One can find more details about the RRG model in [15] and [16].

In order to illustrate the effect of the warmness of the matter content of the universe, in Fig. 1 we displayed the deceleration parameter $q(z)$, the equation of state $w(z)$ and the age universe in H_0 units. One can see that for $b \approx 0.1$ the function plot goes away from the ΛCDM plot with $(b = 0)$. The state function is the function more sensitive to the value of parameter b.

III. EQUATIONS FOR LINEAR PERTURBATIONS

Following the approach developed in our previous paper [16], the dynamics of density perturbations has been analyzed in the synchronous gauge. The calculation of these perturbations is rather a standard routine, the only exception is the variation of the equation of state [1], where one has to use the first form of this equation, taking

$$\delta P = \frac{\delta \rho}{3} \left[1 - \left(\frac{Mc^2}{\varepsilon} \right)^2 \right] = \frac{\delta \rho}{3} \left(1 - \frac{\rho_d^2}{\rho^2} \right). \quad (4)$$

The reason is that in the framework of RRG model one has to provide kinetic energies of all particles to be equal and, therefore, we have no right to change the ratio mc^2/ε. In other words, the variations of the energy density and of the rest energy density, $\delta \rho_d$ and $\delta \rho$, should be always proportional. By using this rule we arrive at the following system of equations for the linear perturbations [16]:

$$\delta''_b + \left(\frac{2}{a} + \frac{f'}{f} \right) \delta'_b = -\frac{3}{2} \frac{\Omega_b}{a^3 f^2} \delta'_b - \frac{3}{2} \frac{\Omega_{dm}}{f^2} (1 + 3w) \delta_{dm} \,, \quad (5)$$

$$\delta''_{dm} + (1 + w) \left(\frac{v'}{f} - \delta'_b \right) = 0 \,,$$

$$(1 + w) \left[v'' + (2 - 3w) \frac{v'}{a} \right] = \frac{k^2}{a^3} \frac{\omega \delta_{dm}}{a^2 f} \,.$
FIG. 1: The deceleration parameter (left), equation of state (center) and age universe (right) for different values of the parameter $b = 0, 0.01, 0.2$ (from top to bottom of the first plot). Here $w(z)$ is an accumulated parameter corresponding to the sum of the cosmological constant term and the matter content. In all cases here we used the values $\Omega_{b0} = 0.04$ and $\Omega_{dm0} = 0.25$. The ΛCDM model corresponds to the value $b = 0$.

where v is the peculiar velocity, δ_b is the baryonic matter density fluctuation and δ_{dm} is the relative dark matter density fluctuation. Other relevant definitions are

$$f = f(a) = a\sqrt{\Omega_{dm} + \frac{\Omega_{b0}}{a^3} + 1 - \Omega_{b0} - \Omega_{dm0}},$$

$$w = w(a) = \frac{1 - r(a)}{3} \quad \text{and} \quad r(a) = \frac{1 + b^2}{1 + (b^2/a)^2}, \quad (6)$$

where Ω_{dm} is given by the Eq. (2). The system above differs from the CDM model, because in our model the peculiar velocity and the state function $w(a)$ are non-zero. Additionally, the CDM model interacts only through gravity and can be considered as a pressureless perfect fluid, unlike our model has a component of pressure given by (4). The solution of the system (5) was performed using a Mathematica-based code. To determine the power spectrum we use the BBKS transfer function [28]. It is important to note that we also use the transfer function described in references [29, 30] which are adapted for WDM particles, which depends on some specific inputs, obtaining the same results as when the BBKS transfer function is employed.

For the scale invariant spectrum, favored by the primordial inflationary scenario, the BBKS transfer function is given by

$$T(k) = \frac{\ln (1 + 2.34q)}{2.34q} [1 + 3.89q + 16.1q^2 + 5.64q^3 + 6.71q^4]^{-1/4} \quad (7)$$

where $q(k) = \frac{k}{hMpc^{-1}}$ and $\Gamma = \Omega_{m0} h \exp \left(-\Omega_{b0} - \frac{\Omega_{b0}}{\Omega_{m0}} \right)$.

We have used the function $T(k)$ to impose the initial conditions of the system (5). The power spectrum is defined as usual, at $z = 0$ we have

$$P(k) = |\delta(k)|^2 = A T(k) \left[\frac{g(\Omega_{m0})}{\Omega_T} \right]^2 k, \quad (8)$$

where A is a normalization constant of the spectrum, which can be fixed from the spectrum of anisotropy of the cosmic microwave background radiation. The expression for $g(\Omega)$ is given by

$$g(\Omega) = \frac{5\Omega}{2(\Omega^{4/3} + 1.01(\frac{\Omega}{2} + 1) - 0.75)} \quad (9)$$

The analysis of the linear density perturbations enables us to obtain the upper bound for the warmness of the DM in a very economic way [14]. In Fig. 1 we compare the 2dFGRS data with the power spectrum of our model for the usual ΛCDM energy balance case. We used the best fit obtained using the χ^2 in the next section. One can see that if $b \approx 10^{-3}$, the predicted power spectrum is outside of the region of data shown in the plot. A detailed analysis of observational constraints is given in section 5.
FIG. 2: Power spectrum using $\Omega_{b0} = 0.044$ and $\Omega_{dm0} = 0.24$, for three different values of $b = 10^{-4}$, 5.0×10^{-3}, 10^{-2} (from bottom to top). It is easy to see that the last two values for b provide the linear power spectrum, at small scale, which is incompatible to the 2dFGRS data.

IV. CONSTRAINTS FROM OBSERVATIONAL DATA

Nowadays there is a large number of observational tests focused on different aspects of the cosmological models. It is expected that the crossing of these different observational tests may lead to an expressive constraint on the free parameters of a given model, in some cases confirming the viability of the proposed scenario or ruling it out. Here we consider essentially two kinds of tests: those focusing on the background functions, specially $H(z)$ and also the perturbative tests, which involve more profoundly the description of the matter/energy content of the model. Concerning the tests related to the background behavior only, we will consider the supernova type Ia data (Union2 sample), BAO, the position of the first acoustic peak in the CMB spectrum (the R parameter) and the age of the old objects. In what concerns the perturbative tests, we will restrict ourselves to the matter power spectrum associated to linear perturbations.

The analysis of statistics begins with the χ^2 functions constructed following the general expression

$$\chi^2 = \sum_{i=n}^{N} \frac{(\rho_i^{th} - \rho_i^{ob})^2}{\sigma_i^2},$$

(10)

where N is the total number of observational data, ρ_i^{th} are corresponding theoretical predictions and ρ_i^{ob} represent the observational values, with an error bar given by σ_i. The probability distribution function is constructed from the χ^2 function as

$$P(x^j) = A e^{-\chi^2(x^j)/2},$$

(11)

where x^j are the set of free parameters of the model and A is a normalization factor. Within the RRG model, there are two free parameters, Ω_{dm0} and b. In what follows we describe the results for each of these tests.
A. The CMB Shift Parameter

We used the shift parameter, R, which relates the angular diameter distance to the last scattering surface with the angular scale of the first acoustic peak in the WMAP7 power spectrum, and is given by (for $k = 0$) \[R(\Omega_{m0}, \Omega_{b0}, b) = \sqrt{\Omega_m} \int_0^{1090} \frac{dz}{E(\Omega_{m0}, \Omega_{b0}, b)} = 1.725 \pm 0.018, \] \[\text{(12)} \]

where $E(\Omega_{m0}, \Omega_{b0}, b) = H(\Omega_{m0}, \Omega_{b0}, b)/H_0$. It is important to point out that the measured value of R is model independent and, therefore, can be used as a test of cosmology. In general, the shift parameter alone is insufficient for this purpose. In ref. [32] it is shown how to derive the R parameter in a model independent way. In order to include the CMB shift parameter into the analysis, it is needed to integrate up to the matter-radiation decoupling ($z \simeq 1090$), so that radiation is no longer negligible and it should be properly taken into account. For our model we used the minimization of the χ^2 statistic according to

\[\chi^2_R = \frac{[1.725 - R(\Omega_{m0}, \Omega_{b0}, b)]^2}{0.018^2}. \] \[\text{(13)} \]

We used $\Omega_{b0} = 0.04$. In the Fig. 7, one can see the results for our model. It is clear that this test alone can not severely restrict the space of parameters. In particular, this test does not allows us to determine an upper limit for the parameter b for fixed Ω's.

B. BAO

The primordial baryon-photon acoustic oscillations leave a signature in the correlation function as observed by Eisenstein et al. [33]. This signature provides us with a standard ruler which can be used to constrain the following quantity

\[A(\Omega_{m0}, \Omega_{b0}, b) = \sqrt{\Omega_{m0}} \left[\frac{1}{z_1} \int_0^{z_1} \frac{dz}{E(z, \Omega_{m0}, \Omega_{b0}, b)} \right]^{1/3}, \] \[\text{(14)} \]

where the observed value of A is $A_{\text{obs}} = 0.469 \pm 0.017$ and $z_1 = 0.35$ is the redshift of the SDSS sample. The χ^2 statistics may be computed from

\[\chi^2_{\text{BAO}}(\Omega_{m0}, \Omega_{b0}, b) = \frac{[0.469 - A(\Omega_{m0}, 0.044, b)]^2}{0.017^2}. \] \[\text{(15)} \]

Here we will use the $\Omega_{b0} = 0.044$ value to build the regions confidence. The results are presented in Fig.8. We can see that BAO does not impose an upper limit for the parameter b, but it restricts the value of Ω_{m0}.

C. H(z)

The observational Hubble parameter depends on the redshift z in the form

\[H(z) = \frac{1}{1+z} \frac{dz}{dt}. \] \[\text{(16)} \]

Then, $H(z)$ can be obtained as far as dz/dt is known. Jimenez et al. [34] demonstrated the feasibility of the method while Simon et al. [35] and Stern et al. [36] obtained $H(z)$ in the range of $0.09 < z < 1.8$. Another way to get values of $H(z)$ can be using the BAO peak position as a standard ruler in the radial direction. Using this prescription in the reference [37], the authors determined $H(z)$ in $z = 0.43$ and $z = 0.24$. We employ the eleven data of [35, 36] and two data of [37]. The best fit values for the model parameters from observational Hubble data are determined by minimizing the quantity

\[\chi^2_H(\Omega_{m0}, \Omega_{b0}, b, H_0) = \sum_{i} \frac{[H_{\text{obs},i} - H_{\text{th}}(\Omega_{m0}, \Omega_{b0}, b, H_0)]^2}{\sigma_i^2}. \] \[\text{(17)} \]
Here we use the value $\Omega_{b0} = 0.04$. The free parameters are Ω_{dm0}, H_0 and b. However, in our case, we have found that the one-dimensional probability distribution function in H_0 is quite narrow and the values H_0 are well approximated by the value $H_0 = 70.5$ (minimizing the χ^2_2 considering the three free parameters). Therefore, one has only two free parameters, namely b and and the Ω_{dm0} parameter. The results for this test are presented in Fig. 9. In general, this test provides the results which are similar to the ones of BAO. In particular, this is because the parameter b remains weakly constrained, but the restrictions are strong for the value of Ω_{dm0}.

D. Compilation Union2

The supernovae Ia data give us the distance modulus μ to each supernova, that is given by

$$\mu = m - M = 5 \log \left[\frac{d_L}{Mpc} \right] + 25,$$

where M is the absolute magnitude. The distance modulus can also be written as

$$\mu = 5 \log_{10} D_L(z) + \mu_0,$$

where $D_L = \frac{H_0}{c} d_L$ is the Hubble-free luminosity distance and μ_0 is the zero point offset (which is an additional model-independent parameter) defined by

$$\mu_0 = 5 \log_{10} \left(\frac{cH_0^{-1}}{Mpc} \right) + 25 = 42.38 - 5 \log_{10} h.$$

In the present paper we used the Union2 dataset including 557 data of Amanullah et. al. [38], that includes the intermediate-z data observed during the first season of the Sloan Digital Sky Survey (SDSS)-II supernova survey [39] and the high z data from the Union compilation [40].

In our case the χ^2_{SNIa} is given by

$$\chi^2_{SNIa}(p_i) = \sum_{i=1}^{n} \frac{(\mu_{the}(p_i, z_i) - \mu_{obs}(z_i))^2}{\sigma_{obs,i}^2}.$$

The χ^2 function can be minimized with respect to the μ_0 parameter, as it is independent of the data points and the dataset. The σ_{obs} are provided in [38] and include both the observational and intrinsic magnitude scatter. We assumed a Gaussian and uncorrelated probability distribution for the data. Expanding the equation above with respect to μ_0, we obtain:

$$\chi^2(p_i)_{SNIa} = A(p_i) - 2\mu_0 B(p_i) + \mu_0^2 C(p_i),$$

which has a minimum for $\mu_0 = B(p_i)/C(p_i)$, giving

$$\chi^2_{SNIa,min} = \chi^2_{SNIa} = A(p_i) - \frac{B^2(p_i)}{C(p_i)},$$

where

$$A(p_i) = \sum_{i=1}^{n} \left(\frac{\mu_{th} - \mu_{obs}(p_i, \mu_0 = 0)}{\sigma_i} \right)^2,$$

$$B(p_i) = \sum_{i=1}^{n} \frac{\mu_{th} - \mu_{obs}(p_i, \mu_0 = 0)}{\sigma_i},$$

$$C(p_i) = \frac{1}{\sigma_i^2}.$$

Let us note that the new χ^2_{SNIa} is independent on μ_0 and can be minimized with respect to the parameters of our theoretical model. The results are shown in the Fig. 10. We can see that the parameters b and Ω_{dm0} are relatively constrained. In particular, the parameter b has a maximum likelihood value for $b \approx 0.4$ (see Table 1).
E. 2dFGRS

We used the 2dFGRS data [41] to compare the power spectrum of our model and constrain the free parameters. To do this, we minimize χ^2 defined as

$$\chi^2_{2dF}(\Omega_{dm0}, \Omega_{b0}, b) = \sum_{i=1}^{39} \frac{[P((k_i, \Omega_{dm0}, \Omega_{b0}, b) - P_{obs}(k_i, \Omega_{dm0}, \Omega_{b0}, b)]^2}{\sigma_i^2}.$$

Here $P(k)$ is given by equation (8) and the number of free parameters is two, since we fixed the value of $\Omega_{b0} = 0.04$. In Fig. 3 we present the PDF for our model. The impact that has the model on linear power spectrum is dominated by the b parameter that is associated with the speed of dark matter particles. In the left figure we can see that if Ω_{dm0} is close to ΛCDM value, then, the b value is close to zero. But, if the value of b is, for example, 10^{-4}, then the dark matter fraction decreases significantly. The corresponding data can be seen in Table 1.

FIG. 3: The probability density function using 2dFGRS for Ω_{m0} (right) and b (left). The confidence level with 1-σ, 2-σ and 3-σ. To build the PDF we marginalize the free parameters considering the intervals: $\Omega_{dm0} \in [0.05, 0.95] \Lambda$CDM and $b \in [0.001, 0.4]$, for each case. As we can see the model is included, i.e, the first figure shows that for a $\Omega_{dm0} \approx 0.25$ corresponds to a $b \approx 0$.

F. Combining the Datasets

We considered that the observational data are independent, so we defined the χ^2_{total} as

$$\chi^2_{total} = \chi^2_{SN1a} + \chi^2_{BAO} + \chi^2_R + \chi^2_H + \chi^2_{2dF}.$$

(28)
TABLE I: In this table we compile the results of observational constraints using different dataset. The statistical error is 68.3%(1σ) and the results in brackets correspond to an error of 2σ.

Data	χ^2_{min}	Ω_{dm0}	b
2dFGRS	21.495	0.0069	0.001
SNIa	542.45	0.21±0.02	0.48±0.34
R+BAO+H(z)	8.449	0.28±0.07	≈ 0±0.006
R+BAO+H(z)+SNIa(Base)	547.383	0.26±0.03	0.00064±0.00027
R+BAO+H(z)+2dFGRS	24.24	0.28±0.05	≈ 0±0.004
R+BAO+H(z)+SNIa+2dFGRS	563.271	0.26±0.05	≈ 0.0001±0.003

The best fit values the model can be determined by minimizing the total χ^2. For Gaussian distributed measurements, the χ^2 function is directly related to the maximum likelihood estimator. The likelihood function is determined as

$$ L(\Omega_{dm0}, b) = L_0 \exp \left(-\frac{\chi^2_{total}}{2} \right), $$

where L_0 is a normalization constant. In order to constraint the parameters of our interest, we marginalize over the other parameters. In the Figs 4, 5 and 6. We displayed the results the χ^2 total. An important issue that needs to be considered is the difference between the PDFs of the background tests (BAO+R+H+SNIa) and linear perturbations. In the case of Ω_{dm0} parameter, we see that the low probability in the range of $\Omega_{dm0} < 0.1$ eliminates high probability of this sector in case of perturbations (Fig. 3). Therefore, the result are close to ΛCDM model. Effects of structure formation may be critical to study the characteristics of models that include warm dark matter, where the speed of the particles is no longer negligible as in the case of CDM. In the table 1 we compile the results of observational constraints at 1σ and for the power spectrum, we give also the estimations at 2σ.
V. RESULTS AND DISCUSSION

The Reduced Relativistic Gas model (RRG) enables one to determine the equation of state which interpolates between the radiation-dominated and the matter-dominated eras. It can represent a warm dark matter, characterized by the parameter b, where $v \approx bc$. The main difference from WDM and CDM come from the behaviour at small scales, even during the relativistic phase. WDM is composed from lighter particles with respect to the CDM particles, and density fluctuations are suppressed at small scales, presenting the effect of a free stream. In our case, such small scales effect are not relevant, since we are interested in scales corresponding to the linear regime, and transition is smooth, not taking into account the details of the decoupling of the warm dark matter particles. In such a case, the main effect of our model is due to the non-zero, even though small, value of the velocity of the particles. For our purposes, we can ignore these small scales process and take into account only the informations encoded in the transfer function for our relevant scales. For very large scales, the WDM and CDM transfer functions are essentially the same, and small differences appear only at intermediate scales, as we could expect. This is in agreement with our results which are essentially the same for the WDM and CDM transfer function. Hence, the dark component would have a small (but non zero) velocity today.

The model has been tested using four background observational tests: Supernova type Ia (Union2 sample), $H(z)$,
FIG. 5: The one-dimensional probability distribution function (PDF) for the $\Omega_{\text{dm}0}$ parameter. The parameter b was marginalized in the range $[0, 1]$.

CMB (R factor) and BAO. Moreover, a detailed study of structure formation at linear level has been performed using the 2dFGRS data for matter power spectrum. The different tests have been crossed in order to obtain a more clear prevision for the free parameters, which are essentially the velocity parameter for the dark matter particles b and the dark matter ratio to the critical density $\Omega_{\text{dm}0}$. All the analysis has been performed using the flat universe prior.

In general, the background tests predict a $\Omega_{\text{dm}0}$ very similar to the value obtained in the ΛCDM model, except for the CMB R factor which predicts a universe essentially dominated by dark matter. For the velocity parameter b, the background tests predict a maximum probability for a finite value at $b \ll 1$, except for BAO, where a large value for b is predicted. But the most striking feature of the observational tests concerns the formation of structure, for which the maximum probability for $\Omega_{\text{dm}0}$ occurs at a zero value. This seems to be a consequence of the restriction of the analysis to a linear level, since a certain amount of dark matter is necessary in order to have the formation of structure process. In any case, the results concern a probability distribution: a small amount of dark matter is certainly admitted, but much less than that predicted by the ΛCDM model. For the parameter b, the PDF is concentrated around zero, but there is another region of much smaller, albeit non-zero, probabilities from $b \sim 0.04$ on. We remember that the estimations of warm dark matter in dwarfs spiral galaxies predict $b \sim 10^{-3}$ [42]. In this context, our model seems to be a possible alternative for understanding the formation of structures. Additionally as
FIG. 6: The one-dimensional probability distribution function (PDF) for the b parameter. The $\Omega_{\text{dm}0}$ was marginalized in the range $[0.05, 0.95]$.

we had seen in the RRG the dispersion velocity is a free parameter predictable directly and not derived. The crossing of the background tests with the ones related to cosmic perturbations leads to scenarios similar to the ΛCDM model but with a quite large dispersion in the estimations for b. Here we must distinguish some special features. When the SNIa test is not considered, the range of allowed value for b becomes larger. The addition of the structure formation to the background tests does not change considerably the scenario, in spite of the fact that test alone would lead to a very small value of $\Omega_{\text{dm}0}$. This occurs because for small $\Omega_{\text{dm}0}$ the PDF is essentially zero for the background tests: the crossing of perturbative and background tests renders this possibility very unlikely. However, considering an error of 2σ (see table 1) our value of $\Omega_{\text{dm}0}$ includes the value of the ΛCDM model $\Omega_{\text{dm}0} = 0.229 \pm 0.015$ [31].

One can resume the main results of this work in the following way. The background tests result, without the SN data, is centered in the usual values characterizing the ΛCDM model, that means $b \approx 0$ and $\Omega_{\text{dm}0} \sim 0.26$, but with a non-negligible dispersion. The inclusion of the SN data sharpens the confidence region, leading to stronger evidences in favor of the ΛCDM model. In both cases, the inclusion of the LSS test enlarges the dispersion mainly in the parameter b direction. For the one-dimensional estimations, those related to the dark matter density changes very little with, while for the b parameter, the inclusion of SN in the background tests compress the PDF distribution near
\(b = 0 \), and the inclusion of the LSS tests accentuates this effect. This seems to be in contradiction with the previous two-dimensional description, but it must be seen as an effect of the marginalization on the density parameter.

In the literature the mechanisms most used for to study warm dark matter has been based in a distribution function of the form \(f_x(v) = \frac{\beta \epsilon_p/\alpha T}{v^{\frac{\alpha}{\epsilon_p}}+1} \) \[43\] where \(T \) is the photon temperature, \(v = p/(p^2 + m^2)\)\[1/2\], and three parameters \(\alpha, \beta \), and \(m_x \). The power spectrum today and the relation between pressure and energy density is given with a function of this distribution. In this context the transfer function can be approximated by the fitting function \(T(k) = [1 + (\alpha k)^{2.24}]^{-4.46} \) \[29\] where \(\alpha \) is a function of free parameters of WDM. We have used this function with \(m_x = 1 keV \) and \(m_x = 0.25 keV \) and observe that the obtained results are very close to those obtained with the BBKS function, therefore we our results are not affected significantly by the scale of mass.

It is important to remember that the standard model, ΛCDM, appears to be in conflict with observations on subgalactic scales. There are two major conflicts between ΛCDM models and observations in the Local Universe. First, the inner mass density profiles of simulated dark matter halos are more cuspy than inferred from the rotation curves of dwarfs and low surface brightness galaxies. Currently, this conflict seems well established \[44\]. Therefore, the ΛCDM models in its current form cannot provide the unknown mass that surrounds galaxies. The second problem is related with the N-body simulations of ΛCDM models that predict large numbers of low mass halos greatly in excess when compared the observed number of satellite galaxies in the Local group. These and other issues suggest that it is necessary to investigate different theoretical possibilities. In this paper we have shown that, in part of linear perturbations alone, our \textit{RRG} model for a WDM provides results which are different from the standard ΛCDM model. It is possible, in principle, that the parameter estimations from other observational data can be modified by the quantum corrections in the form discussed in \[24\] and \[25\], such that eventually we may converge to an alternative cosmic concordance model. The present investigation can be seen as a first step towards this program.

It is clear that to better quantify these qualitative expectations, one needs to take into account the nonlinear effects, including the dynamics of the collapse and the halo concentrations, e.g., by using algorithm suggested in Ref. \[45\], etc. Another important thing to do is to consider the other sets of observational tests, like the integrated Sachs-Wolfe effect, in the first order in quantum corrections and see whether they are compatible with the small \(\Omega_{\text{dm}} \) and small WDM model.

Acknowledgments.

The work of J.F. has been supported in part by CNPq and by FAPES. The work of A.M.V.T. and I.Sh. has been supported in part by CNPq and FAPEMIG, I.Sh. also was supported by ICTP Senior Associated Membership Program.
Appendix

In this appendix, we display the one dimensional PDFs and the bi-dimensional confidence levels for each background test taken separately.

FIG. 7: The PDFs using CMB. The confidence level with 1-σ, 2-σ and 3-σ(left)

FIG. 8: The PDFs using BAO. The confidence level with 1-σ, 2-σ and 3-σ(left)
FIG. 9: The PDFs using $H(z)$ data. The confidence level with 1-\(\sigma\), 2-\(\sigma\) and 3-\(\sigma\) (left).

FIG. 10: The PDFs using SNIa Union 2. The confidence level with 1-\(\sigma\), 2-\(\sigma\) and 3-\(\sigma\) (left).
[1] A.G. Riess et al. Astron. J. 116, 1009(1998), e-Print: astro-ph/9805201, Astrophys. J. 699, 539(2009), e-Print: arXiv:0905.0655; S. Perlmutter, Astrophys.J. 517, 565(1999), e-Print: astro-ph/9812133.

[2] S. Hannestad, Int. J. Mod. Phys. A21, 1938(2006).

[3] S. Weinberg, Rev. Mod. Phys. 61, 1(1989).

[4] I.L. Shapiro, J. Solà, JHEP 02, 006(2002).

[5] E. Kolb and M. Turner, The Very Early Universe, Addison-Wesley, New York(1994); J. Binney and S Tremaine, Galactic Dynamics, Princeton UP(1988).

[6] S. Dodelson, Modern Cosmology, Academic Press, New York(2003).

[7] M. Weber, W. de Boer, Astron. Astrophys. 509, A25 (2010).

[8] J. Angle et al. Phys.Rev.Lett. 100, 021303 (2008).

[9] J.A. Tyson, G. P. Kochanski, I. P. Dell’Antonio, Astrophys.J. 498, L107 (1998).

[10] A. Pinzke, C. Pfommer, L. Bergstrom. [arXiv:1105.0695];

[11] J. L. Tinker, Astrophys.J. 688, 709 (2008).

[12] A.D. Sakharov, Soviet Physics JETP, 22, 241 (1966) [Russian original: ZhETF, 49, 345 (1965)];

[13] L.P. Grishchuk, Cosmological Sakharov Oscillations and Quantum Mechanics of the Early Universe, arXive:1106.5205;

[14] J.R. Bond and A.S. Szalay, Astrophys. J. 274, 443(1986).

[15] Z. Haiman, R. Barkana and J.P. Ostriker, Warm Dark Matter, Small Scale Crisis, and the High Redshift Universe, e-Print: astro-ph/0103050.

[16] J.C. Fabris, I.L. Shapiro and F. Sobreira, JCAP 02, 001(2009), e-print: arXiv:0806.1969.

[17] I.A. Yegorova, A. Pizzella, P. Salucci. [arXiv:1106.5105];

[18] J. Grande, J. Solà, H. Štefančić, JCAP 0501, 012(2005).

[19] C. Farina, W.J.M. Kort-Kamp, S. Mauro and I.L. Shapiro, Phys. Rev. D83, 124037(2011).

[20] J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001(2005).

[21] M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Phys. Rev. D71, 063534(2005), e-print: astro-ph/0501562.

[22] E. Komatsu et al; Astrophys.J.Suppl. 192, 18(2011) e-print: arXiv:1001.4538.

[23] S. Nesseris, L. Perivolaropoulos, JCAP 01, 018(2007).

[24] D.L. Eisenstein et al. (SDSS) ApJ 633, 560(2005); E-print: astro-ph/0501171.

[25] R. Jimenez, L. Verde, T. Treu and D. Stern, Astrophys. J. 593, 622(2003).

[26] J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001(2005).

[27] R. Jimenez, L. Verde, M. Kamionkowski and S.A. Stanford, JCAP 2, 8(2010), e-print: arXiv:0907.3149.

[28] E. Gaztanaga, A. Cabre and L. Hui, Mon. Not. Roy. Astron. Soc. 399, 1663(2009), e-Print: arXiv:0807.3551.

[29] R. Amanullah et al. Astrophys. J. 716, 712(2010).

[30] R. Bode, J.P. Ostriker and N. Turok, Astrophys. J. 556, 93 (2001).

[31] M. Kowalski et al. Astrophys. J. 686, 749(2008).

[32] S. Cole et al.; Mon. Not. Roy. Astron. Soc. 362, 505 (2005); Astrophys. J. 549, 669(2001), e-print: astro-ph/0006430.

[33] W. J. Percival et al; [The 2dFGRS Team Collaboration], Mon. Not. Roy. Astron. Soc. 337, 1068(2002), e-print: astro-ph/0206256.

[34] H. J. de Vega and N. G. Sanchez, Int. J. Mod. Phys.A 26, 1057(2011); H. J. de Vega, P. Salucci and N.G. Sanchez, e-print: arXiv:1004.1908.

[35] S. Colombi, S. Dodelson and L.M. Widrow, Astrophys. J. 458, 1(1996).

[36] R. K. de Naray, T. Kaufmann, MNRAS 414, 3617 (2011); A. Del Popolo, MNRAS 408, 1808 (2010); F. Donato, et al. MNRAS 397, 1169 (2009); G. Ogiya and M. Mori, e-Print: arXiv:1106.2864.

[37] V.R. Eke, J.F. Navarro and M. Steinmetz, Astrophys. J. 554, 114(2001).