CHANGING AND UNCHANGING OF THE DOMINATION NUMBER OF A GRAPH: PATH ADDITION NUMBERS

VLADIMIR SAMODIVKIN

Department of Mathematics
University of Architecture, Civil Engineering and Geodesy
Sofia 1164, Bulgaria

e-mail: vl.samodivkin@gmail.com

Abstract

Given a graph $G = (V, E)$ and two its distinct vertices u and v, the (u,v)-P_k-addition graph of G is the graph $G_{u,v,k}$ obtained from disjoint union of G and a path $P_k : x_0, x_1, \ldots, x_{k-1}$, $k \geq 2$, by identifying the vertices u and x_0, and identifying the vertices v and x_{k-1}. We prove that $\gamma(G) - 1 \leq \gamma(G_{u,v,k})$ for all $k \geq 1$, and $\gamma(G_{u,v,k}) > \gamma(G)$ when $k \geq 5$. We also provide necessary and sufficient conditions for the equality $\gamma(G_{u,v,k}) = \gamma(G)$ to be valid for each pair $u, v \in V(G)$. In addition, we establish sharp upper and lower bounds for the minimum, respectively maximum, k in a graph G over all pairs of vertices u and v in G such that the (u,v)-P_k-addition graph of G has a larger domination number than G, which we consider separately for adjacent and non-adjacent pairs of vertices.

Keywords: domination number, path addition.

2010 Mathematics Subject Classification: 05C69.

References

[1] N. Ananchuen, W. Ananchuen and R.E.L. Aldred, Maximal 3-gamma-vertex-critical graphs, Util. Math. 88 (2012) 75–90.

[2] A. Bhattacharya and G.R. Vijayakumar, Effect of edge-subdivision on vertex-domination in a graph, Discuss. Math. Graph Theory 22 (2002) 335–347. doi:10.7151/dmgt.1179

[3] R.C. Brigham, P.Z. Chinn and R.D. Dutton, A Study of Vertex Domination Critical Graphs (Technical Report, University of Central Florida, 1984).

[4] R.C. Brigham, P.Z. Chinn and R.D. Dutton, Vertex domination-critical graphs, Networks 18 (1988) 173–179. doi:10.1002/net.3230180304
[5] G.H. Fricke, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and R.C. Laskar, Excellent trees, Bull. Inst. Combin. Appl. 34 (2002) 27–38.

[6] B. Hartnell and D. Rall, Bounds on the bondage number of a graph, Discrete Math. 128 (1994) 173–177.
doi:10.1016/0012-365X(94)90111-2

[7] W. Goddard and M.A. Henning, Independent domination in graphs: A survey and recent results, Discrete Math. 313 (2013) 839–854.
doi:10.1016/j.disc.2012.11.031

[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs (Marcel Dekker Inc., New York, 1998).

[9] T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of domination parameters in trees, Discrete Math. 260 (2003) 77–87.
doi:10.1016/S0012-365X(02)00451-X

[10] V. Samodivkin, Common extremal graphs for three inequalities involving domination parameters, Trans. Comb. 6 (2017) 1–9.
doi:10.22108/TOC.2017.21464

[11] H.B. Walikar and B.D. Acharya, Domination critical graphs, Nat. Acad. Sci. Lett. 2 (1979) 70–72.

Received 18 June 2018
Revised 2 November 2018
Accepted 3 November 2018