OX40 Drives Protective Vaccinia Virus-Specific CD8 T Cells1,2

Shahram Salek-Ardakani,3* Magdalini Moutaftsi,† Shane Crotty,† Alessandro Sette,† and Michael Croft3*

Vaccinia virus (VACV) affords long-lasting protection against variola virus, the agent of smallpox. VACV-reactive CD8 T cells contribute to protection but their molecular control is unknown. We show that the TNFR molecule OX40 (CD134) controls primary VACV-specific CD8 T cell expansion and antiviral cytokine production and dictates development of strong memory to both dominant and subdominant VACV epitopes. Using adoptive transfer of OX40-deficient CD8 TCR-transgenic T cells responding to Ag in the context of VACV infection, we found that this reflects a direct action of OX40 expressed by CD8 T cells. Furthermore, CD8 T cells that can protect against lethal VACV challenge do not develop in mice deficient in OX40. Thus, OX40, which has been found to play little if any role in the generation of CD8 T cells to several viruses, including lymphocytic choriomeningitis virus and influenza, plays a dominant role in shaping the CD8 T cell response to VACV. These data suggest that unique costimulatory pathways might control alternate antiviral CD8 responses, demonstrating the plasticity of the immune response in utilizing different mechanisms to achieve similar ultimate goals. The Journal of Immunology, 2008, 181: 7969–7976.

1This work was supported by National Institutes of Health Grants CA91837 and AI63107 (to S.C.).
2A.S.), and a Pew Scholar Award and National Institutes of Health Grant AI63107 (to S.C.).
3Address correspondence and reprint requests to Dr. Michael Croft and Dr. Shahram Salek-Ardakani, Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, San Diego, CA 92037. E-mail addresses: ssalek@liai.org; mick@liai.org
4Abbreviations used in this paper: IFN-I, tope I IFN; LCMV, lymphocytic choriomeningitis virus; VACV, vaccinia virus; WT, wild type.
a memory population, and are maintained for >300 days postinfection (24). Thus, in many respects, VACV elicits CD8 T cells highly analogous to other viruses such as LCMV and influenza. However, there is little information on the molecules that generate protective pools of anti-VACV CD8 T cells. Furthermore, the lack of defined peptide epitopes recognized by VACV has hampered in depth studies of this virus. The recent identification of epitopes that account for nearly the entire anti-VACV CD8 pool (26, 27) has provided a unique opportunity to examine for the costimulatory requirement of anti-VACV CD8 T cells with different specificities.

In this study, we show that the TNFR family member OX40 is critical for the magnitude of primary CD8 T cell responses to both dominant and subdominant VACV epitopes, including expansion and antiviral cytokine production, and OX40 also strongly impacts the generation of memory cells. Moreover, CD8 T cells that can protect against lethal VACV challenge do not develop in mice deficient in OX40. Thus, OX40, which has been found to play little if any role in the generation of CD8 T cells to several viruses, including LCMV and influenza, plays a critical role in shaping the CD8 T cell response to VACV.

Materials and Methods

Mice

The studies reported here conform to the Animal Welfare Act and the National Institutes of Health guidelines for the care and use of animals in biomedical research. All experiments were done in compliance with the regulations of the La Jolla Institute Animal Care Committee in accordance with the guidelines by the Association for Assessment and Accreditation of Laboratory Animal Care. Eight- to 12-wk-old female and male C57BL/6 mice were purchased from The Jackson Laboratory. OT-I TCR-transgenic mice were generated in-house by crossing OT-I cells responsive to OVA-derived SIINFEKL peptide. OX40-deficient mice were analyzed 30 or more days after infection, after restimulation in vitro with VACV peptides.

Skin infection (24). Thus, in many respects, VACV elicits CD8 T cells highly analogous to other viruses such as LCMV and influenza. However, there is little information on the molecules that generate protective pools of anti-VACV CD8 T cells. Furthermore, the lack of defined peptide epitopes recognized by VACV has hampered in depth studies of this virus. The recent identification of epitopes that account for nearly the entire anti-VACV CD8 pool (26, 27) has provided a unique opportunity to examine for the costimulatory requirement of anti-VACV CD8 T cells with different specificities.

In this study, we show that the TNFR family member OX40 is critical for the magnitude of primary CD8 T cell responses to both dominant and subdominant VACV epitopes, including expansion and antiviral cytokine production, and OX40 also strongly impacts the generation of memory cells. Moreover, CD8 T cells that can protect against lethal VACV challenge do not develop in mice deficient in OX40. Thus, OX40, which has been found to play little if any role in the generation of CD8 T cells to several viruses, including LCMV and influenza, plays a critical role in shaping the CD8 T cell response to VACV.

Materials and Methods

Mice

The studies reported here conform to the Animal Welfare Act and the National Institutes of Health guidelines for the care and use of animals in biomedical research. All experiments were done in compliance with the regulations of the La Jolla Institute Animal Care Committee in accordance with the guidelines by the Association for Assessment and Accreditation of Laboratory Animal Care. Eight- to 12-wk-old female and male C57BL/6 mice were purchased from The Jackson Laboratory. OT-I TCR-transgenic mice were generated in-house by crossing OT-I cells responsive to OVA-derived SIINFEKL peptide. OX40-deficient mice were analyzed 30 or more days after infection, after restimulation in vitro with OVA expressing full-length OVA protein (VACV-OVA; 2 × 10^6 PFU/mouse). OX40-deficient mice were infected i.p. with VACV-WR (2 × 10^6 PFU/mouse). At day 4, splenocytes were stained with CD8 plus CD44 and B8R tetramer. Representative plots of tetramer staining, gating on CD8 cells. Percentages of activated B8R tetramer-positive cells. Quadrant settings based on isotype controls. h. WT or OX40-deficient (OX40−/−) mice were infected i.p. with VACV-WR (2 × 10^6 PFU/mouse). At day 4, splenocytes were stained with CD8 plus CD44 and B8R tetramer. Representative plots of tetramer staining, gating on CD8 cells. Percentages of activated B8R tetramer-positive cells. CD8 T cells (CD8−CD44+ B8R+) and naive cells (CD8−CD44−) are indicated. c. Mice were infected as above. At day 4, CD8 T cell activation was assessed by up-regulation of CD69, CD25, and CD43 and down-regulation of CD62L and CD127 in B8R tetramer-positive cells. Quadrant settings based on isotype controls. d. Naive (CD44low B8R tetramer-negative) CD8 T cells were used as controls. Percentages that stained positive for each marker are indicated. Similar results were obtained in three separate experiments.

VACV intranasal challenge

Mice were anesthetized by inhalation of isoflurane and inoculated by the intranasal route with 3.5 × 10^6 of VACV-WR. Mice were weighed daily for 2 wk following challenge and were euthanized when they lost 25% of their initial body weight. For protection experiments, mice were immunized s.c. at the base of the tail once with either 10 or 2 μg/mouse of CD8
FIGURE 2. CD8 T cells lacking OX40 are defective in expanding and antiviral cytokine production after infection with VACV. WT or OX40-deficient (OX40−/−) mice were infected i.p. with VACV-WR (2 × 10⁵ PFU/mouse). At day 7, spleen cells were stained for B8R tetramer or stimulated with B8R peptide for intracellular IFN-γ and TNF staining. Top left, Representative plots of B8R tetramer staining, gating on CD8 T cells. Percentages of CD8⁺ CD62Lhigh and CD62Llow B8R tetramer-positive cells are indicated. Top right, Representative plots for cytokine staining, gating on CD8⁺ CD62Llow cells. Percentages that stained positive for IFN-γ alone or TNF and IFN-γ/TNF are indicated. Quadrant settings were based on controls, using infected splenocytes that were not stimulated with peptide, and uninfected splenocytes stimulated with each peptide (data not shown). Bottom, Total numbers of B8R tetramer-positive CD8⁺ CD62Lhigh and CD62Llow T cells, CD8 IFN-γ⁺ cells, or CD8⁺ TNF⁺, and CD8⁺ IFN-γ+TNF⁺ cells per spleen. Results are mean number ± SEM (n = 6 mice/group) from one experiment. *p < 0.05 (WT mice vs knockout). Similar results were obtained in three separate experiments.

T cell peptide epitopes emulsified in IFA with a hepatitis B virus core 128–140 (TPPAYRPPNAPIL) epitope. Tissues were collected into 10% neutral-buffered formalin and H&E-stained sections were prepared using standard procedures (29). Body weight was calculated as percentage of the mean weight for each group on the day of challenge.

CD4 and CD8 depletion

Groups of peptide-immunized mice were depleted of CD4⁺ or CD8⁺ T cells with anti-CD4 (clone GK1.5; 200 μg/mouse) or anti-CD8 (clone 2.43; 200 μg/mouse) given in one i.v. injection 3 days before and one i.p. injection 2 days after intranasal challenge with VACV-WR. CD4 and CD8 depletion was confirmed by flow cytometry of spleens and lungs of treated mice.

Flow cytometry

Cytokine production in T cells was done as previously described (30), with some modifications. Briefly, after lysing RBCs, splenocytes from infected mice were resuspended in RPMI 1640 medium (Life Technologies) supplemented with 10% FCS (Omega Scientific), 1% L-glutamine (Invitrogen), 100 μg/ml streptomycin, 100 U/ml penicillin, and 50 μM 2-ME (Sigma-Aldrich). Cells (1–2 × 10⁶) were plated in round-bottom 96-well microtiter plates in 200 μl of medium or the indicated VACV peptides at 1 μg/ml for 1 h at 37°C. GolgiPlug (BD Biosciences) was then added to the cultures according to the manufacturer’s instructions and the incubation continued for 7 h. Cells were stained with anti-CD8 (PerCP; 53-6.7) and CD62L (PE; MEL-14), followed by fixation with Cytofix-Cytosperm (BD Biosciences) for 20 min at 4°C. Fixed cells were subjected to intracellular cytokine staining in BD Biosciences Perm/Wash buffer for 30 min at 4°C. Anti-TNF (FITC; MP6-XT22) and IFN-γ (allophycocyanin; XMG1.2) were obtained from eBioscience and used at a 1/100 dilution. Samples were analyzed for their proportion of cytoplasmic cytokines after gating on CD8⁺ CD62Llow T cells by a FACSCalibur flow cytometer using CellQuest (BD Biosciences) and FlowJo software (Tree Star). In some experiments, phenotypic analysis was conducted on B8R tetramer-positive CD8 T cells by costaining with CD25 (PC61), CD43 (S7), CD44 (IM7), CD69 (H1.2F3), CD127 (SB/199), and OX40 (OX86), all of which were purchased from BD Biosciences.

VACV titer assay

Tissues from individual mice were homogenized, and sonicated for 0.5 min with a pause every half minute using a 1210 Branson ultrasonic cleaner. Serial dilutions were made and the virus titers were then determined by plaque assay on confluent VeroE6 cells.

Statistics

Statistical significance was analyzed by Student’s t test. Unless otherwise indicated, data represent the mean ± SEM, with p < 0.05 considered statistically significant.

Results

OX40 controls the magnitude of expansion of CD8 T cells to VACV

Our recent data assessing reactivity to a tumor-derived Ag or a replication defective adenovirus have highlighted that OX40-OX40L interactions can play significant roles in certain CD8 responses (9, 10). Therefore, we examined the requirement for OX40 in primary expansion and effector function of VACV-specific CD8 T cells. Initially, the immunodominant VACV-reactive CD8 T cell population was tracked with a tetramer of a peptide of B8R (26, 27). OX40 was seen on a proportion of B8R tetramer-reactive CD8 T cells at day 4 postinfection with VACV-WR, and peaked at day 5 (Fig. 1a). Whereas B8R-specific CD8 T cells expanded well over 4 days in WT mice, defective accumulation was already evident in mice deficient in OX40 (Fig. 1b). This was not due to impaired activation of CD8 T cells in that CD69, CD25, and CD43 were similarly elevated in OX40−/− mice (Fig. 1c). Down-regulation of CD62L and CD127 was also not different (Fig. 1c). Both percentages and total numbers of B8R-reactive cells (CD62Lhigh and CD62Llow) were strongly reduced at the peak of the primary response at day 7 in OX40−/− mice (Fig. 2), and B8R-specific CD8 T cells that made IFN-γ or both IFN-γ and TNF, were reduced by 60–80% (Fig. 2), supporting our prior data that OX40 regulates division and survival of T cells (9–11, 19). Similar results were found for CD8 T cells responding to a range of subdominant VACV epitopes, which was not explained by delayed kinetics of expansion (Fig. 3). Impaired CD8 priming in the absence of OX40 was also observed with VACV given via dermal scarification, mimicking the route of vaccination against smallpox (data not shown). Thus, OX40 plays an important role in generating large pools of primary VACV-specific effector CD8 T cells.

Impaired generation of memory CD8 T cells in the absence of OX40

Next, we assessed the impact of OX40 deficiency on the generation of memory. Forty days postinfection, VACV-infected WT mice contained high frequencies of memory CD8 T cells specific for all epitopes examined, regardless of whether infection was i.p
Defective priming of OX40-deficient CD8 T cells to VACV

Because OX40 is expressed on multiple cell types, we sought to show that it was directly required by CD8 cells responding to VACV infection. OVA-specific OX40-deficient CD8 cells from OT-I TCR-transgenic mice were transferred into naive WT recipients subsequently infected with VACV-OVA. Strong expansion of WT OVA-specific CD8 cells was observed, similar to endogenous VACV-specific CD8 cells. In contrast, OX40-deficient CD8 cells poorly expanded to VACV-OVA (Fig. 5a). Next, we compared the ability of WT and OX40−/− OT-1 cells to divide early after VACV-OVA infection. CFSE-labeled WT or OX40−/− T cells were transferred into B6 mice and then 1 day later mice were infected with VACV-OVA or PBS as control. Without infection, similar CFSEhigh Vs2β5 populations of WT and OX40−/− T cells were detected (Fig. 5b). Seventy-two hours after infection, both WT and OX40−/− T cells had undergone comparable division as indicated by a reduction in CFSE staining intensity. Thus, direct OX40 signaling in CD8 T cells was not essential for induction of T cell division but was crucial for T cell survival after VACV infection. Consistent with this, in mice receiving OX40−/− T cells, significantly fewer memory cells were generated after the resolution of infection (Fig. 5c). This closely mimicked the data analyzing endogenous VACV-specific CD8 T cells in OX40−/− mice infected with VACV-WR (Figs. 3 and 4). To exclude that OX40 expressed on a non-T cell population contributed to the defect observed in OX40−/− mice, we performed the reverse experiment. VACV-OVA induced strong expansion of WT OVA-reactive IFN-γ-producing CD8 cells regardless of whether they were transferred into OX40−/− or WT mice (Fig. 5d). Thus, OX40 expressed on a CD8 T cell is required for expansion of effector cells and formation of a large population of memory cells during infection with VACV.
OX40 controls development of CD8 cells that protect against lethal VACV infection

Analysis of VACV-WR titers in the ovaries and spleen did not reveal any significant difference in the kinetics of primary clearance in WT vs OX40−/− mice (Fig. 6). Together with results indicating that depletion of CD8 T cells has no major effect on initial viral titers (25), this suggested that enhanced development of VACV-reactive CD8 T cell populations controlled by OX40 might be relevant for protection against subsequent exposure to virus. Because Ab can protect against VACV, we chose a model where CD8 T cell activity can be separated from Ab-mediated protection. After intranasal infection with VACV-WR, naive mice exhibited weight loss and death within 6–9 days (31, 32), and memory CD8 T cells induced by peptide vaccination can afford protection in this model (26, 33). Mice were therefore immunized with a high dose of the immunodominant peptide B8R20–27, given in IFA, and challenged 3 wk later with a lethal intranasal dose of VACV-WR (Fig. 7a). An average of 90% of immunized WT mice survived the infection (Fig. 7b). Weight loss (15–20%) was seen in these mice, suggesting that they were not fully immune (Fig. 7b), but protection was dependent on CD8 T cells since their depletion before challenge resulted in 100% mortality (Fig. 7c). Most significantly, when OX40−/− mice were immunized, no protection was evident and all succumbed to the infection (Fig. 7b). Far fewer B8R-specific memory CD8 T cells were present in the lungs of OX40−/− mice after immunization (Fig. 7d and e; day 0) and far fewer accumulated after VACV infection (Fig. 7d and e; day 5), suggesting the extent of protection was directly related to the number of VACV-specific CD8 T cells. In WT mice, immunization with a low dose of B8R20–27 (2 μg) peptide resulted in significantly fewer memory CD8 T cells (0.061 × 10⁵ cells/lung) that were generated in the lungs compared with immunization with 10 μg (0.168 × 10⁵ cells/lung; Table I), but comparable to

FIGURE 5. OX40 is required directly by CD8 T cells responding to VACV infection. CFSE-labeled naive WT or OX40−/− OT-I CD8 T cells were adoptively transferred into WT B6 (a–c) or OX40−/− (d) mice. One day later, mice were infected i.p. with recombinant VACV expressing full-length OVA (VACV-OVA; 2 × 10⁶ PFU/mouse) or PBS as indicated. After 8 (a and d), 3 (b), or 30 (c) days, CD8 T cell expansion (a and d), division as measured by CFSE dilution (b), and memory formation (c) were analyzed by tracking the transgenic TCR. Dot plots, Representative costaining for Vα2 and Vβ5 after gating on CD8 cells. Percent positive indicated. Bottom, Total numbers of CD8+ Vα2+ Vβ5+ cells (a–d) or CD8+ Vα2+ Vβ5+ IFN-γ+ cells (d) per spleen. Histograms, Cell division of WT and OX40−/− CD8 T cells was analyzed on gated CD8+ Vα2+ Vβ5+ cells 72 h after infection with VACV-OVA. Results are mean number ± SEM (n = 4 mice/group) from one experiment. *, p < 0.05 (WT mice vs knockout) as determined by Student’s t test. Similar results were obtained in one additional experiment.

FIGURE 6. OX40-deficient mice clear primary vaccinia infection with similar kinetics compared with WT mice. WT or OX40−/− mice were infected i.p. with VACV-WR (2 × 10⁶ PFU/mouse). On the indicated days postinfection, ovaries were removed and VACV-titers were determined as described in Materials and Methods.
that seen when OX40−/− mice (0.016 × 10^5) were immunized with 10 μg of B8R peptide (Table I). Again, the extent of protection (20% vs 90%) directly correlated with the number of IFN-γ-producing B8R-specific memory CD8 cells that were generated before challenge (Table I). Thus, the use of OX40 by naive VACV-specific CD8 T cells dictates the frequency of protective VACV-specific memory CD8 T cells that are elicited.

Table I. Frequency of B8R-specific CD8 T cells in the lung before challenge correlates with degree of protection against lethal VACV infection

Mice	B8R peptide (μg/mouse)	No. of CD8^+ IFN-γ^+ (×10^6 cells/lung)	% Survival
WT (n = 30)	10	0.168 ± 0.006	90
WT	2	0.061 ± 0.008	20
OX40−/− (n = 14)	10	0.016 ± 0.002	0

Discussion

Numerous spatially and temporally regulated interactions might exist between receptors on the surface of CD8 cells and their soluble or membrane-bound ligands. Defining the precise nature of these molecular interactions during different viral infections is of great interest and may allow us to understand how to augment antiviral immunity. In this study, we provide evidence of the importance of OX40-OX40L interactions to the generation of protective CD8 T cells reactive with VACV. Data from OX40−/− and OX40 ligand (OX40L)^−/− mice have shown that these molecules play little to no role in primary CD8 T cell responses to LCMV, vesicular stomatitis virus, influenza, and mouse CMV (7, 18, 19, 34). With VACV, our results highlight a previously unappreciated role for OX40 in initial antiviral immunity. We show that OX40 can strongly influence the response of VACV-specific CD8 T cells and dictates the absolute numbers of effector T cells that accumulate. Furthermore, OX40 is necessary for the generation of large populations of memory cells to dominant and subdominant VACV MHC class I epitopes. Thus, the capacity of naive CD8 T cells to bypass a requirement for OX40 signaling is not a property of all viruses, and OX40 dependence likely reflects differences related to the rate of viral replication, antigenic load, cell tropism, and perhaps the specific cytokine milieu induced in response to each virus.

Targets of OX40 are the antiapoptotic proteins of the Bcl-2 family, such as Bcl-xL, Bfl-1, and Bcl-2, which are increased after
OX40 ligation and correspondingly decreased in T cells that cannot express OX40 (6, 9, 35, 36). Additionally, OX40 might simultaneously exert suppressive effects on expression or activity of proapoptotic proteins such as Bad and Bim (36). More recently, survivin (an inhibitor of apoptosis family protein) was shown to be weakly expressed in the absence of OX40 and to control cell cycle progression and coincident apoptosis (37). Therefore, the simplest model, which is supported by our results, is that OX40 signals are required for late proliferation and survival of CD8 T cells when VACV Ag is encountered. Without these signals many of the responding T cells will die, rather than expand and survive to form the high frequency pools of effector and memory cells. Interestingly, this exact function was also proposed for IFN-I during LCMV responses (13, 14), further substantiating the idea of molecular plasticity in using alternate receptors for similar functions in different situations. Like OX40 (36), IFN-I has been reported to promote cell survival by activating PI3K and Akt (38). In contrast, IFN-I-induced survival in T cells was suggested to be independent of Bcl-2 and Bcl-xL, antiapoptotic proteins (39), raising the intriguing idea that similar functional outcomes in CD8 T cells could be mediated through alternate signaling pathways.

An important observation is that OX40 is strongly active in the development of CD8 T cells that protect against lethal VACV challenge. Extensive studies in the intranasal model of vaccinia infection have shown that passive immunotherapy with immune serum or mAbs are protective (28, 40–42). However, a role for CD8 T cells in protection has been less recognized (25, 32, 33, 66). Extensive studies in the intranasal model of vaccinia infection clearly demonstrate that CD8 T cells directed against the VACV envelope protein is a major target of neutralizing antibodies in humans and elicits antiviral CD8+ T cell responses. The breadth of murine T(CD8+ T cell) responses to recall tumor-associated antigen. J. Immunol. 175: 3534–3541.

1. Lee, S. W., Y. Park, A. Song, H. Cheroutre, B. S. Kwon, and M. Croft. 2006. Functional dichotomy between OX40 and 4-IBB in modulating effecter CD8 T cell responses. J. Immunol. 177: 4464–4472.

2. Bansal-Pakala, P., B. S. Halteman, M. H. Cheng, and M. Croft. 2004. Costimulation of CD8 T cell responses by OX40. J. Immunol. 172: 4821–4825.

3. Haring, J. S., V. P. Badovinac, and J. T. Harty. 2006. Inflaming the CD8+ T cell response. Immunology 25: 19–29.

4. Kundig, T. M., A. Shahinian, K. Kawai, H. W. Mittrucker, E. Sebzda, M. F. Bachmann, T. Mak, and P. S. Ohashi. 1997. Distinct roles for LFA-1 and CD8 during activation of naive T cells: adhesion versus costimulation. Immunity 7: 549–557.

5. Kopf, M., C. Ruedel, N. Schmitt, A. Gallimore, K. Lefrang, B. Ecbart, B. Odermatt, and M. F. Bachmann. 1999. OX40-deficient mice are defective in T cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 9: 699–708.

6. Humphreys, I. R., A. Loevendork, C. de Trez, K. Schneider, C. A. Benedict, M. W. Munks, C. F. Ware, and M. Croft. 2007. OX40 costimulation promotes persistence of cytomegalovirus-specific CD8 T cells: a CD4-dependent mechanism. J. Immunol. 179: 2195–2202.

7. Smith, G. L., and G. McFadden. 2002. Smallpox: anything to declare? J. Infect. Dis. 285: 521–527.

8. Amanna, I. J., M. K. Slifka, and S. Crotty. 2006. Immunity and immunological memory following smallpox vaccination. J. Immunol. Rev. 211: 320–337.

9. Amanna, I. J., R. P. Nigam, K. Dhamra, J. Liu, and V. Bostik. 2004. Long-lived poxvirus immunity, robust CD4 help, and better persistence of CD8 than CD4 T cells. J. Virol. 78: 3811–3816.

10. Harrington, L. E., R. Most, R. L. Whitton, and R. Ahmed. 2002. Recombinant vaccinia virus-induced T-cell immunity: quantitation of the response to the virus vector and the foreign epitope. J. Virol. 76: 3329–3337.

11. Xu, R., A. A. Johnson, D. Liggitt, and M. J. Bevan. 2004. Cellular and humoral immunity against vaccinia virus infection of mice. J. Immunol. 172: 6265–6271.

12. Tschirke, D. C., G. Karupiah, J. Zhou, T. Palfrene, J. K. Prenfell, S. Williams, J. Sidney, A. Sette, J. B. Reennink, and J. W. Yewdell. 2005. Identification of cross-reactive CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J. Exp. Med. 201: 95–104.

13. Moutafi, M., B. Peters, V. Pasquetto, D. C. Tschirke, J. Sidney, H. H. Bui, H. Grey, and A. Sette. 2006. A consensus epitope prediction approach identifies the breadth of murine TCD8+ T-cell responses to vaccinia virus. Nat. Biotechnol. 24: 817–819.

14. Davies, D. H., M. M. McIcasland, C. Valdez, D. Huyhn, J. E. Hernandez, Y. Mu, S. Birs, L. Villarreal, P. L. Felgner, and S. Crotty. 2005. Vaccinia virus E3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J. Virol. 79: 11724–11733.

15. Amanna, I. J., S. J. Gork, B. S. Halteman, A. G. Jember, H. Akiba, H. Yagita, and M. Croft. 2003. OX40(CD134) controls memory T helper 2 cells that drive lung inflammation. J. Exp. Med. 198: 315–324.

16. Salek-Ardakani, S., T. So, B. S. Halteman, A. Altman, and M. Croft. 2004. Differential regulation of Th2 and Th1 lung inflammatory responses by protein kinase Cδ. J. Immunol. 173: 6440–6447.

17. Williamson, J. D., R. W. Reith, L. J. Jeffrey, J. R. Arrand, and M. Mackett. 1990. Biological characterization of recombinant vaccinia viruses in mice infected by the respiratory route. J. Gen. Virol. 71: 2761–2767.
32. Belyakov, I. M., P. Earl, A. Dzutsev, V. A. Kaznetsov, M. Lemon, L. S. Wyatt, J. T. Snyder, J. D. Ahlers, G. Franchini, B. Moss, and J. A. Berzofsky. 2003. Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc. Natl. Acad. Sci. USA 100: 9458–9463.

33. Snyder, J. T., I. M. Belyakov, A. Dzutsev, F. Lemonnier, and J. A. Berzofsky. 2004. Protection against lethal vaccinia virus challenge in HLA-A2 transgenic mice by immunization with a single CD8+ T-cell peptide epitope of vaccinia and variola viruses. J. Virol. 78: 7052–7060.

34. Hendriks, J., Y. Xiao, J. W. Rossen, K. F. van der Sluijs, K. Sugamura, N. Ishii, and J. Borst. 2005. During viral infection of the respiratory tract, CD27, 4-1BB, and OX40 collectively determine formation of CD8+ memory T cells and their capacity for secondary expansion. J. Immunol. 175: 1665–1676.

35. Song, J. T., S. Salek-Ardakani, P. R. Rogers, M. Cheng, L. Van Parijs, and M. Croft. 2004. The costimulation-regulated duration of PKB activation controls T cell longevity. Nat. Immunol. 5: 150–158.

36. Wyatt, L. S., P. L. Earl, L. A. Eller, and B. Moss. 2004. Highly attenuated smallpox vaccine protects mice with and without immune deficiencies against pathogenic vaccinia virus challenge. Proc. Natl. Acad. Sci. USA 101: 4590–4595.