Iterated matched products of finite braces and simplicity; new solutions of the Yang-Baxter equation\(^*\)

D. Bachiller F. Cedó E. Jespers J. Okniński

Abstract

Braces were introduced by Rump as a promising tool in the study of the set-theoretic solutions of the Yang-Baxter equation. It has been recently proved that, given a left brace \(B\), one can construct explicitly all the non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation such that the associated permutation group is isomorphic, as a left brace, to \(B\). It is hence of fundamental importance to describe all simple objects in the class of finite left braces. In this paper we focus on the matched product decompositions of an arbitrary finite left brace. This is used to construct new families of finite simple left braces.

1 Introduction

Braces were introduced by Rump [31] to study a class of solutions of the Yang-Baxter equation, a fundamental equation in mathematical physics that has become, since its origin in a paper of Yang [40], a key ingredient in quantum groups and Hopf algebras [27]. The primary aim of this paper is to present new general constructions of finite braces, with the main focus on constructing finite simple braces. The latter is the key step in the challenging problem of a classification of finite simple braces. Our approach is based on the notion of iterated matched product of braces, which turns out to be an indispensable tool in this context.

Recall that a solution of the quantum Yang-Baxter equation is a linear map \(R: V \otimes V \to V \otimes V\), for a vector space \(V\), such that

\[
R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12},
\]

\((1)\)

\(^*\)The two first-named authors were partially supported by the grants DGI MICINN MTM2011-28992-C02-01, and MINECO MTM2014-53644-P. The third author is supported in part by Onderzoeksraad of Vrije Universiteit Brussel and Fonds voor Wetenschappelijk Onderzoek (Belgium). The fourth author is supported by the National Science Centre grant 2013/09/B/ST1/04408 (Poland).

2010 MSC: Primary 16T25, 20E22, 20F16.

Keywords: Yang-Baxter equation, set-theoretic solution, brace, simple, matched product.
where \mathcal{R}_{ij} denotes the map $V \otimes V \otimes V \to V \otimes V \otimes V$ acting as \mathcal{R} on the (i,j) tensor factor and as the identity on the remaining factor. A central and difficult open problem is to construct new families of solutions of this equation. An equivalent problem is to find solutions of the Yang-Baxter equation

$$R_{12}R_{23}R_{12} = R_{23}R_{12}R_{23}. \tag{2}$$

In fact, if $\tau: V \otimes V \to V \otimes V$ is the linear map such that $\tau(u \otimes v) = v \otimes u$ for all $u, v \in V$, then it is easy to check that $\mathcal{R}: V \otimes V \to V \otimes V$ is a solution of the quantum Yang-Baxter equation (1) if and only if $\mathcal{R} = \tau \circ \mathcal{R}$ is a solution of the Yang-Baxter equation (2). In the context of quantum groups and Hopf algebras such solutions are often referred to as R-matrices (see for example [7, 27]). Drinfeld in [16] initiated the investigations of the set-theoretic solutions of the Yang-Baxter equation, these are the maps $r: X \times X \to X \times X$ such that

$$r_{12}r_{23}r_{12} = r_{23}r_{12}r_{23}, \tag{3}$$

where r_{ij} denotes the map $X \times X \times X \to X \times X \times X$ acting as r on the (i,j) components and as the identity on the remaining component. Note that if X is a basis of the vector space V, then every such solution r induces a solution $R: V \otimes V \to V \otimes V$ of the Yang-Baxter equation (2).

Gateva-Ivanova and Van den Bergh [21], and Etingof, Schedler and Soloviev [17] introduced a subclass of the set-theoretic solutions, the non-degenerate involutive solutions. Recall that a set-theoretic solution $r: X \times X \to X \times X$ of the Yang-Baxter equation (3), written in the form $r(x, y) = (f_x(y), g_y(x))$ for $x, y \in X$, is involutive if $r^2 = \text{id}_X$, and it is non-degenerate if f_x and g_x are bijective maps from X to X, for all $x \in X$. This class of solutions has received a lot of attention in recent years, see for example [8, 9, 12, 13, 14, 17, 18, 19, 20, 21, 25, 26, 29, 31, 39]. Braces were introduced to study this type of solutions. Recall that a left brace is a set B with two operations, $+$ and \cdot, such that $(B, +)$ is an abelian group, (B, \cdot) is a group and

$$a \cdot (b + c) + a = a \cdot b + a \cdot c, \tag{4}$$

for all $a, b, c \in B$. A right brace is defined similarly, but replacing property (4) by $(b + c) \cdot a + a = b \cdot a + c \cdot a$. If B is both a left and a right brace (for the same operations), then one says that B is a two-sided brace. Rump initiated the study of this new algebraic structure, though, using another but equivalent definition [30, 31, 32, 33, 34, 35, 36]. In particular, he noted that the structure group $G(X, r)$ of a non-degenerate, involutive set-theoretic solution (X, r) of the Yang-Baxter equation (solution of the YBE for short) admits a natural structure of left brace, such that its additive group is the free abelian group with basis X and $xy - x = f_x(y)$ for all $x, y \in X$. The structure group $G(X, r)$ was introduced and studied in [17, 21] and it is defined as the group with the following presentation

$$G(X, r) = \langle X \mid xy = f_x(y)g_y(x) \text{ for all } x, y \in X \rangle.$$
Another important group associated to a solution \((X, r)\) of the YBE is its permutation group \(G(X, r)\), which is the subgroup of the symmetric group \(\text{Sym}_X\) on \(X\) generated by \(\{f_x \mid x \in X\}\). The map \(x \mapsto f_x\) extends to a group epimorphism \(\phi: G(X, r) \rightarrow G(X, r)\) with kernel \(\text{Ker}(\phi) = \{a \in G(X, r) \mid ab = a + b\} \) for all \(b \in G(X, r)\). The group \(G(X, r)\) inherits a natural left brace structure so that \(\phi\) becomes a homomorphism of left braces.

Some important open problems have been solved in [13] using braces. Several aspects of the theory of braces and their applications in the context of the Yang-Baxter equation have been recently considered in [22, 37] and [11]. It is known that every finite left brace is isomorphic to \(G(X, r)\) (as left braces) for some finite solution \((X, r)\) of the YBE ([13, Theorem 2]). Thus, by [17, Theorem 2.15], the multiplicative group of every finite left brace is solvable. But not all finite solvable groups are isomorphic to the multiplicative group of any left brace [2]. In fact, there exist finite \(p\)-groups that are not isomorphic to the multiplicative group of any left brace. Given a left brace \(B\), in [4] a method is given to construct explicitly all the solutions \((X, r)\) of the YBE such that \(G(X, r) \cong B\) as left braces. Therefore, the problem of constructing all the solutions of the YBE is reduced to describing all left braces. The challenging problem of classifying all finite left braces naturally splits into two parts:

(a) Classify the simple objects in the class of finite left braces.

(b) Develop an appropriate theory of extensions of left braces.

Note that, by [13, Corollary II.6.12], a version of Jordan-Hölder theorem holds for finite left braces; emphasizing the importance of simple left braces.

Recall that an ideal of a left brace \(B\) is a normal subgroup \(I\) of its multiplicative group such that \(\lambda_b(a) \in I\) for all \(a \in I\) and \(b \in B\), where \(\lambda_b\) is the automorphism of \((B, +)\) defined by \(\lambda_b(c) = bc - b\), for all \(b, c \in B\). For example, the socle \(\text{Soc}(B) = \{b \in B \mid \lambda_b = \text{id}\}\) is an ideal of \(B\). A left brace \(B\) is said to be simple if it is nonzero and \(\{0\}\) and \(B\) are the only ideals of \(B\). Recall that a left brace is said to be trivial if its multiplication coincides with its addition. The socle of an arbitrary left brace \(B\) is a trivial brace. It is known that every simple left brace of prime power order \(p^n\) is a trivial brace of cardinality \(p\) [31, Corollary on page 166]. Until recently, these were the only known examples of finite simple left braces. The first finite nontrivial simple left braces have been constructed in [3, Theorem 6.3 and Section 7]; the additive groups of which are isomorphic to \(\mathbb{Z}/(p_1) \times (\mathbb{Z}/(p_2))^{k(p_1 - 1) + 1}\), where \(p_1, p_2\) are primes such that \(p_2 \mid p_1 - 1\) and \(k\) is a positive integer. We shall give a much larger class of examples based on the construction of matched products of braces, which is introduced in [3] as a natural extension of the matched product (or bicrossed product) of groups [27]. Note that matched products of groups also appear in the context of solutions of the YBE, see for example the survey of Takeuchi [38] and [22].

Every left brace \(B\) admits a left action \(\lambda: (B, \cdot) \rightarrow \text{Aut}(B, +)\) defined by \(\lambda(b) = \lambda_b\) for all \(b \in B\) (see [13, Lemma 1]). It is called the lambda map of the
left brace B. Recall that, given the lambda map of a left brace B, each of the
structures (B, \cdot) and $(B, +)$ determines the other one uniquely.

Lambda maps are used to define the matched products of left braces.

Definition 1.1 Let G and H be two left braces. Let $\alpha : (H, \cdot) \rightarrow \text{Aut}(G, +)$ and $\beta : (G, \cdot) \rightarrow \text{Aut}(H, +)$ be group homomorphisms. One says that (G, H, α, β) is a matched pair of left braces if the following conditions hold:

1. (MP1) $\lambda^{(1)}_a \circ \alpha_b = \alpha_{\beta^{-1}_a(b)} \circ \lambda^{(1)}_{\beta^{-1}_a(b)}(a)$,
2. (MP2) $\lambda^{(2)}_b \circ \beta_a = \beta_{\alpha^{-1}_b(a)} \circ \lambda^{(2)}_{\alpha^{-1}_b(a)}(b)$,

where $\alpha(b) = \alpha_b$ and $\beta(a) = \beta_a$, for all $a \in G$ and $b \in H$, with $\lambda^{(1)}$ and $\lambda^{(2)}$ denoting the lambda maps of the left braces G and H, respectively.

Let (G, H, α, β) be a matched pair of left braces. Then by [3] Theorem 4.2, $G \times H$ is a left brace with addition

$$(a, b) + (a', b') = (a + a', b + b'),$$

and with lambda map given by

$$\lambda_{(a,b)}(a', b') = \left(\alpha_b \lambda^{(1)}_{\alpha^{-1}_b(a)}(a'), \beta_a \lambda^{(2)}_{\beta^{-1}_a(b)}(b')\right).$$

Definition 1.2 Let (G, H, α, β) be a matched pair of left braces. The left brace defined as above is called the matched product of G and H. We simply denote it by $G \bowtie H$.

Note that, if β is trivial, then we get a semidirect product $G \times H$ of left braces, considered in [34] and [13, Section 6], and then G is an ideal of $G \bowtie H$, and if additionally α is trivial then we get the direct product $G \times H$ of left braces.

Of course, if (G, H, α, β) is a matched pair of left braces then so is (H, G, β, α). Furthermore, it easily is verified that the map $G \bowtie H \rightarrow H \bowtie G$ defined by $(a, b) \mapsto (b, a)$ is an isomorphism of left braces.

Recall that a left ideal of a left brace B is a subgroup S of its multiplicative group such that $\lambda_b(a) \in S$ for all $a \in S$ and all $b \in B$. Note that for every $b, a \in S$ we have $b - a = \lambda_a^{-1}(b)$. Thus, in particular, S is a left subbrace of B. If $G \bowtie H$ is a matched product of left braces, then $G \times \{0\}$ and $\{0\} \times H$ are left ideals of $G \bowtie H$. Conversely, it is not difficult to see (use for example Lemma 2 in [13] to verify conditions (MP1) and (MP2)) that if B is a left brace and B_1, B_2 are two left ideals of B such that $(B, +)$ is the inner direct sum of $(B_1, +)$ and $(B_2, +)$, then $(B_1, B_2, \alpha, \beta)$ is a matched pair of left braces, where $\alpha_b(a) = ba - b$ and $\beta_a(b) = ab - a$, for all $a \in B_1$ and $b \in B_2$. Furthermore, the map $\eta : B_1 \bowtie B_2 \rightarrow B$ defined by $\eta(a, b) = a + b$, for all $a \in B_1$ and $b \in B_2$, is an isomorphism of left braces.

Our main starting point is the following observation, contained implicitly in [3] Section 4].
Remark 1.3 Let B be a finite nonzero left brace. Then there exist distinct prime numbers p_1, \ldots, p_k and left braces H_1, \ldots, H_k, with $k \geq 1$, such that $|H_i| = p_i^{n_i}$ and B is an iterated matched product $B = (\ldots (H_1 \bowtie H_2) \bowtie \ldots) \bowtie H_k$ of left braces. Moreover, each H_i is a left ideal of B.

Essentially, the key argument used in the proof is that the Sylow subgroups of $(B, +)$ are left ideals of B. In Section 2 we give a proof of a more general result, Theorem 2.4.

Remark 1.3 explains why one can construct finite left braces using matched products, with braces of prime power order as the building blocks. In particular, all finite simple left braces can be constructed in this way. It is the aim of this paper to construct a large class of simple braces via this method. So we focus on part (a) of the classification problem. Some partial results on the classification of “small” left braces can be found in [11, 28, 32]. Concerning part (b), i.e. developing a theory of extensions of left braces, some preliminary results can be found in [3, 5, 6, 28]. But a general theory is missing.

In Section 2, we study iterated matched products of left braces corresponding to an inner direct sum of left ideals. First we characterize the iterated matched products of left braces that are of this form. Next, we give necessary and sufficient conditions for such a matched product to be simple provided the left ideals are simple left braces.

In Section 3, we first generalize an intriguing construction of Hegedüs [24], developed in the context of regular subgroups of the affine group, that has been recently considered also in [3] and [9]. Next, within this class, we construct iterated matched products of left braces and we give necessary and sufficient conditions on the actions corresponding to these matched products for their simplicity.

In Section 4, we construct concrete examples of simple left braces of the type described in Section 3. We also show how to construct more examples of finite simple left braces using the results of Section 2 and thus indicating that this may be a very rich area to explore. In this context, as mentioned before, it is shown in [37, Theorem 3.1] how to describe for a given left brace B, all solutions of the YBE with associated permutation group isomorphic to B (as a left brace). So the new examples constructed in Section 4 provide new families of solutions of the YBE.

Finally, in Section 5, we state two problems that are fundamental for the program of the classification of finite (simple) left braces and thus a description of all finite solutions of the YBE. The first problem is concerned with the automorphism group of a finite left brace of prime power order. The second problem deals with simplicity of left braces of orders of the form $p^n q^m$, for two primes p, q. In this context, Smoktunowicz in [37] recently proved the following property.

If $|B| = q^k$ with q prime, $(q, k) = 1$, $k \neq 1$ and B is a simple left brace then there exists a prime p such that $q|(p^t - 1)$ for some $1 \leq t$ and $p^t | k$.

So, if B is a simple left brace of order $p^n q^m$ (with p and q different prime
numbers and n, m positive integers) then $p|(q^t - 1)$ and $q|(p^s - 1)$ for some $0 < t \leq m$ and $0 < s \leq n$. We observe that these conditions are not sufficient for simplicity of B.

2 Finite braces as iterated matched products of left ideals and simplicity

In the first part of this section, motivated by Remark [13, Lemma 2], we characterize left braces that are iterated matched products of subbraces that are left ideals. In the second part, we prove a simplicity result that is later used to construct several new families of simple left braces.

Let B be a left brace. Suppose that there exist left ideals B_1, \ldots, B_n of B such that $n \geq 2$ and the additive group of B is the direct sum of the additive groups of the left ideals B_i. Denote by $\lambda^{(i)}$ the lambda map corresponding to B_i, which is the restriction to B_i of the lambda map λ of B. For $1 \leq j < n$, denote by $\lambda^{(1, \ldots, j)}$ the lambda map corresponding to $B_1 + \cdots + B_j$, which is the restriction to $B_1 + \cdots + B_j$ of the lambda map of B. Since $B_1 + \cdots + B_j$ and B_{j+1} are left ideals of B, the maps

$$\alpha^{((1, \ldots, j), j+1)}: (B_1 + \cdots + B_j, \cdot) \rightarrow \text{Aut}(B_{j+1}, +),$$

and

$$\alpha^{(j+1, (1, \ldots, j))}: (B_{j+1}, \cdot) \rightarrow \text{Aut}(B_1 + \cdots + B_j, +)$$

defined by $\alpha^{((1, \ldots, j), j+1)}(x) = \alpha^{((1, \ldots, j), j+1)}_{\lambda^{(1, \ldots, j)}(x)}$ and $\alpha^{(j+1, (1, \ldots, j))}(y) = \alpha^{(j+1, (1, \ldots, j))}_{\lambda^{(1, \ldots, j)}(y)}$.

Therefore $(B_1 + \cdots + B_j, B_{j+1}, \alpha^{(j+1, (1, \ldots, j))}, \alpha^{((1, \ldots, j), j+1)})$ is a matched pair of left braces and, by [13, Theorem 4.2], the map

$$\eta_{1, \ldots, j+1}: (B_1 + \cdots + B_j) \bowtie B_{j+1} \rightarrow B_1 + \cdots + B_{j+1},$$

defined by $\eta_{1, \ldots, j+1}(x, y) = x + y$, is an isomorphism of left braces.

We define the maps $\beta^{((1, \ldots, j), j+1)}: B_1 \times \cdots \times B_j \rightarrow \text{Aut}(B_{j+1}, +)$ and $\beta^{(j+1, (1, \ldots, j))}: B_{j+1} \rightarrow \text{Aut}(B_1 \times \cdots \times B_j, +)$ by

$$\beta^{((1, \ldots, j), j+1)}(a_1, \ldots, a_j) = \beta^{((1, \ldots, j), j+1)}_{(a_1, \ldots, a_j)}(a_j)$$

and

$$\beta^{(j+1, (1, \ldots, j))}(a_{j+1}) = \beta^{(j+1, (1, \ldots, j))}_{(a_1, \ldots, a_j)}(a_{j+1})$$

and
Now we prove equality (ii).

We prove first equality (i).

Let \(a_1, \ldots, a_j \) be a matched pair of left braces. Thus, since \(\beta_j \) is an isomorphism of left braces, for all \(j \in \mathbb{Z} \).

Proof. We will prove the result by induction on \(j \). For \(j = 1 \), the result follows because \(\beta(2,1) = \alpha(2,1) \) and \(\beta(1,2) = \alpha(1,2) \). Suppose that \(j > 1 \) and the result is true for \(j - 1 \). By the induction hypothesis, \(\eta_j \) is an isomorphism of left braces. Thus, since \(\alpha(j,1,(1,\ldots,j)) \) and \(\alpha(j+1,1,(1,\ldots,j)) \) are homomorphisms of groups, we have that \(\beta(j,1,(1,\ldots,j)) \) and \(\beta(j+1,1,(1,\ldots,j)) \) are homomorphisms of groups. Let \(\lambda((1,\ldots,j)) \) be the lambda map of the left brace \((\ldots(B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_j \) corresponding to the matched pair of left braces \((\ldots(B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_{j-1}, B_j, \beta(j,1,(1,\ldots,j-1),\beta(j-1,1,j)) \). Since \(\eta_j \) is an isomorphism of left braces,

\[
\tilde{\lambda}(1,\ldots,j) = \eta_j^{-1} \lambda(1,\ldots,j).
\]

To show that \((\ldots(B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_j, \beta(j,1,(1,\ldots,j)), \beta((1,\ldots,j-1),j) \) is a matched pair of left braces, we should check the following equalities.

(i) \[
\tilde{\lambda}(1,\ldots,j) \circ \beta((j+1,1,(1,\ldots,j)))^{-1}(a_{j+1}) = \beta(j+1,1,(1,\ldots,j)) \circ \lambda(1,\ldots,j)^{-1}(a_{j+1})
\]

(ii) \[
\lambda(j+1) \circ \beta(j+1,1,(1,\ldots,j))^{-1}(a_{j+1}) = \beta(j+1,1,(1,\ldots,j)) \circ \lambda(j+1)^{-1}(a_{j+1})
\]

We prove first equality (i).

\[
\tilde{\lambda}(1,\ldots,j) \circ \beta((j+1,1,(1,\ldots,j)))^{-1}(a_{j+1}) = \eta_j^{-1} \circ \lambda(1,\ldots,j)^{-1}(a_{j+1}) \circ \alpha((1,\ldots,j)) \circ \eta_j
\]

\[
\eta_j^{-1} \circ \lambda(1,\ldots,j)^{-1}(a_{j+1}) \circ \alpha((1,\ldots,j)) \circ \eta_j
\]

\[
\beta((j+1,1,(1,\ldots,j)))^{-1}(a_{j+1}) \circ \lambda(j+1)^{-1}(a_{j+1})
\]

Now we prove equality (ii).
Hence \(((\ldots(B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_j, B_{j+1}, \beta^{(j+1,(1,\ldots,j))}, \beta^{((1,\ldots,j),j+1)}) \) is a matched pair of left braces. Now \(\eta_{j+1} = \eta_{1,\ldots,j+1} \circ (\eta_j \times \text{id}) \). Since clearly \(\eta_{j+1} \) is an isomorphism of the additive groups and \(\eta_{1,\ldots,j+1} \) is an isomorphism of left braces, it is enough to prove that

\[
(\eta_j \times \text{id})(\tilde{\lambda}_{(a_1,\ldots,a_{j+1})}(b_1,\ldots,b_{j+1})) = \lambda_{(a_1,\ldots,a_j,a_{j+1})}(b_1 + \cdots + b_j, b_{j+1}),
\]

where \(\lambda^{((1,\ldots,j),j+1)} \) is the lambda map of the left brace \((B_1 + \cdots + B_j) \bowtie B_{j+1} \).

We have that

\[
(\eta_j \times \text{id})(\tilde{\lambda}_{(a_1,\ldots,a_{j+1})}(b_1,\ldots,b_{j+1}))
= (\eta_j \times \text{id})(\tilde{\alpha}_{a_{j+1}}(1,\ldots,j)\tilde{\lambda}_{(1,\ldots,j)}(\alpha_{a_{j+1}}(1,\ldots,j)-1(a_1,\ldots,a_j))(b_1,\ldots,b_j),
\]

\[
\beta^{((1,\ldots,j),j+1)}\beta^{(j+1,(1,\ldots,j))}(b_{j+1})
= (\eta_j \times \text{id})(\eta_{j}^{-1}(\alpha_{a_{j+1}}(1,\ldots,j))\lambda_{(1,\ldots,j)}(\alpha_{a_{j+1}}(1,\ldots,j)-1(a_1,\ldots,a_j))\eta_{j}(b_1,\ldots,b_j),
\]

\[
\alpha_{a_{j+1}}(1,\ldots,j+1)\lambda_{(1,\ldots,j+1)}(b_{j+1})
= (\alpha_{a_{j+1}}(1,\ldots,j))\lambda_{(1,\ldots,j)}(\alpha_{a_{j+1}}(1,\ldots,j)-1(a_1,\ldots,a_j))(b_1 + \cdots + b_j),
\]

\[
\alpha_{a_{j+1}}(1,\ldots,j+1)\lambda_{(1,\ldots,j+1)}(b_{j+1})
= \lambda^{((1,\ldots,j),j+1)}(b_1 + \cdots + b_j, b_{j+1}).
\]

Therefore the result follows.

Note that with the above notation

\[
\{0\} \times \cdots \times \{0\} \times B_i \times \{0\} \times \cdots \times \{0\}
\]

is a left ideal of \(((\ldots(B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_n \). This motivates the following definition.

Definition 2.2 Let \(B_1, \ldots, B_n \) be left braces. We say that an iterated matched product of left braces \(((\ldots(B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_n \) is an iterated matched product of left ideals if each \(\{0\} \times \cdots \times \{0\} \times B_i \times \{0\} \times \cdots \times \{0\} \) is a left ideal of it.

Note that if \(B = ((\ldots(B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_n \) is an iterated matched product of left ideals and \(\sigma \in \text{Sym}_n \), by Proposition \([2,1]\) we know that \(B \) is isomorphic to \(((\ldots(C_{\sigma(1)} \bowtie C_{\sigma(2)}) \bowtie \ldots) \bowtie C_{\sigma(n)} \), where \(C_i = \{0\} \times \cdots \times \{0\} \times B_i \times \{0\} \times \cdots \times \{0\} \) is a left ideal of \(B \). Hence, in an iterated matched product \(((\ldots(B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_n \) of left ideals the order of the factors is irrelevant and this allows us to write it simply as \(B_1 \bowtie B_2 \bowtie \ldots \bowtie B_n \).

As mentioned before, if \(B_1 \bowtie B_2 \) is matched product of two left braces \(B_1 \) and \(B_2 \), then it easily is verified that both factors are left ideals. However, the
following example shows that a factor of an arbitrary iterated matched product is not necessarily a left ideal of the left brace. It shows, in particular, that not every iterated matched product of left braces is a matched product with the defining factors as left ideals.

Example 2.3 Let \(A = \mathbb{Z}/(p) \), where \(p \) is a prime. Then \(A \) is a trivial brace. Consider the trivial brace \(A \times A \) and the maps \(\alpha: (A, +) \rightarrow \text{Aut}(A \times A, +) \), defined by \(\alpha(a) = a \) and \(\alpha(a, c) = (b + ac, c) \) (here \(ac \) is the multiplication in the field \(\mathbb{Z}/(p) \)). Clearly \(\alpha \) is a homomorphism of groups. The semidirect product \((A \times A) \rtimes A \) with respect to \(\alpha \) is a left brace with the sum defined componentwise. This is a particular case of matched product of left braces. The direct product \(A \times A \) is also a particular case of matched product of left braces. But \(\{0\} \times A \times \{0\} \) is not a left ideal of \((A \times A) \rtimes A \), in fact \(\lambda_{(0,0,1)}(0, 1, 0) = (a_1(0, 1, 0)) = (1, 1, 0) \).

We often will use the following useful formula, valid in any left brace \(B \).

\[
b_1 + \cdots + b_s = (b_1 + \cdots + b_{s-1})\lambda^{-1}_{b_1, b_2, \ldots, b_s-1}(b_s) = (b_1 + \cdots + b_{s-2})\lambda^{-1}_{b_1, b_2, \ldots, b_s-2}(b_{s-1})\lambda^{-1}_{b_1, \ldots, b_s-1}(b_s) = \cdots = b_1\lambda^{-1}_{b_1, b_2, \ldots, b_{s-1}}(b_3) \cdots \lambda^{-1}_{b_1, \ldots, b_{s-1}}(b_s),
\]

for any \(s \geq 1 \) and \(b_i \in B, i = 1, \ldots, s \).

Theorem 2.4 Let \(B_1, \ldots, B_n \) be left braces with \(n \geq 2 \). An iterated matched product \(B = (\ldots (B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_n \) of left braces is an iterated matched product of left ideals if and only if there exist homomorphisms of groups \(\alpha_{i,j} : (B_j, \cdot) \rightarrow \text{Aut}(B_i, +) \)

satisfying the following conditions:

(1M1) \(\lambda^{(i)}_a \circ \alpha^{(j,i)}_{(a,j), i-1}(b) = \alpha^{(j,i)}_{(a,j), i-1}(b) \circ \lambda^{(i)}_{(a,j), i-1}(a) \) and

(1M2) \(\alpha^{(k,i)}_c \circ \alpha^{(j,i)}_{(a,k), i-1}(b) = \alpha^{(j,i)}_{(a,k), i-1}(b) \circ \alpha^{(k,i)}_{(a,k), i-1}(c) \),

for all \(a \in B_i, b \in B_j, c \in B_k, i, j, k \in \{1, 2, \ldots, n\}, j \neq i, k \neq i \) and \(k \neq j \), where \(\lambda^{(i)} \) is the lambda map of the left brace \(B_i \) and \(\alpha^{(i,j)}(a) = \alpha^{(i,j)}(a) \) and furthermore \((\ldots (B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_{j+1} \) is the matched product corresponding to the matched pair of left braces

\[
((\ldots (B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_{j+1}, \alpha^{(j+1,1, \ldots, j+1)}, \alpha^{(1, \ldots, j+1)}),
\]

where

\[
\alpha^{(1, \ldots, j+1)}_{(a_1, \ldots, a_j)} = \alpha^{(2, \ldots, j+1)}_{(a_1, \ldots, a_j)} \alpha^{(3, \ldots, j+1)}_{(a_1, a_2, \ldots, a_j)} \cdots \alpha^{(j+1,1, \ldots, j+1)}_{(a_1, \ldots, a_j)},
\]

\[
\alpha^{(j+1,1, \ldots, j+1)}_{a_{j+1}}(a_1, \ldots, a_j) = (\alpha^{(j+1,1, \ldots, j+1)}_{a_{j+1}}(a_1), \ldots, \alpha^{(j+1,1, \ldots, j+1)}_{a_{j+1}}(a_j)).
\]
We shall prove by induction on n. Suppose that $n > 1$ and that $\{0\} \times \cdots \times \{0\} \times B_k \times \{0\} \times \cdots \times \{0\}$ is a left ideal of B by induction on n. For $n = 2$, the result follows by [3] Theorem 4.2. Suppose that $n > 2$ and that $\{0\} \times \cdots \times \{0\} \times B_i \times \{0\} \times \cdots \times \{0\}$ is a left ideal of $((\ldots (B_1 \bowtie B_2) \bowtie \ldots)) \bowtie B_{n-1}$ for all $i = 1, \ldots, n-1$. Let $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in B_1 \times \cdots \times B_n$. We have that

$$\lambda_{(a_1, \ldots, a_n)}^{(1, \ldots, n)}(0, \ldots, 0, b_n) = (0, \ldots, 0, \lambda_{(a_1, \ldots, a_n)}^{(1, \ldots, n-1)} n) \lambda_{(a_1, \ldots, a_n)}^{(n)}(b_n)$$

and for $i < n$

$$\lambda_{(a_1, \ldots, a_n)}^{(1, \ldots, n)}(0, \ldots, 0, b_i, 0, \ldots, 0) = \left(\alpha_{a_n}^{n,(1, \ldots, n-1)}(\lambda_{(a_1, \ldots, a_n)}^{(1, \ldots, n-1)} b_n)^{-1}(a_1, \ldots, a_n-1)(0, \ldots, 0, b_i, 0, \ldots, 0), 0\right).$$

By induction hypothesis, there exists $c_i \in B_i$, such that

$$\lambda_{(a_1, \ldots, a_n)}^{(1, \ldots, n-1)}(0, \ldots, 0, b_i, 0, \ldots, 0) = (0, \ldots, 0, c_i, 0, \ldots, 0).$$

Hence

$$\lambda_{(a_1, \ldots, a_n)}^{(1, \ldots, n)}(0, \ldots, 0, b_i, 0, \ldots, 0) = \lambda_{(a_1, \ldots, a_n)}^{n,(1, \ldots, n-1)}(0, \ldots, 0, c_i, 0, \ldots, 0, 0) = \left(0, \ldots, 0, \alpha_{a_n}^{n,i}(c_i), 0, \ldots, 0, 0\right) \text{ (by } (7)\right).$$

Thus $\{0\} \times \cdots \times \{0\} \times B_k \times \{0\} \times \cdots \times \{0\}$ is a left ideal of B for every $k = 1, \ldots, n$. Therefore $B = (\ldots (B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_n$ is an iterated matched product of left ideals.

Suppose now that $B = (\ldots (B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_n$ is an iterated matched product of left ideals. Let π_k be the natural projection $\pi_k : B_1 \times \cdots \times B_n \to B_k$. We define

$$\alpha_{a_j}^{i,j}(a_i) = \pi_j \lambda_{(0, \ldots, 0, a_i, 0, \ldots, 0)}^{(1, \ldots, n)}(0, \ldots, 0, a_i, 0, \ldots, 0),$$

for all $a_i \in B_i$, $a_j \in B_j$, $i, j \in \{1, 2, \ldots, n\}$ and $i \neq j$. Note that, since $\{0\} \times \cdots \times \{0\} \times B_i \times \{0\} \times \cdots \times \{0\}$ is a left ideal of B, we have that

$$\lambda_{(0, \ldots, 0, a_i, 0, \ldots, 0)}^{(1, \ldots, n)}(0, \ldots, 0, a_i, 0, \ldots, 0, 0) = (0, \ldots, 0, \alpha_{a_i}^{i,j}(a_i), 0, \ldots, 0).$$

Now it is clear that $\alpha_{a_j}^{i,j} \in \text{Aut}(B_i, +)$ and

$$(\alpha_{a_j}^{i,j})^{-1}(a_i) = \pi_i \left(\lambda_{(0, \ldots, 0, a_i, 0, \ldots, 0)}^{(1, \ldots, n)}(0, \ldots, 0, a_i, 0, \ldots, 0, 0)^{-1}\right) = \left(0, \ldots, 0, \alpha_{a_j}^{i,j}(a_i), 0, \ldots, 0\right).$$

We shall prove by induction on n that

$$\lambda_{(0, \ldots, 0, a_i, 0, \ldots, 0)}^{(1, \ldots, n)}(0, \ldots, 0, b_i, 0, \ldots, 0) = (0, \ldots, 0, \lambda_{a_i}^{(i)}(b_i), 0, \ldots, 0).$$
for all \(a_i, b_i \in B_i\) and \(i = 1, \ldots, n\). For \(n = 2\), this follows easily by the definition of \(\lambda^{(1,2)}\). Suppose that \(n > 2\) and that

\[
\lambda^{(1,\ldots,n-1)}_{(0,0,0,a_i,0,\ldots,0)}(0,\ldots,0,b_1,0,\ldots,0) = (0,\ldots,0,\lambda^{(i)}_{a_i}(b_1),0,\ldots,0),
\]

for all \(a_i, b_i \in B_i\) and \(i = 1, \ldots, n - 1\). Suppose that \(i < n\). In this case

\[
\begin{align*}
\lambda^{(1,\ldots,n)}_{(0,0,0,a_i,0,\ldots,0,0)} & = \lambda^{(1,\ldots,n-1)}_{(0,0,0,a_i,0,\ldots,0)}(0,\ldots,0,b_1,0,\ldots,0) \\
& = (0,\ldots,0,\lambda^{(i)}_{a_i}(b_1),0,\ldots,0) \\
& = ((0,\ldots,0,0,\lambda^{(i)}_{a_i}(b_1),0,\ldots,0,0).
\end{align*}
\]

For \(i = n\) we have

\[
\lambda^{(1,\ldots,n)}_{(0,0,0,0,0,\ldots,0)}(0,\ldots,0,b_n) = (0,\ldots,0,\lambda^{(n)}_{a_n}(b_n)).
\]

Note that

\[
(0,\ldots,0,a_i,0,\ldots,0)(0,\ldots,0,b_i,0,\ldots,0) \\
= (0,\ldots,0,a_i,0,\ldots,0) + \lambda^{(1,\ldots,n)}_{(0,0,0,a_i,0,\ldots,0)}(0,\ldots,0,b_i,0,\ldots,0) \\
= (0,\ldots,0,a_i + \lambda^{(i)}_{a_i}(b_i),0,\ldots,0) \\
= (0,\ldots,0,a_i b_i,0,\ldots,0).
\]

Hence

\[
\lambda^{(1,\ldots,n)}_{(0,0,0,a_i,0,\ldots,0,0)} = \lambda^{(1,\ldots,n)}_{(0,0,0,a_i,0,\ldots,0,0)} \lambda^{(1,\ldots,n)}_{(0,0,0,0,0,\ldots,0)}.
\]

Therefore we get that \(\alpha^{(j,i)}_{a_i b_i} = \alpha^{(j,i)}_{a_i} \alpha^{(j,i)}_{b_i}\). Hence the map \(\alpha^{(j,i)} : (B_j, \cdot) \rightarrow \text{Aut}(B_j, +)\), defined by \(\alpha^{(j,i)}(a) = \alpha^{(j,i)}_a\), is a homomorphism of groups. Now we shall check condition (IM1). Note that

\[
(0,\ldots,0,0,\lambda^{(i)}_{a_i} \alpha^{(j,i)}_{(a^{(i,j)}_{a_i})^{-1}(a_j)}(b_1),0,\ldots,0) \\
= \lambda^{(1,\ldots,n)}_{(0,0,0,0,0,\ldots,0)}(0,\ldots,0,a^{(j,i)}_{(a^{(i,j)}_{a_i})^{-1}(a_j)}(b_1),0,\ldots,0) \\
= \lambda^{(1,\ldots,n)}_{(0,0,0,0,0,\ldots,0)}(0,\ldots,0,(a^{(i,j)}_{a_i})^{-1}(a_j),0,\ldots,0) \\
= \lambda^{(1,\ldots,n)}_{(0,0,0,0,0,\ldots,0)}(0,\ldots,0,0,\ldots,0,0,\ldots,0) \\
= \lambda^{(1,\ldots,n)}_{(0,0,0,0,0,\ldots,0)}(0,\ldots,0,0,\ldots,0,0,\ldots,0) \\
= \lambda^{(1,\ldots,n)}_{(0,0,0,0,0,\ldots,0)}(0,\ldots,0,0,\ldots,0,0,\ldots,0) \\
= (0,\ldots,0,\alpha^{(j,i)}_{a_i} \lambda^{(j,i)}_{(a^{(i,j)}_{a_i})^{-1}(a_j)}(b_1),0,\ldots,0).
\]
where in the third equality [3] Lemma 2] is used. Hence \(\lambda^{(i)}_{\alpha_{(a_{(a_{j})})}^{-1}}(a_{j}) = \alpha_{(a_{(a_{j})})}^{-1}(a_{j})\) and (IM1) is proved. Similarly one can check that condition (IM2) is satisfied. Before proving (6) we claim that

\[
\lambda^{(1,...,j+1)}_{(a_{1},...,a_{k},0,...,0)}(0,...,0,a_{k+1},0,...,0) = (0,...,0,\alpha^{((1,...,k),k+1)}_{(a_{1},...,a_{k})}(a_{k+1}),0,...,0),
\]

for all \(1 \leq k \leq j < n\). We will prove the claim by induction on \(j\). For \(j = 1\), we have

\[
\lambda^{(1,2)}_{(a_{1},a_{0})}(0,a_{2}) = (0,\alpha^{(1,2)}_{a_{1}}(a_{2})),
\]

by the definition of \(\lambda^{(1,2)}\). Suppose that \(j > 1\) and that the claim is true for \(j - 1\). For \(k = j\) we have that

\[
\lambda^{(1,...,j+1)}_{(a_{1},...,a_{j},0)}(0,...,0,a_{j+1}) = (0,...,0,\alpha^{((1,...,j),j+1)}_{(a_{1},...,a_{j})}(a_{j+1})),
\]

by the definition of \(\lambda^{(1,...,j+1)}\). For \(k < j\) we have

\[
\begin{align*}
\lambda^{(1,...,j+1)}_{(a_{1},...,a_{k},0,...,0)}(0,...,0,a_{k+1},0,...,0) &= \lambda^{(1,...,j)}_{(a_{1},...,a_{k},0,...,0)}(0,...,0,a_{k+1},0,...,0,0) \\
&= (0,...,0,\alpha^{((1,...,k),k+1)}_{(a_{1},...,a_{k})}(a_{k+1}),0,...,0),
\end{align*}
\]

where the first equality is by the definition of \(\lambda^{(1,...,j+1)}\), and the second is by induction hypothesis. Hence the claim follows. Now we will prove condition (6). We have

\[
\begin{align*}
(0,...,0,\alpha^{((1,...,j),j+1)}_{(a_{1},...,a_{j})}(a_{j+1})) &= \lambda^{(1,...,j+1)}_{(a_{1},...,a_{j},0)}(0,...,0,a_{j+1}) \\
&= \lambda^{(1,...,j+1)}_{(a_{1},0,...,0)}(\lambda^{(1,...,j+1)}_{(a_{1},0,...,0)}(0,a_{2},0,...,0)...\lambda^{(1,...,j+1)}_{(a_{1},...,a_{j-1},0,0)}(0,...,0,a_{j},0)) (0,...,0,a_{j+1}) \\
&= \lambda^{(1,...,j+1)}_{(a_{1},0,...,0)}(0,\alpha^{(1,2)}_{a_{1}}(a_{2}),0,...,0)...(0,...,0,\alpha^{((1,...,j-1),j)}_{(a_{1},...,a_{j-1})}(a_{j})) (0,...,0,a_{j+1}) \\
&= \lambda^{(1,...,j+1)}_{(a_{1},0,...,0)}(0,\alpha^{(1,2)}_{a_{1}}(a_{2}),0,...,0)...\lambda^{(1,...,j+1)}_{(a_{1},...,a_{j-1})}(0,...,0,\alpha^{((1,...,j-1),j)}_{(a_{1},...,a_{j-1})}(a_{j})) (0,...,0,a_{j+1}) \\
&= (0,...,0,\alpha^{(1,j+1)}_{a_{1}}\alpha^{(2,j+1)}_{a_{2}}\alpha^{(3,j+1)}_{a_{3}}...\alpha^{(j,j+1)}_{a_{j}}(a_{j+1})),
\end{align*}
\]

where the first equality is by the definition of \(\lambda^{(1,...,j+1)}\), the second follows from [6], the third follows by the claim, the fourth is because of the properties of the lambda maps and the last follows because \(\lambda^{(1,...,j+1)}_{(a_{0},...,a_{i},0,...,0)}(0,...,0,a_{k},0,...,0) = (0,...,0,\alpha^{(i,k)}_{a_{i}}(a_{k}),0,...,0)\) for all \(i \neq k\). Therefore (6) follows. To prove (7),
Hence (7) follows. This finishes the proof of the theorem.

Theorem 2.6

The graph of (nontrivial) actions of \(B \) contains a full (oriented) cycle, i.e. a cycle that contains all vertices.

Note that one can interpret \(B \) as a simple left brace. Then the left brace \(B \) is the direct sum of the additive groups of the left ideals \(B \).

Using the notation of Theorem 2.4, for an iterated matched product of left ideals \(B = (\ldots (B_1 \bowtie B_2) \bowtie \ldots) \bowtie B_n \), it can be checked that the \(i \)-th component of \(\lambda^{(1,\ldots,n)}(b_1, \ldots, b_n) \) is of the form

\[
\alpha_{a_{i_1}}^{(1,i_1)} \alpha_{a_{i_2}}^{(2,i_2)} \cdots \alpha_{a_{i_{j-1}}}^{(j-1,i_{j-1})} \alpha^{(1,i)} \lambda^{(i)} \alpha_{a_i}^{(i-1,i)} \alpha_{a_{i+1}}^{(i+1,i)} \cdots \alpha_{a_n}^{(n,i)} \lambda^{(n)} \alpha_{a_{i_{n-1}}}^{(1,n-1,i_{n-1})} \alpha_{a_{i_{n-1}+1}}^{(n+1,n-1,i_{n-1})} \cdots \alpha_{a_{n-1}}^{(n,i)} \alpha_{a_{n}}^{(n,i)} \alpha_{a_{n+1}}^{(1,n-1,i_{n-1})} \cdots \alpha_{a_{j}}^{(n,i)} \alpha_{a_{j+1}}^{(n,i)} (b_j).
\]

Note that one can interpret \(B_1, \ldots, B_n \) as left ideals of \(B \) such that the additive group of \(B \) is the direct sum of the additive groups of the left ideals \(B_i \). Then \((a_1, \ldots, a_n) \) corresponds to \(a_1 + \cdots + a_n \), the maps \(\alpha \) correspond to some restrictions of the lambda map of \(B \) and formula (8) follows from (5).

In the remainder of this section we focus on simplicity of left braces that are iterated matched products of left ideals.

We will use the following easy but useful result.

Lemma 2.5 *If \(I \) is an ideal of a left brace \(B \), then \((\lambda_B - \text{id})(a) \in I \), for all \(a \in B \) and \(b \in I \).*

Proof. Let \(a \in B \) and \(b \in I \). Then \((\lambda_B - \text{id})(a) = ba - b - a = \lambda_a(a^{-1}ba) - b \in I \), so the assertion follows.

Let \(B \) be an iterated matched product of its left ideals \(B_1, \ldots, B_s \) of relatively prime orders. Consider the oriented graph \(\Gamma(B) = (V, E) \), defined as follows. The set of vertices \(V = \{1, \ldots, s\} \) and \((i, j) \in E\) is an edge if the corresponding map \(\alpha^{(i,j)} : B_i \to \text{Aut}(B_j, +) \) is nontrivial. We call \(\Gamma(B) \) the graph of (nontrivial) actions of \(B \).

Theorem 2.6 *With the above notation and assumptions, assume that every \(B_i \) is a simple left brace. Then the left brace \(B \) is simple if and only if \(\Gamma = \Gamma(B) \) contains a full (oriented) cycle, i.e. a cycle that contains all vertices.*

\[13\]
exists an element a_j \in B_j such that \alpha_b^{(i,j)}(a_j) \neq a_j. Recall that \alpha_{a_i}^{(i,j)}(a_j) = a_ia_j - a_i = \lambda_{a_i}(a_j). So, by Lemma 2.5, 0 \neq \alpha_b^{(i,j)}(a_j) - a_j \in I \cap B_j. It follows that B_j \subseteq I because B_j is a simple left brace. Since \Gamma contains a full cycle, this easily implies that B_k \subseteq I for every k, and consequently I = B.

Conversely, assume that \Gamma contains no full cycle. Then there exists i such that W = \{k \in V : \text{there exists a path in } \Gamma \text{ from } i \text{ to } k \} \neq V. Let I = \sum_{j \in W} B_j. Clearly, I is a left ideal of B. Hence I is \lambda\text{-invariant. We will check that } I \text{ is an ideal of } B. \text{ Then the result follows. Let } b \in B. \text{ Write } b = b_1 + \cdots + b_s, \text{ with } b_i \in B_i. \text{ From (5) we know that } b = c_1 \cdots c_s \text{ for some } c_i \in B_i. \text{ Let } a \in B_j \text{ for } j \in W, \text{ so that } a \in I. \text{ Since } \lambda_c(c^{-1}ac) = \lambda_c(c) - c + a, \text{ we get that } c^{-1}ac = \lambda_c^{-1}(\lambda_c(c) - c + a). \text{ If } c \in B_k \text{ for some } k \notin W \text{ then } \lambda_c(c) = c, \text{ so that } c^{-1}ac = \lambda_c^{-1}(a) \in I. \text{ On the other hand, if } c \in B_k \text{ for some } k \in W, \text{ then } c, a \in I \text{ and thus also } c^{-1}ac \in I.

We know that a = \sum_{j \in W} a_j, \text{ with } a_j \in B_j, j \in W. \text{ Therefore, again by (5), we also have } a = a_{j_1} \cdots a_{j_k}, \text{ where } j_1, \ldots, j_k \in W. \text{ Now } c^{-1}ac = c^{-1}a_{j_1}ac^{-1}a_{j_2}c \cdots c^{-1}a_{j_k}c \in I \text{ for every } c \in B_i \text{ and any } i. \text{ Since } b = c_1 \cdots c_s, \text{ we get that } b^{-1}ab \in I. \text{ Hence, } I \text{ is an ideal of } B \text{ and the result follows.} \]

Notice that the proof of the necessity in the above theorem does not require the hypothesis that \(B_i \) are simple left braces. Hence, the existence of a full oriented cycle in \(\Gamma(B) \) is a necessary condition for \(B \) to be simple.

We shall see in Example 4.3 that the following result provides an effective way for constructing matched products of left braces.

Proposition 2.7 Let \(B_1, \ldots, B_s \) be left braces. Assume that \(\alpha^{(i,j)} : (B_i, +) \rightarrow \text{Aut}(B_j, +) \) are group homomorphisms, for all \(i, j \in \{1, \ldots, s\}, i \neq j \). Assume also that

\[
(i) \quad \alpha_{a_i}^{(i,j)}(a_j) = \alpha_{a_i}^{(i,j)}, \\
(ii) \quad \alpha_{a_j}^{(j,i)}(a_i) = \alpha_{a_j}^{(j,i)}a_{a_i},
\]

for all \(i, j, k \in \{1, \ldots, s\} \) with \(i \neq j \) and \(i \neq k \), where \(a_m \in B_m \) for every \(m \). Then the maps \(\alpha^{(i,j)} \) satisfy conditions (IM1) and (IM2) and defining \(\alpha^{(j+1,1,\ldots,j+1)} \) as in (6) and (7), we get an iterated matched product of left ideals \(B_1 \bowtie \cdots \bowtie B_s \).

14
Proof. It is enough to verify conditions (IM1) and (IM2) stated in Theorem 2.3

\[
\lambda_{a_i}^{(i)} a^{(j,i)}_{ \alpha_{a_i}^{(i,j)}}^{-1}(a_j) (b_i) = \lambda_{a_i}^{(i)} a^{(j,i)}_{ \alpha_{a_i}^{(i,j)}}^{-1}(b_i) = a_i a^{(j,i)}_{ \alpha_{a_i}^{(i,j)}}^{-1}(b_i) = a_i a^{(j,i)}_{ \alpha_{a_i}^{(i,j)}}^{-1}(a_i) b_i - (a_i a^{(j,i)}_{ \alpha_{a_i}^{(i,j)}}^{-1}(a_i)) = a^{(j,i)}_{ \alpha_{a_i}^{(i,j)}}^{-1} (a_i) (b_i),
\]

for \(a_i, b_i \in B_i \) and \(a_j \in B_j \), where \(\lambda^{(i)} \) is the lambda map of \(B_i \). Thus (IM1) follows. Now we verify condition (IM2).

\[
a^{(k,i)}_{ \alpha_{a_k}^{(k,i)}} \circ a^{(j,i)}_{ \alpha_{a_j}^{(j,i)}}^{-1}(a_j) = a^{(k,i)}_{ \alpha_{a_k}^{(k,i)}} \circ a^{(j,i)}_{ \alpha_{a_j}^{(j,i)}} = a^{(k,i)}_{ \alpha_{a_k}^{(k,i)}} \circ a^{(j,i)}_{ \alpha_{a_j}^{(j,i)}}^{-1}(a_k),
\]

for \(a_i \in B_i \), \(a_j \in B_j \) and \(a_k \in B_k \). Thus the result follows.

3 Constructions of simple braces

In this section, we first present a family of left braces with trivial socle, that generalizes the family presented by Hegedűs [24] and Catino and Rizzo in [10]. Then we use it to construct a broad family of simple left braces.

Let \(p \) be a prime number, and let \(r, n \) be positive integers. Assume \(Q \) is a quadratic form over \((\mathbb{Z}/(p^r))^n\) (considered as a free module over the ring \(\mathbb{Z}/(p^r) \)) and suppose \(f \) is an element in the orthogonal group of \(Q \) (that is, an element \(f \in \text{Aut}(\mathbb{Z}/(p^r))^n) \) such that \(Q(f(v)) = Q(v) \) for any \(v \in (\mathbb{Z}/(p^r))^n) \). Assume that \(f \) has order \(p^{r'} \) for some \(0 \leq r' \leq r \). Consider the additive abelian group \(A = (\mathbb{Z}/(p^r))^n+1 \). The elements of \(A \) will be written in the form \((\bar{x}, \mu)\), with \(\bar{x} \in (\mathbb{Z}/(p^r))^n \) and \(\mu \in \mathbb{Z}/(p^r) \). Consider the maps \(\lambda_{(\bar{x}, \mu)} : A \rightarrow A \) defined by

\[
\lambda_{(\bar{x}, \mu)}(\bar{y}, \mu') := (f(q(\bar{x}, \mu))(\bar{y}), \mu' + b(\bar{x}, f(q(\bar{x}, \mu))(\bar{y}))), \tag{9}
\]

for \((\bar{x}, \mu), (\bar{y}, \mu') \in A\), where \(q(\bar{x}, \mu) := \mu - Q(\bar{x}) \), and \(b \) is the bilinear form \(b(\bar{x}, \bar{y}) := Q(\bar{x} + \bar{y}) - Q(\bar{x}) - Q(\bar{y}) \) associated to \(Q \). Note that \(\lambda_{(\bar{x}, \mu)} \) is well-defined since \(q \) takes values in \(\mathbb{Z}/(p^r) \) and \(f \) is of order \(p^{r'} \), for some \(0 \leq r' \leq r \).

Recall that \(Q \) is non-degenerate if and only if the matrix of \(b \) in the standard basis of \((\mathbb{Z}/(p^r))^n\) is invertible.

Theorem 3.1 The abelian group \(A \) has a structure of a left brace with lambda map defined in (9) and with multiplication given by \(a \cdot b = a + \lambda_a(b) \). Moreover, if \(Q \) is non-degenerate, then the socle of this left brace is

\[
\text{Soc}(A) = \{ (\bar{0}, \mu) \mid \mu \in p^{r'} \mathbb{Z}/(p^r) \}.
\]

In particular, if \(r' = r \), then the socle of this left brace is zero.
Proof. Since f is bijective, it is clear that $\lambda(\vec{x}, \mu)$ is bijective. By the definition of $\lambda(\vec{x}, \mu)$, it also is clear that it is an automorphism of the abelian group A.

To prove the first part of the result, by [3, Lemma 2.6], it is enough to check that $\lambda(\vec{x}, \mu)\lambda(\vec{y}, \mu') = \lambda(\vec{x}, \mu) + \lambda(\vec{x}, \mu)(\vec{y}, \mu')$. On one side,

$$
\lambda(\vec{x}, \mu)\lambda(\vec{y}, \mu')(\vec{z}, \eta) = \lambda(\vec{x}, \mu)(f^{q(\vec{y}, \mu')}(\vec{z}), \eta + b(\vec{y}, f^{q(\vec{y}, \mu')}(\vec{z}))) = (f^{q(\vec{x}, \mu)}+q(\vec{y}, \mu')(\vec{z}), \eta + b(\vec{y}, f^{q(\vec{y}, \mu')}(\vec{z}))) + b(\vec{x}, f^{q(\vec{x}, \mu)}+q(\vec{y}, \mu')(\vec{z}))).
$$

(10)

Note that

$$
q((\vec{x}, \mu) + \lambda(\vec{x}, \mu)(\vec{y}, \mu')) = q(\vec{x} + f^{q(\vec{x}, \mu)}(\vec{y}), \mu + \mu' + b(\vec{x}, f^{q(\vec{x}, \mu)}(\vec{y}))) = \mu + \mu' + b(\vec{x}, f^{q(\vec{x}, \mu)}(\vec{y})) - Q(\vec{x} + f^{q(\vec{x}, \mu)}(\vec{y}))) = \mu + \mu' - Q(\vec{x}) - Q(\vec{y}) = q(\vec{x}, \mu) + q(\vec{y}, \mu').
$$

(11)

Hence

$$
q((\vec{x}, \mu) + \lambda(\vec{x}, \mu)(\vec{y}, \mu')) = q(\vec{x}, \mu) + q(\vec{y}, \mu').
$$

On the other side we have

$$
\lambda(\vec{x}, \mu) + \lambda(\vec{x}, \mu)(\vec{y}, \mu')(\vec{z}, \eta) = (f^{q(\vec{x}, \mu)}+f^{q(\vec{y}, \mu')}(\vec{z}), \eta + b(\vec{x}, f^{q(\vec{x}, \mu)}(\vec{y}), f^{q(\vec{y}, \mu')}(\vec{z})))
$$

(11)

$$
= (f^{q(\vec{x}, \mu)}+q(\vec{y}, \mu')(\vec{z}), \eta + b(\vec{x}, f^{q(\vec{x}, \mu)}(\vec{y}), f^{q(\vec{y}, \mu')}(\vec{z}))) + b(\vec{x}, f^{q(\vec{x}, \mu)}+q(\vec{y}, \mu')(\vec{z}))
$$

(11)

$$
= (f^{q(\vec{x}, \mu)}+q(\vec{y}, \mu')(\vec{z}), \eta + b(\vec{y}, f^{q(\vec{y}, \mu')}(\vec{z}))) + b(\vec{x}, f^{q(\vec{x}, \mu)}+q(\vec{y}, \mu')(\vec{z})).
$$

Therefore, by (10), $\lambda(\vec{x}, \mu)\lambda(\vec{y}, \mu') = \lambda(\vec{x}, \mu) + \lambda(\vec{x}, \mu)(\vec{y}, \mu')$, as desired.

To prove the second part of the statement, assume that Q is non-degenerate. Let (\vec{x}, μ) be an element of the socle of the left brace A. Then $f^{q(\vec{x}, \mu)} - id$ and $b(\vec{y}, f^{q(\vec{x}, \mu)}(\vec{x})) = 0$ for all \vec{y}. Since Q is non-degenerate, $\vec{x} = 0$. On the other hand, since $f^{q(\vec{x}, \mu)} = id$ and f has order p^r, we have $\mu = \mu - Q(\vec{x}) = q(\vec{x}, \mu) \in p^rZ/(p^r)$. Therefore, the result follows.

Notation. The left brace described in Theorem 3.1 is denoted by $H(p^r, n, Q, f)$. Let R be a ring. For any matrix A over R, we denote by A^t the transpose of A. Sometimes we identify R^n with the row matrices of length n over R. So, for $x \in R^n$, x^t is the column transpose of the row x.

Now we shall construct iterated matched products of left braces of the form $H(p^r, n, Q, f)$ and, as a consequence, we will give some new constructions of
finite simple left braces. To do so we will make use of the existence of elements C of order p^r in $\text{GL}_n(\mathbb{Z}/(q^s))$ for two different primes p and q. Note that the natural image of C in $\text{GL}_n(\mathbb{Z}/(q))$ also has order p^r and therefore p^r has to divide $(q^n - 1) \cdots (q^s - q^{s-1})$. In particular, $p \mid q^t - 1$ for some $1 \leq t \leq n$. In light of the necessary condition for the existence of finite simple left braces mentioned in the introduction this is a natural assumption which will be implicitly showing up throughout the paper.

We will fix some notation. Let s be an integer greater than 1 and let p_1, p_2, \ldots, p_s be different prime numbers. Introduce p_i to be odd integers $1 \leq i \leq s$, and with the corresponding lambda map defined by

$$
\lambda^{(i)}_{(\vec{x}_i, \mu_i)}(\vec{y}_i, \mu'_i) = (f_i q_i(\vec{x}_i, \mu_i)(\vec{y}_i), \mu'_i + b_i(\vec{x}_i, f_i q_i(\vec{x}_i, \mu_i)(\vec{y}_i))),
$$

(12)

where

- Q_i is a non-degenerate quadratic form over $(\mathbb{Z}/(p_i^{r_i}))^n,$
- f_i is an element of order $p_i^{r_i}$ in the orthogonal group determined by $Q_i,$ for some $0 \leq r_i \leq r_i$,
- $q_i(\vec{x}_i, \mu_i) = \mu_i - Q_i(\vec{x}_i)$ (with $\mu_i \in \mathbb{Z}/(p_i^{r_i}))$,
- $b_i(\vec{x}_i, \vec{y}_i) = Q_i(\vec{x}_i + \vec{y}_i) - Q_i(\vec{x}_i) - Q_i(\vec{y}_i)$.

For $1 \leq i < s$, suppose c_i is an element of order $p_i^{r_i+1}$ in the orthogonal group determined by Q_i, c_s is an element of order $p_s^{r_s}$ of $\text{Aut}((\mathbb{Z}/(p_s^{r_s}))^n)$ and $v_s \in (\mathbb{Z}/(p_s^{r_s}))^n$, such that

$$
Q_s(c_s(\vec{x})) = Q_s(\vec{x}) + v_s \vec{x},
$$

(13)

and

$$
f_i c_i = c_i f_i,
$$

for $1 \leq i \leq s$. For $1 \leq i, j \leq s$, define the maps

$$
\alpha^{(i,j)} : (H_j, \cdot) \rightarrow \text{Aut}(H_i, +) : (\vec{x}_i, \mu_i) \mapsto \alpha^{(j,i)}_{(\vec{x}_i, \mu_i)},
$$

with

$$
\alpha^{(k+1,k)}_{(\vec{x}_k, \mu_k + 1)}(\vec{x}_k, \mu_k) = (c_{k+1} q_k(\vec{x}_{k+1}, \mu_{k+1})(\vec{x}_k), \mu_k),
$$

for $1 \leq k < s,$

$$
\alpha^{(1,s)}_{(\vec{x}_s, \mu_s)}(\vec{x}_s, \mu_s) = (c_{s} q_s(\vec{x}_s, \mu_s)(\vec{x}_s), \mu_s + v_s((\text{id} + c_s + \cdots + c_{s} q_s(\vec{x}_s, \mu_s - 1)(\vec{x}_s))^t),
$$

and $\alpha^{(i,i)}_{(\vec{x}_i, \mu_i)} = \text{id}_{H_i}$ otherwise. It is easy to check that

$$
b_s(c_s(\vec{x}_s), c_s(\vec{y}_s)) = b_s(\vec{x}_s, \vec{y}_s).
$$
Thus, if $p_\xi \neq 2$, then $v_\xi = 0$. Note that $c_\xi^{(k+1,k)}$ is well-defined since q_{k+1} takes values in $\mathbb{Z}/(p_{k+1}^{r_{k+1}})$, and the c_k are of order $p_{k+1}^{r_{k+1}}$. Similarly $c_\xi^{(1,s)}$ is well-defined since q_1 takes values in $\mathbb{Z}/(p_1^{r_1})$, and c_ξ is of order $p_1^{r_1}$. Note also that

$$q_1: (H_1, \cdot) \to (\mathbb{Z}/(p_1^{r_1}), +)$$

is a homomorphism of groups, because

$$(\xi, \nu) \cdot (\xi', \nu') = (\xi, \nu) + \lambda_{(\xi, \nu)}(\xi', \nu')$$

and by (11),

$$q_i((\xi, \nu) + \lambda_{(\xi, \nu)}(\xi', \nu')) = q_i(\xi, \nu) + q_i(\xi', \nu').$$

Therefore, each $\alpha^{(j,i)}$ is a group homomorphism.

Lemma 3.2 With the above notation, for $1 \leq i, j \leq s$ and $(\vec{x}_i, \mu_i) \in H_i$,

$$q_i(\alpha^{(j,i)}_{(\vec{x}_j, \mu_j)}(\vec{x}_i, \mu_i)) = q_i(\vec{x}_i, \mu_i).$$

Proof. Let $(\vec{x}_k, \mu_k) \in H_k$, for $k = 1, \ldots, s$. For $i = 1, \ldots, s - 1$, we have

$$q_i(\alpha^{(i+1,i)}_{(\vec{x}_{i+1}, \mu_{i+1})}(\vec{x}_i, \mu_i)) = q_i(c_i^{q_{i+1}(\vec{x}_{i+1}, \mu_{i+1})}((\vec{x}_i), \mu_i))$$

$$= \mu_i - Q_i(c_i^{q_{i+1}(\vec{x}_{i+1}, \mu_{i+1})}((\vec{x}_i)))$$

$$= \mu_i - Q_i(\vec{x}_i)$$

$$= q_i(\vec{x}_i, \mu_i).$$

On the other hand

$$q_s(\alpha^{(1,s)}_{(\vec{x}_s, \mu_s)}(\vec{x}_s, \mu_s))$$

$$= q_s(c_s^{q_1(\vec{x}_1, \mu_1)}(\vec{x}_s), \mu_s + v_s((\text{id} + c_a + \cdots + c_s^{q_1(\vec{x}_1, \mu_1)} - 1)(\vec{x}_s))^t)$$

$$= \mu_s + v_s((\text{id} + c_a + \cdots + c_s^{q_1(\vec{x}_1, \mu_1)} - 1)(\vec{x}_s))^t - Q_s(c_s^{q_1(\vec{x}_1, \mu_1)}(\vec{x}_s))$$

$$= \mu_s - Q_s(\vec{x}_s)$$

(by (13)),

$$= q_s(\vec{x}_s, \mu_s).$$

Therefore, the result follows.

It follows from the definitions that the map $\alpha^{(j,i)}_{(\vec{x}_j, \mu_j)}$ does not depend directly on the element (\vec{x}_j, μ_j) but just on the value $q_j(\vec{x}_j, \mu_j)$. Therefore Lemma 3.2 leads to the following consequence.

Lemma 3.3 With the above notation, we have

$$\alpha^{(j,i)}_{(\vec{x}_j, \mu_j)} = \alpha^{(j,i)}(\vec{x}_j, \mu_j).$$
Lemma 3.4 With the above notation, we have that $\alpha_{(\bar{x}, \mu)}^{(j,i)} \in \text{Aut}(H_i, +, \cdot)$.

Proof. Since $\alpha_{(\bar{x}, \mu)}^{(j,i)} \in \text{Aut}(H_i, +)$, to prove the result it is enough to show that

$$
\alpha_{(\bar{x}, \mu)}^{(j,i)} \lambda_{(\bar{x}, \mu)}^{(i)}(\bar{y}_i, \mu'_i) = \lambda_{(\bar{x}, \mu)}^{(i)} \alpha_{(\bar{x}, \mu)}^{(j,i)}(\bar{y}_i, \mu'_i).
$$

(14)

For $1 \leq i < s$ we have that

$$
\alpha_{(\bar{x}, \mu)}^{(i+1,i)} \lambda_{(\bar{x}, \mu)}^{(i)}(\bar{y}_i, \mu'_i)
$$

$$
= \alpha_{(\bar{x}, \mu)}^{(i+1,i)} \left(f_i(q_i(\bar{x}, \mu)) (\bar{y}_i), \mu'_i + b_i(\bar{x}, f_i(q_i(\bar{x}, \mu)) (\bar{y}_i)) \right)
$$

$$
= \left(c_i q_i+1(\bar{x}, \mu_{i+1}) f_i(q_i(\bar{x}, \mu)) (\bar{y}_i), \mu'_i + b_i(\bar{x}, f_i(q_i(\bar{x}, \mu)) (\bar{y}_i)) \right),
$$

and

$$
\lambda_{(\bar{x}, \mu)}^{(i,i+1)} \alpha_{(\bar{x}, \mu)}^{(i+1,i)}(\bar{y}_i, \mu'_i)
$$

$$
= \lambda_{(\bar{x}, \mu)}^{(i,i+1)} \alpha_{(\bar{x}, \mu)}^{(i+1,i)}(\bar{y}_i, \mu'_i)
$$

$$
= \left(c_i q_i(\alpha_{(\bar{x}, \mu)}^{(i,i+1)}(\bar{x}, \mu)) f_i(q_i(\alpha_{(\bar{x}, \mu)}^{(i,i+1)}(\bar{x}, \mu))) (\bar{y}_i), \mu'_i \right)
$$

$$
= \left(c_i q_i(\alpha_{(\bar{x}, \mu)}^{(i,i+1)}(\bar{x}, \mu)) f_i(q_i(\alpha_{(\bar{x}, \mu)}^{(i,i+1)}(\bar{x}, \mu))) (\bar{y}_i), \mu'_i \right)
$$

$$
= \left(c_i q_i(\alpha_{(\bar{x}, \mu)}^{(i,i+1)}(\bar{x}, \mu)) f_i(q_i(\alpha_{(\bar{x}, \mu)}^{(i,i+1)}(\bar{x}, \mu))) (\bar{y}_i), \mu'_i \right)
$$

$$
+ b_i(\bar{x}, f_i(q_i(\alpha_{(\bar{x}, \mu)}^{(i,i+1)}(\bar{x}, \mu))) (\bar{y}_i)) \quad \text{(by Lemma 3.2 and because } f_i c_i = c_i f_i)\right).
$$

Hence

$$
\alpha_{(\bar{x}, \mu)}^{(i,i+1)} \lambda_{(\bar{x}, \mu)}^{(i)}(\bar{y}_i, \mu'_i) = \lambda_{(\bar{x}, \mu)}^{(i,i+1)} \alpha_{(\bar{x}, \mu)}^{(i,i+1)}(\bar{y}_i, \mu'_i).
$$

Because $f_s c_s = c_s f_s$ and since f_s is orthogonal with respect to Q_s, using (13),

one easily verifies that $u_s f_s (\bar{y}) = \bar{y}$. Hence, we also have that

$$
\alpha_{(\bar{x}, \mu)}^{(1, s)} \lambda_{(\bar{x}, \mu)}^{(s)}(\bar{y}_s, \mu'_s)
$$

$$
= \lambda_{(\bar{x}, \mu)}^{(1, s)} \left(f_s(q_s(\bar{x}, \mu))(\bar{y}_s), \mu'_s + b_s(\bar{x}, f_s(q_s(\bar{x}, \mu))(\bar{y}_s)) \right)
$$

$$
= \left(c_s q_s(\bar{x}, \mu) f_s(q_s(\bar{x}, \mu))(\bar{y}_s), \mu'_s + b_s(\bar{x}, f_s(q_s(\bar{x}, \mu))(\bar{y}_s)) \right)
$$

$$
+ u_s (\bar{y} + c_s + \cdots + c_s q_s(\bar{x}, \mu)-1) (f_s(q_s(\bar{x}, \mu))(\bar{y}_s))^t)
$$

$$
= \left(c_s q_s(\bar{x}, \mu) f_s(q_s(\bar{x}, \mu))(\bar{y}_s), \mu'_s + b_s(\bar{x}, f_s(q_s(\bar{x}, \mu))(\bar{y}_s)) \right)
$$

$$
+ u_s (\bar{y} + c_s + \cdots + c_s q_s(\bar{x}, \mu)-1) (f_s(q_s(\bar{x}, \mu))(\bar{y}_s))^t) \quad \text{(by (13))}
$$

19
and

\[
\lambda^{(s)}_{\alpha^{(k,s)}_{(\vec{x},\mu_s},\alpha^{(j,s)}_{(\vec{x},\mu_j)}(\vec{y}_s,\mu'_s)
\]
\[
= \lambda^{(s)}_{\alpha^{(1,s)}_{(\vec{x},\mu_s},\alpha^{(1,s)}_{(\vec{x},\mu_1)}(\vec{y}_s,\mu'_s)
\]
\[
+ \nu_s((\text{id} + c_s + \cdots + e_s^{(1,\mu_1)-1})(\vec{y}_s))^t
\]
\[
= (f_q^{(1,\mu)}(\vec{x},\mu_s))c_q^{(1,\mu)}(\vec{x},\mu_s)\alpha^{(1,s)}_{(\vec{x},\mu_s),\alpha^{(1,s)}_{(\vec{x},\mu_1)}(\vec{y}_s,\mu'_s)
\]
\[
+ \nu_s((\text{id} + c_s + \cdots + e_s^{(1,\mu_1)-1})(\vec{y}_s))^t
\]
\[
= (c_q^{(1,\mu)}(\vec{x},\mu_s)\alpha^{(1,s)}_{(\vec{x},\mu_s)})f_q^{(1,\mu)}(\vec{x},\mu_s)(\vec{y}_s,\mu'_s)
\]
\[
+ \nu_s((\text{id} + c_s + \cdots + e_s^{(1,\mu_1)-1})(\vec{y}_s))^t
\]
\[
+ b_s(\vec{x}, f_q^{(1,\mu)}(\vec{x},\mu_s)(\vec{y}_s)) \quad \text{(by Lemma 3.2 and because } f_s c_s = c_s f_s).\]

Hence

\[
\alpha^{(1,s)}_{(\vec{x},\mu_s),\lambda^{(s)}_{\alpha^{(1,s)}_{(\vec{x},\mu_s},\alpha^{(1,s)}_{(\vec{x},\mu_1)}(\vec{y}_s,\mu'_s)
\]
\[
= \lambda^{(s)}_{\alpha^{(1,s)}_{(\vec{x},\mu_s},\alpha^{(1,s)}_{(\vec{x},\mu_1)}(\vec{y}_s,\mu'_s)}
\]

and the result follows.

Lemma 3.5 With the above notation, we have that

\[
\alpha^{(k,i)}_{(\vec{x},\mu_k)} \circ \alpha^{(j,i)}_{(\vec{x},\mu_j)} = \alpha^{(k,i)}_{(\vec{x},\mu_k)} \circ \alpha^{(k,i)}_{(\vec{x},\mu_k)},
\]

for all \(i, j, k \in \{1, 2, \ldots, s\}, j \neq i, k \neq i\) and \(k \neq j\).

Proof. This follows from the definition of the maps \(\alpha^{(j,i)}\) (recall that \(\alpha^{(j,i)} = \text{id}_{H_i}\) if \((j, i) \notin \{(l + 1, l) \mid l = 1, \ldots, s - 1\} \cup \{(s, 1)\}).

By Lemmas 3.3, 3.4 and 3.5 the maps \(\alpha^{(j,i)}\) satisfy the hypothesis of Proposition 2.4. Therefore the maps \(\alpha^{(j,i)},\) with \(1 \leq i, j \leq s,\) define an iterated matched product \(H_1 \bowtie \cdots \bowtie H_s\) of left ideals.

Theorem 3.6 With the above notation, the left brace \(H_1 \bowtie \cdots \bowtie H_s\) is simple if and only if \(c_i - \text{id}\) is an automorphism for all \(1 \leq i \leq s.\)

Proof. Let \(I\) be a nonzero ideal of \(H_1 \bowtie \cdots \bowtie H_s.\) Let \((\vec{x}_1, \mu_1, \ldots, \vec{x}_s, \mu_s) \in I\) be a nonzero element. Suppose that \(\vec{x}_i \neq 0\) for some \(i.\) Since the orders of the left braces \(H_i\) are pairwise coprime, we may assume that \(\vec{x}_k = 0\) and \(\mu_k = 0\) for each \(k \neq i,\) and \(\vec{x}_i \neq 0.\) Note that for \((\vec{y}_j, Q_j(\vec{y}_j)) \in H_j\) we have that \(q_j(\vec{y}_j, Q_j(\vec{y}_j)) = 0,\) for every \(j.\) Hence, by (12)

\[
\lambda^{(i)}_{(\vec{y}, Q_j(\vec{y}))}(\vec{x}_i, \mu_i) = (\vec{x}_i, \mu_i + b_i(\vec{y}_i, \vec{x}_i)).
\]
So, \((\vec{0}, 0, \ldots, \vec{0}, b_i(\vec{y}_i, \vec{x}_i), \ldots, \vec{0}, 0) \in I\) (where \(b_i(\vec{y}_i, \vec{x}_i)\) is in position 2i). Since \(Q_i\) is non-degenerate and \(\vec{x}_i \neq \vec{0}\), there exists \(\vec{y}_i\) such that \(b_i(\vec{y}_i, \vec{x}_i) \neq 0\). We may assume that \(b_i(\vec{y}_i, \vec{x}_i) = p_i^{s_i}\), for some \(0 \leq s_i < r_i\).

On the other hand, if \(\vec{x}_k = 0\) for all \(k = 1, \ldots, s\), then \(\mu_i \neq 0\) for some \(i\). In this case, we also get that \((\vec{0}, 0, \ldots, \vec{0}, p_i^{s_i}, \ldots, \vec{0}, 0) \in I\) (where \(p_i^{s_i}\) is in position 2i), for some \(0 \leq s_i < r_i\).

Thus, without loss of generality, we may assume that \(\vec{x}_i = \vec{0}\), for all \(l = 1, \ldots, s\), and there exists \(i\) such that \(\mu_i = p_i^{s_i}\) and \(\mu_k = 0\) for each \(k \neq i\). By Lemma 2.5 if \(i = 1\), then

\[
(\lambda(\vec{x}_1, \mu_1, \ldots, \vec{x}_s, \mu_s) - \text{id})(\vec{y}_1, \mu_1', \ldots, \vec{y}_s, \mu_s')
\]

\[
= ((\lambda^{(1)}(\vec{x}_1, \mu_1) - \text{id})(\vec{y}_1, \mu_1'), \vec{0}, 0, \ldots, \vec{0}, 0, (\alpha(\vec{x}_1, \mu_1) - \text{id})(\vec{y}_1, \mu_1'))
\]

\[
= ((f^{\mu_1} - \text{id})(\vec{y}_1), \vec{0}, \ldots, \vec{0}, 0, (c^{\mu_1} - \text{id})(\vec{y}_1), s, \ldots, \nu_0, (\text{id} + c_a + \cdots + c^{\mu_1 - 1})(\vec{y}_1) t) \in I,
\]

for all \((\vec{y}_1, \mu_1', \ldots, \vec{y}_s, \mu_s') \in H_1 \otimes \cdots \otimes H_s\). If \(1 < i \leq s\), then

\[
(\lambda(\vec{x}_1, \mu_1, \ldots, \vec{x}_s, \mu_s) - \text{id})(\vec{y}_1, \mu_1', \ldots, \vec{y}_s, \mu_s')
\]

\[
= (\vec{0}, 0, \ldots, (\alpha^{(i-1)}(\vec{x}_i, \mu_i) - \text{id})(\vec{y}_i - 1, \mu_i'), (\lambda^{(i)}(\vec{x}_1, \mu_1) - \text{id})(\vec{y}_i, \mu_i'), \ldots, \vec{0}, 0)
\]

\[
= (\vec{0}, 0, \ldots, (c^{\mu_i} - \text{id})(\vec{y}_i - 1, 0, (f^{\mu_i} - \text{id})(\vec{y}_i), 0, \ldots, \vec{0}, 0) \in I.
\]

Note that if \(1 < i \leq s\), then the endomorphism of \((\mathbb{Z}/(p_i - 1))^{n_i - 1}\) induced by \(c^{\mu_i} - \text{id}\) is nonzero and thus there exists \(\vec{y}_i - 1\) such that \((c^{\mu_i} - \text{id})(\vec{y}_i - 1) \notin (p_i - 1\mathbb{Z}/(p_i - 1))^{n_i - 1}\). If \(i = 1\), then the endomorphism of \((\mathbb{Z}/(p_{s})^{n_s})\) induced by \(c^{\mu_1} - \text{id}\) is nonzero and thus there exists \(\vec{y}_s\) such that \((c^{\mu_1} - \text{id})(\vec{y}_s) \notin (p_s\mathbb{Z}/(p_s^{\nu_1}))^{n_s}\). Hence we may assume that

\[
(\vec{0}, 0, \ldots, \vec{z}_k, \nu_k, \ldots, \vec{0}, 0) \in I,
\]

for some \(\vec{z}_k \in (\mathbb{Z}/(p_k^{\nu_k}))^{n_k} \setminus (p_k\mathbb{Z}/(p_k^{\nu_k}))^{n_k}\), and some \(\nu_k \in \mathbb{Z}/(p_k^{\nu_k})\). As above, we get that

\[
(\vec{0}, 0, \ldots, \vec{0}, b_k(\vec{y}_k), \vec{z}_k), \ldots, \vec{0}, 0) \in I
\]

(where \(b_k(\vec{y}_k, \vec{z}_k)\) is in position 2k). Since \(Q_k\) is non-degenerate and \(\vec{z}_k \in (\mathbb{Z}/(p_k^{\nu_k}))^{n_k} \setminus (p_k\mathbb{Z}/(p_k^{\nu_k}))^{n_k}\), there exists \(\vec{y}_k \in (\mathbb{Z}/(p_k^{\nu_k}))^{n_k} \setminus (p_k\mathbb{Z}/(p_k^{\nu_k}))^{n_k}\) such that \(b_k(\vec{y}_k, \vec{z}_k)\) is an invertible element in \(\mathbb{Z}/(p_k^{\nu_k})\). Hence

\[
w_k = (\vec{0}, 0, \ldots, \vec{0}, 1, \ldots, \vec{0}, 0) \in I
\]

(where 1 is in position 2k). We get by the above argument that

\[
w_1 = (\vec{0}, 1, \vec{0}, 0, \ldots, \vec{0}, 0), \ldots, w_s = (\vec{0}, 0, \ldots, \vec{0}, 0, 0, 1) \in I.
\]

Now it is easy to see that the ideal generated by \(\{w_1, \ldots, w_s\}\) is equal to

\[
\{(\vec{z}_1, \nu_1, \ldots, \vec{z}_s, \nu_s) \mid \nu_i \in \mathbb{Z}/(p_i^{\nu_i}), \vec{z}_i \in V_i\},
\]

21
where
\[V_i = \langle (f_i^{a_k} c_i^{a_k'} - f_i^{a_k'} c_i^{a_k}) (\bar{y}) \mid a_k, a_k' \in \mathbb{Z}, \bar{y} \in (\mathbb{Z}/(p_i^{r_i}))^{n_i} \rangle, \]
for \(1 \leq i \leq s \). Note that \(f_i \) and \(c_i \) are elements of relative prime order in the group \(\text{Aut}((\mathbb{Z}/(p_i^{r_i}))^{n_i}) \). Hence the subgroup generated by \(f_i \) and \(c_i \) is \(\langle f_i c_i \rangle \), for \(1 \leq i \leq s \). Therefore
\[V_i = \text{Im}(f_i c_i - \text{id}), \]
for \(1 \leq i \leq s \). Note that
\[
(f_i c_i - \text{id})^{p_i^{r_i}} = f_i^{p_i^{r_i}} c_i^{p_i^{r_i}} - \text{id} + p_i h_i
= c_i^{p_i^{r_i}} - \text{id} + p_i h_i
= (c_i - \text{id})^{p_i^{r_i}} + p_i h'_i,
\]
for some \(h_i, h'_i \in \text{End}((\mathbb{Z}/(p_i^{r_i}))^{n_i}) \). Clearly, \(p_i h'_i \) is in the Jacobson radical of the ring \(\text{End}((\mathbb{Z}/(p_i^{r_i}))^{n_i}) \). Hence \(f_i c_i - \text{id} \) is an automorphism if and only if \(c_i - \text{id} \) is an automorphism. Thus the result follows.

4 Realisations of constructions of simple braces

In this section concrete examples of finite simple left braces constructed as in Theorem 3.6 are given. Using Proposition 2.7 and Theorem 2.6, we then also construct more examples of simple left braces.

First, we need some computations for matrices over \(\mathbb{Z} \), which we will later reduce to \(\mathbb{Z}/(p^r) \). Consider the companion matrix of the polynomial \(x^{n-1} + x^{n-2} + \cdots + x + 1 \)
\[
D = \begin{pmatrix}
0 & 0 & \cdots & 0 & -1 \\
1 & 0 & \cdots & 0 & -1 \\
0 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & -1 \\
0 & \cdots & \cdots & 0 & 1 & -1
\end{pmatrix} \in GL_{n-1}(\mathbb{Z}),
\]
that has multiplicative order \(n \). Let \(E \in M_{n-1}(\mathbb{Z}) \) be the matrix given by
\[
E = \frac{1}{2}(\text{Id} + D^t D + (D^2)^t D^2 + \cdots + (D^{n-1})^t D^{n-1}).
\]
By a straightforward computation, one can check that
\[
E = \begin{pmatrix}
n-1 & -1 & \cdots & -1 \\
-1 & \ddots & \cdots & \vdots \\
\vdots & \ddots & \ddots & -1 \\
-1 & \cdots & -1 & n-1
\end{pmatrix}.
\]
Since $D^n = \text{Id}$, it follows that $D^t E D = E$. It is an easy exercise to check that \(\det(E) = n^{n-2} \).

Consider the quadratic form Q over \mathbb{Z} defined as
\[
Q(\vec{x}) = \sum_{1 \leq i < j \leq n-1} x_i x_j
\]
for $\vec{x} = (x_1, x_2, \ldots, x_{n-1}) \in \mathbb{Z}^{n-1}$. One can check that
\[
Q(D(\vec{x})) = Q(\vec{x}) + \frac{(n-1)}{2} x_{n-1}^2 - (n-1) \sum_{i=1}^{n-2} x_i x_{n-1}.
\] (15)

Let s be an integer greater than 1. Let p_1, p_2, \ldots, p_s be different prime numbers and let r_1, r_2, \ldots, r_s be positive integers. Assume that p_1, \ldots, p_{s-1} are odd. If $p_s = 2$, then we also assume that $r_s = 1$. Consider the following matrices:
\[
D_i \equiv D \pmod{p_i^{r_i}}, \quad E_i \equiv E \pmod{p_i^{r_i}}
\]
with $D_i, E_i \in GL_{p_i^{r_i+1}-1}(\mathbb{Z}/(p_i^{r_i}))$, for $1 \leq i < s$, and $D_s, E_s \in GL_{p_s^{r_s+1}-1}(\mathbb{Z}/(p_s^{r_s}))$.

Recall that $\det(E_i) = n_i^{n_i-2}$, where $n_i = p_i^{r_i+1}$, for $1 \leq i < s$, and $n_s = p_s^{r_s+1}$. The order of D_j is n_j, and $D_j^t E_j D_j = E_j$. Hence, D_j is an element of order n_j in the orthogonal group determined by the non-singular quadratic form corresponding to E_j on the free module $(\mathbb{Z}/(p_j))^n-1$, if p_j is odd. Moreover $D_j - \text{Id}$ is invertible (because 1 is not an eigenvalue of D_j modulo (p_j)).

If $p_s = 2$, then we consider the quadratic form Q_s on the vector space $(\mathbb{Z}/(2))^{p_s^{r_s+1}-1}$ defined by $Q_s(x_1, \ldots, x_{p_s^{r_s+1}-1}) = \sum_{1 \leq i < j \leq p_s^{r_s+1}-1} x_i x_j$. In this case, let $v_s = (0, \ldots, 0, (\mathbb{Z}/(2))^{p_s^{r_s+1}-1}$, then $Q_s(D_s(\vec{x})) = Q_s(\vec{x}) + \frac{(p_s^{r_s+1})}{2} x_{p_s^{r_s+1}-1} = Q_s(\vec{x}) + v_s \vec{x}^t$.

Let $0 \leq r_i' \leq r_i$. Consider in $M_{p_i^{r_i}(n_i-1)}(\mathbb{Z}/(p_i^{r_i}))$ the block diagonal matrices with $p_i^{r_i'}$ blocks of degree $n_i - 1$:
\[
C_i = \begin{pmatrix}
D_i & 0 & \cdots & 0 \\
0 & D_i & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & D_i
\end{pmatrix}
\quad \text{and} \quad
B_i = \begin{pmatrix}
E_i & 0 & \cdots & 0 \\
0 & E_i & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & E_i
\end{pmatrix}.
\]

Consider the following block permutation matrix
\[
F_i = \begin{pmatrix}
0 & 0 & \cdots & 0 & J_i \\
J_i & 0 & \ddots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & J_i & 0 \\
0 & \cdots & 0 & J_i
\end{pmatrix},
\]

23
where \(J_i \in M_{n_i-1}(\mathbb{Z}/(p_i^{r_i})) \) is the identity matrix. Notice that \(F_i^t = F_i^{-1} \) and

\[
F_i^t B_i F_i = \begin{pmatrix}
0 & J_i & \cdots & 0 & 0 \\
0 & 0 & \ddots & 0 & \vdots \\
0 & \vdots & \ddots & \ddots & \vdots \\
J_i & \cdots & 0 & 0 & 0 \\
0 & \cdots & 0 & J_i & 0
\end{pmatrix}
\begin{pmatrix}
E_i & 0 & \cdots & 0 & 0 \\
0 & E_i & \ddots & \vdots & \vdots \\
0 & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & E_i & 0 \\
0 & \cdots & 0 & 0 & J_i
\end{pmatrix}
\begin{pmatrix}
0 & 0 & \cdots & 0 & J_i \\
J_i & 0 & \ddots & 0 & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & \cdots & 0 & J_i & 0
\end{pmatrix}
= B_i.
\]

Therefore, \(F_i \) is an element of order \(p_i^{r_i} \) in the orthogonal group determined by the non-singular quadratic form corresponding to \(B_i \) on the free module \((\mathbb{Z}/(p_i^{r_i})))\) if \(p_i \) is odd.

For \(p_s = 2 \), if \(r_s' = 0 \), then \(F_s \) is the identity matrix. If \(r_s' = 1 \), then we consider the quadratic form \(Q_s' \) on the vector space \((\mathbb{Z}/(2))^{2(n_s-1)} \) defined by \(Q_s'(x_1, \ldots, x_{2(n_s-1)}) = Q_s(x_1, \ldots, x_{n_s}) + Q_s(x_{n_s}, \ldots, x_{2(n_s-1)}) \) and the element \(v_s' = (v_s, v_s) \in (\mathbb{Z}/(2))^{2(n_s-1)} \). In this case \(F_s \) is an element of order 2 in the orthogonal group determined by the non-singular quadratic form \(Q_s' \). We also have that \(Q_s'(C_i(x)) = Q_s'(x) + v_s'\bar{x}' \).

Moreover, we have \(F_s^{-1}C_s F_s = C_i \), so that \(C_s F_s = F_s C_i \), and \(C_i \circ I \) is invertible because \(D_i \circ I \) is invertible.

By Theorem 3.4 we can construct a simple left brace with additive group \((\mathbb{Z}/(p_1^{r_1}))\)\(\cdots\)\((\mathbb{Z}/(p_s^{r_s}))\)\(\cdots\)\((\mathbb{Z}/(p_i^{r_i}(p_i^{r_i}+1)))\)\(\cdots\)\((\mathbb{Z}/(p_i^{r_i}(p_i^{r_i}+1))))\). First take the quadratic form \(Q_i \) corresponding to the matrix \(B_i \) if \(p_i \) is odd, and \(f_i \) corresponding to the matrices \(F_i \). Further, take \(c_i \) corresponding to the matrix \(C_i \) for \(1 \leq i \leq s \).

Note that simplicity follows from Theorem 3.4 because \(c_i \circ I \) is invertible for \(i = 1, 2, \ldots, s \).

One can also construct concrete examples of simple left braces using Theorem 2.6. For this we will need the following lemma.

Lemma 4.1 With the notation of Section 3, consider the left brace \(H_1 \bowtie \cdots \bowtie H_s \) of Theorem 3.4. Then the map

\[
\varphi_i: \ (H_1 \bowtie \cdots \bowtie H_s, \cdot) \rightarrow (\mathbb{Z}/(p_i^{r_i}))\]

\[
(x_1, \mu_1, \ldots, x_s, \mu_s) \mapsto q_i(x_i, \mu_i)
\]

is a homomorphism of groups.

Proof. Let \((\tilde{x}_1, \mu_1, \ldots, \tilde{x}_s, \mu_s), (\tilde{y}_1, \mu'_1, \ldots, \tilde{y}_s, \mu'_s) \in H_1 \bowtie \cdots \bowtie H_s \). Using the
Therefore, the result follows.

Now we have that
\[
\begin{align*}
\varphi_i((\bar{x}_1, \mu_1, \ldots, \bar{x}_s, \mu_s) & \cdot (\bar{y}_1, \mu'_1, \ldots, \bar{y}_s, \mu'_s)) \\
= & \varphi_i((\bar{x}_1, \mu_1, \ldots, \bar{x}_s, \mu_s) + \lambda(\bar{x}_1, \mu_1, \ldots, \bar{x}_s, \mu_s)(\bar{y}_1, \mu'_1, \ldots, \bar{y}_s, \mu'_s)) \\
= & \varphi_i((\bar{x}_1, \mu_1, \ldots, \bar{x}_s, \mu_s) + (\lambda(\bar{x}_1, \mu_1)\alpha_{(\bar{x}_2, \mu_2)}(\bar{y}_1, \mu'_1), \ldots, \\
& \lambda(\bar{x}_{s-1}, \mu_{s-1})\alpha_{(\bar{x}_s, \mu_s)}(\bar{y}_s, \mu'_s))) \\
= & \left\{ \begin{array}{ll}
q_i((\bar{x}_1, \mu_1) + (\lambda(\bar{x}_1, \mu_1)\alpha_{(\bar{x}_2, \mu_2)}(\bar{y}_1, \mu'_1))) & \text{if } 1 \leq i < s \\
q_s((\bar{x}_s, \mu_s) + (\lambda(\bar{x}_s, \mu_s)\alpha_{(\bar{x}_1, \mu_1)}(\bar{y}_s, \mu'_s))) & \text{if } i = s
\end{array} \right.
\end{align*}
\]

Therefore, the result follows. ■

Lemma 4.2 With the notation of Section 3, assume that for some \(i \in \{1, \ldots, s\} \) there exists a divisor \(m \) of \(n_i \) such that

\[
Q_i(\bar{x}_i) = \sum_{j=1}^{m} Q(\bar{x}_{i,j}),
\]

\[
f_i(\bar{x}_i) = (f(\bar{x}_{i,1}), \ldots, f(\bar{x}_{i,m})), \quad \text{and} \quad c_i(\bar{x}_i) = (c(\bar{x}_{i,1}), \ldots, c(\bar{x}_{i,m})),
\]

where \(\bar{x}_i = (\bar{x}_{i,1}, \ldots, \bar{x}_{i,m}) \), \(\bar{x}_{i,j} \in (\mathbb{Z}/(p_i^r))^\alpha \), \(Q \) is a nonsingular quadratic form over \((\mathbb{Z}/(p_i^r))^\alpha\), \(f \) is an element in the orthogonal group determined by \(Q \), if \(i \neq s \), then \(c \) also is an element in the orthogonal group determined by \(Q \), and, if \(i = s \), then \(c \) is an automorphism of \((\mathbb{Z}/(p_s^r))^\alpha\), \(v_s = (v, \ldots, v) \), for some \(v \in (\mathbb{Z}/(p_s^r))^\alpha \), and \(Q(c(\bar{x})) = Q(\bar{x}) + v_s^T \). Let \(\sigma \in \text{Sym}_m \). Then the map

\[
\psi_\sigma : H_1 \otimes \ldots \otimes H_s \rightarrow H_1 \otimes \ldots \otimes H_s,
\]

defined by

\[
\psi_\sigma((\bar{x}_1, \mu_1, \ldots, \bar{x}_s, \mu_s)) = (\bar{x}_1, \mu_1, \ldots, \bar{x}_{i-1}, \mu_{i-1}, \bar{x}_{i,\sigma(1)}, \ldots, \bar{x}_{i,\sigma(m)}, \mu_i, \bar{x}_{i+1}, \mu_{i+1}, \ldots, \bar{x}_s, \mu_s),
\]
is an automorphism of the left brace \(H_1 \otimes \ldots \otimes H_s \) of Theorem 3.6.
Proof. Let \((\vec{x}_1, \mu_1, \ldots, \vec{x}_s, \mu_s), (\vec{y}_1, \mu'_1, \ldots, \vec{y}_s, \mu'_s) \in H_1 \bowtie \ldots \bowtie H_s\). Clearly, \(\psi_o\) is an automorphism of the additive group of the left brace \(H_1 \bowtie \ldots \bowtie H_s\). Thus, to prove the result, it is enough to show that

\[
\psi_o(\lambda(\vec{x}_1, \mu_1, \ldots, \vec{x}_s, \mu_s))(\vec{y}_1, \mu'_1, \ldots, \vec{y}_s, \mu'_s) = \lambda(\psi_o(\vec{x}_1, \mu_1, \ldots, \vec{x}_s, \mu_s))(\vec{y}_1, \mu'_1, \ldots, \vec{y}_s, \mu'_s)
\]

Note that, if \(1 \leq i < s\), then the component \(i\) of \(\lambda(\vec{x}_1, \mu_1, \ldots, \vec{x}_s, \mu_s)(\vec{y}_1, \mu'_1, \ldots, \vec{y}_s, \mu'_s)\) is \(\lambda^{(i)}(\vec{x}_i, \mu_i)\alpha^{(1,i)}_{\vec{x}_i+1, \mu_i+1}(\vec{y}_i, \mu'_i)\).

The component \(s\) of \(\lambda(\vec{x}_1, \mu_1, \ldots, \vec{x}_s, \mu_s)(\vec{y}_1, \mu'_1, \ldots, \vec{y}_s, \mu'_s)\) in \(\lambda^{(s)}(\vec{x}_s, \mu_s)\alpha^{(1,s)}_{\vec{x}_s+1, \mu_s+1}(\vec{y}_s, \mu'_s)\).

Since \(q_i(\vec{x}_i, \mu_i) = \mu_i - \sum_{j=1}^{m} Q(\vec{x}_i, j)\), and \(b_i(\vec{x}_i, \vec{z}_i) = \sum_{j=1}^{m} b(\vec{x}_i, j, \vec{z}_i, j)\), where \(b(\vec{x}_i, j, \vec{z}_i, j) = Q(\vec{x}_i, j) + Q(\vec{z}_i, j) - Q(\vec{z}_i, j)\), the reader easily can check (16) using the form of \(f_i, c_i\) and \(v_s\) in the case where \(i = s\).

Because of Proposition 2.7 and Theorem 2.6 we are now in a position to construct more concrete examples of simple left braces that are iterated matched products of left ideals.

Example 4.3 Let \(p_1, p_2, p_3, p_4\) be different prime numbers. For simplicity, assume that all are odd. We can construct as above two simple left braces \(H_1 \bowtie H_2\) and \(H_3 \bowtie H_4\), where

\[
H_1 = H(p_1, p_4(p_2-1), Q_1, \text{id}), \quad H_2 = H(p_2, p_1-1, Q_2, \text{id}),
\]

\[
H_3 = H(p_3, p_2(p_4-1), Q_3, \text{id}), \quad H_4 = H(p_4, p_3-1, Q_4, \text{id}),
\]

for some nonsingular quadratic forms \(Q_j\) where

\[
Q_1(x_1, \ldots, x_{p_4(p_2-1)}) = \sum_{j=0}^{p_4-1} Q'_1(x_1+(p_2-1)j, \ldots, x_{p_2-1}+(p_2-1)j),
\]

\[
Q_3(y_1, \ldots, y_{p_4(p_4-1)}) = \sum_{k=0}^{p_4-1} Q'_3(y_1+(p_4-1)k, \ldots, y_{p_4-1}+(p_4-1)k).
\]

\(Q'_1\) is a nonsingular quadratic form over \((\mathbb{Z}/(p_1))^{p_2-1}\), \(Q_2\) is a nonsingular quadratic form over \((\mathbb{Z}/(p_2))^{p_1-1}\), \(Q'_3\) is a nonsingular quadratic form over \((\mathbb{Z}/(p_3))^{p_4-1}\) and \(Q_4\) is a nonsingular quadratic form over \((\mathbb{Z}/(p_4))^{p_3-1}\). Let \(c'_1\) be an element of order \(p_2\) in the orthogonal group determined by \(Q'_1\), let \(d_1\) be an element of order \(p_1\) in the orthogonal group determined by \(Q_2\), let \(c'_2\) be an element of order \(p_4\) in the orthogonal group determined by \(Q'_3\), let \(d_2\) be an element of order \(p_3\) in the orthogonal group determined by \(Q_4\). Assume that the endomorphisms \(c'_1 - \text{id}, d_1 - \text{id}, c'_2 - \text{id}\) and \(d_2 - \text{id}\) are invertible. Note that the maps \(c_1 \in \text{Aut}((\mathbb{Z}/(p_1))^{p_4(p_2-1)})\) and \(c_2 \in \text{Aut}((\mathbb{Z}/(p_3))^{p_2(p_4-1)})\) defined by

\[
c_1(\vec{x}_1, \ldots, \vec{x}_{p_4}) = (c'_1(\vec{x}_1), \ldots, c'_1(\vec{x}_{p_4}))
\]

\[
c_2(\vec{y}_1, \ldots, \vec{y}_{p_4}) = (c'_2(\vec{y}_1), \ldots, c'_2(\vec{y}_{p_4}))
\]

26
By Lemma 4.2, the maps ψ are automorphisms of left braces. We define H namely by replacing

Remark 4.4

Clearly Example 4.3 can be generalized to matched products of ψ and H. Let B be the cyclic permutations

Proposition 2.7

Hence, by Proposition 2.7, $(H_1, H_2, \alpha(x, y))$, and $(H_3, H_4, \alpha(z, w))$ are defined by $\alpha(x, y) = \alpha(z, w)$ and

Let σ_1 and σ_2 be the cyclic permutations $\sigma_1 = (1, 2, \ldots, p_2)$ and $\sigma_2 = (1, 2, \ldots, p_4)$. By Lemma 4.2 the maps $\psi_{\sigma_1}: H_3 \bowtie H_4 \rightarrow H_3 \bowtie H_4$, defined by

and $\psi_{\sigma_2}: H_1 \bowtie H_2 \rightarrow H_1 \bowtie H_2$, defined by

are automorphisms of left braces. We define $\alpha: (H_3 \bowtie H_4, \cdot) \rightarrow \text{Aut}(H_1 \bowtie H_2, +, \cdot)$ and $\beta: (H_1 \bowtie H_2, \cdot) \rightarrow \text{Aut}(H_3 \bowtie H_4, +, \cdot)$ by

By Lemma 4.4 α and β are homomorphisms of groups. Denote $\alpha(\bar{y}, \nu, \bar{u}, \nu')$ by $\alpha(\bar{y}, \nu, \bar{u}, \nu')$ and denote $\beta(\bar{x}, \mu, \bar{z}, \mu')$ by $\beta(\bar{x}, \mu, \bar{z}, \mu')$. Note that

Hence, by Proposition 2.7, $(H_1 \bowtie H_2, H_3 \bowtie H_4, \alpha, \beta)$ is a matched pair of left braces and the matched product $(H_1 \bowtie H_2) \bowtie (H_3 \bowtie H_4)$ is a simple left brace.

Remark 4.4 Clearly Example 4.3 can be generalized to matched products of arbitrary two simple braces of coprime orders constructed as in Theorem 3.6 namely by replacing $H_1 \bowtie H_2$ and $H_3 \bowtie H_4$ by any braces as in Theorem 3.6 Even more, we can construct simple braces as iterated matched product of left ideals $B_1 \bowtie \ldots \bowtie B_n$, where every B_i is a simple left brace as in Theorem 3.6
5 Comments and questions

In view of Remark 1.3 and the comment following Theorem 2.6, the following seems to be a crucial step in the general program of describing all finite simple left braces.

Problem 5.1 Describe the structure of all left braces of order p^n, for a prime p. And describe the group $\text{Aut}(B, +, \cdot)$ of automorphisms for all such left braces.

Given two distinct primes p and q, in the previous sections, we have constructed many simple left braces of order $p^\alpha q^\beta$ with some natural restrictions on the positive integers α and β. As mentioned in the introduction, these natural restrictions come from a recent result of Smoktunowicz, that yields a necessary condition for a left brace of order $p^\alpha q^\beta$ to be simple. Namely, $q \mid (p^i - 1)$ and $p \mid (q^j - 1)$, for some $1 \leq i \leq \alpha$ and $1 \leq j \leq \beta$. Hence, the following seems to be an interesting question.

Problem 5.2 Determine for which prime numbers p, q and positive integers α, β, there exists a simple left brace of cardinality $p^\alpha q^\beta$.

An easy observation shows that not all such orders can occur.

Remark 5.3 Let G be a group of order $p^n q$, where n is the multiplicative order of p in $(\mathbb{Z}/(q))^*$, and p and q are distinct prime numbers. Because of the Sylow theorems, it is easy to see that either a Sylow p-subgroup or a Sylow q-subgroup of G is a normal subgroup. By Proposition 6.1 in [3], every normal Sylow subgroup of the multiplicative group of a left brace B is an ideal of B. Therefore, G does not admit a structure of a simple left brace. For instance, any group of order $2^3 \cdot 7$ has a normal Sylow 2-subgroup or a normal Sylow 7-subgroup, so there is no simple left brace of order $2^3 \cdot 7$.

References

[1] D. Bachiller, Classification of braces of order p^3, J. Pure Appl. Algebra 219 (2015), 3568–3603.
[2] D. Bachiller, Counterexample to a conjecture about braces, J. Algebra 453 (2016), 160–176.
[3] D. Bachiller, Extensions, matched products and simple braces, arXiv:1511.08477v3 [math.GR].
[4] D. Bachiller, F. Cedó and E. Jespers, Solutions of the Yang-Baxter equation associated with a left brace, J. Algebra 463 (2016), 80–102.
[5] N. Ben David, On groups of central type and involutive Yang-Baxter groups: a cohomological approach, Ph.D. thesis, The Technion-Israel Institute of Technology, Haifa, 2012.
[6] N. Ben David and Y. Ginosar, On groups of I-type and involutive Yang-Baxter groups, J. Algebra 458 (2016), 197–206.
[7] K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups, Birkhäuser Verlag, Basel, 2002.
[8] F. Catino, I. Colazzo and P. Stefanelli, On regular subgroups of the affine group, Bull. Aust. Math. Soc. 91 (2015), 76–85.
[9] F. Catino, I. Colazzo and P. Stefanelli, Regular subgroups of the affine group and asymmetric product of braces, J. Algebra 455 (2016), 164–182.
[10] F. Catino and R. Rizzo, Regular subgroups of the affine group and radical circle algebras, Bull. Aust. Math. Soc. 79 (2009), no. 1, 103–107.
[11] F. Cedó, T. Gateva-Ivanova and A. Smoktunowicz, On the Yang-Baxter equation and left nilpotent left braces, J. Pure Appl. Algebra (2016), http://dx.doi.org/10.1016/j.jpaa.2016.07.014.
[12] F. Cedó, E. Jespers and J. Okniński, Retractability of the set theoretic solutions of the Yang-Baxter equation, Adv. Math. 224 (2010), 2472–2484.
[13] F. Cedó, E. Jespers and J. Okniński, Braces and the Yang-Baxter equation, Commun. Math. Phys. 327 (2014), 101–116.
[14] F. Cedó, E. Jespers and Á. del Río, Involutive Yang-Baxter groups, Trans. Amer. Math. Soc. 362 (2010), 2541–2558.
[15] P. M. Cohn, Universal Algebra, Encyclopedia Math. App., vol. 6, Springer, 1981.
[16] V. G. Drinfeld, On some unsolved problems in quantum group theory. Quantum Groups, Lecture Notes Math. 1510, Springer-Verlag, Berlin, 1992, 1–8.
[17] P. Etingof, T. Schedler and A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), 169–209.
[18] T. Gateva-Ivanova, A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation, J. Math. Phys. 45 (2004), 3828–3858.
[19] T. Gateva-Ivanova and P. Cameron, Multipermutation solutions of the Yang-Baxter equation, Comm. Math. Phys. 309 (2012), 583–621.
[20] T. Gateva-Ivanova and S. Majid, Matched pairs approach to set theoretic solutions of the Yang-Baxter equation, J. Algebra 319 (2008), no. 4, 1462–1529.
[21] T. Gateva-Ivanova and M. Van den Bergh, Semigroups of I-type, J. Algebra 206 (1998), 97–112.
[22] T. Gateva-Ivanova, Set-theoretic solutions of the Yang-Baxter equation, braces and symmetric groups, preprint arXiv: 1507.02602v2 [math.QA].
[23] L. Guarnieri and L. Vendramin, Skew braces and the Yang-Baxter equation, Mathematics of Computation, to appear, arXiv: 1151.03171v3 [mathQA].
[24] P. Hegedűs, Regular subgroups of the affine group, J. Algebra 225 (2000), 740–742.
[25] E. Jespers and J. Okniński, Monoids and groups of I-type, Algebr. Represent. Theory 8 (2005), 709–729.
[26] E. Jespers and J. Okniński, Noetherian Semigroup Algebras, Springer, Dordrecht 2007.

29
[27] C. Kassel, Quantum Groups, Springer-Verlag, 1995.
[28] V. Lebed and L. Vendramin, Cohomology and extensions of braces, Pacific J. Math. 284 (2016), 191–212.
[29] W. Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math. 193 (2005), 40–55.
[30] W. Rump, Modules over braces, Algebra Discrete Math. (2006), 127–137.
[31] W. Rump, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007), 153–170.
[32] W. Rump, Classification of cyclic braces, J. Pure Appl. Algebra 209 (2007), 671–685.
[33] W. Rump, Generalized radical rings, unknotted biquandles, and quantum groups, Colloq. Math. 109 (2007), 85–100.
[34] W. Rump, Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation, J. Algebra Appl. 7 (2008), 471–490.
[35] W. Rump, Addendum to “Generalized radical rings, unknotted biquandles, and quantum groups” (Colloq. Math. 109 (2007), 85–100), Colloq. Math. 117 (2009), 295–298.
[36] W. Rump, The brace of a classical group, Note Math. 34 (2014), 115–144.
[37] A. Smoktunowicz, A note on set-theoretic solutions of the Yang-Baxter equation, J. Algebra (2016), http://dx.doi.org/10.1016/j.jalgebra.2016.04.015
[38] M. Takeuchi, Survey on matched pairs of groups. An elementary approach to the ESS-LYZ theory, Banach Center Publ. 61 (2003), 305–331.
[39] L. Vendramin, Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova, J. Pure Appl. Algebra 220 (2016), 2064–2076.
[40] C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312–1315.

D. Bachiller
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Bellaterra (Barcelona), Spain
dbachiller@mat.uab.cat

F. Cedó
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Bellaterra (Barcelona), Spain
cedo@mat.uab.cat

E. Jespers
Department of Mathematics
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium
ejesper@vub.ac.be

J. Okniński
Institute of Mathematics
Warsaw University
Banacha 2, 02-097 Warsaw, Poland
okninski@mimuw.edu.pl

30