Vascular presentation of cystathionine beta-synthase deficiency in adulthood

Martin Magner · Lucie Krupková · Tomáš Honzík · Jiří Zeman · Josef Hyánek · Viktor Kožich

Received: 23 February 2010 / Revised: 28 May 2010 / Accepted: 1 June 2010 / Published online: 22 June 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Several recent studies describing a solely vascular presentation of cystathionine beta-synthase (CBS) deficiency in adulthood prompted us to analyze the frequency of patients manifesting with vascular complications in the Czech Republic. Between 1980 and 2009, a total of 20 Czech patients with CBS deficiency have been diagnosed yielding an incidence of 1:311,000. These patients were divided into three groups based on symptoms leading to diagnosis: those with vascular complications, with connective tissue manifestation and with neurological presentation. A vascular event such as a clinical feature leading to diagnosis of homocystinuria was present in five patients, while two of them had no other symptoms typical for CBS deficiency at the time of diagnosis. All patients with the vascular manifestation were diagnosed only during the past decade. The median age of diagnosis was 29 years in the vascular, 11.5 years in the connective tissue and 4.5 years in the neurological group. The ratio of pyridoxine responsive to nonresponsive patients was higher in the vascular (4 of 5 patients) and connective tissue groups (6 of 7 patients) than in the neurological group (2 of 8 patients). Mutation c.833T>C (p.I278T) was frequent in patients with vascular (6/10 alleles) and connective tissue presentation (8/14 alleles), while it was not present in patients with neurological involvement (0/16 alleles). During the last decade, we have observed patients with homocystinuria diagnosed solely due to vascular events; this milder form of homocystinuria usually manifests at greater ages, has a high ratio of pyridoxine responsiveness/nonresponsiveness, and the mutation c.833T>C (p.I278T) is often present.

Abbreviations
CBS Cystathionine beta-synthase

Introduction
Homocystinuria due to cystathionine β-synthase (CBS; EC 4.2.1.22) deficiency (OMIM# 236200) is the most common inborn error of methionine metabolism (Mudd et al. 2001). The disease was discovered in 1962, when mentally retarded individuals were screened for abnormal excretion of urinary amino acids. An accumulation of homocysteine in tissues leading to the formation and urinary excretion of homocysteine disulfide, homocystine, was observed (Gerritsen et al. 1962), and subsequently CBS deficiency has been shown as the cause of the disease (Mudd et al. 1964). The clinical phenotype of homocystinuria was largely documented in the group of 629 patients by Mudd et al.
The most common symptoms include neurological complications such as mental retardation and epilepsy, marfanoid features with lens ectopia, and vascular changes represented mostly by thromboembolic events. These symptoms were present separately or in various combinations. Despite relatively frequent occurrence of vascular events in untreated homocystinuric patients, only 1.1% of patients in this large cohort manifested solely with a vascular symptom. The authors postulated that the observed incidence of thromboembolism in this disease might be falsely low because some patients presenting with solely thromboembolic events and manifesting no other feature of the CBS deficiency could have remained undiagnosed (Mudd et al. 1985).

The above hypothesis has been supported by recent publications describing young adult patients with homocystinuria diagnosed solely on the basis of thromboembolic events with no other symptoms (Gaustadnes et al. 2000; Linnebank et al. 2003). In this work, we focused on examining the frequency of vascular manifestation in CBS-deficient patients diagnosed in the Czech Republic over the last three decades.

Methods and patients

All patients have been followed in the Department of Pediatrics and in the Institute of Inherited Metabolic Disorders of First Faculty of Medicine of Charles University in Prague. To our knowledge, the reported 20 patients represent the absolute majority of Czech patients diagnosed with homocystinuria in the past 30 years.

At least two out of the following three diagnostic criteria had to be met: (1) metabolic abnormalities (hypermethioninemia with a simultaneous presence of elevated total plasma homocysteine above 100 μmol/l, or elevated homocysteine in urine and/or free homocysteine in blood, and/or decreased plasma cystathionine), (2) CBS deficiency in cultured fibroblasts, or (3) the presence of two pathogenic CBS mutations in cis. Family screening was carried out in all patients and two affected sib-pairs were identified (patients 2 and 4, and 8 and 9 in Table 1).

Until 1985, free homocysteine was detected in plasma deproteinized by sulfoalicylic acid using the aminoacid analyser. Between 1989 and 1993, plasma level of total homocysteine was determined using the ion-exchange chromatography after dithiotreitol reduction (Brattström et al. 1988). Since 1994, high performance liquid chromatography (HPLC) with SBDF derivatization has been used to determine plasma total homocysteine (Araki and Sako 1987; Krijt et al. 2001). The urinary homocysteine concentration and plasma methionine level were determined by ion-exchange chromatography with postcolumn ninhydrine derivatization. The enzyme activity was measured in cultured skin fibroblasts radiometrically according to Kraus (1987). The mutation analysis was carried out using either genomic DNA and/or RNA isolated from fibroblasts (Janošík et al. 2001) in all patients except for patient no. 1.

Pyridoxine responsiveness of patients was tested by an oral administration of pyridoxine in doses of at least 5–10 mg/kg per day for at least 2 weeks. Pyridoxine responsive patients were classified as those with a decrease of plasma total homocysteine to levels below 50 μmol/l, patients with no decrease were classified as nonresponders, patients with intermediate changes as partial responders.

Results

Between 1980 and 2009, a total of 20 Czech patients with cystathionine beta-synthase deficiency have been diagnosed in the Czech Republic (Table 1). The number of diagnosed patients did not differ significantly among the decades—seven, six and seven patients were diagnosed between 1980 and 1989, between 1990 and 1999, and between 2000 and 2009, respectively. The incidence of clinically diagnosed patients with CBS deficiency in the Czech Republic was 1:311,000 with the 95% confidence interval of 1:201,000–1:509,000. The median age at diagnosis was higher in women (i.e. 15 years), than in men (i.e. 8.5 years).

For each patient, we analyzed the symptoms leading to the plasma homocysteine level determination, and we divided the patients into three groups. Patients in the vascular group were ascertained due to thromboembolic events and/or thrombophilia screening, or due to intracranial bleeding, while patients in the neurological group were ascertained due to the delayed psychomotor development. The symptoms leading to homocysteine analysis in the connective tissue patient group were myopia, lens ectopia or marfanoid features.

A vascular event as a clinical feature leading to the diagnosis of homocystinuria was present in 5 of the 20 patients. Two patients from the vascular group had no other symptoms typical for CBS deficiency at the time of diagnosis. All patients ascertained for vascular complication as the leading symptom have been diagnosed only in the decade between 2000 and 2009.

The median age at diagnosis was 29 years (range 17–32) in the vascular group, 11.5 years (range 8–47) in the connective tissue group and 4.5 years (range 3–16) in the neurological group. The ratio of pyridoxine responsive to nonresponsive patients was higher in the vascular (4 of 5 patients) and connective tissue (6 of 7 patients) groups than in the neurological group (2 of 8 patients).

The mutation analysis revealed a considerable genetic heterogeneity among Czech patients with CBS deficiency.
Table 1 List of patients

Patient	Gender	Year of diagnosis	Age at diagnosis	Symptom leading to diagnosis	Group	Other symptoms at time of diagnosis	Pyridoxine responsiveness	Mutations observed	References
1	M	1981	5	Psychomotor delay	Neurological	Lens ectopia, marfanoid features	+/-	-	A patient 14; B patient 13
2\(^a\)	M	1981	4	Psychomotor delay	Neurological	-	-	r.[210_235del26]+[28delIG] c.[210-1G>C]+[28delIG]	Patient 10; B patient 10
3	M	1982	3	Psychomotor delay	Neurological	Kyphoscoliosis	+	p.[A114V]+[W409X] c.[341C>T]+[1226A>G]	Patient 18; B patient 17
4\(^a\)	M	1983	3	Psychomotor delay	Neurological	-	-	r.[210_235del26]+[28delIG] c.[210-1G>C]+[28delIG]	Patient 8; B patient 8
5	M	1983	16	Psychomotor delay	Neurological	Lens ectopia, quadrupasticity kyphoscoliosis, marfanoid features	-	p.[H65R]+[?] c.[194A>G]+[?]	Patient 11
6	M	1987	21	Myopia	Connective tissue	Marfanoid features thrombosis	+	p.[I278T]+[I278T] c.[833T>C]+[833T>C]	Patient 20; B patient 19
7	F	1987	13	Myopia	Connective tissue	-	+	p.[I278T]+c.[1224_1358del135] c.[833T>C]+[1224-2A>C]	-
8\(^b\)	F	1992	10	Lens ectopia	Connective tissue	Kyphoscoliosis	+	p.[I278T]+[E144K;A155T] c.[833T>C]+[430G>A; 463G>A]	Patient 17; B patient 16
9\(^b\)	M	1993	8	Lens ectopia	Connective tissue	Marfanoid features, kyphoscoliosis	+	p.[I278T]+[E144K;A155T] c.[833T>C]+[430G>A; 463G>A]	Patient 16; B patient 15
10	M	1995	10	Psychomotor delay	Neurological	Lens ectopia, marfanoid features	-	r.[1224_1358del135]+[737_828del 92] c.[1224-2A>C]+[828+1G>A]	Patient 4; B patient 4
11	M	1998	9	Lens ectopia	Connective tissue	-	-	r.[1224_1358del135]+[p.[E144K;A155T] c.[1224-2A>C]+[430G>A; 463G>A]	Patient 2; B patient 2
12	M	1999	47	Lens ectopia	Connective tissue	Suffered from myocardial infarction	+	p.[I278T]+[I278T] c.[833T>C]+[833T>C]	Patient 21
13	F	1999	5	Psychomotor delay	Neurological	Lens ectopia marfanoid features	-	p.[C165Y]+[C165Y] c.[494G>A]+[494G>A]	A patient 1; B patient 1
14	F	2003	29	Intracranial bleeding	Vascular	Epilepsy as a complication of bleeding	+/+	p.[I278T]+[?] c.[833T>C]+[?]	-
15	F	2003	3	Psychomotor delay	Neurological	-	-	r.[1224_1358del135]+[1224_1358del135] c.[1224-2A>C]+[1224-2A>C]	-
16	F	2006	32	Sterility	Vascular	Myopia	+	p.[I278T]+[I278T] c.[833T>C]+[833T>C]	-
17	F	2007	17	Thrombosis	Vascular	Lens ectopia myopia, scoliosis	-	p.[?] c.[E144K;A155T] c.[?] c.[430G>A; 463G>A]	-
18	F	2007	19	Thrombosis	Vascular	-	+/+	p.[I278T]+[E144K;A155T] c.[833T>C]+[430G>A; 463G>A]	-
19	F	2007	10	Marfanoid features	Connective tissue	-	+/+	p.[I278T]+[D376N] c.[833T>C]+[1126G>A]	-
20	F	2008	32	Thrombosis	Vascular	Lens ectopia, scoliosis	+	p.[I278T]+[I278T] c.[833T>C]+[833T>C]	-

Pyridoxine responsiveness of patients was tested by oral administration of pyridoxine in doses of at least 5–10 mg/kg per day for at least 2 weeks. Pyridoxine responsive patients were classified as those with decrease of plasma homocysteine levels below 50 μmol/l, patients with no decrease were classified as nonresponders, patients with some decrease as partial responders.

References previous publications where patients were originally reported: A Janošík et al. 2001, B Orendáč et al. 2000

\(^a\)\(^b\) Sibling pairs identified through family screening
The most common CBS mutation c.833T>C (p.I278T) was frequent in patients with the vascular (6 of 10 alleles) and connective tissue presentation (8 of 14 alleles), while it was not present in patients with neurological involvement (none of 16 alleles; Table 1). As in other populations, the c.833T>C allele was predominantly detected in Czech patients with the milder phenotype of CBS deficiency.

Case reports of patients with vascular manifestation of homocystinuria

Patient no. 14 This woman suffered from abdominal pain and frequent vomiting in childhood. An episode of left-sided hemiparesis with impaired consciousness and generalized seizures appeared at the age of 29 years. Two intraparenchymal bleeding lesions in the central cortical area on the right side were observed on the CT. Subsequent laboratory analysis revealed plasma total homocysteine level of 329 μmol/l. No signs of intracranial thrombosis were detected on digital subtraction angiography.

Patient no. 16 This 32-year-old woman has been treated for hypothyroidism since 10 years of age. The CBS deficiency was ascertained due to thrombophilia screening performed because her first gravidity resulted in spontaneous abortion 3 weeks after in vitro fertilization and embryo transfer. At the time of diagnosis, the patient exhibited moderate myopia.

Patient no. 17 The reason for plasma total homocysteine analysis in this female patient was the thrombosis of the sagittal sinus. This was manifested by a sudden headache at the age of 17 years with focal seizures of the right arm developing after the event. Since school age, the patient has been followed up for visual problems—lens subluxation and myopia—and for scoliosis.

Patient no. 18 The plasma total homocysteine level in this 19-year-old woman was analysed during the diagnostic work-up after an ischemic lesion of medial cerebral artery with a subsequent mild central paresis of the facial nerve and an integral aphasia. She was on a hormonal contraception at the time of event. No other symptoms of CBS deficiency were present at the time of diagnosis.

Patient no. 20 This woman underwent a surgery for dislocated lenses at the age of 30 years, which was complicated by thrombosis of the right sigmoideal and transversal sinuses. Plasma total homocysteine was analyzed only 2 years later following a delivery of a dead fetus in the 32nd week of gestation. Scoliosis was present at the time of diagnosis.

Discussion

Patients ascertained due to vascular events represent a substantial proportion of Czech patients with homocystinuria. In this subgroup of CBS-deficient patients, the disease manifested relatively late in life and the course of the disease was milder than in patients diagnosed due to neurological or connective tissue symptoms. The observed proportion of patients diagnosed solely due to vascular events (2 of 20) was one order of magnitude higher than the 1.1% observed in the large group of Mudd et al. (1985).

The recently observed high number of CBS-deficient patients with vascular manifestation might be explained by an increased availability of plasma total homocysteine measurement in routine thrombophilia screening in the last decade. This trend is demonstrated by a marked increase in number of total homocysteine assays in the Czech Republic between the years 2003–2007 compared to the period of 1998–2002 demonstrated by the data from the largest national health insurance company (Fig. 1).

Ascertainment of adult patients with CBS deficiency due to vascular events has been reported in the past decade also by other authors. Gaustadnes et al. (2000) described three CBS deficient sisters aged 58, 56 and 55, respectively, who manifested by repeated vascular events since the third decade of life. Ophthalmologic examination revealed no lens ectopia or other visual problems, the mental state of the patients was normal and none of the three patients had

![Fig. 1](image_url)
Vascular manifestation was a leading symptom initiating diagnostic work-up in one-quarter of Czech patients with CBS deficiency. These patients have been diagnosed due to vascular complications only in the last decade, and it can be hypothesized that this was most likely due to the increased availability of plasma homocysteine determination. This milder form of the disease usually manifested at a greater age, had a high ratio of pyridoxine responsiveness, and the mutation c.833T>C (p.I278T) was often present. Observation of a high proportion of patients with a vascular presentation of the disease emphasizes the importance of the total homocysteine plasma level determination in patients with thromboembolic events in adulthood.

Acknowledgements The authors would like to express their gratitude to Dr. Pollak for providing the data on the annual number of plasma total homocysteine assays in patients of the VZP health insurance company. The work was supported by the grant MZOVFN2005 from the Ministry of Health of the Czech Republic, and institutional support was provided by the Research Project of the Ministry of Education of the Czech Republic (reg. No. MSM0021620806).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Araki A, Sakot Y (1987) Determination of free and total homocysteine in human plasma by HPLC with fluorescence detection. J Chromatogr 422:43–52
Braittström L, Israelsson B, Lindgärde F, Hultberg B (1988) Higher total plasma homocysteine in vitamin B12 deficiency than in heterozygosity for homocystinuria due to cystathionine β-synthase deficiency. Metabolism 37:179–184
Gaustadnes M, Rudiger N, Rasmussen K, Ingerslev J (2000) Familial thrombophilia associated with homozygosity for the cystathionine beta-synthase 833T–>C mutation. Arterioscler Thromb Vasc Biol 20:1392–1395
Gerritsen T, Vaughn JG, Waisman HA (1962) The identification of homocysteine in the urine. Biochem Biophys Res Commun 9:493–496
Janůšik M, Oliveriusová J, Janošiková B et al (2001) Impaired heme binding and aggregation of mutant cystathionine β-synthase subunits in homocystinuria. Am J Hum Genet 68:1506–1513
Janůšik M, Sokolová J, Janošiková B et al (2009) Birth prevalence of homocystinuria in Central Europe: frequency and pathogenicity of mutation c.1105C>T (p.R369C) in the cystathionine beta-synthase gene. J Pediatr 154(3):431–437
Kraus JP (1987) Cystathionin beta-synthetase (human). Methods Enzymol 143:388–394
Krijt J, Vacková M, Kozich V (2001) Measurement of homocysteine and other aminothiols in plasma: advantages of using tris(2-carboxyethyl)phosphine as reductant compared with tri-n-butylphosphine. Clin Chem 47:1821–1828
Linnebank M, Junker R, Nabavi DG, Linnebank A, Koch HG (2003) Isolated thrombosis due to the cystathionine beta-synthase mutation c.833T>C (1278T). J Inherit Metab Dis 26:509–511
Mudd SH, Finkelstein JD, Irreverre F, Laster L (1964) Homocystinuria: an enzymatic defect. Science 143:1443–1445
Mudd SH, Skovby F, Levy HL et al (1985) The natural history of homocystinuria due to cystathionin beta-synthase deficiency. Am J Hum Genet 37:1–31
Mudd SH, Levy HL, Kraus JP (2001) Disorders of transsulfuration. In: Seriver CR, Beaudet AL, Sly WS, Valle D, Varco RL, Rimoin DL, editors. The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, 2007:2056–2056
Orendač M, Kožich V, Zeman J et al (2000) Kimický obraz homocystinurie z deficitu cystathionin β–synťazy u devatenáctí českých a slovenských pacientů. Cas Lék Česk 16:500–507
Skovby F, Linnebank M, Mudd SH (2010) A revisit to the natural history of homocystinuria due to cystathionine beta-synthase deficiency. Mol Genet Metab 99:1–3
Sokolová J, Janosiková B, Terwilliger JD, Freiberger T, Kraus JP, Kozich V (2001) Cystathionin beta-synthase deficiency in Central Europe: discrepancy between biochemical and molecular genetic screening for homocystinuric alleles. Hum Mutat 18:548–549