Nearest Neighbor Network Traversal

David Pritchard

February 7, 2008

Abstract

A mobile agent in a network wants to visit every node of an \(n \)-node network, using a small number of steps. We investigate the performance of the following “nearest neighbor” heuristic: always go to the nearest unvisited node. If the network graph never changes, then from (Rosenkrantz, Stearns and Lewis, 1977) and (Hurkens and Woeginger, 2004) it follows that \(\Theta(n \log n) \) steps are necessary and sufficient in the worst case. We give a simpler proof of the upper bound and an example that improves the best known lower bound.

We investigate how the performance of this heuristic changes when it is distributively implemented in a network. Even if network edges are allow to fail over time, we show that the nearest neighbor strategy never runs for more than \(O(n^2) \) iterations. We also show that any strategy can be forced to take at least \(n(n−1)/2 \) steps before all nodes are visited, if the edges of the network are deleted in an adversarial way.

1 Introduction

In this paper we consider a problem about a computer network. We use a graph as our model: each computer is a vertex, and we join two vertices \(u, v \) by an edge whenever there is a direct communication link joining \(u \) and \(v \). An agent in the network is an entity that inhabits one node at a time, and is allowed to move in steps, where a step consists of the agent leaving its current position \(u \) and entering a neighbor \(v \) of \(u \).

The main goal of this paper is to discuss the task of agent node traversal, which is to make the agent visit all of the nodes of the network at least once. One practical application of traversal is that the agent can collect information from every node (like a census), without the need for any global network coordination. One might also use traversal as a way of exploring an initially unknown network.

One well-known technique for performing a traversal is to use depth first search (DFS), but we claim that it is not practical in all real-world settings. In a depth first search, whenever the agent is adjacent to an unvisited node, it moves to that node; whenever all adjacent nodes are visited, the agent backtracks its path by one step. It is not hard to see that in a network of \(n \) nodes, after \(2(n−1) \) steps, the network will be traversed and the agent will have returned to its initial position. Here’s the problem: what if some edges of the network die? The agent may try to backtrack along an edge that no longer exists. Although we could restart DFS every time this happens, this solution seems somewhat inelegant and inefficient.

One simple alternative mechanism for graph traversal is the following: the agent always travels to the closest unvisited node. This heuristic, which we call the nearest neighbor (NN) strategy, is the subject of our paper. It has been studied before under the guise of an approximation algorithm...
for the traveling salesman problem (that setting differs from ours only in that, at the end, the agent must return to its initial position). For each \(n \geq 1 \), let the approximation ratio of NN be the least upper bound on the ratio \(\text{COST}(g) / \text{COST}(\text{OPT}) \) where \(g \) is an NN traversal on an \(n \)-node graph, \(\text{COST} \) measures the number of steps, and \(\text{OPT} \) is the cheapest traversal of the graph. Abusing this definition slightly, for a fixed graph \(G \) and NN traversal \(g \), we sometimes call \(\text{COST}(g) / \text{COST}(\text{OPT}) \) an approximation ratio of NN on \(G \).

The authors of [7] proved that the approximation ratio of NN is at most \(\left(\frac{1}{2} + o(1) \right) \log_2 n \), and gave an infinite family of edge-weighted graphs where NN has an approximation ratio of at least \(\left(\frac{1}{3} + o(1) \right) \log_2 n \). A simpler (and non-weighted) family was later found by [3] giving an approximation ratio of at least \(\left(\frac{1}{4} + o(1) \right) \log_2 n \).

1.1 Our Contribution

The authors of [2] point out that the upper bound proof in [7] is “technical.” In Section 2.1 we give a simple and new proof, but where the approximation ratio \(\frac{1}{2} \log_2 n \) is replaced by \(\ln n \), which is slightly worse. Our approach is to bound the number of long steps in a traversal generated by NN. At the conclusion of the paper we mention another application of this technique. Remark: this paper was submitted to a conference and a referee pointed out that this proof technique can also be found in an analysis [1] by Alon and Azar of the Imase-Waxman online minimum Steiner tree heuristic.

We also improve the best known lower bound and show a family of (non-weighted) graphs upon which NN has an approximation ratio of at least \(\left(\frac{1}{3} + o(1) \right) \log_2 n \). This appears in Section 2.2. With slightly more work, and using the upper bound from [7], this establishes that the approximation ratio of NN is \(\left(\frac{1}{2} + o(1) \right) \log_2 n \).

In Section 3, we analyze a simple distributed implementation of the NN heuristic. If there are no faults, then the algorithm always visits all nodes within \(O(n \log n) \) time. However, as our introduction suggests, we are interested in what happens when faults are allowed. To our knowledge, ours is the first such analysis. We allow edges to be destroyed over time, but no edges are ever added to the graph or restored. We prove an \(O(n^2) \) upper bound on the time before the distributed NN algorithm terminates (i.e., until every node remaining in the agent’s connected component is visited).

Finally, in Section 3.2, we give a result which indicates that NN is in some sense optimal. We show that for every strategy that an agent could use, there is an edge failure pattern which forces the agent to take at least \(\left(\binom{n}{2} \right) \) steps. Hence NN uses the least number of steps (in the worst case) of any heuristic, up to a constant factor. This is not true of DFS with the “restart when you cannot backtrack” modification; see Appendix C.

2 Static Graphs

In this section, we assume that the graph \(G = (V, E) \) does not change over time. For any two nodes \(u \) and \(v \), their distance \(d(u, v) \) denotes the minimum number of edges in any \(u \)-\(v \) path. The nearest neighbor heuristic is shown below (Algorithm 2.1). The algorithm takes a cost function \(c \) as input, so if we only want to count the number of steps taken by the agent, then we would take \(c = d \). We consider only symmetric cost functions in this paper, in other words, we assume \(c(u, v) = c(v, u) \) for all nodes \(u, v \in V \).
Algorithm 2.1 $\text{NN}(G, c)$: produces a nearest neighbor traversal

v_1 is the initial location of the agent

for i from 2 to n **do**

let v_i be any node in $V \setminus \{v_1, \ldots, v_{i-1}\}$ such that $c(v_{i-1}, v_i)$ is minimized

Figure 1: Take $X \to \infty$ in the diagram above. The cheapest traversal has cost 5, but as indicated by the arrows, there is an NN traversal of cost $X + 3$. So without the triangle inequality, the approximation ratio of NN is unbounded.

A traversal is any permutation of the vertex set V. We call any sequence (v_1, \ldots, v_n) that can be produced by the above algorithm a nearest neighbor traversal.

2.1 Upper Bound

A vertex sequence $x = (x_1, \ldots, x_k)$ has cost $\|x\|$ defined by

$$\|x\| := \sum_{i=1}^{k-1} c(x_i, x_{i+1}).$$

We say that a function c satisfies the triangle inequality if $c(u, v) \leq c(u, w) + c(w, v)$ for all nodes u, v, w. The triangle inequality may be equivalent stated as: for a given u-v path, replacing that path by the single edge uv (sometimes called short-cutting) doesn’t increase the cost. Note that d satisfies the triangle inequality. The precise statement of the main theorem of this section is as follows.

Theorem 2.1. Suppose c is a non-negative integer-valued function that is symmetric and satisfies the triangle inequality. Then the approximation ratio of $\text{NN}(G, c)$ is at most $(1 + \ln(n - 1))$.

Now when $c = d$ (i.e., the cost is the number of agent steps) then a DFS traversal has cost at most $2(n - 1)$, and hence in this case Theorem 2.1 implies that NN always returns a traversal of cost at most $O(n \log n)$. We remark that the triangle inequality is necessary here to get a performance bound that depends only on n, as exemplified in Figure 1.

Hereafter we fix the number n of vertices, a cost function c that satisfies the triangle inequality, and a traversal (g_1, \ldots, g_n) generated by NN. Define λ_j to be the number of pairs of consecutive nodes with cost at least j between them:

$$\lambda_j := |\{1 \leq i < n : c(g_i, g_{i+1}) \geq j\}|.$$ \hfill (1)
By switching the order of summation, we see that the NN traversal’s cost is precisely the sum of all λ_j:

$$||g|| = \sum_{i=1}^{n-1} c(g_i, g_{i+1}) = \sum_{i=1}^{n-1} \sum_{j=1}^{\infty} 1 = \sum_{j=1}^{\infty} |\{1 \leq i < n : c(g_i, g_{i+1}) \geq j\}| = \sum_{j=1}^{\infty} \lambda_j. \quad (2)$$

Lemma 2.2. Let $P = (P_1, \ldots, P_k)$ be a partition of V and suppose for each k, for any two nodes $u, v \in P_k$, that $c(u, v) \leq D$. Then $\lambda_{D+1} \leq k - 1$.

Proof. Suppose that $c(g_i, g_{i+1}) > D$ and let g_i be contained in class P_j of the partition. We claim that g_i was the last node of P_j visited by the agent. Otherwise, if $x \in P_j \backslash \{g_1, \ldots, g_i\}$, then after reaching g_i the agent chose g_{i+1} such that $c(g_i, g_{i+1}) \geq D + 1 > D \geq c(g_i, x)$, contradicting the fact that the agent makes greedy choices. Thus for each of the k parts P_j there is at most one node g_i in P_j such that $c(g_i, g_{i+1}) > D$. Furthermore, let P_j be the part containing g_n, and we see $d(g_i, g_{i+1}) < D$ for each $g_i \in P_j$. The lemma then follows.

Now, let $o = (o_1, \ldots, o_n)$ be a traversal of optimal cost $C := ||o||$. By a short-cutting argument it is easy to see that $c(o_i, o_j) \leq C$ for all vertices $o_i, o_j \in V$ and hence $\lambda_j = 0$ when $j > C$. Moreover, we obtain the following bound on λ_j for other values of j.

Lemma 2.3. For each positive integer j we have $\lambda_j \leq C/j$.

Proof. By Lemma 2.2, it suffices to exhibit a partition of V into at most $C/j + 1$ parts, such that the pairwise costs within each part are at most $j - 1$. We can do this by breaking o into paths of length about $j - 1$ each. Define $a(1) = 1$ and iteratively compute integers $a(i) \leq n$ for $i = 2, 3, \ldots$ such that

$$\sum_{t=a(i)}^{a(i+1)-1} c(o_t, o_{t+1}) < j \leq \sum_{t=a(i)}^{a(i+1)-1} c(o_t, o_{t+1}). \quad (3)$$

This is continued as long as possible, that is, until some k satisfies

$$\sum_{t=a(k)}^{n-1} c(o_t, o_{t+1}) < j.$$

Note a is a strictly increasing sequence, so k is well-defined. Let $a(k + 1) = n + 1$ and define $P_i := \{o_{a(i)}, \ldots, o_{a(i+1)-1}\}$ for $1 \leq i \leq k$. Note that the k sets P_i partition V. Furthermore, using the triangle inequality in a short-cutting argument, it is easy to see that $c(u, v) < j$ for each $u, v \in P_i$.

Intuitively, each P_i accounts for a portion of o of length j, so we would expect $||o||/j = C/j$ parts plus a remainder. Formally, using the definition of C and Equation (3), we have

$$C \geq \sum_{t=1}^{a(k)-1} c(o_t, o_{t+1}) = \sum_{i=1}^{k-1} \sum_{t=a(i)}^{a(i+1)-1} c(o_t, o_{t+1}) \geq (k - 1)j,$$

so k, the number of parts, is at most $C/j + 1$, as needed.

Finally, we estimate the resulting bound on the length of g, and hence prove Theorem 2.1.
Proof of Theorem 2.1. From Equation (1) we have \(\lambda_i \leq n - 1 \) for all \(n \). Further, recall that \(\lambda_j = 0 \) for \(j > C \). We may assume without loss of generality that \(n - 1 \) divides \(C \), as otherwise we can increase \(c \) uniformly by a factor of \(n - 1 \). We apply Equation (2) and then Lemma 2.3, obtaining

\[
\|g\| = \sum_{j \geq 1} \lambda_j \leq \sum_{j=1}^{C/(n-1)} (n-1) + \sum_{j=C/(n-1)+1}^{C} \frac{C}{j} \leq (n-1)(C/(n-1)) + C \sum_{j=C/(n-1)+1}^{C} \frac{1}{j} \leq C + C \int_{C/(n-1)}^{C} \frac{dz}{z} = C(1 + \ln(n-1)).
\]

Thus, as claimed, the cost of \(g \) is at most \((1 + \ln(n-1))\) times the cost of \(o \).

Let \(m \) (resp. \(M \)) denote the minimum (resp. maximum) value of \(c(u, v) \) over all pairs \(\{u, v\} \subset V \). We can tighten Theorem 2.1 in some cases and show that the approximation guarantee of \(\text{NN} \) depends logarithmically on the aspect ratio \(\alpha := M/m \):

\[
\|g\| = \sum_{j \geq 1} \lambda_j \leq \sum_{j=1}^{m} (n-1) + \sum_{j=m+1}^{M} \frac{C}{j} \leq m(n-1) + C \int_{m}^{M} \frac{dz}{z} \leq C + C(\ln M - \ln m) = C(1 + \ln \alpha).
\]

In comparison, Monnot [5] showed that in the absence of the triangle inequality, \(\text{NN} \) has approximation ratio \(\frac{1+\alpha}{2} + o(1) \).

2.2 Lower Bound

In this section we describe a new family of graphs upon which \(\text{NN} \) has an approximation ratio of at least \(\left(\frac{1}{2} + o(1)\right) \log_2 n \). We remark that the original lower bound of [7] could not be realized as the distance function \(d \) of any unweighted graph, but ours (like the example from [3]) can be.

We call the family layered ring graphs because of their shape. The layered ring graphs are denoted \(LR^k(2^m) \) where \(k \geq 0 \) is the number of layers and \(m \geq 1 \) is a size parameter. The basic idea is that the agent in the nearest neighbor algorithm can be forced to walk “around” the ring \(k \) times, once for each layer.

Each vertex in \(LR^k(2^m) \) is assigned a position \(p(v) \in \{0, 1, \ldots, 2^m\} \) and we define two nodes \(u, v \) to be adjacent precisely when \(p(v) - p(u) \in \{\pm 1, 0\} \text{ (mod } 2^m + 1)\). Every layered ring graph includes the backbone vertices \(b_0, b_1, \ldots, b_{2^m} \) whose positions are \(p(b_i) = i \). It follows that every layered ring graph is hamiltonian, since starting at \(b_0 \) we can visit all vertices in position 0, then take an edge to \(b_1 \) and subsequently visit all vertices in position 1, and so forth until we return from the last vertex at position \(2^m \) to \(b_0 \).

For notational convenience, we fix \(m \) at this point and use only \(k \) as a parameter; so we omit \(m \) and write \(LR^k \) instead of \(LR^k(2^m) \). The first layered ring graph \(LR^0 \) consists of only the backbone. Each ring graph \(LR^k, k > 0 \) is constructed from the previous one \(LR^{k-1} \) by the addition of a layer.
We’ll show that on LR^k, the agent can walk around the ring k times, and hence the NN heuristic can return a traversal of cost about $k \cdot 2^m$. As we will make precise in Lemma 2.8, when k is roughly equal to $m/2$, we’ll have $|V(LR^{m/2})| = 2^m(1 + o(1))$; but since $LR^{m/2}$ is hamiltonian, we get an approximation ratio of at least

$$\frac{COST(g)}{COST(OPT)} \approx \frac{k \cdot 2^m}{(1 + o(1))2^m} \approx k \approx \frac{1}{2} \log_2 |V(LR^{m/2})|.$$

Definition 2.4. A layer is a set L such that $\{0,2^m\} \subseteq L \subseteq \{0,1,\ldots,2^m\}$ with the following property: if $a < b$ and $L \cap \{a,a+1,\ldots,b\} = \{a,b\}$, then $b-a$ is a power of 2.

We are about to define a sequence L^1, L^2, \ldots, of layers. We say that a,b are L^i-neighbors if $L^i \cap \{a,\ldots,b\} = \{a,b\}$, and we denote this relation by $N^i(a,b)$ where $a < b$.

Definition 2.5. Define the first layer L^1 as follows:

$$L^1 := \{0,1,2,4,\ldots,2^{m-1},2^m\}.$$

For $i \geq 1$, define the $(i+1)^{st}$ layer L^{i+1} as follows:

$$L^{i+1} := \{0\} \cup \bigcup_{a,b: N^i(a,b)} \{a + 2^t : 0 \leq t \leq \log_2(b-a)\}.$$

Observe that $L^{i+1} \subseteq L^i$ for all $i \geq 1$.

Definition 2.6. The layered ring graph LR^0 consists of the backbone. For $i > 0$, the layered ring graph LR^i consists of the disjoint union of LR^{i-1} together with one new vertex ℓ_i^t for each $t \in L^i$. We define $p(\ell_i^t) = t$.

In Figure 2, we show an example of a layered ring graph. For the rest of this section, c is the distance function d of LR^k.

Claim 2.7. It is possible for $NN(LR^k,c)$ to return a traversal of cost $(k + 1)(2^m + 1) - 1$.

Proof. We will show that the agent may visit the nodes in the following order: backbone, layer k, layer $k - 1$, and so on, visiting layer 1 last. Each layer, and also the backbone, is visited in increasing order of position.

In the backbone, $c(b_i,b_{i+1}) = 1$ for $0 \leq i < 2^m$, and so these steps are valid for the NN heuristic as all pairwise distances are at least 1. Similarly, as $c(b_{2^m},\ell_0^k) = 1$ and $c(\ell_0^{2^m},\ell_0^{2^m-1}) = 1$ for $k \geq i > 1$, it remains only to show that the intra-layer steps are valid. Precisely, for each $k \geq i \geq 1$ and for each a,b such that $N^i(a,b)$, say that a node $x \neq \ell_a^i$ is bad if $c(\ell_a^i,x) < c(\ell_a^i,\ell_b^i) = b-a$ and x is not visited before ℓ_a^i. Our goal is to show that no bad nodes exist.

Fix a,b,i as above. First, consider the nodes of layer i that are not visited before ℓ_a^i. Since we visit layer i in increasing order of position, no node of the form $x = \ell_j^i, j \geq b$ is bad unless $j > 2^m + 1 + a - (b-a)$. But from Definition 2.5 it follows easily that $b \leq 2a$, and so no bad nodes exist in layer i.

It remains to show that no bad nodes exist in layers $i-1, i-2, \ldots, 1$. If $b = a + 1$ then this is trivial. Otherwise, by the definition of layers, it must be that $N^{i-1}(2a-b,b')$ holds where $2a - b < a < b < b'$. Thus there are no nodes in layer $i-1$ with position strictly between $2a - b$ and b, from which it follows that level $i-1$ contains no bad nodes. Similarly since $L_j \subseteq L^{i-1}$ for $j < i-1$ no bad nodes exist in any other layer. \qed
In Appendix A, we show a simple way to count the number of nodes in $LR^k(2^m)$, obtaining:

$$|V(LR^k(2^m))| = 2^m + kO\left(\sum_{i=1}^{k} \binom{m-1}{i}\right).$$ \hspace{1cm} (4)

In what follows, we write $a \sim b$ to mean that $a = b(1 + o(1))$.

Lemma 2.8. Fix $\delta > 0$. For each m, let $k = \frac{m-1}{2+\delta}$. Then as $m \to \infty$,

$$|V(LR^k(2^m))| \sim 2^m.$$

Proof. First note that $|V(LR^k(2^m))| > 2^m$. For an upper bound on $|V(LR^k(2^m))|$, Equation (4) gives

$$|V(LR^k(2^m))| = 2^m + \frac{m-1}{2+\delta}O\left(\sum_{i=1}^{(m-1)/(2+\delta)} \binom{m-1}{i}\right).$$ \hspace{1cm} (5)

In turn, we can bound this expression by reinterpreting the sum using a binomial random variable and applying a Chernoff bound [6, Thm. 4.2]. Namely,

$$\sum_{i=1}^{(m-1)/(2+\delta)} \binom{m-1}{i} = 2^m \Pr[\text{Bin}(m-1, 1/2) \leq \frac{m-1}{2+\delta}] < 2^m \exp\left(-\frac{(m-1)\delta^2}{4(2+\delta)^2}\right) = o(2^m m^{-1}).$$

Then recalling Equation (5), we see that $|V(LR^k(2^m))| = 2^m + o(2^m)$ as claimed. \hspace{1cm} \Box
Theorem 2.9. The approximation ratio $ar(n)$ of NN satisfies

$$\limsup_{n \to \infty} ar(n)/\log_2(n) = 1/2.$$ \hspace{1cm} (6)

Proof. The upper bound in [7] that we have mentioned implies that the left-hand side of Equation (6) is at most 1/2. Now pick any $\delta > 0$ and consider the family of graphs in Lemma 2.8. The number n of vertices satisfies $n \sim 2^m$. By Claim 2.7 each graph in the family admits an NN traversal of cost $(2^m + 1)(k + 1) - 1 \sim n \log_2(n)/(2 + \delta)$. But each graph is hamiltonian and so has optimal traversal cost $n - 1$. Hence $ar(n) \geq \log_2(n)/(2 + \delta)$. As $m \to \infty$ so does $n \to \infty$, and by taking $m \to \infty$ and $\delta \to 0$ we obtain Equation (6). \hfill \square

With a little more effort, we can replace the lim sup in the above equation by lim, or in other words we can establish that $ar(n) \sim \frac{1}{2} \log_2 n$. We defer the details to Appendix B.

3 Network Implementation with Failures

As we stated in the introduction, one motivation for the nearest neighbor algorithm is its potential usefulness in computer networks with edge failures. We give a simple implementation below (Algorithm 3.1). The variable pos represents the position of the agent. Each node v keeps a flag $v.vis$ to indicate whether it has been visited, and a number $v.dist$ which represents an estimate of the distance from v to the nearest unvisited node. Line 5 determines the shortest paths to unvisited nodes, and Line 6 makes the agent travel along these paths. For future reference, we need the following remarks:

R1. For each node v, the value $v.dist$ is nondecreasing with time.

R2. At all times, $v.dist$ is at most the actual distance to the closest unvisited node.

Remark R1 can be proved by induction on the number of iterations elapsed, and remark R2 can be proved by induction on the distance to the closest unvisited node.

Say that a node is explored the first time that the agent visits it. If no failures occur, it is not too difficult to show that the agent generates a greedy tour g in the following way: after exploring g_i, it remains motionless for $d(g_i, g_{i+1})$ rounds, and in the following $d(g_i, g_{i+1})$ rounds it travels directly to g_{i+1}. Using Theorem 2.1, we find that $\|g\| = O(n \log n)$, so all nodes are visited within $O(n \log n)$ iterations. The purpose of this section is to show that edge failures can dramatically increase the time complexity of network traversal.
We considered a variant of the above implementation where each node instantly knows the actual distance to the nearest unvisited node, but the results were essentially the same as what we present here.

3.1 Upper Bound

If the graph becomes disconnected due to edge failures, then it may not be possible for the agent to visit all of the nodes. Given this fact, and furthermore that the agent may not initially know the value of n, how can we detect termination? We use the following idea: the agent keeps a count \exp of how many nodes it has explored so far, and once $\pos.dist > \exp$, (using R2) there can be no more reachable unvisited nodes. Using this as the definition of termination, we now upper bound the algorithm’s running time.

Theorem 3.1. Algorithm 3.1 terminates in at most $O(n^2)$ iterations, regardless of how the edge failures occur.

Proof. To simplify the arguments, suppose we do not permit any \dist label to exceed $n + 1$ (that is, once it hits this value, it does not increase further). It is not hard to see that this does not affect the observed behavior of the algorithm.

First, we claim there are at most $O(n^2)$ iterations in which the agent moves. When the agent moves, the value $\pos.dist$ decreases by at least 1. However, the value $\pos.dist$ can only increase $O(n^2)$ times, since \pos can be any of the n nodes, and each node’s \dist label increases at most $n + 1$ times (by R1).

Second, we can also show there are at most $O(n^2)$ iterations in which the agent does not move.

Claim 3.2. If the agent does not move in a given iteration, then either the algorithm terminates in that iteration, or $\v.dist$ increases for some node v.

Proof. For the sake of contradiction, consider a non-final iteration in which $\v.dist$ does not increase for any node v. By induction on t, we can show that every node v at distance t from the nearest unvisited node has $\v.dist = t$, and if all nodes in the connected component of v are visited, then $\v.dist = n + 1$. But this is a contradiction, for it is easy to see that the agent would have taken a step towards a nearest unvisited node.

Since there are n nodes and each node’s \dist label can increase at most $n + 1$ times, we see that the agent remains still in $O(n^2)$ iterations.

In Appendix C we show, in contrast, that DFS with restarting (as described in the introduction) may take $\Omega(n^3)$ time.

3.2 Lower Bound

The upper bound of Theorem 3.1, it turns out, has a lower bound that matches it up to a constant factor. However, the lower bound doesn’t depend on any properties of the NN heuristic. Rather, we can show that any heuristic for visiting all nodes must take at least $\binom{n}{2}$ steps, if a suitable pattern of edge deletions occurs.

We express this idea as a game: the objective of the agent is to be in a connected component of G where every node has been visited, and an adversary chooses the edges to delete, and wants to
foil the agent for as long as possible. An adaptive adversary — one that can see the current state of the network in each iteration before deciding what to delete — is arguably the most powerful adversary possible. We phrase our proof using an adaptive adversary. Note however that for a deterministic traversal heuristic, a non-adaptive adversary is just as powerful as an adaptive one, since the adversary can optimize its behavior ahead of time by simulating the agent.

Here is what we, as the adversary, should do. The graph G is originally a complete graph on n vertices. We wait until the agent has visited $n - 1$ nodes; let v be the $(n - 1)$st node visited, and x_1 be the last remaining unvisited node. We then destroy the edge vx_1. As a result, the agent cannot visit x_1 in the next step. Similarly, as soon as the agent moves to any other node y such that y is adjacent to x_1, we destroy the edge yx_1. We continue this until there are precisely 2 nodes z_1 and z_1' adjacent to x_1, and we wait for the agent to visit one or the other (clearly the algorithm cannot terminate before then, since the agent is connected to the unvisited node x_1). Without loss of generality, assume the agent steps to z_1 before z_1'. Then we perform two edge deletions: we remove both x_1z_1 and z_1z_1'. We also define $x_2 := z_1'$. Intuitively, we now want to keep the agent at distance 2 or more from x_1 for as long as possible.

In general, the ith “phase” begins when x_i is defined. Each time the agent moves onto a node y adjacent to x_i, we delete yx_i. This continues until there are two nodes other than x_{i-1} adjacent to x_i, which we call z_i and z_i'. W.o.l.o.g. let the agent reach z_i first, and at that point, we delete both x_iz_i and z_iz_i'. We also define $x_{i+1} := z_i'$ and the $(i + 1)$st phase begins. We depict a generic phase in Figure 3.

This can be continued until the end of the $(n - 3)$rd phase, at which point the nodes consist of $x_1, \ldots, x_{n-3}, z_{n-2}', y, z_{n-2}$ with the agent at z_{n-2}. The remaining graph is a path, and the agent needs to take $(n - 1)$ more steps to complete its traversal. In the ith phase, the agent has to move onto $(n - i - 2)$ distinct nodes. There are at least $(n - 2)$ additional steps at the beginning before we define x_1. Hence the total number of steps is at least

$$(n - 2) + \left(\sum_{i=1}^{n-3} n - i - 2 \right) + (n - 1) = \binom{n}{2}.$$
4 Discussion

A nearest neighbor tree, introduced in [4], is any tree that can be produced by Algorithm 4.1 shown below. (Note that it always produces a tree.) Using the technique of Section 2.1, we are able to get a simpler proof of the main approximation result from [4].

Algorithm 4.1 Algorithm for construction of a nearest neighbor tree

- each node \(v \) is assigned a unique rank \(r(v) \)
- for each node \(v \) such that \(v \) is not the maximum-rank node \(\text{(in parallel)} \) do
 - let \(w \) be a node such that \(c(v, w) = \min \{ c(v, v') \mid r(v') > r(v) \} \)
 - connect from \(v \) to \(w \) (i.e., add the edge \(\{v, w\} \) to the tree)

Theorem 4.1. The cost of any nearest neighbor tree \(T \) is at most \(O(\log n) \) times the cost of a minimum spanning tree.

Proof. Let \(\lambda_j \) denote the number of edges in \(T \) of cost \(j \) or more. Let \(OPT \) be a minimum spanning tree and let \(o \) be a depth-first search traversal of \(OPT \); it follows that \(\|o\| \leq 2c(OPT) \). As in the proof of Lemma 2.3, for any integer \(j \), we can partition \(V \) into \(\|o\|/j + 1 \) parts \(P_i \) such that in each part, every pair of nodes is at most a distance \(j - 1 \) apart.

In each part \(P_i \), we claim that at most one node in \(P_i \) tries to form a connection of cost \(j \) or greater. Indeed, only the maximum-rank node \(u \) in \(P_i \) can do so, as all others can connect to \(u \) instead at cost at most \(j - 1 \). As before we find that \(\lambda_j \leq \|o\|/j \) which permits us to use the same integral estimate as in the proof of Theorem 2.1. We get

\[
c(T) = \sum_j \lambda_j \leq (1 + \ln n)\|o\| = O(\log n \cdot c(OPT)).
\]

There is an interesting and difficult related problem which we were unable to solve. Consider our original problem of counting the number of steps taken by an agent executing the NN heuristic — in other words, assume that \(c \) is the distance function for some (unweighted) graph. The costly NN traversal of layered ring graphs, and similarly the NN traversal of the example from [3], both perform a lot of arbitrary tie-breaking. If we break all ties randomly, then the performance seems to improve. Is it possible that this would improve the approximation ratio of NN to \(O(1) \)? (An observation in [7] shows in the case of edge-weighted graphs, random tie-breaking doesn’t help.) Similarly, when the edge-deleting adversary is not adaptive, does randomization help in the distributed setting?

References

[1] N. Alon and Y. Azar. On-line steiner trees in the euclidean plane. In *Symposium on Computational Geometry*, pages 337–343, 1992.

[2] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. *Combinatorial Optimization*. John Wiley & Sons, Inc., New York, NY, USA, 1998.

[3] C. A. J. Hurkens and G. J. Woeginger. On the nearest neighbor rule for the traveling salesman problem. *Oper. Res. Lett.*, 32(1):1–4, 2004.
A Proof of Equation (4)

A leg of \(L^i \) is an ordered pair \((a, b)\) such that \(N^i(a, b) \). The length of that leg is \(b - a \).

Definition A.1. Let \(S(k, t) \) denote the number of legs of length \(2^t \) in \(L^k \).

The iterative construction of the graphs gives the following recurrence relation.

1. \(S(1, 0) = 2 \), and \(S(1, 1) = S(1, 2) = \cdots = S(1, m - 1) = 1 \).
2. For \(t > 0 \) and \(k > 1 \), we have \(S(k, t) = \sum_{u > t} S(k - 1, u) \).
3. For \(k > 1 \), we have \(S(k, 0) = S(k - 1, 0) + 2 \sum_{u > 0} S(k - 1, u) \).

Claim A.2. The solution of this recurrence relation for \(S \) is

\[
S(k, t) = \binom{m - t - 1}{k - 1} \text{ for } t > 0; \quad S(k, 0) = 2 \sum_{i=0}^{k-1} \binom{m - 1}{i}.
\]

Proof. By using the identity

\[
\sum_{z \leq A} \binom{z}{B} = \binom{A + 1}{B + 1},
\]

it is easily verified that the claimed formulas satisfy conditions (1)–(3). \(\square \)

We have that \(|L^k| = 1 + \sum_{t \geq 0} S(k, t) \). We can simplify the part of the sum with \(t \geq 1 \) since

\[
\sum_{t \geq 1} S(k, t) = \sum_{t \geq 1} \binom{m - 1 - t}{k - 1} = \binom{m - 1}{k}.
\]

This observation leads to the following formula for \(|V(LR^k(m))| \) (note that we include the \(2^m + 1 \)
backbone nodes).

\[|V(LR^k(m))| = 2^m + 1 + \sum_{j=1}^{k} \left(\sum_{t=1}^{\lfloor (m-1)/2 \rfloor} S(j, t) + S(j, 0) \right) \]

\[= 2^m + k + 1 + \sum_{j=1}^{k} \left(\binom{m-1}{j} + 2 \sum_{i=0}^{j-1} \binom{m-1}{i} \right) \]

\[= 2^m + k + 1 + 2k \binom{m-1}{0} + \sum_{i=1}^{k} (2k - 2i + 1) \binom{m-1}{i}. \]

\[\text{B Approximation Ratio Interpolation} \]

We need to do some interpolation to show that

\[\lim_{n \to \infty} \frac{ar(n)}{\log_2(n)} = 1/2. \]

The problem is that as \(m \) increases by one, the graphs \(LR^{(m-1)/(2+\delta)}(2^m) \) roughly double their number of vertices, leaving a large gap. For this purpose, we may generalize the construction of layered ring graphs in the following way. We replace the size parameter \(2^m \) by a size parameter \(\nu \), and no longer insist that \(L^i \)-neighbors differ by a power of 2. We redefine the layers in the following way.

Definition B.1. Define the first layer \(L^1 \) as follows:

\[L^1 := \{0\} \cup \{\lfloor \nu/2^t \rfloor : t \geq 0\}. \]

For \(i \geq 1 \), define the \((i+1) \)st layer \(L^{i+1} \) as follows:

\[L^{i+1} := \{0\} \cup \bigcup_{a,b,N^i(a,b)} \{a + \lfloor (b-a)/2^t \rfloor : t \geq 0\}. \]

Having defined the layers, we define the layered ring graphs \(LR^k(\nu) \) using Definition 2.6 exactly as before. It is straightforward to see that this indeed generalizes our previous construction. That is, if \(\nu = 2^m \), then \(LR^k(\nu) = LR^k(2^m) \) for all \(k \). We omit the straightforward proof of the following claim.

Claim B.2. For fixed \(k \), \(|V(LR^k(\nu))| + 1 \leq |V(LR^k(\nu+1))| \leq |V(LR^k(\nu))| + (k + 1)\).

Theorem B.3. The approximation ratio \(ar(n) \) of NN satisfies

\[\lim_{n \to \infty} \frac{ar(n)}{\log_2(n)} = 1/2. \]

Proof. Considering Theorem 2.9, we need to show that \(\liminf_{n \to \infty} \frac{ar(n)}{\log_2(n)} \geq 1/2 \). Let \(\delta > 0 \).

For any \(n \), pick \(m \) so that

\[|V(LR^{(m-1)/(2+\delta)}(2^m))| \leq n < |V(LR^{m/(2+\delta)}(2^{m+1}))|. \]

13
From Lemma 2.8 it follows that $m \sim \log_2 n$. Fix $k = \lfloor m/(2 + \delta) \rfloor$. It also follows from Lemma 2.8 that $LR^k(2^{m+1})$ has $o(n)$ non-backbone vertices.

Pick the largest ν such that $|V(LR^k(\nu))| \leq n$; by Equation (8), $\nu < 2^{m+1}$. By Claim B.2 it follows that $LR^k(\nu)$ graph has $o(n)$ non-backbone vertices, and hence that $\nu \sim n$.

From Claim B.2 it also follows that by adding at most $k + 1$ vertices to $|V(LR^k(\nu))| \leq n$ we can obtain a graph on exactly n vertices, which we will call G_n. Connect these new vertices in a clique and connect them to b_0 and ℓ_1^ν. There is an NN traversal of G_n where we visit the new clique first, then the backbone, and then the layers in decreasing order; the proof is analogous to Lemma 2.7. This NN traversal takes at least $\nu k \sim n \log_2 n/(2 + \delta)$ steps, whereas a hamiltonian circuit exists in G_n, and so $ar(n) \geq \log_2 n/(2 + \delta)$. Taking $n \to \infty, \delta \to 0$ completes the proof.

\[\square \]

C Distributed Restarting-DFS is Slow

In this section we consider a version of DFS that is adapted for the distributed setting with edge failures, which is the network model used in Section 3. Recall that edge failures are allowed, but edge additions/restorations are forbidden. We consider the following protocol for network traversal: the agent performs a depth-first search, but whenever it is required to backtrack an edge e that has been deleted since the agent traversed e in the forwards direction, the agent begins a completely new depth-first search. The algorithm terminates once a DFS successfully completes (i.e., returns to its originating vertex, and has explored all of its neighbors). It is not hard to see that this algorithm will eventually terminate successfully (i.e., the agent will have visited all nodes of the connected component within which it lies).

There is a simple upper bound on the number of steps taken by this protocol: the DFS can restart at most $|E| = O(n^2)$ times since there are at most $|E|$ edges that can be deleted, and each individual DFS takes at most $2(|V| - 1) = O(n)$ steps, so the total number of steps is at most $O(n^2 \cdot n) = O(n^3)$. We claim that in fact $\Omega(n^3)$ steps can be taken in the worst case.

Here is the construction. Consider a graph that consists of two cliques C_1, C_2, each on $n/3$ nodes, joined by a path having $n/3$ internal vertices. Fix a spanning tree T such that no path in T contains $V(C_1)$ or $V(C_2)$; such a tree is easily seen to exist for $n/3 > 3$. Begin with the agent at some node $p \in C_1$. Pick any edge uv such that $\{u, v\} \subset C_2$ and $uv \notin T$; without loss of generality assume v is not on the p-u path in T. Have the agent walk along this path to u, and then traverse uv. Then, delete uv. By our choice of T, the agent will eventually need to backtrack to $p \in V(C_1)$; however, the backtracking will first attempt to traverse vu, causing a restart. The agent is left at v, and symmetrically to before, we pick any remaining non-tree edge $u'v'$ in C_1 (with v' not on the v-u' path in T), send the agent along T to u' and across $u'v'$, and delete $u'v'$. We repeat this process, sending the agent between the cliques (and hence across the $n/3 + 1$-edge path) a total of $|E\setminus T| = 2((n/3)^2 - (n/3) + 1)$ times, and thus using $\Theta(n^3)$ steps.