Immune profiling and cancer post transplantation

Christopher Martin Hope, Patrick Toby H Coates, Robert Peter Carroll

SOC lesion. Pharmacological immunosuppression is a major contributor of the increased risk of cancer for KTR, with the cancer lesions themselves further adding to systemic immunosuppression and could explain, in part, these phenomena. Immune profiling includes; measuring immunosuppressive drug levels and pharmacokinetics, enumerating leucocytes and leucocyte subsets as well as testing leucocyte function in either an antigen specific or non-specific manner. Outputs can vary from assay to assay according to methods used. In this review we define the rationale behind post-transplant immune monitoring assays and focus on assays that associate and/or have the ability to predict cancer and rejection in the KTR. We find that immune monitoring can identify those KTR of developing multiple SCC lesions and provide evidence they may benefit from pharmacological immunosuppressive drug dose reductions. In these KTR risk of rejection needs to be assessed to determine if reduction of immunosuppression will not harm the graft.

Key words: Immune-profiling; Immunosuppression; Kidney; Malignancy; Transplantation

Saturday, 6 February 2015 | Volume 4 | Issue 1 | WJN | www.wjgnet.com
INTRODUCTION

Kidney Transplant Recipients (KTR) have a 3 to 12-fold increased risk of developing Non-Lymphoid or solid organ cancers (SOC) when compared to the general population[1-4]. Cancers in KTR have poorer prognoses for a given stage/grade than the general population, which leads to higher mortality[5-9]. In Australia, it is observed that 20% of KTR will develop SOC within 15 years post transplantation (the median graft survival). Over a 5 year period (2007-2011) 267 KTR (or 31%) of all KTR died with a functioning graft (ANZDATA, 2012).

Additionally, KTR have a 60 to 250-fold increased risk of developing a Non-Melanoma Skin Cancer (NMSC), which includes: squamous cell carcinoma (SCC), basal cell carcinoma, Kaposi’s sarcoma, Merkel cell carcinoma, and adnexal tumours[10,11,13]. SCC is the most common cancer in KTR with 50% of KTR who are 15 years post transplantation developing an SCC[14]. The disease progression of SCC is much more aggressive than the general population and is exemplified by the development of multiple SCC lesions and metastatic potential, phenomena that rarely occur in the immune competent[5,6,12].

The cumulative risk of subsequent SCC tumours is 30%-32%, 60%-62% and 75%-80% over 1, 3 and 5 years after first tumour, respectively[13]. Compounded, this equates to approximately 10% of KTR having > 5 tumours within 5 years of their first tumour, with some individual KTR reaching 40 primary SCC tumours during recipient life[14]. A single SCC lesion is a risk factor for subsequent SCC development with 60%-80% of KTR with one or more tumours developing another tumour within 1-3 years[15]. SCC tumour characteristics that are risk factors of metastatic SCC and include: size[16], depth[17,18], thickness[19], diameter[20] and poor differentiation[21]. Depth > 2.8 mm has a three-fold greater risk of metastasizing in KTR than the general population[22].

Further evidence of tumour aggression is the invasive potential of SCC in KTR, with more perineural and lymphatic invasion that the general population[23]. Metastatic incidence increases by 5%-8% with every SCC tumour accrued in KTR[14]. Due to SCC lesions mainly located in ultra violet (UV) exposed areas, e.g., the neck, face and scalp there is a possibility of invasion into subcutaneous cranial nerves in the perineural space, leading to extensive surgery and perhaps death[24]. Reports observed an incident mortality of 1%-18%[22,23].

Observational studies have shown a 37% incidence of SCC metastasizing[18] which leads to the median KTR survival after diagnosis being only 2 years[25]. Furthermore, it has been observed that a previous SCC is a risk factor for multiple SCC and even development of SOC[4,11,13,19]. This is probably due to the exposure of pro-carcinogenic agents as well as the compounding effects of cancer induced, and pharmacological administrated, immunosuppression.

Therefore there are various risk factors and clinical parameters that influence the development of post-transplant cancer. The next section will introduce some of these factors and the rationale behind why they are factors of risk.

IMMUNOSUPPRESSION TYPE

There are limited and conflicting data on the use of different types on immunosuppressive drugs and the associated cancer risks. The conflict mainly due to the multiple confounding factors associated to cancer, immunosuppressive drugs in particular have the dual capacity to suppress both anti-graft and anti-cancer immunity. The immunosuppressive drug types introduced in this section include; azathioprine (AZA), mycophenolate mofetil (MMF), calcineurin inhibitors (CNI), steroids and mammalian target of rapamycin inhibitors (mTORi). These immunosuppressants are rarely used in mono-therapies and are therefore hard to compare one another; instead modes of action and evidence for cancer development are presented.

AZA

AZA is catabolised to 6-mercaptopurine, which directly affects the synthesis of purines and has the ability to incorporate into DNA[25,26]. Lymphocytes rely heavily on de novo purine synthesis making AZA an effective immunosuppressant. AZA was originally used as an anti-cancer therapy however some cancers intrinsically have, or gain, purine scavenging and are, or become, resistant to AZA treatment[27]. When incorporated, the metabolite and the DNA form a complex that can block DNA repair, is photosensitive and produces reactive oxygen species (ROS) under UV exposure[25,27]. These work synergistically to affect DNA repair which form lesions[26,27]. One case-controlled study identified that AZA increased risk of developing SCC by 5-fold. However, in the same study calcineurin inhibitors (CNI) and steroids were also identified as risk factors[26].

MYCOPHENOLATE

MMF is a pro-drug of mycophenolic acid (MPA), which directly affects purine synthesis and is classified as an anti-proliferative drug[28]. The reaction of MPA is reversible and does not interfere with the DNA structure as AZA does[29]. One study showed a decrease photosensitivity when a cohort was randomised onto a MMF from AZA suppression regimen[30]. In another study comparing MMF to AZA usage in organ transplant recipients showed that the MMF group had a 27% adjusted risk reduction[31]. Conversely, a 3 group randomised control trial of 133 KTR; 45 KTR randomised to AZA treatment, 44 KTR randomised to 3 g daily of MMF and 44 KTR randomised to 3 g daily of MMF with no differences in cancer incidences between all three groups[32].
CALCINEURIN INHIBITORS
Cyclosporine A (CsA) forms a complex with cyclophilin which inhibits calcineurin, making CsA and CNI[33]. Calcineurin de-phosphorylates nuclear factor of activated T cells (NFAT), which translocates to the nucleus. It is in the nucleus where NFAT activates pro-inflammatory cytokines such as interleukin 2 (IL-2)[34]. Therefore CsA indirectly affects pro-inflammatory cytokine IL-2 transcription. An isotype of cyclophilin is expressed in the mitochondria which releases apoptotic signals under oxidative stress. CsA blocks this signal transduction and allows cells to by-pass apoptosis when under oxidative stress, including ROS and UV-damage, contributing to carcinogenesis[35,36]. Other tumorigenic side effects of CsA are direct or in-direct suppression of p53, production of transforming growth factor factor (TGF-β) and vascular endothelial growth factor (VEGF)[37-39].

When investigating this in the clinic, a retrospective analysis of 1000 KTR showed that KTR on CsA based regimens had greater cumulative incidence of tumours than those on an AZA based regimens[40]. In another retrospective study any regimen with CsA had an Odd Ratio of approximately 4.5[41]. Inversely, A CsA based mono-therapy was shown to be less carcinogenic than a MMF and prednisone dual-therapy[42-43]. Another CNI, tacrolimus (TAC), inhibits calcineurin by forming a complex with FK506-binding protein 12 (FKBP12) and outcompetes calmodulin therefore still inhibiting IL-2 transcription. TAC does not target cyclophilin, so avoids interference with the mitochondria that CsA has. In a retrospective study of 609 liver transplant patients, TAC had a higher incidence rate for de novo cancers than CsA[44]. However in most database analyses, TAC-based immunosuppressive regimens have either no significant difference or a reduced risk of cancer incidence and/or risk over CsA-based immunosuppression regimens[45-48].

CORTICOSTEROIDS
Corticosteroids are mainly utilised for treatment of autoimmunity, transplantation and rejection. Corticosteroids function by inhibiting transcription of IL-1, IL-2, IL-6, interferon (IFN)-γ and tumor necrosis factor (TNF)-α and transcription factors such as nuclear factor-κB[49-54]. Inhibition of these Th1 cytokines promotes a Th2 response, which provides another indirect immunosuppressive function[55]. Corticosteroids induce TGF-β and can increase the incidence of Kaposi’s sarcoma cell proliferation[56,57].

MAMMALIAN TARGET OF RAPAMYCIN INHIBITORS
Both Sirolimus (SIR) and Everolimus (EVO), like TAC, bind to FKBP12. However the formed complex inhibits mTOR’s via mTORC 1 subunit (Raptor) binding and are considered mTORi. mTORi can also be classified as anti-proliferatives as they induce apoptosis via p53 dependent and independent pathways. This and mTORi’s ability to prevent IL-2 signalling cause it to have both anti-cancer and anti-rejection properties. Additionally, mTORi affect protein synthesis, including VEGF which inhibits metastatic potential in murine models[58-59]. SIR has been used to treat patients with renal cell carcinoma (RCC) and EVO has shown to benefit patients with metastatic RCC who do not response to mainstream treatment[60-62]. Sirolimus Conversion from CNI based regimens, is beneficial in Kaposi sarcoma and SCC involution[63-66]. However it can often lead to increased adverse reactions and increases in rejection episodes if performed too early post-transplant[67,68].

ANTI-THYMOCYTE GLOBULIN INDUCTION THERAPY
Anti-thymocyte globulin (ATG) is either horse- or rabbit-derived antibodies directed against human T cells, given as an induction therapy of transplant recipients. The T cells that reconstitute have a regulatory phenotype and return much faster than other T cells[59]. There is an association with prolonged CD4 lymphopenia and ATG as well as CD4 lymphopenia and cancer[70]. Without knowing cause and effect it is speculative to say that ATG is associated with cancer.

Despite the various functions of immunosuppressive types each playing a role with cancer in KTR, overall immunosuppressive load or immunosuppressive dose can also have detrimental effects and promote cancer development.

IMMUNOSUPPRESSION DOSE
There is an association between immunosuppression dose and cancer incidence. KTR have 3-fold increased cancer risk compared to dialysis patients, in a retrospective registry based study[71]. Furthermore, heart transplant patients have higher levels of immunosuppression than KTR and also have corresponding increases in cancer (100% compared to 88% 5 year incidence, respectively[14]). Additionally, KTR randomised to a low dose CsA base regimen had reduced incidence of cancer following reduction, with the caveat that they had higher rejection rates[72].

IMMUNOSUPPRESSION DURATION
Maintained immunosuppression increases the risk of cancer over time which is evident in the steady increase in KTR that accrue cancer in the years post-transplant. Australian KTR SCC incidence is 20%, 50% and 80% at 5, 15 and 30 years post transplantation respectively[11,73]. Included in the duration of immunosuppression would be the age and aging of the KTR.
AGE AND GENDER

Age is a risk factor of cancer development, independent of immunosuppression duration\(^{[40]}\). This is exemplified in a retrospective study that showed both Age and male gender were risk factors\(^{[41]}\). When comparing KTR to the general population in an aged matched cohort of median age 39 years old, there was a 12-fold increased risk of developing non-skin cancers\(^{[4]}\). Age and gender can influence other parameters of cancer risk. This is particularly the case in Australia where certain, culturally male-orientated, jobs may involve higher exposure to UV radiation.

ULTRA-VIOLET RADIATION

It is evident that UV exposure increases the risk of skin cancer, including NMSC, by the observations recorded by clinicians of the locations of tumours. Cumulative sun exposure, including outdoor occupation, latitudinal residence and even childhood burning events all increase risk of post-transplantation cancer development\(^{[75-77]}\). These increases in carcinogenesis are in part to the aforementioned AZA-UV interactions but mainly via direct UV-related mutagenesis. Due to the structure of DNA, it absorbs of UV-A (315-400 nm) and UV-B light (280-315 nm), in doing so the DNA itself forms cyclobutane pyrimidine dimers in two adjacent pyrimidines of the same DNA strand, which alters the structure of DNA and restricts transcription\(^{[78,79]}\). A single point mutation can lead to transcriptional arrest\(^{[79]}\). A study found that invasive SCC contained mutations of the tumour suppressor gene P53\(^{[80]}\). An important conclusion from this study is that P53 mutation could have happened in childhood, as most UV exposure happens in childhood\(^{[81]}\).

In addition to direct DNA mutagenesis, UV exposure can also have local and systemic effects on the immune system. It is thought that the local effect involves antigen presenting cells (APC’s), including resident keratinocytes and Langerhans cells\(^{[82,83]}\). Whereas the systemic immunosuppression may come from splenic cells, migrated Langerhans cells, dendritic cells. Increased expression of IL-4, IL-10, prostaglandin E2, IL-1α and TNF-α with polarisation of immunity to a Th2 response also plays a role in systemic immunosuppression\(^{[83,84]}\). In combination with this, co-stimulation is effected on both APC and T cells\(^{[85]}\). Other cell types that are affected by UV irradiation are innate immune cells and suppressor cells\(^{[85-91]}\). Regulatory T cells (Tregs) that are induced by UV express lymph node homing molecule CD62L and may provide systemic immunosuppression\(^{[87,88]}\).

The DNA damage and immune suppression of UV can be reversed by IL-12 dependent induction of nucleotide excision repair protein\(^{[92]}\). Also immunity can be restored by the administration of IL-12\(^{[93]}\), activating APC’s, increasing IFN-γ and thus balancing Th1-Th2 polarisation\(^{[93,94]}\).

Other clinical parameters are associated with cancer risk that are also orientated by human behaviour, apart from UV exposure, are communicable diseases such as oncogenic viral infections that remain latent in the immune competent.

VIRAL INFECTION

Human papillomavirus (HPV) is a group of more than 150 viruses with some types associating with anogenital, oropharyngeal and skin cancers\(^{[95,96]}\). It has been speculated that HPV infection may prevent UV light-induced apoptosis\(^{[97]}\). Between 65% and 90% of SCC lesions from transplant recipients are positive for HPV DNA\(^{[98]}\).

Epstein barr virus (EBV) is associated with: sinonasal angiocentric T-cell lymphoma, Hodgkin lymphoma and nasopharyngeal carcinoma\(^{[99]}\). There are data that EBV associates with mononucleosis, Burkitt lymphoma and post-transplant lymphoproliferative disorder in KTR\(^{[99,100]}\).

Chronic Cytomegalovirus virus (CMV) infection can cause graft rejection, but with malignancy however it does have indirect associations with cancer\(^{[100]}\). A prospective study followed 63 KTR and retrospectively included 131 KTR, with convincing data that CMV positive KTR with increased γ T cell proportions, the Vi2\(^{[101]}\) sub-population in particular, had decreased cancer incidence\(^{[101]}\). This case-control study compared 18 short-term KTR (median 3 years post Tx), who developed 12 skin and 6 solid tumours over the prospective period and compared to 45 KTR who did not develop cancer. The skin nor solid organ tumour types were not disclosed.

IMMUNE PHENOTYPING

The association with cellular markers and cancer has been previously studied. The identification of immune cell populations and sub-populations in patient blood is called immune phenotyping. Measurement of CD4 T cells in 150 KTR revealed that KTR with skin cancer had 330 CD4 cells/μL of blood in comparison to KTR with no cancer who had 565 CD4 cells/μL (P < 0.01). Additionally KTR with cancer had non-significant increases in CD8 and CD19 lymphocytes\(^{[102]}\). Another study involving 250 KTR over a 10 year period showed a mean of CD4+ lymphocytes of < 600 CD4+ T cells/μL for those with cancer and > 700 CD4+ T cells/μL for those with no cancer, however there was no useful threshold found using receiver operator curve (ROC) analysis\(^{[103]}\). Additionally, CD8+ T cells and CD19+ B cells were also investigated in the same study; there was no difference between KTR with SCC when compared to KTR without SCC\(^{[104]}\). It was noted however, that immune phenotype was more pronounced in KTR with SOC compared to KTR with SCC: CD4 count: 234 cells/μL vs 543 cells/μL, P < 0.001; CD8: 328 cells/μL vs 640 cells/μL P = 0.10; CD19: 19 cells/μL vs 52 cells/μL, P < 0.001\(^{[104]}\). All these
studies showed an association with CD4 lymphopenia and cancer, however the majority of the cohorts underwent ATG induction therapy. However they did not define CD4+ subsets or other lymphocytes that may be affected by cancer.

While these studies provide some evidence that cancer may influence the peripheral immune cells, there was no investigation into sub-types of these cells, primarily because multi-parameter flow was not common place. Recently, it was reported that high numbers of CD4+ Regulatory T cells (Tregs, i.e., CD4+FOXP3+CD127loCD25hi) and low numbers of Natural Killer (NK cells, i.e., CD56+CD16–), in peripheral blood associated with and predicted recurrent SCC in KTR[105]. This study also showed an increase in CD8+CD28+. These CD8 T cells co-localise with Tregs within cancer tissue and have been shown to be suppressive from patients with cancer, and therefore abbreviated to CD8+Tsups[106]. Furthermore, there was a decrease in CD8+CD45RA+CD62L– CD8 central memory T cells (CD8+Tcm), which has been shown to decrease in KTR using the corticoid steroid prednisolone, despite cancer status[100]. This indicates that immunosuppression may affect immune phenotype and warrants investigation.

Operationally tolerant organ transplant recipients have increases in Regulatory T cells, B cells (particular naïve B cells), Vi61 γδ T cells and decreases in CD3+ proportions (B:T ratio), NK cells, Vi62 γδ T cells within their peripheral blood[107]. Transplant patients have increased Regulatory T cells, B cells (memory B cells), CD8– γδ T cells and CD8+ CD27 CD28– T cells and decreases in CD4 counts, NK cells and CD8+Tcm[105,108].

REGULATORY T CELLS (TREGS)

Immune suppressor cell existence has been debated from the early 1970’s through to the mid 1990’s[109-112]. The pivotal paper adoptively transferred CD4+CD25+ T cells in CD25 depleted mice, which mitigated the autoimmune diseases that manifested[112]. However, CD25 is also expressed on activated lymphocytes with only the highest proportion being suppressive in vitro via competitive absorption of IL-2[112-115]. The discovery and transfection of the transcription factor forkhead box protein 3 (FOXP3) into naïve T cells helped identify FOXP3 and its function as the master regulatory gene[116,117] and CD127 inversely expression to FOXP3 expression has given Tregs the current phenotype CD4+FOXP3+CD25hiCD127lo[114].

Tregs are required in a healthy immune system to maintain self-tolerance and immune homeostasis during immune reactions, pregnancy and disease. Uncontrolled immune reactions and organ failure result when mutations in FOXP3 occur, as observed in the scurfy mouse models and similarly Immunodysregulation, Polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome observed in humans[118-120]. Both IPEX and X-linked Autoimmune-Allergic Dysregulation syndrome cause multi-organ failure due to mass lymphocyte proliferation of self-reactive effector cells[115].

CD4+ TREG SUBSETS

The CD4+ Treg in the periphery, defined by FOXP3+CD25+CD127lo, contain two subsets: those that originate from the thymus, known as natural Tregs (nTregs), and those that are induced in the periphery, known as induced Tregs[121]. The Ikaros family transcription factor, Helios is expressed in 100% of all CD4+FOXP3+ thymocytes of mice and approximately 70% of Tregs in the periphery of both mice and humans[122]. Though the premise that Helios only defines nTreg is currently under debate, nonetheless, it may provide evidence of in vivo activated Tregs[101,123]. Despite the debate it seems that KTR with cancer have similar Helios expression than KTR without cancer[108].

TREG MODES OF ACTION

Treg apoptosis induction requires cell contact with co-stimulatory molecule Cytotoxic T cell Late Antigen-4, Fas/Fas ligand interaction and release of Perforin and Granzyme B[124-126]. Indirectly, Tregs can down-regulate B7 Co-stimulation molecules CD80/CD86 on APC[127]. In addition, prostaglandin E2 (PGE2) excreted by Tregs, mediates expression of indoleamine 2,3-dioxygenase in APCs causing tryptophan starvation and leading to impaired lymphocyte proliferation[128]. Another form of suppression is the formation of localised adenosine by cleaving phosphate groups from ATP, ADP and AMP by ecto-NTPDase-1 (CD39) and ecto-5’-nucleotidase (CD73) cell surface enzymes[129]. Expression of CD39 and CD73 has been shown on murine and human Tregs[129]. Human Tregs also may work in concert with other CD73 expressing cells to elicit a regulatory response. Adenosine has been shown to act via Adenosine receptors (A1, A2a, A2b and/or A3), with A2a receptor being the dominate receptor on effector cells[130,131]. The adenosine formed by the hydrolysis of ATP can regulate lymphocyte proliferation in autoimmune disease, transplantation and cancers[132-134]. Additionally, it has been shown that adenosine and PGE2 in Tregs co-operate when regulating immune responses[133]. Other regulatory cells are CD4+ helpers that have suppressive function are classified by the ability to secret of IL-10 (Tr1) and TGF-β (Th3) which they are also induced by, respectively.

TREGS IN VIRAL INFECTIONS

EBV antigen specific Tregs, mainly IL-10 secreting Tr1 and recruited nTregs, can inhibit the EBV-specific immunity permissive in tumour progression[100,130]. Thus reduction in Tregs may be beneficial in treatment of chronic viruses. Interestingly, Treg depletion in a herpes simplex virus (HSV) mouse model decreased paralysis onset, indicating that Tregs have an early role in protective immunity to HSV infection, similarly observed...
in Lymphocytic Choriomeningitis virus mouse model, shown in the same study\(^{136}\).

TREGS AND TRANSPLANTATION

In regards to transplantation, when isolated CD4\(^+\)CD25\(^+\) cells are administered to BLABc nu/nu mice grafted with C57BL/6 skin there is a swifter rejection rate than administering untouched lymphocytes of the same source\(^{112}\). This indicates CD4\(^+\)CD25\(^+\) T cell subpopulation has greater cytotoxicity when absent from CD4\(^+\)CD25\(^+\) T cells and that CD4\(^+\)CD25\(^+\) T cells are possible inducers of tolerance.

In KTR, Tregs can differ in accordance with the situation of the patient. Two different studies on clinically tolerant, chronic rejection, stable, minimally suppressed KTR and healthy controls, showed tolerant KTR and minimally suppressed KTR had similar CD4\(^+\)CD25\(^+\)FOXP3\(^+\) and CD4\(^+\)CD25\(^-\) cells with similar FOXP3 transcription levels when compared to the healthy controls\(^{137,138}\) and that chronically rejecting KTR had lower CD4\(^+\)CD25\(^+\) cells with low FOXP3 transcripts, indicating that Tregs may be protective or involved with tolerance\(^{137,138}\). An additional study supported this in liver transplant recipients which showed increased FOXP3 mRNA expression in CD4\(^+\)CD25\(^+\) T cells of tolerant patients compared to patients who had rejection episodes after cessation of immunosuppression\(^{139}\). Thus induction of Tregs for suppression of allograft cellular rejection episodes\(^{140}\) and possible induction of tolerance\(^{141}\) seem like an attractive substitute to immunosuppression. However Tregs that co-express CD25 and CD39 have been denoted as a memory subtype of Treg (mTreg) and are associated with cellular rejection episodes\(^{142}\) in KTR. Increases in Tregs are also associated with cancer in the general population\(^{143}\) and KTR\(^{105}\).

TREGS IN CANCER AND IMMUNE SURVEILLANCE

It has been shown that the percentage of CD4\(^+\)CD25\(^hi\)-FOXP3\(^+\) Tregs and Tr1 cells are increased in Head and Neck Squamous Cell Carcinoma (HNSSC) patients in comparison to healthy controls\(^{144,145}\). Ectonucleotidase activity contributed by CD39 and CD73 is also increased on Tregs in this cohort\(^{133}\). CD39 has been shown to down-regulate IL-17 production, decreasing Th-17 cell lineage. This particular Treg subtype, in the same study, has been shown to be down-regulated in autoimmune Multiple Sclerosis\(^{132}\). It has been shown that high levels of Treg in HNSSC patients from the general population associate with a poor prognosis\(^{146-148}\).

Cancers and Tregs not only have commonalities between each other but they also promote each other. TGF-\(\beta\) and IL-10 secretions from tumours activate Th3 and Tr1 regulatory cells respectively, consequently regulating surrounding cancer cytotoxic lymphocytes\(^{142}\). Also tumour cells recruit Tregs with a series of chemokines such as C-X-C Ligand 12 and C-C motif 20 and 22 (CCL20/22)\(^{100}\). CD39 and CD73 have been shown to be expressed on Tr1 and tumour cells alike\(^{126,149}\). Cancer progresses by the tumours’ ability to secrete these soluble factors into its microenvironment. PGE2 is a product of Cyclooxygenase 2 (COX-2) and is involved in aiding immune escape. COX-2 is expressed on Tr1 and over-expressed on cancer cells\(^{146,150,151}\).

In a post-transplant cancer setting, it has been shown that Tregs (CD4\(^+\)FOXP3\(^+\)CD25\(^+\)CD127\(^lo\)) in blood from KTR with a history of SCC can predict the risk of developing a subsequent SCC lesion\(^{105}\). Another study has shown that Tregs alone can predict cancer onset and associate to the severity of the cancer developed\(^{108}\). In this same study Hope et al\(^{108}\) shows prospectively that Tregs increase in KTR when the cancer becomes apparent and then decreases post-resection of tumour tissue.

NK CELLS IN CANCER AND IMMUNE SURVEILLANCE

Carroll et al\(^{152}\) revealed that NK cells, which have cytolytic ability to kill cancerous and pre-cancerous cells, are decreased in KTR with cancer. NK cells are a part of the innate immune system that identify abnormal cells and supply the signals to undergo apoptosis thus “killing” abnormal cells. The identification process involves Major Histo-incompatibility Complex (MHC) class I down regulation, which some viruses and cancerous cells adopted to avoid the adaptive immune system\(^{153}\). It is an important step in metastatic cells to successfully invade the host\(^{154}\). Once the cell has been identified the NK cell only activates if there is an imbalance of CD94: NKG2A and the killer-cell immunoglobulin-like receptors (KIR) family. Once activated internal granules locate to the synapse that is created between the NK cell and target cell\(^{152}\). During the effector stage the granules are released out of the NK cell and into the synapse and onto the target cell. These proteins include Perforin, granzyme A and B. It is these proteins that play their role in the killer phase of NK cells\(^{155}\). Perforin creates pores in the membrane that granzyme B can enter and activate the caspase kinase pathway and cause the target cell to undergo apoptosis\(^{155}\). This cytotoxic ability to kill cancer cells can be inhibited by Tregs but also cancer cells themselves\(^{156,157}\). This NK-Treg interaction is a TGF-\(\beta\)- and cell-cell contact mechanism of down-regulation NKG2D and induction of apoptosis, respectively\(^{158,159}\). This leads to decreased NK cell numbers and function in the peripheral blood of cancer patients that have elevated TGF-\(\beta\)\(^{160,161}\). There are two other types of NK cells: those that express CD1-d restricted T cell receptor, NK T cells and those that lack Fc receptor CD16 and over express CD56, CD56\(^hi\) NK cells\(^{162,164}\). Both these cells can interact with the adaptive immune system and enhance
anti-tumour ability by direct and indirect mechanism respectively[162,164].

CD8 SUBSETS IN CANCER AND IMMUNE SURVEILLANCE

Another cell type with anti-tumour properties is CD8+ cytotoxic T lymphocytes (CTL). CD8+ CTL are in the effector arm of the adaptive immune system. CTLs use the ability to lyse tumour cells using Fas-Fas ligand as well as perforin-IFN-γ granules similar to NK cells[155]. It has been shown that antigen specific CTL are defective in cancer patients and that removal of Tregs can restore cytolytic function[166-168].

NK cells are large granular lymphocytes that lack T cell membrane receptors for class I MHC molecules (perforin, TNF-α, granzymes and interferons) but makes the cells more sensitive to NK and innate immune responses[187]. Once an NK cell identifies this type II transmembrane glycoprotein CD69 and other transmembrane glycoprotein CD69 and other protein 1 (CD107a) is exposed on the surface of the NK cell membrane through which granzyme B can enter the target cell and initiate apoptosis[154]. The released perforin creates pores in the target cell membrane allowing the effector stage to proceed and the effector synapse to form[155]. The released perforin creates pores in the target cell membrane allowing the effector stage to proceed and the effector synapse to form[155].

IMMUNE CELL FUNCTIONS

Kidney transplant recipients (KTR) with cancer have increased numbers and proportions of Regulatory T cells (Tregs) and decreased numbers and proportions of NK cells[165,168]. However, the immune system's effectiveness cannot be gauged by cell numbers and proportions alone; this chapter investigates the immune function of KTR with cancer.

It has been shown that Tregs isolated from tumour tissue and the peripheral blood of KTR with cancer have higher suppressive function than Tregs from the blood of normal donors[145,175,176]. Importantly, the stage and grade of HNSCC are associated with greater numbers and greater suppression capacity of the Tregs on a cell-per-cell basis than healthy controls[177] and, as such, also associate with poor cancer prognosis in the general population[176].

CD4 and CD8 T cells follow an immunogenic pathway to immune senescence. T cells exiting the thymus are naive since they express both CD27 and CD28 co-stimulation molecules and home to the lymphoid organs[169,170]. When antigen is presented they become CTL, clear the threat, and the majority apoptose with the minority homing to lymphoid organs as central memory T cells or extra-lymphoid sites as effector memory T cells[169,170]. Upon subsequent exposures the cells become exhausted and lose expression of co-stimulation molecules and are termed T effector memory CD45RA+ or TemRA cells[169,171]. These cells are loosely phenotyped as CD8+ CD28- and shown to be regulatory in cancer patients and may associate with poor prognosis[108]. Tumours themselves may induce this loss of CD28[156,172] and they are also expanded in patients with CMV infection[173]. It has been shown that Memory T cells and (NK cells have anti-tumorigenic properties and that Tregs regulate both of these lymphocyte subsets[158,174]. Thus, an excess of Tregs is associated with poor prognosis in cancer and is thought to aid cancer cells evade this immune surveillance.
vitro assays, NK cells undergo apoptosis when they are exhausted from their last kill. Recently, it has been shown that the loss of NK cells from an in vitro assay with a set number of NK cells, can relate to the amount of target cells killed. This loss has been termed “target induced NK cell loss” (TINKL). These two assays have been chosen for clinical application. LDH is a single platform, self-contained, non-radioactive, sensitive assay that can be used in any laboratory. TINKL is a flow-based assay that can be readily implemented in clinical flow laboratories.

It is widely accepted that NK cell function is decreased in cancer patients however it is not reported if KTR with cancer have further reduced NK cell function. The effect immunosuppression has on NK cells have been investigated both in vitro and in vivo. Immunosuppressive drugs: AZA, MMF, CNI, and pre-dnisolone all have individual effects. These effects depend on the how the NK cells are stimulated and how NK function is measured. One particular study showed only a decrease in NK function in short term KTR compared to healthy controls, which was not observed in long term KTR. Both IFN-γ and CD107a expression have been shown to decrease when NK cells were co-cultured in the presence of clinically relevant concentrations of a variety of immunosuppressive drugs.

TREATMENT OPTIONS FOR KTR WITH CANCER

The aforementioned assays give clinicians the ability to objectively identify patients that may develop pre-metastatic cancer with relatively high sensitivity and specificity. However they do not inform clinicians if KTR will benefit from cancer prevention therapy.

A randomised control trial randomised pre-transplant KTR to a standard level CNI regimen and a CNI sparing regimen, thus investigating the benefit of reduced immunosuppression as primary cancer prevention. However, those with reduced CNI had increases in rejection episodes. Other studies investigated converting CNI based regimens to mTORi based regimens as secondary prevention therapy, as mTORi are used as anti-cancer therapies. There was a benefit, however not all conversions were successful (30%) and an additional 30% did not tolerate the mTORi side effects. Furthermore, immune phenotype has revealed that those who maintain high levels of Tregs after mTORi conversion (> 20 Tregs/μL) do not benefit from conversion and may benefit from immunosuppressive drug reduction. To perform immunosuppressive drug reduction as secondary cancer prevention, risk of graft rejection will need to be measurable.

Pre-transplant anti-Human Leukocyte Antigen (HLA) and IFN-γ ELISPOT associate post-transplant with antibody and cellular mediated rejection episodes. Monitoring HLA molecules and Donor Specific Antibodies (DSA) routinely has decreased antibody mediated rejection episodes dramatically. IFN-γ ELISPOT has been used to predict 6-mo graft function and rejection episodes. Additionally it has been used pre-transplant to categorise patients into CNI or mTORi maintenance therapy. These studies are limited in clinical application as donor specific cells were used to stimulate the mixed lymphocyte reactions, requiring use of precious or non-existent deceased donor material. This restricts the utility of ELISPOT to live recipient/donor pairs. An IFN-γ ELISPOT assay has been developed that utilises a variety of unrelated HLA disparate material to measure total allo-response and is termed “Panel of Reactive T cells”. This assay has been shown to have potential to determine post-transplant risk of rejection when measured pre-transplant. However there are no current studies utilising IFN-γ post-transplant as a form of rejection prediction in long-term KTR.

The IFN-γ ELISPOT may be extended to guide immunosuppression reductions. There are a few studies using a viral peptide stimulated IFN-γ ELISPOT to discriminate KTR who may benefit from reduced immunosuppressive drugs as a form of treatment. KTR with unresolved BK pathogenesis also had a non-significant decrease in EBV peptide and phytohaemagglutinin mitogenic IFN-γ ELISPOT responses. This may share a link with development of malignancy as they are both considered manifestations of over-immunosuppression.

When KTR have a cancerous lesion, surgical resection is the recommended treatment. There are no randomised control trials investigating the effect of tumour resection and minimal evidence of benefit in KTR when reducing immunosuppression. However, treatment in the general population is associated with a decrease in Tregs. Failure of Tregs to fall after tumour excision, chemo or immunotherapy is due to incomplete resection or predicted relapse of disease.

When switching or reducing immunosuppression, adequate precautions must be used. Currently there are no assays that reliably determine cancer risk although there is an immune phenotype that can predict time to next tumour in KTR with a history of SCC. CNI avoidance or reduction results in increases of rejection; one way to potentially avoid these rejection episodes is to identify those KTR with cancer who have evidence of a potential alloresponse and exclude them from dose reduction. In order to reduce immunosuppression safely, both the cellular and humoral alloresponses need to be assessed.

PRE-TREATMENT ALLORESPONSE MEASURES

Assessment of allo-responses would be needed to assess risk of rejection episodes for it to be possible to reduce immunosuppression. Currently cytokines and HLA antibodies can be measured by Enzyme Linked Immuno SPOT (ELISPOT) and Luminex technologies respectively. Inflammatory cytokines such as IFN-γ are secreted by Th1 effector T cells and are a predictor of
acute rejection and infection\cite{200,204}. A National Institute of Health funded Clinical Trials in Organ Transplant consortium approved ELISPOT has been able to detect 6-mo post-transplant acute rejection in pre-transplant patients\cite{211,212}. Additionally a similar assay has been used to run CNI avoidance maintenance therapy with a 3-fold reduction in acute rejection as shown in literature\cite{203}. The humoral aspect of the immune system is already routinely assessed in most transplant programmes by solid phase alloantibody detection systems\cite{202}. HLA DSA are clinically relevant and observed DSA presence has informed clinicians to alter immunosuppression regime of patients\cite{109,201}. However both these techniques have not been measured in long-term kidney transplant recipients with a history of cancer.

CONCLUSION

Long-term immunosuppression increases the risk of cancer development. The dose of immunosuppression can be increased by closely monitoring graft function and survival. In this review we present that there are several emerging immune monitoring tools that are available to potentially help reduce immunosuppression. Future studies may be undertaken to determine if these assays can help identify those at risk of cancer development and if reduction of immunosuppression is of benefit.

REFERENCES

1. Dantal J, Pohanka E. Malignancies in renal transplantation: an unmet medical need. Nephrol Dial Transplant 2007; 22 Suppl 1: i4-i10 [PMID: 17456618 DOI: 10.1093/ndt/gfm085]
2. Kasiske BL, Snyder JJ, Catney D, Donnelly D, Autier P, Boniol M, Fox C, Middleton RJ, Dolan OM, Gavin AT. Second primary cancers in patients with skin cancer: a population-based study in Northern Ireland. Br J Cancer 2009; 100: 174-177 [PMID: 19127269 DOI: 10.1038/sj.bjc.6604842]
3. Wisgerhof HC, Edelbroek JR, de Fijter JW, Haasnoot GW, Claas FH, Willemze R, Bavinck JN. Subsequent squamous- and basal-cell carcinomas in kidney-transplant recipients after the first skin cancer: cumulative incidence and risk factors. Transplantation 2010; 89: 1231-1238 [PMID: 20410852 DOI: 10.1097/TP.0b013e3181d84c4c]
4. Euwvard S, Kantakis J, Decullier E, Butnaru AC, Lefrançois N, Boissonnat P, Sebag L, Garnier JL, Poutille-Noble C, Cahen R, Morelon E, Touraine JL, Clauvy A, Chapuis F. Subsequent skin cancers in kidney and heart transplant recipients after the first squamous cell carcinoma. Transplantation 2006; 81: 1093-1100 [PMID: 16641592 DOI: 10.1097/01.tp.0000209921.60305.d9]
5. Linderlöf B, Sigurgeirsson B, Gibel H, Stern RS. Incidence of skin cancer in 5356 patients following organ transplantation. Br J Dermatol 2000; 143: 513-519 [PMID: 10971322]
6. Johnson TM, Rowe DE, Nelson BR, Swanson NA. Squamous cell carcinoma of the skin (excluding lip and oral mucosa). J Am Acad Dermatol 1992; 26: 467-484 [PMID: 1564155]
7. Rowe DE, Carroll RJ, Day CL. Prognostic factors for local recurrence, metastasis, and survival rates in squamous cell carcinoma of the skin, ear, and lip. Implications for treatment modality selection. J Am Acad Dermatol 1992; 26: 976-990 [PMID: 1607418]
8. Peat B, Insole P, Ayers R. Risk stratification for metastasis from cutaneous squamous cell carcinoma of the head and neck. ANZ J Surg 2012; 82: 230-233 [PMID: 22551079 DOI: 10.1111/j.1445-2197.2011.05944.x]
9. Brantsch KD, Meisner C, Schönfisch B, Trilling B, Wehner-Caroli J, Röcken M, Breuniger H. Analysis of risk factors determining prognosis of cutaneous-squamous-cell carcinoma: a prospective study. Lancet Oncol 2008; 9: 713-720 [PMID: 18617440 DOI: 10.1016/s1470-2045(08)70178-5]
10. Lott DG, Manz R, Koch C, Lorenz RR. Aggressive behavior of nonmelanotic skin cancers in solid organ transplant recipients. Transplantation 2010; 90: 683-687 [PMID: 20808266 DOI: 10.1097/TP.0b013e3181fed728]
11. Streams BN, Eaton JS, Zelac DE. Perineural spread of squamous cell carcinoma involving the spinal accessory nerve in an immunocompromised organ transplant recipient. Dermatol Surg 2005; 31: 599-601 [PMID: 15692752]
12. Buell JF, Hanaway MJ, Thomas M, Alloway RR, Woodle ES. Skin cancer following transplantation in the Israel Penn International Transplant Tumor Registry experience. Transplant Proc 2005; 37: 962-963 [PMID: 15848591 DOI: 10.1016/j.transproceed.2004.12.062]
13. Mackenzie KA, Wells JE, Lynn KL, Simcock JW, Robinson BA, Roake JA, Currie MJ. First and subsequent nonmelanoma skin cancers: incidence and predictors in a population of New Zealand renal transplant recipients. Nephrol Dial Transplant 2010; 25: 300-306 [PMID: 19783601 DOI: 10.1093/ndt/gfp482]
14. Moloney FJ, Kelly PO, Kay EW, Conlon P, Murphy GM. Maintenance versus reduction of immunosuppression in renal transplant recipients with aggressive squamous cell carcinoma. Dermatol Surg 2004; 30: 674-678 [PMID: 15061854 DOI: 10.1111/j.1524-7275.2004.00155.x]
15. O’Donovan P, Perrett CM, Zhang X, Montener B, Xu YZ, Harwood CA, McGregor JM, Walker SL, Hanaoka F, Karran P.
Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science 2005; 309: 1871-1874 [PMID: 16166520]

Zhang X, Jeffs G, Ren X, O’Donovan P, Montaner B, Perrett CM, Karran P, Xu YZ. Novel DNA lesions generated by the interaction of therapeutic thiopurines and UVA light. DNA Repair (Amst) 2007; 6: 344-354 [PMID: 17188583 DOI: 10.1016/j.dnarep.2006.11.003]

Guerrero JR, Choi J, Frith D, girlfriend C. Prophylaxis of DNA repair and replication proteins to DNA in cells treated with 6-thioguanine and UVA. Nucleic Acids Res 2011; 39: 5057-5066 [PMID: 21938835 DOI: 10.1093/nar/gk1216]

Ingvar A, Smalley KE, Lindelöf B, Fernberg R, Bellocco R, Tuulivon G, Hjörgul P, Adamo J. Immunosuppressive treatment after organ transplantation and risk of post-transplant cutaneous squamous cell carcinoma. Nephrol Dial Transplant 2010; 25: 2764-2771 [DOI: 10.1093/ndt/gfp425]

Allison AC, Eugui EM. Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation 2005; 80: S181-S190 [PMID: 16251851]

Hofbauer GF, Attard NR, Harwood CA, McGregor JM, Dzianycz P, lotova-Weiss G, Straub G, Mayer R, Karmisch Y, Berneburg M, French LE, Wüthrich RP, Karran P, Serra AL. Reversal of UVA skin photosensitivity and DNA damage in kidney transplant recipients by replacing azathioprine. Am J Transplant 2012; 12: 218-225 [PMID: 21943390 DOI: 10.1111/j.1600-6143.2011.03751.x]

O’Neill JO, Edwards LB, Taylor DO. Mycophenolate mofetil and risk of developing malignancy after orthotopic heart transplantation: analysis of the transplant registry of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2006; 25: 1186-1191 [PMID: 17045930 DOI: 10.1016/j.healun.2006.06.010]

Clayton PA, McDonald SP, Chapman JR, Chadban SJ. Mycophenolate versus azathioprine for kidney transplantation: a 15-year follow-up of a randomized trial. Transplantation 2012; 94: 152-158 [PMID: 22728292 DOI: 10.1097/TP.0b013e31825475a3]

Walsh CT, Zydowsky LD, McKeon FD. Cyclosporin A, the cyclophilin class of peptidylprolyl isomerases, and blockade of T cell immunosuppression with measures of NFAT decreases cancer incidence. Clin Transplant 2009; 23: 530-534 [PMID: 19991523 DOI: 10.1111/j.1600-6143.2009.03530.x]

Wimmer CD, Angel MK, Schwarz B, Pratschke S, Rentsch K, Mhangoa A, Guba M, Jauch KW, Bruns C, Graeb C. Impact of cyclosporine versus tacrolimus on the incidence of de novo malignancy following liver transplantation: a single center experience with 609 patients. Transpl Int 2013; 26: 999-1006 [PMID: 23952102 DOI: 10.1111/tci.12165]

Opele G, Döhler B. Lymphomas after solid organ transplantation: a collaborative transplant study report. Am J Transplant 2004; 4: 222-230 [PMID: 1490443]

Mayer AD, Dmitrowski J, Squifflet JP, Besse T, Graebner B, Klein L, Eigler FW, Heumann U, Pascual J, Tato AM, Teruel JL, Villafuerra JJ, Fernández J, Pascual JM, Tenorio M, Burgos FJ, Ortuño J. Influence of immunosuppression regimens on the prevalence of cancer after kidney transplantation. Transplant Proc 2003; 35: 1714-1716 [PMID: 12962768]

About Ayache R, Thierry A, Bridoux F, Bauwens M, Belmouaz M, Desport E, Touchard G. Long-term maintenance of calcineurin inhibitor monotherapy reduces the risk for squamous cell carcinomas after kidney transplantation compared with bi- or triple therapy. Transplant Proc 2007; 39: 2592-2594 [PMID: 17954158 DOI: 10.1016/j.transproceed.2007.08.016]

Giese T, Sommerer C, Zeier M, Meuer S. Monitoring immuno- suppressive measures with measures of NFAT decreases cancer incidence. Clin Immunol 2009; 132: 305-311 [PMID: 19398376 DOI: 10.1016/j.clim.2009.03.520]

Mycophenolate versus azathioprine for kidney transplantation: a report of the United States FK506 Study Group. Transplantation 1997; 64: 436-443 [PMID: 9275110]

Pirsch JD, Miller J, Deierhoi MH, Vincenti F, Filo RS. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group. Transplantation 1997; 63: 977-983 [PMID: 9112351]

Wiesner RH. A long-term comparison of tacrolimus (FK506) versus cyclosporine in liver transplantation: a report of the United States FK506 Multicenter Renal Study Group. Transplantation 1998; 66; 493-499 [PMID: 9734494]

Kleinhert N, Euckenhofer C, Iriog-Biedert I, Förstermann U. Glucocorticoids inhibit the induction of nitric oxide synthase II by down-regulating cytokine-induced activity of transcription factor nuclear factor-kappa B. Mol Pharmacol 2001; 94: 381-388 [PMID: 11359466]
57 Trattner A, Hodak E, David M, Sandbank M. The appearance of Kaposi sarcoma during corticosteroid therapy. *Cancer* 1993; 72: 1779-1783 [PMID: 8348508]

58 Bausbach CC, Wancio SN, Sehgal SN. Sirolimus (rapamycin) inhibits mitogen-induced stimulation of protein synthesis in primary lymphocytes. *Inflamm Res* 1995; 44 Suppl 2: S179-S180 [PMID: 8548386]

59 Luán FL, Ding R, Sharma VK, Chon WJ, Lagnman M, Suthanthiran M. Rapamycin is an effective inhibitor of human renal cancer metastasis. *Kidney Int* 2003; 63: 917-926 [PMID: 12631072 DOI: 10.1046/j.1523-1755.2003.00805.x]

60 Hudes G. Targeting mTOR in renal cell carcinoma. *Cancer* 2009; 115: 2313-2320 [PMID: 19402072]

61 Calvo E, Escudier B, Motzer RJ, Oudard S, Hutson TE, Porta P, Patel D, Choi BS. Contrasting structural impacts of sirolimus (rapamycin) and cyclosporine A on mTOR pathway in cultured tumor cells. *Clin Transplant* 2008; 22: 152-159 [PMID: 18624731 DOI: 10.1111/j.1399-0036.2008.00617.x]

62 van den Eertwegh AJ, Karakiewicz P, Baveks S, Rhv RA, Brada S, Bahr A, Ou YC, Kimmitt A, Grünwald V, Thompson JA, Ravaud A, Kim D, Panneerselvam A, Anak O, Figlin RA. Everolimus in metastatic renal cell carcinoma: Subgroup analysis of patients with 1 or 2 previous vascular endothelial growth factor receptor-tyrosine kinase inhibitor therapies enrolled in the phase III RECORD-1 study. *Eur J Cancer* 2014; 50: 33-39 [PMID: 22290931 DOI: 10.1016/j.ejca.2011.11.027]

63 Alberú J, Pascoe MD, Campistol JM, Stoffel F, Rial M, Polinsky M, Neylan JF, Korth-Bradley J, Goldberg-Alberts R, Maller ES. Lower malignancy rates in renal allograft recipients converted to sirolimus-based, calcineurin inhibitor-free immunotherapy: 24-month results from the CONVERT trial. *Transplantation* 2011; 92: 303-310 [PMID: 21792049 DOI: 10.1097/TP.0b013e31822474a2]

64 Campistol JM, Eris J, Oberbauer R, Friend P, Hutchinson B, Morales JM, Claesson K, Stallone G, Russ G, Rostaing L, Kreis H, Burke JT, Brault Y, Scarola JA, Neylan JF. Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. *J Am Soc Nephrol* 2006; 17: 581-589 [PMID: 16434506 DOI: 10.1681/ASN.2005090993]

65 Mathew T, Kreis H, Friend P. Two-year incidence of malignancy in sirolimus-treated renal transplant recipients: results from five multicenter studies. *Clin Transplant* 2004; 18: 446-449 [PMID: 15233824 DOI: 10.1111/j.1399-0012.2004.00188.x]

66 Cibrik D, Silva HT, Vathsala A, Lackova E, Cornu-Artis C, Walker MG, Wang Z, Zibari GB, Shihab F, Kim YS. Randomized trial of everolimus in sirolimus-treated renal transplant recipients: results from five centers. *Am J Transplant* 2009; 9: 143-149 [PMID: 19942027 DOI: 10.1111/j.1600-6143.2008.02753.x]

67 Mörner A, Frisell J, Lyngfeldt E, Bäck E, Kärholm J, Huvos AG, Bostrom A, Axelsson J, Ekbom A. Increased risk of cancer in renal transplant recipients on cancer incidence: randomised comparison of two cyclosporin regimens. *Lancet* 1998; 351: 623-628 [PMID: 9500317 DOI: 10.1016/S0140-6736(97)08496-1]

68 Ramsay HM, Fryer AA, Hawley CM, Smith AG, Harden PN. Non-melanoma skin cancer risk in the Queensland renal transplant population. *Br J Dermatol* 2002; 147: 956-959 [PMID: 12410706 DOI: 10.1111/j.1365-2362.2001.tb11818.x]

69 Kessler M, Jay N, Mollé R, Guillemín F. Excess risk of cancer in renal transplant patients. *Transpl Int* 2006; 19: 908-914 [PMID: 17018126 DOI: 10.1111/j.1399-0695.2006.00383.x]

70 Ramsay HM, Fryer AA, Reece S, Smith AG, Harden PN. Clinical risk factors associated with nonmelanoma skin cancer in renal transplant recipients. *Am J Kidney Dis* 2000; 36: 167-176 [PMID: 10873887 DOI: 10.1053/ajkd.2000.8290]

71 Urwin HR, Jones PW, Harden PN, Ramsay HM, Hawley CM, Nicol DL, Fryer AA. Predicting risk of nonmelanoma skin cancer in renal transplant patients. *Transplantation* 2009; 87: 1667-1671 [PMID: 19502958 DOI: 10.1097/TP.0b013e3181a5e2e2]

72 Ramsay HM, Fryer AA, Hawley CM, Smith AG, Nicol DL, Harden PN. Factors associated with nonmelanoma skin cancer following renal transplantation in Queensland, Australia. *J Am Acad Dermatol* 2003; 49: 397-406 [PMID: 12963901 DOI: 10.1016/j.jaad.2006.03.047]

73 Kim JK, Patel D, Choi JS. Contrasting structural impacts induced by cis-syn cyclobutane dimer and (6-4) adduct in DNA duplex decamers: implication in mutagenesis and repair activity. *Photochem Photobiol* 1995; 62: 44-50 [PMID: 7638271]

74 Donahue BA, Yin S, Taylor JS, Reines D, Hanawalt PC. Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. *Proc Natl Acad Sci USA* 1994; 91: 8502-8506 [PMID: 8079811]

75 Brash DE, Rudolph JA, Simon JA, Lin A, McKenzie GJ, Baden HP, Halperin AJ, Pontén J, A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. *Proc Natl Acad Sci USA* 1991; 88: 10124-10128 [PMID: 1946433]

76 Marks R, Jolley D, Lectsas S, Foley P. The role of childhood exposure to sunlight in the development of solar keratoses and non-melanocytic skin cancer. *Med J Aust* 1990; 152: 62-66 [PMID: 2296323]

77 el-2004; AA, Norval M. A monoclonal antibody to cis-urocanic acid prevents the ultraviolet-induced changes in Langerhans cells and delayed hypersensitivity responses in mice, although not preventing dendritic cell accumulation in lymph nodes draining the site of irradiation and contact hypersensitivity responses. *J Invest Dermatol* 1995; 105: 264-268 [PMID: 7636311]

78 Rivas JM, Ullrich SE. The role of IL-4, IL-10, and TNF-alpha in the immune suppression induced by ultraviolet radiation. *J Leukoc Biol* 1994; 56: 769-775 [PMID: 7996051]

79 Chung AT, Burnham DK, Robertson B, Roberts UK, Daynes RA. Involvement of prostaglandins in the immune alterations caused by the exposure of mice to ultraviolet radiation. *J Immunol* 1986; 137: 2478-2484 [PMID: 3463622]

80 Garish MF, Lynch DH, Daynes RA. Changes in antigen-presenting cell function in the spleen and lymph nodes of ultraviolet-irradiated mice. *Transplantation* 1982; 33: 280-284 [PMID: 6977903]

81 Ulrich SE. Modulation of immunity by ultraviolet radiation: key effects on antigen presentation. *J Invest Dermatol* 1995; 105: 305-365 [PMID: 7615994]

82 Schwartz A, Maeda A, Wild MK, Kernebeck K, Gross N, Aragane Y, Beissert S, Vestweber D, Schwarz T. Ultraviolet radiation-induced regulatory T cells not only inhibit the induction but can suppress the effector phase of contact hypersensitivity. *J Immunol* 2004; 172: 1036-1043 [PMID: 14707077]

83 Schwartz A, Navid F, Sparwasser T, Clausen BE, Schwarz T. In vivo reprogramming of UV radiation-induced regulatory T-cell migration.
to inhibit the elicitation of contact hypersensitivity. *J Allergy Clin Immunol* 2011; **128**: 826-833 [PMID: 21762977 DOI: 10.1016/j.jaci.2011.06.005]

89 Simon JC, Hara H, Denfeld RW, Martin S. UVB-irradiated dendritic cells induce nonproliferating, regulatory type T cells. *Skin Pharmacol Appl Skin Physiol* 2002; **15**: 330-334 [PMID: 12239427]

90 Schwarz A, Beissert S, Grosse-Heimeyer K, Gunzer M, Bluestone JA, Grabbe S, Schwarz T. Evidence for functional relevance of CTLA-4 in ultraviolet-radiation-induced tolerance. *J Immunol* 2000; **165**: 1824-1831 [PMID: 10925260]

91 Moodycliffe AM, Nghiem D, Clydesdale G, Ulrich SE. Immune suppression and skin cancer development: regulation by NKT cells. *Nat Immunol* 2000; **1**: 521-525 [PMID: 11101875 DOI: 10.1038/827872]

92 Schwarz A, Maeda A, Kernebek C, van Steeg H, Beissert S, Schwarz T. Prevention of UV radiation-induced immunosuppression by IL-12 is dependent on DNA repair. *J Exp Med* 2005; **201**: 173-179 [PMID: 15657287 DOI: 10.1084/jem.20042121]

93 Ando O, Sueyama Y, Kurimoto M, Horikawa T, Ichihashi M. Deficient Th1-type immune responses via impaired CD28 signaling in ultraviolet-B-induced systemic immunosuppression and the restorative effect of IL-12. *J Dermatol Sci* 2000; **24**: 190-202 [PMID: 11084301]

94 Sueyama Y, Ando O, Kurimoto M, Horikawa T, Ichihashi M. IL-12 promotes the accessory cell function of epidermal Langerhans cells. *J Dermatol Sci* 1998; **18**: 98-108 [PMID: 9833976]

95 Parkin DM. The global health burden of infection-associated cancers in the year 2002. *Int J Cancer* 2006; **118**: 3030-3044 [PMID: 16404738 DOI: 10.1002/ijc.22371]

96 Bouwes Bavinck JN, Felkamp M, Struijk L, ter Schegget J. Human papillomavirus infection and skin cancer risk in organ transplant recipients. *J Invest Dermatol Symp Proc* 2001; **6**: 207-211 [PMID: 11924829 DOI: 10.1046/j.0222-202x.2001.00048.x]

97 Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F, Breuer J, Leight IM, Matlashewski G, Banks L. Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. *Nature* 1998; **393**: 229-234 [PMID: 9607760 DOI: 10.1038/30400]

98 Harwood CA, Surenthiran T, McGregor JM, Spink PJ, Leight IM, Breuer J, Proby CM. Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. *J Med Virol* 2000; **61**: 289-297 [PMID: 10861635]

99 van Zanten J, de Leij F, Prop J, Harmsen MC, Thibaudin D, Bresson-Vautrin C, Blanc D, Humbert P, Chalopin JM. CD4+ CD28- dendritic cells induce nonproliferating, regulatory type T cells associated with reduced cancer risk after kidney transplantation. *J Am Soc Nephrol* 2001; **12**: 145-158 [PMID: 9642503]

100 Baumforth KR, Birgesdottor A, Reynolds GM, Wei W, Kapatai G, Flavell JR, Sorensen CM, Suzuki G, Tada T, Hood L. RNA transcripts for I-J polypeptides are apparently not encoded between the I-A and I-E subregions of the murine major histocompatibility complex. *Proc Natl Acad Sci USA* 1983; **80**: 5704-5708 [PMID: 6193520]

101 Green DR, Webb DR. Saying the ‘S’ word in public. *Immuno Today* 1993; **14**: 523-525 [PMID: 8274193 DOI: 10.1016/0167-5699(93)90180-S]

102 Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. *J Immunol* 1995; **155**: 1151-1164 [PMID: 7636184]

103 Baechler-Allan C, Brown JA, Freeman GJ, Hafer DA. CD4+CD25high regulatory cells in human peripheral blood. *J Immunol* 2001; **167**: 1245-1253 [PMID: 11466340]

104 Liu W, Putnam AL, Xu-Yu Z, Szt G, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA. CD127 expression inversely correlates with Foxp3 and suppressive function of human CD4+ T reg cells. *J Exp Med* 2006; **203**: 1701-1711 [PMID: 16816876 DOI: 10.1084/jem.20060772]

105 O’Garra A, Vieira P. Regulatory T cells and mechanisms of immune system control. *Nat Med* 2004; **10**: 801-805 [PMID: 15286781 DOI: 10.1038/nm0804-801]

106 Zhang L, Zhao Y. The regulation of Foxp3 expression in regulatory CD4+CD25(+) T cells: multiple pathways on the road. *J Cell Physiol* 2007; **211**: 590-597 [PMID: 17311282 DOI: 10.1002/jcp.20101]

107 Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. *Science* 2003; **299**: 1057-1061 [PMID: 12522256 DOI: 10.1126/science.1079490]

108 Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. *Curr Opin Rheumatol* 2003; **15**: 430-435 [PMID: 12819471]

109 Chatila TA, Blaeser F, Ho N, Lederman HM, Vougaropoulos C, Helms C, Bowcock AM. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic deregulation syndrome. *J Clin Invest* 2000; **106**: R75-R81 [PMID: 11120765 DOI: 10.1172/JCI11679]

110 Wildin RS, Ransdell F, Penke J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzaia M, Goulet O, Perroni L, Bricarelli FD, ...
Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001; 27: 18-20 [PMID: 11379992 DOI: 10.1038/38707]

Valmori D, Merlo A, Souleimanian NE, Hedoerfer CS, Ayoub M. A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest 2005; 115: 1953-1962 [PMID: 16007258 DOI: 10.1172/JCI23963]

Schena F, Volpi S, Faliti CE, Penco F, Santi S, Proietti M, Schenk U, Damonte G, Salis A, Bellotti M, Fais F, Tenca C, Gattorno M, Eibel H, Rizzi M, Warnatz K, Idzko M, Ayata CK, Rakhmanov M, Galli T, Martini A, Canossa M, Grassi F, Traggiai E. Dependence of immunoglobulin class switch recombination in B cells on vesicular release of ACP and CD73 ectonucleotidase activity. Cell Rep 2013; 3: 1824-1831 [PMID: 23770243 DOI: 10.1016/j.celrep.2013.05.022]

Zabransky DJ, Nirschl CJ, Durham NM, Park BV, Ceccato CM, Bruno TC, Tam AJ, Getnet D, Drake CG. Phenotypic and functional properties of Helios+ regulatory T cells. J Exp Med 2012; 7: e34547 [PMID: 22479644 DOI: 10.1371/journal.pone.0034547]

Huang CT, Workman CJ, Files D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski I, Levitsky HI, Powell JW, Pandolfi DM, Drake CG, Vignali DA. Role of LAG-3 in regulatory T cells. Immunity 2004; 21: 503-513 [PMID: 15485628 DOI: 10.1016/j.immuni.2004.08.010]

Mantel PY, Ouakned N, Rueckert B, Karagiannidis C, Welz R, Blaser K, Schmidt-Weber CB. Molecular mechanisms underlying FOXP3 induction in human T cells. J Immunol 2006; 176: 3593-3602 [PMID: 16517728]

Sakaguchi S, Setoguchi R, Yagi H, Nomura T. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in self-tolerance and autoimmune disease. Curr Top Microbiol Immunol 2006; 305: 51-66 [PMID: 16724800]

Cederbaum L, Hall H, Ivars F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 2000; 30: 1538-1543 [PMID: 10896488 DOI: 10.1002/1521-4141(20000630)30:6<1538::AID-JEIM1>3.0.CO;2-5]

Jung ID, Jeong YI, Lee CM, Noh KT, Jeong SK, Chun SH, Choi OH, Park WS, Han J, Shin YK, Kim HW, Yun CH, Park YM, COX-2 and PGE2 signaling is essential for the regulation of IDO down-regulate co-stimulatory molecules on antigen-presenting cells. J Immunol 2006; 176: 19034005 DOI: 10.1097/TP.0b013e318188d3e6

Ohta A, Ita L, Yi Y, Koshiba T, Sakaguchi S, Wood KJ, Tanaka K. The roles of CD25+CD4+ regulatory T cells in therapeutic transplantation of mixed chimeric individuals. Cell Transplant 2007; 21: 63-71 [PMID: 17302590]

Yoshizawa A, Ita A, Li Y, Koshiba T, Sakaguchi S, Wood KJ, Tanaka K. The roles of CD25+CD4+ regulatory T cells in therapeutic transplantation of mixed chimeric individuals. Cell Transplant 2007; 21: 63-71 [PMID: 17302590]

Pons JA, Revilla-Nuín B, Baroja-Mazo A, Ramírez P, Martinez-Alarcón L, Sánchez-Bueno F, Robles R, Rios A, Aparicio P, Parrilla P, Foxp3 in peripheral blood is associated with operational tolerance in liver transplant patients during immunosuppression withdrawal. Transplantation 2008; 86: 1370-1378 [PMID: 19034005 DOI: 10.1097/TP.0b013e318188d3e6]

Baan CC, Velthuis JH, van Gurp EA, Mol WM, Klepper M, Ijzermans JN, Weimar W. Functional CD25(bright)+ alloresponsive T cells in fully immunosuppressed renal allotransplant recipients. Clin Transplant 2007; 21: 63-71 [PMID: 17302590]

Roederer M. Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 2001; 45: 194-205 [PMID: 11746088]

Straus L, Bergmann C, Goodwin W, Johnson JT, Whiteside TL. The frequency and suppressor function of CD4+CD25(high)FOXP3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 2007; 13: 6301-6311 [PMID: 17975141 DOI: 10.1158/1078-0432.CCR-07-1403]

Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL. Expansion of human regulatory T type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 2007; 67: 8865-8873 [PMID: 17875728 DOI: 10.1158/0008-5472.CAN-07-0767]

Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006; 24: 5373-5380 [PMID: 17153638 DOI: 10.1200/JCO.2006.05.9584]

Ling KL, Pratap SE, Bates GJ, Singh B, Mortensen NJ, George BD, Warren BF, Piris J, Roncador G, Fox SB, Banham AH, Cerundolo V. Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immunol Res 2007; 5: 7 [PMID: 17388261]

Fox SB, Launchbury R, Bates GJ, Han C, Shaida N, Malone PR, Harris AL, Banham AH. The number of regulatory T cells in prostate cancer is associated with the androgen receptor and hypoxia-inducible factor (HIF)-2alpha but not HIF-1alpha. Prostate 2007; 67: 623-629 [PMID: 17328069 DOI: 10.1002/pros.20538]

Stagg J, Divisekera U, McLaughlin N, Sharkey J, Ponnery S, Denoyer D, Dwyer KM, Smyth MJ. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci USA 2010; 107: 5457-5464 [PMID: 20811159 DOI: 10.1038/bjp.2008.23]
randomized controlled prospective trial converting treatment of stable renal transplant recipients with cutaneous invasive squamous cell carcinomas to sirolimus. J Clin Oncol 2013; 31: 1317-1323 DOI: 10.1200/JCO.2013.53.9767

195 Carroll RP, Hester J, Wood KJ, Harden PN. Conversion to sirolimus in kidney transplant recipients with squamous cell cancer and changes in immune phenotype. Nephrol Dial Transplant 2013; 28: 462-465 [PMID: 23223314 DOI: 10.1093/ndt/gft474]

196 Terasaki PI, Ozawa M. Predicting kidney graft failure by HLA antibodies: a prospective trial. Am J Transplant 2004; 4: 438-443 [PMID: 14961999]

197 Riehnhüller S, Ferrari-Lacraz S, Müller MK, Raptis DA, Hadaya K, Rüsi B, Laube G, Schneider G, Fehr T, Villard J. Donor-specific antibody levels and three generations of crossmatches to predict antibody-mediated rejection in kidney transplantation. Transplantation 2010; 90: 160-167 [DOI: 10.1097/TP.0b013e3181d8b590]

198 Heeger PS, Greenspan NS, Kuhlenschmidt S, Dejelo C, Hricik DE, Schulak JA, Tary-Lehmann M. Pretransplant frequency of donor-specific, IFN-gamma-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of postransplant rejection episodes. J Immunol 1999; 163: 2267-2275 [DOI: 10.438971]

199 Amico P, Högner G, Mayr M, Steiger J, Hopfer H, Schaub S. Clinical relevance of pretransplant donor-specific HLA antibodies detected by single-antigen flow-beads. Transplantation 2009; 87: 1681-1688 [PMID: 19052960 DOI: 10.1097/TP.0b013e3181e5034]

200 Eng HS, Bennett G, Tsiopoulos E, Lake M, Humphreys I, Chang SH, Coates PT, Russ GR. Anti-HLA donor-specific antibodies detected in positive B-cell crossmatches by Luminex predict late graft loss. Am J Transplant 2008; 8: 2335-2342 [PMID: 18782289 DOI: 10.1111/j.1600-6143.2008.02387.x]

201 Bestard O, Cruzado JM, Lucia M, Crespo E, Casi S, Sawitzki H, Bogt K, Cantarell C, Torres J, Melilli E, Mast R, Martinez-Castelo A, Gomà M, Reineke P, Volk HD, Grinyó JM. Prospective assessment of antidonor cellular alloreactivity is a tool for guidance of immunosuppression in kidney transplantation. Kidney Int 2013; 84: 1226-1236 [PMID: 23783240 DOI: 10.1038/kj.2013.236]

202 Poggio ED, Clemente M, Hricik DE, Heeger PS. Panel of reactive T cells as a measurement of primed cellular alloimmunity in kidney transplant candidates. J Am Soc Nephrol 2006; 17: 564-572 [DOI: 16382020 DOI: 10.1681/ASN.2005030293]

203 Chakera A, Bennett S, Lawrence S, Mortoe I, Mason PD, O’Callaghan CA, Cornell RJ. Antigen-specific T cell responses to BK polyomavirus antigens identify functional anti-viral immunity and may help to guide immunosuppression following renal transplantation. Clin Exp Immunol 2011; 165: 401-409 [DOI: 10.1111/j.1600-6143.2011.03923.x]

204 Schaub S, Hirsch HH, Dickenmann M, Steiger J, Mihatsch MJ, Hopfer H, Mayr M. Reducing immunosuppression preserves allograft function in presumptive and definitive polymavirus-associated nephropathy. Am J Transplant 2010; 10: 2615-2623 [PMID: 21114642 DOI: 10.1111/j.1600-6143.2010.03310.x]

205 Kono K, Kawaiha T, Takahashi A, Sugah H, Mimura K, Miyagawa N, Omata H, Fujii H. CD4(+)/CD25(high) regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother 2006; 55: 1064-1071 [PMID: 16328385 DOI: 10.1007/s00262-005-0092-x]

206 Perez SA, Karanouzov MV, Starks DS, Ardanavis A, Sotiriadou N, Iliopoulos EG, Salianaghi ML, Orphanos G, Baxevanis CN, Rigatos G, Pampamichael M. CD4(+)/CD25(high) regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother 2006; 55: 1064-1071 [PMID: 16328385 DOI: 10.1007/s00262-005-0092-x]

207 Zhang W, Caspell R, Karulin AY, Ahmad M, Haicheur N,
Abdelsalam A, Johannesen K, Vignard V, Dudzik P, Georgakopoulou K, Mihaylova A, Silina K, Aptsiauri N, Adams V, Lehmann PV, Mc Ardle S. ELISPOT assays provide reproducible results among different laboratories for T-cell immune monitoring—even in hands of ELISPOT-inexperienced investigators. J Immunotoxicol 2009; 6: 227-234 [PMID: 19908941 DOI: 10.3109/15476910903317546]

Hricik DE, Rodriguez V, Riley J, Bryan K, Tary-Lehmann M, Greenspan N, Dejelo C, Schulak JA, Heeger PS. Enzyme linked immunosorbent spot (ELISPOT) assay for interferon-gamma independently predicts renal function in kidney transplant recipients. Am J Transplant 2003; 3: 878-884 [PMID: 12814480]

Gebauer BS, Hricik DE, Atallah A, Bryan K, Riley J, Tary-Lehmann M, Greenspan NS, Dejelo C, Boehm BO, Hering BJ, Heeger PS. Evolution of the enzyme-linked immunosorbent spot assay for post-transplant alloreactivity as a potentially useful immune monitoring tool. Am J Transplant 2002; 2: 857-866 [PMID: 12392292]

P- Reviewer: Fernandez-Pello S, Sureshkumar KK
S- Editor: Qi Y
L- Editor: A
E- Editor: Liu SQ
