Table S1. Summary statistics for meropenem and vaborbactam free-drug plasma AUC₀₋₂⁴ on day 1 and at steady state among simulated patients with cUTI or AP by renal function group for the U.S. FDA and EMA submissions

Free-drug plasma AUC₀₋₂⁴ measure (mg•h/L)	US FDA submission	EMA submission
	Mean %CV Min Median Max	Mean %CV Min Median Max
eGFR (mL/min/1.73 m²)		
≥0 to <15	479.06 52.80 82.62 426.30 2600.51	≥0 to <10 496.9 51.25 66.38 444.0 2009
≥15 to <30	638.85 53.22 93.61 569.41 2631.94	≥10 to <20 787.3 49.37 116.6 713.3 3105
≥30 to <50	432.36 51.79 89.14 384.08 1612.30	≥20 to <40 690.4 58.10 115.5 606.6 3548
≥50 to <150	675.07 56.92 113.26 601.98 4384.92	≥40 to <150 713.3 54.08 113.7 628.6 2943
≥150 to ≤200	624.72 52.75 95.83 554.89 2089.70	≥150 to ≤200 631.8 55.60 90.37 551.5 2952

Day 1 free-drug plasma meropenem AUC₀₋₂⁴

Day 1 free-drug plasma meropenem AUC₀₋₂⁴	US FDA submission	EMA submission
	Mean %CV Min Median Max	Mean %CV Min Median Max
≥0 to <15	681.81 62.28 93.85 595.44 4135.80	≥0 to <10 735.3 57.80 92.68 626.2 2897
≥15 to <30	748.55 58.51 94.92 653.14 3825.05	≥10 to <20 999.0 53.00 126.8 878.9 3736
≥30 to <50	453.20 53.26 89.49 399.71 1684.04	≥20 to <40 808.2 66.35 115.7 696.3 4390
≥50 to <150	693.80 58.02 95.89 614.17 3736	≥10 to <20 735.7 55.27 114.9 642.9 3140
≥150 to ≤200	639.63 53.74 95.89 566.70 2292.44	≥150 to ≤200 647.2 56.67 91.53 560.9 3230

Steady-state free-drug plasma vaborbactam AUC₀₋₂⁴

Steady-state free-drug plasma vaborbactam AUC₀₋₂⁴	US FDA submission	EMA submission
	Mean %CV Min Median Max	Mean %CV Min Median Max
≥0 to <15	533.03 37.79 142.79 499.88 1539.74	≥0 to <10 562.7 36.65 146.8 532.4 1549
≥15 to <30	699.37 37.67 146.42 627.10 2108.92	≥10 to <20 891.1 33.10 294.0 857.0 2420
≥30 to <50	531.31 41.09 120.50 492.37 1417.95	≥20 to <40 737.2 38.29 172.1 695.6 2093
≥50 to <150	605.15 44.69 147.58 559.30 1848.97	≥40 to <150 658.2 46.16 148.6 603.4 1860
≥150 to ≤200	510.40 42.39 91.46 475.07 1810.01	≥150 to ≤200 514.1 41.97 92.57 479.3 1798

Day 1 free-drug plasma vaborbactam AUC₀₋₂⁴

Day 1 free-drug plasma vaborbactam AUC₀₋₂⁴	US FDA submission	EMA submission
	Mean %CV Min Median Max	Mean %CV Min Median Max
≥0 to <15	2868.31 71.53 300.76 2328.80 14508.97	≥0 to <10 3653 57.02 692.3 3297 15936
≥15 to <30	1179.35 62.54 146.92 999.11 8029.06	≥10 to <20 2508 62.15 311.2 2146 16482
≥30 to <50	673.72 53.52 121.92 590.38 2441.44	≥20 to <40 1195 63.66 177.9 989.1 7188
≥50 to <150	656.29 51.32 147.97 593.58 2399.32	≥40 to <150 733.4 56.16 149.1 645.5 3519
≥150 to ≤200	540.21 47.32 91.46 494.73 1925.72	≥150 to ≤200 544.9 47.03 92.57 499.1 1911

a. To assess the appropriateness of the steady-state free-drug plasma vaborbactam AUC₀₋₂⁴ values in simulated patients with low eGFR or absolute eGFR groups, steady-state free-drug plasma vaborbactam AUC₀₋₂⁴ values in patients with such low eGFR or absolute eGFR values from the TANGO II study included in the population PK dataset were examined. To facilitate comparisons between observed and simulated patients, individual post-hoc PK parameter estimates using baseline measures of renal function were used to generate the steady-state exposures for observed patients. Results of this comparison demonstrated similar trends for exposures in simulated and observed patients.
Table S2. Summary statistics for meropenem and vaborbactam free-drug plasma AUC_{0-24} on day 1 and at steady state among simulated patients with cUTI/AP for the U.S. FDA and EMA submissions

Drug and period or baseline renal function measure	US FDA submission	EMA submission								
	Mean	%CV	Min	Median	Max	Mean	%CV	Min	Median	Max
Meropenem Day 1	674	54.4	94.7	595	5039	706	52.9	94.7	628	5039
Steady-state	701	55.3	94.7	616	5340	739	54.9	94.7	652	5340
Vaborbactam Day 1	606	45.4	108	554	2368	642	47.3	108	581	2794
Steady-state	707	62.7	108	600	5706	771	75.8	108	620	8300
Baseline eGFR (mL/min/1.73 m²)	84.5	36.6	4.3	83.8	207					
Baseline absolute eGFR (mL/min)						87.9	36.0	5.0	89.3	266

a. All simulated patients ($n=3,245$) received meropenem-vaborbactam dosing regimens by eGFR or absolute eGFR as described in Table 1. Simulated patients with cUTI or AP and eGFR or absolute eGFR > 200 mL/min were assigned the same meropenem-vaborbactam dosing regimen as those with eGFR or absolute eGFR ≥ 150 to ≤ 200 mL/min.
Table S3. Meropenem and meropenem-vaborbactam MIC distributions for Enterobacterales, KPC-producing Enterobacterales, and *P. aeruginosa* isolates based on *in vitro* surveillance data collected from regions worldwide

Drug	Number of isolates at MIC (µg/mL; cumulative %)\(^a\)	<0.03	0.03	0.06	0.12	0.25	0.50	1.00	2.00	4.00	8.00	16.00	32.00	>32.00	MIC\(_{50}\)	MIC\(_{90}\)
All Enterobacterales (n=11,559)\(^b\)	**Meropenem**	5595	3799	1321	338	73	44	36	44	48	44	62	48	107	0.03	0.06
		(48.4)	(81.3)	(92.7)	(95.6)	(96.3)	(96.6)	(96.9)	(97.3)	(97.7)	(98.1)	(98.7)	(99.1)	(100)		
	Meropenem-vaborbactam	4551	5193	1208	271	89	69	50	28	14	9	22	32	23	0.03	0.06
		(39.4)	(84.3)	(94.7)	(97.1)	(97.9)	(98.5)	(98.9)	(99.1)	(99.3)	(99.5)	(99.8)	(100)			
All KPC-producing Enterobacterales (n=1,331)\(^b\)	**Meropenem**	–	–	–	–	–	–	–	–	–	–	–	5	(0.40)	116	(85.0)
		–	–	–	–	–	–	–	–	–	–	–	(0.50)	(0.40)	(13.4)	(25.4)
	Meropenem-vaborbactam	515	68	78	89	195	186	110	55	22	7	1	3	32	0.12	1
		(38.7)	(43.8)	(49.7)	(56.3)	(71.0)	(85.0)	(93.2)	(97.4)	(99.0)	(99.5)	(99.8)	(100)			
All P. aeruginosa (n=2,806)\(^b\)	**Meropenem**	15.0	47.0	194	321	540	477	293	193	170	189	173	64	130	0.50	16
		(0.50)	(2.20)	(9.10)	(20.6)	(39.8)	(56.8)	(71.2)	(74.1)	(80.2)	(86.9)	(93.1)	(95.4)	(100)		
	Meropenem-vaborbactam	30	65	193	310	525	462	298	186	187	167	187	71	125	0.50	16
		(1.10)	(3.40)	(10.3)	(21.3)	(40.0)	(56.5)	(67.1)	(73.7)	(80.4)	(86.4)	(93.0)	(95.5)	(100)		

\(^a\) Shaded cells represent the MIC values up to and/or including the MIC\(_{90}\) value.

\(^b\) Enterobacterales, KPC-producing Enterobacterales, and *P. aeruginosa* isolates were collected as part of the 2014-2015 SENTRY Antimicrobial Surveillance Program [1, 2, 3, 4].
Figure S1. Percent probabilities of PK-PD target attainment by meropenem-vaborbactam MIC on day 1 based on the assessment of the meropenem free-drug plasma %T>MIC ≥ 30% target and MIC data for collections of isolates among simulated patients with cUTI or AP by eGFR and absolute eGFR groups after administration of meropenem-vaborbactam dosing regimens for the U.S. FDA and EMA submissions, overlaid on the meropenem-vaborbactam MIC distributions for Enterobacterales (top), KPC-producing Enterobacterales (middle), and *P. aeruginosa* (bottom) isolates.
Figure S2. Percent probabilities of PK-PD target attainment by meropenem-vaborbactam MIC on day 1 based on the assessment of the meropenem free-drug plasma %T>MIC ≥ 35% target and MIC data for collections of isolates among simulated patients with cUTI or AP by eGFR and absolute eGFR groups after administration of meropenem-vaborbactam dosing regimens for the U.S. FDA and EMA submissions, overlaid on the meropenem-vaborbactam MIC distributions for Enterobacterales (top), KPC-producing Enterobacterales (middle), and *P. aeruginosa* (bottom) isolates.
Figure S3. Percent probabilities of PK-PD target attainment by meropenem-vaborbactam MIC on day 1 based on the assessment of the meropenem free-drug plasma %T>MIC ≥ 45% target and MIC data for collections of isolates among simulated patients with cUTI or AP by eGFR and absolute eGFR groups after administration of meropenem-vaborbactam dosing regimens for the U.S. FDA and EMA submissions, overlaid on the meropenem-vaborbactam MIC distributions for Enterobacterales (top), KPC-producing Enterobacterales (middle), and *P. aeruginosa* (bottom) isolates.
Explanation for Figure S4

The steps of the algorithm, which were applied by using sets of meropenem and vaborbactam free-drug plasma PK-PD targets associated with net bacterial stasis and 1- and 2-log\(_{10}\) CFU reductions from baseline for the assessment of meropenem-vaborbactam dosing regimens, are described below.

- If the meropenem MIC value for the isolate was less than or equal to the meropenem-vaborbactam MIC value, then the given meropenem free-drug plasma %\(T>MIC\) was calculated using the meropenem MIC value and compared to the meropenem free-drug plasma %\(T>MIC\) target for the same bacterial reduction endpoint.
 - If the calculated meropenem free-drug plasma %\(T>MIC\) was at least equal to the meropenem free-drug plasma %\(T>MIC\) target, PK-PD target attainment was classified as achieved,
 - and if not, as not achieved.

- If the meropenem MIC value for the isolate was greater than the meropenem-vaborbactam MIC value, the given meropenem free-drug plasma %\(T>MIC\) was calculated using the meropenem MIC value and compared to the meropenem free-drug plasma %\(T>MIC\) target.
 - If the calculated meropenem free-drug plasma %\(T>MIC\) was at least equal to the meropenem free-drug plasma %\(T>MIC\) target, PK-PD target attainment was classified as achieved.
 - If not, the vaborbactam free-drug plasma AUC:MIC ratio (calculated using the meropenem-vaborbactam MIC value) was calculated in order to assess whether or not the meropenem-vaborbactam, MIC value can be used.
 - If the calculated vaborbactam free-drug plasma AUC:MIC ratio was at least equal to the vaborbactam free-drug plasma AUC:MIC ratio target for a given endpoint, the meropenem free-drug plasma %\(T>MIC\) (using the meropenem-vaborbactam MIC value) was calculated and compared to the meropenem free-drug plasma %\(T>MIC\) target.
 - If the calculated meropenem free-drug plasma %\(T>MIC\) was at least equal to the meropenem free-drug plasma %\(T>MIC\) target, PK-PD target attainment was classified as achieved,
 - and if not, as not achieved.
 - If the calculated vaborbactam free-drug plasma AUC:MIC ratio was less than the vaborbactam free-drug plasma AUC:MIC ratio target, PK-PD target attainment was classified as not achieved (given that the meropenem free-drug plasma %\(T>MIC\) target had not been achieved using the meropenem MIC value).
Figure S4. Algorithm to calculate percent probabilities of PK-PD target attainment for meropenem-vaborbactam dosing regimens evaluated
References

1. Castanheira M, Rhomberg PR, Flamm RK, Jones RN. 2016. Effect of the β-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother 60:5454–5458. https://doi.org/10.1128/AAC.00711-16.

2. Castanheira M, Huband MD, Mendes RE, Flamm RK. 2017. Meropenem-vaborbactam tested against contemporary Gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, KPC-producing, multidrug-resistant, and extensively drug-resistant Enterobacteriaceae. Antimicrob Agents Chemother 61:e00567-17. https://doi.org/10.1128/AAC.00567-17.

3. Hackel MA, Lomovskaya O, Dudley MN, Karlowsky JA, Sahm DF. 2018. In vitro activity of meropenem-vaborbactam against clinical isolates of KPC-positive Enterobacteriaceae. Antimicrob Agents Chemother 62:e01904-17. https://doi.org/10.1128/AAC.01904-17.

4. Pfaller MA, Huband MD, Mendes RE, Flamm RK, Castanheira M. 2018. In vitro activity of meropenem/vaborbactam and characterisation of carbapenem resistance mechanisms among carbapenem-resistant Enterobacteriaceae from the 2015 meropenem/vaborbactam surveillance programme. Int J Antimicrob Agents 52:144–150. https://doi.org/10.1016/j.ijantimicag.2018.02.021.