Incommensurate magnetic excitations in superconducting LiFeAs

N. Qureshi,1 P. Steffens,2 Y. Drees,1 A. C. Komarek,1 D. Lamago,3,4 Y. Sidis,3
L. Harnagea,5 H.-J. Grafe,5 S. Wurmehl,5 B. Büchner,5 and M. Braden1,∗

1II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany
2Institut Laue Langlevin, BP156X, 38042 Grenoble Cedex, France
3Laboratoire Léon Brillouin, C.E.A./C.N.R.S., F-91191 Gif-sur-Yvette Cedex, France
4Institut für Festkörperphysik, Karlsruher Institut für Technologie (KIT), Postfach 3640, D-76121 Karlsruhe, Germany
5Leibniz-Institute for Solid State Research, IFW-Dresden, 01171 Dresden, Germany

(Dated: April 28, 2013)

Magnetic correlations in superconducting LiFeAs were studied by elastic and by inelastic neutron scattering experiments. There is no indication for static magnetic ordering but inelastic correlations appear at the incommensurate wave vector \((0.5 \pm \delta, 0.5 \pm \delta, 0)\) with \(\delta \sim 0.07\) slightly shifted from the commensurate ordering observed in other FeAs-based compounds. The incommensurate magnetic excitations respond to the opening of the superconducting gap by a transfer of spectral weight.

PACS numbers: 74.25.Ha, 74.25.Jb, 78.70.Nx, 75.10.Lp

Superconductivity in the FeAs-based materials appears to be closely related to magnetism as the superconducting state emerges out of an antiferromagnetic phase by doping or by application of pressure. The only FeAs-based exception to this behavior has been found in LiFeAs, which is an ambient-pressure superconductor with a high \(T_C\) of \(\sim 17\) K without any doping. LiFeAs exhibits the same FeAs layers as the other materials but FeAs tetrahedrons are quite distorted, suggesting a different occupation of orbital bands. Indeed ARPES studies on LiFeAs find an electronic band structure different from that in LaOFeAs or BaFe\(_2\)As\(_2\) type compounds. The Fermi-surface nesting, which is proposed to drive the spin-density wave (SDW) order in the other FeAs parent compounds, is absent in LiFeAs suggesting that this magnetic instability is less relevant. The main cause for the suppression of the nesting consists in the hole pocket around the zone center which is shallow in LiFeAs. In consequence, there is more density of states near the Fermi level which might favor a ferromagnetic instability. Using a three-band model Brydon et al. find this ferromagnetic instability to dominate and discuss the implication for the superconducting order parameter proposing LiFeAs to be a spin-triplet superconductor with odd symmetry. However, other theoretical analyzes of the electronic band-structure still find an antiferromagnetic instability which more closely resembles those observed in the other FeAs-based materials.

Inelastic neutron scattering (INS) experiments revealed magnetic order and magnetic excitations in many FeAs-based families. Strong magnetic correlations persist far beyond the ordered state, and, most importantly, the opening of the superconducting gap results in a pronounced redistribution of spectral weight, which is frequently interpreted in terms of a resonance mode. Recently a powder INS experiment on superconducting LiFeAs reported magnetic excitations to be rather similar to those observed in the previously studied materials but with a spin gap even in the normal-conducting phase. Magnetic excitations observed in a recent single-crystal INS study on non-superconducting Li deficient Li\(_{1-x}\)FeAs \((x \sim 0.06)\) were described by spin-waves associated with commensurate antiferromagnetism, again with a large temperature independent spin gap of \(13\) meV. We have performed INS experiments on superconducting single-crystalline...
LiFeAs finding incommensurate magnetic correlations which still can be associated with the SDW order in the other FeAs-based compounds. These incommensurate excitations show a clear response to the superconducting phase.

Single crystals of LiFeAs were grown similarly as described in reference \[18\]. Further information documenting the good chemical, crystalline, and superconducting properties of our sample crystals is given in the supplementary information. First neutron experiments were performed with small samples containing natural Li (about 12×12×0.3mm³) focussing on elastic analyzes. We searched for magnetic superstructure peaks in particular near the propagation vectors of the known SDW order in FeAs-based compounds \[2\]. With the high sensitivity of single-crystal neutron diffraction we may rule out this SDW ordering with a magnetic moment larger than 0.07\(\mu_B\), which is significantly below the ordered moment for example in LaOFeAs \[19\]. None of the scans along main-symmetry directions indicates magnetic ordering. For most of the INS experiments we used two large co-aligned crystals of a total weight of 1.4 g grown from the flatcone data at 5 meV and 10 meV, respectively. Lines are fits with two symmetric Gaussians.

Scans across the incommensurate magnetic signal were obtained from the IN20 scattering maps and by additional experiments on cold and thermal triple-axis spectrometers. A few examples of transverse scans, (h 1-h 0), are shown in Fig. 2. The profiles were fitted with two symmetric Gaussians appearing at \(Q_{inc} = (0.5 \pm \delta, 0.5 \mp \delta, 0)\) with \(\delta \sim 0.07\), to extract the incommensurability and the amplitude of the magnetic signal. In the normal-conducting state we were able to follow the incommensurate signal between 1.5 and 10 meV finding almost no energy dependence of the incommensurability \(\delta\), see Fig. 3(a). Combining the data obtained on the thermal and on the cold triple-axis spectrometers we also obtain the energy dependence of the strength of this signal. After correcting for the monitor and for the Bose factor we may deduce the imaginary part of the generalized susceptibility, \(\chi''(Q_{inc}, E)\), which is shown in Fig. 3(b) for the temperature of 22 K. \(\chi''(Q_{inc}, E)\) can be well described by a single relaxor function relating \(\chi''\) with the real part of the susceptibility at zero energy and a characteristic energy \(\Gamma\); \(\chi''(Q_{inc}, E) = \chi'(Q_{inc}, 0) \frac{E}{E + \Gamma}\) yielding \(\Gamma = 6.0 \pm 0.6\) meV. This rather low value of the characteristic energy signals that LiFeAs is quite close...
to the corresponding SDW instability. The incommensurate scattering in LiFeAs and its spectrum closely resemble the incommensurate magnetic excitations arising from nesting in Sr$_2$RuO$_4$ where the corresponding SDW instability can be induced by a small substitution [20].

The comparison of the constant-energy scans above and below the superconducting transition reveals a pronounced shift of spectral weight associated with the superconducting transition in LiFeAs. The incommensurate signals at 1.5 and 2.5 meV become almost fully suppressed in the superconducting phase. In contrast there is evidence for an increase in intensity at higher energies. In order to elucidate this transfer of spectral weight we performed constant-Q scans at the position of the incommensurate signal, Q_{inc}, which are shown in Fig. 4. At low energy in the superconducting phase the scattering at Q_{inc} is suppressed to the background, while the signal is enhanced in the energy range 6 to 10 meV. With the present statistics there is no indication for magnetic scattering persisting in the superconducting state for $E<4$ meV suggesting a clean gap in the magnetic excitations in the superconducting state. ARPES and specific heat measurements on LiFeAs indicate two gaps opening in the bands in LiFeAs which amount to $2\Delta_1=2.4$ meV and $2\Delta_2=5.2$ meV [21]. The higher gap value agrees with our observation that transfer of spectral weight from below 4.5 meV to above 4.5 meV occurs upon entering the superconducting phase. Due to the limited statistics of the temperature-dependent data shown in Fig. 5 we may not yet fully determine the relation between the spectral-weight shift and the superconducting transition. But the data, in particular that in Fig. 5(b), unambiguously confirm that the transfer of spectral weight represents the response of the system to the opening of the superconducting gaps. By measuring the depolarization of the polarized neutron beam due to the shielding of the guide fields we may ascertain the good homogeneity of the superconducting phase in the large superconducting single crystals ($T_c=16.4$ K).

The experimental data obtained by powder INS and the given interpretation [16] only qualitatively agree with our experiment. The incommensurate character of magnetic excitations in LiFeAs is not easily accessible in a powder experiment, but our results fully disagree with the claim of a spin gap in the normal state that is formulated in reference [16]. We speculate that the background and phonon contributions underlying the magnetic signal could not be properly assessed thereby underestimating the magnetic response of LiFeAs.

Magnetic excitations in LiFeAs clearly differ from those reported for many other FeAs-based superconductors in at least two aspects. The amplitude of the signal is weaker than that in Co-doped BaFe$_2$As$_2$. More importantly the signal clearly appears at an incommensurate position, whereas those in the FeAs superconductors with a high T_c are all commensurate. Incommensurate scattering has recently been observed in the end member of the Ba$_{1-x}$K$_x$Fe$_2$As$_2$ series KFe$_2$As$_2$ [22] which, however, exhibits a very low T_c.

The incommensurability in the magnetic scattering seems to be the consequence of the suppressed nesting condition in LiFeAs. In the plots relating the superconducting transition temperature with either the As-Fe-As bond angles [23] or with the anion height from the Fe layer [24], LiFeAs clearly lies on the wing of the distribution away from the regular tetrahedron observed in samples with maximum T_c. The sizeable tetrahedron elongation in LiFeAs should cause a different orbital occupation. It appears interesting to note, that concerning these distortions LiFeAs resembles FeTe$_{0.5}$Se$_{0.5}$ which exhibits similar incommensurate excitations [23]. It appears likely that doping and structural deformation change the occupation of orbital levels and thereby the character of the magnetic instability. DFT calculations indicate that doping by electrons or by holes modifies the nesting with the magnetic response shifting from the commensurate position to an incommensurate one [20, 27]. Hole doping implies a longitudinal modulation peaking at $Q = (0.5 \pm \delta, 0.5 \pm \delta, 0)$ which indeed is observed in hole-overdoped KFe$_2$As$_2$ [22], whereas electron doping results in a transverse modulation peaking at $Q = (0.5 \pm \delta, 0.5 \pm \delta, 0)$ [26, 27]. Experimental evidence for such transverse inelastic incommensurability can so far only be found in the high-energy magnetic excitations in Co-doped BaFe$_2$As$_2$ [28], which however are associated with commensurate scattering at lower energy. After submission of our article, a static transverse modulation was reported for under-doped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ [29]. Our observation of transversally modulated incommensurate excitations in LiFeAs thus suggests to compare LiFeAs with an electron doped compound. The similarity can arise from the role of the central hole pocket which is shallow in LiFeAs somehow similar to the expected effect of electron doping. The transversally modulated incommensurate response in LiFeAs, however, seems still to be closely related with the commensurate or longitudinally modulated response in the other FeAs-based materials.
Inspection of the Fermi surfaces calculated in reference [11] or those fitted to the ARPES data [10] allows one to understand that the commensurate wave vector \((0.5,0.5,0)\) is not associated with the strongest magnetic signal in LiFeAs as such nesting is absent in this material. However, an additional shift may partially recover nesting. Taking the orbital character of the Fermi-surface sheets into account the experimentally determined transversal incommensurability of \(\delta \sim 0.07\) agrees with the Fermi-surface maps presented in references [10, 11], but a detailed calculation is desirable.

In conclusion INS experiments on single-crystalline superconducting LiFeAs reveal incommensurate magnetic correlations, which appear close to the wave vector of the stronger magnetic signal observed in previously studied FeAs-based superconductors. The loss of commensurate nesting for \(q=(0.5,0.5,0)\) apparently needs to be compensated by a small shift explaining the incommensurate propagation vector \(Q_{inc} = (0.5 \pm \delta, 0.5 \pm \delta, 0)\) with \(\delta \sim 0.07\). These magnetic fluctuations clearly respond to the opening of the superconducting gap. In the superconducting phase the magnetic weight at \(Q_{inc}\) seems to be fully suppressed below \(~5\) meV and there is an enhancement of spectral weight compared to the normal state in the energy range \(6\) to \(10\) meV. The magnetic instability in LiFeAs indicates that magnetic correlations in FeAs-based superconductors are more variable than a simple commensurate response.

This work was supported by the Deutsche Forschungsgemeinschaft through SFB 608 and through the Priority Programme SPP1458 (Grant No. BE1749/13). We thank C. H. Lee, I. Morozov, S. Aswartham, and C. Nacke for various discussions, A.U.B. Wolter for a magnetization measurement, L. Giebeler for the use of x-ray equipment, and C.-H. Lee for providing a large single crystal of Co-doped BaFe$_2$As$_2$.

FIG. 4: (Color online) Energy dependence of the INS intensity at \(Q_{inc}\) at temperatures above and below the superconducting transition. Part (a) shows the raw intensity measured on the cold spectrometer (with high energy resolution, \(k_F = 1.55 \text{Å}^{-1}\)), while part (b) shows data measured on the thermal spectrometer with lower resolution. Vertical bars indicate the energy of the crossover of the shift of spectral weight.

FIG. 5: (Color online) Temperature dependence of scattering intensity at \(Q_{inc}\) for fixed energy transfers, data are measured on the 1T spectrometer (a) and on IN14 (b) with the two large crystals; data in (c) were taken with a smaller crystal on 2T. Lines are guides to the eye. (d) Temperature dependence of spin-flip scattering at the nuclear Bragg peak (200) reflecting the neutron depolarization due to superconducting shielding.

[1] Y. Kamihara et al., J. Am. Chem. Soc. 130, 3296 (2008).
[2] J. W. Lynn and P. C. Dai, Physica C 469, 469 (2009).
[3] M. Rotter et al., Phys. Rev. Lett. 101, 107006 (2008).
[4] A. S. Sefat et al., Phys. Rev. Lett. 101, 117004 (2008).
[5] P.A. Alireza et al., J. Phys. Cond. Matter 21, 012208 (2009).
[6] J. H. Tapp et al., Phys. Rev. B 78, 060505(R) (2008).
[7] X. C. Wang et al., Solid State Commun. 148, 538 (2008).
[8] M. J. Pitcher et al., Chem. Commun. 2008, 5918 (2008)
[9] S. V. Borisenko et al., Phys. Rev. Lett. 105, 067002 (2010).
[10] P. M. R. Brydon et al., Phys. Rev. B 83, 060501(R) (2011).
[11] C. Platt et al., arXiv:1103.2101.
[12] A. D. Christianson et al., Nature 456, 930 (2008).
[13] M. D. Lumsden et al., Phys. Rev. Lett. 102, 107005 (2009).
[14] Y. Qiu et al., Phys. Rev. Lett. 103, 067008 (2009).
[15] D.S. Inosov et al., nature phys. 6, 178 (2010).
[16] A.E. Taylor et al., Phys. Rev. B 83, 220514 (2011).
[17] M. Wang et al., Phys. Rev. B 83, 220515 (2011)
[18] I. Morozov et al., Crystal Growth and Design 10, 4428 (2010).
[19] N. Qureshi et al., Phys. Rev. B 82, 184521 (2010).
[20] Y. Sidis et al., Phys. Rev. Lett. 83, 3320 (1999); M. Braden et al., Phys. Rev. Lett. 88, 197002 (2002).
[21] U. Stockert et al., Phys. Rev. B 83, 224512 (2011).
[22] C.H. Lee et al., Phys. Rev. Lett. 106, 067003 (2011).
[23] M. Lumsden et al., nature phys. 6, 182 – 186 (2010); D.N. Argyriou et al., Phys. Rev. B 81, 220503 (2010); S. Li et al., Phys. Rev. Lett. 105, 157002 (2010).
[24] C.-H. Lee et al., J. Phys. Soc. of Jpn. 77, 083704 (2008).
[25] Y. Mizuguchi et al., Supercond. Sci. Techn. 23, 054013 (2010).
[26] J.T. Park et al., Phys. Rev. B 82, 134503 (2010).
[27] A. N. Yaresko et al., Phys. Rev. B 79, 144421 (2009).
[28] C. Lester et al., Phys. Rev. B 81, 064505 (2010); H. -F. Li et al., Phys. Rev. B 82, 140503(R) (2010).
[29] D. K. Pratt et al., Phys. Rev. Lett. 106, 257001 (2011).