$|V_{cd}|$ from D Meson Leptonic Decays

Heechang Na, ¹ Christine T. H. Davies, ² Eduardo Follana, ³ G. Peter Lepage, ⁴ and Junko Shigemitsu ⁵

(Hpqcd Collaboration)

¹Argonne Leadership Computing Facility, ANL, Argonne, IL 60439, USA.
²SUPA, School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
³Departamento de Fisica Teorica, Universidad de Zaragoza, E-50009 Zaragoza, Spain
⁴Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853, USA
⁵Department of Physics, The Ohio State University, Columbus, OH 43210, USA

(Dated: May 2, 2014)

We present an update of the D meson decay constant f_D using the Highly Improved Staggered Quark (HISQ) action for valence charm and light quarks on Milc $N_f = 2 + 1$ lattices. The new determination incorporates HPQCD’s improved scale $\tau_{1N_f=2+1} = 0.3133(23)\text{fm}$, accurately retuned bare charm quark masses and data from an ensemble that is more chiral than in our previous calculations. We find $f_D = 208.3(3.4)\text{MeV}$. Combining the new f_D with $D \rightarrow \mu\nu$, branching fraction data from CLEO-c, we extract the CKM matrix element $|V_{cd}| = 0.223(10)_{\text{exp}}(4)_{\text{lat}}$. This value is in excellent agreement with $|V_{cd}|$ from D semileptonic decays and from neutrino scattering experiments and has comparable total errors. We determine the ratio between semileptonic form factor and decay constant and find $[f_D^{+}\pi}(0)/f_D^{1}\text{lat}] = 3.20(15)\text{GeV}^{-1}$ to be compared with the experimental value of $[f_D^{+}\pi}(0)/f_D^{1}\text{exp}] = 3.19(18)\text{GeV}^{-1}$. Finally, we mention recent preliminary but already more accurate $D \rightarrow \mu\nu$ branching fraction measurements from BES III and discuss their impact on precision $|V_{cd}|$ determinations in the future.

PACS numbers: 12.38.Gc, 13.20.He

I. INTRODUCTION

Determinations of individual elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix allows for many cross checks and consistency tests of the Standard Model. In most cases there are several processes that can be used to extract the same CKM matrix element each involving very different experimental and theory inputs. For the CKM matrix element $|V_{cd}|$, PDG2010 ¹ quotes values coming from $D \rightarrow \pi, \ell\nu$ semileptonic decays and from neutrino/antineutrino scattering. The HPQCD collaboration recently published a new calculation of $|V_{cd}|$ that reduced errors in the semileptonic decay determination by more than a factor of two ², making it competitive with the neutrino scattering result. In the current article we present a third, independent determination based this time on D meson leptonic decays. We find a value for $|V_{cd}|$ in complete agreement with the other two determinations and with comparable total errors.

The branching fraction for the leptonic decay of a charged D or D_s meson via a virtual W boson is given to lowest order by

$$B(D_q \rightarrow \ell\nu) = \frac{G_F^2 f_{D_q}^2 m_{\ell}^2 M_{D_q}}{8\pi} \left(1 - \frac{m_{\ell}^2}{M_{D_q}^2}\right)^2 |V_{cd}|^2,$$

(1)

where m_{ℓ} is the charged lepton mass and $q = d$ or s. Electromagnetic corrections to this formula are known and routinely taken into account by experimentalists in their analyses ³ ⁴. Equation (1) tells us that determination of $|V_{cd}|$ from D leptonic decays requires theory to provide the D meson decay constant f_D which is a pure QCD nonperturbative quantity. The first lattice QCD calculations of f_D and f_{D_s} that included sea quark contributions were carried out by the Fermilab Lattice & MILC collaborations ⁵ and this predated experimental studies of these decays. Subsequent experimental measurements were consistent with the lattice predictions within errors that were more substantial than than they are today for both theory and experiment. The initial lattice calculations employed an effective theory approach (the heavy clover action ⁶) for the charm quark on the lattice. In 2007 the HPQCD collaboration introduced the Highly Improved Staggered Quark (HISQ) action which represents not only an extremely accurate lattice quark action for light quark physics, but also serves as an accurate relativistic action for heavier quarks ⁷. The HISQ action has since been used very successfully in simulations involving the charm quark such as for charmonium, and for D and D_s meson decay constants and semileptonic form factors ² ⁸ ⁹ ¹⁰. In reference ¹¹ HPQCD published the first f_π, f_K, f_D and f_{D_s} results from HISQ valence quarks, including HISQ charm quarks, on the MILC Asqtad $N_f = 2 + 1$ lattices ¹¹, all with sub 2% errors. At around the same time experimental measurements of D and D_s meson leptonic decay branching fractions were improving significantly ¹² ¹³. And by the middle of 2008 we were facing an interesting situation where there was good agreement between experiment and theory for f_D but a close to 4σ discrepancy in f_{D_s}. Further improvements and scrutiny became crucial.

The largest systematic error for f_{D_s} in reference ⁸ came from the uncertainty in the scale τ_1. HPQCD was using an τ_1 extracted from Υ splittings namely
In reference 8 for f_{D_s}. The bare charm quark mass is tuned using the physical η_c mass adjusted for the absence of electromagnetic, charm sea and annihilation contributions in our simulations which leads to a target value of $M_{\text{target}} = 2.985(3)$ GeV 18 rather than the experimental value of $M_{\text{exp}}^c = 2.980(1)$ GeV. Most of the charmed quark mass tuning had been done already in reference 10 for our $D \to K, \ell \nu$ studies. For the present calculations we needed to add tunings only on ensemble F0. Figure 1 shows the tuned η_c masses for all 6 ensembles. The bulk of the errors shown comes from the $\sim 0.1\%$ uncertainty in r_1/a, whereas the tiny black error bars represent the statistical errors on each data point. A similar plot for tuning of the strange quark mass via the η_s (fictitious) meson mass is given in Figure 3 of reference 10. And in references 8 10 we have demonstrated that once quark masses have been fixed by η_c and η_s then masses for the D and D_s mesons can be derived with zero adjustable parameters in good agreement with experiment. We do not repeat those calculations here. However, since we have new data for the mass difference $\Delta M_D \equiv M_D - M_D$, we summarize them in an Appendix and compare with $\Delta M_B \equiv M_B - M_B$ in the B system taken from reference 19.

Having fixed the quark masses we evaluated D and D_s correlators on each of the 6 ensembles. We use random wall sources with a different set for each color component in order to improve statistical errors. In the next section we describe how we extract meson decay constants from these correlators.

III. CORRELATORS AND FITTING STRATEGIES

The decay constant f_D of a pseudoscalar meson made out of a charm quark and a light antiquark of mass m_q is defined in terms of the matrix element of the heavy-light axial vector current $A_\mu = \bar{q} \gamma_\mu \gamma_5 \Psi_c$ between the hadronic vacuum and the D meson state.

$$\langle 0 | A_\mu | D \rangle = p_\mu f_D$$

Since we employ the relativistic HISQ action for all quarks we are able to take advantage of PCAC, as is routinely done for f_π and f_K, and express the decay con-

TABLE I: Simulation details on three “coarse” and three “fine” MILC ensembles.

Set	r_1/a	m_1/m_s (sea)	N_{conf}	N_{src}	$L^3 \times N_t$
C1	2.647	0.005/0.050	1200	2	$24^3 \times 64$
C2	2.618	0.010/0.050	1200	2	$20^3 \times 64$
C3	2.644	0.020/0.050	600	2	$20^3 \times 64$
F0	3.695	0.0031/0.031	600	4	$40^3 \times 96$
F1	3.690	0.0062/0.031	1200	4	$28^3 \times 96$
F2	3.712	0.0124/0.031	600	4	$28^3 \times 96$

$r_1 = 0.321(5) \text{ fm}$ with 1.56% errors 15. In 2010 HPQCD published a much more accurate r_1 determination, $r_1 = 0.3133(23)$, based on several physical quantities and an improved continuum extrapolation (from 5 lattice spacings 16). A change in the scale affects quantities such as f_{D_s} in two ways: 1. the bare strange and charm quark masses must be retuned on each ensemble and 2. the conversion from dimensionless decay constant (e. g. in units of r_1) to the decay constant in physical units is modified. In reference 8 HPQCD updated its value for f_{D_s} together with f_π and f_K using the new r_1. Although f_π and f_K hardly shifted at all upon going from old to new r_1, the updated f_{D_s} came out about 2.3σ (3%) higher than before. As a consequence, taking into account also that experimental results were changing from old to new r_1 the updated f_{D_s} showed the values for valence quark masses. For the present calculations we needed to add tunings only on ensemble F0.

In this article we complete the process of switching to the new r_1 scale for meson decay constants and present a direct calculation of f_{D_s} consistently using the new scale. Since the time of reference 8 experimental errors in the $D \to \mu, \nu_\mu$ branching fraction have improved from $\sim 7.8\%$ down to $\sim 4.3\%$ in the case of CLEO-c 12 and new even more accurate measurements are appearing now from BES III 17. Together with the new f_{D_s} of this article with its $\sim 1.66\%$ error, one can now extract a $|V_{cd}|$ from D meson leptonic decays that is as accurate as those from semileptonic decays or neutrino scattering and that promises to become even more precise in the near future.

II. THE LATTICE SETUP

Table I lists the three coarse ($a \approx 0.12\text{ fm}$) and three fine ($a \approx 0.099\text{ fm}$) MILC ensembles used in this study together with some lattice details. And in Table II we show the values for valence quark masses. For f_{D_s} we have focused more on ensuring better control over chiral extrapolations by adding a more chiral fine ensemble (Set F0) rather than going to finer lattices as we did
Our initial goal is to extract the amplitude \(b_0^D \equiv |b_0^D| \) as accurately as possible. In references\(^2,10\) we found that fit results for two-point energies and amplitudes are improved significantly if one carries out simultaneous fits to two-point and three-point correlators. Three-point correlators are calculated, for instance, when one studies \(D \to \pi, l\nu \) semileptonic decays. For pions at zero momentum one has,

\[
C_{3^{\text{pnt}}}^{D\to\pi}(t,T) = \frac{1}{L^3} \sum_\vec{x} \sum_\vec{y} \sum_\vec{z} \sum_\vec{\xi} \langle \Phi_D(\vec{y},T) \bar{S}(\vec{z},t) \bar{\Phi}^\dagger_D(\vec{\xi},0) \rangle,
\]

where \(\bar{S} \) is the heavy-light scalar density \(\bar{\Psi}_c \Psi_q \) in lattice units. \(C_{3^{\text{pnt}}}^{D\to\pi} \) must be fit to the form,

\[
C_{3^{\text{pnt}}}^{D\to\pi}(t,T) = \sum_{j,k} N_{D-1} N_{D-1} A_{jk} e^{-E_j t} e^{-E_k^D(T-t)} + \sum_{j,k} B_{jk} e^{-E_j^D t} e^{-E_k^D(T-t)} (-1)^{(T-t)}.
\]

We will only consider the region \(0 \leq t \leq T \) and take \(T \ll N_{D} \) so that any contributions from mesons propagating “around the lattice” due to periodic boundary conditions in time can be ignored. The same energies \(E_j \) and \(E_k^D \) appear in \(C_{2^{\text{pnt}}}^{D\to\pi} \) and \(C_{3^{\text{pnt}}}^{D\to\pi} \). Doing simultaneous fits to \(C_{2^{\text{pnt}}}^{D\to\pi} \) and \(C_{3^{\text{pnt}}}^{D\to\pi} \) places tighter constraints on these energies and this helps in reducing fitting errors in the two-point amplitudes \(b_0^D \). In this way the three-point correlator is acting like a very complicated but effective smearing for the propagation of \(D \) mesons. Normally this would also be considered a very expensive smearing, however we already had simulation results for \(C_{3^{\text{pnt}}}^{D\to\pi} \) on five out of the six ensembles in Table I from the \(D \) semileptonic project published in reference\(^2\) so we could take advantage of this. It was only necessary to create new three-point correlator data on ensemble F0 and this only for zero momentum pions.

In Fig.2 we show some results for \(b_0^D \) on ensemble C1 versus the number of exponentials from simultaneous fits (we set \(N_D = N_{D} = N_\pi = N_\nu \)) and compare with fit results to just \(C_{2^{\text{pnt}}}^{D\to\pi} \) alone. One sees the improvement in the fitting errors coming from the simultaneous fits. All our fits are done using Bayesian methods\(^{20}\). We use the “sequential method”, where starting from \(N = 2 \) or 3 the output from an \(N \) - exponential fit becomes the initial values for the subsequent \((N+1) \) - exponential fit.

\[\text{FIG. 1: Checking the tuning of the charm quark mass to the } \eta_c \text{ meson mass. Errors on the simulation results include statistical (black error bars) plus errors arising from the uncertainty in } r_1/a \text{ for each ensemble. The “experimental” } \eta_c \text{ mass has been adjusted to take into account the lack of annihilation and electromagnetic effects in our lattice calculation.} \]
In addition to the D meson decay constant f_D we have also accumulated new data for f_D, by studying D_s meson two-point correlators. Here we do not have D_s semileptoni
tonic decay three-point correlator data. So, our extraction of the relevant amplitudθ_D^0 was carried out from just the two-point correlators. Since statistical errors are smaller for D_s than for D mesons, this lack of ability to carry out simultaneous fits in the case of D_s was not a serious problem. In Table III we list all our fit results for aM_D, aM_{D_s}, aM_{D_s}, aM_{D_s}, and the ratio f_{D_s}/f_D.

IV. CHIRAL AND CONTINUUM EXTRAPOLATION

The next goal is to extrapolate the entries for f_D in Table III to the continuum and chiral limit. The latter is defined as the limit $m_q/m_s \to 1/27.4$, or using $m_q/m_c = 1/11.85$ from reference [21], the limit $m_q/m_c \to 1/(27.4 \times 11.85)$. We carry out the simultaneous chiral/continuum extrapolation using continuum partially quenched heavy meson chiral perturbation theory (PQHMChPT) [22,24] augmented by lattice spacing dependent terms. This is the same formalism employed recently in our f_B and f_{B_s} determinations [19]. We write,

$$f_D = A(1 + \delta f + [\text{analytic}]) (1 + [\text{discret.}])$$

The chiral logarithm term δf is taken from the original literature on PQHMChPT [23,24] and is also summarized in the Appendix of [19]. As in that reference we take,

$$[\text{analytic}] = \beta_0(2m_u + m_s)/m_c + \beta_1 m_q/m_c + \beta_2 (m_q/m_c)^2,$$

(11)

where $m_u(m_q)$ is the sea (valence) light quark mass. \hat{m}_c is the Asqtad charm quark mass tuned to the η_c meson made out of Asqtad charm quark and antiquark, and is the appropriate charm quark mass to use for sea quarks. We take \hat{m}_c from reference [7] where it was found that $\hat{m}_c/m_c \approx 0.9$ for lattices employed in the current article. Using ratios of bare quark masses to parameterize the “analytic” terms is convenient since such ratios are scale independent. We use the valence charm quark mass as the scale to measure the dominant discretization effects and set,

$$[\text{discret.}] = c_0(m_c)^2 + c_1(m_c)^4$$

(12)

We will call the chiral/continuum extrapolation ansatz given by eqs.(11) together with (11), (12) and eq.(A7) of reference [19] for δf our “basic ansatz”. The result of the extrapolation to the physical point using the basic ansatz is given by the green square point in Fig.3. We have tested the stability of this result by modifying the basic ansatz in a number of ways and redoing the extrapolation. The modifications that were tried out are the following:

1. dropping the β_2 term in (11)
2. adding a $(m_q/m_c)^3$ term in (11)
3. dropping the c_1 term in (12)
4. adding $(am_c)^n$, $n = 6, 8, 10$, to (12)
5. replacing c_i in (12) by $c_i \times \text{[power series in } (m_q/m_c)]$
6. using powers of (a/r_1) rather than of (am_c) in (12)
7. using eq.(A1) of reference [19] rather than (A7) for the chiral logarithm term δf
8. allowing for a 20% error in f_π entering the chiral perturbation theory formulas

Fig.4 compares the extrapolation results with these modifications in place with the basic ansatz value at the physical point.
V. RESULTS

Table IV gives the error budget for f_D, f_D, and f_{D_s}/f_D. For all but the last two entries we use the methods of reference [25] to isolate contributions from different sources that make up the total error coming out of the chiral/continuum extrapolations. For the finite volume error we take over the result from reference [8] where an analysis was carried out comparing finite and infinite volume chiral perturbation theory.

Taking all errors into account our final value for f_D is,

$$f_D = 208.3(1.0)_{\text{stat.}}(3.3)_{\text{sys.}} \text{MeV}. \quad (13)$$

This is in good agreement with the previous result of $f_D = 207(4)\text{MeV}$ [8] based on HPQCD’s old r_1, but is slightly more accurate. Eq.(13) represents the most precise f_D available today.

For completeness we also give new values for f_D and f_{D_s}/f_D,

$$f_{D_s} = 246.0(0.7)_{\text{stat.}}(3.5)_{\text{sys.}} \text{MeV}, \quad (14)$$

and

$$f_{D_s}/f_D = 1.187(4)_{\text{stat.}}(12)_{\text{sys.}}. \quad (15)$$

The result for f_{D_s}, eq.(14), is consistent with HPQCD’s best updated value of $f_{D_s} = 248.0(2.5)\text{MeV}$ [9] but is not as accurate. One sees from Table IV that the dominant error comes from the continuum extrapolation. In this respect the current calculation of f_{D_s} is not competitive with reference [9] which employed data from five lattice spacings.

The new f_D of eq.(13) can be combined with the $D \to \mu, \nu_{\mu}$ branching fraction from CLEO-c [12] to extract a new value for $|V_{cd}|$. We find,

$$|V_{cd}|_{\text{lepton.d.}} = 0.223(10)_{\text{exp.}}(4)_{\text{lat.}}. \quad (16)$$

The first error, which is the experimental error, dominates the total error of 4.8%. Eq.(16) agrees very well with HPQCD’s recent determination of $|V_{cd}|$ from $D \to \pi, \ell\nu$ semileptonic decays [2], namely $|V_{cd}|_{\text{semilept.d.}} = 0.225(6)_{\text{exp.}}(10)_{\text{lat.}}$, where now the lattice error dominates over the one from experiment. Both leptonic and semileptonic determinations agree with $|V_{cd}| = 0.230(11)$ [1] coming from neutrino scattering, and all three have comparable total errors.

As mentioned in the Introduction, BES III has recently announced preliminary results for the $D \to \mu \nu_{\mu}$ branching fraction [17]. Using their numbers we find,

$$|V_{cd}|_{\text{BESIII}}^{\text{lepton.d.}} = 0.220(7)_{\text{exp.}}(4)_{\text{lat.}}. \quad \text{[preliminary]} \quad (17)$$

which agrees well with (16) and has smaller experimental errors.

Another way to check the consistency of the Standard Model and/or to test the lattice approach to heavy flavor physics is to consider the ratio between semileptonic
form factor and decay constant $f_{D^+ \to \pi^+ + (0)} / f_D$. We find, by combining eq.~(13) with $f_{D^+ \to \pi^+ + (0)} / f_D \mid_{\text{lat.}} = 3.20(15) \text{GeV}^{-1}$. (18)

This can be compared with the experimental ratio in which $|V_{cd}|$ cancels of \cite{12, 27}:

$$[f_{D^+ \to \pi^+ + (0)} / f_D]_{\text{exp.}} = 3.19(18) \text{GeV}^{-1}. \quad (19)$$

Eq.~(13), eq.~(16) and the good agreement between (18) and (19) are the main results of this article.

VI. SUMMARY

In this article we presented a new determination of the CKM matrix element $|V_{cd}|$, eq.~(15), made possible by an updated calculation of the decay constant f_D, eq.~(13), and improved determinations of the $D \to \mu, \nu_{\mu}$ leptonic decay branching fraction by CLEO-c \cite{12} and BES III \cite{17}. In Fig.~5 we compare the new f_D with HPQCD’s previous value \cite{8} and with results from other lattice collaborations \cite{24, 27, 28}. And in Fig.~6 we plot different results for $|V_{cd}|$ including the leptonic decay determination of this article, together with semileptonic decay and neutrino scattering determinations.

In the future it will be important to continue working on reducing the theory errors in eq.~(18) and the experimental errors in eq.~(19). The former is dominated by errors in the lattice determination of $f_{D^+ \to \pi^+ + (0)}$ and work is underway to significantly reduce them \cite{29}. The experimental error in eq.~(19) comes mainly from the leptonic decay branching fraction and one can look forward to improvements there as well. In particular, the recent measurements by BES III \cite{17} look very promising. The crucial question is whether the nice agreement seen now between eq.~(18) and eq.~(19) will continue to hold once errors dip down to $\sim 2\%$ or below.

Acknowledgements:
This work was supported by the DOE (DE-FG02-91ER40690 and DE-AC02-06CH11357) and the NSF (PHY-0757868) in the U.S., by the STFC in the U.K., by MICINN (FPA2009-09638 and FPA2008-10732) and DGIID-DGA (2007-D24/2) in Spain, and by ITN-STRONGnet (PITN-GA-2009-238353) in the EU. E. Foliana is supported on the MICINN Ramon Y Cajal program. Numerical simulations were carried out on facilities of the USQCD collaboration funded by the Office of Science of the DOE and at the Ohio Supercomputer Center. We thank the MILC collaboration for use of their gauge configurations.

Appendix A: The D_s - D Mass Difference

In this appendix we summarize results for the mass difference $\Delta M_D = M_D - M_D^*$ and compare with the analogous difference in the B system $\Delta M_B = M_B - M_B^*$, where the latter was calculated in reference \cite{19} employing NRQCD b-quarks. This is an interesting quantity to compare since the leading heavy quark mass dependence cancels in each of the mass differences and one is testing whether the subleading contributions are accurate enough to be able to distinguish between the D and B systems. In the difference of differences $\text{\Delta M}_D - \text{\Delta M}_B$.
TABLE V: Mass Splittings in the \(D \) and \(B \) systems. The \(\Delta M_B \) numbers are taken from [19].

Set	\(\Delta M_D \) [MeV]	\(\Delta M_B \) [MeV]	\(\Delta M_D - \Delta M_B \) [MeV]
C1	80.4(1.1)	64.8(2.2)	15.6(2.5)
C2	69.7(1.0)	57.7(1.8)	12.0(2.1)
C3	46.5(5)	41.3(2.0)	5.2(2.1)
F0	87.3(7)	71.7(2.9)	15.6(3.0)
F1	79.4(7)	61.4(2.0)	18.0(2.1)
F2	57.4(4)	47.8(1.3)	9.6(1.4)

any mistunings of the strange quark mass should also cancel out (identical strange and light quark propagators are used in the \(B/B_s \) and the \(D/D_s \) calculations). Table V lists simulation results for \(\Delta M_D, \Delta M_B \) and for \(\Delta M_D - \Delta M_B \). The first two quantities are plotted in Fig.7 versus \(m_l/m_s \). For \(\Delta M_D \) statistical errors are small enough so that a slight lattice spacing dependence is detected. Errors are larger for \(\Delta M_B \) and no discretization effects are visible. Fig.8 shows \(\Delta M_D - \Delta M_B \). Ones sees agreement with experiment at the 1 \(\sigma \) level, with a \(\sigma \) corresponding to about 5 MeV. With current levels of improvements to the lattice actions, 5 MeV appears to be the accuracy with which the HISQ action or the combined NRQCD/HISQ actions are able to describe charm-light or bottom-light boundstate dynamics.

[1] K. Nakamura et al. [Particle Data Group], J.Phys.G 37, 075021 (2010).
[2] H. Na, C. T. H. Davies, E. Follana, J. Koponen, G. P. Lepage and J. Shigemitsu, Phys. Rev. D 84, 114505 (2011) [arXiv:1109.1501 [hep-lat]].
[3] J. L. Rosner and S. Stone, arXiv:1201.2401 [hep-ex].
[4] B. A. Dobrescu and A. S. Kronfeld, Phys. Rev. Lett. 100 (2008) 241802 [arXiv:0803.0512 [hep-ph]].
[5] C. Aubin, C. Bernard, C. E. DeTar, M. Di Pierro, E. D. Freeland, S. Gottlieb, U. M. Heller and J. E. Hetrick et al., Phys. Rev. Lett. 95, 122002 (2005) [hep-lat/0506030].
[6] A. X. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, Phys. Rev. D 55, 3933 (1997) [hep-lat/9604004].
[7] E. Follana et al. [HPQCD and UKQCD Collaborations], Phys. Rev. D 75, 054502 (2007) [hep-lat/0610092].
[8] E. Follana et al. [HPQCD and UKQCD Collaborations], Phys. Rev. Lett. 100, 062002 (2008) [arXiv:0706.1726 [hep-lat]].
[9] C. T. H. Davies, C. McNeile, E. Follana, G. P. Lepage, H. Na and J. Shigemitsu, Phys. Rev. D 82, 114504 (2010) [arXiv:1008.4018 [hep-lat]].
[10] H. Na, C. T. H. Davies, E. Follana, G. P. Lepage and J. Shigemitsu, Phys. Rev. D 82, 114506 (2010) [arXiv:1008.4562 [hep-lat]].
[11] C. Bernard et al. [MILC collaboration], Phys. Rev. D 64, 054506 (2001).
[12] B. I. Eisenstein et al. [CLEO Collaboration], Phys. Rev. D 78, 052003 (2008).
[13] J. P. Alexander et al. [CLEO Collaboration], Phys. Rev. D 79, 052001 (2009); P. U. E. Onyisi et al. [CLEO Collaboration], Phys. Rev. D 79, 052002 (2009); P. Naik
et al. [CLEO Collaboration], Phys. Rev. D 80, 112004 (2009).
[14] L. Widhalm et al. [Belle Collaboration], Phys. Rev. Lett. 100, 241801 (2008); J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 82, 091103 (2010).
[15] A. Gray, I. Allison, C. T. H. Davies, E. Dalgic, G. P. Lepage, J. Shigemitsu and M. Wingate, Phys. Rev. D 72, 094507 (2005) [hep-lat/0507013].
[16] C. T. H. Davies et al. [HPQCD Collaboration], Phys. Rev. D 81, 034506 (2010) [arXiv:0910.1229 [hep-lat]].
[17] BES III Collaboration; talks presented at Charm 2012 and FPCP 2012.
[18] E. B. Gregory, C. T. H. Davies, I. D. Kendall, J. Koponen, K. Wong, E. Follana, E. Gamiz and G. P. Lepage et al., Phys. Rev. D 83, 014506 (2011) [arXiv:1010.3848 [hep-lat]].
[19] H. Na, C. J. Monahan, C. T. H. Davies, R. Horgan, G. P. Lepage and J. Shigemitsu, [arXiv:1202.4914 [hep-lat]].
[20] G. P. Lepage, B. Clark, C. T. H. Davies, K. Hornbostel, P. B. Mackenzie, C. Morningstar and H. Trottier, Nucl. Phys. Proc. Suppl. 106, 12 (2002) [hep-lat/0110175].
[21] C. T. H. Davies, C. McNeile, K. Y. Wong, E. Follana, R. Horgan, K. Hornbostel, G. P. Lepage and J. Shigemitsu et al., Phys. Rev. Lett. 104, 132003 (2010) [arXiv:0910.3102 [hep-ph]].
[22] S. R. Sharpe and N. Shoresh, Phys. Rev. D 62, 094502 (2000) [hep-lat/0006017].
[23] C. Aubin and C. Bernard, Phys. Rev. D 73, 014515 (2006) [hep-lat/0510088].
[24] A. Bazavov et al. [Fermilab Lattice and MILC Collaboration], Phys. Rev. D 85, 114506 (2012) [arXiv:1112.3051 [hep-lat]].
[25] C. T. H. Davies et al. [HPQCD Collaboration], Phys. Rev. D 78, 114507 (2008) [arXiv:0807.1687 [hep-lat]].
[26] D. Besson et al. [CLEO Collaboration], Phys. Rev. D 80, 032005 (2009).
[27] P. Dimopoulos et al. [ETM Collaboration], JHEP 1201, 046 (2012) [arXiv:1107.1441 [hep-lat]].
[28] Y. Namekawa et al. [PACS-CS Collaboration], Phys. Rev. D 84, 074505 (2011) [arXiv:1104.4600 [hep-lat]].
[29] J. Koponen et al. [HPQCD Collaboration], [arXiv:1111.0225 [hep-lat]], and work in progress.