Proteomics Analysis and Protein Expression during Sporozoite Excystation of Cryptosporidium parvum (Coccidia, Apicomplexa)*

William J. Snelling‡§§, Qishan Lin¶, John E. Moore||, B. Cherie Millar||, Fabio Tosini**‡‡, Edoardo Pozio**‡‡, James S. G. Dooley‡, and Colm J. Lowery‡§§

Cryptosporidiosis, caused by coccidian parasites of the genus Cryptosporidium, is a major cause of human gastrointestinal infections and poses a significant health risk especially to immunocompromised patients. Despite intensive efforts for more than 20 years, there is currently no effective drug treatment against these protozoa. This study examined the zoonotic species Cryptosporidium parvum at two important stages of its life cycle: the non-excysted (transmissive) and excysted (infective) forms. To increase our understanding of the molecular basis of sporozoite excystation, LC-MS/MS coupling with a stable isotope N-terminal labeling strategy using iTRAQ™ reagents was used on soluble fractions of both non-excysted and excysted sporozoites, i.e. sporozoites both inside and outside oocysts were examined. Sporozoites are the infective stage that penetrates small intestinal enterocytes. Also to increase our knowledge of the C. parvum proteome, shotgun sequencing was performed on insoluble fractions from both non-excysted and excysted sporozoites. In total 303 C. parvum proteins were identified, 56 of which, hitherto described as being only hypothetical proteins, are expressed in both excysted and non-excysted sporozoites. Importantly we demonstrated that the expression of 26 proteins increases significantly during excystation. These excystation-induced proteins included ribosomal proteins, metabolic enzymes, and heat shock proteins. Interestingly three Apicomplexa-specific proteins and five Cryptosporidium-specific proteins augmented in excysted invasive sporozoites. These eight proteins represent promising targets for developing vaccines or chemotherapies that could block parasite entry into host cells. Molecular & Cellular Proteomics 6:346–355, 2007.
Toxoplasma gondii, there is no clinically proven effective drug treatment against Cryptosporidium spp. (17). Proteomics profiling is a useful approach for obtaining a global overview of the proteins present in a system under differing conditions and can aid in understanding the molecular determinants involved with pathogenesis and vaccine development (18). Compared with other apicomplexans, e.g. Toxoplasma gondii, both the limited supply of purified parasite material and the lack of transfection systems have restricted analyses of proteins in parasites of the genus Cryptosporidium (15). The genomics analysis of C. parvum and the closely related Cryptosporidium hominis (19) has revealed extremely streamlined metabolic pathways and a reliance on hosts for nutrients (20). C. parvum has an animal-type O-linked glycosylation pathway and >30 predicted surface proteins with mucin-like segments (21).

The mechanisms involved in Cryptosporidium spp. excystation are incompletely understood; although roles for both host- and parasite-derived components are recognized, little is known about their precise involvements (5). In vitro excystation protocols for C. parvum mimic host-derived signals, including temperature (37 °C), pH fluctuations, and bile salts (5). We adopted an accepted in vitro excystation method (22) and analyzed C. parvum proteins at two key stages, both the

Fig. 1. A–G, the structure of C. parvum and its life-cycle stages. A, a transmission electron microscopy image of a non-excysted C. parvum oocyst, which contains four sporozoites. Three of the sporozoites (of four) are visible, one in a longitudinal plane and the other two in transverse planes. AP, anterior pole; OW, oocyst wall; N, nucleus; PP, posterior pole; S, scissure; Spo, sporozoite. B, transverse section of a free excysted sporozoite showing the apical complex and the organelles. AC, apical complex; DG, dense granules; M, micronemes; MT, mitochondrion; N, nucleus; R, rhoptry; RB, refractile body. C, the stages of Cryptosporidium spp. life cycle (5). During this investigation oocysts were analyzed at both non-excysted (x) and (excysted) (y) stages of this cycle. Upon ingestion by the host, sporozoites are released and adhere directly to the intestinal epithelial cells of the host. Cell invasion by sporozoite is followed by intracellular development to trophozoite. Trophozoite undergo schizogony to form schizonts. Asexual replication occurs by reinfection of merozoites released by type I schizonts. Development of type II from type I schizonts is the initial step of the asexual reproductive cycle. Type II merozoites are released and reinfect neighboring cells where they develop into microgametocytes (male) or macrogametocytes (female). The macrogametocyte is fertilized by released microgametes and matures into a zygote, which undergoes further development into an oocyst. Two types of oocysts are released: thick walled oocysts, which are excreted in the feces (I), or thin walled oocysts for endogenous reinfection (autoinfection) (II).
transmissive (oocysts) and infective stages (sporozoites), of its life cycle (5, 6). Thus, as well as evaluating the proteome of C. parvum, a major aim of our study was to identify proteins that demonstrated significant increases of expression during oocyst excystation, a vital step of the pathogenesis of these coccidian parasites (6). This was achieved by using LC/MS and iTRAQ™ reagent isotope labeling, providing a powerful tool for the identification and quantification (23, 24) of soluble C. parvum proteins. Using LC/MS with iTRAQ the protein expression in non-excysted and excysted soluble C. parvum oocyst fractions was compared. Then using shotgun peptide sequencing (25) the insoluble protein content of non-excysted and excysted oocysts was also analyzed.

EXPERIMENTAL PROCEDURES

Oocyst Isolation and Sporulation—To recover high numbers of C. parvum oocysts, with minimal fecal and bacterial contaminants (26), 4 × 10⁶ C. parvum oocysts (strain code ISSC162) were recovered from experimentally infected calves using feces purification with su- tone (Sigma), 1 mM phenylmethylsulfonyl fluoride (Sigma), 1% (w/v) octyl glucoside (Roche Applied Science) and stored at −80 °C (30). Upon thawing, samples were sonicated with 20 10-s pulses (50 watts) on ice with 1-min intervals and were then ultracentrifuged at 4 °C (20,000 × g for 30 min) to separate the soluble and insoluble fractions (30). Insoluble fractions were then rinsed three times with ice-cold PBS and stored at −80 °C. Proteins in soluble lysate fractions were then precipitated by mixing oocyst lysates with 8 volumes of ice-cold aceton, 1 volume of TCA, and 0.7% (w/v) 2-mercaptoethanol at −20 °C for 1 h and then centrifuged at 18,000 × g for 15 min at 4 °C (31, 32). Pellets of precipitated soluble proteins were then washed with 1 ml of ice-cold aceton, centrifuged at 18,000 × g for 15 min at 4 °C, covered in a layer of ice-cold aceton, and stored at −80 °C.

Trypsin Digestion, Shotgun Peptide Sequencing, and iTRAQ Isobaric Labeling—The pellets (soluble and insoluble fractions) were resuspended in 400 µl of sample preparation buffer (100 mM Tris-HCl, 8 M urea, 0.4% SDS, 5 mM tributylphosphine, pH 8.3) and placed on ice (33). Sample mixtures were sonicated with five 20-s pulses (50 watts) with 1-min intervals on ice followed by iodoacetamide alkylation at room temperature for 1 h (34). Samples were then ultracentrifuged at 100,000 × g for 20 min at room temperature. Protein concentrations were measured using a MicroBCA protein assay kit (Pierce) according to the manufacturer’s instruction (35) before reactions were quenched by the addition of DTT (33). The protein mixtures were diluted 8-fold in 50 mM Tris-HCl. Modified trypsin (Sigma) was added to a final substrate-to-enzyme ratio of 30:1, and the trypsin digests were incubated overnight at 37 °C. The peptides from each digest solution were acidified to pH 3.0 with formic acid (FA)¹ and loaded onto a Discovery DSC-18 cartridge (Sigma). Then peptides were desalted (5 ml of 0.1% FA) and eluted with 5 ml of a solution composed of 50% ACN with 0.1% FA.

Peptides derived from insoluble fractions were analyzed qualitatively using shotgun peptide sequencing as described previously (36). For peptides derived from soluble fractions, equal amounts (100 µg) of sample were labeled with two iTRAQ reagents (Applied Biosystems, Foster City, CA) following the manufacturer’s instruction: iTRAQ-114 (non-excysted) and iTRAQ-115 (excysted). Briefly after desalting on a C₁₈ cartridge the peptide mixture was lyophilized and resuspended in 30 µl of 0.5 M triethylammonium bicarbonate for 5 min. The suspension was centrifuged at 3,000 × g for 5 min. The pellet was then resuspended in 2 ml sodium taurocholate in PBS (Sigma) and incubated at 37 °C for 10 min. The suspension was centrifuged at 30,000 × g for 5 min. The pellet was then resuspended in 10 ml HCl (Sigma) and incubated at 37 °C for 10 min. The suspension was centrifuged at 200,000 × g for 15 min followed by incubation at 37 °C for 8 min, and a high level of excystation, i.e., at least 90%, was confirmed (29).

C. parvum Lysis, Protein Precipitation, and Fraction Preparation—All excysted and non-excysted oocysts were solubilized (30 min at 4 °C) in lysis buffer (50 mM Tris (Bio-Rad) 5 mM EDTA (Sigma), 5 mM iodoacetamide (Sigma), 0.1 mM N’-p-tosyl-L-lysine chloromethyl ketone (Sigma), 1 mM phenylmethylsulfonyl fluoride (Sigma), 1% (w/v) octyl glucoside (Roche Applied Science)) and stored at −80 °C (30). Upon thawing, samples were sonicated with 20 10-s pulses (50 watts) on ice with 1-min intervals and were then ultracentrifuged at 4 °C (3,000 × g for 5 min). The pellet was then resuspended in 10 ml HCl (Sigma) and incubated at 37 °C for 10 min. The suspension was centrifuged at 200,000 × g for 15 min followed by incubation at 37 °C for 8 min, and a high level of excystation, i.e., at least 90%, was confirmed (29).

The abbreviations used are: FA, formic acid; ARM, armadillo repeat; HSP, heat shock protein; LCCL, Limulus factor C, cochlear protein Coch-5b2, and late gestation lung protein; QqTOF, quadrupole time of flight.
(N(Et)₂HCO₃), pH 8.5. The appropriate iTRAQ reagent (dissolved in 70 μl of ethanol) was added, allowed to react for 1 h at room temperature, and then quenched with 300 μl of double distilled H₂O.

Off-line Strong Cation Exchange Chromatography— iTRAQ-labeled peptides were then concentrated, mixed, and acidified to a total volume of 2.0 ml. They were then injected into an Agilent 1100 HPLC system with a Zorbax 300-SCX column (15 cm × 4.6 mm, 5 μm) (Agilent, Waldbronn, Germany). Solvent A was 5 mM KH₂PO₄ and 25% ACN (pH 3.0), and solvent B was 350 mM KCl in solvent A. Peptides were eluted from the column with a 40-min mobile phase gradient of solvent B. A total of 30 fractions were collected, and samples were dried by a SpeedVac prior to LC-MS/MS analysis.

On-line Nano-LC ESI QqTOF MS Analysis— A nanobore LC system (Dionex, Sunnyvale, CA) that was interfaced to a QSTAR XL QqTOF mass spectrometer with a NanoSpray ion source (Applied Biosystems) was used for mass spectrometry. The Magic C₁₈ column (100-Å inner diameter × 150 mm; Picofrit, Woburn, MA) was packed in house. Solvent A was 3% ACN, 0.1% FA, and 0.01% TFA, and solvent B was 98% ACN, 0.1% FA, and 0.01% TFA. Peptide mixtures (reconstituted in 200 μl of 5% FA) were injected and eluted from the column with a 110-min mobile phase solvent B gradient (5–5% B in 5 min, 5–18% B in 10 min, 18–30% B in 65 min, 30–60% B in 10 min, 60–90% B in 10 min, and 90–90% in 5 min) at a flow rate of 250 nl/min. The mass spectrometer was operated in an information-dependent acquisition mode whereby following the interrogation of MS data (m/z 350–1500) using a 1-s survey scan ions were selected for MS/MS analysis based on their intensity (>15 cpm) and charge state (+2, +3, and +4). A total of three product ion scans (2, 3, and 3 s each) were set from each survey scan. Rolling collision energies were chosen automatically based on the m/z and charge state of the selected precursor ions. The integrated data appliance Extensions II script was set to one repetition before dynamic exclusion.

Protein Identification and Quantification— Identification and quantitation was performed using Pro ID (37) and ProQUANT software 1.1 (38) (Applied Biosystems) using the non-redundant database C. parvum subdatabase (9811 entries) with an MS and MS/MS mass tolerance of 0.15 Da (39). Variable modification on methionine (oxidation, +16 Da) and fixed modification on cysteine (carbamidomethylation, +57 Da) residues were considered during the searching (39). Protein identification with confidence scores of >95% were considered significant, and the false positive rate was determined from decoy database (39) searching (data not shown). The identifications of all detected C. parvum proteins were then verified using BLASTP at www.ncbi.nlm.nih.gov/BLAST/ or where appropriate at Cryptodb 3.3 (cryptodb.org/cryptodb).

Using ProQUANT software, quantitation was based upon the signature peak areas (m/z 114 and 115) and corrected according to the manufacturer’s instructions to account for isotopic overlap. Briefly non-excysted oocysts (control) were labeled with isobaric tag 114, and relative quantification ratios of the identified proteins were calculated, averaged, and corrected for systematic error in labeling from the iTRAQ peptides. For proteins in which the iTRAQ ratio of every peptide (labeled with tag 115) was 0, the average iTRAQ ratio was set to 0, an indication of a protein that may be highly down-regulated relative to the control. Similarly for those proteins where every (tag 115) ratio was 9999, the average was set to 9999 (indicating a protein that may be highly up-regulated). Statistically significant changes were weighted by the error factor (a measure of the variation between the different iTRAQ ratios for the reagent pair) and p value (95% confidence interval, which defined a range into which the true average iTRAQ ratio was 95% likely to fall). For instance, for a ratio of 1.0 (indicating no change in expression levels) with an error factor of 2 (and the corresponding 95% confidence interval of 0.5–2.0), the protein expression ratio and error were reported as 1.0 (p < 0.05 with an error factor of 2). Ratios in which the total peak area was <40 counts were omitted. If there were fewer than two peptides contributing toward an iTRAQ ratio average, the error factor and p values were not valid and were not calculated. Proteins that were augmented significantly during excystation had a p value <0.05 and an error factor <2.

Bioinformatics Analysis of 26 Proteins That Were Significantly Augmented during Excystation— Significantly overexpressed proteins were examined using BLASTP both on the National Center for Biotechnology Information (NCBI) database and on ApiDB (www.apidb.org/blast) to find similarity with other apicomplexan proteins or with proteins from unrelated species. Only proteins identified by the BLASTP search with an expected value lower than 10⁻¹⁰ were considered homologs. Searches were also performed for molecular traits and domains of the putative proteins using SMART (smart.embl-heidelberg.de/). The predicted coding sequence for the hypothetical protein cgdb4460 (N46) was extended (results are currently unfinished in Cryptodb), by downloading a larger portion of the AAE01000002 contig. Gene sequences were predicted using GenScan (http://genes.mit.edu/GENSCAN.html).

RESULTS

Protein Expression in the Soluble Fractions of Excysted and Non-excysted Oocysts— Using LC/MS with ICAT, 142 proteins were detected in both soluble fractions of excysted and non-excysted oocysts (Supplemental Table 1). Ribosomal proteins constituted a significant proportion (35 proteins; 24.7%) of proteins that were detected in both of the soluble fractions. Twenty-five proteins (17.6%) were detected that had hitherto been described as being only hypothetical proteins, e.g. N77 (Fig. 3 and Table I). Six heat shock proteins and 17 secreted proteins were also expressed in both excysted and non-excysted oocysts. Many of the detected proteins are involved in infection/pathogenesis, energy pathways (e.g. glycolysis), cellular division and replication, and DNA modification. The protein expression of 26 proteins was significantly greater (p < 0.05 and error factor <2) in excysted oocysts (Table I).

Bioinformatics Analysis of the 26 Proteins That Were Augmented during Excystation— There were 18 ubiquitous proteins, which are highly conserved in many species from different phyla. Seven proteins that had hitherto been described as only being hypothetical proteins were augmented significantly during excystation. Four are associated with ribosomes, and four are heat shock proteins. A number of housekeeping (e.g. lactate dehydrogenase (N102)) or structural genes (e.g. histone H4 (N118)) showed significant increases of expression. The protein Chro.50226 (N35) is a ubiquitous ribosomal protein, L3. Eight proteins are restricted to the Cryptosporidium genus or to Apicomplexa and consequently could play a specific role in the invasion process (Table I). Five of these proteins appear to be restricted to the Cryptosporidium genus (Table I). The hypothetical protein with signal peptide EAK88888 (N77) is highly conserved both in C. parvum and C. hominis (Table I). EAK88888 demonstrates a low similarity with proteins of the genus Plasmodium; however, the E value (1 × 10⁻¹⁸) is higher than the fixed cutoff point. Therefore, EAK88888 is probably more closely related to sim-
ilar proteins present in the genus *Plasmodium* than it appears from *C. parvum* and *C. hominis*. However, these proteins contain repetitive motifs that make the identification of a consensus sequence difficult. Three proteins (hypothetical protein cgd6_4460 (N46), hypothetical protein cgd7_4280 (N51), and Cpa135 protein (a135; N64)) demonstrate similarity with proteins from other Apicomplexa genera (*Plasmodium* and/or *Toxoplasma*) but not with proteins from other phyla (Table I).

Identification of Proteins from the Insoluble Fractions of Oocysts—Using shotgun sequencing 122 proteins were detected from the non-excysted insoluble oocyst fraction (Supplemental Table 2). Thirty-four (27.9%) of these detected proteins were ribosomal, and 26 of the proteins (21.3%) had hitherto been described as being only hypothetical proteins. Five heat shock proteins were also detected in non-excysted oocysts. As expected a number of surface antigens and oocyst wall-associated proteins were also detected in this fraction. In regard to the soluble oocyst fractions, many of the detected proteins in the insoluble non-excysted oocyst fraction are involved in glycolysis, cellular division and replication, and DNA modification. Also 14 proteins (with unique accession numbers) were only detected from the excysted insoluble oocyst fractions (Supplemental Table 3).

Surface, Cytoskeletal, and Extracellular Proteins—During our investigation, in both soluble and insoluble fractions, we detected a number of *C. parvum* cytoskeletal and surface proteins. Detected cytoskeletal proteins included actin (N36) and α-tubulin (N277; Table II). A number of proteins that are associated with extracellular protein secretion were detected in both soluble and insoluble fractions. These proteins included a predicted secreted protein signal peptide (N65), aminopeptidase N (N109), and the secreted GP900 (N88; Table II) (40). Moreover among the sporozoite secreted proteins that were identified, all the *C. parvum* predicted LCCL-containing proteins, namely CCP2 (N69) and CCP3 (N70; Table II), as well as the LCCL-containing protein Cpa135 (N64; Table I) were detected. Several oocyst wall and surface proteins were also detected, including glycoprotein Cpa17 (N223), an oocyst wall protein precursor (N224), COWP1 (N225), and 15-kDa glycoprotein (N286; Table II).

Metabolic Enzymes—A number of proteins involved in metabolic reactions were detected in both soluble and insoluble fractions. These enzymes included enolase (2-phosphoglycerate dehydratase) (N98), glycerol-3-phosphate dehydrogenase (N106), and fructose-1,6-bisphosphate aldolase (N236; Table II). A number of ATP-related enzymes were also detected, including secreted nucleoside-diphosphate kinase (N73; Table II). A Pdr17p-like protein (N110), which may regulate lipid synthesis, and a pleckstrin homology domain-containing protein (N124) were also detected (Table II).

Nucleic Acid and Protein Synthesis, Modification, and Replication—In both soluble and insoluble oocyst fractions a number of enzymes that are involved in nucleic acid synthesis, repair, and modification were detected. Examples of these included a small GTP-binding protein rab1a (N91) and guanine nucleotide-binding protein (N115; Table II). A number of enzymes were detected that would have key functions during the *Cryptosporidium* sp. replication, protein synthesis, and modification. Detected proteins with functions during
TABLE I
Summary of the bioinformatics analysis of the 26 proteins that showed significant expression increases during excystation

LC, largely conserved among different phyla; R, proteins involved in protein synthesis and/or associated with ribosomes; H, housekeeping genes or structural genes; S, heat shock proteins; HDAC, histone deacetylase; EST, expressed sequence tag; MPN, domain observed at N terminus of Mpr1p and Pad1p proteins.

Accession number	Protein name	Homologs	Domains
gi/66358116	40 S ribosomal protein S7	LC R	None detected
gi/32398896	60 S ribosomal protein-like, probable	LC R	None detected
gi/46229456	60 S ribosomal protein L35A, transcript identified by EST	LC R	None detected
gi/67594773	Hypothetical protein Chro.50226 (ribosomal protein L3), note: it is not present in the C. parvum annotated proteins	LC R	None detected
gi/66357812	Hypothetical protein cgd5_1370	C. hominis	Not detected
gi/66475922	Hypothetical protein cgd6_4460	Apicomplexa	HDAC-interacting domain and ARM domain
gi/46229711	HSP70, transcripts identified by EST	LC S	None detected
gi/8515208	HSP70	LC S	None detected
gi/3273568	HSP90	LC S	None detected
gi/66359492	HSP90	U S	None detected
gi/66359420	Hypothetical protein cgd3_3370	C. hominis	Signal peptide
gi/66363232	Hypothetical protein cgd7.4280	Apicomplexa	Signal peptide
gi/32398968	Hypothetical garp protein, possible	C. hominis	Signal peptide
gi/20513131	Cpa135 protein	Apicomplexa	Signal peptide, ricin B, and LCCL
gi/46229371	Protein with signal peptide and 2 Cryptosporidium-specific paralogs, putative secreted protein EAK90189	C. hominis	Signal peptide
gi/46227968	Hypothetical protein with signal peptide EAK88888	C. hominis	Signal peptide
gi/10444017	Lactate dehydrogenase	LC H	None detected
gi/46229140	Glyceraldehyde-3-phosphate dehydrogenase	LC H	None detected
gi/66359800	Acetaldehyde reductase plus alcohol dehydrogenase (AdhE) of possible bacterial origin	LC H	None detected
gi/46229859	Phosphoglycerate kinase 1	LC H	None detected
gi/51951320	Thioredoxin peroxidase-like protein	LC H	None detected
gi/46228775	Histone H4	LC H	None detected
gi/32398654	protein-disulfide isomerase, probable	LC H	None detected
gi/32398904	Mov34/MPN/PAD-1 family proteasome regulatory subunit, probable	LC H	None detected
gi/46229603	EF-1y (glutathione S-transferase family)	LC R	None detected
gi/32398975	EF-1α	LC R	None detected

replication included a GTP-binding nuclear protein ran/tc4 (N136), ribonucleotide reductase (N131), transcription regulator (N133), and a SEC14 domain-containing protein (N264; Table II). Also detected were a number of ribosomal proteins, translation elongation factor 2 (EF-2; N137), and ubiquitin-activating enzyme E1 (N123), which have key roles during protein synthesis and in proteasome/ubiquitin systems, respectively (41) (Table II). A number of enzymes associated with protein structural modification were also detected, e.g. protein-disulfide isomerase (N121), and Pre3p/proteasome regulatory subunit β type 6, nephrotoxic nephritis hydrolase fold (N122; Table II).
The first and most extensive proteome maps for all the life cycle stages of an apicomplexan parasite were published in 2002 for* Plasmodium falciparum*(42). Proteome maps are available for the invasive stages of development of the other apicomplexan parasites including the sporozoite of* Eimeria tenella* as well as the tachyzoite of* T. gondii* and* Neospora caninum*(42). Our study is the first major proteomics investigation of any* Cryptosporidium* species and in particular of* Cryptosporidium parvum*(14-16), a major global human and animal pathogen. We examined the proteome of* C. parvum* oocysts at two important stages of its life cycle: the transmissive non-excysted oocyst and infective sporozoite stages. The identified proteins represent roughly 8% of the predicted proteome (19, 20). Together with the sequencing of the* C. parvum*(20) and* C. hominis*(19) genomes, our study identified several potential targets both for immunotherapy and chemotherapy. Because of the high sequence similarity between the* C. hominis* and* C. parvum* genomes (19), the major pathogenic* Cryptosporidium* species for humans (10, 11), it is conceivable that the development of an effective vaccine or a drug for one of these species would work on both of them. In the* C. parvum* life cycle, there are two motile stages, the sporozoite and the merozoite, which invade the host cell membrane (Fig. 1). Sporozoites initiate the infection process, slipping out of the oocyst and invading the epithelial cells of the small intestine (2). It is conceivable that sporozoites as well as merozoites are more susceptible to drugs and the host immune system because they are exposed in the intestinal lumen, whereas the other parasite stages are intracellular.
One approach to the development of anticryptosporidial agents has been to identify sporozoite and merozoite surface antigens involved in recognition, attachment, and invasion of the host epithelial cells to block these interactions (42, 43). We detected a number of surface and extracellular proteins. Glycosylphosphatidylinositol phospholipids and glycosylphosphatidylinositol protein anchors are abundant in the surface membranes of a wide variety of parasitic protozoa and are increasingly recognized as important modulators of the immune function during infection (12). The immunodominant C. parvum 17-kDa surface antigen (N223; Table II) is glycosylphosphatidylinositol-anchored, and parasite surface glycosylphosphatidylinositol phospholipids are recognized by serum antibodies from infected patients (12). Furthermore, this work also confirms the expression of antigens, namely Cpa135 (N64) and GP900 (N88) (Tables I and II, respectively), which in addition to inducing specific antibodies (40, 44) can also elicit a cellular Th1 response (45).

Importantly during oocyst excystation, we identified 26 proteins that demonstrated significant expression increases. Thus, future vaccine development strategies could potentially select for antigens blocking the recognition and the attachment to host cells. Increased ribosomal protein expression may be due to the requirement of a rapid activation protein synthesis after a variable period of quiescence at the oocyst stage. The regulation of the ribosome and of the associated proteins has been observed in other species of the phylum Apicomplexa, e.g. E. tenella (46–48). Heat shock proteins (HSPs) are probably important for stress tolerance in the host environment and for the folding of newly synthesized proteins. Previous studies have found that the expression of HSPs occurred during the development of apicomplexan parasites and that HSPs are interesting targets for the host immune system (49). The level of HSP70 expression in T. gondii has been known to be higher in mouse-virulent than in mouse-avirulent strains (50). Recently, it has been reported that E. tenella HSP90 is essential for the invasion of the host cell and that its expression increases in sporozoites that secrete this protein (51). Interestingly, we identified seven proteins that are unique for the genus Cryptosporidium and/or the phylum Apicomplexa (Table I). Five of these proteins have a signal peptide at their N-terminus indicating that they are secreted proteins. These proteins probably play a specialized role in the invasion machinery of the parasite. Apart from its signal peptide, the cgd7.4280 protein (N51; Table I) is an apicomplexan protein that does not demonstrate identifiable traits. These proteins belong to a more extensive protein family. The cgd6.4460 (N46) protein belongs to an apicomplexan family sharing a peculiar architecture because they contain both a histone deacetylase-interacting domain and an armadillo repeat (ARM) domain. Histone deacetylases are involved in higher order chromatin assembly (52) and ARM proteins are involved in various processes, including intracellular signaling and cytoskeletal regulation (53).

Cpa135 has already been characterized; it is secreted by the apical complex prior to host cell invasion, and Cpa135-related proteins are a distinct family among the apicomplexan (LCCL) proteins (52). In accord with the present data, the expression of Cpa135 increases 4-fold within 30 min after excystation (52). On the whole, three proteins containing LCCL domains (including Cpa135) with peculiar domain architecture, e.g. Cpc2 (N69) and Cpc3 (N70), were detected. These proteins are composed of various adhesive motifs (ricin B, LCCL, and discoidin), suggesting that these proteins are involved in some adhesion process. They also have closely related homologs in P. falciparum, namely PfCcp1, PfCcp2, and PfCcp3 that are orthologs to Cpa135 (also named Cpc2p1), Cpc2p2, and Cpc3, respectively (52, 54). Interestingly, our results demonstrated that these proteins are expressed simultaneously in both oocysts and free sporozoites, whereas all the P. falciparum orthologs have gametocyte stage-specific expression of these genes (54). This fact suggests that these proteins require a coordinate expression to exert their role.

This study is the first major proteomics investigation of its kind on any Cryptosporidium species. We ascertained the expression of many formerly putative proteins and the presence of several secreted or surface proteins in sporozoites that are restricted to the Apicomplexa or to the Cryptosporidium genus. These findings could favor further studies for the identification and role of specific molecules involved in motility, host recognition, and invasion. Interestingly three Apicomplexa-specific proteins and five Cryptosporidium sp.-specific proteins were augmented in excysted invasive sporozoites. These eight proteins represent promising targets for developing vaccines or chemotherapies that could block parasite entry into host cells. Therefore, our study represents a substantial step forward toward increasing our understanding of Cryptosporidium sp. biology and the molecular mechanisms of parasite entry as well as the development of therapy to combat cryptosporidiosis.

Acknowledgments—We are grateful to Daniele Tonanzi for excellent oocyst purification technical support. We thank Lorenzo Putignani for generating transmission electron microscopy images.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

†† Supported by a grant from the Istituto Superiore di Sanità, 5th National AIDS Project, Contract 50F/H.
REFERENCES

1. Doganci, T., Arar, E., Ensari, A., Tanyuksel, M., and Doganci, L. (2002) Detection of Cryptosporidium parvum infection in childhood using various techniques. Med. Sci. Monit. 8, 223–226

2. Fayer, R., Speer, C. A., and Dubey, J. P. (1997) General biology of Cryptosporidium, in Cryptosporidium and Cryptosporidiosis (Fayer, R., ed) pp. 1–42, CRC Press, Boca Raton, FL

3. Xiao, L., Fayer, R., Ryan, U., and Upton, S. J. (2004) Cryptosporidium taxonomy: recent advances and implications for public health. Clin. Microbiol. Rev. 17, 72–97

4. Blackman, M. J., and Bannister, L. H. (2001) Apical organelles of Apicomplexa: biology and isolation by subcellular fractionation. Mol. Biochem. Parasitol. 117, 11–25

5. Smith, H. V., Nichols, R. A. B., and Grimason, A. M. (2005) Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends Parasitol. 21, 133–142

6. Sunnotel, O., Lowery, C. J., Moore, J. E., Dooley, J. S., Xiao, L., Millar, B. C., Rooney, P. J., and Smelling, W. J. (2006) Under the microscope: Cryptosporidium. Lett. Appl. Microbiol. 42, 7–14

7. McCole, D. F., Eckmann, L., Laurent, F., and Kagnoff, M. F. (2000) Intestinal epithelial cell apoptosis following Cryptosporidium parvum infection. Infect. Immun. 68, 1710–1713

8. Fayer, R., Morgan, U., and Upton, S. J. (2000) Epidemiology of Cryptosporidium: transmission, detection, and identification. Int. J. Parasitol. 30, 1305–1322

9. Caccio, S. M. (2005) Molecular epidemiology of human cryptosporidiosis. Parasitology 47, 185–192

10. Chen, X. M., O’Hara, S. P., Huang, B. Q., Splinter, P. L., Nelson, J. B., and McDonald, V. (2000) Host cell-mediated responses to infection with Cryptosporidium parvum. Parasitol. Today 16, 72–97

11. McDonald, V. (2000) Host cell-mediated responses to infection with Cryptosporidium. Parasite Immunol. 22, 597–604

12. Priest, J. W., Mehlert, A., Moss, D. M., Arrowood, M. J., and Ferguson, M. A. (2006) Characterization of the glycosylphosphatidylinositol anchor of the immunodominant Cryptosporidium parvum 17-kDa antigen. Mol. Biochem. Parasitol. 149, 108–112

13. MacKenzie, W. R., Hoxie, N. J., Proctor, M. E., Gradus, M. S., Blair, K. A., Peterson, D. E., Kazmierczak, J. J., Addiss, D. G., Fox, K. R., and Rose, J. B. (1994) A massive outbreak in Milwaukee of cryptosporidium infection transmitted through the public water supply. N. Engl. J. Med. 331, 161–167

14. Corso, P. S., Kramer, M. H., Blair, K. A., Addiss, D. G., Davis, J. P., and Haddix, A. C. (2003) Cost of illness in the 1993 waterborne Cryptosporidium outbreak, Milwaukee, Wisconsin. Emerg. Infect. Dis. 9, 426–431

15. Zhu, G., LaGier, M. J., Hirose, S., and Keithly, J. S. (2000) Cryptosporidium parvum: functional complementation of a parasite transcriptional coactivator CmtMFB1 in yeast. Exp. Parasitol. 96, 195–201

16. Craun, G. F., Calderon, R. L., and Craun, M. F. (2005) Outbreaks associated with recreational water in the United States. Int. J. Environ. Health Res. 15, 243–262

17. Putignani, L. (2005) The unusual architecture and predicted function of the mitochondrion organelle in Cryptosporidium parvum and hominis species: the strong paradigm of the structure-function relationship. Parasitology 47, 217–225

18. Adkins, J. N., Mottaz, H. M., Norbeck, A. D., Gustin, J. K., Rue, J., Clauss, P. H., Tanabe, J. E., Subramanian, G. M., Hoffman, S. L., Abrahamson, M. S., and Aravind, L. (2004) Comparative analysis of Apicomplexa and genomic diversity in eukaryotes. Genome Res. 14, 1868–1869

19. Gut, J., and Nelson, R. G. (1999) Cryptosporidium parvum: synchronized excystation in vitro and evaluation of sporozoite infectivity with a new lectin-based assay. J. Eukaryot. Microbiol. 46, 565–575

20. Templeton, T. J., Iyer, L. M., Anantharaman, V., Enomoto, S., Abrahante, J. E., Subramanian, G. M., Hoffman, S. L., Abrahamson, M. S., and Aravind, L. (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304, 441–445

21. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khoainos, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D. J. (2000) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1161

22. Mele, R., Gomez Morales, M. A., Tosini, F., and Pozio, E. (2004) Cryptosporidium parvum at different developmental stages modulates host cell apoptosis in vitro. Infect. Immun. 72, 6061–6067

23. Riggs, M. W., Cama, V. A., Leary, H. L., Jr., and Sterling, C. R. (1994) Bovine antibody against Cryptosporidium parvum elicits a circumsporozoite precipitae-like reaction and has immunotherapeutic effect against persistent cryptosporidiosis in SCID mice. Infect. Immun. 62, 1927–1939

24. Mandal, P., Chakraborty, P., Sahu, S., and Mandal, N. C. (2006) Purification and characterization of a deoxyribonucleocapsid of Mycobacterium smegmatis. J. Biochem. Mol. Biol. 39, 140–144

25. Konta, J., Gramolini, A. O., Pan, Y., Rahman, K., MacLennan, D. H., and Liddington, R. C., and Lipton, S. A. (2002) S-Nitrosylation of matrix lectin-based assay. J. Eukaryot. Microbiol. 56S, 57S–58S

26. Tantipabaowong, P., Sinchaikul, S., Sriyam, S., Phutrakul, S., and Chen, T. S. (2005) Different techniques for urinary protein analysis of normal and lung cancer patients. Proteomics 5, 1140–1149

27. Ranish, J. A., Yi, E. C., Leslie, D. M., Purnine, S. O., Goodlett, D. R., Eng, J., and Aeberold, R. (2003) The study of macromolecular complexes by quantitative proteomics. Trends Genet. 19, 349–354

28. Gu, Z., Kaul, M., Yan, B., Kridel, S. J., Cui, J., Strongin, A., Smith, J. W., Bankier, A. T., Dear, P. H., Konfortov, B. A., Spriggs, H. F., Iyer, L., Anantharaman, V., Aravind, L., and Kapur, V. (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304, 441–445

29. Wolters, D. A., Washburn, M. P., and Yates, J. R. III (2001) An automated multidimensional protein identification technology for shotgun proteomics. Nat. Biotechnol. 19, 5683–5690

30. Smith, J. A., Blanchette, R. A., Burns, T. A., Jacobs, J. H., Higgins, L., Wittbuhn, B. A., David, A. J., and Gillman, J. H. (2006) Proteinomic comparison of needles from blister rust-resistant and susceptible Pinus strobus seedlings reveals upregulation of putative disease resistance proteins. Mol. Plant-Microbe Interact. 19, 150–160

31. Shadforth, I. P., Dunkley, T. P. J., Lilley, K. S., and Bessant, C. (2005) iTracker: For quantitative proteomics using iTRAQ™. BMC Genomics 6, 145

32. Tang, W. H., Halpern, B. R., Shilov, I. V., Seymour, S. L., Keating, S. P., Loboda, A., Patel, A. E., Schaeffer, D. A., and Nuwaysir, L. M. (2005)
Discovering known and unanticipated protein modifications using MS/MS database searching. Anal. Chem. 77, 3931–3946
40. Barnes, D. A., Bonnin, A., Huang, J. X., Gousset, L., Wu, J., Gut, J., Doyle, P., Dubremetz, J. F., Ward, H., and Petersen, C. (1998) A novel multi-domain mucin-like glycoprotein of Cryptosporidium parvum mediates invasion. Mol. Biochem. Parasitol. 96, 93–110
41. Gonzalez, J., Bai, G., Frevert, U., Corey, E. J., and Eichinger, D. (1999) Proteasome-dependent cyst formation and stage-specific ubiquitin mRNA accumulation in Entamoeba invadens. Eur. J. Biochem. 264, 897–904
42. Belli, S. I., Walker, R. A., and Flowers, S. A. (2005) Global protein expression analysis in apicomplexan parasites: current status. Proteomics 5, 918–924
43. O’Connor, R. M., Kim, K., Khan, F., and Ward, H. D. (2003) Expression of Cpgp40/15 in Toxoplasma gondii: a surrogate system for the study of Cryptosporidium glycoprotein antigens. Infect. Immun. 71, 6027–6034
44. Tosini, F., Caccio, S., Tamburrini, A., La Rosa, G., and Pozio, E. (1999) Identification and characterisation of three antigenic proteins from Cryptosporidium parvum sporozoites using a DNA library expressing poly-histidine tagged peptides. Int. J. Parasitol. 29, 1925–1933
45. Gomez Morales, M. A., Mele, R., Ludovisi, A., Bruschi, F., Tosini, F., Rigano, R., and Pozio, E. (2004) Cryptosporidium parvum-specific CD4 Th1 cells from sensitized donors responding to both fractionated and recombinant antigenic proteins. Infect. Immun. 72, 1306–1310
46. Waters, A. P., Synt, C., and McCutchan, T. F. (1989) Developmental regulation of stage-specific ribosome populations in Plasmodium. Nature 342, 438–440
47. Li, J., McConkey, G. A., Rogers, M. J., Waters, A. P., and McCutchan, T. R. (1994) Plasmodium: the developmentally regulated ribosome. Exp. Parasitol. 78, 437–441
48. Schaap, D., Arts, G., van Poppel, N. F., and Vermeulen, A. N. (2005) De novo ribosome biosynthesis is transcriptionally regulated in Eimeria tenella, dependent on its life cycle stage. Mol. Biochem. Parasitol. 139, 239–248
49. Sharma, Y. D. (1992) Structure and possible function of heat-shock proteins in Falciparum malaria. Comp. Biochem. Physiol. B 102, 437–444
50. Lyons, R. E., and Johnson, A. M. (1995) Heat shock proteins of Toxoplasma gondii. Parasite Immunol. 17, 353–359
51. Peroval, M., Pery, P., and Labbe, M. (2006) The heat shock protein 90 of Eimeria tenella is essential for invasion of host cell and schizont growth. Int. J. Parasitol. 36, 1205–1215
52. Tosini, F., Agnoli, A., Mele, R., Gomez Morales, M. A., and Pozio, E. (2004) A new modular protein of Cryptosporidium parvum, with ricin B and LCCL domains, expressed in the sporozoite invasive stage. Mol. Biochem. Parasitol. 134, 137–147
53. Nakayama, J., Xiao, G., Noma, K., Malikzay, A., Bjerring, P., Ekwall, K., Kobayashi, R., and Grewal, S. I. (2003) Alp13, an MRG family protein, is a component of fission yeast Ctr6 histone deacetylase required for genomic integrity. EMBO J. 22, 2776–2787
54. Pradel, G., Wagner, C., Mejia, C., and Templeton, T. J. (2006) Plasmodium falciparum: co-dependent expression and co-localization of the PICCP multi-adhesion domain proteins. Exp. Parasitol. 112, 263–268