Deregulated Levels of the \(\text{NF-\kappa B1}, \text{NF-\kappa B2}, \) and \(\text{Rel} \) Genes in Ukrainian Patients with Leukemia and Lymphoma in the Post-Chernobyl Period

Çernobil Sonrası Ukraynalı Lösemi ve Lenfoma Hastalarında Değişken \(\text{NF-\kappa B1}, \text{NF-\kappa B2} \) ve \(\text{Rel} \) Gen Düzeleyleri

Hakan Savlı\(^1\), Ramis Ufuk Akkoyunlu\(^1\), Naci Çine\(^1\), Daniil F. Gluzman\(^2\), Michael P. Zavelevich\(^2\), Lilia M. Sklyarenko\(^2\), Stella V. Koval\(^2\), Deniz Süntetiç\(^1\)

\(^1\)Kocaeli University Faculty of Medicine, Department of Medical Genetics, Kocaeli, Turkey

\(^2\)National Academy of Sciences of Ukraine, R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, Kyiv, Ukraine

Abstract

Objective: Nuclear factor kappa B (NF-\(\kappa \)B) is an important transcription factor in cancer and NF-\(\kappa \)B activation has been seen in angiogenesis, tumor progression, and metastasis. Relationships between specific NF-\(\kappa \)B gene networks, leukemogenesis, and radiation exposure are still unknown. Our aim was to study the expression levels of the NF-\(\kappa \)B1, NF-\(\kappa \)B2, and Rel genes in hematological malignancies in the post-Chernobyl period.

Materials and Methods: We analyzed gene expression levels of NF-\(\kappa \)B1, NF-\(\kappa \)B2, and Rel in 49 B-cell chronic lymphocytic leukemia, 8 B-cell non-Hodgkin’s lymphoma, 3 acute myeloid leukemia, 3 chronic myeloid leukemia, 2 hairy cell leukemia, 2 myelodysplastic syndrome, and 2 T-cell large granular lymphocytic leukemia patients using real-time polymerase chain reaction.

Results: Expression levels of NF-\(\kappa \)B1, NF-\(\kappa \)B2, and Rel genes were found to be deregulated.

Conclusion: These results could be accepted as specific gene traces to radiation-induced leukemia or as potential candidates for new diagnostic biomarker studies. Larger experiments and non-exposed control malignant cell populations are needed to clarify these suggestions.

Keywords: Chronic lymphocytic leukemia, Non-Hodgkin’s lymphoma, B-cell neoplasms, Cancer, Thrombosis, T-cell neoplasms, B-cell neoplasms, Acute leukemia, Myelodysplastic syndromes, Chronic leukemia

Öz

Amaç: Nükleer faktör kappa B (NF-\(\kappa \)B), kanserde önemli bir transkripsiyon faktörü olup aktifasyonu anjiyogenez, tümör gelişimi ve metastazın birçok basamağında görülmektedir. Spesifik NF-\(\kappa \)B gen ağları, lökomogenez ve radyasyon maruziyeti arasındaki ilişki halen belirsizdir. Çalışmamızda Çernobil sonrası hematolojik kanserlerde NF-\(\kappa \)B1, NF-\(\kappa \)B2 ve Rel genlerinin ekspresyon düzeylerini incelemeyi amaçladık.

Gereç ve Yöntemler: Gerçek zamanlı polimeraz zincir reaksiyonu ile 49 B-hücreli kronik lenfositik lösemi, 8 B-hücreli non-Hodgkin lenfoma, 3 akut myeloid lösemi, 3 kronik myeloid lösemi, 2 tüyülü hücre lösemi, 2 mielodisplastik sendrom ve 2 T-hücreli büyük granüler lenfositik lösemi hastasında NF-\(\kappa \)B1, NF-\(\kappa \)B2 ve Rel gen ekspresyon düzeylerini analiz ettik.

Bulgular: NF-\(\kappa \)B1, NF-\(\kappa \)B2 ve Rel genlerine ait ekspresyon düzeyleri değişmiş olarak saptandı.

Sonuç: Bu sonuçlar, radyasyonla indüklenmiş lösemelerdeki spesifik gen izleri veya yeni tanisal biyobelirtec Çalışmalarına muhtemel aday öneriler olarak da kabul edilebilir. Bu düşünceleri açıkça kavuşturmak için daha geniş deneyler ve radyasyon maruziyeti olmayan kontrol malign hücre popülasyonlarına ihtiyaç vardır.

Anahtar Sözcükler: Kronik lenfositik lösemi, Non-Hodgkin lenfoma, B-hücreli neoplazmalar, Kanser, Tromboz, T-hücreli neoplaziler, B-hücreli neoplaziler, Akut lösemi, Myelodisplastik sendromlar, Kronik lösemi
Introduction

The derivations of signatures using proteomics and genomics are increasingly integrated in the design of prognostic and predictive markers in oncology. Some of these markers are also well-known targets for therapeutic approaches, such as bortezomib, a nuclear factor kappa B (NF-κB) inhibitor possessing clinical activity in mantle cell lymphoma patients [1]. NF-κB is an important transcription factor in immunity, cell proliferation, cell survival, and cancer [2,3,4,5]. NF-κB activation has been demonstrated in angiogenesis, tumor progression, and metastasis [6,7].

Relationships between gene networks, leukemogenesis, and radiation exposure are still unknown. Our aim was to study expression levels of the NF-κB gene family in Ukrainian B-cell chronic lymphocytic leukemia (B-CLL), B-cell non-Hodgkin’s lymphoma (NHL), acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), chronic myeloid leukemia (CML), hairy cell leukemia (HCL), and T-cell large granular lymphocytic leukemia (T-cell LGLL) patients in the post-Chernobyl period.

Materials and Methods

Samples of the peripheral blood and bone marrow of 49 B-CLL, 8 B-cell NHL, 3 AML, 2 HCL, 2 MDS, and 27 T-cell LGLL patients were obtained from the R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology of the National Academy of Sciences of Ukraine in 2008 and 2009. The mean age of the B-CLL group was 58.7 years and the median was 60 years (minimum 36 yrs, maximum 87 yrs). In the B-cell NHL group, the mean age was 57.3 years and the median was 60 years (minimum 43 yrs, maximum 69 yrs). Patients were analyzed morphologically and immunocytochemically according to the new World Health Organization classification, as shown in Table 1 along with demographical data. The control group comprised the peripheral blood samples of 8 healthy donors from Ukraine. The mean age of the control subjects was 45.9 years and the median was 42.5 years (minimum 27 yrs, maximum 78 yrs). All B-CLL cases under study were of the typical B-CLL immunophenotype without adverse prognostic markers such as CD38+. Total ribonucleic acid (RNA) was isolated from leukocytes using the QiAamp RNA Blood Mini Kit (QIAGEN, Valencia, CA, USA) and treated with DNase I according to the manufacturer’s instructions. Quantity and purity were checked using a NanoDrop 2000 UV-Vis Spectrophotometer (Thermo Scientific, Wilmington, DE, USA). Complementary deoxyribonucleic acid (cDNA) was synthesized using a RevertAid First Strand cDNA Synthesis Kit (Fermentas Inc., Hanover, MD, USA) from 100 ng/µL total RNA as starting material. Gene expression levels were determined by quantitative reverse transcription-polymerase chain reaction as described previously [8,9]. Standard curves were obtained using serial dilutions of the beta-globulin gene (DNA Control Kit, Roche, Penzberg, Germany). Gene-specific primers (Table 2) were obtained from Integrated DNA Technologies (Coralville, IA, USA). Obtained gene expression values were normalized using a housekeeping gene of beta-2 microglobulin. Gene expression ratios were compared in patient and control groups using the Relative Expression Software Tool (REST).

Statistical Analysis

Statistical analysis was performed using independent sample t-tests to analyze the statistical significance of our results by comparing controls with B-CLL, B-cell NHL, AML, MDS, CML, HCL, and T-cell LGLL patients. The p-values are shown in Table 3.

Results

The NF-κB1, NF-κB2, and Rel genes were found to be upregulated in 49 B-CLL, 8 B-cell NHL, 3 AML, and 2 HCL patients in the post-Chernobyl period (Table 3). NF-κB1 was decreased 1.301-fold in B-CLL, 1.473-fold in B-cell NHL, 1.534-fold in AML, and 1.862-fold in HCL cases. NF-κB2 was upregulated 1.720-fold in B-CLL, 8.545-fold in B-cell NHL, 16.257-fold in AML, and 1.676-fold in HCL cases. We found Rel expression upregulated 2.736-fold in B-CLL, 4.039-fold in B-cell NHL, 65.526-fold in AML, and 6.912-fold in HCL cases.

In the MDS group, NF-κB2 was found to be significantly upregulated (50.563-fold). Rel was 2.272-fold upregulated whereas NF-κB1 was 1.100-fold downregulated in the same group.

In the CML group, NF-κB2 was 2.110-fold upregulated while NF-κB1 and Rel were downregulated 1.056-fold and 1.239-fold, respectively.

We found downregulation of the NF-κB1, NF-κB2, and Rel genes in T-cell LGLL cases at 4.557-fold, 3.771-fold, and 2.632-fold, respectively.

Discussion

We had already found deregulated levels of NF-κB in our genomic experiments on prostate cancer [10], papillary thyroid cancer [11], and leukemia [12,13] in our previous studies. Recently, our proteomic results confirmed the upregulation of NF-κB in microarray screening in a breast cancer population [14]. This is our first observation of NF-κB deregulations in hematopoietic malignancies.

Transcription of proteins that promote cell survival, stimulate growth, induce angiogenesis, and reduce susceptibility to apoptosis are upregulated by NF-κB. The NF-κB signaling pathway was found activated in MDS, AML, acute lymphoblastic leukemia (ALL), CML, CLL, multiple myeloma, and lymphoma cases before. These 3 genes were defined as deregulated before
Table 1. Patient data, clinical features, and individual gene expression ratios.

Leukemia Type	Patient ID	Sex, Age	WBC	Clinical Data	\(NF-\kappa B1\) Gene Expression Fold Change	\(NF-\kappa B2\) Gene Expression Fold Change	\(Rel\) Gene Expression Fold Change
B-CLL	U 4	F/73	Le-1x10^9/L	Stage 3	1.528/U	2.676/U	3.444/U
B-CLL	U 11	F/71	Le-1x10^9/L	Stage 2	1.397/U	1.366/D	5.220/U
B-CLL	U 20	F/46	Le-2x10^9/L	Stage 2	1.818/U	15.562/U	6.653/U
B-CLL	U 23	M/55	Le-1.5x10^9/L	Stage 2	1.233/U	1.214/D	3.350/U
B-CLL	U 27	M/49	Le-4.3x10^9/L	Stage 2	2.953/U	3.434/U	8.598/U
B-CLL	U 28	M/62	Le-1.05x10^9/L	Stage 1-2	1.916/D	17.630/D	1.773/D
B-CLL	U 29	F/72	B-CLL	B-CLL	34.824/U	n/a	2.740/U
B-CLL	U 30	M/69	B-CLL	B-CLL	22.816/U	n/a	1.489/U
B-CLL	U 31	M/36	B-CLL	B-CLL	2.661/U	2.497/D	1.120/U
B-CLL	U 32	F/59	B-CLL	B-CLL	1.134/U	7.362/D	1.598/D
B-CLL	U 33	F	B-CLL	B-CLL	1.402/D	1.693/U	2.880/D
B-CLL	U 34	M/67	B-CLL	B-CLL	3.463/U	1.240/D	2.020/U
B-CLL	U 35	F/66	B-CLL	B-CLL	12.658/U	2.908/D	2.288/U
B-CLL	U 36	F/87	B-CLL	B-CLL	1.656/D	2.990/D	1.450/U
B-CLL	U 37	F/63	B-CLL	B-CLL	2.238/U	1.310/U	2.272/U
B-CLL	U 43	F/50	B-CLL	B-CLL	1.216/U	1.257/U	1.924/U
B-CLL	U 44	M/74	B-CLL	B-CLL	1.022/U	1.079/D	5.007/U
B-CLL	U 45	F/57	B-CLL	B-CLL	2.141/D	1.569/D	1.820/U
B-CLL	U 49	M/57	B-CLL	B-CLL	18.405/U	n/a	7.180/U
B-CLL	U 51	M/62	B-CLL	B-CLL	16.772/D	n/a	2.556/U
B-CLL	U 52	M/64	B-CLL	B-CLL	1.103/U	n/a	4.211/U
B-CLL	U 54	F/52	B-CLL	B-CLL	1.327/D	3.117/D	4.737/U
B-CLL	U 1	M/70	B-CLL	B-CLL	2.518/U	2.657/U	2.452/U
B-CLL	U 12	M/57	B-CLL	B-CLL	3.245/D	1.729/U	1.252/U
B-CLL	U 24	F/53	B-CLL	B-CLL	2.102/U	5.657/D	1.060/U
B-CLL	U 33	F/36	B-CLL	B-CLL	1.282/D	1.301/D	4.482/U
B-CLL	U 34	M/85	B-CLL	B-CLL	1.027/D	2.549/U	2.504/U
B-CLL	U 40	M/62	B-CLL	B-CLL	1.309/D	2.868/D	1.722/U
B-CLL	U 42	M/56	B-CLL	B-CLL	1.393/D	8.574/D	1.607/U
B-CLL	U 47	F/71	B-CLL	B-CLL	1.482/D	8.938/U	6.426/U
B-CLL	U 51	F/70	B-CLL	B-CLL	1.116/D	4.959/U	8.779/U
Table 1. Continuation.

B-CLL	U 69 P	M/41	Preliminary diagnosis: B-CLL NHL of spleen could not be excluded	1.155/D	5.776/U	1.584/U		
B-CLL	U 76 P	M/70	B-CLL	1.282/D	3.074/D	6.746/U		
B-CLL	U 77 P	F/69	B-CLL	3.254/U	1.301/U	11.035/U		
B-CLL	U 80 P	M/51	B-CLL	1.462/D	7.945/U	6.122/U		
B-CLL	U 81 P	M/70	B-CLL	2.025/D	18.252/U	2.521/U		
B-CLL	U 82 P	M/60	B-CLL	1.889/D	3.945/U	4.608/U		
B-CLL	U 83 P	F/48	B-CLL	1.051/U	n/a	1.686/U		
B-CLL	U 85 P	F/57	B-CLL	1.668/D	14.420/U	5.184/U		
B-CLL	U 87 P	F	B-CLL	2.691/D	9.781/U	2.320/U		
B-CLL	U 88 P	M/51	B-CLL	1.436/U	3.811/D	7.537/U		
B-CLL	U 208 P	F/62	B-CLL	1.259/U	20.821/U	1.128/U		
B-CLL	U 211 P	F/55	B-CLL	1.213/D	17.630/U	1.399/U		
B-CLL	U 7 B	F/78	Le-149.9x10^9/L	Stage 3	Lymph nodes +, lien +, hepar + B-CLL/PLL (NHL)	1.571/U	2.848/U	14.065/U
B-CLL	U 15 B	F/67	Stage 1-2 Lymph nodes + B-CLL/PLL (NHL)	1.524/D	2.014/D	1.978/U		
B-CLL	U 41 B	M/53	Chronic lymphoproliferative disease, Waldenström macroglobulinemia	1.507/U	n/a	1.428/U		
B-CLL	U 55 B	F/59	Chronic lymphoproliferative disease	1.116/D	2.567/D	2.797/U		
B-CLL	U 57 B	M/78	B-CLL	1.147/D	1.064/D	3.396/U		
B-CLL	U 58 B	F/57	B-CLL	2.415/U	1.454/U	5.293/U		
B-cell NHL	U 8 B	F/43	Le-20.5x10^9/L	Lien +, hepar +	1.336/D	1.310/U	3.565/U	
B-cell NHL	U 14 B	M/53	Le-15.1x10^9/L	Lymph nodes +, lien +	1.196/D	1.094/D	1.082/U	
B-cell NHL	U 19 B	M/69	Le-10x10^9/L	Lymph nodes +, hepar + Large B-cell lymphoma	1.015/U	n/a	n/a	
B-cell NHL	U 48 B	M/45	B-cell NHL	B-cell NHL	4.061/U	n/a	2.006/U	
B-cell NHL	U 13 P	M/60	Diffuse large B-cell lymphoma plasmablastic variant	2.717/U	n/a	n/a		
B-cell NHL	U 209 P	M/62	B-cell NHL	1.207/U	37.531/U	1.552/U		
B-cell NHL	U 15 P	F/60	Lymphoma of marginal zone of spleen, leukemic transition	3.660/U	n/a	7.230/U		
Here we have observed deregulated levels in radiation-induced leukemia populations. Results supported that radiation-exposed and non-exposed hematological malignancies use the same gene pathways and are shaped around the NF-κB gene network.

It was shown that losses in the 13q chromosomal region are also associated with B-CLL and these losses deregulate the NF-κB pathway [16]. Deregulation of the NF-κB pathway by gains at chromosomal loci including the NF-κB1, NF-κB2, and Rel genes was reported previously. A gain at the (2)(p16.1p14) region including the Rel gene, an oncogene, was reported in 17p-deleted CLL with poor prognosis [17]. Rearrangements such as translocations and deletions occurred in 10q24 affecting the NF-κB2 gene, a protooncogene. These rearrangements are known to lead to deletion of 3' sequences of the NF-κB2 gene and cause production of carboxy-truncated constitutively nuclear proteins that may have a role in the tumorigenesis of B-CLL and B-cell NHLs at high levels [18]. Unlike its relative NF-κB2, NF-κB1 has few rearrangements reported in leukemias and lymphomas. There is evidence in the literature that NF-κB2 is involved in oncogenesis in T-cell ALL as a result of LYL1 translocation [19]. Further studies are needed to assess the NF-κB1 rearrangements leading to B-CLL and B-cell NHLs. These observations give us new clues about relationships between NF-κB deregulation in leukemias and chromosomal regions.

We are planning to continue our further studies by array comparative genomic hybridization analysis to focus on fine mapping of 13q and 2p in particular.

Over the last decade, the problem of association between B-CLL and ionizing radiation has become a matter of considerable scientific interest [20]. Nevertheless, the experimental studies on the relationship between ionizing radiation and CLL are limited. Lyng et al. indicated that activation of the NF-κB pathway

Genes	Primer Sequences
Beta-2 microglobulin	(F) 5’ TGA CTI TGT CAC AGC CCA AGA TA 3’ (R) 5’ AAT CCA AAT GCC GTA TCT TC 3’
NF-κB1	(F) 5’ AGC AGG AAG ATA GCG GTG TA 3’ (R) 5’ TCT TGG CAA ATA GGC AAG GT 3’
NF-κB2	(F) 5’ AGA CCA GTG TGG TGA GCT TCT 3’ (R) 5’ AGT CAG GCA TAT GCA ACA A 3’
Rel	(F) 5’ TGC CCA GTA CAT ATG CGG AAT 3’ (R) 5’ GGA CAT CTG ATG GAG CTG TCT 3’

NF-κB: Nuclear factor kappa B.
may suppress the apoptotic response in U698 cells, a malignant B-lymphocyte cell line, to ionizing radiation [21]. Activation of the NF-κB pathway by ionizing radiation induces antiapoptotic genes and inhibits apoptosis by upregulation of NF-κB genes. This was linked to proliferation and increased survival of B-CLL [22]. B-CLL and HCL cells are known to be refractory to signals activating normal B cells. B-CLL and HCL cells are stimulated by tumor necrosis factor (TNF-α) [23]. TNF-α is involved in many human tumors and associated with poor prognosis. TNF-α is produced by B-CLL and HCL cells [24] and contributes to the escape of HCL cells from apoptosis through NF-κB activation [25]. Radiation exposure results in high levels of NF-κB gene expression. We found upregulated levels of NF-κB1, NF-κB2, and Rel genes in our patients. Our results were in concordance with the previous findings above.

NF-κB expressions were found significantly higher than in the controls in both AML and ALL by Kapelko-Słowik et al. before [26]. They also found lower expression levels of NF-κB in AML patients who reached complete remission compared with patients with primary resistance to chemotherapy who did not reach complete remission. These data indicated that high expression levels of NF-κB might be involved in the pathogenesis of AML and ALL [26]. There are few studies on radiation-induced leukemia populations, such as in the Chernobyl area. However, we cannot assess all etiological sources for our subjects. Levels of exposure among subjects during the Chernobyl accident remain unclear. Thus, we cannot conclude that the NF-κB pathway is the main cause of AML and ALL pathogenesis in radiation-induced forms of the disease.

Rel has the potential to transform cells in culture and is expressed in high levels in both B-cell NHL [27] and large granular lymphocytic leukemia [28]. Interestingly, we found decreased levels of Rel, NF-κB1, and NF-κB2 in our T-cell LGLL group.

In our study we found NF-κB2 significantly higher in MDS cases. There is evidence in the literature that the degree of NF-κB activity is correlated with the risk of progression to AML. NF-κB activation is known to be a hallmark of high-risk MDS [27].

We obtained increased levels of NF-κB2 in CML cases. Exposure to ionizing radiation causes CML [29]. CML is characterized by t(9;22), which leads to Bcr/Abl fusion oncoprotein expression. This protein activates the NF-κB pathway. The NF-κB pathway, in turn, leads to expression of antiapoptotic proteins such as Bcl-XL and lets Bcr/Abl+ cells grow [27].

Here we have defined a positive correlation between upregulated levels of NF-κB genes in hematological malignancies related to radiation exposure. However, the limited number of patients and controls was an obstacle. Therefore, these experiments are presented here as results of a preliminary study. Similar studies should be extended to experiments in time- and dose-dependent manners in cell lines or primary cultures. We think that our results are a good starting point for drawing a network around the NF-κB genes to investigate the life cycles of hematological malignancies.

Table 3. Gene expression levels in groups of studied patients.

Number of Patients	NF-κB1 Gene Expression Change	NF-κB2 Gene Expression Change	REL Gene Expression Change
B-CLL 49	1.301 U p=0.569	1.720 U p=0.335	2.736 U p=0.018
B-cell NHL 8	1.473 U p=0.039	8.545 U p=0.391	4.039 U p=0.018
AML 3	1.534 U p=0.001	16.257 U p=0.698	65.526 U p=0.786
CML 3	1.056 D p=0.758	2.110 U p=0.99	1.239 D p=0.127
HCL 2	1.862 U p=0.272	1.676 U	6.912 U p=0.519
MDS 2	1.100 D p=0.758	50.563 U p=0.72	2.272 U
T-cell LGLL 2	4.557 D p=0.236	3.771 D	2.632 D p=0.623

NF-κB: Nuclear factor kappa B, B-CLL: B-cell chronic lymphocytic leukemia, AML: acute myeloid leukemia, MDS: myelodysplastic syndrome, CML: chronic myeloid leukemia, HCL: hairy cell leukemia, T-cell LGLL: T-cell large granular lymphocytic leukemia, NHL: non-Hodgkin’s lymphoma, D: downregulated, U: upregulated.
Conclusion
Moreover, it would be tempting to suggest that this gene region may be used as a trace of early radiation exposure leading to leukemia. Either way, the NF-κB pathway certainly deserves more attention since its overexpression is almost a rule in many solid tumors and hematopoietic malignancies.

Ethics
Ethics Committee Approval: Bioethics Committee of the R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine (Approval number: 5/2008), Informed Consent: It was taken.

Authorship Contributions
Concept: Hakan Savli, Daniil F. Gluzman, Design: Hakan Savli, Daniil F. Gluzman, Michael P. Zavelevich, Data Collection or Processing: Lilia M. Skyarenko, Stella V. Koval, Analysis or Interpretation: Deniz Sünnetçi, Naci Çine, Ramis Ufuk Akkoyunlu, Lilia M. Skyarenko, Literature Search: Deniz Sünnetçi, Ramis Ufuk Akkoyunlu, Michael P. Zavelevich, Writing: Hakan Savli, Ramis Ufuk Akkoyunlu.

Conflict of Interest: The authors of this paper have no conflicts of interest, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials included.

Financial Disclosure: The authors declared that this study has received a financial support by TÜBİTAK–NASU joint project (M/32–2008).

References
1. Vose JM. Mantle cell lymphoma: 2012 update on diagnosis, risk-stratification, and clinical management. Am J Hematol 2012;87:604–609.
2. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006;69:562–573.
3. Bendrik C, Robertson J, Gauldie J, Dabrosin C. Gene transfer of matrix metalloproteinase-9 induces tumor regression of breast cancer in vivo. Cancer Res 2008;68:3405–3412.
4. Kato K, Hara A, Kuno T, Kitaori N, Guilan Z, Mori H, Toida M, Shibata T. Matrix metalloproteinases 2 and 9 in oral squamous cell carcinomas: manifestation and localization of their activity. J Cancer Res Clin Oncol 2005;131:340–346.
5. Groblowska M, Siewko M, Mroczoń B, Smitkowski M. The role of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in the development of esophageal cancer. Folia Histochim Cytobiol 2012;14:22–19.
6. Plummer SM, Holloway KA, Manson MM, Munks RJ, Kepapte A, Farrow S, Howells L. Inhibition of cyclooxygenase-2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/KK signalling complex. Oncogene 1999;18:6013–6020.
7. Barnes PJ, Karin M. Nuclear factor-κB, a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997;336:1066–1071.
8. Savli H, Aalto Y, Nagy B, Knuttila S, Pajakka S. Gene expression analysis of 1,25(OH)2D3-dependent differentiation of HL-60 cells: a cDNA array study. Br J Haematol 2002;118:1065–1070.
9. Savli H, Karadenizli A, Koçaylı F, Gündes S, Özbev U, Vahaboglou H. Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 2003;52:403–408.
10. Savli H, Szendrői A, Romics I, Nagy B. Gene network and canonical pathway analysis in prostate cancer: a microarray study. Exp Mol Med 2008;40:176–185.
11. Cine N, Tarkan I, Canturk N, Gunduz Y, Sunnetçi D, Savli H. Whole genome expression, canonical pathway and gene network analysis in the cases of papillary thyroid cancer. In: European Society of Human Genetics Conference Proceedings, 2012;20(Suppl 1):192.
12. Savli H, Sunnetçi D, Cine N, Gluzman RF, Zavelevich MP, Skyarenko LM, Nadgornaya VA, Koval SV. Gene expression profiling of B-CLL in Ukrainian patients in post-Chernobyl period. Exp Oncol 2012;34:57–63.
13. Galimberti S, Canestraro M, Savli H, Palumbo GA, Tibullo D, Nagy B, Piaggi S, Guerriini F, Cine N, Metelli MR, Petrini M. ITF2357 interferes with apoptosis and inflammatory pathways in the HL-60 model: a gene expression study, Anticancer Res 2010;30:4525–4535.
14. Cine N, Baykal AT, Sunnetçi D, Canturk Z, Serhatli M, Savli H. Identification of ApoA1, HPX and POTEE genes by omic analysis in breast cancer. Oncol Rep 2014;32:1078–1086.
15. Fuchs O. Transcription factor NF-κB inhibitors as single therapeutic agents or in combination with classical chemotherapeutic agents for the treatment of hematologic malignancies. Curr Mol Pharmacol 2010;3:98–122.
16. Rodriguez AE, Hernández JÁ, Benito R, Gutiérrez NC, García JI, Hernández-Sánchez M, Risueño A, Sarasquete ME, Femandez E, Fisac R, de Coca AG, Martín-Núñez G, de Las Heras N, Recio I, Gutiérrez O, de Las Rivas J, González M, Hernández-Rivas JM. Molecular characterization of chronic lymphocytic leukemia patients with a high number of losses in 13q14. PLoS ONE 2012;7:48485.
17. Forconi F, Rinaldi A, Kwee I, Sozzi E, Raspadori D, Rancoita PM, Scandurra M, Rossi D, Deambrogi C, Capello D, Zucca E, Marconi D, Bomben R, Gattei V, Lauria F, Gaidano G, Bertoni F. Genome-wide DNA analysis identifies recurrent imbalances predicting outcome in chronic lymphocytic leukaemia with 17p deletion. Br J Haematol 2008;143:532–536.
18. Migliazza A, Lombardi L, Rocchi M, Trecca D, Chang CC, Antonacci R, Fracchiolla NS, Ciana P, Maiolo AT, Neri A. Heterogeneous chromosomal aberrations generate 3” truncations of the NFKB2/lyt-10 gene in lymphoid malignancies. Blood 1994;84:3850–3860.
19. Rayet B, Gélinas C. Aberrant rel/irf/κb genes and activity in human cancer. Oncogene 1999;18:6938–6947.
20. Richardson DB, Wing S, Schroeder J, Schmitz-Feuerhake I, Hoffmann W. Ionizing radiation and chronic lymphocytic leukemia. Environ Health Perspect 2005;113:1–5.
21. Lyng H, Landaas KR, Kristiansen D, Dybko J, Kwee I, Słowik M, Kuliczkowski K. Expression of PIM-2 and NF-κB2 in chronic lymphocytic leukemia patients with a high number of losses in 13q14. PLoS ONE 2012;7:48485.
22. Chavez JC, Sahakian E, Pinilla-Ibarz J. Ibrutinib: an evidence-based review. Core Evid 2013;8:37–45.
23. Jabbar SA, Hoftbrand AV, Wickremasinghe RG. Defects in signal transduction pathways in chronic B lymphocytic leukaemia cells. Leuk Lymphoma 1995;18:163–170.
24. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol 2006;72:1605–1621.
25. Forconi F, Kwee I, Sozzi E, Raspadori D, Rancoita PM, Scandurra M, Rossi D, Deambrogi C, Capello D, Zucca E, Marconi D, Bomben R, Gattei V, Lauria F, Gaidano G, Bertoni F. Genome-wide DNA analysis identifies recurrent imbalances predicting outcome in chronic lymphocytic leukaemia with 17p deletion. Br J Haematol 2008;143:532–536.
26. Kapelko-Słowik K, Urbaniak-Kujda D, Wołowiec D, Jazwiec B, Dybko J, Kwee I, Słowik M, Kuliczkowski K. Expression of PIM-2 and NF-κB2 in chronic lymphocytic leukemia patients with a high number of losses in 13q14. PLoS ONE 2012;7:48485.