Magnetic susceptibility of surface sediment in the Tallo tributary of Makassar city

V A Tiwow1*, Subaer1, Sulistiawaty1, J D Malago1, M J Rampe2, and M Lapa1

1Physics Department, Universitas Negeri Makassar, Kampus UNM Parangtambung Jl. Daeng Tata Raya, Makassar 90224, Indonesia
2Chemistry Department, Universitas Negeri Manado, Kampus UNIMA di Tondano 95618, Indonesia

*Email: vistatiwow@unm.ac.id

Abstract. Activities along the tributary of the Tallo river cause discoloration and unpleasant odors in the river water. This condition indicates that the river was polluted by anthropogenic waste. Therefore, a scientific study was conducted to determine the environmental conditions of the Tallo tributary through a preliminary study of the mineral characteristics of the surface sediments based on magnetic susceptibility data. The surface sediment was taken and its magnetic susceptibility measurements were carried out, followed by the interpretation of mineral types, element content, the presence of superparamagnetic minerals, and magnetic grains. The results showed that the minerals contained in the sediment samples were predominantly ferrimagnetic. The elemental content of the sediment samples indicated that Fe, Mn, and Cr were classified as heavy metals. Traces of the presence of superparamagnetic minerals show almost none. Meanwhile, the magnetic susceptibility values at low and high frequencies are identical, indicating that the grains contained in the sediment samples are multi-domain (MD), where the dominant magnetic minerals come from anthropogenic minerals.

1. Introduction

River surface sediments have been studied using environmental magnetization methods [1, 2]. Environmental sediments are included in the aquatic environment, apart from river sediments [3, 4], lakes [5, 6], and the sea as well [7, 8]. The environmental magnetism method is a method that is new and developing. This method is a development of the rock magnetism method which is associated with the mineral magnetic properties of a material with environmental processes that control it [9]. That is the identification of the dominant magnetic minerals associated with the source or mechanism of environmental change [10].

Magnetic minerals are influenced by elements such as iron (Fe) that are abundant in the earth’s crust [11-14]. Fe is easy to detect using the environmental magnetic method. One of the parameters used is magnetic susceptibility [15, 16]. The magnitude of the magnetic susceptibility value of material was controlled by the Fe content. Increasing the Fe concentration of a material has an impact on increasing the susceptibility value as well. Magnetic mineral properties depend on the type, concentration, shape, and magnetic mineral grains [17]. The advantages of the environmental magnetic method are that it is simple, fast in obtaining results, does not damage the sample, and is affordable [18].
This research was conducted on the surface sediments of the Tallo tributary. Along the river, there are residential areas, factories, and ponds. Several studies have shown that environmental changes were influenced by activities in river basins [19-23]. This study uses magnetic parameters to produce anthropogenic magnetic minerals. In addition to the types of minerals and features of surface sediments, studies related to the presence of superparamagnetic minerals and magnetic grain content were still underreported, so it is necessary to do so. In this study, measurements of magnetic susceptibility were carried out and analyzed for magnetic mineral properties. This paper is useful for knowing the types of minerals, elemental content, presence of superparamagnetic minerals, and magnetic grain content.

2. Method

2.1. Study area
Makassar City was located between 119°24'17"38" BT and 5°8'6"19" LS. Makassar City was influenced by alluvium deposits, camba formations, salo kalupang formations, and tonnage formations. Based on figure 1, especially in the Tallo tributary area, it is affected by alluvium deposits formed of gravel, sand, loam, and mud. The Camba Formation is the camba volcanic rock located in the western part, consisting of volcanic breccias and conglomerates, lava and tuff interbedded with marine sediments.

![Geological map and sediment sampling locations for the Tallo tributary.](image)

Figure 1. Geological map and sediment sampling locations for the Tallo tributary.

2.2. Sampling
Surface sediment samples were taken at 27 points randomly using a Van Veen grab samples. Each coordinate point is determined using GPS (Global Position System). The samples were put in nylon plastic and given a sample code name. Next, it was placed in a container and dried at room temperature. Samples were sieved using a 100 mesh sieve, weighed as much as 20 g, and tested for magnetic susceptibility.

2.3. Magnetic susceptibility measurement
The sample was put in a sample holder measuring 2.2 cm high and 2.54 cm in diameter. Then, the magnetic susceptibility was measured using the Bartington Susceptibility Meter MS2 type MS2B that worked at a low frequency of 470 Hz and a high frequency of 4700 Hz. Then, the measurement results were analysed using the Multisus application in order to obtain magnetic susceptibility values at low (χ_{FD}) and high (χ_{HF}) frequencies [15]. Based on χ_{FD} data, the type of minerals and contents were interpreted based on the magnetic susceptibility value according to [17] and [24]. Furthermore, χ_{FD} and χ_{HF} histograms was made to predict the presence of superparamagnetic minerals. Difference between magnetic susceptibility at low and high frequencies to obtain frequency-dependent magnetic susceptibility (χ_{FD}) [25]. χ_{FD} analysis is used for the interpretation of mineral grain content, whether minerals contain multi-domain (MD), pseudo-single domain (PSD), single domain (SSD), and superparamagnetic (SP) [26]

3. Result and Discussion

Sample	χ_{FD} ($10^4 \text{m}^3/\text{kg}$)	χ_{HF} ($10^4 \text{m}^3/\text{kg}$)	χ_{LH} ($10^4 \text{m}^3/\text{kg}$)	χ_{LH} (%)
M1	238.2	234.8	3.4	1.68
M2	259.6	255	4.6	1.77
M3	374.6	366.3	8.3	2.22
M4	509.2	502.9	6.3	1.24
M5	216.5	214.2	2.3	1.06
M6	968.7	957.4	11.3	1.17
M7	521.5	515.6	5.9	1.13
M8	257.7	254.1	3.6	1.40
M9	343.4	337.3	6.1	1.78
M10	337.5	331.7	5.8	1.72
M11	463.4	459.6	3.8	0.82
M12	301.3	298.3	3.0	1
M13	249.6	245.6	4.0	1.6
M14	353.6	349.3	4.3	1.22
M15	246.8	245.6	1.2	0.49
M16	227.3	224.5	2.8	1.23
M17	204.3	202.4	1.9	0.93
M18	238.3	236.7	1.6	0.67
M19	183.1	179.5	3.6	1.97
M20	171.8	167.9	3.9	2.27
M21	107.5	104.2	3.3	3.07
M22	95.3	92.6	2.7	2.83
M23	101.1	99.7	1.4	1.38
M24	152.2	149.8	2.4	1.58
M25	47.7	45.7	2.0	4.19
M26	136.1	133	3.1	2.28
M27	124.2	121.9	2.3	1.85

The mass-specific magnetic susceptibility values of the Tallo tributary sediments for 27 samples are shown in table 1. The values for magnetic susceptibility at low frequencies range from 47.7×10^{-8} m3/kg to 968.7×10^{-8} m3/kg. The histograms for samples 1 to 27 are shown in figure 2. The value of magnetic susceptibility in zone 1 (factory and residence) is high enough but in zone 2 (pond area) has decreased. This indicates that the sediment in zone 1 has a relatively high concentration of magnetic minerals compared to zone 2. This is shown on the contour map of the distribution of the magnetic susceptibility.
values (figure 3). This result is by following per under several studies which state that the increase in the magnetic susceptibility value of the sediment is in line with the increasing concentration of magnetic minerals contained in the sediment.

![Figure 2](image)

Figure 2. Histogram of magnetic susceptibility value at low frequency (\(\chi_{LF}\)) sediment samples of Tallo tributaries.

![Figure 3](image)

Figure 3. Distribution of magnetic susceptibility values at low frequency (\(\chi_{LF}\)) sediment samples of Tallo tributaries.

Based on the magnetic susceptibility values of [17] and [24], it is indicated that the sediments of the Tallo river contain magnetic minerals such as hematite (\(\alpha\)-Fe\(_2\)O\(_3\)), ilmenite (FeTiO\(_3\)), goethite (\(\alpha\)-FeOOH), pyrrhotites (Fe\(_{1-x}\)S), jacobsite (MnFe\(_2\)O\(_4\)), and chromite (FeCr\(_2\)O\(_4\)) (table 2). These minerals
are predominantly included in antiferromagnetic minerals. This becomes interesting, when generally river sedimentary minerals are ferrimagnetic. This means that the magnetic minerals in the sediments dominantly do not come from rock weathering (lithogenic), but indicated to come from human activities (anthropogenic).

No.	Mineral	Formula	Magnetic order
1	Hematite	α-Fe₂O₃	Canted antiferromagnetic
2	Ilmenite	FeTiO₃	Antiferromagnetic
3	Goethite	α-FeOOH	Antiferromagnetic
4	Pyrrhotites	Fe₁₋ₓS	Ferrimagnetic
5	Jacobsite	MnFe₂O₄	Ferrimagnetic
6	Chromite	FeCr₂O₄	Ferrimagnetic

Table 2. Mineral content in the surface sediments of the Tallo tributary.

From the alleged content of magnetic minerals, it can be seen that the content of elements such as iron (Fe), oxygen (O), titanium (Ti), hydrogen (H), sulfur (S), manganese (Mn), and chromium (Cr). Three elements are included in heavy metals, namely Fe, Mn, and Cr because they have a density of more than 5 g/cm³ [27]. All magnetic minerals contain the element Fe [28]. Fe is a ferromagnetic metal with the highest magnetic susceptibility value [17]. As previous studies [22] suggest that Fe is a ferromagnetic element that greatly affects the value of magnetic susceptibility in sediment samples. Increasing the concentration of the element Fe causes an increase in the concentration of magnetic minerals and has an impact on increasing the value of magnetic susceptibility.

Higher frequency measurements do not allow the superparamagnetic grain to react with the magnetic field used, because it changes faster than the relaxation time required for superparamagnetic grains. As a result, in higher frequencies, lower magnetic susceptibility values are encountered [26]. In this study, the measurement results show that there is no significant difference between the magnetic susceptibility values at high and low frequencies (figure 4). This means that the river sediment samples contain almost no superparamagnetic minerals. If there is no superparamagnetic mineral (SP), the two measurements are identical. This can be seen in the frequency-dependent magnetic susceptibility values ranging from 0.49 to 4.19%. Based on [17], the frequency-dependent susceptibility value for simple single domain (SSD) grains ~30 x 10⁻⁶ m³/kg and for superparamagnetic grains (SP) 75-160 x 10⁻⁶ m³/kg. The identical magnetic susceptibility values at low and high frequencies also indicate that the grains contained in the iron sand sample are multi-domain (MD). This result is by following per under the theory which states that multi-domain magnetic grains (MD) are frequency-independent because they show the same magnetic susceptibility values at low and high frequencies [26, 29].

The frequency-dependent percentage of magnetic susceptibility is used to estimate the total concentration of superparamagnetic grains. Based on table 1, it shows that the percentage of magnetic susceptibility depends on the frequency of more than 2% in samples M3, M20, M21, M22, M25, and M26. This means that the sample contains a coarse mixture of SP and non-SP grains or SP <0.005 μm granules. For samples other than this code, the percentage is less than 2%. According to [17], the percentage value of less than 2% is included in the low percentage group and indicates that there are almost no superparamagnetic grains in the river sediment samples. These results are consistent with the χLF-χFD scattering diagram in figure 5 which shows that most of the sediment samples contain multi-domain (MD) grains with grain diameter ~110 μm and more than 2% contain superparamagnetic grains and single domain (SP-SSD) [17, 29].
Figure 4. Histogram of magnetic susceptibility values at high (χ_{HF}) and low (χ_{LF}) frequencies sediment samples of Tallo tributaries.

Figure 5. χ_{LF}-χ_{FD} scattering diagram showing the type of domain in the Tallo tributary sediment sample.

4. Conclusion
The results indicated that the minerals contained in the sediment samples were hematite (α-Fe$_2$O$_3$), ilmenite (FeTiO$_3$), goethite (α-FeOOH), pyrrhotites (Fe$_{1-x}$S), jacobsite (MnFe$_2$O$_4$), and chromite (FeCr$_2$O$_4$). These results obtained elemental content which is classified as heavy metals such as Fe, Mn, and Cr. Meanwhile, the magnetic susceptibility values at low and high frequencies that are identical indicate that the grains contained in the sediment samples are multi-domain (MD), where the dominant magnetic minerals were derived from anthropogenic minerals.
Acknowledgment
This research was funded by a DIPA (Penelitian PNBP FMIPA Tahun 2020) from Universitas Negeri Makassar, Indonesia (number: SP DIPA-023.17.2.677523/2020, April 29, 2020) according to the decree of the UNM Rector (number: 366/UN36/HK/2020, Mei 12, 2020). We thank UNM students (Warren, Novelita, Armanto) for helping us to take surface sediment samples from the Tallo tributary. Also, we would like to thank Warren who helped create the location map.

References
[1] Zhang C, Qiao Q, Piper J D A, and Huang B 2011 Environ. Pollut. 159 3057-3070.
[2] Nizou J, Demory F, and Brunaud C D 2016 C. R. Geoscience 348 451-461.
[3] Fajri R N, Putra R, Afriyeni P, Maisonneuve C B, Phua M, Eisele S, Forni F, and Rifai H 2020 IOP Conf. Series: Journal of Physics: Conf. Series 1481 012022.
[4] Sasmita A, Rifai H, Putra R, Aisyah N, Phua M, Eisele S, Forni F, and Maisonneuve C B 2020 IOP Conf. Series: Journal of Physics: Conf. Series 1481 012019.
[5] Kissel C, Liu Z, Li J, Wandres C 2017 Sediment. Geol. 347 10-20.
[6] Ouyang T, Li M, Appel E, Fu S, Jia G, Li W, Zhu Z 2017 Mar. Geol. 390 80–88.
[7] Diraja S, Tiwow V A, and Subaer 2018 IOP Conf. Series: Journal of Physics: Conf. Series 1120(1) 012059.
[8] Ravisankar R, Harikrishnan N, Chandrasekaran A, Gandhi M S, Alagarsamy R 2018 Data Brief 16 392-400.
[9] Wang J, Liu R, Zhang P, Yu W, Shen Z, and Feng C 2014 Marine Pollution Bulletin 87(1) 364–373.
[10] Bijaksana S and Huliselan E K 2010 Environ. Earth Sciences 60(2) 409–419.
[11] Tiwow V A, Arsyad M, Palloa P, and Rampe M J 2018 IOP Conf. Series: Journal of Physics: Conf. Series 997(1) 012010.
[12] Fahlepy M R, Tiwow V A, and Subaer 2018 IOP Conf. Series: Journal of Physics: Conf. Series 997(1) 012036.
[13] Arsyad M, Tiwow V A, and Rampe M J 2018 IOP Conf. Series: Journal of Physics: Conf. Series 1120(1) 012059.
[14] Diraja S, Tiwow V A, and Subaer 2019 Materials Science Forum 967 259-266.
[15] Tiwow V A, Arsyad M, Sulistiawaty, Rampe M J, and Tiro W I B 2019 Materials Science Forum 967 292-298.
[16] Hallberg L P, Stevens T, Almqvist B, Snowball I, Wiers S, Koltringer C, Lu H, Zhang H, and Lin Z 2020 Aeolian Research 46 100615.
[17] Dearing J A 1999 Environmental magnetic susceptibility using the Bartington MS2 system British Library Cataloguing in Publication Data.
[18] Bijaaksana S, Huliselan E, Suiuddin L O, Fitriani D, Tamuntuan G, and Agustine E 2013 Procedia Earth and Planetary Science 6 8–13.
[19] Montalvo C, Aguilar C A, Amador L E, Ceron J G, Ceron R M, Anguebes F, Cordova A V 2014 Environ. Pollut. 3(4) 89-98.
[20] Harikrishnan N, Chandrasekaran A, Ravisankar R, Alagarsamy R 2018 Appl. Radiat. Isot. 135 177-183.
[21] Yunginger R, Bijaksana S, Dahrin D, Zulaikah S, Hafidz A, Kirana K H, Sudarningsih S, Mariyanto M, Fajar S J 2018 Geosciences 8 116.
[22] Mariyanto M, Amir M F, Utama W, Hamdan A M, Bijaaksana S, Pratama A, Sudarningsih S 2019 Science of the Total Environ. 675 632-641.
[23] Sudarningsih S, Aliyah H, Fajar S J, and Bijaaksana S 2019 IOP Conf. Series: Journal of Physics Conf. Series 1204 012082.
[24] Hunt, C.P., Moskowitz, B.M., Banerjee, S.K. 1995. Magnetic Properties of Rocks and Minerals.
[25] Dearing J 1996 Geophys. J. Int. 124 228-240.
[26] Tiwow V A, Rampe M J, and Arsyad M 2018 Sainsmat VII(2) 136-146.
[27] Atafar Z, Mesdaghinia A, Nouri J, Homaei M, Yunesian M, Ahmadimoghaddam M dan Mahvi A H 2010 Environ. Monitor. and Assess. 160 83–89.

[28] Arsyad M, Tiwow V A, and Rampe M J 2018 IOP Conf. Series: Journal of Physics: Conf. Series 1120(1) 012060.

[29] Kanu M O, Meludu O C, and Oniku S A 2014 Geofisica Internacional 53(4) 411-423.