CdS Nanoparticle-Modified α-Fe₂O₃/TiO₂ Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation

Ruiyang Yin¹, Mingyang Liu¹, Rui Tang² and Longwei Yin²*

Abstract
In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe₂O₃/TiO₂ nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe₂O₃/TiO₂ ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broadened optical-response to visible light region, greatly facilitates the separation of photogenerated carriers, giving rise to the enhancement of PEC water oxidation performance. Importantly, for the designed abnormal type-II heterostructure between Fe₂O₃/TiO₂, the conduction band position of Fe₂O₃ is higher than that of TiO₂, the photogenerated electrons from Fe₂O₃ will rapidly recombine with the photogenerated holes from TiO₂, thus leads to an efficient separation of photogenerated electrons from Fe₂O₃/holes from TiO₂ at the Fe₂O₃/TiO₂ interface, greatly improving the separation efficiency of photogenerated holes within Fe₂O₃ and enhances the photogenerated electron injection efficiency in TiO₂. Working as the photoanodes of PEC water oxidation, CdS/α-Fe₂O₃/TiO₂ heterostucture electrode exhibits improved photocurrent density of 0.62 mA cm⁻² at 1.23 V vs. reversible hydrogen electrode (RHE) in alkaline electrolyte, with an obviously negatively shifted onset potential of 80 mV. This work provides promising methods to enhance the PEC water oxidation performance of the TiO₂-based heterostructure photoanodes.

Keywords: TiO₂, α-Fe₂O₃, CdS, Nanorod, Photoelectrochemical Water Oxidation

Background
To solve the severe problem of pollution and limited resources of fossil, photoelectrochemical (PEC) water splitting to produce hydrogen has been regarded as one of the most promising strategies for solar energy conversion. Since the first report on PEC water oxidation based on TiO₂ [1], TiO₂ has drawn much attention as the photoanode materials for PEC water oxidation, due to its stable PEC properties, strong optical response, and suitable energy band position [2, 3]. However, the PEC performance of pristine TiO₂ photoanode is greatly confined by the slow water oxidation kinetics originated from the poor photogenerated carrier separation capability and insufficient light absorption ability [4, 5]. Therefore, various strategies have been taken to improve the PEC water oxidation performance of pristine TiO₂ such as surface modification [6], quantum dot sensitization, and heterojunction construction [7, 8]. One efficient method to improve the photogenerated carrier separation performance is to construct heterostructured photoanode. For instance, constructing heterojunction between TiO₂ and other metal oxide semiconductors with matched energy band structures (like Co₃O₄/TiO₂ [9] and ZnIn₂S₄/TiO₂ [10, 11]) can effectively facilitate the separation of photogenerated electrons and holes; therefore, PEC water splitting performance of the pristine TiO₂ can be obviously enhanced. Among various metal oxide semiconductors, hematite (α-Fe₂O₃) is regarded as a promising photoanode material because of the suitable band gap (~ 2.0 eV) for sunlight harvesting, excellent stability, and low cost [12]. In addition, the theoretical power conversion efficiency (PCE) of α-Fe₂O₃ can reach 15.3%, with a photocurrent density of 12.6 mA cm⁻² at 1.23 V vs. reversible hydrogen electrode (RHE) under the
standard sun irradiation [13]. Therefore, constructing α-
Fe$_2$O$_3$/TiO$_2$ heterostructured photoanode cannot only
enhance the carrier separation performance in TiO$_2$ but
also effectively extend the light absorption range of TiO$_2$.
Meanwhile, according to some latest research, α-Fe$_2$O$_3$
photoanodes suffer from short electron-hole pair lifetime
and hole diffusion length (2–4 nm), which results in high
recombination rate of photogenerated carriers, hindering
the improvement of the PEC performance [12]. In that
case, to further enhance the PEC water splitting perform-
ance of Fe$_2$O$_3$/TiO$_2$ photoanodes, some narrow band gap
semiconductors, like CdS [14, 15] and PbS [16], can be
coupled to facilitate the separation of photogenerated car-
riers. Among them, CdS/Fe$_2$O$_3$/TiO$_2$ heterostructured
photoanode is considered to be a promising choice with
matched band gap and expanded light absorption range.
Also, carrier transport process can be effectively improved
because photogenerated carriers can be quickly separated
at the interface of CdS/Fe$_2$O$_3$/TiO$_2$, thereby greatly
decreasing the carrier recombination rates.

What is more, in order to construct an advanced elec-
trode for PEC water splitting system, the electrode mate-
rials should possess the characteristics like sufficient
incident light capture capability and tunnels for charge
transport. Comparing with general planar photoanodes,
one dimensional (1D) nanorod (NR) array photoanodes
exhibit good incident light harvesting performance due
to the enhanced multi-scattering processes [17], which
would lead to an enhanced PEC water oxidation perfor-
ance. Besides, it is reported that 1D NR array also
exhibits excellent carrier transport performance since
the photogenerated carriers can directly transport along
the NR, thus direct carrier recombination at the crystal
boundary can be effectively avoided [18]. Also, in order
to further enlarge the surface area of such 1D NR arrays,
which can bring more PEC reaction sites and enhance
the PEC performance, 1D NR with branched nanostruc-
tures is expected [19]. Such integrated architecture offers
a long optical path for effective light harvesting, short
diffusion distance for excellent charge transport, and
large surface area for fast interfacial charge collection,
which is of great benefit for the enhancement of PEC
performance. Hence, it would be of particular interest
to design a CdS-modified Fe$_2$O$_3$/TiO$_2$ heterostructure NR
array for PEC water oxidation.

Herein, we reported a facile successive ionic layer ad-
sorption and reaction (SILAR)-hydrothermal method to
synthesize CdS-modified Fe$_2$O$_3$/TiO$_2$ NR array for effi-
cient PEC water oxidation. UV-vis study confirms the
CdS/Fe$_2$O$_3$/TiO$_2$ NR array displays excellent optical re-
sponse performance with an obvious broadened light ab-
sorption range. Improved charge transfer process and
decreased charge recombination rate can be evidenced by
means of PL spectrum and EIS plots. Applied as the
photoanode for PEC water oxidation, CdS/Fe$_2$O$_3$/TiO$_2$
NR array exhibits greatly enhanced photocurrent density
of 0.62 mA cm$^{-2}$ (1.23 V vs. RHE) in alkaline electrolyte
compared with pristine TiO$_2$ (0.32 mA cm$^{-2}$ at 1.23 V
vs. RHE). It is believed that the synthesis route and the
application of CdS/Fe$_2$O$_3$/TiO$_2$ NR array presently re-
ported is of great importance and can be applied in
other photovoltaic and photoelectronic devices.

Methods

Preparation of CdS/Fe$_2$O$_3$/TiO$_2$ NR Heterostructured
Photoanode

Synthesis of TiO$_2$ NR Array

To synthesize TiO$_2$ NR array on the FTO glass, the FTO
was cut into rectangle and ultrasonically cleaned with
deonized water, acetone, and ethanol, successively.

Then, the FTO was put into the autoclave containing a
mixed solution of deionized water (20 ml), hydrochloric
acid (20 ml), and titanium isopropoxide (1.1 ml) and
baked at 160 °C for 6 h. After the reaction, the FTO was
washed with deionized water and ethanol for several
times and then was annealed in air at 450 °C for 0.5 h.

Synthesis of Fe$_2$O$_3$/TiO$_2$ NR Array

To grow α-Fe$_2$O$_3$ on TiO$_2$ NR, as obtained TiO$_2$ NR
array was put into a mixed solution of FeCl$_3$ (15 ml,
0.1 M) and NaNO$_3$ (15 ml, 0.5 M) and then transferred
to the autoclave. Heating at 100 °C for 2 h, the autoclave
was cooled to room temperature and the FTO substrate
was washed with deionized water and ethanol for several
times. Finally, the FTO substrate was annealed in air at
450 °C for 1 h.

Synthesis of CdS/Fe$_2$O$_3$/TiO$_2$ NR

The obtained α-Fe$_2$O$_3$/TiO$_2$ NR array was pretreated
with an ethanol solution of mercaptopropinioc acid
(MPA, 0.3 M) overnight at 50 °C and then washed with
ethanol to remove the excess MPA. In order to deposit
CdS layer, a facile successive ionic layer adsorption and
reaction (SILAR) method is applied. Pretreated NR array
was successively immersed into four different solutions
for 30 s, including Cd(NO$_3$)$_2$-4H$_2$O (ethanol, 0.1 M),
pure ethanol, Na$_2$S-9H$_2$O (methanol, 0.2 M) and pure
methanol, respectively. The SILAR process was repeated
for five times and then the substrate was washed with
methanol to remove the extra CdS.

Materials Characterization

The phase structures were characterized by X-ray pow-
der diffractometer (XRD) in a 2θ range of 20 to 80°. The
morphology of the products was studied with field emis-
sion scanning electron microscopy (FE-SEM) attached
energy-dispersive X-ray spectroscopy (EDS). Transmis-
sion electron microscopy (TEM) images were collected.
via Tecnai 20 U-Twin equipment. The absorption and photoluminescence (PL) spectra were tested with TU-1900 and Hitachi U-4100, respectively.

Photoelectrochemical Performance Characterization

The PEC water oxidation performance was characterized with CHI660E electrochemical station with a three-electrode mode. The applied electrolyte was consisted of 1M NaOH. Before testing, the system was bubbled with argon for 30 min to remove the electrolyte dissolved gas. The linear sweep voltammograms (LSV) and chronoamperometric I-t curves were recorded under standard sunlight illuminations (100 mW cm$^{-2}$). Mott-Schottky plots were measured in the dark at an AC frequency of 1.0 kHz.

Hereafter, the electrode potential was converted into the RHE potential with the Nernst equation:

$$E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.059 \text{pH} + E^0_{\text{Ag/AgCl}}$$

where E_{RHE} was the converted potential vs. RHE, $E_{\text{Ag/AgCl}}$ was the measured potential vs. the Ag/AgCl electrode, and $E^0_{\text{Ag/AgCl}} = 0.1976$ V at 25 °C.

Result and Discussion

Structure and Morphology Characterization

The phase structures of the synthesized products are characterized by the XRD patterns in Fig. 1. As shown in Fig. 1a, the rutile TiO$_2$ nanorod arrays (NR) are successfully synthesized. The diffraction peaks at 36.0°, 44.1°, 54.3°, 62.7°, 64.0°, 65.4°, and 69.8° correspond well to (101), (210), (211), (002), (310), (221), and (112) planes of rutile TiO$_2$ (JCPDS. 21-1276). After deposition of Fe$_2$O$_3$, the additional XRD diffraction peaks at 32.9° and 45.2° can be indexed to (222) and (332) planes of Fe$_2$O$_3$ (JCPDS. 39-0238). SILAR process is applied to grow CdS nanoparticles, the diffraction peaks at 26.4°, 28.2° corresponding well to (002) and (101) planes of CdS (JCPDS. 65-3414) confirm the success growth of CdS nanoparticles on Fe$_2$O$_3$/TiO$_2$. The SEM image in Fig. 1b shows that TiO$_2$ NRs are uniformly grown on the FTO substrate with a diameter of 50 nm. The NR surface is relatively smooth. After growth of Fe$_2$O$_3$ on surface of TiO$_2$, the diameter of Fe$_2$O$_3$/TiO$_2$ gets larger and increases to 60 nm. Furthermore, the surface of the NRs gets much rougher. Further deposition of CdS nanoparticles can cause an increase in diameter of the Fe$_2$O$_3$/TiO$_2$ composite NR. To further confirm element distribution of the obtained CdS/Fe$_2$O$_3$/TiO$_2$ NR, the cross-view EDS mapping images are recorded and shown in Additional file 1: Figure S1, Additional file 2: Figure S2. It can be seen that Ti, Fe, Cd, and S elements are uniformly distributed among samples.

The HRTEM image and selected area electron diffraction (SAED) pattern of CdS/Fe$_2$O$_3$/TiO$_2$ NR are shown in Fig. 2. It can be seen that the both TiO$_2$ and Fe$_2$O$_3$ are well crystallized and the CdS nanoparticles are grown on surface of Fe$_2$O$_3$. The lattice spacing of 0.31, 0.27, and 0.21 nm can be corresponded well to (101), (222), and (210) plane of CdS, Fe$_2$O$_3$, and TiO$_2$, respectively (Fig. 2a). The diffraction rings from the recorded SAED pattern in Fig. 2b can be seen, which can be corresponded well to (101), (210) planes of rutile TiO$_2$, (222), (332) planes of Fe$_2$O$_3$, and (002), (101) planes of CdS, respectively. The TEM results are in good agreement with the XRD characterization results.

![Fig. 1](image)

Fig. 1 a The XRD patterns and b SEM images of TiO$_2$ NR, Fe$_2$O$_3$/TiO$_2$ NR, and CdS/Fe$_2$O$_3$
The chemical composition and valence states of the CdS/Fe$_2$O$_3$/TiO$_2$ hybrid NRs are studied by XPS spectra. Figure 3a shows the survey spectra, the existence of Ti, Fe, O, Cd, and S elements are demonstrated. The appearance of element C is assigned to the carbon-based containment. For the Ti 2p XPS spectrum in Fig. 3b, these splitted two distinct peaks at 458.2 and 464.2 eV can be assigned to Ti 2 p$_{3/2}$ and 2 p$_{1/2}$ of TiO$_2$ [20]. The XPS spectrum of Fe 2p is shown in Fig. 3c. Two distinct peaks at 710.6 and 724.10 eV can be seen, which correspond well to Fe 2 p$_{3/2}$ and 2 p$_{1/2}$ of α-Fe$_2$O$_3$ [21]. The core level XPS spectrum of O 1s is shown in Fig. 3d, where the peak at 531.2 eV is attributed to the Ti–O bond between titanium and oxygen, and the peak at 531.9 eV can be attributed to the Fe–O bond between iron and oxygen [20, 21]. Figure 3e shows XPS spectrum of Cd, which is attributed to the Cd 3d$_{5/2}$ at 405.2 eV. The XPS spectrum of S 2p is shown in Fig. 3f [22]. The center peak is splitted into two peaks of S 2p$_{1/2}$ and 2p$_{3/2}$ at 161.5 and 162.6 eV [22].

Figure 4a shows the absorption spectra of different photoelectrodes. TiO$_2$ shows a typical absorption band at 380 nm.
edge at 400 nm, which can be attributed to the intrinsic band gap absorption of TiO$_2$ (3.2 eV). After coupling with Fe$_2$O$_3$, Fe$_2$O$_3$/TiO$_2$ shows enhanced absorption in the visible light region at about 540 nm. The extension of absorption band edge is due to the visible-sensitive component of Fe$_2$O$_3$ (2.0–2.2 eV). After further modification of CdS nanoparticles, the light absorption edge can be further extended to 580 nm. It confirms that coupling TiO$_2$ with Fe$_2$O$_3$ and CdS can effectively tune the light absorption property to visible light region. Photoluminescence (PL) spectrum is applied to study the influence of incorporation of CdS and Fe$_2$O$_3$ in the CdS/Fe$_2$O$_3$/TiO$_2$ hybrid on photogenerated carriers’ transport and recombination behavior. The lower the intensity of PL peak, the higher separation efficiency of photogenerated carrier pairs in the samples. Figure 4b shows the PL spectra of TiO$_2$, Fe$_2$O$_3$/TiO$_2$, and CdS/Fe$_2$O$_3$/TiO$_2$ samples. It is obvious that Fe$_2$O$_3$/TiO$_2$ NR achieves lower carrier recombination rate than pristine TiO$_2$, and CdS/Fe$_2$O$_3$/TiO$_2$ NR achieves the best carrier transport performance.

In order to further confirm this conclusion, the picosecond-resolved fluorescence transient plots are tested and shown as Additional file 3: Figure S3. The average lifetime τ is calculated according to $\tau = (B_1T_1 + B_2T_2)/ (B_1T_1 + B_2T_2)$ and the time constant of the fluorescence transients at 511 nm is listed in the Additional file 4: Table S1 [23]. It can be seen that after modifying pristine TiO$_2$ with Fe$_2$O$_3$, the photogenerated carrier lifetime is prolonged. Coupled with CdS, the carrier lifetime can be further enhanced. This result obviously demonstrates the charge separation performance can be effectively enhanced by forming CdS/Fe$_2$O$_3$/TiO$_2$ multi-junction.

The possible carrier transport process is illustrated in Fig. 5. In the CdS/Fe$_2$O$_3$/TiO$_2$ ternary system, because both the conduction band position and valence band position of CdS are higher than that of Fe$_2$O$_3$, the photoinduced electrons in CdS will be transported to conduction band of Fe$_2$O$_3$, while the photoinduced holes in valence band in Fe$_2$O$_3$ will be transported to CdS. For the designed abnormal type-II heterostructure between Fe$_2$O$_3$/TiO$_2$, the conduction band position of Fe$_2$O$_3$ is higher than that of TiO$_2$. Under sunlight illumination, photoexcited electron-hole pairs will generate both in TiO$_2$ and Fe$_2$O$_3$. Photogenerated electrons in the conduction band of Fe$_2$O$_3$ will immediately move to the valence band of TiO$_2$ to recombine with the photogenerated holes, thus greatly improving the separation efficiency of photogenerated holes within Fe$_2$O$_3$ and enhances the photogenerated electron injection efficiency in TiO$_2$ [24, 25]. It implies that the coupling of TiO$_2$ with Fe$_2$O$_3$ and CdS can effectively reduce the recombination rate of the photogenerated carrier pairs. Meanwhile, the photogenerated electrons in TiO$_2$ move to the counter electrode where the reduction reaction takes place. So, the abnormal type-II heterostructure...
between Fe$_2$O$_3$/TiO$_2$ plays an important role in the enhanced PEC water oxidation performance.

Figure 6 depicts linear sweep voltammograms (LSV) and chronoamperometric I-t curves of CdS/Fe$_2$O$_3$/TiO$_2$, Fe$_2$O$_3$/TiO$_2$, and TiO$_2$ samples. As shown in Fig. 6a, the photocurrent density of photoanodes under illumination gradually increases after coupling with α-Fe$_2$O$_3$ and CdS nanoparticles, and the CdS/Fe$_2$O$_3$/TiO$_2$ NR sample exhibits the largest photocurrent density of 0.61 mA cm$^{-2}$ at 1.2 V vs. RHE, which is almost twice of bare TiO$_2$ sample. I-t curves at a bias potential of 1.2 V vs. RHE under chopped illumination are shown in Fig. 6b, it can be seen that the samples remain excellent stability and good optical-response property under chopped illumination. CdS/Fe$_2$O$_3$/TiO$_2$ NR sample maintains a photocurrent density of about 0.6 mA cm$^{-2}$, which is in accordance with the LSV curves.

EIS measurement is performed under illumination and the Nyquist plots are shown in Fig. 7a and Additional file 5: Figure S4. They demonstrate that the Nyquist plots have two semicircles with a contact series resistance (R_s) on the FTO substrate. The small semicircle in the Nyquist plots is attributed to the charge transport resistance at the electrode/electrolyte interface, and the large semicircle represents the charge transfer resistance related to the electron transport/recombination within the photoanode materials. The sheet resistance (R_s) of the substrate, the charge transfer resistance of the counter electrode (R_{ct1}), and the charge transfer resistance (R_{ct2}) were simulated by the Zview software and the corresponding data are shown in Additional file 6: Table S2. The fitted R_s and R_{ct1} values for all samples are similar due to the same configuration and growing substrates are applied, while the R_{ct2} values show obviously variation of 1079.5, 880.6, and 679.5 Ω for TiO$_2$, Fe$_2$O$_3$/TiO$_2$, and CdS/Fe$_2$O$_3$/TiO$_2$, respectively. It can be seen that after modifying TiO$_2$ with Fe$_2$O$_3$ and CdS, the interfacial charge transfer kinetics are greatly enhanced.

The Mott-Schottky plots of the as obtained samples are listed in Fig. 7b. The slopes determined from the Mott-Schottky plots are used to estimate the carrier density according to the following equation [26]:

$$Nd = \frac{2}{e_0\varepsilon_0} \times \left[\frac{dV}{d(1/C^2)} \right]$$

where e_0 is the electronic charge, ε is the dielectric constant of the sample, ε_0 is the permittivity of the vacuum, Nd is the donor density, and V is the applied voltage. In general, relatively smaller the slope represents higher carrier density.

The flat band potential can be estimated by the following equation:

$$\frac{1}{C^2} = \frac{2}{e_0\varepsilon_0Nd} \times \left[E - E_f - \frac{kT}{e} \right]$$

The flat band potential (E_f) is determined by taking the x intercept of a linear fit to the Mott-Schottky plot, $1/C^2$, as a function of applied potential (E). Additionally, a remarkable cathodic shift in the flat potential from 0.44 V for TiO$_2$ sample to 0.36 V for the CdS/Fe$_2$O$_3$/TiO$_2$ NR sample was observed. This suggests a larger accumulation of electrons in the heterojunction and reflects decreased charge recombination.

It should be noticed that the PEC water oxidation performance of as synthesized CdS/Fe$_2$O$_3$/TiO$_2$ sample is comparable to some related works. For instance, Sharma et al. reported Fe-TiO$_2$/Zn-Fe$_2$O$_3$ thin films with a performance of 0.262 mA cm$^{-2}$ at 0.95 V (vs. SCE) [27], while the FTO/Fe$_2$O$_3$/ZnFe$_2$O$_4$ photoanode achieves a photocurrent density of 0.4 mA cm$^{-2}$ [28]. In addition,
for the reported Fe$_2$O$_3$/TiO$_2$ nanotube photoanodes, a photocurrent density of 0.5 mA cm$^{-2}$ is achieved [29, 30]. Comparing with the related works, it can be seen that obtained CdS/Fe$_2$O$_3$/TiO$_2$ photoanode does obtain outstanding and reliable PEC water splitting performance here.

Conclusions

In conclusion, a facile successive ionic layer adsorption and reaction (SILAR)-hydrothermal method is developed to fabricate CdS-modified Fe$_2$O$_3$/TiO$_2$ NR array for efficient PEC water oxidation. UV-vis study confirms the CdS/Fe$_2$O$_3$/TiO$_2$ NR array displays excellent optical response performance with an obvious broadened light absorption range. Applied as the photoanode for PEC water oxidation, CdS/Fe$_2$O$_3$/TiO$_2$ NR array photoanode exhibits greatly enhanced photocurrent density of 0.62 mA cm$^{-2}$ (1.23 V vs. RHE) in alkaline electrolyte compared with pristine TiO$_2$ (0.32 mA cm$^{-2}$ at 1.23 V vs. RHE).

Additional Files

- Additional file 1: Figure S1. Cross-sectional SEM image of CdS/Fe$_2$O$_3$/TiO$_2$ NR. (JPEG 742 kb)
- Additional file 2: Figure S2. The cross-view EDS mapping images of CdS/Fe$_2$O$_3$/TiO$_2$ NR in Fig. S1. (JPEG 585 kb)
- Additional file 3: Figure S3. The picosecond-resolved fluorescence transients of TiO$_2$, Fe$_2$O$_3$/TiO$_2$, and CdS/Fe$_2$O$_3$/TiO$_2$ samples. (JPEG 1602 kb)
- Additional file 4: Table S1. Dynamics of picosecond-resolved fluorescence transients of TiO$_2$, Fe$_2$O$_3$/TiO$_2$, and CdS/Fe$_2$O$_3$/TiO$_2$ samples. (DOCX 11 kb)
- Additional file 5: Figure S4. The amplified Nyquist plot of the obtained TiO$_2$, Fe$_2$O$_3$/TiO$_2$, and CdS/Fe$_2$O$_3$/TiO$_2$ photoanodes. (JPEG 933 kb)
- Additional file 6: Table S2. Series resistance of the obtained TiO$_2$, Fe$_2$O$_3$/TiO$_2$, and CdS/Fe$_2$O$_3$/TiO$_2$ photoanodes. (DOCX 13 kb)

Acknowledgements

The authors acknowledge support from the project supported by the State Key Program of National Natural Science of China (grant no. 51532005), the National Nature Science Foundation of China (grant nos. 51472148 and 51272137), and the Tai Shan Scholar Foundation of Shandong Province.

Funding

This study received funding from the State Key Program of National Natural Science of China (grant no. 51532005), National Nature Science Foundation of China (grant nos. 51472148 and 51272137), and Tai Shan Scholar Foundation of Shandong Province.

Authors’ Contributions

LWY and RT designed and supervised this work. RYY and MYL performed the simulation and wrote the manuscript. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1. School of Physics, Shandong University, Jinan 250100, People’s Republic of China. 2. Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, People’s Republic of China.

Received 8 July 2017 **Accepted** 21 August 2017 **Published online** 02 September 2017

References

1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode Nature 238:37-38
2. Khan SU, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO$_2$ Science 297:2243-224
3. Tang R, Yin L (2015) Enhanced photovoltaic performance of dye-sensitized solar cells based on Sr-doped TiO$_2$/SrTiO$_3$ nanorod array heterostructures J Mater Chem A 3:17417-17425
4. Tang R, Yin R, Zhou S, Ge T, Yuan Z, Zhang L, Yin L (2017) Layered MoS$_2$ coupled MOF-derived dual-phase TiO$_2$ for enhanced photoelectrochemical performance J Mater Chem A 5:4962-4971
5. Reascone J, Zhang H, Komienko N, Becknell N, Lee H, Guo J, Bristeau AL, Yang P (2016) TiO$_2$/BiVO$_4$ nanowire heterostructure photoanodes based on type II band alignment ACS Cent Sci 2:80-88
6. Reichert R, Jusys Z, Behm R (2015) Au/TiO$_2$ Photo (electro) catalysis: The Role of the Au Cocatalyst in Photoelectrochemical Water Splitting and Photocatalytic H$_2$ Evolution J Phys Chem C 119:24750-24759

Fig. 7 a EIS spectra measured at a bias potential of 1.2 V under illumination and b Mott-Schottky plots collected at a frequency of 1 KHz in the dark for the TiO$_2$ NR, Fe$_2$O$_3$/TiO$_2$ NR, and CdS/Fe$_2$O$_3$/TiO$_2$ NR samples.
Das RK, Kar JP, Mohapatra S (2016) Enhanced Photodegradation of Organic Pollutants by Carbon Quantum Dot (CQD) Deposited Fe3O4@mTiO2 Nano-Pom-Pom Balls Ind Eng Chem Res 55:5902-5910

Yang W, Yu Y, Starr MB, Yin X, Liu Z, Kvit A, Wang S, Zhao P, Wang X (2015) Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowirephotoanodes Nano Lett 15:7574-7580

Huang B, Yang W, Wen Y, Shan B, Chen R (2014) Co3O4-modified TiO2 nanotube arrays via atomic layer deposition for improved visible-light photoelectrochemical performance ACS Appl Mater Interfaces 7:422-431

Hoang S, Guo S, Hahn NT, Bard AJ, Mullins CB (2011) Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires Nano Lett 12:26-32

Liu Q, Lu H, Shi Z, Wu F, Guo J, Deng K, Li L (2014) 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting ACS Appl Mater Interfaces 6:17200-17207

Peerakiatkhajohn P, Yun JH, Chen H, Lyu M, Buttureau T, Wang L (2016) Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting Adv Mater 28:6405-6410

Quynh LT, Van CN, Bitla Y, Chen J-W, Do TH, Zeng W-Y, Liao S-C, Tsai K-A, Chen Y-C, Wu C-L, Lai C-H, Luo C-W, Hsu Y-J, Chu J-Y (2016) Self-Assembled BiFeO3–ε-Fe2O3 Vertical Heteroepitaxy for Visible Light Photoelectrochemistry Adv Energy Mater 6:1600686

Zhou S, Yin L (2017) CdS quantum dots sensitized mesoporous BiVO4 heterostructures for solar cells with enhanced photo-electrical conversion efficiency J Alloys Compd 691:3592–3595

Zhan Q, Qian J, Li X, He S (2009) A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging Nanotechnol 21:055704

Feng X, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA (2008) Verticallyaligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications Nano Lett 8:3781–3786

Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng X (2011) Branched TiO2 nanorods for photocatalytic hydrogen production Nano Lett 11:4978–4984

Bai S, Wang L, Chen X, Du J, Xiong Y (2015) Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals Nano Res 8:175–183

Xia H, Xiong W, Lim CK, Yao Q, Wang Y, Xie J (2014) Hierarchical TiO2-B nanowire@Fe2O3 nanohorn core-branch arrays as superior electrodes for lithium-ion microbatteries Nano Res 7:1797–1808

Cao S, Yan X, Li Y, Wang L, Zhang Y (2016) Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for PEC water splitting Nano Energy 24:25–31

Bai Z, Yan X, Kang Z, Liang Q, Liao X, Zhang Y (2016) Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for PEC water splitting Nano Energy 24:25–31

Yin et al. Nanoscale Research Letters (2017) 12:520