Small Gamma Products with Simple Values

Albert Nijenhuis

Introduction. Central as the gamma function is, it is surprising that its only known simple specific values are $\Gamma(m)$ and $\Gamma(m + \frac{1}{2})$ for integral m. There are, however, numerous formulas that relate specific values of Γ to other functions, such as elliptic or hypergeometric functions - or to other specific values of Γ itself. Among the latter there are products that have very simple values. An example is

$$\Gamma\left(\frac{1}{14}\right) \Gamma\left(\frac{9}{14}\right) \Gamma\left(\frac{11}{14}\right) = 4\pi^{3/2},$$

which recently occurred in the Problems section of the “Monthly” [1], see also [2]. There is also, of course, the classical multiplier formula

$$\prod_{k=1}^{m-1} \Gamma\left(\frac{k}{m}\right) = (2\pi)^{(m-1)/2} m^{-1/2},$$

but it would be more interesting to find simple values for products of fewer factors. In this note we do just that, for a large class of products, and with little computational effort.

Consider any odd integer $n > 1$ and the set $\Phi(2n)$ of numbers in $[0, 2n]$ that are relatively prime to $2n$. (Its cardinality is $\varphi(2n)$, Euler’s totient function.) $\Phi(2n)$ is a group with respect to multiplication modulo $2n$. Let $\nu(n)$ be the order of the subgroup generated by $n + 2$, and let A be this subgroup or any one of its cosets. Let $b(A)$ count the $x \in A$ that are larger than n. Our main result is

Theorem.

$$\prod_{x \in A} \Gamma\left(\frac{x}{2n}\right) = 2^{b(A)} \pi^{\nu(n)/2}.$$
The Formula. Throughout this paper, \(n > 1 \) will denote a “fixed” odd integer, and let \(\Phi(n) \) be the set (group) of all integers in the interval \([0, n]\) relatively prime to \(n \). Then \(\phi(n) = \phi(2n) \), and the map \(\alpha : \Phi(n) \to \Phi(2n) \) given by

\[
\alpha : \Phi(n) \to \Phi(2n), \quad \alpha(y) = y \quad \text{if} \quad y \quad \text{odd}, \quad \text{else} \quad \alpha(y) = y + n
\]

is a group isomorphism. (The proof is a simple exercise, distinguishing 3 cases.) The inverse is

\[
\alpha^{-1} : \Phi(2n) \to \Phi(n), \quad \alpha^{-1}(x) = x \quad \text{if} \quad x < n, \quad \text{else} \quad \alpha^{-1}(x) = x - n.
\]

We also need a map \(\beta \) which “halves” the elements of \(\Phi(n) \) (modulo \(n \)):

\[
\beta : \Phi(n) \to \Phi(n), \quad \beta(y) = y/2 \quad \text{if} \quad y \quad \text{even}, \quad \text{else} \quad \beta(y) = (y + n)/2.
\]

The doubling formula for \(\Gamma \) is needed in the following form

\[
\Gamma(t) = c_t \Gamma(2t) / \Gamma \left(t + \frac{1}{2} \right),
\]

where \(c_t = (2\sqrt{\pi})2^{-2t} \). In (7) set \(t = x/2n \), where \(x \in \Phi(2n) \),

\[
\Gamma \left(\frac{x}{2n} \right) = c_{x/2n} \Gamma \left(\frac{x}{n} \right) / \Gamma \left(\frac{x + n}{2n} \right).
\]

This equation is of the form

\[
\Gamma \left(\frac{x}{2n} \right) = \varepsilon(x)c_{x/2n} \Gamma \left(\frac{y}{n} \right) / \Gamma \left(\frac{z}{n} \right)
\]

with \(y = x, z = (x + n)/2 \in \Phi(n) \) and \(\varepsilon(x) = 1 \) when \(x < n \). When \(x > n \), we apply the reduction formula \(\Gamma(t) = (t - 1)\Gamma(t - 1) \) to both \(\Gamma \)'s on the right in (8), and cancel factors \((x - n)/n\). The result is

\[
\Gamma \left(\frac{x}{2n} \right) = 2c_{x/2n} \Gamma \left(\frac{x - n}{n} \right) / \Gamma \left(\frac{x - n}{2n} \right),
\]
which is of the form (9) with \(y = x - n, z = (x - n)/2 \in \Phi(n) \) and \(\varepsilon(x) = 2 \).

Lemma. Let \(n \) be an odd integer, \(n > 1 \), and \(x \in \Phi(2n) \). Then (9) holds, where

\[
y = \alpha^{-1}(x), \ z = \beta(y) \in \Phi(n).
\]

Further, \(x - n = 2y - 2z \) and \(y \equiv 2z \pmod{n} \).

Proof. Distinguish the two cases \(x < n \) and \(x > n \). (Note that \(x \in \Phi(2n) \) is odd.)

If \(x < n \), then \(\alpha^{-1}(x) = x = y \) (odd), so \(\beta(y) = (y + n)/2 = (x + n)/2 = z \).

Also, \(2y - 2z = 2x - (x + n) = x - n \) and \(2z = y + n \equiv y \pmod{n} \).

If \(x > n \), then \(\alpha^{-1}(x) = x - n \) (even), so \(\beta(y) = y/2 = (x - n)/2 = z \).

Also, \(2y - 2z = 2(x - n) - (x - n) = x - n \), and \(2z = y \).

Proof of (3). The members of \(\Phi(n) \) are taken as vertices of a directed labeled graph. The edges are the pairs \((y, z) = (y, \beta(y))\); such an edge is labeled \(x = \alpha(y) \in \Phi(2n) \).

The vertices have in- and outdegree 1, so the connected components are cycles. In fact, the component of 1 is the cyclic group generated by 2; denote its order by \(\nu(n) \). The other components are the cosets. Let \(B \) be any one of these cycles. Form the product \(P = \prod \Gamma(x/2n) \) of the left sides of (9), where the product extends over \(x \in \alpha B \), i.e., the labels of the edges of \(B \). Similarly, take the product of the right sides of (9), and note that the product telescopes as all the \(\Gamma \)'s cancel, leaving only

\[
P = \prod_{\alpha B} \varepsilon(x) e_{-x/2n} = (2\sqrt{\pi})^{\nu(n)} 2^{-2(\Sigma x)/2n} \prod_{\alpha B} \varepsilon(x).
\]

Similarly, we have the telescoping sum \(\sum(x - n) = \sum(2y - 2z) = 0 \), so \(\sum x = n\nu(n) \).

Therefore,

\[
P = (2\sqrt{\pi})^{\nu(n)} 2^{-2n\nu(n)/2n} \prod_{x \in \alpha B} \varepsilon(x) = \pi^{\nu(n)/2} 2^{b(\alpha B)},
\]

where \(b(\alpha B) \) is the number of \(x \in \alpha B \) that are bigger than \(n \). In summary,

\[
\prod_{x \in \alpha B} \Gamma \left(\frac{x}{2n} \right) = 2^{b(\alpha B)} \pi^{\nu(n)/2}.
\]

Since \(\alpha \) is an isomorphism, \(A = \alpha B \) is (a coset of) the subgroup of \(\Phi(2n) \) generated by \(\alpha(2) = n + 2 \). That yields (3).
Corollaries.

1. In Zucker [2] we find, for \(n = 2^m - 1, \ m > 1 \), that

\[
\Gamma \left(\frac{1}{2n} \right) \prod_{k=1}^{m-1} \Gamma \left(\frac{2k + n}{2n} \right) = 2^{m-1} \pi^{m/2}.
\]

Proof: This is a special case of (3). The left side equals

\[
\prod_{k=0}^{m-1} \Gamma \left(\frac{\alpha(2^k)}{2n} \right),
\]

while \(\beta(1) = 2^{m-1}, \beta(2^k) = 2^{k-1} \) \((k > 0)\). All numerators except for one are \(> n \).

2. Complementation. Let \(A \) be as in (3), and \(A^* = \{ 2n - x | x \in A \} \), then (3) holds with \(A^* \) replacing \(A \), and \(b(A^*) = \nu(n) - b(A) \).

Proof: Verify that if \(x' \equiv x(n + 2) \pmod{2n} \) then \(2n - x' \equiv (2n - x)(n + 2) \pmod{2n} \).

3. Take the product in (3) over all of \(\Phi(2^n) \); that is, multiply both sides of (3) as \(A \) ranges over the subgroup and its cosets. There are \(\varphi(n)/\nu(n) \) choices of \(A \). Each \(x \in \Phi(2^n) \) greater than \(n \) will occur exactly once.

\[
\prod_{x \in \Phi(2^n)} \Gamma \left(\frac{x}{2n} \right) = (2\pi)^{\varphi(n)/2}.
\]

4. Some numerical examples. We determined, for which odd \(n < 100 \), the number of sets \(A \) exceeds 2. There are 9 such values. Among these, only \(n = 43 \) has 3 \(A \)'s, and all of these are self-complementary [2]. In all other cases the number is even, and can be as big as 8. At the other end, there are 16 values of \(n \) for which \(\nu(n) = \phi(n) \); that can only happen when \(n \) is a prime or a prime power.

We list the six sets \(A \) for \(n = 31 \) because only two of them are usually mentioned [2].

\[
\begin{align*}
n = 31 : (1, 33, 35, 39, 47), & \quad (3, 17, 37, 43, 55), \quad (5, 9, 41, 49, 51), \\
(7, 19, 25, 45, 59), & \quad (11, 13, 21, 53, 57), \quad (15, 23, 27, 29, 61).
\end{align*}
\]

The first one, written out in full, is

\[
\Gamma \left(\frac{1}{62} \right) \Gamma \left(\frac{33}{62} \right) \Gamma \left(\frac{35}{62} \right) \Gamma \left(\frac{39}{62} \right) \Gamma \left(\frac{47}{62} \right) = 2^4 \pi^{5/2}.
\]
Here, $\nu = 5$, the length of the product, and $b = 4$, the number of numerators bigger than 31. Each numerator, multiplied by $33 \pmod{62}$ yields the next one, in circular order.

In a personal note, H. Chen states the problem of finding minimum sizes of gamma products that have simple values. This paper may be a step in that direction, but any definitive answer will depend on a suitable definition of “simple value”.

References

[1] Glasser, M. L., Problem 11426, Amer. Math. Monthly, 116, p. 365, (2009)

[2] Zucker, L.J., Personal notes (1994)

Department of Mathematics, University of Pennsylvania
Department of Mathematics, University of Washington
nijenhuisalbert@msn.com