Rumor Spreading on Random Regular Graphs and Expanders∗†

Nikolaos Fountoulakis,1 Konstantinos Panagiotou2
1School of Mathematics, University of Birmingham, Edgbaston B15 2TT, United Kingdom; e-mail: n.fountoulakis@bham.ac.uk
2Department of Mathematics, University of Munich (LMU), Theresienstraße 39, 80333 Munich, Germany; e-mail: kpanagio@math.lmu.de

Received 17 February 2010; accepted 16 January 2012
Published online 28 May 2012 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/rsa.20432

ABSTRACT: Broadcasting algorithms are important building blocks of distributed systems. In this work we investigate the typical performance of the classical and well-studied push model. Assume that initially one node in a given network holds some piece of information. In each round, every one of the informed nodes chooses independently a neighbor uniformly at random and transmits the message to it. In this paper we consider random networks where each vertex has degree \(d \geq 3 \), i.e., the underlying graph is drawn uniformly at random from the set of all \(d \)-regular graphs with \(n \) vertices. We show that with probability \(1 - o(1) \) the push model broadcasts the message to all nodes within \((1 + o(1))C_d \ln n\) rounds, where

\[
C_d = \frac{1}{\ln (2(1 - \frac{1}{d}))} - \frac{1}{d \ln (1 - \frac{1}{d})}.
\]

Particularly, we can characterize precisely the effect of the node degree to the typical broadcast time of the push model. Moreover, we consider pseudo-random regular networks, where we assume that the degree of each node is very large. There we show that the broadcast time is \((1 + o(1))C \ln n\) with probability \(1 - o(1) \), where \(C = \lim_{d \to \infty} C_d = \frac{1}{\ln 2} + 1. \) © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 43, 201–220, 2013

Keywords: rumor spreading; random regular graphs; pseudorandom graphs; expanders

Correspondence to: N. Fountoulakis
∗An extended abstract of this work appeared at the 14th International Workshop on Randomization and Computation (RANDOM ’10), p. 560–573.
†Parts of this work were performed while both authors were affiliated with the Max Planck Institute for Informatics, 66123 Saarbrücken, Germany.
© 2012 Wiley Periodicals, Inc.
1. INTRODUCTION

1.1. Rumor Spreading and the Push Model

In this work we consider the classical and well-studied push model (or push protocol) for disseminating information in networks. Initially, one of the nodes obtains some piece of information. In each succeeding round, every node who has the information passes it to another node, which it chooses independently and uniformly at random among its neighbors. A central question is the following: how many rounds are typically needed until all nodes are informed?

The push model has been the topic of much theoretical work, and its performance was evaluated on several types of networks. In the case where the underlying network is the complete graph, Frieze and Grimmett [10] proved that with high probability (whp.) (i.e., with probability $1 - o(1)$ as $n \to \infty$) the broadcasting is completed within $(1 + o(1)) (\log_2 n + \ln n)$ rounds, where n denotes the total number of nodes. Recently, this result was extended by the two authors and Huber [8] to the classical Erdős-Rényi graph $G_{n,p}$, which is obtained by including each of the possible $\binom{n}{2}$ edges with probability p, independently of all other edges. Among other results, they showed that if $p = \omega(\frac{\ln n}{n})$, then the typical broadcast time essentially coincides with the broadcast time on the complete graph. In other words, as long as the average degree of the underlying graph is significantly larger than $\ln n$, the number of rounds needed is not affected. However, prior to this work, there was no result describing the performance of the push model on significantly sparser networks with such accuracy.

The typical broadcast time of the push model was also investigated for other types of networks, albeit not as precisely. Feige et al. derived in Ref. 7 bounds that hold for arbitrary graphs. Moreover, they proved a logarithmic upper bound for the number of rounds needed to broadcast the information if the underlying network is a hypercube. This result was generalized by Elsässer and Sauerwald, who determined in Ref. 6 similar bounds for several classes of Cayley graphs. Bradonjic et al. [3] considered random geometric graphs as underlying networks, and proved that whp. the broadcast time is essentially proportional to the diameter of these graphs.

1.2. Our Contribution

The main contribution of this paper is the precise analysis of the push model on sparse random networks. Note that in this context the study of the $G_{n,p}$ distribution is not appropriate, as we would have to set $p = c/n$ for some constant $c > 0$. However, for such p the random graph $G_{n,p}$ is typically not connected. In fact, if we took any $p = o(\frac{\ln n}{n})$, we would face the same problem, as such a p is below the connectivity threshold for $G_{n,p}$ (see for example Ref. 12).

A candidate class of random graphs that combines the feature of constant average degree with that of connectivity is the class of random d-regular graphs $\mathbb{G}(n,d)$ for $d \geq 3$. It is well-known that a random d-regular graph on n vertices is connected with probability $1 - o(1)$. Thus, a typical member of this class of graphs is suitable for the analysis of the push protocol as far as the effect of density is concerned. Let $T = T(\mathbb{G}(n,d))$ denote the broadcast time of the push model on $\mathbb{G}(n,d)$. Note that in this case the choice of the vertex where the information is placed initially does not matter.
Theorem 1. With probability $1 - o(1)$

$$|T(G(n,d)) - C_d \ln n| = O((\ln \ln n)^2),$$

where $C_d = \frac{1}{\ln(2(1-\frac{1}{d}))} - \frac{1}{d \ln(1-\frac{1}{d})}.$

The above theorem is interpreted as follows: for almost all d-regular graphs on n vertices, with probability $1 - o(1)$ the push protocol broadcasts the information within the claimed number of rounds. It is easy to see that as d grows C_d converges to $\frac{1}{\ln 2} + 1$, which is the constant factor of the broadcast time of the push protocol on the complete graph, as shown by Frieze and Grimmett [10]. Thus our result reveals the essential insensitivity of the performance of the push protocol regarding the density of the underlying network and shows that the crucial factor is the “uniformity” of its structure.

We explore further this aspect and we consider regular graphs whose structural characteristics resemble those of a regular random graph. In particular, we consider expanding graphs whose “geometry” is determined by the spectrum of their adjacency matrix.

1.2.1. Regular Expanding Graphs. Expanding graphs have found numerous applications in modern theoretical computer science as well as in pure mathematics. Their properties together with the theory of finite Markov chains have led to the solution of central problems such as the approximation of the volume of a convex body, approximate counting or the approximate uniform sampling from a class of combinatorial objects. The latter applications have had further impact outside computer science as, for example, in statistical physics. We refer the reader to the excellent survey of Hoory et al. [11] for a detailed review of the properties as well as the numerous applications of expanding graphs.

The main feature of an expanding graph is that every set of vertices is connected to the rest of the graph by a large number of edges. This key property makes random walks on such graphs rapidly mixing and has led to the above mentioned applications, see e.g. Ref. 14. Moreover, this property makes expanding graphs an attractive candidate for communication networks. Intuitively, the high expansion of a graph implies that information that is initially located on a small part of the graph can be spread quickly on the rest of the graph. This becomes possible as the high expansion of a graph ensures the lack of “bottlenecks”, that is, local obstructions on which a broadcast protocol would need a significant amount of time in order to get the information through them.

We focus on a spectral characterization of expanding graphs, which is related to the spectral gap of their adjacency matrix. Let $G = (V, E)$ be a connected d-regular graph and let A be its adjacency matrix. The Perron-Frobenius Theorem implies (see Proposition 2.10 in Ref. 13) that the largest eigenvalue of A equals d and that the corresponding eigenvector is proportional to the all-ones vector $[1, \ldots, 1]^T$. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A ordered according to their value (note that since A is symmetric, these are all real). Set

$$\lambda := \lambda(A) := \max_{2 \leq i \leq n} |\lambda_i|.$$

If G has n vertices we say that G is an (n, d, λ)-graph. One can show (see for example p. 19 in Ref. 13) that $\lambda = \Omega(\sqrt{d})$. In particular, Alon and Boppana (see Ref. 16) have shown that for every d-regular graph on n vertices we have $\lambda_2 \geq 2\sqrt{d - \frac{1}{4}} (1 - o(1)).$ Friedman [9] showed that this bound is in fact tight for random d-regular graphs.
We are interested in the class of \(d\)-regular graphs for which \(\lambda\) almost attains this lower bound. In particular, we are concerned with the broadcast time of the randomized protocol on expanding \(d\)-regular graphs on \(n\) vertices with \(\lambda = O(\sqrt{d})\). Such graphs can be explicitly constructed through number-theoretic or group theoretic methods (see the survey of Krivelevich and Sudakov [13] where numerous examples are presented). Informally, we show that if \(d = \omega(\sqrt{n})\), then the broadcast time is essentially the broadcast time on the complete graph with \(n\) vertices.

Theorem 2. Let \(G\) be a connected \((n, d, \lambda)\)-graph with \(\lambda \leq C\sqrt{d}\) and \(d \geq 2C\sqrt{n\ln \frac{1}{9n}}\). Then for any \(v \in V\), with probability \(1 - o(1)\)

\[
|T(G, v) - (\log_2 n + \ln n)| = o(\ln n).
\]

Again, this theorem shows the insensitivity of the broadcast time on the density of the underlying network. In fact, the assumption that \(\lambda = O(\sqrt{d})\) does not merely yield the high expansion of the graph, but it also implies that the edges of the graph are distributed in a uniform way among each subset of vertices. As we shall see in the proof of Theorem 2, this assumption implies that the structure of the graph is not very different from that of a random graph on \(n\) vertices and edge probability equal to \(d/n\). For example, the number of edges between a subset \(S\) and its complement is close to \(\frac{d}{2}|S|(n - |S|)\), which is the expected value in the random graph with edge probability \(d/n\). In this sense, such graphs are pseudorandom. This notion was introduced by Thomason [18] and was explored further by Chung et al. [4], especially regarding its spectral characterization.

1.3. Technical Contribution

In all previous works, roughly speaking, the analysis of the evolution of the set of informed vertices is performed by subdividing it into three (or more) phases that have different characteristics regarding the rate in which the information is spread. Typically, the first phase lasts a small number of rounds, and guarantees that a “critical” fraction of vertices is informed at its end. In the middle phase(s), the set of informed vertices grows quickly, i.e., its size increases by a constant factor in each round. Finally, the last phase consists of a negligible number of rounds, in which the few remaining vertices also get the information.

Our analysis bears some similarities to this approach. However, in order to obtain the exact value of the multiplicative constant in Theorem 1, we need to determine precisely the rate of growth of the set of informed vertices in the middle phase. This rate is not constant, but depends crucially on both the size and the structure of the set of informed vertices. To this end, we set up a “master recursion” involving several parameters (see Lemma 9) that provides a very detailed and fine-grained description of the typical evolution of the broadcasting process. We believe that such an approach could be widely applicable to the analysis of existing or future randomized rumor spreading protocols with several different degrees of dependency.

1.4. Discussion and Further Research Directions

The main result of this work addresses the broadcast time of the push model on random regular graphs. It is an open problem to study the performance of this algorithm on other types of random networks that typically have bounded average degree. Natural research
directions, which are not pursued in this paper, are to consider rumor spreading protocols on random graphs with a given degree sequence or on the giant component of a $G_{n,p}$ random graph, where $p = c/n$ and $c > 1$. We believe that the proof method used in this work can be extended to some of these families, for example if the degree sequence is such that the resulting random graph is connected with high probability. Indeed, albeit only implicit in our proofs, connectivity is an important property that is required. However, the study of the general case will probably require some new additional ideas.

A further research direction is to study rumor spreading protocols on deterministic families of graphs, for example (constant degree) expanders. In this context, it would be interesting to determine a minimal set of properties, which guarantee, for example, that the probable broadcast time coincides with the time required on complete graphs.

2. CONCENTRATION INEQUALITIES

In this section we will state two concentration inequalities that will serve as the backbone of our proofs. The first one is a Chernoff-type bound for sums of negatively correlated random variables, see, e.g. Ref. 5.

Theorem 3. Let I_1, \ldots, I_n be a family of indicator random variables on a common probability space, which are identically distributed and negatively correlated, i.e., $\mathbb{E}(I_i I_j) \leq \mathbb{E}(I_i) \mathbb{E}(I_j)$ for all $1 \leq i, j \leq n$ with $i \neq j$. Let $X := \sum_{i=1}^n I_i$. Then, for any $t > 0$

$$\mathbb{P}(|X - \mathbb{E}(X)| > t) < 2 \exp \left(- \frac{t^2}{2 (\mathbb{E}(X) + t/3)} \right).$$

The next concentration inequality that we will need is due to McDiarmid [15], and it is based on the work of Talagrand [17]. We give first a few necessary definitions. Let B be a finite set and let $\text{Sym}(B)$ be the set of all permutations on B. Assume that π is an element of $\text{Sym}(B)$, drawn uniformly at random. Also, let $X = (X_1, \ldots, X_n)$ be a finite family of independent random variables, where X_j takes values in a set Ω_j. Finally, set $\Omega = \text{Sym}(B) \times \prod_{j=1}^n \Omega_j$.

Theorem 4. Let c and r be positive constants. Suppose that $h : \Omega \to \mathbb{R}_+$ satisfies the following conditions. For each $(\sigma, x) \in \Omega$ we have

- if x' differs from x in only one coordinate, then $|h(\sigma, x) - h(\sigma, x')| \leq 2c$;
- if σ' can be obtained from σ by swapping two elements, then $|h(\sigma, x) - h(\sigma', x)| \leq c$;
- if $h(\sigma, x) \geq s$, then there is a set of at most rs coordinates such that $h(\sigma', x') \geq s$ for any $(\sigma', x') \in \Omega$ that agrees with (σ, x) on these coordinates.

Let $Z = h(\pi, X)$ and let m be the median of Z. Then, for any $t > 0$

$$\mathbb{P}(|Z - m| > t) \leq 4 \exp \left(- \frac{t^2}{16rc^2(m + t)} \right).$$
3. PROPERTIES OF RANDOM REGULAR GRAPHS AND THE CONFIGURATION MODEL

3.1. The Configuration Model

We perform the analysis of the randomized protocol using the configuration model introduced by Bender and Canfield [1] and independently by Bollobás [2]. For \(n \geq 1 \) let \(V_n := \{1, \ldots, n\} \). Also for those \(n \) for which \(d_n \) is even, we let \(P := V_n \times [d] \). We call the elements of \(P \) clones. A configuration is a perfect matching on \(P \). If we project a configuration onto \(V_n \), then we obtain a \(d \)-regular multigraph on \(V_n \). Let \(\tilde{G}(n, d) \) denote the multigraph that is obtained by choosing the configuration on \(P \) uniformly at random. It can be shown [see, e.g., Ref. 12 (p. 236)] that if we condition on \(\tilde{G}(n, d) \) being simple (i.e. it does not have loops or multiple edges), then this is distributed uniformly among all \(d \)-regular graphs on \(V_n \). In other words, \(\tilde{G}(n, d) \) conditional on being simple has the same distribution as \(G(n, d) \). Moreover, Corollary 9.7 in Ref. 12 guarantees that

\[
\lim_{{n \to \infty}} \mathbb{P}(\tilde{G}(n, d) \text{ is simple}) > 0. \tag{3.1}
\]

(Of course the above limit is taken over those \(n \) for which \(d_n \) is even.) Let \(A_n \) be a subset of the set of \(d \)-regular multigraphs on \(V_n \). Altogether the above facts imply that if \(\mathbb{P}(\tilde{G}(n, d) \in A_n) \to 0 \) as \(n \to \infty \) then also \(\mathbb{P}(G(n, d) \in A_n) \to 0 \). This allows us to work with \(\tilde{G}(n, d) \) instead of \(G(n, d) \) itself.

3.2. Some Useful Facts

We continue by introducing some notation. Let \(G \) be a graph, and let \(S, S' \) be subsets of its vertices. Then we denote by \(e_G(S) \) the number of edges in \(G \) joining vertices only in \(S \), and by \(e_G(S, S') \) the number of edges in \(G \) joining a vertex in \(S \) to a vertex in \(S' \). Moreover, we denote by \(\Gamma_G(v) \) the set of neighbors of a vertex \(v \) in \(G \).

Lemma 5. Let \(A, B \subseteq V_n \times [d] \) be two disjoint sets of clones, and let \(C \subseteq V_n \) be a set of vertices such that \((C \times [d]) \cap (A \cup B) = \emptyset \). Let \(M \) be a matching drawn uniformly at random from the set of perfect matchings on the union of the clones in \(A, B \) and \(C \times [d] \), and set \(N := |A| + |B| + d|C| - 1 \). Then

\[
\mathbb{E}(e_M(A)) = \left(\frac{|A|}{2} \right) \frac{1}{N}, \quad \mathbb{E}(e_M(A, B)) = |A||B| \frac{1}{N}, \quad \text{and} \quad \mathbb{E}(e_M(A, C)) = d|A||C| \frac{1}{N}. \tag{3.2}
\]

Moreover, let \(H_\ell \) denote the number of vertices in \(C \) that are adjacent to exactly \(\ell \) clones in \(A \) in \(M \), where \(0 \leq \ell \leq d \). Then, if \(|B| \geq |A| = \omega(\ln n) \)

\[
\mathbb{E}(H_\ell) = \left(1 + o\left(\frac{1}{\ln n} \right) \right) \cdot |C| \left(\frac{d}{\ell} \right) \left(\frac{|A|}{N} \right)^\ell \left(1 - \frac{|A|}{N} \right)^{d-\ell}. \tag{3.3}
\]

Finally, let \(Q = \sum_{\ell \geq 2} H_\ell \). Then, if \(N \geq 4 \)

\[
\mathbb{E}(Q) \leq d^2 |A|^2 |C| N^{-2}. \tag{3.4}
\]
Let \(X \) be any of \(e_M(A), e_M(A, B), e_M(A, C) \) or \(H_t \), and let \(\mu = \mathbb{E}(X) \). Then, if \(\mu = \omega(\ln^2 n) \), for any \(\varepsilon = \omega(\mu^{-1/2}) \) and any \(n \) sufficiently large

\[
\mathbb{P}(|X - \mu| \geq \varepsilon \mu) \leq 4e^{-\frac{\varepsilon^2}{12\ln(1+\varepsilon)}}\mu. \tag{3.5}
\]

Proof. Let \(e, e' \) be edges whose endpoints are in the union of the clones in \(A, B \) and \(C \), and let \(I_e, I_{e'} \) be the indicator variables for the events that \(e \in M \) and \(e' \in M \). As the number of matchings with \(e \) is equal to the number of matchings with \(e' \) we have \(\mathbb{E}(I_e) = \mathbb{E}(I_{e'}) \).

Hence, as \(\sum_e I_e = \frac{N+1}{2} \), we infer that \(\mathbb{E}(I_e) = \frac{1}{N} \). By linearity of expectation this proves (3.2).

To see (3.4) let \(I_{e, e'} \) be the event that both \(e \) and \(e' \) are in \(M \). Note that if \(e \cap e' \neq \emptyset \) and also \(e \neq e' \), then \(\mathbb{E}(I_{e, e'}) = 0 \). Otherwise, let \(f, f' \) be any two edges satisfying \(f \cap f' = \emptyset \) and \(f \neq f' \). Then, as the number of matchings with \(e, e' \) (where this time \(e \cap e' = \emptyset \) and \(e \neq e' \)) is equal to the number of matchings with \(f, f' \) we infer that \(\mathbb{E}(I_{e, e'}) = \mathbb{E}(I_{f, f'}) \) .

As \(\sum_{e \neq e'} I_{e, e'} = \frac{N+1}{2} \cdot \frac{N-1}{2} \) and as there are \(3 \binom{N+1}{2} \) ways to choose \(e, e' \) such that \(e \cap e' = \emptyset \) and \(e \neq e' \) we obtain that

\[
\mathbb{E}(I_{e, e'}) = \begin{cases} 0, & \text{if } e \cap e' \neq \emptyset \text{ and } e \neq e' \\ \frac{1}{N}, & \text{if } e = e' \\ \frac{2}{N(N-2)}, & \text{otherwise} \end{cases}.
\]

Let \(v \) be any vertex in \(C \), and denote by \(\{v_1, \ldots, v_d\} \) the set of its clones in \(C \times [d] \). Moreover, let now \(e, e' \) be distinct edges with one endpoint in \(A \) and the other in \(v \), and note that there are \(\binom{|A|}{2} \cdot |C| \binom{d}{2} \) ways to choose \(e \) and \(e' \). If \(N \geq 4 \), then \(\mathbb{E}(I_{e, e'}) \leq 4N^{-2} \), and this completes the proof of (3.4).

To see (3.3) let \(v \in C \) and denote by \(L_v \) the event that there is an edge in \(M \) connecting two clones of \(v \). Moreover, let \(H_t(v) \) denote the event that \(v \) is adjacent to exactly \(\ell \) clones in \(A \). Then

\[
\mathbb{P}(H_t(v)) = \mathbb{P}(H_t(v) \cap L_v) + \mathbb{P}(H_t(v) \mid L_v) \mathbb{P}(L_v). \tag{3.6}
\]

We estimate the above probabilities one by one. We shall begin with \(\mathbb{P}(L_v) \). Note that there are at most \(d^2 \) choices for an edge connecting two clones of \(v \), and the probability that such an edge is in \(M \) is \(\frac{1}{N} \). Hence,

\[
\mathbb{P}(L_v) \leq d^2 N^{-1} = o(\ln^{-1} n). \tag{3.7}
\]

Next we estimate \(\mathbb{P}(H_t(v) \cap L_v) \). Let us for the moment fix \(\ell \) clones \(c_1, \ldots, c_\ell \) in \(A \), and \(\ell \) clones \(c'_1, \ldots, c'_\ell \) of \(v \). Note that there are \(\binom{|A|}{\ell} \cdot \binom{\ell}{\ell} \) choices for the \(c_i \)'s and \(\binom{d}{\ell} \) choices for the \(c'_i \)'s. Then the number of matchings where the \(c_i \)'s are matched to the \(c'_i \)'s, and no one of the remaining clones of \(v \) is matched to a clone in \(A \), and there is no edge connecting two of the clones of \(v \), is \(! \cdot \binom{|B|}{d+|B|-1} (d-\ell)! \cdot M_{|A|+|B|+d(|C|-2)}, \) where \(M_n = \frac{n!}{(n/2)!2^{n/2}} \) denotes the number of perfect matchings on \(n \) vertices. Stirling’s formula yields the approximation

\[
M_n = (1 + \Theta(n^{-1})) \cdot \sqrt{2\pi} n^{n/2} e^{-n/2}. \tag{3.8}
\]

Random Structures and Algorithms DOI 10.1002/rsa
Moreover, our assumption $|B| \geq |A| = \omega(\ln n)$ implies that
\[
\binom{|A|}{\ell} = \left(1 + o\left(\frac{1}{\ln n}\right)\right) \cdot \frac{|A|!}{\ell!} \cdot \binom{|B| + d(|C| - 1)}{d - \ell} = \left(1 + o\left(\frac{1}{\ln n}\right)\right) \cdot \frac{(N - |A|)^{d - \ell}}{(d - \ell)!}.
\]

All the above facts together yield that
\[
P(H_\ell(v) \cap \overline{L}_n) = \left(1 + o\left(\frac{1}{\ln n}\right)\right) \cdot \frac{d}{\ell} |A|! (N - |A|)^{d - \ell} \cdot \frac{M_{N+1-2d}}{M_{N+1}}.
\]

By applying the estimate for M_n we infer that the last fraction equals
\[
\left(1 + o\left(\frac{1}{\ln n}\right)\right) \cdot e^d \frac{(N + 1 - 2d)^{N+1-2d}}{(N + 1)^{N+1}} = \left(1 + o\left(\frac{1}{\ln n}\right)\right) \cdot N^{-d}.
\]

So,
\[
P(H_\ell(v) \cap \overline{L}_n) = \left(1 + o\left(\frac{1}{\ln n}\right)\right) \cdot \left(\frac{\ell}{N}\right) |A|! \left(1 - \frac{|A|}{N}\right)^{d - \ell}.
\] (3.9)

Finally, we estimate $P(H_\ell(v) \mid L_n)$. Note that the event $H_\ell(v)$, given L_n, implies that there are ℓ clones of v that are matched to some clones in A. By a similar reasoning as above we infer that
\[
P(H_\ell(v) \mid L_n) \leq \frac{d! \binom{|A|}{\ell}! M_{N+1-2\ell}}{M_{N+1}} \leq \left(1 + o\left(\frac{1}{\ln n}\right)\right) \cdot \left(\frac{d}{\ell}\right) \left(\frac{|A|}{N}\right)^{\ell}.
\]

Note that our assumption $|B| \geq |A|$ implies that $\frac{|A|}{N} \leq \frac{|A|}{|A| + |B|} \leq \frac{1}{2}$. So, $1 - \frac{|A|}{N} \geq \frac{1}{2}$, and (3.7) together with (3.6) imply that
\[
P(H_\ell(v) \mid L_n)P(L_n) = o\left(\frac{P(H_\ell(v) \cap \overline{L}_n)}{\ln n}\right).
\]

By plugging this into (3.6) we thus complete the proof of (3.3).

We finally prove the concentration of X by applying Theorem 4 as follows. We will first specify the families X and π. Here, $X = \emptyset$. The random permutation π corresponds to the random perfect matching on the union of the clones in A, B and $C \times [d]$. More precisely, assuming that this union consists of $2k$ clones, which are labeled $1, \ldots, 2k$, we consider a uniformly random permutation of these clones $\pi := (i_1 i_2 \ldots i_{2k-1} i_{2k})$. Then we match the clones that are in consecutive pairs, that is, we choose the matching $\{(i_1, i_2), (i_3, i_4), \ldots, (i_{2k-1}, i_{2k})\}$. This is a uniform perfect matching on these clones. Note that the pair (X, π) determines the value of X. Moreover,

- if we swap two elements of π, then X can change by at most 2;
- if $X \geq \ell$, then we need to specify at most $d\ell$ elements of π in order to certify this (in the sense of Theorem 4).

Thus, we may take $c = 2$ and $r = d$ in Theorem 4. Moreover, let M_X be the median of X. An easy calculation shows that $|M_X - E(X)| = O(\sqrt{E(X)})$ (cf. Example 2.33 in Ref. 12). The proof completes by applying Theorem 4 with, say, $t = 0.9\epsilon \mu$.
4. ANALYSIS OF THE RANDOMIZED BROADCASTING ALGORITHM

4.1. The preliminary phase

Let T_0 be the first round in which the number of informed vertices exceeds $\ln^7 n$. We will show the following statement; it is not the best possible, but it suffices for our purposes.

Lemma 6. With probability $1 - o(1)$ we have that $T_0 = O(\ln \ln n)$. Moreover, for sufficiently large n the subgraph induced by the vertices in \mathcal{D}_{T_0} is with probability $1 - o(1)$ a tree.

Proof. Let \mathcal{D}_i denote the set of vertices at distance i from vertex 1. We will first show that whp. we have $|\mathcal{D}_i| = d(d - 1)^{i-1}$ for all $1 \leq i \leq \sqrt{\ln n}$, which implies that the subgraph induced by $\bigcup_{1 \leq i \leq \sqrt{\ln n}} \mathcal{D}_i$ is whp. a tree. To see the claim, we work in the configuration model and expose the sets \mathcal{D}_i one after the other, i.e., we first expose the edges in the random matching that contain the clones of vertex 1, then the edges that contain the (remaining) clones of the vertices in \mathcal{D}_1, and so on.

Suppose that $|\mathcal{D}_i| = d(d - 1)^{i-1}$ for all $1 \leq i < \sqrt{\ln n}$. In particular, we assume that all edges in the matching incident to the clones corresponding to the vertices in $\mathcal{D}_1, \ldots, \mathcal{D}_{i-1}$ have been exposed. Moreover, for every vertex in \mathcal{D}_i there is precisely one clone whose neighbor is exposed, whereas the remaining $d - 1$ are not. Let us denote by \mathcal{F}_i this set of unexposed clones. We have $|\mathcal{F}_i| = d(d - 1)^i$, and let us note for future reference that with room to spare $|\mathcal{F}_i| \leq n^{1/3}$.

Clearly, \mathcal{D}_{i+1} consists of all vertices in $C = V_n \setminus (\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_i)$ for which at least one of their clones is connected in the matching to some clone in \mathcal{F}_i. Let Q denote the number of such vertices with the property that they are matched to at least two clones in \mathcal{F}_i, and let M be a random perfect matching on the union of the clones in \mathcal{F}_i and C. Then

$$|\mathcal{D}_{i+1}| \geq |\mathcal{F}_i| - 2e_M(\mathcal{F}_i) - dQ.$$

By applying Lemma 5 with $A = \mathcal{F}_i$, $B = \emptyset$ and C as above we obtain for large n that

$$\mathbb{E}(e_M(\mathcal{F}_i)) \leq n^{-1/3} \quad \text{and} \quad \mathbb{E}(Q) \leq 2d^2n^{-1/3}.$$

So, with probability at least $1 - 3d^2n^{-1/3}$ we have that $e_M(\mathcal{F}_i) = Q = 0$. The proof of the claim completes by applying the above argument for $j = 1 \ldots \sqrt{\ln n}$.

With the above fact we can prove the lemma as follows. Let v be a vertex in \mathcal{D}_i, for some $1 \leq i \leq 10 \ln \ln n := \ell$, and denote by T_v the time until v gets informed. Let v' be the unique neighbor of v in \mathcal{D}_{i-1}. Then $T_v = T_{v'} + X_{v,v'}$, where $X_{v,v'}$ is a geometrically distributed random variable with success probability d^{-1}. Moreover, $X_{v,v'}$ is independent of $T_{v'}$. In other words, we have that $T_v = \sum_{j=1}^{i} X_j$, where the X_j’s are independent and identically distributed random variables as specified above. So, $\mathbb{E}(T_v) = di$, and by Theorem 3

$$\mathbb{P}(T_v \geq 20d^2i) = \mathbb{P}(\text{Bin}(20d^2i, d^{-1}) < i) \leq 2e^{-\frac{(10d^2i)^2}{40di}} \leq 2e^{-4di}.$$

In particular, for $i = \ell$, this probability is at most $2 \ln^{-40d} n$. Moreover, the total number of vertices in $\bigcup_{i=1}^{\ell} \mathcal{D}_i$ is at most $d^3d^{-1} = \ln^{10d} n$. So, by Markov’s inequality, there is no vertex
at distance at most \(\ell \) from vertex 1 that will not be informed in the first \(20d^2 \ell = O(\ln \ln n) \) rounds. Moreover, \(d^{\frac{d-1}{d-2}} = \omega(\ln^7 n) \), and the proof is completed.

\[\]

4.2. The Exposure Strategy

In this section we will describe our general strategy for determining the probable broadcast time of the randomized rumor spreading protocol. We will denote by \(\mathcal{I}_t \), the set of informed vertices and by \(\mathcal{U}_t \), the set consisting of the uninformed vertices, i.e., \(\mathcal{U}_t = [n] \setminus \mathcal{I}_t \), at the beginning of round \(t \). We have that \(\mathcal{I}_1 = \{1\} \). We can simulate the execution of the rumor spreading protocol as follows in two steps. First, we choose one of the clones of vertex 1 uniformly at random, say \(c_1 \). Then, we expose the edge in the random matching whose one endpoint is \(c_1 \), and pass the message to the other endpoint, say \(c_2 \). Note that this is equivalent to selecting uniformly at random a clone \(c' \) different from \(c_1 \), and joining \(c_1 \) and \(c' \) by an edge. Clearly, \(c_2 \) is a clone that corresponds to some vertex in the original graph, which now becomes informed. This completes the first round, and \(\mathcal{I}_2 \) consists of vertex 1 and the vertex corresponding to \(c_2 \).

This gradual exposure of the graph can be generalized to any other round in the following manner. Suppose that we are in the beginning of round \(t + 1 \geq 0 \). We will simulate the execution of the protocol as follows in two steps.

Step 1. For each \(v \in \mathcal{I}_t \) we choose one of its clones uniformly at random, independently for every such vertex. We shall denote the selected clone by \(c_v = c_v(t) \).

Step 2. Set \(\mathcal{I}_{t+1} = \mathcal{I}_t \) and for every \(v \in \mathcal{I}_t \) we do the following. If \(c_v \) belongs to an edge in the random matching that was exposed in one of the previous rounds, do nothing. Otherwise, choose uniformly at random one of the remaining unmatched clones, say \(c \), and connect it to \(c_v \) by an edge. Add the vertex corresponding to \(c \) to \(\mathcal{I}_{t+1} \), if it is not already contained in \(\mathcal{I}_{t+1} \).

If a clone of a vertex in \(\mathcal{U}_t \) is matched to \(c_v \), for some \(v \in \mathcal{I}_t \), then that vertex becomes informed – we denote by \(\mathcal{N}_{t+1} \) the set of those vertices. In short, \(\mathcal{N}_{t+1} \) is the set of newly informed vertices in the \(t + 1 \)st round. Let us introduce some further notation regarding the two exposure steps. At the beginning of round \(t + 1 \), we denote by \(\mathcal{P}_t \) the set of clones of the vertices in \(\mathcal{I}_t \) whose neighbors have not been exposed in anyone of the previous rounds. Among those, during Step 1 we choose a set \(\mathcal{A}_{t+1} \subseteq \mathcal{P}_t \) of clones. Informally, \(\mathcal{A}_{t+1} \) contains the clones through which new vertices might get informed. Finally, we write \(\mathcal{N}_{t+1} = |\mathcal{N}_{t+1}| \), \(\mathcal{A}_{t+1} = |\mathcal{A}_{t+1}| \) and \(\mathcal{P}_t = |\mathcal{P}_t| \), and note that \(\mathcal{P}_0 \) consists of the \(d \) clones of vertex 1.

The two steps of our exposure strategy can be also viewed as follows. In the first step we choose according to the rule described above a random subset \(\mathcal{A}_{t+1} \) of \(\mathcal{P}_t \). Then, in Step 2, the clones in \(\mathcal{A}_{t+1} \) are matched to the union of the clones in \(\mathcal{P}_t \) and the clones corresponding to the vertices in \(\mathcal{U}_t \) (as, per definition, all other clones are already matched). In other words, we consider a random perfect matching \(\mathcal{M}_{t+1} \) on the set of clones in \(\mathcal{P}_t \) and \(\mathcal{U}_t \), and we will study its combinatorial properties. In particular, the following claim relates the above random variables.

Proposition 7. Let \(H_{i,t+1} \) denote the number of vertices in \(\mathcal{U}_t \) that were informed \(i \) times in round \(t + 1 \), i.e., a vertex \(v \) is counted in \(H_{i,t+1} \), if there are exactly \(i \) clones in \(\mathcal{A}_{t+1} \) that are matched to the clones of \(v \) in \(\mathcal{M}_{t+1} \). Then

Random Structures and Algorithms DOI 10.1002/rsa
Lemma 8. For any $t \geq 1$ and $n \geq 3$

$$\Pr \left(\left| A_{t+1} - \frac{P_t}{d} \right| \geq \frac{P_t}{d \ln^2 n} \right) \leq 2e^{-\frac{np}{d \ln^2 n}}.$$

Proof. For each clone $c \in \mathcal{P}_t$ let I_c be the indicator variable for the event that c is selected in the first step of the tth round, i.e., “$I_c = 1$” iff the random decisions in Step 1 are such that $c \in \mathcal{A}_{t+1}$. Since each clone has probability $1/d$ to be selected we have $\mathbb{E}(I_c) = p_t = 1/d$. Moreover, for two distinct clones c, c' we have that

$$\mathbb{E}(I_c I_c' \mid P_t = p_t) = \begin{cases} 0, & \text{if } c, c' \text{ are clones belonging to the same } v \in V_n, \\ \frac{d^2}{d^2 - 2}, & \text{otherwise} \end{cases}$$

Since this is at most $\frac{1}{d^2} = \mathbb{E}(I_c) \mathbb{E}(I_c')$, the I_c’s are negatively correlated. Moreover, $\mu := \mathbb{E}(A_{t+1} \mid P_t = p_t) = \frac{d}{d^2}$, and Theorem 3 implies that the sought probability is at most

$$\mathbb{P}(\left| A_{t+1} - \mu \right| \geq \mu / \ln^2 n \mid P_t = p_t) \leq 2 \exp \left(-\frac{\mu^2 \ln^{-d} n}{2(\mu + \mu/(3 \ln^2 n))} \right) \leq 2 \exp \left(-\frac{\mu}{3 \ln^2 n} \right),$$

where the last inequality holds for any $n \geq 3$.

4.3. The Middle Phases

Let T_1 be the first round where the number of informed vertices is at least $n - \ln^7 n$, or equivalently, where $U_{T_1} \leq \ln^7 n$. The main task of this section is the proof of the following lemma, which describes the typical evolution of the number of (un)informed vertices as well as of P_t until $t = T_1$.

Random Structures and Algorithms DOI 10.1002/tsa
Lemma 9. Suppose that \(t \) is such that \(Pt \geq \ln^7 n \). Abbreviate \(F_i = 1 - \frac{P_t}{d(U_t + dU_t)} \). Then, uniformly for all such \(t \) with probability at least \(1 - o\left(\frac{1}{\ln n}\right) \),

\[
P_{t+1} = \left(1 - o\left(\frac{1}{\ln n}\right)\right) \cdot \left(1 - \frac{1}{d}\right) F_t \cdot P_t + dU_t(F_t - F^d_t),
\]

and

\[
U_{t+1} = \left(1 - o\left(\frac{1}{\ln n}\right)\right) \cdot F^d_t \cdot U_t.
\]

Proof. Let \(H_{i,t+1} \) denote the number of vertices in \(U_t \) that were informed \(i \) times in round \(t + 1 \), and recall that Proposition 7 describes the relation of the quantities \(P_{t+1} \) and \(U_{t+1} \) to \(P_t, U_t \) and \(H_{i,t+1} \). We will show that uniformly for all \(t \) such that \(Pt, U_t \geq \ln^7 n \), with probability \(1 - o\left(\frac{1}{\ln n}\right) \) we have

\[
A_{t+1} = \left(1 + o\left(\frac{1}{\ln n}\right)\right) \frac{P_t}{d},
\]

and

\[
e_{\mathcal{M}_{t+1}}(A_{t+1}, P_t \setminus A_t) = \left(1 + o\left(\frac{1}{\ln n}\right)\right) \left(1 - \frac{1}{d}\right) P_t(1 - F_t) \pm \ln^5 n,
\]

and that for all \(1 \leq i \leq d \)

\[
H_{i,t+1} = \left(1 + o\left(\frac{1}{\ln n}\right)\right) U_t \cdot \left(\frac{d}{i}\right)(1 - F_t)^i F^d_{i-1} \pm \ln^5 n.
\]

This proves (4.4) and (4.5) as follows. First, by using (4.1) we infer that with probability \(1 - o\left(\frac{1}{\ln n}\right) \) the number of informed vertices in round \(t + 1 \) is

\[
N_{t+1} = \sum_{i=1}^{d} H_{i,t+1} = \left(1 + o\left(\frac{1}{\ln n}\right)\right) U_t \cdot (1 - F^d_t) \pm d \ln^5 n.
\]

So, as \(U_t \geq \ln^7 n \), with probability \(1 - o\left(\frac{1}{\ln n}\right) \) the number of uninformed vertices at the end of round \(t + 1 \) is

\[
U_{t+1} = U_t - N_{t+1} = U_t - \left(1 + o\left(\frac{1}{\ln n}\right)\right) U_t \cdot (1 - F^d_t) \pm d \ln^5 n = \left(1 + o\left(\frac{1}{\ln n}\right)\right) F^d_t U_t.
\]

This shows (4.5). To see (4.4) recall (4.3) and note that with probability \(1 - o\left(\frac{1}{\ln n}\right) \)

\[
\sum_{i=1}^{d} (d - i)H_{i,t+1} = \left(1 + o\left(\frac{1}{\ln n}\right)\right) U_t \cdot d(F_t - F^d_t) \pm d \ln^5 n.
\]

Hence, substituting the above together with (4.7) into (4.3), we infer that with probability \(1 - o\left(\frac{1}{\ln n}\right) \)

\[
P_{t+1} = P_t - A_{t+1} - e_{\mathcal{M}_{t+1}}(A_t, P_t \setminus A_t) + \sum_{i=1}^{d} (d - i)H_{i,t+1}
\]

\[
= \left(1 + o\left(\frac{1}{\ln n}\right)\right) \left(1 - \frac{P_t}{d} - \frac{1}{d}\right) P_t(1 - F_t) + U_t d(F_t - F^d_t),
\]

and this shows (4.4).
It remains to prove (4.6)–(4.8). We start with (4.6). This is easily seen to hold, by applying Lemma 8 and using the fact that \(P_t \geq \ln^2 n \). To see (4.7) we apply Lemma 5 with \(\mathcal{A} = \mathcal{A}_{r+1}, \mathcal{B} = \mathcal{P}_t \setminus \mathcal{A}_{r+1} \) and \(\mathcal{C} = \mathcal{U}_t \). We infer that

\[
\mu := \mathbb{E}(e_{\mathcal{M}_{r+1}}(\mathcal{A}_{r+1}, \mathcal{P}_t \setminus \mathcal{A}_{r+1})) = \frac{A_{r+1}(P_t - A_{r+1})}{P_t + dU_t - 1}.
\]

Note that for sufficiently large \(n \) we have with probability \(1 - o(\frac{1}{\ln n}) \) that \(|\mathcal{P}_t \setminus \mathcal{A}_{r+1}| \geq |\mathcal{A}_{r+1}| \), and that \(A_{r+1} = o(\ln n) \). By using (4.6) and the definition \(F_t = 1 - \frac{P_t}{d(\bar{P}_t + dU_t)} \) we thus obtain

\[
\mu = \left(1 + o\left(\frac{1}{\ln n}\right)\right) \frac{\left(1 - \frac{1}{d}\right) P_t^2}{d(P_t + dU_t - 1)} = \left(1 + o\left(\frac{1}{\ln n}\right)\right) \left(1 - \frac{1}{d}\right) P_t(1 - F_t).
\]

If \(\mu \geq \ln^3 n \), then by applying (3.5) with \(\varepsilon = \ln^{-1} n \) we infer that

\[
\mathbb{P}(|e_{\mathcal{M}_{r+1}}(\mathcal{A}_{r+1}, \mathcal{P}_t \setminus \mathcal{A}_{r+1}) - \mu| \geq \mu \ln^{-1} n) = o(\ln^{-1} n).
\]

On the other hand, if \(\mu \leq \ln^3 n \), we obtain by Markov’s inequality that

\[
\mathbb{P}(e_{\mathcal{M}_{r+1}}(\mathcal{A}_{r+1}, \mathcal{P}_t \setminus \mathcal{A}_{r+1}) \geq \ln^5 n) = o(\ln^{-1} n).
\]

By combining the above statements we infer that with probability at least \(1 - o(\frac{1}{\ln n}) \) we have that \(e_{\mathcal{M}_{r+1}}(\mathcal{A}_{r+1}, \mathcal{P}_t \setminus \mathcal{A}_{r+1}) = (1 + o(\frac{1}{\ln n})) \mu \pm \ln^3 n \) and (4.7) is proved.

The proof of (4.8) is very similar. By applying Lemma 5 with \(\mathcal{A} = \mathcal{A}_{r+1}, \mathcal{B} = \mathcal{P}_t \setminus \mathcal{A}_{r+1} \) and \(\mathcal{C} = \mathcal{U}_t \), we infer that

\[
\mu_i := \mathbb{E}(H_{i,2q+1}) = \left(1 + o\left(\frac{1}{\ln n}\right)\right) U_i \cdot \binom{d}{i} \left(\frac{A_{r+1}}{P_t + dU_t - 1}\right)^i \left(1 - \frac{A_{r+1}}{P_t + dU_t - 1}\right)^{d-i}.
\]

As with probability \(1 - o(\frac{1}{\ln n}) \) we have \(A_{r+1} = (1 + o(\frac{1}{\ln n})) \frac{P_t}{d} \) we deduce that

\[
\mu_i = \left(1 + o\left(\frac{1}{\ln n}\right)\right) U_i \cdot \binom{d}{i} F_t^i (1 - F_t)^{d-i}.
\]

The proof now completes with a case distinction as above, i.e., we treat the case \(\mu_i \leq \ln^5 n \) with Markov’s inequality and the case \(\mu_i \geq \ln^5 n \) by using (3.5). \(\blacksquare \)

Lemma 9 allows us now to derive the following concentration result for \(T_1 \).

Proposition 10. With probability \(1 - o(1) \) we have that \(T_1 - T_0 = C_d \ln n + O(\ln \ln n) \), where

\[
C_d = \frac{1}{\ln \left(\frac{2}{1 - \frac{1}{d}}\right)} - \frac{1}{d \ln \left(\frac{2}{1 - \frac{1}{d}}\right)}.
\]

Proof. By applying Lemma 6 we infer that at round \(T_0 \) with high probability there are for the first time at least \(\ln^7 n \) informed vertices, and the set of informed vertices induces a tree. Hence, we may assume that

\[
\ln^7 n \leq I_{T_0} \leq 2 \ln^7 n \quad \text{and} \quad (d - 1)I_{T_0} \leq P_{T_0} \leq dI_{T_0}.
\]

We will be using these facts throughout the proof without further reference.

Random Structures and Algorithms DOI 10.1002/rsa
Let \(p_t \) and \(u_t \) be given by the recursions

\[
p_{t+1} = \left(1 - \frac{1}{d} \right) f_t p_t + d u_t (f_t - f^d_t) \quad \text{and} \quad u_{t+1} = f^d_t u_t,
\]

where \(f_t = 1 - \frac{n}{dp_{t-1} + du_t} \) and \(p_{t_0} = P_{t_0}, u_{t_0} = n - I_{t_0} \). As we are interested in the typical values of \(P_t \) and \(U_t \) for \(t = O(\ln n) \) we infer by applying Lemma 9 that \(p_t = (1 + o(1))P_t \) and \(u_t = (1 + o(1))U_t \) for all such \(t \), provided that \(U_t, P_t \geq \ln^7 n \). In what follows we shall therefore consider only the evolution of \(p_t \) and \(u_t \).

Let \(q := 2(1 - \frac{1}{2}), \varepsilon = 0.01 \) and \(t_1 \) be the minimal \(t \) such that \(q^{t - T_0} \leq \frac{\varepsilon n}{\ln^7 n} \). We will first show that for all \(T_0 \leq t \leq t_1 \)

\[
p_t \leq P_{T_0} \cdot q^{t - T_0} \quad \text{and} \quad p_t \geq P_{T_0} \cdot q^{t - T_0} - 3 \cdot P_{T_0}^2 q^{2(t - T_0)} / n,
\]

and

\[
u_t = n - I_{t_0} - P_{T_0} q^{t - T_0} - \frac{1}{d(q - 1)} - 9 \cdot P_{T_0}^2 q^{2(t - T_0)} / n.
\]

We proceed by induction on \(t \). Note that for \(t = T_0 \) the statement trivially holds. In order to perform the induction step \((t \to t + 1) \) we will need some facts. First, let \(x = 1 - f_t \) and note that

\[
f_t - f^d_t = (1 - x) - (1 - x)^d \leq (d - 1)x = (d - 1) \frac{p_t}{dp_t + du_t} \leq \frac{d - 1}{d} \frac{p_t}{u_t}.
\]

So, we readily obtain the upper bound for \(p_t \) in (4.9) by using the recursion for \(p_t \) as follows.

\[
p_{t+1} \leq \left(1 - \frac{1}{d} \right) f_t p_t + d u_t \cdot \frac{d - 1}{d} \frac{p_t}{u_t} \leq 2 \left(1 - \frac{1}{d} \right) p_t = q p_t \Rightarrow p_{t+1} \leq P_{T_0} \cdot q^{t + 1 - T_0}.
\]

To see the lower bound for \(p_t \), note first that the induction hypothesis, together with the fact that \(q^{t - T_0} \leq \frac{\varepsilon n}{\ln^7 n} \) imply that \(\frac{p_t}{u_t} < 1 \). Thus, \(\frac{1}{1 + \frac{p_t}{du_t}} \geq 1 - \frac{p_t}{du_t} \). A similar calculation as above and by using the fact \((1 - x)^d \leq 1 - dx + \binom{d}{2} x^2 \) for \(x \geq 0 \) reveals that

\[
f_t - f^d_t \geq (d - 1)x - \binom{d}{2} x^2 \geq \frac{d - 1}{d} \frac{p_t}{u_t} - \frac{d^2}{2} \frac{p_t^2}{u_t^2} \geq \frac{d - 1}{d^2} \frac{p_t}{u_t} - \frac{3p_t^2}{2d^2u_t^2}.
\]

By using again the recursion for \(p_t \), we infer that

\[
p_{t+1} \geq \left(1 - \frac{1}{d} \right) f_t p_t + d u_t \cdot \left(\frac{d - 1}{d^2} \frac{p_t}{u_t} - \frac{3p_t^2}{2d^2u_t^2} \right) \geq q p_t - \frac{2p_t^2}{d u_t}.
\]

Note that the induction hypothesis and the fact \(q^{t - T_0} \leq \frac{\varepsilon n}{\ln^7 n} \) imply that \(u_t \geq n/2 \). So,

\[
p_{t+1} \geq q p_t - \frac{4}{dn} p_t^2 \geq P_{T_0} q^{t+1 - T_0} - \frac{3p_{T_0}^2 q^{2(t - T_0) + 1}}{n} - \frac{4}{dn} (P_{T_0} q^{t - T_0})^2
\]

\[
= P_{T_0} q^{t+1 - T_0} - \frac{p_{T_0}^2 q^{2(t - T_0) + 1}}{n} \cdot \left(\frac{3}{q} + \frac{4}{dq} \right) \geq P_{T_0} q^{t+1 - T_0} - 3 \frac{p_{T_0}^2 q^{2(t - T_0) + 1}}{n}.
\]
This proves the lower bound for \(p_t \) in (4.9). Next we prove the bounds for \(u_{t+1} \). Note that

\[
\frac{u_{t+1}}{u_t} = \left(1 - \frac{p_t}{d(p_t + du_t)}\right)^d \geq 1 - \frac{p_t}{p_t + du_t} \geq 1 - \frac{p_t}{du_t} \quad \Rightarrow \quad u_{t+1} \geq u_t - \frac{p_t}{d}.
\]

A similar calculation using the fact \((1-x)^d \leq 1 - dx + \left(\frac{d}{2}\right)x^2\) for \(x \geq 0 \) reveals that

\[
\frac{u_{t+1}}{u_t} \leq 1 - \frac{p_t}{p_t + du_t} + \left(\frac{d}{2}\right)\frac{p_t^2}{d^2(p_t + du_t)^2} \leq 1 - \frac{p_t}{du_t} + \frac{3}{4} \frac{p_t^2}{u_t^2}.
\]

Recall that the induction hypothesis guarantees \(u_t \geq n/2 \). The above facts together with the bounds for \(p_t \) imply after a straightforward but lengthy calculation (4.10).

The above discussion settles the growth of \(u_t \). To show that this is positive for \(t \to \infty \) let us first make two important observations. First, note that at \(t_1 \) we have that

\[
\frac{p_{t_1}}{u_{t_1}} = \Omega(1). \quad (4.11)
\]

Let us next consider the ratio \(r_t := p_t/u_t \). Note that \(f_t = 1 - \frac{p_t}{d(p_t + du_t)} = 1 - \frac{1}{d(1 + d/rt)} \). The recursions for \(p_t \) and \(u_t \) imply that

\[
r_{t+1} = \left(1 - \frac{1}{d}\right) f_t^{-d+1} r_t + d(f_t^{-d+1} - 1) \Rightarrow r_{t+1} = \left(1 - \frac{1}{d}\right) f_t^{-d+1} + \frac{d}{r_t} (f_t^{-d+1} - 1).
\]

Consider the function

\[
g(x) = \left(1 - \frac{1}{d} + \frac{d}{x}\right) \left(1 - \frac{1}{d(1 + d/x)}\right)^{-d+1} - \frac{d}{x},
\]

and note that \(\frac{r_t+1}{r_t} = g(1) \). A straightforward calculation shows that \(\lim_{x \to 0} g(x) = 2(1 - \frac{1}{d}) \).

We will also argue that \(g \) is monotonically increasing. This implies \(\frac{r_{t+1}}{r_t} \geq g(0) \geq \frac{4}{3} \), and so we have for any \(t' \geq 0 \)

\[
r_{t+t'} \geq r_t \left(\frac{4}{3}\right)^t' \Rightarrow p_{t+t'} \geq \Omega(1) \cdot \left(\frac{4}{3}\right)^t' u_{t+t'}.
\]

This fact will become very useful later on. To see why \(g \) is increasing, note that

\[
g'(x) = \frac{-T(1 + d^2/x) + d + d^2/x}{x^2 + xd}, \quad \text{where} \quad T = \left(1 - \frac{1}{d(1 + d/x)}\right)^{-d+1}.
\]

To show that this is positive for \(x > 0 \), it suffices to show that

\[
1 + \frac{d^2}{x} < d \left(1 + \frac{1}{d}\right) \left(1 - \frac{1}{d(1 + d/x)}\right)^{d-1}.
\]

But

\[
d \left(1 + \frac{1}{d}\right) \left(1 - \frac{1}{d(1 + d/x)}\right)^{d-1} > d \left(1 + \frac{1}{d}\right) \left(1 - \frac{d - 1}{d(1 + d/x)}\right).
\]

\[
\geq d \left(1 + \frac{1}{d}\right) \left(\frac{d + d^2/x - d + 1}{d(1 + d/x)}\right) = 1 + \frac{d^2}{x},
\]

which concludes the proof of the monotonicity of \(g \).
Let t_2 be the minimal t such that $p_{t_2} \geq u_{t_2} \ln^2 n$. Eqs. (4.11) and (4.12) guarantee that $t_2 = t_1 + O(\ln \ln n)$, and moreover that for any $t > t_2$ such that $u_t > 0$ we have $p_t \geq u_t \ln^2 n \geq 1$. Under these conditions note that

$$f_t^d = \left(1 - \frac{p_t}{d(p_t + du_t)}\right)^d = \left(1 + O\left(\frac{1}{\ln^2 n}\right)\right)^d \left(1 - \frac{1}{d}\right)^d.$$

Thus, for any t such that $t = t_2 + O(\ln n)$ we have that

$$u_t = (1 + o(1)) \left(1 - \frac{1}{d}\right)^{d(t-t_2)} u_{t_2}.$$

Recall that T_1 is the first t such that $U_{T_1} \leq \ln^7 n$. As $u_{t_2} \leq n$, we readily obtain that $T_1 \leq t_1 + O(\ln \ln n) - \frac{1}{d \ln (1 - \frac{1}{d})} \ln n = C_d \ln n + O(\ln \ln n)$. To see the corresponding lower bound for T_1, note that as long as $p_t \geq 1$ we always have

$$u_{t+1} \geq \left(1 - \frac{1}{d}\right)^d u_t.$$

The proof completes with the fact $u_{t_1} = \Theta(n)$.

4.4. The Final Phase

Let T_1 be the first time such that the number of uninformed vertices drops below $\ln^7 n$. In the previous section we argued that $T_1 = C_d \ln n + O(\ln \ln n)$, where C_d is given in Proposition 10. The aim of this section is to prove that the broadcasting of the message completes within $O((\ln \ln n)^2)$ rounds after T_1. This is shown in the next lemma.

Lemma 11. With probability $1 - o(1)$ we have $T - T_1 = O((\ln \ln n)^2)$.

Proof. Before we show the claim let us prove an auxiliary fact. Let S be any subset of the vertices of $\tilde{G}(n, d)$ of size at most $\ln^7 n$. We will show that with probability $1 - o(1)$

$$e(S) < 1.1|S|.$$

To deduce the claim, suppose that there is an S such that $e(S) \geq 1.1s$, where we have set $s = |S|$. There are $\binom{n}{s} \leq \left(\frac{en}{s}\right)^s$ choices for the set S. Moreover, there are at most $s^{2.2s}$ ways to choose $1.1s$ edges in S. Finally, the probability that the chosen edges are in $\tilde{G}(n, d)$ is $\frac{M_0}{\frac{M_0}{M_0}}$, where M_s denotes the number of perfect matchings on x vertices. Using (3.8) we infer that

$$\mathbb{P}(\exists S : e(S) \geq 1.1|S|) \leq (1 + o(1)) \left(\frac{en}{s}\right)^s \cdot s^{2.2s} \cdot \frac{e^{dn/2}}{(dn)^{dn/2}} \cdot \frac{(dn - 2.2s)^{dn/2 - 1.1s}}{e^{dn/2 - 1.1s} \cdot (dn)^{1.1s}}.$$

This expression is $n^{-O(1)}$ for any $1 \leq s \leq \ln^7 n$; this concludes the proof of the auxiliary claim. In particular, $\tilde{G}(n, d)$ is such that any set S of at most $\ln^7 n$ vertices satisfies with room to spare

$$e(S, V_n \setminus S) \geq (d - 2.2)s \geq ds/4.$$
With this fact at hand it is routine to complete the proof of the lemma. Indeed, let S be the set of uninformed vertices at some point in time after T_1. So, $|S| \leq \ln^7 n$. As $e(S, V_n \setminus S) \geq ds/4$, we know that at least $s/4$ vertices in S have at least one neighbor in $V_n \setminus S$. More precisely, there is a set $S' \subseteq S$ such that $|S'| \geq s/4$ and for all $v \in S'$ there is at least one $v' \in V_n \setminus S$ such that v and v' are joined by an edge.

Denote by B the event that after $10 \ln \ln n$ rounds there is a $v \in S'$ that was not informed by v'. The probability of this event is at most

$$|S| \cdot \left(1 - \frac{1}{d}\right)^{10 \ln \ln n (|S| \leq \ln^7 n)} = o(\ln^{-1} n).$$

So, after $10 \ln \ln n$ rounds the new set of uninformed vertices has size at most $|S \setminus S'| \leq \frac{3}{4}|S|$. Iterating the above argument $O(\ln \ln n)$ times finally completes the proof.

5. RANDOMIZED BROADCASTING ON EXPANDING GRAPHS: PROOF OF THEOREM 2

In this section we prove Theorem 2, thus bounding the broadcast time on connected (n, d, λ)-graphs with $\lambda = O(\sqrt{d})$. In order to avoid any confusion, we stress that this condition is interpreted as follows: there is a $C > 0$ such that for any n sufficiently large $\lambda \leq C \sqrt{d}$.

We will use the main result from Ref. 8. Before we state it, let us first introduce the notion of a (p, ϵ)-typical graph. A graph $G = (V, E)$ on n vertices is called (p, ϵ)-typical, if the following three conditions are satisfied:

- For any $S \subseteq V$ with $|S| \geq \epsilon^2 n$, there is a set $X_S \subseteq V \setminus S$ with $|X_S| \leq \frac{8n}{\ln n}$ such that
 $$\forall v \in (V \setminus S) \setminus X_S : d_s(v) = (1 \pm \epsilon)p|S|.$$

- For any $S \subseteq V$ with $|S| \leq \epsilon^2 n$, there is a set $X_S \subseteq V \setminus S$ with $|X_S| \leq \epsilon|S|$ such that
 $$\forall v \in (V \setminus S) \setminus X_S : d_s(v) \leq \epsilon pn.$$

- For all $S \subseteq V$ we have
 $$e(S, V \setminus S) = |S|(n - |S|)p(1 \pm 8\sqrt{\epsilon}).$$

The following appears in Ref. 8.

Lemma 12. Let $\epsilon = \epsilon(n)$ be a positive real-valued function such that $\epsilon(n) \to 0$, as $n \to \infty$, but $\epsilon \geq \ln^{-1/9} n$. Let $p \geq \frac{1}{\epsilon^2} \frac{\ln n}{n}$. If G is a (p, ϵ)-typical graph and $v \in V$, then with probability $1 - o(1)$

$$|T(G, v) - (\log_2 n + \ln n)| \leq 3\epsilon^{1/3} \ln n.$$

We will show that an (n, d, λ)-graph is (p, ϵ)-typical with $p = d/n$ and $\epsilon \geq \ln^{1/9} n$. In particular, we will prove the first two conditions by sampling uniformly at random a vertex in V, and then showing with Chebyschev’s inequality that its degree in a given set S is concentrated around its expected value which, as we shall see, equals $d|S|/n$.

Random Structures and Algorithms DOI 10.1002/rsa
Let A be the adjacency matrix of G and let e_1, \ldots, e_n be an orthonormal basis of \mathbb{R}^n consisting of the eigenvectors of A, ordered according to the moduli of the corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$. Since G is d-regular and connected, we have $e_1 := \frac{1}{\sqrt{n}}[1, \ldots, 1]^T$ (cf. Proposition 2.10 in Ref. 13) and the corresponding eigenvalue is d. For the sake of notational convenience, we will fix an ordering on V, namely v_1, \ldots, v_n and we will assume that the ith entry of each vector corresponds to v_i.

Let S be an arbitrary subset of V and let χ_S be the characteristic vector of S, that is, the vector indexed by V where the elements corresponding to the vertices of S are equal to 1 and the remaining ones are equal to 0. We set $d_S := A\chi_S$ and note that $d_S = [d_S(v_1), \ldots, d_S(v_n)]^T$.

Let v be a vertex in V chosen uniformly at random. Thus $\mathbb{E}(d_S(v)) = \frac{1}{n} \sum_{u \in V} d_S(u)$. Note that this sum is just $\frac{\langle d_S, e_1 \rangle}{n}$, where $\langle \cdot, \cdot \rangle$ denotes the usual dot product in \mathbb{R}^n. On the other hand, we can express $d_S = A\chi_S$ also by taking the expansion of χ_S with respect to the basis e_1, \ldots, e_n and then multiplying by A. Note that $\langle \chi_S, e_1 \rangle e_1 = \frac{|S|}{n} [1, \ldots, 1]^T$. Thus

$$
\chi_S = \frac{|S|}{n} [1, \ldots, 1]^T + \sum_{i \geq 2} \langle \chi_S, e_i \rangle e_i.
$$

Therefore

$$
A\chi_S = \frac{d|S|}{n} [1, \ldots, 1]^T + \sum_{i \geq 2} \lambda_i \langle \chi_S, e_i \rangle e_i.
$$

Since e_1 is orthogonal to the vectors e_2, \ldots, e_n, we have

$$
\langle d_S, e_1 \rangle = \langle A\chi_S, e_1 \rangle = \frac{d|S|}{n} \sqrt{n},
$$

implying that

$$
\bar{d} := \mathbb{E}(d_S(v)) = \frac{d|S|}{n}.
$$

In the following we will bound the variance of $d_S(v)$. Write $\text{Var}(d_S(v)) = D/n$, where $D := \sum_{u \in V} d_S^2(u) - n\bar{d}^2$. But $\sum_{u \in V} d_S^2(u) = \|d_S\|^2$. By Pythagoras’ Theorem

$$
\|d_S\|^2 = \sum_{i=1}^n (d_S, e_i)^2 = n\bar{d}^2 + \sum_{i=2}^n (d_S, e_i)^2.
$$

Therefore, $D = \sum_{i=2}^n (d_S, e_i)^2$. To bound the latter sum note that

$$
\sum_{i=2}^n (d_S, e_i)^2 = \sum_{i=2}^n \langle A\chi_S, e_i \rangle^2 = \sum_{i=2}^n \langle \chi_S, Ae_i \rangle^2 = \sum_{i=2}^n \lambda_i^2 \langle \chi_S, e_i \rangle^2
$$

$$
\leq \lambda_2^2 \sum_{i=2}^n (\chi_S, e_i)^2 = \lambda_2^2 (\|\chi_S\|^2 - (\chi_S, e_1)^2) = \lambda_2^2 \left(|S| - \frac{|S|^2}{n} \right) = \lambda_2^2 |S| \left(1 - \frac{|S|}{n} \right).
$$

Thus

$$
\text{Var}(d_S(v)) = \frac{D}{n} \leq \lambda_2^2 \frac{|S|}{n} \left(1 - \frac{|S|}{n} \right).
$$

Random Structures and Algorithms DOI 10.1002/rsa
Now we are ready to derive the first two conditions of the definition of $(d/n, \varepsilon)$-typicality, when $\lambda \leq C\sqrt{d}$.

- Let S be such that $|S| \geq \varepsilon^2 n$. Then the size of X_S is bounded from above by $n\mathbb{P}(|d_S(v) - \bar{d}| > \varepsilon \bar{d})$. We bound this probability with Chebyshev's inequality. Indeed,

$$\mathbb{P}(|d_S(v) - \bar{d}| > \varepsilon \bar{d}) \leq \frac{\text{Var}(d_S(v))}{\varepsilon^2 \bar{d}^2} \leq \frac{\lambda^2 |S|/n}{\varepsilon^2 \bar{d}^2} = \frac{\lambda^2}{\varepsilon^2 \bar{d}} \leq \frac{nC^2}{\varepsilon^2 \bar{d}^2} \leq \frac{C^2}{\varepsilon^4 \bar{d}}.$$

By the choice of ε, the above bound is at most $8/n \ln n$ and therefore $|X_S| \leq 8n/\ln n$.
- Now let $|S| \leq \varepsilon^2 n$. Thus $\bar{d} \leq d\varepsilon^2$. Here the size of X_S is bounded from above by $n\mathbb{P}(d_S(v) > d\varepsilon)$. Since for n large enough $d\varepsilon - d\varepsilon^2 > d\varepsilon/2$, this probability is at most $\mathbb{P}(d_S(v) - \bar{d} > d\varepsilon/2)$. Again, Chebyshev's inequality implies

$$\mathbb{P}(d_S(v) - \bar{d} > d\varepsilon/2) \leq \frac{4\text{Var}(d_S(v))}{\varepsilon^2 \bar{d}^2} \leq \frac{4\lambda^2 |S|/n}{\varepsilon^2 \bar{d}^2} \leq \frac{4\lambda^2 \varepsilon^2}{\varepsilon^2 \bar{d}^2} = \frac{4\lambda^2 \varepsilon^2}{d^2} \leq \frac{4C^2}{d}.$$

Thus $|X_S| \leq \frac{4C^2 n}{d}$. We want to deduce that this is at most $\varepsilon |S|$. We may assume that $|S| \geq d\varepsilon$, as otherwise what we are aiming at holds trivially. So, it suffices to deduce that $\frac{4C^2 n}{d} \leq d\varepsilon$. But this holds by our assumption $d \geq \sqrt{4C^2 \ln^{1/9} n} \geq \sqrt{4C^2 \varepsilon^{-1} n}$.

The third condition in the definition of $(d/n, \varepsilon)$-typicality is a standard property of (n, d, λ) graphs.

Theorem 13 (Theorem 2.11 in Ref. 13). Let $G = G(V, E)$ be an (n, d, λ) graph. Then for any two subsets $U, W \subset V$ we have

$$|e(U, W) - \frac{d |U||W|}{n}| \leq \lambda \sqrt{|U||W| \left(1 - \frac{|U|}{n}\right) \left(1 - \frac{|W|}{n}\right)}.$$

We set $U = S$ and $W = V \setminus S$. Then the above implies

$$|e(S, V \setminus S) - \frac{d |S|(n - |S|)}{n}| \leq \lambda \sqrt{|S|(n - |S|) \left(1 - \frac{|S|}{n}\right) \left(1 - \frac{n - |S|}{n}\right)} = \frac{\lambda |S|(n - |S|)}{d} \frac{d |S|(n - |S|)}{n} \leq \frac{C}{\sqrt{d}} \frac{d |S|(n - |S|)}{n}.$$

Since $d \geq \sqrt{4C^2 \varepsilon^{-1} n}$, we have $\frac{C}{\sqrt{d}} \leq \frac{1/4}{2\sqrt{2}}$. But $\varepsilon \geq \ln^{-1/9} n$ and, therefore, the latter bound is at most $8\varepsilon^{1/2}$, as required to satisfy the third condition.

ACKNOWLEDGMENTS

The authors like to thank Colin McDiarmid for suggesting the use of his concentration inequality (Theorem 4), which greatly facilitated our proofs. They also like to thank Carola Winzen for a careful reading of an early version of our manuscript as well as three anonymous referees for a number of helpful comments.

Random Structures and Algorithms DOI 10.1002/rsa
REFERENCES

[1] E. A. Bender and E. R. Canfield, The asymptotic number of labelled graphs with given degree sequences, J Comb Theory Ser A 24 (1978), 296–307.

[2] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, Eur J Comb 1 (1980), 311–316.

[3] M. Bradonjic, R. Elsässer, T. Friedrich, T. Sauerwald, and A. Stauffer, Efficient broadcast on random geometric graphs, In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’10), Austin, Texas, U.S.A., 2010, pp. 1412–1421.

[4] F. R. K. Chung, R. Graham, and R. M. Wilson, Quasi-random graphs, Combinatorica 9 (1989), 345–362.

[5] D. Dubhashi and A. Panconesi, Concentration of measure for the analysis of randomized algorithms, Cambridge University Press, 2009.

[6] R. Elsässer and T. Sauerwald, On Broadcasting vs. mixing and information dissemination on Caley graphs, In Proceedings of the 24th Symposium on Theoretical Aspects of Computing (STACS ’07), Aachen, Germany, 2007, pp. 163–174.

[7] U. Feige, D. Peleg, P. Raghavan, and E. Upfal, Randomized broadcast in networks, Random Struct Algorithms 1 (1990), 447–460.

[8] N. Fountoulakis, A. Huber, and K. Panagiotou, Reliable broadcasting and the effect of density, In Proceedings of INFOCOM ’10, 2010, pp. 2552–2560.

[9] J. Friedman, A proof of Alon’s second eigenvalue conjecture and related problems, Mem Am Math Soc 195 (2008), viii+100.

[10] A. M. Frieze and G. R. Grimmett, The shortest-path problem for graphs with random arc-lengths, Discrete Appl Math 10 (1985), 57–77.

[11] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull AMS 43 (2006), 439–561.

[12] S. Janson, T. Łuczak, and A. Ruciński, Random graphs, Wiley, New York, U.S.A, 2000.

[13] M. Krivelevich and B. Sudakov, Pseudo-random graphs, In Proceedings of the Conference on Finite and Infinite Sets, Bolyai Society Mathematical Studies 15, Springer, Berlin, 2006, pp. 199–262.

[14] L. Lovász, Random walks on graphs: a survey, In Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), Bolyai Soc Math Stud, 2, János Bolyai Math Soc, Budapest, 1996, pp. 353–397.

[15] C. McDiarmid, Concentration for independent permutations, Combinator Prob Comput 11 (2002), 163–178.

[16] A. Nilli, On the second eigenvalue of a graph, Discrete Math 91 (1991), 207–210.

[17] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Inst Hautes Études Sci Publ Math 81 (1995), 73–205.

[18] A. Thomason, Pseudo-random graphs, M. Karonski (Editor), In Proceedings of Random Graphs, 1987, pp. 307–331.

Random Structures and Algorithms DOI 10.1002/tsa