Liouville Type Results for a Class of Quasilinear Parabolic Problem

Mounir Hsini* and Zahrani EA
Université de Tunis, Tunisia

Abstract

In this paper, we investigate the parabolic logistic equation with blow-up initial and boundary values on a smooth bounded domain

\[
\begin{align*}
\Delta u - \frac{\partial u}{\partial t} &= a(x,t)f(u) + \mu_1(x) \in \Omega \times (0,T), \\
\mu_1(x) &= \infty \text{ on } \Omega \times [0, T], \\
\mu_2(x) &= \infty \text{ on } \partial \Omega \times [0, T].
\end{align*}
\]

where \(T > 0\). Under suitable assumptions on \(a(x,t)\) and \(f\), we show that such solution stays bounded in any compact subset of \(\Omega\) as \(t\) increases to \(T\). Other asymptotic estimates will be given in this work.

Keywords: Parabolic Cauchy problem; Blow-up solutions; Liouville theorems; Comparison principle; Super and subsolution

Introduction

Let \(\Omega\) a bounded domain in \(\mathbb{R}^n\), \((n \geq 3)\) with boundary \(\partial \Omega\). In this work we consider the boundary blow-up parabolic problem:

\[
\begin{align*}
\Delta u - \frac{\partial u}{\partial t} &= a(x,t)f(u) + \mu_1(x) \in \Omega \times (0,T), \\
\mu_1(x) &= \infty \text{ on } \Omega \times [0, T], \\
\mu_2(x) &= \infty \text{ on } \partial \Omega \times [0, T].
\end{align*}
\]

(1.1)

The nonlinearity \(f\) is assumed to fulfill either

\(f \in C^1(\mathbb{R})\), \(f \geq 0\) and \(f'/f \geq 0\)

and the Keller-Osserman condition

\[
\int_0^t f(s)ds \leq \infty, \forall \alpha \geq 0 \text{ where } f(i) = \int_0^i f(s)ds
\]

(1.2)

Throughout this work, we assume that the function \(a(x,t)\) is continuous on \(\Omega \times [0,T]\) and there exist a constant \(\gamma > -2\) and positive continuous functions \(\alpha_1(t)\) and \(\alpha_2(t)\) on \([0,T]\) such that, for \((x,t) \in [0,T]\), we have

\[
\alpha_1(t)|d(x,\partial \Omega)|^\gamma \leq \alpha(x,t) \leq \alpha_2(t)|d(x,\partial \Omega)|^\gamma
\]

(1.3)

And \(a(x,T) = 0\) on \(\Omega \times \{T\}\)

Remark that \(\alpha_1(T) = 0\).

The main purpose of this work is to find properties of large solutions (blow-up solutions) of (1.1), that is solutions \(u\) satisfying

\[
\lim_{t \to T} u(x,t) = 0
\]

(1.4)

uniformly for any \(t \in (0,T)\). We denote that \(u_{\infty} \) on \(\Omega \times [0, T]\) means that

\[
\lim_{t \to T} u(x,t) = \infty
\]

(1.5)

uniformly for \(x \in \Omega\).

The existence of such solution is associated to the existence of large solutions to the stationary equation

\[
\Delta u - a(x,t)f(u) = 0, \text{ in } R^n \times (\alpha, t)
\]

(1.6)

satisfying

\[
\lim_{d(x,\partial \Omega) \to 0} v(x) = \infty
\]

(1.7)

and of the ODE

\[
\varphi' - a(x,t)f(\varphi) = 0, \quad (0, \infty)
\]

Subject to the initial blow-up condition:

\[
\lim_{t \to T} \varphi(t) = \infty
\]

(1.8)

The mathematical theory of Blow-up began in the sixties of the latest century, with the works of Fujita and Friedman [1-3]. The two main models considered in those works were the semilinear heat equation with \(f(u) = u^p\) and \(f(u) = e^u\). From those days, an increasing interest on blow-up problems has attracted a great number of researchers [4-6]. Equations of the type (1.1) arise especially in population dynamics and ecological models, where the nonnegative quantity \(u\) typically stands for the concentration of a species [7-9]. Stationary problems associated to (1.11) arises in many nonlinear phenomena, for instance, in the theory of quasi-regular and quasi-conformal mappings [10-12] and in mathematical modeling if non-Newtonian fluids, see [13-15] for a discussion of the physical background. Our study in the present work was partly motivated first by Belhaj et al. [16], in which the authors treated the problem (1.1) in the stationary case and the papers [17,18] concerning the long time asymptotic behavior of a parabolic logistic equation with a degenerate spatial-temporal coefficient, of the form

\[
\Delta u - \frac{\partial u}{\partial t} = a(x,t)u - b(x)u^p \text{ on } \Omega \times (0,T),
\]

(1.9)

\[
\mu_1(x) = \infty \text{ on } \partial \Omega \times [0, T],
\]

where satisfies the assumption in the following form

\[
\forall (x,y) \in R^2, x > y \geq m \Rightarrow f(x,y) = f(x) + f(y) - L
\]

*Corresponding author: Mounir Hsini, Researcher, Université de Tunis, Tunisia, Tel: (+216)75 396 955; E-mail: mou_hsi@yahoo.fr

Received May 05, 2018; Accepted June 6, 2018; Published June 15, 2018

Citation: Hsini M, Zahrani EA (2018) Liouville Type Results for a Class of Quasilinear Parabolic Problem. J Phys Math 9: 272. doi: 10.4172/2090-0902.1000272

Copyright: © 2018 Hsini M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
In this note, we will also study the qualitative properties of the global equation
\[\Delta u - \frac{\partial u}{\partial t} = a(x,t) f(u) \text{ on } R^N \times (0,T) \]
(1.10)

Throughout this study, we will make reference to the assumptions:
(F1) \(\exists c_0 > 0, y_0 \geq 0 \) and \(m \geq 1 \)

Under hypothesis (F1), our first result deals with the existence of a function satisfying only on the variable \(t \) and \(d(x, \partial R) \) which is an upper bound of the solution of the problem (1.1). Precisely, we have

Theorem 1.1

Assume that \(f \) satisfies condition (F1), and there exists \(c_1 > 0 \) and \(r < 2 \) such that
\[\frac{c_1}{(d(x, \partial R))^r} \leq a(x,t) \]
(1.11)

Then there exist a positive constant \(C \) such that any solution \(u \) of (1.1) satisfies
\[u(x,t) \leq C \left(1 + \left(\frac{(q-2)b t}{(d(x, \partial R))^r} \right)^{r/(r-q)} \right)^{1/(r-1)} \]
(1.12)

where \(q > 1 \) and the real \(b \) is a positive.

Under the hypothesis of Theorem 1.1, by extending \(d(x, \partial R) \) to the infinity, we obtain our second result.

Theorem 1.2

Assume that \(f \) satisfies condition (F1) and there exists \(c_2 > 0 \) and \(s < 2 \) such that
\[\frac{c_2}{(d(x, \partial R))^s} \leq a(x,t) \]
(1.13)

Then there exist a positive constant \(C \) such that any solution \(u \) of (1.10) satisfies
\[u(x,t) \leq C \left(1 + \left(\frac{(q-2)b t}{(d(x, \partial R))^s} \right)^{s/(s-q)} \right)^{1/(s-1)} \]
(1.14)

where \(q > 1 \) and the real \(b \) is a positive.

Note that the proof Theorem 1.1 and Theorem 1.2 and other preliminary result are the aim of the second section. The third paragraph is devoted to the study of explosive solution (1.1). If we set
\[V(x,r,a,b) = \left\{ (x,t) \in R^N \mid x - x' \leq r \text{ and } s \leq t \leq b \right\} \]

And \(\Xi = \left\{ V(x,r,a,b) \mid x_n \in R^N, r \geq 0, a, b \in R \right\} \)

It’s well known that \(\Xi \) is a basis of open sets in \(X \). For \(\forall \in \Xi \) we denote by \(\partial V \) the heat boundary of \(V \) i.e. the following set
\[\partial V = \left\{ (x,t) \in \partial V \mid t \leq b \in R \right\} \]

whenever \(V = V(x,r,a,b) \)

The result interesting existence of explosive solutions is the following

Theorem 1.3

Suppose that there exists \(\alpha > 1 \), satisfying
\[a(x,t) f(y) \geq y^\alpha, (x,t) \in R^N \times (0,T) \]
and \(y \geq 0 \)

For every \(\forall \in \Xi \), there exists a unique positive function \(u \) such that
\[\Delta u - \frac{\partial u}{\partial t} - a(x,t) f(u) = 0 \text{ in } R^N \times (0,T) \]
(1.15)

And
\[\lim_{t \to +\infty} u(y) = \infty \text{ for every } z \in \partial V \]
(1.16)

Theorem 1.4

Under condition (1.2), (F1) and (KO), problem (1.1) has a maximial solution \(\pi \) and the minimal positive solution \(u \) in the sense that any positive solution \(u \) of (1.1) satisfies \(\pi \leq u \leq \bar{u} \) furthermore, for any \(t \in (0,T) \) there exist positive constants \(c_1 \) and \(c_2 \) depending on \(t \), such that, for \((x,t) \in \Omega \times [0,T] \)
\[\pi(x,t) \leq c_1 \left(t^m + (d(x,\partial \Omega))^\frac{2s}{s-q} \right)^{1/(s-1)} \]
(1.17)

And
\[u(x,t) \geq c_2 \left(t^m + (d(x,\partial \Omega))^\frac{2s}{s-q} \right)^{1/(s-1)} \]
(1.18)

Our result of uniqueness of solution of (1.1) is the following

Theorem 1.5

Let \(f \) be a concave function on \([0,\infty)\). Then under assumptions of Theorem 1.4, the problem (1.1) has a unique positive solution.

Preliminaries

We start this section by some preliminary results. For the reader’s convenience, we recall the defination of supersolution and the subsolution of (1.1). To this end, \(\Omega \) denotes a bounded domain of \(R^N \).

Definition 2.1

Let \(\Omega \) be a bounded domain of \(R^N \). A function \(u \in L_2(\Omega) \) is a weak supersolution (resp. subsolution) of (1.1) if, for \(\forall \in \Omega \times (0,T) \) there exist positive constants \(c_1 \) and \(c_2 \) depending on \(t \), such that
\[\int_\Omega \left(\frac{\partial u}{\partial t} \varphi + \nabla u \nabla \varphi - a(x,t) f(u) \varphi \right) \mathrm{d}x \geq 0 \]
(2.1)

for all \(t > 0 \) and \(\varphi \in H_0^1(\Omega) \), \(\varphi \geq 0 \). A function \(u \) is a solution of (1.1) if and only if it is a supersolution and a subsolution of (1.1).

In the sequel, we consider a real number \(R > 0 \) and \(x, t \in R^N \). The first preliminary result we need is a standard comparison principle which will be used frequently in this paper.

Proposition 2.2

Let \(u \) be a subsolution of (1.1) and \(v \) be a supersolution of (1.1) such that
\[\lim_{t \to +\infty} \sup_{x \in \partial \Omega} [v(x,t) - u(x,t)] \geq 0 \text{ for all } x \in \partial \Omega \text{ and } t \in (0,T) \]
(2.2)

And
\[\lim_{t \to +\infty} \inf_{(x,t) \in \Omega} [u(x,t) - v(x,t)] = 0 \]

Suppose that \(f(v(x,t)) \geq f(u(x,t)) \) on the set \(u(x,t) \leq v(x,t) \). Suppose that \(u(x,t) \leq v(x,t) \) for all \(x \in \Omega \) and \(t \in (0,T) \).

Proof: The function \(\varphi = (u - v)^+(x,t) \) is a supersolution of (1.1) and testing in (1.1) by \((u - v)^+(x,t) \); we obtain:
\[\int_\Omega \left(\frac{\partial \varphi}{\partial t} \varphi + \nabla u \nabla \varphi - a(x,t) f(u) \varphi \right) \mathrm{d}x \leq 0 \]
(2.3)
And
\[
\int \frac{\partial u}{\partial t} \phi + \int \nabla \nabla \phi dx - \int a(x,t) f(\phi) \phi dx \leq 0
\] \tag{2.4}

Denote by
\[
I_t = \int \nabla (V\phi - \phi u) \nabla (u - v) dx
\] \tag{2.5}

and
\[
I_\lambda = \int a(x,t) (f(u) - f(v))(u - v - \epsilon) dx
\] \tag{2.6}

Combining eqns. (2.3) and (2.4), we get \(f_\nu \frac{\partial \phi}{\partial t} \leq I_t + I_\lambda \). On the other hand, we have,
\[I_t \leq 0 \text{ and } I_\lambda \leq 0. \]

Hence, we get,
\[
\int \frac{\partial \phi}{\partial t} \phi \leq 0
\]

That is,
\[
\int \frac{\partial \phi}{\partial t} \phi \leq 0
\]

Then the function \(t \mapsto \int \phi(x,t) dx \) in non-increasing on the set \((0,T)\) and we get
\[
\int \phi(x,t) dx \leq \lim_{\epsilon \to 0} \int \phi(x,t) dx = 0
\]

Since \(u \) and \(v \) are continuous, therefore \(\phi^+ = (u - v)^+ \leq 0 \) and \(u(x,t) \leq v(x,t) \), for all \(x \in \Omega \) and \(t \in (0,T) \), as required.

In the sequel, we introduce the function \(h \) on \((0,1)\) which is very useful for the proof of Theorem 1.1.
\[
h(t) = 1 + \left[(q - 2)bt \right]^2, q \geq 2 b \geq 0 \] \tag{2.7}

Note the function \(h \) satisfies
\[
0 \leq h(t) \leq \infty \text{ and } \lim_{t \to 0} h(t) = 1
\] \tag{2.8}

\textbf{Remarks 2.3:} Proposition 2.2 is well known [3] for the first half of this Proposition. It holds on a more general setting allowing \(f \) to depend on \(x, t \) and \(u \), and for weak super and sub-solutions of (1.1) which are unbounded but satisfy certain growth conditions near \(x=1 \). We refer the interested readers [19] in which Lemma 2.3 is proved as a special case by using a maximum principle in a study [1] (Chapter2, Theorem 9) and the monotone iteration method in Theorem 3.1 of a study [19]. To obtain information about the solution, we will need the following result, which plays an important role in the proof of our main result. To this end, let denote a bounded domain of \(\mathbb{R}^n \) and we consider a real \(R \geq 1 \) and \(x \in \mathbb{R}^n \).

\textbf{Lemma 2.4:} There exists \(\lambda > 0 \) and a nondecreasing function \(h \) on \((0,1)\) such that the function \(v_\lambda \) defined by,
\[
v_\lambda(x,t) = \frac{\lambda h(t)}{(R^2 - \lvert x - x^\lambda \rvert)^{\frac{q}{q-1}}}
\]
on \(B(x_\lambda, R) \times (0,T) \)

Satisfies where is a positive constant and \(h \) as in (2.7). We have
\[
\lim_{z \to x_\lambda} v_\lambda(z) = +\infty \text{ for all } z \in \partial B(x_\lambda, R), t \in (0,T)
\] \tag{2.10}

And
\[
\frac{\partial \lambda}{\partial t} + \Delta v_\lambda - \beta v_\lambda \leq 0 \text{ in } B(x_\lambda, R) \times (0,T)
\] \tag{2.11}

\textbf{Proof:} For each \(x \in B(x_\lambda, R) \), we denote \(r = \lvert x - x_\lambda \rvert \) and we consider the function \(v_\lambda \) defined by \(v_\lambda = \frac{\lambda h(t)}{(R^2 - r^q)^{\frac{q}{q-1}}} \) for some \(\lambda > 1 \). It's an easy task to show that \(v_\lambda \) fulfill the first part of the Lemma. By mean of a straightforward calculation we verify that (2.11) is equivalent to (2.12)
\[
k(t)(R^2 - r^q)^{\frac{q}{q-1}} \geq \frac{4n}{m-1} (R^2 - r^q) + 8 \frac{m+1}{(m-1)^2} r^q
\] \tag{2.12}

Using assumption on the function \(h \), precisely (2.8), eqn. (2.12) holds true and so (2.11) if
\[
-bh^{-1}(t)(R^2 - r^q)^{\frac{q}{q-1}} \geq \frac{4n}{m-1} (R^2 - r^q) + 8 \frac{m+1}{(m-1)^2} r^q
\] \tag{2.13}

Since \(h \geq 1 \), eqn. (2.12) implies (2.11), if
\[
\lambda \geq \frac{b}{\beta} + \frac{4n}{\beta m - 1} + 8 \frac{m+1}{\beta (m-1)^2} r^q R^x
\] \tag{2.14}

set
\[
\lambda \geq \frac{b}{\beta} + \frac{4n}{\beta m - 1} + 8 \frac{m+1}{\beta (m-1)^2} R^x
\] \tag{2.15}

\textbf{Proposition 2.5:} Assume that \(f \) satisfies condition (F2) and there exist \(c_2 > 0 \) and \(\gamma > 0 \) such that
\[
\frac{c_2}{(d(x,\partial \Omega))^{\gamma}} \leq a(x,t)
\] \tag{2.16}

Then there exist a positive constant \(C \) such that any solution \(u \) of (1.1) satisfies
\[
u(x,t) \leq C \left[1 + \left((q - 2)bt \right)^{\frac{1}{q-1}} \right]^{\frac{1}{1-\gamma}} \leq \frac{1}{d(x,\partial \Omega)}
\] \tag{2.17}

\textbf{Proof:} Let \(u \) a continuous solution of (1.1) and choose \(\eta > 0 \) such that \(u(x) \geq \eta \) whenever \(d(x,\partial \Omega) \leq \eta \), where \(y \) is defined as in (F1). Set
\[
E = \left\{ x \in \partial d(x,\partial \Omega) \leq \frac{\eta}{2} \right\}
\]

For \(x \in E \), we set \(B(x_\lambda, R) = \partial B(x_\lambda, \partial \Omega) \). Hence, if \(y \in B \), we get from (F1) and (2.19)
\[
u(x,t) \leq C \left[1 + \left((q - 2)bt \right)^{\frac{1}{q-1}} \right]^{\frac{1}{1-\gamma}} \leq \frac{1}{d(x,\partial \Omega)}
\] \tag{2.17}

Therefore, the solution \(u \) of (1.1) is subsolution of the problem
\[
-\Delta v_\lambda + \Delta v_\lambda - \beta v_\lambda = 0
\] \tag{2.18}

On the set \(B(x_\lambda, R) \times (0,T) \), where rom (F1) and nowhere 2:
Let $\frac{ll}{l}\left[\frac{\tilde{b}}{\beta} \right] \left(\frac{a}{\beta(w-1)} + \frac{m+1}{\beta(m-1)} \right) \left(\frac{a}{\beta(w-1)} + \frac{m+1}{\beta(m-1)} \right) \left(\frac{a}{\beta(w-1)} + \frac{m+1}{\beta(m-1)} \right)$ given in (2.15), then the function v_{ω} is a sursolution of (2.18) on $B(x_{0},R)$ satisfying $v_{\omega}(x_{0},0)=\lim_{\omega \to \infty} v_{\omega}(x,t) = \omega \geq a(x,0)$ $\forall x \in B(x_{0},R)$ in addition we have $\limsup_{\omega \to \infty} (v_{\omega}(x,t)-u(x,t)) \geq 0, \forall t \geq 0$

and for all $z \in \mathbb{D} \Omega$. Since the function $r \to r^{\alpha}$ is decreasing on $[0,\infty)$, and $v_{\omega} \geq 0$ on the set $\{\omega \geq v_{\omega}\}$, it follows from Proposition 2.2 that $u(x_{0};t) \geq v_{\omega}(x_{0};t)$ and we get

$$u(x,t) \leq \left[1+\left((q-2)\beta\right)^{\frac{1}{q-1}} \left(\frac{b}{\beta} \left(\frac{4n}{\beta(m-1)} + \frac{m+1}{\beta(m-1)} \right) \right)^{\frac{1}{q-1}} \right]$$

Since $R=d(x_{0}\partial \Omega)/2$ then we get,

$$u(x,t) \leq \left[1+\left((q-2)\beta\right)^{\frac{1}{q-1}} \left(\frac{b}{\beta} \left(\frac{4n}{\beta(m-1)} + \frac{m+1}{\beta(m-1)} \right) \right)^{\frac{1}{q-1}} \right]$$

(2.19)

Where $\delta = \frac{16n}{\beta(m-1)} + \frac{32}{\beta(m-1)}$ then if we denote $c = \sup_{\beta} \left(\frac{b}{\beta} \delta \right)$, we can write the following identity

$$u(x,t) \leq C \left[1+\left((q-2)\beta\right)^{\frac{1}{q-1}} \left(\frac{b}{\beta} \left(\frac{4n}{\beta(m-1)} + \frac{m+1}{\beta(m-1)} \right) \right)^{\frac{1}{q-1}} \right]$$

(2.20)

Proof of Theorem 1.3

In what follows, we consider $X=\mathbb{R}^{n}$ and $L_{a} \frac{\partial}{\partial t} \phi$, the heat operator on X. For every $x_{n} \in \mathbb{R}^{n}$, $r>0$ and $a, b \in \mathbb{R}$ with $a < b$ we denote by

$$V(x_{n},r,a,b) = \left\{ (x_{n},t) \in \mathbb{R}^{n} \mid x_{n} \leq r \text{ and } a \leq t \leq b \right\}$$

And $\Xi = \{ V(x_{n},r,a,b), x_{n} \in \mathbb{R}^{n}, r \geq 0, a, b \in \mathbb{R} \}$

It's well known that Ξ is a basis of open sets in X. For $V \in \Xi$ we denote by $\partial_{\Xi} V$ the heat boundary of V i.e. the following set

$$\partial_{\Xi} V = \left\{ (x_{n},t) \in \partial V, a \leq t \leq b \right\}$$

whenever $V=V(x_{n},r,a,b)$. By a study [2], we have the following Lemma.

Lemma 3.1

For every $V \in \Xi$ there exists a positive function $u \in V$ with the following properties:

1) u and all derivatives $\frac{\partial u}{\partial x_{i}}, \frac{\partial u}{\partial x_{i}^{2}}, \frac{\partial u}{\partial t}$ for $i \in \{1,2,\ldots,N\}$ are uniformly continuous in V.

2) $L_{a} \frac{\partial}{\partial t} \leq 0 \text{ on } V$

3) $\lim_{y \to z \in V} u(y) = 0 \text{ for every } z \in \partial_{\Xi} V$.

Remarks 3.2: The function u of the previous Lemma satisfies the following properties [26,27]: There exists a constant M which is an upper bound to $u(x_{n}<M)$.

$$\left[\nabla u \right]^{2} \leq M^{-2}$$

(3.1)

$$0 \leq \frac{\partial u}{\partial t} - \Delta u \leq M$$

(3.2)

Proposition 3.3

Let $m>1$. For every $V \in \Xi$, there exists a function $w=w(x,t) \in C^{r}(V)$ such that

$$Lw = \Delta w - \frac{\partial w}{\partial t} \leq a(x,t) f(v)$$

(3.3)

And

$$\lim_{(x,t) \to (x_{0},t_{0})} w(x,t) = \infty \text{ for all } (x,t) \in \partial V$$

(3.4)

Proof: Let u be a function as in Lemma 3.1 and $w=(1/(a+b))$. We obtain the statement if we can choose c and β such that

$$Lw = \Delta w - \frac{\partial w}{\partial t} \leq a(x,t) f(v)$$

We have

$$\Delta w = c^{2} \frac{\partial}{\partial \beta} \left(\frac{\partial}{\partial \beta} \right)^{\beta-2} \left[\frac{\partial}{\partial \beta} \right]^{\beta-1} \Delta u$$

And hence

$$\Delta w - \frac{\partial w}{\partial t} \leq \left(\frac{\partial}{\partial \beta} \right)^{\beta-2} \left[\frac{\partial}{\partial \beta} \right]^{\beta-1} \Delta u + c^{2} \frac{\partial}{\partial \beta} \left(\frac{\partial}{\partial \beta} \right)^{\beta-2} \left[\frac{\partial}{\partial \beta} \right]^{\beta-1} \Delta v$$

Using remark (40), we get

$$\Delta w - \frac{\partial w}{\partial t} \leq \left(\frac{\partial}{\partial \beta} \right)^{\beta-2} \left[\frac{\partial}{\partial \beta} \right]^{\beta-1} \left[c \partial M + c^{2} \frac{\partial}{\partial \beta} \right]$$

(3.5)

And using the fact that $w \leq a(x,t) f(w)$, we get

$$\Delta w - \frac{\partial w}{\partial t} \leq a(x,t) f(w)$$

The property 3 in Remark (3.2) yields the statement about the limit of w at the heat boundary. We can verify that

$$\Delta w - \frac{\partial w}{\partial t} \leq a(x,t) f(w)$$

Using minimum principle we get,

$$w \leq a(x,t) f(w)$$

Let v be a function on V with the properties of the Proposition 3.3. By the maximum principle, we have $u_{n} \leq v$ for every n and we get $u=\sup_{n} \leq v$ satisfies on V the required equation. Let $w \in C^{r}(V)$ satisfying

$$\Delta w - \frac{\partial w}{\partial t} \leq a(x,t) f(w)$$

with infinite limit at the heat boundary, by minimum principle, we have $u_{n} \leq v$ for every $n \in N$. By passing to the limit as $n \to \infty$, we get $u \leq v$.

Let $(x_{n},t_{n}) \in V$ and since V is convex, it's a star domain at (x_{n},t_{n}) and $(x_{n}+r(x-x_{n}); t_{n}+r(t-t_{n}))$ is in V for every $(x,t) \in V$ and $r \in \{0,1\}$. Let us consider,

$$w(x) = \beta_{x_{n}+r(x-x_{n}); t_{n}+r(t-t_{n})}$$

We can verify that

$$\Delta w - \frac{\partial w}{\partial t} \leq a(x,t) f(w)$$

For $\beta=r^{2}$, we obtain

$$\Delta w - \frac{\partial w}{\partial t} \leq w \leq a(x,t) f(w)$$

Using minimum principle we get,
\[(r^2 + 1) v(x_0 + r(x - x_0), t_0) \leq u(x, t) \text{ for every } r \in [0, 1] \]

By passing to the limit as \(r \to 1 \), we get
\[v(x, t) \leq u(x, t). \]

Thus \(u = v \), which is the required uniqueness.

Proof of Theorem 1.4

The proof of Theorem 1.4 is based on various comparison arguments [28-31]. We begin this section by some intermediary results which play an important role to the proof of the existence of minimal and maximal positive solution of the problem (1.1).

Lemma 4.1

The unique solution \(z^* \) of the problem
\[-\Delta z = -d(x, \partial z^*) \gamma \gamma \geq \text{on } \Omega, z = \text{ on } \partial \Omega \]

satisfies
\[\lim_{\epsilon \to 0} \frac{z^*(x)}{d(x)} = \left[\frac{(2+\gamma)(1+\gamma+m)}{m(m-1)} \right] \]

\[(4.2) \]

Proof: It suffices to apply Theorem 6.15 in a study [8].

The second intermediary result is the following, note that its proof is immediately.

Lemma 4.2

The auxiliary problem
\[\nu = \inf \{ d(x) \} \gamma \gamma \geq \text{in } \Omega \]

has a unique solution \(\nu^* \) given by the following formula
\[\nu^*(x) = \frac{1}{[1-m]^{1/\gamma}} \geq 0 \]

\[(4.4) \]

Remarks 4.3:

1) There exist two positive constants \(c_1 \) and \(c_2 \) such that the unique solution \(z^0 \) of (4.1) satisfies
\[c_{1}(d(x)) \gamma \gamma \geq \geq z^0(x) \leq c_{2}(d(x)) \gamma \gamma \geq \geq \]

\[(4.5) \]

2) Due to the fact that the function \(\alpha_\gamma \) (defined in eqn. (1.2)) is continuous and positive on \([0,\varepsilon] \), we may suppose that
\[\alpha_\gamma \geq m_\gamma \text{ in } [0,\varepsilon) \]

\[(4.6) \]

3) If \(\gamma \in (-2,0) \), then we can and \(c_1 > 0 \) such that \(c_1(d(x)) \geq 1 \), in this case we obtain
\[\left(\nu^* \right) \gamma \gamma \geq c_2(d(x)) \gamma \gamma \geq \left(\nu^* \right) \gamma \gamma \geq \]

\[(4.7) \]

For \(n \in \mathbb{N}^* \) and \(c \geq 0 \), we consider the problem
\[\begin{cases} \Delta u - \frac{\partial u}{\partial t} = a(x, t) f(u), \quad \Omega \times [0,\varepsilon) \\ u = n \text{ on } \Omega \times \{0,\varepsilon\} \\ \end{cases} \]

\[(4.8) \]

It’s clear that (4.8) has a unique positive solution \(u_n \). Using the classical comparison principle, we get \(u_n < u_{n+1} \). That is the sequence \(u_n \) is strictly increasing on the set \(\Omega \times [0,\varepsilon) \). Now, we try to find a super-solution of (4.8) which is independent of the integer \(n \).

Lemma 4.4

The problem (4.8) possesses a super-solution \(U^* \).

Proof: We begin by the case \(\gamma \in (-2,0) \). Using eqns. (4.5) and (4.7), we can find a constant \(M > 1 \) sufficiently large such that \(U^* := M(v^* + z^*) \) satisfies,
\[U^*, -\Delta U^* \geq -m_\gamma \left(d(x) \right)^{1/\gamma} \geq \geq 1, \quad x \in \Omega, t \geq 0 \]

Using assumption (F1) on the function \(f \), (4.6) and (1.2), we obtain
\[U^*, -\Delta U^* \geq -a(x, t) f(U^*), \quad x \in \Omega, t \in [0, T - \epsilon] \]

\[(4.9) \]

Therefore \(U^* \) is a super-solution of (4.8) and \(U^* \) is independent on \(n \). Now we prove the existence of super-solution for the case \(\gamma \geq 0 \). Set \(U_n = M_\gamma (v^* + z^*) \) and \(u_n = a\left(\frac{2m + \gamma}{2 + \gamma} \right) \). Then there exists a constant \(c_1 > 0 \) such that
\[U^* \geq c_1 d(x) \geq \frac{1}{\gamma} \]

Indeed \(U_n \geq \gamma \geq c_1 d(x) \geq \frac{1}{\gamma} \).

Consequently, there exists \(M_\gamma > 1 \) large enough such that
\[u_n = M_\gamma (v^* + z^*) \geq (U_n) \geq -\Delta U_n \geq \frac{c_1}{c_1} \gamma \gamma \geq \]

\[(4.10) \]

where \(\gamma \) is the constant defined in (F1) and \(m_\gamma \) as in (4.6). Then,
\[u_n (x, t) \leq U^* \geq U_n \geq U_n \gamma \gamma \geq \]

By assumptions (F1), (1.2) and (4.6) we have
\[(U_n) \Delta U_n \geq -a(x, t) f(U_n) \]

Therefore, \(U^* = U_n \), satisfies (4.9), as required.

Now we are able to prove Theorem 1.4. The next Propositions deal the existence of minimal and maximal solutions of the problem (1.1).

Proposition 4.5

Assume the condition (1.2), (F1) and (KO) are satisfied then the problem (1.1) has a minimal positive solution \(u \), in the sense that any positive solution \(u \) of (1.1) satisfies \(u \geq u \).

Proof: First, it must be mentioned that we conserve notations used in Lemma 4.1, 4.2 and 4.10.

Let \(n \) be an integer number. Then \(U^* \) a super-solution and \(u_n \) a solution of (4.8), we have \(U^*(x, t) \geq u_n (X, t) \) on \(\Omega \times (0, T) \) and on \(\Omega \times [0,\varepsilon) \) for all small \(\epsilon > 0 \). Using the comparison principle, we obtain
\[u_n (X, t) \leq U^* (x, t) \quad \text{on } \Omega \times (0, T - \epsilon), \epsilon > 0 \]

\[(4.11) \]

It should be noticed that, for any compact \(K \) of and for \(\epsilon < 1 \), the function \(U^* \) is bounded on the set \(K \times (0, T) \). By standard regularity arguments, \(u_n (x, t) \rightarrow u(x, t) \) as \(n \rightarrow \infty \) uniformly on any compact subset of \(\Omega \times (0, T) \), where \(u \) satisfies (1.1). Thus \(u \), is a solution to (1.1) [32,33]. Note that \(u \) is the minimal positive solution of (1.1). Indeed, let \(u \) a positive solution of (1.1) and apply the comparison principle we get:

By passing to the limit as \(n \rightarrow \infty \), we obtain
\[u \geq u \quad \text{on } \Omega \times (0, T) \]

Since \(\epsilon \) is arbitrary small, then
\[u \geq u \quad \text{on } \Omega \times (0, T) \]

Thus \(u \) is the minimal positive solution of the problem (1.1).
Proposition 4.6

Assume that conditions (1.2), (F1) and (KO) are satisfied. Then problem (1.1) has a maximal positive solution \(u \), in the sense that any positive solution \(u \) of (1.1) satisfies \(u \leq \bar{u} \).

Proof: Now we will prove the existence of the maximal solution of the problem (1.1). For this aim, we set

\[
\Omega_e = \{ x \in \Omega \mid d(x, \partial \Omega) \geq e \}
\]

where \(e \) is a positive small real and we consider the following problem

\[
\begin{align*}
\Delta u - \frac{\partial u}{\partial t} &= u(x, t) f(u)\text{on} \Omega_e \times (e, T), \\
u &= \infty \text{on} \partial \Omega \times (e, T) \cup \Omega_e \times [e]
\end{align*}
\]

(4.10)

let us denote \(u \) the minimal positive solution of (4.10). If we apply the parabolic comparison principle, we get

\[
u^e \geq u^e \geq u \quad \text{in} \quad \Omega_e \times (e, T)
\]

Moreover, we can extract a decreasing sequence \(e_n \to 0 \) satisfying \(u^e_n \to u \) as \(e_n \to 0 \) and \(\bar{u} \) is a solution of (1.1). Indeed, for any positive solution \(u \) of (1.1) and using the parabolic comparison principle we obtain

\[
u^e_n \geq u \quad \text{in} \quad \Omega_e \times (e_n, T)
\]

By passing to the limit as \(n \to \infty \), we get \(\bar{u} \geq u \), which proves that \(u \) is the maximal solution of (1.1).

Proof of Theorem 1.4 Completed

First step: Proof of the inequality (1.18)

Using the previous arguments, we have

\[
u^e \geq u^e \geq u \quad \text{in} \quad \Omega_e \times (\delta, T-e)
\]

(4.11)

Where \(M \geq 1 \) is a constant independent of \(\delta, v^e_0, (t) = v^e(t-\delta) \), and the function \(z^*_e \) is the unique positive solution of the problem

\[
\Delta z^* - \frac{\partial z^*}{\partial t} = -d(x, \partial \Omega) \quad z^*, z = \infty \quad \text{on} \quad \partial \Omega_e
\]

(4.12)

In the case \(\gamma \in (2, 0) \). In the other case i.e. \(\gamma \geq 0 \), the function \(z^*_e \) will be considered as the unique positive solution of

\[
\Delta z^* - \frac{\partial z^*}{\partial t} = -d(x, \partial \Omega) \quad z^*, z = \infty \quad \text{on} \quad \partial \Omega_e
\]

(4.13)

Note that the existence and uniqueness of \(z^*_e \) was treated in a study \[8\] precisely Theorem 6.15.

Passing to the limit as \(\delta \to 0 \) in (4.11), we get \(z^*_e \to z_m \) and

\[
u^e \geq \pi \geq u \quad \text{in} \quad \Omega_e \times (0, T-e)
\]

(4.14)

Combining eqns. (4.17), (4.5) and (4.14), we get immediately the inequality (1.17) in Theorem 1.4.

Second step: Proof of the inequality (17)

To reach this aim, we pursue the same method used in the proof of (1.17) and we need the following two Lemma \[34,35\].

Lemma 4.7

The auxiliary problem

\[
\Delta z^* - \frac{\partial z^*}{\partial t} = -d(x, \partial \Omega) \quad z^*, z = \infty \quad \text{on} \quad \partial \Omega
\]

(4.15)

has a unique solution \(z^*_m \) which converges uniformly on any compact set of \(\Omega \) to the solution \(z^* \) of (4.1).

Lemma 4.8

The auxiliary problem

\[
v^* + v^* = 0, t \geq \mu \quad \text{and} \quad v(\mu) = \infty
\]

(4.16)

has a unique solution \(v^* \) given by the following formula

\[
v^*_{\mu}(t) = \frac{1}{\mu} t \geq 0
\]

(4.17)

Remarks 4.9: 1) Remark that \(v^*_{\mu} \to v^* \) as \(\mu \to 0 \) where \(v^* \) is the solution of (4.3). For the proof, we refer to Theorem 6.15 in a study \[8\].

2) Due to the fact that the fact that the function \(a_1 \) (defined in (1.2)) is continuous and positive on \([0, T]\), we may suppose that there exists a constant \(K_t > 0 \) such that

\[
a_1 \geq K_t \quad \text{in} \quad [0, T-e]
\]

(4.18)

3) Due to eqn. (4.5), there exists a constant \(c_2 > 0 \) such that

\[
c_2 \geq d(x) \to v^*_{\mu}(t) \quad \text{for} \quad \gamma \geq 0
\]

(4.19)

4) If \(\gamma > 0 \), then we can find \(c_3 > 0 \) such that \(c_3 d(x) \leq 1 \) in \(\Omega \) this case we obtain

\[
(v^*_{\mu}) \leq c_3 (d(x)) \quad \text{for} \quad \gamma > 0
\]

(4.20)

Lemma 4.10

The problem (4.8) possess a sub-solution \(U \).

Proof: We begin by the case \(\gamma \geq 0 \). For \(k_1 > 0 \), small enough, we set

\[
U_1 = c_k \left(v^{*\mu} + z^* \right)
\]

where \(c_k \) as in (F1).

Using equations (4.19) and (4.20), we get

\[
\{u_1(t) - U_1 \leq c_k d(x) \quad \text{for} \quad x \in \Omega \text{and} \ t \geq - \mu
\]

(4.21)

Shrinking the constant \(k_1 \) and using assumption (F1), we can write

\[
\{u_1(t) - U_1 \leq d(x) \quad \text{for} \quad x \in \Omega
\]

(4.22)

Therefore the function fulfill the proposition in this case.

If \(\gamma \leq 2 \), Due to eqn. (4.5), there exists \(c_3 > 0 \) such that

\[
(d(x)) \geq c_3 (z^*) \quad \text{where} \quad m_1 = \sup \left(m_2 m_1 + 2 \right)
\]

For \(k_1 > 0 \), small, we get

\[
U_1 = c_k \left(v^{*\mu} + z^* \right)
\]

(4.23)

Choose \(k_1 \) such that \(k_1 (d(x)) \leq a(x); r \), then we get by (F1)

\[
\{U_1(t) - U_1 \leq k_1 (d(x))) \quad \text{for} \quad x \in \Omega
\]

(4.24)

Now we are ready to prove desiable inequality (1.17). Let \(\bar{u} \) is a minimal solution of (1.1) and \(z_m \) is solution of (4.16). By shrinking the real \(k_1 \) (defined as (4.21), we can write,

\[
\{u(x, t) \geq 2k_1 z_m(x) \quad \text{for} \quad x \in \Omega \text{and} \ t \in (0, t-e)
\]

Due to Lemma 4.7 we have also

\[
\{u(x, t) \geq 2k_1 z_m(x) \quad \text{for} \quad x \in \Omega \text{and} \ t \in (0, t-e)
\]

(4.25)

Therefore if we set \(t = 0, e \in [0, T] \), we obtain

\[
\lim_{t \to e^-} \inf \{u(x, t) - U_1(x, t)\} \geq 0
\]
If we apply maximum principle, we get
\[u(x,t) \geq k \left(v_\infty'(t) + z_\infty'(s) \right), \quad \text{for } x \in \Omega \text{ and } t \in (0, t_\infty) \] \tag{4.22}
Combining eqns. (4.19), (4.20) and (4.22), we obtain inequality (1.17)

Proof of Theorem 1.5

Proof: It suffices to show that \(u = \frac{1}{\mu} \) in \(\Omega \times (0,T,\varepsilon) \) for \(0 < \varepsilon < T \).

Using inequalities (1.17) and (1.18), there exists a positive constant \(\mu > 1 \) such that
\[u \leq \frac{1}{\mu}, \] in \(\Omega \times (0,T,\varepsilon) \)

Suppose that \(u = \frac{1}{\mu} \) in the set \(\Omega \times (0,T,\varepsilon) \) and set
\[V = \frac{1}{\mu} \left(\frac{1}{\mu} - u \right) \]
It's easy to verify that
\[\frac{2\mu}{2\mu+1} V' + \frac{1}{2\mu+1} \pi = \pi \]
And \(u \geq V \) in \(\Omega \times (0,T,\varepsilon) \) \tag{5.1}

Using the fact that \(-f \) is convex we get,
\[f(u) \geq \frac{2\mu}{2\mu+1} f(V) + \frac{1}{2\mu+1} f(\pi) \]

Consequently,
\[V_t - \Delta V = a(x,t) \left(\frac{2\mu+1}{2\mu} V' + \frac{1}{2\mu+1} f(V) \right) \geq a(x,t) f(V) \]

Hence \(V \) is supersolution of
\[\frac{\partial V}{\partial t} - \Delta V \geq a(x,t) f(V) \text{ on } \Omega \times (0,T,\varepsilon), \]
\[V = \infty \text{ on } \partial \Omega \times (0,T-\varepsilon) \times \{0\} \]

Using the comparison principle, we get \(u \leq V \), which is contradiction with (5.1) then \(u = \frac{1}{\mu} \) and consequently the result of theorem holds.

References

1. Fujishima Y, Ishige K (1985) Blow up of positive solutions of semilinear heat equations. Indiana Univ Math J 34: 425-447.
2. Fujishima Y, Ishige K (2011) Blow up for semilinear parabolic with large diffusion on RN. J Diff Equa 250: 2508-2543.
3. Friedman A (1964) Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs, NJ.
4. Du Y (2004) Asymptotic behavior and uniqueness results for boundary blow-up solutions. Diff integral Eqs 17: 819-834.
5. Hsini M (2012) Liouville type theorems for nonlinear elliptic equations involving operator in divergence form. J Math Phys 53.
6. Veron L (2009) Maximal solution of nonlinear parabolic equations with absorption. Submitted, arxiv: 1406: 3850.
7. Fujishima Y, Ishige K (2011) Blow up solutions to boundary blow-up elliptic problems. Advanced Nonlinear Studies 14: 183-197.
8. Du Y, Peng R (2012) The periodic logistic equation with spatial and temporal degeneracies. Trans Amer Math Soc 364: 6039-6070.
9. Giga Y, Ma L (2001) Logistic type equation on RN by a squeezing method involving boundary blow-up solutions. J London Math Soc 64: 107-124.
10. Giga Y, Kohn RV (1987) Characterizing blow-up for similarity variables. Indiana Univ Math J 36: 1-40.
11. Yu GR (1968) Index boundedness condition for mappings with bounded distortion. Siberian Math J 9: 281-285.
12. Uhlenbeck K (1977) Regularity for a class of nonlinear elliptic systems. Acta Math 138: 219-240.
13. Acerbi E, Fusco N (1989) Regularity for minimizers of non-quadratic functionals: the case 1<p<2. J Math Anal Appl 140: 115-135.
14. Diaz JI (1985) Nonlinear Partial Differential Equations and Free Boundary Problems. Vol 1 Elliptic Equations.
15. Filo M, Souplet P, Weissler FB (2001) Linear and nonlinear heat equations in Lqspaces and universal bounds for global solutions. Math Ann 320: 87-113.
16. Belhaj N, Rhouma, Orissi A (2014) Existence and Asymptotic behavior for solutions to boundary blow-up elliptic problems. Advanced Nonlinear Studies 14: 183-197.
17. Du Y, Peng R (2012) The periodic logistic equation with spatial and temporal degeneracies. Trans Amer Math Soc 364: 6039-6070.
18. Giga Y, Kohn RV (1987) Characterizing blow-up for similarity variables. Indiana Univ Math J 36: 1-40.
19. Giga Y (1986) A bound for global solutions of semilinear heat equations. Comm Math Phys 103: 415-421.
20. Herrero MA, Velazquez JIJ (1993) Blowup behaviour of one dimensional semilinear parabolic equations. Ann Inst Henri Poincare Anal Non Lineaire 10: 131-189.
21. Wang X (1993) On Cauchy problems for reaction-diffusion equations. Trans Amer Math Soc 337 12: 549-590.
22. Aronson DG, Weinberger HF (1978) Multidimensional nonlinear diffusion arising in population genetics. Adv in Math 30: 33-76.
23. Ackermann N, Bartsch T, Kaplicky P, Quittner P (2008) A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems. Trans Amer Math Soc 360: 3493-3539.
24. Baalal A, Belhaj NR (2014) Dirichlet problem for quasilinear elliptic equations. EJDE 82: 1-18.
25. Giga Y (1986) A bound for global solutions of semilinear heat equations. Comm Math Phys 103: 415-421.
26. Herrero MA, Velazquez JIJ (1993) Blowup behaviour of one dimensional semilinear parabolic equations. Ann Inst Henri Poincare Anal Non Lineaire 10: 131-189.
27. Sattlinger D (1973) Topic in stability and bifurcation theory. Lecture Notes in Math Springer-Verlag Berlin and New York 309: 1-173.
28. Pinsky RG (2006) Positive solutions of reaction-diffusion equations with subcritical nonlinearity: universal bounds, uniqueness for the Cauchy problem boundedness of stationary solutions 220: 407-433.
29. Mizoguchi N, Souplet P (2014) Nondegeneracy of blow-up points for parabolic Keller-Segel system. Ann Inst H Poincare, Analyse non lineaire 31: 129-169.
30. Hsini M, Sayeb W (2012) Liouville type Theorems for nonlinear elliptic equations on the whole space RN Proc Amer Math Soc 140: 2731-2738.
31. Giga Y, Matsui S, Sasyayama S (2004) Blow-up rate for semilinear heat equations with subcritical nonlinearity. Indiana Univ Math J 53: 483-514.
32. Du Y, Guo Z (2003) Boundary blow-up solutions and their applications in quasilinear elliptic equations. J An Math 89: 277-302.
33. Friedman A, McLeod B (1985) Blow-up of positive solutions of semilinear heat equations. Indiana Univ Math J 34: 425-447.
34. Hsini M, belhajrhouma N (2011) Liouville type results for a class of quasilinear elliptic equations. IEJIPAM 3.
35. Friedmann A (2008) Partial differential equations of parabolic type. Prentice-Hall, INC Englewood.