Clinical and in vitro evaluation of new anti-redness cosmetic products in subjects with winter xerosis and sensitive skin

S. J. Nisbet1,2, D. Targett1, A. V. Rawlings2, K. Qian3, X. Wang5, C. B. Lin3, M. A. Thompson5, P. A. Bulsara5 and D. J. Moore5

1Skin Health Research & Development at GlaxoSmithKline Consumer Healthcare, Weybridge, Surrey, UK, 2Primoris Contract Solutions Ltd., Ascot, Berkshire, UK, 3AVR Consulting Ltd., Northwich, Cheshire, UK, 4Thomas J. Stephens & Associates, Richardson, TX, USA, 5GlaxoSmithKline, Collegeville, PA, USA

Keywords: anti-redness, keratinocyte differentiation, safety testing, sensitive skin, skin barrier, skin physiology

Received 11 July 2019, Accepted 11 July 2019

Abstract

OBJECTIVE: To demonstrate the in vitro activities of panthenol, palmitoylethanolamide (PEA), and niacinamide (NAM) and determine the biophysical properties, clinical safety, tolerability together with efficacy of two developmental anti-redness (AR) formulations containing these ingredients, in alleviating facial redness associated with winter xerosis in healthy volunteers with sensitive skin.

METHODS: The anti-inflammatory and skin protective properties of panthenol, PEA and NAM were evaluated in vitro. The physical properties of the AR formulations were analysed using measurement of water vapour transport rate (WVTR) and infrared spectroscopy. Clinical studies were performed between the months of December and April (2014–2015) with efficacy assessed during the winter. Facial redness, irritation, sensitization potential, photo-irritation, and photo-sensitization were evaluated. Self-assessed adverse reactions were reported in diaries of use.

RESULTS: Panthenol and PEA reduced prostaglandin E2, interleukin-6, and thymic stromal lymphopoietin levels in vitro, while NAM induced nicotinamide adenine dinucleotide (NAD) levels and the keratinocyte differentiation markers: filaggrin (2-fold increase, \(P < 0.001 \)), loricrin (2-fold increase, \(P < 0.05 \)), involucrin (2-fold increase, \(P < 0.001 \)) & peroxisomal proliferator activated receptor-alpha (1.5 fold increase, \(P < 0.05 \)). The two AR products exhibited low WVTR vs. no treatment (\(P < 0.001 \)) and displayed an ordered lipid structure. The day cream formulation protected against ultraviolet B radiation in vitro. A total of 382 participants were included in clinical studies which showed the AR formulations significantly improved facial redness associated with winter xerosis (Day 29 mean change from baseline: AR day cream 0.77 (\(P < 0.001 \)); AR serum 0.67 (\(P < 0.001 \))). No irritation, sensitization, photo-irritation, photo-sensitization or product-related adverse reactions were observed or reported in the clinical studies.

CONCLUSION: The new products significantly improved skin redness associated with winter xerosis in participants with self-perceived sensitive skin. Both products were well tolerated with a suitable safety profile for topical use in subjects with sensitive skin.

Correspondence: Stephanie J. Nisbet, Principal Scientist, Skin Health Medical Affairs at GlaxoSmithKline Consumer Healthcare, Weybridge, Surrey, UK. Tel: +44 1932 822401; fax: +44 1932 822100; e-mail: Stephanie.j.nisbet@gsk.com
Evaluation of anti-redness face cream and serum

S. J. Nisbet et al.

Introduction

Sensitive skin has been defined as a syndrome with unpleasant sensations (stinging, burning, pain, pruritus, and tingling) that may be associated with skin erythema [1]. Although many consumers self-diagnose their sensitive skin they can also experience adverse skin reactions [2]. It has also been reported that Asian consumers may be more chemosensitive than other ethnic groups [1]. Impaired barrier function, whether due to poor epidermal differentiation, compromised stratum corneum (SC) maturation, or alterations in other epidermal biochemical pathways, is thought to contribute to skin sensitivity [3–6]. Published studies have demonstrated that epidermal barrier dysfunction and the cytokine, thymic stromal lymphopoietin (TSLP), also play a role in driving the atopic march, allergic sensitization, and itch [7]. Although chronic facial erythema in sensitive skin has a complex pathophysiology, barrier impairment triggered by excess ultraviolet (UV) exposure, low humidity, and pollutants can be involved in initiating this condition [8].

While reducing the negative effects of UV irradiation is key in alleviating sensitive skin symptoms, maintaining adequate moisturization is also important [9,10]. Formulations that contain lamellar lipid bilayers, mimicking those found within the SC, are known to be more effective clinically than non-lamellar lipid formulations in treating dry skin and xerosis-alleviating polyols such as glycerol and xylitol [11–13]. The non-physiological lipid, isostearyl isostearate (ISIS), has also been shown to positively influence lipid lamellar phase behaviour in experimental skin barrier and lipid models [14,15]. Therefore, semi-occlusive formulations containing lamellar lipids and ISIS will likely increase SC water content, improve corneocyte maturation and filaggrin processing and thereby improve barrier function [16]. We have developed formulations containing a combination of the above-mentioned polyols together with xerosis-alleviating polysaccharides such as glycerol and xylitol [17].

Herein we describe a series of in vitro studies designed to determine the barrier efficacy and molecular lipid structure of the phospholipid-ISIS structural lamellar formulations using water vapour transport rate (WVTR) and Fourier transform infrared (FTIR) spectroscopy, respectively. In addition, we have investigated the effects of added panthenol [18] and the putative peroxisome proliferator activated receptor alpha (PPAR-α) agonist palmitoylethanolamide (PEA) [19] on inflammatory mediators, and the effects of niacinamide (NAM) on nicotinamide adenine dinucleotide (NAD) production and keratinocyte differentiation [20–22]. Finally, we evaluated a new anti-redness (AR) day cream and AR serum containing these ingredients, first, through in vitro analysis of their anti-inflammatory properties, and subsequently, in clinical studies to determine the safety, tolerability, and efficacy of the products in subjects with winter xerosis-associated facial redness and sensitive skin.

Methods

The AR day cream contains the following ingredients: Aqua, Isocaprylyl Dimethicone, Glycerin, Dicaprylyl Carbonate, Diethylenamino Hydroxybenzoyl Hexyl Benzoate, Bis-Ethylhexyloxoyphenol Methoxyphenyl Triazine, Isostearyl Isostearate, Niacinamide, Xylitol, Pentylene Glycol, Butyrospermum Parkii Butter, 1,2-Hexanediol, Panthenol, Caprylic/Capric Triglyceride, Hydrogenated Lecithin, Palmitamidate MEA, Orzya Sativa Cera, Tocopheryl Acetate, Polyacrylate Crosspolymer-6, Squalane, Acetamide MEA, Trisodium Ethylenediamine Disuccinate, Ascorbyl Glucoside, Citric Acid, 1-Butyl Alcohol, Ceramide 3. The AR serum contains the following ingredients: Aqua, Glycerin, Niacinamide, Panthenol, Xylitol, Nylon 6/12, L,2-Hexanediol, Isostearyl Isostearate, Pentylene Glycol, Hydroxyacethophenone, Hydrogenated Lecithin, Acetamide MEA, Palmitamidate MEA, Tocopheryl Acetate, Sodium Carbomer, Acrylates/C10-30 Alkyl Acrylate crosspolymer.

In vitro studies

Water vapour transmission rate (WVTR) measurement and FTIR analyses methodology

Water vapour transmission rate was used to quantitatively assess the occlusive character of the phospholipid-ISIS structured lamellar formulations with white jelly paraffin (WJP) as a positive control. The WVTR is a widely accepted method for assessing occlusive behaviour of formulations in vitro [14]. FTIR spectroscopy was used to determine thermotropic behaviour and the lipid organisation of the phospholipid-ISIS structured lamellar formulations using methods described in Bulsara et al. [23].

Reconstructed human epidermis (RHE)

Reconstructed human epidermis were purchased from MatTek (EpiDerm, EP-200, MatTek, Ashland, MA, USA), maintained in culture media and incubated overnight at 37°C/5% CO2 according to manufacturer’s instructions. The culture media were replenished with fresh media prior to the start of the study. Formulations were applied topically at 2 mg cm−2 or 10 mg cm−2 as indicated. All treatments were performed in duplicate or triplicate.

UVB exposure. After 1 h pre-treatment with formulations the RHE tissues were transferred to a sterile 6-well plate containing 1 mL of Dulbecco’s phosphate buffered saline (DPBS) per well and then exposed to ultraviolet B (UVB) irradiation, The Newport Solar Simulator System (Power unit 69920, and Lamp 91192-1000, Newport Corporate, Irvine, CA, USA) was used as the UVB emitter to achieve a UVB irradiation of 150 mJ cm−2, as measured using an ILT-1400 Handheld Portable Radiometer/Photometer with attached UVB detector (SEL240/T2ACT5, 235–307 nm) (both from International Light Technologies, Inc., Peabody, MA, USA). Topical distilled water plus UVB irradiation served as a UVB control. After UVB irradiation the RHE tissues were transferred back to the 6-well plate containing culture media and incubated at 37°C and 5% CO2 for 6 h.

Inflammatory cocktail and topical treatments. Reconstructed human epidermis was placed into 6-well plates overnight at 37°C and 5% CO2 in the hydrocortisone-free culture media (MatTek Inc.). Dexamethanol (75W, BASF, Newport, DE, USA) and PEA (Nikko Chemicals Co. Ltd., Tochigi, Japan) were prepared in a vehicle composed of water, ethanol, and propylene glycol (50/35/15; %v/v/v), respectively. Topical dexamethanol or PEA (6 μL, 10 mg cm−2) was applied to the RHE surface 1 h prior to changing to a culture media containing an inflammatory cocktail containing interleukin (IL)-4 (10 ng mL−1), IL-13 (10 ng mL−1), tumour necrosis factor (TNF)-α (5 ng mL−1) (R&D Systems, Minneapolis, MN, USA) and poly (IC) (10 μg mL−1) (Sigma, St. Louis, MO, USA). Control samples were treated topically with 6 μL vehicle only. Following
treatment with the inflammatory cocktail for 24 h, culture media and tissues were collected and analysed for pro-inflammatory mediators and immunohistochemistry (IHC) staining.

HaCaT cell culture
HaCaT cells (AddexBio, San Diego, CA, USA) were grown in Medium DMEM/GlutMax supplemented with 10% foetal bovine serum (FBS) and non-essential amino acids (NEAA) (all Life Technologies, Carlsbad, CA, USA) at a density of 2 × 10⁵ cells per well in a 12-well plate. HaCaT cells were treated with PEA at different concentrations (prepared by mixing PEA ethanol stock solutions with a 1 mM defatted bovine serum albumin [BSA] solution [1:9, v/v] for better solubility of PEA) 1 h prior to UVB exposure at 40 mJ cm⁻² (Newport Solar Simulator system, Power unit 69920, and Lamp 91192–1000). After another 6 h incubation post UVB irradiation, cell culture media were collected for prostaglandin E2 (PGE₂) and IL-6 measurement.

Measurement of inflammatory mediators
Cell culture media were collected either from RHE or HaCaT cell cultures and analysed for PGE₂ or TSLP concentrations using ELISA assays (R&D Systems, Minneapolis, MN, USA), and for IL-6 and TNF-α measurement using Milliplex multiplex assay (EMD Milipore, Billerica, MA, USA).

Immunohistochemistry staining
Reconstructed human epidermis tissues were collected and processed for IHC staining of Ki67, a proliferation biomarker, using the primary Ki67 rabbit monoclonal antibody (Vector Laboratories, Burlingame, CA, USA) and a Mach2 rabbit-alkaline phosphatase polymer (Biocare Medical, Concord, CA, USA) as the secondary antibody.

Measurement of the effects of NAM on NAD production
HaCaT cells were cultured in Epilife medium without NAM (Life Technologies, Carlsbad, CA, USA) supplemented with 10% FBS and NEAA. After overnight culture, HaCaT cells were treated with NAM (DSM, Basel, Switzerland) at different concentrations for 3 h. NAD was measured by a colorimetric assay. In brief, cells were washed twice with DPBS containing 5 mM EDTA. Acetonitrile (ACN) lysis buffer (ammonium acetate [50 mM] and 90% acetonitrile) was added to lyse the cells at room temperature (RT) for 5–10 min. The enzymatic reaction was conducted at room temperature for 30 min. Supernatants were transferred to each well of a 96-well plate for colorimetric absorbance reading at 405 nm. A mixture of enzyme master mix and ACN extraction solution at 2:1 ratio was used as a blank.

Measurement of the effects of NAM keratinocyte differentiation: RNA extraction and quantitative polymerase chain reaction (qPCR) analysis
To assess the effect of NAM on the gene expression of keratinocyte differentiation biomarkers and peroxisome proliferator-activated receptor (PPAR)-α, HaCaT cells were treated with NAM at 0.05% and 0.1% then harvested at Day 4 for RNA extraction and quantitative polymerase chain reaction (qPCR) analyses. Culture media and treatment were changed every second day until harvest. Total RNA was isolated from HaCaT cells using Qiagen’s mini RNA isolation kit (Qiagen, Valencia, CA, USA) according to manufacturers’ instructions. Total RNA was quantified using a Nanodrop 2000 spectrophotometer (Thermo Scientific, Pittsburgh, PA, USA). The cDNA was synthesized using Invitrogen SuperScript VILO cDNA Synthesis kit (Invitrogen, Frederick, MD, USA), followed by real-time qPCR analyses. TaqMan probes used in the study were purchased from Life Technologies (Carlsbad, CA, USA).

A one-way analysis of variance (ANOVA) with a Tukey’s multiple comparison test was conducted for statistical analysis of results.

Clinical trials – AR day cream and AR serum
Details on methods used for the key facial redness clinical study are summarized in Table 1.

Table 1 Methodology summary for facial redness clinical study

Clinical trial type	Single-centre, evaluator-blind, parallel, randomized, stratified		
Study objective	Assessment of changes in facial redness compared to baseline		
Main inclusion criteria	Aged 18–65 years	Female	Fitzpatrick scale I–IV
	Face self-reported sensitive facial skin	Facial redness associated with dry skin due to winter xerosis	
Main study restrictions	No use of prohibited medications	No use of certain skin care products on test areas other than those provided	
	Continue use of normal make up, excluding moisturizing foundations		
Location	Thomas J Stephens & Associates, Inc., Colorado Research Center, USA		
Assessment and criteria used	Trained examiner assessments of redness and dryness.		
	Dryness was only evaluated at baseline as part of the inclusion criteria.		
Assessment room conditions	No hard physical exercise with sweating, sauna, or swimming within 24 h of a clinic visit		
	No exposure to UV light, or cosmetic procedures on the test area		
	No prolonged sun exposure. In the event of unavoidable prolonged UV exposure, participants were provided with a non-moisturizing sunscreen product		
Treatments	Prior to assessment, participants were acclimatized for 30 minutes at room temperature 20°C ± 2°C, humidity 50% ± 10%		
	Participants were stratified by baseline redness score Participants applied day cream or serum to their face twice daily for 28 days. Trained examiner visual grading of facial redness and dryness was conducted at baseline and then facial redness only at Day 15 and Day 29		

Fitzpatrick grading: I = burns easily, never tans; II = burns easily, tans minimally; III = burns moderately; IV = tans moderately. UV, ultraviolet.© 2019 The Authors. *International Journal of Cosmetic Science* published by John Wiley & Sons Ltd on behalf of Society of Cosmetic Scientists and Société Française de Cosmétiologie

International Journal of Cosmetic Science, 41, 534–547
Anonymized individual participant data and study documents can be requested for further research from www.clinicalstudydata request.com.

The International Contact Dermatitis Research Group (ICDRG) criteria for irritant and allergic reactions [24] were used to classify participants’ reactions. The studies also used a modification of the Draize and Kligman scale for assessment of reactions and their criteria for irritant and allergic reactions [24], and a classification scheme for sensations that were self-reported by participants.

Facial redness study

Study design. This was a single-centre, evaluator-blind parallel-group, randomized study conducted in Colorado, USA. Subjects were recruited with a minimal grade of 2 for both xerosis and redness at baseline, thereafter only redness was graded in the intervention study. The stratified study (by baseline redness score; stratum 1: redness score of 2; stratum 2: redness score of 2.5 or 3) assessed the effect of the AR day cream and AR serum on moderate facial redness in participants with dry, red skin due to winter xerosis. The study included two treatment groups (AR day cream, AR serum). The study design and assessments are detailed in Table I; the visual assessment scales for dryness and erythema are shown in Table II.

Study objectives. The primary objective was to evaluate the change from baseline in facial redness at Day 29 for participants who used the AR day cream. The secondary objective was to evaluate the change from baseline in facial redness at Day 15 for participants who used the AR day cream, and at Day 15 and Day 29 for those who used the AR serum.

Adverse events. Adverse events (AEs) were graded on a three-point scale: mild = easily tolerated, moderate = sufficiently discomforting, or severe = any event that prevents normal everyday activities.

Statistics. Analysis of covariance (ANCOVA) was performed to assess both the primary and secondary endpoints. All tests were performed at the two-sided 5% significance level.

Randomization was stratified according to baseline redness score (stratum 1: redness score of 2; stratum 2: redness score of 2.5 or 3). Within each stratum, participants were randomly assigned to receive one of the two test products in a 1 : 1 allocation ratio using the method of randomly permuted blocks with a block size of 4. The randomization scheme was generated by a computer program. The sample size was calculated such that a study with 29 evaluable participants in each treatment group would have 90% power to detect a change from baseline of 0.5 units in redness at the two-sided 5% significance level, assuming the standard deviation of change from baseline was 0.8.

Results

In vitro studies

Effect of phospholipid-ISIS structured lamellar formulations on water vapour transport
All formulations decreased WVTR values compared with no treatment (P < 0.001; Figure 1). The phospholipid-ISIS structured lamellar AR serum was numerically better but not significantly different to the marketed phospholipid cream. Although the marketed phospholipid cream was highly effective in lowering WVTR, the new phospholipid-ISIS structured lamellar AR day cream was more effective (P < 0.001). The AR day cream was also more effective than the AR serum (P < 0.001).

Thermotropic behaviour of phospholipid-ISIS structured lamellar formulations studied by FTIR
All formulations exhibited a high degree of conformational order in the lipids (Figure 2). However, the melting temperature (Tm) values (indicative of loss of lipid chain order) increased in descending order Physiogel® cream (45°C) > AR serum (55°C) > AR day cream (70°C). These increases relate to the formulation improvements and the presence of the phospholipid-ISIS.

Inhibitory effect of panthenol on prostaglandin E₂ (PGE₂) release induced by an inflammatory mediator cocktail in RHE
Exposure to the inflammatory cocktail led to significantly increased release of inflammatory mediators from RHE tissues; secretion of PGE₂ was significantly increased (P < 0.001). Topical treatment with panthenol markedly decreased cocktail-induced PGE₂ secretion.

© 2019 The Authors. *International Journal of Cosmetic Science* published by John Wiley & Sons Ltd on behalf of Society of Cosmetic Scientists and Société Française de Cosmétologie *International Journal of Cosmetic Science, 41, 534–547*
IHC staining of Ki67, a proliferation biomarker, revealed a significant reduction of cell proliferation, spongiosis and tissue damage by the inflammatory cocktail (Figure 4a and b). Topical treatment with panthenol mitigated the tissue damage caused by the inflammatory cocktail and retained relatively normal cell proliferation indicated by minimally reduced positively Ki67.

Figure 2 Thermotropic methylene symmetric stretch (vCH2 conformational order) profiles for PC, PAR S and PAR DC (n = 3), showing ~Tm values of 45, 55, and 70°C, respectively. AR, anti-redness; PC, Physiogel cream; PAR S, Physiogel anti-redness serum; PAR DC, Physiogel anti-redness day cream; SC, stratum corneum.

(P < 0.001; Figure 3). IHC staining of Ki67, a proliferation biomarker, revealed a significant reduction of cell proliferation, spongiosis and tissue damage by the inflammatory cocktail (Figure 4a and b). Topical treatment with panthenol mitigated the tissue damage caused by the inflammatory cocktail and retained relatively normal cell proliferation indicated by minimally reduced positively Ki67.

Figure 3 Inhibitory effect of panthenol (1.4%) on PGE2 release induced by an inflammatory mediator cocktail in reconstituted human epidermis. Topical treatment with the inflammatory mediator cocktail treatment, and PGE2 release in the cell culture media was measured at 24 h post the inflammatory cocktail treatment. ***P < 0.01, ****P < 0.001. PGE2, prostaglandin E2; UT, untreated.

Figure 4 Panthenol (1.4%) mitigated the detrimental impact of the inflammatory cocktail on tissue integrity and cell proliferation in reconstructed human epidermis. Topical treatment of dexpanthenol was applied 1 h prior to the inflammatory cocktail treatment in cell culture media. IHC staining of Ki67 was performed 24 h after post-cocktail treatment to determine the cell proliferation and tissue integrity. (A). RHE tissues were treated with culture media without the inflammatory cocktail. (B & C). RHE tissues were treated with an inflammatory cocktail without topical panthenol (B) and with topical panthenol (C). Topical panthenol treatment at 1.4% mitigated the tissue damage (as shown in arrows) caused by the inflammatory cocktail and retained relatively normal cell proliferation as shown by minimally reduced cell numbers with positive Ki67 staining (nuclear staining in purple color). IHC, immunohistochemistry; RHE, reconstructed human epidermis.
stained cell numbers compared with the control sample (Figure 4C).

Inhibitory effect of PEA on UVB-induced inflammation in HaCaT cells and inflammatory cocktail-induced TSLP in RHE
HaCaT keratinocytes were treated with UVB at 40 mJ cm\(^{-2}\) with and without pre-treatment with PEA at different concentrations. UVB significantly increased secretion of pro-inflammatory mediators such as PGE\(_2\) and IL-6 from HaCaT cells in the culture media (\(P < 0.001\); Figure 5a and b). Pre-treatment with PEA dose-dependently decreased UVB-induced PGE\(_2\) (Figure 5a; 22 \(\mu\)M, \(P < 0.05\); 66 \(\mu\)M, \(P < 0.05\); 200 \(\mu\)M, \(***P < 0.001\)) and reduced UVB-induced IL-6 release (Figure 5b) (200 \(\mu\)M, \(***P < 0.001\)). (c) PEA reduced inflammatory cocktail-induced TSLP in reconstructed human epidermis. RHE was treated with culture media with or without an inflammatory cocktail. Topical PEA treatment at 0.3% applied 1 h prior to the inflammatory cocktail reduced cocktail-induced TSLP at 24 h post-cocktail treatment (\(n = 3\)) (\(***P < 0.01\)). IL-6, interleukin-6; PEA, palmitylolethanolamide; PGE\(_2\), prostaglandin E2; RHE, reconstructed human epidermis; TSLP, thymic stromal lymphopoietin; UT, untreated.

Figure 5 Anti-inflammatory effect of PEA. (a) and (b) PEA inhibited UVB-induced inflammation in HaCaT cells. HaCaT cells were treated with PEA in the culture media 1 h prior to UVB irradiation at 40 mJ cm\(^{-2}\) and culture media were collected at 6 h post-UVB for the measurement of PGE\(_2\) and IL-6. PEA reduced UVB-induced PGE\(_2\) release after UVB irradiation (\(n = 3\)) (Figure 5a) (22 \(\mu\)M, *\(P < 0.05\); 66 \(\mu\)M, *\(P < 0.05\); 200 \(\mu\)M, **\(P < 0.001\)) and reduced UVB-induced IL-6 release (Figure 5b) (200 \(\mu\)M, ***\(P < 0.001\)). (c) PEA reduced inflammatory cocktail-induced TSLP in reconstructed human epidermis. RHE was treated with culture media with or without an inflammatory cocktail. Topical PEA treatment at 0.3% applied 1 h prior to the inflammatory cocktail reduced cocktail-induced TSLP at 24 h post-cocktail treatment (\(n = 3\)) (\(***P < 0.01\)). IL-6, interleukin-6; PEA, palmitylolethanolamide; PGE\(_2\), prostaglandin E2; RHE, reconstructed human epidermis; TSLP, thymic stromal lymphopoietin; UT, untreated.

Figure 6 NAM dose-dependently increased cellular NAD in HaCaT cells. HaCaT cells were treated with NAM in the culture media without NAM. Cellular NAD levels were measured at 3 h post treatment. NAM dose-dependently increased cellular NAD levels in HaCaT cells (\(n = 3\)) (*\(P < 0.05\) at 4.5 mM). NAD, nicotinamide adenine dinucleotide; NAM, niacinamide; UT, untreated.

stained cell numbers compared with the control sample (Figure 4C).
to be involved in the initiation, development, and progression of atopic dermatitis in mice and humans, and plays a role in driving allergen sensitization. RHE was treated with an inflammatory cocktail prepared in the culture media with and without topical treatment with PEA. The inflammatory cocktail significantly increased TSLP release from RHE (Figure 5c, $P < 0.001$), whereas topical treatment with PEA reduced cocktail-induced TSLP (Figure 5c, $P < 0.01$).

Effects of NAM on cellular NAD and on gene expression of epidermal differentiation markers
Niacinamide dose-dependently increased cellular NAD in HaCaT cells cultured in a NAM-free medium, reaching significance at 4.5 mM ($P < 0.05$, Figure 6). Similar effects were shown in the regular culture medium with NAM (0.004 g L$^{-1}$ or 32.75 mM).

Niacinamide dose-dependently increased gene expression of keratinocyte differentiation biomarkers such as filaggrin (up to 2.4-fold) and loricrin (up to 4-fold), and significantly increased involucrin (up to 2.4-fold) at both concentrations tested after 4 days of treatment with NAM, as assessed by qPCR analyses (Figure 7). NAM also significantly increased PPAR-α gene expression (up to 1.5-fold), suggesting the involvement of PPAR-α in inducing keratinocyte differentiation.

Effect of AR day cream and AR serum on UVB-induced pro-inflammatory mediators, DNA damage and apoptosis
Anti-redness day cream and AR serum, containing panthenol, PEA, and NAM, were evaluated for their protective activity against UVB-induced damage using RHE. The exposure of RHE to UVB radiation at 150 mJ cm$^{-2}$ increased levels of IL-8, TNF-α, and PGE$_2$ compared with no radiation controls (Figure 8). Topical application of AR day cream (containing UV filters) reduced UVB-induced cytokine release of IL-8 ($P < 0.001$), TNF-α ($P < 0.001$), and PGE$_2$ ($P < 0.001$) to levels similar to untreated controls (Figure 8).

Ultraviolet B irradiation at 150 mJ cm$^{-2}$ resulted in DNA damage and apoptosis, as demonstrated by the IHC staining of cyclopentimidine dimers (CPDs) and cleaved caspase-3 (CC3), respectively; in contrast, topical application of AR day cream blocked UVB-induced DNA damage (CPD) and apoptosis (CC3) (Figure 9a). Interestingly, application of the AR serum also reduced UVB-induced CPD but minimally reduced UVB-induced apoptosis (Figure 9b). Overnight treatment with AR serum prior to AR day cream, followed by UVB irradiation, exhibited similar UV protection to AR day cream alone (data not shown).

Clinical studies
Facial redness study
Disposition of the 62 participants randomized to treatment is presented in Figure 10. Of the 59 participants included in the intention-to-treat (ITT) population and who completed the study, 44 (75%) were included in stratum 1 (redness score of 2; 22 in both the AR day cream and AR serum groups), and 15 (25%) in stratum 2 (redness score of 2.5 or 3; seven in the AR day cream group and eight in the AR serum group). All participants were female,
with a mean age of 50.4 years (range 20–62 years) in the AR day cream group and 50.4 years (range 18–64 years) in the AR serum group (Table III). Most participants were Caucasian, and the majority had Fitzpatrick skin type II or III (Table III).

A statistically significant mean reduction in facial redness was shown with both the AR day cream and AR serum, at Days 15 and 29 compared with baseline (\(P < 0.001 \)) (Figure 11 and Table IV). Four AEs were recorded for four participants. Two AEs occurred in the AR day cream group (upper abdominal pain and sinusitis) and two in the AR serum group (urinary tract infection and nasopharyngitis). None were considered treatment-related and no serious AEs were reported. One participant had a change in concomitant medication during the study (nitrofurantoin for a urinary tract infection).

Irritation and sensitisation studies
For both studies, 235 participants were screened and 233 enrolled; 228 completed each study. Of the five withdrawals, two participants withdrew due to personal reasons unrelated to the test products and three did not receive test products. All participants were female, with a mean age of 45.1 years (range 18–70 years) and most had Fitzpatrick skin type II or III (Table III).

No AEs or sensations of discomfort were reported for any participant (2241 readings). The principal investigator considered that the two test products demonstrated no irritant or allergenic potential.

Studies in subjects with sensitive skin
Of the 42 participants screened for the AR day cream study, seven were excluded; five presented with a phototype of V, one had a history of allergy to cosmetic products, and one did not have sensitive skin (negative Stinging Test). Of the 35 participants enrolled, 34 completed the study; one left the study for personal reasons (not related to the test product). All participants were female, with a mean age of 42.7 years (range 19–60 years) and most had Fitzpatrick skin type II, III, or IV (Table III). None of the 34 participants experienced adverse reactions. During the final dermatological assessment, one participant reported that they had experienced discomfort/mild itching on the periocular area on two consecutive days after application of the AR day cream. The participant reported spontaneous remission of the symptoms within 5 min on both occasions, and no clinical signs were observed on dermatological assessment. Although the sensation was probably related to the test product, the incident was not deemed by the investigator to be relevant for inclusion in the safety analyses since it occurred 2 days after the start of product application in only one participant.

Of the 37 participants enrolled in the AR serum study, two were excluded (negative Stinging Test). All participants were female, with a mean age of 42.3 years (range 21–59 years) and most had Fitzpatrick skin type II, III, or IV (Table III). None of the 35 participants who completed the study reported skin lesions, adverse reactions or feelings of discomfort with the AR serum. No changes in concomitant medication were reported during the study.

Photo-irritation and photo-sensitization studies
For both photo-toxicity studies, 27 participants were enrolled and 26 completed the studies; one participant was excluded during the screening stage. One participant did not return after Day 29, so their data were excluded from analysis. Most participants (81%) were female, with a mean age of 46.8 years (range 21–67 years),
Figure 9 AR day cream and AR serum reduced UVB-induced CPD (DNA damage) and CC3 (apoptosis) in reconstructed human epidermis.

A Anti-redness day cream reduced UVB-induced CPD (DNA damage) and CC3 (apoptosis) in reconstructed human epidermis.

UVB 150 mJ cm⁻²
No UVB
UNT
Day cream

B Protective effect of anti-redness serum against UVB-induced CPD (DNA damage) and CC3 (apoptosis) in reconstructed human epidermis.

UVB 100 mJ cm⁻²
No UVB
UNT
UVB + serum (6 h)

AR day cream and AR serum treatment were applied topically to reconstructed human epidermis at 1 h prior to UVB irradiation. Tissues were collected at 6 h post-UVB for IHC staining of CPD (DNA damage, pink nuclear staining) and CC3 (apoptosis, brown cytosol staining). AR day cream blocked UVB-induced CPD (pink nuclear staining) and CC3 (brown cytosol staining) compared with UVB alone. AR serum reduced UVB-induced CPD but minimally affected UVB-induced CC3.

AR, anti-redness; CC3, cleaved caspase-3; CPD, cyclopyrimidine dimers; IHC, immunohistochemistry; UNT, untreated; UVB, ultraviolet B.
and all had Fitzpatrick skin type II or III (Table III). None of the participants experienced a skin reaction, photo-irritation, or photosensitization. No changes were reported in concomitant medication during the study.

Discussion

The biochemistry and cellular biology of sensitive skin is complex, therefore research on topical formulations and ingredients that specifically target the problems associated with sensitive skin is limited, with very few published reports on improving facial redness associated with sensitive skin (or rosacea as an extreme example). There is limited published data describing the effect of topical serums on sensitive skin. Clearly sunscreen use will reduce skin erythema [9,27,28] but many plant extracts and oils/acids as well as beta glucans, sodium hyaluronate, glycérine, 4-t-butycyclohexanol, tranexamic acid, oxyresveratrol, glutathione disulphide, licochalcone A and niacinamide are also known to reduce skin redness [29–38].

We sought to improve SC moisturization using novel semi-occlusive barrier mimetic lipids [11–14] together with humectants [17] and to mitigate skin redness using this moisturizer formulation supplemented with the anti-inflammatory agents panthenol, PEA and NAM. The latter was also added for their likely effects on improving keratinocyte differentiation and also boosting cellular NAD levels with NAM. Formulations were also supplemented with UV filters where appropriate to prevent UV-induced inflammation by blocking UV radiation directly.

Table III Baseline demographics of participants included in the clinical studies

Facial redness study	Assessment of irritation and sensitization HRIPT studies on day cream and serum	Effect of AR face cream and serum on subjects with sensitive skin	Phototoxicity/photoallergy studies for day cream and serum
Day Cream Serum	233 (both studies)	35 35 27 (both studies)	
Enrolled participants (n)	29 30	34 35 26 (both studies)	
Evaluable participants (n)	29 30	42.7 (19-60)	46.8 (21-67)
Mean age, years (range)	50.4 (20-62) 50.4 (18-64)	34 (100)	22 (82)
Female, n (%)	29 (100) 30 (100)	Not available	Not available
Race/ethnicity, n (%)			
Caucasian	26 (97) 30	2 (6)	0
Asian	1 (3) (100)	12 (34)	6 (22)
Fitzpatrick grade, n (%)		11 (31)	10 (29)
I	0 0	11 (31)	6 (17)
II	16 (55) 14 (47)	16 (46)	0
III	11 (38) 16 (53)	33 (14)	0
IV	2 (7)	2 (6)	0

Fitzpatrick grading: I = burns easily, never tans; II = burns easily, tans minimally; III = burns moderately; IV = tans moderately; AR, anti-redness; HRIPT, human repeated insult patch test.
Change from baseline proved effective at reducing the levels of PGE2 and IL-6 known to be elevated in subjects with sensitive skin [6]. PEA also in vitro we demonstrated the effects of panthenol on reducing PGE2 levels lipid structure.

Panthenol is known to improve epidermal differentiation and to promote the performance of the new phospholipid-ISIS structured effective on sensitive skin (data not shown). FTIR studies corroborated the performance of the new phospholipid-ISIS structured emulsions by showing the AR day cream to have the most ordered lipid structure.

Panthenol is known to improve epidermal differentiation and to be an effective anti-inflammatory agent [18,39]. In these studies we demonstrated the effects of panthenol on reducing PGE2 levels and tissue damage induced by a strong inflammatory cocktail in an in vitro model. This is relevant to the clinical setting as PGE2 is known to be elevated in subjects with sensitive skin [6]. PEA also proved effective at reducing the levels of PGE2 and IL-6 in vitro, both of which are UV-induced inflammatory biomarkers. In addition, PEA reduced the levels of TSLP, an inflammatory and prurito-genic biomarker, consistent with its reported itch-relief activity. PEA is also a putative PPAR-α agonist that may mitigate irritation via this mechanism also [19].

Niacinamide was shown to enhance the expression of epidermal differentiation genes and increase cellular NAD. The former result is contradictory to that of Blander et al. [40] and may reflect different testing methods, but the latter result is consistent with Rovito [21]. Moreover, topical NADH, the reduced form of beta-nicotinamide adenine dinucleotide, is reported to be effective in the treatment of rosacea and contact dermatitis [41]. Furthermore, the current work also demonstrated NAM-induced PPAR-α gene expression which is known to play an important role in regulating epidermal differentiation and reducing UV-induced erythema [42]. Although speculative at this stage, it is likely that NAM may synergise with PEA in this mechanism.

The tested formulations were shown to prevent the UV induction of inflammatory mediators as well as reduce UV-induced DNA damage (cyclobutene dimers) and apoptosis (caspase-3). This efficacy partly results from the UV filters in the AR day cream. As the AR serum (which does not contain UV filters) also partially prevents DNA damage this highlights the beneficial effects of the ingredients described above. The in vitro findings indicate the potential combination of mechanisms by which the current formulations reduce skin redness and UV-induced inflammation as described in the clinical results. As the AR serum reduced the UV effects on DNA damage markers we chose not to examine inflammatory mediators.

Visual assessment data from the facial redness study showed a significant improvement in facial redness from baseline for both the AR day cream and AR serum. The level of efficacy was similar to that of products tested on subjects with rosacea [38]. Descriptive statistics for the facial redness score were presented by stratum (stratum 1: redness score of 2; stratum 2: redness score of 2.5 or 3). Although the number of subjects with a baseline redness score of 2.5 or 3 is relatively small (15 subjects), the reductions from baseline in redness at Day 29 was greater (AR day cream mean (SD) 0.85 (0.627); AR serum mean (SD) 0.88 (0.231) compared to
subjects with a baseline score of 2 (AR day cream mean (SD) = 0.75 (0.401); AR serum mean (SD) = 0.59 (0.366). As a result, it was valuable to stratify for baseline redness score.

The Human Repeat Insult Patch Test studies included many participants to assess the irritant/allergenic potential of the AR day cream and AR serum using repeated patch application over 3 weeks. After continuous occlusive exposure over a period of 3 weeks, neither the AR day cream nor AR serum showed irritation or allergenic potential in any participant, indicating that the products are unlikely to produce irritation under normal conditions of use.

Two clinical studies evaluated the potential of the AR day cream and AR serum to cause adverse reactions or discomfort under normal conditions of use in patients with sensitive skin. No adverse reactions or sensations of discomfort were reported by any participant and no clinical signs were observed by the dermatologist. The AR day cream and AR serum were considered by the investigator to be safe for topical use in subjects with sensitive skin. Data from two further studies using the Phototest assay showed that neither product had potential for photoorririation or photosensitization.

Data from all seven clinical studies (n = 382) showed that the AR day cream and AR serum are well tolerated under normal conditions of use. Good compliance with study treatment was reported and there were only six withdrawals, none of which were related to study treatment. Only four AEs were recorded, none of which were treated related. Consequently, data from these clinical studies support the minimal irritant potential of the products and their suitability for people with sensitive skin.

A limitation of the facial redness study was that enrolment was limited to subjects with a baseline score of 2 (AR day cream mean (SD) = 0.75 (0.401); AR serum mean (SD) = 0.59 (0.366). As a result, it was valuable to stratify for baseline redness score. The primary criteria for the study was reduction of facial redness therefore stinging testing was not conducted.

Another potential limitation to the study is the lack of a vehicle-control or comparative product and only changes from baseline levels were assessed. It is noted, however, many studies examining improving facial redness use a similar clinical approach [9, 29, 33, 34, 36, 37].

For the studies using the Phototest assay, it should be noted that detection of photosensitization can be influenced by several factors, including anatomical test site, temperature, and seasonal variation. The Phototest assay was conducted on the skin of the back rather than the face for safety reasons, and it is likely that sensitization reactions on the face may differ to those on the body due to intrinsic differences in the skin structure and biology. Every effort was made to control environmental conditions.

Conclusion
In conclusion, the recently developed AR day cream and AR serum significantly improved skin redness in our study. Neither the AR day cream nor the AR serum showed irritation, allergenic, photo-irritation, or photo-sensitization potential. Both cosmetic products were well tolerated under normal conditions of use. Additionally, we demonstrated using in vitro studies that several formulation ingredients were likely to contribute to the clinical efficacy of the topical formulations: phospholipid-ISIL-structured lipids, PEA, NAM, and panthenol.

Acknowledgements
The authors would like to thank the participants in this study. Medical writing assistance was provided by Clare Gurton of Vivid MedComms (Lucid Group), Loudwater, Buckinghamshire, UK. All studies were funded by GSK Consumer Healthcare.

Conflicts of interest
Professor AV Rawlings is a consultant to GSK.

References
1. Misery, L., Stander, S., Szepietowski, J.C., Reich, A., Wallengren, J., Evers, A.W., et al. Definition of sensitive skin: an expert position paper from the special interest group on sensitive skin of the international forum for the study of itch. Acta Derm. Venereol. 96, 4–6 (2017).
2. Huang, L.N., Zhong, Y.P., Liu, D., Wang, X.H., Gong, C.Y., Wen, S., Elias, P.M., Yang, B. and Man, M.Q. Adverse cutaneous reactions to skin care products on the face vary with age, but not with sex. Contact Dermatitis. 79, 365–369 (2018). Epub 2018 Sep 12.
3. Cho, H.J., Chung, B.Y., Lee, H.B., Kim, H.O., Park, C.W., Lee, C.H., et al. Quantitative study of stratum corneum ceramide contents in patients with sensitive skin. J. Dermatol. 39, 295–300 (2012).
4. Ehnis-Perez, A., Torres-Alvarez, B., Cortes-Garcia, D., Hernández-Blanco, D., Fuentes-Ahumada, C. and Custanedo-Cázares, J.P. Relationship between transient receptor potential vanilloid-1 expression and the intensity of sensitive skin symptoms. J. Cosmet. Dermatol. 15, 231–237 (2016).
5. Raj, N., Voegeli, R., Rawlings, A.V., Doppler, S., Imfeld, D., Munday, M.R., et al. A fundamental investigation into aspects of the physiology and biochemistry of the stratum corneum in subjects with sensitive skin. Int. J. Cosmet. Sci. 39, 2–10 (2017).
6. Reilly, D.M., Parslew, R., Sharpe, G.R., Powell, S. and Green, M.R. Inflammatory mediators in normal, sensitive and diseased skin types. Acta Derm. Venereol. 80, 171–174 (2000).
7. Wilson, S.R., Thé, L., Bataia, L.M., Beattie, K., Katibah, G.E., McClain, S.P., et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155, 285–295 (2013).
8. Richters, R., Falcone, D., Uzumbajakava, N., Verkruysse, W., van Erp, P. and van de Kerkhof, P. What is sensitive skin? A systematic literature review of objective measurements. Skin Pharmacol. Physiol. 28, 75–83 (2015). Epub 2014 Oct 14.
9. Grivet-Seyve, M., Santoro, F. and Lachmann, N. Evaluation of a novel very high sun-protection-factor moisturizer in adults with rosacea-prone sensitive skin. Clin. Cosmet. Investig. Dermatol. 10, 213–219 (2017).
10. Hawkins, S.S., Subramanyan, K., Liu, D. and Bryk, M. Cleansing, moisturizing, and sun-protection regimes for normal skin, self-perceived sensitive skin, and dermatologist-assessed sensitive skin. Dermatol. Ther. (Suppl 1), 63–68 (2004).
11. Summers, R.S., Summers, B., Chandar, P., Feinburg, C., Gursky, R. and Rawlings, A.V. The effect of lipids with and without
humectant on skin xerosis. J. Soc. Cosmet. Chem. 47, 27–39 (1996).

12. Eberein, B., Ecke, C., Reinhardt, H.W. and Rong. J. Adjutant treatment of atopic eczema: assessment of an emollient containing N-palmitoylthanolamine (ATOPA study). J. Eur. Acad. Dermatol. Venereol. 22, 73–82 (2008).

13. Yuan, C., Wang, X.M., Guichard, A., Tan, Y.M., Qian, C.Y., Yang, L.J., et al. N-palmitoylethanolamine and N-acetylethanolamine are effective in atopic eczema: results of a randomized, double-blind, controlled study in 60 patients. Clin. Interv. Aging 9, 1163–1169 (2014).

14. Pennick, G., Harrison, S., Jones, D. and Rawlings, A.V. Superior effect of isoeosteryl isoeostearate on improvement in stratum corneum water permeability barrier function as examined by the plastic occlusion stress test. Int. J. Cosmet. Sci. 32, 304–312 (2010).

15. Harkamp, R., Moore, T.C., Lacovella, C.R., Thompson, M.A., Bulsara, P.A., Moore, D.J., et al. Investigating the structure of multi-component gel-phase lipid bilayers. Biophys. J. 111, 813–823 (2016).

16. Rawlings, A.V. Molecular basis for stratum corneum maturation and moisturization. Br. J. Dermatol. 171, 19–28 (2014).

17. Korponay, C., Sael, E., Behany, Z., Varga, E., Mohos, G., Dura, A., et al. Effects of locally applied glycerol and xylitol on the hydration, barrier function and morphological parameters of the skin. Acta Derm. Venereol. 97, 182–187 (2017).

18. Proksch, E. de Bony, R., Trapp, S. and Bouk., E. Topical use of dexpanthenol: a 70th anniversary article. J. Dermatolog. Treat. 28, 766–773 (2017). Epub 2017 May 14.

19. Vaia, M., Petrosino, S., De Filippis, D., Negro, L., Guarrino, A., Curnuccio, R., Di Marzo, V. and Iuvone, T. Palmitoylethanolamide reduces inflammation and itch in a mouse model of contact allergic dermatitis. Eur. J. Pharmacol. 791, 669–674 (2016). Epub 2016 Oct 5.

20. Monfrecola, G., Gaudelli, F., Cirillo, T., Fabbrocini, G., Balato, A. and Lembo, S. Nicotinamide downregulates gene expression of interleukin-6, interleukin-10, monocyte chemotactic protein-1, and tumour necrosis factor-α gene expression in HaCaT keratinocytes under ultraviolet B irradiation. Clin. Exp. Dermatol. 38, 185–188 (2013).

21. Rovito, H.A. and Oblong, J.E. Nicotinamide preferentially protects glycolysis in dermal fibroblasts under oxidative stress conditions. Br. J. Dermatol. 169(Suppl 2), 15–24 (2013).

22. Tanno, O., Ota, Y., Kitamura, N., Katsube, T. and Inoue, S. Nicotinamide increases biosynthesis of ceramides as well as other stratum corneum lipids to improve the epidermal permeability barrier. Br. J. Dermatol. 143, 524–531 (2000).

23. Babu, P.A., Varlashkin, P., Dickens, J., Moore, D.J., Rawlings, A.V. and Clarke, M.J. The rational design of biomimetic skin barrier lipid formulations using biophysical methods. Int. J. Cosmet. 39, 206–216 (2017).

24. Siewak, R. Patch testing for contact allergy and allergic contact dermatitis. Open Allergy J. 1, 42–51 (2008).

25. Drai, J.H., Woodward, G. and Calverly, H.O. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmaco. Exp. Ther. 82, 377–390 (1944).

26. Kligman, A.M. and Woodard, W.M. A method for the measurement and evaluation of irritants on human skin. J. Invest. Dermatol. 49, 74–94 (1967).

27. Narducci, J., Phipps, P.A., Harrison, G.L., Morgan, K.A., Lawrence, K.P., Baczynska, K.A., Gys, K., Rogowski-Tylman, M., Olejniczak-Starch, I., Tewari, A., Bell, M., O’Connor, C., Wull, H.C., Lesia, A. and Young, A.R. Sunscreen applied at ≥2 mg cm-2 during a sunny holiday prevents erythema, a biomarker of ultraviolet radiation-induced DNA damage and suppression of acquired immunity. Br. J. Dermatol. 180, 604–614 (2019). Epub 2018 Dec 5.

28. Baldwin, H., Santoro, F., Lachmann, N. and Teisseire, S. A novel moisturizer with high sun protection factor improves cutaneous barrier function and the visible appearance of rosacea-prone skin. J. Cosmet. Dermatol. 1–8 (2019). https://doi.org/10.1111/jocd.12889. [Epub ahead of print]

29. Wang, Y., Viennet, C., Jeudy, A., Fanian, F., Young, A.R. Sunscreen applied at ≥2 mg cm-2 during a sunny holiday prevents erythema, a biomarker of ultraviolet radiation-induced DNA damage and suppression of acquired immunity. Br. J. Dermatol. 180, 604–614 (2019). Epub 2018 Dec 5.

30. Baldin, H., Santoro, F., Lachmann, N. and Teisseire, S. A novel moisturizer with high sun protection factor improves cutaneous barrier function and the visible appearance of rosacea-prone skin. J. Cosmet. Dermatol. 1–8 (2019). https://doi.org/10.1111/jocd.12889. [Epub ahead of print]

31. Wang, Y., Viennet, C., Jeudy, A., Fanian, F., He, L. and Humbert, P. Assessment of the efficacy of a new complex anti-inflammatory skin cream. J. Cosmet. Dermatol. 17, 1101–1107 (2018). Epub 2018 Jan 22.

32. Hernandez-Pigem, H., Garidou, L., Galliano, M.F., Delga, H., Aries, M.F., Duplan, H., Besou-Touya, S. and Castex-Rizzi, N. Effects of dextran sulfate, 4-t-butylcyclohexanol, pongamia oil and hesperidin methyl chalcone on inflammatory and vascular responses implicated in rosacea. Clin. Cosmet. Investig. Dermatol. 11, 421–429 (2018).

33. Draeul, Z.D., Eretel, K. and Berge, C. Nicotinamide-containing facial moisturizer improves skin barrier and benefits subjects with rosacea. Cutis 76, 135–141 (2005).

34. Ehlers, F., Heller, A., Rippke, F. and Tausch, I. Topical use of dexpanthenol in skin disorders. Am. J. Clin. Derm. 3, 427–433 (2002).

35. Blandér, G., Bhabavarapu, A., Mammon, T., Maes, D., Elliston, K., Reich, C., Matsui, M.S., Guarente, L. and Loureiro, J.J. SIRT1 promotes differentiation of normal human keratinocytes. J. Invest. Dermatol. 129, 41–49 (2009). Epub 2008 Jun 19.

36. Wodniacka, A., Sypa-Jedrzejowska, A., Adamus, J. and Gebicki, J. Topical application of NAH for the treatment of rosacea and contact dermatitis. Clin. Exp. Dermatol. 28, 61–63 (2003).

37. Dubravc, S. and Schmutz, M. PPAR-alpha in cutaneous inflammation. Dermato-Endocrinology 3, 23–26 (2011).

38. Marriott, M., Holmes, J., Peters, L., Cooper, K., Rowson, M. and Basketter, D.A. The complex problem of sensitive skin. Contact Dermatitis. 51, 91–99 (2005).

Evaluation of anti-redness face cream and serum

S. J. Nisbet et al.
Supporting Information
Additional Supporting Information may be found in the online version of this article:

Table S1 Methodology summary
Table S2 Classification of the sensations reported by participants in diaries of use