Frobenius splitting of thick flag manifolds of Kac-Moody algebras

Syu KATO†
June 12, 2018

Abstract

We explain that the Plücker relations provide the defining equations of the thick flag manifold associated to a Kac-Moody algebra. This naturally transplant the result of Kumar-Mathieu-Schwede about the Frobenius splitting of thin flag varieties to the thick case. As a consequence, we provide a description of the space of global sections of a line bundle of a thick Schubert variety as conjectured in Kashiwara-Shimozono [Duke Math. J. 148 (2009)]. This also yields the existence of a compatible basis of thick Demazure modules, and the projective normality of the thick Schubert varieties.

Introduction

The geometry of flag varieties of a Lie algebra \(g \) is ubiquitous in representation theory. In case \(g \) is a Kac-Moody algebra, we have two versions of flag varieties \(X \) and \(\mathfrak{X} \), that we call the thin flag varieties and thick flag manifolds, respectively (see e.g. [14]). They coincide when \(g \) is of finite type, and in this case we have

\[
X = \mathfrak{X} = \text{Proj} \bigoplus_{\lambda} \mathcal{L}(\lambda)^\vee,
\]

where \(\lambda \) runs over all dominant integral weights and \(\mathcal{L}(\lambda) \) denotes the corresponding integrable highest weight representation of \(g \). The isomorphism (0.1) is less obvious when \(g \) is not finite type since \(\mathcal{L}(\lambda) \) is no longer finite-dimensional. In fact, the both of \(X \) and \(\mathfrak{X} \) are quotients of certain Kac-Moody groups \(G \) associated to \(g \), and we can ask whether we have

\[
G \cong \text{Spec} \ k[G]
\]

as an enhancement of (0.1), where \(k[G] \) is the coordinate ring of \(G \) (cf. Kac-Peterson [8]). However, Kashiwara [9, §6] explains that none of the choice of \(G \) can satisfy (0.2) for any version of a reasonably natural commutative ring \(k[G] \).

The goal of this paper is to explain that despite the above situation, we can still understand the geometry of Kac-Moody flag manifolds as infinite type schemes so that we can deduce some consequences in representation theory.

∗MSC2010: 20G44
†Department of Mathematics, Kyoto University, Oiwake Kita-Shirakawa Sakyo Kyoto 606-8502 JAPAN E-mail: syuchan@math.kyoto-u.ac.jp
To explain what we mean by this, we introduce some more notation: The scheme X admits a natural action of the subgroup B of G that corresponds to the non-negative part of g, and the set of B-orbits of X is in natural bijection with the Weyl group W of g. Hence, we represent a B-orbit closure of X by X^w for some $w \in W$. For each integral weight λ of g, we have an associated line bundle $O_{X}(\lambda)$ and its restriction $O_{X^w}(\lambda)$ to X^w.

The main result in this paper is:

Theorem A (Theorem 1.23 and Corollary 2.21). For an arbitrary Kac-Moody algebra, the thick flag manifold X admits the presentation (0.1) as schemes. Similar result holds for each B-orbit closure of X.

As Kashiwara’s embedding of X into the Grassmannian [9, \S 4] factors through a highest weight integrable module, Theorem A asserts that it is a closed embedding. Hence, Theorem A affirmatively answers the question in [9, 4.5.6–4.5.7].

The thin flag variety X forms a Zariski dense subset of X (see e.g. Kashiwara-Tanisaki [14, \S 1.3]). This implies that the projective coordinate ring of X (as an ind-scheme) is the completion of that of X (as a honest scheme). Therefore, we can transplant the Frobenius splitting of X (or its ind-pieces) to that of X provided in Kumar-Schwede [16]:

Corollary B (Corollary 2.12). For an arbitrary Kac-Moody algebra over an algebraically closed field k of positive characteristic, the thick flag manifold X admits a Frobenius splitting that is compatible with the B-orbits.

From this, we deduce some conclusions on the level of global sections as:

Theorem C (Theorem 2.17, 2.19, and Corollary 2.21, 2.22). For each $w \in W$, we have:

1. the natural restriction map
 \[
 \Gamma(X, O_X(\lambda)) \rightarrow \Gamma(X^w, O_{X^w}(\lambda))
 \] (0.3)
 is surjective;

2. the image of the inclusion
 \[
 \Gamma(X^w, O_{X^w}(\lambda)) \subset \Gamma(X, O_X(\lambda)) = L(\lambda)
 \]
 obtained as the dual of (0.3) is cyclic as a Lie B-module;

3. the scheme X^w is projectively normal;

4. the sums of modules in $\{\Gamma(X^w, O_{X^w}(\lambda))\}_{w \in W}$ forms a distributive lattice in terms of intersection.

We remark that Theorem C 4) should be also obtained as a combination of Kashiwara’s crystal basis theory [12] and Littelmann’s path model theory [17] when g is symmetrizable. However, the only reference the author is aware beyond the finite case is the affine case presented in Ariki-Kreimann-Tsuchioka [11, \S 6] (as stated there, the proofs of this part are due to Kashiwara and Sagaki).

We also note that Theorem C 1) and 2) confirms a part of the Kashiwara-Shimozono conjecture [13, Conjecture 8.10] (that originally concerns when g is affine).
1 Defining equations of thick flag manifolds

We work over an algebraically closed field k. We employ [15] as a basic reference, and we may refer to [15] also for char $k > 0$ case without a comment (while the book deals only for $k = \mathbb{C}$) when we supply enough (other) results so that its proof carries over based on them.

Let I be a finite set with its cardinality r and let $C = (c_{ij})_{i,j \in I}$ be a generalized Cartan matrix (GCM) in the sense of [7] §1.1. Let \mathfrak{g} be the Kac-Moody algebra associated to C, and let \mathfrak{h} be its Cartan subalgebra (we have $\dim_k \mathfrak{h} = 2|I| - \text{rank} C$). Let Q and Q^\vee be the root lattice and the coroot lattice of \mathfrak{g}, and $\{\alpha_i \}_{i \in I} \subset Q$ and $\{\alpha_i^\vee\}_{i \in I} \subset Q^\vee$ are the set of simple roots and the set of simple coroots, respectively. Let X^+ be a \mathbb{Z}-lattice that contains Q and equipped with elements $x_1, \ldots, x_r \in X^+$ so that $X^+ \otimes \mathbb{Z} k \cong \mathfrak{h}^*$, and there exists a pairing

$$\langle \bullet, \bullet \rangle : Q^\vee \times X^+ \longrightarrow \mathbb{Z}$$

that satisfies

$$\langle \alpha_i^\vee, \alpha_j \rangle = c_{ij}, \quad \langle \alpha_i^\vee, x_j \rangle = \delta_{ij}, \quad \text{and} \quad \langle \alpha_i^\vee, X^+ \rangle = \mathbb{Z}.$$

Let $\{E_i, F_i\}_{i \in I}$ be the Kac-Moody generators of \mathfrak{g} so that $[E_i, F_j] = \delta_{ij}\alpha_i^\vee \in \mathfrak{h}$ for $i, j \in I$. Let $n, n^- \subset \mathfrak{g}$ be the Lie subalgebras generated by $\{E_i\}_{i \in I}$ and $\{F_i\}_{i \in I}$, respectively. We set $H := \text{Spec} k[e^\lambda \mid \lambda \in X^+]$. We have Lie $H = \mathfrak{h}$. For each $\alpha \in X^+$, we define

$$\mathfrak{g}_\alpha := \{ \xi \in \mathfrak{g} \mid \text{Ad}(h)\xi = \alpha(h)\xi, \quad \forall h \in H \}, \quad \text{mult} \, \alpha := \dim \mathfrak{g}_\alpha.$$

We set

$$\Delta^+: = \{ \alpha \in X^+ \setminus \{0\} \mid \mathfrak{g}_\alpha \subset n \}, \quad \Delta^- := -\Delta^+.$$

We have reflections $\{s_i\}_{i \in I}$ on $\text{Aut}(X^+)$ that generates a Coxeter group W. We denote its length function by t, and the Bruhat order by $<$ (see Kumar [15] Definition 1.3.15]). We have a subset

$$\Delta^+_\text{re} := \Delta^+ \cap W\{\alpha_i\}_{i \in I} \subset \Delta^+.$$

Each $\alpha \in \Delta^+_\text{re}$ gives a reflection $s_\alpha \in W$ defined through the conjugation of a simple reflection. We have mult $\alpha = 1$ for $\alpha \in \Delta^+_\text{re}$, and we have $\mathfrak{sl}(2) \cong \mathfrak{g}_\alpha \oplus k\alpha^\vee \oplus \mathfrak{g}_{-\alpha}$ as Lie algebras in this case.

For each $i \in I$, we define $SL(2, i)$ as the connected and simply connected algebraic group with an identification Lie $SL(2, i) = kE_i \oplus k\alpha_i^\vee \oplus kF_i$. For each $n > 0$, we set

$$\Delta^- (n) := \{ \alpha \in \Delta^- \mid \text{ mult } \alpha = n \} = -\sum_{i \in I} m_i \alpha_i, \quad m_i \in \mathbb{Z}_{\geq 0}, \quad \sum m_i \leq n \} \subset \Delta^-.$$

Then, $\bigoplus_{n \in \Delta^- \setminus \Delta^- (n)} \mathfrak{g}_{-\alpha} \subset n$ and $\bigoplus_{n \in \Delta^- \setminus \Delta^- (n)} \mathfrak{g}_\alpha \subset n^-$ are ideals. We denote the quotients by $n(n)$ and $n^-(n)$, respectively. By construction, we have a Lie algebra quotient maps $n(n) \rightarrow n(n')$ and $n^-(n) \rightarrow n^-(n')$ for $n > n'$.

We define a pro-unipotent group

$$\tilde{N}^- := \lim_{\leftarrow n} N^-(n),$$

where
Lemma 1.2. Let \(Z \) have many elements from \(G \) that is a \((\text{resp. } SL_5) \) as a 6-tuple \((G^-, N(H), N, H, S)\). Applying the Chevalley involution to \(\{N^-(n)\}_{n \geq 1} \), we obtain a pro-unipotent group \(\hat{N} := \lim_{\leftarrow n} N(n) \) corresponding to \(\hat{n} \).

We define \(\hat{B}^+ := H\hat{N} \) and \(\hat{B}^- := H\hat{N}^- \), that are (pro-algebraic) groups (and also a Lie subalgebra \(b := \mathfrak{h} \oplus n \subset \mathfrak{g} \)). For each \(\alpha \in \Delta^{+}_{\mathfrak{h}} \), we have a one-parameter unipotent subgroup \(\rho_{\alpha} : \mathbb{G}_a \rightarrow \hat{B}^+ \) so that \(h\rho_{\alpha}(z)h^{-1} = \rho_{\alpha}(\alpha(h)z) \) for every \(z \in \mathbb{G}_a \) and \(h \in H \). Similarly, we have a one-parameter unipotent subgroup \(\rho_{-\alpha} : \mathbb{G}_a \rightarrow \hat{B}^- \).

We have subgroups \(\hat{N}^+ \subset \hat{N}^+ \) and \(\hat{N}^- \subset \hat{N}^- \) formed by products of finitely many elements from \(\{\rho_{\alpha}(\mathbb{G}_a)\}_{\alpha \in \Delta^{+}_{\mathfrak{h}}} \) and \(\{\rho_{-\alpha}(\mathbb{G}_a)\}_{\alpha \in \Delta^{+}_{\mathfrak{h}}} \), respectively. Let \(N(H) \) denote the group generated by \(H \) and the normalizers of \(H \) inside \(SL(2, i) \) for each \(i \in I \), whose quotient by \(H \) is \(W \). We have a translation of elements of \(\hat{B}^+ \) under the action of \(N(H) \), defined partially (see [15 §6.1]). The positive Kac-Moody group \(G^+ \) is defined as the amalgamated product of \(\hat{B}^+ \) and \(N(H) \), while the negative Kac-Moody group \(G^- \) is defined as the amalgamated product of \(\hat{B}^- \) and \(N(H) \) (see [15 §5.1]). For each \(J \subset I \), we have a partial amalgam \(\hat{B}^J \subset \hat{B}^J \subset G^+ \), that we call the parabolic subgroups corresponding to \(J \).

Let \(U_{\mathfrak{z}}(\mathfrak{g}) \) (resp. \(U_{\mathfrak{z}}(\mathfrak{h}), U_{\mathfrak{z}}(\mathfrak{b}) \) or \(U_{\mathfrak{z}}(\mathfrak{n}^-) \)) be the Chevalley-Kostant \(\mathbb{Z} \)-form of the enveloping algebra of \(\mathfrak{g} \) generated by \(E_i^{(n)}, F_i^{(n)} \) \((i \in I, n \in \mathbb{Z}_{\geq 0})\) and

\[
 h(m) := \frac{h(h-1)\cdots(h-m+1)}{m!} \quad h \in \text{Hom}_{\mathbb{Z}}(X^*, \mathbb{Z}), m \in \mathbb{Z}_{\geq 0}
\]

(resp. \(h(m), E_i^{(n)} \) and \(h(m), \) or \(F_i^{(n)} \)), and let \(U(\mathfrak{g}) \) (resp. \(U(\mathfrak{h}), U(\mathfrak{b}), U(\mathfrak{n}^-) \)) be its specialization to \(\mathbb{K} \) (see e.g. Tits [21] or Mathieu [19] Chapter I).

We understand that a representation of an algebraic group is always algebraic. Note that the complete reducibility of representations always hold for split torus (and we never deal with non-split torus in this paper).

Definition 1.1 (integrable highest weight modules). A \((U(\mathfrak{h}), H)\)-module \(M \) is said to be a weight module if \(M \) admits a semi-simple action of the above \(h(m)\)'s that integrates to the algebraic \(H\)-action. In this case, we denote by \(M_{\mu} \subset M \) the \(H\)-weight space of weight \(\mu \in X^* \). We call \(M \) restricted if we have \(\dim M_{\lambda} < \infty \) for every \(\lambda \in X^* \).

A \((U(\mathfrak{g}), H)\)-module \(M \) is said to be a highest weight module if \(M \) is a weight module as a \((U(\mathfrak{h}), H)\)-module and \(M \) carries a cyclic \(U(\mathfrak{g})\)-module generator that is a \((U(\mathfrak{b}), H)\)-eigenvector.

A \((U(\mathfrak{g}), H)\)-module \(M \) is said to be an integrable module if it is a restricted weight module, we have \(\dim \text{Span}_{\mathbb{K}}\{E_i^{(n)}F_i^{(m)}v\} < \infty \) for each \(v \in M \) and \(i \in I \), and it integrates to an algebraic \(SL(2, i)\)-action that is compatible with the \(H\)-action.

Lemma 1.2. Let \(M \) be an integrable \(U(\mathfrak{g})\)-module. Then, every \(U(\mathfrak{g})\)-submodule of \(M \) is again integrable.
Theorem 1.3 (Mathieu \[19, 20\].) We have a non-dengenerate \(k\)-linear pairing
\[
\langle \bullet, \bullet \rangle : U(\mathfrak{n}^-) \otimes k[\hat{\mathfrak{n}}^-] \ni (P, f) \mapsto (Pf)(1) \in k.
\]

Proof. Note that \(U(\mathfrak{n}^-)\) is equipped with a restricted \((U(\mathfrak{h}), H)\)-module structure arising from the adjoint action of \(H\). Hence, the (restricted) \(k\)-dual of \(U(\mathfrak{n}^-)\) is well-defined. Moreover, the natural Hopf algebra structure of \(U(\mathfrak{n}^-)\) (so that \(\Delta(F_i^{(m)}) = \sum F_i^{(m)} \otimes F_i^{(n-m)}\) for each \(i \in \mathbb{I}\) and \(n \geq 0\)) induces a commutative bialgebra structure on \(U(\mathfrak{n}^-)^{\vee}\). Then, Spec \(U(\mathfrak{n}^-)^{\vee}\) is the pro-algebraic group associated to \(\mathfrak{n}^-\) in \[19, 20\] by \[20\] Lemme 2.

By \[20\] Lemme 3, Spec \(U(\mathfrak{n}^-)^{\vee}\) satisfies the conditions on \(\hat{\mathfrak{n}}^-\) listed above. By replacing the arguments in \[15\] \S 6.1 involving the exponential maps to our pro-unipotent group structures of \(\hat{\mathfrak{n}}^-\) and unipotent one-parameter subgroups \(\{\rho_\alpha\}_\alpha\), we deduce that \((G^-, N(H), \hat{\mathfrak{n}}^-, N, H, S)\) satisfies the conditions in \[15\] Definition 5.2.1 by \[15\] Theorem 6.1.17 and its proof.

We define \(P := \bigoplus_{i \in \mathbb{I}} \mathbb{Z} \omega_i, P_+ := \bigoplus_{i \in \mathbb{I}} \mathbb{Z}_{\geq 0} \omega_i, \) and \(P_{++} := \bigoplus_{i \in \mathbb{I}} \mathbb{Z}_{\geq 1} \omega_i\). For \(J \subset \mathbb{I}\), we set \(P_J := \bigoplus_{i \in J} \mathbb{Z}_{\geq 0} \omega_i\). For each \(\lambda \in P\), we have a Verma module \(M(\lambda)\) defined as:
\[
M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{h})} \mathbb{k}_\lambda.
\]
The Verma modules are restricted weight modules and are generated by a unique vector \(v_\lambda\) with \(H\)-weight \(\lambda\). We define
\[
L(\lambda) := M(\lambda)/\sum_{i \in \mathbb{I}} U(\mathfrak{g})F_i^{(\langle \alpha^\vee_i, \lambda \rangle + 1)}v_\lambda.
\]

Lemma 1.4. For each \(\lambda \in P_+\), the module \(L(\lambda)\) is the maximal integrable quotient of \(M(\lambda)\).

Proof. The assertion is \[15\] Lemma 2.1.7 when \(\text{char} \mathbb{k} = 0\). Its proof also asserts that every integrable module is a quotient of \(L(\lambda)\) when \(\text{char} \mathbb{k} > 0\) (as an effect of our definition of integrality). For each \(i \in \mathbb{I}\), the module
\[
M(\lambda)/U(\mathfrak{g})F_i^{(\langle \alpha^\vee_i, \lambda \rangle + 1)}v_\lambda
\]
is \(SL(2,i)\)-integrable (recall that the pro-unipotent radical of the parabolic subgroup corresponding to \(i \in \mathbb{I}\) is \(SL(2,i)\)-stable by the GCM condition \(\langle \alpha^\vee_i, \alpha_j \rangle \leq 0\) when \(i \neq j\) \[12\] §1.1]), and it is the maximal \(SL(2,i)\)-integrable quotient of \(M(\lambda)\). Hence, we deduce that \(L(\lambda)\) is the maximal integrable quotient of \(M(\lambda)\) as required.

Corollary 1.5. For each \(\lambda \in P_+\), the \(H\)-character of \(L(\lambda)\) obeys the Weyl-Kac character formula.

Proof. This is \[15\] Theorem 8.3.1 when \(\text{char} \mathbb{k} = 0\). When \(\text{char} \mathbb{k} > 0\), the arguments in \[19\] asserts that some integrable submodule of \(L(\lambda)\) obtained as a successive application of Demazure-Joseph functors obeys the Weyl-Kac character formula. As such a submodule contains \(v_\lambda\), it must be the whole \(L(\lambda)\).
For each \(w \in W \) and \(\lambda \in P^+ \), we have a unique non-zero vector \(v_{w\lambda} \in L(\lambda) \) of weight \(w\lambda \) up to scalar. We define the thin Demazure module and thick Demazure module as:

\[
L_w(\lambda) := U(n)v_{w\lambda}, \quad L^w(\lambda) := U(n^-)v_{w\lambda} \subset L(\lambda).
\]

These admit \(H \)-eigenspace decompositions.

We define the tensor product of two restricted weight modules \(M, N \) as:

\[
M \otimes N := \bigoplus_{\lambda, \mu \in X^*} M_\lambda \otimes N_\mu.
\]

We define the dual of a restricted weight module \(M \) as:

\[
M^\vee := \bigoplus_{\lambda \in X^*} M^*_\lambda,
\]

for which the natural inclusion \(M^\vee \subset M^* \) defines a \(H \)-submodule. The completion of a restricted weight module \(M \) is defined as:

\[
M^\wedge := \prod_{\lambda \in X^*} M_\lambda.
\]

It is straightforward to see that if \(M \) admits a Lie algebra action that contains \(\mathfrak{h} \) whose action prolongs to the \(H \)-action, then so are \(M^\vee \) and \(M^\wedge \). Note that the \(H \)-action on \(M^\vee \) is \(H \)-finite.

Definition 1.6 (Thin flag varieties; [15] §7.1). The thin flag variety \(X \) is defined set-theoretically as \(G^+(k)/\tilde{B}^+(k) \), and the generalized thin flag variety \(X_J \) for \(J \subset \mathfrak{l} \) is defined set-theoretically as \(G^+(k)/\tilde{B}^+_J(k) \). In particular, we have \(X = X_\emptyset \). Their indscheme structures are given through an embedding into \(\bigcup_{w \in W} \mathbb{P}(L_w(\lambda)) = \mathbb{P}(L(\lambda)) \) for \(\lambda \in P^+_+ \) (see [15] §7). For each \(w \in W \), we set \(X_w := X \cap \mathbb{P}(L_w(\lambda)) \) and \(X_{w,J} := X_J \cap \mathbb{P}(L_w(\lambda)) \), and call them the thin Schubert variety and the generalized thin Schubert variety, respectively.

Remark 1.7. The (ind-)scheme structures of \(X, X_J, X_w, X_{w,J} \) are independent of the choice of \(\lambda \) (see [15] Theorem 7.1.15 and Remark 7.1.16] and Mathieu [20] Corollaire 2).

By [15] Proposition 7.1.15], we know that \(X = \bigcup_w X_w \) and \(X_J = \bigcup_w X_{w,J} \).

We have an embedding \(L(\lambda) \subset L(\lambda)^\wedge \) for \(\lambda \in P^+_+ \). The group \(G^- \) acts on \(L(\lambda)^\wedge \), while the group \(G^+ \) acts on \(L(\lambda) \subset L(\lambda)^\wedge \). Let \(\mathcal{O}^\wedge \) be the \(\tilde{N}^- \)-orbit of \([v_\lambda]\) in \(\mathbb{P}(L(\lambda)^\wedge) \), whose scheme structure is independent of the choice of \(\lambda \in P^+_+ \).

Definition 1.8 (Thin flag manifolds; [9] §5.8). The thin flag manifold \(\mathcal{X}' \) is defined set-theoretically as the union of \(\mathcal{N}(H)(k) \)-translates of \(\mathcal{O}^\wedge(k) \).

Remark 1.9. In the following, we only need to use the fact that the scheme structure of the thin flag manifold \(\mathcal{X}' \) given in [9] has \(\mathcal{X}'(k) = \mathcal{N}(H)(k) \cdot \mathcal{O}^\wedge(k) \) as its set of \(k \)-valued points, it admits the \(G^- \)-action, and it has \(\mathcal{O}^\wedge \) as its \(\tilde{B}^- \)-stable (affine open) subscheme. Note that we have \(\mathcal{O}^\wedge \cong \tilde{N}^- \), and its scheme structure is the same as these transported from \(\mathbb{P}(L(\lambda)^\wedge) \) (for every choice of \(\lambda \in P^+_+ \)) or the Grassmannian employed in [9].
Remark 1.10. Assume \(g \) not to be of finite type. By construction, we easily find an inclusion \(X \subseteq \mathcal{X}' \). This inclusion cannot be an equality as the dimension of \(X \) is countable, while the dimension of \(\mathcal{X}' \) is uncountable. In general, \(X \) is not smooth \([3]\), but can be formally smooth \([22]\), while \(\mathcal{X}' \) is always smooth (in the sense it is a union of affine spaces) by construction.

Theorem 1.13 identifies \(M(\lambda)^\vee \) with a rank one \(k[\widehat{N}^-] \)-module. This also induces an inclusion

\[
L(\lambda)^\vee \hookrightarrow M(\lambda)^\vee \cong k[\widehat{N}^-] \otimes_k k_{-\lambda} \quad \lambda \in P_+.
\]

Note that \(M(\lambda)^\vee \) naturally admits an action of \(U(g) \), with a unique cocyclic \(H \)-eigenvector of weight \(-\lambda\). Hence, we have an inclusion

\[
\bigoplus_{\lambda \in P_+} L(\lambda)^\vee \subset \bigoplus_{\lambda \in P_+} M(\lambda)^\vee \cong k[\widehat{N}^-] \otimes \bigoplus_{\lambda \in P_+} k_{-\lambda} \subset k[\widehat{B}^-],
\]

where the RHS is a commutative ring.

Lemma 1.11. For each \(\lambda, \mu \in P_+ \), we have a unique \(U(g) \)-module morphism (up to a scalar)

\[
m_{\lambda, \mu} : L(\lambda)^\vee \otimes L(\mu)^\vee \longrightarrow L(\lambda + \mu)^\vee
\]

that makes \(\bigoplus_{\lambda \in P_+} L(\lambda)^\vee \) into an integral commutative subring of \(k[\widehat{N}^-] \). Moreover, the map \(m_{\lambda, \mu} \) is surjective for every \(\lambda, \mu \in P_+ \), and the ring \(\bigoplus_{\lambda \in P_+} L(\lambda)^\vee \) is generated by \(\bigoplus_{i \in I} L(\varpi_i)^\vee \).

Proof. By the comparison of the defining equation, we have a unique \(U(g) \)-module map (up to scalar)

\[
m^*_{\lambda, \mu} : L(\lambda + \mu) \rightarrow L(\lambda) \otimes L(\mu)
\]

that respects the \(H \)-weight decomposition. By taking the dual, we obtain the desired map. Each \(L(\lambda) \) is a quotient of \(M(\lambda) \), and we have an isomorphism

\[
M(\lambda)^\vee \cong k[\widehat{N}^-] \otimes_k k_{-\lambda}
\]

as \(U(n^-) \)-modules. The \(H'N^- \)-equivariant multiplication of \(k[\widehat{B}^-] \) is uniquely determined by that of the \(N^- \)-fixed elements, that is \(k[X^*] \). This forces \(L(\lambda)^\vee \cdot L(\mu)^\vee \subset M(\lambda + \mu)^\vee \) inside \(k[\widehat{B}^-] \). Since the tensor product of integrable modules is integrable, we deduce that \(L(\lambda)^\vee \cdot L(\mu)^\vee \subset L(\lambda + \mu)^\vee \) inside \(k[\widehat{B}^-] \). Therefore, the inclusion \(\bigoplus_{\lambda \in P_+} L(\lambda)^\vee \) respects the product structure (uniquely) induced by \(m_{\lambda, \mu} \). The resulting ring is commutative and integral by \([20]\) Lemme 2, and its multiplication maps are surjective by \([20]\) Corollaire 2.

The commutativity of the product and the integrality of \(\bigoplus_{\lambda \in P_+} L(\lambda)^\vee \) can be also deduced from these of \(k[\widehat{B}^-] \) (though our Theorem 1.13 depends on these facts through \([20]\) Lemme 2) unless we employ the theory of global base \([11][12]\) to prove it by additionally assuming \(g \) is symmetrizable).

Definition 1.12. Let \(J \subseteq I \). For a \(P^2 \)-graded ring \(R = \bigoplus_{\lambda \in P^2_+} R_\lambda \) with \(R_0 = k \) that is generated by \(\bigoplus_{i \in I \setminus J} R_{\varpi_i} \), we define \(\text{Proj}_J R \) to be

\[
\text{Proj}_J R := \left(\text{Spec } R \setminus \{ x \in \text{Spec } R \mid x \neq 0 \text{ on } R_{\varpi_i}, \forall i \in I \setminus J \} \right) / H,
\]

where \(H \) acts on \(R_{\varpi_i} \) through the character \(\varpi_i \) for each \(i \in I \). We might drop subscript \(J \) when the meaning is clear from the context.
Remark 1.13. We note that our condition guarantees \(\text{Proj}_J R \subset \prod_{i \in I \setminus J} \mathbb{P}(R_{\lambda_i}^*) \), that in turn implies that \(P^J_+ \) is in the closure of the ample cone of \(\text{Proj}_J R \).

We denote the ring \(\bigoplus_{\lambda \in P^J_+} L(\lambda)^\vee \) in Lemma 1.11 by \(R \). We define

\(\mathbb{X} := \text{Proj} R. \)

Note that each \(SL(2, i) \) \((i \in I)\) and \(H \) acts on \(L(\lambda)^\vee \), and hence on \(\mathbb{X} \). Hence, we derive an action of \(N(H) \) on \(\mathbb{X} \). By construction, we have a line bundle \(\mathcal{O}_\mathbb{X}(\lambda) \) on \(\mathbb{X} \) for each \(\lambda \in P^J_+ \).

Corollary 1.14. For each \(w \in W \) and \(\lambda, \mu \in P_+ \), the multiplication map \(m_{\lambda, \mu} \)

\[m_{\lambda, \mu} : L_w(\lambda)^\vee \otimes L_w(\mu)^\vee \rightarrow L_w(\lambda + \mu)^\vee , \quad m_{\lambda, \mu}^w : L_w^\vee(\lambda)^\vee \otimes L_w^\vee(\mu)^\vee \rightarrow L_w^\vee(\lambda + \mu)^\vee \]

that define quotient rings of \(R \) (and hence they are associative).

Proof. By the dual of Lemma 1.11 we have \(L(\lambda + \mu) \subset L(\lambda) \otimes L(\mu) \).

By \(m_{\lambda, \mu}^w(v_{w(\lambda + \mu)}) = v_{w\lambda} \otimes v_{w\mu} \), we deduce that the inclusion \(L(\lambda + \mu) \subset L(\lambda) \otimes L(\mu) \) yields inclusions \(L_w(\lambda + \mu) \subset L_w(\lambda) \otimes L_w(\mu) \) and \(L^w(\lambda + \mu) \subset L^w(\lambda) \otimes L^w(\mu) \). Hence, the multiplication map \(m_{\lambda, \mu} \) induce well-defined surjective maps

\[m_{\lambda, \mu}^w : L_w^\vee(\lambda)^\vee \otimes L_w^\vee(\mu)^\vee \rightarrow L_w^\vee(\lambda + \mu)^\vee , \quad m_{\lambda, \mu}^w : L_w^\vee(\lambda)^\vee \otimes L_w^\vee(\mu)^\vee \rightarrow L_w^\vee(\lambda + \mu)^\vee \]

that define quotient rings of \(R \) (and hence they are associative). \(\square \)

For each \(w \in W \), we have two commutative algebras:

\[R^w := \bigoplus_{\lambda \in P_+} L^w(\lambda)^\vee , \quad \text{and} \quad R_w := \bigoplus_{\lambda \in P_+} L_w(\lambda)^\vee , \]

whose multiplications are given in Corollary 1.14.

We have a natural \(G^+ \)-equivariant line bundle \(\mathcal{O}_{X_w}(\lambda) \) for each \(w \in W \) and \(\lambda \in P^J_+ \), and we have a natural \(G^+ \)-equivariant line bundle \(\mathcal{O}_{X_w, J}(\lambda) \) for each \(w \in W \) and \(\lambda \in P^J_+ \) (cf. [13 §7.2]).

Theorem 1.15 (Mathieu [19 Théorème 3, cf. [15 Theorem 8.2.2]). For each \(\lambda \in P^J_+ \), we have

\[H^i(X_w, \mathcal{O}_{X_w}(\lambda)) \cong \begin{cases} L_w(\lambda)^\vee & (i = 0) \\ \{0\} & (i > 0) \end{cases}. \]

The analogous assertion holds for generalized thin Schubert varieties corresponding to \(J \subset I \) for every \(\lambda \in P^J_+ \). \(\square \)

Corollary 1.16. For each \(w \in W \), we have \(X_w = \text{Proj} R_w \). The analogous assertion holds for generalized thin Schubert varieties corresponding to \(J \subset I \) by setting

\[R_w, J := \bigoplus_{\lambda \in P^J_+} L_w(\lambda)^\vee . \]

Proof. Combine Theorem 1.15 and the fact that \(X_{w, J} \subset \mathbb{P}(L_w(\lambda)) \) is a closed immersion for each \(\lambda \in P^J_+ \) so that \(\langle \alpha_i^\vee, \lambda \rangle > 0 \) for each \(i \in I \setminus J \). \(\square \)
Thanks to Corollary 1.16, we have an embedding $X_w \subset X$ for each $w \in W$. This particularly implies $\bigcup_w X_w = X \subset X$.

Lemma 1.17. The set of H-fixed points of X is in bijection with W.

Proof. A H-fixed point x of X gives a collection of non-zero H-eigenvectors $\{v^\lambda_w\}_{\lambda \in \mathcal{P}_+} \in \prod_{\lambda \in \mathcal{P}_+} L(\lambda)$ so that $m_{\lambda, \mu}(v^\lambda_w, v^\mu_w) = v^\lambda_w \otimes v^\mu_w$ for $\lambda, \mu \in P_+$ by Lemma 1.11. By Theorem 1.15 there exists $w \in W$ so that $x = X_w$. It follows that

$$\bigcup_{w \in W} X^H_w = X^H.$$

The set of H-fixed points of X^H_w is in common among all characteristic and is a subset of the translation of $\{[v_\lambda]\}_{\lambda \in \mathcal{P}_+}$ by $N(H)$ that descends to W (see [15, §7.1]). Therefore, we conclude that X^H is in bijection with W.

Let x_w denote the H-fixed point of $X^H_w \subset X$ corresponding to the cyclic H-eigenvectors of $\{L_w(\lambda)\}_{\lambda \in \mathcal{P}_+}$ for each $w \in W$. By examining the stabilizer, we deduce an isomorphism

$$\hat{B}^- x_w \cong \hat{A}^\infty$$

for each $w \in W$

inside $\prod_{\lambda \in \mathcal{P}_+} \mathbb{P}(L(\lambda)^\vee) = \prod_{\lambda \in \mathcal{P}_+} \mathbb{P}(L(\lambda)^{\vee,*})$. We set $\mathcal{O}^w := \hat{B}^- x_w (= \hat{N}^- x_w)$. It is easy to see that \mathcal{O}^w here is isomorphic to \mathcal{O}^c employed in the definition of X as a \hat{B}^--homogeneous space.

We denote $\hat{N}^+ x_w = N^+ x_w \subset X$ by \mathcal{O}_w.

Proposition 1.18. We have an inclusion $\mathcal{O}^c \subset X$ obtained by inverting finitely many rational functions on X. In other words, \mathcal{O}^c is a standard open set of X in the terminology of [1].

Proof. By [11], inverting the unique H-weight $-\lambda$ vector $v^\lambda_x \in L(\lambda)^\vee$ (up to scalar) yields

$$\sum_{\lambda \in \mathcal{P}_+} (v^\lambda_x)^{-1} L(\lambda)^\vee \cong U(n^-)^\vee \cong \mathbb{C}[\hat{N}^-]$$

as algebras, where the second isomorphism is through the Hopf algebra structure of $U(n^-)$. We can rearrange $\{v^\lambda_x\}_{\lambda \in \mathcal{P}_+}$ so that it is closed under the multiplication. It follows that

$$\mathcal{O}^c = X \setminus \{v^\lambda_x = 0\}_{i \in I}$$

as required.

Proposition 1.18 asserts that we have an inclusion $\mathcal{O}^c \subset X$ with a \hat{B}^--action extending the N^--action on X. By using the $SL(2, i)$-actions for every $i \in I$, we deduce an action of \hat{B}^- (and hence the G^--action) on X extending the N^--action. We set $X^w := \mathcal{O}^w \subset X$ and call it the thick Schubert variety corresponding to $w \in W$.

Lemma 1.19. The ind-scheme X is Zariski dense in X.

Proof. Since we have $L(\lambda) = \bigcup_{w \in W} L_w(\lambda)$ for each $\lambda \in P_+$ ([15 Lemma 8.3.3]), the regular functions on X can be distinguished on X.

9
Theorem 1.20. For each $\lambda \in P_+$, we have
\[H^0(\mathcal{X}, \mathcal{O}_X(\lambda)) \cong L(\lambda)^\vee. \]

Proof. We first prove the first assertion. By Lemma 1.19 we have
\[H^0(\mathcal{X}, \mathcal{O}_X(\lambda)) \cong \Gamma(X, \mathcal{O}_X(\lambda)). \]
This induces an injective map
\[H^0(\mathcal{X}, \mathcal{O}_X(\lambda)) \subset \lim_{\leftarrow w} H^0(X_w, \mathcal{O}_{X_w}(\lambda)). \]
By Theorem 1.15 (or directly from [15, Corollary 8.3.12]; see also the proof of Lemma 2.10), we have \[\lim_{\leftarrow w} H^0(X_w, \mathcal{O}_{X_w}(\lambda)) \cong L(\lambda)^\vee. \] Therefore, we conclude
\[H^0(\mathcal{X}, \mathcal{O}_X(\lambda)) \subset L(\lambda)^\vee \] as g-modules. Here we have
\[H^0(\mathcal{X}, \mathcal{O}_X(\lambda)) \hookrightarrow H^0(\mathcal{O}_e, \mathcal{O}_X(\lambda)) \cong M(\lambda)^\vee. \]
In particular, \[H^0(\mathcal{X}, \mathcal{O}_X(\lambda)) \] is H-semisimple, and hence we deduce
\[H^0(\mathcal{X}, \mathcal{O}_X(\lambda)) \subset L(\lambda)^\vee = L(\lambda)^\vee \cap M(\lambda)^\vee \subset M(\lambda)^\vee. \]
By examining the ring R, we deduce that \[L(\lambda)^\vee \subset H^0(\mathcal{X}, \mathcal{O}_X(\lambda)). \] This forces
\[H^0(\mathcal{X}, \mathcal{O}_X(\lambda)) \cong L(\lambda)^\vee \] as required.

Theorem 1.21 (cf. [10]). For each $\lambda \in P_+$, we have
\[H^0(\mathcal{X}', \mathcal{O}_{X'}(\lambda)) \cong L(\lambda)^\vee. \]
If we assume \(\text{char} \, k = 0 \) in addition, then we have
\[H^{>0}(\mathcal{X}', \mathcal{O}_{X'}(\lambda)) \cong \{0\}. \]

Proof. Since \mathcal{X}' is the G^--translate of \mathcal{O}_e, we have
\[H^0(\mathcal{X}', \mathcal{O}_{X'}(\lambda)) \subset H^0(\mathcal{O}_e, \mathcal{O}_{X'}(\lambda)) \cong M(\lambda)^\vee. \]
Let $U \subset \mathcal{X}'$ be a \hat{B}^--stable open subset. By $SL(2)$-consideration, imposing the regularity conditions on a section of $H^0(U, \mathcal{O}_{X'}(\lambda))$ along $SL(2, i)U$ is equivalent to impose the $SL(2, i)$-finiteness. We know that G^- is topologically generated by $SL(2, i)$ for all $i \in I$. Therefore, the maximal integrable submodule of $M(\lambda)^\vee$ is exactly the space of global sections of $\mathcal{O}_{X'}(\lambda)$. This proves the first assertion by Lemma 1.4.

Now we assume \(\text{char} \, k = 0 \) to consider the latter assertion. The case of symmetrizable g is [10, Theorem 5.2.1]. The Kempf resolution presented in [13] (8.6) is valid for arbitrary Kac-Moody algebras, as the differential between terms can be interpreted as a $SL(2)$-calculation if one removes unnecessary strata. We have the BGG resolution for arbitrary Kac-Moody algebras [10] [3] not by changing the construction (see e.g. [13] [9.2]) but by proving that the resulting homology group is integrable. Therefore, their comparison yields the second assertion in general.

10
Corollary 1.22. We have an embedding $\mathcal{X}' \hookrightarrow \prod_{\lambda \in P_+} \mathbb{P}(L(\lambda)^\vee)$ of schemes.

Proof. The morphism exists by Theorem 1.21. Since the morphism is an embedding on \mathbb{O}^e and equivariant with respect to the $N(H)$-action, we conclude that it is an embedding.

Theorem 1.23. The scheme \mathcal{X} is isomorphic to the thick flag manifold \mathcal{X}'.

Proof. We borrow some notation from the proof of Proposition 1.18. By Corollary 1.22, we have $\mathcal{X}' := \bigcup_{w \in W} O_w \subset \mathcal{X}$. We set $E := \mathcal{X}\setminus \mathcal{X}'$.

It suffices to show $E = \emptyset$. Thanks to Proposition 1.18, the set E is contained in the locus that $v_{\lambda}^* = 0$ for some $\lambda \in P_+$. Note that E admits natural $SL(2,i)$-action for each $i \in I$ as R and X' do. It follows that $E \subset \bigcap_{w \in W} \{ v_{w,\lambda}^* = 0 \}$.

For each $\lambda \in P_+$, we have a natural map $\psi_\lambda : \mathcal{X} \to \mathbb{P}(H^0(\mathcal{X}, \mathbb{O}_\mathcal{X}(\lambda))^*) = \mathbb{P}(L(\lambda)^\vee)$ by Theorem 1.20.

Claim A. The map ψ_λ sends E to $\mathbb{P}(M^\vee)$, where $M \subset L(\lambda)$ is a $U(\mathfrak{g})$-stable H-submodule that does not contain H-weight $\{ w\lambda \}_{w \in W}$-part for each $\lambda \in P_+$.

Proof. Assume to the contrary to deduce contradiction. Then, we have some $x \in E$ so that $\psi_\lambda(x) \notin \mathbb{P}(M^\vee)$ for every $U(\mathfrak{g})$-stable H-submodule that does not contain H-weight $\{ w\lambda \}_{w \in W}$-part. Then, applying $SL(2,i)$-action repeatedly, we obtain a point $y \in E$ so that $\psi_\lambda(y) \in \{ v_{\lambda}^* \neq 0 \}$. This is a contradiction and we conclude the result.

We return to the proof of Theorem 1.23. By taking the fixed point of a G_m-action that shrinks \mathcal{X}', we deduce that $E^H \cap \mathcal{X}^H = \emptyset$.

This forces $E = \emptyset$ (our G_m-action always send a point to a limit point as the set of H-weight of $L(\lambda)$ in contained in $\lambda - Z_{\geq 0} \Delta^+$), and we conclude the assertion.

Corollary 1.24 (of the proof of Theorem 1.23). We have $\mathcal{X} = \bigcup_{w \in W} O_w$. □

Corollary 1.25. We have $X_w = O_w$, and the thin flag variety X of \mathfrak{g} is obtained as $\bigcup_{w \in W} X_w$ inside \mathcal{X}. □

Theorem 1.26 (Kashiwara [9] §4 and Kashiwara-Tanisaki [14] §1.3). For each $w, v \in W$, we have:

1. $O_w \subset X_v$ if and only if $w \leq v$;
2. $O^w \subset X^v$ if and only if $w \geq v$.

Moreover, we have $dim X_w = \ell(w)$ and $\text{codim}_X X^w = \ell(w)$. □
2 Frobenius splitting of thick flag manifolds

We retain the setting of the previous section. Let $B := N^+ H \subset \tilde{B}^+$. For each $i \in I$, we have an overgroup $B_{i} \subset B_{i+1}$ so that $\text{Lie} B_{i} \cong k F_{i} \oplus \text{Lie} B$. We similarly define $B_{i} : = N^{-} H$ and B_{i}^{-} for each $i \in I$. Let $i = (i_{1}, i_{2}, \ldots, i_{k}) \in \mathbb{I}^{k}$ be a sequence. We have a Bott-Samelson-Demazure-Hansen variety

\[Z(i) := B_{i_{1}} \times B_{i_{2}} \times B_{i_{3}} \times \cdots \times B_{i_{k}}/B. \]

In case $w = s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$ satisfies $\ell(w) = \ell$ (i.e. i is a reduced expression of w), we have the BSDH resolution (see e.g. [15, Chapter VIII])

\[\sigma_{1} : Z(i) \ni (g_{1}, g_{2}, \ldots, g_{k}) \mapsto g_{1}g_{2}\cdots g_{k}B/B \in X_{w}. \]

The variety $Z(i)$ admits a left B-action, that makes σ_{1} into a B-equivariant morphism. For each $1 \leq k \leq \ell$, we define a B-stable divisor $H_{k} \subset Z(i)$ by requiring $g_{k}B$ for $(g_{1}, g_{2}, \ldots, g_{k}) \in Z(i)$. Note that H_{k} is naturally isomorphic to $Z(i^k)$, where $i^k \in \mathbb{I}^{k-1}$ is obtained from i by omitting the k-th entry. In addition, every subword $i' = (i_{j_{1}}, \ldots, i_{j_{\nu}}) \in \mathbb{I}^{\nu}$ of i (so that $1 \leq j_{1} < j_{2} < \cdots < j_{\nu} < \ell$) gives us a B-equivariant embedding described as

\[Z(i') \ni (g_{1}, \ldots, g_{\nu}) \mapsto (\underbrace{1, \ldots, 1}_{j_{1}-1}, g_{j_{1}}, \ldots, \underbrace{1, \ldots, 1}_{j_{\nu}-j_{1}-1}, g_{j_{\nu}}, \ldots) \in Z(i). \]

We follow the generality on Frobenius splitting in [2], that considers separated schemes of finite type. We sometimes use the assertions from [2] without finite type assumption when the assertion is independent of that, whose typical disguises are properness, finite generation, and the Serre vanishing theorem. Note that a closed subscheme of a projective space is separated.

Definition 2.1 (Frobenius splitting of a ring). Let R be a commutative ring over k with characteristic $p > 0$, and let $R^{(1)}$ denote the set R equipped with the map

\[R \times R^{(1)} \ni (r, m) \mapsto r^{p^{m}} \in R^{(1)}. \]

This equips $R^{(1)}$ an R-module structure over k (the k-vector space structure on $R^{(1)}$ is also twisted by the p-th power operation), together with an inclusion $\iota : R, 1 \subset R^{(1)}$. An R-module map $\phi : R^{(1)} \to R$ is said to be a Frobenius splitting if $\phi \circ \iota$ is an identity.

Definition 2.2 (Frobenius splitting of a scheme). Let \mathcal{X} be a separated scheme defined over field k with positive characteristic, Let Fr be the (relative) Frobenius endomorphism of \mathcal{X} (that induces a k-linear endomorphism). We have a natural inclusion $\iota : \mathcal{O}_{X} \to \text{Fr}_{\ast} \mathcal{O}_{X}$. A Frobenius splitting of \mathcal{X} is a \mathcal{O}_{X}-linear morphism $\phi : \text{Fr}_{\ast} \mathcal{O}_{X} \to \mathcal{O}_{X}$ so that the composition $\phi \circ \iota$ is the identity.

Definition 2.3 (Compatible splitting). Let $\mathcal{Y} \subset \mathcal{X}$ be an inclusion of separated schemes defined over k. A Frobenius splitting ϕ of \mathcal{X} is said to be compatible with \mathcal{Y} if $\phi(\text{Fr}_{\ast} \mathcal{I}_{\mathcal{Y}}) \subset \mathcal{I}_{\mathcal{Y}}$.

Remark 2.4. A Frobenius splitting of \mathcal{X} compatible with \mathcal{Y} induces a Frobenius splitting of \mathcal{Y} (see e.g. [2] Remark 1.1.4 (ii))).
Theorem 2.5 ([2] Lemma 1.1.11 and Exercise 1.1.E). Let \(X \) be a separated scheme of finite type over \(k \) with semiample line bundles \(L_1, \ldots, L_r \). If \(X \) admits a Frobenius splitting, then the multi-section ring
\[
\bigoplus_{n_1, \ldots, n_r \geq 0} \Gamma(X, L_1^{\otimes n_1} \otimes \cdots \otimes L_r^{\otimes n_r})
\]
admits a Frobenius splitting \(\phi \). Moreover, a closed subscheme \(Y \subset X = \Proj S \) admits a compatible Frobenius splitting if and only if the homogeneous ideal \(I_Y \subset S \) that defines \(Y \) satisfies \(\phi(I_Y) \subset I_Y \).

\[\square \]

Definition 2.6 (\(B \)-canonical splitting). Let \(X \) be a separated scheme equipped with a \(B \)-action. A Frobenius splitting \(\phi \) is said to be \(B \)-canonical if it is \(H \)-fixed, and each \(i \in I \) yields
\[
\rho_{\alpha_i}(z)\phi(\rho_{\alpha_i}(-z)f) = \sum_{j=0}^{p-1} \phi_{i,j}(f),
\]
where \(\phi_{i,j} \in \Hom_{\mathcal{O}_X}(\mathcal{O}_X, \mathcal{O}_X) \). We similarly define the notion of \(B^- \)-canonical splitting by using \(\{\rho_{-\alpha_i}\}_{i \in I} \) instead. The \(B \)-canonical splitting of a commutative ring \(S \) over \(k \) is defined through its spectrum.

Theorem 2.7 ([2] Exercise 4.1.E.2). Assume that \(\text{char } k > 0 \). For each \(i \in I \), there exists a unique \(B \)-canonical splitting of \(Z(i) \) that is compatible with the subvarieties \(Z(i') \) obtained by subwords \(i' \) of \(i \).

\[\square \]

Corollary 2.8. In the setting of Theorem 2.7, the restriction of the \(B \)-canonical splitting to \(Z(i') \) is \(B \)-canonical.

Proof. The condition of \(B \)-canonical splitting is preserved by the restriction to a \(B \)-stable compatibly split subset.

\[\square \]

Lemma 2.9. For each \(w \in W \), the ind-scheme \((X \cap X^w) \) is Zariski dense in \(X^w \).

Proof. Assume to the contrary to deduce contradiction. Let \(w = s_{i_1}s_{i_2} \cdots s_{i_l} \) be a reduced expression. For a \(B^- \)-stable subset \(Y \subset X^v \) that is not Zariski dense in \(X^w \) and \(i \in I \) so that \(s_i < v \), the inclusion
\[
SL(2, i)Y \subset \rho_{\alpha_i}(\mathcal{O}_X)\mathcal{O}_X \subset SL(2, i)X^v = X^v \cup X^{s_i^v} = X^{s_i^v}
\]
cannot be Zariski dense. Moreover, \(SL(2, i)Y \) is again \(B^- \)-stable by the Bruhat decomposition (of \(SL(2, i) \)). As \((X \cap X^w) \) is stable under the action of \(B^- \), we repeatedly apply the above estimate to conclude
\[
SL(2, i_2) \cdots SL(2, i_1)(X \cap X^w) \subset X
\]
is not Zariski dense. By the Bruhat decomposition, we have \(X^{s_i^v} \subset SL(2, i)X^v \) for each \(i \in I \) and \(v \in W \). Each rational point \(x \) of \(X \) satisfies
\[
SL(2, i_1) \cdots SL(2, i_1)x \cap X^w \neq \emptyset
\]
by its repeated application. It follows that
\[
X = SL(2, i) \cdots SL(2, i_1)(X \cap X^w) \subset X
\]
is also not Zariski dense. This gives a contradiction to Lemma 1.19 and we conclude the result.

\[\square \]
Lemma 2.10. Assume that char $k > 0$. For each $w \in W$, the ring R and R_w admits a B-canonical splitting.

Proof. Let $i \in I^t$ be a sequence so that $\text{Im } \pi_i = X_w$. Then, we have

$$H^0(Z(i), \pi_i^* \mathcal{O}_X(\lambda)) \cong H^0(X_w, \mathcal{O}_X(\lambda)) \cong L_w(\lambda)^* \quad \lambda \in P_+$$

by [13, Théorème 3] (cf. [15, Theorem 8.2.2]).

Applying Theorem 2.5 we deduce that the ring R_w admits a B-canonical splitting. Choose a series of sequences $i_k \in I^k \ (k \geq 1)$ so that

1. i_k is obtained from i_{k+1} by omitting the first entry:

2. $\bigcup_{k \geq 1} \pi_{i_k}(Z(i_k)) = X$,

(whose existence is guaranteed by the subword property of the Bruhat order [15, Lemma 1.3.16]). Let $w_k \in W$ be so that $X_{w_k} = \pi_{i_k}(Z(i_k))$ (that exists as $Z(i_k)$ is irreducible). Then, we have

$$L(\lambda) = \lim_{k \to \infty} L_{w_k}(\lambda).$$

This induces a dense inclusion of algebras

$$R \subset \lim_{k \to \infty} R_{w_k},$$

where the LHS is the H-finite part of the RHS. The system \{R_{w_k}\}_{k \geq 1} is an inverse system with surjective transition maps. Therefore, Corollary 2.8 induces a Frobenius splitting of $\lim_{k \to \infty} R_{w_k}$ from the B-canonical splittings of \{R_{w_k}\}_{k \geq 1}. Since our splitting preserves the H-weights, it descends to the H-finite part R as required.

Corollary 2.11. Assume that char $k > 0$. The ring R admits a B^--canonical splitting, and hence X is B^--canonically Frobenius split.

Proof. We retain the setting of the proof of Lemma 2.10. Our ring R is a H-finite graded algebra that admits a B-canonical splitting. Note that R admits a rational action of $SL(2, i)$ for each $i \in I$ as each $L(\lambda)$ is integrable. Hence, [2, Excercise 4.1 (1)] forces a B-canonical splitting of R to induce a B^--canonical splitting as desired.

Corollary 2.12. Assume that char $k > 0$. For each $w \in W$, the B^--canonical splitting of X (constructed above) is compatible with X_w.

Proof. We argue along the line of [16, Proposition 5.3], that was stated with the symmetrizability assumption (that we drop here).

We already know that the scheme X (or rather its projective coordinate ring) admits a B^--canonical splitting by Corollary 2.11.

We show that our splitting splits the H-fixed points as in [16, Proof of Proposition 5.3 Assertion II]. The H-fixed point x_w of X corresponding to $w \in W$ is contained in X_w. Hence, we have H-algebra morphisms

$$\bigoplus_{\lambda \in P_+} \mathbb{k}_{-w\lambda} \hookrightarrow R_w \twoheadrightarrow \bigoplus_{\lambda \in P_+} \mathbb{k}_{-w\lambda}$$
corresponding to \(x_w \in X_w\), whose composition is the identity. As our Frobenius splitting induces that of \(R_w\) and preserves \(H\)-weight spaces, we conclude that our splitting splits the \(H\)-fixed points of \(X\) by Lemma 1.17.

We show that our splitting splits each \(X_w\) compatibly as in [16, Proof of Proposition 5.3 Assertion III] to complete the proof. Let \(I_w\) be the ideal of \(x_w\). The ideal \(I_w\) is preserved by our Frobenius splitting. Therefore, the ideal \(I^w := \bigcap_{b \in B} b \cdot I_w \subset R\) is preserved by our \(B^-\)-canonical splitting thanks to [2, Proposition 4.1.8]. By Lemma 2.9 the ideal \(I^w\) defines the Zariski closure of \(\hat{B}^{-} \cdot x_w\) (as that is the same as \(B^{-} \cdot x_w\)) inside \(X\), that is \(X^w\). It follows that \(X\) splits compatibly with \(X^w\) through our splitting as required.

Remark 2.13. According to Kumar-Schwede [16], the essential part of our proof of Corollary 2.12 traces back to a result of Olivier Mathieu. As the author has no access to it, he cites it from [16].

Corollary 2.14. For each \(w \in W\), the scheme \(X^w\) is integral.

Proof. Apply [2, Proposition 1.2.1] to Corollary 2.12 if \(\text{char } k > 0\). As the integrality of \(X^w\) follows by the integrality of \(R^w\), we apply [2, Proposition 1.6.5] to subalgebras of \(R^w\) generated by finitely many \(H\)-weight spaces (so that it is finitely generated) to deduce the integrality in \(\text{char } k = 0\).

By restricting \(O_X(\lambda) (\lambda \in P)\), we obtain a line bundle \(O_{X^w}(\lambda)\) on \(X^w\) for each \(w \in W\).

Let \(J \subset I\). Consider the subring

\[R_J := \bigoplus_{\lambda \in P^+_J} L(\lambda)^\vee \subset R. \]

We set \(X_J := \text{Proj } R_J\). This also defines a line bundle \(O_{X_J}(\lambda)\) for each \(J \subset I\) and \(\lambda \in P^+_J\). We have natural map

\[\pi_J : X \to X_J. \]

Lemma 2.15. Let \(J \subset I\). The morphism \(\pi_J\) is \(G^-\)-equivariant and surjective. We have a \(B^-\)-canonical splitting of \(X_J\) that is compatible with the \(\hat{B}^-\)-orbits.

Proof. Since the dual of the homogeneous coordinate rings of \(X\) and \(X_J\) admits the \(B^-\)-action and \(N(H)\)-action, we conclude that \(\pi_J\) is equivariant with respect to the group generated by \(\hat{B}^-\) and \(N(H)\), that is \(G^-\).

The \(B^-\)-canonical splitting of \(X\) induces that of \(X_J\) through the description of its projective coordinate ring. This must be compatible with the Zariski closure of the image of \(\hat{B}^-\)-orbits. Hence, it remains to show that \(\pi_J\) is surjective.

Fix \(w \in W\). The analogous map to \(\pi_J\) defined for \(X_w\) is surjective (see [15 Proposition 7.1.14]). The same proof as Lemma 2.17 (relying on [15]) implies \(X_J^H \subset \pi_J(\hat{X}^H)\). Hence, the same argument as in Theorem 1.23 yields that every \(\hat{B}^-\)-orbit of \(X_J\) is the image of a \(\hat{B}^-\)-orbit of \(X\) as required.

Lemma 2.16. Let \(J \subset I\). The fiber of \(\pi_J\) is isomorphic to the thick flag manifold of the Kac-Moody subalgebra of \(\mathfrak{g}\) corresponding to \(J\). Moreover, we have \((\pi_J)_* O_X(\lambda) \cong O_{X_J}(\lambda)\) for \(\lambda \in P^+_J\).
Proof. Let \(\mathfrak{g}' \) denote the Kac-Moody algebra that is a subalgebra of \(\mathfrak{g} \) corresponding to \(J \), and let \(W' \) denote its Weyl group that is a subgroup of \(W \). Let \(R^1 \) be the minimal homogeneous coordinate ring of \(\pi_1^{-1}(B_2/B_1) \) so that we have an algebra map \(\phi : R \to R^1 \) corresponding to \(\pi_1^{-1}(B_2/B_1) \subset X \). Since \(\mathcal{X}_J \) is \(G^- \)-homogeneous, we find that the scheme \(\pi_1^{-1}(B_2/B_1) \) is reduced.

Let \(\tilde{N}_J \subset \tilde{B}^- \) be the pro-unipotent radical of \(\tilde{B}_J^- \). We find a \(H \)-stable complementary pro-unipotent group \(\tilde{U} \subset \tilde{B}^- \) so that \(\tilde{N}^- = \tilde{U}\tilde{N}_J \), \(\tilde{U} \) normalizes \(\tilde{N}_J \), and \(\tilde{U} \cap \tilde{N}_J = \{ \text{id} \} \).

A point \(x \in \mathcal{X} \) is written as \(x = gwv \) for some \(g \in \tilde{N} \) and a lift \(\tilde{w} \in N(H) \) of \(w \in W \), so that \(x \) gives a point \([gwv_w] \in \mathbb{P}(L(\pi_1)^\wedge)\) for each \(i \in \mathbb{I} \). If \(g \notin \tilde{U} \), then we have

\[
gwv_w \in \{ kwv_w \} \notin \{ kwv \} \quad \text{for some } i \notin J \text{ and every } w \in W'.
\]

Note that \(w \in W' \) belongs to \(W' \) if and only if \(w\alpha_i = \alpha_i \) for every \(i \notin J \). Therefore, we find that every point in \(\pi_1^{-1}(B_2/B_1) \) is of the form \(x = gwv \) for \(g \in \tilde{U} \) and \(w \in W' \) (by Corollary 1.24 and Lemma 1.15).

Therefore, if we represent a point \(x \in \pi_1^{-1}(B_2/B_1) \) as a point \(\{ [x_i] \} \in \prod_{i \in J} \mathbb{P}(L(\pi_i)^\wedge) \) (using Definition 1.12), then the vector \(x_i \) does not contain \(H \)-weights except for \(\alpha_i - \mathbb{Z}_{\geq 0} \{ \alpha_i \mid i \in J \} \). By the cocyclicity of the dual Verma modules, it follows that \(x_i \) belongs to the (maximal) integrable highest weight module \(L'(\lambda) \) of \(\mathfrak{g}' \) spanned by \(v_w \). Moreover, the \(H \)-weight comparison implies that \(L'(\lambda)^\wedge \subset L(\lambda)^\wedge \) is precisely the \(\tilde{N}_J^- \)-invariant part.

Since \(\pi_1^{-1}(B_2/B_1) \) is \(\tilde{N}^- \)-invariant and reduced, it follows that the map \(\phi \) factors through

\[
R^1 := \bigoplus_{i \in J} L'(\alpha_i)^\wedge,
\]

that is the homogeneous coordinate ring of the thick flag manifold of \(\mathfrak{g}' \). As \(\pi_1^{-1}(B_1/B_1) \) is a closed subscheme of \(\mathcal{X} \), we conclude the \(\phi \) must be in fact an equality. Hence, the fibers of \(\pi_2 \) are isomorphic to the thick flag manifold of \(\mathfrak{g}' \).

By examining the sections on the fibers of \(\pi_2 \), we conclude that \((\pi_1)_* \mathcal{O}_X(\lambda) \) is a line bundle. Since \(\mathcal{X} \) is homogeneous and \((\pi_1)_* \mathcal{O}_X(\lambda) \) is \(G^- \)-equivariant, we conclude the assertion by the comparison (of characters) on fibers. \(\square \)

Theorem 2.17 ([13] second part of Conjecture 8.10). For each \(\lambda \in P_+ \) and \(w, v \in W \) so that \(v < w \), the natural restriction map

\[
H^0(\mathcal{X}^w, \mathcal{O}_{\mathcal{X}^w}(\lambda)) \longrightarrow H^0(\mathcal{X}^w, \mathcal{O}_{\mathcal{X}^w}(\lambda))
\]

is surjective.

Proof. We set \(J := \{ i \in \mathbb{I} \mid \langle \alpha_i^\vee, \lambda \rangle = 0 \} \). By Lemma 2.16, the assertion reduces to the surjectivity of

\[
H^0(\mathcal{X}_J^w, \mathcal{O}_{\mathcal{X}_J^w}(\lambda)) \longrightarrow H^0(\mathcal{X}_J^w, \mathcal{O}_{\mathcal{X}_J^w}(\lambda)),
\]

where \(\mathcal{X}_J^w := \pi_1(\mathcal{X}^w) \) for each \(w \in W \). We might omit the subscript \(J \) in the below for simplicity. Note that \(\mathcal{O}_{\mathcal{X}_J}(\lambda) = \mathcal{O}_{\mathcal{X}}(\lambda) \) is ample. By the associativity of the restriction maps (and Theorem 1.20), we can assume \(v = e \).

For each \(v \in W \) and \(w \in W' \), we have a restriction map

\[
\varphi_v^w : H^0(\mathcal{X}^w, \mathcal{O}_{\mathcal{X}^w}(\lambda)) \longrightarrow H^0(\mathcal{X}^w \cap X_w, \mathcal{O}_{\mathcal{X}^w \cap X_w}(\lambda)).
\]
By Lemma 2.9, the inverse limit of \(\{ \varphi_w^i \}_w \) yields an inclusion

\[
\varphi^v : H^0(X^v, \mathcal{O}_{X^v}(\lambda)) \rightarrow H^0(\mathcal{X}^v \cap X, \mathcal{O}_{\mathcal{X}^v \cap X}(\lambda)).
\]

(2.2)

Let \(\Psi \subset \Delta^+ \) be a finite set. Let us consider a linear functional \(h \) on \(\Delta^+ \subset X^*(H) \otimes \mathbb{R} \) so that \(0 < h(\alpha_i) \) for each \(i \in I \) and \(h(\Psi) < 1 \). Then, the subset

\[\Delta^+(h) := \{ \beta \in \Delta^+ \mid h(\beta) < 1 \} \subset \Delta^+ \]

is finite, and every \(\mathbb{Z}_{\geq 0} \)-linear combination of elements of \(\Delta^+ \setminus \Delta^+(h) \) does not belong to \(\Delta^+(h) \).

For each \(w \in W \), the set of \(H \)-weights of \(\bigoplus_{i \in I} L_w(\omega_i) \) is finite, and hence so is the set \(\Psi_w \) of positive roots obtained by the difference of two \(H \)-weights of \(\bigoplus_{i \in I} L_w(\omega_i) \). Applying the above construction, we can find a partition \(\Delta^+ = \Delta^+_1 \sqcup \Delta^+_2 \) (\(\Delta^+_1 \) is \(\Delta^+(h) \) obtained by setting \(\Psi = \Psi_w \)) so that every \(x \in \tilde{N}^- \) factors into \(x = x_1x_2 \), where \(x_2 \) is the product of one-parameter subgroup corresponding to \(\Delta^+_2 \), and

\[L_w(\omega_i) \cap x_2L_w(\omega_i) = \{ v \in L_w(\omega_i) \mid x_2v = v \}. \]

This implies

\[X^u \cap X_w = B^u x_v \cap Bx_w = B^u x_v \cap Bx_v, \]

where the most RHS is the definition of the Richardson variety in [16] (when \(J = \emptyset \)).

In case \(J = \emptyset \), [16] Proposition 5.3] equips \((X^v \cap X_w) \) a Frobenius splitting compatible with \((X^v \cap X_w)^{\prime} \)'s in its closure.

In case \(J \neq \emptyset \), the pullback of \((X^v \cap X_w)^{\prime} \) to \(\mathcal{X} \) is a (possible infinite) union of Richardson varieties of \(X \subset \mathcal{X} \). Therefore, we can transplant the Frobenius splitting \(\phi \) (that we have constructed through the Richardson varieties) on \(\mathcal{X} \) to a Frobenius splitting of \((X^v \cap X_w)^{\prime} \) compatible with \((X^v \cap X_w)^{\prime} \)'s in its closure through

\[\text{Fr}_* \mathcal{O}_{\mathcal{X}_j} \rightarrow (\pi_j)_* \text{Fr}_* \mathcal{O}_{\mathcal{X}} \xrightarrow{\pi_n \phi} (\pi_j)_* \mathcal{O}_{\mathcal{X}} \cong \mathcal{O}_{\mathcal{X}_j}. \]

Therefore, [2 Theorem 1.2.8] yields that the map

\[H^0(X^v \cap X_w, \mathcal{O}_{X^v \cap X_w}(\lambda)) \rightarrow H^0(\mathcal{X}^v \cap X, \mathcal{O}_{\mathcal{X}^v \cap X}(\lambda)) \]

is surjective for every \(w, v, v' \in W \) so that \(v \leq v' \) when \(\text{char} k > 0 \). Since the both of \((X^v \cap X_w) \) and \((X^v \cap X_w) \) are finite type schemes, [2 Corollary 1.6.3] lifts this surjection to the case of \(\text{char} k = 0 \). Hence, we deduce a surjection

\[H^0(X^v \cap X, \mathcal{O}_{X^v \cap X}(\lambda)) \rightarrow H^0(\mathcal{X}^v \cap X, \mathcal{O}_{\mathcal{X}^v \cap X}(\lambda)) \]

for every \(v, v' \in W \) so that \(v \leq v' \) by taking the inverse limits with respect to surjective inverse systems (so that they satisfies the Mittag-Leffler condition), regardless of the characteristic.

The space \(H^0(X^v, \mathcal{O}_{X^v}(\lambda)) \) is \(H \)-finite since

\[H^0(X^v, \mathcal{O}_{X^v}(\lambda)) \subset H^0(\mathcal{X}^v, \mathcal{O}_{\mathcal{X}^v}(\lambda)) \cong k[\mathcal{O}^v] \otimes_k k_{\lambda}. \]
In case \(v = e \), the LHS of (2.2) is given in Theorem 1.20, and the RHS is given in [19] (cf. Theorem 1.15). In particular, the LHS is the \(H \)-finite part of the RHS. Therefore, the commutative diagram

\[
\begin{array}{c}
H^0(\mathcal{X}, \mathcal{O}_\mathcal{X}(\lambda)) \to H^0(\mathcal{X} \cap \mathcal{X}, \mathcal{O}_{\mathcal{X} \cap \mathcal{X}}(\lambda)) \\
\downarrow \downarrow \downarrow \downarrow \downarrow \\
H^0(\mathcal{X}^v, \mathcal{O}_{\mathcal{X}^v}(\lambda)) \to H^0(\mathcal{X}^v \cap \mathcal{X}, \mathcal{O}_{\mathcal{X}^v \cap \mathcal{X}}(\lambda))
\end{array}
\] (2.3)

yields the surjectivity of the left vertical arrow, that implies our assertion.

Corollary 2.18. Let \(\mathcal{Y}, \mathcal{Y}' \) be reduced unions of thick Schubert varieties so that \(\mathcal{Y}' \subset \mathcal{Y} \). Then, the natural restriction map

\[
H^0(\mathcal{Y}, \mathcal{O}_\mathcal{Y}(\lambda)) \to H^0(\mathcal{Y}', \mathcal{O}_{\mathcal{Y}'}(\lambda))
\]

is surjective for each \(\lambda \in P_+ \).

Proof. We can formally replace \(\mathcal{X}^v \cap \mathcal{X}^w \) with reduced unions of them (that are compatibly split along the intersections by our canonical splitting) in the proof of Theorem 2.17 to deduce the assertion.

The following is a consequence of Theorem 2.17 as described in [13, §8] after Conjecture 8.10 (when \(g \) is of affine type).

Theorem 2.19. For each \(\lambda \in P_+ \), we have

\[
H^0(\mathcal{X}^w, \mathcal{O}_{\mathcal{X}^w}(\lambda)) \cong L^w(\lambda)^\vee.
\]

Proof. Combining Theorem 1.20 and Theorem 2.17, we have

\[
H^0(\mathcal{X}^w, \mathcal{O}_{\mathcal{X}^w}(\lambda))^\vee \subset L(\lambda).
\]

In addition, the integrality of \(\mathcal{X}^w \) implies that \(H^0(\mathcal{X}^w, \mathcal{O}_{\mathcal{X}^w}(\lambda))^\vee \) is cyclic as its covering module \(H^0(\mathcal{O}_{\mathcal{X}^w}, \mathcal{O}_{\mathcal{X}^w}(\lambda))^\vee \) is a \(U(n^-) \)-module with cyclic \(H \)-eigenvector \(v_{w,\lambda} \) by [20, Lemme 4]. These imply our result.

Theorem 2.20 (Kashiwara-Shimozono [13] Proposition 3.2). For each \(w \in W \), the scheme \(\mathcal{X}^w \) is normal.

Proof. The argument in [13] Proposition 3.2] is stated for symmetrizable \(g \) and \(\text{char } k = 0 \), but there are no place this assumption is used until [13] Proposition 3.2] in the main body of [13].

Corollary 2.21. For each \(w \in W \), we have an isomorphism

\[
\mathcal{X}^w \cong \text{Proj } R^w.
\]

In particular, \(\mathcal{X}^w \) is projectively normal.

Proof. The first assertion is the direct consequence of Theorem 2.19 since \(\mathcal{X}^w \) is a closed subscheme of \(\mathcal{X} \).

We prove the second assertion. Corollary 1.14 and Lemma 1.11 asserts that the ring \(R^w \) is generated by \(\bigoplus_{i \in I} L^w(\varpi_i)^\vee \). This verifies a sufficient condition of projective normality (see e.g. Hartshorne [5] Chapter II, Exercise 5.14] for singly graded case) in the presence of the normality of \(\mathcal{X}^w \). Therefore, we conclude the assertion.

18
The following result implies that \(\{L_w(\lambda)\}_{w \in W} \) forms a filtration of \(L(\lambda) \) for each \(\lambda \in P_+ \), that is previously recorded when \(g \) is of affine type (see [1] Theorem 6.23). An analogous result is known for \(\{L_w(\lambda)\}_{w \in W} \) by the works of many people (cf. Littelmann [15 §8] and Kumar [15 VIII]).

Corollary 2.22. For each finite subset \(S \subset W \), there exists another subset \(S' \subset W \) so that

\[
\bigcap_{w \in S} L_w(\lambda) = \sum_{v \in S'} L_v(\lambda).
\]

Proof. Let \(T \subset W \) and set \(X(T) := \bigcup_{w \in T} X^w \) (here the union is understood to be the reduced union). We have a sequence of maps

\[
O_X(\lambda) \to O_X(T)(\lambda) \to \bigoplus_{w \in T} O_X(\lambda).
\]

Thanks to Corollary 2.18 we deduce

\[
\bigoplus_{w \in T} L_w(\lambda) = \bigoplus_{w \in T} \Gamma(X, O_X(\lambda))^w \to \Gamma(X, O_X(T)(\lambda))^w \to \Gamma(X, O_X(\lambda))^w = L(\lambda).
\]

Moreover, the restriction of the composition maps to a direct summand \(L_w(\lambda) \) yields the standard embedding. Thus, we conclude

\[
\Gamma(X, O_X(T)(\lambda))^w = \sum_{w \in T} L_w(\lambda) \subset L(\lambda). \quad (2.4)
\]

Let us divide \(T = T_1 \sqcup T_2 \), and we set \(Y_i := \bigcup_{w \in T_i} X^w \) for \(i = 1, 2 \). By [2] Proposition 1.2.1], the scheme \(Y_i \) \((i = 1, 2) \) and the scheme-theoretic intersection \(Y := Y_1 \cap Y_2 \) are reduced.

Since \(Y \) is \(\hat{B}^- \)-stable, we have \(Y = X(T') \) for some \(T' \subset W \). We have a short exact sequence

\[
0 \to O_X(T')(\lambda) \to O_{Y_1}(\lambda) \oplus O_{Y_2}(\lambda) \to O_{Y_1 \cup Y_2}(\lambda) \to 0.
\]

Thanks to (2.4) and Corollary 2.18 we conclude a short exact sequence

\[
0 \to \sum_{w \in T} L_w(\lambda) \to \left(\sum_{w \in T_1} L_w(\lambda) \right) \oplus \left(\sum_{w \in T_2} L_w(\lambda) \right) \to \sum_{w \in T'} L_w(\lambda) \to 0
\]

of \(b^- \)-modules. In particular, the third term can be identified with the intersection of the direct summands of the second term inside \(L(\lambda) \). This proves the assertion by induction on \(|S| \) (since the case \(|S| = 1 \) is apparent from \(S = S' \)).

Acknowledgement: The author would like to thank Masaki Kashiwara and Shrawan Kumar for helpful correspondences, and Daisuke Sagaki for discussions. This research is supported in part by JSPS Grant-in-Aid for Scientific Research (B) 26287004.
References

[1] Susumu Ariki, Victor Kreiman, and Shunsuke Tsuchioka. On the tensor product of two basic representations of $U_v(sl_n)$. Adv. Math., 218(1):28–86, 2008.

[2] Michel Brion and Shrawan Kumar. Frobenius splitting methods in geometry and representation theory, volume 231 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2005.

[3] Susanna Fishel, Ian Grojnowski, and Constantin Teleman. The strong Macdonald conjecture and Hodge theory on the loop Grassmannian. Ann. of Math. (2), 168(1):175–220, 2008.

[4] A. Grothendieck. Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math., (4):228, 1960.

[5] Robin Hartshorne. Algebraic geometry. Springer-Verlag, 1977.

[6] I. Heckenberger and S. Kolb. On the Bernstein-Gelfand-Gelfand resolution for Kac-Moody algebras and quantized enveloping algebras. Transform. Groups, 12(4):647–655, 2007.

[7] Victor G. Kac. Infinite-dimensional Lie algebras. Cambridge University Press, Cambridge, third edition, 1990.

[8] Victor G. Kac and Dale H. Peterson. Regular functions on certain infinite-dimensional groups. In Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., pages 141–166. Birkhäuser Boston, Boston, MA, 1983.

[9] Masaki Kashiwara. The flag manifold of Kac-Moody Lie algebra. In Proceedings of the JAMI Inaugural Conference, supplement to Amer. J. Math. the Johns Hopkins University Press, 1989.

[10] Masaki Kashiwara. Kazhdan-Lusztig conjecture for a symmetrizable Kac-Moody Lie algebra. In The Grothendieck Festschrift, Vol. II, volume 87 of Progr. Math., pages 407–433. Birkhäuser Boston, Boston, MA, 1990.

[11] Masaki Kashiwara. On crystal bases of the \mathfrak{sl}_2-analogue of universal enveloping algebras. Duke Mathematical Journal, 63(2):465–516, 1991.

[12] Masaki Kashiwara. Crystal bases of modified quantized enveloping algebra. Duke Math. J., 73(2):383–413, 1994.

[13] Masaki Kashiwara and Mark Shimozono. Equivariant K-theory of affine flag manifolds and affine Grothendieck polynomials. Duke Math. J., 148(3):501–538, 2009.

[14] Masaki Kashiwara and Toshiyuki Tanisaki. Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. Duke Math. J., 77(1):21–62, 1995.

[15] Shrawan Kumar. Kac-Moody groups, their flag varieties and representation theory, volume 204 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2002.

[16] Shrawan Kumar and Karl Schwede. Richardson varieties have Kawamata log terminal singularities. Int. Math. Res. Not. IMRN, (3):842–864, 2014.

[17] Peter Littelmann. Paths and root operators in representation theory. Ann. of Math. (2), 142(3):499–525, 1995.

[18] Peter Littelmann. Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras. J. Amer. Math. Soc., 11(3):551–567, 1998.

[19] Olivier Mathieu. Formules de caractères pour les algèbres de Kac-Moody générales. Astérisque, 159–160:1–267, 1988.

[20] Olivier Mathieu. Construction d’un groupe de Kac-Moody et applications. Compositio Math., 69(1989):37–60, 1989.

[21] Jacques Tits. Algèbres de Kac-Moody et groupes associés. Annuaire du Collège de France (1980–1981) 75–87 et (1981–1982) 91–106.

[22] Xinwen Zhu. An introduction to affine Grassmannians and the geometric Satake equivalence. In Geometry of moduli spaces and representation theory. Amer. Math. Soc., Providence, RI, 2017.