A note on pricing of contingent claims under
\(G\)-expectation

Mingshang Hu \(^*\) \quad Shaolin Ji \(^\dagger\)

February 6, 2014

Abstract. In this paper, we study the pricing of contingent claims under \(G\)-expectation. In order to accomodate volatility uncertainty, the price of the risky security is supposed to governed by a general linear stochastic differential equation (SDE) driven by \(G\)-Brownian motion. Utilizing the recently developed results of Backward SDE driven by \(G\)-Brownian motion, we obtain the superhedging and suberhedging prices of a given contingent claim. Explicit results in the Markovian case are also derived.

Key words: Pricing of contingent claims, volatility uncertainty, \(G\)-Brownian motion, Backward SDEs

MSC-classification: 60H30, 91G20

1 Introduction

It is well known that the Black-Scholes formula depends on the underlying volatility. Since it is difficult to forecast the prospective volatility process in practice, it is natural to permit volatility uncertainty in contingent claim pricing models (see [1]).

Motivated by measuring risk and other financial problems of volatility uncertainty, Peng [19] introduced the notion of sublinear expectation space, which is a generalization of probability space. As a typical case, Peng studied a fully nonlinear expectation, called \(G\)-expectation \(\hat{E}[\cdot]\) (see [23] and the references therein), and the corresponding time-conditional expectation \(\hat{E}_t[\cdot]\) on a space of random variables completed under the norm \(\hat{E}[|\cdot|^p]^{1/p}\). Under this \(G\)-expectation framework (\(G\)-framework for short) a new type of Brownian motion called \(G\)-Brownian motion was constructed. The stochastic calculus with respect to the \(G\)-Brownian motion has been established. For a recent account and development of \(G\)-expectation theory and its applications we refer the reader to [5, 6, 13, 17, 18, 24, 25, 26, 28, 29].

There are other recent advances and their applications in stochastic calculus which consists of mutually singular probability measures. For instance, Denis...
and Martini [3] developed quasi-sure stochastic analysis and Soner et al. [27] have obtained a deep result of existence and uniqueness theorem of 2BSDE. Various stochastic control (game) problems and the applications in finance are studied in [10, 11, 12, 14, 15].

In this paper, we suppose that there are a riskless asset a risky security in a financial market. Different from the existing literatures (see [2, 6, 30, 31]), the price S_t to the risky security is governed by

$$dS_t = \eta_t S_t dt + \mu_t S_t d\langle B \rangle_t + \sigma_t S_t dB_t,$$

where B is a G-Brownian motion. For a given contingent claim $\xi \in L^2_G(\Omega)$ with maturity time T, we obtain its superhedging and suberhedging prices. Explicit results in the Markovian case are also derived. Our study bases on the recently developed BSDE driven by G-Brownian motion in [7] and [8]:

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds + \int_t^T g(s, Y_s, Z_s) d\langle B \rangle_s - \int_t^T Z_s dB_s - (K_T - K_t).$$

We mainly utilize the existence and uniqueness theorem in [7] and some important properties such as comparison theorem, Feynman-Kac formula and Girsanov transformation in [8].

The paper is organized as follows. In section 2, we formulate our contingent claim pricing problem. The main results are given in section 3. In the Appendix, we present some fundamental results on G-expectation theory and give proofs of the comparison theorem of SDE driven by G-Brownian motion and the Girsanov transformation in our context.

2 Statement of the problem

There are a riskless asset with return r_t and a risky security in a financial market. The price S_t to the risky securities is given by

$$dS_t = \eta_t S_t dt + \mu_t S_t d\langle B \rangle_t + \sigma_t S_t dB_t, \quad t \leq T,$$

(2.1)

where (η_t), (μ_t), (σ_t) and (σ_t^{-1}) are all bounded processes in $M^2_G(0, T)$. The readers may refer to the Appendix to find the basic definitions and fundamental results in the G-framework.

We denote the wealth process by (Y_t) and the amount of money invested in the security by (ψ_t) at time t. Then the wealth process follows

$$dY_t = r_t Y_t dt + \psi_t [\eta_t - r_t] dt + \mu_t d\langle B \rangle_t] + \psi_t \sigma_t dB_t.$$

(2.2)

Set $Z_t = \psi_t \sigma_t$, $b_t = \sigma_t^{-1}(\eta_t - r_t)$ and $d_t = \sigma_t^{-1} \mu_t$. Then (2.2) becomes

$$dY_t = r_t Y_t dt + b_t Z_t dt + d_t Z_t d\langle B \rangle_t + Z_t dB_t,$$

(2.3)

here Z is called the portfolio. In this note, we suppose that every $Z \in M^2_G(0, T)$ is an admissible portfolio.
At the initial time \(\tau \in [0, T] \), consider an investor with initial wealth \(\eta \in L^2_G(\Omega, \tau) \) and denote by \(Y^{\eta, Z, \tau} \) the unique solution of the following SDE:

\[
\begin{cases}
 dY^{\eta, Z, \tau}_t = r_t Y^{\eta, Z, \tau}_t \, dt + b_t Z_t \, dt + d_t Z_t \, dB_t, \quad t \in [\tau, T], \\
 Y^{\eta, Z, \tau}_\tau = \eta,
\end{cases}
\]

where \(Z \in M^2_G(\tau, T) \) is a given portfolio. For a contingent claim \(\xi \in L^\beta_G(\Omega, T) \) with \(\beta > 2 \), we define the superhedging set

\[
U_\tau = \{ \eta \in L^2_G(\Omega, \tau) : \exists Z \in M^2_G(\tau, T) \text{ such that } Y^{\eta, Z, \tau}_T \geq \xi, \text{ q.s.} \}
\]

and the superhedging price \(S_\tau = \text{ess inf}\{ \eta : \eta \in U_\tau \} \). Similarly define the subhedging set

\[
L_\tau = \{ \eta \in L^2_G(\Omega, \tau) : \exists Z \in M^2_G(0, T) \text{ such that } Y^{\eta, Z, \tau}_T \geq -\xi, \text{ q.s.} \}
\]

and the subhedging price \(S_\tau = \text{ess sup}\{ \eta : \eta \in L_\tau \} \).

Remark 2.1 For \(\tau = 0 \), \(U_0 = \mathbb{R} \), thus \(S_0 = \inf\{ y : y \in U_0 \} \) is well defined. For \(\tau > 0 \), \(S_\tau = \text{ess inf}\{ \eta : \eta \in U_\tau \} \) is defined in the following sense:

1. \(S_\tau \in L^2_G(\Omega, \tau) \);
2. For each \(\eta \in U_\tau \), we have \(\eta \geq S_\tau \) q.s.;
3. If \(\zeta \in L^2_G(\Omega, \tau) \) such that \(\zeta \leq \eta \) q.s. for each \(\eta \in U_\tau \), then \(S_\tau \geq \zeta \) q.s..

In this note, we will show that \(S_\tau \) is well-posed which is non-trivial due to the non-dominated probability measures in \(\mathcal{P} \). Similarly, \(S_\tau \) is well defined.

3 Main results

3.1 State price process

We consider the following \(G \)-BSDE:

\[
Y_t = \xi - \int_t^T (r_s Y_s + b_s Z_s) \, ds - \int_t^T d_s Z_s \, dB_s - \int_t^T Z_s \, dB_s - (K_T - K_t), \quad t \leq T.
\]

In order to introduce the state price process which can be used to solve the \(G \)-BSDE (3.1), we construct an auxiliary extended \(\tilde{G} \)-expectation space \((\tilde{\Omega}, L^2_{\tilde{G}}(\tilde{\Omega}), \tilde{\mathbb{E}}) \) with \(\tilde{\Omega} = C_0([0, T], \mathbb{R}^2) \) and

\[
\tilde{G}(A) = \frac{1}{2} \sup_{2^{\varphi} \leq v \leq 2^\varphi} \text{tr} \left[A \begin{pmatrix} v & 1 \\ 1 & v^{-1} \end{pmatrix} \right], \quad A \in S_2.
\]

Let \(\{(B_t, \tilde{B}_t)\} \) be the canonical process in the extended space (see \(\mathbb{K} \)). Note that \(\langle B, \tilde{B} \rangle_t = t \).
By the state price process we mean the unique solution $\pi = (\pi_t)$ to
\[
d\pi_t / \pi_t = -r_t dt - b_s dB_s - d_t dB_t, \quad \pi_0 = 1,
\]
(3.2)
which admits a closed form (see [8]): for $0 \leq t \leq T$,
\[
\pi_t = \exp\left\{ - \int_0^t (r_s + b_s ds) \right\} \exp\left\{ - \int_0^t b_s dB_s - \frac{1}{2} \int_0^t b_s^2 dB_s \right\}.
\]

By applying Itô’s formula to $\eta_t Y_t$, we obtain
\[
Y_t = \mathbb{E}_{\tilde{\pi}}^\pi\left[\frac{\pi_T}{\pi_t} \xi \right], \quad t \leq T.
\]
(3.3)

3.2 Hedging prices

Theorem 3.1 (Hedging prices) Let $\xi \in L^2_G(\Omega_T)$ be a contingent claim. Suppose that (r_t), (η_t), (μ_t), (σ_t) and (σ_t^{-1}) are bounded processes in $M^2_G(0, T)$. Then the superhedging and subhedging prices at any time τ are given by
\[
\bar{S}_\tau = \mathbb{E}_{\tilde{\pi}}^\pi\left[\frac{\pi_T}{\pi_\tau} \xi \right]
\]
and
\[
\underline{S}_\tau = -\mathbb{E}_{\tilde{\pi}}^\pi\left[-\frac{\pi_T}{\pi_\tau} \xi \right].
\]

Proof. By the definition of subhedging price, it is easy to get \underline{S}_τ from the superhedging price \bar{S}_τ. Thus we only need to prove the superhedging price.

Step 1: We first show that for any $\eta \in \mathcal{U}_\tau$,
\[
\eta \geq \mathbb{E}_{\tilde{\pi}}^\pi\left[\frac{\pi_T}{\pi_\tau} \xi \right], \quad \text{q.s.}
\]
If $\eta \in \mathcal{U}_\tau$, then there exists a $Z \in M^2_G(\tau, T)$ such that $Y^\eta_{\tau, T} = \xi$. Thus
\[
Y^\eta_{\tau, T} = Y^\eta_{\tau, T} - \int_{\tau}^T (r_s Y^\eta_{\tau, T} + b_s Z_s) ds - \int_{\tau}^T d_s Z_s dB_s - \int_{\tau}^T Z_s dB_s, \quad t \in [\tau, T].
\]
(3.4)

Let $(\tilde{Y}_t, \tilde{Z}_t, \tilde{K}_t)_{t \leq T}$ be the solution of the G-BSDE (3.1) corresponding to the terminal value $Y^\eta_{\tau, T}$. Then by (3.4) we get $(\tilde{Y}_t, \tilde{Z}_t, \tilde{K}_t) = (Y^\eta_{\tau, T}, Z_t, 0)$ for $t \in [\tau, T]$. Let $(\hat{Y}_t, \hat{Z}_t, \hat{K}_t)_{t \leq T}$ be the solution of the G-BSDE (3.1) corresponding to the terminal value ξ. Then by (3.3) we have $\hat{Y}_t = \mathbb{E}_{\tilde{\pi}}^\pi\left[\frac{\pi_T}{\pi_\tau} \xi \right]$ for $t \leq T$. Note that $Y^\eta_{\tau, T} \geq \xi$, then by the comparison theorem of G-BSDEs (see [8]) we obtain
\[
\hat{Y}_t = Y^\eta_{\tau, T} = \eta \geq \hat{Y}_t = \mathbb{E}_{\tilde{\pi}}^\pi\left[\frac{\pi_T}{\pi_\tau} \xi \right], \quad \text{q.s.}
\]

Step 2: We now prove that $\mathbb{E}_{\tilde{\pi}}^\pi\left[\frac{\pi_T}{\pi_\tau} \xi \right] = \tilde{Y}_\tau \in \mathcal{U}_\tau$.

For this purpose, we consider the following wealth process $(\tilde{Y}_t)_{t \in [\tau, T]}$ with the initial wealth \tilde{Y}_τ and portfolio \tilde{Z}:
\[
\tilde{Y}_t = \tilde{Y}_\tau + \int_\tau^t (r_s \tilde{Y}_s + b_s \tilde{Z}_s) ds + \int_\tau^t d_s \tilde{Z}_s dB_s + \int_\tau^t \tilde{Z}_s dB_s, \quad t \in [\tau, T].
\]
On the other hand, \((\hat{Y}_t, \hat{Z}_t, \hat{K}_t)_{t\leq T}\) is the solution of the G-BSDE \((3.1)\) corresponding to the terminal value \(\xi\). Thus we get

\[
\hat{Y}_t = \hat{Y}_\tau + \int_t^\tau (r_s \hat{Y}_s + b_s \hat{Z}_s)ds + \int_t^\tau d_s \hat{Z}_s dB_s + \int_t^\tau \hat{Z}_s dB_s + \hat{K}_t - \hat{K}_\tau, \quad t \in [\tau, T].
\]

Note that \(\hat{K}\) is a decreasing process, then by the comparison theorem of SDE (see Appendix) we obtain \(\hat{Y}_T \geq \hat{Y}_\tau = \xi\) q.s., which implies that \(\hat{Y}_\tau \in \mathcal{U}_\tau\).

This completes the proof. \(\blacksquare\)

Remark 3.2 In the special case where \(\xi\) can be perfectly hedged, that is, there exist \(y\) and \(Z\) such that \(\hat{Y}^{y,Z,0}_\tau = \xi\), then

\[
\mathfrak{F}_0 = \mathcal{S}_0 = \hat{E}_\tau^\pi [\frac{\pi_\tau}{\pi_\tau}] = -\hat{E}_\tau^\pi [-\frac{\pi_\tau}{\pi_\tau}]\).
\]

Remark 3.3 Vorbrink (2010) obtains a characterization of hedging prices under G-expectation. However, in place of our assumption, he adopts the strong assumption that \(\eta_t = r_t\) and \(\mu_t = 0\), so \(\pi_t = \exp\{-\int_0^t r_s ds\}\).

3.3 Some special cases

Suppose that \((r_t), (\sigma_t)\) and \((\sigma_t^{-1})\) are deterministic continuous functions on the time interval \([0, T]\). \(\xi = \Phi(S_T)\) is a contingent claim, where \(\Phi : \mathbb{R} \rightarrow \mathbb{R}\) is a local Lipschitz function, i.e., there exist a constant \(L > 0\) and an positive integer \(m\) such that

\[
|\Phi(x) - \Phi(x')| \leq L(1 + |x|^m + |x'|^m)|x - x'|.
\]

We consider the following G-BSDEs:

\[
Y_t = \Phi(S_T) - \int_t^T (r_s Y_s + b_s Z_s)ds - \int_t^T d_s Z_s dB_s - \int_t^T Z_s dB_s - (K_T - K_t),
\]

(3.5)

\[
\hat{Y}_t = -\Phi(S_T) - \int_t^T (r_s \hat{Y}_s + b_s \hat{Z}_s)ds - \int_t^T d_s \hat{Z}_s dB_s - \int_t^T \hat{Z}_s dB_s - (\hat{K}_T - \hat{K}_t).
\]

(3.6)

By (3.3) and Theorem 3.1, we have \(\mathfrak{F}_\tau = Y_\tau\) and \(\mathcal{S}_\tau = -\hat{Y}_\tau\).

By applying Itô’s formula to \(\exp\{-\int_0^t r_s ds\} Y_t\), we obtain that \(\hat{Y}_t = \exp\{-\int_0^t r_s ds\} Y_t\), \(\hat{Z}_t = \exp\{-\int_0^t r_s ds\} Z_t\) and \(\hat{K}_t = \int_0^t \exp\{-\int_0^u r_s ds\} dK_u\) is the solution of the following G-BSDE:

\[
\hat{Y}_t = \exp\{-\int_0^t r_s ds\} \Phi(S_T) - \int_t^T b_s \hat{Z}_s ds - \int_t^T d_s \hat{Z}_s dB_s - \int_t^T \hat{Z}_s dB_s - (\hat{K}_T - \hat{K}_t).
\]

(3.7)

By the Girsanov transformation (see Appendix), we can define a consistent sublinear expectation \((\hat{E}_t[\cdot])_{t\leq T}\) such that \(\hat{B}_t = B_t + \int_0^t b_s ds + \int_0^t d_s dB_s\) is
Thus we can get the following theorem.

Theorem 3.4 Suppose that \((r_t), (\sigma_t)\) and \((\sigma_t^{-1})\) are deterministic continuous functions on the time interval \([0, T]\). Let \(\xi = \Phi(S_T)\) be a contingent claim, where \(\Phi : \mathbb{R} \rightarrow \mathbb{R}\) is a local Lipschitz function. Then

\[
\overline{S}_\tau = \exp\{-\int_\tau^T r_s ds\} \mathbb{E}[x \exp(\int_\tau^T r_s ds - \frac{1}{2} \int_\tau^T \sigma_s^2 d\langle B \rangle_s + \int_\tau^T \sigma_s dB_s)]_{x=S_t}
\]

and

\[
\underline{S}_\tau = -\exp\{-\int_\tau^T r_s ds\} \mathbb{E}[-\Phi(x \exp(\int_\tau^T r_s ds - \frac{1}{2} \int_\tau^T \sigma_s^2 d\langle B \rangle_s + \int_\tau^T \sigma_s dB_s)))]_{x=S_t}.
\]

For each \((\tau, x) \in [0, T] \times \mathbb{R}\), we set

\[
u(\tau, x) = \exp\{-\int_\tau^T r_s ds\} \mathbb{E}[\Phi(\int_\tau^T r_s ds - \frac{1}{2} \int_\tau^T \sigma_s^2 d\langle B \rangle_s + \int_\tau^T \sigma_s dB_s))].
\]

Then \(\overline{S}_\tau = u(\tau, S_t)\) and \(u\) is the unique viscosity solution of the following PDE (see Theorem 4.5 in [8]):

\[
\begin{align*}
\begin{cases}
\partial_t u + G((\sigma_t x)^2 \partial^2_{xx} u) + r_t x \partial_x u - r_t u = 0, \\
u(T, x) = \Phi(x).
\end{cases}
\end{align*}
\]
Example 3.5 We study the super and subhedging prices of a European call option. Let the parameters in equation (2.1) be constants, i.e.

$$\eta_t := \eta, \mu_t := \mu$$ and $$\sigma_t := 1$$.

Then the price process $$(S_t)$$ becomes

$$dS_t = \eta S_t dt + \mu S_t dB_t + S_t dB_t$$.

Suppose further that $$r_t \equiv r$$ and $$r$$ is a constant. Thus $$b_t = \eta - r$$, $$d_t = \mu$$, and the state price is

$$\pi_t = \exp\{-\mu(\eta - r)t\} \exp\{-rt - \frac{1}{2}(\eta - r)^2 (\langle B_t \rangle_t)\}$$.

Consider a European call option on the risky security that matures at date $$T$$ and has exercise price $$K$$. The super and subhedging prices at $$t$$ can be written in the form $$\tau(S_t, t)$$ and $$\varsigma(S_t, t)$$ respectively. At the maturity date,

$$\tau(S_T, T) = c(S_T, T) = \max[0, S_T - K] = \Phi(S_T)$$.

By Theorem 3.1,

$$\tau(S_t, t) = \tilde{E}_{\pi_t}^\mathbb{G} \left[\pi_T \Phi(S_T) \right]$$

and

$$\varsigma(S_t, t) = -\tilde{E}_{\pi_t}^\mathbb{G} \left[-\pi_T \Phi(S_T) \right]$$.

By the PDE approach, we obtain the following equations:

$$\partial_t \tau + \sup_{\sigma^2 \leq \sigma^2} \left\{ \frac{1}{2} \sigma^2 S^2 \partial_{SS}^2 \tau \right\} + r S \partial_S \tau - rc = 0, \quad \tau(S, T) = \Phi(S)$$

and

$$\partial_t \varsigma - \sup_{\sigma^2 \leq \sigma^2} \left\{ -\frac{1}{2} \sigma^2 S^2 \partial_{SS}^2 \varsigma \right\} + r S \partial_S \varsigma - r\varsigma = 0, \quad \varsigma(S, T) = \Phi(S)$$.

Because $$\Phi(\cdot)$$ is convex, so is $$\tau(\cdot, t)$$. It follows that the respective suprema in the above equations are achieved at $$\sigma^2$$ and $$\sigma^2$$, and we obtain

$$\partial_t \tau + \frac{1}{2} \sigma^2 S^2 \partial_{SS}^2 \tau + r S \partial_S \tau - rc = 0, \quad \tau(S, T) = \Phi(S)$$

and

$$\partial_t \varsigma + \frac{1}{2} \sigma^2 S^2 \partial_{SS}^2 \varsigma + r S \partial_S \varsigma - r\varsigma = 0, \quad \varsigma(S, T) = \Phi(S)$$.

Therefore,

$$\tau(S_t, t) = E^\mathbb{P}\left[\frac{\pi_T}{\pi_t} \Phi(S_T) \mid \mathcal{F}_t \right]$$

and

$$\varsigma(S_t, t) = E^\mathbb{P}\left[\frac{\pi_T}{\pi_t} \Phi(S_T) \mid \mathcal{F}_t \right]$$.

In other words, the super and subhedging prices are the Black-Scholes prices with volatilities $$\sigma$$ and $$\sigma$$ respectively.

Remark 3.6 In the above example, we find that the super and subhedging prices are independent of $$\eta$$ and $$\mu$$.
4 Appendix

We review some basic notions and results of G-expectation, the related spaces of random variables and the backward stochastic differential equations driven by a G-Browninan motion. The readers may refer to [7], [19], [20], [21], [22], [23] for more details.

Definition 4.1 Let Ω be a given set and let H be a vector lattice of real valued functions defined on Ω, namely $c \in H$ for each constant c and $|X| \in H$ if $X \in H$. H is considered as the space of random variables. A sublinear expectation \hat{E} on H is a functional $\hat{E} : H \rightarrow \mathbb{R}$ satisfying the following properties: for all $X,Y \in H$, we have

(a) Monotonicity: If $X \geq Y$ then $\hat{E}[X] \geq \hat{E}[Y]$;
(b) Constant preservation: $\hat{E}[c] = c$;
(c) Sub-additivity: $\hat{E}[X + Y] \leq \hat{E}[X] + \hat{E}[Y]$;
(d) Positive homogeneity: $\hat{E}[\lambda X] = \lambda \hat{E}[X]$ for each $\lambda \geq 0$.

(Ω, H, \hat{E}) is called a sublinear expectation space.

Definition 4.2 Let X_1 and X_2 be two n-dimensional random vectors defined respectively in sublinear expectation spaces $(\Omega_1, H_1, \hat{E}_1)$ and $(\Omega_2, H_2, \hat{E}_2)$. They are called identically distributed, denoted by $X_1 \overset{d}{=} X_2$, if $\hat{E}_1[|\varphi(X_1)|] = \hat{E}_2[|\varphi(X_2)|]$, for all $\varphi \in C_{l,Lip}(\mathbb{R}^n)$, where $C_{l,Lip}(\mathbb{R}^n)$ is the space of real continuous functions defined on \mathbb{R}^n such that

$$|\varphi(x) - \varphi(y)| \leq C(1 + |x|^k + |y|^k)|x-y| \text{ for all } x,y \in \mathbb{R}^n,$$

where k and C depend only on φ.

Definition 4.3 In a sublinear expectation space (Ω, H, \hat{E}), a random vector $Y = (Y_1, \cdots, Y_n)$, $Y_i \in H$, is said to be independent of another random vector $X = (X_1, \cdots, X_m)$, $X_i \in H$ under \hat{E}, denoted by $Y \perp X$, if for every test function $\varphi \in C_{l,Lip}(\mathbb{R}^m \times \mathbb{R}^n)$ we have $\hat{E}[\varphi(X,Y)] = \hat{E}[\hat{E}[\varphi(X,Y)|x=X]]$.

Definition 4.4 (G-normal distribution) A d-dimensional random vector $X = (X_1, \cdots, X_d)$ in a sublinear expectation space (Ω, H, \hat{E}) is called G-normally distributed if for each $a,b \geq 0$ we have

$$aX + b\bar{X} \overset{d}{=} \sqrt{a^2 + b^2}X,$$

where \bar{X} is an independent copy of X, i.e., $\bar{X} \overset{d}{=} X$ and $\bar{X} \perp X$. Here the letter G denotes the function

$$G(A) := \frac{1}{2} \hat{E}[(AX, X)] : \mathbb{S}_d \rightarrow \mathbb{R},$$

where \mathbb{S}_d denotes the collection of $d \times d$ symmetric matrices.
Peng \[22\] showed that \(X = (X_1, \ldots, X_d) \) is \(G \)-normally distributed if and only if for each \(\varphi \in C_{l.Lip}(\mathbb{R}^d) \), \(u(t, x) := \hat{E}[\varphi(x + \sqrt{t}X)], \ (t, x) \in [0, \infty) \times \mathbb{R}^d \), is the solution of the following \(G \)-heat equation:

\[
\partial_t u - G(D_x^2 u) = 0, \ u(0, x) = \varphi(x).
\]

The function \(G(\cdot) : \mathbb{S}_d \rightarrow \mathbb{R} \) is a monotonic, sublinear mapping on \(\mathbb{S}_d \) and \(G(A) = \frac{1}{2}\hat{E}[(AX, X)] - \frac{1}{2}|A|\hat{E}[|X|^2] =: \frac{1}{2}|A|\sigma^2 \) implies that there exists a bounded, convex and closed subset \(\Gamma \subset \mathbb{S}_d^+ \) such that

\[
G(A) = \frac{1}{2} \sup_{\gamma \in \Gamma} \operatorname{tr}[\gamma A],
\]

where \(\mathbb{S}_d^+ \) denotes the collection of nonnegative elements in \(\mathbb{S}_d \).

In this paper, we only consider non-degenerate \(G \)-normal distribution, i.e., there exists some \(\sigma^2 > 0 \) such that \(G(A) - G(B) \geq \sigma^2 \operatorname{tr}[A - B] \) for any \(A \geq B \).

Definition 4.5

i) Let \(\Omega_T = C_0([0, T]; \mathbb{R}^d) \), the space of real valued continuous functions on \([0, T]\) with \(\omega_0 = 0 \), be endowed with the supremum norm and let \(B_t(\omega) = \omega_t \) be the canonical process. Set

\[
\mathcal{H}_T^d := \{ \varphi(B_{t_1}, \ldots, B_{t_n}) : n \geq 1, t_1, \ldots, t_n \in [0, T], \varphi \in C_{l.Lip}(\mathbb{R}^{d \times n}) \}.
\]

Let \(G : \mathbb{S}_d \rightarrow \mathbb{R} \) be a given monotonic and sublinear function. \(G \)-expectation is a sublinear expectation defined by

\[
\hat{E}[\varphi] = \hat{E}[\varphi(\sqrt{t_1 - t_0} \xi_1, \ldots, \sqrt{t_m - t_{m-1}} \xi_m)],
\]

for all \(\varphi = \varphi(B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \ldots, B_{t_m} - B_{t_{m-1}}), \) where \(\xi_1, \ldots, \xi_n \) are identically distributed \(d \)-dimensional \(G \)-normally distributed random vectors in a sublinear expectation space \((\hat{\Omega}, \hat{\mathcal{H}}, \hat{\mathbb{E}})\) such that \(\xi_{i+1} \) is independent of \((\xi_1, \ldots, \xi_i)\) for every \(i = 1, \ldots, m - 1 \). The corresponding canonical process \(B_t = (B^t)^{1}_{i=1} \) is called a \(G \)-Brownian motion.

ii) Let us define the conditional \(G \)-expectation \(\hat{E}_t \) of \(\xi \in \mathcal{H}_T^d \), knowing \(\mathcal{H}_T^0 \), for \(t \in [0, T] \). Without loss of generality we can assume that \(\xi \) has the representation \(\xi = \varphi(B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \ldots, B_{t_m} - B_{t_{m-1}}) \) with \(t = t_i \), for some \(1 \leq i \leq m \), and we put

\[
\hat{E}_t[\varphi(B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \ldots, B_{t_m} - B_{t_{m-1}})] = \hat{\varphi}(B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \ldots, B_{t_i} - B_{t_{i-1}}),
\]

where

\[
\hat{\varphi}(x_1, \ldots, x_i) = \hat{E}[\varphi(x_1, \ldots, x_i, B_{t_{i+1}} - B_{t_i}, \ldots, B_{t_m} - B_{t_{m-1}})]
\]

Define \(\| \xi \|_{p,G} = (\hat{E}[|\xi|^p])^{1/p} \) for \(\xi \in \mathcal{H}_T^0 \) and \(p \geq 1 \). Then for all \(t \in [0, T] \), \(\hat{E}_t[\cdot] \) is a continuous mapping on \(\mathcal{H}_T^0 \) w.r.t. the norm \(\| \cdot \|_{1,G} \). Therefore it can be extended continuously to the completion \(L^1_G(\Omega_T) \) of \(\mathcal{H}_T^0 \) under the norm \(\| \cdot \|_{1,G} \).

Let \(L^{ip}(\Omega_T) := \{ \varphi(B_{t_1}, \ldots, B_{t_n}) : n \geq 1, t_1, \ldots, t_n \in [0, T], \varphi \in C_{b,Lip}(\mathbb{R}^{d \times n}) \} \), where \(C_{b,Lip}(\mathbb{R}^{d \times n}) \) denotes the set of bounded Lipschitz functions on \(\mathbb{R}^{d \times n} \).
Denis et al. [4] proved that the completions of $C_b(\Omega_T)$ (the set of bounded continuous function on Ω_T), \mathcal{H}^0_T and $L_{ip}(\Omega_T)$ under $\| \cdot \|_{p,G}$ are the same and we denote them by $L^0_{G}(\Omega_T)$.

For each fixed $a \in \mathbb{R}^d$, $B_t^a = (a, B_t)$ is a 1-dimensional G_a-Brownian motion, where $G_a(\alpha) = \frac{1}{2}(\sigma^2 \alpha + \sigma^2 \alpha - \sigma^2 \alpha)$, $\sigma^2 = 2G(a a^T)$, $\sigma^2 = -2G(a a^T)$. Let $\pi_i^N = \{t_0, \ldots, t_i^N\}$, $N = 1, 2, \ldots$, be a sequence of partitions of $[0, t]$ such that $\mu(\pi_i^N) = \max\{|t_{i+1} - t_i^N| : i = 0, \ldots, N - 1\} \to 0$, the quadratic variation process of B^a is defined by

$$\langle B^a \rangle_t = \lim_{\mu(\pi_i^N) \to 0} \sum_{j=0}^{N-1} (B_{t_{j+1}}^a - B_{t_j}^a)^2.$$

For each fixed $a, \bar{a} \in \mathbb{R}^d$, the mutual variation process of B^a and $B^{\bar{a}}$ is defined by

$$\langle B^a, B^{\bar{a}} \rangle_t = \frac{1}{4}[(B^{a+\bar{a}})_t - (B^{a-\bar{a}})_t].$$

Definition 4.6 Let $M^0_G(0, T)$ be the collection of processes in the following form: for a given partition $\{t_0, \cdots, t_N\} = \pi_T$ of $[0, T]$,

$$\eta_t(\omega) = \sum_{j=0}^{N-1} \xi_j(\omega) I_{[t_j, t_{j+1})}(t),$$

where $\xi_i \in L_{ip}(\Omega_T)$, $i = 0, 1, 2, \cdots, N - 1$. For $p \geq 1$ and $\eta \in M^0_G(0, T)$, let $\|\eta\|_{M^p_G} = \{\mathbb{E}[(\int_0^T |\eta_s|^2 ds)^{p/2}]\}^{1/p}$, $\|\eta\|_{M^0_G} = \{\mathbb{E}[(\int_0^T |\eta_s|^p ds)]\}^{1/p}$ and denote by $H^p_G(0, T)$, $M^p_G(0, T)$ the completions of $M^0_G(0, T)$ under the norms $\| \cdot \|_{H^p_G}$, $\| \cdot \|_{M^p_G}$ respectively.

Theorem 4.7 ([4, 5]) There exists a weakly compact set $\mathcal{P} \subset \mathcal{M}_1(\Omega_T)$, the set of probability measures on $(\Omega_T, \mathcal{B}(\Omega_T))$, such that

$$\mathbb{E}[\xi] = \sup_{P \in \mathcal{P}} E_P[\xi] \quad \text{for all } \xi \in \mathcal{H}^0_T.$$

\mathcal{P} is called a set that represents \mathbb{E}.

Let \mathcal{P} be a weakly compact set that represents \mathbb{E}. For this \mathcal{P}, we define capacity

$$c(A) := \sup_{P \in \mathcal{P}} P(A), \quad A \in \mathcal{B}(\Omega_T).$$

A set $A \subset \Omega_T$ is polar if $c(A) = 0$. A property holds “quasi-surely” (q.s. for short) if it holds outside a polar set. In the following, we do not distinguish two random variables X and Y if $X = Y$ q.s.

Definition 4.8 A process $\{M_t\}$ with values in $L^1_G(\Omega_T)$ is called a G-martingale if $\mathbb{E}_s[M_t] = M_s$ for any $s \leq t$.
Let $S^0_G(0, T) = \{h(t, B_{t_1+}, \cdots, B_{t_n+}): t_1, \ldots, t_n \in [0, T], h \in C_b, \text{Lip}(\mathbb{R}^{n+1})\}$. For $p \geq 1$ and $\eta \in S^0_G(0, T)$, set $\|\eta\|_{S^p_G} = \{\mathbb{E}[\sup_{t \in [0, T]} |\eta_t|^p]\}^{\frac{1}{p}}$. Denote by $S^p_G(0, T)$ the completion of $S^0_G(0, T)$ under the norm $\| \cdot \|_{S^p_G}$.

We consider the following type of G-BSDEs (in this paper we always use Einstein convention):

\[
Y_t = \xi + \int_t^T f(s, Y_s, Z_s)ds + \int_t^T g_{ij}(s, Y_s, Z_s)d\langle B^i, B^j \rangle_s - \int_t^T Z_sdB_s - (K_T - K_t),
\]

where

\[f(t, \omega, y, z), g_{ij}(t, \omega, y, z) : [0, T] \times \Omega_T \times \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}\]

satisfy the following properties:

\[(H1)\] There exists some $\beta > 1$ such that for any $y, z, f(\cdot, \cdot, y, z), g_{ij}(\cdot, \cdot, y, z) \in M^\beta_G(0, T)$;

\[(H2)\] There exists some $L > 0$ such that

\[|f(t, y, z) - f(t, y', z')| + \sum_{i,j=1}^d |g_{ij}(t, y, z) - g_{ij}(t, y', z')| \leq L(|y - y'| + |z - z'|).
\]

For simplicity, we denote by $\mathfrak{S}^\alpha_G(0, T)$ the collection of processes (Y, Z, K) such that $Y \in S^\alpha_G(0, T), Z \in H^\alpha_G(0, T; \mathbb{R}^d), K$ is a decreasing G-martingale with $K_0 = 0$ and $K_T \in L^\alpha_G(\Omega_T)$.

Definition 4.9 Let $\xi \in L^\beta_G(\Omega_T)$ and f satisfy (H1) and (H2) for some $\beta > 1$. A triplet of processes (Y, Z, K) is called a solution of equation 4.1 if for some $1 < \alpha \leq \beta$ the following properties hold:

(a) $(Y, Z, K) \in \mathfrak{S}^\alpha_G(0, T)$;

(b) $Y_t = \xi + \int_t^T f(s, Y_s, Z_s)ds + \int_t^T g_{ij}(s, Y_s, Z_s)d\langle B^i, B^j \rangle_s - \int_t^T Z_sdB_s - (K_T - K_t)$.

Theorem 4.10 Assume that $\xi \in L^\beta_G(\Omega_T)$ and f, g_{ij} satisfy (H1) and (H2) for some $\beta > 1$. Then equation 4.1 has a unique solution (Y, Z, K). Moreover, for any $1 < \alpha < \beta$ we have $Y \in S^\alpha_G(0, T), Z \in H^\alpha_G(0, T; \mathbb{R}^d)$ and $K_T \in L^\alpha_G(\Omega_T)$.

11
4.1 Comparison theorem of SDEs

Let $\tau \in [0, T]$ and $\eta \in L^2_G(\Omega, \mathcal{F}, \mathbb{P})$, we consider the following type SDE:

$$X_t = \eta + \int_\tau^t b(s, X_s)ds + \int_\tau^t h(s, X_s)d(B)_s + \int_\tau^t \sigma(s, X_s)dB_s + V_t - V_\tau,$$ \hspace{1cm} (4.2)

where b, h, σ are given functions satisfying $b(\cdot, x), h(\cdot, x), \sigma(\cdot, x) \in M^2_G(\tau, T)$ for each $x \in \mathbb{R}$ and the Lipschitz condition, i.e.,

$$|b(t, x) - b(t, x')| + |h(t, x) - h(t, x')| + |\sigma(t, x) - \sigma(t, x')| \leq K|x - x'|;$$

$(V_t)_{t \in [\tau, T]}$ is a given RCLL process such that $\hat{E}[\sup_{t \in [\tau, T]} |V_t|^2] < \infty$. Peng [23] proved that the above SDE has a unique solution $X \in M^2_G(\tau, T)$.

Theorem 4.11 Let $(X^i_t)_{t \in [\tau, T]}$, $i = 1, 2$, be the solutions of the following SDEs:

$$X^i_t = \eta^i + \int_\tau^t b_i(s, X^i_s)ds + \int_\tau^t h_i(s, X^i_s)d(B)_s + \int_\tau^t \sigma(s, X^i_s)dB_s + V^i_t - V^i_\tau.$$ \hspace{1cm} (4.3)

If $\eta^1 \geq \eta^2$, $b_1 \geq b_2$, $h_1 \geq h_2$, $V^1_t - V^2_t$ is an increasing process, then $X^1_t \geq X^2_t$.

Proof. We have

$$\hat{X}_t = \hat{\eta} + \int_\tau^t \hat{b}_sds + \int_\tau^t \hat{h}_sd(B)_s + \int_\tau^t \hat{\sigma}_sdB_s + \hat{V}_t - \hat{V}_\tau,$$

where $\hat{X}_t = X^1_t - X^2_t$, $\hat{\eta} = \eta^1 - \eta^2$, $\hat{b}_s = b_1(s, X^1_s) - b_2(s, X^2_s)$, $\hat{h}_s = h_1(s, X^1_s) - h_2(s, X^2_s)$, $\hat{\sigma}_s = \sigma(s, X^1_s) - \sigma(s, X^2_s)$, $\hat{V}_t = V^1_t - V^2_t$. For each given $\varepsilon > 0$, we can choose Lipschitz function $l(\cdot)$ such that $l_{[-\varepsilon, \varepsilon]} \leq l(x) \leq l_{[-2\varepsilon, 2\varepsilon]}$. Thus we have

$$b_1(s, X^1_s) - b_1(s, X^2_s) = (b_1(s, X^1_s) - b_2(s, X^2_s))l(\hat{X}_s) + \hat{b}_s \hat{X}_s,$$

where $\hat{b}_s = (1 - l(\hat{X}_s))(b_1(s, X^1_s) - b_2(s, X^2_s))\hat{X}_s^{-1} \in M^2_G(\tau, T)$ such that $|\hat{b}_s| \leq K$.

It is easy to verify that

$$|b_1(s, X^1_s) - b_1(s, X^2_s))l(\hat{X}_s)| \leq K|\hat{X}_s|l(\hat{X}_s) \leq 2K\varepsilon.$$

Thus we can get

$$\hat{b}_s = \hat{b}_s \hat{X}_s + m_s + m^\varepsilon_s, \hat{h}_s = h^\varepsilon_s \hat{X}_s + n_s + n^\varepsilon_s, \hat{\sigma}_s = \sigma^\varepsilon_s \hat{X}_s + l^\varepsilon_s,$$

where $|m_s| \leq 2K\varepsilon$, $|n_s| \leq 2K\varepsilon$, $|l^\varepsilon_s| \leq 2K\varepsilon$, $m_s = b_1(s, X^1_s) - b_2(s, X^2_s) \geq 0$ and $n_s = h_1(s, X^1_s) - h_2(s, X^2_s) \geq 0$. Let Γ^ε_t be the solution of the following SDE:

$$\Gamma^\varepsilon_t = 1 - \int_\tau^t \hat{b}_s \Gamma^\varepsilon_s ds - \int_\tau^t \hat{h}_s \Gamma^\varepsilon_s d(B)_s - \int_\tau^t \hat{\sigma}_s \Gamma^\varepsilon_s dB_s - \int_\tau^t \int_\tau^t \Gamma^\varepsilon_s dB_s.$$

By applying It\'o's formula to \hat{X}_t, we obtain that

$$\hat{X}_t \geq (\Gamma^\varepsilon_t)^{-1} \left[\int_\tau^t m^\varepsilon_s \Gamma^\varepsilon_s ds + \int_\tau^t (n^\varepsilon_s - \sigma^\varepsilon_s l^\varepsilon_s) \Gamma^\varepsilon_s dB_s + \int_\tau^t l^\varepsilon_s \Gamma^\varepsilon_s dB_s \right].$$

Note that $\Gamma^\varepsilon_t = \exp(-\int_\tau^t \hat{b}_s \Gamma^\varepsilon_s ds - \int_\tau^t \hat{h}_s \Gamma^\varepsilon_s d(B)_s - \int_\tau^t \hat{\sigma}_s \Gamma^\varepsilon_s dB_s)$, thus we can get $\hat{X}_t \geq 0$ by letting $\varepsilon \to 0$. \square
4.2 Girsanov transformation

We consider the following G-BSDE:
\[
Y_t = \xi + \int_t^T b_s Z_s ds + \int_t^T d_s Z_s dB_s - \int_t^T Z_s d\langle B \rangle_s - (K_T - K_t),
\]
where \((b_t)_{t \leq T}\) and \((d_t)_{t \leq T}\) are bounded processes. For each \(\xi \in L^1_G(\Omega_T)\) with \(\beta > 1\), define
\[
\mathbb{E}_t[\xi] = Y_t.
\]
By Theorem 5.1 in \([8]\), we know that \(\mathbb{E}_t[\cdot]\) is a consistent sublinear expectation.

Theorem 4.12 ([8]) Let \((b_t)_{t \leq T}\) and \((d_t)_{t \leq T}\) be bounded processes. Then

1. \(\hat{B}_t := B_t - \int_0^t b_s ds - \int_0^t d_s d\langle B \rangle_s\) is a G-Brownian motion under \(\mathbb{E}\);
2. for any decreasing G-martingale \(K\) with \(K_0 = 0\) and \(\hat{K}_T \in L^\beta_G(\Omega_T)\) for some \(\beta > 1\), we have \(\mathbb{E}_t[K_T] = \hat{K}_t\);
3. the quadratic variation process of \(\hat{B}\) under \(\mathbb{E}\) equals to \(\langle B \rangle\).

Proof. (1) and (2) can be found in \([8]\). We only prove (3). For each fixed \(t > 0\), it is easy to check that
\[
\lim_{n \to \infty} \mathbb{E}[\sum_{i=0}^{n-1} |\hat{B}_{\frac{i+1}{n}} - \hat{B}_{\frac{i}{n}}|^2 - \langle B \rangle_t^\beta] = 0.
\]

By Proposition 3.7 in \([7]\), we can get \(\mathbb{E}[\sum_{i=0}^{n-1} |\hat{B}_{\frac{i+1}{n}} - \hat{B}_{\frac{i}{n}}|^2 - \langle B \rangle_t^\beta] \to 0\) as \(n \to \infty\) for some \(\beta \in (1, 2)\). On the other hand, \(\mathbb{E}[\sum_{i=0}^{n-1} |\hat{B}_{\frac{i+1}{n}} - \hat{B}_{\frac{i}{n}}|^2 - \langle \hat{B} \rangle_t^\beta] \to 0\) as \(n \to \infty\). Thus \(\langle \hat{B} \rangle_t = \langle B \rangle_t\) under \(\mathbb{E}\). \(\square\)

References

[1] Avellaneda, M., Levy, A. and Paras A. (1995). Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance 2, 73-88.

[2] Beibner, P. (2012). Coherent price systems and uncertainty-neutral valuation, working paper.

[3] Denis, L. and Martini, C. (2006) A Theoretical Framework for the Pricing of Contingent Claims in the Presence of Model Uncertainty, The Annals of Applied Probability, vol. 16, No. 2, pp 827-852.

[4] Denis, L., Hu, M, and Peng S.(2011) Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes, Potential Anal., 34: 139-161.
[5] L. Epstein and S. Ji, *Ambiguous Volatility, Possibility and Utility in Continuous Time*, (2011), arXiv:1103.1652.

[6] L. Epstein and S. Ji, *Ambiguous volatility and asset pricing in continuous time*, Rev. Finan. Stud., (2013), forthcoming.

[7] Hu, M., Ji, S., Peng, S. and Song, Y. (2012) *Backward Stochastic Differential Equations Driven by G-Brownian Motion*, arXiv:1206.5889v1 [math.PR].

[8] Hu, M., Ji, S., Peng, S. and Song, Y. (2012) *Comparison Theorem, Feynman-Kac Formula and Girsanov Transformation for BSDEs Driven by G-Brownian Motion*, arXiv:1212.5403 [math.PR].

[9] Hu, M. and Peng, S.(2009) *On representation theorem of G-expectations and paths of G-Brownian motion*. Acta Math. Appl. Sin. Engl. Ser., 25,(3): 539-546, 2009.

[10] A. Matoussi, L. Piozin and D. Possamai, *Second-order BSDEs with general reflection and Dynkin games under uncertainty*, (2012), arXiv:1212.0476.

[11] A. Matoussi, D. Possamai and C. Zhou, *Robust Utility Maximization in Non-dominated Models with 2BSDE, the Uncertain Volatility Model*, (2012), To appear in Mathematical Finance.

[12] A. Neufeld and M. Nutz, *Superreplication under Volatility Uncertainty for Measurable Claims*, (2012), preprint.

[13] M. Nutz, *Random G-Expectations*, (2010), To appear in Annals of Applied Probability.

[14] M. Nutz, *A Quasi-Sure Approach to the Control of Non-Markovian Stochastic Differential Equations*, Electronic Journal of Probability, 17(2012), pp. 1-23.

[15] M. Nutz and J. Zhang, *Optimal Stopping under Adverse Nonlinear Expectation and Related Games*, (2012), preprint.

[16] Osuka, E. (2011) *Girsanov’s formula for G-Brownian motion*, arXiv:1106.2387v1 [math.PR].

[17] Peng, S. (2004) *Filtration consistent nonlinear expectations and evaluations of contingent claims*, Acta Mathematicae Applicatae Sinica, 20(2) 1–24.

[18] Peng, S. (2005) *Nonlinear expectations and nonlinear Markov chains*, Chin. Ann. Math. 26B(2) 159–184.

[19] Peng, S.(2007) *G-expectation, G-Brownian Motion and Related Stochastic Calculus of Itô type*, Stochastic analysis and applications, 541-567, Abel Symp., 2, Springer, Berlin.

[20] Peng, S.(2007) *G-Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty*, arXiv:0711.2834v1 [math.PR].
[21] Peng, S. (2008) *Multi-Dimensional G-Brownian Motion and Related Stochastic Calculus under G-Expectation*, Stochastic Processes and their Applications, 118(12): 2223-2253.

[22] Peng, S. (2008) *A New Central Limit Theorem under Sublinear Expectations*, arXiv:0803.2656v1 [math.PR].

[23] Peng, S. (2010) *Nonlinear Expectations and Stochastic Calculus under Uncertainty*, arXiv:1002.4546v1 [math.PR].

[24] Peng, S. (2010) *Backward Stochastic Differential Equation, Nonlinear Expectation and Their Applications*, in Proceedings of the International Congress of Mathematicians Hyderabad, India, 2010.

[25] Peng, S., Song, Y. and Zhang, J. (2012) *A Complete Representation Theorem for G-martingales*, Preprint, arXiv:1201.2629v1.

[26] Soner, M., Touzi, N. and Zhang, J. (2011) *Martingale Representation Theorem under G-expectation*, Stochastic Processes and their Applications, 121: 265-287.

[27] Soner M, Touzi N, Zhang J. (2012) *Wellposedness of Second Order Backward SDEs*, Probability Theory and Related Fields, 153(1-2): 149-190.

[28] Song, Y. (2011) *Some properties on G-evaluation and its applications to G-martingale decomposition*, Science China Mathematics, 54(2): 287-300.

[29] Song, Y. (2012) *Uniqueness of the representation for G-martingales with finite variation*, Electron. J. Probab. 17 no. 24 1-15.

[30] Vorbrink, J. 2010. Financial Markets with Volatility Uncertainty. http://arxiv.org/abs/1012.1535

[31] Xu, J., Shang, H, and Zhang, B. (2011) *A Girsanov type theorem under G-framework*, Stoch. Anal. Appl., 29: 386-406.