ALEXANDROV’S APPROACH TO THE MINKOWSKI PROBLEM

S. S. KUTATELADZE

Abstract. This article is dedicated to the centenary of the birth of Aleksandr D. Alexandrov (1912–1999). His functional-analytical approach to the solving of the Minkowski problem is examined and applied to the extremal problems of isoperimetric type with conflicting goals.

The Mathematics Subject Classification, produced jointly by the editorial staffs of Mathematical Reviews and Zentralblatt für Mathematik in 2010, has Section 53C45 “Global surface theory (convex surfaces à la A. D. Aleksandrov).” This article surveys some mathematics of the sort.

Good mathematics starts as a first love. If great, it turns into adult sex and happy marriage. If ordinary, it ends in dumping, cheating or divorce. If awesome, it becomes eternal. Alexandrov’s mathematics is great (see [1]–[3]). To demonstrate, inspect his solution of the Minkowski problem.

Alexandrov’s mathematics is alive, expanding and flourishing for decades. Dido’s problem in the today’s setting is one of the examples.

THE SPACE OF CONVEX BODIES

A convex figure is a compact convex set. A convex body is a solid convex figure. The Minkowski duality identifies a convex figure S in \mathbb{R}^N and its support function $S(z) := \sup \{(x, z) \mid x \in S\}$ for $z \in \mathbb{R}^N$. Considering the members of \mathbb{R}^N as singletons, we assume that \mathbb{R}^N lies in the set \mathcal{V}_N of all compact convex subsets of \mathbb{R}^N.

The Minkowski duality makes \mathcal{V}_N into a cone in the space $C(S_{N-1})$ of continuous functions on the Euclidean unit sphere S_{N-1}, the boundary of the unit ball \mathbb{B}_N. The linear span $[\mathcal{V}_N]$ of \mathcal{V}_N is dense in $C(S_{N-1})$, bears a natural structure of a vector lattice and is usually referred to as the space of convex sets.

The study of this space stems from the pioneering breakthrough of Alexandrov in 1937 and the further insights of Radström, Hörmander, and Pinsker.

LINEAR INEQUALITIES OVER CONVEX SURFACES

A measure μ linearly majorizes or dominates a measure ν on S_{N-1} provided that to each decomposition of S_{N-1} into finitely many disjoint Borel sets U_1, \ldots, U_m there are measures μ_1, \ldots, μ_m with sum μ such that every difference $\mu_k - \nu|_{U_k}$ annihilates all restrictions to S_{N-1} of linear functionals over \mathbb{R}^N. In symbols, we write $\mu \gg_{R^N} \nu$.

Reshetnyak proved in 1954 (cp. [4]) that

$$\int_{S_{N-1}} pd\mu \geq \int_{S_{N-1}} pd\nu$$

Date: August 30, 2012.
for each sublinear functional p on \mathbb{R}^N if $\mu \gg_{\mathbb{R}^N} \nu$. This gave an important trick for generating positive linear functionals over various classes of convex surfaces and functions.

Choquet’s Order

A measure μ affinely majorizes or dominates a measure ν, both given on a compact convex subset Q of a locally convex space X, provided that to each decomposition of ν into finitely many summands ν_1, \ldots, ν_m there are measures μ_1, \ldots, μ_m whose sum is μ and for which every difference $\mu_k - \nu_k$ annihilates all restrictions to Q of affine functionals over X. In symbols, $\mu \gg_{\text{Aff}(Q)} \nu$.

Cartier, Fell, and Meyer proved in 1964 (cp. [5]) that

$$\int_Q f d\mu \geq \int_Q f d\nu$$

for each continuous convex function f on Q if and only if $\mu \gg_{\text{Aff}(Q)} \nu$. An analogous necessity part for linear majorization was published in 1969 (cp. [6]–[8]).

Decomposition Theorem

Majorization is a vast subject (cp. [9]). The general form for many cones is as follows (cp. [11]):

Assume that H_1, \ldots, H_N are cones in a vector lattice X. Assume further that f and g are positive linear functionals on X. The inequality

$$f(h_1 \vee \cdots \vee h_N) \geq g(h_1 \vee \cdots \vee h_N)$$

holds for all $h_k \in H_k$ ($k := 1, \ldots, N$) if and only if to each decomposition of g into a sum of N positive terms $g = g_1 + \cdots + g_N$ there is a decomposition of f into a sum of N positive terms $f = f_1 + \cdots + f_N$ such that

$$f_k(h_k) \geq g_k(h_k) \quad (h_k \in H_k; \ k := 1, \ldots, N).$$

Alexandrov Measures

Alexandrov proved the unique existence of a translate of a convex body given its surface area function, thus completing the solution of the Minkowski problem. Each surface area function is an Alexandrov measure. So we call a positive measure on the unit sphere which is supported by no great hypersphere and which annihilates singletons.

Each Alexandrov measure is a translation-invariant additive functional over the cone \mathcal{V}_N. The cone of positive translation-invariant measures in the dual $C'((S^N-1))$ of $C(S^N-1)$ is denoted by \mathcal{A}_N.

Blaschke’s Sum

Given $\xi, \eta \in \mathcal{V}_N$, the record $\xi =_{\mathbb{R}^N} \eta$ means that ξ and η are equal up to translation or, in other words, are translates of one another. So, $=_{\mathbb{R}^N}$ is the associate equivalence of the preorder $\geq_{\mathbb{R}^N}$ on \mathcal{V}_N of the possibility of inserting one figure into the other by translation.

The sum of the surface area measures of ξ and η generates the unique class $\xi \# \eta$ of translates which is referred to as the Blaschke sum of ξ and η.
There is no need in discriminating between a convex figure, the coset of its translates in $\mathcal{V}_N/\mathbb{R}^N$, and the corresponding measure in \mathcal{A}_N.

Comparison Between the Structures

Objects	Minkowski’s Structure	Blaschke’s Structure
cone of sets	$\mathcal{V}_N/\mathbb{R}^N$	\mathcal{A}_N
dual cone	\mathcal{V}_N^*	\mathcal{A}_N^*
positive cone	\mathcal{A}_N	\mathcal{A}_N
linear functional	$V_1(\mathbb{S}_{N-1}^*, \cdot)$, breadth $V_1^{1/N}(\cdot)$	$V_1(\cdot, \mathbb{S}_{N-1}^*)$, area $V^{(N-1)/N}(\cdot)$
concave functional	$V_1(\mathbb{S}_{N-1}^*, \cdot)$, convex program $V_1(\cdot, \mathbb{S}_{N-1}^*)$, function $V_1(\cdot, \mathbb{S}_{N-1})$	
operator constraint	$V_1(\mathbb{S}_{N-1}^*, \cdot)$, inclusion-like $V_1(\cdot, \mathbb{S}_{N-1}^*)$, inclusion-like $V_1(\cdot, \mathbb{S}_{N-1})$	
Lagrange’s multiplier	$V_1(\mathbb{S}_{N-1}^*, \cdot)$, gradient $V_1(\cdot, \mathbb{S}_{N-1})$, gradient $V_1(\cdot, \mathbb{S}_{N-1})$	

The Natural Duality

Let $C(S_{N-1})/\mathbb{R}^N$ stand for the factor space of $C(S_{N-1})$ by the subspace of all restrictions of linear functionals on \mathbb{R}^N to S_{N-1}. Let $[\mathcal{A}_N]$ be the space $\mathcal{A}_N - \mathcal{A}_N$ of translation-invariant measures, in fact, the linear span of the set of Alexandrov measures.

$C(S_{N-1})/\mathbb{R}^N$ and $[\mathcal{A}_N]$ are made dual by the canonical bilinear form

$$
\langle f, \mu \rangle = \frac{1}{N} \int_{S_{N-1}} f \, d\mu
$$

where $f \in C(S_{N-1})/\mathbb{R}^N$, $\mu \in [\mathcal{A}_N]$.

For $\xi \in \mathcal{V}_N/\mathbb{R}^N$ and $\eta \in \mathcal{A}_N$, the quantity $\langle \xi, \eta \rangle$ coincides with the mixed volume $V_1(\eta, \xi)$.

Solution of Minkowski’s Problem

Alexandrov observed that the gradient of $V(\cdot)$ at ξ is proportional to $\mu(\xi)$ and so minimizing $\langle \cdot, \mu \rangle$ over $\{V = 1\}$ will yield the equality $\mu = \mu(\xi)$ by the Lagrange multiplier rule. But this idea fails since the interior of \mathcal{V}_N is empty. The fact that DC-functions are dense in $C(S_{N-1})$ is not helpful at all.

Alexandrov extended the volume to the positive cone of $C(S_{N-1})$ by the formula $V(f) := \langle f, \mu(\text{co}(f)) \rangle$ with $\text{co}(f)$ the envelope of support functions below f. The ingenious trick settled all for the Minkowski problem. This was done in 1938 but still is one of the summits of convexity.

In fact, Alexandrov suggested a functional analytical approach to extremal problems for convex surfaces. To follow it directly in the general setting is impossible without the above description of the polar cones. The obvious limitations of the Lagrange multiplier rule are immaterial in the case of convex programs. It should be emphasized that the classical isoperimetric problem is not a Minkowski convex program in dimensions greater than 2. The convex counterpart is the Urysohn problem of maximizing volume given integral breadth $[10]$. The constraints of inclusion type are convex in the Minkowski structure, which opens way to complete solution of new classes of Urysohn-type problems (cp. $[12]$).
The External Urysohn Problem

Among the convex figures, circumscribing \(x_0 \) and having integral breadth fixed, find a convex body of greatest volume.

A feasible convex body \(\bar{x} \) is a solution to the external Urysohn problem if and only if there are a positive measure \(\mu \) and a positive real \(\bar{\alpha} \in \mathbb{R}_+ \) satisfying

1. \(\bar{\alpha} \mu(\bar{x}(\bar{z})) \gg \mathbb{R}^N \mu(\bar{x}) + \mu \);
2. \(V(\bar{x}) + \frac{1}{N} \int_{S_N-1} \bar{x} d\mu = \bar{\alpha} V_1(\bar{z}, \bar{x}) \);
3. \(\bar{x}(z) = x_0(z) \) for all \(z \) in the support of \(\mu \).

Solutions

If \(x_0 = \bar{z} N - 1 \) then \(\bar{x} \) is a spherical lens and \(\mu \) is the restriction of the surface area function of the ball of radius \(\bar{\alpha}^{1/(N-1)} \) to the complement of the support of the lens to \(S_{N-1} \).

If \(x_0 \) is an equilateral triangle then the solution \(\bar{x} \) looks as follows:

\[\bar{x} \]

\(\bar{x} \) is the union of \(x_0 \) and three congruent slices of a circle of radius \(\bar{\alpha} \) and centers \(O_1, O_2, O_3 \), while \(\mu \) is the restriction of \(\mu(x_0) \) to the subset of \(S_1 \) comprising the endpoints of the unit vectors of the shaded zone.

Symmetric Solutions

This is the general solution of the internal Urysohn problem inside a triangle in the class of centrally symmetric convex figures:

\[\text{Symmetric Solutions} \]

Current Hyperplanes

Find two convex figures \(\bar{x} \) and \(\bar{y} \) lying in a given convex body \(x_0 \), separated by a hyperplane with the unit outer normal \(z_0 \), and having the greatest total volume of \(\bar{x} \) and \(\bar{y} \) given the sum of their integral breadths.
A feasible pair of convex bodies \bar{x} and \bar{y} solves the internal Urysohn problem with a current hyperplane if and only if there are convex figures x and y and positive reals $\bar{\alpha}$ and $\bar{\beta}$ satisfying

1. $\bar{x} = x \# \bar{\alpha} N$;
2. $\bar{y} = y \# \bar{\alpha} N$;
3. $\mu(x) \geq \bar{\beta} z_{0}$, $\mu(y) \geq \bar{\beta} z_{0}$;
4. $\bar{x}(z) = x_{0}(z)$ for all $z \in \text{spt}(x) \setminus \{z_{0}\}$;
5. $\bar{y}(z) = y_{0}(z)$ for all $z \in \text{spt}(y) \setminus \{-z_{0}\}$, with $\text{spt}(x)$ standing for the support of x, i.e. the support of the surface area measure $\mu(x)$ of x.

Is Dido’s Problem Solved?

From a utilitarian standpoint, the answer is definitely in the affirmative. There is no evidence that Dido experienced any difficulties, showed indecisiveness, and procrastinated the choice of the tract of land. Practically speaking, the situation in which Dido made her decision was not as primitive as it seems at the first glance.

Assume that Dido had known the isoperimetric property of the circle and had been aware of the symmetrization processes that were elaborated in the nineteenth century. Would this knowledge be sufficient for Dido to choose the tract of land? Definitely, it would not. The real coastline may be rather ragged and craggy. The photo snaps of coastlines are exhibited as the most visual examples of fractality. From a theoretical standpoint, the free boundary in Dido’s planar problem may be nonrectifiable, and so the concept of area as the quantity to be optimized is itself rather ambiguous. Practically speaking, the situation in which Dido made her decision was not as primitive as it seems at the first glance. Choosing the tract of land, Dido had no right to trespass the territory under the control of the local sovereign. She had to choose the tract so as to encompass the camps of her subjects and satisfy some fortification requirements. Clearly, this generality is unavailable in the mathematical models known as the classical isoperimetric problem.

Nowadays there is much research aiming at the problems with conflicting goals (cp., for instance, [13]). One of the simplest and most popular approach is based on the concept of Pareto-optimum.

Pareto Optimality

Consider a bunch of economic agents each of which intends to maximize his own income. The Pareto efficiency principle asserts that as an effective agreement of the conflicting goals it is reasonable to take any state in which nobody can increase his income in any way other than diminishing the income of at least one of the other fellow members. Formally speaking, this implies the search of the maximal elements of the set comprising the tuples of incomes of the agents at every state; i.e., some vectors of a finite-dimensional arithmetic space endowed with the coordinatewise order. Clearly, the concept of Pareto optimality was already abstracted to arbitrary ordered vector spaces.

By way of example, consider a few multiple criteria problems of isoperimetric type. For more detail, see [14].

Vector Isoperimetric Problem

Given are some convex bodies $\eta_{1}, \ldots, \eta_{M}$. Find a convex body x encompassing a given volume and minimizing each of the mixed volumes $V_{1}(x, \eta_{1}), \ldots, V_{1}(x, \eta_{M})$.
In symbols,
\[x \in \mathcal{A}_N; \ \hat{p}(\bar{x}) \geq \hat{p}(\bar{y}); \ \langle (y_1, \bar{x}), \ldots, (y_M, \bar{x}) \rangle \rightarrow \inf. \]

Clearly, this is a Slater regular convex program in the Blaschke structure.

Each Pareto-optimal solution \(\bar{x} \) of the vector isoperimetric problem has the form
\[\bar{x} = \alpha_1 y_1 + \cdots + \alpha_m y_m, \]
where \(\alpha_1, \ldots, \alpha_m \) are positive reals.

The Leidenfrost Problem

Given the volume of a three-dimensional convex figure, minimize its surface area and vertical breadth.

By symmetry everything reduces to an analogous plane two-objective problem, whose every Pareto-optimal solution is by 2 a stadium, a weighted Minkowski sum of a disk and a horizontal straight line segment.

A plane spheroid, a Pareto-optimal solution of the Leidenfrost problem, is the result of rotation of a stadium around the vertical axis through the center of the stadium.

Internal Urysohn Problem with Flattening

Given are some convex body \(x_0 \in \mathcal{V}_N \) and some flattening direction \(\bar{z} \in S_{N-1} \).

Considering \(x \subset x_0 \) of fixed integral breadth, maximize the volume of \(x \) and minimize the breadth of \(x \) in the flattening direction:
\[x \in \mathcal{V}_N; \ x \subset x_0; \ \langle x, \bar{z}_N \rangle \geq \langle \bar{x}, \bar{z}_N \rangle; \ (-p(x), b_{\bar{z}}(x)) \rightarrow \inf. \]

For a feasible convex body \(\bar{x} \) to be Pareto-optimal in the internal Urysohn problem with the flattening direction \(\bar{z} \) it is necessary and sufficient that there be positive reals \(\alpha, \beta \) and a convex figure \(\bar{x} \) satisfying
\[\mu(\bar{x}) = \mu(x) + \alpha \mu(\bar{z}_N) + \beta (\bar{z} + \bar{z} - \bar{z}); \]
\[\bar{x}(z) = x_0(z) \quad (z \in \text{spt}(\mu)). \]

Rotational Symmetry

Assume that a plane convex figure \(x_0 \in \mathcal{V}_2 \) has the symmetry axis \(A_{\bar{z}} \) with generator \(\bar{z} \). Assume further that \(x_{00} \) is the result of rotating \(x_0 \) around the symmetry axis \(A_{\bar{z}} \) in \(\mathbb{R}^3 \).

\[y \in \mathcal{V}_3; \]
\[y \text{ is a convex body of rotation around } A_{\bar{z}}; \]
\[y \supset x_{00}; \ \langle \bar{z}_N, y \rangle \geq \langle \bar{z}_N, \bar{x} \rangle; \]
\[(-p(y), b_{\bar{z}}(y)) \rightarrow \inf. \]

Each Pareto-optimal solution is the result of rotating around the symmetry axis a Pareto-optimal solution of the plane internal Urysohn problem with flattening in the direction of the axis.
Soap Bubbles

Little is known about the analogous problems in arbitrary dimensions. An especially place is occupied by the result of Porogelov (cp. who demonstrated that the “soap bubble” in a tetrahedron has the form of the result of the rolling of a ball over a solution of the internal Urysohn problem, i.e. the weighted Blaschke sum of a tetrahedron and a ball.

The External Urysohn Problem with Flattening

Given are some convex body \(x_0 \in \mathcal{V}_N \) and flattening direction \(z \in \mathbb{S}^{N-1} \). Considering \(x \supset x_0 \) of fixed integral breadth, maximize volume and minimizing breadth in the flattening direction: \(x \in \mathcal{V}_N; \ x \supset x_0; \ \langle x, z^N \rangle \geq \langle x_0, z^N \rangle; \ (-p(x), b_z(x)) \to \inf \).

For a feasible convex body \(\bar{x} \) to be a Pareto-optimal solution of the external Urysohn problem with flattening it is necessary and sufficient that there be positive reals \(\alpha, \beta \) and a convex figure \(x \) satisfying

\[
\nu_1 + \cdots + \nu_m = \mu_1 + \cdots + \mu_m \]

where \(\mu_k \) and \(\nu_k \) are Borel measures on \(\mathbb{S}^{N-1} \) such that

\[
\bar{x}_k(z) = y_k(z) \quad (z \in \text{spt}(\mu_k)).
\]

Optimal Convex Hulls

Given \(y_1, \ldots, y_m \) in \(\mathbb{R}^N \), place \(x_k \) within \(y_k \), for \(k = 1, \ldots, m \), maximizing the volume of each of the \(x_1, \ldots, x_m \) and minimize the integral breadth of their convex hull:

\[
x_k \subset y_k; \ (-p(x_1), \ldots, -p(x_m), \langle \text{co}(x_1, \ldots, x_m), z^N \rangle) \to \inf .
\]

For some feasible \(\bar{x}_1, \ldots, \bar{x}_m \) to have a Pareto-optimal convex hull it is necessary and sufficient that there be \(\alpha_1, \ldots, \alpha_m \) not vanishing simultaneously and positive Borel measures \(\mu_1, \ldots, \mu_m \) and \(\nu_1, \ldots, \nu_m \) on \(S^{N-1} \) such that

\[
\alpha_k \mu_k(\bar{x}_k) = \mu_k + \nu_k \quad (k = 1, \ldots, m).
\]

References

[1] Alexandrov A. D. Selected Works. Part 1: Selected Scientific Papers. Ed. by Reshetnyak Yu. G. and Kutateladze S. S. Amsterdam: Gordon and Breach, 1996.
[2] Alexandrov A. D. Convex Polyhedra. English translation by Dairbekov N. S., Kutateladze S. S., and Sossinsky A. B.. Comments and bibliography by Zalgaller V. A. Appendices by Shor L. A. and Volkov Yu. A.. Berlin etc.: Springer-Verlag, 2005.
[3] Alexandrov A. D. Selected Works. Part II: Intrinsic Geometry of Convex Surfaces. Ed. by Kutateladze S. S., Boca Raton: Chapman & Hall/CRC, 2006.
[4] Reshetnyak Yu. G. On the Length and Swerve of a Curve and the Area of a Surface, (Ph. D. Thesis, unpublished), Leningrad State University (1954).
[5] Cartier P., Fell J. M., and Meyer P. A. “Comparaison des mesures poertées par un ensemble convexe compact,” Bull. Soc. Math. France, 94, 435–445 (1964).
[6] Kutateladze S. S. “Positive linear functionals over convex surfaces,” Optimal Planning, 14, 80–87 (1969).
[7] Kutateladze S. S. “Positive Minkowski-linear functionals over convex surfaces,” Soviet Math. Dokl., 11:3, 767–769 (1970).
[8] Dinges H. “Decomposition in ordered semigroups,” J. Funct. Anal, 5:3, 436-488 (1970).
[9] Marshall A. W. and Olkin I. *Inequalities: Theory of Majorization and Its Applications*. New York etc.: Academic Press (1979).
[10] Urysohn P. S. “Interdependence between the integral breadth and volume of a convex body,” Mat. Sb., 31:3, 477–486 (1924).
[11] Kutateladze S. S. “Choquet boundaries in K-spaces,” Russian Math. Surveys, 30:4, 115–155 (1975).
[12] Kutateladze S. S. “Interaction of order and convexity,” Appl. Indust. Math., 1:4, 399–405 (2007).
[13] Figueira J., Greco S., and Ehrgott M. *Multiple Criteria Decision Analysis. State of the Art Surveys*. Boston: Springer Science + Business Media, Inc. (2005).
[14] Kutateladze S. S. “Multiobjective problems of convex geometry,” Siberian Math. J., 50:5, 887–897 (2009).
[15] Pogorelov A. V. “Imbedding a ‘soap bubble’ into a tetrahedron,” Math. Notes, 56:2, 824–826 (1994).

Sobolev Institute of Mathematics
4 Koptyug Avenue
Novosibirsk, 630090 RUSSIA

E-mail address: sskut@member.ams.org