Prospects for using *Origanum Syriacum* (L.) as a source of antimicrobial agents

Ranim Mohamad, Ramadan Mussa, Svetlana N Suslina

Department of General Pharmaceutical and Biomedical Technology, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia

Abstract

Origanum syriacum (*O. syriacum*) (L.) belongs to Group B of the genus *Origanum* from (*Lamiaceae*), which is rich in essential oils that exhibit antimicrobial efficacy, anti-inflammatory efficacy, antioxidant activity, and antitumor efficacy. These processing activities are because of its richness in carvacrol and Thymol. In this article, we will focus on *O. syriacum*, discussing the antimicrobial efficacy for its essential oil and extracts, in addition, cast light on mechanism of essential oil antimicrobial action. This study was conducted from March 2019 to February 2021. We have analyzed the results of studies on antimicrobial efficacy of a plant *O. syriacum* in the PubMed, Google Scholar, Elsevier over the past 15 years using keywords. *O. syriacum* essential oil and its extracts have an extensive antimicrobial efficacy give it a great importance in pharmaceutical and medical purposes.

Key words: Antimicrobial effectiveness, carvacrol, essential oils, *Origanum Syriacum* (L.), thymol

INTRODUCTION

Antibiotic resistance is one of the most difficult problems facing the world today; there is currently a shortage of effective antibiotics, which requires the development of new antibiotics and to search for alternative solutions.[1,2] The efficacy of thousands of plants against bacteria has known since ancient times. However, few extracts have been studied on humans and animals to ensure their safety and effectiveness.[3] This study sheds light on *Origanum syriacum* (*Lamiaceae*) plant belongs to Group B of the genus *Origanum* grows in the Mediterranean region.[4-6] Estimated plant height 30–90 cm, leaves ovate, acute or obtuse, the veins are visible at the bottom surface of the leaf, the leaves are covered with glandular popper, Corolla white, the plant blooms in spring.[7] *O. syriacum* is used in alternative medicine for processing respiratory diseases: a cough remedy, antispasmodic, carminative, painkiller, anthelmintic, treat respiratory infections, and other bacterial, fungal, and viral diseases.[8,9] Recent studies have also proven its antioxidant effect, anticancer, antibacterial, antifungal, and anti-acetylcholine oxidant.[3,10-18] Efficacy against colon cancer and breast cancer was also confirmed.[19] These medicinal properties are because of its richness in carvacrol (it can be up to 79.8% from the content of essential oils) and Thymol (it can be up to 83, 8%).[20] Moreover, 11 flavonoids were detected in the plant. Many studies recently have confirmed its antibacterial effectiveness.[21] We found that most of the studies were done on essential oil, and very few were on alcoholic extracts, we will present the types of bacteria fungicide and viruses that *O. syriacum* has shown...
to be effective against them, with mention of the plant’s parts used in these studies and focus on the mechanism of essential oil antimicrobial action.

MATERIALS AND METHODS

We have analyzed the results of microbial laboratory studies on antimicrobial efficacy of a plant *O. syriacum* in the PubMed database, Google Scholar and Elsevier over the past 10 years using keywords (*O. syriacum* (L.)), essential oils, *O. syriacum* antimicrobial activity, *Origanum*, *Origanum* antibacterial activity) and also studied the literature data for the last 15 on the uses of the plant in folk medicine. This study was conducted from March 2019 to February 2021.

RESULTS

Antibacterial activity

The antimicrobial efficacy of the essential oils is caused by phenolic and monoterpene components, the most important of them are carvacrol and thymol and carvacrol has been reported to be one of the most effective antimicrobials.[22,23] The antimicrobial efficacy of these oils is because of their hydrophobic structure and chemical composition, as hydrophobic properties facilitate the penetration of these substances into the bacterial cell membrane, which leads to a change in the arrangement of lipids and the cytoplasmic membrane, it leads to a change in the cell membrane, which, in turn, leads to alter in the chemical and physical properties of the cell membrane, an increasing of proton passive flux across the cell membrane, electron flow in the cell, active transport, and coagulation in the cell contents.[24-25] Importance of hydroxyl group and its effective role in the antimicrobial activity return to these two compounds was also proved.[26] A delocalized electron system allowing hydroxy group to release proton.[18] Moreover, many studies confirmed the synergistic effect between essential oil components.[24-27] *O. syriacum* effects on many kinds of Gram-positive and Gram-negative bacteria, most of the studies were done on essential oil and very few studies used alcoholic extracts.[28,29] Table 1 shows the types of bacteria that *O. syriacum* proved to be effective on them, the plant part that was used in the study, the extract or the essential oil.

Antifungal activity

O. syriacum essential oil is used in traditional medicine to treat skin fungus.[30] Its essential oil and ethanol extracts showed efficacy against a large number of fungi.[12,14,36,37] [Table 2]. Several studies confirmed that the cytotoxic nature of essential oils is due to their lipophilic nature that enables them to penetrate the cell wall and cell membrane. Membranes damage mitochondria ceased the formation of acetyl-CoA, which leads to inhibition of aflatoxin biosynthesis and coagulate the cytoplasm, thus

Bacteria	Parts	Extract or oil	Reference
B. brevis	Leaves	Essential oil	[28]
L. innocua	Entire plant	Essential oil	[29]
E. faecalis	Leaves	Essential oil	[28]
M. smegmatis	Leaves	Essential oil	[30]
M. luteus	Leaves	Essential oil	[28]
B. subtilis	Leaves	Essential oil	[28]
B. megaterium	Leaves	Essential oil	[28]
S. aureus	Entire plants	Essential oil	[29]
	Aerial parts	Essential oil	[30]
	-	Essential oil	[14]
	-	Ethanol extracts 70%	[31]
P. aeruginosa	Leaves	Essential oil	[28]
	Entire plants	Essential oil	[29]
	Arial parts	Essential Oil	[30]
	-	Ethanol extracts 70%	[22]
E. coli	Leaves	Essential Oil	[28]
	Entire plants	Essential oil	[29]
	Arial parts	Essential oil, hexane extracts.	[30]
	-	Ethanol extracts	[32]
	-	Ethanol extracts 70%	[31]
K. oxytoxa	Entire plants	Essential oil	[29]
Y. enterocolitica	Entire plants	Essential oil	[29]
B. melitensis	Arial parts	Essential oil	[33]
Y. enterocolitica	Arial parts	Essential oil	[34]
E. coli O157:H7	Arial parts	Essential oil	[34]
K. pneumonia	Leaves	Essential oil	[28]
	Arial parts	Essential oil	[34]
	-	Ethanol extracts 70%	[31]
S. pneumonia	Arial parts	Essential oil, hexane extracts, dichloromethane	[30]
M. catarrhalis	Arial parts	Essential oil	[14]
B. cereus	Arial parts	Essential oil	[30]
		Essential oil, hexane extracts, dichloromethane	[30]

Contd...
Mohamad, et al.: Prospects for using Origanum Syriacum (L.) as a source of antimicrobial agents

Table 1: Contd...

Bacteria	Parts	Extract or oil	Reference
A. lwoffii	Aerial parts	Essential oil, hexane extracts, dichloromethane	[30]
E. aerogenes	Aerial parts	Essential oil	[30]
P. mirabilis	Aerial parts	Essential oil	[30]
C. perfringens	Aerial parts	Essential oil, hexane extracts, dichloromethane	[30]
S. typhi	-	Ethanol extracts 70%	[31]
P. vulgaris	-	Ethanol extracts 70%	[31]
P. acnes	Leaves	Methanol extracts	[34]

Table 2: The essential oils and ethanol extracts from origanum syriacum showed efficacy against many types of fungi

Fungus	Part	Oil/extract	Reference
A. niger	Leaves	Essential oil	[36]
A. flavus	Leaves	Essential oil	[30]
A. fumigatus	-	Essential oil	[12]
F. oxysporum	Leaves	Essential oil	[36]
Penicillium species	Leaves	Essential oil	[36]
C. albicans	Leaves	Ethanol extracts	[37]
S. cerevisiae	Leaves	Ethanol extracts	[37]
	Leaves	Essential oil	[12]

B. brevis: Bacillus brevis, L. innocua: Listeria innocua, E. faecalis: Enterococcus faecalis, M. smegmatis: Mycobacterium smegmatis, M. luteus: Micrococcus luteus, B. subtilis: Bacillus subtilis, B. megaterium: Bacillus megaterium, S. aureus: Staphylococcus aureus, P. aeruginosa: Pseudomonas aeruginosa, E. coli: Escherichia coli, K. oxytoca: Klebsiella oxytoca, Y. enterocolitica: Yersinia enterocolitica, B. melitensis: Brucella melitensis, K. pneumonia: Klebsiella pneumonia, S. pneumonia: Streptococcus pneumonia, M. catarrhalis: Moraxella catarrhalis, B. cereus: Bacillus cereus, A. lwoffii: Acinetobacter lwoffii, E. aerogenes: Enterobacter aerogenes, P. mirabilis: Proteus mirabilis, C. perfringens: Clostridium perfringens, S. typhi: Salmonella typhi, P. vulgaris: Proteus vulgaris, P. acnes: Propionibacterium acnes

Many studies have confirmed that most antibiotics, especially aminoglycosides, have efficacy against many bacteria in vitro, and they are not effective against the intracellular pathogens. Activity of thymol on Salmonella typhimurium has explained in vivo because thymol action fights bacteria is through crossing the cell membrane. Thymol is able to protect macrophages from death due to oxidative stress. Thymol and carvacrol act in various roles against many bacteria species, thymol more toxic against Staphylococcus aureus than carvacol, but carvacol is the most toxic against Escherichia coli. It is important to remember that there are two types of the plant: one contains mainly carvacrol whereas the other contains mainly thymol. Studies have confirmed the importance of harvest time, type of soil, and the effect of climate on the quantity and quality of the essential oil.

CONCLUSION

We can suggest that O. syriacum essential oil and its extracts have an extensive antimicrobial efficacy give it a great importance in pharmaceutical and medical purposes.

Acknowledgment
This article has been supported by the RUDN University Strategic Academic Leadership Program.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health 2017;10:369-78.
2. Church NA, McKillip JL. Antibiotic resistance crisis: Challenges and imperatives. Biologia 2021;19:1-6.
3. Sen B. Potentiality and possibility of Medicinal Plants on Ayurvedic Principle in prevention and treatment of COVID-19. J Ayurvedic Health 2017;10:369-78.
4. Kimer A, Sewilam H, Fouad WM, Suloma A. Sustainable production of Origanum syriacum L. using fish effluents improved plant growth, yield, and essential oil composition. Helijon 2021;7:e06423.
5. Al Hafi M, El Beyrouthy M, Ouaini N, Stien D, Rutledge D, Chaillou S. Chemical composition and antimicrobial activity of Origanum libanoticum, Origanum ehrenbergii, and Origanum syriacum growing wild in Lebanon. Chem Biodivers 2016;13:555-60.
6. Kamel MS, Assaf MH, Hasanean HA, Ohtani K, Kasai R, Yamazaki K. Monoterpane glucosides from Origanum syriacum. Phytochemistry 2001;58:1149-52.

7. Sadikoğlu N, Özhatay N. Morphological characteristics of exported taxa as Oregano from Turkey I. Origanum. Istanbul universities Eczacilik Fakultesi Dergisi 2015;45:126-87.

8. Guiterrez-Grijalva EP, Picos-Salas MA, Levy-López N, Criollo-Mendoza MS, Vazquez-Olivo G, Heredia JB. Flavoronoids and phenolic acids from oregano: Occurrence, biological activity and health benefits. Plants (Basel) 2017;7:2-24.

9. Ayman AM, Odeh A, Alobeid B, Boukai H. In vitro antibacterial activity of Origanum syriacum L. essential oils against gram-negative bacteria. Avicenna J Clin Microbiol Infect 2019;6:26-30.

10. Qneibi M, Jaradat N, Hawash M, Zaid AN, Natshel AR, Youssef S, et al. The neuroprotective role of Origanum syriacum L. and Lavandula dentata L. essential oils through their effects on AMPA receptors. Biomed Res Int 2019;2019:1-11.

11. Aldisi SS, Jaganjac M, Eid AH, Goktepe I. Evaluation of apoptotic, antiproliferative, and antimigratory activity of Origanum syriacum against metastatic colon cancer cells. J Herbs Spices Med Plants 2019;25:202-17.

12. El Gendy AN, Leonardi M, Mugnaini L, Bertelloni F, Ebani VV, Nardoni S, et al. Chemical composition and antimicrobial activity of essential oil of wild and cultivated Origanum syriacum plants grown in Sinai, Egypt. Ind Crops Prod 2015;67:201-7.

13. Spyriridopoulou K, Fitisio E, Bouloukosta E, Tiptiri-Kourpeti A, Vamvakias M, Oreopoulou A, et al. Extraction, chemical composition, and anticancer potential of Origanum onites L. essential oil. Molecules 2019;24:6212-27.

14. Lakis Z, Mihele D, Nicorescu I, Vulturescu V, Udeanu DI. The antimicrobial activity of Thymus vulgaris and Origanum syriacum essential oils on Staphylococcus aureus, Streptococcus pneumoniae and Candida albicans. Farmaciuatica 2012;60:857-65.

15. Benelli G, Pavela R, Petrelli R, Cappellacci L, Bartolucci F, Lakis Z, Mihele D, Nicorescu I, Vulturescu V, Udeanu DI. The antimicrobial activity of Origanum syriacum L. and Salvia lavandulifolia. J Agric Food Chem 2012;60:106-13.

16. Benelli G, Pavela R, Petrelli R, Cappellacci L, Bartolucci F, Canale A, et al. Origanum syriacum subsp. syriacum: From an ingredient of Lebanese ‘manoushe’ to a source of effective and eco-friendly botanical insecticides. Ind Crops Prod 2019;134:26-32.

17. Hassan YA, Khedr AI, Alkabli J, Elshaarawy RF, Nasr AM. Antimicrobial activity of carvacrol related to its chemical structure. Antimicrob Agents Chemother 2016;1326-47.

18. In vitro antibacterial activity of several plant extracts and oils against some gram-negative bacteria. J Agric Food Chem 2007;55:6300-8.

19. El-Desouky SK, Jazi S, Lahoulou N, Mnif W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines (Basel) 2016;3:25-41.

20. Elansari D, Mauriello G. Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem 2007;55:4863-70.

21. Chauhan AK, Kang SC. Thymol disrupts the membrane integrity of Salmonella ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model. Res Microbiol 2014;165:559-69.

22. Al-Mariri A, Safi M. The antibacterial activity of selected Labiatae (Lamiaceae) essential oils against Brucella melitensis. Iran J Med Sci 2013;38:44-50.

23. Al-Mariri A, Safi M. In vitro antibacterial activity of several plant extracts and oils against some gram-negative bacteria. J Med Sci 2014;39:36-43.

24. Shehadeh M, Jaradat N, Al-Masri M, Zaid AN, Hussein F, Khasati A, et al. Rapid, cost-effective and organic solvent-free production of biologically active essential oil from Mediterranean wild Origanum syriacum. Saudi Pharm J 2019;27:612-8.

25. Daouk RK, Dagher SM, Sattout EJ. Antifungal activity of the essential oil of wild and cultivated Origanum syriacum. Saudi Pharm J 2019;27:612-8.

26. Al-Mariri A, Safi M. In vitro antibacterial activity of several plant extracts and oils against some gram-negative bacteria. J Med Sci 2014;39:36-43.

27. Shehadeh M, Jaradat N, Al-Masri M, Zaid AN, Hussein F, Khati A, et al. Rapid, cost-effective and organic solvent-free production of biologically active essential oil from Mediterranean wild Origanum syriacum. Saudi Pharm J 2019;27:612-8.

28. Al-Mariri A, Safi M. In vitro antibacterial activity of several plant extracts and oils against some gram-negative bacteria. J Med Sci 2014;39:36-43.

29. Basak S, Guha P. A review on antimicrobial activity and mode of action of essential oils and their delivery as nano-sized oil droplets in food system. J Food Sci Technol 2018;55:4701-10.

30. Dwivedy AK, Prakash B, Chinotiya CS, Bisht D, Dubey NK. Plant essential oils against food borne fungi and mycotoxins. Curr Opin Food Sci 2016;11:16-21.

31. Dwivedy AK, Prakash B, Chinotiya CS, Bisht D, Dubey NK. Chemically characterized Mentha cardia cardia L. essential oil as plant based preservative in view of efficacy against biodeteriorating fungi of dry fruits, aflatoxin secretion, lipid peroxidation and safety profile assessment. Food Chem Toxicol 2017;106:175-84.

32. Vimalanathan S, Hudson J. Anti-influenza virus activities of commercial oregano oils and their carriers. J Appl Pharm Sci 2012;2:214-8.

33. Lai WL, Chuang HS, Lee MH, Wei CL, Lin CF, Tsai YC. Inhibition of herpes simplex virus type 1 by thymol-related monoterpenoids.
Planta Med 2012;78:1636-8.

43. Matza-Porges S, Eisen K, Ibrahim H, Haberman A, Fridlender B, Joseph G. A new antiviral screening method that simultaneously detects viral replication, cell viability, and cell toxicity. J Virol Methods 2014;208:138-43.

44. Lukas B, Schmiderer C, Franz C, Novak J. Composition of essential oil compounds from different Syrian populations of Origanum syriacum L. (Lamiaceae). J Agric Food Chem 2009;57:1362-5.

45. Hamed ES. Effect of nitrogenous fertilization and spraying with nano-fertilizer on Origanum syriacum L. var. syriacum plants under North Sinai conditions. J Pharmacogn Phytochem 2018;7:2902-7.

46. El-Alam I, Zgheib R, Iriti M, El Beyrouthy M, Hattouny P, Verdin A, et al. Origanum syriacum essential oil chemical polymorphism according to soil type. Foods 2019;8:90-101.