DISPLACEMENT INTERPOLATIONS FROM A HAMILTONIAN POINT OF VIEW

PAUL W.Y. LEE

Abstract. One of the most well-known results in the theory of optimal transportation is the equivalence between the convexity of the entropy functional with respect to the Riemannian Wasserstein metric and the Ricci curvature lower bound of the underlying Riemannian manifold. There are also generalizations of this result to the Finsler manifolds and manifolds with a Ricci flow background. In this paper, we study displacement interpolations from the point of view of Hamiltonian systems and give a unifying approach to the above mentioned results.

1. Introduction

Due to its connections with numerous areas in mathematics, the theory of optimal transportation has gained much popularity in recent years. In this paper, we will focus on the, so called, displacement convexity in the theory of optimal transportation and its connections with Ricci curvature lower bounds and the Ricci flow.

Let \(M \) be a manifold. Recall that the optimal transportation problem corresponding to the cost function \(c : M \times M \rightarrow \mathbb{R} \) is the following minimization problem:

\[
\text{Minimize the following total cost } \int_{M} c(x, \varphi(x))d\mu(x),
\]

among all Borel maps \(\varphi \) which pushes \(\mu \) forward to \(\nu : \varphi_{*}\mu = \nu \). Minimizers of this problem are called optimal maps.

In this paper, we are interested in cost functions defined by minimizing action functionals. More precisely, let \(L : \mathbb{R} \times TM \rightarrow \mathbb{R} \) be a smooth function, called Lagrangian. The function \(L \) defines a family

\[\]
of cost functions \(c_T : M \times M \to \mathbb{R}\) given by

\[
(1) \quad c_T(x, y) = \inf_{\gamma(0)=x, \gamma(T)=y} \int_0^T L(s, \gamma(s), \dot{\gamma}(s)) ds,
\]

where the infimum is taken over all \(C^1\) curves \(\gamma : [0, T] \to M\) joining \(x\) and \(y\): \(\gamma(0) = x\) and \(\gamma(T) = y\).

Assume that the Lagrangian \(L\) is fibrewise strictly convex, superlinear, and the corresponding Hamiltonian flow is complete. Then the infimum in (1) is achieved. Moreover, if we also assume that the measure \(\mu\) is absolutely continuous with respect to the Lebesgue class, then the optimal transportation problem corresponding to the cost function \(c_T\) has a minimizer \(\varphi_T\) which is unique \(\mu\)-almost-everywhere \([9, 29, 17, 19]\).

As the time \(T\) varies, the optimal transportation problem defines a one parameter family of optimal maps \(\varphi_T\). This, in turn, defines a one parameter family of probability measures \(\mu_t := (\varphi_t)_* \mu\). These curves in the space of Borel probability measures, first introduced in \([28, 29]\), are called McCann’s displacement interpolations. In \([10]\), displacement interpolations are called generalized geodesics and they were used to obtain a far reaching extension of the optimal transportation problem.

The connection between the optimal transportation problem and the Ricci curvature lies in the convexity of the classical entropy functional along displacement interpolations. More precisely, the entropy functional \(\mathcal{E}_1 : \mathcal{P}_{ac} \to \mathbb{R}\) is defined on the space \(\mathcal{P}_{ac}\) of Borel probability measures which are absolutely continuous with respect to the Lebesgue class by

\[
(2) \quad \mathcal{E}_1(\mu) = \int_M \rho(x) \log \rho(x) d\text{vol}(x)
\]

where \(\mu = \rho \text{vol}\) and \(\text{vol}\) is the Riemannian volume form of \(g\).

Let \(g\) be a Riemannian metric on the manifold \(M\) and let \(L\) be the Lagrangian defined, in local coordinates, by

\[
(3) \quad L(x, v) = \frac{1}{2} \sum_{i,j=1}^n g_{ij} v_i v_j
\]

where \(g_{ij} = g(\partial_{x_i}, \partial_{x_j})\).

It was shown in \([31, 14]\) that the functional \(\mathcal{E}_1\) is convex along any displacement interpolation defined by the cost function \(c_T\) with Lagrangian \(L\) if and only if the Ricci curvature defined by the Riemannian metric \(g\) is non-negative.
Instead of the entropy functional E_1, one can also consider the relative entropy E_2 defined by

$$E_2(\mu) = \int_M \rho(x) \log \rho(x) e^{-\Omega(x)} d\mu(x),$$

where $\Omega : M \to \mathbb{R}$ is a smooth function. It was shown in [31, 15, 35] that the entropy E_2 is convex along any displacement interpolation defined by the cost function (1) with Lagrangian (3) if and only if the Bakry-Emery tensor $Rc + \nabla^2 \Omega$ is non-negative.

The above results were also generalized to the Finsler case by [32]. In this case, (3) is replaced by Lagrangians $L = L(t, x, v)$ which are homogeneous of degree two in the v-variable. There are also various generalizations of the above results to manifolds with a Ricci flow background [31, 38, 25, 8].

The Euler-Lagrange equation of the action functional (1) is given by a Hamiltonian system on the cotangent bundle T^*M of the manifold M. In this paper, we study the displacement interpolations from the point of view of this Hamiltonian structure. By using the curvature of Hamiltonian systems introduced in [2], we prove a differential inequality (Theorem 2.2) which recover, unify, and generalize the above mentioned results on the Ricci curvature and the Ricci flow.

The structure of this paper is as follows. In section 2 the backgrounds and the statements of the main results in this paper are introduced. In section 3 we recall the definitions and properties of curvatures for Hamiltonian systems. In section 4 we recall several notions in the optimal transportation theory and its connections with Hamiltonian systems and the Hamilton-Jacobi equation. In section 5 and 6 we compute the curvature of some Hamiltonian systems studied in this paper. The rest of the sections are devoted to the proofs of the results.

Acknowledgment

After a major revision of this paper, the author received the following message from Professor Juan-Carlos Alvarez Paiva “Agrachev’s construction of curvature for convex Hamiltonian systems is completely equivalent (although not obviously so) to the constructions of Griffone [21] and Foulon [20], while the analysis of the geometry of curves of Lagrangian subspaces and its relation to curvature is due to S. Ahdout [5].” I would like to thank him for his comments.
2. Main Results

In this section, we give the background and statements of the main results. For this, let us first discuss the minimization problem in (1). For simplicity, we assume that the manifold \(M \) is compact. In order to ensure the existence of minimizers in (1), we make the following assumptions on the Lagrangian \(L \) throughout this paper without mentioning.

- \(L \) is fibrewise uniformly convex (i.e. \(v \mapsto L(t, x, v) \) has positive definite Hessian for each time \(t \) in the interval \([0, T]\) and each point \(x \) in \(M \)),
- \(L \) is super-linear (i.e. there is a Riemannian metric \(|\cdot| \) and positive constants \(C_1 \) and \(C_2 \) such that \(L(t, x, v) \geq C_1|v| - C_2 \) for all time \(t \) in \([0, T]\) and all tangent vector \((x, v)\) in \(TM \)).

Under the above assumptions, the minimizers of (1) exist. Moreover, under additional assumption, they can be described as follows.

Let \(H : \mathbb{R} \times T^*M \to \mathbb{R} \) be the Hamiltonian defined by the Legendre transform of \(L \)

\[
H(t, x, p) = \sup_{v \in T_x M} [p(v) - L(t, x, v)].
\]

Let \(\tilde{H} \) be the Hamiltonian vector field of \(H \) defined on the cotangent bundle \(T^*M \) by

\[
\tilde{H} = \sum_{i=1}^{n} (H_{p_i} \partial_{x_i} - H_{x_i} \partial_{p_i}).
\]

We also make the following assumption throughout this paper without mentioning.

- the time dependent flow \(\Phi_{t,s} \) of \(\tilde{H} \) defined by \(\frac{d}{dt} \Phi_{t,s} = \tilde{H}(\Phi_{t,s}) \) and \(\Phi_{s,s}(x, p) = (x, p) \) is complete.

We also set \(\Phi_t = \Phi_{t,0} \). Under the above assumptions, the minimizers of (1) are given by the projections \(t \mapsto \pi(\Phi_t(x, p)) \) of trajectories \(t \mapsto \Phi_t(x, p) \) to the base \(M \). Here \(\pi : T^*M \to M \) is the natural projection. Moreover, if we assume that the measure \(\mu \) is absolutely continuous with respect to the Lebesgue class, then Problem (1) with cost given by (1) also has a solution. More precisely, we have the following well-known result.

Theorem 2.1. [9, 29, 7] Assume that \(M \) is a closed manifold and the measure \(\mu \) is absolutely continuous with respect to the Lebesgue class. Then there is a solution \(\varphi_T \), which is unique \(\mu \)-almost-everywhere, to Problem (1) with cost \(c_T \) given by (1). Moreover, there is a locally
semi-concave function f such that

$$\varphi_T(x) = \pi(\Phi_T(df_x)).$$

The function f in Theorem 2.1 is the potential of the optimal map φ_T. For each such potential f, one can define φ_t, $0 < t < T$, by

$$\varphi_t(x) = \pi(\Phi_t(df_x)).$$

Then φ_t is the optimal map between the measures μ and

$$\mu_t := (\varphi_t)_* \mu$$

for the cost c_t. The family of measures μ_t defined in (5) is called a displacement interpolation corresponding to the cost (1). It was first introduced by [28, 29] in the Euclidean setting and it turns out to be the key to various connections of the optimal transportation problem with differential geometry. For instance, in the Riemannian case, the Ricci curvature of a manifold being non-negative is equivalent to the convexity of the entropy functional (2) along displacement interpolations corresponding to the cost function given by the square of the Riemannian distance.

Let \mathcal{P}_{ac} be the space of all Borel probability measures which are absolutely continuous with respect to the Lebesgue class. In this paper, we mainly focus on functionals of the following form. Let m_t be a family of volume forms on M which vary smoothly in t. We will denote the measure induced by m_t using the same symbol. Let us fix a function $F : \mathbb{R} \to \mathbb{R}$. The measures m_t and the function F define a functional F on the space $[0, T] \times \mathcal{P}_{ac}$ by

$$F(t, \mu) = \int_M F(\rho(t, x)) d\mu(x),$$

where $\mu = \rho(t, \cdot)m_t$.

We show that the monotonicity and convexity properties of the functional defined in (6) are related to the curvature R and the volume distortion v of the Hamiltonian system \vec{H}. Here we give a brief introduction to these two concepts. A detail discussion can be found in Section 3 and 7.

Recall that the cotangent bundle T^*M of the manifold M is equipped with a symplectic form $\omega = \sum_{i=1}^n dp_i \wedge dx_i$ and the flow of the time-dependent Hamiltonian vector field \vec{H} is denoted by $\Phi_{t,s}$. Let $\pi : T^*M \to M$ be the natural projection and let \mathcal{V} be the vertical bundle defined as the kernel of the map $d\pi$. For each point (x, p) in the cotangent bundle T^*M of the manifold M, one can define a moving frame $E^{t,s} := (e_1^{t,s}, ..., e_n^{t,s})^T$ and $F^{t,s} := (f_1^{t,s}, ..., f_n^{t,s})^T$, called a canonical
frame, of the symplectic vector space $T_{(x,p)}T^*M$ such that the following conditions are satisfied for each i and j:

- $e^{t,t}_i$ is contained in the vertical space $\mathcal{V}_{(x,p)}$ for each time t,
- $\dot{e}_i^{t,s} = f_i^{t,s}$,
- $e_i^{t,s}$ is also contained in $\mathcal{V}_{(x,p)}$,
- the canonical frame $E^{t,s}, F^{t,s}$ is a Darboux basis for each (t,s) (i.e. $\omega(f_i^{t,s}, e_i^{t,s}) = \delta_{ij}$, $\omega(f_i^{t,s}, f_j^{t,s}) = \omega(e_i^{t,s}, e_j^{t,s}) = 0$).

Here and throughout this paper, we use the following notational convention: dot always denotes the derivative with respect to time t, s, or τ. For instance $\dot{V}^t = \frac{d}{dt}V^t$. In the case of the canonical frame, both $E^{t,s}$ and $F^{t,s}$ contain two time parameters t and s. In this case, dot denotes the derivative with respect to the first parameter. For instance $\dot{e}_i^{t,s} = \frac{d}{ds}e_i^{t,s}$ and $\ddot{e}_i^{t,s} = \frac{d^2}{ds^2}e_i^{t,s}$.

The curvature operator $R^{t}(x,p) : \mathcal{V}_{(x,p)} \rightarrow \mathcal{V}_{(x,p)}$ of the Hamiltonian system \vec{H} is the linear operator defined by

$$R^{t}_{(x,p)}(e_i^{t,t}) = -\ddot{e}_i^{t,t} = -\dot{f}_i^{t,t}.$$

Finally, the volume distortion $v : \mathbb{R} \times T^*M \rightarrow \mathbb{R}$ compares the volume forms m_t with the frame $F^{t,t}$. More precisely,

$$v(t, x, p) := \log(\pi^*m_t(f_1^{t,t}, \ldots, f_n^{t,t})).$$

Curvature of Hamiltonian systems was first introduced and studied in [2]. It serves as a Hamiltonian analogue of the curvature operator in Riemannian geometry. More precisely, let us fix a Riemannian metric g and let H be the kinetic energy given in a local coordinate chart by

$$H(x, p) = \sum_{i,j=1}^{n} \frac{1}{2}g^{ij}(x)p_ip_j$$

where g^{ij} is the inverse matrix of $g_{ij} = g(\partial_{x_i}, \partial_{x_j})$. In this case, the curvature operator R^t is independent of time t and it is, under some identifications using the Riemannian metric g, the curvature operator. Suppose that $m_t = e^{-U}\text{vol}$, where $U : M \rightarrow \mathbb{R}$ is a smooth function and vol is the Riemannian volume form of g. Then the volume distortion is simply $v = -\pi^*U$.

Next, we consider a particular case of the functional F with $F(r) = \log(r)$. In this case, the functional F is a time-dependent version of the relative entropy [3] and we obtain the following theorem which unify several results in the literature.
Theorem 2.2. Assume that $F(r) = \log(r)$ and let b be any function of time t. Then the functional F satisfies the following inequality:

$$
\frac{d^2}{dt^2} F(t, \mu_t) + b(t) \frac{d}{dt} F(t, \mu_t) + \frac{n b(t)^2}{4} \geq \int_M \left(\text{tr} (R^g_{\Phi_t(x, df)}) - \frac{d^2}{dt^2} v(t, \Phi_t(x, df)) - b(t) \frac{d}{dt} v(t, \Phi_t(x, df)) \right) d\mu(x)
$$

(8)

for each smooth displacement interpolation μ_t corresponding to the cost μ. Theorem 2.2 allow us to focus on the ideas of the proof and avoids technical difficulties that arise due to the lack of regularity of the potential f. These technicalities can be dealt with along the lines in [14, 38] and most of them follows from the general results in [40]. The details will be reported elsewhere.

By specializing Theorem 2.2 to the Riemannian case, we recover several well-known results. More precisely, let H be the kinetic energy defined by (7). Let $b \equiv 0$ and $m_t = e^{-U} \text{vol}$. Then the functional F defined in (6) coincides with the relative entropy E_2 defined in [4] and we recover the following result which appeared in [31, 15, 37, 35] (see section 7 for some partial results for more general Hamiltonian systems and also section 11 for a discussion on the Finsler case).

Corollary 2.3. Let g be a Riemannian metric with Ricci curvature Rc. Then the Bakry-Emery tensor $Rc + \nabla^2 U$ satisfies the following condition

$$
Rc + \nabla^2 U \geq Kg
$$

if and only if

$$
\frac{d^2}{dt^2} E_2(\mu_t) \geq \frac{2K}{T} C_T(\mu, \nu)
$$

(10)

for each smooth displacement interpolation μ_t corresponding to the cost μ with Lagrangian defined by (3). Here $\nabla^2 U$ denotes the Hessian of the function U with respect to the given Riemannian metric g. $C_T(\mu, \nu)$ is defined by the optimal transportation problem

$$
C_T(\mu, \nu) := \inf_{\varphi \ast \mu = \nu} \int_M c_T(x, \varphi(x)) d\mu(x),
$$

where the infimum is taken over all Borel maps φ which pushes μ forward to ν.

We remark that even though we replace the usual displacement interpolations by smooth displacement interpolations in Corollary 2.3, the equivalence between the Bakry-Emery condition (9) and the convexity of the functional F still holds.

We also remark that the condition (10) does not involve any differential structure and it was used in [35, 26] to define Ricci curvature lower bound for more general metric measure spaces.

If we replace the Hamiltonian H in (7) by a Finsler Hamiltonian (i.e. any Hamiltonian which is homogeneous of degree two in the p variable), set $b \equiv 0$ in Theorem 2.2, and assume that m_t is independent of time t, then the conclusion of Theorem 2.2 becomes

$$
\frac{d^2}{dt^2} F(t, \mu_t) \geq \int_M \left(\text{tr}(R_{\Phi_t(x, df)}) - \mathcal{L}_H^2 V(t, \Phi_t(x, df)) \right) d\mu(x),
$$

where \mathcal{L}_V denotes the Lie derivative in the direction V. In section IV, we will check that R coincides (up to some identifications) with the Riemann curvature in Finsler geometry. It follows that the ∞-Ricci curvature lower bound condition in [32] is the same as

$$
\text{tr}(R) - \mathcal{L}_H^2 V \geq KH.
$$

Therefore, Theorem 2.2 recovers the corresponding results in [32] (see also Theorem 7.3). However, we remark that H is only C^1 on the zero section of T^*M in the Finsler case. Because of this, additional technical difficulties arise for results concerning usual displacement interpolations (see [32]).

By considering functionals more general than (9), one can recover various other known results which are not covered by Theorem 2.2. We will not pursue this here. Instead, we consider Hamiltonians of the following form which motivated the whole work

$$
H(x, p) = \frac{1}{2} \sum_{i,j} g^{ij}(t, x)p_ip_j + U(t, x).
$$

Here both the metric g and the potential U depend on time t.

We would like to apply Theorem 2.2 to this Hamiltonian and recover some results between the optimal transportation theory and the Ricci flow (c.f. [30, 38, 25, 8]). However, in all these works, a Hamiltonian H is fixed and the functional F is shown to have certain convexity properties along displacement interpolations corresponding to the cost function (1) with Hamiltonian H. Instead we propose the following approach of using Theorem 2.2 to find Hamiltonians H such that the functional F is monotone or convex along displacement interpolations corresponding to H.
First, we create some functional parameters to get rid of the undesire terms in (8). On the other hand, g should be related to the Ricci flow. Therefore, it is natural to pick the time dependent metric g satisfying the following equation:

$$\dot{g} = c_1 \text{Rc} + c_2 g,$$

where Rc is the Ricci curvature of the metric g at time t, c_1 and c_2 are functions depending only on time t which will be used to get rid of the undesire terms.

Note that the time dependence of various quantities in (13) is suppressed and this convention is used throughout this paper. Note also that the choice of g in (13) is natural from the point of view of the Ricci flow. In fact, if \bar{g} is a solution of the Ricci flow $\dot{\bar{g}} = -2 \text{Rc}$, then

$$g(t, x) = a_1(t) \bar{g}(a_2(t), x)$$

satisfies (13).

We consider the following functional which is a special case of (6)

$$E_3(t, \mu) = \int_M \log(\rho(t, x)) d\mu(x),$$

where $\mu = \rho(t, \cdot) m_t$, $m_t = e^{-k(t)u(t, \cdot)} \text{vol}$, u is the solution of the Hamilton-Jacobi equation

$$\dot{u} + H(t, x, du) = 0$$

with initial condition $u \big|_{t=0} = f$ (here f is the potential which define the displacement interpolation μ_t), and k is another functional parameter.

Next, we choose suitable functions c_1, c_2, b, U, and measure m_t such that the right hand side of (8) can be estimated. This leads to the following result which is a consequence of Theorem 2.2 (see the proof for some explanations on the choices of c_1, c_2, b, and U).

Corollary 2.4. If the functions c_1, c_2, b, U satisfy

$$c_1 k = -2, \quad \ddot{k} = -bk, \quad 2\dot{k} = c_2 k - bk, \quad U = -\frac{c_1^2 R}{8},$$

then

$$\frac{d^2}{dt^2} E_3(t, \mu_t) + b(t) \frac{d}{dt} E_3(t, \mu_t) + \frac{nc_2(t)^2}{2} + \frac{nc_2(t)^2}{4} + \frac{nb(t)^2}{4} \geq 0$$

for each smooth displacement interpolation μ_t corresponding to the cost (7) with Hamiltonian H given by (12) and (13). Here R denotes the scalar curvature of the given Riemannian metric g at time t.
If we further specialize to the case $k(t) = Ct^m$ and $m \neq 0$, then the rest of the functional parameters (c_1, c_2, b, U) are completely determined and Corollary 2.4 simplifies to the following result.

Corollary 2.5. If $m \neq 0$, $k(t) = Ct^m$, $c_1(t) = -\frac{2}{Ct^m}$, $c_2(t) = \frac{m+1}{t}$, $b(t) = -\frac{m-1}{t}$, and $U(t, x) = -\frac{c_1(t)^2}{8}R(t, x)$, then

$$\frac{d^2}{dt^2} \mathcal{E}_3(t, \mu_t) - \frac{m-1}{t} \frac{d}{dt} \mathcal{E}_3(t, \mu_t) \geq \frac{m(1-m)n}{2t^2}$$

for each smooth displacement interpolation μ_t corresponding to the cost (1) with Hamiltonian H given by (12) and (13).

If $k(t) \equiv C$ (i.e. $m = 0$), then Corollary 2.4 gives the following result.

Corollary 2.6. If $k(t) \equiv C \neq 0$, $c_1(t) = -\frac{2}{C}$, $c_2(t) = b(t)$, and $U(t, x) = -\frac{1}{2Ct^2}R(t, x)$, then

$$\frac{d^2}{dt^2} \mathcal{E}_3(t, \mu_t) + b(t) \frac{d}{dt} \mathcal{E}_3(t, \mu_t) + \frac{nb(t)}{2} + \frac{nb(t)^2}{2} \geq 0$$

for each smooth displacement interpolation μ_t corresponding to the cost (1) with Hamiltonian H given by (12) and (13).

Corollary 2.5 and 2.6 contain some known results. If we set $m = -\frac{1}{2}$ and $C = -1$ in Corollary 2.5, then $c_1(t) = 2\sqrt{t}$ and $c_2(t) = \frac{1}{2}$. A calculation shows that $g = \sqrt{t} \bar{g}$, where \bar{g} is a solution of the backward Ricci flow $\bar{\dot{g}} = 2\bar{Rc}$. Here \bar{Rc} is the Ricci curvature of the Riemannian metric \bar{g}.

The Lagrangian L is given by

$$L(t, x, v) = \frac{1}{2} \sum_{i,j} g_{ij}(t, x)v_i v_j + \frac{t}{2} R(t, x)$$

(15)

$$= \frac{\sqrt{t}}{2} \left(\sum_{i,j} \bar{g}_{ij}(t, x)v_i v_j + \bar{R}(t, x) \right),$$

where \bar{R} is the scalar of the metric \bar{g}. The corresponding action functional

$$\gamma \mapsto \int_0^T L(t, \gamma(t), \dot{\gamma}(t)) dt$$

is Perel'man’s \mathcal{L}-functional introduced in [33].

Let vol be the Riemannian volume of the metric \bar{g}. Let \mathcal{E}_4 be the following functional

$$\mathcal{E}_4(t, \mu) = \int_M (\log(\rho(t, x)) + t^{-1/2}u(t, x)) d\mu(x) + \frac{n}{2} \log t,$$

(16)
where $\mu = \rho(t, \cdot) \operatorname{vol}$. The following result on \mathcal{E}_4 which appeared in [38, 25] is a special case of Corollary 2.5. It was also shown in [38, 25] how this result leads to the monotonicity of Perelman’s reduced volume [33].

Corollary 2.7. [25, Theorem 1] The functional \mathcal{E}_4 defined in (16) satisfies

$$\frac{d^2}{dt^2} \mathcal{E}_4(t, \mu_t) + \frac{3}{2t} \frac{d}{dt} \mathcal{E}_4(t, \mu_t) \geq 0$$

for each smooth displacement interpolation μ_t corresponding to the cost (1) with Lagrangian L given by (13).

Similarly, if we set $m = -\frac{1}{2}$ and $C = 1$ in Corollary 2.5, then $c_1(t) = -2\sqrt{t}$ and $c_2(t) = \frac{1}{2t}$. In this case, the time dependent metric g satisfies $g = \sqrt{t} \bar{g}$, where \bar{g} is a solution of the Ricci flow $\dot{\bar{g}} = -2R\bar{c}$. The Lagrangian L is given by

$$L(t, x, v) = \frac{\sqrt{t}}{2} \left(\sum_{i,j} \bar{g}_{ij}(t, x) v_i v_j + \bar{R}(t, x) \right).$$

Let vol be the Riemannian volume of the metric \bar{g}. Let \mathcal{E}_5 be the following functional

$$\mathcal{E}_5(t, \mu) = \int_M (\log(\rho(t, x)) - t^{-1/2} u(t, x)) \, d\mu(x) + \frac{n}{2} \log t,$$

where $\mu = \rho(t, \cdot) \operatorname{vol}$.

The following result on \mathcal{E}_5 is also a consequence of Corollary 2.5. This is another result in [25] which leads to the monotonicity of Feldman-Ilmanen-Ni’s forward reduced volume [18].

Corollary 2.8. [25, Proposition 20] The functional \mathcal{E}_5 defined in (18) satisfies

$$\frac{d^2}{dt^2} \mathcal{E}_5(t, \mu_t) + \frac{3}{2t} \frac{d}{dt} \mathcal{E}_5(t, \mu_t) \geq 0$$

for each smooth displacement interpolation μ_t corresponding to the cost (1) with Lagrangian L given by (17).

If we set $C = 1$ and $b \equiv 0$ in Corollary 2.6 then g is a solution of the Ricci flow $\dot{g} = -2Rc$. The Lagrangian L is given by

$$L(t, x, v) = \frac{1}{2} \left(\sum_{i,j} g_{ij}(t, x) v_i v_j + R(t, x) \right).$$
Let E_6 be the following functional

\begin{equation}
E_6(t, \mu) = \int_M (\log(\rho(t, x)) - u(t, x)) \, d\mu(x),
\end{equation}

where $\mu = \rho(t, \cdot) \, \text{vol}$. The following result on E_6, which is a consequence of Corollary 2.6, appeared in [30, 25].

Corollary 2.9. [25, Corollary 4] The functional E_6 defined in (20) satisfies

$$
\frac{d^2}{dt^2} E_6(t, \mu_t) \geq 0
$$

for each smooth displacement interpolation μ_t corresponding to the cost (1) with Lagrangian L given by (19).

We also obtain some similar results for functionals given by (6) with $F(r) = r^q$, where q is a constant. Using the above mentioned approach, we prove the following result which holds for all fibrewise strictly convex Hamiltonians H defined above.

Theorem 2.10. Assume that $F(r) = r^q$. Then the functional F defined in (6) satisfies the following inequality

$$
\frac{d^2}{dt^2} F(t, \mu_t) + (q b_1(t) + b_2(t)) \frac{d}{dt} F(t, \mu_t) + \frac{q b_1(t)^2}{4} + \frac{nb_2(t)^2}{4}
\geq \int_M q (r_x^t)^q \left[\text{tr}(R^t_{\Phi(t,x,df)}) - b_2(t) \frac{d}{dt} v(t, \Phi(t,x,df))
- \frac{d^2}{dt^2} v(t, \Phi(t,x,df)) \right] d\mu_0(x)
$$

for each smooth displacement interpolation μ_t corresponding to the cost (1).

In the Riemannian case, the convexity of the functional (6) with $F(r) = r^q$ along displacement interpolations is equivalent to the so-called, curvature-dimension condition. This result, which appeared in [35], can be obtained as a consequence of Theorem 2.10. More precisely, let E_7 be the functional defined by

\begin{equation}
E_7(\mu) = - \int_M \rho(x)^{-1/N} \, d\mu(x),
\end{equation}

where $\mu = \rho \, \text{vol}$.

Corollary 2.11. [35, Corollary 1.6] The Ricci curvature Rc of the Riemannian metric g is non-negative and the dimension of the manifold M is $\leq N$ if and only if

\begin{equation}
\frac{d^2}{dt^2} E_7(\mu_t) \geq 0
\end{equation}
for each smooth displacement interpolation μ_t corresponding to the cost μ_t with Lagrangian defined by μ_t.

Next, we specialize Theorem 2.10 to the case of the Ricci flow. Let H be the Hamiltonian defined in (12) with the metric g satisfying (13). Let E_8 be the functional defined by

$$E_8(t, \mu) = \int_M \rho(t, x)^q d\mu(x)$$

where $\mu = \rho(t, \cdot)m_t$, $m_t = e^{-(k(t)u(t))\text{vol}}$, and k is a functional parameter. In this case, Theorem 2.10 gives the following result.

Corollary 2.12. If the functions c_1, c_2, b, U satisfy

$$c_1k = -2, \quad \dot{k} = -b_2\dot{k}, \quad 2\dot{k} = c_2k - b_2k, \quad U = -\frac{c_2}{8}R,$$

then

$$\frac{d^2}{dt^2}E_8(t, \mu_t) + (gb_1(t) + b_2(t)) \frac{d}{dt}E_8(t, \mu_t)$$

$$+ q \left(\frac{n\dot{c}_2(t)}{2} + \frac{nc_2(t)^2}{4} + \frac{qb_1(t)^2}{4} + \frac{nb_2(t)^2}{4} \right) E_8(t, \mu_t) \geq 0$$

for each smooth displacement interpolation μ_t corresponding to the cost μ_t with Hamiltonian H given by (12) and (13).

We remark that, unlike Corollary 2.4, there are two functional parameters, say k and b_1, which are free in Corollary 2.12. Finally, if we specialize to the case $k(t) = C_1t^m$ and $b_1(t) = C_2t^{-1}$, then we obtain the following corollaries.

Corollary 2.13. If $m \neq 0, k(t) = C_1t^m, b_1(t) = C_2t^{-1}, c_1(t) = -\frac{2}{C_1t^m}, c_2(t) = \frac{m+1}{t},$ and $U(t, x) = -\frac{c_2}{8}R(t, x)$, then

$$\frac{d^2}{dt^2}E_8(t, \mu_t) + \frac{qC_2}{t} - m + 1 \frac{d}{dt}E_8(t, \mu_t)$$

$$+ \frac{q(2nm(m-1) + qC_2^2)}{4t^2} E_8(t, \mu_t) \geq 0$$

for each smooth displacement interpolation μ_t corresponding to the cost μ_t with Hamiltonian H given by (12) and (13).
Corollary 2.14. If $k \equiv C_1 \neq 0$, $b_1(t) = C_2 t^{-1}$, $c_1 \equiv -\frac{2}{c_1}$, $c_2 = b_2 \equiv \frac{C_3}{t}$, and $U(t, x) = -\frac{c_2}{8} R(t, x)$, then

$$\frac{d^2}{dt^2} \mathcal{E}_8(t, \mu_t) + \left(\frac{q C_2 + C_3}{t} \right) \frac{d}{dt} \mathcal{E}_8(t, \mu_t) + q \left(\frac{q C_2^2 + 2 n C_3^2 - 2 n C_3}{4 t^2} \right) \mathcal{E}_8(t, \mu_t) \geq 0$$

for each smooth displacement interpolation μ_t corresponding to the cost \mathcal{J} with Hamiltonian H given by (12) and (13).

Finally, we also consider the following Hamiltonian H motivated by the recent work [24] of the author

$$H(t, x, p) = \frac{1}{2} \sum_{i,j} g^{ij}(x) p_i p_j + \sum_{i,j} g^{ij} p_i W_{x_j}(t, x) + U(t, x)$$

where g is a Riemannian metric, U and W are time-dependent potentials on the manifold M. The corresponding Lagrangian L is given by

(23)

$$L(t, x, v) = \frac{1}{2} \sum_{i,j} g_{ij}(x)(v_i - \sum_s g^{is} W_{x_s})(v_j - \sum_l g^{jl} W_{x_l}) - U(t, x)$$

$$= \frac{1}{2} |v - \nabla W|^2 - U(t, x).$$

Theorem 2.15. Assume that the Riemannian metric g has non-negative Ricci curvature and the potentials U and W satisfy the following condition

$$\Delta W + \frac{1}{2} \Delta |\nabla W|^2 - \Delta U \leq 0.$$

Then

$$\frac{d^2}{dt^2} \mathcal{E}_1(\mu_t) \geq 0$$

for each smooth displacement interpolation μ_t corresponding to the cost \mathcal{J} with Lagrangian given by (23).

3. Curvature of Hamiltonian Systems

In this section, we give a brief discussion on the curvature of a Hamiltonian system introduced in [2]. For a more detail discussion, see for instance [1, 23].
Let T^*M be the cotangent bundle of a n-dimensional manifold M. Let (x_1, \ldots, x_n) and $(x_1, \ldots, x_n, p_1, \ldots, p_n)$ denote systems of local coordinates on M and T^*M, respectively. Let $\omega := \sum_{i=1}^n dp_i \wedge dx_i$ be the canonical symplectic form. Let $H : \mathbb{R} \times T^*M \to \mathbb{R}$ be a smooth function, called Hamiltonian, and let \vec{H} be the corresponding Hamiltonian vector field defined by $\omega(\vec{H}, \cdot) = -dH(\cdot)$, where d denotes the exterior differential on T^*M. In local coordinates, \vec{H} is given by

$$\dot{x}_i = H_{p_i}, \quad \dot{p}_i = -H_{x_i}. \tag{24}$$

Recall that the dots here and throughout this paper denotes the derivative with respect to time variables t, s, or τ. We assume that the (possibly time-dependent) vector field \vec{H} is complete and the corresponding (possibly time-dependent) flow is denoted by $\Phi_{t,s}$ (i.e. $\frac{d}{dt} \Phi_{t,s} = \vec{H}(\Phi_{t,s})$ and $\Phi_{s,s}$ is the identity map).

Let $\pi : T^*M \to M$ be the projection to the base M and let V be the vertical bundle defined as the kernel of the map $d\pi$. Let (x, p) be a point in T^*M and let $J_{(x,p)}^{t,s}$ be the family of subspaces in $T_{(x,p)}T^*M$, called Jacobi curve, defined by

$$J_{(x,p)}^{t,s}(x, p) = d\Phi_{t,s}^{-1}(V_{\Phi_{t,s}(x,p)}).$$

Assume that the Hamiltonian H is fibrewise strictly convex (i.e. $p \mapsto H(t, x, p)$ is strictly convex for each time t and each point x). Then the family of bilinear forms $\langle \cdot, \cdot \rangle_{t,s}$ defined by

$$\langle v, v \rangle_{t,s} := \omega \left(\frac{d}{dt} e^{t,s}, e^{t,s} \right) \bigg|_{t=\tau}$$

is an inner product defined on the subspace $J_{(x,p)}^{t,s}$, where $e^{t,s}$ is contained in $J_{(x,p)}^{t,s}$ for each time t in a neighborhood of τ and $e^{\tau,s} = v$.

Proposition 3.1. Assume that the Hamiltonian H is fibrewise strictly convex. Then there exists a family of bases $e_1^{t,s}, \ldots, e_n^{t,s}$ contained in $J_{(x,p)}^{t,s}$ orthonormal with respect to the inner product $\langle \cdot, \cdot \rangle_{t,s}$ such that $\dot{e}_i^{t,s}$ is contained in $J_{(x,p)}^{t,s}$. Moreover, if $\bar{e}_1^{t,s}, \ldots, \bar{e}_n^{t,s}$ is another such family, then there is an orthonormal matrix O such that

$$\bar{e}_i^{t,s} = \sum_{j=1}^n O_{ij} e_j^{t,s}.$$

For the proof of the above proposition, see [23, Proposition 3.2]. We define $f_i^{t,s} = \dot{e}_i^{t,s}$ and call the frame

$$(e_1^{t,s}, \ldots, e_n^{t,s}, f_1^{t,s}, \ldots, f_n^{t,s})^T$$
a canonical frame of $J^{t,s}$. Recall that there are two time parameters t and s for the canonical frame $e_i^{t,s}$ and $f_i^{t,s}$. The dots in $\dot{e}_i^{t,s}$ and $\dot{f}_i^{t,s}$ always denote the derivative with respect to the first time parameter, which is t in this case. Let $\vec{E}^{t,s} = (\vec{e}_1^{t,s}, ..., \vec{e}_n^{t,s})^T$ be a family of orthonormal bases of $J^{t,s}$. The following gives a procedure for obtaining a canonical frame. See [23, Lemma 3.5] for a proof.

Proposition 3.2. Let $\Omega^{t,s}$ be the matrix defined by $\Omega_{ij}^{t,s} = \omega(\dot{\vec{e}}_i^{t,s}, \dot{\vec{e}}_j^{t,s})$ and let $O^{t,s}$ be a solution of the equation

$$\dot{O}^{t,s} = \frac{1}{2} O^{t,s} \Omega^{t,s}.$$

Then $O^{t,s} \vec{E}^{t,s}$ defines a canonical frame of $J^{t,s}$.

If $(e_1^{t,s}, ..., e_n^{t,s}, f_1^{t,s}, ..., f_n^{t,s})^T$ is a canonical frame of the Jacobi curve $J^{t,s}_{(x,p)}$, then the operators $R^{t,s}_{(x,p)} : J^{t,s}_{(x,p)} \rightarrow J^{t,s}_{(x,p)}$ defined by

$$R^{t,s}_{(x,p)} e_i^{t,s} = -\ddot{e}_i^{t,s}$$

are the curvature operators of the Jacobi curve $J^{t,s}$. The operator $R^{t,s}_{(x,p)} := R^{t,s}_{(x,p)} : \mathcal{V}_{(x,p)} \rightarrow \mathcal{V}_{(x,p)}$ is the curvature operator of the Hamiltonian system \vec{H}.

The operators $R^{t,s}$ are symmetric with respect to the inner product $\langle \cdot, \cdot \rangle^{t,s}$. It also follows from the definition of R that the following holds

$$R_{\Phi_{\tau,s}(x,p)}^{t,s} = d\Phi_{\tau,s} R_{(x,p)}^{t,s} (d\Phi_{\tau,s})^{-1}.$$

In particular, the following holds

$$R_{\Phi_{t,s}(x,p)}^{t,s} = d\Phi_{t,s} R_{(x,p)}^{t,s} (d\Phi_{t,s})^{-1}$$

and it shows that the curvature $R^{t,s}$ of the Jacobi curve $J^{t,s}$ is completely determined by the curvature R^t of the Hamiltonian system \vec{H}.

Next, we discuss how to compute the curvature operators. Let $V_{t,1}^t, ..., V_{t,n}^t$ be a family of (local) vector fields contained in the vertical bundle \mathcal{V} which is orthonormal with respect to the Riemannian metric on \mathcal{V} defined by

$$v \mapsto \sum_{i,j} H_{p_i p_j}(t, x, p) v_i v_j.$$

A computation using local coordinates shows that this Riemannian metric is also given by $v \mapsto \omega([\vec{H}, V], V)$, where V is any extension of v to a vector field contained in \mathcal{V}.

Let $\vec{e}_i^{t,s}$ be defined by

$$\vec{e}_i^{t,s} = (\Phi_{t,s})^* V_i^t.$$
It follows that
\[
\langle \tilde{e}^t_i, \tilde{e}^t_j \rangle_{(x,p)} = \omega_{(x,p)}(\tilde{e}^t_i, \tilde{e}^t_j)
\]
\[
= \omega_{(x,p)}([\tilde{H}, V^t_i], V^t_j)
\]
\[
= \delta_{ij}.
\]

Therefore, we can apply Proposition 3.2 and obtain the following result.

Proposition 3.3. Let \([R^t_{(x,p)}]\) be the matrix with \(ij^{th}\) entry defined by
\[
\langle R^t_{(x,p)} V^t_i, V^t_j \rangle.
\]
Then it satisfies
\[
[R^t_{(x,p)}] \bar{E}^{t,t} = -\frac{1}{4} (\Omega^{t,t})^2 \bar{E}^{t,t} - \frac{1}{2} \dot{\Omega}^{t,t} \dot{\bar{E}}^{t,t} - \ddot{\bar{E}}^{t,t},
\]
\[
\dot{e}^{t,t}_i = [\tilde{H}, V^t_i] + \dot{V}^t_i,
\]
\[
\dot{e}^{t,t}_i = [\tilde{H}, [\tilde{H}, V^t_i]] + 2[\tilde{H}, \dot{V}^t_i] + [\tilde{H}, V^t_i] + \dot{V}^t_i,
\]
\[
\Omega^{t,t} = \omega(e^{t,t}_i, e^{t,t}_j),
\]
\[
\dot{\Omega}^{t,t} = \omega(e^{t,t}_i, \dot{e}^{t,t}_j),
\]
\[
\dot{\Omega}^{t,t} = \omega(e^{t,t}_i, e^{t,t}_j) + \omega(e^{t,t}_i, \dot{e}^{t,t}_j),
\]
where \(\bar{E}^{t,t} = (\bar{e}^{t,t}_1, \ldots, \bar{e}^{t,t}_n)^T\).

Proof. Let \(O^{t,s}\) be as in Proposition 3.2 with initial condition \(O^{s,s} = I\). Then we have
\[
\frac{d}{dt} (O^{t,s} \bar{E}^{t,s}) \bigg|_{t=s} = \dot{E}^{t,s} + \frac{1}{2} \Omega^{t,s} \bar{E}^{t,s}
\]
and
\[
[R^s_{(x,p)}] \bar{E}^{s,s} = -\frac{d^2}{dt^2} (O^{t,s} \bar{E}^{t,s}) \bigg|_{t=s}
\]
\[
= -\frac{d}{dt} \left(\frac{1}{2} O^{t,s} \Omega^{t,s} \bar{E}^{t,s} + O^{t,s} \dot{\bar{E}}^{t,s} \right) \bigg|_{t=s}
\]
\[
= -\frac{1}{4} (\Omega^{s,s})^2 \bar{E}^{s,s} - \frac{1}{2} \Omega^{s,s} \bar{E}^{s,s} - \Omega^{s,s} \dot{\bar{E}}^{s,s} - \ddot{\bar{E}}^{s,s}.
\]

\[\square\]

4. **Optimal Transportation and Hamilton-Jacobi Equation**

In this section, we first recall several known facts about solutions of the Hamilton-Jacobi equation and use them to define the smooth
displacement interpolations. Then we define a version of Hessian corresponding to a Hamiltonian. We show that the Hessian of a smooth solution to the Hamilton-Jacobi equation satisfies a matrix Riccati equation. To see the importance of this equation, we show that a Bochner type formula for Hamiltonian system holds under extra assumptions.

First, we recall the following result which is an immediate consequence of the method of characteristics. A proof can be found, for instance, in [11, 16, 4]. (Recall that $\Phi_{t,s}$ is the flow of the Hamiltonian vector field \vec{H} and $\Phi_t = \Phi_{t,0}$).

Proposition 4.1. Let u be a smooth solution of the equation

\begin{equation}
\dot{u} + \mathbf{H}(t, x, du_x) = 0
\end{equation}

defined on $[0, T] \times M$ with initial condition $u(0, \cdot) = f(\cdot)$. Then u satisfies the following relation

\begin{equation}
\Phi_t(x, df) = (\varphi_t(x), du(t, \cdot)),
\end{equation}

where $\varphi_t(x) = \pi(\Phi_t(x, df))$ and t is in $[0, T]$. Moreover, the path $t \mapsto \varphi_t$ is the unique minimizer of (7) between the endpoints x and $\varphi_T(x)$.

In fact, one can use the relation (27) to give the following short time existence of solution to (26) for any given smooth initial data f. A detail discussion can be found, for instance, in [4].

Proposition 4.2. Assume that the manifold M is closed. For any smooth initial data f, there is a time $T > 0$ such that the equation (26) admits a smooth solution on $[0, T] \times M$ with initial condition $u(0, \cdot) = f(\cdot)$.

We define smooth displacement interpolations of Problem 1.1 as any one parameter family of measures defined by (5) where f is any smooth function such that (26) admits a smooth solution on $[0, T] \times M$ with initial condition $u(0, \cdot) = f(\cdot)$. The terminology is justified by the following proposition. The proof is a simple application of Proposition 4.1 and the Kantorovich duality (see [39, 40]). The proof can be found in [22].

Proposition 4.3. Let μ_t be a smooth displacement interpolation corresponding to the cost (1) defined by the function f. Then the map

$\varphi_T(x) := \pi(\Phi_T(df_x))$

is a solution of Problem 1.7 between any measure μ and $(\varphi_T)_*\mu$.

Next, we introduce Hessian of the function f with respect to the Hamiltonian system \vec{H}. Let us consider the map $x \mapsto df_x$. The differential of this map sends the tangent space T_xM to a Lagrangian
subspace of the symplectic vector space \(T_{(x, df)} T^* M \). This is the graph of a linear map from the horizontal space

\[
\mathcal{H}^i_{(x, df)} = \text{span}\{f^{i,t}_1, \ldots, f^{i,t}_n\}
\]
to the vertical space \(\mathcal{V}_{(x, df)} \). The negative of this linear map is the Hessian of \(f \) with respect to the Hamiltonian system \(\tilde{\mathbf{H}} \) at \((t, x)\) and it is denoted by \(\nabla^2_{\mathbf{H}} f(t, x) \). The trace with respect to the canonical frame \(E^{t,t} = (e^{t,t}_1, \ldots, e^{t,t}_n)^T \) and \(F^{t,t} = (f^{t,t}_1, \ldots, f^{t,t}_n)^T \) at \((x, df)\) is denoted by \(\Delta_{\mathbf{H}} f(t, x) \).

Let \(E^{t,s} = (e^{t,s}_1, \ldots, e^{t,s}_n)^T \) and \(F^{t,s} = (f^{t,s}_1, \ldots, f^{t,s}_n)^T \) be a canonical frame of the Jacobi curve \(J^{t,s}_{(x, df)} = d\Phi_{t,s}^{-1}(\mathcal{V}_{\Phi_{t,s}(x, df)}) \). Note that the following relation holds

\[
d\Phi_{\tau}(J^{t,0}_{(x, df)}) = J^{t,\tau}_{\Phi_{x}(x, df)} = J^{t,\tau}_{(\varphi(x), du(t, \cdot))}.
\]

It follows that \(\tilde{E}^{t,\tau} = (\tilde{e}^{t,\tau}_1, \ldots, \tilde{e}^{t,\tau}_n)^T \) and \(\tilde{F}^{t,\tau} = (\tilde{f}^{t,\tau}_1, \ldots, \tilde{f}^{t,\tau}_n)^T \) defined by

\[
\tilde{E}^{t,\tau} := d\Phi_{\tau}(E^{t,0}) = (d\Phi_{\tau}(e^{t,0}_1), \ldots, d\Phi_{\tau}(e^{t,0}_n))^T
\]

\[
\tilde{F}^{t,\tau} := d\Phi_{\tau}(F^{t,0}) = (d\Phi_{\tau}(f^{t,0}_1), \ldots, d\Phi_{\tau}(f^{t,0}_n))^T
\]
is a canonical frame of the Jacobi curve \(J^{t,\tau}_{\Phi_{x}(x, df)} \).

Let \(A(t) \) and \(B(t) \) be the matrices defined by

\[
d(df)_x(d\pi(f_i^{0,0})) = \sum_{j=1}^{n} \left(A_{ij}(t)e_j^{t,0} + B_{ij}(t)f_j^{t,0} \right).
\]

where \(d(df)_x \) is the differential of the map \(x \mapsto (df)_x \) at \(x = x \).

By applying \(d\Phi_{\tau} \) on both sides of (28), we obtain the following relation

\[
d\Phi_{\tau}(d(df)_x(d\pi(f_i^{0,0}))) = \sum_{j=1}^{n} \left(A_{ij}(t)e_j^{t,\tau} + B_{ij}(t)f_j^{t,\tau} \right).
\]

It follows from this equation and (27) that

\[
d(du(t, \cdot))_{\varphi(x)}(d\pi(f_i^{0,0})) = \sum_{j=1}^{n} \left(A_{ij}(t)e_j^{t,\tau} + B_{ij}(t)f_j^{t,\tau} \right).
\]

If we apply (29) to this equation, then we obtain

\[
\sum_{j=1}^{n} B_{ij}(t)d(du(t, \cdot))_{\varphi(x)}(d\pi(f_j^{t,\tau})) = \sum_{j=1}^{n} \left(A_{ij}(t)e_j^{t,\tau} + B_{ij}(t)f_j^{t,\tau} \right).
\]
Therefore, the matrix representation $S(t)$ of the Hessian $\nabla_H^2 u(t, \varphi_t(x))$ (as a map from the horizontal space $\mathcal{H}_{(\varphi_t(x), du(t, \cdot))}^t$ to the vertical space $\mathcal{V}_{(\varphi_t(x), du(t, \cdot))}^t$) with respect to the basis $\tilde{E}^{t,t}$ and $\tilde{F}^{t,t}$ is given by

$$S(t) = -B(t)^{-1}A(t). \tag{30}$$

By differentiating (28) and using the relation (25), we also obtain

$$\dot{B}(t) = -A(t), \quad \dot{A}(t) = B(t)[R^t_{\Phi_t(x, df)}],$$

where $[R^t_{\Phi_t(x, df)}]$ denotes the matrix representation of $R^t_{\Phi_t(x, df)}$ with respect to the basis $E^{t,t}$.

It follows from these equations and (30) that the following matrix Riccati equation holds

$$\dot{S}(t) + S(t)^2 + [R^t_{\Phi_t(x, df)}] = 0. \tag{31}$$

The equation (31) can be seen as a Hamiltonian analogue of Bochner formula in Riemannian geometry. For this, we use an argument in [40]. Indeed, assume that the map $f \mapsto \Delta_H f$ is linear. Then we can take the trace of the Riccati equation (31) and obtain the following

$$-\Delta_H H(t, \varphi_t(x), du) + d(\Delta_H u)(H_p(\varphi_t(x))) = \Delta_H \dot{u}(t, \varphi_t(x)) + d(\Delta_H u)(\dot{\varphi}_t(x)) = \frac{d}{dt}(\Delta_H u(t, \varphi_t(x))) = -|\nabla_H^2 u(t, \varphi_t(x))|^2 - \text{tr}(R^t_{\Phi_t(x, df)}).$$

Here $|\nabla_H^2 u(t, \varphi_t(x))|$ denotes the Hilbert-Schmidt norm of the linear operator $\nabla_H^2 u : \mathcal{H}_{(\varphi_t(x), du(t, \cdot))}^t \rightarrow \mathcal{V}_{(\varphi_t(x), du(t, \cdot))}^t$ with respect to the Euclidean structure defined by a canonical frame $E^{t,t}$ on the vertical space $\mathcal{V}_{(\varphi_t(x), du(t, \cdot))}^t$ and $F^{t,t}$ on the horizontal space $\mathcal{H}_{(\varphi_t(x), du(t, \cdot))}^t$.

By setting $t = 0$, we obtain the following Bochner type formula

$$\Delta_H H(t, x, df) - d(\Delta_H f)(H_p(x, df)) = |\nabla_H^2 f(x)|^2 + \text{tr}(R^0_{(x, df)}).$$

Remark 4.4. One can use the matrix Riccati equation (31) together with comparison results in (34) to prove analogues of Laplacian, Hessian, and volume comparison theorems for Hamiltonian systems.

Remark 4.5. By combining the work in [3] with the above argument, one can recover the subriemannian Bochner formula in [6] (at least in the three dimensional case) in a geometric way.
5. Natural Mechanical Hamiltonians

In this section, we discuss how to compute the Hessian and the curvature of the natural mechanical Hamiltonians. Let g be a Riemannian metric, let $g_{ij} = g(\partial x_i, \partial x_j)$, and let g^{ij} be the inverse matrix of g_{ij}. Let U be a smooth function on the manifold M. The Hamiltonian given in local coordinates by

\begin{equation}
H(x, p) = \frac{1}{2} \sum_{i,j} g^{ij} \dot{x}_i \dot{x}_j + U(t, x)
\end{equation}

is called a natural mechanical Hamiltonian. When $U \equiv 0$, the Hamiltonian flow of H coincides with the geodesic flow of g. The proof of the following illustrate how Proposition 3.3 can be applied and it is needed in the later sections. For an alternative proof, see [1].

Proposition 5.1. The Hessian $\nabla^2_H f$ and the curvature R of the Hamiltonian (32) are given by

\[\nabla^2_H f(t, x) = \nabla^2 f(x) \]

and

\[R^t_{(x, p)}(V) = Rm_x(p, V)p + \nabla^2 U_x(V), \]

respectively. Here Rm and ∇^2 denote the Riemannian curvature tensor and the Hessian, respectively, of the given Riemannian metric g.

Remark 5.2. In Proposition 5.1, we have made several identifications $T_xM \cong T^*_xM \cong \mathcal{V}(x, p)$. The first identification is done by the Riemannian metric $v \mapsto g(v, \cdot)$ and the second one is by $l \mapsto \frac{d}{dt}(p + tl) \big|_{t=0}$. We will make these identifications for the rest of this paper without mentioning.

Proof. Let us fix a geodesic normal coordinates (x_1, \ldots, x_n) around a point x and let $(x_1, \ldots, x_n, p_1, \ldots, p_n)$ be the corresponding coordinates on the cotangent bundle around the point (x, df). The Hamiltonian vector field \vec{H} is given by

\[\vec{H} = \sum_{i,j} g^{ij} p_j \partial x_i - \sum_k \left(\frac{1}{2} \sum_{i,j} g^{ij} x_k p_i p_j + U_{x_k} \right) \partial p_k. \]

Let $V^t_m = V_m = \sum_i \sqrt{g}_{mi} \partial x_i$, which is independent of time t. First, we compute the bracket of \vec{H} and V_m

\[[\vec{H}, V_m] = \sum_{i,j,l} g^{ij} p_j (\sqrt{g}_{ml})_{x_i} \partial p_l - \sum_i \sqrt{g}^{mi} \partial x_i + \sum_{i,l,k} g_{ml} \left(g^{ij}_{x_k} p_l \right) \partial p_k. \]
Using the properties of geodesic normal coordinates, we have \(g^{ij} = \delta^{ij} \) and \((\sqrt{g})_{,k} = 0 \) at \(x \). Therefore, the followings hold at \((x, df)\)
\[
[\vec{H}, V_m] = -\partial_{x_m}, \quad \Omega^{0,0}_{ij} = \omega([\vec{H}, V_i], [\vec{H}, V_j]) = 0.
\]

It follows that the horizontal space at \((x, df)\) is spanned by \(\partial_{x_1}, \ldots, \partial_{x_n} \).

Since \(d(df)_{x}(-\partial_{x_i}) = -\sum_{j} f_{i,j} \partial_{p_j} - \partial_{x_i}, \)
\(\nabla^2_{\vec{H}} f \) is given by \(f_{i,j} = \nabla^2_{\vec{H}} f \) at \((x, df) \).

Since \((\sqrt{g})_{x,x} = \frac{1}{2} (g_{ik})_{x,x} \) at \(x \), a computation shows that the following holds at \(x \)
\[
[\vec{H}, [\vec{H}, V_m]] = \frac{1}{2} \sum_{i,j,k} p_i p_j \left((g_{mk})_{x,i} + (g_{ij})_{x_k} - 2(g_{im})_{x_k} \right) \partial_{p_k} - \sum_k U_{x_k} \partial_{p_k},
\]
and
\[
\omega([\vec{H}, [\vec{H}, V_m]], [\vec{H}, V_i]) = \frac{1}{2} \sum_{i,j} p_i p_j \left((g_{ml})_{x,i} + (g_{ij})_{x_m} - 2(g_{im})_{x_j} \right) + U_{x_l}.\]

It follows from Proposition 3.3 that
\[
\dot{\Omega}^{0,0}_{ml} = \sum_{i,j} p_i p_j \left((g_{im})_{x_l} - (g_{il})_{x_m} \right)
\]
at \(x \) (note that since \(\vec{H} = \vec{U} \) is contained in \(\mathcal{V} \), \([\vec{H}, V_i] = 0 \)).

Therefore,
\[
[\vec{H}, [\vec{H}, V_m]] + \Omega^{0,0}_{ml}[\vec{H}, V_i] + \frac{1}{2} \dot{\Omega}^{0,0}_{ml} V_i + \frac{1}{4} \dot{\Omega}^{0,0}_{ml} \dot{\Omega}^{0,0}_{ml} V_i
\]
\[
= \frac{1}{2} \sum_{i,j,k} p_i p_j \left((g_{mk})_{x,i} + (g_{ij})_{x_k} - \left((g_{im})_{x_l} - (g_{il})_{x_m} \right) \partial_{p_k} - \sum_k U_{x_k} \partial_{p_k},\right.
\]
Recall that the Riemann curvature tensor \(Rm \) satisfies the following equation at \(x \)
\[
R^l_{ijk} = \frac{1}{2} \left((g_{ik})_{x_j x_l} - (g_{kj})_{x_i x_l} - (g_{il})_{x_j x_k} + (g_{ij})_{x_k x_l} \right),
\]
where \(R^l_{ijk} \) is defined by \(Rm(\partial_{x_i}, \partial_{x_j}) \partial_{x_k} = \sum_l R^l_{ijk} \partial_{x_l} \).
Therefore, by combining all of the above computations with Proposition 3.3, we obtain the following equation at x

$$R^t_{(x,p)}(V) = Rm(x,V)p + \nabla^2 U_x(V).$$

\[\square\]

6. Natural Mechanical Hamiltonians with Evolving Riemannian Metrics

In this section, we consider the case when both the Riemannian metric g and the potential U depend on time. Let

$$H(t, x, p) = \frac{1}{2} \sum_{i,j} g^{ij}(t, x) p_i p_j + U(t, x)$$

be the Hamiltonian with Hamiltonian vector field

$$\vec{H} = \sum_{i,j} g^{ij} p_j \partial_{x_i} - \sum_k \left(\frac{1}{2} \sum_{i,j} g^{ij} p_i p_j + U_{x_k} \right) \partial_{p_k}.$$

Theorem 6.1. The Hessian $\nabla^2_H f$ and the curvature R of the Hamiltonian system \vec{H} defined by (33) satisfy

$$\nabla^2_H f(t, x) = \nabla^2 f(t, x) + \frac{1}{2} \dot{g}(t, x)$$

and

$$tr(R^t_{(x,p)})) = Rc(t, x)(p, p) + \Delta U(t, x) - \langle \nabla (tr(\dot{g}(t, x))), p \rangle$$

$$+ \text{div}(\dot{g}(t, x))(p) - \frac{1}{2} tr(\dot{g}(t, x)) + \frac{1}{4} |\dot{g}(t, x)|^2$$

where Rc, ∇, and Δ are the Ricci curvature, the gradient, and the Laplacian, respectively, of the Riemannian metric $g(t, \cdot)$ at time t.

Proof of Theorem 6.1. We apply Proposition 3.3 to the time dependent Hamiltonian (33). Let us fix a geodesic normal coordinate around x with respect to the Riemannian metric g at time t. A computation shows that

$$[\vec{H}, \sum_t a^i_t(x) \partial_{p_i}] = \sum_{i,j,l} g^{lj} p_j (a^i_t)_x \partial_{p_i} - \sum_{j,l} g^{lj} a^j_t \partial_{x_l} + \sum_{j,k,l} g^{lj}_{x_k} p_j a^i_t \partial_{p_k}.$$

Therefore, the following equation holds at (x, p)

$$[\vec{H}, \sum_t a^i_t(x) \partial_{p_i}] = \sum_{i,l} p_l (a^i_t)_{x_l} \partial_{p_i} - \sum_l a^i_l \partial_{x_l}.$$

(34)
Let \(V_t^i = \sum_j \sqrt{g}_{ij} \partial_{p_j} \) and let \(\dot{e}_i^{t,s} = (\Phi_{t,s})^* V_t^i \). Then clearly \(\dot{e}_i^{t,t} = \partial_{p_i} \) at \((x, p)\). Since \(\sqrt{g}_{ij} = \frac{1}{2} \dot{g}_{ij} \) at \(x \), it follows from (34) that
\[
\bar{f}_i^{t,t} := \dot{\bar{e}}_i^{t,t} = [\bar{H}, V_t^i] + V_t^i = -\partial_{x_i} + \sum_j \frac{1}{2} \dot{g}_{ij} \partial_{p_j}
\]
at \((x, p)\).

It follows that
\[
d(df)_x(-\partial_{x_i}) = -\sum_j f_{x_ix_j} \partial_{p_j} - \partial_{x_i}
\]
\[
= -\sum_j \left(f_{x_ix_j} + \frac{1}{2} \dot{g}_{ij} \right) \partial_{p_j} - \partial_{x_i} + \frac{1}{2} \sum_j \dot{g}_{ij} \partial_{p_j}
\]
and so
\[
\nabla^2_H f = \nabla^2 f + \frac{1}{2} \dot{g}.
\]
Since \(\dot{g}_{ij} \) is symmetric, it follows that
\[
\Omega_{ij}^{t,t} = \omega(\bar{f}_i^{t,t}, \bar{f}_j^{t,t}) = 0.
\]
Clearly, we have
\[
\dot{V}_i^t = \sum_k \sqrt{g}_{ik} \partial_{p_k} = \frac{1}{2} \sum_k \dot{g}_{ik} \partial_{p_k}
\]
at \(x \). It follows from (34) that
\[
[\bar{H}, \dot{V}_i^t] = \frac{1}{2} \sum_{l,m} p_l (\dot{g}_{im} x_l) \partial_{p_m} - \sum_m \frac{1}{2} \dot{g}_{im} \partial_{x_m}
\]
at \(x \).

By a computation together with the facts that \(\dot{g}_{ij} = -\dot{g}^{ij} \) and \((\dot{g}_{ij})_{x_k} = -\dot{g}_{x_k}^{ij} \), we see that
\[
[\bar{H}_k, V_i^t] = \sum_l \dot{g}_{kl} \partial_{x_l} - \sum_{l,k} (\dot{g}_{kl}) x_k p_l \partial_{p_k}
\]
at \(x \).

Since \(\sqrt{g}_{ik} = \frac{1}{2} \ddot{g}_{ik} - \sum_j \frac{1}{4} \dot{g}_{ij} \dot{g}_{jk} \), we have
\[
\ddot{V}_i^t = \sum_k \sqrt{g}_{ik} \partial_{p_k} = \sum_k \left(\frac{1}{2} \ddot{g}_{ik} - \frac{1}{4} \sum_j \dot{g}_{ij} \dot{g}_{jk} \right) \partial_{p_k}
\]
at \(x \).
By combining all of the above computations, we obtain

\[
\dot{\vec{t}}_i = [\vec{H}, [\vec{H}, V_i]] + 2[\vec{H}, \dot{V}_i] + \ddot{V}_i + [\tilde{H}, V_i]
\]

\[
= [\vec{H}, [\vec{H}, V_i]] + \sum_k \left(\sum_l p_t(\dot{g}_{ik}) x_l - \sum_l (\dot{g}_{li}) x_k p_t \right)
\]

\[
+ \frac{1}{2} \dot{g}_{ik} - \frac{1}{4} \sum_j \dot{g}_{ij} \dot{g}_{jk} \right) \partial_{p_k}.
\]

From the proof of Proposition 5.1, the vector field \([\vec{H}, [\vec{H}, V_i]]\) is contained in the vertical space \(V(x, p)\) at \((x, p)\). Therefore, it follows from the above computations that

\[
\omega(\dot{e}_i, \dot{e}_j) = \omega([\vec{H}, [\vec{H}, V_i]], [\vec{H}, V_j]) = \sum_k \left(\sum_l p_t(\dot{g}_{ik}) x_l - \sum_l (\dot{g}_{li}) x_k p_t \right)
\]

\[
- \frac{1}{2} \dot{g}_{ij} + \frac{1}{4} \sum_k \dot{g}_{ik} \dot{g}_{jk} + \sum_l (\dot{g}_{li}) x_l p_t.
\]

Hence,

\[
\dot{\Omega}_{ij} = \omega(\dot{e}_i, \dot{e}_j) - \omega(\dot{e}_j, \dot{e}_i)
\]

\[
= \omega([\vec{H}, [\vec{H}, V_i]], [\vec{H}, V_j]) - \omega([\vec{H}, [\vec{H}, V_j]], [\vec{H}, V_i])
\]

\[
+ \sum_l (\dot{g}_{li}) x_l p_t - \sum_l (\dot{g}_{lj}) x_i p_t.
\]

Finally, from the proof of Proposition 5.1 again, we obtain the following equation at \((x, p)\)

\[
-R_{(x,p)} = \frac{1}{2} \dot{\epsilon}_{ij} \dot{\epsilon}_{ij} + \dot{\tilde{F}}
\]

\[
= \sum_k \left(- \sum_{i,r} R_{kri} p_i p_r - U_{x_i x_k} + \sum_l (\dot{g}_{ik}) x_l p_t - \frac{1}{2} \sum_l (\dot{g}_{li}) x_k p_t \right)
\]

\[
- \frac{1}{2} \sum_l (\dot{g}_{ik}) x_l p_t + \frac{1}{2} \dot{g}_{ik} - \frac{1}{4} \sum_j \dot{g}_{ij} \dot{g}_{jk} \right) \partial_{p_k}
\]

and

\[
\text{tr}(R_{(x,p)}) = \sum_{l,r,i} R_{lri} p_i p_r + \sum_l U_{x_i x_i}
\]

\[
- \left(\sum_{i,l} (\dot{g}_{il}) x_l p_t - \sum_{i,l} (\dot{g}_{li}) x_l p_t + \frac{1}{2} \sum_i \dot{g}_{ii} - \frac{1}{4} \sum_{i,j} \dot{g}_{ij} \dot{g}_{ji} \right).
\]

Finally, we look at the following special case.
Theorem 6.2. Let us fix two smooth functions $c_1, c_2 : \mathbb{R} \to \mathbb{R}$ of time t. Let g be a smooth solution of the following equation

\begin{equation}
\dot{g} = c_1 R c + c_2 g.
\end{equation}

Then

\[
\text{tr} (\dot{R}(t, x)(p, p)) = Rc(t, x)(p, p) + \Delta U(t, x) - \frac{1}{2}c_1(t) \langle \nabla R(t, x), p \rangle \\
- \frac{\dot{c}_1(t)}{2} R(t, x) + \frac{c_1(t)^2}{4} |Rc(t, x)|^2 + \frac{c_1(t)^2}{4} \Delta R(t, x) - \frac{nc_2(t)^2}{2} - \frac{nc_2(t)^2}{4},
\]

where R is the scalar curvature of the metric g at time t.

Proof. By taking the trace of (44), we obtain

\[\text{tr}(\dot{g}) = c_1 R + c_2 n.\]

On the other hand, if we take the covariant derivative of (44), then

\[\nabla_{v_i} \dot{g}(p, v_i) = c_1 \nabla_{v_i} Rc(p, v_i).\]

Therefore, if we sum over i and use the twice contracted Bianchi identity [12, (1.19)], then

\[\text{div}(\dot{g}) = \frac{1}{2} c_1 dR.\]

If we take the divergence again, then we obtain

\[\text{div}(\text{div}(\dot{g})) = \frac{1}{2} c_1 \Delta R.\]

By using (44) again, we obtain

\[\langle \dot{g}, Rc \rangle = \langle c_1 Rc + c_2 g, Rc \rangle = c_1 |Rc|^2 + c_2 R.\]

Therefore, by combining the above calculations with [12, Lemma 2.7], we have

\[
\dot{R} = -\Delta(\text{tr}(\dot{g})) + \text{div}(\text{div}(\dot{g})) - \langle \dot{g}, Rc \rangle \\
= -\frac{c_1}{2} \Delta R - c_1 |Rc|^2 - c_2 R.
\]

A simple calculation also gives

\[|\dot{g}|^2 = |c_1 Rc + c_2 g|^2 = c_1^2 |Rc|^2 + 2c_1 c_2 R + nc_2^2.\]
Therefore, the above calculations reduce Theorem 6.1 to

\[tr(R^t_{(x,p)}) = Rc_x(p, p) + \Delta U(x) - \frac{1}{2}c_1 \langle \nabla R, p \rangle \]
\[- \frac{1}{2} \left(\dot{c}_1 R + c_1 \dot{R} + n \dot{c}_2 \right) - \frac{1}{4} \left(c_1^2 |Rc|^2 + 2c_1c_2 R + nc_2^2 \right) \]
\[= Rc_x(p, p) + \Delta U(x) - \frac{1}{2}c_1 \langle \nabla R, p \rangle \]
\[- \frac{\dot{c}_1}{2} R - \frac{nc_2}{2} - \frac{nc_2^2}{4} + \frac{c_1^2}{4} |Rc|^2 + \frac{c_1^2}{4} \Delta R. \]

\[\Box \]

7. Proof of Theorem 2.2 and Corollary 2.3

In this section, we give the proof of Theorem 2.2 and show that Corollary 2.3 can be seen as a consequence. Before this, we need to introduce the volume distortion factor \(v \) in the statement of the theorem. It is defined as follows

\[v(t, x, p) = \log \left(\left(\pi^* m_t \right)_{(x,p)} \left(f^{t,t}_1, \ldots, f^{t,t}_n \right) \right). \]

Clearly, the definition is independent of the choice of a canonical frame due to Proposition 3.1.

Let \(F : \mathbb{R} \to \mathbb{R} \) and recall that the functional \(F \) is defined by

\[F(t, \mu) = \int_M F(\rho(t, x))d\mu(x), \]

where \(\mu = \rho(t, \cdot)m_t \).

Let \(f : M \to \mathbb{R} \) be a smooth function which defines the smooth displacement interpolation \(\mu_t \). Recall that this means

\[\mu_t = (\varphi_t)_* \mu \]

where \(\varphi_t(x) = \pi(\Phi_t(df_x)) \). Let \(u \) be the solution of the equation (26) with initial condition \(u(0, \cdot) = f(\cdot) \). First we have the following lemma.

Lemma 7.1. The functional \(F \) satisfies

\[\frac{d}{dt} F(t, \mu_t) \]
\[= - \int_M F'(r^t_x r^t_x) \left(\frac{d}{dt} v(t, \Phi_t(x, df)) + \Delta_H u(t, \varphi_t(x)) \right) d\mu(x) \]
and
\[
\frac{d^2}{dt^2} F(t, \mu_t) = \int_M \left(\mathcal{F}'(r^t_x) r^t_x + \mathcal{F}(r^t_x) \right)^2 \left(\frac{d}{dt} v(t, \Phi_t(x, df)) + \Delta_H u(t, \varphi_t(x)) \right)^2
\]
\[
+ \mathcal{F}(r^t_x) r^t_x \left(|\nabla^2_H u(t, \varphi_t(x))|^2 + \text{tr} \left(R^t_{\Phi_t(x, df)} \right) - \frac{d^2}{dt^2} v(t, \Phi_t(x, df)) \right) d\mu(x).
\]

Proof. Let \(E^{t,s} = (e_1^{t,s}, ..., e_n^{t,s})^T \) be a canonical frame at \((x, df)\) and let \(\tilde{E}^{t,\tau} = (\tilde{e}_1^{t,\tau}, ..., \tilde{e}_n^{t,\tau})^T \) be the canonical frame at \(\Phi_t(x, df) \) defined by
\[
\tilde{e}_i^{t,\tau} = d\Phi_{\tau}(e_i^{0,0}).
\]
Let \(A(t) \) and \(B(t) \) be as in (28). It follows from (29) that
\[
d\varphi_t(d\pi(f_{0,0}^{t,0})) = \sum_{j=1}^n B_{ij}(t) d\pi(\tilde{f}_j^{t,0}).
\]
Let \(\rho(t, \cdot) \) be the function defined by \(\mu_t := (\varphi_t)_* \mu = \rho(t, \cdot) m_t \). The two functions \(\rho(0, \cdot) \) and \(\rho(t, \cdot) \) are related by
\[
\rho(0, x) e^{v(0,x,df)} = \rho(t, \varphi_t(x)) \det B(t) e^{v(t,\Phi_t(x,df))}.
\]
If we differentiate this with respect to \(t \), then we obtain
\[
r^t_x = -r^t_x \left(\frac{d}{dt} v(t, \Phi_t(x, df)) + \text{tr} (S(t)) \right),
\]
where \(r^t_x = \rho(t, \varphi_t(x)) \) and \(S(t) = -B(t)^{-1} A(t) \).

It follows that
\[
\frac{d}{dt} F(t, \mu_t) = \frac{d}{dt} \int_M \mathcal{F}(\rho(t, \varphi_t(x))) \, d\mu(x)
\]
\[
= \int_M \mathcal{F}'(r^t_x) r^t_x \, d\mu(x)
\]
\[
= -\int_M \mathcal{F}'(r^t_x) r^t_x \left(\frac{d}{dt} v(t, \Phi_t(x, df)) + \text{tr} (S(t)) \right) \, d\mu(x)
\]
and the first statement of the lemma follows.
If we differentiate the above with respect to time \(t \), then we obtain

\[
\frac{d^2}{dt^2} F(t, \mu_t) = \int_M \left(\mathcal{F}''(r^t\pi_x) (\dot{\pi}_x)^2 + \mathcal{F}'(r^t\pi_x) \dot{\pi}_x \left(\frac{d}{dt} v(t, \Phi_t(x, df)) + \text{tr}(S(t)) \right)^2 \right. \\
+ \mathcal{F}'(r^t\pi_x) \left(|S(t)|^2 + \text{tr}(R^t\Phi_t(x, df)) - \frac{d^2}{dt^2} v(t, \Phi_t(x, df)) \right) d\mu(x)
\]

as claimed.

Proof of Theorem 2.2 By Lemma 7.1, we have

\[
\frac{d^2}{dt^2} F(t, \mu_t) \geq \int_M |S(t)|^2 + \text{tr}(R^t\Phi_t(x, df)) - \frac{n b(t)^2}{4} + \text{tr}(R^t\Phi_t(x, df)) - \frac{d^2}{dt^2} v(t, \Phi_t(x, df)) d\mu(x).
\]

Therefore, by Lemma 7.1 again, we obtain

\[
\frac{d^2}{dt^2} F(t, \mu_t) + b(t) \frac{d}{dt} F(t, \mu_t) \\
\geq \int_M \left(\frac{n b(t)^2}{4} - \frac{d^2}{dt^2} v(t, \Phi_t(x, df)) \right) \left(\frac{d}{dt} v(t, \Phi_t(x, df)) \right) d\mu(x).
\]

Next, we prove Corollary 2.3. In fact, we will first prove results which work for more general Hamiltonian systems for which Corollary 2.3 follows as a consequence. First, we need the following lemma.

Lemma 7.2. Assume that the Hamiltonian \(H \) satisfies \(H(x, \lambda p) = \lambda^m H(x, p) \). Then

1. \(\pi \Phi_{\lambda^m-1}(x, p) = \pi \Phi_t(x, \lambda p) \),
2. \(\text{tr}(R_{\Phi_t(x, df)}) = \lambda^{2m-2} \text{tr}(R_{(x,p)}) \),
3. \(L^2_H(\Phi_t(x, \lambda p)) = \lambda^{2m-2} L^2_H(\Phi_{\lambda^m-1}(x, p)) \),
4. \(|\nabla^2 \Phi_t(x, \lambda f)(x)|^2 = \lambda^{2m-2} |\nabla^2 \Phi_{\lambda^m-1}(x, p)(x)|^2 \)
Proof. Let \((x(t), p(t))\) be a solution of the equation \((24)\). By using homogeneity of \(H\), one can show that

\[(x(\lambda^{m-1}t), \lambda p(\lambda^{m-1}t)) \]

is also a solution of \((24)\) and the first claim follows.

Let \((x_1, ..., x_n, p_1, ..., p_n)\) be local coordinates of a chart on \(T^*M\) and let \(c_{ij}\) be functions defined on the this chart such that

\[\partial x_i + \sum_j c_{ij}(x, p) \partial p_j \]

are contained in the horizontal bundle.

By [1], we have the following formula

\[
\sum_{m,s} H_{p_mp_m} c_{ms} H_{p_sp_j} = \frac{1}{2} \sum_k \left(H_{p_k} H_{p_j} x_k - H_{x_k} H_{p_j} p_k - H_{p_i x_k} H_{p_k p_j} - H_{p_i p_k} H_{x_k p_j} \right).
\]

It follows from homogeneity of \(H\) that

\[c_{ij}(x, \lambda p) = \lambda c_{ij}(x, p). \]

By Proposition 3.3 (see also [1]),

\[R_{(x, p)}(\partial p_i) = -[\hat{H}, [\hat{H}, \partial p_i]]_H. \]

Here the subscripts \(H\) and \(V\) denote the horizontal and vertical parts of the corresponding vectors, respectively.

Since \(H\) is homogeneous in \(p\), \(\hat{H}\) is horizontal (see [2]). It follows that \(\hat{H} = \sum_j H_{p_j} (\partial x_j + \sum_k c_{jk} \partial p_k)\) and so

\[
R_{(x, p)}(\partial p_i) = \left[\sum_l H_{p_l} (\partial x_l + \sum_s c_{ls} \partial p_s), \sum_j H_{p_j p_i} (\partial x_j + \sum_k c_{jk} \partial p_k) \right]_V
\]

\[= \sum_{j,l} H_{p_j p_i} H_{p_l} [\partial x_l + \sum_s c_{ls} \partial p_s, \partial x_j + \sum_k c_{jk} \partial p_k]_V\]

\[= \sum_{j,l} H_{p_j p_i} H_{p_l} ((c_{jk})_x - (c_{lk})_x) + \sum_s (c_{ls}(c_{jk})_{p_s} - c_{js}(c_{lk})_{x_s}) \partial p_k. \]

Therefore, \(R_{(x, \lambda p)}(\partial p_i) = \lambda^{2m-2} R_{(x, p)}(\partial p_i)\). The second assertion follows from this. Note that the trace of \(R_{(x, \lambda p)}\) is taking with respect to the inner product defined by \(H_{p_j p_j}(x, \lambda p)\).
By the definition of horizontal frame f_1, \ldots, f_n and homogeneity of H, we have
\[
(\pi^* m)(x, \lambda p)(f_1(x, \lambda p), \ldots, f_n(x, \lambda p)) = \lambda \frac{m-2}{m} \pi_* f_1(x, \lambda p), \ldots, \pi_* f_n(x, \lambda p)).
\]

It follows that
\[
\frac{d^2}{dt^2} v(\Phi_t(x, \lambda p)) = \frac{d^2}{dt^2} v(x(\lambda^{m-1} t), \lambda p(\lambda^{m-1} t))
\]
\[
= \frac{d^2}{dt^2} \log (m x(\lambda^{m-1} t), \pi_* f_1(x, \lambda p(\lambda^{m-1} t)), \ldots, \pi_* f_n(x, \lambda p(\lambda^{m-1} t)))
\]
\[
= \lambda^{2m-2} \mathcal{L}^2_H v(x(\lambda^{m-1} t), \lambda p(\lambda^{m-1} t)).
\]

This gives the third assertion.

Finally, $\nabla_H f$ is the map which sends $\partial_{x_i} + \sum_j c_{ij}(x, df) \partial_{p_j}$ to $\sum_j (f_{x_i}x_j(x) - c_{ij}(x, df)) \partial_{p_j}$. Therefore, the final assertion follows. \qed

Theorem 7.3.

(1) Assume that there is a point (x, p) outside the zero section of the cotangent bundle $T^* M$ such that
\[
\text{tr}(R_{(x, p)}) - \mathcal{L}^2_H v(x, p) < K(x, p).
\]
(\mathcal{L}_V denotes the directional derivative with respect to the vector field V.) Then there is a $\tau > 0$ and a smooth potential f such that the displacement interpolation μ_t satisfies
\[
\frac{d^2}{dt^2} F(t, \mu_t) < \int_M K(\Phi_t(x, df)) d\mu(x)
\]
for all t in $[0, \tau]$.

(2) Assume that H is homogeneous of degree m in the p variable and there is a point (x, p) outside the zero section of $T^* M$ such that
\[
\text{tr}(R_{(x, p)}) - \mathcal{L}^2_H v(x, p) < K H^{\frac{2m-2}{m}}(x, p).
\]
Then, for all $T > 0$, there is a smooth potential f such that the displacement interpolation μ_t satisfies
\[
\frac{d^2}{dt^2} F(t, \mu_t) < K \int_M H^{\frac{2m-2}{m}} (x, df) d\mu(x).
\]

(3) Assume that H is homogeneous of degree 2 in the p variable and there is a point (x, p) outside the zero section of $T^* M$ such that
\[
\text{tr}(R_{(x, p)}) - \mathcal{L}^2_H v(x, p) < K H(x, p).
\]
Then, for all $T > 0$, there is a smooth potential f such that the displacement interpolation μ_t satisfies
\[
\frac{d^2}{dt^2} F(t, \mu_t) < \frac{K}{T} C_T(\mu_0, \mu_T).
\]

Proof. Let (x, p) be a point in $T^* M$ such that
\[
\text{tr}(R_{(x,p)}) - \mathcal{L}_H^2 v(x, p) < K(x, p).
\]

Let f be a function with compact support such that $p = df_x$ and $\nabla_H^2 f(x, p) = 0$. This is possible since it is equivalent to finding a function with prescribed first and second derivatives at a point. Let u be a smooth solution of (26) defined on $[0, T] \times M$. By Proposition 4.2, u exists if we assume that $T > 0$ is small enough. By choosing a smaller T, we can find a neighborhood O of x such that
\[
|\nabla_H^2 u(t, \varphi_t(x))|^2 + \text{tr}(R_{\Phi_t(x, df)}) - \mathcal{L}_H^2 v(\Phi_t(x, df)) < K(\Phi_t(x, df))
\]
for all $0 \leq t \leq T$ and all x in O.

Let μ be a probability measure supported in O. It follows from Lemma 7.1 that
\[
\frac{d^2}{dt^2} F(t, \mu_t) < \int_M K(\Phi_t(x, df))d\mu(x).
\]

Next, assume that the Hamiltonian H is homogeneous in the p variable. Let u be a smooth solution of the equation (26) on the time interval $[0, \tau]$ with initial condition $u(0, \cdot) = f(\cdot)$. Then, by homogeneity of H, $\tilde{u}(t, x) := (\tau/T)\frac{1}{m-1} u(t\tau/T, x)$ is also a solution on the interval $[0, T]$ with initial condition $\tilde{u}(0, x) = (\tau/T)\frac{1}{m-1} f(x)$. By Lemma 7.2 it follows that
\[
\varphi_t(x) := \pi(\Phi_t(\lambda\frac{1}{m-1} df_x)) = \pi(\Phi_{\lambda t}(df_x)) = \varphi_{\lambda t}(x)
\]
where $\lambda = \tau/T$.

By Lemma 7.2, we also have
\[
\text{tr}(R_{\Phi_t(x, \lambda\frac{1}{m-1} df)}) = \text{tr}(R_{(x(\lambda t), \lambda\frac{1}{m-1} p(\lambda t))}) = \lambda^2 \text{tr}(R_{\Phi_{\lambda t}(x, df)})
\]

By combining the above discussions and applying Lemma 7.2 again, it follows that
\[
|\nabla_H^2 \tilde{u}(t, \varphi_t(x))|^2 + \text{tr}(R_{\Phi_t(x, \lambda\frac{1}{m-1} df)}) - \mathcal{L}_H^2 v(\Phi_t(x, \lambda\frac{1}{m-1} df))
= \lambda^2 \left(|\nabla_H^2 u(\lambda t, \varphi_{\lambda t}(x))|^2 + \text{tr}(R_{\Phi_{\lambda t}(x, df)}) - \mathcal{L}_H^2 v(\Phi_{\lambda t}(x, df)) \right)
\leq \lambda^2 K H^{2m-2} (x, df) = K H^{2m-2} (x, \lambda\frac{1}{m-1} df)
\]
for all x in O and for all t in $[0, T]$.
Therefore, if we let μ be a measure supported in O and let μ_t be the displacement interpolation defined by the potential $\lambda^{m-1} f$, then

$$\frac{d^2}{dt^2} F(t, \mu_t) < K \int_M H^{\frac{2m-2}{m}}(x, \lambda^{\frac{1}{m-1}} f) d\mu(x).$$

If $m = 2$, then $H(x, \lambda^{\frac{1}{m-1}} f) = \frac{1}{T} c_T(x, \varphi_T(x))$ and so

$$\frac{d^2}{dt^2} F(t, \mu_t) < \frac{K}{T} C_T(\mu_0, \mu_T).$$

□

Proof of Corollary 2.3. Since $b \equiv 0$ and $F(r) = \log r$ in this case, Theorem 2.2 reduces to

$$\frac{d^2}{dt^2} F(t, \mu_t) \geq \int_M \left(\text{tr}(R^t_{\Phi_t(x,d\Phi)}(x,p)) - \frac{d^2}{dt^2} v(t, \Phi_t(x, d\Phi)) \right) d\mu(x).$$

Since $m_t = e^{-U}\text{vol}$, where vol is the Riemannian volume form, it follows from the proof of Proposition 5.1 that $\text{tr}R^t_{(x,p)}(x,p) = \text{Ric}(x,p)$ and $v(t, x, p) = -\mathcal{U}(x)$.

Therefore, we obtain

$$\frac{d^2}{dt^2} v(t, \Phi_t(x, p)) = -\frac{d^2}{dt^2} \mathcal{U}(\varphi_t(x)) = -\nabla^2 \mathcal{U}(\varphi_t(x)).$$

Let exp be the Riemannian exponential map and note that

$$\text{exp}(T\nabla f(x)) = \pi(\Phi_T(d\Phi_x)) = \varphi_T(x).$$

It follows that

$$d(x, \varphi_T(x)) = T|\nabla f_x|.$$

By the above considerations and (9), we have

$$\frac{d^2}{dt^2} F(t, \mu_t) \geq K \int_M |\Phi_t(x, d\Phi)|^2 d\mu(x)$$

$$\geq \frac{K}{T^2} \int_M d^2(x, \varphi_T(x)) d\mu(x)$$

$$= \frac{2K}{T} C_T(\mu, \nu)$$

as claimed.

The converse follows from Theorem 7.3 □
8. Proof of Corollary 2.4 and 2.7

This section is devoted to the proof of Corollary 2.4 and 2.7.

Proof of Corollary 2.4. From the proof of Theorem 6.1, we see that $\pi^* \text{vol}_{(x,p)}(f_1^t, ..., f_n^t) = 1$. Assume $k = k(t)$ depends only on t and u satisfies the Hamilton-Jacobi equation $\dot{u} + \frac{1}{2} |\nabla u|^2 + U = 0$ with initial condition $u_{t_0} = f$. Then

$$\frac{d}{dt} v(t, \Phi_t(x, df)) = \frac{d}{dt} (k(t)u(t, \varphi_t(x)))$$

$$= k(t)\dot{u}(t, \varphi_t(x)) + k(t) \langle \nabla u(t, \varphi_t(x)), \dot{\varphi}_t(x) \rangle + \ddot{k}(t)u(t, \varphi_t(x))$$

(37)

and

$$\frac{d^2}{dt^2} v(t, \Phi_t(x, df)) = \frac{d^2}{dt^2} (k(t)u(t, \varphi_t(x)))$$

$$= -k(t) \left(\ddot{U}(t, \varphi_t(x)) + 2 \langle \nabla U(t, \varphi_t(x)), \nabla u(t, \varphi_t(x)) \rangle \right)$$

$$+ \frac{c_1(t)}{2} \text{Rc}(\nabla u(t, \varphi_t(x)), \nabla u(t, \varphi_t(x))) + \frac{c_2(t)}{2} |\nabla u(t, \varphi_t(x))|^2$$

$$+ 2\ddot{k}(t) \left(\frac{1}{2} |\nabla u(t, \varphi_t(x))|^2 - U(t, \varphi_t(x)) \right) + \dddot{k}(t)u(t, \varphi_t(x)).$$

(38)

If we compare (38) and Theorem 6.1, then we can get rid of the term $\text{Rc}(\nabla u, \nabla u)$ by setting $c_1 k = -2$ and get rid of the term $\langle \nabla R, \nabla u \rangle$ in Theorem 6.1 by setting $U = -\frac{1}{2k^2} R$. Therefore, (38), (36), and Theorem 6.1 together gives

$$\text{tr} (R_{x,p}^t) - \frac{d^2}{dt^2} v(t, \Phi_t(x, df)) = -\frac{n c_2}{2} - \frac{n c_2^2}{4} - \ddot{k}(t)u(t, \varphi_t(x))$$

$$+ \left(c_2(t)k(t) - 2\ddot{k}(t) \right) \left(\frac{1}{2} |\nabla u(t, \varphi_t(x))|^2 + \frac{1}{2k(t)^2} R(t, \varphi_t(x)) \right)$$

(39)

and

$$\frac{d}{dt} v(t, \Phi_t(x, df)) = \ddot{k}(t)u(t, \varphi_t(x))$$

$$+ k(t) \left(\frac{1}{2} |\nabla u(t, \varphi_t(x))|^2 + \frac{1}{2k(t)^2} R(t, \varphi_t(x)) \right).$$

(40)
Next, we compare (39) and (40). We get rid of the term \(u(t, \varphi_t(x))\) in both expressions by choosing \(\ddot{k} + b\dot{k} = 0\) and we obtain

\[
\operatorname{tr} \left(R^t(x, p) \right) - \frac{d^2}{dt^2} v(t, \Phi_t(x, df)) - b(t) \frac{d}{dt} v(t, \Phi_t(x, df)) = -\frac{\dot{c}_2}{2} - \frac{nc_2^2}{4}
\]

\[+ \left(c_2(t) k(t) - 2\dot{k}(t) - b(t) k(t) \right) \left(\frac{1}{2} |\nabla u(t, \varphi_t(x))|^2 + \frac{1}{2k(t)^2} R(t, \varphi_t(x)) \right) .
\]

Finally, if we choose \(c_2(t) k(t) - 2\dot{k}(t) - b(t) k(t) = 0\), then

\[
\operatorname{tr} \left(R^t(x, p) \right) - \frac{d^2}{dt^2} v(t, \Phi_t(x, df)) - b(t) \frac{d}{dt} v(t, \Phi_t(x, df)) = -\frac{\dot{c}_2}{2} - \frac{nc_2^2}{4}.
\]

\[\square
\]

Proof of Corollary 2.7. Let \(\bar{g}\) be a solution of the Ricci flow \(\dot{g} = 2R_c\) and let \(g = \sqrt{t} \bar{g}\) (Note that the Ricci curvatures of \(g\) and \(\bar{g}\) are the same). Let \(\operatorname{vol}\) and \(\operatorname{vol}\) be the volume forms of \(g\) and \(\bar{g}\), respectively.

The functional \(\bar{F}\) is defined by

\[
\bar{F}(t, \mu) = \int_M \left(\log \bar{\rho} + t^{-1/2} u \right) d\mu + \frac{n}{2} \log t
\]

\[
= \int_M \log(\bar{\rho} e^{t^{-1/2} u}) d\mu + \frac{n}{2} \log t,
\]

where \(\mu = \bar{\rho} \operatorname{vol}\).

Since \(\operatorname{vol} = t^{n/4} \operatorname{vol}\), we have

\[
\rho e^{-t^{-1/2} u} \operatorname{vol} = \rho \operatorname{m} = \mu = \bar{\rho} \operatorname{vol} = t^{-n/4} \bar{\rho} \operatorname{vol}.
\]

It follows that

\[
\bar{F}(t, \mu) = \int_M \log(t^{n/4} \rho) d\mu + \frac{n}{2} \log t
\]

\[= \bar{F}(t, \mu) + \frac{3n}{4} \log t.
\]

Let \(m = -\frac{1}{2}\) and let \(C = -1\). Then Theorem 2.5 gives

\[
\frac{d^2}{dt^2} \bar{F}(t, \mu_t) + \frac{3}{2t} \frac{d}{dt} \bar{F}(t, \mu_t)
\]

\[= \frac{d^2}{dt^2} \bar{F}(t, \mu_t) + \frac{3}{2t} \frac{d}{dt} \bar{F}(t, \mu_t) + \frac{3n}{8t^2} \geq 0.
\]

\[\square
\]
9. Proof of Theorem 2.10

Proof of Theorem 2.10. We use the notations in Lemma 7.1. By Lemma 7.1, we have

\[
\frac{d}{dt} F(t, \mu_t) = - \int_M q(r^t_x)^q \left(\frac{d}{dt} v(t, \Phi_t(x, df)) + \text{tr}(S(t)) \right) d\mu(x)
\]

and

\[
\frac{d^2}{dt^2} F(t, \mu_t) = \int_M (r^t_x)^q \left[q^2 \left(\frac{d}{dt} v(t, \Phi_t(x, df)) + \text{tr}(S(t)) \right) \right]^2
+ q \left(\text{tr}(S(t)^2) + \text{tr}(R^t_{\Phi_t(x, df)}) - \frac{d^2}{dt^2} v(t, \Phi_t(x, df)) \right) d\mu(x)
\geq \int_M (r^t_x)^q \left[q^2 b_1(t) \left(\frac{d}{dt} v(t, \Phi_t(x, df)) + \text{tr}(S(t)) \right) - \frac{q^2 b_1(t)^2}{4}
+ q \left(b_2(t) \text{tr}(S(t)) - \frac{nb_2(t)^2}{4} + \text{tr}(R^t_{\Phi_t(x, df)})
- \frac{d^2}{dt^2} v(t, \Phi_t(x, df)) \right) \right] d\mu(x).
\]

Therefore,

\[
\frac{d^2}{dt^2} F(t, \mu_t) + (q b_1(t) + b_2(t)) \frac{d}{dt} F(t, \mu_t)
\geq \int_M q(r^t_x)^q \left[\text{tr}(R^t_{\Phi_t(x, df)}) - b_2(t) \frac{d}{dt} v(t, \Phi_t(x, df))
- \frac{d^2}{dt^2} v(t, \Phi_t(x, df)) - \frac{q b_1(t)^2}{4} - \frac{nb_2(t)^2}{4} \right] d\mu(x).
\]

□

Proof of Corollary 2.12. The way to find the appropriate unknown functions (for instance \(c_1, c_2, U\)) is in the proof of Corollary 2.4. Here we simply prove the result directly. But this follows immediately from (39), (40), and Theorem 2.10 since

\[
\text{tr}(R^t_{\Phi_t(x, df)}) - b_2(t) \frac{d}{dt} v(t, \Phi_t(x, df)) - \frac{d^2}{dt^2} v(t, \Phi_t(x, df))
= - \frac{n c_2(t)}{2} - \frac{nc_2(t)^2}{4}.
\]

□
10. The Case with Drift

In this section, we consider the following Hamiltonian

\(H(t, x, p) = \frac{1}{2} \sum_{i,j} g^{ij}(t, x) p_i p_j + \sum_{i,j} g^{ij} p_i W_{x_j}(t, x) + U(t, x) \)

where \(g \) is time-dependent Riemannian metric, \(U \) and \(W \) are time-dependent potentials on the manifold \(M \).

Theorem 10.1. The Hessian \(\nabla^2_H f \) and the curvature \(R \) of the Hamiltonian system \(\vec{H} \) defined by (33) satisfy

\[
\nabla^2_H f(t, x) = \nabla^2 f(t, x) + \nabla^2 W(t, x) + \frac{1}{2} \dot{g}(t, x)
\]

and

\[
\text{tr}(R_{(x,p)}) = Rc(p + \nabla W, p + \nabla W) - \frac{1}{2} \Delta |\nabla W|^2 - \Delta \dot{W} + \Delta U
\]

\[
- \frac{1}{2} \text{tr}(|\dot{g}|^2 - \langle \nabla W + p, \nabla (\text{tr}(\dot{g})) - \text{div}(\dot{g}) \rangle)
\]

where \(Rc, \nabla, \) and \(\Delta \) are the Ricci curvature, the gradient, and the Laplacian, respectively, of the Riemannian metric \(g(t, \cdot) \) at time \(t \).

Proof of Theorem 10.1. A computation shows that

\[
\vec{H} = \sum_{i,j} g^{ij}(p_j + W_{x_j}) \partial_{x_i}
\]

\[
- \sum_k \left(\frac{1}{2} \sum_{i,j} g^{ij}_x p_i p_j + \sum_{i,j} g^{ij}_x p_i W_{x_j} + \sum_{i,j} g^{ij} p_i W_{x_j x_k} + U_{x_k} \right) \partial_{p_k}
\]

and

\[
[\vec{H}, \sum_i a_i^t(x) \partial_{p_i}] = \sum_{i,j,l} g^{ij} (p_j + W_{x_j}) (a_i^t)_{x_l} \partial_{p_i} - \sum_{j,l} g^{ij} a_j^t \partial x_l
\]

\[
+ \sum_{j,k,l} (g^{ij}_{x_k} p_j + g^{ij}_{x_k} W_{x_j} + g^{ij} W_{x_j x_k}) a_i^t \partial_{p_k}.
\]

Therefore, the following equation holds at \((x, p) \)

\[
[\vec{H}, \sum_i a_i^t(x) \partial_{p_i}] = \sum_{i,l} (W_{x_i} + p_i)(a_i^t)_{x_l} \partial_{p_i}
\]

\[
- \sum_{i} a_i^t \partial_{x_i} + \sum_{k,l} W_{x_i x_k} a_i^t \partial_{p_k}.
\]
Let $V_t^i = \sum_j \sqrt{g_{ij}} \partial_{p_j}$ and let $\bar{e}^{t,s}_i = (\Phi_{t,s})^* V_t^i$. Then clearly $\bar{e}^{t,t}_i = \partial_{p_i}$ at (x, p). Since $\sqrt{g_{ij}} = \frac{1}{2} \dot{g}_{ij}$ at x, it follows from (43) that
\[
\bar{f}^{t,t}_i := \dot{\bar{e}}^{t,t}_i = [\ddot{\mathbf{H}}, V_t^i] + \dot{V}_t^i = -\partial_{x_i} + \sum_j \left(\frac{1}{2} \tilde{\dot{g}}_{ij} + W_{x_i x_j} \right) \partial_{p_j}
\]
at (x, p).

It follows that
\[
d(d\mathbf{f})_x(-\partial_{x_i}) = -\sum_j f_{x_i x_j} \partial_{p_j} - \partial_{x_i}
\]
\[
= -\sum_j \left(f_{x_i x_j} + \frac{1}{2} \ddot{g}_{ij} + W_{x_i x_j} \right) \partial_{p_j} - \partial_{x_i} + \sum_j \left(\frac{1}{2} \tilde{\dot{g}}_{ij} + W_{x_i x_j} \right) \partial_{p_j}
\]
and so
\[
\nabla^2_H \mathbf{f} = \nabla^2 \mathbf{f} + \frac{1}{2} \tilde{\dot{g}} + \nabla^2 W.
\]

Since $\tilde{\dot{g}} + \nabla^2 W$ is symmetric, it follows that
\[
\Omega_{ij}^{t,t} = \omega(f^{t,t}_i, f^{t,t}_j) = 0.
\]

It also follows from (43) that
\[
[\ddot{\mathbf{H}}, V_t^i] = \frac{1}{2} \sum_{l,m} (W_{x_l} + p_l)(\dot{g}_{lm} x_l + W_{x_l x_m} \dot{g}_{lm}) \partial_{p_m} - \frac{1}{2} \ddot{g}_{lm} \partial_{x_m}
\]
at x.

By a computation together with the facts that $\dot{g}_{ij} = -\dot{g}^{ij}$ and $(\dot{g}_{ij})_{x_k} = -(\dot{g}^{ij})_{x_k}$, we see that
\[
[\ddot{\mathbf{H}}, V_t^i] = \sum_l \tilde{\dot{g}}_{li} \partial_{x_l} + \sum_k \left(\tilde{W}_{x_i x_k} - \sum_j \tilde{g}_{ij} W_{x_j x_k} - \sum_l (\tilde{g}_{il} x_k (p_l + W_{x_l})) \right) \partial_{p_k}
\]
at x.

Since $\sqrt{g} = \frac{1}{2} \tilde{\dot{g}}_{ik} - \sum_j \frac{1}{2} \dot{g}_{ij} \dot{g}_{jk}$ at x, we have
\[
\dot{V}_t^i = \sum_k \sqrt{g} \partial_{p_k} = \sum_k \left(\frac{1}{2} \tilde{\ddot{g}}_{ik} - \frac{1}{4} \sum_j \dot{g}_{ij} \dot{g}_{jk} \right) \partial_{p_k}
\]
at x.
A computation shows that

\[
[\ddot{\mathbf{H}}, [\mathbf{H}, V'_i]] = \frac{1}{2} \sum_{j,k,l} (p_j + W_{x_j}) (p_k + W_{x_k}) (g_{il})_{x_jx_k} \partial_{p_l} \\
- \sum_{s,j,k} (p_s + W_{x_s})(g_{ij})_{x_kx_s} (p_j + W_{x_j}) \partial_{p_k} \\
+ \sum_{j,l} W_{x_j} W_{x_jx_l} \partial_{p_l} + \sum_{k,l} W_{x_kx_l} W_{x_kx_l} \partial_{p_l} \\
+ \sum_{l,m} (W_{x_l} + p_l) (\dot{g}_{im})_{x_l} \partial_{p_m} \\
+ \sum_{k} \left(\frac{1}{2} \sum_{j,l} (g_{jl})_{x_kx_l} p_j p_l - \sum_{j,s} p_j g_{jxs} W_{x_s} - U_{x_ix_k} \right) \partial_{p_k}
\]

at \((x, p)\).

By combining all of the above computations, we obtain

\[
\dot{j}_i^{t,t} = \dot{j}_i^{t,t} + \sum_j \Omega_{ij}^{t,t} \dot{j}_j^{t,t} \\
= [\mathbf{H}, [\mathbf{H}, V'_i]] + 2[\mathbf{H}, \dot{V}']_i + \dot{V}'_i + [\mathbf{H}, V'_i] \\
= \frac{1}{2} \sum_{j,k,l} (p_j + W_{x_j}) (p_k + W_{x_k}) (g_{il})_{x_jx_k} \partial_{p_l} \\
- \sum_{s,j,k} (p_s + W_{x_s})(g_{ij})_{x_kx_s} (p_j + W_{x_j}) \partial_{p_k} \\
+ \sum_{j,l} W_{x_j} W_{x_jx_l} \partial_{p_l} + \sum_{k,l} W_{x_kx_l} W_{x_kx_l} \partial_{p_l} \\
+ \sum_{k} \left(\frac{1}{2} \sum_{j,l} (g_{jl})_{x_kx_l} p_j p_l - \sum_{j,s} p_j g_{jxs} W_{x_s} - U_{x_ix_k} \right) \partial_{p_k} \\
+ \sum_{l,m} (W_{x_l} + p_l) (\dot{g}_{im})_{x_l} \partial_{p_m}
\]

\[
+ \sum_{k} \left(\dot{W}_{x_ix_k} - \sum_{l} (\dot{g}_{il})_{x_k} (p_l + W_{x_l}) \right) \partial_{p_k} \\
+ \sum_{k} \left(\frac{1}{2} \dot{g}_{ik} - \frac{1}{4} \sum_{j} \dot{g}_{ij} \dot{g}_{jk} \right) \partial_{p_k}.
\]
Therefore, we obtain
\[
-\text{tr}(R'_t(x,p)) = \sum_{j,k,i} \frac{1}{2} p_j p_k (g_{ii})_{x_j x_k} + \sum_{j,k,i} \frac{1}{2} W_{x_j} W_{x_k} (g_{ii})_{x_j x_k} \\
+ \sum_{j,k,i} p_j W_{x_k} (g_{ii})_{x_j x_k} - \sum_{j,k,i} p_s p_j (g_{ij})_{x_ix_s} - \sum_{j,k,i} p_s (g_{ij})_{x_ix_s} W_{x_j} \\
- \sum_{j,k,i} W_{x_s} (g_{ij})_{x_ix_s} p_j - \sum_{i,j,s} W_{x_s} W_{x_j} (g_{ij})_{x_ix_s} + \sum_{i,j} W_{x_j} W_{x_x} W_{x_s} \\
- \sum_{i,j} U_{x_i x_j} + \sum_{i,j} (W_{x_i} + p_i)((\dot{g}_{ii})_{x_i} - (\dot{g}_i)_{x_i}) \\
+ \sum_{i} \tilde{W}_{x_i x_i} + \sum_{i,j} \left(\frac{1}{2} \ddot{g}_{ii} - \frac{1}{4} \sum_{i,j} \dot{g}_{ij} \dot{g}_{ji} \right) \\
= -Rc(p,p) - 2Rc(p,\nabla W) \\
+ \langle \nabla \Delta W, \nabla W \rangle + |\nabla^2 W|^2 + \Delta \dot{W} - \Delta U \\
+ \frac{1}{2} \text{tr}(\dot{g}) - \frac{1}{4} |\dot{g}|^2 + \langle \nabla W + p, \nabla (\text{tr}(\dot{g})) - \text{div}(\dot{g}) \rangle \\
= -Rc(p + \nabla W, p + \nabla W) + \frac{1}{2} \Delta |\nabla W|^2 + \Delta \dot{W} - \Delta U \\
+ \frac{1}{2} \text{tr}(\dot{g}) - \frac{1}{4} |\dot{g}|^2 + \langle \nabla W + p, \nabla (\text{tr}(\dot{g})) - \text{div}(\dot{g}) \rangle \\
as claimed. \quad \Box
\]

A computation very similar to that of Theorem 6.2 gives the following.

Theorem 10.2. Let us fix two smooth functions $c_1, c_2 : \mathbb{R} \to \mathbb{R}$ of time t. Let g be a smooth solution of the following equation

\[
(44) \quad \dot{g} = c_1 Rc + c_2 g.
\]

Then
\[
\text{tr}(R'_t(x,p)) = Rc(p + \nabla W, p + \nabla W) - \frac{1}{2} \Delta |\nabla W|^2 - \Delta \dot{W} + \Delta U \\
- \frac{\dot{c}_1}{2} R - \frac{nc_2}{2} - \frac{nc_2^2}{4} + \frac{c_1^2}{4} |Rc|^2 + \frac{c_1^2}{4} \Delta R - \frac{c_1}{2} \langle \nabla W + p, \nabla \rangle
\]

where R is the scalar curvature of the metric g at time t.
Theorem 2.15 follows immediately from Theorem 2.2 and Theorem 10.2.

11. Finsler manifolds

In this section, we discuss the case where the Hamiltonian is induced by a Finsler metric. More precisely, let F be a Finsler metric defined on the tangent bundle TM (i.e., $F(x, v)$ is smooth outside the zero section, positively homogeneous of degree 1, and F^2 is strictly convex in v). Let L be the Lagrangian defined by

$$L(x, v) = \frac{1}{2} F(x, v)^2$$

and let H be the corresponding Hamiltonian as before. We are going to show that the curvature of this Hamiltonian and the Riemann curvature of the Finsler manifold coincide up to an identification of the tangent and the cotangent bundle.

First, let us recall the definition of the Riemann curvature. Here we only give a very brief discussion. The detail can be found, for instance, in [13]. Let $(x_1, ..., x_n, v_1, ..., v_n)$ be local coordinates around a point (x, v) in the tangent bundle TM. The map $\mathbb{L} : TM \to T^*M$ defined by

$$\mathbb{L}(x, v)(w) = \frac{d}{dt} L(x, v + tw) \bigg|_{t=0}$$

is a diffeomorphism between TM and T^*M. It also induces local coordinates $(x_1, ..., x_n, p_1, ..., p_n)$ on T^*M around the point $(x, \mathbb{L}(x, v))$. More precisely, we have $p_i = L_{v_i}(x, v)$. By differentiating

$$\sum_j p_j v_j = H(x, p) + L(x, v),$$

we obtain

$$\sum_k H_{p_ip_k}(x, p) L_{v_kv_j}(x, v) = \delta_{ij}.$$

Here and for the rest of this section, we can consider p_i as a function of $v_1, ..., v_n$ or v_i as a function of $p_1, ..., p_n$ via the map \mathbb{L}.

Let

$$G^i = \frac{1}{2} \sum_l H_{p_ip_l} \left(\sum_k L_{x_kv_l} v^k - L_{x_i} \right)$$

and $N^j_i = \partial_{v_i} G^j$.

The functions N^j_i are the connection coefficients of a Ehresmann connection of the bundle $T(TM)$. In other words, N^j_i defines a sub-bundle
HTM of $T(TM)$ which is spanned by the vectors
\[
\partial_{x_i} - \sum_j N^j_i \partial_{v_j}, \quad i = 1, \ldots, n
\]
and we have $T(TM) = HTM \oplus VTM$, where $VTM = \{ V | d\pi(V) = 0 \}$ and $\pi : TM \to M$ is the natural projection. This splitting is essentially the, so called, Chern connection (see [13] for the detail).

Lemma 11.1. The horizontal bundle \mathcal{H} of the Hamiltonian system \mathcal{H} and HTM defined above are related by
\[
\mathcal{L}_s (HTM) = \mathcal{H}.
\]

Proof. We start with the following formula of c_{ij} which can be found in [1]
\[
\sum_{m,s} H_{p_im} c_{ms} H_{p_j} = \frac{1}{2} \sum_k \left(H_{p_k} H_{p_j} x_k - H_{x_k} H_{p_j} p_k - H_{p_i} H_{p_j} p_k - H_{p_i} H_{x_k} p_j \right).
\]

By differentiating (45), we obtain
\begin{enumerate}
 \item $L_{x_i} (x, v) + H_{x_i} (x, p) = 0$,
 \item $H_{p_i x_j} (x, p) + \sum_k H_{p_i p_k} (x, p) L_{v_k x_j} (x, v) = 0$,
 \item $\sum_k H_{p_i p_k} (x, p) L_{v_k x_j} (x, v) = \delta_{ij}$,
 \item $\sum_k H_{p_i p_k} (x, p) L_{v_k v_j} (x, v) + \sum_{k,s} H_{p_i p_k p_s} (x, p) L_{v_k v_j} (x, v) L_{v_k v_j} (x, v) = 0$,
 \item $\sum_k H_{p_i p_k} (x, p) L_{v_k v_j} (x, v) + \sum_k H_{p_i p_k x_k} (x, p) L_{v_k x_j} (x, v) + \sum_k H_{p_i p_k x_k} (x, p) L_{v_k v_j} (x, v) L_{v_k x_j} (x, v) = 0$.
\end{enumerate}

It follows that
\[
c_{ms} = \frac{1}{2} \sum_{k,i,j} \left(v_k L_{v_m v_i} H_{p_i p_j x_k} L_{v_s v_j} - L_{v_m v_i} H_{p_i x_k} p_j - H_{x_m p_j} L_{v_s v_j} \right).
\]

Therefore,
\[
\sum_s c_{ms} H_{p_s p_l}
\]
\[
= \frac{1}{2} \sum_{k,i,j} \left(\partial_{v_m} (L_{x_k} H_{p_s p_l} - v_k L_{v_i x_k} (x, v) H_{p_s p_l} (x, p)) + 2 L_{v_m v_s} H_{p_s p_l} \right)
\]
\[
= - \partial_{v_m} G^d + \sum_s L_{x_m v_s} H_{p_s p_l} = - \partial_{v_m} G^d - H_{p_l x_m}.
\]
Hence,
\[d\mathbb{L}^{-1}(\partial_{x_i} + \sum_j c_{ij} \partial_{p_j}) = \partial_{x_i} + \sum_j \mathbf{H}_{p_j x_i} \partial_{v_j} + \sum_{j,k} c_{ij} \mathbf{H}_{p_j p_k} \partial_{v_k} \]
\[= \partial_{x_i} - \sum_k N^k_i \partial_{v_k} \]
and the claim follows. \(\square\)

Next, we recall the definition of the Riemann curvature for a Finsler manifold. Let
\[R^l_{ji} \partial_{v_l} = [\partial_{x_i} - N^k_i \partial_{v_k}, \partial_{x_j} - N^l_j \partial_{v_l}] \]
\[= \sum_l (\partial_{x_i} N^l_i - \partial_{x_j} N^l_j + N^k_i \partial_{v_k} N^l_j - N^k_j \partial_{v_k} N^l_i) \partial_{v_l}. \]

The Riemann curvature \(R \) is defined by
\[R(\partial_{v_i}) = \sum_{j,l} v_j R^l_{ij} \partial_{v_l}. \]

The following shows that \(R \) and the curvature operator \(R \) of the Hamiltonian system \(\vec{H} \) are essentially the same.

Theorem 11.2.
\[R_{(\mathbb{L},p)}(\mathbb{L}_x \partial_{u_i}) = \mathbb{L}_x(R(u_i)). \]

Proof. Since \(\mathbf{H} \) is homogeneous, \(\vec{H} \) is horizontal (see [2]). It follows that
\[\vec{H} = \sum_i \mathbf{H}_{p_i} (\partial_{x_i} + c_{ij} \partial_{p_j}). \]

Therefore, we have
\[\mathbb{L}^* (R(\mathbb{x,p})(\mathbb{L}_x \partial_{u_i})) = -\mathbb{L}^*[\vec{H}, [\vec{H}, \mathbb{L}_x \partial_{u_i}]_H]_V \]
\[= -\sum_j v_j (\partial_{x_j} - N^k_j \partial_{v_k}), [\sum_j v_j (\partial_{x_j} - N^k_j \partial_{v_k}), \partial_{v_i}]_{HTM} \]
\[= \sum_j v_j [\partial_{x_j} - N^k_j \partial_{v_k}, \partial_{x_i} - N^k_i \partial_{v_k}]_{VTM} \]
\[= \sum_{l,j} v_j R^l_{ij} \partial_{v_l} = \sum_l R^l_i \partial_{v_l}. \]

Here the subscripts \(HTM \) and \(VTM \) denote the components of the vector. \(\square\)
REFERENCES

[1] A.A. Agrachev: Geometry of optimal control problems and Hamiltonian systems. Nonlinear and optimal control theory, 1-59, Lecture Notes in Math., 1932, Springer, Berlin, 2008.
[2] A.A. Agrachev, R.V. Gamkrelidze: Feedback-invariant optimal control theory and differential geometry. I. Regular extremals. J. Dynam. Control Systems 3 (1997), no. 3, 343-389.
[3] A.A. Agrachev, P.W.Y. Lee: Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds. preprint
[4] A.A. Agrachev, Y.L. Sachkov: Control theory from the geometric viewpoint. Encyclopaedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer-Verlag, Berlin, 2004.
[5] S. Ahdout: Fanning curves of Lagrangian manifolds and geodesic flows. Duke Math. J. 59 (2) (1989) 537–552.
[6] F. Baudoin, N. Garofalo: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. preprint.
[7] P. Bernard, B. Buffoni: Optimal mass transportation and Mather theory. J. Eur. Math. Soc. (JEMS) 9 (2007), no. 1, 85-121
[8] S. Brendle: A note on Ricci flow and optimal transportation. J. Eur. Math. Soc. (JEMS) 13 (2011), no. 1, 249-258.
[9] Y. Brenier: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991), no. 4, 375-417.
[10] Y. Brenier: Extended Monge-Kantorovich theory. Optimal transportation and applications (Martina Franca, 2001), 91-121, Lecture Notes in Math., 1813, Springer, Berlin, 2003.
[11] P. Cannarsa, C. Sinestrari: Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston, Inc., Boston, MA, 2004.
[12] B. Chow, P. Lu, L. Ni: Hamilton’s Ricci flow. Graduate Studies in Mathematics, 77. American Mathematical Society, Providence, RI; Science Press, New York, 2006.
[13] S.-S. Chern, Z. Shen: Riemann-Finsler geometry. Nankai Tracts in Mathematics, 6. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
[14] D. Cordero-Erausquin, R.J. McCann, Schmuckenschläger: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146 (2001), no. 2, 219-257.
[15] D. Cordero-Erausquin, R.J. McCann, M. Schmuckenschläger: Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport. Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 4, 613-635.
[16] L.C. Evans: Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
[17] A. Fathi, A. Figalli: Optimal transportation on non-compact manifolds. Israel J. Math. 175 (2010), 1-59.
[18] M. Feldman, T. Ilmanen, L. Ni: Entropy and reduced distance for Ricci expanders. J. Geom. Anal. 15 (2005), no. 1, 49-62.
[19] A. Figalli: Existence, uniqueness, and regularity of optimal transport maps. SIAM J. Math. Anal. 39 (2007), no. 1, 126-137.
[20] P. Foulon: Géométrie des équations différentielles du second ordre, Ann. Inst. H. Poincaré Phys. Théor. 45 (1) (1986), 1–28.
[21] J. Grifone: Structure presque-tangente et connexions I. Ann. Inst. Fourier (Grenoble) 22 (1) (1972) 287–334.
[22] P.W.Y. Lee: A remark on the potentials of optimal transport maps. Acta Appl. Math. 115 (2011), no. 2, 123-138.
[23] P.W.Y. Lee: On curvature and hyperbolicity of monotone Hamiltonian systems. preprint.
[24] P.W.Y. Lee: Generalized Li-Yau estimates and Huisken’s monotonicity formula. preprint.
[25] J. Lott: Optimal transport and Perelman’s reduced volume. Calc. Var. Partial Differential Equations 36 (2009), no. 1, 49-84.
[26] J. Lott, C. Villani: Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169 (2009), no. 3, 903-991.
[27] C. Mantegazza: Lecture notes on mean curvature flow. Progress in Mathematics, 290. Birkhäuser/Springer Basel AG, Basel, 2011.
[28] R. McCann: A convexity theory for interacting gases and equilibrium crystals. PhD thesis. Princeton Univ., 1994.
[29] R. McCann: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001), no. 3, 589-608.
[30] R. McCann, P. Topping: Ricci flow, entropy and optimal transportation. Amer. J. Math. 132 (2010), no. 3, 711-730.
[31] F. Otto, C. Villani: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000), no. 2, 361-400.
[32] S. Ohta: Finsler interpolation inequalities. Calc. Var. Partial Differential Equations 36 (2009), no. 2, 211-249.
[33] G. Perelman: The entropy formula for the Ricci flow and its geometric applications. preprint.
[34] Royden: Comparison theorems for the matrix Riccati equation. Comm. Pure Appl. Math. 41 (1988), no. 5, 739-746.
[35] K.T. Sturm: Convex functionals of probability measures and nonlinear diffusions on manifolds. J. Math. Pures Appl. (9) 84, 2 (2005), 149-168.
[36] K.T. Sturm: K.T. Sturm. On the geometry of metric measure spaces. I, Acta Math. 196 (2006) 65131.
[37] K.T. Sturm, M.-K. von Renesse: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math. 58 (2005), no. 7, 923-940.
[38] P. Topping: L-optimal transportation for Ricci flow. J. Reine Angew. Math., 636 (2009) 93–122.
[39] C. Villani: Topics in Mass Transportation, AMS, Providence, Rhode Island, 2003
[40] C. Villani: Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009.
[41] X.P. Zhu: Lectures on mean curvature flows. AMS/IP Studies in Advanced Mathematics, 32. American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.
E-mail address: wylee@math.cuhk.edu.hk

Room 216, Lady Shaw Building, The Chinese University of Hong Kong, Shatin, Hong Kong