Is the inflammasome a potential therapeutic target in renal disease?

Clare M Turner1, Nishkantha Arulkumaran1,2*, Mervyn Singer2, Robert J Unwin3 and Frederick WK Tam1

Abstract
The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of pro-inflammatory cytokines IL-1β and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases. The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia, glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/IL-18 axis may also be responsible for development of CKD itself and its related complications, including vascular calcification and sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive potential therapeutic target in a variety of renal diseases.

Keywords: Inflammasome, NLRP3, Renal disease, IL-1β, IL-18, PAMPs, DAMPs, P2X7R

Introduction
Inflammation is central to the pathogenesis of many renal diseases. The innate immune system, a first line defense against pathogens, is usually involved in the initiation and propagation of inflammation. It is activated by a series of germ-line encoded pattern recognition receptors (PRRs) that allow discrimination of ‘self’ from ‘non-self’ antigens. PRRs recognize conserved pathogen-associated molecular patterns (PAMPs) on invading organisms, or respond to host-derived danger-associated molecular patterns (DAMPS) released in response to stress, tissue injury, or cell death. Several classes of PRRs have been identified, including transmembrane Toll-like receptors (TLR), C-type lectin receptors (CLRs), the retinoic acid inducible gene-1 (RIG-I) receptors, intracellular Nod-like receptors (NLRs), and the recently identified HIN-200 receptors [1-3]. Extracellular PAMPs and DAMPs are recognized by TLRs and CLRs, whereas NLRs and RIGs recognize intracellular molecular patterns (Table 1).

PRRs are expressed primarily by innate immune cells, but also by endothelial and epithelial cells. The innate immune system is ‘primed’ by activation of PRRs by PAMPs or DAMPs, which leads to activation of numerous proinflammatory transcription factors, the best characterized being nuclear factor kappa-B (NF-kB) and activator protein-1 (AP-1), with subsequent transcription of multiple mediators (including cytokines and chemokines) and receptors.

A key mechanism responsible for the post-transcriptional processing and release of mature cytokines is formation of the inflammasome complex. The human genome encodes 23 NLR proteins broadly divided into NLRP (with a pyrin domain) and NLRC (with a caspase recruitment domain), a subset of which are capable of forming an inflammasome complex. This multiprotein
cytosolic complex oligomerizes to provide a platform for
processing and release of cytokines. Seven cytoplasmic
receptors form an inflammasome complex: NLRP1 (NLR
family, pyrin domain containing 1, also called NALP1),
NLRP3 (also called NALP3 or cryopyrin), NLRP6,
NLRP12, NLRC4 (NLR family, caspase recruitment
domain (CARD) containing 4, also called IPAF), AIM2
(absent in melanoma-2), and RIG-1 (retinoic acid indu-
cible gene 1). Of these receptors, the NLRP3 inflam-
masome is the best characterized.

Review
The NLRP3 inflammasome
This large multiprotein complex (>700 KDa) forms in re-
response to diverse PAMPs, including lipopolysaccharide
(LPS), peptidoglycan, bacterial DNA, viral RNA and fungi,
and DAMPs such as monosodium urate crystals (MSU),
calcium pyrophosphate dehydrate, cholesterol crystals,
amyloid β, hyaluronan and, possibly, glucose [1] (Table 1).

Priming of the cell (signal 1) by activation of PRRs results
in NFκB -dependent transcription of pro-IL-1β and uppre-
gulation of NLRP3. Assembly of the NLRP3 inflammasome
relies on the adaptor molecule ASC (Apoptosis-associated
Speck-like protein containing a C-terminal caspase recruit-
ment domain (CARD)). The ASC protein is composed of
PYD (N-terminal pyrin domain) and CARD domains. The
N-terminus of NLRP3 also contains a PYD that mediates
homotypic binding with ASC via a PYD-PYD interaction.
Through its CARD, ASC interacts with procaspase-1 lead-
ing to autocatalytic activation of caspase-1. This results in
processing of pro-IL-1β and pro-IL-18 to their active forms
(IL-1β and IL-18) and their release (Figure 1).

The cell surface P2X7 receptor (P2X7R) facilitates as-
sembly of the NLRP3 inflammasome [4-6]. ATP released
into the extracellular milieu during inflammation is a
potent stimulus for P2X7R activation [7-9]. This results
in formation of an ion pore and K+ efflux, with reduc-
tion in intracellular K+, a key step in inflammasome
activation [10]. Activation of P2X7R by LPS and ATP re-
sults in MyD88-dependent NFκB activation (signal 2),
and transcription of pro-IL-1β [11]. Following LPS prim-
ing of monocytes, P2X7R activation stimulates NADPH
oxidase generation of superoxide anions, thereby facili-
tating NLRP3 activation [12].

Other inflammasomes
NLRP1 was the first inflammasome to be described and
is activated following cleavage by the lethal toxin from
Bacillus anthracis [13]. The NLRP1 inflammasome has its
own CARD, so can bypass the requirement of the adapter
molecule ASC for inflammasome activation (Figure 2).
Cleavage by the anthrax toxin directly activates CARD,
leading to activation of caspase-1 [13]. An alternative
mechanism of NLRP1 activation is by the toxin inhibiting
p38 mitogen-activated protein kinase and Akt kinase,
leading to opening of the connexion channel for ATP re-
lease, resulting in P2X7R signaling [14]. There are similari-
ties with the mechanism of activation of the NLRP3
inflammasome.

A second class of inflammasomes contains members of
the PYHIN family, rather than NLRs. These are charac-
terised by N-terminal PYD and C-terminal HIN-200
(hemopoietic interferon-inducible nuclear antigen with
200 repeats) DNA binding domains. Examples include
AIM2 and Interferon-γ inducible protein 16 (IFI16) in-
flammasomes. These lack a CARD domain and require
ASC for recruitment of pro-caspase-1 to form a stable
inflammasome complex. The PYD domain interacts with
the PYD domain of ASC. Following detection of bac-
terial or viral dsDNA, AIM2 and IFI16 inflammasomes
assemble with subsequent secretion of IL-1β and IL-18
[15], which is severely impaired in mice deficient in
AIM2 that are highly susceptible to Mycobacterium tu-
berculosis infection [16]. AIM2 can recognise self-DNA,
but this is limited under steady-state conditions because
of its cytosolic location. In conditions where self-DNA is

Table 1 Activators of the inflammasome	Sterile activators	Bacteria derived	Virus-derived	Fungus-derived	Protozoa-derived
DAMPs	Environment derived	Pore-forming toxins	RNA	β-glucans	Hemozoin
ATP	Alum	Lethal toxin	M2 protein		Hyphae
Cholesterol crystals	Asbestos	Flagellin/rod proteins	M2 protein		Marfan
MSU/CPPD crystals	Silica	M2 protein	M2 protein		Marfan
Glucose	Alloy particles	M2 protein	M2 protein		Marfan
Amyloid β	UV radiation	M2 protein	M2 protein		Marfan
Hyaluronan	Skin irritants	M2 protein	M2 protein		Marfan

Activators of the inflammasome are divided into 2 categories: Sterile activators include host derived DAMPs and environment derived molecules, and pathogen
activators include PAMPs derived from bacteria, virus, fungi and protozoa.

Abbreviations: CPPD Calcium pyrophosphate dehydrate, DAMP Damage-associated molecular pattern, MDP Muramyl dipeptide, MSU Monosodium urate, PAMP Pathogen associated molecular pattern.
not cleared from the extracellular compartment, it is likely that DNA can activate AIM2 and drive inflammation. Of note, HIN-200 proteins are considered a candidate locus for susceptibility to lupus [17]. In contrast to AIM2, IFI16 is located within the nucleus; the mechanism by which it discriminates between self and viral DNA in the nucleus is currently unknown.

The NLRC4 inflammasome interacts directly with procaspase-1 via homotypic CARD interactions, leading to processing of caspase-1. This inflammasome complex plays an essential role in the innate immune response to the bacterial proteins flagellin and PrgJ [18]. Direct binding of NLRC4 with flagellin or PrgJ has not been shown; however, the proteins of the NAIP family (NLR family, apoptosis inhibitor) act as immune sensors that can interact with, and control, NLRC4 activation. The NAIP2-NLRC4 complex associates with PrgJ, while the NAIP5-NLRC4 complex associates with flagellin [19]. This suggests that distinct NAIP proteins allow the NLRC4 inflammasome to differentiate among different bacterial ligands.

The NLRP6 inflammasome associates with ASC, inducing caspase-dependent processing and release of IL-1β. At the mRNA level NLRP6 is highly expressed in mouse liver, kidney and small intestine, and plays a central role in modulating inflammatory responses in the gut to allow recovery from intestinal epithelial damage, tumorigenesis, and in controlling the composition of the gut microflora to prevent colonization by harmful bacteria [20,21]. Data on NLRP6 and renal disease are limited and warrant further study.

The NLRP12 inflammasome is expressed in human myeloid cells. It acts as a negative regulator of inflammation by reducing NFκB activation and inhibiting chemokine expression through ATP hydrolysis [22]. NLRP12 also reduces NFκB activation by (i) TLR-signaling molecules MyD88, IRAK-1 (type I interleukin-1 receptor-associated protein kinase), and TRAF6 (TNF receptor (TNFR-associated factor), and (ii) the TNFR signaling molecules TRAF2 and RIP1, but not the downstream NFκB subunit p65 [23]. NLRP12, like NLRP6, can
contribute to the maintenance of intestinal epithelium, since mice deficient in NLRP12 are more susceptible to colonic inflammation and tumorigenesis [24].

Processing of IL-1α, IL-1β, IL-18, and caspase-1

IL-1 is a key cytokine in many inflammatory diseases. Activation of MAPK and NFκB signal transduction pathways is central to the diverse actions of IL-1, which include production and/or release of nitric oxide (NO), cyclooxygenase-2 (COX-2) and superoxide products, and other pro-inflammatory mediators [25,26].

IL-1 has two biologically active isoforms, IL-1α and IL-1β, which bind to the same receptors [27,28]. Both are produced as 31 kDa precursors that are stored within the cytosol. Pro-IL-1α is constitutively expressed, whereas pro-IL-1β is transcribed in response to an inflammatory or infectious stimulus [25]. Various inflammatory stimuli engage with the PRR receptors of immune cells, activating MAPK and/or NFκB signalling cascades, and resulting in the synthesis of pro-IL-1β from its pro-IL-1β precursor, which is also stored within the cytosol.

IL-1α release is typically described as being passive, as a consequence of non-apoptotic cell death [29]. IL-1α processing depends on calpain protease activity [30]. The activation of calpain-like may be NLRP3-inflammasome/caspase-1 dependent or independent, depending on the type of NLRP3 agonist [31]. Caspase-1 knockout cells are unable to secrete IL-1α in response to soluble NLRP3 stimuli while caspase inhibitors have no effect, suggesting that the catalytic activity of caspase-1 is not required [32]. This protease-independent function of caspase-1 in the release of IL-1α is not well established.

Although IL-1α has similar biological activity in its precursor and cleavage product forms; in contrast, IL-1β is only active after cleavage to its 17 kDa mature form. Caspase-1 is crucial for processing of intracellular pro-IL-1β, although extracellular pro-IL-1β can be processed by several proteases, including serine proteinase 3 and the metalloproteinases MMP-2 and MMP-9 [33,34].

Caspase-1 is produced from the constitutively expressed 45 kDa cytoplasmic pro-enzyme, pro-caspase-1. This requires post-translational processing to form 20 and 10 kDa
forms of active caspase-1 [34], and occurs following assembly of the NLRP3 inflammasome. Proteolytic activation of IL-1β occurs within the inflammasome complex. Mature IL-1β is released into the extracellular space by exocytosis or loss of membrane integrity [35].

Synthesis and release of IL-18 is closely linked to IL-1. IL-18 is a key mediator in the host response to infection and the inflammatory response [27,36]. It is also constitutively produced as a precursor, pro-IL-18 [36], which is cleaved by either caspase-1 or proteinase-3 into its active form released into the extracellular space along with mature IL-1β.

Contact with a DAMP or PAMP (‘signal 1’) alone is insufficient for extracellular release of IL-1β and IL-18. An additional stimulus (‘signal 2’), mediated by a variety of ligands including extracellular ATP, nigericin, bacterial toxins, hypotonic stress and T cells, is usually required for the extracellular release of active IL-1β and IL-18. However, the best-established stimulus for this post-translational processing and release is ATP, acting via the P2X7-R [33,36].

Effects of IL-1α, IL-1β, IL-18

IL-1β has diverse functions relating to its unique ability to regulate inflammation at both the nuclear and membrane receptor levels. Unlike other cytokines, the effects of IL-1β on lymphocytes are largely indirect, mediated by the induction of gene expression and synthesis of cyclooxygenase-1 (COX-2), prostaglandin-E2, platelet activating factor, NO, and IL-6 [25,26]. In turn, these mediators result in fever, vasodilation, hyperalgesia, and a repertoire of immune cell functions. IL-1α and IL-1β also act as co-stimulatory molecules of T cells with an antigen, and may contribute to T cell polarization (early Th17 differentiation in vivo and Th17-mediated autoimmunity) [37].

IL-1 induces angiogenesis via upregulation of VEGF. This mechanism is mediated primarily by the PI3-K/mTOR pathway in renal mesangial cells [38], and may be an important protective mechanism in ischemic injury. However, excessive IL-1 may be detrimental. IL-1β induces the expression of adhesion molecules, including intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, on mesenchymal and endothelial cells [39-42]. IL-1 knockout (KO) mice and antagonist-treated rats develop significantly less infiltration of polymorphonuclear leukocytes, and have less severe renal histological and biochemical derangement, in ischemia-reperfusion (I-R) injury [43-45]. Deficiency or neutralization of IL-1 confers a similar protective effect in experimental glomerulonephritis (GN) [46-48].

Excessive tissue destruction may be mediated in part by IL-1α. Unlike IL-1β, IL-1α is active in its precursor form. This active precursor is constitutively expressed in epithelial cells [49] and the inflammatory resulting from cell necrosis may be mediated by surface IL-1α [29]. Activity of IL-1α is controlled by endogenous expression of intracellular IL-1Ra, which prevents signal transduction [50], consistent with findings in a model of renal I-R injury: the number of apoptotic tubular cells was lower in IL-1RA-treated animals 24 h after ischemia, which was paralleled by a Bax/Bcl-2 mRNA ratio towards anti-apoptotic effects [45]. Biologically active IL-1α is also expressed on the membrane of monocytes and B-lymphocytes [51,52]. In addition, the induction of many genes by IFN-gamma (INF-γ), including HLA-DR, ICAM-1, IL-18BP, and genes mediating its antiviral activity, depends on basal IL-1α but not IL-1β [53].

IL-18 (previously known as INF-γ inducing factor) is a member of the IL-1 cytokine family, with many properties distinguishing it from IL-1α and IL-1β. IL-18 is primarily expressed by macrophages and dendritic cells, but also by epithelial cells throughout the body [54,55]. One of the key features of IL-18 is its ability to induce INF-γ production [55] and subsequent T cell polarization [56,57]. IL-18 plays an important role in the TH1 response, primarily by its ability to induce INF-γ production in T cells and natural killer cells [58]. Fas ligand-mediated cell death is also IL-18-dependent [59,60], and IL-18 neutralization is associated with a reduction in renal tubular apoptosis in unilateral ureteric obstruction (UUO) and I-R injury [60,61]. As well as to these distinguishing features, IL-18 also shares properties with other cytokines, including increases in cell adhesion molecules and chemokines, and NO synthesis [62-65]. IL-18 deficiency or neutralization is associated with decreased immune cell infiltration and relatively preserved renal function in UUO, I-R injury, and GN [61,66-68].

Cell death and pyroptosis

Caspase-1 activation and subsequent production of IL-1β and IL-18 has a biphasic effect; low levels cause cytokine production but, above a certain threshold, can lead to pyroptosis [69]. This is a catastrophic form of cell death commonly found in monocytes, macrophages and dendritic cells, with morphological characteristics of apoptosis and necrosis. Cell lysis occurs due to caspase-1-dependent pore formation in the cell membrane, disruption of the cellular ionic gradient, osmotic driven water influx, and cell swelling [6,7]. This leads to inflammasome activation, release of proinflammatory cytokines, damaged DNA, and metabolic enzymes and, ultimately, cellular disruption releasing other DAMPS. Release of mitochondria into the extracellular space results in discharge of ATP that acts as a DAMP.

An alternative mechanism of cell death relates to activation of the P2X7-R. Here, irreversible pore formation allows the non-selective passage of ions and hydrophilic
solute of up to 900 Da, resulting in colloido-osmotic cell lysis [33]. P2X7R-induced shrinkage depends on K⁺ efflux via KCa3.1, a voltage-independent potassium channel activated by intracellular calcium, and a pathway of Cl⁻ efflux distinct from that implicated previously in apoptosis [70].

Regulation of the inflammasome

Activation of the inflammasome results in a rapid and substantial inflammatory response. As such, the inflammasome is tightly regulated at both transcriptional and post-transcriptional levels. Basal expression of inflammasome components, in particular NLRP3, is relatively low [8]; pro-apoptotic pathways, such as FAS ligand-receptor interactions, are required to induce expression of ASC [9]. The subcellular location of inflammasome components facilitates its regulation. ASC is localized to the nucleus in quiescent cells, but it is recruited to the cytoplasm on cell activation [10].

Alternatively spliced inflammasome components generate protein variants with different activities. ASC has at least three different isoforms, one of which has an inhibitory effect on inflammasome activity [71]. Several proteins regulate inflammasome activity by sequestration of inflammasome components. Anti-apoptotic Bcl-2 proteins, including Bcl-2 and Bcl-xL, interact with NLRP1 to prevent ATP binding and inflammasome activation [12]. The pyrin-only proteins (POP) and the pyrin-containing NOD (PYNOD) proteins inhibit inflammasome formation via inhibition of NFκB and suppression of ASC, respectively [72,73]. Other inhibitory proteins include COP (CARD only protein), INCA (inhibitory CARD), and ICEBERG all three proteins contain a CARD and are believed to act as decoys inhibiting formation of an active inflammasome [74].

Drugs modulating the NLRP3 inflammasome /IL-1/IL-18 axis

Growing evidence suggests that the inflammasome and the IL-1β/IL-18 axis play an integral part in the pathogenesis of many acute and chronic conditions, including gout, rheumatoid arthritis, atherosclerosis, Alzheimer’s disease, diabetes mellitus, and, most recently, oxalate crystal nephropathy. Several components of the NLRP3 inflammasome have been implicated in renal disease (Table 2). Therapeutic interventions that modulate this pathway are being developed, and the functional significance of the inflammasome and the IL-1β/IL-18 axis in renal disease is of growing interest. Drugs inhibiting IL-1, P2X7-R, and caspase-1 have been developed, although to date only IL-1 inhibitors have been successful in clinical studies of rheumatoid arthritis (RA) and cryopyrin-associated periodic syndrome (CAPS).

IL-1 inhibitors

The clinical application of IL-1 inhibitors has been slow, because the first generation of inhibitors, the recombinant IL-1 receptor antagonists, has a short circulatory half-life and limited affinity for the IL-1 receptor. A large molar excess of recombinant IL-1ra is needed to antagonize endogenous IL-1 effectively.

Drugs inhibiting the action of IL-1 include recombinant human IL-1ra (Anakinra), a humanized monoclonal IL-1β antibody (Canakinumab), and a neutralising antibody against IL-1α and IL-1β (Rilonacept). Anakinra competitively inhibits binding of IL-1 to the IL-1 receptor and has been successfully used in RA [99] and auto-inflammatory syndromes [100]. Rilonacept is a dimeric protein consisting of the extracellular portion of the IL-1 receptor and the Fc portion of human IgG1 [101]; it works by effectively neutralizing IL-1α and IL-1β. Preliminary data suggest it may be beneficial in patients with autoinflammatory syndromes [102,103]. Canakinumab, a monoclonal antibody against IL-1β, has a longer half-life compared with the other antagonists, and may be useful in patients with RA and CAPS [104,105]. Other diseases that may benefit from IL-1 blockade include acute gout [106], diabetes mellitus [100], inflammatory lung disease [107], adult-onset Still’s disease [108], and juvenile idiopathic arthritis [109].

P2X7R antagonists

Drugs inhibiting the P2X7-R are currently in Phase 1 and 2 clinical trials [110]. At present there are no data to demonstrate a beneficial effect of P2X7-R antagonism, although trials are still at an early stage. Preclinical data suggest P2X7-R antagonists have a potential role in the treatment of inflammatory rheumatological [111,112], renal [78,113], and pulmonary diseases [114-116]. Although Phase 1 and 2 studies have demonstrated safety, preliminary studies have so far not shown clinical efficacy in the management of RA [117].

Caspase-1 inhibitors

Small molecule inhibitors of caspase-1 have been used in experimental models. Only pralnacasan (VX-740) and VX-765 have been used so far in patients; however, concerns about liver toxicity with prolonged use of pralnacasan have resulted in discontinuation of clinical trials in RA, psoriasis, and osteoarthritis [118]. A Phase 2 clinical trial of VX-765 (NCT00205465) has been completed, although the results have yet to be published [118].

The inflammasome in renal disease

There is a better understanding of the role of IL-1 and IL-18 in renal disease, although the importance of the inflammasome in the activation and secretion of IL-1β and IL-18 has only been investigated recently. Several
P2X7	**Disease**	**Species**	**Antagonist/genetic deletion**	**Effect**	**Renal localization of inflammasome component**
Harada [75]	TNF-α stimulation	Rat	-	NA	Mesangial cells
Gonclaves [76]	Unilateral ureteric obstruction	Mouse	P2X7; −/−	Beneficial	PTEC
Vonend [77]	Hypertension Diabetes mellitus	Rat	-	NA	Glomerular podocytes
Turner [78]	Experimental glomerulonephritis	Mouse	-	NA	Glomeruli and infiltrating macrophages
					Glomeruli
					PTEC
Taylor [70]	Experimental glomerulonephritis	Rat	Antagonist	Beneficial	-
			P2X7; −/−		

NLRP3	**Disease**	**Species**	**Antagonist/genetic deletion**	**Effect**	**Renal localization of inflammasome component**
Deplano [79]	Glomerulonephritis	Rat	Genetic susceptible strain (cf. Protected strain)	NA	Glomeruli and bone marrow derived macrophages
Vilaysane A [80]	Non-diabetic acute and chronic kidney diseases	Human	NA	NA	PTEC
Vilaysane A [80]	Unilateral ureteric obstruction	Mice	NLRP3; −/−	Beneficial	PTEC
Iyer S [81]	Ischaemia- reperfusion injury	Mice	NLRP3; −/−	Beneficial	-
Jallilian [82]	None	Dog	NA	NA	Epithelial cells

IL-1	**Disease**	**Species**	**Antagonist/genetic deletion**	**Effect**	**Renal localization of inflammasome component**
Yamagishi H [83]	Unilateral ureteric obstruction	Mouse	IL-1 RA	Beneficial	PTEC
Haq M [44]	Ischaemia- reperfusion injury	Mouse	IL-1 RA	Beneficial	-
IL-1R; −/−					
Chen A [46]	IgA nephropathy	Mice	IL-1 RA	Beneficial	-
Matsumoto [84]	Glomerulonephritis	Human	NA	NA	-
Tam [85]	Glomerulonephritis	Rat	NA	N/A	-
Lan [86]	Glomerulonephritis	Rat	IL-1RA	Beneficial	-
Karkar [87]	Glomerulonephritis	Rat	Antibody	Beneficial	-
Karkar [88]	Glomerulonephritis	Rat	IL-1RA and soluble IL-1R	Beneficial	-
Tam [89]					
Timoshanko JR [48]	Crescentic glomerulonephritis	Mice	IL-1β; −/− IL-1R; −/−	Beneficial	-
Lichtnekert [47]	Anti- GBM disease	Mice	NLRP3; −/− Caspase1; −/− ASC; −/− IL-1R1; −/− II-18; −/−	No effect	Renal dendritic cells
Schorlemmer H [90]	SLE-like disease	Mice	IL-1 RA	Beneficial	-
Furuuchi [43]	Ischaemia- reperfusion injury	Mice	IL-1αβ; −/− IL-1RA; −/−	Beneficial	glomeruli and cortical arterioles
primary renal diseases are associated with NLRP3 inflammasome activation. Similarly, many systemic diseases affecting the kidneys are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation (Table 2). These include UUO [68,76,80,83], I-R injury [43-45,61,66,81], GN [46-48,67,70,90,97,119], sepsis [91,92,94], CKD [80,120], hypoxia [96], glycerol-induced renal failure [93], and crystal nephropathy [121]. Apart from two studies of CKD of various aetiologies [77,80] most of the disorders studied have been acute inflammatory diseases. Recent data suggests that the NLRP3 inflammasome is the principle cause of progressive renal failure in oxalate nephropathy [122]. P2X7-R, IL-1β, IL-18, caspase-1, ASC, and NLRP3 are all associated with renal inflammation and injury (Table 2). Virtually every experimental model using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway has shown decreased severity of disease, although publication bias cannot be excluded.

However, the functional significance of the inflammasome remains unclear in certain conditions. For instance,
conflicting data exists with respect to ischaemia reperfusion injury. Whilst some reports describe a protective effect of IL-1 receptor blockade with Anakinra in ischaemia-reperfusion injury [45,81], others demonstrate no benefit on renal injury responses [123]. This may be due to NLRP3 mediated injury that is independent of inflammasome activity [123]. In such circumstances, pharmacological inhibition of downstream targets may be less effective.

Intrinsic renal cells express components of the inflammasome pathway (Table 2). This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. The precise mechanisms involving the NLRP3 inflammasome in disease relate to both systemic and local (renal) activation. Limited studies using global knockouts and bone marrow chimeras suggest that systemic production of cytokines may have a greater effect on renal injury [66]. Findings related to genetic deletion or inhibition of the NLRP3 inflammasome pathway includes decreases in local cytokines and chemokines, inflammatory cell infiltrate, and apoptosis. It remains likely that locally released DAMPs result in inflammasome activation, resulting in chemokine release and immune cell infiltration. Differences in immune cell regulation of the inflammasome affect the susceptibility and severity of autoimmune GN [79].

The role of NLRP3 inflammasome activation in human renal disease is still uncertain. Consistent with experimental data P2X7-R and NLRP3 are upregulated in lupus nephritis and non-diabetic CKD, respectively [80,119]. The most extensively studied component of the NLRP3 inflammasome in relation to renal disease is IL-18. Collecting duct alpha- and beta-intercalated cells express P2X7-R and IL-18 under basal conditions [95]. An elevated serum IL-18 correlates with the development of diabetic nephropathy [124], while urine IL-18 is elevated in acute kidney injury associated with critical illness [125], cardiac surgery [126], and radiocontrast [127], supporting the notion that the inflammasome is intimately involved in wider inflammatory renal disease. Further studies investigating the NLRP3 inflammasome pathway in human disease are needed.

Chronic kidney disease and inflammation

In addition to mediating acute forms of renal injury and disease, the IL-1/IL-18 axis may also be responsible for development of CKD itself and its related complications. Accelerated atherosclerosis and vascular calcification is a hallmark feature in CKD [128]. Vascular inflammation plays a role in vascular calcification and IL-18 may have a distinct role in mediating vascular injury among patients with advanced kidney disease. Basal levels of IL-18 are elevated in patients on maintenance haemodialysis [129]. The mechanism behind increased IL-18 production may relate to elevated levels of circulating MCP-1 in patients with CKD [130]. IL-18, through production of INF-γ, results in inflammation-related vascular injury, atherosclerotic plaque formation, and plaque instability [131-133]. IL-18 levels correlate with aortic pulse wave velocity [134], a surrogate for aortic stiffness and a predictor of major adverse cardiovascular events among patients with CKD [135].

In addition to cardiovascular disease, sepsis accounts for the majority of critical care admissions and mortality among patients with end-stage kidney disease [136]. The underlying mechanism(s) behind the increased susceptibility to sepsis relates in part to altered levels of IL-1 and IL-1RA, and monocyte activity. Basal levels of IL-1β, TNFα, and IL-6 are elevated in CKD and in dialysis patients [137]. The IL-1ra/IL-1β ratio is also elevated [137,138]. A higher IL-1ra/IL-1β ratio may participate in the complex immune disturbances by reducing the biological activity of this vital pro-inflammatory cytokine in playing a major role in the immune and inflammatory network.

Complications associated with CKD are clearly multifactorial and a greater understanding of the role of the NLRP3 inflammasome/IL-1/IL-18 axis in mediating these complications is required before any therapeutic strategy can be developed and applied.

Conclusions

The NLRP3 inflammasome is becoming increasingly recognized as integral to the pathogenesis of many renal diseases and their complications. However, much of our knowledge of the inflammasome is limited to experimental models, but we need to elucidate its role in human renal disease, especially in CKD and its complications. Moreover, apart from inhibitors of IL-1, therapeutic agents targeting the NLRP3 inflammasome pathway suitable for use in humans are still lacking. Yet the inflammasome is likely to prove to be key pathogenic mechanism in nephrology and should be the subject of more intensive research.

Abbreviations

AIM2: Absent in melanoma 2; ARF: Acute renal failure; BM: Bone marrow; CARD: Caspase recruitment domain; CPPD: Calcium pyrophosphate dehydrate; DAMP: Damage-associated molecular pattern; FIND: Domain with function to find; IFI16: Interferon-γ inducible protein 16; IL-1RA: Interleukin 1 receptor antagonist; LPS: Lipopolysaccharide; LRR: Leucine rich repeat; MDP: Muramyl dipeptide; MSU: Monosodium urate; NACHT: Nucleotide-binding and oligomerization domain; NLR: NLR family apoptosis inhibitory protein; NLRP3: Nod-like receptor protein 3; PAMP: Pathogen-associated molecular pattern; PRR: Pattern recognition receptor; PTEC: Proximal tubular epithelial cells; PYD: Pyrin domain; ROS: Reactive oxygen species; TEC: Tubular epithelial cell; TLR: Toll-like receptor.

Competing interests

Clare M Turner
None declared

Nishkantha Arulkumaran
Wellcome Trust pre-doctoral training fellowship
Turner et al. BMC Nephrology 2014, 15:21
http://www.biomedcentral.com/1471-2369/15/21

RJU, FT, Editing manuscript. All authors read and approved the final manuscript.

Author details
1. Imperial College Kidney and Transplant Institute, Hammersmith Hospital, Imperial College London, London, UK. 2. Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, WC1E 6BT London, UK. 3. ULCL Centre for Nephrology, Division of Medicine, Royal Free Campus and Hospital, University College London, WC1E 6BT London, UK.

Received: 7 October 2013 Accepted: 7 January 2014
Published: 23 January 2014

References
1. Ferrari D, Wesselborg S, Bauer MK, Schulze-Osthoff K: Extracellular ATP activates transcription factor NF-kappaB through the P2Z purinoceptor by selectively targeting NF-kappaB p65. J Cell Biol 1997, 139(3):1635–1645.
2. Kehnegberg JM, Lundberg KC, Kertesy SB, Qu Y, Dubayk GR: Potentiation of caspase-1 activation by the P2X7 receptor depends on its TRLP signals and requires NF-kappaB-driven protein synthesis. J Immunol 2005, 175(11):671–6722.
3. Wewers MD, Sarkar A: Caspase-1-induced pyroptotic cell death.
4. Bauernfeind F, Bartok E, Rieger A, Franchi L, Nunez G, Hornung V: P2X(7) receptor and macrophage function.
5. Miao EA, Rajan JV, Adzem A: Caspase-1-induced pyroptotic cell death. Immuno Rev 2011, 243(1):206–214.
6. Fink SL, Cookson BT: Differential sensitivity of interleukin-1 alpha and -beta to toxin induces macrophage death by p38 MAPK inhibition but leads to caspase activation in response to foreign cytoplasmic DNA. Science 2009, 323(5917):1057–1060.
7. Smitha S, Krishnakumar S, Kini RM, Kini RM, Kini RM: Interleukin-18 and the pathogenesis of inflammatory diseases. Semin Nephrol 2009, 29(4):576–587.

Mervyn Singer
None declared
Robert J Unwin
Consultancy with AstraZeneca
Frederick Tamm
Research project grants from Roche Palo Alto, AstraZeneca Limited, Cycloacel Limited and Baxter Biosciences
Consultancy for Roche Palo Alto and Baxter Biosciences

Authors’ contributions
CT, NA, Writing manuscript, Figures, Tables. Writing manuscript, Tables, MS, RJU, FT, Editing manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Medicine, Division of Medicine, University College London, WC1E 6BT London, UK.

17. Choubey D, Panchanathan R, Duan X, Liu H, Liu H: Emerging roles for the interferon-inducible p200 family proteins in sex bias in systemic lupus erythematosus. J Interferon Cytokine Res 2011, 31(12):893–906.
18. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F: The NLRCA inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011, 477(7366):596–600.
19. Kolodziej EM, Vance HE: Innate immune recognition of bacterial ligands by NAPs determines inflammasome specificity. Nature 2011, 477(7365):592–595.
20. Lech M, Avila-Ferrufino A, Skugnin S, Vasyi HJ: Quantitative expression of RIG-like helicase, NOD-like receptor and inflammasome-related mRNAs in humans and mice. Int Immunol 2010, 22(8):717–728.
21. Chen GY, Liu M, Wang F, Bertin J, Nunez G: A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol 2011, 186(12):7187–7194.
22. Ye Z, Lich JD, Moore CB, Duncan JA, Williams KL, Ting JP: ATP binding by monard-1/NLRP12 is critical for its inhibitory function. Mol Cell Biol 2008, 28(5):1841–1850.
23. Williams KL, Lich JD, Duncan JA, Reed W, Rallabandi P, Moore C, Kurz T, Coffield VM, Accavitti-Loper MA, Su L, et al: The CATERPILLER protein monard-1 is an antagonist of toll-like receptor-2, tumor necrosis factor alpha- and Mycobacterium tuberculosis-induced pro-inflammatory signals. J Biol Chem 2005, 280(48):39914–39924.
24. Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford RM, Davis BK, Utrosn JM, Herfart HH, et al: NLRP2 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling, Immunity 2013, 36(3):74–754.
25. Dinarello CA: Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009, 27:519–550.
26. Parvathenani LN, Tetyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R: P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 2003, 278(15):13329–13337.
27. Dinarello CA: The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 2002, 20(Suppl 27):S1–S15.
28. Bevilacqua MP, Stengelin S, Gimbrone MA Jr, Seed B: Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 1989, 243(4895):1160–1165.
29. Chen CJ, Kano H, Golenbock D, Reed G, Akira S, Rock KL: Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 2007, 13(7):851–856.
30. Kavita U, Mielz SB: Differential sensitivity of interleukin-1 alpha and -beta precursor proteins to cleavage by calpain, a calcium-dependent protease. J Biol Chem 1995, 270(4):2778–2785.
31. Yazdi AS, Drexl SK: Regulation of interleukin 1alpha secretion by inflammasomes. Ann Rheum Dis 2013, 72(Suppl 2):i96–i99.
32. Gross O, Yazdi AS, Thomas CJ, Mason IM, Herinz LX, Guarda G, Quadroni M, Drexl SK, Tschopp J: Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for neutrophils and lectins. J Immunol 2009, 182(5):3173–3182.
33. Liu Y, Xiao Y, Li Z: P2X7 receptor positively regulates MyD88-dependent NF-kappaB activation. Cytokine 2011, 55(2):220–236.
34. Bruey JM, Bruey-Sedano N, Luciano F, Zhao D, Bajak R, Xu C, Kress CL, Baley-Maitre B, Li X, Osterman A et al: Blc-2 and Blc-XL regulate proinflammatory caspase-1 activation by interaction with NALPL1. Cell 2007, 129(1):45–56.
35. Levinson JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S, Sastalla I, Ledpla SH, Meisner M: Antithrombin-lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 2012, 8(3):e1002038.
36. Ali SR, Timmer AM, Bilgami S, Park EJ, Eckmann L, Nizet V, Karin M: Interleukin-18 induces macrophage death by p38 MAPK inhibition but leads to caspase activation through ATP leakage. Immunity 2011, 35(1):34–44.
37. Roberts TL, Idris A, Dunn JA, Kelly GM, Bunton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, et al: HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 2009, 323(5917):1057–1060.
38. Sola-Villa D, Camacho M, Sola R, Soler M, Diaz JM, Vila L: IL-1beta induces VEGF, independently of PGE2 induction, mainly through the PI3-K/MTOR pathway in renal mesangial cells. Kidney Int 2006, 70(1):1935–1941.
39. Myers CL, Wertheimer SJ, Schembri-King J, Parks T, Wallace RW: Induction of ICAM-1 by TNF-alpha, IL-1 beta, and LPS in human endothelial cells after downregulation of PKC. Am J Physiol 1992, 263(1 Pt 1):C767-C772.
40. Yang CM, Luo SC, Hsieh HL, Chi PI, Lin CC, WYSLC, Hsiao LD: Interleukin-1beta induces ICAM-1 expression enhancing leukocyte adhesion in human rheumatoid arthritis synovial fibroblasts: involvement of ERK, JNK, AP-1, and NF-kappaB. J Cell Physiol 2010, 224(5):516–526.
41. Wang X, Feuerstein GZ, Yue TL: Interleukin-1 beta induces expression of adhesion molecules in human vascular smooth muscle cells and enhances expression of leukocytes to smooth muscle cells. Atherosclerosis 1995, 115(1):99–98.
42. Ren G, Zhao X, Zhang L, Jiang J, L’Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C, et al: Inflammatory cytokine-induced interleukin-1 alpha and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 2010, 184(5):2321–2328.
43. Futuchi K, Wada T, Iwata Y, Kobuki S, Hara A, Yamahana J, Sugaya T, Iwakura Y, Matsushima K, Asano M, et al: Interleukin-1 dependent sequential chemokine expression and inflammatory cell infiltration in ischemia-reperfusion injury. Crit Care Med 2006, 34(9):2447–2455.
44. Haq M, Norman J, Saba SR, Ramirez G, Rabb H: Role of IL-1 in renal ischemic reperfusion injury. J Am Soc Nephrol 1998, 9(4):614–619.
45. Russi K, Hwang H, Saved N, Strobl M, Moos R, Smadshamer C, Heemann U, Lutz J: Administration of interleukin-1 receptor antagonist ameliorates renal ischemia-reperfusion injury. Transplant Int 2008, 21(6):572–580.
46. Chen A, Sheu LF, Chou WY, Tsai SC, Liang SC, Lin FG, Lee WH: Interleukin-1 receptor antagonist modulates the progression of a spontaneously occurring IgA nephropathy in mice. Am J Kidney Dis 1997, 30(5):769–776.
47. Lichtneckert J, Kulkami OP, Mulay SR, Rupanagudi KV, Ryu M, Allam R, Neilson PA, Maruvia D, Lindenmeyer MT, Cohen CD, et al: Anti-GBM glomerulonephritis involves IL-1 but is independent of NLPR3/ASC inflammasome-mediated activation of caspase-1. PLoS One 2011, 6(10):e26778.
48. Timoshankor JR, Kitching AR, Iwakura Y, Holdsworth SR, Tipping PG: Contributions of IL-1beta and IL-1alpha to crescentic glomerulonephritis in mice. J Am Soc Nephrol 2004, 15(4):910–918.
49. Hacham M, Argov S, White RM, Segal S, Apte RN, Tomura M, Maruo S, Mu J, Zhou XY, Ahn HJ, Hamaoka T, Okamura H, Nakanishi K, Clark S, Kurimoto M, Orta K, Akagi T, Tanaka N: Interleukin-18/interferon-gamma-inducing factor, a novel cytokine, up-regulates ICAM-1 (CD54) expression in KG-1 cells. J Leukoc Biol 1998, 64(4):519–527.
50. Ueno N, Kashiwamura S, Ueda H, Okamura H, Tsuji NM, Hosokawa K, Kotani J, Marukawa S: Role of interleukin 18 in nitric oxide production and pancreatic damage during acute pancreatitis. Shock 2005, 24(6):564–570.
51. Kaplanski G, Farnarier C, Kaplanski S, Porat R, Shapiro L, Bongrand P, Dinarello CA: IL-18 enhances lipopolysaccharide-induced interferon-gamma production in human whole blood cultures. J Infect Dis 1998, 178(6):1830–1834.
52. Hurgin V, Novick D, Werman A, Dinarello CA, Rubinstein M: Antiviral and interferon-gamma-inducing activity of PYNOD and its CARD-only proteins. J Biol Chem 2011, 286(3):2341–2341.
53. Tomura M, Ohashi K, Kayano T, Kurimoto M, Okamura H, Nakanishi K, Akira S: Anti-GBM glomerulonephritis involves IL1 beta-induced immune complex formation and monocytic infiltration. J Immunol 2002, 168(1 Pt 1):115–120.
54. Morel JC, Park CC, Woods JM, Koch AE: A novel role for interleukin-18 in adhesion molecule induction through NF kappa B and phosphatidylinositol (PI) 3-kinase-dependent signal transduction pathways. J Biol Chem 2001, 276(40):37069–37075.
55. Ueno N, Kashiwamura S, Ueda H, Okamura H, Tsuji NM, Hosokawa K, Kotani J, Marukawa S: Role of interleukin 18 in nitric oxide production and pancreatic damage during acute pancreatitis. Shock 2005, 24(6):564–570.
56. Morel JC, Park CC, Woods JM, Koch AE: A novel role for interleukin-18 in adhesion molecule induction through NF kappa B and phosphatidylinositol (PI) 3-kinase-dependent signal transduction pathways. J Biol Chem 2001, 276(40):37069–37075.
57. Ueno N, Kashiwamura S, Ueda H, Okamura H, Tsuji NM, Hosokawa K, Kotani J, Marukawa S: Role of interleukin 18 in nitric oxide production and pancreatic damage during acute pancreatitis. Shock 2005, 24(6):564–570.
58. Morel JC, Park CC, Woods JM, Koch AE: A novel role for interleukin-18 in adhesion molecule induction through NF kappa B and phosphatidylinositol (PI) 3-kinase-dependent signal transduction pathways. J Biol Chem 2001, 276(40):37069–37075.
59. Ueno N, Kashiwamura S, Ueda H, Okamura H, Tsuji NM, Hosokawa K, Kotani J, Marukawa S: Role of interleukin 18 in nitric oxide production and pancreatic damage during acute pancreatitis. Shock 2005, 24(6):564–570.
60. Morel JC, Park CC, Woods JM, Koch AE: A novel role for interleukin-18 in adhesion molecule induction through NF kappa B and phosphatidylinositol (PI) 3-kinase-dependent signal transduction pathways. J Biol Chem 2001, 276(40):37069–37075.
61. Ueno N, Kashiwamura S, Ueda H, Okamura H, Tsuji NM, Hosokawa K, Kotani J, Marukawa S: Role of interleukin 18 in nitric oxide production and pancreatic damage during acute pancreatitis. Shock 2005, 24(6):564–570.
79. Deplano S, Cook HT, Russell R, Franchi L, Schneider S, Bhanjal G, Unwin RJ, Pusey CD, Tam FW, Behmoaras J. P2X7 receptor-mediated Nlrp3-inflammasome activation is a genetic determinant of macrophage-dependent glomerulonephritis. J Leukoc Biol 2013; 93(1):127–134.

80. Vilaysane A, Chun J, Searnome ME, Wang W, Chin R, Hirota S, Li Y, Clark SA, Tschopp J, Tripkov K, et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 2010, 21(10):1732–1744.

81. Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GI, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC, et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 2009, 106(48):20388–20393.

82. Jallian I, Spilidesjorde M, Seavers A, Curtis BL, McArthur JD, Tschopp J, Rees AJ: Functional expression of the damage-associated molecular pattern receptor P2X7 on canine kidney epithelial cells. Vet Immunol Immunopathol 2012, 150(3–4):226–233.

83. Yamagishi H, Yokoy T, Imasawa T, Mitarai T, Kawamura T, Utsunomiya Y: Genetically modified bone marrow-derived vehicle cells specifically deliver an anti-inflammatory cytokine to inhibited interstitium of obstructive nephropathy. J Immunol 2001, 166(1):609–616.

84. Matsumoto K, Dowling J, Atkins RC: Production of interleukin 1 in glomerular cell cultures from patients with rapidly progressive crescentic glomerulonephritis. J Am Soc Nephrol 1998, 8(6):463–470.

85. Tam FW, Smith J, Cashman SJ, Wang Y, Thompson EM, Rees AJ: Glomerular expression of interleukin-1 receptor antagonist and interleukin-1 beta genes in antibody-mediated glomerulonephritis. Am J Pathol 1994, 145(1):126–136.

86. Lan HY, Nikolic-Paterson DJ, Mu W, Vannice JL, Atkins RC: Interleukin-1 receptor antagonist halts the progression of established crescentic glomerulonephritis in the rat. Kidney Int 1995, 47(5):1303–1309.

87. Karkar AM, Koshino Y, Cashman SJ, Dash AC, Bonnefoy J, Meager A, Rees AJ: Passive immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta protects from LPS enhancing glomerular injury in nephrotic nephritis in rats. Clin Exp Immunol 1992, 90(2):312–318.

88. Karkar AM, Tam FW, Steinkasserer A, Kurle R, Langner K, Schall BJ, Meager A, Rees AJ: Modulation of antibody-mediated glomerular injury in vivo by IL-1ra, soluble IL-1 receptor, and soluble TNF receptor. Kidney Int 1995, 48(4):1738–1746.

89. Hettting O, Khalil A, Balam BM, Pham TH, Pucino F, Wesley RA, Papadopoulos JH, et al: A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (Interleukin-1 Trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum 2008, 58(6):2432–2442.

90. Hoffman HM, Thorne ML, Amar NJ, Sebal M, Kwitz AJ, Kavanaugh A, Weinstein SP, Belomestnov P, Yancopoulos GD, Stahl N, et al: Efficacy and safety of rilonacept (Interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum 2008, 58(8):2432–2452.

91. Kuehmann HJ, Kone-Paut V, Kuenzler-Detschner JB, Leslie KS, Hackella H, Quarter P, Gitton X, Widmer A, Patel N, Hawkins PN: Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 2009, 360(23):2416–2425.

92. Alen R, Gram H, Joosten LA, van den Berg WB, Sieper J, Wassenberg S, Burnester G, van Riel P, Diaz-Lorente M, Bruin GJ, et al: The human anti-IL-1 beta monoclonal antibody ACZ885 is effective in joint inflammation models in mice and in a proof-of-concept study in patients with rheumatoid arthritis. Arthritis Res Ther 2008, 10(3):R67.

93. So A, de Smedt T, Revay S, Tschopp J: A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 2007, 9(2):R28.

94. Dostert C, Pettini V, van Bruggen R, Steele C, Mossman BT, Tschopp J: Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008, 320(5876):674–677.

95. Nordstrom D, Knight A, Luukkanen R, van Vollenhoven R, Rantalavo R, Kajalainen A, Bruin JG, Proven A, Ljung L, Kautainen H, et al: Beneficial effect of interleukin 1 inhibition with Anakinra in Anakinra in adult-onset Still’s disease. An open, randomized, multicenter study. J Rheumatol 2012, 39(10):2008–2011.

96. Pascual V, Allantaz F, Arce E, Suno P, Mancino B, Barreno G, Arizaga I, Kuchlen I, Kopp,J, Yancopoulos GD, Stahl N, et al: The inflammasome mediates hyperoxia-induced acute respiratory distress syndrome. J Exp Med 2011, 208(12):2419–2428.

97. Arulkumaran N, Unwin RJ, Tam FW: A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin Investig Drugs 2011, 20(7):897–915.

98. Dell’Antonio G, Quattrini A, Dal Cin E, Fulgenzini A, Ferrario ME: Antinociceptive effect of a new P2X2/P2X7 antagonist, oxidized ATP, in arthritic rats. Neurosci Lett 2002, 327(1):89–90.

99. Dell’Antonio G, Quattrini A, Cin ED, Fulgenzini A, Ferrario ME: Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP. Arthritis Rheum 2002, 46(12):3378–3385.

100. Taylor SR, Turner CM, Elliott JI, McDaid J, Hewitt R, Smith J, Pickering MC, Warner K, Vial C, Wykes RC, Bradding P, Seward EP: Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on
the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann Rheum Dis 2012, 71(10):1630–1635.

118. Cornelis S, Kersse K, Festjens N, Lamkanfi M, Vander Ende P: Inflammatory caspases: targets for novel therapies. Curr Pharm Des 2007, 13(4):367–385.

119. Turner CM, Ramesh B, Srik SK, Burnstock G, Unwin RJ: Altered ATP-sensitive P2 receptor subtype expression in the Han:SPRD c/− rat, a model of autosomal dominant polycystic kidney disease. Cells Tissues Organs 2004, 178(3):168–179.

120. von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL, Chrabieh M, Shigeoka AA, Mueller JL, Kambo A, Mathison JC, King AJ, Hall WF, Turner CM, Ramesh B, Srai SK, Burnstock G, Unwin RJ:

121. Cornelis S, Kersse K, Festjens N, Lamkanfi M, Vandenabeele P:

122. Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, Flavell RA, Aronson PS: NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int 2013, 84(3):895–901.

123. Shigeoka AA, Mueller JL, Kambo A, Mathison JC, King AJ, Hall WF, Correia Jda S, Ulevitch RJ, Hoffman HM, McKay DB: An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J Immunol 2010, 185(10):6277–6285.

124. Fujita T, Ogihara N, Kamura Y, Satomura A, Fuke Y, Shirimizu C, Wada Y, Matsumoto K: Interleukin-18 contributes more closely to the progression of diabetic nephropathy than other diabetic complications. Acta Diabetol 2012, 49(1):111–117.

125. Siew ED, Ikzler TA, Gebretsadik T, Shintani A, Wickerham N, Bossert F, Peterson JF, Parkh CR, May AK, Ware LB: Elevated urinary IL-1β levels at the time of ICU admission predict adverse clinical outcomes. Clin J Am Soc Nephrol 2010, 5(8):1497–1505.

126. Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, Dent C, Devarajan P, Edelstein CL: Urinary IL-1β is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int 2006, 70(1):199–203.

127. Turkmen F, Istmagil G, Berber I, Aslan G, Sevinc C, Ozdemir A: Comparison of serum creatinine and spot urine interleukin-1β levels following radiocontrast administration. Indian J Nephrol 2012, 22(3):195–199.

128. Mizobuchi M, Towler D, Slapolsky E: Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol 2009, 20(7):1453–1464.

129. Gangemi S, Mallamace A, Minciullo PL, Santoro D, Viglietto A, Basilli C, Barbieri A, Boccia S, Lucchese G, Chvatchko Y, Tedgui A: Expression of interleukin-1β in human atherosclerotic plaques and relation to plaque instability. Circulation 2001, 104(14):1598–1603.

130. Porzio T, Kuzniar J, Kusztal M, Kuzniar Tj, Weyde W, Kuriata-Kordek M, Klinger M: IL-1β is involved in vascular injury in end-stage renal disease patients. Nephrol Dial Transplant 2009, 24(2):589–596.

131. Covcić A, Haydar AA, Bhardwaj Arka P, Gubeth-Tatomir P, Goldsmith DJ: Aortic pulse wave velocity and arterial wave reflections predict the extent and severity of coronary artery disease in chronic kidney disease patients. J Nephrol 2005, 18(4):388–396.

132. Whitman SC, Ravisankar P, Daugherty A: Interleukin-1β enhances atherosclerosis in apolipoprotein E(−/−) mice through release of interferon-gamma. Circ Res 2002, 90(2):E34–E38.

133. Mallat Z, Cortez A, Scoazec A, Bernard S, Leschele G, Chvatchko Y, Tedgui A: Expression of interleukin-1β in human atherosclerotic plaques and relation to plaque instability. Circulation 2001, 104(14):1598–1603.

134. Porzio T, Kuzniar J, Kusztal M, Kuzniar Tj, Weyde W, Kuriata-Kordek M, Klinger M: IL-1β is involved in vascular injury in end-stage renal disease patients. Nephrol Dial Transplant 2009, 24(2):589–596.

135. Covcić A, Haydar AA, Bhardwaj Arka P, Gubeth-Tatomir P, Goldsmith DJ: Aortic pulse wave velocity and arterial wave reflections predict the extent and severity of coronary artery disease in chronic kidney disease patients. J Nephrol 2005, 18(4):388–396.

136. Arulkumaran N, Annear NM, Singer M: Patients with end-stage renal disease admitted to the intensive care unit: systematic review. Br J Anaesth 2013, 110(1):13–20.

137. Le Meur Y, Lorgeot V, Alidjiger JC, Wijdenes J, Leroux-Robert C, Praloran V: Whole blood production of monocytic cytokines (IL-1β, IL-6, TNF-alpha, sIL-6R, IL-1Ra) in haemodialysed patients. Nephrol Dial Transplant 1999, 14(10):2420–2426.