The Role of Integrins in Inflammation and Angiogenesis

Cite this article as: Oluchi J. Mezu-Ndubuisi and Akhil Maheshwari, The Role of Integrins in Inflammation and Angiogenesis, Pediatric Research doi:10.1038/s41390-020-01177-9

This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that has been accepted for publication but has not been copyedited or corrected. The official version of record that is published in the journal is kept up to date and so may therefore differ from this version.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.nature.com/authors/policies/license.html#AAMtermsV1
Title: The Role of Integrins in Inflammation and Angiogenesis

Authors: *Olachi J. Mezu-Ndubuisi¹, Akhil Maheshwari ²

Affiliations: ¹Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI

²Department of Pediatrics, Johns Hopkins University, Baltimore, MD

Corresponding Author

* Olachi J. Mezu-Ndubuisi
Department of Pediatrics,
University of Wisconsin School of Medicine and Public Health,
Madison, WI 53792
Email: olachimezu@pediatrics.wisc.edu
Phone: (608) 265-0853

Author Contribution: Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data: OJM, AM; Drafting the article or revising it critically for important intellectual content: OJM, AM; Final approval of the version to be published: OJM, AM.

Funding support: The authors have no funding to report related to this manuscript

Disclosure statement: The authors do not have any conflicts of interest to report

Statement on Patient Consent: There was no patient consent required for this paper.

Category of Study: Review Article

Impact

- Integrins are a family of ubiquitous αβ heterodimeric receptors that interact with numerous ligands in physiology and disease. Integrins play a key role in cell proliferation, tissue repair, inflammation, infection, and angiogenesis.

- This review summarizes current evidence from human and animal studies on integrin structure and molecular signaling, and promising role in diseases of inflammation, infection and angiogenesis in infants.

- This review shows that integrin receptors and ligands are novel therapeutic targets of clinical interest, and hold promise as novel therapeutic targets in the management of several neonatal diseases.
Abstract

Integrins are heterodimeric transmembrane cell adhesion molecules made up of alpha (α) and a beta (β) subunits arranged in numerous dimeric pairings. These complexes have varying affinities to extracellular ligands. Integrins regulate cellular growth, proliferation, migration, signaling, and cytokine activation and release, and thereby play important roles in cell proliferation and migration, apoptosis, tissue repair, as well as in all processes critical to inflammation, infection, and angiogenesis. This review presents current evidence from human and animal studies on integrin structure and molecular signaling, with particular emphasis on signal transduction in infants. We have included evidence from our own laboratory studies and from an extensive literature search in databases PubMed, EMBASE, Scopus, and the electronic archives of abstracts presented at the annual meetings of the Pediatric Academic Societies. To avoid bias in identification of existing studies, key words were short-listed prior to the actual search both from anecdotal experience and from PubMed’s Medical Subject Heading (MeSH) thesaurus.
Table of Contents

1. Introduction

2. Structure of integrins
 I. Integrin α-subunit family
 II. Integrin β subunit family
 III. Characteristics of specific integrin heterodimers

3. Integrin-ligand binding and consequent activation
 I. Mechanism of integrin-ligand binding and conformational states
 II. Integrin activation
 III. Integrin bi-directional inside-out and outside-in signaling

4. Integrins in inflammation and infection

5. Role of Integrins in neonatal organs during normal development and inflammation
 I. Integrins in the lung during normal development and inflammation
 II. Integrins in intestinal inflammation and necrotizing enterocolitis
 III. Integrins in the developing eye and in retinopathy of prematurity

6. Integrins in thrombosis and fibrosis

7. Integrin-targeted therapies

8. Conclusions
1. Introduction

Integrins are a family of ubiquitous αβ heterodimeric receptors that exist in multiple conformations and interact with a diverse group of ligands. These molecules mediate interactions between cells and of these cells with the extracellular matrix (ECM), and thereby serve a critical role in signaling and homeostasis. By facilitating dynamic linkages between the intracellular actin cytoskeleton and the ECM, integrins also transduce both external and internal mechanochemical cues, and bi-directional signaling across the plasma membrane (1, 2). Integrins are involved in a diverse range of body processes, including cellular survival, inflammation, immunity, infection, thrombosis, angiogenesis, and malignancy. In this review, we highlight the structure and function of integrins, the mechanisms involved in integrin activation and signaling, their role in inflammation, infection and angiogenesis, and discuss current advances in integrin-targeted therapies. Understanding the factors that regulate integrin structure, function and signaling would enable us to identify new therapeutic targets.

2. Structure of integrins

In mammals, the family of integrins is comprised of 24 αβ pairs of heterodimeric transmembrane adhesion receptors and cell-surface proteins. These pairings are known to involve 18 α and 8 β subunits (Figure 1) (3), and their non-covalent associations involve an α- and another β-subunit (Figure 2) (4). The αβ pairings of integrin subunits dictate the specificity of the integrin to a particular ligand, modulate formation of intracellular adhesion complexes, and regulate downstream signaling (1). Six α- (α1-6) and seven β-subunits (β1-7) are known to form several unique αβ subunit associations (Figure 1). Interestingly, the earliest-discovered integrins, lymphocyte function-associated antigen 1 (integrin αLβ2) and macrophage antigen 1 (integrin αMβ2) derive their specificity from specific α-subunits, but these share the same β-subunit (5).

(I) Integrin α-subunit family

The integrin α subunits carry a 200 amino-acid ‘inserted’ domain, the I-domain (αI). When present on an integrin, the αI domain is an exclusive ligand-binding site. αI integrins have 13 extracellular domains in two subunits, which interact with a variety of ligands. The I-domains are seen in 6 out of the 15 integrin α subunits.
In humans, integrin β-subunits have a cytoplasmic tail that have less than 75 amino acids in length, except the β4 tail which is about 1,000 amino acids long (includes four fibronectin type III repeats) (3). The integrin β tails have one or two NPxY/F motifs (x refers to any amino acid) that recognize protein modules, phosphotyrosine-binding domains, that are involved in several signaling and cytoskeletal proteins at the cytoplasmic face of the plasma membrane through phosphorylation of the tyrosine (Y) in the NPxY/F motif (3).

The integrin β tails have one or two NPxY/F motifs (x refers to any amino acid) that recognize protein modules, phosphotyrosine-binding domains, that are involved in several signaling and cytoskeletal proteins at the cytoplasmic face of the plasma membrane through phosphorylation of the tyrosine (Y) in the NPxY/F motif (3).

The integrin β-subunit family includes β1-7, which bind the α-subunits in different combinations. The most frequently seen β subunit integrin heterodimers is β1. Although the β2 integrins show functional overlap, the corresponding α subunit defines its individual functional properties (6). The β2/CD18 chain has also received attention because of its involvement in several inflammatory receptors such as CD11a/CD18, αLβ2, lymphocyte function-associated antigen-1 (LFA-1); CD11b/CD18, αMβ2, Mac-1, complement receptor 3 (CR3); CD11c/CD18 (αxβ2, p150.95, CR4); and CD11d/CD18, αDβ2; Figure 1). In these β2 integrins, the α subunits bind specific ligands such as the intercellular adhesion molecules (ICAMs). The non-I-domain α subunits in other integrins, such as the laminin-binding α3, α6, and α7, and others that recognize the arginine (R), glycine (G), aspartic acid (D) (RGD) motif (αV, α8, α5, and αllb), are also closely related to each other (7). The α-subunit of each integrin is the primary determinant of its extracellular ligand specificity. The β-chain binds acidic residues in ICAMs and in cytoplasmic adapters such as paxillin, talins, and kindlins, to facilitate cellular adhesions with the ECM. Integrins interact with the actin cytoskeleton through the talin and kindlin-binding motifs present in the cytoplasmic domains of their β-subunits (8).

Characteristics of specific integrin heterodimers

Integrin αβ heterodimers are divided into four classes (leukocyte, collagen-binding, Arg-Gly-Asp (RGD)-binding, and laminin-binding integrins; Figure 1), based on evolutionary associations, ligand specificity, and restricted expression on white blood cells (β2 and β7 integrins). Leucocyte integrins have a common β2 chain that is linked to CD-18, and bind receptors such as ICAM, and plasma proteins such as complement components C3b and C4b (9). Collagen-binding integrins have a common β1 chain that binds various α chains in integrins α1β1, α2β1, α10β1, α11β1. The α2β1 integrin binds its primary ligand, collagen (10), and chondroadherin, a matrix protein (11). The RGD-binding integrins have a common αv chain or β1 chain. The
RGD peptide motif was first discovered in fibronectin (12), but was later found in several other ECM proteins such as fibronectin (9), osteopontin (13), vitronectin (14), von Willebrand factor (15), and laminin (16). Among the 24 human integrin subtypes known to date, eight integrin dimers recognize the tripeptide RGD motif within ECM proteins, namely: αvβ1, αvβ3, αvβ5, αvβ6, α5β1, α5β1, and α1b3β3. Laminin-binding integrins (α5β1, α6β1, α7β1, and α6β4) mediate the adhesion of cells to basement membranes in various tissues (9). The α4β1, α9β1, α4β7 integrin family binds fibronectin in a RGD-independent manner (9).

3. Integrin-ligand binding and consequent activation

The structure and function of integrins are complex. Integrins bind numerous extracellular ligands, intracellular signaling molecules, and the cytoskeleton in a bivalent-cation dependent manner with varying specificities. Integrins also have many states with multiple conformations and affinities.

(1) **Mechanism of integrin ligand binding and conformational states**

Integrins bind cell-surface ligands to promote cellular interactions with the ECM and with other cells, in the transduction of complex signals that modulate many cellular processes such as adhesion, migration, and differentiation. These soluble, ECM, or cell surface-bound ligands may include growth factors, structural constituents of the ECM, proteases, cytokines, plasma proteins, microbial pathogens, or receptors specific to immune cells. The affinity and avidity of a ligand may change actively by inside-out signaling in specific pathways. Ligand affinity may vary with the strength of interaction and dissociation of a monovalent protein and its ligand, where ligand avidity refers to its ability to form multiple combinations of bonds (17).

Integrins exist primarily in three conformational states: bent-closed (inactive; the predominant state), extended-closed (active; low affinity or intermediate state), and the extended-open (active; high affinity)(18). The affinity of integrins to various inhibitory and stimulatory ligands is modulated by bivalent cations, which induce a range of conformational changes in integrins ranging from a folded, inactive, and low-affinity state to a high-affinity conformation (Figure 2) (19). These conformational changes in the extracellular domains of integrins modulate both ligand binding and downstream cellular signaling.
(II) Integrin activation

The activation of integrins increases the affinity of these molecules to extracellular ligands. Integrin tail domains play a critical role in these steps, and any genetic mutations in these parts of integrins can disrupt downstream intracellular signaling (20). Integrin-mediated signaling across cell membranes is typically bi-directional and termed “outside-in” and “inside-out” signaling (20, 21). When integrins interact with ECM ligands, a conformational change allows adherence to downstream adaptor molecules in the cell-membrane plane (22). Once clustered, integrins are able to recruit and activate kinases such as Src family kinases, focal adhesion and scaffold molecules such as the adaptor protein p130CRK-associated substrate/Breast Cancer Anti-Estrogen Resistance 1 (p130CAS/BCAR1)(22). These integrin-associated complexes (IACs) include discrete active and inactive integrin organizations, which can activate unique signaling pathways (23, 24).

The extracellular domains of integrins are known to undergo a diverse range of conformational changes that alter the ligand-binding domains. In the cytoplasmic tails of integrins, α-helices are seen as heterodimers (25), and the β-strands often bind intracellular proteins such as talin or filamin (26, 27). The cytoplasmic tail may undergo several specific conformational changes to bind a range of other signal transducers (28, 29).

(III) Integrin bi-directional inside-out and outside-in signaling

Mechanical stress (30) and extracellular chemicals (31) can induce rapid conformational changes to cause inside-out activation of integrins (32). Integrins display bi-directional signaling across the plasma membrane. Ligand binding induces extracellular-to-cytoplasm signal transduction, and inside-out signaling or priming regulates integrin-ligand binding conformations (Figure 2). During integrin activation and signaling, the cytoplasmic tail acts as both a receptor and transmitter of signals. Specifically, during inside-out signaling, the activating signals make an impression on the cytoplasmic tail to induce large conformational changes to the extracellular domain, thereby transforming the integrin from a resting to an active state (33). During outside-in signaling, the binding of a ligand to the extracellular domain of active integrin transmits a conformational change to the cytoplasmic tail which leads to the activation of kinases and adaptor molecules in the cytosol (1). In contrast, talin and kindlin interaction with the β-cytoplasmic tail can trigger inside-out signaling, leading to integrin activation, clustering, and recruitment of intercellular adaptor proteins to strengthen cellular

© 2020 Macmillan Publishers Limited, part of Springer Nature.
adhesion. Talin is a large dimeric actin-binding protein and a major regulator of integrin activation, and the regulation of talin-integrin interactions is important in the control of integrin activation and signaling pathways (33). Direct interactions between the talin head and the short cytoplasmic tails of β-integrin subunits disrupt inhibitory interactions between α- and β-integrin subunits (33). This leads to conformational changes in the integrin extracellular domains and consequent increase in their ligand affinity. The role of kindlins are not clearly defined, but they are structurally related to the talin head. The synergistic binding of talin and kindlin to β-integrin cytoplasmic tails induces integrin activation by disrupting the α-β interactions at the transmembrane and the cytoplasmic domains (33, 34).

4. Integrins in inflammation and infection

In the resting state, β₂ integrins are expressed specifically on leucocyte receptors. During inflammation, the inflammatory cytokines activate these integrins and promote cellular adherence to the counter-receptors such as ICAMs, and promote phagocytosis and cytotoxic killing. Integrin receptors on leucocytes, such as the macrophage-1 antigen (mac-1, also known as CR3, αMβ₂, CD11b/CD18) interact with platelet antigens such as the glycoprotein Ibα (GPIbα) during inflammation. Integrins bind to the pro-domain of transforming growth factor (TGF)-β₁ to activate it and promote its secretion. The pro-TGF-βs are biosynthesized and stored in tissues in latent forms, and integrins αᵥβ₆ and αᵥβ₈ can uniquely bind and activate pro-TGF-β₁ and pro-TGF-β₃. The αᵥβ₆ integrin is known to specifically bind the RGDLXXL/I motif in TGF-β₁ and TGF-β₃ (35).

β₂ integrins promote recruitment of leukocytes to the sites of inflammation by promoting the adhesion of circulating leukocytes to vascular endothelium, transendothelial migration (36, 37), the formation of immunological synapses in leucocytes (38), and inflammatory signaling in involved cells (39). Activated β₂ integrins on dendritic cells (DCs) may act as negative regulators of DC migration in certain conditions, and may also regulate T-cell activation (40, 41). β integrins on the leucocyte surface are also involved in the tethering, rolling, and adhesion of leukocytes to activated endothelial cells (42). β₂-integrins can also initiate intracellular signaling pathways in macrophages and neutrophils, and stimulate cytokine secretion from these cells either directly or in synergy with Toll-like receptors (43). Integrins may also integrate the impact of the...
epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), insulin receptor, met receptor superfamily (hepatocyte growth factor receptor; HGFR), and the vascular endothelial growth factor receptor (VEGFR) in inflammatory cells (44).

β2 integrins are important regulators of adhesion, leukocyte recruitment, and immunological signaling. These integrins mediate adhesive interactions between myeloid cells, endothelial cells, antigen-presenting cells (APCs), T-cells and the ECM (45). L-selectin, the CCR7 chemokine receptor interacts with specific carbohydrate epitopes on the endothelium and promotes leukocyte rolling and transmigration through the vascular endothelium (46). Leukocyte rolling induces a rapid, although transient, increase in the affinity of the β1 and β2 integrins to the endothelial ligands (47, 48). Conformational changes in the structure of the inserted (I) domain of the αL subunit of LFA-1 (49) enhance firm leukocyte adhesion under shear flow (31, 49).

5. Role of integrins in neonatal organs during normal development and inflammation

(Integrins in the lung during normal development and in inflammation)

Integrins and receptor tyrosine kinases (RTF) act with cytokine and growth factors to modulate the extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathways during regeneration, inflammation, developmental and pathological processes in the developing lung (2, 44, 50, 51). The ECM in the lung contains collagen, fibronectin, laminin, and entactin (52), and alterations in the formation and structure of the ECM either during normal development, healing from injury, or in chronic lung disease could lead to profound alterations in the lung structure (53, 54). For instance, fibronectin in the ECM promotes integrin-mediated cellular migration and differentiation of cells during lung development (55). β1 integrin activates several signaling pathways, particularly the PI3K/AKT pathway activated during wound healing in the presence of collage VI in the lung ECM (56). β1 integrins play a critical role in alveolar homeostasis, as seen in chronic lung disease depicted in β1 integrin–deficient mice (57). In addition, β1 integrin-deficient alveolar epithelial cells produce excessive MCP-1 and reactive oxygen species, suggesting that β1 integrins may be involved in alveolar homeostasis (58). In murine models of BPD, perinatal exposure to lipopolysaccharide (LPS) and increased expression of interleukin (IL)-33 may activate neutrophils and promote fibronectin degradation in alveolar epithelial cells (59). Other studies have noted increased expression of integrin α2β1 on
mast cells and activation/release of inflammatory cytokines (60, 61). Similar findings have been noted in murine models with Listeria monocytogenes infections (62). Mice deficient in integrin α2 (63) and integrin αβ6 (64) show defective platelet interaction with collagen. α2β1 integrin-null mice have normal angiogenesis, but may have altered angiogenic responses during injury repair (65). In contrast, integrin β1 knockout mice may have altered development and are not viable, indicating an essential role of β1 during development. Table 1 outlines murine models of integrins, their target tissues, and signaling.

(II) Integrins in intestinal inflammation and in necrotizing enterocolitis

The regulation of intestinal leukocyte responses is vital to maintaining immune homeostasis and prevention of intestinal inflammatory conditions. Integrin αβ5 is expressed on neonatal intestinal macrophages; the expression is developmentally regulated and is not dependent on microbial colonization. These integrins bind different ECM components such as laminins, collagens, and fibronectin, and are known to coordinate epithelial cell adhesion and movement (4, 66). These integrins recognize the RGD tri-peptide sequence present in ECM proteins such as fibronectin and vitronectin (67, 68). The integrin αβ5 can be found in both focal adhesions and in clathrin-coated membrane domains (69, 70).

Integrin αβ6 plays an important role in epithelial homeostasis and is a major activator of TGF-β expression (71). α3 and β1 integrins, which are known to increase epithelial migration, are upregulated by bacterial products during necrotizing enterocolitis (NEC) (72, 73). TLR4 signaling on enterocytes promotes the efflux of β1 integrins from the cytoplasm towards the cell membrane, and enhances cell-matrix contacts that limit cellular movement (74). In other studies, Besner and colleagues have examined the role of E-cadherin and integrins in NEC, and showed that the growth factor, heparin bound epidermal growth factor, can promote intestinal restitution in NEC through its effects on integrin-extracellular matrix interaction and intercellular adhesions (75). Intestinal epithelial cells also express the α3β1, another set of integrins of translational importance. In NEC, increased epithelial expression of α3β1 may impair the migration of epithelial cells needed for mucosal wound healing (74). However, the same α3 integrins are also required for morphologic differentiation of the intestinal epithelium in the developing intestine (76). Despite the physiological needs of
the β₁ integrins, therapeutic targeting of these molecules may still be possible with information on the best timing and the possibility of regionally focused intervention.

(III) Integrins in the developing eye and in retinopathy of prematurity

In the developing eye, disruption of the oxygen supply to the retina can disrupt neuronal dysfunction needed for transduction and transmission of photosensitive visual signals to the occipital lobe and other cognitive centers. Integrin α₂β₁ and vascular endothelial growth factor (VEGF) interact closely in several intracellular angiogenic signaling (Figure 3) (77, 78). Cyclic peptides selectively inhibit α₂β₃ and α₅β₃, and are potent inhibitors of endothelial cell invasion and differentiation induced by VEGF-A or fibroblast growth factor-2 (78). Integrin α₂β₃ works synergistically with VEGF to activate angiogenesis in endothelial cells via VEGFR-2 phosphorylation (79). Endothelial cells are the primary cells expressing both VEGFR2 and α₂β₁ integrin (80). Proteoglycans such as decorin and perlecan in the ECM of the eye can modulate α₂β₁ and play a vital role in angiogenesis (80). The C-terminal fragment of perlecan, known as endorepellin, has an opposite effect and blocks angiogenesis through antagonism of VEGFR2 and α₂β₁ integrin on endothelial cells (80). Retinal pigment epithelial cells express beta-8 integrin at the surface, and the knockdown of beta-8 integrin significantly decreased retinal pigment epithelial cell migration in wound healing assays (81).

The retinal tissue has one of the body’s highest metabolic demands, placing it at risk of injury from oxidative stress, metabolic derangements, and consequent pathologic neovascularization seen in retinopathy of prematurity (ROP) and other proliferative retinal vitreoretinopathies. ROP is a bi-phasic disease of retinal vascular development due to dysregulation of VEGF (82, 83). In phase 1, VEGF is downregulated during exposure to hyperoxia, while in phase 2, VEGF is upregulated in relative/true hypoxia. VEGF is known to have several isoforms; VEGFA165 is the predominant isoform in the eye with multiple pro- and anti-angiogenic splice variants (84). In a newborn mouse model of oxygen-induced retinopathy (OIR), oxidative stress from fluctuating hyperoxia and hypoxia leads to altered vascular development with tortuous arteries, dilated veins, and capillary attrition, akin to human ROP (82, 85). These changes persist in adult mice with long-term abnormalities in vascularization, structure, and function both in vivo and histologically (86, 87).
Integrin targeted therapy holds promise in ROP. Targeting $\alpha_2\beta_1$ integrin expression on endothelial cells mitigates OIR (88), and the administration of 3-[3-(6-guanidino-1-oxoisooindolin-2-yl) propanamido]-3-(pyridin-3-yl) propanoic acid dihydrochloride (GOPPP), a novel non-peptide $\alpha v\beta 3$ antagonist can inhibit retinal neovascularization (89). There are exciting possibilities that endothelial $\alpha_2\beta_1$ may be therapeutic target in pathological angiogenesis.

6. Integrins in thrombosis and fibrosis

Platelet adhesion and signaling play key roles in hemostasis and thrombosis. Two platelet receptors, integrin $\alpha_{I\beta 3}$ and the glycoprotein Ibα (GPIbα), mediate the early and mid-stages of platelet adhesion in the vascular environment (90). GPIbα is a key part of the receptor for von Willebrand factor (VWF), and its binding to VWF enables platelet rolling during the formation of thrombotic plugs at the sites of vascular injury (91-93). $\alpha I\beta 3$ is expressed on both platelets and the endothelium, and upon activation, it promotes platelet adhesion and aggregation by cross-linking with soluble fibrinogen, fibronectin and VWF.

In alloimmune thrombocytopenia, autoantibodies are frequently seen against integrin β_3 and GPIbα (94, 95). Intracranial hemorrhages may be seen more frequently in infants with anti-β_3 integrin antibodies than in those with antibodies against GPIbα (96). Existing in-vitro and in-vivo data suggest that the β_3 integrin may bind a wider range of ligands including fibrinogen and von Willebrand factor, and autoantibodies that block its function may induce a deeper functional deficit than the anti-GPIbα antibodies (97).

7. Integrin-targeted Therapies

Integrin dysregulation is implicated in the pathogenesis of numerous diseases with altered angiogenesis, inflammation or in infectious diseases. In these conditions, therapeutic strategies may either directly target integrins or their ligands. Out of the 24 known human integrins, many have already been identified as therapeutic targets for monoclonal antibodies, peptides, and/or small molecules. In adult subjects, efforts are ongoing to target platelet integrin $\alpha_{I\beta 3}$ to prevent thrombotic complications after percutaneous vascular interventions, lymphocyte $\alpha_4\beta_1$, and $\alpha_4\beta_7$ integrins in the treatment of multiple sclerosis, and β_7 integrins ($\alpha_4\beta_7$ and $\alpha_6\beta_7$ integrins) in inflammatory bowel disease (98). Specifically, a humanized anti-$\alpha 4$ antibody
Natalizumab works to reduction of inflammation in multiple sclerosis by blocking the $\alpha_4\beta_1$-VCAM interaction or the $\alpha_4\beta_7$-mucosal addressin cell adhesion molecule interaction on mucosal endothelium, and blocking leukocyte trafficking across the blood-brain barrier (99). In another study, a micellar delivery vehicle decorated with an anti-angiogenic peptide has been shown to inhibit $\alpha_v\beta_3$ mediated neovascularization in endothelial cells (100). Several anti-cancer drugs have also been developed against integrin ligands or by using integrin-targeted encapsulated nanoparticles as vehicles to unload drugs into the vasculature of several tumors (101).

In a mouse model of hepatic fibrosis, cyclic peptide-guided liposomes preferentially targeted the activated hepatic stellate cells (not quiescent ones) to treat the fibrotic phenotype (102). $\alpha_9\beta_3$ antagonists are being tried for the inhibition of retinal neovascularization and may have therapeutic value in ROP (89). In a mouse model of laser-induced choroidal neovascularization, intravenous injection of irradiated nanoparticles loaded with doxorubicin allowed nanoparticle accumulation in the neovascular lesions and reduced the size of neovascular lesions (103). Integrin antagonists may also be used in fibrotic diseases; IDL-2965 is being studied as a selective, highly potent, anti-fibrotic integrin antagonist in idiopathic pulmonary fibrosis (104). Small molecule pure antagonists, TDI-4161 and TDI-3761, have been designed to inhibit $\alpha_v\beta_3$-mediated cell adhesion to $\alpha_v\beta_3$-ligands (105). Further studies are needed to improve the specificity of anti-integrin drugs to improve both the safety profile and therapeutic success of these agents.

8. Conclusions

Enhanced understanding of integrin ligand interactions will enable development of therapies targeting specific receptors in order to modulate angiogenic, thrombotic, infections, and inflammatory disorders. Although numerous animal studies have shown promise in the clinical use of integrins as therapeutic targets, there is a need for clinical studies to confirm efficacy and safety in neonates and young infants. In this review, we have summarized and outlined the roles of integrins in inflammation, angiogenesis, and infectious conditions. Therapies could be targeted specifically to alpha subunits, but their overlapping roles are a critical factor to be considered. Further studies are needed both on molecular signaling and regulatory mechanisms of integrin function, and the safety and efficacy in clinical settings.
References

1. Morse EM, Brahme NN, Calderwood DA 2014 Integrin cytoplasmic tail interactions. Biochemistry 53:810-820.
2. Cooper J, Giancotti FG 2019 Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell 35:347-367.
3. Takada Y, Ye X, Simon S 2007 The integrins. Genome biology 8:215.
4. Hynes RO 2002 Integrins: bidirectional, allosteric signaling machines. cell 110:673-687.
5. Kurzinger K, Ho MK, Springer TA 1982 Structural homology of a macrophage differentiation antigen and an antigen involved in T-cell-mediated killing. Nature 296:668-670.
6. Bednarczyk M, Stege H, Grabbe S, Bros M 2020 β2 Integrins—Multi-Functional Leukocyte Receptors in Health and Disease. International Journal of Molecular Sciences 21:1402.
7. Lee JO, Bankston LA, Arnaout MA, Liddington RC 1995 Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure 3:1333-1340.
8. McCarty JH, Cook AA, Hynes RO 2005 An interaction between αvβ8 integrin and Band 4.1 B via a highly conserved region of the Band 4.1 C-terminal domain. Proceedings of the National Academy of Sciences 102:13479-13483.
9. Koivisto L, Heino J, Häkkinen L, Larjava H 2014 Integrins in wound healing. Advances in wound care 3:762-783.
10. Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC 2000 Structural basis of collagen recognition by integrin alpha2beta1. Cell 101:47-56.
11. Haglund L, et al. 2011 Identification and characterization of the integrin alpha2beta1 binding motif in chondroadherin mediating cell attachment. J Biol Chem 286:3925-3934.
12. Pierschbacher MD, Ruoslahti E 1984 Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30-33.
13. Oldberg A, Franzen A, Heinegard D 1986 Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci U S A 83:8819-8823.
14. Suzuki S, Oldberg A, Hayman EG, Pierschbacher MD, Ruoslahti E 1985 Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. EMBO J 4:2519-2524.
15. Plow EF, Pierschbacher MD, Ruoslahti E, Marguerie GA, Ginsberg MH 1985 The effect of Arg-Gly-Asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets. Proc Natl Acad Sci U S A 82:8057-8061.
16. Grant DS, et al. 1989 Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58:933-943.
17. Abram CL, Lowell CA 2009 The ins and outs of leukocyte integrin signaling. Annual review of immunology 27:339-362.
18. Nishida N, et al. 2006 Activation of leukocyte β2 integrins by conversion from bent to extended conformations. Immunity 25:583-594.
19. Mould AP, Garratt AN, Puzon-McLaughlin W, Takada Y, Humphries MJ 1998 Regulation of integrin function: evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin alpha5 beta1. Biochem J 331 (Pt 3):821-828.
20. Calderwood DA 2004 Integrin activation. J Cell Sci 117:657-666.
21. Van Agthoven JF, et al. 2014 Structural basis for pure antagonism of integrin alphaVbeta3 by a high-affinity form of fibronectin. Nat Struct Mol Biol 21:383-388.
22. Desgroisellier JS, Chereshe DA 2010 Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer 10:9.
23. Li J, Springer TA 2017 Integrin extension enables ultrasensitive regulation by cytoskeletal force. Proc Natl Acad Sci U S A 114:4685-4690.
24. De Mets R, et al. 2019 Cellular tension encodes local Src-dependent differential beta1 and beta3 integrin mobility. Mol Biol Cell 30:181-190.
25. Bhunia A, Tang XY, Mohanram H, Tan SM, Bhattacharjya S 2009 NMR solution conformations and interactions of integrin alphaLbeta2 cytoplasmic tails. J Biol Chem 284:3873-3884.
26. Kiema T, et al. 2006 The molecular basis of filamin binding to integrins and competition with talin. Mol Cell 21:337-347.
27. Ellis SJ, et al. 2014 The talin head domain reinforces integrin-mediated adhesion by promoting adhesion complex stability and clustering. PloS Genet 10:e1004756.
28. Beglova N, Blacklow SC, Takagi J, Springer TA 2002 Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nature structural biology 9:282-287.
29. Armulik A, Nilsson I, von Heijne G, Johansson S 1999 Determination of the border between the transmembrane and cytoplasmic domains of human integrin subunits. Journal of Biological Chemistry 274:37030-37034.
30. Zwartz GJ, et al. 2004 Real-time analysis of very late antigen-4 affinity modulation by shear. Journal of Biological Chemistry 279:38277-38286.
31. Constantin G, et al. 2000 Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13:759-769.
32. Arnaout MA, Mahalingam B, Xiong J-P 2005 INTEGRIN STRUCTURE, ALLOSTERY, AND BIDIRECTIONAL SIGNALING. Annual Review of Cell and Developmental Biology 21:381-410.
33. Calderwood DA, Campbell ID, Critchley DR 2013 Talins and kindlins: partners in integrin-mediated adhesion. Nature reviews Molecular cell biology 14:503-517.
34. Kim C, Ye F, Ginsberg MH 2011 Regulation of integrin activation. Annual review of cell and developmental biology 27:321-345.
35. Dong X, Hudson NE, Lu C, Springer TA 2014 Structural determinants of integrin beta-subunit specificity for latent TGF-beta. Nat Struct Mol Biol 21:1091-1096.
36. von Andrian UH, et al. 1991 Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proceedings of the National Academy of Sciences 88:7538-7542.
37. Lammermann T, et al. 2008 Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51-55.
38. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A 1998 Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82-86.
39. Szukiewicz D, et al. 2014 Chorioamnionitis (ChA) modifies CX3CL1 (fractalkine) production by human amniotic epithelial cells (HAEC) under normoxic and hypoxic conditions. Journal of Inflammation 11:12.
40. Varga G, et al. 2007 Active MAC-1 (CD11b/CD18) on DCs inhibits full T-cell activation. Blood 109:661-669.
41. Schittenhelm L, Hilkens CM, Morrison VL 2017 β2 integrins as regulators of dendritic cell, monocyte, and macrophage function. Frontiers in immunology 8:1866.
42. Herter J, Zarbock A 2013 Integrin Regulation during Leukocyte Recruitment. The Journal of Immunology 190:4451-4457.
43. Wolf D, et al. 2018 A ligand-specific blockade of the integrin Mac-1 selectively targets pathologic inflammation while maintaining protective host-defense. Nature communications 9:1-11.
44. Giancotti FG, Tarone G 2003 Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annual review of cell and developmental biology 19:173-206.
45. Shimizu Y, Rose DM, Ginsberg MH 1999 Integrins in the immune system. Advances in immunology. Elsevier, pp 325-380.
46. Lasky LA, et al. 1992 An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 69:927-938.
47. Grabovsky V, et al. 2000 Subsecond induction of alpha4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J Exp Med 192:495-506.
48. Chen C, et al. 1999 High affinity very late antigen-4 subsets expressed on T cells are mandatory for spontaneous adhesion strengthening but not for rolling on VCAM-1 in shear flow. J Immunol 162:1084-1095.
49. Salas A, Shimaoka M, Chen S, Carman CV, Springer T 2002 Transition from rolling to firm adhesion is regulated by the conformation of the I domain of the integrin lymphocyte function-associated antigen-1. J Biol Chem 277:50255-50262.
50. Danen EH, Yamada KM 2001 Fibronectin, integrins, and growth control. Journal of cellular physiology 189:1-13.
51. Mižíková I, Morty RE 2015 The extracellular matrix in bronchopulmonary dysplasia: target and source. Frontiers in medicine 2:91.
52. Kahsai TZ, et al. 1997 Seminiferous tubule basement membrane. Composition and organization of type IV collagen chains, and the linkage of alpha3(IV) and alpha5(IV) chains. J Biol Chem 272:17023-17032.
53. Vlahovic G, Russell ML, Mercer RR, Crapo JD 1999 Cellular and connective tissue changes in alveolar septal walls in emphysema. American journal of respiratory and critical care medicine 160:2086-2092.
54. Burgstaller G, et al. 2017 The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. European Respiratory Journal 50:1601805.

55. Roy DC, Hocking DC 2013 Recombinant fibronectin matrix mimetics specify integrin adhesion and extracellular matrix assembly. Tissue Eng Part A 19:558-570.

56. Mereness JA, et al. 2018 Type VI collagen promotes lung epithelial cell spreading and wound-closure. PLoS One 13:e0209095.

57. Plosa EJ, et al. 2020 β1 integrin regulates adult lung alveolar epithelial cell inflammation. JCI insight 5.

58. Plosa EJ, et al. 2014 Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development 141:4751-4762.

59. Jin R, et al. 2020 IL-33-induced neutrophil extracellular traps degrade fibronectin in a murine model of bronchopulmonary dysplasia. Cell Death Discov 6:33.

60. Ringel-Scaia VM, Powell MD, Read KA, Allen IC, Oestreich KJ 2019 Systemic Listeria monocytogenes Infection as a Model to Study T Helper Cell Immune Responses. Mouse Models of Innate Immunity. Springer, pp 149-160.

61. McCall-Culbreath KD, Li Z, Zutter MM 2008 Crosstalk between the α2β1 integrin and c-met/HGF-R regulates innate immunity. Blood 111:3562-3570.

62. Edelson BT, Li Z, Pappan LK, Zutter MM 2004 Mast cell–mediated inflammatory responses require the α2β1 integrin. Blood 103:2214-2220.

63. Holtkotter O, et al. 2002 Integrin alpha 2-deficient mice develop normally, are fertile, but display partially defective platelet interaction with collagen. J Biol Chem 277:10789-10794.

64. Bouvard D, et al. 2001 Functional consequences of integrin gene mutations in mice. Circ Res 89:211-223.

65. Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM 2002 The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol 161:337-344.

66. Barczyk M, Carracedo S, Gullberg D 2010 Integrins. Cell and tissue research 339:269.

67. Bodary S, McLean JW 1990 The integrin beta 1 subunit associates with the vitronectin receptor alpha v subunit to form a novel vitronectin receptor in a human embryonic kidney cell line. Journal of Biological Chemistry 265:5938-5941.

68. Charo IF, Nannizzi L, Smith JW, Cheresh DA 1990 The vitronectin receptor avb3 binds fibronectin and acts in concert with a5b1 in promoting cellular attachment and spreading on fibronectin. J. Cell Biol 111:2795-2800.

69. Grove J, et al. 2014 Flat clathrin lattices: stable features of the plasma membrane. Mol Biol Cell 25:3581-3594.

70. Lampe M, Vassilopoulos S, Merrifield C 2016 Clathrin coated pits, plaques and adhesion. J Struct Biol 196:48-56.

71. Sherman MP 2010 New concepts of microbial translocation in the neonatal intestine: mechanisms and prevention. Clinics in perinatology 37:565-579.

72. Neu J, Pammi M 2017 Pathogenesis of NEC: impact of an altered intestinal microbiome. Seminars in perinatology. Elsevier, pp 29-35.

73. Fundora JB, Guha P, Shores DR, Pammi M, Maheshwari A 2019 Intestinal dysbiosis and necrotizing enterocolitis: assessment for causality using Bradford Hill criteria. Pediatric research: 1-14.

74. Qureshi FG, et al. 2005 Increased expression and function of integrins in enterocytes by endotoxin impairs epithelial restitution. Gastroenterology 128:1012-1022.

75. Su Y, Yang J, Besner GE 2013 HB-EGF promotes intestinal restitution by affecting integrin–extracellular matrix interactions and intercellular adhesions. Growth factors 31:39-55.

76. Zhang X, Cromwell JW, Kunjummen BD, Yee D, Garcia-Aguilar J 2003 The alpha2 and alpha3 integrins are required for morphologic differentiation of an intestinal epithelial cell line. Surgery 133:429-437.

77. Campochiaro PA, Aiello LP, Rosenfeld PJ 2016 Anti–vascular endothelial growth factor agents in the treatment of retinal disease: from bench to bedside. Ophthalmology 123:S78-S88.

78. Nisato RE, Tille J-C, Jonczyk A, Goodman SL, Pepper MS 2003 αvβ3 and αvβ5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 6:105-119.

79. Soldi R, et al. 1999 Role of αvβ3 integrin in the activation of vascular endothelial growth factor receptor-2. The EMBO journal 18:882-892.

80. Douglass S, Goyal A, Iozzo RV 2015 The role of perlecan and endorepellin in the control of tumor angiogenesis and endothelial cell autophagy. Connective Tissue Research 56:381-391.
81. Caceres PS, Hanke-Gogokhia C, Ridano ME, Zobel G, Rodriguez-Boulan E 2020 Cell-Cell and Cell-Extracellular Matrix Communication Pathways Identified in the Polarized Surface Proteome of Retinal Pigment Epithelial Cells. The FASEB Journal 34:1-1.
82. Mezu-Ndubuisi OJ 2016 In Vivo Angiography Quantifies Oxygen-Induced Retinopathy Vascular Recovery. Optom Vis Sci 93:1268-1279.
83. Mezu-Ndubuisi OJ, et al. 2019 Intravitreal Delivery of VEGF-A165-loaded PLGA Microparticles Reduces Retinal Vaso-Obliteration in an In Vivo Mouse Model of Retinopathy of Prematurity. Current eye research 44:275-286.
84. Zhao M, et al. 2011 Expression of pro-and anti-angiogenic isoforms of VEGF in the mouse model of oxygen-induced retinopathy. Experimental Eye Research 93:921-926.
85. Mezu-Ndubuisi OJ, et al. 2013 In vivo retinal vascular oxygen tension imaging and fluorescein angiography in the mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 54:6968-6972.
86. Mezu-Ndubuisi OJ, Adams T, Taylor LK, Nwaba A, Eickhoff J 2019 Simultaneous assessment of aberrant retinal vascularization, thickness, and function in an in vivo mouse oxygen-induced retinopathy model. Eye (Lond) 33:363-373.
87. Mezu-Ndubuisi OJ, et al. 2020 Long-term evaluation of retinal morphology and function in a mouse model of oxygen-induced retinopathy. Mol Vis 26:257-276.
88. Madamanchi A, et al. 2014 Mitigation of oxygen-induced retinopathy in α2β1 integrin-deficient mice. Investigative ophthalmology & visual science 55:4338-4347.
89. Li Y-J, et al. 2014 Therapeutic efficacy of a novel non-peptide αvβ3 integrin antagonist for pathological retinal angiogenesis in mice. Experimental eye research 129:119-126.
90. Monti M, et al. 2017 Integrin-dependent cell adhesion to neutrophil extracellular traps through engagement of fibronectin in neutrophil-like cells. PLoS One 12:e0171362.
91. Ruggeri ZM 1997 Mechanisms initiating platelet thrombus formation. Thrombosis and haemostasis 78:611-616.
92. Savage B, Almus-Jacobs F, Ruggeri ZM 1998 Specific synergy of multiple substrate–receptor interactions in platelet thrombus formation under flow. Cell 94:657-666.
93. Tsuji S, et al. 1999 Real-time analysis of mural thrombus formation in various platelet aggregation disorders: distinct shear-dependent roles of platelet receptors and adhesive proteins under flow. Blood, The Journal of the American Society of Hematology 94:968-975.
94. Brooks PC, Clark RA, Cheresh DA 1994 Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569-571.
95. Di Q, et al. 2013 Impaired cross-activation of β3 integrin and VEGFR-2 on endothelial progenitor cells with aging decreases angiogenesis in response to hypoxia. International journal of cardiology 168:2167-2176.
96. Yougbare I, et al. 2015 Maternal anti-platelet β3 integrins impair angiogenesis and cause intracranial hemorrhage. The Journal of clinical investigation 125:1545-1556.
97. Yang H, et al. 2006 Fibrinogen and von Willebrand factor-independent platelet aggregation in vitro and in vivo. Journal of Thrombosis and Haemostasis 4:2230-2237.
98. Ley K, Rivera-Nieves J, Sandborn WJ, Shattil S 2016 Integrin-based therapeutics: biological basis, clinical use and new drugs. Nature reviews Drug discovery 15:173.
99. O’Connor P 2007 Natalizumab and the role of α4-integrin antagonism in the treatment of multiple sclerosis. Expert opinion on biological therapy 7:123-136.
100. Nagaraj R, et al. 2020 High Density Display of an Anti-Angiogenic Peptide on Micelle Surfaces Enhances Their Inhibition of αvβ3 Integrin-Mediated Neovascularization In Vitro. Nanomaterials 10:581.
101. Majumder P 2018 Integrin-mediated delivery of drugs and nucleic acids for anti-angiogenic cancer therapy: current landscape and remaining challenges. Bioengineering 5:76.
102. Li Y, et al. 2019 An integrin-based nanoparticle that targets activated hepatic stellate cells and alleviates liver fibrosis. Journal of Controlled Release 303:77-90.
103. Wang Y, et al. 2019 Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nature communications 10:1-9.
104. Kossen K, et al. 2019 IDL-2965: A Selective, highly-potent, oral Integrin antagonist for IPF. Eur Respiratory Soc.
105. Li J, et al. 2019 Novel Pure αvβ3 Integrin Antagonists That Do Not Induce Receptor Extension, Prime the Receptor, or Enhance Angiogenesis at Low Concentrations. ACS Pharmacology & Translational Science 2:387-401.
106. Tan S-M 2012 The leucocyte β2 (CD18) integrins: the structure, functional regulation and signalling properties. Bioscience reports 32:241-269.

107. Fagerholm SC, Guenther C, Asens ML, Savinko T, Uotila LM 2019 Beta2-Integrins and interacting proteins in leukocyte trafficking, immune suppression, and immunodeficiency disease. Frontiers in immunology 10.

108. Humphries MJ 2000 Integrin structure. Biochem Soc Trans 28:311-339.

109. Luo B-H, Carman CV, Springer TA 2007 Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25:619-647.

110. Xiong JP, et al. 2002 Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296:151-155.

111. Takagi J, Petre BM, Walz T, Springer TA 2002 Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110:599-511.

112. Ferrara N, Gerber H-P, LeCouter J 2003 The biology of VEGF and its receptors. Nature medicine 9:669-676.

113. Abhinand CS, Raju R, Soumya SJ, Arya PS, Sudhakaran PR 2016 VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. Journal of Cell Communication and Signaling 10:347-354.

114. Yang WJ, et al. 2015 Paxillin regulates vascular endothelial growth factor A-induced in vitro angiogenesis of human umbilical vein endothelial cells. Mol Med Rep 11:1784-1792.

115. Sin CC 2016 Effect of PI3K δ isoform on the expression of integrin beta 3 and p130cas in glioblastoma multiforme.
Integrin heterodimers consists of numerous combinations of α and β subunits. With respect to ligand specificity, integrins are generally classified as collagen-binding integrins (α1β1, α2β1, α10β1, and α11β1), RGD-recognizing integrins (α5β1, αVβ1, αVβ3, αVβ5, αVβ6, αVβ8, and αllbβ3), laminin-binding integrins (α3β1, α6β1, α7β1, and α6β4), and leukocyte integrins (αLβ2, αMβ2, αXβ2, and αDβ2). The β2 integrin subunit (CD18) can pair with one of four α-subunits (αL-CD11a, αM-CD11b, αx-CD11c, and αd-CD11d), forming leukocyte function-associated antigen-1, Mac1/CR3 (macrophage-1 antigen, complement receptor 3), 150.95/CR4 (complement receptor 4), and CD18/CD11d, respectively. CD11a/CD18 is expressed mainly on all leukocytes, while CD11b/CD18, CD11c/CD18, and CD11d/CD18 are expressed on myeloid cells.(106, 107) The α4β2 integrin (also known as CR3, CD11b/CD11c or Mac-1) is found on phagocytic cells, and implicated in the adhesion of leucocytes to endothelium and opsonization of microbes. Ligands for CR3 include the complement component iC3b, the intercellular adhesion molecule (1CAM-1), and coagulation factors like fibrinogen and factor X.

The schematic shows the interaction between the signaling pathways regulated by integrins and the VEGF receptor. VEGF-A promotes angiogenesis through VEGF receptor-2 (VEGFR2), a tyrosine kinase receptor expressed by endothelial cells.(112) When VEGF-A binds to VEGFR2, numerous intracellular signaling pathways are activated, such as phosphatidylinositol 3-kinase (PI3K), extracellular-signal-regulated kinase (Erk), focal adhesion kinase (FAK), c-Src family, and paxillin, a signal transduction adaptor protein associated with focal adhesion.(113, 114) Specifically, FAK phosphorylates its substrate, paxillin, which activates ERK signaling.(114) When integrins activate the tyrosine phosphorylation of FAK, it binds to signaling structural proteins, PI3K, and paxillin.(115) Src family kinases (SFKs) play a critical role in cell adhesion, survival, and angiogenesis, interact with VEGF receptor, regulate gene expression of angiogenic growth factors, modulate cell proliferation via the mitogen-activated protein kinases (MAPK)-ERK pathway, and interact with integrins to regulate cell adhesion and migration.

Note: ECM – extracellular matrix, VEGF – vascular endothelial growth factor
Integrin	Tissue target	Effect of Signal Modulation	Mouse model
α3β1	Endothelial cells	Inhibition of angiogenesis	Endothelial cells α3 -/- knockout mice
α2β1	Retinal Muller cells	Reduced neovascularization	α2β1-integrin deficient mice (88)
α2β1	Mast cells	Cytokine release following Listeria infection.	α2β1-knockout mouse model of Listeria Infection (62)
αvβ6	Epithelial cells of lung	Activates transforming growth factor beta (TGF-β) to regulate pulmonary fibrosis and inflammation	Genetic knockdown (116)
αv	Intestinal Th17 cells, Colon	Decreased regulatory T (Treg) cells in the colon, leading to severe colitis, autoimmunity, and cancer.	αv-deficient mice (117)
β1	Fibroblasts	Delayed cutaneous wound closure and reduced formation of granulation tissue and reduced ECM production	β1-deficient fibroblast-specific knockout mice (118)
β3	Fibroblasts, epithelial cells	Accelerated re-epithelialization, enhanced TGFβ signaling, dermal fibroblast infiltration	β3-deficient mice (Genetic knockdown) (119)

Table 1. Integrin-targeted Murine Models and the Effect of their Signal Modulation
The diagram illustrates the classification of cell adhesion receptors into three categories: Collagen Receptors, Leucocyte Specific Receptors, and RGD Receptors.

- **Collagen Receptors**: β1 (αVβ1), α10, α11, α9, α7, α6, α3, α8, α5, β3, β5, β8, β6, β4.
- **Leucocyte Specific Receptors**: αL-CD11a, αM-CD11b, αX-CD11c, αD-CD11d, αE.
- **RGD Receptors**: αIIbβ3.
Ligand Binding

Outside-in Signaling

Inside-out Signaling

Inactive, low affinity state Active, high affinity state