Extrinsic Calcitonin Gene-Related Peptide Inhibits Hyperoxia-Induced Alveolar Epithelial Type II Cells Apoptosis, Oxidative Stress, and Reactive Oxygen Species (ROS) Production by Enhancing Notch 1 and Homocysteine-Induced Endoplasmic Reticulum Protein (HERP) Expression

Yu-xin Bai, Fang Fang, Jia-ling Jiang, Feng Xu

Background: Lung alveolar epithelial type II cells (AEC II) are the most important stem cells in lung tissues, which are critical for wound repair of bronchopulmonary dysplasia (BPD). This study investigated the effects of calcitonin gene-related peptide (CGRP) on AEC II cells exposed to hyperoxia.

Material/Methods: Neonatal rat AEC II cells were isolated and identified by detecting surfactant protein C (SP-C). Three small interfering RNAs targeting Notch 1 were synthesized and transfected into AEC II. A hyperoxia-exposed AEC II cell injury model was established and was divided into 8 groups. MDA levels and SOD activity were examined using lipid peroxidation assay kits. Apoptosis and reactive oxygen species (ROS) production were evaluated using flow cytometry. Notch 1 mRNA expression was examined using RT-PCR. Homocysteine-induced endoplasmic reticulum protein (HERP) was examined using Western blot analysis.

Results: CGRP treatment significantly enhanced MDA levels and decreased SOD activity compared to hyperoxia-treated AEC II cells (P<0.05). CGRP treatment significantly inhibited hyperoxia-induced AEC II cell apoptosis, and significantly suppressed hyperoxia-induced ROS production compared to hyperoxia-treated AEC II cells (P<0.05) either undergoing γ-secretase inhibitor or Notch RNA interference. CGRP significantly triggered Notch 1 mRNA expression and significantly enhanced HERP expression compared to hyperoxia-treated AEC II cells (P<0.05) either undergoing γ-secretase inhibitor or Notch RNA interference.

Conclusions: In AEC II cells, extrinsic peptide CGRP suppressed hyperoxia-induced apoptosis, oxidative stress, and ROS production, which may be triggered by Notch 1 and HERP signaling pathway.

MeSH Keywords: Adenocarcinoma, Bronchiolo-Alveolar • Apoptosis • Calcitonin Gene-Related Peptide • Oxidative Stress

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/904549
Background
Bronchopulmonary dysplasia (BPD) is the most serious complication in pre-mature infants born at less than 29 months (the gestational age) [1,2]. Especially for the infants whose weight less than 1500 g, the BPD incidence can be as high as 40%, and causes serious respiratory distress symptoms [3]. Studies have revealed some of the risk factors that induce BPD in pre-mature infants or neonates, such as hyperoxia, antenatal infection, and ventilator-associated pulmonary injury, and all factors are considered to play roles in a synergic manner or cumulative manner, and cause slightly inflammatory response and lung injury, finally leading to fibrosis processes [4,5]. Among all of these risk factors, hyperoxia is the most prevalent factor causing BPD in pre-mature infants [6]; however, the specific mechanism has not been fully defined.

Wang et al. [7] reported that when undergoing the stimuli of numerous oxygen free radicals, the cell membrane integrity was damaged by hyperoxia-associated inflammatory cytokines and oxidative stress-associated products, both of which finally cause cell dysfunction and energy metabolism-related diseases. The lung alveolar epithelial type II cells (AEC II) are the most important stem cells in lung tissues, and are critical for wound repair processes, tissue growth, and development processes [8]. Franco-Montoya et al. [9] reported that alveolar epithelial injury plays a critical role in lung injury processes in AEC II subjected to high-oxygen stimuli. Modi [10] found that when undergoing high-oxygen atmosphere stimuli, pulmonary edema is the first pathological characteristic to appear in lung tissues. Previous studies [11,12] also proved that AEC II cells play a critical role in regulating fluid homeostasis of lung tissues, which may be important for remodeling or reconstruction of lung tissues. Therefore, maintaining homeostasis of AEC II cells is critical for development of lung tissues.

Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuro-peptide; it acts as an important biomarker for controlling pulmonary edema is the first pathological characteristic to appear in lung tissues. Previous studies [11,12] also proved that AEC II cells play a critical role in regulating fluid homeostasis of lung tissues, which may be important for remodeling or reconstruction of lung tissues. Therefore, maintaining homeostasis of AEC II cells is critical for development of lung tissues.

CGRP suppresses hyperoxia-induced AEC II apoptosis
Bai Y. et al. (2017) [17] reported that when undergoing the stimuli of numerous oxygen free radicals, the cell membrane integrity was damaged by hyperoxia-associated inflammatory cytokines and oxidative stress-associated products, both of which finally cause cell dysfunction and energy metabolism-related diseases. The lung alveolar epithelial type II cells (AEC II) are the most important stem cells in lung tissues, and are critical for wound repair processes, tissue growth, and development processes [8]. Franco-Montoya et al. [9] reported that alveolar epithelial injury plays a critical role in lung injury processes in AEC II subjected to high-oxygen stimuli. Modi [10] found that when undergoing high-oxygen atmosphere stimuli, pulmonary edema is the first pathological characteristic to appear in lung tissues. Previous studies [11,12] also proved that AEC II cells play a critical role in regulating fluid homeostasis of lung tissues, which may be important for remodeling or reconstruction of lung tissues. Therefore, maintaining homeostasis of AEC II cells is critical for development of lung tissues.

Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuro-peptide; it acts as an important biomarker for controlling pulmonary edema is the first pathological characteristic to appear in lung tissues. Previous studies [11,12] also proved that AEC II cells play a critical role in regulating fluid homeostasis of lung tissues, which may be important for remodeling or reconstruction of lung tissues. Therefore, maintaining homeostasis of AEC II cells is critical for development of lung tissues.

CGRP suppresses hyperoxia-induced AEC II apoptosis
Bai Y. et al. (2017) [17] reported that when undergoing the stimuli of numerous oxygen free radicals, the cell membrane integrity was damaged by hyperoxia-associated inflammatory cytokines and oxidative stress-associated products, both of which finally cause cell dysfunction and energy metabolism-related diseases. The lung alveolar epithelial type II cells (AEC II) are the most important stem cells in lung tissues, and are critical for wound repair processes, tissue growth, and development processes [8]. Franco-Montoya et al. [9] reported that alveolar epithelial injury plays a critical role in lung injury processes in AEC II subjected to high-oxygen stimuli. Modi [10] found that when undergoing high-oxygen atmosphere stimuli, pulmonary edema is the first pathological characteristic to appear in lung tissues. Previous studies [11,12] also proved that AEC II cells play a critical role in regulating fluid homeostasis of lung tissues, which may be important for remodeling or reconstruction of lung tissues. Therefore, maintaining homeostasis of AEC II cells is critical for development of lung tissues.

Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuro-peptide; it acts as an important biomarker for controlling pulmonary edema is the first pathological characteristic to appear in lung tissues. Previous studies [11,12] also proved that AEC II cells play a critical role in regulating fluid homeostasis of lung tissues, which may be important for remodeling or reconstruction of lung tissues. Therefore, maintaining homeostasis of AEC II cells is critical for development of lung tissues.

CGRP suppresses hyperoxia-induced AEC II apoptosis
Bai Y. et al. (2017) [17] reported that when undergoing the stimuli of numerous oxygen free radicals, the cell membrane integrity was damaged by hyperoxia-associated inflammatory cytokines and oxidative stress-associated products, both of which finally cause cell dysfunction and energy metabolism-related diseases. The lung alveolar epithelial type II cells (AEC II) are the most important stem cells in lung tissues, and are critical for wound repair processes, tissue growth, and development processes [8]. Franco-Montoya et al. [9] reported that alveolar epithelial injury plays a critical role in lung injury processes in AEC II subjected to high-oxygen stimuli. Modi [10] found that when undergoing high-oxygen atmosphere stimuli, pulmonary edema is the first pathological characteristic to appear in lung tissues. Previous studies [11,12] also proved that AEC II cells play a critical role in regulating fluid homeostasis of lung tissues, which may be important for remodeling or reconstruction of lung tissues. Therefore, maintaining homeostasis of AEC II cells is critical for development of lung tissues.

Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuro-peptide; it acts as an important biomarker for controlling pulmonary edema is the first pathological characteristic to appear in lung tissues. Previous studies [11,12] also proved that AEC II cells play a critical role in regulating fluid homeostasis of lung tissues, which may be important for remodeling or reconstruction of lung tissues. Therefore, maintaining homeostasis of AEC II cells is critical for development of lung tissues.

Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuro-peptide; it acts as an important biomarker for controlling pulmonary edema is the first pathological characteristic to appear in lung tissues. Previous studies [11,12] also proved that AEC II cells play a critical role in regulating fluid homeostasis of lung tissues, which may be important for remodeling or reconstruction of lung tissues. Therefore, maintaining homeostasis of AEC II cells is critical for development of lung tissues.

Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuro-peptide; it acts as an important biomarker for controlling pulmonary edema is the first pathological characteristic to appear in lung tissues. Previous studies [11,12] also proved that AEC II cells play a critical role in regulating fluid homeostasis of lung tissues, which may be important for remodeling or reconstruction of lung tissues. Therefore, maintaining homeostasis of AEC II cells is critical for development of lung tissues.

Material and Methods
Neonatal rat AEC II isolation and identification
Rat AEC II cells were isolated from healthy SD rats, and were purified and cultured according to previously studies [17–19]. The AEC II cells achieved purity of 90% to 95% after 1 day of culture. The isolated AEC II cells were identified by 2 methods: surfactant protein C (SP-C) examination (immuno-histochemistry assay) and inverted microscopy observation.

This study was approved by the Ethics Committee of the Children’s Hospital of Chongqing Medical University, Chongqing, China. The isolation processes and use of rat AEC II cells in the present study were conducted in accordance with the approved guidelines.

Synthesis of small interfering RNAs and transfection into AEC II cells
Notch 1 is a gene that encodes the single-pass trans-membrane receptor and plays an important role in epithelial growth. Therefore, we designed and synthesized 3 small interfering RNAs targeting Notch 1 gene (Western Bio. Ltd. Chongqing, China), including Notch 1-rat-6922: GGATCCGCGGATCGAGCCACTTGAATGTGTTCAAGGAAATTTCAAGGCTT, Notch 1-rat-5633: GGATCCGCGGATCGAGCCACTTGAATGTGTTCAAGGAAATTTCAAGGCTT, and Notch 1-rat-6993: GGATCCGCGGATCGAGCCACTTGAATGTGTTCAAGGAAATTTCAAGGCTT.

The transfection processes of small interfering RNAs into the AEC II cells were performed using Lipofectamine 2000™ regents (Invitrogen/Life Technologies, Carlsbad, CA, USA) according to previously published methods [20]. We found that the small interfering RNA, Notch 1-rat-6922, had optimal efficacy for transfection, and was therefore used in the following experiments.

RNA extraction, cDNA synthesis, and PCR assay for Notch 1 expression
Total cellular RNA was extracted by using the RNAsimple Total RNA kit (Tiangen, Beijing, Chian). Then, the SuperScript II first-strand cDNA synthesis kit (Catalog No. 6210A/B, Invitrogen, USA) was used to synthesize the cDNA according to the instructions of the manufacturer. Finally, the synthesized cDNA was amplified using the PCR assay under the following conditions: 94°C for 30 s, 55°C for 30 s, and 72°C for 50 s. The primers for the Notch 1 mRNA were: Forward, 5’-GCCTTTGAGATGAACTACCGT-3’, reverse: GAGGTCTAGCTTCTGCTA-3’. Then, the amplified products were loaded onto 1.5% agarose gels, and images were digitally captured with a camera and analyzed by using image analysis software.

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Hydroxy-exposed AEC II injury model establishment and trial grouping

The isolated AEC II cells were randomly divided into 8 groups: the Air group (21% O₂, 5% CO₂), the Hyperoxia group (85% O₂, 5%CO₂ and 10% N₂), the Hyperoxia + CGRP group (0.01 μmol/L CGRP, purchased from Anaspec Inc. Fremont, CA, USA); the Hyperoxia + CGRP + CGRP antagonist group (0.01 μmol/L CGRP + 0.01 μmol/L CGRP8-37, purchased from Anaspec Inc. Fremont, CA, USA); the Hyperoxia + γ secretase inhibitor group (0.01 μmol/L γ secretase inhibitor); the Hyperoxia + γ secretase inhibitor + CGRP group (0.01 μmol/L γ secretase inhibitor + 0.01 μmol/L CGRP); the Notch RNA interfere group (Notch 1-rat-6922 transfection); and the Notch RNA interfere + CGRP group (Notch 1-rat-6922 transfection + 0.01 μmol/L CGRP). All of these 8 groups were cultured in 5% CO₂ for 24 h.

Malonaldehyde (MDA) and superoxide dismutase (SOD) examination

The MDA and SOD were detected using a commercial lipid peroxidation MDA assay kit and SOD assay kit (Tiangen Biotech, Beijing, China), respectively. Briefly, 10% TCA was used to precipitate the protein in the AEC II cells, then the cells were centrifuged at 1600×g for 5 min at 4°C. Finally, the liquid supernatants were isolated and examined using these MDA or SOD assay kits. The MDA and SOD levels were evaluated using a multi-model micro-plate reader at a wavelength of 532 nm.

Apoptosis detection by flow cytometry assay

The apoptotic status of AEC II cells was detected using the Dead Cell Apoptosis Detection kit (Catalog No. V13241, Invitrogen/Life Technologies, Carlsbad, CA, USA) following the instructions of the manufacturer. In this study, apoptosis was examined using the Annexin V/7-AAD double-staining method. AEC II cells were harvested using 0.25% trypsin and rinsed 2 times with PBS, then suspended in 500 μl of binding buffer. The suspended AEC II cells were treated with Annexin V-FITC (5 μl) at 4°C for 10 min. Then, the AEC II cells were treated with 7-ADD solution (10 μl) at 4°C for 5 min. Finally, AEC II cell apoptosis was analyzed using an FACS flow cytometer (BD Biosciences Inc. Brea, IN, USA). Early apoptosis was regarded as the cell percentage in the P3-Q2 quadrant, and late apoptosis was regarded as the cell percentage in the P3-Q2 quadrant.

Reactive oxygen species (ROS) formation in AEC II cells

In this study, the cellular ROS were examined in the AEC II cells that underwent hypoxia stimulation. Briefly, AEC II cells were washed 2 times with HBSS/Ca/Mg buffer and treated with carboxy-H2DCFDA solution for 30 min at 37°C. Then, the AEC II cells were washed 3 times with HBSS/Ca/Mg buffer at 37°C.

Real-time PCR

Total cellular RAN was extracted using the RNAeasy Total RNA kit (Byotime, Beijing, Chian). Then, the SuperScipt first-strand synthesis kit (Western Biotech. Inc. Chongqing, China) was used to synthesize cDNA according to the manufacturer’s instructions. Finally, the synthesized cDNA was amplified using the PCR assay under the following conditions: 94°C for 4 min, followed by 35 cycles of 94°C for 20 s, 60°C for 30 s, 72°C for 30 s, and terminated with 72°C for 10 min. The primers for Notch 1 and β-actin (synthesized by Western Biotech. Inc., Chongqing, China) are listed in Table 1. Amplified products were loaded onto 1.5% agarose gels, and images were digitally captured with the camera and analyzed using image analysis software.

Western blot assay

AEC II cells were lysed by using lysis buffer. The lysis products were separated by 15% SDS-PAGE and electro-transferred onto the PVDF membranes (Amersham Biosciences, Piscataway, NJ, USA). Then, the membranes were blocked with 5% defatted milk in PBS supplemented with 0.05% Tween-20 at 4°C overnight. Membranes were incubated with rabbit anti-rabbit homocysteine-induced endoplasmic reticulum protein (HERP) polyclonal antibody (Catalog No: ab150424, Abcam Biotech., Cambridge, MA, USA) and rabbit anti-rabbit GAPDH polyclonal antibody (Catalog No. ab181602) for 2 h at room temperature. Then, membranes were incubated with horse-radish peroxidase (HRP)-conjugated goat anti-rabbit (Catalog No. A2875; Sigma-Aldrich, St. Louis, MO, USA) at 37°C for 1 h. The Western blot bands were visualized using the ECL kit (PE Biosystems, Foster, CA, USA).

Statistical analysis

Data were analyzed using SPSS 18.0 software (SPSS Inc., Chicago, IL, USA) and are shown as mean ± standard deviation.
Comparisons between 2 groups were analyzed using the t test. P<0.05 was considered as statistically significant.

Results

Isolation and identification for AEC II cells

AEC II cells were isolated from healthy SD rats. To confirm that the isolated cells were the AEC II cells, the specific biomarker molecule, SP-C protein, was detected by using the immuno-histochemistry assay. The results indicated that the cells were stained positively for SP-C protein, but the SP-C protein was negatively expressed in the Control group (Figure 1). Therefore, according to the identification results, we confirmed that the isolated cells were AEC II cells and they were used in the following experiments.

CGRP treatment enhanced MDA levels and decreased SOD activity of AEC II cells

To investigate the anti-oxidative effects of CGRP on hyperoxia-induced AEC II cells injury, MDA levels and the SOD activity were examined. The results indicated that hyperoxia treatment significantly decreased the MDA levels (Figure 2A, P=0.024) and increased SOD activity (Figure 2B, P=0.015) compared to the normal Air group. However, the treatment of CGRP significantly increased the MDA levels (Figure 2A, P=0.031) and decreased SOD activity (Figure 2B, P=0.019) compared to the Hyperoxia group. When inhibiting CGRP expression by using the specific inhibitor, CGRP-8-37, the effects of CGRP on MDA and SOD were completely suppressed (Figure 2).

The MDA level was significantly decreased (Figure 2A, P=0.035) and SOD activity was significantly increased (Figure 2B, P=0.028) in the Hyperoxia + γ secretase inhibitor group compared to the Air group. However, the treatment of CGRP significantly increased MDA levels (Figure 2A, P=0.044) and decreased SOD activity.

Figure 1. Identification of SP-C expression in AEC II cells using immuno-histochemistry assay. The brown-stained AEC II cells are the SP-C positively expressed cells.
activity (Figure 2B, P=0.034) compared to the Hyperoxia + γ secretase inhibitor group.

Moreover, the interference of Notch 1 siRNA significantly decreased MDA levels (Figure 2A, P=0.027) and significantly increased SOD activity (Figure 2B, P=0.023) compared to the Air group. However, CGRP treatment significantly rescued the MDA levels (Figure 2A, P=0.048) and SOD activity (Figure 2B, P=0.031) compared to the Notch 1 RNA interference group.

CGRP treatment inhibits hyperoxia-induced AEC II cell apoptosis

The results indicated that hyperoxia significantly induced AEC II cell apoptosis compare to the Air group (Figure 3, P=0.012). Interestingly, CGRP treatment significantly antagonized the hyperoxia-, γ secretase inhibitor-, and Notch RNA interference-caused AEC II cells apoptosis (Figure 3, P=0.023, 0.041, and 0.022, respectively).

CGRP treatment suppresses hyperoxia-induced ROS production in AEC II cells

The results indicated that hyperoxia significantly induced ROS production in AEC II cells compared to the Air group (Figure 4, P=0.024). Moreover, the CGRP treatment significantly antagonized the hyperoxia-, γ secretase inhibitor-, and Notch RNA interference-induced ROS production in AEC II cells (Figure 4, P=0.027, 0.042, and 0.036, respectively).

CGRP triggers Notch 1 mRNA expression

A previous study [21] discovered that Notch 1 prevents apoptosis via different networks, involving cell survival, cell cycle, and interactions with mitochondria. Therefore, the present study examined Notch 1 mRNA levels in AEC II cells, and evaluated effects of CGRP on AEC II cell growth. The results indicated that hyperoxia treatment significantly deceased Notch 1 mRNA levels compared to the Air group (Figure 5, P=0.017). However, CGRP treatment significantly increased Notch 1 mRNA levels in cells subjected to hyperoxia, γ secretase inhibitor, and Notch RNA interference (Figure 5, P=0.029, 0.031, and 0.041, respectively).

CGRP enhances HERP expression

HERP is a novel 54 kDa protein that localizes in the endoplasmic reticulum membrane, which also acts as a stress-response protein and participates in endoplasmic reticulum-associated degradation (ERAD) [22]. Therefore, we thought that HERP levels may reflect the anti-hyperoxia ability. HERP levels were evaluated in AEC II cells. The results indicated that hyperoxia stimuli significantly suppressed HERP expression compared to the Normal Air treatment group (Figure 6, P=0.022). Importantly, CGRP treatment significantly increased HERP expression in AEC II cells that experienced hyperoxia, γ secretase inhibitor, and Notch RNA interference (Figure 6, P=0.045, 0.039, and 0.042, respectively).

Discussion

The previous clinical study proved that hyperoxia inhalation causes BPD [23], which mainly results from AEC II cell

Figure 2. Evaluation of MDA levels and SOD activity. (A) MDA levels in every group. (B) SOD activity in every group. P values represent differences between the 2 illustrated groups.
proliferation induced by hyperoxia [24,25]. CGRP is a cell regulatory factor and extracellular signal molecule, which is also closely associated with embryonic development and cell proliferation [26]. Therefore, in this study, we investigated the effects of heterologously expressed CGRP on AEC II cells apoptosis and anti-oxidative activity, as well as Notch 1 and HERP expression.

Bronchopulmonary dysplasia is mainly characterized by lung epithelial cell injury [27]. Previous studies [28–30] showed that extensive destruction of alveolar epithelium is mainly explained by apoptosis (due to the oxidative stress, endoplasmic reticulum stress, and inhibition of the cell proliferation). The apoptosis of epithelial cells, especially for AEC II cells, are considered a pivotal contributor to pathogenesis of many lung diseases, such as BPD, acute lung injury, and sepsis-induced lung injury [31,32]. Therefore, we performed experiments on apoptosis, such as AEC II cell apoptosis rate, oxidative stress, and examination of apoptosis-associated protein expression. These results indicated that AEC II cells treated with hyperoxia had enhanced cell apoptosis, decreased MDA levels, and increased SOD activity. Therefore, we speculated that apoptosis of hyperoxia-treated cells is caused by increased oxidative stimuli in AEC II cells, which is consistent with a previous study [33]. However, interestingly, CGRP treatment inhibited hyperoxia-caused AEC II cells apoptosis and hyperoxia-triggered oxidative stress, including changes in MDA, SOD, and ROS. A previous study [34] also showed that CGRP protects against

Figure 3. AEC II cells apoptosis examined using flow cytometry assay. (A) Graphs of flow cytometry evaluative findings. (B) Statistical analysis of flow cytometry results. Early apoptosis was assigned as the P3-Q3 quadrant and late apoptosis was assigned as the P3-Q2 quadrant. P values represent differences between the 2 illustrated groups.
hyperoxia-caused cell apoptosis mediated by the protein kinase C alpha pathway. Dang et al. [35] found that CGRP ameliorated hyperoxia-induced oxidative stress and inflammatory responses. Li et al. [36] also reported that CGRP attenuated IL-1 beta-aroused ROS formation in AEC II cells. The above findings suggest that CGRP suppresses hyperoxia-caused lung

Figure 4. Reactive oxygen species (ROS) production in AEC II cells. (A) Graphs of ROS production evaluated by flow cytometry assay. (B) Statistical analysis for flow cytometry results. P values represent differences between the 2 illustrated groups.

Figure 5. Notch 1 mRNA expression examined using the RT-PCR assay. P values represent differences between the 2 illustrated groups.
A previous study [39] showed that hyperoxia-induced apoptosis was caused by the endoplasmic reticulum. Therefore, we examined endoplasmic reticulum stress-associated HERP in this study. The results illustrated that CGRP up-regulated levels of HERP, which was inhibited by hyperoxia, γ secretase inhibitor, and Notch RNA interference treatment in AEC II cells. These results suggest that CGRP also suppresses the endoplasmic reticulum stress-mediated AEC II cell apoptosis.

Conclusions

We found that in AEC II cells, the extrinsic peptide CGRP suppressed hyperoxia-induced AEC II cells apoptosis, oxidative stress, and ROS production, which may be triggered by Notch 1 and HERP.

References:

1. Jobe AH, Bancalari E: Bronchopulmonary dysplasia. Am J Respir Crit Care Med, 2001; 163: 1723–29
2. Li W, Chen Y, Zhang J et al: IKKβ upregulation is positively associated with squamous cell carcinoma of the lung in vivo and malignant transformation of human bronchial epithelial cells in vitro. Med Sci Monit, 2012; 21: 1577–86
3. Bancalari E, Claire N, Sosenko IR: Bronchopulmonary dysplasia: Changes in pathogenesis epidemiology and definition. Semin Neonatol, 2003; 8: 63–71
4. Reiny B, Martin RJ, Prakash YS et al: Mechanisms of injury to the preterm lung and airway: Implications for long-term pulmonary outcome. Neonatology, 2012; 101: 345–52
5. Coalson JJ: Pathology of bronchopulmonary dysplasia. Semin Perinatol, 2006; 30: 179–84
6. Balary J, Bhandari V: Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia. Front Med (Lausanne), 2015; 2: 90
7. Wang L, Maher TJ, Wurtman RJ: Oral L-glutamine increases GABA levels in striatal tissue and extracellular fluid. FASEB J, 2007; 21: 1227–32
8. Zhang QY, Fu JH, Xue XD: Expression and function of aquaporin-1 in hyperoxia-exposed alveolar epithelial type II cells. Exp Ther Med, 2014; 8: 493–98
9. Franco-Montoya ML, Bourbon JR, Durrmeyer X et al: Pulmonary effects of keratinoctye growth factor in newborn rats exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol, 2009; 297: L965–76
10. Modi N: Clinical implications of postnatal alterations in body water distribution. Semin Neonatol, 2013; 8: 101–6
11. Verkman AS: Role of aquaporins in lung lipid physiology. Respir Physiol Neurobiol, 2007; 159: 324–30
12. Lecuona E, Trejo HE, Sznajder JI: Regulation of Na, K-ATPase during acute lung injury. J Bioenerg Biomembr, 2007; 39: 324–30
13. Benemel S, Nicoletti P, Capone JG: CGRP receptors in the control of pain and inflammation. Curr Opin Pharmacol, 2009; 9: 9–14
14. Qiao LY, Grider JR: Up-regulation of calcitonin gene-related peptide and receptor tyrosine kinase TrkB in rat bladder afferent neurons following TNBS colitis. Exp Neurol, 2007; 204: 667–79
15. Li W, Hou L, Hua Z et al: Interleukin-1β induces beta-calcitonin gene-related peptide secretion in human type II alveolar epithelial cells. FASEB J, 2004; 18: 1603–5
16. Cadieux A, Springall DR, Muldery PK et al: Occurrence, distribution and ontogeny of CGRP immunoreactivity in the rat lower respiratory tract. Effect of capsaicin treatment and surgical denervations. Neuroscience, 1986; 19: 605–27
17. Jin L, Yang H, Fu J et al: Association between oxidative DNA damage and the expression of 8-oxoguanine DNA glycosylase 1 in lung epithelial cells of neonatal rats exposed to hyperoxia. Mol Med Rep, 2015; 11: 4079–86
18. Zhang QY, Fu JH, Xue XD: [Primary cell culture and identification of alveolar epithelial cells isolated from neonatal rats.] Zhongguo Xingshengerke Zazhi, 2010; 25: 339–41 [in Chinese]
19. Ji W, Fu J, Xie H et al: Expression and activity of epithelial sodium channel in hyperoxia-induced bronchopulmonary dysplasia in neonatal rats. Pediatr Int, 2012; 54: 735–42
20. Liu F, Qiao FF, Tong ML et al: Further evaluation of a novel nano-scale gene vector for in vivo transfection of siRNA. J Cell Biochem, 2011; 112: 1329–36
21. De Falco F, Sabatini R, Del Papa B et al: Notch signaling sustains the expression of McI-1 and the activity of eIF4E to promote cell survival in CLL. Oncotarget, 2015; 6: 16559–72
22. Kokame K, Agarwala KL, Kato H et al: Herp, a new ubiquitin-like membrane protein induced by endoplasmic reticulum stress. J Biol Chem, 2000; 275: 32846–53
23. Saugstad OD: Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol, 2003; 8: 39–49
24. Hou A, Fu J, Yang H et al: Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats. Am J Physiol Lung Cell Mol Physiol, 2015; 308: L861–72
25. Helt CE, Staversky RJ, Lee YJ et al: The Cdk and PCNA domain on p21 Cip1 both function to inhibit G1/S progression during hyperoxia. Am J Physiol Lung Cell Mol Physiol, 2004; 286: LS06–13
26. Azuma Y, Miwa Y, Shao I: Expression of CGRP in embryonic mouse muscles. Ann Anat, 2016; 206: 34–47
27. Xie A, Zhang W, Chen M et al: Related factors and adverse neonatal outcomes in women with preterm premature rupture of membrane complicated by histologic chorioamnionitis. Med Sci Monit, 2015; 21: 390–95
28. Kitamura Y, Hashimoto S, Mizuta N et al: Fas/FasL-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am J Respir Crit Care Med, 2001; 163: 762–69
29. Liu G, Zhang J, Chen H et al: Effects and mechanisms of alveolar type II epithelial cell apoptosis in severe pancreatitis-induced acute lung injury. Exp Ther Med, 2014; 7: 565–72
30. Wiener-Kronish JP, Albertine KH, Matthay MA: Differential response to the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin. J Clin Invest, 1991; 88: 864–75
31. Kutsukake M, Matsutani T, Tamura K et al: Pioglitazone attenuates lung injury by modulating adipose inflammation. J Surg Res, 2014; 189: 295–303
32. Imazu Y, Yanagi S, Ashitani J et al: Ghrelin ameliorates bleomycin-induced acute lung injury by protecting alveolar epithelial cells and suppressing lung inflammation. Eur J Pharmacol, 2011; 672: 153–58
33. Cao H, Feng Y, Ning Y et al: Edaravone protects rats and human pulmonary alveolar epithelial cells against hyperoxia injury: Heme oxygenase-1 and PI3K/Akt pathway may be involved. Exp Lung Res, 2015; 41: 404–14
34. Fu HM, Li L, Wang Y et al: [The proliferation-promoting effects of calcitonin gene-related peptide on type II alveolar epithelial cell exposed to hyperoxia mediated by protein kinase C alpha pathway.] Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2010; 22: 263–66 [in Chinese]
35. Dang H, Yang L, Wang S et al: Calcitonin gene-related peptide ameliorates hyperoxia-induced lung injury in neonatal rats. Tohoku J Exp Med, 2012; 227: 129–38
36. Li WJ, Wang TK: Calcitonin gene-related peptide inhibits interleukin-1 induced interleukin-8 secretion in human type II alveolar epithelial cells. Acta Pharmacol Sin, 2006; 27: 1340–45
37. Huang J, Chen Y, Li J et al: Notch-1 confers chemoresistance in lung adenocarcinoma to Taxanes through AP-1/microRNA-451 mediated regulation of MDR-1. Mol Ther Nucleic Acids, 2016; 5: e375
38. Wang H, Chang L, Li W: Temporal expression of Notch in preterm rat lungs exposed to hyperoxia. J Huazhong Univ Sci Technolog Med Sci, 2005; 25: 159–61
39. Choo-Wing R, Syed MA, Harijith A et al: Hyperoxia and interferon-gamma induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress-dependent pathway. Am J Respir Cell Mol Biol, 2013; 48: 749–57