Q-spectral and L-spectral radius of subgroup graphs of dihedral group

Abdussakir¹, D A Akhadiyah², A Layali² and A T Putra²

¹Department of Mathematics Education, Graduate Program, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana 50, Malang 65144, Indonesia
²Department of Mathematics, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana 50, Malang 65144, Indonesia

sakir@mat.uin-malang.ac.id

Abstract. Research on Q-spectral and L-spectral radius of graph has been attracted many attentions. In other hand, several graphs associated with group have been introduced. Based on the absence of research on Q-spectral and L-spectral radius of subgroup graph of dihedral group, we do this research. We compute Q-spectral and L-spectral radius of subgroup graph of dihedral group and their complement, for several normal subgroups. Q-spectrum and L-spectrum of these graphs are also observed and we conclude that all graphs we discussed in this paper are Q-integral dan L-integral.

1. Introduction

For finite simple graph G of order p, its signless Laplacian matrix is defined by $Q(G) = \Delta(G) + A(G)$ and its Laplacian matrix is defined by $L(G) = \Delta(G) - A(G)$, where $\Delta(G)$ is the vertex degree of G and $A(G)$ is adjacency matrix of G. The Q-polynomial of $Q(G)$ is $p_Q(q) = \det(\Delta(G) - qI)$ and the L-polynomial of $L(G)$ is $p_L(\lambda) = \det(L(G) - \lambda I)$, where I is identity matrix of dimension p. The largest eigenvalue of $Q(G)$ and $L(G)$ are named Q-spectral and L-spectral radius of G, respectively. The set of all distinct Q-eigenvalues with their multiplicities is called Q-spectrum and the set of all distinct L-eigenvalues with their multiplicities is called L-spectrum.

Q-spectral and L-spectral radius have received a great deal of attention and several researches have been reported. Some researches on Q-spectral radius and its sharp bound for various graphs can be seen in [1-4]. Sharp bound of L-spectral radius of graphs has also been studied, such as in [5-12].

Graphs associated with a finite group have been introduced, for example commuting graph [13], non-commuting graph [14], conjugate graph [15] and inverse graph [16], and seem to be an interesting area of research. Researches on signless Laplacian and Laplacian spectra of graphs associated with group have been conducted, such as [17-19]. In [20], Anderson et al. introduced the concept of subgroup graph of given subgroup H of a group G as a directed graph and denoted by $\Gamma_H(G)$. When the subgroup H is normal in G, then $\Gamma_H(G)$ is an undirected simple graph [21].

We are interested in doing research on Q-spectral and L-spectral radius of graph associated with group. This paper is aimed to determine Q-spectral and L-spectral radius of subgroup graphs of dihedral group and their complements. The Q-spectral and L-spectral of these subgroup graphs are also observed.
2. Literature Review

A graph G contained a finite non-empty set $V(G)$ of vertices together with a possibly empty set $E(G)$ of edges. The cardinality of $V(G)$ is called the order of G, while the cardinality of $E(G)$ is called the size of G. An empty graph is a graph of size 0. Two vertices u and v in G are adjacent if $uv \in E(G)$. The degree of vertex u in G is defined as the number of vertices that adjacent with u and denoted by $\deg(u)$.

Let K_n denote a complete graph with n vertices and $K_{m,n}$ denote a complete bipartite graph with partition sets V_1 and V_2 where $|V_1| = m$ and $|V_2| = n$. Then, $K_{m,n}$ has order $m + n$ and size mn [22].

For more general, a complete multipartite graph with k partition sets V_1, V_2, \ldots, V_k ($k > 1$) where $|V_i| = n_i$ for $1 \leq i \leq k$ is denoted by $K_{n_1, n_2, \ldots, n_k}$. Graph $K_{n_1, n_2, \ldots, n_k}$ has order $n = \sum_{i=1}^{k} n_i$. The union $G = G_1 \cup G_2$ of two graphs G_1 and G_2 with $V(G_1) \cup V(G_2) = \emptyset$ is a graph that $V(G_1 \cup V(G_2))$ and $E(G) = E(G_1) \cup E(G_2)$ [23]. The graph K_{n}^c is the empty graph of order n [24]. The graph $K_{m,n}^c$ is $K_m \cup K_n$. Since $G = G_1$ [22] then $K_m \cup K_n = K_{m,n}^c$.

Let G be a graph of order p. Let the adjacency matrix of G is $A(G)$ and the degree matrix of G is $D(G)$. Then the matrix $Q(G) = D(G) + A(G)$ is named the signless Laplacian matrix of G [25,26] and $L(G) = D(G) - A(G)$ is named the Laplacian matrix of G [27]. The Q-polynomial of $Q(G)$ is $p_Q(q) = \det(Q(G) - qI)$ [28] and the L-polynomial of $L(G)$ is $p_L(\lambda) = \det(L(G) - \lambda I)$, where I is identity matrix of dimension p [2]. The roots of characteristics equation associated with a matrix are called eigenvalues [29]. The eigenvalues of $Q(G)$ are called Q-eigenvalues of G and the eigenvalues of $L(G)$ are called L-eigenvalues of G. Since $Q(G)$ and $L(G)$ are real and symmetric matrices then their eigenvalues are real and nonnegative [10,30] and can be arranged as $q_p \geq q_{p-1} \geq \cdots \geq q_2 \geq q_1$ and $\lambda_p \geq \lambda_{p-1} \geq \cdots \geq \lambda_2 \geq \lambda_1$, respectively. The largest eigenvalue q_p of $Q(G)$ is called Q-spectral radius of G [31] and the largest eigenvalue λ_p of $L(G)$ is called L-spectral radius of G [5].

Let $q_t > q_{t-1} > \cdots > q_2 > q_1$ are t distinct Q-eigenvalues with the corresponding multiplicities $m_t, m_{t-1}, \ldots, m_2, m_1$. Then, Q-spectrum of G is defined by $\text{spec}_Q(G) = \begin{bmatrix} q_t & q_{t-1} & \cdots & q_2 & q_1 \\ m_t & m_{t-1} & \cdots & m_2 & m_1 \end{bmatrix}$.

If every Q-eigenvalues of G are integer then G is called Q-integral [28]. L-spectrum of G is defined in similar manner, and if every L-eigenvalues of G are integer then G is called L-integral [32].

The following are the results of previous research that will be used in this paper.

Result 1 [2]. Q-polynomial of complete multipartite graph $K_{n_1, n_2, \ldots, n_k}$ of order n is

$$p_Q(q) = (-1)^n \left(\sum_{i=1}^{k} \frac{n_i}{n - 2n_i - q} + 1 \right) \prod_{i=1}^{k} (n - 2n_i - q)(n - n_i - q)^{n_i - 1}.$$

Q-polynomial in Result 1 can be expressed as

$$p_Q(q) = \prod_{i=1}^{k} (q - n + n_i)^{n_i - 1} \prod_{i=1}^{k} (q - n + 2n_i) \left(1 - \sum_{i=1}^{k} \frac{n_i}{q - n + 2n_i} \right) [28,33]$$

Result 2 [34]. Q-eigenvalues of K_n are $2(n - 1)$ and $n - 2$ with their multiplicities are 1 and $n - 1$, respectively.

Result 3 [35]. Q-polynomial of bipartite graphs is equal to L-polynomial.

Result 4 [36]. Q-eigenvalues of complete graph K_n are n and 0 with multiplicities $n - 1$ and 1, respectively.

Result 5 [37]. Let $C = \begin{bmatrix} A & B \\ B & A \end{bmatrix}$ is a block symmetric matrix of order 2. The eigenvalues of C are those of $A + B$ together with those of $A - B$.

3. Main Results

Based on Anderson et al. [20] and Kakeri and Erfanian [21], if G is a group and H is its normal subgroup then the subgroup graph $\Gamma_H(G)$ of G and its complement $\overline{\Gamma_H(G)}$ are undirected simple graphs. So, we focus on the normal subgroup of dihedral group along this paper.
The dihedral group D_{2n} ($n \geq 3$) has $2n$ elements that consist of n rotations $1, r, r^2, \ldots, r^{n-1}$ and n reflection $s, sr, sr^2, \ldots, sr^{n-1}$. The order of r is n ($|r| = n$) and the order of sr^i is 2 ($|sr^i| = 2$) for $i = 1, 2, \ldots, n$. By using its generator, we can write $D_{2n} = \langle r, s \rangle = \{1, r, r^2, \ldots, r^{n-1}, s, sr, sr^2, \ldots, sr^{n-1}\}$. It is well known that $sr \neq rs$ and $sr^i = r^{-i}s$. Hence, composition of two reflections is a rotation. For odd n, all normal subgroups of D_{2n} are $\langle 1 \rangle$, $\langle r^d \rangle$ for all d dividing n and D_{2n} itself. For even n, all normal subgroups of D_{2n} are $\langle 1 \rangle, \langle r^d \rangle$ for all d dividing n, $\langle r^2, s \rangle, \langle r^2, rs \rangle$ and D_{2n} itself.

By definition of subgroup graph, we have $\Gamma_{D_{2n}}(D_{2n})$ is complete graph of order $2n$, for $n \geq 3$. So, $\Gamma_{D_{2n}}(D_{2n})$ is empty graph of order $2n$. The fact leads us to our first result.

Theorem 1.

(a) Q-spectral radius of $\Gamma_{D_{2n}}(D_{2n})$ is $4n - 2$ and L-spectral radius of $\Gamma_{D_{2n}}(D_{2n})$ is $2n$.

(b) $\text{Spec}_Q\left(\Gamma_{D_{2n}}(D_{2n})\right) = \left\{\frac{2n-2}{1}, \frac{2n-1}{2n-1}\right\}$ and $\text{Spec}_L\left(\Gamma_{D_{2n}}(D_{2n})\right) = \left\{\frac{2n}{2n-1}, 0\right\}$.

(c) Q-spectral and L-spectral radius of $\Gamma_{D_{2n}}(D_{2n})$ are 0.

Proof. It is straightforward from Result 2 and then Result 4. ♦

The normal subgroup $\langle 1 \rangle$ has only identity element of D_{2n}. Therefore, $xy \in \langle 1 \rangle$ if and only if $y = x^{-1}$ in D_{2n}. We know that $(r^i)^{-1} = r^{n-i}$ and $(sr^i)^{-1} = sr^{-i}$ for odd and even n, and in addition $(r^{n/2})^{-1} = r^{n/2}$ for even n. Because graph in this paper is simple graph, then sr^i and $r^{n/2}$ are not adjacent to themselves in $\Gamma_{\langle 1 \rangle}(D_{2n})$. Hence, only r^i and r^{n-i} are adjacent in $\Gamma_{\langle 1 \rangle}(D_{2n})$ for $i \neq n/2$.

Now, we have the following results on subgroup graph $\Gamma_{\langle 1 \rangle}(D_{2n})$, for $n \geq 3$.

Theorem 2.

(a) Q-spectral and L-spectral radius of $\Gamma_{\langle 1 \rangle}(D_{2n})$ are 2.

(b) $\text{Spec}_Q\left(\Gamma_{\langle 1 \rangle}(D_{2n})\right) = \text{Spec}_L\left(\Gamma_{\langle 1 \rangle}(D_{2n})\right) = \left\{\frac{2}{(n-1)/2}, \frac{0}{(3n+1)/2}\right\}$ for odd n and

\[\text{Spec}_Q\left(\Gamma_{\langle 1 \rangle}(D_{2n})\right) = \text{Spec}_L\left(\Gamma_{\langle 1 \rangle}(D_{2n})\right) = \left\{\frac{2}{(n-2)/2}, \frac{0}{(3n+2)/2}\right\}
\]

for even n.

(c) L-spectral radius of $\Gamma_{\langle 1 \rangle}(D_{2n})$ are $2n$.

(d) $\text{Spec}_L\left(\Gamma_{\langle 1 \rangle}(D_{2n})\right) = \left\{\frac{2n}{3n-1/2}, \frac{0}{(n-1)/2}\right\}$ for odd n

and $\text{Spec}_L\left(\Gamma_{\langle 1 \rangle}(D_{2n})\right) = \left\{\frac{2n}{3n/2}, \frac{0}{(n-2)/2}\right\}$ for even n.

The next results are for subgroup graph $\Gamma_{\langle r \rangle}(D_{2n})$ of dihedral group D_{2n}, where $n \geq 3$.

Theorem 3.

(a) Q-spectral radius of $\Gamma_{\langle r \rangle}(D_{2n})$ is $2(n-1)$ and L-spectral radius of $\Gamma_{\langle r \rangle}(D_{2n})$ is n.

(b) $\text{Spec}_Q\left(\Gamma_{\langle r \rangle}(D_{2n})\right) = \text{Spec}_L\left(\Gamma_{\langle r \rangle}(D_{2n})\right) = \left\{\frac{2(n-1)}{2}, \frac{n-2}{2(n-1)}\right\}$

(c) Q-spectral and L-spectral radius of $\Gamma_{\langle r \rangle}(D_{2n})$ are $2n$.

(d) $\text{Spec}_Q\left(\Gamma_{\langle r \rangle}(D_{2n})\right) = \text{Spec}_L\left(\Gamma_{\langle r \rangle}(D_{2n})\right) = \left\{\frac{2n}{1}, \frac{n}{2(n-1)}\right\}$

Proof.

(a) Subgroup graph $\Gamma_{\langle r \rangle}(D_{2n})$ is disconnected with two components and each component is a complete graph of order n. Hence, $\text{deg}(v) = n - 1$, for all $v \in \Gamma_{\langle r \rangle}(D_{2n})$. Therefore, $Q\left(\Gamma_{\langle r \rangle}(D_{2n})\right) = \begin{bmatrix} A & O \\ O & A \end{bmatrix}$, where $A = [a_{ij}]$ is matrix of order n with $a_{ij} = 1$ otherwise and O is zero matrix of order n. Using Result 5 on $\begin{bmatrix} A & Q \\ O & A \end{bmatrix}$ and then Result 2 on $A + O$ and $O - A$, we have the Q-eigenvalues are $2(n-1)$ and $n - 2$ with their multiplicities are 2 and $2(n-1)$, respectively. In other hand, $L\left(\Gamma_{\langle r \rangle}(D_{2n})\right) = \begin{bmatrix} B & O \\ O & B \end{bmatrix}$, where $B = [b_{ij}]$ is matrix of
order n with $b_{ij} = n - 1$ for $i = j$ and $b_{ij} = -1$ otherwise and O is zero matrix of order n. With similar fashion, we have the L-eigenvalues are n and 0 with their multiplicities are $2(n - 1)$ and 2, respectively. It completes the proof.

(b) From the proof of (a), Q-polynomial and L-polynomial of $\Gamma_r(D_{2n})$ are $p_Q(q) = (q - (2n - 2))^2(q - (n - 2))^{2n-2}$ and $p_L(\lambda) = (\lambda - n)^2\lambda^{2n-2}$. So, we have the desired proof.

(c) Since $\Gamma_r(D_{2n}) = K_n \cup K_n$, then $\overline{\Gamma_r(D_{2n})} = K_n \cup K_n$. By Result 1, $p_Q(q) = (q - (2n - n))^{2n-2} q$. Because $\overline{\Gamma_r(D_{2n})}$ is complete bipartite graph, by Result 3 we have $p_L(\lambda) = (\lambda - (n - 2)^2 \lambda). So, 2n is the largest eigenvalue and the proof is complete.

(d) It is clear from (c).

Normal subgroup $\langle r^2 \rangle$ of dihedral group D_{2n}, where $n \geq 4$ and n is even, is $\langle r^2 \rangle = \{1, r^2, r^4, ..., r^{n-2}\}$ and $r^i r^j, s r^i r^j \in \langle r^2 \rangle$ if and only if i and j both even or both odd, for $1 \leq i, j \leq n - 2$. Therefore, subgroup graph $\Gamma_{r^2}(D_{2n})$ has four components and each component is complete graph $K_n/2$. So, we have the following results.

Theorem 4.

(a) Q-spectral radius of $\Gamma_{r^2}(D_{2n})$ is $n - 2$ and L-spectral radius of $\Gamma_{r^2}(D_{2n})$ is $n/2$, for even n and $n \geq 4$.

(b) $\text{spec}_Q(\Gamma_{r^2}(D_{2n})) = \left[\frac{n - 2}{4}, \frac{n - 4}{2(n - 2)} \right]$ and $\text{spec}_L(\Gamma_{r^2}(D_{2n})) = \left[\frac{n}{2}, \frac{0}{4} \right]$.

(c) Q-spectral radius of $\Gamma_{r^2}(D_{2n})$ is $3n$ and L-spectral radius of $\Gamma_{r^2}(D_{2n})$ is $2n$, where n is even and $n \geq 4$.

(d) $\text{spec}_Q(\Gamma_{r^2}(D_{2n})) = \left[\frac{3n}{3}, \frac{3n}{2}, \frac{n}{3}, \frac{n}{2}, \frac{n}{3} \right]$ and $\text{spec}_L(\Gamma_{r^2}(D_{2n})) = \left[\frac{2n}{3}, \frac{3n}{2}, \frac{0}{1} \right]$.

Proof.

(a) The Q-polynomial of $\Gamma_{r^2}(D_{2n})$ is $p_Q(q) = (-1)^{\frac{n}{4}}(q - (n - 2))^4(q - (n - 4))^2(n - 2)$.

and L-polynomial of $\Gamma_{r^2}(D_{2n})$ is $p_L(\lambda) = (-1)^{\frac{n}{2}}(\lambda - \frac{n}{2})^{2(n - 2)} \lambda^4$.

(b) It is clear from (a).

(c) Complement of subgroup graph $\overline{\Gamma_{r^2}(D_{2n})}$ is complete multipartite $K_n/2, n/2, n/2, n/2$ of order $2n$. By using Result 1, then Q-polynomial of $\overline{\Gamma_{r^2}(D_{2n})}$ is $p_Q(\lambda) = (\lambda - 3n)^4(\lambda - \frac{3n}{2})^{2(n - 2)}(\lambda - n)^3$.

And we have L-polynomial of $\overline{\Gamma_{r^2}(D_{2n})}$ is $p(\lambda) = (\lambda - 2n)^3(\lambda - \frac{3n}{2})^{2(n - 2)} \lambda$.

(d) It is clear from (c).

The normal subgroup $\langle r^2, s \rangle$ of D_{2n} for even n and $n \geq 4$ is $\langle r^2, s \rangle = \{1, r^2, r^4, ..., r^{n-2}, s, r^2, r^4, ..., s r^{n-2}\}$ and $(s^k r^i)(s^k r^j) \in \langle r^2, s \rangle$ if and only if i and j both even or both odd, for $1 \leq i, j \leq n - 2$ and $k = 0, 1$. Therefore, subgroup graph $\Gamma_{r^2}(D_{2n})$ has two components and each component is complete graph K_n of order n. Then, subgroup graph $\Gamma_{r^2}(D_{2n})$ is isomorphic to $\Gamma_r(D_{2n})$. The following results are obvious.

Theorem 5.

(a) Q-spectral radius of $\Gamma_{r^2}(D_{2n})$ is $2(n - 1)$ and L-spectral radius of $\Gamma_{r^2}(D_{2n})$ is n.

4
(b) $\text{spec}_Q(\Gamma_{(r^2,s)}(D_{2n})) = \left[\frac{2(n-1)}{2} \right]^{n-2} \frac{n-2}{2(n-1)}$ and $\text{spec}_L(\Gamma_{(r^2,s)}(D_{2n})) = \left[\frac{n}{2(n-1)}\right]^0$.

(c) Q-spectral and L-spectral radius of $\Gamma_{(r^2,s)}(D_{2n})$ are 2n.

(d) $\text{spec}_Q(\Gamma_{(r^2,s)}(D_{2n})) = \text{spec}_L(\Gamma_{(r^2,s)}(D_{2n})) = \left[\frac{2n}{1} \frac{n}{2(n-1)}\right]^0$.

For even n and $n \geq 4$, we also can observe that subgroup graph $\Gamma_{(r^2,r^2)}(D_{2n})$ is isomorphic to $\Gamma_{(r^2,s)}(D_{2n})$ and the following result is obvious.

Theorem 6.

(a) Q-spectral radius of $\Gamma_{(r^2,r^2)}(D_{2n})$ is $2(n-1)$ and L-spectral radius of $\Gamma_{(r^2,r^2)}(D_{2n})$ is n.

(b) $\text{spec}_Q(\Gamma_{(r^2,r^2)}(D_{2n})) = \left[\frac{2(n-1)}{2} \frac{n-2}{2(n-1)}\right]$ and $\text{spec}_L(\Gamma_{(r^2,r^2)}(D_{2n})) = \left[\frac{n}{2(n-1)}\right]^0$.

(c) Q-spectral and L-spectral radius of $\Gamma_{(r^2,r^2)}(D_{2n})$ are 2n.

(d) $\text{spec}_Q(\Gamma_{(r^2,r^2)}(D_{2n})) = \text{spec}_L(\Gamma_{(r^2,r^2)}(D_{2n})) = \left[\frac{2n}{1} \frac{n-2}{2(n-1)}\right]^0$.

4. Conclusion

We have computed Q-spectral and L-spectral radius of subgroup graphs of dihedral group D_{2n} and their complement. According to our results, we can conclude that $\Gamma_{D_{2n}}(D_{2n})$ and $\Gamma_{(r^2,s)}(D_{2n})$ and their complement are Q-integral and L-integral, for all n and $n \geq 3$. For even n and $n \geq 4$, the subgroup graphs $\Gamma_{(r^2,s)}(D_{2n})$, $\Gamma_{(r^2,s)}(D_{2n})$, $\Gamma_{(r^2,r^2)}(D_{2n})$ and their complement also Q-integral and L-integral.

References

[1] Feng L and Yu G. 2009. The Signless Laplacian Spectral Radius of Unicyclic Graphs with Graph Constraints. Kyungpook Math. J. 49 123–31

[2] Yu G, Wu Y and Shu J. 2011. Signless Laplacian spectral radii of graphs with given chromatic number. Linear Algebra Appl. 435 1813–22.

[3] Yu G, Wu Y and Shu J. 2011. Sharp bounds on the signless Laplacian spectral radii of graphs 5^1. Linear Algebra Appl. 434 683–7

[4] Cui SY, Tian GX and Guo JJ. 2013. A sharp upper bound on the signless Laplacian spectral radius of graphs. Linear Algebra Appl. 439 2442–7

[5] Liu H, Lu M and Tian F. 2004. On the Laplacian spectral radius of a graph. Linear Algebra Appl. 376 135–41

[6] Guo JM. 2003. On the Laplacian spectral radius of a tree. Linear Algebra Appl. 368 379–85

[7] Yu A and Lu M. 2008. Laplacian spectral radius of trees with given maximum degree. Linear Algebra Appl. 429 1962–9

[8] Zhang XD. 2008. The Laplacian spectral radii of trees with degree sequences. Discrete Math. 308 3143–50

[9] Yuan X-Y, Shan H-Y and Liu Y. 2009. On the Laplacian spectral radii of trees. Discrete Math. 309 4241–6

[10] Lu M, Liu H and Tian F. 2005. Bounds of Laplacian spectrum of graphs based on the domination number. Linear Algebra Appl. 402 390–6

[11] Guo JM, Li J and Shiu WC. 2013. A note on the upper bounds for the Laplacian spectral radius of graphs. Linear Algebra Appl. 439 1657–61

[12] Liu MH, Wei PY and Liu B. 2014. On the Laplacian spectral radii of tricyclic graphs. Ars Comb. 114 129–43

[13] Vahidi J and Talebi AA. 2010. The commuting graphs on groups D2n and Qn. J. Math. Comput. Sci. 1 123–7

[14] Abdollahi A, Akbari S and Maimani HR. 2006. Non-commuting graph of a group. J. Algebra. 298 468–92

[15] Erfanian A and Tolue B. 2012. Conjugate graphs of finite groups. Discret. Math. Algorithms
[16] Alfuraidain MR and Zakariya YF. 2017. Inverse graphs associated with finite groups. Electron. J. Graph Theory Appl. 5 142–54

[17] Elvierayani RR and Abdussakir. 2013. Spectrum of the Laplacian matrix of non-commuting graph of dihedral group D2n. Proceeding of International Conference The 4th Green Technology. 321–3

[18] Abdussakir, Elvierayani RR and Nafisah M. 2017. On the spectra of commuting and non commuting graph on dihedral group. Cauchy-Jurnal Mat. Murni dan Apl. 4 176–82

[19] Abdussakir. 2017. Spektrum Graf Konjugasi dan Komplemen Graf Konjugasi dari Grup Dihedral. Prosiding Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 670–4

[20] Anderson DF, Fasteen J and Lagrange JD. 2012. The subgroup graph of a group. Arab J. Math. 1 17–27

[21] Kakeri F and Erfanian A. 2015. The complement of subgroup graph of a group. J. Prime Res. Math. 11 55–60

[22] Chartrand G, Lesniak L and Zhang P. 2016. Graphs and digraphs. 6th ed. Florida: CRC Press

[23] Harary F. 1969. Graph theory. California: Addison-Wesley Publishing Company

[24] Abreu N, Cardoso DM, Gutman I, Martins EA. 2012. The s

[25] Yu G-D, Fan Y-Z and Ye M-L. 2017. The least signless Laplacian eigenvalue of the complements of unicyclic graphs. Appl. Math. Comput. 306 13–21

[26] Bhat PG and D’Souza S. 2017. Color signless Laplacian energy of graphs. AKCE Int. J. Graphs Comb. 14 142–8

[27] Cui S-Y and Tian G-X. 2017. The spectra and the signless Laplacian spectra of graphs with pockets. Appl. Math. Comput. 315 363–71

[28] Zhao G, Wang L and Li K. 2013. Q-integral complete r-partite graphs. Linear Algebra Appl. 438 1067–77

[29] Jog SR and Kotambari R. 2016. On the adjacency , Laplacian , and signless Laplacian spectrum of coalescence of complete graphs. J. Math. 2016 1–11

[30] Fan Y-Z, Wang Y and Guo H. 2013. The least eigenvalues of the signless Laplacian of non-bipartite graphs with pendant vertices. Discrete Math. 313 903–9

[31] Guo G and Wang G. 2013. On the (signless) Laplacian spectral characterization of the line graphs of lollipop graphs. Linear Algebra Appl. 438 4595–605

[32] Stanic Z. 2007. There are exactly 172 connected Q-integral graphs up to 10 vertices. Novi Sad J. Math. 37 193–205

[33] Pokorný M, Híc P and Stevanović D. 2013. Remarks on Q-integral complete multipartite. Linear Algebra Appl. 439 2029–37

[34] Ashraf F, Omidi GR and Tayfeh-Rezaie B. 2013. On the sum of signless Laplacian eigenvalues of a graph. Linear Algebra Appl. 438 4539–46

[35] Cvetkovic D, Rowlinson P and Simic SK. 2007. Signless Laplacians of finite graphs. Linear Algebra Appl. 423 155–71

[36] Kelner J. 2009. 18.409 Topics in Theoretical Computer Science: An Algorithmist’s Toolkit. 2009 1–11

[37] Ayyaswamy SK and Balachandran S. 2010. On detour spectra of some graphs. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 4 1038–40