MODULI SPACES OF SL(r)-BUNDLES
ON SINGULAR IRREDUCIBLE CURVES

XIAOTAO SUN

INTRODUCTION

One of the problems in moduli theory, motivated by physics, is to study the degeneration of moduli spaces of semistable G-bundles on curves of genus $g \geq 2$. When a smooth curve Y specializes to a stable curve X, one expects that the moduli space of semistable G-bundles on Y specializes to a (nice) moduli space of generalized semistable G-torsors on X. It is well known ([Si]) that for any flat family $C \to S$ of stable curves there is a family $U(r,d)_S \to S$ of moduli spaces $U_C(r,d)$ of (s-equivalence classes of) semistable torsion free sheaves of rank r and degree d on curves C_s ($s \in S$). If we fix a suitable representation $G \to \text{GL}(r)$, one would like to define a closed subscheme $U_X(G) \subset U_X(r,d)$ which should be a moduli space of suitable G-sheaves on X. Moreover, it should behave well under specialization, i.e. if a smooth curve Y specializes to X, then the moduli space of G-bundles on Y specializes to $U_X(G)$. By my knowledge, the problem is almost completely open except for special case like $G = \text{SO}(r)$ or $G = \text{Sp}(r)$ ([Fa1], [Fa2]), where one has a generalisation of G-torsors which extends the case $G = \text{GL}(r)$. It is open even for $G = \text{SL}(r)$ (See [Fa1], [Fa2] for the introduction).

In this paper, we will consider the case $G = \text{SL}(r)$ and X being irreducible (the case of a reducible curve with one node was studied in [Su2]). For any projective curve X, we will use $U_X(r,d)$ to denote the moduli space of semistable torsion free sheaves of rank r and degree d on X. If X_η is a smooth curve and L_η is a line bundle of degree d on X_η, we use $U_{X_\eta}(r,L_\eta)$ to denote the moduli space of semistable vector bundles of rank r with fixed determinant L_η on X_η, which is a closed subvariety of $U_{X_\eta}(r,d)$. It is known that when X_η specializes to X the moduli space $U_{X_\eta}(r,d)$ specializes to $U_X(r,d)$. It is natural to expect that if L_η specializes to a torsion free sheaf L on X then $U_{X_\eta}(r,L_\eta)$ specializes to a closed subscheme $U_X(r,L) \subset U_X(r,d)$. It is important that we should look for an intrinsic $U_X(r,L)$ (i.e. independent of X_η) which should not be too bad and should represent a moduli problem.

Let $S = \text{Spec}(A)$ where A is a discrete valuation ring, let $C \to S$ be a proper flat family of curves with closed fibre $C_0 \cong X$ and smooth generic fibre C_η. Then we have a S-flat scheme $U(r,d)_S \to S$ with generic fibre $U_{C_\eta}(r,d)$ and closed fibre being $U_X(r,d)$. For any line bundle L_η of degree d on C_η, there is a unique extension L.
on C such that $L|_{C_0} := L$ is torsion free of degree d (since X is irreducible). Then $U_{C_0}(r, L_\eta) \subset U(r, d)_S$ is an irreducible, reduced, locally closed subscheme. Let

$$f : U(r, L)_S := \overline{U_{C_0}(r, L_\eta)} \subset U(r, d)_S \to S$$

be the Zariski closure of $U_{C_0}(r, L_\eta)$ in $U(r, d)_S$. Then $f : U(r, L)_S \to S$ is flat and projective, but there is no reason that its closed fibre $f^{-1}(0)$ (even its support $f^{-1}(0)_{\text{red}}$) is independent of the family $C \to S$ and L_η. However, there are conjectures ([NS]) that $f^{-1}(0)$ is intrinsic for irreducible curves X with only one node. To state them, we introduce the notation for any stable irreducible curves. Let X be an irreducible stable curve with δ nodes $\{x_1, \ldots, x_\delta\}$, and L a torsion free sheaf of rank one and degree d on X. A torsion free sheaf F of rank r and degree d on X is called with a determinant L if there exists a morphism $(\wedge^r F) \to L$ which is an isomorphism outside the nodes of X. The subset $U_X(r, L) \subset U_X(r, d)$ consists of s-equivalence classes $[F] \in U_X(r, d)$ such that $[F]$ contains a sheaf with a fixed determinant L. Then D.S. Nagaraj and C.S. Seshadri made the following conjectures (See Conjecture (a) and (b) at page 136 of [NS]):

1. If L is a line bundle on X and $U_X(r, L)^0 \subset U_X(r, d)$ is the subset of locally free sheaves, then $U_X(r, L)$ is the closure of $U_X(r, L)^0$ in $U_X(r, d)$.
2. Let L_η (resp. L) be a line bundle (resp. torsion free sheaf of rank one) of degree d on smooth curve Y (resp. X). Assume that L_η specializes to L as Y specializes to X. Then $U_X(r, L)$ is the specialization of $U_Y(r, L_\eta)$.

We answer (1) completely. In fact, even if L is not locally free (thus $U_X(r, L)$ contains no locally free sheaf), we prove that torsion free sheaves of type 1 (See Section 1) are dense in $U_X(r, L)$.

Theorem 1. Let L be a torsion free sheaf of rank 1 and degree d. Define

$$U_X(r, L)^0 = \{ F \in U_X(r, L) \mid (\wedge^r F) \cong L \}$$

which coincides with the subset of locally free sheaves when L is locally free. Then

1. $U_X(r, L)$ is the closure of $U_X(r, L)^0$. If L is not locally free, $U_X(r, L)^0$ is the subset of torsion free sheaves of type 1.
2. There is a canonical scheme structure on $U_X(r, L)^0$, which is reduced when L is locally free, such that when smooth curve C_η specializes to X and L_η specializes to L on X, the specialization $f^{-1}(0)$ of $U_{C_0}(r, L_\eta)$ contains a dense open subscheme which is isomorphic to $U_X(r, L)^0$. In particular,

$$f^{-1}(0)_{\text{red}} \cong U_X(r, L).$$

If the specialization $f^{-1}(0)$ has no embedded point, then our theorem also proved Conjecture (2). Unfortunately, $U_X(r, L)$ seems not represent a nice moduli functor, we can not say anything about the scheme structure of $U_X(r, L)$. To remedy this, we consider the specialization of $U_{C_0}(r, L_\eta)$ in the so called generalized Gieseker space $G(r, d)$ (See [NSe]). Let X be an irreducible stable curve with only one node p_0 and L be a line bundle of degree d on X. Then, when $r \leq 3$, or $r = 4$ and the normalization \tilde{X} is not hyperelliptic, we show that there is a Cohen-Macaulay closed subscheme $G(r, L) \subset G(r, d)$ of pure dimension $(r^2 - 1)(r - 1)$.
which represents a nice moduli functor (See Definition 3.2). Moreover, $G(r, L)$ satisfies the requirements in (2) for specializations. It is known ([NSe] that there is a canonical birational morphism $\theta : G(r, d) \to U_X(r, d)$. We prove in Lemma 3.5 that the set-theoretic image of $G(r, L)$ is $U_X(r, L)$. Thus we can endow $U_X(r, L)$ a scheme structure by the scheme-theoretic image of $G(r, L)$. Then we have

Theorem 2. Let X be an irreducible curve of genus $g \geq 2$ with only one node p_0. Let L be a line bundle of degree d on X. Assume that $r \leq 3$, or $r = 4$ and the normalization of X is not hyperelliptic. Then, when $(r, d) = 1$, we have

1. There is a Cohen-Macaulay projective scheme $G(r, L)$ of pure dimension $(r^2 - 1)(g - 1)$, which represents a moduli functor.
2. Let $C \to S$ be a proper family of curves over a discrete valuation ring, which has smooth generic fibre C_0 and closed fibre $C_0 \cong X$. If there is a line bundle L on C such that $L|_{C_0} \cong L$. Then there exists an irreducible, reduced, Cohen-Macaulay S-projective scheme $f : G(r, L)_S \to S$, which represents a moduli functor, such that $f^{-1}(0) \cong G(r, L)$, $f^{-1}(\eta) \cong U_{C_0}(r, L_\eta)$.
3. There exists a proper birational S-morphism $\theta : G(r, L)_S \to U(r, L)_S$ which induces a birational morphism $\theta : G(r, L) \to U_X(r, L)$.

Theorem 1 is proved in Section 1. In Section 2, we introduce the objects which are used to define Gieseker moduli space. Then Theorem 2 is proved in Section 3.

Acknowledgements. I would like to thank Prof. C. S. Seshadri very much. Discussions and email exchanges with him are very helpful, which stimulated the use of generalized parabolic bundles in Section 1 and Lemma 3.5 in Section 3.

§1 Torsion-free sheaves with fixed determinant on irreducible curves

Let X be a stable irreducible curve of genus g with δ nodes x_1, \ldots, x_δ. Any torsion free sheaf \mathcal{F} of rank r on X can be written into (locally at x_i)

$$\mathcal{F} \otimes \mathcal{O}_{X, x_i} \cong \mathcal{O}_{X, x_i}^{\oplus a_i} \oplus m_{x_i}^{\oplus (r - a_i)}.$$

We call that \mathcal{F} has type $r - a_i$ at x_i. Let $U_X(r, d)$ be the moduli space of s-equivalence classes of semistable torsion free sheaves of rank r and degree d on X. Inspired by [NS], we make the following definition.

Definition 1.1. Let L be a torsion free sheaf of rank one and degree d on X. A torsion free sheaf \mathcal{F} of rank r and degree d on X is called with a determinant L if there exists a non-trivial morphism $\wedge^r \mathcal{F} \to L$ which is an isomorphism outside the nodes.

Lemma 1.2. For any exact sequence $0 \to \mathcal{F}_1 \xrightarrow{\alpha} \mathcal{F} \xrightarrow{\beta} \mathcal{F}_2 \to 0$ of torsion free sheaves with rank r_1, r, r_2 respectively, we have a morphism

$$(\wedge^{r_1} \mathcal{F}_1) \otimes (\wedge^{r_2} \mathcal{F}_2) \to \frac{\wedge^r \mathcal{F}}{\text{torsion}},$$

which is isomorphic outside the nodes. In particular, if a semistable sheaf \mathcal{F} has a fixed determinant L, then the associated graded torsion free sheaf $\text{gr}(\mathcal{F})$ will also have the fixed determinant L.

Proof. There is a morphism $\bigwedge^r \mathcal{F}_2 \to \mathcal{H}om(\bigwedge^r \mathcal{F}_1, \bigwedge^r \mathcal{F}/\text{torsion})$, which locally is defined as follows: For any $\omega \in \bigwedge^r \mathcal{F}_2$, choose a preimage $\tilde{\omega} \in \bigwedge^r \mathcal{F}$ with respect to $\bigwedge^r \beta$. Then the image of ω is defined to be the morphism

$$
\bigwedge^r \mathcal{F}_1 \to \bigwedge^r \mathcal{F}/\text{torsion},
$$

which takes any $f \in \bigwedge^r \mathcal{F}_1$ to the section $(\bigwedge^r \alpha)(f) \cdot \tilde{\omega} \in \bigwedge^r \mathcal{F}/\text{torsion}$, which does not depend on the choice of $\tilde{\omega}$ since the image of $\bigwedge^r \beta$ is a torsion sheaf. The morphism defined above is isomorphism outside the nodes (See Lemma 1.2 of [KW]). Thus we have the desired morphism

$$
(\bigwedge^r \mathcal{F}_1) \otimes (\bigwedge^r \mathcal{F}_2) \to (\bigwedge^r \mathcal{F}_1) \otimes \mathcal{H}om(\bigwedge^r \mathcal{F}_1, \bigwedge^r \mathcal{F}/\text{torsion}) \to \bigwedge^r \mathcal{F}/\text{torsion}.
$$

Definition 1.3. The subset $\mathcal{U}_X(r, L) \subset \mathcal{U}_X(r, d)$ and $\mathcal{U}_X(r, L)^0 \subset \mathcal{U}_X(r, L)$ are defined to be

$$
\mathcal{U}_X(r, L) = \left\{ \text{s-equivalence classes } [\mathcal{F}] \in \mathcal{U}_X(r, d) \text{ such that } \begin{cases} s \text{-equivalence classes } [\mathcal{F}] \in \mathcal{U}_X(r, L) & \text{contains a sheaf with a fixed determinant } L \\ \end{cases} \right\}
$$

$$
\mathcal{U}_X(r, L)^0 = \{ [\mathcal{F}] \in \mathcal{U}_X(r, L) | \bigwedge^r \mathcal{F} \cong L \}
$$

When L is a line bundle, $\mathcal{U}_X(r, L)^0$ consists of locally free sheaves with the fixed determinant L. When L is not a line bundle, $\mathcal{U}_X(r, L)^0$ consists of torsion free sheaves of type 1 at each node of X.

We first consider the case that L is a line bundle and X has only one node p_0. Let $\pi : \tilde{X} \to X$ be the normalization with $\pi^{-1}(p_0) = \{ p_1, p_2 \}$. The normalization $\phi : \mathcal{P} \to \mathcal{U}_X(r, d)$ was studied in [Su1], where \mathcal{P} is the moduli spaces of semistable generalized parabolic bundles (GBP) of degree d and rank r on \tilde{X}. A GBP of degree d and rank r on \tilde{X} is a pair (E, Q) consisting of a vector bundle E of degree d and rank r on \tilde{X} and a r-dimensional quotient $E_{p_1} \oplus E_{p_2} \to Q$. There is a flat morphism (See Lemma 5.7 of [Su1])

$$
\text{Det} : \mathcal{P} \to J^d_{\tilde{X}}
$$

sending (E, Q) to $\text{det}(E)$. Let $\tilde{L} = \pi^*(L)$ and $\mathcal{P}^L = \text{Det}^{-1}(\tilde{L})$. Then \mathcal{P}^L is an irreducible projective variety (See the proof of Lemma 5.7 in [Su1]). Let $\mathcal{D}_i (i = 1, 2)$ be the divisor consisting of (E, Q) such that $E_{p_i} \to Q$ is not an isomorphism (See [Su1] for details). Let $\mathcal{D}^L_i = \mathcal{D}_i \cap \mathcal{P}^L$.

Lemma 1.4. The set $\mathcal{U}_X(r, L)$ is contained in the image $\phi(\mathcal{P}^L)$. Moreover,

$$
\mathcal{U}_X(r, L) \setminus \mathcal{U}_X(r, L)^0 \subset \phi(\mathcal{D}^L_1 \cap \mathcal{D}^L_2).
$$

Proof. Let $F \in \mathcal{U}_X(r, L)$ with $F \otimes \hat{\mathcal{O}}_{p_0} \cong \hat{\mathcal{O}}^{\oplus a}_{p_0} \oplus m^{\oplus (r-a)}_{p_0}$. Let $\tilde{E} = \pi^* F/\text{torsion}$. Then, by local computations (See, for example, Remark 2.1, 2.6 of [NS]), we have

$$(1.1) \quad \phi_{|\mathcal{D}^L_i}(F) \cong \tilde{E} \otimes \hat{\mathcal{O}}_{p_0} \to 0$$
where \(\dim(\tilde{Q}) = a \) and the quotient \(\pi_*\tilde{E} \to p_0\tilde{Q} \) induces two surjective maps \(\tilde{E}_{p_i} \to \tilde{Q} \) \(i = 1, 2 \). Denote their kernel by \(K_i \), we have

\[
0 \to K_i \to \tilde{E}_{p_i} \to \tilde{Q} \to 0.
\]

On the other hand, for \(F \in \mathcal{U}_X(r, L) \), let \(Q \) be the cokernel of \(\wedge^r F \to L \), then

\[
0 \to \text{det}(\tilde{E}) \to \tilde{L} \to \pi^*Q \to 0
\]

where \(\pi^*Q = p_1V_1 \oplus p_2V_2 \) and \(n_1, n_2 \) is respectively the dimension of \(V_1, V_2 \). Thus

\[
\text{det}(\tilde{E}) = \tilde{L} \otimes \mathcal{O}_{\tilde{X}}(-n_1p_1 - n_2p_2)
\]

where \(n_i \geq 0 \) and \(n_1 + n_2 = r - a \).

Let \(h : \tilde{E} \to E \) be the Hecke modifications at \(p_1 \) and \(p_2 \) such that \(\ker(h_{p_i}) \subset K_i \) has dimension \(n_i \) for \(i = 1, 2 \). Then we have

\[
0 \to \tilde{E} \xrightarrow{h} E \to p_1\tilde{Q}_1 \oplus p_2\tilde{Q}_2 \to 0
\]

with \(\dim(\tilde{Q}_i) = n_i \). Thus

\[
\text{det}(E) = \text{det}(\tilde{E}) \otimes \mathcal{O}_{\tilde{X}}(n_1p_1 + n_2p_2) = \tilde{L} \quad \text{and} \quad \phi(E, Q) = F
\]

if we define \(Q \) by the exact sequence

\[
0 \to F \xrightarrow{(\pi_*h)^d} \pi_*E \to p_0Q \to 0.
\]

To describe the GPB \((E, E_{p_1} \oplus E_{p_2} \xrightarrow{q} Q \to 0) \), note that (1.3) induces

\[
F_{p_0} \xrightarrow{d_{p_0}} \tilde{E}_{p_1} \oplus \tilde{E}_{p_2} \xrightarrow{h_{p_1} \oplus h_{p_2}} E_{p_1} \oplus E_{p_2} \xrightarrow{q} Q \to 0.
\]

Then \(d_{p_0}(F_{p_0}) \cap \tilde{E}_{p_i} = K_i \) by (1.1) and \(h_{p_i}(K_i) = \ker(q_i) \) by the exactness of (1.3), where \(q_i : E_{p_i} \to Q \) \(i = 1, 2 \) are projections induced by \(E_{p_1} \oplus E_{p_2} \xrightarrow{q} Q \to 0 \). Thus \(\dim(\ker(q_i)) = r - a - n_i \) by the construction of \(h \).

For any \(F \in \mathcal{U}_X(r, L) \setminus \mathcal{U}_X(r, L)^0 \), the cokernel \(Q \) of \(\wedge^r F \to L \) must be non-trivial. This implies that both \(V_1 \) and \(V_2 \) in \(\pi^*Q = p_1V_1 \oplus p_2V_2 \) are non-trivial since for any \(i = 1, 2 \), we have

\[
\text{Hom}_{\mathcal{O}_{\tilde{X}}}(p, V_i, p_i\mathbb{C}) = \text{Hom}_{\mathcal{O}_{\tilde{X}}}(\pi^*Q, p_i\mathbb{C}) = \text{Hom}_{\mathcal{O}_{\tilde{X}}}(Q, \pi_* (p_i\mathbb{C})) \neq 0.
\]

Thus their dimensions \(n_1 \) and \(n_2 \) must be positive and \(n_1 + n_2 = r - a \), which means that \(\ker(q_i) \neq 0 \) \(i = 1, 2 \) and the GPB \((E, Q) \) must be in \(\mathcal{D}_1 \cap \mathcal{D}_2 \). Thus

\[
\mathcal{U}_X(r, L) \setminus \mathcal{U}_X(r, L)^0 \subset \phi(\mathcal{D}_1 \cap \mathcal{D}_2^\perp).
\]

Remark 1.5. This is also indicated in the following consideration. There is a \(\mathbb{P}^1 \)-bundle \(p : \mathbb{P} \to J^d_X \) and the normalization map \(\phi_1 : \mathbb{P} \to J^d_X \). The morphism \(\text{Det} : \mathcal{P} \to J^d_X \) can be lift to a rational morphism

\[
\tilde{\text{Det}} : \mathcal{P} \dashrightarrow \mathbb{P} \xrightarrow{\phi_1} J^d_X,
\]

which is well-defined on \(\mathcal{P} \setminus \mathcal{D}_1 \cap \mathcal{D}_2 \). When \(L \) is a line bundle, \(\tilde{\text{Det}}^{-1}(L) \) is disjoint with \(\mathcal{D}_1 \cup (\mathcal{D}_1 \cap \mathcal{D}_2) \).
Lemma 1.6. Let Λ be a discrete valuation ring and $T = \text{Spec}(\Lambda)$. Then, for any $F \in \mathcal{U}_X(r, L)$, there is a T-flat sheaf \mathcal{F} on $X \times T$ such that

1. $\mathcal{F}_t = \mathcal{F}|_{X \times \{t\}}$ is locally free for $t \neq 0$ and $\mathcal{F}_0 = F$,
2. $\Lambda^r(\mathcal{F}|_{X \times (T \setminus \{0\})}) = p_X^* L$.

In particular, $\mathcal{U}_X(r, L)^0$ is dense in $\mathcal{U}_X(r, L)$.

Proof. Let $(E, Q) \in \mathcal{P}^L$ be the GPB such that $\phi(E, Q) = F$ (Lemma 1.4). Then there exists a T-flat family of vector bundles \mathcal{E} on $\tilde{X} \times T$ with $\text{det}(\mathcal{E}) = p_X^* \tilde{L}$, and a T-flat quotient

$$\mathcal{E}_{p_1} \oplus \mathcal{E}_{p_2} \twoheadrightarrow Q \rightarrow 0$$

such that $(\mathcal{E}_0, Q_0) = (\mathcal{E}, Q)|_{\tilde{X} \times \{0\}} = (E, Q)$. The quotient $\mathcal{E}_{p_1} \oplus \mathcal{E}_{p_2} \twoheadrightarrow Q \rightarrow 0$ is determined by the two projections $q_i : \mathcal{E}_{p_i} \rightarrow Q$ ($i = 1, 2$), which can be chosen to be isomorphisms for $t \neq 0$ since \mathcal{P}^L is irreducible. The two maps q_i are given by two matrices

$$
\begin{pmatrix}
 t^{a_1} & 0 & \cdots & 0 \\
 0 & t^{a_2} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & t^{a_r}
\end{pmatrix},
\begin{pmatrix}
 t^{b_1} & 0 & \cdots & 0 \\
 0 & t^{b_2} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & t^{b_r}
\end{pmatrix}
$$

where $0 \leq a_1 \leq a_2 \leq \cdots \leq a_r$ and $0 \leq b_1 \leq b_2 \leq \cdots \leq b_r$. When $t = 0$, they give the GPB (E, Q). We recall that when F is not locally free, the numbers n_1 and n_2 in the proof of Lemma 1.4 are positive. Thus the two projections $E_{p_i} \rightarrow Q$ are not isomorphism. Namely, there are k_1, k_2 such that $a_{k_1} > 0$, $b_{k_2} > 0$ but $a_j = 0$ ($j < k_1$) and $b_j = 0$ ($j < k_2$). It is clear now that we can change the positive numbers $a_{k_1}, \ldots, a_r, b_{k_2}, \ldots, b_r$ freely such that the resulted family (\mathcal{E}, Q) has the property that $(\mathcal{E}_0, Q_0) = (E, Q)$. We modify the T-flat quotient $\mathcal{E}_{p_1} \oplus \mathcal{E}_{p_2} \twoheadrightarrow Q \rightarrow 0$ by choosing $a_{k_1}, \ldots, a_r, b_{k_2}, \ldots, b_r$ such that

$$\sum_{i=k_1}^{r} a_i - \sum_{i=k_2}^{r} b_i = 0.$$

Thus we get a T-flat sheaf \mathcal{F} on $X \times T$ such that $\mathcal{F}_0 = F$. Moreover, on $T \setminus \{0\}$, \mathcal{F} is obtained from $\mathcal{E}|_{\tilde{X} \times (T \setminus \{0\})}$ by identifying \mathcal{E}_{p_1} and \mathcal{E}_{p_2} through the isomorphism

$$q_1 \cdot q_2^{-1} : \mathcal{E}_{p_1} \rightarrow \mathcal{E}_{p_2}.$$

$\Lambda^r(\mathcal{F}|_{X \times (T \setminus \{0\})})$ is obtained from $\text{det}(\mathcal{E})|_{\tilde{X} \times (T \setminus \{0\})} = p_X^* \tilde{L}$ by identifying $\tilde{L}_{p_1} \otimes K(T)$ and $\tilde{L}_{p_2} \otimes K(T)$ through the isomorphism $\Lambda^r(q_1 \cdot q_2^{-1})$, where $K(T)$ denote the field of rational functions on T. By the choice of $a_{k_1}, \ldots, a_r, b_{k_2}, \ldots, b_r$, we know that $\Lambda^r(q_1 \cdot q_2^{-1})$ is the identity map. Thus

$$\Lambda^r(\mathcal{F}|_{X \times (T \setminus \{0\})}) = (p_X^* L)|_{X \times (T \setminus \{0\})}.$$
Lemma 1.7. For any stable irreducible curve \(X, \mathcal{U}_X(r, L)^0 \) is dense in \(\mathcal{U}_X(r, L) \).

Proof. Let \(\delta \) be the number of nodes of \(X \), we will prove the lemma by induction on \(\delta \). When \(\delta = 1 \), it is Lemma 1.6. Assume that the lemma is true for curves with \(\delta - 1 \) nodes. Then we show that for any \(F \in \mathcal{U}_X(r, L) \) there is a \(T \)-flat sheaf \(\mathcal{F} \) on \(X \times T \), where \(T = \text{Spec}(\Lambda) \) and \(\Lambda \) is a discrete valuation ring, such that

1. \(\mathcal{F}_t = \mathcal{F}|_{X \times \{t\}} \) is locally free for \(t \neq 0 \) and \(\mathcal{F}_0 = F \),
2. \(\wedge^r(\mathcal{F}|_{X \times (T \setminus \{0\})}) = p_X^* L \).

For \(F \in \mathcal{U}_X(r, L) \), we can assume that \(F \) is not locally free. Let \(p_0 \in X \) be a node at which \(F \) is not locally free. Let \(\pi : \tilde{X} \to X \) be the partial normalization at \(p_0 \) and \(\pi^{-1}(p_0) = \{p_1, p_2\} \). Let \(\tilde{L} = \pi^* L \) and \(\tilde{E} = \pi^* F/torsion \), then by the same arguments of Lemma 1.4

\[
0 \to F \xrightarrow{d} \pi_* \tilde{E} \to p_0 \tilde{Q} \to 0.
\]

Note that \(\wedge^r \tilde{E} = \pi^*(\wedge^r F)/(\text{torsion at } \{p_1, p_2\}) \) and the cokernel of \(\wedge^r \tilde{E} \to \tilde{L} \) at \(\{p_1, p_2\} \) is \(p_1 \mathbb{C}^{n_1} \oplus p_2 \mathbb{C}^{n_2} \), we have the morphism

\[
\wedge^r \tilde{E} \to \tilde{L} \otimes \mathcal{O}_{\tilde{X}}(-n_1 p_1 - n_2 p_2)
\]

which is an isomorphism outside the nodes of \(\tilde{X} \). As the same with proof of Lemma 1.4, we have the Hecke modification \(E \) of \(\tilde{E} \) at \(p_1 \) and \(p_2 \) such that

\[
0 \to \tilde{E} \xrightarrow{h} E \to p_1 \tilde{Q}_1 \oplus p_2 \tilde{Q}_2 \to 0
\]

with \(\text{dim}(\tilde{Q}_i) = n_i \). Thus \(\wedge^r E \cong (\wedge^r \tilde{E}) \otimes \mathcal{O}_{\tilde{X}}(n_1 p_1 + n_2 p_2) \to \tilde{L} \) and the generalized parabolic sheaf (GPS) \((E, Q) \) defines \(E \) by the exact sequence

\[
0 \to F \xrightarrow{(\pi_* h \cdot d)} \pi_* E \to p_0 Q \to 0,
\]

where \(Q \) is defined by requiring above sequence exact. The two projections \(E_{p_i} \to Q \) \((i = 1, 2) \) are not isomorphism, thus, by choosing suitable bases of \(E_{p_1} \) and \(Q \), they are given by matrices

\[
P_1 = \begin{pmatrix}
1 & \ldots & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \ldots & 0
\end{pmatrix},
\]

\[
P_2 = A \cdot \begin{pmatrix}
1 & \ldots & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & \ldots & 0
\end{pmatrix} \cdot B
\]

where \(A, B \) are invertible \(r \times r \) matrices and \(\text{rank}(P_i) = r_i < r \) \((i = 1, 2)\). Since \(E \in \mathcal{U}_X(r, \tilde{L}) \), by the assumption, there is a \(T \)-flat sheaf \(\mathcal{E} \) on \(\tilde{X} \times T \) such that \(\mathcal{E}_0 := \mathcal{E}|_{\tilde{X} \times \{0\}} = E \) and \(\mathcal{E}|_{\tilde{X} \times (T \setminus \{0\})} \) locally free with determinant \(p_X^*(\tilde{L}) \). Define the morphisms \(q_i : \mathcal{E}_{p_i} := \mathcal{E}|_{\{p_i\} \times T} \to Q \otimes \mathcal{O}_T \) \((i = 1, 2)\) by using matrices

\[
Q_1 = \begin{pmatrix}
1 & \ldots & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & 0 & \ldots \\
0 & \ldots & 0 & t^{a_{r_1+1}} & \ldots \\
0 & \ldots & 0 & 0 & \ldots \\
\end{pmatrix},
\]

\[
Q_2 = A \cdot \begin{pmatrix}
1 & \ldots & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & 0 & \ldots \\
0 & \ldots & 0 & t^{b_{r_2+1}} & \ldots \\
0 & \ldots & 0 & 0 & \ldots \\
\end{pmatrix} \cdot B
\]
where t is the local parameter of Λ, $a_{r_1+1}, \ldots, a_r, b_{r_2+1}, \ldots, b_r$ are positive integers satisfying $a_{r_1+1} + \cdots + a_r = b_{r_2+1} + \cdots + b_r$, and c is any constant. Then these morphisms q_i ($i = 1, 2$) define a family $(\mathcal{E}, Q \otimes \mathcal{O}_T)$ of GPS, which induces a T-flat sheaf \mathcal{F} on $X \times T$ such that $\mathcal{F}_0 = F$ and \mathcal{F}_t ($t \neq 0$) are locally free. The determinant $\det(\mathcal{F}|_{X \times T_0})$, where $T_0 = T \setminus \{0\}$, is defined by the sheaf $(\det(\mathcal{E}|_{\tilde{X} \times T_0}) = p_X^*(\tilde{L})$ through the isomorphism

$$\det(q_2^{-1} \cdot q_1) : (\det(\mathcal{E}|_{\tilde{X} \times T_0})|_{p_1}) = (\wedge^r \mathcal{E}_{p_1})|_{T_0} \to (\wedge^r \mathcal{E}_{p_2})|_{T_0} = (\det(\mathcal{E}|_{\tilde{X} \times T_0})|_{p_2},$$

which is a scale product by $\det(Q_2^{-1} \cdot Q_1) = \det(AB)^{-1} \cdot c$. Thus we can choose suitable constant c such that $\det(\mathcal{F}|_{X \times T_0}) = p_X^*(L)$. We are done.

Lemma 1.8. When L is not locally free, $U_X(r, L)^0$ consists of torsion free sheaves of type 1 at each node of X, which is dense in $U_X(r, L)$.

Proof. The proof follows the same idea. For simplicity, we assume that X has only one node p_0. Let F be a torsion free sheaf of rank r and degree d on X with type $t(F) \geq 1$ at p_0. Then

$$\deg(\wedge^r F/torsion) = d - t(F) + 1.$$

Thus $F \in U_X(r, L)^0$ if and only if $t(F) = 1$.

For any $F \in U_X(r, L)$ of type $t(F) > 1$, let $\widetilde{E} = \pi^* F/torsion$, then

$$0 \to F \xrightarrow{d} p_0^* \widetilde{E} \to p_0^* \widetilde{Q} \to 0$$

where $\dim(\widetilde{Q}) = r - t(F)$. Let $\tilde{L} = \pi^* L/torsion$, then $\deg(\tilde{L}) = d - 1$ and $L = \pi_\ast \tilde{L}$. The condition that $F \in U_X(r, L)$ implies that $\det(\widetilde{E}) = \tilde{L}(-n_1p_1 - n_2p_2)$ where $n_i \geq 0$ and $n_1 + n_2 = t(F) - 1$. As in the proof Lemma 1.4, let $h : \tilde{E} \to E$ be the Hecke modifications at p_1 and p_2 such that $\dim(\ker(h_{p_1})) = n_1 + 1$ and $\dim(\ker(h_{p_2})) = n_2$. Then we have $\det(E) = \det(\tilde{E}) \otimes \mathcal{O}_{\tilde{X}}((n_1 + 1)p_1 + n_2p_2) = \tilde{L}(p_1)$, and there is an GPB $(E, E_{p_1} \oplus E_{p_2} \xrightarrow{\phi} Q \to 0)$ such that $\phi(E, Q) = F$, where $q_i : E_{p_i} \to Q$ ($i = 1, 2$) satisfy $\dim(\ker(q_1)) = t(F) - n_1 - 1$ and $\dim(\ker(q_2)) = t(F) - n_2$. The two projections $q_i : E_{p_i} \to Q$ ($i = 1, 2$) are are given by matrices

$$P_1 = \begin{pmatrix} 1 & \ldots & 0 & \ldots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & 1 & \ldots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & \ldots & \ldots & 0 \end{pmatrix}, \quad P_2 = A \cdot \begin{pmatrix} 1 & \ldots & 0 & \ldots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & 1 & \ldots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & \ldots & \ldots & 0 \end{pmatrix} \cdot B$$

where $\operatorname{rank}(P_1) = r - t(F) + n_1 + 1$, $\operatorname{rank}(P_2) = r - t(F) + n_2$. Let $T = \operatorname{Spec}(\mathbb{C}[t])$ and $E = p_X^* E$. Choose deformations $P_i(t)$ of P_i ($i = 1, 2$) as following

$$\begin{pmatrix} 1 & \ldots & 0 & \ldots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & 1 & \ldots & 0 \\ 0 & \ldots & t & \ldots & 0 \\ 0 & \ldots & \ldots & \ldots & t \end{pmatrix}, \quad A \cdot \begin{pmatrix} 1 & \ldots & 0 & \ldots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & 1 & \ldots & 0 \\ 0 & \ldots & 0 & \ldots & 0 \\ 0 & \ldots & \ldots & \ldots & 0 \end{pmatrix} \cdot B$$
Thus \(F \) which induce a morphism \(\vartheta : A \times X \rightarrow N \) sheaf \(\) where the number of \(t \) in \(P_2(t) \) is \(t(F) - n_2 - 1 \). Then we get a family \((E, Q \otimes \mathcal{O}_T) \) of GPB on \(\tilde{X} \times T \), which induces a \(T \)-flat sheaf \(F \) on \(X \times T \) such that \(F_0 = F \) and \(F_t \) \((t \neq 0) \) are torsion free of type 1. To see that \(\wedge^r F_t \cong L \) \((t \neq 0) \), we note that \(\text{det}(E) = p^*_X \tilde{L}(p_1) \) and \(L \) is determined by the GPB

\[
(\text{det}(E) = \tilde{L}(p_1), G \subset \text{det}(E)_{p_1} \oplus \text{det}(E)_{p_2})
\]

where \(G \) is the graph of zero map \(\text{det}(E)_{p_2} \rightarrow \text{det}(E)_{p_1} \). Thus we have a non-trivial morphism \(\wedge^r F_t \rightarrow L \), which must be an isomorphism when \(t \neq 0 \).

Next we will prove that \(\mathcal{U}_X(r, L) \) is the underlying scheme of specialization of the moduli spaces of semistable bundles with fixed determinant. This in particular implies that \(\mathcal{U}_X(r, L) \subset \mathcal{U}_X(r, d) \) is a closed subset. Let \(S = \text{Spec}(R) \) and \(R \) be a discrete valuation ring. Let \(\mathcal{X} \rightarrow S \) be a flat proper family of curves with smooth generic fibre and closed fibre \(\mathcal{X}_0 = X \). Let \(\mathcal{L} \) be a relative torsion free sheaf on \(\mathcal{X} \) of rank one and (relative) degree \(d \) such that \(\mathcal{L}|_{\mathcal{X}} = L \). It is well known that there exists a moduli scheme \(f : \mathcal{U}(r, d)_S \rightarrow S \) such that for any \(s \in S \) the fibre \(f^{-1}(s) \) is the moduli space of semistable torsion free sheaves of rank \(r \) and degree \(d \) on \(\mathcal{X}_s \) (where \(\mathcal{X}_s \) denote the fibre of \(\mathcal{X} \rightarrow S \) at \(s \)). Since \(\mathcal{X} \) is smooth over \(S^0 = S \setminus \{0\} \), there is a family \(\mathcal{U}(r, \mathcal{L}|_{S^0})_{S^0} \rightarrow S^0 \) of moduli spaces of semistable bundles with fixed determinant \(\mathcal{L}|_{\mathcal{X}_s} \) on \(\mathcal{X}_s \) \((s \in S^0) \). We have

\[
\mathcal{U}(r, \mathcal{L}|_{S^0})_{S^0} \subset \mathcal{U}(r, d)_S.
\]

Let \(Z \) be the Zariski closure of \(\mathcal{U}(r, \mathcal{L}|_{S^0})_{S^0} \) inside \(\mathcal{U}(r, d)_S \). We get a flat family

\[
f : Z \rightarrow S
\]

of projective schemes. For any \(0 \neq s \in S \), the fibre \(Z_s \) is the moduli space of semistable bundles on \(\mathcal{X}_s \) with fixed determinant \(\mathcal{L}|_{\mathcal{X}_s} \).

Lemma 1.9. The fibre \(Z_0 \) of \(f : Z \rightarrow S \) at \(s = 0 \) is contained in \(\mathcal{U}_X(r, L) \) as a set.

Proof. We can assume that for any \([F] \in Z_0 \) there is a discrete valuation ring \(A \) and \(T = \text{Spec}(A) \rightarrow S \) such that there is a \(T \)-flat family of torsion free sheaves \(\mathcal{F} \) on \(\mathcal{X}_T = \mathcal{X} \times_S T \rightarrow T \), so that

\[
\wedge^r \mathcal{F}_\eta \cong \mathcal{L}_\eta, \quad \mathcal{F}|_{\mathcal{X}} \cong F.
\]

By Proposition 5.3 of [Se] and its proof (see [Se], it deals with one node curve, but generalization to our case is straightforward since its proof is completely local), there is a birational morphism \(\sigma : \Gamma \rightarrow \mathcal{X}_T \) and a vector bundle \(\mathcal{E} \) on \(\Gamma \) such that \(\sigma_* \mathcal{E} = F \). Moreover, the morphism \(\sigma \) is an isomorphism over \(\mathcal{X}_T \setminus \{x_1, \ldots, x_k\} \). Since \((\wedge^r \mathcal{E})|_{\Gamma_\eta} \cong (\sigma^* \mathcal{L})^\vee |_{\Gamma_\eta} \), note that \((\wedge^r \mathcal{E})^{-1} \otimes (\sigma^* \mathcal{L})^\vee \) is torsion free (thus \(T \)-flat), we can extend the isomorphism into a morphism \(\wedge^r \mathcal{E} \rightarrow (\sigma^* \mathcal{L})^\vee \). Since \(\sigma_* \) and \(\sigma^* \) are adjoint functors, \(\sigma_* \mathcal{O}_\Gamma = \mathcal{O}_{\mathcal{X}_T} \), we have \(\sigma_* ((\sigma^* \mathcal{N})^\vee) = \mathcal{N}^\vee \) for any coherent sheaf \(\mathcal{N} \). Then, by using \(\sigma^* (\mathcal{N}^\vee) = \sigma_* \sigma^* ((\sigma^* \mathcal{N})^\vee) \rightarrow (\sigma^* \mathcal{N})^\vee \), we have a canonical morphism \(\sigma_* ((\sigma^* \mathcal{N})^\vee) \rightarrow \mathcal{N}^\vee \). In particular, there is a canonical morphism

\[
\sigma_* ((\sigma^* \mathcal{L})^\vee) \rightarrow \mathcal{L}^\vee \cong \mathcal{L}
\]

which induce a morphism \(\vartheta : \wedge^r \mathcal{F} = \wedge^r (\sigma_* \mathcal{E}) \rightarrow \sigma_* \wedge^r \mathcal{E} \rightarrow \mathcal{L} \). Modified by some power of the maximal ideal of \(A \), we can assume the morphism \(\vartheta \) being nontrivial on \(X \), which means that \(\vartheta \) is an isomorphism on \(\mathcal{X}_T \setminus \{x_1, \ldots, x_k\} \) since \(X \) is irreducible. Thus \([F] \in \mathcal{U}_X(r, L) \).
Theorem 1.10. \(U_X(r, L) \) is the closure of \(U_X(r, L)^0 \) in \(U_X(r, d) \). When smooth curve \(X_s \) specializes to \(X_0 = X \) and \(L_s \) specializes to \(L \), the moduli spaces \(U_X(r, L) \) of semistable bundles of rank \(r \) with fixed determinant \(L \) on \(X_s \) specializes to an irreducible scheme \(Z_0 \) with \((Z_0)_{\text{red}} \cong U_X(r, L) \).

Proof. Let \(U(r, d)^0 \subset U(r, d)_S \) be the open subscheme of torsion free sheaves of type at most 1. Then there is a well-defined \(S \)-morphism (taking determinant \(\det(\bullet) = \bigwedge^r(\bullet) \))

\[
\det : U(r, d)^0_S \to U(1, d)_S.
\]

The given family of torsion free sheaves \(\mathcal{L} \) on \(X \) of rank one and degree \(d \) gives a \(S \)-point \([\mathcal{L}] \subset U(1, d)_S \). It is clear that

\[
Z^0 := (\det)^{-1}(\{\mathcal{L}\}) \subset Z
\]

and the fibre of \(f|_{Z^0} : Z^0 \to S \) at \(s = 0 \) is irreducible with support \(U_X(r, L)^0 \) (it is also reduced when \(L \) is a line bundle). Thus \(f^{-1}(0) = Z_0 \) contains the closure \(\overline{U_X(r, L)}^0 \) of \(U_X(r, L)^0 \) in \(U_X(r, d) \). On the other hand, by Lemma 1.9, Lemma 1.8 and Lemma 1.7, we have

\[
\overline{U_X(r, L)}^0 \subset (Z_0)_{\text{red}} \subset U_X(r, L) \subset \overline{U_X(r, L)}^0.
\]

Hence \(U_X(r, L) = \overline{U_X(r, L)}^0 = (Z_0)_{\text{red}} \). In particular, the fibre of \(f : Z \to S \) at \(s = 0 \) is irreducible.

§2 Stability and Gieseker functor

Let \(X \) be a stable curve with \(\delta \) nodes \(\{x_1, \ldots, x_\delta\} \). Any semistable curve with stable model \(X \) can be obtained from \(X \) by destablizing the nodes \(x_i \) with chains \(R_i \) (\(i = 1, \ldots, \delta \)) of projective lines. It will be denoted as \(X_\vec{n} \), where \(\vec{n} = (n_1, \ldots, n_\delta) \) and \(n_i \) is the length of \(R_i \) (See [NSe] for the example of \(\delta = 1 \)). Then \(X_\vec{n} \) are the curves which are semi-stably equivalent to \(X \), we use \(\pi : X_\vec{n} \to X \) to denote the canonical morphing contracting \(R_1, \ldots, R_\delta \) to \(x_1, \ldots, x_\delta \) respectively. A vector bundle \(E \) of rank \(r \) on a chain \(\bar{R} = \cup C_i \) of projective lines is called positive if \(a_{ij} \geq 0 \) in the decomposition \(E|_{C_i} = \bigoplus_{j=1}^r \mathcal{O}(a_{ij}) \) for all \(i \) and \(j \). A positive \(E \) is called strictly positive if for each \(C_i \) there is at least one \(a_{ij} > 0 \). \(E \) is called standard (resp. strictly standard) if it is positive (resp. strictly positive) and \(a_{ij} \leq 1 \) for all \(i \) and \(j \) (See [NSe], [Se]).

For any semistable curve \(X_\vec{n} = \cup X_\vec{n}^k \) of genus \(g \geq 2 \), let \(\omega_{X_\vec{n}} \) be its canonical bundle and

\[
\lambda_k = \frac{\deg(\omega_{X_\vec{n}}|_{X_\vec{n}^k})}{2g - 2},
\]

it is easy to see that \(\lambda_k = 0 \) if and only if the irreducible component \(X_\vec{n}^k \) is a component of the chains of projective lines.

Definition 2.1. A sheaf \(E \) of constant rank \(r \) on \(X_\vec{n} \) is called (semi)stable, if for every subsheaf \(F \subset E \), we have

\[
\chi(F) < (\leq) \frac{\chi(E)}{r} \cdot r(F) \quad \text{when} \ r(F) \neq 0, r,
\]

\[
\chi(F) \leq 0 \quad \text{when} \ r(F) = 0, \text{and} \ \chi(F) < \chi(E) \quad \text{when} \ r(F) = r, F \neq E,
\]

where, for any sheaf \(F \), the rank \(r(F) \) is defined to be \(\sum \lambda_k \cdot \text{rank}(F|_{X_\vec{n}^k}) \).

Let \(C = X_\vec{n} \) and \(C_0 = X_{(0,n_2,\ldots,n_\delta)} \) (namely, \(C_0 \) is obtained from \(C \) by contracting the chain \(R_0 = l \cup \cup_{i=2}^\delta \mathbb{P}^1 \) of projective lines \(\mathbb{P}^1 \)).
Lemma 2.2. Let $\pi : C \to C_0$ be the canonical morphism, let E be a torsion free sheaf that is locally free on R_1. If $E|_{R_1}$ is positive and π_*E is stable (semistable) on C_0, then E is stable (semistable) on C. In particular, a vector bundle on $X_{\tilde{\pi}}$ is stable (semistable) if $E|_{R_i}$ ($1 \leq i \leq \delta$) are positive and π_*E is stable (semistable) on X, where $\pi : X_{\tilde{\pi}} \to X$ is the canonical morphism contracting R_1, \ldots, R_δ to x_1, \ldots, x_δ.

Proof. Let $C = \tilde{C}_0 \cup R_1$ and $\tilde{C}_0 \cap R_1 = \{p_1, p_2\}$, where $\pi : \tilde{C}_0 \to C_0$ is the partial normalization of C_0 at x_1. Let $\tilde{E} = E|_{\tilde{C}_0}$, $E = E|_{R_1}$. Then we have exact sequence

\begin{align*}
0 & \to E'(-p_1 - p_2) \to E \to \tilde{E} \to 0.
\end{align*}

If $E|_{R_1}$ is positive and π_*E stable (semistable), then $\pi_*E'(-p_1 - p_2) = 0$. For any $E_1 \subset E$, consider the sequence (2.1), let $\tilde{E}_1 \subset \tilde{E}$ be the image of E_1 in \tilde{E} and $K \subset E'(-p_1 - p_2)$ be the kernel of $E_1 \to \tilde{E}_1$, then we have

\begin{align*}
0 & \to \pi_*E_1 \to \pi_*\tilde{E}_1 \to R^1\pi_*K = x_1H^1(K),
\end{align*}

and $\chi(E_1) = \chi(\tilde{E}_1) + \chi(K) = \chi(\pi_* \tilde{E}_1) - h^1(K) \leq \chi(\pi_* E_1)$. Since $r(E_1) = r(\pi_* E_1)$,

\begin{align*}
\chi(E_1) - \frac{\chi(E)}{r}r(E_1) & \leq \chi(\pi_* E_1) - \frac{\chi(\pi_* E)}{r}r(\pi_* E_1).
\end{align*}

Thus we will be done if we can check that $\chi(E_1) < \chi(E)$ when $r(E_1) = r(E)$ and $E_1 \neq E$. In this case, the quotient $E_2 = E/E_1$ is torsion outside the chains $\{R_i\}$. If $E_2|_R = 0$, where $R = \cup R_i$, then E_2 is a nontrivial torsion and we are done. If $E_2|_R \neq 0$, then $\chi(E_2) \geq \chi(E_2|_R)$. Since $E|_R$ is positive and the surjective map

\begin{align*}
E|_R = \bigoplus_{j=1}^r L_j \to E_2|_R \to 0,
\end{align*}

we have $H^1(E_2|_R) = 0$ and there is at least one line bundle L_j such that $L_j \hookrightarrow E_2|_R$ on a sub-chain. Thus $\chi(E_2) \geq \chi(E_2|_R) = h^0(E_2|_R) > 0$ and $\chi(E_1) < \chi(E)$.

Remark 2.3. It is easy to show that if E is semistable on $X_{\tilde{\pi}}$, then E is standard on the chains and π_*E is torsion free. It is expected that (semi)stability of E also implies the (semi)stability of $\pi_* E$.

Definition 2.4. Let $\mathcal{C} \to S$ be a flat family of stable curves of genus $g \geq 2$. The associated functor \mathcal{G}_S (called the Gieseker functor) is defined as follows:

$$
\mathcal{G}_S : \{S \text{- schemes}\} \to \{\text{sets}\},
$$

where $\mathcal{G}_S(T) =$ set of closed subschemes $\Delta \subset \mathcal{C} \times_S T \times_S \text{Gr}(m, r)$ such that

1. the induced projection map $\Delta \to T \times_S \text{Gr}(m, r)$ over T is a closed embedding over T. Let \mathcal{E} denote the rank r vector bundle on Δ which is induced by the tautological rank r quotient bundle on $\text{Gr}(m, r)$.

2. the projection $\Delta \to T$ is a flat family of semistable curves and the the projection $\Delta \to \mathcal{C} \times_T T$ over T is the canonical morphism $\pi : \Delta \to \mathcal{C} \times_S T$ contracting the chains of projective lines.

3. the vector bundles $\mathcal{E}_t = \mathcal{E}|_{\Delta_t}$, on Δ_t ($t \in T$) are of rank r and degree $d = m + r(g - 1)$. The quotients $\mathcal{O}_{\Delta_t}^m \to \mathcal{E}_t$ induce isomorphisms

$$
H^0(\mathcal{O}_{\Delta_t}^m) \cong H^0(\mathcal{E}_t).
$$
Lemma 2.5 ([Gi],[NSe],[Se]). The functor G is represented by a $PGL(m)$-stable open subscheme $Y \rightarrow S$ of the Hilbert scheme. The fibres Y_s ($s \in S$) are reduced, and the singularities of Y_s are products of normal crossings. A point $y \in Y_s$ is smooth if and only if the corresponding curve Δ_y is a stable curve, namely all chains in Δ_y are of length 0.

Let $Quot$ be the Quot-scheme of rank r and degree d quotiens of O^m_C on $C \rightarrow S$ (we choose the canonical polarization on any flat family $C \rightarrow S$ of stable curves of genus $g \geq 2$). There is a universal quotient

$$O^m_{C \times_S Quot} \rightarrow F \rightarrow 0$$
on $C \times_S Quot \rightarrow Quot$. Let $R \subset Quot$ be the $PGL(m)$-stable open subscheme consisting of $q \in Quot$ such that the quotient map $O^m_{C \times_S \{q\}} \rightarrow F_q \rightarrow 0$ induces an isomorphism $H^0(O^m_{C \times_S \{q\}}) \cong H^0(F_q)$ (thus $H^1(F_q) = 0$). We can assume that d is large enough so that all semistable torsion free sheaves of rank r and degree d on $C \rightarrow S$ can be realized as points of R. Let R^s (R^{ss}) be the open set of stable (semistable) quotients, and let W be the closure of R^{ss} in $Quot$. Then there is an ample $PGL(m)$-line bundle $O_W(1)$ on W such that R^s (resp. R^{ss}) is precisely the set of GIT stable (resp. GIT semistable) points. Thus the moduli scheme $U(r,d) \rightarrow S$ is the GIT quotient of $R^{ss} \rightarrow S$.

Let $\Delta \subset C \times_S Y \times_S Gr(m,r)$ be the universal object of $G_S(Y)$, and

$$O^m_{\Delta} \rightarrow E \rightarrow 0$$

be the induced quotient on Δ by the universal quotient on Grassmannian over Y. Then there is a commutative diagram over S

$$\begin{array}{ccc}
\Delta & \xrightarrow{\pi} & C \times_S Y \\
\downarrow & & \downarrow \\
Y & \cong & Y
\end{array}$$

Lemma 2.6. If S is a smooth scheme, then $\pi_*O_\Delta = O_{C \times_S Y}$ and there is a birational S-morphism

$$\theta : Y \rightarrow R$$

such that pullback of the universal quotient $O^m_{C \times_S R} \rightarrow F \rightarrow 0$ (by $id \times \theta$) is

$$O^m_{C \times_S Y} \rightarrow \pi_*E \rightarrow 0.$$

Proof. Similar with Proposition 6 and Proposition 9 of [NSe] (See also [Se]).

Lemma 2.7. Let $Y^s = \theta^{-1}(R^s)$ and $Y^0 = \theta^{-1}(R^{ss})$. Then

$$\theta : Y^s \rightarrow R^s, \quad \theta : Y^0 \rightarrow R^{ss}$$

are proper birational morphisms.

Proof. The proof in [NSe] and [Se] for irreducible one node curves is completely local. Thus can be generalized to general stable curves.
There is a $PGL(m)$-equivariant factorisation (See [NSe], [Se], [Sch])

$$
\begin{align*}
\mathcal{Y}^s & \xrightarrow{\iota} \mathcal{Y}^0 \xrightarrow{1} \mathcal{H} \\
\theta & \downarrow \quad \theta \downarrow \quad \lambda \downarrow \\
\mathcal{R}^s & \xrightarrow{1} \mathcal{R}^{ss} \xrightarrow{1} \mathcal{W}
\end{align*}
$$

and linearisation $\mathcal{O}_\mathcal{H}(1)$, where ι is open embedding. Let $L_a = \lambda^*(\mathcal{O}_\mathcal{Y}(a)) \otimes \mathcal{O}_\mathcal{H}(1)$. Then, for a large enough, the set $\mathcal{H}(L_a)^{ss} (\mathcal{H}(L_a)^s)$ of GIT-semistable (stable) points satisfies: (i) $\mathcal{H}(L_a)^{ss} \subset \lambda^{-1}(\mathcal{R}^{ss})$, (ii) $\mathcal{H}(L_a)^s = \lambda^{-1}(\mathcal{R}^s)$. By Lemma 2.7, θ is proper, we have $\lambda^{-1}(\mathcal{R}^{ss}) = \mathcal{Y}^0$ and $\lambda^{-1}(\mathcal{R}^s) = \mathcal{Y}^s$. Thus

$$
\mathcal{H}(L_a)^s = \mathcal{Y}^s = \theta^{-1}(\mathcal{R}^s), \quad \mathcal{H}(L_a)^{ss} \subset \mathcal{Y}^0 = \theta^{-1}(\mathcal{R}^{ss}).
$$

Notation 2.8. $\mathcal{G}(r,d)_S = \mathcal{H}(L_a)^{ss}/PGL(m)$ is called (according to [NSe]) the generalized Gieseker semistable moduli space (or Gieseker space for simplicity). It is intrinsic by recent work [Sch].

Let $y = (\Delta_y, O^m_{\Delta_y} \rightarrow \mathcal{E}_y \rightarrow 0) \in \mathcal{Y}^0$. Obviously, for $y \in \mathcal{H}(L_a)^{ss} \setminus \mathcal{H}(L_a)^s$, we have to add extra conditions besides the semistability of $\pi_*\mathcal{E}_y$. Alexander Schmitt ([Sch]) recently figure out a sheaf theoretic condition (H_3) (See Definition 2.2.10 in [Sch]) for $\pi_*\mathcal{E}_y$, which is a sufficient and necessary condition for $y \in \mathcal{H}(L_a)^{ss}$. The pair (C, E) of a semistable curve C with a vector bundle E is called H-(semi)stable (See [Sch]) if E is strictly positive on the chains of projective lines, and the direct image (on stable model of C) π_*E is semistable satisfying the condition (H_3).

Theorem 2.9. The projective S-scheme $\mathcal{G}(r,d)_S \rightarrow S$ universally corepresents the moduli functor $\mathcal{G}(r,d)^\sharp_S : \{S\text{-schemes}\} \rightarrow \{\text{sets}\}$,

$$
\mathcal{G}(r,d)^\sharp_S(T) = \begin{cases}
\text{Equivalence classes of pairs $(\Delta_T, \mathcal{E}_T)$, where $\Delta_T \rightarrow T$ is a flat family of semistable curves with stable model $C \times_S T \rightarrow T$ and \mathcal{E}_T is an T-flat sheaf such that for any $t \in T$, $(\mathcal{E}_T)|_{\Delta_t}$ is H-(semi)stable vector bundle of rank r and degree d.}
\end{cases}
$$

We call that $(\Delta_T, \mathcal{E}_T)$ is equivalent to $(\Delta'_T, \mathcal{E}'_T)$ if there is an T-automorphism $g : \Delta_T \rightarrow \Delta'_T$, which is identity outside the chains, such that \mathcal{E}_T and $g^*\mathcal{E}'_T$ are fibrewisely isomorphic.

§3 A GIESEKER TYPE DEGENERATION FOR SMALL RANK

Let $\mathcal{C} \rightarrow S$ be a flat family of irreducible stable curves and \mathcal{L} be a line bundle on \mathcal{C} of relative degree d. We simply call the families in $\mathcal{G}(r,d)^\sharp_S(T)$, the families of semistable Gieseker bundles parametrized by T.

Definition 3.1. The subfunctor $\mathcal{G}_\mathcal{L} : \{S\text{-schemes}\} \rightarrow \{\text{sets}\}$ of \mathcal{G} is defined to be

$$
\mathcal{G}_\mathcal{L}(T) = \begin{cases}
\Delta \in \mathcal{G}(T) \text{ such that for any } t \in T \text{ there is a morphism } \det(\mathcal{E}|_{\Delta_t}) \rightarrow \pi^*\mathcal{L}_t \text{ on } \Delta_t \text{ which is an isomorphism outside the chain of \mathbb{P}^1s}.
\end{cases}
$$
Definition 3.2. The moduli functor $G(r, L)^S_\mathfrak{d}$ of semistable Gieseker bundles with a fixed determinant is defined to be

$$G(r, L)^S_\mathfrak{d}(T) = \left\{ (\Delta_t, E_T) \in G(r, d)^S_\mathfrak{d}(T) \text{ such that for any } t \in T \right. $$

$$\text{there exists a morphism } det(E_T|_{\Delta_t}) \to \pi^*L_t \text{ on } \Delta_t \left. \right\}.$$

When $S = Spec(\mathbb{C})$, the above defined functor is denoted by $G(r, L)^\sharp$.

Let $S = Spec(D)$ where D is a discrete valuation ring. Let $C \to S$ be a family of curves with smooth generic fibre and closed fibre $C_0 = X$. Assume that X is irreducible with only one node p_0. Then we have the following result that is similar with Lemma 1.19 of [Vi].

Lemma 3.3. When $r \leq 3$, or $r = 4$ but the normalization \tilde{X} of X is not hyperelliptic, the moduli functor $G(r, L)^S_\mathfrak{d}$ is a locally closed subfunctor of $G(r, d)^S_\mathfrak{d}$. More precisely, for any family $(\Delta_T, E_T) \in G(r, d)^S_\mathfrak{d}(T)$, there exists a locally closed subscheme $T' \subset T$ such that a morphism $T_1 \to T$ of schemes factors through $T_1 \to T' \to T$ if and only if

$$(\Delta_T \times_T T_1, pr_1^*E_T) \in G(r, L)^S_\mathfrak{d}(T_1).$$

Similarly, G_L is a locally closed subfunctor of G.

Proof. Let $\pi : \Delta_T \to C \times_S T$ be the birational morphism contracting the chain of rational curves and L_T be the pullback π^*L to Δ_T. Let $f : \Delta_T \to T$ be the family of semistable curves (thus $f_*(\mathcal{O}_{\Delta_T}) = \mathcal{O}_T$). Then the condition that defines the subfunctor is equivalent to the existence of a global section of $det(E_T|_{\Delta_t})^{-1} \otimes \pi^*L_t$ which is nonzero outside the chain $R_t \subset \Delta_t$ of \mathbb{P}^1s. There is a complex

$$(3.1)$$

$$K_T^\bullet : k_T^0 \xrightarrow{\delta_T} k_T^1$$

of locally free sheaves on T such that for any base change $T_1 \to T$ the pullback of K_T^\bullet to T_1 computes the direct image of $det(E_{T_1})^{-1} \otimes L_{T_1}$ (which equals to the kernel of $\delta_{T_1} : k_{T_1}^0 \to k_{T_1}^1$). There is a canonical closed subscheme of T (defined locally by some minors of δ_T) where δ_T is not injective. Replace T by this closed subscheme, we assume that $f_*(det(E_T)^{-1} \otimes \pi^*L) \neq 0$. Let $U \subset T$ be the largest open subscheme such that for any $t \in U$

$$\dim(H^0(\Delta_t, det(E_T|_{\Delta_t})^{-1} \otimes \pi^*L_t)) = 1.$$

Let $Y \subset \Delta_U$ be the support of the cokernel of the map

$$f^*f_*(det(E_T)^{-1} \otimes \pi^*L) \to det(E_T)^{-1} \otimes \pi^*L.$$

Let $U_0 \subset U$ be the fibre of $U \to S$ at the closed point $0 \in S$. Then

$$\pi^{-1}(\{p_0\} \times U_0) \subset \Delta_U$$

consists of the chains of \mathbb{P}^1s. Note that $\pi(Y) \subset X \times U_0$, let $Y' \subset Y$ be the union of irreducible components Y_i such that $p_1(\pi(Y_i)) \neq p_0$ where $p_1 : X \times U_0 \to X$ is the projection. Then we define that $T' = U \setminus f(Y')$.

Let $T_1 \to T$ be a morphism. If it factors through $T_1 \to T' \to T$, it is clear

$$(\Delta_T \times_T T_1, pr_1^*\mathcal{E}_T) \in \mathcal{G}(r, \mathcal{L})^\sharp_T(T_1)$$

since $t \in T'$ if and only if dim($H^0(\Delta_t, \text{det}(\mathcal{E}_T|_{\Delta_t})^{-1} \otimes \pi^*\mathcal{L}_t)$) = 1 and

$$\mathcal{O}_{\Delta_t} \cong f^*f_*(\text{det}(\mathcal{E}_T)^{-1} \otimes \pi^*\mathcal{L}|_{\Delta_t}) \to \text{det}(\mathcal{E}_T|_{\Delta_t})^{-1} \otimes \pi^*\mathcal{L}_t$$

is an isomorphism outside the chain of \mathbb{P}^1s. On the other hand, if

$$(\Delta_T \times_T T_1, pr_1^*\mathcal{E}_T) \in \mathcal{G}(r, \mathcal{L})^\sharp_T(T_1),$$

then it factors firstly through the closed subscheme of T where H^0 do not vanish. Then we have to show that the image of T_1 falls in the open set U, here we need the assumptions that $r \leq 3$, or $r = 4$ but \tilde{X} is not hyperelliptic. To check it, let $t \in T_1$, then dim($H^0(\Delta_t, \text{det}(\mathcal{E}_T|_{\Delta_t})^{-1} \otimes \pi^*\mathcal{L}_t)$) = 1 when Δ_t has no chain of \mathbb{P}^1s. If $\Delta_t = \tilde{X} \cup R$ has a chain R, let $\{p_1, p_2\} = \tilde{X} \cap R$, then

$$H^0(\Delta_t, \text{det}(\mathcal{E}_T|_{\Delta_t})^{-1} \otimes \pi^*\mathcal{L}_t) = H^0(\tilde{X}, (\text{det}(\mathcal{E}_T|_{\Delta_t})^{-1} \otimes \pi^*\mathcal{L}_t)|_{\tilde{X}}(-p_1 - p_2)),$$

which has at most dimension 1 since deg($\text{det}(\mathcal{E}_T|_{\Delta_t})^{-1} \otimes \pi^*\mathcal{L}_t)|_{\tilde{X}}(-p_1 - p_2)$) ≤ 1 when $r \leq 3$, or deg($\text{det}(\mathcal{E}_T|_{\Delta_t})^{-1} \otimes \pi^*\mathcal{L}_t)|_{\tilde{X}}(-p_1 - p_2)$ ≤ 2 when $r = 4$ but \tilde{X} is not hyperelliptic. Thus the morphism $T_1 \to T$ factors through $T_1 \to U$, then it factors through $T_1 \to T'$ by the definition of functor.

For simplicity, we assume that r and d are coprime $(r, d) = 1$. In this case, the functor $\mathcal{G}(r, d)_{/S}$ is representable by an irreducible Cohen-Macaulay S-scheme $\mathcal{G}(r, d)_S \to S$ (See [NSe]), whose fibres are reduced, irreducible projective schemes with at most normal crossing singularities. Moreover, there is a canonical proper birational S-morphism

$$(3.2) \quad \theta : \mathcal{G}(r, d)_S \to \mathcal{U}(r, d)_S,$$

where $\mathcal{U}(r, d)_S \to S$ is the family (associated to $\mathcal{C} \to S$) of moduli spaces of semistable torsion free sheaves with rank r and degree d.

By the above Lemma 3.3, the functor $\mathcal{G}(r, \mathcal{L})^\sharp_{/S}$ is representable by a locally closed subscheme $\mathcal{G}(r, \mathcal{L})_S \subset \mathcal{G}(r, d)_S$ when $r \leq 3$, or $r = 4$ but \tilde{X} is not hyperelliptic.

Lemma 3.4. $\mathcal{G}(r, \mathcal{L})_S \subset \mathcal{G}(r, d)_S$ is a closed subscheme of $\mathcal{G}(r, d)_S$. In fact, for the closed fibre $\mathcal{C}_0 = X$, we have

$$(3.3) \quad \mathcal{G}(r, \mathcal{L})^\sharp_{/S}(\{0\}) = \theta^{-1}(\mathcal{U}_X(r, \mathcal{L}_0)).$$

Proof. It is enough to prove (3.3). For any $(\Delta, E) \in \mathcal{G}(r, d)_{/S}(\{0\})$, let

$$\pi : \Delta \to X$$

be the morphism contracting the chain R of \mathbb{P}^1s. Then, by definition of θ,

$$\theta((\Delta, E)) = \pi_*(E) \in \mathcal{U}_X(r, d).$$
Note that F has type of $t(F) = \deg(E|_R)$ (See [NSe]), then $\pi_*(\text{det}(E))$ has torsion of dimension $t(F) - 1$ supported at the node $p_0 = \pi(R)$. There is a natural morphism

$$\wedge^r F = \wedge^r (\pi_* E) \to \pi_*(\wedge^r E) = \pi_*(\text{det}(E)),$$

which is an isomorphism outside p_0. Thus we have an isomorphism

$$\wedge^r F/\text{torsion} \cong \pi_*(\text{det}(E))/\text{torsion}$$

since $\deg(\wedge^r F/\text{torsion}) = \deg(\pi_*(\text{det}(E))/\text{torsion}) = d - t(F) + 1$. By using this isomorphism, it is clear that

$$(\Delta, E) \in \mathcal{G}(r, \mathcal{L})_S^0(\{0\}) \iff \theta((\Delta, E)) \in \mathcal{U}_X(r, d).$$

$\mathcal{G}(r, \mathcal{L})_S$ is in fact a degeneracy loci of a map of vector bundles. To study it, we recall some standard results (See [FP] for example). Let $\varphi : F \to E$ be a morphism of vector bundles on a variety M with $rk(F) = m$ and $rk(E) = n$. The closed subsets of M

$$D_r(\varphi) = \{ x \in M \mid rank(\varphi_x) \leq r \}$$

are the so called degeneracy locus of φ. We collect the results into

Lemma 3.5. The codimension of each irreducible component of $D_r(\varphi)$ is at most $(n - r)(m - r)$. If M is Cohen-Macaulay and the codimension of each irreducible of $D_r(\varphi)$ equals to $(n - r)(m - r)$, then $D_r(\varphi)$ is Cohen-Macaulay.

In (3.1), $rk(K^0_T) - rk(K^0_U) = g - 1$ since $\text{det}(\mathcal{E}_T) \otimes \mathcal{L}_T$ has relative degree 0. Replace T by an open set $U \subset \mathcal{G}(r, d)_S$, one sees that

$$\mathcal{G}(r, \mathcal{L})_S = D_{k_0}(\delta_U), \quad k_0 = rk(K^0_U) - 1.$$

In what follows, we will use $\text{Codim}(\bullet)$ to denote: codimension of each irreducible component of \bullet. Thus $\text{Codim}(\mathcal{G}(r, \mathcal{L})_S) \leq g$, and it is Cohen-Macaulay if

$$\text{Codim}(\mathcal{G}(r, \mathcal{L})_S) = g.$$

In particular, let X be the singular fibre of $\mathcal{C} \to S$ and $L = \mathcal{L}|_X$. The closed fibre $G(r, d)$ of $\mathcal{G}(r, d)_S \to S$ is the so called generalized Gieseker moduli space (associated to X) of [NSe], which has normal crossing singularities. The closed fibre of $\mathcal{G}(r, \mathcal{L})_S \to S$, denoted by $G(r, L)$, is the degeneracy loci

$$D_{k_0}(\delta_{U_0}) \subset U_0 \subset G(r, d)$$

of $\delta_{U_0} : K^0_{U_0} \to K^1_{U_0}$, where U_0 is the closed fibre of $U \to S$. Thus

$$\text{Codim}(G(r, L)) \leq g$$

and $G(r, L)$ is Cohen-Macaulay if $\text{Codim}(G(r, L)) = g$. When $r \leq 3$, or $r = 4$ but \widetilde{X} is not hyperelliptic, $G(r, L) \subset G(r, d)$ is a closed subscheme that represents a moduli functor (See Theorem 3.7 for definition).
Lemma 3.6. Codim(G(r, L)) = g. In particular, G(r, L)_S \subset G(r, d)_S is an irreducible, reduced, Cohen-Macaulay subscheme of codimension g.

Proof. Assume that Codim(G(r, L)) = g. Note that there is a unique irreducible component of G(r, L)_S with codimension g dominates S since C \to S has smooth generic fibre. Thus other irreducible components (if any) of G(r, d)_S will fall in G(r, L) and their codimension in G(r, d) are at most g - 1 since G(r, d)_S \to S is flat over S. This contradicts Codim(G(r, L)) = g. Hence G(r, L)_S \subset G(r, d)_S is an irreducible, Cohen-Macaulay subscheme of codimension g. It has to be reduced since it is Cohen-Macaulay and has a reduced open subscheme.

Now we prove that Codim(G(r, L)) = g in G(r, d). Let J^0_X be the Jacobian of line bundles of degree 0 on X. Consider a morphism

\(\phi : G(r, L) \times J^0_X \to G(r, d) \)

that sends any \(\{(\Delta, E), N\} \in G(r, L) \times J^0_X \) to \((\Delta, E \otimes \pi^*N) \in G(r, d) \), where \(\pi : \Delta \to X \) is the morphism contracting the chain \(R \) of \(\mathbb{P}^1 \)'s. We claim that

\[\dim \phi^{-1}((\Delta, E_0)) \leq 1, \quad \text{for any } (\Delta, E_0) \in G(r, d). \]

Let \(\sigma : J^0_X \to J^0_X \) be the morphism induced by pulling back line bundles on X to its normalization \(\tilde{X} \). The fibres of \(\sigma \) are of dimension 1. On the other hand, it is easy to see that the projection \(G(r, L) \times J^0_X \to J^0_X \) induces an injective morphism

\[\rho : \phi^{-1}((\Delta, E_0)) \to J^0_X. \]

To prove the claim, it is enough to show that the image \(\text{Im}(\rho) \) falls in a finite number of fibres of \(\sigma \). Note that, for any \(\{(\Delta, E), N\} \in \phi^{-1}((\Delta, E_0)) \), we have

\[\text{det}(E) \otimes \pi^*(N^\otimes r) = \text{det}(E_0) \]

on \(\Delta \). Recall that, by definition of \(G(r, L) \), there is a morphism \(\text{det}(E) \to \pi^*L \) which is an isomorphism outside the chain \(R \) of \(\mathbb{P}^1 \)'s. We have

\[\text{det}(E)|_{\tilde{X}} = \pi^*L|_{\tilde{X}}(n_1p_1 - n_2p_2) = \tilde{L}(n_1p_1 - n_2p_2), \]

where \(\tilde{L} \) is the pullback of \(L \) to \(\tilde{X} \), \(n_1, n_2 \) are nonnegative integers such that

\[n_1 + n_2 = \deg(E_0|_R) = t(F_0), \quad F_0 := \pi_*(E_0). \]

Thus \(\sigma \circ \rho((\{(\Delta, E), N\})) = \sigma(N) = \tilde{N} \in J^0_X \) falls in the set

\[\{\tilde{N} \in J^0_X | \tilde{N}^\otimes r = \text{det}(E_0)|_{\tilde{X}} \otimes \tilde{L}^{-1}(n_1p_1 + n_2p_2)\}, \]

which is clearly a finite set. This proves that fibres of \(\phi \) are at most dimension 1.

There is a unique irreducible component \(G(r, L)^0 \) of \(G(r, L) \) containing \(\Delta \cong X \), which has codimension \(g \). For any other irreducible component (if any), say \(G(r, L)^+ \), all of \(\Delta s \) in \(G(r, L)^+ \) must have chain (with positive length) of \(\mathbb{P}^1 \)'s. Then the image \(\phi(G(r, L)^+ \times J^0_X) \) has to fall in a subvariety of \(G(r, d) \), which has codimension at least 1. Thus \(\dim(G(r, L)^+ \times J^0_X) \leq \dim G(r, d) \), that is,

\[\text{Codim}(G(r, L)^+) \geq g. \]

By Lemma 3.5, \(G(r, L) \) is Cohen-Macaulay of pure codimension \(g \).
Theorem 3.7. Let X be an irreducible curve of genus $g \geq 2$ with only one node p_0. Let L be a line bundle of degree d on X. Assume that $r \leq 3$, or $r = 4$ and the normalization of X is not hyperelliptic. Then, when $(r, d) = 1$, we have

1. There is a Cohen-Macaulay projective scheme $G(r, L)$ of pure dimension $(r^2 - 1)(g - 1)$, which represents the moduli functor

$$G(r, L)^\sharp : (\mathbb{C} - \text{schemes}) \to (\text{sets})$$

which is defined in Definition 3.2.

2. Let $C \to S$ be a proper family of curves over a discrete valuation ring, which has smooth generic fibre C_η and closed fibre $C_0 \cong X$. If there is a line bundle \mathcal{L} on C such that $\mathcal{L}|_{C_0} \cong L$. Then there exists an irreducible, reduced, Cohen-Macaulay S-projective scheme $f : G(r, \mathcal{L})_S \to S$ such that

$$f^{-1}(0) \cong G(r, L), \quad f^{-1}(\eta) \cong U_{C_\eta}(r, \mathcal{L}_\eta).$$

Moreover $G(r, \mathcal{L})_S$ represents the moduli functor $G(r, \mathcal{L})^\sharp_S$ in Definition 3.2.

3. There exists a proper birational S-morphism $\theta : G(r, \mathcal{L})_S \to U(r, \mathcal{L})_S$ which induces a birational morphism $\theta : G(r, L) \to U_X(r, L)$.

References

[Fa1] G. Faltings, A proof for the Verlinde formula, J. Algebraic Geometry 3 (1994), 347–374.

[Fa2] G. Faltings, Moduli-stacks for bundles on semistable curves, Math. Ann. 304 (1996), 489–515.

[FP] W. Fulton and P. Pragacz, Schubert varieties and degeneracy loci, LNM, 1689, Springer-Verlag Berlin-Heidelberg, 1998.

[Gi] D. Gieseker, A degeneration of the moduli space of stable bundles, J. Differential Geom. 19 (1984), 173–206.

[Ka] Ivan Kausz, A Gieseker type degeneration of moduli stacks of vector bundles on curves, arXiv:math.AG/0201197 (2002), 1–59.

[KW] E. Kunz and R. Waldi, Regular differential forms, Contemporary Math. 79.

[NR] M.S. Narasimhan and T.R. Ramadas, Factorisation of generalised theta functions I, Invent. Math. 114 (1993), 565–623.

[NS] D.S. Nagaraj and C.S. Seshadri, Degenerations of the moduli spaces of vector bundles on curves I, Proc. Indian Acad. Sci. (Math. Sci.) 107 (1997), 101–137.

[NSe] D.S. Nagaraj and C.S. Seshadri, Degenerations of the moduli spaces of vector bundles on curves II, Proc. Indian Acad. Sci. (Math. Sci.) 109 (1999), 165–201.

[Sc] M. Schessinger, Functors of Artin rings, Trans. of AMS. 130 (1968), 208–222.

[Sch] A. Schmitt, The Hilbert compactification of the universal moduli space of semistable vector bundles over smooth curves, Preprint (2002).

[Se] C.S. Seshadri, Degenerations of the moduli spaces of vector bundles on curves, ICTP Lecture Notes 1 (2000).

[Si] C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety I, I.H.E.S. Publications Mathématiques 79 (1994), 47–129.

[Su1] Xiaotao Sun, Degeneration of moduli spaces and generalized theta functions, J. Algebraic Geom. 9 (2000), 459-527.

[Su2] Xiaotao Sun, Degeneration of SL(n)-bundles on a reducible curve, Proceedings Algebraic Geometry in East Asia, Japan (2001).

[Te] M. Teixidor i Bigas, Compactifications of moduli spaces of (semi)stable bundles on singular curves: two points of view, Dedicated to the memory of Fernando Serrano. Collect. Math. 49 (1998), 507–548.
[Vi] Eckart Viehweg, *Quasi-projective moduli for polarized manifolds*, Ergebnisse der Mathematik und ihrer Grenzgebiete; 3. Folge, Bd. 30, Springer-Verlag Berlin-Heidelberg, 1995.

Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China
E-mail address: xsun@math08.math.ac.cn

Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong
E-mail address: xsun@maths.hku.hk