The predictor factors for positive surgical margins in patients of prostate cancer after radical prostatectomy: a systematic review and meta-analysis

CURRENT STATUS: POSTED

Lijin Zhang
jiangyin people's hospital

Corresponding Author

Bin Wu
jiangyin people's hospital

Zhenlei Zha
jiangyin people's hospital

Wei Qu
jiangyin people's hospital

Hu Zhao
jiangyin people's hospital

Jun Yuan
jiangyin peoples' hospital

Yejun Feng
jiangyin people's hospital

DOI:
10.21203/rs.2.10914/v1

SUBJECT AREAS
Cancer Biology Oncology

KEYWORDS
prostate cancer; radical prostatectomy; positive surgical margins; risk factors; meta-analysis
Abstract

Background and objectives

The previous studies had demonstrated that positive surgical margins (PSMs) was an independent predictive factor for biochemical and oncologic outcome in patients with prostate cancer (PCa). This study aimed to conduct a meta-analysis to identify predictive factors for PSMs after radical prostatectomy (RP).

Methods

We selected eligible studies via electronic database of PubMed, Web of Science and EMBASE from inception to February 2019. The risk factors for PSMs following RP were identified. The pooled estimates of standardized mean differences (SMDs)/odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. A fixed-effect or random-effect was used to pool the estimates. Subgroup analyses were performed to explore the reasons for heterogeneity.

Results

Twenty-two studies including 44,144 patients with PCa were eligible for further analysis. The results showed that PSMs were significantly associated with preoperative PSA (pooled SMD = 0.44; 95% CI: 0.35–0.54; P < 0.001), biopsy Gleason Score (< 6/ ≥ 7) (pooled OR = 1.51; 95% CI: 1.26–1.81; P < 0.001), pathological Gleason Score (< 6/ ≥ 7) (pooled OR = 2.34; 95% CI: 2.02–2.71; P < 0.001), pathological stage (< T2/ ≥ T2) (pooled OR = 4.68; 95% CI: 3.90–5.61; P < 0.001), positive lymph node (pooled OR = 3.08; 95% CI: 1.94–5.01; P < 0.001), extraprostatic extension (pooled OR = 4.86; 95% CI: 3.11–7.57; P < 0.001) and seminal vesicle invasion (pooled OR = 3.56; 95% CI: 2.26–5.62; P < 0.001). However, we found that age (pooled SMD = -0.01; 95% CI: -0.07–0.04; P = 0.656), body mass index (pooled SMD = -0.06; 95% CI: -0.03–0.15; P = 0.173), prostate volume (pooled SMD = -0.28; 95% CI: -0.62–0.05; P = 0.097) and nerve sparing (pooled OR = 0.94; 95% CI: 0.68–1.29; P = 0.705) had no effect on PSMs after RC. Besides, the findings in this study were demonstrated to be reliable by our sensitivity and subgroup analysis.

Conclusions

preoperative PSA, biopsy Gleason Score, pathological Gleason Score, pathological stage, positive
lymph node, extraprostatic extension and seminal vesicle invasion are independent predictors of PSMs after RC. These results may be useful to risk stratification and individualized therapy in PCa patients.

Background

Prostate cancer (PCa) is the most common type of newly diagnosed malignancy and a leading cause of cancer-related death in males worldwide[1]. With the widely used prostate-specific antigen (PSA) screening test, the majority of PCa patients are diagnosed in the early stages[2]. As a result, radical prostatectomy (RP) with bilateral pelvic lymph node dissection has been the gold standard for the treatment of patients with localized PCa[3]. The goal of RP for PCa is complete prostate extirpation, despite the favorable cancer control associated with RP, approximately 25% of all patients experience biochemical recurrence (BCR)[4]. A number of factors have been reported to be associated with BCR after RP, and one adverse risk factor is the presence of positive surgical margins (PSMs).

PSMs is defined as an extension of the cancer cells to the inked cut surface of the RP specimen[5]. Our previous findings have indicate that PSMs are significantly associated with BCR and poor survival outcome after RC[6, 7]. However, no systematic research studies have shown which factors that may affecting the margin of PCa after RC. Conventional parameters for risk estimation of PSMs are mainly based on the following factors, including preoperative PSA (p-PSA), pathological T stage, pathological Gleason Score (GS) and multiple positive biopsy cores[8-11]. However, the prognostic value of these predictive factors is limited. Besides, PSMs may affected by remnant normal tissue and inadequate surgical skill[12]. Therefore, no consensus is reported regarding the above results. For these considerations, a comprehensive meta-analysis and systematic review were necessary to evaluate the predictive factors for PSMs in PCa patients following RP.

Methods

Literature and search strategy

We carried out this meta-analysis in accordance with the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analyses statement (PRISMA)[13]. A comprehensive literature search
was conducted of the PubMed, Web of Science, and EMBASE databases. The search strategies were based on the combination of Medical Subject Headings (MeSH) and keywords as follows: ‘prostate cancer’, ‘radical prostatectomy’, ‘positive surgical margin’, ‘clinicopathological’ and ‘risk factors’. The last search was on February 2019. Meanwhile, to identify other eligible publications, reference lists were also manually screened. The language was restricted to English. Because we did not make clinical research in this study, no ethical approval needed and all analyses were based on previous published literatures.

Selection criteria and data extraction

Papers were included in this meta-analysis if they met the criteria as follows: (1) all patients diagnosis of PCa and PSMs were histopathologically confirmed; (2) treatment was limited to RP; (3) clinicopathological features were analyzed according to surgical margins status, and all studies were comparable study design; (4) standardized mean differences (SMDs)/odds ratios (ORs) and 95% confidence intervals (CIs) were reported in paper or could be computed from given data; (5) if more than one articles from same cohort were identified, the most comprehensive and largest dataset was adopted. Accordingly, studies with the following criteria were excluded: (1) case reports, review articles, editorials and non-original articles; (2) papers published not in English; (3) studies that did not analyze the PSMs and the clinical features; (4) lacking sufficient data to acquire SMDs/ ORs and 95% CIs. The literature search was performed by two investigators independently. Disagreement was resolved by discussion.

Data extraction and quality assessment

Two researchers (ZLZ and WQ) assessed the titles and abstracts of the searched studies, respectively. Any disagreements were reconciled by a third researcher (HZ). The following information was extracted from the included studies: publication information (first author’s last name, publication year, country of origin and study design), patients’ characteristics (mean age, p-PSA, follow-up time) and PCa outcomes (tumor stage, GS, oncologic outcomes). According to the Newcastle–Ottawa quality assessment scale (NOS)[14], two researchers independently assessed the quality of each study. According to its criteria, the NOS estimates studies based on 3 parts: selection, comparability and
outcome assessment. For quality assessment, scores ranged from 0-9, and studies with scores of 6 or more were rated as being of high quality.

Statistical analysis

For this meta-analysis, pooled SMDs/ORs with 95%CIs were used to describe the relationship between risk factors and PSMs. An OR >1 or SMD > 0 suggested a close relationship for PSMs in patients with PCa. Heterogeneity among studies was evaluated by using Cochran’s Q test and Higgins I^2-squared statistic. If the I^2 value is > 50% or the $P_{heterogeneity}$ is < 0.1, which suggest a statistically significant heterogeneity in the included studies, a random-effects (RE) model was adopted; otherwise, fixed-effects (FE) model was used. To consider potential reason for heterogeneity, subgroup analysis was conducted. To test the stability of the result, we performed the sensitivity analysis by excluding one study in turn. Visual inspection of asymmetry in funnel plots was carried out to assess the potential publication bias. Furthermore, we performed Begg’s tests to provide quantitative evidence of publication bias. Those statistical analyses or data syntheses were calculated using STATA version 12.0 (Stata Corporation, College Station, TX, USA). All statistical tests were two sided, and $P < 0.05$ was considered to be statistically significant.

Results

Literature search

A flowchart of the literature selection process is shown in Figure 1. The initial search of electronic databases identified 1,284 records according to the searching criteria; after duplicates were removed, 611 papers remained. Four hundred and sixteen papers were then excluded by screening titles and abstracts. Ten 195 full-text articles were further examined and 173 articles were excluded because 18 same cohort of patients and 155 lacking enough data for further research. At last, 22 articles [8, 15-35] published between 2009 and 2018 were included in this meta-analysis.

Features of included studies

Summary of major characteristics of these studies are shown in Table 1 and Table 2. All the studies were of retrospective study design. The sample size ranged from 144 to 12,515, and a total of 44,144 patients were included. A total of 10.457 PCa patients with PSMs were included in our study, which
accounts for 23.7% of all patients. Geographically, 8 studies were conducted in North America, 6 in Asian, 5 in Europe, 2 in Australia and 1 in Multi-center. All patients had received RP as primary treatment for PCa. According to NOS quality assessment, all studies in this study were categorized as of high quality. (Supplementary Table S1)

Meta-Analysis

The pooled results from the included studies indicated that PSMs were associated with pathological GS (< 6/ ≥7) (RE model, pooled OR= 2.34; 95% CI:2.02–2.71; P<0.001, Figure 2), pathological stage (<T2/ ≥T2) (RE model, pooled OR=4.68; 95% CI:3.90–5.61; P<0.001, Figure 3), biopsy GS (< 6/ ≥7) (RE model, pooled OR=1.51; 95% CI:1.26–1.86; P<0.001, Figure 4), p-PSA (FE model, pooled SMD=0.44; 95% CI:0.35–0.54; P<0.001, Figure 5a), positive lymph node (PLN) (RE model, pooled OR=3.12; 95% CI:1.94-5.01; P<0.001, Figure 5b), extraprostatic extension (EPE) (RE model, pooled OR=4.86; 95% CI:3.11–7.51; P<0.001, Figure 5c) and seminal vesicle invasion(SVI) (RE model, pooled OR=3.56; 95% CI:2.26–5.62; P<0.001, Figure 5d).

The results of meta-analysis for PSMs showed that no significant associations were found in age (RE model, pooled SMD=-0.01; 95%CI:-0.07–0.04; P=0.754, Figure 6a), nerve sparing (RE model, pooled OR=0.94; 95% CI: 0.68-1.29; P=0.705, Figure 6b), body mass index(BMI) (FE model, pooled SMD=0.06; 95%CI: -0.03–0.15; P=0.173, Figure 6c) and prostate volume (RE model, pooled SMD=-0.28; 95% CI: -0.62–0.05; P=0.444, Figure 6d).

Subgroup analysis

Considering that no significant heterogeneity in p-PSA and BMI, besides, the number of studies that evaluated EPE, SVI and prostate volume was relatively small, we only conducted subgroup analysis for biopsy GS, pathological GS, pathological stage, PLN, age and nerve sparing (Table 3). The subgroup analyses were conducted according to geographical region (Asian vs. non-Asian), year of publication (≥ 2014 vs. < 2014), No. of patients (≥ 1000 vs. < 1000) and median follow-up (≥ 70 months vs. < 70 months). The results of subgroup analysis are roughly same as the overall results. Besides, the heterogeneity decreased significantly in some subgroup analysis, such as geographical region in Asian, year of publication< 2014 and No. of patients < 1000 cases.
Sensitivity analysis To validate the reliability of our results, sensitivity analysis was performed. As is shown in Supplementary Figure S1, the combined ORs for biopsy GS ranged from 1.44 (95% CI: 1.20 -1.75) to 1.59 (95% CI: 1.34-1.89) (Supplementary Figure S1a), for pathological GS ranged from 2.21 (95% CI: 1.94-2.51) to 2.41 (95% CI: 2.08-2.79) (Supplementary Figure S1b), for pathological stage ranged from 4.47 (95% CI: 3.74 - 5.35) to 2.85 (95% CI: 4.04-5.83) (Supplementary Figure S1c), for PLN ranged from 2.71 (95% CI: 1.59 -4.65) to 3.83 (95% CI: 2.54-5.77) (Supplementary Figure S1d) and for nerve sparing ranged from 0.84 (95% CI: 0.62-1.14) to 1.05 (95% CI: 0.79 -1.39) (Supplementary Figure S1e). The pooled SMD for p-PSA ranged from 0.42 (95% CI: 0.33 - 0.52) to 0.47 (95% CI: 0.37-0.58) (Supplementary Figure S2a), for age ranged from -0.04 (95% CI: -0.12 - 0.05) to 0.00 (95% CI: -0.09-0.11) (Supplementary Figure S2b). These data suggesting the results were statistically robust. Because the number of the included studies for BMI, EPE, SVI and prostate volume were small, the sensitivity analysis were not valuable. Publication bias The shape of funnel plots did not reveal any evidence of asymmetry (Figure 7). The statistical results of Begg’s test still did not show publication bias for biopsy GS (p- Begg = 0.593, Figure 7a), pathological GS (p- Begg = 0.772, Figure 7b), pathological stage (p- Begg = 0.435, Figure 7c), p-PSA (p- Begg = 0.519, Figure 7d), PLN (p- Begg = 0.658, Figure 7e), EPE (p- Begg = 0.694, Figure 7f), SVI (p- Begg = 0.688, Figure 7g), age (p- Begg = 0.990, Figure 7h) and nerve sparing (p- Begg = 0.456, Figure 7i). For the number of studies in prostate volume and BMI were limited, the publication bias were not assessed.

Discussion
PSMs is unfavorable pathological features, which suggests an incomplete tumor resection and confer a poorer cancer control after RP[33]. It was reported that PSMs presented in 11 – 38% of patients who treated by RP and patients with PSMs have a higher risk of BCR compared with those with a negative surgical margins (NSMs)[36]. A multi-institutional review in 2009 conducted by Yossepowitch et al. [37] concluded that PSMs in RP specimens may considered as an adverse outcome following RP. Consistent with these findings, our recent studies[6, 7] demonstrated the adverse effect of PSMs on both BCR and cancer-specific survival through systematic review and meta-analysis. However, not all
patients with PSMs have poor tumor outcomes, some patients with localized PCa will occur tumor progression even in the NSMs. PSMs is the factor which may be modified by surgical technique. It seems that surgeon’s experience play an important role in the decreased incidence of PSMs[38]. Considerable efforts have been devoted to identifying factors that can predict PSMs and clinical outcome following RP, such as the p-PSA[39], positive biopsy cores[10] and Clinical stage[31]. The conclusion of several published studies indicated that several unfavorable pathological features may associated PSMs. However, inconsistent results have also been demonstrated in the published studies. Besides, for patient with an adverse features of PSMs, prediction parameters that are currently available for PSMs may not reliably. A retrospective study conducted by Boorjian et al.[32] found that increased p-PSA and BMI, higher pathological stage/ GS and greater tumor volume were significantly associated with PSMs risk. Likewise, Ficarra et al.[35] found a association between PSMs and biopsy GS, pathologic stage and GS and EPE, however, no correlation was founded between PSMs and p-PSA. Hashimoto et al.[24] found only prostate-specific antigen density and prostate volume are independent predictors of PSMs after robot-assisted RP based on the data from 244 Japanese patients. Moreover, Yuksel et al.[40] consider that positive biopsy number, pathologic stage and GS, SVI and EPE as predicted factors for PSMs after robot assist RP. Meanwhile, no correlation was founded for p-PSA, biopsy GS, PNI and PLN. The inconsistent results of the above studies may due to small sample size, single-center design and inhomogeneous population. To the best of our knowledge, no studies have systematic addressed the preoperative predictive factors for PSMs after RP. In the present study, we identified 22 studies involving 44,144 patients, and the PSMs rate was 23.7%, which is comparable to previous reports. The meta-analysis showed that p-PSA, biopsy GS (< 6/ ≥7), pathological GS (< 6/ ≥7), pathological stage (<T2/ ≥T2), PLN, EPE and SVI have statistically significant association with PSMs. Moreover, the pooled OR/SMD of the results suggested that age, BMI, prostate volume and nerve sparing were not independent prognostic factors for PSMs in patients after RP. Subgroup analyses revealed similar result despite different geographical region, publication year, sample sizes and median follow-up. Further sensitivity analysis and publication bias test were also taken, and the overall results showed that our data were stable and reliable. This is the first
comprehensive study to investigate the pathological features of PSMs and predictive factors for PSMs in patients treated with RP, and the results of this analysis are meaningful. Two strengths of this study are as follows: First, large sample size of PCa patients from different geographic areas were include, and the findings in our study may more robust than those of individual study. Second, a summary OR/SMD were conducted to compare the difference between PSMs and NSMs in PCa patients categorized by several confounders. Therefore, our findings could provide solid evidence for prognostic factors in PCa patients with PSMs. Nevertheless, the present study has some limitations that should be acknowledged. First, all the studies were retrospectively performed. Second, a substantial heterogeneity was detected, while sensitivity analysis and subgroup analysis failed to identify the potential heterogeneity. Third, the number of included studies were limited in publication bias, subgroup and sensitivity analyses, which could lead to unpersuasive conclusions. Finally, all articles are in English, which could cause publication bias, although no bias was detected in the present study.

Conclusions
The meta-analysis demonstrates that p-PSA, biopsy GS, pathological GS, pathological stage, PLN, EPE and SVI were independent factors for predicting PSMs after RP, and a combination of these factors might be useful for predicting PSMs in patients with PCa undergoing RP. Considering the limitation of the present analysis, it is necessary to conduct more large-scale and well-designed studies to validate our results in the future.

Abbreviations
PCa: renal cell cancer; PSMs: positive surgical margins; NSMs: negative surgical margins; RP: radical prostatectomy; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; NOS: Newcastle Ottawa scale; ORs: odds ratios; SMD: standard mean differences; CIs: corresponding confidence intervals; p-PSA: preoperative PSA; GS: Gleason Score; PLN: positive lymph node; EPE: extraprostatic extension; SVI: seminal vesicle invasion; BMI: body mass index; RE: random-effects; FE: fixed-effects.

Declarations

Ethics approval and consent to participate
Consent to publish

I give my consent for information about my relative circle to be published in BMC cancer. I understand that the information will be published without my relative’s (circle as appropriate) name attached, but that full anonymity cannot be guaranteed. I understand that the text and any pictures or videos published in the article will be freely available on the internet and may be seen by the general public. The pictures, videos and text may also appear on other websites or in print, may be translated into other languages or used for commercial purposes. I have been offered the opportunity to read the manuscript.

Availability of materials and data

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Authors' Contributions

Conceptualization: Lijin Zhang
Literature search: Zhenlei Zha, Wei Qu
Data analysis: Hu Zhao, Jun Yuan, Yejun Feng. Writing – original draft: Lijin Zhang, Bin Wu
Writing – review and editing: Bin Wu
All authors approved the final manuscript.

Ethical statements

Not applicable

Disclosure of potential conflicts of interest
We declare that there have no potential competing interests in this research.

Human participants and/or animals Informed consent
This article does not contain any studies with human participants or animals performed by any of the authors.

Funding
No funding was received for our study.

Acknowledgements

Not applicable

References

1. Siegel RL, Miller KD, Jemal A: Cancer Statistics, 2017. CA: a cancer journal for clinicians 2017, 67(1):7-30.

2. Ilic D, Djulbegovic M, Jung JH, Hwang EC, Zhou Q, Cleves A, Agoritsas T, Dahm P:
Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ (Clinical research ed) 2018, 362:k3519.

3. Matulay JT, DeCastro GJ: Radical Prostatectomy for High-risk Localized or Node-Positive Prostate Cancer: Removing the Primary. Current urology reports 2017, 18(7):53.

4. Novara G, Ficarra V, Mocellin S, Ahlering TE, Carroll PR, Graefen M, Guazzoni G, Menon M, Patel VR, Shariat SF et al: Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. European urology 2012, 62(3):382-404.

5. Keller EX, Bachofner J, Britschgi AJ, Saba K, Mortezavi A, Kaufmann B, Fankhauser CD, Wild P, Sulser T, Hermanns T et al: Prognostic value of unifocal and multifocal positive surgical margins in a large series of robot-assisted radical prostatectomy for prostate cancer. World J Urol 2018.

6. Zhang L, Wu B, Zha Z, Zhao H, Yuan J, Jiang Y, Yang W: Surgical margin status and its impact on prostate cancer prognosis after radical prostatectomy: a meta-analysis. World J Urol 2018, 36(11):1803-1815.

7. Zhang L, Wu B, Zha Z, Zhao H, Jiang Y, Yuan J: Positive surgical margin is associated with biochemical recurrence risk following radical prostatectomy: a meta-analysis from high-quality retrospective cohort studies. World journal of surgical oncology 2018, 16(1):124.

8. Seo WI, Kang PM, Yoon JH, Kim W, Chung JI: Correlation between postoperative prostate-specific antigen and biochemical recurrence in positive surgical margin patients: Single surgeon series. Prostate international 2017, 5(2):53-58.

9. Lallas CD, Fashola Y, Den RB, Gelpi-Hammerschmidt F, Calvaresi AE, McCue P, Birbe R, Gomella LG, Trabulsi EJ: Predictors of positive surgical margins after radical
prostatectomy at a single institution: preoperative and pathologic factors, and the impact of surgeon variability and technique on incidence and location. The Canadian journal of urology 2014, 21(5):7479-7486.

10. Tuliao PH, Koo KC, Komninos C, Chang CH, Choi YD, Chung BH, Hong SJ, Rha KH: Number of positive preoperative biopsy cores is a predictor of positive surgical margins (PSM) in small prostates after robot-assisted radical prostatectomy (RARP). BJU international 2015, 116(6):897-904.

11. Ouzzane A, Rozet F, Salas RS, Galiano M, Barret E, Prapotnich D, Cathelineau X: Positive surgical margins after minimally invasive radical prostatectomy in patients with pT2 and pT3a disease could be considered pathological upstaging. BJU international 2014, 113(4):586-591.

12. Eastham JA, Kattan MW, Riedel E, Begg CB, Wheeler TM, Gerigk C, Gonen M, Reuter V, Scardino PT: Variations among individual surgeons in the rate of positive surgical margins in radical prostatectomy specimens. The Journal of urology 2003, 170(6 Pt 1):2292-2295.

13. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS medicine 2009, 6(7):e1000100.

14. Stang A: Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European journal of epidemiology 2010, 25(9):603-605.

15. Herforth C, Stroup SP: Radical prostatectomy and the effect of close surgical margins: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database. 2018, 122(4):592-598.
16. Tatsugami K, Yoshioka K, Shiroki R, Eto M, Yoshino Y, Tozawa K, Fukasawa S, Fujisawa M, Takenaka A, Nasu Y et al: Reality of nerve sparing and surgical margins in surgeons' early experience with robot-assisted radical prostatectomy in Japan. International journal of urology : official journal of the Japanese Urological Association 2017, 24(3):191-196.

17. Meyer CP, Hansen J, Boehm K, Tilki D, Abdollah F, Trinh QD, Fisch M, Sauter G, Graefen M, Huland H et al: Tumor volume improves the long-term prediction of biochemical recurrence-free survival after radical prostatectomy for localized prostate cancer with positive surgical margins. World J Urol 2017, 35(2):199-206.

18. Abdollah F, Moschini M, Sood A, Sammon J, Dalela D, Hsu L, Beyer B, Haese A, Graefen M, Gandaglia G et al: When Should a Positive Surgical Margin Ring a Bell? An Analysis of a Multi-Institutional Robot-Assisted Laparoscopic Radical Prostatectomy Database. Journal of endourology 2016, 30(2):201-207.

19. Whalen MJ, Shapiro EY, Rothberg MB, Turk AT, Woldu SL, Roy Choudhury A, Patel T, Badani KK: Close surgical margins after radical prostatectomy mimic biochemical recurrence rates of positive margins. Urologic oncology 2015, 33(11):494.e499-494.e414.

20. Retel VP, Bouchardy C, Usel M, Neyroud-Caspar I, Schmidlin F, Wirth G, Iselin C, Miralbell R, Rapiti E: Determinants and effects of positive surgical margins after prostatectomy on prostate cancer mortality: a population-based study. BMC urology 2014, 14:86.

21. Rouanne M, Rode J, Campeggi A, Allory Y, Vordos D, Hoznek A, Abbou CC, De La Taille A, Salomon L: Long-term impact of positive surgical margins on biochemical recurrence after radical prostatectomy: ten years of follow-up. Scandinavian journal of urology 2014, 48(2):131-137.
22. Sammon JD, Trinh QD, Sukumar S, Ravi P, Friedman A, Sun M, Schmitges J, Jeldres C, Jeong W, Mander N et al: Risk factors for biochemical recurrence following radical perineal prostatectomy in a large contemporary series: a detailed assessment of margin extent and location. Urologic oncology 2013, 31(8):1470-1476.

23. Lee JW, Ryu JH, Kim YB, Yang SO, Lee JK, Jung TY: Do positive surgical margins predict biochemical recurrence in all patients without adjuvant therapy after radical prostatectomy? Korean journal of urology 2013, 54(8):510-515.

24. Hashimoto T, Yoshioka K, Gondo T, Takeuchi H, Nakagami Y, Nakashima J, Tachibana M: Predictors for positive surgical margins after robot-assisted radical prostatectomy: a single surgeon's series in Japan. International journal of urology : official journal of the Japanese Urological Association 2013, 20(9):873-878.

25. Abdollah F, Sun M, Suardi N, Gallina A, Capitanio U, Bianchi M, Tutolo M, Fossati N, Castiglione F, Freschi M et al: Presence of positive surgical margin in patients with organ-confined prostate cancer equals to extracapsular extension negative surgical margin. A plea for TNM staging system reclassification. Urologic oncology 2013, 31(8):1497-1503.

26. Savdie R, Horvath LG, Benito RP, Rasiah KK, Haynes AM, Chatfield M, Stricker PD, Turner JJ, Delprado W, Henshall SM et al: High Gleason grade carcinoma at a positive surgical margin predicts biochemical failure after radical prostatectomy and may guide adjuvant radiotherapy. BJU international 2012, 109(12):1794-1800.

27. Lu J, Wirth GJ, Wu S, Chen J, Dahl DM, Olumi AF, Young RH, McDougal WS, Wu CL: A close surgical margin after radical prostatectomy is an independent predictor of recurrence. The Journal of urology 2012, 188(1):91-97.

28. Karavitakis M, Ahmed HU, Abel PD, Hazell S, Winkler MH: Margin status after laparoscopic radical prostatectomy and the index lesion: implications for
preoperative evaluation of tumor focality in prostate cancer. Journal of endourology 2012, 26(5):503-508.

29. Corcoran NM, Hovens CM, Metcalfe C, Hong MK, Pedersen J, Casey RG, Peters J, Harewood L, Goldenberg SL, Costello AJ et al: Positive surgical margins are a risk factor for significant biochemical recurrence only in intermediate-risk disease. BJU international 2012, 110(6):821-827.

30. Li K, Li H, Yang Y, Ian LH, Pun WH, Ho SF: Risk factors of positive surgical margin and biochemical recurrence of patients treated with radical prostatectomy: a single-center 10-year report. Chinese medical journal 2011, 124(7):1001-1005.

31. Coelho RF, Chauhan S, Orvieto MA, Palmer KJ, Rocco B, Patel VR: Predictive factors for positive surgical margins and their locations after robot-assisted laparoscopic radical prostatectomy. European urology 2010, 57(6):1022-1029.

32. Boorjian SA, Karnes RJ, Crispen PL, Carlson RE, Rangel LJ, Bergstralh EJ, Blute ML: The impact of positive surgical margins on mortality following radical prostatectomy during the prostate specific antigen era. The Journal of urology 2010, 183(3):1003-1009.

33. Alkhateeb S, Alibhai S, Fleshner N, Finelli A, Jewett M, Zlotta A, Nesbitt M, Lockwood G, Trachtenberg J: Impact of positive surgical margins after radical prostatectomy differs by disease risk group. The Journal of urology 2010, 183(1):145-150.

34. Shikanov S, Song J, Royce C, Al-Ahmadie H, Zorn K, Steinberg G, Zagaja G, Shalhav A, Eggener S: Length of positive surgical margin after radical prostatectomy as a predictor of biochemical recurrence. The Journal of urology 2009, 182(1):139-144.

35. Ficarra V, Novara G, Secco S, D'Elia C, Boscolo-Berto R, Gardiman M, Cavalleri S, Artibani W: Predictors of positive surgical margins after laparoscopic robot assisted radical prostatectomy. The Journal of urology 2009, 182(6):2682-2688.
36. Preisser F, Mazzone E, Knipper S, Nazzani S, Bandini M, Shariat SF, Tian Z, Saad F, Montorsi F, Zorn KC et al: Rates of Positive Surgical Margins and Their Effect on Cancer-specific Mortality at Radical Prostatectomy for Patients With Clinically Localized Prostate Cancer. Clinical genitourinary cancer 2019, 17(1):e130-e139.

37. Yossepowitch O, Bjartell A, Eastham JA, Graefen M, Guillonneau BD, Karakiewicz PI, Montironi R, Montorsi F: Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences. European urology 2009, 55(1):87-99.

38. Sooriakumaran P, John M, Wiklund P, Lee D, Nilsson A, Tewari AK: Learning curve for robotic assisted laparoscopic prostatectomy: a multi-institutional study of 3794 patients. Minerva urologica e nefrologica = The Italian journal of urology and nephrology 2011, 63(3):191-198.

39. Choo MS, Cho SY, Jeong CW, Lee SB, Ku JH, Hong SK, Byun SS, Kwak C, Kim HH, Lee SE et al: Predictors of positive surgical margins and their location in Korean men undergoing radical prostatectomy. International journal of urology : official journal of the Japanese Urological Association 2014, 21(9):894-898.

40. Yuksel M, Karamik K, Anil H, Islamoglu E, Ates M, Savas M: Factors affecting surgical margin positivity in robotic assisted radical prostatectomy. Archivio italiano di urologia, andrologia : organo ufficiale [di] Societa italiana di ecografia urologica e nefrologica 2017, 89(1):71-74.

Tables

Table 1. The basic characteristics of all studies included in this meta-analysis
Author	Year	Country	Recruitment period	No. of p.	PSMS
Herforth et al[15]	2018	USA	1988-2015	1,902	
Tatsugami et al[16]	2017	Japan	2009-2013	594	
Seo et al[8]	2017	Korea	2008-2014	50	
Meyer et al[17]	2017	USA	1992-2005	118	
Abdollah et al[18]	2016	MC	2002-2013	1,045	
Whalen et al[19]	2015	USA	2005-2011	126	
Retèl et al[20]	2014	Switzerland	1990-2008	479	
Rouanne et al[21]	2014	France	1988-2001	108	
Sammon et al[22]	2013	USA	1993-2010	162	
Lee et al[23]	2013	Korea	2005-2011	167	
Hashimoto et al[24]	2013	Japan	2006-2011	54	
Abdollah et al[25]	2013	Italy	1998-2010	305	
Savdie et al[26]	2012	Australia	1997-2003	285	
Lu et al[27]	2012	China	1993-1999	250	
Karavitakis et al[28]	2012	UK	2007-2009	31	
Corcoran et al[29]	2012	Australia	1995-2010	370	
Li et al[30]	2011	China	2000-2009	57	
Coelho et al[31]	2010	USA	2008-2009	101	
Boorjian et al[32]	2010	USA	1990-2006	3,651	
Alkhateeb et al[33]	2010	Canada	1992-2008	264	
Shikanov et al[34]	2009	USA	2003-2008	243	
Ficarra et al[35]	2009	Italy	2005-2008	95	

SD: standard deviation; NA: data not applicable

Table 2. The main pathological characteristics of all studies included in this meta-analysis
Author	Staging system	Grading system	Biopsy GS < €
Herforth et al[15]	NA	Gleason score	NA
Tatsugami et al[16]	NA	Gleason score	172/422
Seo et al[8]	TNM	Gleason score	14/36
Meyer et al[17]	TNM	Gleason score	98/20
Abdollah et al[18]	TNM	Gleason score	436/891
Whalen et al[19]	TNM	Gleason score	7/119
Retèl et al[20]	TNM	Gleason score	NA
Rouanne et al[21]	TNM	Gleason score	81/27
Sammon et al[22]	TNM	Gleason score	NA
Lee et al[23]	TNM	Gleason score	NA
Hashimoto et al[24]	NA	Gleason score	18/36
Abdollah et al[25]	TNM	Gleason score	NA
Savdie et al[26]	TNM	Gleason score	NA
Lu et al[27]	TNM	Gleason score	NA
Karavitakis et al[28]	TNM	Gleason score	18/13
Corcoran et al[29]	TNM	Gleason score	NA
Li et al[30]	TNM	Gleason score	NA
Coelho et al[31]	TNM	Gleason score	56/45
Boorjian et al[32]	TNM	Gleason score	1,905/1,125
Alkhateeb et al[33]	TNM	Gleason score	NA
Shikanov et al[34]	TNM	Gleason score	118/125
Ficarra et al[35]	TNM	Gleason score	67/28

NA: data not applicable; PSMs: positive surgical margins; N:

Analysis specification	No. of studies	Study heterogeneity	Effect
		I² (%)	P_heterogeneity
BMI			
Overall	2	0	0.347
p-PSA			
Overall	6	0	0.656
EPE		81.9	0.001
SVI		57.9	0.093
Prostate volume		76.3	0.015
Age		38.2	0.125
Geographical region			
Asian	5	49.6	0.094
non-Asian	3	1.8	0.361

Table 3. Summary and subgroup results for PSMs and clinicopathological features in PCa patients.
	≥ 2014	< 2014	p-value
Year of publication	4	4	0.035
No. of patients	4	0	0.543
Median follow-up			
≥ 70 months	1	-	
< 70 months	5	35.6	0.184
Biopsy GS (< 6/ ≥7)			<0.001
Overall	12	75.0	
Geographical region			
Asian	3	0	0.409
non-Asian	8	72.1	0.001
Year of publication			
≥ 2014	6	74.0	0.002
< 2014	6	53.0	0.059
No. of patients			
≥ 1000	4	85.4	<0.001
< 1000	8	61.4	0.011
Median follow-up			
≥ 70 months	3	85.6	0.001
< 70 months	6	67.5	0.009
P-GS (< 6/ ≥7)			
Overall	19	81.8	<0.001
Geographical region			
Asian	3	0	0.838
non-Asian	15	81.8	<0.001
Year of publication			
≥ 2014	7	88.1	<0.001
< 2014	12	73.5	<0.001
No. of patients			
≥ 1000	9	84.3	<0.001
< 1000	10	81.2	<0.001
Median follow-up			
≥ 70 months	9	79.5	<0.001
< 70 months	7	80.4	<0.001
Stage (< T2/ ≥T2)			<0.001
Overall	18	85.0	<0.001
Geographical region			
Asian	4	1.9	0.383
non-Asian	13	82.2	<0.001
Year of publication			
≥ 2014	6	80.2	<0.001
< 2014	12	82.5	<0.001
No. of patients			
≥ 1000	8	88.6	<0.001
< 1000	10	81.9	<0.001
Median follow-up			
≥ 70 months	7	75.8	0.066
< 70 months	8	87.6	<0.001
Nerve sparing			<0.001
Overall	6	78.3	<0.001
Geographical region			
Asian	2	0	0.838
non-Asian	4	79.7	0.002
Year of publication			
≥ 2014	3	90.3	<0.001
< 2014	3	20.6	0.284
No. of patients			
≥ 1000	3	86.0	0.001
< 1000	3	20.0	0.287
Median follow-up			
≥ 70 months	2	91.7	0.001
< 70 months	3	43.7	0.169

PLN
Overall	5	75.5	0.003
Geographical region			
Asian	-	-	-
non-Asian	4	80.5	0.001
Year of publication			
≥ 2014	4	80.0	0.002
< 2014	-	-	-
No. of patients			
≥ 1000	2	53.6	0.142
< 1000	3	72.0	0.028
Median follow-up			
≥ 70 months	3	82.8	0.003
< 70 months	2	47.5	0.168

Supplemental Figure Legends

Supplementary Figure S1. Sensitivity analysis (pooled ORs) of the association between the predictive factors and PSMs risk. (S1a) biopsy GS; (S1b) pathological GS; (S1c) pathological stage; (S1d) PLN and (S1e) nerve sparing.

Supplementary Figure S2. Sensitivity analysis (pooled SMDs) of the association between the predictive factors and PSMs risk. (S2a) p-PSA; (S2b) age.

Figures
Figure 1

Flowchart of the literature review process for the selection of eligible literatures.
Study ID	OR (95% CI)	Weight
Herforth et al 2018	1.65 (1.44, 1.90)	7.12
Tatsugami et al 2017	2.17 (1.56, 3.00)	5.53
Meyer et al 2017	1.32 (0.89, 1.95)	4.92
Abdollah et al 2016	3.60 (2.96, 4.34)	6.75
Whalen et al 2015	2.87 (1.83, 4.49)	4.45
Retèl et al 2014	2.09 (1.66, 2.64)	6.39
Rouanne et al 2014	1.91 (1.22, 2.98)	4.49
Sammon et al 2013	6.96 (4.78, 10.13)	5.09
Lee et al 2013	2.39 (1.46, 3.90)	4.12
Abdollah et al 2013	1.86 (1.44, 2.41)	6.16
Savdie et al 2012	1.63 (1.20, 2.22)	5.71
Lu et al 2012	2.48 (1.81, 3.40)	5.64
Karavitakis et al 2012	1.80 (0.67, 4.82)	1.72
Corcoran et al 2012	2.33 (1.67, 3.26)	5.47
Coelho et al 2010	2.55 (1.54, 4.21)	4.04
Boorjian et al 2010	2.50 (2.31, 2.71)	7.42
Alkhateeb et al 2010	2.36 (1.65, 3.37)	5.27
Shikanov et al 2010	2.45 (1.82, 3.30)	5.80
Ficarra et al 2009	2.58 (1.54, 4.35)	3.90
Overall (I-squared = 81.8%, p = 0.000)	2.34 (2.02, 2.71)	100.00

Figure 2

Forest plot for the association between pathological GS and PSMs risk.
Figure 3

Forest plot reflecting the association between pathological stage and PSMs.
Figure 4

Forest plot assessing the correlation of biopsy GS and PSMs.
Figure 5

Forest plots of studies evaluating the prognostic factors for p-PSA (5a), PLN (5b), EPE (5c) and SVI (5d) with PSMs risk.
Figure 6

Forest plots of studies evaluating the association of PSMs and clinicopathological features in PCa patients. age(6a), nerve sparing (6b), BMI(6c) and prostate volume (6d).
Funnel plot and Begg test for publication bias. (7a) biopsy Gleason Score, (7b) pathological GS, (7c) pathological stage, (7d) p-PSA, (7e) PLN, (7f) EPE, (7g) SVI, (7h) age and (7i) nerve sparing.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

FigureS2.tif
FigureS1.tif
