Echolocation-related reversal of information flow in a cortical vocalization network

Francisco García-Rosales, Luciana López-Jury, Eugenia González-Palomares, Johannes Wetekam, Yuranny Cabral-Calderín, Ava Kiai, Manfred Kössl & Julio C. Hechavarría

The mammalian frontal and auditory cortices are important for vocal behavior. Here, using local-field potential recordings, we demonstrate that the timing and spatial patterns of oscillations in the fronto-auditory network of vocalizing bats (Carollia perspicillata) predict the purpose of vocalization: echolocation or communication. Transfer entropy analyses revealed predominant top-down (frontal-to-auditory cortex) information flow during spontaneous activity and pre-vocal periods. The dynamics of information flow depend on the behavioral role of the vocalization and on the timing relative to vocal onset. We observed the emergence of predominant bottom-up (auditory-to-frontal) information transfer during the post-vocal period specific to echolocation pulse emission, leading to self-directed acoustic feedback. Electrical stimulation of frontal areas selectively enhanced responses to sounds in auditory cortex. These results reveal unique changes in information flow across sensory and frontal cortices, potentially driven by the purpose of the vocalization in a highly vocal mammalian model.
Vocal production is a crucial behavior that underlies the evolutionary success of various animal species. Several cortical and subcortical structures in the mammalian brain support vocalization\(^1\), their activities related to vocal control\(^2\), motor preparation\(^3\),\(^4\),\(^5\),\(^6\), and feedback correction\(^7\),\(^8\).

However, the precise neural dynamics that underpin vocalization, and the nature of long-distance interactions in large-scale neural networks related to vocal utterance, remain poorly understood.

The connectivity patterns of the frontal cortex make it a major hub for cognitive control and behavioral coordination\(^9\),\(^10\),\(^11\),\(^12\). Frontal cortical areas are anatomically connected with structures directly involved in vocal production, such as the periaqueductal gray\(^13\,\(^14\)\) and the dorsal striatum\(^15\,\(^16\)\). Experimental evidence demonstrates that the neural activity in frontal regions relates to vocalization\(^14\),\(^15\),\(^16\),\(^17\),\(^18\),\(^19\),\(^20\),\(^21\) correlating with the acoustic and behavioral properties of produced calls\(^22\),\(^23\),\(^24\). Frontal regions are also anatomically and functionally connected with the auditory cortex (AC; refs. 12, 25), and with the ventral tegmental area (VTA), the motor cortex (MC), and the parietal cortex (PC).

Communication and echolocation vocalizations are emitted for different behavioral purposes, and typically differ in their properties of produced calls\(^25\),\(^26\). Communication calls are shown in Fig. 1a. Overall, the two types of vocalizations did not differ significantly in terms of call length (Wilcoxon rank sum test, \(p = 0.78\); Fig. 1b), although call length differences differed significantly (2-sample Kolmogorov-Smirnov test, \(p = 7.93 \times 10^{-7}\)).

Pre-vocal LFP power in frontal and auditory cortices predict vocalization type. Figure 1d illustrates electrophysiological activity recorded simultaneously from FAF and AC at various cortical depths, as the echolocation and communication vocalizations shown in Fig. 1a were produced (see location of recording sites in Fig. S1). Single-trial LFP traces revealed conspicuous pre-vocal oscillatory activity in low and high-frequencies, more pronounced in frontal regions, and strongest when animals produced echolocation pulses. Power spectral densities (PSD) obtained from pre-vocal LFP segments (i.e., −500 to 0 ms relative to vocal onset; Fig. 1f) indicated low- and high-frequency power increases (relative to a no-vocalization baseline, or “no-voc”) associated with vocal production, particularly in FAF and for electrodes located at depths > 100 \(\mu\)m (Fig. 1e illustrates this at 300 \(\mu\)m; black arrows). Differences in AC across types of vocal outputs were less pronounced and appeared limited to low LFP frequencies (gray arrows in Fig. 1e). Pre-vocal LFP power in each band was normalized to no-voc periods on a trial-by-trial basis.

There were significant power changes between no-voc and pre-vocal periods across frequency bands (Figs. 1f, S2). Notably, the power increase in low- (\(\delta\)) and high-frequency (\(\gamma\)) LFP bands of the FAF was different when animals produced echolocation and communication vocalizations, with the highest increase in the pre-vocal echolocation case. The opposite pattern was observed in the AC, where differences between ensuing vocalization types were most prominent in \(\beta_1\) (but not \(\delta\) or \(\gamma\)) frequencies, and were explained by higher pre-vocal power increase for communication than for echolocation vocalizations (Fig. 1f).

We addressed whether pre-vocal LFP power in frontal and auditory cortices was a significant predictor of ensuing call type.
Fig. 1 Pre-vocal oscillations in frontal and auditory cortices predict ensuing vocal output.

- **a** Oscillograms (top) and spectrograms (bottom) of exemplary echolocation (left) and communication calls produced by *C. perspicillata*.
- **b** Cumulative probability distribution of echolocation (blue, *n* = 138) and communication (orange, *n* = 734) call lengths. No significance differences were observed (two-sided Wilcoxon rank sum test, *p* = 0.12).
- **c** (Left) Normalized average power spectral density (PSD) of echolocation (blue) and communication (orange) calls. (Right) Distribution of peak frequencies of echolocation and communication utterances; communication calls were significantly higher in frequency than their counterparts (two-sided Wilcoxon rank sum test, *p* = 2.24 × 10^{-66}).
- **d** Single-trial LFPs recorded simultaneous to echolocation and communication utterances. The vertical red dashed line, at time 0, indicates the moment of vocalization onset. The top 16 traces correspond to LFPs recorded in the FAF; the bottom 16 LFP traces were recorded from the AC. Auditory cortical layers are marked. LFP amplitude was normalized within structure independently.
- **e** Average pre-vocal (−500 to 0 ms, relative to call onset) power spectral densities (PSD) at a representative depth (300 μm) in FAF and AC. Blue: echolocation; orange: communication; black, dashed: no-voc periods. The difference between echolocation and communication PSDs is depicted in gray (right).
- **f** Percentage pre-vocal power change across representative LFP bands (δ: 1–4 Hz; β: 12–20 Hz; γ: 60–120 Hz), relative to a no-voc baseline, across cortical depths in FAF (top) and AC (bottom). Values related to echolocation utterances (*n* = 138) are depicted in blue; those related to communication utterances (*n* = 734) are depicted in orange. Data shown as mean ± sem.
- **g** Pre-vocal power change in frontal and auditory regions predict vocalization type. Effect size (R^2m) of GLMs considering all frequency bands and channels, both in frontal and auditory cortices. Effect sizes were considered small when R^2m < 0.1, and medium for R^2m >= 0.1. For illustrative purposes, effect size values from non-significant models were set to 0. Source data are provided as a Source Data file.
Generalized linear models (GLMs) were fit using echolocation and communication pre-vocal power changes as predictors, for all channels and frequency bands. A summary of these models is given in Fig. 1g (outcomes of two representative GLMs illustrated in Fig. S2). Low- and high-frequency power increase (mostly in the δ-α and γ2 bands) in FAF predicted whether animals produced echolocation or communication calls, typically with moderate effect sizes \(p < 0.05; R^2 m \geq 0.1 \), highest in middle-to-deep electrodes (i.e., depths > 300 μm; Fig. 1g, left). The fact that low frequencies predict ensuing call type complements a previous study in C. perspicillata’s FAF16, wherein low-frequency effects went unnoticed likely due to a local referencing scheme that affected low-frequency signals correlated across neighboring electrodes (see Fig. S13). In the AC, pre-vocal power predicted ensuing call type mostly in the α-β bands of the spectrum, although more strongly in β1 frequencies. Moderate effect sizes were also observed \((p < 0.05; R^2 m \geq 0.1) \). Overall, pre-vocal oscillatory power significantly predicted ensuing call type in frontal and auditory cortices with complementary frequency specificity and functionally opposite effects.

We evaluated whether differences in the spectral dynamics of pre-vocal LFPs could be explained by differences in the frequency content of echolocation and communication utterances. To that end, communication calls were separated into two groups: high-frequency and low-frequency communication (HF- and LF-communication, respectively). The spectral content of pre-vocal LFPs predicted ensuing call type, even when HF-communication calls were pitched against echolocation utterances \((p < 0.05; R^2 m \geq 0.1) \; \text{(Fig. S3).} \) Additionally, pre-vocal spectral differences were considerably less noticeable when comparing HF- vs. LF-communication vocalizations, with even significant models \((p < 0.05) \) performing poorly in FAF and AC \((R^2 m < 0.1; \text{Fig. S3b, d).} \) Thus, pre-vocal spectral differences are not fully accounted for by differences in the spectral content of echolocation and communication utterances. However, an influence of differences in the spectral content of echolocation and communication calls on LFPs cannot definitely be excluded.

Directed connectivity in the FAF-AC circuit related to vocal production.

Oscillations in FAF and AC predict ensuing vocal output with functionally opposite patterns, but how rhythms in this network interact during vocal production remains unknown. In previous work, we reported low-frequency (1–12 Hz) phase coherence in the FAF-AC circuit during spontaneous activity, with emergence of γ-band (>25 Hz) coherence at the onset of external acoustic stimulation17. To study FAF-AC oscillatory dynamics during vocalization, we looked beyond phase correlations and examined causal interactions (within a transfer entropy framework) in the fronto-auditory circuit. Causal interactions were quantified using directed phase transfer entropy (dPTE), a metric that measures the degree of preferential information transfer between signals based on phase time series56,57. dPTE calculations were performed across vocal conditions for all channel pairs, and for frequency bands which most strongly predicted vocalization type: δ, θ, α, β1, and γ2.

Average dPTE connectivity matrices across conditions (echolocation and communication pre- and post-vocal periods, and no-vocal segments) are illustrated in Fig. S4. dPTE matrices were used as adjacency matrices for directed graphs, which characterized patterns of directional information flow in the FAF-AC network (Fig. 2). In each graph, nodes represent adjacent channels pooled according to cortical depth and layer distribution in AC (where layer borders are well-defined anatomically; Fig. S1): superficial (sup), channels 1–4 (0–150 μm); top-middle (mid1), channels 5–8 (200–350 μm); bottom-middle (mid2), channels 9–12 (400–550 μm); and deep, channels 13–16 (600–750 μm). Directed edges were weighted according to a directionality index (DI), obtained from normalizing dPTE values to 0.5 (dPTE = 0.5 indicates no preferred direction of information transfer). Only edges with significant DI values, based on bootstrapping, are shown.

Upon inspection of the connectivity graphs, we noticed general patterns that entailed strong top-down preferential information transfer (i.e., in the FAF → AC direction) during spontaneous activity, pre-vocal and post-vocal periods irrespective of vocalization type, and post-vocal communication periods (Fig. 2). Top-down information flow (blue arrows in the figure) was strongest for δ, θ, and γ2 frequencies, although also occurred sparsely in α and β1 bands with patterns that depended on ensuing call type. Within FAF and during pre-vocal echolocation periods, information flowed predominantly from deep to superficial layers in δ and β1 frequencies (Fig. 2b), and in the opposite direction for α-LFPs, also during no-voc periods (Fig. 2a, b). Within AC, information flowed in the superficial to deep direction during no-voc and pre-vocal communication periods in γ2 frequencies.

To our surprise, a predominance of bottom-up information flow (i.e., AC → FAF direction) appeared to be specific to post-vocal echolocation periods in the δ and β1 bands, although bottom-up information transfer did occur in α frequencies during post-vocal communication epochs (Fig. 2c). Note that, for echolocation, there was strong top-down information transfer before vocalization onset, particularly in the δ-band (compare Fig. 2c with Fig. 2b, top). These results hint toward a pre- to post-vocal reversal of information flow in the FAF-AC network during echolocation, evident in low frequencies of the LFP. Considering within-structure information transfer, patterns were diverse in FAF, consisting of information exchange in the deep-to-superficial (bands: δ, echolocation and communication; α, communication; and β1, both) and the superficial-to-deep (α-band, for echolocation) directions. Within AC, predominant information flow occurred both in the superficial-to-deep (δ-band, echolocation) and in the deep-to-superficial directions (bands: θ, echolocation; α, echolocation and communication; β1, echolocation, γ2, communication) as well.

Taken together, the data in Fig. 2 illustrate rich patterns of information exchange within and between frontal and auditory cortices. Information transfer patterns depended on whether a vocalization was produced and on its type, either considering within-structure connectivity, or information transfer across regions. Differences in the information flow dynamics of the fronto-auditory circuit, across vocal conditions and call-types, are depicted in Figs. S5, S6, and quantified in detail in the Supplementary Materials.

Information flow in the fronto-auditory circuit reverses for echolocation production.

The contrasts between pre- and post-vocal periods for echolocation (Fig. 2b, c) suggest a reversal in preferred directionality of information flow. Differences in the direction of information transfer between pre-vocal and post-vocal activities were addressed by statistically comparing connectivity graphs associated to each case (Fig. 3). Paired statistics were performed for these comparisons (Wilcoxon signed-rank tests, significance when \(p < 10^{-4} \); see “Methods”): edges, representing significant differences in dPTE, were only shown for large effect sizes \(|d| > 0.8\). As expected from the data depicted in Fig. 2, echolocation-related FAF → AC preferred information flow was significantly higher during pre-vocal than post-vocal periods in the δ and θ bands (Fig. 3a, top). In γ2 frequencies, the effect was the opposite: FAF → AC directionality was highest during post-vocal periods than during pre-vocal ones.
Remarkably, AC→FAF preferred directionality of information flow was significantly stronger during post-vocal periods in δ and β₁ frequency bands (Fig. 3a, top). Within FAF, differences in preferred information flow occurred in frequency bands δ, α, and β₁. Within AC, differences in dPTE occurred mostly in α and β₁ bands (Fig. 3a, top). Information flow was strongest in the deep-to-superficial direction during post-vocal periods, and in superficial-to-deep direction during pre-vocal periods. In the case of communication call production (Fig. 3b, top), differences in dPTE occurred only in the δ and θ bands. Values were significantly higher (with large effect sizes) in the FAF→AC direction during pre-vocal periods.

Changes in directional information transfer in the FAF-AC network were quantified by calculating the net information flow. Channels in frontal and auditory cortices were combined into four categories: top (0–150 μm), mid1 (200–350 μm), mid2 (400–550 μm), and bottom (600–750 μm). Graph edges are weighted according to the strength of the preferred directionality (FAF→AC in blue; AC→FAF in orange; within-area directionality in gray). Edges are only shown if there was significant preferred directionality according to a threshold defined by bootstrapping. Fig. 2 Directed connectivity patterns in the FAF-AC network. a Graph visualization of directed connectivity between FAF and AC during no-voc periods. b Similar to a, but directed connectivity was calculated in the pre-vocal echolocation and communication conditions. c Same as b, with connectivity patterns obtained for post-vocal echolocation and communication conditions.
outflow (\(D_{\text{Inet}}\)) from each area. The \(D_{\text{Inet}}\) represents the sum of DI values obtained from outgoing connections per region (e.g., all edges in FAF related to FAF \(\rightarrow\) AC connections, representing the net strength of preferential information flow in the fronto-auditory direction). \(D_{\text{Inet}}\) values were used to statistically compare pre- and post-vocal periods in terms of information transfer from one cortical area to another. Considering this metric, significant differences (FDR-corrected Wilcoxon signed-rank tests, \(p_{\text{corr}} < 0.05\)) with large effect sizes (\(|d| > 0.8\)) occurred mostly for low and intermediate frequency bands (i.e., \(\delta\) and \(\beta_1\)) of the LFP. Specifically, for the pre-vocal vs. post-vocal echolocation condition (Fig. 3a, bottom), the information outflow from FAF was significantly higher in the \(\delta\) band during pre-vocal periods related to echolocation call production (\(p_{\text{corr}} = 1.63 \times 10^{-82}, d = 3.44\)). Notably, the net information outflow from AC was significantly higher when considering post-vocal periods than pre-vocal ones (\(p_{\text{corr}} = 3.27 \times 10^{-64}, d = -1.5\)). In the \(\beta_1\) frequency range, there were no significant differences with large effect sizes between pre-
vocal and post-vocal net information outflow from the FAF. However, D_{Inet} values from AC were significantly higher during post-vocal periods ($p_{\text{corr}} = 3.71 \times 10^{-36}$, $d = -0.88$). Pre-vocal vs. post-vocal comparisons of D_{Inet} values from FAF and AC related to communication calls revealed significant differences with large effect sizes only for δ frequencies in FAF (Fig. 3b, bottom; D_{Inet} higher for pre-vocal periods; $p_{\text{corr}} = 1.63 \times 10^{-52}$, $d = 1.39$).

The passive listening of echolocation-like or communication sounds did not account for the data above (Figs. S7–9), suggesting that mere feedback from the calls was not sufficient to explain echolocation-related, δ-band information flux reversal in the network. Likewise, the production of HF-communication sounds did not account for the patterns observed during echolocation (Fig. S10), indicating that the information transfer dynamics for echolocation are not fully explained by the frequency content of the vocalizations themselves. These results unveil dynamic changes of predominant connectivity patterns in the FAF-AC network from pre- to post-vocal periods, exhibiting frequency specificity and particularly associated with echolocation production.

Electrical stimulation of the FAF enhances auditory cortical responses. The data thus far indicate strong top-down modulation in the FAF-AC network, which can nevertheless be significantly altered when animals produce echolocation sounds. However, the dPTE analyses cannot rigorously establish whether FAF activity indeed modulates AC responses. To examine this question, we conducted perturbation experiments of the FAF to evaluate whether manipulations in this region affect auditory cortical responses to external stimuli.

The FAF was stimulated electrically with biphasic pulse trains (6 pulses/train; pulse interval: 500 ms) while simultaneously recording from the AC ($n = 20$ penetrations: Fig. 4a). Electrical stimulation of FAF did not produce detectable artefacts or LFP power changes in AC (Figs. 4c and S11), nor did it elicit vocalization production (Fig. S12), potentially due to weaker stimulation as compared to previous work reporting behavioral outputs. Acoustic stimuli were presented after the train (either a distress -a type of communication sound- or an echolocation call; see Fig. S7b and Fig. 4b) at different latencies. Response strengths in AC to sounds after FAF electrical stimulation (“Estim” condition) were compared to response strengths related to the same sounds, but presented without prior electrical stimulation (“no-Estim” condition). Representative responses to distress and echolocation calls for both conditions and for a latency of 135 ms (in the Estim case) are depicted in Fig. 4d.

We observed differences between the ERP energy measured in Estim and no-Estim conditions (red and blue, respectively), more evidently when considering AC responses to echolocation stimuli (Fig. 4d). These differences occurred consistently at a population level. Figure 4e depicts response strengths for all AC depths across recordings, related to a distress syllable presented with a latency of 135 ms (in the Estim case; red traces). Response strengths from the no-Estim case are shown for one example iteration out of 500 conducted for comparisons (see “Methods”). A trend was present, wherein responses in the Estim condition were stronger than those in the no-Estim condition, although without statistically significant differences (Fig. 4f; FDR-corrected Wilcoxon signed-rank tests, significance if $p_{\text{corr}} < 0.05$; graphs split for clarity). Overall, when acoustic stimulation was done with a distress syllable, significant differences between Estim and no-Estim occurred in ~40% of out 500 iterations in total. Such differences were concentrated mostly in middle-to-deep layers (depths > 300 μm) with small to medium values of Cliff’s delta (ref. 59; Fig. 4i, j, left).

In terms of AC responses to echolocation sounds (Fig. 4g), differences between Estim and no-Estim conditions appeared most prominent in superficial-to-middle layers (depths 50–350 μm). Responses were significantly stronger in the Estim condition than in the no-Estim condition at depths of 50–300 μm (Fig. 4h; $p_{\text{corr}} < 0.05$; graphs split for clarity), in particular for latencies of 135 ms. Significant differences between Estim and no-Estim conditions were very reliable, observed in up to 90.6% of the iterations for a latency of 135 ms and a cortical depth of 150 μm (Fig. 4i, right). At depths ranging 50–350 μm, for the same latency, reliability was larger than 70%, with medium effect sizes (Fig. 4j, right). These data indicate that electrical stimulation in FAF enhances AC response strength, with particularly high reliability when the animals listen to echolocation sounds.

As suggested by the data depicted in Fig. 4, changes in response strength between Estim and no-Estim conditions depended both on sound onset latency and AC depth (N-way ANOVA tests; for latency, channel and channel latency: $p < 10^{-6}$, detailed statistics in Tables S1, S2). Figure 5 illustrates that effects of latency on response increase (i.e., Estim related vs. no-Estim related response strengths, expressed as a percentage) were most evident when considering responses to echolocation sounds (Fig. 5a). Notably, response increase was largest when the echolocation pulse was presented at a latency of 135 ms (see also Fig. 4i). Response strength increase depended on sound latency with a certain degree of periodicity (e.g., compare sound latencies of 135, 385, 635, and 885 ms with others), with approximately double the frequency of electrical stimulation (4 Hz). Thus, electrical stimulation of the FAF increased responses in AC with a long-lasting effect (hundreds of milliseconds) exhibiting a particular temporal pattern, suggesting that response enhancement is potentially mediated by local circuits in auditory cortex with intrinsic properties.

Discussion

In this study, we addressed the dynamics of information exchange between the frontal and auditory cortices of vocalizing bats (Fig. 6). Consistent with previous reports, we show that neural activity in the frontal cortex predicts vocal outputs. Taken together, the data from this and previous work suggest that oscillations in frontal regions may be instrumental for vocal production. From our perspective, the above is further supported by call-type specific, pre-vocal LFP spectral dynamics and information transfer patterns in the FAF-AC network. The relationship between oscillations and vocal production remains, nevertheless, correlational: our results do not allow to rigorously assert a causal role of LFPs for the initiation or planning of vocalizations.

Neural activity in the AC also relates to vocalization, but the involvement of auditory cortical oscillations in vocal production is still to be fully understood. Our results indicate that pre-vocal LFPs in AC, as previously reported with single-unit spiking, relate to vocal initiation. We show, for the first time to our knowledge, that pre-vocal oscillatory patterns in AC are call-type specific and, remarkably, complementary to those observed in frontal cortex in frequency and effect (Fig. 1). These patterns may be explained by our current understanding of the roles of AC for vocal production. Neuronal activity in the AC is predominantly suppressed during vocalization, with inhibition occurring hundreds of milliseconds prior to call onset. Vocalization-related inhibition is mediated by motor control regions, which send a copy of the motor command to the AC as “corollary discharge” or “efferent copy” signals. These signals, respectively, have either a general suppressive effect, or carry specific information about the produced sound which potentially...
facilitates feedback processing12. Thus, pre-vocal, call-type unspecified power changes in low frequencies could reflect general inhibitory mechanisms in AC consistent with corollary discharges from higher order structures. Directed connectivity analyses support the notion of top-down (FAF → AC) control of pre-vocal low-frequency activity (Fig. 2). In contrast, pre-vocal β-band LFPs might constitute oscillatory correlates of efference copies, given the observed call-type specificity. Because FAF → AC causal influences did not equally extend to the β frequencies, pre-vocal β activity in AC might be influenced instead by specialized regions such as the premotor cortex, providing a more specific copy of the motor commands required for vocalization.
Fig. 4 Electrical stimulation of the FAF increases response strength in AC. a Schematic representation of the paradigm for electrical and acoustic stimulation. The timestamps for acoustic stimulation (colored according to latency; see also panels e–g) represent the latency of sound onset relative to the end of the electrical stimulation train. b Oscillograms of the natural distress syllable and echolocation pulse used for acoustic stimulation. On the right, the normalized power spectra of both calls are shown (orange, distress; blue, echolocation). c Broadband (0–20 kHz), raw data recorded simultaneously from FAF and AC (at representative depths of 50, 250, and 600 μm) illustrating a single trial of electrical stimulation. Note that no electrical artefacts are visible in AC. d Auditory cortical LFPs (left column), and time-course of their energy (right), in response to either the distress syllable (top) or the echolocation pulse (bottom). Responses corresponding to the no-Estim condition shown in blue; responses related to the Estim condition, in red. e Strength of auditory cortical ERPs in response to the distress syllable, across all recorded columns (n = 20 independent penetrations) and depths. In blue, responses associated to the no-Estim condition; in red, those associated to the Estim condition (data as mean ± s.e.m). f Corrected p-values obtained after statistical comparisons between response strengths related to Estim and no-Estim conditions, across all channels and latencies (paired, two-sided FDR-corrected Wilcoxon signed rank tests, alpha = 0.05). g, h Same as in e, f, but dealing with responses to the echolocation pulse. i Proportion of iterations (out of n = 500 total iterations) in which responses associated to the Estim condition were significantly larger than those associated to the no-Estim condition (same test as above). Data are presented across all channels and latencies analyzed, for responses to the distress and echolocation sounds. j Median effect size (Cliff’s delta) for the same comparisons summarized in (i). Source data are provided as a Source Data file.

Fig. 5 Relative AC response increase after FAF electrical stimulation depends on sound-onset latency. a Average relative increase in response strength to the echolocation pulses during the Estim conditions relative to the no-Estim condition (expressed as percentage increase). Each circle corresponds to a channel in AC; note that all channels and sound latencies are shown (lighter colors correspond to electrodes located at lower depths). The center of the circle indicates the mean of the group (n = 500 iterations), while vertical bars indicate the 95% confidence intervals. In the figure, values are significantly different if their confidence intervals do not overlap (multicomp function in Matlab; alpha = 0.05, multiple comparisons corrected using Tukey–Kramer critical values). b Data related to responses to the distress syllable, shown as in (a). The purple cosine curve tracks the corresponding phase of the 2 Hz electrical stimulation (although note that electrical stimulation had stopped before sound onset; see also Fig. 4a). Data shown in this figure are the same used for Fig. 4.

Channels for motor-auditory communication (see refs. 62,63) could in fact operate over β frequencies53,64,65. Differences in spectral patterns cannot be solely explained by the distinct frequency content of echolocation and communication calls (Fig. S3). However, considering that orofacial movement in primates15,66 and vocalization-specific movements in bats30 are associated to neural activity in frontal areas, distinct pre-vocal motor related activity for echolocation or communication calling is a plausible explanation for our results. Microstimulation of C. perpiscillata’s FAF can result in motor effects such as pinna and nose-leaf movements, as well as vocalizations (including echolocation-like calls; ref. 30). These movements also occur naturally before spontaneous vocalization30, suggesting that the FAF may be involved in the motor aspect of vocal production. Nevertheless, vocalization-specific neural populations in primates coexist with those related to orofacial movements67. Therefore, the vocal-motor explanation does not necessarily entail that the FAF fails to participate in other forms of vocal preparation beyond the orchestration of motor programs.

In terms of a cortical network for vocalization, the FAF and AC are engaged in rich information transfer dynamics with functional relationships to vocalization. Moreover, interactions extend to periods of vocal quiescence, when information flows top-down (FAF→AC) in low (δ-α) and high (γ) frequencies. Low-frequency top-down influences from higher-order structures (like the FAF) modulate neuronal activity in sensory cortices according to cognitive variables such as attention, also during spontaneous activity56,68,69. However, whether and how attentional processes exploit the nature of neural connections in the FAF-AC circuit remains thus far unknown. Our data resonate with the hypothesis of top-down modulation of oscillatory activity in AC, and suggest a strict control of higher-order structures over sensory areas.
reflected in concurrent LFP activity across regions. Such strong top-down control is supported by the fact that FAF micro-stimulation enhances AC responses to sounds (Fig. 4).

Vocalization-specific changes in power may affect causality estimations, e.g., by creating confounding differences between the vocal conditions studied. However, the dPTE is a causality index that shows robustness to the influence of power, noise, and other variables. In our dataset, the pre-vocal δ-band power increase within each region when animals produced echolocation (call-type specific in FAF, unspecific in AC) was nonetheless accompanied by a decrease of interareal dPTE values. In addition, a δ-band power increase of communication pre-vocal LFPs relative to baseline (Fig. 1) did not result in significant differences of dPTE values during pre-vocal and spontaneous periods. Thus, changes in causality did not necessarily follow changes in power, as reported in previous work.

Based on dPTE values associated with spontaneous and pre-vocal activities (Figs. 2, S5), it appears that as animals prepare the production of an echolocation call, the FAF gradually relinquishes control over the AC in the low-frequency (δ) channel. That is, the top-down control wanes during echolocation pre-vocal periods in δ LFPs. The weakening of preferred top-down information transfer could be taken as a preamble of emerging bottom-up information flow in δ frequencies after an echolocation call is emitted (Fig. 3). This fails to happen in the communication case. Echolocation, the predominant strategy for navigation, is essential for bats. After vocalizing an echolocation pulse, the bat auditory system must be ready to process incoming echoes and use them to construct a representation of surrounding objects, potentially involving higher order structures. The observed switch from top-down to bottom-up processing when animals find themselves in echolocation mode could represent the readiness of the bat’s auditory machinery for the aforementioned task. Concretely, our data suggest that the former may occur over a continuum encompassing a gradual release of the AC from top-down influences (the FAF), which opens the way for auditory-frontal information transfer supporting the processing and integration of incoming echoes. A reversal in information transfer is also visible (albeit weaker and in a different LFP frequency band) during the production of high frequency communication sounds (Fig. S10). This result could hint towards smooth transition in the way the

Fig. 6 The FAF-AC network during vocal production. a Oscillations in frontal and auditory cortices provide a neural correlate of vocal production, allowing the prediction of ensuing call type. Prediction is possible in complementary frequency bands in each region, and with opposite effects. b Schematic representation of causal interactions (within a TE framework) in the FAF-AC network. Strong top-down control, mostly in δ and γ frequencies, occurs during spontaneous activity (no-voc) and prior to vocal utterance. In the δ-band, information flows top-down in the circuit (FAF → AC) during pre-vocal periods, but changes to bottom-up (AC → FAF) information transfer during post-vocal periods. The directionality patterns and the strength of preferential causal interactions depend on the type of call produced, and on the timing relative to vocal onset. c Electrical stimulation results provide strong support to the notion that FAF alters the manner in which AC processes acoustic information, preferentially when animals listen to echolocation sounds. In comparison to the listening of distress sounds, auditory cortical responses to echolocation sounds were more reliably enhanced after electrically stimulating the frontal cortex.
FAF-AC network operates, which finds its two extremes in echolocation and low-frequency communication call production. In all, processing feedback information directly related to navigation appears to have a larger weight in the bottom-up processing of acoustic cues resulting from a self-generated sound. Echolocation pulses are produced to generate echoes that must be listened to. Communication calls are often targeted to an audience as means of transmitting internal behavioral information (e.g., distress, aggressive mood, etc.), not aimed at the emitter itself. For the emitter, in such scenario, feedback processing mostly contributes to the adjustment of vocal parameters such as loudness or pitch. Since in this study animals vocalized without an audience (i.e., they were isolated in the recording chamber), further research could elucidate whether the presence of conspecifics increases bottom-up information transfer when vocalizing communication calls, as animals could expect a conspecific’s response.

The reversal of information flow reported in the δ-band when animals echolocate cannot be solely attributed to passively hearing feedback from their own utterances (Figs. S7–10); active vocalization seems to be necessary to trigger bottom-up information transfer in the FAF-AC circuit. The current data, together with the fact that passive listening fails to significantly alter low-frequency coherence in the FAF-AC network, indicate that passive listening alone is not sufficient to significantly alter the dynamics of communication between FAF and AC. Likewise, information flow dynamics associated to echolocation calls could not be attributed solely to their high frequency content, since qualitatively similar variations between echolocation and communication calls were observed when considering only HF-communication utterances, particularly for δ-LFPs (Fig. S10). The act of emitting echolocation pulses therefore triggers unique patterns of information flow reversal in the fronto-auditory network of C. perspicillata. Our data suggest that the functional connectivity in this circuit is shaped by the behavioral intent of the vocalization.

The transfer entropy analyses discussed above indicate that the frontal cortex exerts top-down modulation over its auditory cortical counterpart, particularly during spontaneous activity (Fig. 2). Consistent with the top-down modulation perspective, electrical perturbation of the FAF enhanced the strength of responses in AC, echoing known effects of frontal stimulation in other mammals. The precise mechanisms by which FAF microstimulation affects AC response remains to be clarified. It has been suggested that top-down interactions modulate sensory areas by means of inhibitory effects potentially capitalizing on low-frequency interactions (see refs. 73–75). Given the low-frequency (directed) functional coupling in the FAF-AC network, we hypothesize that top-down projections from the FAF reach the AC and modulate cortical gain by affecting the temporal dynamics of local inhibitory networks (e.g., ref. 76). These networks might possess intrinsic, low-frequency rhythms, potentially reflected in the quasi-periodic pattern seen in the relationship between sound-onset latency and AC response increase (Fig. 5a). Nevertheless, such observations remain speculative and require empirical validation. Altogether, considering that FAF manipulation most reliably altered responses to echolocation stimuli (Fig. 4), and that the production of echolocation pulses reverses information flow in the fronto-auditory circuit, our data suggest that dynamic interactions in the bat’s FAF-AC network are particularly associated with auditory processing for echolocation behavior.

Methods

Animal preparation and surgical procedures. The study was conducted on five awake *Carollia perspicillata* bats (one female). Experimental procedures were in compliance with European regulations for animal experimentation and were approved by the Regierungsratspräsidium Darmstadt (experiental permits #FU-1126 and #FR-2007). Bats were obtained from a colony at the University of Frankfurt. Animals used for experiments were kept isolated from the main colony.

Prior to surgical procedures, bats were anaesthetized with a mixture of ketamine (10 mg/kg, 1, Ketavet, Pfizer) and xylazine (38 mg/kg, 1, Rompun, Bayer). For surgery and for any subsequent handling of the wounds, a local anesthetic (ropivacaine hydrochloride, 2 mg/ml, Fresenius Kabi, Germany) was applied subcutaneously around the scalp area. A rostro-caudal midline incision was cut, after which muscle and skin tissues were carefully removed in order to expose the skull. A metal rod (ca. 1 cm length, 0.1 cm diameter) was attached to the bone to guide the parasagittal incision during the craniotomy. Recording electrodes were located by means of well-described landmarks, including the sulcus anterior and prominent blood vessel patterns (see refs. 17,50,77). The cortical surface in these regions was exposed by cutting small holes (ca. 1 mm²) with the aid of a scalpel blade on the first day of recordings. In the AC, recordings were made mostly in the high frequency fields (10,50,77). After surgery, animals were given no less than two days of rest before the onset of experiments. No experiments on a single animal lasted longer than 4 h per day. Water was given to the bats every 1–1.5 h periods, and experiments were halted for the day if the animal showed any sign of discomfort (e.g., excessive movement). Bats were allowed to rest a full day between consecutive experimental sessions.

Electrophysiological and acoustic recordings. Electrophysiological was performed chronically in fully awake animals, inside a sound-proof chamber. Inside the chamber, bats were placed on a custom-made holder which was kept at a constant temperature of 30 °C by means of a heating blanket (Harvard, Homeothermic blanket control unit). Electrophysiological data were acquired from FAF and AC on the left hemisphere, using two channel laminar electrodes (one per structure; Model A1x16, NeuroNexus, MI; 50 μm channel spacing, impedance: 0.3–3 MΩ per electrode). Probes were carefully inserted into the brain perpendicular to the cortical surface, and lowered with piezo manipulators (one per probe; PM-101, Science products GmbH, Hofheim, Germany) until the top channel was barely visible above the surface of the tissue. The placing and properties of the probes allowed us to record simultaneously at depths ranging from 0 to 750 μm, spanning all six cortical layers (see ref. 78). Probes were connected to a micro-preamplifier (MPA 16, Multichannel Systems MCS GmbH, Reutlingen, Germany), and acquisition was done with a single, 32-channel portable system with integrated digitization (sampling frequency, 20 kHz; precision, 16 bits). Analog-to-digital conversion steps (Multi Channel System MCS GmbH, Reutlingen, Germany). Reference electrodes (silver wires) were used for each recording channel (i.e., in FAF or AC) at a different area of the brain (for FAF: a non-auditory, lateral, ipsilateral region; for the AC: a non-auditory occipital, ipsilateral region). Wires were carefully placed to rest between the skull and the dura matter. For each laminar electrode, reference and ground were short-circuited; the ground was however common in the acquisition system (i.e., the ME32). Acquisition was online-monitored and stored in a computer using the MC_Rack_Software (Multi Channel Systems MCS GmbH, Reutlingen, Germany; version 4.6.2).

Vocal outputs were recorded by means of a microphone (CMPA microphone, AudioTechnics, Glienicke, Germany; located 10 cm away from the target animal). Recordings were performed with a sampling rate of 250 kHz and a precision of 16 bits, using the Avisoft Recorder software (Avisoft Bioacoustics, Glienicke, Germany; versions 4.2.8 and 4.3.01). Vocalizations were amplified (gain = 0.5, Avisoft UltraSoundGate 116Hfm mobile recording interface system, Glienicke, Germany) and then stored in the same PC used for electrophysiological recordings. Electrophysiological and acoustic data were aligned using two triggers, an acoustic one (5 kHz tone, 10 ms long) presented with a speaker located inside of the chamber (NeoCD 1.0 Ribbon Tweeter; Fountek Electronics), and a TTL pulse sent to the recording system for electrophysiology (see above). Note that the onsets of the tones were in synchrony with the TTL pulses registered by the acquisition system for electrophysiology.

Acoustic stimulation. Two acoustic stimuli were used to evaluate transfer entropy patterns during passive listening. One of them, the high-frequency frequency modulated sound (HF-FM; 2 ms long; downward frequency sweep from 80 to 50 kHz), mimicked the spectrotomposmal structure of echolocation pulses; the other, consisted of a distress syllable (distress, 3.8 ms long) typical of *C. perspicillata*’s vocal repertoire. The latter stimulus was embedded in a sequence in which the syllable was presented every 500 ms for 2 seconds (2 Hz rate); other sequences with faster rates were also presented to the animal, but were not considered for this study. Only the first syllable of the 2 Hz sequence was used for analyses. Stimuli for determining frequency tuning consisted of short (10 ms) pure tones at various frequencies (5–90 kHz, in steps of 5 kHz) and levels (15–75 dB SPL, steps of 15 dB). Since the HF-FM and the distress sounds were presented at 70 dB SPL (rms), we focused on the frequency tuning curve obtained with pure tone stimuli presented at 75 dB SPL. The setup for stimulation has been described in previous studies (see ref. 17). In short, sounds were digital-to-analog converted using a sound card (M2Tech HiFace DAC, 384 kHz, 32 bit), amplified (Rotel power amplifier, model RB-1050), and presented through a speaker (description above) inside of the chamber.
1.3.1073). For extracting LFPs, the raw data were band-pass filtered (zero-phase) between 192 kHz and low-pass to 80 kHz (80 Hz cut-off). Sound presentation was controlled with custom-written Matlab softwares (version 8.6.0.267246 (R2015b), MathWorks, Natick, MA) from the recording computer.

Classification of vocal outputs. Two sessions of concurrent acoustic recordings (~10 min long) were made per paired penetrations in FAF and AC. Vocalizations were automatically detected based on the acoustic envelope of the recordings. The envelope was z-score normalized to a period of no vocalization (no less than 10 s long), which was manually selected, per file, after visual inspection. If a threshold of 5 standard deviations was crossed, a vocalization occurrence was marked and its start and end times were saved. Given the stereotyped spectral properties of C. perspicillata's echolocation calls, a preliminary classification between echolocation and communication utterances was done based on each call's peak frequency (a peak frequency > 50 kHz suggested an echolocation vocalization, whereas a peak frequency below 50 kHz suggested a communication call). In addition, vocalizations were labeled as candidates for subsequent analyses if there was a time of silence no shorter than 500 ms prior to call production to ensure no acoustic contamination on the pre-vocal period that could affect LFP measurements in FAF or AC. Finally, echolocation and communication candidate vocalizations were individually and thoroughly examined via visual inspection to validate their classification. Echolocation or communication, the absence of acoustic contamination in the 500 ms prior to vocal onset, and the correctness of their start and end time stamps. According to the above, and out of a total of 12,494 detected vocalizations, 138 echolocation and 734 communication calls were then used in further analyses. High-frequency communication calls (HF-communication) were selected according to the frequency component of the vocalizations. Specifically, an HF-communication call was an utterance with more than 50% of its power in the 50–100 kHz range. HF-communication calls represented 21.12% of the communication calls used (155/734).

Extraction of LFP signals and power analyses. Data analyses were performed using custom-written scripts in MatLab (versions 9.5.0.1298439 (R2018b), and 9.10.0.1684407 (R2021a)), Python (version 2.6 or 3.6), and R (RStudio version 1.3.1073). For extracting LFPs, the raw data were band-pass filtered (zero-phase) between 0.1 and 300 Hz (4th order Butterworth filter; filtfilt function, MatLab), after which the signals were downsampled to 1 kHz. All LFP spectral analyses were done using the Chronux toolbox29. Pre-vocal power was calculated with LFP segments spanning 500–0 ms relative to vocal onset, using a TW of 2, and 3 tapers. No-vocalization baseline periods (no-voc) with a length of 500 ms were pseudo-randomly selected and their power spectra calculated in order to obtain baseline power values for spontaneous activity. The total number of no-voc periods matched the total number of vocalizations (n = 872), in a way that the number of selected no-voc periods per recording file matched the number of vocalizations found in that particular file. The power of individual frequency bands (i.e., δ, 1–4 Hz; θ, 4–8 Hz; α, 8–12 Hz; β₁, 12–20 Hz; β₂, 20–30 Hz; γ₁, 30–60 Hz; γ₂, 60–120 Hz; γ₃, 120–200 Hz) was calculated by integration of the power spectral density accordingly for each case. Finally, the increase in pre-vocal power relative to the baseline periods was calculated as follows (per frequency band, on a call-by-call basis):

Relative power change = \frac{BP_{pre-voc} - BP_{no-voc}}{BP_{no-voc}} \times 100, \tag{1}

where BP_{pre-voc} is the pre-vocal power (in the case of either an echolocation or communication vocalization) of the given frequency band and trial (i.e., a specific call), and BP_{no-voc} is the baseline no-voc power associated to the same frequency band and trial.

Generalized linear model for vocal output prediction. To determine whether pre-vocal power change relative to baseline was able to predict the type of ensuing vocal output, we used a GLM with a logistic link function (i.e., logistic regression). The model analysis was done in RStudio with the lme4 package. In brief, logistic regression was used to predict the probability of a binary outcome (0 or 1; communication or echolocation, respectively) based on the pre-vocal power change as the predictor variable. The probabilities are mapped by the inverse logit function (sigmoid):

\sigma(x) = \frac{1}{1 + \exp(-x)} \tag{2}

which restricts the model predictions to the interval [0, 1]. Because of these properties, a logistic regression with GLMs is well suited to compare data (and thus, evaluate predictions of ensuing vocal-output) on a single-trial basis80. With values ranging between 0 and 1, dPTE values below 0.5 indicate preferential information directed towards one of the electrodes yields a directed connectivity matrix that can be considered as an adjacency matrix of a directed graph (see below). All PTE and dPTE calculations were done with the Brainstorm toolbox in MatLab86.

Directionality analyses. Directional connectivity in the FAF-AC network was quantified with the directed phase transfer entropy (dPTE; ref. 89), based on the phase transfer entropy (PTE) metric82. PTE is a data-driven, non-parametric DI that relates closely to transfer entropy (TE; ref. 90), but is based on the phase-symmetric properties of the signals under consideration (here, FAF and AC field potentials). PTE is sensitive to information flow present in broad- and narrowband signals, and is in a large degree robust to the effects of, for example, noise, linear mixing, and sample size84. In terms of TE, a signal X causally influences signal Y (both of them can be considered part of a linear time-invariant system) if the future of Y can be reduced from knowing both the past of signal X and signal Y, as compared to knowing the past of signal Y alone. Formally, the above can be expressed as follows:

\begin{align*}
TExY_{\delta} = & \frac{1}{2} \left[TExY_{\delta} - TExY_{\delta}^* \right] \\
& = \frac{1}{2} \log \left(\frac{TExY_{\delta} + TExY_{\delta}^*}{TExY_{\delta}^2} \right) \tag{3}
\end{align*}

where δ represents the delay of the information transfer interaction, and TExY_{\delta} is the transfer entropy between signals X and Y. The estimation of the probabilities for TE quantification requires large computational times and the tuning of various parameters82. PTE, on the other hand, converts the time series into a sequence of symbols (i.e., synchronized phase time series, see below), and is able to estimate TE on the phase series reducing significantly both processing times and the necessity for parameter fitting82.

Phase time series were obtained after filtering the LFP signal in a specific frequency band (e.g., δ, 4–8 Hz) and Hilbert transforming the filtered data. To avoid edge artefacts, the full 10 seconds of recordings were filtered and Hilbert transformed before chunking segments related to individual trials (i.e., pre-voc: -500 ms relative to call onset, post-voc: 0–250 ms relative to call onset, or no-voc baseline periods). According to the condition under consideration (echolocation/communication and pre-voc/post-voc, or baseline periods), we selected 50 trials pseudo-randomly and then centered them before quantifying directional connectivity. This process was repeated 500 times and the distribution of dPTE values obtained from each repetition used for further analyses. The former resulted in a distribution of 500 dPTE connectivity matrices; the median value across these was used for constructing connectivity graphs (see below).

The PTE was calculated according to eq. 3. However, probabilities, in this case, were estimated by constructing histograms of binned phases82 instead of using the full, continuous time series. Following85, the number of bins in the histograms was set to 2.

The dPTE was calculated from the PTE as follows86:

\begin{align*}
dPTE_{X \rightarrow Y} = & \frac{PTE_{X \rightarrow Y}}{PTE_{Y \rightarrow X} + PTE_{Y \rightarrow X}} \\
& = \frac{PTE_{X \rightarrow Y}}{dPTE_{X \rightarrow Y}} \\
& = \frac{PTE_{X \rightarrow Y}}{PTE_{Y \rightarrow X}} \tag{4}
\end{align*}

With values ranging between 0 and 1, dPTE > 0.5 indicate information flow preferentially in the X → Y direction, dPTE values below 0.5 indicate preferential information flow in the opposite direction, and dPTE = 0.5 indicates no preferred direction of information flow. In other words, dPTE is a metric of preferred directionality between two given signals. Note that the dPTE analysis among a set of electrodes yields a directed connectivity matrix that can be considered as an adjacency matrix of a directed graph (see below). All PTE and dPTE calculations were done with the Brainstorm toolbox in MatLab86.

Connectivity graphs. A graph-theoretic examination of the connectivity patterns was made by constructing directed graphs based on the results obtained from the dPTE analyses (i.e., the median across the 500 repetitions; see above). For simplicity, channels in the FAF and AC within a range of 150 μm were grouped as follows (in the FAF, as an example): FAFtop, channels 1–4 (0–150 μm); FAFmid1, channels 5–8 (200–350 μm); FAFmid2, channels 9–12 (400–550 μm); FAFbottom, channels 13–16 (600–750 μm). A similar grouping was done for electrodes located in AC. These channel groups were considered as the nodes of a directed graph. A directed edge (u, v) between any two nodes then represents a preferential information flow from node u to node v. The weight of the edge was taken as the median dPTE for the channel groups corresponding to the nodes, according to the dPTE connectivity matrices. For instance, if the groups considered were FAFtop and ACbottom, then the weight between both nodes was the median of the obtained dPTE values calculated from channels 1–4 in FAF towards channels 13–16 in AC.
The weight of an edge was quantified as a DI:

\[DI = \frac{\text{median}[dPT_{E_0}]}{0.5} \times 100. \]

where DI, in percentage points, the strength of the preference of information flow in a certain direction. Equation 6 is based on the fact that a dPT of 0.5 corresponds to no preferred direction of information flow\(^{39}\).

To statistically validate the directionality shown in the graphs we used a bootstrap approach. Surrogate adjacency matrices were built for the same channel groups (top, mid1, mid2 and bottom), but electrodes were randomly assigned to each group, independently of their depths or cortical location. This randomization was done independently within each of the 500 dPT matrices obtained from the main connectivity analysis. Then, an adjacency matrix was obtained from these surrogate data in the same way as described above (i.e., using the median across 500 randomized dPT matrices). Such a procedure was repeated 10,000 times, yielding an equal number of surrogate graphs. An edge in the original graph was kept if the DI of that edge was at least 2.5 standard deviations higher than the mean of the surrogate distribution obtained for that edge (i.e., higher than the 99.38% of the surrogate observations). Edges that did not fulfill this criterion were labeled as non-significant and were therefore not considered for any subsequent analyses.

Directionality analyses for passive listening conditions. dPT values and connectivity graphs for passive listening conditions were quantified using the same methodology described for the cases of active vocalization. Analyses based on responses to acoustic stimulation were made on a trial-by-trial basis. Trials were randomly selected 500 times across all penetrations, depending on whether responses to the HF-FM or the distress sound were considered. We ensured that the number of trials chosen for each penetration, in every randomization run, matched the number of vocalizations taken (in a HF-FM/echolocation or distress/communication condition) that had a particular pattern. With this procedure we avoided possible biases in the comparisons across passive listening and active vocalizations conditions.

Electrical stimulation experiments. The FAF was electrically stimulated by means of biphasic pulses lasting 410 μs (200 μs per phase, with 10 μs gap between them) and with an amplitude of 2 μA. Electric pulses were delivered by inserting an A16 Neurochron shank (same used for recordings) into the frontal cortex, using the channels at depths of 350 and 450 μm as stimulating electrodes. These channels were directly connected to the outputs of an A365 stimulus isolator (World Precision Instruments, Friedberg, Germany). Pulse amplitude was selected based on values used in the literature (e.g., refs. 27–29), and after empirically establishing that electrical artefacts were undetectable in the AC online during recordings. Recordings in AC were conducted with a second A16 shank (as described above); electrical artefacts were undetectable in the AC online during recordings. We ensured that the number of trials chosen for each penetration, in every randomization run, matched the number of vocalizations taken (in a HF-FM/echolocation or distress/communication condition) that had a particular pattern. With this procedure we avoided possible biases in the comparisons across passive listening and active vocalizations conditions.

Statistical procedures. All statistical analyses were made with custom-written MatLab scripts. Paired and unpaired statistical comparisons were performed with Wilcoxon signed-rank and rank sum tests, respectively. These are appropriately indicated in the text, together with sample sizes and p-values. All statistics, unless otherwise noted, were corrected for multiple comparisons with the False Discovery Rate approach, using the Benjamini and Hochberg procedure\(^{39}\). An alpha of 0.05 was set as threshold for statistical significance. The effect size metric used, unless stated otherwise (as in the GLM case), was Cohen’s d:

\[d = \frac{\mu_{1} - \mu_{2}}{\sqrt{\frac{(n_{1} - 1) \sigma_{1}^{2} + (n_{2} - 1) \sigma_{2}^{2}}{n_{1} + n_{2} - 2}}}, \]

where D1 and D2 are two populations, μ1 represents the mean, σ represents the variance, while n1 and n2 are the sample sizes. Effect sizes were considered small when |d| < 0.5, medium when 0.5 ≤ |d| < 0.8, and large when |d| > 0.8\(^{31}\).

In cases of the connectivity graphs across conditions (e.g., echolocation vs. communication, or passive listening vs. active vocalization), we obtained adjacency matrices for each of the 500 penetrations (one per dPT connectivity matrix; see above) and compared the distributions using Wilcoxon signed rank tests. Given that the large sample size (n = 500 here) increases the occurrence of significant outcomes in statistical testing, edges were only shown when comparisons were significant and produced large effect sizes (|d| > 0.8).

When comparing connectivity graphs between pre- and post-voc conditions, we used the exact same trials per repetitions to construct the distribution of dPT matrices for the pre- and post-voc cases. A certain repetition m for each condition was then treated as paired, and therefore Wilcoxon signed rank tests were used for comparing (as opposed to unpaired statistics above). Again, only edges representing significant differences (p < 0.05) with large effect sizes were shown.

Data availability

The data generated during and/or analyzed during the current study are available in the G-Node GIN repository, https://doi.org/10.12751/g-node.g0exwhi. Some data could not be uploaded due to their size; they are available from the authors upon request. Source data is provided with this paper.

References

1. Jurgens, U. The neural control of vocalization in mammals: A review. J. Voice 23, 1–10 (2009).

2. Okobi, D. E. J, Banerjee, A., Matheson, A. M. M., Phelps, S. M. & Long, M. A. Motor cortico control of vocal interaction in neotropical singing mice. Science 363, 983–988 (2019).

3. Zhang, Y. S. Ghazanfar, A. A. A hierarchy of autonomous systems for vocal production. Trends Neurosci. 43, 115–126 (2020).

4. Gavrilov, N., Hage, S. R. & Nieder, A. Functional specialization of the primate frontal lobe during cognitive control of vocalizations. Cell Rep. 21, 2393–2406 (2017).

5. Tschida, K. et al. A specialized neural circuit gates social vocalization in the monkey. Neuron 103, 459–472 e454 (2019).

6. Schulz, G. M., Varga, M., Jeffires, K., Ludlow, C. L. & Braun, A. R. Functional neuroanatomy of human vocalization: An H2150 PET study. Cereb. Cortex 15, 1835–1847 (2005).

7. Eliades, S. J. & Tsunada, J. Auditory cortical activity drives feedback-dependent vocal control in marmosets. Nat. Commun. 9, 2540 (2018).

8. Eliades, S. & Wang, X. Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature 453, 1102–1106 (2008).

9. Zhang, S. et al. Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat. Neurosci. 19, 1733–1742 (2016).

Received: 18 May 2021; Accepted: 30 May 2022; Published online: 25 June 2022
10. Helfrich, R. F. & Knight, R. T. Cognitive neurophysiology of the prefrontal cortex. *Handb. Clin. Neurol.* **163**, 35–59 (2019).

11. Choi, E. V., Drayna, G. K. & Badre, D. Evidence for a functional hierarchy of association networks. *J. Cogn. Neurosci.* **30**, 722–736 (2018).

12. Petkov, C. I. & Jarvis, E. D. Birds, primates, and spoken language origins: Behavioral phenotypes and neurological substrates. *Front. Evol. Neurosci.* **4**, 12 (2012).

13. Woll, D. P., Vanderschuren, L. J., Grauwen, H. J., Robbins, T. W. & Pennartz, C. M. Putting a spin on the dorsal-ventral divide of the striatum. *Trends Neurosci.* **27**, 468–474 (2004).

14. Hage, S. R. & Nieder, A. Single neurons in monkey prefrontal cortex encode volitional initiation of vocalizations. *Nat. Commun.* **4**, 2409 (2013).

15. Roy, S., Zhao, L. & Wang, X. Distinct neural activities in premotor cortex during natural vocal behaviors in a new world primate, the common marmoset (Callithrix jacchus). *J. Neurosci.* **36**, 12168–12179 (2016).

16. Weincke, K., Garcia-Rosales, F. & Hechavarria, I. C. Neural oscillations in the fronto-striatal network predict vocal output in bats. *PLoS Biol.* **18**, e3000658 (2020).

17. García-Rosales, F., López-Jury, L., González-Palomares, E., Cabral-Calderín, Y. & Hechavarria, I. C. Fronto-temporal coupling dynamics during spontaneous activity and auditory processing in the bat *Carollia perspicillata*. *Front. Syst. Neurosci.* **14**, 14 (2020).

18. Park, H., Ince, R. A., Schyns, P. G., Thut, G. & Gross, J. Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in humans. *Curr. Biol.* **25**, 1063–1068 (2015).

19. Plakke, B. & Romanski, L. M. Auditory connections and functions of prefrontal cortex. *Front. Neurosci.-Switz* **8**, 199 (2014).

20. Kobler, J. B., Isbey, S. F. & Casseday, J. H. Auditory pathways to the frontal cortex of the mustache bat, *Pteronotus parnellii*. *Science* **326**, 824–826 (2009).

21. Winkowski, D. E., Bandypadhyay, S., Shamma, S. A. & Kanold, P. O. Frontal cortex activations cause rapid plasticity of auditory cortical processing. *J. Neurosci.* **33**, 18134–18148 (2013).

22. Winkowski, D. E. et al. Orbitofrontal cortex neurons respond to sound and activate primary auditory cortex neurons. *Cereb. Cortex* **28**, 868–879 (2018).

23. Martikainen, M. H., Kaneko, K. & Hari, R. Suppressed responses to self-triggered sounds in the human auditory cortex. *Cereb. Cortex* **15**, 299–302 (2005).

24. Aliu, S. O., Houde, J. F. & Nagarajan, S. S. Motor-induced suppression of the auditory cortex. *J. Cogn. Neurosci.* **21**, 791–802 (2009).

25. Rummell, B. P., Klee, J. L. & Sigurdsson, T. Attenuation of responses to self-generated sounds in auditory cortical neurons. *J. Neurosci.* **36**, 12010–12026 (2016).

26. Baess, P., Horvath, I., Jacobsen, T. & Schroger, E. Selective suppression of self-initiated sounds in an auditory stream: An ERP study. *Psychophysiology* **48**, 1276–1283 (2011).

27. Eliades, S. J. & Wang, X. Sensory-motor interaction in the primate auditory cortex during self-initiated vocalizations. *J. Neurophysiol.* **89**, 2194–2207 (2003).

28. Flinker, A. et al. Single-trial speech suppression of auditory cortex activity in humans. *J. Neurosci.* **30**, 16643–16650 (2010).

29. Eliades, S. J. & Wang, X. Dynamics of auditory- vocal interaction in monkey auditory cortex. *Cereb. Cortex* **15**, 1510–1523 (2005).

30. Tsunada, J. & Eliades, S. J. Dissociation of unit activity and gamma oscillations during vocalization in primate auditory cortex. *J. Neurosci.* **40**, 4158–4171 (2020).

31. Clayton, K. K. et al. Auditory corticothalamic neurons are recruited by motor preparatory inputs. *Curr. Biol.* **31**, 310–321.e5 (2020).

32. Li, S., Zhu, H. & Tian, X. Corollary discharge versus efference copy: Distinct neural signals in speech preparation differentially modulate auditory responses. *Cereb. Cortex** **30**, 5806–5820 (2020).

33. Schneider, D. M. & Mooney, R. Motor-related signals in the auditory system for listening and learning. *Curr. Opin. Neurobiol.* **33**, 78–84 (2015).

34. Toyomura, A. et al. Neural correlates of auditory feedback control in humans. *Neuroscience** **146**, 499–503 (2007).

35. Hingon, J. et al. High-gamma band fronto-temporal coherence as a measure of functional connectivity in speech motor control. *Neuroscience** **305**, 15–25 (2015).

36. Behroozmand, R. et al. Sensory-motor networks involved in speech production and motor control: an fMRI study. *Neuroimage** **109**, 418–428 (2015).

37. Leh, K. K. et al. Cognitive control of orofacial motor and vocal responses in the ventrolateral and dorsomedial human frontal cortex. *Proc. Natl Acad. Sci. USA** **117**, 4994–5005 (2020).

38. Fernandez, A. A., Fasel, N., Knornschmidt, M. & Richner, H. When bats are boxing: Aggressive behaviour and communication in male Seba’s short-tailed fruit bat. *Anim. Behav.** **86**, 941–948 (2013).

39. Knornschmidt, M., Fei&hellip
69. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. *Proc. Natl Acad. Sci. USA* **103**, 10046–10051 (2006).

70. Simmons, J. K., Ruan, M. & McNaughton, N. A critical assessment of directed cortical responses to electrical stimulation of the thalamus. *Clin. Neurophysiol*. **120**, 1303–1312 (2009).

71. Sakata, S. & Harris, K. D. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. *Neuron* **64**, 404–418 (2009).

72. Bastos, A. M. et al. Canonical microcircuits for predictive coding. *Neuron* **76**, 695–711 (2012).

73. Sanchez-Vives, M. V. & McCormick, D. A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. *Nat. Neurosci.* **3**, 1027–1034 (2000).

74. Elhilali, M., Fritz, J. B., Klein, D. J., Simon, J. Z. & Shamma, S. A. Dynamics of precise spike timing in primary auditory cortex. *J. Neurosci.* **24**, 1159–1172 (2004).

75. Esser, K. H. & Eiermann, A. Tonotopic organization and parcellation of auditory cortex in the FM-bat Carollia perspicillata. *Eur. J. Neurosci.* **11**, 3669–3682 (1999).

76. Garcia-Rosales, F. et al. Laminar specificity of oscillatory coherence in the auditory cortex. *Brain Struct. Funct.* **224**, 2907–2924 (2019).

77. Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S. & Mitra, P. P. Chronux: A user-friendly application for MEG/EEG analysis. *Front. Syst. Neurosci*. **3**, 345 (2010).

78. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. *Methods Ecol. Evol.* **4**, 133–142 (2013).

79. Lobier, M., Palva, J. M. & Palva, S. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention. *Neuroimage* **165**, 222–237 (2018).

80. Wirbal, M., Vicente, R. & Lindner, M. Directed Information Measures in Neuroscience (eds Wirbal, M., Vicente, R. & Lützé, J. T.) (Springer, 2014).

81. Young, C. K., Ruan, M. & McNaughton, N. A critical assessment of directed connectivity estimates with artificially imposed causality in the supramammillary-septo-hippocampal circuit. *Front. Syst. Neurosci.* **11**, 72 (2017).

82. Scott, S. K. et al. Impaired auditory recognition of fear and anger following bilateral amygdala lesions. *Nature* **385**, 254–257 (1997).

83. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: A user-friendly application for MEG/EEG analysis. *Comput. Intell. Neurosci.* **2011**, 879716 (2011).

84. Atencio, C. A., Shih, J. Y., Schreiner, C. E. & Cheung, S. W. Primary auditory cortical responses to electrical stimulation of the thalamus. *J. Neurophysiol.* **111**, 1077–1087 (2014).

85. Yazdan-Shahmorad, A. et al. Estimation of electrode location in a rat motor cortex by laminar analysis of electrophysiology and intracortical electrical stimulation. *J. Neural Eng.* **8**, 046018 (2011).

86. Takahashi, S. et al. Laminar responses in the auditory cortex using a multielectrode array substrate for simultaneous stimulation and recording. *IEEE T. Electr. Electr.* **14**, 303–311 (2019).

87. Tadel, F., Baillet, S., Liu, H. & Larson, C. R. Vocalization-induced enhancement of the auditory cortex responsiveness during voice F0 feedback perturbation. *Clin. Neurophysiol.* **120**, 1303–1312 (2009).

88. Takahashi, S. et al. Laminar responses in the auditory cortex using a multielectrode array substrate for simultaneous stimulation and recording. *IEEE T. Electr. Electr.* **14**, 303–311 (2019).

89. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. *Methods Ecol. Evol.* **4**, 133–142 (2013).

90. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. *J. R. Stat. Soc. B Met.* **57**, 289–300 (1995).

91. Cohen, J. *Statistical Power Analysis for the Behavioral Sciences* 2nd edn (L. Erlbaum Associates, 1988).

Acknowledgements

This work was supported by the DFG (Grant No. HE 7478/1-1, to J.C.H.), and the Joachim-Herz Foundation (Fellowship granted to F.G.R.). The authors thank Gisa Prange for assistance with histological procedures.

Author contributions

F.G.R. and J.C.H. conceived and designed the research. F.G.R. collected the data, analyzed it, produced figures, and wrote the original manuscript. F.G.R., L.L.J., E.G.P., J.W., Y.G.C., A.K., M.K., and J.C.H. discussed analyses and results, interpreted the data, and reviewed figures and text.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-31230-6.

Correspondence and requests for materials should be addressed to Francisco García-Rosales or Julio C. Hechavarria.

Peer review information Nature Communications thanks Jagmeet Kanwal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.