Compositional modulation in ZnGa$_2$O$_4$ via Zn$^{2+}$/Ge$^{4+}$ co-doping to simultaneously lower sintering temperature and improve microwave dielectric properties

Ying XIONGa,b,†, Hongyuan XIEc,†, Zhenggang RAOc, Laijun LIUb, Zhengfeng WANGa, Chunchun LIa,b,c,*

aCollege of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China
bGuangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
cSchool of Materials Science and Engineering, Nanchang University, Nanchang 330031, China

Received: March 1, 2021; Revised: May 27, 2021; Accepted: June 26, 2021
© The Author(s) 2021.

Abstract: AB$_2$O$_4$-type spinels with low relative permittivity (ε_r) and high quality factor ($Q \times f$) are crucial to high-speed signal propagation systems. In this work, Zn$^{2+}$/Ge$^{4+}$ co-doping to substitute Ga$^{3+}$ in ZnGa$_2$O$_4$ was designed to lower the sintering temperature and adjust the thermal stability of resonance frequency simultaneously. Zn$_{1-x}$Ga$_{2-2x}$Ge$_x$O$_4$ (0.1 \leq x \leq 0.5) ceramics were synthesised by the conventional solid-state method. Zn$^{2+}$/Ge$^{4+}$ co-substitution induced minimal variation in the macroscopical spinel structure, which effectively lowered the sintering temperature from 1385 to 1250$^\circ$C. All compositions crystallized in a normal spinel structure and exhibited dense microstructures and excellent microwave dielectric properties. The compositional dependent quality factor was related to the microstructural variation, being confirmed by Raman features. A composition with $x = 0.3$ shows the best dielectric properties with $\varepsilon_r \approx 10.09$, $Q \times f \approx 112,700$ THz, and $\tau_f \approx -75.6$ ppm/$^\circ$C. The negative τ_f value was further adjusted to be near-zero through the formation of composite ceramics with TiO$_2$.

Keywords: ceramics; spinel; composition modulation; dielectric properties

1 Introduction

Microwave dielectric ceramics can meet the ever-growing requirements of wireless communication as primary functional materials for dielectric resonators and filters. Radars, mobile networking (4G and 5G), base stations, satellite transmission, and global positioning systems are only a few examples of applications where such dielectrics have been commercialized [1–3]. The last few decades have witnessed intensive development and commercialization of microwave dielectric ceramics and a lot of candidates with good dielectric performances (high relative permittivity ε_r, high quality factor $Q \times f$, tunable temperature coefficient of resonance frequency τ_f) have been explored [4–6]. Unfortunately, the undesirable incompatibility between these three merits, however, restricts the range of applications.

† Ying Xiong and Hongyuan Xie contributed equally to this work.
* Corresponding author.
E-mail: lichunchun2003@126.com
possibilities for practical applications [7]. As a consequence, there is still a high demand ongoing for novel microwave dielectrics with optimized performances for the above-mentioned merits.

AB₂O₄ spinel materials have received intense attention and are now considered as attractive microwave dielectric materials due to their high quality factors, e.g., (Mg,Zn)Al₂O₄ (Q × f ≈ 85,100 and 56,300 GHz), Mg₂TiO₄ (Q × f ≈ 150,000 GHz), CoZnTiO₄ (Q × f ≈ 97,500 GHz), etc. [8–11]. Ga-based spinels particularly have also been reported as promising materials for millimeter-wave devices due to their low permittivities and high quality factors. For example, MgGa₂O₄ has a low εᵣ of 9.5, a Q × f of 117,000 GHz, and a near-zero τᵣ of −4.0 ppm/°C, while the isostructural ZnGa₂O₄ possesses a large negative τᵣ of −27 ppm/°C, which would severely restrict its commercial potential [12].

Different attempts have been conducted to improve the thermal drift of τᵣ for ZnGa₂O₄. Rutile TiO₂ (6.9 vol%) was proved to be effective to compensate for the τᵣ of ZnGa₂O₄ to be 3 ppm/°C [13]. Furthermore, cation substitution in either A- or B-site was found to simultaneously improve the thermal stability and increase the quality factor of ZnGa₂O₄. Mn²⁺ substitution in ZnGa₂O₄ tuned the τᵣ value to be −12 ppm/°C coupled by a twofold increase in Q × f value to 181,000 GHz, whereas Cu²⁺ substitution reduced the temperature stability of resonance frequency despite the obvious improvement in quality factor (by ~65% to 131,500 GHz) [14,15]. Such variations in dielectric performances should be strongly related to the cation distribution and occupation preference, which would determine the normal or inverse crystal structure of the spinel. Additionally, given that the ZnGa₂O₄ is a normal spinel while MgGa₂O₄ is a partial inverse spinel, the difference in dielectric properties between the two materials may be due to structural differences in the cation distribution in tetrahedra and octahedra sites. As a result, establishing a primary correlation between the cation distribution and dielectric properties in spinels is extremely important.

Keeping in view the above challenges, spinel ZnGa₂O₄ was selected as the parent material and Zn²⁺/Ge⁴⁺ co-substitution for Ga³⁺ was proposed to form solid solution of Zn₁₋ₓGa₂₋₂ₓGeₓO₄ with an aim to study the correlation among cation occupation, crystal structure, and microwave dielectric properties.

2 Experimental

2.1 Ceramics fabrication

Analytically pure ZnO, Ga₂O₃, and GeO₂ (99.99%; Guo-Yao Co., Ltd., China) were used as raw materials to synthesize a series of nominal compositions of Zn₁₋ₓGa₂₋₂ₓGeₓO₄ (0.1 ≤ x ≤ 0.5) ceramics by the conventional solid-state reaction method. The raw materials were mixed using a ball milling for 6 h with ZrO₂ balls as a grinding media at a speed of 300 rpm. The slurry was subsequently dried at 120 °C for 2 h followed by calcination at 1150 °C for 6 h. The calcined powders were re-milled, dried, and mixed with 5 wt% PVA, which was used as the binder. The mixed powders were then pressed into disks of 10 mm in diameter and 6 mm in height under a uniaxial pressure of 80 MPa. To extract the organic binder, the green samples were heated to 550 °C for 6 h at a rate of 1.5 °C/min, followed by calcination in a temperature range of 1250–1340 °C for 6 h.

2.2 Structural and dielectric measurements

The phase composition and purity were investigated by X-ray diffractometer (XRD; Cu Kα1, 1.54059 Å, Model X’ Pert PRO, PANalytical, Almelo, the Netherlands). The crystal structure of all compositions was identified by the Rietveld refinement and Raman spectrometer (DXR; Thermo Fisher Scientific, USA). The bulk density of the sintered samples was measured by the Archimedes’ principle. The microstructure of polished and thermally etched samples was observed using scanning electron microscopy (SEM; S4800, Hitachi, Tokyo, Japan). The etching temperature was 50 °C lower than the optimum sintering temperature.

The microwave dielectric properties were measured using a network analyzer (N5230A, Agilent Co., Palo Alto, CA, USA) connected with a temperature chamber (Delta 9039, Delta Design, San Diego, CA, USA). τᵣ values were calculated using the following equation:

\[τᵣ = \frac{f_2 - f_1}{f_1(T_2 - T_1)} \]

where \(f_1 \) and \(f_2 \) represent the resonant frequency at \(T_1 \) (25 °C) and \(T_2 \) (85 °C), respectively. The room-temperature infrared reflectivity spectra were measured by a Bruker IFS 66v FT-IR spectrometer (Bruker Optics, Ettlingen, Germany).
3 Results and discussion

Figure 1 shows the room-temperature XRD patterns of the $\text{Zn}^{1+}_{1-x}\text{Ga}^{2-}_{2-x}\text{Ge}_x\text{O}_4$ ($0.1 \leq x \leq 0.5$) ceramics calcined at 1150 °C. All the observed peaks were indexed with the PDF card No. 86-0415 and the crystal structure could be assigned to the cubic spinel ZnGa_2O_4 with space group $Fd\bar{3}m$. Furthermore, all compositions exhibited identical diffraction patterns with no evidence of the second phase, suggesting a single-phase solid solution formed in the whole compositional range. Another evidence that endorsed the formation of the solid solution was the slight shift to the lower angle of the diffraction peaks, as a representative in Fig. 1(b) for the enlarged profile of (311) peak (around $2\theta = 36^\circ$).

The variation in ionic radius between Ga^{3+} and the doped $(\text{Zn}_{0.5}\text{Ge}_{0.5})^{3+}$ was responsible for the peak shift [16] as $\text{Zn}^{1+}_{1-x}\text{Ga}^{2-}_{2-x}\text{Ge}_x\text{O}_4$ previously reported to form spinel solid solutions for x ranging from 0 to 0.5 [17].

Rietveld refinement was conducted to further confirm the phase purity and crystal structure of the $\text{Zn}^{1+}_{1-x}\text{Ga}^{2-}_{2-x}\text{Ge}_x\text{O}_4$ ($0.1 \leq x \leq 0.5$) samples and a structural model was built based on the crystal structure data of ZnGa_2O_4 [18]. A perspective view of the spinel structure of ZnGa_2O_4 is shown in Fig. 2, with the characteristic feature of bivalent Zn^{2+} occupying the tetrahedral sites and trivalent Ga^{3+} in the octahedral sites, featuring a normal spinel structure. Especially, for Rietveld refinement the doped $(\text{Zn}_{0.5}\text{Ge}_{0.5})^{3+}$ was fixed in the octahedral interstices. As shown in Figs. 3(a)–3(e), good matching between the measured data (the red cross symbol) and the calculated ones (the solid line) was realized, and the variation of lattice parameters as a function of x value is shown in Fig. 3(f).
calculated and the observed profiles indicates the structural model’s reliability and yields the accuracy of fit indicators (as shown in Table 1). The bond length of Zn–O1 initially decreased with x increasing from 0.1 to 0.3 and then increased for the remaining composition. On the other hand, the length of Ga–O1 and angle of Zn–O1–Ga decreased with increasing x, indicating the effects of cation substitution on bond features. The refined cell parameter a and cell volume V are plotted in Fig. 3(f) as a function of composition with 0.1 ≤ x ≤ 0.5 and saw a linear increase with increasing x (from 0.1 to 0.5) which is also validated by Vegard’s law [19]. These variations also proves the solid solution formation and can further be explained by the larger average ion radii of Zn2+ (R = 0.74 Å, CN = 6) and Ge4+ (R = 0.53 Å, CN = 6) (with an average radius of 0.635 Å) than the Ga3+ (R = 0.62 Å, CN = 6) [16].

To investigate the influence of sintering temperature on the densification of Zn$_{1+x}$Ga$_{2-x}$Ge$_x$O$_4$ (0.1 ≤ x ≤ 0.5) ceramics, the temperature dependence of the bulk density was plotted and is shown in Fig. S1 in the Electronic Supplementary Material (ESM). A tendency variation similar to bond length was observed for bulk density with increasing sintering temperature and showed an initial increase followed by a subsequent decrease. The optimum sintering temperature and the corresponding bulk density are shown in Fig. 4(a) as a function of composition (x value). The bulk density gradually increased from 5.82 to 5.96 g/cm3, as predicted from the calculated theoretical density. Notably, the optimum sintering temperature decreased significantly, although the relative density increased slightly from 94.5% at x = 0.1 to 97.2% at x = 0.5. Because of the low melt point of GeO$_2$ (~1115 °C), the addition of Zn/Ge improved the sintering characteristic of Zn$_{1+x}$Ga$_{2-x}$Ge$_x$O$_4$. Similar phenomena have previously

Value x	a = b = c (Å)	Volume (Å3)	Bond length (Å)	Angle (°)	R factor (%)		
	Ga–O1	Zn–O1–Ga	Rwp	Rexp	Rexp	χ2	
0.1	8.33621(5)	579.3035(2)	2.0445(2)	121.86(2)	9.5	5.42	3.07
0.2	8.33814(3)	579.7052(6)	2.0306(5)	122.33(6)	13	5.47	5.65
0.3	8.34027(7)	580.1509(8)	2.0217(7)	122.83(2)	12.3	5.62	4.76
0.4	8.34265(5)	580.6463(4)	2.028(5)	123.23(8)	13.4	5.68	5.59
0.5	8.34595(1)	581.3366(5)	2.0034(1)	123.61(4)	12.6	5.25	5.73

Fig. 4 Compositional dependence of bulk density and microwave dielectric properties of Zn$_{1+x}$Ga$_{2-x}$Ge$_x$O$_4$ (0.1 ≤ x ≤ 0.5) ceramics sintered at their optimum temperature.
been reported in Zn$_2$GeO$_4$ systems [20].

Figure 4(b) shows the compositional variation in the dielectric permittivity of Zn$_{1+x}$Ga$_{2-x}$Ge$_x$O$_4$ with increasing x from 0.1 to 0.5. The relative permittivity increased linearly from 9.78 at $x = 0.1$ to 10.42 at $x = 0.5$. Based on the Clausius–Mossotti equation ($\varepsilon = \frac{3V_m + 8\pi \alpha_D}{3V_m - 4\pi \alpha_D}$), the relative permittivity depends upon the total molecular polarizability (α) and unit cell volume (V) and is directly proportional to the polarizability density (α/V) [21,22]. The theoretical relative permittivity estimated by the Clausius–Mossotti equation was ~7.6% higher than the measured values, as shown in Fig. 4(b). After porosity corrected based on the Bosman and Having’s equation ($\varepsilon_{corr} = \varepsilon_i \times (1 + 1.5p)$ where p represents the fractional porosity, the deviation of the corrected permittivities from the estimated values was in the range of 3.6%–6.4% [23–26]. This result indicates that porosity (or density) has a direct influence on the permittivity of the material.

The τ_f values of the Zn$_{1+x}$Ga$_{2-x}$Ge$_x$O$_4$ (0.1 $\leq x \leq$ 0.5) ceramics sintered at their relative optimum temperatures are shown in Fig. 4(c). The τ_f values decreased initially from ~66.3 to ~75.6 ppm/C followed by an increase to ~65.6 ppm/C at $x = 0.5$. The Ga–O bond valence in the octahedron was calculated by the following equations [27]:

$$V_i = \sum_j v_{ij}, \quad v_{ij} = \exp \left(\frac{R_{ij} - d_{ij}}{b} \right) \quad (2)$$

where R_{ij} represents the bond valence parameter which has been summarized by Brown and Altermatt [28], d_{ij} is the length of a bond between atoms i and j, and b is a universal constant (0.37 Å). The variation in bond valence (x from 0.1 to 0.3) followed a pattern, opposite to τ_f value in which the bond valence initially increased followed by a decrease. The various bond valences correspond to the different atom interactions [29] and a higher valence means stronger interaction and higher band energy. In the present system, the increase in Ga–O bands resulted in the increasing resorting force, which recovered the tilting of the octahedron, and thus a decrease in τ_f value.

In contrast to the permittivity, the quality factor exhibited an increasing trend with increasing Zn/Ge doping content (x value) from 0.1 to 0.3 and then declined. As reported by Kim et al. [30], Yin et al. [31], and Li et al. [32], the quality factor can be intrinsically predicted by packing fraction. A higher packing fraction signifies a smaller space for ion vibration, which leads to lower dielectric losses. The calculated packing fraction for Zn$_{1+x}$Ga$_{2-x}$Ge$_x$O$_4$ shows a decrease with the variation of x. Intrinsically, the quality factors were expected to exhibit a decreasing trend. The observed deviation suggested that the intrinsic packing fraction was not the only dominant influencing factor but other extrinsic factors, e.g., pores, grain size, cation ordering, etc., also play a part [6,33–35].

To investigate the underlying factors influencing the quality factor, the grain morphology and size distribution were studied. As shown in Fig. 5, the polished and thermal etched surfaces for all compositions are shown. Dense microstructures consisted of uniform grains and defined grain boundaries and a few visible pores, were observed. All compositions exhibited similar grain size distribution with average grain size in the range of 4.6–5.2 μm (Fig. 5(f)). Along with the higher relative density (94%–98%), the extrinsic contribution from density, pores, and grain size on the quality factor can be ruled out in relation to their dependency on the quality factor.

Raman spectroscopy has been recognized to be an effective approach to correlate the lattice vibrational modes with dielectric properties, especially in those materials with cation ordering, e.g., Ba(Mg$_{1/3}$Ta$_{2/3}$)O$_3$ complex perovskite [36] and A$_2$MgTeO$_6$ (A = Ca, Sr, Ba) double perovskites [37]. To explore the structural correlation of the microwave dielectric properties for Zn$_{1+x}$Ga$_{2-x}$Ge$_x$O$_4$ spinel, Raman spectroscopy was utilized at room temperature for all compositions.

According to the space group theory, ZnGa$_2$O$_4$ is a cubic spinel with space group $Fd\bar{3}m$ and has 14 atoms in its primitive unit cell. The irreducible representations can be given as [38,39]:

$$\Gamma = A_{1g} + E_g + T_{1g} + 3T_{2g} + 2A_{2u} + 2E_u + 5T_{1u} + 2T_{2u} \quad (3)$$

where R and IR represent the Raman and infrared active modes, respectively. Among them, T_{1g}, A_{2u}, E_u, and T_{2u} modes are silent [40,41]. Generally, five modes (E_g, $3T_{2g}$, A_{1g}) with the first-order could be detected in the spine structure. As shown in Fig. 6(a), similar Raman profiles were observed and after Gaussia–Lorentzian fitting (Figs. 6(a) and 6(d) as a representative) only three first-order modes could be recorded, which were
positioned at 463 cm$^{-1}$ (T_{2g}^1), 610 cm$^{-1}$ (T_{2g}^2), and 712 cm$^{-1}$ (A_{1g}) [42]. The T_{2g}^1 mode was related to the Zn–O symmetric bending vibrations. The A_{1g} mode and T_{2g}^2 modes were assigned to the symmetric and asymmetric stretching vibrations of ZnO$_4$ tetrahedron [40]. The relative intensity of T_{2g}^1 and T_{2g}^2 gradually decreased with the increasing Zn/Ge doping, as displayed in Fig. 6(a). A similar phenomenon has been observed in Mg$_2$(Ti$_{1-x}$Sn$_x$)O$_4$, which is caused by the different ion radius between Ti$^{4+}$ and Sn$^{4+}$ [43]. In this work, the effective ionic radius of (Zn$_{0.5}$Ge$_{0.5}$)$^{3+}$ was larger than Ga$^{3+}$, which was responsible for the variation in the Raman intensity. Additionally, it should be noted that the characteristic mode (A_{1g}^*~673 cm$^{-1}$) for the direct recognition of an inverted spinel was silent for all Zn$_{1+x}$Ga$_{2-2x}$Ge$_x$O$_4$ ceramics, confirming a stable normal spinel structure [43].

Figure 6(d) shows the Raman shift and FWHM (full...
width at half maximum) of A_{1g} mode as a function of x value. The A_{1g} mode had a blue shift while the FWHM gradually decreased to $x = 0.3$ initially followed by an increment to $x = 0.5$. The blue shift indicated the vibration phonon energy increased which limited the movement of the ions and decreased the polarizability. The FWHM was inversely correlated to the lifetime of phonon, and lower FWHM values mean the longer lifetime of phonon and less interaction with other phonons. These interactions can increase the intrinsic dielectric loss due to energy consumption. Thus, decreasing FWHM values are beneficial to improve the quality factor.

The fitted and measured values of IR reflectivity are shown in Fig. 7(a) while the real and imaginary parts of the complex permittivity are shown in Fig. 7(b). For ceramic with $x = 0.3$, there were 7 modes used and the detailed information on the fitted parameters is listed in Table 2. Out of those 7 modes, the modes at 303.46 and 424.26 cm$^{-1}$ had a primary contribution to the dielectric properties. Based on the fitted parameters, the calculated permittivity in optical range (ε_∞) was 1.92 while in the microwave frequency range, the permittivity was 9.22. These values were significantly lower than the measured values ($\varepsilon_r = 10.04$ for $x = 0.3$), which could be attributed to the extrinsic contributions stemming from the defects [44]. Compared to the total permittivity, the contributions of the optical permittivity were only 19.1%, suggesting that the primary contributions to the microwave dielectric properties were dominated by ionic polarization compared to electronic polarization [45]. On the other hand, the theoretical quality factor was fitted to be 153,000 GHz, which was much higher than the measured $Q \times f$ value (112,700 GHz). The deviation can be related to the processing parameters, e.g., the density, pore, and grain size. However, the fitting results indicate that there is still a wide space for dielectric properties optimization in the Zn$_{1-x}$Ga$_x$Ge$_x$O$_4$ ceramic system.

To further investigate the intrinsic dielectric properties of Zn$_{1-x}$Ga$_x$Ge$_x$O$_4$ ceramics, the IR reflectivity spectrum of $x = 0.3$ sample as a representative was fitted using a classical harmonic oscillator modeled as follows [46,47]:

$$R(\omega) = \frac{\sqrt{\varepsilon^*(\omega)} - 1}{\sqrt{\varepsilon^*(\omega)} + 1}^2$$ \hspace{1cm} (4)

$$\varepsilon^*(\omega) = \varepsilon'(\omega) - i\varepsilon''(\omega) = \varepsilon_\infty + \sum_{j=1}^{n} S_j (\omega_j^2 - \omega^2 - i\omega \gamma_j)$$ \hspace{1cm} (5)

where n represents the order of transverse polar–phonon modes; ω_j, S_j, and γ_j are the frequency, strength, and damping constant of the j-th mode, respectively; and ε_∞ is the relative permittivity caused by electronic polarization. When $\omega \ll \omega_j$, Eqs. (6) and (7) are reasonable:

$$\varepsilon'(\omega) = \varepsilon_\infty + \sum_{j=1}^{n} \Delta \varepsilon_j = \varepsilon_\infty + \sum_{j=1}^{n} \frac{\alpha_{0j}^2}{\omega_j^2}$$ \hspace{1cm} (6)

$$\varepsilon''(\omega) \approx \sum_{j=1}^{n} \frac{\omega_j \gamma_j}{\omega_0^2}$$ \hspace{1cm} (7)

$$\tan \delta = \frac{\varepsilon''}{\varepsilon'} = \sum_{j=1}^{n} \frac{S_j \omega_j \gamma_j}{\varepsilon'(\omega) \omega_j^2}$$ \hspace{1cm} (8)

Table 3 shows some spinel-type ceramics with their optimum sintering temperatures and microwave dielectric properties.
Table 2 Phonon parameters obtained from the fitting of the infrared reflectivity spectra of the $x = 0.3$ (Zn$_{1.3}$Ga$_{1.4}$Ge$_{0.3}$O$_4$) ceramic

Mode	ω_1 (cm$^{-1}$)	ω_2 (cm$^{-1}$)	γ (cm$^{-1}$)	$\Delta\varepsilon$
1	170.75	193.68	8.5044	0.0498
2	288.96	184.81	17.352	0.0586
3	303.46	421.36	19.321	0.0605
4	319.48	495.07	25.86	0.0734
5	328.6	794.84	28.244	0.0734
6	424.26	794.84	32.95	0.117
7	571.74	465.29	102.63	0.18

$\varepsilon_\infty = 1.92$ \hspace{1cm} $\varepsilon_r = 9.22$

Table 3 Sintering temperature and microwave dielectric properties of some spinel-type ceramics

Composition	Sintering temperature (°C)	Microwave dielectric properties	Ref.
MgAl$_2$O$_4$	1600	ε_r = 7.8, $Q\times f$ = 85,100, τ_f = −59.2 ppm/°C	[8]
Mg$_2$TiO$_4$	1450	ε_r = 14, $Q\times f$ = 150,000, τ_f = −50 ppm/°C	[10]
CoZnTiO$_4$	1200	ε_r = 17.31, $Q\times f$ = 97,571, τ_f = −36.4 ppm/°C	[11]
Zn$_2$Ga$_2$O$_4$	1385	ε_r = 10.4, $Q\times f$ = 94,600, τ_f = −27 ppm/°C	[8]
Mg$_2$Ga$_2$O$_4$	1410	ε_r = 9.54, $Q\times f$ = 117,000, τ_f = −4 ppm/°C	[48]
Li$_2$ZnTi$_3$O$_8$	1075	ε_r = 26.8, $Q\times f$ = 83,000, τ_f = −12.4 ppm/°C	[49]
Zn$_{1+x}$Ga$_{2-x}$Ge$_x$O$_4$	1250–1340	ε_r = 9.78–10.42, $Q\times f$ = 94,500–112,700, τ_f = (−75.6)–(−66.3) ppm/°C	This work

Table 4 Microwave dielectric properties of (1−x)Zn$_{1.3}$Ga$_{1.4}$Ge$_{0.3}$O$_4$–xTiO$_2$ ceramics sintered at their optimum sintering temperature

x	Sintering temperature (°C)	Microwave dielectric property	ε_r	$Q\times f$ (GHz)	τ_f (ppm/°C)
0.1	1260	11.3	109,400	−52.3	
0.2	1260	12.8	105,900	−25.8	
0.3	1270	14.7	101,800	+6.1	
0.4	1270	17.7	97,200	+42.5	

Figure 8 shows the XRD, SEM, and EDS recorded on the representative 0.7Zn$_{1.3}$Ga$_{1.4}$Ge$_{0.3}$O$_4$–0.3TiO$_2$ composite fired at 1270 °C for 6 h. XRD profiles demonstrate only the diffraction peaks from the spinel phase and rutile (JCPDS#01-1292), with no other phase detected, suggesting no chemical reaction occurred between them. SEM images featured distinct grains with different sizes, morphologies, and elemental contrasts. Upon conducting EDS analysis on different grains, the small bright grains (marked with #) were rich in Ti and Zn/Ge/Ga were not identified. As a result, it was concluded that the marked grains were TiO$_2$. These results provide evidence for the chemical compatibility between TiO$_2$ and Zn$_{1+x}$Ga$_{2-x}$Ge$_x$O$_4$, which is a prerequisite for property modulation.

As expected, TiO$_2$ successfully tuned the negative τ_f value of the representative $x = 0.3$ sample to close to zero (+6.1 ppm/°C) when adding 30 mol% TiO$_2$. Meanwhile, with the increasing TiO$_2$ content, the relative permittivity gradually increased to 17.7 while the quality factor decreased to 97,200 GHz, which was reasonable in consideration of the high relative permittivity and low quality factor of TiO$_2$ ceramic ($\varepsilon_r \approx 105$ and $Q \times f \approx 46,000$ GHz) [50].
Fig. 8 (a) XRD patterns and (b) SEM of 0.7Zn_{1.4}Ga_{1.4}Ge_{0.3}O_{4−0.3}TiO_{2} ceramic sintered at 1270 °C for 6 h (the EDS analysis of TiO_{2} is shown in the inset).

4 Conclusions

In summary, lowered sintering temperature and improved dielectric properties are simultaneously achieved by introducing Zn^{2+}/Ge^{4+} to substitute Ga^{3+} in the ZnGa_{2}O_{4} system. Solid solutions with a normal spinel structure were successfully synthesized in the whole composition range with 0.1 ≤ x ≤ 0.5. Combined microwave dielectric properties with ε_{r} ≈ 10.09, Q × f ≈ 112,700 GHz, and τ_{f} ≈ −75.6 ppm/°C were obtained in a composition with x = 0.3 when sintered at 1280 °C. The thermal stability of resonance frequency was achieved through the formation of ceramic composite with TiO_{2}. A near-zero τ_{f} value was achieved in x = 0.3 sample with 30 mol% TiO_{2} and achieved dielectric values of ε_{r} ≈ 14.7 and Q × f ≈ 101,800 GHz. All the merits demonstrated that the Zn_{1+x}Ga_{2−2x}Ge_{x}O_{4} ceramic is a promising candidate for high-speed signal propagation applications.

Acknowledgements

Chunchun Li gratefully acknowledges the financial support from the National Natural Science Foundation of China (No. 62061011), the Guangxi Zhuang Autonomous Region (Nos. 2018GXNSFAA281253 and 2019GXNSFGA245006), and the High-Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes. The authors would also like to thank the administrators in the IR beamline workstation of the National Synchrotron Radiation Laboratory (NSRL) for their help in the IR measurement.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s40145-021-0511-0.

References

[1] Lin QB, Song KX, Liu B, et al. Vibrational spectroscopy and microwave dielectric properties of AY_{2}Si_{3}O_{10} (A=Sr, Ba) ceramics for 5G applications. Ceram Int 2020, 46: 1171–1177.

[2] Zhou D, Pang LX, Wang DW, et al. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J Mater Chem C 2017, 5: 10094–10098.

[3] Du K, Song XQ, Li J, et al. Optimised phase compositions and improved microwave dielectric properties based on calcium tin silicates. J Eur Ceram Soc 2019, 39: 340–345.

[4] Huang FY, Su H, Li YX, et al. Low-temperature sintering and microwave dielectric properties of CaMg_{1−x}Li_{x}Si_{2}O_{6} (x=0−0.3) ceramics. J Adv Ceram 2020, 9: 471–480.

[5] Li CC, Xiang HC, Xu MY, et al. Li_{2}AgGeO_{4} (A=Zn, Mg): Two novel low-permittivity microwave dielectric ceramics with olivine structure. J Eur Ceram Soc 2018, 38: 1524–1528.

[6] Zhang L, Zhang J, Yue ZX, et al. Thermally stable polymer-ceramic composites for microwave antenna applications. J Adv Ceram 2016, 5: 269–276.

[7] Wang D, Xiang HC, Tang Y, et al. A low-firing Ca_{0.5}Ni_{0.5}(VO_{4})_{3} ceramic with tunable microwave dielectric properties and chemical compatibility with Ag. Ceram Int 2016, 42: 15094–15098.

[8] Takahashi S, Kan A, Ogawa H. Microwave dielectric properties and crystal structures of spinel-structured MgAl_{2}O_{4} ceramics synthesized by a molten-salt method. J Eur Ceram Soc 2017, 37: 1001–1006.

[9] Surendran KP, Santha N, Mohanan P, et al. Temperature stable low loss ceramic dielectrics in (1−x)ZnAl_{2}O_{4−x}Ti_{x}O_{2} system for microwave substrate applications. Eur Phys J B 2004, 41: 301–306.

[10] Belous A, Ovchar O, Durilin D, et al. High-Q microwave dielectric materials based on the spinel Mg_{2}TiO_{4}. J Am Ceram Soc 2006, 89: 3441–3445.

[11] Lyu XS, Li LX, Sun H, et al. A novel low-loss spinel microwave dielectric ceramic CoZnTiO_{4}. J Mater Sci:
Mater Electron 2015, 26: 8663–8666.

[12] Xue JJ, Wu SP, Li JH. Synthesis, microstructure, and microwave dielectric properties of spinel ZnGa2O4 ceramics. J Am Ceram Soc 2013, 96: 2481–2485.

[13] Lu XC, Bian WJ, Quan B, et al. Compositional tailoring effect on ZnGa2O4–TiO2 ceramics for tunable microwave dielectric properties. J Alloys Compd 2019, 792: 742–749.

[14] Lu XC, Bian WJ, Min CF, et al. Cation distribution of high-performance Mn-substituted ZnGa2O4 microwave dielectric ceramics. Ceram Int 2018, 44: 10028–10034.

[15] Lu XC, Bian WJ, Li YY, et al. Cation distributions and microwave dielectric properties of Cu-substituted ZnGa2O4 spinel ceramics. Ceram Int 2017, 43: 13839–13844.

[16] Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst Sect A 1976, 32: 751–767.

[17] Allis M, Chen S, Véron E, et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chem Mater 2013, 25: 1600–1606.

[18] Bae SY, Lee J, Jung H, et al. Helical structure of single-crystalline ZnGa2O4 nanowires. J Am Chem Soc 2005, 127: 10802–10803.

[19] Magomedov MN. On the deviation from the Vegard's law for the solid solutions. Solid State Commun 2020, 322: 114060.

[20] Yin CZ, Tang Y, Chen JQ, et al. Phase evolution, far-infrared spectra, and ultralow loss microwave dielectric ceramic of Zn2Ge1-xO2−x (0.1 ≤ x ≤ 0.2). J Mater Sci: Mater Electron 2019, 30: 16651–16658.

[21] Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 1993, 73: 348–366.

[22] Pei CJ, Tan JJ, Li Y, et al. Effect of Sb-site nonstoichiometry on the structure and microwave dielectric properties of Li2Mg2Sr1−yOy ceramics. J Adv Ceram 2020, 9: 588–594.

[23] Yoon SH, Kim DW, Cho SY, et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J Eur Ceram Soc 2006, 26: 2051–2054.

[24] Du K, Fan J, Zou ZY, et al. Crystal structure, phase compositions, and microwave dielectric properties of malayitite-type Ca1−xSr1−xSnSiO3 ceramics. J Am Ceram Soc 2020, 103: 6369–6377.

[25] Yin CZ, Xiang HC, Li CC, et al. Low-temperature sintering and thermal stability of Li2GeO3-based microwave dielectric ceramics with low permittivity. J Am Ceram Soc 2018, 101: 4608–4614.

[26] Yin CZ, Li CC, Yang GJ, et al. NaCa4V3O15: A low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications. J Eur Ceram Soc 2020, 40: 386–390.

[27] Brese NE, O’Keeffe M. Bond-valence parameters for solids. Acta Crystallogr Sect B 1991, 47: 192–197.

[28] Brown JD, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr Sect B 1985, 41: 244–247.

[29] Park HS, Yoon KH, Kim ES. Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1−xCa)x[Fe3(3−x)4(Nb1−yTa2y)O3]. J Am Ceram Soc 2001, 84: 99–103.

[30] Kim ES, Chun BS, Freer R, et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2B6O15 (A2+: Ca, Pb; B6+: Mo, W) ceramics. J Eur Ceram Soc 2010, 30: 1731–1736.

[31] Yin CZ, Yu ZZ, Shu LL, et al. A low-firing melilitic ceramic Ba4CuGe2O7 and compositional modulation on microwave dielectric properties through Mg substitution. J Adv Ceram 2021, 10: 108–119.

[32] Li CC, Yin CZ, Deng M, et al. Tunable microwave dielectric properties in SrO–V2O5 system through compositional modulation. J Am Ceram Soc 2020, 103: 2315–2321.

[33] Kim ES, Chun BS, Yoon KH. Dielectric properties of [Ca1−x(Li1/2Nd1/2)y]xZnTiO3 ceramics at microwave frequencies. Mater Sci Eng: B 2003, 99: 93–97.

[34] Song XQ, Lu WZ, Wang XC, et al. Sintering behaviour and microwave dielectric properties of BaAl2−x(ZnSi)x2O7 ceramics. J Eur Ceram Soc 2018, 38: 1529–1534.

[35] Zhou D, Pang LX, Wang DW, et al. High quality factor, ultralow sintering temperature Li2B4O9 microwave dielectric ceramics with ultralow density for antenna substrates. ACS Sustain Chem Eng 2018, 6: 11138–11143.

[36] Barber DJ, Moulding KM, Zhou J, et al. Structural order in Ba(Zn1−xTa2x)O3, Ba(Zn1−xNb2x)O3 and Ba(Mg1−xTa2x)O3 microwave dielectric ceramics. J Mater Sci 1997, 32: 1531–1544.

[37] Bayer G. New perovskite-type compounds A2BTeO6. J Am Ceram Soc 1963, 46: 604–605.

[38] Mohaček-Grošev V, Vrankić M, Maksimović A, et al. Influence of titanium doping on the Raman spectra of nanocrystalline ZnAl2O4. J Alloys Compd 2017, 792: 90–95.

[39] Fraas LM, Moore JE, Salzberg JB. Raman characterization studies of synthetic and natural MgAl2O4 crystals. J Chem Phys 1973, 58: 3585–3592.

[40] Laguna-Bercero MA, Sanjuán ML, Merino RI. Raman spectroscopic study of cation disorder in poly- and single crystals of the nickel aluminate spinel. J Phys Condens Matter 2007, 19: 186217.

[41] Malavasi L, Galinetto P, Mozziati MC, et al. Raman spectroscopy of AMn2O4 (A = Mn, Mg and Zn) spinels. Phys Chem Chem Phys 2002, 4: 3876–3880.

[42] Krüger H, Többens DM, Tropper P, et al. Single-crystal structure and Raman spectroscopy of synthetic titanate analog CaAl2SiO4F. Miner Petrol 2015, 109: 631–641.

[43] Li H, Zhang PC, Yu SQ, et al. Structural dependence of microwave dielectric properties of spinel structured Mg2(T1−xSnx)O4 solid solutions: Crystal structure refinement, Raman spectra study and complex chemical...
bond theory. *Ceram Int* 2019, 45: 11639–11647.

[44] Liu B, Li L, Liu XQ, et al. Structural evolution of SrLaAl1−x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric properties. *J Mater Chem C* 2016, 4: 4684–4691.

[45] Yang HC, Zhang SR, Yang HY, et al. Influence of (Al1/3W2/3)5+ co-substitution for Nb5+ in NdNbO4 and the impact on the crystal structure and microwave dielectric properties. *Dalton Trans* 2018, 47: 15808–15815.

[46] Zhang J, Zuo RZ. Raman scattering and infrared reflectivity study of orthorhombic/monoclinic LaTiNbO6 microwave dielectric ceramics by A/B-site substitution. *Ceram Int* 2018, 44: 16191–16198.

[47] Guo J, Zhou D, Wang L, et al. Infrared spectra, Raman spectra, microwave dielectric properties and simulation for effective permittivity of temperature stable ceramics AMgO4–TiO2 (A = Ca, Sr). *Dalton Trans* 2013, 42: 1483–1491.

[48] Wu SP, Xue JJ, Wang R, et al. Synthesis, characterization and microwave dielectric properties of spinel MgGa2O4 ceramic materials. *J Alloys Compd* 2014, 585: 542–548.

[49] Lu XP, Zheng Y, Huang Q, et al. Structural dependence of microwave dielectric properties of spinel-structured Li2ZnTi3O8 ceramic: Crystal structure refinement and Raman spectroscopy study. *J Electron Mater* 2016, 45: 940–946.

[50] Fukuda K, Kitoh R, Awai I. Microwave characteristics of TiO2Bi2O3 dielectric resonator. *Jpn J Appl Phys* 1993, 32: 4584–4588.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.