Absolute measurement of small-amplitude vibrations by time-averaged heterodyne holography with a dual local oscillator
Nicolas Verrier, Michael Atlan

To cite this version:
Nicolas Verrier, Michael Atlan. Absolute measurement of small-amplitude vibrations by time-averaged heterodyne holography with a dual local oscillator. Optics Letters, Optical Society of America, 2013, 38 (5), pp.739.

HAL Id: hal-00756069
https://hal.archives-ouvertes.fr/hal-00756069
Submitted on 22 Nov 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Absolute measurement of small-amplitude vibrations by time-averaged heterodyne holography with a dual local oscillator

Nicolas Verrier and Michael Atlan

1 Institut Langevin, Fondation Pierre-Gilles de Gennes. Centre National de la Recherche Scientifique (CNRS) UMR 7587, Institut National de la Santé et de la Recherche Médicale (INSERM) U 979, Université Pierre et Marie Curie (UPMC), Université Paris 7. École Supérieure de Physique et de Chimie Industrielles - 10 rue Vauquelin. 75005 Paris. France

(Dated: November 22, 2012)

We report a demonstration of the measurement of the ratio between an optical modulation side band component and the non-shifted light component by time-averaged heterodyne holography in off-axis and frequency-shifting configuration, through coherent frequency-division multiplexing with a dual optical local oscillator. Experimental results of sinusoidal vibration sensing are reported. This technique enables absolute measurements of sub-nanometric out-of-plane vibration amplitudes.

Laser Doppler interferometric methods are commonly used for non-contact measurements of mechanical vibrations. These methods exhibit high reliability and enable wideband, phase-resolved, single point vibration measurements [1]. However, imaging requires time-consuming scanning of the tested sample. Homodyne [2–4] and heterodyne [5–7] holographic recordings in off-axis configuration enabled reliable full-field measurements of out-of-plane mechanical vibrations. Nevertheless, quantitative measurements of vibration amplitudes much smaller than the optical wavelength with an array detector remains difficult to achieve. A comprehensive study of the signal-to-noise ratio (SNR) was proposed for classical heterodyne holography [6]. The authors managed to observe vibration amplitudes of a few Angstroms and linked the smallest detectable amplitude to the SNR, in the absence of spurious effects. Later on, nanometric vibration amplitude measurements were achieved with digital holography, by sequential measures of the first optical side band and the non-shifted light component [8].

In this letter, we report an experimental demonstration of heterodyne holography for vibration sensing. The presented idea is to make use of a dual optical local oscillator (LO) illumination to assess low-amplitude optical radiation field is provided by a doubled Nd:YAG laser (Oxxius SLIM 532, power 100 mW, wavelength \( \lambda = 532 \) nm, optical pulsation \( \omega = 532 \) n m, optical pulsation \( \omega = 532 \) n m). As a result of optical path-length modulation of the laser beam impinging on the vibrating surface of a piezo-electric actuator (PZT, Thorlabs AE0505D08F), the temporal part of the object field \( E \) undergoes a sinusoidal phase modulation of the form \( \phi(t) = \phi_0 \sin(\omega t) \), where \( \omega/(2\pi) = 10 \) kHz is the excitation frequency. It can be decomposed on a basis of Bessel functions of the first kind \( J_n(\phi_0) \), via the Jacobi-Anger identity

\[
E = \sum_{n=-\infty}^{\infty} E_n e^{i(\omega t+n\omega_t)}
\]  

The phase modulation of the object field \( E \) at angular frequency \( \omega \) results in the apparition of optical side bands of complex amplitude \( E_n \) at harmonics of \( \omega \); for small
modulation depths, the magnitude of the side bands of order ±1 is much greater than the magnitude of the side bands of higher order, as reported in figure 2(a). The quantity

\[ E_n = \mathcal{E} J_n(\phi_0) \]  

(2)

is the complex weight of the optical side band of order \( n \), where \( \mathcal{E} \) is the complex amplitude of the optical field, and \( \phi_0 = 4\pi z/\lambda \) is the modulation depth of the optical phase. For small vibrations \( (z \ll \lambda) \), a relative measure of \( z \) can be assessed from the first-order side band hologram \( z \propto |\mathcal{E}_1| \) [11]. Furthermore, the local amplitude \( z \) of the out-of-plane motion at angular frequency \( \omega \) is approximately

\[ z \approx \frac{\lambda}{2\pi} \frac{J_1(\phi_0)}{J_0(\phi_0)}. \]  

(3)

Hence, a quantitative measure of \( z \) can be achieved by forming the ratio between the magnitude of the weights of the first-order side band hologram \( \propto \mathcal{E}_1 \) and the non-shifted light component hologram \( \propto \mathcal{E}_0 \), each of them being measured sequentially [11]. However, in experimental conditions, a noise floor prevents accurate assessment of \( z \) values below 10 nm (Fig. 3) from sequential measurements of holograms and spatial averaging of the quantity \( \mathcal{E}_1/\mathcal{E}_0 \) over the whole image of the piezo-electric actuator (triangles). The sensitivity of the measurement of \( z \) can be further enhanced by spatial averaging of the complex-valued ratio \( \mathcal{E}_1/\mathcal{E}_0 \), if the first-order side band hologram \( \propto \mathcal{E}_1 \) and the non-shifted light component hologram \( \propto \mathcal{E}_0 \) are acquired simultaneously (Fig. 3 circles). Simultaneous measurement of side bands holograms at both optical modulation bands can be performed by a rudimentary coherent frequency-division multiplexing scheme with a dual LO, which will shift \( \mathcal{E}_0 \) and \( \mathcal{E}_1 \) in the available temporal bandwidth of the camera, ensuring phase-matching of these quantities.

The LO signal consists of the addition of two coherent (phase-locked) RF signals, shifted by a carrier frequency \( \omega_C/(2\pi) \approx 80 \text{ MHz} \) set around the peak frequency response of acousto-optic modulators used to shift the optical frequency of the laser beam. This summation is done in practice with a power splitter/combiner (figure 4), resulting in a LO field of the form \( E_{\text{LO}} = E_{\text{LO}_1} + E_{\text{LO}_2} \), with

\[ E_{\text{LO}_1} = \mathcal{E}_{\text{LO}_1} \exp \left[ i (\omega_L + \omega_S/4) t \right] \]  

(4)

\[ E_{\text{LO}_2} = \mathcal{E}_{\text{LO}_2} \exp \left[ i (\omega_L + \omega - \omega_S/4) t \right] \]  

(5)

where \( \mathcal{E}_{\text{LO}_1} = \alpha \mathcal{E}_{\text{LO}} \) and \( \mathcal{E}_{\text{LO}_2} = \beta \mathcal{E}_{\text{LO}} \) are the complex magnitudes of the LO components. The positive parameters \( \alpha \) and \( \beta \) (which satisfy the relation \( \alpha + \beta = 1 \)) are the normalized relative weights of each LO component, whose magnitudes are reported in fig. 2(b). In the reported experiment, \( \alpha/\beta = 1/10 \). In these conditions, the interferogram impinging on the sensor array has the form

\[ I = |\sum_n E_n + E_{\text{LO}_1} + E_{\text{LO}_2}|^2 \]  

(6)

From which only three contributions are within the sensor temporal bandwidth, between the Nyquist frequencies \( \pm \omega_S/2 \). The part of the off-axis hologram \( H \) modulated at frequencies within the sensor bandwidth is

\[ H(t) = \mathcal{E}_0 \mathcal{E}_{\text{LO}_1}^* e^{-i\omega_S t/4} + \mathcal{E}_1 \mathcal{E}_{\text{LO}_2}^* e^{i\omega_S t/4} \]  

(7)

from which a remaining static contribution, which yields the DC peak in figure 2(c), is neglected. The two terms in the right member of eq. 7 yield the peaks proportional to \( |\mathcal{E}_0 \mathcal{E}_{\text{LO}_1}^*| \) and \( |\mathcal{E}_1 \mathcal{E}_{\text{LO}_2}^*| \) in figure 2(c). We sought to measure the modulation amplitude \( z \) of the actuator oscillating at \( \omega/(2\pi) = 10 \text{ kHz} \), at low supply voltages ranging from \( 10^{-2} \text{ V} \) to \( 10 \text{ V} \). For each voltage, \( N = 256 \) interferograms \( I_p \), \( p = 1, \ldots, N \) were acquired. Each recorded interferogram \( I_p \) was turned into a complex-valued hologram \( I_p \) of the PZT surface by a numerical...
As expected from the relation 7, the magnitude of the vibration amplitude of the complex-valued quantities $\alpha$ and $\beta$ proportional to $\alpha$ and $\beta$ calculated from the relation $E_\alpha^* E_\beta$ is much less dispersed in dual LO regime than for the sequential, single LO measure. Since all the points of the actuator oscillate in phase, it enabled coherent averaging over the extent of the actuator’s image (eq. 9), which improved the SNR at low modulation depths.

In conclusion, we have proposed a robust coherent frequency-division multiplexing method to perform absolute measurements of small-amplitude sinusoidal optical phase modulation by time-averaged heterodyne holography in off-axis and frequency-shifting conditions. The scheme was validated by a quantitative measurement of sub-nanometric vibration amplitudes of a piezo-electric actuator. A dual optical local oscillator was introduced to shift and record two optical modulation bands simultaneously in the temporal bandwidth of the detector array. This approach enabled a measurement of the ratio of the complex weights of the optical side bands with increased sensitivity with respect to a sequential measurement of the two bands, performed in the same experimental conditions.

References:

1. C. Barriere and D. Royer, Applied Physics Letters 79, 878 (2001).
2. R. L. Powell and K. A. Stetson, J. Opt. Soc. Am. 55, 1593 (1965).
3. P. Picart, E. Moisson, and D. Mounier, Applied Optics 42, 1947 (2003).
4. G. Pedrini, W. Osten, and M. E. Gusev, Appl. Opt. 45, 3456 (2006).
5. C. C. Aleksoff, Applied Optics 10, 1329 (1971).
6. M. Ueda, S. Miida, and T. Sato, Applied Optics 15, 2690 (1976).
7. F. Jouz, F. Laloë, M. Atlan, J. Hare, and M. Gross, Opt. Express 17, 2774 (2009).
8. P. Psota, V. Ledl, R. Dolecek, J. Erhart, and V. Kopecky, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 59, 1962 (2012).
9. S. Weinstein and P. Ebert, Communication Technology, IEEE Transactions on 19, 628 (1971).
10. B. Samson, F. Verpillat, M. Gross, and M. Atlan, Opt. Lett. 36, 1449 (2011).
11. V. Ledl, J. Vaclavik, R. Dolecek, and V. Kopecky, in 9th International conference on vibration measurements by laser and non contact techniques (AIVELA) (2010).
12. N. Verrier and M. Atlan, Appl. Opt. 50, H136 (2011).