Herbal Medicines for Parkinson’s Disease: A Systematic Review of Randomized Controlled Trials

Tae-Hun Kim1,2, Ki-Ho Cho1*, Woo-Sang Jung1, Myeong Soo Lee2

1 Department of Cardiovascular & Neurologic Diseases, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea, 2 Korea Institute of Oriental Medicine, Daejeon, South Korea

Abstract

Objective: We conducted systematic review to evaluate current evidence of herbal medicines (HMs) for Parkinson’s disease (PD).

Methods: Along with hand searches, relevant literatures were located from the electronic databases including CENTRAL, MEDLINE, EMBASE, CINAHL, AMED, PsycInfo, CNKI, 7 Korean Medical Databases and J-East until August, 2010 without language and publication status. Randomized controlled trials (RCTs), quasi-randomized controlled trials and randomized crossover trials, which evaluate HMs for idiopathic PD were selected for this review. Two independent authors extracted data from the relevant literatures and any disagreement was solved by discussion.

Results: From the 3432 of relevant literatures, 64 were included. We failed to suggest overall estimates of treatment effects on PD because of the wide heterogeneity of used herbal recipes and study designs in the included studies. When compared with placebo, specific effects were not observed in favor of HMs definitely. Direct comparison with conventional drugs suggested that there was no evidence of better effect for HMs. Many studies compared combination therapy with single active drugs and combination therapy showed significant improvement in PD related outcomes and decrease in the dose of anti-Parkinson’s drugs with low adverse events rate.

Conclusion: Currently, there is no conclusive evidence about the effectiveness and efficacy of HMs on PD. For establishing clinical evidence of HMs on PD, rigorous RCTs with sufficient statistical power should be promoted in future.

Introduction

Parkinson’s disease (PD) is an age-related neurodegenerative disorder that pathological feature is basically related on the progressive degradation of dopamine production in substantia nigra. The clinical manifestation includes bradykinesia (especially having difficulties in initiating movement), hypokinesia (lose of facial expression), rigidity, rest tremor (pill-rolling movement of the forearm) and non-motor features including depression, psychosis autonomic dysfunction [1].

Because of diversity of the studies with different population and methodology, the prevalence rate and incidence varies broadly in different studies. In the European countries, crude prevalence rate estimates ranged from 65.6 per 100,000 to 12,500 per 100,000 and annual incidence estimates ranged from 5 per 100,000 to 26 per 100,000 [2]. On the contrary, prevalence rate and incidence rate is slightly lower in Asian countries. It was reported that a standardized all-age prevalence of was 51.3 to 176.9 per 100,000 and the standardized incidence rates were 8.7 per 100,000 person-years [3]. The prevalence increases progressively along with the age. According to the cross-sectional study of United Kingdom in 2000, the prevalence was only 20/100,000 in below 50 years old, but 342/100,000 in sixties and 1265/100,000 in over eighties [4]. Considering that medical expenditure for PD is one of the highest ranked neurologic diseases, PD might be a serious socioeconomic burden in future aging society [5–7].

Herbal products for PD have been used worldwide in traditional medicine [8]. Especially in China, records of herbal prescriptions for treating PD might date back to about 2200 years ago [9] and current literatures reflect active use of HM for PD until now [10,11]. Practitioners and patients employ HM as an adjuvant therapy of conventional treatment for the purpose of reducing dose of dopaminergic drugs, adverse event related to prolonged usage of dopaminergic agents and improving PD symptoms [10].

Previous literature reviews have been evaluated the clinical evidence of HM including traditional Chinese medicine (TCM) [9,10,12,13]. However these reviews did not adopt explicit search strategy so all the possible studies might not be located. Information on the herbal remedies was not presented in details. In addition, any results on the effect size were not reported. From these limitations, these reviews failed to suggest the global picture of HMs for treating PD [9,10,12,13].

The purpose of this review is to evaluate the current evidence level thorough explicit systematic review method and to present...
necessary information to outline the benefit and harmfulness of HMs for PD patients.

Methods

Types of studies
Randomized controlled trials (RCTs), quasi-randomized controlled trials and randomized crossover trials, which evaluate HMs for idiopathic PD were included in this review.

Types of participants
Participants of any age and sex with idiopathic PD were considered to be included. Diagnosis of PD is necessary to be done considering clinical symptoms and radiological examinations through the standard diagnostic criteria such as UK Parkinson’s Disease Brain Bank criteria [14] or the Diagnosis and Differential Diagnosis of Parkinson’s Disease and Parkinsonism from the Chinese Colloquium of Extracorticospinal Tract Diseases [15].

Types of intervention
Studies which used HMs as the only intervention or combination therapy with conventional medicine were included. In this review, HMs was defined as products originated from botanical sources such as whole plants or their adjuncts: seed, root, flower, bud and leaf [16]. In the boundary of HM, low or manufactured single or complex medicinal plants, plants extracts and plant preparations for the purpose of treatment were included regardless of drug preparation: extracts, decoction, tablet, capsule, pill, powder, injection and etc [17]. However, drugs, which were consisted of synthesized compounds, were excluded. Complex intervention with acupuncture, moxibustion and other CAM treatments was excluded. There is no restriction on dosage including frequency, dose, intensity and duration. Comparator interventions were conventional drugs or treatment, surgery, placebo, usual care or no treatment. Comparison between different types of HMs was excluded. Conventional drugs include levodopa (both of the immediate-release and modified-release), dopamine agonists, monoamine oxidase B inhibitors, catecho-O-methyltransferase inhibitor (COMT) and amantadine etc.

Types of outcome measures
Following primary and secondary outcomes were pre-identified at the protocol stage:

Primary outcomes. Total Unified Parkinson’s Disease Rating Scale score (Total UPDRS score)
Global improvement of symptoms

Secondary outcomes. UPDRS I, II, III and IV sub-scores
Webster scale
Hohm and Yahr (H&Y) staging
Non-movement problems: total non-motor symptoms score value (NMSQuest), frequency of Nausea & vomiting or constipation
Mean levodopa or bromocriptine usage
Depression scales: Hamilton depression rating scale (HAM-D)
Quality of life measures: Parkinson’s Disease Questionnaire–39 (PDQ-39) and EuroQol (EQ-5D)
Adverse events rate

Search methods for identification of studies
The following databases were searched until August, 2010. Any language, document format and date restrictions didn’t included in the search strategy to minimize possible bias: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL (Cumulative Index of Nursing and Allied Health Medicine), AMED (Allied and Complementary Medicine Database), PsyInfo, China Academic Journal in China National Knowledge Infrastructure (CNKI), China Doctor/Master’s Dissertation Database in CNKI, China Proceedings of Conference Database in CNKI, Korean Medical Databases (Korean Studies Information, DBPIA, Korea Institute of Science and Technology Information, Research Information Centre for Health Database, KoreaMed and the Korean National Assembly Library, Korean traditional knowledge portal) and J-East. Related gray literature and references of included studies were hand searched. Searching strategy for medline was as follows:

Medline (Pubmed) search strategy.
#1 Parkinson Disease [mh]
#2 Parkinson$ [tiab]
#3 or/1-2
#4 Medicine, African Traditional [mh]
#5 Medicine, Arabic [mh]
#6 Medicine, Ayurvedic [mh]
#7 Medicine, Kampo [ml]
#8 Medicine, Korean Traditional [mh]
#9 Medicine, Tibetan Traditional [mh]
#10 Medicine, Mongolian Traditional [mh]
#11 Herbal Medicine [mh]
#12 Phytotherapy [mh]
#13 Drugs, Chinese Herbal [mh]
#14 Plants, Medicinal [mh]
#15 Plant Extracts [mh]
#16 Ethnobotany [mh]
#17 Ethnopharmacology [mh]
#18 Plants [mh]
#19 herb$ [tiab]
#20 (Plant Leave$ or Flower$ or Plant Root$ or Fruit$ or Seed$) [tiab]
#21 or/4-20
#22 3 and 21
#23 randomized controlled trial [pt]
#24 controlled clinical trial [pt]
#25 randomized [tiab]
#26 placebo [tiab]
#27 drug therapy [sh]
#28 randomly [tiab]
#29 groups [tiab]
#30 or/23-29
#31 animals [mh] not (humans [mh] and animals [mh])
#32 30 not 31

Data extraction, risk of bias assessment and analysis
From the included studies, data describing disease duration and severity, interventions for the treatment and control groups, summary of the outcomes, last follow up period and recipes of HMs were extracted according to the pre-defined data extraction form by two independent authors (THK and WSJ). Any disagreement between two authors was solved by discussion. Risk of bias was assessed in 6 domains: random sequence generation, allocation concealment, blinding of participants, incomplete outcome data, selective reporting and other bias. Two independent authors (THK and KHC) assessed the risk of bias according to the criteria of Cochrane collaboration [18]. Any conflict was discussed and there was no disagreement between two authors.

Estimated effect size for each outcome of included HM was calculated comparing with each control intervention individually. Individual data were combined for meta-analysis if the studies adopted the same HM and control intervention. Dichotomous
data were presented as relative risk (RR) and continuous outcomes as mean difference (MD) with 95% CI. Analysis was conducted with Review manager 5.1 (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2011).

Results

Description of included studies

Total 3432 of relevant literature were identified from electronic databases and hand searching. Among them, 64 studies (total 4024 PD patients) were included based on the predefined criteria (figure 1).

All the included studies were classified into one of four types according to the trial design: HM versus placebo [19,34], HM versus conventional medicine [30,43,44,53,57,71,73,77], HM plus active drug versus active drug [20–23,25–27,29,31–33,35–38,41,42,43,48–50,52,54,55,56,58–62,64–69,72,74–76,79–82] or HM plus active drug versus placebo plus active drug [11,24,28,34,39,40,46,47,51,63,70,78]. Among the 64 studies, one was conducted in Ecuador [19], another was in UK [24] and other 62 were in China. All the included studies were RCTs except two quasi-RCTs [31,54] and one cross-over study [24].

Interventions

A total 59 kinds of herbal preparations were identified in the included studies (table S1). Among them, several different herbal recipes which were prescribed individually according to each patient were used in three studies [80–82]. All the identified interventions were complex medications which were composed of three to twenty herbs. Only in two studies, single herbal extracts were tested [19,24]. In majority of included studies, treatment was provided during 3 or 6 months (ranging 1 month to 1 year). One study assessed the short term effect of herbal extract, tested shortly after taking medication once [19]. Control interventions were mainly conventional treatment with anti-Parkinson drugs or Placebo [11,19,24,28,34,39,40,46,47,51,63,70,78]. In 58 trials, several anti-Parkinson drugs were provided to PD patients, combined with HMs and 8 studies tested single HMs without conventional treatment (table S2) [30,43,44,53,57,71,73,77].

Risk of bias

There is no study with row risk of bias in all the 6 domains and no study showed low risk of biases in 5 domains. There were 14 studies which showed low risk of bias in the domain of random sequence generation [21,24,28,34,46–50,55,70,74,78,83]. Allocation concealment was conducted adequately in 5 studies [21,24,50,55,78]. 13 studies described about blinding issues [19,24,28,34,39,40,46,47,51,63,68,70,78]. In 10 studies [24,25,47,53–55,63,70,73,83], incomplete outcome data such as numbers of participants who were included, finished treatment and were dropped out were well described. The selective reporting domain was not evaluated clearly because we could not locate any registered protocol for all the included studies. Other risk of bias such as baseline imbalances were properly described in the included studies except in 12 studies [19,22,24,31,36,41,47,49,59,66,72,76].

Figure 1. Flow chart of information for this systematic review.

doi:10.1371/journal.pone.0035695.g001
In addition to this, several details were also evaluated to describe the methodological quality of the included studies. No study did statistical analysis on intention-to-treat basis. In only one study, sample size calculation was conducted for enough statistical power [24]. 8 studies referred to the ethical issues such as prior review by institutional review board [19,24] or written informed consent from participants [19,21,24,34,55,63,83].

Effects of interventions 1: HM versus placebo [19,34]

2 HMs were compared with placebo in 2 studies [19,34]. Global improvement of symptoms and total UPDRS score were assessed for the efficacy of HMs in 2 studies (figure 2) [19,34]. Banisteriopsis caapi extract showed significant improvement in total UPDRS score 4 hrs after the one time treatment (MD $-27.40, [-28.19, -26.61]) [19]. 3 months of Guilingpaan capsule treatment did not show statistically significant difference in global symptoms (RR 1.30, [0.93, 2.06]) and total UPDRS score (MD $-3.45, [-14.99, 8.09])$, compared with placebo control [34].

Effects of interventions 2: HM versus conventional medicine [30,43,44,53,57,71,73,77]

8 different HMs were tested compared with conventional drug therapy [30,43,44,53,57,71,73,77]. Global improvement of symptoms, Webster scale and total UPDRS score were evaluated in these studies. Among them, herbal formula Qingxinhuatang only showed statistically significant improvement in global symptoms (RR 1.33, 95% CI [1.04, 1.72]) compared with madopar therapy [33]. Herbal formula Kangzhenzhijing capsule [43], Kanli tang [44] and Ziyinxifeng granule [77] reported significant improvement in global improvement of symptoms and total UPDRS score (MD $-3.40, [-8.09, 1.20]$), 3 months of Guilingpaan capsule treatment did not show statistically significant difference in global symptoms (RR 1.30, [0.93, 2.06]) and total UPDRS score (MD $-3.45, [-14.99, 8.09])$, compared with placebo control [34].

Effects of interventions 3: HM plus active drug versus active drug [20–23,25–27,29,31–33,35–38,41,42,45,48–50,52,54,55,56,58–62,64–69,72,74–76,79–82]

In 44 studies, HM combined with conventional drug therapy was compared with conventional drug treatment [20–23,25–27,29,31–33,35–38,41,42,45,48–50,52,54,55,56,58–62,64–69,72,74–76,79–82]. Herbal formula Guilingpaan wan was evaluated in 3 studies [35–37], Xifengdingzhan wan in 3 studies [61,63,84] and other HMs was used once:

- Three months of Guilingpaan wan medication with madopar showed significant improvement in global symptoms (RR 1.45, [1.20, 1.77]) [35–37] and total UPDRS score (MD $-9.97, [-16.68, -3.25]) [35,36] compared with madopar alone.
- Xifengdingzhan wan with madopar was administered for 3 months [61,84] and for 1 month [63], respectively. Xifengdingzhan wan combination therapy improved significantly in global symptoms (RR 1.47, [1.20, 1.81]) [61,63] and total UPDRS score (MD $-5.41, [-6.96, -3.86]) [61,84].

Global improvement of symptoms. 33 studies assessed global improvement of symptoms. Among them, 3 studies [80–82] compared the effectiveness of combination treatment on global symptoms with individualized herbal recipes plus conventional drug therapy versus single drug therapy, and significant improvement was observed in 1 study only [79] (RR $2.88, [1.90, 4.34]$). The other studies tested different HMs with conventional drug therapies and 10 herbal recipes including those described earlier, showed statistically significant improvement in global symptoms [33,35–37,41,50,52,55,60,61,63,65,79]: Fufangjiangzhan wan plus madopar (RR 1.40, [1.16, 1.70]) [33], Kanapa granule with madopar (RR 3.13, [1.79, 5.6]) [41], Pabing formula 2 plus madopar (RR 2.80, [1.15, 6.80]) [50], Peibuganshen recipe plus madopar and artane (RR 1.89, [1.01, 3.55]) [52], Shudijingzhan tang plus Xiewu capsule plus levodopa (RR 2.27, [1.60, 3.23]) [55], Xifengdingzhan tang with madopar (RR 1.32, [1.01, 1.72]) [60] and Xifengzhizhan tang plus madopar (RR 1.50, [1.08, 2.08]) [63].

Total UPDRS score. In total 12 studies [20,21,23,25–27,42,45,48,61,63,74,75,84], 10 HM plus conventional drug therapies were compared with single drug therapy for the total UPDRS score and among them, 9 HMs including Guilingpaan wan and Xifengdingzhan wan showed significant improvement in the score: Guilingpaan wan (MD $-5.10, [-6.01, -4.19]) [21], Kangzhanning plus madopar (MD $-7.00, [-8.88, -5.12]) [42], Lernai granule plus madopar and Vit B6 (MD $-5.40, [-7.05, -3.75]) [45], Pabing formula 1 plus madopar (MD $-9.04, [-17.11, -0.97]) [48], Xifengzhizhan tang plus madopar (MD $-8.39, [-13.29, -4.49]) [49], Zhizhan tang plus madopar (MD $-1.30, [-2.36, -0.24]) [74] and Zibuganshen recipe plus madopar, sinemet or artane (MD $-10.74, [-20.74, -0.74]) [75].

Webster scale. Webster scale was assessed in 4 studies [26,52,66,75] and combination therapy showed better effect than conventional therapy alone in 3 studies: Peibuganshen recipe plus...
Table 1: Treatment Effect Size of Herbal Medicine Plus Active Drug versus Active Drug, Total UPDRS Score

Study or Subgroup	Herb plus active drug	Active drug	Mean Difference	Mean	SD	Total	Mean	SD	Total	Weight	IV	Fixed	95% CI
3.2.1. Bushenpingchan formula plus madopar versus madopar													
Cui 2003	41.2	28.5	35	44.5	29.1	35	100.0	-3.30	[16.79, 10.19]	1	0.48	0.63	
Subtotal (95% CI)	35	100.0	-3.30	[16.79, 10.19]									
Heterogeneity: Not applicable													
Test for overall effect: Z = 0.48 (P = 0.63)													

| **3.2.2. Bushenpingchan formula plus levodopa versus levodopa** |
| Zhao 2007 | 32.4 | 2.1 | 55 | 37.5 | 2.8 | 59 | 100.0 | -5.10 | [6.01, -4.19] | 1 | 10.39 | 0.00001 |
| Subtotal (95% CI) | 55 | 100.0 | -5.10 | [6.01, -4.19] |
| Heterogeneity: Not applicable |
| Test for overall effect: Z = 10.39 (P = 0.00001) |

| **3.2.3. Guiqian wan plus madopar versus madopar** |
Chang 2008	44.76	18.27	30	54.25	18.43	30	58.20	-9.49	[18.29, -0.69]	1	2.91	0.004
Jiang 2009	34.6	22.04	30	45.23	18.88	30	41.80	-10.63	[21.01, -0.25]	1	7.30	0.00001
Subtotal (95% CI)	60	100.0	-9.97	[16.60, -3.25]								
Heterogeneity: Chi² = 0.03, df = 1 (P = 0.97); P = 0%												
Test for overall effect: Z = 2.91 (P = 0.004)												

| **3.2.4. Kangzhanming plus madopar versus madopar** |
| Yang 2008 | 23.76 | 3.46 | 24 | 30.76 | 3.16 | 24 | 100.0 | -7.00 | [8.08, -5.12] | 1 | 10.00 | 0.00001 |
| Subtotal (95% CI) | 24 | 100.0 | -7.00 | [8.08, -5.12] |
| Heterogeneity: Not applicable |
| Test for overall effect: Z = 7.30 (P = 0.00001) |

| **3.2.5. Lemai granule plus madopar and Vit B6 versus madopar and Vit B6** |
| Luo 2001 | 25.2 | 6.7 | 32 | 30.6 | 9.2 | 30 | 100.0 | -5.40 | [10.05, -0.75] | 1 | 2.27 | 0.02 |
| Subtotal (95% CI) | 32 | 100.0 | -5.40 | [10.05, -0.75] |
| Heterogeneity: Not applicable |
| Test for overall effect: Z = 2.27 (P = 0.02) |

| **3.2.6. Paining formula 1 plus madopar versus madopar** |
| Sun 2005 | 22.98 | 11.84 | 22 | 32.14 | 14.19 | 19 | 100.0 | -9.04 | [17.11, -0.97] | 1 | 2.19 | 0.03 |
| Subtotal (95% CI) | 22 | 100.0 | -9.04 | [17.11, -0.97] |
| Heterogeneity: Not applicable |
| Test for overall effect: Z = 2.19 (P = 0.03) |

| **3.2.7. Kiefinzhongzhan wan plus madopar versus madopar** |
Cheng 2007	43.2	6.74	20	50.2	5.62	20	16.30	-7.00	[10.85, -3.15]	1	10.00	0.00001
Ma 2005	10.11	3.98	30	15.21	2.67	30	83.70	-5.10	[8.80, -3.40]	1	6.83	0.00001
Subtotal (95% CI)	50	100.0	-5.41	[-8.96, -3.80]								
Heterogeneity: Chi² = 0.78, df = 1 (P = 0.30); P = 0%												
Test for overall effect: Z = 6.83 (P = 0.00001)												

| **3.2.8. Kiejfenzhangzhan tang plus madopar versus madopar** |
| Lu 2009 | 22.82 | 8.62 | 31 | 31.71 | 9.05 | 31 | 100.0 | -0.89 | [13.29, -4.49] | 1 | 3.98 | 0.00001 |
| Subtotal (95% CI) | 31 | 100.0 | -0.89 | [13.29, -4.49] |
| Heterogeneity: Not applicable |
| Test for overall effect: Z = 3.98 (P = 0.00001) |

| **3.2.9. Ziyu zhang plus madopar versus madopar** |
| Wang 2010 | -7.63 | 1.97 | 30 | -6.33 | 2.22 | 30 | 100.0 | -1.30 | [2.36, -0.24] | 1 | 2.40 | 0.02 |
| Subtotal (95% CI) | 30 | 100.0 | -1.30 | [2.36, -0.24] |
| Heterogeneity: Not applicable |
| Test for overall effect: Z = 2.40 (P = 0.02) |

| **3.2.10. Zhuganshen recipe plus madopar, sinemet or artane versus madopar, sinemet or artane** |
| Shen 2006 | 61.35 | 26.41 | 40 | 72.09 | 16.6 | 32 | 100.0 | -10.74 | [20.74, -0.74] | 1 | 2.10 | 0.04 |
| Subtotal (95% CI) | 40 | 100.0 | -10.74 | [20.74, -0.74] |
| Heterogeneity: Not applicable |
| Test for overall effect: Z = 2.10 (P = 0.04) |

Figure 3. Herbal medicine plus active drug versus active drug, total UPDRS score.

doi:10.1371/journal.pone.0035695.g003
madopar and artane (MD −3.10, [−5.00, −1.20]) [52], Yangganshieng recipe plus madopar (MD −3.00, [−4.14, −1.86]) [66] and Zibuzhanshen recipe plus madopar, sinemet or artane (MD −2.86, [−3.68, −0.04]) [75].

Hoehn & Yahr score. Hoehn & Yahr score was assessed in 2 studies [21,38]. However there was no significant improvement in these studies.

The dose of anti-Parkinson drug. The dose of anti-Parkinson drug including levodopa (madopar) or bromocriptine was compared between combination treatment and conventional drug therapy groups (figure 4). Mean dose of levodopa (madopar) was assessed in 10 studies [20,21,55,60,65,67,69,83,84] and combination therapies decreased the dose significantly in 8 studies: Bushenpingchan formula (MD −199.30, [−367.65, −30.95]) [20], Bushenhuoxue recipe (MD −121.20, [−149.04, −93.36]) [83], Bushenyanggan recipe (MD −80.03, [−113.25, −46.81]) [21], Xifenglingzhan tang (MD −187.01, [−247.25, −126.77]) [60], Xifenglingzhan wan (MD −165.63, [−304.10, −27.16]) [84], Xifenglingzhan tang (MD −185.24, [−245.56, −124.92]) [65], Yizhan jian plus dabuyin wan (MD −187.01, [−257.00, −117.02]) [67] and Yizhan tang (MD −120.00, [−148.48, −91.52]) [69].

Non-movement problems. Non-movement problems such as nausea and constipation were evaluated in several studies. 1 study adopted a validated systemic tool i.e. Parkinson’s disease non-movement questionnaire (NMSQuest) for non-movement symptoms: Yiyuan yin plus madopar was compared with single madopar therapy. However, there was no significant difference between 2 groups in NMSQuest value (MD −1.00, [−3.19, 1.19]) [68]. 4 HMs plus conventional drug therapies were tested for the effect of reducing nausea and vomiting [35–37,55,75,83]. Among them, 2 HMs showed favorable results: Bushenhuoxue recipe plus bromodapar and bromocriptine (RR 0.40, [0.20, 0.81]) [83], Zibuzhanshen recipe plus madopar and sinemet or artane (RR 0.36, [0.14, 0.94]) [75].

7 herbal remedies with anti-Parkinson drugs were evaluated on constipation in PD patients [29,36,42,55,68,73,83] and 3 recipes showed better results: Bushenhuoxue recipe plus madopar and bromocriptine (RR 0.11, [0.03, 0.46]) [83], Dingzhen tang_2 plus conventional treatment (RR 0.18, [0.09, 0.36]) [29] and Kangzhhammer plus madopar (RR 0.50, [0.28, 0.88]) [42].

Anti-depressive effect. Anti-depressive effect of combination therapy in PD patients was tested in 1 study. Compared with paroxetine treatment alone, Chaihu sulfuran san plus paroxetine showed significant improvement in HAM-D score (MD −4.10, [−5.17, −3.03]) after 8 weeks of treatment with low adverse event rate (RR 0.48, [0.31, 0.74]) [25].

Total adverse event rate. Total adverse event rate was assessed in 8 studies [25,31,38,45,54,56,61,84] and 5 studies (4 HMs) reported significantly low rate of adverse event: Chaihu sulfuran san plus paroxetine (RR 0.48, [0.31, 0.74]) [25], Dingzhen tang_4 plus madopar and artane (RR 0.39, [0.18, 0.83]) [53], Ruqiangdongluo tang plus madopar (RR 0.36, [0.14, 0.89]) [45] and Xifenglingzhanguan plus madopar (RR 0.41, [0.21, 0.80]) [61,84].

Effects of interventions 4: HM plus active drug versus placebo plus active drug

Study	PD Parameters	MD	CI	p-Value
[11,24,28,34,39,40,46,47,51,63,70,78]				

12 studies compared the effect of HM plus active drug and those of placebo plus active drug [11,24,28,34,39,40,46,47,51,63,70,78]. In 8 studies, global improvement of symptoms was compared between HMs and placebo controls both of which were combined with active drugs [26,34,39,46,47,51,63,78]. Among them, significant improvement was observed in 5 studies: Jiaweixiaolingfeng zhu plus madopar (RR 3.03, [1.82, 5.05]) [39], Naokangning capsule plus madopar (RR 1.53, [1.02, 2.31]) [46], Nuzhenyangjin granule plus madopar and artane (RR 1.53, [1.09, 2.16]) [47], Pabing formula 3 plus madopar (RR 2.60, [1.06, 6.39]) [51] and Xifenglingzhan wan plus madopar (RR 1.44, [1.11, 1.87]) [63].

Total UPDRS score

Total UPDRS score was evaluated in 5 studies [29,46,63,70,78] and 2 HMs showed significant improvement comparing with placebo plus active drug treatment: Naokangning capsule plus madopar (MD −6.00, [−11.24, −0.76]) [46] and Xifenglingzhan wan plus madopar (MD −5.10, [−6.57, −3.63]) [63].

SF-36 questionnaires were assessed for evaluating quality of life for PD patients in 1 study [46]. Compared with placebo plus active treatment, Naokangning capsule plus madopar showed significantly in the subsections for the physical functioning (58.74 (14.16) in Naokangning plus madopar group, 46.83 (16.43) in placebo plus madopar, P<0.05), social functioning (77.26 (27.57), 64.63 (20.39), P<0.05), role limitations due to physical health (68.59 (16.35), 49.62 (18.25), P<0.05) and vitality (67.21 (18.05), 48.92 (23.49), P<0.05) [46].

Discussion

Among the included 64 RCTs, 59 herbal preparations were used for treating PD. Majority of studies were conducted in China and HMs were composed of multiple herbs in almost all studies. Only 5 HMs were used several times but other studies were conducted with high heterogeneities in herbal preparations and study design. HMs was used with conventional drugs concomitantly in majority of the included studies. Efficacy of HMs was tested in 2 studies by comparing with placebo control. Banisteriopsis caapi extract showed short-term effect in improving UPDRS score but 3 months of Guilingpaan capsule medication did not have statistically significant differences in PD symptoms [19,34]. HMs were directly compared with conventional drug therapy in 8 studies and only Qingxinhuatan tang improved general symptoms of PD significantly in one study [53]. Combination therapy with HMs and anti-Parkinson drugs showed significant improvement in the assessment of general symptoms and UPDRS scores and decrease in the dose of anti-Parkinson drugs generally. Adverse events rate also decreased significantly in combination therapies.

Compared with the previous systematic review in 2006 [85], the number of conducted RCTs increased steeply from 9 to 64. However, as with before, the result of this systematic review cannot suggest conclusive evidence of HMs because of several limitations the included studies had. Firstly, only a small number of preparations were used twice or more and most of the HMs were tested only once. A huge heterogeneity in the herbal composition, drug formulation, dose, duration, combined therapy and control interventions was observed between the studies, which were the main obstacles to estimate the general effect size of herbal remedies. Secondly, significant improvement in the methodological qualities of included studies was not observed compared with the previous review. As pointed out before, most of the studies did not report about allocation concealment process. Incomplete outcome data including drop out were not reported in 53 studies. Because any pre-registered protocols of included trials were not located, selective outcome reporting could not be judged clearly in all the studies. Only one studies adopted ITT analysis for statistics. In this review, except 2 studies, all the searched studies were conducted in China. There have been debates about the results of clinical trials in some countries including China, which may be originated from their methodological flaws and publication bias.
Figure 4. Herbal medicine plus active drug versus active drug, mean dose of levodopa (madopar).

Study or Subgroup	Herb plus active drug	Active drug	Mean Difference IV, Fixed, 95% CI					
	Mean	SD	Total	Mean	SD	Total	Weight	
3.14.1 Bushenhuoxue recipe plus madopar and bromocriptine versus madopar and bromocriptine								
Dou 2008	262.2	62.3	52	373.4	80.6	37	100.0%	-121.20 [-149.04, -93.36]
Subtotal (95% CI)			52			37		
Heterogeneity: Not applicable								
Test for overall effect: Z = 8.53 (P < 0.000001)								
3.14.2 Bushenpingchan formula plus madopar versus madopar								
Cui 2003	496.5	285.3	35	695.8	420.5	35	100.0%	-193.30 [-367.65, -30.95]
Subtotal (95% CI)			35			35		
Heterogeneity: Not applicable								
Test for overall effect: Z = 2.32 (P = 0.02)								
3.14.3 Busheryanyang recipe plus levodopa versus levodopa								
Zhao 2007	340.6	99.2	55	420.6	80.58	58	100.0%	-80.03 [-113.25, -46.81]
Subtotal (95% CI)			55			58		
Heterogeneity: Not applicable								
Test for overall effect: Z = 4.72 (P < 0.000001)								
3.14.4 Shuipingzhang tang plus Xiewu capsule plus levodopa versus levodopa								
Yuan 2010	562.2	126.4	60	555.3	132.4	60	100.0%	6.90 [39.42, 53.22]
Subtotal (95% CI)			60			60		
Heterogeneity: Not applicable								
Test for overall effect: Z = 0.29 (P = 0.77)								
3.14.5 Xifengdingzhang tang plus madopar versus madopar								
Li 2008	396.4	141.57	27	583.41	73.89	27	100.0%	-187.01 [-247.25, -126.77]
Subtotal (95% CI)			27			27		
Heterogeneity: Not applicable								
Test for overall effect: Z = 6.09 (P < 0.000001)								
3.14.6 Xifengdingzhang wan plus madopar versus madopar								
Cheng 2007	365.62	188.37	20	531.26	253.67	20	100.0%	-165.63 [-304.10, -27.16]
Subtotal (95% CI)			20			20		
Heterogeneity: Not applicable								
Test for overall effect: Z = 2.34 (P = 0.02)								
3.14.7 Xifengzhizhan tang plus madopar versus madopar								
Lu 2009	426.6	136.19	31	611.86	103.97	31	100.0%	-165.24 [-245.56, -124.92]
Subtotal (95% CI)			31			31		
Heterogeneity: Not applicable								
Test for overall effect: Z = 6.02 (P < 0.000001)								
3.14.8 Yiquan jian plus dahuoyin wan plus madopar versus madopar								
Li 2009	396.4	141.57	20	583.41	73.89	20	100.0%	-187.01 [-257.00, -117.02]
Subtotal (95% CI)			20			20		
Heterogeneity: Not applicable								
Test for overall effect: Z = 6.24 (P < 0.000001)								
3.14.9 Yiquan yin plus madopar versus madopar								
Chen 2009	580.0	160.0	46	655.5	185.0	46	100.0%	-65.00 [-144.51, 14.51]
Subtotal (95% CI)			46			46		
Heterogeneity: Not applicable								
Test for overall effect: Z = 1.60 (P = 0.11)								
3.14.10 Yizhan tang plus madopar and bromocriptine versus madopar and bromocriptine								
Yang 2002	245.5	55.5	40	365.5	85.5	32	100.0%	-120.00 [-148.48, -91.52]
Subtotal (95% CI)			40			32		
Heterogeneity: Not applicable								
Test for overall effect: Z = 8.26 (P < 0.000001)								

Favours combination Tx. Favours drug.
Trials with less methodological rigor prone to exaggerate treatment effect than rigorous studies [87]. Thirdly all the included studies tested only small sample size without proper power calculation. Generally studies with small sample may not detect clinically important difference between interventions [88]. Among the included studies in this review, some HMs did not show statistically significant effect in favor of herbal preparations compared with placebo or conventional treatment which may be originated from their insufficient sample size. Fourthly there may be a possibility of publication bias in this review. We checked funnel plots of two key outcomes i.e. total UPDRS scores and mean dose of levodopa in the comparison of HM plus active drug and active drug only. Both of the funnel plots appeared asymmetric, which might be originated from publication bias or poor methodological qualities of the included studies (figure 5 and 6).

In these points, the findings of this systematic review should be interpreted carefully.

Even with several limitations, this review also has strength as well. We did comprehensive search regardless of language and publication types to locate every possible RCT. We failed to suggest overall estimates of treatment effects on PD but herbal recipes and estimates of effect measures on the separate outcomes for individual HMs were presented to provide information in detail, which may be available to suggest a basic source for judging the possibility of treating PD and after all may offer a principle data to find out new drug candidates for PD [89].

There are several issues on the HMs for the treatment of PD, which should be discussed more. We found that herbal recipes were generally used as adjuvant treatments to conventional drug therapy which may contribute to improve the PD symptoms and to decrease dose of anti-Parkinson drugs and adverse events rate. Many PD patients experience dyskinesia and symptom fluctuation from the long-term treatment with levodopa [90]. Combination therapy with some HMs showed significant or marginal effect in reducing complications of levodopa (UPDRS IV) [41]. The dose of levodopa is also one of the important clinical considerations because PD needs lifelong treatment generally. Considering wearing-off symptoms, it would be helpful for both patients and clinicians to reduce dose of levodopa for managing PD symptoms [1]. In this point, HM may be considered as a good adjunctive treatment to conventional drugs for PD. On the contrary, HMs for treating PD needs to equip standardized criteria for use to ensure the good quality of the products. It includes the problems related to the original species of individual herbs, chemical compositions and indexes, preparations and indications for herbal products. Chinese formulas were composed of many herbs and there were a wide heterogeneity in the HMs between the studies included in this review. In this situation, standardization of natural products used in the clinical trials is one of the most necessary factors for demonstrating good reproducibility of the research result in real clinical practices. Pharmacological researches including in vivo and in vitro studies should be promoted to support biological mechanism of herbal products as well. Adverse effects (AE) relevant to herbal recipes also need to be described clearly. AEs of the drugs for PD are well documented and are frequently reported of high occurrence rate in conventional medicine [1]. For example, in one study, dyskinesia was experienced in up to 40% of PD patients after 4 to 6 years of levodopa treatment [90]. In this review, occurrence of adverse events was relatively low in the combination therapies. This result may be originated from the fact that observation periods of the included studies were relatively short. Safety issues need to be one of the primary outcomes and clearly be described in future trials with long term observational period.

Future clinical trials of HMs on PD need to improve methodological quality to evaluate clinical benefit and harm properly. Random sequence generation and double blinding should be ensured in study design and results need to be reported well according to the CONSORT statement [91]. Protocol registration before start of clinical trials is also important to guarantee the transparency of the study finding through avoiding selective outcome reporting and publication bias [92]. Along with trials for efficacy in which single HM is compared with placebo control, comparative effectiveness studies using combination therapy with conventional drug therapies also need to be conducted to reflect clinical situation as it is.

Supporting Information

Table S1 The preparation of the herbal medicines of the included studies.

Table S2 Summary of the included studies on herbal medicines for Parkinson’s disease.
Acknowledgments

The authors especially thank Dr. Toru Naito for offering Japanese literature.

Author Contributions

Conceived and designed the experiments: THK KHC. Performed the experiments: THK WSJ. Analyzed the data: THK MSL. Contributed reagents/materials/analysis tools: THK. Wrote the paper: THK.

References

1. Rao SS, Hofmann LA, Shakil A (2006) Parkinson’s disease: diagnosis and treatment. American Family Physician 74: 2046–2054.
2. von Campenhausen S, Bornschein B, Wick R, Botzel K, Sampao C, et al. (2005) Prevalence and incidence of Parkinson’s disease in Europe. Journal of The European College Of Neuropsychopharmacology 15: 473–490.
3. Mavraganis W, Hori H, Brayne C (2009) Systematic review of the prevalence and incidence of Parkinson’s disease in Asia. Journal of Epidemiology 19: 212–218.
4. Schrag A, Quinn NP, Ben-Shlomo Y (2000) Cross sectional prevalence survey of idiopathic Parkinson’s disease and parkinsonism in London. British Medical Journal 321: 21–22.
5. Dowdbling CH, Shenton CL, Salek SS (2006) A Review of the Health-Related Quality of Life and Economic Impact of Parkinson’s Disease. Drugs & Aging 23: 693–721.
6. Løkk J (2008) Caregiver strain in Parkinson’s disease and the impact of disease duration. European Journal of Physical and Rehabilitation Medicine 44: 39–43.
7. Winter Y, von Campenhausen S, Brozova H, Skoupa J, Reese JP, et al. (2010) Costs of Parkinson’s disease in Eastern Europe: A Czech cohort study. Parkinsonism & Related Disorders 16: 51–56.
8. Mavraganis BV, Sánchez-Ramos JR (1999) Traditional and complementary therapies in Parkinson’s disease. Advances in Neurology 80: 565–574.
9. Zheng GQ (2009) Therapeutic history of Parkinson’s disease in Chinese medical treatises. Journal of Alternative and Complementary Medicine 15: 1223–1230.
10. Li Q, Zhao D, Bezard E (2006) Traditional Chinese medicine for Parkinson’s disease: a review of Chinese literature. Behavioural Pharmacology 17: 405–410.
11. Zhang L, Liu SM (2006) Recent developments of traditional Chinese medicine in treatment of Parkinson disease. Chinese Journal of Clinical Rehabilitation 10: 129–132.
12. Chung V, Liu L, Bian Z, Zhao Z, Wong W, et al. (2006) Efficacy and safety of herbal medicines for idiopathic Parkinson’s disease: A systematic review. Movement Disorders 21: 1709–1715.
13. Yang ZM, Tang XJ, Luo YR (2005) Systematic evaluation on clinical literature related with treatment of Parkinson’s disease with traditional Chinese medicine. Chinese Journal of Integrated Traditional and Western Medicine 25: 612–615.
14. Glibb WR, Lees AJ (1980) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry 51: 745–752.
15. Wang XD (1985) Diagnosis and differential diagnosis for Parkinson’s disease and Parkinsonism. Chinese Journal of Neurology and Psychiatry 18: 256–262.
16. Ernst E, Pittler MH, Wider B, Boddy K (2000) CHAPTER 1 General issues. Oxford Handbook of Complementary Medicine: Oxford University Press.
17. Ernst E, Pittler MH, Wider B, Boddy K (2006) SECTION 3 Therapies. The Desktop Guide to Complementary and Alternative Medicine: Elsevier Ltd.
18. Duggan J, Green Se (2009) Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.0 [updated February 2008]: The Cochrane Collaboration.
19. Serrano-Duenas M, Cardozo-Pelaez F, Sanchez-Ramos JR (2001) Effects of Banisteriopsis caapi extract on Parkinson’s disease. Scientific Review of Alternative Medicine 5: 127–132.
20. Cui L, Yu X-d, Cui J (2003) Clinical Observation on Effect of Combined Therapy of Bushen Pinqian Recipe and Medopa Tablet in Treating Parkinson’s Disease. Chinese Journal of Integrated Traditional and Western Medicine 23: 504–507.
21. Zhao H, Li WW, Gao JP (2007) Clinical trial on treatment of Parkinson’s disease of Gan-Shen yin deficiency type by recipe for nourishing Gan-Shen. Chinese Journal of Integrated Traditional and Western Medicine 27: 789–794.
22. Liu H (1994) Clinical observation on the 45 cases of Parkinson’s Disease patients treated by Guilingpaanwan with Madopar tablets in the treatment of 30 cases of Parkinson’s disease. Journal of New Chinese Medicine 4: 62–63.
23. Jiang SY (2006) Guiling Pa an Pill in 30 Cases of Parkinson Disease Treatment. Journal of Liaoning University of Traditional Chinese Medicine 11: 118–119.
24. Wang YZ (2005) Treatment of 38 cases Parkinson disease patients with Gai Liang Pa An Wan. Traditional Chinese Medical Research 18: 37–38.
25. Yang YF, Fang WJ, Wan TM (2006) 32 cases of Parkinson’s disease treated with Jianpuyishenfang plus western drugs. Journal of Anhui Traditional Chinese Medical College 27: 16–18.
26. Ming KW, Hong CX (2010) Clinical Research on Da Dingfeng Zhu. Journal of New Chinese Medicine 42: 23–24.
27. Lian XF, Lao XD (2008) Clinical trial for tremor type Parkinson’s disease with integrative medicine. Journal of New Chinese Medicine 40: 37–38.
28. Zhao XH, Gu CZ, Huang HY, Huang ZD (2003) Study of Parkinson’s disease treated with integrated traditional al Chinese and western medicine. Modern Journal of Integrated Traditional Chinese and Western Medicine 12: 1923–1927.
29. Yang LJ, Tian JB, Jiang GQ (2009) Chinese drug, Kangzhaining united Madopar for the treatment of Parkinson’s Disease: clinical analysis of 40 cases. Chinese Journal of Gerontology: 1534–1535.
30. Bao YC, Zhou HG, Wang H, Zhang B, Chen HZ, et al. (2001) Effect of Kangzhen Zhiquing capsule combined with Glutathione on blood antioxidase in Parkinson’s disease patients. Journal of Anhui Traditional Chinese Medical College 20: 11–15.
31. Guo SR, Fu WY, Qi CY, Zhang CY, Lu E, et al. (2004) Clinical assessment of Kanlitang for Parkinson’s disease. Liaoning Journal of Traditional Chinese Medicine 11: 730–731.
32. Lao ZM, Lao Y, Zhou L, Shang HF (2001) Clinical effect of Lemaikeli on patients with Parkinson’s disease. West China Medical Journal 16: 40–41.
33. Kim IK (2004) The Efficacy and the underlying mechanism of Traditional Chinese Formula NaolKangNing in Patients with Parkinson’s Disease. Jilin: Shandong University of Traditional Chinese Medicine.
34. Hu XJ, Yang XS, Yang XG (2003) Clinical observation on the efficacy enhancing and toxicity attenuating effect of nuzhen yangyin granule to the anti-parkinsonism therapy mainly with Medopra. Chinese Journal of Integrated Traditional and Western Medicine 23: 811–814.
35. Sun YZ (2005) Clinical research of treating hypokinesia type and rigid type Parkinson’s disease with PD No. 1. Guangzhou: Guangzhou University of Traditional Chinese Medicine.
36. Zhang H, Lao XD (2008) Clinical study of TCM six Jueyin differential diagnosis for the treatment of early and mid-term Parkinson’s disease. Acta Chinese Medicine and Pharmacology 36: 34–36.
37. Fan YP (2006) Clinical Research of Tremor Type Parkinson’s Disease with PD NO. 2. Guangzhou: Guangzhou University of Traditional Chinese Medicine.
38. Zhang H, Lao XD (2006) Clinical Study on Treating Type Parkinson’s Disease by Combination of Chinese and Western Medicine. Jilin Journal Of Traditional Chinese Medicine al Chinese and western medicine. Modern Journal of Integrated Traditional Chinese and Western Medicine 19: 15–19.
39. An LZ (2009) Clinical trial for the treatment of Parkinson’s disease with clearing the heart and resolving phlegm method. Journal of Sichuan of Traditional Chinese Medicine 27: 81–82.
