Complementary cosmological tests of RSII brane models

R F L Holanda1,2, J W C Silva4 and F Dahia2,3

1 Departamento de Física, Universidade Estadual da Paraíba, 58429-500, Campina Grande-PB, Brazil
2 Departamento de Física, Universidade Federal de Campina Grande, 58429-900, Campina Grande-PB, Brazil
3 Departamento de Física, Universidade Federal da Paraíba, João Pessoa-PB, Brazil
4 Departamento de Física, Universidade Rural do Semi-Árido, 59625-900, Paus dos Ferros-RN, Brazil

E-mail: holanda@uepb.edu.br and fdahia@df.ufcg.edu.br

Received 16 May 2013, in final form 15 August 2013
Published 19 September 2013
Online at stacks.iop.org/CQG/30/205003

Abstract

In this paper we explore observational bounds on flat and non-flat cosmological models in type II Randall–Sundrum branes. In a first analysis, we consider current measurements of the expansion rate $H(z)$ (with two priors on the local Hubble parameter) and 288 type Ia supernovae from the Sloan digital sky survey (within the framework of the mlcs2k2 light-curve fitting method). We find that the joint analysis involving these data is an interesting tool to impose limits on the brane tension density parameter (Λ) and that the spatial curvature has a negligible influence on Λ estimates. In order to obtain stronger bounds for the contribution of Λ, we also add in our analysis the baryon oscillation (BAO) peak and cosmic microwave background (CMB) radiation observations by using the so-called CMB/BAO ratio. From this analysis we find that the Λ contribution is less than 4×10^{-5} (1σ).

PACS numbers: 98.80.-k, 11.25.-w

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the formulation of Kaluza–Klein theory in the beginning of last century, concerning the unification of gravity and electromagnetism in a five-dimensional space, the study of extra dimensions have attracted much attention in physics. Nowadays there are great interest and much speculation about the existence of extra dimensions and their influence over our four-dimensional world, motivated mainly by the braneworld scenarios, in which our four-dimensional spacetime is viewed as a submanifold isometrically embedded in a space of higher dimensions [1–6].
A relevant aspect of the braneworld scenarios is that matter and all fields are confined to the brane (below a certain energy level which is expected to be of Tev order) and only gravity can propagate into the bulk \([1–4]\). Because of this characteristic, extra dimensions might have large scale as compared to the tiny Planck scale, assumed by the Kaluza–Klein theory, without any conflict with the observations so far. In particular, the type II Randall–Sundrum (RSII) model admits the existence of a hidden extra dimension which has an infinity length \([4]\). If the hidden extra dimensions are large, in principle, they can be detected more easily by exploring the signature they might leave in our four-dimensional space. This could be done by trying to detect deviations of four-dimensional laws in domains where gravity was not empirically tested yet. Pursuing this goal, some research teams have investigated the validity of the inverse square law of gravity at sub-millimeter scales recently \([7–9]\). According to them, there is no evidence of extra dimensions down to a length scale of about 50 \(\mu\)m \([9]\). In cosmology, there are also many studies about the impact of extra dimensions in the cosmic evolution considering distinct braneworld models \([6, 10, 11]\). Here, we are interested in discussing some cosmological tests of RSII model.

The RSII model is distinguished from other braneworld models because it is the first one which, surpassing the paradigm of compact extra dimensions, shows the possibility that we live embedded in a space with an extra dimension of infinite size. Despite the fact that gravity can have access to the infinite extra dimension, a negative cosmological constant \(\Lambda_1(5)\) defined in the bulk ensures the existence of a massless graviton mode, which is confined to the brane, and the suppression of the massive modes. These two characteristics together, on their turn, guarantee that the Newtonian law is recovered at distances much larger than the curvature scale \(\ell = \sqrt{-6/\Lambda_1(5)}\) established by the five-dimensional cosmological constant \([4]\).

The laboratory tests of the inverse square law, that have found no trace of extra dimension, as we have already mentioned, then suggest that the curvature scale \(\ell\) could not be greater than 10\(^{-4}\)m \([9]\). With such a small value, it seems that the extra dimension will play no significant role in the recent phase of evolution of the Universe, which, according to type Ia supernovae (SNe Ia) data and based on the LCDM model, is undergoing an accelerated expansion. Needless to say, however, that any theory should be tested in different scales and by means of all kind of physical phenomena as much as possible. Hence, in this paper, we intended to use a recent SNe Ia data combined with measurements of \(H(z)\) as an independent and new test for the RSII model in the cosmological scale.

As is well known, in the cosmological context, the differences between the RSII model and the standard cosmological model can be synthesized as modifications of the Friedmann equation. Admitting that the brane is a Robertson–Walker three-dimensional space, then the effective field equation of gravity induced on the brane yields the modified Friedmann equation \([10]\):

\[
\left(\frac{H}{H_0} \right)^2 = \Omega_\Lambda + \Omega_m \left(\frac{\rho}{\rho_0} \right) + \Omega_\kappa \left(\frac{a_0}{a} \right)^2 + \Omega_\lambda \left(\frac{\rho}{\rho_0} \right)^2 + \Omega_u \left(\frac{a_0}{a} \right)^4
\]

(1)

where \(a\) is the scale factor, \(H\) is the Hubble parameter, \(\rho\) is the density of the dust matter confined to the brane. The number 0 as a subscript indicates the current value of the quantities. The parameters \(\Omega_\Lambda, \Omega_m, \Omega_\kappa\) and \(\Omega_\lambda\) are the density parameters of the four-dimensional cosmological constant \(\Lambda_1(4)\), of the matter and of the spatial curvature, respectively. They have the usual definition \(\Omega_\Lambda = \Lambda_1(4)/3H_0^2\), \(\Omega_m = 8\pi G \rho_0/3H_0^2\) and \(\Omega_\kappa = -\kappa/a_0^2H_0^2\). The new terms are: the density parameter of the positive brane tension \((\lambda)\)

\[
\Omega_\lambda = \frac{4\pi G \rho_0^2}{3H_0^2\lambda}
\]

2
and the density parameter of the so-called dark radiation \(\Omega_m = m/\alpha_s^4H_0^2 \), where \(m \) is another free constant of the model.

It is important to emphasize that all terms of equation (1) are quantities that inhabit the brane, except the dark radiation, which is essentially a five-dimensional quantity and, therefore, represents a direct influence of the bulk geometry over the brane [6, 10]. The physical origin of the dark radiation can be understood by examining this picture from the perspective of the embedding formalism. It can be shown that a homogeneous and isotropic three-dimensional space, i.e., a Robertson–Walker 3-space, can be isometrically embedded into the AdS\(_5\)–Schwarzschild space [12, 13], which is a black-hole solution in five dimensions with a negative cosmological constant. From this point of view, the expansion of the observable Universe is a consequence of the motion of the brane in the static AdS\(_5\)–Schwarzschild space. Moreover, it can also be shown that the trajectory of the brane is dictated by equation (1), where the scale factor localizes the brane in the bulk and \(m \) is the mass of the bulk black hole [12, 13].

Other remarkable difference of equation (1), in comparison with the usual Friedmann equation, is that it depends on the energy density squared. The coefficient of this quadratic term is the parameter density \(\Omega_\lambda \), which is inversely proportional to the brane tension. So, the higher the brane tension the lower the effects of the extra dimension in our world. This happens because, in the RSII model, the brane tension is connected to the five-dimensional cosmological constant \(\Lambda(5) \). A high tension corresponds to a high cosmological constant and, therefore, a strong suppression of the massive graviton modes. Of course measurements of the brane tension \(\lambda \) by estimates of \(\Omega_\lambda \) would give us important information about the influence of extra dimension in the cosmic evolution.

At this point, it is interesting to highlight that \(\rho^2 \) arises too in cosmological models based on other theories as the loop quantum cosmology [14] and non-Riemannian theories [15]. Therefore, although the RSII brane model is the main motivation of our discussion, the constraints on the density parameter \(\Omega_\lambda \) we find here could also be used to put bounds on the parameters of those theories.

The modified Friedmann equation depends on the five density parameters that should be determined by empirical data. The first confrontation of RSII model with SNe Ia data was done in [16]. The authors found, by using the Perlmutter samples [17], that SNe Ia data provide weak constraints on the brane tension. The simplest case with \(m = 0 \) and with only dust matter on the brane yields \(\Omega_k = -0.9, \Omega_\lambda = 0.04, \Omega_m = 0.59 \) and \(\Omega_\Lambda = 1.27 \) as the best fit according to the \(\chi^2 \) method. Considering these numbers as an unrealistic result, the prior \(\Omega_m = 0.3 \) was added in the flat model. In this case, \(\Omega_\lambda \approx 0.037 \) at 2\(\sigma \) level, by using the Perlmutter sample A [16].

In [18], another dataset of SNe Ia was employed in order to constrain the parameters of the RSII model. The best fit, in the flat model with the prior \(\Omega_m = 0 \pm 0.1 \), is \(\Omega_k = 0.026, \Omega_m = 0.15 \) and \(\Omega_\Lambda = 0.80 \), by using data of the Riess gold samples [19]. Once again, the constraints were not so strong. For instance, \(\Omega_m \in [0, 0.62] \) at 2\(\sigma \) level. The curved model was also investigated, however, in this case, it was necessary to impose some priors on density matter (\(\Omega_m \approx 0.3 \)) in order to obtain reasonable values for the density parameters.

The contribution of the \(\rho^2 \) in cosmology was again considered in [20], this time by using a dataset of SNe Ia containing samples from [19, 21, 22]. In that paper, the authors also considered other tests like cosmic microwave background (CMB) and baryon oscillation peak (BAO) in order to constrain the density parameter of the RSII model. However, taking into account only the SNe Ia data, they found similar results. Indeed, without imposing any additional prior, the best fit obtained (\(\Omega_k = 0.34, \Omega_m = 0.0, \Omega_\lambda = 0.044 \) and \(\Omega_\Lambda = 0.646 \)) was again not very reasonable.
Therefore, based on these previous results, it seems that, as SNe Ia data do not constrain strongly the density parameter of the matter, we do not find realistic results without assuming some priors for the matter density. In this paper, we want to show that this can be avoid if we consider a joint analysis with SNe Ia data and $H(z)$ measurements. We explore flat and non-flat cosmologies. As we shall see, with only 21 data points, $H(z)$ test gives supplementary information which naturally put realistic bounds on the parameters without manipulating priors to the matter density.

For the sake of simplicity, we are going to admit hereafter that $m = 0$. Of course, this case corresponds to the simplest model, in which there is no black hole in the original bulk and, therefore, no dark radiation in the brane. Nevertheless, we have to mention that there are some papers that have focused their attention on the analysis of dark radiation in RSII branes also by using SNe Ia data, see for example [23].

In order to obtain stronger bounds for the parameters of the RSII model, we have also considered the CMB and BAO cosmological tests. However, differently from [20], our analysis is based on the CMB/BAO ratio which is expected to be weakly cosmological model dependent according to [24].

This paper is organized as follows. In section 2, we give a short description of the observational data we have used. The corresponding constraints on the cosmological parameters are investigated in section 3. This paper is ended with a summary of the main results in the conclusion section.

2. Datasets

2.1. SNe Ia sample

In our analyses we have considered the SNe Ia data sample from the Sloan digital sky survey [24, 25]. This sample is a combination of 103 SNe Ia with redshifts $0.04 \leq z \leq 0.42$, discovered during the first season of the Sloan digital sky survey-II (SDSS-II), with a comprehensive and consistent reanalysis of other datasets [19, 26, 27], resulting in a combined sample of 288 SNe Ia. These 103 data filled the redshift desert between low- and high-redshift SNe Ia of the previous SNe Ia surveys. Kessler et al (2009) used two light-curve fitters to obtain the SNe Ia distance moduli, namely, MLCS2K2 [28] and SALT2 [29]. In this paper we use the SNe Ia distance moduli obtained via MLCS2K2 calibration since this method does not have cosmological model dependence [30]. Furthermore, as is largely employed in the literature, all the results in our analysis (see next section) from SNe Ia data are derived by marginalizing the likelihood function over the nuisance parameter [19, 31].

2.2. $H(z)$ measurements

In recent years, $H(z)$ measurements of the Hubble parameter have been used to constrain cosmological parameters [32–37]. The idea underlying this approach is based on the measurement of the differential age evolution of the massive and passively evolving early type galaxies as a function of redshift, which provides a direct estimate of the Hubble parameter $H(z) = -1/(1 + z)dz/dt \approx -1/(1 + z)\Delta z/\Delta t$. It is important to stress that direct measurements of $H(z)$ at different redshifts is also possible through measurements of the radial component of baryonic acoustic oscillations [38] (for recent $H(z)$ reviews see [33]).

In this paper, we have used the 21 $H(z)$ measurements [34, 39, 40] in the redshift range $0 < z < 1.75$. The H_0 influence on our results is explored by considering two priors in analysis: $68 \pm 2.8 \text{ km s}^{-1} \text{ Mpc}^{-1}$, from a median statistics analysis of 553 measurements of
$H_0 = 35$, and $73.8 \pm 2.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$, the most recent one based on HST measurements [41].
Following [37] we have assumed that the distribution of H_0 is a Gaussian with one standard deviation width σ_{H_0} and mean \bar{H}_0, so that we can build the posterior likelihood function $L_H(p)$ that depends only on the parameters p by integrating the product of $\exp(-\chi_H^2/2)$ and the H_0 prior likelihood function $\exp[-(H_0 - \bar{H}_0)^2/(2\sigma_{H_0}^2)]$,

$$L_H(p) = \frac{1}{\sqrt{2\pi \sigma_{H_0}^2}} \int_0^\infty e^{-\chi_H^2/2} e^{-(H_0 - \bar{H}_0)^2/(2\sigma_{H_0}^2)} dH_0.$$ \hspace{1cm} \hspace{1cm} (2)

In this way, to obtain our results from $H(z)$ measurements we maximize the likelihood $L_H(p)$, or equivalently minimize $\chi_H^2(p) = -2 \ln L_H(p)$, with respect to the parameters p to find the best-fit parameter values to flat and non-flat universes (see next section).

2.3. Ratio CMB/BAO

As it is largely known, the CMB constrains from the so-called shift parameter R [42] and the BAO measurement A [43] have been commonly used to constrain non-standard models, but this approach is not completely correct since these quantities are derived by using parameters close to standard ωCDM [24, 42, 44]. In order to avoid some bias in our results we follow [24] and use the ratio CMB/BAO. This product cancels out some of the dependence on the sound horizon size at last scattering and a more model-independent constraint can be achieved in statistical analysis. In our analysis we use two ratio CMB/BAO measurements in redshifts $z = 0.2$ and 0.35, namely [24] (with one standard deviation error bars)

$$\frac{d_A(z_*)}{D_V(0.2)} = 17.55 \pm 0.65,$$ \hspace{1cm} \hspace{1cm} (3)

$$\frac{d_A(z_*)}{D_V(0.35)} = 10.10 \pm 0.38$$ \hspace{1cm} \hspace{1cm} (4)

where $d_A(z_*)$ is the comoving angular-diameter distance to recombination, z_* is the redshift of the last-scattering surface ($z_* = 1090$) and $D_V(z)$ is the so-called dilation scale. As emphasized in [24] these two points have a correlation coefficient of 0.337 [45]. In this point, we have to assume that brane models do not change the physics of the pre-recombination epochs [20].

3. Results

3.1. Flat universe

The results of our statistical analyses to flat universe are shown in figures 1(a)–(c). Figure 1(a) shows contours of 1σ and 2σ on the $\Omega_\Lambda - \Omega_M$ plane when SDSS (MLCS2K2) and $H(z)$ data points are considered separately (through this paper, the priors 68 \pm 2.8 and 73.8 \pm 2.4 correspond to blue solid and red dash-dot curves, respectively). In this case, Ω_Λ can be find by using simply $\Omega_\Lambda = 1 - \Omega_M - \Omega_\Lambda$. By considering two free parameters, we can find from the SNe Ia sample (1σ): $\Omega_M = 0.37 \pm 0.11$ and $\Omega_\Lambda = 0.0 + 0.022 (\chi^2 = 237.84)$. On the other hand, from $H(z)$ data points we find: $\Omega_M = 0.32 \pm 0.1$ and $\Omega_\Lambda = 0.0 + 0.006 (\chi^2 = 15.87)$, and $\Omega_M = 0.24 \pm 0.12$ and $\Omega_\Lambda = 0.0 + 0.01 (\chi^2 = 16.9)$ when the priors 68 \pm 2.8 km s$^{-1}$ Mpc$^{-1}$ and 73.8 \pm 2.4 km s$^{-1}$ Mpc$^{-1}$ are used on H_0, respectively. Note that no significant conflict between the results from $H(z)$ priors is found and the bounds on Ω_Λ from 21 $H(z)$ data points are tighter than ones from 288 SNe Ia. Moreover, the contours from SNe Ia and $H(z)$ analyses are almost orthogonal each other and a joint analysis can be used to impose tighter limits on the space parameters.
Figure 1. Confidence contours on the plane $\Omega_k - \Omega_M$ to flat Universe. (a) Contours are drawn to 1σ and 2σ. The black dots correspond to bounds from SNe Ia. Through this paper, the $H(z)$ priors 68 ± 2.8 and 73.8 ± 2.4 correspond to blue solid and red dash-dot curves, respectively. (b) shows the contours to 1σ and 2σ from our joint analysis. (c) displays the likelihoods to Ω_k.

Figure 2. Confidence contours on the plane $\Omega_k - \Omega_M$ to flat universe. (a) Contours are drawn to 1σ and 2σ. The black dots correspond to bounds from SNe Ia. Through this paper, the $H(z)$ priors 68 ± 2.8 and 73.8 ± 2.4 correspond to blue solid and red dash-dot curves, respectively. (b) shows the contours to 1σ and 2σ from our joint analysis. (c) displays the likelihoods to Ω_k.

Figure 1(b) shows our results from a joint analysis. We find $\Omega_M = 0.37 \pm 0.05$ and $\Omega_k = 0.0 \pm 0.0033$ ($\chi^2 = 255.45$) and $\Omega_M = 0.33 \pm 0.04$ and $\Omega_k = 0.0 \pm 0.0031$ ($\chi^2 = 260.45$) by using SNe Ia + $H(z)$ with the priors 68 ± 2.8 km s$^{-1}$ Mpc$^{-1}$ and 73.8 ± 2.4 km s$^{-1}$ Mpc$^{-1}$ on H_0, respectively.

Panel 1(c) displays the likelihood for the Ω_k parameter, marginalizing on Ω_M. In this case we obtain $\Omega_k = 0.0 \pm 0.0018$ to both priors.

3.2. Non-flat universe

In this section, we allow deviations from flatness to prove the robustness of the previous Ω_k constraints using SNe Ia and $H(z)$ data points. The results of our statistical analyses are shown in figures 2(a)–(c) (here we marginalize over Ω_k). Figure 2(a) show contours of 1σ and 2σ on the $\Omega_k - \Omega_M$ plane when SDSS (MLCS2K2) and $H(z)$ data points are considered separately. In this case we cannot constrain Ω_M and Ω_k simultaneously and, for instance: $\Omega_M = 0.50$ and $\Omega_k = 0.005$, and $\Omega_M = 0.20$ and $\Omega_k = 0.035$ are permitted with high degree of confidence by using the SNe Ia sample. Furthermore, $\Omega_k = 0$ is excluded at 2σ to $\Omega_M = 0.1$ and it is permitted at 1σ to $\Omega_M = 0.3$. Similar conclusion can be done to results from $H(z)$. According
Figure 3. Confidence contours on the plane $\Omega_k - \Omega_M$ to non-flat universe by using SNe Ia + $H(z)$ + CMB/BAO ratio. Figure 2(a) contours are drawn to 1σ and 2σ. H_0 prior corresponds to 68 ± 2.8 km s$^{-1}$ Mpc$^{-1}$. Figure 2(b) contours are drawn to 1σ and 2σ. H_0 prior corresponds to 73.8 ± 2.4 km s$^{-1}$ Mpc$^{-1}$. (c) displays the likelihood to Ω_Λ.

to these comments a joint analysis is necessary in order to break the degenerescency on the $(\Omega_\Lambda, \Omega_M)$ plane.

Figure 2(b) displays the results by using a joint analysis involving SNe Ia and $H(z)$ data points. We find (1σ): $\Omega_M = 0.38 \pm 0.09$, $\Omega_k = 0.0 + 0.0012 \left(\chi^2 = 255.33 \right)$ and $\Omega_M = 0.41 \pm 0.08$, $\Omega_k = 0.0 + 0.0001 \left(\chi^2 = 260.21 \right)$ with the priors 68 ± 2.8 km s$^{-1}$ Mpc$^{-1}$ and 73.8 ± 2.4 km s$^{-1}$ Mpc$^{-1}$ on H_0, respectively. On the other hand, by marginalizing on Ω_M we find: $\Omega_\Lambda = 0.65 \pm 0.17$ and $\Omega_\Lambda = 0.80 \pm 0.18$, respectively.

Panel 1(c) displays the likelihood for the Ω_k parameter, marginalizing on Ω_M and Ω_Λ. In this case we obtain (1σ) $\Omega_k = 0.0 + 0.0018$ and $\Omega_k = 0.0 + 0.0006$ to 68 ± 2.8 km s$^{-1}$ Mpc$^{-1}$ and 73.8 ± 2.4 km s$^{-1}$ Mpc$^{-1}$ on H_0, respectively. Therefore, the limits on Ω_k are equivalent to the flat case and we see that the geometry has a negligible influence on estimates for this combination of data.

Finally, in order to obtain tighter limits on space parameters we add in our analyses two points of the so-called ratio CMB/BAO. In figures 3(a)–(c) we show our results. We find (at 1σ): $\Omega_M = 0.28 \pm 0.03$, $\Omega_k = 0.0 + 0.0001 \left(\chi^2 = 262.88 \right)$ and $\Omega_M = 0.28 \pm 0.03$, $\Omega_k = 0.0 + 0.0006 \left(\chi^2 = 264.21 \right)$ with the priors 68 ± 2.8 and 73.8 ± 2.4, respectively. By marginalizing on Ω_M we find: $\Omega_\Lambda = 0.65 \pm 0.10$ and $\Omega_\Lambda = 0.68 \pm 0.10$ for each case, respectively. It is very important to stress that the limits derived by using SNe Ia + $H(z)$ + CMB/BAO are more cosmological model independent than previous analyses where the A and R quantities were used [20]. The likelihood curves are plotted in figure 3(c). We obtain $\Omega_k = 0.0 + 0.00004$ and $\Omega_k = 0.0 + 0.0002$ (1σ) to 68 ± 2.8 and 73.8 ± 2.4 priors, respectively.

4. Conclusions

In this paper, we have studied observational bounds on cosmologies based on the flat and non-flat RSII brane models. Previous papers showed that SNe Ia data do not provide strong constraints on the parameters of the RSII model. Moreover, the best fits did not give realistic values unless some priors to the matter and curvature densities were assumed. However, as we have shown here, when we consider the joint analysis of 288 SNe Ia (SDSS by using the MLCS2K2 method) and 21 $H(z)$ measurements we obtain consistent results with other observations [46] for matter density without imposing such priors. Moreover, the constraints
on Ω_Λ are weakly dependent on the curvature parameter and H_0 priors (68.28 ± 2.8 and 73.82 ± 2.4 km s$^{-1}$ Mpc$^{-1}$), we have obtained at 1σ: $\Omega_\Lambda \approx 0.0 + 0.002$ to flat and non-flat Universes (see figures 1(c) and 2(c)). It is important to emphasize that in the near future it will be possible to determine around 1000 $H(z)$ values of the Hubble parameter at a 15% accuracy level [32, 47]. This fact shows that upcoming $H(z)$ measurements plus SNe Ia may become a useful tool to impose constraints on Ω_Λ.

We also have added the so-called CMB/BAO ratio in our analysis in order to obtain tighter limits on Ω_Λ. As is known, this ratio is more model independent than analyses done by using the A and R quantities which have parameters close to standard wCDM in their derivations. The joint analysis (SNe Ia+$H(z)$+CMB/BAO) gives the following values at 1σ: $\Omega_\Lambda \approx 0.0 + 0.002$ to flat and non-flat Universes (see figures 1(c) and 2(c)). It is important to emphasize that in the near future it will be possible to determine around 1000 $H(z)$ values of the Hubble parameter at a 15% accuracy level [32, 47].

At this point it is interesting to compare the present results with other tests. Since in the RS braneworld models the modified Friedman equation involves a $O(\rho_\Lambda)$ correction term, the bounds on the tension found here are much weaker than the lower limit put by the analysis of BBN $\lambda > [1 \text{ MeV}]^4$ [6, 48], for instance. The reason is very simple, the present energy density of universe is extremely small and the contribution of such term becomes more important at early times, and hence observations concerning BBN can put better constraints on λ. Following this reasoning, one might expect that the analysis of the formation of large scale structure can constitute another way to obtain independent bounds for the brane tension. The equations that describes the evolution of the cosmological perturbations in the brane are very complex in the RSII model [6, 49–61]. In comparison with the GR equations, there are two major differences: the presence of $O(\rho_\Lambda)$ correction terms and the coupling between the perturbations in the brane and the fluctuations of the five-dimensional bulk geometry (the so-called KK-modes). As the brane is embedded in the bulk, the fluctuations of the bulk geometry influence the brane geometry back. This means that the KK-modes act as another source for the perturbation in the brane [6, 49–62]. Therefore, perturbations in the brane cannot be studied separately from the 5D-perturbations in the bulk, except in some special cases [49, 61, 63, 64]. In order to deal with such a complex differential system usually one resorts to numerical analysis. Some results show that scalar perturbations (as the density perturbation) with a wavenumber lower than a critical value k_c are amplified in comparison with the GR values, in the radiation era [65]. The critical value that is defined as $k_c = H_0 a_c$ corresponds to the critical mode that enters the horizon at the critical epoch which is established by condition $H_c \ell = 1$. As k_c depends on ℓ, which is related to the brane tension ($\lambda = \frac{3\pi^2 G}{8 \ell^2}$), in principle, we can use dataset about the large scale structure to constrain the brane tension.

Finally, we have to mention that the most stronger bound obtained so far comes from laboratory tests, which put the following lower limit to the brane tension: $\lambda > [10 \text{ TeV}]^4$[6–9]. In comparison with these results, we see that ours are much weaker. However, we should have in mind that our analysis is based on different physical phenomena and on physical processes that happened at a different cosmological epoch as compared to BBN and to those processes involved in the laboratory tests. Thus, we may say that the method proposed here constitutes an independent test to check the consistency of the model at large scale. Moreover, in the near future, as more and larger datasets with smaller statistical and systematic uncertainties become available, the present method will put tighter limits on the value of the brane tension.

Acknowledgment

RFLH thanks INCT-A for the grants under which this work was carried out.
References

[1] Arkani-Hamed N, Dimopoulos S and Dvali G 1998 Phys. Lett. B 429 263
[2] Antoniadis I, Arkani-Hamed N, Dimopoulos S and Dvali G 1998 Phys. Lett. B 436 257
[3] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 3370
[4] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 4690
[5] Overduin J M and Wesson P S 1997 Phys. Rep. 283 303
[6] Maartens R and Koyama Kazuya 2010 Living Rev. Rel. 13.5
[7] Hoyle C D, Schmidt U, Heckel Blayne R, Adelberger E G, Gundlach J H, Kapner D J and Swanson H E 2001 Phys. Rev. Lett. 86 1418–21
[8] Hoyle C D, Kapner D J, Heckel Blayne R, Adelberger E G, Gundlach J H, Schmidt U and Swanson H E 2004 Phys. Rev. D 70 042004
[9] Kapner D J, Cook T S, Adelberger E G, Gundlach J H, Hoyle C D and Swanson H E 2004 Phys. Rev. Lett. 98 021101
[10] Binétruy P, Deffayet C, Ellwanger U and Langlois D 2000 Phys. Lett. B 477 285–91
[11] Binétruy P, Deffayet C and Langlois D 2001 Nucl. Phys. B 615 219–36
[12] Mukohyama S, Shiomizu T and Maeda K 2000 Phys. Rev. D 62 024028
[13] Bowcock P, Charmousis C and Gregory R 2000 Class. Quantum Grav. 17 4745–63
[14] Singh P 2006 Phys. Rev. D 73 063508
[15] Puetzfeld D and Chen X 2004 Class. Quantum Grav. 21 2703–22
[16] Godlowski W and Szydlowski M 2004 Gen. Rel. Grav. 36 767–79
[17] Dabrowski M P, Godlowski W and Szydlowski M 2004 Int. J. Mod. Phys. D 13 1669–702

[18] Perlmutter S et al 1999 Astrophys. J. 517 565–86
[19] Fay S 2006 Astron. Astrophys. 452 781–94
[20] Riess A G et al 2004 Astrophys. J. 607 665–87
[21] Szydlowski M, Godlowski W and Stachowiak T 2008 Phys. Rev. D 77 043530
[22] Daly R A and Djorgovski S G 2004 Astrophys. J. 612 652–9
[23] Astier P 2006 Astron. Astrophys. 447 31–48
[24] Sollerman J et al 2009 Astrophys. J. 703 1374
[25] Kessler R et al 2004 Astrophys. J. 517 565–86
[26] Miknaitis G et al 2007 Phys. Rev. D 77 043530
[27] Jha S, Riess A G and Kirshner R P 2007 Astrophys. J. 659 122
[28] Guy J et al 2007 Astron. Astrophys. 466 11
[29] Bengochea G R 2011 Phys. Lett. B 696 5
[30] Seikel M, Yahya S, Maartens R and Clarkson C 2012 Phys. Rev. D 86 083001
[31] Farooq O, Mania D and Ratra B 2013 Astrophys. J. 764 138
[32] Benitez N et al 2009 Astrophys. J. 691 241
[33] Gaztanaga E, Cabrera C and Hui L 2009 Mon. Not. R. Astron. Soc. 399 1663
[34] Morecko M et al 2012 J. Cosmol. Astropart. Phys. JCAP07(2012)053
[35] Eisenstein D J et al 2005 Astrophys. J. 633 560
[36] Bratt J D, Gault A C, Scherrer R J and Walker T P 2002 Phys. Lett. B 546 19
[49] Langlois D, Maartens R, Sasaki M and Wands D 2001 Phys. Rev. D 63 084009
[50] Gordon C and Maartens R 2001 Density perturbations in the brane-world Phys. Rev. D 63 044022
[51] Sahni V, Sumi M and Souradeep T 2002 Phys. Rev. D 65 023518
[52] Mukohyama S 2000 Phys. Rev. D 62 084015
[53] Kodama H, Ishibashi A and Seto O 2000 Phys. Rev. D 62 064022
[54] van de Bruck C, Dorca M, Brandenberger R H and Lukas A 2000 Phys. Rev. D 62 123515
[55] Koyama K and Soda J 2000 Phys. Rev. D 62 123502
[56] Langlois D 2001 Phys. Rev. Lett. 86 2212–5
[57] Deruelle N, Dolezel T and Katz J 2001 Phys. Rev. D 63 083513
[58] Dorca M and van de Bruck C 2001 Nucl. Phys. B 605 215–33
[59] Neronov A and Sachs J 2001 Phys. Lett. B 513 173–8
[60] Bridgman H A, Malik K A and Wands D 2002 Phys. Rev. D 65 043502
[61] Leong B, Dunsby P K S, Challinor A D and Lasenby A N 2002 Phys. Rev. D 65 104012
[62] Mukohyama S 2001 Phys. Rev. D 64 064006
[63] Barrow J D and Maartens R 2002 Phys. Lett. B 532 153–8
[64] Leong B, Challinor A D, Maartens R and Lasenby A N 2002 Phys. Rev. D 66 104010
[65] Cardoso A, Hiramatsu T, Koyama K and Seahra S S 2007 J. Cosmol. Astropart. Phys. JCAP07(2007)008