Brainstem motor neuron dysmorphology and excitatory/inhibitory imbalance in an animal model of autism

Authors: H. Alhelo, R. J. Kulesza

DOI: 10.5603/FM.a2021.0098

Article type: Original article

Submitted: 2020-11-06

Accepted: 2020-12-01

Published online: 2021-09-28

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
Brainstem motor neuron dysmorphology and excitatory/inhibitory imbalance in an animal model of autism

H. Alhelo, R.J. Kulesza Jr, Oropharyngeal motor neurons in animal model of ASD

H. Alhelo, R.J. Kulesza Jr
Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States

Address for correspondence: R.J. Kulesza Jr., PhD, Department of Anatomy, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Blvd, Erie, PA 16504, 814-866-8423, United States, e-mail: rkulesza@lecom.edu

ABSTRACT
Autism spectrum disorder (ASD) is a developmental disorder associated with in utero exposure to the antiepileptic valproic acid (VPA) in humans, and similar exposure serves as a validated animal model. Animals exposed to VPA in utero have a number of structural, function and behavioral deficits associated with ASD. Furthermore, VPA-exposed animals have shorter body lengths, lower body and brain weights. This difference in body weight may result from impaired caloric intake due to impaired oropharyngeal function. Specifically, it is hypothesized that in utero VPA exposure results in fewer lower motor neurons associated with feeding behaviors, that surviving neurons will exhibit dysmorphology and altered balance of excitatory and inhibitory inputs. Further, it is hypothesized that VPA exposure will result in altered oropharyngeal musculature that will impact skull morphology. These hypotheses were investigated using quantitative morphometrics and immunofluorescence. Results support dysmorphology and excitatory/inhibitory imbalance and these alterations may contribute to dysphagia and poor weight gain in VPA-exposed animals.

Key words: trigeminal, vagus, swallowing

INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by impairment in communicative, behavioral, and social domains [1, 2]. ASD is diagnosed at a rate of 1 in 5 children in the United States and 1 in 160 children globally [3, 4, 5, 6]. Furthermore, there is a strong predilection for males as ASD affects approximately 4 males for every 1 female [7, 8].

Valproic acid (VPA) is an antiepileptic drug prescribed for seizures, migraines and bipolar disorder, but its use is advised against during pregnancy because of elevated risk of an ASD diagnosis in offspring [9, 10, 11]. VPA exposure in humans and animal models is known to have widespread impact on the offspring with reported changes in the nervous, cardiovascular and skeletal systems [12, 13]. Specifically, \textit{in utero} VPA exposure is associated with neural tube defects, facial deformities, delayed skeletal ossification and ASD. Consistent with this effect on the nervous system in humans, \textit{in utero} VPA exposure is a validated animal model of ASD [14, 15]. In fact, VPA-exposed animals have fewer neurons in their auditory brainstem, hyperactive responses to pure tone stimuli and reduced axonal projections to the midbrain and thalamus [16, 17, 18, 19, 20, 21]. VPA-exposed animals have evidence of dysfunction within the auditory cortex [22, 23, 24], they are ataxic and have reduced expression of the calcium binding protein calbindin throughout the brainstem and cerebellum [18, 19, 25]. Consistent with use as a model of ASD, VPA-exposed animals demonstrate a number of ASD-related behavioral disturbances [26, 27]. Furthermore, VPA-exposed animals demonstrate abnormal body size and weight. Specifically, before weaning, VPA-exposed rats weigh the same as control animals. However, at weaning (postnatal day 21), VPA-exposed animals weigh significantly less, and this difference persists until at least P50 [19, 25]. At P50, VPA-exposed animals have smaller brain weights [19]. Based on these observations, it is hypothesized that changes in body and brain weight after VPA exposure are attributable to alterations in central control of oropharyngeal musculature. This hypothesis is consistent with previous observations of loss of brainstem lower motor neurons controlling oropharyngeal musculature [28]. This hypothesis was investigated by studying the number and morphology of brainstem LMN in the trigeminal motor nucleus (TMN), the facial nucleus (FN), the nucleus ambiguous (NA) and the hypoglossal nucleus (HGN). Immunofluorescence was utilized to study the balance of excitatory and inhibitory input to these neurons and osteological measurements were obtained from skull and jaw preparations to study bony features and landmarks.
MATERIALS AND METHODS

Animals

All animal handling procedures were reviewed and approved by the Lake Erie College of Osteopathic Medicine Institutional Animal Care and Use Committee (protocol 18-04). Sprague-Dawley rats were bred in a controlled laboratory environment, with free access to food and water under a twelve-hour light/dark cycle. Animals underwent timed breeding and recovery of a vaginal plug was designated as embryonic day 0 (E0). On the morning of E6, the pregnant females were placed in an exposure cage for twenty minutes to acclimate to the new environment. On the evenings of E6 to E11, chow was removed from the animal’s home cage. On the mornings (08:00) of E7-12 animals were fed a meal of 3.1 g of peanut butter. On E10 and E12, animals in the VPA exposure group were fed 3.1 g of peanut butter mixed with 800 mg/kg VPA. After the animal finished the meal, they were placed back in their home cage with chow. This dosage and exposure paradigm for VPA was chosen to more closely model oral-administration in humans (cf. intraperitoneal injection; 28). This exposure results in consistent litter sizes (10-14 pups; 4-6 male pups) with only occasional litter resorption (16, 18, 19, 20, 21, 25). VPA-exposed and control dams were permitted to deliver pups without interference. There was no notable difference in the size of the litters or the male/female ratio between control and VPA-exposed dams (litters ranged between 10 and 14 pups with 3-5 males). One litter from a VPA-exposed mother appeared to be resorbed at some point after the E12 exposure. On P21 animals were weaned and only male pups were included in the study as gender-specific effects of VPA have been reported [29]. Previous work has established that VPA-exposed animals have poor weight gain after P21, lower body and brain weights at P28 and P50 (25, 18, 19). Food and water ingestion was not recorded for the mothers or their offspring.

Perfusions and brainstem dissection and sectioning

On P28, male rats were over-dosed with isoflurane (4% in O₂ at 1.2 liters/min) and perfused through the ascending aorta with normal saline followed by 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.2; PFA-PB). The brain was dissected from the skull, trimmed to a block including the brainstem, the right side was marked with a register pin and postfixed in 4% PFA-PB. Brainstems were sectioned on a freezing stage microtome at a thickness of 50 µm.
Sections were collected in 3 wells. Sections in the first well were used for Giemsa staining (below). Sections in the second well were saved for immunolabeling. Sections from the third well were archived in fixative.

Giemsa staining and morphology

Sections from well one were collected in rostro-caudal order and mounted on slides from alcohol gelatin on glass slides. Sections were airdried overnight, and then stained for Nissl substance using Giemsa and sealed under coverslips with Permount (Thermo Fisher Scientific). Giemsa-stained sections were examined using a light microscope under low magnification to locate the TMN, FN, NA, and HGN, and determine their caudal to rostral boundaries on both right and left sides of the brainstem. Cell bodies were traced using a 60x objective and analyzed using FIJI [30]. Cell body shape was classified using objective morphological criteria. Estimates of neuronal number were performed in 8 control and 8 VPA-exposed animals as previously described (18, 19, 20).

Immunohistochemistry

Free-floating sections from well two were collected from 4 control and 4 VPA-exposed animals and washed in PB three times then blocked in a solution of PB, 5% Triton X and normal horse serum (NHS). The sections were then transferred to the primary solution composed of PB and NHS, along with rabbit anti-SLC32A1 (VGAT) and mouse anti-VGLUT antibodies that target VGAT and VGLUT respectively, and incubated on a shaker at room temperature overnight. The sections were washed in PB three times then transferred to the secondary solution containing goat anti-rabbit 594 and Biotin horse anti-mouse antibodies for twelve hours, followed by streptavidin 488 in PB overnight. The sections were washed three time in PB, incubated for 20 min in a 1:100 solution of Neurotrace Blue (NTB) 435 in PB, rinsed in PB, mounted on glass slides and sealed under coverslips with Entellan (Sigma-Aldrich). Images of the nuclei were collected from a Leica TCS SP5 confocal microscope. At each region of interest, three images were collected: one of VGLUT labelling, one of VGAT and one of NTB. These images were pseudocolored and overlaid in FIJI. In these composite images the number of perisomatic VGAT and VGLUT immunoreactive (IR) puncta were counted.
Skull dissection

For study of skull specimens, P28 rats were anesthetized using isoflurane as described above and euthanized by decapitation. Soft tissue was carefully dissected away from the skull and the skull was placed in boiling water until thoroughly cleaned of tissue. The skull and both sides of the mandible were distinctly marked with matching identifiers. The cranium and mandible weights and dimensions were measured and recorded using a pair of digital calipers and set criteria [31] in 3 control and 3 VPA-exposed animals. A total of 18 cranial dimensions were measured in three different parameters, with measurements 1 to 7 quantifying the rostral to caudal lengths, 11 to 17 the lateral dimensions, and 8 to 10 in addition to 18 quantifying the oral cavity dimensions (Figs. 7 F and G).

Statistical analysis

All statistical tested were done using GraphPad Prism 8. Data sets were tested against the normal distribution using the D’Agostino & Pearson normality test. If the normal distribution was met, a one-sided unpaired t-test with Welch’s correction was used to assess the differences between the means of VPA-exposed and control rats. A nonparametric Mann-Whitney U test was used under non-normally distributed data conditions. The χ^2 test was used to assess difference of the distribution in the frequency of stellate, round, and fusiform neuron cell body shapes between the VPA-exposed and control animals. The difference in VGLUT2 and VGAT terminal densities were assessed between the VPA-exposed and control animals using the two-tailed unpaired t-test with Welch’s correction. Under the condition of non-normally distributed data, the nonparametric two-tailed Mann-Whitney U test was used. All means were presented as Means ± SD, and p<0.05 indicated statistical significance.

RESULTS

This study focused on four motor nuclei in the brainstem, the trigeminal motor nucleus (TMN), facial nucleus (FN), nucleus ambiguous (NA) and the hypoglossal nucleus (HGN). All four of these nuclei were identifiable in control and VPA-exposed animals and presented no macroscopic structural abnormalities (figure 1). There were no differences in the total number of neurons between control and VPA-exposed animals, overall or between right and left sides of the brain (table 1).
For the TMN, VPA-exposed animals had significantly smaller mean cell body areas compared to controls in the TMN (figure 2A, B; 3A; table 2). When stratified by cell shape, the stellate and round neurons also showed significantly lower mean cell body areas in VPA-exposed animals. There was no significant difference of the cell type distribution in the TMN.

For the FN, VPA animals had significantly smaller mean cell body areas compared to controls (figure 2C, D; 3B; table 2). When stratified by shape, stellate neurons were significantly smaller in VPA-exposed animals (figure 2C, D, 3B; table 2). However, there was no difference for round or fusiform neurons. There was a significant difference in the distribution of these morphologies. In control animals, 80% of FN neurons were stellate and 20% round, but in VPA-exposed animals 83% were stellate, 15% round and 2% fusiform. This difference in proportions was significant.

In the NA, VPA-exposed animals had significantly smaller neuronal cell bodies (figure 2E, F; 3C; table 2). This change in cell body size was limited to the stellate neurons; there was no difference in size between round or fusiform neurons. There was no difference in the distribution of neuronal morphologies in the NA.

In the HGN, VPA-exposed animals had significantly smaller neurons (figure 2G-H; 3D; table 2). This difference in cell body size was restricted to stellate neurons. In control animals, the HGN was composed of 67% stellate, 26% round and 7% fusiform. In VPA-exposed animals the HGN was composed of 65% stellate, 31% round and 4% fusiform and this difference was significant.

VGAT and VGLUT Puncta

In the FN, there was no difference in the density of VGLUT or VGAT-immunoreactive puncta between control and VPA-exposed animals (figure 6B; table 3). In the TMN, there was no difference in the density of VGAT-IR puncta. However, there were significantly fewer VGLUT-IR puncta (figure 5A, B, figure 6A, table 3). In the NA, there were significantly fewer VGAT-IR puncta (figure 4A, B, figure 6C), but there was no difference in the number of VGLUT-IR puncta. In the HGN, there were significantly fewer VGAT-IR puncta (figure 4C, D) but significantly more VGLUT-IR puncta (figure 5C, D, figure 6D, table 3).

Skull morphology
The skulls and mandibles from VPA-exposed animals, on average weighed more than control animals. However, the differences were not significant (figure 7). Measurements of the osteological landmarks shown in figure 7F-H revealed heavier skulls and mandibles in VPA-exposed animals. VPA-exposed animals had longer rostro-caudal skull and mandible lengths on average (figure 7D, measurement 1; figure 7E, measurement 1). However, none of these differences reached statistical significance.

DISCUSSION

In utero exposure to VPA results in significantly lower body and brain weights after P14 and this might be attributable to oropharyngeal dysfunction. Herein evidence is provided for dysmorphology of oropharyngeal LMNs, excitatory/inhibitory (E/I) imbalance, and possible cranial dysmorphology in animals exposed to VPA. Together, these results support oropharyngeal dysfunction in VPA-exposed animals.

VPA-induced loss of neurons has been found at multiple levels of the auditory brainstem and thalamus [16, 18, 19, 21]. However, there was difference in the number of brainstem LMNs examined in this study. It should be noted that the neuronal estimates provided in this study are consistent with previous reports [32]. The reason VPA exposure does not impact the number of oropharyngeal LMNs is unclear, but it appears that LMNs exhibit some degree of developmental protection. In fact, LMNs are able to reinnervate targets after neonatal injury [33, 34]. Together, these studies provide evidence that brainstem LMNs are less susceptible or able to overcome *in utero* injury.

Across all oropharyngeal LMNs examined in this study, there were significantly smaller neurons and stellate neurons were most severely affected. In the FN and HGN, there were significant changes in the proportions of the different neuronal morphologies. These changes in cell body size and shape are most likely attributable to smaller, less complex dendritic arbors and/or shorter, less extensive axonal projections. Such changes in the dendritic branching could result in significantly reduced inputs to LMNs. However, the size and complexity of LMN dendritic arbors were not examined in the current study.

The number of perisomatic VGLUT and VGAT puncta on oropharyngeal LMNs was also examined as a measure of glutamatergic and GABAergic inputs. The results demonstrate significantly different patterns of E/I inputs to the TMN, NA and HGN. In the TMN, there were
fewer VGLUT terminals, consistent with reduced glutamatergic input. The major excitatory input to TMNs are from the mesencephalic nucleus [35]. In the NA there was reduced VGAT puncta. The majority of inputs to the NA arise from brainstem swallowing centers [36]. In the HGN, there was fewer VGAT puncta but more VGLUT puncta. This finding suggests E/I balance may lead to a hyperexcitable environment in the HGN. The sources of these excitatory inputs are the mesencephalic nucleus [37] and reticular formation [38]. The GABAergic projections are also mainly from the reticular formation [38]. A possible limitation of this is that VGLUT and VGAT are surrogates for excitatory and inhibitory synapses and they are not necessarily linked to synapses. Nonetheless, these markers are used to quantify the balance of excitatory and inhibitory inputs.

The impact of VPA on E/I balance on oropharyngeal LMNs does not appear to be uniform across nuclei or systems. In the auditory brainstem, in utero VPA exposure significantly reduces GABAergic neurons and their ascending projections and results in hyperactivity in the midbrain [19, 20, 21]. Regardless, our results support E/I imbalance to brainstem LMNs controlling chewing and swallowing behaviors. How in utero VPA exposure impacts the number of glutamatergic and/or GABAergic synapses at P28 is unclear. However, such lasting effects of VPA on E/I imbalance are most likely due to its role as a histone deacetylase inhibitor (HDAC) [39, 40]. The changes in E/I balance in the NA and HGN are consistent with increased excitatory input to these neurons. This imbalance might lead to increased muscle tone or spasticity of tongue, pharyngeal, laryngeal and esophageal muscles and impaired swallowing, reduced caloric intake and poor weight gain. Furthermore, elevated glutamate may result in an excitotoxic environment further impacting LMN function [32]. HDAC inhibition is known to impact proliferation and differentiation of brainstem neurons [41]. Through this mechanism, VPA could impact growth and development of LMN dendritic trees and axonal arbors. In comparing the macroscopic structural differences of the mandibles and cranium of the ASD-rat models to their control counterparts, we saw that the VPA-exposed rats trended towards longer rostro-caudal lengths. However, these differences were not significant. This is counter to the hypothesis that VPA-exposed rats have smaller skulls than the controls. However, examination of muscle bulk, size and innervation may provide further information on control of oropharyngeal function in VPA-exposed animals. Additionally, study of behavioral metrics such as eating and swallowing behaviors may provide further clarification on how these circuits are impacted.
CONCLUSIONS

In conclusion, this study provides evidence that prenatal exposure to VPA does impact the orofacial innervation which leads to possible weaker oropharyngeal musculature, and consequently may elicit oropharyngeal dysfunctions in terms of mastication and dysphagia. The E/I imbalance may also impede the ability to feed through overexcitation leading to spasticity of the muscles, or excitotoxicity in the LMNs leading to oropharyngeal muscle weakness. Characterization of oropharyngeal dysfunction in animal models will permit a better understanding of feeding disorders in human subjects with ASD and this will lead to development of interventions and therapies to improve quality of life [42].

REFERENCES

1. Allen DA. Autistic spectrum disorders: clinical presentation in preschool children. J Child Neurol. 1988 Suppl: S48-56.
2. APA.org. [Internet]. What Is Autism Spectrum Disorder? c2018. Available from: https://www.psychiatry.org/patients-families/autism/what-is-autism-spectrum-disorder.
3. Baxter AJ, Brugh TA, Erskine HE, Scheurer RH, Vos T, Scott JG. The epidemiology and global burden of autism spectrum disorders. Psychol Med. 2015 Feb;45(3):601-13.
4. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill Summ. 2018 Apr 27;67(6):1-23.
5. WHO.int. [Internet]. Autism spectrum disorders; c2018. [cited 22 May 2019]. Available from: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders
6. CDC.gov. [Internet]. (2018, 2018-04-26). Data and Statistics | Autism Spectrum Disorder (ASD) | NCBDDD | CDC; c2018. Available from https://www.cdc.gov/ncbddd/autism/data.html.
7. Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res 2009 Jun;65(6):591-8.
8. Werling DM, Geschwind DH. Sex differences in autism spectrum disorders. Curr Opin Neurol. 2013 Apr;26(2):146-53.
9. Moore SJ, Turnpenny P, Quinn A, Glover S, Lloyd DJ, Montgomery T, et al. A clinical study of 57 children with fetal anticonvulsant syndromes. J Med Genet. 2000 Jul;37(7):489-97.
10. Williams G, King J, Cunningham M, Stephan M, Kerr B, Hersh JH. Fetal valproate syndrome and autism: additional evidence of an association. Dev Med Child Neurol. 2001 Mar;43(3):202-6.
11. Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013 Apr 24;309(16):1696-703.
12. Burdan F, Rozylo-Kalinowska I, Katarzyna Rozylko T, Chahoud I. A new rapid radiological procedure for routine teratological use in bone ossification assessment: a supplement for staining methods. Teratology. 2002 Dec;66(6):315-25.
13. Ornoy A. Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod Toxicol. 2009 Jul;28(1):1-10.
14. Binkerd PE, Rowland JM, Nau H, Hendrickx AG. Evaluation of valproic acid (VPA) developmental toxicity and pharmacokinetics in Sprague-Dawley rats. Fundam Appl Toxicol. 1988 Oct;11(3):485-93.
15. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci. Apr-May 2005;23(2-3):183-7.
16. Lukose R, Schmidt E, Wolski TP, Murawski NJ, Kulesza RJ. Malformation of the superior olivary complex in an animal model of autism. Brain Res. 2011 Jun 29;1398:102-12.

17. Dubiel A, Kulesza RJ. Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem. Neuroscience. 2016 Jun 2;324:511-23.

18. Zimmerman R, Patel R, Smith A, Pasos J, Kulesza RJ. Repeated Prenatal Exposure to Valproic Acid Results in Auditory Brainstem Hypoplasia and Reduced Calcium Binding Protein Immunolabeling. Neuroscience. 2018 May 1;377:53-68.

19. Mansour Y, Mangold S, Chosky D, Kulesza RJ. Auditory Midbrain Hypoplasia and Dysmorphology after Prenatal Valproic Acid Exposure. Neuroscience. 2019 Jan 1;396:79-93.

20. Zimmerman R, Smith A, Fech T, Mansour Y, Kulesza RJ. In utero exposure to valproic acid disrupts ascending projections to the central nucleus of the inferior colliculus from the auditory brainstem. Exp Brain Res. 2020 Mar;238(3):551-563.

21. Mansour Y, Ahmed S, Kulesza R. Abnormal morphology and subcortical projections to the medial geniculate in an animal of autism. Experimental Brain Research. 2020. Nov 16.

22. Gandal MJ, Edgar JC, Ehrlichman RS, Mehta M, Roberts TP, Siegel SJ. Validating γ oscillations and delayed auditory responses as translational biomarkers of autism. Biol Psychiatry. 2010 Dec 15;68(12):1100-6.

23. Engineer CT, Centanni TM, Im KW, Kilgard MP. Speech sound discrimination training improves auditory cortex responses in a rat model of autism. Front Syst Neurosci. 2014 Aug;5;8:137.

24. Anomal RF, de Villers-Sidani E, Brandão JA, Diniz R, Costa MR, Romcy-Pereira RN. Impaired Processing in the Primary Auditory Cortex of an Animal Model of Autism. Front Syst Neurosci. 2015 Nov 16;9:158.

25. Main SL, R J Kulesza. Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia. Neuroscience. 2017 Jan 6;340:34-47.

26. Vorhees CV. Teratogenicity and developmental toxicity of valproic acid in rats. Teratology. 1987 Apr;35(2):195-202.

27. Mychasiuk R, Richards S, Nakahashi A, Kolb B, Gibb R. Effects of rat prenatal exposure to valproic acid on behaviour and neuro-anatomy. Dev Neurosci. 2012;34(2-3):268-76.

28. Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol. 1996 Jun 24;370(2):247-61. PMID: 8808733

29. Schneider T, Roman A, Basta-Kaim A, Kubera M, Budziszewska B, Schneider K, et al. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology. 2008 Jul;33(6):728-40.

30. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017 Nov 29;18(1):529.

31. Driesch Avd. A guide to the measurement of animal bones from archaeological sites : as developed by the Institut für Palaeoanatomenie, Domestikationsforschung und Geschichte der Tiermedizin of the University of Munich. Cambridge, Mass., Peabody Museum of Archaeology and Ethnology, Harvard University; 1976.

32. Foran L, Kupelian C, Laroia S, Esper J, Kulesza RJ. Neonatal exposure to monosodium glutamate results in dysmorphology of orofacial lower motor neurons. Folia Morphol (Warsz). 2017;76(4):582-589.

33. Sheard P, McCaig CD, Harris AJ. Critical periods in rat motoneuron development. Dev Biol. 1984 Mar;102(1):21-31.

34. Harris AJ. Critical periods in the development of motoneurons. Rev Neurol (Paris). 1988;144(11):643-7.

35. Pang YW, Ge SN, Nakamura KC, Li JL, Xiong KH, Kaneko T, et al. Axon terminals expressing vesicular glutamate transporter VGLUT1 or VGLUT2 within the trigeminal motor nucleus of the rat: origins and distribution patterns. Journal of Comparative. Neurology. 2009 512, 595–612.

36. Holstege G, Graveland G, Bijker-Biemond C, Schuddeboom I. Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation. An HRP and autoradiographical tracing study. Brain Behav Evol. 1983;23(1-2):47-62.

37. Zhang J, Luo P, Pendlebury WW. Light and electron microscopic observations of a direct projection from mesencephalic trigeminal nucleus neurons to hypoglossal motoneurons in the rat. Brain Res. 2001 Oct 26;917(1):67-80.

38. Travers JB, Yoo JE, Chandran R, Herman K, Travers SP. Neurotransmitter phenotypes of intermediate zone reticular formation projections to the motor trigeminal and hypoglossal nuclei in the rat. J Comp Neurol. 2005 Jul 18;488(1):28-47.

39. Kim KC, Kim P, Go HS, Choi CS, Park JH, Kim HJ, et al. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J Neurochem. 2013 Mar;124(6):832-43.
40. Iijima Y, Behr K, Iijima T, Biemans B, Bischofberger J, Scheiffele P. Distinct Defects in Synaptic Differentiation of Neocortical Neurons in Response to Prenatal Valproate Exposure. Sci Rep. 2016 Jun 6;6:27400.

41. Fujimura K, Mitsuhashi T, Shibata S, Shimozato S, Takahashi T. In Utero Exposure to Valproic Acid Induces Neocortical Dysgenesis via Dysregulation of Neural Progenitor Cell Proliferation/Differentiation. J Neurosci. 2016 Oct 19;36(42):10908-10919.

42. Twachtman-Reilly J, Amaral SC, Zebrowski PP. Addressing feeding disorders in children on the autism spectrum in school-based settings: physiological and behavioral issues. Lang Speech Hear Serv Sch. 2008 Apr;39(2):261-72.

Table 1. Number of neurons

	TMN	FN	NA	HGN
Control	3380 ± 632.5	6726 ± 690.3	668.0 ± 171.1	3530 ± 389.4
VPA	3551 ± 856.7 (ns)	6667 ± 1034 (ns)	616.6 ± 108.8 (ns)	3832 ± 720.4 (ns)

Mean ± standard deviation; ns = not significant

Table 2. Soma size

	Control (µm²) (%)	VPA (µm²) (%)	p-value
TMN	1925 ± 636.6 (79%)	1612 ± 771.2	****
	1960 ± 655.6 (79%)	1650 ± 781.5 (75%)	****
	1821 ± 512.1 (20%)	1485 ± 738.0 (22%)	****
	1273 ± 787.6 (1%)	1592 ± 666.6 (3%)	ns
FN	1449 ± 546.1	1234 ± 655.9	****
	1458 ± 546.5 (80%)	1212 ± 634.3 (83%)	****
	1427 ± 541.5 (20%)	1389 ± 758.4 (15%)	ns
	980.0 ± 524.1 (1%)	986.2 ± 518.4 (2%)	ns
NA	981.2 ± 368.3	828.6 ± 399.2	****
	1024 ± 407.7 (53%)	780.9 ± 421.2 (57%)	****
	939.4 ± 301.7 (46%)	903.7 ± 360.2 (40%)	ns
	801.3 ± 516.9 (2%)	749.5 ± 321.8 (3%)	ns
Table 3. VGAT and VGLUT puncta

	Control puncta/cell	VPA puncta/cell	p-value
VGAT			
TMN	17.21 ± 8.508	18.13 ± 10.65	ns
FN	21.99 ± 10.46	20.08 ± 7.840	ns
NA	14.53 ± 9.690	9.143 ± 2.535	*
HGN	18.72 ± 5.233	19.81 ± 13.29	*
VGLUT			
TMN	16.39 ± 7.274	13.21 ± 4.329	*
FN	17.17 ± 5.001	19.95 ± 9.694	ns
NA	12.82 ± 6.277	13.25 ± 3.173	ns
HGN	17.63 ± 4.533	20.56 ± 9.136	*

Mean ± standard deviation; *p < 0.05

Figure 1. Giemsa stained sections through the brainstem from control (A, C, E, G) and VPA (B, D, F, H) animals reveal no change in neuronal number. Images show the TMN (A and B), FN (C and D), NA (E and F), and HGN (G and H). The black deashed line indicates the boundaries of each nucleus. D = dorsal, L = lateral, The scale bar equals 500 µm.
Figure 2. Giemsa stained sections show LMNs from control (A, C, E, G) and VPA (B, D, F, H) animals. LMNs are shown from the TMN (A and B), FN (C and D), NA (E and F), and HGN (G and H). The red-dashed lines indicate the boundaries of select LMNs. The scale bar represents 20 µm.

Figure 3. VPA exposure resulted in smaller cell bodies. For each box plot the whiskers represent the maximum and minimum values, the box represents the first and third quartile, and the center line represents the median. ****p<0.0001.

Figure 4. Sections show VGAT (blue) and NTR (magenta) labelling. Perisomatic puncta are indicated by white arrows. Shown in A and B are sections through the NA (control and VPA, respectively). Shown in C and D are HGN neurons (control and VPA, respectively).

Figure 5. Sections show VGLUT (yellow) and NTR (magenta) labelling and perisomatic VGLUT puncta are indicated by white arrows. Shown in A and B are sections through the TMN (control and VPA, respectively). Shown in C and D are HGN neurons (control and VPA, respectively).

Figure 6. VPA-exposure led to a significant decrease in (A) VGLUT puncta in the TMN, (C) VGAT in the NA, and (D) significantly fewer VGAT puncta but more VGLUT puncta in the HGN. For each box plot the whiskers represent the maximum and minimum values, the box represents the first and third quartile, and the center line represents the median. *p<0.05.

Figure 7. Shown in A are overall cranial weights, in B and C, right and left mandible masses, respectively. Shown in D and E are comparisons of the skull metrics displayed in F-H. For each plot the whiskers represent the maximum and minimum values, the central horizontal line represents the median.
