Topography optimization and additive manufacturing in the building and construction industry

G A Barragan¹, J Perafan¹, and G Urrea¹

¹Grupo de investigación en Ingeniería Aeroespacial, Universidad Pontificia Bolivariana, Circular 1 # 70 -01, Medellín - Colombia.

E-mail: german.barragan@upb.edu.co

Abstract. A systematic review covering Topology optimization and Additive manufacturing has been conducted. Covering areas such as its application on the building and construction industry and the potential of its mixed-use. The results found shows the increased interest of the research in this area during the last decade and the vast potential of its full application for safety improvements and resource efficiency.

1. Introduction
During the construction of structural components, the best possible configuration is always desired to achieve superior performance characteristics. The architectural design process employs different techniques for this propose, ranging from purely empirical approaches to mathematical methods [1]. The latter being the most relevant for the case of structural optimization.

The optimization processes work to obtain the optimal component dimension, geometry, or material distribution, considering different criteria such as maximizing its rigidity, minimizing stresses, deformations, vibrations, and others. Topological optimization (TO) as a mathematical design tool has been widely used for several years with rapid growth as a research field.

The use of OT methods has spread to different industries with promising results. Nevertheless, in most cases, its potential has been limited because the geometries obtained were impossible or presented significant challenges to be manufactured using traditional construction techniques.

Additive manufacturing (AM) techniques were based on the construction employed successively adding material layers. They have done away with the typical constraints of conventional construction processes allowing the materialization of parts with high geometrical complexity or functional designs without significant cost effects.

The construction industry has been embraced AM as a tool in recent times [2], opening a wide range of application possibilities, including improvements in design flexibility [3] with a reduction in material and labor requirements [4].

This paper presents findings of a systematic review covering TO and AM. It is covering areas such as its application on the building and construction (B&C) industry and the potential of its mixed-use. The results presented are part of a study to identify technologies with potential application during a spatial colonization process.
2. Methodology
The research methodology adopted in this research was a systematic review. Considered an essential scientific research method could be used to analyze, summarize, and convey the conclusions and consequences of large quantities of research publications [5].

For this specific case, the process has been conducted to identify the evolution of Topology Optimization and Additive manufacturing techniques in the construction industry. Two databases were employed, Web of Science and SCOPUS. The reputation of these databases was the decisive factor for this selection.

The critical terms for the search were “Topology optimization”, “Additive Manufacturing”, and “3D printing”. Only English published studies with construction as a focus were considered. A two-stage selection process was executed. During the first stage, a search employed any individual term plus construction was conducted, this phase was used to identify some main trends, close the search period, and to refine the search process. In the second stage, the three terms were used together. The manuscripts found were classified, examined, and reviewed. The relevant information contained was summarized and presented.

3. Results
Overall results of the first stage of the work were presented in table 1.

Search term	Scopus	Web of Science
Additive Manufacturing	888	588
3D printing	1299	881
Topology Optimization	361	239

Through the last decade, the number of documents having within their scope, the selected research terms have increased significantly. Between the different types of documents available, the most representative were scientific articles be more of the 55%. Its information and results can bring a profound contribution to the body of knowledge for new construction technologies. In figure 1, it is possible to see the distribution by year and type of the found documents.

Figure 1. First stage documents distribution
For the second stage, the number of documents obtained in Scopus and Web of Science was 32 and 26, respectively. Duplicated papers were eliminated. The final analysis was developed with 44 selected documents.

3.1. Topology optimization

The development and application of numerous computer optimization tools were found. Its purpose is the cost or material reduction while attaining a specific design criterion. TO commonly appear as a gradient-based design instrument that establishes where put material is based on the load distribution, stress, and boundary conditions for a goal [6].

3.1.1. Methods. Different TO methods and approaches [7] have been introduced for the work with a continuum structure. These include the density approach [8], [9]; the level set strategy [10], [11]; evolutionary approaches [12]; and several others [13].

Density-based methods form the basis for most recent topology optimization literature because of the degree of sophistication achieved. It represents the optimized structure by a set of density vary values at discrete nodes in the project domain [14]. Between these methodologies, the SIMP (“Solid Isotropic Material with Penalization”) has demonstrated to be very successful and extremely skillful. A full description of this approach can be found in [15].

Adaptations of this along with other methods were used to integrate enhancements or modifications to be applied during the design phases of components to be manufactured using AM techniques such as [16].

3.1.2. Applications. The development of proper applications of TO methods in the construction industry has gained an expanding consideration [17]. Some contributions are Staged construction [18]; Optimized strut-and-tie models for RC members [19]; Reinforced structures [20], [21], [22]; Prestressed girder (Figure 2) [14]; Concrete beams and structures [23], [24]; Dapped beams [25], Building vibration behaviour improvement [26] and Buildings outrigger placement [9].

![Figure 2. Topology optimized design for 3D-print construction. Source [14]](image)

3.2. Additive manufacturing

AM also now as 3D printing is considered an innovative process that could create intricate shape geometries directly from a digital model [27]. The B&C industry have been explored AM [28] in academic [29] and practical applications (Figure 3), primarily focused on demonstrating viability [4].

![Figure 3. AM constructed pillar. Source [30]](image)
AM could allow the development of well custom-built components and inspire intricate and refined design [31]. Its ability to work in an autonomous or semi-autonomous way can reduce the requirement of workforce [28] situation that can be able to generate substantial diminishes on fatalities and injuries that are a severe problem of the B&C industry [32], [33]. Nevertheless, as with any new technology, to harness its full potential and achieve its extensive use, many faces remain.

3.2.1. Processes All the AM categories recognized by the ASTM [34] have a potential application in different aspects of the B&C industry, from architectural representation to full building construction. However, considering only the last case (Large-scale printing) is possible to find process names such as Contour Crafting [35]; Concrete Printing [36]; Freeform construction [23]; Cementitious paste extrusion [37]; Layered extrusion processes [38]; Material deposition method (MDM) [27]; Stick dispenser [39]; Digital construction platform [40]; Flow-based fabrication [41]; Mesh-mould [27]. Figure 4 shows an image of the concrete printing process.

![Concrete Printing Process](image)

Figure 4. Concrete printing process. Source [42]

3.2.2. Materials Limited materials are now available for AM in the B&C industry [43]. One of the major faces is the conversion of existing high-quality concretes to printable materials. Concrete or cement-based are considered as intricate material with a non-homogeneous composition. Intensive research has recently been done on the production and use of admixture to achieve the desired material performance [44], [45], [46].

4. Conclusions
Additive manufacturing and Topology optimization have a vast potential of application on the building and construction industry.

The use of these combined techniques could bring the industry's most significant benefits in terms of resource economy and safety.

A proper integration route for AM and TO is essential to take full advantage of its potential.

Limited materials are now available for AM in the B&C industry, but intensive research is happening in this knowledge area.

References

[1] K. Besserud, N. Katz and A. Beghini, "Structural emergence: Architectural and structural design collaboration at SOM," *Architectural Design*, vol. 83, no. 2, pp. 48-55, 2013.

[2] P. Wu, J. Wang and X. Wang, "A critical review of the use of 3-D printing in the construction industry," *Automation in Construction*, vol. 68, pp. 21 - 31, 2016.

[3] B. Khoshnevis, "Automated construction by contour crafting—related robotics and information technologies," *Automation in Construction*, vol. 3, no. 1, pp. 5 - 19, 2004.
[4] R. Buswell, R. Soar, A. Gibb and A. Thorpe, "Freeform construction: mega-scale rapid manufacturing for construction," Automation in Construction, vol. 16, no. 2, pp. 224 - 231, 2007.

[5] O. Babalola, E. Ibem and I. Ezema, "Implementation of lean practices in the construction industry: A systematic review," Building and Environment, vol. 148, pp. 34-43, 2019.

[6] L. Beghini, A. Beghini, N. Katz, W. Faker and G. Paulino, "Connecting architecture and engineering through structural topology optimization," Engineering Structures, vol. 59, pp. 716-726, 2014.

[7] O. Sigmund and K. Maute, "Topology optimization approaches," Structural and Multidisciplinary Optimization, vol. 48, no. 6, pp. 1031-1055, 2013.

[8] M. Bendsoe and O. Sigmund, Topology optimization: theory,method and applications, Springer, 2003.

[9] S. Lee and A. Tovar, "Outrigger placement in tall buildings using topology optimization," Engineering Structures, vol. 74, pp. 122-129, 2014.

[10] G. Allaire, F. Gournay, F. Jouve and A. Toader, "Structural optimization using topological and shape sensitivity via a level set method," Control and Cybernetics, vol. 34, no. 1, 2005.

[11] M. Wang, X. Wang and D. Guo, "A level set method for structural topology optimization," Computer Methods in Applied Mechanics and Engineering, vol. 192, no. 1-2, pp. 227-246, 2003.

[12] X. Huang and Y. Xie, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications, John Wiley & Sons, Ltd, 2010.

[13] A. Takezawa, S. Nishiwaki and M. Kitamura, "Shape and topology optimization based on the phase field method and sensitivity analysis," Journal of Computational Physics, vol. 229, no. 7, pp. 2697-2718, 2010.

[14] G. Vantyghem, W. De Corte, E. Shakour and O. Amir, "3D printing of a post-tensioned concrete girder designed by topology optimization," Automation in Construction, vol. 112, 2020.

[15] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov and O. Sigmund, "Efficient topology optimization in MATLAB using 88 lines of code," Structural and Multidisciplinary Optimization, vol. 43, no. 1, pp. 1-16, 2011.

[16] M. Zhu, Y. Yang, A. Gaynor and J. Guest, "Considering constructability in structural topology optimization," in Structures Congress, Boston, United States, 2014.

[17] T. Pastore, V. Mercuri, C. Menna, D. Asprone, P. Festa and F. Auricchio, "Topology optimization of stress-constrained structural elements using risk-factor approach," Computers & Structures, vol. 224, 2019.

[18] O. Amir and Y. Mass, "Topology optimization for staged construction," Structural and Multidisciplinary Optimization, vol. 56, p. 1679–1694, 2018.

[19] M. Bruggi, "Generating strut-and-tie patterns for reinforced concrete structures using topology optimization," Computers & Structures, vol. 87, no. 23-24, pp. 1483-1495, 2009.

[20] M. Bogomolny and O. Amir, "Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling," International Journal for Numerical Methods in Engineering, vol. 90, no. 13, pp. 1578-1597, 2012.

[21] M. Bruggi, "A numerical method to generate optimal load paths in plain and reinforced concrete structures," Computers & Structures, vol. 170, pp. 26-36, 2016.

[22] M. Buggi, "Analysis and design of reinforced concrete structures as a topology optimization problem," in European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece, 2016.

[23] J. Jewett and J. Carstensen, "Topology-optimized design, construction and experimental evaluation of concrete beams," Automation in Construction, vol. 102, pp. 59-67, 2019.
[24] P. Martens, M. Mathot, F. Bos and J. Coenders, "Optimising 3D printed concrete structures using topology optimisation," in Fib Symposium - High Tech Concrete: Where Technology and Engineering Meet, Maastricht, 2017.

[25] R. Oviedo, S. Gutierrez and H. Santa Maria, "Experimental evaluation of optimized strut-and-tie models for a dapped beam," Structural Concrete, vol. 17, no. 3, pp. 469-480, 2016.

[26] V. Hoerickx, M. Schevenels and G. Lombaert, "Topology optimization of wave barriers for railway induced vibrations in buildings," in European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece, 2016.

[27] Y. Tay, B. Panda, S. Paul, N. Mohamed, M. Tan and K. Leong, "3D printing trends in building and construction industry: a review," Virtual and Physical Prototyping, vol. 12, no. 3, pp. 261-276, 2017.

[28] R. Buswell, W. Leal de Silva, S. Jones and J. Dirrenberger, "3D printing using concrete extrusion: A roadmap for research," Cement and Concrete Research, vol. 112, pp. 37-49, 2018.

[29] Y. E. Kalay and M. J. Skibniewski, Eds., Automation in Construction, Special Issue: Rapid Prototyping, ELSEVIER, 2002.

[30] Xtreet, "Krypton, a column in Aix-en-Provence," [Online]. Available: https://xtreet.com/en/project/krypton/. [Accessed 30 7 2020].

[31] C. Gosselin, R. Duballet, P. Roux, N. Gaudillière, J. Dirrenberger and P. Morel, "Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders," Materials & Design, vol. 100, pp. 102-109, 2016.

[32] J. Meliá, K. Mears, S. Silva and M. Lima, "Safety climate responses and the perceived risk of accidents in the construction industry," Safety Science, vol. 46, no. 6, pp. 949-958, 2008.

[33] I. Rudchenko, A. Bychkov and D. Levchenko, "Labor Safety in Construction," in International Scientific Conference on Construction and Architecture: Theory and Practice for the Innovation Development, Kislovodsk, Russian Federation, 2019.

[34] ASTM, "ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technology," 2015.

[35] B. Khoshnevis, "Automated construction by contour crafting—related robotics and information technologies," Automation in Construction, vol. 13, no. 1, pp. 5-19, 2004.

[36] S. Lim, A. Buswell, T. Le, S. Austin, A. Gibb and T. Thorpe, "Developments in construction-scale additive manufacturing processes," Automation in Construction, vol. 21, pp. 262-268, 2012.

[37] R. Duballet, O. Baverel and J. Dirrenberger, "Classification of building systems for concrete 3D printing," Automation in Construction, vol. 83, pp. 247-258, 2017.

[38] T. Wangler, E. Lloret, L. Reiter, N. Hack, F. Gramazio, M. Kohler, M. Bernhard, B. Dillenburger, J. Buchli, N. Roussel and R. Flatt, "Digital Concrete: Opportunities and Challenges," RIMEL Technical Letters, vol. 1, pp. 67 - 75, 2016.

[39] H. Yoshida, T. Igarashi, Y. Obuchi, Y. Takami, J. Sato, M. Araki, M. Miki, K. Nagata, K. Sakai and S. Igarashi, "Architecture-Scale Human-Assisted Additive Manufacturing," ACM Transactions on Graphics, vol. 34, no. 4, pp. 88:1-88:8, 2015.

[40] S. Keating, N. Spielberg, J. Klein and N. Oxman, "A Compound Arm Approach to Digital Construction," in Robotic Fabrication in Architecture, Art and Design, W. McGee and M. Ponce de Leon, Eds., 2014, pp. 99 - 110.

[41] J. Duro-Royo, L. Mogas-Soldevila and N. Oxman, "Flow-based fabrication: An integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects," Computer-Aided Design, vol. 69, pp. 143-154, 2015.
[42] R. Wolfs, F. Bos and T. Salet, "Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing," Cement and Concrete Research, vol. 106, pp. 103-116, 2018.

[43] G. De Schutter, K. Lesage, V. Mechtcherine, V. Nerella, G. Habert and I. Agusti-Juan, "Vision of 3D printing with concrete — Technical, economic and environmental potentials," Cement and Concrete Research, vol. 112, pp. 25-36, 2018.

[44] D. Marchon, S. Kawashima, H. Bessaies-Bey, S. Mantellato and S. Ng, "Hydration and rheology control of concrete for digital fabrication," Cement and Concrete Research, vol. 112, pp. 96-110, 2018.

[45] J. Cunha and L. Chaves, "The use of topology optimization in disposing carbon fiber reinforcement for concrete structures," Structural and Multidisciplinary Optimization, vol. 49, p. 1009–1023, 2014.

[46] E. Grigoryan, A. Babanina and A. Eropkin, "Concrete mixture grout for printing extruder," in Innovative Technologies in Environmental Science and Education, ITESE, "Raduga" Divnomorskoe Village, 2019.