Single-Shot Compression for Hypothesis Testing

Fabrizio Carpi, Siddharth Garg, Elza Erkip

New York University

22nd IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

September 27-30, 2021
Outline

1. Introduction
2. Preliminaries
 - System Model
 - Hypothesis Testing
3. Hypothesis Testing Under Single-Shot Compression
4. Proposed Compressor
5. Results
 - Small alphabet $|\mathcal{X}| = 13$
 - Big alphabet $|\mathcal{X}| = 256$
6. Conclusion
Introduction

Preliminaries

Hypothesis Testing Under Single-Shot Compression

Proposed Compressor

Results

Conclusion
A resource constrained **client** offloads costly task-related computations to a remote **server** (edge/cloud computing).

Motivation

[Diagram of high-quality data flowing from a camera through a Compressor to a Task on a Server.]

Open question: design task-aware source coding schemes which provide effective representations of the source data.

F. Carpi, S. Garg, E. Erkip

Single-Shot Compression for Hypothesis Testing

SPAWC 2021
Motivation

A resource constrained client offloads costly task-related computations to a remote server (edge/cloud computing).

Open question: design task-aware source coding schemes which provide effective representations of the source data.
In this paper

Assumptions

- **Task**: binary hypothesis testing.
- **Client**: constrained device which cannot perform task locally, does not have memory and can only do simple scalar compression.
- **Server**: hypothesis testing on a block of compressed samples.
In this paper

Assumptions

- **Task**: binary hypothesis testing.
- **Client**: constrained device which cannot perform task locally, does not have memory and can only do simple scalar compression.
- **Server**: hypothesis testing on a block of compressed samples.

Our work → single-shot fixed-length compression for hypothesis testing.

- Problem formulation.
- Analyze the error performance.
- Propose a task-oriented compression algorithm for hypothesis testing.
1 Introduction

2 Preliminaries
 - System Model
 - Hypothesis Testing

3 Hypothesis Testing Under Single-Shot Compression

4 Proposed Compressor

5 Results

6 Conclusion
System Model

Hypothesis Testing

\[\begin{align*}
H_0 : X &\sim P_0 \\
H_1 : X &\sim P_1
\end{align*} \]

\[X \xrightarrow{f(\cdot)} \hat{X} \xrightarrow{n} \hat{X}^n \xrightarrow{\text{Hypot. Test. } L(\cdot)} \]

\[\text{Accept or Reject } H_0 \]

\[X_1, \ldots, X_n \sim P_\theta \text{ are i.i.d. random variables.} \]

Source	Compressor	Hypothesis Testing		
\(x \in \mathcal{X} = \{1, \ldots,	\mathcal{X}	\} \)	\(f : \mathcal{X} \to \mathcal{M} = \{1, \ldots, M\} \)	\(L(\hat{X}^n) \begin{cases} \hat{\theta} = 0 \\ \hat{\theta} = 1 \end{cases} \geq \log T \)
\(X \sim P_\theta(x), \theta \in \{0, 1\} \)	\(\hat{X} = f(X), \hat{X} \sim \hat{P}_\theta(\hat{X}) \)			

Fixed rate compression \(R = \log M \). We consider \(M < |\mathcal{X}| \).
Performance Metric

From classical binary hypothesis testing theory\(^1\):

1. if type-I error \(< \epsilon \) \(\implies \) type-II error\(^2\) \(\beta^n \) decays exponentially in \(n \) as
 \[
 \gamma = - \lim_{n \to \infty} \frac{1}{n} \log \beta^n.
 \]

2. Chernoff-Stein Lemma (without compression): optimal type-II error exponent is
 \[
 \gamma^* = D(P_0 || P_1).
 \]

\(^1\) Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing)*. USA: Wiley-Interscience, 2006. ISBN: 0471241954.

\(^2\) Type-II error: accept \(H_0 \) when \(H_1 \) is true.
Performance Metric

From classical binary hypothesis testing theory\(^1\):

1. if type-I error \(< \epsilon \implies \) type-II error\(^2\) \(\beta_n^\epsilon \) decays exponentially in \(n \) as \(\gamma = - \lim_{n \to \infty} \frac{1}{n} \log \beta_n^\epsilon. \)

2. Chernoff-Stein Lemma (without compression): optimal type-II error exponent is \(\gamma^* = D(P_0 \| P_1). \)

Our performance metric \(\to \) type-II error exponent \(\gamma. \)
With compression: the error exponent depends on \((f, R): \gamma_f(R). \)

\(^1\)Cover and Thomas, *Elements of Information Theory* (Wiley Series in Telecommunications and Signal Processing).

\(^2\)Type-II error: accept \(H_0 \) when \(H_1 \) is true.
Performance Metric

From classical binary hypothesis testing theory:\(^1\)

1. if type-I error \(< \epsilon \Rightarrow \) type-II error\(^2\) \(\beta_n^\epsilon\) decays exponentially in \(n\) as
 \[\gamma = -\lim_{n \to \infty} \frac{1}{n} \log \beta_n^\epsilon.\]

2. Chernoff-Stein Lemma (without compression): optimal type-II error exponent is
 \[\gamma^* = D(P_0 \| P_1).\]

Our performance metric \(\rightarrow\) type-II error exponent \(\gamma\).
With compression: the error exponent depends on \((f, R): \) \(\gamma_f(R).\)

\[\Rightarrow \text{We define the compression penalty: } \Delta_f(R) = D(P_0 \| P_1) - \gamma_f(R).\]

\(^1\)Cover and Thomas, *Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing).*

\(^2\)Type-II error: accept \(H_0\) when \(H_1\) is true.
1 Introduction

2 Preliminaries

3 Hypothesis Testing Under Single-Shot Compression

4 Proposed Compressor

5 Results

6 Conclusion
Hypothesis Testing Under Single-Shot Compression

Hypothesis Testing on Compressed Variable

Lemma 1

The log-likelihood ratio test on the compressed variables $\hat{X}_i = f(X_i), i = 1, \ldots, n$, is optimal; the corresponding optimal error exponent is $\gamma_f(R) = D(\hat{P}_0 || \hat{P}_1)$.

Hence, the compression penalty is $\Delta_f(R) = D(P_0 || P_1) - D(\hat{P}_0 || \hat{P}_1)$.
Hypothesis Testing on Compressed Variable

Lemma 1

The log-likelihood ratio test on the compressed variables $\hat{X}_i = f(X_i), i = 1, \ldots, n$, is optimal; the corresponding optimal error exponent is $\gamma_f(R) = D(\hat{P}_0 || \hat{P}_1)$.

Hence, the **compression penalty** is $\Delta_f(R) = D(P_0 || P_1) - D(\hat{P}_0 || \hat{P}_1)$.

Optimal compressor: $f^* = \arg\max_f D(\hat{P}_0 || \hat{P}_1) = \arg\min_f \Delta_f$ s.t. $|f| \leq M$.

NP-hard problem! Optimization over each possible f, which induces a partition of M sets over \mathcal{X}.
Compression Penalty: $\Delta_f(R) = D(P_0 \| P_1) - D(\hat{P}_0 \| \hat{P}_1)$

Proposition 1

Expression for $\Delta_f \geq 0$:

$$
\Delta_f = \sum_{\hat{x}=1}^{M} \hat{P}_0(\hat{x}) D\left(P_0(x|\hat{x}) \bigg\| P_1(x|\hat{x})\right)
$$

where $P_\theta(x|\hat{x}) = \frac{P_\theta(x)}{\hat{P}_\theta(\hat{x})} \mathbb{1}\{\hat{x} = f(x)\}$ is the posterior of X given $\hat{X} = f(X)$.

Observations:

- The KL term is zero for one-to-one mappings (or if equal posteriors) → only the many-to-one mappings contribute to $\Delta_f(R)$.
- In general, a good task-aware compression strategy combines X values that have similar posteriors.
Compression Penalty: $\Delta_f(R) = D(P_0 \| P_1) - D(\hat{P}_0 \| \hat{P}_1)$

Proposition 1

Expression for $\Delta_f \geq 0$:

$$\Delta_f = \sum_{\hat{x}=1}^M \hat{P}_0(\hat{x}) D\left(P_0(x|\hat{x}) \biggm| P_1(x|\hat{x})\right)$$

where $P_\theta(x|\hat{x}) = \frac{P_\theta(x)}{P_\theta(\hat{x})} 1\{\hat{x} = f(x)\}$ is the posterior of X given $\hat{X} = f(X)$.

Observations:

- The KL term is zero for one-to-one mappings (or if equal posteriors) \rightarrow only the many-to-one mappings contribute to $\Delta_f(R)$.
- In general, a good task-aware compression strategy combines X values that have similar posteriors.
Introduction

Preliminaries

Hypothesis Testing Under Single-Shot Compression

Proposed Compressor

Results

Conclusion
One-step compression from $|\mathcal{X}|$ to $|\mathcal{X}| - 1$

What is the optimal compressor when reducing the alphabet size by 1?
One-step compression from $|\mathcal{X}|$ to $|\mathcal{X}| - 1$

What is the optimal compressor when reducing the alphabet size by 1?

Lemma 2

One-step compression from $|\mathcal{X}|$ to $|\mathcal{X}| - 1$: f combines $\{a, b\} \subset \mathcal{X}$ and the others $x \in \mathcal{X} \setminus \{a, b\}$ are one-to-one; i.e., $f(a) = f(b) = m \in \mathcal{M}$, $f(i) = i \in \mathcal{M} \setminus \{m\}$.

Then, the optimal compressor is

$$f^* = \arg \min_{\{a, b\} \subset \mathcal{X}: f(a) = f(b) = m} \left\{ \hat{P}_0(m) D\left(P_0(x|m) \parallel P_1(x|m) \right) \right\},$$

where $P_{\theta}(x|m) = \left[\frac{P_{\theta}(a)}{P_{\theta}(a) + P_{\theta}(b)}, \frac{P_{\theta}(b)}{P_{\theta}(a) + P_{\theta}(b)} \right]$, $\theta = \{0, 1\}$.
Our Proposed Compressor

Our “KL-greedy” compressor:

- iteratively reduce the alphabet size by 1 at each step, until the compressed alphabet has size M;
- at each step, combine $\{a, b\}$ which minimize Lemma 2;
- note that this compressor can be determined in polynomial time.
Our Proposed Compressor

Our “KL-greedy” compressor:

- iteratively reduce the alphabet size by 1 at each step, until the compressed alphabet has size M;
- at each step, combine \{a, b\} which minimize Lemma 2;
- note that this compressor can be determined in polynomial time.

\[
P_0(x) \quad P_1(x) \quad x \quad \text{Example} \quad \hat{x} = f(x)
\]

\[
P_0(x) = \begin{cases}
0.5 & x = 1 \\
0.25 & x = 2 \\
0.125 & x = 3 \\
0.125 & x = 4
\end{cases}
\]

\[
P_1(x) = \begin{cases}
0.5 & x = 1 \\
0.25 & x = 2 \\
0.125 & x = 3 \\
0.125 & x = 4
\end{cases}
\]

\[D(P_0||P_1) = 0.5\]
Our Proposed Compressor

Our “KL-greedy” compressor:
- iteratively reduce the alphabet size by 1 at each step, until the compressed alphabet has size M;
- at each step, combine \{a, b\} which minimize Lemma 2;
- note that this compressor can be determined in polynomial time.

\[\hat{x} = f(x) \quad \hat{P}_0(\hat{x}) \quad \hat{P}_1(\hat{x}) \]

\[
P_0(x) \quad P_1(x) \quad x \quad \text{Example}
\]

\[
0.5 \quad 0.25 \quad 1 \quad \text{1-2}
0.25 \quad 0.125 \quad 2
0.125 \quad 0.125 \quad 3
0.125 \quad 0.5 \quad 4
\]

\[D(P_0 || P_1) = 0.5 \]

\[
\hat{P}_0(\hat{x}) \quad 0.75
\hat{P}_1(\hat{x}) \quad 0.375
\]

\[
\hat{x} = f(x) \quad \hat{P}_0(\hat{x}) \quad \hat{P}_1(\hat{x})
\]

\[
D(\hat{P}_0 || \hat{P}_1) = 0.5
\]
Our Proposed Compressor

Our “KL-greedy” compressor:

- iteratively reduce the alphabet size by 1 at each step, until the compressed alphabet has size M;
- at each step, combine $\{a, b\}$ which minimize Lemma 2;
- note that this compressor can be determined in polynomial time.

Example

\[
P_0(x) \begin{cases} 0.5 & \text{for } x = 1 \\ 0.25 & \text{for } x = 2 \\ 0.125 & \text{for } x = 3 \\ 0.125 & \text{for } x = 4 \end{cases}
\]

\[
P_1(x) \begin{cases} 0.25 & \text{for } x = 1 \\ 0.125 & \text{for } x = 2 \\ 0.125 & \text{for } x = 3 \\ 0.5 & \text{for } x = 4 \end{cases}
\]

\[
D(P_0 || P_1) = 0.5
\]

\[
\hat{x} = f(x) \begin{cases} 1 & \text{if } x = 1 \\ 2 & \text{if } x = 2 \\ 3 & \text{if } x = 3 \\ 4 & \text{if } x = 4 \end{cases}
\]

\[
\hat{P}_0(x) = \begin{cases} 0.125 & \text{for } x = 1 \\ 0.875 & \text{for } x = 2 \\ 0.125 & \text{for } x = 3 \\ 0.5 & \text{for } x = 4 \end{cases}
\]

\[
\hat{P}_1(x) = \begin{cases} 0.5 & \text{for } x = 1 \\ 0.5 & \text{for } x = 2 \\ 0.5 & \text{for } x = 3 \\ 0.5 & \text{for } x = 4 \end{cases}
\]

\[
D(\hat{P}_0 || \hat{P}_1) = 0.4564
\]

\[
\Delta f(1) = 0.0436
\]
Our Proposed Compressor

Our “KL-greedy” compressor:
- iteratively reduce the alphabet size by 1 at each step, until the compressed alphabet has size M;
- at each step, combine $\{a, b\}$ which minimize Lemma 2;
- note that this compressor can be determined in polynomial time.

Example

$P_0(x)$	$P_1(x)$	x	$\hat{x} = f(x)$	$\hat{P}_0(x)$	$\hat{P}_1(x)$
0.5	0.25	1		0.875	0.5
0.25	0.125	2		0.125	
0.125	0.125	3			
0.125	0.5	4			

$D(P_0 || P_1) = 0.5$, $\Delta f(1) = 0.0436$, $D(\hat{P}_0 || \hat{P}_1) = 0.4564$
Introduction

Preliminaries

Hypothesis Testing Under Single-Shot Compression

Proposed Compressor

Results

- Small alphabet $|\mathcal{X}| = 13$
- Big alphabet $|\mathcal{X}| = 256$

Conclusion
Simulation details

P_θ are shifted binomial distributions with different parameters.

Compare compression penalty Δ_f and empirical type-II error rate for:

- optimal compressor f^* — when feasible to compute, i.e, small $|\mathcal{X}|$;
- our KL-greedy compressor;
- universal compressor\(^3\) designed for reconstruction under log-loss distortion.

For the empirical type-II error rate, consider a threshold T such that type-I error rate $< \epsilon = 0.05$ for a given compressor at rate M.

\(^3\)Yanina Shkel, Maxim Raginsky, and Sergio Verdú. “Universal lossy compression under logarithmic loss”. In: 2017 IEEE International Symposium on Information Theory (ISIT). 2017, pp. 1157–1161. DOI: 10.1109/ISIT.2017.8006710.
The compressed KL is larger for our compressor (divergent distributions, versus uniform in the universal case).

In our compressor: clustering of source symbols with same information.
Compression Penalty $\Delta_f(R)$

- Our compressor performs close to the optimal.
- The compression penalty quickly approaches zero for increasing rate.
Type-II Error Rate for $n = 5$, $\epsilon = 0.05$

- Our compressor achieves error rate close to the uncompressed for increasing rate.
Introduction

Preliminaries

Hypothesis Testing Under Single-Shot Compression

Proposed Compressor

Results

Conclusion
Formulation for the optimal compressor for hypothesis testing (task-aware).

Proposed the empirical “KL-greedy” compressor → it can be computed in polynomial time and preserves the useful information.

Task-aware compression achieves error rate comparable to the uncompressed case for low rates.
References

Cover, Thomas M. and Joy A. Thomas. *Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing)*. USA: Wiley-Interscience, 2006. ISBN: 0471241954.

Shkel, Yanina, Maxim Raginsky, and Sergio Verdú. “Universal lossy compression under logarithmic loss”. In: *2017 IEEE International Symposium on Information Theory (ISIT)*. 2017, pp. 1157–1161. DOI: 10.1109/ISIT.2017.8006710.
Single-Shot Compression for Hypothesis Testing

Fabrizio Carpi, Siddharth Garg, Elza Erkip
fabrizio.carpi@nyu.edu

22nd IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
September 27-30, 2021

This work was supported in part by NSF–Intel grant #2003182 and NSF grant #1925079.