A Characterization of Inner Product Spaces Related to the Skew-Angular Distance

H. Dehghan

Institute for Advanced Studies in Basic Sciences, Iran

Received January 22, 2011

Abstract—A new refinement of the triangle inequality is presented in normed linear spaces. Moreover, a simple characterization of inner product spaces is obtained by using the skew-angular distance.

DOI: 10.1134/S0001434613030231

Keywords: triangle inequality, inner product space, angular distance, normed linear space, skew-angular distance.

1. INTRODUCTION

In 2006, Maligranda [1, Theorem 1] (also see [2]) introduced the following strengthening of the triangle inequality and its reverse: For any nonzero vectors x and y in a real normed linear space $X = (X, \| \cdot \|)$ it is true that

$$
\| x + y \| \leq \| x \| + \| y \| - \left(2 - \frac{\| x \| + \| y \|}{\| x \| + \| y \|} \right) \min\{\| x \|, \| y \|\},
$$

(1.1)

$$
\| x + y \| \geq \| x \| + \| y \| - \left(2 - \frac{\| x \| + \| y \|}{\| x \| + \| y \|} \right) \max\{\| x \|, \| y \|\}.
$$

(1.2)

Also, the author used (1.1) and (1.2) for the following estimation of the angular distance

$$
\alpha[x, y] = \left\| \frac{x}{\| x \|} - \frac{y}{\| y \|} \right\|
$$

between two nonzero elements x and y in X which was defined by Clarkson in [3]:

$$
\frac{\| x - y \| - \| x \| - \| y \|}{\min\{\| x \|, \| y \|\}} \leq \alpha[x, y] \leq \frac{\| x - y \| + \| x \| - \| y \|}{\max\{\| x \|, \| y \|\}}.
$$

(1.3)

The right-hand of estimate (1.3) is a refinement of the Massera–Schaffer inequality proved in 1958 (see [4, Lemma 5.1]): for nonzero vectors x and y in X we have

$$
\alpha[x, y] \leq \frac{2\| x - y \|}{\max\{\| x \|, \| y \|\}},
$$

which is stronger than the Dunkl–Williams inequality

$$
\alpha[x, y] \leq \frac{4\| x - y \|}{\| x \| + \| y \|}
$$

proved in [5]. In the same paper, Dunkl and Williams proved that the constant 4 can be replaced by 2 if and only if X is an inner product space.

The main aim of this paper is to obtain a new and simple characterization of inner product spaces. To proceed in this direction, we first present a refinement of the triangle inequality in normed linear spaces and introduce the notion of skew-angular distance. Next, we compare the angular distance and skew-angular distance with each other.

*The text was submitted by the author in English.

**E-mail: h_dehghan@iasbs.ac.ir, hossein.dehgan@gmail.com
2. A REFINED STATEMENT OF THE TRIANGLE INEQUALITY

We start with the following strengthening of the triangle inequality.

Theorem 2.1. For nonzero vectors x and y in a real normed linear space $X = (X, \| \cdot \|)$,
\[
\|x + y\| \leq \|x\| + \|y\| - \left(\frac{\|x\|}{\|y\|} + \frac{\|y\|}{\|x\|} - \frac{x}{\|y\|} + \frac{y}{\|x\|}\right) \min\{\|x\|, \|y\|\}, \tag{2.1}
\]
\[
\|x + y\| \geq \|x\| + \|y\| - \left(\frac{\|x\|}{\|y\|} + \frac{\|y\|}{\|x\|} - \frac{x}{\|y\|} + \frac{y}{\|x\|}\right) \max\{\|x\|, \|y\|\}. \tag{2.2}
\]

Proof. Without loss of generality, we may assume that $\|x\| \leq \|y\|$. Then, by the triangle inequality,
\[
\|x + y\| = \left\| \frac{\|x\|}{\|y\|} x + \frac{\|y\|}{\|x\|} y + \left(1 - \frac{\|y\|}{\|x\|}\right) x \right\|
\]
\[
\leq \|x\| \left(\frac{x}{\|y\|} + \frac{y}{\|x\|}\right) + \|x\| - \frac{x}{\|y\|} = \|x\| + \|y\| - \left(\frac{x}{\|y\|} + \frac{y}{\|x\|}\right)
\]
\[
= \|x\| + \|y\| + \|x\| \left(\frac{x}{\|y\|} + \frac{y}{\|x\|}\right) - \|x\| - \|y\|,
\]
which establishes estimate (2.1). Similarly, the computation
\[
\|x + y\| = \left\| \frac{\|y\|}{\|x\|} x + \frac{\|y\|}{\|x\|} y + \left(1 - \frac{\|y\|}{\|x\|}\right) y \right\|
\]
\[
\geq \|y\| \left(\frac{x}{\|y\|} + \frac{y}{\|x\|}\right) - \|y\| = \|y\| + \|y\| - \left(\frac{x}{\|y\|} + \frac{y}{\|x\|}\right)
\]
\[
= \|x\| + \|y\| + \|y\| \left(\frac{x}{\|y\|} + \frac{y}{\|x\|}\right) - \|x\| - \|y\|
\]
gives inequality (2.2). □

The following examples show that neither our refinement nor Maligranda’s refinement of the triangle inequality is always better.

Example 2.2. Let X be the normed space \mathbb{R} with the norm $\|x\| = |x|$. Then for $x = 1$ and $y = -2$ we have
\[
2 - \left(\frac{1}{2}, \frac{2}{2}\right) = 2 > 1 = \frac{\|x\|}{\|y\|} + \frac{\|y\|}{\|x\|} - \frac{x}{\|y\|} + \frac{y}{\|x\|}.
\]

Example 2.3. Let $X = \mathbb{R}^2$ with the norm of $x = (a, b)$ be given by $\|x\| = |a| + |b|$. Take $x = (3/4, 3/4)$ and $y = (-1, 0)$, then $\|x\| = 3/2$ and $\|y\| = 1$. Therefore,
\[
\frac{x}{\|x\|} = \left(\frac{1}{2}, \frac{1}{2}\right), \quad \frac{y}{\|y\|} = (-1, 0), \quad \frac{x}{\|y\|} = \left(\frac{3}{4}, \frac{3}{4}\right), \quad \frac{y}{\|x\|} = \left(-\frac{2}{3}, 0\right),
\]
\[
2 - \left(\frac{\|x\|}{\|y\|} + \frac{\|y\|}{\|x\|}\right) = 1 < \frac{8}{6} = \frac{\|x\|}{\|y\|} + \frac{\|y\|}{\|x\|} - \frac{x}{\|y\|} + \frac{y}{\|x\|}.
\]

We can gather estimates (2.1) and (2.2) together as
\[
\|x + y\| + \left(\frac{\|x\|}{\|y\|} + \frac{\|y\|}{\|x\|} - \frac{x}{\|y\|} + \frac{y}{\|x\|}\right) \min\{\|x\|, \|y\|\}
\]
\[
\leq \|x\| + \|y\| \leq \|x + y\| + \left(\frac{\|x\|}{\|y\|} + \frac{\|y\|}{\|x\|} - \frac{x}{\|y\|} + \frac{y}{\|x\|}\right) \max\{\|x\|, \|y\|\}.
\]

Also, we use them as the estimates for a distance in normed linear spaces which we call **skew-angular distance**.
Definition 2.4. For two nonzero elements x and y in a real normed linear space $X = (X, \| \cdot \|)$, the distance
\[\beta[x, y] = \left\| \frac{x}{\|y\|} - \frac{y}{\|x\|} \right\| \]
(2.3)
is called the skew-angular distance between x and y.

Corollary 2.5. For any nonzero elements x and y in a real normed linear space $X = (X, \| \cdot \|)$,
\[\beta[x, y] \leq \frac{\|x - y\|}{\max\{\|x\|, \|y\|\}} + \frac{\||x| - \|y||}{\min\{\|x\|, \|y\|\}}, \]
(2.4)
\[\beta[x, y] \geq \frac{\|x - y\|}{\min\{\|x\|, \|y\|\}} - \frac{\||x| - \|y||}{\max\{\|x\|, \|y\|\}}. \]
(2.5)

Proof. Estimate (2.2) implies that
\[\left\| \frac{x}{\|y\|} - \frac{y}{\|x\|} \right\| \max\{\|x\|, \|y\|\} \leq \|x - y\| - \|x\| - \|y\| + \left(\frac{\|x\|}{\|y\|} + \frac{\|y\|}{\|x\|} \right) \max\{\|x\|, \|y\|\}. \]
Without loss of generality, we may assume that $\|x\| \leq \|y\|$. Then
\[\left\| \frac{x}{\|y\|} - \frac{y}{\|x\|} \right\| \|y\| \leq \|x - y\| + \frac{\|y\|}{\|x\|}(\|y\| - \|x\|), \]
and so
\[\left\| \frac{x}{\|y\|} - \frac{y}{\|x\|} \right\| \leq \frac{\|x - y\|}{\|y\|} + \frac{\|y\| - \|x\|}{\|x\|}. \]
Similarly, inequality (2.1) implies that
\[\left\| \frac{x}{\|y\|} - \frac{y}{\|x\|} \right\| \|x\| \geq \|x - y\| - \frac{\|x\|}{\|y\|}(\|y\| - \|x\|), \]
and so
\[\left\| \frac{x}{\|y\|} - \frac{y}{\|x\|} \right\| \geq \frac{\|x - y\|}{\|x\|} - \frac{\|y\| - \|x\|}{\|y\|}, \]
which completes the proof. \hfill \Box

Estimates (2.1) and (2.2) for the skew-angular distance mean that
\[\frac{\|x - y\|}{\min\{\|x\|, \|y\|\}} - \frac{\||x| - \|y||}{\max\{\|x\|, \|y\|\}} \leq \beta[x, y] \leq \frac{\|x - y\|}{\max\{\|x\|, \|y\|\}} + \frac{\||x| - \|y||}{\min\{\|x\|, \|y\|\}}. \]
Since $\|\|x\| - \|y|| \leq \|x - y\|$, we obtain the estimate
\[\beta[x, y] \leq \left(\frac{1}{\max\{\|x\|, \|y\|\}} + \frac{1}{\min\{\|x\|, \|y\|\}} \right) \|x - y\| = \left(\frac{1}{\|x\|} + \frac{1}{\|y\|} \right) \|x - y\|. \]
(2.6)
The constant 1 in the estimate (2.6) is the best possible even for an inner product space. In fact, consider $X = \mathbb{R}$ with the norm of x given by $\|x\| = |x|$. Take $x = -1$ and $y = \epsilon$, where $\epsilon > 0$ is small. Then
\[\beta[x, y] = \epsilon + \frac{1}{\epsilon} \quad \text{and} \quad \left(\frac{1}{\|x\|} + \frac{1}{\|y\|} \right) \|x - y\| = \left(1 + \frac{1}{\epsilon} \right) (1 + \epsilon). \]
Hence
\[\beta[x, y] \leq \frac{\|x\| \|y\|}{\|x\| + \|y\|} \|x - y\| = \frac{1 + \epsilon^2}{(1 + \epsilon)^2} \rightarrow 1 \]
as $\epsilon \rightarrow 0^+$.

MATHEMATICAL NOTES Vol. 93 No. 4 2013
3. CHARACTERIZATION OF INNER PRODUCT SPACES

In this section we compare the norm-angular distance $\alpha[x, y]$ with the skew-angular distance $\beta[x, y]$. The next theorem due to Lorch will be useful in what follows.

Theorem 3.1 (see [6]). Let $(X, \| \cdot \|)$ be a real normed linear space. Then the following statements are mutually equivalent:

(i) for each $x, y \in X$, if $\|x\| = \|y\|$, then $\|x + y\| \leq \|\gamma x + \gamma^{-1}y\|$ (for all $\gamma \neq 0$);

(ii) for each $x, y \in X$, if $\|x + y\| \leq \|\gamma x + \gamma^{-1}y\|$ (for all $\gamma \neq 0$), then $\|x\| = \|y\|$;

(iii) $(X, \| \cdot \|)$ is an inner product space.

Proof. Let $X = (X, \langle \cdot, \cdot \rangle)$ be an inner product space, $x, y \in X$, and $x, y \neq 0$. We have

$$\left\| \frac{x}{\|y\|} - \frac{y}{\|x\|} \right\|^2 - \left\| \frac{x}{\|y\|} - \frac{y}{\|x\|} \right\|^2 = \langle \frac{x}{\|y\|} - \frac{y}{\|x\|}, \frac{x}{\|y\|} - \frac{y}{\|x\|} \rangle - \langle \frac{x}{\|y\|} - \frac{y}{\|x\|}, \frac{x}{\|y\|} - \frac{y}{\|x\|} \rangle = \frac{\|x\|^2}{\|y\|^2} + \frac{\|y\|^2}{\|x\|^2} - 2\langle \frac{x}{\|x\|} - \frac{y}{\|y\|}, \frac{x}{\|x\|} - \frac{y}{\|y\|} \rangle = 2 \left(\frac{\|x\|^2}{\|y\|^2} - \frac{\|y\|^2}{\|x\|^2} - \frac{2\langle x, y \rangle}{\|x\|\|y\|} \right) = \frac{\|x\|^2}{\|y\|^2} + \frac{\|y\|^2}{\|x\|^2} - 2 = \left(\frac{\|x\|}{\|y\|} - \frac{\|y\|}{\|x\|} \right)^2 \geq 0,$$

which proves the necessity.

To prove the sufficiency, let $x, y \in X$, $\|x\| = \|y\|$, and $\gamma \neq 0$. From Theorem 3.1 it is enough to prove that

$$\|x + y\| \leq \|\gamma x + \gamma^{-1}y\|.$$

If $x = 0$ or $y = 0$, then the proof is clear. Let $x \neq 0$, $y \neq 0$, and $\gamma > 0$. Applying inequality (3.1) to $\gamma^{1/2}x$ and $-\gamma^{-1/2}y$, instead of x and y, respectively, we obtain

$$\left\| \frac{\gamma^{1/2}x}{\|x\|} + \frac{\gamma^{-1/2}y}{\|y\|} \right\| \leq \left\| \frac{\gamma^{1/2}x}{\|x\|} + \frac{\gamma^{-1/2}y}{\|y\|} \right\| \leq \left\| \gamma^{1/2}x \right\| + \gamma^{-1/2}y \right\|.$$

Thus,

$$\left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\| \leq \left\| \frac{x}{\|y\|} + \gamma^{-1}y \right\|.$$

Since $\|x\| = \|y\| \neq 0$, we have

$$\|x + y\| \leq \|\gamma x + \gamma^{-1}y\|.$$

Now, let γ be negative. Put $\mu = -\gamma > 0$. From the positive case, we obtain

$$\|x + y\| \leq \|\mu x + \mu^{-1}y\| = \|\gamma x + \gamma^{-1}y\|,$$

which completes the proof. \qed

ACKNOWLEDGMENTS

The author thanks the referees and Prof. J. Rooin for their valuable suggestions, which improved the original manuscript.
REFERENCES
1. L. Maligranda, “Simple norm inequalities,” Amer. Math. Monthly 113 (3), 256–260 (2006).
2. L. Maligranda, “Some remarks on the triangle inequality for norms,” Banach J. Math. Anal. 2 (2), 31–41 (2008).
3. J. A. Clarkson, “Uniformly convex spaces,” Trans. Amer. Math. Soc. 40 (3), 396–414 (1936).
4. J. L. Massera and J. J. Schäffer, “Linear differential equations and functional analysis, I,” 67, No. 3, 517–573 (1958).
5. C. F. Dunkl and K. S. Williams, “A simple norm inequality,” Amer. Math. Monthly 71 (1), 53–54 (1964).
6. E. R. Lorch, “On certain implications which characterize Hilbert space,” Ann. of Math. (2) 49 (3), 523–532 (1948).