Vibrational spectroscopic studies of 2-amino picoline

M. NAIR¹, S. MARY Y¹, P. GEETHA², P.S. AMALA DEVI³, H. T. VARGHESE⁴, K. RAJU¹ and C. Y. PANICKER⁵*

¹Department of Physics, University College, Thiruvananthapuram (India).
²Department of Physics, Govt. Arts and Science College, Calicut, (India).
³Department of Physics, S.N. College, Chempazhanthy, Thiruvananthapuram (India).
⁴Department of Physics, Fatima Mata National College, Kollam - 691 001 (India).
⁵Department of Physics, TKM College of Arts and Science, Kollam - 691 005 (India).

(Received: January 01, 2010; Accepted: February 02, 2010)

ABSTRACT

The vibrational wavenumbers of 2-amino picoline were calculated using Gaussian03 software package at different levels and the fundamental modes are assigned. The predicted infrared and Raman activities are reported. The first hyperpolarizability is calculated and the 2-amino picoline is an attractive object for future studies of non-linear optics. The calculated wavenumbers are in agreement with the reported experimental values.

Key words: HF, DFT calculations, hyperpolarizability, amino.

INTRODUCTION

Pyridine has been extensively studied spectroscopically, due to its application in many chemical structures of high interest in a variety of biomedical and industrial fields.¹ Pyridine has the intrinsic interest of being the azine nearest to benzene. Amino pyridines attract the attention of many spectroscopists due to their wide application in pharmacology and agro chemistry. They serve as a good anesthetic agent and hence are used in the preparation of drugs for certain brain disease. The derivatives of picoline have potent hypolipidemic effects, antineoplastic and anti-inflammatory activities and show good activity against leukemia and human glioma cell growth.² Jose and Mohan³ reported the vibrational spectra and normal coordinate analysis of 2-amino picoline. Ab initio quantum mechanical method is at present widely used for simulating the IR spectrum. Such simulations are indispensable tools to perform normal coordinate analysis that modern vibrational spectroscopy is unimaginable without involving them. In the present study, we have calculated the vibrational wavenumbers of the title compound by using Hartree-Fock and DFT methods and compared with the IR and Raman bands observed by Jose and Mohan.³ Many organic molecules containing conjugated π electrons and characterized by large values of molecular first hyperpolarizabilities have been analyzed by means of vibrational spectroscopy.⁴ In this context, the hyperpolarizability of the title compound was calculated theoretically.

Computational details

Calculations of the title compound were carried out with Gaussian03 program⁵ using the Hartree-Fock and DFT (B3LYP) levels of theory using the standard 6-31G* set to predict the molecular structure and vibrational wavenumbers. Molecular geometry (Figure 1) was fully optimized by Beryn's optimization algorithm using redundant internal coordinates. Harmonic vibrational wavenumbers were calculated using the analytic
second derivatives to confirm the convergence to minima of the potential surface. The wavenumber values computed contain known systematic errors and hence we have used scaling factors 0.8929 and 0.9613 for HF and DFT methods. The absence of imaginary wavenumbers of the calculated vibrational spectrum confirms that the structure deduced corresponds to minimum energy. The optimized geometrical parameters (DFT) are given in Table 1.

RESULTS AND DISCUSSION

The calculated scaled wavenumbers, experimental wavenumbers given by Jose and Mohan and the assignments are given in Table 2. The NH$_2$ stretching modes are expected in the region 3250-3480 cm$^{-1}$ and the DFT calculation give 3532 and 3425 cm$^{-1}$ as asymmetric and symmetric NH$_2$ stretching modes. Jose and Mohan reported bands at 3435, 3431 and 3407 cm$^{-1}$ as NH$_2$

Bond lengths (Å)	Bond Angles (°)	Dihedral Angles (°)	
C$_1$-C$_2$	1.4110	A(2,1,6) 122.9	D(6,1,2,3) 0.1
C$_1$-N$_6$	1.3397	A(2,1,10) 120.9	D(6,1,2,7) 179.6
C$_1$-N$_{10}$	1.3862	A(6,1,10) 116.2	D(10,1,2,3) -177.5
C$_2$-C$_2$	1.3892	A(1,2,3) 119.4	D(10,1,2,7) 2.0
C$_2$-H$_7$	1.0876	A(1,2,7) 120.0	D(2,1,6,5) -0.5
C$_3$-C$_4$	1.4065	A(3,2,7) 120.6	D(10,1,6,5) 177.2
C$_3$-C$_{13}$	1.5089	A(2,3,4) 117.7	D(2,1,10,11) -29.4
C$_4$-C$_5$	1.3883	A(2,3,13) 121.4	D(2,1,10,12) -164.9
C$_4$-H$_8$	1.0863	A(4,3,13) 120.9	D(6,1,10,11) 152.9
C$_5$-C$_4$	1.3408	A(3,4,5) 118.5	D(6,1,10,12) 17.4
C$_5$-H$_9$	1.0893	A(3,4,8) 121.0	D(1,2,3,4) 0.3
N$_{10}$-H$_{11}$	1.0111	A(5,4,8) 120.5	D(1,2,3,13) -179.9
N$_{10}$-H$_{12}$	1.0124	A(5,4,8) 124.4	D(7,2,3,4) -179.2
C$_{13}$-H$_{14}$	1.0944	A(4,5,9) 120.2	D(7,2,3,13) 0.6
C$_{13}$-H$_{15}$	1.0970	A(6,5,9) 115.4	D(2,3,4,5) -0.2
C$_{13}$-H$_{16}$	1.0969	A(1,6,5) 117.1	D(2,3,4,8) 180.0
A(1,10,11)	117.1	D(13,3,4,5) 180.0	
A(1,10,12)	117.1	D(13,3,4,8) 0.2	
A(11,10,12)	114.0	D(2,3,13,14) 0.4	
A(3,13,14)	111.7	D(2,3,13,15) 121.0	
A(3,13,15)	111.1	D(2,3,13,16) -120.1	
A(3,13,16)	111.0	D(4,3,13,14) -179.8	
A(14,13,15)	108.0	D(4,3,13,15) -59.2	
A(14,13,16)	108.0	D(4,3,13,16) 59.7	
A(15,13,16)	1070	D(3,4,5,6) -0.3	
A(3,4,5,9)	179.8		
A(8,4,5,6)	179.6		
A(8,4,5,9)	-0.0		
A(4,5,6,1)	0.06		
A(9,5,6,1)	-179.8		
Table 2: Calculated (scaled) wavenumbers and assignments

	HF/6-31G*	B3LYP/6-31G*	v_{IR} (cm⁻¹)	v_{Raman} (cm⁻¹)	Assignments	
v(cm⁻¹)	IR Intensity	Raman Activity	v_{IR} (cm⁻¹)	Raman Activity		
3499	29.12	59.43	5352	18.16	69.78	3435 3431 v_{asNH₂}
3400	39.76	125.70	3425	26.99	179.72	3407 v_{sNH₂}
3020	27.06	148.69	3077	18.77	137.09	3135 v_{CH}
3005	15.43	72.18	3057	16.09	85.78	3059 v_{CH}
2998	24.36	68.41	3043	31.70	97.98	3049 v_{CH}
2937	24.73	57.00	3007	18.14	54.08	3049 v_{sMe}
2915	24.02	89.08	2980	17.21	93.09	2977 2970 v_{asMe}
2866	25.03	140.20	2929	22.22	165.29	2914 2914 v_{sMe}
1631	372.58	313.05	1631	21.65	1635 1642 δ_{NH₂}	
1620	61.72	3.21	1596	4.12	1607 1603 v_{Py}	
1584	95.34	12.69	1558	11.26	1556 1549 v_{Py}	
1497	17.97	3.24	1482	6.46	1491 1484 δ_{Me}	
1463	56.35	6.91	1465	8.50	1470 v_{Py}	
1455	4.87	18.41	1454	19.42	1456 1456 δ_{Me}	
1416	104.07	8.52	1419	6.37	1470 δ_{Me}	
1397	2.21	8.74	1385	20.24	1379 1363 v_{Py}	
1309	0.09	3.99	1316	6.51	1335 1331 v_{Py}	
1296	40.15	5.84	1295	21.63	1307 1307 δ_{CH}	
1169	17.73	7.56	1273	4.66	1270 1266 v_{CN}	
1159	9.06	1.86	1163	3.72	1177 1173 δ_{CH}	
1123	6.18	6.57	1119	7.88	1128 1128 δ_{CH}	
1044	5.66	0.718	1047	0.97	1044 1044 p_{Me}	
1037	5.93	5.95	1031	5.03	1037 1037 p_{tNH₂}	
994	3.73	5.95	997	1.56	984 994 v_{Py}	
991	0.13	1.32	965	18.58	977 977 p_{Me}	
959	12.10	13.37	936	2.13	935 γ_{CH}	
927	7.09	0.78	930	4.33	927 927 γ_{CC}	
850	25.54	1.38	830	2.44	842 842 γ_{CH}	
806	52.76	0.84	788	1.76	784 784 γ_{CH}	
754	22.27	1.39	751	13.61	756 756 δ_{Py}(X)	
742	0.56	12.40	733	1.01	742 742 δ_{Py}	
616	132.81	3.65	601	3.73	616 616 ω_{NH₂}	
562	39.58	7.66	561	7.47	562 562 ω_{Py}(X)	
534	188.51	1.35	529	2.01	534 534 δ_{Py}(X)	
498	3.95	6.12	501	4.98	498 498 γ_{Py}(X)	
445	31.79	0.88	440	0.62	445 445 γ_{Py}(X)	
421	1.76	0.70	423	1.18	421 421 δ_{CC}(X)	
339	47.27	1.45	365	1.53	339 339 δ_{CN}(X)	
279	2.84	0.34	281	0.81	279 279 γ_{CC}(X)	
214	5.81	1.62	206	1.39	214 214 γ_{CN}(X)	
195	3.72	1.79	192	1.57	195 195 tMe	
51	0.28	0.12	48	0.21	51 51 tNH₂	

ω-stretching; δ-in-plane deformation; γ-out-of-plane deformation; ω-wagging; t-torsion; τ-twisting; ρ-rocking; Py-pyridine ring; X-Substituent sensitive; subscripts: as-asymmetric, s-symmetric. IR and Raman spectral data are taken from reference 3.
stretching modes. The NH$_2$ scissoring vibrations, expected around 1650 cm$^{-1}$ appear at 1642 cm$^{-1}$ Raman spectrum and at 1635 cm$^{-1}$ in the IR spectrum. The DFT calculations give this mode at 1613 cm$^{-1}$. The δNH$_2$ scissoring vibrations are reported at 1629 cm$^{-1}$ for sulfanilamide and at 1637 cm$^{-1}$ in IR, 1634 cm$^{-1}$ in Raman and 1642 cm$^{-1}$ in HF for orthanilic acid. According to Roeges ρNHNH$_2$ vibration is expected in the region 1070 ± 50 cm$^{-1}$ and in the present case the DFT calculation give this mode at 1031 cm$^{-1}$. Kurt et al. observed the ωNH$_2$ vibration at 667 cm$^{-1}$ in the IR spectrum and at 695 cm$^{-1}$ theoretically. Tzeng et al. calculated the wavenumber of the wagging vibration of amino group at 649 cm$^{-1}$ and experimentally at 665 cm$^{-1}$.

The pyridine CH stretching vibrations are observed in the range 3000-3100 cm$^{-1}$. Jose and Mohan reported CH stretching vibrations at 3135, 3059 cm$^{-1}$ in the IR spectrum and at 3049 cm$^{-1}$ in the Raman spectrum. The DFT calculations give these modes at 3077, 3057 and 3043 cm$^{-1}$. The pyridine ring stretching vibrations occur in the general region 1600-1300 cm$^{-1}$. These vibrations involve stretching and contraction of all the bonds in the ring and interaction between the stretching modes. In the present case the DFT calculations give νPy modes at 1596, 1558, 1465, 1385, 1316 cm$^{-1}$. The pyridine ring breathing mode is assigned at 997 cm$^{-1}$ (DFT). The in-plane and out-of-plane CH deformations are expected above 1000 and below 1000 cm$^{-1}$ and all these bands (Table 2) are assigned.

Analysis of organic molecules having conjugated π-electron systems and large hyperpolarizability using infrared and Raman spectroscopy has been evolved as a subject of research. The potential application of the title compound in the field of non linear optics demands the investigation of its structural and bonding features contributing to the hyperpolarizability enhancement, by analyzing the vibrational modes using the IR and Raman spectrum. The calculated first hyperpolarizability of the title compound is 2.47 \times 10$^{-30}$ esu, which is comparable with the reported values of similar derivatives. We conclude that the title compound is an attractive object for future studies of non linear optics.
REFERENCES

1. Katritzky, A.R., Rees, C.W., and Scriven, E.F.V., (Eds.), Comprehensive Heterocyclic Chemistry II, vol.5,6 Pergamon (1996).
2. Das, M.K., Maiti, P.K., Roy S., Mittakanli, M., Morse, K.W., and Hall, I.H., Arch. Pharm. Weinheim 325: 267 (1992).
3. Jose, S.P., and Mohan, S., Spectrochim. Acta 64A: 240 (2006).
4. Anto, P.L., Anto, R.J., Varghese, H.T., Panicker, C.Y., and Philip, D., J. Raman Spectrosc. doi. 10.1002/jrs.2406.
5. Frisch, M.J., et al. Gaussian03, Revision C.02, Gaussian Inc., Wallingford CT (2004).
6. Foresman, J.B., Frisch, E., in: Frisch, E., (Ed.) Exploring Chemistry with Electronic Structure Methods, A Guide to Using Gaussian, Gaussian, Pittsburg, PA (1996).
7. Roeges, N.P.G., A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York (1994).
8. Varghese, H.T., Panicker, C.Y., Anto, P.L., and Philip, D., J. Raman Spectrosc. 37: 487 (2006).
9. Anto, P.L., Panicker, C.Y., Varghese, H.T., and Philip, D., J. Raman Spectrosc. 37: 1265 (2006).
10. Kurt, M., Yurdakul, M., and Yurdakul, S., J. Mol. Struct. Theochem. 711: 25 (2004).
11. Tzeng, W.B., Narayanan, K., Sheih, K.C., and Tung, C.C., J. Mol. Struct. Theochem. 428: 231 (1998).
12. Colthup, N.B., Daly, L.H., and Wiberly,S.E., Introduction to Infrared and Raman Spectroscopy, ed. 2, Academic Press, New York (1985).
13. Klots, T.D., Spectrochim. Acta 54A: 1451 (1998).
14. Walters, V.A, Snavely, D.L., Colson, S.D., Wilberg, K.B., and Wong, K.N., J. Phys. Chem. 90: 592 (1986) 592.
15. JE.Arenas, J.E., Ottero, J.C., Centeno, S.P, Tocon, I.L, and Soto, J., Surf. Sci. 511: 163 (2002).
16. Silverstein, R.M, and Webster, F.X., Spectrometric Identification of Organic Compounds, ed. 6, Wily, Asia (2003).
17. Urena, F.P ., Gomez, M.F ., Gonzalez, J.J.L., and Torres, E.M., Spectrochim. Acta, 59A: 2815 (2003) 2815.
18. Tommasini, M., Castiglioni, C., Del Zoppo, M., and Zerbi, G., J. Mol. Struct. 480: 179 (1999).
19. Varghese, H.T., Panicker, C.Y., Madhavan, V.S., Mathew, S., Vinsova, J., and Van Alsenoy, C., J. Raman Spectrosc. doi:10.1002/jrs.2265.