Application of Fuzzy Logic for Predicting of Mine Fire in Underground Coal Mine

Esmatullah Danish a,*, Mustafa Onder b

aKabul Polytechnic University, Underground Mining Engineering Department, Karte Mamorin, 5th Districts, Kabul, Afghanistan
bEskisehir Osmangazi University, Mining Engineering Department, Eskisehir, 26040, Turkey

A R T I C L E I N F O
Article history:
Received 22 April 2019
Received in revised form 7 May 2020
Accepted 17 June 2020
Available online 26 June 2020

Keywords:
fire intensity
fuzzy logic model
mine fire prediction
spontaneous combustion

A B S T R A C T
Background: Spontaneous combustion of coal is one of the factors which causes direct or indirect gas and dust explosion, mine fire, the release of toxic gases, loss of reserve, and loss of miners' life. To avoid these incidents, the prediction of spontaneous combustion is essential. The safety of miner's in the mining field can be assured if the prediction of a coal fire is carried out at an early stage.

Method: Adularya Underground Coal Mine which is fully mechanized with longwall mining method was selected as a case study area. The data collected for 2017, by sensors from ten gas monitoring stations were used for the simulation and prediction of a coal fire. In this study, the fuzzy logic model is used because of the uncertainties, nonlinearity, and imprecise variables in the data. For coal fire prediction, CO, O₂, N₂, and temperature were used as input variables whereas fire intensity was considered as the output variable. The simulation of the model is carried out using the Mamdani inference system and run by the Fuzzy Logic Toolbox in MATLAB.

Results: The results showed that the fuzzy logic system is more reliable in predicting fire intensity with respect to uncertainties and nonlinearities of the data. It also indicates that the 1409 and 610/2B gas station points have a greater chance of causing spontaneous combustion and therefore require a precautionary measure.

Conclusion: The fuzzy logic model shows higher probability in predicting fire intensity with the simultaneous application of many variables compared with Graham's index.

© 2020 Occupational Safety and Health Research Institute, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction
In recent years, the world is faced by energy challenges due to overwhelming increase in population. Coal is one of the sources of energy used in both the developed and the developing nations. For instance, in Turkey's vision 2023, the capacity of coal power plants projected an increase from 15 GW in 2015 to 30 GW in 2023. Coal alone is expected to contribute about 25% of the electricity demand. This shows that there will be an increase in coal consumption in Turkey by the year 2023 [1].

Spontaneous combustion of coal is one of the factors which cause direct or indirect gas and dust explosion, mine fire, the release of toxic gases, loss of reserve, and loss of miners' life. The carrying out of early assessment and prediction of spontaneous combustion play a key role in combatting with these problems.
Coal spontaneous combustion not only destroys coal reserve, but also emits greenhouse gases and toxic gases to the environment. Physical hazard and poor air quality caused by coal fire and coal mine fires increase the risk of community exposure to high concentration of contaminants known as aerosolized particles [10]. In China, it is reported that, each year, 20 to 200 million tonnes of coal were combusted through coal fires, which release about 1% of global carbon dioxide [11]. In addition, it is reported that, in a year, about 40 tonnes of mercury were released into the atmosphere worldwide due to coal fire, and nearly, and 3% of global carbon dioxide are said to be released by coal fires [12].

For ensuring safety, the prediction of spontaneous combustions is very important. Since 1941, an estimated number of three thousand miners lost their lives, and more than 100 thousand miners were injured in different Turkish mines owing to the gas explosion, mine collapse and mine fire [13].

Spontaneous combustion of coal is an inherent phenomenon in coal mining and is considered as a natural hazard during mining. Spontaneous combustion is a physical and chemical reaction occurring when coal is exposed to oxygen. An increase in hydrogen, carbon, moisture, and volatile matter, the existence of pyrite, the existence of sulfur, and a decrease in ash content could catalyze the cause of spontaneous combustion [14].

There are numerous methods used for early detection of spontaneous combustion in underground coal mines. These include the fuzzy logic method [6,15], monitoring of concentration of gases produced during spontaneous combustion [16–22], the electromagnetic radiation technique [23], temperature measurement [24–26], numerical modeling [27–29], statistical analysis [30], the gray model [31], the analytical method [32], remote sensing [33], and the radon detection method [34]. Out of these, the most widely used technique in initial prediction of spontaneous combustion and fire status is the gas indices, such as oxides of carbon ratio (CO/CO2), Willet’s ratio, Jones and Trickett ratio, Graham’s ratio, Young’s ratio, and so on. [35–37]. With the development of instruments for taking gas samples, predicting of coal fires, and coal spontaneous combustion by utilizing low-temperature hydrocarbons, such as C2H2, C2H6, C2H4, and C/H ratio, and Litton ratio, early prediction could be improved [2,35]. The main hydrocarbon ratios are shown as follows:

\[
\frac{C_{CO}}{C_{H_2}}; \frac{C_{CH_4}}{C_{C_2H_6}}; \frac{C_{C_2H_6}}{C_{C_2H_4}}; \frac{C_{C_2H_4}}{C_{C_2H_2}}; \frac{C_{C_2H_2}}{C_{C_2H_2}}; \frac{C_{C_2H_4}}{C_{H_2}}
\]

coal were combusted through coal fires, which release about 1% of global carbon dioxide [11]. In addition, it is reported that, in a year, about 40 tonnes of mercury were released into the atmosphere worldwide due to coal fire, and nearly, and 3% of global carbon dioxide are said to be released by coal fires [12].

For ensuring safety, the prediction of spontaneous combustions is very important. Since 1941, an estimated number of three thousand miners lost their lives, and more than 100 thousand miners were injured in different Turkish mines owing to the gas explosion, mine collapse and mine fire [13].

Spontaneous combustion of coal is an inherent phenomenon in coal mining and is considered as a natural hazard during mining. Spontaneous combustion is a physical and chemical reaction occurring when coal is exposed to oxygen. An increase in hydrogen, carbon, moisture, and volatile matter, the existence of pyrite, the existence of sulfur, and a decrease in ash content could catalyze the cause of spontaneous combustion [14].

There are numerous methods used for early detection of spontaneous combustion in underground coal mines. These include the fuzzy logic method [6,15], monitoring of concentration of gases produced during spontaneous combustion [16–22], the electromagnetic radiation technique [23], temperature measurement [24–26], numerical modeling [27–29], statistical analysis [30], the gray model [31], the analytical method [32], remote sensing [33], and the radon detection method [34]. Out of these, the most widely used technique in initial prediction of spontaneous combustion and fire status is the gas indices, such as oxides of carbon ratio (CO/CO2), Willet’s ratio, Jones and Trickett ratio, Graham’s ratio, Young’s ratio, and so on. [35–37]. With the development of instruments for taking gas samples, predicting of coal fires, and coal spontaneous combustion by utilizing low-temperature hydrocarbons, such as C2H2, C2H6, C2H4, and C/H ratio, and Litton ratio, early prediction could be improved [2,35]. The main hydrocarbon ratios are shown as follows:

\[
\frac{C_{CO}}{C_{H_2}}; \frac{C_{CH_4}}{C_{C_2H_6}}; \frac{C_{C_2H_6}}{C_{C_2H_4}}; \frac{C_{C_2H_4}}{C_{C_2H_2}}; \frac{C_{C_2H_2}}{C_{C_2H_2}}; \frac{C_{C_2H_4}}{C_{H_2}}
\]
measurement of carbon dioxide. Grychowski et al [15] studied an offline fuzzy logic model for monitoring of fire hazard in the underground coal mine. He has also considered carbon dioxide as the input variable, but the main factor temperature, which is increasing during combustion and accelerates the spontaneous combustion of coal and coal fire, was not considered. Meanwhile, the concentration of oxygen was considered unreliable (21.25 and 21.09%) which is higher than the normal concentration of oxygen in the air (20.95%).

Although all the methods have made certain success in prediction of coal fire, fuzzy logic will be better because the high uncertainty and nonlinearity conditions will be efficiently handled with the linguistic variables. Fuzzy logic is based on the logic of approximation and uncertainty to generate decisions from the monitoring data. Fuzzy rules are extracted from expert opinion, knowledge, and experience which shows uncertainty and ambiguity in the fuzzy system. In addition, uncertainties exist at the measuring devices or monitoring sensors.

Fuzzy system is a nonlinear mapping of input data into output using fuzzy logic. This mapping is carried out using the fuzzification, fuzzy inference, and defuzzification. In addition, spontaneous heating of coal is a complex process, and there exists a nonlinear relationship between crossing point temperature and intrinsic parameters.

Recently, the application of the fuzzy logic model has attracted the attention of many researchers. In this study, the fuzzy inference system was applied to deal with high uncertainties and nonlinearities in predicting of spontaneous combustion of coal and coal fire.

2. Materials and methods

2.1. Material

AUCM is classified as a lignite coal mine, which is located at Mihalçıç. Mihalçıç is a town that is at distance of 128 km from the Eskişehir province, and 145 km from Ankara, the capital of Turkey (Fig. 1). It covers an area of 40 km² and produces 3.91 million tons of coal annually. Adularya power plant has been established in 2007, under the supervision of Nakşan Holding Group with the capacity of 2 × 145 MW, and contributes about

![Fig. 2. The location of sensors for measuring the gas samples and temperature.](image-url)
1.17% of Turkey’s electricity supply. Adularya coal mine is divided into three sections, A, D, and E. Currently, coal seam mining is ongoing at section A and has covered a length of 250 m of the working surface. In section D, all development and preparation works are ongoing with three Dosco Marks roadheaders for a new fully mechanized longwall method. Adularya coal mine is a fully mechanized coal mine, in which all actions from coal production in the mine and transportation to the power plant are mechanical. The mining method is mechanized longwall, where mining residual coals remain in the gob. These residual coals make the condition suitable for spontaneous combustion. The ‘U’ type ventilation system is applied to the working face, with volumetric air rate of 45.15 m³/sec and velocity of 2.11 m/sec.

Section E is not considered in this study. In this section, production is not ongoing, because this section is too close to the mined-out area. In this section, ventilation and water drainage are carrying out; just production is not ongoing. In addition, the development works have been made. This area has very much reserve; therefore, in the future, this area will be mined with other areas together.

Adularya coal mine works in three shifts with eight hours per shift. Every hour, gas samples, temperature, and air velocity are measured by sensors that are firmly situated on the side wall of the gallery with supports of the gallery (Fig. 2). The measurement of gas samples in section A is carried out at eight station points namely, main intake, 510, 1410, 1409, 610/2B, 610, A06, and main return, and two station points in section D namely, D and D210. In this study, the data collected for 2017 are used to determine whether there is a threat of spontaneous combustion of coal and mine fire in the area. The mean values of the data for each gas monitoring station are listed in Table 1. Fig. 3 shows the gas monitoring station points and the general ventilation system of AUCM. In Fig. 3, the gas monitoring stations have the same monitoring sensors (temperature sensor, carbon monoxide sensor, oxygen sensor, and air velocity sensor) for monitoring the mine environment. They do not have any specific differences with respect to monitoring, but they have different conditions with respect to safe and unsafe situations. The safe and unsafe situations of monitoring stations with more details will be discussed in results and discussion sections.

According to Turkish underground mine’s regulation, it is compulsory to locate the sensors in main intake and in main return air ways, like main intake and main return monitoring stations (Fig. 3). In addition, in production areas, sensors must be located in intake and return air ways, like 610/2B and A06 monitoring stations (Fig. 3). In the areas which are ventilating by auxiliary ventilation, the sensors must be located in return air way, like 1409 and 1410 monitoring stations (Fig. 3).

2.2. Methods

2.2.1. Fuzzy inference system

The fuzzy inference system is a famous computing framework based on the principles of fuzzy set theory, fuzzy ‘IF-THEN’ rules, and fuzzy reasoning. The fuzzy system has been successfully applied in various fields such as data classification, automatic control, expert system, decision analysis, robotics, time series prediction, and pattern recognition [41].

A fuzzy logic model consists of four components such as fuzzifier, rule base, inference engine, and defuzzifier. The general structure of a fuzzy logic model is shown in Fig. 4. Before describing the fuzzy inference system, fuzzy set theory and crisp set theory would be discussed.

2.2.2. Fuzzy and crisp set theory

A fuzzy set is a generalization of a classical set or is a set without a crisp boundary and characterized by a characteristic function between zero and one (\(\mu \in [0, 1]\)). In addition, each element is connected with a membership degree value and takes a membership value of zero or one (\(\mu \in \{0, 1\}\)) (Yes, No condition). In crisp set \(F\), the membership or nonmembership of an element \(x\) is represented by the characteristic function \(\mu_F\) of \(F\), expressed by

\[
\mu_F(x) = \begin{cases}
1 & \text{if } x \in F \\
0 & \text{if } x \notin F
\end{cases}
\]

In a fuzzy set \(P\), with the input crisp set \(x\) is represented by the membership function, defined by
The concentration of CO, O2, N2, and CO2 are commonly used as indicators for early predicting of coal spontaneous combustion [2]. For developing a fuzzy model, the fuzzy logic set theory and known as the backbone of the fuzzy logic system. The relationship between inputs and outputs are expressed as Fuzzy sets, but the outputs are always fuzzy sets [41]. When the input is as crisp input sets, the fuzzifier is used for mapping the crisp input sets to fuzzy input sets. In the fuzzification part, the precise values are converted to imprecise values. In other words, for each crisp input variable, given linguistic values, and linguistic values characterized by their membership function, those variables whose values are words rather than numbers are called linguistic variables [43]. The temperature, CO, O2, N2 linguistic input variables, and fire intensity was considered as a linguistic output variable. Table 2 shows the input and output variables, linguistic values characterized by their membership function, membership function's ranges, and membership function shapes. Various shapes of membership functions are used for presenting the linguistic values, such as trapezoidal, Gaussian, bell curve, triangular, and sigmoid. The trapezoidal shape of the membership function is used in this study, for all inputs and output, graphical trapezoidal membership functions are illustrated in Fig. 6. The trapezoidal membership function could be specified by four parameters \(a, b, c, d \) as follows:

\[
\text{Trapezoidal} (x; a, b, c, d) = \begin{cases}
0, & x \leq a. \\
\frac{x - a}{b - a}, & a \leq x \leq b. \\
1, & b \leq x \leq c. \\
\frac{d - x}{d - c}, & c \leq x \leq d. \\
0, & d \leq x.
\end{cases}
\]

By using the MAX and MIN trapezoidal membership function is specified as follows:

\[
\text{Trapezoidal} (x; a, b, c, d) = \text{MAX} \left(\text{MIN} \left(\frac{x - a}{b - a}, 1, \frac{d - x}{d - c} \right), 0 \right)
\]

where \(a, b, c, \) and \(d \) are the parameters of membership functions on the x-coordinate and \(x \) is the considered crisp input value.

2.2.4. Fuzzy conditional statement and inference engine

These two components of the fuzzy logic model work closely together and constitute important modeling tools that are based on the fuzzy logic set theory and known as the backbone of the fuzzy logic system. The relationship between inputs and outputs are described by ‘IF-THEN’ rules (Equation 8), and fuzzy conditional

\[
P = \{x, \mu_F(x)|x \in F\}
\]

where \(F \) is universal discourse and \(\mu_F(x) \) is the membership function for the fuzzy set \(P \). The membership degree of \(x \) variables which is expressed as

\[
\mu_F(x) \rightarrow [0, 1]
\]
Variables	Linguistic values	Membership function shape	Ranges	Membership function parameters
Input variables				
Nitrogen (N₂)	Low (L)	Trapezoidal	[0-85]	[0, 0, 20, 30]
	Moderate (M)	Trapezoidal	[20, 30, 50, 70]	[20, 30, 50, 70]
	High (H)	Trapezoidal	[50, 70, 85, 85]	[50, 70, 85, 85]
Oxygen (O₂)	Low (L)	Trapezoidal	[0-20.95]	[0, 0, 5, 8]
	Moderate (M)	Trapezoidal	[5,8,14,18]	[5,8,14,18]
	High (H)	Trapezoidal	[14, 18, 20, 20.95]	[14, 18, 20, 20.95]
Temperature (T)	Low (L)	Trapezoidal	[0-45]	[0, 0, 10, 15]
	Moderate (M)	Trapezoidal	[10,15,20,30]	[10,15,20,30]
	High (H)	Trapezoidal	[20,30,45,45]	[20,30,45,45]
Carbon monoxide (CO)	Low (L)	Trapezoidal	[0-0.006]	[0, 0, 0.001, 0.002]
	Moderate (M)	Trapezoidal	[0.001, 0.002, 0.004, 0.0045]	[0.001, 0.002, 0.004, 0.0045]
	High (H)	Trapezoidal	[0.004, 0.0045, 0.006, 0.006]	[0.004, 0.0045, 0.006, 0.006]

Output variable	Linguistic values	Membership function shape	Ranges	Membership function parameters
Fire intensity (FI)	Very low (VL)	Trapezoidal	[0-3]	[0, 0, 0.2, 0.4]
	Low (L)	Trapezoidal	[0.2, 0.4, 0.45, 0.5]	[0.2, 0.4, 0.45, 0.5]
	Moderate (M)	Trapezoidal	[0.45, 0.5, 0.75, 1]	[0.45, 0.5, 0.75, 1]
	High (H)	Trapezoidal	[0.75, 1, 1.5, 2]	[0.75, 1, 1.5, 2]
	Very high (VH)	Trapezoidal	[1.5, 2, 3, 3]	[1.5, 2, 3, 3]

Fig. 6. The graphical trapezoidal shape membership function of fuzzy inputs: (a) nitrogen, (b) oxygen, (c) temperature, (d) carbon monoxide, and fuzzy output (e) fire intensity.
statement consists of antecedent and consequence sections. Fuzzy relations can be combined with various operators such as AND, OR, and NOT which are called MIN, MAX, and complement operators, respectively [41]. In this fuzzy model, the AND operator was used for creating fuzzy relations which is expressed as follows:

\[
\mu_{f_1}(x_i) \text{ and } \mu_{f_2}(x_j) = \mu_{f_1}(x_i) \cap \mu_{f_2}(x_j) = \text{MIN}\left(\mu_{f_1}(x_i), \mu_{f_2}(x_j)\right) \tag{7}
\]

where \(\mu_{f_1}(x_i)\) and \(\mu_{f_2}(x_j)\) are the membership functions of \(F_1\) and \(F_2\) fuzzy sets, respectively.

\(R_i = \text{IF}(X_1 \text{ is } A_{i1} \text{ and } X_2 \text{ is } A_{i2} \text{ and } \ldots \text{ and } X_n \text{ is } A_{in}) \text{ THEN}(Y = D_i)\) \tag{8}

where \(R_i\) is a number of \(R_i\)th rules, \(X_1, X_2, X_n\) are inputs, \(Y\) is the output variable, \(A_{i1}, A_{i2}, A_{in}\) are inputs, and \(D_i\) is the output linguistic value. In the \(\text{IF-THEN}\) rules, \(X_i \text{ is } A_{i1}\) and \(X_2 \text{ is } A_{i2}\) and \(\ldots\) and \(X_n \text{ is } A_{in}\) and \((Y = D_i)\) are called antecedents and consequence, respectively.

The fuzzy conditional statement and inference engine are also called the fuzzy logic controller, in which the fuzzy engine processes all fuzzy inputs by using the fuzzy logic theories based on the sets of fuzzy ‘IF-THEN’ rules and creates fuzzy output sets, which are used in decision making (Fig. 7). In this paper, for predicting the coal fire with the fuzzy logic system, 81 ‘IF-THEN’ rules (Equation 8) were created and are listed in Tables 3, 4.

2.2.5. Defuzzification

The nature of defuzzification operations is opposite to fuzzification. As mentioned in section 2.2.3 fuzzy logic model inputs can either be fuzzy sets or crisp sets, but the outputs are always fuzzy sets. To recognize the fire intensity, like other gas indices, the real world for decision making needs a crisp value, as shown in the general structure of the fuzzy logic model (Fig. 4); then, defuzzification has to be carried out. There are different defuzzification methods such as centroid of area (COA), bisector of area, mean of maximum, smallest of maximum, and largest of maximum. Among them, COA has been widely used in different applications [41]. In this study, COA, which is a widely used defuzzification method, was used and expressed as follows:

\[FI = \text{COA}(Y)\]

Table 3

R#	IF-THEN rules
1	IF \(N_2\) is Low and \(O_2\) is Low and \(T\) is Low and \(CO\) is High THEN \(FI\) is High
2	IF \(N_2\) is Low and \(O_2\) is Low and \(T\) is Low and \(CO\) is Moderate THEN \(FI\) is Moderate
3	IF \(N_2\) is Low and \(O_2\) is Low and \(T\) is Moderate and \(CO\) is High THEN \(FI\) is Very high
4	IF \(N_2\) is Moderate and \(O_2\) is Low and \(T\) is Low and \(CO\) is High THEN \(FI\) is Very high
5	IF \(N_2\) is Moderate and \(O_2\) is Low and \(T\) is Low and \(CO\) is Moderate THEN \(FI\) is Moderate
6	IF \(N_2\) is High and \(O_2\) is High and \(T\) is Moderate and \(CO\) is High THEN \(FI\) is Moderate

\(FI\), fire intensity.

Fig. 7. Main structure of the fuzzy controller system and defuzzification steps.
where $m_A(z)$ is the aggregated membership function of output fuzzy set A, z_{COA} is the crisp value.

In general, there are three commonly used fuzzy inference systems in the various application based on linguistic rules, such as Mamdani systems, Sugeno or Takagi, Sugeno and Kang (TSK) models, and Tsukamoto models [44]. The differences between the aforementioned fuzzy inference systems are in the consequents of their fuzzy rules, aggregation, and defuzzification. Thus, the result, after defuzzification in Mamdani system, has been given as a crisp output whereas in the TSK model the result is given as the polynomial function. For more clarification, typical fuzzy rules for Mamdani fuzzy system and TSK fuzzy system are given as follows:

Mamdani:
\[\text{IF } X_1 \text{ is } A_{1k} \text{ and } X_2 \text{ is } A_{2k} \text{ THEN } Y \text{ is } D_{k} \]
\[\text{for } k = 1, 2, 3, \ldots, r \]
where A_{1k} and A_{2k} are fuzzy sets in the kth antecedent and D_k is the fuzzy set in the kth consequent.

TSK:
\[\text{IF } X_1 \text{ is } A_{11} \text{ and } X_2 \text{ is } A_{12} \text{ THEN } Y \text{ is } f(a, b) \]
\[\text{where } A_{11} \text{ and } A_{12} \text{ are fuzzy sets in the antecedent and } Y = f(a, b) \text{ is a crisp function in the consequent.} \]

Consequently, for prediction of the coal fire in this work, Mamdani fuzzy inference system [45] is used because of its easiness to interpret and well accepted for human input.

Muduli et al [6] proposed a fuzzy logic model based on online fire monitoring in underground coal mines, where temperature, oxygen, carbon dioxide, and carbon monoxide were considered as input variables, and Grychowski et al [15] studied an online fire fuzzy logic model for monitoring of fire hazard in the underground coal mine. He has also considered oxygen, carbon dioxide, and carbon monoxide as input variables, but the main factor temperature, which is increasing during combustion and accelerates the spontaneous combustion of coal and coal fire, was not considered. Meanwhile, the concentration of oxygen was considered unreliable (21.25 and 21.09%) which is higher than the normal concentration of oxygen in the air (20.95%). The differences of these studies and our study are in input variables, fuzzy rule base, and analyzed data.

In the fuzzy logic model suggested here, oxygen, carbon monoxide, temperature, and nitrogen were considered as input variables whereas fire intensity considered as an output variable. According to Turkish mine’s regulation, measurement of carbon dioxide is not compulsory, and hence, AUCM does not carry out measurement of carbon dioxide. In this paper, we have generated 81 'IF-THEN' rules which are called as a backbone of the fuzzy logic

R#	Inputs	Output	R#	Inputs	Output	R#	Inputs	Output
1	L L L H	H	28	M M L L	H	55	H L L H	H
2	L L L M	M	29	M M L L	M	56	H L L M	M
3	L L L L	L	30	M M L L	L	57	H L L L	L
4	L L M H	VH	31	M M L M	H	58	H L L M	VH
5	L L M M	M	32	M M L M	M	59	H L M M	M
6	L L M L	L	33	M M L M	L	60	H L M L	M
7	L L H H	VH	34	M L H L	H	61	H L H L	VH
8	L L H M	VH	35	M L H M	H	62	H L H M	VH
9	L L H L	M	36	M L L H	L	63	H L L H	M
10	L M L H	H	37	M L L H	H	64	H M L H	H
11	L M L M	L	38	M M L L	M	65	H M L M	L
12	L M L L	L	39	M M L L	L	66	H M L H	VH
13	L L M M	H	40	M M L M	H	67	H M M H	M
14	L L M L	M	41	M M L M	M	68	H M M M	L
15	L L M L	L	42	M L M M	L	69	H M M H	M
16	L L H H	VH	43	M L H M	H	70	H L H H	H
17	L L H L	M	44	M L H M	H	71	H L H M	M
18	L M H L	M	45	M L L L	M	72	H L H L	L
19	L H L L	H	46	M L L H	H	73	H H L H	M
20	L H L M	M	47	M H M L	L	74	H H L M	L
21	L H L L	L	48	M H L L	L	75	H H L H	L
22	L H L M	M	49	M H M L	L	76	H H H M	M
23	L H L L	L	50	M H M L	L	77	H H M L	M
24	L H M L	L	51	M H M L	L	78	H H M L	L
25	L H H H	VH	52	M H H H	M	79	H H H H	H
26	L H H M	H	53	M H H M	H	80	H H H H	M
27	L H H L	L	54	M H H L	L	81	H H H L	L

Note: VL: very low, L: low, M: moderate, H: high, VH: very high.
system which differ from other works. On the another hand, the membership function shape, range, and membership function parameters differ from existing researches. In addition, Muduli’s et al [6] work was validated by statistical test, and ours was validated by Graham’s index.

2.2.6. Fire ratios

Prediction of spontaneous combustion of coal based on the gas monitoring data is conducted using different gas indices. For predicting of spontaneous combustion, in underground coal mines, some important gas ratios proposed by different researchers such as oxides of carbon ratio (CO/CO₂), Willet’s ratio, Jones and Trickett ratio, Graham’s ratio, Young’s ratio, dry ash-free oxygen index, desorbed hydrocarbon index, and (N₂/(CO + CO₂)) ratio.

Consequently, all the aforementioned fire indices have their own advantages, disadvantages, and limitation. The area in underground coal mines based on gas sampling is divided into two groups (1) ventilated areas and (2) sealed off areas. However, because the evaluation of gases which are taken from behind seals differs from the analysis of gases which are taken from the ventilated air, the fire ratios should be considered into two groups: (1) fire ratios for ventilated areas and (2) fire ratios for the sealed-off area [36]. Hence, Graham’s ratio, CO/CO₂ ratio, Jones and Trickett’s ratio, and so on are used for analyzing the ventilated areas, and desorbed hydrocarbon index, dry ash-free oxygen index, N₂/(CO + CO₂) index, CO/CO₂ ratio, and so on are used for sealed off area analysis. As mentioned in section 1 according to Turkish mine’s regulation, measurement of carbon dioxide is not compulsory; therefore, Graham’s ratio was used. Advantages of Graham’s ratio include the following: (1) it is used as an index for detecting the status of the fire in the early stage and in the development stages because of spontaneous combustion in underground coal mines, (2) it is widely accepted because of the availability of CO field sensor as a comparison to CO₂ sensor, (3) it does not involve carbon dioxide, and (4) can be used for ventilated areas. Owing to these advantages, Graham’s ratio was selected for validation of fuzzy logic simulation.

2.2.6.1. Graham’s ratio (GR). Graham’s ratio which is widely used as an index for detecting the status of the fire in early stages as well as in development stages due to spontaneous combustion in underground coal mines [35,36]. This ratio is also named as Graham index and carbon monoxide index, and stated as carbon monoxide/oxygen deficiency, which means the release of carbon monoxide due to heating or spontaneous combustion causes oxygen consumption. The rating of fire intensity by Graham’s ratio is shown in Table 5. This ratio is generally expressed as a percentage and is calculated by the following equation:

\[
GR = 100 \times \frac{CO}{0.265 \times N_2 - O_2}
\]

where \(N_2, O_2, \) and \(CO \) are the percentage of gas samples taken at any time and from anywhere in underground coal mines.

3. Results

As stated earlier, spontaneous combustion causes fire in underground coal mines, and various methods are used for detection and forecasting of coal fire in underground coal mines. During spontaneous combustion process, some gases are produced, and the detection of coal fire can be carried out by gas indicators, such as CO, CO₂, N₂, CH₄ and so on. As a result, many fire ratios are used to forecast and assess the fire status in underground coal mines. The most widely used fire ratios are oxides of carbon ratio (CO/CO₂), Willet’s ratio, Jones and Trickett ratio, Graham’s ratio, Young’s
ratio, dry ash-free oxygen index, desorbed hydrocarbon index, and \(\frac{N_2}{(CO + CO_2)} \) ratio. Among them, Graham’s ratio, because of its easiness to interpret, can be used for early detection and advanced fire stages, as it does not involve carbon dioxide and can be used for both ventilated areas and sealed-off areas, is more accepted, and is widely used as a fire ratio (Equation 12). During spontaneous combustion of coal, the increase in temperature increases the production of gases with the consumption of oxygen in underground coal mines. The most determinant parameters for prediction of coal fire are oxygen, CO, CO\(_2\), N\(_2\), and temperature in underground coal mines.

Prediction of coal fire in AUCM with the fuzzy model was carried out for each gas station, and the results are shown in Fig. 8. Fig. 8 shows considerable values for 1409 and 610/2B gas station points: 1409 gas station is in under development gallery, 610/2B gas station point is near to working face and in the middle of drift which is mined into the coal seam and is parallel to the mine gob. In underground coal mines, when a coal seam is being mined, residual coals in the gob are subjected to low-temperature oxidation on exposure to air leakage of ventilation system, which may result in the ignition of residual coals. As a result, the longwall gob area is the main place for spontaneous combustion in AUCM which is in line with the result reported by Taraba and Michalec [46]. However, attention should be paid to these two points which is suspected for future spontaneous combustion, and therefore, precautionary action has to be taken. The result of fuzzy logic model for each gas monitoring station shows that the value increases gradually from main intake toward return airway. This result is in line with the results reported in the literature [6]. Fig. 8 also shows that the spontaneous combustion likely to increase seasonally; as shown in June, July, August, September, and October, the values are higher than those of other months. The value of the main intake gas station point in July, August, and September shows an increase in the fuzzy model (Fig. 8).

For validation of the fuzzy logic model, the result of the fuzzy logic model was compared with Graham’s index result (Fig. 9). Fig. 9 shows that the values of Graham index increased at 1409 and 1410 stations as well. Graham’s index remains unchanged seasonally, but shows a high increase at 1409 and 1410 stations in July and September, respectively. In Fig. 9, if we decrease the value of 1409 monitoring station in month seven and value of 1410 monitoring station in month nine, the other monitoring station values will appear.

4. Discussion

AUCM was selected as a case study to assess whether is prone to coal fire or not. The data were collected from 10 gas monitoring...
stations in AUCM colliery in whole 2017 as shown in Table 1. In this study, a fuzzy logic model is proposed for predicting and assessing the fire status in AUCM. In the fuzzy logic model suggested here, N2, O2, CO, and temperature were used as inputs variables, and fire intensity was used as an output variable (Fig. 10). In simulating the fuzzy logic model, Fuzzy Logic Toolbox in MATLAB R2017a on a system with an Intel core i7-4500U, 1.80GHz CPU, and 16GB RAM running on Microsoft Windows 8.1 Pro platform was used. As mentioned in section 2.2.1, the fuzzy logic system consist of four components; fuzzification, rule base, inference engine, and defuzzification. In the fuzzification step, crisp values which were introduced as inputs were converted to fuzzy inputs by giving them linguistic values (Table 2) and trapezoidal shape membership functions (Fig. 6). In rule base step, by using Equation 8, 81 ‘IF-THEN’ rules were generated based on knowledge expert as shown in Table 4. For the case of the inference engine step, it is based on created rules which generated fuzzy output sets using Mamdani fuzzy inference system (Equation 10) and is a widely used inference system. The defuzzification step is done to obtain a crisp value for interpreting the fire status, like other fire indices, and fuzzy output defuzzified to crisp output by using the COA method (Equation 9).

As shown in Fig. 8, 1409 and 610/2B gas monitoring station points show considerable values. 1409 gas monitoring station is in the under development gallery; therefore, the air is polluted and the temperature is high because of the series of ventilation system and working of machines. The fresh air comes from the main intake airway, passes through 510, 1410 serially, and then ventilates 1409, but the main result for spontaneous combustion of coal is the intersection of two galleries (Fig. 3, point 12). The thickness of the pillar in this point is less, and owing to overburden pressure, cracks and fractures are formed; therefore, this phenomenon leads to air leakage into pillar, and in addition, mine air circulates the shortest way through formed cracks and fractures into pillar to ventilate next galleries and accelerate spontaneous combustion process in

Table 6	Rating of fire intensity with record to the fuzzy model
Fuzzy model	Comments
<0.3	Indicates normal status
≥0.3 < 0.48	Indicates certain heating
≥0.48 < 0.88	Indicates heating in an advanced stage
≥0.88 < 1.8	Indicates active fire
≥1.8 < 3	Indicates blazing fire
this gallery as a result. 610/2B gas monitoring station point is the most dangerous point in AUCM till now because the cross section of gallery is shrinking, and cracks and fractures are being formed because of overburden pressure. Therefore, when the crosscut of gallery is decreased, the air pressure goes up and air leakage occurred into the mine gob through cracks and fractures accelerate the spontaneous combustion phenomenon into the gob area. Fig. 10 also shows an increase for main intake gas in July, August, and September. Hence, it shows that the fuzzy model might be affected by increasing the air temperature in these months.

Fig. 11 shows, the fire intensity and accuracy of fuzzy rules with respect to various combinations of input variables. In Fig. 11a, the label shows if oxygen concentration is 3.3% and nitrogen concentration is 13.4%, then, the fire intensity is 1.3. In Fig. 11c, the label shows, if oxygen concentration is 0% and CO is 0.0015%, then, the fire intensity is 1.9. In addition, in Fig. 11d, the label shows, if nitrogen concentration is 0% and temperature is 26 °C, the fire intensity is 2. The rating of fire intensity for this fuzzy model is shown in Table 6. Assessing of fire intensity with a build-up fuzzy model is easy and time saving with respect to analyzing many variables simultaneously just by entering variable values in the input part, Fig. 7.

The values of Graham index increased at 1409 and 610/2B stations the same as those of the fuzzy logic model [Fig. 9]. The value of Graham’s index value at 1409 and 1410 stations in July and September, respectively, caused by the carbon monoxide gas which released as a result of blasting works are realized in these galleries in July and September.

5. Conclusion

In this paper, a fuzzy logic model was developed for predicting the coal fire in AUCM as a case study area. The data was collected from AUCM at ten gas monitoring stations by sensors in the whole year of 2017. For predicting of coal fire, CO, O2, N2, and temperature were used as input variables and fire intensity as the output variable. In the fuzzy model, Mamdani inference system was used and ran Fuzzy Logic Toolbox in MATLAB environment for simulation. The results showed that the fuzzy logic system is more reliable for decision making of fire intensity with respect to uncertainties and nonlinearities of data. From the results, the 1409 and 610/2B gas monitoring station points are suspected areas for spontaneous combustion, and precautionary works have to be carried out. For validation of the fuzzy logic model, Graham’s index was used and showed that the fuzzy model can assess fire intensity with many variables at the same time and produce a reasonable result.

Graham’s index includes carbon monoxide and oxygen deficiency as variables whereas in the fuzzy logic system we have considered oxygen, carbon monoxide, temperature, and nitrogen as input variables. In addition, in the fuzzy logic system we can add more input variables which effect on coal fire such as relative humidity or other hydrocarbons. Rating of fire intensity by Graham’s index is difficult because it has some gob (for example, between two and three what will happen), but in the fuzzy logic method this gob is eliminated by membership function. Fuzzy logic is fast and, therefore, can alleviate the time consumption in decision making. In addition, the fuzzy logic system should be incorporated to sensors for the design of an efficient and reliable online monitoring system for underground coal mines. The fuzzy logic model shows higher probability in predicting fire intensity with the simultaneous application of many variables compared with Graham’s index.

Conflicts of interest

All authors have no conflicts of interest to declare.

Acknowledgment

The authors would like to thank the Adulyara underground coal mine administration and Şafak Gülüşüzel head of health and safety department for providing the data and side visit facilities. The authors also gratefully thank Mr. Dr. Musa Abdullahi for his reviewing.

References

[1] Melikoglu M. Vision 2023: status quo and future of biomass and coal for sustainable energy generation in Turkey. Renewable Sustainable Energy Rev 2017;74:800–8.
[2] Su H, et al. Effects of oxygen supply on low-temperature oxidation of coal: a case study of Jurassic coal in Yima, China. Fuel 2017;202:446–54.
[3] Ramli MA. Mine disasters and mine rescue. 2nd ed. Universities Press; 2007. 448 p.
[4] Rosa MID. Analysis of mine fires for all U.S. underground and surface coal mining categories: 1990–1999. NIOSH Inf Circular/2004 IC 5470:36.
[5] Liang Y, Wang S. Prediction of coal mine gas self-heating with fluid dynamics in porous media. Fire Saf J 2017;87:49–56.
[6] Muduli L, Jana PK, Mishra DP. Wireless sensor network based fire monitoring in underground coal mines: a fuzzy logic approach. Process Saf Environ Prot 2018;113:435–47.
[7] Strachar GB, Taylor TP. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int J Coal Geol 2004;58:1:7–17.
[8] Singh R, Singh V. Status of mine fire of Jharia coalfield and suggestions for prevention and control. J Coal Min Technol Manag 2004;9(6-8):38–44.
[9] Karis B, Didari V. Low temperature oxidation of a high volatile bituminous Turkish coal effects of temperature and particle size. Coal Operators’ Conference. Unive Wollongong and Australasian Institute Min Metal; 2009. p. 296–302.
[10] Melody SM, Johnston FH. Coal mine fires and human health: what do we know? Int J Coal Geol 2015;121:1–14.
[11] Kajick K. Fire in the hole. Smithsonian Magazine. 2005 [cited 13/11/2018]; Available from: https://www.smithsonianmag.com/science-nature/fire-in-the-hole-77895126/.
[12] Gray D. Deep underground, miles of hidden wildfires rage. Time Magazine. 2010 [cited 13/11/2018]; Available from: http://content.time.com/time/health/article/0,8599,2006195,00.html.
[13] A. Baso. Tarihî en büyük maden kazaları; 2014 [cited 15/11/2018]; Available from: https://www.aa.com.tr/tr/turkiye/tarihi-en-buyuk-maden-kazalari/159755.
[14] Onfade M, Genc B. Spontaneous combustion of coals and coal-shales. Int J Min Prot 2018;116:199–202.
[15] Grychowski T. Multi sensor fire hazard monitoring in underground coal mine based on fuzzy inference system. J Intell Fuzzy Syst 2014;26(1):345–51.
[16] Wang J, et al. Assessment of spontaneous combustion status of coal based on relationships between oxygen consumption and gaseous product emissions. Fuel Process. Technol 2018:179:60–71.
[17] Xiao Y, et al. Comparative analysis of thermokinetic behavior and gaseous products between first and second coal spontaneous combustion. Fuel 2018;227:325–33.
[18] Xu G, et al. Risk forecasting for spontaneous combustion of coal at different ranks due to free radicals and functional groups reaction. Process Saf Environ Prot 2018;118:195–202.
[19] Li L, et al. Unique spatial methane distribution caused by spontaneous coal combustion in coal mine goafs: an experimental study. Process Saf Environ Prot 2018;116:199–207.
[20] Xu P, et al. Experimental research on index gas of the coal spontaneous at low-temperature stage. J Loss Prev Process Ind. 2004;17(3):243–7.
[21] Zhang Y, et al. Modes and kinetics of CO2 and CO production from low-temperature oxidation of coal. Int J Coal Geol 2015;140:1–8.
[22] Wang H, Dlugoszorski BZ. Strategies for pathways for production of CO2 and CO in low-temperature oxidation of coal. Energy Fuels 2003(17):150–8.
[23] Kong B, et al. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique. Process Saf Environ Prot 2018;119:285–94.
[24] Lee C, et al. A random forest approach for predicting coal spontaneous combustion. Fuel 2018;223:63–73.
[25] Li J, et al. A lab-scale experiment on low-temperature coal oxidation in context of underground coal fires. Appl Therm Eng 2018;141:333–8.
[26] Mohalik NK, Lester E, Lowndes I. Development a modified crossing point temperature (CPTHR) method to assess spontaneous combustion propensity of coal and its chemo-metric analysis. J Loss Prev Process Ind 2018;36:359–60. [https://doi.org/10.1016/j.jlp.2018.06.001]
[27] Deng J, et al. Determination and prediction on “three zones” of coal spontaneous combustion in a gob of fully mechanized caving face. Fuel 2018;211:458–70.
[28] Yang Y, et al. Study on test method of heat release intensity and thermophysical parameters of loose coal. Fuel 2018;229:34–43.
[29] Wu J, et al. Numerical estimation of gas release and dispersion in coal mine using Ensemble Kalman Filter. J Loss Prev Process Ind 2018;56:57–67.
[30] Bustamante Rúa MO, et al. Statistical analysis to establish an ignition scenario based on extrinsic and intrinsic variables of coal seams that affect spontaneous combustion. Int J Min Sci Technol 2019;29(5):731–7. https://doi.org/10.1016/j.ijmst.2018.05.008.
[31] Li S, Ma X, Yang C. Prediction of spontaneous combustion in the coal stockpile based on an improved metabolic grey model. Proc Saf Environ Prot 2018;116:564–77.
[32] Lin Q, et al. Analytical prediction of coal spontaneous combustion tendency: velocity range with high possibility of self-ignition. Fuel Process Technol 2017;159:38–47.
[33] Syed TH, Riyas MJ, Kuenzer C. Remote sensing of coal fires in India: a review. Earth-Sci Rev 2018;187:338–55. https://doi.org/10.1016/j.earscirev.2018.10.009.
[34] Zhou B, et al. Surface-based radon detection to identify spontaneous combustion areas in small abandoned coal mine gobs: case study of a small coal mine in China. Proc Saf Environ Protec 2018;119:223–32.
[35] Ray SK, et al. Assessing the status of sealed fire in underground coal mines. J Sci Indusl Res 2004;63:579–91.
[36] Sensögüt C. Spontaneous combustion related fire ratios. J Eng Sci 2011;5(1):1009–14.
[37] Panigrahi DC, Bhattacharjee RM. Development of modified gas indices for early detection of spontaneous heating in coal pillars. J South Afr Inst Min Met 2004;104(7):367–79.
[38] Monjezi M, Rezaei M, Yazdian Varjani A. Prediction of rock fragmentation due to blasting in Gol-E-Gohar iron mine using fuzzy logic. Int J Rock Mech Min Sci 2009;46(8):1273–80.
[39] Razani M, Yazdani-Chamzini A, Yakhchali SH. A novel fuzzy inference system for predicting roof fall rate in underground coal mines. Saf Sci 2013;55:26–33.
[40] Torallo J, et al. A finite element method (FEM)-Fuzzy logic (Soft Computing)-virtual reality model approach in a coalface longwall mining simulation. Automa Const 2008;17(4):413–24.
[41] Jang RJS, Sun CT, Mizutani E. Neuro-fuzzy and soft computing. USA: Prentice-Hall Upper Saddle River; 1997. 614 p.
[42] Zadeh LA. Fuzzy sets. Infor Cont 1965;(3):338–53.
[43] Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning-I. Infor Sci 1975;8:199–249.
[44] Ross TJ. In: Fuzzy logic with engineering applications. 2nd ed. John Wiley & Sons; 2005. 623 p.
[45] Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Mach Stud 1975;7(1):1–13.
[46] Taraba B, Michales Z. Effect of longwall face advance rate on spontaneous heating process in the gob area -CFD modelling. Fuel 2011;90(8):2790–7.