Case Report

Melioidosis with Septic Shock and Disseminated Infection in a Neutropenic Patient Receiving Chemotherapy

Sitthi Sukauichai and Chantana Pattarowas

1Chonburi Cancer Hospital, Department of Chemotherapy, Chonburi, Thailand
2Chonburi Cancer Hospital, Department of Radiology, Chonburi, Thailand

Correspondence should be addressed to Sitthi Sukauichai; maxstmdcu@yahoo.com

Received 26 December 2019; Accepted 4 March 2020; Published 25 March 2020

1. Introduction

Melioidosis is a tropical bacterial infection originated from a Gram-negative bacillus, *Burkholderia pseudomallei*. The organism is found in soil and water in an endemic area, especially in Southeast Asia and the northern part of Australia [1]. Clinically, melioidosis presents in various manifestations based on duration of onset, severity of disease, or the number of organ involvements that are localized or disseminated infections, primary bacteremia, or even fatal septic shock [1, 2]. However, it is a relatively unusual pathogen in cancer patients [3]. The purpose of this article is to report a case of febrile neutropenia with septic shock, caused by melioidosis, and the case is complicated by locally advanced inoperable breast cancer.

2. Case Presentation

A 54-year-old Thai female with locally advanced breast cancer (T4N2M0) stage III-B and hepatitis B carrier presented with a large right breast lump with skin involvement. She was a housewife, lived in Chonburi Province in the east of Thailand, and had no other medical conditions. The tumor’s profile was grade 3 invasive ductal carcinoma, estrogen and progesterone receptors negative, and human epidermal receptor 2 positive. Physical exam showed right breast mass 10×10 cm with skin inflammation and right axillary lymph node 9 cm, and others were unremarkable. Computed tomography (CT) scan showed multiple pulmonary nodules and hepatosplenic abscesses. The patient was successfully treated with antibiotics for the infection and with combined modalities for a malignancy.
HCO₃ 15mmol/L (22–29), BUN 48mg/dL (6–20), Cr (136–145), K 2.8mmol/L (3.5–5.1), Cl 87mmol/L (98–107), L (150,000–360,000), Na 118mmol/L μtrophil count 230cells/μL, red blood cell count 450cells/μL (3,700–10,000), absolute neutropenia were the most likely diagnosis.

Other systems were unremarkable. Sepsis and febrile neutropenia were the likely diagnosis. After blood cultures were done, she received IV piperacillin/tazobactam as empirical antibiotic, IV fluid, and G-CSF injection and was admitted to a hospital. Laboratory tests showed CBC: hemoglobin 6.4g/dL (10.8–14.2), white blood cell count 450cells/μL (3,700–10,000), absolute neutrophil count 230 cells/μL (1,600–6,900), platelet 26,000 cells/μL (150,000–360,000), Na 118 mmol/L (136–145), K 2.8 mmol/L (3.5–5.1), Cl 87 mmol/L (98–107), HCO₃ 15 mmol/L (22–29), BUN 48 mg/dL (6–20), Cr 4.2 mg/dL (0.5–1.0), total bilirubin 4.7 mg/dL (0.0–1.2), direct bilirubin 4.6 mg/dL (0.0–0.2), albumin 3.2 g/dL (3.5–5.2), globulin 3.7 g/dL, AST 368 U/L (0–32), ALT 387 U/L (0–33), and ALP 154 U/L (35–104); urine: SpGr 1.025 (1.003–1.030), protein 2+, WBC 2–3 cells/HPF, and bacteria-numerous. On the same day, 8 hours later, she deteriorated and needed to receive orotracheal tube intubation, mechanical ventilator support, and inotropic agent; moreover, the antibiotic was changed to imipenem and metronidazole. The patient was diagnosed with septic shock with multiorgan failure, febrile neutropenia with underlying breast cancer, and hepatitis B infection.

With intensive care, her symptoms were gradually improved. Dopamine and the orotracheal tube were off on day 4 and day 5 after admission, respectively. On day 6, two blood cultures and a urine culture showed positive for *Burkholderia pseudomallei*. It can infect humans living in endemic areas via skin penetration, inhalation, and ingestion [1]. A variety of clinical manifestations can be found, ranging from chronic localized skin infection to severe pneumonia, or even to acute fulminant bacteremia [2]. Moreover, it can also disseminate to visceral organs causing abscesses, including hepatic, splenic, renal, or prostatic abscesses or causing bone, joint, and central nervous system infections [1, 2]. Most patients often have preexisting medical conditions or risk factors that include diabetes mellitus, chronic renal disease, chronic lung disease, thalassemia, alcohol use, and occupational contact to soil or water [2, 3].

Fever in patients with chemotherapy-induced neutropenia is a serious condition. Chemotherapy in breast cancer, AC regimen, results in FN in 2.5 to 25% of patients, depending on race and body mass index [4–7]. Although causative pathogens in FN with bacteremia tend to shift to Gram-positive bacteria in patients with indwelling catheter, Gram-negative bacilli remain the most common pathogens in neutropenic patients, especially *Escherichia coli*, *Klebsiella pneumoniae*, and *Pseudomonas aeruginosa* [8–10]. Nonetheless, *Burkholderia pseudomallei* is a rare pathogen responsible for a bacteremia in this setting. Since 1980, there have been a few reports of melioidosis with febrile neutropenia (Table 1) [11, 12]. In addition, all of these were from endemic areas.

Additionally, melioidosis is a unique bacterial infection in terms of resistance to penicillin, first- and second-generation cephalosporin, and aminoglycosides, high mortality rate up to 50% in patients with septic shock, and potentially relapsed infection [1, 2]. Treatment is composed of two phases: acute phase is a life-saving period using an intravenous ceftazidime, imipenem, or meropenem, while eradication phase is to prevent relapse with long-term treatment, up to 20 weeks, by an oral antibiotic: TMP/SMX or amoxicillin/clavulanic acid [13].

Fortunately, antibiotics for empirical treatment of FN and for acute phase of melioidosis are similar. This patient initially received piperacillin/tazobactam, but her symptoms got
Worse; thus, the antibiotic was changed to imipenem, in combination with intensive care. As a result, she gradually improved and survived. According to the recommendation, in the acute phase, this patient received ceftazidime for 14 days. In addition, she needed to receive an eradication phase antibiotic, TMP/SMX, to get rid of disseminated infection in her viscera and prevent being relapsed. At the same time, she was treated with the combination of chemotherapy, targeted therapy, and radiation for breast cancer, the purpose of which was to remove the tumor and cure from the malignancy.

Furthermore, the patient had liver and splenic abscesses which showed small and discrete nodules by imaging, and the abscesses of both organs occurred concurrently. These features were typical and highly suggestive for melioidosis rather than for other pyogenic pathogens [14]. Moreover, lung imaging in this patient showed generalized small discrete nodules compatible with blood-borne infection [15].

Lastly, melioidosis should be in the list of differential diagnosis in neutropenic patients with septic shock, especially who are living in the endemic area and having risk factors. Early diagnosis and prompt treatment, including proper antibiotics and intensive care, help the patient recover and survive.
4. Conclusion
The authors presented a case of melioidosis in a neutropenic patient receiving chemotherapy. Although she suffered from septic shock, disseminated melioidosis, and locally advanced breast cancer, eventually she made a recovery from infection and underwent mastectomy for the tumor.

Conflicts of Interest
The authors declare no conflicts of interest.

Acknowledgments
This work was supported by the Chonburi Cancer Hospital Foundation.

References
[1] W. J. Wiersinga, B. J. Currie, and S. J. Peacock, “Melioidosis,” New England Journal of Medicine, vol. 367, no. 11, pp. 1035–1044, 2012.
[2] B. J. Currie, L. Ward, and A. C. Cheng, “The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study,” PLoS Neglected Tropical Disease, vol. 4, no. 11, Article ID e900, 2010.
[3] Y. Suputtamongkol, W. Chaowagul, P. Chetchotisakd et al., “Risk factors for melioidosis and bacteremic melioidosis,” Clinical Infectious Diseases, vol. 29, no. 2, pp. 408–413, 1999.
[4] S. E. Jones, M. A. Savin, F. A. Holmes et al., “Phase III trial comparing doxorubicin plus cyclophosphamide with doxorubicin plus cyclophosphamide as adjuvant therapy for operable breast cancer,” Journal of Clinical Oncology, vol. 24, no. 34, pp. 5381–5387, 2006.
[5] L. N. Shulman, D. A. Berry, C. T. Cirrincione et al., “Comparison of doxorubicin and cyclophosphamide versus single-agent paclitaxel as adjuvant therapy for breast cancer in women with 0 to 3 positive axillary nodes: CALGB 40101 (alliance),” Journal of Clinical Oncology, vol. 32, no. 22, pp. 2311–2317, 2014.
[6] C. G. Kim, J. Sohn, H. Chon et al., “Incidence of febrile neutropenia in Korean female breast cancer patients receiving preoperative or postoperative doxorubicin/cyclophosphamide followed by docetaxel chemotherapy,” Journal of Breast Cancer, vol. 19, no. 1, pp. 76–82, 2016.
[7] A. Chan, C. Chen, J. Chiang, S. H. Tan, and R. Ng, “Incidence of febrile neutropenia among early-stage breast cancer patients receiving anthracycline-based chemotherapy,” Supportive Care in Cancer, vol. 20, no. 7, pp. 1525–1532, 2012.
[8] A. G. Freifeld, E. J. Bow, K. A. Sepkowitz et al., “Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America,” Clinical Infectious Diseases, vol. 52, no. 4, pp. e56–e93, 2011.
[9] P. Roongpoovapat and C. Suankratay, “Causative pathogens of fever in neutropenic patients at King Chulalongkorn Memorial Hospital,” Journal of Medical Association of Thailand, vol. 93, no. 7, pp. 776–783, 2010.
[10] C. Auesomwang, B. Suwannawiboon, and M. Chayakulkeeree, “Changes in etiologic microorganisms in Thai patients with chemotherapy-induced neutropenia and fever,” Journal of Medical Association of Thailand, vol. 101, no. 2, pp. 173–180, 2018.
[11] H. P. Lin, S. D. Puthucheary, and D. Sinniah, “Acute septicemic melioidosis occurring in a child with acute lymphoblastic leukemia,” Clinical Pediatrics, vol. 19, no. 10, pp. 697–699, 1980.
[12] C. Mukhopadhyay, K. Chawla, K. E. Vandana, S. Krishna, and K. Saravu, “Pulmonary melioidosis in febrile neutropenia: the rare and deadly duet,” Tropical Doctor, vol. 40, no. 3, pp. 165–166, 2010.
[13] D. Dance, “Treatment and prophylaxis of melioidosis,” International Journal of Antimicrobial Agents, vol. 43, no. 4, pp. 310–318, 2014.
[14] V. Laopaiboon, N. Chamadol, H. Buttham, and W. Sukeepsaivarnjareon, “CT findings of liver and splenic abscesses in melioidosis: comparison with those in non-melioidosis,” Journal of Medical Association of Thailand, vol. 92, no. 11, pp. 1476–1484, 2009.
[15] W. Reecharachittkul, “Clinical manifestation of pulmonary melioidosis in adults,” Journal of Medical Association of Thailand, vol. 35, no. 3, pp. 664–669, 2004.