Role of Fas/FasL in regulation of inflammation in vaginal tissue during HSV-2 infection

M Krzyzowska¹, A Shestakov², K Eriksson² and F Chiodi¹

To assess the role of Fas in lesion development during genital HSV-2 infection, we used a well-established HSV-2 murine model applied to MRL-Fas^{−/−}J (Fas−/−) and C3-Fasl^{−/−}/J (Fasl−/−) C57BL6 mice. In vitro infection of murine keratinocytes and epithelial cells was used to clarify molecular details of HSV-2 infection. Despite upregulation of Fas and Fasl, HSV-2-infected keratinocytes and epithelial cells showed a moderate level of apoptosis due to upregulated expression of the anti-apoptotic factors Bcl-2, Akt kinase and NF-κB. Inflammatory lesions within the HSV-2-infected epithelium of C57BL6 mice consisted of infected cells upregulating Fas, Fasl, and Bcl-2, uninfected cells upregulating Fas and neutrophils expressing both Fas and Fasl. Apoptosis was detected in HSV-2-infected cells and to even higher extent in non-infected cells surrounding HSV-2 infection sites. HSV-2 infection of Fas- and Fasl-deficient mice led to increased apoptosis and stronger recruitment of neutrophils within the infection sites. We conclude that the Fas pathway participates in regulation of inflammatory response in the vaginal epithelium at the initial stage of HSV-2 infection.

Keywords: Fas, Fasl, HSV-2, apoptosis

Abbreviations: HSV-2; apoptosis; Fas/FasL

1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden and 2Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden

¹ Corresponding author: M Krzyzowska, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels vág 16, 171 77, Stockholm, Sweden.
Tel: +46 85 248 6315; Fax: +46 833 0498; E-mail: krzyzowskam@yahoo.com

Keywords: HSV-2; apoptosis; Fas/Fasl

1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden

Corresponding author: M Krzyzowska, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels vág 16, 171 77, Stockholm, Sweden.
Tel: +46 85 248 6315; Fax: +46 833 0498; E-mail: krzyzowskam@yahoo.com

Keywords: HSV-2; apoptosis; Fas/Fasl

Abbreviations: HSV-2; apoptosis; Fas/Fasl

1Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden and 2Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden

Received 31.8.10; revised 01.2.11; accepted 10.2.11; Edited by P Salomoni

Citation: Cell Death and Disease (2011) 2, e132; doi:10.1038/cddis.2011.14; published online 17 March 2011

Subject Category: Immunity
preceding the induction of the local immune response to the infection.

We assessed the role of Fas during HSV-2 vaginal infection using keratinocytes and epithelial cells in vitro and a murine model of genital herpes. In vitro, HSV-2-infected cells upregulated Fas and FasL and anti-apoptotic proteins (Bcl-2, NF-κB, Akt kinase) and displayed moderate levels of apoptosis only during the later stage of infection. Upregulation of Fas, FasL and Bcl-2 was noticed in the HSV-2-infected epithelium of C57BL/6 mice. In the mice, the cells undergoing apoptosis were infected cells present at the site of the lesions and uninfected, Fas-expressing, epithelial cells surrounding the HSV-2-infected sites. Experiments performed in HSV-2-infected Fas (−/−) and FasL (−/−) C57BL mice showed a reduced level of apoptosis among uninfected cells and an increased infiltration of neutrophils at the vaginal site. Our results suggest a role for Fas/FasL in the regulation of inflammatory responses at the early stages of vaginal HSV-2 infection.

Results

HSV-2 infection induces moderate levels of apoptosis in epithelial cells and keratinocytes. A significantly higher number of cells, with caspase-3-specific cytokeratin 18 cleavage (M30-positive cells), was found in HSV-2-infected mouse keratinocytes (291.03%) and epithelial cells (Hepa 1–6) at 24 and 48 h postinfection (p.i.) in comparison with uninfected cultures (P ≤ 0.05) (Figure 1a). Interestingly, in spite of the fact that both infected epithelial and keratinocyte cultures underwent apoptosis, the total cell number in these cultures was comparable to the control cell cultures (Figure 1b).

At 24 h p.i. (HSV-2 MOI 1–10), the number of HSV-2-infected cells reached approximately 80% of cells in culture (Figure 1c). Of these, 48.23 ± 2.34% of HSV-2-infected epithelial cells and 45.89 ± 4.01% of HSV-2-infected keratinocytes showed apoptotic features at 24 h p.i. (Figure 1d). At 48 h p.i., the population of HSV-2-infected epithelial

![Figure 1](image-url)
cells, corresponding to 90% of cells in culture (Figure 1c), included 56.55 ± 6.78% of apoptotic cells (Figure 1d), whereas HSV-2-infected keratinocytes included 34.93 ± 1.29% of apoptotic cells (P < 0.05) (Figure 1d). These results show that at 48 h of infection, the rate of apoptosis in keratinocyte cultures decreased and in the culture remained a population of HSV-2-infected, non-apoptotic cells. HSV-2-infected epithelial cells and keratinocytes (Figure 1e) were not susceptible to staurosporine (ST)-induced apoptosis if the treatment with ST was initiated later than 4 h p.i., thus indicating that HSV-2 induces an apoptosis-resistant status in the infected epithelial cells and keratinocytes within hours from infection through the induction of anti-apoptotic proteins.

Taking into account that HSV-2-infected cells of epithelial and neuronal origin activate anti-apoptotic mechanisms dependent on Bcl-2-family and NF-kB and PI3-K/Akt pathways,11,20 we assessed the expression of Bcl-2, NF-κB and Akt in HSV-2-infected epithelial cells and keratinocytes. We found that Bcl-2 was significantly upregulated in both types of cells during the entire tested period in comparison with uninfected cells (P < 0.05) (Figure 2a). In our experimental conditions, both HSV-2-infected cell lines showed a significant increase in NF-κB activation, especially at 6 h of infection, in comparison with uninfected cells (P < 0.05) (Figure 2b). Between 6 and 18 h p.i., NF-κB activation decreased to levels close to baseline (P < 0.05) (Figure 2b). Similarly, a significantly increased activity of the anti-apoptotic Akt kinase (P < 0.05) occurred in HSV-2-infected epithelial and keratinocyte cultures (Figure 2c).

HSV-2-infected epithelial cells and keratinocytes upregulate Fas and FasL but do not die through this receptor pathway. Upon infection with HSV-2, mouse keratinocyte and epithelial cell cultures significantly upregulated both Fas and FasL (P < 0.05) (Figures 3a and b). To assess whether HSV-2-infected cells may influence Fas expression on uninfected cells, we used HSV-2 at MOI 0.1, which resulted in 50% of HSV-2-infected cells and 50% of non-infected cells in culture. The intensity of Fas expression was not only higher for HSV-2-infected cells and 50% of non-infected cells in culture. The blocking antibody (MFL-4) did not decrease the numbers of apoptotic cells in HSV-2-infected epithelial cells and keratinocytes (Figures 4a and b).

Fas/FasL system has an important role in apoptosis of keratinocytes in the skin,14 and keratinocytes are the main target cells for both HSV-1 and HSV-2.21 Therefore, we used the anti-mouse Fas cytotoxic antibody Jo-1 to study the involvement of Fas in apoptosis of HSV-2-infected and uninfected keratinocytes. Addition of the anti-Fas antibody led to a significant decrease in HSV-2-infected cells at 24 h of infection (P < 0.02) (Figure 4c), whereas addition of anti-FasL blocking antibody (MFL-4) caused a significant increase of HSV-2-positive cells (P = 0.032) (Figure 4c). To verify whether the decrease in HSV-2-infected cells occurring upon incubation with the cytotoxic anti-Fas antibody could result from bystander apoptosis of uninfected cells, we measured apoptosis in cultures infected with HSV-2 at MOI 0.1, when only 50% of cells were infected at 24 h p.i. (Figure 4d). Although more HSV-2-infected cells underwent apoptosis in the cultures incubated with anti-Fas and anti-FasL antibodies, this difference was not statistically significant (Figure 4d). On the contrary, in presence of cytotoxic anti-Fas antibody, more uninfected cells were apoptotic in comparison with untreated control cells and cells treated with FasL blocking antibody (P < 0.05) (Figure 4d).
Fas is involved in the development of inflammatory mucosal lesions in vivo. During HSV-2 infection of C57BL/6 mice, the vaginal mucosa is subjected to development of lesions, compromising its integrity and ability to protect from the virus attack. In our experiments, HSV-2-infected sites were present within the vaginal epithelium of C57BL/6 mice at 3 days of infection. Staining of the vaginal tissues showed that HSV-2-infected cells in the epithelium upregulated both Fas and FasL (Figures 5a and b), whereas non-infected cells surrounding the HSV-2-infected cells upregulated only Fas (Figures 5a and b). Fas and FasL expressions were also upregulated on Gr-1-positive cells (neutrophils), with only Fas showing a significant increase (P = 0.01) (Figure 5c). In HSV-2-infected sites, apoptotic cells, defined as TUNEL-positive, were found not only among HSV-2-positive cells but also among non-infected cells (Figure 6a).

To estimate the role of Fas and FasL in the development of vaginal epithelium lesions induced by HSV-2, we infected mice with either a knockout in Fas gene (B6.MRL-Faslpr/J) or a knockout in FasL gene (B6Smn.C3-Faslpr/J) together with the control background strain (C57BL/6). The control, uninfected Fas−/− mice presented with a thin vaginal epithelium, consisting of densely packed cells, whereas uninfected FasL−/− mice showed no progesterone-dependent thinning of the epithelium (Figure 6a). In both Fas and FasL knockout mice, the HSV-2-infected epithelium was shedding off (Figure 6a) and apoptotic bodies could be found at all inflammatory sites (Figure 6a). A significantly higher number of TUNEL-positive cells were, however, found at the HSV-2-infected sites in Fas− and FasL−/− deficient mice (Figure 6b). The comparison of Fas− and FasL−/− mice revealed that Fas (−/−) and FasL (−/−) mice showed more infected TUNEL-positive cells at the HSV-2-infected sites (Figure 6c). In Fas and FasL knockout mice, a significant increase in infiltrating Gr-1-positive cells (neutrophils) was found within the HSV-2-infected epithelium, in comparison with infected wild-type (WT) mice (P ≤ 0.05) (Figure 6d).

A PCR method was used to measure DNA titers in vaginal lavages collected at day 2 of infection in mice; the results showed no differences in the titers of HSV-2 shed into the vaginal lumen in WT and Fas- and FasL-deficient mice (Figure 6e). To verify whether Bcl-2 expression is affected by the depletion of Fas and FasL, we stained for Bcl-2 during HSV-2 infection of the knockout mice. The stainings detected a common pattern of Bcl-2 expression in the middle part of the infection sites in all infected mice strains (Figure 6f).

Fas is involved in the regulation of keratinocyte inflammatory response in vitro. To assess whether stimulation through the Fas/FasL pathway influences the induction of inflammatory responses by HSV-2-infected keratinocytes, we evaluated the expression of CXCL1/2 chemokines, TNF-α and IL-1β cytokines. HSV-2 infection of keratinocytes in vitro led to a significant upregulation of CXCL1/2, TNF-α and IL-1β expression at 18 h of infection (P ≤ 0.001) (Figures 7a–c), whereas HSV-2-infected epithelial cells upregulated CXCL1/2 (Figure 7d). TNF-α and IL-1β (data not shown). Addition of anti-Fas cytotoxic antibody to control uninfected keratinocytes led to a significant upregulation of CXCL1/2 and TNF-α expression at 18 h of incubation (P ≤ 0.001) (Figures 7a and b). Interestingly, addition of the cytotoxic anti-Fas antibody to HSV-2-infected keratinocyte and epithelial cultures significantly abrogated CXCL1/2 expression.
expression, whereas, upon these conditions, TNF-α and IL-1β expression was abrogated only in keratinocytes ($P \leq 0.05$, Figures 7a–d).

To analyze how the blocking of Fas/FasL interaction influences CXCL1/2, TNF-α and IL-1β expression in HSV-2-infected keratinocytes, we used an anti-FasL blocking antibody. The anti-FasL blocking antibody showed no influence on CXCL1/2, TNF-α and IL-1β expression in uninfected keratinocytes and epithelial cells (Figures 7a–d). The biological effect of the anti-FasL blocking antibody was significantly different in HSV-2-infected cells. In fact, upon blocking of FasL, the HSV-2-infected keratinocytes significantly upregulated CXCL1/2 and IL-1β expression ($P \leq 0.05$), but not TNF-α (Figures 7a–c). HSV-2-infected epithelial cells incubated with anti-FasL blocking antibody significantly upregulated only CXCL1/2 ($P \leq 0.05$) (Figure 7d).

To verify whether the inflammatory cytokines and chemoattractants produced from keratinocytes infected and/or stimulated with the cytotoxic anti-Fas antibody exerted a chemotactic role for migration of neutrophils into HSV-2-infected vaginal tissue, we allowed neutrophils to migrate toward keratinocytes subjected to different stimuli (Figure 7e). The transwell experiment showed that Fas stimulation of uninfected and HSV-2-infected keratinocytes induced a significant migration of Gr-1-positive cells, in comparison with migration toward control, uninfected cells ($P \leq 0.001$) (Figure 7e). FasL blocking antibody significantly upregulated migration toward HSV-2-infected cells ($P \leq 0.05$), whereas Fas-stimulating antibody significantly decreased migration toward HSV-2-infected keratinocytes ($P \leq 0.001$) (Figure 7e).

Furthermore, staining for CXCL1/2 and IL-1β of the vaginal tissues from HSV-2-infected WT, Fas- and FasL-deficient mice showed a significantly increased numbers of both infected and uninfected cells expressing CXCL1/2 (Figures 7f and g) and IL-1β (Figures 7f and g) in Fas- and FasL-deficient mice ($P \leq 0.05$).
Discussion

The goal of this study was to investigate the role of Fas pathway during in vitro HSV-2 infection of mouse keratinocyte and epithelial cells and during in vivo HSV-2 vaginal infection of mice. In our study, both epithelial cells and keratinocytes underwent moderate apoptosis upon HSV-2 infection but not earlier than 12 h p.i. because of the induction of anti-apoptotic pathways early during infection. Indeed, we could observe NF-κB induction already at 6 h p.i. in both cell lines together with upregulated expression of the anti-apoptotic factor Bcl-2. Decreased NF-κB levels could be observed before apoptosis induction, remaining at low levels throughout the follow-up time of infection in both types of infected cell cultures. Activation of the NF-κB transcription factor is one of the anti-apoptotic mechanisms operating in epidermis and epithelial cells.11,14,23 Observations similar to the findings presented in this paper were made during infection with HSV-1, whose genome is colinear with HSV-2.24,25

PI3K/Akt signaling is important in apoptosis suppression of epithelial cells and keratinocytes.14,26 In HSV-2-infected cultures of epithelial cells and keratinocytes, we detected an increase in cells positive for the active form of Akt kinase, thus implying a role for this kinase in apoptosis suppression during the later stages of HSV-2 infection in vitro. The involvement of Akt in protection from apoptosis was previously shown for HSV-2-infected neurons27 and during HSV-1 infection of human epithelial HEp-2 cells.28 Bcl-2 overexpression increased the capacity of HSV-2-infected monocytoid cells

Figure 5 (a) Fas and FasL expression (green) and HSV-2 antigen localization (red) in the vaginal tissue isolated from C57BL/6 mice at 3 days of HSV-2 infection. The nuclei were counterstained with Hoechst 33342 (blue). (b) Total percentage of Fas- and FasL-expressing cells from the vaginal tissue of control and HSV-2-infected mice and (c) percentage of Fas- and FasL-positive Gr-1-positive cells in cell suspensions obtained from C57BL/6 mice at 3 days of HSV-2 infection. Each bar represents the mean from three experiments (N = 3) ± S.E.M. *Represents significant differences with $P \leq 0.05$

Figure 6 (a) Detection of apoptosis by TUNEL staining (green) and HSV-2 antigen localization (red) in the vaginal tissues from HSV-2-infected Fas (−/−), FasL (−/−) and WT (C57BL/6) mice at 3 days of infection. The nuclei were counterstained with Hoechst 33342 (blue). (b) Numbers of TUNEL-positive cells per 100 cells found at infected sites in the HSV-2-infected Fas (−/−), FasL (−/−) and WT (C57BL/6) mice. (c) Percentage of infected and uninfected TUNEL-positive cells in HSV-2-infected sites of Fas (−/−), FasL (−/−) and WT (C57BL/6) mice shown as a percentage of the total numbers of TUNEL-positive cells. (d) Mean numbers of Gr-1-positive cells (neutrophils) found in the inflammatory foci in the HSV-2-infected Fas (−/−), FasL (−/−) and WT (C57BL/6) mice. (e) HSV-2 DNA titers (copies/ml) in vaginal lavages obtained from HSV-2-infected Fas (−/−), FasL (−/−) and WT (C57BL/6) mice at day 2 of infection. (f) Bcl-2 expression (green) and HSV-2 antigen localization (red) in the vaginal tissue isolated from HSV-2-infected Fas (−/−), FasL (−/−) and WT (C57BL/6) mice at 3 days of infection. The nuclei were counterstained with Hoechst 33342 (blue). The bars represent mean from three separate experiments (N = 3) ± S.E.M. *Represents significant differences with $P \leq 0.05$, **$P \leq 0.001$
TUNEL+ cells at HSV-2 infected sites

infected WT Fas (-) FasL (-) infec
ted

TUNEL+ cells at HSV-2 infected sites

% of TUNEL-positive cells

Gr-1+ cells at HSV-2 infected sites

Virus titers in vaginal washes

Fas/FasL role during HSV-2 genital infection

M Krzyzowska et al.

Cell Death and Disease
to sustain a fully productive infection, while protecting against HSV-2-induced apoptosis. In our experiments, Bcl-2 expression was upregulated during the initial 12 h of infection, to remain at a stable, low level in the analyzed period. The induction of anti-apoptotic genes, during early events of HSV-2 infection of epithelial cells and keratinocytes, was verified by experiments conducted in presence of the proapoptotic substance ST.

It was previously shown that human epithelial HEp-2 cells infected with HSV-1 were resistant to Fas-induced apoptosis. In our study, HSV-2-infected murine epithelial cells and keratinocytes upregulated Fas and FasL. This event should render the HSV-2-infected cells sensitive to apoptosis delivered either by FasL present on neighboring cells or through an autocrine pathway (Figure 8). However, a closer analysis showed that induction of apoptosis in the infected epithelial and keratinocytes cultures by a cytotoxic Fas antibody involved a large portion of uninfected cells, which also upregulated Fas, therefore leading to a decrease in the number of potential target cells for HSV-2 infection; this process could be diverted by the addition of FasL blocking antibody. These results show that HSV-2-infected cells are relatively resistant to Fas-induced apoptosis and that cell death of these cells likely occurs through other pathways. Flick et al. also showed that, although murine macrophages upregulated Fas and TNFR1 receptors upon HSV-2 infection, inhibition of Fas by addition of soluble Fas and blocking of TNF-α did not prevent HSV-2-induced apoptosis. In the absence of FasL.

Figure 7 Percentage of keratinocytes expressing CXCL1/2 (a), TNF-α (b), IL-1β (c) and epithelial cells expressing CXCL1/2 (d) in control and HSV-2-infected keratinocyte cell cultures at 18 h p.i. exposed or not to anti-Fas cytotoxic antibody (10 μg/ml) and anti-FasL blocking antibody (10 μg/ml). (e) Transwell migration assay with control and HSV-2-infected keratinocyte cell cultures at 18 h p.i. exposed or not to anti-Fas cytotoxic antibody (10 μg/ml) and anti-FasL blocking antibody (10 μg/ml). (f) Numbers of infected CXCL1/2 and IL-1β-positive cells per 100 cells found at infected sites in the HSV-2-infected Fas (-/-), FasL (-/-) and WT (C57BL/6) mice at 3 days of infection. (g) Numbers of uninfected CXCL1/2 and IL-1β-positive cells per 100 cells found at infected sites in the HSV-2-infected Fas (-/-), FasL (-/-) and WT (C57BL/6) mice at 3 days of infection. Each bar represents the mean from three experiments (N = 3) ± S.E.M. *Represents significant differences with P≤0.05, whereas **P≤0.001.
human T-cell line Jurkat, HSV-2 induced apoptosis through extrinsic (death receptors) and intrinsic (mitochondrial) pathways. Therefore, it is likely that mitochondrial pathway may also be involved in apoptosis during HSV-2 infection of epithelial cells and keratinocytes.

The role of Fas/FasL in induction of apoptosis is generally recognized. However, evidence accumulates on Fas as a mediator of apoptosis-independent processes, including proliferation, angiogenesis, fibrosis and inflammation. In cells resistant to Fas-induced apoptosis, activation of Fas was shown to induce activation of PI3K/AKT pathway, ultimately leading to cell migration. Therefore, it is possible that keratinocytes may possess the ability to activate non-apoptotic pathways through Fas receptor.

In our experimental model, consisting of murine keratinocyte 03C cells, we demonstrated an increased expression of CXCL1/2, TNF-α and IL-1β in HSV-2-infected keratinocytes. Interestingly, the expression of CXCL1/2 and TNF-α also increased significantly when uninfected keratinocytes were stimulated with the cytotoxic Fas antibody showing their ability to mount a proinflammatory response mediated through the Fas-dependent pathway (Figure 8). However, the combination of HSV-2 infection and paracrine stimulation of the Fas pathway led to downregulation of the proinflammatory response. On the contrary, blocking of FasL during HSV-2 infection of keratinocytes led to upregulation of CXCL1/2 and IL-1β responses. The production of the inflammatory cytokines and chemokinetants was reflected in the migration of Gr1-positive cells toward infected keratinocytes, in that both HSV-2 infection and anti FasL blocking antibody were important mediators for this phenomenon. Furthermore, the HSV-2-infected sites in Fas- and FasL-deficient mice showed a stronger expression of CXCL1/2 and IL-1β in comparison with HSV-2-infected WT mice, indicating the role of Fas/FasL in regulation of the inflammatory responses within the vaginal mucosa (Figure 8).

CXCL1 and CXCL2 expression is upregulated in the vagina and in the CNS of mice during acute HSV-2 infection. These chemokines specifically targets neutrophils through the CXCR2 receptor, promoting their chemotaxis and activation. IL-1β and TNF-α facilitate the recruitment of neutrophils to inflammatory sites and TNF-α stimulates differentiation of natural killer (NK) cells, a cell population critical in the control of genital HSV-2 infection.

Vaginal lesions developed during HSV-2 infection destroy the integrity of the local mucosa and lead to increased infiltration of different types of innate immune cells, including NK cells, macrophages and neutrophils. In our study we considered the possibility that Fas/FasL system may be directly involved in the development of vaginal lesions, as part of apoptosis induction following HSV-2 infection of mice. The HSV-2-infected epithelial cells upregulated Fas, FasL and also Bcl-2 in vivo. These findings, together with the increased infiltration of neutrophils in Fas- and FasL-deficient mice,
suggest that HSV-2-infected cells within the epithelium may be resistant to apoptosis and that Fas/FasL interactions may serve as a mechanism to reduce inflammation (Figure 8).

Depletion of Fas and FasL did not lead to significant changes of HSV-2 titers in the vaginal fluid. It is, however, possible that Fas-dependent pathway may still influence the amounts of virus retained within the tissue and affect its latency in the ganglia. In this respect, Ishikawa et al.36 examined HSV-2 lethal infection in Fas- or FasL-deficient mice. Both the latter types of mice exhibited higher mortality than WT C57BL/6 mice after HSV-2 infection and showed significantly increased viral titers in the spinal cord compared with WT mice. However, the study36 did not assess vaginal histology.

Lack of Fas and FasL in knockout mice increased the numbers of apoptotic-infected cells found at the infection sites, but decreased the numbers of uninfected cells undergoing apoptosis. However, in the deficient mice, the sites without any visible infiltration of neutrophils corresponded to sites with scarce or absent apoptotic cells; on the contrary, the sites with infiltration showed significantly higher amounts of apoptotic cells in comparison with similar sites found in HSV-2-infected WT mice. Neutrophils are the early and predominant innate immune cells, which may contribute to virus clearance through the release of the antiviral cytokines TNF-α, IFN-γ, GM-CSF or oxygen and nitrogen metabolites.37 However, neutrophil-induced tissue damage by release of oxidants and proteases seen during inflammation can be controlled in part by neutrophil apoptosis,39 in which Fas/FasL pathway have an important role.39 Our study shows that lack of Fas and FasL in HSV-2-infected mice resulted in lack of control of the local inflammation induced by neutrophils, facilitating for apoptosis induction. Fas/FasL pathway in the vaginal mucosa appears to participate in the regulation of the local inflammation. Upon stimulation with extrinsic source of FasL (like NK cells, cytotoxic T cells, etc.), Fas-expressing cells produce proinflammatory cytokines, promoting the recruitment of neutrophils, NK cells and macrophages. However, the upregulation of FasL by epithelial cells appears to block the effects of extrinsic Fas stimulation, probably functioning as a self-regulatory mechanism. Fas and FasL upregulation by HSV-2 infected cells appears to have the role of protecting the virus from the effects of immune competent cells infiltrating the HSV-2 lesion, thus ensuring virus survival and further spreading (Figure 8).

Materials and Methods

Virus. The HSV-2 strain 333 was grown and titrated in African green monkey kidney cells (GMK-AH1) and prepared by one cycle of freeze–thaw and subsequent removal of cellular debris by centrifugation.40

Cell lines and in vitro HSV-2 infection. The mouse epithelial Hepa 1–6 cells and mouse keratinocyte cell line 293T OCR were kindly provided by M Kulesz-Martin (Department of Dermatology, Oregon Health and Science University, Portland, OR, USA). Hepa 1–6 cells were maintained in Dulbecco’s modified Eagle medium (Thermo Fisher Scientific, Lafayette, CO, USA) with 5% glucose, 10% fetal bovine serum (FBS) and 1% antibiotics (Thermo Fisher Scientific). The 293T OCR line is a 7,12-dimethylbenz[a]anthracene-initiated clone, derived from non-transformed 293 cells41 and was cultured in DMEM supplemented with 5% FBS (Thermo Fisher Scientific), 10 ng/ml epidermal growth factor (Sigma, St. Louis, MO, USA) and 1% antibiotic (Sigma). The cell lines were infected with HSV-2 333 strain at MOI = 10 or 0.1, incubated for up to 48 h and then collected by trypsinization or scratching. The cells were further stained with antibodies for external and internal antigens.

Apoptosis detection. Early apoptosis was detected using Annexin V-Apoptosis detection kit I (BD Biosciences, Franklin Lakes, NJ, USA), according to the producer’s protocol. The annexin V-positive, propidium iodide-negative cells were scored as apoptotic cells, whereas all propidium iodide-positive cells were considered to be necrotic when analyzed in FACScan (BD Biosciences). Staurosporine at 5 μM was used as an inducer of apoptosis (positive control). To detect executive phase of apoptosis, M30 CytoDEATH Fluorescein kit was used (Roche, Indianapolis, IN, USA); the M30 antibody cytoDEATH recognizes a specific cleavage site within cytokeratin 18 that is not detectable in native cytokeratin 18 of normal cells. Before staining, the samples were permeabilized with Cytofix/Cytoperm fix/permeabilization kit (BD Biosciences), according to the manufacturer’s protocol and once stained, analyzed in FACScan (BD Biosciences) or with Leica fluorescence microscope equipped with Hamatsu C4880 cold CCD camera (Leica Microsystems GmbH, Wetzlar, Germany), after mounting in medium containing Hoechst 33342 (1 µg/ml) (Sigma).

Antibodies and immunostaining. For detection of cell surface antigens Fas and FasL, infected cells were collected by trypsinization and washed in 1% FBS/PBS. FITC-conjugated mononuclear hamster anti-mouse Fas antibody and PE-conjugated mononuclear hamster anti-mouse FasL antibody were used to detect surface expression of Fas and FasL (BD Biosciences). Intra-cellular antigens were detected using Cytofix/Cytoperm fix/permeabilization kit (BD Biosciences), according to the manufacturer’s protocol and by using the following antibodies: FITC-conjugated mononuclear hamster anti-Becl2 antibody (BD Biosciences), PE-conjugated mononuclear mouse anti-p56-FcR-x antibody (BD Biosciences) and polyclonal rabbit anti-p-Akt (Ser 473) (Santa Cruz Biotechnology, Santa Cruz, CA, USA). HSV-2 antigens were detected using rabbit polyclonal HSV antibody (Dako, Glostrup, Denmark). TNF-α, CXCL1/2 and IL-1β were detected using Cytofix/Cytoperm fix/permeabilization kit with Golgi plug (BD Biosciences) as described above, using polyclonal goat anti-GRO α/c (CXCL1/2) antibody (Santa Cruz Biotechnology), mononuclear hamster anti-IL-1β antibody (BD Biosciences) and Alexa Fluor 488-conjugated mononuclear rat anti-TNF-α antibody (BD Biosciences). Following incubation with primary antibodies, appropriate anti-rabbit PE or FITC-conjugated anti-goat or anti-hamster antibodies were used, where necessary (BD Biosciences).

Cell suspensions from the vaginal tissue were prepared as follows: vaginal tissues were cut into small pieces with scissors and then treated with collagenase/ dispase (1 mg/ml) (Roche) in Iscove’s medium at 37°C for 40 min. Treated tissues were pressed through a 70 μm cell strainer and washed in PBS. Gr-1-positive cells were detected using anti-CD11c-APC (BD Biosciences) and anti-Ly-6G-PE (BD Biosciences). Following incubation with primary antibodies, appropriate anti-rabbit PE or FITC-conjugated anti-goat or anti-hamster antibodies were used, where necessary (BD Biosciences).

HSV-2 infection of mice. Female mice, 6- to 8-week old, were used for all experiments. B6 MRL-Faslpr/J (Fas−/−) and B6Smn.C3-Fasfl/J (FasL−/−) mice were purchased from Charles River (Dortmund, Germany). C57BL/6 mice were used as controls. Mice were injected s.c. with 2.0 mg/kg of medroxyprogesterone (Depo-Provera; Upjohn, Puurs, Belgium) in 100 μl of PBS. At 6 days later, the mice were infected by intravaginal inoculation of 107FFU per mice (100 LD50) of HSV-2 strain 333 in 20 μl of HBSS. The animals were kept in ventilated cages under specific pathogen-free conditions at the Department of Experimental Biomedicine at the Gothenburg University. The studies were approved by the Ethics Committee for Animal Experimentation, Gothenburg, Sweden. At 3 days following intra-vaginal HSV-2 infection, the animals were killed and the vaginal tissue was used for preparation of cryostat sections.

Immunofluorescence microscopy of animal tissue. Vaginal tissue was removed, fixed in 2% paraformaldehyde in PBS for 4 h, then washed twice in 10% sucrose in PBS over 16 h before freezing and cryosectioning. Slides were washed in PBS and used for apoptosis detection via TUNEL (Millipore, Billerica, MA, USA) or M30 CytoDEATH Fluorescein kit (Roche) according to appropriate manufacturer’s protocols. TUNEL and M30 CytoDEATH Fluorescein detection of apoptosis in tissues was followed by incubation with anti-HSV-2 antibody (1: 50)
Swedish Medical Research Council, Swedish state under the ALF agreement, from Imed AB. The other authors declare no conflict of interest. Dr. Chiodi owns stock in the company Imed AB. The present work was not financed

Conflict of interest

Neutrophils isolation and transwell migration assay. Neutrophils were isolated as described by Siemsen et al. and stained with PKH62 Red Fluorescent Cell Linker Kit for General Cell Membrane Labeling (Sigma) as indicated by the manufacturer. Purity of isolation was determined by Gr-1-positive staining and measured by FACS. Neutrophils migration was assayed using 24 well Transwell inserts (BD Biosciences) with 3 μm pores. One million of isolated neutrophils were loaded into the top well and allowed to migrate for 6 h toward keratinocytes treated with anti-Fas antibody, anti-FASL blocking antibody. HSV-2-infected keratinocytes and HSV-2-infected keratinocytes treated with anti-Fas antibody or anti-FasL blocking antibody. Migrated cells were then collected and measured using FACS. Extent of migration was expressed as a migration index, which was defined as the number of cells that migrated in a particular assay by the number of cells that migrated toward cells kept in standard tissue culture of uninfected keratinocytes.

Statistical methods. Quantitative data were presented as means ± S.E.M. In the case of normal distribution of values, confirmed by Shapiro's test, statistical comparisons were performed using the Student's t test. In every analysis values of p < 0.05 were considered significant.

Conflict of interest

Dr. Chiodi owns stock in the company Imed AB. The present work was not financed from Imed AB. The other authors declare no conflict of interest.

Acknowledgements. This work was supported in part by grants from the Swedish Medical Research Council, Swedish state under the ALF agreement, Karolinska Institutet (to EO), Elif Marie Curie fellowship number 221246 (to MK), Torsten and Ragnar Sten popular Research Foundation (to KE) and Ingbrit and Arne Lundbergs Research Foundation (to KE).

1. Koyama AH, Adachi A. Induction of apoptosis by herpes simplex virus type 1. J Gen Virol 1997; 78: 2909–2912.

2. Koyama AH, Akihara H, Adachi A, Goshima F, Nishiyama Y. Induction of apoptosis in HEP-2 cells by infection with herpes simplex virus type 2. Arch Virol 1998; 143: 2435–2441.

3. Ozaki N, Sugiyama Y, Yamamoto M, Yokoya S, Watanaka A, Nishiyama Y. Apoptosis induced in the spinal cord and dorsal root ganglion by infection of herpes simplex virus type 2 in the mouse. Neurosci Lett 1997; 228: 99–102.

4. Fleck M, Mount JD, Hsu HC, Wu J, Edwards III CK, Kern ER. Herpes simplex virus type 2 infection induces a rapid p63 expression in the mouse thymus using a transgenic reporter. J Virol 2009; 83: 11738–11740.

5. Mastino A, Scorinut MT, Medici MA, Perri D, Ammendola MG, Grelli S et al. Herpes simplex virus 2 causes apoptotic infection in monocytoid cells. Cell Death Differ 1997; 4: 623–638.

6. Jones CA, Fernandez M, Herr K, Bosnjak L, Miranda-Sakoune M, Boadale RA et al. Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro. J Virol 2003; 77: 11193–11149.

7. Han JY, Shain DD, Aubert M, Miller SA, Dang CH, Jerome KR. Apoptosis and antigen receptor function in T and B cells following exposure to herpes simplex virus. Virology 2007; 369: 253–263.

8. Hata S, Koyama AH, Shiota H, Adachi A, Goshima F, Nishiyama Y. Antipapoptotic activity of herpes simplex virus type 2: the role of US3 protein kinase gene. Microbes Infect 1999; 1: 601–607.

9. Perkina D, Pereira EF, Aurelian L. The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) functions as a dominant regulator of apoptosis in hippocampal neurons involving activation of the ERK survival pathway and upregulation of the antipapoptotic protein Bag-1. J Virol 2003; 77: 1292–1305.

10. Smith CC, Nelson J, Aurelian L, Gober M, Goswami BB. Ras-GAP binding and phosphorylation by herpes simplex virus type 1 infection induced apoptosis in peritoneal macrophages independent of Fas and tumor necrosis factor receptor-signaling. J Virol 2003; 77: 8747–8751.

11. Dobbs ME, Grayer JE, Chu CF, Chalk C, Milligan GN. Clearance of herpes simplex virus type 2 by CD8+ T cells requires gamma interferon and either perforin- or Fas-mediated cytolytic mechanisms. J Virol 2005; 79: 14546–14554.

12. Gober MD, Lang JM, Thompson SM, Aurelian L. The growth compromised HSV-2 mutant D017 prevents kainic acid-induced apoptosis and loss of function in organotypic hippocampal cultures. Brain Res 2006; 1119: 26–39.

13. Taylor TJ, Brockman MA, Mckamee NE, Knipe DM. Herpes simplex virus. Front Biosci 2002; 7: 752–764.

14. Parr MB, Kepley LD, McDermott MR, Drew MD, Bozzola JJ, Parr EL. A mouse model for studying murine mucosal injury to vaginal infection by herpes simplex virus type 2. Lab Invest 1994; 70: 369–380.

15. Seitz CS, Freiberg RA, Hinata K, Khavari PA. NF-κB determines localization and cytolytic mechanisms of herpes simplex virus type 2 inhibition of Fas ligand expression. J Virol 1996; 70: 8781–8789.

16. Viard I, Wehrli P, Bullani R, Schneider P, Poller N, Salomon D et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 1999; 282: 490–493.

17. Farley SM, Dotson AD, Purdy DE, Sundholm AJ, Schneider P, Magun BE et al. Fas ligand elicits a caspase-independent proinflammatory response in human keratinocytes: implications for dermatitis. J Invest Dermatol 2000; 124: 2413–2421.

18. Sieg S, Yildirim Z, Dotson AD, Purdy DE, Sundholm AJ, Schneider P, Magun BE et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 1999; 282: 490–493.

19. Gober MD, Lang JM, Thompson SM, Aurelian L. The growth compromised HSV-2 mutant D017 prevents kainic acid-induced apoptosis and loss of function in organotypic hippocampal cultures. Brain Res 2006; 1119: 26–39.

20. Taylor TJ, Brockman MA, Mckamee NE, Knipe DM. Herpes simplex virus. Front Biosci 2002; 7: 752–764.

21. Parr MB, Kepley LD, McDermott MR, Drew MD, Bozzola JJ, Parr EL. A mouse model for studying murine mucosal injury to vaginal infection by herpes simplex virus type 2. Lab Invest 1994; 70: 369–380.

22. Seitz CS, Freiberg RA, Hinata K, Khavari PA. NF-κB determines localization and cytolytic mechanisms of herpes simplex virus type 2 inhibition of Fas ligand expression. J Virol 1996; 70: 8781–8789.

23. Dobbs ME, Grayer JE, Chu CF, Chalk C, Milligan GN. Clearance of herpes simplex virus type 2 by CD8+ T cells requires gamma interferon and either perforin- or Fas-mediated cytolytic mechanisms. J Virol 2005; 79: 14546–14554.

24. Gober MD, Lang JM, Thompson SM, Aurelian L. The growth compromised HSV-2 mutant D017 prevents kainic acid-induced apoptosis and loss of function in organotypic hippocampal cultures. Brain Res 2006; 1119: 26–39.

25. Taylor TJ, Brockman MA, Mckamee NE, Knipe DM. Herpes simplex virus. Front Biosci 2002; 7: 752–764.

26. Parr MB, Kepley LD, McDermott MR, Drew MD, Bozzola JJ, Parr EL. A mouse model for studying murine mucosal injury to vaginal infection by herpes simplex virus type 2. Lab Invest 1994; 70: 369–380.

27. Seitz CS, Freiberg RA, Hinata K, Khavari PA. NF-κB determines localization and cytolytic mechanisms of herpes simplex virus type 2 inhibition of Fas ligand expression. J Virol 1996; 70: 8781–8789.

28. Dobbs ME, Grayer JE, Chu CF, Chalk C, Milligan GN. Clearance of herpes simplex virus type 2 by CD8+ T cells requires gamma interferon and either perforin- or Fas-mediated cytolytic mechanisms. J Virol 2005; 79: 14546–14554.

29. Goodkin ML, Ting AT, Smith D, Aurelian L. The growth compromised HSV-2 mutant D017 prevents kainic acid-induced apoptosis and loss of function in organotypic hippocampal cultures. Brain Res 2006; 1119: 26–39.

30. Taylor TJ, Brockman MA, Mckamee NE, Knipe DM. Herpes simplex virus. Front Biosci 2002; 7: 752–764.

31. Parr MB, Kepley LD, McDermott MR, Drew MD, Bozzola JJ, Parr EL. A mouse model for studying murine mucosal injury to vaginal infection by herpes simplex virus type 2. Lab Invest 1994; 70: 369–380.

32. Seitz CS, Freiberg RA, Hinata K, Khavari PA. NF-κB determines localization and cytolytic mechanisms of herpes simplex virus type 2 inhibition of Fas ligand expression. J Virol 1996; 70: 8781–8789.
34. Kleber S, Sancho-Martinez I, Wiestler B, Beisel A, Gieffers C, Hill O et al. Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 2008; 13: 235–248.
35. Thapa M, Carr DJ. Chemokines and chemokine receptors critical to host resistance following genital herpes simplex virus type 2 (HSV-2) infection. Open Immunol J 2008; 1: 33–41.
36. Peng T, Zhu J, Klock A, Phasouk K, Huang ML, Koelle DM et al. Evasion of the mucosal innate immune system by herpes simplex virus type 2. J Virol 2009; 83: 12559–12568.
37. Milligan GN, Bourne N, Dudley KL. Role of polymorphonuclear leukocytes in resolution of HSV-2 infection of the mouse vagina. J Reprod Immunol 2001; 49: 49–65.
38. Ishikawa T, Yamada H, Oyamada A, Goshima F, Nishiyama Y, Yoshikai Y. Protective role of Fas-FasL signaling in lethal infection with herpes simplex virus type 2 in mice. J Virol 2009; 83: 11777–11783.
39. Akgul C, Edwards SW. Regulation of neutrophil apoptosis via death receptors. Cell Mol Life Sci 2003; 60: 2402–2408.
40. Svensson A, Nordstrom I, Sun JB, Eriksson K. Protective immunity to genital herpes simplex virus type 2 infection is mediated by T-bet. J Immunol 2005; 174: 6266–6273.
41. Kulesz-Martin M, Yoshida MA, Prestine L, Yuspa SH, Bertram JS. Mouse cell clones for improved quantitation of carcinogen-induced altered differentiation. Carcinogenesis 1985; 6: 1245–1254.
42. Namvar L, Olofsson S, Bergstrom T, Lindh M. Detection and typing of herpes simplex virus (HSV) in mucocutaneous samples by TaqMan PCR targeting a gB segment homologous for HSV types 1 and 2. J Clin Microbiol 2005; 43: 2059–2064.
43. Siemsen DW, Schepetkin IA, Kripotina LN, Lei B, Quinn MT. Neutrophil isolation from nonhuman species. Methods Mol Biol 2007; 412: 21–34.