This issue of *Journal of Ophthalmic and Vision Research* contains an article describing a Rapid Assessment of Avoidable Blindness (RAAB) study conducted in Kurdistan in 2014.[1] During the last two decades, a few comprehensive eye studies and three RAAB studies have been performed in Iran.[2–4] These valuable attempts are quite outstanding compared to the situation of Iran’s eye health information in the past and also serve as an exemplar for the Eastern Mediterranean Region (EMR) and other regions. Although the three RAAB studies have been conducted in different provinces influenced by regional specific factors including ethnicity, socioeconomic status and access to eye care services, they all show a high proportion of avoidable blindness. This consistent evidence underlines the necessity of subnational and national strategies towards the prevention of blindness.

Another achievement of the current RAAB study is that it has been conducted on a minority ethnic group in Iran and is the first population-based eye health study carried out on this group. The study reveals that 13.4% of the over 50 years population in this province suffer from visual impairment and the majority of causes are avoidable.

Ashrafi et al.[1] have diligently compared similarities and differences between Kurdistan and the two other Iranian provinces where RAAB studies have been performed, as well as relevant comparisons with the national average. In addition, they align this assessment with RAAB studies from other countries and provide an overview of the eye health situation in Iran based on the available evidence. However, it should be noted that RAAB studies are designed to evaluate eye health in a district or province at a certain point of time and care should be taken for direct comparisons and particularly, extrapolation of the results to the whole population of a country.[2]

Although RAAB studies provide less specific clinical results than comprehensive eye studies, they have been broadly promoted as a feasible, fairly standardized model providing baseline information on the magnitude and causes of blindness and some common indicators related to eye care services.[3] In particular, this method is relevant to settings where a health information system has not been systematically established. In comparison to comprehensive eye studies, RAAB studies require less time, resources, sample size and expert staff. However, the public health and epidemiological aspects of RAAB studies are quite inclusive and in order to provide reliable and comparable results, they still require devoted efforts to conduct.

The World Health Organization has recommended RAAB methodology as a standard tool for eye care needs assessment and as the first step in district level eye health planning.[6] Ideally, the survey should accordingly be followed by an eye health plan specified to the survey area and implemented programs should be continuously monitored. Correspondingly, the inventors of the RAAB survey have recently included a planning module to the new version of the RAAB tool.[8]

Ashrafi et al.[1] can more specifically recommend and argue for potential strategies that may improve the situation in Kurdistan. These contributions could be the most important outcomes of the study and combining these with actual and contextual information on treatment availability such as cataract surgical coverage, barriers and outcomes of cataract surgery and diabetic retinopathy modules will probably increase the chance for timely utilization of collected data to inform policy makers and local health authorities to attempt practical solutions that are explicit to the survey area.

In addition to population-based eye studies, recent Iranian national level situation analyses have provided a broad road map towards available resources and gaps.[7,8] Most of these studies, including the current study by Ashrafi et al.,[1] highlight the necessity of reorientation in national and district level eye health
programs towards the objectives of the Vision 2020 Global Initiative: to combat avoidable blindness.\[9\] There are encouraging potentials for achieving this objective; innovative interventional studies with the purpose of designing plans and developing local tools for improving eye health have recently emerged which aim to provide capacity building ophthalmological services at community-level.\[10,11\]

Lastly, it should be reemphasized that the main importance of epidemiological data relies in their application in planning for improvement and monitoring of implemented strategies. It is worth suggesting to local research teams to stay motivated and scale up their projects towards the following aims:

1) Advocating the integration of eye health data into existing and emerging health information systems; a complete or partial RAAB survey form can be a practical option in this regard.

2) Conducting community trials and health system strengthening research with the aim of developing and piloting integrated eye health interventions, particularly at primary and secondary levels of the health system.

3) Conducting operational studies which support implementation of obtained knowledge and experience from epidemiologic and interventional pilot studies.

Acknowledgment
I thank Dr. Marzieh Katibeh for her contribution to this Editorial.

REFERENCES
1. Ashrafi E, Mohammadi SF, Katibeh M, Ghaderi E, Alinia C, Nourmohammadi N, et al. Rapid Assessment of Avoidable Blindness in Kurdistan, Iran. J Ophthalmic Vis Res 2019;14:179-84.

2. Mohammadi SF, Saeedi-Anari G, Ashrafi E, Mohammadi SM, Farzadfar F, Lashay A, et al. Prevalence and major causes of visual impairment in Iranian adults: A systematic review. Middle East Afr J Ophthalmol 2017;24:148-155.

3. Rajavi Z, Katibeh M, Ziaei H, Fardesmaeilpour N, Sehat M, Ahmadihie H, et al. Rapid assessment of avoidable blindness in Iran. Ophthalmology 2011;118:1812-1818.

4. Katibeh M, Behboudi H, Moradian S, Alizadeh Y, Beiranvand R, Sabbaghi H, et al. Rapid assessment of avoidable blindness and diabetic retinopathy in Gilan Province, Iran. Ophthalmic Epidemiol 2017;24:381-387.

5. Kocur I, Limburg H, Resnikoff S. Rapid assessment of avoidable blindness— Past, present, and future. Asia-Pacific J Ophthalmol 2018;7:282-283.

6. Mactaggart I, Wallace S, Ramke J, Burton M, Bastawrous A, Limburg H, et al. Rapid assessment of avoidable blindness for health service planning. Bull World Health Organ 2018;96:726-728.

7. Mohammadi SF, Lashay MR, Ashrafi E, Haghdoust AA, Alinia C, Lashay AR, et al. Distribution of ophthalmologists and optometrists in Islamic Republic of Iran and their associated factors. East Mediterr Health J 2017;22:880-886.

8. Hashemi H, Rezvan F, Fotouhi A, Kabazkhoob M, Gilasi H, Etemad K, et al. Distribution of cataract surgical rate and its economic inequality in Iran. Optom Vis Sci 2015;92:707-713.

9. WHO launches Vision 2020 to combat avoidable blindness. Public Health Rep 1999;114:210.

10. Katibeh M, Kalantarion M, Sabbaghi H, Mosavi B, Schriver M, Nikkhah H, et al. Designing a screening program for prevention of avoidable blindness in Iran through a participatory Action approach. J Ophthalmic Vis Res 2019;14:52-61.

11. Safi S, Ahmadihie H, Katibeh M, Yaseri M, Nikkhah H, Karimi S, et al. Modeling a telemedicine screening program for diabetic retinopathy in Iran and implementing a pilot project in Tehran suburb. J Ophthalmol 2019;2019:1-8.