RESEARCH ARTICLE

Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas

Victoria Veach1, Atte Moilanen1, Enrico Di Minin2,3*

1 Department of Biosciences, University of Helsinki, Helsinki, Finland, 2 Department of Geosciences, University of Helsinki, Helsinki, Finland, 3 School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa

* enrico.di.minin@helsinki.fi

Abstract

Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results identify areas where limited resources should be allocated to mitigate risks to vertebrate species from habitat loss.
Introduction
The diversity of life on Earth is currently being lost at unprecedented rates[1]. Driven largely by human population growth and consumption, present day extinction rates are estimated to be about 1,000 times higher than those that would be seen in the absence of human pressure[2]. Habitat loss and fragmentation resulting from human appropriation of land for activities such as urban development, agriculture expansion, energy production, etc., is the most serious threat to biodiversity, affecting approximately 85% of all species listed in the IUCN Red List[2–4]. Overexploitation, introduced species, and co-extinctions follow closely behind as the most serious threats to biodiversity[3,4]. Anthropogenic driven climate change poses an additional risk to the persistence of species[5]. Each of these threats poses a great risk to the survival of biodiversity when considered individually. However, there are often several overlapping and interacting stressors present at a location, resulting in a net impact that is greater than the sum of each individual threat[6].

Protected area establishment is one of the key strategies to mitigate threats and curb further loss of biodiversity[7,8]. Identifying important areas for conservation can be carried out either proactively, i.e. prioritizing areas under low threat and preventing stressors by establishing conservation areas prior to the development of a threatening process, or reactively, i.e. mitigating stressors by prioritizing areas that are currently under high levels of threat[9]. Determining which approach is more suitable depends on many complicated factors, including whether the pressures in question really can be stopped or mitigated in the particular area of interest[10,11]. Complementarity-based spatial conservation prioritization (SCP) methods can help achieve effective conservation planning by identifying the most effective network of sites to provide protection for the most species[7,12], while also balancing biodiversity needs with competing land-uses that threaten biodiversity[13,14]. For an SCP planning project to be successful, several types of information is needed, including reliable information about the distributions of the biodiversity features present, distributions of processes threatening biodiversity and competing for land use, and costs[8].

Many studies about threats have been quantitative assessments of the number and proportion of species populations declining due to different threats (habitat loss, disease, non-native species invasions, pollution, etc.) for a country[15–18], a habitat or realm[19,20], or a single taxonomic group[21,22]. Others studies developed spatially explicit maps showing the location and intensity of threats to biodiversity. These maps have been made at variable geographic scales from regional[23] and continental[18] scale to global terrestrial[24], marine[25,26], and coral reef[27] ecosystems. However, global information on the spatial distribution of threats is often missing or inaccurate[28].

Here, we consider three prominent threats to biodiversity: residential and commercial development, agriculture, and forest loss. These stressors threaten the highest number of species of the twelve IUCN threat categories[4,28], and they represent three primary drivers of habitat loss, one of the leading causes of biodiversity decline[3]. We focus on these three threats due to the availability of reliable broad-scale data for terrestrial ecosystems. We first explore how global priority areas for conservation would differ when each threat is individually accounted for in prioritization. We then assess the potential for simultaneously including the three threats in a single priority area network. Finally, we assess four well-known global conservation priority area schemes with respect to overlap with these three prominent threats.

Methods
Biodiversity features
We based our analysis on species range maps for mammals, birds, and amphibians fully assessed in the IUCN Red List[4]. Range maps for birds were obtained from BirdLife.
Species range maps from the IUCN Red List and BirdLife International were available as GIS polygons covering the known or inferred areas where species occur[4]. Prior to spatial prioritization, all range maps were converted to a latitude/longitude coordinate system and rasterized to global high resolution grids of 1 degree, or 10 km at the equator. We assigned pixel values in the rasterized maps as presence/absence according to the certainty of species presence in the polygon reported by the IUCN. Areas reported by the IUCN as extant and probably or uncertainly extant were assigned a value of 1 in the rasterized maps, while all other categories were assigned a value of 0.

We included a condition transformation[30,31] in each analysis. The condition layer was based on the land-use model created by van Asselen and Verburg (2013)[32] and reflects land-use and habitat quality for the year 2000. Each land-use class in the model was assigned a value to reflect its naturalness, with 0 indicating a land-use that is totally unsuitable for biodiversity and 1 indicating pristine conditions. The specific values used in the condition layer are defined in Pouzols et al. (2014)[33] and here they are used as surrogates of agricultural threat level (Table 1). Basically, the condition transformation adjusts the distribution of each feature by multiplying the pixel values in each species layer by the values in the condition layer. The condition layer helps avoid setting priority areas in locations that have become unsuitable for biodiversity due to broad-scale land-use conversion and subsequent habitat loss by effectively cutting out already transformed areas from the species range maps, which may have not been fully up-to-date with respect to land conversion.

Spatial conservation prioritization

Fig 1 summarizes the flow of computations in this study. We identified priority areas for conservation action using the Zonation software v. 4.0 for spatial conservation prioritization [31,34]. Zonation implements computational methods for broad-scale spatial landscape prioritization using large sets of grid-format maps about biodiversity features, costs, and threats as well as additional ecological information about, e.g., connectivity effects[31,33–35]. Each Zonation prioritization begins from the full landscape and creates a hierarchical priority ranking by iteratively ranking and removing the grid cells which cause the least marginal loss in aggregate conservation value[31,33,36,37]. As grid cells are ranked and removed during a prioritization, the landscape-level representation of each feature (i.e. species, habitats) declines. Zonation tracks this loss of representation and uses it to balance the relative importance of the

Verburg Land System	Condition Layer Value	Intensity Level
All forms of intensive and medium intensive cropland	0.2–0.3	High
Extensive cropland and intensive/medium intensive mosaic cropland	0.4–0.6	Medium
Extensive mosaic cropland	0.7–0.8	Low

Table 1. The van Asselen and Verburg (2013) agriculture classes, habitat condition layer value, and the threat intensity levels used here. We use ‘intensity’ qualitatively here to explore how the assumed severity of the impact on the natural system is distributed within the broader threat category.
1. How does the spatial pattern of priority areas for conservation action change when different threats are prioritized for?

2. For each analysis based on species threatened by either residential and commercial development, agriculture, and forest loss, how much of the 17% highest priority areas are threatened by the distribution of the stressor considered?

3. What proportion of four global conservation priority area schemes are threatened by residential and commercial development, agriculture, and forest loss?
remaining occurrences of features[13,31,38], allowing Zonation to retain balanced representation for all features throughout the prioritization. Zonation has multiple options for how marginal loss of conservation value is aggregated across species. In this study, we used the additive benefit function (ABF)[39], which effectively uses feature-specific species area curves to minimize aggregate extinction risk[13,31].

We conducted a separate prioritization for species coded by the IUCN as threatened by residential and commercial development; agriculture expansion; and forest loss. Each prioritization was based only on the species that are threatened (critically endangered, endangered, or vulnerable) in the IUCN Red List[4]. A threat-specific analysis considering only the species that are at risk of extinction due to each threat allowed us to locate the areas where biodiversity is most susceptible to each threat. In total, the number of terrestrial vertebrate species included in each analysis was 1,696 for residential and commercial development, 3,551 for agriculture expansion, and 2,669 for forest loss.

Overlay analyses with threat layers

We conducted post-processing overlay analyses in R version 3.2.3[40], using the raster[41] and zonator[42] packages, and in ArcGIS v10.1[43]. In this analysis, we assessed the extent of overlap between the three sets of the 17% highest priority areas identified in this study and the spatial threat distribution. We did the same for four global conservation schemes, namely Key Biodiversity Areas[44], the Biodiversity Hotspots[45,46], the World Wilderness Areas[47], and the global Protected Area Network[48]. We included three types of threat in the overlay analysis: residential and commercial development, agriculture expansion, and forest loss.

As threat layers, we used the 2040 expected distributions of residential and commercial development and agriculture expansion created by the van Asselen and Verburg (2013)[32] land systems model. We were primarily interested in expected changes in the distributions of threats, which is why we modified the layers to show only the expected threat distribution expansion by year 2040. Hence, we clipped out from the threat distribution maps the areas classified as residential and commercial development and agriculture in 2000. For forest loss, we used the forest loss layer created by Hansen et al. (2013)[49]. This layer shows the proportion of forest loss between the years 2000 and 2012 from both anthropogenic forest loss through deforestation, as well as natural forest loss via events such as stand replacing fire or blow down during storms. In contrast to the predictive agriculture and urban expansion layers included, the forest loss information included here is retrospective due to a lack of reliable estimates regarding future forest loss. While this presents a discrepancy in the type of data used in this study, our overall objective was to explore the spatial relationships between the distributions of threats and priority areas. We aggregated this layer to 10km resolution at the equator using ArcGIS v10.1[43] to be consistent with the other grid data layers included in this study.

For assessing the extent to which the three sets of priority areas and four global conservation schemes are threatened, we broke agriculture and forest loss into low, medium, and high intensity classes by using tertiles (Table 2). Tertiles are any of the two points that divide an ordered distribution into three parts, each containing a third of the population. In this case, splitting the two layers into 3 categories each using tertiles allowed us to simplify the interpretation and the presentation of the results. Moreover, the objective here was to simply calculate the overlap between the priority and threat grid cells and not to carry out more sophisticated correlation analyses. Thus, the levels of intensity used in this study are purely qualitative and
Table 2. Forest loss threat levels used here. We use ‘intensity’ qualitatively here to explore how the amount of forest loss is distributed within the broader threat category.

Amount of original forest lost	Forest Loss Threat Intensity
5.4–85.5%	High
1.0–5.4%	Medium
0–1.0%	Low

https://doi.org/10.1371/journal.pone.0188397.t002

were used to explore how the different level of assumed impact on the natural habitat (low habitat loss ranging to complete land use conversion) were distributed within the broader threat classifications. The agriculture classes were based on the original land system classes developed by van Asselen and Verburg\[32\] and the values given to each in the condition layer (Table 1). Forest loss intensity classes were based on the amount of the original forest that has been lost divided into tertiles (Table 2). For residential and commercial development, we had just two classes—urban and periurban—as these were the only two residential classes classified in the land systems model of van Asselen and Verburg\[32\].

Results

Spatial conservation prioritization for species threatened by a single threat (residential and commercial development, agriculture expansion, and forest loss) resulted in different spatial patterns of global priority areas (Fig 2). For species threatened by agriculture, high priority areas occurred throughout central Asia, India, and Australia, while high priority areas for species threatened by residential and commercial development appeared in eastern Mongolia, northern China, and eastern Siberia (Fi. 2). High priority areas for species threatened by forest loss were most prominent in south western China with smaller clusters in South America and western Russia (Fig 2).

A pair-wise comparison using the Jaccard Similarity Index showed that about half of the 17% highest priority areas identified by Zonation for each threat were shared by another set of

Proportion of terrestrial land appearing in the 17% highest priority areas in multiple prioritizations:

- Agriculture-Residential: 9.26%
- Agriculture-Forest Loss: 9.03%
- Residential-Forest Loss: 7.90%
- All Prioritizations: 7.02%

Fig 2. Highest ranking 17% of priority areas when based on species threatened by agriculture (yellow), residential and commercial development (light purple) and forest loss (dark green). Areas in dark purple appear in the highest 17% priority areas in both agriculture and residential prioritizations. Areas in dark green show areas that are ranked in the highest 17% priority areas in the prioritizations based on agriculture and forest loss, and areas in blue appear in the highest 17% priority areas in the residential and forest loss priority areas. Areas in red are ranked in the highest 17% priority areas in all prioritizations.

https://doi.org/10.1371/journal.pone.0188397.g002
priority areas. Overlap between agricultural and urban expansion prioritizations was 0.53; overlap between agricultural expansion and forest loss prioritizations was 0.59; and overlap between urban expansion and forest loss prioritizations was 0.51. When all three sets of priority areas were considered in the same analysis, we found that 7.02% of the total terrestrial surface appeared in the top 17% priority areas in all analyses (Fig 2). The areas where the three sets of priority areas overlap are mostly located in the highly biodiverse tropical regions of the world.

Between 43.02% and 46.56% of the highest priority areas identified by Zonation directly overlapped the distribution of at least one of the threats considered here (Table 3). Where the three sets of top 17% priority area sets intersect, 52.14% of the area was directly threatened by either agriculture, residential and commercial development, or forest loss (Table 3). Forest loss affected the most area within the priority areas, ranging from 31.25% to 36.82% of the individual top 17% priority areas and 41.91% of the area where the three sets of priority areas intersect (Table 3). Agriculture expansion, particularly high intensity agriculture, also threatened a considerable amount of area in each of the priority areas. In total, agriculture threatened approximately 22% of each individual priority area and 24.21% of the area where the three sets of priority areas intersect (Table 3). Residential and commercial development threatened around 4% of each set of priority areas, with most of the total area threatened by expansion and development of peri-urban areas (Table 3).

Of the four global conservation schemes considered in this study, the Biodiversity Hotspots had the greatest proportion of their total area under direct threat (Table 4). Approximately 44% of the total area of Hotspots was threatened by at least one of the threats included here, compared to approximately 24% of KBAs, 15% of PAs, and 7% of Wilderness areas (Table 4). Forest loss threatened the largest area of each scheme, affecting between 6.20% of Wilderness areas to 30.58% of Hotspots (Table 4). Agriculture expansion also threatened a considerable proportion of each scheme, ranging between 1.56% of Wilderness areas to 22.47% of Hotspots. Residential and commercial development threatened the least amount of area in all global conservation schemes (Table 4).

Table 3. Proportion of top 17% priority areas that are directly threatened by each of the threats.

Threat	Top 17% Priority Area			
	Residential	Agriculture	Forest Loss	3 Priority Area Overlap
Agriculture				
High Intensity	11.35%	10.75%	9.78%	10.94%
Mid Intensity	4.38%	4.00%	4.30%	4.64%
Low Intensity	6.59%	6.51%	7.59%	8.63%
Total	22.32%	21.26%	21.67%	24.21%
Residential				
Urban	0.68%	0.60%	0.58%	0.60%
Peri-urban	3.40%	3.06%	3.11%	3.61%
Total	4.08%	3.66%	3.69%	4.21%
Forest Loss				
High Loss	18.98%	18.63%	21.80%	25.00%
Mid Loss	12.85%	12.62%	15.01%	16.92%
Low Loss	8.87%	8.40%	9.83%	10.66%
Total	31.82%	31.25%	36.82%	41.91%
Total from all threats combined	44.31%	43.02%	46.59%	52.14%

https://doi.org/10.1371/journal.pone.0188397.t003
Expansion of high intensity agriculture and areas that have experienced a high amount of forest loss (5.4%-85.5% loss of original forest cover) contributed most to the overall agriculture and forest loss threat in all schemes. The one exception to this was Wilderness areas, where expansion of low intensity agriculture contributed the most area to the total threat of growing agriculture activities. In Hotspots and KBAs, high intensity agriculture accounted for more than half of the total area threatened by agriculture expansion while areas that have lost a high amount of original forest account for up to 60% of the total area that has experienced forest loss.

A large proportion of Hotspots, PAs, and KBAs that are directly threatened by agriculture expansion, residential and commercial development, and forest loss were also ranked within the top 17% priority areas in Zonation (Figs 3 and 4). Of the total area impacted by each threat considered here, between 55% and 69% of Hotspots, 45–52% of PAs, and 41–62% of KBAs also appeared in the 17% highest ranked areas from at least one of the Zonation priority rankings. In all of the global conservation schemes included here, the areas that were both directly threatened and a Zonation priority area occurred mostly in the tropical regions, South East Asia, and along the South-eastern regions of Africa. Some threatened and Zonation priority area KBAs and PAs also occurred in Europe, North America, and Australia, and some threatened and Zonation priority area Wilderness areas were found in the eastern parts of Siberia (Figs 3 and 4).

Although quite a large extent of the conservation schemes that were threatened were also ranked as high priority areas in Zonation, there were still many areas of the conservation schemes that were threatened but not ranked as a Zonation priority area for the conservation of vertebrate species (Figs 3 and 4, Table 4).

Discussion

Anthropogenic threats to biodiversity take many different forms, originate from many different activities, and are globally pervasive. There is not one single place left on earth that is not experiencing at least one threat originating from the actions of humans[24]. In fact, most
places are suffering from multiple, often very different threats[24,26]. The results of this study start building an understanding of where threats occur and how their spatial patterns relate to both other threats and to priority areas for conservation—an understanding that is helpful for allocating resources to mitigate such threats.

The overlap of the threat-specific priority areas found in this study suggests that there is potential for protecting species from multiple threats with well-planned and placed conservation areas, especially in the highly biodiverse tropics. In this study, we identified priority areas for species at risk due to residential and commercial development, agriculture, and forest loss—all of which are strong drivers of habitat loss[49–52]. Priority areas based on species at risk for extinction due to threats driving other processes, such as over-exploitation, invasive species, or pollution, might show different spatial patterns and require strategies other than protection in reserves.

In Zonation it is possible to include areas valuable to alternative land uses as places to avoid giving high conservation priority to[13,14]. We did not use this function for these prioritizations. Rather, our prioritizations were based solely on the species at risk due to the specific

Fig 3. Key biodiversity areas and conservation international hotspots that are threatened by at least one of residential and commercial development, agriculture expansion, or forest loss (labelled ‘Threatened’) and fall within the highest ranking 17% priority areas from all three analyses (labelled ‘Threatened and Zonation Priority’).

https://doi.org/10.1371/journal.pone.0188397.g003
threats included here. After identifying the priority areas, we assessed how much the threat layers overlap the priority areas (Fig 2; Table 3). Our aim was to assess how much direct threat each set of priority areas faces. Our results indicate that potential impacts of different threats to conservation priority areas vary significantly. For example, residential and commercial development are smaller threats. This suggests that it may be possible to avoid conflict with this land use. On the other hand, forest loss and agricultural expansion are much larger threats and might require reactive approaches to stop them[9].

An important question with threats is whether they are stoppable, unstoppable, or partially stoppable[10,11]. Climate change, for example, is unstoppable from the local perspective: its effects will depend on global efforts that cannot significantly be influenced locally. It is best to stay away from locations that face unstoppable threats. In this study, we took the attitude that we are working with stoppable threats: the locations of urban expansion, agricultural expansion, and forestry operations can be decided by local administrative action. Hence, these threats are stoppable (at least partially), and looking for threatened areas therefore makes sense when targeting conservation actions.
An added difficulty of planning for threats is the widespread lack of spatial data showing the location of individual threats, making it difficult to fully understand the degree of threat present at a location[28]. Our study addresses this by locating threat-specific priority areas for conservation of species threatened by three dominant threats and exploring the spatial relationships between the three resulting sets of priority areas. The high amount of spatial overlap among the sets of priority areas (Fig 2) indicates that there may be potential for mitigating multiple threats with well-planned and placed conservation areas. However, we could only include three threats in this study, and we thus cannot fully understand where to place conservation areas that would best mitigate all threats together.

Our results also highlight that global conservation schemes, such as biodiversity hotspots and key biodiversity areas, are under threat from habitat loss. While strict protection remains crucial to enhance the persistence of the threatened species in these areas, it is important that sound resources are invested for protected area management[53] so that many of the protected areas that are and will be created are more than ‘paper’ parks[54]. As many of the protected areas are found in the global south, international donors should also play a key role in making sure resources for conservation are adequate[55]. Other interventions, targeting some of the drivers of habitat loss, including careful land use planning, will be needed to safeguard biodiversity and the services it provides to humans.

Identifying priority areas for conservation actions to stop threats is a cornerstone of systematic conservation planning. Stopping habitat loss is challenging, but international policy, such as the UN Sustainable Development Goals, provide an important framework to stop threats and prevent the perverse mechanisms of biodiversity loss by humans. In this study, we highlight areas where resources should be allocated to prevent habitat loss. Our analyses are based on threats that are driving habitat loss only and that can be stopped with strict protection and adequate management. Future studies should focus on other threats, such as overharvesting, for which no information on the most threatened areas is available[56]. Future studies should also include other species from comprehensively assessed taxonomic groups and not only vertebrates[57].

Author Contributions

Conceptualization: Atte Moilanen, Enrico Di Minin.

Formal analysis: Victoria Veach.

Methodology: Victoria Veach, Enrico Di Minin.

Supervision: Atte Moilanen, Enrico Di Minin.

Visualization: Victoria Veach.

Writing – original draft: Victoria Veach, Atte Moilanen, Enrico Di Minin.

Writing – review & editing: Victoria Veach, Atte Moilanen, Enrico Di Minin.

References

1. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond RE a, et al. Global biodiversity: indicators of recent declines. Science [Internet]. 2010 May 28 [cited 2014 Feb 20]; 328 (5982):1164–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20430971 https://doi.org/10.1126/science.1187512 PMID: 20430971

2. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science (80-) [Internet]. 2014 May 29 [cited 2014 May 29]; 344(6187):1246752–1246752. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1246752 https://doi.org/10.1126/science.1246752 PMID: 24876501
3. Diamond JM. “Normal” extinction of isolated populations. In: Nitecki MH, editor. Extinctions. Chicago: Chicago University Press; 1984. p. 191–246.

4. IUCN. The IUCN Red List of Threatened Species. Version 2014.2. 2014. p. http://www.iucnredlist.org.

5. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, et al. Extinction risk from climate change. Nature [Internet]. 2004 Jan 8; 427(6970):145–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14712274

6. Brook BW, Sohdi NS, Bradshaw CJ a. Synergies among extinction drivers under global change. Trends Ecol Evol [Internet]. 2008 Aug [cited 2014 Feb 23]; 23(8):453–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18592896

7. Margules CR, Pressey RL. Systematic conservation planning. Nature [Internet]. 2000 May 11; 405(6783):243–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10821285

8. Wilson K, Pressey RL, Newton A, Burgman M, Possingham H, Westcon C. Measuring and Incorporating Vulnerability into Conservation Planning. Environ Manage [Internet]. 2005; 35(5):527–43. Available from: http://link.springer.com/10.1007/s00267-004-0095-9

9. Brooks TM, Mittermeier R a, da Fonseca G a B, Gerlach J, Hoffmann M, Lamoreux JF, et al. Global biodiversity conservation priorities. Science [Internet]. 2006 Jul 7 [cited 2014 Jul 13]; 313(5783):58–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16825561

10. Brown CJ, Saunders MI, Possingham HP, Richardson AJ. Managing for Interactions between Local and Global Stressors of Ecosystems. PLoS One. 2013; 8(6).

11. Tulloch VJD, Tulloch AIT, Visconti P, Halpern BS, Watson JEM, Evans MC, et al. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front Ecol Environ [Internet]. 2015; 13:91–9. Available from: http://dx.doi.org/10.1890/140022

12. Molianen A, Wilson KA, Possingham HP. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools. Oxford University Press; 2009.

13. Molianen A, Anderson BJ, Eigenbrod F, Heinemeyer A, Roy DB, Gillings S, et al. Balancing alternative land uses in conservation prioritization. Ecol Appl. 2011; 21(5):1419–26. PMID: 21830691

14. Di Minin E, Soutullo A, Bartesaghi L, Rios M, Szephegyi MN, Molianen A. Integrating biodiversity, ecosystem services and socio-economic data to identify priority areas and landowners for conservation actions at the national scale. 2016

15. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E. Quantifying threats to imperiled species in the United States. Bioscience. 1998; 48(August):607–15.

16. Li Y, Wilcove DS. Threats to vertebrate species in China and the United States. Bioscience. 2005; 55(2):147.

17. Venter O, Brodeur NN, Nemiroff L, Belland B, Dolinsek LJ, Grant JW a. Threat to Endangered Species in Canada. Bioscience. 2006; 56(11):7.

18. Evans MC, Watson JEM, Fuller R a., Venter O, Bennett SC, Marsack PR, et al. The Spatial Distribution of Threats to Species in Australia. Bioscience. 2011; 61(4):281–9.

19. Kapel C V. Losing pieces of the puzzle: threats to marine, estuarine, and diadromous species. Front Ecol Environ. 2005; 3(5):275–82.

20. Clavero M, Hermoso V, Levin N, Kark S. Geographical linkages between threats and imperilment in freshwater fish in the Mediterranean Basin. Divers Distr. 2010. 16:744–54.

21. Stuart SN. Status and Trends of Amphibian Declines and Extinctions Worldwide. Science (80-). 2004; 306(2004):1783–6. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1103538

22. Schiper J, Chanson JS, Chiozza F, Cox N a, Hoffmann M, Katariya V, et al. The Status of the World’s Land. Science (80-). 2008; 322(October):225–30. http://www.sciencemag.org/cgi/doi/10.1126/science.1165115

23. Allan JD, McIntyre PB, Smith SDP, Halpern BS, Boyer GL, Buchsbaum A, et al. Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proc Natl Acad Sci U S A [Internet]. 2013; 110:372–7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3538252&tool=pmcentrez&rendertype=abstract

24. Sanderson EW, Jaithe M, Levy MA, Redford KH, Wannebo A V, Woolmer G. The Human Footprint and the Last of the Wild. Bioscience. 2002; 52(10):891–904.
25. Halpern BS et al. A Global Map of Human Impact on Marine Ecosystems. Science (80-). 2008;(February):948–52. https://doi.org/10.1126/science.1149345 PMID: 18276889

26. Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K, Longo C, et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat Commun [Internet]. Nature Publishing Group; 2015; 6(May):7615. Available from: http://www.nature.com/doifinder/10.1038/ncomms8615 https://doi.org/10.1038/ncomms8615 PMID: 26172980

27. Burke L, Reytar K, Spalding MD, Perry a. Reefs at risk Revisited [Internet]. Defenders. 2011. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3150666&tool=pmcentrez&rendertype=abstract

28. Joppa L., N., O’Connor B., Visconti P., Smith C., Geldmann J., Hoffmann M., Watson J.E.M., Butchart S.H.M., Virah-Sawmy M., Halpern B.S., Ahmed S.E., Balmford A., Sutherland W.J., Harfoot M., Hilton-Taylor C., Foden W., DiMinin E., Pagad ND. Filling in biodiversity threat gaps. Science (80-). 2016; 352(6284).

29. BirdLife International N. Bird Species Distribution Maps of the World. Version 3.0. 2013. p. http://www.birdlife.org/datazone/info/spcdownload.

30. Leathwick JR, Moilanen a., Ferrier S, Julian K. Complementarity-based conservation prioritization using a community classification, and its application to riverine ecosystems. Biol Conserv [Internet]. Elsevier Ltd; 2010; 143(4):984–91. Available from: http://dx.doi.org/10.1016/j.biocon.2010.01.012

31. Moilanen A, Veach V, Meller L, Montesino Pouzols F, Arponen A, Kujala H. Zonation spatial conservation planning framework and software v. 4.0, User Manual. Helsinki, Finland: University of Helsinki; 2014.

32. Van Asselen S, Verburg PH. Land cover change or land-use intensification: simulating land system change with a global-scale land change model. Glob Chang Biol [Internet]. 2013 Jul 25 [cited 2014 Feb 24];1–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23893426

33. Pouzols FM, Toivonen T, Di Minin E, Kukkala A, Kullberg P, Kuusterä J, et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature [Internet]. Nature Publishing Group; 2014 NOV 14 [cited 2014 NOV 17]; 516:383–6. Available from: http://www.nature.com/doifinder/10.1038/nature14032 https://doi.org/10.1038/nature14032 PMID: 25494203

34. Di Minin E, Veach V, Lehtomäki J, Montesino-Pouzols F, Moilanen A. A quick introduction to Zonation. Helsinki: University of Helsinki; 2014.

35. Di Minin E, Slotow R, Hunter LT B, Pouzols FM, Toivonen T, Verburg PH, et al. Global priorities for national carnivore conservation under land use change. 2016; https://doi.org/10.1038/srep23814 PMID: 27034197

36. Moilanen A, Arponen A. Setting conservation targets under budgetary constraints. Biol Conserv [Internet]. Elsevier Ltd; 2011 Jan [cited 2014 May 14]; 144(1):650–3. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006320710003873

37. Lehtomäki J, Moilanen A. Methods and workflow for spatial conservation prioritization using Zonation. Environ Model Softw [Internet]. Elsevier Ltd; 2013 Sep [cited 2014 Dec 13]; 47:128–37. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1364815213001072

38. Moilanen A, Franco AM a, Early RI, Fox R, Wintle B, Thomas CD. Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc Biol Sci [Internet]. 2005 Sep 22 [cited 2014 May 2]; 272(1575):1885–91. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1559892&tool=pmcentrez&rendertype=abstract https://doi.org/10.1098/rspb.2005.3164 PMID: 16191593

39. Moilanen A. Landscape Zonation, benefit functions and target-based planning: Unifying reserve selection strategies. Biol Conserv [Internet]. 2007 Feb [cited 2014 May 14]; 134(4):571–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006320706003879

40. R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2015. Available from: http://www.r-project.org/

41. Hijmans RJ. raster [Internet]. 2015. Available from: http://cran.r-project.org/package=raster

42. Lehtomäki J. zonator [Internet]. 2015. Available from: http://github.com/cbig/zonator

43. ESRI. ArcGIS Desktop: Release 10.1. Redlands, CA: Environmental Systems Research Intitute; 2012.

44. IUCN. A global standard for the identification of Key Biodiversity Areas: Version 1.0. 2016;(March 2016):26.

45. CEPF. The Biodiversity Hotspots [Internet]. Available from: http://www.cepf.net/resources/hotspots/Pages/default.aspx
46. Myers N, Mittermeier Ra, Mittermeier CG, da Fonseca Ga, Kent J. Biodiversity hotspots for conservation priorities. Nature [Internet]. 2000 Feb 24; 403(6772):853–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10706275 https://doi.org/10.1038/35002501 PMID: 10706275

47. UNEP-WCMC. World Wilderness Areas [Internet]. 2001. Available from: http://www.unep-wcmc.org/resources-and-data/global-wilderness

48. IUCN, UNEP-WCMC. The World Database on Protected Areas (WDPA) [Internet]. Cambridge, UK: UNEP-WCMC; 2015. Available from: www.protectedplanet.net

49. Hansen MC, Potapov P V, Moore R, Hancher M, Turubanova S a, Tyukavina a, et al. High-resolution global maps of 21st-century forest cover change. Science [Internet]. 2013; 342:850–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24233722 https://doi.org/10.1126/science.1244693 PMID: 24233722

50. Seto KC, Güneralp B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci U S A [Internet]. 2012 Oct 2 [cited 2014 Mar 20]; 109(40):16083–8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3479537&tool=pmcentrez&rendertype=abstract https://doi.org/10.1073/pnas.1211658109 PMID: 22988086

51. Potapov P, Hansen MC, Laestadius L, Turubanova S, Yaroshenko A, Thies C, et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. 2017;1–13.

52. Ramankutty N, Evan AT, Monfreda C, Foley J a. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles [Internet]. 2008 Mar 17 [cited 2014 Apr 28]; 22(1):n/a–n/a. Available from: http://doi.wiley.com/10.1029/2007GB002952

53. Coad L, Leverington F, Knights K, Geldmann J, Eassom A, Kapos V, et al. Measuring impact of protected area management interventions: current and future use of the Global Database of Protected Area Management Effectiveness. Philos Trans R Soc London B. 2015; 370(2015):20140281.

54. Di Minin E, Toivonen T. Global Protected Area Expansion: Creating More than Paper Parks. BioScience. 2015.

55. Waldron A, Mooers AO, Miller DC, Nibbelink N, Redding D, Kuhn TS. Targeting global conservation funding to limit immediate biodiversity declines. Proc Natl Acad Sci. 2013; 110(29):1–5.

56. Joppa LN, O’Connor B, Visconti P, Smith C, Geldmann J, Hoffmann M, et al. Filling in biodiversity threat gaps. Science (80-). 2016; 352:416–8. https://doi.org/10.1126/science.aaf3565 PMID: 27102469

57. Brooks TM, A¸ckakaya HR, Burgess ND, Butchart SHM, Hilton-Taylor C, Hoffmann M, et al. Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Sci data. 2016; 3:160007. https://doi.org/10.1038/sdata.2016.7 PMID: 26881749