Effects of Swift-Particle Irradiations on Critical Current Density in CaKFe$_4$As$_4$

A Takahashi1, S Pyon1, S Okayasu2, S Ishida3, A Iyo3, H Eisaki3, M Imai1, H Abe4, T Terashima4 and T Tamegai1

1Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
2Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
3National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
4National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

E-mail: ayumu-takahashi141@g.ecc.u-tokyo.ac.jp

Abstract. Introduction of columnar defects to superconductors through swift-particle irradiation enhances their critical current density (J_c). Iron-based superconductors (IBSs) have been investigated as promising materials for practical applications because of their large J_c at high magnetic fields and temperatures. Recently, another promising IBS CaKFe$_4$As$_4$ (1144-type IBS) was found, and attracts much interest due to its high J_c in the pristine sample. We compare effects of 800 MeV Xe, 3 MeV proton, and 320 MeV Au irradiations on the critical temperature (T_c) and J_c of CaKFe$_4$As$_4$ single crystals, and compare them with irradiation effects in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$.

1. Introduction

Introduction of columnar defects to superconductors through swift-particle irradiation enhances their critical current density (J_c) [1-4]. It has been demonstrated that the maximum value of J_c and the corresponding dose depend on ion species and its energy [5]. The difference in the optimum dose among ion species may originate from the different diameters and lengths of created defects.

Iron-based superconductors (IBSs) have been investigated as promising materials for practical applications because of their large J_c at high magnetic fields and temperatures. In previous studies, remarkable effects have been demonstrated in IBSs by irradiating heavy ions and protons into Co or K doped BaFe$_2$As$_2$ (Ba-122) single crystals [3, 5]. Recently, another promising IBS CaKFe$_4$As$_4$ (1144-type IBS) was found [6]. Its crystal structure is similar to 122-type IBSs. CaKFe$_4$As$_4$ has a tetragonal structure (P4/mmm), where Ca and K layers stack alternatively along the c-axis [6, 7]. CaKFe$_4$As$_4$ shows similar superconducting properties, such as critical temperature (T_c) or upper critical field (H_{c2}), to those of optimally K-doped Ba-122-type IBS Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ [8-10]. However, alternate stacking of Ca and K along the c-axis may lead to different physical properties.

Here, we compare effects of 800 MeV Xe, 3 MeV proton, and 320 MeV Au irradiations on the T_c and J_c of CaKFe$_4$As$_4$ single crystals, and compare them with irradiation effects in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
2. Experimental Methods

CaKFe₄As₄ single crystals were synthesized by FeAs self-flux method. Ca granules (99.5%), K ingots (99.5%), and FeAs powder were used as starting materials. FeAs was prepared by sealing stoichiometric amounts of As grains (7N) and Fe powder (99.9%) in an evacuated quartz tube and reacting them at 700 °C for 40 h after heating at 500 °C for 10 h. A mixture with a ratio of Ca : K : FeAs = 1 : 1.2 : 10 was placed in an alumina crucible in an argon-filled glove box. The alumina crucible was sealed in a niobium tube using arc melting method. The niobium tube was sealed in an evacuated quartz tube. The whole assembly was heated for 5 h at 1180 °C after a preliminary heating at 650 °C for 5 h, and cooled to 1050 °C at a rate of 26 °C/h, followed by cooling to 930 °C at a rate of 1.5 °C/h for the crystal growth.

800 MeV Xe and 3 MeV proton irradiations were performed at NIRS-HIMAC, and 320 MeV Au irradiation was performed using the tandem accelerator in JAEA. The irradiation dose is counted by the dose-equivalent magnetic field called “matching field”, where each defect is occupied by single vortex

\[B_0 = n\Phi_0. \]

Here, \(n \) is the areal density of defects and \(\Phi_0 \) is a flux quantum.

Magnetization of the crystal was measured by a superconducting quantum interference device (SQUID) magnetometer (MPMS-5XL, Quantum Design). The single crystal was placed in a quartz sample holder and fixed with Apiezon N grease. \(T_c \) was obtained from zero-field cooling (ZFC) and field-cooling (FC) magnetization measurements for field perpendicular to the \(ab \)-plane. \(J_c \) was calculated from the results of the magnetization measurements using extended Bean model.

3. Results and Discussion

3.1. 800 MeV Xe irradiation

![Figure 1](image_url)

Figure 1. \(B_0 \) dependences of (a) \(T_c \) and (b) \(J_c \) at 2 K under zero field of 800 MeV Xe-irradiated CaKFe₄As₄ and Ba₀.₆K₀.₄Fe₂As₂.

Figure 1 (a) shows \(B_0 \) dependences of \(T_c \) of 800 MeV Xe-irradiated CaKFe₄As₄ and Ba₀.₆K₀.₄Fe₂As₂. It has been demonstrated that the suppression of \(T_c \) of 800 MeV Xe-irradiated Ba₀.₆K₀.₄Fe₂As₂ is 0.028 K/T, and is smaller than that of samples irradiated with other species [5]. It can be said that this tendency holds in the case of CaKFe₄As₄ since the suppression of \(T_c \) of 800 MeV Xe-irradiated CaKFe₄As₄ is 0.009 K/T, which is even smaller than that of Ba₀.₆K₀.₄Fe₂As₂. Irradiation-resistant feature in CaKFe₄As₄ could be related to the presence of novel planar defects in this material [11]. Figure 1 (b) shows \(B_0 \) dependences of \(J_c \) of 800 MeV Xe-irradiated CaKFe₄As₄ and Ba₀.₆K₀.₄Fe₂As₂ at 2 K under zero field. In the case of 800 MeV Xe irradiation, \(B_0 \) dependences of \(J_c \) in both samples are similar, where \(J_c \) is enhanced up to ~15 MA/cm².
3.2. 3 MeV proton irradiation
Figure 2 (a) shows B_0 dependences of T_c of 3 MeV proton-irradiated CaKFe$_4$As$_4$ and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. At least in low-dose region, the suppression of T_c of 3 MeV proton-irradiated CaKFe$_4$As$_4$ is 0.34 K/(1x1016 ions/cm2), and is similar to that of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. Figure 2 (b) shows B_0 dependences of J_c of 3 MeV proton-irradiated CaKFe$_4$As$_4$ and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ at 2 K at H = 1 kOe. In the case of 3 MeV proton irradiation, B_0 dependences of J_c in both samples are also similar, at least in low-dose region. It is expected that higher J_c is obtained from 3 MeV proton-irradiated CaKFe$_4$As$_4$ with higher dose (> 2x1016 ions/cm2), similar to the case of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$.

3.3. 320 MeV Au irradiation
Figure 3 (a) shows B_0 dependences of T_c of 320 MeV Au-irradiated CaKFe$_4$As$_4$ and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. Suppressions of T_c of both samples irradiated with 320 MeV Au are similar (0.11 K/T). Figure 3 (b) shows B_0 dependences of J_c of 320 MeV Au-irradiated CaKFe$_4$As$_4$ and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ at 2 K under zero field. In the case of 320 MeV Au irradiation, J_c in both samples show similar B_0 dependences,

Figure 2. Dose dependences of (a) T_c and (b) J_c at 2 K at H = 1 kOe of 3 MeV proton-irradiated CaKFe$_4$As$_4$ and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$.

Figure 3. B_0 dependences of (a) T_c and (b) J_c at 2 K under zero field of 320 MeV Au-irradiated CaKFe$_4$As$_4$ and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. The thicknesses of CaKFe$_4$As$_4$ corresponding to B_0=2 T, 4 T, 8 T, and 16 T are 9.2 μm, 6.4 μm, 5.5 μm, and 5.4 μm.
CaKFe$_4$As$_4$

Figure 4. (a) Temperature dependence of normalized magnetization (M) at 5 Oe and (b) magnetic field dependence of J_c at 2 K of 320 MeV Au-irradiated CaKFe$_4$As$_4$ with the same dose ($B_0 = 4$ T) but with different thicknesses.

where J_c is enhanced with increasing B_0 up to $B_0 = 4$ T and almost retains the maximum value up to $B_0 = 16$ T. However, the maximum value of J_c of 320 MeV Au-irradiated CaKFe$_4$As$_4$ is higher than that of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. It is expected that higher J_c close to 30 MA/cm2 could be obtained by introducing splayed columnar defects or coexisting of columnar and point defects, which enhance J_c in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ [12, 13].

We compare the value of T_c and the maximum value of J_c of 320 MeV Au-irradiated CaKFe$_4$As$_4$ with different thicknesses. Figure 4 (a) shows temperature dependence of normalized magnetization (M) at 5 Oe of 320 MeV Au-irradiated CaKFe$_4$As$_4$ with the same dose ($B_0 = 4$ T) but with different thicknesses. The value of T_c of thin samples irradiated with 320 MeV Au tends to be lower than that of thick samples. Figure 4 (b) shows magnetic field dependence of J_c at 2 K of 320 MeV Au-irradiated CaKFe$_4$As$_4$ with the same dose ($B_0 = 4$ T) but with different thicknesses. Although the relative error in estimating the thickness of samples becomes larger in thin samples ($t < 7 \mu$m), it can be said from Fig. 4 (b) that the maximum value of J_c of thin CaKFe$_4$As$_4$ samples irradiated with 320 MeV Au tends to be higher than that of thick samples ($t > 12 \mu$m). The projected range of 320 MeV Au in CaKFe$_4$As$_4$ is about 17 \mu m. Thus, in thick CaKFe$_4$As$_4$ samples over 10 \mu m irradiated with 320 MeV Au, defects may not be created through the whole crystal, and J_c in the bottom side of the crystal can be much lower than that in the top side of the crystal. Thickness dependence of T_c suppression can be also explained by the inhomogeneous creation of defects. It should be noted that similar thickness dependences of T_c suppression and J_c distribution due to inhomogeneous creation of defects by low-energy 300 MeV Xe irradiation have been reported for Ba(Fe,Co)$_2$As$_2$ [14].

4. Summary

We compare effects of 800 MeV Xe, 3 MeV proton, and 320 MeV Au irradiations on the T_c and J_c of 1144-type IBS CaKFe$_4$As$_4$ and 122-type IBS Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ single crystals. With respect to the suppression of T_c, 3 MeV proton and 320 MeV Au irradiations have similar effects on CaKFe$_4$As$_4$ and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. 800 MeV Xe irradiation suppresses T_c of CaKFe$_4$As$_4$ a little less than that of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. With respect to B_0 dependences of J_c, irradiated CaKFe$_4$As$_4$ and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ show similar dependences in all cases. However, in the case of 320 MeV Au irradiation, the maximum value of J_c of CaKFe$_4$As$_4$ is higher than that of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. In addition, the maximum value of J_c of CaKFe$_4$As$_4$ irradiated with 320 MeV Au strongly depends on the thickness of samples and thin samples below 10 \mu m tend to show high J_c over 20 MA/cm2.

References [12, 13, 14]
References

[1] Civale L, Marwick A D, Worthington T K, Kirk M A, Thompson J R, Krusin-Elbaum L, Sun Y, Clem J R and Holtzberg F 1991 Phys. Rev. Lett. 67 648

[2] Nakajima Y, Tsuchiya Y, Taen T, Tamegai T, Okayasu S and Sasase M 2009 Phys. Rev. B 80 012510

[3] Tamegai T, Taen T, Yagyuda H, Tsuchiya Y, Mohan S, Taniguchi T, Nakajima Y, Okayasu S, Sasase M, Kitamura H, Murakami T, Kambara T and Kanai Y 2012 Supercond. Sci. Technol. 25 084008

[4] Sun Y, Park A, Pyon S, Tamegai T, Kambara T and Ichinose A 2017 Phys. Rev. B 95 104514

[5] Ohtake F, Taen T, Pyon S, Tamegai T, Okayasu S, Kambara T and Kitamura H 2015 Physica C 518 47

[6] Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y 2016 J. Am. Chem. Soc. 138 1410

[7] Meier W R, Kong T, Kaluarachchi U S, Taufour V, Jo N H, Drachuck G, Böhmer A E, Saunders S M, Sapkota A, Kreyssig A, Tanatar M A, Prozorov R, Goldman A I, Balakirev F F, Gurevich A, Budi’ko S L and Canfield P C 2016 Phys. Rev. B 94 064501

[8] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006

[9] Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L and Wang N L 2009 Nature 457 565

[10] Altarawneh M M, Collar K, Mielke C H, Ni N, Bud’ko S L and Canfield P C 2008 Phys. Rev. B 78 220505

[11] Pyon S, Takahashi A, Veshchunov I, Tamegai T, Ishida S, Iyo A, Eisaki H, Imai M, Abe H, Terashima T and Ichinose A (to be published)

[12] Park A, Pyon S, Tamegai T and Kambara T 2016 Physica C 530 58

[13] Kihlstrom K J, Fang L, Jia Y, Shen B, Koshelev A E, Welp U, Crabtree G W, Kwok W K, Kayani A, Zhu S F and Wen H H 2013 Appl. Phys. Lett. 103 202601

[14] Taen T, Nakajima Y, Tamegai T, Okayasu S and Sasase M 2012 J. Phys. Conf. Ser. 400 022119