Antibody deficiency in chronic rhinosinusitis: Epidemiology and burden of illness

Christopher J. Ocampo, M.D., Ph.D., and Anju T. Peters, M.D.

ABSTRACT

Background: A subset of patients with chronic rhinosinusitis (CRS) has refractory disease. The risk factors for refractory CRS include atopy, a disrupted mucociliary transport system, medical conditions affecting the sinonasal tract mucosa, and immunodeficiency.

Methods: We review four primary immunodeficiencies reported in individuals with CRS: common variable immune deficiency (CVID), selective IgA deficiency, IgG subclass deficiency, and specific antibody deficiency. We also review treatment options for individuals with both CRS and a concomitant immune defect.

Results: There is a high prevalence of CRS in individuals with CVID and selective IgA deficiency. While many reports describe IgG subclass deficiency in individuals with CRS, the clinical relevance of this is unclear. Specific antibody deficiency may play a more significant role in the pathogenesis of refractory CRS.

Conclusion: Screening for a primary immunodeficiency should be part of the diagnostic workup of refractory CRS, as its identification may allow for more effective long-term therapeutic options.

C
Chronic rhinosinusitis (CRS) is defined as inflammation of the paranasal sinuses lasting at least 12 weeks in duration.1 CRS causes a great deal of disease burden in the United States, where up to 31 million people (12.5% of the population) are affected.1 This, in turn, leads to a significant economic burden because of time lost from work and imposes a strain on the health care system. It is estimated that CRS annually results in 73 million restricted activity days and $2.4 billion in direct medical costs.2 In addition, CRS, as a disease, does not sit in isolation. The unified airway hypothesis illustrates how disease of the upper airways can negatively impact the lower airways. This is clearly evident in asthma because there is a high prevalence of sinus disease in asthmatic patients.3,4 Therefore, the burden of disease in CRS can greatly impact the asthmatic patient by contributing to asthma exacerbations.3,4

CRS can be divided into two main subtypes: CRS without nasal polyposis, which accounts for ~60–65% of cases, and CRS with nasal polyposis, which accounts for up to 33% of cases. In general, CRS without nasal polyposis is characterized by more of a T-helper type 1 response, with less eosinophilic infiltrate in nasal tissue, and symptoms of facial pain and purulent drainage. On the other hand, CRS with nasal polyposis is characterized by a prominent T-helper type 2 immune response, nasal tissue eosinophilia, and symptoms of nasal obstruction and anosmia.5

REFRACTORY CRS

Treatment options for CRS include nasal and systemic corticosteroids, antibiotics, and surgery. A subset of individuals with CRS fails to adequately respond to therapy and develops refractory disease. They may have required multiple courses of antibiotics and sometimes multiple surgeries without long-term benefit.2,6 Risk factors for refractory CRS are many and include atopy, a disrupted mucociliary transport, multiple medical conditions that affect the sinonasal tract mucosa (such as Wegner’s granulomatosis), and defects in the immune system.2,6 An individual can have refractory CRS due to any one or combinations of these conditions. The challenging task confronting clinicians is that the severity or intervals of disease do not point to an underlying cause.7 In the case of immunodeficiency, the severity of CRS symptoms may not directly relate to an underlying immune dysfunction; however, an immunodeficiency may make disease more refractory to standard therapies.8 This points to the importance of identifying the etiology of disease in a patient with refractory CRS, because treatment decisions can be significantly influenced.

PRIMARY IMMUNODEFICIENCIES

A large number of primary immunodeficiencies have been characterized, ranging from relatively common conditions to extremely rare phenomena, with only a handful of cases identified.9 Diseases resulting from immunodeficiency vary greatly, ranging from fatal conditions if left untreated to asymptomatic phenotypes. Primary immunodeficiencies are classified according the component of the immune system that is affected. Categories include (i) combined T- and B-cell immunodeficiencies; (ii) predominantly antibody deficiencies; (iii) well-defined immunodeficiency syndromes; (iv) diseases of immune dysregulation; (v) congenital defects of phagocyte number, function, or both; (vi) defects in innate immunity; (vii) autoinflammatory disorders; and (viii) complement deficiencies.9 Evidence pointing to primary immunodeficiency as an etiology of CRS is prevalent in the literature. This review will focuses on common variable immunodeficiency (CVID), IgA deficiency, IgG subclass deficiency, and specific antibody deficiency (SAD), all of which fall under the category of antibody deficiencies.

CVID AND CRS

CVID is the most common symptomatic primary immunodeficiency in adults, estimated to affect ~1 in 25,000 individuals, and has a higher prevalence in people of northern European descent (Table 1).10,11 CVID constitutes a complex syndrome with various clinical phenotypes, making it difficult to define pathogenesis and find precise genetic defects.9,11 Age of onset is typically after puberty and before the age of 30 years. However, there is a significant gap between age of onset and diagnosis of CVID.11,12 Quinti examined 224 patients with CVID and found that the median age of onset of symptoms was 16.9 years and the mean age of diagnosis was 26.6 years. This translated into a diagnostic delay of 8.9 years.12 Similarly, Oksenhendler characterized 252 patients with CVID and described the median age of diagnosis at 33.9 years. Interestingly, they found differences in the median delay...
of diagnosis (2.9 years versus 15.6 years), depending on the year symptoms started—15.6 years if symptomatic before 1990 and 2.9 years if symptomatic after 1990. This likely reflects the increased recognition of CVID as a clinical entity by physicians.

CVID is a primary humoral immunodeficiency that presents with recurrent respiratory tract infections as the major clinical feature of the disease. In addition to infection, CVID also has a wide range of clinical manifestations including autoimmunity, gastrointestinal disorders, and increased risk of malignancy. Chronic sinusitis is a common feature of CVID. Oksenhendler’s study found that sinonasal symptoms were one of the most frequent initial symptoms in 36% (91 of 252) of the CVID patients he characterized. The frequencies of the other initial comorbidities in CVID patients include bronchitis (38%), pneumonia (31%), and bronchiectasis (14%). Treatment of CVID consists of either i.v. or subcutaneous immunoglobulin replacement. As will be discussed later, although antibody replacement has proven to be effective in reducing the frequency of respiratory infections, it is less effective in reducing sinusitis.

**IgA DEFICIENCY AND CRS**

Selective IgA deficiency is defined as an isolated deficiency in serum IgA, in an individual with normal IgG and IgM levels, and in which other identifiable disorders associated with low IgA have been excluded. This is the most common immunodeficiency with a prevalence of ~1 in 600 individuals, with marked variability among different ethnic groups. The majority of IgA-deficient individuals are asymptomatic, making it difficult to accurately determine the prevalence in the general population. As such, the classification of selective IgA deficiency as a true immunodeficiency remains a subject of debate. Although there is a high frequency of IgA deficiency in the general population, the prevalence of this condition is significantly higher in individuals with CRS. A retrospective study by Chee examined the contribution of primary immunodeficiency states in individuals with refractory CRS; 16.7% (13 of 78) of individuals with CRS had low IgA levels (mean of 191; range, 6–605 mg/dL) and 6.2% had selective IgA deficiency. The relevance of selective IgA deficiency in contributing to the pathogenesis of CRS is unclear and may be insignificant in the absence of other immune deficiencies to be discussed.

**IgG SUBCLASS DEFICIENCY AND CRS**

IgG is the most predominant antibody isotype in humans and is composed of four subclases that are numbered according to their concentration (IgG1 > IgG2 > IgG3 > IgG4). In terms of functional responses, IgG1 and IgG3 are induced in response to protein antigens, and IgG2 and IgG4 respond to polysaccharide antigens. IgG subclass deficiency is established when one or more IgG subclasses are 2 SDs below the normal total concentration. A summary of proposed diagnostic criteria and management/treatment options for selective IgA deficiency, specific antibody deficiency, and CVID is provided in Table 1.

| Diagnostic criteria | IgA Deficiency | Specific Antibody Deficiency | CVID |
|---------------------|----------------|-------------------------------|------|
| >4 yr of age        |                | >2 yr of age                  | >2 yr of age |
| Normal serum (IgG) and (IgM) |                | Normal serum immunoglobulin concentrations | Significantly reduced total serum (IgG) |
| Other causes of hypogammaglobulinemia have been excluded |                | Deficient specific antibody response to polysaccharide antigens: | 2 SD below the mean for age |
| Partial deficiency/probable diagnosis: serum (IgA), >7 mg/dL, but below the lower limit of normal (2 SD below the age-adjusted mean) | <7 of 14 pneumococcal serotypes | Low serum (IgA) and/or (IgM) | |
| Severe deficiency/definitive diagnosis: serum (IgA) <7 mg/dL | ≥1.3 μg/mL after Pneumovax vaccination | Poor or absent response to immunization | |
| Management and treatment | Vaccination | Aggressive management of other conditions predisposing to recurrent sinopulmonary infections (allergic rhinitis and asthma) | IVIG |
| Symptomatic patients | Evaluation for coexistent pulmonary disease | Treatment of specific infections | |
| Treat concomitant disorders (CRS and asthma) | High-resolution chest CT | Evaluation for coexistent pulmonary disease | |
| Prophylactic antibiotics | Prophylactic antibiotics | High-resolution chest CT | |
| IVIG | IVIG | Evaluation for coexistent gastrointestinal and/or autoimmune disease | |
| Asymptomatic patients | No specific treatments | Age-appropriate cancer screening | Monitor for lymphoma |

CVID = common variable immunodeficiency; IVIG = intravenous immunoglobulin.
serum IgG levels. Individual IgG subclass deficiencies and the corresponding phenotypes have been described. IgG1 deficiency has been associated with a predisposition to pyogenic airway infections. IgG2 deficiency is the most common subclass deficiency in children and results in recurrent upper respiratory tract infections (URIs) and lower respiratory tract infections, similar to what is observed in CRS. IgG2 deficiency is often isolated or seen in combination with IgG4 deficiency. Deficiency of the IgG3 subclass is the most common subclass deficiency in adults with individuals typically presenting with recurrent URIs and lower respiratory tract infections.

There are several published articles describing IgG subclass deficiency in individuals with CRS. A case report from Snowden describes a 35-year-old woman with IgG3 deficiency and a history of recurrent URIs and sinusitis who benefited from treatment with IVIG. A retrospective study by Vanlerberghede examined 307 patients with refractory CRS and found 21.8% with humoral defects: 2.2%, IgA deficiency; 2.0%, IgG2 deficiency; 17.9%, IgG3 deficiency; and 2.9%, combined deficits, and none had CVID. Neither of these studies measured specific antibody titers to common protein or polysaccharide antigens, nor did they examine specific antibody production in response to vaccination, which are addressed in other studies. Van Kessel examined 24 adults with selective IgG1 deficiency and a history of recurrent URIs and sinusitis. He found that patients with IgG1 deficiency were susceptible to degradation. Therefore, IgG3 deficiency may be secondary to the disease process itself. Olander-Nielsen questioned the usefulness of measuring IgG subclasses as they note that the combination of chronic lung disease and IgG subclass deficiency is common. Despite this relationship causality is not implied. Low levels of one or more of the IgG subclasses are observed in 2–20% of healthy individuals. IgG4 is undetectable in 15% of normal individuals, calling into question the relevance of its absence.

RELEVANCE OF IgG SUBCLASS DEFICIENCY

Although the aforementioned studies describe IgG subclass deficiency in patients with CRS, a causal relationship is far from established. Multiple peer-reviewed articles have questioned the relevance of IgG subclass deficiency and recurrent infections that were not limited to CRS and included pneumonia, fungal skin infections, recurrent herpes infections, and cystitis. Six of 11 patients had low baseline pneumococcal titers, with 2 of the 6 failing to respond adequately to Pneumovax. A retrospective study by Alqudah looked at patients with refractory CRS and found 1 case of IgG2 deficiency, 3 cases of IgG3 deficiency, and 3 with IgG4 deficiency. Sixty-seven percent of patients who subsequently received Pneumovax had a poor response. The authors concluded that an isolated subclass deficiency is not significant unless functional antibody responses are also inadequate.

SAD AND CRS

More relevant than absolute antibody levels is the need to assess functional responses to protein antigens (with tetanus or diphtheria vaccination) and polysaccharide antigens (with pneumococcal vaccination). SAD is defined as dysfunctional IgG responses to immunization with polysaccharide antigens in the presence of normal serum concentrations of IgG, IgM, and IgA (Table 1). The definition of what constitutes a dysfunctional antibody response after pneumococcal immunization is unclear. The 2005 practice parameters define an adequate antipneumococcal antibody response as a postimmunization antibody concentration of ≥1.3 μg/mL or at least fourfold over baseline. However, the exact number of antibodies of the 14 measured serotypes that must meet either of these criteria is not clearly defined. Our practice routinely uses a cutoff of 7 of 14 serotypes ≥1.3 μg/mL as an adequate response. We do not use the increase of fourfold over baseline criterion because patients with high baseline titers may not develop a fourfold increase after vaccination.

This lack of consensus in the guidelines makes accuracy of diagnoses more challenging. The prevalence of SAD in the general population is not known. It is difficult to make this diagnosis in children <2 years of age, because they have inconsistent responses to polysaccharide vaccines. A retrospective study by Javier sought to determine the types of immunodeficiencies in a pediatric population with an 8-year history of recurrent infections. The majority of patients (67%) had predominantly antibody deficiencies, with the most common phenotype (23.1% of patients) being SAD (defined as postimmunization pneumococcal titers ≥1.3 μg/mL or < fourfold over baseline titers in at least 5 of 9 serotypes).

The clinical significance of SAD has been addressed in a few studies. A retrospective study by Hidalgo characterized pneumococcal immunization and postimmunization pneumococcal antibody titers in a pediatric population with a history of recurrent respiratory infections, but no known immunodeficiency syndrome. Before immunization, 50% of the patients did not have protective antibody levels against any of the serotypes tested. After immunization 6.4% of the patients failed to produce protective pneumococcal antibody, and the patients presented various infections including recurrent sinusitis, otitis, and pneumonia. A prospective study by Misbah examined antibody levels against pneumococcus and Haemophilus in children with a history of recurrent otitis media requiring tympanostomy tube placement. Although the majority of patients actually had significantly higher pneumococcal antibody titers compared with controls, 19.6% of the patients had pneumococcal titers below the 25th percentile, with 26% failing to adequately mount a response to Pneumovax. Interestingly, 25% of the children in the control group also had low pneumococcal antibody levels. Boyle examined children with recurrent infections and found that 14.9% had SAD. SAD was associated with otitis media and atopy, in particular allergic rhinitis. A cohort study by Van Kessel examined the prevalence of SAD in patients with idiopathic bronchiectasis and found that ~50% of the patients failed to respond to Pneumovax. Interestingly, the authors based this on an inadequate pneumococcal antibody response in IgA and the IgG2 subclass, referred to as isotype nonresponders. A recent retrospective cohort study by Lim examined the prevalence of SAD in a pediatric population with a history of a wet cough lasting >8 weeks, a diagnosis that is not further clarified in the article. After vaccination with either Pneumovax or Prevnar (conjugated vaccine against Haemophilus influenzae type b), 50% of the patients failed to mount an adequate response. The population with SAD was more likely to require admission for i.e., antibiotics and had significantly more abnormal chest radiographs.

There is increasing evidence pointing to the contribution of SAD to the pathogenesis of CRS. Several of the studies detailed in this article focused on IgG subclass deficiency, but also provided data on SAD in CRS. A large proportion of CRS patients with IgG subclass deficient-
cies also had abnormally low baseline pneumococcal titers, with several individuals failing to adequately respond to Pneumovax. Although the aforementioned studies focused on IgG subclass deficiency and also described SAD in that context, there are very few studies that focus solely on the role of SAD in CRS. A recent retrospective study by Carr examined 129 patients with medically refractory CRS, requiring multiple surgeries. Of the patient population, 72% had low baseline pneumococcal antibody titers (fewer than 7 of 14 measured pneumococcal serotypes were ≥1.3 μg/mL postimmunization). Out of 69 individuals who received Pneumovax, 15 patients (11.6% of original total) failed to respond and were diagnosed with SAD. This was one of the largest studies of its kind to characterize SAD in refractory CRS.

TREATMENT OPTIONS AND RECOMMENDATIONS

The importance of identifying the etiology of CRS for a given patient becomes apparent when it comes to treatment options. Identifying a primary immunodeficiency such as SAD changes management options, because these individuals may have refractory disease because of their underlying immune dysfunction. As previously discussed current guidelines do not adequately define what is an inappropriate response to vaccination. We routinely classify an inadequate response to Pneumovax as <7 of 14 measured pneumococcal antibodies appropriately responding (≥1.3 μg/mL postimmunization). In addition, when vaccination is warranted the proper vaccine should be used depending on the patient’s age. The conjugated vaccine Prevnar should be reserved for patients <2 years of age, because unconjugated polyvalent pneumococcal vaccines, such as Pneumovax, do not typically induce an adequate antibody response in this age group. However, we do routinely challenge adult patients with Prevnar when they fail to produce an appropriate response to Pneumovax, with the hope that they will generate protective antibodies.

Recognizing humoral immune defects in CRS prompt the clinician to treat more aggressively with the use of prophylactic antibiotics, early culture-directed antibiotics for exacerbations, and IVIG if indicated. In addition, early implementation of surgery may be indicated as a study by Khalid showed that CRS patients with immune dysfunction, and IVIG if indicated. Prophylactic antibiotics may be considered in patients with primary immunodeficiency and refractory CRS or recurrent acute rhinosinusitis. Our study concurrently uses β-lactams, trimethoprim sulfamethoxazole, and azithromycin for prophylaxis. It is important to note that there are no consensus guidelines on the use of prophylactic antibiotics in refractory CRS. We consider prophylactic antibiotics a failure if an individual continues to get recurrent sinus infections over a 6-month period. Other options such as immunoglobulin replacement should be considered when antibiotic prophylaxis fails. However, IVIG therapy is not benign because it can have significant side effects and can be quite expensive. Therefore, we recommend that treatment with IVIG be reserved for patients with documented CRS and primary immunodeficiency who have coexistent pulmonary disease or have failed medical and surgical therapy. It should not be used in isolated IgG subclass deficiency, but instead in patients with documented lack of functional antibody response. In the study by Hidalgo, discussed previously, children with a history of recurrent infections (otitis, sinusitis, and pneumonia) were treated with IVIG, resulting in clinical improvement. In the study by Abrahamian patients with recurrent infections, SAD, and concurrent IgG3 deficiency received IVIG therapy, with dosing adjusted to achieve normal IgG3 levels. Eleven of 13 patients responded to IVIG treatment with decreased frequency and severity of infections. Although IVIG has been shown to benefit individuals with CVID by reducing the number of serious infections, such as pneumonia, the long-term benefits of antibody replacement treatment in controlling sinusitis is less encouraging. A multicenter prospective study by Quinti followed 224 patients with CVID on IVIG for a mean of 11.5 years. They found that treatment with IVIG significantly reduced the incidence of acute pneumonia and otitis. Forty-nine percent of the patients had pneumonia at least once before being diagnosed with CVID. At follow-up 35.7% never experienced an episode of acute pneumonia after starting IVIG replacement, and 13.3% continued to have recurrent pneumonia. As far as otitis, 29% of patients had acute otitis before their CVID diagnosis. At follow-up 25.5% never had an episode of acute otitis, and 13.3% had recurrent otitis. In sharp contrast to acute pneumonia and otitis, IVIG therapy did not show benefit in sinusitis. Thirty-six percent of the patients had CRS at the time they were diagnosed with CVID. Although 8.6% of individuals did improve on follow-up, overall, the percentage of patients with CRS increased to 54% despite IVIG treatment. A more concerning finding of this study was that the prevalence of bronchiectasis increased from 56 patients, at the time of CVID diagnosis, to 65 patients at follow-up. The administration of IVIG carries risks such as hypersensitivity reactions and aseptic meningitis, along with high financial costs. Whether it is indicated in patients with refractory CRS who have failed prophylactic antibiotics, but have no signs of chronic lung disease is unknown. Because the natural history of SAD is not known, more studies need to be undertaken to answer these questions and provide guidelines for clinicians.

The burden of CRS on the health care system warrants the medical and scientific communities to seek improvements in prevention and treatment. By its very nature, a chronic illness poses unique challenges. This review has discussed multiple studies that have attempted to elucidate the underlying immune defect in CRS. Several immunodeficiencies have been associated with CRS, from CVID, to IgA deficiency, to IgG subclass deficiency, and, finally, SAD. Although the absolute quantity of any particular antibody may be decreased in an individual with refractory CRS, the most important contributor to disease appears to be the quality of the antibody in the circulation. Therefore, evaluation for SAD should be performed in an individual with refractory CRS. A great deal of work from the research community is required to further characterize SAD as a clinical entity. This will hopefully lead to improved guidelines to aid clinicians in the treatment of this chronic illness.

REFERENCES

1. Hamilos DL. Chronic rhinosinusitis: Epidemiology and medical management. J Allergy Clin Immunol 128:693–707, 2011.
2. Alqudah M, Graham SM, and Ballas ZK. High prevalence of humoral immunodeficiency patients with refractory chronic rhinosinusitis. Am J Rhinol Allergy 24:409–412, 2010.
3. Slavin RG. The upper and lower airways: The epidemiological and pathophysiological connection. Allergy Asthma Proc 29:553–556, 2008.
4. Krouse JH. The unified airway—Conceptual framework. Otolaryngol Clin North Am 41:257–266, 2008.
5. Chandra RK, Lin D, Tan B, et al. Chronic rhinosinusitis in the setting of other chronic inflammatory diseases. Am J Otolaryngol 32:388–391, 2011.
6. Chee L, Graham SM, Carothers DG, and Ballas ZK. Immune dysfunction in refractory sinusitis in a tertiary care setting. Laryngoscope 111:233–235, 2001.
7. May A, Zielen S, von Iberg C, and Weber A. Immunoglobulin deficiency and determination of pneumococcal antibody titers in patients with therapy-refractory recurrent rhinosinusitis. Eur Arch Otorhinolaryngol 256:445–449, 1999.
8. Ryan MW, and Brooks EG. Rhinosinusitis and comorbidities. Curr Allergy Asthma Rep 10:188–193, 2010.
9. Notarangelo LD, Fischer A, Geha RS, et al. Primary immunodeficiencies: 2009 Update. J Allergy Clin Immunol 124:1161–1178, 2009.
10. Hammarstrøm L, Vorechovsky I, and Webster D. Selective IgA deficiency (SiSAD) and common variable immunodeficiency (CVID). Clin Exp Immunol 120:225–231, 2000.
11. Oksenhendler E, Gerard L, Fieschi C, et al. Infections in 252 patients with common variable immunodeficiency. Clin Infect Dis 46:1547–1554, 2008.

12. Quinti I, Soresina A, Spadaro G, et al. Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency. J Clin Immunol 27:308–316, 2007.

13. Aghamohammadi A, Cheraghi T, Garagozlo M, et al. IgA deficiency: Correlation between clinical and immunological phenotypes. J Clin Immunol 29:130–136, 2009.

14. Latiff A, and Kerr M. The clinical significance of immunoglobulin A deficiency. Ann Clin Biochem 44:131–139, 2007.

15. Schroeder HW Jr, and Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol 125(suppl 2):S41–S52, 2010.

16. Fried AJ, and Bonilla FA. Pathogenesis, diagnosis, and management of primary antibody deficiencies and infections. Clin Microbiol Rev 22:396–414, 2009.

17. Olinder-Nielsen AM, Granert C, Forsberg P, et al. Immunoglobulin prophylaxis in 350 adults with IgG subclass deficiency and recurrent respiratory tract infections: A long-term follow-up. Scand J Infect Dis 39:44–50, 2007.

18. Snowden JA, Milford-Ward A, and Reilly JT. Symptomatic IgG3 deficiency successfully treated with intravenous immunoglobulin therapy. Postgrad Med J 70:924–926, 1994.

19. Vanlerberghe L, Joniau S, and Jorissen M. The prevalence of humoral immunodeficiency in refractory rhinosinusitis: A retrospective analysis. B-ENT 2:161–166, 2006.

20. Van Kessel DA, Horikx PE, Van Houte AJ, et al. Clinical and immunological evaluation of patients with mild IgG1 deficiency. Clin Exp Immunol 118:102–107, 1999.

21. Abrahamian F, Agrawal S, and Gupta S. Immunological and clinical profile of adult patients with selective immunoglobulin subclass deficiency: Response to intravenous immunoglobulin therapy. Clin Exp Immunol 159:344–350, 2010.

22. Buckley RH. Immunoglobulin G subclass deficiency: Fact or fancy? Curr Allergy Asthma Rep 2:356–360, 2002.

23. Cunningham-Rundles C. Immune deficiency: Office evaluation and treatment. Allergy Asthma Proc 24:409–415, 2003.

24. Jiang RS, and Hsu CY. Serum immunoglobulins and IgG subclass levels in sinus mycetoma. Otolaryngol Head Neck Surg 130:563–566, 2004.

25. Misbah SA, Griffiths H, Mitchell T, et al. Antipolysaccharide antibodies in 450 children with otitis media. Clin Exp Immunol 109:67–72, 1997.

26. Hoover GE, Newman LJ, Platts-Mills TA, et al. Chronic sinusitis: Risk factors for extensive disease. J Allergy Clin Immunol 100:185–191, 1997.

27. Bossuyt X, Mariën G, Meyts I, et al. Determination of IgG subclasses: A need for standardization. J Allergy Clin Immunol 115:872–874, 2005.

28. Carr TF, Koterba AP, Chandra R, et al. Characterization of specific antibody deficiency in adults with medically refractory chronic rhinosinusitis. Am J Rhinol Allergy 25:241–244, 2011.

29. Bonilla FA, Bernstein IL, Khan DA, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol 94(suppl 1):S1–S63, 2005.

30. Sorensen RU, Leiva LE, Javier FC 3rd, et al. Influence of age on the response to Streptococcus pneumoniae vaccine in patients with recurrent infections and normal immunoglobulin concentrations. J Allergy Clin Immunol 102:215–221, 1998.

31. Go ES, and Ballas ZK. Anti-pneumococcal antibody response in normal subjects: A meta-analysis. J Allergy Clin Immunol 98:205–215, 1996.

32. Javier FC III, Moore CM, and Sorensen RU. Distribution of primary immunodeficiency diseases diagnosed in a pediatric tertiary hospital. Ann Allergy Asthma Immunol 84:25–30, 2000.

33. Boyle RJ, Le C, Balloch A, and Tang ML. The clinical syndrome of specific antibody deficiency in children. Clin Exp Immunol 146:486–492, 2006.

34. Hidalgo H, Moore C, Leiva LE, and Sorensen RU. Preimmunization and postimmunization pneumococcal antibody titers in children with recurrent infections. Ann Allergy Asthma Immunol 76:341–346, 1996.

35. van Kessel DA, van Velzen-Blad H, van den Bosch JM, and Rijkers GT. Impaired pneumococcal antibody response in bronchiectasis of unknown aetiology. Eur Respir J 25:482–489, 2005.

36. Lim MT, Jeyarajah K, Jones P, et al. Specific antibody deficiency in children with chronic wet cough. Arch Dis Child 97:478–480, 2012.

37. Khalid AN, Mace JC, and Smith TL. Outcomes of sinus surgery in ambulatory patients with immune dysfunction. Am J Rhinol Allergy 24:230–233, 2010.