Deletion of the ATP2 Gene in Candida albicans Blocks Its Escape From Macrophage Clearance

Yishan Zhang1,2†, Chuanyan Tang1,2†, Zhanpeng Zhang1,2†, Shuixiu Li1,2, Yajing Zhao1,2, Luobei Weng1,2 and Hong Zhang1,2*

1 Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China, 2 Institute of Mycology, Jinan University, Guangzhou, China

Macrophages provide the first-line defense against invasive fungal infections and, therefore, escape from macrophage becomes the basis for the establishment of Candida albicans invasive infection. Here, we found that deletion of ATP2 (atp2Δ/Δ) in C. albicans resulted in a dramatic decrease from 69.2% (WT) to 1.2% in the escape rate in vitro. The effect of ATP2 on macrophage clearance stands out among the genes currently known to affect clearance. In the normal mice, the atp2Δ/Δ cells were undetectable in major organs 72 h after systemic infection, while WT cells persisted in vivo. However, in the macrophage-depleted mice, atp2Δ/Δ could persist for 72 h at an amount comparable to that at 24 h. Regarding the mechanism, WT cells sustained growth and switched to hyphal form, which was more conducive to escape from macrophages, in media that mimic the glucose-deficient environment in macrophages. In contrast, atp2Δ/Δ cells can remained viable but were unable to complete morphogenesis in these media, resulting in them being trapped within macrophages in the yeast form. Meanwhile, atp2Δ/Δ cells were killed by oxidative stress in alternative carbon sources by 2- to 3-fold more than WT cells. Taken together, ATP2 deletion prevents C. albicans from escaping macrophage clearance, and therefore ATP2 has a functional basis as a drug target that interferes with macrophage clearance.

Keywords: Candida albicans, ATP2 gene, macrophage, host-pathogen interaction, alternative carbon source, glyoxylate cycle

INTRODUCTION

Candida albicans is the most prevalent lethal fungal pathogen and can cause invasive infections in immunodeficiency patients, with variable rates from 5% to 70% (Bassetti et al., 2018; Pappas et al., 2018). The current antifungals target a limited number of cellular processes, and therefore, the development of different therapeutic approaches is urgently needed (Bassetti et al., 2018).

Macrophages provide the first-line defense against invasive fungal infections, and thus, C. albicans escape from macrophage becoming the basis for establishing systemic infection (Qian et al., 1994; Lionakis et al., 2013; Ngo et al., 2014; Weiss and Schaible, 2015). During the clearance, macrophages restrict the growth of and destroy C. albicans mainly by nutrient deprivation, a low pH, and oxidative stress in the phagosome (Austermeier et al., 2020; Williams and Lorenz, 2020).
Furthermore, macrophages secrete cytokines to recruit more phagocytes to participate in pathogen clearance (Ngo et al., 2014). In contrast, similar to other successful intercellular pathogens (Mycobacterium tuberculosis, Histoplasma capsulatum, etc.), C. albicans has evolved elegant strategies to evade macrophage killing (Weiss and Schaible, 2015; Shen and Rappleye, 2020). These strategies can be divided into the following two categories: strategies that support pathogen survival within macrophages, including rapid conversion to metabolize alternative carbon sources, adaptation and neutralization of acidic phagosomes, and resistance to oxidative stress; and strategies that facilitate macrophage destruction, such as morphogenesis (Uwamahoro et al., 2014; Westman et al., 2019; Shen and Rappleye, 2020; Williams and Lorenz, 2020).

Transcriptomics and proteomics studies have identified some genes that affect the escape of C. albicans from macrophages (Lorenz et al., 2004; Kitahara et al., 2015; O’Meara et al., 2018). However, knocking out these genes associated with specific pathways may increase the clearance rate, but it does not completely block the escape of C. albicans from macrophages (Danhof et al., 2016; Jain et al., 2018; Williams and Lorenz, 2020). For example, knocking out genes related to non-glucose carbon source utilization or hyphae formation in C. albicans can only increase the clearance by only 20-40%, but blocking several pathways simultaneously has additive effects (Piekarska et al., 2006; Danhof and Lorenz, 2015; Jain et al., 2018; Williams and Lorenz, 2020). Therefore, searching for drug targets involved in the macrophage clearance process requires finding genes with a broader range of functions.

Oxidative phosphorylation is the central molecular node of the cellular metabolic network (Marcet-Houben et al., 2009). Here, we found that deletion of ATP2, which encodes the β subunit of F1Fo-ATP synthase, greatly reduced the ability of C. albicans to escape macrophages in vitro and in vivo. Regarding the mechanism, the ATP2 deletion impaired the adaptation of C. albicans to glucose-deficient environment within macrophages, and although they could remain viable for a short period of time, they were unable to form hyphae to escape from macrophages and were more susceptible to oxidative stress killing. Due to the high involvement of ATP2 in host-pathogen interactions, confirming that whether ATP2 can be used as a drug target deserves further investigation.

MATERIALS AND METHODS

Strains, Cells and Culture Conditions
C. albicans strains used in this study were SC5314 (WT, ATCC) and ATP2 null mutant (atp2Δ/Δ) (Li et al., 2018). Strains were maintained on YPD (1% yeast extract, 2% peptone, 2% dextrose) agar at 30°C and stored in 50% glycerol at -80°C. For each assay, C. albicans cells were cultured in YPD liquid medium overnight at 30°C and 150 rpm, then collected, washed and normalized to appropriate concentrations.

Murine macrophage-like cell line RAW264.7 (ATCC) was used for all macrophage assays. Cells were maintained in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum, 100 U/ml penicillin and 100 μg/ml streptomycin, at 37°C with 5% CO2.

Macrophage Killing Assay
The end-point dilution assay was performed to detect the killing effect of macrophages on C. albicans as described previously (She et al., 2013). RAW264.7 cells were seeded into 96-well plates at a density of 1×105 cells/well and adhered for 1h. Then 2×105 cells/well C. albicans were added and cocultured for 6, 12, 24 and 48 h. At each time point, the co-cultures were treated with 0.1% Triton X-100 for 2 min. A serial dilution was performed and plated onto YPD agar. Numbers of colony-forming units (CFU) were counted after 48 h incubation and the macrophage killing rate was determined by comparing cocultures to C. albicans control cultures without macrophages. Assays were performed in triplicate, and experiments were repeated three times.

Macrophage Cytotoxicity Assay
C. albicans-induced macrophage damage was assessed by measuring the release of lactate dehydrogenase (LDH) using a Non-Radioactive Cytotoxicity assay (Abcam) (She et al., 2013). RAW264.7 (1×105 cells) were co-incubated with C. albicans (1×105 cells) for 2, 4, 6, and 8 h. At each time point, the absorbance at 490 nm was recorded according to the manufacturer’s protocol. The release of LDH relative to maximum LDH release was then calculated and corrected for spontaneous release of LDH by the C. albicans or macrophages alone. The experiment was performed in triplicate.

Macrophage Phagocytosis Assay
Activated RAW264.7 cells were seeded in 96-well plates at 1×106 cells/ml (She et al., 2013). C. albicans cells were stained with 1.25 mM fluorescein isothiocyanate (FITC, Sigma) for 15 min, then diluted to 2×105 cells/ml in RPMI medium and cocultured with macrophages for 30, 90, 120 min. At each time point, 100 μl supernatant was removed and 100 μl trypan blue was added to quench the fluorescence of unengulfed strains. The fluorescence signal intensity (E0/Em=495/525) of each well were detected with a microplate reader (Thermo Fisher Scientific). Assays were performed in triplicate, and experiments were repeated three times.

Fungal Burden in Clodronate Liposome Treated Mice
10-week-old female BALB/c mice (20 g) were injected intraperitoneally with 200 μl of clodronate- or PBS-liposome (http://clodronateliposomes.org) both 24 h before and 24 h after intravenous C. albicans infections (Wirnsberger et al., 2016). Mice were infected with 2×105 CFU of C. albicans cells intravenously. At 24 and 72 h after infection, organs were taken out and weighed, then grinded and measured fungal burden (CFU/g) by the end point dilution assay. There were three mice in each group, and experiment was repeated twice.
microPET/CT Scanning and Radioimmuno-γ Counting
10-week-old female BALB/c mice (20 g) were infected with 1×10^6 CFU of *C. albicans* cells intravenously. Mice were fasted for 12 h before the imaging time point and only water was provided. Each mouse was injected 1% pentobarbital (15 ul per g mouse) intraperitoneally and 5 μCi/g of [18F]FDG intravenously 45 min before imaging. PET and CT images were obtained by the Inveon micro-PET/CT (Siemens) small-animal PET imagers with a static acquisition time of 15 min (Davis et al., 2009). After PET/CT scan, the *ex vivo* biodistribution of organs was detected by γ-counter (Perkin-Elmer) (Rolle et al., 2016). There were three mice in each group, and experiments were repeated three times.

RNA Extraction and Real-time Quantitative PCR
Total RNA from co-cultured macrophages were extract using Trizol (Invitrogen), and total RNA from *C. albicans* were extract using the E.Z.N.A. Yeast RNA kit (Omega Bio-Tek) (Li et al., 2017). Approximately 0.8 μg of RNA was used to synthesize cDNA (Qiagen, Venlo, Netherlands). RT-qPCR was done in triplicate as previously described using Bio-Rad qPCR. Primers used are shown in Table S1. The expression levels of *C. albicans* genes were normalized to 18S rRNA levels, while the housekeeping genes were normalized to GAPDH levels. The 2^−ΔΔCT (where CT is the threshold cycle) method was used to determine the fold change in gene transcription. Each sample was performed in triplicate and experiments were repeated three times.

Growth Curve and Cell Viability Assay
C. albicans cells were collected and washed with PBS, then inoculated in 100 ml of macrophage-mimicking media (YNB liquid medium supplemented with 2% glucose, CAA, GlcNAc, oleic acid, or lactate) with an initial OD600 of 0.02. Shake cultures were grown at 30 °C and OD600 of each strain was measured every 2 h (Li et al., 2018). Cell viability was detected by the end-point dilution assay as describe previously. *C. albicans* cells were washed and resuspended in media mentioned above to a density of 1×10^6 cells/ml. Cultures were grown at 30 °C and 100 μl of liquid was taken out to perform end-point dilution assay every 2 h. All experiments were performed in triplicate and repeated three times.

Hyphal Morphogenesis of Phagocytosed *C. albicans* Cells
RAW264.7 cells (1×10^6 cells) were seeded to glass coverslips and incubated overnight (Vylkova and Lorenz, 2014). 500 nM MitoTracker Deep Red FM (Molecular Probes) was added and incubated for 30 min. *C. albicans* cells were stained with FITC as mentioned before, and cocultured with macrophages for 3 h. Images were taken using a confocal laser scanning microscope (Carl Zeiss LSM880), under the set of Ex644/Em655 (macrophages) and Ex488/Em525 (*C. albicans*). The percentage of hyphae cells were counted manually (the number of germinated cells versus the number of total cells). At least 50 cells per strain were counted. Experiments were repeated three times.

Hyphae Formation Assay
The hyphae formation assay was performed as described previously (Li et al., 2017). *C. albicans* cells were washed and resuspended in YNB liquid medium supplemented with 2% glucose, CAA, GlcNAc, oleic acid, or lactate to a concentration of 3×10^5 cells/ml. Cells were incubated in 24 well plates at 37°C for 3 h and images were taken by an inverted microscope (Olympus IX81).

H_2O_2 Killing Assay
The end-point dilution assay was performed to detect the killing effect of H_2O_2 on *C. albicans* (Wu et al., 2018). *C. albicans* cells were washed and resuspended in YNB liquid medium supplemented with 2% glucose, CAA, GlcNAc, oleic acid, and lactate to a concentration of 5×10^4 cells/ml. Then, 6 mM H_2O_2 was added except for the control wells and incubated at 37°C for 6 h. A serial dilution was performed and plated onto YPD agar. CFU were counted after 48 h incubation and the mortality rate was determined by comparison with fungi recovered without exposure to H_2O_2.

Protein Extraction and LC-MS/MS Analysis
C. albicans protein was extracted by a liquid nitrogen grinding method as described previously (Kitahara et al., 2015). *C. albicans* cells were diluted into 1 L cultures at a starting OD = 0.5, cultured for 8 h at 30°C, and harvested at 4 °C. The samples were ground into cell powder, then lysis buffer (8 M urea, 1% Triton-100, 10 mM dithiothreitol, and 1% protease inhibitor) was added, followed by sonication three times on ice using a high-intensity ultrasonic processor (Scientz).

The proteins were reduced with 5 mM dithiothreitol for 30 min at 56°C and alkylated with 11 mM iodoacetamide for 15 min. The sample was diluted with urea, and trypsin was added at the mass ratio of trypsin: protein = 1:50 for the overnight digestion and 1:100 for a second 4 h digestion. The tryptic peptides were fractionated by high pH reverse-phase HPLC using a Betasil™ C18 column (5 μm particles, 250 mm length, Thermo Scientific). The protein digests were then labeled with a Tandem Mass Tag kit (Thermo Scientific) (Kitahara et al., 2015). The peptides were desalted using a Strata X C18 SPE column (Phenomenex) and vacuum-dried. Then the peptides were separated into 60 fractions using a gradient of 8%–32% acetonitrile (pH 9.0) over 60 min. Finally, the peptides were combined into 10 fractions and dried by vacuum centrifugation.

The detailed protocol for LC-MS/MS was described previously (Herrero-de-Dios et al., 2018; Truong et al., 2019). The tryptic peptides were dissolved in 0.1% formic acid (solvent A) and loaded on an analytical column (75 μm × 150 mm). The constant flow rate was set at 500 nL/min with the step gradients of mobile B (0.1% formic acid in 90% acetonitrile): 9%-26% for 38 min, 26%-35% for 14 min, 35%-80% for 4 min, and held at 80% for 4 min. The peptides were subjected to NSI source followed by tandem MS analysis in Q ExactiveTM Plus (Thermo) coupled online to the UPLC. The mass range was
400–1500 m/z, and tandem mass spectra were recorded in high sensitivity mode. In each cycle, a maximum of 20 precursors were selected for fragmentation, with the dynamic exclusion for 15 s. Protein identification and quantification were performed via the Maxquant search engine (v.1.5.2.8). The data were searched against a protein sequence database downloaded from UniProtKB for C. albicans SC5314 (total 6040 entries). The quantitative method was set to TMT-10plex, and the FDR for protein identification and PSM identification was adjusted to <1% (Truong et al., 2019). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier PXD024039.

Ethics Statement
All BABL/c mice were obtained from Guangdong Medical Laboratory Animal Center, Foshan, Guangdong, China. The animal experiments were performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Academy of Science. The protocol was carried out with permission from the Laboratory Animal Ethics Committee of Jinan University (NO. 2019670).

RESULTS
Deletion of ATP2 in C. albicans Decreases Its Escape From Macrophages In Vitro
Escape from macrophage clearance is the basis by which C. albicans establishes systemic infection (Lionakis et al., 2013; Ngo et al., 2014; Weiss and Schaible, 2015). To investigate the impact of ATP2 on this pivotal procedure, we examined the proportion of C. albicans (WT and atp2ΔΔ) killed by macrophages (RAW264.7) in a coculture system via the end-point dilution assay. When C. albicans and macrophages were cocultured at a ratio of 2:1 (multiplicity of infection [MOI] of 2), the atp2ΔΔ and WT cells were phagocytosed at comparable rates (P > 0.05) (Figure 1A), but more atp2ΔΔ cells were killed by macrophages and less macrophages were damaged at each time point than WT cells (P < 0.05) (Figures 1B, C). The mortality rate of atp2ΔΔ was 98.2% at 24 h, but only 32.5% in the WT at this time point (P < 0.05) (Figure 1B). Then we compared the CFUs of WT and atp2ΔΔ in medium without macrophages and found that atp2ΔΔ grew only 31.1% less than WT at 24 h (Figure S1). This suggests that the deletion of ATP2 in C. albicans resulted in a significant reduction in the ability to escape macrophage clearance.

Deletion of ATP2 in C. albicans Decreases Its Escape From Macrophages In Vivo
To further study the effect of ATP2 on the escape of C. albicans from macrophage clearance in vivo, we constructed macrophage normal/depleted mice with PBS/clodronate liposome, and detected the fungal burden at different time points after systemic infection with WT or atp2ΔΔ. The results showed that the WT cells were not cleared in the normal mice (PBS liposome), and that the fungal burden in the kidney at 72 h was higher than that at 24 h post-infection (P < 0.05); however, the fungal burden in the liver, spleen and brain did not significantly differ from that at 24 h (P > 0.05). In contrast, the atp2ΔΔ mutant cells were almost completely cleared 72 h after infection, with no detectable pathogens in the liver, kidney and spleen. Cells remaining in the brain were far less than WT (Figures 2A–D) (P < 0.05).

However, in the macrophage-depleted mice (clodronate liposome), the atp2ΔΔ cells stably persisted in the liver, kidney, spleen, and brain at 24 h and 72 h after infection instead of being cleared. The number of WT cells was increased in the spleen (Figure 2H) and brain (Figure 2G) but unchanged in the liver (Figure 2E) and kidney (Figure 2F) 72 h post-infection compared with those at 24 h. These results suggest that C. albicans cells lacking ATP2 were unable to resist macrophage clearance in vivo.

FIGURE 1 | ATP2 modulates the C. albicans-macrophage interaction in vitro. (A) The phagocytosis of FITC-labeled WT and atp2ΔΔ cells by macrophages was evaluated by measuring FITC fluorescence (Ex495/Em525) in macrophages. (B) Percentage of C. albicans cells killed by macrophages over time. WT and atp2ΔΔ cells were cocultured with RAW264.7 cells at a ratio of 2:1 (MOI of 2), and the killing rate was determined by comparison with C albicans recovered without RAW264.7 cells at each time point. (C) Percentage of C. albicans-induced macrophage damage was assessed by measuring the release of LDH at each time point. In (A–C), assays were performed in triplicate. Data are shown as mean ± s.d. ***P < 0.001; ns, not significant; by two-way ANOVA.
Clearance of ATP2 Mutant Cells Does Not Result in Increased Recruitment of Phagocytes In Situ

The clearance of pathogens typically requires macrophages to recruit large numbers of phagocytes, including neutrophils and NK cells, to enhance the killing efficiency (Ngo et al., 2014; Netea et al., 2015). Is the efficient clearance of atp2Δ/Δ associated with increased recruitment of phagocytes? To answer this question, we injected mice with [18F]FDG, which accumulates in activated macrophages and neutrophils, and detected the [18F]FDG signal intensity in the kidney sections from the WT-infected mice (Figures S3A–F) (P < 0.05). However, the [18F]FDG intensity in the WT-infected mice was significantly increased, especially in the target organ, i.e., kidney, where the signal intensity reached 7-fold of that observed in the atp2Δ/Δ and NS groups at 72 h (Figures 3E) (P < 0.05). The brain, heart, liver, and colon signals in the WT group were also stronger than those in the WT group (Figure 4) (P < 0.05). These results suggest that the clearance of the atp2Δ/Δ mutant cells did not induce abnormal inflammatory cells recruitment in situ.

ATP2 Mutant Cells Can Remain Viable in Macrophage-Mimicking Environment

Once engulfed, C. albicans cells rapidly adapt the glucose-deficient environment, shifting to gluconeogenic growth and escaping from macrophages within 6-8 h (Lorenz et al., 2004; Wartenberg et al., 2014). To observe the effect of ATP2 on the adaptation of C. albicans to the environment, we first examined the growth and viability of WT and atp2Δ/Δ in the media that simulated glucose-deficient environment within macrophages. The results showed that the OD600 of WT group in macrophage-mimicking media (YNB medium with 2% CAA, GlcNAc, lactate, or oleic acid) increased, while the OD600 of atp2Δ/Δ group remained at the initial level (Figures 5A–D). More importantly, consistent with the growth results detected by OD600, the viable cells of WT were increased in these macrophage-mimicking media decreasing by 20-40% at 8 h (Figures 5E–H). These results suggest that the atp2Δ/Δ cells stop proliferating, but can partially remain viable for a short period of time in the glucose-deficient environment.

C. albicans can also adapt to or even alkalize the acidic environment within macrophages, creating more favorable conditions for its survival and escape (Vylkova and Lorenz, 2014). We examined the effect of WT and atp2Δ/Δ on the pH...
value of the environment in macrophage-mimicking media. The results showed that the pH values of the CAA (Figure 5I), GlcNAc (Figure 5J) and lactate (Figure 5L) medium increased simultaneously with the OD_{600} when the WT cells were cultured. The pH of the oleic acid medium gradually decreased when the oleic acid decomposed by WT cells (Figure 5K). In contrast, the
FIGURE 4 | C. albicans cells lacking ATP2 do not cause abnormal phagocytes infiltration in the kidney. (A) Representative images of Periodic acid-Schiff-stained (PAS) and Hematoxylin-Eosin-stained (HE) kidney sections of mice (n = 3) 72 h after systemic infection with NS, WT or atp2Δ/Δ (2 × 10^5 CFU per mouse). (B) Inflammatory score based on renal immune cell infiltration and tissue destruction. In (A), one representative experiment of three mice is shown. In (B), data are shown as mean ± s.d. ***P < 0.001; by Student’s t-test. In (A), insets show higher-magnification images of boxed areas; scale bars, 1,000 µm, 50 µm (insets).

FIGURE 5 | C. albicans cells lacking ATP2 are unable to utilize alternative carbon source. The growth (A–D), viability (E–H), and pH (I–L) of WT and atp2Δ/Δ cells in YNB medium plus 2% CAA, GlcNAc, oleic acid, and lactate over 8 h. In (A–L), the assays were performed in triplicate. ***P < 0.001; by two-way ANOVA.
pH values of the media with \(a \tau p2\Delta/\Delta \) cells were not statistically different at each time point, the \(a \tau p2\Delta/\Delta \) cells were unable to change the environment pH in all macrophage-mimicking media (Figures 5I–K). The above results suggest that deletion of \(\text{ATP2} \) impaired the adaptation of \(C. \text{ albicans} \) to the glucose-deficient environment within macrophages.

ATP2 Mutant Cells Are Unable to Undergo Morphogenesis in Macrophages

Morphogenesis is an important contributing factor for the escape from macrophages (Peroumal et al., 2019; Rogiers et al., 2019). To investigate the hypha formation of these viable \(a \tau p2\Delta/\Delta \) cells, we observed the status of FITC-stained \(C. \text{ albicans} \) (green) cocultured with MitoTracker-preloaded macrophages (red) when cocultured for 3 h. The results showed that WT cells completed morphogenesis with a germination rate of 45.4%, whereas the \(a \tau p2\Delta/\Delta \) mutant cells were trapped inside macrophages in the yeast phase (Figures 6A, B). Then, we extracted RNA from phagocytic \(C. \text{ albicans} \) to conduct RT-qPCR and found that the expression levels of the genes involved in hyphal formation (\(ECE1, \text{HGC1, HWPI and ALS3} \)) were significantly lower than those in the WT group (\(P < 0.05 \)) (Figure 6C).

Interestingly, we found that the unengulfed \(a \tau p2\Delta/\Delta \) mutant could undergo morphogenesis in the medium with a germination rate of 18.1% (Figure 6D). Under this condition, only \(\text{HGC1} \) was expressed at a significantly lower level than that in the WT, while the expression levels of \(ECE1, \text{HWPI and ALS3} \)

![Figure 6](image-url)
did not significantly differ (Figure 6E). The above results suggest that deletion of ATP2 prevents C. albicans from morphogenesis inside macrophages, but not outside of them.

Morphogenesis of ATP2 Mutant Cells Are Affected by the Presence or Absence of Glucose

Why atp2Δ/Δ cells were unable to form hyphae in macrophages? We performed hyphae formation assay in classic hyphae induction media (YPD+10% FBS, Spider, Lee’s), DMEM, and macrophage-mimicking media. The results showed that more than 90% of the WT cells formed elongated hyphae in all the media mentioned above, while the atp2Δ/Δ cells only formed short hyphae in media containing glucose (DMEM, YPD+10% FBS, and Lee’s) with germination rates around 10% (Figures 7A–D), and could not reach a level close to that of WT even with extended incubation time (Figure S2). In Spider medium (no glucose inside) and macrophage-mimicking media, the atp2Δ/Δ cells didn’t form hyphae (Figures 7A–D). Then we supplemented macrophage-mimicking media with 0.2% glucose, which was close to glucose level in blood, and found that hypha formation of atp2Δ/Δ was partially restored (Figures 7E, F). The above results suggest that the hypha formation of atp2Δ/Δ is reduced, but whether it forms hyphae also related to the presence or absence of glucose.

ATP2 Mutant Cells Are More Susceptible to Oxidative Stress

Oxidative stress within the phagosome creates a toxic environment that induces oxidative stress and programmed cell death in C. albicans (Dantas Ada et al., 2015). We further investigated the resistance of atp2Δ/Δ to oxidative stress (6 mM...
H$_2$O$_2$) in different environments. The results showed that 39.3% and 64.7% of the WT and atp2Δ/Δ cells were killed in the glucose medium at 6 h, respectively (P < 0.05) (Figure 8A). However, in the macrophage-mimicking media mentioned above, almost all atp2Δ/Δ cells were killed under the same H$_2$O$_2$ concentration, while the WT cells exhibited only slightly increased sensitivity to H$_2$O$_2$ in oleic acid (Figure 8A).

We further tested the transcription levels of the CAT1 gene (which protects C. albicans from oxidative stress) in the atp2Δ/Δ and WT cells under different conditions (Dantas Ada et al., 2015). Consistent with the phenotype, the expression level of CAT1 in the atp2Δ/Δ cells was decreased by 31.6% in the glucose medium compared with that in the WT (Figure 8B). However, the CAT1 levels in the atp2Δ/Δ cells were greatly downregulated in the alternative carbon source but were upregulated (CAA and lactate), unchanged (GlcNAc), or slightly downregulated (oleic acid) in the WT cells (P < 0.05) (Figure 8B). It can be seen that atp2Δ/Δ cells are more susceptible to oxidative stress, especially in the glucose-deficient environments.

Deletion of ATP2 in C. albicans Affects Proteins Involved in Its Escape From Macrophages

To further investigate the effect of ATP2 on multiple abilities associated with C. albicans escape from macrophages, we performed a proteomics study and found that deletion of ATP2 resulted in 112 proteins up-regulated and 268 proteins down-regulated (P < 0.05 and fold change > 1.5). Here, we focused on proteins involved in hyphal formation, stress responses, alternative carbon source utilization, etc.

When referred to the WT strain, several proteins required for hyphal formation were down-regulated, for example Hdh1p, Opt3p, and Ole1p were 0.21-, 0.54-, and 0.35-fold down-regulated in the atp2Δ/Δ mutant (Figure 9). In addition, putative glutathione peroxidase (Gpx2p) involved in Cap1p-dependent oxidative stress response was 0.28-fold down-regulated in atp2Δ/Δ mutant (Figure 9). However, Sod1p, which play a protective role against oxidative stress, was upregulated 3.3-fold in atp2Δ/Δ mutant (Figure 9). Proteins related to cell wall remodeling, GPI-anchored cell wall proteins (Exg2p, Rbt5p, and Crh11p) were up-regulated in atp2Δ/Δ mutant. Proteins associated with DNA damage repair were generally down-regulated.

As for proteins involved in alternative carbon source utilization, all enzymes (Icl1p, Mls1p, Aco1p, Cti1p, and Mdh1p) involved in the GC pathway were significantly repressed in the atp2Δ/Δ cells, two of the eight (Pck1p and Fbp1p) gluconeogenesis enzymes were upregulated, and there was no significant change in the β-oxidation pathway (Figure 9). The proteomic results were generally consistent with the phenotype, proteins related to multiple functions related to C. albicans escape from macrophages were repressed to some extent.

DISCUSSION

The ability of C. albicans to persist in the human host and cause disease requires the capacity to evade and circumvent host defense mechanisms, especially macrophage-mediated clearance (O’Meara et al., 2018; Austermeier et al., 2020). Therefore, the C. albicans-macrophage interaction process offers promising targets for much-needed novel therapeutics to treat fungal infections and has not been exploited as a therapeutic target to date.

We found that the ATP2 deletion increased the macrophage clearance of C. albicans from 30.8% to 98.8%, almost completely preventing the escape of C. albicans. However, not only ATP2, there are other genes affecting the escape of C. albicans from macrophages. When calculated the variations in clearance rate using their parental strains as standard, the deletion of PHO4 (78%), TRK1 (70%), ALI1 (65.5%), or CYR1 (64.1%) caused changes in macrophage clearance rates of similar magnitude compared to ATP2 (67.4%) (Table S2) (Rocha et al., 2001; Ikeh et al., 2016; Llopis-Torregrosa et al., 2019; Williams and Lorenz, 2020). When directly comparing the percentage of killed mutant cells, the deletion of ALI1, CYR1, RTTI09, COX4, or RAS1
increased the clearance of *C. albicans* to more than 90% (98.2% of the *atp2*D/D) (*Table S2*) (Marcil et al., 2002; Lopes da Rosa et al., 2010; Williams and Lorenz, 2020). Although different macrophage types, co-culture times, MOIs can lead to differences in the data from one study to another, it can provide us with some reference information when all mutants are not available for simultaneous experiments. Through this analysis, we found that *ATP2*, as well as two other genes related to mitochondrial function (*ALI1* and *CYR1*) were at the forefront of the genes currently known to affect clearance.

The *ATP2* mutant also displayed a reduced ability to escape macrophage clearance in vivo. We constructed macrophage-depleted mice by clodronate liposome, a simple, and stable method that has been widely used to study macrophage-pathogen interactions (Wirnsberger et al., 2016; Moreno, 2018). The persist of *atp2*D/D in macrophage-depleted mice suggested that it could survive, if not grow, in organs. Our results of growth in tissue homogenates supported this conclusion (*Table S3*). Thus, under the premise that *atp2D/D* could survive and even grow in vivo, the results of *atp2D/D* were undetectable in various organs of macrophage-normal mice suggesting that the mutant strain had a reduced ability to escape macrophage clearance in vivo.

Most *C. albicans* wild type cells can escape from the macrophage in 6-8 h (Wartenberg et al., 2014). In the early phase (1 h) of *C. albicans*-macrophages interaction, *C. albicans* switched to a slow gluconeogenic growth mode in the glucose-deficient environment, and in the late phase (6-8 h), along with hyphae formation and escape, *C. albicans* resumed rapid glycolytic growth (Lorenz et al., 2004; Tucey et al., 2018; Laurian et al., 2020). Why did *ATP2* deletion lead to a substantial reduction of *C. albicans* escaping macrophage clearance? According to our results, *atp2D/D* cells had good glycolytic growth but were unable to undergo gluconeogenic growth. However, even if the mutant failed to proliferate, 60-80% of *atp2D/D* cells could remained viable for 8 h in glucose-
deficient environments. Our previous work reported that viability of \(atp2\Delta/D \) decreased substantially in glucose-deficient media after 24 h, but it could survive and proliferate in glucose-sufficient media (Li et al., 2018). Therefore, the ability to escape macrophages and resume glycolytic growth within 8 h is critical for \(atp2\Delta/D \) to survive \(C. albicans\)-macrophages interaction.

Hyphal morphogenesis is a key factor promoting \(C. albicans \) escape from macrophages in a physical or inflammation dependent manner (Peroumal et al., 2019; Rogiers et al., 2019). We observed that \(atp2\Delta/D \) cells were all trapped within macrophages in the yeast form. However, when we studied the morphogenesis ability of \(atp2\Delta/D \) we found that the hyphal formation of the mutant was reduced but not absent in media containing glucose, and the expression level of related genes (\(ECE1, HWP1 \) and \(ALS3 \)) was not even statistically different from WT. Therefore, the inability of \(atp2\Delta/D \) cells to form hyphae within macrophages was likely due to their fitness defect rather than specific hyphal formation defect.

Unlike specific hyphal formation or carbon source utilization genes, \(ATP2 \) has a broader effect on the function involved in \(C. albicans\)-macrophages interaction. Specific hyphal formation defective mutant (\(cph1\Delta/efg1\Delta \)) was unable to escape from macrophages after 24 h, but no other functional defects allowed these cells to survive and still replicate in the yeast form (Wartenberg et al., 2014). Moreover, the sustained interaction of \(cph1\Delta/efg1\Delta \) with macrophages may lead to new variants capable of escape from macrophage (Wartenberg et al., 2014). Due to the broad effect of \(ATP2 \) on the ability of \(C. albicans \) associated with escape from macrophage, \(C. albicans \) cannot bypass or tolerate its inhibitory effects, rendering it a better target than specific functionally related genes.

Since \(F_{1}F_{0}-ATP \) synthase is evolutionarily conserved in bacteria, fungi, and mammals, and using the \(\beta \) subunit (encoded by \(ATP2 \)) or other subunits of \(F_{1}F_{0}-ATP \) synthase as drug target may carry a risk of toxicity (Jonckheere et al., 2012). Bedaquiline is an FDA-approved anti-tuberculosis drug that targets the c-ring of \(F_{1}F_{0}-ATP \) synthase, which is 20,000 times more sensitive to \(Mycobacterium tuberculosis \) than to mammal cells (Andries et al., 2005; Fiorillo et al., 2016). Although the \(\beta \) subunit has not yet been used as an anti-infection drug target, some small molecules and monoclonal antibodies targeting the \(\beta \) subunit have entered phase I or II clinical trials in antitumor studies, such as angiostatin, Hai178, and Aurovertin B, all of which have shown selective inhibition of tumor cells with low toxicity to normal cells (Moser et al., 2001; Huang et al., 2008; Chen et al., 2016).

In summary, deletion of \(ATP2 \) prevents \(C. albicans \) from escaping macrophage clearance \textit{in vitro} and \textit{in vivo}. \(ATP2 \) has the functional basis as a drug target of \(C. albicans\)-macrophages interaction and deserves further investigation in the future.

DATA AVAILABILITY STATEMENT

The proteomics data presented in the study were deposited in the [ProteomeXchange Consortium, accession number was PXD024039](https://www.proteomexchange.org/). The animal study was reviewed and approved by Laboratory Animal Ethics Committee of Jinan University.

AUTHOR CONTRIBUTIONS

YiZ, CT, and ZZ contributed equally to the article. YiZ and SL developed the concept and designed the research plan. YiZ, CT, ZZ, YaZ, and LW performed experiments. YiZ, ZZ, and CT performed statistical analysis. YiZ, ZZ, and CT wrote the paper. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China (81971913/81471995/81903675) and China Postdoctoral Science Foundation (2019M653291).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcimb.2021.643121/full#supplementary-material

REFERENCES

Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W., Neefs, J. M., Winkler, H., et al. (2005). A diarylquinoline drug active on the ATP synthase of \(Mycobacterium tuberculosis \). Science 307 (5707), 223–227. doi: 10.1126/science.1106753

Austermeier, S., Kaspar, L., Westman, J., and Gresnigt, M. S. (2020). I want to break free - macrophage strategies to recognize and kill \(Candida albicans \), and fungal counter-strategies to escape. Curr. Opin. Microbiol. 58, 15–23. doi: 10.1016/j.mib.2020.05.007

Bassetti, M., Righi, E., Montravers, P., and Cornely, O. A. (2018). What has changed in the treatment of invasive candidiasis? A look at the past 10 years and ahead. J. Antimicrob. Chemother. 73 (suppl_1), i14–i25. doi: 10.1093/jac/dlx445

Chen, C., Liang, H., Liao, X., Pan, J., Chen, J., Zhao, S., et al. (2016). A humanized chimeric antibody Hai178 targeted to the \(\beta \) subunit of \(F_{1}F_{0} \) ATP synthase. Tumour Biol. 37, 15903–15912. doi: 10.1007/s13277-016-5423-1

Danhof, H. A., and Lorenz, M. C. (2015). The Candida albicans ATO Gene Family Promotes Neutralization of the Macrophage Phagolysosome. Infect. Immun. 83 (11), 4416–4426. doi: 10.1128/iai.00984-15

Zhang et al. 2021. ATP2 Affects C. albicans Escape Macrophages. Front. Cell. Inf. Microbiol., 11:643121. doi: 10.3389/fcimb.2021.643121

Bassetti, M., Righi, E., Montravers, P., and Cornely, O. A. (2018). What has changed in the treatment of invasive candidiasis? A look at the past 10 years and ahead. J. Antimicrob. Chemother. 73 (suppl_1), i14–i25. doi: 10.1093/jac/dlx445

Chen, C., Liang, H., Liao, X., Pan, J., Chen, J., Zhao, S., et al. (2016). A humanized chimeric antibody Hai178 targeted to the \(\beta \) subunit of \(F_{1}F_{0} \) ATP synthase. Tumour Biol. 37, 15903–15912. doi: 10.1007/s13277-016-5423-1

Danhof, H. A., and Lorenz, M. C. (2015). The Candida albicans ATO Gene Family Promotes Neutralization of the Macrophage Phagolysosome. Infect. Immun. 83 (11), 4416–4426. doi: 10.1128/iai.00984-15
Danhof, H. A., Vylkova, S., Vesely, E. M., Ford, A. E., Gonzalez-Graray, M., and Lorenz, M. C. (2016). Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids. mBio 7 (6), e01464-16. doi: 10.1128/mBio.01464-16

Dantas Ada, S., Day, A., Beke, M., Kos, L., Achan, B., and Quinn, J. (2015). Description of the interaction between Candida albicans and stem-like cancer cells (CSCs). Aging (Albany NY) 8 (8), 1593–1607. doi: 10.18632/aging.100983

Herrero-de-Dios, C., Day, A. M., Tillmann, A. T., Kastora, S. L., Stead, D., Salgado, P. S., et al. (2018). Redox Regulation, Rather Than Stress-Induced Phosphorylation, of a Hog1 Mitogen-Activated Protein Kinase Modules Its Nitrosative-Stress-Specific Outputs. mBio 9 (2), e02299–17. doi: 10.1128/mBio.02299-17

Ikeh, M. A., Kastora, S. L., Day, A. M., Herrero-de-Dios, C. M., Tarrant, E., Laurian, R., Jacot-des-Combes, C., Bastian, F., Dementhon, K., and Cotton, P. (2020). Carbon metabolism snapshot by ddPCR during the early step of mouse splenic macrophages correlates with increased susceptibility to Candida albicans. Front. Immunol. 11, 3643. doi: 10.3389/fimmu.2020.03643

Li, S.-X., Wu, H.-T., Liu, Y.-T., Jiang, Y.-Y., Zhang, Y.-S., Liu, W.-D., et al. (2018). Mitochondrial Complex V αb and is vital for stress resistance and metal homeostasis. Antimicrob. Agents Chemother. 53 (11), 4879–4884. doi: 10.1128/AAC.00789-09

Lorenz, M. C. (2016). Robust Extracellular pH Modulation by Candida albicans Pathogenicity Due to Its Role in Carbon Flexibility. Mol. Biol. Cell 27 (17), 2784–2801. doi: 10.1091/mbc.E15-05-0266

Liu, P., Sethi, S. C., Pratyusha, V. A., Garai, P., Naqvi, N., Singh, S., et al. (2009). Noninvasive pulmonary [18F] 2-fluoro-deoxy-D-glucose positron emission tomography correlates with bactericidal activity of tuberculosis drug treatment. Antimicrob. Agents Chemother. 53 (11), 4879–4884. doi: 10.1128/AAC.00789-09

Mijovic, G., Furse, B. L., Piekarska, K., Mol, E., van den Berg, M., Hardy, G., van den Burg, J., van der Meer, J. W. M., Kullberg, B. J., and van de Netea, M. G. (2009). Phylogenomics of Fungal Pathogen Intracellular Metabolism. BMC Evol. Biol. 9, 295. doi: 10.1186/1471-2148-9-295

Zhang et al.
Association between Mitochondrial Fission and Antifungal Susceptibility.
Proteomics 20 (1), e1900240. doi: 10.1002/pmic.201900240
Tucey, T. M., Verma, J., Harrison, P. F., Snedgrove, S. L., Lo, T. L., Scherer, A. K.,
et al. (2018). Glucose Homeostasis Is Important for Immune Cell Viability
during Candida Challenge and Host Survival of Systemic Fungal Infection. Cell Metab. 27 (5), 988–1006.e1007. doi: 10.1016/j.cmet.2018.03.019
Uwamahoro, N., Verma-Gaur, J., Shen, H. H., Qu, Y., Lewis, R., Lu, J., et al. (2014).
The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. mBio 5 (2), e00003–e00014. doi: 10.1128/mBio.00003-14
Vylkova, S., and Lorenz, M. C. (2014). Modulation of Phagosomal pH by Candida
albicans Promotes Hyphal Morphogenesis and Requires Stp2p, a Regulator of
Amino Acid Transport. PLoS Pathog. 10 (3), e1003995. doi: 10.1371/journal.ppat.1003995
Wartenberg, A., Linde, J., Martin, R., Schreiner, M., Horn, F., Jacobsen, I. D., et al.
(2014). Microevolution of Candida albicans in macrophages restores
filamentation in a nonfilamentous mutant. PLoS Genet. 10 (12), e1004824–
e1004824. doi: 10.1371/journal.pgen.1004824
Weiss, G., and Schaible, U. E. (2015). Macrophage defense mechanisms against
intracellular bacteria. Immunol. Rev. 264 (1), 182–203. doi: 10.1111/imr.12266
Westman, J., Hube, B., and Fairn, G. D. (2019). Integrity under stress: Host
membrane remodelling and damage by fungal pathogens. Cell Microbiol. 21 (4), e13016. doi: 10.1111/cmi.13016
Williams, R. B., and Lorenz, M. C. (2020). Multiple Alternative Carbon Pathways
Combine To Promote Candida albicans Stress Resistance, Immune
Interactions, and Virulence. mBio 11 (1), e03670–19. doi: 10.1128/mBio.03670-19
Wirnsberger, G., Zwolanek, F., Asaoka, T., Kozieradzki, I., Tortola, L., Wimmer, R.
A., et al. (2016). Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat. Med. 22 (8), 915–923. doi: 10.1038/nm.4134
Wu, Y., Wu, M., Wang, Y., Chen, Y., Gao, J., and Ying, C. (2018). ERG11 couples
oxidative stress adaptation, hyphal elongation and virulence in Candida albicans. FEMS Yeast Res. 18 (7), foy057. doi: 10.1093/femsyr/foy057

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhang, Tang, Zhang, Li, Zhao, Weng and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.