Heat Analysis of Assembled Steel-truss Concrete Hollow Floor

Hao-xue Ju¹*, Yue Zhang² and Xu-dong Xing¹

¹College of Information Technology & Art Design, Shandong Institute of Commerce & Technology, Jinan, Shandong Province, 250103, China
²School of Civil Engineering and Architecture, University of Jinan, Jinan, Shandong, 250022, China
*Corresponding author’s e-mail: juhaoxue@163.com

Abstract. The numerical analysis software ABAQUS has been used to study the temperature field of an assembled steel-truss concrete hollow floor in this paper to simulate the assembled steel-truss concrete hollow floor under thermal coupling under the ISO-834 standard heating curve. The distribution principle of temperature field for different sections in the floor system has been obtained to provide a reference for the study of the mechanical properties of assembled steel-truss concrete hollow floor.

1. Introduction

The thermal and mechanical properties of building materials will vary in high temperature environment or fire. Concrete spalling may occur due to heat which inevitably leads to the softening of exposed steel bar and endangers the structure safety. Because of the large area of reinforced concrete slab, it is usually suffered to the most severe damage as structural components in the fire scenario. Therefore, researches about concrete floor system under fire are particularly important.

The British BRE and Steel Structures Association conducted a series of fire tests on a full-size steel frame structure [1]. Gordon M.E Cooke [2] carried out a fire test study on 14 simply supported reinforced concrete one-way slabs. Lim [3-4] studied a fire resistance test on three reinforced concrete simply supported two-way slabs. Foster and Burgess [5-6] experimentally and theoretically investigated the vertical large deformation of 15 small-sized reinforced concrete slabs without horizontal constraints. Bailey [7-8] tested 44 small-scale concrete slabs and proposed the theory of film forces in concrete slabs at high temperatures. José V. Aguado, A. Espinos [9] studied the effect of steel bars on the high temperature performance of four full-size reinforced concrete hollow slabs, and pointed out that the load could be calculated according to the EC2 specification. I. Venanzi, M. Breccolotti, A. [10] analyzed experimentally full-scale fire resistance of hollow core slabs. A.M. Shakya, V.K.R. Kodur [11] carried out experimental research and numerical simulation on six precast prestressed concrete hollow slabs. Aguado J V, Albero V, Espinos A [12] established a 3D finite element thermo-mechanical coupling model of concrete hollow slabs. It was found that the FE model can accurately reflect the failure mechanism of slab and cracking mode. In this work an assembled steel-truss concrete hollow floor is presented and the thermal behavior has been investigated using ABAQUS software.

2. Model

2.1 Modal
The 3D full-scale model is relatively large. Only 1/4 model is built with the consideration of symmetry
in both directions in order to reduce the software solution time. The floor model is shown in Figure 1. ISO-834 standard curve as shown in Figure 2 has been adopted in numerical analysis.

![Figure 1. 1/4 model](image1)

![Figure 2. ISO-834 standard curve](image2)

2.2 Meshing

The element size of foamed concrete and ordinary concrete is 4 cm, and the steel mesh grid is 3 cm. After the mesh is divided by the central axis algorithm, the model meshing shape is suitable to fasten computational iteration and improve the convergence.

3. Analysis

The temperature distribution of the whole slab along both long span and short span after two-hour fire exposure has been shown in Figure 3. It can be seen that the temperatures gradient gradually reduce from the fire-exposed surface towards the unexposed surface. The maximum temperature of fire-exposed surface is about 1048°C, while the temperature of unexposed surface is about 23°C. The concrete temperatures development along the long span and short span is presented in Figure 4 and Figure 5 which indicates obvious temperature difference at the interface between foamed concrete and concrete ribs due to the heat insulation of foamed concrete.

![Figure 3. Temperature of the whole model](image3)

![Figure 4. Temperature along long span](image4)

![Figure 5. Temperature along short span](image5)
There are 7 measuring points along the height of concrete rib which are numbered as H1-H7 and the distance away from the fire-exposed surface is 0mm, 20mm, 60mm, 100mm, 140mm, 170mm, 190mm, respectively. There are also 7 measuring points along the thickness of foamed concrete with numbering P1-P7, and the distance away from the fire-exposed surface is 0mm, 35mm, 70mm, 105mm, 140mm, 170mm, 190mm, respectively as shown in Figure 6.

The temperature-time curves of measuring point H1-H7 are presented in Figure 7. It can be seen that the temperature development for each point is not completely same. The temperatures of H1, H2 and H3 have a faster growth in the first 30min, while the temperatures of H4-H7 develop slowly. With the increase of time, the temperatures of each measuring point show a nonlinear development. It indicates that the farther away from the fire-exposed surface, the smaller the temperature gradient is, which has agreement with the actual fire condition. The temperature development of measuring points P1-P7 is compared in Figure 8. It can be seen that foamed concrete and the rib concrete have the same trend of temperature development. However, for the same height level the temperatures of foamed concrete is lower than that of rib concrete. According to the analysis, the thermal characteristics of foamed concrete are superior to the ordinary concrete, which results in less temperature transfer towards the top part of floor system and ensures a good thermal insulation performance.

There are 7 measuring points along the height of concrete rib which are numbered as H1-H7 and the distance away from the fire-exposed surface is 0mm, 20mm, 60mm, 100mm, 140mm, 170mm, 190mm, respectively. There are also 7 measuring points along the thickness of foamed concrete with numbering P1-P7, and the distance away from the fire-exposed surface is 0mm, 35mm, 70mm, 105mm, 140mm, 170mm, 190mm, respectively as shown in Figure 6.

The temperature-time curves of measuring point H1-H7 are presented in Figure 7. It can be seen that the temperature development for each point is not completely same. The temperatures of H1, H2 and H3 have a faster growth in the first 30min, while the temperatures of H4-H7 develop slowly. With the increase of time, the temperatures of each measuring point show a nonlinear development. It indicates that the farther away from the fire-exposed surface, the smaller the temperature gradient is, which has agreement with the actual fire condition. The temperature development of measuring points P1-P7 is compared in Figure 8. It can be seen that foamed concrete and the rib concrete have the same trend of temperature development. However, for the same height level the temperatures of foamed concrete is lower than that of rib concrete. According to the analysis, the thermal characteristics of foamed concrete are superior to the ordinary concrete, which results in less temperature transfer towards the top part of floor system and ensures a good thermal insulation performance.

Figure 9 shows temperature distribution of steel trusses. The maximum temperature of steel truss system appears at the bottom. The minimum temperature occurs at the farthest position away from the fire-exposed surface. The conclusions can be drawn that temperature increase in the steel truss will result in a sharp decrease of strength and elastic modulus. According to the results of temperature field distribution aforementioned, the temperatures of steel wire mesh locating in the concrete top layer are close to room temperature.
4. Conclusion
In this paper, the numerical software ABAQUS has been used to simulate the assembled steel-truss concrete hollow floor under the action of ISO834 standard curve. The temperature field distribution of different floor parts is obtained.

- The temperature field of floor is depending on the fire-exposed section, but the temperatures gradually reduce in a nonlinear manner from the fire-exposed surface to the unexposed surface.
- Foamed concrete can provide effective fire protection with heat insulation property, and the size of section has no effect on the temperature of the steel-truss at the same thickness of the protective layer.

Acknowledgement
This work was supported by the Shandong Provincial Key Research and Development Program of China (Grant no.2017GSF22106) and the Natural Science Foundation in Shandong Province of China (Grant no. ZR2014EL037).

Reference
[1] Lennon T Moore D 2003 The natural fire safety concept—full-scale tests at Cardington Fire Safety Journal vol 38 ed Bisby L Merci B (Oxford: Kidlington) pp 623-643
[2] Gordon M E Cooke 2001 Behaviour of precast concrete floor slabs exposed to standardised fires Fire Safety Journal vol 36 ed Bisby L Merci B (Oxford: Kidlington) pp 459-475
[3] Lim L Wade C 2002 Experimental fire tests of two-way concrete slabs Fire Engineering Research Report vol 2 BRANZ Ltd (New Zealand) pp 5-60
[4] Lim L Buchanan A Moss P 2004 Numerical modeling of two-way reinforced concrete slabs in fire Engineering Structures vol 26 ed Gould P L (Oxford: Kidlington) pp 1081-1091
[5] Foster S J Burgess I W Plank R J 2004 High-temperature experiments on model-scale concrete slabs at high displacement 3rd Int. on Structures in Fire (Ottawa) pp 5-5
[6] Foster S J Bailey C G Burgess I W 2004 Experimental Behaviour of Concrete Floor Slabs at Large Displacements Engineering Structures vol 26 ed Gould P L (Oxford: Kidlington) pp 1231-1247
[7] Bailey C G Toh W S 2007 Behaviour of Concrete Floor Slabs at Ambient and Elevated temperatures Fire Safety Journal vol 42 ed Bisby L Merci B (Oxford: Kidlington) pp 425-436
[8] Bailey C G Toh W S 2007 Small-scale concrete slab tests at ambient and elevated temperatures Engineering Structures vol 29 ed Gould P L (Oxford: Kidlington) pp 2775-2791
[9] Aguado J V Espinos A Hospitaler A 2012 Influence of reinforcement arrangement in flexural fire behavior of hollow core slabs Fire Safety Journal vol 53 ed Bisby L Merci B (Oxford: Kidlington) pp 72-84
[10] Venanzi I Breccolotti M 2014 Fire performance assessment of HPLWC hollow core slabs through
full-scale furnace testing Fire Safety Journal vol 69 ed Bisby L Merci B (Oxford: Kidlington) pp 12-22

[11] Shakya A M Kodur V K R 2015 Response of precast prestressed concrete hollow core slabs under fire conditions Engineering Structures vol 87 ed Gould P L (Oxford: Kidlington) pp 126-138

[12] Aguado J V Albero V Espinos A 2016 A 3D finite element model for predicting the fire behavior of hollow-core slabs Engineering Structures vol 108 ed Gould P L (Oxford: Kidlington) pp 12-27