The Non-motor Symptoms, Disability Progression, and Survival Analysis of Atypical Parkinsonism: Case Series from Eastern India and Brief Review of Literature

Tapas Pani1 Soumyadarshan Nayak1

1 Department of Neurology, SCB Medical College and Hospital, Cuttack, Odisha, India

Address for correspondence Tapas Pani, MD, DM, Department of Neurology, SCB Medical College and Hospital, Cuttack 753101, Odisha, India (e-mail: tapaspani625@gmail.com).

Abstract

Objective The objectives of this study are (1) to describe the non-motor profile, the motor disability progression, and survival analysis of atypical parkinsonism in a tertiary care hospital of eastern India and (2) to elucidate the neurocircuitry and the putative substrates responsible for non-motor manifestations.

Methods In this prospective observational study, patients were diagnosed based on Consensus Criteria for Progressive Supranuclear Palsy (PSP), The Fourth Consensus Report of the Dementia with Lewy Body (DLBD) Consortium 2017, The Autonomic Neuroscience 2018 Criteria for Multiple System Atrophy (MSA), and Armstrong 2013 Criteria for Corticobasal Degeneration (CBD). Disease severity was assessed at baseline and 6 months of follow-up using the Unified Parkinson's Disease Rating Scales (UPDRS). For PSP and MSA, the PSP-Clinical Deficits Scale (PSP-CDS) and the Unified MSA Rating Scale (UMSARS), respectively, were used. Cox regression analysis and the hazard ratio were calculated.

Results Out of 27 patients, the diagnosis was probable PSP in 12, probable MSA in 7, probable CBD in 5, and probable DLBD in 3. Non-motor symptoms were highly prevalent across all subtypes. Motor disability progression as assessed by UPDRS parts 2 and 3 showed significant deterioration over 6-month follow-up across all groups \((p < 0.05) \). Disease progression assessed by PSP-CDS and UMSARS over 6 months was significant \((p < 0.05) \). One PSP and two MSA patients died during a 6-month follow-up period. The hazard ratio in MSA was 3.5 (95% confidence interval: 0.31–0.38) with \(p = 0.306 \).

Conclusion Atypical parkinsonian disorders are rare, and usually more severe than idiopathic parkinsonism. As no definitive treatment is available, symptomatic management involving a multidisciplinary team approach must be prioritized.
Introduction

Atypical parkinsonism encompasses progressive supranuclear palsy (PSP), multiple system atrophy (MSA), dementia with Lewy body (DLBD), and corticobasal degeneration (CBD) and is characterized by rapid disease progression, poor levodopa responsiveness, shorter survival time, and more complications in earlier stages and with a higher degree of severity than in idiopathic Parkinson’s disease (IPD). The non-motor symptoms (NMS) are extremely common in atypical parkinsonism; however, these are underappreciated and undertreated. The underlying mechanism involves the involvement of multiple areas of neuraxis from the central nervous system to the peripheral nervous system.

Distinct neural representations of depression, anxiety, apathy, and fatigue have been elucidated. The disruption of the noradrenergic projections from the locus coeruleus is implicated in the pathogenesis of depression, anxiety, apathy, decreased memory consolidation and retrieval, and poor rapid eye movement (REM) sleep. Apathy stems from the involvement of the mesocortical, mesolimbic, and nigrostriatal pathways. Cortical areas implicated are the orbitofrontal cortex, subgenual portions of the anterior cingulate cortex, and dorsolateral and ventrolateral prefrontal cortex along with caudate, putamen, and globus pallidus.

According to the Chaudhuri and Behan model of basal ganglia dysfunction in central fatigue, dorsal striatal areas and cortical–subcortical networks contribute to perceptions of fatigue due to disruptions of internally generated effort.

MSA has the highest prevalence of pain; characterization of pain was mainly musculoskeletal throughout all subtypes. In CBD, dystonic pain along with central pain was most common; while in DLBD, multifocalized pain is highly prevalent. Neurodegeneration affecting the basal ganglia alters pain perception as it participates in pain processing, hence the higher prevalence in MSA-parkinsonism (MSA-P) versus MSA-cerebellar (MSA-C). Cognitive impairment in PSP may reduce pain perception.

Symptomatic orthostatic hypotension, the major manifestation of cardiovascular autonomic failure, often manifests as recurrent syncope, dizziness, nausea, headache, and weakness, and has been reported in 43 to 81% of all MSA patients. Three main mechanisms include noradrenergic denervation in the cardiac and extracardiac regions and arterial baroreflex failure.

Sleep disorders in the form of insomnia, REM sleep behavior disorder, periodic limb movement disorder, excessive daytime sleepiness, and sleep apneas are common in atypical parkinsonism. The putative substrates responsible for sleep disturbances are shown in Fig. 1 in the sleep–wake neurocircuity.

Three characteristic features define bladder abnormalities in MSA. These include large postvoid residual urine volumes of >100 mL, an open bladder neck during filling-phase video urodynamics, and sphincter denervation attributed to neuronal cell loss in Onuf’s nucleus in the sacral spinal segment. Urinary dysfunction in PSP is as extensive as those of MSA. The reduction of motor performance seems to contribute to the development of severe constipation. Therefore, the improvement of gait capacity and endurance could help reduce the risk of constipation.

Progression of motor disability is more rapid in atypical parkinsonism compared with IPD.

In patients with atypical parkinsonism, the median survival was 3.3 years, compared with 5.6 years in controls.

Materials and Methods

A prospective study including PSP, MSA, CBD, and DLBD patients was carried out. Patients were followed-up for 6 months, to assess their mortality.

The study was approved by the Institutional Ethical Committee and proceeded with the approval of the participant’s consent.

Patients were diagnosed based on the Consensus Criteria for PSP (Movement Disorders Society 2017), the Fourth Consensus Report of the DLBD Consortium 2017, the MSA Diagnostic Criteria (Autonomic Neuroscience 2018), and the Armstrong Criteria for CBD. Disease severity was assessed at presentation and 6 months of the follow-up period. The data were analyzed using Statistical Package for the Social Sciences, version 23 (IBM Corp, Armonk, New York). Descriptive analysis was done for baseline characteristics of study patients. The pretest and posttest values of the Unified Parkinson Disease Rating Scale (UPDRS) parts 2 and 3, the PSP-Clinical Deficits Scale (PSP-CDS), and the Unified MSA Rating Scale (UMSARS) were compared and
analyzed using paired t-test. The detailed clinical evaluation and the scoring were done by both the authors.

Survival analysis was done using Kaplan–Meier survival curve where the log-rank test was performed. Cox regression analysis was performed to get the hazard ratio. \(p \)-Value less than 0.05 was considered statistically significant.

Results

Mean age was higher in DLBD and CBD patients (69 ± 5.8 and 67 ± 1.7 years, respectively) compared with MSA and PSP (61 ± 6.7 and 65 ± 3.3 years, respectively) patients. The duration of the disease was similar across subgroups. The male to female ratio was 2.7:1. Among PSP patients, PSP-Richardson (PSP-RS) was the most common type (58.33%; Table 1).

MSA patients showed moderate to severe involvement in these NMS domains: depression (57.1%), apathy (57.1%), sleep disturbances (57.1%), bladder problems (71.4%), constipation (71.4%), lightheadedness (57.1%), and fatigue (57.1%). In PSP, cognitive disturbances (66.6%), apathy (75%), sleep disturbances (75%), bladder problems (58.3%), constipation (75%), and fatigue (66.7%) were highly prevalent. CBD patients were mildly affected across all NMS domains, except constipation (40%). The majority of DLBD patients showed marked to severe involvement across all

Table 1 Demographics

Disease \(^a\) (no. of patients/ deaths)	Age at presentation	Duration of disease	Subtypes (%)	M/F
PSP (12/1)	65 ± 3.3	3.7 ± 1.4	PSP-RS (58.33); PSP-P (8.33)	9/3
			PSP-P (8.33); PSP-OM (16.67)	
			PSP-F (8.33)	
MSA (7/2)	61 ± 6.7	3.7 ± 0.8	MSA-P (28.57); MSA-C (71.42)	5/2
DLBD (3/0)	69 ± 5.8	3.7 ± 1.4		2/1
CBD (5/0)	67 ± 1.7	2.6 ± 0.3		3/2

Abbreviations: CBD, corticobasal degeneration; DLBD, dementia with Lewy body; M/F, male/female; MSA, multiple system atrophy; MSA-C, MSA cerebellar; MSA-P, MSA parkinsonism; PSP, progressive supranuclear palsy; PSP-F, PSP frontal; PSP-OM, PSP oculomotor; PSP-P, PSP Parkinson’s type; PSP-Pi, PSP postural instability; PSP-RS, PSP Richardson.

\(^a\)Probable.
The age at presentation was higher in DLBD and CBD patients (69 ± 5.8 and 67 ± 1.7 years, respectively) compared with MSA and PSP (61 ± 6.7 and 65 ± 3.3 years, respectively) patients. The male to female ratio was 2.7:1. Among PSP patients, PSP-RS was the most common type (58.33%) and MSA-C was more prevalent than MSA-P (71.44% versus 28.57%). A retrospective analysis of 334 PSP patients found that PSP-RS predominated (72%), followed by PSP-

Table 2 Non-motor domain involvement

Domains (slight to mild/moderate to severe) UPDRS-scale-based scoring in %	PSP	MSA	CBD	DLBD
Cognitive	58.8/8.3	42.9/28.6	40/40	0/100
Hallucinations	41.7/0	71.4/14.3	40/0	0/100
Depression	33.3/25	28.6/57.1	40/20	0/66.7
Anxiety	50/0	57.1/42.9	40/0	33.3/66.7
Apathy	33.3/41.7	28.6/57.1	40/20	0/100
Sleep disturbances	58.3/16.7	14.3/57.1	20/0	33.3/66.7
Excessive daytime sleepiness	50/0	71.4/0	20/0	66.7/33.3
Pain	41.7/0	42.9/28.6	40/0	33.3/66.7
Bladder	58.3/0	0/71.4	20/20	66.7/0
Constipation	50/25	14.3/71.4	20/40	33.3/66.7
Lightheadedness	16.7/0	14.3/71.4	20/40	33.3/66.7
Fatigue	50/16.7	28.6/57.1	20/0	66.7/0

Abbreviations: CBD, corticobasal degeneration; DLBD, dementia with Lewy body; MSA, multiple system atrophy; PSP, progressive supranuclear palsy; UPDRS, Unified Parkinson’s Disease Rating Scale.

Table 3 Progression of UPDRS parts 2 and 3 over 6-month follow-up period

UPDRS 2	UPDRS 3							
Initial	Final	Change	p-Value	Initial	Final	Change	p-Value	
PSP	20.27 ± 3.98	25.45 ± 3.83	5.18 ± 1.07	0.001	38.18 ± 3.66	44.82 ± 12.38	6.63 ± 3.04	0.001
MSA	23 ± 8.69	29.8 ± 10.61	5 ± 1	0.001	29.4 ± 8.11	39 ± 4.64	4 ± 0.54	0.001
CBD	20 ± 3.94	27.4 ± 4.62	7.4 ± 0.89	0.001	37.8 ± 10.87	45.8 ± 12.62	8 ± 2.73	0.003
DLBD	22.67 ± 3.79	27 ± 3.46	4.33 ± 0.89	0.001	40.67 ± 9.07	48.33 ± 8.50	7.66 ± 0.57	0.002

Abbreviations: CBD, corticobasal degeneration; DLBD, dementia with Lewy body; MSA, multiple system atrophy; PSP, progressive supranuclear palsy; UPDRS, Unified Parkinson’s Disease Rating Scale.

Table 4 Progression of PSP-CDS and UMSARS over 6-month follow-up in PSP and MSA patients, respectively

	Initial	Final	Change	p-Value
PSP-CDS	11.82 ± 1.47	14.64 ± 1.80	2.72 ± 1.84	0.001
UMSARS	43.2 ± 15.8	54 ± 20.58	6.0 ± 0.81	0.001

Abbreviations: CDS, Clinical Deficits Scale; MSA, multiple system atrophy; PSP, progressive supranuclear palsy; UMSARS, Unified MSA Rating Scale.

Table 5 Cox regression analysis

Disease	Univariate analysis	95% CI	p-Value
MSA	3.5	0.31–0.38	0.306

Abbreviations: CI, confidence interval; MSA, multiple system atrophy; PSP, progressive supranuclear palsy; HR, hazards ratio.

Discussion and Conclusion

The age at presentation was higher in DLBD and CBD patients (69 ± 5.8 and 67 ± 1.7 years, respectively) compared with MSA and PSP (61 ± 6.7 and 65 ± 3.3 years, respectively) patients. The male to female ratio was 2.7:1. Among PSP patients, PSP-RS was the most common type (58.33%) and MSA-C was more prevalent than MSA-P (71.44% versus 28.57%). A retrospective analysis of 334 PSP patients found that PSP-RS predominated (72%), followed by PSP-
Atypical parkinsonian disorders are rare, and usually more severe than Parkinson’s disease. These are often misdiagnosed as IPD in the early phases because of the symptom overlap, transient symptomatic improvement with levodopa, and lack of objective diagnostic biomarkers. However, the emergence of red flag signs ultimately provides a clue. Though no definite cure exists to date, symptomatic and supportive management should be optimized given the tremendous impact of various NMS on the quality of life and survival.

The limitations of the study include the small sample size of 27 patients and the use of subjective scales.
Fig. 4 Pathophysiology of respiratory manifestations in MSA. Arcuate N, arcuate nucleus; KF, Kolliker-Fuse nucleus; LPB, lateral parabrachial complex; m(i)NT, medullar inhibitory neurotransmitters; MSA, multiple system atrophy; NA, nucleus ambiguus; NRo, nucleus raphe obscurus; PCA, posterior cricoarytenoid; Pre-Botc, pre-Botzinger complex; RLN, recurrent laryngeal nerve; RTz, retrotrapezoid body; TA, thyroarytenoid; VLM, ventrolateral medulla; VRG, ventral respiratory group. Note: “+” indicates affected/ degeneration in MSA.

Table 6 Symptomatic management in atypical parkinsonism

Symptoms	Treatment
Anxiety	Cognitive behavioral therapy (CBT), mindfulness-based stress reduction, cognitive bias modification intervention, noninvasive brain stimulation, tDCS, DBS, buspirone²⁹
Apathy	Amantadine, SSRI (mirabegron, trazodone), cholinesterase inhibitors, GABA agonist (zolpidem), educational and behavioral interventions²⁹
Depression	SSRI, SNRI, MAOI, TCA, dopamine agonists, ECT/TMS, CBT²⁹
Orthostatic hypotension	Salt tablets, water intake (up to 2.5 L/day), acute water bolus drinking, physical counter maneuvers, abdominal binder, recumbent exercises, waist-high compression stockings (15–20 mm Hg pressure), midodrine, droxidopa, atomoxetine, fludrocortisone, pyridostigmine⁷
Urinary dysfunction	Behavioral therapy, intermittent or permanent catheterization (if postvoid volume > 100 mL), antimuscarinics, mirabegron, desmopressin, tibial neuromodulation, onabotulinum injections, sacral neuromodulation, bladder augmentation, sacral deafferentation and anterior root stimulation⁷
Constipation	Graded exercise, change in toileting position, abdominal massage, adequate fiber, probiotics, laxatives, prokinetics, suppositories¹²
Stridor	NPPV/CPAP/tracheostomy⁷
Pain	Botulinum injections (dystonic pain), levodopa/dopamine agonists (neuropathic pain)⁶
Table 6 (Continued)

Symptoms	Treatment
Dysphagia	Modified diet, feeding tube, percutaneous gastrostomy, treatment of cervical dystonia²⁹
Sleep disturbances	RBD: safe sleeping environment, clonazepam, melatonin, gabapentin, sodium oxybate, zopiclone, temazepam⁷
 EDS: modafinil, dextroamphetamine/methamphetamine⁹ |

Abbreviations: CPAP, continuous positive airway pressure therapy; DBS, deep brain stimulation; ECT, electroconvulsive therapy; EDS, excessive daytime sleepiness; GABA, gamma-aminobutyric acid; MAO, monoamine oxidase-B inhibitors; NPPV, noninvasive positive-pressure ventilation; RBD, rapid eye movement sleep behavior disorder; SNRI, serotonin norepinephrine reuptake inhibitors; SSRI, selective serotonin reuptake inhibitors; TCA, tricyclic antidepressants; tDCS, transcranial direct current stimulation; TMS, transcranial magnetic stimulation.

Conflict of Interest
None declared.

References
1 Colosimo C, Morgante L, Antonini A, et al; PRIAMO Study Group. Non-motor symptoms in atypical and secondary Parkinsonism: the PRIAMO study. J Neurol 2010;257(01):5–14
2 Dan R, Růžička F, Bezdieck O, et al. Separate neural representations of depression, anxiety and apathy in Parkinson’s disease. Sci Rep 2017;7(01):12164
3 Espay AJ, LeWitt PA, Kaufmann H. Norepinephrine deficiency in Parkinson’s disease: the case for noradrenergic enhancement. Mov Disord 2014;29(14):1710–1719
4 Pagonabarraga J, Kulisevsky J, Strafella AP, Krack P. Apathy in Parkinson’s disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol 2015;14(05):518–531
5 Chaudhuri A, Behan PO. Fatigue and basal ganglia. J Neurol Sci 2000;179(S 1-2):34–42
6 Rana AQ, Qureshi AR, Siddiqui O, Sarfraz Z, Rana R, Shitlbas A. Prevalence of pain in atypical parkinsonism: a systematic review and meta-analysis. J Neurol 2019;266(09):2093–2102
7 Chelvan V, Cateniniuc D, Aftene D, et al. An update on MSA: premotor and non-motor features open a window of opportunities for early diagnosis and intervention. J Neurol 2020;267(09):2754–2770
8 Cutsforth-Gregory JK, Benarroch EE. Nucleus of the solitary tract, medullary reflexes, and clinical implications. Neurology 1978;88(12):1187–1196
9 Bailey GA, Hubbard EK, Fasano A, et al. Sleep disturbance in movement disorders: insights, treatments and challenges. J Neurol Neurosurg Psychiatry 2021;92(07):723–736
10 Schneider LD. Anatomy and physiology of normal sleep. In: Sleep and Neurologic Disease. Academic Press; 2017:1–28, chap. 1. DOI: 10.1016/B978-0-12-804074-4.00001-7
11 Kim KJ, Jeong SJ, Kim JM. Neurogenic bladder in progressive supranuclear palsy: a comparison with Parkinson’s disease and multiple system atrophy. Neurourol Urodyn 2018;37(05):1724–1730
12 Frazzitta G, Ferrazzoli D, Folini A, Palamara G, Maestri R. Severe constipation in parkinsonism and in parkinsonisms: prevalence and affecting factors. Front Neurol 2019;10:621–2019
13 Dommershuisjen Lj, Heshmatollah A, Darweesh SKL, Koudstaal Pj, Ikram MA, Ikram MK. Life expectancy of Parkinsonism patients in the general population. Parkinsonism Relat Disord 2020;77:94–99
14 Höglinger GU, Respondek G, Stamelou M, et al; Movement Disorder Society-endorsed PSP Study Group. Clinical diagnosis of progressive supranuclear palsy: the Movement Disorder Society criteria. Mov Disord 2017;32(06):853–864
15 McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 2017;89(01):88–100
16 Palma JA, Norcliffe-Kaufmann I, Kaufmann H. Diagnosis of multiple system atrophy. Auton Neurosci 2018;211:15–25
17 Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013;80(05):496–503
18 Piott I, Schweyer K, Respondek G, et al; DescribePSP Study Group ProPSP Study Group MDS-endorsedd PSP Study Group. The Progressive Supranuclear Palsy Clinical Deficits Scale. Mov Disord 2020;35(04):650–661
19 Wenning GK, Tison F, Seppi K, et al; Multiple System Atrophy Study Group. Development and validation of the Unified Multiple System Atrophy Rating Scale (UMSARS). Mov Disord 2004;19(12):1391–1402
20 Mahale RR, Krishnan S, Divya KP, Jisha VT, Kishore A. Subtypes of PSP and prognosis: a retrospective analysis. Ann Indian Acad Neurol 2021;24(01):56–62
21 Wenning GK, Geser F, Kriemser F, et al; European Multiple System Atrophy Study Group. The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol 2013;12(03):264–274
22 Papapetropoulos S, Tuchman A, Lauf er D, Papapetropoulos N, Mash DC. Causes of death in multiple system atrophy. J Neurol Neurosurg Psychiatry 2007;78(03):327–329
23 Isono S, Shiba K, Yamaguchi M, et al. Pathogenesis of laryngeal narrowing in patients with multiple system atrophy. J Physiol 2001;530(Pt 1):237–249
24 Todisco M, Alfonsi E, Isaias IU, et al. Vocal cord electromyographic correlates of stridor in multiple system atrophy phenotypes. Parkinsonism Relat Disord 2020;70:31–35
25 Benarroch EE, Schneichel AM, Low PA, Parisi JE. Involvement of mediulary serotonergic groups in multiple system atrophy. Ann Neurol 2004;55(03):418–422
26 Brown FS, Rowe JB, Passamonti L, Rittman T. Falls in progressive supranuclear palsy. Mov Disord Clin Pract (Hoboken) 2019;7(01):16–24
27 Tomita S, Oeda T, Umemura A, et al. Impact of aspiration pneumonia on the clinical course of progressive supranuclear palsy: a retrospective cohort study. PLoS One 2015;10(08):e0135823
28 Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 2001;81(02):929–969
29 Maghbooli M, Mohammadzadeh V, Yousefi M, et al. Update on therapeutic strategies for atypical parkinsonian syndromes. Turkish J Neurol 2020;26:111–121