An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma

Bo Xu1,9, Lei Tian1,9, Jing Chen2,9, Jing Wang1, Rui Ma1, Wenjuan Dong1, Aimin Li3, Jianying Zhang4, E. Antonio Chiocca5, Balveen Kaur6, Mingye Feng2, Michael A. Caligiuri1,7,8 & Jianhua Yu1,2,7,8

Oncolytic herpes simplex virus-1 is capable of lysing tumor cells while alerting the immune system. CD47, in collaboration with SIRPα, represents an important immune checkpoint to inhibit phagocytosis by innate immune cells. Here we show locoregional control of glioblastoma by an oncolytic herpes virus expressing a full-length anti(α)-human CD47 IgG1 or IgG4 antibody. The antibodies secreted by the virus-infected glioblastoma cells block the CD47 ‘don’t eat me’ signal irrespective of the subclass; however, αCD47-IgG1 has a stronger tumor killing effect than αCD47-IgG4 due to additional antibody-dependent cellular phagocytosis by macrophages and antibody-dependent cellular cytotoxicity by NK cells. Intracranially injected αCD47-IgG1-producing virus continuously releases the respective antibody in the tumor microenvironment but not into systemic circulation; additionally, αCD47-IgG1-producing virus also improves the survival of tumor-bearing mice better than control oncolytic herpes virus combined with topical αCD47-IgG1. Results from immunocompetent mouse tumor models further confirm that macrophages, and to a lesser extent NK cells, mediate the anti-tumor cytotoxicity of antibody-producing oncolytic herpesviruses. Collectively, oncolytic herpes simplex virus-1 encoding full-length antibodies could improve immune-virotherapy for glioblastoma.

https://doi.org/10.1038/s41467-021-26003-6

1 Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA. 2 Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Centre, Los Angeles, CA, USA. 3 Pathology Core of Shared Resources Core, Beckman Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA. 4 Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA, USA. 5 Department of Neurosurgery, Brigham and Women’s Hospital and Harvey Cushing Neuro-Oncology Laboratories, Harvard Medical School, Boston, MA, USA. 6 The Vivian L. Smith Department of Neurosurgery, M. G.overn Medical School, University of Texas, University of Texas Health Science Center at Houston, Houston, TX, USA. 7 Comprehensive Cancer Center, City of Hope, Los Angeles, CA, USA. 8 Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA. 9 These authors contributed equally: Bo Xu, Lei Tian, Jing Chen. ✉ Email: mcaligiuri@coh.org; jiayu@coh.org
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor. GBM patients who undergo the standard of care, including surgical resection, chemotherapy, and radiotherapy, have a median survival of approximately 15 months. Due to the early infiltrative nature of the disease, a complete surgical resection of GBM is largely unachievable. The intrinsic resistance of GBM to chemotherapy and radiotherapy also contributes to poor clinical outcomes. Given these attributes, new therapeutic agents are urgently needed for improving the outcome of GBM patients.

Oncolytic virus (OV) provides a potentially unique therapeutic approach for GBM as its mechanism of action is completely different from the standard approaches for the treatment of GBM. Oncolytic herpes simplex virus-1 (oHSV), one of the most widely investigated oncolytic viruses, is genetically engineered so that it can selectively lyse cancer cells while leaving normal cells largely intact. Like many other OV s, oHSV can also alert the patients’ immune system to attack tumor cells. Talmigena lucherparepec (Imlygic), the first FDA-approved oncolytic viral therapy, is based on oHSV vector. oHSV has proven to be relatively safe and has shown some activity in treating GBM. In our previous studies, we found that oHSV treatment dramatically increased the intratumoral infiltration of immune cells and prolonged survival of GBM-bearing mice when compared to OV-aCD47-G4 or their parental OV-Q1. Our findings indicate that engineering oHSV to express a full-length anti-CD47 antibody, especially the IgG1 version, with locoregional delivery is a promising and non-toxic approach to enhance oncolytic virotherapy of GBM.

Results
OV-aCD47-G1- or OV-aCD47-G4-infected GBM cells secrete a full-length anti-CD47 antibody. We first assessed six human GBM cell lines, including patient-derived stem-like GBM30, GBM43 and BT422, and observed that each uniformly expressed CD47 on the cell surface (Fig. 1a and Supplementary Fig. 1). We then generated constructs of aCD47-G1 and aCD47-G4, an IgG1 or IgG4 version, respectively, of the humanized anti-human CD47 antibody (clone 5F9). aCD47-G4 was constructed as previously reported. aCD47-G1 was constructed by replacing the human IgG4 constant region of aCD47-G4 with the human IgG1 constant region. CHO cells were transduced with lentivirus carrying the corresponding coding genes of full-length human CD47 chain and light chain to produce aCD47-G1 and aCD47-G4 for functional tests. The results of CD47 binding assay showed a similar dose-dependent binding affinity of aCD47-G1 and aCD47-G4 to CD47(+) U251T2 GBM cells, demonstrating that the two antibodies have nearly equal binding affinity to the CD47(+) U251T2 cells (Fig. 1b). The results of CD47 blocking assay showed a similar dose-dependent CD47 blocking capacity of aCD47-G1 and aCD47-G4 (Fig. 1c). Next, we generated oHSVs expressing aCD47-G1 or aCD47-G4, using the parental OV-Q1, which is double-attenuated with an inactivated ribonucleotide reductase gene (ICP6) and deletions of both copies of the neurovirulence gene (ICP34.5) that limits its replication to tumor cells and reduces its neurovirulence. The corresponding light-chain and heavy-chain coding genes of aCD47-G1 or aCD47-G4 were linked with a DNA sequence encoding a T2A self-cleaving peptide and were inserted into the ICP6 locus of OV-Q1, driven by the promoter of the HSV-1 immediate early gene IE4/5 (Fig. 1d). The two oHSVs were generated in a manner that we previously reported and are termed OV-aCD47-G1 and OV-aCD47-G4. The genetic maps of wild-type human HSV-1, OV-Q1, OV-aCD47-G1, and OV-aCD47-G4 are illustrated in Fig. 1d. Infection of GBM cells with OV-aCD47-G1 or OV-aCD47-G4 enabled the infected cells to secrete aCD47-G1 or aCD47-G4, respectively. The supernatants from OV-aCD47-G1-, OV-aCD47-G4- and OV-Q1-infected U251T2 GBM cells as well as the aCD47-G1- and aCD47-G4-expressing CHO cells and the control CHO cells were collected for immunoblot assay, which showed that human IgG heavy chain and light chain existed within the supernatants from OV-aCD47-G1- and OV-aCD47-G4-infected U251T2 GBM cells (Fig. 1e). The light chain expressed by OV-aCD47-G1- and OV-aCD47-G4-infected U251T2 GBM cells displayed a higher molecular weight than that expressed by the corresponding CHO cells using a two-plasmid system, likely due to the remaining 17 amino acid N-terminus residues of the T2A peptide left in the light chain resulting from the self-cleavage of T2A between glycine (G) and proline (P) at its C-terminus in the GBM cells, as previously described. The yield of anti-CD47 antibody from OV-aCD47-G1- and OV-aCD47-G4-infected U251T2 GBM cells were quantified by enzyme-linked immunosorbent assay (ELISA), using corresponding antibodies purified from CHO cells with known concentrations as standards. The OV-aCD47-G1- and OV-aCD47-G4-infected U251T2 GBM cells released appreciable and similar amounts of anti-CD47 antibody as early as 12 h post infection (hpi), and the yields reached near-maximum levels over 5 µg/ml at 24 hpi and peak levels over 6 µg/ml in culture at 48 hpi (Fig. 1f). The reversed version of OV-aCD47-G1 (OV-aCD47-
G1-HL) that switches the position of light-chain and heavy-chain coding gene was also constructed (Supplementary Fig. 2a). It appeared that OV-αCD47-G1-infected U251T2 GBM cells produced a slightly higher level of anti-CD47 antibody than OV-αCD47-G1-HL-infected GBM cells (Supplementary Fig. 2b), and thereafter all subsequent experiments were performed using OV-αCD47-G1 instead of OV-αCD47-G1-HL.

To test the oncolytic effect of OV-αCD47-G1 and OV-αCD47-G4, we infected the human GBM cell lines U251T2 and Gli36ΔEGFR with the corresponding viruses. We did not observe a substantial difference in cell death among GBM cells infected with OV-αCD47-G1, OV-αCD47-G4, or OV-Q1 (Fig. 1g and Supplementary Fig. 3a). We next evaluated the viral production capacity of OV-αCD47-G1 and OV-αCD47-G4. Results showed

Supplementary Fig. 2a

Comparison of anti-CD47 antibody production between OV-αCD47-G1 and OV-αCD47-G1-HL-infected GBM cells.

Supplementary Fig. 2b

Comparison of anti-CD47 BV786 production between OV-αCD47-G1 and OV-αCD47-G1-HL-infected GBM cells.

Table 1

Virus	Structure	Insertion
wt HSV-1		y345
OV-αCD47-G1	B	y345
OV-αCD47-G1	B	fRT
OV-αCD47-G4	B	y345
OV-αCD47-G1	B	fRT
OV-αCD47-G4	B	y345

Figure 1g

Graph showing the anti-CD47 (µg/ml) production over time in OV-αCD47-G1 and OV-αCD47-G4-infected GBM cells.

Figure 1h

Graph showing the viral titer (mIU/ml) over time in OV-αCD47-G1, OV-αCD47-G1, and OV-αCD47-G4-infected GBM cells.
that OV-aCD47-G1- and OV-aCD47-G4-infected U251T2 GBM cells or Gli36AEGRF GBM cells produce similar amounts of virus when compared to the same GBM cells infected with OV-Q1 (Fig. 1h and Supplementary Fig. 3b). Therefore, engineering oHSV to express aCD47-G1 or aCD47-G4 does not affect their oncolytic ability and virus productivity.

aCD47-G1 secreted by OV-aCD47-G1-infected GBM cells enhances phagocytosis and blocks “don’t eat me” signaling in macrophages. We next compared the ability of aCD47-G1 and aCD47-G4 to modulate phagocytosis of human GBM cells by murine and human macrophages. Previous studies showed that SIRPs on murine macrophages can bind to human CD47 to stimulate “don’t eat me” signaling. We thus started with mouse bone-marrow-derived macrophages (BMDMs) isolated from BALB/c mice as effector cells, as previously reported by other groups. Flow cytometry results showed that both aCD47-G1 and aCD47-G4 purified from transduced CHO cells induced a significantly higher level of BMDMs phagocytosis against patient-derived GBM43 cells (Fig. 2a, b) and BT422 cells (Supplementary Fig. 4a, b) compared to vehicle control. The phagocytosis assays were also repeated with the unconcatenated supernatants from OV-aCD47-G1-, OV-aCD47-G4-, or OV-Q1-infected U251T2 GBM cells. Consistent with the above results, aCD47-G1 from the infected cells has over a two-fold higher level of macrophage phagocytosis against GBM cells compared to aCD47-G4 from the infected cells (Fig. 2c, d). To prove that aCD47-G1 induces GBM phagocytosis via ADCP, we repeated the phagocytosis assay with Fc receptor blockade. Pre-incubating BMDMs with high-dose (10 μg/ml) isotype human IgG1, which competes with aCD47-G1 to bind to Fc receptors, significantly inhibited aCD47-G1-induced GBM phagocytosis by BMDMs (Fig. 2e). We also found that aCD47-G1 but not aCD47-G4 dramatically activated transcription of typical macrophage cytokine genes of mouse BMDMs that were previously reported to respond to IgG1 antibody, such as Il1b, Il6, Il10, Il12b and Nos2 (Fig. 2f).

The effects of aCD47-G1 and aCD47-G4 on inducing the human macrophage phagocytosis were also tested. For this purpose, primary human donor-derived macrophages were used as effector cells, as previously reported by other groups. Similar to the results as we collected using mouse BMDMs, compared to vehicle control, both aCD47-G1 and aCD47-G4 purified from transduced CHO cells significantly enhanced the phagocytosis of GBM43 cells by human macrophages. However, the effect of the former is more substantial than the latter due to having an additional strong ADCC effect (Fig. 2g, h). Similar results were found by using the unconcatenated supernatants from OV-aCD47-G1-, OV-aCD47-G4- or OV-Q1-infected U251T2 GBM cells. Both aCD47-G1 secreted by OV-aCD47-G1-infected cells and aCD47-G4 secreted by OV-aCD47-G4-infected cells significantly enhanced the phagocytosis of GBM43 cells by human macrophages, although the effect of the former is more substantial than the latter (Fig. 2i, j). However, when using CD47-knockout GBM43 cells generated by CRISPR/Cas9 gene editing (GBM43ΔCD47 cells) as target cells, aCD47-G1 and aCD47-G4 treatment were not able to enhance the macrophage phagocytosis (Supplementary Fig. 5). aCD47-G1 also activated the transcription of typical macrophage cytokine genes of human macrophages, such as Il1b, Il6, Il10, Nos2 (Fig. 2k), and Il12a (Fig. 2l).

aCD47-G1 secreted by OV-aCD47-G1-infected GBM cells induces potent NK cell-mediated ADCC. NK cells play a critical antitumor activity in cancers, including GBM, via natural cytotoxicity and ADCC, especially in combination with antibody therapy. In order to determine how aCD47-G1 or aCD47-G4 affects NK cell antitumor activity, we conducted a standard 51Cr release assay by co-culturing human NK cells with human GBM patient-derived tumor cells GBM43 and BT224 labeled with 51Cr in the presence or absence of aCD47-G1 or aCD47-G4 purified from lentivirus-transduced CHO cells. The results showed that aCD47-G1 but not aCD47-G4 induced strong NK cell cytotoxicity (Fig. 3a, b and Supplementary Fig. 6). Consistent data were collected when GBM cell lines U251T2, Gli36AEGRF, LN229, and patient-derived GBM30 cells were used as target cells (Supplementary Fig. 7a, b). Then we repeated this experiment with the unconcatenated supernatants from OV-aCD47-G1-, OV-aCD47-G4-, and OV-Q1-infected U251T2 GBM cells. GBM43 cells incubated with the unconcatenated supernatants from OV-aCD47-G1-infected U251T2 GBM cells underwent substantially more cytolysis compared to those incubated with the supernatants from OV-Q1-infected or OV-aCD47-G4-infected U251T2 cells (Fig. 3c). No differences were detected between the supernatants from OV-Q1- and OV-aCD47-G4-infected U251T2 GBM cells (Fig. 3c). However, for GBM43ΔCD47 cells, neither aCD47-G1 nor aCD47-G4 treatments induced stronger NK cell cytotoxicity (Supplementary Fig. 7c). NK cell activation
induced by αCD47-G1 was also confirmed by measuring the expression of the activation marker CD69 and granzyme B by flow cytometry. The results showed that compared to vehicle control, αCD47-G1 but not αCD47-G4 purified from transduced CHO cells significantly increased the surface expression of CD69 on NK cells (Fig. 3d, e and Supplementary Fig. 7d, e). Compared to vehicle control, αCD47-G1 significantly increased the expression of granzyme B, while αCD47-G4 showed a slight increase, in NK cells (Fig. 3f, g). The results of IFN-γ ELISA assay showed that compared to vehicle control, αCD47-G1 and αCD47-G4 both failed to induce IFN-γ secretion, even in the presence of IL-2, IL-12, IL-15, or IL-18 (Supplementary Fig. 8).
Fig. 2 αCD47-G1 and αCD47-G4 induce phagocytosis of GBM cells. a, b GBM43 cells were labeled with CFSE and cocultured with mouse BMDMs at an effector:target ratio of 1:2 in the presence of vehicle control, CHO-derived αCD47-G1 or αCD47-G4 at the dose of 5 μg/ml. The percentage of BMDM phagocytosis against GBM43 cells (CD11b+CFSE+) was assayed by flow cytometry. c, d GBM43 cells were labeled with CFSE and cocultured with mouse BMDMs at an effector:target ratio of 1:2 in the presence of vehicle control, conditioned media from OV-Q1-, OV-αCD47-G1-, and OV-αCD47-G4-infected U251T2 cells. The percentage of BMDM phagocytosis against GBM43 cells (CD11b+CFSE+) was assayed by flow cytometry. e Phagocytosis assay performed with excess human IgG1 to block BMDM Fc receptors. BMDMs were incubated with vehicle control or human IgG1 at the dose of 10 μg/ml for 30 min prior to coculture with GBM43 cells in the presence of increasing αCD47-G1 for 2 h. The percentage of BMDM phagocytosis against GBM43 cells (CD11b+CFSE+) was assayed by flow cytometry. f BMDMs were cocultured with GBM43 cells at a ratio of 1:1 with or without αCD47-G1 or αCD47-G4 for 6 h, followed by gene transcript quantification by reverse transcription (RT) quantitative (q)PCR. g, h Effect of 5 μg/ml of αCD47-G1 and αCD47-G4 purified from transduced CHO cells on phagocytosis against GBM43 cells by primary human macrophages. i, j The effect of conditioned media from the culture of OV-αCD47-G1- and OV-αCD47-G4-infected U251T2 cells on phagocytosis against GBM43 cells by primary human macrophages. Phagocytosis was assayed by flow cytometry. k, l Primary human macrophages were cocultured with GBM43 cells at a ratio of 1:1 with or without αCD47-G1 or αCD47-G4 for 6 h, followed by gene transcript quantification by RT-qPCR. All experiments were performed at least with three human donors or mice. Error bars represent standard deviations of means of different donors. For (b), (d–f), (h), and (j–l), one-way ANOVA with P values corrected for multiple comparisons by the Bonferroni test.

Fig. 3 αCD47-G1 but not αCD47-G4 induces cytotoxicity of human NK cells against GBM cells. a, b Cytotoxicity of human primary NK cells against αCD47-G1- and αCD47-G4-treated (a) GBM43 and (b) BT422 human GBM cells. c Cytotoxicity of human primary NK cells against GBM43 cells in control media or conditioned media from the culture of OV-Q1-, OV-αCD47-G1- or OV-αCD47-G4-infected U251T2 GBM cells. d The effect of αCD47-G1 or αCD47-G4 on the expression of the NK cell activation marker CD69 when cocultured with GBM43 cells at an effector:target ratio of 1:1. e Summary data of (d). All experiments were performed with three donors in triplicate. f The effect of αCD47-G1 and αCD47-G4 on granzyme B expression of NK cells when cocultured with GBM43 cells. g Summary data of (f). All experiments were performed with three donors in triplicate. Error bars represent standard deviations of means of three donors. For (e) and (g), one-way ANOVA with P values corrected for multiple comparisons by the Bonferroni test.
Comparison of systemic i.p. injection versus locoregional OV delivery of anti-CD47 antibody. To evaluate the efficacy of delivering aCD47-G1 antibody to the GBM microenvironment by i.c. OV-aCD47-G1 versus systemic intraperitoneal (i.p.) antibody administration, we modified a previously described xenograft GBM mouse model by i.c. injecting 1×10^5 GBM43 cells into athymic nude mice34 (Fig. 4a). GBM43 tumor cells were implanted on day 0. Mice were divided into four groups for i.c. administration on day 21: Group 1, saline; Group 2, OV-Q1; Group 3, a combination of OV-Q1 plus i.p. delivery of aCD47-G1; and Group 4, OV-aCD47-G1. The viral dose for the two groups receiving an i.c. injection of OV-Q1 and the group receiving i.c. injection of OV-aCD47-G1 on day 21 was 2×10^5 plaque-forming unit (PFU) per mouse. Group 3 received i.p. aCD47-G1 on day 22. Mice in other groups received i.p. saline on day 22 as control. All mice were sacrificed on day 23 to determine the levels of the antibody in plasma by ELISA and in the central nervous system (CNS) by IHC (Fig. 4a).

Mice with i.p. injection of aCD47-G1 (150 µg/mouse) had approximately 10μg/ml of aCD47-G1 detected in the plasma, while groups 1, 2, and 4 had no or little aCD47-G1 detected in the plasma (Fig. 4b). Brains isolated from the experimental mice were used for histologic study. H&E staining was performed to distinguish GBM tissues from normal brain tissues (Fig. 4c, d). The immunohistochemical staining with an anti-HSV antibody, anti-human Fc antibody, anti-CD11b or anti-NKp46 antibody indicated oHSV-infected areas, presence of aCD47-G1, distribution of macrophages or NK cells, respectively. The anti-human Fc staining showed that there was a measurable amount of aCD47-G1 detectable in the brains of the mice i.c. treated with OV-aCD47-G1 but not in the brains of those i.c. treated with saline or OV-Q1 nor in the brains of mice that received i.o. OV-Q1 plus i.p. aCD47-G1 (Fig. 4c, d; anti-human Fc). The anti-human Fc staining localized in the same area of the anti-HSV staining in the brains treated with OV-aCD47-G1 (Fig. 4c, d; anti-HSV; anti-human Fc). CD11b$^+$ macrophage and NKp46$^+$ NK cell infiltration existed only in the tumor-bearing hemispheres but not the non-tumor hemispheres (Fig. 4d; anti-CD11b; anti-NKp46).

The macrophages and NK cells in the brains of saline-treated mice were mainly located at the surrounding area of the entire tumor but rarely infiltrated into the central area of the tumor; however, treatment with OV-Q1 or OV-aCD47-G1 substantially increased intratumoral infiltration of CD11b$^+$ macrophages and NKp46$^+$ NK cells (Fig. 4c, d; anti-CD11b; anti-NKp46).

To confirm our findings, we repeated the above experiment with some modifications: performing i.p. administration of aCD47-G1 or saline twice (one on day 22 and the other on day 24) and sacrificing the mice on day 25 (Supplementary Fig. 9a). Similar results were observed. Plasma aCD47-G1 (approximately 10 µg/ml) was only detectable in the group with i.c. OV-Q1 plus i.p. aCD47-G1 administration (Supplementary Fig. 9b). Compared to the saline group, the enhancement of intratumoral infiltration of CD11b$^+$ macrophages and NKp46$^+$ NK cells induced by oHSV treatment was also observed 4 days post oHSV i.c. administration (Supplementary Fig. 9c, d; anti-CD11b; anti-NKp46). aCD47-G1 was detectable both 2 and 4 days post oHSV i.c. administration only in the OV-aCD47-G1-treated brains rather than the other groups (Fig. 4c, d and Supplementary Fig. 9c, d; anti-human Fc), suggesting the continuous release of aCD47-G1 from the OV-aCD47-G1-treated GBM microenvironment.

OV-aCD47-G1 is superior to OV-aCD47-G4 to improve oncolytic virotherapy in a xenograft GBM model. To evaluate the efficacy of OV-aCD47-G1 and OV-aCD47-G4 for the in vivo treatment of GBM, we utilized a previously described orthotopic model of human GBM by i.c. injecting 1×10^5 firefly luciferase (FFL) gene-expressing human GBM cells (GBM43-FFL) into athymic nude mice35. Seven days after tumor implantation, animals received an i.c. injection with OV-aCD47-G1, OV-aCD47-G4 or OV-Q1 at the dose of 2×10^5 PFU per mouse, or saline as a placebo control. Tumor progression was monitored by luciferase-based imaging starting on day 15 post tumor implantation (Fig. 5a). OV-aCD47-G1 was significantly more effective than OV-aCD47-G4 at inhibiting the progression of GBM tumors in vivo, and both were superior to OV-Q1 (Fig. 5b–d). OV-Q1 slowed GBM progression moderately as compared to vehicle control and prolonged the median survival from 43 to 51 days. OV-aCD47-G4 treatment prolonged the median survival time of the GBM mice compared to both saline control and OV-Q1 treatment. Eight out of nine mice from the OV-aCD47-G1 group and two out of nine mice from the OV-aCD47-G4 group survived over 125 days without GBM symptoms and exhibited no detectable luciferase signal (Fig. 5b, c and Supplementary Fig. 10). We repeated the mouse survival experiment and found similar data (Supplementary Fig. 11). Body weight recording of the experimental mice further indicated that compared to the other groups, the mice treated with OV-aCD47-G1 were healthier with continuously increasing body weights at the late stage of the study (Fig. 5d). To evaluate the therapeutic effect of OV-aCD47-G1 on treating established GBM with bigger tumors, we repeated the survival study by delaying treatment time to 14 or 21 days vs. 7 days in Fig. 5 after tumor implantation. The results showed that mice with OV-aCD47-G1 treatment on day 14 but not on day 21 significantly prolonged survival time when compared to OV-Q1 and the saline control group (Supplementary Fig. 12).
Fig. 4 OV-αCD47-G1 is effective for locoregional delivery of the anti-CD47 antibody, while systemic administration of αCD47-G1 is not effective. a Experimental timeline for in vivo studies using an orthotopic model of human GBM. Experiment details are provided in the main text. Group 1, saline; Group 2, OV-Q1; Group 3, a combination of OV-Q1 plus i.p. administration of αCD47-G1; and Group 4, OV-αCD47-G1. After tumor implantation, Groups 2, 3 and 4 received intracranial injection of oHSV (OV-Q1 or OV-αCD47-G1) at a dose of 2 × 10^5 PFU per mouse on day 21. Group 1 received saline as control. On day 22, Group 3 received i.p. injection of purified αCD47-G1 at the dose of 150 µg per mouse. Groups 1, 2, and 4 received i.p. injection of saline as control. All mice were euthanized on day 23 for blood and brain harvesting.

b The concentration of αCD47-G1 in plasma measured by ELISA in mice from different treatments. One-way ANOVA with P values corrected for multiple comparisons by the Bonferroni test (n = 3 animals).

c, d Slides from the brain tissues isolated from experimental mice were subjected to H&E and immunohistochemical staining, the latter with anti-HSV, anti-human Fc, which identifies IgG, anti-CD11b or anti-NKp46 antibodies. Images with high and low magnifications are shown in (c) and (d), respectively. The boxed images in (d) are shown in higher power in (c). Data presented are representative of one (c, d) or three (b) mice of at least three mice in total with similar data. Data in (b) are presented as mean values ± SD.
Q1 injection (groups 2 and 4) and the group with OV-αCD47-G1 injection (group 5) received 2 × 10⁵ PFU corresponding virus per mouse. On days 4−7, the two groups with an osmotic pump delivery of αCD47-G1 received the i.c. delivery of the antibody by the pump at the rate of 1.0 µg per hour for 72 h, i.e. 24 µg per day, which is about 2–3 times of the amount produced by the injected virus, per calculation based on the data from Fig.1f and the dose of injected virus. Mice in other groups received i.c. delivery of saline by the pump as control (Fig. 6e). As a single agent, compared to saline, both OV-Q1 and αCD47-G1 delivery by the pump showed a modest but not statistically significant improvement in mouse survival (Fig. 6f). The combination of OV-Q1 and αCD47-G1 delivery by the pump seems to be better than αCD47-G1 alone, and the P value is on the border of significance (P = 0.0737) but was not significantly different when compared to OV-Q1 alone. Consistent with the other two animal models (Figs. 5c and 6c), OV-αCD47-G1 significantly prolonged the survival of the GBM mice when compared to OV-Q1 (Fig. 6f). Importantly, OV-αCD47-G1 is the best among all the tested groups and in particular is statistically superior to the combination of i.c. OV-Q1 and αCD47-G1 delivery by the pump. As the OV-αCD47-G1 therapeutic combines OV-Q1 and αCD47-G1 into a single agent, and the single agent shows therapeutic survival outcomes superior to αCD47-G1 alone, OV-Q1 alone, and their combination, the two-in-one single agent, i.e., an oncolytic virus expressing a full-length IgG1 anti-CD47 antibody is an innovative, convenient, and effective approach for the treatment of experimental GBM.

OV-A4-IgG2b is superior to OV-A4-IgG3 in improving outcome in a fully immunocompetent GBM model without adverse effects on red blood cells. To avoid the cross-species interaction of human CD47 and mouse SIRPα, which is artificial, we established a fully immunocompetent mouse model by replacing the anti-human CD47 antibody with anti-mouse CD47 antibody. Briefly, we constructed the anti-mouse CD47 antibodies (Clone: A4) on mouse IgG2b and mouse IgG3 scaffolds, termed as A4-IgG2b and A4-IgG3, respectively, as well as the corresponding oHSVs expressing A4-IgG2b (OV-A4-IgG2b) or A4-IgG3 (OV-A4-IgG3). The mouse CD47 blocking effect of A4-IgG2b was validated by flow cytometry assay (Supplementary Fig. 14). The macrophage phagocytosis activating effects of A4-IgG2b and A4-IgG3 against mouse GBM cell line CT2A cells were measured. Consistent with our previous finding, A4-IgG2b, which is similar to αCD47-G1 that has a stronger Fc receptor binding affinity,36–39, induced a significantly higher level of macrophage phagocytosis against GBM cells compared to A4-
IgG3, which is similar to αCD47-G4 nearly lacking Fc receptor binding ability. Mouse NK cell activating effect of A4-IgG2b was confirmed. Results showed that A4-IgG2b but not A4-IgG3 enhanced the ADCC of mouse NK cells against CT2A cells (Supplementary Fig. 15a, b). C57BL/6 mice i.c. injected with CT2A cells were used for the survival study. Three days after tumor implantation, mice were intratumorally injected with OV-Q1, OV-A4-IgG2b, OV-A4-IgG3, or vehicle control. The results showed that OV-A4-IgG2b and OV-A4-IgG3 treatments both significantly prolonged the median survival of mice when compared to the treatment of OV-Q1 or control. OV-A4-IgG2b is superior to OV-A4-IgG3 to improve oncolytic virotherapy in the fully immunocompetent GBM mouse model (Fig. 7a). To define the immunological mechanisms involved in
in an immunocompetent mouse GBM model. a Experimental timeline for in vivo studies. An immunocompetent mouse GBM model was established by i.c. injection of 1×10^5 CT2A-hCD47 mouse GBM cells (expressing human CD47) into C57BL/6 mice. Three days later, mice were intratumorally injected with saline vehicle control or 2×10^5 PFU of OV-Q1, OV-αCD47-G1 or OV-αCD47-G4. b Luciferase imaging of CT2A-hCD47 GBM mice with indicated treatments was taken 11 and 16 days post tumor implantation. c Survival of CT2A-hCD47 tumor-bearing mice as described in (a). Survival was estimated by the Kaplan-Meier method and compared by two-sided log-rank test ($n = 9$ animals). d Individual body weights of the experimental mice were recorded once every other day. e Experimental timeline for the survival study. An immunocompetent mouse GBM model was established by i.c. injection of 1×10^5 CT2A-hCD47 mouse GBM cells (expressing human CD47) into C57BL/6 mice. Three days later, mice were intratumorally injected with vehicle control or 2×10^5 PFU of OV-Q1, or OV-αCD47-G1. Osmotic pumps were implanted on day 4 to the mice for continuous administration of αCD47-G1 until day 7. Mice were monitored twice a day to evaluate for tumor development. f Survival of CT2A-hCD47 tumor-bearing mice treated with OV-Q1, αCD47-G1, OV-Q1 plus αCD47-G1, or vehicle control. Survival was estimated by the Kaplan-Meier method and compared by two-side log-rank test ($n = 9$ or 10 animals per group).

Discussion

In this study, we combined oncolytic virotherapy and antibody therapy into a single therapeutic agent, aiming to destroy tumor cells directly by oncolysis and indirectly by converting the "cold" immune-evasive tumor microenvironment (TME) to a "hot" TME. We developed a platform by using oncolytic virus as both a therapeutic itself and locoregional delivery vehicle to encode and deliver a full-length mAb. This two-in-one, economical, and effective reagent should be able to be administered intratumorally pre-, intra- or post-operatively. Experimentally, the local delivery of OV-αCD47-G1 leads to (1) direct tumor lysis by oHSV; (2) innate immune cell infiltration and activation at the TME by oHSV; (3) blockade of the "don't eat me" signal normally mediated by the interaction between SIRPα and CD47 expressed by macrophages and GBM cells, respectively; (4) αCD47-G1-mediated ADCP via bridging Fcγ receptors on macrophages and CD47 on GBM cells; and (5) αCD47-G1-mediated ADCC by NK cells. These multifaceted oncolysis and immunomodulatory roles collectively halt the spread of the GBM.

The systemic administration of the IgG4 anti-CD47 antibody (αCD47-G4) has shown significant antitumor activity in several types of malignancies in both preclinical and clinical studies. αCD47-G4 and αCD47-G1 should have a near-identical ability to interrupt the "don't eat me" signal mediated by the CD47–SIRPα interaction by grafting the same complementarity determining regions (CDRs). αCD47-G4 was constructed on a human IgG4 scaffold to minimize adverse effects resulting from Fc-dependent effector functions resulting from systemic administration of αCD47-G1 such as ADCC by NK cells and ADCP by macrophages. We therefore generated OV-αCD47-G1 as well as OV-αCD47-G4, which release full-length αCD47-G1 and αCD47-G4 mAbs, respectively, to understand the importance of the Fc–FcR interaction in tumor clearance. Our results showed that the antitumor efficacy of OV-αCD47-G1 is significantly higher than that of OV-αCD47-G4 in vitro and in vivo. However, based on the results collected from the CT2A-hCD47/C57BL/6 immunocompetent GBM model, OV-αCD47-G4 did not show a significant difference when compared to OV-Q1. This model is based on CT2A-hCD47 established by over-expressing human CD47 on mouse GBM CT2A cells. Possible explanations for this include: (1) the murine macrophages still receive the murine CD47-mediated "don't eat me" signal from the CT2A-hCD47 GBM cells that cannot be blocked by anti-human CD47 antibodies (αCD47-G1 or αCD47-G4). Of note, the binding affinity between C57BL/6 SIRPα and murine CD47 is similar to that between C57BL/6 SIRPα and human CD47. (2) Human αCD47-G1 can still bind to a murine Fc receptor to induce ADCC or ADCC but αCD47-G4 cannot, as shown for other antibodies. These suggest that in this CT2A-hCD47/
C57BL/6 immunocompetent GBM model, αCD47-G4 may not completely block the "don't eat me" signal and also lacks the Fc-dependent effect so that we did not observe the difference between OV-αCD47-G1 and -G4.

Therefore, to avoid the cross-species interaction of human CD47 and mouse SIRPα, we generated OVs expressing an anti-mouse CD47 antibody, OV-A4-IgG2b and OV-A4-IgG3 to validate the OV-αCD47-G1 and -G4 results. Mouse IgG2b and IgG3 are similar to human IgG1 and IgG4, respectively, in terms of their binding affinity to Fc receptors. Similar to the OV-αCD47-G1 and -G4 results, OV-A4-IgG2b treatment showed the strongest therapeutic effect on GBM among other OV treatments or saline. Importantly, in this fully immunocompetent model, OV-A4-IgG3 also significantly prolongs the survival of C57BL/6 immunocompetent GBM model, αCD47-G4 may not completely block the "don't eat me" signal and also lacks the Fc-dependent effect so that we did not observe the difference between OV-αCD47-G4 and OV-Q1.

Therefore, to avoid the cross-species interaction of human CD47 and mouse SIRPα, we generated OVs expressing an anti-mouse CD47 antibody, OV-A4-IgG2b and OV-A4-IgG3 to validate the OV-αCD47-G1 and -G4 results. Mouse IgG2b and IgG3 are similar to human IgG1 and IgG4, respectively, in terms of their binding affinity to Fc receptors. Similar to the OV-αCD47-G1 and -G4 results, OV-A4-IgG2b treatment showed the strongest therapeutic effect on GBM among other OV treatments or saline. Importantly, in this fully immunocompetent model, OV-A4-IgG3 also significantly prolongs the survival of C57BL/6 immunocompetent GBM model, αCD47-G4 may not completely block the "don't eat me" signal and also lacks the Fc-dependent effect so that we did not observe the difference between OV-αCD47-G4 and OV-Q1.
experimental mice when compared to OV-Q1 without expressing an antibody but is less effective than OV-A4-IgG2b in treating GBM. These validated the data from the GBM43 xenograft model.

The above fully immunocompetent model enables us to investigate the role of immune cells mediating an oncolytic virus expressing a full-length antibody with or without the Fc-dependent effect. The immunosuppression TME of GBM, characterized by low activated T-cell infiltration and high ratio of TAMs, leads to tumor immune evasion. TAMs have been found to be the major immune cells that promote tumor development in the GBM microenvironment. Modulating TAMs is considered to be a promising antitumor strategy, targeting the CD47-SIRPa axis of TAMs should be a good approach for the treatment of GBM. CD47 is highly expressed on numerous types of tumors, including GBM. CD47 acts as an anti-phagocytic “don’t eat me” signal by binding to SIRPa on the surfaces of macrophages. Activation of SIRPa results in the inhibition of phagocytosis. Expression of CD47 helps the tumor cells escape from elimination by macrophages and facilitates their metastasis. Disrupting the CD47-SIRPa axis using mAbs has been shown to increase the phagocytosis against cancer cells and inhibit the progression of some hematological malignancies as well as solid tumors. Our results showed that both OV-A4-IgG2b and OV-A4-IgG3 increased the intracranial infiltration of macrophages and phagocytosis against GBM cells in vitro. Macrophage depletion restrained OV-A4-IgG2b virotherapy efficacy against GBM. These data indicate that macrophages play a strong effect on mediating our oHSV expressing an antibody, especially the one with the Fc-dependent effect. Moreover, we also found oHSV treatments dramatically increased the intracranial infiltration of NK cells and T cells. Collectively, our data suggest that oHSV expressing an antibody can induce both innate and adaptive immune responses to GBM.

MAbs have been widely and successfully used as targeted therapies in many cancers. However, the intravenous (i.v.), subcutaneous (s.c.), or intramuscular (i.m.) routes of administration may be impeding their efficacy in solid tumors with challenging TMEs. Because of large molecular sizes, s.c. and i.m. administration of mAbs require an additional absorption step, whereby mAbs are transported from the interstitial space into the lymphatic system prior to draining into the blood stream. However, regardless of the route of administration, the systemic delivery of mAbs is mainly distributed in plasma rather than the targeted tissue. To achieve an effective local dose in targeted tissues such as solid tumors, a high systemic dose of mAb is required but this can result in adverse side effects and excessive cost. Moreover, traversing the BBB for mAb treatment of GBM is another challenge that largely precludes the systemic approach for mAb therapy in most GBM patients. Our antibody distribution data comparing systemic to locoregional delivery of the acCD47-G1 suggest that the locoregional delivery of acCD47-G1 to the TME by OV-acCD47-G1 is an effective approach, even when compared to delivering the combination of oHSV and acCD47-G1 locoregionally but delivering them as two separate therapeutics.

The current study suggests that re-engineered oHSV is an excellent platform to deliver mAbs in solid tumors such as GBM because the mAbs can be delivered beyond the BBB locoregionally by the GBM itself given the intratumorally administered oHSV. In our current approach, the full-length antibodies, including both heavy and light chains produced by a strong viral promoter, can increase the locoregional delivery of antibodies in the TME but eliminate toxicities and would be required to achieve superior therapeutic levels in the CNS. However, when systemic delivery of oncolytic virus is considered for tumors outside of the CNS, OV-acCD47-G4 may prove to be effective with less toxicity. Considering that both the oHSV backbone and anti-CD47 antibody have been tested in the clinic, our oHSV expressing an anti-CD47 antibody should likely be considered for translation into the clinic for the treatment of systemic solid tumors. Current good manufacturing practices manufacturing of OV-acCD47-G1 has been completed at our institution.

Our therapeutic oHSV will not only activate the innate immune system but also continuously produce the mAb locally as long as the OV persists within the TME. In the ideal situation, once tumor cells are completely lysed by the OV, replicating virus dissipates and antibody production will cease, thereby limiting the potential for long-term local tissue toxicity. Although our current approach is designed to produce a full-length antibody to directly target immune cells with IgG1 and IgG4 options, our platform can be used to deliver other forms of mAbs such as single-chain mAbs (scFv) or any mAb with diverse functions such as T-cell checkpoint blockade including anti-PD1, anti-PD-L1, and anti-LTαR mAbs that directly target tumor cells, e.g., the anti-EGFR mAb.

In summary, we have developed an effective oHSV platform that provides locoregional delivery of full-length mAbs to treat GBM by combining direct tumor lysis, innate immune infiltration and activation, immune checkpoint inhibition of macrophages, and Fc-dependent innate immune cell cytotoxic functions. Our platform can be extended to express other transgenes to target immune cells and/or tumor cells in the TME and therefore has the potential to enhance the overall efficacy of both oncolytic virotherapy and mAb therapy for the treatment of cancer.

Methods

Ethics statement. Experiments and handling of mice were conducted under federal, state, and local guidelines and with an approval from the City of Hope Animal Care and Use Committee. To isolate human monocyttes and NK cells, peripheral blood cones were collected from healthy donors after written informed consent under a protocol approved by the City of Hope Institutional Review Board.

Cells. Gli36, AEGFR, U251T2, LN229, GBM30, Vero, and CT2A cells were obtained from the laboratory of E. Antonio Chiocca. GBM43 and BT42 were developed at Mayo Clinic. The original commercial source of Vero cells, U251T2 and LN229 is from ATCC. CT2A cells were originally purchased from MilliporeSigma. Human GBM cell lines (Gli36, AEGFR, U251T2, and LN229) and mouse GBM cells (CT2A and CT2A-hCD47) were cultured with DMEM supplemented with 10% FBS, penicillin (100 U/ml), and streptomycin (100 μg/ml). CT2A-hCD47 cells were generated by transfecting the murine CT2A cell line to express the human CD47 gene. GBM43 spheroid cells derived from a GBM patient and modified to express an FFL gene were named GBM43-FFL and used for in vivo imaging. GBM43 cells with CD47-knockout, termed as GBM43ΔCD47, were constructed by the CRISPR-Cas9 system. GBM43ΔCD47 cells and GBM43-FFL were maintained as tumor spheroids with basic neurobasal medium supplemented with 2% B27 (Gibco), human epidermal growth factor (EGF, 20 ng/ml), and fibroblast growth factor (FGF, 20 ng/ml) in low-attachment culture flasks. BT422 cells derived from a GBM patient were cultured with NS-5A basal medium (StemCell), and were used for viral propagation and plaque-assay-based viral titration with DMEM supplemented with 10% FBS, penicillin (100 U/ml), and streptomycin (100 μg/ml).

Production of acCD47-G1, acCD47-G4, A4-IgG2b, and A4-IgG3. CHO cells were used to produce acCD47-G1, acCD47-G4, A4-IgG2b, and A4-IgG3 for functionality tests. For acCD47-G1 and acCD47-G4, the light- and heavy-chain coding genes of A4-IgG2b were reconstructed into the lentivirus system. acCD47-G1 used the same light-chain coding gene as acCD47-G4, but a modified heavy-chain coding gene that replaced the human IgG4 constant region with the human IgG1 constant region as the heavy-chain coding gene. For A4-IgG2b and A4-IgG3, the DNA sequences encoding anti-mouse CD47 VH1 nanobody (clone A4) was fused with mouse IgG2b or IgG3, respectively. Lentiviral vectors were used to transduce CHO cells to express acCD47-G1, acCD47-G4, A4-IgG2b, or A4-IgG3. For acCD47-G1 and acCD47-G4, the light-chain and heavy-chain coding genes were carried by different lentiviral vectors with GFP and mCherry selection markers, respectively, for sorting the double-positive CHO cells using a FACS Aria II cell sorter (BD Biosciences, San Jose, CA, USA). For A4-IgG2b and A4-IgG3, the fusion protein was carried by the pCDH lentiviral vector with a GFP selection marker, which was transduced into CHO and subsequently purified using a FACS Aria II
The capacity of MFI of APC and BV786 was used to determine CD47 binding and blocking. Measurement of antibody concentration conjugated anti-mouse CD47 antibody (clone, miap301, Biolegend, 127513) was used. The liquid chromatography. antibodies purified from transfected CHO cells for 30 min. Then the cells were washed twice and stained with APC-conjugated anti-human Fc (Jackson ImmunoResearch, 209-605-098) for 20 min. After that, the cells were stained with BV786-conjugated anti-human CD47 antibody (clone, miap301, Biolegend, 127513) was used as a detecting antibody (Supplementary Fig. 16).

Measurement of antibody concentration. U21T2 cells were infected with OV-Q1, OV-αCD47-G1, or OV-αCD47-G4 at a multiplicity of infection (MOI) of 1. Two hours after the infection, the media were replaced with fresh media. The supernatants from each group were then harvested at 6, 12, 24, 48, and 72 hpi to measure in vivo test, the purified αCD47-G1 and αIgG2b were desalted by fast protein liquid chromatography. BMDMs, GBM43 and BT422 cells stained with CFSE (Thermo Fisher, C54554) were used as target cells. BMDMs and target cells were cocultured at a ratio of 1:2 for 2 h in the presence of vehicle control, αCD47-G1 or αCD47-G4 at the dose of 5 μg/ml in a humidified, 5% CO2 incubator at 37 °C in ultra-low-attachment 96-well cell culture plates (Corning) in serum-free 1640 (Life Technologies). Then the cells were harvested by centrifuging at 400 × g for 5 min at 4 °C and stained with anti-mouse CD11b (BD Biosciences, 552850) to identify macrophages. For blocking Fc receptors, BMDMs were pre-incubated with 10 μg/ml isotype human IgG1 (Biolegend, 403585) for 30 min. For the phagocytosis assay of A4-αIgG2 and BMDMs, αIgG2b cells were pre-effector (E)/target (T) ratios of 1:2 for 1 h in the presence of vehicle control, αCD47-G1 or αCD47-G4 at the dose of 5 μg/ml in a humidified, 5% CO2 incubator at 37 °C in ultra-low-attachment 96-well U-bottom plates (Corning) in serum-free 1640 (Life Technologies). Then the cells were centrifuged at 400 × g for 5 min at 4 °C and stained with anti-human CD11b (BD Biosciences, 552850, 5 μl/sample) to identify macrophages. All flow cytometry data were collected using a Fortessa X20 flow cytometer (BD Biosciences). Measurement of antibody concentration conjugated anti-mouse CD47 antibody (clone, miap301, Biolegend, 127513) was used as a detecting antibody. Generation of OV-αCD47-G1, OV-αCD47-G4, OV-αIgG2b, and OV-αIgG3. OV-αCD47-G1 and OV-αCD47-G4 antibodies purified from transfected CHO cells with known concentrations served as standards. ELISA was performed with slight modification. Briefly, the recombinant human CD47 protein (Abcam, ab174029) was used as a coating reagent. An αCD47-G1 and αCD47-G4 at a multiplicity of infection (MOI) of 2. Two hours after infection, the infection media were replaced with fresh media. Twenty-four hours later, the supernatants (10 ml) from microtiter plates (Corning) were used as effector cells. The target cells were labeled with 51Cr (NEN Products, Boston, MA) and an erythrocyte depletion kit (MACSxpress Miltenyi Biotec, San Diego, CA) was used to separate the target cells from the medium. The cell lysate was measured by the CCK8 kit with slight modification. Briefly, U21T2 and Glis3ÆEGFR cells were seeded onto 96-well plates at densities of 5000 cells/well and allowed to attach for 24 h. Then the supernatants were collected from healthy donors. Human monocytes were isolated and enriched by using the RosetteSep™ Human Monocyte Enrichment Cocktail kit (STEMCELL, Cat#15068) from the peripheral blood. The enriched human monocytes were cultured with RPMI-1640 medium containing 20 ng/ml human M-CSF (PeproTech, Cat#300-25-50UG) and 2% human serum for 7 days to induce the macrophage differentiation (replacing culture medium on days 3 and 5).
make cDNA to detect relative mRNA transcription levels of murine Arg1, Cd2, Cd4, Il5, Il6, Il10, Il12, and Nos2 genes with corresponding primers. 18s rRNA was used as internal control. To evaluate the effect of αCD47-G1 and αCD47-G4 on activating transcription of typical human macrophage cytokine genes, human macrophages and GBM43 were cocultured at a ratio of 1:1 for 6 h with or without the presence of 5 µg/ml αCD47-G1 or αCD47-G4. Then the total RNA was extracted for reverse transcription to make cDNA to detect relative mRNA transcription levels of human Il2, Il4, Il6, Il10, Il12, and Nos2 genes with corresponding primers. 18s rRNA was used as internal control. The information of the primers that were used to detect relative mRNA expression levels is provided in Supplementary Table 2. Applied Biosystems StepOnePlus real-time PCR system and QuantStudio 12 K Flex software V1.2.4 were used to collect real-time PCR data.

Animal study. All animals in this study were housed in City of Hope Animal Facility with a light cycle with a 12-light/12-dark cycle and temperatures of 65–75 °F (18–23 °C) with 40–60% humidity. All the mice were euthanized by carbon dioxide at the endpoints of survival studies or the indicated time points of other experiments. Six- to eight-week-old female athymic nude mice (Stock Number 0002919) were purchased from Jackson Laboratories (Bar Harbor, Maine). For the survival studies, mice were anesthetized and stereotactically injected with 1 × 10^5 GBM43–FCL cells, which express a luciferase (FFL) gene, into the right frontal lobe of the brain (2 mm lateral and 1 mm anterior to bregma at a depth of 3 mm). The cells grew for 7 days, and animals were subsequently randomly divided into groups that were i.c. injected either with 2 × 10^5 PFU oHSV (OV-Q1, OV-cd47-G1 or OV-cd47-G4) or saline alone as control. Mice were subsequently monitored and weighed frequently for GBM disease progression. Luciferase-based in vivo images were taken at indicated time points to evaluate the tumor development. Mice were euthanized when they became moribund, with neurologic impairments and obvious weight loss.

For the in vivo anti-CD47 antibody distribution study, nude mice were stereotactically injected with 1 × 10^6 GBM43 into the same site of the brain mentioned above. The GBM4 cells were allowed to grow for 21 days, and the mice were randomly divided into four groups: Group 1, saline; Group 2, αCD47-G1; Group 3, a combination of OV-Q1 plus i.p. delivery of αCD47-G4; Group 4, αCD47-G1. Group 1 received saline as control. Groups 2, 3, and 4 with OV-αCD47-G1 infection, the above experiment was modified with the following changes: Group 3 received i.p. injection of purified αCD47-G1 twice at the dose of 150 µg per mouse on day 22 and 24, while other groups received i.p. saline solution. Statistical software GraphPad, R.3.6.3, and SAS 9.4 were used for the statistical analysis.

Survival studies involving immune cell depletions were performed using the same immunocompetent mouse GBM model as indicated above, except that αCD47 cells were modified to express GFP as a marker. Mononuclear cells in the brain were extracted with Percoll and stained with anti-CD45 (BD Biosciences, 559864, 5 µl/sample), anti-NKp30, and anti-F4/80 (Thermo Fisher, 12-4801-82, 5 µl/sample) antibodies to identify macrophages (Supplementary Fig. 16). The percentage of GFP+ macrophages indicating phagocytosis was analyzed using the Fortessa X-20 flow cytometer.

Immunohistochemistry assay. Brains isolated from the experimental mice were placed in 10% neutral buffered formalin for a minimum of 72 h. After paraffin embedding, 4-µm-thick sections were cut from the blocks. H&E staining and immunohistochemical staining with anti-HSV (Cell marque, 361A-15-ASR), anti-human Fc (Jackson Immunoresearch, 109-005-998), anti-CD11b (Abcam, ab133357), and anti-NKp46 (R&D System, AF2225) antibodies were performed by the Pathology Core of Shared Resources at City of Hope Beckman Research Institute and National Medical Center. Stained slides were mounted and scanned for observation.

Flow cytometry. Mononuclear cells in the brain were extracted with Percoll and stained with anti-NKp46 (Biologend, 137618, 5 µl/sample), anti-CD3 (BD Biosciences, 553066, 5 µl/sample), anti-CD45 (BD Biosciences, 559864, 5 µl/sample), anti-CD11b (BD Biosciences, 552850, 5 µl/sample), anti-F4/80 (Thermo Fisher, 12-4801-82, 5 µl/sample), and anti-CD68 (BD Biosciences, 564683, 5 µl/sample) antibodies for flow cytometric assessment of immune cell brain infiltration (Supplementary Fig. 16). The flow cytometric assessments of immune cells were performed with at least four independent animals. All flow cytometry data were collected using the Fortessa X-20 flow cytometer.

Statistical analysis. Descriptive statistics (means, standard deviations, median, counts, etc.) are used to summarize data. Continuous endpoints that are normally distributed with or without prior log transformation were compared between two or more independent conditions by Student’s t test or one-way ANOVA, respectively. For data with repeated measures from the same subject/donor, a linear mixed model was used to compare matched groups by accounting for the underlying variance and covariance structure. P values were adjusted for multiple comparisons by Holm’s procedure or the Bonferroni method. For survival data, survival functions were estimated by the Kaplan–Meier method and compared by log-rank test. All tests were two-sided. A P value of 0.05 or less was defined as statistically significant. Statistical software GraphPad, R, and SAS were used for the statistical analysis.

Data availability. All original data underlying selected data shown in the figures and supplemental figures are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Received: 18 September 2020; Accepted: 9 September 2021; Published online: 08 October 2021

References
1. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).
2. Andtbacka, R. H. et al. Taliomogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).
3. Markert, J. M. et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol. Ther. 22, 1048–1055 (2014).
4. Xu, B. et al. An oncolytic herpesvirus expressing E-cadherin improves survival in mouse models of glioblastoma. Nat. Biotechnol. https://doi.org/10.1038/nbt.4302 (2018).
5. Chen, X. et al. A combinational therapy of EGFR-CAR NK cells and oncolytic HSV-1 for breast cancer brain metastases. Oncotarget 7, 27764–27777 (2016).
6. Han, J. et al. TGFbeta treatment enhances glioblastoma virotherapy by inhibiting the innate immune response. Cancer Res. 75, 5273–5282 (2015).
7. Bolyard, C. et al. BA11 orchestrates macrophage inflammatory response to HSV infection-implications for oncolytic viral therapy. Clin. Cancer Res. 23, 1809–1819 (2017).
8. Alvarez-Brekenridge, C. A. et al. NK cells impede glioblastoma virotherapy through Nkp30 and Nkp46 natural cytotoxicity receptors. Nat. Med. 18, 1827–1834 (2012).
9. Ma, R. et al. An oncolytic virus expressing IL-15/IL-15Ralpha combined with off-the-shelf EGFR-CAR NK cells targets glioblastoma. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-20-0353 (2021).

10. Matlanch, H. L., Sziagyi, K., Barclay, N. A. & van den Berg, T. K. The CD47-SIRPalpha signaling axis as an innate immune checkpoint in cancer. Immuno- Rev. 276, 145–164 (2017).

11. Bewersdorf, J. P., Shallis, R. M. & Zeidan, A. M. Immune checkpoint inhibition in malignancies against cancer: moving beyond the PD-1/PD-L1 and CTLA-4 pathways. Blood Rev. https://doi.org/10.1016/j.bloodrev.2020.100709 (2020).

12. Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005).

13. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer trials and tribulations. Science 283, 2387–2392 (2002).

14. Wang, Y. et al. Polymeric nanoparticles promote macrophase reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials 112, 153–163 (2017).

15. Saha, D., Martuza, R. L. & Rabkin, S. D. Macrophage polarization contributes to glioblastoma eradication by combination immunовirotherapy and immune checkpoint blockade. Cancer Cell 32, 253–267.e255 (2017).

16. Veillette, A. & Chen, J. SIRPalpha-CD47 immune checkpoint blockade in ovarian cancer. Curr. Opin. Immunol. https://doi.org/10.1016/j.coi.2020-02022 (2021).

17. Saha, D., Martuza, R. L. & Rabkin, S. D. Macrophage polarization contributes to glioblastoma eradication by combination immunовirotherapy and immune checkpoint blockade. Cancer Cell 32, 253–267.e255 (2017).

18. Gholamin, S. et al. Disrupting the CD47-SIRPalpha anti-phagocytic axis by a humanized fully human anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Science Transl. Med. https://doi.org/10.1126/scitranslmed.aaf2968 (2017).

19. Hutter, G. et al. Microglia are effector cells of CD47-SIRPalpha anti-phagocytic axis disruption against glioblastoma. Proc. Natl Acad. Sci. USA 116, 997–1002 (2019).

20. Cao, X. et al. Effect of cabazitaxel on macrophages improves CD47-targeted disruption against glioblastoma. Cancer Lett. 348, 1280–1287 (2017).

21.指出, A. et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 37, 4946–4953 (2019).

22. Liu, J. et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS ONE 10, e0137345 (2015).

23. Kerzner, R. et al. Targeting FTL3 by chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. Leukemia 31, 1830–1834 (2017).

24. Kimura, H. et al. Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci. 98, 1275–1280 (2007).

25. Barok, M. et al. Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic IGF-1 breast cancer xenografts despite intrinsic drug resistance. Mol. Cancer Ther. 6, 2065–2072 (2007).

26. Chen, L. et al. Targeting FLT3 by chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. Leukemia 31, 1830–1834 (2017).

27. Passaro, C. et al. Arming an oncolytic Herpes Simplex Virus Type 1 with a single-chain fragment variable antibody against PD-1 for experimental glioblastoma therapy. Cancer Res. 75, 290–299 (2015).

Acknowledgements
This work was supported by grants from the NIH (NS106170, AI129582, CA247550, U10CA247551, U10CA23400, U10CA200559, CA201075, CA205250, and CA210087), the Leukemia & Lymphoma Society (1364–19), 2021 Exceptional Project Protection Grants from The Breast Cancer Alliance, and the V Foundation for Cancer Research V Scholar Award. The authors appreciate Dr. Jann N. Sarkaria at Mayo Clinic for providing GBM43 cells.

Author contributions
B.K. and T.E. performed experiments and wrote the manuscript; J.C., R.M., W.D. and J.W. performed experiments; A.L. performed IHC experiment; J.Z., J.M., W.D. and J.W. performed experiments; A.L. performed IHC experiment; J.Z. designed research, wrote the manuscript, acquired funding, and supervised the study. R.M., W.D. and J.W. performed experiments; A.L. performed IHC experiment; J.Z. designed research, wrote the manuscript, acquired funding, and supervised the study.

Competing interests
J.Y. and M.A.C. are co-founders of CytoImmune, Inc. The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-26003-6.

Correspondence and requests for materials should be addressed to Michael A. Caligiuri or Jianhua Yu.

Peer review information Nature Communications thanks Betty Kim, Richard Yile and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
