Primary malignant peripheral nerve sheath tumor at unusual location

Souvagya Panigrahi, Sudhansu Sekhar Mishra, Srikant Das, Manmath Kumar Dhir
Department of Neurosurgery, S.C.B. Medical College and Hospital, Cuttack, Odisha, India

ABSTRACT
Malignant peripheral nerve sheath tumor (MPNST) is a rare soft tissue sarcoma. Most arise in association with major nerve trunks. Their most common anatomical sites are the proximal portions of the upper and lower extremities and the trunk. MPNSTs have rarely been reported in literature to occur in other unusual body parts. We review all such cases reported till now in terms of site of origin, surgical treatment, adjuvant therapy and outcome and shortly describe our experience with two of these cases. Both of our case presented with lump at unusual sites resembling neurofibroma, one at orbitotemporal area and other in the paraspinal region with characteristic feature of neurofibroma with the exception that both had very short history of progression. They underwent gross total removal of the tumor with adjuvant radiotherapy postoperatively. At 6-month follow-up both are doing well with no evidence of recurrence.

Key words: Malignant peripheral nerve sheath tumor, orbito-temporal, paraspinal, unusual body parts

Introduction
Malignant peripheral nerve sheath tumor (MPNST) is a rare soft tissue sarcoma of the ectomesenchymal origin. It is the malignant counterpart of benign soft tissue tumors like neurofibromas and schwannomas and may follow them. It usually arises from peripheral nerves or somatic soft tissues.[1] Common sites include deeper soft tissues, usually in the proximity of a nerve trunk. MPNSTs can develop in any anatomical region, but the sciatic nerve is affected most often.[2] MPNSTs involving other body parts are extremely rare. Few such lesions have been reported till date. The incidence of MPNST in the general population is 0.001%; however, it can increase to 5-42% in patients with neurofibromatosis type 1 (NF 1). MPNST arising de-novo at an unusual site without any features of NF 1 as has been noticed in our cases is interesting to report.

Case Reports

Case 1
A 35-year-old woman presented with 2-month history of rapidly progressive painless swelling in left orbitotemporal region with proptosis and blurring of vision leading to complete blindness. Physical examination revealed a lobular nontender, firm mass of size 15 × 7 cm extending from left orbit to the left temporal region. In addition to axial proptosis, the left eye showed restricted movement in all directions [Figure 1a and b]. She was unable to perceive light in her left eye. Magnetic resonance imaging (MRI) of the orbits and brain showed left sphenoidal-based extra-axial margined in homoginously enhancing mass at the lateral side of the left optic nerve buckling the ipsilateral anterotemporal lobe [Figure 2]. Other systemic observations of the patient were normal. Fine needle aspiration cytology came to be neurofibroma. Near total dissection of the tumor with adjuvant radiotherapy postoperatively. At 6-month follow-up both are doing well with no evidence of recurrence.

Address for correspondence:
Dr. Souvagya Panigrahi, Department of Neurosurgery, S.C.B. Medical College and Hospital, Cuttack - 753 007, Odisha.
E-mail: souvagya.ms@gmail.com
Case 2
A 60-year-old male presented with rapidly enlarging painless swelling in back with lower limb weakness in a period of 2 month. On examination, lower motor type of paralysis was found in both the legs with power: 0/5 around all joints. Sensation of all modalities decreased below L3. A nontender hard lobulated mass of size 10 × 5 cm was found over left lumbar paraspinal area fixed to underlying structure [Figure 4a]. MRI was suggestive of lumbar (L1-L4) extradural lesion with associated L3 vertebral body compressional collapse giving a picture of neurofibroma [Figure 5]. Near total excision of both intraspinal and paraspinal component was achieved. Histopathological examination and immunohistochemical staining confirmed the diagnosis of MPNST. Patient improved neurologically with power 2/5 around all joints in lower limb. On completion of local radiotherapy at 6-month follow-up, the patient was doing well with no local or systemic spread.

Discussion
Malignant peripheral nerve sheath tumor (MPNST) is the preferred term for tumors originating from peripheral nerves or their sheaths and it has replaced the previous entities such as malignant schwannoma, malignant neurilemmoma and neurofibrosarcoma. They represent approximately 10% of all soft tissue sarcomas.[3] They may arise spontaneously, although in 5-42% of cases an association with neurofibromatosis (NF) Type 1 is known. MPNSTs commonly arise in adult patients ranging from 20 to 50 years of age. They originate from a major or minor peripheral nerve branch or its sheath. The common sites of origin include the extremities and trunk, usually sciatic nerve, brachial plexus and the sacral plexus. To our knowledge, few patients with a cranial or facial MPNST have been reported.[1,4] Likewise, cranial nerves are rarely affected, although tumors of the trigeminal and acoustic nerves have been reported.[5] Although rare, reports of MPNST arising at unusual sites have been documented by

Figure 1: (a) Preoperative photograph. (b) showing the orbitotemporal lump with proptosis. (c) Postoperative cosmesis and (d) Excised tumor mass

Figure 2: Magnetic resonance imaging of the orbit and brain showing left sphenoidal-based extra-axial plane (a) and contrast (b) marginated in-homoginously enhancing mass at the lateral side of the left optic nerve buckling the ipsilateral antero temporal lobe

Figure 3: (a) Histopathology picture showing fascicles of spindle cells with marked hypercellularity and high mitotic activity suggestive of MPNS. (b) Immunohistochemistry demonstrates S-100 protein staining of the tumor tissue

Figure 4: Clinical photograph (a) of case-2 showing the left lumbar mass (Yellow arrow) with excised tumor tissue (b)
Panigrahi, et al.: Primary malignant peripheral nerve sheath tumor

The histological features of MPNSTs are those of a highly cellular, spindle-cell neoplasm resembling a soft-tissue sarcoma, but with differentiation toward elements of the nerve sheath, Schwann cell, and perineural cell. Frequent mitoses and focal necrosis are typical. Rarely are heterologous mesenchymal or epithelial elements present. As in our case, MPNSTs can include heterologous mesenchymal and epithelial elements. Such atypical components show hypercellularity, an increased nuclear-to-cytoplasmic ratio, cytological atypia and increased mitotic activity. The histological spectrum of MPNST is broad and the diagnosis rests on combination of some microscopic features, none of which is diagnostic by itself. S100 protein, the most widely used antibody for nerve sheath tumor, is positive only in 50% of MPNSTs. Another diagnostic, Leu 7 immunoreactivity, is reported to be positive in 30–40% of the cases.

Metastases occur in 39% of patients, lung being the most common metastatic site. The most important features adversely influencing prognosis are the presence of Von Recklinghausen’s disease, a tumor larger than 5 cm and extent of resection.

Radioimaging is helpful to know the exact site and extension of the tumor. Biopsy is necessary to diagnose

Table 1: Published clinical studies and case reports of MPNSTs at unusual sites

Authors (Reference)	Age in year/Sex	Site	NF1	Metastases	Adjuvant treatment	Survival
Aydın, et al.[4]	68 M	Orbit	-	NA	Nil	Death
Firat, et al.[6]	79 M	Arm	+	Axillary lymph node, brachial plexus and pleura	Nil	NA
Chaikoo, et al.[15]	60 F	Breast	-	Nil	Nil	1 year
Miguchi, et al.[16]	71 M	Greater omentum	-	Nil	Nil	1 year
Eill, et al.[17]	13 M	Posterior mediastinum	+	Lung	RT+CT	Death
Godfrey, et al.[18]	49 M	Elbow	+	Axillary lymph node	Nil	5 years
Miyakoshi, et al.[19]	75 M	Posterior mediastinum	-	Lung	RT	6 months
Sari, et al.[20]	53 M	Urinary bladder	-	Nil	Nil	2 years
Özçel, et al.[21]	63 F	Vulva	-	Nil	NA	NA
Park, et al.[22]	31 F	Adrenal gland	-	Nil	NA	NA
Yone, et al.[22]	4 M	Cauda equina	-	Brain and spine	RT+CT	21 months
Sheikh, et al.[24]	54 F	Spinal accessory nerve	-	Brain	RT	NA
Kolarov, et al.[25]	65 F	Thorax	-	Lung	RT+CT	10 months
Kitamura, et al.[26]	61 M	Thigh	+	Lung and heart	CT	Death
Gupta, et al.[27]	34 M	Cervical vagus	+	Nil	RT	1 year
Elias, et al.[28]	69 M	Head and neck	-	Nil	RT+CT	1 year

RT: Radiotherapy, CT: Chemotherapy, NA: Not available
an MPNST definitively. The differential diagnosis between benign schwannoma and neurosarcoma may be challenging: One must look for necrotic foci, the number of atypical mitoses, and an absence of differentiated cells. Tumors larger than 5 cm, histological grades II and III, an association with neurofibromatosis, and regional or distant metastases suggest an ominous prognosis.

The treatment of choice is surgery, but postoperative radio- and chemotherapy are part of adjunctive therapy.[13] Gross total resection of the tumor is the most important therapeutic goal. When radical tumor removal is not possible, excision combined with high-dose radiation therapy seems to be the best alternative treatment.[12] With the latest advances in molecular genetics, the target therapy for this tumor type is expected to be discovered.[14]

Conclusions

MPNST can arise in any unusual sites other than its common location at extremities. Existence of neurofibromatosis may not be present. Suspicion of MPNST should be raised in rapidly growing painless tumor in and around a nerve tissue. Complete surgical removal should be the goal of treatment with definitive histological diagnosis.

References

1. D'Agostino AN, Soule EH, Miller RH. Sarcomas of the peripheral nerves and somatic soft tissue associated with multiple neurofibromatosis (von Recklinghausen's disease). Cancer 1963;16:1015-27.
2. Khosouk M, Rabet AM, Ghidas K, Naji S, Douik M, Ben Romdhane K, et al. Extensive malignant schwannoma of the sciatic nerve. Contribution of imaging techniques. J Radiol 1993;74:641-4.
3. Weiss SW, Goldblum JR. Malignant tumors of the peripheral nerves. In Enzinger and Weiss's Soft Tissue Tumors. 4th ed. Strauss M, Grey L, editors. St Louis: Mosby, Inc; 2001. p. 1209-64.
4. Aydin MD, Yildirim U, Gundogdu C, Dursun O, Uysal HH, Ozdikici M. Malignant peripheral nerve sheath tumor of the orbit: Case report and literature review. Skull Base 2004;14:109-13.
5. Han DH, Kim DG, Jung HW, Kim YG. Malignant triton tumor of the acoustic nerve. Case report. J Neurosurg 1992;76:874-7.
6. Firat C, Aytekin AH, Erbatur S. Metastatic malignant peripheral nerve sheath tumor in neurofibromatosis type I: A geriatric patient report. Eur Rev Med Pharmacol Sci 2012;16:1301-4.
7. Ducatman BS, Scheithauer BW, Piepras DG, Reiman HM, Illstrup DM. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer 1986;57:2006-21.
8. Chitale AR, Dickersin GR. Electron microscopy in the diagnosis of malignant schwannomas. A report of six cases. Cancer 1983;51:1448-61.
9. Enzinger FM, Weiss SW. Soft Tissue Tumors. 1st ed. St Louis, MO: CV Mosby; 1983. p. 625-54.
10. Rosai J. Soft tissues. In: Ackerman R, editor. Surgical Pathology. Philadelphia: 9th ed. St Louis: Mosby; 2004. p. 2237-371.
11. Johnson MD, Glick AD, Davis BW. Immunohistochemical evaluation of Leu-7, myelin basic-protein, S100-protein, glial-fibrillary acidic-protein, and LN3 immunoreactivity in nerve sheath tumors and sarcomas. Arch Pathol Lab Med 1988;112:155-60.
12. Ducatman BS, Scheithauer BW, Piepras DG, Reiman HM, Illstrup DM. Malignant peripheral nerve sheath tumors. Cancer 1986;57:2006-21.
13. Aguiar Vitacca S, Sarrazin D, Henry-Amor M, Spielmann M, Genin J, Bernheim A, et al. Neurosarcoma associated with Von Recklinghausen disease: Apropos of 25 cases observed at the Gustave Roussy Institute from 1967 to 1990. Bull Cancer 1992;79:101-12.
14. Ferno RE, Gutmann DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res 2002;62:1573-7.
15. Chalkoo M, Ahangar S, Laharwil AR, Patlou AM, Mohd A, Dar SA. Primary malignant peripheral nerve sheath tumor of the breast: A case report. Surg Sci 2011;2:137-9.
16. Miguchi M, Takakura Y, Egi H, Hinoi T, Adachi T, Kawaguchi Y, et al. Malignant peripheral nerve sheath tumor arising from the greater omentum: Case report. World J Surg Oncol 2011;9:33.
17. Elii M, Can B, Ceyhan M, Pinarli FG, Dalgademir AD, Ayıldız HS, et al. Intrathoracic malignant peripheral nerve sheath tumor with angiosarcoma in a child with NF1. Tumour 2007;93:641-4.
18. Godfrey GJ, Farghaly H. Lymph node metastasis of malignant peripheral nerve sheath tumor in the absence of widespread disease five years after diagnosis: A rare finding. Int J Clin Exp Pathol 2010;3:812-4.
19. Miyakoshi N, Nishikawa Y, Shimada Y, Okada K, Yoshida M, Enomoto K, et al. Intraosseous malignant peripheral nerve sheath tumor with focal epithelioid differentiation of the thoracic spine. Neurol India 2007;55:64-6.
20. Sari A, Bal K, Tunakan M, Ozurtk C. A case of sporadic malignant peripheral nerve sheath tumor of the urinary bladder with concomitant in situ urothelial carcinoma treated by transurethral resection. Indian J Pathol Microbiol 2011;54:147-9.
21. Özef E, Pesterel HE, Simtek S, Karavel FS, Trak B. Malignant peripheral nerve sheath tumor of the vulva: A case report. Turk J Cane 2006;36:31-4.
22. Park JH, Ha SY, Cho HY. Malignant peripheral nerve sheath tumors of the bilateral adrenal glands: Are they metachronous primary tumors: A case report. Korean J Pathol 2009;43:471-1.
23. Yone K, Iijin K, Hayashi K, Yokouchi M, Takanoue T, Manago K, et al. Primary malignant peripheral nerve sheath tumor of the cauda equina in a child case report. Spinal Cord 2004;42:199-203.
24. Sheikho OA, Reaves A, Kralick FA, Brooks A, Musial RE, Gasperino J. Malignant nerve sheath tumor of the spinal accessory nerve: A unique presentation of a rare tumor. J Clin Neuro 2012;8:75-8.
25. Kolarov V, Stanić J, Eri Z, Zvezdin B, Kojičić M, Hromis S. Intrathoracic malignant peripheral nerve sheath tumor with poor outcome: A case report. Bosn J Basic Medl Sci 2010;10:328-30.
26. Kitamura M, Wada N, Nagata S, Iizuka N, Jin YF, Tomoe M, et al. Primary malignant peripheral nerve sheath tumor of the cervical vagus nerve in a neurofibromatosis type 1 patient: An unusual presentation. Online Journal of Health and Allied Sciences 2010;9:1-3.
27. Elias MM, Balm AJ, Peterse JH, Keus RB, Hîlgers FJ. Malignant schwannoma of the parapharyngeal space in von Recklinghausen's disease: A case report and review of the literature. J Laryngol Otol 1993;107:848-52.

How to cite this article: Panigrahi S, Mishra SS, Das S, Dhir MK. Primary malignant peripheral nerve sheath tumor at unusual location. J Neurosci Rural Pract 2013, 4(Suppl 1):s83-6.

Source of Support: Nil. Conflict of Interest: None declared.