A UNIFIED DERIVATIVE-FREE PROJECTION METHOD MODEL FOR LARGE-SCALE NONLINEAR EQUATIONS WITH CONVEX CONSTRAINTS

YIGUI OU* AND WENJIE XU

Department of Mathematics
Hainan University, Haikou 570228, China

(Communicated by Jan Joachim Ruckmann)

Abstract. Motivated by recent derivative-free projection methods proposed in the literature for solving nonlinear constrained equations, in this paper we propose a unified derivative-free projection method model for large-scale nonlinear equations with convex constraints. Under mild conditions, the global convergence and convergence rate of the proposed method are established. In order to verify the feasibility and effectiveness of the model, a practical algorithm is devised and the corresponding numerical experiments are reported, which show that the proposed practical method is efficient and can be applied to solve large-scale nonsmooth equations. Moreover, the proposed practical algorithm is also extended to solve the obstacle problem.

1. Introduction. Let us consider the following problem, which is to find a point \(x \in \mathbb{R}^n \) such that

\[
F(x) = 0, \quad x \in X,
\]

where the mapping \(F : \mathbb{R}^n \to \mathbb{R}^n \) is continuous, and \(X \subset \mathbb{R}^n \) is a nonempty closed convex set. Throughout the paper, \(X^* \) denotes the solution set of (1), \(\| \cdot \| \) denotes the Euclidean norm on \(\mathbb{R}^n \), \(F_k \) denotes \(F(x_k) \), and \(\text{dist}(x_k, X) \) denotes the distance from the iterates \(x_k \) to \(X \).

Nonlinear equations originate in many applications, see [15, 14, 23, 26, 8, 29] for instance. These various applications have provoked many scholars to study numerical methods for the problem (1). Up to now, many iterative methods have been proposed and analyzed, which may be mainly divided into two categories. One is the derivative methods that need to calculate the Jacobian matrix of \(F \) or its approximation at each iteration, such as Newton-type methods, Levenberg-Marquardt method, trust region method and projection method, see [20, 10, 9, 24] for instance. However, this kind of method is not suitable for solving large-scale nonlinear equations, due to the fact that it involves matrix computation and storage. The other is derivative-free methods using the projection strategy (usually called as derivative-free projection methods). Since the derivative-free projection methods do...
not involve any matrix computation and storage, they are particularly effective for solving large-scale nonlinear system of equations. Therefore, this kind of method has attracted much more attention and many numerical methods have been proposed, see for example [13, 1, 12, 7, 17, 25, 27, 11, 3, 28] and references therein.

In general, the main difference in the existing derivative-free projection methods for solving problem (1) lies in the construction of direction \(d_k \) and the choice of stepsize \(\alpha_k \). Regarding the construction of the direction \(d_k \), it is always required to satisfy the following condition, i.e., there exists a positive constant \(c_1 \) such that

\[
F_k^T d_k \leq -c_1 \|F_k\|^2, \quad \forall k,
\]

see [13, 1, 12, 7, 17, 25, 27, 11, 3, 28] for instance. Obviously, If \(F \) is the gradient of a real-valued function \(f \) defined in \(\mathbb{R}^n \), the condition (2) implies that \(d_k \) is a sufficiently descent direction of \(f \) at \(x_k \), which plays an important role in analyzing the convergence property of gradient-related methods.

As for the choice of \(\alpha_k \), two well known line search procedures have been proposed in projection-based methods for solving problem (1) [2]. More precisely, given a current iterate \(x_k \) and a search direction \(d_k \) at the \(k \)-th iteration, \(\alpha_k \) is determined, respectively as follows:

I. Compute a stepsize \(\alpha_k = \max\{\tau \rho^i : i = 0, 1, 2, \ldots \} \) such that

\[
-F(x_k + \alpha_k d_k)^T d_k \geq \sigma \alpha_k \|d_k\|^2,
\]

where \(\tau > 0 \) is an initial stepsize, \(\rho \in (0, 1) \) and \(\sigma > 0 \) are two constants.

II. Compute a stepsize \(\alpha_k = \max\{\tau \rho^i : i = 0, 1, 2, \ldots \} \) such that

\[
-F(x_k + \alpha_k d_k)^T d_k \geq \sigma \alpha_k \|F(x_k + \alpha_k d_k)\| \|d_k\|^2.
\]

Numerical experiments indicate that the above-mentioned line search schemes I and II have different performance during solving problem (1), see [2] for details. In order to maintain their advantages and overcome their disadvantages, a new adaptive line search scheme is introduced in [2], i.e., it chooses a stepsize \(\alpha_k = \max\{\tau \rho^i : i = 0, 1, 2, \ldots \} \) such that

\[
-F(x_k + \alpha_k d_k)^T d_k \geq \sigma \alpha_k \gamma_k \|d_k\|^2,
\]

where \(\gamma_k = \frac{\|F(x_k + \alpha_k d_k)\|}{\|F(x_k)\|} \). Preliminary numerical results and related comparisons in [2] show that the new scheme is very effective and can improve the efficiency of projection-based methods. Subsequently, Ou and Li [16] also gave an adaptive scheme, i.e., it computes a stepsize \(\alpha_k = \max\{\tau \rho^i : i = 0, 1, 2, \ldots \} \) such that

\[
-F(x_k + \alpha_k d_k)^T d_k \geq \sigma \alpha_k \zeta_k \|d_k\|^2,
\]

where

\[
\zeta_k = \lambda_k + (1 - \lambda_k) \|F(x_k + \alpha_k d_k)\|
\]

with the weight \(\lambda_k \in [\lambda_{\text{min}}, \lambda_{\text{max}}] \subseteq (0, 1] \).

It should be noted that almost all of the above-mentioned derivative-free projection methods for problem (1) require that the mapping \(F \) is monotone and Lipschitz continuous, see [13, 1, 12, 7, 17, 25, 27, 11, 3, 28, 2, 16] for instance. However, the requirement of monotonicity or Lipschitz continuity seems too stringent for the purpose of establishing global convergence property. Recently, Zheng [30] proposed a new projection algorithm for a system of nonlinear equations with convex constraints, which possesses a nice global convergence property without the Lipschitz continuity and monotonicity assumptions. Unfortunately, Zheng’s method needs to
solve linear equations exactly at each iteration, which may lead to expensive computation and thus is generally not suitable for solving large-scale nonlinear equations. Therefore, it is necessary for us to develop a different derivative-free projection method for solving problem (1), which not only possesses good global convergence property without the requirement of monotonicity and Lipschitz continuity, but also has excellent numerical performance in solving large-scale nonlinear system of equations.

As is well known, the analysis on the convergence rate is also important for numerical optimization algorithms. However, most of the existing derivative-free projection methods for problem (1) only discuss their global convergence, while the convergence rate is not analyzed, see [1, 17, 25, 27, 11, 3, 28, 2] for example. In addition, even for those algorithms in which the convergence rate has been analyzed, the obtained result is only that the distance sequence \(\{\text{dist}(x_k, X^*)\} \) converges to zero with a Q-linear rate, rather than the sequence \(\{x_k\} \) itself converges to a solution of problem (1) with a Q-linear rate, see [13, 12, 7] for example. So far, only a few literatures have discussed the convergence rate of iterative sequence \(\{x_k\} \) itself, see [16] for example. These facts motivate us to further explore derivative-free projection methods for problem (1), especially those with fast convergence and good numerical performance, it is another motivation behind the present study.

Based on the above discussions, in this paper we further investigate the numerical method for problem (1) and propose a unified derivative-free projection method model. Under much weaker assumptions than monotonicity and Lipschitz continuity, the proposed method model is proved to be global convergence. Moreover, we also discuss the convergence rate of the method model under some suitable conditions.

The rest of the paper is organized as follows. In Section 2, we outline a unified method model for solving problem (1). Section 3 is devoted to analyze the global convergence of the proposed model under some mild conditions. In Section 4, we analyze the convergence rate of the proposed model under some assumptions. In Section 5, a practical derivative-free projection algorithm for solving large-scale nonlinear equations (1) is devised, then numerical experiments and related comparisons are reported to show the efficiency of the practical algorithm. Application of the proposed practical method in obstacle and free boundary problems is introduced in Section 6. Some conclusions are summarized in the final section.

2. Description of method model. In this section, we propose a derivative-free projection method model for solving the problem (1), and then give some remarks and results on this model.

To describe the method model, we first introduce the definition of projection operator \(P_X[\cdot] \) (see [24] for example), which is defined as a mapping from \(\mathbb{R}^n \) to a nonempty closed convex subset \(X \):

\[
P_X[x] = \arg \min_{y \in X} \{\|y - x\|\}, \quad \forall x \in \mathbb{R}^n.
\]

A famous property of this operator is that it is nonexpansive, namely,

\[
\|P_X[x] - P_X[y]\| \leq \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.
\]

Now, the method model is outlined as follows.

Algorithm Model (AM)

Step 0. Given an initial point \(x_0 \in X \), \(\sigma \in (0, 1) \), \(\rho \in (0, 1) \), and \(\tau > 0 \). Set \(k := 0 \).
Step 1. Stop if $\|F_k\| = 0$.

Step 2. Construct a direction d_k satisfying the condition (2).

Step 3. Compute the trial point $z_k = x_k + \alpha_k d_k$, where α_k is chosen to satisfy the line search scheme (5).

Step 4. If $\|F(z_k)\| = 0$, stop. Otherwise, compute the next iterate x_{k+1} using

$$x_{k+1} = P_X \left[x_k - \xi_k F(z_k) \right],$$

where $\xi_k := \frac{F(z_k)^T (x_k - z_k)}{\|F(z_k)\|^2}$.

Step 5. Set $k := k + 1$, and go to Step 1.

Remark 2.1. It is clear that this is a conceptual algorithm model, since we have omitted some details needed to specify a complete procedure, for example, an iterative format for determining d_k in Step 2.

Remark 2.2. Note that in Step 3, the stepsize α_k can be chosen to satisfy one of the above-mentioned four line search schemes. Here, the reason why we choose the line search scheme (5) to obtain α_k is that it can be viewed as an improved version of the line schemes I and II, and that it can avoid calculating the weight λ_k in the scheme (6).

The following lemma shows that Algorithm AM is well defined when the solution of (1) is not found.

Lemma 2.1. Algorithm AM is well defined, i.e., there exists a nonnegative integer i_k satisfying the line search scheme (5) for any k.

Proof. Suppose on the contrary that there is an integer $k_0 \geq 0$ such that (5) is not satisfied for any nonnegative integer i, i.e.,

$$-F(x_{k_0} + \tau \rho^i d_{k_0})^T d_{k_0} < \sigma \tau \rho^i \gamma_{k_0} \|d_{k_0}\|^2,$$

where $\gamma_{k_0} = \frac{\|F(x_{k_0} + \tau \rho^i d_{k_0})\|}{1 + \|F(x_{k_0} + \rho^i d_{k_0})\|}$. Since F is continuous and $\rho \in (0, 1)$, passing onto the limit as $k \to +\infty$ in (11), we obtain

$$-F(x_{k_0})^T d_{k_0} \leq 0.$$

On the other hand, it follows from (2) and $F_k \not= 0$ for any k that

$$-F(x_k)^T d_k \geq c_1 \|F_k\|^2 > 0, \; \forall k.$$

This contradicts (12). This proof is then completed. \hfill \Box

3. Global convergence analysis. This section is devoted to studying the global convergence of Algorithm AM. For this purpose, we first make the following assumptions.

A1. There exists a point $x^* \in X^*$ such that

$$F(x)^T (x - x^*) \geq 0, \; \forall x \in \mathbb{R}^n.$$

A2. The sequence $\{d_k\}$ is bounded if whenever the sequence $\{F_k\}$ tends to a nonzero vector.

Remark 3.1. Assumption A1 was first introduced to established the global convergence of the projection algorithms for variational inequality problem by Solodov
and Svaiter [21]. Subsequently, it was used by Zheng [30] to prove the global convergence of the projection method for constrained equations. Note that Assumption A1 holds if the mapping F is monotone, i.e.,

$$[F(x) - F(y)]^T(x - y) \geq 0, \ \forall x, y \in \mathbb{R}^n,$$

(14)

or pseudomonotone, i.e., for all $x, y \in \mathbb{R}^n$,

$$F(y)^T(x - y) \geq 0 \Rightarrow F(x)^T(x - y) \geq 0, \ \forall x, y \in \mathbb{R}^n,$$

(15)

but not vice versa (see [21] for instance). Hence, Assumption A1 is weaker than monotonicity of F used in the existing derivative-free projection methods for the problem (1).

Remark 3.2. It is clear that Assumption A2 is satisfied if the sequence $\{d_k\}$ is bounded. Hence, Assumption A2 can be replaced by the following assumption:

A2'. The sequence $\{d_k\}$ is bounded.

It should be pointed out that for the existing derivative-free projection methods for solving the problem (1), Assumption A2 or A2' can be verified to be always satisfied, see [13, 1, 12, 7, 17, 25, 27, 11, 3, 28, 2, 16] for example.

In what follows, we always assume that $F_k \neq 0$ and $F(z_k) \neq 0$ for some k, i.e., Algorithm AM generates two infinite sequences $\{x_k\}$ and $\{z_k\}$, otherwise, a solution to (1) is found.

Lemma 3.1. Let $x^* \in X^*$. If Assumption A1 holds, then we have

$$\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - \frac{\sigma^2\|x_k - z_k\|^4}{(1 + \|F(z_k)\|)^2}, \ \forall k. $$

(16)

Furthermore, the sequence $\{x_k\}$ is bounded.

Proof. From Step 3 of algorithm AM, it follows that

$$F(z_k)^T(x_k - z_k) = -\alpha_k F(z_k)^T d_k \geq \sigma \gamma_k \alpha^2_k \|d_k\|^2 = \sigma \gamma_k \|x_k - z_k\|^2,$$

(17)

where $z_k = x_k + \alpha_k d_k$, and $\gamma_k = \frac{\|F(z_k)\|}{1 + \|F(z_k)\|}$. By A1 and $x^* \in X^*$, we get

$$F(z_k)^T(x_k - z_k) = F(z_k)^T(x_k - z_k) + F(z_k)^T(z_k - x^*) \geq F(z_k)^T(z_k - z_k).$$

(18)

Combining (17) and (18) gives

$$\langle F(z_k), x_k - x^* \rangle \geq \sigma \gamma_k \|x_k - z_k\|^2.$$

(19)

Then, by (9), (10), (17) and (18), we deduce that

$$\|x_{k+1} - x^*\|^2 = \|P_X [x_k - \xi_k F(z_k)] - P_X [x^*]\|^2$$

$$\leq \|x_k - x^*\|^2 - 2\xi_k F(z_k)^T(x_k - x^*) + \xi_k^2 \|F(z_k)\|^2$$

$$\leq \|x_k - x^*\|^2 - 2\xi_k F(z_k)^T(x_k - z_k) + \xi_k^2 \|F(z_k)\|^2$$

$$= \|x_k - x^*\|^2 - \left(\frac{\|F(z_k)\|^2}{1 + \|F(z_k)\|}\right)^2$$

$$\leq \|x_k - x^*\|^2 - \frac{\sigma^2\|x_k - z_k\|^4}{(1 + \|F(z_k)\|)^2}, \ \forall k,$$

(20)

which implies that the assertion (16) is true.

Furthermore, it follows from (16) that

$$\|x_k - x^*\| \leq \|x_{k-1} - x^*\| \leq \cdots \leq \|x_0 - x^*\|, \ \forall k.$$

This further implies that $\{x_k\}$ is bounded. This completes the proof. \qed
Lemma 3.2. Suppose that Assumptions A1 and A2 hold. If there exists \(\varepsilon > 0 \) such that
\[
\|F_k\| \geq \varepsilon, \tag{21}
\]
then the sequence \(\{z_k\} \) is bounded. Furthermore, we have
\[
\lim_{k \to +\infty} \|x_k - z_k\| = \lim_{k \to +\infty} \alpha_k \|d_k\| = 0. \tag{22}
\]
Proof. By A2 and (21), it follows that the sequence \(\{d_k\} \) is bounded. This fact together with the boundedness of \(\{x_k\} \) (see Lemma 3.1) and \(\alpha_k \leq \tau \) for all \(k \) implies that the sequence \(\{z_k\} | z_k = x_k + \alpha_k d_k, k = 0, 1, \cdots \} \) is also bounded.

Let \(x^* \in X^* \). Then, by the boundedness of \(\{z_k\} \) and the continuity of \(F \), we deduce that \(\{F(z_k)\} \) is bounded, i.e., there exists a constant \(c_2 > 0 \) such that
\[
\|F(z_k)\| \leq c_2, \quad \forall k, \tag{23}
\]
which, together with (16), implies that
\[
\sigma^2 \frac{1}{(1 + c_2)^2} \sum_{k=0}^{+\infty} \|x_k - z_k\|^4 \leq \sigma^2 \sum_{k=0}^{+\infty} \frac{\|x_k - z_k\|^4}{(1 + \|F(z_k)\|)^2} \leq \|x_0 - x^*\|^2 < +\infty. \tag{24}
\]
This further implies that the assertion (22) is true. This completes the proof. \(\square \)

Remark 3.3. In Lemma 3.2, if the condition (21) is removed and Assumption A2 is replaced by Assumption A2', the conclusion still holds.

Using these lemmas mentioned above, we obtain the following global convergence property of Algorithm AM.

Theorem 3.3. Suppose that Assumptions A1 and A2 hold. Then we have
\[
\lim_{k \to +\infty} \inf \|F_k\| = 0. \tag{25}
\]
Furthermore, the whole sequence \(\{x_k\} \) converges to a solution \(\bar{x} \) of problem (1).

Proof. The proof is similar to that of Theorem 3.1 in [28]. \(\square \)

Remark 3.4. From Theorem 3.3, we see that the global convergence of Algorithm AM is established without the assumptions of monotonicity and Lipschitz continuity. However, for the existing derivative-free projection methods for solving large-scale nonlinear equations (1), these assumptions are essential to prove the global convergence property (see [13, 1, 12, 7, 17, 25, 27, 11, 3, 28, 2, 16] for instance). Therefore, the assumptions in this paper are considerably weaker.

4. Analysis of convergence rate. In this section, we analyze the convergence rate of Algorithm AM when it is applied to problem (1). For this purpose, we need the following assumptions.

A3. The mapping \(F \) is Lipschitz continuous on the nonempty closed convex set \(X \), i.e., there exists a constant \(L > 0 \) such that
\[
\|F(x) - F(y)\| \leq L \|x - y\|, \quad \forall x, y \in X, \tag{26}
\]

A4. There exists a constant \(c_3 > 0 \) such that
\[
\|d_k\| \leq c_3 \|F_k\|, \quad \forall k. \tag{27}
\]
A5. $\|F(x)\|^2$ provides a local error bound on some neighborhood $\mathcal{N}(x^*, \delta)$ of $x^* \in X^*$, i.e., there exist constant $c_4 > 0$ and $\delta \in (0, 1)$ such that
\[
\|F(x)\|^2 \geq c_4 \text{dist}(x, X^*), \quad \forall x \in \mathcal{N}(x^*, \delta) \cap X,
\]
where $\text{dist}(x, X^*) = \inf_{y \in X^*} \|x - y\|$, and $\mathcal{N}(x^*, \delta) = \{x \in \mathbb{R}^n \|x - x^*\| \leq \delta\}$.

Remark 4.1. Assumption A3 is standard. For many of the existing derivative-free projection methods for solving the problem (1), Assumption A4 can be verified to be satisfied, see [13, 1, 7, 17, 25, 11, 3, 28, 16] for details. Of course, whether the direction d_k satisfies the condition (27) or not depends entirely on its construction.

It is noted that for the existing derivative-free projection methods for problem (1), the sequence $\{x_k\}$ can be proved to be always bounded when F is continuous and monotone, see [13, 1, 12, 7, 17, 25, 27, 11, 3, 28, 16] for instance. This fact together with A4 and the continuity of F further implies that the sequence $\{d_k\}$ is also bounded (i.e., Assumption A2' is satisfied), so is the sequence $\{z_k\}$.

Remark 4.2. It follows from (16) that $x_{k+1} \in \mathcal{N}(x^*, \delta)$ if $x_k \in \mathcal{N}(x^*, \delta)$ for all k.

To analyze the convergence rate of Algorithm AM, we need the following lemma. Since its proof is similar to that of Lemma 2 in [2], we therefore omit it here.

Lemma 4.1. Suppose that Assumption A3 holds. Then there exists a constant $\gamma > 0$ such that the stepsize α_k defined in Step 3 of Algorithm AM satisfies
\[
\alpha_k \geq \min\{\tau, \gamma \frac{\|F_k\|^2}{\|d_k\|^2}\}, \quad \forall k,
\]
where $\gamma = \frac{\tau}{L + \sigma}$.

Theorem 4.2. Let $\{x_k\}$ be an infinite sequence generated by AM. Suppose that Assumptions A1, A3, A4 and A5 hold. Then the distance sequence $\{\text{dist}(x_k, X^*)\}$ Q-linearly converges to 0.

Proof. Let $\bar{x}_k \in X^*$ be such that
\[
\|x_k - \bar{x}_k\| = \text{dist}(x_k, X^*). \quad (30)
\]
Then, it follows from (16) and (30) that
\[
\text{dist}^2(x_{k+1}, X^*) \leq \|x_{k+1} - \bar{x}_k\|^2 \leq \text{dist}^2(x_k, X^*) - \frac{\sigma^2 \|x_k - z_k\|^4}{(1 + \|F(z_k)\|^2)^2}, \quad \forall k. \quad (31)
\]
From A4 and (29), it follows that there exists a positive constant $c_5 = \min\{\tau, \frac{\gamma}{L + \sigma}\}$ such that
\[
\alpha_k \geq \min\{\tau, \gamma \frac{\|F_k\|^2}{\|d_k\|^2}\} \geq c_5, \quad \forall k. \quad (32)
\]
Moreover, by (2) and the Cauchy-Schwarz inequality, we get
\[
\|d_k\| \geq c_1 \|F_k\|. \quad (33)
\]
Combining this inequality with (32) and (28) yields
\[
\|x_k - z_k\|^2 = c_4 \|d_k\|^2 \geq c_4 c_1^2 \|F_k\|^2 \geq (c_1 c_5)^2 c_4 \text{dist}(x_k, X^*), \quad \forall k. \quad (34)
\]
Note that $\{z_k\}$ is bounded by Remark 4.1, then it follows from the continuity of F that $\{F(z_k)\}$ is also bounded, i.e., there exists a positive constant c_6 ($c_6 \geq \sigma (c_1 c_5)^2 c_4$) such that
\[
\|F(z_k)\| \leq c_6, \quad \forall k. \quad (35)
\]
This inequality (35) together with (31) and (34) implies that
\[
\text{dist}^2(x_{k+1}, X^*) \leq \text{dist}^2(x_k, X^*) - \frac{\sigma^2(c_1c_5)^4\sigma_1^2}{(1+c_6)^2}\text{dist}^2(x_k, X^*)
\]
where $c_7 = 1 - \frac{\sigma^2(c_1c_5)^4\sigma_1^2}{(1+c_6)^2} < (0, 1)$. Then, the desired conclusion directly follows from (36). The proof is completed. \(\square\)

Now, let us discuss the convergence rate of the sequence \(\{x_k\}\) generated by Algorithm AM. To this end, we need the following lemma, which is from Lemma 6 in Chapter 2 of [19].

Lemma 4.3. Let $u_k > 0$ and let
\[
u_{k+1} \leq u_k - a_k u_k^{1+p}, \quad a_k \geq 0, \quad p > 0.
\]
Then
\[
u_k \leq u_0 \left(1 + pu_0^{k-1} \sum_{i=0}^{k-1} a_i\right)^{-\frac{1}{p}}.
\]
In particular, if $a_k \equiv a$, $p = 1$, then
\[
u_k \leq \frac{u_0}{1 + au_0^k}.
\]

Theorem 4.4. Let \(\{x_k\}\) be an infinite sequence generated by AM. Suppose that Assumptions A3 and A4 hold. If the mapping F is strongly monotone with modulus $\mu > 0$, i.e.,
\[\langle F(x) - F(y), x - y \rangle \geq \mu \|x - y\|^2, \quad \forall x, y \in X,\]
then the sequence \(\{x_k\}\) converges to a solution $x^* \in X$ at a R-sublinear rate, i.e.,
\[\lim_{k \to +\infty} \sup \|x_k - x^*\| \leq 1.
\]

Proof. By the strong monotonicity of F and the Cauchy-Schwarz inequality, we get
\[\|F_k\| = \|F_k - F(\bar{x})\| \geq \mu \|x_k - \bar{x}\|,
\]
which, together (32) and (33), implies that
\[\|x_k - z_k\| = \alpha_k \|d_k\| \geq c_5 c_1 \|F_k\| \geq c_5 c_1 \mu \|x_k - \bar{x}\|.
\]
Combining this inequality with (35) and (16) yields
\[
\|x_{k+1} - \bar{x}\|^2 \leq \|x_k - \bar{x}\|^2 - \frac{\sigma^2 \|x_k - z_k\|^4}{(1 + \|F(x_k)\|^2)} \leq \|x_k - \bar{x}\|^2 - \frac{\sigma^2 (c_5 c_1 \mu)^4}{(1+c_6)^2} \|x_k - \bar{x}\|^4
\]
where $c_8 := \frac{\sigma^2 (c_5 c_1 \mu)^4}{(1+c_6)^62}$. Then, using Lemma 4.3 with $u_k = \|x_k - \bar{x}\|^2$ and $a_k \equiv c_8$, we obtain
\[
\|x_k - \bar{x}\|^2 \leq \frac{\|x_0 - \bar{x}\|^2}{1 + c_8 \|x_0 - \bar{x}\|^2 k},
\]
i.e.,
\[
\|x_k - \bar{x}\| \leq \frac{1}{\sqrt{c_8 k + \|x_0 - \bar{x}\|^2 k}} \leq \frac{1}{\sqrt{c_8 k}},
\]
which shows the truth of (40). The proof is completed. \(\square\)
5. **A practical algorithm.** In this section, a practical algorithm for solving the problem (1.1) is proposed to verify the feasibility and effectiveness of the model AM, based on a two-parameter scaled memoryless BFGS methods [4] (abbreviated as TPSMBFGS method).

5.1. **Algorithm.** Let us first simply recall the TPSMBFGS method for unconstrained optimization. Consider the following problem:

\[
\min_{x \in \mathbb{R}^n} f(x),
\]

where \(f : \mathbb{R}^n \to \mathbb{R} \) is a continuously differentiable function. The TPSMBFGS method has been successfully used to solve the problem (44), which consists of iteration of the form

\[
x_{k+1} = x_k + a_k d_k,
\]

where \(a_k > 0 \) is a stepsize obtained by a suitable line search scheme (see [22] for details), and \(d_k \) is the search direction defined by

\[
\begin{cases}
 d_k &= -H_k g_k, \quad (k \geq 1), \\
 d_0 &= -g_0,
\end{cases}
\]

where \(g_k \) is the gradient of \(f \) at \(x_k \), and \(H_k \) is updated by the following two-parameter scaled memoryless BFGS updating formula

\[
H_{k+1} = \theta_k I - \theta_k \frac{s_k y_k^T + y_k s_k^T}{s_k^T y_k} + \left(1 + \gamma_k \frac{\|y_k\|^2}{s_k^T y_k} \right) \frac{s_k s_k^T}{s_k^T y_k}
\]

(47)

with

\[
s_k = x_{k+1} - x_k, \quad y_k = g_{k+1} - g_k,
\]

\[
\theta_k = \frac{1}{\frac{1}{2} - \eta \|y_k\|^2}, \quad \gamma_k = \eta \theta_k, \quad 1 \leq \eta < 2.
\]

As we know, \(\{H_k\} \) is a symmetric positive definite matrix sequence when \(s_k^T y_k > 0 \) for all \(k \) (see [4] for details).

To extend the idea of TPSMBFGS method to solving nonlinear equations (1), we define the search direction \(d_k \) as follows:

\[
\begin{cases}
 d_k &= -\overline{H}_k F_k, \quad (k \geq 1), \\
 d_0 &= -F_0,
\end{cases}
\]

(49)

where \(\overline{H}_k \) is updated by

\[
\overline{H}_{k+1} = \overline{\theta}_k I - \overline{\theta}_k \frac{s_k z_k^T + z_k s_k^T}{s_k^T z_k} + \left(1 + \overline{\gamma}_k \frac{\|z_k\|^2}{s_k^T z_k} \right) \frac{s_k s_k^T}{s_k^T z_k}
\]

(50)

with

\[
s_k = x_{k+1} - x_k, \quad z_k = F_{k+1} - F_k + r s_k, \quad r > 0,
\]

\[
\overline{\theta}_k = \frac{1}{\frac{1}{2} - \eta \|z_k\|^2}, \quad \overline{\gamma}_k = \eta \overline{\theta}_k, \quad 1 \leq \eta < 2.
\]

Remark 5.1. If the mapping \(F \) is monotone, then

\[
z_k^T s_k = (F_{k+1} - F_k)^T (x_{k+1} - x_k) + r \|s_k\|^2 \geq r \|s_k\|^2 > 0, \quad \forall k,
\]

(52)

which ensure that \(\overline{H}_k \) is a symmetric positive definite matrix for all \(k \). This fact together with the Sherman-Morrison formula (see [22] for details) implies that

\[
\overline{B}_{k+1} := \overline{H}^{-1}_{k+1} = \frac{1}{\theta_k} - \frac{s_k s_k^T}{\theta_k \|s_k\|^2} + \frac{z_k z_k^T}{s_k^T z_k + (\overline{\gamma}_k - \theta_k) \|z_k\|^2}
\]

(53)

is also a symmetric positive definite matrix for all \(k \).
Now, we describe the detailed algorithm for solving problem (1) as follows.

Algorithm 5.1

Step 0. Given \(r > 0 \), \(\eta \in [1, 2) \), \(\sigma \in (0, 1) \), \(\rho \in (0, 1) \), \(\tau > 0 \), \(\epsilon \geq 0 \), and \(x_0 \in X \). Set \(k := 0 \).

Step 1. If \(\|F_k\| \leq \epsilon \), stop.

Step 2. Construct a direction \(d_k \) using (49)-(51).

Step 3. Compute the trial point \(z_k = x_k + \alpha_k d_k \), where \(\alpha_k \) is chosen to satisfy the line search scheme (5).

Step 4. If \(\|F(z_k)\| \leq \epsilon \), stop. Otherwise, compute the next iterate \(x_{k+1} \) using

\[
x_{k+1} = X_k \left[x_k - \xi_k F(z_k) \right],
\]

where \(\xi_k := \frac{(F(z_k), x_k - z_k)}{\|F(z_k)\|^2} \).

Step 5. Set \(k := k + 1 \), and go to Step 1.

5.2. Convergence property

To analyze the convergence properties of Algorithm 5.1, we need the following results.

Lemma 5.1. Suppose that Assumption A3 holds. If the mapping \(F \) is monotone, then there exist two positive constants \(c_9 \) and \(c_{10} \) such that

\[
F_k^T d_k \leq -c_9 \|F_k\|^2, \quad \forall k,
\]

and

\[
\|d_k\| \leq c_{10} \|F_k\|, \quad \forall k.
\]

Proof. From (50) and (53), it follows that the trace of \(\bar{H}_{k+1} \) and \(\bar{H}_{k+1}^{-1} \) can be computed respectively by

\[
tr(\bar{H}_{k+1}) = (n - 2) \bar{\theta}_k + \left(1 + \eta \bar{\theta}_k \right) \|s_k\|^2 / s_k^T z_k,
\]

and

\[
tr(\bar{H}_{k+1}^{-1}) = \frac{n - 1}{\bar{\theta}_k} + \frac{\|z_k\|^2}{s_k^T z_k} / (\eta - 1) \bar{\theta}_k / \|z_k\|^2.
\]

Then, it follows from (52) and A3 that

\[
\|s_k^T z_k\| / \|z_k\|^2 \leq \frac{\|s_k\|^2}{s_k^T z_k} \leq \frac{1}{r},
\]

and

\[
\|z_k\|^2 / s_k^T z_k \leq \frac{(\|F_{k+1} - F_k\| + r \|s_k\|)^2}{r \|s_k\|^2} \leq \frac{(L + r)^2 \|s_k\|^2}{r \|s_k\|^2} = \frac{(L + r)^2}{r},
\]

and thus

\[
\bar{\theta}_k = \frac{1}{\eta \|z_k\|^2} \leq \frac{1}{r(2 - \eta)},
\]

\[
\frac{1}{\bar{\theta}_k} = \frac{2 - \eta \|z_k\|^2}{s_k^T z_k} \leq \frac{(2 - \eta)(L + r)^2}{r}.
\]

Combining the above inequalities with (56) and (57) gives

\[
tr(\bar{H}_{k+1}) \leq \frac{(n - 2)}{(2 - \eta) r} + \left(1 + \frac{r(2 - \eta)}{\eta(2 - \eta)} \right) \left(L + r \right)^2 / r.
\]

and

\[
tr(\bar{H}_{k+1}^{-1}) \leq \frac{(n - 1)}{\bar{\theta}_k} + \frac{1}{(\eta - 1) \bar{\theta}_k} \leq \left(n - 1 + \frac{1}{\eta - 1} \right) \frac{(2 - \eta)(L + r)^2}{r}.
\]
Now, we prove the inequalities (54) and (55). For \(k = 0, d_0 = -F_0 \), and thus
\[
F_0^T d_0 = -\|F_0\|^2, \quad \|d_0\| = \|F_0\|.
\] (64)
For \(k \geq 0 \), it follows from (62)-(63) and (49) that
\[
-F_{k+1}^T d_{k+1} = F_{k+1}^T \tilde{H}_{k+1} F_{k+1} \geq \frac{\|F_{k+1}\|^2}{\|\tilde{H}_{k+1}\|} \geq \frac{\|F_{k+1}\|^2}{\text{tr}(\tilde{H}_{k+1})} \geq \frac{\|F_{k+1}\|^2}{c_{11}},
\] (65)
where \(c_{11} = (n - 1 + \frac{1}{(q-1)}) \frac{(2-q)(L+r)^2}{r} \), and \(c_{12} = (n - 1 + \frac{1}{(q-1)}) \frac{(2-q)(L+r)^2}{r} \).

Taking \(\delta_9 = \min\{1, \frac{1}{3}\} \) and \(\delta_{10} = \max\{1, c_{12}\} \), then the desired conclusions follow directly from (64), (65) and (66). The proof is completed. \(\Box \)

Now, we give the convergence properties of Algorithm 5.1. Since they can be proven by using the same argument as that in Theorems 4.2 and 4.4, we therefore omit the proof.

Theorem 5.2. Let \(\{x_k\} \) be an infinite sequence generated by Algorithm 5.1. Suppose that Assumptions A3 and A5 hold. If the mapping \(F \) is monotone, then the distance sequence \(\{\text{dist}(x_k, X^*)\} \) Q-linearly converges to 0.

Theorem 5.3. Let \(\{x_k\} \) be an infinite sequence generated by Algorithm 5.1. Suppose that Assumption A3 holds. If the mapping \(F \) is strongly monotone with modulus \(\mu > 0 \), then the sequence \(\{x_k\} \) converges to a solution \(\hat{x} \in X^* \) at a sublinear rate.

At the end of this section, it should be mentioned that under common conditions as noted in Theorem 5.3, the sequence \(\{x_k\} \) generated by the algorithm [16] is R-linearly convergent to \(x^* \). Obviously, this conclusion is different from that of Theorem 4.4 in this paper. The reason why there are such different results lies in the different ways of choosing the stepsize \(\alpha_k \). Therefore, in the future research, we should discuss how to devise a more effective line search scheme to construct a derivative-free projection method for solving problem (1).

5.3. Numerical experiments.

In this subsection, we report some numerical results of Algorithm 5.1 on a set of test problems with four different initial points:
\[
x_{01} = (5,5,...,5)^T; \quad x_{02} = (1, \frac{1}{2}, ..., \frac{1}{n}); \quad x_{03} = (\frac{1}{n}, \frac{2}{n}, ..., 1)^T; \quad x_{04} = \text{rand}(n,1).
\]

Meanwhile, we compare it with some related algorithms including Ou-Li’s algorithm (OLA) [16] and Xiao-Zhu’s algorithm (XZA) [27]. All codes were written in Matlab 7.0 and run on a PC computer with CPU 2.60 GHZ and 2.00 GB memory.

The test problems are listed as follows (see [27, 2, 16] for example), where the mapping \(F \) is defined as \(F(x) = (F_1(x), F_2(x), \cdots, F_n(x))^T \).

Problem 1. Strictly convex function I:
\[
F_i(x) = \exp(x_i) - 1, i = 1, 2, \cdots, n,
\]
and \(X = \{ x \in \mathbb{R}^n | x_i \geq 0, i = 1, 2, \cdots, n \} \).

Problem 2. Strictly convex function II:
\[
F_i(x) = \frac{i}{n} \exp(x_i) - 1, i = 1, 2, \cdots, n,
\]
and \(X = \{ x \in \mathbb{R}^n | x_i \geq 0, i = 1, 2, \cdots, n \} \).
Problem 3. Non-smooth function

\[F_i(x) = x_i - \sin(|x_i|), \quad i = 1, 2, \ldots, n, \]
and \(X = \{ x \in \mathbb{R}^n \mid \sum_{i=1}^{n} x_i \leq n, x_i \geq 0, \quad i = 1, 2, \ldots, n \} \).

Problem 4. Tridiagonal exponential function:

\[
\begin{align*}
F_i(x) &= x_1 - \exp(\cos(\frac{x_1 + x_2}{n+1})), \\
F_i(x) &= x_i - \exp(\cos(\frac{x_{i-1} + x_i + x_{i+1}}{n+1})), \quad i = 2, \ldots, n - 1, \\
F_n(x) &= x_n - \exp(\cos(\frac{x_{n-1} + x_n}{n+1})),
\end{align*}
\]
and \(X = \{ x \in \mathbb{R}^n \mid x_i \geq 0, \quad i = 1, 2, \ldots, n \} \).

Problem 5. Exponential function:

\[
\begin{align*}
F_1(x) &= \exp(x_1) - 1, \\
F_i(x) &= \exp(x_i) + x_{i-1} - 1, \quad i = 2, 3, \ldots, n, \\
F_n(x) &= 2x_n + \sin(x_n) - 1,
\end{align*}
\]
and \(X = \{ x \in \mathbb{R}^n \mid x_i \geq 0, \quad i = 1, 2, \ldots, n \} \).

Problem 6. Function:

\[
\begin{align*}
F_1(x) &= 2x_1 + \sin(x_1) - 1, \\
F_i(x) &= 2x_{i-1} + 2x_i + \sin(x_i) - 1, \quad i = 2, 3, \ldots, n - 1, \\
F_n(x) &= 2x_n + \sin(x_n) - 1,
\end{align*}
\]
and \(X = \{ x \in \mathbb{R}^n \mid x_i \geq 0, \quad i = 1, 2, \ldots, n \} \).

Problem 7. Function

\[F(x) = Ax + g(x), \]

where

\[g(x) = (\exp(x_1) - 1, \exp(x_2) - 1, \ldots, \exp(x_n) - 1)^T, \]
and

\[
A = \begin{pmatrix}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \cdots & 0 \\
0 & -1 & 2 & -1 & \cdots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & -1 & 2 \\
\end{pmatrix},
\]
and \(X = \{ x \in \mathbb{R}^n \mid 1 \leq x_i \leq 5, \quad i = 1, 2, \ldots, n \} \).

Problem 8. Function

\[F_i(x) = 2x_i - \sin(|x_i|), \quad i = 1, 2, \ldots, n, \]
and \(X = \{ x \in \mathbb{R}^n \mid \sum_{i=1}^{n} x_i \leq n, x_i \geq 0, \quad i = 1, 2, \ldots, n \} \).

Problem 9. Function

\[
\begin{align*}
F_1(x) &= 2.5x_1 + x_2 - 1, \\
F_i(x) &= x_{i-1} + 2.5x_i + x_{i+1} - 1, \quad i = 2, 3, \ldots, n - 1, \\
F_n(x) &= x_{n-1} + 2.5x_n - 1,
\end{align*}
\]
and \(X = \{ x \in \mathbb{R}^n \mid x_i \geq 0, \quad i = 1, 2, \ldots, n \} \).

Problem 10. Function:

\[
\begin{align*}
F_1(x) &= 2x_1 - x_2 + \exp(x_1) - 1, \\
F_i(x) &= -x_{i-1} + 2x_i - x_{i+1} + \exp(x_i) - 1, \quad i = 2, 3, \ldots, n - 1, \\
F_n(x) &= -x_{n-1} + 2x_n + \exp(x_n) - 1,
\end{align*}
\]
and \(X = \{ x \in \mathbb{R}^n \mid x_i \geq 0, \quad i = 1, 2, \ldots, n \} \).
Throughout the numerical experiments, the parameters used in Algorithm 5.1 are chosen as follows: $\eta = 1$, $r = 0.001$, $\sigma = 0.001$, $\rho = 0.5$ and $\tau = 1$; the parameters used in Algorithm XZA are chosen as follows: $\xi = 1$, $\rho = 0.5$ and $\sigma = 0.001$, while the parameters used in Algorithm OLA are the same as that in [16]. Furthermore, all runs are terminated whenever
\[\|F(x_k)\| \leq 10^{-5}, \text{ or } \|F(z_k)\| \leq 10^{-5}. \]
We also terminate the iteration when it exceeds the preset iteration limit 5000.

The numerical results are listed in Appendix 1-Appendix 3 with the form of $NI/NF/CPU$, where we report the test problems (P), the dimension of variables (n), the initial points x_0, the number of iterations (NI), the number of function evaluations (NF), and the cpu-time in seconds (CPU).

We use the performance profile proposed by Dolan and Moré [6] to display the performance of each implementation on the set of test problems with the number of variables $n =$5000, 10000 and 50000, respectively. Based on the testing results in Appendix 1-Appendix 3, we draw the performance profiles in Figs. 1, 2 and 3 for NI, NF and CPU, respectively.
From Figs. 1, 2 and 3, we observe the following facts:

- For the test problems, Algorithm 5.1 performs worse than Algorithm OLA, and both of them performs better than Algorithm XZA in terms of the number of iterations (NI), since with the least number of iterations, Algorithm 5.1 and Algorithm OLA successfully solve about 36% and 62% of the test problems, respectively, while in the same situation, the percentage of XZA is 12%.

- For the test problems, Algorithm 5.1 performs better than Algorithms OLA and XZA in terms of function evaluations, since with the least number of function evaluations, Algorithm 5.1 successfully solves about 62.5% of the test problems, while in the same situation, the percentages of OLA and XZA are 47.5% and 1%, respectively.

- For the test problems, Algorithm 5.1 has great advantage over Algorithms OLA and XZA in terms of the CPU time, since with the least average CPU time, Algorithm 5.1 successfully solves about 74% of the test problems, while in the same situation, the percentages of Algorithms OLA and XZA are about 18% and 8%, respectively.

Therefore, we could say that Algorithm 5.1 is computationally preferable to Algorithms OLA and XZA, at least for the set of test problems.

While it would be unwise to draw some firm conclusions from the limited numerical results, they indicate some promise for the new method proposed in this paper, compared with the existing Algorithms OLA and XZA.

6. Application in obstacle and free boundary problems.

6.1. Description of the problem. In recent years, the obstacle problem has attracted much attention due to its wide application background (see [5] for instance). This problem is to find the equilibrium position of an elastic membrane that is held at a fixed position on its boundary and lies over an obstacle.

Consider stretching an elastic string fixed at the endpoints (0, 0) and (4, 0) over an obstacle defined by a parabola function $f(x) = 1 - (x - 2.2)^2$ (see Figure 4). Notice that the position of the string will be determined by $f(x)$ for x between the unknown points P and Q, and that in the intervals $0 \leq x \leq P$ and $Q \leq x \leq 4$, the string
A unified derivative-free projection method model

Figure 4. An elastic string stretched over an obstacle

will lie along straight line segments connecting $(0,0)$ to $(P,f(P))$ and $(Q,f(Q))
to $(4,0)$, respectively. Let the function u represent the equilibrium position of the
string. Then u satisfies the conditions as follows:

$$
\begin{aligned}
&u(0) = 0, \\ &u(4) = 0, \\ &u'(P) = f'(P), \\ &u'(Q) = f'(Q), \\ &u(x) = f(x), \text{ for } P \leq x \leq Q, \\ &u''(x) = 0, \text{ for } 0 < x < P \text{ or } Q < x < 4.
\end{aligned}
$$

(67)

It is difficult for us to solve problem (67) directly. Instead, it is transformed into a
linear complementarity problem (LCP) [5], which avoids requiring the free boundaries P and Q.

As noted in [29], the function u satisfies the following conditions:

$$
\begin{aligned}
&u(0) = 0, \\ &u(4) = 0, \\ &u(x) \geq f(x), \text{ for } 0 \leq x \leq 4, \\ &u''(x) \leq 0, \\ &(u(x) - f(x))u''(x) = 0.
\end{aligned}
$$

(68)

We can solve this system (68) numerically using a central difference scheme, i.e.,
given a regular mesh with stepsize $h = \frac{4}{n}$, the function u is approximated discretely
by the vector $\tilde{u} = (u_1, u_2, \cdots, u_n)$, where $u_i = f(x_i)$ with $x_i = x_0 + ih$ ($i = 0, 1, \cdots, n$) and $x_0 = 0$. Then, the system (68) is approximated by

$$
\begin{aligned}
&u_0 = u_n = 0, \\ &u_{i-1} - 2u_i + u_{i+1} \leq 0, \\ &u_i - f(x_i) \geq 0, \\ &u_i - f(x_i) \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} = 0, \\ &i = 1, 2, \cdots, n - 1.
\end{aligned}
$$

(69)

By the simple transformation $y_i = u_i - f(x_i)$, the system (69) is equivalent to the
following LCP: Find $y \in \mathbb{R}^{n-1}$ such that

$$
w \geq 0, y \geq 0, w^T y = 0,
$$

where $w = My + q$ with $M \in \mathbb{R}^{(n-1) \times (n-1)}$ and $q \in \mathbb{R}^{n-1}$ defined respectively by

$$
M = \begin{pmatrix}
2 & -1 & & \\
-1 & 2 & -1 & \\
& & \ddots & \ddots & \ddots \\
& & \ddots & -1 & \\
& & & -1 & 2
\end{pmatrix},
q = \begin{pmatrix}
-2f(x_1) + f(x_2) \\
f(x_1) - 2f(x_2) + f(x_3) \\
\vdots \\
f(x_{n-1}) - 2f(x_{n-2}) + f(x_{n-1}) \\
f(x_{n-2}) - 2f(x_{n-1})
\end{pmatrix}.
$$
It is clear that a vector y is a solution of (70) if and only if it satisfies the following nonsmooth equations [18]

$$F(y) = \min\{y, My + q\} = 0,$$ \hspace{1cm} (71)

where the function F is vector-valued with the \min interpreted as componentwise minimum. Thus we can solve Eqs. (71) by Algorithm 5.1 effectively.

Let $y = (y_1, y_2, \cdots, y_{n-1})$ be the solution to Eqs. (71) (or LCP (70)). Then we obtain the discrete approximation \hat{u} to u at the interior grid points by the relation $u_i = y_i + f(x_i)$, $i = 1, 2, \cdots, n - 1$.

6.2. **Numerical results.** Using the above-mentioned algorithms to solve the obstacle problem, we report some numerical results in this subsection. Throughout the numerical experiments, the parameters used are chosen to be the same as that in Section 5, while the initial points are generated randomly in the interval $[0, 1]$. Moreover, We stopped the iterations when either the iteration number exceeded 10000 or the inequality $\|F(x_k)\| \leq 10^{-4}$ is satisfied.

The detailed numerical results are listed in Table 1 with the form of CPU/FN, where we report the dimension of variables (n), the cpu-time in seconds (CPU), and the final norm of F at y_k (FN).

From Table 1, we can see that for the obstacle problem, Algorithm 5.1 can be competitive with Algorithms OLA and XZA, in terms of the CPU time and the final objective accuracy.

n	Algorithm5.1	OLA (CPU/FN)	XZA (CPU/FN)
50	1.664626/9.7218e-06	1.814302/7.1023e-06	4.972539/9.9601e-06
100	10.632101/5.9094e-05	10.647692/8.0831e-05	39.520620/1.3001e-05
500	90.768111/0.0161	167.333069/0.0174	459.419363/0.0279

7. **Concluding remarks.** In this paper, we propose a unified derivative-free projection method model for large-scale nonlinear equations with convex constraints. The main property of the proposed method is that we establish the global convergence without the Lipschitz continuity and monotonicity assumptions. Furthermore, the convergence rate of the proposed method is also established under some reasonable assumptions. In order to verify the feasibility and effectiveness of the model, a practical algorithm is devised and the corresponding numerical experiments are reported, which show that the proposed practical method is efficient and can be applied to solve large-scale nonsmooth equations. Another contribution of this paper is the use of our practical method to solving the obstacle problem. The numerical experiments on obstacle problems show that our practical method is competitive with the compared ones.

Since the most computational cost of each algorithm for problem (1) is to determine the search direction d_k and find the stepsize α_k in line search, we will study some more effective methods for constructing a descent direction d_k and an inexpensive line search in our future research.

Acknowledgments. The authors would like to thank the anonymous referees and the associate editor for their patience and valuable comments and suggestions that greatly improved this paper.
A unified derivative-free projection method model

Appendix 1. Numerical Results (n=5000)

P	x0	Algorithm 5.1 (NI/NF/CPU)	OLA (NI/NF/CPU)	XZA (NI/NF/CPU)
P1	x01	7/20/0.106104	7/20/0.147386	9/57/0.171656
	x02	8/18/0.092664	8/18/0.110545	18/85/0.282896
	x03	8/18/0.107345	8/18/0.128645	21/100/0.316561
	x04	8/18/0.108259	8/18/0.121497	23/109/0.368111
P2	x01	20/53/0.305684	22/53/0.329380	34/197/0.606628
	x02	19/55/0.276160	17/48/0.279440	18/76/0.269347
	x03	24/64/0.301659	18/51/0.253223	29/131/0.439021
	x04	20/56/0.266451	26/69/0.368655	29/150/0.469068
P3	x01	8/24/0.108566	8/24/0.131143	14/76/0.218523
	x02	13/34/0.169848	16/40/0.275883	18/100/0.302666
	x03	9/21/0.120308	8/19/0.107343	23/129/0.374192
	x04	10/23/0.115714	8/19/0.146601	21/116/0.328151
P4	x01	4/10/0.072528	5/12/0.120855	14/69/0.252921
	x02	4/10/0.075093	5/12/0.120413	18/89/0.338554
	x03	4/10/0.075465	5/12/0.084672	17/83/0.307171
	x04	4/10/0.062832	5/12/0.104822	18/90/0.309595
P5	x01	19/48/0.254132	15/42/0.247090	18/105/0.310756
	x02	17/43/0.222260	14/35/0.205039	20/101/0.298898
	x03	16/42/0.176401	12/31/0.224047	19/113/0.320323
	x04	22/55/0.241117	25/65/0.330554	23/137/0.380518
P6	x01	42/110/0.547386	36/100/0.574953	38/256/0.724176
	x02	58/145/0.638433	37/115/0.530955	36/248/0.653960
	x03	57/144/0.617889	33/99/0.485122	37/261/0.674588
	x04	80/196/0.837358	66/195/0.879832	112/939/2.271418
P7	x01	58/139/21.062102	54/161/26.305742	66/525/55.153478
	x02	50/120/18.118033	45/125/21.350917	48/419/41.649118
	x03	64/152/23.787516	59/172/27.201032	82/615/2.802815
	x04	74/169/26.042134	64/175/29.736745	73/573/65.573356
P8	x01	7/17/0.096286	8/19/0.120349	11/58/0.167877
	x02	6/14/0.084938	6/15/0.111063	16/84/0.241674
	x03	7/16/0.082715	6/14/0.085867	23/120/0.343313
	x04	7/16/0.097362	6/14/0.103871	22/109/0.347084
P9	x01	48/118/0.576797	72/198/0.951439	28/185/0.456993
	x02	27/73/0.283217	50/145/0.750436	626/6478/13.990421
	x03	80/187/0.784093	84/203/0.893276	242/2464/5.289804
	x04	93/207/0.937570	95/229/1.041198	429/4558/9.745147
P10	x01	77/176/0.910051	61/175/0.945501	92/709/1.844008
	x02	46/111/0.497183	46/125/0.737076	47/409/1.037076
	x03	69/161/0.717932	59/172/0.817132	90/738/1.856715
	x04	74/169/0.825584	62/169/0.857298	78/593/1.517098
APPENDIX-2. Numerical Results (n=10000)

P	x0	Algorithm5.1 (NI/NF/CPU/FN)	OLA (NI/NF/CPU/FN)	XZA (NI/NF/CPU/FN)
P1	x01	7/20/0.198678	7/20/0.220884	9/57/0.305319
	x02	8/18/0.160055	8/18/0.182768	18/85/0.499904
	x03	9/21/0.212598	8/18/0.239102	24/118/0.693524
	x04	9/21/0.204122	8/18/0.216345	24/120/0.687622
P2	x01	26/68/0.717034	21/51/0.815161	28/150/0.927982
	x02	19/55/0.481576	18/50/0.493633	28/133/0.891733
	x03	25/67/0.643779	19/53/0.686125	27/120/0.760968
	x04	21/60/0.484723	29/82/0.682750	50/292/1.683411
P3	x01	8/24/0.194794	8/24/0.291192	14/76/0.419421
	x02	19/50/0.413520	14/37/0.343390	19/109/0.581618
	x03	9/21/0.204539	8/19/0.206205	20/106/0.590355
	x04	9/21/0.195874	8/19/0.183434	20/106/0.586361
P4	x01	4/10/0.124562	5/12/0.184362	18/89/0.613673
	x02	4/10/0.126524	5/12/0.158129	17/89/0.592864
	x03	4/10/0.160094	5/12/0.171573	21/109/0.731632
	x04	4/10/0.119214	5/12/0.162090	18/93/0.641634
P5	x01	9/26/0.228399	20/52/0.506135	11/74/0.390610
	x02	17/43/0.356433	14/35/0.353195	20/101/0.568257
	x03	11/29/0.247406	16/41/0.339989	21/131/0.685652
	x04	16/41/0.344421	9/23/0.212989	26/156/0.830173
P6	x01	62/156/1.352174	42/118/1.087519	150/1173/5.675434
	x02	65/161/1.349872	51/147/1.424847	35/257/1.306742
	x03	61/156/1.307122	42/123/0.956588	36/233/1.193513
	x04	82/200/1.695587	69/201/1.508617	65/531/2.554975
P7	x01	74/174/2.052570	71/201/2.788763	75/637/5.570837
	x02	43/104/1.209124	40/111/1.513102	46/374/3.268021
	x03	79/183/2.201611	63/187/2.423513	89/697/6.127831
	x04	71/166/2.027387	59/167/2.236851	77/587/5.224853
P8	x01	7/17/0.156426	8/19/0.232142	11/58/0.328779
	x02	6/14/0.138376	6/15/0.165895	16/82/0.463611
	x03	7/16/0.171131	6/14/0.121279	22/115/0.631024
	x04	7/16/0.158673	6/14/0.138015	19/95/0.550413
P9	x01	66/156/1.222693	68/185/1.545983	28/181/0.877929
	x02	30/80/0.665042	51/146/1.304443	304/3257/13.516349
	x03	52/124/1.011101	62/171/1.243855	25/161/0.775442
	x04	132/289/2.408427	85/247/1.740591	170/1829/7.603185
P10	x01	74/174/1.488389	65/187/1.657350	75/670/3.247027
	x02	43/104/0.886894	40/111/1.065424	47/380/1.882825
	x03	79/183/1.673381	60/178/1.413495	90/682/3.441846
	x04	70/158/1.415521	63/173/1.331438	77/608/3.039018
APPENDIX-3. Numerical Results \((n=50000) \)

\(P \)	\(x_0 \)	Algorithm 5.1 \((N1/NCF/CPU/FN)\)	OLA \((N1/NCF/CPU/FN)\)	XZA \((N1/NCF/CPU/FN)\)
P1	7/20/0.657066	8/22/0.875999	8/56/1.517435	
8/02	8/18/0.681896	8/18/0.938792	17/84/2.375818	
9/03	9/20/0.741662	8/18/0.802363	19/94/2.694325	
9/04	9/20/0.694816	8/18/0.811017	16/75/2.65480	
P2	26/68/2.337139	24/59/2.693146	27/142/4.356456	
21/50/2.183263	19/54/2.467531	24/112/3.488163		
26/70/2.410611	20/56/2.372021	30/145/4.452101		
24/66/2.207827	33/101/3.974809	44/268/7.573123		
P3	8/24/0.750872	8/24/0.997774	13/75/2.018475	
20/53/1.996364	13/32/1.478025	25/111/3.842478		
10/23/0.795941	8/19/0.787655	21/112/2.965393		
10/23/0.790232	8/19/0.853699	19/106/2.837264		
P4	4/10/0.422089	5/12/0.638775	12/63/2.100308	
4/10/0.392918	5/12/0.670729	14/77/2.520254		
4/10/0.404484	5/12/0.613995	15/80/2.644590		
4/10/0.395571	5/12/0.609066	18/104/3.319601		
P5	13/36/1.196057	18/50/1.981564	12/84/2.182320	
17/43/1.549754	14/35/1.649476	19/100/2.731096		
18/46/1.486943	9/22/0.900211	20/117/3.099405		
13/33/1.274044	18/46/1.799406	21/124/3.285520		
P6	37/99/3.259450	52/147/5.624482	35/237/6.105914	
70/174/7.176086	60/183/7.304829	31/200/5.084945		
40/111/3.555434	48/142/5.321046	37/257/6.352924		
90/222/7.242280	74/220/7.669101	67/517/12.250560		
P7	74/180/10.428094	66/199/12.945232	97/750/33.050593	
45/106/6.392777	44/120/8.705869	47/316/14.364987		
76/174/10.662135	68/195/12.680697	105/880/38.275212		
69/189/9.206876	62/177/11.380591	78/591/26.327068		
P8	7/17/0.589308	8/19/0.789388	11/62/1.684645	
6/14/0.510422	6/14/0.658295	12/63/1.729378		
7/16/0.568656	7/16/0.838928	18/92/2.539715		
7/16/0.561441	7/16/0.649622	20/100/2.770224		
P9	75/175/5.741871	71/208/7.327877	27/179/4.192673	
31/81/2.864117	47/144/5.329594	22/149/3.531229		
89/204/6.876357	70/202/8.017477	22/145/3.432510		
90/201/6.645084	91/264/8.725611	132/1009/23.211413		
P10	74/180/6.245719	67/200/7.682366	106/800/20.133220	
45/106/6.495596	44/120/5.432655	47/319/8.291141		
76/174/6.116757	68/196/7.978214	104/830/20.604733		
69/156/5.530603	62/177/6.546336	78/591/14.942913		

REFERENCES

[1] A. B. Abubakar, P. Kumam and H. Mohammad, A note on the spectral gradient projection method for nonlinear monotone equations with applications, *Comput. Appl. Math.*, 39 (2020), Paper No. 129, 35 pp.
[2] K. Amini and A. Kamandi, A new line search strategy for finding separating hyperplane in projection-based methods, Numer. Algorithms, 70 (2015), 559–570.

[3] A. M. Awwal, P. Kumama and A. B. Abubakar, A modified conjugate gradient method for monotone nonlinear equations with convex constraints, Applied Numerical Mathematics, 145 (2019), 507–520.

[4] S. Babaie-Kafaki and Z. Aminifard, Two-parameter scaled memoryless BFGS methods with a nonmonotone choice for the initial step length, Numer. Algorithms, 82 (2019), 1345–1357.

[5] S. C. Billups and K. G. Murty, Complementarity problems, J. Comput. Appl. Math., 124 (2000), 303–318.

[6] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201–213.

[7] P. Gao and C. He, An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints, Calcolo, 55 (2018), Paper No. 53, 17 pp.

[8] A. N. Iusem and M. V. Solodov, Newton-type methods with generalized distance for constrained optimization, Optimization, 41 (1997), 257–278.

[9] C.-X. Jia and D.-T. Zhu, Projected gradient trust-region method for solving nonlinear systems with convex constraints, Appl. Math. J. Chinese Univ. Ser. B, 26 (2011), 57–69.

[10] C. Kanzow, N. Yamashita and M. Fukushima, Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints, J. Comput. Appl. Math., 173 (2005), 321–343.

[11] M. Koorapetse, P. Kaelo and E. R. Offen, A scaled derivative-free projection method for solving nonlinear monotone equations, Bull. Iranian Math. Soc., 45 (2019), 755–770.

[12] J. Liu and Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints, Numerical Algorithms, 82 (2019), 245–262.

[13] J. Liu and S. Li, Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations, J. Ind. Manag. Optim., 13 (2017), 283–295.

[14] K. Meintjes and A. P. Morgan, Chemical equilibrium systems as numerical test problems, ACM Transactions on Mathematical Software, 16 (1990), 143–151.

[15] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

[16] Y. Ou and J. Li, A new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints, J. Appl. Math. Comput., 56 (2018), 195–216.

[17] Y. Ou and Y. Liu, Supermemory gradient methods for monotone nonlinear equations with convex constraints, Comput. Appl. Math., 36 (2017), 259–279.

[18] J.-S. Pang, Inexact Newton methods for the nonlinear complementary problem, Math. Programming, 36 (1986), 54–71.

[19] B. T. Polyak, Introduction to Optimization, Optimization Software Incorporation, Publications Division, New York, NY, USA, 1987.

[20] M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for system of monotone equations, in: M. Fukushima and L. Qi (Eds.), Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers, Dordrecht, (1999), 355–369.

[21] M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), 765–776.

[22] W. Y. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006.

[23] Z. Wan, J. Guo, J. J. Liu and W. Y. Liu, A modified spectral conjugate gradient projection method for signal recovery, Signal Image Video Process., 12 (2018), 1455–1462.

[24] C. Wang, Y. Wang and C. Xu, A projection method for a system of nonlinear monotone equations with convex constraints, Math. Methods Oper. Res., 66 (2007), 33–46.

[25] X. Y. Wang, S. J. Li and X. P. Kou, A self-adaptive three-term conjugate gradient method for monotone nonlinear equations with convex constraints, Calcolo, 53 (2016), 133–145.

[26] A. J. Wood and B. F. Wollenberg, Power Generations, Operations, and Control, Wiley, New York, 1996.

[27] Y. Xiao and H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310–319.
[28] Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu and Z. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, *Appl. Numer. Math.*, 59 (2009), 2416–2423.

[29] Y.-B. Zhao and D. Li, Monotonicity of fixed point and normal mapping associated with variational inequality and applications, *SIAM J. Optim.*, 11 (2001), 962–973.

[30] L. Zheng, A new projection algorithm for solving a system of nonlinear equations with convex constraints, *Bull. Korean Math. Soc.*, 50 (2013), 823–832.

Received August 2020; revised March 2021; early access August 2021.

E-mail address: ouyigui@126.com
E-mail address: 990661@hainanu.edu.cn