TRAIL, DR5 and caspase 3-dependent apoptosis in vessels of diseased human temporomandibular joint disc. An immunohistochemical study

C. Loreto,1 L.E. Almeida,2 M.R. Migliore,2 M. Caltabiano,3 R. Leonardi3
1Department of Anatomy, Diagnostic Pathology, Forensic Medicine, Hygiene and Public Health, University of Catania, Catania, Italy; 2Center for Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Brazil; 3Department of Medical and Surgical Sciences, 2nd Dental Unit, University of Catania, Catania, Italy

Abstract

To evaluate the apoptosis involvement in the angiogenesis as a self-limiting process in patients with temporomandibular joint (TMJ) degenerated disc vessels, we assessed, by immunohistochemistry, the detection of TRAIL, its death receptor DR5 and caspase 3. TRAIL, its death receptor DR5 and caspase 3 expression were studied by immunohistochemistry in 15 TMJ discs displaced without reduction and in 4 unaffected discs. These apoptosis molecules were detected in the intima and media layers of newly formed vessels affected discs. In conclusion, vessels apoptosis activation in TMJ disc with ID could be regarded as a self-limiting process that try to leads to vessel regression; in this way an inhibition of angiogenic vessels may prove a key strategy in limiting pathological angiogenesis, by cutting off blood supply to tumors, or by reducing harmful inflammation.

Introduction

The formation of new blood vessels is an essential part of many physiological and pathological processes including embryogenesis, wound healing, formation of blood supply to tumors or ischemic tissue and as a driver of forces of articulation.6 In contrast, a high density of blood vessels is described in discs affected by internal derangement (ID) of the joint.23

ID involves an altered anatomical relationship of the disc-condyle complex and it is likely to lead to histopathological changes that culminate in tissue degeneration as occurs in disc displacement TMJ discs.24-25 Very little literature data concerning the distribution of the newly differentiated capillaries in TMJ ID discs exists. Since blood capillaries increase in number with the degree of inflammation during tissue repair, previous authors have evaluated CD34 immunoreactivity not only in the walls of blood capillaries within internal derangement TMJ disc, but also in the posterior or loose connective tissue of bilaminar zone. CD34 is a human cell antigen usually expressed by hematopoietic bone marrow progenitor cells and it is used as a sensitive marker of vascular endothelium. The previous findings showed that CD34 immunostaining appear to be correlated with the severity of TMJ ID.24 It has also been demonstrated that in inflammatory, degenerative and hypoxic states and/or mechanical stress, several cytokines as interleukin 1 β (IL-1β), prostaglandin E (PGE), epidermal growth factor (EGF) and, tumor necrosis factor α (TNF-α) could activate the vascular endothelium and initiate angiogenesis inducing the expression of a cytokine called vascular endothelial growth factor (VEGF).19-22 Some authors demonstrated that VEGF was also expressed by chondrocyte-like cells of perforated TMJ discs, showing a similar distribution with chondromodulin-1 (ChM1) glycoprotein, postulating that the existence of ChM-1 could neutralize the angiogenic effect of VEGF preventing, in this way, blood vessel invasion at the arthropatic site.

In hypertrophic cartilage VEGF seems to be released by chondrocytes in a paracrine way, using endothelial cells as a target22 and it is essential to correct directional growth and cartilage invasion by blood vessels. Moreover, it has been argued that during an inflammatory process, VEGF could contribute, by chemo-taxis of macrophage and promoting angiogenesis, to the activation of cellular pathways that induce apoptosis in such proliferative regions. Apoptosis, or programmed cell death, is an integral part of development as seen in embryogenesis, normal tissue turnover, cellular homeostasis and a variety of diseases resulting from its dysregulation.42

Apoptosis processes involve a Fas or tumor necrosis factor (TNF-α) associated extrinsic pathway and a mitochondrial associated intrinsic pathway. In particular, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) Apo-2L is a type II membrane protein, which can be proteolytically cleaved by cysteine proteases to a soluble form,27 as also shown for TNF-α and CD95 (Apo-1/Fas) ligand. When TRAIL binds a death receptor, the death inducing signalling complex assembles at the death receptor domain, resulting in caspase 8 activation that causes direct cleavage of caspase 3 into active subunits that execute apoptosis.20 Notably, the vessel wall is a rich source of cysteine proteases,23 which suggests that TRAIL/TRAIL-R systems probably play a physiological role in vascular biology.

Hence in this paper, we examined, through immunohistochemistry, the detection of TRAIL, its death receptor DR5 and caspase 3 in TMJ degenerated disc vessels in order to evaluate the apoptosis involvement in angiogenesis as a self-limiting process.

Materials and Methods

Patients and tissues

Specimens were 15 displaced TMJ discs from the archives of the Pontifical Catholic University of Paraná, Curitiba, Brazil. The study was approved by the local ethics committee. The informed consent of each patient was obtained before disc removal. Discs came from 12 women and 3 men with TMJ ID. All had anterior disc displacement without reduction (ADDwoR), as confirmed by clinical history, physical examination and magnetic resonance imaging (MRI). Their mean age at the time of surgery was 37.2 years (±4.4); the mean interval from ID symptom onset to surgery was 7.9 months (±6.6). Unassisted maximum mouth opening (MMO), determined with a millimeter ruler as interincisal distance, and a visual analog scale (VAS), to measure pain intensity in the preceding week, were used to assess disease severity. The VAS anchor points were 0
for “no pain” and 100 for “the worst imaginable pain.” These data are reported in Table 1.

The diagnosis that led to surgery was TMJ ID with pain and functional impairment. Inclusion criteria were: i) unsuccessful non-surgical treatment; ii) TMJ tenderness to palpation; and iii) TMJ pain or interference with mandibular movements. Exclusion criteria were: i) other TMJ diseases; ii) dentofacial deformity; iii) major jaw trauma; iv) previous TMJ surgery; and v) previous TMJ steroid injections. After removal, all discs were seen to be macroscopicall deform, none having a normal biconcave shape.

Discectomy has come under increasing attack as the standard therapy for disc displacement, with a number of surgeons now favoring a conservative approach and other researchers still believing in its value. Disc removal is therefore ethically justified. This small sample of whole TMJ discs was investigated because they provide exhaustive information on the characteristics of tissue degeneration.

Four virtually unaffected human TMJ discs from the collection of the Anatomy Institute of Catania University, Catania, Italy, were studied for comparison. These paraffin-embedded autopsied specimens from one male and three female subjects (mean age 49.7±4.4 years) were selected because the donors’ clinical histories were negative for generalized joint disease or TMJ arthropathy. On dissection the discs showed no macroscopic signs of degenerative or inflammatory joint disease or displacement. They were stained with Harry’s hematoxylin and exhibited no detectable pathologic changes on light microscopy.

Immunohistochemistry

For the immunohistochemical staining the discs were fixed overnight in 10% neutral buffered formalin (Bio-Optica, Milan, Italy). After fixation and overnight washing, each disc was sectioned through its center along a parasagittal plane, perpendicular to its long axis. Each tissue block was dehydrated in graded ethanol, and embedded in paraffin preservative (Fischer Scientific, Pittsburgh, PA, USA). The sections were irradiated (5 min) and placed on silanized glass slides (the µm) and covered by normal horse/goat serum treatment (diluted 1:20 in phosphate buffered saline (PBS), 0.1% bovine serum albumin (BSA)).

The slides were blocked for 1 h by immersing them in 10% normal horse serum (NHS). After blocking, the primary antibody (polyclonal anti-caspase 3 antibody (Cell Signaling Technology, Inc., Denver, MA, USA), a rabbit polyclonal anti-TRAIL (Santa Cruz Biototechnology, Inc., CA, USA) and a rabbit polyclonal anti-DR5 (Novus Biologicals, Inc., Littleton, USA) used respectively at 1:100, 1:20 and 1:20 working dilution (in PBS, 0.1% BSA), were applied on each section and incubated overnight at +4°C in a moist chamber. Immunocomplexes were detected by incubation with the secondary antibody and then with streptavidin-peroxidase complexes for 15 mins each at room temperature (LSAB2/HRP kit, DAKO, Denmark). After rinsing in 3 changes of PBS, the immunoreaction was visualized by incubating sections in a 0.1% 3,3′-diaminobenzidine and 0.02% hydrogen peroxide solution (DAB substrate kit, Vector Lab., Burlingame, CA, USA) for 4 min. The sections were lightly counterstained with Mayer’s haematoxylin (Histolab Products AB, Goteborg, Sweden) and finally mounted on GVA mount (Zymed Laboratories Inc., San Francisco, CA, USA).

Evaluation of immunohistochemistry

TRAIL, DR5 and caspase 3 stain intensity and the proportion of immunopositive cells were examined, blinded by light microscopy and recorded. Intensity of staining (IS) was graded on a scale range from 0 to 4, according to the following semiquantitative assessment: 0=no detectable staining, 1=weak staining, 2=moderate staining, 3=strong staining, 4=very strong staining. The percentage of TRAIL, DR5 and caspase 3 immunopositive cells (extent score=ES) was also independent evaluated and scored as a parameter of the final number of 200 cells in four categories: 0≤5%; 1=6-30%; 2=31-50%; 3=50%, and 4≥75%. Counting was performed at X 200 magnification. The final staining score (FSS) was derived from the sum of the intensity score added to the extent score.

Positive and negative control

This was performed to test the specific reaction of the primary antibody at protein level. For positive control testing basal cell carcinoma tissue was exposed to an immunoperoxidase process. For negative controls, randomly selected TMJ disc sections were treated with normal rabbit serum instead of the specific antibody.

Statistical analysis

Data were analyzed using the Mann-Whitney U-tests; P<0.05 were considered significant. Mean and standard deviation were calculated for both the FSS and HDS. All data were analyzed with the SPSS program (SPSS® release 16.0, Chicago, IL, USA).

Results

All TMJ patients had been unsuccessfully treated with other various interventions for at least 8 months prior to surgery. The control discs showed preservation of multidirectional collagen bundles, predominaely fibrocyte-like cells populations with few chondrocytes-like cells aggregates, and absence of clefs or fraying and vascular vessels. In contrast diseased disc sections, stained with hematoxylin showed a different degree of morphologic damage, ranging from an altered collagen bundle structure to fragmentation and the presence of newly formed vessels. A high immunoperoxidase of TRAIL (Figure 1 A, B), its receptor DR5 (Figure 2 A, B) and caspase 3 (Figure 3 A, B) was demonstrated in the intima and media layers of newly formed vessels where cells were strongly positive (IS score=3). The mean FSS of all samples was 4.60±0.54 (range 3.4-5.8).

Immunohistochemical reactivity for TRAIL and caspase-3 was detected in cells cytoplasm, and the immunoperoxidase of DR5 was recognized in cell membrane and cytoplasm.

Discussion

TMJ ID is often accompanied by chronic inflammatory changes including growth of small new vessels. It would seem that these degenerative changes, as in other joints, are influenced by the kind (anterior disc displacement with or without reduction) and the degree of disc displacement. Our study evidenced a high immunoperoxidase of TRAIL, its receptor DR5 and caspase 3 in the intima and media layers of newly formed vessels that reflects an activation of the apoptosis mechanism in these structures. Apoptosis process is
in fact activated by the extrinsic pathway, through TRAIL which cross-linking DR4 and DR5 receptors death on the surface of target cells particularly in microvascular endothelium as mechanism of defence.

Some authors have just tried to understand how the process of formation of new vessels, including endothelial proliferation, migration and tube formation, is limited through induction of endothelial apoptosis, which leads to vessel regression. However, literature reports on the pro-angiogenic or anti-angiogenic action of TRAIL, in in vitro studies, showed contrasting results. Some authors evidenced the stimulatory effect of TRAIL on cell endothelial proliferation and its inducing activation of Akt and Erk that leads to endothelial proliferation, increased cell migration and tube formation without altering endogenous endothelial expression of VEGF while others, on the contrary, demonstrated that TRAIL was found to inhibit tube formation, cell numbers and endogenous VEGF expression. Probably the anti-angiogenic action of TRAIL is induced by higher doses of this ligand. Actually, the growth of microvessels by VEGF acts through Akt pathway and can be blocked when Akt is inhibited by various anti-angiogenic factors namely angiotensin II and thromboxane A2. The ability of TRAIL to activate the anti-apoptotic PI3k/Akt pathway in endothelial cells is also an unexpected finding. A possible explanation is that the PI3k/Akt impairs the activation of the apical caspases by inhibiting the recruitment of procaspase-8 to the death-inducing signalling complex. Really, as for others morphological features just observed in TMJ diseases, only restricted and focal areas of new vascular profiles have been revealed.

Thus, our present study sustains the hypothesis that angiogenesis reports in degenerative disc tissue are maintained localized thanks to the apoptotic process. In particular, we demonstrated both an activation of the process through the receptor pathway and the progression of cell death through the activation of the executioner caspase 3 that, in turn, leads to cytoskeletal proteins degradation and DNA fragmentation. It is suggested that TRAIL selectively binds death receptor DR5 endothelial cells in a dose dependent manner and enhance apoptosis by caspase 8 and caspase 3 pathway. Our previous study on TMJ disc ID demonstrated that TRAIL was overexpressed in apoptotic chondrocyte like cells, tissue apoptotic cell death seems to be responsible for disc tissue degeneration being correlated with the severity of disc pathologic findings. For patients with complete TMJ meniscus dislocation with internal derangement, some indications that this tissue is undergoing adaptive changes include the presence of thickened arterial walls suggesting a decreased blood flow.

In conclusion, this study allows to hypothesize that angiogenesis is maintained localized thanks to the apoptotic process in degenerative disc tissues, thus vessel apoptosis activation in TMJ disc with ID could be regarded as a self-limiting process that tries to lead to vessel regression. In this way an inhibition of angiogenic vessels may prove to be a key strategy in limiting pathological angiogenesis, by cutting off the blood supply to tumors or by reducing harmful inflammation.

References
1. Beck H, Plate KH. Angiogenesis after cerebral ischemia. Acta Neuropathol 2009;117: 481-96.
2. Bogler O, Mikkelsen T. Angiogenesis and apoptosis in glioma: two arenas for promising new therapies. J Cell Biochem 2005; 96:16-24.
3. Kirk S, Frank FA, Karlik S. Angiogenesis in...
multiple sclerosis: is it good, bad or an epiphenomenon? J Neurol Sci 2004;217: 125-30.
4. Rees L. The structure and function of the mandibular joint. Br Dental J 1954;96:125-33.
5. Dixon AD. Structure and functional significance of the intra-articular disc of the human temporomandibular joint. Oral Surg Oral Med Oral Pathol 1962;15:48-59.
6. De Bent LG, Liem RSB, Hovinga P, Boering G. Fibrous component of the temporomandibular joint disk. Cranio 1985;3:369-73.
7. Bronstein SL, Merrill RG. Clinical staging for TMJ internal derangement: application to arthropathy. J Craniomandib Disord 1992;6:7-16.
8. Yoshida H, Fujita S, Nishida M, Iizuka T. Angiogenesis in the human temporomandibular joint studied by immunohistochemistry for CD34 antigen. J Oral Pathol Med 1999;28:289-92.
9. Leonard R, Villari L, Bernasconi G, Piacentini C, Baciliero U, Travali S. Cellular S-100 protein immunostaining in human dysfunctional temporomandibular joint discs. Arch Oral Biol 2000;45:411-18.
10. Carlsson GE, Oberg T, Bergman F, Fajers CM. Morphological changes in the mandibular joint disk in temporomandibular joint pain dysfunction syndrome. Acta Odontol Scand 1967;25:163-81.
11. Scapino RP. Histopathology associated with malposition of the human temporomandibular joint disc. Oral Surg Oral Med Oral Pathol 1983;55:382-97.
12. Hall MB, Brown RW, Baughman RA. Histologic appearance of the bilaminar zone in internal derangement of the temporomandibular joint. Oral Surg Oral Med Oral Pathol 1984;58:375-81.
13. Castelli WA, Nasjleti CE, Diaz-Perez R, Caffesse RG. Histopathologic findings in temporomandibular joints of aged individuals. J Prosthet Dent 1985;53:415-19.
14. McCoy JI, Gotcher JE, Chase DC. Histologic grading of TMJ tissues in internal derangement. Cranio 1986;4:213-18.
15. Helmy ES, Timmis DP, Sharawy MH, Abdelatif O, Bays RA. Fatty change in the human temporomandibular joint disc. Light and electron microscopy study. Int J Oral Maxillofac Surg 1990;19:38-43.
16. de Bent LG, Stegenga B. Pathology of temporomandibular joint internal derangement and osteoarthrosis. Int J Oral Maxillofac Surg 1993;22:71-4.
17. Marchetti C, Piacentini C, Farina A, Bernasconi G, Calligaro A. A microscopic and immunocytochemical study of structural changes in dysfunctional human temporomandibular joint discs. Arch Oral Biol 1995;40:549-57.
18. Yoshida H, Fujita S, Nishida M, Iizuka T. Angiogenesis in the human temporomandibular joint studied by immunohistochemistry for CD34 antigen. J Oral Pathol Med 1999;28:289-92.
19. Frank S, Hubner G, Breier G, Longaker MT, Greenhalgh DG, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem 1995;270:12607-13.
20. Ben-Av P, Crofford LJ, Wilder RL, Ha T. Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEMS Lett 1995;372:83-7.
21. Cohen T, Nahari D, Cerem IW, Neufeld G, Levi M. Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 1996;271:736-41.
22. Kiga N, Toyo I, Matsumoto T, Hiraishi Y, Shinora Y, Fujita S. Expression of lumican related to CD34 and VEGF in the articular disc of the human temporomandibular joint. Eur J Histochim 2010;54:152-7.
23. Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci 2000;113: 59-9.
24. Huppertz B, Kaufmann H-G F. The apoptosis cascade-morphological and immunohistochemical methods for its visualization. Anat Embryol (Berl) 1999;200:1-18.
25. Mariani SM, Krammer PH. Differential regulation of TRAIL and CD95 ligand in the human temporomandibular joint. J Cell Sci 2004;167:1305-08.
26. Aschkenazi A, Dixit AM. Death receptors: signaling and modulation. Science 1998; 281:1305-08.
27. Chapman HA, Riese RJ, Shi GP. Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 1997;59:63-88.
28. Dimitroulis G. The role of surgery in the management of disorders of the temporomandibular joint: a critical review of the literature. Int J Oral Maxillofac Surg 2005;34:231-7.
29. Dolwick MF. Temporomandibular joint surgery for internal derangement. Dent Clin North Am 2007;51:195-208.
30. Milori M, Henriksen B. Discectomy as the primary surgical option for internal derangement without reduction. J Craniomandib Surg 2007;18:1429-33.
31. Merrill RG, Yih WY, Langan MJ. An immunohistochemical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 1992;6:7-16.
32. Secchiero P, Lonero C, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochecmical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 2003;48:185-92.
33. Secchiero P, Lonero C, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochecmical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 2003;48:185-92.
34. Secchiero P, Lonero C, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochecmical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 2003;48:185-92.
35. Secchiero P, Lonero C, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochecmical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 2003;48:185-92.
36. Secchiero P, Lonero C, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochecmical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 2003;48:185-92.
37. Secchiero P, Lonero C, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochecmical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 2003;48:185-92.
38. Secchiero P, Lonero C, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochecmical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 2003;48:185-92.
39. Secchiero P, Lonero C, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochecmical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 2003;48:185-92.
40. Secchiero P, Lonero C, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochecmical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 2003;48:185-92.
41. Secchiero P, Lonero C, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochecmical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 2003;48:185-92.
42. Secchiero P, Lonero C, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochecmical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 2003;48:185-92.
43. Secchiero P, Lonero C, Barbato E, Polimeni A, Caltabiano R, Lo Muzio L. A histochecmical survey of the human temporomandibular joint disc of patients with internal derangement without reduction. J Craniomandib Surg 2003;48:185-92.
Expression of Fas receptor on disc cells in herniated lumbar disc tissue. Spine 2001;26:142-46.
46. Wang D, Liu M, Song H, Wang M, Yang K, Zhang Y. Expression of Bax and caspase-3 and apoptosis in human lumbar intervertebral disc degeneration. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2008;22:421-5.
47. Park JB, Lee JK, Park SJ, Kim KW, Riew KD. Mitochondrial involvement in Fas-mediated apoptosis of human lumbar disc cells. J Bone Joint Surg Am 2005;87:1338-42.
48. Hall MB, Brown RW, Baughman RA. Histologic appearance of the bilaminar zone in internal derangement of the temporomandibular joint. Oral Surg 1984;58:375-81.