Unique Signatures of Long Noncoding RNA Expression in Response to Virus Infection and Altered Innate Immune Signaling

Xinxia Peng, Lisa Gralinski, Christopher D. Armour, Martin T. Ferris, Matthew J. Thomas, Sean Proll, Birgit G. Bradel-Tretheway, Marcus J. Korth, John C. Castle, Matthew C. Biery, Heather K. Bouzek, David R. Haynor, Mark Heise, Christopher K. Raymond, Ralph S. Baric, and Michael G. Katze

Abstract
Studies of the host response to virus infection typically focus on protein-coding genes. However, non-protein-coding RNAs (ncRNAs) are transcribed in mammalian cells, and the roles of many of these ncRNAs remain enigmas. Using next-generation sequencing, we performed a whole-transcriptome analysis of the host response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection across four founder mouse strains of the Collaborative Cross. We observed differential expression of approximately 500 annotated, long ncRNAs and 1,000 nonannotated genomic regions during infection. Moreover, studies of a subset of these ncRNAs and genomic regions showed the following. (i) Most were similarly regulated in response to influenza virus infection. (ii) They had distinctive kinetic expression profiles in type I interferon receptor and STAT1 knockout mice during SARS-CoV infection, including unique signatures of ncRNA expression associated with lethal infection. (iii) Over 40% were similarly regulated in vitro in response to both influenza virus infection and interferon treatment. These findings represent the first discovery of the widespread differential expression of long ncRNAs in response to virus infection and suggest that ncRNAs are involved in regulating the host response, including innate immunity. At the same time, virus infection models provide a unique platform for studying the biology and regulation of ncRNAs.

Importance
Most studies examining the host transcriptional response to infection focus only on protein-coding genes. However, there is growing evidence that thousands of non-protein-coding RNAs (ncRNAs) are transcribed from mammalian genomes. While most attention to the involvement of ncRNAs in virus-host interactions has been on small ncRNAs such as microRNAs, it is becoming apparent that many long ncRNAs (>200 nucleotides [nt]) are also biologically important. These long ncRNAs have been found to have widespread functionality, including chromatin modification and transcriptional regulation and serving as the precursors of small RNAs. With the advent of next-generation sequencing technologies, whole-transcriptome analysis of the host response, including long ncRNAs, is now possible. Using this approach, we demonstrated that virus infection alters the expression of numerous long ncRNAs, suggesting that these RNAs may be a new class of regulatory molecules that play a role in determining the outcome of infection.
shown). The agreement between NGS and quantitative PCR (qPCR) (data not shown) is consistent and even better (Pearson correlation coefficients of 0.73 to 0.8) between two platforms.

We observed a very good correlation (Pearson correlation coefficients of 0.73 to 0.8) between two platforms (see Fig. S2 in the supplemental material), and even better agreement between NGS and quantitative PCR (qPCR) (data not shown).

RESULTS

Whole-transcriptome analysis of SARS-CoV-infected mouse lung samples. To systematically investigate the regulation of long ncRNAs during viral infection, we infected four different strains of mice with a mouse-adapted severe acute respiratory syndrome coronavirus (SARS-CoV) (5). These mice were selected due to their differential range in susceptibility phenotypes following infection with SARS-CoV or influenza virus and the capacity to pursue downstream quantitative trait locus (QTL) mapping of regulation and function in the Collaborative Cross. Weight loss in the animals was monitored over the course of the infection with SARS MA15 or influenza virus A/PR/8/34 as a measure of disease severity (Fig. 1). We then performed a whole-transcriptome analysis of collected lung tissue samples using next-generation sequencing (NGS). Directional cDNA libraries were constructed using the not-so-random (NSR) priming method (6), which enabled the profiling of polyadenylated, nonpolyadenylated, coding, and noncoding transcripts, but not small RNAs (6).

We observed a large number of reads (1.5 to 7 million) that uniquely mapped to viral RNAs (viral genomic RNAs and transcripts) (Fig. 2) (see Table S1 in the supplemental material) in samples from virus-infected animals. From all samples, we obtained on average over 22 million reads that uniquely mapped to host genomic sites, including many that mapped to nonannotated intergenic regions (Fig. 2a; see Table S1 in the supplemental material). We reasoned that the transcriptional activities detected in nonannotated regions were largely from ncRNAs and that some could be differentially expressed in response to viral infection. To evaluate our approach for the identification of differentially expressed genes, we profiled the same samples using microarrays and compared the profiles with the profiles of the protein-coding part of the NGS data set. We observed a very good correlation (Pearson correlation coefficients of 0.73 to 0.8) between two platforms (see Fig. S2 in the supplemental material), and even better agreement between NGS and quantitative PCR (qPCR) (data not shown).

Differential expression of long ncRNAs during SARS-CoV infection. First, we studied annotated non-protein-coding RNAs (ncRNAs); the compilation of annotated ncRNAs produced 10,986 nonoverlapping ncRNA loci (Materials and Methods). We found that 509 of these loci were differentially expressed during SARS-CoV MA15 infection (Fig. 3), 485 of which had more than 2.5-fold change in at least one of four mouse strains during infection, and 209 of which were all upregulated or all downregulated by at least 1.8-fold in three or more mouse strains (see Tables S2 and S3 in the supplemental material). Nearly all (504 of 509) were long ncRNAs (>200 nt).

These results clearly show that there is widespread differential regulation of long ncRNAs in response to SARS-CoV infection.

Next we systematically scanned the mouse genome for nonannotated regions that encoded transcripts differentially expressed during viral infection (Materials and Methods). In total, we uncovered 1,406 nonannotated genomic regions that did not overlap any annotated protein-coding genes (UCSC or Ensembl annotations) but that consistently had changes in expression of more than 1.4-fold (all upregulated or all downregulated) in at least 3 mouse strains during infection (Fig. 4; see Table S4 in the supplemental material). For 997 of these regions, we did not find overlap with any annotated loci (UCSC and Ensembl annotations), indicating that many infection-induced changes in RNA transcript abundance are not monitored by conventional microarrays. It also suggests that possibly other infection-related transcripts remain to be discovered under different experimental conditions.

Differential expression of long ncRNAs in response to altered innate immunity. We used qPCR to further evaluate the differential expression of a subset of ncRNAs in replicate samples. We selected 39 loci/regions that represented a variety of loci for the follow-up studies, including 19 nonannotated genomic regions, 13 annotated ncRNAs, 5 large intervening ncRNAs (lincRNAs [7]) partially overlapping with annotated protein-coding genes (therefore not included in our nonredundant set of annotated ncRNAs), plus two protein-coding genes (Mx1 and Ifit1) known to be regulated during viral infection. Importantly, we observed a very good agreement (Pearson correlation coefficients of 0.87 to 0.94) between SARS-CoV infection to mock infection expression log ratios obtained using NGS and the corresponding log ratios obtained using qPCR on the set of independent samples with multiple replicates (Fig. 5a; see Fig. S3 in the supplemental material).

To investigate whether the observed differential expression of long ncRNAs was specific to SARS-CoV infection or represented a more general host response to viral infection, we infected the same strains of mice with influenza virus A/PR/8/34 and used qPCR to quantify expression changes of the 37 selected ncRNAs and genomic regions in lung samples from infected animals. Interestingly, we found that most (35 of 37) of the selected ncRNAs and genomic regions were similarly differentially expressed during influenza virus infection (Fig. 5a). Thus, many long ncRNAs are differentially regulated during both SARS-CoV and influenza virus infections, suggest-
ing that the differential regulation of long ncRNAs may be a common host response to respiratory viral infection.

To determine the relationship between differential expression of long ncRNAs and innate immune signaling, we performed qPCR on lung samples obtained from a previous study in which mice lacking the type I interferon receptor (IFNAR−/−) or STAT1 (signal transducer and activator of transcription factor 1) (STAT−−/−) were infected with SARS-CoV. In that study, we found that SARS-CoV infection resulted in the death of STAT−−/− mice, but not IFNAR−/− mice (8). As shown in Fig. 5b, even for the set of 37 ncRNAs examined here, we observed unique patterns of expression changes over time. As expected, most (35 of 37 [95%]) of the selected ncRNAs and genomic regions were differentially expressed (P < 0.05) during SARS-CoV infection under one or more conditions studied. Interestingly, the response to viral infection also displayed temporal changes, as 35 (95%) of the selected ncRNAs and genomic regions showed significant changes in expression (P < 0.05) between at least two consecutive time points. Twenty-six (70%) of the ncRNAs and genomic regions were differentially expressed (P < 0.05) among knockout and wild-type mice under one or more conditions during infection. These findings strongly indicate that the differential expression of long ncRNAs during viral infection is affected by perturbations to innate immune signaling and, importantly, is associated with pathogenic outcome.

Because lung samples contain heterogeneous cell types, the observed differential regulation of long ncRNAs could, in part, be expressed by infiltrating immune cells during infection. We therefore infected cultured mouse embryonic fibroblasts (MEFs) from the same strains of mice with the mouse-adapted influenza virus A/PR/8/34, as SARS-CoV does not infect MEFs. Importantly, we found that about 43% (16 of 37) of the selected ncRNAs and genomic regions were differentially expressed (P < 0.05) in infected MEFs similarly to ncRNAs and genomic regions in lung tissue from infected animals (Fig. 5c). To investigate whether these ncRNAs were also regulated by the interferon response, we treated MEFs separately with beta interferon and found patterns of expression changes that were similar to those observed in influenza virus-infected MEFs. The consistent changes in expression in MEFs in response to both influenza virus infection and interferon treatment convincingly argue that differential regulation of long ncRNAs was neither artifactual nor a result of immune infiltration but instead represents a bona fide host response regulated by innate immunity.

Putative functions of long ncRNAs. As the functions of long ncRNAs are largely unknown, we performed computational analyses to gain insight into the potential biological roles of these identified ncRNAs. Interestingly, we observed that ~37% (189 of 509) of differentially expressed ncRNA loci overlapped with previously discovered mouse lincRNAs (7). Khalil et al. reported that many human lincRNAs can affect gene expression through their associations with chromatin-modifying complexes (9). We found that 20 mouse loci orthologous to human lincRNAs bound by chromatin-modifying complexes exhibited differential expression in this study (see the supplementary material), suggesting that some of our identified ncRNAs may also interact with chromatin-modifying complexes during viral infection.

Another approach for inferring putative functions of long ncRNAs is to examine protein-coding genes located near ncRNAs of interest (7, 10). For each mouse strain, we examined the infection-induced patterns of expression of ncRNAs and their paired neighbor protein-coding genes (see the supplementary material). Interestingly, we found that the changes in expression of neighbor protein-coding genes (fold changes) were significantly associated with the fold changes in expression of the corresponding ncRNAs during infection (P values = 1.8e−22 to 2.4e−32, analysis of variance [ANOVA] F test, Fig. 6a, and the supplementary material). We utilized the DAVID Functional Annotation Tool (11) for functional enrichment analysis on those neighbor protein-coding genes. The most significant functional group identified using DAVID consisted of 11 similar annotation terms related to gene expression (Fig. 6b). Interestingly, previous studies also reported that the genes in neighboring long ncRNAs exhibit a bias toward transcription-related factors (7, 10). We therefore hy-
Examples of annotated ncRNA loci (a and b) and nonannotated genomic regions (c and d) differentially expressed during SARS-CoV infection. (a) An overview of short reads from whole-transcriptome analysis of mouse lung samples mapped to a 33-kb region of chromosome 3 displayed by Integrative Genome Viewer (IGV) browser (http://www.broadinstitute.org/igv). Each track represents data collected from a single mouse lung sample, with SARS-CoV-infected sample (H11001) and mock-infected sample (H11002) shown by the labeled arrows (H11001 or H11002). Infected samples are depicted in red, and mock-infected samples are depicted in blue. The strains of mice used are shown on the left. 129/S1 polyA represents short-read data generated from libraries separately created from the same samples with poly(A) selection. For reference, UCSC annotation of nearby protein-coding genes is shown at the bottom in blue. K4-K36_1026 is the entire K4-K36 domain of a large intervening ncRNAs (lincRNA) as identified in reference 7, which is upregulated during SARS infection, but no significant expression was observed in poly(A)-selected samples. The green box indicates that the locus was followed up using qPCR (the same for panels b, c, and d). (b) Overview similar to that in panel a for a 124-kb region of chromosome 6. The underlined UCSC annotation is noncoding. It was upregulated during SARS-CoV infection. (c) Overview similar to that in panel a for a 203-kb region of chromosome 11. The loci shown in orange indicate nonannotated genomic regions identified here as differentially expressed during SARS-CoV infection (as in panel d). These regions were downregulated. (d) Overview similar to that in panel a for a 202-kb region of chromosome 12. The locus in orange indicates an nonannotated genomic region upregulated during SARS-CoV infection.
polysaccharide (14). Likewise, Guttman et al., using a custom

dynamically regulated in mouse macrophages activated by lipo-

infected birds (13), and Ravasi et al. showed that 70 ncRNAs were

mRNA-like ncRNAs that were differentially expressed in virus-

studies using cDNA microarrays, Ahanda et al. identified eight

cell differentiation upon antigen recognition (12). In additional

UCSC or Ensembl. See text and Materials and Methods for details.

lapping with the annotation categories above; Antisense, antisense to protein-coding genes annotated by

Simple, simple repeats and low complexity; Other, remaining retrotransposons and repeats; None, no over-

predicted by RNAz; Retrotransposon, retrotransposons of the SINE, LINE, LTR, and DNA superfamilies;

the

picted as in panel a. Annotations showing what the identified genomic regions overlap with are shown below

tics of genomic regions differentially expressed during SARS-CoV infection. The genome regions are de-

between annotated protein-coding genes; All regions, all 1,406 genomic regions identified. (b) Characteris-

that were antisense to annotated protein-coding genes; Intergenic, 1,157 genomic regions were located

Unknown, 977 genomic regions without any overlapping annotated genes; Antisense, 249 genomic regions

that were antisense to annotated protein-coding genes; Intergenic, 1,357 genomic regions were located between annotated protein-coding genes; All regions, all 1,406 genomic regions identified. (b) Characteristics of genomic regions differentially expressed during SARS-CoV infection. The genome regions are depicted as in panel a. Annotations showing what the identified genomic regions overlap with are shown below the x axis as follows: piRNA, piwi-associated small RNAs; RNAz, conserved RNA secondary structures predicted by RNAz; Retrotransposon, retrotransposons of the SINE, LINE, LTR, and DNA superfamilies; Simple, simple repeats and low complexity; Other, remaining retrotransposons and repeats; None, no overlap-

between annotated protein-coding genes; All regions, all 1,406 genomic regions identified. (b) Characteristics of genomic regions differentially expressed during SARS-CoV infection. The genome regions are depicted as in panel a. Annotations showing what the identified genomic regions overlap with are shown below the x axis as follows: piRNA, piwi-associated small RNAs; RNAz, conserved RNA secondary structures predicted by RNAz; Retrotransposon, retrotransposons of the SINE, LINE, LTR, and DNA superfamilies; Simple, simple repeats and low complexity; Other, remaining retrotransposons and repeats; None, no overlapping with the annotation categories above; Antisense, antisense to protein-coding genes annotated by UCSC or Ensembl. See text and Materials and Methods for details.

potheze that long ncRNAs might also be able to modulate host responses through neighboring protein-coding genes.

DISCUSSION

Previous studies on virus-host interactions and viral pathogenesis have largely focused on protein-coding genes. However, a number of recent studies have begun to suggest that non-protein-coding RNAs (ncRNAs) also function in pathogen-host interactions. For example, Pang et al., using a custom 70-mer microarray, showed that long ncRNA probes had altered expression during CD8+ T cell differentiation upon antigen recognition (12). In additional studies using cDNA microarrays, Ahanda et al. identified eight mRNA-like ncRNAs that were differentially expressed in virus-infected birds (13), and Ravasi et al. showed that 70 ncRNAs were dynamically regulated in mouse macrophages activated by lipopolysaccharide (14). Likewise, Guttman et al., using a custom

large intervening ncRNA (lincRNA) array, found that lincRNAs were associated with diverse biological processes across different tissues, including immune surveillance (7). To our knowledge, our study is the first to use comprehensive deep-sequencing technology to clearly demonstrate that long ncRNAs are involved in the host response to viral infection and innate immunity.

As noted, the functions of ncRNAs remain largely unexplored, indicating the need for future studies in this area. For example, the differential regulation of some ncRNAs could simply be by-products of global transcriptional profile changes imparted by interferon and/or viral infection, and they may not play a significant role in the context of infection. Alternatively, ncRNAs may represent a whole new class of innate immunity signaling molecules and interferon-dependent regulators, or even a new layer of gene expression regulation responsible for modulating host responses during viral infection. Similarly, ncRNAs may also represent a new potential class of biomarkers for infectious diseases. The similar differential regulation of ncRNAs in response to SARS-CoV and influenza virus infection indicates that a ncRNA-based signature of respiratory virus infection may exist, suggesting additional diagnostic potential. Finally, using viruses to perturb host systems, such as described here, also presents a valuable platform for future studies of ncRNA biology in general. In the future, it is likely that a detailed knowledge of ncRNA regulation and function will be necessary for a full understanding of viral pathogenesis.

MATERIALS AND METHODS

Mouse lines and virus infection. Because human severe acute respiratory syndrome coronavirus (SARS-CoV) isolates replicate but do not cause severe clinical disease in mice, we used the mouse-adapted strain MA15 that is lethal in BALB/c mice and that causes 10 to 15% weight loss in young C56BL/6 mice (5). In this study, we infected four of the founder mouse strains used in generating the Collaborative Cross (CC), a newly emerging recombi-

nant inbred mouse resource for mapping complex traits (15). These strains included 129S1/SvImJ (129/S1), CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB) mice, and the animals were provided by Fernando Pardo-Manuel de Villena or obtained from the Jackson Laboratory (Bar Harbor, ME). A benefit of using these strains is that it allows for downstream quantitative trait locus (QTL) and expression QTL (eQTL) mapping of the regulation and function of non-protein-coding RNAs (ncRNAs) in pathogenesis and innate immunity in the final panel of 400 CC recombinant inbred mouse lines. Mice were bred at the University of North Carolina (UNC) mouse facility (Chapel Hill, NC). Animal housing, care, and experimental protocols were in accordance with all
UNC-Chapel Hill Institutional Animal Care and Use Committee guidelines. All animal studies were conducted in animal biosafety level 3 laboratories using Sealsafe HEPA-filtered caging, and personnel wore personal protective equipment, including Tyvek suits and hoods as well as positive-pressure HEPA-filtered air respirators. Ten-week-old mice were anesthetized with isoflurane. Mice were intranasally infected with phosphate-buffered saline (PBS) alone or with 1 × 10^9 PFU of SARS recombinant MA15 (rMA15) in 50 μl of PBS (Invitrogen, Carlsbad, CA) or 300 PFU of influenza A virus strain A/Pr/8/34 (H1N1) in 50 μl of PBS. The mice were weighed once per day and observed twice per day over the course of the infection. For each virus, three to five virus-infected and three mock-infected mice from each strain were euthanized at 2 days postinfection.
(dpi) with tissues taken for determination of the viral titer and for expression analysis. In this study, one SARS rMA15-infected and one mock-infected mouse from each of the four strains was euthanized at 2 dpi for both the whole-transcriptome analysis using high-throughput sequencing and microarray-based expression profiling. The remaining replicate samples from matched infections were evaluated by qPCR.

Lung samples from rMA15-infected or mock-infected 129S6/SvEv wild-type mice, STAT1 knockout (STAT1/H11002/H11002/H11002) mice, and type I interferon receptor knockout (IFNAR1/H11002/H11002/H11002) mice were obtained from a previously published study (8). The infected samples were collected 2, 5, and 9 days after infection.

Interferon treatment and influenza virus infection of MEFs in vitro. PWK/PhJ and 129S1/SvvlmJ mouse embryonic fibroblasts (MEFs) were obtained from D. Threadgill and F. Manuel-Pardo de Villena at UNC, Chapel Hill, NC. The cells were maintained in complete medium (Dulbecco modified Eagle medium [DMEM] supplemented with 1% glutamine, 10% fetal bovine serum [FBS], and penicillin-streptomycin). As SARS-CoV does not infect MEFs, 1 × 10⁵ cells were plated in each well of a 12-well plate and treated the following day with 300 μl of infection medium alone (DMEM supplemented with 1% glutamine, 2% heat-inactivated calf serum, 50 mM HEPES, and penicillin-streptomycin) or 300 μl of infection medium supplemented with either negative allantoic fluid (Charles River Laboratories, Wilmington, MA), influenza A virus strain A/Pr/8/34 (H1N1) (multiplicity of infection [MOI] of 1 or 10), or 500 U of mouse beta interferon (PBL InterferonSource). The cells were incubated for 1 h at 4°C while being rocked. Mock-infected and virus-infected cells were washed twice and maintained in complete medium. The cells were harvested at 0, 6, 12, 24, and 48 hours after treatment and lysed in 1 ml of Trizol reagent. RNA was further purified using the RNeasy minikit (Qiagen), and the RNA quality was assessed using an Agilent 2100 bioanalyzer. RNA (200 ng) was reverse transcribed using the Quantitect reverse transcription kit (Qiagen).

RNA preparation. Both lobes of the right lung were removed and homogenized in Trizol using the MagNA Lyser system (Roche) according to the manufacturer’s instructions. RNA was further purified using the miRNeasy minikit (Qiagen) according to the manufacturer’s instructions. The purity of the RNA samples was verified spectrophotometrically, and the quality of the intact RNA was assessed using an Agilent 2100 Bioanalyzer. This assay also confirmed that the RNA samples were free of genomic DNA contamination.

Sequencing and read mapping. We generated cDNA libraries for sequencing analysis using the “not-so-random” (NSR) priming method (6). Briefly, the NSR method uses a set of computationally selected random hexamers to deplete rRNA from total RNA, while still allowing the acquisition of full-length, strand-specific, polyadenylated and nonpolyadenylated transcripts. We purified PCR products without additional manipulation to generate clusters for sequencing by synthesis using the Illumina GA2 platform. Single-end sequencing produced 36-nucleotide (nt) antisense reads containing a dinucleotide bar-coded sequence (CT) at the 5′ terminus. We truncated raw reads as 25 nt before mapping against the mouse genome (mm9, July 2007, NCBI Build 37) combined with SARS viral genomic sequence (MA15 [GenBank accession no. DQ497008]) using Bowtie (16). For global classification, reads mapping to single genomic sites were classified into exonic, intronic, and intergenic categories using the coordinates defined by the UCSC Genes (knownGene) Track (http://genome.ucsc.edu/). Read sequences that mapped to multiple genomic sequences were excluded from subsequent analyses. For the visualization, WIG files were generated using TopHat (17) with...
Identification of novel transcripts by a genome-wide scan. Briefly, we first assigned reads that were mapped uniquely in the genome to their site of origin. To identify regions differentially expressed during viral infection, we employed a sliding window approach to compare the expression levels between a pair of samples (infected versus mock-infected samples in this study): we slid windows, scored each window based on the number of uniquely mapped reads, and selected intervals with fold changes between two samples above a threshold level. Specifically, we did the following. (i) We fixed a window size (w) and slid it across the genome with a moving step (s). For each window, we computed a score, s_f, as the number of reads aligned within the window, normalized by the total number of uniquely mapped reads for each sample. (ii) To identify differentially expressed windows, we created ratios of scores between the pair of samples and selected those windows passing a threshold (f) for fold change. (iii) We merged overlapping windows into larger intervals if they were differentially expressed in the same direction. (iv) To obtain larger intervals, we joined identified neighboring intervals if there were a low number of reads in between and the larger intervals formed by neighboring ones were also differentially expressed, judged by a threshold f'. (v) To increase the confidence, we then selected only those intervals that were differentially expressed consistently in at least k pairs of samples (here all upregulated or all downregulated in at least 3 out of 4 mouse strains). (vi) We then removed those intervals overlapping protein-coding genes annotated by UCSC or Ensembl, merged remaining overlapping intervals identified from all scans into nonoverlapping genomic regions, and recalculated expression ratios.

We searched the identified genomic regions against different annotations, including noncoding RNA annotations from ncRNA.org (http://www.ncrna.org/). Annotation of piwi-associated small RNAs (piRNAs) were obtained from the functional RNA database (21). Conserved RNA secondary structures ($P > 0.5$) were predicted based on the 30-way multiple alignments downloaded from the UCSC genome browser (http://genome.ucsc.edu) using RNAz (22). The repeat information was downloaded from RepeatMasker Track of the UCSC genome browser. For simplicity, the different classes of repeats were grouped similarly as previously described (23), and denoted as “retrotransposon” for short interspersed nuclear elements (SINE), long interspersed nuclear elements (LINE), long terminal repeat elements (LTR), and DNA repeat elements (DNA) superfamilies; “Simple” for simple repeats and low complexity; and “Others” for the rest.

Quantitative real-time PCR. Quantitative real-time PCR was used to validate expression of noncoding RNA. For each sample, total RNA input of approximately 100 ng was used, and cDNA was synthesized by reverse transcription using the QuantiTect reverse transcription kit (Qiagen). Primer sets for SYBR green quantitative reverse transcription-PCR (qRT-PCR) were designed using Primer3 (24). For each locus of interest, we designed two or more pairs of primers, and we selected the one with the best amplification efficiency in samples across all mouse strains for the subsequent quantification. Primer sequences are available in Table S5 in the supplemental material. qPCR was performed using an ABI 7900HT real-time PCR system, and each assay was run in triplicate using Power SYBR green PCR master mix (Applied Biosystems). We chose the 18S rRNA gene for normalization using genORM (25) and assaying multiple endogenous controls across all samples. These endogenous controls were the 18S rRNA gene, actin beta (Actb), beta-2 microglobulin (B2m), glyceraldehyde-3-phosphate dehydrogenase (Gapdh), hypoxanthine guanine phosphoribosyl transferase (Hprt1), phosphoglycerate kinase 1 (Pgk1), and transferrin receptor (Tfrc). We selected 39 candidates representing a variety of loci for follow-up by qPCR. We required that candidate loci have genomic locations containing unique sequences for designing PCR primers and a reasonable read coverage suggesting efficient amplification.

ACKNOWLEDGMENTS

Influenza A virus strain A/Prt/8/34 (H1N1) was kindly provided by Peter Palese (Mt. Sinai University, New York), and viral stocks were prepared by Shinobu Yamamoto (University of Washington, Seattle) in pathogen-free eggs (Charles River). We thank Shujun Luo, Gary P. Schroth, and Irina...
Khirebtukova from Illumina, Inc., for generating the short-read data from selected samples with poly(A) selection. We thank Victoria Carter (University of Washington, Seattle) for generating microarray data.

This work was supported by the National Institutes of Health grant U54 AI081680 (PNWRCSE) and by funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, contract no. HHSN272200800060C.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00206-10/-/DCSupplemental.

REFERENCES

1. Wilusz, J. E., H. Sunwoo, and D. L. Spector. 2009. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 23: 1494–1504.
2. Ponting, C. P., P. L. Oliver, and W. Reik. 2009. Evolution and functions of long noncoding RNAs. Cell 136:629–641.
3. Mercer, T. R., M. E. Dinger, and J. S. Mattick. 2009. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10:153–159.
4. Guttwein, E., and B. R. Cullen. 2008. Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3:375–387.
5. Roberts, A., D. Deming, C. D. Paddock, A. Cheng, B. Yount, L. Vogel, B. D. Herman, T. Sheahan, M. Heise, G. L. Genrich, S. R. Zaki, R. Baric, and K. Subbarao. 2007. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog. 3:e5.
6. Armour, C. D., J. C. Castle, R. Chen, T. Babak, P. Loerch, S. Jackson, J. K. Shah, J. Dey, C. A. Rohl, J. M. Johnson, and C. K. Raymond. 2009. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat. Methods 6:647–649.
7. Guttman, M., I. Amit, M. Garber, C. French, M. F. Lin, D. Feldser, M. Huarte, O. Zuk, B. W. Carey, J. P. Cassady, M. N. Cabili, R. Jaenisch, T. S. Mikkelsen, T. Jacks, N. Hacohen, B. E. Bernstein, M. Kellis, A. Regev, J. L. Rinn, and E. S. Lander. 2009. Chromatin signature reveals a over thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227.
8. Frieman, M. B., J. Chen, T. E. Morrison, A. Whitmore, W. Funkhouser, J. M. Ward, E. W. Lamirande, A. Roberts, M. Heise, K. Subbarao, and R. S. Baric. 2010. SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type 1, II and III interferon receptor independent mechanism. PLoS Pathog. 6:e1000849.
9. Khalil, A. M., M. Guttman, M. Huarte, M. Garber, A. Raj, D. Rivea Morales, K. Thomas, A. Presser, B. E. Bernstein, A. van Oudenaarden, A. Regev, E. S. Lander, and J. L. Rinn. 2009. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. U. S. A. 106:11667–11672.
10. Ponjavic, J., P. L. Oliver, G. Lunter, and C. P. Ponting. 2009. Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet. 5:e1000617.
11. Huang, D. W., B. T. Sherman, and R. A. Lempicki. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4:44–57.
12. Pang, K. C., M. E. Dinger, T. R. Mercer, L. Malquori, S. M. Grimmond, W. Chen, and J. S. Mattick. 2009. Genome-wide identification of long noncoding RNAs in CD8+ T cells. J. Immunol. 182:7738–7748.
13. Ahanda, M. L., T. Ruby, H. Wittzell, B. Bed’Hom, A. M. Chausse, V. Morin, A. Oudin, C. Chevalier, J. R. Young, and R. Zoorob. 2009. Non-coding RNAs revealed during identification of genes involved in chicken immune responses. Immunogenetics 61:55–70.
14. Ravasi, T., H. Suzuki, K. C. Pang, S. Katayama, M. Furuno, R. Okunishi, S. Fukuda, K. Ru, M. C. Frith, M. M. Gongora, S. M. Grimmond, D. A. Hume, Y. Hayashizaki, and J. S. Mattick. 2006. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 16:11–19.
15. Churchill, G. A., et al. 2004. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 36:1133–1137.
16. Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R25.
17. Trapnell, C., J. Pachter, and S. L. Salzberg. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111.
18. Dinger, M. E., K. C. Pang, T. R. Mercer, M. L. Crowe, S. M. Grimmond, and J. S. Mattick. 2009. NRED: a database of long noncoding RNA expression. Nucleic Acids Res. 37:D122–D126.
19. Mortazavi, A., B. A. Williams, K. McCue, L. Schaeffer, and B. Wold. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5:621–628.
20. Gentleman, R. C., V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, I. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Y. Yang, and J. Zhang. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5:R80.
21. Mituyama, T., K. Yamada, E. Hattori, H. Okida, Y. Ono, G. Terai, A. Yoshizawa, T. Komori, and K. Asai. 2009. The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Res. 37:D89–D92.
22. Washietl, S., I. L. Hofacker, and P. F. Stadler. 2005. Fast and reliable prediction of noncoding RNAs. Proc. Natl. Acad. Sci. U. S. A. 102:2454–2459.
23. Faulkner, G. J., Y. Kimura, C. O. Daub, S. W. Paepe, and F. Speleman. 2009. Arraynomics: a new high-throughput approach to study gene expression and regulation. Nat. Rev. Genet. 10:563–571.
24. Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, and N. Van Roy. 2004. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 36:1133–1137.
25. Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, and N. Van Roy. 2004. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 36:1133–1137.
26. Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, and N. Van Roy. 2004. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 36:1133–1137.