Importance of Cytochrome P450 gene family from metabolite biosynthesis to stress tolerance: A review

N Laffaru Singpho, J G Sharma
Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
namratalaffarusingpho_2k17/bt/15@dtu.ac.in

Abstract. CYP450 short for Cytochrome P450 is an enzyme superfamily involved in catalysing numerous biochemical reactions. It is known for its involvement in diverse plant processes. CYP450 is widely distributed in the case of eukaryotes and is said to exist in all domains of living organisms including bacteria, plants as well as mammals. The enzyme of this family plays a key role in the oxidative transformation of both endogenous as well as exogenous molecules. The growth and development of the plants are affected by several biotic and abiotic stresses regularly. They downgrade the crop quality and lead to a sharp decline in the productivity of the crop. CYP plays important role in providing protection to plants against these stresses. It does that by taking an active part in various detoxification as well as biosynthetic pathways. The objective of this review is to explore the role of CYP 450 in various metabolite biosynthesis as well as tolerance to various biotic and abiotic stresses in plants. This review aims to provide a framework for further investigation of the CYP450 gene family in plants and will also provide a strong base for the characterization of their diverse role in defence mechanisms against different abiotic and biotic stress and metabolite biosynthesis.

1. Introduction
Cytochrome P450 (CYP450) is a superfamily of enzymes commonly known for its key role in catalyzing various chemical reactions. Its traces have been seen in all domains of organisms. CYP450s are known to be widely distributed in the case of eukaryotes. It was Martin Klingenberg who first reported the CYP450 spectrum in the year 1958. The enzymes of this superfamily are responsible for the oxidative transformation of both exogenous as well as endogenous molecules [66], [23].

In previous studies, with the help of Genome-Wide Analysis, it was found that the Cytochrome P450 genes in the genomes of different organisms range from around 50 to 150. Besides It was also found that the plant Arabidopsis thaliana has 245 Cytochrome P450 [4], 57 Cytochrome P450 in the human genome, 285 Cytochrome P450 in the case of Tartary Buckwheat [96], and 174 Cytochrome P450 in case of Morus notabilis [55](Table 1). CYP450 is a diverse family with more than 35,000 members [66]. When CYP450 was at its initial stages of discovery it was considered to be a pigment rather than an enzyme. It was later found out that the particular pigment displayed vivid characteristics of a heme-protein [74]. Much later it was established that CYP450 were not pigments but enzymes. In CYP450, 450 nm is the wavelength of light the enzyme superfamily can strongly absorb and ‘P’ is short for pigment. CYPs can function in the carbon monoxide binding processes due to the presence of a particular heme group. This particular heme group is involved in the catalysis process in plants. In the case of plants, CYP450 was first identified in the cotton plant [25]. CYP450s are also known for
their important role in the metabolism of numerous pesticides and herbicides. Previous studies show that in the plant *Arabidopsis thaliana*, the P450 gene family vouches for being the 3rd largest gene family. In the case of plants, the molecular mass of the CYP450 gene family lies between 45 to 62kDa [102] with an average mass of approximately 55kDa [22]. Plant growth and development are challenged by numerous stresses daily. They can either be biotic or abiotic. These stresses affect the plants in many ways. They disturb the plant’s physiological processes hence affecting its growth and development. They also downgrade the quality of crops which results in a sharp decline in crop yield. The CYPs are responsible for providing protection against these stresses by taking an active part in numerous biosynthetic as well as detoxification pathways [70]. When in danger, plants tend to produce some specific primary or secondary metabolites as a defense mechanism against various stress caused by insects, pathogens, temperature, weed, or even water. CYP helps in catalyzing the reaction during the biosynthesis of these metabolites and promotes the overall growth and development of plants.

Table 1 Distribution of CYP450s in different plants

Plants	Total number of CYP450	Reference
Triticum aestivum (Wheat)	1285	[50]
Gossypium hirsutum (Cotton)	672	[57]
Gossypium arboreum (Cotton)	379	-
Gossypium raimondii (Cotton)	374	-
Sorghum bicolor (Sorghum)	372	[68]
Oryza sativa (Rice)	356	-
Linum usitatissimum (Flaxseed)	334	[4]
Glycine max (Soybean)	332	-
Vitis vinifera (Grapevine)	315	[67]
Populus trichocarpa (Black cottonwood)	312	-
Fagopyrum tataricum (Tartary buckwheat)	285	[96]
Brassica oleracea (Cabbage)	279	[39]
Arabidopsis thaliana (Arabidopsis)	245	[4]
Solanum lycopersicum L. (Tomato)	233	[102]
Morus notabilis (Mulberry)	174	[55]
2. Role of CYP in plants
Apart from the role of CYPs in catalyzing various biochemical reactions mentioned earlier, CYP450s are also involved in numerous cellular processes which include growth and development of cell, primary and secondary metabolite biosynthesis as well as xenobiotics detoxification (Figure 1). They also facilitate the regulation of many important processes in a cell that eventually affects plant growth. CYP450s are responsible for the biosynthesis of compounds in numerous metabolic pathways. One example would be the involvement of the CYP706B1 gene in the isoprenoid pathway [53]. This particular hydroxylase is responsible for synthesizing gossypol. Gossypol is a toxic compound present in the cotton plant which makes it more resistant to insect stress due to its toxic nature. They are also responsible for the regulation of plant hormone metabolism. The hormone in turn manages the formation of leaves, stems, and flowers as well as covers the development and maturity of fruits. CYPs are involved in catalyzing secondary metabolites like steroids, flavonoids, glycoside, and many more[42]. These metabolites are in turn responsible for the overall development and growth of the plant. For example, structural genes in secondary metabolites such as flavonoids are often CYP450 genes [9]. Another key function of CYP450 is its important role in the biosynthesis of phytoalexins which is known for being a common plant defense response. Phytoalexins are released by plants during exposure to stress by parasites. They inhibit the growth and further development of parasites during a stressful environment.

3. Distribution of cyp450 in various plants
In plants, Cytochrome P450 is situated in the endoplasmic reticulum, mitochondria, and chloroplast [61]. CYP450 enzyme family is divided into two types i.e. a) A-Type- It consists of CYP71 clan and b) Non-A type- it consists of CYP746, CYP727, CYP711, CYP710, CYP97, CYP86, CYP85, CYP74, CYP72, CYP51[68], [6], [67] (Table 2). In plants, CYP is found in almost all its organs including the shoot, bulbs, hypocotyl, radicle as well as endosperm of germinating seeds. In addition to that in the case of both plants and animals, the spectral properties of CYPs are reported to be somewhat similar with the absorbance ranging from 447-452nm. Moreover, CYPs are also closely related to the biosynthetic pathway of the plant steroid hormone brassinolide (BR) [71]. There are four characteristics regions available that are common for all the P450s i.e. a) I-helix b) K-helix c) Proline-rich membrane hinge and d) “PERF” consensus
I-helix functions in process of oxygen-binding whereas “PERF” consensus ensures the stabilization of the core structure of the heme pocket [30].

In Figure 2 we can see the phylogenetic tree of the CYP450 gene family in different species. The tree includes 6 Arabidopsis thaliana, 2 Saccharomyces cerevisiae, 2 Solanum lycopersicum, 2 Brassica oleracea, 2 Oryza sativa, and 1 Zea mays p450 genes. The analysis was done with the help of a computational biology tool named Mega 6.0 software. The nomenclature system states that the P450 belonging to the same family and same sub-family share around approximately 40% and 55% identity respectively.

Nelumbo nucifera	172	[65]
Medicago truncatula	151	[49]

2. Role of CYP in plants
Apart from the role of CYPs in catalyzing various biochemical reactions mentioned earlier, CYP450s are also involved in numerous cellular processes which include growth and development of cell, primary and secondary metabolite biosynthesis as well as xenobiotics detoxification (Figure 1). They also facilitate the regulation of many important processes in a cell that eventually affects plant growth. CYP450s are responsible for the biosynthesis of compounds in numerous metabolic pathways. One example would be the involvement of the CYP706B1 gene in the isoprenoid pathway [53]. This particular hydroxylase is responsible for synthesizing gossypol. Gossypol is a toxic compound present in the cotton plant which makes it more resistant to insect stress due to its toxic nature. They are also responsible for the regulation of plant hormone metabolism. The hormone in turn manages the formation of leaves, stems, and flowers as well as covers the development and maturity of fruits. CYPs are involved in catalyzing secondary metabolites like steroids, flavonoids, glycoside, and many more[42]. These metabolites are in turn responsible for the overall development and growth of the plant. For example, structural genes in secondary metabolites such as flavonoids are often CYP450 genes [9]. Another key function of CYP450 is its important role in the biosynthesis of phytoalexins which is known for being a common plant defense response. Phytoalexins are released by plants during exposure to stress by parasites. They inhibit the growth and further development of parasites during a stressful environment.

3. Distribution of cyp450 in various plants
In plants, Cytochrome P450 is situated in the endoplasmic reticulum, mitochondria, and chloroplast [61]. CYP450 enzyme family is divided into two types i.e. a) A-Type- It consists of CYP71 clan and b) Non-A type- it consists of CYP746, CYP727, CYP711, CYP710, CYP97, CYP86, CYP85, CYP74, CYP72, CYP51[68], [6], [67] (Table 2). In plants, CYP is found in almost all its organs including the shoot, bulbs, hypocotyl, radicle as well as endosperm of germinating seeds. In addition to that in the case of both plants and animals, the spectral properties of CYPs are reported to be somewhat similar with the absorbance ranging from 447-452nm. Moreover, CYPs are also closely related to the biosynthetic pathway of the plant steroid hormone brassinolide (BR) [71]. There are four characteristics regions available that are common for all the P450s i.e. a) I-helix b) K-helix c) Proline-rich membrane hinge and d) “PERF” consensus
I-helix functions in process of oxygen-binding whereas “PERF” consensus ensures the stabilization of the core structure of the heme pocket [30].

In Figure 2 we can see the phylogenetic tree of the CYP450 gene family in different species. The tree includes 6 Arabidopsis thaliana, 2 Saccharomyces cerevisiae, 2 Solanum lycopersicum, 2 Brassica oleracea, 2 Oryza sativa, and 1 Zea mays p450 genes. The analysis was done with the help of a computational biology tool named Mega 6.0 software. The nomenclature system states that the P450 belonging to the same family and same sub-family share around approximately 40% and 55% identity respectively.
Figure 1 Different functions of CYP450 in plants

Table 2 Classification of CYP450 gene family in plants

Name of Clan	Name of Family	Name of Sub-family	CYPD, CYPG
CYP51	CYP51	CYPG, CYP51H	CYP83, CYP83A, CYP83B
CYP71	CYP71	CYP71A, CYP71B, CYP71C, CYP71E, CYP71Z	CYP84, CYP84A
CYP73		CYP73A	CYP89, NA
CYP75		CYP75A, CYP75B	CYP92, NA
CYP76		CYP76A, CYP76B, CYP76M	CYP93, CYP93A, CYP93B, CYP93C, CYP93E, CYP93G
CYP77		CYP77A	CYP98, CYP98A
CYP78		CYP78A	CYP99, CYP99A
CYP79		CYP79A, CYP79B, CYP79D, CYP79F	CYP701, CYP701A
CYP80		CYP80A, CYP80G, CYP80B	CYP703, CYP703A
CYP81		CYP81A, CYP91B, CYP81D, CYP81A	CYP705, CYP705A
CYP82		CYP82	CYP706, CYP706M
			CYP712, NA
--------	--------	--------	--------
CYP719	CYP719A, CYP719B		
CYP723	NA		
CYP726	NA		
CYP736	NA		
CYP72	CYP72A, CYP72B, CYP72C		
CYP709	CYP709B, CYP709C		
CYP714	CYP714A, CYP714B, CYP714D		
CYP715	NA		
CYP719	CYP719A, CYP719B		
CYP724	CYP724B		
CYP734	CYP734A		
CYP74	CYP74A, CYP74B, CYP74D		
CYP85	CYP85A		
CYP87	NA		
CYP88	CYP88A, CYP88D		
CYP90	CYP90A, CYP90B, CYP90C, CYP90D		
CYP702	NA		
CYP707	CYP707A		
CYP85	CYP85A		
CYP87	NA		
CYP88	CYP88A, CYP88D		
CYP90	CYP90A, CYP90B, CYP90C, CYP90D		
CYP702	NA		
CYP707	CYP707A		
CYP85	CYP85A		
CYP87	NA		
CYP88	CYP88A, CYP88D		
CYP90	CYP90A, CYP90B, CYP90C, CYP90D		
CYP702	NA		
CYP707	CYP707A		

(The data given in the table is taken from [20], [42], [60], and [77])
Figure 2 The phylogenetic tree of CYP450 in different species. The given tree includes 6 *Arabidopsis thaliana* P450 genes (CAB78925.1, CAA62082.1, CAA66458.1, CAA16713.1, AAB67854.1 and BAE99066.1), 2 *Saccharomyces cerevisiae* P450 genes (AAB06217.1 and GAX67028.1), 2 *Solanum lycopersicum* P450 genes (BAF41218.1 and BAF41219.1), 2 *Brassica oleracea* P450 genes (DAA64962.1 and DAA64966.1), 2 *Oryza sativa* P450 gene (BCL64962.1 and CAC81901.1) and 1 maize p450 (PLRT03259) gene. It is constructed by MEGA 6.0 software using NJ algorithms with 1000 bootstrap replicates.

4. Metabolite biosynthesis

Members of the CYP450 gene family are known for their diverse roles in core metabolisms. One of the key roles they play is their indirect participation in photosynthesis as well as photo-protection which is closely associated with the growth of plants [60]. Xanthophylls are yellow pigments that are responsible for light–harvesting during the photosynthesis process. CYP genes like CYP97A3 and CYP97C1 actively participates in the biosynthetic pathway of these yellow pigments as they function in catalyzing the process of hydroxylation of beta and gamma rings of carotenoids. CYP genes like CYP86A1, CYP86A2, CYP86A8, and CYP86A33 are responsible for playing a key role in the biosynthesis of cutin and suberin in plants like *Symphytum tuberosum* and *Arabidopsis* [108], [34], [93]. Cutin and suberin are complex biopolymers that are known for protecting plants from certain disturbances including pathogens and UV as they are capable of controlling processes such as water evaporation as well as water transpiration. Cutin majorly consists of glycerol and fatty acids. Suberin on the other hand consists of fatty acid-derived domains. Now, the CYP86 gene family helps in the biosynthesis of these biopolymers as they function in the hydroxylation process of fatty acids which is essentially the most vital component of these compounds.
In plants, members of the CYP450 gene family like CYP93B, CYP93E, and CYP93G are responsible for the secondary metabolites biosynthesis in plants [20]. Additionally, the CYP450 gene family is also considered to be an essential component of auxin biosynthesis in certain plants [5]. Auxins are growth-inducing hormones that function in certain tropic behaviors, root initiation, and also apical dominance [22]. CYP734, CYP724, and CYP90 are involved in the process of glycoalkaloids biosynthesis. The glycoalkaloids are usually known to be toxic to living beings however they are an essential part of the Solanaceae family. In potato plants, CYP74D genes play a vital role in the biosynthesis of antimicrobial compounds such as oxylipins [95]. These antimicrobial compounds are derivatives of fatty acids and are considered useful for overall plant growth. Oxylipins also provides defense against certain stresses in the case of plants. Certain CYP genes like AtCYP97C1 and AtCYP97A3 are responsible for determining the pathway of lutein in the Sorghum plant [43]. Lutein in plants functions in the protection of chlorophyll due to its participation in the absorption and transfer of energy. (Table 3)

Plant Species	CYP genes	Function of CYP450	Reference
Arabidopsis thaliana	AtCYP72B1, AtCYP72C1	Modulates signal transduction in this particular plant species	[100]
-	CYP79B2, CYP79B3, CYP83	Biosynthesis of the plant hormone auxin	[5]
-	CYP88A, CYP714A	Gibberellin metabolic pathways	[118]
-	CYP703A2	Development of pollen	[62]
-	CYP707A	Modulates plant hormone abscisic acid	[59]
-	AtCYP74A	Jasmonic acid biosynthesis	[78]
-	CYP72A31	Provides defense against herbicides	[87]
Oryza sativa	CYP72A31	Provides defense against herbicides	-
Oryza sativa	CYP93B, CYP93E, CYP93G	Flavonoid biosynthesis	[20]
Hordeum vulgare	CYP707A	Modulation of plant hormone abscisic acid	[59]
Species	Enzyme(s)	Function	Reference
-------------------------	----------------------------------	--	-----------
Sorghum bicolor	CYP79	Cyanogenic glucosides biosynthesis	[7]
Sorghum bicolor	AtCYP97C1, AtCYP97A3	Determines the pathway for biosynthesis of lutein	[43]
Ocimum basilicum	CYP82D	Secondary metabolites biosynthesis	[9]
Nicotiana rustica	CYP51	Triterpenes synthesis	[26]
Vitis vinifera	CYP75	Expression of flavonoids in plants	[12]
Solanum lycopersicum	CYP90B3, CYP724B2	Plant steroid hormone BR (Brassinolide) biosynthetic pathway	[71]
Solanum lycopersicum	AtCYP90A1, AtCYP90B1	Increases vegetative growth along with seed production	[14]
Solanum tuberosum	CYP74D	Synthesis of antimicrobial compound namely oxylipin	[95]
Hordeum vulgare	CYP71A11, CYP71AH11, CYP73A1, CYP81B1, CYP81B2, CYP81B2, CYP76B1	Chlortoluron metabolism	[70]
	CYP96B22	Biosynthesis of wax	[17]
Gossypium arboreum	CYP706B1	Modification of isoprenoid pathway	[53]
Symphytum tuberosum	CYP86A33	Suberin biosynthesis	[93]
Legumes	CYP93C	Legume specific isoflavonoid biosynthetic pathway	[20]
Land plants	CYP93B, CYP93E, CYP93G	Saponin biosynthesis	[63]
5. ROLE OF CYPs IN DIFFERENT TYPES OF STRESS TOLERANCE IN PLANTS

5.1. Abiotic stress
The stress that facilitates the damaging of plants by the action of certain environmental factors such as availability of water, fluctuations in the salt concentration as well as temperature, increasing metal toxicity, etc. is called Abiotic stress. In plants, it is responsible for the loss of crop yield and decrease in overall productivity. CYP is responsible for protecting plants against various stresses caused by environmental factors (Table 4).

5.1.1. Drought stress. Water or drought stress is the lack of moisture that is considered to be a minimum requirement for the normal growth of an average plant. The main factors responsible for causing drought stress include low rainfall, frequent fluctuation of temperature from low to high or vice-versa, salinity, and many others. Drought stress indirectly affects plant productivity. It leads to reduced cell division in plants. It also disturbs the plant’s stomatal oscillation along with its nutrient and water consumption process. It is known to be one of the most common stresses. The survivability of plants during drought stress depends on the maintenance of cell homeostasis in a water-deficient environment. When under such stress, plants trigger certain hormonal activity as a resistance mechanism. One example of such plant hormone is ABA. ABA plant hormone is responsible for activating multiple stress-responsive genes. During drought stress, this particular hormone gets isomerized into phaseic acid. This process is catalyzed by CYP enzyme CYP707A [119]. In certain plants, CYP genes are responsible for the up-regulation of the water inlet in a water-deficit environment. During drought stress, CYP synthesizes leaf lignin which forms the key structural materials that support tissues of plants and is also responsible for the grain formation [35]. One example of the CYP450 gene family which is involved in the defense mechanism against drought stress is CYP96A8. It is responsible for the biosynthesis of lignin in few plants. In the plant Arabidopsis thaliana, some CYP genes like CYP86A2 showed properties such as reduction of cuticle membrane thickness. This particular property increases the tolerance of plants against stress caused by water deficiency by increasing the water permeability (Xiao et al., 2004).

5.1.2. Salinity stress. Salinity or salt stress is the stress caused due to the abundance of salt in a plant habitat. Similar to drought stress, it also affects the overall plant productivity by affecting the germination of a plant which eventually ends up affecting the crop yield. It is one of the abiotic stresses which hinders the smooth development of plant all over the globe. The major factors causing salinity stress include the use of poor quality water for the purpose of salinization as well as irrigation. High salinity gives rise to several other stresses such as oxidative and water stress. It also leads to nutritional disorders as well as ion toxicity. Other disadvantages of salinity stress include genotoxicity and reduced cell expansion and division. CYP indirectly provides protection to plants against stress caused due to fluctuation in salt concentration by taking an active part in the ABA biosynthesis as the lower is the ABA level; the higher becomes the tolerance against stress caused by salt [38]. Previous studies state that alteration in CYP expression can lead to tolerance against salt stress in the case of plants. Reactive oxygen species (ROS) homeostasis and leaf Na+ exclusion are the two most widely known mechanisms related to this particular stress [115]. CYPs are also known for the regulation of ROS homeostasis resulting in providing salinity tolerance to the plants. For example, in the maize plant, the TaCYP81D5 gene increases the plant’s tolerance to this particular stress by speeding up the activity of ROS scavenging and is also involved in the seedling activity [104].

5.1.3. Heavy metal toxicity. Heavy metal toxicity refers to the oxidative stress plants undergo when they are exposed to heavy metals. Metals have harmful biological effects since they are non-decomposable in nature. Heavy metal includes metals such as Nickel, Zinc, Cobalt, Copper, Thallium, Arsenic, Silver, and others. Heavy metal toxicity damages the cell assemblies of the plant. Among all the heavy metals, five are considered to be most lethal and are treated with utmost care as they have
the highest toxicity. Those five heavy metals are Lead, Mercury, Chromium, Arsenic, and Cadmium [21]. Improper disposal of sewage sludge is one of the causes of heavy metal toxicity [3]. CYPs are responsible for the metabolism of these heavy metals. Due to enhanced metabolism, few CYP genes such as CYP2E1 are capable of withstanding mercury toxicity in certain plants like Medicago sativa. In addition to that, they also function in the secondary metabolites biosynthesis such as alkaloids, flavonoids, etc. [91]. In the maize plant, the CYP88A gene facilitates gibberellin synthesis [32]. Gibberellins are growth hormones that function in the integration of numerous hormone signaling pathways when exposed to heavy metal toxicity stress. A high level of metal toxicity also disturbs the process of photosynthesis in plants. When exposed to heavy metal stress, P450s actively participates in the process of detoxification [97].

5.1.4. Temperature stress. Temperature stress is the increase or decrease in temperature which affects a plant’s biochemical as well as physiological processes. It can either be cold stress (less than 20 degree C) or heat stress (approx. 15 degree C above the optimum temperature). Temperature stress also includes freezing stress i.e. the extreme form of cold stress. Here the temperature is below 0 degree C [89]. Since plants maintain themselves at a constant optimum temperature, change in temperature even for the slightest duration may affect them greatly. Temperature stress in plants leads to certain mishaps such as reduction of stability of cell membrane, poor germination, protein denaturation, rapid unfolding of nucleic acid, yellowing of leaf, and loss of enzyme activity [117]. Heat stress causes protein denaturation by leading to the breakdown of cell proteins in plants. It also affects the permeability of the membrane as extreme heat stress results in the melting of cell walls in the case of plants [101]. They eventually lead to loss of crop yield and a sharp decline in crop productivity. Cold stress in plants results in dehydration and starvation as cold stress affects the rate of uptake of essential nutrients and most importantly water. Various studies have indicated that CYP genes up-regulate under temperature stress. For example, In Lolium perenne, it was found that CYP73A, CYP75B, CYP75A genes were up-regulated due to fluctuations in the temperature [99] and In sorghum up-regulation of CYP99A1 and CYP709C1 genes under temperature stress was seen [15]. In Brassica napus, CYP71A23 is responsible for pollen sterility under temperature stress [83]. In the Arabidopsis plant, the CYP83A1 gene shows a 2-4 fold expression under temperature stress [10].

Type of stress	Plant	CYP genes	Role of CYP under various abiotic stress	Reference
Drought stress	Sorghum bicolor	CYP71A25, CYP71B2	CYP up-regulates under drought stress	[41]
	Zea mays	CYP96A8	Biosynthesis of Lignin	[35]
	Arabidopsis thaliana	CYP707A1, CYP707A2	CYP707A1 and CYP707A2 gene is up-regulated under water-deficient condition	[47]
	-	CsCYT75B1	Enhances antioxidant activity	[85]
	-	CYP707A	ABA synthesis	[119]
	Plant Species	Gene	Function	Reference
--------------------------	---------------------	--------	---	-----------
Salinity stress				
	Citrus sinensis	CYP75B1	CsCYP75B1 gene up-regulates under drought stress	[108]
	Zea mays	TaCYP81D5	CYP speeds up the ROS scavenging activity	[104]
	Arabidopsis thaliana	CYP709B3	AtCYP709B3 exhibit increased expression under salinity stress	[38]
	Physcomitrella patens	NA	Reduces the damaging of cell wall under high salinity stress	[106]
	Robinia pseudoacacia	CYP709	CYP genes showed increased expression when exposed to salinity stress	[110]
Heavy metal toxicity	Panax ginseng	CYP71	Biosynthesis of secondary metabolites	[91]
	Zea mays	CYP88A	Gibberellin biosynthesis	[32]
	Medicago sativa		Phytoremediation	[116]
	Arabidopsis thaliana	CYP83A1	CYP exhibits 4-fold expression against Al toxicity	[29]
	Triticum aestivum	CYP88A	Development of shoot	[32]
	Oryza sativa	CYP714A3	Development of shoot	[32]
	Pisum sativum	CYP88A	CYP88A gene showed stunted growth under heavy metal toxicity	[113]
Temperatures stress

Plant	CYP Gene(s)	When under heat stress CYP genes up-regulates	Reference
Panicum maximum	CYP71A23	When under heat stress CYP genes up-regulates	[107]
Lolium perenne	CYP73A, CYP75B, CYP75A	CYP73A, CYP75B, CYP75A genes are up-regulated under temperature stress	[99]
Arabidopsis thaliana	CYP83A1	CYP83A1 gene exhibits 2-4 fold expression under heat and cold stress	[10]
Brassica napus	CYP71A23	Pollen sterility	[83]
Sorghum bicolor	CYP99A1, CYP709C1	Up-regulation of CYP99A1 and CYP709C1 genes under temperature stress	[15]

5.2. Biotic stress

The stress that results in damaging of plants by the actions of living organisms including insects, bacteria, weeds, etc. which disturbs the overall dynamic of plants is called biotic stress. Biotic stresses in plants usually refer to hindrances such as insects, diseases, weeds, etc. These stresses cause deprivation of nutrients and minerals required by the host plant which in some extreme cases also lead to plant death. Apart from disturbing plant growth, biotic stresses are also responsible for affecting the seed quality, rotting of root, and downgrading the crop yield. In plants such as Zea mays and Pisum sativum, CYP genes were found to be up-regulated during the time of wounding [79], [24]. Additionally, the CYP gene i.e. CYP96A15 are also closely involved with a very common structural plant defence mechanism called epicuticular wax biosynthesis. (Table 5)

5.2.1. Disease stress. Disease stress is considered the most prominent out of all these biotic stresses. Fungi are major contributors of disease stress in plants. It is closely followed by plant stress caused by insects. In the Arabidopsis plant, a member of the CYP450 gene family AtCYP76C2 gene results in rapid cell death as a coping response to bacterial stress caused by Pseudomonas syringae as it restricts the further spreading and growth of pathogens [28]. In Capsicum annuum, caCYP1 is a key player as it is known for its involvement in hypersensitive response (HR) to protect the plant from infection by Xanthomonas axonopodis [44]. It is also responsible for the biosynthesis of cutin as well as cyanogenic glucosides [108]. One of the many factions of CYP in plants includes the involvement of CYP93C genes in providing protection against disease stress. This particular gene enhances the intake of isoflavonoids by plants thus facilitating the tolerance against disease stress. CYP450 genes like CYP81E1, CYP81E3, CYP81E7, and CYP93A1 are also considered key players in the isoflavonoids biosynthesis in the case of plants like Medicago truncatula, Glycyrrhiza echinata, Glycine max L and Cicer arietum L [51], [2], [90], [75]. Isoflavonoids in turn provide protection against diseases by increasing dietary intake. In the Arabidopsis plant, CYP71B15 is responsible for the biosynthesis of camalexin and by doing so ensures the protection of plants from disease stress [22] as the secondary
metabolite camalexin discourages the further development of bacterial and fungal pathogens. Camalexins are known for their defence mechanism against a virulent bacterial pathogen namely Pseudomonas syringae. Another example of the involvement of CYP as a defence against pathogens in Arabidopsis is that this plant usually produces phytoalexins as a response to attacks by bacterial pathogens. CYP genes like CYP71B15, CYP71A12, CYP79B3, CYP79B2, and CYP71A13 in the said plant are responsible for the biosynthesis of the previously mentioned aromatic compound camalexin [22]. Hence, helps in the defence mechanism against disease stress.

5.2.2. Insect stress. Insect stress causes physical damage to plants. They also serve as carriers of numerous bacteria and viruses. Insect stress in plants also disturbs important processes such as photosynthesis as insects tend to reduce the surface area of a leaf which is directly related to the rate of photosynthesis. They function in the biosynthesis of xanthophyll. This pigment functions in the light-capturing process during photosynthesis. CYP is responsible for increasing the would-induced defence during the biotic stress environment. In the sorghum plant, CYP71E1 and CYP79A1 catalyse the reaction of conversion on tyrosine, which in turn optimizes pest resistance as well as food safety [5]. Additionally, in few plants like Arabidopsis, CYP450s like CYP86A1 are also known for their function in the biosynthesis of suberin which is a defence mechanism against insect stress [34]. Arabidopsis plants also include CYP PAD3 genes which make the plant resistant to *Myzus persicae* or green peach aphid [81]. The green peach aphids are considered a major threat to plants all around the world due to their ability to work as a vector carrying different plant viruses. Another important role of CYP450 is their involvement in Berberine biosynthesis. Berberines are secondary metabolites that function in providing protection to plants from Plutella xylostella commonly known as the Diamond back moth. This insect is known for its destructive nature and high tolerance to bio-pesticides as well as certain chemicals. Berberine is an alkaloid that is known to be toxic to insects including the diamond back moth. CYP719 genes are responsible for the biosynthesis of this alkaloid in *Coptis japonica* [36]. Hence, they provide defence against insect stress in plants.

5.2.3. Weed stress. Another type of biotic stress includes weeds or undesirable and unprofitable plants. Weed is one of the biotic stresses that the plant faces which yet again challenges its productivity, growth as well as development as there is clear competition for water, minerals, nutrients as well as sunlight between weed and the plant. Weed is a potential threat to crop productivity as they dominate the environment because of their rapid growth criterion. Certain plants such as Sorghum release allelochemicals to inhibit weed growth. CYP71AM1 gene synthesizes these allelochemicals in such plants. It is responsible for catalysing sorgoleone which is an allelochemicals [76]. CYP71C is considered to be vital in the process of biosynthesis of benzoxazinoids namely DIBOA and DIMBOA which are specialized metabolites responsible for inhibiting the weed growth in the case of the wheat plant [69]. Apart from their role in providing defence against weed they also protect the plants from other biotic stresses such as insects and diseases.

Stress	Plant	CYP genes	Role of CYP under various biotic stress	Reference
Disease stress	*Arabidopsis thaliana*	AtCYP76C2	Results in the rapid cell death as a coping response to bacterial stress caused by *Pseudomonas syringae*	[28]
Species	Enzyme	Function	Reference	
----------------------------	-------------------	--	-----------	
Arabidopsis thaliana	CYP71B15	Biosynthesis of secondary metabolite camalexin which in turn provide protection against bacterial pathogen *Pseudomonas syringae*	[22]	
	-	Modulates the level of phytoalexins resulting in tolerance against some pathogen	[22]	
Nicotiana benthamiana	GmCYP82A3	High tolerance to gray mold and black shank	[111]	
Capsicum annuum	CaCYP1	Involvement in hypersensitive response (HR) to protect plant from infection by *Xanthomonas axonopodis*	[44]	
Triticum aestivum	CYP709C3v2	Tolerance to *Fusarium* head blight	[46]	
Cicer arietum L.	CYP81E3	Biosynthesis of isoflavonoid. Isoflavonoid in turn enhances the dietary intake hence provides protection from diseases.	[75]	
Glycine max L.	CYP93A1	-	[90]	
Glycyrrhiza echinata	CYP81E1	-	[22]	
Arabidopsis thaliana	CYP86A1	Suberin biosynthesis	[34]	
	-	Cutin biosynthesis	[108]	
	-	Protection from *Myzus persicae* commonly known as green peach aphid in the case of *Arabidopsis* plant	[81]	
Nicotiana tobacum	Uncharacterized	Resistance to aphids	[103]	
Insect stress				
Plant Species	CYP Gene	Function Description	Reference	
-----------------------	----------	--	------------	
Oryza sativa	CYP704B2	Anther cutin biosynthesis	[48]	
Symphytum tuberosum	CYP77A20, CYP77A19	Biosynthesis of suberin	[93]	
Sorghum bicolor	CYP71E1, CYP79A1	Conversion of tyrosine during the biosynthesis of Dhurrin to ensure resistance against pest	[7]	
Coptis japonica	CYP719	CYP functions in Berberine biosynthesis to ensure resistance against Diamond black moth	[36]	
Conifers	CYP720B4	Biosynthesis of resin acid	[33]	
Sorghum bicolor	CYP71AM1	Biosynthesis of allelochemicals to suppress the growth of weeds	[76]	
Triticum aestivum	CYP71C	Biosynthesis of DIBOA, DIMBOA to inhibit further growth of weeds	[69]	
Glycine max	CYP82A3	Play important role in the signaling pathways	[111]	
Zea mays	NA	Up-regulation of CYP genes during wounding	[79]	
Pisum sativum	NA	CYP genes get up-regulated during wounding	[24]	
Populus trichocarpa	CYP79D	Aldoximes biosynthesis	[37]	

6. Analysis/ Discussion

CYPs are considered vital in a plant’s defence mechanism against different stresses and help in catalysing the reaction during the biosynthesis of primary and secondary metabolites. A CYP first figure out the external stress condition and generates cellular responses accordingly. CYP450 play important role in the biosynthesis of phytoalexins which are released by plants during exposure to stress by parasites. Moreover, CYPs are also involved in important cellular processes like photosynthesis. Xanthophylls are yellow pigments that are responsible for light–harvesting during the photosynthesis process. CYP genes like CYP97A3 and CYP97C1 actively participates in the
biosynthetic pathway of these yellow pigments as they function in catalyzing the process of hydroxylation of beta and gamma rings of carotenoids. In the plant *Arabidopsis thaliana*, CYP86A2 showed properties such as reduction of cuticle membrane thickness which results in the increased tolerance of plants against stress caused by water deficiency by increasing the water permeability. Gibberellins are growth hormones that function in the integration of numerous hormone signaling pathways when exposed to heavy metal toxicity stress. In plants such as maize CYPs facilitates synthesis of these growth hormones. Another important role of CYP450 is their involvement in Berberine biosynthesis. Berberines are secondary metabolites that function in providing protection to plants from *Plutella xylostella* commonly known as the Diamond back moth. This insect is known for its destructive nature and high tolerance to bio-pesticides as well as certain chemicals. Berberine is an alkaloid that is known to be toxic to insects including the diamond back moth.

7. Conclusion
Environmental stresses caused via biotic and abiotic factors often hinder the growth as well as effects the development of plants. Living organisms comprising fungi, bacteria, insects, etc. are often the cause behind biotic stresses. Abiotic and biotic stresses such as these occur due to a mixture of physical as well as environmental factors widely affecting the plants by causing stress thereby reducing plant productivity. However, plants have developed many defense mechanisms against these stresses. In plants, the Cytochrome P450 gene family is responsible for providing protection to plants against multiple abiotic and biotic stresses by actively taking part in numerous detoxification and biosynthetic pathways. They are also responsible for the biosynthesis of numerous compounds to ensure the survival of the plant when exposed to certain stresses. It is expected that factors causing abiotic and biotic stress will increase in the coming future. One example is the rapid increase in Earth’s temperature. It would become a necessity to breed plants that are resistant to these stresses. This study facilitates the characterization of CYP450 in plants to observe its role in metabolite biosynthesis and defense against different stresses in plants. Furthermore, this study will also provide us with a solid foundation for further analysis of the CYP450 gene in numerous plant species in the future. With an increasing amount of genomic information, our knowledge of this specific enzyme will keep on increasing as well. We have previously discussed the diverse functions of CYP450 in plants. Since one of its many functions is its role in generating defense response under stress conditions, increasing our knowledge of this enzyme superfamily will help us develop plants with magnified tolerance to such stresses in the coming future.

Acknowledgement
The author wishes to thank Dr. Nirala Ramchiary, Dr Jai Gopal Sharma and the Department of Biotechnology, Delhi Technological University for their kind guidance.

References
[1] Ai J, Zhu Y, Duan J, Yu Q, Zhang G, Wan F and Xiang Z H 2011 Genome-wide analysis cytochrome P450 monooxygenase genes in the silkworm, Bombyx mori *Gene* 480(1-2) 42-50
[2] Akashi T, Aoki T and Ayabe S I 1998 CYP81E1, a cytochrome P450 cDNA of licorice (Glycyrrhiza echinata L.), encodes Isoflavone 2′-hydroxylase *Biochemical and biophysical research communications* 251(1) 67-70
[3] Ali H, Khan E and Sajad M A 2013 Phytoremediation of heavy metals—concepts and applications *Chemosphere* 91(7) 869-81
[4] Babu P R, Rao K V and Reddy V D 2013 Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.) *Gene* 513(1) 156-62
[5] Bak S and Feyereisen R 2001 The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis *Plant Physiol* 127(1) 108-18
[6] Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S and Werck-Reichhart D 2011 Cytochromes P450 *The Arabidopsis Book/American Society of Plant Biologists* 9
[7] Bak S, Kahn R A, Nielsen H L, Møller B L and Halkier B A 1998 Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside Dhurrin Plant molecular biology 36(3) 393-405

[8] Bancos İ S, Nomura T, Sato T, Molnár G, Bishop G J, Koncz C and Szekeres M 2002 Regulation of transcript levels of the Arabidopsis cytochrome P450s involved in brassinosteroid biosynthesis Plant molecular biology 36(3) 393-405

[9] Bilodeau P, Udvardi M K, Peacock W J and Dennis E S 1999 A prolonged cold treatment-induced cytochrome P450 gene from Arabidopsis thaliana Plant, Cell & Environment 22(7) 791-800

[10] Bolwell G P, Bozak K and Zimmerlin A 1994 Plant cytochrome P450 Phytochemistry 37(6) 1491-506

[11] Castellarin S D, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Testolin R 2006 Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3', 5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin BMC Genomics 7(1) 1-17

[12] Chen J, Song Y, Zhang H and Zhang D 2013 Genome-wide analysis of gene expression in response to drought stress in Populus simonii Plant molecular biology reporter 31(4) 946-62

[13] Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S and Feldmann K A 2001 Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis The Plant Journal 26(6) 573-82

[14] Chopra R, Burrow G, Hayes C, Emendack Y, Xin Z and Burke J 2015 Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress BMC genomics 16(1) 1-11

[15] Coon M J 2005 Cytochrome P450: nature's most versatile biological catalyst Annu. Rev. Pharmacol. Toxical 45 1-25

[16] Delventhal R, Falter C, Strugala R, Zellerhoff N and Schaffrath U 2014 Ectoparasitic growth of Magnaporthe on barley triggers expression of the putative barley wax biosynthesis gene CYP96B22 which is involved in penetration resistance BMC plant biol 14(1) 1-14

[17] Du H, Huang Y and Tang Y 2010 Genetic and metabolic engineering of isoflavonoid biosynthesis Appl. Microbiol. Biotech 86(5) 1293-312

[18] Du H, Ran F, Dong H L, Wen J, Li J N and Liang Z 2016 Genome-wide analysis, classification, evolution, and expression analysis of the cytochrome P450 93 family in land plants Plos one 11(10) e0165020

[19] Du Y, Chu H, Chu I K and Lo C 2010 CYP93G2 is a flavanone 2-hydroxylase required for C-glycosylflavone biosynthesis in rice Plant physiol 154(1) 324-33

[20] Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U and Roy S 2018 Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability Plant signaling & behavior 13(8) e1460048

[21] Feldmann K A 2001 Cytochrome P450s as genes for crop improvement Current opinion in plant biology 4(2) 162-67

[22] Fischer M, Knoll M, Sirim D, Wagner F, Funke S and Pleiss J 2007 The Cytochrome P450 Engineering Database: a navigation and prediction tool for the cytochrome P450 protein family Bioinformatics 23(15) 2015-17
[27] Gillam M E and Hayes M 2013 The evolution of cytochrome P450 enzymes as biocatalysts in drug discovery and development Current topics in medicinal chemistry 13(18) 2254-80

[28] Godiard L, Sauviac L, Dalbin N, Liaubet L, Callard D, Czernic P and Marco Y 1998 CYP76C2, an Arabidopsis thaliana cytochrome P450 gene expressed during hypersensitive and developmental cell death FEBS letters 438(3) 245-49

[29] Goodwin S B and Sutter T R 2009 Microarray analysis of Arabidopsis genome response to aluminum stress Biologia Plantarum 53(1) 85-99

[30] Gribskov M, McLachlan A D and Eisenberg D 1987 Profile analysis: detection of distantly related proteins Procs. of the National Academy of Sciences 84(13) 4355-58

[31] Guengerich F P 2019 Cytochrome P450 research and the journal of biological chemistry Journal of Biological Chemistry 294(5) 1671-80

[32] Guo P, Bai G, Carver B, Li R, Bernardo A and Baum M 2007 Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress Molecular Genetics and Genomics 277(1) 1-12

[33] Hämberger B, Ohnishit H, Hamberger B, Ségui A and Bohlmann J 2011 Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects Plant physiol 157(4) 1677-95

[34] Höfer R, Briesen I, Beck M, Pinot F, Schreiber L and Franke R 2008 The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis Journal of experimental botany 59(9) 2347-60

[35] Hu Y, Li W C, Xu Y Q, Li G J, Liao Y and Fu F L 2009 Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves Journal of applied genetics 50(3) 213-23

[36] Ikezawa N, Tanaka M, Nagayoishi M, Shinkyo R, Sakaki T, Inouye K and Sato F 2003 Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells Journal of Biological Chemistry 278(40) 38557-65

[37] Irmisch S, Zeltner P, Handrick V, Gershenzon J and Köllner T G 2015 The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation BMC plant biology 15(1) 1-14

[38] Javid M G, Sorooshzadeh A, Moradi F, Modarres Sanavy S A M & Allahdadi I 2011 The role of phytomelioration in alleviating salt stress in crop plants Australian Journal of Crop Science 5(6) 726-34

[39] Ji J, Cao W, Yang L, Fang Z, Zhang Y, Zhuang M and Han F 2021 Genome-wide analysis of cabbage cytochrome P450 genes and characterization of BoCYP704B1, a gene responsible for cabbage anther development Scientia Horticulturae 283 110096

[40] Jing T X, Wang D F, Ma Y P, Zeng L L, Meng L W, Zhang Q and Wang J J 2020 Genome-wide and expression-profiling analyses of the cytochrome P450 genes in Bactrocera dorsalis (Hendel) and screening of candidate P450 genes associated with malathion resistance Pest management science 76(9) 2932-43

[41] Johnson S M, Lim F L, Finkler A, Fromm H, Slabas A R and Knight M R 2014 Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress BMC genomics 15(1) 1-19

[42] Jun X U, Wang X Y, Guo W Z 2015 The cytochrome P450 superfamily: Key players in plant development and defense Journal of Integrative Agriculture 14(9) 1673-86

[43] Kim J E, Cheng K M, Craft N E, Hamberger B and Douglas C J 2010 Over-expression of Arabidopsis thaliana carotenoid hydroxylases individually and in combination with a β-carotene ketolase provides insight into in vivo functions Phytochemistry 71(2-3) 168-78

[44] Kim Y C, Kim S Y, Paek K H, Choi D and Park J M 2006 Suppression of CaCYP1, a novel cytochrome P450 gene, compromises the basal pathogen defense response of pepper plants Biochemical and biophysical research communications 345(2) 638-45

[45] Klingenberg M 1958 Pigments of rat liver microsomes Archives of biochemistry and biophysics 75(2) 376-86

[46] Kong L, Anderson J M and Ohm H W 2005 Induction of wheat defense and stress-related genes in response to Fusarium graminearum Genome 48(1) 29-40
[47] Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T and Nambara E 2004 The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism The EMBO journal 23(7) 1647-56

[48] Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L and Zhang D 2010 Cytochrome P450 family member CYP704B2 catalyzes the α-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice The Plant Cell 22(1) 173-90

[49] Li L, Cheng H, Gai J and Yu D 2007 Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula Planta 226(1) 109-23

[50] Li Y and Wei K 2020 Comparative functional genomics analysis of cytochrome P450 gene superfamily in wheat and maize BMC plant biol 20(1) 1-22

[51] Liu C J, Huhman D, Sumner L W and Dixon R A 2003 Regiospecific hydroxylation of isoflavones by cytochrome p450 81E enzymes from Medicago truncatula The Plant Journal 36(4) 471-84

[52] Liu Z, Boachon B, Lugan R, Tavares R, Erhardt M, Mutterer J and Renault H 2015 A conserved cytochrome P450 evolved in seed plants regulates flower maturation Molecular plant 8(12) 1751-65

[53] Luo P, Wang Y H, Wang G D, Eisenberg M and Chen X Y 2001 Molecular cloning and functional identification of (+)-δ-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis The Plant Journal 28(1) 95-104

[54] Lynch T and Price A L 2007 The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects American family physician 76(3) 391-96

[55] Ma B, Luo Y, Jia L, Qi X, Zeng Q, Xiang Z and He N 2014 Genome-wide identification and expression analyses of cytochrome P450 genes in mulberry (Morus notabilis) Journal of integrative plant biology 56(9) 887-901

[56] Mafu S, Ding Y, Murphy K M, Yaacoobi O, Addison J B, Wang Q and Zerbe P 2018 Discovery, biosynthesis and stress-related accumulation of dolabradiene-derived defenses in maize Plant physiology 176(4) 2677-90

[57] Magwangwa R O, Lu P, Kirungu J N, Dong Q, Cai X, Zhou Z and Fang L 2019 Knockdown of cytochrome P450 genes Gh D07G1197 and Gh A13G2057 on chromosomes D07 and A13 reveals their putative role in enhancing drought and salt stress tolerance in Gossypium hirsutum Genes 10(3) 226

[58] Manikandan P and Nagini S 2018 Cytochrome P450 structure, function and clinical significance: a review Current drug targets 19(1) 38-54

[59] Millar A A, Jacobsen J V, Ross J J, Hellwell C A, Poole A T, Scofield G and Gubler F 2006 Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8’-hydroxylase The Plant Journal 45(6) 942-54

[60] Morant M, Bak S, Møller B L, Werck-Reichhart D 2003 Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation Current opinion in biotechnology 14(2) 151-62

[61] Morant M, Bælum N, Møller B L, Werck-Reichhart D 2003 Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation Current opinion in biotechnology 14(2) 151-62

[62] Morant M, Georgenson K, Schaller H, Pinot F, Møller B L, Werck-Reichhart D and Bak S 2007 CYP703 is an ancient cytochrome P450 in plant lands catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen The Plant Cell 19(5) 1473-87

[63] Moses T, Thevelein J M, Goossens A and Pollier J 2014 Comparative analysis of CYP93E proteins for improved microbial synthesis of plant triterpenoids Phytochemistry 108 47-56

[64] Nebert D W, Nelson D R and Feyereisen R 1989 Evolution of the cytochrome P450 genes Xenobiotica 19(10) 1149-60

[65] Nelson D R and Schuler M A 2013 Cytochrome P450 genes from the sacred lotus genome Tropical plant biology 6(2) 138-51

[66] Nelson D R 1999 Cytochrome P450 and the individuality of species Archives of biochemistry and biophysics 369(1) 1-10

[67] Nelson D R, Ming R, Alam M and Schuler M A 2008 Comparison of cytochrome P450 genes from six plant genomes Tropical Plant Biology 1(3) 216-35
[68] Nelson D R, Schuler M A, Paquette S M, Werck-Reichhart D and Bak S 2004 Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot Plant Physiology 135(2) 756-72

[69] Nomura T, Ishihara A, Imaishi H, Endo T, Ohkawa H and Iwamura H 2002 Molecular characterization and chromosomal localization of cytochrome P450 genes involved in the biosynthesis of cyclic hydroxamic acids in hexaploid wheat Molecular Genetics and Genomics 267(2) 210-17

[70] Ohkawa H, Imaishi H, Shiota N, Yamada T, Inui H and Ohkawa Y 1998 Molecular mechanisms of herbicide resistance with special emphasis on cytochrome P450 monooxygenases Plant Biotechnology 15(4) 173-76

[71] Ochništ T, Watanabe B, Sakata K and Mizutani M 2006 CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato Bioscience, biotechnology, and biochemistry 70(9) 2071-80

[72] Omura T 1999 Forty years of cytochrome P450 Biochem. Biophys. Res. Commun 266(3) 690-8

[73] Omura T 2018 Future perception in P450 research Journal of inorganic biochemistry 186 264-66

[74] Omura T and Sato R 1964 The carbon monoxide-binding pigment of liver microsomes: II. Solubilization, purification, and properties Journal of Biological Chemistry 239(7) 2379-85

[75] Overkamp S, Hein F and Barz W 2000 Cloning and characterization of eight cytochrome P450 cDNAs from chickpea (Cicer arietinum L.) cell suspension cultures Plant Science 155(1) 101-08

[76] Pan Z, Baerson S R, Wang M, Baja-Hirschel J, Rimando A M, Wang X and Duke S O 2018 A cytochrome P450 CYP 71 enzyme expressed in Sorghum bicolor root hair cells participates in the biosynthesis of the benzoquinone allelochemical sorgoleone New Phytologist 218(2) 616-29

[77] Pandian B A, Sathishraj R, Djanaguiraman M, Prasad P V and Jugulam M 2020 Role of cytochrome P450 enzymes in plant stress response Antioxidants 9(5) 454

[78] Park J H, Halitschke R, Kim H B, Baldwin I T, Feldmann K A and Feyereisen R 2002 A knock‐out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis The Plant Journal 31(1) 1-12

[79] Persans M W, Wang J and Schuler M A 2001 Characterization of maize cytochrome P450 monoxygenases induced in response to safeners and bacterial pathogens Plant Physiol 125(2) 1126-38

[80] Peterson J A and Graham S E 1998 A close family resemblance: the importance of structure in understanding cytochromes P450 Structure 6(9) 1079-85

[81] Prince D C, Drurey C, Zipfel C and Hogenhout S A 2014 The leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the cytochrome P450 PHYTOALEXIN DEFICIENT3 contribute to innate immunity to aphids in Arabidopsis Plant Physiol 164(4) 2207-19

[82] Qhanya L B, Matowane G, Chen W, Sun Y, Letsimo E M, Parvez M and Syed K 2015 Genome-wide annotation and comparative analysis of cytochrome P450 monoxygenases in Basidiomycete biotrophic plant pathogens PloS One 10(11) e0142100

[83] Rahaman M, Mamidi S and Rahman M 2018 Genome-wide association study of heat stress-tolerance traits in spring-type Brassica napus L. under controlled conditions The Crop Journal 6(2) 115-25

[84] Rai A, Singh R, Shirke P A, Tripathi R D, Trivedi P K and Chakrabarty D 2015 Expression of rice CYP450-like gene (Os08g01480) in Arabidopsis modulates regulatory network leading to heavy metal and other abiotic stress tolerance PloS one 10(9) e0138574

[85] Rao M J, Xu Y, Tang X, Huang Y, Liu J, Deng X and Xu Q 2020 CsCYT75B1, a citrus cytochrome P450 gene, is involved in accumulation of antioxidant flavonoids and induces drought tolerance in transgenic Arabidopsis Antioxidants 9(2) 161

[86] Rasool S and Mohamed R 2016 Plant cytochrome P450s: nomenclature and involvement in natural product biosynthesis Protoplasma 253(5) 1197-209

[87] Saika H, Horita J, Taguchi-Shiobara F, Nonaka S, Nishizawa-Yokoi A, Ikawaki S and Toki S 2014 A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis Plant physiol 166(3) 1232-40

[88] Salehi-Lisar S Y and Bakhshayesh-Agdam H 2016 Drought stress in plants: causes, consequences, and tolerance In Drought Stress Tolerance in Plants Springer 1 1-16

[89] Sanghera G S, Wani S H, Hussain W and Singh N B 2011 Engineering cold stress tolerance in crop plants Current genomics 12(1) 30
[90] Schopfer C R, Kochs G, Lottspeich F and Ebel J 1998 Molecular characterization and functional expression of dihydroxypterocarpan 6α-hydroxylase, an enzyme specific for pterocarpanoid phytoalexin biosynthesis in soybean (Glycine max L.) FEBS letters 432(3) 182-86

[91] Seitz C, Eder C, Deiml B, Kellner S, Martens S and Forkmann G 2006 Cloning, functional identification and sequence analysis of flavonoid 3’-hydroxylase and flavonoid 3’, 5’-hydroxylase cDNAs reveals independent evolution of flavonoid 3’, 5’-hydroxylase in the Asteraceae family Plant molecular biology 61(3) 365-81

[92] Seo M and Koshiba T 2002 Complex regulation of ABA biosynthesis in plants Trends in plant science 7(1) 41-48

[93] Serra O, Soler M, Hohn C, Sauveplane V, Pinot F, Franke R and Figueras M 2009 CYP86A33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function Plant Physiol 149(2) 1050-60

[94] Stoilov I, Jansson I, Sarfarazi M and Schenkman J B 2001 Roles of cytochrome p450 in development Drug metabolism and drug interactions 18(1) 33-55

[95] Stumpe M, Kandzia R, Göbel C, Rosahl S and Feussner I 2001 A pathogen-inducible divinyl ether synthase (CYP74D) from elicitor-treated potato suspension cells1 FEBS letters 507(3) 371-76

[96] Sun W, Ma Z and Liu M 2020 Cytochrome P450 family: Genome-wide identification provides insights into the rutin synthesis pathway in Tartary buckwheat and the improvement of agricultural product quality Int. Journal of Biological Macromolecules 164 4032-45

[97] Tabrez S and Ahmad M 2013 Cytochrome P450 system as potential biomarkers of certain toxicants: comparison between plant and animal models Environmental monitoring and assessment 185(4) 2977-87

[98] Tamiru M, Undan J R, Takagi H, Abe A, Yoshida K, Undan J Q and Terauchi R 2015 A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.) Plant molecular biology 88(1) 85-99

[99] Tao X, Wang M X, Dai Y, Wang Y, Fan Y F, Mao P and Ma X R 2017 Identification and expression profile of CYPome in perennial ryegrass and tall fescue in response to temperature stress Frontiers in plant science 8 1519

[100] Thornton L E, Rupasinghe S G, Peng H, Schuler M A and Neff M M 2010 Arabidopsis CYP72C1 is an atypical cytochrome P450 that inactivates brassinosteroids Plant molecular biology 74(1-2) 167-81

[101] Trueman CL, Loewen SA, Goodwin PH 2019 Can the inclusion of uniconazole improve the effectiveness of acibenzolar-S-methyl in managing bacterial speck (Pseudomonas syringae pv. tomato) and bacterial spot (Xanthomonas gardneri) in tomato European Journal of Plant Pathology 155(3) 927-42

[102] Vasav A P and Barvkar V T 2019 Phylogenomic analysis of cytochrome P450 multigene family and their differential expression analysis in Solanum lycopersicum L. suggested tissue specific promoters BMC genomics 20(1) 1-13

[103] Wang E, Wang R, DeParasis J, Loughrin J H, Gan S and Wagner G J 2001 Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance Nature biotechnology 19(4) 371-74

[104] Wang M, Yuan J, Qin L, Shi W, Xia G and Liu S 2020 Ta CYP 81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging Plant biotechnology journal 18(3) 791-804

[105] Wang X, Yang P, Gao Q, Liu X, Kuang T, Shen S and He Y 2008 Proteomic analysis of the response to high-salinity stress in Physcomitrella patens Planta 228(1) 167-77

[106] Wang Y, Li X, Lin Y, Wang Y, Wang K, Sun C and Zhang M 2018 Structural variation, functional differentiation, and activity correlation of the cytochrome P450 gene superfamily revealed in ginseng The plant genome 11(3) 170106

[107] Wedow J M, Yendrek C R, Mello T R, Creste S, Martinez C A and Ainsworth E A 2019 Metabolite and transcript profiling of Guinea grass (Panicum maximum Jacq) response to elevated [CO 2] and temperature Metabolomics 15(4) 1-13

[108] Xiao F, Mark Goodwin S, Xiao Y, Sun Z, Baker D, Tang X and Zhou J M 2004 Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development The EMBO journal 23(14) 2903-13
[109] Xie M M, Gong D P, Li F X, Liu G S and Sun Y H 2013 Genome-wide analysis of cytochrome P450 monooxygenase genes in the tobacco *Yi chuan= Hereditas* 35(3) 379-87

[110] Xu F, Peng M, Luo Q, Jiang M, Zhang X, Zong X and Li Y 2015 Isolation and detection of transcript-derived fragments (TDFs) in NaCl-stressed black locust (Robinia pseudoacacia L.) using cDNA-AFLP analysis *Acta Physiologiae Plantarum* 37(8) 1-8

[111] Yan Q, Cui X, Lin S, Gan S, Xing H and Dou D 2016 GmCYP82A3, a soybean cytochrome P450 family gene involved in the jasmonic acid and ethylene signaling pathway, enhances plant resistance to biotic and abiotic stresses *Plos one* 11(9) e0162253

[112] Yang J, Wang G, Ke H, Zhang Y, Ji L, Huang L and Ma Z 2019 Genome-wide identification of cyclophilin genes in Gossypium hirsutum and functional characterization of a CYP with antifungal activity against Verticillium dahlia *BMC plant biology* 19(1) 1-17

[113] Yaxley J R, Ross J J, Sherriff L J and Reid J B 2001 Gibberellin biosynthesis mutations and root development in pea *Plant physiol* 125(2) 627-33

[114] Zeng Z, Wu Q, He B and Zeng B 2018 Genome-Wide Analysis of the Cytochromes P450 Gene Family in Aspergillus Oryzae *In Proc. of the 2018 2nd Int. Conf. on Computational Biology and Bioinformatics* 37-41

[115] Zhang M, Cao Y, Wang Z, Wang Z Q, Shi J, Liang X and Jiang C 2018 A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize *New Phytologist* 217(3) 1161-76

[116] Zhang Y, Liu J, Zhou Y, Gong T, Wang J and Ge Y 2013 Enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1 *Journal of hazardous materials* 260 1100-07

[117] Zhang Y, Yu Z, Fu X and Liang C 2002 Noc3p, a bHLH protein, plays an integral role in the initiation of DNA replication in budding yeast *Cell* 109(7) 849-60

[118] Zhang Y, Zhang B, Yan D, Dong W, Yang W, Li Q and He Z 2011 Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation *The Plant Journal* 67(2) 342-353

[119] Zheng Y, Huang Y, Xian W, Wang J and Liao H 2012 Identification and expression analysis of the Glycine max CYP707A gene family in response to drought and salt stresses *Annals of botany* 110(3) 743-756

[120] Zheng X, Li P and Lu X 2019 Research advances in cytochrome P450-catalysed pharmaceutical terpenoid biosynthesis in plants *Journal of experimental botany* 70(18) 4619-4630