Design optimization and development of an Automated Storage and Retrieval System

T Ajay¹, A Vinoth² and J Daniel Glad Stephen³
¹PG Student, Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, India.
²Assistant Professor, Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, India.

Email: ajay.dhuvya123@gmail.com

Abstract. This study aims about the planning and building up an framework for the automated material handling system by diminishing the lead time in the transportation or development of the item and furthermore concentrating on the development of the Automated Storage and Retrieval System in the businesses for expanding generation rate and furthermore to improve the material handling in warehouse. The objective of the study is to structure and manufacture an Automated Storage and Retrieval system for a mechanical stockroom and upgrading, reworking it dependent on the parameters like deals point, item prerequisite pitch or physical parameters like tallness, width, weight and so forth by utilizing a streamlining procedures.

1. Introduction

Material handling requires short-movement inside a building's walls, or among a building and a vehicle for transport. It uses a varied range of physical, semi-automated, and computerized apparatus and includes consideration of material safety, storage, and control throughout its manufacturing, warehousing, circulation, consumption, and clearance. Material handling can be used to establish time and place utility by waste management, storage, and control as distinct from manufacturing, which creates usefulness in the form by adjusting material type, and temperament of the components. Material handling plays the significant part in fabrication and logistics. In manufacturing plants, factories, and retail stores, almost every object of physical exchange was loaded onto a conveyor or lift truck or other form of material handling equipment. Material handling is central to the strategy of most production systems because the efficient material flow between a production system's activities depends heavily on the procedure (or layout) of the activities [1, 2]. If two actions are contiguous, then information may be easily furnished from one activity to another. Most existing material handling systems are of rigging simply semi-motorized in light in fact that a human is required for endeavors like tacking/exhausting and moving that are inconvenient just as too costly to totally automate [1, 2, and 3]. If activities are separated, the transport requires more pricey industrial trucks or overhead conveyors. The expensive cost of consuming an industrial truck for the transport of materials is due to both the operator's labor cost and the negative influence on the performance of a fabrication when multiple units of material are united into a single allocation batch to diminish the number of trips.
mandatory for transport. Regardless, nonstop progresses in identification, moving the material and mechanical computerization have made it promising to totally automate a growing number of dealing with assignments. Automated Storage and Retrieval System (AS/RS) is a blend of PC controlled framework for persistently stacking and recouping loads from described limit regions [4, 5]. An AS/RS be able to use with typical stacks similarly as custom-made loads, suggesting that each classic weight can suitable in a reliably estimated volume. Standard weights unravel the treatment of a requesting of a thing. Additionally, surveys of the exactness of the load of substance can be constrained to the substance of a discrete metal box, instead of encountering a totally exploration of the whole office, aimed at a singular thing [6-8]. The particle swarm intelligence (PSO) algorithm for the optimization as it potentials good effect for compound tasks. Particle swarm optimization (PSO) was used as the global optimization algorithm for concerning with complications in which the improved result can be characterized by means of a fact or surface surrounded by an n-dimensional space. Hypotheses are graphed within the area and planted with a primary pace, as well as statement channel between the units [9-12]. The current existing system has constraints were the storage density is considered as important factor because of space and no value is added in this process only storing of the component and transport is carried out. The precision is critical because of potential expensive indemnities to the load while handling. This study aims to design an Automated Storage and Retrieval system and optimize the AS & RS using optimization technique for better performance and reduced component handling time in warehouse.

2. Methodology

For the research a customized, unit-load AS/RS system is used. The unit-load system that is suitable when large amount of components are stockpiled but the quantity of discrete standard types is comparatively small [5, 7, 9, 12]. The loads can be kept to greater depths. Optimization of the system is based on the handling of the products based on the FOI of physical dimension, Storage Space of the component, Movement of the component and also the inquiry factor of the component based on the dynamical changes when the machine was at working environment. The particles then pass through the space of the solution, and will be evaluated after each time step permitting to more or less fitness criterion, AS/RS frameworks are ordinarily used in applications where there is an extraordinarily great capacity of weights existence moved into and out of limit. Storage thickness is huge for room goals and no worth is incorporated this technique. Accuracy is fundamental because of possible expensive recompenses to the pile. Based on the output of the algorithm the system will check for nearest storage location for storing the product. If selected location is not empty then the system will again iterate to lookup for next nearest location for storing the component. If the locations are completely occupied then the system should send a wait signal so the component previously stored will be delivered for creating an empty shelf for storing. Throughout the process the iteration will update the algorithm phenomenon for next step of processing.

3. Design and Simulation

The storage parameter of the system was separated into two components with respect to its physical dimensions, the inquiry factor [5, 13, 16, 17, and 18]. Product identification is the chief role for repeatedly recognizing AS/RS. The scanners are located at the preliminary position, to scan the identification code. The captured data is transmitted to the AS/RS system which, upon the acknowledgement of load credentials, assigning and guides the load to the storage site [13, 14]. The figure 1 and figure 2 discuss about the setup of the system with its components starting from source which is the input of the system i.e. the material handling framework to the AS/RS framework where a line of arrangement was utilized to stock the materials. If the framework was occupied in orchestrating the processor will goes to the control framework of the S/R machine which sends and gets the input from the framework to take choice for the assignment of capacity area for the segments and the R/S
Machine will currently go to the AS/RS framework by the yield of the processor. The Conveyor framework and another Processor will be associated with the framework for the yield of the framework for which the transportation of the material will be conveyed.

![System Process flowchart.](image)

Figure 1. System Process flowchart.

A set data about the components was previously stored or uploaded in the system so that the AS/RS system will read identification index and proceeds the optimization algorithm and then the ideal storage area will be allotted based on the optimal path of the index factor of the product. Based on the factor of inquiry the components will be ordered or sorted so that the components with the higher order of FOI will be stored at the nearest location of the retrieval [4, 19, and 20]. So that the components with less no. of FOI will be delivered later. The figure 1 and figure3 was discussed for the algorithm which will run the system based on the inquiry factor for visual representation. The height of a commodity is set at the point of entry to the storage. The height of the first loading level is set after the calculation, and the product was put in the AS/RS. By the arrival of new components the first level height is adjusted according to the highest product requirements. Distribution of products based on FOI is conducted concurrently. Products with a superior FOI are guided nearer to the location of the delivery. Since AS/RS is continuously loaded with products of varying heights and sizes, the particle swarm algorithm has to identify the procedure for its distribution. [19] When the adjacent cell is empty, each product can move in any direction, the products must first move in one position. Thus the goods with superior FOI are continuously moved neared to the delivery location. The threshold rate for
storage space usage (SSU) can exceed if multiple items with height 3 have arrived the storage consecutively. Then the optimisation algorithm in this case introduces a new amount of storage to the AS/RS [19]. The conveyor system of inputs stops until the goods are distributed on both floors. When the stacker is full the lift will move the loaded components to the second level [19]. On next level a height dimension is executed and components are disperse created on their FOI. The optimization cycle stops after the product inlet/output frequency deviation in AS/RS construction is fewer than 5%. The loading location of slightly manufactured goods in the AR/RS may vary during system process concerning a recently-entered components FOI level or a potential FOI level change of the product itself.

The components used for optimization was listed below:
- CAR1- Component 1 RED
- CAB2- Component 2 BROWN
- CAG3- Component 3 GREEN

Height:
- Height1 – 150mm
- Height2 - 100mm
- Height3 - 60mm

Inquiry factor (IF) 1-5

![Figure 2. Assembly Model of the System for simulation.](image)

3.1. Initial Conditions

- Products with more FOI are positioned nearer to the delivery position
- Possibility of varying FOI during storage scheduling and storage operation
- Optimal circulation of products created on their heights and circulation of higher/weightier products to lower points
- Number of vacant storage cells required by the delivery procedure would be 1/8 of the overall number of storage cells

![Figure 3. Sorting Algorithm Representation.](image)
4. Results and Discussion:

The FOI-swarm algorithm for product supply is integrated into the planning and operation of AS/RS method. Table 1 is mentioned for the regularities of manufacturing and factors of inquiry (FOI) for discrete products.

Table 1: Factor of Inquiry table for each components

	CAR1	CAB2	CAG3			
	No. of Components	Inquiry Factor	No. of Components	Inquiry Factor	No. of Components	Inquiry Factor
Height1	15	5	25	3	20	1
Height2	25	2	15	5	5	3
Height3	12	1	5	2	10	4

As the simulation was started with load condition the system responds to various efficient working conditions based on the usage of the lift the data’s are collected for analyzing the system output performance [16]. From the figure 4 it is able to check the performance index based on the idle time and travel loaded condition of the system with respect to loading and unloading of the components at the rate of 10 components per minute from the starting location to storage rack and vice versa. The figure 5 indicates the performance index based on the low load condition and travel loaded condition of the system with respect to the loading and unloading of the component at the rate of 10 components per minute from the starting location to storage rack and vice versa. From figure 6 is able to check the performance index based on the medium load condition of the system that should handle and travel loaded condition of the system with respect to loading and unloading of the components at the rate of 25 components per minute from the starting to ending of the process. From figure 7 it is able to check the performance index based on the high load condition or maximum working condition of the system that should be able to handle and travel at the loaded condition of the system with respect to the loading and unloading of the components at the rate of 50 components per minute at the peak of its operation. The starting condition was given considering the system preset position and calibration for homing location as reference point. Then steadily increased the generation rate so that the idle time of lift gets decreased but movement of the lift gets increased based on the movement of the component.
The performance index of the system was created based on optimization results i.e. the utilization of the lift and mean arrival time of the component. Previously, Fukunari [14] also propose that the performance of the system will tends to increase when the system is working at its maximum operation condition. From figure 8 the system will work efficiently at loading and unloading of the components at its maximum generation point i.e. at the rate of 50 components/min. But the performance factor depends on the no. of components generation i.e. transfer of components from loading and unloading location. The average cycle time of the system can be determined by figure 9. The cycle time is nothing but the time taken for the system to transfer the components from loading and unloading of the components from its pick-up point and drop-off point. As the cycle time of system at idle time was very low it wasn’t considered but when the transfer of the components was increased i.e. the component movement was at 50 per minute, the cycle time was also increased to 80 percentage of the working condition.

5. Conclusion

The findings from this study are listed as follows:

- The lead time of the system for transferring operation i.e. loading and unloading of the components was reduced in comparison with the literature.
The overall performance of the AS/RS system was increased by implementing Particle Swarm Optimization algorithm in comparison with the literature.

The results obtained from this simulation system will be compared with the results of the real time system.

6. References

[1] Gu J, Goetschalckx M and McGinnis LF 2007 Research on warehouse operation: A comprehensive review European journal of operational research 177 1-21
[2] Baker P and Canessa M 2009 Warehouse design: A structured approach European journal of operational research 193 425-36
[3] Roodbergen KJ and Vis IF 2009 A survey of literature on automated storage and retrieval systems European journal of operational research 194 343-62
[4] Brezovnik S, Gotlih J, Balic J, Gotlih K and Brezočnik M 2015 Optimization of an automated storage and retrieval systems by swarm intelligence Procedia Engineering 100 1309-18
[5] De Koster R, Le-Duc T and Roodbergen KJ 2007 Design and control of warehouse order picking: A literature review European journal of operational research 182 481-501
[6] Yang P, Miao L, Xue Z and Qin L 2015 Optimal storage rack design for a multi-deep compact AS/RS considering the acceleration/deceleration of the storage and retrieval machine International Journal of Production Research 53 929-43
[7] De Koster RM, Le-Duc T and Yugang Y 2008 Optimal storage rack design for a 3-dimensional compact AS/RS International journal of production research 46 1495-514
[8] Kuo PH, Krishnamurthy A and Malmborg CJ 2007 Design models for unit load storage and retrieval systems using autonomous vehicle technology and resource conserving storage and dwell point policies Applied Mathematical Modelling 31 2332-46
[9] Hrelja M, Klančnik S, Irgolic T, Paulic M, Jurkovic Z, Balic J and Brezočnik M 2014 Particle swarm optimization approach for modelling a turning process Advances in Production Engineering & Management 9 21
[10] Hrelja M, Klančnik S, Irgolic T, Paulic M, Jurkovic Z, Balic J and Brezočnik M 2014 Turning parameters optimization using particle swarm optimization Procedia Engineering 69 670 – 677
[11] Hrelja M, Klančnik S, Balic J and Brezočnik M 2014 Modelling of a turning process using the gravitational search algorithm International Journal of Simulation Modelling 13 30-41
[12] Manzini R, Gamberti M and Regattieri A 2006 Design and control of an AS/RS Int. J. Adv. anuf. Technol. 28 766–774
[13] Fukunari M and Malmborg CJ 2009 A network queuing approach for evaluation of performance measures in autonomous vehicle storage and retrieval systems European Journal of Operational Research 193 152-67
[14] Hur S and Nam J 2006 Performance analysis of automatic storage/retrieval systems by stochastic modelling International journal of production research 44 1613-26
[15] Yin YL and Rau H 2006 Dynamic selection of sequencing rules for a class-based unit-load automated storage and retrieval system The International Journal of Advanced Manufacturing Technology 29 1259-66
[16] Dooly DR and Lee HF 2008 A shift-based sequencing method for twin-shuttle automated storage and retrieval systems IIE Transactions 40 586-94
[17] Vasili MR, Tang SH and Vasili M 2012 Automated storage and retrieval systems: a review on travel time models and control policies In Warehousing in the Global Supply Chain 159-209
[18] Nidhiry NM and Saravanan R 2014 Scheduling optimization of a flexible manufacturing system using a modified NSGA-II algorithm Advances in Production Engineering & Management 9 139-51
[19] Adeyemo J and Olofintoye OO 2014 Evaluation of combined Pareto multiobjective differential evolution on tuneable problems International journal of simulation modelling 276-287
[20] Das S Suganthan PN 2010 Differential evolution: A survey of the state-of-the-art *IEEE transactions on evolutionary computation* 15 4-31