Supplemental Information

Inflammatory-Related P62 Triggers Malignant Transformation of Mesenchymal Stem Cells through the Cascade of CUDR-CTCF-IGFII-RAS Signaling

Xiaoru Xin, Chen Wang, Zhuojia Lin, Jie Xu, Yanan Lu, Qiuyu Meng, Xiaonan Li, Yuxin Yang, Qidi Zheng, Xin Gui, Tianming Li, Hu Pu, Wujun Xiong, Jiao Li, Song Jia, and Dongdong Lu
Figure S1

A

B

C

Table below:

Condition	OD450 Value
GFP control + TNFα	120
GFP-P62 + TNFα	100
RNAi control + TNFα	80
P62 + TNFα	60
GFP control	40
GFP-P62	20
RNAi control	0
P62 RNAi	0

BrdU positive cells (%):

Condition	% Positive Cells
GFP control + TNFα	90
GFP-P62 + TNFα	80
RNAi control + TNFα	70
P62 + TNFα	60
GFP control	50
GFP-P62	40
RNAi control	30
P62 RNAi	20
Figure S4

- IGFII: 20 KD
- Ras: 21 KD
- pRas: 21 KD
- β-actin: 42 KD
Figure S5
Figure S6

A

- GFP-Control+TNFα
- GFP-P62+TNFα
- GFP-P62-GFP-V-IGFII+TNFα

B

Colony formation rate(%)

C

Sphere formation rate(%)

D

Xenograft tumor weight(gram)

* *
Figure S7

A

GFP-P62 or GFP-P62(W338A)

P62
H-Ras
β-actin

B

C

colony formation rate (%)

GFP-control GFP-P62 GFP-P62(W338A)

Spheroid formation rate (%)

GFP-control GFP-P62 GFP-P62(W338A)
FIGURE LEGENDS

Figure S1: A. Immunohistochemical staining with anti-CEA (human) (DAB staining, original magnification×100). P, paracancerous liver tissue; C, cancer tissue. B. Cells growth assay using CCK8. Each value was presented as mean±standard error of the mean (SEM) (Student’s t-test). C. S phase cells assay using BrdU. Each value was presented as mean±standard error of the mean (SEM) (Student’s t-test).

Figure S2: TNFR knockdown abrogated the functions of P62 in human mesenchymal stem cells malignant transformation in vitro and in vivo. A. The Western blotting analysis with anti-TNFR in these human mesenchymal stem cells indicated in upper. β-actin as internal control. B. Cells soft agar colony formation assay in these human mesenchymal stem cells, including GFP-Control+TNFa, GFP-P62+TNFa, GFP-P62+pGFP-V-RS-TNFR+TNFa. C. Cells sphere formation ability. D. Tumorigenesis test in vivo. The wet weight of each tumor was determined for each mouse. Each value was presented as mean±standard error of the mean (SEM).

Figure S3: A portion of each tumor was fixed in 4% paraformaldehyde and embedded in paraffin for histological hematoxylin-eosin(HE) staining. (original magnification×100).

Figure S4: Western blotting with anti-IGFII, anti-Ras and anti-pRas in the TNFα treated mesenchymal stem cells, including GFP-Control+TNFa, GFP-P62+TNFa, GFP-P62+pGFP-V-RS-IGFIIR+TNFa. β-actin was used as an internal control.
Figure S5: A portion of each tumor was fixed in 4% paraformaldehyde and embedded in paraffin for histological hematoxylin-eosin (HE) staining.

Figure S6: IGFII knockdown abrogated the functions of P62 in human mesenchymal stem cells malignant transformation in *vitro* and in *vivo*. **A.** The cell growth assay in these human mesenchymal stem cells, including GFP-Control+TNFα, GFP-P62+TNFα, GFP-P62+pGFP-V-RS-IGFII+TNFα. **B.** Cells soft agar colony formation assay. **C.** Cells sphere formation ability. **D.** Tumorigenesis test *in vivo*. The wet weight of each tumor was determined for each mouse. Each value was presented as mean±standard error of the mean (SEM).

Figure S7: mutant P62 (W338A) lacks the functions of wild P62 in human mesenchymal stem cells. **A.** Cells soft agar colony formation assay in these human mesenchymal stem cells, including pCMV6-AC-GFP plus TNFα, pCMV6-AC-GFP-P62 plus TNFα, pCMV6-AC-GFP P62(W338A) plus TNFα. **B.** Cells sphere formation ability in these human mesenchymal stem cells, including pCMV6-AC-GFP plus TNFα, pCMV6-AC-GFP-P62 plus TNFα, pCMV6-AC-GFP-P62(W338A) plus TNFα.