Signaling of double strand breaks and deprotected telomeres in Arabidopsis

Simon Amiard, Maria E. Gallego and Charles I. White*

Genétique, Reproduction et Développement, UMR CNRS 6293/Clermont Université, Université Blaise Pascal, Aubière cedex, France

Received: 18 April 2013 | Accepted: 27 June 2013 | Published: 16 October 2013

Keywords: signaling, sensing, double strand breaks, telomere, DNA repair

Failure to repair DNA double strand breaks (DSB) can lead to chromosomal rearrangements and eventually to cancer or cell death. Radiation and environmental pollutants induce relevance to plants due to their sessile lifestyle. DSB also occur naturally in cells during DNA replication and programmed induction of DSB initiates the meiotic recombination essential for gametogenesis in most eukaryotes. The linear nature of most eukaryotic chromosomes means that each chromosome has two "broken ends." Chromosome ends, or telomeres, are protected by nucleoprotein caps which avoid their recognition as DSB by the cellular DNA repair machinery. Deprotected telomeres are recognized as DSB and become substrates for recombination leading to chromosome fusions, the "bridge-breakage-fusion" cycle, genome rearrangements and cell death. The importance of repair of DSB and the severity of the consequences of their misrepair have led to the presence of multiple, robust mechanisms for their detection and repair. After a brief overview of DSB repair pathways to set the context, we present here an update of current understanding of the detection and signaling of DSB in the plant, Arabidopsis thaliana.

DSBs REPAIR PATHWAYS IN ARABIDOPSIS TELAMIANA

Double strand breaks (DSB) repair pathways are classed as either homologous recombination (HR) or non-homologous end-joining (NHEJ), depending upon the dependence or not on DNA sequence homology between the recombining molecules. HR requires the presence of an intact homologous DNA template and is most active in S/G2 phase when the sister chromatid is present. The critical step during HR is the formation of RAD51 filament on the 3' ended single-stranded DNA (ssDNA) produced by resection of the breaks. The nucleofilament formed by RAD51 on the broken DNA molecule catalyzes the invasion of a homologous DNA template sequence by the 3' ended DNA strand(s), which are extended through DNA synthesis, and finally the joint recombination intermediate is resolved to complete the process (for review, Huyer and Liu, 2010). The major players in HR are very highly conserved and must have been identified and characterized in Arabidopsis thaliana (Manmuss et al., 2011).

The participation, or not, of the KU complex permits classification of NHEJ pathways into two categories: direct joining of breaks through the KU-dependent pathway and end-joining involving microhomologies by the KU-independent microhomology-mediated (MMEJ) and "alternative" or "back-up" end-joining (Alt-NHEJ or B-NHEJ, for review, Decottignies, 2013). In Arabidopsis the KU-dependent pathway has been the subject of a number of studies (Riha et al., 2002; Friesner and Britt, 2003; Gallego et al., 2003; Van Attikum et al., 2003). The distinction between KU-independent pathways is not clear because both imply the use of microhomology sequence to repair the break. In vertebrates, it is known that Alt-NHEJ is based on the action of proteins usually known for their role in single strand breaks repair XRCC1, PARP1 and LIG3 (Decottignies, 2013). In Arabidopsis, the conservation of this pathway has been confirmed through studies of XRC51 (Charbonnel et al., 2010) and PARP1/PARP2 (Jia et al., 2013). Concerning the MMEJ pathway, the first actors identified were the MRX (MRN) and the Rad1/Rad10 (ERCC1/XPF) complexes in yeast (Ma et al., 2003). Similarly in Arabidopsis, MRE11 has been implicated in the use of microhomologies in telomere fusions (Hancok et al., 2004) and XPF has been shown to be involved in a third NHEJ pathway of DSB repair independent of the KU complex and XRC1 (Charbonnel et al., 2013). The viability of the single and multiple mutants for each of these pathways in Arabidopsis permitted study of the kinetics of DSB repair in planta, establishing a hierarchy of DSB repair pathways in Arabidopsis (Charbonnel et al., 2011). A surprising result of this study was the ability of quadruple ku80 xrc1 xpf xrc2 mutants (invalidated for all known HR and NHEJ pathways) to repair ionising radiation (IR)-induced DSB, but at a very reduced rate. Although this "repair" is accompanied by high levels of anaphase chromosome bridging, plants cells are thus able to repair DSB in the absence of all four major DSB repair pathways. This results points to another end-joining pathway that would be activated in case of extreme stress and could be one part of the explanation of the striking ability of plants to develop in presence of high levels of genome damage.

The choice of repair mechanisms is tightly regulated with respect to the cell cycle phase and the nature of the break (Chapman et al., 2012). DSB end resection has been shown to be an essential step for the choice of repair pathway, with recent reports showing the implication of 53BP1-RIF1 in blocking resection and thus stimulating NHEJ, and BRCA1-ChIP promoting DNA repair...
resection and HR in mammals (Chapman et al., 2013; Escribano-Díaz et al., 2013; Zimmermann et al., 2013). CHK (Uancsó et al., 2001) and Rad50 as well as 14-3-3 proteins (reviewed by Chowdhury et al., 2013). Recent work shows links directly to DSB repair in Arabidopsis as well as in mammalian cells. Small RNA (diRNA) are produced directly at break sites and are required for correct repair, probably through chromatin modifications or through the recruitment of repair proteins to facilitate repair (Wei et al., 2012).

SIGNALLING OF DSBs

The first essential step of the repair process is the recognition and the signaling of the DNA break. This step is critical as it allows cell-cycle arrest, recruitment of DSB repair proteins, chromatin remodeling and eventually cell death or senescence (Goodarzi et al., 2010). In yeast as well as in mammals, the main factors involved in the sensing of the DSB are the MRX/S (Mre 11, Rad50 and Xrs2/Nbs1) and the KU (Ku70/Ku80) complexes that compete for binding to unprocessed DSBs (Hoom, 2010). Together with DNA-PKcs, the human KU complex, forming the DNA-PK holoenzyme, functions as a DNA end-bridging factor leading to repair via NHEJ, essentially in G2 phase (Lieber, 2010). In G2 phase, the binding of KU is inhibited and the MRN complex initiates repair via HR (Heyer and Liu, 2010). In plants as well as in yeast, the DNA-PKcs enzyme is not conserved, hence the tethering of the DNA ends is presumably carried out by the MRN complex or by other proteins.

The signaling role is then assumed by specific kinases belonging to the PIKK-like protein kinase family (PIKK): Tel1/ATM and Mec1/ATR. The binding of the yeast MRX complex to the DSB promotes the recruitment of Tel1 leading to Tel1-dependent cell cycle checkpoint activation prior to DNA processing (Usui et al., 2001). Absence of Tel1 can be compensated for by Mec1 (Morrow et al., 1995), with the yeast tel1 mutant being checkpoint sufficient and not hyper-sensitive to DNA damaging agents (Mantiero et al., 2007). In vertebrates, ATM is activated by DNA double-strand breaks, while ATR is activated by ssDNA, formed notably in processing blocked replication forks (Cumpresh and Cortez, 2008). Once bound to DNA, MRN recruits and activates ATM via interaction with Nbs1 (Lavin, 2007) and Mre11 nuclease activity leads to the formation of single strand oligonucleotides that further promote ATM activation (Iazayery et al., 2008). Further maturation of the DNA extremities can also lead to ssDNA formation and ATR activation (Iazayery et al., 2006). Mutation of ATM in humans leads to Ataxia-telangiectasia (A-T), a genomic instability disorder characterized by neurodegeneration, immunodeficiency and sensitivity to ionizing radiation. At the cellular level, the hallmark of ATM deficiency are increased chromosomal breakage and premature senescence (Shihab and Ziv, 2013). In the absence of ATM (in A-T cells), signaling of DNA breaks can be accomplished by ATR helped by EXO1, however, the absence of both kinases results in the absence of cell cycle arrest due to defects in signaling of breaks (Tomimoto et al., 2009).

Mec1/ATR is considered to be the specific sensor of DNA replication fork stalling and DNA replication damage, and is more generally activated by a variety of lesions that have in common the generation of ssDNA. Irrespective of the origin of the ssDNA, ATR is recruited by its cofactor ATRIP, which indirectly recognizes ssDNA through interaction with the ssDNA-binding protein, RFC. The 9-1-1 checkpoint clamp has also been implicated in activation of the ATR/Mec1 kinase (Majka et al., 2006). Mec1 is an essential gene in yeast (Weinert et al., 1994) and even in the absence of exogenous genotoxic stress, Mec1 mutants accumulate gross spontaneous chromosomal rearrangements (GCRs; Myung and Kolodner, 2002). ATR deficiency is lethal in mammalian cells but hypomorphic atromutant mutations have been described in a few patients with the rare Sickle syndrome, characterized by microcytosis and growth retardation (O’Driscoll et al., 2003).

The presence of ATM and ATR is well conserved while, for yeast, no DNA-PK ortholog has been identified in plants. IR-induced gamma-H2AX foci are mediated essentially by ATM and less so by ATR, with no foci observed in irradiated atm atr mutant cells (Friesner et al., 2005), confirming that ATM and ATR are the only DSB signaling PIKK kinases in plants. The presence of Arabidopsis of the protein ATRIP, necessary for ATR activation as seen in mammals, further reinforces the idea that DNA damage signaling in plants is conserved (Sweeney et al., 2009). The role of the MRN complex in DNA damage detection and activation of kinase mediated signaling is conserved in Arabidopsis (Amiard et al., 2010) and plant homologs of the genes encoding the 9-1-1 (Rad9/Rad1/Flus1) sensor complex have been identified and are required for resistance to the DNA damaging agents Bleomycin and Mitomycin C (MMC; Hüttenberger et al., 2004). Arabidopsis atm mutants are phenotypically wild-type, except for a partial sterility (Culligan and Britt, 2008). These plants are however hypersensitive to ionizing irradiation and methyl methane sulphonate (MMS), but not to UV irradiation. Arabidopsis atr mutants are viable, fertile, and like atm mutants, phenotypically wild-type in the absence of exogenous DNA damaging agents. atm atr mutants are hypersensitive to hydroxyurea and aphidicolin, due to a defective G2 checkpoint response to blocked replication forks (Culligan et al., 2004). ATR can however partially compensate for the ATM response, as the double atm atr mutant is completely sterile due to monotic prophase genome fragmentation (Culligan and Britt, 2008).

Neither ATR nor ATM signaling is thus essential during normal plant development – a surprising result given the conservation of the roles of these proteins in plants and the lethality of the corresponding mutants in mammals. A hint to a possible explanation for this could come from the ability of DSBs to be repaired in plants in the double rad50 atr mutant, which combines absence of ATM and ATR activity and absence of H2AX phosphorylation (see next section). Spontaneous DSBs appear in consequence of replication defects in these plants and result in high levels of anaphase bridging, showing that Arabidopsis can repair DSB in the absence of PIKK activation (Amiard et al., 2010).
Once activated, PIKK can activate many targets necessary to maintain genomic integrity (Calhgan et al., 2006; Matsuo et al., 2007). Phosphorylation of the histone variant H2AX/HAX around the break by PIKK is an early cellular response to the induction of DSBs and occurs over 50 kb in yeast to 2 Mb for H2AX in mammals. H2AX phosphorylation is easily detected using phospho-specific antibodies and has emerged as a highly specific and sensitive molecular marker for monitoring DNA damage and its repair (Küner et al., 2008). Although not required for the initial recruitment of signaling and repair factors, H2AX phosphorylation is essential for their accumulation at the breaks (Celeste et al., 2003; Fernandez-Capetillo et al., 2003; Fillingham et al., 2006).

The importance of this is seen in the sensitivity to DSB damaging agents, impaired DSB repair and defects in G1 checkpoint activation of yeast mutants of the H2A gene (Downs et al., 2000; Redon et al., 2003; Hammet et al., 2007) and similar phenotypes of mammalian cells and mice deficient for H2AX (Celeste et al., 2002). Moreover H2AX deficient mice were radiation sensitive, growth retarded, immune deficient and males were infertile.

In contrast, Arabidopsis mutants for this histone develop normally and only a slight defect in DSB repair has been reported in RNAi knock-down lines (Lang et al., 2012). Moreover, the phosphorylation of this histone does not seem required for DSB repair in plants, as seen in the chromosome fusions observed in the rad50 atr double mutant (Amiard et al., 2010). This being so, how is DSB signaling mediated in the absence of H2AX phosphorylation in Arabidopsis? A possible answer comes from reports showing roles of modifications of other histones around DSB in mammals: ubiquitylation of H2A by RNF8 is required for proper 53BP1 docking sites for other repair proteins, recruiting them for transcription and DNA repair. It will be of great interest to see whether such modifications also play important roles in repair of DSBs in plants.

SIGNALING OF DEPROTECTED TELOMERES

Telomeres consist of an elaborate, higher-order assembly of specific DNA sequence and proteins that cooperatively provide protection against degradation and recombination of the ends of linear eukaryotic chromosomes. In vertebrates, telomere protection is mainly shielded by Shelterin, a complex of six telomeric proteins (TRF1, TRF2, POT1, TIN2, TPP1 and RAP1) that prevent inappropriate recombination and fusion between telomeres, and also has complementary roles in telomere replication and length regulation (Palm and De Lange, 2000; Martinez and Blasco, 2011). TRF1 and TRF2 bind to the duplex region of the telomere and searches for TRF-like proteins in Arabidopsis have identified many proteins able to bind double-stranded telomeric DNA (Zollinger and Ribka, 2007; Amiard et al., 2011b; Peška et al., 2011). None of these seems however to be essential for telomere protection, suggesting redundancy of double-stranded DNA binding telomeric proteins in plants. POT1 binds to the natural single-stranded (ss) extension of the G-rich strand of chromosome ends (G-overhang or 3′-overhang) and in both humans and Arabidopsis thaliana.

Saccharomyces cerevisiae

Sensing	Human	Arabidopsis thaliana
H2A	H2AX	COM1

Mediators

PIKK	RAD5	SSBP1	n.i.
signaling	RIF1	RIF1	n.i.
n.o.	BRCA2	BRCA2	
Scc2	CLP	COM1	
ATR			
signaling	Dbc1	RAD9/RAD1/HUS1	RAD9/RAD1/HUS1
	RPA	RPA	
HR	RAD51	RAD51	

Mediators

PIKK	RAD5	SSBP1	n.i.
signaling	RIF1	RIF1	n.i.
n.o.	BRCA2	BRCA2	
Scc2	CLP	COM1	
ATR			
signaling	Dbc1	RAD9/RAD1/HUS1	RAD9/RAD1/HUS1
	RPA	RPA	
HR	RAD51	RAD51	

NHEJ

Ku70/Ku80	Ku70/Ku80	Ku70/Ku80
	XRT1	NRT1

Telomere protection

n.o.	TRF1	n.i.
n.o.	POT1	POT1/POT1B
n.o.	TIN2	n.i.
n.o.	TPPI	n.i.
RAP1	RAP1	n.i.
Calc1	CTC1	CTC1
STN1	STN1	STN1
TEN1	TEN1	TEN1

n.o., no ortholog; n.i., no identified orthologue reported.

Table 1 | Major factors involved in DNA double strand break signaling and repair and telomere protection in budding yeast, human and Arabidopsis thaliana.

Amiard et al. DSB signaling in Arabidopsis

telomerase ribonuclease protein but do not bind telomeric ssDNA and are not essential for telomere capping (Surovtseva et al., 2007; Shakirov et al., 2009, Cifuentes-Rojas et al., 2011).

In S. cerevisiae there has been no shelterin-like complex identified to date and a somewhat simpler protection complex, consisting mainly of the CST complex (Cdc13, Stn1 and Ten1), is present (Giraud-Panis et al., 2010; Price et al., 2010). Deprotected telomeres are recognized by cells as DSB, and their “repair” results in chromosome fusions/rearrangements and genomic instability (De Lange, 2009). As for other DSB, deprotected telomeres are substrates for kinase activation and are characterized by the appearance of TIFs (telomere induced foci), DNA damage response factors that coincide with telomere signals. In mammals, the absence of TRF2 or POT1 leads to the appearance of TIFs and this depends upon ATM and ATR, respectively (De Lange, 2009). In plants, we have shown that the appearance of TIFs in atr or atr1 mutants are exclusively ATR-dependent and that in absence of the catalytic subunit of the telomerase ribonucleoprotein but do not bind telomeric ssDNA and are not essential for telomere capping (Surovtseva et al., 2007; Shakirov et al., 2009, Cifuentes-Rojas et al., 2011).

In mammals the absence of TRF2 or POT1 leads to the appearance of TIFs and this depends upon ATM and ATR, respectively (De Lange, 2009). As for other DSB, deprotected telomeres in absence of the TRF2 or POT1, respectively (Denchi and De Lange, 2007). Hence here again, plant repair pathways can still be activated in absence of the kinase activity.

CONCLUSION

This short review summarizes knowledge concerning DNA break signaling in Arabidopsis thaliana. A list of genes discussed here is presented in Table 1 and we refer interested readers to a recent compilation of Arabidopsis DNA repair/recombination genes (http://www.plb.ucdavis.edu/labs/britt/Plant_DNA_Repair_genes.html). Given the crucial importance of the signaling step in DNA repair it is not surprising to find strong conservation of these mechanisms in higher eukaryotes. Nevertheless, evidence points to a particular ability of plants to repair even in absence of signaling and the presence of an unknown plant specific repair pathway(s) is now suspected. Plants possess a not fully understood ability to resist and develop in presence of DNA damaging agents and the implication of plant specific recombination events could provide part of the explanation for this. The increased spontaneous recombination rates seen in plants subjected to biotic or abiotic stresses (review by Waterworth et al., 2011) has been proposed to be a programmed response increasing the plasticity of plant genome leading to acceleration of plant evolution (Mohler et al., 2006; Boyko and Kovalchuk, 2011).

ACKNOWLEDGMENTS

This work was supported by grants from European Union research grant (LSHG-CT-2005-018785), the Centre National de la Recherche Scientifique, the Université Blaise Pascal, the Université d’Auvergne, and the Institut National de la Santé et la Recherche Médicale.

REFERENCES

Amiard, S., Charbonnel, C., Allan, E., Depopulo, A., White, C. I., and Gallego, M. E. (2011). Arabidopsis ATR kinase and the Mstl-Rad9-Bdf1-Nbs1 complex in the maintenance of chromosomal stability in Arabidopsis. Plant Cell 23, 3020–3033. doi: 10.1105/tpc.110.1078527.

Amiard, S., Depopulo, A., Allan, E., White, C. I., and Gallego, M. E. (2011a). Arabidopsis ATM and ATR kinases prevent propagation of genomic instability caused by telomere dysfunction. Plant Cell 23, 4254–4269. doi: 10.1105/tpc.111.0971877.

Amiard, S., White, C., and Gallego, M. E. (2011b). Recombination proteins and telomere stability in plants. Curr. Protein Pept. Sci. 12, 84–92. doi: 10.2174/1389203117952413.

Baumann, P., and Cech, T. R. (2001). Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1177. doi: 10.1126/science.1050089.

Bedo, A. and Kovalchuk, I. (2011). Genome instability and epigenetic regulation of the telomere–chromatin repressor by environmental stress. Curr. Opin. Plant Biol. 14, 260–266. doi: 10.1016/j.pbi.2011.03.005.

Cleton, A., Fernandez-Capelle, O., Kreilich, M. J., Pich, D. R., Strahl, D. W., Lou, A., et al. (2005). Histone H3S10 phosphorylation is dispensable for the initial recognition of DNA breaks. Nat. Cell Biol. 7, 675–677. doi: 10.1038/ncb1400.

Cleton, A., Potemen, S., Romanenko, P., Frenot, J., Charbonnel, C., Oo, Chen, H., T. Savelieva, D. A., et al. (2002). Genome instability in mice lacking histone H3S10 phosphorylation. Science 296, 922–927. doi: 10.1126/science.1070998.

Cuthbertson, J. R., Barral, P., Vannier, J. B., Betel, V., Stoger, M., Tomas-Loba, A., et al. (2013). RIF1 is essential for SMC1-dependent nonhomologous end joining and suppression of DNA double-strand break reaction. Mol. Cell 49, 858–871. doi: 10.1016/j.molcel.2013.01.002.

Charbonnel, C., Allan, E., Gallego, M. E., and White, C. I. (2011). Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis. DNA Repair 10, 611–619. doi: 10.1016/j.dnarep.2012.07.029.

Charbonnel, C., Allan, E., Gallego, M. E., and White, C. I. (2010). Xrec1-dependent and Ku-dependent DNA double-strand break repair kinetcs in Arabidopsis plants. Plant J. 64, 280–290. doi: 10.1111/j.1365-313X.2010.04331.x.

Charbonnel, C., Chou, Y. E., and Brault, M. E. (2013). Charity begins at home: non-coding RNA functions in DNA repair. Nat. Rev. Mol. Cell Biol. 14, 181–189. doi: 10.1038/nrm3652.

Charbonnel-Rejois, C., Kaman, K., Twing, L., and Shippen, D. E. (2011). Two RNA substrates and POT1 are core components of Arabidopsis telomerase. Proc. Natl. Acad. Sci. U.S.A. 108, 75–78. doi: 10.1073/pnas.1012211107.

Cimprich, K. A., and Cortez, D. (2008). ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 416–427. doi: 10.1038/nrm2490.

Culligan, K., Tissen, A., and Britt, A. (2004). ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16, 1091–1104. doi: 10.1105/tpc.104.024980.

Culligan, K. M., and Britt, A. B. (2008). ATM and ATR promote the efficient and accurate processing of programmatically induced double-strand breaks. Plant J. 55, 629–638. doi: 10.1111/j.1365-313X.2008.03510.x.

*“fpls-04-00405” — 2013/10/15 — 18:28 — page 4 — #4
processing of DNA breaks generates olgo-nucleotides that stimulate ATM activity. EMBO J 27, 1935–1942. do:10.1038/emboj 2008.128

Jaspers, A., Vakil, J., Lukas, C., Bartek, J., Smith, G. C. M., Lukas, J., et al. (2006). ATM and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8, 17–25. do:10.1038/ncl 2006.137

Jax, Q., Desaki-Raik, A., Shen, H., Hsueh, P. J., and De Pater, S. (2013). Poly(ADP-ribose) polymerases are involved in microhomology mediated back-up non-homologous and joining in Arabidopsis thaliana. Plant Mol Biol 82, 358–361. do:10.1007/s11105-013-0669-9

Kim, A., Wu, W., Stuelt, C., and Slakos, G. (2008). Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucl Acids Res 36, 5676–5684. do:10.1093/nar/gkn550

Kafri, R., Cason, M., and Hartwell, L. (1999). Single-stranded DNA arising at telomeres in cel5 mutants can constitute a specific signal for the RAD5 checkpoint. Mol Cell Biol 19, 6126–6138.

Grand-Paix, M., Pata, M., Timar, M., Guri, V., and Giale, E. (2010). CSE1 tethers shelterin to keep telomeres in check. Mol Cell 39, 665–676. do:10.1016/j.molcel.2010.08.024

Gooder, A. A., Jogo, J., and Lobrich, M. (2010). The influence of heterochromatin on DNA double strand break repair getting the strong, silent type to relax. DNA Repair 9, 1273–1282. do:10.1016/j.dnarep.2010.09.018

Gottard, S., Damon, C., and Charbonneau, N. J. (2006). GammaH2AX and H2AX focus formation requires 53BP1-RIF1 and BRCA1-CtIP regulatory circuit composed of DSS1 and INO80. Mol Cell 23, 891–901. do:10.1016/j.molcel.2006.11.027

Giraud-Panis, M.-J., Teixeira, M. T., Inoue, M., Hori, E., and Jackson, S. P. (2007). DNA double-strand breaks. Curr Opin Cell Biol 19, 268–276. do:10.1016/j.ceb.2007.04.008

Gallego, M., Renedo, J., Dauschall-Gottersdott, S., Jahn, N., and White, E. (2007). KAT6 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 53, 557–565. do:10.1111/j.1365-313X.2005.02872.x

Garret, R., Cameron, M., and Hartwell, L. (1995). Single-stranded DNA arising at telomeres in cel5 mutants can constitute a specific signal for the RAD5 checkpoint. Mol Cell Biol 15, 408–418.

Fradet-Turcotte, A., Xing, M., Heitzeberg, F., Chen, I.-P., Hartung, F., Brüggemann, S., Heyer, W.-D., and Liu, J. (2010). Regulation of shelterin by telomere attritional overgrowth. Mol Cell 39, 665–676. do:10.1038/mce 2010.59

Fritsch, E. F., Helling, R., and Kline, L. (1973). Plasmid DNA: a new type of high-molecular. Cold Spring Harb Symp Quant Biol 38, 426–427. do:10.1101/sq.38.1.426

Fillion, J., Jolesz, F., and Kugler-Filip, L. G. (2006). GammaH2AX and its role in DNA double-strand break repair. Biochem. Cell Biol. 84, 568–577. do:10.1139/bcb-84-5-568

Fuentes, D., Aliqu, D., de Haas, I. L., Brenneman, W., Mistry, J., Shafton, M., et al. (2011). Metabolism of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining processes. Proc Natl Acad Sci U S A. 108, 548–554. do:10.1073/pnas.1001763108

Frazzon, J., and Britt, A. B. (2013). Ku80 and DNA ligation IV deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 74, 427–440. do:10.1111/tpj.12135

Frazzon, J. D., Liu, B., Calligan, K., and Britt, A. B. (2007). Ionizing radiation triggers Ku80 and DNA ligation IV deficient plants to senesce. Biochem Cell Biol 85, 1257–1263. do:10.1139/bcb-85-6-1257

Fradet-Turcotte, A., Xing, M., Heitzeberg, F., Chen, I.-P., Hartung, F., Brüggemann, S., Heyer, W.-D., and Liu, J. (2010). Regulation of shelterin by telomere attritional overgrowth. Mol Cell 39, 665–676. do:10.1038/mce 2010.59

Hoon, K. (2010). Coping with DNA double-strand breaks: a strategy for replication fork protection. Mol Cell 38, 1260–1267. do:10.1016/j.molcel.2010.04.018

Ivanova, I. N., Balunov, A., Gurtov, E., Haber, E. J., and Costanza, V. (2008). Msh1-Rad11-Nbs1-dependent DNA repair in response to DNA damage. Biochim. Biophys. Acta 1789, 156–163. do:10.1016/j.bjba 2008.11.003

Martinu, D., Clerici, M., Lascuici, G., and Longhese, M. P. (2007). Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks. EMBO Rep 8, 380–387. do:10.1038/embor02011

Martinu, V., Blanca, M. A. (2011). Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Genet 12, 161–176. do:10.1038/nrg2925

Martysev, S., Balil, R. A., Smugerovska, A., McKirdy, E. R., Hunter, K. E., Luo, J., et al. (2007). ATM and ATR substrate analysis reveals putative protein network subnetworks responsive to DNA damage. Science 316, 1600–1604. do:10.1126/science.1140552

Miyake, Y., Nakamura, M., Nabatoni, A., Shimamura, S., Tamura, M., Yonahara, S., et al. (2009). BRCA-like mammalian Ccn1-Sntl-Sntcl complex binds to single-stranded DNA and protects telomerase independently of the Pot1 pathway. Mol Cell 36, 195–208. do:10.1016/j.molcel.2009.08.009

Mellman, J., Rius, G., Zúñiga, C., and Heim, B. (2009). Transcription memory of stress in plants. Nature 442, 1046–1049. do:10.1038/nature05022

Morrone, D. M., Tagli, D. A., Dardick, Y., and Hinter, F. (1995). TEL1, an S. cerevisiae homologue of the human gene mutated in ataxia telangietasia, is functionally related to the yeast checkpoint kinase gene MEC1. Cell 83, 831–840. do:10.1016/0092-8674(95) 90448-0

Myung, K., and Kolesch, R. D. (2002). Suppression of genome instability by redundant 5-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 99, 4380–4387. do:10.1073/pnas.99.9.4380

Nisholm, B., Porée, V. L., Woods, C. G., Jeggo, P. A., and Goodship, J. A. (2003). A splice- junction mutation affecting expression of ataxia-telangiectasia and Rad51-related protein (ATR) results in a broken syndromes. Nat Genet 33, 497–501. do:10.1038/ng1229

www.frontierr.org

October 2013 | Volume 4 | Article 405 | 5

“fpls-04-00405” – 2013/10/15 – 18:28 – page 5 – #5
Amiard et al. DSB signaling in Arabidopsis

Palm, W., and De Lange, T. (2008). How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42, 361–394. doi: 10.1146/annurev.genet.42.010807.093150

Pellos, V., Procházková Schempp, P., and Fulka, J. (2011). Using the teloscope to search for plant telomere binding proteins. Curr. Proteom. Sci. 14, 77–93. doi: 10.2174/138920311795964898

Price, C. M., Boltz, K. A., Chakravarti, M. F., Stewart, J. A., and Shippen, D. E. (2009). Evolution of CST function in telomere maintenance. Curr. Genet. 55, 3157–3165. doi: 10.1007/s00294-009-0454-z

Shakirov, E. V., Song, X., Joseph, R. M., Stewart, J. A., Bolstein, M. A., and Shippen, D. E. (2010). Evolution of CST function in telomere maintenance. Curr. Genet. 55, 3157–3165. doi: 10.1007/s00294-009-0454-z

Tatsumi, C., Storrie, T., Polovin-Hazan, A., Keremendorf, C., Sanchez-Moran, E., Norat-Chatkova, M., et al. (2007). A novel plant gene essential for meiosis is related to the human CtIP and the yeast COM1/SAE2 gene. EMBO J. 26, 594–5976. doi: 10.1038/sj/emboj.7001915

Ueno, T., Ogawa, H., and Petrini, J. H. (2013). 53BP1 regulates the yeast COM1/SAE2 gene. EMBO J. 32, 1255–1266. doi: 10.1038/sj.emboj.7601792

Van Attikum, H., Bundock, P., Overmeer, R. M., Lee, L.-Y., Gehin, S. B., and Huijser, P. J. J. (2005). The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res. 33, 4270–4277. doi: 10.1093/nar/gkq158

Wang, F., Stewart, J. A., Kaboki, C., Zhao, Y., Wright, W. E., and Price, C. M. (2012). Human CST has independent functions during telomere duplex replication and C-strand fill-in. Cell 150, 1109–1120. doi: 10.1016/j.cell.2012.05.017

Watersworth, W. M., Drury, E. G., Brag, C. M., and Hett, C. E. (2011). Repairing breaks in the plant genome: the importance of keeping it together. New Phytol. 192, 805–822. doi: 10.1111/j.1469-8137.2011.03926.x

Wu, W., Xu, Z., Guo, M., Wu, Y., Ma, Y., Amiard, S., et al. (2012). A role for small RNAs in DNA double-strand break repair. Cell 149, 111–121. doi: 10.1016/j.cell.2012.03.002

Wuertz, T. A., Kne, G. L., and Hartwell, L. H. (1994). Mito-replication fork: point genotype in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8, 652–662. doi: 10.1101/gad.8.6.652

Zellinger, B., and Biha, K. (2007). Composition of plant telomeres. Biochim. Biophys. Acta 1769, 399–409. doi: 10.1016/j.bmcb.1908.02.001

Zimmermann, M., Lotterberger, F., Baemers, S. B., Stier, A., and De Lange, T. (2013). 53BP1 regulates DSB repair using Rif1 to control 5’ and 3’ resection. Science 339, 799–804. doi: 10.1126/science.1231573

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received 28 August 2013; accepted 09 September 2013; accepted 26 September 2013; published online 06 October 2013.

Citation: Amiard S, Gallego ME and White CI (2013) Signaling of double strand breaks and deprotected telomeres in Arabidopsis. Front. Plant Sci. 4:405. doi: 10.3389/fpls.2013.00405

This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science. Copyright © 2013 Amiard, Gallego and White. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided that the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.