Dipeptidyl peptidase-4 inhibitor-induced autoimmune diseases: Current evidence

Ayan Roy, Jayaprakash Sahoo, Niya Narayanan, Chandhana Merugu, Sadishkumar Kamalanathan, Dukhabandhu Naik

Abstract

Dipeptidyl peptidase-4 inhibitors (DPP-4i) have an important place in the management of type 2 diabetes. The DPP-4 enzyme is ubiquitously distributed throughout the human body and has multiple substrates through which it regulates several important physiological functions. DPP-4 regulates several immune functions, including T-cell activation, macrophage function, and secretion of cytokines. Studies have reported an increase in autoimmune diseases like bullous pemphigoid, inflammatory bowel disease, and arthritis with DPP-4i use. The relationship of DPP-4i and autoimmune diseases is a complex one and warrants further research into the effect of DPP-4 inhibition on the immune system to understand the pathogenesis more clearly. Whether a particular cluster of autoimmune diseases is associated with DPP-4i use remains an important contentious issue. Nevertheless, a heightened awareness from the clinicians is required to identify and treat any such diseases. Through this review, we explore the clinical and pathophysiological characteristics of this association in light of recent evidence.

Key Words: Autoimmune disease; Bullous pemphigoid; Diabetes; Dipeptidyl peptidase-4 inhibitors; Glitins; Inflammation
INTRODUCTION

Dipeptidyl peptidase-4 inhibitors (DPP-4i), also known as gliptins, are being increasingly used as a second-line add-on therapy in diabetes mellitus [1]. They have certain advantages as an oral hypoglycaemic agent like weight neutrality, lesser risk of hypoglycaemia, and insulin independent mechanism of action compared to other medications like sulfonylureas [2]. Sitagliptin, saxagliptin, alogliptin, and linagliptin are Food and Drug Administration (FDA) approved DPP-4is [3]. However, other DPP-4is like teneligliptin, anagliptin, and vildagliptin are also in use in different countries across the globe.

DPP-4, also known as cluster of differentiation 26 (CD26) molecule, is expressed in many tissues and known for its role in diverse physiological functions of the human body. The interaction of the DPP-4 molecule and the immune system is complex. This includes regulation of a various subset of the immune cells including T cells and antigen presenting cells. Therefore, DPP-4i has the potential to modulate various immunological functions. Indeed, the therapeutic role of DPP-4i has been studied in autoimmune diseases (AD) like type 1 diabetes mellitus [4], latent autoimmune diabetes of the adult [5], acute graft vs host disease [6], autoimmune encephalomyelitis [7], and multiple sclerosis [8]. However, in recent times several studies have shown an increased risk of certain AD like bullous pemphigoid (BP) among DPP-4i users. Thus, through this review, we summarise the currently available literature in the field of DPP-4i induced AD.

SEARCH STRATEGY

The keywords and combination of keywords for literature search are summarised in the Table 1. The initial literature search was carried out by three authors (AR, NN, and CM) independently in PubMed. The search was performed from the date of inception until January 15, 2021 to find relevant articles. The studies available in the English language were selected for this review. Relevant references in the individual articles were also scrutinised for their suitability and included in this review if found to be appropriate. The studies that evaluated the development of AD in patients treated with DPP-4i were selected by the authors (JS, SK, and DN) and were included in this review. We have given preferences to the most recent studies published in the last 5 years.

THE INTERFACE BETWEEN IMMUNE SYSTEM AND DPP-4 ENZYME

DPP-4 is an enzyme that has a ubiquitous presence throughout the human body. The most important metabolic function is to cleave various gut peptides known as ‘incretin hormones’ like glucagon-like peptide-1, glucose-dependent insulinitropic peptide, and neuropeptide Y [9]. Incretins have several metabolic benefits like enhanced insulin secretion from the pancreatic beta cells and thus help in controlling blood glucose in subjects with diabetes [10]. DPP-4i prolongs the half-life of different incretins by inhibiting intestinal DPP-4 enzyme activity.

Table 1: Literature search strategy

Keywords/Phrases	PubMed (2021-Sep-15)	Number of Studies
DPP-4 inhibitor and autoimmune disease	1426	
DPP-4 inhibitor and autoimmune diseases	1426	
DPP-4 inhibitor induced autoimmune disease	1426	
DPP-4i induced autoimmune disease	1426	
DPP-4i induced autoimmune diseases	1426	

Upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License/s/by-nc/4.0/
Table 1 List of the keywords used for literature search

No.	Keyword
1	Dipeptidyl peptidase 4 inhibitor
2	DPP-4 inhibitor
3	Gliptins
4	‘Autoimmune disease’
5	[1] and [4]
6	[2] and [4]
7	[3] and [4]
8	[2] and [3] and [4]
9	Inflammatory bowel disease
10	[1] and [9]
11	Arthritis
12	Arthralgia
13	‘Rheumatoid arthritis’
14	[1] and [11]
15	[1] and [12]
16	[1] and [13]

DPP-4: Dipeptidyl peptidase-4.

The details of the role of DPP-4/CD26 in immune system is beyond the scope of this review and many elegant reviews are already there in this area[11,12]. The CD26 molecule, also known as the ‘moonlight protein’ is a cell surface protein having significant DPP-4 activity. DPP-4 is expressed in several cell lines involved in the pathway of immune regulation. These include T helper cells type 17 (Th17), natural killer cells, activated B cells, macrophages, and myeloid cells[12]. DPP-4 is a transmembrane protein having three parts: a small intracellular part, a transmembrane part carrying the DPP-4 activity, and a large extracellular part[12]. There is also a soluble form of DPP-4 (sDPP-4) that carries a significant amount of enzyme catalytic activity[9]. Recent evidence suggests that circulating lymphocytes are an important source of the sDPP-4[13]. sDPP-4 is used as a biomarker of several diseases and a reduced serum level has been described in rheumatoid arthritis (RA), systemic lupus erythematous, and psoriasis[12,14]. An elevated sDPP-4 has been shown in type 1 diabetes suggesting its role in the pathogenesis[15].

DPP-4 promotes activation and proliferation of both T cells (Th1, Th17, and regulatory T cells)[16,17], and macrophages[18]. It also has a role in the immunoglobulin synthesis regulation like isotype switching of B cells[19]. Moreover, evidence also suggests that DPP-4 significantly modulates secretion of different cytokines and chemokines, thus regulating tissue response to injury[20,21]. DPP-4i increases stromal derived factor-1 (or CXCL12) levels, which has several pleiotropic effects[22], e.g., beneficial effects in ischemic myocardium[23], diabetic nephropathy[24] and stroke[25]. Interestingly, a recent study demonstrated a decrease in certain chemokines (CCL11/Eotaxin, CCL22/MDC, and CXCL10/IP-10) following a mixed meal test after 6 mo of teneligliptin treatment in diabetes patients[26]. Nevertheless, the exact role of different cytokines/chemokines cleaved by the DPP-4 enzyme in immune regulation remains an unexplored area[27].

Several experimental studies have shown that DPP-4i suppresses various markers of inflammation[28] and/or fibrosis[29] and thus is regarded as an attractive therapeutic option in AD. Several animal research studies have shown the beneficial effects of DPP-4i in obesity-related inflammation[30], hepatic fibrosis[31], myocarditis[32], and diabetic nephropathy[25,26,33], as well as chemotherapy induced renal injury[34] through its immune-modulatory action. Earlier studies also showed the potential beneficial role of DPP-4i in different inflammatory central nervous system disorders, including multiple sclerosis[7,35]. However, several other studies have reported an
increased risk of a few specific AD with DPP-4i use, which are described below.

DPP-4I USE AND RISK OF OVERALL AD

In recent times, several studies have evaluated the association of different DPP-4i with overall AD. However, these studies are limited by the fact that most of them are either retrospective or cross-sectional in nature, and few studies assessed the full autoimmune spectrum. Kridin et al.[36] from Israel reported that the prevalence of 3 AD (Crohn’s disease, psoriasis and Hashimoto’s thyroiditis) out of nearly 15 AD was significantly higher in the DPP-4i-treated group as compared to age, gender, and ethnicity-matched diabetes control subjects. This study suggested that a cluster of AD might be associated with DPP-4i treatment. On the other hand, a Japanese study based on the analysis of the adverse drug reaction database showed an increased risk of overall AD in the older age group (> 60 years)[37]. However, a recent population-based study[38] performed in Asian people found that DPP-4i treatment was significantly associated with a reduction in the prevalence of overall AD [adjusted hazard ratio (aHR): 0.56 (95% confidence interval (CI): 0.53–0.60; P < 0.001)]. The AD included RA, systemic lupus erythematosus, inflammatory bowel disease (IBD), Sjogren’s syndrome, psoriasis, and ankylosing spondylitis. Similar results indicating a lower risk of overall AD had been demonstrated by a few other studies[39,40]. Chen et al[38] also showed that the risk of AD was significantly lower in the younger population. This finding signifies the importance of age as an important determining factor of autoimmunity. Clinicians must be vigilant about the risk of different AD in DPP-4i treated patients as summarised in Table 2.

DPP-4I USE AND RISK OF BP

BP is the commonest skin AD associated with DPP-4i use, as described in the literature. However, pemphigus vulgaris has been reported rarely[41] in patients using DPP-4i. BP is a blistering skin condition that occurs commonly in the elderly population. It is an AD characterised by the presence of circulating autoantibodies directed against BP180 and BP230 autoantigens in basal keratinocytes. BP is caused by several drugs and carries a significant risk of mortality[42]. The recent addition to the list of the drugs is DPP-4i. Since 2011, many case reports[43-45] and case series[46-48] have reported the association between the use of DPP-4i and development of BP. In recent times, both observational and retrospective studies[49-54] and adverse drug event-based registries[55,56] have also shown this association (Tables 3 and 4).

Estimating the risk of BP with DPP-4i use

After the initial information obtained from the case reports and case series, adverse drug reaction-based databases have increasingly reported the association of BP with the use of DPP-4i[49,57-59]. Similarly, nation-wide population-based studies[50,60,61] also strengthened this association further as summarised in Table 3. However, it is important to note that most of the pharmacovigilance and adverse database studies have mentioned reporting odds ratio (ROR) to gather early signals of the association between DPP-4i use and BP. However, ROR neither allows to establish any association nor proves causality[62]. Moreover, a few meta-analyses[63,64] tried to sum-up the available data. DPP-4i use in diabetes is associated with both de novo development of BP as well as exacerbation of the already existing BP[65]. It is also important to note that studies have reported increasing diabetes prevalence in BP patients[66], so one should be cautious while prescribing DPP-4i in these patients.

How much is the risk? The answer is not a straightforward one. There is definite evidence that increased risk of BP is a class effect of DPP-4i use, and it varies from molecule to molecule. Studies have reported a 2-3 times risk (as reported by aHR) of developing BP in diabetes patients receiving DPP-4i (Tables 3 and 4). The meta-analysis performed by Phan et al[64] on five case-control studies reported overall OR of 2.13 (95% CI: 1.59-2.86) for developing BP in DPP-4i users. Furthermore, a recent meta-analysis including randomized controlled trials (RCTs) as performed by Silverii et al[63] reported a Mantel-Haenszel OR of 4.44 (95% CI: 1.31-15.00) for overall DPP-4i use and development of BP. However, the included number of BP cases was low (n = 17), and most of the data came from linagliptin trials, thus drawing conclusions about other DPP-4is was not possible from this study. It also underscores the importance of
Table 2 Summary of the studies that assessed risk of overall autoimmune diseases in dipeptidyl peptidase-4 inhibitor users

Ref.	Population	Study design	Composite outcome	Individual autoimmune disease outcome
Kridin et al	T2DM patients receiving DPP-4i (n = 283) vs matched controls (n = 5660)	Cross-sectional retrospective study using patient database	OR 1.44 (95%CI: 1.06–1.96) for any disease from the cluster of AD (Crohn’s disease, psoriasis, Hashimoto’s thyroiditis, MS, ulcerative colitis)	Crohn’s disease OR 3.56 (95%CI: 1.04–12.21). Psoriasis OR 2.12 (95%CI: 0.99–4.66). Hashimoto’s thyroiditis OR 1.38 (95%CI: 1.00–1.91). No difference in the following ADs: Addison’s disease, Arthropathy, Celiac disease, Idiopathic thrombocytopenic Purpura, Myasthenia gravis, Pernicious anaemia, RA, Sarcoidosis, Scleroderma, SLE
Noguchi et al	Diabetes patients receiving DPP-4i and other antidiabetic drugs (n = 38887)	Adverse Drug Event Report database analysis	PRR 4.09 for overall autoimmune disease	Increased risk was noted in the following AD: RA, pemphigoid, autoimmune pancreatitis, and polymyalgia rheumatica
Chen et al	T2DM patients (age ≥ 20 yr) receiving DPP-4i vs non-DPP-4i medications (n = 387099 in each group)	Retrospective cohort study using insurance claim data	HR 0.56 (95%CI: 0.53–0.60) for overall AD like RA, SLE, IBD, Sjogren syndrome, psoriasis and ankylosing spondylitis	RA: HR 0.56 (95%CI: 0.46–0.68). Psoriasis: HR 0.56 (95%CI: 0.52–0.61). Ankylosing spondylitis: HR 0.56 (95%CI: 0.50–0.63). SLE: HR 0.55 (95%CI: 0.35–0.88). IB: HR 0.66 (95%CI: 0.11–3.95). Sjogren syndrome: HR 0.58 (95%CI: 0.46–0.75)
Kim et al	T2DM patients (age ≥ 40 yr) started on DPP-4i as a part of combination therapy (n = 73928 vs non-DPP-4i combination therapy (n = 16362)	Cohort study using insurance claim data	HR 0.68 (95%CI: 0.52–0.89) for AD like RA, SLE, psoriasis, psoriatic arthritis, MS and IBD	RA: HR 0.66 (95%CI: 0.44–0.99). Other AD (excluding RA): HR 0.73 (95%CI: 0.51–1.03)
Seong et al	New T2DM patients (age ≥ 18 yr) using DPP-4i (n = 497619) or non-DPP-4i (n = 643156) oral combination therapy	Active comparator new-user cohort study	aHR 0.82 (95%CI: 0.68-0.99) for AD like RA, IBD, MS and SLE	RA: aHR 0.67 (95%CI: 0.49–0.92). IB: aHR 0.81 (95%CI: 0.61–1.08). SLE + MS: aHR 0.67 (95%CI: 0.37-1.19)

AD: Autoimmune disease; aHR: Adjusted hazard ratio; CI: Confidence interval; DPP-4i: Dipeptidyl peptidase-4 inhibitor; HR: Hazard ratio; IBD: Inflammatory bowel disease; MS: Multiple sclerosis; OR: Odds ratio; PRR: Proportional reporting ratio; RA: Rheumatoid arthritis; SLE: Systemic lupus erythematosus; T2DM: Type 2 diabetes mellitus.

systematic reporting of AD including BP as an adverse event in large clinical trials involving other DPP-4is.

Individual DPP-4i and risk of BP

Almost all of the DPP-4is are associated with the development of BP. However, vildagliptin is the most commonly implicated drug in the published literature. Both pharmacovigilance[64] and observational studies[57,67,68] reported vildagliptin use as a risk factor for development of BP with a OR varying from 1.81 to 10.40. Moreover, the meta-analysis by Phan et al[64] concluded that vildagliptin has the highest risk (OR 5.08) followed by linagliptin (OR 2.87). But sitagliptin was not associated with BP (OR 1.29, 95%CI: 0.79-2.08). Linagliptin had a similar propensity (HR 4.56, 95%CI: 3.28-6.46) to cause BP as vildagliptin (HR 4.56, 95%CI: 3.28-6.46) in a recently published study[57]. The conclusion of a recently conducted meta-analysis[63] also revealed an increased risk of BP in linagliptin-treated patients (Mantel-Haenszel-OR 4.69, 95%CI: 1.09-20.22). Additionally, few reports have also revealed teneligliptin[58,69] and saxagliptin[46,50-58,70] induced BP. However, there is a possibility of reporting bias present since BP is not systematically reported in large clinical trials involving various DPP-4i.

Risk factors for the development of DPP-4i induced BP

Older age is one of the important risk factors, and most of the studies have reported the mean age of subjects with DPP-4i induced BP > 70-75 years (Table 5). But Lee et al[57] has shown that the risk was similar between patients with more than or less than 75 years of age. The second important risk factor is male gender. Kridin and Bergman[71] reported a higher risk in males compared to females (OR 4.46 vs 1.88). In the same way, other studies also reported a male predilection[72]. On the contrary, Varpuluoma et al[60] reported that females are more likely to develop DPP-4i induced BP. Phan et al[64] in their pooled meta-analysis found that both genders are susceptible to develop BP with higher propensity in males (OR 2.35 vs 1.88). The third risk factor is the DPP-4i with less selective DPP-4 enzyme inhibition like vildagliptin. The fourth is a recently discovered association of specific human leucocyte antigen (HLA) HLA-DQB1*03:01 with DPP-4i induced BP in Japanese population[73]. However, Lindgren et al[74] did
Table 3 Summary of the pharmacovigilance and population-based studies reporting dipeptidyl peptidase-4 inhibitor induced bullous pemphigoid

Ref.	Country	Population	Pooled odds ratio	Individual DPP-4i	Remarks
Reolid et al. [55], 2020	Spanish Pharmacovigilance System	Overall reported adverse events	NA	ROR: linagliptin 69.42 (95% CI: 21.17–227.57), vildagliptin 46.45 (6.26–344.25), vildagliptin 123.38 (95% CI: 68.72–221.15), sitagliptin 12.42 (95% CI: 3.89–39.63)	Vildagliptin was the DPP-4i that most frequently induced BP
García et al. [56], 2016	European pharmacovigilance database	Overall reported adverse events	NA	PRR: Vildagliptin 85.98 (95% CI: 70.98–104.15), sitagliptin 4.55 (95% CI: 3.32–6.24), saxagliptin 8.36 (95% CI: 3.14–22.28), linagliptin 24.32 (95% CI: 14.11–41.92)	Alogliptin was not associated with development of BP
Lee et al. [57], 2019	Korea (Retrospective, nationwide, population-based, case-control study)	670 patients with diabetes with BP and 670 control patients with only diabetes	aOR, 1.58 (95% CI: 1.25–2.00)	Vildagliptin aOR 1.81 (95% CI: 1.31–2.50), sitagliptin aOR 1.70 (95% CI: 1.19–2.43), linagliptin aOR 1.64 (95% CI: 1.15–2.33)	Male gender was associated with higher risk of development of BP
Carnevali et al. [58], 2019	World Health Organization global Individual Case Safety Reports database	Overall reported adverse events	ROR 179.48 (95% CI: 166.41–193.58)	Teneligliptin 975.04 (95% CI: 801.70–1185.87), sitagliptin 46.52 (95% CI: 40.57–53.36), vildagliptin 399.70 (95% CI: 362.26–441.02), linagliptin 143.23 (95% CI: 122.60–167.33)	The highest ROR was found for teneligliptin
Bénéd et al. [59], 2016	French Pharmacovigilance Database	Among 1297 spontaneous ADR reports, 42 were DPP-4i induced BP	ROR 67.5 (95% CI: 47.1–96.9)	Vildagliptin ROR 225.3 (95% CI: 148.9–340.9), sitagliptin ROR 17.0 (95% CI: 8.9–32.5), saxagliptin ROR 16.5 (95% CI: 2.3–119.1)	Vildagliptin had higher ROR
Varpuluoma et al. [60], 2018	Finland (Nationwide Registry Study)	3397 BP cases and 12941 controls	aOR 2.13 (95% CI: 1.51–3.00)	aOR vildagliptin 8.66 (95% CI: 4.06–18.50), aOR sitagliptin 1.36 (95% CI: 0.95–1.99)	A significantly increased risk of BP after the use of vildagliptin
Hung et al. [61], 2020	Taiwan (Nationwide, population-based, cohort study)	6340 patients with DM on DPP-4i and 25360 DM patients without DPP-4i	aHR 2.382 (95% CI: 1.163–4.883)	Vildagliptin aHR, 2.849 (95% CI: 1.893–4.215), saxagliptin aHR, 2.657 (95% CI: 1.770–3.934), sitagliptin aHR, 2.985 (95% CI: 1.723–3.829), linagliptin aHR, 2.360 (95% CI: 1.567–3.477), alogliptin aHR, 1.450 (95% CI: 0.965–2.152)	Vildagliptin was significantly associated with an increased risk of BP, and alogliptin was not associated with development of BP
Arai et al. [62], 2018	Japanese Adverse Drug Event Report database	392 BP cases in DPP-4i user and 12811 without BP as control	ROR 87.56 (95% CI: 72.61–105.59)	ROR: alogliptin 8.02 (95% CI: 4.87–13.22), anagliptin 10.84 (95% CI: 3.46–33.96), sitagliptin 12.59 (95% CI: 9.86–16.06), trelagliptin 13.77 (95% CI: 3.40–55.85), saxagliptin 15.85 (95% CI: 5.87–42.79), linagliptin 28.96 (95% CI: 21.38–39.23), omarigliptin 43.79 (95% CI: 5.87–327.70), teneligliptin 58.52 (95% CI: 42.75–80.10), vildagliptin 105.33 (95% CI: 88.54–125.30)	The highest ROR was found with vildagliptin
MolinaGuarneros et al. [63], 2020	Spain (pharmacovigilance data)	Case/non-case analysis (1998 DPP-4i induced ADR where 45 were DPP-4i induced BP)	ROR 70.0 (47.1–104.1)	Vildagliptin 113.9 (95% CI: 73.4–177), linagliptin 55.2 (95% CI: 28.2–108.0), sitagliptin 9.1 (95% CI: 3.7–22.6), saxagliptin 27.4 (95% CI: 3.7–200.1)	Highest risk of BP with vildagliptin
Douros et al. [64], 2019	United Kingdom Clinical Practice Research Datalink	Cohort study among 168774 patients started on antidiabetic drugs	HR 2.21 (95% CI: 1.45–3.38)	Linaagliptin HR 4.90 (95% CI: 2.68–8.96), vildagliptin HR 4.56 (95% CI: 1.42–14.64), saxagliptin HR 2.16 (95% CI: 0.86–5.46), sitagliptin HR 1.42 (95% CI: 0.79–2.53)	HRs for development of BP gradually increased with longer durations of DPP-4i use

ADR: Adverse drug reaction; aHR: Adjusted hazard ratio; aOR: Adjusted odds ratio; BP: Bullous pemphigoid; CI: Confidence interval; DPP-4i: Dipeptidyl peptidase-4 inhibitor; DM: Diabetes mellitus; NA: Not available; PRR: Proportional reporting ratio; ROR: Reporting odds ratio.

not find a similar association in Caucasians. The other possible associated risk factors are mentioned in Table 5[75-77].
Table 4 Clinical characteristics of case-control studies reporting dipeptidyl peptidase-4 inhibitor-induced bullous pemphigoid

Ref.	Type of the study	Population	Effect of gender	Latency period	Age	Outcome
Plaquevent et al[30], 2019	Multicentre case-control study	Out of 1787 patients with BP, 108 subjects were gliptin users. Comparison with a large general population database	NA	14.8 mo (interquartile range 6.0-26.7 mo)	77.9 ± 9.3 yr	No difference in outcome between gliptin withdrawal vs continued groups
Schaffer et al[31], 2017	Retrospective case-control study	Patients with diabetes and BP (n = 23) compared with patients with only diabetes (n = 170)	NA	Range: 5-48 mo	77.6 yr	Favourable outcome after gliptin withdrawal; however topical and systemic therapy were required in most of the cases
Béné et al[39], 2016	Case/non case analysis from database	Patients with BP (n = 150) compared with other spontaneous adverse drug reactions	NA	10 mo (range 8 d-37 mo)	74 yr (range 45-91)	Favourable outcome in patients when DPP-4is were discontinued. Median time to improvement was 10 d (interquartile range: 5-15 d)
Benzaquen et al[68], 2018	Retrospective case-control study with 1:2 design	Patients with diabetes and BP (n = 61) compared with patients with only diabetes (n = 122)	Male aOR 4.36 (95%CI: 1.38-13.83), females 1.64 (95%CI: 0.53-5.11)	Median 8.2 mo (range 10 d to 3 yr)	79.1 ± 7.0 yr	Favourable outcome when DPP-4is were discontinued
Kridin and Bergman[71], 2018	Retrospective case-control study	Diabetes patients with BP (n = 82) vs age and gender matched control population with only diabetes (n = 528)	Male OR 4.46 (95%CI: 2.11-9.40), female OR 1.88 (95%CI: 0.92-3.86)	Median 10.4 mo (range 1.0-26.5 mo)	79.1 ± 9.1 yr	Favourable outcome in gliptin withdrawal group

aOR: Adjusted odds ratio; BP: Bullous pemphigoid; CI: Confidence interval; DPP-4is: Dipeptidyl peptidase-4 inhibitors; NA: Not available; OR: Odds ratio.

Table 5 Emerging risk factors for development of dipeptidyl peptidase-4 inhibitor-induced bullous pemphigoid

Risk factors	Possible risk/trigger factor
Older age (> 70 yr of age)[57,59,68]	Longer duration of DPP-4i use[64]
Male gender[64,71]	Patients with dementia[53,54]
Specific HLA like HLA-DQB1*03:01 (In Japanese population)[73]	Concomitant use of spironolactone[53]
Certain DPP-4i[63,64] (i.e. vildagliptin, linagliptin)†	Chronic kidney disease[54,77] and haemodialysis[76]
	Thermal Burn[75]

†High likelihood of modifications of the list as new data emerges. DPP-4i: Dipeptidyl peptidase-4 inhibitor; HLA: Human leucocyte antigen.

Clinical course of DPP-4i induced BP

Latency period: The reported range of latency period for the development of DPP-4i induced BP varies widely. It ranges from 8 d to 4 years[59,63,64,78] (Table 4). A very recent case series[79] reported a median latency period of 64 mo (range 20-128 mo); however, such an association is deemed as ‘possible,’ and causality is difficult to establish in such cases. Douros et al[80] showed that the risk of development of BP increases with longer duration of use of DPP-4i, and the peak reaches around 20 mo after exposure to DPP-4i. Molina-Guarneros et al[70] reported a variable latency period between different DPP-4i, where linagliptin has the shortest (3.5 mo) and sitagliptin has the longest (12 mo) latency period.

Clinical characteristics of DPP-4i induced BP: As more evidence is emerging, the clinical characteristics of DPP-4i induced BP are becoming clearer[81,82]. Moreover, studies have started differentiating this disease from the more common classical BP. The BP lesions in DPP-4i treated patients are described as a predominantly ‘non-inflammatory’ phenotype and often exhibit lesser erythema when compared to the classical BP lesions[53,84]. Furthermore, a study performed in an Israeli cohort reported that DPP-4i induced BP had more extensive involvement and a predominant distribution of the lesion in the cephalic and truncal region of the body when
compared with other non-DPP-4i associated variants of BP[83]. A predominant mucosal involvement in DPP-4i induced BP was also reported by Kridin and Bergman [71]. But this finding was not duplicated in other studies[64,72,73,86,87]. Another interesting feature of DPP-4i associated BP is lower peripheral eosinophil count[71] as well as less eosinophilic infiltrate in the skin lesion[83,88]. But Bellinato et al[89] did not find any such difference. These conflicting results warrant further research to look into this area, preferably in long-term follow-up studies.

Is DPP-4i induced BP a distinct immunological phenomenon?: BP is an immunological disease characterized by the development of autoimmunity against the BP180 and BP230 protein, both of which are hemi-desmosomal protein present in the dermo-epidermal junction[81]. BP180 is also known as collagen XVII. The principal autoantibody involved in the pathogenesis of the classic variant of BP is the one that acts against the extracellular non-collagenous part named the NC16A domain[90]. However, there is some evidence that DPP-4i induced BP has a different autoantibody profile compared to its classic counterpart. In an earlier report, Izumi et al[83] reported that a significant proportion of the DPP-4i induced BP patients had immunoglobulin G autoantibody against epitope other than the known NC16A region. Moreover, patients with non-NC16A antibodies had less inflammation and erythema, which is often described in patients with DPP-4i induced BP. A lesser prevalence of anti-NC16A antibody in DPP-4i induced BP was also described by Horikawa et al[84]. Interestingly, they reported that the majority of the anti-NC16A antibody-negative patients had antibody against the full-length BP180 antigen. Another study from Japan also described a similar finding[52]. However, this specific antibody profile that could differentiate DPP-4i induced BP from the classical variety was not demonstrated in studies performed in the European population[87,89,91]. Further research is needed in this area to better characterize the role of certain autoantibodies in the pathogenesis and to use them as markers for DPP-4i induced BP.

Effect of DPP-4i withdrawal on the outcome of BP: It is expected that DPP-4i withdrawal will lead to an improvement in BP. Studies had reported a favourable outcome when DPP-4i was withdrawn after the diagnosis of BP[59,68,71]. Moreover, mortality remained significant in few studies if DPP-4i was not withdrawn[68,71]. The outcome had been measured in terms of achievement of complete or partial remission. However, even after DPP-4i withdrawal, some patients may require topical or systemic glucocorticoids depending upon the severity of the lesions[59,68,71]. Contrarily, one study found no difference in the outcome of BP lesions irrespective of the withdrawal status of DPP-4i[50]. In fact, the effect of DPP-4i withdrawal in the natural history of BP is often complicated by the fact that concomitant topical and/or systemic glucocorticoids are already being used as a therapy of BP. Despite withdrawal of DPP-4i, BP may not remit fully and require glucocorticoid therapy. Therefore, DPP-4i might play a role of aggravator of BP rather than independently inducing BP in some cases. The time taken for the improvement of BP lesions also varies in different studies. One study reported a median time for improvement of 10 d after drug withdrawal[59], whereas other studies reported months to improve[68]. Rechallenge or replacement with another DPP-4i carries a high risk of relapse of BP[59,68] and thus preferably should be avoided. A very recent retrospective study reported that linagliptin induced BP might be difficult to treat, and it requires a higher dosage of systemic glucocorticoid compared to vildagliptin-induced BP[85].

DPP-4I USE AND RISK OF IBD

IBD is a chronic, relapsing, intestinal inflammatory condition in which various genetic, immunological, and environmental factors play a critical role. Earlier, the experimental studies showed a beneficial effect of DPP-4i use in animal models of colitis[92]. Thus, it was suggested that DPP-4i can be used as a potential therapeutic agent in IBD[8]. Studies have shown that DPP-4 levels in the plasma as well as in tissue are decreased in IBD patients compared to healthy controls[93], and the lower DPP-4 level correlates with higher disease activity and serum inflammatory markers like C-reactive proteins [94,95]. Thus DPP-4i use is expected to have a potential impact on the immunopathogenesis of IBD. DPP-4i can also have an indirect effect on IBD by increasing the levels of different incretin hormones like glucagon-like peptide-1, glucagon-like peptide-2, and vaso-active intestinal peptide[93], though a direct effect of the DPP-4 molecule is still a possibility[96]. The clinical data are quite contrary to this basic science research.
In a population-based cohort study by Abrahami et al[97] in the United Kingdom, it was shown that the use of DPP-4i was associated with an increased risk of IBD with an HR of 1.75 (95% CI: 1.22-2.49; the estimated risk was 53.4 vs 34.5 per 100000 person years in DPP-4i users vs non-users). The maximum risk was seen after 3-4 years of DPP-4i use (HR 2.90, 95% CI: 1.31-6.41), and the risk declined thereafter. Another population-based study by Kridin et al[36] showed a three and half times increased risk of Crohn’s disease in DPP-4i users (OR 3.56; 95% CI: 1.04-12.21, P = 0.031). Wang et al[98] also demonstrated the increased risk of IBD in DPP-4i users while assessing the FDA’s Adverse Event Reporting System database. Radel et al[99] performed a meta-analysis that included 16 studies (including major cardiovascular outcome trials of DPP-4i like EXAMINE, SAVOR-TIMI, and TECOS trial; n = 198404) and found a significantly increased relative risk (RR) 3.01 (95% CI: 2.30-3.93) of IBD using a fixed-effects model. However, the most important limitation of the analysis was that the data was driven mainly by the study of Abrahami et al[97]. Moreover, a random effect analysis did not reveal any elevation in the IBD risk among DPP-4i users, and the duration of most of the trials included in the analysis were less than 4 years.

On the other hand, another meta-analysis (included 13 RCTs) performed by Li et al[100] did not show any increase in the IBD risk among the DPP-4i users as compared to control population (RR 1.01, 95% CI: 0.30-3.41). The reported heterogeneity of the studies was low (I² = 0%). However, the mean follow-up period was only 1.5 years. Wang et al[101] also evaluated this association in the real-world setting using the insurance databases and compared the risk of IBD between DPP-4i with sulfonylurea and thiazolidinedione users. During a median duration of 1.09-1.69 years, DPP-4i was not found to be associated with a risk of IBD. The population-based studies that evaluated the overall AD composite outcomes also did not find increased risk of IBD [39,40].

To summarise, the data suggest a modest association of DPP-4i use and the development of IBD in studies that specifically looked for it, whereas pooled analysis of the RCT data failed to confirm this finding. Since the duration of the studies including many of the RCTs are short, a continued and watchful observation is required, particularly during the post-marketing surveillance. Future RCTs on DPP-4i should also systematically report development of IBD as an adverse event. Importantly, pathophysiological studies should be undertaken to further elucidate the underlying mechanism behind any such association. Clinicians should be aware of this association and a cautious approach should be undertaken while prescribing DPP-4i in a predisposed individual or those who show clinical features suggestive of IBD.

DPP-4I USE AND RISK OF AUTOIMMUNE JOINT DISEASES

The relationship between use of DPP-4i and different joint disorders is a complex one. The joint involvement can be either arthritis or arthralgia, which is not attributable to a specific autoimmune pathology.

Nonspecific autoimmune arthritis/arthralgia

The FDA’s Adverse Event Reporting System database found 33 cases of severe arthralgia reported with the use of DPP-4i. The reported DPP-4is were sitagliptin followed by saxagliptin, linagliptin, vildagliptin, and alogliptin suggesting a class effect of these drugs. In five cases, arthralgia was also reported even after switching to another DPP-4i. Following this data, the FDA published a safety warning declaring the use of DPP-4i like EXAMINE, SAVOR-TIMI, and TECOS trial; n = 198404) and found a significantly increased relative risk (RR) 3.01 (95% CI: 2.30-3.93) of IBD using a fixed-effects model. However, the most important limitation of the analysis was that the data was driven mainly by the study of Abrahami et al[97]. Moreover, a random effect analysis did not reveal any elevation in the IBD risk among DPP-4i users, and the duration of most of the trials included in the analysis were less than 4 years.

To summarise, the data suggest a modest association of DPP-4i use and the development of IBD in studies that specifically looked for it, whereas pooled analysis of the RCT data failed to confirm this finding. Since the duration of the studies including many of the RCTs are short, a continued and watchful observation is required, particularly during the post-marketing surveillance. Future RCTs on DPP-4i should also systematically report development of IBD as an adverse event. Importantly, pathophysiological studies should be undertaken to further elucidate the underlying mechanism behind any such association. Clinicians should be aware of this association and a cautious approach should be undertaken while prescribing DPP-4i in a predisposed individual or those who show clinical features suggestive of IBD.

Nonspecific autoimmune arthritis/arthralgia

The FDA’s Adverse Event Reporting System database found 33 cases of severe arthralgia reported with the use of DPP-4i. The reported DPP-4is were sitagliptin followed by saxagliptin, linagliptin, vildagliptin, and alogliptin suggesting a class effect of these drugs. In five cases, arthralgia was also reported even after switching to another DPP-4i. Following this data, the FDA published a safety warning declaring the use of DPP-4i like EXAMINE, SAVOR-TIMI, and TECOS trial; n = 198404) and found a significantly increased relative risk (RR) 3.01 (95% CI: 2.30-3.93) of IBD using a fixed-effects model. However, the most important limitation of the analysis was that the data was driven mainly by the study of Abrahami et al[97]. Moreover, a random effect analysis did not reveal any elevation in the IBD risk among DPP-4i users, and the duration of most of the trials included in the analysis were less than 4 years.

To summarise, the data suggest a modest association of DPP-4i use and the development of IBD in studies that specifically looked for it, whereas pooled analysis of the RCT data failed to confirm this finding. Since the duration of the studies including many of the RCTs are short, a continued and watchful observation is required, particularly during the post-marketing surveillance. Future RCTs on DPP-4i should also systematically report development of IBD as an adverse event. Importantly, pathophysiological studies should be undertaken to further elucidate the underlying mechanism behind any such association. Clinicians should be aware of this association and a cautious approach should be undertaken while prescribing DPP-4i in a predisposed individual or those who show clinical features suggestive of IBD.

The relationship between use of DPP-4i and different joint disorders is a complex one. The joint involvement can be either arthritis or arthralgia, which is not attributable to a specific autoimmune pathology.

Nonspecific autoimmune arthritis/arthralgia

The FDA’s Adverse Event Reporting System database found 33 cases of severe arthralgia reported with the use of DPP-4i. The reported DPP-4is were sitagliptin followed by saxagliptin, linagliptin, vildagliptin, and alogliptin suggesting a class effect of these drugs. In five cases, arthralgia was also reported even after switching to another DPP-4i. Following this data, the FDA published a safety warning declaring the use of DPP-4i like EXAMINE, SAVOR-TIMI, and TECOS trial; n = 198404) and found a significantly increased relative risk (RR) 3.01 (95% CI: 2.30-3.93) of IBD using a fixed-effects model. However, the most important limitation of the analysis was that the data was driven mainly by the study of Abrahami et al[97]. Moreover, a random effect analysis did not reveal any elevation in the IBD risk among DPP-4i users, and the duration of most of the trials included in the analysis were less than 4 years.

To summarise, the data suggest a modest association of DPP-4i use and the development of IBD in studies that specifically looked for it, whereas pooled analysis of the RCT data failed to confirm this finding. Since the duration of the studies including many of the RCTs are short, a continued and watchful observation is required, particularly during the post-marketing surveillance. Future RCTs on DPP-4i should also systematically report development of IBD as an adverse event. Importantly, pathophysiological studies should be undertaken to further elucidate the underlying mechanism behind any such association. Clinicians should be aware of this association and a cautious approach should be undertaken while prescribing DPP-4i in a predisposed individual or those who show clinical features suggestive of IBD.

Nonspecific autoimmune arthritis/arthralgia

The FDA’s Adverse Event Reporting System database found 33 cases of severe arthralgia reported with the use of DPP-4i. The reported DPP-4is were sitagliptin followed by saxagliptin, linagliptin, vildagliptin, and alogliptin suggesting a class effect of these drugs. In five cases, arthralgia was also reported even after switching to another DPP-4i. Following this data, the FDA published a safety warning declaring the use of DPP-4i like EXAMINE, SAVOR-TIMI, and TECOS trial; n = 198404) and found a significantly increased relative risk (RR) 3.01 (95% CI: 2.30-3.93) of IBD using a fixed-effects model. However, the most important limitation of the analysis was that the data was driven mainly by the study of Abrahami et al[97]. Moreover, a random effect analysis did not reveal any elevation in the IBD risk among DPP-4i users, and the duration of most of the trials included in the analysis were less than 4 years.

To summarise, the data suggest a modest association of DPP-4i use and the development of IBD in studies that specifically looked for it, whereas pooled analysis of the RCT data failed to confirm this finding. Since the duration of the studies including many of the RCTs are short, a continued and watchful observation is required, particularly during the post-marketing surveillance. Future RCTs on DPP-4i should also systematically report development of IBD as an adverse event. Importantly, pathophysiological studies should be undertaken to further elucidate the underlying mechanism behind any such association. Clinicians should be aware of this association and a cautious approach should be undertaken while prescribing DPP-4i in a predisposed individual or those who show clinical features suggestive of IBD.
Joint involvement. Moreover, in the absence of further study, clinical utility of measuring stromal derived factor-1α remains inconclusive at present.

Another study demonstrated a 3.77 times increased risk of arthralgia/arthritis among DPP-4i users, and interestingly different inflammatory markers were negative in a significant number (66%, n = 27/41) of such patients[104]. On the contrary, few studies negated the finding of an association between DPP-4i use and severe joint disease[105,106]. A meta-analysis including a total of 67 RCTs (79110 patients) showed that DPP-4is were associated with a small but statistically significant increased risk of arthralgia (RR: 1.13, 95% CI: 1.04-1.22; P = 0.003)[107]. However, the risk of development of serious arthralgia was not significant (RR: 1.44, 95% CI: 0.83-2.51; P = 0.20). Also, subgroup analyses disclosed that add-on or combination therapy and diabetes duration (> 5 years) were possible predictive factors associated with the increased risk of overall arthralgia[107]. Thus, it remains to be proven that DPP-4i induced joint involvement is truly an autoimmune phenomenon, but clinicians should be alert to this association. Importantly, thorough investigation is required to rule out specific AD when drug discontinuation does not result in relief of joint symptoms.

RA

The relationship between DPP-4i and RA is complex. In recent times, multiple population-based cohort studies evaluated the onset of RA in DPP-4i users. The United States of America health claim data from 2005 to 2012 showed that DPP-4i was associated with a 34% decreased risk of RA (HR = 0.66, 95% CI: 0.44-0.99) compared with other oral antidiabetic drugs (sulfonylureas and thiazolidinediones)[39]. This was similar to the study findings by Seong et al[40], who also showed a 33% decreased risk of RA (HR = 0.67; 95% CI: 0.49-0.92)[40]. In contrast, a recent large United Kingdom population-based study by Douros et al[108] who specifically looked for the association of DPP-4i use and the new development of RA found that DPP-4i use was not associated with a risk of incident RA compared with the use of other antidiabetic drugs (HR 1.0, 95% CI: 0.8-1.3). These findings were consistent irrespective of the duration of drug use or the types of DPP-4i[108]. Kathe et al[109] also reported a similar finding in their study. Indeed, a recent meta-analysis revealed a hazard ratio of 0.72 (95% CI: 0.54-0.96) for the development of RA in DPP-4i users[110]. However, this analysis had a limitation in the form of very high heterogeneity (I² = 75%).

On the other hand, there are few case reports of flaring of RA in remitted patients with DPP-4i use. Sasaki et al[111] had reported relapse of RA in a patient using sitagliptin in 2010[111]. Yokota and Igaki[112] also reported the onset of RA with sitagliptin use in an HLA predisposed (HLA-DRB1 allele) individual[112]. In a recent report, Padron et al[113] reported sitagliptin induced sero-negative RA in a 56-year-old patient with a long duration of diabetes. Hence, caution should be exercised while prescribing DPP-4i to a person with a history of prior RA or at risk of RA.

CONCLUSION

In summary, the relationship between DPP-4i use and the development of AD is complex and evolving. While recent studies have suggested that DPP-4i use may be associated with decreases in the incidence of composite AD, they can also result in the development of certain AD. BP is one AD that can be induced by DPP-4i, particularly in the elderly population. The increment in IBD risk is modest, but evidence is mixed and requires further studies to confirm this finding. DPP-4i can increase the risk of nonspecific arthritis and arthralgia along with flaring up of RA. However, data regarding this finding needs further validation. The association with other AD is mostly uncertain due to lack of evidence, but an astute clinician should be alert to any such events in a patient receiving DPP-4i. Future studies, particularly long-term follow-up studies, should clarify the relationship between AD and DPP-4i use. More basic research is also needed to find the exact underlying pathogenesis behind this association.

REFERENCES

1. American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021; 44: S111-S124 [PMID: 33298420 DOI: 10.2337/dc21-S009]
2. Deacon CF, Lebovitz HE. Comparative review of dipeptidyl peptidase-4 inhibitors and
DPP-4 inhibitor and autoimmune diseases

1436 September 15, 2021 | Volume 12 | Issue 9
the dipeptidyl peptidase-4 and stromal cell-derived factor-1 in stem cell homing and myocardial repair: Potential impact of dipeptidyl peptidase-4 inhibitors. *Pharmacol Ther* 2016; **167**: 100-107 [PMID: 27484974 DOI: 10.1016/j.pharmthera.2016.07.009]

24 Takashima S, Fujita H, Fujishima H, Shimizu T, Sato T, Morii T, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, Seino Y, Yamada Y. Stromal cell-derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy. *Kidney Int* 2016; **90**: 783-796 [PMID: 27475229 DOI: 10.1016/j.kint.2016.06.012]

25 Chiavza F, Tannen H, Pintana H, Lietzau G, Collino M, Nystrom T, Klein T, Darsalia V, Patrone C. The effect of DPP-4 inhibition to improve functional outcome after stroke is mediated by the SDF-1α/CXCR4 pathway. *Cardiovasc Diabetol* 2018; **17**: 60 [PMID: 29776406 DOI: 10.1186/s12933-018-0702-3]

26 Aso Y, Kase M, Sagara M, Sakurai S, Iijima T, Tomaru T, Jojima T, Usui I. Teneligliptin, a DPP-4 Inhibitor, Decreases Plasma Levels of Inflammatory Chemokines During a Standard Meal Test in Patients With Type 2 Diabetes. *Am J Med Sci* 2020; **360**: 261-267 [PMID: 32540146 DOI: 10.1093/ndt/gfy397]

27 Elmansi AM, Awad ME, Eisa NH, Kondrikov D, Hussein KA, Aguilar-Perez A, Herberg S, Periyasamy-Thandavan S, Fulzele S, Hamrick MW, McGee-Lawrence ME, Isales CM, Volkman BF, Hill WD. What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands. *Pharmacol Ther* 2019; **198**: 90-108 [PMID: 30759373 DOI: 10.1016/j.pharmthera.2019.02.005]

28 Reinhold D, Biton A, Goihl A, Pieper S, Lendeckel U, Faust J, Neubert K, Bank U, Täger M, Ansorge S, Brocke S. Dual inhibition of dipeptidyl peptidase IV and aminopeptidase N suppresses inflammatory immune responses. *Ann N Y Acad Sci* 2007; **1110**: 402-409 [PMID: 17911455 DOI: 10.1196/annals.1423.042]

29 Pinheiro MM, Stoppa CL, Valduga CJ, Okuyama CE, Gorgão R, Pereira RM, Diniz SN. Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro. *Eur J Pharm Sci* 2017; **100**: 17-24 [PMID: 28065853 DOI: 10.1016/j.ejps.2016.12.040]

30 Zhuge F, Ni Y, Nagashimada M, Nagata N, Xu L, Mukaida N, Kaneko S, Ota T. DPP-4 Inhibition by Linagliptin Attenuates Obesity-Related Inflammation and Insulin Resistance by Regulating M1/M2 Macrophage Polarization. *Diabetes* 2016; **65**: 2966-2979 [PMID: 27445264 DOI: 10.2337/db16-0317]

31 Zheng W, Zhou J, Song S, Kong W, Xia W, Chen L, Zeng T. Dipeptidyl-Peptidase 4 Inhibitor Sitagliptin Ameliorates Hepatic Insulin Resistance by Modulating Inflammation and Autophagy in ob/ob Mice. *Int J Endocrinol* 2018; **2018**: 8309723 [PMID: 30123267 DOI: 1155/2018/8309723]

32 Aso Y, Kase M, Sagara M, Sakurai S, Iijima T, Tomaru T, Jojima T, Usui I. Teneligliptin, a DPP-4 Inhibitor, Decreases Plasma Levels of Inflammatory Chemokines During a Standard Meal Test in Patients With Type 2 Diabetes. *Am J Med Sci* 2020; **360**: 261-267 [PMID: 32540146 DOI: 10.1093/ndt/gfy397]

33 Kodera R, Shikata K, Takatsuka T, Oda K, Miyamoto S, Kajitani N, Hirota D, Ono T, Usui HK, Makino H. Dipeptidyl-peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. *Biochem Biophys Res Commun* 2014; **443**: 828-833 [PMID: 24342619 DOI: 10.1016/j.bbrc.2013.12.040]

34 Iwakura T, Zhao Z, Marschner JA, Devarapu SK, Yasuda H, Anders HJ. Dipeptidyl-peptidase-4 inhibitor teneligliptin accelerates recovery from cisplatin-induced acute kidney injury by attenuating inflammation and promoting tubular regeneration. *Nephrol Dial Transplant* 2019; **34**: 1669-1680 [PMID: 30626740 DOI: 10.1093/ndt/gfy397]

35 Reinhold D, Bank U, Täger M, Ansorge S, Wrenger S, Lundeckel U, Faust J, Neubert K, Bank U, Täger M, Ansorge S, Brocke S. Dipeptidyl peptidase-4 inhibtion and has protective roles in progressive diabetic nephropathy. *Kidney Int* 2016; **90**: 783-796 [PMID: 27475229 DOI: 10.1016/j.kint.2016.06.012]

36 Krudin K, Amber K, Khamaisi M, Comaneshter D, Batat E, Cohen AD. Is there an association between dipeptidyl peptidase-4 inhibitors and autoimmunity? *Immunol Res* 2018; **66**: 425-430 [PMID: 29855994 DOI: 10.1007/s12026-018-9005-8]

37 Noguchi Y, Toda Y, Esaki H, Matsuyama T, Tachi T, Tsuchiya T, Teramachi H. Association between dipeptidyl peptidase-4 inhibitors and autoimmune disorders: Data mining of the spontaneous reporting system in Japan. *Pharmazie* 2019; **74**: 305-309 [PMID: 31109402 DOI: 10.1691/ph.2019.8972]

38 Chen YC, Chen TH, Sun CC, Chen JY, Chang SS, Yeung L, Tsai YW. Dipeptidyl-peptidase-4 inhibitors and the risks of autoimmune diseases in type 2 diabetes mellitus patients in Taiwan: a nationwide population-based cohort study. *Acta Diabetol* 2020; **57**: 1181-1192 [PMID: 32318876 DOI: 10.1007/s00592-020-01533-5]

39 Kim SC, Schneeweiss S, Glynn RJ, Doherty M, Goldfine AB, Solomon DH. Dipeptidyl-peptidase-4 inhibitors in type 2 diabetes may reduce the risk of autoimmune diseases: a population-based cohort study. *Ann Rheum Dis* 2015; **74**: 1968-1975 [PMID: 24919467 DOI: 10.1136/annrheumdis-2014-205216]

40 Seong JM, Yee J, Gwak HS. Dipeptidyl peptidase-4 inhibitors lower the risk of autoimmune disease in patients with type 2 diabetes mellitus: A nationwide population-based cohort study. *Br J Clin
Roy A et al. DPP-4 inhibitor and autoimmune diseases

Pharmacol 2019; 85: 1719-1727 [PMID: 30964554 DOI: 10.1111/bcp.13955]

41 Okauci Y, Tomoda Y, Takata M, Deguchi A, Takenoshita Y, Yokomi A, Mineo I. Pemphigus vulgaris developing after 6-month treatment with a dipeptidyl peptidase-4 inhibitor: A case report. J Dermatol 2018; 45: e39-e40 [PMID: 28971524 DOI: 10.1111/1346-8158.14076]

42 Langan SM, Smooth L, Hubbard R, Fleming KM, Smith CJ, West J. Bullous pemphigoid and pemphigus vulgaris—incidence and mortality in the UK: population based cohort study. BMJ 2008; 337: a180 [PMID: 18614511 DOI: 10.1136/bmj.a180]

43 Pasmaz E, Monastirli A, Habeos J, Georgiou S, Tsambaos D. Dipeptidyl peptidase-4 inhibitors cause bullous pemphigoid in diabetic patients: report of two cases. Diabetes Care 2011; 34: e133 [PMID: 21788636 DOI: 10.2337/dc11-0804]

44 Skandalis K, Spirova M, Gaitanis G, Tsartarasakis A, Bassukas ID. Drug-induced bullous pemphigoid in diabetes mellitus patients receiving dipeptidyl peptidase-IV inhibitors plus metformin. J Eur Acad Dermatol Venereol 2012; 26: 249-253 [PMID: 21466592 DOI: 10.1111/j.1460-2592.2011.04062.x]

45 Aouidad I, Fite C, Marinho E, Deschamps L, Cricix B, Descamps V. A case report of bullous pemphigoid induced by dipeptidyl peptidase-4 inhibitors. JAMA Dermatol 2013; 149: 243-245 [PMID: 23426497 DOI: 10.1001/jamadermatol.2013.1073]

46 Yoshii S, Murakami T, Harashima SI, Ko R, Kashima R, Yabe D, Ogura M, Doi K, Iagaki N. Bullous pemphigoid associated with dipeptidyl peptidase-4 inhibitors: A report of five cases. J Diabetes Invest 2018; 9: 445-447 [PMID: 28520234 DOI: 10.1111/jdi.12695]

47 Béne J, Jacobsoone A, Coupe P, Auffret M, Babai S, Hillaire-Buys D, Jean-Pastor MJ, Vonarx M, Vermersch A, Tranquoy AF, Gautier S. Bullous pemphigoid induced by vildagliptin: a report of three cases. Fundam Clin Pharmacol 2015; 29: 112-114 [PMID: 24681252 DOI: 10.1111/fcp.12083]

48 García-Díez I, Ivars-Lleó M, López-Aventín D, Ishii N, Hashimoto T, Iranzo P, Pujo RM, España A, Herrero-González JE. Bullous pemphigoid induced by dipeptidyl peptidase-4 inhibitors. Eight cases with clinical and immunological characterization. Int J Dermatol 2018; 57: 810-816 [PMID: 29682739 DOI: 10.1111/ijd.14005]

49 Araú J, Shirakawa J, Konishi H, Sagawa N, Terauchi Y. Bullous Pemphigoid and Dipeptidyl Peptidase 4 Inhibitors: A Disproportionality Analysis Based on the Japanese Adverse Drug Event Report Database. Diabetes Care 2018; 41: e130-e132 [PMID: 30002201 DOI: 10.2337/db18-0210]

50 Plaquevent M, Tétart F, Fardet L, Ingen-Housz-Oro S, Valeyré-Allanore L, Bernard P, Hebert V, Roussel A, Avenel-Audran M, Chabry G, D'Incan M, Ferrier-Le-Bouedec MC, Duvert-Lehembre S, Picard-Dahan C, Jaudy G, Collet E, Labelle B, Morice C, Richard MA, Bourgault-Villada I, Litrowski N, Bara C, Mahé E, Prost-Squarcioni C, Alexandre M, Quereux G, Bernier C, Arai M, Chaby G, D'Incan M, Ferrier-Le-Bouedec MC, Duvert-Lehembre S, Picard-Dahan C, Jaudy G, Collet E, Labelle B, Morice C, Richard MA, Bourgault-Villada I, Litrowski N, Bara C, Mahé E, Prost-Squarcioni C, Alexandre M, Quereux G, Bernier C, Asia A, Thomas-Beaulieu D, Pauwels C, Dereure O, Benichou J, Joly P; French Investigators for Skin Adverse Reaction to Drugs; French Study Group on Autoimmune Bullous Skin Diseases. Higher Frequency of Dipeptidyl Peptidase-4 Inhibitor Intake in Bullous Pemphigoid Patients than in the French General Population. J Invest Dermatol 2019; 139: 835-841 [PMID: 30543900 DOI: 10.1111/jid.15045]

51 Schaffer C, Buclin T, Jornayvaz FR, Cazzaniga S, Borradori L, Gilliet M, Feldmeyer L. Use of Dipeptidyl-Peptidase IV Inhibitors and Bullous Pemphigoid. Dermatology 2017; 233: 401-403 [PMID: 29040970 DOI: 10.1159/000480498]

52 Kawaguchi Y, Shinmauchi R, Nishibori N, Kawashima K, Oshitani S, Fujita A, Shibata T, Ohashi N, Izumi K, Nishie W, Shinmizu H, Arima H, Sobajima H. Dipeptidyl peptidase-4 inhibitors-associated bullous pemphigoid: A retrospective study of 168 pemphigoid and 9,304 diabetes mellitus patients. J Diabetes Invest 2019; 10: 392-398 [PMID: 29920976 DOI: 10.1111/jdi.12877]

53 Guo JY, Chen HH, Yang YC, Wu PY, Chang MP, Chen CC. The association of dipeptidyl peptidase IV inhibitors and other risk factors with bullous pemphigoid in patients with type 2 diabetes mellitus: A retrospective cohort study. J Diabetes Complications 2020; 34: 107515 [PMID: 31932172 DOI: 10.1016/j.jdiacomp.2019.107515]

54 Bukvić Mokos Z, Petković M, Balic A, Marinovic B. The association between clinical and laboratory findings of bullous pemphigoid and dipeptidyl peptidase-4 inhibitors in the elderly: a retrospective study. Croat Med J 2020; 61: 93-99 [PMID: 32578375]

55 Reolid A, Muñoz-Aceituno E, Rodríguez-Jiménez P, González-Rojano E, Llamas-Velasco M, Fraga J, Daudén E. Bullous pemphigoid associated with dipeptidyl peptidase-4 inhibitors. A case series and analysis of cases reported in the Spanish pharmacovigilance database. Int J Dermatol 2020; 59: 197-206 [PMID: 31605541 DOI: 10.1111/ijd.14658]

56 García M, Aranburu MA, Palacios-Zabalza I, Lertxundi U, Aguirre C. Dipeptidyl peptidase-IV inhibitors induced bullous pemphigoid: a case report and analysis of cases reported in the European pharmacovigilance database. J Clin Pharm Ther 2016; 41: 368-370 [PMID: 27191539 DOI: 10.1016/j.clpt.12397]

57 Lee SG, Lee HJ, Yoon MS, Kim DH. Association of Dipeptidyl Peptidase 4 Inhibitor Use With Risk of Bullous Pemphigoid in Patients With Diabetes. JAMA Dermatol 2019; 155: 172-177 [PMID: 30624566 DOI: 10.1001/jamadermatol.2018.4556]

58 Carnovale C, Mazhar F, Arzenton E, Moretti U, Pozzi M, Mosini G, Leoni O, Scatigna M, Clementi E, Radice S. Bullous pemphigoid induced by dipeptidyl peptidase-4 (DPP-4) inhibitors: a pharmacovigilance-pharmacodynamic/pharmacokinetic assessment through an analysis of the vigibase®. Expert Opin Drug Saf 2019; 18: 1099-1108 [PMID: 31519110 DOI: 10.1080/13596446.2019.1612464]
DPP-4 inhibitor and autoimmune diseases

59 Béné J, Moulis G, Bennani I, Auffret M, Coupe P, Babai S, Hillaire-Buys D, Micallef J, Gautier S; French Association of Regional Pharmacovigilance Centres. Bullous pemphigoid and dipeptidyl peptidase IV inhibitors: a case-noncase study in the French Pharmacovigilance Database. Br J Dermatol 2016; 175: 296-301 [PMID: 27031194 DOi: 10.1111/bjd.14601]

60 Varpulouoma O, Förstl AK, Jokelainen J, Turpeinen M, Timonen M, Huilaja L, Tasanen K. Vildagliptin Significantly Increases the Risk of Bullous Pemphigoid: A Finnish Nationwide Registry Study. J Invest Dermatol 2018; 138: 1659-1661 [PMID: 29427585 DOi: 10.1016/j.jid.2018.01.027]

61 Hung CT, Liu JS, Cheng CY, Chung CH, Chiang CP, Chien WC, Wang WM. Increased risk of bullous pemphigoid in dipeptidyl peptidase 4 inhibitors: A nationwide, population-based, cohort study in Taiwan. J Dermatol 2020; 47: 245-250 [PMID: 31885117 DOi: 10.1111/1346-8138.15195]

62 Montastruc JL, Sommet A, Bagheri H, Lapeyre-Mestre M. Benefits and strengths of the disproportionality analysis for identification of adverse drug reactions in a pharmacovigilance database. Br J Clin Pharmacol 2011; 72: 905-908 [PMID: 21658092 DOi: 10.1111/j.1365-2125.2011.04037.x]

63 Silveri GA, Dicembrini I, Nireu B, Montereggi C, Mannucci E, Monani M. Bullous pemphigoid and dipeptidyl peptidase-4 inhibitors: a meta-analysis of randomized controlled trials. Endocrine 2020; 69: 504-507 [PMID: 32236820 DOi: 10.1007/s12020-020-02272-x]

64 Phan K, Charlton O, Smith SD. Dipeptidyl peptidase-4 inhibitors and bullous pemphigoid: A systematic review and adjusted meta-analysis. Australas J Dermatol 2020; 61: e15-e21 [PMID: 31215644 DOi: 10.1111/ajd.13100]

65 Nishiyama C, Tateishi C, Hashimoto T, Nishida M, Imanishi A, Shiratori T, Maekawa N, Tsuruta D, Fukai K. Exacerbation of well-controlled bullous pemphigoid by the administration of a dipeptidyl peptidase-4 inhibitor. Clin Exp Dermatol 2019; 44: 830-832 [PMID: 30859617 DOi: 10.1111/ced.13962]

66 Fania L, Di Zenzo G, Didona B, Pilla MA, Sobrino L, Panebianco A, Mazzanti C, Abeni D. Increased prevalence of diabetes mellitus in bullous pemphigoid patients during the last decade. J Eur Acad Dermatol Venereol 2018; 32: e153-e154 [PMID: 29055144 DOi: 10.1111/1649-4492]

67 Stoian AP, Sachinidis A, Stoica RA, Nikolic D, Patti AM, Rizvi AA. The efficacy and safety of dipeptidyl peptidase-4 inhibitors compared to other oral glucose-lowering medications in the treatment of type 2 diabetes. Metabolism 2020; 109: 154295 [PMID: 32553739 DOi: 10.1016/j.metabol.2020.154295]

68 Benzaquen M, Borradori L, Berbis P, Cazzaniga S, Valero R, Richard MA, Feldmeyer L. Dipeptidyl peptidase IV inhibitors, a risk factor for bullous pemphigoid: Retrospective multicenter case-control study from France and Switzerland. J Am Acad Dermatol 2018; 78: 1090-1096 [PMID: 29274548 DOi: 10.1016/j.jaad.2017.12.038]

69 Carnovale C, Tommetti E, Battini V, Mazhar F, Radice S, Nivuori M, Negro E, Tamanini S, Brucato A. Inflammamsones Targeted Therapy in Pregnancy: New Insights From an Analysis of Real-World Data From the FAERS Database and a Systematic Review. Front Pharmacol 2020; 11: 612259 [PMID: 33551814 DOi: 10.3389/fphar.2020.612259]

70 Molina-Guarneros JA, Sainz-Gil M, Sanz-Fadrique R, Garcia P, Rodriguez-Jimenez P, Navarro-Garcia E, Martin LH. Bullous pemphigoid associated with the use of dipeptidyl peptidase-4 inhibitors: analysis from studies based on pharmacovigilance databases. Int J Clin Pharm 2020; 42: 713-720 [PMID: 32140915 DOi: 10.1007/s11096-020-01003-6]

71 Kridin K, Bergman R. Association of Bullous Pemphigoid With Dipeptidyl-Peptidase 4 Inhibitors in Patients With Diabetes: Estimating the Risk of the New Agents and Characterizing the Patients. JAMA Dermatol 2018; 154: 1152-1158 [PMID: 30090931 DOi: 10.1001/jamadermatol.2018.2352]

72 Murakami T, Yabe D, Inagaki N. Bullous pemphigoid with dipeptidyl peptidase-4 inhibitors: Clinical features and pathophysiology. J Diabetes Investig 2019; 10: 1168-1170 [PMID: 30989811 DOi: 10.1111/odi.13060]

73 Ujije H, Muramatsu K, Mushiroda T, Ozeki T, Miyoshi H, Iwata H, Nakamura A, Nomoto H, Cho KY, Sato N, Nishimura M, Ito T, Izumi K, Nishie W, Shimizu H. HLA-DQB1*04:01 as a Biomarker for Genetic Susceptibility to Bullous Pemphigoid Induced by DPP-4 Inhibitors. J Invest Dermatol 2018; 138: 1201-1204 [PMID: 29203362 DOi: 10.1016/j.jid.2017.11.023]

74 Lindgren O, Varpulouoma O, Tuusa J, Ilonen J, Huilaja L, Kokkonen N, Tasanen K. Glipitin-associated Bullous Pemphigoid and the Expression of Dipeptidyl Peptidase-4/CD26 in Bullous Pemphigoid. Acta Derm Venereol 2019; 99: 602-609 [PMID: 30848289 DOi: 10.2340/00015555-3161]

75 Mai Y, Nishie W, Sato K, Hotta M, Izumi K, Ito K, Hosokawa K, Shimizu H. Bullous Pemphigoid Triggered by Thermal Burn Under Medication With a Dipeptidyl Peptidase-IV Inhibitor: A Case Report and Review of the Literature. Front Immunol 2018; 9: 542 [PMID: 29706950 DOi: 10.3389/fimmu.2018.00542]

76 Usami J, Takezawa Y. DPP-4 Inhibitor-associated Bullous Pemphigoid in a Hemodialysis Patient. Intern Med 2020; 59: 593 [PMID: 31615259 DOi: 10.2169/internalmedicine.3461-19]

77 Sánchez López-Muelas B, Muray Cases S, Illán Gómez F, García Guzmán G, Arjonilla Sampredo ME. Bullous pemphigoid associated with linagliptin treatment in diabetic patients with chronic kidney disease. Endocrinol Diabetes Nutr (Engl Ed) 2019; 66: 338-339 [PMID: 30630688 DOi: 10.1016/j.endnu.2018.11.003]

78 Mai Y, Nishie W, Izumi K, Shimizu H. Preferential Reactivity of Dipeptidyl Peptidase-IV Inhibitor-
WJD https://www.wjgnet.com September 15, 2021 Volume 12 Issue 9

Roy A et al. DPP-4 inhibitor and autoimmune diseases

Associated Bullous Pemphigoid Autoantibodies to the Processed Extracellular Domains of BP180. *Front Immunol* 2019; 10: 1224 [PMID: 31191560 DOI: 10.3389/fimmu.2019.01224]

Thewittcharoen Y, Wanothayaroj E, Thammaniwat C, Porramatkul S, Vorayongyong C, Nakasatien S, Krittiyawong S, Chanpraphap K, Himathongkam T. Clinical Features and Outcomes of Dipeptidyl Peptidase-4 Inhibitor-Associated Bullous Pemphigoid (DPP4i-Associated BP) in Thai Patients. *Case Rep Endocrinol* 2020; 2020: 8832643 [PMID: 33101737 DOI: 10.1155/2020/8832643]

Douros A, Rouette I, Yin H, Yu OHY, Flibon KB, Azoulay L. Dipeptidyl Peptidase 4 Inhibitors and the Risk of Bullous Pemphigoid Among Patients With Type 2 Diabetes. *Diabetes Care* 2019; 42: 1496-1503 [PMID: 31182489 DOI: 10.2337/dc19-0409]

Tasanek K, Varpulouma O, Nishie W. Dipeptidyl Peptidase-4 Inhibitor-Associated Bullous Pemphigoid. *Front Immunol* 2019; 10: 1238 [PMID: 32175298 DOI: 10.3389/fimmu.2019.01238]

Nishie W. Dipeptidyl peptidase IV inhibitor-associated bullous pemphigoid: a recently recognized autoimmune blistering disease with unique clinical, immunological and genetic characteristics. *Immunol Med* 2019; 42: 22-28 [PMID: 31169082 DOI: 10.1080/25785286.2019.1619233]

Izumi K, Nishie W, Mai Y, Wada M, Natsuka K, Ujiie H, Iwata H, Yamagami J, Shimizu H. Autoantibody Profile Differentiates between Inflammatory and Noninflammatory Bullous Pemphigoid. *J Invest Dermatol* 2016; 136: 2201-2210 [PMID: 27424319 DOI: 10.1016/j.jid.2016.06.022]

Horikawa H, Kurihara Y, Funakoshi T, Umemaki-Arao N, Takahashi H, Kubo A, Tanikawa A, Kodani N, Minami Y, Meguro S, Itoh H, Izumi K, Nishie W, Shimizu H, Amagai M, Yamagami J. Unique clinical and serological features of bullous pemphigoid associated with dipeptidyl peptidase-4 inhibitors. *Br J Dermatol* 2018; 178: 1462-1463 [PMID: 29476243 DOI: 10.1111/bjd.16479]

Kridin K. Dipeptidyl-peptidase iv inhibitors (DPP4i)-associated bullous pemphigoid: Estimating the clinical profile and exploring intraclass differences. *Dermatol Ther* 2020; 33: e13790 [PMID: 32506731 DOI: 10.1111/dth.13790]

Gaudin O, Seta V, Alexandre M, Bohelay G, Aucoiturier F, Mignot-Grootenboer S, Ingen-Housz-Oro S, Bernardeschi C, Schneider P, Mellotte B, Caux F, Prost-Squarcioni C. Gliptin Accountability in Mucous Membrane Pemphigoid Induction in 24 Out of 313 Patients. *Front Immunol* 2018; 9: 1030 [PMID: 29881377 DOI: 10.3389/fimmu.2018.01030]

Patsatsi A, Kyriakou A, Meltzaniou P, Trigoni A, Lamprou F, Kokolios M, Giannakou A. Bullous pemphigoid in patients with DPP-4 inhibitors at the onset of disease: does this differ from common bullous pemphigoid? *Eur J Dermatol* 2018; 28: 711-713 [PMID: 30325322 DOI: 10.1684/edj.2018.3371]

Chijiwa C, Takeoka S, Kamata M, Tateishi M, Fukaya S, Hayashi K, Fukuyasu A, Tanaka T, Ishikawa T, Omishi T, Watanabe S, Tada Y. Decrease in eosinophils infiltrating into the skin of patients with dipeptidyl peptidase-4 inhibitor-related bullous pemphigoid. *J Dermatol* 2018; 45: 596-599 [PMID: 29411416 DOI: 10.1111/1346-8138.14245]

Bellinato F, Maurelli M, Schena D, Gisondi P, Girolomoni G. Clinical and immunological profile of patients with dipeptidyl peptidase-4 inhibitor-associated bullous pemphigoid. *G Ital Dermatol Venereol* 2020 [PMID: 32543941 DOI: 10.23736/S0392-0488.20.06562-1]

Schmidt E, Zillikens D. Pemphigoid diseases. *Lancet* 2013; 381: 320-332 [PMID: 23237497 DOI: 10.1016/S0140-6736(12)61140-4]

Fania L, Salemmne A, Provini A, Pagnanelli G, Collina MC, Abeni D, Didona B, Di Zenzio G, Mazzanti C. Detection and characterization of IgG, IgE, and IgA autoantibodies in patients with bullous pemphigoid associated with dipeptidyl peptidase-4 inhibitors. *J Am Acad Dermatol* 2018; 78: 592-595 [PMID: 28987492 DOI: 10.1016/j.jaad.2017.09.051]

Bank U, Heimbarg A, Helmhut M, Stefin S, Lendeckel U, Reinhold D, Faust J, Fuchs P, Sens B, Neubert K, Täger M, Ansorge S. Triggering endogenous immunosuppressive mechanisms by combined targeting of Dipeptidyl peptide IV (DPIV/CD26) and Aminopeptidase N (APN/CD13)-α novel approach for the treatment of inflammatory bowel disease. *Int Immunopharmacol* 2006; 6: 1925-1923 [PMID: 17161345 DOI: 10.1016/j.intimp.2006.09.014]

Melo FJ, Pinto-Lopes P, Estevinho MM, Magro F. The Role of Dipeptidyl Peptidase 4 as a Therapeutic Target and Serum Biomarker in Inflammatory Bowel Disease: A Systematic Review. *Inflamm Bowel Dis* 2021; 27: 1153-1165 [PMID: 32395607 DOI: 10.1093/ibd/izu324]

Moran GW, ONeill C, Padfield P, McLoughlin JT. Dipeptidyl peptidase-4 expression is reduced in Crohns disease. *Regul Pept* 2012; 177: 40-45 [PMID: 22561447 DOI: 10.1016/j.regpep.2012.04.006]

Pinto-Lopes P, Afonso J, Pinto-Lopes R, Rocha C, Lago P, Gonçalves R, Tavares De Sousa H, Macedo G, Camila Dias C, Magro F. Serum Dipeptidyl Peptidase 4: A Predictor of Disease Activity and Prognosis in Inflammatory Bowel Disease. *Inflamm Bowel Dis* 2020; 26: 1707-1719 [PMID: 31912883 DOI: 10.1093/ibd/izz319]

Zatorski H, Salaga M, Fichna J. Role of glucagon-like peptides in inflammatory bowel diseases: current knowledge and future perspectives. *Naunyn Schmiedebergs Arch Pharmacol* 2019; 392: 1321-1330 [PMID: 31359088 DOI: 10.1007/s00210-019-01698-z]

Abrahami D, Douros A, Yin H, Yu OHY, Renoux C, Bitton A, Azoulay L. Dipeptidyl peptidase 4 inhibitors and incidence of inflammatory bowel disease among patients with type 2 diabetes: population based cohort study. *BMJ* 2018; 360: k8872 [PMID: 29563098 DOI: 10.1136/bmj.k8872]

Wang T, Lu W, Li D, Tang H, Yang JY, Buse JB, Stürmer T. Assessing the Association Between
Dipeptidyl Peptidase 4 Inhibitor Use and Inflammatory Bowel Disease Through Drug Adverse Event Reporting. Diabetes Care 2019; 42: e89-e91 [PMID: 31110120 DOI: 10.2337/dc18-1609]

Radel JA, Pender DN, Shah SA. Dipeptidyl Peptidase-4 Inhibitors and Inflammatory Bowel Disease Risk: A Meta-analysis. Ann Pharmacother 2019; 53: 697-704 [PMID: 30700106 DOI: 10.1177/1060022819827852]

Li G, Crowley MJ, Tang H, Yang JY, Sandler RS, Wang T. Dipeptidyl Peptidase 4 Inhibitors and Risk of Inflammatory Bowel Disease Among Patients With Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials. Diabetes Care 2019; 42: e119-e121 [PMID: 31221707 DOI: 10.2337/dc18-1578]

Wang T, Yang JY, Buse JB, Pate V, Tang H, Barnes EL, Sandler RS, Stürmer T. Dipeptidyl Peptidase 4 Inhibitors and Risk of Inflammatory Bowel Disease: Real-world Evidence in U.S. Adults. Diabetes Care 2019; 42: 2065-2074 [PMID: 31471377 DOI: 10.2337/dc19-0162]

Mascolo A, Rafaniello C, Sportiello L, Sessa M, Cimmaruta D, Rossi F, Capuano A. Dipeptidyl Peptidase (DPP)-4 Inhibitor-Induced Arthritis/Arthralgia: A Review of Clinical Cases. Drug Saf 2016; 39: 401-407 [PMID: 26873369 DOI: 10.1007/s40264-016-0399-8]

Saito T, Ohnuma K, Suzuki H, Dang NH, Hatano R, Ninomiya H, Morimoto C. Polyarthropathy in type 2 diabetes patients treated with DPP4 inhibitors. Diabetes Res Clin Pract 2013; 102: e8-e12 [PMID: 23957822 DOI: 10.1016/j.diabres.2013.07.010]

Sayiner ZA, Oktar B, Kısıak B, Akarsu A, Özkaýa M, Arzay M. DPP-4 INHIBITORS INCREASE THE INCIDENCE OF ARTHRITIS/ARTHRALGIA BUT DO NOT AFFECT AUTOIMMUNITY. Acta Endocrinol (Buchar) 2018; 14: 473-476 [PMID: 31149299 DOI: 10.4183/aeb.2018.473]

Rai P, Zhao X, Sambamurthi U. The Association of Joint Pain and Dipeptidyl Peptidase-4 Inhibitor Use Among U.S. Adults With Type-2 Diabetes Mellitus. J Pain Palliat Care Pharmacother 2018; 32: 90-97 [PMID: 30676844 DOI: 10.1080/15360288.2018.1546789]

Hou WH, Chang KC, Li CY, Ou HT. Dipeptidyl peptidase-4 inhibitor use is associated with decreased risk of fracture in patients with type 2 diabetes: a population-based cohort study. Br J Clin Pharmacol 2018; 84: 2029-2039 [PMID: 29766544 DOI: 10.1111/bcp.13636]

Men P, He N, Song C, Zhai S. Dipeptidyl peptidase-4 inhibitors and risk of arthralgia: A systematic review and meta-analysis. Diabetes Metab 2017; 43: 493-500 [PMID: 28778563 DOI: 10.1016/j.diabet.2017.05.013]

Dourous A, Abrahani D, Yin H, Yu OHY, Renoux C, Hudson M, Azoulay L. Use of Dipeptidyl Peptidase-4 Inhibitors and New-onset Rheumatoid Arthritis in Patients with Type 2 Diabetes. Epidemiology 2018; 29: 904-912 [PMID: 30028343 DOI: 10.1097/EDE.0000000000000891]

Kathe N, Abdulhamid Z, Radel JA, Crowley MJ, Tang H, Yang JY, Buse JB, Pate V, Tang H, Barnes EL, Sandler RS, Stürmer T. Dipeptidyl Peptidase 4 Inhibitors and Inflammatory Bowel Disease Among Patients With Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials. Diabetes Care 2019; 42: e119-e121 [PMID: 31221707 DOI: 10.2337/dc18-1578]

Charoenngam N, Rittipairoj T, Ponvilawan B, Ungprasert P. Use of dipeptidyl peptidase-4 inhibitors is associated with a lower risk of rheumatoid arthritis in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of cohort studies. Diabetes Metab Syndr 2021; 15: 249-255 [PMID: 33465685 DOI: 10.1016/j.dsx.2020.12.042]

Sasaki T, Hiki Y, Nagumo S, Ikeda R, Kimura H, Yamashiro K, Gojo A, Saito T, Tomita Y, Utsumoniya K. Acute onset of rheumatoid arthritis associated with administration of a dipeptidyl peptidase-4 (DPP-4) inhibitor to patients with diabetes mellitus. Diabetol Int 2010; 90-92 [DOI: 10.1007/s13340-010-0010-y]

Yokota K, Igaki N. Sitagliptin (DPP-4 inhibitor)-induced rheumatoid arthritis in type 2 diabetes mellitus: a case report. Intern Med 2012; 51: 2041-2044 [PMID: 22864134 DOI: 10.2169/internalmedicine.51.7592]

Padron S, Rogers E, Demory Beckler M, Kesselman M. DPP-4 inhibitor (sitagliptin)-induced seronegative rheumatoid arthritis. BMJ Case Rep 2019; 12 [PMID: 31444259 DOI: 10.1136/bcr-2018-228981]
