Development and growth of the foot lumbricalis muscle: a histological study using human fetuses

Authors: Z.-W. Jin, S. Hayashi, K. H. Cho, G. Murakami, J. Wilting, J. F. Rodríguez-Vázquez

DOI: 10.5603/FM.a2020.0108

Article type: ORIGINAL ARTICLES

Submitted: 2020-07-09
Accepted: 2020-08-12
Published online: 2020-09-02

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
Development and growth of the foot lumbricalis muscle: a histological study using human fetuses

Running head: Fetal foot lumbricalis muscle

Z.-W. Jin1, S. Hayashi2, K.H. Cho3, G. Murakami4, Jörg Wilting5, Jose Francisco Rodriguez-Vázquez6

1Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China

2Department of Anatomy, Division of Basic Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan

3Department of Neurology, Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, Iksan, Republic of Korea

4Division of Internal Medicine, Cupid Clinic, Iwamizawa, Japan

5Department of Anatomy, School of Medicine, Georg-August-Universität Göttingen, Germany

6Department of Anatomy and Embryology, School of Medicine, Complutense University, Madrid, Spain

Address for correspondence: Shogo Hayashi, MD, PhD, Department of Anatomy, Division of Basic Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan, tel: +81-463-93-1121, fax: +81-463-93-1517, e-mail: sho5-884@umin.ac.jp
Abstract

Our group has shown early development of the hand lumbricalis and hypothesized that, at midterm, the lumbricalis (LU) bundles flexor tendons to provide a configuration of “one tendon per one finger” (Folia Morphologica 2012; 71:154). However, the study concentrated on the hand and contained no sections of near-term fetuses. The present examination of paraffin-embedded tangential sections along the planta from 25 embryos and fetuses at 6-40 weeks (15-320 mm crown-rump length or CRL) demonstrated that, at 8 weeks, the initial foot LU appeared in the proximal side of the common tendinous plate of all five deep tendons. After midterm, a drastic three phase change occurred at the muscle origin: 1) the LU originated from each of the flexor digitorum longus tendon (FDLT), but abundant tenocyte candidates separated the muscle fiber from the tendon collagen bundle; 2) the LU arose from the covering fascia depending on increased thickness of the muscle; and 3) the LU muscle fibers intermingled with tendon collagen bundles and partly surrounded the tendon. Simultaneously, a dividing site of the FDLT migrated distally to accelerate the changes at the LU origin. These phases did not always correspond to the size of fetus after 30 weeks. Consequently, in contrast to the hand LU, the delayed changes in the foot were characterized by involvement of the LU origin into a single common part of the FDLT. The quadratus plantae muscle fibers did not attach to the LU at any phase, and connected with the fourth and fifth toe tendons.

Key words: flexor digitorum longus muscle, flexor hallucis longus muscle, quadratus plantae muscle

INTRODUCTION

The lumbricalis (LU) in the foot seems to be considered a small muscle of
which function is limited because minute control is unnecessary at the phalangeal joints of the toe and because the muscle often shows variations, including absence [17, 18]. Indeed, previous studies of finger tendons did not consider LU attachment [3, 8]. However, Cho et al. paid special attention to early development of the hand LU and hypothesized that, at midterm, the LU rearranges the deep flexor tendons to provide a configuration of “one tendon per one finger” [6]. This hypothetical contribution of the LU onto tendon splitting from the common tendinous plate seems to be consistent with the fact that, in adults, crisscrossing of the deep tendon fibers frequently occurs at the LU muscle origin [13]. Although Cho et al. tried to compare between the hand and foot, their study contained few observations of the foot and no demonstration of the near-term morphology [6]. Near-term fetuses were likely to carry morphologies that were the same as or similar to that in children.

Dylevsky reported, in contrast to superficial flexure tendons, that a single common tendon is transiently built by the union of tendons from the flexor digitorum profundus and flexor pollicis longus in human fetus hands [8]. His reported “united tendon” was most likely to correspond to a “common tendinous plate” described by Cho et al [6]. The common tendinous plate is seen much later than the finger separation with apoptosis. People may consider that a splitting of the common plate occurs by mechanical stress from the muscle movements of each finger. Further, the finger movement is likely to accelerate the tendon splitting. Therefore, how and when the common tendinous plate disappears is an interesting viewpoint in the human fetal anatomy. However, independent movement of a single finger (e.g., such as that of a pianist) seems to be unnecessary for the fetus foot. Cho et al. failed to find the plate in the foot at midterm, possibly because almost all of their observations were based on transverse sections [6]. Rather than transverse sections, sectional planes tangential to the
hand palm or foot planta aspect provide a much better understanding of the anatomy of
the LU and flexor tendons.

In contrast to the flexor digitorum profundus tendons in the hand palm, the
flexor digitorum longus tendon (FDLT) is one tendon at the posterior half of the planta
and divides into four tendons at the mid-planta near the metatarsal joints. However,
there seemed to be no information regarding the topographical relation of the LU origin
with the dividing site of the FDLT. We do not know whether the LU plays a role in the
re-arrangement of FDLT at or after division. Likewise, morphology near term is also
interesting because toe movements in utero may accelerate tendon division.
Consequently, using tangential sections, the aim of this study was to clarify the fetal
morphology of the LU muscle origins with special reference to the topographical
relation to the four growing deep tendons.

MATERIALS AND METHODS

The study was performed in accordance with the provisions of the Declaration
of Helsinki 1995 (as revised in 2013). We examined the paraffin-embedded histology of
28 embryos and fetuses at 6-15 weeks of estimated gestational age (crown-rump length;
CRL, 15-118 mm): 7 embryos and early fetuses at 6-8 weeks (CRL 15-31 mm), 6
fetuses at 12-15 weeks (CRL 70-118 mm), and 15 fetuses at 31-40 weeks (CRL 260-320
mm).

Five embryonic specimens belonged to the Blechschmidt collection at the
Medical Museum of Georg-August-Universität Göttingen. Although the sectional plane
was sagittal to the head and trunk, we found five specimens containing a tangentially-cut
foot. Most sections were stained with hematoxylin and eosin (HE), and a small amount
were stained with azan or Masson trichrome. The use of these collection did not require
The other twenty fetuses were a part of the large collection kept at the Department of Anatomy and Embryology, School of Medicine, Universidad Complutense, Madrid; the fetuses were the result of miscarriages and ectopic pregnancies at the Department of Obstetrics of the University. All sections were tangential along the plantar or palmar aspect and they were stained with HE. The use of the Spanish specimens was approved by the Complutense University Ethics Committee (B08/374). From three of the 12 near-term fetuses,

RESULTS

Observations of embryos and early and midterm fetuses

At 6 weeks, the lumbricalis did not yet appear (Fig. 1). Rather than along the superficial side, the flexor digitorum brevis tendon lied between the flexor digitorum longus tendons (FDLT): thus, the superficial and deep tendons appeared to be intercalated (Fig. 1A-C). A single FDLT ran distally along a long course in almost two-thirds of the planta. In the deep and distal side of the muscle belly of the flexor digitorum brevis, the FDLT joined the flexor hallucis longus tendon to provide a common tendinous plate (Fig. 1D-F). The quadratus plantae Inserted to the deep and posterior part of the common plate (Fig. 1G). At 7-8 weeks, however, the flexor digitorum brevis tendon was laid over and along the superficial aspect of the FDLT. The initial LU appeared between the FDLT (Fig. 2). Thus, it was located in the deep side of the superficial tendons. Notably, the common tendinous plate appeared not to attach to the initial lumbricalis, but it extended in a layer deeper than the LU (Fig. 2AB). However, after enlargement of the common tendinous plate, the lumbricalis proximal end appeared to attach to the plate (Fig. 2FG).

We failed to obtain complete tangential sections at midterm, but the sectional
plane was much or less tilted (Fig. 3). Moreover, abortion manipulation might provide abundant red blood cells scattering in and between muscles. A common tendinous plate had already disappeared between the FDLT and flexor hallucis longus tendon. The foot lumbricalis did not originate from the common plate, but from the FDLT itself (Fig. 3D-F).

Observations of near-term fetuses

At the beginning of this study, we were confused regarding the variations in shape, location, and origin of the LU in near term fetuses because multiple stages appeared to be mixed in a single section. After 30 weeks, the LU morphology as well as the growth was different between specimens irrespective of the age or size. Below, we describe the most likely sequence of the morphological changes.

First, the LU muscle origin from the FDLT appeared to be established in the distal side of the dividing site of the tendon (Fig. 4A-F). The muscle fiber did not connect to the tendon collagen bundle; however, there was a narrow interface tissue containing abundant cells presumed tenocytes (Fig. 5A-C). Second, the LU grew to provide a thick muscle belly at the posterior or proximal half and was covered by fascia (Fig. 6A-C). Because of the thick muscle belly, the LU extended superficially, as opposed to at the level of the deep tendons. Thus, in superficial sections, the LU appeared to be surrounded by the flexor digitorum brevis tendons rather than FDLT (Fig. 6A). Third, the proximal end of the LU became intermingled with collagen bundles of deep tendons at and near the dividing site of the FDLT, and they together provided a musculotendinous complex (Figs. 6C and 7). The proximal parts of the LU were divided by tendons into several clusters. Thus, some of the muscle clusters were located in the “proximal or posterior” side of the tendon. Therein, in contrast to the initial origin from
the tendon, the LU distal end controversially appeared to “insert” into the FDLT (Fig.
6D-F). The intermingling and dividing process made parts of the LU surround deep
tendons. Conversely, we rarely found a close relation between the muscle fiber and
tendon (Fig. 7G); it was also rare to find a loose interface tissue between the LU and the
tendon (Fig. 7HI). In accordance with those changes, the dividing site of the FDLT
appeared to migrate distally when compared with the peroneus longus tendon that
transversed the foot medially in the deep side of the FDLT (Fig. 4B vs. Fig. 7B).

In the deep side of the LU, the interosseous contained a thin intramuscular
tendon to provide a bipennatus appearance (Figs 4G and 7C). The quadratus plantae did
not attach to the LU (Figs. 6C and 7C). In contrast to the LU origin from deep tendons,
the nearby muscle origin or insertion was composed of a direct connection between a
collagen fiber bundle and a muscle fiber (Fig. 5DE). At the dividing site of the FDLT,
the laterally-located elements (the fourth and fifth tendons) received the quadratus
plantae, while the medially-located elements (the second and third tendons) tended to
continue posteriorly to a single tendon of the flexor digitorum longus (Fig. 7A-D).

DISCUSSION

The most striking observation in this study seemed to be the great variation in
LU morphologies in near-term fetuses. In contrast to a rather stable morphology in early
and midterm fetuses, at and near the muscle origin near term, we found four evidences:
1) the LU origin was interposed by abundant cells presumed tenocytes; 2) the growing
LU expanding the origin to the covering fascia; 3) the muscle proximal end
intermingling with deep tendons to provide a musculotendinous complex; and 4) several
proximal muscle clusters divided by tendons. These morphologies were not simple
variations, but were most likely sequential changes or growth (phases 1-4 in Fig. 7).
Except for phase 1, the other phases were not described in the hand, possibly because of no observations of near-term specimens [6]. Although a morphometric analysis was not performed, a distal migration of the dividing site of the FDLT was likely and it seemed to accelerate the intermingling (phase-3) and dividing (phase-4) of the proximal part of the LU. The distal migration of the tendon dividing site might be an analogy of the recession of flexor muscle bellies onto the although the direction was reversed between the hand and foot [14]. A mixture of the LU and tendon might be limited between the first and second toes, resulting in a higher incidence (around 10%) of second LU absence in the foot [17, 18].

Cho et al. considered that, based on observations of cross sections from midterm fetuses, the common tendinous plate is absent between the FDLT and flexor hallucis tendon [6]. Actually, present observations also ensure the absence at midterm. However, their tangential sections were very limited in number. The present tangential sections demonstrated the foot common plate in embryos and early fetuses. Therefore, the union of all five tendons was a process common between the hand and foot. After (and independent of) programmed cell death for sculpturing the fingers/toes, the common plate seemed to appear to unite flexure tendons. A tendon to the thumb or first toe is separated from the others until midterm. However, in contrast to the hand, strict correspondence between the LU and deep tendon became lost in the near-term foot. Perhaps, the hand of near-term fetuses might also carry a morphology or variation similar to the foot LU. As shown in the quadratus plantae and interosseous, to maintain the initial muscle morphology throughout prenatal life, a definite connection seemed to be necessary between the muscle fiber and a tendon collagen bundle without an interface tissue. Leijnse considered that, in the hand, tendon splitting occurs due to finger movements in utero [13]. Limited, independent movement of the toes might
make a difference in the LU between the hand and foot, although we do not have ultrasound information of living fetuses.

In the extremities, a muscle belly develops in accordance with its tendon at the same time [4, 7, 15, 20]. Fetal development of the muscle-tendon interface has been one of the leading topics in anatomical research [1, 2, 22]. In contrast to the concept of the definite connection between the muscle and tendon, our group has demonstrated a delayed morphological change at the origin or insertion of human fetus striated muscles at multiple sites [5, 9, 11, 12, 16, 21]. Because an anchoring of striated muscle fiber to a collagen bundle requires a large molecular complex including dystrophin, desmin, nitric oxide synthese, and other proteins, a destruction and rebuilding of the complex seemed to be unlikely in fetal development, especially in the very late stage between 30-40 weeks [10, 19]. Therefore, the aforementioned delayed change in the origin and insertion seemed to occur in the “collagen side” of the enthesis, i.e., the muscle fiber attachment moves from a collagen bundle of the tendon, via that of the fascia to the musculotendinous complex at the division of the FDLP.

Acknowledgment

We are grateful to Dr. J. Männer, Institute of Anatomy in Göttingen, for his support in finding suitable specimens. This work was supported by the National Natural Science Foundation of China (No. 81460471) and the Six Talent Peaks Project of Jiangsu Province (SZCY-001).

References

1. Abe SH, Rhee SK, Osonoi M, et al. Expression of intermediate filaments at muscle insertions of human fetuses. J Anat. 2010; 217:167-173, doi:
2. Benjamin M, Ralphe JR. The cell and developmental biology of tendons and ligaments. Int Rev Cytol. 2000; 196:85-130, doi: 10.1016/S0074-7696(00)96003-0

3. Chaplin DM, Greenlee TK. The development of human digital tendons. J Anat. 1975; 120:253-274.

4. Charvet B, Ruggiero F, Le Guellec D. The development of the myotendinous junction. A review. Muscles Ligaments Tendons J. 2012; 2:53–63.

5. Cho KH, Jin ZW, Abe H, et al. Tensor fasciae latae muscle in human fetuses with special reference to its contribution onto development of the iliotibial tract. Folia Morphol. 2018; 77:703-710, doi: 10.5603/FM.a2018.0015

6. Cho KH, Kim JH, Ha YS, et al. Development of the deep flexor tendons and the lumbricalis muscle in the hand and foot: a histological study using human mid-term fetuses. Folia Morphol. 2012; 71:154-163.

7. Deries M, Schweitzer R, Duxson MJ. Developmental fate of the mammalian myotome. Dev Dyn. 2010; 239:2898-2910, doi: 10.1002/dvdy.22425

8. Dylevsky I. Tendons of the m. flexor digitorum superficialis et profundus in the ontogenesis of the human hand. Folia Morphol. 1968; 16:124-130.

9. Hayashi S, Hirouchi H, Murakami G, et al. Transient connection or origin of the inferior pharyngeal constrictor during fetal development: A study using human fetal sagittal sections. Ann Anat. 2020; 228:151438, doi: 10.1016/j.aanat.2019.151438

10. Heydemann A, McNally E. NO more muscle fatigue. J Clin Invest. 2009; 119:448-450, doi: 10.1172/JCI38618

11. Jin ZW, Abe H, Jin Y, et al. Positional changes in tendon insertions from a bone to fascia: human fetal development of the pes anserinus and the semimembranosus muscle insertion. Folia Morphol. 2016; 75:503-511, doi: 10.5603/FM.a2016.0020

12. Jin ZW, Jin Y, Yamamoto M, et al. Oblique cord (chorda obliqua) of the forearm and muscle-associated fibrous tissues at and around the elbow joint: a study using human fetal specimens. Folia Morphol. 2016; 75:493-502, doi: 10.5603/FM.a2016.0019

13. Leijnse JNAL. A generic morphological model of the anatomic variability in the M. flexor digitorum profundus, M. flexor pollicis longus and Mm. lumbricales complex. Acta Anat. 1997; 160:62-74, doi: 10.1159/000147997

14. Lewis WH. The development of the muscular system. In: Keibel F and Mall FP, (eds.). Manual of human embryology. Lippincott, Philadelphia, 1910: 454-522.
15. Murchison ND, Pryce BA, Conner DA et al. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development. 2007; 134:2697-2708, doi: 10.1242/dev.001933
16. Naito M, Suzuki R, Abe H, et al. Fetal development of the human obturator internus muscle with special reference to the tendon and pulley. Anat Rec. 2015; 298:1282-1293, doi: 10.1002/ar.23121
17. Onari T. On the foot short muscles with the so-called double innervation. Nihon Univ J Med. 1960; 19:1411-1430. In Japanese with an English abstract.
18. Oukouchi H, Murakami T, Kikuta A. Insertions of the lumbrical and interosseus muscles in the human foot. Okajimas Folia Anat Jpn. 1992; 69:77-84, doi: 10.2535/ofaj1936.69.2-3_77
19. Percival JM, Anderson KN, Huang P, et al. Golgi and sarcolemmal neuronal NOS differentially regulate contraction-induced fatigue and vasoconstriction in exercising mouse skeletal muscle. J Clin Invest. 2010; 120:816-826, doi: 10.1172/JCI40736.
20. Pryce BA, Watson SS, Murchison ND, et al. Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development. 2009; 136:1351-1361, doi: 10.1242/dev.027342.
21. Shiraishi Y, Jin ZW, Mitomo K, et al. Fetal development of the human gluteus maximus muscle with special reference to its insertion to the tractus iliotibialis. Folia Morphol. 2018; 77:144-150, doi: 10.5603/FM.a2017.0060.
22. Shukunami C, Takimoto A, Nishizaki Y, et al. Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes. Sci Rep 2018; 8:3155, doi: 10.1038/s41598-018-21194-3.

Figure 1. Early development of the flexor tendons in the foot planta. CRL 15 mm.

Tangential sections along the planta. HE staining. Panel A displays the most superficial plane near the skin, while panel I exhibits the deepest plane in the figure. In panels A-C, the flexor digitorum brevis tendon (FDBT) appears to interdigitate with the flexor digitorum longus tendon (FDLT). In panels D-F, the flexor hallucis longus tendon (FHLT) joins the FDLT to provide a common tendinous plate (CTP). The quadratus
plantae (QP) inserts to the posterior margin of the common plate (panel G). All panels were prepared at the same magnification (scale bar in panel A, 1 mm). Either the lumbricalis or interosseous is not yet developed. ABD, abductor digiti minimi; ADH, adductor hallucis; CA, calcaneus; CU, cuboid; FDB, flexor digitorum brevis; MT, metatarsal bone; PLT, peroneus longus tendon; TPT, tibialis posterior tendon.

Figure 2. Early development of the foot lumbricalis. Panels A-C, CRL 30.5 mm; panels D-G, CRL 28 mm. Tangential sections along the planta. HE staining. Panels A and D display the most superficial plane near the skin in each specimen. In panels A and F, the initial lumbricalis (LU) is lying between the flexor digitorum longus tendons (FDLT, numbers indicate the corresponding finger). In panels B, C, F and G, the flexor hallucis longus tendon (FHLT) joins the FDLT to provide a common tendinous plate (CTP). The quadratus plantae (QP) inserts to the common plate (panels C and F). Panels A-C or D-G were prepared at the same magnification (scale bars in panels A and D, 1 mm). ABD, abductor digiti minimi; ABH, abductor hallucis; ADH, adductor hallucis; C, calcaneus; CT, calcaneus tendon; FDB, flexor digitorum brevis; MT, metatarsal bone.

Figure 3. Foot lumbricalis at midterm. CRL 118 mm. Tilted tangential sections along the planta. HE staining. Panel A displays the most superficial plane near the skin in the figure. Panels D-F are higher magnification views of squares in panels A-C, respectively. The lumbricalis (LU) originate from the flexor digitorum longus tendon (FDLT): the third toe tendon (panel E) and the third-fifth tendons (panel F). Abortion manipulation might result in abundant red blood cells that scatter in and between the muscles. Panels A-B (or D-F) were prepared at the same magnification (scale bar: 1 mm in panel A; 0.1 mm in panel F). MT, metatarsal bone; PLT, peroneus longus tendon.
Figure 4. Foot lumbricalis origins from deep tendons near term. CRL 328 mm. Tangential sections along the planta. HE staining. Panel A displays the most superficial plane near the skin in the figure. Panels E and F are higher magnification views of squares in panels A and B, respectively. Panel G, showing the interosseous muscle between the third and fourth toes, corresponds to a plane deeper than panel F. The lumbricalis (LU) is surrounded by the flexor digitorum longus tendons (FDLT), but due to a slightly wavy course of the tendons, the muscle origin appears to be irregularly intermingled with deep tendons (panels E and F). Higher magnification views of the lumbricalis origin from the deep tendon are shown in Figure 6. Panels A-D (or E and F) were prepared at the same magnification (scale bars: 10 mm in panel A; 1 mm in panel E). CU, cuboid; MT, metatarsal bone; PLT, peroneus longus tendon; QP, quadratus plantae.

Figure 5. Histology of the lumbricalis origin: a difference from other muscle origins (higher magnification views of Figure 5). The upper side of each panel corresponds to the distal side of the specimen. Panels A-C, corresponding to circles in Figure 5F, display foot lumbaricalis origins (LU). Panel D (corresponding to a circle in Fig. 5F) and panel E (a circle in Fig. 5G) exhibit the quadratus plantae insertion (QP) and the plantar interosseous origin, respectively. Along the flexor digitorum longus tendons (FDLT), muscle fibers of the foot lumbricalis attach to relatively loose connective tissue containing abundant tenocyte candidates (stars in panels A-C). Muscle fibers of the QP and interosseous are connected to a collagen fiber bundle of tendons (arrows in panels D and E). All panels were prepared at the same magnification (scale bar in panel D, 0.1 mm). FDB flexor digitorum brevis.
Figure 6. Increased thickness of the lumbricalis and a start of the intermingling with deep tendons. CRL 295 mm. Tangential sections of a specimen without a direct origin of the lumbricalis (LU) from deep tendons. The proximal part of the LU is thick between superficial tendons 2S-4S in panel A. In deeper planes (panels B and C), the LU is surrounded by or intermingled with deep tendons 2d-5d. Each of the LU muscles is surrounded by fascia (arrowheads in panels A and B). Panels D-F are higher magnification views of circles in panels B and C. Because the flexor digitorum longus tendon (FDLT) is partly surrounded by the LU, in panels D and F, the LU muscle fibers are seen in the proximal side of the tendon. There is fibrous tissue (fascia; black stars in panels D and F) or a narrow space (open stars in panels D and E) between the FDLT and LU. Panels D-F were prepared at the same magnification (scale bar: 1 mm in panels A-C; 0.1 mm in panel F). FDB, flexor digitorum brevis; QP, quadratus plantae.

Figure 7. Intermingling between the lumbricalis and tendon near and at the division of the flexor digitorum longus near term. CRL 274 mm. Tangential sections deeper than the flexor digitorum brevis tendons. HE staining. Panel A displays the most superficial plane near the skin in the figure. Panels E and F are higher magnification views of squares in panels A and B, respectively. Panels G-I are higher magnification views of three circles in panel F. The lumbricalis (LU) is surrounded by and intermingled with the flexor digitorum longus tendons (FDLT; panels E and F). A major part of the FDLT, encircled by a dotted line in panels B and C, continues to the FDLT in panel D: it is composed of the fourth and fifth deep tendons. Another part the tendons, largely from the second and third tendons, receives the quadratus plantae (QP; panels C and D). The QP is separated from the LU by fibrous tissue (Panels E and F). Panel G
exhibits a rare connection (arrowheads) between the LU and a deep tendon. Panels H and I show an interface tissue (stars) between the LU and tendon. Panels A-D, panels E and F or panels G-I were prepared at the same magnification, respectively (scale bar: 5 mm in panel A; 1 mm in panel E; 0.1 mm in panel G). ABH, abductor hallucis; ADH, adductor hallucis; CU, cuboid; FHLT, flexor hallucis longus tendon; MT, metatarsal bone; PLT, peroneus longus tendon.

Figure 8. A hypothetical change in the lumbricalis origin from deep flexor tendons. The flexor digitorum longus tendon (FDLT) is numbered as 2, 3, 4, and 5. In the early phase (panel A), the lumbricalis (LU) originates from each division of the FDLT. In the mid-phase (panel B), the LU appears to arise from the covering fascia depending on increased thickness of the muscle. In the late phase (panel C), the LU muscle fibers intermingle with and partly surround the tendon. As these changes advance, a dividing site of the FDLT migrates distally to accelerate the involvement of the lumbricalis into tendons. The LU is not drawn between the fourth and fifth toes.
A. from tendon

B. from fascia

C. intermingling with and surrounding tendons
 proximal clusters
 possible distal migration