Generators of simple Lie superalgebras in characteristic zero

WENDE LIU1,2*, AND LIMING TANG1,2†

1Department of Mathematics, Harbin Institute of Technology
Harbin 150006, China

2School of Mathematical Sciences, Harbin Normal University
Harbin 150025, China

Abstract: It is shown that any finite dimensional simple Lie superalgebra over an algebraically closed field of characteristic 0 is generated by 2 elements.

Keywords: Classical Lie superalgebra; Cartan Lie superalgebra; generator

Mathematics Subject Classification 2000: 17B05, 17B20, 17B70

0. Introduction

Our principal aim is to determine the minimal number of generators for a finite-dimensional simple Lie superalgebra over an algebraically closed field of characteristic 0. The present work is dependent on the classification theorem due to Kac [4], which states that a simple Lie superalgebra (excluding simple Lie algebras) is isomorphic to either a classical Lie superalgebra or a Cartan Lie superalgebra (see also [6]). In 2009, Bois [1] proved that a simple Lie algebra in arbitrary characteristic $p \neq 2, 3$ is generated by 2 elements. In 1976, Ionescu [2] proved that a simple Lie algebra L over the field of complex numbers is generated by 1.5 elements, that is, given any nonzero x, there exists $y \in L$ such that the pair (x, y) generates L. In 1951, Kuranashi [5] proved that a semi-simple Lie algebra in characteristic 0 is generated by 2 elements.

As mentioned above, all the simple Lie superalgebras split into two series: Classical Lie superalgebras and Cartan Lie superalgebras. The Lie algebra (even part) of a classical Lie superalgebra is reductive and meanwhile there exists a similarity in the structure side between the Cartan Lie superalgebras in characteristic 0 and the simple graded Lie algebra of Cartan type in characteristic p. Thus, motivated by Bois’s paper [1] and in view of the observation above, we began this work in 2009. In the process we benefit in addition much from the literatures above, especially from [1], which contains a considerable amount of information in characteristic 0 and characteristic p. We also use certain information about classical Lie superalgebras from [6].

*Supported by the NSF for Distinguished Young Scholars, HLJ Province (JC201004) and the NSF of China (10871057)

†Correspondence: wendeliu@ustc.edu.cn (W. Liu), limingaaa2@sina.com (L. Tang)
Generators of simple Lie superalgebras in characteristic zero

Throughout we work over an algebraically closed field \(F \) of characteristic 0 and all the vector spaces and algebras are finite dimensional. The main result is that any simple Lie superalgebra is generated by 2 elements.

1. Classical Lie superalgebras

1.1. Basics

A classical Lie superalgebra by definition is a simple Lie superalgebra for which the representation of its Lie algebra (its even part) on the odd part is completely reducible. Throughout this section, we always write \(L = L_0 \oplus L_1 \) for a classical Lie superalgebra. Our aim is to determine the minimal number of generators for a classical Lie superalgebra \(L \). The strategy is as follows. First, using the results in Lie algebras \([1, 2]\), we show that the Lie algebra \(L_0 \) is generated by 2 elements. Then, from the structure of semi-simple Lie algebras and their simple modules, we prove that each classical Lie superalgebra is generated by 2 elements.

A classical Lie superalgebra is determined by its Lie algebra in a sense.

Proposition 1.1. \([2, p.101, Theorem 1]\) A simple Lie superalgebra is classical if and only if its Lie algebra is reductive.

The following facts including Table 1.1 may be found in \([4, 6]\). The odd part \(L_1 \) as \(L_0 \)-module is completely reducible and \(L_1 \) decomposes into at most two irreducible components. By Proposition 1.1, \(L_0 = C(L_0) \oplus [L_0, L_0] \). If the center \(C(L_0) \) is nonzero, then dim \(C(L_0) = 1 \) and \(L_1 = L_1^1 \oplus L_1^2 \) is a direct sum of two irreducible \(L_0 \)-submodules. For further information the reader is referred to \([4, 6]\).

Table 1.1

\(L \)	\(L_0 \)	\(L_1 \) as \(L_0 \)-module
\(A(m,n) \), \(m,n \geq 0, n \neq m \)	\(A_m \oplus A_n + F \)	\(sl_{m+1} \oplus sl_{n+1} \oplus F \oplus (its \ dual) \)
\(A(n,n) \), \(n > 0 \)	\(A_n \oplus A_n \)	\(sl_{n+1} \oplus sl_{n+1} \oplus F \oplus (its \ dual) \)
\(B(m,n) \), \(m > 0, n > 0 \)	\(B_m \oplus C_n \)	\(so_{2m+1} \oplus sp_{2n} \)
\(D(m,n) \), \(m > 2, n > 0 \)	\(D_m \oplus C_n \)	\(sp_{2m} \oplus sp_{2n} \)
\(C(n) \), \(n \geq 2 \)	\(C_{n-1} \oplus F \)	\(cap_{2n-2} \oplus (its \ dual) \)
\(P(n) \), \(n \geq 2 \)	\(A_n \)	\(\Lambda^2 sl_{n+1} \oplus S^2 sl_{n+1} \)
\(Q(n) \), \(n \geq 2 \)	\(A_n \)	\(ad sl_{n+1} \)
\(D(2,1;\alpha) \), \(\alpha \in F \setminus \{-1,0\} \)	\(A_1 \oplus A_1 \oplus A_1 \)	\(sl_2 \oplus sl_2 \oplus sl_2 \)
\(G(3) \)	\(\mathfrak{so}_2 \oplus \mathfrak{A}_1 \)	\(\mathfrak{so}_2 \oplus sl_2 \)
\(F(4) \)	\(\mathfrak{B}_3 \oplus \mathfrak{A}_1 \)	\(spin_7 \oplus sl_2 \)

1.2. Even parts

Let \(\mathfrak{g} \) be a semi-simple Lie algebra. Consider the root decomposition relative to a Cartan subalgebra \(\mathfrak{h} \): \(\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}^\alpha \). For \(x \in \mathfrak{g} \) we write \(x = x_\mathfrak{h} + \sum_{\alpha \in \Phi} x^\alpha \) for the corresponding root space decomposition. It is well-known that \([2]\)

\[
\dim \mathfrak{g}^\alpha = 1 \quad \text{for all } \alpha \in \Phi, \quad (1.1)
\]

\[
\mathfrak{h} = \sum_{\alpha \in \Phi} [\mathfrak{g}^\alpha, \mathfrak{g}^{-\alpha}], \quad (1.2)
\]

\[
[\mathfrak{g}^\alpha, \mathfrak{g}^\beta] = \mathfrak{g}^{\alpha + \beta} \quad \text{whenever } \alpha, \beta, \alpha + \beta \in \Phi. \quad (1.3)
\]
Let V be a vector space and $\mathfrak{F} := \{f_1, \ldots, f_n\}$ a finite set of non-zero linear functions on V. Write

$$\Omega_\mathfrak{F} := \{v \in V \mid \Pi_{1 \leq i \neq j \leq n}(f_i - f_j)(v) \neq 0\}.$$

Lemma 1.2. Suppose \mathfrak{F} is a finite set of non-zero functions in V^*. Then $\Omega_\mathfrak{F} \neq \emptyset$. If $\mathfrak{F} \subset \mathfrak{F}$ then $\Omega_\mathfrak{F} \subset \Omega_\mathfrak{F}$.

Proof. The first statement is from [1, Lemma 2.2.1] and the second is straightforward.

This lemma will be usually used in the special situation when V is a Cartan subalgebra of a simple Lie superalgebra.

An element x in a semi-simple Lie algebra g is called *balanced* if it has no zero components with respect to the standard decomposition of simple Lie algebras. If h is a Cartan subalgebra of g, $x \in g$ is called h-balanced provided that $x^\alpha \neq 0$ for all $\alpha \in \Phi$.

Lemma 1.3. [1] An element of a semi-simple Lie algebra g is balanced if and only if it is h-balanced for some Cartan subalgebra h.

Proof. One direction is obvious. Suppose $x \in g$ is balanced and let b' be a Cartan subalgebra of g. From the proof of [1, Theorem 2.2.3], there exists $\varphi \in g$ such that $\varphi(x)$ is b'-balanced. Letting $h = \varphi^{-1}(b')$, one sees that h is a Cartan subalgebra and x is h-balanced.

For an algebra \mathfrak{A} and $x, y \in \mathfrak{A}$, we write $\langle x, y \rangle$ for the subalgebra generated by x and y. We should notice that for a Lie superalgebra $\langle x, y \rangle$ is not necessarily a \mathbb{Z}_2-graded subalgebra (hence not necessarily a sub-Lie superalgebra). The following technical lemma will be frequently used.

Lemma 1.4. Let \mathfrak{A} be an algebra. For $a \in \mathfrak{A}$ write L_a for the left-multiplication operator given by a. Suppose $x = x_1 + x_2 + \cdots + x_n$ is a sum of eigenvectors of L_a associated with mutually distinct eigenvalues. Then all x_i's lie in the subalgebra generated $\langle a, x \rangle$.

Proof. Let λ_i be the eigenvalues of L_a corresponding to x_i. Suppose for a moment that all the λ_i's are nonzero. Then

$$(L_a)^k(x) = \lambda_1^k x_1 + \lambda_2^k x_2 + \cdots + \lambda_n^k x_n \quad \text{for } k \geq 1.$$

Our conclusion in this case follows from the fact that the Vandermonde determinate given by $\lambda_1, \lambda_2, \ldots, \lambda_n$ is nonzero and thereby the general situation is clear.

We write down a lemma from [1, Theorem B and Corollary 2.2.5] and the references therein, which is also a consequence of Lemmas 1.2, 1.3 and 1.4.

Lemma 1.5. Let g be a semi-simple Lie algebra. If $x \in g$ is balanced then for a suitable Cartan subalgebra h and the corresponding root system Φ we have $g = \langle x, h \rangle$ for all $h \in \Omega_\Phi$.

Denote by $\Pi := \{\alpha_1, \ldots, \alpha_n\}$ the system of simple roots of a semi-simple Lie algebra g relative to a Cartan subalgebra h. As above, $x \in g$ is referred to as Π-balanced if x is a sum of all the simple-root vectors, that is, $x = \sum_{\alpha \in \Pi} x^\alpha$, where x^α is a root vector of α. Recall that $\Omega_{\Pi} \neq \emptyset$ by Lemma 1.2.
Generators of simple Lie superalgebras in characteristic zero

Corollary 1.6. A semi-simple Lie algebra g is generated by a Π-balanced element and an element in Ω.

Proof. This is a consequence of Lemma 1.4 and the facts (1.1), (1.2) and (1.3).

Proposition 1.7. The Lie algebra of a classical Lie superalgebra is generated by 2 elements.

Proof. Let $L = L_0 \oplus L_1$ be a classical Lie superalgebra. By Proposition 1.1, L_0 is reductive, that is, $[L_0, L_0]$ is semi-simple and

$$L_0 = C(L_0) \oplus [L_0, L_0].$$

(1.4)

If $C(L_0) = 0$, the conclusion follows immediately from Lemma 1.5. If $C(L_0)$ is nonzero, then $C(L_0) = \mathbb{F} z$ is 1-dimensional. Choose a balanced element $x \in [L_0, L_0]$. By Lemma 1.5 there exists $h \in [L_0, L_0]$ such that $[L_0, L_0] = \langle x, h \rangle$. Claim that $L_0 = \langle x, h + z \rangle$.

Indeed, considering the projection of L_0 onto $[L_0, L_0]$ with respect to the decomposition (1.4), denoted by π, which is a homomorphism of Lie algebras, we have

$$\pi(\langle x, h + z \rangle) = \langle \pi(x), \pi(h + z) \rangle = \langle x, h \rangle = [L_0, L_0].$$

Hence only two possibilities might occur: $\langle x, h + z \rangle = [L_0, L_0]$ or $\dim \langle x, h + z \rangle = \dim [L_0, L_0]$. The first case is the desired. Let us show that the second does not occur. Assume the contrary. Then π restricting to $\langle x, h + z \rangle$ is an isomorphism and thereby $\langle x, h + z \rangle$ is semi-simple. Thus

$$\langle x, h + z \rangle = [(x, h + z), (x, h + z)] = \langle x, h \rangle, \langle x, h \rangle = \langle x, h \rangle.$$

Hence $h \in \langle x, h + z \rangle$. It follows that

$$z \in \langle x, h + z \rangle = \langle x, h \rangle = [L_0, L_0],$$

contradicting (1.4).

Remark 1.8. By Corollary 1.6 $\mathfrak{sl}(n)$ is generated by a Π-balanced element x and an element y in Ω. As in the proof of Proposition 1.7 one may prove that $\mathfrak{gl}(n)$ is generated by h and $x + z$, where z is a nonzero central element in $\mathfrak{gl}(n)$.

1.3. Classical Lie superalgebras

Suppose L is a classical Lie superalgebra with the standard Cartan subalgebra H. The corresponding weight (root) space decompositions are

$$L_0 = H \oplus \bigoplus_{\alpha \in \Delta_0} L_0^\alpha, \quad L_1 = \bigoplus_{\beta \in \Delta_1} L_1^\beta;$$

$$L = H \oplus \bigoplus_{\alpha \in \Delta_0} L_0^\alpha \oplus \bigoplus_{\beta \in \Delta_1} L_1^\beta.$$

(1.5)

Every $x \in L$ has a unique decomposition with respect to (1.5):

$$x = x_H + \sum_{\alpha \in \Delta_0} x_0^\alpha + \sum_{\beta \in \Delta_1} x_1^\beta,$$

(1.6)
where \(x_H \in H, \, x_0^2 \in L_0^2, \, x_1^2 \in L_1^2 \). Write

\[
\Delta := \Delta_0 \cup \Delta_1 \quad \text{and} \quad L^\gamma := L_0^\gamma \oplus L_1^\gamma \quad \text{for} \quad \gamma \in \Delta.
\]

Note that the standard Cartan subalgebra of a classical Lie superalgebra is diagonal:

\[
\text{ad}(h) = \gamma(h)x \quad \text{for all} \quad h \in H, \, x \in L^\gamma, \, \gamma \in \Delta.
\] (1.7)

For \(x \in L \), write

\[
\text{supp}(x) := \{ \gamma \in \Delta \mid x_\gamma \neq 0 \}.
\] (1.8)

For \(x = x_0 + x_1 \in L \),

\[
\text{supp}(x) = \text{supp}(x_0) \cup \text{supp}(x_1).
\]

Lemma 1.9.

1. If \(L \neq Q(n) \) then \(0 \notin \Delta_1 \) and \(\Delta_0 \cap \Delta_1 = \emptyset \).
2. If \(L = Q(n) \) then \(\Delta_1 = \{0\} \cup \Delta_0 \).
3. If \(L \neq A(1,1), \, Q(n) \) or \(P(3) \) then \(\dim L^\gamma = 1 \) for every \(\gamma \in \Delta \).
4. Suppose \(L = \Lambda(m, n), \, A(n, n), \, C(n) \) or \(P(n) \), where \(m \neq n \).

 a. \(L_1 = L_1^1 \oplus L_1^2 \) is a direct sum of two irreducible \(L_0 \)-submodules.

 b. Let \(\Delta_1^i \) be the weight set of \(L_1^i \) relative to \(H, \, i = 1, 2 \). Then there exist \(\alpha_i^1 \in \Delta_1^i \) such that \(\alpha_i^1 \neq \alpha_i^2 \).

Proof. (1), (2) and (3) follow from [6, Proposition 1, p.137]. (4)(a) follows from Table 1.1. Let us consider (4)(b). For \(L = \Lambda(m, n), \, A(n, n) \) or \(C(n) \), it follows from the fact that \(L_0 \)-modules \(L_{-1} \) and \(L_1 \) are contragradient. For \(L = P(n) \), a direct computation shows that \(-e_1 - e_2 \in \Delta_1^1 \) and \(2e_1 \in \Delta_1^2 \).

Theorem 1.10. A classical Lie superalgebra is generated by 2 elements.

Proof. Let \(L = L_0 \oplus L_1 \) be a classical Lie superalgebra.

Case 1. Suppose \(\dim C(L_0^1) = 1 \). In this case \(L = C(n) \) or \(\Lambda(m, n) \) with \(m \neq n \) (see Table 1.1). Then \(L_1 = L_1^1 \oplus L_1^2 \) is a direct sum of two irreducible \(L_0 \)-submodules and \([L_0, L_0] \) is simple or a direct sum of two simple Lie algebras. Let \(x_0 \) be a balanced element in \([L_0, L_0] \). From Lemma 1.3 there exists a Cartan subalgebra \(h \) of \([L_0, L_0] \) such that \(\text{supp}(x_0) = \Delta_0 \), the latter is viewed as the root system relative to \(h \). By Lemma 1.5 we have \([L_0, L_0] = \langle x_0, h \rangle \) for all \(h \in \Omega_0 \). Furthermore, from the proof of Proposition 1.7 it follows that \(L_0 = \langle x_0, h + z \rangle \) for \(\emptyset \neq z \in C(L_0^1) \). By Lemma 1.7(1) and (4), there exist \(\alpha_1^1 \in \Delta_1^1 \) and \(\alpha_1^2 \in \Delta_1^2 \) such that \(\alpha_1^1 \neq \alpha_1^2 \) and \(\alpha_1^1, \alpha_1^2 \notin \Delta_0 \). Set \(x := x_0 + x_1^{\alpha_1^1} + x_1^{\alpha_1^2} + z \) for some weight vectors \(x_1^{\alpha_1^i} \in L_1^{\alpha_1^i} \), \(i = 1, 2 \). Then

\[
x = (x_0 + z) + \sum_{\alpha \in \Delta_0} x_0^\alpha + x_1^{\alpha_1^1} + x_1^{\alpha_1^2}.
\]

Write \(\Phi := \Delta_0 \cup \{ \alpha_1^1 \} \cup \{ \alpha_1^2 \} \) and choose an element \(h' \in \Omega_\Phi \). Assert \(\langle x, h' \rangle = L \). To show that, write \(L' := \langle x, h' \rangle \). Lemma 1.4 implies all components \(x_0^\alpha, x_1^{\alpha_1^1}, x_1^{\alpha_1^2} \), and
$x_H + z$ belong to L'. Since $x_0^0 \in L'$ for all $\alpha \in \Delta_0$, from (1.2) we have $x_H \in L'$ and then $z \in L'$. As $h' \in \Omega_F \subset \Omega_{\Delta_0}$, we obtain $\langle x_0, h' + z \rangle = L_0 \subset L'$. Since $x_1^{\alpha_1} \in L'$ and $L_1^{\alpha_1}$ is an irreducible L_0-module, we have $L_1 \subset L'$, where $i = 1, 2$. Therefore, $L = L'$.

Case 2. Suppose $C(L_0) = 0$. Then L_0 is a semi-simple Lie algebra and L_1 decomposes into at most two irreducible components (see Table 1.1).

Subcase 2.1. Suppose L_1 is an irreducible L_0-module. Note that in this subcase, L is of type $B(m, n), D(m, n), D(2; 1; \alpha), Q(n), G(3)$ or $F(4)$. We choose a weight vector $x_1^{\alpha_1} \in L_1^{\alpha_1}$ ($\alpha_1 \neq 0$) and any balanced element $x_0 \in L_0$. By Lemma 1.4 we may assume that $\text{supp}(x_0) = \Delta_0$.

If $L \neq Q(n)$, according to Lemma 1.9(1), $\alpha_1 \notin \Delta_0$. Let $x = x_0 + x_1^{\alpha_1}$. Then

$$x = x_H + \sum_{\alpha \in \Delta_0} x_0^\alpha + x_1^{\alpha_1}$$

is the root-vector decomposition. Let $\Phi = \Delta_0 \cup \{\alpha_1\}$. By Lemmas 1.2 and 1.4 all components x_H, x_0^α and $x_1^{\alpha_1}$ belong to $\langle x, h \rangle$ for $h \in \Omega_F \subset H$. By (1.1) and (1.2), this yields $L_0 = \langle x_0, h \rangle \subset \langle x, h \rangle$. Since $x_1^{\alpha_1} \in \langle x, h \rangle$ and L_1 is irreducible as L_0-module, we have $L = \langle x, h \rangle$.

Suppose $L = Q(n)$. Denote by $\Pi := \{\delta_1, \delta_2, \ldots, \delta_n\}$ the set of simple roots of L_0 relative to the Cartan subalgebra H. According to Lemma 1.9(2), without loss of generality we may assume that $\alpha_1 := \delta_1 + \delta_2$. Let $x = x_0 + x_1^{\alpha_1}$. Then

$$x = x_H + \sum_{\alpha \in \Delta_0 \setminus \{\alpha_1\}} x_0^\alpha + (x_0^{\alpha_1} + x_1^{\alpha_1}).$$

By Lemma 1.4 all components x_H, x_0^α ($\alpha \in \Delta_0 \setminus \{\alpha_1\}$), and $x_0^{\alpha_1} + x_1^{\alpha_1}$ belong to $\langle x, h \rangle$, where $h \in \Omega_\Delta_0 \subset H$. From (1.3) and (1.1) we conclude that $x_0^{\alpha_1} \in F[x_0^{\alpha_1}, x_1^{\alpha_1}] \subset \langle x, h \rangle$ and then $x_1^{\alpha_1} \in \langle x, h \rangle$. As above, the irreducibility of L_1 yields $L = \langle x, h \rangle$.

Subcase 2.2. Suppose $L_1 = L_1^1 \oplus L_1^2$ is a direct sum of two irreducible L_0-submodules. In this case, $L = A(n, n)$ or $P(n)$. Choose any balanced element $x_0 \in L_0$ and weight vectors $x_1^{\alpha_1} \in L_1^{\alpha_1}$, where α_1^1 and α_1^2 are different nonzero weights and $\alpha_1^1 \notin \Delta_0$ (Lemma 1.2(1) and (4)). Lemma 1.4 allows us to assume that $\text{supp}(x_0) = \Delta_0$.

Let $x := x_0 + x_1^{\alpha_1} + x_1^{\alpha_2}$ and $\Phi := \Delta_0 \cup \{\alpha_1^1\} \cup \{\alpha_1^2\}$. As before, we are able to deduce that $L_0 \subset \langle x, h \rangle$ and $x_1^{\alpha_1}, x_1^{\alpha_2} \in \langle x, h \rangle$ for $h \in \Omega_F \subset \Omega_{\Delta_0} \subset H$. Thanks to the irreducibility of L_1^1 and L_1^2, we have $L = \langle x, h \rangle$. The proof is complete. □

Remark 1.11. In view of the proof of Theorem 1.10 starting from any balanced element in the semi-simple part of the Lie algebra of a classical Lie superalgebra L we are able to find two elements generating L.

By Theorem 1.10 as in the proof of Proposition 1.7 one is able to prove the following

Corollary 1.12. The general linear Lie superalgebra $\text{gl}(m, n)$ is generated by 2 elements.
As a subsidiary result, let us show that a classical Lie superalgebra, except for $A(1,1)$, $Q(n)$ or $P(3)$, is generated by 2 homogeneous elements. By Lemma 1.9 (3), for such a classical Lie superalgebra, all the odd-weight subspaces are 1-dimensional. Here we give a more general description in Remark 1.13. As before, an element $x \in L$ is called Δ_1-balanced if x is a sum of all the odd-weight vectors, namely, $x = \sum_{\gamma \in \Delta_1} x^\gamma_1$, where x^γ_1 is a weight vector of γ.

Remark 1.13. A finite dimensional simple Lie superalgebra (not necessarily classical) for which all the odd-weight is 1-dimensional center and the semi-simple part:

\[L = L^0 \oplus L^1\]

where $[A^\gamma_1, e] = \sum_{\gamma \in \Delta_1} \sum_{\gamma^\prime \in \Delta_1} \frac{\epsilon_{\gamma, \gamma^\prime}}{\epsilon_{\gamma^\prime, \gamma}} [A^\gamma_1, x^\gamma_1^\prime]$. By Proposition 1.2(1), p.20, $L^0 = [L^0, L^0]$ and then $\langle x, h \rangle = L$.

Finally, we give an example to explain how to find the pairs of generators in Theorem 1.10 and Remark 1.13.

Example 1.14. Let $A = A(1; 0)$. Find the generators of A as in Theorem 1.10 and Remark 1.13.

Recall that $A = \{x \in gl(2; 1) | \text{str}(x) = 0\}$. Its Lie algebra is a direct sum of the 1-dimensional center and the semi-simple part:

\[A_0 = \mathbb{F}(e_{11} + e_{22} + 2e_{33}) \oplus [A_0, A_0], \]

where $[A_0, A_0] = \text{span}_F\{e_{11} - e_{22}, e_{12}, e_{21}\}$. The odd part is a direct sum of two irreducible A_0-submodules:

\[A_1 = \bar{A}_1 \oplus A_1' = \text{span}_F\{e_{13}, e_{23}\} \oplus \text{span}_F\{e_{31}, e_{32}\}. \]

The standard Cartan subalgebra is $H = \text{span}_F\{e_{11} - e_{22}, e_{11} + e_{22} + 2e_{33}\}$.

Table 1.2 gives all the roots and the corresponding root vectors.

roots	$e_1 - e_2$	$e_2 - e_1$	$e_1 - 2e_3$	$e_2 - 2e_3$	$-e_1 + 2e_3$	$-e_2 + 2e_3$
vectors	e_{12}	e_{21}	e_{13}	e_{23}	e_{31}	e_{32}

- **Theorem 1.10 Version.** Put $x := (e_{12} + e_{21}) + e_{13} + e_{31} + (e_{11} + e_{22} + 2e_{33})$ and $h := 3e_{11} + e_{22} + 4e_{33}$. From Table 1.2, the weight values corresponding to $e_{12}, e_{21}, e_{13}, e_{31}$ are 2, -2, -5, 5, respectively. As in the proof of Theorem 1.10 we have

\[e_{12} + e_{21} + e_{13} + e_{31} + e_{11} + e_{22} + 2e_{33} \in \langle x, h \rangle. \]

Furthermore,\n
\[(e_{12} + e_{21} + (e_{11} + e_{22} + 2e_{33})) = A_0 \subset \langle x, h \rangle. \]

Since A_1^i is an irreducible A_0-module, $A_1^i \subset \langle x, h \rangle$, $i = 1, 2$. Hence $A = \langle x, h \rangle$.

- **Remark 1.13 Version.** Consider the Δ_1^--balanced element $x := e_{13} + e_{31} + e_{23} + e_{32}$ and write $h := e_{11} + e_{33}$. By Table 1.2, the weight values corresponding to $e_{13}, e_{31}, e_{23}, e_{32}$ are $-1, 1, -2, 2$, respectively. As in the proof of Remark 1.13 we have $e_{13}, e_{31}, e_{23}, e_{32} \in \langle x, h \rangle$. Since $\dim A_1^\lambda = 1$ for $\lambda \in \Delta_1$ and $[A_1^i, A_1^j] = A_0^\lambda$, we obtain $A = \langle x, h \rangle$.

Table 1.2

roots	$e_1 - e_2$	$e_2 - e_1$	$e_1 - 2e_3$	$e_2 - 2e_3$	$-e_1 + 2e_3$	$-e_2 + 2e_3$
vectors	e_{12}	e_{21}	e_{13}	e_{23}	e_{31}	e_{32}
2. Cartan Lie superalgebras

All the Cartan Lie superalgebras are listed below [4, 6]:

\[W(n) \ (n \geq 3), \ S(n) \ (n \geq 4), \ S(2m) \ (m \geq 2), \ H(n) \ (n \geq 5). \]

Let \(\Lambda(n) \) be the Grassmann superalgebra with \(n \) generators \(\xi_1, \ldots, \xi_n \). For a \(k \)-shuffle \(u := (i_1, i_2, \ldots, i_k) \), that is, a strictly increasing sequence between 1 and \(n \), we write \(|u| := k \) and \(x^u := \xi_{i_1} \xi_{i_2} \cdots \xi_{i_k} \). Letting \(\deg \xi_i = 1, \ i = 1, \ldots, n \), we obtain the so-called standard \(\mathbb{Z} \)-grading of \(\Lambda(n) \). Let us briefly describe the Cartan Lie superalgebras.

- \(W(n) = \text{der} \Lambda(n) \) is \(\mathbb{Z} \)-graded, \(W(n) = \bigoplus_{k=1}^{n-1} W(n)_k \),
 \[
 W(n)_k = \text{span}_F \{ x^u \partial / \partial \xi_i \mid |u| = k + 1, \ 1 \leq i \leq n \}.
 \]

- \(S(n) = \bigoplus_{k=1}^{n-2} S(n)_k \) is a \(\mathbb{Z} \)-graded subalgebra of \(W(n) \),
 \[
 S(n)_k = \text{span}_F \{ D_{ij}(x^u) \mid |u| = k + 2, \ 1 \leq i, j \leq n \}.
 \]
 Hereafter, \(D_{ij}(f) := \partial(f) / \partial \xi_i \partial / \partial \xi_j + \partial(f) / \partial \xi_j \partial / \partial \xi_i \) for \(f \in \Lambda(n) \).

- \(\tilde{S}(2m) \ (m \geq 2) \) is a subalgebra of \(W(2m) \) and as a \(\mathbb{Z} \)-graded subspace,
 \[
 \tilde{S}(2m) = \bigoplus_{k=-1}^{2m-2} \tilde{S}(2m)_k,
 \]
 where
 \[
 \tilde{S}(2m)_{-1} = \text{span}_F \{ (1 + \xi_1 \cdots \xi_{2m}) \partial / \partial \xi_j \mid 1 \leq j \leq 2m \},
 \]
 \[
 \tilde{S}(2m)_k = S(2m)_k, \ 0 \leq k \leq 2m - 2.
 \]
 Notice that \(\tilde{S}(2m) \) is not a \(\mathbb{Z} \)-graded subalgebra of \(W(2m) \).

- \(H(n) = \bigoplus_{k=0}^{n-3} H(n)_k \) is a \(\mathbb{Z} \)-graded subalgebra of \(W(n) \), where
 \[
 H(n)_k = \text{span}_F \{ D_H(x^u) \mid |u| = k + 2 \}.
 \]
 To explain the linear mapping \(D_H : \Lambda(n) \rightarrow W(n) \), write \(n = 2m \ (m \geq 3) \) or \(2m + 1 \ (m \geq 2) \). By definition, \(D_H(x^u) := (-1)^{|u|} \sum_{i=1}^{n} \partial(x^u) / \partial \xi_i \partial / \partial \xi_{i'} \) for any shuffle \(u \), where \(i' = i + m \) for \(i \leq m \). For simplicity we usually write \(W, S, \tilde{S}, H \) for \(W(n), S(n), \tilde{S}(2m), H(n) \), respectively. Throughout this section \(L \) denotes one of Cartan Lie superalgebras. Consider its decomposition of subspaces mentioned above:

\[
L = L_{-1} \oplus \cdots \oplus L_s.
\] (2.1)

For \(W, S, \tilde{S} \) and \(H \), the height \(s \) is \(n - 1, n - 2, 2m - 2 \) or \(n - 3 \), respectively. Note that \(S \) and \(H \) are \(\mathbb{Z} \)-graded subalgebras of \(W \) with respect to (2.1), but \(\tilde{S} \) is not. The null \(L_0 \) is isomorphic to \(\mathfrak{gl}(n), \mathfrak{sl}(n), \mathfrak{sl}(2m), \mathfrak{so}(n) \) for \(L = W, S, \tilde{S}, H \), respectively.
Lemma 2.1.

(1) L_{-1} and L_s are irreducible as L_0-modules.

(2) L_1 is an irreducible L_0-module for $L = S, \tilde{S}$ or H, except for $H(6)$. For $L = H(6)$, L_1 is a direct sum of two irreducible L_0-submodules.

(3) L is generated by the local part $L_{-1} \oplus L_0 \oplus L_1$.

(4) L is generated by L_{-1} and L_s for $L = W, S$ or H.

Proof. All the statements are standards (see [4, 6] for example), except for that \tilde{S}_{-1} is irreducible as \tilde{S}_0-module. Indeed, a direct verification shows that \tilde{S}_{-1} is an \tilde{S}_0-module and the irreducibility follows from the canonical isomorphism of S_0-modules $\varphi : S_{-1} \rightarrow \tilde{S}_{-1}$ assigning $\partial/\partial \xi_i$ to $(1 + \xi_1 \cdots \xi_{2m})\partial/\partial \xi_i$ for $1 \leq i \leq 2m$.

The following is a list of bases of the standard Cartan subalgebras \mathfrak{h}_{L_0} of L_0.

L	basis of \mathfrak{h}_{L_0}
$W(n)$	$\xi_i \partial/\partial \xi_i, 1 \leq i \leq n$
$S(n)$	$\xi_i \partial/\partial \xi_j - \xi_j \partial/\partial \xi_i, 2 \leq j \leq n$
$S(2m)$	$\xi_i \partial/\partial \xi_1 - \xi_1 \partial/\partial \xi_i, 2 \leq j \leq 2m$
$H(2m)$	$\xi_i \partial/\partial \xi_i - \xi_{m+i} \partial/\partial \xi_{m+i}, 1 \leq i \leq m$
$H(2m + 1)$	$\xi_{i+1} \partial/\partial \xi_{i+1} - \xi_{m+i} \partial/\partial \xi_{m+i}, 1 \leq i \leq m$

The weight space decomposition of the component L_k relative to \mathfrak{h}_{L_0} is:

$$L_k = \delta_{k,0} \mathfrak{h}_{L_0} \oplus_{\alpha \in \Delta_k} L_0^\alpha,$$

where $-1 \leq k \leq s$.

By Lemma 2.1(2), $H(6)_1$ is a direct sum of two irreducible $H(6)_0$-modules

$$H(6)_1 = H(6)^1_1 \oplus H(6)^2_1.$$

Let Δ_1^i be the weight set of $H(6)_1^i$, $i = 1, 2$. Write Π for the set of simple roots of L_0 relative to the Cartan subalgebra \mathfrak{h}_{L_0}. We have

Lemma 2.2.

(1) If $L = W$ or S then $\Pi \cap \Delta_{-1} = \Pi \cap \Delta_s = \Delta_{-1} \cap \Delta_s = \emptyset$.

(2) If $L = \tilde{S}$ then $\Pi \cap \Delta_{-1} = \Pi \cap \Delta_s = \Delta_{-1} \cap \Delta_s = \emptyset$.

(3) If $L = H(2m)$ then $\Pi \cap \Delta_{-1} = \Pi \cap \Delta_1 = \emptyset$ and $\Delta_{-1} \neq \Delta_1$.

(4) If $L = H(2m + 1)$ then $0 \in \Delta_{-1}$, $\Pi \neq \Delta_1$ and $\Delta_{-1} \neq \Delta_1$.

(5) There exist nonzero weights $\alpha_1^i \in \Delta_1^i$ such that $\alpha_1^1 \neq \alpha_1^2$.

Proof. We first compute the weight sets of the desired components and the system of simple roots of L_0. For $W(n)$,

$$\Delta_{-1} = \{-\epsilon_j \mid 1 \leq j \leq n\}, \quad \Delta_0 = \{\epsilon_i - \epsilon_j \mid 1 \leq i \neq j \leq n\}, \quad \Delta_s = \{\sum_{k=1}^n \epsilon_k - \epsilon_j \mid 1 \leq j \leq n\}.$$

For $S(n)$,

$$\Delta_{-1} = \{-\epsilon_j \mid 1 \leq j \leq n\}, \quad \Delta_0 = \{\epsilon_i - \epsilon_j \mid 1 \leq i \neq j \leq n\}. \quad \Delta_s = \{\sum_{k=1}^n \epsilon_k - \epsilon_j \mid 1 \leq j \leq n\}.$$
For $S(n)$ and $\tilde{S}(n)$,
\[
\Delta_\pm = \{ \pm \varepsilon_j | 1 \leq j \leq n \}, \quad \Delta_0 = \{ \varepsilon_i - \varepsilon_j | 1 \leq i \neq j \leq n \},
\]
\[
\Pi = \{ \varepsilon_i - \varepsilon_{i+1} | 1 \leq i \leq n - 1 \}, \quad \Delta_1 = \{ \varepsilon_k + \varepsilon_l - \varepsilon_j | 1 \leq k, l, j \leq n \},
\]
\[
\Delta_s = \left\{ \sum_{i=1}^n \varepsilon_i - \varepsilon_j - \varepsilon_k | 1 \leq j, k \leq n \right\}.
\]

For $H(2m)$,
\[
\Delta_\pm = \{ \pm \varepsilon_j | 1 \leq j \leq m \}, \quad \Delta_0 = \{ \pm (\varepsilon_i + \varepsilon_j), \pm (\varepsilon_i - \varepsilon_j) | 1 \leq i < j \leq m \},
\]
\[
\Pi = \{ \varepsilon_i - \varepsilon_{i+1}, \varepsilon_{m-1} + \varepsilon_m | 1 \leq i < m \},
\]
\[
\Delta_1 = \{ \pm (\varepsilon_i + \varepsilon_j) \pm \varepsilon_k \pm (\varepsilon_i - \varepsilon_j) \pm \varepsilon_k | 1 \leq i < j < k \leq m \}
\]
\[
\cup \{ \pm \varepsilon_l | 1 \leq l \leq m \}. \quad (2.2)
\]

For $H(2m + 1)$, write $\varepsilon_i' = \varepsilon_{i+1}$ for $1 \leq i \leq m$. We have
\[
\Delta_\pm = \{ 0 \} \cup \{ \pm \varepsilon_i' | 1 \leq i \leq m \},
\]
\[
\Delta_0 = \{ \pm (\varepsilon_i' + \varepsilon_j'), \pm (\varepsilon_i' - \varepsilon_j') | 1 \leq k, m, 1 \leq i < j \leq m \},
\]
\[
\Pi = \{ \varepsilon_i' - \varepsilon_{i+1}, \varepsilon_m' | 1 \leq i < m \},
\]
\[
\Delta_1 = \{ 0 \} \cup \{ \pm (\varepsilon_i', \varepsilon_i + \varepsilon_j'), \pm (\varepsilon_i' - \varepsilon_j') | 1 \leq l < m, 1 \leq i < j \leq m \}
\]
\[
\cup \{ \pm (\varepsilon_i' + \varepsilon_j') \pm \varepsilon_k \pm (\varepsilon_i' - \varepsilon_j') \pm \varepsilon_k | 1 \leq i < j < k \leq m \}.
\]

All the statements follow directly, except (5) for $L = H(6)$. In this special case, from (2.2) one sees that $0 \notin \Delta_1$ and $|\Delta_1| > 1$. Consequently, (5) holds. \[\square \]

Recall that an element $x \in \mathfrak{g}$ is referred to as Π-balanced if x is a sum of all the simple-root vectors.

Theorem 2.3. A Cartan Lie superalgebra is generated by 2 elements.

Proof. Recall the null L_0 is isomorphic to $\mathfrak{gl}(n), \mathfrak{sl}(n), \mathfrak{sl}(2m)$ or $\mathfrak{so}(n)$. From Remark 1.5 and Corollary 1.6 for a Π-balanced element $x_0 \in L_0$ and $h_0 \in \Omega_1 \subset \mathfrak{h}_{L_0}$ we have $L_0 = \langle x_0 + \delta_{L,W}z, h_0 \rangle$, where z is a central element in $\mathfrak{gl}(n)$.

For simplicity, write $t := s$ for $L = W$ or S and $t := 1$ for $L = \tilde{S}$ or H. Suppose $L \neq H(6)$ and $H(2m + 1)$. According to Lemma 2.2, we are able to choose nonzero weights $\alpha_{-1} \in \Delta_\pm$ and $\alpha_t \in \Delta_t$ such that $\alpha_{-1} \neq \alpha_t$, $\alpha_{-1} \notin \Pi$, and $\alpha_t \notin \Pi$. Put $x := x_{-1} + x_0 + \delta_{L,W}z + x_t$ for some weight vectors $x_{-1} \in L_{\alpha_{-1}}^\alpha$ and $x_t \in L_{\alpha_t}$. Now set $\Phi := \Pi \cup \{ \alpha_{-1} \} \cup \{ \alpha_t \} \subset \mathfrak{h}_{L_0}$ and choose an element $h_0 \in \Omega_1$. Assume $\langle x, h_0 \rangle = L$. Lemma 2.2 implies all components $x_{-1} x_0, \delta_{L,W}z$ and x_t belong to $\langle x, h_0 \rangle$. As $h_0 \in \Omega_1 \subset \Omega_{L_0}$, we obtain $L_0 = \langle x_0 + \delta_{L,W}z, h_0 \rangle \subset \langle x, h_0 \rangle$.

By Lemma 2.1 and (2), since L_{-1} and L_t are irreducible L_0-modules, we have $L_{-1} + L_t \subset \langle x, h_0 \rangle$. From Lemma 2.2 (3) and (4) it follows that $L = \langle x, h_0 \rangle$.

If $L = H(6)$, by Lemma 2.2 (3), we are able to choose $\alpha_{-1} \in \Delta_\pm$, $\alpha_1 \in \Delta_1$ and $\alpha_2, \delta_{L,W}z$ such that $\alpha_{-1}, \alpha_1, \alpha_2$ are pairwise distinct and $\alpha_{-1} \notin \Pi$, $\alpha_1 \notin \Pi$ and $\alpha_2 \notin \Pi$. Put $x := x_{-1} + x_0 + x_1 + x_2$ for some weight vectors $x_{-1} \in L_{\alpha_{-1}}^\alpha$ and $x_i \in L_{\alpha_i}^\alpha$, $i = 1, 2$. Write $\Phi := \Pi \cup \{ \delta_{L,W}z \} \cup \{ \alpha_1 \} \cup \{ \alpha_2 \}$. For $h_0 \in \Omega_1 \subset \Omega_{L_0}$, as in the above, one may show that $L = \langle x, h_0 \rangle$.

If $L = H(2m + 1)$, by Lemma 2.2 (4), choose $\alpha_{-1} \in \Delta_\pm$, $\alpha_1 \in \Delta_1$ such that $\alpha_{-1} = 0$, $\alpha_1 \notin \Pi$. Set $x := x_{-1} + x_0 + x_1$ for some weight vectors $x_{-1} \in L_{\alpha_{-1}}^\alpha$ and...
$x_1 \in L_1^{\alpha_1}$. Now put $\Phi := \Pi \cup \{\alpha_1\} \cup \{\alpha_1\} \subset h^*_m$. Let $h_0 \in \Omega_\Phi \subset \Omega_\Pi$ and claim that $L = \langle x, h_0 \rangle$. By Lemma 1.4, x_0, x_{-1} and $x_1 \in \langle x, h_0 \rangle$. Consequently, $L_0 \subset L$. The irreducibility of L_{-1} and L_1 ensures $L_{-1} + L_1 \subset \langle x, h_0 \rangle$. By Lemma 2.1(3), the claim holds. The proof is complete.

Theorems 1.10 and 2.3 combine to the main result of this paper:

Theorem 2.4. Any simple Lie superalgebra is generated by 2 elements.

References

[1] J.-M. Bois. Generators of simple Lie algebras in arbitrary characteristics. *Math. Z.* 262 (2009): 715-741.

[2] J. E. Humphreys. Introduction to Lie Algebras and Representations Theory. Springer Verlay. New York, 1972.

[3] T. Ionescu. On the generators of semi-simple Lie algebras. *Linear Algebra Appl.* 15 (3), (1976): 271-292.

[4] V.G. Kac. Lie superalgebras. *Adv. Math.* 26 (1977): 8-96.

[5] M. Kuranish. On everywhere dense imbedding of free groups in Lie groups. *Nagoya Math. J.* 2 (1951): 63-71.

[6] M. Scheunert. Theory of Lie superalgebras. *Lecture Notes Math.* 716 (1979), Springer-Verlag.

[7] R. B. Zhang. Serre presentstions of Lie superalgebras. *arXiv:* 1101.3114v1 math. RT, 2011.