Pre-existing T cell immunity determines the frequency and magnitude of cellular immune response to two doses of mRNA vaccine against SARS-CoV-2

José L. Casado a,⇑,1, Pilar Vizcarra a, Johannes Haemmerle b, Héctor Velasco c, Adrián Martín-Hondarza c, Mario J. Rodríguez-Domínguez d, Tamara Velasco a, Sara Martín a, Beatriz Romero-Hernández d, Marina Fernández-Escribano b, Alejandro Vallejo a,c,⇑,1

a Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Madrid, Spain
b Department of Prevention of Occupational Risks, Hospital Universitario Ramon y Cajal, Madrid, Spain
c Laboratory of Immunovirology, Department of Infectious Diseases, Health Research Institute Ramon y Cajal (IRyCIS), Hospital Universitario Ramon y Cajal, Madrid, Spain
d Department of Microbiology, Health Research Institute Ramon y Cajal (IRyCIS), CIBERESP, Hospital Universitario Ramon y Cajal, Madrid, Spain

Article history:
Received 25 October 2021
Received in revised form 31 March 2022
Accepted 25 April 2022
Available online 2 May 2022

Keywords:
SARS-CoV-2 humoral response
Cellular response
mRNA vaccine
Pre-existing immunity

Introductions

Current mRNA BNT162b2 vaccine reported high efficacy in preventing symptomatic SARS-CoV-2 infections after two doses[1,2], but the details of T-cell response following vaccination are still incompletely understood, and questions remain about the correlation between humoral and cellular response[3].

Abbreviations: COVID-19, Coronavirus disease 2019; S protein, Spike protein; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; RT-PCR, retrotranscriptasepolymerase chain reaction; CLIA, chemoluminescent immunoassay; IgG, immunoglobulin G; AU, arbitrary units.

⇑ Corresponding authors at: Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Madrid, Spain (J.L. Casado).
Laboratory of Immunovirology, Department of Infectious Diseases, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRyCIS), Hospital Universitario Ramon y Cajal, Ctra Colmenar Km 9, 28034 Madrid, Spain (A. Vallejo).
E-mail addresses: josuecasado@salud.madrid.org (J.L. Casado), alejandro.vallejo@salud.madrid.org (A. Vallejo).
1 These authors contribute equally to this work and share first authorship.

Indeed, T-cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells[4]. Moreover, T-cell responses are not significantly disrupted by the variants of concern[5] and they can contribute reducing COVID-19 severity[6]. Thus, measurement and quantification of T-cell responses will be key to identify factors associated with lack of response, to establish correlates of protection, and to understand the need of additional vaccine doses. Furthermore, pre-existing cellular response by past infection or cross-reactivity with other coronaviruses might be of importance to achieve a greater and durable immune response after vaccination[7], an important issue since pre-existing T-cell response to SARS-CoV-2 has been observed in 30–60% of unexposed individuals[8,9].

To clarify the differences in cellular response to the two doses of vaccine, and to identify the factors associated with a lower response both in rate and magnitude, we analyze sequentially the T-cell immune response in previously infected and uninfected health care workers (HCWs) after two doses of the Pfizer/BNT162b2 mRNA vaccine.
Material and methods

Sixty-one HCWs evaluated 3 months before vaccination (median 147 days, IQR, 133–160) in a cross-sectional study about humoral and T-cell response to SARS-CoV-2 underwent blood analysis at least 17 days after the first and after the second dose of BNT162b2 vaccine. The participants were divided in convalescents (26, 43%) with clinical or/and serological evidence of previous SARS-CoV-2 infection, and infection-naïve HCWs (35, 57%), who had confirmed negative serology at inclusion, and did not refer previous suggestive symptoms (fever, cough, anosmia, ageusia, headache, diarrhea) or a positive RT-PCR/serology. Both at inclusion and before vaccination, participants were tested for anti-SARS-CoV-2 IgG antibodies to SARS-CoV-2 protein (COVID-19-SARS-CoV-2 IgG ELISA, Demeditech, Germany) to confirm serologic status and rule out subclinical infections, as this was the test used for diagnosis. After each dose of vaccination, humoral response to the S domain of the spike protein was quantified through SARS-CoV-2 IgG II Quant Alinity (Abbott, Maidenhead, UK; positivity threshold 50 arbitrary units; upper limit 40,000 AU/ml).

T-cell immune response

Briefly, overlapping peptides spanning the immunogenic domains of the SARS-CoV-2 spike (S) protein were used to stimulate peripheral blood mononuclear cells (PBMCs) from the participants (PepTivator SARS-CoV-2 Prot S, Miltenyi, Germany) followed by the quantitation of specific interferon (IFN)-γ-producing CD4+ and CD8+ T-cells (Rapid Cytokine Inspector CD4+/CD8+ T cell kit, Miltenyi, Germany) by multiparametric flow cytometry on a MACSQuant Analyzer 10 using MACSQuantify software. A detailed description of the Methods used is included as supplementary file (Supplementary Methods).

This study was approved by our IRB (EC162/20) and written informed consent was obtained from all participants.

Statistical analysis

Cellular response was analyzed globally and according to the presence of prior T-cell immunity. Comparisons between groups were performed using two-tailed statistical tests, chi-square or Fisher’s exact tests for categorical variables, and Mann-Whitney test or 1-way analysis of variance (Kruskal-Wallis test) with Dunn’s correction for multiple comparisons, as appropriate. Correlation between quantitative variables was studied using Spearman rank-order correlation test. Statistical significance was defined as two-sided p values < 0.05. Statistics were performed with SPSS, v 23.0.

Results

Characteristics of enrolled individuals are shown in Table 1. As mentioned, we distinguished two groups: 26 convalescent HCWs (42%) and 35 infection-naive HCWs. Just before vaccination, IgG against protein N continued to be positive in 12 out of 26 (46%) convalescent HCWs. Thus, to highlight, all the included HCWs had 2–3 consecutive serological determinations for a correct categorization (for diagnosis only in those with past infection, and at the time of inclusion and pre-vaccination in all the cases).

Pre-existing T-cell immunity against protein S was observed in 21 individuals (34%): 8 out of the 12 HCWs with positive serology (67%), 4 out of the 14 convalescents with negative serology at baseline (28%), and 9 out of the 35 infection-naïve (26%), the latter cases attributed to cognate cross-reactivity. Nevertheless, the magnitude of CD4+ T-cell response was greater in convalescent with positive serology in comparison with those with past infection who had negativized serology before vaccination (p = 0.013). Of note, a similar magnitude of T-cell response after stimulation was observed between convalescent and infection-naïve individuals with cross-reactivity (Supplementary Fig. 1). These differences in baseline humoral and T-cell immunity permit us to separate our cohort in 4 different subgroups: convalescent with/without positive serology, and infection-naïve individuals with/without cross-reactivity.

IgG Spike-specific humoral response

By considering a limit of 50 AU/mL, spike IgG-specific humoral response was observed in all the cases after the first dose (geometric mean concentration, GMC; 1,481.1 AU/mL; interquartile range, IQR, 486.8–23037.5), and overall, it was increased by 10-fold after the second dose (GMC, 14,326.3 AU/mL; IQR, 8,656.5–24,231.6), an increase observed almost exclusively in uninfected participants. There were no differences in humoral response according to age, presence of comorbidities, or body mass index (BMI). Nevertheless, convalescent HCWs with pre-existing N-specific IgG response showed the highest levels of S-specific IgG antibodies since the first dose of vaccine (GMC, 40,000 and 39,077 AU/mL in both determinations) compared to convalescent HCWs who lost the antibodies against the virus (13,183 and 15,497 AU/mL; p < 0.01 in both determinations in comparison with the convalescent with antibodies pre-vaccination), whereas infection-naïve individuals reach a 10-fold significant increase only after the second dose (median 994 and 11,726 AU/mL; p < 0.01 in both comparisons compared to convalescent individuals with positive serology; Fig. 1).

T-cell response

Of note, CD4+ or CD8+ T-cell response after the first dose of vaccine were highly correlated (r = 0.881; p < 0.01). At this moment, lack of CD4+ or CD8+ T-cell response was observed in 13 (21%) and 10 (16%) individuals, respectively. Pre-existing immunity was the main factor associated with T-cell response and only 1 case of no response was observed among the 21 individuals with pre-
existing immunity secondary to past infection or cross-reactivity (1/21, 5% vs 12/40, 30%; p = 0.082). Thus, one third of infection-naïve HCWs without cross-reactivity had a lack of CD4 + T-cell response to the first dose of vaccine. Also, a similar lack of CD8 + T-cell response was observed in those with pre-existing immunity vs infection-naïve individuals, albeit it was not significant (1/21, 5% vs 9/40, 23%; p = 0.123).

Only 7 (12%) and 2 (3%) individuals remained with lack of S-specific CD4 + or CD8 + T-cell response after the second dose of the vaccine, respectively. However, as expected, these individuals were infection-naïve without cross-reactivity (18% and 5%, respectively) whereas all the patients with pre-existing immunity had CD4 + and CD8 + T-cell response to the second dose of the vaccine (p = 0.042).

Furthermore, pre-existing CD8 + and CD4 + T cell responses to S protein were further augmented by vaccination and it determines the magnitude of T-cell response after the second dose (CD8 +, p = 0.011; CD4 +, p = 0.005; Fig. 2). Notably, those without T-cell response to the first dose of vaccine had a lower cellular response to the second dose, which reach statistical significance for CD8 + T cells (Fig. 3A).

We evaluated other clinical factors that could contribute to lack of T-cell response among those without pre-existing immunity. Thus, individuals without CD8 + T-cell response after the first dose were predominantly older (53 vs 47 years; p = 0.11) and male (p = 0.065) albeit it was not statistically significant.

Correlation between humoral and cellular response

Before vaccination, pre-existing CD8 + and CD4 + were weakly but significantly correlated with specific antibodies pre-vaccination (CD8 +, rho = 0.278, p = 0.03) but this correlation with the humoral response was stronger after the first dose (CD4 +, rho = 0.486, p < 0.001). Furthermore, humoral response after the second dose continue to correlate with CD4 + T-cells at baseline (rho = 0.413; p = 0.004). As expected with this significant correlation, those individuals without pre-existing immunity and who did not develop T-cell response after the first dose of the vaccine had a lower titer of antibodies after the first dose (5,314 vs 14,159 AU/mL; p = 0.021) and after the second dose (10,054 vs 20,322 AU/mL; p = 0.024; Fig. 3B).

Thus, in summary, infection-naïve individuals without pre-existing cross-reactive immunity had a significantly lower humoral response to first and second dose (p < 0.01), and they had a lower rate of CD4 + and CD8 + T-cell response to two vaccine doses both in magnitude and in rate of response (30% and 23% after the first dose, 18% and 5% after second dose, respectively), in comparison with the stronger response observed in all the individuals with pre-existing immunity.

Discussion

We evaluated the CD4 + and CD8 + T-cell responses induced by SARS-CoV-2 mRNA vaccination in a well-studied cohort of SARS-CoV-2 naïve and recovered HCWs. Our data demonstrated the importance of pre-existing immunity, secondary to past infection...
or due to cross-reactivity, to determine the frequency and magnitude of T-cell response after one or two doses of vaccine [10].

In our study, 30% and 18% of individuals without pre-existing immunity showed lack of CD4+ T cell and lower magnitude of response to the first and second dose of the vaccine, a fact that could contribute to a weaker or shorter immune response [11]. This could be important, as antigen-specific memory CD4+ and CD8+ T cells are likely to be less impacted by antibody escape mutations in variant viral strains [5,12]. A similar overall rate of no cellular response has been observed in other studies. Sahin described a 94% of T-cell response after two doses of mRNA vaccine [13]. Furthermore, in a similar study, Painter observed 67% and 85% of CD8+ T-cell response after the first and second dose of vaccine in infection-naïve individuals without T-cell response at baseline [14].

Moreover, we demonstrated that pre-existing cross-reactive T-cells correlated positively with the induction of S-IgG antibody titers after the first and second dose of the vaccine. These data are not surprising, since antigen-specific CD4+ T-cell response plays an important role in antigen-specific B cell development, maturation and survival [14,15], highlighting the convergent development of the humoral and cellular adaptive immunity [16]. Thus, cross-immunity may be responsible for the unexpectedly high efficacy of current vaccines even after a single dose [7], as it has been demonstrated a role in decreasing the severity of infection [6,17]. Also, pre-existing T-cell immunity could clarify some controversial data about the correlation between humoral and cellular response, especially in cross-sectional studies, due to the wide heterogeneity in the magnitude of individual spike-specific T cell responses [3]. Furthermore, HCWs without CD4+ T-cell response after the first dose and subsequent blunted cellular and humoral response after the second dose could be the best candidates for additional vaccine doses.

We tried to identify other factors associated with lack of T-cell response. Vaccine-induced B cell and antibody responses have been noted to decrease with age [18]. Also, magnitude and quality of SARS-CoV-2 cross-reactivity declined with age, suggesting a possible role for age in decreasing response to the vaccine [10]. However, substantial age-associated changes in the induction of antigen-specific T cell responses have not been previously observed [14]. We observed a trend for a worse response associated with older age and sex male, but we consider that we do not have enough sample size to be able to correctly assess this question.

Limitations of our study include the small sample size. Also, time from initial T-cell evaluation (inclusion) to vaccination was around 3 months, and we cannot preclude changes in T-cell cross-reactive immunity during this period. In addition, asymptomatic infections and misclassification of cross-reactivity in the infection-naïve group was possible but unlikely because of the high sensitivity of repeated serological test at least in two determinations, at inclusion and pre-vaccination, and the similar humoral response observed in infection-naïve individuals with and without cross-reactivity. Finally, we did not have important data about incident infections in this cohort, and therefore we cannot establish the risk of disease associated with no response or with a weaker T-cell response.

In conclusion, we demonstrate that pre-existing T-cells correlate with a better cellular response as well as an enhanced humoral response. Both T-cell response and humoral response were correlated following mRNA vaccination, and those infection-naïve
References

[1] Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 2021;384(5):403–16.

[2] Walsh EE, Frenck R, Falsey AR, et al. RNA-Based COVID-19 Vaccine BNT162b2 Selected for a Pivotal Efficacy Study. medRxiv 2020. https://doi.org/10.1101/2020.08.17.20176651.

[3] Reynolds CJ, Swadling L, Gibbons JM, Pade C, Jensen MP, Diniz MO, et al. Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection. Sci Immunol 2020;5(54). https://doi.org/10.1126/sciimmunol.abf6298.

[4] Swadling L, Maini MK. T cells in COVID-19 - united in diversity. Nat Immunol 2020;21(11):1307–8.

[5] Tarke A, Sidney J, Methot N, et al. Impact of SARS-CoV-2 variants on the total CD4(+) and CD8(+) T cell reactivity in infected or vaccinated individuals. Cell Rep Med 2021;2:100355.

[6] Casado JL, Haemmerle J, Vizcarra P, et al. SARS-CoV-2 infections in healthcare workers with a pre-existing T-cell response: a prospective cohort study. Clin Microbiol Infect 2021;27. 916 e911–916 e914.

[7] Casado JL, Haemmerle J, Vizcarra P, Rodriguez-Dominguez M, Velasco T, Velasco H, et al. T-cell response after first dose of BNT162b2 SARS-CoV-2 vaccine among healthcare workers with previous infection or cross-reactive immunity. Clin Transl Immunology 2021;10(9). https://doi.org/10.1002/cti2.v10.9.1002/cti2.1341.

[8] Grifoni A, Weiskopf D, Ramirez S, Mateus J, Dan JM, Modedercher CR, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020;181(7):1489–1501. e15.

[9] Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, et al. T-cell reactivity in SARS-CoV-2 infected and vaccinated individuals. Cell Host Microbe 2021;29(5):1137–1150.e1136.

[10] Loyal L, Braun J, Henze L, Kruse B, Dingeldey M, Reimer U, et al. Cross-reactive CD4(+) T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science 2021;374(6564).

[11] Lau J, Boxill C, Diaz MA, Park MS, et al. A single dose of the SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector functions and T cell responses. Cell Host Microbe 2021;29(5):1137–1150.e1136.

[12] Geers D, Shamier MC, Bogers S, et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci Immunol 2021 May 25;6(59). eabj1750. doi: 10.1126/sciimmunol.abj1750.

[13] Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, et al. CD4(+) T cells are associated with coordinated humoral and cellular immunity to SARS-CoV-mRNA vaccination. Immunity 2021;54:2133–2142.e2133.

[14] Peng Y, Mentzer AJ, Liu G, et al. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent COVID-19 patients. Nat Immunol 2020;21:1336–45. https://doi.org/10.1038/s41590-020-0782-6.

[15] Verity M, Okell LC, Cori A, et al. Transmission dynamics of SARS-CoV-2 in England, France, Germany, Italy, Spain and the United States. Science 2020;368(6493):1022315. https://doi.org/10.1126/science.abc9807.

[16] Pearlman RS, Painter MM, Apostolidis SA, et al. mRNA Vaccination Induces Durable Immune Memory to SARS-CoV-2 with Continued Evolution to Variants of Concern. bioRxiv 2021. https://doi.org/10.1101/2021.08.23.457229.