БОЛЬОВІ ТА ВЕРТЕБРОГЕННІ СИНДРОМИ У ХВОРИХ НА РОЗСІЯНИЙ СКЛЕРОЗ (ОГЛЯД ЛІТЕРАТУРИ)

Тетяна Негрич, Катерина Гичка, Юрій Матвієнко
Львівський національний медичний університет імені Данила Галицького, м. Львів, Україна
katerunapyhur@gmail.com

Резюме
Розсіяний склероз (РС) – найпоширеніше захворювання центральної нервової системи (ЦНС), що є причиною стійкої інвалідизації осіб молодого працездатного віку. Серед основних синдромів РС, які найчастіше трапляються, – координаційні розлади, порушення зору, центральні парези, розлади діяльності тазових органів, розлади почуттів, але не біль. З’ясовано, що половина хворих на РС страждають від хронічного болю. Дуже часто біль є першим проявом РС, частота якого може сягати 11% випадків.

Розглянуто особливості больових синдромів, а також захворювань хребта як прояви коморбідних станів при РС, проаналізовано їхні зв’язок з клінічними особливостями перебігу розсіяного склерозу.

Проблема больового синдрому у хворих на РС набуває все більшого значення. Дослідження останніх років свідчать про те, що не менше 2/3 пацієнтів із розсіяним склерозом, у тій чи іншій мірі, страждають від боля, не менше 40% з них характеризують його як постійний. Хворі на РС за наявності больового синдрому більш інвалідизовані та соціально дезадаптовані, ніж особи з аналогічним неврологічним дефектом, але без больового синдрому.

У хворих на РС із больовим синдромом переважають головний біль, біль у шийно-грудному та попереково-кріжковому відділах хребта, а також нейропатичний біль у нижніх кінцівках. Враховуючи актуальність проблеми больових і вертеброгенних синдромів, демієлінізуючі захворювання потребують пильної уваги та подальшого вивчення.

Вертеброгенні синдроми при РС формуються під впливом декількох чинників, серед яких найчастіше трапляються вогнища демієлінізації, дистрофічні зміни хребта й остеопороз. При РС вертеброгенні синдроми мають свої особливості: ранній початок, довготривалий біль без чітких періодів погіршення і поліпшення, помірно виражені м’язово-тонічні порушення, які спостерігаються в усіх відділах хребта.

Неврологічні порушення при РС присуджують розвиток різнопланових функціональних та органічних (дистрофічних) процесів у хребті. Нерідко вертеброгенні та больові синдроми передують розгорнутій клінічній картині захворювання, коли хворі місяцями та роками лікуються у вертебрологів, а іноді у нейрохірургів. Тільки своєчасний огляд неврологів і дослідження МРТ головного та спинного мозку дають змогу встановити правильний діагноз.

Ключові слова: розсіяний склероз, коморбідність, патологія хребта, біль, огляд літератури.
PAIN AND VERTEBROGENIC SYNDROMES IN PATIENTS WITH MULTIPLE SCLEROSIS (REVIEW OF LITERATURE)

Tetyana Nehrych, Kateryna Gychka, Yuriy Matviyenko

Lviv National Medical University named after Danylo Halytsky, Lviv, Ukraine
katerunapyhur@gmail.com

Resume

Multiple sclerosis (MS) is the most prevalent disease of the central nervous system (CNS) that causes persistent disability of young people at the working age. Among the most frequent MS syndromes are coordinative disorders, visual disturbances, central pareses, pelvic disorders, sense of discomfort, but not pain. It has been established that half of these patients suffer from chronic pain. Very often, pain is the first manifestation of MS (in up to 11% cases).

The article presents the features of pain syndromes and spinal diseases as manifestations of comorbid states in MS. We have also analyzed their connection with clinical features of this disease’s course.

The problem of pain syndrome in MS patients is becoming more and more important nowadays. Recent studies suggest that at least 2/3 of patients with this disease have pain to varying degrees and at least 40% of them characterized their pain as persistent. In case of pain, MS patients are more disabled and socially disadapted than those with a similar neurological defect without a pain syndrome.

Patients with pain syndrome mostly suffer from headaches, pain in the cervical-thoracic and lumbar-sacral spine, and neuropathic pain in lower limbs. Considering the urgency of the problem of pain and vertebrogenic syndromes, demyelinating diseases require close observation and further study.

Vertebrogenic syndromes in MS develop due to the influence of several factors, mostly, centers of demyelination, dystrophic changes in the spine and osteoporosis. In MS, vertebrogenic syndromes have their own peculiarities: early onset, a long-term pain without clear periods of deterioration or improvement, moderately evident muscular and tonic disorders that are observed in all parts of the spine.

Neurological disorders in MS accelerate the development of diverse functional and organic (dystrophic) processes in the spine. Often, vertebrogenic and pain syndromes precede the widespread clinical picture of the disease, when patients have been treated by vertebrologists, and sometimes by neurosurgeons for months and years. Only timely observation by neurologists and MRI of the brain and spinal cord allow making the correct diagnosis.

Key words: Multiple sclerosis; comorbidity; spinal pathology; pain; references.
Multiple sclerosis and pain syndromes

Multiple sclerosis (MS) is one of the most prevalent common diseases of the central nervous system (CNS), which is the cause of persistent disability of young people in working age [1]. Among the main syndromes of this disorder, coordinative disorders, visual disturbances, central pareses, pelvic disorders, senses of discomfort, but not pain, are observed. It has been established that half of patients with MS suffered from chronic pain. Pain is the first manifestation of MS in 11% of cases.

The clinical picture of these patients shows that pain syndromes occur quite often and are currently characterized by a majority of researchers as a common disorder due to multi-centric demyelinating damage to the nervous system [2,3,4,5]. According to modern studies, from 29 to 90% of patients reported pain at different stages of the disease. Although pain syndromes are not related to typical clinical manifestations of this disease, presence of pain in case of MS can significantly impair the quality of life [6,7] and contribute to worsening of neurological deficit syndrome [3,8]. At the same time, data on the extent of pain syndromes’ effect on the daily life of MS patients and on acceleration of disability development, are ambiguous and need to be clarified [2,3,5,9].

The multicenter study dedicated to prevalence of pain in case of MS [5] determines that major factors associated with the development of pain were longer duration of disease, older age, and non-remitting course of the disease, decreased physical activity, and significant disability. According to other data, pain in case of MS directly correlates with the level of anxiety, depression, and fatigue and increases if sleep disorders and increase of muscular spasticity occur [3,7,10,11].

In some cases, pain syndromes in case of MS are directly related to the demyelinating process in the CNS and its consequences, whereas in other case they result from comorbid diseases with a high probability of mutual aggravated exposure [3,4,5]. However, the degree and direction of this influence need to be studied further.

According to the current classification of pain in case of MS [12], these patients have several types of pain. Most often, it is neuropathic or

Розсіяний склероз і больові синдроми

Розсіяний склероз (РС) – найбільш поширене захворювання центральної нервої системи (ЦНС), що є причиною стійкої інвалідизації осіб молодого працездатного віку [1]. Серед основних синдромів РС, які описують найчастіше, координаційні розлади, порушення зору, центральні парези, розлади діяльності тазових органів, розлади початтів, але не біль. З'ясовано, що половина хворих на РС страждають від хронічного болю. Біль є першим проявом РС в 11% випадків.

У клінічній картині хворих на РС, внаслідок багатошаровицького деміелінізуючого ураження нервої системи, больові синдроми трапляються досить часто і більшість дослідників характеризують як поширені розлад [2,3,4,5]. Про наявність болю на різних етапах захворювання, за даними сучасних досліджень, повідомляють від 29 до 90% хворих. Хоча больові синдроми і не належать до типових клінічних проявів захворювання, проте відносно біль при РС може суттєво погіршити якість життя пацієнтів [6,7], сприяючи поглибленню у них симптомів неврологічного дефіциту [3,8]. Водночас дані про ступінь впливу больових синдромів на повсякденне існування хворих на РС і на пришвидшення розвитку інвалідизації неоднозначні й потребують уточнення [2,3,5,9].

У багатоцентровому дослідженні щодо поширеності болю при РС [5], як головні чинники, що пов’язані з розвитком болю, визначено більшу тривалість захворювання, старший вік обстежених, не ремікуючий перебіг, зменшення фізичної активності та значну інвалідизацію. Тоді як за іншими даними, біль при РС прямо корелює з рівнем тривоги, депресії та втоми, посилюється за умови появи розладів сну та нарощання спастичності м’язів [3,7,10,11].

У деяких випадках больові синдроми при РС безпосередньо пов’язані з деміелінізуючим процесом в ЦНС і його наслідками, в інших – є результатом коморбідних захворювань, з високою вірогідністю взаємного обтяжувального впливу [3,4,5]. Однак ступінь і напрям цього впливу потребують подальшого вивчення.

Згідно з сучасною класифікацією болю при РС [12] у хворих з цією патологією простежується декілька типів болю. Найчастіше це

The clinical picture of these patients shows that pain syndromes occur quite often and are currently characterized by a majority of researchers as a common disorder due to multi-centric demyelinating damage to the nervous system [2,3,4,5]. According to modern studies, from 29 to 90% of patients reported pain at different stages of the disease. Although pain syndromes are not related to typical clinical manifestations of this disease, presence of pain in case of MS can significantly impair the quality of life [6,7] and contribute to worsening of neurological deficit syndrome [3,8]. At the same time, data on the extent of pain syndromes’ effect on the daily life of MS patients and on acceleration of disability development, are ambiguous and need to be clarified [2,3,5,9].

The multicenter study dedicated to prevalence of pain in case of MS [5] determines that major factors associated with the development of pain were longer duration of disease, older age, and non-remitting course of the disease, decreased physical activity, and significant disability. According to other data, pain in case of MS directly correlates with the level of anxiety, depression, and fatigue and increases if sleep disorders and increase of muscular spasticity occur [3,7,10,11].

In some cases, pain syndromes in case of MS are directly related to the demyelinating process in the CNS and its consequences, whereas in other case they result from comorbid diseases with a high probability of mutual aggravated exposure [3,4,5]. However, the degree and direction of this influence need to be studied further.

According to the current classification of pain in case of MS [12], these patients have several types of pain. Most often, it is neuropathic or
невропатичний, або нейрогенный біль (за-звичай напряму пов’язаний з руйнуванням мілінової оболонки нервових утворень) і нонцептивний біль (НЦБ), рідше – змішаний біль (ЗБ) та інші види.

З групи невропатичного болю (НПБ) у хворих на РС за частотою переважають деаферента-ційний біль в кінцівках (10–29%), причиною виникнення якого є множинні демілінізуючі ураження уздовж спинно-таламо-кіркових шляхів на рівні сенсорної кори і таламуса; тригемінальна невралгія (3–7%), що вини-кає внаслідок компресії бляшкою нисхідного корінця п. trigemini на рівні довгастого мозку та нижнього відділу мозу; синдром Лерміт-та (7–13 %), пов’язаний з ураженням задніх стовпів спинного мозку на шийному рівні.

Серед НЦБ у хворих на РС найчастіше спо-стерігається м’язово-скелетний біль (17– 24%), біль у спині (10–19%), лицевий біль (ЛБ) (43–58%) та індукований лікуванням біль (ІЛБ) (16–28%).

Механізм НЦБ при РС насамперед пов’язаний із вторинними постуральними аномаліями, які виникають внаслідок рухових порушень, що формуються у хворих на РС внаслідок домінуючих у цьому захворюванні симптомів ураження пірамідних шляхів і мозочка, таких як центральна пареза, спастичність, атаксія, порушення функції ходи [3,8].

Треба враховувати також патологічні зміни опорно-рухового апарата, які пов’язані зі значним прискоренням розвитку остеопорозу, який веде до швидкого прогресування остеохондрозу хребта (здебільшого попереково-кріжкового відділу) й артрозів суглобів нижніх кінцівок [3,4,8,13,22].

Крім того, у знижені загальної трофічної функції кісткової тканини й у схильності до веретеброгенних болювих синдромів попереково-кріжкового рівня у хворих на РС може відгрупувати роль нефрологічна патологія, в тім числі порушення функції системи нирок [8,14]. Згідно з поглядами різних авторів, вважається, що саме ця система, яка часто страждає у хворих на РС, забезпечує структурну цілісність і функціональну повноцінність ЦНС. Крім того, одним із важливих ас-пектів загальної регуляторної діяльності цієї системи є контроль функції кісток і суглобів насамперед поперекового відділу хребта.

When it comes to the group of neuropathic pain (NPP), the most prevalent in patients with MS are deafferentative pain in extremities (10-29%) caused by multiple demyelinating lesions along the spinal-thalamic-cortical pathways at the level of the sensory cortex and thalamus; trigeminal neuralgia (3-7%), resulting from the compression of the descending root of trigeminal nerve by plaque at the level of medulla oblongata and the lower pontine part; Lhermitte’s sign (7-13%) that is associated with lesions of the spinal posterior columns at the cervical level.

Among MS patients with NCP, the musculoskeletal pain (17-24%), back pain (10-19%), facial pain (FP) (43-58%), and treatment-induced pain (TIP) 16-28%) are observed the most often.

The mechanism of NCP in case of MS is primarily related to secondary postural anomalies arising from motor disorders formed as a result of the dominant symptoms of the pyramidal pathways and cerebellum involvement, such as central pareses, spasticity, ataxia, ambulation disorders [3,8].

It is also necessary to consider pathological changes of the musculoskeletal system associated with a significant acceleration of osteoporosis, that leads to rapid progression of the spinal osteochondrosis (mainly located in lumbosacral area) and to that of lower extremities’ arthrosis [3,4,8,13,22].

Besides, nephrological pathology, including disorders of the renal function, may play some role in reducing overall trophic function of bone tissue and in the tendency to vertebrogenic pain syndromes’ development at the lumbar-sacral level in MS patients. According to the views of different authors, it is believed that this system, which is often impacted in MS patients, ensures structural and functional integrity of the CNS. Moreover, one of the important elements of the total regulatory activity of this system is the control of bone and joint function, and first of all, at the lumbar spine.
Цефалгії та лицевий біль при РС можуть бути пов’язані з вогнищами демілінізації в центральній і периферичній нервовій системі (зокрема, при оптичному невриті), мати вторинний, м’язово-скелетний характер (мігірень, цервікогенний біль голови), а також бути обумовлені коморбідною патологією (мігірень, голови, напруження), тому їх доцільніше визначити як змісі, а не чисто ноцецептивні.

До групи болю змішаного генезу при РС прийнято зачисляти болючий тонічний м’язовий спазм (5-12%) та біль спадковості (27-35%), які пов’язані з демілінізуючим ураженням у ділянці пірамідних шляхів і підійняттям тонічного рефлексу розтягування, що призводить до надмірної роботи м’язів і виникнення механічного м’язового болю.

Нарешті, певна частина больових синдромів у хворих на РС (найчастіше це біль голови) може бути пов’язана з застосуванням патогенетично- лікування щодо профілактики загострення захворювання, особливо на початку лікування з використанням препаратів інтерферону IFNb 1b більшою мірою, і менш значно IFNb 1a.

Цю проблему також вивчали і в Україні. Зокрема, за даними Чуприни Г.М., Свиридової Н.К., Петренка М.С. 2016 [15] середній рівень поширеності больових синдромів у хворих на РС становить 76,3%. У досліджуваній популяції вони мали значніше поширення та важкий перебіг за даними показників шкала ОБМГ (опітувальний болю МакГілла) та ВАШ (візуальна аналогова шкала болю) у групі хворих з коморбідною патологією. Найбільш виражени больові синдроми, за даними оцінок показників ОБМГ і ВАШ, тримаються у хворих на РС з полімодальним перебігом болю та за умов полікоморбідності.

Про зв’язок між РС і болем голови (зокрема первинним) було відомо давно. Згідно з даними одного дослідження [16], понад 50% осіб із підтвердженням діагнозом РС відзначали наявність цефалгії (найчастіше біль голови напру- ги та мігірень). Найчіткіша корелляція існувала між наявністю мігірень та рецидивируючо-ремітуючому перебігу основного захворювання. Інше дослідження [17] засвідчило, що первинні цефалгії при РС тримаються з частотою 73.5% у фазі ремісії і 38.9% – у фазі загострення. Первінний розколючий біль голови був най- поширенішою первинною цефалгією під час загострення, а мігірень і біль голови напруги – у Cephalgias and FP pain in case of MS may be associated with centers of demyelination in the central and peripheral nervous system (in particular, in optical neuritis), assume secondary, musculoskeletal character (for example, cervicogenic headache) and be caused by comorbid pathology (migraine, tension headache), so it is more appropriate to define them as mixed, not purely NCP.

Mixed pain in MS includes painful tonic muscle spasm (5-12%) and pain due to spasticity (27-35%) associated with demyelinating lesions in the pyramidal pathway and increase of stretching tonic reflex, which, in turn, leads to excessive muscle activity and development of mechanical muscular pain.

Finally, some of pain syndromes in MS (most often, headaches) may be associated with pathogenic treatment for prevention of exacerbations, especially at the beginning of treatment with interferon drugs IFN-beta1b and less often with IFN-beta1a.

This problem was also studied in Ukraine. According to Chuprynà G.M., Sviridova N.K., Petrenko M.S. (2016) [15], the average prevalence of pain syndromes in MS is 76.3%. In the studied population, they were more prevalent and more severe based on the indicators of McGill pain questionnaire and WAS (Visual Analog Scale) in the group of patients with comorbid pathology. The most evident pain syndromes, according to McGill’s pain questionnaire and VAS indicators, were found among MS patients with polymodal pain and in case of poly-comorbidity.

The relation between MS and headache (in particular, the primary one) has been known for a long time. According to one study [16], over 50% of people with confirmed diagnosis of MS noted the presence of cephalgia (mostly, tension headache and migraine). The clearest correlation existed between migraine and relapsing-remitting course of the underlying disease. Another study [17] has shown that primary cephalgia in case of MS has incidence of 73.5% in the remission phase and 38.9% in the exacerbation phase. Primary thunderclap headache was the most common primary cephalgia during exacerbations, and migraine and tension headache – during remissions. It is interesting that according to
Існує багато потенційних терапевтичних можливостей в лікуванні цефалічних синдромів у згаданих пацієнтів, хоча цей біль може бути і рефрактерним. Пацієнти з РС часто страждають від різних коморбідностей (депресія, нейропатичний біль, астенія), тому дуже важливим є адекватний контроль болю голови, оскільки він може посилювати депресію в цій популляції хворих.

Розсіяний склероз і патологія хребта
Дистофічні процеси хребта у хворих на РС розвиваються так само часто, як і в популяції загалом. В умовах спастичного парезу й атаксії, по-перше, зростає навантаження на паравертебральні м’язи; по-друге, можуть прискорюватися дистофічні процеси в міжхребцевих дисках і дуговідросткових суглобах.

Найчастіше люмбалія та ішіалгія при РС клінічно не відрізняються від больових синдромів

В іншому дослідженні [19] порівнювали хворих на РС з мігрією і хворих на РС. Було виявлено, що в першій групі рідкісно виявляли біль значуще залучення чорної речовини та червоного ядра. Ці знахідки за- свідчують важливий факт, що демілінізуючі вогнища в одних випадках більш ймовірно асоційовані з виникненням цефалічних синдромів, ніж в інших. Інша зона головного мозку, яка пов’язана з розвитком мігренеподібних болів при демілінізації, – навколово- допровідна сіра речовина. Фактично, у хворих на РС, які мають бляшки в цій ділянці, а також у середньому мозку, ризик виникнення мігренеподібних станів у 4 рази вищий, порівняно з хворими, в яких немає залучення згаданої ділянки [20]. У літературі описано декілька випадків, де дебют або погіршення вже існуючої мігрені були маніфестними симптомами РС [21,22]. Це ж стосується і кластерного болю голови [23]. Хоча згадані вище випадки і зазначені можливий причинний зв’язок між вогнищами демілінізації і подальшим розвитком болю голови, існує припущення про двонапрямлену залежність між РС і мігренею/болем голови напруги. Говорять про можливий вплив цефалії не лише на перебіг основного захворювання, а й на його радіологічні характеристики [24].

There are many potential therapeutic options available for treatment of cephalic syndromes in these patients, although this pain may be refractory. Patients with MS often suffer from various comorbidities (depression, neuropathic pain, and asthenia), therefore, adequate control of headache is important because it can exacerbate depression in this population group.
dorsopathy with spinal osteochondrosis. Due to progression of the dystrophic process in the intervertebral discs, the latter may cause compression of the spinal cord. This etiology of pain syndrome at the level of cervical spine was described by K. Bashir [25] in 14 patients with multiple sclerosis. Clinically, it is manifested as a progressive myelopathy, cervicalgia, and radicular syndromes at the cervical level.

P. Korovessis et al. [26] report about a patient, who was operated three times on intervertebral disks’ hernias at the cervical, thoracic and lumbar levels before the diagnosis of MS was made. Using MRI, C. Poser [27] found cervical lesions typical for MS at the level of spinal cord compression with altered intervertebral discs. Similar results are reported by D. Thomas et al. [28]. These facts confirm the hypothesis of R. Brain, M. Wilkinson [29], and D. Oppenheimer [30] about the relation between cervical osteochondrosis and foci at the cervical spinal cord level. However, available radiological literature describes such changes as “foci of myelomalacia” that appear at the level of intervertebral hernia.

M.M. Spirin, Y.G. Beznisko, N.A. Marenichev published the results of spinal X-ray performed in 25 patients with MS (36 studies), and that of MRI of spine and spinal cord in 28 patients (42 studies, which included 21 tests at cervical level, 15 at thoracic level, and 6 at lumbar level) in a separate chapter of the book authored by Gusev E., Zavalishin I., Boyko A. and named “Multiple sclerosis and other demyelinating diseases” [31]. Some pathological changes in intervertebral discs and adjacent vertebral bodies (narrowing of the intervertebral fissures, Shmorl's hernias, disk calcification, subchondral sclerosis, and osteophytes) were detected in 93% of patients. This is a very high percentage of dystrophic changes’ detection, considering that the average age of patients is relatively young (34.7 ± 11.0 years), and 50% of individuals in this group are under the age of 35.

Thus, MS patients have some active harmful factors leading to acceleration of dystrophic processes. There is a correlation between the X-ray score-evaluated changes and some immunological parameters (level of activated T-lymphocytes with the marker HLA-DR, r =
мркером HLA-DR, \(r = 0,77; p < 0,05 \), рентгенологічних змін шийного відрізку хребта і вмісту циркулюючих імунних комплексів \((r = 0,75; p < 0,05) \). Можна припустити, що автоімунна агресія при розсіяному склерозі спрямована не тільки проти мієліну, а й проти кісткової, хрящової та м'язової тканини.

При МРТ зміни дисків виявлені у 88,9% хворих (у тім числі протрізку у 48,2%, випинання гриж в горизонтальній площині у 26,0%, грижі Шморля у 22,2%). У 26,0% було стиснення дурального мішка або спинного мозку зміненими дисками, у двох хворих виявлено вогнища мієломалії, в однієї з них виявили три вогнища в шийному відрізку спинного мозку, два з яких розширені як вогнища демілінізації. Однак дистрофічні зміни хребта у хворих на РС не були настільки виражени, як у пацієнтів з остеохондрозом. У групі розсіяного склерозу виявлені достовірні кореляції МРТ-змін \((r = 0,4; p < 0,05) \).

Згадані вище автори досліджували також статично-динамічні функції хребта при РС. Досить часті були функціональні блокади міжхребцевих сполучень. У 25% випадків блокади виявлені в шийному відрізку, в 50% – в грудному, в 63% – в поперековому відрізку. У 94% осіб виявлено одно- та двосторонні функціональні блокади кріжово-клубового зчленування. Подібні блокади були незалежно від підвищення або зниження м'язового тонусу в кінцях пірамідного або мозочкового характеру.

У пацієнтів також виявили клінічні ознаки патології міжхребцевих сполучень: хрускіт у хребті під час руху \((58,3\% \), причому \(34,2\% \) з них описували зникнення дискомфорту або боля в спині після певного руху, який супроводжувався хрустом, що можна розізнити як самостійне зняття функціонального блоку хребетного рухового сегмента. Блокування кріжово-клубового зчленування виявлено у \(66,7\% \) хворих на РС, \(64,7\% \) хворих остеохондрозом і у \(22,2\% \) у контрольній групі \((p<0,01, \) порівняно з контрольною групою).

Клінічні ознаки спондилолігнеозу за шкалою А.І. Прода на виявлені у \(55,0\% \) хворих на РС, що достовірно частіше, ніж при остеохондрозі \((26,5\%; p < 0,05) \). При рентгенографії спондилолігнеоз виявлено у \(38,5\% \) пацієнтів.

MRI scan shows disc changes in 88.9% of patients (including protrusion in 48.2% of cases, protrusion of hernia in horizontal plane in 26.0% of cases, and Shmorl’s hernia in 22.2% of cases). In 26.0% of cases, compression of the dural sac or spinal cord with altered discs was observed, in 2 patients, imaging revealed centers of myelomalacia, and in one of them there were three foci in the cervical spinal cord, two of which were considered as demyelinating ones. However, dystrophic changes in the spine of MS patients were not as evident as among patients with osteochondrosis. In MS group, reliable correlations between MRI scored changes and EDSS scores \((r = 0,4; p < 0,05) \) were found.

The patients also displayed clinical signs of intervertebral junction pathology: spinal cracking in motion \((58.3\% \), and \(34.2\% \) of them described disappearance of discomfort or back pain after a certain movement, which was accompanied by a crunching sound. This can be regarded as an independent elimination of the functional block of the vertebral motor segment. The blocks of sacroiliac joints were found in 66.7% of MS patients, 64.7% of patients with osteochondrosis and 22.2% of individuals in the control group \((p < 0.01, \) in contrast to the control group).

According to Prodan’s scale, clinical signs of spondyloarthrosis were detected in 55.0% of patients with MS, which is significantly more frequent compared to osteochondrosis \((26.5%; p < 0.05) \). On X-ray, spondyloarthrosis was revealed in 38.5% of patients.
Порушення статики хребетного стовпа у хворих на РС траплялися достовірно чаше, ніж у контрольній групі. Вони полягали в наявності сколіозу (81.7%), сколіотичної постави (15.0%), зміні фізіологічних вигинів хребта в сагітальній площині. Найчастіше траплялася S-подібний комбінований сколіоз (2 дуги, 2 вершини: ThVII-IХ і L1-IIІ, в 75.0%). Зміни положення таза виявлено у всіх обстежених хворих на РС («скрученний» таз у 65.0%, «косий» – у 35.0%).

Представлені для розвитку сколіозу при РС можуть бути координаторні та пропрорецептивні порушення (подібні розлади легкого ступеня виявлено у пацієнтів зі сколіозами при спеціальних інструментальних дослідженнях). Крім того, на статику хребта впливає зміна положення таза, що формується через порушення роботи м'язів, які прикріплюються до тазових кісток.

М'язово-тонічний синдром також був достовірно більш вираженим у хворих на РС, ніж у здорових осіб, значущих відмінностей із групою здорових з остеохондрозом не виявлено. Особливою є та зміни при РС є біль «рівномірний» розподіл м'язово-тонічних порушень по відділах хребта, а також по- мірна вираженість цих порушень, тоді як при остеохондрозі здебільшого відбувається один відділ із розвитком вираженого м'язово-тонічного синдрому.

Остеопороз при РС трапляється часто, позаяк порушується рухова активність, пацієнти проходять тривале лікування глукокортикоїдами, відзначається низький рівень вітаміну D у крові, серед пацієнтів переважають жінки. Біль, зумовлений остеопорозом, локальний і, значною мірою, провокується зміною положення тіла. За даними Cosman F, Nieves J, Komar L et al. [32], спонтанні переломи трапляються у 22% хворих на РС (у здорових людей – в 2%). За 2 роки спостереження втрати кісткової маси тіл хребців у хворих на РС становила 1,6–3,5%, за відсутності такої в групі контрольу. Кісткова маса тіл хребців у жінок з РС була на 10% нижче вікової норми. Подібні порушення збільшують ризик переломів від 2 до 6 разів.

Висновки
Неврологічні порушення при РС прискорюють розвиток різноманітних органічних та органичних процесів

Disorders of vertebral column’s static in MS patients were significantly more frequent as compared to the control group. They included scoliosis (81.7%), scoliotic posture (15.0%), and changes in the spinal physiological curvature of the sagittal plane. S-shaped combination scoliosis (2 arcs, 2 peaks: Th7-Th9 and L1-L3, 75.0%) was observed he most often. Changes in the pelvic region were found in all examined MS patients (“twisted” pelvis in 65.0% of cases, “skewed” one in 35.0% of cases).

The muscular-tonic syndrome was also significantly more pronounced in MS patients, than in healthy individuals, meaningful differences from the group of patients with osteochondrosis were not detected. The peculiarity of these changes in MS include a more “uniform” distribution of musculoskeletal disorders along the spinal column, as well as their moderate severity, whereas in case of osteochondrosis, only one spinal part is involved and severe muscle-tonic syndrome is developed.

Osteoporosis in MS is common, due to limited motor activity, long-term treatment with glucocorticoids, low blood vitamin D levels, and predominance of women among patients. The pain caused by osteoporosis is local and, largely, provoked by a change of body position. According to Cosman F, Nieves J, Komar L et al. [32], spontaneous fractures occur in 22% of MS patients (2% among healthy people). During 2 years of follow-up, bone mass loss in the vertebral bodies of MS patients with MS was 1.6-3.5%, while the control group had no such changes. The bone mass of vertebral bodies among women with MS was 10% below the age-matched standard. Such disorders increase the risk of fractures by 2–6 times.

Conclusions
Neurological disorders in MS accelerate the development of diverse functional and organic (dystrophic) spinal processes.
у хребті. Нерідко вертеброгенна та більовий синдроми передують роззорнутій клінічній картині захворювань, коли хворі місяцями та роками лікуються у ветеринарів, а іноді у нейрохірургів. Тільки своєчасний огляд неврологів і дослідження МРТ головного та спинного мозку дають змогу встановити правильний діагноз. У хворих на РС із більовим синдромом переважає головний біль, біль у шийно-грудному та попереково-крижковому відділах хребта, а також нейропатичний біль у нижніх кінцівках. Враховуючи актуальність проблеми більових і вертеброгенних синдромів, деміелінізуючі захворювання потребують пильної уваги та подальшого вивчення.

Окремі синдроми можуть бути спостерігани без наявності стабільного синдрому. Часто залучення невролога до обстеження може допомогти у встановленні правильного діагнозу.

Література

1. Negrych T., Orynchak L. Efektyvnist' preparativ vnukrish 'ovennogo imunoglobulinu v terapii rozsijanogo sklerozu: Mizhnaudnyj neurologichnyj zhurnal. 2015; (2):6-64.
2. Foley P., Vesterinen H., Laird B., Sena E., Colvin L., Chandran S. et al. Prevalence and natural history of pain in adults with multiple sclerosis: Systematic review and meta-analysis. Pain. 2013;154(5):632-642.
3. Villani V., Prosperini L., Ciuffoli A., Pizzolato R., Salvetti M., Pozzilli C. et al. Primary headache and vertebrogenic syndromes: Medical Journal of Australia. 2012;260(2):351-367.
4. Pakpoor J, Handel A, Giovannoni G, Dobson R, Ramagopalan S. Meta-Analysis of the Relationship between Multiple Sclerosis and Migraine. PLoS ONE. 2012;7(9):e45295.
5. Hirsh A., Turner A., Ehde D., Haselkorn J. Prevalence and Impact of Pain in Multiple Sclerosis: Physical and Psychologic Contributors. Archives of Physical Medicine and Rehabilitation. 2009;90(4):646-651.

Часто залучення невролога до обстеження може допомогти у встановленні правильного діагнозу.
21. Fragoso Y., Brooks J. Two Cases of Lesions in Brainstem in Multiple Sclerosis and Refractory Migraine. Headache: The Journal of Head and Face Pain. 2007;47(6):852-854.
22. Lin G., Wang C., Chiang T., Peng G., Yang F. Multiple sclerosis presenting initially with a worsening of migraine symptoms. The Journal of Headache and Pain. 2013;14(1).
23. González-Quintanilla V., Oterino A., Toriello M., de Pablos C., Wu Y., de Marco E. et al. Cluster-tic syndrome as the initial manifestation of multiple sclerosis. The Journal of Headache and Pain. 2012;13(5):425-429.
24. Kister I., Caminero A., Herbert J., Lipton R. Tension-type Headache and Migraine in Multiple Sclerosis. Current Pain and Headache Reports. 2010;14(6):441-448.
25. Bashir K., Whitaker J. Importance of paraclinical and CSF studies in the diagnosis of MS in patients presenting with partial cervical transverse myelopathy and negative cranial MRI. Multiple Sclerosis Journal. 2000;6(5):312-316.
26. Korovessis P., Maraziotis T., Stamatakis M., Baikousis A. Simultaneous three-level disc herniation in a patient with multiple sclerosis. European Spine Journal. 1996;5(4):278-280.
27. Poser C. MRI of spinal cord in multiple sclerosis. The Lancet. 1993;341(8851):1025.
28. Thomas D., Pennock J., Bydder G., Steiner R., Hajnal J., Young I. Magnetic resonance imaging of spinal cord in multiple sclerosis by fluid-attenuated inversion recovery. The Lancet. 1993;341(8845):593-594.
29. Brain R., Wilkinson M. The Association Of Cervical Spondylosis And Disseminated Sclerosis. Brain. 1957;80(4):456-478.
30. OPPENHEIMER D. THE CERVICAL CORD IN MULTIPLE SCLEROSIS. Neuropathology and Applied Neurobiology. 1978;4(2):151-162.
31. Gusev E., Zavalyshyn Y., Bojko A. Rozsijanyj skleroz i drugye demyelynyzyrujushhye zabolevanyja. Myklosh. 2004;1: 540.
32. Cosman F., Nieves J., Komar L., Ferrer G., Herbert J., Formica C. et al. Fracture history and bone loss in patients with MS. Neurology. 1998;51(4):1161-1165.