Measurement of degradation on under-utilized natural turf

Krisztina Varga – István Csízi
UD CAS Institutes for Agricultural Research and Educational Farm, Karcag 5300, Karcag, Kisújszállási út 166.
vargakrisztina@agr.unideb.hu

SUMMARY

The role of turf serving animal husbandry is significantly declining with the decreasing number of grazing livestock in Hungary. Accordingly, the area of under-utilized or non-utilized turfs is increasing. At the University of Debrecen, Institutes for Agricultural Research and Educational Farm, Karcag Research Institute we studied four types of turf utilization in three repetitions on a salt meadow with Alopecurus pratensis. As a result of the performed examinations, we identified the composition of the flora structure on the investigated area and we measured carbon-dioxide circulation and soil moisture.

Keywords: under-utilized turf, Social Behaviour Types by Borhidi, coenological, carbon-dioxide emission, soil temperature, soil moisture

INTRODUCTION

Turf cultivation occupies 11% of agricultural area in our country (799.3 thousand ha) (Central Statistical Office, 2018), which should mean considerable forage base, but turf is the serving branch of grazing livestock and with the loss of its income and prestige this branch has gone into crisis (Vinczeffy, 1993). Beside these, the turf area in our country is gradually decreasing (Harcsa et al., 2008; 2009; 2011). Vinczeffy (1993) found that the natural, species-rich turfs is also decreasing because of tree plantations and building. More and more often extreme weather conditions also affect the turf culture (Halász et al., 2018). It is very important the fact that the turf uses 840 litre water for producing 1 kg dry matter without any nutrition (Barcsák et al., 1978; Szemán, 2006). Beside the decreasing tendency of turfs, most of our turfs are nature reservations (Molnár and Csízi, 2015). Because of this, so agrotechnical and utilization technologies must be applied in turf culture which can reach yield surplus and this can compensate yield loss caused by discarding nutrition resupply and irrigation (Dér et al., 2003; Bajnok et al., 2011).

Therefore, new concepts have been introduced into turf culture discipline (Szemán, 2006; Harcsa, 2009), these are the following: fertile turf, abandoned turf and fallow turf. Fertile turf is suitable for agricultural aims. The abandoned turf is at the beginning of the failure process. With the progress of succession, the fellow turf appears, where the valuable components of the turf are suppressed because of discarding utilization. Yield of degraded turf is used, but because of inefficient methods the proportion of valuable turf components is gradually decreasing or missing, so the worthless species are dominant (Szente et al., 1998; Stefler et al., 2000; Magyar, 2009). The inefficient utilization has two types: over-utilization, in case of over-grazing load the turf becomes thinner and weeds avoided by livestock can spread in free places (Szente et al., 1998; Magyar, 2009; Czöbel et al., 2012). In case of under-utilization Penszka et al. (2015; 2016) and Pápay (2016) wrote that succession processes endanger the life and survival of valuable turf components. Because of Williems and Bik, (1998), Török et al. (2007) in European mountain turfs under-utilization is also a problem Stefler et al. (2000) and Halász (2018) confirmed that not only the overload, but the lack of utilization lead to turf degradation. According to Nagy (2001) on non-utilized areas the mother hay becomes old, sprouting is very moderate and the big size dicotyledonous weeds can dominate. Barcsák et al. (1978) state that flora components of non-utilized turfs change into an unfavourable direction, so the processes of natural succession boom, while Vinczeffy (1993) determined that because of the inefficient turf utilization these areas can become sea weed. Because of discarding to mow on the meadows reeds form (Szábo et al., 2010), on the dry turfs bushes and forest formation starts (Bajor et al., 2016; Hansen and Fogelfors, 2000; Kozák, 2011; Szentes et al., 2011; 2012). Erdős et al. (2013; 2014a; 2014b) found that with scrub formation species richness of turfs is decreasing. If the traditional turf treatment ceases, (Bakker and Berendse, 1999) on the under-utilized areas the amount of flammable grass moor will grow (Ryser et al., 1995), which increases the risk of grass fires (Brockway et al., 2006; Öndö et al., 2008). Da Ronch et al. (2002) investigated the consequences of ceasing utilization and determined that the number flora species decreased to one fourth. Tóth et al. (2002) investigated the flora on bound soil, natural turfs which are similar to our experimental area and they observed that species richness decreases form grazing through mowing to zero utilization. According to Kahmen et al. (2002), for the adequate treatment the valuable species disappear on the area and at the same time the spread of competitor species threaten the survival of natural turfs (Isselstein et al., 2005). The consequence of the decreasing flora diversity is the poor fauna, too (Barcsák et al., 1978; Bartha et al., 2014). Furthermore, foreign species appear, which causes the ruin of the natural condition (Ferrer and Broca, 1999). Pervolotsky and Seligman (1998) state that the under-grazing leads to „green desert”. When the area becomes an impermeable bushy, the species richness of the area decreases and the danger of the wildfire increases on Mediterranean and dry areas because of water shortage. At the same time, Margóczi (2003) found that for
preserving vegetation utilized and non-utilized areas are needed. According to Molnár and Czísi (2015), where there is pastured grazing method, the grazing from well to well can be a solution to terminate over-grazing near quarters and moor on far steppes. Nowadays, moor is a bigger problem on turfs than over-grazing because of decreasing number of grazing livestock. The dense grass moor blocks the germination of the valuable turf components, suppress the shorter species (fescues, Trifolium species), the worthless plants spread such as Elymus repens, and weeds can ripen seeds for instance Daucus carota, Cichorium intybus). In addition, on the under-utilized turfs the Glareola pratincta and the Alauda arvensis nestle, but their stocks are suppressed. In the past, mooor turfs could be used because in spring grazing could be started earlier with using young grass growing on the moor turf from the previous year. The moor turf used as meadow was burnt with quick fire at the end of winter and a good meadow was gained (Baskay-Tóth, 1962).

MATERIALS AND METHODS

On the turf area number 01712/1 of the University of Debrecen, Institutes for Agricultural Research and Educational Farm, Karcag investigations have been done since 2009. The area of the salt meadow with foxtails (Agrostis-Alopecuretum pratensis) belongs to the Natura2000 environmental regulations, so extensive meadow culture (one mowing a year, then grazing after grass) has been done since 1987. The area is 83 m above the sea level, the average amount of precipitation in the past 50 years is 503,4 mm. In the investigation period, the total amount of precipitation was 353 mm. The features of the months according to Vinczeffy (1993) climatic index were the following: in March desert (0.032), in April dry (0.122), in May a bit rainy (0.254), in June drought (0.095), in July drought (0.088), in August desert (0.020), and in September semi-desert (0.079) weather. The soil type is medium meadow soloncet. At the beginning of the experiment we settled 4 treatments in 3 repetitions, the area of the parcels were set net 30 m². „Osgyep” (ancient lawn) zero treatment since 2009 (sign: A/O), „Muleszós” (mulching) stem-crushing in 3. decade of May since 2009 and mulch stays on the area (sign: A/M); „Egyoldalás kazsálás” (one-sided mowing) one mowing a year in 3. decade of May phytomass removal (sign: A/E); „Legelletett-Kontroll” (Grazing control) mowing in 3. decade of May, hay removal, grazing after grass in August with sheep (sign: A/L).

In our experiment we done the following methods: coenological monitoring, carbon-dioxide emission measurement, soil moisture measurement and soil temperature measurement.

Monitoring plants was done on 24th May 2019 with the quadrate method by Balázs (Balázs, 1949). Its point is that we represented the occurring plant species within the investigated quadrates or area with dominant value by Balázs (Dₐ). After monitoring plant covering the plant species were classified into categories of Social Behaviour Types by Borhidi (Borhidi, 1993).

Measurement of carbon-dioxide emission, soil moisture and soil temperature were done every two weeks between 28th March 2019 and 1st October 2019. For measuring CO₂ concentration, frame method developed by Research Institute Karcag was used with Testo 535 gas analyser. Measurement process is the following: after the impoundment of the area, it is covered, there is incubation time (30 min), then CO₂ concentration is measured in the bailers (Kovács, 2014). For calculating CO₂ emission values the following formula was used:

$$F = d \times \frac{(V/A) \times (C₂H₂ \times V \times m × T)}{373}$$

where: $F=$ CO₂ emission (kg×m⁻²×h⁻¹); $d=$ CO₂ volume mass (1.96 kg×m⁻³); $V=$ the barrel volume above soil surface (0.0040 m³); $A=$ measuring area (0.0314 m²); $C₁=$ initial CO₂ concentration (m³×m⁻³); $C₂=$ CO₂ concentration after incubation (m³×m⁻³), $T=$ incubation time (1800 s), $T=$ air temperature (°C).

The measurement of CO₂ emission depends on the moisture content and temperature of the soil and the air temperature, so at the same time of the measure we measured the air temperature, the moisture and temperature of the upper 10 cm layer of the soil. For measuring the moisture and the temperature of the soil, SMT-100 device was used, which measures dielectric conductivity of the soil in 0–10 cm deep and calculates the moisture in volume percentage. At the same time of this it measures the temperature of the layer, the results can be read on the screen of a hand data collector. The measurements were done in three repetitions. The data were analysed with descriptive statistic in Microsoft Office Excel.

RESULTS AND DISCUSSION

Results of coenological observation and Social Behaviour Types by Borhidi (SBT) in 2019

On the investigated area plant covering was monitored with quadrate method by Balázs (Dₐ) and it was characterized with Social Behaviour Types categories by Borhidi, the results are shown in Table 1.

In „Mulching” treatment Elymus repens, Vicia tetrasperma, Alopecurus pratensis and Poa pratensis occurred in every three parcels. Rosa canina leans over form ancient lawn parcels. Uncovered areas occurred in every three repetitions.

By One-sided mowing” treatment, Potentilla argentea, Vicia tetrasperma, Alopecurus pratensis and Poa pratensis occurred in every three parcels. Rosa canina spread (25–37.5%). Our results proved findings of Szent et al. (2011) and Bajor et al. (2016). Because of zero utilization the number of plant species strongly decreased, which proved Tóth et al. (2002).
Table 1
Coenological observation and Social Behaviour Types by Borhidi (SBT) in 2019 (Karcag)

Parcel	Plant species	Dₜ-value	Covered area (%)	SBT by Borhidi Sign	Value
A/M1(1)	Uncovered area	3	9.3750		
	Potentilla argentea	0.5	1.5625	DT	2
	Rosa canina	1	3.1250	DT	2
	Elymus repens	2	3.1250	RC	-2
	Vicia tetrasperma	2	6.2500	DT	2
	Alopecurus pratensis	10	31.2500	C	5
	Poa pratensis	12.5	39.0625	G	4
A/M2(2)	Uncovered area	4	12.5000		
	Potentilla argentea	1	3.1250	DT	2
	Rosa canina	1	3.1250	DT	2
	Elymus repens	3	9.3750	RC	-2
	Vicia tetrasperma	1	3.1250	DT	2
	Alopecurus pratensis	10	31.2500	C	5
	Poa pratensis	12	37.5000	G	4
A/M3(3)	Uncovered area	1	3.1250		
	Silene alba	0.5	1.5625	W	1
	Elymus repens	1	3.1250	RC	-2
	Bromus pannonicus	2	6.2500	C	5
	Cirsium arvense	0.5	1.5625	RC	-2
	Vicia tetrasperma	0.5	1.5625	DT	2
	Galium aparine	0.5	1.5625	W	1
	Alopecurus pratensis	10	31.2500	C	5
	Poa pratensis	16	50.0000	G	4
A/E1(4)	Uncovered area	1	3.1250		
	Potentilla argentea	1	3.1250	DT	2
	Elymus repens	5	15.6250	RC	-2
	Vicia tetrasperma	1	3.1250	DT	2
	Alopecurus pratensis	13	40.6250	C	5
	Crepis setosa	0.5	1.5625	W	1
	Sonchus asper	0.5	1.5625	W	1
A/E2(5)	Uncovered area	2	6.2500		
	Potentilla argentea	1	3.1250	DT	2
	Silene alba	1	3.1250	W	1
	Vicia tetrasperma	1	3.1250	DT	2
	Veronica persica	1	3.1250	W	1
	Taraxacum officinale	1	3.1250	RC	-2
	Alopecurus pratensis	13	40.6250	C	5
	Poa pratensis	11	34.3750	G	4
	Crepis setosa	1	3.1250	W	1
A/E3(6)	Uncovered area	1.5	4.6875		
	Potentilla argentea	1	3.1250	DT	2
	Elymus repens	6	18.7500	RC	-2
	Cirsium arvense	1	3.1250	RC	-2
	Vicia tetrasperma	1	3.1250	DT	2
	Alopecurus pratensis	9	28.1250	C	5
	Poa pratensis	12	37.5000	G	4
	Sonchus asper	0.5	1.5625	W	1
A/Ő1(7)	Uncovered area	2	6.2500		
	Rosa canina	12	37.5000	DT	2
	Alopecurus pratensis	5	15.6250	C	5
	Poa pratensis	13	40.6250	G	4
A/Ő2(8)	Uncovered area	0.5	1.5625		
	Elymus repens	1	3.1250	RC	-2
	Cirsium arvense	0.5	1.5625	RC	-2
	Vicia tetrasperma	0.5	1.5625	DT	2
	Galium aparine	0.5	1.5625	W	1
	Alopecurus pratensis	28	87.5000	C	5
	Poa pratensis	1	3.1250	G	4
Table 1 continued

Parcel	Plant species	D_s-value	Covered area (%)	SBT by Borhidi Value	Sign by Borhidi
A/Ő3(9)	Uncovered area	1	3.1250		
	Rosa canina	8	25.0000	DT	2
	Elymus repens	4	12.5000	RC	-2
	Cirsium arvense	0.5	1.5625	RC	-2
	Alopecurus pratensis	13.5	42.1875	C	5
	Poa pratensis	5	15.6250	G	4
AL/1(10)	Uncovered area	2	6.2500		
	Silene alba	0.5	1.5625	W	1
	Podospermum canum	1	3.1250	G	4
	Cardaria draba	0.5	1.5625	W	1
	Plantago lanceolata	0.5	1.5625	DT	2
	Polygonum aviculare	0.5	1.5625	RC	-2
	Cirsium arvense	0.5	1.5625	RC	-2
	Vicia tetrasperma	1	3.1250	DT	2
	Achillea setacea	2	6.2500	G	4
	Ranunculus acris	0.5	1.5625	G	4
	Alopecurus pratensis	4	12.5000	C	5
	Inula britannica	2	6.2500	DT	2
	Poa pratensis	2	6.2500	G	4
	Festuca pseudovina	15	46.8750	C	5
AL/2(11)	Convulvulus arvensis	0.5	1.5625	RC	-2
	Uncovered area	2	6.2500		
	Plantago schwarzbergiana	0.5	1.5625	Sr	8
	Euphorbia cyparissias	1	3.1250	DT	2
	Silene alba	0.5	1.5625	W	1
	Podospermum canum	1	3.1250	G	4
	Elymus repens	1	3.1250	RC	-2
	Plantago lanceolata	1	3.1250	DT	2
	Eryngium campestre	1	3.1250	DT	2
	Lathyrus tuberosus	0.5	1.5625	W	1
	Taraxacum officinale	1	3.1250	RC	-2
	Bromus hordeaceus	1	3.1250	DT	2
	Achillea setacea	1	3.1250	G	4
	Trifolium resutum	0.5	1.5625	S	6
	Alopecurus pratensis	3	9.3750	C	5
	Cerastium vulgare	0.5	1.5625	DT	2
	Inula britannica	1	3.1250	DT	2
	Poa pratensis	2	6.2500	G	4
	Festuca pseudovina	13	40.6250	C	5
AL/3(12)	Festuca rugicola	2	6.2500	C	5
	Uncovered area	1	3.1250		
	Trifolium repens	0.5	1.5625	DT	2
	Silene alba	0.5	1.5625	W	1
	Podospermum canum	1	3.1250	G	4
	Elymus repens	1	3.1250	RC	-2
	Plantago lanceolata	1	3.1250	DT	2
	Bromus pannonicus	0.5	1.5625	C	5
	Cirsium arvense	0.5	1.5625	RC	-2
	Eryngium campestre	0.5	1.5625	DT	2
	Bromus hordeaceus	1	3.1250	DT	2
	Achillea setacea	1	3.1250	G	4
	Trifolium resutum	0.5	1.5625	S	6
	Alopecurus pratensis	5	15.6250	C	5
	Rumex obtusifolius	0.5	1.5625	DT	2
	Inula britannica	1	3.1250	DT	2
	Poa pratensis	1	3.1250	G	4
	Festuca pseudovina	13	40.6250	C	5
	Lotus corniculatus	0.5	1.5625	DT	2

1: „Mulching” treatment 1, 2: „Mulching” treatment 2, 3: „Mulching” treatment 3, 4: „One-sided mowing” treatment 1, 5: „One-sided mowing” treatment 2, 6: „One-sided mowing” treatment 3, 7: „Ancient lawn” treatment 1, 8: „Ancient lawn” treatment 2, 9: „Ancient lawn” treatment 3, 10: „Grazing control” treatment 1, 11: „Grazing control” treatment 2, 12: „Grazing control” treatment 3.
On „Grazing control” area lawn components were the most diverse. *Podospermum canum*, *Plantago lanceolata*, *Achillea setacea*, *Alopecurus pratensis*, *Inula Britannica*, *Poa pratensis* and *Festuca pseudovina* occur in every three repetitions. Uncovered areas occur in every three parcels.

Social behaviour types (SBT) of plant species based on their role in the association. SBT shows natural and disturbing state of the association between the plant and the habitat, from its proportion we can conclude natural state, regeneration and difference from natural state of the association (Borhidi, 1993).

In our study, *Festuca rubricola*, *Bromus pannonicus*, *Alopecurus pratensis* and *Festuca pseudovina* were classified into the natural competitor species category. *Podospermum canum*, *Achillea setacea*, *Ranunculus acris* and *Poa pratensis* are generalist species (stress-tolerant). *Trifolium resutum* is specialist species, and *Plantago schwerzerbergiana* is rare specialist species (stress-tolerant). The other plants are weeds.

Measurement results of carbon-dioxide emission, soil moisture and soil temperature in 2019

Measurement of carbon-dioxide emission, soil moisture and soil temperature were done in the grazing season, the results are shown in Table 2.

Table 2
Results of measurement Carbon-dioxide emission (kg·m⁻²·h⁻¹), soil moisture (%), soil temperature (°C) in 2019 (Karczag)

Date/ Treatment	Carbon-dioxide emission (kg·m⁻²·h⁻¹)	Soil moisture (%)	Soil temperature (°C)									
	A/M(1)	A/E(2)	A/Ö(3)	A/L(4)	A/M(1)	A/E(2)	A/Ö(3)	A/L(4)	A/M(1)	A/E(2)	A/Ö(3)	A/L(4)
28 Mar 2019	0.203	0.215	0.252	0.173	5.28	5.27	6.11	5.42	25.13	27.87	25.01	26.53
10 Apr 2019	0.389	0.257	0.372	0.454	4.02	4.30	5.54	4.06	25.14	25.18	26.19	29.94
25 Apr 2019	0.283	0.226	0.300	0.530	3.56	3.10	3.92	3.61	29.87	32.39	31.54	27.78
08 May 2019	0.428	0.286	0.610	0.287	12.53	13.57	13.06	11.07	29.83	30.68	33.60	32.87
23 May 2019	0.738	0.859	0.711	0.801	14.41	9.81	13.71	11.55	27.18	27.30	25.62	27.81
6 June 2019	0.608	0.772	0.844	0.681	12.02	10.33	7.94	8.84	32.65	33.32	33.88	32.79
19 June 2019	0.422	0.581	0.742	0.543	3.31	2.80	3.49	4.80	33.85	34.51	35.58	38.17
4 July 2019	0.248	0.207	0.278	0.138	2.76	1.37	1.78	1.20	28.87	28.30	28.53	30.14
22 July 2019	0.221	0.408	0.187	0.146	2.61	2.89	2.60	2.96	40.15	39.73	43.15	44.11
5 Aug 2019	0.407	0.435	0.510	0.429	3.92	4.25	4.30	3.67	32.20	36.12	35.98	34.15
15 Aug 2019	0.346	0.202	0.339	0.252	3.18	2.66	3.19	3.16	40.10	39.99	35.93	28.70
29 Aug 2019	0.161	0.180	0.179	0.176	3.19	3.11	2.42	2.79	34.14	31.67	33.00	28.84
11 Sept 2019	0.427	0.328	0.594	0.206	3.53	4.26	2.99	3.98	29.83	28.95	31.70	29.47
1 Oct 2019	0.194	0.313	0.264	0.177	4.10	2.71	5.42	2.12	29.59	29.17	29.92	31.23

Expected value
Median
Scatter
Variance
Kurtosis
Skewness
Minimum
Maximum
Summary
Number of pieces

- 1: „Mulching” treatment, 2: „One-sided mowing” treatment, 3: „Ancient lawn” treatment, 4: „Grazing control” treatment.

The highest carbon-dioxide value was measured on 23rd May 2019 (0.859 kg·m⁻²·h⁻¹) in „One-sided mowing” treatment, while the lowest value was on 4th July 2019 (0.138 kg·m⁻²·h⁻¹) in a „Grazing control” area. The highest soil moisture value was measured on 23rd May 2019 (14.41 %) in „Mulching” treatment, while the lowest value was on 4th July 2019 (1.20%) on „Grazing control” area. The highest soil temperature was measured on 22nd July 2019 (44.11 °C) on „Grazing control” area, while the lowest value was on 28th March 2019 (25.01 °C) in „Ancient lawn”.

Values on 11th September 2019 are very important and require further measurements, because they can forecast the states caused by drought of climatic change on different utilized turfs. July in 2019 was droughty based on climatic index, while August was semi-desert. At the beginning of September 22.2 mm precipitation fell. In paradox way, there were higher values of soil moisture by „One-sided mowing” and „Grazing
control” treatments than by „Ancient lawn” and „Mulching” treatments. It is possible that moor phytomass holds the small amount of precipitation falls after the longer dry period, so it cannot leak into the soil. By measuring carbon-dioxide emission, we found that there were higher values by „Mulching” and „Ancient lawn” treatments than on „One-sided mowing” and „Grazing control” areas. Our results were similar to those of Kovács (2014), Zsembeli et al. (2015) and Birkás (2017). On the areas covered with mulch and moor there is larger microbiological activity, because moor and mulch are degradable and get into the soil as organic material, which results higher carbon-dioxide emission even in drought if the soil moisture is not optimal for microbial activity. By measuring soil temperature, the values were higher by „Mulching” and „Ancient lawn” treatments than on „One-sided mowing” and „Grazing control” areas, which increase microbiological activity in the soil.

CONCLUSION

In our study, we found that succession process (shrub) has been increasing since the beginning of the survey (10 years) on the zero utilised area.

REFERENCES

Bajnok, M. – Török, G. – Resch, R. – Buchgraber, K. – Tasi, J. (2011): A terméthely, a gyetőpáros és az időjárás szerepe néhány gyep hozamának alakulásában a hasznosítás intenzitásának függvényében. Gyeppazdagdoktudási Közlemények. 2010/2011. 13–18.

Bajor, Z. – Zimmermann, Z. – Szabó, G. – Fehér, Zs. – Járdi, I. – Lampert, R. – Kerény-Nagy, V. – Penksza, P. – L. – Szabó, Zs. – Székely, Zs.– Wichmann, B. – Penksza, K. (2016): Effect of conservation management practices on sand grassland vegetation in Budapest, Hungary. Applied Ecology and Environmental Research. 14 (3): 233–247.

Bakker, J.P. – Berendese, F. (1999): Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends in Ecology and Evolution 14: 6368.

Baláz, F. (1949): A gyepes termésbecsülése növénycsoportjainak alapján. Agrártudományok. 1. 25–35.

Barcsik, Z. – Baskay-Tóth, B. – Prieger, K. (1978): Gyetőtermesztés és hasznosítás. Mezőgazdasági Kiadó, Budapest. 32–103.

Bartha, S. – Szentes, Sz. – Horváth, A. – Házi, J. – Zimmermann, Z. – Molnár, Cs. – Dancza, I. – Margóczki, K. – Pál, R. – Purger, D. – Schmidt, D. – Övári, M. – Komoly, C. – Sutynszki, Zs. – Szabó, G. – Csatóh, A. – Juhász, M. – Penksza, K. – Molnár, Zs. (2014): Impact of mid–successional dominant species on the diversity and progress of succession in regenerating temperate grasslands. Applied Vegetation Science. 17(2): 201–213.

Baskay-Tóth, B. (1962): Legelő és réltüvelés. Mezőgazdasági Kiadó, Budapest. 127–159.

Birkás, M. (2017): Földművelés és földhasználat. Mezőgazda Lap és Könyvkiadó, Budapest. pp. 482.

Borhidi, A. (1993): A magyar flóra szociális magatartásusa, természetességé és relifív ökológiai értékszámú. KTM-OTVH – JPTE kiadványa, Pécs. pp. 93.

In 2019, because of droughty year non-covered areas were found with coenological investigation by Balázs in every parcel. Plants were classified into Social Behaviour Types by Borhidi and we concluded that natural competitors and stress tolerant species are in higher proportion in treatments than ruderal species, which signs the stability of the natural turf association. By measuring soil moisture, we found that the little precipitation falls after droughty period remains in mulch and moor, so by these treatments after a longer dry period smaller moisture value is expected. In similar cases (whose frequency will possibly increase) on parcels covered with moor phytomass the carbon-dioxide emission is the highest because of the extra degrading organic material. The confirm of this tendency requires further identifications.

ACKNOWLEDGEMENT

The study is the result of EFOP-3.6.2-16-2017-00001, „Complex country economy and sustainability development research, service system in the Carpathian Basin” project.
Ben. PhD értekezés, éségetációjának összehasonlító elemzése

Harcsa

DOI: fire on open sand grasslands. Arid Land R

Grazing effects on vegetation composition and on the spread of

emissziójának vizsgálata Karcag térségé

management of calcareous grasslands. Bo

Supply on grassland coenosys. Cereal R

N

Intenzív gyeperek gyomosodási viszonyai a tápanyag utánpótlás

működése a tápanyag és fűfűszerásvizsgálata. Acta desertologia

– 2012: 325–329.

Penkzska, K.–Fehér, Á.–Saláta, D.–Pápay, G.–S–Falusi, E.–Kerényi–Nagy, V.–Szabó, G.–Wichmann, B.–Szemethy, L.–Katona, K. (2016): Gyepregeneráció és vadhatás vizsgálata cserjeirtással után parádóhautai (Mátra) mintaterületen. Gyepgazdálkodási Közlemények. 14(1): 31–41.

Penkzska, K.–Pápay, G.–Házi, J.–Tóth, A.–Saláta-Falusi, E.–Saláta, D.–Kerényi-Nagy, V.–Wichmann, B. (2015): Gyepregeneráció erdőirtással kialakított gyepekben mátrai (Fallóskút) mintaterületeken. Gyepgazdálkodási Közlemények. 13(1–2): 31–44.

Perevolotsky, A.–Seligman, N.G. (1998): Role of grazing in Mediterranean rangeland ecosystems. Bioscience. 48: 1007–1017.

Ryser, P.–Langenauer, R.–Gigon, A. (1995): Species richness and vegetation structure in a limestone grassland after 15 year management with six biomass removal regimes. Folia geobotanica-Phytotaxonomica. 30: 157–167.

Sefler, J.–Nagy, G.–Vinceffy, I. (2000): Különböző adottságú gyephyek hasznosíthatóságához húsmarhatartástall. Állattanérsztsészt és Takarmányozás. 49/6: 495–496.

Szabó, G.–Zimmermann, Z.–Szentes, Sz.–Sutynszki, Zs.–Penkzska, K. (2010): Természetvédelmi és gyepgazdálkodási vizsgálatok a Dinnyési-Fertő gyepjeiben. Gyepgazdálkodási Közlemények. 8: 31–38.

Szemán, L. (2006). Gyepgazdálkodási ismeretek. Egyetemi jegyzet, Gödöllő, pp. 89.

Szent, K.–Nagy, Z.–Tuba, Z. (1998): Enhanced water use efficiency in dry loess grassland species grown at elevated air CO\(_2\) concentration. Photosynthetica. 35: 637–640.

Szentes, Sz.–Sutynszki, Zs.–Zimmermann, Z.–Szabó, G.–Járda, I.–Házi, J.–Penkzska, K–Bartha, S. (2011): A fenyrűfű (Bothriochloa ischaemum) (L.) Keng 1936) gyep bétadiverzítására gyakorolt hatásaainak vizsgálata és értékelése mikronövelő módszerrel. Tájékozódási Lapok. 9(2): 463–475.

Szentes, Sz.–Sutynszki, Zs.–Szabó, G.–Zimmermann, Z.–Házi, J.–Wichmann, B.–Hufnágel, L.–Penkzska, K.–Bartha, S. (2012): Grazed Pannonian grassland beta-diversity changes due to C4 yellow bluestem. Cent. Eur. J. Biol. 7(6): 1055–1065.

Tóth, Cs.–Nyakas, A.–Nagy, G.–Nan, Z.B. (2002): A comparison of two arid steppe vegetations from different geographical regions. Multifunction Grasslands. La Rochelle. 170–171.

Török, P.–Arany, I.–Prommer, M.–Valkó, O.–Balogh, A.–Vida, E.– Töthmérész, B.–Matus, G. (2007): Újrakezdett kezelés hatása fokozottan védett kékperjes lápré voltitomásszájának, faj-és virágzadására. Természetvédelmi Közlemények. 13: 187–198.

Vinceffy, I. (1993): Legelő– és gyepgazdálkodás. Mezőgazda Kiadó, Budapest. pp. 223–242.

Williams, J.H.–Bik, L.P.M. (1998): Restoration of high species density in calcareous grassland: the role of seed rain and soil seed bank. Appl. Veg. Sci. 1: 91–100.

Zsembeli, J.–Szücs, L.–Tuba, G.–Czimbalos, R. (2015): Nedveségjárkozó talajművelési rendszer fejlesztése Karacsony. In: Mádárász, B. (2015): Környezetkímélő talajművelési rendszerek Magyarországon. MTA CSFK FTI, Budapest. pp. 122–133.
