From cirrhosis to hepatocellular carcinoma: An investigation into hepatitis C viral oncogenesis

Jihad Aljabban1, Nilay Danis2, Merve Gurakar3, Kamal Khorfan4, Nabeel Aljabban5, Cem Simsek2, Hussam Salhi1, Maryam Panahiazar6, Dexter Hadley4, Ahmet Gurakar2, Behnam Saberi7

1Ohio State University College of Medicine, Columbus, Ohio, USA; 2Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; 3Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA; 4Henry Ford Health Systems, Detroit, Michigan, USA; 5Penn State College of Medicine, Hershey, Pennsylvania 17033; 6Institute for Computational Health Sciences, University of California, San Francisco, California 94158; 7Icahn School of Medicine at Mount Sinai Division of Liver Diseases, New York, New York, USA

Abstract

Background and Aim: Hepatitis C is a leading cause of chronic liver disease and hepatocellular carcinoma (HCC). Understanding the evolution and biology of HCC among HCV patients may lead to novel therapeutic avenues and risk stratification.

Material and Methods: Using meta-analysis platform STARGEO, we performed two separate meta-analyses as follows: 357 HCV-related HCC tumor samples with 220 adjacent non-tumor samples and 92 HCV-related cirrhotic liver samples with 53 healthy liver samples as a control. Then, we analyzed the signature in Ingenuity Pathway Analysis.

Results: HCV cirrhosis analysis demonstrated LPS/IL-1 mediated inhibition of RXR function, LXR/RXR activation, sirtuin signaling, IL-10 signaling and hepatic fibrosis/stellate cell activation as top canonical pathways. IL-1β, TNF, and TGF-β1 were top upstream regulators. Cellular morphologic and signaling changes were noted through the up-regulation of RGS1/2, WNT receptor FZD7, the TGF-β1-induced gap junction gene GJA1, and the zinc finger transcription factor repressor SNAI2. Apoptosis was inhibited through the down-regulation of OMA1. Metabolic dysfunction was noted through the down-regulation of SCLY and CBS. HCV-related HCC analysis showed FXR/RXR and LXR/RXR signaling, LPS/IL-1-mediated inhibition of RXR activation, and melanotin degradation as top canonical pathways.

Conclusion: Our results suggest that the genetic changes in the setting of chronic HCV infection predispose patients to developing HCC.

Keywords: HCC; HCV; STARGEO.

Introduction

Hepatitis C virus (HCV) is a leading cause of liver disease with chronic infection, potentially leading to cirrhosis in approximately 20–30% of the infective patients.[1] HCV patients with cirrhosis are at hepatocellular carcinoma (HCC) development with an annual rate of ≈ 3.5%.[2] In direct-acting antivirals (DAAs), era sustained virologic response (SVR) rates exceed 95% in HCV infection.[3] However, the opioid epidemic has led to a rise in the incidence of HCV across the globe.[4,5] In the era of DAAs, we are able to cure the majority of the HCV patients. HCC risk persists, especially in patients with advanced cirrhosis. First reports about the occurrence or recurrence of HCC after achieving SVR with DDAs were conflicting; some articles alleged potentially increased risk of HCC occurrence or recurrence.[6,7] Sequential reports refuted this argument.[8,9] Moreover, new reports showed treatment with DAAs improved survival of HCV infected, even cirrhotic patients.[10,11,12] Despite advancements in treatment in HCC, prognosis remains poor. Predicting which cirrhotic HCV patients will develop HCC remains a challenge. In the DAA cured patients, we still do not have long term data given that the INF free drugs only available since 2014. Factors that influence HCC de-novo occurrence or recurrence are being widely investigated. Male sex, diabetes, liver stiffness measurement and fibrosis-4 score were found independently associated with de-novo HCC, whereas diabetes was the only independent risk factor for recurrent HCC.[13] Another study found out a lack of SVR and alpha-fetoprotein (AFP) as predictors of recurrent HCC.[14] Understanding the evolution of liver fibrosis to HCC in HCV will pave the way for improved risk stratification and the development of novel therapeutic avenues. Nowadays, genes alterations in HCC following DAA treatment and pathological pathways from cirrhosis to HCC in HCV are being investigated.[15] In this study, we aimed to characterize better the pathways involved in the oncogenesis of chronic HCV infection, and demonstrate the utility of crowd-sourced data and our STARGEO platform in the investigation of HCV-related HCC.[16]

Materials and Methods

The National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) is an open database of millions of biological samples from functional genomics experiments. The Search Tag Analyze Resource for GEO (STARGEO) platform allows for meta-analysis of genomic signatures of disease and tissue through tagging of biological samples from several experiments. More information on STARGEO and its functionality can be found in our previous paper.[16] To study the different stages of progression from cirrhosis to HCC in HCV patients, we conducted a separate meta-analysis. For the meta-analysis of the cirrhotic stage of the disease, we tagged 92 HCV-related cirrhotic liver samples and tagged 53 healthy liver samples as a control from...
a total of three series. For the meta-analysis of the HCC stage of the disease, we tagged 357 HCV-related HCC liver tumor samples and 220 adjacent non-tumor samples as a control from a total of 8 series (Fig. 1). Patients from these studies were not treated with DAAs. We were able to extract 1000s of genes for each of the meta-analyses conducted used STARGEO (see Table 1 for top up- and down-regulated genes).

To evaluate this data, we analyzed the gene signatures from our meta-analyses in Ingenuity Pathway Analysis (IPA), restricting genes that showed statistical significance (p<0.05) and an absolute experimental log ratio greater than 0.15 between conditions and control samples. These selected genes have been used for the next step analysis in IPA to elucidate the biological process, mechanisms of disease, and potential biomarkers and therapeutic targets that will be highlighted in our results and discussion section in this study.

IPA is based on the QIAGEN knowledge base and highlights biological pathways, drugs, and disease processes for OMICs data based on the most up-to-date literature. IPA contains millions of facts on the relationship between genes, disease processes, phenotype, drug activity, and more that can be searched for and highlighted in inputted genetic studies. These facts come from genomic experiments from several modalities, including SNP and micro-RNA microarrays, RNA-sequencing, proteomic and metabolomic studies, chemical lists, and more. IPA allows us to dissect the complex biological networks that characterize genomic, metabolomic, and proteomic data.[17] IPA allows us to take advantage of the novelty of our approach in using large scale data, and results from IPA analysis are demonstrated below.

All data analyzed were taken from Gene Expression Omnibus. There was no interaction or intervention with human subjects and no involvement with access with identifiable private patient information. As such, no IRB approval was necessary.

Results

HCV-Related Cirrhosis Analysis

We start with our analysis of HCV-related cirrhotic liver tissue. IPA analysis from our HCV-related cirrhosis study demonstrated LPS/IL-1 mediated inhibition of RXR (retinoid X receptor) function (p-value 4.38 E-06; z-score -1.633), LXR (liver X receptor)/RXR activation (p-value 5.10 E-06; z-score 0.707), sirtuin signaling (p-value 6.09 E-05; z-score -1.265), and IL-10 signaling (p-value 8.33 E-05; z-score NaN).
Hepatocellular Carcinoma Analysis

IPA analysis from our HCV-related cirrhosis study demonstrated the up-regulation of growth factor-beta (p-value 0.0476, experimental log ratio 0.581). We also noted a positive canonical pathway linked to oncogenes, such as the up-regulation of genes involved in G protein-coupled signaling RGS1 (p-value 0.0412, experimental log ratio 0.834) and RGS2 (p-value 0.00, experimental log ratio 0.282), and in the pro-oncogenic pathway aryl hydrocarbon signaling, such as TIPARP (p-value 0.00, experimental log ratio 0.171). Additionally, we found up-regulation of the frizzled gene receptor FZD7. Among our most up-regulated genes were prostaglandin E2 receptor 4 or PTGER4 (p-value 0.0476, experimental log ratio 0.581). We also noted a negative canonical pathway linked to tumor progression, such as the down-regulation of genes including FOXM1 and KIT (p-value 0.0209, experimental log ratio -0.284). Lastly, we found up-regulation of pro-oncogenic transcription factor FOXM1 (p-value 0.38 E-6, experimental log ratio 0.371) and oncogenic receptor tyrosine kinase KIT (p-value 0.0209, experimental log ratio 0.165).

Discussion

HCV-Related Cirrhosis Analysis

IPA analysis from our HCV-related cirrhosis study demonstrated the up-regulation of growth factor-beta (p-value 0.0476, experimental log ratio 0.581). We also noted a positive canonical pathway linked to oncogenes, such as the up-regulation of genes involved in G protein-coupled signaling RGS1 (p-value 0.0412, experimental log ratio 0.834) and RGS2 (p-value 0.00, experimental log ratio 0.282), and in the pro-oncogenic pathway aryl hydrocarbon signaling, such as TIPARP (p-value 0.00, experimental log ratio 0.171). Additionally, we found up-regulation of the frizzled gene receptor FZD7. Among our most up-regulated genes were prostaglandin E2 receptor 4 or PTGER4 (p-value 0.0476, experimental log ratio 0.581). We also noted a negative canonical pathway linked to tumor progression, such as the down-regulation of genes including FOXM1 and KIT (p-value 0.0209, experimental log ratio -0.284). Lastly, we found up-regulation of pro-oncogenic transcription factor FOXM1 (p-value 0.38 E-6, experimental log ratio 0.371) and oncogenic receptor tyrosine kinase KIT (p-value 0.0209, experimental log ratio 0.165).

The top two most up-regulated genes were the recently described oncogenic pseudogenes DUXAP10 (p-value 0.03 E-4, experimental log ratio 0.18) and NMRAL2P (p-value 0.19 E-4, experimental log ratio 0.13). Additionally, we found up-regulation of the long non-coding RNA CRNDE (colorectal neoplasia differentially expressed; p-value 0.41 E-4, experimental log ratio 0.320). We also found up-regulation of the gene collagen triple helix repeating containing 1 or CTHRC1 (p-value 0.05 E-5, experimental log ratio 0.261). The pro-oncogenic pathway is further supported by our findings of the up-regulation of the long non-coding RNA CRNDE (colorectal neoplasia differentially expressed; p-value 0.41 E-4, experimental log ratio 0.320). We also found up-regulation of the gene collagen triple helix repeating containing 1 or CTHRC1 (p-value 0.05 E-5, experimental log ratio 0.261). Next, we wanted to investigate up-regulation of canonical beta-catenin/TCF targets given their role in cancer and found up-regulation of AXIN2 (p-value 0.39 E-4, experimental log ratio 0.383), LEF1 (p-value 0.98 E-8, experimental log ratio 0.677), and DKK1 (p-value 0.00345, experimental log ratio 0.230).

Discussion

HCV-Related Cirrhosis Analysis

IPA analysis from our HCV-related cirrhosis study demonstrated the up-regulation of growth factor-beta (p-value 0.0476, experimental log ratio 0.581). We also noted a negative canonical pathway linked to tumor progression, such as the down-regulation of genes including FOXM1 and KIT (p-value 0.0209, experimental log ratio -0.284). Lastly, we found up-regulation of pro-oncogenic transcription factor FOXM1 (p-value 0.38 E-6, experimental log ratio 0.371) and oncogenic receptor tyrosine kinase KIT (p-value 0.0209, experimental log ratio 0.165).

The top two most up-regulated genes were the recently described oncogenic pseudogenes DUXAP10 (p-value 0.03 E-4, experimental log ratio 0.18) and NMRAL2P (p-value 0.19 E-4, experimental log ratio 0.13). Additionally, we found up-regulation of the long non-coding RNA CRNDE (colorectal neoplasia differentially expressed; p-value 0.41 E-4, experimental log ratio 0.320). We also found up-regulation of the gene collagen triple helix repeating containing 1 or CTHRC1 (p-value 0.05 E-5, experimental log ratio 0.261). The pro-oncogenic pathway is further supported by our findings of the up-regulation of the long non-coding RNA CRNDE (colorectal neoplasia differentially expressed; p-value 0.41 E-4, experimental log ratio 0.320). We also found up-regulation of the gene collagen triple helix repeating containing 1 or CTHRC1 (p-value 0.05 E-5, experimental log ratio 0.261). Next, we wanted to investigate up-regulation of canonical beta-catenin/TCF targets given their role in cancer and found up-regulation of AXIN2 (p-value 0.39 E-4, experimental log ratio 0.383), LEF1 (p-value 0.98 E-8, experimental log ratio 0.677), and DKK1 (p-value 0.00345, experimental log ratio 0.230).
An investigation into Hep C viral oncogenesis

We also noted cell signaling pathways.

Additionally, we found up-regulation of RGCC, or regulator of FXR activity may limit hepatic inflammation and, by limitation, implicated in liver disease progression, we illustrated its downstream effects on the genes discussed above (Fig. 3).

Figure 3. Ingenuity pathway analysis of several candidate genes with oncogenic and tumor suppressing properties downstream of TFGB1. Prediction legend below shows relations of genes.

HCV-Related Hepatocellular Carcinoma Analysis

A fraction of patients with HCV-related cirrhosis will develop HCC. We conducted two separate meta-analyses as described above to illustrate the genetic drivers of this disease progression. The LXR/RXR activation pathway and LPS/IL-1 mediated inhibition of RXR activation are discussed above. As opposed to our HCV-related cirrhosis analysis, in this analysis, we see the overall activation of the RXR pathway. As discussed above, RXR agonism has an oncogenic effect and would be expected at this stage of the disease. FXR is a key regulator of bile acid synthesis and homeostasis. FXR also regulates the enterohpatic circulation of bile acids. Proper regulation of bile acids is paramount as it is toxic in excess, and improper FXR activity may cause the progression of inflammatory bowel disease, gallstone disease, liver fibrosis, and HCC. FXR activity may limit hepatic inflammation and, by extension, progression of liver disease. While IPA identified FXR sig-

regulation of the frizzled gene receptor FZD7, which causes increased Wnt/Beta-catenin activity and is associated with HCC. Soluble FZD7 inhibits Wnt signaling and sensitizes HCC cell lines towards doxorubicin. Additionally, we found up-regulation of RGCC, or regulator of cell cycle and known as RGC-32, which is involved in cell proliferation, fibrosis, and cancer. Deficiency of RGC-32 can be protective from hepatic fibrosis, and potentially HCC, by limiting lipogenesis. We also noted the up-regulation of genes involved in cell adhesion and progression of liver disease. While IPA identified FXR signaling, such as TIPARP, linked to oncogenesis, such as up-regulation of genes involved in G protein-coupled signaling RGS1, RGS2, and in the pro-oncogenic pathway aryl hydrocarbon signaling, such as TIPARP. We found the up-regulation of several candidate genes with oncogenic and tumor suppressing properties downstream of TFGB1. Prediction legend below shows relations of genes.
We also noted IRF8, which functions as a tumor suppressor and oncogene expression (Fig. 4). Downstream of calcitriol, we found down-regulation of transcription factors and tumor suppressors CEBPD and EGR1. We also noted IRF8, which functions as a tumor suppressor in some solid tumors. The pro-apoptotic factor FAS was also down-regulated. Additionally, we found down-regulation of the retinoid receptor RXRa, which would promote tumor progression as above. Lastly, we found the up-regulation of pro-oncogenic transcription factor FOXM1 and oncogenic receptor tyrosine kinase KIT.

Next, we want to highlight several of the top up-regulated oncogenic genes. The top two most up-regulated genes were the recently described oncogenic pseudogenes DUXAP10 and NMRAL2P. DUXAP10 has been shown to promote the progression of non-small cell lung cancer (NSCLC) through interaction with oncogenic proteins and repression of the tumor-suppressive proteins.[52] NMRAL2P was identified as a transcriptional target of the transcription factor Nr12,[53] which promotes the development of tumors.[54] The silencing of NMRAL2P through CRISPR/Cas leads to inhibition of cancer cell growth and migration.[55] While not previously studied in HCC, DUXAP10 and NMRAL2P may have similar activity as described above. Additionally, we found up-regulation of the long non-coding RNA CRNDE (colorectal neoplasia differentially expressed). CRNDE promotes cell survival, migration, and cancer cell proliferation in several cancer types.[56] We also found the up-regulation of the gene CTHRC1. CTHRC1 enhances the adhesion and migratory activity of cancer cells and is linked with poor prognosis in HCC patients.[57] When we investigated the up-regulation of canonical beta-catenin/TCF targets given their role in cancer and found up-regulation of AXIN2, LEF1, and DKK1. These target genes were not up-regulated in our HCV-related cirrhosis analysis and suggested a difference in beta-catenin activity as the disease progresses. Beta-catenin is expressed in the cell junction of hepatocytes and regulates cellular adhesion and communication.[58] Alterations of this pathway are common in the development of HCC.[59]

Conclusion

Our investigation illustrated the genetic changes in the setting of chronic HCV infection and cirrhosis that predispose patients to developing HCC. Some of these changes, such as LXR/FXR signaling and anti-tumor immune response, persist from the cirrhotic to the carcinoma stage. The other changes characterize what pathways and genes may drive progression from cirrhosis to HCC and may serve as potential therapeutic targets and biomarkers from liver biopsy analysis for patients at high risk for developing HCC. In the future, we plan on expanding our data set to investigate the immune micro-environment and to validate our results with patient samples.

Ethics Committee Approval: There was no interaction or intervention with human subjects and no involvement with access with identifiable private patient information. As such, no IRB approval was necessary.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – JA, HS, MP, DH, NA; Design – JA, HS, MP, DH, NA; Supervision – DH, AG, BS; Resource – JA, HS, MP, DH, NA; Materials – A, HS, MP, DH, NA; Data Collection and/or Processing – JA, HS, MP, DH, NA, MG, ND; Analysis and/or Interpretation – JA, HS, MP, DH, NA; Literature Search – JA, NA, DH, ND, MG, CS; Writing – JA, NA, ND, MG; Critical Reviews – DH, AG, BS.

Conflict of Interest: The authors have no conflict of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.
References

1. Seeff LB. Natural history of chronic hepatitis C. Hepatology 2002;36:S35-S46.

2. Sangiovanni A, Del Ninno E, Fasani P, De Fazio C, Ronchi G, Romeo R, et al. Increased Survival of Cirrhotic Patients with a Hepatocellular Carcinoma Detected during Surveillance. Gastroenterology 2004;126(4):1005-1014.

3. Cabibbo G, Celsa C, Calvaruso V, Petta S, Cacciola I, Cannavò MR, et al; Rete Sicilia Selezione Terapia – HCV (RESIST-HCV) and Italian Liver Cancer (ITACLICA) Group. Direct acting antivirals after successful treatment of early hepatocellular carcinoma improve survival in HCV-cirrhotic patients. J Hepatol 2019;71(2):265-273.

4. Morris MD, Mirazajadeh A, Evans JL, Briceno A, Coffin P, Hahn JA, et al. Treatment cascade for hepatitis C virus in young adult people who inject drugs in San Francisco: Low number treated. Drug Alcohol Depend 2019;198:133-135.

5. Cooper CL, Galanakis C, Donelle J, Kwong J, Boyd R, Boucher L, et al. HCV-infected individuals have higher prevalence of comorbidity and multimorbidity: a retrospective cohort study. BMC Infectious Diseases 2019;19(1):712.

6. Conti F, Buonfiglioli F, Scuteri A, Cremisi B, Bolondi L, Caraceni P, et al. Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals. J Hepatol 2016;65(4):727-733.

7. Reig M, Mariño Z, Perelló C, Iñarreaegui M, Ribeiro A, Lens S, et al. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J Hepatol 2016;65(4):719-726.

8. Kanwal F, Kramer J, Asch SM, Chayanupatkul M, Cao Y, El-Serag HB. Risk of Hepatocellular Cancer in HCV Patients Treated With Direct-Acting Antiviral Agents. Gastroenterology 2017;153(4):996-1005.e1.

9. Ioannou GN, Green PK, Berry K. HCV eradication induced by direct-acting antiviral agents in treatment of early hepatocellular carcinoma: A retrospective cohort study. BMC Medicine 2017;15:4.

10. Fehily SR, Papaluca T, Thompson AJ. Long-Term Impact of Direct-Acting Antiviral Therapy in HCV Cirrhosis: Critical Review. Semin Liver Dis 2019;39(3):341-353.

11. Colussi G, Donnini D, Brizzi RF, Maier S, Valenti L, Catena C, et al. Sustained virologic response to direct-acting antiviral agents predicts better outcomes in hepatitis C virus-infected patients: A retrospective study. World J Gastroenterol 2019;25(40):6094-6106.

12. Degasperi E, D’Ambrosio R, Iavarone M, Sangiovanni A, Aghemo A, Soffredini R, et al. Factors Associated With Increased Risk of De Novo or Recurrent Hepatocellular Carcinoma in Patients With Cirrhosis Treated With Direct-Acting Antivirals for HCV Infection. Clin Gastroenterol Hepatol 2019;17(6):1183-1191.e7.

13. Lleo A, Aglietti A, Aghemo A, Maisonneuve P, Bruno S, Persico M, et al. Predictors of hepatocellular carcinoma in HCV cirrhotic patients treated with direct acting antivirals. Dig Liver Dis 2019;51(2):310-317.

14. Sghaier I, Brochet E, Loueslati BY, Almawi WY. Hepatitis C virus protein interaction network for HCV clearance and association of DAA to HCC occurrence via data mining approach: A systematic review and critical analysis. Reviews in Medical Virology 2019;29:20.

15. Hadley D, Pan J, El-Sayed O, Aljabban J, Aljabban I, Azad TD, et al. Precision annotation of digital samples in NCBI’s gene expression omnibus. Sci Data 2017;4:170125.

16. Krämer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014;30(4):523-530.

17. Nakamura S, Hirano I, Oginaka K, Takemura T, Yokota D, Ono T, et al. The FOXM1 transcriptional factor promotes the proliferation of leukemia cells through modulation of cell cycle progression in acute myeloid leukemia. Carcinogenesis 2010;31(11):2012-2021.

18. Park HJ, Carr JR, Wang Z, Nogueira V, Hay N, Tyner AL, et al. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J 2009;28(19):2908-2918.

19. Chen X, Müller GA, Quaas M, Fischer M, Han N, Stutchbury B, et al. The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism. Mol Cell Biol 2013;33(2):227-236.

20. Zimmerman TL, Thevannanthan S, Ghose R, Burns AR, Karpen SJ. Nuclear export of retinoid X receptor alpha in response to interleukin-1-beta-mediated cell signaling: Roles for JNK and SER260. J Biol Chem 2006;281(22):15434-15440.

21. Matsushima-Nishiwaki R, Okuno Y, Takano Y, Kojima S, Friedman SL, Moriwaki H. Molecular mechanism for growth suppression of human hepatocellular carcinoma cells by acyclic retinoic. Carcinogenesis;24(8):1353-1359.

22. Shirakami Y, Lee SA, Clugston RD, Blaner WS. Hepatic metabolism of retinoids and disease associations. Biochim Biophys Acta 2012;1821(1):124-136.

23. Shimizu M, Imai K, Takai K, Moriwaki H. Role of Acyclic Retinoid in the Chemoprevention of Hepatocellular Carcinoma: Basic Aspects, Clinical Applications, and Future Prospects. Curr Cancer Drug Targets 2012;12(9):1119-1128.

24. Shrivastava S, Mukherjee A, Ray R, Ray RB. Hepatitis C Virus Induces Interleukin-1 (IL-1)/IL-18 in Circulatory and Resident Liver Macrophages. J Virol 2013;87(22):12284-12290.

25. Fabregat I, Moreno-Cáceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G, et al. TGF-β signalling and liver disease. FEBS J 2016;283(12):2219-2232.

26. Giannelli G, Villa E, Lahn M. Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res 2014;74(7):1890-1894.

27. Neuzillet C, de Gramont A, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, et al. Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget 2014;5(1):78-94.

28. Yang YM, Seki E. TNFα in Liver Fibrosis. Curr Pathobiol Rep 2015;3(4):253-261.

29. Szabo G, Csat T. Inflammasesomes in liver diseases. J Hepatol 2015;57(3):642-654.

30. Li T, Ma H, Chiang YJ. TGFβ1, TNFα, and insulin signaling crosstalk in the regulation of the rat cholesterol 7α-hydroxylase gene expression. J Lipid Res 2008;49(9):1981-1989.

31. Attallah AM, El-Far M, Zahran F, Shiha GE, Farid K, Omran MM, et al. Interferon-gamma is associated with hepatic dysfunction in fibrosis, cirrhosis, and hepatocellular carcinoma. J Immunoassay Immunochem 2016;37(6):597-610.

32. Knight B, Lim R, Yeoh GC, Olynuk JK. Interferon-γ exacerbates liver damage, the hepatic progenitor cell response and fibrosis in a mouse model of chronic liver injury. J Hepatol 2007;47(6):826-833.

33. Chen JH, Perry CJ, Tsui YC, Staron MM, Parish IA, Domínguez CX, et al. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat Med 2015;21(4):327-334.

34. Loo TM, Kamachi F, Watanabe Y, Yoshimoto S, Kanda H, Arai Y, et al. Gut microbiota promotes obesity-associated liver cancer through pge2-mediated suppression of antitumor immunity. Cancer Discov 2017;7(5):522-538.

35. Talaro NK, Panigrahi MK, Madigubba S, Phanithi PB. Overexpression of aryl hydrocarbon receptor (AHR) signalling pathway in human meningioma. J Neurooncol 2018;137(2):241-248.

36. Grimaldi G, Rajendra S, Matthews J. The aryl hydrocarbon receptor regulates the expression of TIPARP and its cis long-non-coding RNA, TIPARP-AS1. Biochem Biophys Res Commun 2018;495(3):2356-2362.

37. MacPherson L, Tamblyn L, Rajendra S, Brilha F, McPherson JP, Matthews
54. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science 2019;284:1362-1365.

55. Chiang JY. Bile acids: Regulation of synthesis. J Lipid Res 2009;50(10):1955-1966.

56. Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000;6(3):507-515.

57. Lu Y, Ma Z, Zhang Z, Xiong X, Wang X, Zhang H, et al. Yin Yang 1 promotes hepatic steatosis through repression of farnesoid X receptor in obese mice. Gut 2014;63(1):170-178.

58. Su H, Ma C, Liu J, Li N, Gao M, Huang A, et al. Downregulation of nuclear receptor FXR is associated with multiple malignant clinicopathological characteristics in human hepatocellular carcinoma. Am J Physiol Gastrointest Liver Physiol 2012;303(11):G1245-G1253.

59. Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 2011;60(4):463-472.

60. Shi JH, Guo WZ, Jin Y, Zhang HP, Pang C, Li J, et al. Recognition of HER2 expression in hepatocellular carcinoma and its significance in postoperative tumor recurrence. Cancer Med 2019;8(3):1269-1278.

61. Hsu HT, Chi CW. Emerging role of the peroxisome proliferator-activated receptor-gamma in hepatocellular carcinoma. J Hepatocell Carcinoma 2014;1:127-135.

62. Kress TR, Pellanda P, Pellegrinet L, Bianchi V, Nicolli P, Doni M, et al. Identification of MYC-dependent transcriptional programs in oncogene-addicted liver tumors. Cancer Res 2016;76(12):3463-3472.

63. Waldman T, Kinzler KW, Vogelstein B. p21 Is necessary for the p53-mediated G1 Arrest in Human Cancer Cells. Cancer Res 1995;55(22):5187-5190.

64. Zeng Y, Shen Z, Gu W, Wu M. Inhibition of hepatocellular carcinoma tumorigenesis by curcumin may be associated with CDKN1A and CTGF. Gene 2018;651:183-191.

65. Diaz L, Diaz-Muñoz M, García-Gaytán AC, Méndez I. Mechanistic effects of calcitriol in cancer biology. Nutrients 2015;7(6):5020-5050.

66. Rizvi A, Farhan M, Naseem I, Hadi SM. Calcitriol–copper interaction leads to non enzymatic, reactive oxygen species mediated DNA breakage and modulation of cellular redox scavengers in hepatocellular carcinoma. Apoptosis 2016;21(9):997-1007.

67. Rizvi A, Rizvi G, Naseem I. Calcitriol induced redox imbalance and DNA breakage in cells sharing a common metabolic feature of malignancies: Interaction with cellular copper (II) ions leads to the production of reactive oxygen species. Tumour Biol 2015;36(5):3661-3668.

68. Pan YC, Li CF, Ko CY, Pan MH, Chen PJ, Tseng JT, et al. CEBPD reverses RB/E2F1-mediated gene repression and participates in HMDB-induced apoptosis of cancer cells. Clin Cancer Res 2010;16(23):5770-5780.

69. Inoue K, Fry EA. Tumor suppression by the EGR1, DMP1, ARF, p53, and PTEN Network. Cancer Invest 2018:1-17.

70. Zhang Q, Zhang L, Li L, Wang Z, Ying J, Fan Y, et al. Interferon regulatory factor 8 functions as a tumor suppressor in renal cell carcinoma and its promoter methylation is associated with patient poor prognosis. Cancer Lett 2014;354(2):227-234.

71. Ye L, Xiang T, Zhu J, Li D, Shao Q, Peng W, et al. Interferon consensus sequence-binding protein 8, a tumor suppressor, suppresses tumor growth and invasion of non-small cell lung cancer by interacting with the wt[β]-Catenin pathway. Cell Physiol Biochem 2018;51(2):961-978.

72. Wei CC, Nie FQ, Jiang LL, Chen QN, Chen ZY, Chen X, et al. The pseudogene DUXAP10 promotes an aggressive phenotype through binding with LSD1 and repressing LRAT2 and RRAD in non small cell lung cancer. Oncotarget 2017;8(3):5233-5246.

73. Johnson GS, Li J, Beaver LM, Dashwood WM, Sun D, Rajendran P, et al. A functional pseudogene, NMRL2P, is regulated by Nrf2 and serves as a coactivator of NQO1 in sulfurophane-treated colon cancer cells. Mol Nutr Food Res 2017;61(4).

74. DeNicola GM1, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011;475(7354):106-109.

75. Zang J, Yin M, Peng G, Zhao Y, CRNDE: An important oncogenic long non-coding RNA in human cancers. Cell Prolif 2018;51(2):e12440.

76. Chen VL, Wang TH, Hsu HC, Yuan RH, Jeng YM. Overexpression of CTHRC1 in Hepatocellular Carcinoma Promotes Tumor Invasion and Predicts Poor Prognosis. PLoS One 2013;8(7):e70524.

77. Khalaf AM, Fuentes D, Morshid AI, Burke MR, Kaseb AO, Hassan M, et al. Role of WT/αβ-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma 2018;5:61-73.