Long Lasting Insecticide-treated Bed Net Ownership, Utilization and Associated Factors Among School-age Children in Dara Mallo and Uba Debretsehay Districts, Southern Ethiopia

Zerihun Zerdo (ｚedozerihun@gmail.com)
Arba Minch University https://orcid.org/0000-0002-6509-4672

Hilde Bastiaens
Universiteit Antwerpen

Sibyl Anthierens
Universiteit Antwerpen

Fekadu Massebo
Arba Minch University

Matios Masine
Arba Minch University

Gelila Biresawu
Arba Minch University

Misgun Shewangizaw
Arba Minch University

Abayneh Tunje
Arba Minch University

Yilma Chisha
Arba Minch University

Tsegaye Yohannes
Arba Minch University

Jean-Pierre Van geertruyden
Universiteit Antwerpen

Research

Keywords: Bed net ownership, Utilization, associated factors, SAC, Southern Ethiopia

DOI: https://doi.org/10.21203/rs.3.rs-46180/v1
Abstract

Background

Malaria is one of the major causes of morbidity and mortality among school-aged children (SAC) in Sub-Saharan Africa. SAC account for more than 60% of the reservoir of malaria transmission, but they were given less emphasis on prioritizing malaria prevention interventions. This study was aimed at assessing the ownership of bed nets, its utilization and factors associated with ownership of bed nets by households and bed net utilization among SAC in malaria prone areas of Dara Mallo and Uba Debretsehay districts in Southern Ethiopia, October to December 2019.

Methods

This study is part of baseline assessment in a cluster randomized controlled trial. The data were collected through interview and observation following structured questionnaire from 2261 SAC households. Univariable and multivariable logistic regressions were used to assess the association between bed net ownership or utilization and potential predictor variables. Odds Ratio (OR) and corresponding 95% Confidence Interval (CI) were used to determine the strength and statistical significance of association.

Results

The ownership of at least one bed net by households of SAC was about 19.3% (95% CI: 17.7%-21.0%). It was affected by living in altitude ranged from 1100 to 1250 meters above sea level with Adjusted OR (AOR) of 0.5 (95%CI: 0.3–0.9) and presence of child age less than 5 years (AOR = 2.1; 95%CI: 1.2–3.7). About 7.8% (95% CI: 6.7%-10.0%) of all SAC participated in the study and 40.4% (95% CI: 57.4% − 66.7%) of children in households owning at bed net passed the previous night under bed net. Bed net utilization by SAC conditional to its presence was lower among children age > 9 years (AOR = 0.2; 95%CI: 0.03–0.8); higher in children with mothers who had an education level above grade six (AOR = 5.2; 95%CI: 1.8–17.0); and when the household size to bed net ratio was ≤ 2 (AOR = 37.8; 95%CI: 4.1–1106).

Conclusion

Ownership of bed net was lower than universal coverage of at least one bed net for two individuals. It is important to monitor replacement needs and educate mothers with low education level and their SAC on the benefit of consistent utilization of bed nets.

Background

Malaria is one of the leading causes of morbidity and mortality among infectious diseases in the world (1). It is caused by a protozoan parasite of the genus Plasmodium and transmitted through the bite of the
female Anopheles mosquito. There are five known species of Plasmodium that cause malaria in humans: Plasmodium (P). falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi. P. knowlesi is a zoonotic parasite and predominantly found in the Asian countries, while the rest were human parasites (2). An estimated 228 million malaria cases and 405,000 malaria deaths occurred in the world in 2018. Of these, 93% of the cases and 94% of deaths due to malaria occurred in the African region (3).

There was substantial decrease in the prevalence of malaria globally and also in the African region in the last two decades. Between 2010 and 2015, malaria incidence rates (new malaria cases) fell by 21% and the malaria mortality rate by 31% in the African region (4). However, the rate of change in decline of malaria incidence remained 57 per 1000 at risk population per year from 2014 through to 2018 (3). Malaria is seasonal in most parts of Ethiopia with the peak malaria transmission season between September and October following the main rainy season from June to August (4, 5). A study carried out in North Gonder zone revealed that the highest incidence of malaria was observed between June and November while the lowest transmission period was from December to early April (6). The number of malaria cases in September, October, November, May, June, and July were above the average malaria cases in Boricha district in Southern Ethiopia, whereas those of March, January, February, December, August and April were months when malaria cases were below average (7).

The national malaria control program deployed by the Ethiopian government and partners has led to a promising decrease in the burden of malaria. As indicated by data collected from 41 hospitals in Ethiopia, the overall malaria inpatient case was 54% lower and malaria death was 68% lower than that predicted by the trends during 2001–2005 in 2011 (8). Moreover, in 2015 death due to malaria was decreased by 40% as compared to the number of deaths due to malaria in 2005 (9). Decreased exposure of children under the age of five years resulted in delayed development of immunity in their growth and now a day’s school-aged children (SAC) became the other highly susceptible group of people (10–12). In stratified analysis of studies targeting the general population as well as studies focused on SAC reveal that the burden of malaria was higher among this group of the population in Ethiopia (13–15). The consequence of malaria infection on children suffering affects their physical growth, mental development and overall economic development of the country (16, 17). Above all, they were responsible for about 60% of infection to mosquito vector for the transmission of the disease in all seasons (18).

Long lasting Insecticide-treated nets (LLINs) is the cornerstone of malaria prevention in Sub-Saharan Africa (SSA). Its effectiveness was dependent on universal coverage as well as consistent utilization of the nets (4). Utilization of LLINs reduces the clinical attack of malaria, Plasmodium infection and death due to malaria. It reduced child mortality of all causes by 17% which corresponds to 5.6 lives each year for every 1000 children protected with LLINs as compared to those did not use bed nets. In addition, it reduced incidence of uncomplicated episodes of Plasmodium falciparum malaria by almost half (19).

The national coverage of bed net ownership and its utilization conditional to ownership in Ethiopia were 40% and 61% respectively (13). However, cross-sectional survey conducted in different parts of the country targeting on different population segments indicated that the coverage and utilization differ
widely. In Jima, for example, the overall ownership and utilization were 70.9% and 38.4% respectively in the community (20). Near to Gilgel Gibe hydroelectric power project, 56.6% of the households owned at least one bed net and of those households owned bed nets, 60% slept under bed net the previous night preceding the survey (21). In Shashogo district in southern Ethiopia, the ownership and utilization of bed net were very low. Only 15.8% of pregnant mothers’ household own bed net and half of those owning bed nets utilized it (22). Unlike this, the coverage and utilization were good in Mirab Abay district in Gamo Gofa zone with the respective numbers being 89.9% and 85.5% (23). There were few studies that assessed the utilization of bed nets by SAC. In studies comparing bed net utilization between SAC and other population segments, SAC less likely used bed nets (16, 17). Despite SAC become at high risk of malaria and malaria associated morbidities, their access to and benefit from existing malaria prevention interventions were not well addressed. Previous studies mainly focused on assessing access to and intervention of malaria prevention interventions among pregnant mothers and children age less than five years. As mentioned elsewhere in this document, long lasting insecticide treated bed nets is one of the major malaria prevention interventions in use in SSA. Assessing the coverage of bed net ownership of households of SAC and utilization of bed nets, and their associated risk factors among SAC are important for optimizing malaria responses in Ethiopia and other similar settings in SSA in light of targets set in global technical strategy of malaria 2016–2030.

Methods

Study setting

The study was conducted in Dara Mallo and Uba Debretsehay districts in Gamo and Gofa Zones respectively. Both zones are found in South Nation’s Nationalities and People’s Regional state which is the 3rd populous region in Ethiopia. These districts are found in the western part of Arba Minch town which is the capital of the former Gamo Goffa zone as indicated in the Fig. 1 bellow. These districts were selected based on the burden of malaria contribution to the total malaria cases in the Zones. Based on the 2007 national census, a total of 150, 145 people were living in the two districts, and of whom 76550 (51%) were male (24).

Study Design

This was part of a baseline assessment in cluster randomized controlled trial with nested process evaluation that is going to evaluate the effect of malaria prevention education on malaria, anemia and cognitive development among SAC in two malarious districts in Southern Ethiopia. The trail is registered in Pan African Clinical Trails Registry with trial ID of PACTR202001837195738.

Sampling Techniques And Method Of Data Collection
A total of 3204 children attending their primary education were approached from 32 primary schools in Dara Mallo and Uba Debretsehay districts. Seventy two children from grade one to three were selected by using systematic random sampling technique from the domain by using a class roster as sampling frame. All participants involved in the trial were included to address the research objective in this study. The number of students to participate in the trial from each grade level (grade 1 to 3), was determined by the relative contribution of each grade level to the total enrolment of students in that school. The included households were approached by trained data collectors for interview. A pretested structured questionnaire was used to collect data on the demographic, water source, toilet structure, household assets and bed net related questions. These questions were adapted to local context from the Demographic and Health Surveys (DHS) malaria indicator survey household questionnaire (25). The questionnaire was uploaded to tablets in Open Data Kit (ODK) data collection tool. The data collectors were trained on how to use the data collection tool and ethical procedures to be followed. They interviewed mothers or caregivers of the selected children, observed the toilet structure and the number of bed nets in the household as well as placement of the existing bed nets in the households (hanged over sleeping place or not).

Data analysis

The data collected by using ODK data collection tool with tablet apparatus was converted to Microsoft excel speared sheet by using ODK briefcase. This data is imported to RStudio version 4.0.0 statistical software for data analysis and STATA version 14 is used to predict the principal components from household assets, housing condition, farm animals and drinking water sources at household level. The predicted index from principal component analysis is categorized into for quartiles to determine the wealth index of the households. The cleaned data were subjected to descriptive statistical analysis like the proportion for categorical variables and plots and descriptive measures for continuous data. Logistic regression was used for both univariable and multivariable logistic regression. Odds ratio and corresponding 95% level of confidence were used to assess the strength of association between bed net ownership or bed net utilization and potential predictor variables. Both forward and backward elimination methods were used to select fitness of the model. The fitness of the model is checked by using Akaike Information Criterion (AIC). The variables considered to check the fitness of the model were based on available literature and the level of association in univariable logistic regression. The averages of the household coordinates taken by Global positioning system (GPS) data were used to represent the coordinates of each school. The geospatial data is added to QGIS to present the ownership and utilization percentages at school level.

Ethical consideration

The trial mentioned above was approved with written consent procedure to be followed by the Institutional Research Ethics review Board (IRB) in College of Medicine and Health Sciences, Arba Minch University with the reference number of IRB/154/12. Official permission letter to conduct the research is submitted to district health offices and education offices in Dara Mallo and Uba Debretsehay districts. Support letter written by the respective education offices was given to each participating school to
support and participate in the study and written consent was obtained from the school headmasters. Parents of the selected SAC were invited to come to the schools and written consent was obtained before data collection at school and household levels. Written informed consent was obtained from each of the selected students’ parent at school and documented in college of medicine and Health Sciences in Arba Minch University.

Results

A total of 2261 SAC and their households participated in this study: 1419 and 842 from Uba Debretsehay and Dara Mallo districts respectively. Of the total children participated in the study, 50.3% were female and 85.5% were from rural area. The mean age of children was 8.7 years with standard deviation (SD) of 1.6 years. About 39.1%, 28.1% and 32.8% of the children were attending their education in grade one, two and three respectively. The detail socio-demographic characteristics of the households participated in this study was presented in Table 1.
Table 1
Socio-demographic characteristics of participants involved in Dara Mallo and Uba Debretsehay districts, Southern Ethiopia, 2019

Factor	Value categories	Frequency (%)
Place of residence	Rural	1928(85.3)
	Semi-urban	185(8.2)
	Urban	148(6.5)
Sex of household head	Male	2103(93.0)
	Female	158(7.0)
Age of household head	<=30	358(18.3)
	31–35	544(20.1)
	36–40	805(35.6)
	> 40	554(24.5)
Occupation of the household head	Farmer	1852(81.9)
	Civil servant	158(7.0)
	Merchant	115(5.1)
	Housewife	72(3.2)
	Daily laborer	31(1.4)
	Others	33(1.5)
Educational status of household head	Illiterate	1311(58.0)
	Literate	949(42.0)
Ethnicity	Goffa	1156(51.1)
	Gamo	928(41.0)
	Amhara	31(1.4)
	Others	146(6.5)
Age of child mother*	<=25	241(10.7)
	26–30	907(40.1)
	31–35	621(27.5)
	> =36	492(21.8)
Occupation of the child mother	Housewife	1867(82.6)
Ownership Of Bed Net

The ownership of at least one bed net at household level was 19.3% with 95% confidence interval (CI) of 17.7–21.0%. The mean number of bed nets in the household owning bed nets was 1.8 (SD = 0.9) while only 45 of the participated households had adequate numbers of bed nets (at least one bed net for 2 individuals). The ownership of at least one bed net, any person or participating SAC passed the previous night under a bed net conditional to the presence of bed net or irrespective of its presence were indicated in detail in Fig. 2.

There was wide difference in the ownership of bed nets in the households per schools where children attend their education as depicted in Fig. 3 bellow.

In univariable analysis, the ownership of bed net was affected by characteristics related to place of residence, household head occupation status, maternal occupation status and socioeconomic status. The residence place related factors affecting ownership of the bed nets were living in urban and semi-urban area as compared to rural area, living in area below 1100 meters above sea level as compared to those living above and those living in rented or governmental house as compared to those living in their own house. From the household head perspective, ownership of bed net was higher among those who had formal education and being a civil servant. Maternal factors associated with ownership of bed net were age bellow 25 years, civil servant occupation, being literate and education level above grade seven.

Factor	Value categories	Frequency (%)
Farmer		189(8.4)
Merchant		89(3.9)
Employee		82(3.6)
Others		34(1.5)
Educational status of mother	Illiterate	1682(74.4)
	Literate	579(25.6)
Sex of the SAC	Female	1137(50.3)
	Male	1123(49.7)
Grade of SAC	Grade 1	884(39.1)
	Grade 2	635(28.1)
	Grade 3	740(32.8)
Household size	Less than or equal to 5	457(20.2)
	Greater than 5	1804(79.8)
Households in the middle two quartiles of socioeconomic status were more likely to own bed nets as compared to the poorest and the richest categories. The crude odds ratio and the corresponding 95% confidence interval for each of variables were presented in Table 2.		
Factor	Value categories	Bed net owned
-----------------------------	------------------	---------------
		No (%)
District*		
Uba	1102(77.6)	318(22.4)
Debretsehay	724(86.0)	118(14.0)
Dara Mallo		
Place of residence*		
Rural	1620(84.0)	309(16.0)
Semi-urban	121(65.4)	64(34.6)
Urban	85(57.4)	63(42.6)
Residence house is*		
Private	1763(81.3)	405(18.7)
Not private	62(66.7)	31(33.3)
Sex of household head		
Male	1701(80.8)	403(19.2)
Female	125(79.1)	33(20.9)
Age of household head		
<=30	283(79.1)	75(20.9)
31–35	443(81.4)	101(18.6)
36–40	671(83.4)	134(16.6)
>40	428(77.3)	126(22.7)
Occupation of the household head*		
Farmer	1563(84.4)	289(15.6)
Civil servant	52(51.9)	76(48.1)
Merchant	81(70.4)	34(29.6)
Housewife	5677.8)	16(22.2)
Daily laborer	25(80.6)	6(19.4)

Statistically significant at univariable analysis and multivariable analysis**
Educational status of household head*	Others	Illiterate	Literate	Other	Rate (95% CI)
Educational status of household head*					
Illiterate	1075(84.9)	188(15.1)	1	0.9(0.4–1.9)	1.5(0.3–8.8)
Literate	768(75.6)	248(24.4)	1.8(1.5–2.2)		

Age of child mother*	Others	<=25	26–30	31–35	>=36	Other	Rate (95% CI)
<=25	182(75.5)	59(24.5)	1	1			
26–30	748(82.4)	160(17.6)	0.7(0.4–0.9)	1.1(0.6–2.0)			
31–35	507(81.8)	113(18.2)	0.7(0.5–0.99)	1.4(0.7–2.8)			
>=36	388(78.9)	104(21.1)	0.8(0.6–1.2)	1.4(0.6–3.2)			

Educational status of mother*	Others	Illiterate	Literate	Rate (95% CI)	
Educational status of mother*					
Illiterate	1379(84.1)	260(15.9)	1		
Literate	446(71.7)	176(28.3)	2.1(1.7–2.6)		

Education level of mother*	Others	<=grade 7	>=grade7	Rate (95% CI)	
<=grade 7	268(78.0)	76(22.1)	1		
>=grade7	138(58.7)	97(41.3)	2.5(1.7–3.6)	1.4(0.9–2.4)	

Occupation of mother*	Others	Housewife	Farmer	Merchant	Employee	Others	Rate (95% CI)
Housewife	1526(81.7)	341(18.3)	0.3(0.2–0.5)	1.8(0.8–4.5)			
Farmer	163(86.2)	26(13.8)	0.2(0.1–0.4)	4.9(1.3–18.6)			
Merchant	68(76.4)	21(23.6)	0.4(0.2–0.8)	2.7(0.97–7.6)			
Employee	47(56.6)	36(43.4)	1	1			
Others	21(63.6)	12(36.6)	0.8(0.3–1.7)				

Presence of pregnant mother	Others	No	Yes	Other	Rate (95% CI)
No	1608(81.0)	377(19.0)	1		
Yes	217(78.6)	59(21.4)	1.2(0.8–1.6)		

under 5 children in the household**	Others	Not present	Present	Other	Rate (95% CI)		
Not present	622(81.4)	142(18.6)	1	1			
Present	1203(80.4)	294(19.6)	1.1(0.9–1.3)	2.1(1.2–3.7)			

Stagnant water around home	Others	Not present	Present	Other	Rate (95% CI)
Not present	1685(81.0)	394(19.0)	1		

Statistically significant at univariable analysis and multivariable analysis**
| Wealth index in quartile* | Present | | | |
|--------------------------|---------|---------|-------|
| First | 731(85.7) | 122(14.3) | 1 |
| Second | 203(71.2) | 81(28.5) | 2.4(1.7–3.3) | 1.9(0.9–4.1) |
| Third | 407(72.7) | 153(27.3) | 2.3(1.7–2.9) | 1.4(0.7–2.6) |
| Fourth | 484(85.8) | 80(14.2) | 1(0.7–1.3) | 0.7(0.4–1.5) |

| Altitude of residence masl** | Present | | | |
|------------------------------|---------|---------|-------|
| <=1100 | 623(73.8) | 221(26.2) | 1 |
| (1100–1250] | 626(83.2) | 126(16.8) | 0.6(0.4–0.7) | 0.5(0.3–0.9) |
| >1250 | 575(86.6) | 89(13.4) | 0.4(0.3–0.6) | 0.7(0.3–1.4) |

Statistically significant at univariable analysis and multivariable analysis**

After fitting the model to multivariable logistic regression, households living in area of altitude between 1100 to 1250 mSL (AOR = 0.5; 95% CI: 0.3–0.9) as compared to those living below 1100 meters above sea level were less likely to own bed nets. The presence of children aged less than five years become the independent factor affecting ownership of bed net by the households (AOR = 2.1; 95% CI: 1.2–3.7).

Bed Net Utilization

The percentage of any person passed the previous night under bed net from the total participating households and households conditional to bed net ownership was 12.0% (95%CI; 10.6% -13.4%) and 62.2% (95%CI; 57.4%-66.7%) respectively. About 40.3% (95% CI: 35.8–45.1%) of participated SAC in the households owning bed net and 7.8% (6.7%-10.0%) of all participating SAC passed the previous night under bed net irrespective of a bed net ownership.

Passing the previous night under a bed net by SAC in univariable analysis was affected by place of residence of the children, maternal level of education, maternal occupation, child age and the knowledge of mothers on the transmission of malaria. Children living in semi-urban area were 2.6 (95% CI: 1.5–4.5) times more likely to use bed net while those living in urban area were 0.4 (95% CI: 0.2–0.8) times less likely to use a bed net as compared to those living in rural area in univariable analysis. Children age more than 9 years were about 0.6 (95% CI: 0.3–0.99) times less likely to use a bed net than children age less than 10 years. Children from mothers who had formal education above grade 6 (COR = 2.7 ; 95% CI: 1.4-5.0); those who were housewife (COR = 0.4 ; 95% CI: 0.2–0.9); and others (COR = 0.2; 95% CI: 0.1–0.6) occupation compared to civil servant mothers; mothers who know that malaria is transmitted only through the bite of mosquito (COR = 2.4 ; 95% CI: 1.5–4.3) and presence of adequate (at least one for 2
individuals) number of bed net in the house (COR = 3.4 ; 95% CI: 1.8–6.6) were associated with bed net utilization by SAC. However, after fitting the model in multivariable logistic regression, those living in urban area (AOR = 0.04; 95% CI: 0.01–0.2); children age above 9 years (AOR = 0.2; 95% CI: 0.03–0.8), education level of mother above grade 6 (AOR = 5.2; 95% CI: 1.8–17.0) and presence of adequate bed net (AOR = 37.8 ; 95% CI: 4.1–1106) in the household were the independent predictors of bed net utilization by the SAC conditional to ownership of bed nets by the households as indicated in the Table 3.
Table 3
Univariable and multivariable logistic regression analysis LLINs utilization by SAC conditional to its ownership, 2019

Factor	Value categories	Bed net owned	COR(95% CI)	AOR(95% CI)
District				
Uba	185(58.2)	133(41.8)	1.3(0.9-2.0)	
Debretsehay				
Dara Mallo	75(63.6)	43(36.4)	1	
Place of residence**				
Rural	18(60.5)	122(39.5)	1	1
Semi-urban	24(37.5)	40(62.5)	2.6(1.5–4.5)	1.3(0.3-3.0)
Urban	49(77.8)	14(22.2)	0.4(0.2–0.8)	0.04(<0.01–0.2)
Residence house is				
Private	242(59.8)	163(40.2)	1	
Not private	18(58.1)	13(41.9)	1.1(0.5–2.2)	
Gender of SAC				
Female	133(58.1)	96(41.9)	1	
male	127(61.4)	80(38.6)	0.9(0.6–1.3)	
Age of the SAC**				
< 10	200(57.3)	149(42.6)	1	1
>=10	60(69.0)	27(31.0)	0.6(0.3–0.99)	0.2(0.03–0.8)
Grade of the child				
One	107(60.4)	70(39.5)	1	
Two	67(56.8)	51(43.2)	1.2(0.7–1.9)	
Three	86(61.0)	55(39.0)	1.0(0.6–1.5)	
Sex of household head				
Male	238(59.1)	165(40.9)	1.4(0.7-3.0)	
Female	22(66.7)	11(33.3)	1	
Age of household head				
<=30	45(60.0)	30(40.0)	1	
31–35	66(65.3)	35(34.7)	0.8(0.4–1.5)	

Statistically significant at univariable analysis* and multivariable variable analysis**
Factor	Value categories	Bed net owned	COR (95% CI)	AOR (95% CI)
		No (%)	Yes (%)	
Bed net owned				
36–40		84 (62.7)	50 (37.3)	0.9 (0.5–1.6)
> 40		65 (51.6)	61 (48.4)	1.4 (0.7–2.5)
Occupation of the household head	Farmer	174 (60.2)	115 (39.8)	0.7 (0.4–1.2)
	Civil servant	40 (52.6)	36 (47.4)	1
	Merchant	23 (67.6)	11 (32.3)	0.5 (0.2–1.2)
	Others	23 (62.2)	14 (37.8)	0.7 (0.3–1.5)
Educational status of household head	Illiterate	112 (59.6)	76 (40.4)	1
	Literate	148 (59.7)	100 (40.3)	1 (0.7–1.5)
Age of child mother	<=35	206 (62.0)	126 (38.0)	1
	> 35	54 (52.0)	50 (48.0)	1.5 (1.0–2.4)
Educational status of mother	Illiterate	157 (60.4)	103 (39.6)	1
	Literate	103 (58.5)	73 (41.5)	1.1 (0.7–1.6)
Education level of mother**	< grade 7	54 (71.1)	22 (28.9)	1
	>= grade 7	47 (48.1)	50 (51.1)	2.7 (1.4–5.0)
		2.7 (1.4–5.0)	5.2 (1.8–17.0)	
Occupation of mother*	Housewife	203 (59.5)	138 (40.5)	0.4 (0.2–0.9)
	Employee	14 (38.9)	22 (61.1)	1
	Others	43 (72.9)	16 (27.1)	0.2 (0.1–0.6)
Presence of pregnant mother	No	229 (60.7)	148 (39.3)	1
	Yes	31 (52.5)	28 (47.5)	1.4 (0.8–2.4)

Statistically significant at univariable analysis* and multivariable variable analysis**
Factor	Value categories	Bed net owned	COR (95% CI)	AOR (95% CI)	
		No (%)	Yes (%)		
under 5 children in the household	Not present	83 (58.5)	59 (41.5)	1	
	Present	177 (60.2)	117 (39.8)	0.9 (0.6–1.4)	
Stagnant water around home	Not present	234 (59.4)	160 (36.6)	1	
	Present	26 (61.9)	16 (38.1)	0.9 (0.5–1.7)	
Mosquito only transmits malaria*	No	238 (62.3)	144 (37.7)	1	
	Yes	22 (40.7)	32 (59.3)	2.4 (1.5–4.3)	
IRS last 12 months	No	107 (55.7)	85 (44.3)	1	
	Yes	153 (62.7)	91 (37.3)	0.7 (0.5–1.1)	
IRS < 4 months	yes	85 (67.5)	41 (32.5)	1	
	No	68 (57.6)	50 (42.4)	1.5 (0.9–2.6)	2.3 (0.7–8.1)
Altitude of residence masl	<=1100	139 (62.9)	82 (37.1)	1	
	>1100	121 (56.3)	94 (43.7)	1.3 (0.9–1.9)	0.3 (0.1–1.1)
Wealth index in quartile	First	96 (60.8)	62 (39.2)	1	
	Second	40 (61.5)	25 (38.5)	1 (0.5–1.7)	
	Third	59 (61.5)	37 (38.5)	1 (0.6–1.6)	
	Fourth	65 (55.6)	52 (44.4)	1.2 (0.8–2.0)	
Household size to bed net ratio**	>2	245 (62.7)	146 (37.3)	1	
	<=2	15 (33.3)	30 (66.7)	3.4 (1.8–6.6)	37.8 (4.1–1106)

Statistically significant at univariable analysis* and multivariable variable analysis**

Discussion
The ownership of bed nets and sleeping under a bed net the night preceding the survey by SAC was assessed in this survey. The ownership of bed net by the households where SAC were living in the study area was 19.3%. Owning bed net was negatively affected in altitude ranging from 1100 to 1250 meters above sea level and positively influenced by the presence of children aged under-five years in the household. The percentage of children that slept the previous night under a bed net was 7.8% among the total studied and 40.3% in conditional to the presence of a bed net in the household. Bed net utilization by the SAC was positively affected by being a resident in rural areas, age of children below 10 years, mothers with educational status of above grade six and the presence of adequate numbers of bed nets in the households.

The household bed net ownership in the present study was much lower than the universal coverage target of the national malaria control program (26). Not only the ownership but also the adequacy of access to households owning bed net which should be taken as the major indicator of effectiveness of bed nets than ownership alone (27) was also poor. The ownership of bed net was lower than the coverage estimated in the most recent malaria indicator survey in Ethiopia (13) and most other studies conducted in Ethiopia (21, 24, 28, 29) except a study conducted among households of pregnant mothers in Shashogo district in Southern Ethiopia (22). The finding from the present study was also lower as compared to similar studies conducted outside Ethiopia such as national and district level studies in Uganda (30–32), Madagascar (33), Ghana (34, 35), Zimbabwe (36), Equatoria Guinea (37), Yemen (38), among migrant population in Myanmar (39) and in Kenya (40). The higher ownership of bed nets in these countries and specific study localities might be occurred due to difference in the study population since pregnant mothers and children age less than fivers were known to be at higher risk of malaria or timing of data collection relative to the time when the distribution has occurred since some bed nets get lost because of different reasons as time goes on. It might also be related to the level of drug resistant strains circulating in the community as resistant strains had a higher potential to lead to death that in turn might be enabling factor to own bed nets. The difference in finding from Shashogo district in Southern Ethiopia might be difference in the level of endemicity of malaria transmission.

The bed net utilization by SAC in the study area was lower than its utilization by people living in malaria endemic areas in Africa (1). The bed net utilization was lower among this study population (20, 21, 24, 28, 29) as compared to pregnant mothers, children age less than five years in Ethiopia as well as other countries outside Ethiopia like the general population and under five children in Zimbabwe (36), SAC in Uganda, Tanzania and Yemen (31, 38, 40–42), care givers of under five children in Ghana (35), SAC and the general population in Kenya (40) and Nigeria (43). These differences could be due to differences on the level of awareness of the targeted population as pregnant women and children age less than five years were well known high risk population groups than the SAC. The other possible explanations for such differences might be the difference in the level of awareness on the susceptibility of SAC for malaria and its consequences.

There were different factors influencing the bed net utilization among the different target population. From the socio demographic factors, being female and living in urban areas (36, 37, 44) were positively
influencing the utilization of bed net by the study population though this was not shown in the present study with respect to residence area. According to this study, the bed net utilization was higher among children in rural area as compared to those in urban area. In Malawi, the bed net utilization was positively associated with being resident in urban areas but not with female gender (45) which was also similar with respect to gender in Yemen (38). In similar to our finding, gender related difference in the utilization of bed net was not seen in a community based cross-sectional study in Katakwi district in Uganda (32). These differences might be related to cultural differences in giving priority to the different population segments in different contexts or ignorance to children mainly aged above nine years.

In most of studies those assessed the influence of presence of pregnant mother or children aged < 5 years, the presence of pregnant mother or children aged less than five years in the household were positively associated with bed net utilization. However, in this study both had positive relation but not significant enough which might be related to low number of bed net owned by the households.

Bed net utilization was significantly associated with the presence of either a pregnant mother or under five years aged children in the household among internally displaced households in the Democratic Republic of Congo (16), household members in the Budondo sub-country in Uganda (28), a national community based survey in Madagascar (30). In agreement with our finding, bed net utilization by SAC was not affected by the presence of pregnant mother or children aged less than five years in the household in Malawi (45) and general population in Yemen (38). In addition to the above explanation, these disparities between studies could be due to differences in the culture as pregnant women or young children might share the same sleeping place with the SAC.

The other factors affecting utilization of the bed net by the SAC in the present study area were maternal level of education and the ratio of bed nets to the household size. In Uganda and Zimbabwe, bed net utilization was significantly influenced by the density of bed nets in the households (14, 36). This was also corroborated by the 2007 national malaria indicator survey in Ethiopia (44), 2009 community based Survey in Madagascar (33). However, the proportion of bed nets in Adami Tulu did not influenced utilization of bed nets by children aged less than 5 years (29) and this difference might be related to difference in the attitude towards the bed net utilization on the prevention of malaria.

The bed net utilization was also influenced by the economic status of the population as it could give an opportunity to buy in areas where there was access. The review of the national malaria indicator survey revealed this in Countries of SSA (46). The finding of the present study was in contrast to this where socioeconomic status of the household had no significant impact on the utilization of bed net. In similar with studies conducted in Adami Tulu, utilization of bed net among the study population was higher when the mother of children had higher level of education [36]. The same thing was true for study population in Equatorial Guinea (37). However, the educational status of caregiver of children aged bellow five years was not influenced by their educational status in Ghana (35) which could be related to differences in decision making capacity by the caregivers where non parental care givers might had low
influence in ordering the children to sleep under the bed net or low decision making power in the household.

Finally, the readers of this manuscript shall interpret the finding of this research by taking the following limitations and strengths of the study. The 1st limitation was due to involving only school enrolled children as the situation could be different for those non-enrolled to the school. The 2nd limitation was due to study design used since cross-sectional studies are not strong in generating evidence for cause and effect relationship. The strengths of this study is that we were able to do research in a hard to reach study setting and underexplored area, the sample size was large enough, making the power of the study high.

Conclusions

Ownership of the bed nets, access to adequate numbers of bed nets in the households of SAC and their bed net utilization was lower than the target set to achieve universal coverage of the bed nets to control malaria. It is important to monitor replacement needs of households with the main emphasis given to households where there were no children age less than five years and those living in altitude range between 1100 and 1250 meters above sea level. Utilization of bed net conditional to the presence of at least one bed net in the household was affected by maternal education level, age of the child and living in urban areas. Barriers to utilization of bed net among children aged above 9 years should be explored in urban residents. Then, malaria prevention education to correct these barriers and increasing awareness about the benefit of effective and consistent utilization of insecticide treated bed nets should be given to children and mothers with low educational level to realize the elimination of malaria and the broad vision to see the world free of malaria.

Abbreviations

AIC
Akaike Information Criterion
AOR
Adjusted Odds Ratio
CI
Confidence Interval
COR
Crude Odds Ratio
DHS
Demographic and Health Surveys
GPS
Global positioning system
IRB
Institutional Research Ethics review Board
Declarations

Ethical Approval and consent to participate

The trial mentioned above was approved with written consent procedure to be followed by the Institutional Research Ethics review Board (IRB) in College of Medicine and Health Sciences, Arba Minch University with the reference number of IRB/154/12. Official permission letter to conduct the research is submitted to district health offices and education offices in Dara Mallo and Uba Debretehay districts. Support letter written by the respective education offices was given to each participating school to support and participate in the study and written consent was obtained from the school headmasters. Parents of the selected SAC were invited to come to the schools and written consent was obtained before data collection at school and household levels. Written informed consent was obtained from each of the selected students’ parent at school and documented in college of medicine and Health Sciences in Arba Minch University

Consent for publication:

Not applicable

Availability of data and materials
The datasets used and/or analyzed during the current study will be available from the corresponding author on reasonable request.

Competing interests

The authors declare that we have no competing interests.

Funding

Arba Minch University financed the data collection process.

Authors' contributions

ZZ, JP, HD, SA and FM conceived the idea, designed the study, analyzed, interpreted and drafted the manuscript; MM, MS and YC conceived and involved in acquisition of the data; GB, AT& TY conceived the idea

Acknowledgement

We would like to thank Arba Minch University for funding the research, Dara Mallo and Uba Debretehaye district health offices for informing lists of malaria endemic kebeles. Our sincere appreciation goes to school director involved in facilitating the data collection process, those involved in the data collection and parents for devoting their time to come to school to provide assent and interview.

References

1. WHO. Guideline: Preventive Chemotherapy to Control Soil-Transmitted Helminth Infections in At-Risk Population Groups. 2017. PubMed PMID: 29578660.

2. World Health Organization. World Malaria Report 2014. Geneva, Switzerland: Global Malaria Programme. World Health Organization. 2014:1-227.

3. WHO. World malaria report 2019. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. 2019.

4. WHO. Fact Sheet: World Malaria Report 2016. Updated 13 of December. 2016 Available at: http://www.who.int/malaria/media/world-malaria-report-2016/en/. Access on October 14, 2017.

5. WHO. A framework for malaria elimination. Global Malaria Programme. Geneva, Switzerland. 2017. http://www.who.int/malaria/publications/atoz/9789241511988/en/.

6. Taddese AA, Baraki AG, Gelaye KA. Spatial modeling, prediction and seasonal variation of malaria in northwest Ethiopia. BMC research notes. 2019 May 14;12(1):273. PubMed PMID: 31088545.
7. Dabaro D, Birhanu Z, Yewhalaw D. Analysis of trends of malaria from 2010 to 2017 in Boricha District, Southern Ethiopia. Malaria journal. 2020 Feb 24;19(1):88. PubMed PMID: 32093705. Pubmed Central PMCID: PMC7038558. Epub 2020/02/26. eng.

8. Aregawi M, Lynch M, Bekele W, Kebede H, Jima D, Taffese HS, Yenehun MA, Lilay A, Williams R, Thomson M, Nafo-Traore F. Time series analysis of trends in malaria cases and deaths at hospitals and the effect of antimalarial interventions, 2001–2011, Ethiopia. PLoS One. 2014;9(11).

9. World Health Organization. World malaria report 2015. World Health Organization; 2016 Jan 30.

10. Ceesay SJ, Casals-Pascual C, Erskine J, Anya SE, Duah NO, Fulford AJ, Sesay SS, Abubakar I, Dunyo S, Sey O, Palmer A. Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis. The Lancet. 2008 Nov 1;372(9649):1545-54.

11. Nankabirwa J, Brooker SJ, Clarke SE, Fernando D, Gitonga CW, Schellenberg D, Greenwood B. Malaria in school-age children in Africa: an increasingly important challenge. Tropical Medicine & International Health. 2014 Nov;19(11):1294-309.

12. Ethiopian Public Health Institute. Ethiopia National Malaria Indicator Survey 2015.

13. Ashton RA, Kefyalew T, Tesfaye G, Pullan RL, Yadeta D, Reithinger R, Kolaczinski JH, Brooker S. School-based surveys of malaria in Oromia Regional State, Ethiopia: a rapid survey method for malaria in low transmission settings. Malaria journal. 2011 Dec;10(1):25.

14. Golassa L, Baliraine FN, Enweji N, Erko B, Swedberg G, Aseffa A. Microscopic and molecular evidence of the presence of asymptomatic Plasmodium falciparum and Plasmodium vivax infections in an area with low, seasonal and unstable malaria transmission in Ethiopia. BMC infectious diseases. 2015 Dec;15(1):310.

15. Brooks HM, Paul MK, Claude KM, Mocanu V, Hawkes MT. Use and disuse of malaria bed nets in an internally displaced persons camp in the Democratic Republic of the Congo: a mixed-methods study. PloS one. 2017 Sep 26;12(9):e0185290.

16. Nuwamanya S, Kansiime N, Aheebwe E, Akatukwasa C, Nabulo H, Turyakira E, Bajunirwe F. Utilization of Long-Lasting Insecticide Treated Nets and Parasitaemia at 6 Months after a Mass Distribution Exercise among Households in Mbarara Municipality, Uganda: A Cross-Sectional Community Based Study. Malaria research and treatment. 2018;2018.

17. Coalson JE, Cohee LM, Buchwald AG, Nyambalo A, Kubale J, Seydel KB, Mathanga D, Taylor TE, Laufer MK, Wilson ML. Simulation models predict that school-age children are responsible for most human-to-mosquito Plasmodium falciparum transmission in southern Malawi. Malaria journal. 2018 Dec;17(1):147.

18. Afoakwah C, Nunoo J, Andoh FK. Effect of insecticide-treated bed net usage on under-five mortality in northern Ghana. Malaria journal. 2015 Dec;14(1):309.

19. Pryce J, Richardson M, Lengeler C. Insecticide-treated nets for preventing malaria. The Cochrane database of systematic reviews. 2018 Nov 6;11(11):CD000363. PubMed PMID: 30398672. Pubmed Central PMCID: PMC6418392 has no known conflicts of interest. Epub 2018/11/07. eng.
20. Sena LD, Deressa WA, Ali AA. Predictors of long-lasting insecticide-treated bed net ownership and utilization: evidence from community-based cross-sectional comparative study, Southwest Ethiopia. Malaria journal. 2013 Dec;12(1):406.

21. Fuge TG, Ayanto SY, Gurmamo FL. Assessment of knowledge, attitude and practice about malaria and ITNs utilization among pregnant women in Shashogo District, Southern Ethiopia. Malaria Journal. 2015 Dec;14(1):235.

22. Tassew A, Hopkins R, Deressa W. Factors influencing the ownership and utilization of long-lasting insecticidal nets for malaria prevention in Ethiopia. Malaria journal. 2017 Dec;16(1):262.

23. Census 2007 Tables: Southern Nations, Nationalities, and Peoples’, Available at https://en.wikipedia.org/wiki/Gamo_Gofa_ZoneRegion. Accessed on March 2, 2019

24. Ministry of Health. National Malaria Guidelines. 3rd ed. Addis Ababa: Federal Ministry of Health of Ethiopia; 2012. Available from: https://www.medbox.org/nationalmalaria-guidelines-ethiopia/download.pdf; accessed on May 21, 2019.

25. DHS. Malaria Indicator Survey Toolkit. MIS Household Questionnaire. 2016.

26. Koenker H, Arnold F, Ba F, Cisse M, Diouf L, Eckert E, Erskine M, Florey L, Fotheringham M, Gerberg L, Lengeler C. Assessing whether universal coverage with insecticide-treated nets has been achieved: is the right indicator being used?. Malaria journal. 2018 Dec;17(1):355.

27. Moscibrodzki P, Dobelle M, Stone J, Kalumuna C, Chiu YH, Hennig N. Free versus purchased mosquito net ownership and use in Budondo sub-county, Uganda. Malaria journal. 2018 Dec;17(1):363.

28. Finlay AM, Butts J, Ranaivoharimina H, Cotte AH, Ramarosandratana B, Rabarijaona H, Tuseo L, Chang M, Eng JV. Free mass distribution of long lasting insecticidal nets lead to high levels of LLIN access and use in Madagascar, 2010: A cross-sectional observational study. PloS one. 2017 Aug 29;12(8):e0183936.

29. Nzobo BJ, Ngasala BE, Kihamia CM. Prevalence of asymptomatic malaria infection and use of different malaria control measures among primary school children in Morogoro Municipality, Tanzania. Malaria journal. 2015 Dec;14(1):491.

30. Alemu MB, Asnake MA, Lemma MY, Melak MF, Yenit MK. Utilization of insecticide treated bed net and associated factors among households of Kola Diba town, North Gondar, Amhara region, Ethiopia. BMC research notes. 2018 Dec;11(1):575.

31. Wanzira H, Katamba H, Rubahika D. (2016). Use of long-lasting insecticide-treated bed nets in a population with universal coverage following a mass distribution campaign in Uganda. Malar J; 15:311 DOI 10.1186/s12936-016-1360-0.

32. García-Basteiro AL, Schwabe C, Aragon C, Baltazar G, Rehman AM, Matias A, Nseng G, Kleinschmidt I. Determinants of bed net use in children under five and household bed net ownership on Bioko Island, Equatorial Guinea. Malaria journal. 2011 Dec;10(1):179.

33. Nyavor KD, Kweku M, Agbemajef I, Takramah W, Norman I, Tarkang E, Binka F. Assessing the ownership, usage and knowledge of insecticide treated nets (ITNs) in malaria prevention in the
34. Diema Konlan K, Japiong M, Dodam Konlan K, Afaya A, Salia SM, Kombat JM. Utilization of Insecticide Treated Bed Nets (ITNs) among Caregivers of Children under Five Years in the Ho Municipality. Interdisciplinary perspectives on infectious diseases. 2019;2019.

35. Kanyangarara M, Hamapumbu H, Mamini E, Lupiya J, Stevenson JC, Mharakurwa S, Chaponda M, Thuma PE, Gwanzura L, Munyati S, Mulenga M. Malaria knowledge and bed net use in three transmission settings in southern Africa. Malaria journal. 2018 Dec;17(1):41.

36. Gonahasa S, Maiteki-Sebuguzi C, Rugnao S, Dorsey G, Opigo J, Yeka A, Katureebe A, Kyohere M, Lynd A, Hemingway J, Donnelly M. LLIN Evaluation in Uganda Project (LLINEUP): factors associated with ownership and use of long-lasting insecticidal nets in Uganda: a cross-sectional survey of 48 districts. Malaria journal. 2018 Dec;17(1):421.

37. Al-Eryani SM, Mahdy MA, Al-Mekhlafi AM, Abdul-Ghani R. Access to and use of long-lasting insecticidal nets and factors associated with non-use among communities in malaria-endemic areas of Al Hudaydah governorate in the Tihama region, west of Yemen. Malaria journal. 2017 Dec;16(1):244.

38. Maung TM, Tripathy JP, Oo T, Oo SM, Soe TN, Thi A, Wai KT. Household ownership and utilization of insecticide-treated nets under the Regional Artemisinin Resistance Initiative in Myanmar. Tropical medicine and health. 2018 Dec;46(1):27.

39. Omondi R, Kamau L. Ownership and Utilization of Insecticide Treated Nets among Primary School Children Following Universal Distribution of Insecticide Treated Nets in Kasipul, Homa-Bay County, Kenya. International Journal of Sciences: Basic and Applied Research (IJSBAR) (2018) Volume 40, No 1, pp 26-36

40. Lencha B. Insecticide Treated Bed Net Utilization among Under Five Children and Household Bed Net Ownership in Adami Tulu District, Oromia Regional State, Ethiopia (Doctoral dissertation, Addis Ababa University).

41. Gitonga CW, Edwards T, Karanja PN, Noor AM, Snow RW, Brooker SJ. Plasmodium infection, anaemia and mosquito net use among school children across different settings in Kenya. Tropical medicine & international health. 2012 Jul;17(7):858-70.

42. Russell CL, Sallau A, Emukah E, Graves PM, Noland GS, Ngondi JM, Ozaki M, Nwankwo L, Miri E, McFarland DA, Richards FO. Determinants of bed net use in Southeast Nigeria following mass distribution of LLINs: implications for social behavior change interventions. PLoS One. 2015 Oct 2;10(10):e0139447.

43. Graves PM, Ngondi JM, Hwang J, Getachew A, Gebre T, Mosher AW, Patterson AE, Shargie EB, Tadesse Z, Wolkon A, Reithinger R. Factors associated with mosquito net use by individuals in households owning nets in Ethiopia. Malaria journal. 2011 Dec;10(1):354.

44. Buchwald AG, Walldorf JA, Cohee LM, Coalson JE, Chimbiya N, Bauleni et al. (2016). Bed net use among school-aged children after a universal bed net campaign in Malawi. Malar J; 15:127 DOI 10.1186/s12936-016-1178-9.
45. Njau JD, Stephenson R, Menon M, Kachur SP, McFarland DA. (2013). Exploring the impact of targeted distribution of free bed nets on households bed net ownership, socioeconomic disparities and childhood malaria infection rates: analysis of national malaria survey data from three sub-Saharan Africa countries. Malaria Journal; 12:245. doi:10.1186/1475-2875-12-245.

46. Njau JD, Stephenson R, Menon M, Kachur SP, McFarland DA. Exploring the impact of targeted distribution of free bed nets on households bed net ownership, socio-economic disparities and childhood malaria infection rates: analysis of national malaria survey data from three sub-Saharan Africa countries. Malaria Journal. 2013 Dec;12(1):245.

Figures

Figure 1

Location map of two districts selected from former Gamo Gofa zone, in Southern Ethiopia.
Figure 2

LLINs ownership, any person or SAC passed the previous night under LLINs, 2019 Own = ownership of LLINs by the participating households ANU_n = any person passed the previous night under LLINs conditional to presence in the household SAC_n = participating SAC passed the previous night under LLINs conditional to its ownership by the household ANU = any person passed the previous night under LLINs from total participated households SAC = participating SAC passed the previous night under LLINs from total participated SAC

Figure 3

Percentage of bed net ownership among households per schools where participated children attend their education