Getting paralysed after COVID: Guillain–Barre syndrome

Sameer K. Mehta, Ashok Sunder

Department of Medicine, Tata Main Hospital, Jamshedpur, Jharkhand, India

ABSTRACT

Neurological involvement after coronavirus disease (COVID-19) pneumonias is common and occurs in almost one-third of the patients. The commonest neurological symptoms are ageusia, anosmia, headache, nausea, vomiting, dizziness, and myalgia. Guillain–Barre syndrome (GBS) is a rare manifestation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; whereas the common neurological manifestations of the SARS-CoV-2 infection occur with the onset of the respiratory symptoms and may be due to the direct invasion of the nervous system by the virus, GBS in COVID-19 follows a time lag of 1–4 weeks and may be attributable to the immune mechanism of molecular mimicry. Here we report a case of GBS in a patient of COVID-19 which occurred on the 22nd day after the onset of the disease. The patient recovered completely and went home walking.

Keywords: COVID-19, Guillain-Barre syndrome, SARS-CoV-2

Introduction

The COVID-19 pandemic, caused by the SARS-CoV-2 infection, started from Wuhan province of China and spread globally with almost no country remaining unaffected. It has myriad symptoms and signs, involving almost all the organ systems but predominantly affecting the respiratory system. Neurological involvement has been seen in almost one-third of patients with ageusia and anosmia as the most common specific manifestations. Other common neurological manifestations include headache, vomiting, nausea, dizziness, and disorders of consciousness.[1] All these symptoms are the consequences of direct invasion of the nervous system by the virus. Less common neurological manifestations such as acute cerebrovascular disease and impaired consciousness have also been seen in some cases.[1]

Rare neurological manifestations like GBS as a complication of COVID-19 have also been reported from various parts of the world with almost 42 such cases being reported in the literature.[2] GBS in COVID-19 may be attributable to the secondary immune mechanism like antigen mimicry just like other bacterial and viral infections. However, it still cannot be conclusively stated that whether the neurological symptoms associated with SARS-CoV-2 are attributable to an abnormal immune response or direct injury by the virus.

Case History

An 84-year-old male with a medical history of adequately treated hypertension and hypothyroidism presented to the emergency department with complaints of fever, cough, and breathlessness for 5 days. Chest X-ray revealed bilateral pneumonia and throat swab RTPCR for COVID-19 was positive. The patient turned hypoxic and was admitted in the critical care unit where he received targeted therapy for COVID-19 in the form of high-flow nasal oxygen, ventilatory support, intravenous remdesivir, steroid, convalescent plasma and subcutaneous low molecular weight heparin (LMWH). He showed high values of serum ferritin,
GBS commonly follows many bacterial and viral infections like Epstein–Barr virus, campylobacter jejuni, cytomegalovirus, influenza A virus, haemophilus influenza, and mycoplasma pneumoniae. Previous types of coronavirus (SARS-CoV and MERS) and Zika virus have been associated with GBS as well. Neurological involvement is common in COVID-19, with ageusia and anosmia as the most common specific manifestations. Other neurological manifestations include headache, vomiting, nausea, dizziness, and disorders of consciousness.

There have been reports of several cases of GBS in COVID-19 but the exact prevalence is still not known. Most literature reported affected males over 50 years and the incidence of GBS rises with age reflecting the fact that older age and male gender are risk factors for more severe COVID-19. All major subtypes of GBS such as acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy (AMAN), acute motor sensory axonal neuropathy (AMSAN), and Miller Fisher syndrome (MFS) have been reported in COVID-19. However, most reports are of AIDP, like in our case.

In a review article of 33 cases of GBS in COVID-19 by Kaveh Rahimi, the average duration for neurological symptoms following COVID-19 infection was 11.92 ± 6.20 days. The mean age of the patients was 57.26 ± 15.82 years, with the youngest being 5 years and the oldest being 84 years old. Our patient was 84 years old and the quadriparesis started on 22nd day after the infection. In another article by James B. Caress et al. (37 cases), the mean age was 59 years, the male prevalence was 65% and the mean duration 11 days. Respiratory failure was present in almost 40% of GBS related to COVID-19 which is higher than that observed in non-COVID GBS cases (20–30%). This suggests that both COVID-19 pneumonia and GBS-associated respiratory muscle weakness contribute to the respiratory failure. The physicians should always consider GBS in the differential diagnosis of a respiratory insufficiency in patients with COVID-19, especially when there is a discrepancy between chest imaging and respiratory parameters. Our case also had respiratory failure and required ventilatory support.

GBS in COVID-19 occurs because of the post-infectious mechanism of molecular mimicry. This is supported by delayed onset quadriparesis after SARS-CoV-2 infection and the presence of autoantibodies that result from an immune response directed to an epitope of the infectious agent that cross-reacts with a structurally similar component of peripheral nerve, resulting in delayed immune-mediated damage to peripheral nerve. SARS-CoV-2 attaches to cell surfaces by the viral spike (S) protein, which binds to angiotensin-converting enzyme 2 and to gangliosides containing sialic acid residues, including the GaNAC residue of GM1. Cross-reactivity between the viral protein–associated gangliosides and peripheral nerve gangliosides may result out of molecular mimicry and subsequent nerve sheath destruction.

Table 1: Serial laboratory investigations
Day 2
Hb% (gm/dl)
TLC (per cumm)
Neutrophils (per cumm)
Lymphocytes (per cumm)
NLR
Platelet count (per cumm)
LDH (U/l)
CRP (mg/dl)
IL-6 (pg/ml)
Ferritin (ng/ml)
Creatinine (mg/dl)
ALT (U/l)
AST (U/l)

\(^{1} \text{TLC} \) - Total leucocyte count; \(^{2} \text{NLR} \) - Neutrophil lymphocyte ratio; \(^{3} \text{LDH} \) - Lactate dehydrogenase; \(^{4} \text{IL-6} \) - Interleukin 6; \(^{5} \text{CRP} \) - C reactive protein; \(^{6} \text{ALT} \) - Alanine transaminase; \(^{7} \text{AST} \) - Aspartate transaminase.
A parainfectious mechanism for GBS in COVID-19, mediated by the generalized, hyperinflammatory response is also suggested in some cases where symptoms of COVID-19 and GBS occurred simultaneously and autoantibodies were not detected.

Conclusion

Neurological involvement in COVID-19 is common but GBS is rare and it should be considered in a patient with quadriplegia or respiratory failure which is out of proportion to the severity of the COVID illness. In fact, in the current scenario, all patient with GBS should be screened for COVID-19. This should be kept in mind by the primary care physicians.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Table 2: Grading of power (Medical Research Council Grading)

Upper limb	Lower limb	Right	Left	Right	Left
Shoulder abduction	4/5	4/5	3/5	3/5	
Elbow flexion	4/5	4/5	3/5	3/5	
Elbow extension	4/5	4/5	3/5	3/5	
Wrist extension	4/5	4/5	3/5	3/5	
Wrist flexion	4/5	4/5	3/5	3/5	
Finger extension	4/5	4/5	3/5	3/5	
Finger flexion	4/5	4/5	3/5	3/5	

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020;77:683-90.
2. Uncini A, Vallat JM, Jacobs BC. Guillain-Barré syndrome in SARS-CoV-2 infection: An instant systematic review of the first six months of pandemic. J Neurol Neurosurg Psychiatry 2020;91:1105-10.
3. Diez-Porras L, Vergés E, Gil F, Vidal MJ, Massons J, Arboix A. Guillain-Barré-Strohl syndrome and COVID-19: Case report and literature review. Neuromuscul Disord 2020;30:859-61.
4. Berlin DA, Gulick RM, Martinez FJ. Severe COVID-19. N Engl J Med 2020;383:2451-60.
5. Rahimi K. Guillain-Barre syndrome during COVID-19 pandemic: An overview of the reports. Neurol Sci 2020;41:3149-56.
6. Caress JB, Castoro RJ, Simmons Z, Scelsa SN, Lewis RA, Ahlawat A, et al. COVID-19-associated Guillain-Barré syndrome: The early pandemic experience. Muscle Nerve 2020;62:485-91.
7. Webb S, Wallace VC, Martin-Lopez D, Yogarajah M. Guillain-Barré syndrome following COVID-19: A newly emerging post-infectious complication. J Neurol 2020;267:1877-9.
8. Zito A, Alfonsi E, Franciotta D, Todisco M, Gastaldi M, Ramusino MC, et al. COVID-19 and Guillain-Barré syndrome: A case report and review of literature. Front Neurol 2020;11:909.
9. Willison HJ, Jacobs BC, Van Doorn PA. Guillain-Barre syndrome. Lancet 2016;388:717-27.