On Learned Operator Correction

Sebastian Lunz1,*, Andreas Hauptmann2,3,*, Tanja Tarvainen3,4, Carola-Bibiane Schönlieb1, and Simon Arridge3

1University of Cambridge, Applied Mathematics and Theoretical Physics
2University of Oulu, Research Unit of Mathematical Sciences
3University College London, Department of Computer Science
4University of Eastern Finland, Department of Applied Physics

*equal contribution

Abstract

We discuss the possibility to learn a data-driven explicit model correction for inverse problems and whether such a model correction can be used within a variational framework to obtain regularised reconstructions. This paper discusses the conceptual difficulty to learn such a forward model correction and proceeds to present a possible solution as forward-backward correction that explicitly corrects in both data and solution spaces. We then derive conditions under which solutions to the variational problem with a learned correction converge to solutions obtained with the correct operator. The proposed approach is evaluated on an application to limited view photoacoustic tomography and compared to the established framework of Bayesian approximation error method.

1 Introduction

In inverse problems it is usually considered imperative to have an accurate forward model of the underlying physics. Nevertheless, such accurate models can be computationally highly expensive due to possible nonlinearities, large spatial and temporal dimensions as well as stochasticity. Thus, in many applications approximate models are used in order to speed up reconstruction times and to comply with hardware and cost restrictions. As a consequence the introduced approximation errors need to be taken into account when solving ill-posed inverse problems or a degradation of the reconstruction quality can be expected.

For instance, in classical computerised tomography with a relatively high dose, models based on ray transforms are sufficiently accurate for the reconstruction task, whereas the full physical model would incorporate stochastic X-ray scattering events. Nevertheless, in some cone beam computerised tomography applications the dose is typically relatively low with a large field of view and hence scattering becomes more prevalent [37] and simple models based on the ray transform are not enough to guarantee sufficient image quality. However, as these scattering events are stochastic, accurate models would be too expensive for practical image reconstruction. Therefore, the basic model is used as approximation with an appropriate correction that accounts for the full physical phenomena [44].

In applications where the forward model is given by the solution of a partial differential equation, model reduction techniques are often used to reduce computational cost [8, 14, 38]. Such reductions lead to known approximation errors in the model and can be corrected for by explicit modelling [4, 23]. Recently, with the possibility to combine deep learning techniques with classical variational methods, approximate models are now also used in the framework of learned image reconstruction [20]. In this case, the approximate model is embedded in an iterative scheme and updates are performed by a convolutional neural network (CNN). Here, model correction is performed \textit{implicitly} by the network while computing the iterative updates.

In this paper we investigate the possibility to correct such approximation errors \textit{explicitly} with data-driven methods, in particular using a CNN. In what follows, we restrict ourselves to linear
inverse problems. Let \(x \in X \) be the unknown quantity of interest we aim to reconstruct from measurements \(y \in Y \), where \(X, Y \) are Hilbert spaces and \(x \) and \(y \) fulfil the relation

\[Ax = y, \tag{1} \]

where \(A : X \to Y \) is the (accurate) forward operator modelling the underlying physics. We assume that the evaluation of \(A \) is computationally expensive and we rather want to use an approximate model \(\tilde{A} : X \to Y \) to compute \(x \) from \(y \). In doing so, we introduce an inherent approximation error in (1) and have

\[\tilde{A}x = \tilde{y}. \tag{2} \]

leading to a systematic model error

\[\delta y = y - \tilde{y}. \tag{3} \]

Remark 1.1. In general, the range and domain of \(\tilde{A} \) might be different to those of \(A \). To simplify the remainder of this paper we assume, unless otherwise stated, that appropriate projections between the range and domain of the approximate operator \(\tilde{A} \) as well as the range and domain of the true operator \(A \) are included in the implementation of \(\tilde{A} \), so that expressions such as (3) are well defined.

In this work, we consider corrections for this approximation error via a parameterisable, possibly nonlinear, mapping \(F_{\Theta} : Y \to Y \), applied as a correction to \(\tilde{A} \). This leads to a corrected operator \(A_{\Theta} \) of the form

\[A_{\Theta} = F_{\Theta} \circ \tilde{A}. \tag{4} \]

We aim to choose the correction \(F_{\Theta} \) such that ideally \(A_{\Theta}(x) \approx Ax \) for some \(x \in X \) of interest. Restricting the corrected operator \(A_{\Theta} \) to be a composition of the approximate operator \(\tilde{A} \) and a parameterisable correction yields various advantages compared to fully parameterising the corrected operator \(A_{\Theta} : X \to Y \), without utilising the knowledge of \(\tilde{A} \). It avoids having to model the typically global dependencies of \(A \) in the learned correction and allows us to employ generic network architectures for \(F_{\Theta} \), such as the popular U-Net [33].

The primary question that we aim to answer is, whether such corrected models (4) can be subsequently used in variational regularisation approaches that find a reconstruction \(x^* \) as

\[x^* = \arg \min_{x \in X} \frac{1}{2} \| A_{\Theta}(x) - y \|_Y^2 + \lambda R(x) \tag{5} \]

with regularisation functional \(R \) and associated hyper-parameter \(\lambda \). Apart from investigating the practical performance of (5), we will discuss conditions on the model correction that need to be satisfied to guarantee convergence of solutions to (5) and providing theoretical results, which show that variational regularisation strategies can be applied under certain conditions. In particular, as we will discuss in this study, while it is fairly easy to learn a model correction that fulfils (4), it cannot be readily guaranteed to yield high-quality reconstructions when used within the variational problem (5). This is a conceptual difficulty caused by a possible discrepancy in the range of the adjoints of \(A \) and \(\tilde{A} \) that can be an inherent part of the approximate model and hence first order methods to solve (5) yield non-desirable results.

To overcome this restriction, we introduce a forward-backward correction that combines an explicit forward model correction with an explicit correction of the adjoint. We will show that such a forward-backward correction -if trained sufficiently well- provides a descent direction for a gradient scheme to solve (5) for which we can guarantee convergence to a neighbourhood of the solution obtained with the true operator \(A \).

This work fits into the wider field of learned image reconstruction techniques that have sparked large interest in recent years [5, 22, 25]. In particular, we are motivated by model-based learned iterative reconstruction techniques that have shown to be highly successful in a variety of application areas [1, 2, 17, 21, 35]. These methods generally mimic iterative gradient descent schemes and demonstrate impressive reconstruction results with often considerable speed ups [18], but are mostly empirically motivated and lack convergence guarantees. In contrast, this paper follows a recent development of understanding how deep learning methods can be combined with classical reconstruction algorithms, such as variational techniques, and retaining established theoretical results on convergence. Whereas most studies are concentrated on learning a regulariser
we here concentrate on the operator only and keep a fixed, analytical form for the regulariser. Further, related work that considers learned corrections by utilising explicit knowledge of the operator range are [7, 9, 36]. Another line of research examines the incorporation of imperfectly known forward operators in a fully variational model [10, 29] as well as perturbations in [13, 31]. We note also the connection to the concept of calibration in a Bayesian setting [26].

This paper is organised as follows. In Section 2, we introduce the concept of model correction and compare to previous work in the field. In Section 3, we discuss forward corrections and demonstrate their limitations. To overcome these limitations, we introduce in the following the forward-backward corrections in Section 4, where we also present convergence results for this correction. This is followed by a discussion of computational challenges and the experimental setup in Section 5. Finally, in Section 6, we demonstrate the performance of the discussed approaches on two data sets for limited-view photoacoustic tomography.

Glossary
To improve readability throughout the paper we provide a Glossary with the definition of frequently used notation.

Symbol	Description	Definition
X	Reconstruction Space	Hilbert Space, Norm $\| \cdot \|_X$, Product $\langle \cdot, \cdot \rangle_X$
Y	Measurement Space	Hilbert Space, Norm $\| \cdot \|_Y$, Product $\langle \cdot, \cdot \rangle_Y$
A	Exact forward operator	$A : X \rightarrow Y$
\tilde{A}	Approximate forward operator	$\tilde{A} : X \rightarrow Y$
F_Θ	Parameterisable correction in Y	$F_\Theta : Y \rightarrow Y$
G_Φ	Parameterisable correction in X	$G_\Phi : X \rightarrow X$
A_Θ	Corrected Forward operator	$A_\Theta : X \rightarrow Y$, $A_\Theta = F_\Theta \circ \tilde{A}$
A^*_Φ	Corrected adjoint	$A^*_\Phi : Y \rightarrow X$, $A^*_\Phi = G_\Phi \circ \tilde{A}^*$
$Df(t)$	Fréchet derivative of f at t	$Df(t) : \text{dom}(f) \rightarrow \text{rng}(f)$
R	Regularization Functional	$R : X \rightarrow X$
L	Variational functional with A	$L(x) = \frac{1}{2} \| Ax - y \|_Y^2 + \lambda R(x)$
L_Θ	Variational functional with A_Θ	$L(x) = \frac{1}{2} \| A_\Theta(x) - y \|_Y^2 + \lambda R(x)$

2 Learning a model correction
As we have motivated above, we only consider an explicit model correction (4) in this study and leave the regularisation term untouched. Therefore, we will discuss in the following how a model correction using data driven methods is possible and what the main challenges are.

Before we turn to the discussion of an explicit correction, it is important to make the distinction to an implicit correction in the framework of learned iterative reconstructions. In particular, we concentrate here on learned gradient schemes [1], which can be formulated by a network Λ_Θ, that is designed to mimic a gradient descent step. In particular, we train the networks to perform an iterative update, such that

$$x_{k+1} = \Lambda_\Theta \left(\nabla_x \frac{1}{2} \| Ax_k - y \|_Y^2, x_k \right), \quad (6)$$

where $\nabla_x \frac{1}{2} \| Ax_k - y \|_Y^2 = A^* (Ax_k - y)$. Now, one could use an approximate model instead of the accurate model and compute an approximate gradient given by $\tilde{A}^* (\tilde{A}x_k - y)$ for the update in (6), as proposed in [20]. The network Λ_Θ then implicitly corrects the model error to produce the new iterate. That means, the correction and a prior are hence trained simultaneously with the update in (6). Such approaches are typically trained by using a loss function, like the L^2-loss, to measure the distance between reconstruction and a ground truth phantom.
On the other hand, in the explicit approach that we pursue here, we aim to learn a correction A_{Θ} that is independent of a prior and can be trained using the true and approximate operator only, or pairs in Y, without invoking a ground truth phantom. While implicit methods have been shown to perform well in practice \cite{20}, our approach will yield an explicit correction and as such can be used in combination with any prior and builds on the established variational framework. Furthermore, we note that the study of explicit methods also allows to uncover and investigate some of the fundamental challenges of model correction that might easily be left ignored in implicit approaches.

Thus, we will concentrate our discussion in the following on how an explicit data correction can be achieved, how the correction of the model \tilde{A} can be parametrised by a neural network, and how this can be incorporated into a variational framework.

2.1 Approximation error method (AEM)

A well-established approach to incorporate model correction into a reconstruction framework, such as \cite{5}, is given by Bayesian approximation error modelling \cite{23, 24}. Let us shortly recall, that in Bayesian inversion we want to determine the posterior distribution of the unknown x given y, and by Bayes’ formula we obtain

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)},$$

\text{(7)}

Thus, the posterior distribution is characterised by the likelihood $p(y|x)$ and the chosen prior $p(x)$ on the unknown. Typically, the likelihood $p(y|x)$ is modelled using accurate knowledge of the forward operator $A: X \rightarrow Y$ as well as the noise model. In the approximation error method, the purpose is now to adjust the likelihood by examining the difference between the (accurate) forward operator A and its approximation \tilde{A} of the model \cite{1}–\cite{2} as

$$\varepsilon = \delta y - Ax - \tilde{A}x,$$

\text{(8)}

Including an additive model for the measurement noise ε, this leads to an observation model

$$y = \tilde{A}x + \varepsilon + e,$$

\text{(9)}

We model the noise ε independent of x as Gaussian $\varepsilon \sim \mathcal{N}(\eta_\varepsilon, \Gamma_\varepsilon)$, where η_ε and Γ_ε are the mean and covariance of the noise. Further, the model error ε is approximated as Gaussian $\varepsilon \sim \mathcal{N}(\eta_n, \Gamma_n)$ and is modelled independent of noise ε and unknown parameters x leading to a Gaussian distributed total error $n = \varepsilon + e$, $n \sim \mathcal{N}(\eta_n, \Gamma_n)$, where η_n and η_n are means and Γ_n are the covariance matrices of model error and total errors, respectively. This leads to a so-called enhanced error model \cite{23} with a likelihood distribution of the form

$$p(y|x) \sim \exp \left(-\frac{1}{2\sigma} \|L_n(\tilde{A}x - y + \eta_n)\|_V^2 \right),$$

\text{(10)}

where $L_n^T L_n = \Gamma_n^{-1}$ is a matrix square root such as the Cholesky decomposition of the inverse covariance matrix of the total error. In the case of Gaussian white noise with a zero mean and a constant standard deviation σ, this can be written as

$$p(y|x) \sim \exp \left(-\frac{1}{2\sigma} \|L_\varepsilon(\tilde{A}x - y + \eta_\varepsilon)\|_V^2 \right),$$

\text{(11)}

where $L_\varepsilon^T L_\varepsilon = \Gamma_\varepsilon^{-1}$. This could be used to motivate writing the variational problem \cite{5} in a form

$$x^* = \arg\min_{x \in X} \frac{1}{2} \|L_\varepsilon(\tilde{A}x - y + \eta_\varepsilon)\|_V^2 + AR(x).$$

\text{(12)}

In order to utilise the approach, the unknown distribution of the model error needs to be approximated. That can be obtained for example by simulations \cite{4, 39} as follows. Let $\{x^i, i = 1, \ldots, N\}$ be a set of samples drawn from a training set. The corresponding samples of the model error are then

$$\varepsilon_i = Ax^i - \tilde{A}x^i,$$

\text{(13)}
and the mean and covariance of the model error can be estimated from the samples as

$$\eta_\varepsilon = \frac{1}{N} \sum_{i=1}^{N} \varepsilon_i$$

$$\Gamma_\varepsilon = \frac{1}{N-1} \sum_{i=1}^{N} (\varepsilon_i^T - \eta_\varepsilon \eta_\varepsilon^T).$$

\[\text{2.2 Learning a general model correction} \]

The classical Bayesian approximation error method provides an affine linear correction of the likelihood in (10) and by construction is limited to cases where the error between accurate and approximate model (8) can be approximated as normally distributed. As this can be too restrictive in certain cases to describe more complicated errors, we will now address a more general concept of learning a nonlinear explicit model correction.

That is, given a true underlying forward model \(A \), we aim to find a (partially) learned operator \(A_\Theta \) which we consider as an explicitly corrected approximate model of the form (4). To do so, we need to set a notion of distance between \(A \) and \(A_\Theta \) in order to assess the quality of the approximation. A seemingly natural notion of distance between two operators would be the supremum norm over elements in \(X \), that is, we consider here

$$\|A - A_\Theta\|_{X \to Y} := \sup_{x \in X, \|x\|_X = 1} \|Ax - A_\Theta(x)\|_Y.$$ \hspace{1cm} (14)

However, in many relevant applications it is impossible to find a correction of the form \(A_\Theta = F_\Theta \circ \tilde{A} \) that achieves low uniform approximation error, making this notion of distance too restrictive. For instance, if we consider the case of a learned \textit{a-posteriori} correction of some approximate model \(\tilde{A} \) with a parameterisable mapping \(F_\Theta : Y \to Y \) that fulfils (4), then the approximate model \(\tilde{A} \) can exhibit a nullspace \(\text{kern}(\tilde{A}) \) that is different from that of the true operator and, in particular, is potentially much larger. Thus, there may exist a (or several) \(v \in \text{kern}(\tilde{A}) \) with \(Av \neq 0 \). Any corrected operator \(A_\Theta = F_\Theta \circ \tilde{A} \) then exhibits an error in the sense of (14) of at least \(\|Av\|_Y \), as

$$\|A - A_\Theta\|_{X \to Y} \geq \max\{\|Av - F_\Theta(0)\|_Y, \|A(-v) - F_\Theta(0)\|_Y\}$$

$$\geq \min_{y \in Y} \max_{y \in Y} \{\|Av - y\|_Y, \|A(-v) - y\|_Y\}$$

$$\geq \|Av\|_Y.$$ \hspace{1cm} (14)

In other words, the information in direction \(v \) is lost in the approximate model and would need to be recovered subsequently by the correction \(F_\Theta \). If there are several such non-trivial \(v \in \text{kern}(\tilde{A}) \), a uniform correction becomes increasingly difficult in the form of (14). We will illustrate this difficulty in the following Section 2.2.1.

While aiming for a uniform correction is unpractical, it can nevertheless be possible to correct the operator \(A \) using an \textit{a-posteriori} correction as in (4), provided a weaker notion of operator distance is employed. Here, we propose an empirical, learned notion of operator correction, that is optimised for a training set of points \(\{x^i, i = 1, \ldots, N\} \), similar to Section 2.1. More precisely, we examine the average deviation of \(A_\Theta \) from \(A \) as

$$\frac{1}{N} \sum_{i=1}^{N} \|A_\Theta(x^i) - Ax^i\|_Y,$$ \hspace{1cm} (15)

in a suitable norm \(\| \cdot \| \). In this notion, it is sufficient for the operators to be close in the mean for a given training set and hence we call this a \textit{statistical} or \textit{learned} correction with respect to the chosen training set. For instance, if the kernel direction \(v \in \text{kern}(\tilde{A}) \) is orthogonal to the sample \(x^i \), the information lost in direction \(v \) is not crucial for representing the data of interest. Alternatively, the kernel direction \(v \) might be highly correlated with another direction \(w \notin \text{kern}(\tilde{A}) \) in the sense that \(\langle x^i, v \rangle \approx \langle x^i, w \rangle \) for all \(i \). Then the result of \(Av \) can be inferred from \(\tilde{A}w \), even
though \(\tilde{A}v = 0 \).

To conclude this section, we note that in many cases we cannot hope to find a uniform model correction, but that correcting the model error can be still attempted using the notion of learned correction, quantified by (15). This is possible even if the operators \(A \) and \(\tilde{A} \) are exhibiting different kernel spaces, as long as the training set \(\{ x^i, i = 1, \ldots, N \} \) exhibits sufficient structure to compensate for the loss of information in the approximate model.

Remark 2.1. We consider non-linear corrections \(A_\Theta = F_\Theta \circ \tilde{A} \) in this paper even when correcting a linear operator \(A \) from a linear approximation \(\tilde{A} \), as in our computational examples. We have three main motivations to do so. Firstly, there are well-established nonlinear network architectures, such as U-Net [33], that are highly powerful and in fact have considerably fewer parameters than a fully parametrised linear map when the method is applied to applications in 3D, making the non-linear approach scalable. Secondly, when considering nonlinear corrections, a generalisation to the context of nonlinear operators will be easier. Finally and most importantly, while the operators \(A \) and \(\tilde{A} \) might be linear, the region of interest in image and data space where we need a good correction is highly nonlinear, in the sense that the samples \(x_i \) in (15) are drawn from a distribution with nonlinear support. This makes nonlinear corrections considerably more powerful in correcting model errors than their linear counterparts.

2.2.1 A toy case: downsampling

In order to illustrate the challenge of a learned operator correction, we consider a toy case. Here, the accurate forward model \(A \) is given by a downsampling operator with an averaging filter, while the approximate model \(\tilde{A} \) simply skips every other sample. Concretely, we consider \(x \in \mathbb{R}^n \), \(y \in \mathbb{R}^{n/2} \) and \(\tilde{A}, A \in \mathbb{R}^{n/2 \times n} \) given by

\[
A = \begin{pmatrix}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{pmatrix}, \quad \text{and} \quad \tilde{A} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\] (16)

Clearly, both operators have very different kernel spaces, with \(\tilde{A} \) vanishing on inputs with alternating sign, whereas \(A \) vanishes for every \(v \) with \(v|j| = 0 \), with index \(j \) odd, and any value for \(j \) even. In other words, the null space is spanned by the unit vectors with odd index, \(\text{kern}(\tilde{A}) = \{ e_j \mid 0 < j \leq n, j \text{ odd} \} \). In fact, by the same argument as above, these \(v \in \text{kern}(\tilde{A}) \) with \(\|v\|_\infty = 1 \) are such that the uniform approximation error for any correction will be \(\|Av - F_\Theta(\tilde{A}v)\|_\infty \geq \|Av\|_\infty \geq 0.25 \) for all \(v \in \text{kern}(\tilde{A}) \).

This example exhibits the two features described in the previous section: Firstly, a uniform correction in the sense of (14) is impossible due to different kernel spaces. However, a learned correction in the mean (15) is possible on some data \(\{ x^i, i = 1, \ldots, N \} \) consisting of piecewise constant functions: On these samples the two operators \(A \) and \(\tilde{A} \) already coincide everywhere except near jumps, where a weighted average can be employed to correct the approximation error.

2.3 Solving the variational problem

We now aim to solve an inverse problem given the corrected model \(A_\Theta \) by solving the associated variational problem (5). In this context it is natural to require that the solutions of the two minimisation problems, involving the operator correction \(A_\Theta \) and \(A \), are close, that is

\[
\arg\min_{x \in X} \frac{1}{2} \|A_\Theta(x) - y\|_Y^2 + \lambda R(x) \approx \arg\min_{x \in X} \frac{1}{2} \|Ax - y\|_Y^2 + \lambda R(x).
\] (17)

Note that this formulation is different to the approximation error method (10), where the data fidelity term is given by \(\|L_x(\tilde{A}x - y + \eta)\|_Y^2 \). Solutions to (5) are then usually computed by an iterative algorithm. Here we consider first order methods to draw connections to learned iterative schemes [1, 2, 17]. In particular, we consider a classic gradient descent scheme, assuming
differentiable R. Then, given an initial guess x_0, we can compute a solution by the following iterative process
\[x_{k+1} = x_k - \gamma_k \nabla_x \left(\frac{1}{2} \|Ax_k - y\|_X^2 + \lambda R(x_k) \right), \] (18)
with appropriately chosen step size $\gamma_k > 0$. When using (18) for the corrected operator it seems natural to ask for a gradient consistency
\[\nabla_x \|A_{\Theta}(x) - y\|_X^2 \approx \nabla_x \|Ax - y\|_X^2 \] (19)
and hence we can identify
\[\sum_{i=1}^N \|\nabla_x \|A_{\Theta}(x^i) - y^i\|_X^2 - \nabla_x \|Ax^i - y^i\|_X^2 \| \] (20)
as another relevant measure of quality for model corrections within the variational framework, if gradient schemes are used to solve (5). In the following we will discuss possibilities to obtain a correction, such that we can guarantee a closeness of solutions in the sense of (17).

3 Forward model correction

We will now present the possibility to correct the forward model only and discuss resulting shortcomings of this approach. More precisely, in a forward model correction, the approximate operator $\tilde{A} : X \to Y$ is corrected using a neural network $F_{\Theta} : Y \to Y$ that is trained to remove artefacts in data space for a given training set. This leads to a corrected operator of the form $A_{\Theta} = F_{\Theta} \circ \tilde{A}$.

3.1 The adjoint problem

To solve the minimisation problem (5) with the learned forward operator with an iterative scheme such as (18), we need to compute the gradient of the data fidelity. We recall that the corrected operator $A_{\Theta} = F_{\Theta} \circ \tilde{A}$ where the correction F_{Θ} is given by a nonlinear neural network. Following the chain rule we obtain the following gradient
\[\frac{1}{2} \nabla_x \|A_{\Theta}(x) - y\|_Y^2 = \tilde{A}^* \left[DF_{\Theta}(\tilde{A}x) \right]^* \left(F_{\Theta}(\tilde{A}x) - y \right). \] (21)
Here, we denote by $DF_{\Theta}(y)$ the Fréchet derivative of F_{Θ} at y, which is a linear operator $Y \to Y$. Whereas the gradient for the correct data fidelity term is simply given by
\[\frac{1}{2} \nabla_x \|Ax - y\|_Y^2 = A^*(Ax - y). \]
That means, to satisfy the gradient consistency condition (19), we would need
\[\tilde{A}^* \left[DF_{\Theta}(\tilde{A}x) \right]^* \left(F_{\Theta}(\tilde{A}x) - y \right) \approx A^*(Ax - y). \] (22)
On the other hand, if we train the forward model correction, only requiring consistency in data space by minimising (15), we will only ensure consistency of the residuals $F_{\Theta}(\tilde{A}x) - y \approx Ax - y$, but not full gradient consistency as in (19). In order to enforce gradient consistency we need to control the derivative of the network $DF_{\Theta}(\tilde{A}x)$ and consequently also need to take the adjoint into consideration when training the forward correction. This could be done by adding an additional penalty term to (15) that penalises the network for exhibiting an adjoint different from A^*. For that purpose, let us examine the adjoint of the linearisation of the correction operator A_{Θ} around a point x
\[(DA_{\Theta}(x))^* [y] = \tilde{A}^* \left(DF_{\Theta}(\tilde{A}x) \right)^* [y]. \]
With this we can consider the following additional penalty term in the training
\[\| \left(A^* - \hat{A}^* \circ \left[D F_\Theta(\hat{A}x) \right]^* \right) (r) \|_X, \] where \(r = F_\Theta(\hat{A}x) - y \) (23)
and choose \(r \) to be the residual in data space \(F_\Theta(\hat{A}x) - y \) that arises when minimizing the data fidelity term as in (21).

However this solution comes with its own drawback. As we can see in (22), the mapping properties of the corrected fidelity term’s gradient (21) are limited by the range of the approximate adjoint \(\text{rng}(\hat{A}^*) \), which links back to the discussion in 2.2. We identify the key difficulty here in the difference of the mapping properties of the correct and the approximate adjoints rather than the differences in the forward operators themselves. Indeed, a correction of the forward operator via composition with a parametrised model \(F_\Theta \) in measurement space is not able to yield gradients close to the gradients of the true data term if \(\text{rng}(\hat{A}^*) \) and \(\text{rng}(A^*) \) are too different. This problem is especially severe if the dimensions of these two spaces differ. That means, we can not expect to find a correction that satisfies the gradient consistency (22) and, related to Remark 1.1, even suitable projections in \(\hat{A} \) would not be sufficient to compensate for this. This observation can be made precise in the following theorem.

Theorem 3.1 (Unlearnability of a gradient consistent forward model correction). Let \(A \) and \(\hat{A} \) be compact linear operator from \(X \) to \(Y \) and given the solutions
\[\hat{x} \in \arg \min_x \frac{1}{2} \| Ax - y \|_Y^2, \] (24)
\[\hat{x}_\Theta \text{ critical point of } \frac{1}{2} \| A_\Theta(x) - y \|_Y^2. \] (25)
If \(\bar{x}_0 \in \text{rng}(\hat{A}^*) \) and \(\hat{x} \notin \text{rng}(A^*) \), then a gradient-descent algorithm for the functional in (25), initialised with \(\bar{x}_0 \), yields a solution such that \(\bar{x}_\Theta \neq \hat{x} \) for any \(\hat{x} \) solving (24).

Proof. This follows directly from the update equations for solving (25) by
\[\bar{x}_{k+1} = \bar{x}_k - \lambda_k \Delta \bar{x}_k \]
with
\[\Delta \bar{x}_k := \frac{1}{2} \nabla \| A_\Theta(\bar{x}_k) - y \|_Y^2 = \hat{A}^* \left[D F_\Theta(\hat{A}x_k) \right]^* \left(F_\Theta(\hat{A}x_k) - y \right). \] (26)
If \(\bar{x}_0 \in \text{rng}(\hat{A}^*) \) then \(\Delta \bar{x}_0 \in \text{rng}(\hat{A}^*) \), and hence \(\bar{x}_1 \in \text{rng}(\hat{A}^*) \). By induction this is true for all \(k > 0 \), i.e. \(\bar{x}_k \in \text{rng}(\hat{A}^*) \), \(\forall k \) and thus any limit point \(\bar{x}_\Theta \in \text{rng}(\hat{A}^*) \) lies in the closure of the range of \(\hat{A}^* \). Since \(\hat{x} \notin \text{rng}(A^*) \) it follows that \(\hat{x} \neq \bar{x}_\Theta \) for any limit point of a gradient-descent algorithm for solving (25).

Thus, a correction of the forward model by requiring only consistency in data space does not in fact ensure consistency of the data term, when solving a variational problem. Additionally, according to Theorem 3.1 even by including an additional penalty term in the form of (23) does not solve this problem.

3.1.1 Illustration with the toy case
Going back to the toy case from Section 2.2.1, where we considered a downsampling operation. The approximate operator was chosen, such that the null space is spanned by the unit vectors with odd index. The range of the adjoint can then be characterised by the identity \(\text{rng}(A^*) = (\text{ker}n(A))^\perp \) and hence we have \(\text{rng}(\hat{A}^*) = \{ e_j : 0 \leq j \leq n, j \text{ even} \} \). It is now clear, that we cannot compute any solution \(x^* \notin \text{rng}(\hat{A}^*) \) by the updates in (26), if we initialise them with \(\bar{x}_0 \in \text{rng}(\hat{A}^*) \), since all updates are restricted to the range of the adjoint of the approximate operator. This problem is illustrated in Figure 1, where we consider an imaging problem for illustrative purposes and \(x \) is vectorised before the operators in (16) are applied. Whereas the difference in the forward operator is minimal for this example, the range of the approximate adjoint makes it impossible to recover the phantom without further adjustments after application of the adjoint, which will be addressed in the next section.
4 Forward-Backward Correction

As is evident from the last section, a forward model correction that is computed to minimize (15) in data space alone is not sufficient to compute the actual reconstruction in a variational framework. We additionally require consistency in the gradients of the data fidelity term (20) which in turn boils down to a condition for a correction on the adjoint of the corrected forward operator in image space, motivated by (23). We will refer to such a correction in data and image space as a Forward-Backward Correction, as we will learn a correction of the forward operator, as well as a correction of the adjoint (backward).

4.1 Obtaining a Forward-Backward Correction

The goal is now to obtain a gradient consistent model correction. To achieve this we propose to learn two networks. That is, we learn a network F_Θ that corrects the forward model and another network G_Φ that corrects the adjoint, such that we have

$$A_\Theta := F_\Theta \circ \tilde{A}, \quad A^*_\Phi := G_\Phi \circ \tilde{A}^*$$

These corrections are obtained as follows. Given a set of training samples (x_i, Ax_i), we train the forward correction F_Θ acting in measurement space Y with the loss

$$\min_\Theta \sum_i \|F_\Theta(\tilde{A}x^i) - Ax^i\|_Y.$$ \hfill (27)

In an analogous way, we correct the adjoint with the network G_Φ acting on image space X with the loss

$$\min_\Phi \sum_i \|G_\Phi(\tilde{A}^*r^i) - A^*r^i\|_X.$$ \hfill (28)

Here, we can choose the direction $r^i = F_\Theta(\tilde{A}x^i) - y^i$ as in (23) for the adjoint loss. This ensures that the adjoint correction is in fact trained in directions relevant when solving the variational problem.
At evaluation time, the corrected operators can then be used to compute approximate gradients of the data fidelity term $\|Ax - y\|_Y^2$. The gradient then takes the form

$$A^*(Ax - y) \approx (G_\Phi \circ \tilde{A}^*) \left(F_\Theta(\tilde{A}x) - y \right).$$

(29)

Let us note that the separate correction of the adjoint and the forward operator comes with a change of philosophy compared to existing methods for forward operator correction as presented in Section 2.1. Instead of trying to fit a single corrected operator A_Θ that is already parametrised according to its use within the data fidelity term of a variational problem, we fit a nonlinear corrected operator \tilde{A}_Θ whose use within the variational problem requires to fit the gradient of the data term directly. This gradient fit takes the form as in (29). We use the gradient of the data fidelity term to directly obtain the optimisation dynamics we would typically obtain while solving the variational problem with a gradient-based method and take the obtained critical point of these dynamics as the reconstruction.

Remark 4.1. We note, that such a separate correction in image and data space can be related to learned primal dual (LPD) methods [3], where the correction is performed implicitly as described in Section 2. This explains in parts why LPD approaches might be especially suitable for applications with an imperfectly known operator, see also [42].

In the following section we will discuss how these dynamics relate to the original variational problem and we will see that they can in fact take us close to the original reconstruction if both the forward and adjoint are fit sufficiently well.

4.2 Convergence Analysis

The purpose of this section is to show that sufficiently small training losses can ensure the optimisation dynamics of (5) to converge to a neighbourhood of the reconstruction obtained with the true operator A. In the case of forward-backward correction, these loss functions are given by

$$\|Ax - A_\Theta(x)\|_Y \text{ and } \|(A^* - A^*_\Phi)(A_\Theta(x) - y)\|_X.$$

(30)

Let us now consider for any $y \in Y$ the two functionals

$$\mathcal{L}(x) := \frac{1}{2}\|Ax - y\|_Y^2 + \lambda R(x),$$

$$\mathcal{L}_\Theta(x) := \frac{1}{2}\|A_\Theta(x) - y\|_Y^2 + \lambda R(x)$$

associated to the variational problem for the reconstruction x from the measurement y. We will aim to show connections between the reconstruction $\hat{x} := \arg\min_x \mathcal{L}(x)$ using the true operator A and the solutions $\hat{x}_\Theta \in \arg\min_x \mathcal{L}_\Theta(x)$ obtained with our corrected operator A_Θ.

When considering the gradient descent dynamics over \mathcal{L}_Θ, we do not refer to the actual gradient over \mathcal{L}_Θ but instead consider the direct fit to the gradient of the form $A^*_\Phi(A_\Theta(x) - y) + \lambda \nabla R(x)$ as discussed in the last section. In a slight abuse of notation we will nevertheless denote this gradient as $\nabla^T\mathcal{L}_\Theta := A^*_\Phi(A_\Theta(x) - y) + \lambda \nabla R(x)$ to keep the notation easy to read in the remainder of this section. If R is merely sub-differentiable, then $\nabla R(x)$ denotes an element in the subgradient of R.

For the remainder of this chapter, we make the following assumption on the regularization functional R.

Assumption 4.2 (Strong Convexity). We assume that the regularization functional R is strongly convex and denote the strong convexity constant by m.

Remark 4.3. Assumption 4.2 in particular holds for R being the Tychonov regularization functional $R(x) = \|x\|_X^2$ and for the pseudo-Huber loss $R(x) = \int_{[0,1]} \delta \left(\sqrt{1 + \frac{1}{\delta} \|\nabla_1 x(t)\|^2} - 1 \right)$ for a bounded function $x : [0,1]^2 \to \mathbb{R}$ and $\delta > 0$ which we use in the experimental section. It is also true for Operators A with bounded inverse combined with any convex regularization functional.
This allows us to use the following two fundamental lemmas on the behaviour of L near the minimum of the variational functional.

Lemma 4.4 (Proximity to minimizer). Let L be strongly convex. Then for every ϵ there is a $\delta > 0$ such that for any y and x with

$$L(x) - L(\hat{x}) \leq \delta \implies \|x - \hat{x}\|_X \leq \epsilon,$$

where $\hat{x} := \arg\min_x L(x)$.

Proof. By the definition of strong convexity we have

$$L(x) \geq L(\hat{x}) + \langle s_x, x - \hat{x} \rangle_X + \frac{m}{2}\|x - \hat{x}\|_X^2,$$

where $s_x \in \partial L(\hat{x})$ is in the subdifferential of L at \hat{x}. Using $0 \in \partial L(\hat{x})$ yields

$$\delta \geq L(x) - L(\hat{x}) \geq \frac{m}{2}\|x - \hat{x}\|_X^2,$$

which proves the claim by setting $\delta = \frac{2\epsilon}{m}$.

Lemma 4.5 (Lower Gradient Norm Bound). Let L be strongly convex. For every ϵ there is a $\delta > 0$ such that for any y and x with

$$\|x - \hat{x}\|_X > \epsilon \implies \forall s \in \partial L(x) : \|s\|_X > \delta,$$

where $\partial L(x)$ denotes the subdifferential of L at x and $\hat{x} := \arg\min_x L(x)$.

Proof. By the definition of strong convexity

$$L(\hat{x}) \geq L(x) + \langle s_x, \hat{x} - x \rangle_X + \frac{m}{2}\|x - \hat{x}\|_X^2,$$

where again s_x denotes an element in the subdifferential of L around x. Then by Cauchy-Schwarz

$$L(\hat{x}) - L(x) - \frac{m}{2}\|x - \hat{x}\|_X^2 \geq -\|s_x\|_X\|\hat{x} - x\|_X.$$

Using $L(\hat{x}) - L(x) < 0$ by assumption shows

$$\frac{m}{2}\|x - \hat{x}\|_X^2 \leq \|s_x\|_X\|\hat{x} - x\|_X,$$

and hence $\|s_x\|_X \geq \frac{m}{2}\|x - \hat{x}\|_X$, which proves the result.

Remark 4.6. The assumption of strong convexity is used in the following results via the lemmas 4.4 and 4.5 only. While it is a sufficient condition for these to hold, it is not necessary. In particular, if the variational functional is not strongly convex but such that 4.4 and 4.5 hold true, the following results still apply.

Equipped with those, we tackle the question of convergence of the operator approximation. First, we will only investigate the question of closeness of minimisers, without investigating if the minimisers of L_0 - that involves a nonlinear operator in the data term - can be identified efficiently using a gradient descent based algorithm. To answer this question, we will assume that the learned corrected operator A_0 approximates the ground truth operator A sufficiently well, uniformly on some manifold D that contains the minimiser of L. These assumptions represent the situation of a well-fit forward approximation on the data manifold D that we assume all relevant reconstructions to lie on.

Proposition 4.7 (Proximity of minimisers). Denote by $D \subset X$ the manifold of possible reconstructions that the operator approximation was trained on using empirical risk minimisation (27). Let L be strongly convex. Assume further that for any $y \in B_r(0)$ for some $r > 0$ and for any $x \in D$ we have $\|Ax - y\|_Y \leq C$ (boundedness). Let $\epsilon > 0$. Denote by δ the corresponding
quantity as in lemma 4.4. WLOG let \(\delta \leq 16C^2 \). Assume further \(A_\Theta \) has been trained such that
\[\sup_{x \in D} \| A_\Theta(x) - Ax \|_Y \leq \delta / 8C. \]
Denote by
\[\hat{x} := \arg \min_x \mathcal{L}(x), \quad \hat{x}_\Theta \in \arg \min_x \mathcal{L}_\Theta(x) \]
the reconstructions computed via the variational problem using either the true operator \(A \) or the corrected operator \(A_\Theta \), respectively. Note that the minimiser is unique for the functional \(\mathcal{L} \) by strong convexity, but not necessarily for the functional \(\mathcal{L}_\Theta \). Then for any \(y \in B_r(0) \) that is such that both \(\hat{x}, \hat{x}_\Theta \in D \), we have
\[\| \hat{x} - \hat{x}_\Theta \|_X < \delta. \]

Proof. First note that
\[|\mathcal{L}_\Theta(x) - \mathcal{L}(x)| \leq \delta / 2 \]
for any \(x \in D \), as
\begin{align*}
|\mathcal{L}_\Theta(x) - \mathcal{L}(x)| &= \| A_\Theta(x) - y \|_Y^2 - \| Ax - y \|_Y^2 \\
&\leq 2\| Ax - y \|_Y \| Ax - A_\Theta(x) \|_Y + \| Ax - A_\Theta(x) \|_Y^2 \\
&\leq (2 \cdot C^2 \delta / 8C + \delta^2 \cdot (8C)^2) = \delta / 2.
\end{align*}
By taking the minimum, this in particular implies that
\[|\mathcal{L}_\Theta(\hat{x}_\Theta) - \mathcal{L}(\hat{x})| \leq \delta / 2. \]

We conclude via
\begin{align*}
|\mathcal{L}(\hat{x}_\Theta) - \mathcal{L}(\hat{x})| &\leq |\mathcal{L}(\hat{x}_\Theta) - \mathcal{L}(\hat{x}_\Theta')| + |\mathcal{L}(\hat{x}_\Theta') - \mathcal{L}(\hat{x})| \\
&\leq \delta / 2 + \delta / 2 = \delta,
\end{align*}
which finishes the proof using eq. (31). \(\square \)

Remark 4.8. The assumption that \(y \) is such that \(\hat{x}, \hat{x}_\Theta \in D \) can be interpreted as a necessity for \(y \) to have emerged from an underlying image that is close to the manifold of reconstructions \(D \) that the correction \(A_\Theta \) has been trained on. Put differently, we require \(y \) to be an actual realistic measurement, similar to those used to train the model correction \(A_\Theta \).

The above result of Proposition 4.7 does not make use of the adjoint fit (28) that was discussed to be necessary to ensure that the approximate dynamics follow the ones obtained using the true operator \(A \). As \(A_\Theta \) is nonlinear, additional work is necessary to ensure that we can in fact compute a minimiser \(\hat{x}_\Theta \) with a gradient descent scheme. Thus, we will use in the following the additional information on the adjoint fit and extending on Lemma 4.5 to show that the optimisation trajectory of the functional \(\mathcal{L} \) will in fact yield a reconstruction \(\hat{x}_\Theta \) close to the reconstruction using the true operator \(\hat{x} \). We begin by extending Lemma 4.5 to include the regularisation term. For this purpose, we consider the alignment of the variational gradients including the regularisation term
\[\cos \Phi_v := \frac{\langle \nabla \mathcal{L}(x), \nabla^\dagger \mathcal{L}_\Theta(x) \rangle}{\| \nabla \mathcal{L}(x) \|_2^2}, \tag{33} \]
and prove the following auxiliary lemmas. We remark again the abuse of notation \(\nabla^\dagger \mathcal{L}_\Theta(x) := A_\Theta^\dagger (A_\Theta(x) - y) + \lambda \nabla R(x) \).

Lemma 4.9 (Complete gradient alignment bound). Let \(\mathcal{L} \) and \(\mathcal{L}_\Theta \) be defined as above. We have the lower bound
\[\cos \Phi_v \geq 1 - \frac{\| A \|_{X \to Y} \| (A - A_\Theta)(x) \|_Y + \| (A^* - A_\Theta^*)(A_\Theta(x) - y) \|_X}{\| \nabla \mathcal{L}(x) \|_X}, \]
where \(\cos \Phi_v \) is defined as in (33).
Proof. A straightforward calculation shows
\[
\langle \nabla L(x), \nabla^\dagger L_\theta(x) \rangle_X / \|\nabla L(x)\|_X^2 \\
= \langle \nabla L(x), \nabla L(x) \rangle_X / \|\nabla L(x)\|_X^2 + \langle \nabla^\dagger L_\theta(x) - \nabla L(x), \nabla L(x) \rangle_X / \|\nabla L(x)\|_X^2 \\
\geq 1 - \|\nabla^\dagger L_\theta(x) - \nabla L(x)\|_X / \|\nabla L(x)\|_X.
\]
The result follows by using the bound
\[
\|A^*(Ax - y) - A_\Phi^*(A_\theta(x) - y)\|_X \\
\leq \|A\|_{X \to Y}\|(A - A_\theta)(x)\|_Y + \|(A^* - A_\Phi^*)(A_\theta(x) - y)\|_X,
\]
which itself emerges directly from the triangular inequality applied to the identity
\[
A^*(Ax - y) - A_\Phi^*(A_\theta(x) - y) = A^*(A - A_\theta)(x) + (A^* - A_\Phi^*)(A_\theta(x) - y).
\]

\[\Box\]

Theorem 4.10 (Convergence to a neighbourhood of \(\hat{x}\)). Let \(\epsilon > 0\) and pick \(\delta\) as in (32). Assume both adjoint and forward operator are fit up to a \(\delta/4\)-margin, i.e.
\[
\|A\|_{X \to Y}\|(A - A_\theta)(x)\|_Y < \delta/4, \quad \|(A^* - A_\Phi^*)(A_\theta(x) - y)\|_X < \delta/4
\]
for all \(y\) and \(x_n\) obtained during gradient descent over \(L_\theta\). Then eventually the gradient descent dynamics over \(L_\theta\) will reach an \(\epsilon\) neighbourhood of the true solution \(\hat{x}\).

Proof. Denote by \(x_\theta(t)\) the trajectory of the reconstruction under the gradient flow
\[
\partial_t x_\theta(t) = -\nabla^\dagger L_\theta(x_\theta(t)).
\]
Consider the evaluation of the variational loss \(L\) that invokes the correct forward operator \(A\). Using the bound of the alignment as in Lemma 4.9, we can bound
\[
\partial_t L(x_\theta(t)) = \langle \nabla L(x_\theta(t)), \partial_t x_\theta(t) \rangle_X = -\langle \nabla^\dagger L_\theta(x_\theta(t)), \nabla L_\theta(x_\theta(t)) \rangle_X \\
\leq - \left[1 - \frac{\|A\|_{X \to Y}\|(A - A_\theta)(x)\|_Y + \|(A^* - A_\Phi^*)(A_\theta(x) - y)\|_X}{\|\nabla L(x)\|_X^2} \right] \cdot \|\nabla L(x)\|_X^2.
\]
As long as \(\|x_\theta(t) - \hat{x}\|_X \geq \epsilon\), by (32), we have \(\|\nabla L(x)\|_X > \delta\) and hence
\[
\partial_t L(x_\theta(t)) \leq - \left[1 - \frac{\delta/4 + \delta/4}{\delta} \right] \cdot \|\nabla L(x)\|_X^2 \leq - \frac{1}{2} \delta^2 =: -c < 0.
\]
The gradient flow dynamics induced by \(\nabla^\dagger L_\theta\) hence induce a decrease of \(L\) at a rate that is globally bounded by \(c\) outside the \(\epsilon\) ball around \(\hat{x}\), concluding the proof by lemma 4.4. \[\Box\]

We have hence shown that even though the corrected operator \(A_\theta\) is potentially nonlinear, the gradient dynamics induced by \(\nabla^\dagger L_\theta\) can in fact minimise the variational problem with the true operator \(A\), effectively minimising the associated variational functional \(L\) and leading us close to the true solution \(\hat{x}\).

We note that the main assumption in Theorem 4.10 is the that learned operator \(A_\theta\) has to be sufficiently close to the true operator \(A\) throughout the minimisation trajectory as well as the corresponding adjoint fit, in the sense of (34). This corresponds directly to the quantities of the loss functions that the approximations \(A_\theta\) and \(A_\Phi^*\) were trained on, but includes any \(x_n\) occurring during the gradient descent dynamics. Thus, we will discuss the concept of adding exactly these samples \(x_n\) to the training set in the next chapter, effectively making our training loss function minimise exactly the relevant quantities \(\|(A - A_\theta)(x_n)\|_Y\) and \(\|(A^* - A_\Phi^*)(A_\theta(x_n) - y)\|_X\).
5 Computational considerations

In the following we will first address some details on the training procedures and then continue to present the design of experiments to evaluate performance of the discussed approaches. In particular, as we mentioned above, in order to ensure the convergence in Theorem 4.10, we need to make sure that the forward fit as well as the backward fit in (34) are satisfied throughout the minimisation process, which makes a special recursive training of the corrections necessary.

5.1 Recursive training

Let us now address how to ideally choose the training sets for the forward-backward correction to ensure a good fit of the forward correction \(F_\Theta \) by minimising (27) and the adjoint correction \(G_\Phi \) with (28). To create the training set, there are two possibilities. Either we are given a set of measurements \(\{ y^i, i = 1, \ldots, N \} \), or alternatively, if we are given a set of samples in image space \(\{ x^i, i = 1, \ldots, N \} \), then we need to create a corresponding set of measurements by applying the true model \(y^i = Ax^i + e^i \) with the addition of noise \(e^i \). Either way, given the set of measurements \(y^i \) we need to train \(F_\Theta \) and \(G_\Phi \) on a meaningful starting point for the gradient descent to solve the variational problem; a natural candidate would be to choose the backprojection \(x^i_0 = A^* y^i \).

Training the corrected operators \(A_\Theta \) and \(A^*_\Phi \) with the samples \(\{ (x^i_0, Ax^i) \} \) only yields operator corrections that approximate \(A \) and \(A^* \) well for samples \(x \) that are close to backprojections of measurements. However, the purpose of this paper is to learn a correction of \(A \) that can be used within the variational problem to obtain a solution close to the one obtained using the true operator \(A \). We observe that training \(A_\Theta \) on the backprojections \(x^i_0 = A^* y^i \) only is not sufficient to achieve this goal. While this leads to \(A_\Theta \) being a good approximation to \(A \) for the first iterates in the gradient descent scheme, the approximation quality tends to deteriorate for later iterates, making \(A_\Theta \) not a good approximation to \(A \) anymore. Such a behaviour is in fact what one would heuristically expect, as \(A_\Theta \) has never been trained on later iterates to match the true operator.

This connects to the assumptions made in the convergence Theorem 4.10, where we assume low approximation error for both the forward and the adjoint at all iterates of the gradient descent scheme. We hence need to ensure a uniformly low approximation error at any iterate to be able to guarantee convergence and it is in particular not sufficient to ensure low approximation error at the initial point of the minimisation of the variational problem only.

A natural solution to mitigate this problem is to include later iterates of the variational problem into the training samples for the corrected operator. More precisely, given some weights \(\Theta \) of the correction operator, denote by \(\{ x^i_n \} \) the iterates obtained following the dynamics

\[
x^i_{n+1} = x^i_n - \mu \left[A^*_\Phi (A_\Theta (x^i_n) - y^i_n) + \lambda \nabla R(x) \right],
\]

where \(\mu \) denotes the step size. We add these samples to the original training set \(\{ (x^i, Ax^i) \} \), i.e. we also train on \(\{ (x^i_n, Ax^i_n) \} \) for all \(n < N_{iter} \) and \(i \). Here \(N_{iter} \) is the maximal number of gradient descent steps we take. This allows us to ensure that the corrections \(A_\Theta \), as well as \(A^*_\Phi \) for the Forward-Backward method, are fit consistently well at any iterate \(x^i_n \) of the gradient descent dynamics.

A major drawback of this approach is the additional computational burden it incurs during training. Obtaining the iterates of the minimisation to solve the variational problem requires performing the minimisation at training time. To reduce the additional computational burden one can make use of the fact that the gradient of the data term with the learned operator correction \(A_\Theta \) has to be computed to train the approximation on a given sample - it can hence be detached at training, allowing to perform a gradient descent step on a given sample with little additional cost compared to only training the approximation on that sample.

Additionally, the trajectory (35) depends on the network weights \(\Theta \). The training samples can hence change during training and convergence is not clear a-priori. Empirically, we find that training on the full trajectory \(\{ (x^i_n, Ax^i_n) \} \) for \(n < N_{iter} \) from the beginning tends to be unstable, as this will lead to most training samples differing greatly from both the original training distribution as well as the true trajectory which we are finally interested in. There are however two effective solutions to this problem: First, one could alternatively train on the trajectory obtained when using the true operator \(A \), avoiding instabilities in the beginning of training. This, however, could lead to errors...
Phantom: x

Accurate data: Ax

Approximate data: \tilde{Ax}

Figure 2: Illustration of the imaging scenario under consideration. Left: numerical phantom with a line detector (red line). Middle: ideal data from the accurate forward model. Right: data obtained with an approximate model with clearly visible aliasing artefacts.

accumulating during training. We found that the most effective solution is to have N_{iter} increase from 1 to some N_{max} during training. With this approach, we start off by training on the original samples x_0 only and then add in more samples from the trajectory as training proceeds.

5.2 Experiment design

For a practical application we consider photoacoustic tomography (PAT) in two dimensions; for more details on PAT see [6] and the discussion in Appendix A. Here, the measurement data is given as a set of time-series on a measurement surface, which we visualise as a space-time image in Figure 2. The accurate model A is given by a pseudo-spectral time-stepping model [40, 41], whereas the approximate model \tilde{A} is given by a regridding and Fast Fourier Transform which neglects the effect of singularities and introduces systematic errors in the forward mapping [11, 28]. In particular, to avoid singularities in the approximate model we threshold incident waves with an angle up to $\theta_{\text{max}} = 60^\circ$ from normal incidence. The resultant systematic errors can be clearly seen in Figure 2 indicating that this application is an ideal candidate for this study. For more details on the models, we refer to the discussion in Appendix A.

Model corrections under consideration We evaluate the Forward only method with a gradient penalty term as described in Section 3 as well as the Forward-Backward approach as outlined in Section 4. For both of these methods, we conduct experiments with a model trained on back-projected measurements only and with a model that has been trained using recursive training 5.1. As a baseline method, we compare to the widely used AEM approach as outlined in Section 2.1, a linear approach to model correction. We finally compare to reconstructions obtained with the uncorrected operator as well as to the reconstruction the true operator yields. This allows to assess how well various correction approaches are able to correct the shortcomings of the uncorrected operator.

Measurement setup We consider a limited view problem in this study, where measurements are only taken on one side of the target with a line detector, as indicated in Figure 2. This is a challenging inverse problem in itself [43] and hence an accurate operator is needed to guarantee trustworthy reconstructions. In particular, both, image and data space, can be represented as a two-dimensional image, so that it is reasonable to use the same network architecture for both spaces.

Training samples For the evaluation of the various model correction methods, we utilise two different sets of samples. Firstly, a simple synthetic set of ‘ball’ images, consisting of circles of varying intensity in $[0, 0.75, 1]$, with fixed radius, but random location on a empty, zero intensity background. We employ a total of 4096 ball samples for fitting the correction and an additional 64

1Code will be released upon publication
Figure 3: Examples from the vessel set used for training of the model correction. The phantoms were obtained from segmented CT scans to provide a realistic ground-truth image for photoacoustic imaging of vessel structures.

for evaluation. An example of a ‘ball’ image and the corresponding data are illustrated in Figure 2. Secondly, a realistic vessel set that has been obtained by segmenting vessels from 3D CT scans to provide realistic phantoms, see [21] for details. For this study, the 3D volumes have been projected to two dimensions by a maximum intensity projection and subsequently cropped to the intended target size; we note that all samples are normalised between $[0, 1]$. Examples of the obtained vessel phantoms are displayed in Figure 3. We use 2760 unique vessel phantoms for training, augmented by a rotation by 90° for a training set of 5520 samples in total. We evaluate on a separate test set containing 64 samples. All phantoms had a resolution of 64^2 and resolution in data space is the same for both, correct and approximate model. The phantoms are used to generate synthetic measurements $y_i := Ax_i + e_i$ by applying the true operator A and adding Gaussian white noise at 1% of the maximum value in measurement space.

Training Scheme For every measurement y_i, we compute $x_i^0 := 4 \cdot \tilde{A}^* y_i$ as an initial reconstruction. We choose to rescale the adjoint \tilde{A}^* by a factor of 4 as in our measurement setup we typically have $\|Ax\|_Y \approx \frac{1}{2}\|x\|_X$ and $\|A^*y\|_X \approx \frac{1}{2}\|y\|_Y$. This is due to the fact that we measure along a line on one side of the object only, hence recording only half the energy emitted on the measurement device. This allows to keep the norm of the reconstruction approximately stable throughout solving the variational problem (39) and hence makes operator approximations more robust throughout the trajectory of minimising (39).

Given a set of training samples y_i, we then train the forward approximation with the loss term

$$\sum_i \left(\left\| F_{\phi}(\tilde{A}x_i^0) - Ax_i^0 \right\|_Y + \left\| A^* - \tilde{A}^* \left[DF_{\phi}(\tilde{A}x_i^0) \right] \right\|_X \right) \left(F_{\phi}(\tilde{A}x_i^0) - y_i \right) \right\|_X, \quad (36)$$

weighting the forward and adjoint loss equally. In the case of a forward-backward correction, the forward approximation is trained using the loss

$$\sum_i \left\| F_{\phi}(\tilde{A}x_i^0) - Ax_i^0 \right\|_Y, \quad (37)$$

while the adjoint is trained with the loss

$$\sum_i \left\| \left(G_{\Phi} \circ \tilde{A}^* - A^* \right) \left(F_{\phi}(\tilde{A}x_i^0) - y_i \right) \right\|_X. \quad (38)$$

Note that the quasi-adjoint of the approximate operator $\tilde{A}_\phi := G_{\Phi} \circ \tilde{A}^*$ as well as the adjoint of the forward approximation in (36) is evaluated in direction $r := F_{\phi}(\tilde{A}x_i^0) - y_i$. This loss is chosen to be consistent with the terms arising during a gradient-descent based optimisation of (39), as shown in the previous chapters.

If recursive training is applied, we additionally compute the iterates of a gradient-descent scheme on the penalty functional

$$\arg \min_x \| A_{\phi}(x) - y' \| + \lambda R(x). \quad (39)$$
All losses are summed over the later iterates x_n^i with $n \geq 0$, instead of taking the initial point x_0^i only. To make recursive training stable, the number of recursive steps considered during training is gradually increased to the maximal value, instead of beginning by training on the full trajectory from the start as outlined in Section 5.1.

Network Details The networks F_Θ and G_Φ are built with a U-Net [33] architecture, that has been particularly popular in the image reconstruction community including applications to PAT [3, 12, 15] and other modalities [16, 19, 22]. We follow the standard architecture with 4 downsampling and the same amount of upsampling blocks, each containing two convolutional layers with filters of size 5×5. We employed average pooling for downsampling and transpose convolutions for upsampling layers. We note, that the proposed framework is agnostic to the employed architecture, we expect similar results with other sufficiently expressive network architectures.

Solving the variational problem We employ gradient descent with a fixed step size to solve the variational problem (39), which we have seen can lead to a near-optimal reconstruction given sufficient approximation quality in Section 4.2. We additionally add a positivity constraint $x_n \geq 0$ everywhere to the minimisation that we incorporate using projected gradient descent. This means we cut the negative part of every iterate to everywhere, as negative values are non-physical.

As regularization functional R we choose the pseudo-Huber variation functional

$$R(x) := \sum_{i,j} \delta \left[\sqrt{1 + \frac{1}{\delta^2}[(x[i+1,j] - x[i,j])^2 + (x[i,j+1] - x[i,j])^2]} - 1 \right]$$ \hspace{1cm} (40)

to reconstruct $x \in \mathbb{R}^{64 \times 64}$. Here $x[i,j]$ denotes the pixel of x at location i along the vertical and j along the horizontal axis. This functional approximates the L^2-norm of the gradient of the reconstruction for small values and the L^1-norm of for large values of the gradient, coinciding with total variation (TV) in the limit $\delta \to 0$. The parameter δ specifies the characteristic length at which the behaviour of the regularisation functional changes from approximating L^2 to L^1. We chose $\delta = 0.01$ for all experiments.

The regularisation parameter λ is tuned for every experiment and baseline individually via a grid search over a logarithmically evenly spaced grid with grid points being a factor of $log(10)$ apart. The best parameter was chosen in terms of L^2 distance to the ground truth image.

6 Computational results

Synthetic ball phantoms To evaluate the proposed approaches we solve the variational problem employing the various approaches for model correction for a set of samples generated from a test set that is different from the samples used for fitting the correction. We use the same Huber regularisation functional and regularisation parameter as discussed in the last paragraph.

First, we investigate the correction accuracy in terms of the alignment of the gradient of the data fidelity term with the true gradient $A^* (A x_n - y)$ throughout the minimisation of the variational functional in Figure 4. As a notion of alignment we consider

$$\cos \Phi_\nu(x) = \frac{\left< A^* (A x_n - y), (G_\Phi \circ \tilde{A}^*) (F_\Theta (\tilde{A} x) - y) \right>_X}{\left\| A^* (A x_n - y) \right\|_X \left\| (G_\Phi \circ \tilde{A}^*) (F_\Theta (\tilde{A} x) - y) \right\|_X},$$ \hspace{1cm} (41)

in the case of the Forward-Backward method. For the Forward only and AEM methods, the expression $(G_\Phi \circ \tilde{A}^*) (F_\Theta (\tilde{A} x) - y)$ is replaced by the appropriate gradient of the corrected data fidelity term. Equation (41) is a slight deviation from (33) used in the theory section. This is to ensure good comparability with the baseline AEM method by rescaling the alignment with the norm of the approximate gradient and to make methods employing different regularisation parameters more comparable.

We note that all correction methods apart from the AEM approach start at a high alignment of > 0.8 at the first iterate. However, only the Forward-Backward based methods are able to
achieve an alignment of > 0.95 at the first iterate. Forward only approaches that rely on fitting a correction in measurement space only are limited by the range of the adjoint \tilde{A}^* as discussed in Section 4.

However, the alignment starts decreasing rapidly over the minimisation of the variational problem, dropping below 0 for the Forward-Backward method before the 200th iterate. The recursive versions of the Forward and Forward-Backward methods, as discussed in Section 5.1, are able to mitigate some of this shortcoming. While the alignment between true gradient and the correction also declines throughout the minimisation of the variational problem when employing recursive training, the decline is significantly less steep and occurs at a later stage of the minimisation. We also note that the alignment never drops under 0.2 for recursively trained corrections.

The benchmark AEM method is not able to correct the gradient as accurately as any of the methods we discussed for the first iterates of the variational problem. However, it does not exhibit a decline of the alignment as drastic as any of the other methods throughout the minimisation process. This can be explained by the lower expressive power of AEM compared to the corrections based on neural networks that does not allow the method to fit the true gradient as well for early iterates but prevents overfitting on later iterates, leading to the method being stable throughout the minimisation of the variational functional.

The different behaviour of Forward and Forward-Backward methods as well as their recursive counterparts is investigated in Figure 5. We note that in terms of the forward approximation error, applying recursive training makes the key difference in terms of keeping a low error throughout gradient descent. For the adjoint approximation error we note that methods based on the Forward scheme that fit a single operator are not able to achieve low error, even at the first iterate due to the fundamental limitations of the method. Forward-Backward methods on the other hand are able to fit the true adjoint well at the first iterates, but also suffer from deteriorated approximation quality for later steps.

In Figure 6, we see evolution of the data term $\|Ax_n - y\|_Y$ evaluated using the true operator A in order to test if the corrections minimise the original variational problem. We note that both recursive methods are able to effectively minimise the data term quickly, with both converging stably to their respective minimal value. This empirical observation shows that the learned reconstructions in fact lead to a variational energy that satisfy Lemma 4.4 to ensure closeness of minimiser. We note that Forward-Backward recursive is able to achieve a lower data loss than its Forward only counterpart, which is consistent with the behaviour observed in Figure 4. It is interesting to
Figure 5: Approximation error of the model correction compared to the true operator on the ball test set of 64 samples, tracked throughout the first 300 steps of the gradient descent scheme. Left (a): relative error of the forward approximation as defined in (37). Right (b): relative error for the adjoint, as defined for the Forward only in equation (36) and for the Forward-Backward method in (38).

Note, that both methods are able to minimise the true data term significantly better than the baseline AEM. When omitting recursive training both the Forward only and the Forward-Backward algorithm are not able to minimise the true data term well.

Finally, we evaluate the model correction in terms of the distance of the reconstruction to the ground truth image, measured by the relative L^2 error shown in Figure 7. We note that all approximation approaches outperform the uncorrected operator in this metric. Both corrections, Forward and Forward-Backward, without recursive training lead to a decrease in reconstruction error reconstruction quality for the first 300 optimisation steps, stagnating or even deteriorating afterwards. This is again consistent with the findings in Figure 4, which show that the gradient generated by these methods does not align with the true gradient any more at this point of the minimisation. The recursive counterparts of the Forward and Forward-Backward method produce considerably better results, with the recursive Forward-Backward method generating reconstructions that are nearly of the same quality as the ones generated by the true operator. The baseline with AEM is converging more slowly than any of the other methods but is able to produce high-quality results after 4000 gradient descent steps that are on par with the Forward recursive method, but are significantly outperformed by the recursive Forward-Backward method.

For a qualitative evaluation, we show obtained reconstructions in Figure 8 for all methods discussed and two samples with different behaviour. In the first example, where the ball is close to the line detector, we note that all methods are able to correct the errors introduced by the approximate operator to some extent. However, both the Forward and Forward-Backward method introduce background artefacts when not trained recursively. These artefacts disappear when recursive training is applied, leading to near perfect reconstructions. Compared to AEM as baseline, which is able to correct the approximate operator without introducing background artefacts, the correction by AEM introduces blurred edges of the ball that are not observed by any of the neural network based corrections we are investigating. The second sample is particularly more challenging, with the ball being far from the detector exhibiting stronger limited-view artefacts and consequently the approximate operator introduces severe artefacts if uncorrected. For the corrections without recursive training we see again that both approaches, Forward and Forward-Backward, introduce background artefacts. For the Forward method, these artefacts can not be suppressed by applying recursive training, leaving a severe artefact at the boundary of the domain. Only the recursive Forward-Backward is able to produce a reconstruction that is nearly en par with
Figure 6: True data term $\|Ax_n - y\|_Y$ evaluated for all methods on the ball test set of 64 samples, tracked throughout the gradient descent scheme.

The reconstruction obtained with the true operator and that does not exhibit any obvious artefacts. The baseline with AEM also introduces background artefacts leaking from the ball, but those are more structured and less severe than those of all other methods apart from the Forward-Backward recursive approach which gives the best visual results in this setting as well. The visual quality of the reconstructions hence coincides with the quantitative results discussed in Figure 7.

Vessel phantoms The results on the vessel phantoms quantitatively match the overall behaviour observed on the ball set. The alignment, as shown in Figure 9, is again initially higher with Forward-Backward methods achieving higher values as Forward only methods. If no recursive training is applied, alignment declines very quickly. AEM is again generating gradients of comparatively low initial alignment, that however stays relatively steady throughout solving the variational problem. We note that the overall alignment is significantly lower than in the case of the ball samples, reflecting the additional difficulty of the vessel set.

The relative error of the reconstructions compared to the ground truth can be seen in Figure 10. We again see both the Forward and Forward-Backward methods fail to improve reconstruction quality further early into the minimisation process if recursive training is omitted. In case recursive training is applied, both methods lead to a clear improvement over the uncorrected operator, with the Forward-Backward approach again performing considerably better than the Forward only. On the vessel samples we however note a considerably larger gap between the Forward-Backward correction and the true operator that is caused by the extremely challenging nature of the vessel set. The AEM baseline converges slowly on the vessels, an indication that the estimated covariance matrix is fairly ill-conditioned. We hence additionally report the reconstruction quality at convergence, which we observed after 20000 steps of gradient descent. While this is a competitive reconstruction, it is still outperformed slightly by the recursive Forward-Backward method. We remark that we have applied early stopping for all other methods on the vessel samples.

We present reconstructions for all discussed methods for two samples in Figure 11. We note for the first sample that the vessel structure at the right of the image completely disappears when using the uncorrected approximation. In fact, the corresponding measurement is severely reduced due to the thresholding of incident waves in the approximate model. Hence, no correction method is able to fully recover the vessel structure at the right of the first sample, with AEM, Forward method and Forward-Backward method coming closest. For all correction methods we observe a deterioration in reconstruction quality compared to the true operator. We note that the recursive Forward method seems to lead to striping artefacts. Consistent with the quantitative results.
Figure 8: Reconstructions for the various model correction algorithms for two samples from the ball set. We show the results after 4000 steps of gradient descent. Huber regularisation is used. Top (a): Phantom close to the detector, which corresponds to an easy setting for limited-view PAT. Bottom (b): Phantom far from the the detector, which corresponds to a very challenging setting.
Figure 9: Alignment (41) of approximate gradient to the gradient of the true data term $A^* (Ax_n - y)$ for each method on the vessel test set with 64 samples, recorded over the 250 steps of solving the associated variational problem.

Figure 10: Relative reconstruction error (L^2) for all methods on the vessel test set with 64 samples, tracked throughout the gradient descent scheme.

in Figure 10 the Forward-Backward recursive reconstructions are of the highest visual quality compared to the other reconstructions using a model corrections, leading to sharper results than the AEM baseline and to fewer artefacts than methods based on the Forward only approach or those omitting recursive training. We remark that, up to some extent, perceived differences in smoothness can also be caused as the regularisation parameter has been optimised for all methods individually and hence might differ slightly between reconstructions.

To this end, we note that the training set with a total of 2760 samples (5520 with rotations) is fairly small when taking into account the complexity of the vessel structures, see for instance the discussion with respect to AEM in [34]. It is hence possible that the remaining gap in reconstruction quality to the true operator could be closed further by using a more extensive training set. However, we expect that the gap cannot be closed completely on samples with a comparable complexity to the vessel phantoms as too much information might be lost in the thresholding step of the approximate operator that cannot be recovered even when taking into account the structure of the samples with highly parametrised learned corrections. This underlines the necessity of a statistical correction as discussed throughout Section 2 to compensate for lost kernel directions in the approximate operator.

7 Conclusion

In this paper, we have introduced various approaches to learn a data-driven explicit model correction for inverse problems to be employed within a variational reconstruction framework. We have investigated several strategies to learn such a correction, starting with a simple Forward correction for which we pointed out some fundamental limitations. In particular, we observed that this approach is limited by the range of the adjoint of the approximate operator when employed in a gradient descent scheme and is therefore unable to fully correct all modelling errors. To mitigate this, we have proposed a Forward-Backward correction as an alternative approach, overcoming these limitations by fitting an independent adjoint correction.

To ensure a model correction that can be employed throughout the optimisation process and avoid overfitting to the initial reconstruction, we proposed to augment all methods with a recursive training scheme. For the recursive Forward-Backward correction we provided a theoretical convergence analysis to show that the method approximates the true solution when trained to a suf-
Figure 11: Reconstructions on vessels using the various operator corrections. We show the results after 250 iterations of gradient descent for all methods but AEM, for which 20000 iteration steps were taken. Huber regularisation is used.
iciently low loss. Finally, we have shown the potential of our approach on the task of limited-view photoacoustic tomography, demonstrating our theoretical considerations in practice and showing improved results compared to the commonly used AEM.

This work is orthogonal to previous attempts at using neural networks to learn operator corrections, that were exclusively focused on the idea of implicit model corrections, learning the correction operator and a reconstruction prior simultaneously in an end-to-end trained reconstruction network. While this approach comes with advantages in terms of performance, our explicit model correction allows to flexibly use any prior model alongside the corrected operator and can be integrated in the well-established framework of variational regularization. Furthermore, our work unveils some of the challenges in model correction that are hidden in implicit schemes and our findings can be used to inspire the design of novel implicit algorithms. In particular, our observations on the limitations of the range of the adjoint of the approximation motivates the use of corrections in both reconstruction and data space for implicit model correction, motivating the use of algorithms such as learned primal-dual [2].

In future work one could apply the proposed method to different fields of application, such as computed tomography. In this application, the true model can be obtained by expensive photon-level Monte Carlo simulations, whereas a computationally efficient approximation is given by the widely-used ray transform. In general, applications to inverse problems involving non-linear operators are an interesting direction deserving further study. A class of very challenging applications are settings where we do not have explicit access to the true forward operator, but instead have access to empirical measurements only. Examples of such problems are tomography with slightly wrong estimated angles or deconvolution problems with errors in the point-spread function. These problems differ from the setting considered in this paper, where explicit access to the true operator was given and the approximation was performed to overcome computational constraints. In particular, the concept of recursive training, as presented here, requires explicit access to the true operator and is thus not readily applicable for problems where we have access to empirical measurements only, making them particularly challenging.

Finally, we mention a possible combination of the proposed approach with AEM techniques. Since the latter, after training, yields a multi-variate Normal distribution as an estimate of the distribution of model errors it becomes increasingly unreliable as the non-Gaussianity of the true distribution increases. However, after an initial nonlinear correction of the form A_Θ described here, the AEM could be re-estimated using such a model. Commensurately, the estimated statistics of the model error from the AEM could be used in place of the simple L^2-loss used in the training in (36) and (37) for example (i.e. the norm implied in the space Y). A possible future research direction could therefore be to iterate these approaches with a view to obtaining a more accurate probabilistic estimate of the eventual remaining model errors.

Acknowledgements

This work was partially supported by the Academy of Finland Projects 312123 and 312342 (Finnish Centre of Excellence in Inverse Modelling and Imaging, 2018–2025), Academy of Finland Projects 334817 and 314411, Jane and Aatos Erkko Foundation, as well as British Heart Foundation grant NH/18/1/33511, CMIC-EPSRC platform grant (EP/M020533/1), and EPSRC-Wellcome grant WT101957.

CBS acknowledges support from the Leverhulme Trust project on ‘Breaking the non-convexity barrier’, the Philip Leverhulme Prize, the EPSRC grants EP/S026045/1 and EP/T003553/1, the EPSRC Centre Nr. EP/N014588/1, the Wellcome Innovator Award RG98755, the RISE projects CHiPS and NoMADS, the Cantab Capital Institute for the Mathematics of Information and the Alan Turing Institute.

The work by SL was supported by the EPSRC grant EP/L016516/1 for the University of Cambridge Centre for Doctoral Training, the Cambridge Centre for Analysis and by the Cantab Capital Institute for the Mathematics of Information.

SA acknowledges support of EPSRC grant EP/T000864/1.

All authors acknowledge helpful discussions with Jonas Adler, Jari Kapio, Yury Korolev, Ozan Öktem, and Peter Maass amongst others.
References

[1] J. Adler and O. Öktem, Solving ill-posed inverse problems using iterative deep neural networks, Inverse Problems, 33 (2017), p. 124007.

[2] ———, Learned primal-dual reconstruction, IEEE Transactions on Medical Imaging, (2018).

[3] S. Antholzer, M. Haltmeier, and J. Schwab, Deep learning for photoacoustic tomography from sparse data, Inverse Problems in Science and Engineering, 27 (2019), pp. 987–1005.

[4] S. Arridge, J. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, Approximation errors and model reduction with an application in optical diffusion tomography, Inverse Problems, 22 (2006), pp. 175–195.

[5] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numerica, 28 (2019), pp. 1–174.

[6] P. Beard, Biomedical photoacoustic imaging., Interface Focus, 1 (2011), pp. 602–631.

[7] Y. E. Boink and C. Brune, Learned SVD: solving inverse problems via hybrid autoencoding, arXiv preprint arXiv:1912.10840, (2019).

[8] L. Borcea, V. Druskin, A. Mamanov, S. Moskow, and M. Zaslavsky, Reduced order models for spectral domain inversion: embedding into the continuous problem and generation of internal data, Inverse Problems, (2020). In press.

[9] T. A. Bubba, G. Kutyniok, M. Lassas, M. Maerz, W. Samek, S. Siltanen, and V. Srinivasan, Learning the invisible: A hybrid deep learning-shearlet framework for limited angle computed tomography, Inverse Problems, 35 (2019), p. 064002.

[10] M. Burger, Y. Korolev, and J. Rasch, Convergence rates and structure of solutions of inverse problems with imperfect forward models, Inverse Problems, 35 (2019), p. 024006.

[11] B. Cox and P. Beard, Fast calculation of pulsed photoacoustic fields in fluids using k-space methods, J. Acoust. Soc. Am., 117 (2005), pp. 3616–3627.

[12] N. Davoudi, X. L. Deán-Ben, and D. Razansky, Deep learning optoacoustic tomography with sparse data, Nature Machine Intelligence, 1 (2019), pp. 453–460.

[13] H. Egger, J.-F. Pietschmann, and M. Schlottbom, Identification of chemotaxis models with volume-filling, SIAM Journal on Applied Mathematics, 75 (2015), pp. 275–288.

[14] R. W. Freund, Model reduction methods based on krylov subspaces, Acta Numerica, 12 (2003), pp. 267–319.

[15] S. Guan, A. Khan, S. Sikdar, and P. Chitnis, Fully dense UNet for 2D sparse photoacoustic tomography artifact removal, IEEE journal of biomedical and health informatics, (2019).

[16] S. J. Hamilton and A. Hauptmann, Deep D-bar: Real-time electrical impedance tomography imaging with deep neural networks, IEEE transactions on medical imaging, 37 (2018), pp. 2367–2377.

[17] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll, Learning a variational network for reconstruction of accelerated MRI data, Magnetic resonance in medicine, 79 (2018), pp. 3055–3071.

[18] A. Hauptmann, J. Adler, S. Arridge, and O. Öktem, Multi-scale learned iterative reconstruction, IEEE Transactions on Computational Imaging, (2020).

[19] A. Hauptmann, S. Arridge, F. Lucka, V. Muthurangu, and J. A. Steeden, Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning—proof of concept in congenital heart disease, Magnetic resonance in medicine, 81 (2019), pp. 1143–1156.
A. Hauptmann, B. Cox, F. Lucka, N. Huynh, M. Betcke, P. Beard, and S. Arridge, *Approximate k-space models and deep learning for fast photoacoustic reconstruction*, in International Workshop on Machine Learning for Medical Image Reconstruction, Springer, 2018, pp. 103–111.

A. Hauptmann, F. Lucka, M. Betcke, N. Huynh, J. Adler, B. Cox, P. Beard, S. Ourselin, and S. Arridge, *Model based learning for accelerated, limited-view 3d photoacoustic tomography*, IEEE Transactions on Medical Imaging, (2018).

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, *Deep convolutional neural network for inverse problems in imaging*, IEEE Transactions on Image Processing, 26 (2017), pp. 4509–4522.

J. Kaipio and E. Somersalo, *Statistical and Computational Inverse Problems*, vol. 160 of Applied Mathematical Sciences, Springer Verlag, 2005.

E. Kang, J. Min, and J. C. Ye, *A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction*, Medical Physics, 44 (2017).

J. Koestli, M. Frenz, H. Bebie, and H. P. Weber, *Temporal backward projection of optoacoustic pressure transients using Fourier transform methods*, Phys Med Biol, 46 (2001), pp. 1863–1872.

Y. Korolev and J. Lellmann, *Image reconstruction with imperfect forward models and applications in deblurring*, SIAM Journal on Imaging Sciences, 11 (2018), pp. 197–218.

H. Li, J. Schwab, S. Antholzer, and M. Haltmeier, *Nett: Solving inverse problems with deep neural networks*, Inverse Problems, (2020).

A. Lorz, J.-F. Pietschmann, and M. Schlottbom, *Parameter identification in a structured population model*, Inverse problems, 35 (2019), p. 095008.

S. Lunz, O. Öktem, and C.-B. Schönlieb, *Adversarial regularizers in inverse problems*, in Advances in Neural Information Processing Systems, 2018, pp. 8507–8516.

T. Sahlström, A. Pulkkinen, J. Tick, J. Leskinen, and T. Tarvainen, *Modeling of errors due to uncertainties in ultrasound sensor locations in photoacoustic tomography*, IEEE Transactions on Medical Imaging, (2020).

J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert, *A deep cascade of convolutional neural networks for dynamic MR image reconstruction*, IEEE transactions on Medical Imaging, 37 (2017), pp. 491–503.

J. Schwab, S. Antholzer, and M. Haltmeier, *Deep null space learning for inverse problems: convergence analysis and rates*, Inverse Problems, 35 (2019), p. 025008.

J. H. Siewerdsen and D. A. Jaffray, *Cone-beam computed tomography with a flat-panel imager: Magnitude and effects of x-ray scatter*, Medical physics, 28 (2001), pp. 220–231.
Here we discuss the accurate and approximate model as previously used in [20]. In photoacoustic tomography (PAT) a short pulse of near-infrared light is absorbed by chromophores in biological tissue. For a sufficiently short pulse, the quantity of interest will result as a spatially-varying pressure increase \(x \), which will initiate an ultrasound (US) pulse (photoacoustic effect), that then propagates to the tissue surface. The measurement consists of the detected waves in space-time at the boundary of the tissue; this set of pressure time series constitutes the measured PA data \(y \).

For the forward model, this acoustic propagation is commonly modelled by an initial value problem for the wave equation \[11, \]
\[
(\partial_{tt} - c^2 \Delta) p(x, t) = 0, \quad p(x, t = 0) = x(x), \quad \partial_t p(x, t = 0) = 0, \quad \text{with } x \in \mathbb{R}^2. \tag{42}
\]
The measurement is then modelled as a linear operator \(M \) acting on the pressure field \(p(x, t) \) restricted to the boundary of the computational domain \(\Omega \) and a finite time window:
\[
y = M p|_{\partial \Omega \times (0, T)}. \tag{43}
\]
Together, equations (42) and (43) define the linear forward model that we consider in this study

\[
Ax = y, \tag{44}
\]
from initial pressure \(x \) to the measured time series \(y \). This accurate forward model can be simulated by a pseudo-spectral time-stepping model as outlined in [40, 41].

For the approximate model, we can exploit the fact that in our case the measurement points lie on a line \((x_2 = 0) \) outside the support of \(x \), the pressure there can be related to \(x \) by \[11, 28, \]
\[
p(x_1, t) = \frac{1}{c^2} F_{k_1} \left\{ C_\omega \left\{ B(k_1, \omega) \hat{x}(k_1, \omega) \right\} \right\}, \tag{45}
\]
where \(\hat{x}(k_1, \omega) \) is obtained from \(\hat{x}(k) \) via the dispersion relation \((\omega/c)^2 = k_1^2 + k_2^2 \) and \(\hat{x}(k) = F_x(x(x)) \) is the 2D Fourier transform of \(x(x) \). \(C_\omega \) is a cosine transform from \(\omega \) to \(t \), \(F_{k_1} \) is the 1D inverse Fourier Transform from \(k_1 \) to \(x_1 \) on the detector. The weighting factor,
\[
B(k_1, \omega) = \omega / \left(\text{sgn}(\omega) \sqrt{(\omega/c)^2 - k_1^2} \right), \tag{46}
\]
contains an integrable singularity which means that if (45) is evaluated by discretisation on a rectangular grid and thus enabling the application of FFT for efficient calculation), then aliasing in the measured data $p(x_1, t)$ results. Consequently, evaluating (45) using FFT leads to a fast but approximate forward model. In fact, we can control the degree of aliasing, by avoiding the singularity, that means in practice all components of B for which $k_1^2 > (\omega/c)^2 \sin^2 \theta_{\text{max}}$ are set to zero. This is equivalent to assuming only waves arriving at angles up to θ_{max} from normal incidence are detected. We note, that there is a trade-off: the greater the range of angles included, the greater the aliasing. Finally, this results in a thresholded weighting factor \tilde{B} and hence the relation (45) using \tilde{B} defines the approximate model for this study: $Ax = y$.