Research and progress on CIC-2 (Review)

HONGWEI WANG¹, MINGHUI XU², QINGJIE KONG³, PENG SUN⁴, FENGYUN YAN⁵, WENYING TIAN² and XIN WANG²

¹Department of Ophthalmology, People's Hospital of Jingjiang, Jingjiang, Jiangsu 214500; ²Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006; ³School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin 130024; ⁴Department of Ophthalmology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000; ⁵Assets Division, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, P.R. China

Received March 11, 2016; Accepted February 13, 2017

DOI: 10.3892/mmr.2017.6600

Abstract. Chloride channel 2 (CIC-2) is one of the nine mammalian members of the CIC family. The present review discusses the molecular properties of CIC-2, including CLCN2, CIC-2 promoter and the structural properties of CIC-2 protein; physiological properties; functional properties, including the regulation of cell volume. The effects of CIC-2 on the digestive, respiratory, circulatory, nervous and optical systems are also discussed, in addition to the mechanisms involved in the regulation of CIC-2. The review then discusses the diseases associated with CIC-2, including degeneration of the retina, Sjögren's syndrome, age-related cataracts, degeneration of the testes, azoospermia, lung cancer, constipation, repair of impaired intestinal mucosa barrier, leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and diabetes mellitus. It was concluded that future investigations of CIC-2 are likely to be focused on developing specific drugs, activators and inhibitors regulating the expression of CIC-2 to treat diseases associated with CIC-2. The determination of CLCN2 is required to prevent and treat several diseases associated with CIC-2.

Contents

1. Introduction
2. Molecular properties of CIC-2
3. Biophysical properties of CIC-2
4. Functional properties of CIC-2
5. Mechanism of CIC-2 regulation by regulators
6. Diseases associated with CIC-2
7. Conclusion

1. Introduction

Chloride channels (CICs) are a type of permeable channel protein for chloride ions or other anions on the cell membrane, and CIC proteins are encoded by genes of the CIC family. CICs have nine family members, which are classified into three distinct subfamilies: CIC-1, CIC-2, CIC-Ka/K1 and CIC-Kb/K2; CIC-3, CIC-4 and CIC-5; and CIC-6 and CIC-7 (1). CIC-2 is one of the nine mammalian members of the CIC family, and was initially isolated from the rat heart and brain (2,3) and then from the rabbit heart (4,5). CIC-2 is a two-pore homodimeric, voltage-gated Cl channel (5-8). CIC-2 can be activated by hyperpolarization (3,9), cell swelling (2,9), extracellular hypotonicity (2) and extracellular acidification (9,10). CIC-2 is almost ubiquitously expressed (3,11), including in ureteric bud cells (12), intestine (13-17), gastric parietal cells (18,19), the liver (20), lung (11,21-26), rat retina (27), parotid acinar cells (28), guinea pig cardiac muscle (29), neuronal cells (30), rat and human airways (17), bovine trabecular meshwork (31), human trabecular meshwork (32,33) and rat trabecular meshwork (34). In addition, CIC-2 can regulate cell volume (2,4,35), control response to swelling (11,36-39), and regulates post-synaptic responses to GABA and glycine (11,40,41).

Although CIC-2 has a wide variety of properties and functions, reports of CIC-3 prior to 1994 are limited, with only six published between 1953 and 1994. Between 1994 and 2015,
CIC-2 attracted increasing attention as CIC-2 was understood to possess several molecular, functional and physiological properties, and be associated with several diseases, including degeneration of the retina, Sjögren's syndrome, age-related cataracts, degeneration of the testes, azoospermia, lung cancer, constipation, repair of impaired intestinal mucosa barrier, leukemia, cystic fibrosis, leukencephalopathy, epilepsy and diabetes mellitus. However, reviews on CIC-2 are limited. The present review aimed to discuss the molecular, functional and physiological properties of CIC-2, in addition to mechanisms involved in the regulation of CIC-2 and diseases associated with CIC-2.

2. Molecular properties of CIC-2

CLCN2 and CIC-2 promoter. The CIC-2 protein is encoded by the CLCN2 gene, which is composed of 898 amino acids and is located in chromosome 3q27.1. The major transcription start site of the CIC-2 gene has been identified, and is localized 100 bp upstream of the putative translation initiation codon (21). A previous study (42) on the possible evolution of CIC-2 gene suggested that CIC-2 may have evolved by gene duplication, mutation and DNA rearrangement (27,43).

The CIC-2 promoter belongs to a GC-rich and TATA-less class (44). Within the 1,930-bp region, one of three CAAT boxes is close to the CIC-2 coding sequence, and the other two are at the middle (44). Within a 391-bp region upstream, the first three of four GC boxes are conserved in human CIC-2, as reported by Cid et al (21,44).

Structural properties of CIC-2 protein. Despite wide functional diversity, CIC family members share a conserved protein structure, including a transmembrane region, which is involved in chloride anion transport, and two intracellular copies of the cystathionine-β-synthase (CBS) domain (CBS1 and CBS2) (5-8,45,46) and an N-terminus. Therefore, the protein structure of CIC-2 is the same in the other CIC family members (45,46), as shown in Fig. 1.

Several other studies on the structural properties of CIC-2 have reported that the CIC-2 dimer is the minimum functional structure (47), protons act independently from the possible effects of the N-terminus on gating (48) and the hetero-dimerization of CIC-2 can modify the unitary conductance of proteopores (49).

3. Biophysical properties of CIC-2

In 1992, it was reported that CIC-2 expressed in *Xenopus* oocytes generates Cl- currents, which activate slowly upon hyperpolarization and show a linear instantaneous current-voltage association (3). Further studies on the biophysical properties of CIC-2 have focused predominantly on Cl- currents, including CIC-2-like inwardly rectifying Cl- currents (3.50-54) and CIC-2 outwardly rectifying Cl- currents (36,37,52,55-59).

CIC-2-like inwardly rectifying Cl- currents have been detected in the human T84 cell line (50), drosophila CIC-2 variants in HEK-293 cells (51) and rat type IV spiral ligament fibrocytes (52). The conductivity sequence of the inwardly rectifying currents is Cl- ≥ Br- > I- (3). CIC-2 inwardly rectifying Cl- currents are inhibited by 4,4’-diisothiocynato-2,2’-stilbene-disulfonic acid (DIDS) (3) and Cd2+ (50), and regulated by cell swelling (53), extracellular pH, Cl- and Ca2+ (52). However, the results of another study on CIC-2 inwardly rectifying Cl- currents differed, reporting that CIC-2 did not significantly contribute to inward-rectifying anion conductance in the mouse choroid plexus (54).

CIC-2 outwardly rectifying Cl- currents have been found in the T84 human adenocarcinoma cell line (36,37,55), human neurons (56), human parotid acinar cells (57) and rat type IV spiral ligament fibrocytes (52). The outwardly rectifying currents are characterized by a time-dependent decay at depolarizing voltages, and the anion permeability sequence I- > Br- > Cl- > F-, and the currents show sensitivity to 1,9-dideoxyforskolin, DIDS (58) and tamoxifen (55). CIC-2 outwardly rectifying Cl- currents are regulated by extracellular pH, Cl- and Ca2+ (52). Another study showed that CIC-2 may contribute to cell volume regulation following hyposmotic stress produced by outwardly rectifying Cl- currents, however, cell volume regulation in T84 cells is independent of CIC-2 activity (59).

CIC-2 inwardly/outwardly rectifying Cl- currents are simultaneously found in rat type IV spiral ligament fibrocytes (52), and they are modulated by extracellular pH, Cl- and Ca2+. According to previous studies, at least two chloride channels are involved in modulating membrane anion conductance (52). Another study on Cl- currents in rabbit heart cells suggested that rabCIC-2α/2β may provide two homologous protein kinase A-activated chloride anion channels, with or without extracellular hypotonicity (60).

4. Functional properties of CIC-2

Previous studies have shown that CIC-2 has several functional properties, including effects on cell volume (2,4,20,35,61), the digestive system (11,16,18,19,62-64), the eye (65-67), respiratory system (11,24,26,68-70), circulatory system (35,71-75) and nervous system (76). In addition, several studies have reported the functions of the NH2 terminus (77) and carboxy terminus (78) in CIC-2, and the similar functional properties between chloride-selective ion channels, including CIC-2, in protozoa (79-82).

Regulation of cell volume. The activation of CIC-2 in response to cell swelling and low extracellular pH is involved in the dissociation of an NH2-terminal region of CIC-2 (10). The dephosphorylation of serine/threonine residues in the channel or an associated protein appears to be necessary for current activation following cell swelling in T84 cells (53) and for a CIC-2-like current in ascidian embryo cells during the cell cycle (83). Hypotonic cell swelling activates an outwardly rectifying anionic conductance, with different characteristics from those of CIC-2 previously reported (84). The endogenous currents suggest that protein tyrosine phosphorylation is involved in the signal transduction pathway in certain cell types (85-87), and that epidermal growth factor enhances the hypotonicity-induced anionic efflux (85). However, tyrosine kinase p56lck activates these swelling-sensitive chloride channels without cell swelling, even during cell shrinkage, in lymphocytes (88).

Effect of CIC-2 on the digestive system. Nehrke et al (62) detected the regulatory volume decrease following cell swelling (53), extracellular pH, Cl- and Ca2+ (52). However, the results of another study on CIC-2 inwardly rectifying Cl- currents differed, reporting that CIC-2 did not significantly contribute to inward-rectifying anion conductance in the mouse choroid plexus (54).
swelling, which showed that CIC-2 can control cell volume in mouse parotid acinar cells. Others functions of CIC-2 have been reported, including HCl secretion across the parietal cell secretory membrane in the rabbit gastric mucosa (19), mediating the basolateral membrane exit of Cl- in the distal colon of guinea pigs (16), regulating gastric acid secretion (11,18,63), and affecting gastric glands and its cell layers (63). However, one study suggested that CIC-2 may not be a Cl- transporting protein for gastric acid secretion in parietal cells (64).

Effect of CIC-2 on the eye. Previous studies have shown that CIC-2 has a protective effect on trabecular cells under pressure stress (65), can regulate the inward rectification in Drosophila retinal photoreceptors (66), and can modulate cellular volume, intracellular Cl- and other cellular functions in trabecular meshwork cells (67).

Effect of CIC-2 on the respiratory, circulatory and nervous systems. CIC-2 is gestationally regulated and is predominantly expressed in the fetal lung (26,68). Cystic fibrosis transmembrane conductance regulator (CFTR)-independent fluid accumulation is induced by keratinocyte growth factor in fetal lung explants (69), and keratinocyte growth factor is necessary for CIC-2-like pH-sensitive Cl- secretion in the fetal airway epithelia (24). It has been shown that CIC-2 affects fetal lung fluid production and lung cyst morphology (70).

It has been reported that a novel Cl- inward rectifier channel is found in the cardiac atrial and ventricular myocytes of several species, including the guinea pig (71-73), mouse (71,73) and rat (72-75). The Cl- inward rectifier channels have properties of activation by hypotonic cell swelling and extracellular acidification, inward rectification, time-dependent slow activation and Cd2+-sensitive inhibition (71-75). Experiments have shown that CIC-2 affects the positive chronotropic effect of acute exercise stress (73) and modulates cardiac pacemaker activity (73), but cannot alter intrinsic heart rate (73).

Another study (76) investigating the effect of CIC-2 on inhibitory interneurons showed that membrane voltage-/intracellular chloride-dependent CIC-2 can selectively regulate GABA_A receptor (GABA_A R)-mediated synaptic inputs from basket cells.

5. Mechanisms of CIC-2 regulation by regulators

Cell swelling can increase CIC-2 activity (2,9), and CIC-2 can be activated by hyperpolarization (3,9), extracellular hypotonicity (2) and extracellular acidification (9,10). Previous studies have shown that CIC-2 is also regulated by hormones (89-91), drugs (92-100), proteins (101-107), kinases (108-114), transcription factors (115,116), inhibitors (117-120), scorpion venom (121), α1-adrenoceptor (122), Plasmodium berghei (123), adenosine triphosphate (124,125), CH3 (40,126-137), permeant anions (138,139), membrane cholesterol (140) and the tyrosine endocytosis motif (141).

Regulation of CIC-2 by hormones. Thyroid hormones (T3 and T4) can regulate renal function (142,143), Na+/K+ ATPase (144), Na+/H+ exchanger (145), and affect kidney growth and development (146). Previous studies have demonstrated that hyperthyroidism and hypothyroidism are associated with chloride (147,148), and the reversal of glomerular filtration by T4 is observed in patients with hypothyroidism (149). In addition, a previous study (89) on T4 suggested that CIC-2 is involved in chloride transport regulated by thyroid hormones in rat renal proximal tubules.

Estrogen is associated with a decrease in the urinary excretion of sodium and chloride (150-153). A study by Nascimento et al (90) showed that CIC-2 may be involved in estrogen-induced Cl transport in the rat kidney. Another study (91) showed that CIC-2 is also involved in the rat renal tubule transcellular chloride transport regulated by arginine vasopressin, a neurohypophysial hormone.

Regulation of CIC-2 by drugs. Lubiprostone can induce intestinal fluid secretion (154), treat constipation (155-157) and activate CIC-2 Cl- currents in a concentration-dependent manner (94), and CIC-2 can recover mucosal barrier function in the ischemia-injured intestine (92). Studies have shown that the
activation of CIC-2 by lubiprostone can stimulate the recovery of intestinal barrier function in the ischemia-injured porcine ileum and colon (93), and may have a protective and therapeutic effect on murine models of colitis (99). The prostaglandin E2 receptor 4 (EP (4)) receptor (94-97) can stimulate CIC-2 and CFTR chloride channels, and it has been shown (98) that lubiprostone can activate CFTR by the EP (4) receptor in oocytes. The Chinese medicinal compounds GuanxinKang and diltiazem hydrochloride can decrease the mRNA and protein expression of CIC-2 in rats with myocardial ischemia reperfusion injury (100).

Regulation of CIC-2 by proteins. The functional expression and activation of CIC-2 is reduced by dynein (a protein complex) (101) and p34^{cdc2}/cyclin B (102), however, the interferon-γ glycoprotein can activate CIC-2 in lung epithelial cells through mRNA stabilization, and increase CIC-2 transcripts in Calu-3 cells (107). CIC-2 is regulated by protein phosphatase 1 (102), interactions between the actin cytoskeleton (a filamentous protein structure) and the N-terminus of CIC-2 (104). M phase-specific p34^{cdc2}/cyclin B can phosphorylate the ubiquitination of CIC-2 (103). Heat shock protein 90 can increase CIC-2 current amplitude and the intracellular Cl⁻ concentration, and enhance channel sensitivity to intracellular Cl⁻ (105). CIC-2 is also associated with the transmembrane glycoprotein, GlialCAM, in the brain, and GlialCAM can involve CIC-2 in the homeostasis of myelin, which is defective in leukodystrophy (106).

Regulation of CIC-2 by kinases. CIC-2 membrane abundance is increased by serum and glucocorticoid inducible kinases (SGKs) and decreased by NEDD4-2, an enzyme of the NEDD4 family (108). In rats, protein kinase A can directly phosphorylate CIC-2, whereas protein kinase C and Ca²⁺/calmodulin-dependent protein kinase II cannot (113). PIKfyve is a FYVE finger-containing phosphoinositide kinase (158) and is a potent stimulator of CIC-2-activity (112), which can contribute to the SGK1-dependent regulation of CIC-2 (112).

Janus kinase (JAK) 2 and JAK3 (tyrosine kinase) can downregulate the activation of CIC-2 and offset Cl⁻ exit (109,111), however, their functions and regulatory mechanism are different. JAK2 is involved in the signaling of leptin (159), growth hormones (160), erythropoietin, thrombopoietin, granulocyte colony-stimulating factor (161) and a variety of cytokines (161,162). JAK2 inhibitors can treat myeloproliferative disorders (163-170), and JAK2 can be activated by hyperosmotic shock (171,172). By contrast, JAK3 can promote proliferation and act against the apoptosis of lymphocytes and tumor cells (173-177). It is also present in acute megakaryocytic leukemia (178,179). Therefore, cell proliferation and apoptosis is associated with Cl⁻ channel activity (110). In addition, the substitution of lysine by alanine can inactivate JAK3 (180). In addition to JAK2 and JAK3, SPS1-related proline/alanine-rich kinase and oxidative stress-responsive kinase 1 can also downregulate CIC-2 (114).

Regulation of CIC-2 by transcription factors. The Sp1 and Sp3 transcription factors can control the rate of transcription of genetic information from DNA to messenger RNA (181,182). Reducing interactions between Sp1 or Sp3 and the CIC-2 promoter can lead to a postnatal decrease in the expression of CIC-2 in lung epithelia (116). In addition, the glycosylation of SP1 produces the 105-kd isoform of SP1 and is involved in regulating the expression of CIC-2 (115).

Regulation of CIC-2 by inhibitors. Previous studies have shown that CIC-2 is inhibited by methadone (117), gating modifier of anion channels 2 (GaTx2) (118), DIDS (119) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) (120). However, DASU-02, as an inhibitor of common chloride channels, cannot inhibit CIC-2 (117). The inhibitory effects on CIC-2 by these inhibitors are entirely different. Methadone can inhibit the activities of CIC-2, which shows that CIC-2 may be involved in chloride anion secretion (117). GaTx2, as a peptide toxin inhibitor of CIC-2, can inhibit channel activation gating, but not other chloride channels or voltage-gated potassium channels (118). DIDS can significantly reduce the increased mRNA and protein levels of CIC-2 following ischemia-hypoxia damage (119). NPPB, as a CIC inhibitor, can affect the phagocytosis of human trabecular meshwork cells, which shows that CIC-2 may be involved in the regulation of its phagocytic process (120).

Other factors in the functional regulation of CIC-2. According to previous studies, in addition to the above-mentioned regulatory mechanisms, scorpion venom (121), α₁-adrenoceptor (122), Plasmodium berghei (123), adenosine triphosphate (124,125), CIH₄ (137), GABA_R (40,126,128), permeant anions (138,139), membrane cholesterol (140) and β-cyclodextrin sensitive clusters (141) can also regulate or affect CIC-2. A peptide of scorpion venom can induce slower activation kinetics of CIC-2 (121). α₁-adrenoceptor activation can significantly reduce protein levels of CIC-2 in the villus and crypt epithelial cells from the acutely denervated jejunum, but not the innervated jejunum (122). The activation of CIC-2 is involved in the altered permeability caused by Plasmodium berghei infection in Plasmodium berghei-infected mouse CLCN2 (123). ATP not only decelerates CIC-2 common gating for sufficient electrical stability of neurons (124), it also alters its surface expression (125). Intra-/extra-cellular permeant anions can affect the Vm-dependence of CIC-2 (138). Specially, Cl⁻ as a permeant anion can increase pore occupancy, thus obstructing the closure of the protopore gate of CIC-2 (139). In addition, alterations in the (Cl⁻) between 10 and 200 mM can decelerate CIC-2 channel closing at a positive Vm (139). Membrane cholesterol can regulate the activation of CIC-2, and the increased activation of CIC-2 is involved in the relocalization of CIC-2 to detergent-soluble microdomains (140). β-cyclodextrin sensitive clusters with other molecules can maintain CIC-2 activity (141).

Previous studies have reported that CIH₄ encodes the Caenorhabditis elegans homologs of CIC-2 (129-131). CIH₄-dependent regulation not only alters the voltage dependence of CIC-2 channels and inhibits hereditary sensory neuropathy (HSN) excitability (137), but may also affect chloride influx (137) in Caenorhabditis elegans. However, the chloride efflux pathway of CIC-2 is associated with synaptic inhibition regulated by the GABA_R (40,126-128). In addition, the HSNs can release acetylcholine, serotonin and multiple neuropeptides (133-136), which excite the VC motor
neurons (132). These functions of HSNs may be associated with clh-3-dependent regulation and the voltage dependence of CIC-2 channels.

6. Diseases associated with CIC-2

Previous studies have shown that disruption and abnormality of CIC-2 can cause a number of diseases, including ophthalmological disease (11,183-185), otorhinolaryngological disease (186), disease of the reproductive system (11,187), disease of the respiratory system (188), disease of the digestive system (189-194), disease of the hematological system (195), genetic diseases (23,25,26,42,44,74,76,196-198), diseases of the nervous system (30,40,41,168,199-212) and metabolic diseases (213). The majority of studies have focused on diseases of the nervous system.

Ophthalmological and otorhinolaryngological disease associated with CIC-2. Severe degeneration of the retina occurs in CIC-2-knockout mice, although no other notable eye abnormalities are present (11). Possible reasons for degeneration of the retina caused by CIC-2-knockout include the following (11): i) CIC-2 disruption causes the death of photoreceptor cells; ii) depletion of CIC-2 may impair the transport and alter the ionic environment of photoreceptors. Other studies on ophthalmological diseases associated with CIC-2 include Sjögren's syndrome (183,184,214-218) and age-related cataracts (185).

Sjögren's syndrome is a chronic autoimmune disease, and previous studies have shown that eye diseases caused by Sjögren's syndrome are primarily through the destruction of lacrimal glands (LGs) (214), keratoconjunctivitis sicca (215). In addition, LG pathologic properties in Sjögren's syndrome appear in rabbits induced by autoimmune dacryoadenitis (216-218). Acini and interlobar ducts have the lowest mRNA abundance of CICγ2, and the intralobal duct has the highest (183,184), and alterations in CICγ2 may alter lacrimal secretion, particularly Cl transport (184). The causes of age-related cataracts include aging, inheritance, local nutritional disorders, immune and metabolic abnormalities, trauma, poisoning and radiation. According to a study by Ouyang (185), the expression level of CIC-2 is associated with the development of age-related cataracts.

Reports on otorhinolaryngological diseases associated with CIC-2 are limited, however, Li et al reported on the pathogenesis of nasal polyps. The study (186) showed that CIC-2 was not expressed in normal nasal mucosa, however, CIC-2 proteins were expressed in epithelial cells and sub-epithelial mucous glands in patients affected with nasal polyps. This suggested that CIC-2 is involved in the pathogenesis of nasal polyps.

Diseases of the digestive system associated with CIC-2. There have been several reports on diseases of digestive system associated with CIC-2, including constipation (18,26,189-193,221) and repair of impaired intestinal mucosa barrier (194).

CFTR is major chloride channel regulating chloride secretion in the small intestine (221), however, CIC-2 can also regulate chloride secretion (18,26). Hypotonicity can also activate chloride currents in the rat ileum (189). Several studies have reported that CIC-2 is expressed in the intestinal epithelium, in T84 human intestinal cells, rat intestinal tissue (3) and the murine duodenum (190). In addition, previous studies have shown that CIC-2 can regulate chloride secretion in rodent neonatal airways (26), and regulate gastric chloride secretion (18). However, another study (191) described contradictory findings, reporting that CIC-2 was not involved in Cl- secretion, but was involved in Cl- absorption in the distal colon. According to these studies, CIC-2 inhibitors may be used to treat constipation by decreasing NaCl and water absorption in the colon (191).

Irritable bowel syndrome (IBS) is characterized by chronic abdominal pain, discomfort and bloating associated with altered bowel habits, including diarrhea and/or constipation. Current therapy for constipation caused by IBS has side effects, including deterioration of the condition or electrolyte disturbances (192). Previous studies have shown that, in addition to the above-mentioned side effects, lubiprostone can also increase gut motility and frequency of stool passage, relieve abdominal pain and discomfort (192), stimulate chloride secretion and improve bowel function (193).

A previous study (194) by Chen et al reported that the activation of CIC-2 can activate tight junction proteins and repair impaired intestinal mucosa barrier. In addition, CIC-2 and tight junction proteins are involved in maintenance of the intestinal mucosal barrier, and acute biliary obstruction-induced destruction of the intestinal mucosa barrier is associated with CIC-2 in enterocytes (194).

Diseases of the hematological system associated with CIC-2. There have been few studies on diseases of the hematological...
system associated with CIC-2. A previous study reported the expression of swelling-and/or pH-regulated CIC-2 chloride channels in human leukemia (195). In addition, it was suggested that the molecular identification of chloride channels may provide a novel approach for the treatment of leukemia (195).

Genetic diseases associated with CIC-2. According to previous reports, there have been several studies on the association between CF and CIC-2 (3,11,23,25,26,68,70,196-198,222,223). Several studies have reported that CIC-2 may be an alternative pathway for chloride anion secretion in CF (3,11,23), and that CIC-2 is a potential target for therapy in CF (25,197). CF is a genetic disease, which primarily affects the lungs, in addition to the pancreas, liver, kidneys and intestine (222). CF is caused by mutations in the gene encoding CFTR, the only member of the ABC transporter family known to be a cAMP-activated chloride channel (223). CIC-2 is a candidate alternative chloride channel in respiratory epithelia (196). CIC-2 is also involved in lung morphogenesis (26,68), and can conduct chloride in mature respiratory epithelia (23,25,197). CIC-2 mRNA and protein are expressed in unaffected tissues in CF, which may make up for defects in the expression of CFTR (68).

However, another previous study (198) reported that CIC-2 is unlikely to be a candidate rescue channel in CF, as disruption of CIC-2 and CFTR channel genes did not cause morphological alterations in the intestine, lung or pancreas affected by CF; neither disrupted CIC-2 or CFTR reduced Cl⁻ secretion (198). In addition, two studies (70,196) refer to the importance of detecting modifications of CF by CIC-2, and underlined the importance of examining potential polymorphisms in subjects affected with CF and potential mutations in the coding region of CIC-2.

Diseases of the nervous system associated with CIC-2. There have been more studies on diseases of the nervous system associated with CIC-2, compared with other diseases associated with CIC-2. Studies on diseases of the nervous system associated with CIC-2 have predominantly focused on leukoencephalopathy (199-202,224) and epilepsy (30,40,203-212,225).

Leukoencephalopathy can refer specifically to any of the following diseases: Progressive multifocal leukoencephalopathy, toxic leukoencephalopathy, leukoencephalopathy with vanishing white matter, leukoencephalopathy with neuroaxonal spheroids, reversible posterior leukoencephalopathy syndrome, megalencephalic leukoencephalopathy with subcortical cysts (MLC) and hypertensive leukoencephalopathy. Among these, MLC is a rare type of leukodystrophy, which is characterized by macrocephaly emerging in the first years of life (224).

The disruption of CIC-2 can cause fluid accumulation resulting in myelin vacuolation in mice, similar to that observed in humans affected with MLC from mutations in MLC1 or GlialCAM. GlialCAM is a CIC-2 binding partner and the first auxiliary subunit of CIC-2 (199). According to a study by Jeworutzki et al (199), neither the stimulation of GlialCAM on CIC-2 currents, nor mislocalization of this Cl⁻ channel were found to damage glial Cl⁻ transport. Mutated GlialCAM in MLC can target CIC-2 to cell contacts in glia and activate its currents (200). A study by Jeworutzki et al (200) showed that GlialCAM can target the common gate deficient CIC-2 mutant, E211V/H816A, to cell contacts without altering its function. Another study suggested that CIC-2 is not important for MLC1 or GlialCAM localization in the brain (201), but that it is involved in the pathogenesis of MLC (201).

However, a separate study (202) reported different conclusions, as there was no evidence that the CLCN2 gene is associated with MLC. Despite not referring to the association between the CLCN2 gene and MLC, this study demonstrated that mice lacking the CIC-2 protein had white matter abnormalities with vacuole formation in myelin sheaths, similar to the intramyelinic vacuoles in MLC.

Epilepsy comprises a set of neurological diseases characterized by epileptic seizures, and a heterogeneous disorder characterized by recurrent unprovoked seizures, which affect ~1-3% of the population during their lifetime (225). CIC-2 mRNA and protein are found in neurons and astrocytes (30,40,203). In addition, CIC-2 protein is present at the end feet of astrocytes contacting blood vessels and neurons close to inhibitory synapses (30). Inwardly rectifying hyperpolarization-activated CIC-2-like currents are found in hippocampal pyramidal cells (40,127) and in astrocytes (204-207). In hippocampal pyramidal cells and astrocytes (208), CIC-2 may have different effects. In neurons, CIC-2 can prevent the accumulation of chloride anions above equilibrium due to the activation of CIC-2 by intracellular Cr (41,127). Under these conditions, GABA_A R activity may become excitatory (208). A previous study (208) reported that loss of function mutations of CIC-2 lead to increased excitability in certain neurons, and that hyperpolarization-activated chloride currents are detected in cortical astrocytes, but absent in tissues from CIC-2-null mice (207). Another study (211) showed that several CIC-2 sequence abnormalities previously found in patients affected with epilepsy are likely to represent innocuous polymorphisms, detected by sequencing of a large collection of human DNA and electrophysiological analysis.

Several other studies have reported that a susceptibility locus for idiopathic generalized epilepsy (IGE) is on chromosome 3q26 (the location of the CLCN2 gene) (209), and three mutations on CIC-2 cosegregated with IGE with autosomal dominant inheritance (210) have been identified.

In addition to the above-mentioned studies on the association between epilepsy and CIC-2, an association between temporal lobe epilepsy (TLE) and CIC-2 has been reported. TLE with spontaneous recurrent attacks, and learning and memory disabilities, is associated with neurodegeneration, abnormal reorganization of the circuitry and loss of functional suppression in hippocampus (212). A study by Ge et al reported that CIC-2 contributes towards tonic inhibition, modulated by α5 subunit-containing GABA_A Rs in the CA1 area (212).

Metabolic diseases associated with CIC-2. Few studies on metabolic diseases associated with CIC-2 have been performed, however, a study on diabetes mellitus was found. Diabetes mellitus is a metabolic disease, which generally causes chronic delayed wound healing. In a study by Pan et al (213), a high glucose concentration inhibited keratinocyte migration by downregulating CIC-2, suggesting CIC-2 may be important during delayed wound healing processes. In addition, the study reported that CIC-2 is an important
modulator of cell migration in keratinocytes, although it did not discuss how CIC-2 is involved in keratinocyte migration.

7. Conclusion

With the continuous progress in experimental and clinical studies on the CIC family, it is clear that the activation of CIC-2 occurs via hyperpolarization (3,9), cell swelling (2,9), extracellular hypotonicity (2) and extracellular acidification (9,10), and that the expression of CIC-2 is ubiquitous (3,11) in uterine bud cells (12), the intestine (13-17), gastric parietal cells (18,19), the liver (20), the lungs (21-25), rat retina (27), parotid acinar cells (28), guinea pig cardiac muscle (29), neuronal cells (30), rat and human airways (17), bovine trabecular meshwork (31), human trabecular meshwork (32,33) and rat trabecular meshwork (34). Although there has been progress in understanding the CLCN2 gene, the molecular structure of the CIC-2 protein, the structure of CIC-2 chloride channels, and the functional properties and mechanisms regulating CIC-2, they remain to be fully elucidated and there have been contradictions in previous studies (226). According to previous studies, it is known that the disruption of CIC-2 can lead to several diseases. Although CIC-2 is associated with the pathogenesis of several diseases, the association between pathogenesis and CIC-2 remains to be fully elucidated.

At present, >6,500 types of genetic disease have been identified, among which ~3,000 are caused by a single gene defect. In this review, the mechanisms underlying the association between the CLCN2 gene and diseases, including azoosperma and IGE, were discussed. In the future, investigations focused on the determination of the CLCN2 gene may identify novel activators and inhibitors, is required in future investigations to fully elucidate.

As described above, CIC-2 can be regulated by hormones, drugs and scorpion venom. Certain hormones in humans are involved in the opening of ClC-2 chloride channel by voltage and cell volume. Am J Physiol 274: C500-C512, 1998.

Bi MM, Hong S, Zhou HY, Wang HW, Wang LN and Zheng YJ: Chloride channelopathies of CIC-2. Int J Mol Sci 15: 218-249, 2013.

Middleton RE, Pheasant DJ and Miller C: Homodimeric architecture of a CIC-type chloride ion channel. Nature 383: 337-340, 1996.

Hsiao SH, Parrish AR, Nahm SS, Abbott LC, McCool BA and Frye GD: Effects of early postnatal ethanol intubation on GABAergic synaptic proteins. Brain Res Dev Brain Res 138: 177-185, 2002.

Zúñiga L, Niemeyer MI, Varela D, Catalán M, Cid LP and Sepulveda FV: The voltage-dependent CIC-2 chloride channel has a dual gating mechanism. J Physiol 555: 671-682, 2004.

Jentsch TJ, Stein V, Weinreich F and Zdebik AA: Molecular structure and physiological function of chloride channels. Physiol Rev 82: 503-568, 2002.

Jordt SE and Jentsch TJ: Molecular dissection of gating in the CIC-2 chloride channel. EMBO J 16: 1582-1592, 1997.

Bösler MR, Stein V, Hübner C, Zdebik AA, Jordt SE, Mukhophadhyay AK, Davidoff MS, Holstein AF and Jentsch TJ: Male germ cells and photoreceptors, both depending on close cell-cell interactions, degenerate upon CIC-2 Cl(-) channel disruption. EMBO J 20: 1299-1309, 2001.

Huber S, Braun G, Schröppel B and Horster M: Chloride channels CIC-2 and ICln mRNA expression differs in renal epithelial ontogeny. Kidney Int Suppl 67: S149-S151, 1998.

GyőröNEY K, Yeger H, Ackerley C, Garami E and Bear CE: Expression of the chloride channel CIC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol 279: C1787-C1794, 2000.

Bali M, Lipeczka J, Edelmann A and Fritsch J: Regulation of CIC-2 chloride channels in T84 cells by TGF-alpha. Am J Physiol Cell Physiol 282: C805-C817, 2002.

Mohammad-Panah R, Gyöörény K, Rommens J, Choudhury M, Li C, Wang Y and Bear CE: CIC-2 contributes to native chloride secretion by a human intestinal cell line, Caco-2. J Biol Chem 276: 8306-8313, 2001.

Catalán M, Cornejo I, Figueroa CD, Niemeyer M1, Sepúlveda FV and Cid LP: CIC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization. Am J Physiol Gastrointest Liver Physiol 283: G1004-G1013, 2002.

Lipeczka J, Bali M, Thomas A, Fanen P, Edelmann A and Fritsch J: Distribution of CIC-2 chloride channel in rat and human epithelial tissues. Am J Physiol Cell Physiol 282: C805-C816, 2002.

Malinowska DH, Kupert EY, Bahninski A, Sherry AM and Cudplolet JCloning: Functional expression, and characterization of a PKA-activated gastric Cl(-) channel. Am J Physiol 268: C191-C200, 1995.

Sherry AM, Malinowska DH, Morris RE, Ciraolo GM and Cudplolet J: Localization of CIC-2 Cl(-) channels in rabbit gastric mucosa. Am J Physiol Cell Physiol 280: C1599-C1606, 2001.

Romm RM, Smith RL, Feranesh A, Clayton GH, Doctor RB and Fitz JC: CIC-2 chloride channels contribute to HTC cell volume homeostasis. Am J Physiol Gastrointest Liver Physiol 280: G344-G353, 2001.

Cid LP, Montrose-Rafizadeh C, Smith DJ, Guggino WB and Cutting GR: Cloning of a putative human voltage-gated chloride channel (CIC-2) DNA widely expressed in human tissues. Hum Mol Genet 4: 407-413, 1995.
22. Sherry AM, Striffektka K, Knapp LM, Kupet EY, Cuppoletti J and Malinowska DH: Characterization of the human pH- and PKA-activated CIC-2G(2a) alpha C-l channel. Am J Physiol 273: C598-C607, 1997.

23. Schwiebert EM, Cid-Soto LP, Stafford D, Carter M, Blaisdel CJ, Zeitlin PL, Guggino WB and Cutting GR: Analysis of CIC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells. Proc Natl Acad Sci USA 95: 3879-3884, 1998.

24. Blaisdel CJ, Edmonds RD, Wang XT, Guggino S and Zeitlin PL: pH-regulated chloride secretion in fetal lung epithelia. Am J Physiol Lung Cell Mol Physiol 278: L1248-L1255, 2000.

25. Cuppoletti J, Tewari KP, Sherry AM, Kupet EY and Malinowska DH: CIC-2 C-l channels in human lung epithelia: Activation by low pH, acidic amide, and acid-activated omeprazole. Am J Physiol Cell Physiol 282: C46-C54, 2001.

26. Murray CB, Morales MM, Flotte TR, McGrath-Morrow SA, Guggino WB and Zeitlin PL: CIC-2: A developmentally dependent chloride channel expressed in the fetal lung and downregulated after birth. Am J Respir Cell Mol Biol 12: 597-604, 1995.

27. Enz R, Ross BJ and Cutting GR: Expression of the voltage-gated chloride channel CIC-2 in rod bipolar cells of the rat retina. J Neurosci 19: 9841-9847, 1999.

28. Park K, Arreola J, Begenisich T and Melvin JE: Comparison of voltage-gated CIC-2 alpha C-l channels in rat parotid acinar cells with CIC-2 in a mammalian expression system. J Membr Biol 163: 87-95, 1998.

29. Britton FC, Hatton WJ, Rossow CF, Duan D, Hume JR and Horowitz B: Molecular distribution of volume-regulated chloride channels (CIC-2 and CIC-3) in cardiac tissues. Am J Physiol Heart Circ Physiol 279: H2225-H2233, 2000.

30. Sik A, Smith RL and Freund TF: Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus. Neuroscience 101: 51-65, 2000.

31. Srinivas SP, Maertens C, Goon LH, Goon L, Salpaty M, Yue BY, Droogmans G and Nilius B: Cell volume response to hyposmotic shock and elevated cAMP in bovine trabecular meshwork cells. Exp Eye Res 78: 15-26, 2004.

32. Comes N, Gasull X, Gual A and Borràs T: Differential expression of the human chloride channel genes in the trabecular meshwork under stress conditions. Exp Eye Res 80: 801-813, 2005.

33. Liang W and Zheng YJ: Effect of chloride channel inhibitor in phagocytic process of human trabecular meshwork cells. Chin J Gerontol 30: 597-604, 2010.

34. Wang JX, Wang SM and Liu HY: Expression of CIC-2 Chloride channels in rat trabecular meshwork. Chin J Biologicals 23: 274-276, 2010.

35. Xiong H, Li C, Garami E, Wang Y, Ramjesingh M, Gailey K and Bear CE: CIC-2 activation modulates regulatory volume decrease. J Gen Physiol 128: 219-221, 2001.

36. Worrell RT, Butt AG, Cliff WH and Frizzell RA: A polarization-activated Cl(-) current in salivary acinar cells of a mouse submandibular gland. J Physiol 490: 351-362, 1996.

37. Solc CK and Wine JF: Swelling-induced and depolarization-induced Cl-channels in normal and cystic fibrosis epithelial cells. Am J Physiol 261: C658-C674, 1991.

38. Jackson PS and Strange K: Single-channel properties of a voltage-sensitive CIC-2 alpha C-l channel at low pH in the epithelium of the human ClC-2 chloride channel gene generate ClC-2-type Cl(-) channels. Mol Membr Biol 23: 149-156, 2006.

39. Qu C, Liang F, Smythe NM and Schulte BA: Identification of CIC-2 and CIC-K2 chloride channels in cultured rat type IV spinal ligament fibrocytes. J Assoc Res Otolaryngol 9: 205-219, 2007.

40. Fritsch J and Edelman A: Modulation of the hyperpolarization-activated Cl(-)-current in human intestinal T84 epithelial cells by phosphorylation. J Physiol 490: 115-128, 1996.

41. Flores CA, Niemeyer MI, Sepulveda FV and Cid LP: Two splice variants derived from a Drosophila melanogaster candidate CIC gene generate CIC-2-type C-l channels. Mol Membr Biol 23: 149-156, 2006.

42. Scriver CR, Beaudet AL, Sly WS and Valle D: The metabolic basis of inherited disease: A multifacial approach. McGraw-Hill, New York, 1989.

43. Williams DR: Chloride channels. Semin Cell Biol 7: 597-604, 1996.
Biol of swelling-induced chloride channels in lymphocytes

G proteins in bovine endothelium by protein tyrosine phosphorylation and

Voets T, Manolopoulos V, Eggermont J, Ellory C, Droogmans G

in osmoregulation of ionic conductances

Tilly BC, van den Berghe N, Tertoolen LG, Edixhoven MJ

channel: Fresh start to the molecular identity and volume sensor.

Okada Y: Volume expansion-sensing outward-rectifier Cl-

Villaz M, Cinniger JC and Moody WJ: A voltage-gated chloride

conductance in Giardia lamblia trophozoites possesses func

Moreno-Galindo EG, Rodríguez-Elías JC, Ramírez-Herrera MA,

Hawrelak J: Giardiasis: Pathophysiology and management.

Gastrointest Liver Physiol 280: G1-G6, 2001.

variants of a ClC-2 chloride channel with differing functional

Nat Neurosci 13: 1047-

fast-spiking basket cell synapses by the chloride channel ClC-2.

acidosis. Am J Physiol Heart Circ Physiol 283: H412-H422,

Komukai K, Brette F, Pascarel C and Orchard CH:

response of rat atrial myocytes to acidosis. Am J Physiol Heart

Cardiol 47: 121-

channels in cardiac sinoatrial nodal pacemaker cells. Mol Cell

Chem 5336

Lang F: Ion channel activity of ClC-2 is modified by the

Ahmed N, Ramjeesingh M, Wong S, Varga A, Garami E and

Furukawa T, Ogura T, Zheng YJ, Tsuchiya H, Nakaya H,

Bear CE: Chloride channel activity of ClC‑2 is modified by the

Ahmed N, Ramjeesingh M, Wong S, Varga A, Garami E and

Syed A, Benya RV and Rao MC: Lubiprostone activates Cl-

transmembrane conductance regulator. Gastroenterology 137:

976-985, 2009.

Ao M, Venkatasubramanian J, Boonkaewwan C, Ganasan N,

Syed A, Benya RV and Rao MC: Lubiprostone activates Cl-

channel via cAMP signaling and increases membrane CFTR

in the human colon carcinoma cell line, T84. Dig Dis Sci 56:

339-351, 2011.

Norimatsu Y, Moran AR and MacDonald KD: Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP4). Biochem Biophys Res Commun 426: 374-379, 2012.

Jin Y, Priden TA and Blisklager AT: Pharmaceutical activation or genetic absence of ClC-2 alters tight junctions during experimental colitis. Inflamm Bowel Dis 21: 2747-2757, 2015.

Qiu SB, Liang Y and Liu P: Effect of ClC-2/CIC-3 CFTR expression in rats affected with the myocardial ischemia reperfusion injury by Chinese native medicine compound Guangxin kang, Chin J Integrative Med Cardio-Cerebrovascular Dis 11: 1482-1485, 2013.

Dhani SU, Mohammad-Panah R, Ahmed N, Ackerley C, Ramjeesingh M and Bear CE: Evidence for a functional interac-

channel between the ClC-2 and Syntaxin 1A Q242L motor dynein complex. J Biol Chem 278: 16262-16270, 2003.

Furukawa T, Ogura T, Zheng YJ, Nakaya H, Katayama Y and Inagi NK: Phosphorylation and functional regulation of ClC-2 chloride channels expressed in Xenopus oocytes by M cyclin-dependent protein kinase. J Physiol 540: 883-893, 2002.

Zeng YJ, Furukawa T, Ogura T, Tajimi K and Inagaki NM: M phase-specific expression and phosphorylation-dependent ubiquitination of the ClC-2 channel. J Biol Chem 277: 32268-32273, 2002.

Ahmed N, Ramjeesingh M, Wong S, Varga A, Garami E and Bear CE: Chloride channel activity is modulated by the actin cytoskeleton. Biochem J 352: 789-794, 2000.

Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, actin cytoskeleton. Biochem J 352: 789-794, 2000.

Bear CE: Chloride channel activity of ClC‑2 is modified by the

Ahmed N, Ramjeesingh M, Wong S, Varga A, Garami E and

Syed A, Benya RV and Rao MC: Lubiprostone activates Cl-

transmembrane conductance regulator. Gastroenterology 137:

976-985, 2009.

Ao M, Venkatasubramanian J, Boonkaewwan C, Ganasan N,

Syed A, Benya RV and Rao MC: Lubiprostone activates Cl-

channel via cAMP signaling and increases membrane CFTR

in the human colon carcinoma cell line, T84. Dig Dis Sci 56:

339-351, 2011.

Norimatsu Y, Moran AR and MacDonald KD: Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP4). Biochem Biophys Res Commun 426: 374-379, 2012.

Jin Y, Priden TA and Blisklager AT: Pharmaceutical activation or genetic absence of ClC-2 alters tight junctions during experimental colitis. Inflamm Bowel Dis 21: 2747-2757, 2015.

Qiu SB, Liang Y and Liu P: Effect of ClC-2/CIC-3 CFTR expression in rats affected with the myocardial ischemia reperfusion injury by Chinese native medicine compound Guangxin kang, Chin J Integrative Med Cardio-Cerebrovascular Dis 11: 1482-1485, 2013.

Dhani SU, Mohammad-Panah R, Ahmed N, Ackerley C, Ramjeesingh M and Bear CE: Evidence for a functional interac-

channel between the ClC-2 and Syntaxin 1A Q242L motor dynein complex. J Biol Chem 278: 16262-16270, 2003.

Furukawa T, Ogura T, Zheng YJ, Nakaya H, Katayama Y and Inagi NK: Phosphorylation and functional regulation of ClC-2 chloride channels expressed in Xenopus oocytes by M cyclin-dependent protein kinase. J Physiol 540: 883-893, 2002.

Zeng YJ, Furukawa T, Ogura T, Tajimi K and Inagaki NM: M phase-specific expression and phosphorylation-dependent ubiquitination of the ClC-2 channel. J Biol Chem 277: 32268-32273, 2002.

Ahmed N, Ramjeesingh M, Wong S, Varga A, Garami E and Bear CE: Chloride channel activity is modulated by the actin cytoskeleton. Biochem J 352: 789-794, 2000.

Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, actin cytoskeleton. Biochem J 352: 789-794, 2000.

Bear CE: Chloride channel activity of ClC‑2 is modified by the

Ahmed N, Ramjeesingh M, Wong S, Varga A, Garami E and

Syed A, Benya RV and Rao MC: Lubiprostone activates Cl-

transmembrane conductance regulator. Gastroenterology 137:

976-985, 2009.

Ao M, Venkatasubramanian J, Boonkaewwan C, Ganasan N,

Syed A, Benya RV and Rao MC: Lubiprostone activates Cl-

channel via cAMP signaling and increases membrane CFTR

in the human colon carcinoma cell line, T84. Dig Dis Sci 56:

339-351, 2011.

Norimatsu Y, Moran AR and MacDonald KD: Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP4). Biochem Biophys Res Commun 426: 374-379, 2012.

Jin Y, Priden TA and Blisklager AT: Pharmaceutical activation or genetic absence of ClC-2 alters tight junctions during experimental colitis. Inflamm Bowel Dis 21: 2747-2757, 2015.

Qiu SB, Liang Y and Liu P: Effect of ClC-2/CIC-3 CFTR expression in rats affected with the myocardial ischemia reperfusion injury by Chinese native medicine compound Guangxin kang, Chin J Integrative Med Cardio-Cerebrovascular Dis 11: 1482-1485, 2013.

Dhani SU, Mohammad-Panah R, Ahmed N, Ackerley C, Ramjeesingh M and Bear CE: Evidence for a functional interac-

channel between the ClC-2 and Syntaxin 1A Q242L motor dynein complex. J Biol Chem 278: 16262-16270, 2003.

Furukawa T, Ogura T, Zheng YJ, Nakaya H, Katayama Y and Inagi NK: Phosphorylation and functional regulation of ClC-2 chloride channels expressed in Xenopus oocytes by M cyclin-dependent protein kinase. J Physiol 540: 883-893, 2002.
110. Lang F, Föller M, Lang K, Lang P, Ritter M, Vereninov A, Szabo I, Huber SM and Gublins E: Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol. 408: 209-225, 2005.

111. Warsi J, Elvira B, Hosseinizadeh Z, Shumilina E and Lang F: Downregulation of chloride channel CIC-2 by Janus kinase 3. J Membr Biol 247: 387-393, 2014.

112. Klaus F, Lauffer J, Czarkowski K, Strutz-Seebohm N, Seebohm G and Lang F: PI3Kα-independent regulation of the Cl- channel CIC-2. Bioessays 33: 407-411, 2011.

113. Park K, Begensisch T and Melvin JE: Protein kinase A activation phosphorylates the rat CIC-2 Cl- channel but does not change activity. J Membr Biol 182: 31-37, 2001.

114. Warsi J, Hosseinizadeh Z, Elvira B, Bissinger R, Shumilina E and Lang F: Regulation of CIC-2 activity by SPAK and OSRI. Kidney Blood Press Res 39: 378-387, 2014.

115. Vij N and Zeitlin PL: Regulation of the CIC-2 lung epithelial chloride channel by glycosylation of SP1. Am J Respir Cell Mol Biol 34: 754-759, 2006.

116. Holmes KW, Hales R, Chu S, Maxwell MJ, Mogayzel PJ Jr and Zeitlin PL: Modulation of Sp1 and Sp3 in lung epithelial cells regulates CIC-2 chloride channel expression. Am J Respir Cell Mol Biol 29: 499-505, 2003.

117. Cuppoletti J, Chakrabarti J, Tewari KP and Malinowska DH: Differentiation between human CIC-2 and CFTR Cl- channels with cholera toxin chemically agents. Am J Physiol Cell Physiol 307: C479-C492, 2014.

118. Thompson CH, Olivetti PR, Fuller MD, Freeman CS, McMaster D, French RJ, Pohl J, Kubeanek J and McCarty NA: Isolation and characterization of a high affinity peptide inhibitor of CIC-2 chloride channels. J Biol Chem 284: 26051-26062, 2009.

119. Zhao B, Quan H, Ma T, Tian Y, Cai Q and Li H: 4,4'-Disothiocyanostilbene-2,2'-disulfonic Acid (DIDS) ameliorates ischemia-hypoxia-induced white matter damage in neonatal rats through inhibition of the voltage-gated chloride channel CIC-2. Int J Mol Sci 16: 10457-10469, 2015.

120. Liang W and Zheng YJ: Effect of interfered ClC-2 gene expression on cell cycle of human trabecular mesh work cells. Chin J Ophthalmol 47: C479-C492, 2014.

121. Dhani SU, Kim Chiaw P, Huan LJ and Bear CE: ATP depletion inhibits the endocytosis of ClC-2 chloride channels. J Biol Chem 284: 26051-26062, 2009.

122. Baglole CJ, Sigalet DL and Meddings JB: Alpha1-adrenoceptors down-regulate CIC-2 chloride channels in epithelial cells from the acutely denervated jejunum. Eur J Pharmacol 565: 202-280, 2007.

123. Nathoo AN, Moeller RA, Westlund BA and Hart AC: Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 98: 14000-14005, 2001.

124. Kim K and Li C: Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neuro 475: 540-550, 2004.

125. Branicky R, Miyazaki H, Strange K and Schaffer WR: The voltage-gated anion channels encoded by clh-3 regulate egg laying in C. elegans by modulating motor neuron excitability. J Neurosci 34: 764-775, 2014.

126. Niemeyer MI, Cid LP, Yusel YR, Briones R and Sepulveda FV: Voltage-dependent and -independent titration of specific residues accounts for complex behaviour of a CIC chloride by extracellular protons. J Physiol 587: 1387-1400, 2009.

127. Sánchez-Rodríguez JE, De Santiago-Castillo JA and Arreola J: Permeant anions contribute to voltage dependence of CIC-2 chloride channel by interacting with the protopore gate. J Physiol 588: 2545-2556, 2010.

128. Hinzpeter A, Fritsch J, Borot F, Trudel S, Vieul DL, Brouillard F, Baudouin-Legros M, Clain J, Edelman A and Ollero M: Membrane cholesterol content modulates CIC-2 gating and sensitivity to oxidative stress. J Biol Chem 282: 2423-2432, 2007.

129. Conjeo I, Niemeyer ML, Züñiga L, Yusel YR, Sepulveda FV and Cid LP: Rapid recycling of CIC-2 chloride channels between plasma membrane and endosomes: Role of a tyrosine endocytosis motif in surface retrieval. J Cell Physiol 221: 650-657, 2009.

130. Light DB, Schwiebert EM, Karlson KH and Stanton BA: Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science 243: 393-395, 1999.

131. Maslalami S, Kim GH, Mitchell C, Wade JB and Knepper MA: Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit protein targets in rat kidney. J Clin Invest 104: R19-R23, 1999.

132. Ewart HS and Klip A: Hormonal regulation of the Na(+)(+)-K(+)(+)ATPase: Mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol 269: C295-C311, 1995.

133. Weir RP, Briggs E, Mack A, Naismith L, Taylor L and Wilson E: The effect of estradiol on urodilatin production in postmenopausal women. Arch Gynecol Obstet 262: 65-68, 1998.

134. Seeger H, Armbruster FP, Mueck AO and Lippert TH: The microgram oestrogen dose: A self-regulating feed-forward circuit controlling C. Elegans egg-laying behavior. Curr Biol 18: 1443-1453, 2013.

135. Nathoo AN, Moeller RA, Westlund BA and Hart AC: Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 98: 14000-14005, 2001.

136. Kim and Li C: Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neuro 475: 540-550, 2004.

137. Branicky R, Miyazaki H, Strange K and Schaffer WR: The voltage-gated anion channels encoded by clh-3 regulate egg laying in C. elegans by modulating motor neuron excitability. J Neurosci 34: 764-775, 2014.
suppresses pre-B-cell leukemogenesis through inhibition of Jak3 activity. Br J Haematol 148: 132-143, 2009.

157. Walters DK, Mercher T, Gu TL, O'Hare T, Tyner JW, Loriaux M, Goss VL, Lee KA, Eide CA, Wong MJ, et al: Activating alleles of Jak3 in acute megakaryoblastic leukemia. Cancer Cell 10: 65-75, 2006.

158. Malinge S, Ragu C, Della-Valle V, Pisani D, Constantinescu SN, Penit C, Villeval JL, Reinhardt D, Landman-Parker J, Michaux L, et al: Activating mutations in human acute mega-

karyoblastic leukemia. Blood 112: 4220-4226, 2008.

159. Huan C, Rolfing C, Raufl F, Kapp M, Drückes P, Thomas G, Behrmann I and Zerwes HG: Jak1 has a dominant role over Jak3 in signal transduction through βγ-containing cytokine receptors. Chem Biol 18: 314-323, 2011.

160. Karin M: Too many transcription factors: Positive and negative interactions. New Biol 2: 126-131, 1990.

161. Latchman DS: Transcription factors: An overview. Int J Biochem Cell Biology 29: 1305-1312, 1997.

162. Nandoskar P, Wang Y, Wei R, Liu Y, Zhao P, Lu M, Huang J, Thomas P, Trousdale MD and Ding C: Changes of chloride channels in the lacrimal glands of a rabbit model of Sjögren syndrome. Cornea 31: 273-279, 2012.

163. Ding C, Parsa L, Nandoskar P, Zhao P, Wu K and Wang Y: Duct system of the rabbit lacrimal gland: Structural characteristics and role in lacrimal secretion. Invest Ophthalmol Vis Sci 51: 2960-2967, 2010.

164. Ouyang WB: Correlation between CIC-2-chloride channel and age related cataract Master's thesis. Dalian Med Univ Dalian, 2013.

165. Li HB, Han DM, Zhang R and Liu ZY: Expressions of chloride channel CIC-2 and CIC-3 in human nasal polyps. J Clin Otorhinolaryngol 17: 266-277, 2003.

166. Edwards MM, Marin de Esviskova C, Collin GB, Gifford E, Wu J, Hicks WL, Whiting C, Varvel NH, Maphis N, Lamb BT, et al: Phoretceptor degeneration, azoospermia, leukoencephalopathy, and abnormal RPE cellfunction in mice expressing an early stop mutation in CLCN2. Invest Ophthalmol Vis Sci 51: 3264-3272, 2010.

167. Xu ZN, Zheng XY, Zhao W, Xin H and Han ZG: Expression and significance of chloride channel CIC-2 in nonsmall-cell lung cancer. Chin J Lab Diagn 16: 60-62, 2012.

168. Diener M, Bertog M, Fromm M and Scharrer E: Segmental heterogeneity of swallowing-induced Cl- transport in rat small intestine. Pflugers Arch 457: 300-306, 2007.

169. Joos NS, Clarke LL, Han BH, Forte LR and Kim HD: Cloning of CIC-2-chloride channel from murine duodenum and its presence in CFTR knockout mice. Biochim Biophys Acta 1446: 431-437, 1999.

170. Catalán MA, Flores CA, González-Begne M, Zhang Y, Sepúlveda FV and Melvin JE: Severe defects in absorptive ion transport in distal colons of mice that lack CIC-2 channels. Gastroenterology 135: 1050-1054, 2008.

171. Lacy BE and Chey WD: Lilibiprostone: Chronic constipation and irritable bowel syndrome with constipation. Expert Opin Pharmacother 10: 143-152, 2009.

172. Crowell MD, Harris LA, DiBaise JK and Olden KW: Activation of type-2 chloride channels: A novel therapeutic target for the treatment of chronic constipation. Curr Opin Investig Drugs 8: 66-70, 2007.

173. Chen ZY, Wang YG, Yang P, Huang WG, Zhou YS and Feng XS: Relationship between CIC-2 and intestinal mucosal barrier in rats with obstructive jaundice. World Chin J Digestol 19: 22962-22968, 1998.

174. Barbi U, Peroni N, Zappavigna A, Vannuccini V M, Massaggia F, Cervantes F, Barbui T and Trefzer A: JAK inhibitor therapy for myelofibrosis: Critical assessment of value and limitations. Leukemia 25: 300-306, 2010.

175. Lacy BE and Levy LC: Lubiprostone: A chloride channel activator, for the treatment of constipation. Expert Opin Chem Biol 36: 107-109, 2010.

176. Diener M, Bertog M, Fromm M and Scharrer E: Segmental heterogeneity of swallowing-induced Cl- transport in rat small intestine. Pflugers Arch 457: 300-306, 2007.
Neuroscience

GABA

utes to tonic inhibition mediated by Ge YX, Liu Y, Tang HY, Liu XG and Wang X: ClC-2 contrib

ucts are associated with idiopathic generalized epilepsies. Physiol Genomics 19: 74-

Zara F, Luna D, Bulteau C, Kaminska A, Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A, et al.: Identification of the cystic fibrosis gene ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiol Genomics 19: 74-83, 2004.

Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A, Zara F, Luna D, Bulteau C, Kaminska A, et al.: Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 9: 7493-7501, 2000.

Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A, Zara F, Luna D, Bulteau C, Kaminska A, et al.: Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 9: 7493-7501, 2000.

Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A, Zara F, Luna D, Bulteau C, Kaminska A, et al.: Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 9: 7493-7501, 2000.