Propagation of longitudinal Pochhammer – Chree waves in cylindrical piles

To cite this article: Alla Ilyashenko and Sergey Kuznetsov 2018 IOP Conf. Ser.: Mater. Sci. Eng. 365 042014

View the article online for updates and enhancements.

You may also like

- Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modeled with Pochhammer-Chree equation
 Aly R Seadawy, S U Rehman, M Younis et al.

- GG-functions and their relation to general hypergeometric functions
 I M Gel’fand and M I Graev

- Evidence of higher Pochhammer-Chree modes in an unsplit Hopkinson bar
 C K B Lee, R C Crawford, K A Marin et al.
Propagation of longitudinal Pochhammer – Chree waves in cylindrical piles

Alla Ilyashenko¹ and Sergey Kuznetsov²

¹Moscow State University of Civil Engineering, Yaroslavskoe shosse, 26, Moscow, 129337, Russia
²Institute for Problems in Mechanics, Moscow, 119526, Russia
E-mail: avi_56@mail.ru

Abstract. The exact solutions of the linear Pochhammer – Chree equation for propagating harmonic waves in cylindrical piles, are analysed and reviewed emphasizing the role of both propagating and non-propagating wave modes. The notion of limiting wave velocities for the Pochhammer – Chree waves is discussed. Spectral analysis of the matrix dispersion equation for longitudinal axially symmetric modes of the Pochhammer – Chree waves is performed, revealing existence of the non-propagating mode at the phase velocity coinciding with the c_2 shear wave velocity. Analytical expressions for displacement fields are derived for both interior and exterior domains.

1. Introduction

The equation for propagating harmonic waves in a cylindrical rod, now known as the Pochhammer – Chree equation, was for the first time derived in [1 – 3]. However, the corresponding solutions binding the phase or group speed with frequency remained unexplored until mid of the last century, when the first branches of the dispersion curves were obtained numerically in [4 – 22]. In [4 – 20] longitudinal axially symmetric modes were explored, and in [21, 22] flexural and torsional modes were also considered. According to [16] the axially symmetric longitudinal modes are denoted by $L(0,m)$, where m is the mode number.

In [4 – 6] by asymptotic methods were obtained analytical formulas for both short-wave $c_{1,\text{lim}}$ and long-wave $c_{2,\text{lim}}$ limits for the phase speed for the lowest (fundamental) branch of the longitudinal axially symmetric modes. Following [6] (see also [15]), the short-wave limit speed $c_{1,\text{lim}}$ at $\omega \to \infty$

$$c_{1,\text{lim}} = c_R$$

(1.1)

coincides with Rayleigh wave speed c_R, while the long-wave limit speed $c_{2,\text{lim}}$ yields [15]

$$c_{2,\text{lim}} = \sqrt{\frac{E}{\rho}}$$

(1.2)

where E is Young’s modulus, and ρ is the material density. In [6, 15] the long-wave limit $c_{2,\text{lim}}$ was named as the “rod” wave speed.
Dispersive curves related to higher axially symmetric modes were studied in [4 – 20]. In [8] the first several roots of the dispersion equation were (numerically) obtained and it was revealed that some of the roots were complex relating to attenuating modes. Besides dispersion curves, variation of the displacement magnitudes along radius of the rod for the first three \(L(0,m) \) modes at fixed Poisson’s ratio \(\nu = 0.3317 \) was analyzed in [19].

One of the interesting peculiarities of propagating \(L(0,m) \), \(m > 1 \) modes at \(\gamma \rightarrow 0 \), where \(\gamma = 2\pi / \lambda, \lambda \) is the wavelength, corresponds to the zero slope of the dimensionless frequency \(\Omega \) [15]:

\[
\lim_{\gamma \to 0} \frac{\partial \Omega}{\partial \gamma} = 0. \tag{1.3}
\]

In (1.3) \(\Omega = \omega R / c_2 \) with \(\omega \) being circular frequency, \(R \) is radius of the rod cross section, and \(c_2 \) speed of the bulk shear wave. Actually, condition (1.3) means presence of the horizontal asymptote in the dispersion relation \(\omega(c) \) at the phase speed \(c \to \infty \) for higher longitudinal axially symmetric modes. Resemblance with the dispersion curves at \(c \to \infty \) for higher modes of Lamb waves can be observed, see [23].

Extensions of the Pochhammer – Chree waves to helical waves (longitudinal axially symmetric modes) that relate to non-integer coefficients at the angle coordinate in the corresponding potentials, were analysed in [24 – 26].

2. Principle equations

Equation of motion for an isotropic medium at absence of body forces can be represented in a form

\[
c_1^2 \nabla \text{div} \mathbf{u} - c_2^2 \nabla \text{rot} \nabla \mathbf{u} = c_n^2 \mathbf{u}, \tag{2.1}
\]

where \(\mathbf{u} \) is the displacement field, \(c_1, c_2 \) are speeds of bulk longitudinal and shear waves respectively, and

\[
c_1 = \sqrt{\frac{\nu + 2}{\rho}}, \quad c_2 = \sqrt{\frac{\mu}{\rho}}. \tag{2.2}
\]

In (2.2) \(\nu, \mu \) are Lame’s constants, and \(\rho \) is a material density.

Helmholtz representation for the displacement field \(\mathbf{u} \) yields

\[
\mathbf{u} = \nabla \Phi + \text{rot} \mathbf{\Psi}, \tag{2.3}
\]

where \(\Phi \) and \(\mathbf{\Psi} \) are scalar and vector potentials respectively. In cylindrical coordinates representation (2.3) for the physical components of the displacement field, becomes

\[
\begin{align*}
\mathbf{u}_r &= \frac{\partial \Phi}{\partial r} + \frac{1}{r} \frac{\partial \Psi_r}{\partial \theta} - \frac{\partial \Psi_\theta}{\partial z}, \\
\mathbf{u}_\theta &= \frac{1}{r} \frac{\partial \Phi}{\partial \theta} + \frac{\partial \Psi_\theta}{\partial r} - \frac{\partial \Psi_z}{\partial \theta}, \\
\mathbf{u}_z &= \frac{\partial \Phi}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \Psi_\theta \right) - \frac{1}{r} \frac{\partial \Psi_r}{\partial \theta}.
\end{align*} \tag{2.4}
\]

In (2.4) it is assumed that coordinate \(z \) directs along central axis of the rod. It is assumed that the displacement field is axially symmetric, that yields

\[
\mathbf{u}_\theta = 0. \tag{2.5}
\]

Substituting (2.3) into equation of motion (2.1) yields

\[
c_1^2 \Delta \Phi = \ddot{\Phi}, \quad c_2^2 \Delta \mathbf{\Psi} = \ddot{\mathbf{\Psi}}. \tag{2.6}
\]

For a harmonic wave propagating along axis \(z \), potentials (2.6) can be represented in a form
\[\Phi = \Phi_0(x')e^{i\gamma(z-ct)}, \quad \Psi = \Psi_0(x')e^{i\gamma(z-ct)}, \]

where, as before, \(\gamma \) is the wave number related to the phase speed \(c \) and circular frequency \(\omega \) by equation

\[\gamma = \frac{\omega}{c}. \]

In (2.7) \(x' \) is the (vector) coordinate in the cross section of a rod \((x' = x - (n \cdot x)n) \), \(n \) is the wave vector; and \(z = n \cdot x \).

Substituting representations (2.7) into Eqs. (2.6), yields the Helmholtz equations for the potentials

\[\Delta \Phi_0 + \left[\frac{c_1^2}{c_1^2 - 1} \right] \gamma^2 \Phi_0 = 0, \quad \Delta \Psi_0 + \left[\frac{c_2^2}{c_2^2 - 1} \right] \gamma^2 \Psi_0 = 0. \]

Axial symmetry of \(\Phi_0 \) ensures [13, 14]

\[\frac{\partial \Phi_0}{\partial \theta} = 0. \]

Equations (2.9), (2.10) result in Bessel’s equation

\[\frac{1}{r} \frac{d}{dr} \left(r \frac{d}{dr} \right) \Phi_0(r) + \left[\frac{c_1^2}{c_1^2 - 1} \right] \gamma^2 \Phi_0(r) = 0, \]

where \(c \) is the phase speed. The solution of Eq. (2.11) can be represented in terms of the corresponding Bessel functions

\[\Phi_0(r) = C_1J_0(q_1 r) + C_2Y_0(q_1 r), \]

where \(C_k, \ k = 1,2 \) are the unknown complex coefficients, and

\[q_1^2 = \left[\frac{c_1^2}{c_1^2 - 1} \right] \gamma^2. \]

Axial symmetry of potential \(\Psi_0 \) is satisfied by the following equations [13, 14]

\[\frac{\partial \Psi_r}{\partial \theta} = \frac{\partial \Psi_\theta}{\partial \theta} = \frac{\partial \Psi_z}{\partial \theta} = 0. \]

Equations (2.9), (2.14) yield Bessel equations (for physical components)

\[\frac{1}{r} \frac{d}{dr} \left(r \frac{d}{dr} \right) \Psi_r(r) + \left[\frac{c_2^2}{c_2^2 - 1} \right] \gamma^2 \frac{1}{r^2} \Psi_r(r) = 0 \]

\[\frac{1}{r} \frac{d}{dr} \left(r \frac{d}{dr} \right) \Psi_\theta(r) + \left[\frac{c_2^2}{c_2^2 - 1} \right] \gamma^2 \frac{1}{r^2} \Psi_\theta(r) = 0. \]

\[\frac{1}{r} \frac{d}{dr} \left(r \frac{d}{dr} \right) \Psi_z(r) + \left[\frac{c_2^2}{c_2^2 - 1} \right] \gamma^2 \Psi_z(r) = 0 \]

The solutions of Eqs. (2.15) are

\[\Psi_\theta(r) = C_3J_1(q_2 r) + C_4Y_1(q_2 r) \]

\[\Psi_r(r) = C_5J_1(q_2 r) + C_6Y_1(q_2 r). \]

\[\Psi_z(r) = C_7J_0(q_2 r) + C_8Y_0(q_2 r) \]

In (2.16) \(C_k, \ k = 3,...,8 \) are the unknown complex coefficients, and

\[q_2^2 = \left[\frac{c_2^2}{c_2^2 - 1} \right] \gamma^2. \]

Axial symmetry of the vector potential \(\Psi \) imposes another restriction [14, 16]:
\[\Psi_r = \Psi_z = 0. \] (2.18)

Now, accounting (2.4), (2.5), (2.12), (2.16), (2.18), the desired vector field corresponding to the propagating longitudinal axially symmetric harmonic wave, becomes [19]

\[u_r = - \Re \left[q_1 \left(C_1 J_1(q_1 r) + C_2 Y_1(q_1 r) + C_3 J_1(q_2 r) + C_4 Y_1(q_2 r) \right) e^{i \gamma (z - ct)} \right], \]
\[u_0 = 0 \] \[u_z = \Im \left[q_1 C_1 J_1(q_1 r) + i \gamma C_2 J_1(q_1 r) \right] e^{i \gamma (z - ct)}. \] (2.19)

Since components (2.19) vector field should be finite at \(r = 0 \) and noting that at \(r \to 0 \) Bessel’s functions \(Y_0, Y_1 \) are unbounded, the final representation flows out from (2.19)

\[u_r = - \left[q_1 C_1 J_1(q_1 r) + i \gamma C_2 J_1(q_1 r) \right] e^{i \gamma (z - ct)}, \]
\[u_0 = 0 \]
\[u_z = \left[i \gamma C_1 + q_2 C_2 \right] e^{i \gamma (z - ct)}. \] (2.20)

At deriving (2.20) from (2.19), the constant \(C_3 \) is denoted by \(C_2 \).

Remark 2.1. Expressions (2.20) that at \(r = 0 \) the natural condition \(u_r = 0 \) is satisfied since \(J_1(0) = 0 \). At the same time \(J_0(0) = 1 \), so \(u_z \) at \(r = 0 \) takes the form

\[u_z = \left[i \gamma C_1 + q_2 C_2 \right] e^{i \gamma (z - ct)}. \] (2.21)

Expression (2.21) gives the following necessary and sufficient condition for vanishing \(u_z \) at \(r = 0 \)

\[i \gamma C_1 = - q_2 C_2. \] (2.22)

3. Dispersion equations

Traction free boundary conditions on a lateral cylindrical surface at \(r = R \) have the form

\[t_v = \left(\lambda (r \mathbf{g}) \mathbf{v} + 2 \mu \mathbf{e} \cdot \mathbf{v} \right)_{r=R} = 0, \]

where \(\mathbf{v} \) is the (outward) surface normal.

Substituting the displacement representation (2.20) into boundary conditions (3.1), yields the following equations written up to exponential multiplier \(e^{i \gamma (z - ct)} \)

\[t_{rr} = \lambda \mathbf{e} + 2 \mu \mathbf{e}_{rr} = \left[\begin{array}{c} \lambda \left(q_1^2 + q_2^2 \right) J_0(q_1 r) C_1 + \\
2 \mu \left(q_1^2 J_0(q_1 r) - J_1(q_1 r) \right) + \\
i \gamma q_2 \left(q_2 r J_0(q_2 r) - J_1(q_2 r) \right) \end{array} \right]_{r=R} = 0 \] \[t_{rz} = \mu \left[\begin{array}{c} i \gamma \left(q_1 C_1 J_1(q_1 r) + q_2 C_2 J_1(q_2 r) \right) + \\
i \gamma q_1 J_1(q_1 r) + \left(q_2 C_2 J_1(q_2 r) \right) \end{array} \right]_{r=R} = 0 \] (3.2)

Equations (3.2) result in the desired dispersion equation

\[\det \mathbf{A} = 0, \]

where \(\mathbf{A} \) is a square and generally non-symmetric \(2 \times 2 \) matrix with complex coefficients:
\[A_{11} = -\left(q_1^2 + \gamma^2 \right) \left(\frac{c_1^2}{c_2} - 2\gamma^2 \right) J_0(q_1R) + \frac{2q_1}{R} J_1(q_1R) \]
\[A_{12} = -\frac{2i\gamma}{R} \left(q_2 R J_0(q_2R) - J_1(q_2R) \right) \]
\[A_{21} = -2i\gamma q_1 J_1(q_1R) \]
\[A_{22} = \left(q_2^2 - \gamma^2 \right) J_1(q_2R) \]

At deriving (3.4) from (3.2) the following identity was used
\[\frac{\lambda}{\mu} = \frac{c_1^2}{c_2^2} - 2. \]

Two-dimensional (right) eigenvectors related to vanishing eigenvalues (kernel eigenvectors) of matrix \(\mathbf{A} \) define polarization of the corresponding Pochhammer–Chree waves.

Remarks 3.1. A) Dispersion equation (3.3) can have both real and imaginary and complex roots [13–15]. Real roots correspond to propagating modes without attenuation in \(z \) direction, while imaginary and complex roots correspond to non-propagating modes attenuating in \(z \) direction. Herein, only propagating modes will be analysed.

B) Substituting components (3.4) into Eq. (3.3) yields the dispersion equation in the form [19]
\[4\gamma^2 q_1 q_2 J_0(q_2R) J_1(q_1R) - \frac{2q_1}{R} \left(q_2^2 + \gamma^2 \right) J_1(q_1R) J_1(q_2R) + \]
\[+ \left(q_2^2 - \gamma^2 \right) \left(q_2^2 + \gamma^2 \right) \left(\frac{c_1^2}{c_2^2} - 2\gamma^2 \right) J_0(q_1R) J_1(q_2R) = 0. \]

4. Spectral analysis of matrix \(\mathbf{A} \)

Spectral analysis of matrix \(\mathbf{A} \) splits into two cases.

4.1. Matrix \(\mathbf{A} \) is (semi) simple

That is the case when matrix \(\mathbf{A} \) contains no Jordan blocks, and hence has two distinct eigenvectors. Spectral decomposition of \(\mathbf{A} \) yields
\[\tilde{\alpha}_1 \leftrightarrow \lambda_1, \quad \tilde{\alpha}_2 \leftrightarrow \lambda_2 \]

where \(\lambda_1, \lambda_2 \) are right eigenvalues of matrix \(\mathbf{A} \), and \(\tilde{\alpha}_1, \tilde{\alpha}_2 \) are two-dimensional eigenvectors. The characteristic equation for matrix \(\mathbf{A} \) written in the form
\[\det(\mathbf{A} - \lambda \mathbf{I}) = 0, \]

where \(\mathbf{I} \) is the unit diagonal matrix, yields the following representations for eigenvalues
\[\lambda_{1,2} = s \pm d, \]

where
\[s = \frac{A_{11} + A_{22}}{2}, \quad d = \sqrt{f^2 + A_{12} A_{21}}, \quad f = \frac{A_{11} - A_{22}}{2}. \]

Note, that coefficients \(A_{ij} \) in (4.4) are defined by (3.4).

The corresponding (normed) eigenvectors have the form
\[\tilde{\alpha}_{1,2} = \begin{pmatrix} f \pm d \\ \sqrt{A_{21}^2 + |f \pm d|^2} \\ A_{21} \frac{1}{\sqrt{A_{21}^2 + |f \pm d|^2}} \end{pmatrix}. \]
Analyses of expressions (4.3) and (4.5) allow formulating

Proposition 4.1. a) The necessary and sufficient condition for simplicity of matrix A is

$$ d \neq 0 ,$$

where discriminant d is defined by (4.4).

b) Condition for degeneracy of matrix A takes the form

$$ A_{11}A_{22} = A_{12}A_{21} .$$

Proof. a) Expression (4.3) reveals, that condition (4.6) gives a necessary and sufficient condition for simplicity of the considered matrix.

b) Due to (4.3), condition of degeneracy takes the form

$$ s^2 = d^2 .$$

Equation (4.8) with account of (4.4) yields the desired Eq. (4.7).

Remark 4.1. The straightforward analysis reveals that condition (4.7) is equivalent to the dispersion equation (3.3).

4.2. Matrix A is non-semisimple (contains Jordan block)
Condition for non-simplicity of matrix A following from expression (4.3), yields

$$ d = 0 .$$

At (4.9) the spectral decomposition of matrix A results

$$ f \sqrt{|A_{21}|^2 + |f|^2} \left(\begin{array}{c}
\sqrt{|A_{21}|^2 + |f|^2} \\
A_{21} \\
\sqrt{|A_{21}|^2 + |f|^2}
\end{array} \right) \leftrightarrow \lambda_{1,2} = s .$$

Thus, at (4.9) matrix A becomes not only non-simple matrix, but non-semisimple as well, since it has only one (right) eigenvector (4.10).

At (4.9) and in view of (4.3) the double degeneracy of A is equivalent to

$$ s = 0 .$$

Now, taking into account (4.4), the following proposition flows out

Proposition 4.2. a) The necessary and sufficient condition for non-semisimplicity of matrix A is as follows

$$ f^2 = -A_{12}A_{21} .$$

b) At condition (4.12) double degeneracy of matrix A takes the form

$$ A_{11} = -A_{22} .$$

Proof. a) Proposition 4.1.a ensures that at (4.9) matrix A becomes non-simple. But, at (4.9) both eigenvectors coincide due to (4.5), so, actually A becomes non-semisimple. Then, substituting expressions (4.4) into (4.9) yields condition (4.12).

b) Due to (4.3), degeneracy of matrix A at (4.9) is equivalent to

$$ s = 0 .$$

But, (4.14) is equivalent to (4.13).

Remark 4.2. For the considered case of degeneracy of the non-semisimple matrix, the corresponding dispersion equation takes the form

$$ \left(q_2^2 - \gamma^2 \right) \left(J_1(q_2R) \right)^2 - \gamma^2 q_1 q_2 J_0(q_2R) J_1(q_1R) + \frac{\gamma^2 q_1}{R} J_1(q_2R) J_1(q_1R) = 0 .$$

5. Conclusions

The exact solutions of the linear Pochhammer – Chree equation for propagating harmonic axisymmetric longitudinal waves $L(0,m)$ in a cylindrical rod, were analysed. Limiting velocities of the Pochhammer – Chree waves are discussed.

Spectral analysis of the matrix dispersion equation for longitudinal axially symmetric modes $L(0,m), m > 0$ of Pochhammer – Chree waves was done, revealing that no longitudinal modes can propagate at c_2 phase speed.

References

[1] Pochhammer L 1876 J. Reine angew. Math. 81 324
[2] Chree C 1886 Quart. J. Pure Appl. Math. 21 287
[3] Chree C 1889 Trans. Cambridge Philos. Soc. 14 250
[4] Field G S 1931 Canadian J. Research. 5 619
[5] Field G S 1934 Canadian J. Research. 11 254
[6] Field G S 1940 Phys. Rev. 57 1188
[7] Shear S K and Focke A B 1940 Phys. Rev. 57 532
[8] Bancroft D 1941 Phys. Rev. 59 588
[9] Hudson G E 1943. Phys. Rev. 63 46
[10] Holden A H 1951 Bell System Tech. J. 30 956
[11] Adem J 1954 Quart. Appl. Math. 12 261
[12] Redwood M and Lamb J 1957 Proc. Phys. Soc. London. 70 136
[13] Mindlin R D and McNiven H D 1960 Trans. ASME. J. Appl. Mech. 27 145
[14] McNiven H D and Perry D C 1962 J. Acoust. Soc. Amer. 34 433
[15] Onoe M and McNiven H D and Mindlin R D 1962 Trans. ASME. J. Appl. Mech. 29 729
[16] Meeker T R and Meitzler A H 1964 Phys. acoustics. Principles and methods 1A 111
[17] Kolsky H 1964 J. Sound Vibr. 1 88
[18] Hutchinson J R and Percival C M 1968 J. Acoust. Soc. Amer. 44 1204
[19] Zemanek J 1972 J. Acoust. Soc. Amer. 51 265
[20] Thurston R N 1978 J. Acoust. Soc. Amer. 64 1
[21] Pao Y H and Mindlin R D 1966 Trans. ASME. J. Appl. Mech. 27 513
[22] Valsamos G, Casadei F and Solomos G 2013 Appl. Comput. Mech. 7 99
[23] Kuznetsov S V 2014 Acoust. Physics 60 95
[24] Tyutkin V V and Boiko A I 2010 Acoust. Physics 56 141
[25] Pavic G, Chevillotte F and Heraud J 2017 J. Phys. Conf. Ser. 813 1
[26] Sharma G S, Skvortsov A, MacGillivray I and Kessissoglou N 2017 J. Acoust. Soc. America 141 4694