Spatiotemporal Fano line-shape in photonic crystal slabs

Dmitry A. Bykov and Leonid L. Doskolovich

Image Processing Systems Institute of the RAS, 151 Molodogvardeiskaya st., Samara, 443001, Russia and Samara State Aerospace University (SSAU), 34 Moskovskoye shosse, Samara, 443086, Russia

(Dated:)

We study the resonant properties of photonic crystal slabs theoretically. A spatiotemporal Fano line-shape that approximates the transmission (reflection) coefficient is obtained. This approximation, being a function of both temporal and spatial frequency of the incident light, generalizes the conventional Fano line-shape. Two particular approximations, parabolic and hyperbolic, are obtained and investigated in detail taking into account the symmetry of the structure, the reciprocity, and the energy conservation. The parabolic approximation considers a single resonance at normal incidence, while the hyperbolic one takes into account two modes, the symmetric and the antisymmetric. Using rigorous computations based on the Fourier modal method we show that the hyperbolic line-shape provides a better approximation of the transmission spectrum. By deriving the causality conditions for both approximations, we show that only the hyperbolic one provides causality in a relativistic sense.

PACS numbers: 42.70.Qs, 78.67.Pt, 42.79.Dj

I. INTRODUCTION

Fano resonances have attracted much attention in the past few decades. While originally developed to describe the scattering of electrons, they later found numerous applications in different areas of physics including solid state physics and optics.

Fano resonance occurs when two scattering processes take place simultaneously: the resonant scattering and the non-resonant one. The interaction between these two processes results in a distinctive asymmetric line-shape of the scattering amplitude, which is called the Fano line-shape. This model for resonant scattering allows one to write the following simple approximation for the scattering amplitude as a function of frequency:

\[T(\omega) \approx t + \frac{b}{\omega - \omega_p} = t \frac{\omega - \omega_s}{\omega - \omega_p} \]

(1)

Here, \(t \) is a non-resonant scattering coefficient, \(\omega_p \) and \(\omega_s \) are the pole and the zero of the scattering amplitude. Equation (1) is widely used to explain resonant phenomena in the transmission and reflection spectra of optical resonators, diffraction gratings and photonic crystal slabs. By replacing the frequency \(\omega \) in (1) with the incident light spatial frequency (in-plane wave vector component \(k_x \)), one can investigate the angular spectrum of resonant diffractive structures. Moreover, the resonant approximations of the scattering amplitude as a function of both temporal and spatial frequencies were proposed.

Of particular interest is studying the Fano resonances in symmetric structures made of lossless reciprocal materials. For these structures, a special case of the Fano line-shape can be obtained, revealing a number of intriguing optical effects, such as the total transmission and total reflection of the incident light.

In this paper, we study the resonances of 1D photonic crystal slabs. Photonic crystal slabs (PCS) or diffraction gratings are planar optical structures that are periodic in one or two transverse directions. Such structures exhibit resonant features in the transmission and reflection spectra, which were studied for the first time by R. W. Wood in 1902. These features correspond to the Fano resonances and are explained in terms of the excitation of the quasiguided modes (either of plasmonic nature or not). Due to the pronounced resonant features, the PCS are widely used as optical filters, polarizers, lasers and sensors. Other applications include beam and pulse shaping, enhancing nonlinear and magneto-optical effects, controlling optical properties mechanically.

A typical spatiotemporal transmission spectrum of the PCS rigorously calculated using a Fourier modal method is presented in Fig. 1b. The computed spectrum demonstrates pronounced resonant minima governed by the excitation of quasiguided modes. The points of minimal transmission form two branches separated by a bandgap in the center of the first Brillouin zone. Let us note that the resonant approximations in Ref. [14] and [15] have a limited applicability and allow one to describe only one branch of the transmission coefficient. The model proposed in Ref. [16] takes account of two branches, but it describes only perforated metal films with extraordinary optical transmission.

In this paper, we derive new spatiotemporal approximations for the complex transmission (reflection) spectrum (Fig. 1b) of the PCS in the vicinity of resonances. We refer to these approximations as spatiotemporal since they describe the transmission (reflection) coefficient as a function of both temporal and spatial frequencies of the incident light. Thus, the proposed approximations generalize the conventional Fano line-shape of one argument. For the first time, the spatiotemporal Fano line-shapes are obtained taking into account the structure symmetry and reciprocity, the energy conservation law, and the causality condition. We believe that the results of the current paper are important for design of a wide range of devices and technologies.
The causality condition is discussed in Section IV.

In the following sections we give physical interpretation of the approximations’ parameters and determine the relations between them. In particular, the consequences of the structure symmetry are studied in Section III while the causality condition is discussed in Section IV.

II. SPATIOTEMPORAL FANO LINE-SHAPE

Consider a 1D periodic structure (PCS or diffraction grating) with period d (Fig. 1a). In this section, we derive the approximations for the transmission (reflection) coefficient that generalizes the well-known Fano line-shape \(^{(1)}\). We assume that the structure is subwavelength and supports only zeroth propagating diffraction orders. For the sake of simplicity we further assume that the structure has two symmetry planes: xOy and yOz (other symmetries will be discussed in Section IV).

Consider two monochromatic plane waves incident on the structure at the angle θ from the superstrate and substrate regions (Fig. 1a). In this case, the reflection and transmission can be described by the scattering matrix S which relates the amplitudes of the incident waves and of the scattered waves (zeroth diffraction orders):

$$
\begin{bmatrix}
R \\
T
\end{bmatrix} = S \begin{bmatrix}
I_1 \\
I_2
\end{bmatrix},
$$

where T and R are the complex amplitudes of the scattered waves; I_1, I_2 are the complex amplitudes of the incident waves. For specified PCS and fixed polarization the scattering matrix is a function of the incident light angular frequency ω and of the in-plane wave vector component $k_x = \omega n_x / c$, where n_x is the surrounding medium refractive index, and $k_0 = \omega / c$ is the wavenumber. In what follows we call k_x the spatial frequency of the incident light.

The modes of the structure are the field distributions that exist in the structure in the absence of the incident light (at $I_1 = I_2 = 0$). According to Eq. (2), the modes of the PCS are defined by the following homogeneous system of linear equations:

$$
S^{-1} \begin{bmatrix}
R \\
T
\end{bmatrix} = 0.
$$

(3)

Nontrivial solution of this system are given by the equation $\det S^{-1}(k_x, \omega) = 0$. By denoting $l(k_x, \omega) = \det S^{-1}(k_x, \omega)$, we can write the dispersion equation of the modes of the structure in the following form:

$$
l(k_x, \omega) = 0.
$$

(4)

In this paper, we are interested in the (quasiguided) modes that can be excited by the incident plane wave. Due to reciprocity condition, these modes will scatter away from the structure. This means that the mode amplitudes will decay in time. Hence, the mode frequencies are the complex numbers with a negative imaginary part (for $e^{-i\omega t}$ time convention). Indeed, the dispersion equation (1) is usually solved for complex angular frequency ω at real k_x. \(^{(11)}\) In this case, ω is a complex pole of the scattering matrix S and, consequently, of the T and R. On the other hand, one can define real ω and solve Eq. (1) for the complex k_x. \(^{(12)}\) Note that in order to work with complex frequencies and/or complex wavenumbers one should formally replace $\det S^{-1}(k_x, \omega)$ with its analytical continuation\(^{(13)}\); in what follows we suppose that the function $l(k_x, \omega)$ depends analytically on ω and k_x.

Let us consider the case of normal incidence of light ($k_x = 0$). Furthermore, we suppose that the resonance of the PCS at $k_x = 0$ corresponds to the mode with the complex frequency ω_p [i.e. $l(0, \omega_p) = 0$]. Note that, due to the symmetry of the structure, $\partial l / \partial k_x |_{k_x=0} = 0$. Following the approach used in paper \(^{(14)}\), we apply Weierstraß
preparation theorem to represent the function $l(k_x, \omega)$ in the following form:

$$l(k_x, \omega) = [k_x^2 + A(\omega)] \Phi(k_x, \omega),$$

where $A(\omega_p) = 0$ and $\Phi(k_x, \omega)$ is an analytic function which is non-zero in a vicinity of $(0, \omega_p)$. Let us note, that as distinct from Ref. [14], we used Weierstraß preparation theorem for the k_x-variable (rather than ω). This will further allow us to obtain an approximation of the PCS transmission coefficient taking account of two branches in Fig. 1b.

Let us now consider a plane wave of unit amplitude that is incident on the structure from the superstrate region ($I_1 = 1, I_2 = 0$). In this case, R and T will correspond to the complex reflection and transmission coefficients. Let us solve Eq. (2) for T using Cramer’s rule:

$$T = \frac{\det Q}{\det S^{-1}},$$

where Q is a matrix formed by replacing the second column of S^{-1} by the column vector $[1 \ 0]^T$. By substituting Eq. (5) into the last equation, we obtain

$$T(k_x, \omega) = \frac{\det Q(k_x, \omega)/\Phi(k_x, \omega)}{k_x^2 + A(\omega)}.$$

By replacing the numerator and the denominator in Eq. (7) with their Taylor polynomials of different degrees, we can obtain different resonant approximations for the transmission coefficient.

A. Parabolic approximation

Let us expand the function $A(\omega)$ in Eq. (7) in Taylor series at $\omega = \omega_p$ up to the linear term:

$$T(k_x, \omega) = \frac{\det Q(k_x, \omega)/\Phi(k_x, \omega)}{k_x^2 - \beta(\omega - \omega_p)}.$$

According to Weierstraß preparation theorem, the function $1/\Phi(k_x, \omega)$ is analytic in a vicinity of $(k_x, \omega) = (0, \omega_p)$ and hence we can expand the numerator in Eq. (8) in a Taylor series around this point:

$$T(k_x, \omega) = \frac{k_x^2 - \alpha(\omega - \omega_p) + \alpha_2}{k_x^2 - \beta(\omega - \omega_p)}.$$

Here ω_z and ω_p are the pole and the zero of the transmission coefficient at normal incidence of light (at $k_x = 0$).

Let us note that we expanded the numerator up to the terms of the same order as the denominator in this case, the $T(k_x, \omega)$ is a bounded function for large values of arguments. According to (1), we will refer to t as the non-resonant transmission coefficient. The following form of Eq. (9) will be useful for the subsequent analysis:

$$T(k_x, \omega) = \frac{k_x^2 + z_0 + z_1 \omega}{k_x^2 + p_0 + p_1 \omega},$$

If we equate to zero either the numerator or the denominator, we get the equation of parabola. According to [5], the dispersion equation (11) defines a parabola as well. This is the reason that we refer to the representations (9), (10) as parabolic approximations.

Note, that at fixed k_x Eq. (10) will coincide with the known Fano line-shape (1). At the same time, at fixed ω Eq. (10) describes the Fano line-shape as a function of k_x^2. This means that Eqs. (9), (10) are the spatiotemporal generalization of Eq. (1). In what follows, we will refer to them as the spatiotemporal Fano line-shape.

We used Eq. (9) to approximate the transmission coefficient of the PCS (Fig. 1). We calculated the pole $\omega_p = 1.5361 \times 10^{15} - 3.195 \times 10^{12}i s^{-1}$ using the scattering matrix approach [9]. The transmission zero $\omega_z = 1.5352 \times 10^{15} s^{-1}$ was found by minimizing the transmission coefficient at $k_x = 0$. The other parameters (α, β, t) were determined by fitting the rigorously calculated transmission coefficient in Fig. 1b. The result of the approximation is shown in Fig. 2a. One can see that Eq. (9) approximates only one branch of the transmission coefficient in a vicinity of the point ($k_x = 0, \omega = \text{Re} \omega_p$). Moreover, the quadratic approximation does not describe the mode dispersion at the large values of k_x. In order to overcome these issues let us construct a higher-order approximation.

B. Hyperbolic approximation

Let us expand the function $A(\omega)$ in Eq. (7) in a Taylor series at $\omega = \omega_p$ up to the second-order term. Then we replace the numerator with its Taylor polynomial of the same order as the denominator. As a result, we get the following hyperbolic approximation of the transmission coefficient:

$$T(k_x, \omega) = \frac{k_x^2 + z_0 + z_1 \omega + z_2 \omega^2}{k_x^2 + p_0 + p_1 \omega + p_2 \omega^2};$$

By factoring the ω-polynomials we rewrite Eq. (11) in the following form:

$$T(k_x, \omega) = \frac{\omega^2 k_x^2 - \alpha(\omega - \omega_{z_1})(\omega - \omega_{z_2})}{\omega^2 k_x^2 - (\omega - \omega_{p_1})(\omega - \omega_{p_2})},$$

where ω_{z_1} and ω_{z_2} are the zeros of the transmission coefficient at normal incidence (at $k_x = 0$), while ω_{p_1} and ω_{p_2} are the poles of the transmission coefficient at normal incidence.

Figure 2b shows the transmission coefficient approximation obtained from Eq. (12). In order to get this approximation we calculated the second pole–zero pair $(\omega_{p_2} = \omega_{z_2} = 1.6222 \times 10^{15} s^{-1})$ and estimated other parameters (α, v_g, t) by means of optimization. According to Fig. 2b, Eq. (12) approximates the transmission coefficient much better in comparison with Eq. (9). The reason is that the hyperbolic approximation takes account
of two poles at normal incidence. Besides, the mode dispersion law is better described with a hyperbola rather than with a parabola.

The approximations (9)–(12) are obtained for the transmission coefficient. However, similar equations can also be used for the reflection coefficient. Moreover, according to Eq. (6), the denominators for reflection and transmission approximations coincide, while the numerators are generally different.

In this section, we assumed that the transmission (reflection) coefficient is an even function of k_x. This is true for the symmetric structure shown in Fig. 1a. The validity of this assumption for the structures of different symmetries is discussed in the following section.

III. SYMMETRY, RECIPROCITY AND ENERGY CONSERVATION

The symmetry of 1D PCS can be described by one of seven frieze symmetry groups. Photonic crystal slabs of different symmetries are shown in Fig. 3. In this section, we will discuss the most important of these symmetries and their consequences. In particular, we will consider special forms of the approximations (10) and (11) that results from various types of the structure symmetry.

A. Symmetry and reciprocity

Equations (5), (9)–(12) were derived assuming that the scattering amplitude (transmission or reflection coefficient) is an even function of k_x. For reflection, this is true due to the reciprocity. For transmission, however, some assumptions on the symmetry of the structure should be made in order to provide $T(k_x, \omega) = T(-k_x, \omega)$.

To study the symmetry of the structure let us consider the elements of the scattering matrix as functions of k_x. The reciprocity and symmetry conditions impose restrictions on the scattering matrix form. In Table I we present the scattering matrix forms for each of seven frieze symmetry groups. In this table the different functions are denoted by different letters; the even functions have k_x^2 as the argument.

According to Table I the reflection coefficient is always an even function of k_x. Hence, the approximations (9)–(12) can be used to describe the reflection coefficient of the structure with an arbitrary symmetry. As for the transmission, only the symmetries p11m, p11g, p2mg, p2mm, and p1m1 provides the assumptions used to derive approximations (9)–(12).

The structures described by the symmetry groups p1
TABLE I. General form of the scattering matrix for the structures of different symmetry.

Symmetry group	Scattering matrix S
p1	\[
\begin{bmatrix}	
R_1(k_z) & T(k_z) \\	
T(-k_z) & R_2(k_z)	
\end{bmatrix}	
\]	
p2	\[
\begin{bmatrix}	
R(k_z) & T(k_z) \\	
T(-k_z) & R(k_z)	
\end{bmatrix}	
\]	
p11m	\[
\begin{bmatrix}	
R(k_z) & T(k_z) \\	
T(k_z) & R(k_z)	
\end{bmatrix}	
\]	
p11m, p11g, p2mg, p2mm	\[
\begin{bmatrix}
R(k_z) & T(k_z) \\
T(k_z) & R(k_z)
\end{bmatrix}
\] |

and p2 require the use of more general approximations. While the denominator for the transmission approximation will be of the same form as for the reflection [see Eq. (6)], the numerators in Eqs. (9)–(12) might have additional terms in k_z and ω.

Now let us consider two important symmetries, which allow us to simplify the general representations (11) and (10).

B. Vertical plane of symmetry

In this subsection, we will focus on hyperbolic approximation (11) for the structures with the yOz symmetry plane (symmetry groups p2mm, p11m, p2mg). Usually, the effects caused by the structure symmetry emerge when the incident wave has the same symmetry as the structure. Therefore, in this subsection we analyze the case of a normally incident plane wave ($k_z = 0$).

Approximation (11) assumes that at $k_z = 0$ the structure has two poles, ω_{p1} and ω_{p2}, corresponding to two different modes. Let us study the symmetry of the field distribution of the modes with respect to the symmetry plane. One can show that the modes of a symmetric structure are either symmetric or antisymmetric. Moreover, exactly one of two modes is symmetric, while the other one is antisymmetric. Without loss of generality, we assume that the mode with frequency ω_{p2} is the antisymmetric one.

The antisymmetric modes cannot be excited in a symmetric structure by a normally incident plane wave. This means that the corresponding pole ω_{p2} should not affect the transmission spectrum $T(0, \omega)$. It is possible if and only if one of the zeros compensates the pole (i.e. if $\omega_z = \omega_{p2}$). Taking this fact into account, we rewrite Eq. (12) in the following form:

$$T(k_z, \omega) = \frac{\nu_2^2 k_z^2 - \alpha(\omega - \omega_{z1})(\omega - \omega_{p2})}{\nu_2^2 k_z^2 - (\omega - \omega_{p1})(\omega - \omega_{p2})}.$$ \hspace{1cm} (13)

There are two channels of the mode decay in PCS: radiation into one of the diffraction orders and the ohmic losses. Due to the symmetry, the antisymmetric mode cannot scatter into the zeroth diffraction order. Hence, the antisymmetric mode of the lossless structure does not decay in time and its frequency is always real.

C. Horizontal plane of symmetry

In this subsection, we consider the structures with the xOz symmetry plane (symmetry groups p2mm and p11m). Besides, the results of the subsection are valid as well for the structures with symmetry groups p11g and p2mg. We start our analysis from recalling the symmetry and energy conservation consequences for the conventional Fano line-shape (11). Then we use these consequences to study the spatiotemporal Fano line-shapes (10) and (11).

Let us consider a single-resonance structure with a transmission spectrum defined by the Fano line-shape (11). In the case of a lossless structure, the transmission and reflection coefficients satisfy the energy conservation that can be represented as $|T(\omega)|^2 + |R(\omega)|^2 = 1$. A more general formulation of the energy conservation law requires the unitarity of the scattering matrix

$$S = \begin{bmatrix} R & T \\ T & R \end{bmatrix}.$$ \hspace{1cm} (14)

Note that this form of the scattering matrix takes account of the symmetry of the considered structure (see Table 1).

It can be shown that if both R and T have the form of Eq. (11), the unitarity of the scattering matrix (14) implies the following relation:

$$\omega_z = \text{Re}\omega_p \pm \frac{r}{2} \text{Im}\omega_p,$$ \hspace{1cm} (15)

where r is non-resonant reflection coefficient. The plus (minus) sign corresponds to a symmetric (antisymmetric) mode with respect to the xOz plane. Equation (15) defines the zero of the transmission coefficient T [see Eq. (11)]. The zero of the reflection coefficient R is also represented by Eq. (15) with the r and t interchanged.

By formally replacing ω in Eq. (11) with k_z, we get a k_z–Fano line-shape [11]. In this case, Eq. (15) is also true. If we replace ω in Eq. (11) with k_z^2 we get the Fano line-shape that takes account of two symmetric poles in the vicinity of $k_z = 0$. In this case, Eq. (15) remains valid as well.

Let us use Eq. (15) to analyze the spatiotemporal Fano line-shapes. Equations (10) and (11) can be written in the following general form:

$$T(k_z, \omega) = \frac{k_z^2 - Z(\omega)}{k_z^2 - P(\omega)},$$ \hspace{1cm} (16)

where $Z(\omega)$ and $P(\omega)$ are the polynomials of order two or three.

Let us fix the value of angular frequency ω and consider the transmission coefficient $T(\omega, k_z)$ as a function
of \(k_x^2\). In this case, Eq. (16) will take the form of the conventional Fano line-shape (1). Hence, Eq. (15) can be written in the following form:

\[
Z(\omega) = \text{Re} P(\omega) \pm \frac{i r}{t} \text{Im} P(\omega). \tag{17}
\]

By replacing \(P(\omega)\) and \(Z(\omega)\) with their Taylor expansions, we obtain the following equation:

\[
z_k = \text{Re} p_k \pm \frac{i r}{t} \text{Im} p_k. \tag{18}
\]

Thus, in the case of a lossless symmetric structure the coefficients in the numerator of representations (10) and (11) are determined by the coefficients in the denominator.

Let us note that \(ir/t\) in Eq. (18) is real (12), hence \(z_k\) are real as well. Therefore, \(\omega_{z1}\) and \(\omega_{z2}\) in Eqs. (12), (9) are either real or complex-conjugate. This results in the total transmission/reflection at certain frequencies of the incident light, which is a well known phenomenon for the Fano resonances in lossless structures (11).

IV. CAUSALITY

In this section, we will study the causality property of the transmission (reflection) coefficients. According to the general principle of causality, a caused effect cannot occur before the cause. In our case it means that the light can appear in the region under the structure only after the moment of time at which the light impinges the structure. Obviously, the transmission and reflection coefficients rigorously calculated from Maxwell’s equations are always causal. It is well known that the Fano line-shape (1) is causal if and only if \(\text{Im} \omega_p < 0\). In what follows we will investigate the causality conditions for the approximations (9), (10). We will study the causality in terms of the impulse response of the structure.

Let us represent an incident light beam through its spectrum:

\[
A_{\text{inc}}(x, z, t) = \frac{1}{(2\pi)^2} \int \int G(k_x, \omega)e^{i(k_x x - k_z z - \omega t)} \, dk_x \, d\omega, \tag{19}
\]

where \(k_x^2 + k_z^2 = n_s^2\), \(n_s\) is the surrounding medium refractive index. Since Eq. (19) is a plane wave expansion, we can define the transmitted field as follows:

\[
A_{\text{tr}} = \frac{1}{(2\pi)^2} \int \int T(k_x, \omega)G(k_x, \omega)e^{i(k_x x - k_z z - \omega t)} \, dk_x \, d\omega, \tag{20}
\]

where \(T(k_x, \omega)\) is the transmission coefficient of the structure.

Now let us investigate the transmitted field at the structure interface \(A_{\text{tr}}(x, 0, t)\) for the case of the incident pulse corresponding to the Dirac delta function on the structure interface \(A_{\text{inc}}(x, 0, t) = \delta(x) \cdot \delta(t)\). In this case, the incident pulse spectrum is equal to unity \([G(k_x, \omega) = 1]\), and the transmitted field distribution

\[
h(x, t) = A_{\text{tr}}(x, 0, t) = \frac{1}{4\pi^2} \int \int T(k_x, \omega)e^{i(k_x x - \omega t)} \, dk_x \, d\omega \tag{21}
\]

can be considered as the impulse response of the structure.

Let us study the impulse responses for the spatiotemporal Fano representations (9) and (12). Note that the numerators of Eqs. (9), (12) may be considered causal since the corresponding impulse responses can be expressed in terms of the delta function and its derivatives. In what follows we will study the impulse response that takes account of only the denominators of Eqs. (9), (12).

For parabolic approximation (9) the impulse response can be easily calculated. Assuming \(\text{Im} (\omega_p + k_x^2/\beta) < 0\), or

\[
\text{Im} \omega_p < 0, \quad \text{Im} \beta > 0, \tag{22}
\]

we obtain the following impulse response:

\[
h(x, t) = \frac{1}{4\pi^2} \int \int e^{i(k_x x - \omega t)} \frac{1}{k_x^2 - \beta(\omega - \omega_p)} \, dk_x \, d\omega
\]

\[
= \begin{cases}
\frac{1}{2} \sqrt{\frac{\beta}{\pi} \pi} e^{-i\omega_p t} e^{i\frac{k_x^2}{\beta}}, & t > 0; \\
0, & t < 0.
\end{cases} \tag{23}
\]

According to Eq. (23), \(h(x, t)\) is zero at \(t < 0\). This means that causality takes place in a non-relativistic sense, i.e. the light appears under the structure only after the moment in which the incident beam impinges it. However, Eq. (23) assumes that the superluminal light propagation in the transverse direction can occur. In order to demonstrate this fact, let us consider the dispersion equation for parabolic approximation [i.e. equate the denominator of Eq. (9) to zero]:

\[
k_x^2 = \beta(\omega - \omega_p). \tag{24}
\]

From this equation we can deduce the complex group velocity of the mode, \(v_g = \frac{\partial \omega}{\partial k_x} = 2k_x/\beta\). Its real part defining the propagation velocity of the mode (24) can be arbitrarily large. In particular, it can overcome the speed of light at the large values of \(k_x\). Hence, the parabolic approximation violates the relativistic causality condition. The latter can be formulated as follows (24). \(h(x, t) = 0\) if \(|x| > ct\), where \(c\) is the speed of light.

Let us investigate impulse response for the hyperbolic approximation (12). By substituting the denominator of Eq. (12) into Eq. (21) we get the following:
where \(J_0(x) \) is the Bessel function of the first kind of order zero. The detailed derivation of Eq. (25) is presented in Appendix. In the derivation, we supposed that
\[
\text{Im} \omega_{p1} < 0, \text{ Im} \omega_{p2} < 0, \quad v_g \in \mathbb{R}. \tag{26}
\]
According to Eq. (24), if we further assume that \(v_g < c \), the relativistic causality condition will take place.

Let us note that the dispersion relation for hyperbolic approximation
\[
v_g^2 k_x^2 = (\omega - \omega_{p1})(\omega - \omega_{p2}), \tag{27}
\]
defines a hyperbola with asymptotes \(\omega = \pm v_g k_x \). This means that \(\pm v_g \) is the group velocity of the mode at \(|k_x| \gg 1 \). In other words, \(v_g \) is a group velocity of the mode in the empty lattice approximation.

Thus, we have shown that the conditions (22) and (26) provide causality of the parabolic and hyperbolic approximations, respectively. Moreover, the hyperbolic approximation is causal in a relativistic sense. We can call the expressions (22), (26) the causality conditions, since their violation leads to the non-causality of the corresponding approximations [9], [12].

Let us use the causality condition (26), assuming that both \(xOy \) and \(yOz \) are the symmetry planes of the structure (symmetry groups \(p2mm \) and \(p2mg \)). In this case, Eqs. (13), (15) lead to the following elegant form of the spatiotemporal Fano line-shape for a symmetric lossless structure:
\[
\begin{align*}
T(k_x, \omega) &= \frac{v_g^2 k_x^2 - (\omega - \omega_{r1})(\omega - \omega_{p1})}{v_g^2 k_x^2 - (\omega - \omega_{r1})(\omega - \omega_{p2})}, \\
R(k_x, \omega) &= r \frac{v_g^2 k_x^2 - (\omega - \omega_{z1})(\omega - \omega_{p1})}{v_g^2 k_x^2 - (\omega - \omega_{z1})(\omega - \omega_{p2})},
\end{align*}
\tag{28}
\]
where \(\omega_{p1}, r, v_g \in \mathbb{R}; \omega_{z1} = \text{Re} \omega_{p1} \pm i t \text{Im} \omega_{p1} \in \mathbb{R} \).

\[\text{V. CONCLUSION} \]

We have presented a spatiotemporal generalization of the Fano line-shape for photonic crystal slabs. This generalization takes account of both spatial and temporal frequencies of the incident light. Two particular line-shapes, parabolic and hyperbolic, have been obtained. These line-shapes can be used to approximate the transmission and reflection spectrum of subwavelength photonic crystal slabs. We have studied the consequences of reciprocity, symmetry and causality to obtain the most simple form of these approximations.

The hyperbolic approximation can be used for guided-mode resonances when two poles at every \(k_x \) are present. The parabolic approximation can be used to approximate the transmission coefficient in a small vicinity of a single pole. This approximation is useful for describing cavity or Fabry–Pérot resonances.

\[\text{ACKNOWLEDGMENTS} \]

The work was funded by the Russian Science Foundation grant 14-19-00796.

Appendix: Impulse response for hyperbolic approximation

Consider the following transfer function:
\[
T(k_x, \omega) = \frac{1}{v_g^2 k_x^2 - (\omega - \omega_{p1})(\omega - \omega_{p2})} = -\frac{1}{(\omega - a)^2 - (b^2 + v_g^2 k_x^2)}, \tag{A.1}
\]
where \(a = (\omega_{p1} + \omega_{p2})/2 \), \(b = (\omega_{p1} - \omega_{p2})/2 \). In this section, we will calculate the corresponding impulse response function [Eq. (21)]. We will start with taking the integral with respect to the angular frequency \(\omega \). To do this, let us consider the following integral:
\[
\frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{e^{-i\omega t}}{(\omega - a)^2 - b^2} d\omega = -\frac{\sin(bt)}{b} e^{-iat} \theta(t), \tag{A.2}
\]
where \(\text{Im}(a \pm b) < 0 \) and \(\theta(t) \) is the Heaviside step function. According to Eq. (A.2), the Fourier transform of \(T(k_x, \omega) \) with respect to \(\omega \) can be calculated as
\[
-\frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{e^{-i\omega t}}{(\omega - a)^2 - (b^2 + v_g^2 k_x^2)} d\omega = e^{-iat} \theta(t) \cdot \frac{\sin \left(t \sqrt{b^2 + v_g^2 k_x^2} \right)}{\sqrt{b^2 + v_g^2 k_x^2}}. \tag{A.3}
\]
This derivation requires \(\text{Im} \left(a \pm \sqrt{b^2 + v_g^2 k_x^2} \right) < 0 \). The latter inequality holds true for all real \(k_x \) when \(\text{Im} \omega_{p1,2} < 0 \) and \(v_g \) is real.
Now let us calculate the second Fourier transform with respect to \(k_x \). To do this, let us use the following integral identity\(^*\):

\[
\frac{1}{2\pi} \int_{-\infty}^{+\infty} \sin \left(y \sqrt{k^2 + a^2} \right) e^{-ikx} \, dk = \begin{cases}
\frac{1}{2} J_0 \left(a \sqrt{y^2 - x^2} \right), & |x| < y; \\
0, & |x| > y.
\end{cases}
\]

(A.4)

Using this equation we find the impulse response as the Fourier transform of (A.3) in the following form:

\[
h(x,t) = e^{-iat} \theta(t) \frac{e^{-i\theta}}{2\pi} \int_{-\infty}^{+\infty} \frac{e^{ikx}}{\sqrt{b^2 + v_g^2 k_x^2}} \, dk_x
\]

From the last equation it is easy to obtain Eq. (24).