Determinations of $|V_{ub}|$ from Inclusive Semileptonic B Decays with Reduced Model Dependence

B. Aubert,¹ R. Barate,¹ D. Boutigny,¹ F. Couderc,¹ Y. Karyotakis,¹ J. P. Lees,¹ V. Poireau,¹ V. Tisserand,¹ A. Zghiche,² E. Grauges,² A. Palano,³ M. Pappagallo,³ A. Pompli,³ J. C. Chen,⁴ N. D. Qi,⁴ G. Rong,⁴ P. Wang,⁴ Y. S. Zhu,⁴ G. Eigen,⁵ I. Ofte,⁵ B. Stugu,⁵ G. S. Abrams,⁶ M. Battaglia,⁶ D. S. Best,⁶ D. N. Brown,⁶ J. Button-Shafer,⁶ R. N. Cahn,⁶ E. Charles,⁶ T. C. Day,⁶ M. S. Gill,⁶ A. V. Gritsan,⁶ Y. Groysman,⁶ R. G. Jacobsen,⁶ R. W. Kadel,⁶ J. A. Kadyk,⁶ L. T. Kerth,⁶ Yu. G. Kolomensky,⁶ G. Kukartsev,⁶ G. Lynch,⁶ L. M. Mir,⁶ P. J. Oddone,⁶ T. J. Orimoto,⁶ M. Pripstein,⁶ N. A. Roe,⁶ M. T. Roman,⁶ W. A. Wenzel,⁶ M. Barrett,⁷ K. E. Ford,⁷ T. J. Harrison,⁷ A. J. Hart,⁷ C. M. Hawkes,⁷ S. E. Morgan,⁷ A. T. Watson,⁷ M. Fritsch,⁷ K. Goetzen,⁷ T. Held,⁷ H. Koch,⁷ B. Lewandowski,⁸ M. Pelizaeus,⁸ K. Peters,⁸ T. Schroeder,⁸ M. Steinke,⁸ J. T. Boyd,⁸ J. P. Burke,⁹ W. N. Cottingham,⁹ D. Walker,⁹ T. Cuhadar-Donszelmann,¹⁰ B. G. Fulsom,¹⁰ C. Hearty,¹⁰ N. S. Knecht,¹⁰ T. S. Mattison,¹⁰ J. A. McKeena,¹⁰ A. Khan,¹¹ P. Kyberd,¹¹ M. Saleem,¹¹ L. Teodorescu,¹¹ A. E. Blinov,¹² V. E. Blinov,¹² A. D. Bukin,¹² V. P. Druzhinin,¹² V. B. Golubev,¹² E. A. Kravchenko,¹² A. P. Onuchin,¹² S. I. Sedrnyakov,¹² Yu. I. Skovpen,¹² E. P. Solodov,¹² A. N. Yusikhlov,¹² M. Bondioli,¹³ M.Bruinsma,¹³ M. Chao,¹³ S. Curry,¹³ I. Esrich,¹³ D. Kyrkja,¹³ A. J. Lankford,¹³ P. Lund,¹³ M. Mandelkern,¹³ R. K. Mommsen,¹³ W. Roethel,¹³ D. P. Stoker,¹³ S. Abachi,¹⁴ C. Buchanan,¹⁴ S. D. Foulkes,¹⁴ J. W. Gary,¹⁴ O. Long,¹⁵ B. C. Shen,¹⁵ K. Wang,¹⁵ L. Zhang,¹⁵ D. del Re,¹⁶ H. K. Hadavand,¹⁶ E. J. Hill,¹⁶ D. B. MacFarlane,¹⁶ H. P. Paar,¹⁶ S. Rahatlou,¹⁶ V. Sharma,¹⁶ J. W. Berryhill,¹⁷ C. Campagnari,¹⁷ A. Cunha,¹⁷ B. Dahmes,¹⁷ T. M. Hong,¹⁷ M. A. Mazur,¹⁷ J. D. Richman,¹⁷ T. W. Beck,¹⁸ A. M. Eiser,¹⁸ C. J. Flacco,¹⁸ C. A. Heusch,¹⁸ J. Kroseberg,¹⁸ W. S. Lockman,¹⁸ G. Nesom,¹⁸ T. Schall,¹⁸ B. A. Schumm,¹⁸ A. Seiden,¹⁸ P. Spradlin,¹⁸ D. C. Williams,¹⁸ M. G. Wilson,¹⁸ J. Albert,¹⁹ E. Chen,¹⁹ G. P. Dubois-Felsmann,¹⁹ A. Dvoretskii,¹⁹ D. G. Hiltin,¹⁹ J. S. Minamora,¹⁹ I. Narsky,¹⁹ T. Piatenko,¹⁹ F. C. Porter,¹⁹ A. Ryd,¹⁹ A. Samuel,¹⁹ R. Andreassen,²⁰ G. Mancinelli,²⁰ B. T. Meadows,²⁰ M. D. Sokoloff,²⁰ F. Blanc,²¹ P. C. Bloom,²¹ S. Chen,²¹ W. T. Ford,²¹ J. F. Hirschauer,²¹ A. Kreisiel,²¹ U. Nauenberg,²¹ A. Olivaa,²¹ W. O. Ruddick,²¹ J. G. Smith,²¹ K. A. Ulmer,²¹ S. R. Wagner,²¹ J. Zhang,²¹ A. Chen,²² E. A. Eckhart,²² A. Soffer,²² W. H. Toki,²² R. J. Wilson,²² F. Winklermeier,²² Q. Zeng,²² D. D. Altenburg,²³ E. Feltresi,²³ A. Hauke,²³ B. Spaan,²³ T. Brandt,²⁴ M. Dickopp,²⁴ V. Klose,²⁴ H. M. Lacker,²⁴ R. Nogowski,²⁴ S. Otto,²⁴ A. Petzold,²⁴ J. Schubert,²⁴ K. R. Schubert,²⁴ R. Schwierz,²⁴ J. E. Sundermann,²⁴ D. Bernard,²⁵ G. R. Bonneau,²⁵ P. Grenier,²⁵ E. Latour,²⁵ S. Schrenk,²⁵ Ch. Thiebaux,²⁵ G. Vasileiadis,²⁵ M. Verderi,²⁵ D. J. Bard,²⁶ P. J. Clark,²⁶ W. Gradl,²⁶ F. Muheim,²⁶ S. Playfer,²⁶ Y. Xie,²⁶ M. Andreotti,²⁷ D. Bettoni,²⁷ C. Bozzi,²⁷ R. Calabrese,²⁷ G. Cibinetto,²⁷ E. Lupper,²⁷ M. Negri,²⁷ L. Piemontese,²⁷ F. Anulli,²⁸ R. Baldini-Ferroli,²⁸ A. Calcetina,²⁸ R. de Sangro,²⁸ G. Finciochiaro,²⁸ P. Patteri,²⁸ I. M. Peruzzi,²⁸ M. Piccolo,²⁸ A. Zallo,²⁸ A. Buzzo,²⁹ R. Capra,²⁹ R. Conti,²⁹ M. Lo Vetere,²⁹ M. M. Macri,²⁹ M. R. Monge,²⁹ S. Passaggio,²⁹ C. Patrignani,²⁹ E. Robutti,²⁹ A. Sanroni,²⁹ S. Tosi,²⁹ G. Brandenburg,³⁰ K. S. Chaisanguanthum,³⁰ M. Morii,³⁰ J. Wu,³⁰ R. S. Dubitzky,³¹ U. Langenegger,³¹ J. Marks,³¹ S. Schenkl,³¹ U. Uwer,³¹ W. Bhimji,³² D. A. Bowerman,³² P. D. Daucsey,³² U. Egede,³² R. L. Flack,³² J. R. Gaillard,³² J. A. Nash,³² M. B. Nikolich,³² W. Panduro Vazquez,³² X. Chai,³³ M. J. Charles,³³ W. F. Mader,³³ U. Mallick,³³ V. Ziegler,³³ J. Cochran,³³ H. B. Crawley,³³ L. Dong,³³ V. Eyges,³³ W. T. Meyer,³³ S. Prell,³³ E. I. Rosenberg,³³ A. E. Rubin,³³ J. I. Yi,³³ G. Schott,³⁵ N. Arnaud,³⁶ M. Davier,³⁶ X. Giroux,³⁶ G. Grosdidier,³⁶ A. Hocker,³⁶ F. Le Diberder,³⁶ V. Lepeltier,³⁶ A. M. Lutz,³⁶ A. Oyanguren,³⁶ T. C. Petersen,³⁶ S. Pruvot,³⁶ S. Rodier,³⁶ P. Roudeau,³⁶ M. H. Schune,³⁶ A. Stochi,³⁶ W. F. Wang,³⁶ G. Wormser,³⁶ C. H. Cheng,³⁷ D. J. Lange,³⁷ D. M. Wright,³⁷ A. J. Bevan,³⁸ C. A. Chavez,³⁸ I. J. Forster,³⁸ R. J. Fry,³⁸ E. Gabathuler,³⁸ R. Gamet,³⁸ K. A. George,³⁸ D. E. Hutchcroft,³⁸ R. J. Parry,³⁸ D. J. Payne,³⁸ K. C. Schofield,³⁸ C. Touramanis,³⁸ F. Di Lodovico,³⁹ W. Menges,³⁹ R. Sacco,³⁹ C. L. Brown,⁴⁰ G. Cowan,⁴⁰ H. U. Flechere,⁴⁰ M. G. Green,⁴⁰ D. A. Hopkins,⁴⁰ P. S. Jackson,⁴⁰ T. R. McMahon,⁴⁰ S. Ricciardi,⁴⁰ F. Salvatore,⁴⁰ D. N. Brown,⁴¹ C. L. Davis,⁴¹ J. Allison,⁴² N. R. Barlow,⁴² R. J. Barlow,⁴² Y. M. Chia,⁴² C. L. Edgar,⁴² M. P. Kelly,⁴² G. D. Lafferty,⁴² M. T. Naisbit,⁴² J. C. Williams,⁴² C. Chen,⁴³ W. D. Hulsbergen,⁴³ A. Jawahery,⁴³ D. Kovalskyi,⁴³ C. K. Lae,⁴³ D. A. Roberts,⁴³ G. Simi,⁴³ G. Blaylock,⁴⁴ C. Dallapiccola,⁴⁴ S. S. Hertzbach,⁴⁴ R. Koffler,⁴⁴ X. Li,⁴⁴ T. B. Moore,⁴⁴ S. Saremi,⁴⁴
D. A. Sanders, D. Su, R. Bula, R. Kass, X. C. Lou, F. Martinez-Vidal, B. L. Hartfiel, K. T. Flood, R. C. Field, C. Sciacca, R. Kowalewski, B. N. Ratcliff, S. M. Spanier, T. Allmendinger, G. Benelli, K. K. Gan, D. Hufnagel, P. D. Jackson, H. Kagan, R. Kass, T. Pulliam, A. M. Rahimi, R. Ter-Antonyan, Q. K. Wong, N. L. Blount, J. Brau, R. Frey, O. Igonkina, M. Lu, C. T. Potter, R. Rahmat, N. B. Sinev, D. Strom, J. Strube, E. Torrence, F. Galeazzi, M. Margoni, M. Morandini, M. Posocco, M. Rotondo, F. Simonetto, R. Stroili, C. Voci, M. Benayoun, J. Chauveau, P. David, L. Del Buono, Ch. de la Vaisserie, O. Hamon, B. L. Hartfiel, M. J. J. John, Ph. Leruste, J. Malclès, J. Ocariz, L. Roos, G. Therin, P. K. Behera, L. Gladney, J. Panetta, M. Biasini, R. Covarelli, S. Pacetti, M. Pioppi, C. Angelini, G. Batignani, S. Bettarini, F. Bucci, G. Calderini, M. Carpinelli, R. Cenci, F. Forti, M. A. Giorgi, A. Lusiani, G. Marchiori, G. Morganti, N. Neri, E. Paoloni, M. Rama, G. Rizzo, J. Walsh, M. Haire, D. Judd, D. E. Wagoner, J. Biesiada, N. Danielson, P. Elmer, Y. P. Lao, D. C. Lu, J. Olsen, S. J. S. Smith, A. V. Telnov, F. Bellini, G. Cavoto, A. D’Orazio, E. Di Marco, R. Faccini, F. Ferrarotto, F. Ferroni, M. Gaspero, L. Li Gioi, M. A. Mazzoni, S. Morganti, G. Piredda, F. Polci, F. Safai Tehrani, C. Voena, H. Schröder, R. Waldi, T. Adye, N. De Groot, B. Franek, G. P. Gopal, E. O. Olaiya, F. F. Wilson, R. Aleksan, S. Emery, A. Gaidot, S. F. Ganzhur, G. Graziani, G. Hamel de Monchenault, W. Kozanecki, M. Legendre, B. Mayer, G. Vasseur, Ch. Yèche, M. Zito, M. V. Purohit, A. W. Weidemann, J. R. Wilson, T. Abe, M. T. Allen, D. Asto, R. Bartoldus, N. Berger, A. M. Boyarski, O. L. Buchmueller, R. Claus, J. P. Coleman, M. R. Convery, M. Cristin zinci, J. C. Dingfelder, D. Dong, J. Dorfan, D. Dujmic, W. Dunwoodie, S. Fan, R. C. Field, T. Glanzman, S. J. Gowdy, T. Hadig, V. Halyo, C. Hast, T. Hryn’ova, W. R. Innes, M. H. Kelsey, P. Kim, M. L. Kocian, D. W. G. S. Leith, J. Libby, S. Luitz, V. Luth, H. L. Lynch, H. Marsiske, R. Messner, D. R. Muller, C. P. O’Grady, V. E. Ozcan, A. Perazzo, M. Perl, B. N. Ratcliff, A. Roodman, A. A. Salnikov, R. H. Schindler, J. Schwiening, A. Snyder, J. Stelzer, D. Su, M. K. Sullivan, K. Suzuki, S. K. Swain, J. M. Thompson, J. Va’vra, N. van Bakel, M. Weaver, A. J. R. Weinstein, W. J. Wisniewski, M. Wittgen, D. H. Wright, A. K. Yarritu, K. Yi, C. C. Young, P. R. Burchat, A. J. Edwards, S. A. Majewski, B. A. Petersen, C. Roat, S. Ahmed, M. S. Alam, R. Bula, J. A. Ernst, B. Pan, M. A. Saeed, F. R. Wappler, S. B. Zain, W. Bugg, M. Krishnamurthy, S. M. Spanier, R. Eckmann, J. L. Ritchie, A. Satpathy, R. F. Schiwit ters, J. M. Izen, I. Kitayama, Y. Kato, M. Conforti, F. Bianchi, M. Bona, F. Gallo, D. Gamba, M. Bomben, L. Bosisio, C. Cartaro, F. Cossutti, G. Della Ricca, S. Dittongo, S. Granacigolo, L. Lanceri, L. Vitale, V. Azzolini, F. Martinez-Vidal, R. S. Panvini, Sw. Banerjee, B. Bhuyan, C. M. Brown, D. Fortin, K. Hamano, R. Kowalewski, I. M. Nugent, J. M. Roney, R. J. Sobie, J. J. Back, P. F. Harrison, T. E. Latham, G. B. Mohanty, H. R. Band, X. Chen, B. Cheng, S. Dasu, M. Datta, A. M. Eichenbaum, K. T. Flood, M. T. Graham, J. J. Hollar, J. R. Johnson, P. E. Kutter, H. Li, R. Liu, B. Mellado, A. Mihalyi, A. K. Mohapatra, Y. Pan, M. Pierini, R. Prepost, P. Tan, S. L. Wu, Z. Yu, and H. Neal

(The BABAR Collaboration)

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
3Università di Bari, Dipartimento di Fisica e INFN, I-70126 Bari, Italy
4Institut de High Energy Physics, Beijing 100039, China
5University of Bergen, Institute of Physics, N-5007 Bergen, Norway
6Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
7University of Birmingham, Birmingham, B15 2TT, United Kingdom
8Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
9University of Bristol, Bristol BS8 1TL, United Kingdom
10University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
11Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
12Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
13University of California at Irvine, Irvine, California 92697, USA
University of California at Los Angeles, Los Angeles, California 90024, USA
University of California at Riverside, Riverside, California 92521, USA
University of California at San Diego, La Jolla, California 92093, USA
University of California at Santa Barbara, Santa Barbara, California 93106, USA
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
California Institute of Technology, Pasadena, California 91125, USA
University of Cincinnati, Cincinnati, Ohio 45221, USA
Colorado State University, Fort Collins, Colorado 80523, USA
University of Dortmund, Institut für Physik, D-44221 Dortmund, Germany
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
University of Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
University of Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
Harvard University, Cambridge, Massachusetts 02138, USA
University of Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
Imperial College London, London, SW7 2AZ, United Kingdom
University of Iowa, Iowa City, Iowa 52242, USA
University of Kansas, Lawrence, Kansas 66045, USA
University of London, Royal Holloway and Bedford New College, Egham, Survey TW20 0EX, United Kingdom
University of Manchester, Manchester M13 9PL, United Kingdom
University of Maryland, College Park, Maryland 20742, USA
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
McGill University, Montréal, Québec, Canada H3A 2T8
Université di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
University of Mississippi, University, Mississippi 38677, USA
Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
Mount Holyoke College, South Hadley, Massachusetts 01075, USA
University di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
University of Notre Dame, Notre Dame, Indiana 46556, USA
Ohio State University, Columbus, Ohio 43210, USA
University of Oregon, Eugene, Oregon 97403, USA
University di Padova, Dipartimento di Fisica e INFN, I-35131 Padova, Italy
Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Énergies, F-75252 Paris, France
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
University of Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
Prairie View A&M University, Prairie View, Texas 77446, USA
Princeton University, Princeton, New Jersey 08544, USA
Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
Universität Rostock, D-18051 Rostock, Germany
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
University of South Carolina, Columbia, South Carolina 29208, USA
Stanford Linear Accelerator Center, Stanford, California 94309, USA
Stanford University, Stanford, California 94305-4060, USA
State University of New York, Albany, New York 12222, USA
University of Tennessee, Knoxville, Tennessee 37996, USA
University of Texas at Austin, Austin, Texas 78712, USA
University of Texas at Dallas, Richardson, Texas 75083, USA
Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
Vanderbilt University, Nashville, Tennessee 37235, USA
We report two novel determinations of $|V_{ub}|$ with reduced model dependence, based on measurements of the mass distribution of the hadronic system in semileptonic B decays. Events are selected by fully reconstructing the decay of one B meson and identifying a charged lepton from the decay of the other B meson from $\Upsilon(4S) \to B\bar{B}$ events. In one approach, we combine the inclusive $B \to X_u\ell\nu$ rate, integrated up to a maximum hadronic mass $m_X < 1.67 \text{GeV}/c^2$, with a measurement of the inclusive $B \to X_s\gamma$ photon energy spectrum. We obtain $|V_{ub}| = (4.43 \pm 0.39_{\text{stat}} \pm 0.25_{\text{syst}} \pm 0.29_{\text{theo}}) \times 10^{-3}$. In another approach we measure the total $B \to X_u\ell\nu$ rate over the full phase space and find $|V_{ub}| = (3.84 \pm 0.70_{\text{stat}} \pm 0.30_{\text{syst}} \pm 0.10_{\text{theo}}) \times 10^{-3}$.

PACS numbers: 13.20.He, 12.15.Hh, 14.40.Nd

The measurement of the element V_{ub} of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix plays a critical role in testing the consistency of the Standard Model description of CP violation. The uncertainties in existing measurements are dominantly due to uncertainties in the b-quark mass m_b and the modeling of the Fermi motion of the b quark inside the B meson. In this paper, we present two techniques to extract $|V_{ub}|$ from inclusive $B \to X_u\ell\nu$ decays where these uncertainties are significantly reduced. Neither method has been previously implemented experimentally.

Leibovich, Low, and Rothstein (LLR) have presented a prescription to extract $|V_{ub}|$ with reduced model dependence from either the lepton energy or the hadronic mass m_X. A technique utilizing weight functions had been constructed (\mathcal{B}). The calculations of LLR are accurate up to corrections of order α_s^2 and $(\Delta m_B/(\zeta m_b))^2$, where ζ is the experimental maximum hadronic mass up to which the $B \to X_u\ell\nu$ decay rate is determined and $\Lambda \approx \Lambda_{QCD}$. This method combines the hadronic mass spectrum, integrated below ζ, with the high-energy end of the measured differential $B \to X_u\gamma$ photon energy spectrum via the calculations of LLR.

An alternative method (\mathcal{B}) to reduce the model dependence is to measure the $B \to X_u\ell\nu$ rate over the entire m_X spectrum. Since no extrapolation is necessary to obtain the full rate, systematic uncertainties from m_b and Fermi motion are much reduced. Perturbative corrections are known to order α_s^2. We extract the $B \to X_u\ell\nu$ rate from the hadronic mass spectrum up to $\zeta = 2.5 \text{GeV}/c^2$ which corresponds to about 96% of the simulated hadronic mass spectrum.

The measurements presented here are based on a sample of 88.9 million $B\bar{B}$ pairs collected near the $\Upsilon(4S)$ resonance by the BABAR detector at the PEP-II asymmetric-energy e^+e^- storage rings operating at SLAC. The analysis uses $\Upsilon(4S) \to B\bar{B}$ events in which one of the B mesons decays hadronically and is fully reconstructed (\mathcal{B}) and the other decays semileptonically ($\mathcal{B}_{\ell\nu}$). To reconstruct a large sample of B mesons, we follow the procedure described in Ref. 2 in which charged and neutral hadrons are combined with an exclusively reconstructed D meson to obtain combinations with an energy consistent with a B meson. While this approach results in a low overall event selection efficiency, it allows for the precise determination of the momentum, charge, and flavor of the B_s candidates.

We use Monte Carlo (MC) simulations of the BABAR detector based on GEANT4 4 to optimize selection criteria and to determine signal efficiencies and background distributions. Charmless semileptonic $B \to X_u\ell\nu$ decays are simulated as a combination of resonant three-body decays ($X_u = \pi, \rho, \omega, \eta, \eta'$) 10, and decays to non-resonant hadronic final states X_u for which the hadronization is performed by JETSET74 12. The effect of Fermi motion is implemented in the simulation using an exponential function with the parameters $m_0 = 4.79 \text{GeV}/c^2$ and $\lambda_1 = -0.24 \text{GeV}^2/c^4$. The simulation of the $B \to X_u\ell\nu$ background uses a Heavy Quark Effective Theory parameterization of form factors for $B \to D^{(*)}\ell\nu$ 14 and models for $B \to D\pi\ell\nu$ 15 and $B \to D^{(*)}\nu\ell\nu$ 16 decays.

Semileptonic $B\rightarrow X_{l}\nu$ candidates are identified by the presence of at least one electron or muon with momentum $p_{l} > 1 \text{GeV}/c$ in the $\mathcal{B}_{\ell\nu}$ rest frame. For charged B_{s} candidates, we require the charge of the lepton to be consistent with a primary decay of a B_{s}. For neutral B_{s} candidates, both charge-flavor combinations are retained and the average $B_{s0}\mathcal{B}_{\ell\nu}$ mixing rate 16 is used to determine the primary lepton yield. Electrons (muons) are identified 17 (Ref. 8), with a 92% (60–75%) average efficiency and a hadron misidentification rate ranging between 0.05% and 0.1% (1–3%).

The hadronic system X_{l} in the $B \to X_{l}\ell\nu$ decays is reconstructed from charged tracks and energy depositions in the calorimeter that are not associated with the B_{s} candidate or the identified lepton. The neutrino four-momentum p_{ν} is estimated from the missing momentum four-vector $p_{\text{miss}} = p_{T(4S)} - p_{B_s} - p_{X_l} - p_{\ell}$, where all momenta are measured in the laboratory frame and $p_{T(4S)}$...
consistent with a neutrino hypothesis, i.e. the resulting equality of the masses of the two leptons with $p_\ell^2 > 1$ GeV/c in the event, charge conservation ($Q_X + Q_\ell + Q_B = 0$), and a missing four-momentum consistent with a neutrino hypothesis, i.e., the mass of the hadronic system is improved by a kinematic fit that imposes four-momentum conservation, the mass of the hadronic system starts from the equation $[6]$ multiplying the photon energy spectrum of charged and neutral kaons (reconstructed as $K^0\rightarrow\pi^+\pi^-$ decays) in the decay products of the B_s. We suppress $\overline{B} \rightarrow D^+\pi^-$ backgrounds by partial reconstruction of charged and neutral D^* mesons via identification of charged and neutral slow pions. The reconstruction of the mass of the hadronic system is improved by a kinematic fit that imposes four-momentum conservation, the equality of the masses of the two B mesons, and $p_\ell^2 = 0$. The resulting m_X resolution is ~ 250 MeV/c2 on average.

The extraction of $|V_{ub}|/|V_{ts}|$ from the selected events starts from the equation

$$
\left| \frac{|V_{ub}|}{|V_{ts}|} \right| = \left\{ \begin{array}{ll}
6\alpha (1 + H_{\text{mix}} (C_7^{(0)})^2 / \pi I_0 (\zeta) + I_4 (\zeta)) \\
\delta R_u (\zeta)
\end{array} \right\} \times \delta R_u (\zeta),
$$

where $\delta R_u (\zeta)$ is the partial charmless semileptonic decay rate extracted from the number of $\overline{B} \rightarrow X_u \ell \overline{\nu}$ events up to a limit ζ in the m_X spectrum. H_{mix} accounts for interferences between electromagnetic penguin operator O_7 with O_2 and O_8 [13], and $C_7^{(0)}$ is the effective Wilson coefficient. The terms $I_0 (\zeta)$ and $I_4 (\zeta)$ are determined by multiplying the photon energy spectrum $d\gamma/dE_{\gamma}$ in $B \rightarrow X_s \gamma$ decays [13] with weight functions [13] and integrating. The weights are zero below a minimum photon energy $E_{\gamma}^{\text{min}} = m_B/2 - \zeta/4$.

In terms of measurable quantities, $\delta R_u (\zeta)$ is

$$
\delta R_u (\zeta) = \frac{N_u (\zeta) f (\zeta) B (\overline{B} \rightarrow X_u \ell \overline{\nu})}{N_{sl} \varepsilon_{u} (\zeta)} \times \frac{\varepsilon_{u}^{\text{sl}}}{\varepsilon_{\ell}^{\text{su}}} \times \frac{\varepsilon_{\ell}^{\text{rec}}}{\varepsilon_{\ell}^{\text{rec}}}. \quad (2)
$$

Here, $N_u (\zeta)$ is the number of reconstructed $\overline{B} \rightarrow X_u \ell \overline{\nu}$ events with $m_X < \zeta$, $f (\zeta)$ accounts for migration in and out of the region below ζ due to finite m_X resolution, $B (\overline{B} \rightarrow X_u \ell \overline{\nu})$ is the total inclusive semileptonic branching fraction, and $\varepsilon_{u} (\zeta)$ is the efficiency for selecting $\overline{B} \rightarrow X_u \ell \overline{\nu}$ decays once a $\overline{B} \rightarrow X_u \ell \overline{\nu}$ decay has been identified with a hadronic mass below ζ. N_{sl} is the number of observed fully reconstructed B meson decays with a charged lepton with momentum above 1 GeV/c, $\varepsilon_{u}^{\text{sl}}/\varepsilon_{\ell}^{\text{su}}$ corrects for the difference in the efficiency of the lepton momentum selection for $\overline{B} \rightarrow X_u \ell \overline{\nu}$ and $\overline{B} \rightarrow X_u \ell \overline{\nu}$ decays, and $\varepsilon_{\ell}^{\text{rec}}/\varepsilon_{\ell}^{\text{rec}}$ accounts for the difference in the efficiency of reconstructing a B_ℓ in events with a $\overline{B} \rightarrow X_u \ell \overline{\nu}$ and $\overline{B} \rightarrow X_u \ell \overline{\nu}$ decay. By measuring the ratio of $\overline{B} \rightarrow X_u \ell \overline{\nu}$ events to all semileptonic B decays many systematic uncertainties cancel out.

We derive $N_u (\zeta)$ from the m_X distribution with a binned χ^2 fit to four components: data, $\overline{B} \rightarrow X_u \ell \overline{\nu}$ signal MC, $\overline{B} \rightarrow X_u \ell \overline{\nu}$ background MC, and a small MC background from other sources (misidentified leptons, $\overline{B} \rightarrow X_\tau \nu_\tau$, and charm decays), fixed relative to the $\overline{B} \rightarrow X_u \ell \overline{\nu}$ component. $N_u (\zeta)$ is determined after the subtraction of the fitted background contributions. For all four contributions, the combinatorial background is determined, separately in each bin of the m_X distribution, with unbinned maximum likelihood fits to distributions of the beam energy-substituted mass $m_{\text{ES}} = \sqrt{s}/4 - p_B^2$ of the B_ℓ candidate, where s is the e^+e^- center-of-mass energy. The m_{ES} fit uses an empirical description of the combinatorial background shape [14] with a signal shape [20] peaking at the B meson mass. The combinatorial background varies from 5% (low m_X bins) to 25% (high m_X bins). The fitted m_X distributions are shown in Fig. 1 before (a) and after (b) subtraction of backgrounds. The m_X bins are 300 MeV/c2 wide except that one bin is widened such that its upper edge is at ζ.

We extract $N_{sl} = (3.253 \pm 0.024) \times 10^4$ from an unbinned maximum likelihood fit to the m_{ES} distribution of all events with $p_\ell^2 > 1$ GeV/c. The efficiency corrections $\varepsilon_{\ell}^{\text{sl}}/\varepsilon_{\ell}^{\text{su}} = 0.82 \pm 0.02_{\text{stat}}$, as well as $\varepsilon_{u} (\zeta)$ and $f (\zeta)$ (see Table I) are derived from simulations, where we also find $\varepsilon_{\ell}^{\text{rec}}/\varepsilon_{\ell}^{\text{rec}}$ in agreement with one, assigning a 3% uncertainty.

We study three categories of systematic uncertainties in the determination of $|V_{ub}|$: uncertainties in the signal extraction, the simulation of physics processes, and the theoretical description. The quoted uncertainties have been determined for a value of $\zeta = 1.67$ GeV/c2 where the total uncertainty on $|V_{ub}|$ is found to be minimal.

Experimental uncertainties in the signal extraction arise from imperfect description of data by the detector.
TABLE I: Quantities in Eq. (2) that depend on ζ and their statistical uncertainties. The LLR (full rate) technique is given in the first (second) column.

ζ	$1.67 \text{ GeV}/c^2$	$2.50 \text{ GeV}/c^2$
f	1.010 ± 0.005	0.998 ± 0.002
N_u	120 ± 17	135 ± 45
ε_u	0.231 ± 0.005	0.231 ± 0.004
$\delta R_u \times 10^3$	1.43 ± 0.21	1.59 ± 0.53

FIG. 2: $|V_{ub}|$ as a function of ζ with the LLR method (left) and for the determination with the full rate measurement (right). The error bars indicate the statistical uncertainty. They are correlated between the points and get larger for larger ζ due to larger background from $\bar{B} \to X_u \ell \bar{\nu}$. The total shaded area illustrates the theoretical uncertainty; the inner light shaded (yellow) area indicates the perturbative share of the uncertainty. The arrow indicates $\zeta = 1.67 \text{ GeV}/c^2$.

branching fractions of the resonant final states have been varied by $\pm 30\%$ (π, ρ), $\pm 40\%$ (ω), and $\pm 100\%$ (η and η' simultaneously) resulting in uncertainties of 1.0%. An uncertainty of 0.7% due to imperfect description of hadronization is determined from the change observed when we saturate the spectrum with the non-resonant component alone. We derive a 1.3% uncertainty due to the imperfect modeling of the $K\bar{K}$ content in the X_u system by varying the fraction of decays to $s\bar{s}$-pairs by 30% for the non-resonant contribution [21]. Even though the extraction of $|V_{ub}|$ does not explicitly depend on a model for Fermi motion, there is still a residual dependency via the simulation of signal events. By varying the Fermi motion parameters m_b and λ_f within their respective uncertainties, taking correlations into account [13], we derive an uncertainty of 3.5%.

We calculate theoretical uncertainties in the weighting procedure including the calculation of all variables: H^m_{mix}, α_S, and Wilson-coefficients. We vary α between $\alpha(m_b)$ and $\alpha(m_W)$ with a central value of $1/130.3$ and find an uncertainty of less than 1%. For perturbative effects, an uncertainty of 2.9% is derived by varying the renormalization scale μ between $m_b/2$ and $2m_b$. Non-perturbative effects are expected to be of the order $(\Delta m_B/(|\zeta| m_b))^2$, where $\Lambda = 500 \text{ MeV}/c^2$ [22], resulting in an uncertainty of 5.4%. Theoretical uncertainties in the measurement via the full rate are taken from Ref. [22] to be 1.2% (QCD) and 2.2% (HEQ). Table II provides a summary of the uncertainties for $\zeta = 1.67 \text{ GeV}/c^2$ and for $\zeta = 2.5 \text{ GeV}/c^2$.

Finally, we present two different determinations of $|V_{ub}|$. First, using the weighting technique with the photon energy spectrum in $B \to X_u \gamma$ decays from Ref. [13], the hadronic mass spectrum up to a value of $\zeta = 1.67 \text{ GeV}/c^2$, we find $|V_{ub}|/|V_{ts}| = 0.107 \pm 0.009_{\text{stat}} \pm 0.006_{\text{syst}} \pm 0.007_{\text{theo}}$. If we assume the CKM matrix is unitary then $|V_{ts}| = |V_{cb}| \times (1 \pm O(1\%))$ and, taking $|V_{cb}|$
from Ref. [24], we derive
\[|V_{ub}| = (4.43 \pm 0.38 \pm 0.25 \pm 0.29) \times 10^{-3}, \]
where the first error is the statistical uncertainty from $\bar{B} \to X_s \ell \bar{\nu}$ and from $B \to X_s \gamma$ added in quadrature, the second (third) is systematic (theoretical). Second, we determine $|V_{ub}|$ from a measurement of the full m_X spectrum, i.e., up to a value of $\zeta = 2.5 \text{GeV}/c^2$, and find $|V_{ub}| = (3.84 \pm 0.70_{\text{stat}} \pm 0.30_{\text{syst}} \pm 0.10_{\text{theo}}) \times 10^{-3}$, using the average B lifetime of $\tau_B = (1.604 \pm 0.012) \text{ps}$ [14, 25].

The weighting technique is expected to break down at low values of ζ, since only a small fraction of the phase space is used. Figure 2 illustrates the dependence of the spectrum limit the sensitivity with which the behavior at high ζ can be probed.

The above results are consistent with previous measurements [2, 3] but have substantially smaller uncertainties from m_b and the modeling of Fermi motion. Both techniques are based on theoretical calculations that are distinct from other calculations normally employed to extract $|V_{ub}|$ and, thus, provide a complementary determination of $|V_{ub}|$.

We wish to thank Adam Leibovich, Ian Low, and Ira Rothstein for their help and support. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università della Basilicata, Potenza, Italy
** Deceased
[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Th. Phys. 49, 652 (1973).
[2] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 92, 071802 (2004).
[3] CLEO Collaboration, A. Bornheim et al., Phys. Rev. Lett. 88, 231803 (2002); BABAR Collaboration, B. Aubert et al., ibid. 95, 111801 (2005); BELLE Collaboration, I. Bizjak et al., hep-ex/0505088, ibid. (to be published); BELLE Collaboration, H. Kakuno et al., ibid. 92, 101801 (2004); BELLE Collaboration, A. Limosani et al., Phys. Lett. B 621, 28 (2005); BABAR Collaboration, B. Aubert et al., hep-ex/0509040, hep-ex/0507017.
[4] M. Neubert, Phys. Rev. D 49, 4623 (1994); I. Bigi, M. A. Shifman, N. G. Uraltsev and A. I. Vainshtein, Int. J. Mod. Phys. A 9, 2467 (1994).
[5] Charge conjugation is implied throughout the letter.
[6] A. K. Leibovich, I. Low, and I. Z. Rothstein, Phys. Rev. D 61, 053006 (2000); 62, 014010 (2000); Phys. Lett. B 486, 86 (2000); 513, 83 (2001).
[7] We follow the prescription on page 794 of [14], based on N. Uraltsev, Int. J. Mod. Phys. A 14, 4641 (1999) and A. H. Hoang, Z. Ligeti, and A. V. Manohar, Phys. Rev. D 59, 074017 (1999).
[8] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Meth. A 479, 1 (2002).
[9] GEANT4 Collaboration, S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250 (2003).
[10] D. Scora and N. Isgur, Phys. Rev. D 52, 2783 (1995).
[11] F. De Fazio and M. Neubert, JHEP 9906, 017 (1999).
[12] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
[13] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 72, 052004 (2005).
[14] BABAR Collaboration, B. Aubert et al., hep-ex/0409047.
[15] J. L. Goity and W. Roberts, Phys. Rev. D 51, 3459 (1995).
[16] Particle Data Group Collaboration, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
[17] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 67, 031101 (2003).
[18] C. Greub, T. Hurth and D. Wyler, Phys. Lett. B 380, 385 (1996).
[19] ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48, 543 (1990).
[20] Crystal Ball Collaboration, T. Skwarnicki, DESY F31-86-02.
[21] TASSO Collaboration, M. Althoff et al., Z. Phys. C 27, 27 (1985).
[22] A. K. Leibovich, I. Low, and I. Z. Rothstein (private communication).
[23] O. Buchmuller and H. Flacher, Phys. Rev. D 73, 073008 (2006).
[24] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 011803 (2004).
[25] The impact of the uncertainty of the relative fraction of produced neutral and charged B mesons is negligible.