Activation of the JAK1 / STAT1 Signaling Pathway is Associated with Prdx6 Expression Levels in Human Epididymis Epithelial Cells

Jianyuan Li (lijianyuan2021@126.com)
National Health and Family Planning Commission

Hui Shi
Yantai University

Xiaoyu Liu
Shenjing Hospital of China Medical University

Yanwei Wang
Qindao University Medical College Affiliated Yantai Yuhuangding Hospital

Haiyan Wang
Qindao University Medical College Affiliated Yantai Yuhuangding Hospital

Bochen Pan
Shengjing Hospital of China Medical University

Research Article

Keywords: Prdx6, HEECs, RNAi, DGE, JAK1, STAT1

Posted Date: August 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-824964/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

I. Background: Peroxiredoxin 6 (Prdx6) is widely expressed in mammalian tissues. Our previous study demonstrated that Prdx6 was expressed in human epididymis and spermatozoa, and the protective role of Prdx6 in human spermatozoa was also reported. In this study, we demonstrate the potential role and mechanism of Prdx6 in human epididymis epithelial cells (HEECs).

II. Methods and Results: Western blotting was used to measure expression levels of key proteins in the JAK / STAT signaling pathway. Digital gene expression analysis (DGE) was used to identify gene expression patterns in control HECs and in HECs after Prdx6-RNA interference (P6-RNAi). The DGE analysis identified 589 up-regulated and 314 down-regulated genes (including Prdx6) in Prdx6-RNAi (P6-RNAi) HEECs. Thirteen significantly different pathways were identified between the two groups, with the majority different expressed genes belonging to the CCL, CXCL, IL, and IFIT families. In particular, the expression levels of IL6, IL6ST, and eighteen IFN related genes were significantly increased in the condition of the down-regulated expression of Prdx6. Compared to control HEECs, the expression levels of JAK1, STAT1, phosphorylated JAK1 and STAT1 were significantly increased, while the expression levels of SOCS3 was significantly decreased in P6-RNAi HEECs. The Malondialdehyde (MDA) level and total antioxidant capacity in P6-RNAi HEECs were significantly increased and decreased compared to that of control, respectively.

III. Conclusions: We speculated that knockdown of Prdx6 resulted in higher levels of ROS in HEECs, which in turn, activated the JAK1 / STAT1 signaling pathway induced by IL-6 receptor and IFN.

Background

Peroxiredoxins (Prdxs) are antioxidant enzymes and are composed of six family members (Prdx1-6)[1]. Prdx1-5 contains 2-Cys, while Prdx6 contains only 1-Cys[2]. Prdx6 is an abundant cellular protein with peroxidase, phospholipase A2 (PLA2), and lysophospholipid acyl transferase (LPCAT) activity[3].

The primary function of Prdxs is to prevent oxidative damage induced by reactive oxygen species (ROS) [4]. The relationship between Prdxs, inflammation, and immunity has also been widely reported. Prdx1 act as an immunomodulator in macrophages and endothelial cells[5], and has been associated with the occurrence of atherosclerosis and rheumatoid arthritis[6]. Moon et al. (2006) demonstrated the inhibitory function of Prdx2 in immune cell responsiveness[7], while Szabó-Taylor et al. (2012) demonstrated the role of Prdx2 in chronic inflammation and the relationship between Prdx2 and the occurrence of rheumatoid arthritis[8]. Prdx3 is the only member that lacks an immunomodulatory function, and its deficiency has been shown to increase abnormal lipid accumulation in adipose tissue[9]. Prdx4 inhibits inflammation induced by oxidative stress in various tissues[10], and its molecular mechanism may be via the regulation of NF-κB, which is an important pro-inflammatory transcription factor[11]. Prdx4 expression has also been shown to be associated with rheumatoid arthritis[12]. Prdx5 regulates inflammatory processes through the Trx system[13], while Prdx6 has been shown to be involved in
regulating cell proliferation, apoptosis, embryonic development, lipid metabolism, immune response, and osteogenic differentiation[14-21]. Furthermore, Prdx6 has been shown to activate the NF-κB / AP-1 and JAK pathways necessary for the development of rheumatoid arthritis[22]. In brief, the Prdxs family, especially Prdx6, is associated with immunity.

Multiple developmental and immunological processes are regulated by the JAK / STAT signaling pathway[23]. There are four JAKs and seven STATs found in mammals. The JAK / STAT signaling pathway is triggered by the binding of extracellular ligands to cell surface receptors to activate receptor-associated JAKs; JAKs phosphorylate and activate cytoplasmic STAT dimers; phosphorylated STAT translocate to the nucleus and regulates target gene expression[24]. The suppressor of cytokine signaling (SOCS) proteins provides selective negative feedback to STAT activation to prevent over-stimulation of the immune system. Of the eight members, only SOCS1 and SOCS3 have been well studied. SOCS1 and SOCS3 have been shown to inhibit components of the JAK/STAT and other cell signaling pathways in a highly cell-type-specific manner[25-27].

Mammalian epididymis provides the critical environment for spermatozoa to develop motility and fertilization ability[28]. Our previous study showed that Prdx6 was expressed in the human epididymis[29], while Fernandez et al (2018) demonstrated that Prdx6 functioned in antioxidant defense in human spermatozoa[30]. In the current study, based on the role of Prdx6 in the immune response and the regulatory role of the JAK / STAT signaling pathway during the immune response, we aimed to discuss whether there was relationship between Prdx6 and the JAK / STAT signaling pathway in the human epididymis epithelial cells (HEECs), and which member of JAK / STAT families participated in the process.

Materials And Methods

Culturing HEECs

HEECs[31] were kindly provided by Daniel G. Cyr (INRS-Institut Armand Frappier, University of Quebec, Laval, Quebec, Canada). HEECs were cultured in DMEM/HAM F12 media with penicillin (50 U/ml), streptomycin (50 lg/ml), L-glutamine (2 mM), insulin (10 lg/ml), transferrin (10 lg/ml of), hydrocortisone (80 ng/ml), testosterone (5 nM), epidermal growth factor (10 ng/ml), cAMP (10 ng/ml), sodium selenium (2 ng/ml), tocopherol (200 ng/ml), retinol (200 ng/ml), and 10% fetal bovine serum [FBS] [Sigma-Aldrich]. Cells were seeded in culture plates coated with collagen IV (BD Biosciences, Mississauga, Canada) and incubated in a humidified chamber at 32°C with 5% CO₂.

Construction of the Prdx6 shRNA expression plasmid

Short hairpin RNA (shRNA) sequences targeting the mRNA of the human Prdx6 gene (Gens ID: 9588) were designed using the online tool (http://www.genesil.com/siRNA design.asp)[32] (Table 1). The Prdx6 shRNA sequences were then inserted into the endonuclease loci of BamHⅠ and Hind III in the pGenesil-1
vector (Wuhan GeneSil Biotechnology, Wuhan, China). The shRNA sequences were specific and did not target mRNA sequences of other known human genes (Table 5).

Plasmid Transfection

HEECs at 80% confluence were transfected with the Prdx6 shRNA expressing construct using the FuGENE HD Transfection Reagent (Roche, Mannheim, Germany). In addition, HEECs were transfected with non-targeting shRNA constructs to be used as the control. Transfections were performed in triplicate.

Protein extractions and Western blot analysis

Total proteins were extracted from 48hr post-transfected HEECs using RIPA lysis buffer (P0013B, Beyotime Biotechnology, China) supplemented with PMSF (ST506, Beyotime Biotechnology) and protease phosphatase inhibitors (P1050, Beyotime Biotechnology). Total proteins were then separated on a 10% (w/v) SDS-PAGE for JAK1 and STAT1 detection and 12% (w/v) SDS-PAGE for Prdx6, SOCS3 and GAPDH detection. After electrophoresis, transferred and blocked membrane, the membrane was incubated with primary antibodies overnight at 4°C. Anti-JAK1 antibody (ab133666, Abcam, UK) was used at 1:800; anti-JAK1 (phospho Y1022 + Y1023) (ab138005, Abcam) at 1:500; anti-STAT1 (ab47425, Abcam) at 1:500; anti-STAT1 (phospho Y701) (ab29045, Abcam) at 1:500; anti-Prdx6 (ab92322, Abcam) at 1:1000; anti-SOCS3 (ab16030, Abcam) at 1:1000; and anti-GAPDH (ab181602, Abcam) at 1:2000. After incubation, the membranes were washed with PBS-Tween (1000:1) and then incubated with the relevant HRP-labeled secondary antibody for 2h at room temperature. X-ray film (Bio-Rad, Hercules, CA) was used for chemiluminescent detection of target proteins. Experiments were performed in biological triplicates.

Detection of MDA levels and total antioxidant capacity of HEECs

The MDA levels and total antioxidant capacity in HEECs of control and Prdx6-RNAi were detected with Commercial kits (S0131S, Beyotime Biotechnology; A015-2-1, Nanjing Jiancheng Bioengineering Institute) according to the manufacturer's protocol.

Sample preparation and RNA isolation

Total RNA was extracted from 48 hr post-transfected cells using TRIZOL (Invitrogen, Carlsbad, CA, USA). RNA quality was measured using ultraviolet spectrophotometry and denaturing agarose gel electrophoresis.

DGE library preparation and sequencing
Library preparation and sequencing were performed by BGI using the Illumina Gene Expression Sample Prep Kit and Solexa Sequencing Chip (flowcell) on the Illumina Cluster Station and Illumina HiSeq™ 2000 System.

Data transformation and gene annotation

Raw solexa sequences were transformed using the following steps: removal of the 3’ adaptor sequence, empty reads, and low-quality tags; selection of 21nt read length tags; removal of single copy tags; generation of Clean Tags. After quality assessment, the clean tags were used to generate alignment statistics between the P6-RNAi and control cells.

All clean tags were mapped to the reference sequence and only 1bp mismatch was considered during alignment. The number of unambiguous clean tags for each gene was calculated and then normalized to TPM (number of transcripts per million clean tags)[33-34].

Detection of differential gene expression

Differentially expressed genes between the two groups of transfected HEECs were determined using the Audic-Claverie method (1997)[35]. The threshold used to determine significant differences in gene expression was based on False Discovery Rate (FDR) ≤0.001 and the absolute value of log\(_2\)Ratio≥1, as described in Benjamini, Yekutieli (2001)[36].

Gene ontology functional enrichment analysis for DEGs

Gene Ontology (GO) functional enrichment and Genomes (KEGG) pathway enrichment analysis were performed to uncover biological function and metabolic pathways of the differentially expressed genes, respectively. GO analysis was performed based on the methods used by Ye et al. (2006)[37]. Significantly enriched metabolic and signal transduction pathways were identified using the KEGG public database[38].

Pathway enrichment analysis for DEGs

Pathway enrichment analysis was performed similarly to that of GO analysis.

Real-time PCR

Total RNA was extracted using TRIZOL (Invitrogen, Carlsbad, CA, USA) based on the manufacturer's instructions. The first strand of cDNA was generated with ReverTra Ace (MMLV Reverse Transcriptase RNase H–) (TRT-101, Toyobo Co., Ltd., Osaka, Japan). Real-time PCR was performed with EvaGreen 2×
qPCR Master Mix (Applied Biological Materials, Inc., Vancouver, Canada) with Rotor-Gene Q (QIAGEN, Hilden, Germany). The results were expressed as the real-time quantity of the target gene / GAPDH. Gene-specific primer sequences and PCR conditions are shown in Table 6.

Results

The expression levels of PRDX6 protein and Prdx6 mRNA

The expressions of PRDX6 protein and Prdx6 mRNA were both significantly decreased in the Prdx6-RNAi (P6-RNAi) HEECs compared to the control cells (Figure 1A - C). This confirmed that our shRNA sequence targeting Prdx6 was effective.

Sequencing Quality

The distribution patterns of total and distinct tags were similar between HEECs transfected with P6-RNAi and non-targeting shRNA construct. This suggested the absence of bias in the construction of the two libraries (Figure 2). Tags with copy numbers > 100 were dominant for both P6-RNAi and control HEECs, while the majority of distinct tags had copy numbers < 5 (Figure 2). This indicated that low mRNA levels were more significant.

Differential Gene Expression

There were 903 differentially expressed genes between the control and P6-RNAi transfected HEECs. Compared to the control cell, 589 genes were up-regulated and 314 were down-regulated (including Prdx6) in P6-RNAi transfected cells (Figure 1D).

Real-time PCR

Ten up-regulated and ten down-regulated genes were randomly selected for real-time PCR validation. Consistency was observed between real-time PCR and DGE results (Figure 3).

Functional annotation of DEGs

DEGs were categorized into biological processes, molecular function, and cellular components (Figure 4). The biological processes contained cellular protein metabolic, metabolic, multi-organism, response to other organism, and response to biotic stimulus. The molecular function was cytokine activity. The cellular components involved in ribosomal subunit, ribosome, cytoplasmic part, cytoplasm, organelle part, intracellular organelle part, membrane-bounded organelle, intracellular membrane-bounded organelle, organelle, intracellular organelle, intracellular part, and intracellular.
Pathway analysis of DEGs

There were 13 significantly different pathways between P6-RNAi and control HEECs (Table 1). The total number of related genes in the significantly different pathways were 80, of which, 44 genes belonged to the CCL, CXCL, IL, and IFIT family. The four gene families are reported to be associated with immunity.

The mRNA expression levels of JAKs, STATs, and SOCSs

Compared to control cells, the expression levels of JAK1 and STAT1 were significantly increased, while the expression level of SOCS3 was significantly reduced in P6-RNAi HEECs (Table 2).

The expressions of proteins in JAKs / STAT signaling pathway

We measured the expression levels of JAKs, STATs, and SOCSs in HEECs. Compared to control HEECs, expression levels of JAK1 and STAT1 were significantly increased in P6-RNAi HEECs. In addition, the expression level of SOCS3, which is an inhibitor of the JAK / STAT signaling pathway, was significantly reduced in P6-RNAi HEECs (Figure 5A-B).

Activation of the JAK1 / STAT1 signaling pathway by the IL-6 receptor family and IFNγ in P6-RNAi HEECs

Compared to control cells, the expression levels of IL-6, IL6ST, and downstream genes (i.e., PIM-3, and cytokines) were significantly increased in P6-RNAi HEECs (Table 3).

Although differences of expression levels in IFNγ and IFNγ receptor were not observed between the control and P6-RNAi HEECs, the majority of IFNγ related genes (IFRD1, IRF9, IFI6, IFI27, MX1, IFI44, IFI44L, IFIT1, IFIT3, IFITM1, IFIT2, IFIH1, IFIT5, IFI30, IFITM3, GBP1, IFI16, IRF7) showed significantly higher expression (Table 4). Furthermore, the expression levels of downstream genes of IFNγ signaling (OAS1, OAS2, OAS3, OASL, HLA-A) were significantly higher in P6-RNAi HEECs (Table 4).

The Malondialdehyde (MDA) levels and total antioxidant capacity of HEECs

The MDA level in Prdx6-RNAi HEECs was significantly increased compared to that of control. The total antioxidant capacity, meanwhile, showed the opposite trend (Figure 6).

Discussion
Our previous study demonstrated that Prdx6 was expressed in human epididymis, seminal fluid, and spermatozoa[29], and the protective role of Prdx6 in human spermatozoa was also reported[28]. Here, we try to investigate the potential role of Prdx6 in HEECs.

The DEG results showed that the differentially expressed genes between P6-RNAi and control HEECs mostly belonged to the CCL, CXCL, IL, and IFIT families that are associated with immunity. On the other hand, it is well known that multiple developmental and immunological processes were regulated by the JAK / STAT signaling pathway[39]. This prompted us to investigate whether down-regulation of Prdx6 could activate the JAK/STAT signaling pathway. Interestingly, as we had speculated, we were able to detect the up-regulated expressions of JAK1 and STAT1, and the significantly decreased expression of SOCS3 in P6-RNAi HEECs. The same expression trend of JAK1, STAT1, and SOCS3 also be found in the DEG analysis.

To further verify the activation of JAK1/STAT1 signaling pathway, we analyzed the upstream and downstream genes of the pathway. The JAK-STAT pathway has been widely reported to be activated by IL-6 and IFNγ. IL-6 is required for the activation of the JAK-STAT pathway during myocardial infarction[40], in myelomas[41], head and neck tumors[42], and primary breast cancers[43]. IFNγ is one of the most important cytokines and plays an important role in defense against microbial infections by producing various cytokines and inducing autophagy[44]. IFNγ activation of the JAK2 / STAT1 signaling pathway has been reported in EBV (+) gastric cancers[45], though the activation of STAT1 in primary mammary carcinomas was found to be IFN-γ-independent[46]. Our DEG results showed that expression levels of IL-6, IL6ST, and their downstream targets, i.e., PIM3 and various cytokines, were significantly increased in P6-RNAi HEECs. Although we did not observe significant differences in expression levels in IFNγ and IFNγ receptor between P6-RNAi and control HEECs, the expression levels of eighteen IFN related genes were significantly increased, as well as the expression levels of downstream targets (OAS1, OAS2, OAS3, OASL, HLA-A) of IFNγ signaling in P6-RNAi HEECs. We speculate that IFNγ and IFNγ receptor expression levels might be transiently increased after Prdx6 knockdown but returned to normal levels by the time when we performed our measurements. Additional time course studies need to be performed to determine if IFNγ and IFNγ receptor expression levels are transiently increased after Prdx6 knockdown. Nevertheless, our results clearly demonstrated a relationship between Prdx6 and JAK1 / STAT1 signaling pathway in HEECs.

In addition, we tried to reveal how Prdx6 regulate JAK1 / STAT1 signaling pathway activation. Prdxs play an important role in reducing several cellular peroxide substrates, such as ROS[47]. Although high levels of ROS may result in oxidative stress to promote apoptosis in lymphocytes[48], certain amount of ROS is required to maintain cellular homeostasis[49]. Leong et al. (2000) in their paper described the immunomodulatory effects of ROS, in which ROS acts as a second messenger to participate in lymphocyte activation and as a third signal in T cell activation[50]. Our results showed that the MDA level and total antioxidant capacity in Prdx6-RNAi HEECs was significantly increased and decreased, respectively. Therefore, it can be speculated that knockdown of Prdx6 resulted in higher levels of ROS in
HEECs, which in turn, activated the IL-6 receptor and IFNγ to induce the JAK1 / STAT1 signaling pathway. However, the specific underlying molecular mechanisms need to be further investigated.

Conclusion

We speculated that knockdown of Prdx6 resulted in higher levels of ROS in HEECs, which in turn, activated the JAK1 / STAT1 signaling pathway induced by IL-6 receptor and IFN.

Declarations

Funding

This work was supported by the grants from the National Key R&D Program of China (Grant No. 2018YFC1003600) and Shandong Peninsula National Independent Innovation Demonstration Zone Development and Construction Fund Project (ZCQ18112).

Conflicts of interest/Competing interests

The authors declare that they have no competing interests.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors’ contributions

Hui Shi performed transfections, Western blotting experiments, DGE analysis, and drafted the manuscript. Xiaoyu Liu performed RT-PCR experiments and participated in DGE analysis. Yanwei Wang performed the cell culture experiments. Haiyan Wang performed statistical analysis. Bochen Pan and Jianyuan Li were involved in the design, coordination and helped to draft the manuscript. All authors have read and approved the final version of the manuscript, and agreed with the order of the authorships.

Ethics approval

Not applicable.
Consent to participate
Not applicable.

Consent for publication
Not applicable.

Acknowledgements
This work was supported by the grants from the National Key R&D Program of China (Grant No. 2018YFC1003600) and Shandong Peninsula National Independent Innovation Demonstration Zone Development and Construction Fund Project (ZCQ18112).

References

1. Jin DY, Chae HZ, Rhee SG, Jeang KT (1997) Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. J Biol Chem 272:30952–30961
2. Chowdhury I, Mo Y, Gao L, Kazi A, Fisher AB et al (2009) Oxidant stress stimulates expression of the human peroxiredoxin 6 gene by a transcriptional mechanism involving an antioxidant response element. Free Radic Biol Med 46:146–153
3. Fisher AB (2017) Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling. Arch Biochem Biophys 617:68–83
4. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990
5. O’Leary PC, Terrile M, Bajor M, Gaj P, Hennessy BT et al (2014) Peroxiredoxin-1 protects estrogen receptor α from oxidative stress-induced suppression and is a protein biomarker of favorable prognosis in breast cancer. Breast Cancer Res 16:R79
6. Li XJ, Xu M, Zhao XQ, Zhao JN, Chen FF et al (2013) Proteomic analysis of synovial fibroblast-like synoviocytes from rheumatoid arthritis. Clin Exp Rheumatol 31:552–558
7. Moon EY, Noh YW, Han YH, Kim SU, Kim JM et al (2006) T lymphocytes and dendritic cells are activated by the deletion of peroxiredoxinII (PpxII) gene. Immunol Lett 102:184–190
8. Szabó-Taylor KÉ, Eggleton P, Turner CA, Faro ML, Tarr JM et al (2012) Lymphocytes from rheumatoid arthritis patients have elevated levels of intracellular peroxiredoxin2, and a greater frequency of cells with exofacial peroxiredoxin 2, compared with healthy human lymphocytes. Int J Biochem Cell Biol 44:1223–1231
9. Huh JY, Kim Y, Jeong J, Park J, Kim I et al (2012) Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression. Antioxid Redox Signal 16:229–243

10. Guo X, Yamada S, Tanimoto A, Ding Y, Wang KY et al (2012) Overexpression of Peroxiredoxin 4 attenuates atherosclerosis in apolipoprotein E knockout mice. Antioxid Redox Signal 17:1362–1375

11. Schulte J (2011) Peroxiredoxin 4: a multifunctional biomarker worthy of further exploration. BMC Med 9:137

12. Chang X, Cui Y, Zong M, Zhao Y, Yan X et al (2009) Identification of proteins with increased expression in rheumatoid arthritis synovial tissues. J Rheumatol 36:872–888

13. Kropotov A, Usmanova N, Serikov V, Zhivotovsky B, Tomilin N (2007) Mitochondrial targeting of human peroxiredoxin V protein and regulation of PRDX5 gene expression by nuclear transcription factors controlling biogenesis of mitochondria. FEBS J 274:5804–5814

14. Park MH, Jo M, Kim YR, Lee CK, Hong JT (2016) Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol Ther 163:1–23

15. Yun HM, Choi DY, Oh KW, Hong JT (2015) PRDX6 exacerbates dopaminergic neurodegeneration in a MPTP mouse model of Parkinson's disease. Mol Neurobiol 52:422–431

16. Yun HM, Jin P, Park KR, Hwang J, Jeong HS et al (2016) Thiacremonone potentiates anti-oxidant effects to improve memory dysfunction in an APP/PS1 transgenic mice model. Mol Neurobiol 53:2409–2420

17. Yun HM, Park KR, Kim EC, Hong JT (2015) PRDX6 controls multiple sclerosis by suppressing inflammation and blood brain barrier disruption. Oncotarget 6:20875–20884

18. Yun HM, Park KR, Park MH, Kim DH, Jo MR et al (2015) PRDX6 promotes tumor development via the JAK2/STAT3 pathway in a urethane-induced lung tumor model. Free Radic Biol Med 80:136–140

19. Yun HM, Park MH, Kim DH, Ahn YJ, Park KR et al (2014) Loss of presenilin 2 is associated with increased iPLA2 activity and lung tumor development. Oncogene 33:5193–5200

20. Park KR, Yun HM, Yeo IJ, Cho S, Hong JT et al (2019) Peroxiredoxin 6 inhibits osteogenic differentiation and bone formation through human dental pulp stem cells and induces delayed bone development. Antioxid Redox Signal 30:1969–1982

21. Park MH, Jo M, Kim YR, Lee CK, Hong JT (2016) Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol Ther 163:1–23

22. Kim DH, Lee DH, Jo MR, Son DJ, Park MH et al (2015) Exacerbation of collagen antibody-induced arthritis in transgenic mice overexpressing Peroxiredoxin 6. Arthritis Rheum 67:3058–3069

23. Amoyel M, Anderson AM, Bach EA (2014) JAK/STAT pathway dysregulation in tumors: a Drosophila perspective. Semin Cell Dev Biol 28:96–103

24. O'Shea JJ, Gadina M, Schreiber RD (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109 Suppl:S121-131
25. Baker BJ, Akhtar LN, Benveniste EN (2009) SOCS1 and SOCS3 in the control of CNS immunity. Trends Immunol 30:392–400
26. Mallette FA, Calabrese V, Ilangumaran S, Ferbeyre G (2010) SOCS1, a novel interaction partner of p53 controlling oncogene-induced senescence. Aging 2:445–452
27. Christine IA, Richard DD (2019) SOCS and Herpesviruses, with emphasis on cytomegalovirus retinitis. Front Immunol 10:732
28. Zhou W, De Iuliis GN, Dun MD, Nixon B (2018) Characteristics of the epididymal luminal environment responsible for sperm maturation and storage. Front Endocrinol (Lausanne) 9:59
29. Shi H, Liu J, Zhu P, Wang H, Zhao Z et al (2018) Expression of peroxiredoxins in the human testis, epididymis and spermatozoa and their role in preventing H2O2-induced damage to spermatozoa. Folia Histochem Cytobiol 56:141–150.
30. Fernandez MC, O'Flaherty C (2018) Peroxiredoxin 6 is the primary antioxidant enzyme for the maintenance of viability and DNA integrity in human spermatozoa. Hum Reprod 33:1349–1407
31. Amoyel M, Anderson AM, Bach EA (2014) JAK/STAT pathway dysregulation in tumors: a Drosophila perspective. Semin Cell Dev Biol 28:96–103
32. Dawn B, Xuan YT, Guo Y, Rezazadeh A, Stein AB et al (2004) IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res 64:61–71
33. Puthier D, Bataille R, Amiot M (1999) IL-6 up-regulates Mcl-1 in human myeloma cells through JAK/STAT rather than Ras/MAP kinase pathway. Eur J Immunol 29:3945–3950
34. Arti Y, Bhavna K, Jharna D, Theodoros NT, Pawan K (2011) IL-6 Promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3- SNAIL signaling pathway. Mol Cancer Res 9:1658–1667
35. Chang Q, Bournazou E, Sansone P, Berishaj M, Gao SP et al (2013) The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia 15:848–862
36. Yamamoto M, Okuyama M, Ma JS, Kimura T, Kamiyama N et al (2012) A cluster of interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii. Immunity 37:302–313
37. Moon JW, Kong SK, Kim BS, Kim HJ, Lim H et al (2017) IFNγ induces PD-L1 overexpression by JAK2/STAT1/IRF-1 signaling in EBV-positive gastric carcinoma. Sci Rep 7:17810
38. Doppler W, Marth C, Daxenbichler G, Obrist P, Berlato C (2005) Expression of STAT1 target genes and interferon gamma in human mammary carcinoma tissue. Breast Cancer Res 7: P4.05
39. Park MH, Jo M, Kim YR, Lee CK, Hong JT (2016) Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol Ther 163:1–23
40. Yang Y, Bazhin AV, Werner J, Karakhanova S (2013) Reactive oxygen species in the immune system. Int Rev Immunol 32:249–270
41. Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS et al (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52:794–804

42. Leong KP, Tee NW, Yap WM, Chee TS, Koh ET (2000) Nocardiosis in patients with systemic lupus erythematosus. The Singapore Lupus Study Group. J Rheumatol 27:1306–1312

43. Dubé E, Dufresne J, Chan PT, Hermo L, Cyr DG (2010) Assessing the role of claudins in maintaining the integrity of epididymal tight junctions using novel human epididymal cell Lines. Biol Reprod 82:1119–1128

44. Holen T, Amarzguioui M, Wiiger MT (2002) Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res 30:1757–1766

45. ‘t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH et al (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36:e141

46. Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H et al (2009) Next-generation tag sequencing for cancer gene expression profiling. Genome Res 19:1825–1835

47. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

48. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

49. Ye J, Fang L, Zheng H, Zhang Y, Chen J et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293-297

50. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480-484

Tables
Table 1
The significantly different pathways

Pathway	Qvalue	Pathway ID
1 Hepatitis C	0.001	ko05160
2 Rheumatoid arthritis	0.009	ko05323
3 Toll-like receptor signaling pathway	0.021	ko04620
4 Ribosome	0.021	ko03010
5 Cytosolic DNA-sensing pathway	0.026	ko04623
6 Cell cycle	0.026	ko04110
7 NOD-like receptor signaling pathway	0.026	ko04621
8 Cytokine-cytokine receptor interaction	0.026	ko04060
9 Chagas disease (American trypanosomiasis)	0.026	ko05142
10 Osteoclast differentiation	0.026	ko04380
11 RIG-I-like receptor signaling pathway	0.026	ko04622
12 Ubiquitin mediated proteolysis	0.026	ko04120
13 Other glycan degradation	0.028	ko00511
Table 2
The expressions of JAKs and STATs

Gene symbol	log$_2$ Ratio (P6-RNAi / control cell)	P-Value	FDR	significant difference
JAK1	1.34	8.28226E-14	2.6014E-12	*
JAK2	1.35	0.01359128	0.045822224	-
JAK3	-1.94	0.001423868	0.006742904	-
JAKMIP3	-5.906890596	0.2498	0.419522358	-
STAT1	1.02	2.1736E-12	4.39471E-11	*
STAT2	1.12	0.1156098	0.245160301	-
STAT3	-0.09	0.728464	0.827680221	-
STAT4	-0.42	0.725936	0.828291933	-
STAT5A	1.19	0.0641106	0.154290407	-
STAT5B	-0.45	0.0708682	0.166866442	-
STAT6	0.83	0.00974278	0.03466438	-
SOCS1	0.485426827	0.58175	0.720043576	-
SOCS2	-0.599324599	0.00657522	0.0251786	-
SOCS3	-1.605721061	7.16074E-07	6.9378E-06	*
SOCS4	0.426804556	0.0877092	0.197829067	-
SOCS5	-0.237136417	0.419994	0.576760444	-
SOCS6	0.358265781	0.207484	0.370426821	-
SOCS7	0.502753645	0.0282318	0.08299928	-

P-Value: indicates the probability that a gene is expressed equally between two samples.

FDR: false discovery rate.

*: represents a significant difference between P6-RNAi and control cell groups.

-: represents no significant difference between P6-RNAi and control cell groups.
Table 3
The significantly different gene expressions related to IL-6

Gene symbol	log\(_2\) Ratio (P6-RNAi / cell)	P-Value	FDR	Description
IL-6	3.08	8.81672E-07	8.43333E-06	interleukin-6 precursor
IL6ST	1.21	1.86073E-13	5.11834E-12	interleukin-6 receptor subunit beta isoform 3 precursor
PIM-3	1.61	1.94098E-05	0.000148023	threonine-protein kinase pim-3
CXCL10	8.71	6.12788E-05	0.000417574	C-X-C motif chemokine 10 precursor
CXCL11	9.91	2.34882E-10	3.66318E-09	C-X-C motif chemokine 11 precursor
CCL20	9.23	9.5901E-07	9.10857E-06	C-C motif chemokine 20 isoform 1
CCL2	3.17	6.55254E-13	1.49744E-11	C-C motif chemokine 2 precursor
CXCL3	2.93	3.16648E-09	4.2176E-08	C-X-C motif chemokine 3
CCL4	9.43	1.19972E-07	1.30567E-06	C-C motif chemokine 4 isoform 1 precursor
CXCL1	2.99	1.27232E-13	3.75194E-12	growth-regulated alpha protein precursor
CXCL2	2.92	1.03249E-11	1.87682E-10	C-X-C motif chemokine 2
CCL5	4.01	1.67203E-09	2.33772E-08	beta-chemokine RANTES precursor
IL8	2.48	1.25233E-13	3.70921E-12	interleukin 8
IL1A	2.81	5.68782E-05	0.000390146	interleukin-1 alpha proprotein
IL17RA	1.32	2.43992E-09	3.31192E-08	interleukin-17 receptor A precursor
IL15	1.24	1.26275E-06	1.177E-05	interleukin-15 isoform 1 preproprotein
Gene symbol	log₂ Ratio (P6-RNAi / cell)	P-Value	FDR	Description
-------------	-------------------------------------	-------------	--------------	----------------------------------
IL4I1	2.43	9.41942E-05	0.00061488	L-amino-acid oxidase isoform 2
Table 4
The significantly different gene expressions related to IFNγ

Gene symbol	\(\log_2 \) Ratio (P6-RNAi / cell)	P-Value	FDR	Description
IFRD1	1.04	4.20214E-07	4.21025E-06	interferon-related developmental regulator 1 isoform 1
IRF9	1.03	3.04816E-11	5.25108E-10	interferon regulatory factor 9
IFI6	5.39	0	0	interferon alpha-inducible protein 6 isoform a
IFI27	5.07	1.03249E-11	1.87935E-10	interferon alpha-inducible protein 27, mitochondrial isoform 2
MX1	4.46	4.58758E-05	0.000319052	interferon-induced GTP-binding protein Mx1
IFI44	4.31	4.6491E-10	6.97675E-09	interferon-induced protein 44
IFI44L	4.29	8.81672E-07	8.41545E-06	interferon-induced protein 44-like
IFIT1	3.93	2.77556E-13	7.12675E-12	interferon-induced protein with tetratricopeptide repeats 1 isoform 2
IFIT3	3.92	4.996E-14	1.68269E-12	interferon-induced protein with tetratricopeptide repeats 3
IFITM1	3.29	2.19824E-14	7.7721E-13	interferon-induced transmembrane protein 1
IFIT2	2.81	0	0	Interferon-induced protein with tetratricopeptide repeats 2
IFIH1	2.81	7.4848E-08	8.41713E-07	interferon-induced helicase C domain-containing protein 1
IFIT5	1.64	2.5313E-14	8.87993E-13	interferon-induced protein with tetratricopeptide repeats 5
IFI30	1.56	1.4997E-05	0.00011708	gamma-interferon-inducible protein precursor
IFITM3	1.46	8.88178E-14	2.75131E-12	interferon-induced transmembrane protein 3
GBP1	1.4	6.01984E-07	5.90443E-06	interferon-induced guanylate-binding protein 1
IFI16	1.22	8.68612E-10	1.26281E-08	Interferon, gamma-inducible protein 16 variant
IRF7	1.17	2.98494E-12	5.89395E-11	interferon regulatory factor 7 isoform d
Gene symbol	log$_2$ Ratio (P6-RNAi / cell)	P-Value	FDR	Description
------------	-------------------------------	---------	-----	-------------
OAS1	3.85	0.000027594	0.000203764	2'-5'-oligoadenylate synthase 1 isoform 3
OAS2	11.17	4.4409E-16	1.80117E-14	2'-5'-oligoadenylate synthase 2 isoform 3
OAS3	3.71	7.4848E-08	8.42414E-07	2'-5'-oligoadenylate synthase 3
OASL	1.71	0	0	59 kDa 2'-5'-oligoadenylate synthase-like protein isoform b
HLA-A	1.23	2.51284E-11	4.39617E-10	HLA class I histocompatibility antigen, A-1 alpha chain precursor

Table 5
Target sequence of interference for human Prdx 6

shRNA name	Position on CDS	Target sequence	GC content (%)
si Prdx6	667	agctggcaccagaatggccaaag	52
irrelevant (control)		agctagcactagaatctgcagag	52
Gene name	Primer(5’-3’)	Tm (°C)	
-----------	-----------------------------------	---------	
GAPDH	F: AACGGATTTGGCTGATTG; R: GGAAGATGGGTGATGGGATT	51.5	
ICAM1	F: TAGCAGCCGCAGCTCTATAA; R: AGAAAAGTGGGCAGGGAG	53	
IL6	F: GTCCAGTTGCTCTTCTCCC; R: GCCTCTTTTGCTGCTTTCA	53.7	
BIRC3	F: TGGTGGTATGTGCTCTGTA; R: TGGAAAAGTGCTCCTGGAGT	48.1	
TSNAX	F: TTAATATCGTGCCAAGCC; R: CCTCGTGATCTGCTACC	49	
CCL5	F: CCCTCGCTGCATCTCCTCA; R: CCCTCGCTGCATCCTCA	56.1	
IDO1	F: CTGGAACTGCCTCCTATT; R: ATGCGAAGAACAATCAGAAA	49.5	
TLR4	F: GACCTGTCCCTGAACCCTA; R: AATATGTTGCCATCCGAAA	49	
EDN2	F: ACTTGGACATCATCTGGGTG; R: GAGGCTTTGACTGTGGAAA	57	
MTOR	F: AAAACCTCGTCATTTACCTAC; R: CAGCGAGTTCTTGGTCATTC	54.1	
CCL2	F: TGCTTCCCCCTCTACCTT; R: TGGATGTTCTGGTAGT	51.1	
ASNS	F: CTTCTGAGGGAAACTCTATT; R: AGCTGACTTTGTAGTGGAAT	49.1	
MMP14	F: CATCATTGAGGTGGACGAG; R: CATCATTGAGGTGGACGAG	56.9	
FOSL	F: ATTCAAAATCGCCCTGTG; R: ATGCGTGTTCTCTCCTCC	53.1	
PPIA	F: TTTGCAGAACAAGTCTCCA; R: TGGCCATCCAACCACTCA	52.4	
BYSL	F: GGGAGCAATCTCTACG; R: CACAGCACAGGCAGCTCA	54	
GAMT	F: CCTGCGCTGACGGTGACCT; R: CACAGACAGGCAGCTCA	54	
UCP2	F: GCTGGAGGTTGGTCGGAGAT; R: GGAGGCGATGACAGTGGT	55.4	
WNT7B	F: TAGACACCCTCTGTTTCCTT; R: TAGACACCCTCTGTTTCCTT	56	
SHC1	F: GGGAGAGGATAACCTGAAA; R: TGGCAACCATAGGGCGACAT	53.8	
SPATA20	F: AGTCACCACCTAACCCTACACCCA; R: TCCTCAGGTCTACCTCCAC	53.7	
Prdx6	F: AATTGGCCAAGAGGATG; R: GTGGTAGCTGGGGTAGAGG	50.8	

Tm: the melting temperature

Figures
Expression levels of PRDX6 protein and Prdx6 mRNA (A-C) and differentially expressed genes between control and P6-RNAi HEECs (D). Compared to control HEECs, the expression level of PRDX6 protein significantly decreased in P6-RNAi HEECs (A-B). The expression level of Prdx6 mRNA in P6-RNAi HEECs were reduced by 43.2% compared to control HEECs (C). Compared to control HEECs, there were 589 up-regulated genes and 314 down-regulated genes (including Prdx6) in P6-RNAi HEECs (D).
Evaluation of Sequencing Quality. The distribution patterns of total and distinct tags were similar between P6-RNAi and control HEECs. Tags with copy numbers > 100 were dominant in both control and P6-RNAi HEECs, while the majority of distinct tags had copy numbers < 5.
Figure 3

The differentially expressed genes measured by real-time PCR. Twenty genes were randomly selected to do real-time PCR for validation. Consistency was observed between real-time PCR and DGE results.

Figure 4

GO functional classification of the DEGs. Y-axis represents GO terms. All GO terms were grouped based on biological process, molecular function, and cellular component. The numbers in the bars represent DEGs annotated for biological process, molecular function, and cellular component. The percentage in the round brackets represent DEGs with relative annotation / All genes with relative annotation.
Figure 5

Western blot analysis of JAK1, STAT1, and SOCS3 expression levels (A) and gray degree analysis (B). Compared to control HEECs, the expression levels of JAK1, phosphorylated JAK1, STAT1, and phosphorylated STAT1 were significantly increased, while expression levels of SOCS3 were significantly reduced in P6-RNAi HEECs.

Figure 6

The MDA levels (A) and total antioxidant capacity (B) of HEECs. The MDA level in Prdx6-RNAi HEECs was significantly increased compared to that of control. The total antioxidant capacity, meanwhile, showed the opposite trend (Figure 6).