BORDISM CLASSES OF THE MULTIPLE POINTS MANIFOLDS OF SMOOTH IMMERSIONS

KONSTANTIN SALIKHOV

ABSTRACT. Let \(f : V^n \natural M^m \) be a smooth generic immersion. Then the set of points, that have at least \(k \) preimages is an image of a (non-generic) immersion. If the manifolds \(V^n \) and \(M^m \) are oriented and \(m - n \) is even, then the manifold of \(k \)-fold points is also oriented. In this paper we compute the oriented bordism class of the manifold of \(k \)-fold points in terms of the differential \(df \), provided the tangent bundle of the manifold \(M^m \) has a nowhere zero cross-section.

1. Introduction

In this paper we will consider smooth orientable \(C^\infty \)-manifolds and \(C^\infty \)-mappings between them. Let \(V^n \) and \(M^m \) be manifolds without boundary, \(V^n \) be compact, \(f : V^n \natural M^m \) be a smooth generic immersion and \(m - n \) be even. From Thom multijet transversality theorem [1] it follows that the set of immersions \(f \) such that the map \(f^{(k)} : V^{(k)} \to M^{(k)} \) is transverse to the “thin” diagonal \(\Delta_k(M) = \{ (x, \ldots, x) \mid x \in M \} \subset M^{(k)} \) outside the “thick” diagonal \(\Delta_2(V) = \{ (x_1, \ldots, x_k) \mid \exists \ i \neq j : x_i = x_j \} \subset V^{(k)} \) is open and everywhere dense in the set of all immersions \(V^n \natural M^m \) (in \(C^\infty \) Whitney topology). Therefore, for a generic \(f \) the set \(V_k = (f^{(k)})^{-1} (\Delta_k(M)) \setminus \Delta_2(V) \subset V^{(k)} \) is an oriented submanifold. Denote by \(\Sigma_k \) the group of permutations on \(k \) elements. Permutation of factors in the product \(V^{(k)} \) induce the free action of \(\Sigma_k \) on the set \(V^{(k)} \). Denote by \(\tilde{V}_k \) and \(\tilde{M}_k \) the quotient manifolds \(V_k/\Sigma_{k-1} \) and \(\tilde{V}_k/\Sigma_k \), where the subgroup \(\Sigma_{k-1} \subset \Sigma_k \) is the stabilizer of the first element. Since \(m - n \) is even, the action of \(\Sigma_k \) preserves the orientation of the manifold \(V_k \). Therefore \(\tilde{V}_k \) and \(\tilde{M}_k \) are canonically oriented. Let us define immersions \(f_k : \tilde{V}_k \natural V^n \) and \(g_k : \tilde{M}_k \natural M^m \) by formulae \(f_k(x_1, [x_2, \ldots, x_k]) = x_1 \) and \(g_k[x_1, \ldots, x_k] = f(x_1) \) (see [2] for details).

For an integer \(k > 0 \) and an immersion \(f : V^n \natural M^m \) we assign the oriented bordism classes \((\tilde{V}_k, f_k) \in \Omega_{m-k(m-n)}(V^n) \) and \((\tilde{M}_k, g_k) \in \Omega_{m-k(m-n)}(M^m) \). From [3] it follows that these classes do not change under a regular homotopy of the immersion \(f \). By the fundamental Smale-Hirsch theorem [4], the set of regular homotopy classes of immersions \(V^n \natural M^m \) is in 1-1 correspondence with the set of linear monomorphism classes of the tangent bundles \(\tau V \to \tau M \). The class of the immersion \(f : V^n \natural M^m \) corresponds to the class of the differential \(df : \tau V \to \tau M \). Hence, the classes \((\tilde{V}_k, f_k) \in \Omega_{m-k(m-n)}(V^n) \) and \((\tilde{M}_k, g_k) \in \Omega_{m-k(m-n)}(M^m) \) have to be computable in terms of the differential \(df : \tau V \to \tau M \). In this paper (see corollary 2.3) we compute \((\tilde{V}_k, f_k) \) and \((\tilde{M}_k, g_k) \) up to elements of order \((k - 1)! \) and \(k! \), respectively. This weakening is in some sense natural, for the manifolds \(\tilde{V}_k \) \(\tilde{M}_k \) were constructed as the images of \((k - 1)! \)- and \(k! \)-fold coverings.

Recall that all the finite order elements of \(\Omega_*(pt) \) have the order 2. Therefore, for \(M^m = \mathbb{R}^m \) we compute the classes \((\tilde{M}_k, g_k) \) up to elements of order 2. It is another approach to [5, Theorem 5], where all the Pontrjagin numbers of the manifolds \(\tilde{M}_k \) were computed in terms of the Pontrjagin classes of the manifold \(V^n \) and the integral Euler class of the normal bundle of the immersion \(f \). Lemma 2.3 gives a formula to compute the unoriented bordism class
(\tilde{V}_2, f_2) \in \mathcal{R}_*(V^n)$, if we do not require $m - n$ to be even, and V^n and M^m to be oriented. For up-to-date reviews of results on the bordism classes of self-intersection manifolds see for oriented case, and for unoriented case.

2. Formulation of results

Denote by $\varSigma M$ the spherical fibration, associated to the tangent bundle τM and by $Sdf : \varSigma V \rightarrow \varSigma M$ the fiberwise monomorphism of spherical fibrations, induced by the differential $df : \tau V \rightarrow \tau M$. Since the manifolds V^n, M^m, $\varSigma V$ and $\varSigma M$ are oriented (in usual sense), they are oriented in oriented bordism theory. Thus, there is the Poincare duality on these manifolds. Denote by $Sdf : \Omega_*(\varSigma M) \rightarrow \Omega_*(\varSigma V)$ the Gysin homomorphism, induced by the mapping Sdf.

Let us formulate the key lemma of this paper.

Lemma 2.1. Let M^m be an oriented manifold without boundary such that there is a nowhere zero cross-section of the tangent bundle τM, or, in other words, a section $s_M : M^m \rightarrow \varSigma M$. Then for any generic immersion $f : V^n \simeq M^m$ of compact oriented manifold without boundary V^n the bordism class $(\tilde{V}_2, f_2) \in \Omega_{2n-m}(V^n)$ is

$$((\tilde{V}_2, f_2) = (-1)^{m-1}i_*Sdf^*(M^m, s_M),$$

where i is the natural projection $\varSigma V \rightarrow V^n$.

To formulate our results, it will be convenient to use the oriented cobordism classes $v_k \in \Omega^{(k-1)(m-n)}(V^n)$ and $m_k \in \Omega^{(m-n)}_{\text{comp.}}(M^m)$, the Poincare duals to (\tilde{V}_k, f_k) and (\tilde{M}_k, g_k), respectively. Denote by 1_V the identity element of the ring $\Omega^*(V^n)$, and by f_1 the Gysin homomorphism, induced by the map f.

Corollary 2.2. Under the conditions of lemma 2.1 and if $m - n$ is even, the Euler class e of the normal bundle of the immersion f is

$$e = f^*f_1(1_V) + (-1)^m\gamma i_*Sdf^*(M^m, s_M),$$

where $\gamma : \Omega_*(V^n) \rightarrow \Omega^m(V^n)$ is the Poincare duality.

Corollary 2.3. Under the conditions of lemma 2.1 and if $m - n$ is even,

$$(k-1)! \cdot v_k = \varphi_{k-1} \circ \varphi_{k-2} \circ \cdots \circ \varphi_1(1_V)

k! \cdot m_k = f_1 \circ \varphi_{k-1} \circ \varphi_{k-2} \circ \cdots \circ \varphi_1(1_V),$$

where $\varphi_k(a) = f^*f_1(a) - k \cdot e \cup a$, and e is the Euler class of the normal bundle of the immersion f (which was computed in corollary 2.2).

3. The bordism group of immersions

Let us call two oriented immersions $f_0 : V_0^n \simeq M^m$ and $f_1 : V_1^n \simeq M^m$ bordant, if there exists a compact oriented manifold with boundary W^{n+1} such that $\partial W^{n+1} = V_0^n \sqcup (-V_1^n)$, and an immersion $W^{n+1} \rightarrow M^m \times [0, 1]$ such that for a collar $V_0^n \times [0, \varepsilon] \sqcup (-V_1^n) \times (1-\varepsilon, 1]$ of the boundary ∂W^{n+1} the restrictions $F|_{V_0^n \times [0, \varepsilon]} = f_0 \times \text{id}$ and $F|_{(-V_1^n) \times (1-\varepsilon, 1]} = f_1 \times \text{id}$. Then the set of equivalence classes of bordant oriented immersions with disjoint union operation is a group $\text{Imm}^{SO}(M^m)$. The group $\text{Imm}^{SO}_n(M^m) = [M^m, QMSO(m - n)]$, where $QX = \lim \Omega^qS^qX$ is the infinite loop space of infinite suspension and M^O is the Thom spectrum.

From the results of paper [3] it follows that the map, assigning for any immersion $f : V^n \simeq M^m$ the bordism class $(\tilde{M}_k, g_k) \in \Omega_{m-k(m-n)}(M^m)$, is a well-defined homomorphism $\varepsilon_k : \text{Imm}^{SO}_n(M^m) \rightarrow \Omega_{m-k(m-n)}(M^m)$. The classes (\tilde{M}_k, g_k) involve much information about the class of immersion $[f] \in \text{Imm}^{SO}_n(M^m)$. The following theorem was proved in [10], using algebraic technics.
Theorem 3.1 ([11, Corollary 1]). If $3n + 1 < 2m$ and $m - n$ is even, then the homomorphism
\[\varepsilon_1 \oplus \varepsilon_2 : \text{Imm}^n_\tau (\mathbb{R}^m) \to \Omega_n \oplus \Omega_{2n-m} \]
is an isomorphism modulo the class C_2 of finite 2-primary groups.

Our calculations probably clarify the geometric core of theorem 3.1. The matter is that in these very dimensional restrictions ($3n + 1 < 2m$) any skew map $\tau V \to \tau M$ can be homotoped to a monomorphism of tangent bundles (see details in [11]). Our formula (lemma 2.1) connects the map of spherical fibrations, induced by the differential $df : \tau V \to \tau M$, and the oriented bordism class $2(\tilde{M}_2, g_2) \in \Omega_{2n-m}(M^m)$. These reasoning was the initial motivation of this paper.

Conjecture 3.2. Let M^m be an oriented manifold without boundary such that there is a nowhere zero cross-section of the tangent bundle τM, $3n + 1 < 2m$, and $m - n$ be even. Then the homomorphism
\[\varepsilon_1 \oplus \varepsilon_2 : \text{Imm}^n_\tau (M^m) \to \Omega_n(M^m) \oplus \Omega_{2n-m}(M^m) \]
is an isomorphism modulo the class C_2 of finite 2-primary groups.

4. PROOFS

Denote the diagonal $\Delta(V) = \{(x, x) \in V \times V | x \in V\}$. Since $f : V^n \to M^m$ is an immersion, there exists a small enough tubular neighborhood U_V of the diagonal $\Delta(V)$ in $V \times V$ such that $f^2(U_V \setminus \Delta(V)) \cap \Delta(M) = \emptyset$. Note that $\partial(V^2 \setminus U_V) = \partial(U_V)$. Since $f^2(U_V \setminus \Delta(V)) \cap \Delta(M) = \emptyset$, we get the map $f^2 : (V^2 \setminus U_V, \partial(V^2 \setminus U_V)) \to (M^2, M^2 \setminus \Delta(M))$. Denote by U_M a tubular neighborhood of the diagonal $\Delta(M)$ in M^2. Without loss of generality we may assume that $f^2(U_V) \subseteq U_M$. Denote the inclusion
\[j : (U_M, U_M \setminus \Delta(M)) \hookrightarrow (M^2, M^2 \setminus \Delta(M)) \]
By excision axiom [8], the homomorphisms $j_* : \Omega_*(U_M, U_M \setminus \Delta(M)) \to \Omega_*(M^2, M^2 \setminus \Delta(M))$ and $j^* : \Omega^*(M^2, M^2 \setminus \Delta(M)) \to \Omega^*(U_M, U_M \setminus \Delta(M))$ are isomorphisms. Note that the pair $(U_M, \Delta(M))$ is canonically isomorphic to the pair $(\tau M, \tau_0 M)$ [12]. Since M^m is oriented, there exists the Thom class $t = \Omega^m(\tau M, \tau M \setminus \tau_0 M)$ of the tangent bundle τM.

Lemma 4.1. The class $(\tilde{V}_2, f_2) \in \Omega_{2n-m}(V^n)$ for an immersion $f : V^n \to M^m$ can be calculated in the following way
\[(\tilde{V}_2, f_2) = (\pi_1)_* \left((f^2)^* (j^*)^{-1}t \cap \left[V^2 \setminus U_V, \partial(V^2 \setminus U_V) \right] \right), \tag{2} \]
where $\pi_1 : V^2 \setminus U_V \to V$ is the projection on the first factor, and $[V^2 \setminus U_V, \partial(V^2 \setminus U_V)]$ is the fundamental class.

Proof of lemma 4.1. Let us recall the construction of the class (\tilde{V}_2, f_2). Since f is an immersion, $\Delta(V)$ is a closed subset in $(f^2)^{-1}(\Delta(M))$. Since f is a generic immersion, (f^2) is transversal to $\Delta(M)$ outside $\Delta(V)$. Therefore $(f^2)^{-1}(\Delta(M)) \setminus \Delta(V)$ is a compact oriented submanifold without boundary $f_2 : \tilde{V}_2 \to V^2 \setminus \Delta(V)$. Then the composition $\pi_1 \circ f_2$ is $f_2 : \tilde{V}_2 \to V^n$ (see details in [2]). By definition 3 of Lefschetz duality $\gamma : \Omega^*(V^2 \setminus U_V, \partial(V^2 \setminus U_V)) \to \Omega_*(V^2 \setminus U_V)$
\[(f^2)^* (j^*)^{-1}t \cap \left[V^2 \setminus U_V, \partial(V^2 \setminus U_V) \right] = (-1)^{2n-m} \gamma \left((f^2)^* (j^*)^{-1}t \right) \]
\[= \gamma \left((f^2)^* (j^*)^{-1}t \right) \]

\footnote{a skew map $\tau V \to \tau M$ can be understood as the “fiberwise cone” over a fiber map $h : S\tau V \to S\tau M$ such that $h(-x) = -h(x)$ in each fiber}
Since $f^{(2)}$ is transversal to $\Delta(M)$ outside $\Delta(V)$, we have
\[(\pi_1)_* \left(\gamma \left((f^{(2)})^*((j^*)^{-1} t) \right) \right) = (\pi_1)_* \left((\tilde{f}_2)_* \left[(f^{(2)})^{-1}(\Delta(M)) \backslash \Delta(V) \right] \right)
= (\pi_1)_* \left(\tilde{V}_2, \tilde{f}_2 \right) = (\tilde{V}_2, f_2) \]

Proof of lemma 2.1. To prove lemma 2.1, it suffices to interpret the right hand side of formula (2) in terms of the differential df. Since $\partial(V^{(2)} \backslash U_V) = \partial(U_V)$, we have
\[\partial_* \left[V^{(2)} \backslash U_V, \partial(V^{(2)} \backslash U_V) \right] = \left[\partial(V^{(2)} \backslash U_V) \right], \]
where $\partial_* : \Omega_2n(\partial(V^{(2)} \backslash U_V), \partial(V^{(2)} \backslash U_V)) \rightarrow \Omega_{2n-1}(\partial(V^{(2)} \backslash U_V))$ is the differential in the exact bordism sequence of pair. Denote by j_1 the inclusion $S\tau M \hookrightarrow \tau M \backslash \tau_0 M$. Obviously, the map j_1 is a homotopy equivalence. Since $j_1 \circ s_M : \tau M \rightarrow \tau M \backslash \tau_0 M$ is a nowhere zero cross-section of τM, we have
\[\delta^* \left((j_1^*)^{-1} \gamma(M^m, s_M) \right) = t, \]
where $\delta^* : \Omega^{m-1}(\tau M \backslash \tau_0 M) \rightarrow \Omega^m(\tau M \backslash \tau_0 M)$ is the differential in the exact cobordism sequence of pair, and γ is the Poincare duality on the total manifold $S\tau M$. Denote by j_2 the isomorphism $\partial(V^{(2)} \backslash U_V) \cong S\tau V$. From the explicit formula (3) for the \mathbb{Z}_2-equivariant isomorphism, that identify a small neighborhood of zero section of τV with the neighborhood U_V
\[\tau V \ni (x, \vec{v}_x) \mapsto (\exp_{x}(-\vec{v}_x), \exp_{x}(-\vec{v}_x)) \in V \times V, \]
it follows that the following diagram commutes (double arrows here denote isomorphisms).

\[
\begin{array}{ccc}
\Omega^{m-1}(\tau V) & \stackrel{j_2^*}{\longrightarrow} & \Omega^{m-1}(\partial(V^{(2)} \backslash U_V)) \\
\downarrow Sd f^* & & \downarrow (f^{(2)})^* \\
\Omega^{m-1}(\tau M \backslash \tau_0 M) & \stackrel{j_1^*}{\longleftarrow} & \Omega^{m}(\tau M \backslash \tau_0 M)
\end{array}
\]

Figure 1

Therefore, $\delta^*(j_2^*Sd f^*\gamma(M^m, s_M)) = (f^{(2)})^*((j^*)^{-1} t)$. From the naturality of the \cap-product \otimes, we have
\[(j_3)_* \left(j_2^*Sd f^*\gamma(M^m, s_M) \cap \left[\partial(V^{(2)} \backslash U_V) \right] \right) = (f^{(2)})^*((j^*)^{-1} t) \cap \left[V^{(2)} \backslash U_V, \partial(V^{(2)} \backslash U_V) \right], \]
where $j_3 : \partial(V^{(2)} \backslash U_V) \rightarrow V^{(2)} \backslash U_V$ is the inclusion. Then, by lemma 4.3
\[(\tilde{V}_2, f_2) = (\pi_1)_* \left(((f^{(2)})^*((j^*)^{-1} t) \cap \left[V^{(2)} \backslash U_V, \partial(V^{(2)} \backslash U_V) \right] \right)
= (\pi_1 \circ j_3)_* \left(j_2^*Sd f^*\gamma(M^m, s_M) \cap \left[\partial(V^{(2)} \backslash U_V) \right] \right)
= (-1)^{(2n-1)\cdot(m-1)}(\pi_1 \circ j_3)_* \gamma(j_2^*Sd f^*\gamma(M^m, s_M))
= (-1)^m(\pi_1 \circ j_3)_* \gamma(f_2)_*^{-1}Sd f^*\gamma(M^m, s_M)
= (-1)^{m-1}(\pi_1 \circ j_3)_* \gamma(f_2)_*^{-1}Sd f^*(M^m, s_M)
\]
It remains only to note that $i_* = (\pi_1 \circ j_3)_* \circ (j_2)_*^{-1}$. \qed
To prove the corollaries 2.2 and 2.3 we will need the following results from the paper [2].

Theorem 4.2 ([2]). For any smooth generic immersion \(f : V^n \hookrightarrow M^m \) of the compact oriented manifold without boundary \(V^n \) to the oriented manifold without boundary \(M^m \) such that \(m - n \) is even, we have

\[
v_k = f^*(m_{k-1}) - e \cup v_{k-1},
\]

where \(e \) is the Euler class of the normal bundle of the immersion \(f \) over \(V^n \).

Corollary 4.3 ([2]). Under the conditions of theorem 4.2, we have

\[(k - 1)! \cdot v_k = \varphi_{k-1} \circ \varphi_{k-2} \circ \cdots \circ \varphi_1(1_V),\]

where \(\varphi_k(a) = f^*f_1(a) - k \cdot e \cup a; e \) is the Euler class of the normal bundle of the immersion \(f \) over \(V^n \).

Proof of corollary 2.2. It suffices to substitute (1) into formula (3) with \(k = 2 \). \(\square \)

Proof of corollary 2.3. follows immediately from corollaries 4.3 and 2.2. \(\square \)

Acknowledgments

I would like to thank P.M. Akhmetiev and Yu.P. Soloviev for useful remarks.

References

[1] M. Golubitsky and V. Guillemin, *Stable mappings and their singularities*, Springer-Verlag, 1973.
[2] F. Ronga, *On multiple points of smooth immersions*, Comment. Math. Helv. 55:4 (1980), 521–527.
[3] U. Koschorke and B. Senderson, *Self-intersections and higher Hopf invariants*, Topology 17 (1978), 283–290.
[4] M. Hirsch, *Immersions of manifolds*, Trans. AMS 93 (1959), 242–276.
[5] A. Szücs, *On the multiple points of immersions in euclidean spaces*, Proc. AMS 126:6 (1998), 1873–1882.
[6] M.A. Asadi-Golmankhaneh and P.J. Eccles, *Determining the characteristic numbers of the self-intersection manifolds*, Jour. London Math. Soc. (to appear), available at http://www.maths.man.ac.uk/~peter/.
[7] P.E. Conner and E.E. Floyd, *Differentiable periodic maps*, Springer-Verlag, 1964.
[8] R.W. Switzer, *Algebraic topology — homotopy and homology*, Springer-Verlag, 1975.
[9] R. Wells, *Cobordisms of immersions*, Topology 5 (1966), 281–293.
[10] A. Szücs, *Cobordism of maps with simplest singularities*, Topology Symposium, Siegen 1979, Lecture Notes in Math vol. 788, Springer-Verlag, 1980, 223–244.
[11] A. Haefliger and M. Hirsch, *Immersions in the stable range* Annals of Math. 75 (1962), 231–241.
[12] J.W. Milnor and J.D. Stasheff, *Characteristic Classes*, Ann. of Math. Studies vol.76, Princeton University Press, 1974.

Dept. of Differential Geometry, Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119899, Russia

E-mail address: salikhov@mccme.ru