Combinatorial explorations in Su-Doku

jmc

March 29, 2008

Abstract

Su-Doku, a popular combinatorial puzzle, provides an excellent test-bench for heuristic explorations. Several interesting questions arise from its deceptively simple set of rules. How many distinct Su-Doku grids are there? How to find a solution to a Su-Doku puzzle? Is there a unique solution to a given Su-Doku puzzle? What is a good estimation of a puzzle’s difficulty? What is the minimum puzzle size (the number of “givens”)?

This paper explores how these questions are related to the well-known all-different constraint which emerges in a wide variety of Constraint Satisfaction Problems (CSP) and compares various algorithmic approaches based on different formulations of Su-Doku.

1 Su-Doku as a CSP

Su-Doku grids and puzzles. Su-Doku is a well-known logic-based number placement puzzle. The objective is to fill a 9x9 square grid so that each line, each column or file, and each of the nine 3x3 blocks contains exclusively the digits 1 to 9, only once each. A puzzle is a partially completed grid.

This definition is readily generalized to larger grids. Let us consider $M_n = \{1 \ldots n\}$ the set of digits 1 to n, a Su-Doku of size n is a $n^2 \times n^2$ grid which is to be filled so that each of the n^2 lines, each of the n^2 columns and each of the n^2 blocks contains the digits 1 to n only one time each.

The deceptively simple definition actually hides large combinatorial problems, even for small values of n. This is, for instance, reflected in the number of such Su-Doku grids as calculated by Felgenhauer and Jarvis [6]:

Size	Number
1	1
2	288
3	6,670,903,752,021,072,936,960

Table 1.

This is sequence A107739 in the Online Encyclopedia of Integer Sequences. The number of grids in the familiar size-3 Su-Doku is already mind-boggling!
Constraint Satisfaction Problem. The rules of Su-Doku can be cast in terms of constraints that a solution should comply with to be valid. A constraint satisfaction problem (CSP) is a triple \((X, D, C)\), where \(X\) is a sequence of \(n\) variables \(x_1, x_2, \ldots, x_n\), \(D\) is a sequence of \(n\) finite domains \(D_1, D_2, \ldots, D_n\), where \(D_i\) is the set of possible values for variable \(x_i\), and \(C\) a finite set of constraints between variables.

A constraint \(C\) on a subsequence of variables \(x_{i_1}, x_{i_2}, \ldots, x_{i_m}\) is simply a subset of the cartesian product \(D_{i_1} \times D_{i_2} \ldots \times D_{i_m}\), which expresses the allowed combination of variable values.

Constraints are often expressed as equations that variables must satisfy.

General CSP Expression for Su-Doku. As will be seen in later sections, there are several ways to express a Su-Doku puzzle as a concrete CSP. In somewhat abstract terms, the CSP formulation would state four groups of constraints:

i. Each of the \(n^4\) cells contains a unique value from the set \(M_{n^2}\)
ii. Each of the \(n^2\) lines of the grid contains all values from the set \(M_{n^2}\)
iii. Each of the \(n^2\) files of the grid contains all values from the set \(M_{n^2}\)
iv. Each of the \(n^2\) blocks of the grid contains all values from the set \(M_{n^2}\)

where each of \(n^4\) variables \(x_1, \ldots, x_{n^4}\) would represent a grid cell.

The initial “givens” of a Su-Doku puzzle restrict the actual sets from which the above constraints allow values to be assigned to these variables. In the conventional Su-Doku puzzle, there are 81 variables and \(81 + 3 \times 9 = 108\) such general constraints.

1.1 Constraint propagation v. Search

Alternating propagation and search. When nothing much is known about the constraints of a CSP, the general procedure to find a solution, or to show that none exists, alternates propagation and search. Each constraint is associated with a propagation procedure which tries to shrink the domains of the constraint variables by removing values that are certainly not part of a solution. This procedure uses first the locally available information, i.e. information provided by the constraint itself. When such a value is excluded from a variable’s domain, this information is also provided to all other propagation procedures associated with constraints that share the same variable. This externally provided information might then trigger a propagation procedure of a constraint which was locally consistent, which in turns might exclude other values, providing again this new information to other constraint procedures. The cascade of propagation procedure calls stops, however, after some time, in a state of global stability where all of the CSP constraints are locally consistent together.

The globally stable state may or may not be a solution (or a failure) to the CSP. If not, a search procedure splits the current problem into at least two
CSPs, usually by assigning a value to a variable from its current domain. More generally this is done by dividing the current D_i domain of a variable x_i into k disjoint subsets ($k \geq 2$) the union of which is D_i and considering the k CSP subproblems. The propagation phase is repeated for each subproblem, thus recursively creating a search tree with the original problem at its root and the solutions or failures at its leaves. It is indeed a search procedure since the choice of the domain to split, and hence of which variable to propagate, and how to split it may be based on heuristics or rules of thumb specific to the problem at hand.

Human Problem-Solving in Su-Doku puzzles. It is generally acknowledged that the alternating propagation and search procedures are effectively used by human solvers when tackling Su-Doku puzzles. All tutorials, books, Web sites and other broadly available Su-Doku instructional material start by highlighting that the first steps to be taken towards a solution involve propagation of the givens, simply by ticking off for each of them its value from the other cells in the same line, file and block. Should this leave exactly one possible value for another cell, mark it and propagate in turn to this cell’s line, file and block until no more propagation is possible.

At this step, there are literally tens of heuristics with inventive names such as “Fish”, “XY-Wing” or “XY-Chain”, ranging from the simple check to the complex pattern, to choose from in order to perform the search phase. Numerous Su-Doku Web sites offer catalogs of patterns to look for in a partially solved puzzles, and each human solver develops his or her own individual catalog as experience grows.

There is no recognized standard, however, for evaluating the complexity of such heuristics. Hence there is no simple way of comparing Su-Doku puzzles difficulties, as some search heuristics may be considered simple by some and complex by others. While the number of givens, which are in fact starting points for the propagation procedures, is certainly an indication of the difficulty level, it is not a complete indicator of the actual complexity. Even so-called minimal puzzles where for $n = 3$ there are 17 givens, might prove easy to solve if the initial propagation goes far towards the solution, leaving only few empty cells for search. (The fact that a $n = 3$ Su-Doku puzzle needs at least 17 givens in order to have a unique solution is still, at the time of this writing, a conjecture.)

1.2 A Simple Propagation-Search Algorithm

In this section we present a very simple implementation of the alternated propagation-search phases to solve Su-Doku puzzles as CSP. This is for illustrative purpose and by no means the only way to implement propagation and search, or to strike a balance between propagation and search in CSP solutions. Some of the ideas here are inspired by [15], and, for lack of a better name, we simply call this algorithm the PS-1-2 algorithm.
Propagation. With each cell in the grid, the algorithm maintains an array of the valid values which can be used for this cell, its so-called domain that the propagation phase seeks to reduce as much as possible provided the constraints.

Initially for a n order Su-Doku puzzle, all domains $D_{i,j}$ are the same set M_{n^2} of the first n^2 integers.

Propagation resolves into iterating four separate steps:

- A value v is assigned to a cell, thus reducing $D_{i,j}$ to \{v\}

- The newly assigned value v is deleted from the domains of cells lying in the same line, file and block than the initial cell: $D_{i,k}$, $D_{k,j}$ and $D_{B(i,j)=B(p,q)}$ are therefore reduced to $D_{i,k}\{v\}$, $D_{k,j}\{v\}$ and $D_{B(i,j)=B(p,q)}\{v\}$ respectively. (Here i, j range over $1\ldots n^2$, and so do k, p and q; the somewhat informal notation $B(i,j)$ denotes the block, in the range $1\ldots n^2$, containing the i,j cell.)

- Another reduction step is taken, leveraging the duality of constraints in the particular Su-Doku CSP formulation. As each line, file or block may only contain one occurrence of any number $1\ldots n^2$, each of the number has to be assigned to a unique cell within a line, file or block. So if a value v appears only once in all $D_{i,j}$ of a given line, file or block, the process reduces this singled out $D_{i,j}$ to \{v\}.

- After this reduction step, some domains $D_{i,j}$ may happen to be empty, in which case the puzzle has no solution - we’ll say that the propagation is blocked - or to be reduced to a singleton \{w\}. If all domains are singletons, the puzzle is solved. If only some of the domains are singletons, the algorithm reiterates these steps assigning the singletons’ values to the corresponding cells.

The iteration is stopped when no further reduction happens in step 4 of the above propagation process. Reductions are done in any order as it does not impact the final result after the system reaches a quiescent state. The “1” in the algorithm name comes from the choice of reducing domains on a single constraint type (and its dual): the unicity of values for CSP variables.

Data representation. In order to lower the computation costs, the domains for each of the n^2 variables representing the puzzle cells are implemented as packed arrays in C. Reduction then becomes a logical operation on a bit arrays. Step 3 of the previous propagation process requires the domains to be transposed: for each line, file and block, n^2 new bit arrays are computed, the i-th of which is made of bits i of the n^2 domain bit arrays.

Binary Search. After the propagation phase we may end in a blocked, solved or yet indeterminate state.

Again we choose here a simple search procedure for the next steps towards a solution in the indeterminate case. Namely we look for domains reduced to
simple pairs \(\{v, w\} \) and we operate a binary depth-first search, first reducing to \(\{v\} \) and then, if no solution is found after recursive propagation and search, reducing to \(\{w\} \) and propagating/searching again.

Note that if at the end of each of the propagation phase we do indeed find pair domains, this process will certainly terminate either finding a solution or proving, after enumeration, that no solution exist for this puzzle.

The “2” in the name of the algorithm derives from the fact that we only consider pair domains in the search phase.

The PS-1-2 algorithm is only one in a scope of algorithms which we will investigate further in the following sections and which were developed to solve a particular type of constraint, called \textit{alldifferent} in the CSP literature. It so happens that the CSP formulation of Su-Doku uses only inter-related alldifferent constraints thus offering a perfect case study for combinatorial analyses of the various approaches to the general solution of alldifferent constraints. Even more so, we will see that Su-Doku constraints are a special form of alldifferent constraints, i.e \textit{permutation} constraints, which specific properties will suggest a completely different approach to Su-Doku puzzle representation and solution explored in the second section of this paper.

1.3 Experiments and Results

A C Implementation. The PS-1-2 algorithm was implemented in C under Cygwin for experimentation purposes. The core of the implementation is articulated around two functions: a propagation and reduction function called \texttt{solveStep}, and a recursive depth-first search function called \texttt{pairReduce}.

```c
int solveStep( int main_step ){
    int step, i, flag, main_flag = 1;
    while( main_flag ){
        // Local rules and propagation main loop
        flag = 1;
        step =1;
        // 1. Propagate givens
        while( flag ){
            flag = propagate();
            step++;
        }
        main_step += step;
        // 2. Reduces lines, cols and blocks
        // Rem.: flag is 0 at this point, L is n*n
        for( i = 0; i < L; i++ ) flag += reduceLine( i );
        for( i = 0; i < L; i++ ) flag += reduceColumn( i );
        for( i = 0; i < L; i++ ) flag += reduceBlock( i );
        main_step += flag;
    }
    return main_step;
}
```

main_flag = (flag > 0) ? 1 : 0;
return main_step;
}

The previous code fragment details the `solveStep` function which propagates assignments of values to cells by calling the (not-represented) `propagate` function, which in turn operates on the domain bit array representations, deleting the assigned values from other cells’ domains in each relevant line, file and block. This is in fact step 2 of the PS-1-2 algorithm as described in the previous section. Then the dual step in domain reduction is taken by calling the (not-represented) `reduceLine`, `reduceColumn` and `reduceBlock` functions which handle the transposition and reduction in step 3 of the PS-1-2 algorithm.

This function exits when no domain can be further reduced to a singleton through the iteration of the basic `propagate` and `reduce` operations.

In addition the function maintains various counters, namely `step` and `main_step`, for simple statistics.

The depth-first search function is straightforward:

```c
int pairReduce(int step){
    packPtr p;
    struct pack keep[S];
    if( 1 == solvedp() ) return step;
    if( 1 == blockedp() ) return step;

    S_ReduceSteps += 1;
    // Find a pair domain p
    p = nextPair();
    if( (packPtr)0 == p ){
        printf( "No pair left. S=%d, B=%d ", solvedp(), blockedp() );
    } else{
        int hi, lo;
        // Store current state of search as an array of domain bit arrays
        packcpy( keep, cell );
        // Extract low and high values in pair p
        lo = getPack( p );
        // Delete low value from domain p
        subPack( p, lo );
        hi = getPack( p );
        // And propagate to other domains
        step = solveStep( step );
        if( 1 == solvedp() ) return step;

        step = pairReduce( step );
        if( 1 == solvedp() ) return step;
    }
    return step;
}
```
// No solution reached, restore search state
packcopy(cell, keep);
// Now delete high value from domain p
subPack(p, hi);
// And propagate to other domains
step = solveStep(step);
if(1 == solvedp()) return step;
if(0 == blockedp()){
 step = pairReduce(step);
}
}
return step;

This code fragment illustrates the search procedure. If pairReduce is entered in a solved or blocked state it returns immediately. If entered in an indeterminate state, it first finds a pair domain, by calling the (non-represented) nextPair function. (In the implementation this function does a simple but costly linear search on the array of all domain bit arrays.) If it fails to find such a pair domain it simply stops, although in all of the test puzzles this never happened.

When it succeeds, however, the function backs up the current search state, here an array of domain bit arrays representing the remaining possible values for each cell in the puzzle, assigns first the highest value of the pair domain to the cell and propagates this assignment by calling the previously mentioned solveStep. At this point, the puzzle is either solved and pairReduce returns (recursively up to the first caller in fact), or in a blocked or indeterminate state. In the latter cases, and in standard depth-first fashion, we search another pair domain by calling recursively pairReduce.

Note that if the state is blocked, this recursive call returns immediately. When it does not and we still have no solution on the first branch of our binary search, we try the other one. The function duly restores the backed up state of search and this time assigns the lowest value of the pair domain to the cell and propagates to other domains, again calling solveStep.

Various counters are also updated for statistical purposes. In order to obtain a running solver program, these functions are wrapped into a main function which initializes all domains to the same all-one bit arrays, reads the puzzle in from a file, executes the initial propagation of the “givens” and calls pairReduce(0).

An Example Run. We ran PS-1-2 on some of the minimal puzzle instances as collected by Gordon Royle [19] who maintains a catalog of order 3 Su-Dokus puzzles with only 17 “givens”.

On another example, the following puzzle, which is not part of this “minimal puzzles” set:
Example 1 Puzzle

\[\begin{array}{cccc}
.125.487. \\
\ldots \\
75.\ldots .23 \\
.41.87.. \\
.2.5.4. \\
.34.95.. \\
48.\ldots .17 \\
\ldots \\
.357.169. \\
\end{array} \]

is solved with only 77 propagation and 11 search operations by PS-1-2, as detailed in the following tabular trace:

Example 2	Prop	Red	Srch	Tot.	Prop	Tot.	Srch
3	-	-	3	0	-	-	0
-	3	-	6	0	-	-	0
3	-	-	9	0	-	-	1
-	0	-	9	0	-	-	2
-	-	h	9	1	-	-	3
3	-	-	12	1	-	-	4
-	0	-	12	1	-	-	5
-	-	h	12	2	-	-	6
3	-	-	15	2	-	-	7
-	3	-	18	2	-	-	8
3	-	-	21	2	-	-	9
-	2	-	23	2	-	-	10
3	-	-	26	2	-	-	11
-	0	-	26	2	-	-	12
-	-	h	26	3	-	-	13
3	-	-	29	3	-	-	14
-	0	-	29	3	-	-	15
-	-	h	29	4	-	-	16
5	-	-	34	4	-	-	17
-	1	-	35	4	-	-	18
3	-	-	38	4	-	-	19
-	0	-	38	4	-	-	20
-	-	h	38	5	-	-	21
5	-	-	41	5	-	-	22
-	0	-	41	5	-	-	23
-	-	h	41	6	-	-	24
5	-	-	46	6	-	-	25
-	1	-	47	6	-	-	26
3	-	-	50	6	-	-	27
-	0	-	50	6	-	-	28
-	-	l	50	6	-	-	29

8
Grid: solved 1, blocked 0; in 77 operations

6 1 2	5 3 4	8 7 9
3 4 9	2 8 7	1 6 5
7 5 8	9 6 1	4 2 3

5 9 4	1 2 8	7 3 6
8 2 7	6 5 3	9 4 1
1 6 3	4 7 9	5 8 2

4 8 6	3 9 5	2 1 7
9 3 1	7 4 2	6 5 8
2 7 5	8 1 6	3 9 4

The process called the search procedure 11 times, when the propagation/reduction operations reach quiescence as indicated by a 0 in the Red(uctions) column. The Srch column indicates whether the h(igh) or l(ow) value of the pair searched is used for the next propagation phase. In the particular instance, backtrack occurred only once at the sixth pair search: both high and low value were propagated to find the solution.

Conclusions. The canonical procedure to solve CSP-formulated problems alternates a propagation phase, where data is used to reduce domains of the variables as far as possible, also known as filtering, with a search phase, a backtrack procedure which explores incremental steps towards a solution. There is ample room for variability in this framework both in the balance between
propagation and search, and within each phase in the criteria used in filtering and in search.

In the case of Su-Doku puzzles, we have presented a naive algorithm, PS-1-2, which only filters on unicity of the variable value and of this value per group (line, file or block) in the propagation phase, and only uses binary search in the alternating search phase. Although there should be pathological cases where the binary search phase might fail, the PS-1-2 algorithm was successful at solving quickly all the puzzles we submitted, including so-called minimal puzzles.

1.4 CSP/SAT/LP formulations: the alldifferent constraint

While several ad hoc CSP solving procedures may be designed for Su-Doku puzzles, its constraints generally fall under a now well documented class of constraints for which efficient filtering procedures have been published in the literature and are embedded in several tools, commercial and otherwise. The pattern appearing in all the constraints in the above CSP formulation of Su-Doku directly relates to one of the latter, the \textit{alldifferent} constraint \cite{21}.

A CSP alldifferent expression. We will rephrase the CSP expression in terms of this well studied alldifferent constraint. Let us consider the \(n\)-sized Su-Doku puzzle and introduce the \(n^4\) variables \(x_{1,1} \ldots x_{n^2, n^2}\) representing the cells in a grid where, by convention, \(x_{i,j}\), is the value to be assigned to the cell in line \(i\) and file \(j\). All variables have the same domain, taking their values in \(M_{n^2}\). The CSP expression of the problem is to find a unique value for each variable satisfying the following set of alldifferent constraints:

- \(\forall i \in \{1, \ldots n^2\} \text{ alldifferent}(x_{1,i}, \ldots x_{n^2,i})\)
- \(\forall j \in \{1, \ldots n^2\} \text{ alldifferent}(x_{j,1}, \ldots x_{j,n^2})\)
- \(\forall b \in \{1, \ldots n^2\} \text{ alldifferent}(x_{b,1}, \ldots x_{b,n^2})\) where the \(b\) are the pair of indices of variables representing cells in the same block

SAT formulations. A given alldifferent constraint naturally translates into a set of simpler binary constraints on its variables, the \emph{naive} translation. In such naive translation the alldifferent constraint is expressed as a conjunction of disjunctive clauses involving at most two variables and the values of the variable domains.

For instance in the size 2 Su-Doku puzzles, an alldifferent constraint on four variables as in line, file and block constraints becomes:

\[
\text{alldifferent}(x_1, x_2, x_3, x_4) =
\begin{align*}
&x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4 \land x_2 \neq x_3 \land x_2 \neq x_4 \land x_3 \neq x_4 \\
&(x_1 = 1 \lor x_1 = 2 \lor x_1 = 3 \lor x_1 = 4) \land (x_2 = 1 \lor x_2 = 2 \lor x_2 = 3 \lor x_2 = 4) \land (x_3 = 1 \lor x_3 = 2 \lor x_3 = 3 \lor x_3 = 4) \land (x_4 = 1 \lor x_4 = 2 \lor x_4 = 3 \lor x_4 = 4)
\end{align*}
\]

a CNF formula with 10 disjunctive clauses, 6 of which are binary and 4 of which unary. Generally speaking the size \(n\) alldifferent constraint naively translates to a CNF formula with \(n(n+1)/2\) disjunctive clauses.
The naive translation is actually enough to be fed to standard SAT solvers such as maxsatz \cite{11} and minisat \cite{5}, for instance.

LP formulations. Logic programming tools can also directly use the above SAT expressions. In this section we investigate the use of the CLP(FD), or Constraint Logic Programming for Finite Domains, extension to the GNU-Prolog implementation \cite{4} in Su-Doku puzzle experiments.

Expanding on the above analysis, a naive implementation of a single alldifferent constraint simply translates it into a corresponding set of binary constraints, each one of which stating that a given variable is different from the other. Focusing on 4×4 Su-Doku grids, i.e. $n = 2$, for instance, such a naive implementation of the single alldifferent constraint on four variables would then be as follows:

\begin{verbatim}
naive_all_different(X,Y,Z,Z0) :-
 X \= Y, X \= Z, X \= Z0, Y \= Z, Y \= Z0, Z \= Z0.
\end{verbatim}

which states that each variable should have a distinct value from the other three variables in the group. In order to complete the size 2 Su-Doku grid enumeration, a definition predicate, assign, is created to define the (unique) domain of all variables:

\begin{verbatim}
assign(1).
assign(2).
assign(3).
assign(4).
\end{verbatim}

It is a predicate which is true for each of the four admissible values of the cells in a size 2 Su-Doku puzzle. To complete the GNU-Prolog program, we use these two predicates to express all the constraints of the 4×4 grid:

\begin{verbatim}
native_puzzle(A00, A01, A10, A11, B00, B01, B10, B11,
 C00, C01, C10, C11, D00, D01, D10, D11) :-
 system_time(T0),
 cpu_time(T10),
 real_time(T20),
 assign(A00),
 assign(A01),
 assign(A10),
 assign(B00),
 assign(B01),
 assign(B10),
 assign(B11),
 assign(C00),
 assign(C01),
 assign(C10),
\end{verbatim}
assign(C11)
assign(D00)
assign(D01)
assign(D10)
assign(D11)

naive_all_different(A00, A01, A10, A11)
naive_all_different(B00, B01, B10, B11)
naive_all_different(C00, C01, C10, C11)
naive_all_different(D00, D01, D10, D11)

naive_all_different(A00, A01, B00, B01)
naive_all_different(A10, A11, B10, B11)
naive_all_different(C00, C01, D00, D01)
naive_all_different(C10, C11, D10, D11)

naive_all_different(A00, A10, C00, C10)
naive_all_different(A01, A11, C01, C11)
naive_all_different(B00, B10, D00, D10)
naive_all_different(B01, B11, D01, D11)

system_time(T),
cpu_time(T1),
real_time(T2),
write('time T0: '), write(T0), write(', time T: '),write(T), nl,
write('time T0: '), write(T10), write(', time T1: '),write(T1), nl,
write('time T0: '), write(T20), write(', time T2: '),write(T2), nl.

The predicates assigns unique values to the 16 variables representing the corresponding cells of the Su-Doku grid or puzzle, and expresses the alldifferent constraint on each of the 4 lines, files and blocks. It also keeps track of various execution times for instrumentation purposes.

Execution times are unsurprisingly very long, even for the size 2 Su-Doku grids as the naive implementation only uses extremely local constraints within one line, file or block and ignores global constraints.

Fortunately, GNU-Prolog bundles a constraint logic programming extension for finite domains which incorporates the latest filtering algorithms for a wide variety of constraints used in industry problems. The CLP(FD) extension uses specific filtering techniques for the alldifferent constraint, the theoretical basis of which will be explored in the next sections, leading to a much more efficient implementation of enumeration and solving tasks.

More specifically, the CLP(FD) extension offers a simple set of built-in predicates such as: \texttt{fd_domain} to define variables’ domains, \texttt{fd_all_different} to state a single alldifferent constraint (of any arity), and \texttt{fd_labeling} to trigger search according to a choice of filtering methods. The CLP(FD) is fully described in Diaz’s Thesis [3]. The size 2 Su-Doku implementation now becomes:

\texttt{puzzle(A00, A01, A10, A11, B00, B01, B10, B11,}
C00, C01, C10, C11, D00, D01, D10, D11) :-
fd_domain(A00, 1, 4)
fd_domain(A01, 1, 4)
fd_domain(A10, 1, 4)
fd_domain(A11, 1, 4)
fd_domain(B00, 1, 4)
fd_domain(B01, 1, 4)
fd_domain(B10, 1, 4)
fd_domain(B11, 1, 4)
fd_domain(C00, 1, 4)
fd_domain(C01, 1, 4)
fd_domain(C10, 1, 4)
fd_domain(C11, 1, 4)
fd_domain(D00, 1, 4)
fd_domain(D01, 1, 4)
fd_domain(D10, 1, 4)
fd_domain(D11, 1, 4)

fd_all_different([A00, A01, A10, A11])
fd_all_different([B00, B01, B10, B11])
fd_all_different([C00, C01, C10, C11])
fd_all_different([D00, D01, D10, D11])

fd_all_different([A00, A01, B00, B01])
fd_all_different([A10, A11, B10, B11])
fd_all_different([C00, C01, D00, D01])
fd_all_different([C10, C11, D10, D11])

fd_all_different([A00, A10, C00, C10])
fd_all_different([A01, A11, C01, C11])
fd_all_different([B00, B10, D00, D10])
fd_all_different([B01, B11, D01, D11])

system_time(T0),
cpu_time(T10),
real_time(T20)
fd_labeling([A00, A01, A10, A11
 B00, B01, B10, B11
 C00, C01, C10, C11
 D00, D01, D10, D11],[variable_method(most_constrained)]),

system_time(T),
cpu_time(T1),
real_time(T2)
write('time T0: '), write(T0), write(', time T: '), write(T), nl,
write('time T0: '), write(T10), write(', time T1: '), write(T1), nl
write('time T0: '), write(T20), write(', time T2: '), write(T2), nl.
Basically this new puzzle predicate defines the 16 domains for the 16 variables with values in the same M_4 set, states the three group of all-different constraints and finally searches for a proper labeling. As before, several ancillary predicates have been added for instrumentation purposes.

On the simple enumeration task, the first solution is almost instantly computed on a standard Intel machine running Windows XP:

```
puzzle( A00, A01, A10, A11, B00, B01, B10, B11, 
        C00, C01, C10, C11, D00, D01, D10, D11).
```

```
A00 = 1
A01 = 2
A10 = 3
A11 = 4
B00 = 3
B01 = 4
B10 = 1
B11 = 2
C00 = 2
C01 = 1
C10 = 4
C11 = 3
D00 = 4
D01 = 3
D10 = 2
D11 = 1 ? ;
```

```
A00 = 1
A01 = 2
A10 = 3
A11 = 4
B00 = 3
B01 = 4
B10 = 1
B11 = 2
C00 = 2
C01 = 3
C10 = 4
C11 = 1
D00 = 4
```
D01 = 1
D10 = 2
D11 = 3 ;
time T0: 296, time T: 328

time T0: 1609, time T1: 1641

time T0: 155875, time T2: 222624

A00 = 1
A01 = 2
A10 = 3
A11 = 4
B00 = 3
B01 = 4
B10 = 1
B11 = 2
C00 = 4
C01 = 1
C10 = 2
C11 = 3
D00 = 2
D01 = 3
D10 = 4
D11 = 1 ? ;
time T0: 296, time T: 343

time T0: 1609, time T1: 1656

time T0: 155875, time T2: 228535

and the other 288 solutions are quickly printed out for a total execution time
of 2,797 milliseconds.

1.5 Arc-Consistency and value graph

In order to understand how to make the best use of the local information pro-
vided by the constraints themselves, we introduce some definitions of local con-
sistency.

Definition 1 A constraint of arity \(m \) on the variables \(x_{i_1} \ldots x_{i_m} \) is hyperarc consistent if all values of the variables are used in some solution to the constraint, i.e. \(\forall x_{i_k} \forall v \in D_{i_k}, \exists (v_{i_1}, \ldots, v_{i_{k-1}}, v, v_{i_{k+1}}, \ldots, v_{i_m}) \in D_{i_1} \times \ldots \times D_{i_{k-1}} \times D_{i_{k+1}} \times \ldots \times D_{i_m} \) such that \((v_{i_1}, \ldots, v_{i_{k-1}}, v, v_{i_{k+1}}, \ldots, v_{i_m}) \) is a solution to the constraint.

Definition 2 A constraint \(C \) is arc-consistent when \(C \) is of arity 2 (binary) and hyperarc consistent.

A constraint has a solution if it can be made hyperarc consistent. Hyperarc consistency is the best possible pruning based on the local information provided
by the constraint. The naive implementation above translate the alldifferent constraint into a collection of binary constraints which are made arc-consistent by filtering the domains following the simple procedure which as soon as a domain is reduced to one value, removes this value from the domains of all other variables.

The more efficient variants used, for instance, in the CLP(FD) package rely on a completely different approach based on results from graph theory. The correspondence with graph theory was used by Régis [18] to create a filtering algorithm from matching theory. We introduce the notion of bipartite graph.

Definition 3 Bipartite Graph. A graph G consists of a finite, non-empty set of elements V called nodes, or vertices, and a set of unordered pair of nodes E called edges. If V can be partitioned into two disjoint, non-empty sets X and Y such that all edges in E join a node in X to a node in Y, G is called bipartite with partition (X,Y); we also write G = (X,Y,E).

The definition directly applies to the alldifferent constraint say, on variable set $X = \{x_1, \ldots x_n\}$ and domains $D_1 \ldots D_n$, in that it specifies its value graph.

Definition 4 Value Graph. Given an alldifferent constraint, the bipartite graph $G = (X, \bigcup D_i, E)$ where $(x_i, d) \in E$ iff $d \in D_i$ is called the value graph of the constraint.

The value graph has an edge from each variable in the constraint to each of its domain value. Solving such a constraint becomes a problem of maximum matching in the corresponding value graph.

Definition 5 Maximum Matching. A subset of edges in a graph G is a matching if no two edges have a vertex in common. A matching of maximum cardinality is called a maximum matching. A matching covers a set of vertices X isf every node in X is an endpoint of an edge in the matching.

The link between matching theory and hyperarc consistency established by Régis is as follows.

Proposition 1 The constraint alldifferent on variable set X is hyperarc consistent iff every edge in its value graph belongs to a matching that covers X in the value graph.

Hyperarc and arc-consistency algorithms are around $O(dn^{1.5})$ where d is the maximum cardinality of the domains and n the number of variables.

Matching Theory. Obviously if there is a complete matching from X to Y in (X,Y,E) then for every $S \subset X$ there are at least $|S|$ vertices of Y adjacent to a vertex in S. That this necessary condition is also sufficient is usually called Halls’ theorem. This fundamental result was proved by Hall in 1935, but an equivalent form of it had been proved by König and Egervary in 1931;
both versions, however, follow from Menger’s theorem from 1927. We refer to
Bollobas for demonstrations and historical remarks [1].

These results will also be the origin of yet another approach to solving Su-
Doku puzzles and enumerating grids, as a complete matching is also called a
set of distinct representatives, from which are derived new expressions of the
Su-Doku problems in terms of exact covers or dually exact hitting set problems.
This new formulation will suggest a different algorithmic approach which is
explored in Section 2.

Régin’s algorithm relies on the fact that if we know only one arbitrary maxi-
mum matching, we can efficiently compute if an edge of the value graph belongs
to some matching of the same maximum size without having to explore all such
matchings.

1.6 Bounds- and range-consistency filtering

Hall’s theorem from matching theory may also be used in relation to weaker
forms of consistency called bounds-consistency and range-consistency.

Definition 6 Bounds Consistency. A constraint of arity m where no domain
\(D_i \) is empty, is called bounds consistent iff for each variable and each value in
the range bounded by \(\min(D_i) \) and \(\max(D_i) \), there exist values in the respective
ranges bounded by the other domains minimum and maximum values such that
together with the latter \(D_i \) value they constitute a solution to the constraint.

Definition 7 Range Consistency. A constraint of arity m where no domain
\(D_i \) is empty, is called bounds consistent iff for each variable and each value in
\(D_i \), there exist values in the respective ranges bounded by the other domains
minimum and maximum values such that together with the latter \(D_i \) value they
constitute a solution to the constraint.

Note that here all domains are supposed to be integer domains which can
be (totally) ordered. In contrast to hyperarc and arc-consistency, bounds and
range consistency look for values in the intervals defined by domains, rather
than the domains themselves. As these intervals may be larger than the actual
domains, these notions represent weaker form of consistencies than hyperarc
and arc-consistency. Both may be considered as a relaxation of the hyperarc
consistency. (In addition, bounds consistency may be regarded as a relaxation
of range consistency itself.)

Hall’s theorem has been applied by Puget to create a bounds consistency
algorithm for the alldifferent constraint [17]. Given an interval \(I \) let us denote
\(K_I \) the set of variables \(x_j \) such that \(D_j \subset I \), i.e. the subset of variables which
domains are included into the considered interval. We say that \(I \) is a Hall
interval iff \(|I| = |K_I|\). Puget’s result is as follows.

Proposition 2 The constraint alldifferent on variables \(x_1, \ldots, x_n \) where no do-
main \(D_i \) is empty is bounds consistent iff
i. for each interval I $|K_I| \leq |I|$,

ii. for each Hall interval I, $\{\min(D_i), \max(D_i)\} \cap I = \emptyset$ for all $x_i \notin K_I$.

This can be used to create an algorithm for bounds consistency on alldifferent constraints. We check every interval I with bounds ranging from the minimum of all domains to the maximum of all domains. When $|I| \leq |K_I|$ the constraint is inconsistent. And for each Hall interval, we remove the minimum and/or maximum until the intersection with I is empty.

Example 3 Consider the following constraint:

1. alldifferent(x_1, x_2, x_3)
2. $D_1 = \{1, 2\}, D_2 = \{1, 2\},$ and $D_3 = \{2, 3\}$

The intervals we need to check are $[1, 2], [1, 3], \text{and } [2, 3]$. When $I = [1, 2]$, the domains included in the interval are D_1 and D_2, hence $K_I = \{x_1, x_2\}$ and since $|I| = |K_I| = 2$, I is a Hall interval. We only have one variable not in K_I, namely x_3, for which $\{\min(D_3), \max(D_3)\} \cap I = \{2\}$. The algorithm removes then 2 from D_3 and the resulting system of sets $\{1, 2\}, \{1, 2\}, \{3\}$ is now bounds consistent. The two solutions $(1, 2, 3)$ and $(2, 1, 3)$ are now a simple consequence of the reduction of D_3.

Faster implementation of bounds consistency have been designed since Puget’s publication [11, 13]. Leconte introduced an algorithm that achieves range consistency [9], also based on the Hall’s theorem. In dual definitions from above, given a set of variables K let I_K be the interval $[\min(D_K), \max(D_K)]$ where D_K is the union of all variable domains; K is a Hall set iff $|K| = |I_K|$.

Proposition 3 The constraint alldifferent alldifferent on variables x_1, \ldots, x_n where no domain D_i is empty is range consistent iff for each Hall set K, $D_i \cap I_K = \emptyset$ for all $x_i \notin K$.

An algorithm for range consistency can be derived from the previous proposition in a similar way to the derivation of the bounds consistency algorithm.

1.7 Su-Doku as a CSP: a specific problem

Enumerating Su-Doku grids or solving puzzles within reasonable space and time limits requires efficient algorithms for a single type of constraint, the alldifferent constraint. While general “propagate + search” constraint-solving algorithms will work well on Su-Doku puzzles, specifically tailored algorithm for the alldifferent constraint work still better. There are several versions of such algorithms, which embody different degrees of consistency and hence of performance in the puzzle task. Modern CSP, SAT and LP-solvers usually provide specific filtering procedures for the alldifferent constraint, which make them tools of choice for studying the complexity of the Su-Doku universe.
2 Su-Doku as an Exact Cover problem

In fact, Su-Doku grids and puzzles involve an even more specific constraint than the alldifferent constraint. As is obvious from the previously mentioned SAT and CSP formulations, the alldifferent constraints in the Su-Doku problems involve variables having the same domain, namely \(M_n^2 \). In addition the number of variables in a given constraint is equal to the size of their shared domain. We call such special alldifferent constraint, permutations.

In this section we explore a completely different approach to enumerating and solving grids and puzzles based on the precedent observation. Although the theoretical basis, going back to matching theory and Hall’s results in graph theory, is the same, the resulting algorithms will significantly differ from the ones derived from consistency-checking filtering procedures explored in the previous section of this paper.

2.1 The Exact Cover and Exact Hitting Set problems

Definition 8 (Exact Cover) Given a family \(\mathfrak{A} = \{A_1, \ldots, A_m\} \) of subsets of a set \(X \), \(\mathfrak{A} \) is called an exact cover of \(X \) when \(\forall x \in X, \exists i, 1 \leq i \leq m \) such that \(x \in A_i \).

This definition has also a dual formulation which describes an exact hitting set.

Definition 9 (Distinct Representatives) Given a family \(\mathfrak{A} = \{A_1, \ldots, A_m\} \) of subsets of a set \(X \), a set of \(m \) distinct elements of \(X \), one from each \(A_i \) is called a set of distinct representatives of \(\mathfrak{A} \), or a hitting set.

If the set of distinct representatives is \(X \), it is called an exact hitting set and \(\mathfrak{A} \) is an exact cover of \(X \).

Finding exact hitting sets and enumerating exact hitting sets may be solved by backtracking algorithms. Their efficiency in this case relies on the fact that a representative has a unique value among the possible ones in the \(A_i \) subset and the filtering procedure, in the previous section sense of CSP solving, then reduces to the simple elimination of this value from all other domains.

A permutation problem is a constraint satisfaction problem in which each decision variable takes an unique value, and there is the same number of values as variables. Hence any solution assigns a permutation of the values to the variables. There are \(m! \) such permutations for a constraint involving \(m \) variables. The important feature of permutation CSPs is that we can transpose the roles of values and variables in representing the underlying problem to give a new dual model which is also a permutation problem. Each variable in the original (primal) problem becomes a value in the dual problem, and vice versa.

An injection problem is a CSP in which each decision variable takes a unique value, and there are more values than variables. (Obviously if there are fewer values than variables, the problem is trivially unsatisfiable.)
The primal and the dual permutation problems are of course equivalent, but efficient algorithm can leverage this transposition by switching from one model to the other when appropriate[7]. Actually the simple PS-1-2 algorithm described in the previous section indeed used the fact that the specific all-different constraints in Su-Doku problems are all permutation problems: the so-called reduce functions transpose values to variables, seeking to further reduce primal and dual domains when possible.

In Su-Doku problems, each constraint is both a permutation and an exact hitting set problem as all variables have the same domain.

Matrix representation of exact hitting set and exact cover problems. Both exact hitting set and exact cover problem can be represented as follows. Given a boolean matrix M with n rows and m columns, the problem is to find a subset \mathcal{A} of the rows of M, such that each column j in M has exactly one row $i \in \mathcal{A}$ such that $M_{i,j} = 1$.

For example, consider the following matrix M with $n = 6$ and $m = 4$:

$$
M = \begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{pmatrix}
$$

Possible exact hitting sets are $\{1,3,5\}$, $\{2,6\}$ and $\{3,4\}$.

In the case of permutation problems, the matrices involved are square $n \times n$ matrices.

2.2 Enumeration

The count of exact hitting sets is the number of solutions to the constraints used in Su-Doku formulations. Generally speaking, the number of exact hitting sets for permutation constraints, i.e. in which the number of values is the same as variables, is given by the permanent of the representation matrix[12].

Definition 10 (Permanent) If A is an n-square matrix then the permanent of A is defined by

$$
\text{per} \ A = \sum_{\sigma \in S_n} \prod_{i=1}^{n} a_{i,\sigma(i)}
$$

where the summation extends over S_n, the symmetric group of degree n.

The permanent is an appropriate invariant for matrices that arise in combinatorial investigations where the problem is essentially unaltered by relabeling of the items under consideration, which is obviously the case in permutation problems. For example, the total number of derangements (“le problème des rencontres”) of n distinct items is given by $\text{per}(J - I_n)$ where J is the n-square
matrix with every entry equal to 1, and I_n is the n-square identity matrix [10].

(This is series A000166 in the Online Encyclopedia of Integer Sequences.)

Even though the permanent looks superficially like the more familiar determinant (without the alternating ± signs), Pólya observed that no uniform affixing of ± signs to the elements of the matrix can convert the permanent into the determinant, for $n > 2$. The apparent simplification of definition from the determinant results counter-intuitively in tremendous complications in the evaluation of permanents. In particular, and in contrast to the determinant, the permanent is not well-behaved under permutation of rows and columns of the matrix; it is, however, multilinear like the determinant.

Van der Waerden’s Conjecture. Bounds for the permanent have been found, however difficult its exact computation turns out to be. Given a n-square matrix A, the i-th row sum of A is defined by

$$r_i = \sum_{j=1}^{n} a_{i,j}$$

and similarly the i-th column sum of A is defined by

$$c_i = \sum_{j=1}^{n} a_{i,j}$$

With these, we introduce a doubly stochastic matrix with this definition.

Definition 11 (Doubly Stochastic Matrix) Let $A = (a_{i,j})$ be a n-square matrix, then A is doubly stochastic if

- $0 \leq a_{i,j} \leq 1$ for $1 \leq i, j \leq n$
- $r_i = 1$ for $1 \leq i \leq n$
- $c_i = 1$ for $1 \leq i \leq n$

Note that the representation matrix of an exact hitting set (or exact cover problem) is amenable to a doubly stochastic matrix, in the case of permutation, by replacing each entry equal to 1 with $1/n$.

Van der Waerden made a conjecture on the lower bound for the permanent of doubly stochastic matrices in 1926 [2] which was later proved (in 1981) by Egoritchev and by Falikman as exposed by Knuth in [8].

Theorem 1 (Van der Waerden’s Conjecture) Let A be a doubly stochastic n-square matrix, then

$$\text{per}(A) \geq \frac{n!}{n^n}$$

with equality iff $a_{i,j} = 1/n$ for all $1 \leq i, j \leq n$.

21
Minc’s Conjecture. There is also a result for the upper bound of the permanent, due to an conjecture originally due to Minc [14]. The conjecture was first proved by Bregman in 1973 and a simpler proof is due to Schrijver [20].

Theorem 2 (Minc’s Conjecture) Let A be a n-square matrix with values in $\{0,1\}$ and non-zero sums r_i,

$$\text{per}(A) \leq \prod_{i=1}^{n} (r_i!)^{1/r_i}$$

There are only few matrices for which an explicit formula for the permanent is available, the derangements being one instance. In fact [12],

$$\text{per}(zI_n + J) = n! \sum_{r=0}^{n} \frac{z^r}{r!}$$

which, for the derangements, gives with $z = -1$,

$$\text{per}(J - I_n) = n!(1 - \frac{1}{1!} + \frac{1}{2!} - \ldots + (-1)^n \frac{1}{n!})$$

Permanents can be used to evaluate the number of Su-Doku grids. The scarce results known about permanents, however, yield only information on upper bounds of the number of grids rather than their exact number which was essentially computed by brute force in [6].

2.3 An implementation of Knuth’s “Dancing Links” algorithm

In a famous paper [?], Donald Knuth proposed an algorithm and a very efficient implementation for the exact cover problem. While the paper expands on its application to pentominoes, tetrasticks and to the queens problems, the algorithm itself, which Knuth called Algorithm X “for lack of a better name”, has a much broader scope. Through proper formulation of Su-Doku grid and puzzle problems, it proved efficient at enumerating grids and solving problems of various sizes.

Knuth’s first insight is to point that the matrix representation of the exact cover or exact hitting set problems makes it a good candidate for backtracking. Algorithm X is a simple expression of a generic backtrack process.

Knuth’s backtracking algorithm for the exact hitting set problem. Algorithm X is a nondeterministic algorithm, defined on a given matrix A of 0s and 1s. Citing from Knuth’s paper:

If is empty, the problem is solved; terminate successfully.
Otherwise choose a column deterministically.
Choose a row such that nondeterministically.
Include in the partial solution.
For each such that,
- delete column from matrix;
- for each such that, delete row from matrix.
Repeat this algorithm recursively on the reduced matrix.

The nondeterministic choice of a row means that all such rows are successively (or in parallel) selected for inclusion into the partial solution, the algorithm proceeding essentially in an independent way on these rows. The choice of the column \(c \), on the other hand impacts the execution time and exploration path of the algorithm. Any systematic rule for choosing a column in the procedure will find all solutions. Certain rules, however, work better than others.

In the Su-Doku experiments we studied two such rules: the random rule, where the column is chosen at random in the reduced matrix, and the shortest rule, where the column having the smaller number of 1s is selected. While for enumeration tasks these options make no real difference, as Algorithm X in this case behaves basically as a trial and error procedure, we found that for puzzles, the shortest rule always outperformed the other one. This is also the result of experiments ran on another well-known combinatorial puzzle, the Langford’s problem.

Knuth’s “Dancing Links” implementation. In the original paper, Knuth also proposed a very efficient implementation of Algorithm X based on doubly-linked circular lists. Each element in the matrix \(A \) is represented as a structured object with pointers to the previous and next elements in the same row (left and right), to the previous and next elements in the same column (up and down) and an extra-pointer to a column header structure which keeps track of the column name, its size (the number of 1s) and additional metric information which can be useful to monitor the performance of the algorithm.

```c
typedef struct col {
    struct col *l;
    struct col *r;
    struct cell *u;
    struct cell *d;
    int size;
    char name[8];
    ClientDataPtr clientData;
} *colPtr;

typedef struct cell {
    struct cell *l;
    struct cell *r;
    struct cell *u;
    struct cell *d;
    colPtr c;
```
The \(l \) and \(r \) fields of the column headers link remaining columns in the reduced matrix which need to be covered. Global variables point to the circular list of columns and to the partial solution:

```c
static struct col S_Header;
static cellPtr *S_Covering;
```

With these data structures, the concrete implementation of Algorithm X is as follows:

```c
search( k ):
If S_Header.r == S_Header, print the current solution and return.
Otherwise choose a column structure .
Cover column .
For each row in while ,
- set S_Covering[k]=;
- for each in while , cover column ;
- search( k+1 );
- set =S_Covering[k], and ;
- for each in while , uncover column .
Uncover column and return.
```

The search procedure is initially called with \(k = 0 \) to enumerate all solutions.

Knuth’s second insight is used to implement the cover/uncover function which are used to remove and reinstall columns in the matrix. Knuth observed that the “atomic” remove operations in a doubly-linked circular list:

\[
x.r.l = x.l \quad \text{and} \quad x.l.r = x.r
\]

are simply reversed, provided the \(x \) data structure is kept intact, by the subsequent operations:

\[
x.r.l = x \quad \text{and} \quad x.l.r = x
\]

which will put back \(x \) in the circular list.

The cover operation uses the first set of operations to remove a column first from the header list and then to remove all rows in \(c \)'s own circular list from the other column lists they are in:

```c
int cover( colPtr col ){
    int updates = 0;
    /* Remove col from header list */
    col->r->l = col->l; col->l->r = col->r;
    updates++;

    /* Remove all rows in col list from other col lists they are in */
    cellPtr cell, rowCell;
```
for(cell = col->d; cell != (cellPtr)col; cell = cell->d){
 for(rowCell = cell->r; rowCell != cell; rowCell = rowCell->r){
 rowCell->d->u = rowCell->u; rowCell->u->d = rowCell->d;
 rowCell->c->size -= 1;
 updates++;
 }
}

return updates;
}

The function also keeps track of counters for statistical purposes and decrements the column size in the header. The uncovering operation is symmetric, taking place in precisely the reverse order of the covering operation:

 /*
 * uncover - Inverse cover
 */
 void uncover(colPtr col){
 /* Inserts all row cells */
 cellPtr cell, rowCell;
 for(cell = col->u; cell != (cellPtr)col; cell = cell->u){
 for(rowCell = cell->l; rowCell != cell; rowCell = rowCell->l){
 rowCell->d->u = rowCell->u; rowCell->u->d = rowCell;
 rowCell->c->size += 1;
 }
 }

 /* Inserts in header list */
 col->r->l = col; col->l->r = col;
 }

The disconnected then reconnected links perform what Knuth called a “dance” which gave its name to this implementation known as the “Dancing Links”.

The running time of the algorithm is essentially proportional to the number of times it applies the remove operation, counted here with the updates variable. It is possible to get good estimates of the running time on average by running the above procedure a few times and applying techniques described elsewhere by Knuth [?] and Hammersley and Morton [?] (so called “Poor Man’s Monte Carlo”).

Deriving cover matrices from representation matrices. We now turn to the proper formulation of Su-Doku questions for calculations by the Dancing Links algorithm. Considering an elementary constraint in the size 2 Su-Doku puzzle, for instance on one row of the 4x4 grid, its matrix representation as in
2.1 is simply:

\[
M = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{pmatrix}
\]

In \(M \) each column stands for a variable in the all-different constraint; there are four of them, one for each cell in the grid’s row under consideration. The rows represent each of the possible four values 1, 2, …, 4 of all these variables. Remember that in a permutation constraint all variable domains are the same and their size is equal to the number of variables, here four.

And of course, should we be interested in a single permutation constraint, the number of solutions, which as mentioned above is expressed by the permanent of this “all-1s” matrix, is simply, in this case, the number of permutations of four elements, i.e. \(4! = 24 \).

Now in order to obtain the \(A \) matrix for the Dancing Links algorithm, we augment the matrix \(M \) with the fact that each variable must have only one value. This is captured by four additional columns, one for each variable, containing a 1 for a given (row) value assigned to the variable and 0 otherwise:

\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(C_1 \)	\(C_2 \)	\(C_3 \)	\(C_4 \)	
\(x = 1 \)	1	0	0	0	1	0	0	0
\(x = 1 \)	1	0	0	0	0	1	0	0
\(x = 1 \)	1	0	0	0	0	0	1	0
\(x = 1 \)	1	0	0	0	0	0	0	1
\(x = 2 \)	0	1	0	0	1	0	0	0
\(x = 2 \)	0	0	1	0	0	1	0	0
\(x = 2 \)	0	0	0	1	0	0	0	1
\(x = 3 \)	0	0	1	0	1	0	0	0
\(x = 3 \)	0	0	1	0	0	1	0	0
\(x = 3 \)	0	0	0	1	0	0	0	1
\(x = 4 \)	0	0	0	1	1	0	0	0
\(x = 4 \)	0	0	0	1	0	1	0	0
\(x = 4 \)	0	0	0	1	0	0	1	0
\(x = 4 \)	0	0	0	1	0	0	0	1

In this table the \(x_i \) column is the \(i \)-th variable in the \(C \) permutation constraint, the \(C_i \) column represents the \(i \)-th position in the constraint and each row a value from the shared domain \(\{1, 2, 3, 4\} \). The \(A \) matrix has 8 columns and 16 rows.

More generally speaking, for a size \(n \) permutation constraint the \(A \) matrix counts \(n^2 \) rows and \(n + n = 2n \) columns.

For a complete Su-Doku grid, there is one such constraint per line, per file and per block. In addition, variables are shared between constraints, each one appearing in 3 constraints. Let us consider a Su-Doku of size \(n \), which contains
n^4, cells in n^2 lines by n^2 files, and n^2 blocks. The full size A matrix for the Dancing Links algorithm has $n^4 + n^4 + n^4 + n^4 = 4n^4$ columns, one for each of the cells, and n^2 for each of the line, file and block in the grid. It also has n^6 rows, one row for each of the n^2 possible value for each of the n^4 cells. The following table indicate the matrices sizes for different Su-Doku problems:

n	Matrix(rows × cols)
2	64 × 64
3	729 × 324
4	4096 × 1024

These sizes are small enough for the algorithm to perform satisfactorily on modern PCs.

Enumerating grids and solving puzzles with the “Dancing Links”. Having augmented the matrix to prepare it for the Dancing Links algorithms we are now ready to put the algorithm through different chores.

In order to enumerate all Su-Doku valid grids we simply run the `search(0)` procedure with the appropriate A matrix as above. Of course, while the 288 solutions of the size 2 Su-Doku grids are quickly enumerated, the size 3 grid takes evidently too long to list. Interestingly enough, size 2 variations of Su-Doku grids, such as *diagonal Su-Doku grids* where in addition one requires that all numbers in both diagonals to be different – adding two additional permutation constraints to the existing set, captured by $2n^2$ additional columns in the A matrix – can also be enumerated by the same procedure.

In order to solve puzzles, we need to remove from matrix A the rows corresponding to the givens in the puzzle. In our implementation, this is simply another parameter file to the command line. If there are k such givens in the puzzle, k rows are initially added to the partial solution and the procedure `search(k)` is called. The algorithm then proceeds, as above, to enumerate all solutions to the puzzle. It can be used to validate a puzzle, making sure that it has only one solution.

2.4 Experimentation and results

Enumerating size-2 Su-Doku grids. Running the Dancing Links algorithm on the 64 by 64 size-2 Su-Doku A matrix, produces the first of the 288 solutions almost immediately:

Read 64 columns from sud2.mat
Read 64 rows from file sud2.mat

[16] New covering 1/1 in 0 secs, 0 usecs:

Depth	Covers	Backtracks	Degrees
0	37	1	4
1	25	1	2
2	22	1	2
3	16	1	1
The *sud2.mat* file is the A matrix for the size-2 Su-Doku grid. The trace table shows the depth, i.e. the value of k which indicates the depth in the backtrack tree; the cover count, which is the number of elementary remove operations in the circular lists; the number of backtracking steps at each depth level; and the degree, the number of children nodes explored at each level. Finally the estimation of the average number of operations to reach a solution is printed according to the "Poor Man's Monte Carlo" method.

Counting Su-Doku grids. The algorithm can be used to count the number of Su-Doku grids, here for the size-2 grid:

- Read 64 columns from *sud2.mat*
- Read 64 rows from file *sud2.mat*

Count	Cover	Backtrack Steps	Degree	Solution Count	
1	16	7620	7620	7620	
2	16	7620	15240		
3	16	5316	20556		
4	16	5316	25872		
5	16	7620	33492		
6	16	7620	41112		
7	16	7620	48732		
8	16	7620	56352		
9	16	5316	61668		
10	16	5316	66984		
11	16	7620	74604		
12	16	7620	82224		
13	16	7620	89844		
14	16	7620	97464		
15	16	5316	102780		
16	16	5316	108096		
17	16	7620	115716		
18	16	7620	123336		
---	---	---	---	---	
19	16	7620	130956		
20	16	7620	138576		
21	16	5316	143892		
22	16	5316	149208		
23	16	7620	156828		
24	16	7620	164448		
25	16	7620	172068		
26	16	7620	179688		
27	16	5316	185004		
28	16	5316	190320		
29	16	7620	197940		
30	16	7620	205560		
31	16	7620	213180		
32	16	7620	220800		
33	16	5316	226116		
34	16	5316	231432		
35	16	7620	239052		
36	16	7620	246672		
37	16	5316	251988		
38	16	7620	259608		
39	16	7620	267228		
40	16	7620	274848		
41	16	7620	282468		
42	16	5316	287784		
43	16	5316	293100		
44	16	7620	300720		
45	16	7620	308340		
46	16	7620	315960		
47	16	7620	323580		
48	16	5316	328896		
49	16	5316	334212		
50	16	7620	341832		
51	16	7620	349452		
52	16	7620	357072		
53	16	7620	364692		
54	16	5316	370008		
55	16	5316	375324		
56	16	7620	382944		
57	16	7620	390564		
58	16	7620	398184		
59	16	7620	405804		
60	16	5316	411120		
61	16	5316	416436		
62	16	7620	424056		
63	16	7620	431676		
64	16	7620	439296		
---	---	---	---	---	---
65	16	7620	446916		
66	16	5316	452232		
67	16	5316	457548		
68	16	7620	465168		
69	16	7620	472788		
70	16	7620	480408		
71	16	7620	488028		
72	16	5316	493344		
73	16	7620	500964		
74	16	7620	508584		
75	16	5316	513900		
76	16	5316	519216		
77	16	7620	526836		
78	16	7620	534456		
79	16	7620	542076		
80	16	7620	549696		
81	16	5316	555012		
82	16	5316	560328		
83	16	7620	567948		
84	16	7620	575568		
85	16	7620	583188		
86	16	7620	590808		
87	16	5316	596124		
88	16	5316	601440		
89	16	7620	609060		
90	16	7620	616680		
91	16	7620	624300		
92	16	7620	631920		
93	16	5316	637236		
94	16	5316	642552		
95	16	7620	650172		
96	16	7620	657792		
97	16	7620	665412		
98	16	7620	673032		
99	16	5316	678348		
100	16	5316	683664		
101	16	7620	691284		
102	16	7620	698904		
103	16	7620	706524		
104	16	7620	714144		
105	16	5316	719460		
106	16	5316	724776		
107	16	7620	732396		
108	16	7620	740016		
109	16	5316	745332		
110	16	7620	752952		
---	---	-----	-----		
111	16	7620	760572		
112	16	7620	768192		
113	16	7620	775812		
114	16	5316	781128		
115	16	5316	786444		
116	16	7620	794064		
117	16	7620	801684		
118	16	7620	809304		
119	16	7620	816924		
120	16	5316	822240		
121	16	5316	827556		
122	16	7620	835176		
123	16	7620	842796		
124	16	7620	850416		
125	16	7620	858036		
126	16	5316	863352		
127	16	5316	868668		
128	16	7620	876288		
129	16	7620	883908		
130	16	7620	891528		
131	16	7620	899148		
132	16	5316	904464		
133	16	5316	909780		
134	16	7620	917400		
135	16	7620	925020		
136	16	7620	932640		
137	16	7620	940260		
138	16	5316	945576		
139	16	5316	950892		
140	16	7620	958512		
141	16	7620	966132		
142	16	7620	973752		
143	16	7620	981372		
144	16	5316	986688		
145	16	7620	994308		
146	16	7620	1001928		
147	16	5316	1007244		
148	16	5316	1012560		
149	16	7620	1020180		
150	16	7620	1027800		
151	16	7620	1035420		
152	16	7620	1043040		
153	16	5316	1048356		
154	16	5316	1053672		
155	16	7620	1061292		
156	16	7620	1068912		
203	16	7620	1392492		
-----	----	------	----------		
204	16	5316	1397808		
205	16	5316	1403124		
206	16	7620	1410744		
207	16	7620	1418364		
208	16	7620	1425984		
209	16	7620	1433604		
210	16	5316	1438920		
211	16	5316	1444236		
212	16	7620	1451856		
213	16	7620	1459476		
214	16	7620	1467096		
215	16	7620	1474716		
216	16	5316	1480032		
217	16	7620	1487652		
218	16	7620	1495272		
219	16	5316	1500588		
220	16	5316	1505904		
221	16	7620	1513524		
222	16	7620	1521144		
223	16	7620	1528764		
224	16	7620	1536384		
225	16	5316	1541700		
226	16	5316	1547016		
227	16	7620	1554636		
228	16	7620	1562256		
229	16	7620	1569876		
230	16	7620	1577496		
231	16	5316	1582812		
232	16	5316	1588128		
233	16	7620	1595748		
234	16	7620	1603368		
235	16	7620	1610988		
236	16	7620	1618608		
237	16	5316	1623924		
238	16	5316	1629240		
239	16	7620	1636860		
240	16	7620	1644480		
241	16	7620	1652100		
242	16	7620	1659720		
243	16	5316	1665036		
244	16	5316	1670352		
245	16	7620	1677972		
246	16	7620	1685592		
247	16	7620	1693212		
248	16	7620	1700832		
249 16 5316 1706148
250 16 5316 1711464
251 16 7620 1719084
252 16 7620 1726704
253 16 5316 1732020
254 16 7620 1739640
255 16 7620 1747260
256 16 7620 1754880
257 16 7620 1762500
258 16 5316 1767816
259 16 5316 1773132
260 16 7620 1780752
261 16 7620 1788372
262 16 7620 1795992
263 16 7620 1803612
264 16 5316 1808928
265 16 5316 1814244
266 16 7620 1821864
267 16 7620 1829484
268 16 7620 1837104
269 16 7620 1844724
270 16 5316 1850040
271 16 5316 1855356
272 16 7620 1862976
273 16 7620 1870596
274 16 7620 1878216
275 16 7620 1885836
276 16 5316 1891152
277 16 5316 1896468
278 16 7620 1904088
279 16 7620 1911708
280 16 7620 1919328
281 16 7620 1926948
282 16 5316 1932264
283 16 5316 1937580
284 16 7620 1945200
285 16 7620 1952820
286 16 7620 1960440
287 16 7620 1968060
288 16 5316 1973376

Found 288 coverings in 0 secs, 20000 usecs
Average Estimation on 288 paths: 6852

The first column prints the solution’s number, the second the depth reached (always 16 for size-2 grid), the third one the estimation of the tree size, and the
last one the cumulated estimation used to provide the average on the last line. Here, in average, 6852 nodes are explored in the backtrack tree problem space.

Further results. The Dancing Links implementation makes it very easy to experiment with several variations of the Su-Doku grids and puzzles. Adding further constraints to the problem is simply a matter of adding columns to the A matrix used by the algorithm. In the diagonal variant, for instance, where a Su-Doku grid is considered valid if, in addition, all numbers in both diagonals are also different, $2n$ columns are added to the A matrix to account for the n possible positions of each $1 \ldots n^2$ figure in each diagonal.

In this variant, running the Dancing Links for enumeration yields the 48 unique solutions for a size 2 diagonal Su-Doku problem (a 4-by-4 grid) and an average of 3666 nodes explored in the backtrack tree problem space. Note that the exploration space/time complexity is roughly halved on this instance.

On a different track, the Dancing Links algorithm was successfully used for experimenting with the Langford problems which combinatorial nature, ultimately relying on permutation constraints, lends it perfectly to Dancing Links-based study.

References

[1] Bela Bollobas. *Modern Graph Theory*, volume 184 of *Graduate Texts in Mathematics*. Springer, 1998.

[2] Richard Brualdi. Book reviews, permanents by henryk minc. *Bulletin of the American Mathematical Society*, 1(6):965–973, November 1979.

[3] D. Diaz and P. Codognet. Compiling constraints in clp(fd). 1996.

[4] Daniel Diaz. Gnu-prolog. *Web site*, http://www.gprolog.org/ 1996.

[5] Niklas Een and Niklas Sorensson. An extensible sat solver. *Preprint*, http://minisat.se/downloads/MiniSat.ps.gz, 2003.

[6] Bertram Felgenhauer and Frazer Jarvis. Enumerating possible suodoku grids. *Preprint*, http://www.afjarvis.staff.shef.ac.uk/sudoku/felgenhauer.jarvis_spec1.pdf, 2005.

[7] Brahim Hnich, Barbara M. Smith, and Toby Walsh. Dual modelling of permutation and injection problems. *Journal of Artificial Intelligence Research*, 21:357–391, 2004.

[8] Donald E. Knuth. A permanent inequality. *The American Mathematical Monthly*, 88(10):731–740, December 1981.

[9] M. Leconte. A bounds-based reduction scheme for constraints of difference. In *Proceedings of Constraint 96, Second International Workshop on Constraint-based Reasoning*, pages 19–28, 1996.
[10] Chu Min Li, Felip Manya, and Jordi Planes. New inference rules for max-
sat. *Journal of Artificial Intelligence Research*, 30:321–359, 2007.

[11] A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and
simple algorithm for bounds consistency of the alldifferent constraint. In
IJCAI, editor, *Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence (IJCAI ’03)*. IJCAI, 2003.

[12] Marvin Marcus and Henryk Minc. Permanents. *The American Mathematical
Monthly*, 72(6):577–591, June 1965.

[13] Kurt Mehlhorn and Sven Thiel. Faster algorithms for bound-consistency
of the sortedness and the alldifferent constraint. In *CP ’02: Proceedings of
the 6th International Conference on Principles and Practice of Constraint
Programming*, pages 306–319, London, UK, 2000. Springer-Verlag.

[14] Henryk Minc. Upper bounds for permanent of (0,1)-matrices. *Bulletin of
the American Mathematical Society*, 69:789–791, 1963.

[15] Peter Norvig. Solving every sudoku puzzle. *Preprint*,
http://norvig.com/sudoku.html, 2006.

[16] Stephen G. Penrice. Derangements, permanents, and christmas presents.
The American Mathematical Monthly, 98(7):617–620, August 1991.

[17] J.-F. Puget. A fast algorithm for bound consistency of alldiff constraints. In
*Proceedings of the Fifteenth National Conference on Artificial Intelligence
(AAAI ’98)*, pages 359–366. AAAI, 1998.

[18] Jean-Charles Régin. A filtering algorithm for constraints of difference in
csps. In *AAAI ’94: Proceedings of the twelfth national conference on Ar-
tificial intelligence (vol. 1)*, pages 362–367, Menlo Park, CA, USA, 1994.
American Association for Artificial Intelligence.

[19] Gordon Royle. Minimum sudoku. *Preprint*,
http://people.csse.uwa.edu.au/gordon/sudokumin.php, 2006.

[20] A. Schrijver. A short proof of minc’s conjecture. *Journal of Combinatorial
Theory, (25)*:80–83, 1978.

[21] W.J. van Hoeve. The alldifferent constraint: A survey. In *6th Annual
Workshop of the ERCIM Working Group on Constraints*, June 2001.