Role of oxygen interstitials in Zn$_{1-x}$Ga$_x$O for faster response to UV light

Prashant Kumar Mishra1, Tulika Srivastava2, Saniya Ayaz3, Ramraj Meena4, Sajal Biring5, Somaditya Sen6*

Abstract

ZnO doped with Gallium (Ga$^{3+}$) demonstrates better crystalline nature and conductivity increases. Latent defect states are suppressed. However, due to the larger charge of Ga$^{3+}$ oxygen interstitials are generated which control the sensing speed. The conductance increases as a consequence of reduced defect states, especially the oxygen vacancies. The photocurrent increases with Galium incorporation, but a more intense increase in the current reduces the sensitivity.

Keywords: Gallium, ZnO, Defects, UV sensitivity, Response, Recovery
Zinc oxide (ZnO) is a well-known non-toxic II-VI semiconductor [1] oxide with bandgap, $E_g \sim 3.37$eV [2], which can be modified by proper substitution [3]. Substitution can improve optoelectronic [4], photoconductive [4, 5] and sensing properties [6] of ZnO. Transport properties of ZnO are modified in UV light due to surface defects [6,7], grain size [5-7] and electron adsorption/desorption properties [5, 6, 7]. This makes ZnO extremely competent in UV sensing and response. Surface defects may comprise of oxygen related defects such as oxygen vacancies (Vo) [8] and oxygen interstitials (Oi) [7, 8] or zinc related defects such as zinc vacancies (VZn) [10] and zinc interstitials (Zni), etc. [8, 9].

Higher valent dopant/substituent ions have a tendency of drawing more oxygen to the lattice [6-8]. This results in reduction of latent defects of ZnO, such as Vo [8] and introduction of Oi [7, 9]. Other latent defects such as VZn [6, 7, 8] and Zni. Doping of B [11], In [12], Al [13] and Ga [13-15] are found in literature, reporting sensing [16] and other optoelectronic properties [15]. Ga plays an important role because of its lower reactivity, greater resistance to oxidation, and higher electro-negativity. ZnO lattice deformation is small even with high Ga concentration [11-15]. The conductivity increases due to extra charge of Ga$^{3+}$ [15-17], making it suitable as a transparent conductive oxide (TCO) materials. Different synthesis methods have been reported via different synthesis routes [11, 18]. Sol-gel is one of them [17].

A complete understanding of the dynamics of defect formation in the bandgap due to Ga$^{3+}$ incorporation and its role on UV-sensing properties is studied in this work. A single phase homogeneous substitution is ensure by adopting a low-cost yet certain synthesis route using a sol-gel (Pechini) method [18]. Gallium-substituted ZnO nanoparticles Zn$_{(1-x)}$Ga$_x$O for $x= 0$ (ZG0), 0.01 (ZG1) and 0.03 (ZG3) have been synthesized. Defects or electron trap states, present between conduction band (CB) and valence band (VB) are evaluated using optoelectronic techniques. The defects have been individually discussed and a correlation been proposed in this work.

Zn-solution was prepared by dissolving ZnO powders (Alfa Aesar, purity 99.9%) in HNO$_3$ (Alfa Aesar, purity 99.9%). Ga-solution was prepared by dissolving using Gallium nitrate in DI water. A homogeneous Zn/Ga solution was prepared by mixing these two solutions and stirring for ~1hr. In a separate beaker, citric acid and glycerol were mixed in D.I. water and stirred for 1hr to form polymers and to be used as gelling agent. The Zn/Ga solution was added to this polymeric
solution and continuously stirred and heated at ~70° C for ~4hrs. During this process, the Zn/Ga ions get attached homogeneously to the polymer solution. Upon prolonged heating gel was formed. The gels were burnt on hot plates in ambient conditions. The burnt gels were denitrified and decarbonized by heating in muffle furnaces at ~450°C for ~6hrs to produce yellowish white nanopowders of the desired composition. Further, they were annealed at 600°C for 2 h.

Wurtzite structures of all the ZG samples are confirmed without any secondary phase [Figure 1(a)] from X-ray diffraction (XRD) studies using Bruker D2-Phaser diffractometer, with a Cu Kα (wavelength = 1.5406Å) X-ray source. Rietveld refinement of samples with wurtzite P63mc space group was performed using GSAS software [Figure 1(a)-inset]. Lattice parameters changes insignificantly, leading to nominal increment in c/a ratio [Figure 1(b,c)].

Figure 1(a). XRD pattern of samples ZG0, ZG1, ZG3 (-inset Rietveld of sample ZG0) (b) insignificant variation of lattice parameters and (c) nominal increment in c/a ratio
Optical reflectance was collected using a UV-VIS-NIR Shimadzu (UV-3600) Spectrophotometer. E_g was estimated [Figure 2(a,b,c)] using Tauc plot method [8, 18]:

$$
\alpha . h\nu = A . (h\nu - E_g)^n
$$

where, α is absorption coefficient, A is a constant, $h\nu$ is the energy of the incident light and n is number ($n=1/2$ for direct and $n=2$ for indirect bandgap). Urbach energy (E_U), an estimate of lattice disorder [18], was calculated from the slopes of $\ln\alpha$ versus $h\nu$ graph where, $\alpha = \alpha_0 \exp \left(\frac{h\nu}{E_U}\right)$, where, α_0 is a constant [Figure 2(d, e, f)]. On Ga doping, E_g increases nominally, from ~3.21 eV (ZG0) to 3.24 eV (ZG3), while E_U decreases from ~93 meV (ZG0) to 84 meV (ZG3) [Figure 2(g)]. Hence, it seems, Ga doping helps to stabilize the structure by reducing latent defects in the lattice.

Figure 2(a). Fitted linear portion between $(\alpha h\nu)^2$ vs $h\nu$ for bandgap estimation (b) linear fit of $\ln(\alpha)$ vs $h\nu$ for E_U (c) E_g and E_U vs x (substitution)
Defect states in the bandgap of all samples were investigated at room temperature from the photoluminescence spectra (PL) using a Dongwoo Optron DM 500i Spectrometer. The PL spectra comprises of NBE (near band emission, i.e. UV part) and DLE (deep level emission, i.e. visible color emission) [Figure 3(a)]. The DLE and NBE spectra were deconvoluted into various emission peaks in different color regions [Figure 3(b,c,d)], e.g., UV (>3.1 eV), violet (~3–3.1 eV), blue (2.50–2.75 eV), green (2.17–2.50 eV), yellow (2.10–2.17 eV) and orange-red (2.1 eV) [8]. These emissions correspond to various defects, e.g., ZnI (violet), VO (green), OI (yellow, orange-red), and VZn (blue) [8,19], located below the CB at ~0.22 eV, ~2.5 eV, ~2.28 eV, and ~2.85 eV, respectively.

Figure 3(a). DLE and NBE region for samples ZGO, ZG1, ZG3 respectively (b, c, d) De-convoluted DLE and NBE for samples (e) Pcolor vs x (f) PN vs x (g) CIE representation of samples (h) INBE/IDLE and PNBE/PDLE vs x
Intensity of DLE region as a whole decreases with Ga doping indicating reduction in defect states [Figure 3(a)]. The gradual shift of the NBE to higher energy [Figure 3(a) inset] confirms the changes in E_g in agreement with UV-vis spectroscopy results. Area calculation of each peak helps understand color contribution [8,19,20]. The proportion of each color in PL spectrum is estimated as $P_{\text{color}} = A_{\text{color}} / A_{\text{total}}$ [Figure 3(e)], such that $A_{\text{total}} = \Sigma A_{\text{color}}$ and, $\Sigma P_{\text{color}} = 1$. Individual color contributions, P_{color}, have been normalized with respect to P_{UV}, to yield P_N [Figure 3(f)] [8], assuming that the UV contribution is not deviated for all samples which is a contribution of a $\text{CB} \rightarrow \text{VB}$ transition. It is observed that P_N decrease for green and orange-red colors. The decrease in green color intensity hints at a reduction in latent V_O. Notably, latent O_i (orange-red emission) decreases at par V_O. Hence, the latent O_i present may be filling up the latent V_O present in pure ZnO. Zn_i (presence of violet emission) is present only in ZG3. V_{Zn} (blue emission) are present in ZG0 and increases in ZG1 samples, but nearly vanishes in ZG3. Yellow emission too shows such a fluctuating nature and decreases drastically for ZG1 but thereafter increases for ZG3. The origin of this type of O_i may be different than the O_i due to orange-red emission. The inverse trends between V_{Zn} and O_i tempt one to believe that these O_i were actually occupying a position adjacent to a Zn-site in the pure ZnO, which by the substitution of a smaller Ga$^{3+}$ ion (0.61Å) has been rearranged, creating V_{Zn}. Beyond ZG1, the extra charges of Ga$^{3+}$ ions may attract excess O ions, which will result in O_i, in the vicinity of a comparably more attractive Ga$^{3+}$, thereby filling in the V_{Zn} [Figure 3(f)].

A CIE graph (1931 standard) was calculated using OSA software. Chromaticity coordinates obtained were as follows: ZG0 (0.39, 0.47), ZG1 (0.43, 0.46) and ZG3 (0.49, 0.44) [Figure 3(g)]. A drastic coordinate shifting toward orange-red emission is observed for ZG1 and further for ZG3. Shifting of coordinates is probably due to a proportionate reduction of V_O and O_i, and a simultaneous extra addition of newly created O_i due to the extra charge of the substituent Ga$^{3+}$ [6,8]. Therefore, it can be inferred that all sorts of latent defects reduce with Ga doping while Ga$^{3+}$ associated O_i increases for ZG3. Both $I_{\text{NBE}}/I_{\text{DLE}}$ (intensity ratio) and $P_{\text{NBE}}/P_{\text{DLE}}$ (color ratio) ratios increase with Ga$^{3+}$ substitution which indicate latent defects suppression [Figure 3(h)].

This is agreement with UV-vis studies.

Pellets of 1 mm thickness and 10 mm diameter were uni-axially pressed under 3 Tons pressure. Two electrodes were prepared at a distance of 1 mm on the flatter surface of pellets using silver paste. UV light sensing was investigated by measuring the changes in current at constant voltage
using a home-made set-up and a Keithley (2401) electrometer. The samples were kept inside a
dark box without any stray light. A steady UV light source of 390 nm wavelength was focused in
between the electrodes from a hole at the top of the black box. UV light was switched ON (for
7.5min) and OFF (for 7.5min) for four cycles and dynamic changes in current with respect to
time were measured [Figure 4(a)]. The current increased bi-exponentially with UV illumination
to a maximum current [Figure 4(b)], I_{UV_max} and decreased similarly after light was turned OFF
to a minimum current in darkness, I_{dark_min} [Figure 4(c)]. Notably, I_{dark_min} continually increases
with Gallium doping [Figure 4(e)], implying increase of the conductance of the Ga-doped
samples. The sensing photocurrent, ΔI, is the difference between I_{UV_max} and I_{dark_min}; i.e. ΔI =
I_{UV_max} - I_{dark_min} also increases but the increase in I_{dark_min} is comparably more [Figure 4(e)].
Sensitivity, S, of samples may be defined as $S = (\Delta I/I_{dark _min}) \times 100$. As DI increases in lesser rate
than I_{dark _min}, S decreases with increase in Ga^{3+} doping [Figure 4(e)].
The fastness of UV-sensing can be estimated by normalizing the change of current for the three
systems. For this a plot of $(I-I_{dark _min})/\Delta I$ has been shown in Figure 4 (c). The pure ZG0 system
seems to be the fastest while ZG1 seems to be the slowest amongst the three samples. To be
noted that for ZG1, O_i defects are the least while V_{Zn} are maximum. This similarity tempts one to
assume a direct correlation between availability of Oi defects, or absence of V_{Zn} and the response
to UV light.
Figure 4(a) dynamic change in current with x (b, c) Bi-exponential fitting of grow and decay current vs time ZG0 (d) $(I-I_{dark, min})/\Delta I$ with time (e) S, ΔI and $I_{dark, min}$ vs x (f) ΔI and I_0 with x after bi-exponential fitting of two parts grow and decay (g) UV sensing time with substitution

A bi-exponential formula for the current, $I_g = I_{g0} + I_1 \exp(-t/t_1) + I_2 \exp(-t/t_2)$ was fitted to both growth of current, where I_{g0} is the current offset; I_1, I_2 are positive constants; t_1 and t_2 are the fast and slow time constants of response [21]. Similarly, $I_d = I_{d0} + I_3 \exp(-t/t_3) + I_4 \exp(-t/t_4)$ was used for current decay. It was observed that, while t_1 decreases with substitution from $t_1 = 93.77s (Z0)$ to $11.90s (ZG3)$, t_2 increases from $t_2 = 8.83s (Z0)$ to $246.34s (ZG3)$. Therefore, while the faster process becomes ~8 times faster, the slower process becomes ~28 times slower with Ga-doping. Similarly, while t_3 decreases from $127.76s (Z0)$ to $9.61s (ZG3)$, t_4 increases from $9.63s (Z0)$ to $294.60s (ZG3)$. Therefore, while the faster decay process becomes ~ 13 times faster, the slower process becomes ~30 times slower with Ga-doping. It is noteworthy that t_2 and t_4 are maxima for
ZG1 whereas t_1 and t_3 decreases with Gallium doping. [Figure 4(g)]. This behavior of variance of t_1 and t_3 matches that of O_i defects, whereas the nature of other defects matches with that of t_2 and t_4.

The currents associated with these two processes increases continually with increasing doping irrespective of the process, and are comparable to each other [Figure 4(f)]. Hence, these two processes are equally dominant. The sensing being faster in pure ZnO is hence more appropriately dependent on the faster processes, and most probably due to the O_i defects as in ZG1 the sensing process is the least with O_i being the least as well.

Oxygen-related surface defects enhance photo-sensing [21-22]. Adsorption /desorption of electron at the surface changes with UV illumination. Oxygen molecules capture free electrons from the surface of pellets and thereby get adsorbed [O_2 (g) $+e^-\rightarrow O_2^-$ (ad)]. In the presence of UV light, electron-hole pairs are generated [$h\nu\rightarrow e^- + h^+$] on the surface of the pellets [6]. These holes react with adsorbed oxygen, liberating oxygen from the surface [$h^+O_2^-$ (ad) $\rightarrow O_2$ (g)]. With reduction in V_0 and O_i, sensitivity is expected to decrease [6, 21, 22]. However, from the formula of sensitivity it seems that it is strongly dependent on $I_{\text{dark, min}}$ which is comparable to I_0 in this case. Faster response depends on the O_i density. However, sensitivity is highly dominated by $I_{\text{dark, min}}$. In spite of sensitivity being lowered with Ga-doping, the photocurrent, ΔI does increase with substitution.

In this work it was observed with certainty that the relative proportion of O_i decrease with nominal introduction of Ga but with further addition increases. As Ga^{3+}(IV) (0.61A) is smaller than Zn^{2+}(IV) (0.74A), the native V_0 are filled up by native and added O_i. However, due to the extra charge of Ga^{3+} more O is incorporated and as a result, number of O_i increase. The speed of response is highly dependent on this factor. The availability of extra charge in Ga^{3+} helps improve the transport properties of the materials.
Conclusions:

Single phase wurtzite Zn_{(1-x)}GaₓO samples reveal insignificant changes in lattice parameters with nominal increase in E_{g}, on Ga substitution. Urbach energy E_{UV} decreases with Ga substitution indicating loss of structural disorder. Ga doping helps to stabilize the structure by reducing defects in the lattice. From PL study it was revealed that all sorts of defects reduce with Ga doping. However as the latent defects decrease drastically, Oᵢ, (yellow) associated with Ga³⁺ decreases for ZG1 compared to ZG0 but thereafter again increases for ZG3. Photoresponse is faster in pure Z0 system while ZG1 seems to be the slowest amongst the three samples. To be noted that for the ZG1 sample Oᵢ defects are the least while V_{Zn} are maximized. This similarity tempts one to assume a direct correlation between availability of Oᵢ defects, or absence of V_{Zn} and the response to UV light. Sensitivity decreases with increase in Ga³⁺ doping. I_{dark,min} increases with doping. However, proportionately, the photocurrent ΔI also increases with doping. Hence, the system is extremely dependent on the Oᵢ density for faster response, while sensitivity depends on the dark current.

Acknowledgement

The authors are thankful to Dr. Vipul Singh for providing PL spectroscopy and Dr. L.P. Purohit for providing UV-vis spectroscopy. The authors are also thankful to DST for providing Inspire Fellowship.

References

[1] Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Curr. Mol. Med. 13 (2013) 1633–1645.
[2] N. Kamarulzaman, M.F. Kasim, R. Rusdi, Nanoscale Res. Lett. 10 (2015).
[3] M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, A. Mzerd, Results Phys. 7 (2017) 620–627.
[4] R.A. Zargar, M. Arora, M. Ahmad, A.K. Hafiz, J. Mater. (2015).
[5] S.K. Sahoo, C.A. Gupta, U.P. Singh, J. Mater. Sci. Mater. Electron. 27 (2016) 7161–7166.
[6] T. Srivastava, G. Bajpai, G. Rathore, S.W. Liu, S. Biring, S. Sen, J. Appl. Phys. 123 (2018) 161407.
[7] J. Park, Y.S. Kim, K.-C. Ok, Y.C. Park, H.Y. Kim, J.-S. Park, H.-S. Kim, Sci. Rep. 6 (2016) 24787.
[8] T. Srivastava, S. Kumar, P. Shirage, S. Sen, Scr. Mater. 124 (2016) 11–14.
[9] M.J.S. Spencer, K.W.J. Wong, I. Yarovskiy, J. Phys. Condens. Matter Inst. Phys. J. 24 (2012) 305001.
[10] Z.G. Wang, X.T. Zu, S. Zhu, L.M. Wang, Phys. E Low-Dimens. Syst. Nanostructures 35 (2006) 199–202.
[11] H. Agarwal, S. Venkat Kumar, S. Rajeshkumar, Resour.-Effic. Technol. 3 (2017) 406–413.
[12] A. Wang, T. Chen, S. Lu, Z. Wu, Y. Li, H. Chen, Y. Wang, Nanoscale Res. Lett. 10 (2015) 75.
[13] M. Gabás, P. Torelli, N.T. Barrett, M. Sacchi, J.R. Ramos Barrado, APL Mater. 2 (2014) 012112.
[14] M.-C. Jun, S.-U. Park, J.-H. Koh, Nanoscale Res. Lett. 7 (2012) 639.
[15] S.-U. Jen, H. Sun, H.-P. Chiang, S.-C. Chen, J.-Y. Chen, X. Wang, Materials 9 (2016).
[16] Q.Z. Li, W.G. Chen, T.Y. Gao, H.L. Gan, in: 2014 ICHVE Int. Conf. High Volt. Eng. Appl., 2014, pp. 1–4.
[17] J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Procedia Chem. 19 (2016) 211–216.
[18] T. Srivastava, A. Sadanandan, G. Bajpai, S. Tiwari, R. Amin, M. Nasir, S. Kumar, P.M. Shirage, S. Biring, S. Sen, Ceram. Int. 43 (2017) 5668–5673.
[19] G. Bajpai, T. Srivastava, N. Patra, I. Moirangthem, S.N. Jha, D. Bhattacharyya, S. Riyajuuddin, K. Ghosh, D.R. Basaula, M. Khan, S.-W. Liu, S. Biring, S. Sen, RSC Adv. 8 (2018) 24355–24369.
[20] G. Bajpai, T. Srivastava, F. Husian, S. Kumar, S. Biring, S. Sen, Scr. Mater. 144 (2018) 27–30.
[21] A. Bera, D. Basak, Appl. Phys. Lett. 94 (2009) 163119.
[22] K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurišić, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, L. Ding, W.K. Ge, J. Phys. Chem. B 110 (2006) 20865–20871.