Just Add Water

Modulating the Structure-Derived Acidity of Catalytic Hexameric Resorcinarene Capsules

Poole III, D.A.; Mathew, S.; Reek, J.N.H.

DOI
10.1021/jacs.1c04924

Publication date
2021

Document Version
Final published version

Published in
Journal of the American Chemical Society

License
CC BY-NC-ND

Citation for published version (APA):
Poole III, D. A., Mathew, S., & Reek, J. N. H. (2021). Just Add Water: Modulating the Structure-Derived Acidity of Catalytic Hexameric Resorcinarene Capsules. Journal of the American Chemical Society, 143(40), 16419-16427. https://doi.org/10.1021/jacs.1c04924

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Just Add Water: Modulating the Structure-Derived Acidity of Catalytic Hexameric Resorcinarene Capsules

David A. Poole, III, Simon Mathew, and Joost N. H. Reek*

ABSTRACT: The hexameric undecyl-resorcin[4]arene capsule (C11R6) features eight discrete structural water molecules located at the vertices of its cubic suprastructure. Combining NMR spectroscopy with classical molecular dynamics (MD), we identified and characterized two distinct species of this capsule, C11R6-A and C11R6-B, respectively featuring 8 and 15 water molecules incorporated into their respective hydrogen-bonded networks. Furthermore, we found that the ratio of the C11R6-A and C11R6-B found in solution can be modulated by controlling the water content of the sample. The importance of this supra-molecular modulation in C11R6 capsules is highlighted by its ability to perform acid-catalyzed transformations, which is an emergent property arising from the hydrogen bonding within the suprastructure. We show that the conversion of C11R6-A to C11R6-B enhances the catalytic rate of a model Diels–Alder cyclization by 10-fold, demonstrating the co-factor-derived control of a supramolecular catalytic process that emulates natural enzymatic systems.

INTRODUCTION

Supramolecular catalysis derives inspiration from enzymes, translating natural features into synthetic systems to attain higher levels of control in chemical processes. Approaches toward bioinspired supramolecular catalysis include the biomimicry, second coordination sphere design, and confinement of the catalytic site. Along these lines, the positioning of catalytic active sites within well-defined capsules has been demonstrated to enable the control of catalyst properties to promote selective catalytic transformations. In natural systems, enzymatic activity that enables the self-steering of catalytic processes necessary for metabolism can be modulated via allosteric modifications by physiochemical inputs. Although it is an intrinsic feature of natural systems, analogous modulation of catalyst properties in synthetic mimics are rare.

It is now more than 30 years ago that the Aoyama group described the host–guest chemistry of resorcin[4]arenes in nonpolar organic solvents. As further characterization developed, the hexameric nature of these capsules was realized and its capacity for host–guest interactions were extensively characterized. Analogous to an enzyme, C11R6 exhibits catalytic function from the elevated Brønsted acidity emerging from its supramolecular structure. Illustrated in Figure 1, this capsule is formed in nonpolar solvents (e.g., chloroform) through the self-assembly of six facial monomers in a cubic arrangement, featuring eight water molecules (one per vertex). The edges of C11R6 are held together by hydrogen-bond network edges between adjacent facial monomers, with each end point capped at the vertex with a water molecule, completing the cubic structure.

The hydrogen-bond network of C11R6 results in the enhanced Brønsted acidity beyond that of the individual monomer units. This feature has driven the application of C11R6 as a supramolecular, organic Brønsted acid catalyst for chemical transformations under mild conditions. In addition, the hydrogen-bond rich environment of the internal cavity within C11R6 has been utilized as a supramolecular organocatalyst, demonstrating a host-selective reactivity based on substrate size, and substrate–bond activation via supramolecular interactions. The use of a supplemental protic acid cocatalyst (typically HCl) extends the scope of C11R6 activity, notably for application toward facile synthesis of high-value terpene derivatives. Further reactivity has been demonstrated in host-catalyzed Diels–Alder cyclization.

Beyond the intrinsic Brønsted acidity of C11R6, this supramolecule possesses an internal cavity (ca. 1400 Å³), permitting the encapsulation of transition metal catalysts or organic catalysts within its cavity. In these instances, the internal surface of the capsule serves as a second coordination-sphere to modulate or enhance catalytic function.

Received: May 12, 2021
Published: September 30, 2021
Both the acidity and host-capacity of C11R6 are derived from its structure.23,39 Recent work by Payne and Oliver have demonstrated structural modification of C11R6 by the incorporation of alcoholic solvent molecules into the hydrogen bond network,72 complementing previous studies by Cohen73−75 and Schnatwinkel,76 which featured similar inclusion of long chain alcohols into the hydrogen-bond network. Interestingly, Katiyar has reported the association of free water to the capsule’s hydrogen-bond network,77,78 beyond the 8 molecules needed for capsule assembly.23,31,32 Studies by Merget suggest that the presence of additional water may impact the catalytic activity of the C11R6 capsule in acid-promoted cyclization of terpenes.60 Together these findings suggest that polar molecules such as water may act as cofactors able to modulate the structure and acidity of C11R6 analogous to the allosteric control of enzymes (e.g., cytochrome p450 oxidases, nitric oxide synthases, etc.). Understanding that these structural changes would provide insights into the previously observed water-dependent catalytic behavior and fine control the capsule’s catalytic activity.

In this work, we investigate the structural changes of C11R6 capsules through classical molecular dynamics (MD) simulations, which is further supported by 1H NMR spectroscopy. Using MD, we find that C11R6 interconverts between two assemblies as summarized by Figure 2. The C11R6-A assembly features 8 water molecules at the vertex positions—in line with previous reports of C11R6 structure23—while C11R6-B has 14−15 water molecules, 6−7 of which spontaneously incorporate into a single edge of the cubic suprastructures, referred to here as “incorporated water” (Scheme 1). This computational finding is supported by NMR studies of water association, revealing a water-dependent equilibrium between the two capsule species differing significantly in their hydrogen-bond network. Differences between the C11R6-A and C11R6-B assemblies are substantiated by 31P NMR chemical shifts of an encapsulated phosphine oxide, revealing different internal acidities quantified

Figure 1. Ball-and-stick rendering of a model C11R6 showing a cubic structure with 6 resorcin[4]arenes (CPK rendering) forming the faces of the cube (yellow) held together by an hydrogen-bond network continuous along each edge (black line), and capped by eight water molecules at the vertex positions (van der Waals volume renderings). To improve clarity, pendant alkyl groups and nonhydroxy hydrogen atoms were omitted from this figure.

Figure 2. (a) Plot of the relative Helmholtz free energies (ΔA), internal energy (ΔU) of the water−water or water−C11R6 interactions, and entropy (ΔS) for the incorporation of water molecules beyond 8 determined by the GIST method.79 (b) Renderings depicting the structures of C11R6-A and C11R6-B containing 8 and 14 water molecules, respectively. Renderings feature highlights indicating structural (red) and incorporated (blue) water, which differentiate C11R6-A and C11R6-B, respectively. Note that structural water highlights for C11R6-B are omitted for clarity. Similarly, alkyl pendant groups, solvent, and nonhydroxy hydrogen atoms are omitted from both renderings for clarity. Both thermodynamic calculations (a) and model visualizations (b) were generated from 28 800 ns MD trajectories.

Scheme 1. Simplified Representation of the Water-Dependent Conversion between the Two Forms of C11R6, Highlighting the 8 Water Molecules Necessary for Capsule Formation (Red) and the 7 Additional Water Molecules (Cyan) That Effect the Transition by Association to a Capsule Edge (Black Line)
by their Guttman–Beckett acceptor number (AN). This difference in internal acidity allows the rate modulation of C_{11}R_{6} catalyzed Diels–Alder cycloaddition of maleimide and sorbic alcohol, demonstrating novel control of an abiotic homogeneous catalytic process.

RESULTS AND DISCUSSION

MD Simulations Reveal Distinct Species. Simulations containing explicitly solvated C_{11}R_{6} with a total of 8–24 explicit water molecules were propagated as molecular dynamics trajectories for a total of 10 μs using optimized force field parameters (Figure S1). Unfortunately, simulations featuring randomly placed water molecules and undecyl-resorcin[4]arene monomers (C_{11}R_{6}) failed to self-assemble over several μs of MD propagation (results not reported). Therefore, we found it necessary to include the 8 structural water molecules, placed at the vertex positions of the capsule, while the remaining water molecules were positioned randomly in the periphery of the capsule.

In simulations containing 8–12 water molecules, we observe the external attachment of free water to the C_{11}R_{6} in line with previous reports. Simulations containing ≥14 water molecules reveal 6 additional incorporated water molecules along a single edge of the hydrogen-bond network of the C_{11}R_{6} capsule (Scheme 1), as depicted in Figure 2b. Although these incorporated water molecules are highly organized and an integral part of the hydrogen bond network (Figure S16), single water molecules still exchange rapidly with water molecules from the bulk solvent and the 8 structural waters needed to form the capsule. The mobility of the incorporated water is highlighted by the concerted migration between the hydrogen bond edges of the capsule. This migration phenomenon was qualitatively observed as a rare event in our MD simulations (Figure S15), but occur at a sub-microsecond time scale.

The incorporation of additional water into the edge of the hydrogen bond network results in a breakage of the hydrogen bond between adjacent C_{11}R_{4} faces, altering the connectivity of the supramolecular system. This change in connectivity and composition distinguishes C_{11}R_{6}-B from the typical C_{11}R_{6}-A assembly. Analysis of hydrogen-bonding in our MD trajectories (Figure S2) reveal a minimum of 6 extra incorporated water molecules are required to form C_{11}R_{6}-B.

Energetic analysis of the MD data using GIST (Figure 2a) distinguishes between both attached water \((\Delta \delta = -6.3 \text{ kcal mol}^{-1})\) and the incorporated water we observe in C_{11}R_{6}-B. While GIST does not provide complete free energy differences between C_{11}R_{6}-A and C_{11}R_{6}-B, it is useful in the analysis of favorable water structures found in our MD simulations. In simulations containing 8–12 water molecules the attached water is observed. Interestingly, the GIST-determined \(\Delta A\) is similar to previously reported values \((\Delta A = -2.0 \text{ kcal mol}^{-1})\) and from our analysis this is driven entirely by a favorable water–water interaction (Figure 2a, \(\Delta U_{\text{water-water}}\)). The inclusion of water along the hydrogen bond edge is optimal in the presence of 14 water molecules, where an additional favorable water-capsule interaction (Figure 2a, \(\Delta U_{\text{water-C_{11}R_{6}}}\)), resulting in a very favorable association \((\Delta A = -6.3 \text{ kcal mol}^{-1})\). While the incorporation of further water molecules within the suprastructure is possible, it incurs an increasing penalty from internal energy (Figure 2a, \(\Delta U_{\text{water}}\)) and system entropy (Figure 2a, \(-T \Delta S\)).

The specificity of C_{11}R_{6}-B to incorporate 6 water molecules is a “goldilocks” number, originating from the required size of the hydrogen-bond network needed to fill a capsule edge (Figure 2b), resulting in favorable internal energy (Figure 2a). These “incorporated water” molecules are more mobile than their “structural water” counterparts, and are not as strongly localized. These simulations suggest that C_{11}R_{6} is found in only two forms—C_{11}R_{6}-A containing 8 water molecules and C_{11}R_{6}-B containing 14 water molecules—and the ratio between the two may depend on water content.

\(^{1}H NMR Identification of C_{11}R_{6}-A and C_{11}R_{6}-B. The formation of C_{11}R_{6}-A and C_{11}R_{6}-B was investigated by \(^{1}H NMR, by measuring spectra of C_{11}R_{6} solution at various concentrations of water \((44.12–103.01 \text{ mM})\); for details see Supporting
These peaks increase (or decrease) in a correlated fashion, we attribute these spectral features to distinct assemblies: \(\text{C}^{1} \text{H} \text{R}_{6} \text{A} (\delta = 9.58 \text{ and } 9.35 \text{ ppm}) \) and \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} (\delta = 9.65 \text{ and } 9.46 \text{ ppm}) \). This peak assignment is further supported by inversion-relaxation measurements (Figure S21), from which identical \(T_{1} \) relaxation times were obtained for the phenolic peaks of either capsule indicative of a shared environment. The increased sensitivity of \(T_{1} \) relaxation times of the peaks belonging to \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} \) to changing water content is in line with the larger number of water molecules associated to its structure.

Interestingly, the relative concentrations of these species vary with water content from 44.12 mM (ca. 8 water molecules per capsule) to 103.01 mM (ca. 19 water molecules per capsule). As these differences are only apparent in the phenolic region of the NMR spectrum, we surmise that these assemblies are distinguished by the structure of their respective hydrogen-bond networks. Therefore, we putatively assign these peaks to \(\text{C}^{1} \text{H} \text{R}_{6} \text{A} (\delta_{\text{OH}} = 9.58, 9.35 \text{ ppm}) \) and \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} (\delta_{\text{OH}} = 9.65, 9.46 \text{ ppm}) \) based on the increasing concentration of water and consistent with the structures observed in MD simulations (Figure 2). The presence of incorporated water in \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} \) is further evidenced by stronger NOE correlations between its phenolic peaks and free water (Figure S18). Deuterium exchange of the OH-groups with \(\text{D}_{2} \text{O} \) (Figure S23) is consistent with the structures observed in MD simulations (Figure S16).

Interestingly, only two peaks of equal area are observed for the phenolic protons of either assembly, despite the asymmetry derived by incorporated water molecules in \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} \) (Figure 2). Our MD simulations show the specific arrangement of incorporated water shift between edges of the capsule on a sub-microsecond time scale (Figure S15). The environments of the phenolic protons of \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} \) exchange at this rate, and such are observed as a time-averaging signal. Exchange of water between \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} \) and \(\text{C}^{1} \text{H} \text{R}_{6} \text{A} \) is relatively slow leading to distinct phenolic peaks that can be distinguished in the NMR spectra (Figure S14). On the basis of the relative strength of NOE correlations between the phenolic peaks and water, we assign the upfield peaks of either assembly (\(\delta = 9.35 \text{ and } 9.46 \text{ ppm} \)) to the 24 phenolic protons adjacent to the structural water sites (Figure 1). Similarly, the downfield peaks of either assembly (\(\delta = 9.58 \text{ and } 9.65 \text{ ppm} \)) are assigned to the remaining 24 phenolic protons which participate in hydrogen bonding between and within the resorcin[4]arene monomer faces. Fortunately, the separation of the pairs (33 Hz) of the resolved \(\text{C}^{1} \text{H} \text{R}_{6} \text{A} \) and \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} \) phenolic peaks constraints the rate constant for chemical exchange (\(k_{\text{ex}} \)) between the two assemblies to <155 s\(^{-1} \) (for a detailed discussion see, Figure S14).

The apparent diffusion of these phenolic peaks appears faster than the other peaks (Figure 3b) due to proton exchange with water occurring within the diffusion time in the measurement (\(\Delta = 100 \text{ ms} \)). Fortunately, the pairing of these diffusion traces further supports the speciation of the two assemblies observed by the correlation of the peak areas (Figure 3a).

Further characterization of the capsule using \(^{1} \text{H} \) NMR (Figure S3), DOSY (Figures 3b and S4), \(^{31} \text{P} \) NMR Investigation of Structure-Dependent Acidity (Figure 4), and solution state FTIR (Figure S5) indicate that both assemblies are hexameric assemblies with a similar Stokes radius (16.6 Å) at \([\text{H}_{2}\text{O}] = 44 \text{ and } 103 \text{ mM} \) consistent with previous reports of \(\text{C}^{1} \text{H} \text{R}_{6} \text{ capsule structure} \). The single observed peak of water (Figure 3) indicates that it is in a state of fast exchange between a free state in the bulk solution and a bound state, incorporated into the \(\text{C}^{1} \text{H} \text{R}_{6} \text{ capsule} \) (Figure S14). As previous reports detail, the available water is completely incorporated into the cage at low (i.e., 44 mM) water concentration; therefore, the measured chemical shift (\(\delta = 5.1 \text{ ppm} \)) can be attributed to the structural water (Figure 1), as opposed to the free \(\text{H}_{2}\text{O} \) water-saturated chloroform. As the observed chemical shift is time-averaged, the proportion and quantity of water associated with \(\text{C}^{1} \text{H} \text{R}_{6} \) (\(B_{\text{wat}} \)) was determined directly from \(^{1} \text{H} \) NMR spectra (Figure 3a).

Figure 4 shows the total number of water molecules associated with \(\text{C}^{1} \text{H} \text{R}_{6} \) increases linearly with the proportion of \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} (\theta_{B}) \) in the sample, with the slope showing an additional 7.27 ± 0.26 water molecules are incorporated per \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} \). Thus, combined with the 8 structural waters native to \(\text{C}^{1} \text{H} \text{R}_{6} \), a total of 15 water molecules are associated with \(\text{C}^{1} \text{H} \text{R}_{6} \text{B.} \) From our MD simulations (Figure 1) we surmise that these additional water molecules are incorporated into the hydrogen bonding network of the capsule. This number is in agreement with MD models (Figure 2) that predict a minimum of 14 water molecules for the formation of \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} \) (Figure 2). The water-dependent conversion between \(\text{C}^{1} \text{H} \text{R}_{6} \text{A} \) and \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} \) was fit using an empirical model (Figure S13) to enable estimation of the proportion of \(\text{C}^{1} \text{H} \text{R}_{6} \text{B} \) capsules (\(B_{\text{wat}} \)) via water content.

\[\text{C}^{1} \text{H} \text{R}_{6} \text{B} \]
Previously the Bronsted acidity of \(\text{C}_{11}\text{R}_6 \) assemblies were measured using nitrogen bases to estimate aqueous-equivalent \(p_K \) values.\(^{39}\) Unfortunately, this protocol impairs the accurate determination of water content by either Karl−Fischer titration or \(^1\)H NMR integration, and could not be used to differentiate the acidity of \(\text{C}_{11}\text{R}_6\)-A and \(\text{C}_{11}\text{R}_6\)-B.

Therefore, we investigate the ability of structure-dependent acidity to modulate the interaction strength with tri-\(n \)-butyl phosphine oxide (Bu\(_3\)PO) as guest through \(^{31}\)P NMR (Figure 3).\(^{63,84}\) The encapsulation of Bu\(_3\)PO was readily confirmed by \(^1\)H NMR, showing the development of broad upfield peaks (\(\delta = -2.0 \pm 0.5 \) ppm), typically observed for encapsulated guests.\(^{24−38}\) The binding of Bu\(_3\)PO within the capsule was further evidenced by \(^1\)H DOSY measurements (Figure S12), with similar diffusion for the \(\text{C}_{11}\text{R}_6 \) host and upfield peaks (\(\log D = -9.0 \), see Figure 3b).

A downfield chemical shift in \(^{31}\)P NMR is expected when a Bu\(_3\)PO forms a hydrogen-bond adduct with another species, such as when encapsulated within \(\text{C}_{11}\text{R}_6 \) and the degree of this shift is proportionate to the acidity of the hydrogen-bond donor.\(^{41,44}\) Three peaks (\(\approx 55.0−65.0 \) ppm) were consistently observed in the \(^{31}\)P NMR spectra of the encapsulated Bu\(_3\)PO (Figures S9 and S10). The upfield peak (\(\approx 55.0−64.0 \) ppm) was assigned to the free Bu\(_3\)PO by observed correlations to the protons of the free species by \(^1\)H−\(^{31}\)P HMBC (Figure S11). A low intensity peak (\(\approx 64.0−65.0 \) ppm) was observed in all spectra, with a low intensity that waned with increasing water content. This spectral feature is particularly evident at a minimal water concentration (44.18 \(\mu \)L) that waned with increasing water content. This spectral feature is further evidenced by \(^1\)H DOSY measurements (Figure S12), broadens and diverges compared to the major peaks, and we infer that exchange between this minor species and the observed major peak is unlikely based on the diverging chemical shift. On the basis of the low intensity of the \(^{31}\)P signal, we surmise that this spectral feature does not correspond to the free or encapsulated Bu\(_3\)PO, and its identity is unlikely to interfere with measurements of the \(\text{C}_{11}\text{R}_6 \) capsule’s internal acidity. The remaining peak was attributed to the \(\text{C}_{11}\text{R}_6\)-associated Bu\(_3\)PO (\(\approx 60.0−64.0 \) ppm) based on its apparent intensity (Figures S9 and S10). All three peaks were observed to move in a concerted fashion with changes in water content, which we ascribe to changes in bulk dielectric of the solvent medium.\(^{85}\)

The free and encapsulated Bu\(_3\)PO afford distinct peaks in slow exchange (Figure S5, inset). Similar to observations made with \(^1\)H NMR (Figure 3), differentiation between phosphine oxide encapsulated within \(\text{C}_{11}\text{R}_6\)-A and \(\text{C}_{11}\text{R}_6\)-B was not observed by \(^{31}\)P due to the similarities of the magnetic environments experienced by the phosphorus nuclei. Due to this similarity, the shift of the observable peak corresponds to the time weighted average of the Bu\(_3\)PO encapsulated within \(\text{C}_{11}\text{R}_6\)-A and \(\text{C}_{11}\text{R}_6\)-B (see Figure S14a for an example of the exchange of indistinguishable nuclei).\(^{86}\) Further complications arise as a phosphine oxide guest within \(\text{C}_{11}\text{R}_6\)-A or \(\text{C}_{11}\text{R}_6\)-B may exchange hydrogen bonding partners within the capsule at a time scale faster than NMR measurement,\(^{86}\) resulting in a single observable peak with a shift that is the time weighted average of the hydrogen bonding states (see Figure S14b for a detailed example of the exchange of a rapid process). The result of these exchange processes is a single observable peak corresponding to Bu\(_3\)PO encapsulated by \(\text{C}_{11}\text{R}_6\)-A or \(\text{C}_{11}\text{R}_6\)-B, in all states of hydrogen bonding (see Figure S14 for a detailed explanation).\(^{86}\)

Despite these limits in observation, the strength of the interaction between \(\text{C}_{11}\text{R}_6 \) and Bu\(_3\)PO can be correlated to the downfield chemical shift of the single observable peak (\(\approx 64.0−60.0 \) ppm). The strength of the interaction between Bu\(_3\)PO and \(\text{C}_{11}\text{R}_6 \) can be determined by modulating the Bronsted acidity through changing the content of the sample (i.e., varying the water content of the sample) as shown in Figure S5. Two sets of experiments were performed where the \(\text{C}_{11}\text{R}_6\)-A/\(\text{C}_{11}\text{R}_6\)-B ratio was modulated through controlling water content (44.18−110.19 \(\mu \)L and 43.05−86.53 \(\mu \)L, respectively) in the presence of either a low (3.50 \(\mu \)L) or high (24.00 \(\mu \)L) concentration of Bu\(_3\)PO. While the high concentration is analogous to catalytic conditions, at lower concentrations the Bu\(_3\)PO probe selectively associates to the stronger interacting (i.e., more acidic) assembly. From these contrasting measurements we determine that the environment of \(\text{C}_{11}\text{R}_6 \) is more acidic than \(\text{C}_{11}\text{R}_6\)-A, which may enhance its catalytic activity. We rationalize the increased acidity of \(\text{C}_{11}\text{R}_6\)-B by the increased availability of protons within the capsule from the weakly bound incorporated water molecules (Scheme 1).

Similar to 4 of the structural water molecules of \(\text{C}_{11}\text{R}_6\)-A,\(^{39}\) the 7 incorporated water molecules found in \(\text{C}_{11}\text{R}_6\)-B are capable hydrogen-bond donors, and may also act as acids stabilized by the edge hydrogen-bond network (Figure S16). The Gutmann−Becket acceptor number (AN) is a measure of Lewis acidity that quantifies the differences in acidity between the two capsules, and allows comparison of acid catalysts in solvent media.\(^{84}\) On the basis of \(^{31}\)P NMR spectra obtained at a minimal water concentration (\(\left[\text{H}_2\text{O} \right] = 44.18 \) \(\mu \)L, Figure S8), we have estimated the Lewis acidity of \(\text{C}_{11}\text{R}_6\)-A (AN = S1), similar to B(O\(_\text{Me}\)\(_3\)) (AN = S1).\(^{80}\) By extrapolating the chemical shift difference observed with Bu\(_3\)PO (3.5 \(\mu \)L, Figure S5), we
estimate the Lewis acidity of C11R6-B assemblies (AN = 68 ± 1), similar to TiCl4 (AN ≈ 70).36

Structural Modulation of the C11R6-Catalyzed Diels–Alder Cycloaddition. We investigated the catalytic activity of the two C11R6 assemblies in the Diels–Alder cycloaddition of maleimide and sorbic alcohol to produce 4-(hydroxymethyl)-7-methyl-3a,4,7,7a-tetrahydro-1H-isoinole-1,3(2H)-dione (Figure 6, inset). The Diels–Alder reaction was explicitly chosen as a probe for the structure-dependent catalytic activity of C11R6 as it proceeds without the generation of water or acid as a byproduct. Specifically, catalysis was performed at different water concentrations ([H2O] = 8.76–25.95 mM) enabling modulation of the C11R6-B proportion (θB = 0.12–0.44) within the mixture. The dependency of catalytic activity on the proportion of C11R6-B was revealed, with the result depicted in Figure 6.

The initial reaction rates reveal that increases in water content afforded a doubling of the observed reaction rate (0.65–1.15 h⁻¹), an effect not observed in the absence of C11R6 (Figure S7). As the ratio of C11R6-A and C11R6-B could not be directly observed by NMR, they were computed from the measured water content in conjunction with our empirical model (eq S1). The observed reaction velocity increases linearly (θB = 0.1–0.3) with the formation of C11R6-B until it plateaus (θB = 0.3–0.5), where another process becomes rate limiting. We propose that this rate limitation is due to the slow isomerization of sorbic alcohol from its inactive s-trans isomer to the active s-cis isomer (Figure S17). From this limitation we surmise that C11R6 acts primarily as an acid-catalyst for the activation of maleimide. A linear fit of the reaction rate to the proportion of C11R6-B (θB) between 0.1–0.3 decomposes the overall reaction rate to the activity of either C11R6-A or C11R6-B assemblies. From this linear fit we find the more acidic C11R6-B (2.16 ± 0.29 h⁻¹) is significantly more active than C11R6-A (0.24 ± 0.06 h⁻¹). As the computed rate of C11R6-A catalyzed cycloadditions is close to the uncatalyzed reaction (0.21 ± 0.01 h⁻¹, Figure S7) we surmise that C11R6-B is the sole active catalytic species. This result highlights the similarities between biological and supramolecular catalytic systems, where subtle changes in the arrangement of (supra)molecular features yield significant changes in catalytic output under mild conditions.

CONCLUSION

On the basis of NMR spectroscopy and computational data we demonstrate that the self-assembled hexameric undecylresorcin[4]arene capsule C11R6 can be switched between two distinct species—C11R6-A and C11R6-B—respectively featuring 8 and 15 water molecules within their hydrogen-bond networks. The internal environments of the two assemblies were probed by the binding of Bu3PO, revealing substantial shifts in the 31P NMR peak of this guest through changing the C11R6-A/C11R6-B ratio by the addition of water to the sample. These NMR experiments suggest a stronger acidity of C11R6-B assemblies that translate into differences in catalytic activity. The catalytic activity of these two assemblies were investigated in a Diels–Alder cycloaddition reaction, revealing that C11R6-B exhibits greater catalytic output by an order of magnitude. This study demonstrates the ability of water to effect structural changes in C11R6 capsules by modulating the structure-derived catalytic properties of the supramolecular assembly. We envisage that the present work will enable subsequent study of other small-molecules as structural effectors of C11R6 (and related supramolecular structures) with the goal of gated and self-steering catalytic applications.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c04924.

Computational simulation parameters, experimental conditions, spectral data for all measurements (PDF)
Coordinates and connectivity of a representative structure for C11R6-A (PDB)
Coordinates and connectivity of a representative structure for C11R6-B (PDB)
Coordinates, charge and connectivity of undecylresorcin[4]arene monomer subunit used in MD simulations (monomer.mol2); Force field parameters used for MD simulation provided in Amber format (sim.frcmod) (ZIP)

AUTHOR INFORMATION

Corresponding Author
Joost N. H. Reek — Homogeneous, Supramolecular, and Bioinspired Catalysis Group, van’t Hoff Institute for Molecular Science (HIMS), University of Amsterdam (UvA), 1098 XH Amsterdam, The Netherlands; orcid.org/0000-0001-5024-508X; Email: j.n.h.reek@uva.nl

Authors
David A. Poole, III — Homogeneous, Supramolecular, and Bioinspired Catalysis Group, van’t Hoff Institute for Molecular Science (HIMS), University of Amsterdam (UvA), 1098 XH Amsterdam, The Netherlands
Simon Mathew — Homogeneous, Supramolecular, and Bioinspired Catalysis Group, van’t Hoff Institute for Molecular Science (HIMS), University of Amsterdam (UvA), 1098 XH Amsterdam, The Netherlands
Molecular Science (HIMS), University of Amsterdam (UvA), 1098 XH Amsterdam, The Netherlands; orcid.org/0000-0003-2480-3222

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.1c04924

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank our colleagues Dr. Anne Jans, Eline Meijer, and Dr. Andreas Ehlers for their assistance and advice for this study. We thank the European Research Council (ERC Adv. Grant 339786-5354 NAT_CAT) and the sustainable chemistry research program from the University of Amsterdam for financial support.

REFERENCES

(1) Rebilly, J.-N.; Colasson, B.; Bistri, O.; Over, D.; Reinaud, O. Biomimetic cavity-based metal complexes. Chem. Soc. Rev. 2015, 44 (2), 467−489.
(2) Breslow, R.; Dong, S. D. Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives. Chem. Rev. 1998, 98 (5), 1997−2012.
(3) Marchetti, L.; Levine, M. Biomimetic Catalysis. ACS Catal. 2011, 1 (9), 1090−1118.
(4) Tu, Y.; Peng, F.; Adawy, A.; Men, Y.; Abdelmohsen, K. E. A.; Wilson, D. A. Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chem. Rev. 2016, 116 (4), 2023−2078.
(5) Elsby, M. R.; Baker, R. T. Strategies and mechanisms of metal−ligand cooperativity in first-row transition metal complex catalysts. Chem. Soc. Rev. 2020, 49, 8933−8987.
(6) Zhao, M.; Wang, H.-B.; Ji, L.-N.; Mao, Z.-W. Insights into metalloenzyme microenvironments: biomimetic metal complexes with a functional second coordination sphere. Chem. Soc. Rev. 2013, 42 (21), 8360.
(7) Trouve, J.; Gramage-Doria, R. Beyond hydrogen bonding: recent trends of outer sphere interactions in transition metal catalysis. Chem. Soc. Rev. 2021, 50, 3565−3584.
(8) Nurtilla, S. S.; Linnebank, P. R.; Krachko, T.; Reek, J. N. H. Supramolecular Approaches to Control Activity and Selectivity in Hydroformylation Catalysis. ACS Catal. 2018, 8, 3469−3488.
(9) Meeuwissen, J.; Reek, J. N. H. Supramolecular catalysis beyond enzyme mimics. Nat. Chem. 2010, 2, 615−621.
(10) Gaeta, C.; La Manna, P.; De Rosa, M.; Soriente, A.; Talotta, C.; Neri, P. Supramolecular Catalysis with Self-Assembled Capsules and Cages: What Happens in Confined Spaces. ChemCatChem 2021, 13 (7), 1638−1658.
(11) Grommet, A. B.; Feller, M.; Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 2020, 15, 256−271.
(12) Fleenders, S. H.; A. M.; Gramage-Doria, R.; de Bruin, B.; Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 2015, 44, 433−448.
(13) Morimoto, M.; Bierschenk, S. M.; Xia, K. T.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. Advances in supramolecular host-mediated reactivity. Nature Catalysis 2020, 3, 969−984.
(14) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Functional Molecular Flasks: New Properties and Reactions within Discrete, Self-Assembled Hosts. Angew. Chem., Int. Ed. 2009, 48 (19), 3418−3438.
(15) Rieth, S.; Hermann, K.; Wang, B.-Y.; Badjic, J. D. Controlling the dynamics of molecular encapsulation and gating. Chem. Soc. Rev. 2011, 40, 1609−1622.
(16) Blanco-Gómez, A.; Cortón, P.; Barravecchia, L.; Neira, I.; Pazos, E.; Peinador, C.; García, M. Controlled binding of organic guests by stimuli-responsive macrocycles. Chem. Soc. Rev. 2020, 49, 3834−3862.
(17) Hermann, K.; Ruan, Y.; Hardin, A. M.; Hadad, C. M.; Badjić, J. D. Gated molecular baskets. Chem. Soc. Rev. 2015, 44, 500−514.
(18) Díaz-Moscoco, A.; Ballester, P. Light-responsive molecular containers. Chem. Commun. 2017, 53, 4635−4652.
(19) Aoyama, Y.; Tanaka, Y.; Sugahara, S. Molecular recognition. S. Molecular recognition of sugars via hydrogen-bonding interaction with a synthetic polyhydroxy macrocycle. J. Am. Chem. Soc. 1989, 111 (14), 5397−5404.
(20) Tanaka, Y.; Ubukata, Y.; Aoyama, Y. Selective Sugar Binding with a Synthetic Polyhydroxy Macrocycle. A Remarkable Selectivity for Fructose over Glucose. Chem. Lett. 1989, 18 (11), 1905−1908.
(21) Tanaka, Y.; Kato, Y.; Aoyama, Y. Molecular recognition. Two-point hydrogen-bonding interaction: a remarkable chain-length selectivity in the binding of dicarboxylic acids with resorcinol-aldehyde cyclotetramer as a multidentate host. J. Am. Chem. Soc. 1990, 112 (7), 2807−2808.
(22) Kikuchi, Y.; Tanaka, Y.; Sutarto, S.; Kobayashi, K.; Töi, H.; Aoyama, Y. Highly cooperative binding of alkyl glycopanoisides to the resorcinol cyclic tetramer due to intramolecular guest-guest hydrogen-bonding: solvophobic/solvophilic control by an alkyl group of the geometry, stoichiometry, stereoselectivity, and cooperativity. J. Am. Chem. Soc. 1992, 114 (26), 10302−10306.
(23) MacGillivray, L. R.; Atwood, J. L. A chiral spherical molecular assembly held together by 60 hydrogen bonds. Nature 1997, 389 (6650), 469−472.
(24) MacGillivray, L. R.; Atwood, J. L. Rational Design of Multicomponent Calix[4]arenes and Control of Their Alignment in the Solid State. J. Am. Chem. Soc. 1997, 119 (29), 6931−6932.
(25) Cohen, Y.; Avram, L.; Frish, L. Diffusion NMR Spectroscopy in Supramolecular and Combinatorial Chemistry: An Old Parameter—New Insights. Angew. Chem., Int. Ed. 2005, 44 (4), 520−554.
(26) Avram, L.; Cohen, Y. Spontaneous Formation of Hexameric Resorcinarene Capsule in Chloroform Solution as Detected by Diffusion NMR. J. Am. Chem. Soc. 2002, 124 (51), 15148−15149.
(27) Avram, L.; Cohen, Y. Effect of a Cationic Guest on the Characteristics of the Molecular Capsule of Resorcinarene: A Diffusion NMR Study. Org. Lett. 2003, 5 (7), 1099−1102.
(28) Avram, L.; Cohen, Y. Discrimination of Guests Encapsulation in Large Hexameric Molecular Capsules in Solution: Pyrogalol[4]arene versus Resorcin[4]arene Capsules. J. Am. Chem. Soc. 2003, 125 (52), 16180−16181.
(29) Avram, L.; Cohen, Y. Hexameric Capsules of Lipophilic Pyrogallolarene and Resorcinarene in Solutions as Probed by Diffusion NMR: One Hydroxyl Makes the Difference. Org. Lett. 2003, 5 (18), 3329−3332.
(30) Avram, L.; Cohen, Y. Self-Recognition, Structure, Stability, and Guest Affinity of Pyrogallol[4]arene and Resorcin[4]arene Capsules in Solution. J. Am. Chem. Soc. 2004, 126 (37), 11556−11563.
(31) Avram, L.; Cohen, Y.; Rebek, J. Jr. Recent advances in hydrogen-bonded hexameric encapsulation complexes. Chem. Commun. 2011, 47 (19), 5368−5375.
(32) Avram, L.; Cohen, Y. Diffusion NMR of molecular cages and capsules. Chem. Soc. Rev. 2015, 44, 586−602.
(33) Evans-Salem, T.; Baruch, I.; Avram, L.; Cohen, Y.; Palmer, L. C.; Rebek, J. Resorcinarenes are hexameric capsules in solution. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (33), 12296−12300.
(34) Shivasnyuk, A.; Friese, J. C.; Döring, S.; Rebek, J., Jr. Solvent-Stabilized Molecular Capsules. J. Org. Chem. 2003, 68 (17), 6489−6496.
(35) Shivasnyuk, A.; Rebek, J. Reversible encapsulation by self-assembling resorcinarene subunits. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (14), 7662−7665.
(36) Stirling, C. J. M.; Fundin, L. J.; Williams, N. H. Trimermorph in solid resorcinarenes. Chem. Commun. 2007, 1748−1750.
(37) Palmer, L. C.; Shivasnyuk, A.; Yamanaoka, M.; Rebek, J., Jr. Resorcinarene assemblies as synthetic receptors. Chem. Commun. 2005, No. 7, 857.
Chem. Front. Rescifina, A.; Gaeta, C.; Neri, P. Mild Friedel Hydrogen Bonding to Bridging Water Molecules. Hexameric Resorcinarene Capsule: C Tetrazoles from Isonitriles by a Self-Assembled Hexameric Capsule. A. Supramolecular Catalysis in the Synthesis of Substituted 1 H-Journal of the American Chemical Society pubs.acs.org/JACS 9066. Hydrochloric Acid as a Cocatalyst for Resorcinarene-Capsule-Dynamic Imine Libraries Driven by the Hexameric Resorcinarene Gaeta, C.; Neri, P. Kinetic and Thermodynamic Modulation of molecular Catalysis in Confined Spaces. Neri, P. The Hexameric Resorcinarene Capsule at Work: Supra-atomic Catalysis in the Synthesis of Substituted 1 H-Catal. Sci. Technol. 2016, 4, 217–220. (56) Zhang, Q.; Catti, L.; Kaila, V. R. I.; Tiefenbacher, K. To catalyze or not to catalyze: elucidation of the subtle differences between the hexameric capsules of pyrogallolarene and resorcinarene. J. Am. Chem. Sci. 2017, 8 (2), 1653–1657. (57) Levi, S.; Zhang, Q.; Major, D. T. Thermodynamic and Kinetic Control Determine the Sesquiterpene Reaction Pathways Inside Nanocapsules. ACS Catal. 2020, 10 (12), 6843–6853. (58) Zhang, Q.; Catti, L.; Pleiss, J.; Tiefenbacher, K. Terpene Cyclizations inside a Supramolecular Catalyst: Leaving-Group-Controlled Product Selectivity and Mechanistic Studies. J. Am. Chem. Sci. 2017, 139 (33), 11482–11492. (59) Zhu, Y.; Rebek, J., Jr.; Yu, Y. Cyclizations catalyzed inside a hexameric resorcinolarene capsule. Chem. Commun. 2019, 55, 3573–3577. (60) Merget, S.; Catti, L.; Piccini, G.; Tiefenbacher, K. Requirements for Terpene Cyclizations inside the Supramolecular Resorcinarene Capsule: Bound Water and Its Protonation Determine the Catalytic Activity. J. Am. Chem. Sci. 2020, 142 (9), 4400–4410. (61) Zhang, Q.; Rinkel, J.; Goldfuss, B.; Dickshat, J. S.; Tiefenbacher, K. Sesquiterpene cyclizations catalysed inside the resorcinarene capsule and application in the short synthesis of isolongifolene and isolongifolenone. Nat. Catal. 2018, 1 (8), 609–615. (62) Syntrivianis, L. D.; Némethová, I.; Schmid, D.; Levi, S.; Preciscombe, A.; Bissegger, F.; Major, D.; Tiefenbacher, K. Four-Step Access to the Sesquiterpene Natural Product Presilphiperforan-1β-ol and Unnatural Derivatives via Supramolecular Catalysis. J. Am. Chem. Sci. 2020, 142, 5894–5900. (63) Zhang, Q.; Tiefenbacher, K. Sesquiterpene Cyclizations inside the Hexameric Resorcinarene Capsule: Total Synthesis of β-Selinene and Mechanistic Studies. Angew. Chem. Int. Ed. 2019, 58 (36), 12688–12695. (64) Shimizu, S.; Usui, A.; Sugai, M.; Suematsu, Y.; Shirakawa, S.; Ichikawa, H. Hexameric Capsule of a Resorcinarene Bearing Fluorous Feet as a Self-Assembled Nanoreactor: A Diels–Alder Reaction in a Fluorous Biphasic System. Eur. J. Org. Chem. 2013, 22, 4734–4737. (65) Jans, A. C. H.; Caumes, X.; Reek, J. N. H. Gold Catalysis in (Supra)Molecular Cages to Control Reactivity and Selectivity. ChemCatChem 2018, 10, 1–12. (66) Cavarran, A.; Reek, J. N. H.; Trentin, F.; Scarsø, A.; Strukul, G. Substrate selectivity in the allyne hydration mediated by NH3–Au(i) controlled by encapsulation of the catalyst within a hexagon bonded hexameric host. Catal. Sci. Technol. 2013, 3, 2899–2901. (67) Jans, A. C. H.; Gómez-Suárez, A.; Nolan, S. P.; Reek, J. N. H. A Switchable Gold Catalyst by Encapsulation in a Self-Assembled Cage. Chem. - Eur. J. 2016, 22 (42), 14836–14839. (68) Jongkind, L. J.; Rahimi, M.; Poole, D.; Ton, S. J.; Fogg, D. E.; Reek, J. N. H. Protection of Ruthenium Olefin Metathesis Catalysts by Encapsulation in a Self-Assembled Resorcinarene Capsule. ChemCatChem 2020, 12, 4019–4023. (69) Zhang, Q.; Catti, L.; Tiefenbacher, K. Catalysis inside the Hexameric Resorcinarene Capsule. Acc. Chem. Res. 2018, 51, 2107–2114. (70) Bräuer, T. M.; Zhang, Q.; Tiefenbacher, K. Iminium Catalysis inside a Self-Assembled Supramolecular Capsule: Modulation of Enantiomeric Excess. Angew. Chem. Int. Ed. 2016, 55, 7698–7701. (71) Zhang, T. M.; Reek, J. N. Tiefenbacher, K. Iminium Catalysis inside a Self-Assembled Supramolecular Capsule: Scope and Mechanistic Studies. J. Am. Chem. Soc. 2017, 139 (48), 17500–17507. (72) Payne, R. M.; Oliver, C. L. A propanol-seamed C-cyclohexyl[4]-resorcinarene hexamer accessible via solution crystallization, liquid-assisted grinding and vapour sorption. CrystEngComm 2018, 20 (14), 1919–1922. (73) Avram, L.; Cohen, Y. The Role of Water Molecules in a Resorcinarene Capsule As Probed by NMR Diffusion Measurements. Org. Lett. 2002, 4 (24), 4365–4368. (74) Slovak, S.; Avram, L.; Cohen, Y. Encapsulated or Not Encapsulated? Mapping Alcohol Sites in Hexameric Capsules of Resorcin[4]arenes in Solution by Diffusion NMR Spectroscopy. Angew. Chem., Int. Ed. 2010, 49 (2), 428–431.
(75) Slovak, S.; Cohen, Y. The Effect of Alcohol Structures on the Interaction Mode with the Hexameric Capsule of Resorcin[4]arene. Chem. - Eur. J. 2012, 18, 8515−8520.
(76) Schnatwinkel, B.; Stoll, I.; Mix, A.; Rekharsky, M. V.; Borovkov, V. V.; Inoue, Y.; Mattay, J. Monomeric, dimeric and hexameric resorcin[4]arene assemblies with alcohols in apolar solvents. Chem. Commun. 2008, No. 33, 3873−3875.
(77) Katiyar, A.; Freire Sovierzoski, J. C.; Calio, P. B.; Vartia, A. A.; Thompson, W. H. Water plays a diverse role in a hydrogen-bonded, hexameric supramolecular assembly. Chem. Commun. 2019, 55 (46), 6591−6594.
(78) Katiyar, A.; Freire Sovierzoski, J. C.; Calio, P. B.; Vartia, A. A.; Thompson, W. H. Water plays a dynamical role in a hydrogen-bonded, hexameric supramolecular assembly. Phys. Chem. Chem. Phys. 2020, 22, 6167−6175.
(79) Ramsey, S.; Nguyen, C.; Salomon-Ferrer, R.; Walker, R. C.; Gilson, M. K.; Kurtzman, T. Solvation thermodynamic mapping of molecular surfaces in AmberTools: GIST. J. Comput. Chem. 2016, 37 (21), 2029−2037.
(80) Bryant, R. G. The NMR time scale. J. Chem. Educ. 1983, 60 (11), 933−935.
(81) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stolz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176−2179.
(82) Ouellette, R. J. The Chemical Shift of the Hydroxyl Proton of Phenols in Dimethyl Sulfoxide. Can. J. Chem. 1965, 43, 707−709.
(83) Beckett, M. A.; Strickland, G. C.; Holland, J. R.; Sukumar Varma, K. A convenient n.m.r. method for the measurement of Lewis acidity at boron centres: correlation of reaction rates of Lewis acid initiated epoxide polymerizations with Lewis acidity. Polymer 1996, 37 (20), 4629−4631.
(84) Mayer, U.; Gutmann, V.; Gerger, W. The acceptor number: A quantitative empirical parameter for the electrophilic properties of solvents. Monatsh. Chem. 1975, 106 (6), 1235−1257.
(85) Oka, K.; Shibue, T.; Sugimura, N.; Watabe, Y.; Winther-Jensen, B.; Nishide, H. Long-lived water clusters in hydrophobic solvents investigated by standard NMR techniques. Sci. Rep. 2019, 9 (1), 1−6.
(86) Jakubczyk, M.; Adamczyk-Woźniak, A.; Sporzyński, A. Acceptor number of organoboron molecules quantitative determination of Lewis acidity. In Molecular Receptors.; East Publisher House, 2011. pp 53−68.