We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

5,500
Open access books available

134,000
International authors and editors

165M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter

The Role of Estrogens in Rheumatoid Arthritis Physiopathology

Maria Fernanda Romo-García, Martín Zapata-Zuñiga, José Antonio Enciso-Moreno and Julio Enrique Castañeda-Delgado

Abstract

Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease that can lead to irreversible disability. It affects women in a higher proportion than men (3:1 cases). Several reports suggest a link between female sexual hormones (estrogens) and RA features. It's been described that biological processes where basal estrogen levels are altered like in menstruation, pregnancy, and menopause modifies RA onset, flare, disease severity, and inflammation. Estrogens have a direct action upon the immune system though ERα and ERβ receptors, which have distinct affinity to estrogen concentrations and modifications and have effects upon RA in a dose and receptor dependent manner. The studies focused on dose dependent response at experimental settings reveal a wide (from 25 pg/L to several μg/L) and even contradictory spectrum of effects in patients and cells. This chapter summarizes the contributions and effects of estrogens in RA physiopathology, clinical features, and discusses the possible contributions of estrogen administration and concentration of hormone replacement therapy (HRT) to improve the quality of life and reduce the symptoms of RA patients based on the knowledge of the biology of these hormones.

Keywords: rheumatoid arthritis, physiopathology, immune function, estrogen

1. The RA-gender-hormones link

Rheumatoid arthritis (RA) is defined as a chronic, inflammatory joint disease that without effective and timely treatment can lead to irreversible disability by cumulative joint damage. This autoimmune disease is characterized in most cases by autoantibodies against immunoglobulin G (RF) and citrullinated proteins (ACPAs) [1–3]. The alterations in the immune response is only one face of the disease since it has been described as a heterogeneous disease [4, 5]. This is supported by the wide variation in responsiveness to different rheumatic treatments [6]. Research suggests this might be due to variations in the distribution/expression of estrogen receptors (ERs) in immune cells; ERs often bind to promoter regions in the DNA associated with transcription factors (e.g., NF-κB, SP1, AP-1, C/EBPβ) that are important for immune cell function [7].
could possibly be related to “premenstrual tension syndrome” and alteration in pain perception [44], but in a study where only objective measures of disease activity were measured, a significant cyclical change in finger joint size (FJS) was seen in 4 of 7 patients with RA, with all peaks occurring within 6 days of the start of menstruation [45] while on contrary, the morning stiffness was reduced during the post-ovulatory phase where estrogen and progesterone are high [46], indicating that this worsening of symptoms might be related to variations in hormone levels [47]. Based on this evidence, a relation between low levels of estrogen (at luteal phase) can correspond to enhancement of RA symptoms. Contrary to what occurs on pregnancy, where high estrogen levels seem to have a protective effect. Until now there is no follow up study available to display the effect of cyclical variations in estrogen levels and symptoms severity in RA patients.

3.2 Arthritis and pregnancy

As stated previously, the relationship of RA onset and sex hormones has been widely studied. This phenomena was described first 80 years ago [8] and was noticed that pregnant patients with RA usually go into remission [48] in a 20–40% by the third trimester and 50% had low disease activity [49]. Prospective studies have shown that only 48–66% of women with RA experience improvement in pregnancy, with 20% becoming quiescent by the third trimester and 16% in complete remission (no joints with active disease without therapy) [32, 50].

It has been hypothesized that estradiol might be the principal regulator of immune response during pregnancy, nevertheless other estrogens might be implicated in this immune regulation, as an example we can cite estriol (E3) which is mainly produced during pregnancy [51, 52], and estetrol (E4) is synthesized exclusively by the fetal liver during pregnancy being able to reach the maternal circulation through the placenta [53]; thus, these two estrogens, specifically E4 could have an important role in the immune regulation during pregnancy; nevertheless, there is scarce information about its possible function during pregnancy.

A shift from a Th1/Th17 pro-inflammatory response to a Th2/Treg response has been observed in pregnancy [54, 55]. This could explain the decrease of IL-2 during pregnancy, while soluble TNF receptor, p55 and p75, increases [56]. The role of the immune system in pregnancy is very important. It has been observed that a depletion of immune cells can cause the termination of the pregnancy. Nevertheless, it is not very clear how such changes in T helper cell function could impact the implantation process. It has been suggested that the response could be induced by trophoblastic cells that can secrete IL-6, IL-8, MCP-1, and GRO-α, early in pregnancy [43].

During the first trimester, NK cells, dendritic cells, macrophages, and regulatory T cells (Treg) infiltrate the decidua and accumulate around the trophoblastic cells [57–59]. This regulation of the immune response could be the cause beneath the clinical improvement observed in RA during pregnancy.

3.3 Menopause and arthritis

RA onset is common in the peri-menopausal age, which is not the case with SLE [60] and while hormone replace therapy (HRT) is proposed as therapy for women with RA, OCP and postmenopausal hormones significantly increased the risk of SLE [61]. Also, there is an inverse trend for RA incidence when women reach menopause after 51 years compared to those who reach menopause before 45 years of age. This is consistent with a decline in the production of sex hormones and suggesting that changes in immune regulation due to the availability of estrogen receptors in
diethylstilbestrol, bisphenol-A, p-nonylphenol, and di-2-ethylhexylphthalate), the concentrations needed for this effect were higher, from 10 to 6 to 10–5 M [69].

5. Estrogens and their possible ameliorative effect upon arthritis: therapeutic approach

Given the previously displayed effects of estrogens on the immune system and in RA, it is natural to suppose that a hormone therapy could have certain effects upon the disease but, the studies exploring this possibility are scarce. Three major considerations have been identified as roadblock for such research to be conducted: (1) cut-off point in estrogen levels determining the effects of this molecule on the immune system, (2) the various effects of the same molecule at different concentrations lead to different effects depending ERα or ERβ receptor, and (3) effects dependent of the chemical modification (hydroxylation) of estrogens.

The hypothesis that hormonal therapy could ameliorate RA arises from the evidence of reported improvement in multiple pregnancies and contraceptive use [109], but this evidence became more solid when the estrogen at physiological levels administration in models of type II collagen-induced arthritis model (CIA) ameliorated arthritis and suppressed T-cell-dependent autoimmune reactions [52, 90]. In this experiment, female mice were implanted with E2 release devices, which induced a chronic estrous phase, the high doses of E2 caused a 35-day delay of the onset of RA disease but without affecting frequency and severity; this delay was reduced to 10 days with lower E2 concentrations of 25 days with physiological E3 proved to be as efficient as the high dose E2 causing a 25 day delay [90]. E3 seems to have more pronounced effects than E2; this estrogen E3 is mainly produced in pregnancy [51, 52]. In EAE models, it seems that the estrogen-mediated protection is dependent upon ERα. For example in EAE homozygous ERαKO treated with estriol, no protective effect was registered, while WT mice presented a significant decrease in disease severity and significant reductions in pro inflammatory cytokines TNF, IFNγ, IL-2, and an increase in levels of the Th2 cytokine IL-5 [110]. The effect of estrogens at interact with ERα receptor is not only limited to the immune response; in murine ovariectomized mice with estrogen treatment by pellet implantation, a dramatic increase in bone mass was observed. This was mediated by ERα-mediated apoptosis of osteoclasts through activating FasL/Fas signaling [111]. This could be an indicator that similar protective effects of estrogens may be present in immune cells due to the expression of ERα in CD4 + T lymphocytes.

Estrogens have been demonstrated to have anti-inflammatory activity. In CIA models, estrogen supplementation reduced paw inflammation efficiently and decreased paw volume by 48% ($P < 0.01$) [91], but we need to be aware that the activity of several estrogens (E1, E2, E3, and E4) is different and it depends not only on the hormone itself but also by the specific disease or even the specific clinical profile of the patient that is taking them. 2-methoxyestradiol on CIA model (20 days after the injection of type II collagen) produce a significant decrease in the arthritis index compared with that in the control mice ($P < 0.05$) despite it was not as efficient as estradiol [112]. Despite this is the most tested estrogen among studies for its effect in RA, Estradiol E2, in clinical applications, shows several side effects such as: hypertension, increased coagulation, and cancer incidence but a feature that both share is that they are protective in experimental autoimmune encephalomyelitis (EAE) and CIA [113].

The clinical data available is scarce and most of the available trials only evaluate the protective effect of OCP (oral contraceptive pill) and hormone replacement
therapy (HRP) for RA. In a study of association between postmenopausal hormone therapy (PMH) use and the risk of rheumatoid arthritis (RA) in a subset of the Epidemiological Investigation of RA (EIRA) study, the users of PMH had a decreased risk of ACPA-positive RA compared with never users, mainly with a combined therapy (estrogen plus progestagens), they propose that PMH use might reduce the risk of ACPA-positive RA in post-menopausal women over 50 years of age, but not of ACPA-negative RA [114].

Regarding the role of OCP use in RA, there is a theory which explains that recent decrease in incidence of RA in women in the past 50 years may be in part due to increased use of the OCP, even when may be confounded by OC use being related to pregnancy avoidance and high social class [115]. During a 14 month period, 23,000 women who were using oral contraceptives were recruited, and a similar number of those who had never used OCP as controls and evaluated every 6 month intervals. Patients were classified as “current user,” “former user,” and “never user.” The cases were categorized according to the woman’s contraceptive status at the time of RA diagnosis (event). The trend for former users was $\chi^2 = 5.7$, ($p < 0.02$) and for the never users $\chi^2 = 15.0$, ($p < 0.01$) but the current users $\chi^2 = 0–85$, ($p > 0.05$) and for those who were aged 40–44 years at diagnosis had a significantly lower risk of rheumatoid arthritis than similarly aged never users (relative risk 0.29). At the end of the follow-up, women who were using the pill at the time of diagnosis had a statistically non-significant 20% reduction in their risk of rheumatoid arthritis but early in the study current users had a significant 50% risk reduction [116]. The same cohort was classified in groups of “takers” and “never takers” and was analyzed too for the incidence of RA. The standardized rate for takers was 49% of the control rate ($p < 0.01$) and resulted interesting an observed tendency for an increased incidence of RA forward 35 years; this tendency was conserved only in the group of “never takers” and suppressed in the takers [117].

In the Swedish EIRA study (population-based case-control) including 2641 cases and 4251 controls participants were questioned about OCP (oral contraceptive pill) full term need to be mentioned consumption, and potential confounders in order to calculate the ORs adjusted for age, residential area, smoking, and alcohol consumption. Compared with never users, the OCP users had a decreased risk of ACPA-positive RA (OR = 0.84) (95% CI 0.74–0.96) compared to the never users. Also the consumption for more than 7 years decreased the risk of both ACPA-positive ($p = 0.0037$) and ACPA-negative RA ($p = 0.0356$) compared to never users of OCP [118].

Most of the studies agree that the current or ever use of the OCP has a protective effect against RA, probably more delaying the onset rather than a preventing RA. But until now there is not a final conclusion because even the meta-analysis results are contradictory. In the meta-analysis of six case-control and three longitudinal studies, the overall pooled odds ratio of the studies was 0.73 for the adjusted results (95% CI 0.61–0.85) with the conclusion that OCP consumption prevents the progression to severe disease by modifying the disease process [119]. On the contrary in a meta-analysis performed by Qi et al. in 2014, the authors identified 1116 publications in PubMed and EMBASE databases. The meta-analysis of 12 case-control and 5 cohort studies were analyzed. Potential publication bias was evaluated using Begg’s funnel plots and quantified by the Egger’s test, as a sensitivity analysis was performed to investigate the influence of potential confounding factors like age, smoking, parity/pregnancy, body mass index, and social class on risk of develop RA. Here, no statistically significant association was observed between oral contraceptives and RA risk (RR = 0.88, 95% CI = 0.75–1.03) concluding that OCP consumption was not significantly associated with RA risk [120].

HRT (hormone replacement therapy) has been studied in regard to RA new-onset. On a study in a prospective cohort of 31,336 Iowa women (from 55 to
69 years) followed up during 11 years, 158 incident cases of RA were registered. Of the factors that showed an inverse association with RA, the authors identified pregnancy (P trend = 0.01) and age at menopause (P trend = 0.03), whereas polycystic ovary syndrome (relative risk [RR], 2.58; 95% confidence interval [CI], 1.06–6.30), endometriosis (RR, 1.72; 95% CI, 0.93–3.18), and hormone replacement therapy (RR, 1.47; 95% CI, 1.04–2.06) were positively associated with RA. If HRT is administered before RA is associated with a higher risk of developing the disease, studies suggest that when HRT is administered during RA, they have a favorable effect. In 88 postmenopausal women with RA who received HRT, vitamin D3, and calcium supplementation or vitamin D3 and calcium supplementation alone for 2 years, HRT use had a significant effect upon active RA, ameliorating effects on inflammation (ESR p = 0.025) DAS28 (p = 0.036) and was associated with slower progression of radiological joint destruction (p = 0.026) [121]. The continuous hormonal therapy given to suppress menstruation for regulation of menstrual bleeding, pelvic pain, and dysmenorrhea seems to have demonstrated improvement in RA [122].

6. Novel hormone analogs in RA

Recently, novel hormone analogs have been developed. ERβ-041 is a selective ERβ agonist and has showed interesting effects in several inflammatory rodent models, including endometriosis, rheumatoid arthritis, inflammatory bowel, and sepsis [123, 124] where a strong effect on reduction of inflammation was observed. This selective effect was the antecedent for the development of other ERβ agonists like MF101 [125] that could be useful to modulate the inflammation and cytokine production in RA. No clinical trial data on these molecules have been published so far.

7. Conclusions

Given the higher prevalence of RA cases that occur in women, it is natural to suspect that such differences are due to sexual hormones, specifically estrogens, which have been explored as part of pathophysiology, development, and progression of RA disease. Antecedents point to estrogens as strong modulators of immune response and function associated to RA. The role that sex hormones play in the development, cell activation, and alterations in immune function in autoimmune diseases is still a matter of intense research. The administration of estrogens may have a protective effect on RA development or in the onset of disease, delaying it. Also, experimental evidence suggests that estrogens demonstrated anti-inflammatory activity in animal models of RA. Such effects are mediated by modifications in antibody production and in post-translational modification of antibodies like sialylation (addition of syalic acid), involved on increased risk of RA in conditions with low estrogen levels such as menopause. Estrogens administration to RA patients could be a strategy to improve the quality of life through hormone replacement therapy (HRT). This, in resource limited settings were biological therapy cannot be afforded and in patients that are refractory to standard MTX therapy or that have failed to respond to such therapies.

Acknowledgements

Maria Fernanda Romo García thanks CONACyT (Consejo Nacional de Ciencia y Tecnología); National Council of Science and Technology for scholarship 297364/ CVU 560269.
Conflict of interest

No conflict of interest is declared.

Author details

Maria Fernanda Romo-García1,2, Martín Zapata-Zuñiga3,4,5, José Antonio Enciso-Moreno1 and Julio Enrique Castañeda-Delgado1,6*

1 Cátedras-CONACyT-Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México

2 Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México

3 Hospital Rural # 51, IMSS, Villanueva, Zacatecas, México

4 Hospital General Jerez Zacatecas, Servicios de Salud de Zacatecas, Zacatecas, México

5 Facultad de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, México

6 Cátedras-CONACyT-Unidad de Investigación Biomédica de Zacatecas-IMSS, Zacatecas, México

*Address all correspondence to: julioenrique_castaeda@yahoo.com.mx

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

[1] Pelaez-Ballestas I, Sanin LH, Moreno-Montoya J, Álvarez-Nemegyei J, Burgos-Vargas R, Garza-Elizondo M, et al. Epidemiology of the rheumatic diseases in Mexico. A study of 5 regions based on the COPCORD methodology. The Journal of Rheumatology. 2011;86:3-8. Available from: http://www.jrheum.org/cgi/doi/10.3899/jrheum.100951 [cited 14 December 2016]

[2] Alamanos Y, Voulgarı PV, Drosos AA. Incidence and prevalence of rheumatoid arthritis, based on the 1987 American College of Rheumatology Criteria: A systematic review. Seminars in Arthritis and Rheumatism. 2006;36(3):182-188. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17045630 [cited 18 September 2018]

[3] Szekanecz Z, Soós L, Szabó Z, Fekete A, Kapitány A, Végvári A, et al. Anti-citrullinated protein antibodies in rheumatoid arthritis: As good as it gets? Clinical Reviews in Allergy & Immunology. 2008;34(1):26-31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18270854 [cited 14 September 2017]

[4] Weyand CM, Klimiuk PA, Goronzzy JJ. Heterogeneity of rheumatoid arthritis: From phenotypes to genotypes. Seminars in Immunopathology. 1998;20(1-2):5-22. Available from: http://link.springer.com/10.1007/BF00831996 [cited 30 October 2018]

[5] van der Pouw KTCTM, Wijbrandts CA, van Baarsen LGM, Voskuyl AE, Rustenburg F, Baggen JM, et al. Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: Assignment of a type I interferon signature in a subpopulation of patients. Annals of the Rheumatic Diseases. 2007;66(8):1008-1014. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17223656 [cited 12 January 2018]

[6] Courvoisier DS, Alpizar-Rodriguez D, Gottenberg JE, Hernandez MV, Iannone F, Lie E, et al. Rheumatoid arthritis patients after initiation of a new biologic agent: Trajectories of disease activity in a large multinational cohort study. EBioMedicine. 2016;11:302-306. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27558858 [cited 30 October 2018]

[7] Leitman DC, Paruthiyil S, Vivar OI, Saunier EF, Herber CB, Cohen I, et al. Regulation of specific target genes and biological responses by estrogen receptor subtype agonists. Current Opinion in Pharmacology. 2010;10(6):629-636. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20951642 [cited 14 August 2018]

[8] Ps H. The ameliorating effect of pregnancy on chronic atrophic (infectious rheumatoid) arthritis, fibrositis, and intermittent hydrarthrosis. Proceedings of the Staff Meetings. Mayo Clinic. 1938;13:161-167

[9] Nolten WE, Lindheimer MD, RUECKERT PA, Oparil S, Ehrlich EN. Diurnal patterns and regulation of cortisol secretion in pregnancy. The Journal of Clinical Endocrinology & Metabolism. 1980;51(3):466-472. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7410530 [cited 12 September 2018]

[10] Deighton CM, Watson MJ, Walker DJ. Sex hormones in postmenopausal HLA-identical rheumatoid arthritis discordant sibling pairs. The Journal of Rheumatology. 1992;19(11):1663-1667. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1491383 [cited 28 September 2018]

[11] Hall GM, Perry LA, Spector TD. Depressed levels of dehydroepiandrosterone sulphate in postmenopausal women with rheumatoid arthritis but no
relation with axial bone density. Annals of the Rheumatic Diseases. 1993;52(3): 211-214. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8484674 [cited 28 September 2018]

[12] Cash JM, Crofford LJ, Gallucci WT, Sternberg EM, Gold PW, Chrousos GP, et al. Pituitary-adrenal axis responsiveness to ovine corticotropin releasing hormone in patients with rheumatoid arthritis treated with low dose prednisone. The Journal of Rheumatology. 1992;19(11):1692-1696. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1337108 [cited 28 September 2018]

[13] Cutolo M, Villaggio B, Craviotto C, Pizzorni C, Seriolo B, Sulli A. Sex hormones and rheumatoid arthritis. Autoimmunity Reviews. 2002;1(5): 284-289. Available from: https://www.sciencedirect.com/science/article/pii/S1568997202000642?via%3Dihub [cited 18 September 2018]

[14] Castagnetta LA, Carruba G, Granata OM, Stefano R, Miele M, Schmidt M, et al. Increased estrogen formation and estrogen to androgen ratio in the synovial fluid of patients with rheumatoid arthritis. The Journal of Rheumatology. 2003;30(12): 2597-2605. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14719200 [cited 18 September 2018]

[15] Richette P, Laborde K, Boutron C, Bardin T, Corvol M-T, Savouret J-F. Correlation between serum and synovial fluid estrogen concentrations: Comment on the article by Sowers et al. Arthritis & Rheumatism. 2007;56(2):698-698. Available from: http://doi.wiley.com/10.1002/art.22384

[16] Abbassi-Ghanavati M, Greer LG, Cunningham FG. Pregnancy and laboratory studies. Obstetrics & Gynecology. 2009;114(6):1326-1331. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19935037 [cited 03 October 2018]

[17] Altemus M, Deuster PA, Galliven E, Carter CS, Gold PW. Suppression of hypothalamic-pituitary-adrenal axis responses to stress in lactating women. The Journal of Clinical Endocrinology and Metabolism. 1995;80(10):2954-2959

[18] Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clinical Immunology and Immunopathology. 1997;84(3):223-243. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9281381 [cited 29 October 2018]

[19] Fairweather D, Rose NR. Women and autoimmune diseases. Emerging Infectious Diseases. 2004;10(11): 2005-2011. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15550215 [cited 29 October 2018]

[20] Wolfe AM, Kellgren JH, Masi AT. The epidemiology of rheumatoid arthritis: A review. II. Incidence and diagnostic criteria. Bulletin on the Rheumatic Diseases. 1968;19(3): 524-529. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4884388 [cited 29 October 2018]

[21] van Vollenhoven RF. Sex differences in rheumatoid arthritis: More than meets the eye. BMC Medicine. 2009;7(1):12. Available from: http://bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-7-12 [cited 21 September 2018]

[22] Forslind K, Hafström I, Ahlmén M, Svensson B, BARFOT Study Group. Sex: A major predictor of remission in early rheumatoid arthritis? Annals of the Rheumatic Diseases. 2007;66(1):46-52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17158139 [cited 19 September 2018]
Couderc M, Gottenberg J-E, Mariette X, Pereira B, Bardin T, Cantagrel A, et al. Influence of gender on response to rituximab in patients with rheumatoid arthritis: Results from the autoimmunity and rituximab registry. Rheumatology. 2014;53(10):1788-1793. Available from: https://academic.oup.com/rheumatology/article-lookup/doi/10.1093/rheumatology/keu176 [cited 21 September 2018]

Sokka T, Toloza S, Cutolo M, Kautiainen H, Makinen H, Gogus F, et al. Women, men, and rheumatoid arthritis: Analyses of disease activity, disease characteristics, and treatments in the QUEST-RA study. Arthritis Research & Therapy. 2009;11(1):R7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19144159 [cited 03 September 2018]

Alpízar-Rodríguez D, Pluchino N, Canny G, Gabay C, Finckh A. The role of female hormonal factors in the development of rheumatoid arthritis. Rheumatology. 2016;56(8):kew318. Available from: https://academic.oup.com/rheumatology/article-lookup/doi/10.1093/rheumatology/kew318 [cited 06 September 2018]

Chen H, Zhu H, Zhang K, Chen K, Yang H. Estrogen deficiency accelerates lumbar facet joints arthritis. Scientific Reports. 2017;7(1):1379. Available from: http://www.nature.com/articles/s41598-017-01427-7 [cited 31 October 2018]

Merlino LA, Cerhan JR, Criswell LA, Mikuls TR, Saag KG. Estrogen and other female reproductive risk factors are not strongly associated with the development of rheumatoid arthritis in elderly women. Semin Arthritis Rheum. September 2003;33(2):72-82

Sinaï N, Cleary SD, Ballweg ML, Nieman LK, Stratton P. High rates of autoimmune and endocrine disorders, fibromyalgia, chronic fatigue syndrome and atopic diseases among women with endometriosis: A survey analysis.

Human Reproduction. 2002;17(10):2715-2724. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12351553 [cited 24 September 2018]

Lleo A, Battezzati PM, Selmi C, Gershwin ME, Podda M. Is autoimmunity a matter of sex? Autoimmunity Reviews. 2008;7(8):626-630. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18603021 [cited 03 September 2018]

Häupl T, Østensen M, Grützkau A, Radbruch A, Burmester G-R, Villiger PM. Reactivation of rheumatoid arthritis after pregnancy increased phagocyte and recurring lymphocyte gene activity. Arthritis & Rheumatology. 2008;58(10):2981-2992. Available from: https://onlinelibrary.wiley.com/doi/pdf/10.1002/art.23907 [cited 06 September 2018]

Kanik KS, Wilder RL. Hormonal alterations in rheumatoid arthritis, including the effects of pregnancy. Rheumatic Disease Clinics of North America. 2000;26(4):805-823. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0889857X05701708 [cited 06 September 2018]

Barrett JH, Brennan P, Fiddler M, Silman AJ. Does rheumatoid arthritis remit during pregnancy and relapse postpartum?: Results from a nationwide study in the United Kingdom performed prospectively from late pregnancy. Arthritis & Rheumatology. 1999;42(6):1219-1227. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10366115 [cited 06 September 2018]

Iijima T, Tada H, Hidaka Y, Yagoro A, Mitsuda N, Kanzaki T, et al. Prediction of postpartum onset of rheumatoid arthritis. Annals of the Rheumatic Diseases. 1998;57:460-463. Available from: http://ard.bmj.com/ [cited 06 September 2018]

Ostensen M, Fuhrer L, Mathieu R, Seitz M, Villiger PM. A prospective study of pregnant patients with
rheumatoid arthritis and ankylosing spondylitis using validated clinical instruments. Annals of the Rheumatic Diseases. 2004;63(10):1212-1217. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15361373 [cited 12 September 2018]

[35] Oka M. Effect of pregnancy on the onset and course of rheumatoid arthritis. Obstetrical and Gynecological Survey. 1954;9(2):180-181. Available from: http://ard.bmj.com/ [cited 13 September 2018]

[36] Del Junco DJ, Annegers JF, Coulam CB, Luthra HS. The relationship between rheumatoid arthritis and reproductive function. British Journal of Rheumatology. 1989;28 (Suppl 1):33; discussion 42-5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2819346 [cited 13 September 2018]

[37] Nelson JL, Ostensen M. Pregnancy and rheumatoid arthritis. Rheumatic Disease Clinics of North America. 1997;23(1):195-212. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9031383 [cited 06 September 2018]

[38] Silman A, Kay A, Brennan P. Timing of pregnancy in relation to the onset of rheumatoid arthritis. Arthritis & Rheumatology. 1992;35(2):152-155. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1734904 [cited 12 September 2018]

[39] Skomsvoll JF, Ostensen M, Irgens LM, Baste V. Pregnancy complications and delivery practice in women with connective tissue disease and inflammatory rheumatic disease in Norway. Acta Obstetricia et Gynecologica Scandinavica. 2000;79(6):490-495. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10857874 [cited 12 September 2018]

[40] Jara LJ, Medina G, Saavedra MA, Vera-Lastra O, Navarro C. Prolactin and autoimmunity. Clinical Reviews in Allergy and Immunology. 2011;40(1):50-59

[41] Shelly S, Boaz M, Orbach H. Prolactin and autoimmunity. Autoimmunity Reviews. 2012;11(6-7):A465-A470. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22155203 [cited 12 September 2018]

[42] Brennan P, Silman A. Breast-feeding and the onset of rheumatoid arthritis. Arthritis & Rheumatology. 1994;37(6):808-813. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8003052 [cited 12 September 2018]

[43] Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: The role of the immune system at the implantation site. Annals of the New York Academy of Sciences. 2011;1221(1):80-87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21401634 [cited 13 September 2018]

[44] Steiner M, HASKETT RF, Carroll BJ. Premenstrual tension syndrome: The development of research diagnostic criteria and new rating scales. Acta Psychiatracta Scandinavica. 1980;62(2):177-190. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7193399 [cited 20 September 2018]

[45] Rudge SR, Kowanko IC, Drury PL, Bartholomew S. Menstrual cyclicity of finger joint size and grip strength in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases. August 1983;42(4):425-430. Available from: http://ard.bmj.com/ [cited 20 September 2018]

[46] Latman NS. Relation of menstrual cycle phase to symptoms of rheumatoid arthritis. The American Journal of Medicine. 1983;74(6):957-960. Available from: http://linkinghub.elsevier.com/retrieve/pii/0002934383907891 [cited 21 September 2018]

[47] McDonagh JE, Singh MM, Griffiths ID, McDonagh ID, Griffiths JE. Menstrual arthritis. Annals of the...
Rheumatic Diseases. 1993;52:65-66. Available from: http://ard.bmj.com/ [cited 20 September 2018]

[48] Østensen M, Villiger PM. The remission of rheumatoid arthritis during pregnancy. Seminars in Immunopathology. 2007;29(2):185-191. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17621703 [cited 03 September 2018]

[49] Krause ML, Makol A. Management of rheumatoid arthritis during pregnancy: Challenges and solutions. Open Access Rheumatology: Research and Reviews. 2016;8:23-36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27843367 [cited 03 September 2018]

[50] de Man YA, Dolhain RJEM, van de Geijn FE, Willemsen SP, Hazes JMvW. Disease activity of rheumatoid arthritis during pregnancy: Results from a nationwide prospective study. Arthritis & Rheumatology. 2008;59(9):1241-1248. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18759316 [cited 06 September 2018]

[51] Jansson L, Holmdahl R. Estrogen-mediated immunosuppression in autoimmune diseases. Inflammation Research. 1998;47(7):290-301. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9719493 [cited 18 September 2018]

[52] Jansson L, Olsson T, Holmdahl R. Estrogen induces a potent suppression of experimental autoimmune encephalomyelitis and collagen-induced arthritis in mice. Journal of Neuroimmunology. 1994;53(2):203-207. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8071434 [cited 18 September 2018]

[53] Holinka CF, Diczfalusy E, Coel lingh Bennink HJT. Estetrol: A unique steroid in human pregnancy. Journal of Steroid Biochemistry and Molecular Biology. 2008;110(1-2):138-143. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18462934 [cited 08 October 2018]

[54] Groen B, van der Wijk A-E, van den Berg PP, Lefrandt JD, van den Berg G, Sollie KM, et al. Immunological adaptations to pregnancy in women with type 1 diabetes. Scientific Reports. 2015;5:13618. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26391604 [cited 12 September 2018]

[55] Veenstra van Nieuwenhoven AL, Heineman MJ, Faas MM. The immunology of successful pregnancy. Human Reproduction Update. 2003;9(4):347-357. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12926528 [cited 12 September 2018]

[56] Russell AS, Johnston C, Chew C, Maksymowych WP. Evidence for reduced Th1 function in normal pregnancy: A hypothesis for the remission of rheumatoid arthritis. The Journal of Rheumatology. 1997;24(6):1045-1050. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9195507

[57] Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nature Immunology. 2004;5(3):266-271. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14758358 [cited 13 September 2018]

[58] Bulmer JN, Pace D, Ritson A. Immunoregulatory cells in human decidua: Morphology, immunohistochemistry and function. Reproduction Nutrition Development. 1988;28(6B):1599-1613. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3073448 [cited 13 September 2018]

[59] Shimada S, Nishida R, Takeda M, Iwabuchi K, Kishi R, Onoe K, et al. Natural killer, natural killer T, helper and cytotoxic T cells in the decidua from sporadic miscarriage. American Journal of Reproductive Immunology. 2006;56(3):193-200. Available from: http://
doi.wiley.com/10.1111/j.1600-0897.2006.00417.x [cited 13 September 2018]

[60] Colangelo K, Haig S, Bonner A, Zelenietz C, Pope J. Self-reported flaring varies during the menstrual cycle in systemic lupus erythematosus compared with rheumatoid arthritis and fibromyalgia. Rheumatology. 2011; 50(4):703-708. Available from: https://academic.oup.com/rheumatology/article-lookup/doi/10.1093/rheumatology/keq360 [cited 19 September 2018]

[61] Costenbader KH, Feskanich D, Stampfer MJ, Karlson EW. Reproductive and menopausal factors and risk of systemic lupus erythematosus in women. Arthritis & Rheumatology. 2007;56(4):1251-1262. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17393454 [cited 24 September 2018]

[62] Thomas C, Gustafsson JÅ. The different roles of ER subtypes in cancer biology and therapy. Nature Reviews Cancer. 22 July 2011;11(8):597-608. DOI: 10.1038/nrc3093

[63] Tee MK, Rogatsky I, Tzagarakis-Foster C, Cvorø A, An J, Christy RJ, et al. Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors alpha and beta. Molecular Biology of the Cell. 2004;15(3): 1262-1272. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14699072 [cited 03 September 2018]

[64] Stossi F, Barnett DH, Frasor J, Komm B, Lyttle CR, Katzenellenbogen BS. Transcriptional profiling of estrogen-regulated gene expression via estrogen receptor (ER) α or ERβ in human osteosarcoma cells: Distinct and common target genes for these receptors. Endocrinology. 2004; 145(7):3473-3486. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15033914 [cited 03 September 2018]

[65] Paruthiyil S, Cvorø A, Zhao X, Wu Z, Sui Y, Staub RE, et al. Drug and cell type-specific regulation of genes with different classes of estrogen receptor β-selective agonists. PLOS One. 2009;4(7):e6271. Laudet V, editor. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19609440 [cited 03 September 2018]

[66] Phiel KL, Henderson RA, Adelman SJ, Elloso MM. Differential estrogen receptor gene expression in human peripheral blood mononuclear cell populations. Immunology Letters. 2005;97(1):107-113. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0165247804002792 [cited 27 September 2018]

[67] Mao A, Paharkova-Vatchkova V, Hardy J, Miller MM, Kovats S. Estrogen selectively promotes the differentiation of dendritic cells with characteristics of Langerhans cells. The Journal of Immunology. 2005;175(8):5146-5151. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16210618 [cited 20 September 2018]

[68] Curran EM, Berghaus LJ, Vernetti NJ, Saporita AJ, Lubahn DB, Estes DM. Natural killer cells express estrogen receptor-α and estrogen receptor-β and can respond to estrogen via a non-estrogen receptor-α-mediated pathway. Cellular Immunology. 2001; 214(1):12-20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11902825 [cited 20 September 2018]

[69] Sakazaki H, Ueno H, Nakamura K. Estrogen receptor alpha in mouse splenic lymphocytes: Possible involvement in immunity. Toxicology Letters. 2002;133(2–3):221-229. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12119130 [cited 19 September 2018]

[70] Kovats S. Estrogen receptors regulate innate immune cells and
signaling pathways. Cellular Immunology. 2015;294(2):63-69. Available from: http://linkinghub.elsevier.com/retrieve/pii/S000887491500026X [cited 20 September 2018]

[71] Maret A, Coudert JD, Garidou L, Foucras G, Gourdy P, Krust A, et al. Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor α expression in hematopoietic cells. European Journal of Immunology. 2003;33(2):512-521. Available from: http://doi.wiley.com/10.1002/immu.200310027 [cited 14 September 2018]

[72] Erlandsson MC, Ohlsson C, Gustafsson JA, Carlsten H. Role of oestrogen receptors alpha and beta in immune organ development and in oestrogen-mediated effects on thymus. Immunology. 2001;103(1):17-25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11380688 [cited 27 September 2018]

[73] Polanczyk MJ, Hopke C, Huan J, Vandenbark AA, Offner H. Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treated mice. Journal of Neuroimmunology. 2005;170(1–2):85-92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16253347 [cited 18 September 2018]

[74] Tan IJ, Peeva E, Zandman-Goddard G. Hormonal modulation of the immune system — A spotlight on the role of progestogens. Autoimmunity Reviews. 2015;14(6):536-542. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25697984 [cited 12 September 2018]

[75] Prieto GA, Rosenstein Y. Oestradiol potentiates the suppressive function of human CD4+ CD25+ regulatory T cells by promoting their proliferation. Immunology. 2006;118(1):58-65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16630023 [cited 19 September 2018]

[76] Arruvito L, Sanz M, Banham AH, Fainboim L. Expansion of CD4+CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: Implications for human reproduction. The Journal of Immunology. 2007;178(4):2572-2578. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17277167 [cited 19 September 2018]

[77] Lee S, Kim J, Jang B, Hur S, Jung U, Kil K, et al. Fluctuation of peripheral blood T, B, and NK cells during a menstrual cycle of normal healthy women. The Journal of Immunology. 2010;185(1):756-762. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20530263 [cited 19 September 2018]

[78] Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology. 2004;112(1):38-43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15096182 [cited 19 September 2018]

[79] Joseffson E, Tarkowski A, Dahlin A-G, Crafoord F, Thuring I, Lundgren M, et al. Suppression of type I1 collagen-induced arthritis by the endogenous estrogen metabolite 2-methoxyestradiol [internet]. Arthritis and Rheumatism. 1997;40. Available from: https://onlinelibrary.wiley.com/doi/pdf/10.1002/art.1780400120 [cited 18 September 2018]

[80] Khalkhali-Ellis Z, Seftor EA, Nieva DR, Handa RJ, Price RH, Kirschmann DA, et al. Estrogen and progesterone regulation of human fibroblast-like synoviocyte function in vitro: Implications in rheumatoid arthritis. The Journal of Rheumatology. 2000;27(7):1622-1631. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10914842 [cited 18 September 2018]

[81] Macdiarmid F, Wang D, Duncan LJ, Purohit A, Ghilchick MW, Reed MJ.
Stimulation of aromatase activity in breast fibroblasts by tumor necrosis factor alpha. Molecular and Cellular Endocrinology. 1994;106(1–2):17-21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7895904 [cited 18 September 2018]

[82] Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B. Estrogen alters thresholds for B cell apoptosis and activation. The Journal of Clinical Investigation. 2002;109(12):1625-1633. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12070310 [cited 19 September 2018]

[83] Grimaldi CM, Michael DJ, Diamond B. Cutting edge: Expansion and activation of a population of autoreactive marginal zone B cells in a model of estrogen-induced lupus. The Journal of Immunology. 2001;167(4):1886-1890. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11489967 [cited 19 September 2018]

[84] Manuela D, Dalila S, Yara M, Souza Iliada LS. BAFF expression is modulated by female hormones in human immune cells. Biochemical Genetics. 2016;54(5): 722-730. Available from: https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=00062928&AN=118005841&ehostKey=0&qsrc=1&docId=180058418&AN=1180058418&q=0qMhwaCnH6mf85686nm4qOzoyidPzgdl2uvK%2FM1L02Uq3iclh5Yib2LNU3PyDFDz8ZTfz5F16we3hlL3PegeVvFkJsiq63D%3D&crl=f&resultNs=AdminWebAuth&resultLocal= [cited 20 September 2018]

[85] Morimoto S, Nakano S, Watanabe T, Tamayama Y, Mitsuo A, Nakiri Y, et al. Expression of B-cell activating factor of the tumour necrosis factor family (BAFF) in T cells in active systemic lupus erythematosus: The role of BAFF in T cell-dependent B cell pathogenic autoantibody production. Rheumatology. 2007;46(7):1083-1086. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17500077 [cited 20 September 2018]

[86] Eilertsen GØ, Van Gheluë M, Strand H, Nosset JC. Increased levels of BAFF in patients with systemic lupus erythematosus are associated with acute-phase reactants, independent of BAFF genetics: A case–control study. Rheumatology. 2011;50(12):2197-2205. Available from: https://academic.oup.com/rheumatology/article-lookup/doi/10.1093/rheumatology/ker282 [cited 20 September 2018]

[87] Bosello S, Youinou P, Daridon C, Tolusso B, Bendaoud B, Pietrapertosa D, et al. Concentrations of BAFF correlate with autoantibody levels, clinical disease activity, and response to treatment in early rheumatoid arthritis. The Journal of Rheumatology. 2008;35(7):1256-1264. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18528969 [cited 20 September 2018]

[88] Peeva E, Venkatesh J, Diamond B. Tamoxifen blocks estrogen-induced B cell maturation but not survival. The Journal of Immunology. 2005;175(3):1415-1423. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16034077 [cited 19 September 2018]

[89] Ercan A, Kohrt WM, Cui J, Deane KD, Pezer M, Yu EW, et al. Estrogens regulate glycosylation of IgG in women and men. JCI Insight. 2017;2(4):e89703. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28239652 [cited 17 September 2018]

[90] Jansson L, Mattsson A, Mattsson R, Holmdahl R. Estrogen induced suppression of collagen arthritis V: Physiological level of estrogen in DBA1 mice is therapeutic on established arthritis, suppresses anti-type II collagen T-cell dependent immunity and stimulates polyclonal B-cell activity. Journal of Autoimmunity. 1990;3(3):257-270. Available from: https://www.sciencedirect.com/science/article/pii/089684119090145I [cited 18 September 2018]