The octopus mind and the argument against farming it
Commentary on Mather on Octopus Mind

Jennifer Jacquet
Department of Environmental Studies
New York University

Becca Franks
Department of Environmental Studies
New York University

Peter Godfrey-Smith
Faculty of Science
University of Sydney

Abstract: Mather is convincing about octopuses having ‘a controlling mind, motivated to gather information,’ but stops short of asking what having that mind means for octopus moral standing. One consequence of understanding the octopus mind should be a refusal to subject octopuses to mass production. Octopus farming is in an experimental phase and supported by various countries. We argue that it is unethical because of concerns about animal welfare as well as environmental impacts.

Jennifer Jacquet, assistant professor in the Department of Environmental Studies at New York University and part of NYU Animal Studies, works on large-scale environmental problems, including overfishing, climate change, and the Internet wildlife trade. Website

Becca Franks, visiting assistant professor in the Department of Environmental Studies at New York University, studies well-being and motivation, with a focus on aquatic animal welfare. Website

Peter Godfrey-Smith is Professor of History and Philosophy of Science at University of Sydney. His main research interests are philosophy of biology and philosophy of mind. His books include Other Minds: The Octopus, the Sea, and the Deep Origins of Consciousness. Website

Mather (2019a) presents ample evidence that octopuses have personalities, causal reasoning, get bored, and have imaginations. These are features we humans understand. She also describes unique aspects of octopuses’ ‘way of being’ — such as a nervous system distributed
mostly throughout eight arms and the ability to camouflage themselves using chromatophores. Mather also argues convincingly that octopuses have ‘a controlling mind, motivated to gather information.’ Yet she stops short of asking what possessing that mind means for octopus moral standing (see commentaries of Browning 2019 and King & Marino 2019).

One consequence of understanding the octopus mind should be a refusal to subject octopuses to mass production. This is in an experimental phase today and supported by various countries, including Spain, Mexico, China, and Japan. Octopus farming is unethical because of concerns about animal welfare as well as environmental impact (Jacquet et al., 2019).

Mass production of octopus would mean controlled, sterile, and monotonous environments (probably experienced in isolation) combined with set diets and regimented feeding schedules, all designed to maximize biomass, not wellbeing. Few studies have considered octopus welfare in farmed settings (for an overview see Castanheira, 2019), but these have reported high rates of cannibalism and aggression at higher stocking densities (Pham & Isidro, 2009), parasitic infections (Ladineo & Ozić, 2005), and problems with digestion (Sykes et al., 2017). Intensive farm systems are inevitably hostile to the positive experiences octopuses are likely to seek, including high levels of cognitive stimulation (Mather & Dickel, 2017), opportunities to explore, manipulate, and control their environment (Finn et al., 2009; Levy et al., 2015; Steer & Semmens, 2003), and social interaction (Boal, 2006; Caldwell et al., 2015; Scheel et al., 2017).

Beyond welfare concerns, commercial octopus farming would also be ecologically unsustainable. Octopuses are carnivores and require protein from other animals in their diet. Octopuses in captivity grow best on a diet consisting primarily of crab, but diets of mackerel (Pham & Isidro, 2009) or squid and hake have also been tried (Cerezo Valverde & García García, 2016). Rather than alleviating pressure on wild aquatic animals, farming octopus would increase pressure. As with any captive carnivore, farming octopus is inefficient: it would feed people but the result would be a net loss of animal protein.

Ecologists have emphasized that farming carnivores is unsustainable (e.g., Ackefors & Rosén, 1979; Naylor et al., 2000). Aquaculture is a valuable and probably inevitable part of the future of human food consumption, but it can be implemented more or less responsibly. From a sustainability perspective, farming should not focus on carnivores but on organisms lower on the food chain that we do not need to feed, such as mussels and oysters (Jacquet et al., 2017), seaweeds, and other options. Owing to concerns about environmental impact as well as human health, experts have argued that human diets should be composed predominantly or exclusively of plants (Willett, 2019). Although the argument that ‘people have to eat’ has been used to justify the development of octopus farming (including by Mather, 2019b) the human diet need not include farmed octopus. Unlike the octopus, humans have immensely flexible diets.

The nascent octopus farming industry has also argued that octopus farming will meet global demand for octopus. However, as with aquaculture in general, which has not been a substitute for capture fisheries but has added to the global supply of seafood (e.g., Longo et al., 2019), octopus farming would probably result in creating demand for octopus.

The octopus industry has also said octopus farming will create jobs. Any new enterprise, including going to war or building prisons, is likely to create jobs. The question is at what cost. Farming oysters, seaweed, or lentils would also create jobs without subjecting ‘a controlling mind’ to mass production. We must ultimately ask ourselves whether farming the octopus — an
undomesticated, sentient, and sophisticated carnivore — is the right thing to do. We believe it is not. The following scholars (signing as individuals, not on behalf of their institutions) agree:

Signatures

1. ABRAMS Peter, University of Toronto, Canada
2. AINLEY David, Marine Ecologist, USA
3. AL-ABDULRAZZAK Dalal, Vericatch, Canada
4. ALAVA Juan Jose, Institute for the Oceans and Fisheries, University of British Columbia, Canada, & Fundacion Ecuatoriana para el Estudio de Mamiferos Marinos (FEMM), Ecuador
5. ARECHAVALA-LOPEZ Pablo, Mediterranean Institute of Advanced Studies, Spain
6. ATHANASSAKIS Yanoula, New York University, USA
7. BAKER Liv, Hunter College, USA
8. BEKOFF Marc, University of Colorado, USA
9. BERGHMANS Federico, University of Buenos Aires, Argentina
10. BERGSTROM Carl, Department of Biology, University of Washington, USA
11. BOLGER Niall, Columbia University, USA
12. BROOKS Cassandra, University of Colorado Boulder, USA
13. BROTZ Lucas, Institute for the Oceans and Fisheries, University of British Columbia, Canada
14. BROWNING Heather, Australian National University, Australia
15. CASAL Paula, Catalan Institution for Research and Advanced Studies, Spain
16. CARRETERO-GONZÁLEZ Margarita, Universidad de Granada, Spain
17. CHAUDURI Una, New York University, USA
18. CLARK Stephen R.L., University of Liverpool (Professor Emeritus), UK
19. CONLEY Dalton, Princeton University, USA
20. CRAMER Katie, Scripps Institution of Oceanography, USA
21. DAVIES Ben, University of Oxford, UK
22. DELON Nicolas, New College of Florida, USA
23. DENNETT Daniel, Tufts University, USA
24. DONALDSON Brianne, Rice University, USA
25. DOYLE Rebecca, University of Melbourne, Australia
26. ESTES James, University of California, Santa Cruz, USA
27. FENTON Andrew, Dalhousie University, Canada
28. FISCHER Bob, Texas State University, USA
29. FONSECA Rui, Centro de Investigação e Estudos de Sociologia (CIES-IUL), Portugal
30. FRASER David, Animal Welfare Program, University of British Columbia, Canada
31. FROESE Rainer, GEOMAR Helmholtz Centre for Ocean Research, Germany
32. GAGLIANO Monica, University of Sydney, Australia
33. GLASER Sarah, One Earth Future, USA
34. GRUEN Lori, William Griffin Professor of Philosophy, Wesleyan University, USA
35. GUPTA Kristin, Rice University, USA
36. HALTEMAN Matthew C., Calvin College, USA
37. HAYEK Matthew, Harvard University, USA
38. HERRMANN Kathrin, Johns Hopkins Bloomberg School of Public Health, USA
39. HINTZE Sara, University of Natural Resources and Life Sciences Vienna BOKU, Austria
40. HOROWITZ Alexandra, Barnard College, USA
43. ILEA Ramona, Professor of Philosophy, Pacific University Oregon, USA
44. JACKSON Jeremy B.C., Scripps Institution of Oceanography, USA
45. JAMIESON Dale, Department of Environmental Studies, New York University, USA
46. JEROLMACK Colin, New York University, USA
47. JOHN Tyler M., Philosophy, Rutgers University-New Brunswick, USA
48. JOHNS Brandon, California State University - San Bernardino, USA
49. JOHNSON Ayana, Ocean Collectiv, USA
50. JOHNSON Syd, Michigan Technological University, USA
51. JOST John T., New York University, USA
52. KILLOREN David, Australian Catholic University, Australia
53. KING Barbara J., College of William and Mary, USA
54. KNEBA Elliot, Veterinarian, England
55. KRISTENSEN Bjørn, University of Oregon, USA
56. LERNER Adam, New York University Center for Bioethics, USA
57. MAKOWSKA Joanna, University of British Columbia, Canada
58. MARINO Lori, Kimmela Center for Animal Advocacy, USA
59. MCCLEALJENACHAN Loren, Colby College, USA
60. MCDERMID Sonali, New York University, USA
61. MELOTTI Luca, University of Münster, Germany
62. MIGUENS Sofia, University of Porto, Portugal
63. MILINSKI Manfred, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
64. MULÀ Anna, Foundation Franz Weber, Spain
65. NAGY Kelsi, Colorado State University, USA
66. NOTARBARTOLO DI SCIARA Giuseppe, Tethys Research Institute, Milano, Italy
67. ORMANDY Elisabeth, Animals in Science Policy Institute, Canada
68. OVEN Alice, University of Winchester, UK
69. PAEZ Eze, University of Minho, Portugal & UPF-Centre for Animal Ethics, Spain
70. PALOMARES Deng, Institute of Oceans and Fisheries, University of British Columbia, Canada
71. PARDALOU Androniki, School of Biology, Aristotle University of Thessaloniki, Greece
72. PAULY Daniel, University of British Columbia, Canada
73. PENG Guo, Philosophy Department, Shandong University, China
74. PICKETT Susana, University of Leicester, UK
75. POLICARPO Verónica, Instituto de Ciências Sociais (ICS), Universidade de Lisboa, Portugal
76. PROUDFOOT Kathryn, Ohio State University, USA
77. PULEO Alicia, Philosophy Department of the Universidad de Valladolid, Spain
78. RAVER Priscilla, Animal League Defense Fund, USA
79. RAJAN Kanaka, Princeton University, USA
80. REISS Diana, Hunter College, USA
81. RIESER Alison, University of Hawaiii, USA
82. ROBERTS Callum, University of York, UK
83. RYAN Erin, British Columbia Animal Welfare Program, Canada
84. SAFINA Carl, Stony Brook University, USA
85. SALA Enric, National Geographic Society, USA
86. SARAIVA Joao L., Fish Ethology and Welfare Group, CCMAR, Portugal
87. SCHANZ Lisa, University of Natural Resources and Life Sciences (BOKU) Vienna, Austria
88. SCHENKENFELDER Josef, University of Natural Resources and Life Sciences Vienna, Austria
89. SCHLOTTMANN Christopher, Department of Environmental Studies, NYU, USA
References

Ackefors, H., & Rosén, C.G. (1979). Farming aquatic animals: the emergence of a world-wide industry with profound ecological consequences. *AMBI*, 8, 132–143.

Boal, J.G. (2006). Social Recognition: a top-down view of cephalopod behavior. *Vie et Milieu – Life and Environment*, 56(2), 69–79.

Browning, H. (2019). *What is good for an octopus?*. *Animal Sentience* 26(7).

Caldwell, R.L., Ross, R., Rodaniche, A., & Huffard, C.L. (2015). Behavior and body patterns of the Larger Pacific Striped Octopus. *PLoS ONE*, 10(8), 1–17.

Castanheira, M.F. (2019). *Octopus vulgaris*. In: FishEthoBase, ed. Fish Ethology and Welfare Group.

Cerezo Valverde, J., & García García, B. (2017). High feeding and growth rates in common octopus (*Octopus vulgaris*) fed formulated feeds with an improved amino acid profile and mixture of binders. *Aquaculture Research*, 48(7), 3308-3319.

Finn, J.K., Tregenza, T., & Norman, M.D. (2009). Defensive tool use in a coconut-carrying octopus. *Current Biology*, 19, 1069–1070.

Jacquet, J., Franks, B., Godfrey-Smith, P., & Sanchez-Suarez, W. (2019). The case against octopus farming. *Issues in Science and Technology*, 35(2), 37–44.

Jacquet, J., Sebo, J., & Elder, M. (2017). Seafood in the future: Bivalves are better. *Solutions*, 8, 27-32.

King, B.J., & Marino, L. (2019). *Octopus minds must lead to octopus ethics*. *Animal Sentience* 26(14).

Ladineo, I.M., & Ozić, M.J. (2005). Aggregata infection in the common octopus, *Octopus vulgaris*,...
Cephalopoda: Octopodidae, reared in a flow-through system. *Area*, 46, 193–199.

Longo, S.B., Clark, B., York, R., & Jorgenson, A.K. (2019). *Aquaculture and the displacement of capture fisheries*. *Conservation Biology*, 33(4), 832-841.

Mather, J. (2019a). *What is in an octopus’s mind?* *Animal Sentience* 26(1).

Mather, J. (2019b). *Octopus farming (response)*. *Issues in Science and Technology*, 35(3).

Mather, J.A., & Dickel, L. (2017). Cephalopod complex cognition. *Current Opinion in Behavioral Sciences*, 16, 131–137.

Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., & Troell, M. (2000). Effect of aquaculture on world fish supplies. *Nature*, 405, 1017–1024.

Pham, C.K., & Isidro, E. (2009). Growth and mortality of common octopus (*Octopus vulgaris*) fed a monospecific fish diet. *Journal of Shellfish Research*, 28, 617–623.

Scheel, D., Chancellor, S., Hing, M., Lawrence, M., Linquist, S., & Godfrey-Smith, P. (2017). A second site occupied by *Octopus tetricus* at high densities, with notes on their ecology and behavior. *Marine and Freshwater Behaviour and Physiology*, 50, 285-291.

Sykes, A.V., Almansa, E., Cooke, G.M., Ponte, G., & Andrews, P.L.R. (2017). The digestive tract of cephalopods: A neglected topic of relevance to animal welfare in the laboratory and aquaculture. *Frontiers in Physiology*, 8, 1–16.

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., & Garnett, T. (2019). *Food in the anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems*. *The Lancet*, 393, 447–492.