A unifying E2-quasi-exactly solvable model

Andreas Fring

Supersymmetry in Integrable Systems - SIS’15
Yerevan State University
September 9-13, 2015
A unifying E2-quasi-exactly solvable model

Andreas Fring

Supersymmetry in Integrable Systems - SIS’15
Yerevan State University
September 9-13, 2015

S. Dey, A. Fring, T. Mathanaranjan, Ann. of Physics, 346 (2014) 28
S. Dey, A. Fring, T. Mathanaranjan, Int. J. Th. Phys. (2014) 10.1007
A. Fring, J. Phys. A: Math. Theor. 48 (2015)145301
A. Fring, Phys. Lett. A379 (2015) 873876; arXiv:1507.00611
Why study models of Euclidean Lie algebraic type?

1. Mathematical motivation:
 a) (quasi)-exactly solvable models of $sl_2(\mathbb{R})$-Lie algebraic type
 \Rightarrow solutions are hypergeometric functions
 b) models of Euclidean-Lie algebraic type
 \Rightarrow solutions are Mathieu functions

Andreas Fring
A unifying E2-quasi-exactly solvable model
Why study models of Euclidean Lie algebraic type?

1. Mathematical motivation:
 a) (quasi)-exactly solvable models of $sl_2(\mathbb{R})$-Lie algebraic type
 \Rightarrow solutions are hypergeometric functions
 b) models of Euclidean-Lie algebraic type
 \Rightarrow solutions are Mathieu functions

2. Physical motivation:
 - applications of b)-type models in optics
 - the complex Mathieu equation corresponds to the eigenvalue equation for the collision operator in a 2D Lorentz gas
Hamiltonians of $sl_2(\mathbb{R})$-Lie algebraic type

Quasi-solvable Hamiltonian of Lie algebraic type:

$$H_J = \sum_{l=0,\pm} \kappa_l J_l + \sum_{n,m=0,\pm} \kappa_{nm} : J_n J_m :; \quad \kappa_l, \kappa_{nm} \in \mathbb{R},$$

$s\ell_2(\mathbb{R})$-Lie algebra

$$[J_0, J_{\pm}] = \pm J_{\pm}, \quad [J_+, J_-] = -2J_0, \quad J_0^\dagger, J_\pm^\dagger \notin \{J_0, J_\pm\}$$
Hamiltonians of $sl_2(\mathbb{R})$-Lie algebraic type

Quasi-solvable Hamiltonian of Lie algebraic type:

$$H_J = \sum_{l=0,\pm} \kappa_l J_l + \sum_{n,m=0,\pm} \kappa_{nm} : J_n J_m :,$$

where $\kappa_l, \kappa_{nm} \in \mathbb{R}$.

$s\ell_2(\mathbb{R})$-Lie algebra

$$[J_0, J_{\pm}] = \pm J_{\pm}, \quad [J_+, J_-] = -2J_0, \quad J_0^\dagger, J_{\pm}^\dagger \notin \{J_0, J_{\pm}\}$$

\mathcal{PT}-symmetric versions:

Rescale $J_{\pm} \rightarrow \tilde{J}_{\pm} = \pm iJ_{\pm}$, $J_0 \rightarrow \tilde{J}_0 = J_0$

Example:

$\kappa_{00} = -4, \kappa_+ = -2\zeta = \kappa_-, \zeta \in \mathbb{R}$

$$V(x) = - [\zeta \sinh 2x - iM]^2$$

[P.E.G. Assis, A. Fring, J. Phys. A42 (2009) 015203]
Hamiltonians of Euclidean Lie algebraic type

E_2-algebra:

$$[u, J] = iv, \quad [v, J] = -iu, \quad [u, v] = 0$$
Hamiltonians of Euclidean Lie algebraic type

E_2-algebra:

$$[u, J] = iv, \quad [v, J] = -iu, \quad [u, v] = 0$$

Representations:

- quantizing of strings on tori

$$\Pi^{(1)} : \quad J := -i\partial_\theta, \quad u := \sin \theta, \quad v := \cos \theta$$
Hamiltonians of Euclidean Lie algebraic type

\(E_2 \)-algebra:

\[
[u, J] = iv, \quad [v, J] = -iu, \quad [u, v] = 0
\]

Representations:

- quantizing of strings on tori

\[\Pi^{(1)}: \quad J := -i\partial_\theta, \quad u := \sin \theta, \quad v := \cos \theta\]

- two dimensional representations

\[\Pi^{(2)}: \quad J := yp_x - xp_y, \quad u := x, \quad v := y,\]
\[\Pi^{(3)}: \quad J := xp_y - p_x y, \quad u := p_y, \quad v := p_x,\]

with \(q_j, p_j \) satisfying \([q_j, p_k] = i\delta_{jk}\) for \(j, k = 1, 2 \)
Different types of "\mathcal{PT}-symmetries":

\mathcal{PT}_1	$J \rightarrow -J$, $u \rightarrow -u$, $v \rightarrow -v$, $i \rightarrow -i$,
\mathcal{PT}_2	$J \rightarrow -J$, $u \rightarrow u$, $v \rightarrow v$, $i \rightarrow -i$,
\mathcal{PT}_3	$J \rightarrow J$, $u \rightarrow v$, $v \rightarrow u$, $i \rightarrow -i$,
\mathcal{PT}_4	$J \rightarrow J$, $u \rightarrow -u$, $v \rightarrow v$, $i \rightarrow -i$,
\mathcal{PT}_5	$J \rightarrow J$, $u \rightarrow u$, $v \rightarrow -v$, $i \rightarrow -i$.
Different types of \mathcal{PT}-symmetries:

$\mathcal{PT}_1 : \begin{align*}
J & \rightarrow -J, \\
u & \rightarrow -u, \\
v & \rightarrow -v, \\
i & \rightarrow -i, \\
\end{align*}$

$\mathcal{PT}_2 : \begin{align*}
J & \rightarrow -J, \\
u & \rightarrow u, \\
v & \rightarrow v, \\
i & \rightarrow -i, \\
\end{align*}$

$\mathcal{PT}_3 : \begin{align*}
J & \rightarrow J, \\
u & \rightarrow v, \\
v & \rightarrow u, \\
i & \rightarrow -i, \\
\end{align*}$

$\mathcal{PT}_4 : \begin{align*}
J & \rightarrow J, \\
u & \rightarrow -u, \\
v & \rightarrow v, \\
i & \rightarrow -i, \\
\end{align*}$

$\mathcal{PT}_5 : \begin{align*}
J & \rightarrow J, \\
u & \rightarrow u, \\
v & \rightarrow -v, \\
i & \rightarrow -i. \\
\end{align*}$

\mathcal{PT}_i-invariant Hamiltonians:

\begin{align*}
H_{\mathcal{PT}_1} & = \mu_1 J^2 + i \mu_2 J + i \mu_3 u + i \mu_4 v + \mu_5 u J + \mu_6 v J + \mu_7 u^2 + \mu_8 v^2 + \mu_9 uv \\
\end{align*}
Different types of ”\(\mathcal{P}\mathcal{T}\)-symmetries”:

\[\mathcal{P}\mathcal{T}_1: \quad J \rightarrow -J, \quad u \rightarrow -u, \quad v \rightarrow -v, \quad i \rightarrow -i, \]
\[\mathcal{P}\mathcal{T}_2: \quad J \rightarrow -J, \quad u \rightarrow u, \quad v \rightarrow v, \quad i \rightarrow -i, \]
\[\mathcal{P}\mathcal{T}_3: \quad J \rightarrow J, \quad u \rightarrow v, \quad v \rightarrow u, \quad i \rightarrow -i, \]
\[\mathcal{P}\mathcal{T}_4: \quad J \rightarrow J, \quad u \rightarrow -u, \quad v \rightarrow v, \quad i \rightarrow -i, \]
\[\mathcal{P}\mathcal{T}_5: \quad J \rightarrow J, \quad u \rightarrow u, \quad v \rightarrow -v, \quad i \rightarrow -i. \]

\(\mathcal{P}\mathcal{T}_i\)-invariant Hamiltonians:

\[H_{\mathcal{P}\mathcal{T}_1} = \mu_1 J^2 + i\mu_2 J + i\mu_3 u + i\mu_4 v + \mu_5 uJ + \mu_6 vJ + \mu_7 u^2 + \mu_8 v^2 + \mu_9 uv \]
\[H_{\mathcal{P}\mathcal{T}_2} = \mu_1 J^2 + i\mu_2 J + \mu_3 u + \mu_4 v + i\mu_5 uJ + i\mu_6 vJ + \mu_7 u^2 + \mu_8 v^2 + \mu_9 uv \]
\[H_{\mathcal{P}\mathcal{T}_3} = \mu_1 J^2 + \mu_2 J + \mu_3 (u+v) + i\mu_4 (u-v) + \mu_5 (u+v)J + i\mu_6 (u-v)J \]
\[\quad + i\mu_7 (v^2 - u^2) + \mu_8 (v^2 + u^2) + \mu_9 uv \]
\[H_{\mathcal{P}\mathcal{T}_4} = \mu_1 J^2 + \mu_2 J + i\mu_3 u + \mu_4 v + i\mu_5 uJ + \mu_6 vJ + \mu_7 u^2 + \mu_8 v^2 + i\mu_9 uv \]
\[H_{\mathcal{P}\mathcal{T}_5} = \mu_1 J^2 + \mu_2 J + \mu_3 u + i\mu_4 v + \mu_5 uJ + i\mu_6 vJ + \mu_7 u^2 + \mu_8 v^2 + i\mu_9 uv \]

with \(\mu_i \in \mathbb{R}\) for \(i = 1, \ldots, 9\)
Standard approach to non-Hermitian QM:

- Given H

 \[
 \begin{align*}
 \text{either} & \quad \text{solve } \eta H \eta^{-1} = h \quad \text{for } \eta \Rightarrow \rho = \eta^\dagger \eta \\
 \text{or} & \quad \text{solve } H^\dagger = \rho H \rho^{-1} \quad \text{for } \rho \Rightarrow \eta = \sqrt{\rho}
 \end{align*}
 \]
Standard approach to non-Hermitian QM:

- Given H \begin{align*}
\text{either solve } \eta H \eta^{-1} &= h \quad \text{for } \eta \Rightarrow \rho = \eta^{\dagger} \eta \\
\text{or solve } H^{\dagger} &= \rho H \rho^{-1} \quad \text{for } \rho \Rightarrow \eta = \sqrt{\rho}
\end{align*}

- involves complicated commutation relations

Note:

- Thus, this is not re-inventing or disputing the validity of quantum mechanics
- We only give up the restrictive requirement that Hamiltonians have to be Hermitian.

[C. Bender, *Rep. Prog. Phys.* 70 (2007) 947]
[A. Mostafazadeh, *Int. J. Geom. Meth. Phys.* 7 (2010) 1191]
[A. Fring, *Phil. Trans. R. Soc.* A 371 (2013) 20120046]
Standard approach to non-Hermitian QM:

- Given H either solve $\eta H \eta^{-1} = h$ for $\eta \Rightarrow \rho = \eta^\dagger \eta$ or solve $H^\dagger = \rho H \rho^{-1}$ for $\rho \Rightarrow \eta = \sqrt{\rho}$
- involves complicated commutation relations
- often this can only be solved perturbatively

Note:
- Thus, this is not re-inventing or disputing the validity of quantum mechanics
- We only give up the restrictive requirement that Hamiltonians have to be Hermitian.

[C. Bender, Rep. Prog. Phys. 70 (2007) 947]
[A. Mostafazadeh, Int. J. Geom. Meth. Phys. 7 (2010) 1191]
[A. Fring, Phil. Trans. R. Soc. A 371 (2013) 20120046]
Standard approach to non-Hermitian QM:

- Given \(H \) \(\{ \)
 - either solve \(\eta H \eta^{-1} = h \) for \(\eta \Rightarrow \rho = \eta \dagger \eta \)
 - or solve \(H^\dagger = \rho H \rho^{-1} \) for \(\rho \Rightarrow \eta = \sqrt{\rho} \)

- involves complicated commutation relations
- often this can only be solved perturbatively

Note:

- Thus, this is not re-inventing or disputing the validity of quantum mechanics
- We only give up the restrictive requirement that Hamiltonians have to be Hermitian.
Standard approach to non-Hermitian QM:

- Given $H \begin{cases} \text{either solve } \eta H \eta^{-1} = h \text{ for } \eta \Rightarrow \rho = \eta^\dagger \eta \\ \text{or solve } H^\dagger = \rho H \rho^{-1} \text{ for } \rho \Rightarrow \eta = \sqrt{\rho} \end{cases}$
- involves complicated commutation relations
- often this can only be solved perturbatively

Note:

- Thus, this is not re-inventing or disputing the validity of quantum mechanics
- We only give up the restrictive requirement that Hamiltonians have to be Hermitian.

[C. Bender, *Rep. Prog. Phys.* 70 (2007) 947]
[A. Mostafazadeh, *Int. J. Geom. Meth. Phys.* 7 (2010) 1191]
[A. Fring, *Phil. Trans. R. Soc. A* 371 (2013) 20120046]
Isospectral partner Hamiltonians:

\[h_{\mathcal{PT}_5} = \mu_1 J^2 + \mu_2 J + \frac{1}{2} \left(\mu_5 - \mu_6 \tanh \frac{\lambda}{2} \right) \{u, J\} \]

\[+ \left[\frac{2\mu_5^2 \sinh^2 \lambda + \mu_6^2 (\text{sech}^2 \frac{\lambda}{2} + \cosh 2\lambda - 1) + 2(\tanh \frac{\lambda}{2} - \sinh 2\lambda)\mu_5\mu_6}{8\mu_1} \right] \]

\[+ \frac{\mu_8 - \mu_7}{2} \cosh(2\lambda) \right] (v^2 - u^2) + \left[\text{csch} \lambda \left(\mu_4 + \frac{1}{2}\mu_5 \right) + \frac{\mu_2}{2\mu_1}(\mu_5 \]

\[- \coth \lambda \mu_6 \right) u + \frac{\mu_6^2 \cosh \lambda - \mu_5\mu_6 \sinh \lambda}{4\mu_1(1 + \cosh \lambda)} \right] + \frac{1}{2} (\mu_7 + \mu_8) \]
Isospectral partner Hamiltonians:

\[h_{PT_5} = \mu_1 J^2 + \mu_2 J + \frac{1}{2} \left(\mu_5 - \mu_6 \tanh \frac{\lambda}{2} \right) \{u, J\} \]

\[+ \left[\frac{2\mu_5^2 \sinh^2 \lambda + \mu_6^2 (\text{sech}^2 \frac{\lambda}{2} + \cosh 2\lambda - 1) + 2(\tanh \frac{\lambda}{2} - \sinh 2\lambda) \mu_5 \mu_6}{8\mu_1} \right] \]

\[+ \frac{\mu_8 - \mu_7}{2} \cosh(2\lambda) \right] (v^2 - u^2) + \left[\text{csch} \lambda \left(\mu_4 + \frac{1}{2} \mu_5 \right) + \frac{\mu_2}{2\mu_1} \mu_5 \]

\[- \coth \lambda \mu_6 \right) u + \frac{\mu_6^2 \cosh \lambda - \mu_5 \mu_6 \sinh \lambda}{4\mu_1 (1 + \cosh \lambda)} + \frac{1}{2} \left(\mu_7 + \mu_8 \right) \]

Sinusoidal optical lattices from further constraints

\[\mu_1 = 1, \quad \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7 = 0, \quad \mu_8 = -4, \quad \mu_9 = -8V_0 \]

\[V(x) = 4\cos^2 x + 4iV_0 \sin 2x \]

[B. Midya, B. Roy, et al, Phys. Lett. A374 (2010) 2605]

[H. Jones, J. Phys. A44 (2011) 345302]
However, it is not always possible to find isospectral pairs:
For instance: \mathcal{PT}_3-symmetric non-Hermitian Hamiltonian

$$\mathcal{H}_{\text{Mat}} = J^2 + 2ig(u^2 - v^2) \Rightarrow \mathcal{H}^{(1)}_{\text{Mat}} = -\frac{d^2}{d\theta^2} + 2ig \cos(2\theta)$$
However, it is not always possible to find isospectral pairs:
For instance: \mathcal{PT}_3-symmetric non-Hermitian Hamiltonian

$$
\mathcal{H}_{\text{Mat}} = J^2 + 2ig(u^2 - v^2) \Rightarrow \mathcal{H}_{\text{Mat}}^{(1)} = - \frac{d^2}{d\theta^2} + 2ig \cos(2\theta)
$$

Consider instead

$$
\mathcal{H}_N = J^2 + \zeta^2(u^2 - v^2)^2 + 2i\zeta N(u^2 - v^2),
$$

and take a double scaling limit

$$
\lim_{N \to \infty, \zeta \to 0} \mathcal{H}_N = \mathcal{H}_{\text{Mat}}, \quad \text{for } g := N\zeta < \infty
$$

[B. Bagchi, S. Mallik, C. Quesne, ... Phys. Lett. A289 (2001) 34]
[B. Bagchi, C. Quesne, et al J. Phys. A41 (2008) 022001]
However, it is not always possible to find isospectral pairs:
For instance: \mathcal{PT}_3-symmetric non-Hermitian Hamiltonian

\[
\mathcal{H}_{\text{Mat}} = J^2 + 2ig(u^2 - v^2) \Rightarrow \mathcal{H}_{\text{Mat}}^{(1)} = -\frac{d^2}{d\theta^2} + 2ig \cos(2\theta)
\]

Consider instead

\[
\mathcal{H}_N = J^2 + \zeta^2(u^2 - v^2)^2 + 2i\zeta N(u^2 - v^2),
\]

and take a double scaling limit

\[
\lim_{N \to \infty, \zeta \to 0} \mathcal{H}_N = \mathcal{H}_{\text{Mat}}, \quad \text{for } g := N\zeta < \infty
\]

[B. Bagchi, S. Mallik, C. Quesne, ... Phys. Lett. A289 (2001) 34]
[B. Bagchi, C. Quesne, et al J. Phys. A41 (2008) 022001]

Relation of \mathcal{H}_{Mat} to E_2:
[C. M. Bender, R. Kalveks, Int. J. Theor. Phys. 50 (2011) 955]
E_2-quasi-exact solvability

In general: $\mathcal{H} : V_n \mapsto V_n$ with $V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_n \subset \ldots$

For $\Pi^{(1)}$ define:

$V_n^s = \text{span} \left\{ \phi_0 \left[\sin(2\theta), \ldots, i^{n+1} \sin(2n\theta) \right] \middle| \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L \right\}$

$V_n^c = \text{span} \left\{ \phi_0 \left[1, i \cos(2\theta), \ldots, i^n \cos(2n\theta) \right] \middle| \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L \right\}$
E_2-quasi-exact solvability

In general: $\mathcal{H} : V_n \mapsto V_n$ with $V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_n \subset \ldots$

For $\Pi^{(1)}$ define:

$V^s_n = \text{span} \{ \phi_0 [\sin(2\theta), \ldots, i^{n+1} \sin(2n\theta)] | \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L \}$

$V^c_n = \text{span} \{ \phi_0 [1, i \cos(2\theta), \ldots, i^n \cos(2n\theta)] | \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L \}$

For $\phi^c_0 = e^{i\kappa \cos 2\theta}$, $\phi^s_0 = e^{i\kappa \sin 2\theta}$ with $\kappa \in \mathbb{R}$ we find:

\[
\begin{align*}
J : & \quad V^{s,c}_n (\phi^c_0) \mapsto V^{c,s}_{n+1} (\phi^c_0) \\
\text{uv} : & \quad V^{s,c}_n (\phi^c_0) \mapsto V^{c,s}_{n+1} (\phi^c_0) \\
i(u^2 - v^2) : & \quad V^{s,c}_n (\phi^c_0) \mapsto V^{s,c}_{n+1} (\phi^c_0)
\end{align*}
\]
E₂-quasi-exactly solvability

In general: \(H : V_n \mapsto V_n \) with \(V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_n \subset \ldots \)

For \(\Pi^{(1)} \) define:

\[
V_n^s = \text{span} \left\{ \phi_0 \left[\sin(2\theta), \ldots, i^{n+1} \sin(2n\theta) \right] \mid \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L \right\}
\]

\[
V_n^c = \text{span} \left\{ \phi_0 \left[1, i \cos(2\theta), \ldots, i^n \cos(2n\theta) \right] \mid \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L \right\}
\]

For \(\phi_c^0 = e^{i\kappa \cos 2\theta} \), \(\phi_s^0 = e^{i\kappa \sin 2\theta} \) with \(\kappa \in \mathbb{R} \) we find:

\[
J : V_n^{s,c} (\phi_c^0) \mapsto V_{n+1}^{c,s} (\phi_c^0)
\]

\[
uv : V_n^{s,c} (\phi_c^0) \mapsto V_{n+1}^{c,s} (\phi_c^0)
\]

\[
i(u^2 - v^2) : V_n^{s,c} (\phi_c^0) \mapsto V_{n+1}^{s,c} (\phi_c^0)
\]

\[
J : V_n^{s,c} (\phi_s^0) \mapsto V_{n}^{c,s} (\phi_s^0) \oplus V_{n+1}^{s,c} (\phi_s^0)
\]

\[
uv : V_n^{s,c} (\phi_s^0) \mapsto V_{n+1}^{c,s} (\phi_s^0)
\]

\[
i(u^2 - v^2) : V_n^{s,c} (\phi_s^0) \mapsto V_{n+1}^{s,c} (\phi_s^0)
\]
E_2-quasi-exact solvability

In general: $\mathcal{H} : V_n \mapsto V_n$ with $V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_n \subset \ldots$

For $\Pi^{(1)}$ define:

$$V_s^n = \text{span} \{ \phi_0 [\sin(2\theta), \ldots, i^{n+1} \sin(2n\theta)] | \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L \}$$

$$V_c^n = \text{span} \{ \phi_0 [1, i \cos(2\theta), \ldots, i^n \cos(2n\theta)] | \theta \in \mathbb{R}, \mathcal{PT}_3(\phi_0) = \phi_0 \in L \}$$

For $\phi_c^0 = e^{i\kappa \cos 2\theta}$, $\phi_s^0 = e^{i\kappa \sin 2\theta}$ with $\kappa \in \mathbb{R}$ we find:

$$J : V_s^n (\phi_c^0) \mapsto V_c^{n+1} (\phi_c^0)$$

$$uv : V_s^n (\phi_c^0) \mapsto V_c^{n+1} (\phi_c^0)$$

$$i(u^2 - v^2) : V_s^n (\phi_c^0) \mapsto V_s^{n+1} (\phi_c^0)$$

$$J : V_s^n (\phi_s^0) \mapsto V_c^{n+1} (\phi_s^0) \oplus V_s^{n+1} (\phi_s^0)$$

$$uv : V_s^n (\phi_s^0) \mapsto V_c^{n+1} (\phi_s^0)$$

$$i(u^2 - v^2) : V_s^n (\phi_s^0) \mapsto V_s^{n+1} (\phi_s^0)$$

For representation $\Pi^{(2)}$ and $\Pi^{(3)}$ use polynomials in x, y.

Andreas Fring

A unifying E_2-quasi-exactly solvable model
Thus we have:

\[\mathcal{H}_N : V_{n,c}^{s,c}(\phi_0^c) \mapsto V_{n+2,c}^{s,c}(\phi_0^c) \oplus \zeta^2 V_{n+2,c}^{s,c}(\phi_0^c) \oplus V_{n+1,c}^{s,c}(\phi_0^c) \]

- with constraint on \(V_{n+2,c}^{s,c}(\phi_0^c) \oplus \zeta^2 V_{n+2,c}^{s,c}(\phi_0^c) \)
- and quantization condition on level \(n + 1 \)

\[\mathcal{H}_N : V_{(N-1)/2,c}^{s,c}(\phi_0^c) \mapsto V_{(N-1)/2,c}^{s,c}(\phi_0^c) \]
Thus we have:

\[\mathcal{H}_N : V^{s,c}_n(\phi_0^c) \mapsto V^{s,c}_{n+2}(\phi_0^c) \oplus \zeta^2 V^{s,c}_{n+2}(\phi_0^c) \oplus V^{s,c}_{n+1}(\phi_0^c) \]

- with constraint on \(V^{s,c}_{n+2}(\phi_0^c) \oplus \zeta^2 V^{s,c}_{n+2}(\phi_0^c) \)
- and quantization condition on level \(n + 1 \)

\[\mathcal{H}_N : V^{s,c}_{(N-1)/2}(\phi_0^c) \mapsto V^{s,c}_{(N-1)/2}(\phi_0^c) \]

More solutions exist:

\[\hat{\mathcal{H}}_N = J^2 + \zeta uv J + 2i\zeta N(u^2 - v^2), \quad \zeta, N \in \mathbb{R} \]
Thus we have:

\[\mathcal{H}_N : V_{n,c}^s(\phi_0^c) \mapsto V_{n+2,c}^s(\phi_0^c) \oplus \zeta^2 V_{n+2,c}^s(\phi_0^c) \oplus V_{n+1,c}^s(\phi_0^c) \]

- with constraint on \(V_{n+2,c}^s(\phi_0^c) \oplus \zeta^2 V_{n+2,c}^s(\phi_0^c) \)
- and quantization condition on level \(n + 1 \)

\[\mathcal{H}_N : V_{(N-1)/2,c}^s(\phi_0^c) \mapsto V_{(N-1)/2,c}^s(\phi_0^c) \]

More solutions exist:

\[\hat{\mathcal{H}}_N = J^2 + \zeta uvJ + 2i\zeta N(u^2 - v^2), \quad \zeta, N \in \mathbb{R} \]

\(\hat{\mathcal{H}}_N \) also reduces to \(\mathcal{H}_{\text{Mat}} \) in the double scaling limit

\[\lim_{N \to \infty, \zeta \to 0} \hat{\mathcal{H}}_N = \mathcal{H}_{\text{Mat}}, \quad \text{for } g := N\zeta < \infty \]
Can we combine the models?

Generic Ansatz:

$$\mathcal{H} = J^2 + \mu \zeta uvJ + \lambda \zeta^2 (u^2 - v^2)^2 + 2i \zeta N(u^2 - v^2), \quad \lambda, \zeta, N \in \mathbb{R},$$

leads to four-term relation.
Can we combine the models?

Generic Ansatz:

\[H = J^2 + \mu \zeta uv J + \lambda \zeta^2 (u^2 - v^2)^2 + 2i \zeta N (u^2 - v^2), \quad \lambda, \zeta, N \in \mathbb{R}, \]

leads to four-term relation.

Restricting \(\mu \):

\[H(N, \zeta, \lambda) = J^2 + 2(1 - \lambda) \zeta uv J + \lambda \zeta^2 (u^2 - v^2)^2 + 2i \zeta N (u^2 - v^2) \]

leads to desired three-term relation.
Can we combine the models?

Generic Ansatz:

\[\mathcal{H} = J^2 + \mu \zeta uvJ + \lambda \zeta^2 (u^2 - v^2)^2 + 2i \zeta N(u^2 - v^2), \quad \lambda, \zeta, N \in \mathbb{R}, \]

leads to four-term relation.

Restricting \(\mu \):

\[\mathcal{H}(N, \zeta, \lambda) = J^2 + 2(1 - \lambda) \zeta uvJ + \lambda \zeta^2 (u^2 - v^2)^2 + 2i \zeta N(u^2 - v^2) \]

leads to desired three-term relation.

The limits \(\lambda \to 0, \lambda \to 1 \) yield the previous cases.
Three term recurrence relations for $\mathcal{H}(N, \zeta, \lambda)$:

Ansatz:

\[
\psi^c_N(\theta) = \phi_0 \sum_{n=0}^{\infty} i^n c_n P_n(E) \cos(2n\theta)
\]

\[
\psi^s_N(\theta) = \phi_0 \sum_{n=0}^{\infty} i^{n+1} c_n Q_n(E) \sin(2n\theta)
\]
Three term recurrence relations for $\mathcal{H}(N, \zeta, \lambda)$:

Ansatz:

\[
\psi^c_N(\theta) = \phi_0 \sum_{n=0}^{\infty} i^n c_n P_n(E) \cos(2n\theta)
\]

\[
\psi^s_N(\theta) = \phi_0 \sum_{n=0}^{\infty} i^{n+1} c_n Q_n(E) \sin(2n\theta)
\]

\[
c_n = \frac{1}{\zeta^n} (N + \lambda)(1 + \lambda)^{n-1} \left[\frac{1+N+2\lambda}{1+\lambda} \right]_{n-1}, \quad \phi_0 = e^{\frac{i}{2} \zeta \cos(2\theta)}
\]
Three term recurrence relations for $\mathcal{H}(N, \zeta, \lambda)$:

Ansatz:

$$
\psi^c_N(\theta) = \phi_0 \sum_{n=0}^{\infty} i^n c_n P_n(E) \cos(2n\theta)
$$

$$
\psi^s_N(\theta) = \phi_0 \sum_{n=0}^{\infty} i^{n+1} c_n Q_n(E) \sin(2n\theta)
$$

$$
c_n = \frac{1}{\zeta^n} (N + \lambda)(1 + \lambda)^{n-1} \left[\frac{1+N+2\lambda}{1+\lambda} \right]_{n-1}, \quad \phi_0 = e^{i\zeta \cos(2\theta)}
$$

yields

$$
P_2 = (E - \lambda \zeta^2 - 4) P_1 + 2 \zeta^2 [N - 1] [N + \lambda] P_0,
$$

$$
P_{i+1} = (E - \lambda \zeta^2 - 4i^2) P_i + \zeta^2 [N + i\lambda + (i - 1)] [N - (i - 1)\lambda - i] P_{i-1}
$$
Three term recurrence relations for $H(N, \zeta, \lambda)$:

Ansatz:

$$\psi^c_N(\theta) = \phi_0 \sum_{n=0}^{\infty} i^n c_n P_n(E) \cos(2n\theta)$$

$$\psi^s_N(\theta) = \phi_0 \sum_{n=0}^{\infty} i^{n+1} c_n Q_n(E) \sin(2n\theta)$$

$$c_n = \frac{1}{\zeta^n} (N + \lambda)(1 + \lambda)^{n-1} \left[\frac{1+N+2\lambda}{1+\lambda} \right]_{n-1}, \quad \phi_0 = e^{i \zeta \cos(2\theta)}$$

yields

$$P_2 = (E - \lambda \zeta^2 - 4) P_1 + 2 \zeta^2 [N - 1] [N + \lambda] P_0,$$

$$P_{i+1} = (E - \lambda \zeta^2 - 4i^2) P_i + \zeta^2 [N + i\lambda + (i - 1)] [N - (i - 1)\lambda - i] P_{i-1}$$

$$Q_2 = (E - 4 - \lambda \zeta^2) Q_1$$

$$Q_{j+1} = (E - \lambda \zeta^2 - 4j^2) Q_j + \zeta^2 [N + j\lambda + (j - 1)] [N - (j - 1)\lambda - j] Q_{j-1}$$

for $i = 0, 2, \ldots, j = 2, 3, 4$
Solutions:

\[P_0 = 1 \]

\[P_1 = E - \lambda \zeta^2 \]

\[P_2 = \lambda^2 \zeta^4 + 2 \zeta^2 [\lambda - \lambda E + N(\lambda + N - 1)] + (E - 4)E \]

\[P_3 = -\lambda^3 \zeta^6 + \lambda \zeta^4 \left(\lambda(2\lambda + 3E - 13) - 3N^2 - 3(\lambda - 1)N + 2 \right) \]
\[+ (E - 16)(E - 4)E + 32(\lambda + N(\lambda + N - 1)) \]
\[- \zeta^2 \left[3\lambda E^2 + E \left(2\lambda^2 - 3N^2 - 3\lambda(N + 11) + 3N + 2 \right) \right] \]

\[Q_1 = 1 \]

\[Q_2 = E - 4 - \lambda \zeta^2 \]

\[Q_3 = \lambda^2 \zeta^4 + \zeta^2 \left[\lambda(15 - 2\lambda - 2E) + N^2 + (\lambda - 1)N - 2 \right] \]
\[+ (E - 16)(E - 4) \]
Quasi-exact solvability

- There exists a level \tilde{n}, such that

$$P_\tilde{n} + \ell = P_\tilde{n} R_\ell$$ and $$Q_\tilde{n} + \ell = Q_\tilde{n} R_\ell$$

with

$$R_1 = E - 4\tilde{n}^2 - \lambda \zeta^2$$

$$R_2 = (E - 4\tilde{n}^2 - \lambda \zeta^2)(E - 4(\tilde{n} + 1)^2 - \lambda \zeta^2) - 2\tilde{n}(1 + \lambda)\zeta^2$$

Typical features of Bender-Dunne polynomials.

[C.M. Bender, G.V. Dunne, J. Math. Phys. 37 (1996) 6]
Quasi-exact solvability

• There exists a level \tilde{n}, such that

• three-term recurrence relation \rightarrow two-term recurrence relation
Quasi-exact solvability

- There exists a level \tilde{n}, such that
- three-term recurrence relation \rightarrow two-term recurrence relation
- factorization of P_n for $n > \tilde{n}$
Quasi-exact solvability

- There exists a level \tilde{n}, such that
- three-term recurrence relation \rightarrow two-term recurrence relation
- factorization of P_n for $n > \tilde{n}$
- energy quantization leads to $P_n = 0$ for $n \geq \tilde{n}$
Quasi-exact solvability

- There exists a level \tilde{n}, such that
- three-term recurrence relation \rightarrow two-term recurrence relation
- factorization of P_n for $n > \tilde{n}$
- energy quantization leads to $P_n = 0$ for $n \geq \tilde{n}$

Present case: $\hat{n} = -(1 + N)/(1 + \lambda)$ or $\tilde{n} = (\lambda + N)/(1 + \lambda)$:

$$P_{\tilde{n}+\ell} = P_{\tilde{n}} R_{\ell} \quad \text{and} \quad Q_{\tilde{n}+\ell} = Q_{\tilde{n}} R_{\ell}$$

with

$$R_1 = E - 4\tilde{n}^2 - \lambda \zeta^2,$$
$$R_2 = (E - 4\tilde{n}^2 - \lambda \zeta^2)(E - 4(\tilde{n} + 1)^2 - \lambda \zeta^2) - 2\tilde{n}(1 + \lambda)^2 \zeta^2$$
Quasi-exact solvability

- There exists a level \tilde{n}, such that
- three-term recurrence relation \rightarrow two-term recurrence relation
- factorization of P_n for $n > \tilde{n}$
- energy quantization leads to $P_n = 0$ for $n \geq \tilde{n}$

Present case: $\hat{n} = -(1 + N)/(1 + \lambda)$ or $\tilde{n} = (\lambda + N)/(1 + \lambda)$:

$$P_{\tilde{n}+\ell} = P_{\tilde{n}} R_\ell \quad \text{and} \quad Q_{\tilde{n}+\ell} = Q_{\tilde{n}} R_\ell$$

with

$$R_1 = E - 4\tilde{n}^2 - \chi \zeta^2,$$
$$R_2 = (E - 4\tilde{n}^2 - \chi \zeta^2)(E - 4(\tilde{n} + 1)^2 - \chi \zeta^2) - 2\tilde{n}(1 + \lambda)^2 \zeta^2$$

Typical features of Bender-Dunne polynomials.

[C.M. Bender, G.V. Dunne, J. Math. Phys. 37 (1996) 6]
Energy quantization:

We find E_n from $P_{\tilde{n}}(E) = 0$ and $Q_{\tilde{n}}(E) = 0$:

$E_1^c = \lambda \zeta^2,$
Energy quantization:

We find E_n from $P_n(E) = 0$ and $Q_n(E) = 0$:

$$
E_1^c = \lambda \zeta^2,
$$

$$
E_2^c,\pm = 2 + \lambda \zeta^2 \pm 2\sqrt{1 - (1 + \lambda)^2 \zeta^2},
$$
Energy quantization:

We find E_n from $P_n(E) = 0$ and $Q_n(E) = 0$:

\[
E_1^c = \lambda \zeta^2,
\]

\[
E_2^{c,\pm} = 2 + \lambda \zeta^2 \pm 2 \sqrt{1 - (1 + \lambda)^2 \zeta^2},
\]

\[
E_3^{c,\ell} = \frac{20}{3} + \lambda \zeta^2 + \frac{4\hat{\Omega}}{3} e^{i\pi \ell \frac{3}{3}} + \frac{1}{3} \left[52 - 12(1 + \lambda)^2 \zeta^2 \right] e^{-i\pi \ell \frac{3}{3}} \hat{\Omega}^{-1}
\]

with $\ell = 0, \pm 2$

\[
\hat{\Omega}^3 = \left[3(\lambda + 1)^2 \zeta^2 - 13 \right]^3 + \left[18(\lambda + 1)^2 \zeta^2 + 35 \right]^2 \frac{1}{2} + 35 + 18(\lambda + 1)^2 \zeta^2
\]
Energy quantization:

We find E_n from $P_{\tilde{n}}(E) = 0$ and $Q_{\tilde{n}}(E) = 0$:

\[
E_1^c = \lambda \zeta^2,
\]

\[
E_2^{c,\pm} = 2 + \lambda \zeta^2 \pm 2 \sqrt{1 - (1 + \lambda)^2 \zeta^2},
\]

\[
E_3^{c,\ell} = \frac{20}{3} + \lambda \zeta^2 + \frac{4\hat{\Omega}}{3} e^{\frac{i\pi \ell}{3}} + \frac{1}{3} \left[52 - 12(1 + \lambda)^2 \zeta^2 \right] e^{-\frac{i\pi \ell}{3}} \hat{\Omega}^{-1}
\]

with $\ell = 0, \pm 2$

\[
\hat{\Omega}^3 = \left[3(\lambda + 1)^2 \zeta^2 - 13 \right]^3 + \left[18(\lambda + 1)^2 \zeta^2 + 35 \right]^2 \frac{1}{2} + 35 + 18(\lambda + 1)^2 \zeta^2
\]

\[
E_2^s = 4 + \lambda \zeta^2,
\]

\[
E_3^{s,\pm} = 10 + \zeta^2 \lambda \pm 2 \sqrt{9 - (\lambda + 1)^2 \zeta^2},
\]

\[
E_4^{s,\ell} = \frac{56}{3} + \lambda \zeta^2 + \frac{4\Omega}{3} e^{\frac{i\pi \ell}{3}} + \frac{1}{3} \left[196 - 12(1 + \lambda)^2 \zeta^2 \right] e^{-\frac{i\pi \ell}{3}} \Omega^{-1}
\]

\[
\Omega^3 = \left[(3\zeta^2(\lambda + 1)^2 - 49)^3 + (18\zeta^2(\lambda + 1)^2 + 143)^2 \right]^{1/2} + 143 + 18\zeta^2(\lambda + 1)^2
\]
Exceptional points:

Recall: discriminant $= \Delta = \prod_{1 \leq i < j \leq n} (E_i - E_j)^2$
Exceptional points:

Recall: discriminant $\Delta = \prod_{1 \leq i < j \leq n} (E_i - E_j)^2$

Compute zeros of $\tilde{\Delta}_n^c$, $\tilde{\Delta}_n^s$ of $P_n(E), Q_n(E)$:

$$\tilde{\Delta}_2^c = \hat{\zeta}^2 - 1, \quad \tilde{\Delta}_3^s = \hat{\zeta}^2 - 9, \quad \tilde{\Delta}_3^c = \hat{\zeta}^6 - \hat{\zeta}^4 + 103\hat{\zeta}^2 - 36,$$

$$\tilde{\Delta}_4^s = \hat{\zeta}^6 - 37\hat{\zeta}^4 + 991\hat{\zeta}^2 - 3600,$$

$$\tilde{\Delta}_4^c = \hat{\zeta}^{12} + 2\hat{\zeta}^{10} + 385\hat{\zeta}^8 - 33120\hat{\zeta}^6 + 16128\hat{\zeta}^4 - 732276\hat{\zeta}^2$$

$$+ 129600,$$

$$\tilde{\Delta}_5^s = \hat{\zeta}^{12} - 94\hat{\zeta}^{10} + 7041\hat{\zeta}^8 - 381600\hat{\zeta}^6 + 6645600\hat{\zeta}^4$$

$$- 78318900\hat{\zeta}^2 + 158760000,$$

$$\hat{\zeta} := \zeta(1 + \lambda)$$
Exceptional points:

Recall: discriminant $\Delta = \prod_{1 \leq i < j \leq n} (E_i - E_j)^2$

Compute zeros of Δ^c_n, Δ^s_n of $P_n(E), Q_n(E)$:

$$\tilde{\Delta}^c_2 = \hat{\zeta}^2 - 1, \quad \tilde{\Delta}^s_3 = \hat{\zeta}^2 - 9, \quad \tilde{\Delta}^c_3 = \hat{\zeta}^6 - \hat{\zeta}^4 + 103\hat{\zeta}^2 - 36,$$

$$\tilde{\Delta}^s_4 = \hat{\zeta}^6 - 37\hat{\zeta}^4 + 991\hat{\zeta}^2 - 3600,$$

$$\tilde{\Delta}^c_4 = \hat{\zeta}^{12} + 2\hat{\zeta}^{10} + 385\hat{\zeta}^8 - 33120\hat{\zeta}^6 + 16128\hat{\zeta}^4 - 732276\hat{\zeta}^2 + 129600,$$

$$\tilde{\Delta}^s_5 = \hat{\zeta}^{12} - 94\hat{\zeta}^{10} + 7041\hat{\zeta}^8 - 381600\hat{\zeta}^6 + 6645600\hat{\zeta}^4 - 78318900\hat{\zeta}^2 + 158760000,$$

$\hat{\zeta} := \zeta (1 + \lambda)$

Computable from the determinant of the Sylvester matrix S:

$$S_{ij} = \begin{cases} a_{n+i-j}, & \text{for } 1 \leq i \leq n - 1, 1 \leq j \leq 2n - 1, \\ (1 + i - j)a_{1+i-j}, & \text{for } n \leq i \leq 2n - 1, 1 \leq j \leq 2n - 1, \end{cases}$$

where $P(E) = \sum_{k=0}^n a_k E^k$
Vicinity of exceptional points:

What happens near the exceptional points?
Vicinity of exceptional points:

What happens near the exceptional points? Energy loops $E(\lambda = \tilde{\lambda} + \rho e^{i\pi\phi}, \zeta)$ varying ϕ with fixed $\tilde{\lambda}$, ρ and ζ:

Around an exceptional point: $E_{2}^{c,\pm}$ with $E_{2}^{c,-} = E_{2}^{c,+} = 9/4$
No exceptional point: $E_{2}^{c,\pm}$ with $E_{2}^{c,-} = 0.35$, $E_{2}^{c,+] = 3.70$
The exceptional points are branch points.
Four energies:

\[E_{4,1}^c = E_{4,2}^c = 25.6613, \quad E_{4,3}^c = (E_{4,4}^c)^* = 7.1029 + i29.8106 \]
Four energies:

\[E_{4,1}^c = E_{4,2}^c = 37.7449 - i8.7611, \quad E_{4,3}^c = 9.8103 + i6.7668, \]
\[E_{4,4}^c = -24.0439 + i20.7081 \]
Double scaling limit to \mathcal{H}_{Mat}

Recall:

$$\lim_{N \to \infty, \zeta \to 0} \mathcal{H}_N = \mathcal{H}_{\text{Mat}}, \quad \text{for } g := N\zeta < \infty$$

For $\lambda = 1$:

N	$\zeta_0 N$				
3	1.50000				
5	1.47963	7.50000			
7	1.47426	7.19195	18.4246		
9	1.47208	7.08219	17.5098	34.4001	
11	1.47098	7.02966	17.1292	32.5974	55.4904

\[\vdots \] \hspace{1cm} \vdots \hspace{1cm} \vdots \hspace{1cm} \vdots \hspace{1cm} \vdots \hspace{1cm} \vdots

∞ | 1.46877 | 6.92895 | 16.4711 | 30.0967 | 47.806 |

Which λ is optimal?
\[\Delta(n) = \zeta_0 N(n) - \zeta_M, \quad N(n) = (n + 1) + n\lambda \text{ for } n = 1, 2, 3, \ldots \]
\[\Delta(n) = \zeta_0 N(n) - \zeta_M, \quad N(n) = (n + 1) + n\lambda \] for \(n = 1, 2, 3, \ldots \).

The optimal approximation for finite values of \(N \) is \(\lambda = 1 \).
Alternatively take the limit on the recurrence relation.
\(N \to \infty, \, \zeta \to 0, \, g := N\zeta < \infty, \)
\[\lim_{N \to \infty, \zeta \to 0} P_n =: P_n^M, \lim_{N \to \infty, \zeta \to 0} Q_n =: Q_n^M \]
Alternatively take the limit on the recurrence relation.

\[N \to \infty, \, \zeta \to 0, \, g := N\zeta < \infty, \]

\[\lim_{N \to \infty, \zeta \to 0} P_n =: P^M_n, \lim_{N \to \infty, \zeta \to 0} Q_n =: Q^M_n \]

We obtain infinite matrices \(\Xi \) and \(\Theta \) with entries

\[\Xi_{i,j} = 4i^2 \delta_{i,j} + \frac{1}{2} \delta_{j,i+1} - 2g^2 \delta_{i,j+1}, \quad \text{for } i, j \in \mathbb{N}, \]

\[\Theta_{i,j} = 4i^2 \delta_{i,j} + \frac{1}{2} \delta_{j,i+1} - 2g^2 \delta_{i,j+1} + \frac{1}{2} \delta_{i,0} \delta_{j,1}, \quad \text{for } i, j \in \mathbb{N}_0, \]

acting \((Q^M_1, Q^M_2, Q^M_3, \ldots), (P^M_0, P^M_1, P^M_1, \ldots)\)
Alternatively take the limit on the recurrence relation.
\(N \to \infty, \, \zeta \to 0, \, g := N\zeta < \infty, \)
\[\lim_{N \to \infty, \zeta \to 0} P_n =: P_n^M, \lim_{N \to \infty, \zeta \to 0} Q_n =: Q_n^M \]

We obtain infinite matrices \(\Xi \) and \(\Theta \) with entries
\[
\Xi_{i,j} = 4i^2\delta_{i,j} + \frac{1}{2}\delta_{j,i+1} - 2g^2\delta_{i,j+1}, \quad \text{for } i, j \in \mathbb{N},
\]
\[
\Theta_{i,j} = 4i^2\delta_{i,j} + \frac{1}{2}\delta_{j,i+1} - 2g^2\delta_{i,j+1} + \frac{1}{2}\delta_{i,0}\delta_{j,1}, \quad \text{for } i, j \in \mathbb{N}_0,
\]
acting \((Q_1^M, Q_2^M, Q_3^M, \ldots), (P_0^M, P_1^M, P_1^M, \ldots) \)

Exceptional points from truncated matrices with rank \(\ell \):
\[
\det(\Xi^{\ell} - E\mathbb{I}) = 0
\]
\[
\det(\Theta^{\ell} - E\mathbb{I}) = 0
\]
Real zeros g_0 of the discriminant polynomials $\Delta^\Theta(g)$:

ℓ	g_0						
2	1.41421						
3	1.46904						
4	1.46877	12.34951					
5	1.46877	17.88618					
6	1.46877	16.44658	24.21371				
7	1.46877	16.47150	29.27154				
8	1.46877	16.47116	34.30396	45.47616			
...	:	:	:	:	:	:	:
26	1.46877	16.47117	47.80597	95.47527	125.4485	159.4792	239.8178
27	1.46877	16.47117	47.80597	95.47527	130.5181	159.4792	239.8178
26	240.9227	336.4911	341.4216	427.3330	449.3487	498.9970	
27	251.2637	**336.4911**	357.0076	448.0887	449.5057	525.2659	
Real zeros g_0 of the discriminant polynomials $\Delta^\Xi(g)$:

ℓ	g_0							
2	6.00000							
3	6.97891							
4	6.92848	18.77091						
5	6.92896	24.29547						
6	6.92895	29.26843	29.73862					
7	6.92895	30.10798	34.30404					
8	6.92895	30.09660	39.34849	61.30789				
...
26	6.928955	30.09677	69.59879	125.4354	130.5181	197.6067	251.2637	
27	6.928955	30.09677	69.59879	125.4354	135.5878	197.6067	261.6061	
26	286.1126	357.0076	390.9532	448.0887	511.0770	525.2021		
27	286.1126	372.5999	390.9532	468.8640	512.1858	551.0671		
Weakly orthogonal polynomials:

Favard’s theorem [Acad. Sci. Paris 200 (1935) 2053]

For any three-term recurrence relation of the form

\[\Phi_{n+1} = (E - a_n) \Phi_n - b_n \Phi_{n-1}, \]

with \(b_n = 0 \) for \(n \leq 0 \) and \(b_K = 0 \) for some \(K \),
Weakly orthogonal polynomials:

Favard’s theorem [Acad. Sci. Paris 200 (1935) 2053]

For any three-term recurrence relation of the form

\[\Phi_{n+1} = (E - a_n) \Phi_n - b_n \Phi_{n-1}, \]

with \(b_n = 0 \) for \(n \leq 0 \) and \(b_K = 0 \) for some \(K \),

\[\exists \] a linear functional \(\mathcal{L} \) acting on polynomials \(p \) as

\[\mathcal{L}(p) = \int_{-\infty}^{\infty} p(E) \omega(E) dE, \]

such that the polynomials \(\Phi_n(E) \) are orthogonal

\[\mathcal{L}(\Phi_n \Phi_m) = \mathcal{L}(E \Phi_n \Phi_{m-1}) = N_n \delta_{nm}. \]

\(N_n \equiv \) squared norms of \(\Phi_n \)

\(\omega(E) \equiv \) measure
Norms can be computed in two alternative ways:

i) \mathcal{L} (three-term relation $\times \Phi_{n-1}$):

$$N_n^\Phi = \mathcal{L}(\Phi_n^2) = \mathcal{L}(E\Phi_{n-1}\Phi_n) = \prod_{k=1}^{n} b_k$$

E_k are the ℓ roots of the polynomial $\Phi(E)$.

Norms for the case at hand:

$$N_P^n = 2\zeta_2^n(1 + \lambda)^2n \left(1 - \frac{1}{N + \lambda + 1}\right)^n (\lambda + N + \lambda)^n$$

$n = 1, 2, 3, \ldots$

$$N_Q^n = 1^{2(N + \lambda)(1 - \frac{1}{N + \lambda})}$$

$n = 2, 3, 4, \ldots$

with $N_P^0 = N_Q^1 = 1$.

Andreas Fring

A unifying E2-quasi-exactly solvable model
Norms can be computed in two alternative ways:

i) \(\mathcal{L} \) (three-term relation \(\times \Phi_{n-1} \)):
\[
N_n^\Phi = \mathcal{L}(\Phi_n^2) = \mathcal{L}(E\Phi_{n-1}\Phi_n) = \prod_{k=1}^n b_k
\]

ii) compute the measure:
\[
\omega(E) = \sum_{k=1}^\ell \omega_k \delta(E - E_k)
\]

\(E_k \) are the \(\ell \) roots of the polynomial \(\Phi(E) \).
Norms can be computed in two alternative ways:

i) \mathcal{L} (three-term relation $\times \Phi_{n-1}$):

$$N^{\Phi}_n = \mathcal{L}(\Phi_n^2) = \mathcal{L}(E\Phi_{n-1}\Phi_n) = \prod_{k=1}^{n} b_k$$

ii) compute the measure:

$$\omega(E) = \sum_{k=1}^{\ell} \omega_k \delta(E - E_k)$$

E_k are the ℓ roots of the polynomial $\Phi(E)$.

Norms for the case at hand:

$$N^P_n = 2\zeta^{2n}(1 + \lambda)^{2n} \left(\frac{1 - N}{1 + \lambda}\right)_n \left(\frac{\lambda + N}{1 + \lambda}\right)_n, \quad n = 1, 2, 3, \ldots$$

$$N^Q_n = \frac{1}{2(N + \lambda)(1 - N)} N^P_n, \quad n = 2, 3, 4, \ldots$$

with $N^P_0 = N^Q_1 = 1$.
Measures for the case at hand:
For $N = 3 + 2\lambda$:

\[
\omega_1^c = \frac{1}{3} - \frac{(260 - 60\zeta^2) \Omega + (3\zeta^2 + 4) \Omega^2 + 20\Omega^3}{12 \left[(13 - 3\zeta^2)^2 + (13 - 3\zeta^2) \Omega^2 + \Omega^4 \right]},
\]

\[
\omega_2^c = \chi_{-2}, \quad \omega_3^c = \chi_2,
\]

\[
\chi_{\ell} = \frac{1}{3} + \frac{(3\zeta^2 - 20\Omega + 4) \left(1 + 2e^{i\pi \ell/3} \right)}{36(3\zeta^2 + \Omega^2 - 13)}
\]

\[
+ \frac{4 + 3\zeta^2 - 20e^{i\pi \ell/3} \Omega}{12 \left(1 + 2e^{i\pi \ell/3} \right) \left(3\zeta^2 - 13 \right) + \left(1 - e^{i\pi \ell/3} \right) \Omega^2}
\]
Confirm with in two alternative ways:

\[
N_0^P = \mathcal{L}(P_0^2) = \omega_1^c + \omega_2^c + \omega_3^c = 1, \\
N_1^P = \mathcal{L}(P_1^2) = \omega_1^c P_1^2(E_3^{c,0}) + \omega_2^c P_1^2(E_3^{c,-2}) + \omega_3^c P_1^2(E_3^{c,2}) \\
= -12\hat{\zeta}^2, \\
N_2^P = \mathcal{L}(P_2^2) = \omega_1^c P_2^2(E_3^{c,0}) + \omega_2^c P_2^2(E_3^{c,-2}) + \omega_3^c P_2^2(E_3^{c,2}) \\
= 48\hat{\zeta}^4 \\
\mathcal{L}(P_1 P_2) = \omega_1^c P_1(E_3^{c,0}) P_2(E_3^{c,0}) + \omega_2^c P_1(E_3^{c,-2}) P_2(E_3^{c,-2}) \\
+ \omega_3^c P_1(E_3^{c,2}) P_2(E_3^{c,2}) = 0.
\]

Similarly we can compute the momentum functionals in two alternative ways.
Conclusions

• Euclidean Lie algebraic systems provide a new framework
Conclusions

- Euclidean Lie algebraic systems provide a new framework
- E_2-quasi exactly solvability is viable
Conclusions

- Euclidean Lie algebraic systems provide a new framework
- E_2-quasi exactly solvability is viable
- The double scaling limit yields good results for \mathcal{H}_{Mat}
Conclusions

• Euclidean Lie algebraic systems provide a new framework
• E_2-quasi exactly solvability is viable
• The double scaling limit yields good results for \mathcal{H}_{Mat}

Outlook

• Construct more quasi exactly models for
Conclusions

- Euclidean Lie algebraic systems provide a new framework
- E_2-quasi exactly solvability is viable
- The double scaling limit yields good results for \mathcal{H}_{Mat}

Outlook

- Construct more quasi exactly models for
- Different representations, \mathcal{PT}-symmetries, higher rank, ...
Conclusions

• Euclidean Lie algebraic systems provide a new framework
• E_2-quasi exactly solvability is viable
• The double scaling limit yields good results for \mathcal{H}_{Mat}

Outlook

• Construct more quasi exactly models for
• Different representations, \mathcal{PT}-symmetries, higher rank, ...
• Experiments?
Conclusions

• Euclidean Lie algebraic systems provide a new framework
• E_2-quasi exactly solvability is viable
• The double scaling limit yields good results for \mathcal{H}_{Mat}

Outlook

• Construct more quasi exactly models for
• Different representations, \mathcal{PT}-symmetries, higher rank, ...
• Experiments?

Thank you for your attention.