Microleakage at the cervical margin of Class Ⅱ composite restorations with different intermediate layer treatments

Ki-Ok Kim*
Department of Dentistry, College of Medicine, Konkuk University

I. INTRODUCTION

Tooth-colored posterior restorations are now chosen as the first choice of caries treatment by many patients. Most popular tooth-colored restoration is the direct composite. The current composites have been improved, demonstrating proper wear resistance for the posterior regions.

When all margins of composite restorations are located in enamel, satisfactory esthetics and longevity have been reported in small restorations. But in larger restorations where cervical margins are located in dentin, long-term success is more difficult to attain. Despite significant improvements in adhesive dentin bonding, polymerization shrinkage continues to rupture the

"This paper was supported by Konkuk University in 2002"
resin-tooth bond, producing a gap. The ensuing microleakage into this gap results in postoperative sensitivity and increased risk of secondary caries.\(^8\)–\(^{10}\)

Techniques proposed to eliminate this leakage have included incremental placement, clear matrices and reflecting wedges, beta quartz inserts, the use of autopolymerizing composite, pulsed/stepped curing, and sandwich techniques incorporating other materials as an intermediate layer.\(^{11}\)

Intermediate layer of restorative material has been suggested as a means to improve both marginal integrity and adaptation of the high viscosity composite to cavity walls. Restorative materials advocated for this purpose have included flowable composites, compomers, autopolymerizing composites, and conventional and resin-modified glass ionomer cements.\(^{12}\)

Flowable composites have reduced physical properties when compared to standard restorative composites, suffer from greater polymerization shrinkage, possess an increased coefficient of thermal expansion, and are not recommended for use in high stress applied locations. But used as an intermediate layer, their proposed mechanism of reducing microleakage is related to their increased elasticity, which is thought to compensate for the polymerization contraction stresses of the final restorative composite.\(^{13}\) Additionally, flowability of this material is able to fill the corner of cavities more efficiently.

Glass ionomers including resin-modified glass ionomers have many excellent physical properties which are long-term molecular bonding to dentin and enamel, bacteriostatic action, thermal expansion similar to that of enamel and dentin, and a slow setting reaction with low setting shrinkage.\(^{14}\)

Compomers are purposed to offer less stress at the resin-dentin interface because of their slower initial setting reaction. Additionally postplacement expansion of compomers from water sorption is believed to offset their initial shrinkage.\(^{15}\)

If using any of these intermediate layers prior to placement of a composite, they could be helpful to eliminate microleakage.

The concept of using glass ionomers to bond composite resins to dentin was first introduced by McLean for Class II and Class V cavities.\(^{16}\) Some authors\(^{16-18}\) tested this group of materials in an open-sandwich technique to seal the cervical cavity margins in Class II restorations. This concept failed clinically when conventional glass ionomers were used, mainly because of continuous loss of materials.\(^{16}\) But recently introduced resin-modified glass ionomers and compomers show improved mechanical and physical properties and better control during clinical handling.\(^{17}\) Some studies have indicated that these materials may improve the marginal adaptation of Class II restorations when a open-sandwich technique is used.\(^{18,19}\) Whether resin-modified glass ionomers or compomers should be used for such restorations is difficult to decide, for different factors have to considered when selecting a materials for sandwich restorations.

The purpose of this study was to determine whether intermediate layers of flowable composite, compomer and resin modified glass ionomer prior to placement of condensable composites would eliminate or significantly decrease microleakage at the gingival margin of Class II direct posterior composite restorations placed on dentin.

II. MATERIALS AND METHODS

1. Materials

Twenty extracted caries-free human molars were chosen. The teeth were cleaned with scalers and stored in physiological saline until use.

Composite resin selected as experimental material was Clearfil AP-X (Kuralay Medical Inc., Okayama, Japan) and Clearfil SE Bond (Kuralay Medical Inc., Okayama, Japan) was used as dental adhesive system.

Intermediate layer materials used in this experiment were flowable resin (Revolution; Kerr Corp., Orange, CA 92867, U.S.A.), resin-modified glass ionomer cement (Fuji II LC; GC Co., Tokyo, Japan) and compomer (Dyract; Dentsply/Detrey, Konstantz, Germany).
2. Preparation of the specimens

Forty box-shaped Class II cavities without retention lock were prepared on the mesial and distal surfaces of each tooth with cylindrical diamond bur by use of a high speed handpiece and copious water cooling. The bucco-lingual width of these cavities was 3 mm and the gingival wall depth was 1 mm. The carvovurface margin at the gingival floor of all cavities was apically placed approximately 1 mm from the cemento-enamel junction. No bevels were prepared and internal line angles were rounded. The prepared cavities were randomly assigned to four groups.

3. Restorative Procedures

In all specimens, a Tofflemire matrix band and a soft metal band were placed on each tooth. The matrix was tightened and held by finger pressure against the gingival margin of the cavity so the preparations would not be filled above the gingival margin.

Restorative resin used in this experiment was Clearfil AP-X (Kuralay Medical Inc., Okayama, Japan) regardless of intermediate materials.

Group I, which was control group, didn’t receive an intermediate layer prior to placement of condensable composite resin. Clearfil SE Bond Primer was applied to the entire cavity wall. After 20 seconds, primed wall was dried with mild air flow. After then, Clearfil SE Bond Bond was applied, air flowed gently, and light cured for 10 seconds from the occlusal aspect using a visible light. Using horizontal incremental insertion technique, each cavities were filled with a maximum thickness of 2 mm per increment of Clearfil AP-X, and then were light cured for 60 seconds from the occlusal aspect.

In group II, Dyract (Dentsply/Detrey, Konatantz, Germany) was used as intermediate layer. After etching with 37% phosphoric acid on cervical part of cavities, one layer of Prime & Bond NT (Dentsply/Detrey, Konatantz, Germany) was applied on gingival third of cleaned cavities and light cured for 10 seconds. And then Dyract was restored on gingival part of cavities prior to restorative resin restoration and light cured for 60 seconds from occlusal aspect.

In group III, Fuji II LC (GC Co., Tokyo, Japan) was used as intermediate material. Specimens was cleaned for 10 seconds with GC Dentin Conditioner (GC Co., Tokyo, Japan), rinsed and dried. Mixed cement was placed on gingival part of cavities by disposable syringe and light cure of 60 seconds was done.

In experimental groups, each intermediate materials were restored within 2 mm thickness approximately and up to carvovurface margins. Filling method of composite restoration was same as control group.

Following restoration, the matrix band was removed. Finishing and polishing of the restorations were performed with fine-grit diamond burs and Enhance polishing system (Dentsply/Detrey, Konatantz, Germany) immediately after curing and removal of the matrix band.

All restored teeth were stored in physiologic saline for 1 week. The teeth were thermocycled for 600 cycles from 5-55°C using a dwell time of 30 seconds.

4. Dye Leakage Test

All tooth surfaces were applied two coats of fingernail polish except for a 1.5 mm surrounding the carvovurface margin. After drying, the specimens were immersed in a 2% methylene blue solution for 12 hours and rinsed with tap water for 12 hours.

5. Evaluation of Microleakage

All teeth were embedded in auto-polymerizing acrylic resin (Orthodontic resin: Dentsply/Detrey,
Konstanz, Germany) and sectioned longitudinally in a mesio-distal direction coincident with center of restorations using a slowly rotating diamond saw (Isomet™, Buehler Co., Lake Bluff, IL, U.S.A.). The sectioned surfaces were analyzed under a stereomicroscope (SZ-PT 40, Olympus Optical Co., Ltd., Tokyo, Japan) at ×25 magnification. For the purpose of dye penetration analysis, only the gingival floor of the interface was considered. The following leakage scores were attributed, according to the severity of dye penetration: 0 = no evidence of dye leakage; 1 = dye penetration to less than half the cavity depth; 2 = dye penetration to the full cavity depth; 3 = dye penetration to the axial wall and beyond.

6. Statistical Analysis

Differences between the frequency of the dye leakage scores in the experimental groups were subjected to statistical analysis with Kruskal-Wallis non-parametric independent analysis and Mann-Whitney U test. Corresponding p-values were considered significant at values less than 0.05.

Ⅲ. RESULTS

Figure 1 is photographs of specimens representing the microleakage scores. Results of dye leakage test and mean rank of Kruskal-Wallis test are shown in table 1.

![Fig. 1. Scores of microleakage (×25): (a) score 1, (b) score 2, (c) score 3](image)

Group	Score	No.	Mean rank			
	0	1	2	3		
Group I	0	2	0	8	10	25.20
Group II	0	1	5	4	10	19.60
Group III	0	1	2	7	10	24.55
Group IV	0	3	6	1	10	12.65

Table 1. Distribution of microleakage scores and mean rank at gingival margins
Any sample didn’t show perfect marginal seal. 80% samples from Group I leaked to the axial wall and in most cases, leakage extended to dentinal tubules. Similarly, Group II leaked to the axial wall in majority of samples (70%). In Group I, 60% samples leaked within gingival wall and in Group IV, only one sample leaked to axial wall.

Figure 2 graphically presents the mean scores in all groups. Group IV which was treated with RMGIC as intermediate layer demonstrated significantly less microleakage (p<0.05). The results by the Mann-Whitney test demonstrated statistically significant differences when the comparisons were made between the margins with compomer as intermediate layer and resin-modified glass ionomer, the former demonstrated more leakage than the latter two groups (p<0.05) (Table 2).

Table 2. Statistical analysis of microleakage at gingival margin between each group by Mann-Whitney test (p<0.05)

Group	Group I	Group II	Group III	Group IV
Group I	*			
Group II		*		
Group III				
Group IV				

*: significant at 0.05

DISCUSSION

The marginal sealing ability of three different intermediate layer which were applied prior to placement of condensable composites on cervical margins located below CEJ of class II composite restorations, were evaluated in this study. In spite of many advantages, direct composite restorations have been limitedly used because of polymerization shrinkage. The polymerization shrinkage of composites has been reduced but not yet suppressed in commercially available products. Consequently, stresses induced by polymerization and their potentially damaging effect on restoration adaptation still restrain a simple and safe application of direct composite restoration technique in large and deep Class II cavities. In many earlier studies, Class II composite restorations where cervical margins are located on enamel revealed good marginal sealing ability. But cervical margins were located below CEJ, none of the restorative techniques demonstrated a good sealing ability with moderate to severe microleakage.

The finding of this study that all experimental groups and control group showed extensive amounts of dye leakages in cervical margins confirms the results of many other studies. According to recommendation of many earlier studies, layer by layer condensation technique was used in present study. But transparent matrix and reflective wedge were not used. The utilization of a transparent matrix is not an easy task due to its greater thickness and lack of rigidity and furthermore many studies showed similar results between stainless matrix combined wooden wedge and transparent matrix combined reflective wedge.

Flowable composite, predicted to reduce stress at the tooth-restoration interface, had weak effect in preventing marginal microleakage. The idea behind the utilization of this type of composite is to take advantage of its flow capacity in filling all parts of the box, facilitated by the rounded line

![Fig. 2. Mean scores of microleakage of each groups at gingival margins.](image)
angles. Another expected advantage is its lower Young's Modulus in comparison with other hybrid composites13,28. This characteristic could contribute to the dissipation of the contraction stresses during the polymerization. Another recent study found that none of three flowable composites were effective in reducing microleakage with gingival margins placed 1.0 mm coronal to CEJ29. In this study, efficacy of flowable composites as intermediate layer to reduce microleakage was mild. Several explanations may be able to account for this result. Flowable composites are widely known to shrink more than condensable composites because of less filler contents. When Stress during polymerization shrinkage goes beyond bonding strength, marginal failure and subsequent microleakage will occur. The utilization of occlusal irradiation could explain the poorer results obtained with this technique. Even though this fact is under argument, occlusal irradiation tends to pull out the composites from the margins, as it shrinks toward the light source and this situation is even worse in deep caries cavities, such as those margins apical to the CEJ.

The use of sandwich-technique implies the use of two different filling materials for one restoration. With the materials used in this study, this also implies the use of two different pretreatment and bonding procedures: one for the resin-modified glass ionomer cement (RMGIC) or compomer and the other for the composites. In this study open sandwich-technique with resin-modified glass ionomer cement resulted in better marginal adaptation on cervical cemental margins as compared with other intermediate layers or composites. The utilization of glass ionomers to microleakage control has been widely studied and compared against several bonding systems. There are many studies demonstrating the superiority of the glass ionomers30,31. Another observation was that RMGIC has superior performance in relation to conventional GIC and composites32,33. RMGIC reach a chemical maturation far more rapidly than the conventionals, being better able to resist the early polymerization contraction of the composites and also occlusal stresses. However, many clinicians are uncertain about the correct location of the glass ionomer, extended to the external carvusurface margin or held short of it. Recent developments of these groups of materials, it is possible to extend them to the carvusurface margin safely and obtain reliable results34. By Dietrich & others35, extending the RMGIC to external surface ("Open sandwich") produced better results than maintaining it short of the margin ("Closed sandwich"). But even RMGIC could not prevent an extensive microleakage at the cemental margins of composites. This result could be explained by the fact that initial curing shrinkage values of RMGIC are comparable to those of resin composites. However, when bonded to cavity walls the shrinking of the material results in polymerization shrinkage stress can be reduced by compensating mechanisms. The water uptake of resin-modified glass ionomer is substantially higher than that of composites. Furthermore the porosity in hand-mixed RMGIC and higher flow may have contributed to lower shrinkage stress. Even if RMGIC didn’t show perfect marginal sealing ability, cariostatic ability of that material is helpful to clinical condition that cervical margin is on cement. Another advantage of open sandwich technique on class II is the fact that GIC is less sensitive to contamination by saliva and blood which is frequently occured in deep cervical restoration35.

Studies with compomers as intermediate layer in class II composite restorations didn’t accomplished widely. In several studies, compomer showed favorable effect on microleakage regardless of statistical significance11,19,23,36. But in this study, compomer showed the worst marginal adaptation, which came short of expectation. This result may be based on the distance from curing light. Curing manner of compomer differs from that of RMGIC which can be cured in condition of no curing light. Compomer can’t cure without initial curing light. In one recent study, open sandwich technique with compomer showed good marginal sealing ability before mechanical loading. But after mechanical loading this technique showed worse result than the closed technique.
and this results were caused by incomplete conversion of resinous monomer to polymer. In spite of many efforts to eliminate marginal microleakage, complete elimination of the microleakage could never be attained in relation to the cementum/dentin margins. But, the pulp has its own self defense mechanism, such as the production of reparative dentin, sclerosis of dentinal tubules. These reactions could minimize the microleakage effects. Also studies accomplished in laboratory have tendency to overestimate the in vivo microleakage results. With reference to in vitro results, our effort to search for a technique that reduce the microleakage effects must be continued. In connection with intermediate layer treatment, further works must be focused on method to simplify bonding procedures with two restorative materials. Also, not only microleakage but also anticariogenic effect of intermediate layer materials with fluoride-releasing effect should be compared in further studies.

V. CONCLUSION

Many techniques have been proposed to eliminate the microleakage which was caused by polymerization shrinkage of direct Class II composite restoration. Among those techniques, the effect of intermediate layer treatment prior to placement of condensable composites were evaluated in this study. Forty box-shaped Class II cavities whose cervical margins were placed below CEJ were prepared. Restorative composites and dental adhesive used in this study were Clearfil AP-X and Clearfil SE Bond. Group I was restored without intermediate layer and Group II, III and IV were restored with intermediate layers which were flowable resin, compomer and resin-modified glass ionomer cement respectively. Results of this study revealed resin-modified glass ionomer as intermediate layer had superior effect (p<0.05) and other intermediate layer had no effect on reducing microleakage (p>0.05).

In the case of Class II direct composite restoration, resin-modified glass ionomer cement restoration to cervical portion which margins below CEJ prior to placement of condensable composites would be advantageous to reduce microleakage.

REFERENCE

1. Geurtsen W and Schoeler J: 4-year retrospective clinical study of class I and II composite fillings, J Dent 25:229-232, 1997.
2. Hickel R and Manhart J: Longevity of restorations in posterior teeth and reasons for failure, J Adhes Dent 3:45-64, 2001.
3. Rasmusson CG and Lundin SA: Class II restorations in six different posterior composite resins: Five year results, Swed Dent J 19:173-182, 1995.
4. Wilson NHF, Wilson MA, Wastell DG and Smith GA: Performance of occlusin in butt-joint and bevel-edged preparations: Five year results, Dent Mater 7:92-98, 1991.
5. Dietschi D, Siebenthal G, Neveu-Rosenstand L and Holtz J: Influence of the restorative technique and new adhesives on the dentin marginal seal and adaptation of resin composite Class II restorations: An in vitro evaluation, Quintessence Int 26:717-727, 1995.
6. Dietschi D and Herzfeld D: In vitro evaluation of marginal and internal adaptation of class II resin composite restorations after thermal and occlusal stressing, Eur J Oral Sci 106:1033-1042, 1998.
7. Hilton TJ, Schwartz RS and Ferracane JL: Microleakage of four Class II resin composite insertion techniques at intraoral temperature, Quintessence Int 28:135-144, 1997.
8. Davidson CL and Feilzer AJ: Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives, J Dent 25:435-440, 1997.
9. Davidson CL: Glass-ionomer bases under posterior composites, J Esthet Dent 223-224, 1994.
10. van Dijken JW: A 6-year evaluation of a direct composite resin inlay/onlay system and glass ionomer cement-composite resin sandwich restorations, Acta Odontol Scand 52:368-376, 1994.
11. Mark SH, James SL, Jennifer FM and James FS: Effect of four intermediate layer treatments on microleakage of Class composite restorations, Gener Dent 49:489-495, 2001.
12. Hannig M, Bott B, Hohnk HD and Muhlbauer EA: A new concept for tooth-colored Class II restoration with proximal margins located in dentin, J Dent Res 76:314(Abstr 2403), 1997.
13. Bayne SC, Thompson JY, Swift EJ, Stamatiades P and Wilkerson M: A characterization of first-generation flowable composites, JADA 129:567-577, 1998.
14. Mount GJ: Buonocore memorial lecture. Glass-ionomer cements: Past, present, and future, Oper Dent 19:82-90, 1994.
15. McLean JW, Powis DR and Prosser HA: The use of glass-ionomer cements in bonding composite resins to dentin, Br Dent J 158:410-414, 1985.
16. Welbury RR and Murray JJ: A clinical trial of the glass-ionomer cement-composite resin ‘sandwich’ technique in Class II cavities in permanent premolar and molar teeth, Quintessence Int 21:507-512, 1990.
17. Uno S, FingerWA and Fitz U: Long-term mechanical characteristics of resin-modified glass ionomer restora-
18. Lösch AC, Losche GM and Roulet JF: The effect of prolonged water storage on marginal adaptation of Class I fillings, J Dent Res 75:394(ABstr 2232), 1996.

19. Dietrich Th., Lösch AC, Losch GM and Roulet JF: Marginal adaptation of direct composite and sandwich restorations in Class I cavities with cervical margins in dentin. J Dent 27:119-128, 1999.

20. Davidson CL, de Gee AJ and Feilzer A: The competition between the composite-dentin bond strength and the polymerization contraction stress, J Dent Res 63:1396-1399, 1984.

21. Davidson CL and de Gee AJ: Relaxation of polymerization contraction stresses by flow in dental composites, J Dent Res 63(12):146-148, 1984.

22. Andersson-Wenckert IE, van Dijken JW and Horstedt P: Effect of four intermediate layer treatments on microleakage of Class II composite restorations, Gen Dent 49:489-495, 2001.

23. Beznos C.: Microleakage at the cervical margin of composite Class II cavities with different restorative techniques, Oper Dent 26:60-69, 2001.

24. Miller M, Castellanos IR, Vargas MA and Denely GE: Effect of restorative materials on microleakage of Class II composites, J Esthet Dent 8:107-113, 1996.

25. Abdalla AL and Davidson CL: Comparison of the marginal integrity of in vivo and in vitro Class II composite restorations, J Dent 21:158-162, 1993.

26. Ciamponi AL, Del Portillo Lujian VADP and Ferreira Santos JF: Effectiveness of reflective wedges on the polymerization of composite resins, Quint Intern 25:599-602, 1994.

27. Kaya BT, Sneed WD and Nuckles DB: Microhardness of Class I composite resin restorations with different matrices and light positions, J Proth Dent 65:487-490, 1991.

28. Estafan D, Estafan A and Leinfelder KP.: Cavity wall adaptation of resin-based composites lined with flowable composites, Am J Dent 13:192-4, 2000.

29. Russel RR and Mazer RB: Should flowble composites be used as liners for Class II restorations?, J Dent Res 78:389(ABstr 2266), 1999.

30. Shortall A and Asmussen E: Influence of dentin-bonding agents and a glass ionomer base on the cervical marginal seal of class I composite restorations, Scand J Dent Res 96:590-594, 1988.

31. Tjan AHL and Dunn JR: Microleakage at gingival dentin margins of class V composite restorations lined with light cured glass ionomer cements, JADA 121:706-710, 1990.

32. Friel KH, Schmalz and Hiller KA: Marginal adaptation of composite restorations versus hybrid ionomer/composite sandwich restorations, Oper Dent 22:21-29, 1997.

33. Sidhu S and Henderson L: In vitro marginal leakage of cervical composite restorations lined with a light cured glass ionomer, Oper Dent 17:7-12, 1992.

34. Andersson-Wenckert IE, van Dijken JW and Horstedt P.: Modified Class II open sandwich restorations: evaluation of interfacial adaptation and influence of different restorative techniques, Eur J Oral Sci 110:270-275, 2002.

35. Dietrich T, Kraemer M, Losche GM, Wernecke KD and Roulet JF.: Influence of dentin conditioning and contamination on the marginal integrity of sandwich Class II restorations, Oper Dent 25:401-410, 2000.

36. Dietschi D, Bindi G, Krejci I and Davidson C: Marginal and internal adaptation of stratified compomer-composite Class II restorations, Oper Dent 27:500-509, 2002.