SLOWLY VANISHING MEAN OSCILLATIONS: NON-UNIQUENESS OF BLOW-UPS IN A TWO-PHASE FREE BOUNDARY PROBLEM

MATTHEW BADGER, MAX ENGELSTEIN, AND TATIANA TORO

Dedicado a Carlos Kenig, un gran maestro y amigo en conmemoración de sus 70 años.

Abstract. In Kenig and Toro’s two-phase free boundary problem, one studies how the regularity of the Radon-Nikodym derivative $h = \frac{d\omega^-}{d\omega^+}$ of harmonic measures on complementary NTA domains controls the geometry of their common boundary. It is now known that $\log h \in C^{0,\alpha}(\partial\Omega)$ implies that pointwise the boundary has a unique blow-up, which is the zero set of a homogeneous harmonic polynomial. In this note, we give examples of domains with $\log h \in C(\partial\Omega)$ whose boundaries have points with non-unique blow-ups. Philosophically the examples arise from oscillating or rotating a blow-up limit by an infinite amount, but very slowly.

1. Introduction

In this note, we answer a question about uniqueness of blow-ups in non-variational two-phase free boundary problems for harmonic measure in the negative. Throughout, we let $\Omega^+ = \Omega \subset \mathbb{R}^n$ and $\Omega^- = \mathbb{R}^n \setminus \overline{\Omega}$ denote complementary unbounded domains with a common boundary $\partial\Omega = \partial\Omega^+ = \partial\Omega^-$. Furthermore, we require that Ω^\pm belong to the class of NTA domains in the sense of Jerison and Kenig [JK82]. Let ω^\pm denote harmonic measures on Ω^\pm with finite poles X^\pm or with poles at infinity (see Kenig and Toro [KT99]). Finally, we assume $\omega^+ \ll \omega^- \ll \omega^+$ and let

\[
(1.1) \quad h = \frac{d\omega^-}{d\omega^+}
\]

denote the Radon-Nikodym derivative of harmonic measure on one side of the boundary with respect to harmonic measure on the other side. We are interested in understanding how different regularity assumptions on h controls the geometry of $\partial\Omega$.

Following Kenig and Toro [KT06] and Badger [Bad11], we know if $\log h \in \text{VMO}(d\omega^+)$ (vanishing mean oscillation) or $\log h \in C(\partial\Omega)$ (continuous), then the boundary admits a finite decomposition into pairwise disjoint sets,

\[
(1.2) \quad \partial\Omega = \Gamma_1 \cup \cdots \cup \Gamma_d,
\]
where geometric blow-ups (tangent sets) of \(\partial \Omega \) centered at any \(Q \in \Gamma_d \) (1 \(\leq d \leq d_0 \)) are zero sets \(\Sigma_p \) of homogeneous harmonic polynomials (hhp) \(p : \mathbb{R}^n \to \mathbb{R} \) of degree \(d \). That is to say, given any boundary point \(Q \in \partial \Omega \) and any sequence of scales \(r_i > 0 \) with \(\lim_{i \to \infty} r_i = 0 \), there exists a subsequence \(r_{ij} \) and a hhp \(p \) of degree \(d \) such that

\[
\lim_{j \to \infty} \max_j \left\{ \text{excess} \left(\frac{\partial \Omega - Q}{r_{ij}} \cap B, \Sigma_p \right), \text{excess} \left(\Sigma_p \cap B, \frac{\partial \Omega - Q}{r_{ij}} \right) \right\} = 0
\]

for every ball \(B \) in \(\mathbb{R}^n \). Here \(\text{excess}(S,T) = \sup_{s \in S} \inf_{t \in T} |s - t| \) when \(S, T \subset \mathbb{R}^n \) are nonempty and \(\text{excess}(\emptyset, T) = 0 \); see \[BL15\] for more information about this mode of convergence of closed sets (the Attouch-Wets topology). Following \[Bad13\] and \[BET17\], we further know that the regular set \(\Gamma_1 \) is closed and has Hausdorff and Minkowski dimension at most \(n - 3 \).

We remark that the maximum degree \(d_0 \) witnessed in the decomposition \((1.2) \) can be bounded in terms of the ambient dimension and the NTA constants of \(\Omega^\pm \). When \(n = 2 \), it is always the case that \(\partial \Omega = \Gamma_1 \). When \(n = 3 \), we have \(\partial \Omega = \Gamma_1 \cup \Gamma_3 \cup \cdots \cup \Gamma_{2d_1 + 1} \) (odd degrees only) and for every odd \(d \geq 1 \), there exist two-sided domains with \(\Gamma_d \neq \emptyset \). In dimensions \(n \geq 4 \), for every integer \(d \geq 1 \), even or odd, there exist two-sided domains with \(\Gamma_d \neq \emptyset \). See \[BET17\] for details and \[AMT20\], \[PT20\], \[TT22\] for additional results on the regularity of \(\Gamma_1 \).

One may ask: Are the blow-ups at each point in \(\partial \Omega \) unique? In other words, is the zero set \(\Sigma_p \) in \((1.3) \) independent of choice of the sequence of scales \(r_i \)? Under a stronger free boundary regularity hypothesis, the answer is affirmative. Following Engelstein \[Eng16\] and \[BET20\], we know that if \(\log h \in C^{0,\alpha}(\partial \Omega) \) for some \(\alpha > 0 \) (Hölder continuous), then blow-ups are unique. Moreover, when \(\log h \in C^{0,\alpha}(\partial \Omega) \), the regular set \(\Gamma_1 \) is actually a \(C^{1,\alpha} \) embedded submanifold and the singular set \(\partial \Omega \setminus \Gamma_1 \) is \((n - 3) \)-rectifiable in the sense of geometric measure theory (see e.g. \[Mat95\]). Below, we supply examples demonstrating that under the weaker regularity hypothesis \(\log h \in C(\partial \Omega) \), there may exist points in the boundary that have non-unique blow-ups.

Theorem 1.1. For each \(d \in \{1, 3\} \), there exist complementary NTA domains \(\Omega^\pm \subset \mathbb{R}^3 \) such that \(\log h \in C(\partial \Omega) \), but there exists a point \(p \in \Gamma_d \) at which geometric blow-ups of \(\partial \Omega \) are not unique.

Remark 1.2. In fact, the domains that we construct below have locally finite perimeter and Ahlfors regular boundaries: that is, there exists \(C > 0 \) (depending on \(\Omega \)) such that

\[
C^{-1} r^{n-1} \leq \mathcal{H}^{n-1}(\partial \Omega \cap B(Q, r)) \leq C r^{n-1}
\]

for all \(Q \in \partial \Omega \) and \(r > 0 \), where \(\Omega \subset \mathbb{R}^n \) and \(\mathcal{H}^{n-1} \) denotes the \((n - 1) \)-dimensional Hausdorff measure. Even more, the boundaries of the domains are smooth surfaces outside of a single point.

The basic strategy is to start with a blow-up domain \(\Omega^+_p = \{ X \in \mathbb{R}^n : \pm p(X) > 0 \} \) associated to a hhp \(p \) of degree \(d \), which has log \(h \equiv 0 \) and \(0 \in \Gamma_d \). We then deform the domain near the origin by introducing rotations/oscillations at each scale \(0 < r \leq 1/100 \)
so that the magnitude of the oscillation at scale \(r \) vanishes as \(r \to 0 \). The tension in the proof becomes choosing the correct speed of vanishing. On the one hand, by choosing the speed to be sufficiently \textit{quick}, we can guarantee by making estimates on elliptic measure that the deformed domain has \(\log h \in C(\partial \Omega) \). On the other hand, by choosing the speed to be sufficiently \textit{slow}, we can guarantee that the deformed domain has uncountably many blow-ups at the origin, each of which are rotations of the original domain.

\textit{Remark 1.3.} By a suitable modification, the technique introduced in the case \(d = 3 \) can be used to show existence of domains with \(\log h \in C(\partial \Omega) \) and non-unique blow-ups at an isolated point \(Q \in \Gamma_d \) for any value of \(d \geq 2 \). When \(d \geq 3 \) is odd, the examples can be produced in \(\mathbb{R}^3 \). When \(d \geq 2 \) is even, the examples can be produced in \(\mathbb{R}^4 \).

In a related context, Allen and Kriventsov \cite{AK20} use conformal maps to construct domains \(\Omega^\pm = \{ u^\pm > 0 \} \subset \mathbb{R}^n \) associated to non-negative subharmonic functions \(u^\pm \) for which the Alt-Caffarelli-Friedman functional

\begin{equation}
\Phi(r, u^+, u^-) = \frac{1}{r^4} \int_{B_r(0)} \frac{|\nabla u^+|^2}{|X|^{n-2}} \int_{B_r(0)} \frac{|\nabla u^-|^2}{|X|^{n-2}}
\end{equation}

has a positive limit as \(r \to 0 \), but whose interface \(\partial \Omega = \partial \Omega^+ = \partial \Omega^- \) does not have a unique tangent plane at the origin. It would be interesting to know whether a suitable modification of their examples satisfy \(\log h \in C(\partial \Omega) \). For more on the connection between the ACF functional and two-phase free boundary problems for harmonic measure (originally observed by Kenig, Preiss, and Toro \cite{KPT09}), see \cite[§2.2]{AKN22} and the references within.

We handle the case \(d = 3 \) of Theorem 1.1 in §2 and the case \(d = 1 \) in §3.

1.1. \textbf{Acknowledgments.} This paper was completed while M.B. and M.E. were visiting T.T. at MSRI/SLMath in the Fall of 2022; they thank the institute for its hospitality. All three authors would also like to thank Carlos Kenig for his encouragement, kindness, and generosity over many years.

2. \textbf{The First Example: Non-Unique Singular Tangents}

2.1. \textbf{Description and Geometric Properties.} We begin with Szulkin’s example \cite{Szu79} of a degree 3 hlp,

\begin{equation}
s(x, y, z) = x^3 - 3xy^2 + z^3 - 1.5(x^2 + y^2)z,
\end{equation}

with the interesting feature that its zero set \(\Sigma_s \) is homeomorphic to \(\mathbb{R}^2 \). See Figure 2.1. Because \(\Sigma_s \) is a cone (\(s \) is homogeneous) and \(\Sigma_s \cap S^2 \) is a smooth curve\footnote{One can check that \(\nabla s(x, y, z) = 0 \Leftrightarrow (x, y, z) = (0, 0, 0) \).}, it follows that \(\Omega_s^\pm = \{ (x, y, z) \in \mathbb{R}^3 : \pm s(x, y, z) > 0 \} \) are complementary NTA domains. Note that the positive \(z \)-axis belongs to \(\Omega_s^+ \) and the negative \(z \)-axis belongs to \(\Omega_s^- \), since \(s(0, 0, \pm 1) = \pm 1 \).
Figure 2.1. Left: Szulkin Σ_s, viewed from the z-axis. Center: the curve formed by intersection of Szulkin Σ_s and S^2, viewed from a different angle. Right: Szulkin Σ_s inside of the annulus $1/2 < r < 1$, viewed from the z-axis.

Figure 2.2. Examples of twisted Szulkin domains Ω^\pm defined using various rotation functions $\theta(r)$.
Left: $\theta(r) = \log(-\log(r))$; the domains Ω^\pm are NTA and $\log h \in C(\partial \Omega)$.
Center: $\theta(r) = -\log(r)$; the domains Ω^\pm are NTA, but $\log h \not\in VMO(d\omega^+)$.
Right: $\theta(r) = (-\log(r))^2$; the domains Ω^\pm are not NTA.

To build Ω^\pm, we deform Ω^\pm_s by rotating spherical shells $\Sigma_s \cap \partial B_r(0)$ in the xy-plane. More precisely, we put $\Omega^\pm = \{ \pm s_{\text{twist}} > 0 \}$, where $s_{\text{twist}} \equiv s \circ \Phi_{-\theta}$ and $\Phi_{\pm\theta} : \mathbb{R}^3 \to \mathbb{R}^3$ are homeomorphisms given by

$$
\Phi_{\pm\theta}(x, y, z) = (x \cos(\pm\theta) - y \sin(\pm\theta), x \sin(\pm\theta) + y \cos(\pm\theta), z),
$$

$$
\theta \equiv \theta(r) := \log(-\log(r)) \quad \text{for all } 0 < r := \sqrt{x^2 + y^2 + z^2} \leq 1/100
$$

and we smoothly interpolate to $\theta(r) := 0$ for all $r \geq 1$. See Figure 2.2.

If $s_{\text{twist}}(x, y, z) = 0$, then $\Phi_{-\theta}(x, y, z) \in \Sigma_s$. Hence the interface $\Sigma = \partial \Omega^\pm = \Phi_{\theta}(\Sigma_s)$.

Remark 2.1. Let us collect some simple, but useful observations about θ and Φ_{θ}.
Since $0 \in E$, let’s examine the $(1,1)$ entry of E. The second property is true by compactness of the torus $\mathbb{R}/2\pi$. Proof. The first property holds since $\theta(r) = \theta_0$ (mod 2π), i.e. such that $\min_{k \in \mathbb{Z}} |\theta(r) - \theta_0 - 2\pi k| = 0$ for all $i \geq 1$.

(ii) For any sequence $r_i \downarrow 0$, there exists $\theta_0 \in [0, 2\pi)$ and a $r_{ij} \downarrow 0$ such that $\theta(r_{ij}) \to \theta_0$ (mod 2π), i.e. $\lim_{j \to \infty} \min_{k \in \mathbb{Z}} |\theta(r_{ij}) - \theta_0 - 2\pi k| = 0$.

(iii) For all $0 < r \leq 1/100$, we have $|\nabla \theta| = 1/(-r^2 \log(r))$ and $|\partial_{ij} \theta| \leq C/(-r^2 \log(r))$ for all $1 \leq i, j \leq 3$.

(iv) For all (x, y, z) with $0 < r \leq 1/100$, we can write $D \Phi(r) = R_\theta + E_\theta$, where

$$R_\theta = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

is a rotation matrix and the “error matrix” E_θ is such that $\|E_\theta\|_\infty \leq C/(-\log(r))$, where the norm is the sup norm on the entries of E_θ.

(v) The map $\Phi_\theta : \mathbb{R}^3 \to \mathbb{R}^3$ is a quasiconformal homeomorphism, with $\Phi_\theta^{-1} = \Phi_{-\theta}$. Moreover, Φ_θ is asymptotically conformal at the origin.

Proof. The first property holds since $\theta(r)$ is continuous in r and $\theta(r) \to \infty$ as $r \downarrow 0$. The second property is true by compactness of the torus $\mathbb{R}/2\pi$. The third property is a straightforward computation. By another straightforward (if tedious) computation, $D \Phi_\theta = R_\theta + E_\theta$, where R_θ is as above and E_θ is the rank 1 matrix given by

$$E_\theta = \begin{pmatrix} -x \sin(\theta) - y \cos(\theta) \\ x \cos(\theta) - y \sin(\theta) \\ 0 \end{pmatrix} \begin{pmatrix} \theta_x & \theta_y & \theta_z \end{pmatrix}.$$

Let’s examine the $(1,1)$ entry of E_θ. Since $\theta_x = \theta'(r)x/r = \theta'(r)x/r$ and $|x| \leq r$, we have

$$|x \theta_x \sin(-\theta) + y \theta_x \cos(-\theta)| \leq 2r|\theta'(r)| \leq 2/(-\log(r)).$$

The other non-zero entries of E_θ obey the same estimate. This gives the fourth property. To prove that Φ_θ is quasiconformal (see e.g. [Hei06]), it suffices to check that $\Phi_\theta \in W^{1,n}_{\text{loc}}$ and there exists $1 \leq L < \infty$ such that the a.e. defined singular values $\lambda_1 \leq \lambda_2 \leq \lambda_3$ of $D \Phi_\theta$ satisfy $\lambda_3 \leq L\lambda_1$ a.e. These facts follow from property (iv) and the variational characterization of the minimum and maximum singular values. Furthermore, as $r \downarrow 0$, the maximum ratio of λ_3/λ_1 in B_r goes to 1. Therefore, Φ_θ is asymptotically conformal at the origin.

The Hausdorff distance $\text{HD}(A, B) = \max\{\text{excess}(A, B), \text{excess}(B, A)\}$ for all nonempty sets $A, B \subset \mathbb{R}^n$. Note that $\text{HD}(\lambda A, \lambda B) = \lambda \text{HD}(A, B)$ for any dilation factor $\lambda > 0$.

Lemma 2.2 (twisted Szulkin vs. rotations of Szulkin). If $r, \epsilon, R > 0$ and $0 < Rr \leq 1/100$, then $\text{HD}(\Sigma \cap B_{Rr}, R_{\theta(r)} (\Sigma \cap B_{Rr})) \leq C \max\{\epsilon r, \sup\{q\theta(q) - \theta(r) : \epsilon r \leq q \leq Rr\}\}$.

Proof. For any $p \in B_{\epsilon r}$, we have $\text{dist}(p, R_{\theta(r)} (\Sigma \cap B_{Rr})) \leq 2\epsilon r$ and $\text{dist}(p, \Sigma \cap B_{Rr}) \leq 2\epsilon r$, since $0 \in R_{\theta(r)} (\Sigma \cap B_{Rr})$ and $0 \in \Sigma$. Thus, the main issue is to estimate distances inside $B_{Rr} \setminus B_{\epsilon r}$.

Let $p \in \Sigma \cap B_{Rr} \setminus B_{\epsilon r}$, say $p \in \Sigma \cap \partial B_q$ with $\epsilon r \leq q \leq Rr$. Then we may write $p = R_{\theta(q)}x$ for some $x \in \Sigma$. Let’s estimate $\text{dist}(p, R_{\theta(r)} (\Sigma \cap B_{Rr}))$ from above by the distance of p to
the point \(y = R_{\theta(r)} x \in R_{\theta(r)} \Sigma_s \cap \partial B_q \). Note that \(y = R_{\theta(r)} x = R_{\theta(r)} R_{-\theta(q)} p = R_{\theta(r)-\theta(q)} p \) and \(|y| = |p| = q \). Hence

\[
|p - y| \leq q(1, 0, 0) - (\cos(\theta(q) - \theta(r)), \sin(\theta(q) - \theta(r)), 0)]
\]

\[
= q(2 - 2\cos(\theta(q) - \theta(r)))^{1/2}
\]

\[
\leq Cq|\theta(q) - \theta(r)|,
\]

where the first inequality holds by geometric considerations and the last inequality used the Taylor series expansion for cosine.

A similar inequality holds starting from any \(p \in R_{\theta(r)} \Sigma_s \cap B_{Rr} \setminus B_{cr} \).

Lemma 2.3. With \(\theta(r) = \log(-\log(r)) \), the twisted Szulkin domains \(\Omega^\pm \) as defined above are chord-arc domains (i.e. NTA domains with Ahlfors regular boundaries). The interface \(\Sigma = \partial \Omega^\pm \) has a continuum of blow-ups at the origin, each of which is a rotation of \(\Sigma_s \) in the xy-plane.

Proof. The domains \(\Omega^\pm = \Phi_\theta(\Omega^\pm_s) \) are NTA, because global quasiconformal maps send NTA domains to NTA domains. Every boundary of an NTA domain is lower Ahlfors regular (see e.g. [Bad12, Lemma 2.3]). Thus, \(\Sigma \) is lower Ahlfors regular. To check upper Ahlfors regularity, first note that \(\Sigma_s \) is upper Ahlfors regular, since \(\Sigma_s \) can be covered by a finite number of Lipschitz graphs. Since \(\|\det(D\Phi_\theta)\|_{\infty} < \infty \), it follows that \(\Sigma = \Phi_\theta(\Sigma_s) \) is upper Ahlfors regular, as well.

Let’s address the blow-ups of \(\partial \Omega \) at the origin. Let \(r_i \downarrow 0 \) and suppose initially that \(\theta(r_i) = \theta_0 \mod 2\pi \) for all \(i \). Let \(\epsilon(r) \) be a function of \(r \) to be specified below. Let \(R \gg 1 \) be a large radius. By Lemma 2.2, the homogeneity of the Hausdorff distance, and the mean value theorem, we have

\[
\text{HD}(r_i^{-1} \Sigma \cap B_R, R_{\theta_0} \Sigma_s \cap B_R)
\]

\[
\leq Cr_i^{-1} \max \{\epsilon(r_i)r_i, \sup \{q|\theta(q) - \theta(r_i)| : \epsilon(r_i)r_i \leq q \leq Rr_i\}\}
\]

\[
\leq C \max \{\epsilon(r_i), \sup \{|t|\theta'(r_i) - \theta(r_i)| : \epsilon(r_i) \leq t \leq R\}\}
\]

\[
\leq C \max \{\epsilon(r_i), R(R - 1)r_i \sup \{|\theta'(r_i)| : \epsilon(r_i) \leq t \leq R\}\}.
\]

Our task is to choose \(\epsilon(r_i) \) so that

\[
\lim_{i \to \infty} \epsilon(r_i) = 0 \quad \text{and} \quad \lim_{i \to \infty} \sup \{r_i|\theta'(r_i)| : \epsilon(r_i) \leq t \leq R\} = 0.
\]

Since \(|\theta'(r)| = 1/(-r \log r) \), we have \(\sup \{r_i|\theta'(r_i)| : \epsilon(r_i) \leq t \leq R\} \leq 1/(-\epsilon(r_i) \log(Rr_i)) \) for all sufficiently large \(i \) (i.e. for all sufficiently small \(r_i \)). Thus, (2.4) is satisfied (e.g.) by choosing \(\epsilon(r) = |\log(r)|^{-1/2} \). It follows that \(\lim_{i \to \infty} \text{HD}(r_i^{-1} \Sigma \cap B_R, R_{\theta_0} \Sigma_s \cap B_R) = 0 \) for all \(R > 0 \). This implies that \(\Sigma/r_i \) converges to \(R_{\theta_0} \Sigma_s \) in the sense of (1.3).

In the general case, starting from any sequence \(r_i \downarrow 0 \), pass to a subsequence such that \(\theta(r_i) \to \theta_0 \mod 2\pi \). One can readily check that \(R_{\theta(r_i)} \Sigma_s \) converges to \(R_{\theta_0} \Sigma_s \) in the Attouch-Wets topology. Therefore, \(\Sigma/r_i \) converges to \(R_{\theta_0} \Sigma_s \) in the sense of (1.3) by the special case and the triangle inequality for excess.

\[\square\]
Remark 2.4. For all exponents $0 < p < 1$, the twisted Szulkin domains defined using the rotation function $\theta(r) = (-\log(r))^p$ also satisfy the conclusions of Lemma 2.3. However, there is phase transition at $p = 1$. When $\theta(r) = -\log(r)$, one can show that the blow-ups of Σ are no longer zero sets of ∇u. The essential difference is that the “speed of rotation” vanishes as one zooms-in at the origin when $p < 1$, but the “speed of rotation” is constant when $p = 1$. When $p > 1$, the “speed of rotation” goes to infinity as one zooms-in at the origin and the associated twisted Szulkin domains Ω^\pm are not even NTA. See Figure 2.2.

2.2. Potential Theory for the First Example. Let $r_i \downarrow 0$ be an arbitrary sequence of radii going to zero and let $K \gg 1$. Recall that $\Sigma \cap (B_{Kr_1} \backslash B_{r_1/K}) = \Phi_\theta(\Sigma_s \cap (B_{Kr_1} \backslash B_{r_1/K}))$. Set

$$\tilde{u}_i^\pm(x) = \frac{u^\pm \circ \Phi^{-1}_\theta(r_i)x}{\omega^\pm(B_{r_1})},$$

where u^\pm are the Green’s functions with poles at infinity for Ω^\pm. Then in $\Omega^\pm_s \cap B_K \backslash B_{1/K}$, we have that \tilde{u}_i^\pm satisfies

$$-\text{div}(B(r_i)x\nabla -) = 0, \quad B = (\det D\Phi_\theta)^{-1}(D\Phi_\theta)(D\Phi_\theta)^T$$

and Φ_θ is as in (2.2).

To see that $B(r_i)x$ is Lipschitz regular, we note that Remark 2.1(iii) implies that $\|DB\| \leq \frac{C}{r \log(r_i)}$. Therefore, using the fundamental theorem of calculus along curves which stay in the annulus $B_K \backslash B_{1/K}$

$$\|B(r_i)x - B(r_iy)\| \leq Cr_i|x - y| \sup_{B_{Kr_1} \backslash B_{r_1/K}} \|DB\| \leq \frac{CK}{\log(r_i)}|x - y|, \forall x, y \in B_K \backslash B_{1/K},$$

where $C > 0$ is independent of i, K. This uniform Lipschitz continuity immediately implies the next result:

Lemma 2.5. Let $\alpha \in (0, 1), K > 1$. The sequence \tilde{u}_i^\pm is pre-compact in $C^{1,\alpha}(\Omega^\pm_s \cap B_K \backslash B_{1/K})$. Furthermore, there exists a subsequence along which $\tilde{u}_i^\pm \to \kappa s$, uniformly on compacta, where s is the Szulkin polynomial, for some $\kappa > 0$.

Proof. We see that \tilde{u}_i^\pm solves an elliptic PDE with coefficients that are Lipschitz continuous and elliptic with coefficients independent of i. Furthermore,

$$\sup_{B_{4Kr_1}} \|\tilde{u}_i^\pm\| \leq C \Leftrightarrow \sup_{B_{4Kr_1}} \|u^\pm\| \leq C\frac{\omega^\pm(B_{r_1})}{r_i}.$$

The latter inequality holds (with a $C > 0$ that depends on K) by the Caffarelli-Fabes-Mortola-Salsa and doubling estimates on harmonic measure in NTA domains, see e.g. [JKS82]. Then Schauder theory tells us that \tilde{u}_i^\pm are uniformly in $C^{1,\alpha}(\Omega^\pm_s \cap B_K \backslash B_{1/K})$ for any $\alpha \in (0, 1)$; see [GT01] Theorem 8.3. The precompactness follows.

Passing to a subsequence, we get that the sequences converges to functions \tilde{u}_∞^\pm, which solves $-\text{div}(B_\infty \nabla \tilde{u}_\infty^\pm) = 0$ in $\Omega^\pm_s \cap B_K \backslash B_{1/K}$. From (2.6) we see that $B_\infty = \text{Id}$ and so,
invoking a diagonal argument, \(\tilde{u}_i^\pm \to \tilde{u}_\infty^\pm \), uniformly on compacta in \(\mathbb{R}^3 \). Furthermore, \(\tilde{u}_\infty^\pm \) are positive harmonic functions in \(\Omega^\pm_\infty \) that vanish on \((\Omega^\pm)^c \).

Since \((\Omega^\pm_s)^c \) are (global) NTA domains, the boundary Harnack inequality implies that there are scalars \(\kappa_\pm > 0 \) such that \(\tilde{u}_\infty^\pm = \kappa_\pm \) (see [KT99] Lemma 3.7 and Corollary 3.2).

To wrap up, let us again note that the points \((0,0,\pm 1) \in \Omega^\pm_\infty \) are invariant under \(\Phi \).

Furthermore by symmetry \(u^+(0,0,1) = u^-(0,0,-1) \) and \(\omega^+(B_r) = \omega^-(B_r) \) for all \(r > 0 \). Thus, \(u^\pm_\infty(0,0,1) = u^-_\infty(0,0,-1) \) and this number determines the constant of proportionality with \(s \).

Finally, the proof of the continuity of \(\log h \) follows immediately:

Proof of \(\log h \in C(\partial \Omega) \). We note that away from the origin, \(\partial \Omega \) is smooth so continuity of the Radon-Nikodym derivative follows from classical potential theory. Furthermore, arguing by symmetry (that is, \(-\Omega^+ = \Omega^-\)) we have that \(\omega^+(B(0,r)) = \omega^-(B(0,r)) \) for all \(r > 0 \). Thus, recalling that \(u^\pm \) are the Green’s function for \(\Omega^\pm \) respectively, we are done if we can show that

\[
\lim_{\partial Q \ni Q \to 0} \frac{|\nabla u^+|(Q)}{|\nabla u^-|(Q)} = 1.
\]

(Recall that where \(\partial \Omega \) is smooth, \(C^{1,\alpha} \) is sufficient, the Radon-Nikodym derivative is given by the ratio of the derivatives of the Green functions [Kel12]).

Let \(Q_i \in \partial \Omega \) with \(Q_i \to 0 \) and let \(|Q_i| = r_i \downarrow 0 \). Let \(\tilde{u}_i^\pm \) be given by (2.5). Then

\[
\frac{\omega^+(B_{r_i})}{r_i^2} D\Phi_\theta(r_i x) \nabla \tilde{u}_i^\pm(x) = \nabla u^\pm(\Phi^{-1}_\theta(r_i x)).
\]

Let \(\tilde{Q}_i = \Phi_\theta(Q_i)/r_i \in \Sigma_s \cap \partial B_1 \). We have shown that

\[
\frac{|\nabla u^+|(Q_i)}{|\nabla u^-|(Q_i)} = \frac{|D\Phi_\theta(r_i \tilde{Q}_i) \nabla \tilde{u}_i^\pm(\tilde{Q}_i)|}{|D\Phi_\theta(r_i \tilde{Q}_i) \nabla \tilde{u}_i^-(\tilde{Q}_i)|}.
\]

Continuity of \(\log h \) follows from Lemma 2.5 (the lemma implies that \(\tilde{u}_i^\pm \to \kappa s \) in \(C^{1,\alpha}(\overline{\Omega}\cap B_2(\Omega)) \)) and the fact that along some subsequence \(D\Phi_\theta(r_i x) \to R_{\theta_0} \) for some \(\theta_0 \) (depending on the subsequence).

\[\square\]

3. The Second Example: Non-Unique Flat Tangents

3.1. Description and Geometric Properties.

To show non-uniqueness at “flat points” we adapt an example from [Tor94]. We set \(\Omega^\pm = \{(x, y, z) \in \mathbb{R}^3 : \pm(z - v(x, y)) > 0\} \), where \(v : \mathbb{R}^2 \to \mathbb{R} \) is defined by setting \(v(0,0) = 0 \),

\[v(x, y) = x \log |\log(r)| \sin(\log(|\log(r)|)) \quad \text{when } 0 < r = (x^2 + y^2)^{1/2} \leq 1/100,
\]

and smoothly (e.g. \(C^{1,\alpha} \)) interpolating to \(v(x, y) = 1 \) when \(r \geq 1 \).

Lemma 3.1 (see [Tor94] Example 2). *The graph domains \(\Omega^\pm \) are chord-arc domains.*

The interface \(\Sigma = \partial \Omega^\pm \) has a continuum of blow-ups at the origin, each of which is a plane \(z = mx \) with “slope” \(-\infty \leq m \leq \infty\).*
Remark 3.2. Moreover, Ω^\pm are vanishing chord-arc domains in the sense of $[KT03]$. This can be seen as follows. First, every pseudo blow-up (an Attouch-Wets limit Γ of $(\Sigma - Q_i)/r_i$ with $Q_i \to Q$ and $r_i \downarrow 0$) is a plane. Indeed, on the one hand, if $\limsup_{i \to \infty} |Q_i - Q|/r_i = \infty$, then Γ is a plane, because $\Sigma \setminus \{0\}$ is smooth. On the other hand, if $|Q_i|/r_i \leq C$ for all i, then Γ is a translate of a blow-up at Q (see $[BL15, \text{Lemma 3.7}]$), and thus, Γ is a plane by Lemma 3.1. Because every pseudo blow-up is a plane, Σ is locally Reifenberg vanishing. Now, $v \in W^{2,2}(\mathbb{R}^2)$ (see $[Tor94]$). Hence, by Sobolev embedding, the normal vector of the interface $\hat{n} \in \text{BMO}(\partial\Omega)$ with small BMO norm. Therefore, Ω^\pm are vanishing chord-arc domains; see e.g. $[KT97, \text{BEG}+22]$.

3.2. Potential Theory for the Second Example. Following the approach of §2.2, we now prove that $\log h \in C(\partial\Omega)$.

As before, because $\partial\Omega$ is smooth outside of any neighborhood of the origin, $\log h \in C^\infty$ on $\partial\Omega \setminus B_r(0)$ for any $r > 0$. Thus, the key point is to show that $\log h$ is continuous at the origin.

Let $H^\pm = \{ \pm z > 0 \}$ denote the open upper and lower half-spaces. Let $r_i \downarrow 0$ be arbitrary, $K \gg 1$ and write

$$\{z = v(x, y)\} \cap (B_{Kr_i} \setminus B_{r_i/K}) = \Phi^{-1}(\{z = 0\} \cap (B_{Kr_i} \setminus B_{r_i/K})), $$

where $\Phi : \mathbb{R}^3 \to \mathbb{R}^3$ is the homeomorphism given by

$$\Phi(x, y, z) \equiv (x, y, z - v(x, y)).$$

(3.1) Set $\tilde{u}_i^\pm(p) = \frac{u^\pm \circ \Phi^{-1}(r_i p)}{\omega^\pm(B_{r_i}(0))}$, where u^\pm are the Green’s functions with poles at infinity for Ω^\pm, and the ω^\pm are the corresponding harmonic measures. In $H^\pm \cap B_K \setminus B_{1/K}$, \tilde{u}_i^\pm satisfies

$$-\text{div}(B(r_i p) \nabla \tilde{u}_i^\pm(p)) = 0, \quad B = (\det D\Phi)^{-1}(D\Phi)(D\Phi)^T.$$

Lemma 3.3. Let $\alpha \in (0, 1), K > 1$. The sequence \tilde{u}_i^\pm is pre-compact in $C^{1,\alpha}(H^\pm \cap B_K \setminus B_{1/K})$. Furthermore, there exists a subsequence along which $\tilde{u}_i^\pm \to \kappa z_\pm$ for some $\kappa > 0$ uniformly on compact subsets of \mathbb{R}^3. 2

2One could prove the weaker result that $\log h \in \text{VMO}(d\omega^\pm)$ using Remark 3.2 and standard properties of A_∞ weights.
Proof. We claim that \(\tilde{u}_i^{\pm} \) solves an elliptic PDE with Lipschitz continuous coefficients in \(B_K \setminus B_{1/K} \cap H^{\pm} \). Indeed,
\[
|B(r;p) - B(r;q)| \leq Cr_i |p-q| \| DB \|_{L^\infty(B_{K^i r_i} \setminus B_{K^i r_i})} \leq CK r_i \frac{\log |\log(r_i)|}{\log(r_i)} |p-q| \leq CK |p-q|,
\]
by the fundamental theorem of calculus.

Arguing as in Lemma 2.5 above, \(\tilde{u}_i^{\pm} \) are uniformly in \(C^{1,\alpha}(H^{\pm} \cap B_K \setminus B_{1/K}) \) for any \(\alpha \in (0,1) \) and thus have the desired pre-compactness. Passing to a subsequence and invoking a diagonal argument \(\tilde{u}_i^{\pm} \to \tilde{u}_i^{\pm} \) uniformly on compacta. Furthermore \(\tilde{u}_i^{\pm} > 0 \) and solves \(-\text{div}(B_\infty \nabla \tilde{u}_i^{\pm}) = 0 \) in \(H^{\pm} \) and has \(\tilde{u}_i^{\pm}(x,y,0) = 0 \). We see in (3.2) that \(B_\infty \) is constant (as \(\log |\log(r_i)|/\log(r_i) \downarrow 0 \)) and so \(-\text{div}(B_\infty \nabla z) = 0 \). Again, up to scalar multiplication there is a unique signed solution of \(-\text{div}(B_\infty \nabla z) = 0 \) in \(H^{\pm} \) which vanishes on \(\{ z = 0 \} \) and that has subexponential growth at infinity. Continuing to follow the argument for Lemma 2.5 we conclude that \(\tilde{u}_i^{\pm} = \kappa_{\pm} z^{\pm} \), with \(\kappa_{+} = \kappa_{-} \). (Remember that \(-\{ z > v(x,y) \} = \{ z < v(x,y) \} \), because \(v \) is odd.) \(\square \)

Finally, the proof of the continuity of \(\log h \) in this context follows exactly as in (2.2) except that we must be more careful estimating \(|D\Phi(r_i \tilde{Q}_i) \nabla \tilde{u}^{\pm}(\tilde{Q}_i)| \). (We do not know that \(D\Phi(r,p) \) converges to a rotation as \(r_i \downarrow 0 \).) However, observe that \(\tilde{u}^{\pm} \equiv 0 \) on \(\{ z = 0 \} \), so we know that \(\nabla \tilde{u}^{\pm}(\tilde{Q}_i) \) is parallel to \(e_3 \). Thus, an elementary computation shows that
\[
\frac{|D\Phi(r_i \tilde{Q}_i) \nabla \tilde{u}^{\pm}(\tilde{Q}_i)|}{|D\Phi(r_i \tilde{Q}_i) \nabla \tilde{u}^{\pm}(\tilde{Q}_i)|} = \frac{\nabla \tilde{u}^{\pm}(\tilde{Q}_i)}{|\nabla \tilde{u}^{\pm}(\tilde{Q}_i)|} = \frac{|\nabla \tilde{u}^{\pm}(\tilde{Q}_i)|}{|\nabla \tilde{u}^{\pm}(\tilde{Q}_i)|} = 1.
\]
The quantity on the right hand side converges to 1 by Lemma 3.3. As in (2.2) it follows that \(\log h \in C(\partial \Omega) \).

4. Open Questions and Further Directions

We end by presenting some natural open questions. Our first question concerns the size of the set of non-uniqueness:

Question 4.1. Let \(\Omega^{\pm} \subset \mathbb{R}^n \) be complementary NTA domains with \(\log h \in C(\partial \Omega) \). Is it possible for
\[
NU(\Omega) := \{ Q \in \partial \Omega : \text{there is no unique (geometric) blow-up at } Q \}
\]
to have Hausdorff dimension \(n - 1 \)?

We note that a local version of [TT22, Theorem 1.1] implies that the set \(\Gamma_1 \) of flat points in \(\partial \Omega \) is uniformly rectifiable. Thus \(\omega(NU) = 0 = \mathcal{H}^{n-1}(NU \cap \Gamma_1) \). Further, by the main result of [BET17], \(\dim \partial \Omega \setminus \Gamma_1 \leq n - 3 \). Thus, \(\mathcal{H}^{n-1}(NU) = 0 \). On the other hand, the example of [AK20] suggests that \(\mathcal{H}^{n-2}(NU \cap \Gamma_1) > 0 \) may be possible.

The example in [2] (twisted Szulkin) shows that it is possible for all singular points to have non-unique blowups and for the set of singular points with non-unique blowups to
have positive \mathcal{H}^{n-3}-measure. (When $n \geq 4$, simply take $\Omega^\pm \times \mathbb{R}^{n-3}$.) This is sharp by [BET17]. Thus, the natural analogue of Question 4.1 is answered in the affirmative.

Our second question asks what are the possible tangent cones at points of non-unique blow-up:

Question 4.2. Let $C \subset G(n, n-1)$ be a compact, connected subset of the Grassmannian. Does there exist a pair of complementary NTA domains Ω^\pm with $\log h \in C(\partial \Omega)$ and a point $Q \in \partial \Omega$ at which $\text{Tan}(\partial \Omega, Q) = C$?

In §3, we showed that the set $\text{Tan}(\partial \Omega, 0)$ of blow-ups of the interface of the graph domains at the origin consists of all planes $z = mx$ with “slope” $-\infty \leq m \leq +\infty$. For any closed interval $I \subset \mathbb{R}$, it is not hard to adapt the example so that the blow-ups at the origin are exactly the planes $z = mx$ with $m \in I$. It is known that for any closed set $\Sigma \subset \mathbb{R}^n$ and $Q \in \Sigma$, the set $\text{Tan}(\Sigma, Q)$ of all tangent sets of Σ at Q is closed and connected in the Attouch-Wets topology [BL15]; the statement and proof of this fact was originally motivated by similar statement for tangent measures [Pre87, KPT09].

We may also ask a version of Question 4.2 at points where the blow-ups are homogeneous of higher degree:

Question 4.3. Let $\mathcal{H}_{n,d}$ be the set of degree d homogeneous harmonic polynomials p in \mathbb{R}^n such that $\Omega_p^\pm = \{\pm p > 0\}$ are NTA domains. For each $n \geq 3$ and $d \geq 2$ and $C \subset \mathcal{H}_{n,d}$, which is compact and connected, does there exist complementary NTA domains Ω^\pm with $\log h \in C(\partial \Omega)$ and a point $Q \in \partial \Omega$ at which $\text{Tan}(\partial \Omega, Q) = \{\Sigma_p : p \in C\}$?

The condition that $\mathbb{R}^n \setminus \Sigma_p$ is a union of two NTA domains is necessary for Σ_p to arise as a blow-up of the interface of complementary NTA domains. The first step to answering Question 4.3 may be to study the “moduli space” of $\mathcal{H}_{n,d}$ when $d \geq 2$. For example:

Question 4.4. If p and q lie in the same connected component of $\mathcal{H}_{n,d}$, is it true that Σ_q is bi-Lipschitz equivalent to Σ_p?

References

[AK20] Mark Allen and Dennis Kriventsov, *A spiral interface with positive Alt-Caffarelli-Friedman limit at the origin*, Anal. PDE 13 (2020), no. 1, 201–214. MR 4047645

[AKN22] Mark Allen, Dennis Kriventsov, and Robin Neumayer, *Rectifiability and uniqueness of blow-ups for points with positive Alt-Caffarelli-Friedman limit*, preprint, arXiv:2210.03552, 2022.

[AMT20] Jonas Azzam, Mihalis Mourgoglou, and Xavier Tolsa, *A two-phase free boundary problem for harmonic measure and uniform rectifiability*, Trans. Amer. Math. Soc. 373 (2020), no. 6, 4359–4388. MR 4105526

[Bad11] Matthew Badger, *Harmonic polynomials and tangent measures of harmonic measure*, Rev. Mat. Iberoam. 27 (2011), no. 3, 841–870. MR 2895335

[Bad12] Matthew Badger, *Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited*, Math. Z. 270 (2012), no. 1-2, 241–262. MR 2875832

[Bad13] Matthew Badger, *Flat points in zero sets of harmonic polynomials and harmonic measure from two sides*, J. Lond. Math. Soc. (2) 87 (2013), no. 1, 111–137. MR 3022709
[BEG+22] S. Bortz, M. Engelstein, M. Goering, T. Toro, and Z. Zhao, *Two phase free boundary problem for Poisson kernels*, Indiana Univ. Math. J. 71 (2022), no. 1, 251–306. MR 4395597

[BET17] Matthew Badger, Max Engelstein, and Tatiana Toro, *Structure of sets which are well approximated by zero sets of harmonic polynomials*, Anal. PDE 10 (2017), no. 6, 1455–1495. MR 3678494

[BET20] Matthew Badger, Max Engelstein, and Tatiana Toro, *Regularity of the singular set in a two-phase problem for harmonic measure with Hölder data*, Rev. Mat. Iberoam. 36 (2020), no. 5, 1375–1408. MR 4161290

[BL15] Matthew Badger and Stephen Lewis, *Local set approximation: Mattila-Vuorinen type sets, Reifenberg type sets, and tangent sets*, Forum Math. Sigma 3 (2015), e24, 63. MR 3482273

[Eng16] Max Engelstein, *A two-phase free boundary problem for harmonic measure*, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 4, 859–905. MR 3552015

[GT01] David Gilbarg and Neil S. Trudinger, *Elliptic partial differential equations of second order*, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. MR 1814364

[Hei06] Juha Heinonen, *What is . . . a quasiconformal mapping?*, Notices Amer. Math. Soc. 53 (2006), no. 11, 1334–1335. MR 2268390

[JK82] David S. Jerison and Carlos E. Kenig, *Boundary behavior of harmonic functions in nontangentially accessible domains*, Adv. in Math. 46 (1982), no. 1, 80–147. MR 676988

[Kel12] O. D. Kellogg, *Harmonic functions and Green's integral*, Trans. Amer. Math. Soc. 13 (1912), no. 1, 109–132. MR 1500909

[KPT09] C. Kenig, D. Preiss, and T. Toro, *Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions*, J. Amer. Math. Soc. 22 (2009), no. 3, 771–796. MR 2505300

[KT97] Carlos E. Kenig and Tatiana Toro, *Harmonic measure on locally flat domains*, Duke Math. J. 87 (1997), no. 3, 509–551. MR 1446617

[KT99] Carlos E. Kenig and Tatiana Toro, *Free boundary regularity for harmonic measures and Poisson kernels*, Ann. of Math. (2) 150 (1999), no. 2, 369–454. MR 1726699

[KT03] Carlos E. Kenig and Tatiana Toro, *Poisson kernel characterization of Reifenberg flat chord arc domains*, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 3, 323–401. MR 1977823

[KT06] Carlos Kenig and Tatiana Toro, *Free boundary regularity below the continuous threshold: 2-phase problems*, J. Reine Angew. Math. 596 (2006), 1–44. MR 2254803

[Mat95] Pertti Mattila, *Geometry of sets and measures in Euclidean spaces*, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995, Fractals and rectifiability. MR 1333890

[Pre87] David Preiss, *Geometry of measures in R^n: distribution, rectifiability, and densities*, Ann. of Math. (2) 125 (1987), no. 3, 537–643. MR 890162

[PT20] Martí Prats and Xavier Tolsa, *The two-phase problem for harmonic measure in VMO*, Calc. Var. Partial Differential Equations 59 (2020), no. 3, Paper No. 102, 58. MR 4102355

[Szu79] Andrzej Szulkin, *An example concerning the topological character of the zero-set of a harmonic function*, Math. Scand. 43 (1978/79), no. 1, 60–62. MR 523825

[Tor94] Tatiana Toro, *Surfaces with generalized second fundamental form in L^2 are Lipschitz manifolds*, J. Differential Geom. 39 (1994), no. 1, 65–101. MR 1258915

[TT22] Xavier Tolsa and Tatiana Toro, *The two-phase problem for harmonic measure in VMO and the chord-arc condition*, preprint, arXiv:2209.14346, 2022.
Department of Mathematics, University of Connecticut, Storrs, CT 06269-3009
Email address: matthew.badger@uconn.edu

Department of Mathematics, University of Minnesota, Minneapolis, MN, 55455
Email address: mengelst@umn.edu

Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195-4350
Email address: toro@uw.edu