Molecular Basis of Selectivity of Nucleoside Triphosphate Incorporation Opposite O6-Benzyguanine by Sulfolobus solfataricus DNA Polymerase Dpo4

STeady-STATE AND PRE-STeady-STATE KINETICS AND X-RAY CRYSTALLOGRAPHY OF CORRECT AND INCORRECT PAIRING

Received for publication, January 23, 2007, and in revised form, March 2, 2007 Published, JBC Papers in Press, March 3, 2007, DOI 10.1074/jbc.M700656200

Robert L. Eoff1,2,†, Karen C. Angel1,5, Martin Egli1,5, and F. Peter Guengerich1,5

From the Departments of 1Biochemistry and 5Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146

Previous work has shown that Sulfolobus solfataricus DNA polymerase Dpo4-catalyzed bypass of O6-methylguanine (O6-MeG) proceeds largely in an accurate but inefficient manner with a “wobble” base pairing between C and O6-MeG (Eoff, R. L., Irimia, A., Egli, M., and Guengerich, F. P. (2007) J. Biol. Chem. 282, 1456–1467). We considered here the bulky lesion O6-benzyguanine (O6-BzG) in DNA and catalysis by Dpo4. Mass spectrometry analysis of polymerization products revealed that the enzyme bypasses and extends across from O6-BzG, with C the major product (~70%) and some T and A (~15% each) incorporated opposite the lesion. Steady-state kinetic parameters indicated that Dpo4 was 7-, 5-, and 27-fold more efficient at C incorporation opposite O6-BzG than T, A, or G, respectively. In transient state kinetic analysis, the catalytic efficiency was decreased 62-fold for C incorporation opposite O6-BzG relative to unmodified DNA. Crystal structures reveal wobble pairing between C and O6-BzG. Pseudo-Watson-Crick pairing was observed between T and O6-BzG. Two other structures illustrate a possible mechanism for the accommodation of a +1 frameshift in the Dpo4 active site. The overall effect of O6-BzG is to decrease the efficiency of bypass by roughly an order of magnitude in every case except correct bypass, where the effect is not as pronounced. By comparison, Dpo4 is more accurate but no more efficient than model replicative polymerases, such as bacteriophage T7 DNA polymerase and human immunodeficiency virus-1 reverse transcriptase in the polymerization past O6-MeG and O6-BzG.

Alkylation and arylation modifications are some of the most extensively studied forms of DNA damage (1), with O6-alkylation providing one of the more mutagenic examples of this type of lesion (2, 3). Alkylation agents have been used in warfare (i.e. mustard gas), and they also continue to be used in chemotherapeutic regimes (4–6). Endogenous sources of DNA alkylation can arise through nonenzymatic methylation by S-adenosylmethionine, although O6-alkylation is presumed to occur to only trace extents (7). Cellular repair of O6-alkylation can result from the activity of O6-alkylG DNA-alkyltransferases as well as mismatch repair pathways (8–10). If O6-alkylation (or almost any type of DNA damage for that matter) is encountered by the replisome, then replication can be impeded or stopped completely. The geometric constraints placed upon the active site of “high fidelity” polymerases often translate into an inability to effectively bypass certain types of DNA damage (11). The Y-family DNA polymerases, on the other hand, appear to be better adapted toward translesion synthesis across many types of modified DNA.

Many studies have focused on DNA polymerase bypass of O6-alkylG lesions, most concerning bypass of the mutagenic O6-MeG lesion (12–17). A recent study from our own group showed that the human replicative pol δ bypass of O6-alkylG (including MeG, BzG, and PobG) was inhibited in very much the same manner as several human Y-family polymerases (including pol η, α, and κ) (18). In general, relatively little preference was observed in steady-state reactions for either C or T insertion opposite O6-alkylG with any of the polymerases tested, consistent with what has been reported with other polymerases. One notable difference was observed between pol δ

1To whom correspondence should be addressed: Dept. of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Bldg., 23rd and Pierce Aves., Nashville, TN 37232-0146. Tel.: 615-322-2216; Fax: 615-322-3141; E-mail: f.guengerich@vanderbilt.edu.

2The abbreviations used are: alkylG, alkylguanine; MeG, methylguanine; BF, B. steaerothermophilus DNA polymerase I, large fragment; BSA, bovine serum albumin; BzG, benzylguanine; CID, collision-induced dissociation; dCTP, 5′-deoxycytidine 5′-O-(1-thiotriphosphate); DTT, dithiothreitol; HIV-1, human immunodeficiency virus-1; LC, liquid chromatography; MS, mass spectrometry; MS/MS, tandem mass spectrometry; PobG, 4-oxo-4-(3-pyridyl)butylguanine; pol, (DNA) polymerase; pol T7, bacteriophage pol T7 exonuclease-deficient; RT, reverse transcriptase; UDG, uracil DNA glycosylase; r.m.s., root mean square. The generic term “alkyl” is used to include both alkyl and aralkyl (Bz) groups for convenience.

\textsuperscript{This work was supported by National Institutes of Health Grants R01 ES03075 (to F. P. G.), F32 CA19776 (to R. L. E.), P30 ES000267 (to F. P. G. and M. E.), and P01 ES05355 (to M. E.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The atomic coordinates and structure factors (code 2jef, 2jeg, 2jei, and 2jej) have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/).

\textsuperscript{The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. S1–S8 and Tables S1–S6, which document the purity of the O6-BzG oligonucleotides that were used in this study. The supplemental data also contain a significant portion of the LC-MS/MS results used to analyze full-length extension by Dpo4.

1The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. S1–S8 and Tables S1–S6, which document the purity of the O6-BzG oligonucleotides that were used in this study. The supplemental data also contain a significant portion of the LC-MS/MS results used to analyze full-length extension by Dpo4.

1To whom correspondence should be addressed: Dept. of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Bldg., 23rd and Pierce Aves., Nashville, TN 37232-0146. Tel.: 615-322-2216; Fax: 615-322-3141; E-mail: f.guengerich@vanderbilt.edu.

1The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. S1–S8 and Tables S1–S6, which document the purity of the O6-BzG oligonucleotides that were used in this study. The supplemental data also contain a significant portion of the LC-MS/MS results used to analyze full-length extension by Dpo4.

1To whom correspondence should be addressed: Dept. of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Bldg., 23rd and Pierce Aves., Nashville, TN 37232-0146. Tel.: 615-322-2216; Fax: 615-322-3141; E-mail: f.guengerich@vanderbilt.edu.

1To whom correspondence should be addressed: Dept. of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Bldg., 23rd and Pierce Aves., Nashville, TN 37232-0146. Tel.: 615-322-2216; Fax: 615-322-3141; E-mail: f.guengerich@vanderbilt.edu.
DNA damage may be handled by the Y-family polymerases and a useful model concerning how many different types served as a readily accessible source of mechanistic information. Dpo4-catalyzed bypass of O6-BzG in DNA

Dpo4 (DNA polymerase IV) from S. solfataricus P2 has served as a readily accessible source of mechanistic information and a useful model concerning how many different types of DNA damage may be handled by the Y-family polymerases (19–24). Recent work from our group has focused on in vitro Dpo4-catalyzed bypass of O6-MeG modified DNA by combining transient-state kinetic and mass spectral analyses with x-ray crystallography (25). As in the case of yeast pol η (12), the major product for Dpo4 was correct incorporation of C opposite O6-MeG, followed by unperturbed extension of the C:O6-MeG pair. A crystal structure with Dpo4 revealed that a “wobble” base pair occurs between C and O6-MeG in the polymerase active site (Fig. 1A). Dpo4-catalyzed incorporation of T and A opposite O6-MeG constituted minor products observed in the mass spectral analysis (~20% and 10%, respectively). Steady-state kinetic parameters revealed that a much higher $K_{m,dTTP}$ was the dominant factor affecting the ability of Dpo4 to insert a T opposite O6-MeG. A crystal structure was solved for a complex representing next-base incorporation following insertion of T opposite O6-MeG, but the primer T was found to be largely disordered and needed to be placed in three alternate conformations, including a pseudo-Watson-Crick pair (Fig. 1B), in order to account for the electron density observed in that region (25).

In an effort to better understand the features of greatest relevance to Y-family polymerase bypass of O6-adducted guanine, we analyzed Dpo4-catalyzed bypass of O6-BzG by combining transient-state kinetics and mass spectrometry with x-ray crystallographic studies. Benzylation of DNA is known to occur during bypass when considering the differences observed between human pol δ and pol η during bypass of bulky O6-alkyI lesions (18).

EXPERIMENTAL PROCEDURES

Materials—Dpo4 was expressed in Escherichia coli and purified to electrophoretic homogeneity as described previously (29). All unlabeled dNTPs were obtained from Amersham Biosciences, $S_{dCTP}O_{dPS}$ was purchased from Biolog Life Science Institute (Bremen, Germany), and [γ-32P]ATP was purchased from PerkinElmer Life Sciences. All unmodified oligonucleotides used in this work were synthesized by Midland Certified Reagent Co. (Midland, TX) and purified using high performance liquid chromatography by the manufacturer, with analysis by matrix-assisted laser desorption time-of-flight MS. Two template DNA sequences were used: 5′-TCATXGAATCCTTCCCCC-3′ (template 1) and 5′-TCACXGAATCCTTCCCCC-3′ (template 2), where X represents O6-BzG. The O6-BzG-modified oligonucleotides were prepared using a modification of the procedure described elsewhere (16, 18) and purified by denaturing polyacrylamide gel electrophoresis. The identity of the O6-BzG oligonucleotides was confirmed by matrix-assisted laser desorption time-of-flight MS, and the purity was determined by capillary gel electrophoresis (supplemental Figs. S1 and S2). The 13-base primer sequence used in the kinetic analyses and the O6-BzG:dGTP structure was 5′-GGGGGAAGGATTCC-3′. The 13-base primer sequence used in the mass spectrometry analysis of full-length extension products was 5′-GGGGGAAGGATTCC-3′. The 14-base primer sequences used in the indicated kinetic assays and the crystal structures was 5′-GGGGGAAGGATTCC-3′ (note that for the O6-BzG:dGdc-1 and O6-BzG:dCdC-1 structures, the primer was dideoxy-terminated), and 5′-GGGGGAAGGATTCC-3′ was used for the O6-BzG:T structure. All of the crystal structures used the template 2 sequence with cytosine located on the 5′-side of the O6-BzG modification.

Full-length Extension Assay—A 32P-labeled primer was annealed to either an unmodified or adducted template oligonucleotide by heating a 1:1 solution of oligonucleotide to 95 °C for 5 min and then slow cooling to room temperature. The primer was then incubated with Dpo4 and extended in the presence of the indicated dNTP(s). Each reaction was initiated by adding dNTP-Mg2+ (250 μM each dNTP and 5 mM MgCl₂) solution to a preincubated Dpo4-DNA complex (100 nM Dpo4 and 200 nM DNA). The reaction was carried out at 37 °C in 50 mM Tris-HCl (pH 7.4), 50 mM NaCl, 5 mM DTT, 100 μM μl⁻¹ BSA, and 35% (v/v) glycerol. At the indicated time, 5-μl aliquots...
were quenched with 50 μl of 500 mM EDTA (pH 9.0). The samples were then mixed with 100 μl of a 95% formamide, 20 mM EDTA solution and were separated on a 20% polyacrylamide (w/v)/7 M urea gel. Products were visualized and quantified using a phosphor imager screen and Quantity One²™ software, respectively (Bio-Rad). Formation of an 18-base extension product from a 13-base primer was quantified by fitting the data to Equation 1,

\[f_{18\text{-mer}}(t) = A \left(1 - \sum_{r=1}^{n} \frac{((k_{\text{obs}})^{t})^{r-1}}{(r-1)!} e^{-k_{\text{cat}}t} \right) + k_{2}t \quad (\text{Eq. 1}) \]

where \(A \) represents the amount of product formed during the first binding event between Dpo4 and DNA, \(k_{\text{obs}} \) is an observed rate constant defining nucleotide incorporation, \(n \) is the number of incorporation events required to observe product formation, \(k_{2} \) is the steady-state rate of nucleotide incorporation, and \(t \) is time. For all kinetic assays, the experiments were performed once, and all statistical values given indicate S.E. from the fit of the data.

Steady-state Kinetics—Dpo4 catalyzed single nucleotide incorporation was measured over a range of dNTP concentrations. All reactions were carried out at 37 °C in 50 mM Tris-HCl (pH 7.4) buffer containing 50 mM NaCl, 1.0 mM DTT, 50 μg μl⁻¹ BSA, and 5% glycerol (v/v). Dpo4 (10 nm) was preincubated with primer-template DNA (100 nm), and the reaction was initiated by adding dNTP-Mg²⁺. Aliquots were quenched with 500 mM EDTA (pH 9.0) after varying incubation times. Substrate and product DNA were separated by electrophoresis on a 20% polyacrylamide (w/v)/7 M urea gel. The products were then visualized using a phosphor imager and quantitated using Quantity One²™ software (Bio-Rad). The initial portion of the velocity curve was fit to a linear equation in the program GraphPad Prism (GraphPad, San Diego, CA). The resulting velocity was plotted as a function of dNTP concentration and then fit to a hyperbola, correcting for enzyme concentration, to obtain estimates of \(k_{\text{cat}} \) and \(K_{\text{m,dNTP}} \).

Transient-state Kinetics—All pre-steady-state experiments were performed using a KinTek RQF-3 model chemical quench-flow apparatus (KinTek Corp., Austin, TX) with 50 mM Tris-HCl (pH 7.4) buffer in the drive syringes. All quench flow experiments were carried out at 37 °C in a buffer containing 50 mM Tris-HCl (pH 7.4), 50 mM NaCl, 5 mM DTT, 100 μg μl⁻¹ BSA, and 35% (v/v) glycerol. Polymerase catalysis was stopped via the addition of 500 mM EDTA (pH 9.0). Where indicated, competitor primer-template DNA (1 μM 13/18-mer) was included in the right syringe as a trap for protein, thereby creating single-turnover conditions even under enzyme limiting conditions. Substrate and product DNA were separated by electrophoresis on a 20% polyacrylamide (w/v)/7 M urea gel. The products were then visualized using a phosphor imager and quantitated using Quantity One²™ software. Results obtained under single-turnover conditions were fit to Equation 2,

\[y = A(1 - e^{-k_{\text{cat}}t}) + k_{2}t \quad (\text{Eq. 2}) \]

where \(A \) represents the product formed in the first binding event, \(k_{\text{cat}} \) is a rate constant defining polymerization under the conditions used for the experiment being analyzed, and \(t \) is time. Results obtained under conditions that allowed a second round of Dpo4-DNA binding and polymerase action were fit to Equation 3,

\[y = A(1 - e^{-k_{\text{cat}}t}) + k_{3}t \quad (\text{Eq. 3}) \]

where \(k_{\text{cat}} \) represents a steady-state velocity of nucleotide incorporation.

LC-MS/MS Analysis of Oligonucleotide Products from Dpo4 Reactions—Dpo4 (5 μm) was preincubated with primer-template DNA (10 μm), and the reaction was initiated by the addition of dNTP (1 mM each) and MgCl₂ (5 mM) for a final volume of 100 μl. Dpo4 catalysis was allowed to proceed at 37 °C for 4 h in 50 mM Tris-HCl (pH 7.8, at 25 °C) buffer containing 50 mM NaCl, 1 mM DTT, 50 μg μl⁻¹ BSA, and 5% glycerol (v/v). The reaction was terminated by extraction of the remaining dNTPs by using a size exclusion chromatography column (Bio-Spin 6 chromatography column) (Bio-Rad). Concentrated stocks of Tris-HCl, DTT, and EDTA were added to restore the concentrations to 50, 5, and 1 mM, respectively. Next, *E. coli* uracil DNA glycosylase (20 units; Sigma) was added, and the solution was incubated at 37 °C for 6 h to hydrolyze the uracil residue on the extended primer (29). The reaction mixture was then heated at 95 °C for 1 h in the presence of 0.25 m piperidine, followed by removal of the solvent by centrifugation under vacuum. The dried sample was resuspended in 100 μl of H₂O for MS analysis.

**LC-MS/MS analysis was performed on a Waters Aquity ultraperformance liquid chromatography system (Waters, Milford, MA) connected to a Finnigan LTQ mass spectrometer (ThermoElectron Corp., San Jose, CA), operating in the electrospray ionization negative ion mode. An Ultraperformance liquid chromatography BEH octadecylsiline (C₁₈) column (1.7 μm, 1.0 × 100 mm) was used with the following LC conditions. Buffer A contained 10 mM NH₄CH₃CO₂ plus 2% CH₃CN (v/v), and buffer B contained 10 mM NH₄CH₃CO₂ plus 95% CH₃CN (v/v). The following gradient program was used with a flow rate of 150 μl min⁻¹: 0–3 min, linear gradient from 100% A to 97% A, 3% B (v/v); 3–4.5 min, linear gradient to 80% A, 20% B (v/v); 4–5.5 min, linear gradient to 100% B; 5–5.5 min, hold at 100% B; 5.5–6.5 min, linear gradient to 100% A; 6.5–9.5 min, hold at 100% A. The temperature of the column was maintained at 50 °C. Samples were injected with an autosampler system. Electrospray ionization conditions were as follows: source voltage 4 kV, source current 100 μA, auxiliary gas flow rate setting 20, sweep gas flow rate setting 5, sheath gas flow setting 34, capillary voltage −49 V, capillary temperature 350 °C, tube lens voltage −90 V. MS/MS conditions were as follows: normalized collision energy 35%, activation Q 0.250, activation time 30 ms. The doubly (negatively) charged species were generally used for CID analysis. The calculations of the CID fragmentations of oligonucleotide sequences were done using a program linked to the Mass Spectrometry Group of Medicinal Chemistry at the University of Utah (available on the World Wide Web at www.medlib.med.utah.edu/massspec). The nomenclature used in supplemental Tables S1–S6 has been described previously (30).
Dpo4-catalyzed Bypass of O6-BzG in DNA

Crystallization of Dpo4-DNA Complexes—Dpo4 was concentrated to \(~300–550~\mu M\) (\(~12–22~mg~mL-1\)) using a spin concentrator with a \(10^4~M_\text{r}\) cut-off filter (Amicon) in 50 mM Tris-HCl (pH 7.4 at 25°C) buffer containing 200 mM NaCl, 5 mM β-mercaptoethanol, and 10% glycerol (v/v). Dpo4 was then mixed with DNA (1:1.2 molar ratio), incubated at 37°C for 10 min, centrifuged at \(10^4~rpm\) for 5 min (Centrifuge 5415 C; Eppendorf) to remove insoluble material, and then placed on ice for 1 h prior to incubation with 1 mM d(N)TP and 5 mM CaCl\(_2\). Calcium was used as a cofactor during crystallization, because magnesium (which facilitates polymerization during crystallization) failed to provide diffraction quality crystals under the conditions used here. Crystals were grown using the sitting drop vapor diffusion method by mixing 1 μl of complex with 1 μl of solution containing 5–10% polyethylene glycol 3350 (w/v) and 100 mM Ca(OAc)\(_2\), and equilibrated against a well solution containing 25 mM Tris-HCl (pH 7.4 at 25°C) buffer, 5–10% polyethylene glycol 3350 (w/v), 100 mM Ca(OAc)\(_2\), and 2.5% glycerol (v/v). Crystals were soaked in mother liquor containing an additional 25% polyethylene glycol 3350 (w/v) and 15% ethylene glycol (v/v) and then swiped through paratone-N (Hampton Research, Aliso Viejo, CA) and flash frozen in a stream of liquid nitrogen.

X-ray Diffraction, Data Collection, and Structure Refinement—Diffraction data sets for Dpo4 ternary O6-BzG:ddC-1, O6-BzG:ddC-2, and O6-BzG:G complexes were collected at 110 K using a synchrotron radiation wavelength of 1.0 Å on the ID-22 beamline at the Advanced Photon Source (Argonne, IL). Diffraction data for the Dpo4 ternary O6-BzG:T complex was collected at 110 K using a synchrotron radiation wavelength of 0.98 Å on the X25 beamline at the National Synchrotron Light Source (Brookhaven, NY). Indexing and scaling were performed using XDS (31) or HKL2000 (32). All four structures indexed to the same space group and had very similar unit cell parameters.

Structure Determination and Refinement—The refined O6-MeG:T model (25) was used as a starting model for the O6-BzG structures removing the 14th base in the primer strand and replacing the O6-MeG residue with G for the initial molecular replacement (substituting O6-BzG in later rounds of refinement). In each instance, several rounds of rigid body refinement of the diffraction data, with gradually increasing resolution, optimized the initial positions of the models. The model was refined further using the CNS Solve package (version 1.1) (33), including simulated annealing, gradient minimization, individual occupancy, and refinement of individual isotropic temperature factors. Manual model building was performed using TURBO.\(^3\)

RESULTS

Extension of Oligonucleotide Primers by Dpo4 in the Presence of All Four dNTPs—As a general measure of how Dpo4 catalysis is affected by O6-BzG, a time course was performed under enzyme limiting conditions (Fig. 2). An observed rate constant defining five incorporation events can be measured by follow-

\(^3\) C. Cambillau and A. Roussel (1997) Turbo Frodo, Version OpenGL.1, Université Aix-Marseille II, Marseille, France.

FIGURE 2. Dpo4-catalyzed incorporation opposite and extension past O6-MeG-adducted DNA. A, Dpo4-catalyzed (100 nM) full-length extension of primer-template DNA (200 nM) containing O6-BzG. The lengths of the oligonucleotide products are indicated on the right. B, plot of full-length product formation as a function of time with O6-BzG (\(\bullet\)). Results were fit to Equation 1 to yield the following kinetic parameters: \(A = 58 \pm 6~\text{nm}, k_{\text{cat}} = 0.051 \pm 0.003~s^{-1}, k_2 = 0.052 \pm 0.013~\text{nm}~s^{-1} (k_2/\text{Dpo4} = 5.2 \times 10^{-4}~s^{-1})\).
LC-MS/MS approach described previously (29). Two template sequences containing the modification were used in order to address potential sequence effects. Two major peaks were observed for template 1 and corresponded to ions at m/z 1079.0 and 718.8, which were −2 and −3 ions, respectively (Fig. 3B). Selected ion traces are shown in Fig. 3C, and CID analysis of the

TABLE 1

Oligomer pair	Template base	dNTP	k_{cat}	$K_{m,dNTP}$	ΔEfficiency relative to dCTP-G^a
13-mer	-G-	dCTP	0.58 ± 0.01^b	3.0 ± 0.2^b	4,900-fold less
18-mer-1	-O₆-BzG-	dCTP	0.055 ± 0.011	1400 ± 600	35,000-fold less
13-mer	-O₆-BzG-	dTTP	0.0066 ± 0.0002	1200 ± 100	23,000-fold less
18-mer-1	-O₆-BzG-	dATP	0.0025 ± 0.0003	300 ± 120	138,000-fold less
13-mer	-O₆-BzG-	dGTP	0.00083 ± 0.00007	600 ± 160	

^a Change in efficiency describes the ratio of (k_{cat}/$K_{m,dNTP}$)_{dCTP:G}/(k_{cat}/$K_{m,dNTP}$)_{dNTP:O₆-BzG}.

^b Data from Ref. 25.

FIGURE 3. Identification of Dpo4-catalyzed full-length extension products by LC-MS/MS. A, total ion current trace of products derived from extension of 13/18-mer DNA containing O₆-BzG template 1. B, electrospray ionization mass spectrum of the oligonucleotide peaks that elute at 3.4 min. C, total ion current trace of ion m/z 1079. D, CID mass spectrum of ion m/z 1079. G, O₆-BzG. This product contained C inserted opposite O₆-BzG and extended in an error-free manner.
Dpo4-catalyzed Bypass of O6-BzG in DNA

m/z 1079 ion resulted in the fragmentation pattern shown in Fig. 3D. The major ions in the fragmentation pattern are consistent with the sequence 5′-pTCCATGA-3′, which corresponds to the insertion of C opposite O6-BzG and accurate full-length extension of the primer (supplemental Table S1).

A second pair of ions was detected with template 1 at m/z 1086.2 and 723.8, both of which are consistent with the −2 and −3 charge states of a parent ion representing T insertion opposite template 1 O6-BzG followed by accurate full-length extension. The third pair of ions detected at 1090.6 and 726.7 was consistent with the −2 and −3 charge states of a parent ion representing A insertion opposite template 1 O6-BzG, followed by accurate full-length extension. CID provided a fragmentation pattern consistent with both minor product sequence assignments (supplemental Figs. S4 and S5 and Tables S2 and S3). Comparison of the selected ion counts for ions corresponding to all three products indicates that correct incorporation of C opposite O6-BzG template 1 comprises roughly 70%, with T (∼16%) and A (∼14%) incorporation accounting for the remaining portion of products observed in the reaction mixture. This is consistent with what is observed in the steady-state parameters (Table 1). LC-MS/MS analysis of template 2 (differing only at the base 5′ to the O6-BzG lesion) revealed a very similar product spectrum: ∼70% C, ∼14% T, and ∼16% A incorporation (supplemental Figs. S6–S8 and Tables S4–S6).

Transient-state Kinetic Analysis for Dpo4 Bypass of O6-BzG—

Pre-steady-state experiments were performed under enzyme-limiting conditions (Dpo4/DNA = 1:2). The appearance of a rapid “burst” in product formation can provide a measure of the amount of active enzyme present in solution as well as an initial measure of the nucleotide incorporation rate opposite O6-BzG by Dpo4. Based on previous work with unmodified DNA, essentially 100% of the Dpo4 is active under the experimental conditions used here. It should be noted that the same Dpo4 stock solution was used here as in the work with O6-MeG (25). The presence of O6-BzG in the template strand resulted in a −9% burst of product formation under the experimental conditions used here (Fig. 4A). The kobs value is ∼4-fold slower for incorporation opposite O6-BzG compared with a previously determined value for undamaged DNA at the same concentration of dCTP (25).

Previously measured sulfur elemental (“thio”) effects for unmodified G were ∼1.9 (our group (25)) and ∼1.4 from the Suo laboratory (19). For incorporation opposite O6-BzG-modified DNA, substitution of dCTP with S2-p-dCTP at a concentration of 2.5 nM resulted in a −14% decrease in product formation (Fig. 4A), suggesting that phosphoryl transfer by Dpo4 is strongly inhibited in the presence of O6-BzG-modified template DNA. Active site titration experiments were performed in order to assess the relative stability of Dpo4-O6-BzG complexes when the enzyme is required to proceed through the phosphoryl transfer step (Fig. 4B). The apparent Kf,DNA value for O6-BzG is similar to both unmodified and O6-MeG-modified DNA, indicating that O6-BzG has no effect upon the intrinsic stability of the ternary complex (25).

To further assess the Dpo4 mechanism of O6-BzG bypass, the concentration of dCTP in the reaction mixture was varied in order to measure the maximum forward rate constant describing polymerization, kpol, and the equilibrium dissociation constant, Kp,dCTP, which describes dCTP binding affinity of the Dpo4-DNA complex (Fig. 5A). Dpo4-catalyzed incorporation of dCTP opposite O6-BzG-modified DNA proceeded at an ∼6-fold slower rate relative to undamaged template, as evidenced by a decreased value of kpol (Fig. 5B and Table 2). Strikingly, the apparent nucleotide binding affinity is ∼11-fold less than that of unmodified G (i.e. Kp,dCTP is roughly 11-fold higher for O6-BzG). The overall catalytic efficiency (relative to dCTP incorporation opposite O6-BzG) was decreased 62-fold when Dpo4 inserts dCTP opposite O6-BzG. Pre-steady-state kinetic analysis of dTTP misincorporation could not be determined due to an absence of any measurable amount of product formed in the first binding event under all conditions tested (Fig. 5C).

Perturbation of Incorporation Beyond an O6-BzG:C Pair—In order to address the catalytic cycle that occurs immediately following incorporation opposite O6-BzG, two synthetic 14-mer primers were used, one containing C paired opposite O6-BzG and a second containing T paired opposite O6-BzG.
The maximum forward rate for correct incorporation of dATP was decreased ~1.5-fold relative to unmodified G and O6-MeG when C was paired opposite O6-BzG (Table 2). The next-base extension of the mispaired T:O6-BzG proceeded at an ~2-fold slower forward rate than extension of the correct pairing of C opposite O6-BzG (Table 2). The $K_{D, dCTP}$ was higher in both instances than observed for unmodified G. Comparison of the efficiency of next base extension revealed that extension of a correct C:O6-BzG pairing was decreased 7-fold relative to unmodified G, whereas the efficiency for next base extension of a T:O6-MeG mispair was decreased ~24-fold. The overall trend with O6-BzG was similar to what was observed with O6-MeG, but the level of inhibition at each step is greater for O6-BzG.

Dpo4-catalyzed incorporation opposite the O6-BzG lesion was impeded regardless of the nucleotide being inserted, but misincorporation events were clearly inhibited to a greater degree (Table 1). Similar to results with O6-MeG, the rate of phosphoryl transfer appeared to be inhibited by O6-BzG.

Postinsertion Ternary Complex for “Correct” Bypass of O6-BzG — Crystallization experiments were performed for all potential pairings opposite O6-BzG. Crystal growth was improved when 14-mer primers were used, and the next correct dNTP was included in the complex. All crystals were obtained using Ca2+ as the prosthetic metal ion. A dideoxy-terminated primer containing ddC at position 14 was used because of elongation observed during crystallization with a normal 14-mer primer (O6-BzG:G structure described below). Two data sets obtained from two different crystals that were grown under identical experimental conditions (different drops) provided two different conformations for pddC-14 (O6-BzG:ddC-1 and O6-BzG:ddC-2) (Table 3). The first structure (O6-BzG:ddC-1) revealed a “wobble” pairing between ddC and O6-BzG, essentially identical to what was observed previously with O6-MeG (Fig. 6A) (25). Three calcium ions are coordinated in the O6-BzG:ddC-1 structure: two in the active site for catalysis and dNTP coordination and a third coordinated by the thumb domain of Dpo4 and the phosphate group linking the 12th and 13th primer residues. The second structure moves the 14th base into a noninstructional conformation that places it in the growing minor groove (Fig. 7A). Superimposition of the O6-BzG:14ddC1 and O6-BzG:14ddC2 structures (r.m.s. deviation = 0.344) reveals almost no changes between the complexes outside of that observed

![Image](https://example.com/image.png)

FIGURE 5. Determination of k_{pol} and $K_{D,dCTP}$ for Dpo4-catalyzed incorporation of dCTP opposite O6-BzG. A, measurement of Dpo4-catalyzed incorporation opposite O6-BzG at varying concentrations of dCTP. B, the observed rate of nucleotide incorporation was plotted as a function of dCTP concentration and fit to a quadratic equation to yield kinetic parameters (Table 2). C, comparison of Dpo4-catalyzed incorporation of 2.5 mM dCTP (●) and dTTP (○).

TABLE 2
Pre-steady-state kinetic parameters for 1-base incorporation by Dpo4

Oligomer pair	Template base	dNTP	k_{pol}	$K_{D,dNTP}$	$k_{pol}/K_{D,dNTP}$
13-mer	-G-	dCTP	0.78 ± 0.08*	114 ± 54*	6.8*
18-mer-1	-G-	dCTP	0.14 ± 0.01	1300 ± 270	0.11
13-mer	-O6-BzG-	dCTP	ND*	ND	ND
18-mer-1	-O6-BzG-	dCTP	0.50 ± 0.03	530 ± 80	0.94
14-mer	-C-	dATP	0.25 ± 0.01	880 ± 480	0.28

* Data from Ref. 25.

* ND, not determined due to lack of sufficient product formation in the first binding event.
TABLE 3
Crystal data and refinement parameters

Parameter	O°_{-}-BzG:ddC-1	O°_{-}-BzG:ddC-2	O°_{-}-BzG:T	O°_{-}-BzG:G
X-ray source	APS	APS	NSLS	APS
Beamline	ID5	ID22	X25	ID22
Detector	MAR CCD	MAR CCD	Quantum CCD	MAR CCD
Wavelength (Å)	0.92	0.99	0.98	0.99
Temperature (K)	110	110	110	110
No. of crystals	1	1	1	1
Space group	$P2_1/2_1/2$	$P2_1/2_1/2$	$P2_1/2_1/2$	$P2_1/2_1/2$
Unit cell (a, b, c) (Å)	94.0,102.7,52.9	93.1,103.2,52.6	94.5,103.7,52.6	95.2,103.8,52.7
Resolution range (Å)	29.0-2.17	46.5-2.38	29.1-2.39	47.0-1.86
Highest resolution shell*	(2.24-2.17)	(2.52-2.38)	(2.49-2.39)	1.93-1.86
No. of measurements	198455	145389	306992	330479
No. of unique reflections	27743 (2695)	20833 (3081)	20842 (3021)	44116 (2209)
Redundancy	7.2 (7.2)	7.0 (6.5)	14.7 (7.5)	7.5 (3.8)
Completeness (%)	99.7 (94.7)	98.7 (93.2)	99.0 (95.5)	98.5 (87.9)
R_{merge}^a (%)	6.4	9.7	7.6	6.7
Signal/noise ($I/σI$)	19.4 (4.5)	25.5 (2.2)	42.0 (2.2)	38.3 (1.7)
Solvent content (%)	53.1	50.5	51.0	54.4
Model composition				
No. of amino acid residues	342	342	343	341
No. of water molecules	185	104	125	171
No. of Ca$^{2+}$ ions	3	4	4	4
No. of template nucleotides	16	17	16	18
No. of primer nucleotides	14	14	14	15
No. of dGTP	1	1	1	1
R_f (%)	23.0	22.6	23.6	23.8
R_{free}^b (%)	26.7	26.3	27.1	26.5
Estimated coordinate error (Å)				
From Luzatti plot	0.30	0.33	0.36	0.27
From Luzatti plot (c-v)c	0.36	0.38	0.44	0.31
From αA plot	0.27	0.30	0.34	0.23
From αA plot (c-v)d	0.34	0.33	0.43	0.22
Temperature factors				
From Wilson plot ($Å^2$)	42.4	52.2	54.9	32.9
Mean isotropic ($Å^2$)	39.5	48.5	48.4	37.6
r.m.s. deviation in temperature factors				
Bonded main chain atoms ($Å^2$)	1.38	1.37	1.42	1.36
Bonded side chain atoms ($Å^2$)	2.12	2.18	2.16	2.01
r.m.s. S.D. from ideal values				
Bond lengths ($Å$)	0.008	0.007	0.007	0.006
Bond angles (degrees)	1.6	1.4	1.5	1.3
Dihedral angles (degrees)	22.2	22.2	23.8	22.1
Improper angles (degrees)	1.79	2.86	3.39	2.93

*a Values in parentheses correspond to the highest resolution shells.

*b $R_{merge} = Σ_hφ|F_{obs,h}|^2 - Σ_hφ|F_{calc,h}|^2 / Σ_hφ|F_{calc,h}|^2$ where the outer sum (ddk) is taken over the unique reflections.

*c $R_{merge} = Σ_hφ|F_{calc,j}| - Σ_hφ|F_{calc,j}| / Σ_hφ|F_{calc,j}|$ where $|F_{calc,j}|$ and $|F_{calc,j}|$ are the observed and calculated structure factors, respectively.

*d R_{free} idem, for the set of reflections (5% of the total) omitted from the refinement process.

*e Cross-validation.

with the 14th residue in the primer strand. The only other notable difference between these two structures is the addition of a fourth calcium ion to the active site of Dpo4. The fourth calcium ion is coordinated between the α-phosphate group of the incoming dGTP and the phosphate linking p13C with p14ddC-2 (Fig. 7A).

Postinsertion Ternary Complex for “Incorrect” Bypass of O°_{-}-BzG—Crystallization with a 14-mer primer containing thymidine at the 3’ terminus (pT14) was performed in the presence of dGTP and calcium. The resulting crystals diffracted to 2.4 Å resolution. Following molecular replacement without a 13-residue primer DNA in the model, difference maps revealed substantial positive density regions that corresponded to the phosphate group for the 14th nucleotide and some density corresponding to the pyrimidine ring of thymidine. However, much of the density for pT14 near the glycosidic bond and in the ribose is absent, indicating a high level of disorder for the thymidine. A disordered pT14 is quite similar to what was observed previously with Dpo4 in a ternary complex with O°_{-}-MeG-modified DNA, but in the O°_{-}-BzG:T structure the density is convincing enough to limit pT14 to one conformation, namely a pseudo-Watson-Crick geometry (Fig. 6B). A fourth calcium ion is coordinated between the α-phosphate group of the incoming dGTP and the phosphate linking p13C with p14T, similar to what was observed with O°_{-}-BzG:14ddC2 and O°_{-}-BzG:G.

Postinsertion Ternary Complex Containing +1 Frameshift—Initial attempts to obtain crystals containing the O°_{-}-BzG:C pair...
gave crystals that diffracted to 1.86 Å with excellent completeness and Rmerge values. Following molecular replacement, it was apparent that an additional base had been added to the 14-dC primer terminus. During the crystallization process (in the presence of calcium) Dpo4 had incorporated a single G into the primer, generating a 15-mer that terminated with dG. The p14C residue was placed in a noninstructional orientation similar to the O6-BzG:ddC-2 structure, and the newly inserted pG15 remained in the anti conformation (Fig. 7B). Three hydrogen bonds are formed between pG15 and O6-BzG: one between the N3 atom of pG15 and the N2 exocyclic amine of O6-BzG and a second bifurcated pairing between the N2 exocyclic amine of pG15 and the N1 and O6 atoms of O6-BzG (Fig. 6C). The incoming dGTP remains coordinated by two calcium ions in the Dpo4 active site. A fourth calcium ion is coordinated between the /H9251-phosphate group of the incoming dGTP and the phosphate linking p14C with p15G and also with the O6 atom of pG15.

DISCUSSION

Covalent modification of DNA, excluding that involved in regulatory or epigenetic purposes, can result in varying degrees of cellular dysfunction dependent upon the amount and the type of damage incurred (1). Studying the mechanism(s) of...
translesion synthesis utilized by DNA polymerases can provide information regarding how mutations are formed and what factors determine the level of mutagenesis observed in the cell. The effect of lesion size upon Dpo4 catalysis was probed by studying bypass of O6-BzG. The results obtained herein expand and extend previous work with O6-MeG, a known mutagenic lesion.

The kinetic analyses reported here are consistent with the hypothesis that increasing the size of the O6-alkylG adducts decreases the efficiency of Dpo4 catalysis opposite the lesion, but the steady-state fidelity of bypass was increased slightly compared with the smaller O6-MeG (25). Under steady-state conditions, Dpo4-catalyzed insertion of dCTP opposite O6-BzG was inhibited 5-fold relative to bypass of O6-MeG. In the pre-steady state, O6-BzG inhibition was 4-fold less efficient than Dpo4-catalyzed bypass of O6-MeG. However, it is important to remember that “correct” bypass of both O6-MeG and O6-BzG is inhibited 14- and 62-fold relative to Dpo4-catalyzed insertion of dCTP opposite unmodified G (comparing pre-steady-state data). Thus, Dpo4 is not very efficient at bypass of either O6-MeG or O6-BzG. Generally speaking, the steady-state results for misincorporation events (T, A, or G incorporation) reflect an effect of the added bulk of the benzyl group that but the steady-state fidelity of bypass was increased slightly compared with the smaller O6-MeG, and the LC-MS analyses lend support to the trends observed in the kinetic parameters (C > T ~ A >> G).

The structural analysis of Dpo4-catalyzed bypass of O6-BzG is similar to the results reported for O6-MeG. The mode of “correct” bypass also occurs through a O6-BzG:ddC wobble pair, reinforcing previous conclusions about pairing of an O6-alkylG adduct with polymerase, although a second “noninstructional” conformation was observed that moves ddC down from the O6 atom perpendicular to the purine ring system (Fig. 7A). The noninstructional conformation observed in the O6-BzG:ddC-2 structure may reflect an effect of the added bulk of the benzyl group that destabilizes the wobble pairing between O6-BzG and C. Superimposition of the O6-BzG:ddC-1 and O6-MeG:C structures (r.m.s. deviation = 0.351) shows that the increased size of the benzyl adduct is accommodated in the cleft between the thumb and little finger domains with essentially no alterations in amino acid side chain conformations or protein-DNA contacts. The methylene group in the O6-BzG:14ddC1 structure extends out from the O6 atom perpendicular to the purine ring system of the O6-BzG residue, as opposed to the proximal orientation observed with O6-MeG:C.

The O6-BzG:T pair is found in a pseudo-Watson-Crick orientation that provides two hydrogen bonding partners between the bases, but it also places the two exocyclic oxygen atoms in close proximity to one another (3.1 Å apart). The benzyl group is placed in a proximal position relative to the purine ring system, and the added repulsion between the O6 atom of O6-BzG and the O4 atom of T probably plays a role in the disorder that is observed near pT14, as well as the resultant favoring of dCTP insertion during Dpo4-catalyzed bypass of O6-BzG. Alignment of the O6-BzG:T structure with the O6-BzG:14ddC1 structure shows that pT14 is shifted further into the major groove relative to p14ddC-1 (Fig. 8). The BzG residues are changed slightly between the 14ddC-1 and T structures, with the exocyclic O4 atom of T pushing the benzyl group into a more proximal orientation relative to the purine ring system (Fig. 8). Additional structural obtained with O6-BzG-modified DNA provides insights into how Dpo4 can “slip” on the template and accommodate three bases in the polymerase active site to generate a +1 frameshift. The frameshift was not manifested in the full-length extension products (analyzed by LC-MS/MS) (Fig. 3 and supplemental Figs. S4 – S8), presumably because the 3’-hydroxyl group of the newly inserted pG15 is too far removed from the catalytic center for phosphoryl transfer to proceed. In the O6-BzG:G structure, the p14C normally paired opposite O6-BzG during “correct” bypass is flipped down into the DNA binding cleft (Fig. 7A), with a single G (p15G) inserted opposite O6-BzG (Fig. 7B). The purine ring of p15G remains in the anti conformation but is shifted up, with the N3 atom of p15G forming a hydrogen bond with the N2 exocyclic amine of O6-BzG.
and the N2 exocyclic amine of p15G is in a bifurcated pairing orientation with the N1 and O6 atoms of O6-BzG (Fig. 6C).

Studies with model replicative polymerases, such as pol T7 and HIV-1 RT, have shown that the O6-BzG moiety is a greater block to polymerase efficiency than the smaller O6-MeG lesion, with O6-MeG being slightly more miscoding than O6-BzG for both enzymes (16). In the pre-steady-state analysis for HIV-1 RT, catalysis opposite O6-alkylG was inhibited primarily at the stage of nucleotide binding for both accurate and mutagenic bypass (16). Dpo4, on the other hand, has a slower \(k_{\text{pol}} \) for bypass of both O6-MeG and O6-BzG (Table 2). The decrease in Dpo4 catalytic efficiency observed between O6-MeG and O6-BzG is determined by a much higher \(K_{\text{D,ANTP}} \) for O6-BzG. The lower binding affinity is not surprising, because the bulk of the benzyl moiety extending out of the DNA binding cleft is more likely to impede binding of any dNTP opposite O6-BzG than the addition of a methyl group.

The previous work on pol T7- and HIV-1 RT-catalyzed bypass of O6-MeG and O6-BzG led to the proposal that some fraction of both pol T7- and HIV-1 RT could proceed through a reversible inactive or nonproductive form. The results obtained herein illustrate a fundamental difference between Dpo4 and the aforementioned model polymerases that is likely to be related to polymerase structure and the processivity conferred by said structure. As opposed to the nonproductive complexes observed with polymerases such as pol T7- and HIV-1 RT, Dpo4 catalysis opposite O6-BzG is simply slower and requires more dNTP to move the reaction forward. There is some indication that distinct changes in the finger domain of HIV-1 RT may play a role in determining an active versus an inactive state (34), but the lack of any O6-alkylG-modified DNA and thiol-based covalent modification of the complexes in question render such a suggestion speculative at best. Structural evidence of the nonproductive complex has not been obtained for pol T7-; however, evidence linking different conformational changes of the pol T7- finger domain to either correct or incorrect bypass may be indicative of what is occurring during pol T7- catalyzed bypass of O6-BzG (35). In this respect, Dpo4 may have the advantage of no major conformational rearrangements during O6-alkylG bypass, so that Dpo4 is not likely to stall by entering a state that is more stable, energetically speaking, than the transition state but not catalytically competent. The disadvantage for Dpo4 is the nonproductive nature of the enzyme, because reducing \(k_{\text{pol}} \) effectively drives the kinetic partitioning between \(k_{\text{pol}} \) and \(k_{\text{off}} \) toward dissociation and, in the case of Dpo4, results in a decrease in the burst amplitude.

The question remains open as to which type of polymerase is encountering the O6-alkylG-modified DNA in the cell, but the answer could be related to which polymerase is most strongly inhibited by O6-alkylG lesions. Comparing steady-state catalytic efficiencies, human pol \(\delta \) and \(\eta \) appear to be inhibited in roughly the same manner by both O6-MeG (~10-fold) and O6-BzG (~100-fold) relative to correct bypass on unmodified DNA (18). Pre-steady-state kinetic analyses indicate that HIV-1 RT incorporation of either dCTP or dTTP opposite O6-MeG is inhibited ~7–8-fold, respectively, relative to dCTP incorporation opposite unmodified G (16), which is comparable with the 14-fold inhibition observed for Dpo4 (25). The O6-BzG lesion inhibits HIV-RT incorporation of either dCTP or dTTP ~70–100-fold, respectively, relative to the control reaction (16). Both of these values indicate that HIV-RT can bypass O6-alkylG-modified DNA without suffering a greater degree of inhibition than Dpo4, a model for translesion synthesis.

Another comparison can be made between Dpo4 and pol T7- catalyzed bypass of O6-alkylG-modified DNA. Compared with the steady-state values observed with Dpo4, mutagenic bypass of O6-MeG and O6-BzG by pol T7- is less perturbed than any catalytic event that Dpo4 attempts opposite the lesions, with the exception of Dpo4-catalyzed insertion of dCTP opposite O6-MeG (25). Direct comparison of the \(k_{\text{cat}}/K_m \) values for insertion opposite O6-alkylG indicates that pol T7- is actually ~4-fold more efficient in inserting dTTP opposite O6-MeG than Dpo4-catalyzed incorporation of dCTP opposite O6-MeG and ~3-fold more efficient in inserting dTTP opposite O6-BzG than Dpo4-catalyzed incorporation of dCTP opposite the benzyl lesion. Granted that these are enzymes from disparate systems, nevertheless these data may imply that many of the smaller lesions may never be encountered by the Y-family polymerases because the replication machinery can copy past them without too much difficulty. Only when very bulky lesions are encountered, which replicative polymerases simply cannot bypass, do the Y-family polymerases have an opportunity to perform translesion synthesis; hence, the existence of alternate repair pathways for small lesions such as O6-MeG and 8-oxo-7,8-dihydroguanine.

The major difference observed between Dpo4 and the replicative polymerases (pol \(\delta \), pol T7- and HIV-1 RT) is that Dpo4 bypasses O6-MeG and O6-BzG relatively accurately. Presumably, the open and flexible active site of Dpo4 allows formation of the wobble pair to occur in a facile manner, and the same features allow the repulsion of the exocyclic oxygen atoms in the O6-BzG:T pair to prevent incorporation of dTTP. The rigid constraints found in the active site of replicative polymerases may be inclined to force O6-alkylG:T pairs into a more enclosed, geometrically intolerant environment, which results in a greater fraction of dTTP incorporated relative to what occurs during Dpo4-catalyzed bypass. Recent crystal structures track the prokaryotic model polymerase BF from *Bacillus stearothermophilus* and are consistent with such a view (36). The accurate or “correct” bypass of O6-MeG by BF appears to favor Watson-Crick geometry between O6-MeG and a protonated C. Notably, the wobble pairing scheme is only observed after the O6-MeG:C pair has been processed to a more solvent-accessible position (~10-position) relative to the BF active site. Mutagenic replication by BF occurs primarily through pseudo-Watson-Crick geometry between O6-MeG and T, which is similar but not identical to what is observed with Dpo4. An unusual electrostatic interaction between the O4 atom of T and the methyl protons of O6-MeG was observed at every stage of BF-catalyzed replication (active site, ~1 and ~2 postinsertion sites) and was proposed to increase the stability of the O6-MeG:T pair. The reported catalytic efficiencies of dCTP and dTTP incorporation opposite O6-MeG by BF were decreased ~100,000- and ~10,000-fold, respectively, relative to dCTP incorporation opposite unmodified G, much greater than the
Dpo4-catalyzed Bypass of O6-BzG in DNA

changes in efficiency observed with Dpo4 or HIV-RT (comparing pre-steady-state values). The kinetic analysis indicates that BF incorporation of dTTP opposite O6-MeG is ~11-fold more efficient than dCTP incorporation opposite O6-MeG. The large decrease in BF catalytic efficiency is difficult to reconcile with work from our own group but appears to be dependent upon a substantial decrease in the reaction rate (i.e. \(k_{\text{pol}} \) is ~1600- and ~400-fold slower for dCTP and dTTP incorporation opposite O6-MeG relative to a control reaction, whereas nucleotide binding affinity is decreased ~60 to ~100-fold for accurate and mutagenic bypass, respectively) (36).

The general conclusions derived here are consistent with the idea that increasing adduct size decreases polymerase efficiency, as has been observed with many polyesters (16, 17, 28, 37, 38), although some instances of greater tolerance have been reported, such as pol \(\eta \) bypass of O6-PobG and pol \(\kappa \) bypass of N2-alkylG adducts (18, 39). The fidelity of Dpo4 catalysis remains largely unaltered between O6-MeG- and O6-BzG-modified DNA, and the more accurate mechanism of O6-alkylG bypass distinguishes Dpo4 from most other polymerases studied to date. Comparing studies with Dpo4 to those with BF indicates that, in a simplistic sense, the accuracy of O6-alkylG bypass is related to how well the active site of a given polymerase tolerates the wobble pair between O6-alkylG and C.

Acknowledgments—We thank H. Robinson for data collection support at the National Synchrotron Light Source; Z. Jin, P. S. Pallan, and Z. Wawrzak for data collection support at the Advanced Photon Source; I. D. Kozekov for synthesis of the O6-BzG-modified oligonucleotides; and K. Trisler for assistance in preparation of the manuscript.

REFERENCES

1. Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Shultz, R. A., and Ellenberger, T. (2006) DNA Repair and Mutagenesis, 2nd Ed., American Society for Microbiology Press, Washington, D. C.
2. Margison, G. P., Santibanez Koref, M. F., and Povey, A. C. (2002) Mutagenesis 17, 483–487
3. Wyatt, M. D., and Pittman, D. L. (2006) Chem. Res. Toxicol. 19, 1580–1594
4. Lawley, P. D. (1984) in Searle, C. E. (ed) Chemical Carcinogens, 2nd Ed., American Chemical Society, Washington, D. C.
5. Loveless, A. (1969) Nature 223, 206–207
6. Quinn, J. A., Desjardins, A., Weinart, J., Brem, H., Dolan, M. E., Delaney, S. M., Vredenburg, J., Rich, J., Friedman, A. H., Readon, D. A., Sampson, J. H., Pegg, A. E., Moschel, R. C., Birch, R., McLendon, R. E., Provenzale, J. M., Gururangan, S., Daney, J. E., Maxwell, J., Tourt-Ulhig, S., Herndon, J. E., II, Bigner, D. D., and Friedman, H. S. (2005) J. Clin. Oncol. 23, 7178–7187
7. Lindahl, T. (1993) Nature 362, 709–715
8. Pegg, A. E., Dolan, M. E., Scicchitano, D., and Morimoto, K. (1985) Environ. Health Perspect. 62, 109–114
9. Pegg, A. E., Roberfroid, M., von Bahr, C., Foote, R. S., Mitra, S., Bresil, H., Likhachev, A., and Montesano, R. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 5162–5165
10. Yoshioka, K., Yoshioka, Y., and Hsieh, P. (2006) Mol. Cell 22, 501–510
11. Langston, L. D., and O’Donnell, M. (2006) Mol. Cell 23, 155–160
12. Haracska, L., Prakash, S., and Prakash, L. (2000) Mol. Cell Biol. 20, 8001–8007
13. Singh, J., Su, L., and Snow, E. T. (1996) J. Biol. Chem. 271, 28391–28398
14. Tan, H. B., Swann, P. F., and Chance, E. M. (1994) Biochemistry 33, 5335–5346
15. Voigt, J. M., and Topal, M. D. (1995) Carcinogenesis 16, 1775–1782
16. Woodside, A. M., and Guengerich, F. P. (2002) Biochemistry 41, 1027–1038
17. Woodside, A. M., and Guengerich, F. P. (2002) Biochemistry 41, 1039–1050
18. Choi, J.-Y., Chowdhury, G., Zang, H., Angel, K. C., Vu, C. C., Peterson, L. A., and Guengerich, F. P. (2006) J. Biol. Chem. 281, 38244–38256
19. Fiala, K. A., and Suo, Z. (2004) Biochemistry 43, 2116–2125
20. Fiala, K. A., and Suo, Z. (2004) Biochemistry 43, 2106–2115
21. Ling, H., Boudsocq, F., Plosky, B. S., Woodgate, R., and Yang, W. (2003) Nature 424, 1083–1087
22. Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2001) Cell 107, 91–102
23. Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2004) Mol. Cell 13, 751–762
24. Ling, H., Sayer, J. M., Plosky, B. S., Yagi, H., Boudsocq, F., Woodgate, R., Jerina, D. M., and Yang, W. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 2265–2269
25. Eoff, R. L., Irinumia, A., Egli, M., and Guengerich, F. P. (2007) J. Biol. Chem. 282, 1456–1467
26. Atrup, H., and Stoner, G. D. (1982) Cancer Res. 42, 1307–1311
27. Peterson, L. A. (1997) Chem. Res. Toxicol. 10, 19–26
28. Choi, J.-Y., and Guengerich, F. P. (2006) J. Biol. Chem. 281, 12315–12324
29. Zang, H., Goodenough, A. K., Choi, J. Y., Irinumia, A., Loukachevitch, L. V., Kozekov, I. D., Angel, K. C., Rizzo, C. J., Egli, M., and Guengerich, F. P. (2005) J. Biol. Chem. 280, 29750–29764
30. Christian, N. P., Reilly, J. P., Mokler, V. R., Wincott, F. E., and Ellington, A. D. (2001) J. Am. Soc. Mass Spectrom. 12, 744–753
31. Kabosch, W. (1988) J. Appl. Crystallogr. 21, 916–924
32. Otwinowski, Z., and Minor, W. (1997) Methods Enzymol. 267, 307–326
33. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Grosse-Kunstleve, R. W., Adams, P. D., Clore, G. M., DeLano, W. L., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Acta. Crystallogr. Sect. D Biol. Crystallogr. 54, 905–921
34. Huang, H., Harrison, S. C., and Verdin, G. L. (2000) Chem. Biol. 7, 355–364
35. Tsai, Y. C., and Johnson, K. A. (2006) Biochemistry 45, 9675–9687
36. Warren, J. J., Forsberg, L. J., and Beese, L. S. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 19701–19706
37. Choi, J.-Y., and Guengerich, F. P. (2004) J. Biol. Chem. 279, 19217–19229
38. Choi, J.-Y., and Guengerich, F. P. (2005) J. Mol. Biol. 352, 72–90
39. Choi, J.-Y., Angel, K. C., and Guengerich, F. P. (2006) J. Biol. Chem. 281, 21062–21072