The posterior cranial fossa's dura mater innervation and its clinical implication in headache: a comprehensive review

Authors: D. Hage, M. Mathkour, J. Iwanaga, A. S. Dumont, R. S. Tubbs

DOI: 10.5603/FM.a2021.0114

Article type: Review article

Submitted: 2021-04-09

Accepted: 2021-07-09

Published online: 2021-10-28

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited.

Articles in "Folia Morphologica" are listed in PubMed.
The posterior cranial fossa's dura mater innervation and its clinical implication in headache: a comprehensive review

D. Hage et al., Posterior cranial fossa's dura mater innervation

Abstract
The pathophysiology of migraines and headaches has been a point of interest in research as they affect a large subset of the population, and the exact mechanism is still unclear. There is evidence implicating the dura mater and its innervation as contributing factors, especially at the posterior cranial fossa. Many modes of innervation have been identified, including the dorsal root ganglion (DRG), superior cervical ganglion, vagus nerve, trigeminal nerve, hypoglossal nerve, and glossopharyngeal nerve. While the exact method of innervation is still under investigation, there is strong evidence suggesting that different types of headaches (migraine vs. occipital vs. cervicogenic) are due to specific nerves and inflammatory mediators that contribute to the dura mater in some way. By understanding how these innervation patterns manifest clinically, the course of treatment can be tailored based on the physiological etiology. Here, we present a
comprehensive literature review of the current research regarding the innervation of the dura mater of the posterior cranial fossa and its clinical implications.

Key words: anatomy, nerves, cranium, meninges, headache

INTRODUCTION

The dura mater is the most superficial constituent of the cranial meninges and acts as a protective covering for the brain [1, 33]. It is composed of an inner meningeal and an outer endosteal layer [1, 33]. The outer endosteal layer is occupied by nerves and blood vessels and forms the skull’s periosteum, which can be further divided into an outer fibrous layer and an inner layer with osteoblastic potential [1, 17, 33]. The cranial dura mater’s inner meningeal layer has communication with the dura mater of the spinal cord at the foramen magnum and forms the falx cerebri, falx cerebelli, tentorium cerebelli, and diaphragma sella [1, 33]. The dural venous sinuses can be identified along with various positions of dura mater reflection between the two layers [1, 23, 50, 61]. The innervation of the dura mater has been a point of interest in research due to its clinical implications with various types of headaches [5, 10, 34, 43, 48, 52, 55, 60, 84]. This article reviews the literature regarding the innervation of the dura mater of the posterior cranial fossa, and its associated clinical relevance.

The Posterior Cranial Fossa

The posterior cranial fossa is the largest and deepest fossa within the skull [6, 26, 76]. It serves as a conduit for several cranial nerves and contains important structures such as the brain stem, cerebellum, and foramen magnum [6, 26, 76]. Abnormalities (e.g., hypoplasia) of the posterior cranial fossa are often seen in patients with Chiari and other cerebellar malformations [76].

Dorsal Root Ganglia and Superior Cervical Ganglia

In a study of 54 Sprague-Dawley rats, Noseda et al. utilized a green fluorescent protein (GFP) labeled adeno-associated viral vector to map the innervation of the dura mater of the posterior cranial fossa [51]. The results demonstrated that the dura mater of the posterior cranial fossa receives innervation from axons of sensory neurons in the C2 and C3 DRG [51]. The
axons were observed to gain entry into the cranium through various routes including the foramen magnum, the jugular foramen, and various bony canals (occipital-periotic, emissary, and hypoglossal) within the occipital bone (Fig. 1) [51]. Furthermore, it was noted that the C2-C4 segments of the spinal cord contain the dorsal horn neurons responsible for transmitting nociceptive information from the posterior/occipital dura mater [51].

Keller et al. utilized horseradish peroxidase labeling to examine the innervation of the dura mater of the posterior cranial fossa in cats [32, 33]. After completing nerve resections, they observed a bilateral distribution of labeled cells in both the superior cervical ganglion and C1-C3 of the DRG [32, 33]. Therefore, they concluded that these provided the majority of the innervation to the posterior cranial fossa [32, 33]. Additionally, they noted the presence of some labeled cells within the trigeminal ganglion and the superior ganglion of the vagus nerve, leading them to suspect some innervation involvement from the trigeminal and vagus nerves [32, 33] (Fig. 2).

In an examination of 22 human fetuses, Kimmel et al. observed that the innervation of the dura mater of the posterior cranial fossa was provided by the superior cervical ganglion and C1-C3 of the DRG [33, 36]. They noted that the meningeal branches of C1-C3 of the DRG utilize the foramen magnum to enter the cranium and provide innervation to the anterior portion of the posterior cranial fossa [33, 36]. In contrast, the superior cervical ganglion and C1-C2 of the DRG utilize the hypoglossal canal and the jugular foramen to access and innervate the lateral and posterior portions of the posterior cranial fossa [33, 36]. These nerves may also use the vagus and hypoglossal nerves for access to the posterior cranial fossa [33, 36].

Likewise, studies by Bogduk et al. have reported that the C3 cervical sinuvertebral nerve (SVN) innervates the dura mater of the posterior cranial fossa and follows a prolonged course through the posterior cranial fossa and the vertebral canal [9]. Based on these results, Rennie et al. were able to trace the intraspinal courses of all three SVN’s [68]. They found that smaller branches off the ascending and descending branches provide innervation to the dura mater, adjacent joints, surrounding ligaments, and soft tissues [68]. They observed that the SVN’s were initially formed within the intervertebral foramen, then gave off branches that ran anterior to the DRG within the epidural space [68]. In concurrence with Kimmel at al., they reported that the C1-C2 and C2-C3 levels had long ascending branches that supplied innervation to structures within the vertebral canal and the posterior cranial fossa [36, 68]. Additionally, communication
was found between the ascending branch of the C2 SVN and the hypoglossal nerve, confirming the presence of sensory interaction between cervical and cranial nerves [68]. This was further supported through fetal studies that identified a similar communication loop between the C2-C3 ascending branches and an extradural nerve that emerges from the hypoglossal canal [33, 36, 68].

Cranial Nerves

Penfield and McNaughton observed innervation contributions from the hypoglossal nerve and the vagus nerve’s recurrent branches traveling alongside the posterior meningeal artery [62]. The vagus nerve’s recurrent branches were identified coursing to the falx cerebelli and the inferior wall of the transverse sinus [62]. Additionally, Levy et al. noted the presence of unmyelinated C- and thinly myelinated Aδ-fibers from the trigeminal nerve within the dura mater [40]. Both of these are consistent with the suspicions of Keller et al. who predicted some vagus and trigeminal nerve involvement with the innervation of the dura mater of the posterior cranial fossa and Schueler et al. who identified meningeal nerve fibers within the dura mater stemming from the trigeminal ganglion [32, 73].

Kimmel et al. identified branches of the hypoglossal nerve traveling superiorly from the hypoglossal canal to supply the dura mater of the posterior cranial fossa [33, 36]. Kemp et al. has also reported that branches of the facial and glossopharyngeal nerves contribute innervation to the dura mater of the posterior cranial fossa [33]. These studies suggest that there is some cranial nerve innervation component to the dura mater overlying the posterior cranial fossa.

Clinical Relevance

Occipital Headaches

Occipital headaches have been reported to play a role in both migraine and non-migraine headaches [51]. While the debate regarding its etiology is ongoing, evidence suggests that occipital headaches are caused by compression and irritation of the C2 DRG [13, 30, 34]. This idea is further supported in studies where the administration of anesthetic blockade to the occipital nerve and its branches alleviated occipital pain and headaches [19, 51, 58, 60]. As mentioned earlier, Noseda et al. mapped the innervation of the dura mater of the posterior cranial fossa to the C2-C3 level of the DRG. They found that approximately 50% of the neurons involved contained calcitonin gene-related peptide (CGRP) and transient receptor potential
cation channel subfamily V member 1 (TRPV1) [51]. They also observed that the C2-C4
division of the spinal cord contains the dorsal horn neurons responsible for transmitting
nociceptive information from the posterior/occipital dura mater [51]. These neurons contain
receptive fields that extend from the ears and occipital skin to the superficial and deep muscles of
the neck, and the skin overlying the upper neck [51]. Upon administering pro-inflammatory
mediators to the dura mater of the posterior cranial fossa, a correlation was identified between
the neuronal responsiveness and stimulation of the occipital skin and neck muscles [51]. These
findings demonstrate a direct connection between occipital headaches and the innervation of the
dura mater overlying the posterior cranial fossa.

Migraines

Migraine headaches are the most common neurological disability worldwide and are
ranked as the second leading cause of disability [5, 22]. Additionally, women are 2-3 times more
likely to suffer from migraines than men [5, 22]. The cranial meninges and nociceptive signaling
from the dura mater have long been considered as the site of origin for the pain attributed to
migraines [5, 41, 48, 55, 79, 83, 84]. While the exact pathophysiology of this disease and its
sexual dimorphism remains unknown, there is evidence suggesting a correlation between the
peripheral release of neuropeptides such as CGRP, substance P, neurokinin A, and prostaglandin
E2 (PGE2) within the dura mater and the onset of a migraine attack [4, 5, 11, 12, 14, 15, 18, 20,
31, 35, 38, 52, 54, 57, 77, 83, 84].

The research on substance P, PGE2, and neurokinin A is less extensive than CGRP;
however, there is a correlation between elevated levels of all three mediators and the onset of
migraine attacks; in fact, elevated levels of PGE2 have been measured in the saliva of migraine
patients [14, 15, 18, 52, 57]. The role of neurokinin A is still unclear; however, there is an
established relationship between histamine release from dural mast cells following elevated
PGE2 and substance P [14, 15, 18, 52, 57]. There is also evidence trigeminal axons’ excitation
stimulates the release of the dural mast cells, further demonstrating the role of the trigeminal
nerve with the innervation of the dura mater [15, 32, 54, 73].

Studies have found that when the dura mater is exposed to CGRP, a dilatory effect can be
seen within the vasculature, which induces migraine symptoms at that location [4, 5]. Similar
dilation events have been reported along with the dura mater on the head’s side, experiencing
spontaneous migraine attacks [5, 35]. Furthermore, elevated levels of CGRP have been found in the venous blood, saliva, and cerebrospinal fluid (CSF) of patients undergoing a migraine attack [5, 20]. There is also evidence that intravenous administration of CGRP can elicit an attack [5, 38], whereas CGRP inhibitors have been successful in the treatment of migraines [5, 77]. Additionally, administrations of nitric oxide (NO) to the dura mater have been shown to elicit migraine attacks in both humans and rats [5, 54, 55, 56], as NO has been found to increase CGRP release [5, 11].

Even though the exact mechanism of peripheral CGRP signaling in migraine headaches is still under investigation, there is evidence implicating extracellular adenosine triphosphate (ATP) as a contributory factor [83]. Through the utilization of rat models, Yegutkin et al. discovered that upon exposure to CGRP, ATP and adenosine diphosphate (ADP) levels increased in both the meninges and trigeminal cells, whereas adenosine levels decreased in the trigeminal cells [83]. The ATP signaling subsequently resulted in a substantial buildup of intracellular Ca2+ within neurons and glial cells [83]. Additionally, high levels of ATP were correlated to nociceptive spikes within the meningeal trigeminal nerve fibers, and ATP was found to have the most prominent and lasting effects when compared to other metabolites, due to ATP activation of ionotropic (P2X) and metabotropic (P2Y) purinergic receptors within these neurons [12, 83]. These findings are corroborated by previous studies that also noted significant ATP releases during migraine attacks, as a result of opened pannexin channels [31, 83].

Avona et al. successfully applied a rat model to understand better the sexual dimorphism of migraine attacks related to CGRP signaling within the dura mater [5]. They observed that only female rats produced a cutaneous periorbital hypersensitivity following the administration of CGRP (0.1pg – 3.8ug) to the dura mater. In contrast, the males were only responsive if the dura mater was initially primed with interleukin-6 or brain-derived neurotrophic factor [5]. Additionally, only female rats displayed priming to a subthreshold administration of dural CGRP (0.1pg) [5]. These findings give us an insight into the sexual dimorphism of the disease and demonstrate the connection between CGRP signaling in the dura mater and migraine headaches.

Cervicogenic Headaches

Cervicogenic headaches are defined as pain in the head originating from a location other than the head – typically the cervical spine [10, 59]. These are among the most common types of
headaches affecting weightlifting athletes and are associated with patients who have sustained a whiplash injury [59, 75, 78]. Studies by both Bogduk et al. and Biondi et al. observed that the source of pain originates from the cervical spine and is mediated through the upper cervical nerves [8-10, 69]. They found that the upper cervical nerves supply the dura mater of the posterior cranial fossa and the ligaments of the craniovertebral junction (CVJ) [8-10, 69]. Additionally, it was noted that these nerves share the same root as the dorsal rami responsible for transmitting nociceptive information from the posterior head and neck region [10]. This provides us with a better understanding of how the upper three cervical nerves mediate pain from the ligaments, dura mater, and soft tissues of the posterior cranial fossa and upper cervical column and how symptoms may manifest clinically [8-10, 69].

Botulinum Toxin

Botulinum neurotoxin (BoNT) has become a popular treatment option for several headache disorders, especially migraines, due to its anti-nociceptive properties [42]. Several different serotypes are produced by Clostridium Botulinum, however, only serotypes A and B have been approved for clinical use [7, 21]. It exerts its effects by enzymatically cleaving the 25 kDa synaptosomal-associated protein (SNAP-25), thus inhibiting the ability for neurotransmitter-containing vesicles to fuse with the cell membrane [21, 44, 70]. Through this mechanism, studies have demonstrated the inhibitory effect of BoNT on the release of neurotransmitters - substance P and CGRP - involved in the transmission of pain, neurogenic inflammation, and peripheral and central sensitization [16, 21, 28, 42, 66, 81]. Additionally, there is some evidence that administration of BoNT reduces the inflammatory response [28, 42, 64].

Surgical Relevance

Operative treatment of occipital and migraine headache has existed for centuries with an early focus employed on blood vessels by Al-Zahrawi (936 to 1013 AD) e.g., using caustic skull cauterization to alleviate headache [2], vessel ligation (French barber-surgeon Ambroise Pare (1510 to 1590) [3], arteriotomies, bloodletting (application of temples leeches by Thomas Willis (1621 to 1675) and Robert Whytt (1714 to 1766) and arterial compression by W. Mollendorff in
1867 [47]. Many of these concepts/treatments were used and carried into the Middle Ages in Europe.

These concepts of vessel involvement in occipital and migraine headaches have also been revisited in modern times in 1976 by Greek neurosurgeon Alexander D. Rapidis [67], and more recently by Dr. Elliot Shevel who is an oral and maxillofacial surgeon [74]. Between 1904 and 1955, Alexander Rapidis described sectioning of the trigeminal pathways for permanent facial analgesia and injection of alcohol into the Gasserian ganglion with successful results [67]. In 1964, Bruce C. Martin and Phillip J. Fagan published the first report on the surgical management of occipital neuralgia with satisfactory results by excising segments of the greater occipital nerve, lesser occipital nerve, third occipital nerve, and posterior auricular nerve with injection of alcohol into the area that was excised [45]. Since then, the operative management of headache continues to evolve with theories on the extracranial course and nerve origin. Recently, Bahman Guyuron, in 2000, introduced the current concept of nerve irritation and compression at specific points across the skull and by adjacent structures [24]. He further described the surgical treatment of trigger sites, which evolved since then to include open, endoscopic, and minimally invasive techniques for decompression, neurectomy, arterial ligation, and arterectomy, depending on the anatomical location and underlying pathophysiology with success rates ranging between 68 and 95% in pain improvement [37, 39, 49, 71].

Many anatomical studies have shown that nerves can be compressed by different surrounding tissues such as vessels, bone, muscle, fascia, and fascial bands [29]. However, only some of these tissues have been investigated. Guyuron et al. evaluated nerves removed during migraine surgery by electron microscopy with proteomics and reported deregulation of the myelination process and axonal abnormality in patients with migraine headaches versus controls [25].

Additionally, Perry et al. evaluated calvarial periosteum as a source of chronic migraine, demonstrating decreased expression of genes that suppress inflammation and increased expression of proinflammatory markers [63]. The authors concluded that the trigeminovascular nociceptors that reach the periosteum are activated through intracranial meningeal nociceptors and/or extracranial nerves [63]. Such findings have been supported by human and animal data showing that pain and sensory nerve fibers cross the calvarial periosteum via cranial sutures and connect extracranial and intracranial axons [72, 73].
Weiner and Reed introduced occipital nerve stimulation (ONS) in 1999 [82], a promising treatment for patients with medically intractable and highly disabling chronic headache disorders [82]. The exact mechanisms by which ONS modulate pain are poorly understood; however, multiple sites of action within the central and peripheral nervous systems have been proposed, including the upper spinal segmental level, supraspinal levels, and peripheral nerve levels [27].

Direct effects of neurostimulation on peripheral nerve fiber excitability include an increase in electrical threshold, slowing of conduction velocity, and decrease in response probability have all been reported [46]. Additionally, a widely held theory of neurostimulation is the gate-control theory of pain have been described [46, 80]. Regarding ONS efficacy, Popeney and Alo used C1-C3 peripheral nerve stimulation for migraine headaches, with showed 85% of patients reported at least 50% reduction in headache frequency or severity after the ONS implantation [65]. Oh, and colleagues used ONS in migraine headaches with 90% of the patients reporting more than 90% pain relief, and 10% of the patients reporting 75–90% pain relief at one month after implantation [53]. ONS provided a better life for some patients, gave hope to many more, and suggested that different types of headaches are likely due to specific nerve involvement.

CONCLUSIONS

Although various modes of innervation have been identified, there is extensive evidence supporting the involvement of the dura mater and its innervation with the onset of many headaches. These findings are essential to consider when determining the best approaches for treating headaches, as the etiology and innervation patterns may vary.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

Conflict of interest: None declared

REFERENCES
1. Adeeb N, Mortazavi MM, Tubbs SR et al (2012) The cranial dura mater: a review of its history, embryology, and anatomy. Childs Nerv Syst 28:827–837.
2. Ahmad Z. Al-Zahrawi (2007) The father of surgery. ANZ J Surg 77:A83.
3. Ambroise P (1691) The Works of Ambrose Parey, Chyrurgeon to Henry II, Francis II, Charles IX, and Henry III, Kings of France. J. Hindmarsh, London.
4. Asghar MS, Hansen AE, Kapijimpanga T, van der Geest RJ, van der Koning P, Larsson HB, Olesen J, Ashina M (2010) Dilation by CGRP of middle meningeal artery and reversal by sumatriptan in normal volunteers. Neurology 75:1520–1526.
5. Avona A, Burgos-Vega C, Burton MD, Akopian AN, Price TJ, Dussor G (2019) Dural Calcitonin Gene-Related Peptide Produces Female-Specific Responses in Rodent Migraine Models. J Neurosci 39:4323-4331.
6. Berge J, Bergman R (2001) Variation in size and in symmetry of foramina of the human skull. Clin Anat 14:406-413.
7. Bigalke H (2013) Botulinum toxin: application, safety, and limitations. Curr Top Microbiol Immunol 364:307–317.
8. Biondi DM (2000) Cervicogenic headache: Mechanisms, evaluation, and treatment strategies. J Am Osteopath Assoc 100:S7–S14.
9. Bogduk N, Windsor M, Inglis A (1988) The innervation of the cervical intervertebral discs. Spine 13:2–8.
10. Bogduk N (2001) Cervicogenic headache: Anatomic basis and pathophysiologic mechanisms. Curr Pain Headache Rep 5:382–386.
11. Burgos-Vega CC, Quigley LD, Avona A, Price T, Dussor G (2016) Dural stimulation in rats causes brain-derived neurotrophic factor-dependent priming to subthreshold stimuli including a migraine trigger. Pain 157:2722–2730.
12. Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signaling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274.
13. Chouret EE (1967) The greater occipital neuralgia headache. Headache 7:33–34.
14. Dimitriadou V, Buzzi MG, Moskowitz MA, Theoharides TC (1991) Trigeminal sensory fiber stimulation induces morphological changes reflecting secretion in rat dura mater mast cells. Neuroscience 44:97-112.
15. Dimitriadou V, Rouleau A, Trung MD, Newlands GJF, Miller HRP, Luffau G, Schwartz JC, Garbarg M (1997) Functional relationships between sensory nerve fibers and mast cells of dural mater in normal and inflammatory conditions. Neuroscience 77:829-839.
16. Durham P, Cady R, Cady R (2004) Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache 35–44.
17. Dwek JR (2010) The periosteum: what is it, where is it, and what mimics it in its absence? Skeletal Radiol 39:319-323.
18. Ebersberger A (2001) Physiology of meningeal innervation: aspects and consequences of chemosensitivity of meningeal nociceptors. Microsc Res Tech 53:138-46.
19. Edmeads J (1988) The cervical spine and headache. Neurology 38:1874–1878.
20. Edvinsson L, Goadsby PJ (1994) Neuropeptides in migraine and cluster headache. Cephalalgia 14:320–327.
21. Escher CM, Paracka L, Dressler D, Kollewe K (2017) Botulinum toxin in the management of chronic migraine: clinical evidence and experience. Ther Adv Neurol Disord 10(2):127-135.
22. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet 390:1211–1259.
23. Greenberg RW, Lane EL, Cinnamon J, Farmer P, Hyman RA (1994) The cranial meninges: anatomic considerations. Semin Ultrasound CT MRI 15:454–465.
24. Guyuron B, Riazi H, Long T, Wirtz E (2015) Use of a Doppler signal to confirm migraine headache trigger sites. Plast Reconstr Surg 135:1109-1112.
25. Guyuron B, Yohannes E, Miller R, Chim H, Reed D, Chance MR (2014) Electron microscopic and proteomic comparison of terminal branches of the trigeminal nerve in patients with and without migraine headaches. Plast Reconstr Surg 134:796e-805e.
26. Hofmann E, Prescher A (2012) The Clivus. Clin Neuroradiol 22:123-129.
27. Ignelzi RJ, Nyquist JK (1979) Excitability changes in peripheral nerve fibers after repetitive electrical stimulation. Implications in pain modulation. J Neurosurg 51:824-833.
28. Jabbari B (2008) Botulinum neurotoxins in the treatment of refractory pain. Nat. Clin. Pract. Neurol 4:676–685.
29. Janis JE, Barker JC, Javadi C, Ducic I, Hagan R, Guyuron B (2014) A review of current evidence in the surgical treatment of migraine headaches. Plast Reconstr Surg 134:131S-141S.
30. Johnston MM, Jordan SE, Charles AC (2013) Pain referral patterns of the C1 to C3 nerves: implications for headache disorders. Ann Neurol 74:145–148.
31. Karatas H, Erdener SE, Gursoy-Ozdemir Y et al (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339:1092–1095.
32. Keller JT, Saunders MC, Beduk A, Jollis JG (1985) Innervation of the posterior fossa dura of the cat. Brain Res Bull 14:97-102.
33. Kemp WJ, Tubbs RS, Cohen-Gadol AA (2012) The innervation of the cranial dura mater: neurosurgical case correlates and a review of the literature. World Neurosurg 78(5):505-510.
34. Kerr RW (1961) A mechanism to account for frontal headache in cases of posterior-fossa tumors. J Neurosurg 18:605–609.
35. Khan S, Amin FM, Christensen CE, Ghanizada H, Younis S, Olinger ACR, de Koning PJ, Larsson HB, Ashina M (2019) Meningeal contribution to migraine pain: a magnetic resonance angiography study. Brain 142:93–102.
36. Kimmel DL (1961) Innervation of the spinal dura mater and dura mater of the posterior cranial fossa. Neurology 11:800–809.
37. Koehler PJ, Boes CJ (2010) A history of non-drug treatment in headache, particularly migraine. Brain 133:2489-2500.
38. Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J (2002) CGRP may play a causative role in migraine. Cephalalgia 22:54–61.
39. Lee M, Lineberry K, Reed D, Guyuron B (2013) The role of the third occipital nerve in surgical treatment of occipital migraine headaches. J Plast Reconstr Aesthet Surg 66:1335-1339.
40. Levy D, Strassman AM (2002) Mechanical response properties of A and C primary afferent neurons innervating the rat intracranial dura. J Neurophysiol 88:3021–3031.
41. Levy D (2012) Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: the role of immunovascular interactions and cortical spreading depression. Curr Pain Headache Rep 16:270–277.
42. Lim EC, Seet RC (2010) Use of botulinum toxin in the neurology clinic. Nat Rev Neurol 6(11):624-36.
43. Lv X, Wu Z, Li Y (2014) Innervation of the cerebral dura mater. Neuroradiol J 27:293–298.
44. Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580: 2011–2014.
45. Martin BC, Fagan PJ (1964) The surgical therapy of certain occipital headaches. Plast Reconstr Surg 33:266-268.
46. Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150:971–979.
47. Mollendorff W (1967) Ueber Hemikranie. Arch Pathol 41:385-395.
48. Moskowitz MA (1993) Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 43:S16–S20.
49. Mosser SW, Guyuron B, Janis JE, Rohrich RJ (2004) The anatomy of the greater occipital nerve: Implications for the etiology of migraine headaches. Plast Reconstr Surg 113:693-697.
50. Nabeshima S, Reese TS, Landis DM, Brightman MW (1975) Junctions in the meninges and marginal glia. J Comp Neurol 164:127–169.
51. Noseda R, Melo-Carrillo A, Nir RR, Strassman AM, Burstein R (2019) Non-Trigeminal Nociceptive Innervation of the Posterior Dura: Implications to Occipital Headache. J Neurosci 39:1867-1880.
52. Obach TJ, Planas JM, Puig PP (1989) Increase in PGE2 and TXA2 in the saliva of common migraine patients. Action of calcium channel blockers. Headache 29:498-501.
53. Oh M, Ortega J, Bellotte J, Whiting D, Alo KM (2004) Peripheral nerve stimulation for the treatment of occipital neuralgia and transformed migraine using a C1-2-3 subcutaneous paddle style electrode: a technical report. Neuromodulation 7:103–112.
54. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 8:679–690.
55. Olesen J, Iversen HK, Thomsen LL (1993) Nitric oxide supersensitivity: a possible molecular mechanism of migraine pain. Neuroreport 4:1027–1030.
56. Olesen J, Jansen-Olesen I (2000) Nitric oxide mechanisms in migraine. Pathol Biol 48:648–657.
57. Ottosson A, Edvinsson L (1997) Release of histamine from dural mast cells by substance P and calcitonin gene related peptide. Cephalalgia 17:166-174.
58. Paemeleire K, Bartsch T (2010) Occipital nerve stimulation for headache disorders. Neurotherapeutics 7:213–219.
59. Page P (2011) Cervicogenic headaches: an evidence-led approach to clinical management. Int J Sports Phys Ther 6:254-266.
60. Palmisani S, Al-Kaisy A, Arcioni R, Smith T, Negro A, Lambru G, Bandikatla V, Carson E, Martelletti P (2013) A six year retrospective review of occipital nerve stimulation practice: controversies and challenges of an emerging technique for treating refractory headache syndromes. J Headache Pain 14:67.
61. Patel N, Kirmi O (2019) Anatomy and imaging of the normal meninges. Semin Ultrasound CT MRI 30:559–564.
62. Penfield W, McNaughton F (1940) Dural headache and innervation of the dura mater. Arch Neurol Psychiatry 44:43-75.
63. Perry CJ, Blake P, Buettner C et al (2016) Upregulation of inflammatory gene transcripts in periosteum of chronic migraineurs: Implications for extracranial origin of headache. Ann Neurol 79:1000-1013.
64. Pickett A (2010) Re-engineering clostridial neurotoxins for the treatment of chronic pain: current status and future prospects. BioDrugs 24:173–182.
65. Popeney CA, Alo KM (2003) Peripheral neurostimulation for the treatment of chronic, disabling transformed migraine. Headache 43:369–375
66. Purkiss J, Welch M, Doward S, Foster K (2000) Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: involvement of two distinct mechanisms. Biochem Pharmacol 59:1403–1406.
67. Rapidis AD (1976) The therapeutic result of excision of the superficial temporal artery in atypical migraine. J Maxillofac Surg 4:182-188.
68. Rennie C, Haffajee MR, Ebrahim MA (2013) The sinuvertebral nerves at the craniovertebral junction: a microdissection study. Clin Anat 26(3):357-366.
69. Rifat SF, Moeller JL (2003) Diagnosis and management of headache in the weight-lifting athlete. Curr Sports Med Rep 2(5):272-275.
70. Rummel A (2015) The long journey of botulinum neurotoxins into the synapse. Toxicon 107: 9–24.
71. Sanniec K, Borsting E, Amirlak B (2016) Decompression-avulsion of the auriculotemporal nerve for treatment of migraines and chronic headaches. Plast Reconstr Surg Glob Open 4:678.
72. Schueler M, Messlinger K, Dux M, Neuhuber WL, De Col R (2013) Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain 154:1622-1631.
73. Schueler M, Neuhuber WL, De Col R, Messlinger K (2014) Innervation of rat and human dura mater and pericranial tissues in the parieto-temporal region by meningeal afferents. Headache 54:996-1009.
74. Shevel E (2013) A new minimally invasive technique for cauterizing the maxillary artery and its application in the treatment of cluster headache. J Oral Maxillofac Surg 71:677-681.
75. Sjaastad O, Fredriksen TA (2000) Cervicogenic headache: criteria, classification and epidemiology. Clin Exp Rheumatol 18:S3–S6.
76. Struffert T (2016) Anatomy and malformations of the posterior cranial fossa. Radiologist 56:960-966.
77. Tepper SJ (2018) History and review of anti-calcitonin gene-related peptide (CGRP) therapies: from translational research to treatment. Headache 58:238–275.
78. Treleaven J, Jull G, Atkinson L (1994) Cervical musculoskeletal dysfunction in post-concussional headache. Cephalalgia 14:273-279.
79. Uebner M, Carr RW, Messlinger K, De Col R (2014) Activity-dependent sensory signal processing in mechanically responsive slowly conducting meningeal afferents. J Neurophysiol 112:3077-3085.
80. Wall PD (1978) The gate control theory of pain mechanisms. A re-examination and re-statement. Brain 101:1–18
81. Welch M, Purkiss J, Foster K (2000) Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 38:245–258.
82. Weiner R, Reed KL (1999) Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation 2:217–221.
83. Yegutkin GG, Guerrero-Toro C, Kilinc E, Koroleva K, Ishchenko Y, Abushik P, Giniatullina R, Fayuk D, Giniatullin R (2016) Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions. Purinergic Signal 12:561-574.
84. Zakharov A, Vitale C, Kilinc E et al (2015) Hunting for origins of migraine pain: cluster analysis of spontaneous and capsaicin induced firing in meningeal trigeminal nerve fibers. Front Cell Neurosci 9:287.

Figure 1. Schematic drawing of the skull base and illustrating entrance sites of meningeal nerves supplying the posterior cranial fossa such as the hypoglossal canal, foramen magnum and jugular foramen. Also, note the innervation of the tentorium cerebelli from primarily the tentorial nerve derived from V1 of the trigeminal nerve.

Figure 2. Schematic drawing of the skull base noting the tentorial nerve (yellow arrow) arising from the V1 part of the trigeminal nerve. Regionally, also note the nervus spinosus branch (black arrow) of V3 entering the foramen ovale with the middle meningeal artery (unlabeled)
