The Bernstein problem for elliptic Weingarten multigraphs

Isabel Fernández, José A. Gálvez, Pablo Mira

Abstract. We prove that any complete, uniformly elliptic Weingarten surface in Euclidean 3-space whose Gauss map image omits an open hemisphere is a cylinder or a plane. This generalizes a classical theorem by Hoffman, Osserman and Schoen for constant mean curvature surfaces. In particular, this proves that planes are the only complete, uniformly elliptic Weingarten multigraphs. We also show that this result holds for a large class of non-uniformly elliptic Weingarten equations. In particular, this solves in the affirmative the Bernstein problem for entire graphs for that class of elliptic equations.

1. Introduction

A Weingarten surface is an immersed surface \(\Sigma \) in \(\mathbb{R}^3 \) whose mean curvature \(H \) and Gauss curvature \(K \) are related by some smooth equation

\[
W(H, K) = 0.
\]

For our purposes, it will suffice to require that \(W \) is of class \(C^2 \). We say that \(\Sigma \) is an elliptic Weingarten surface if (1.1) is elliptic when viewed as a fully nonlinear second order PDE in local graphical coordinates on \(\Sigma \). In the elliptic case, (1.1) can be rewritten as

\[
H = g(H^2 - K), \quad 4t(g'(t))^2 < 1 \quad \text{for all} \ t \geq 0,
\]

for some \(C^2 \) function \(g : [0, \infty) \to \mathbb{R} \); the inequality in (1.2) is precisely the ellipticity condition for the equation. Note that, when \(g \) is constant, (1.2) is the constant mean curvature (CMC) equation. Elliptic Weingarten surfaces are sometimes called special Weingarten surfaces. Their global geometry has been studied in depth by many authors; see e.g. [1, 2, 4, 6, 7, 9, 11, 12, 18, 19, 20, 24, 25, 26, 29].

The most fundamental open problem in the global theory of elliptic Weingarten surfaces is probably the Bernstein problem, see e.g. Rosenberg and Sa Earp [24]:

Bernstein problem: Are planes the only entire elliptic Weingarten graphs in \(\mathbb{R}^3 \)?

If \(g(0) \neq 0 \), there are no entire graphs satisfying (1.2), as follows from an easy application of the maximum principle and the fact that spheres of radius \(1/|g(0)| \) satisfy (1.2). That is, the Bernstein problem is only meaningful for Weingarten surfaces of minimal type, i.e., when \(g(0) = 0 \).

The Bernstein problem has an affirmative answer when (1.2) is uniformly elliptic, that is, when there exists some constant \(\Lambda \in (0, 1) \) such that

\[
4t(g'(t))^2 \leq \Lambda < 1 \quad \text{for all} \ t \geq 0.
\]
This follows from a deep theorem by L. Simon ([27, Theorem 4.1]) about entire graphs with quasiconformal Gauss map, not necessarily satisfying a Weingarten equation; see e.g. [26]. Note that this result includes the classical Bernstein theorem for minimal surfaces \(H = 0 \). Not much is known about classes of Weingarten surfaces for which the Bernstein problem can be solved, if (1.3) does not hold (see [23]). One of our contributions in this paper is to solve in the affirmative the Bernstein problem for a wide class of non-uniformly elliptic Weingarten equations; see the Corollary at the end of the introduction.

The Bernstein problem is related to the spherical image of the Gauss map \(N : \Sigma \rightarrow S^2 \) of elliptic Weingarten surfaces \(\Sigma \) in \(\mathbb{R}^3 \). Indeed, note that if \(\Sigma \) is a graph, \(N(\Sigma) \) lies in an open hemisphere. Conversely, if \(N(\Sigma) \) lies in some open hemisphere, then \(\Sigma \) might not be a graph, but it is a multigraph, i.e., a local graph with respect to a specific fixed direction of \(\mathbb{R}^3 \).

A classical theorem by Hoffman, Osserman and Schoen [17] proves that if the Gauss map image \(N(\Sigma) \) of a complete CMC surface \(\Sigma \) lies in a closed hemisphere, then \(\Sigma \) is a plane \((H = 0) \) or a cylinder \((H \neq 0) \). So, this theorem can be seen as a solution to a generalized Bernstein problem for CMC multigraphs, and motivates the following

Bernstein problem for multigraphs: Are planes and cylinders the only complete, elliptic Weingarten surfaces in \(\mathbb{R}^3 \) whose Gauss map image lies in a closed hemisphere of \(S^2 \)?

Observe that this problem asks, in particular, if complete (not necessarily entire) elliptic Weingarten graphs in \(\mathbb{R}^3 \) are planes. This time, in contrast with the case of entire graphs, the problem is non-trivial if \(g(0) \neq 0 \) in (1.2). Also, one should note that there exist complete, rotational CMC unduloids in \(\mathbb{R}^3 \) whose Gauss map image lies in an arbitrarily small tubular neighborhood of a geodesic of \(S^2 \). These examples show the necessity of the hypothesis on the Gauss map image in this problem.

We now state the main results of this paper. In Section 2 we will show (see Lemma 2.2):

Lemma A: If the Gauss map image \(N(\Sigma) \) of an elliptic Weingarten surface \(\Sigma \) lies in a closed hemisphere, then either \(\Sigma \) is a multigraph (i.e., \(N(\Sigma) \) lies in the interior of this hemisphere), or \(\Sigma \) is a piece of a plane or a cylinder.

Thus, in order to classify elliptic Weingarten surfaces whose Gauss map image lies in a closed hemisphere, it suffices to classify elliptic Weingarten multigraphs.

In Section 3 we will prove that the Bernstein problem for elliptic Weingarten multigraphs (and in particular for entire graphs) can be solved whenever we have a bound on the norm of the second fundamental form. From Lemma A and Theorem 3.1 we have:

Theorem A: Planes and cylinders are the only complete elliptic Weingarten surfaces in \(\mathbb{R}^3 \) with bounded second fundamental form and Gauss map image contained in a closed hemisphere.

The proof of Theorem A is based on an argument by Hauswirth, Rosenberg and Spruck [16] in the context of CMC surfaces in the product space \(\mathbb{H}^2 \times \mathbb{R} \), where \(\mathbb{H}^2 \) denotes the hyperbolic plane, and subsequent modifications of it in other geometric theories by Espinar and Rosenberg [10], and Gálvez, Mira and Tassi [14]; see also Manzano-Rodríguez [21] and Daniel-Hauswirth [8].

Theorem A reduces the Bernstein problem for elliptic Weingarten graphs or multigraphs to the obtention of a priori estimates for the norm of the second fundamental form (usually called curvature estimates). In Section 4 we will prove such a curvature estimate for the uniformly elliptic
Elliptic Weingarten surfaces

2. Elliptic Weingarten surfaces

2.1. The Weingarten equation. Let us start by clarifying some aspects about the different ways of writing an elliptic Weingarten equation.
First, a word of caution. It is not a good idea to work directly with the simple form (1.1) of the Weingarten equation, because it can be misleading. For instance, both planes and round spheres of radius $1/2$ satisfy the simple linear Weingarten equation $K = 2H$, which can be proved to be elliptic. At first sight, this would seem to contradict the maximum principle for elliptic PDEs. This is explained by the fact that the equation $K = 2H$ actually contains two different elliptic theories (see Figure 3.1 and the discussion below).

The Weingarten equation (1.1) can be rewritten in terms of the principal curvatures κ_1, κ_2 as

\begin{equation}
\Phi(\kappa_1, \kappa_2) = 0,
\end{equation}

where $\Phi \in C^2(\mathbb{R}^2)$ is symmetric, i.e. $\Phi(k_1, k_2) = \Phi(k_2, k_1)$. With this formulation, the ellipticity condition for the Weingarten equation is written as (see e.g. [20], pg. 129)

\begin{equation}
\frac{\partial \Phi}{\partial k_1} \frac{\partial \Phi}{\partial k_2} > 0 \quad \text{if } \Phi = 0.
\end{equation}

Thus, if (2.2) holds, we see using the symmetry of Φ that each connected component of $\Phi^{-1}(0) \subset \mathbb{R}^2$ can be written as a graph

\begin{equation}
k_2 = f(k_1),
\end{equation}

where f is defined on an interval $I_f := (a, b) \subset \mathbb{R}$, and satisfies the following conditions:

(i) f is C^2, and $f' < 0$ (by ellipticity).
(ii) $f \circ f = \text{Id}$ (by symmetry of Φ).
(iii) If $a \neq -\infty$, then $b = +\infty$ and $f(x) \to +\infty$ as $x \to a$.
(iv) If $b \neq +\infty$, then $a = -\infty$ and $f(x) \to -\infty$ as $x \to b$.

Each connected component of $\Phi^{-1}(0)$ gives rise to a different elliptic theory, with different geometric properties. For instance, the already mentioned Weingarten relation $K = 2H$ can be rewritten as $\Phi(\kappa_1, \kappa_2) = \kappa_1 + \kappa_2 - \kappa_1 \kappa_2 = 0$, and it is clear that $\Phi^{-1}(0)$ has two connected components; see Figure 3.1. In one of them, all surfaces have principal curvatures greater than 1, and so are convex, while all surfaces of the other connected component have non-positive curvature.

![Figure 2.1](image)

Figure 2.1. The two connected components of $\Phi^{-1}(0)$ in the (κ_1, κ_2)-plane, for the Weingarten equation $\Phi(\kappa_1, \kappa_2) = 0$ corresponding to $K = 2H$.
Alternatively, and also by the symmetry and ellipticity conditions on Φ, it is easy to see that each connected component of $\Phi^{-1}(0)$ can be seen as a graph of the form

$$
\frac{k_1 + k_2}{2} = g \left(\frac{(k_1 - k_2)^2}{4} \right),
$$

where $g \in C^2([0, \infty))$ satisfies, by the ellipticity inequality (2.2), the condition

$$
4t(g'(t))^2 < 1 \quad \text{for all } t \geq 0.
$$

This shows that there is no loss of generality in working with (1.2) or with (1.4) when dealing with a class of elliptic Weingarten surfaces in \mathbb{R}^3, and that both formulations are equivalent. Thus, a surface Σ in \mathbb{R}^3 is an elliptic Weingarten surface if its curvature diagram $(\kappa_1(\Sigma), \kappa_2(\Sigma)) \subset \mathbb{R}^2$ is a subset of a regular curve of \mathbb{R}^2 of the form (2.3).

We note that for graphs $z = u(x, y)$, the Weingarten equation (1.2) is equivalent to the fully nonlinear elliptic PDE

$$
F(u_x, u_y, u_{xx}, u_{xy}, u_{yy}) = 0,
$$

where $F(p, q, r, s, t) := \mathcal{H} - g(\mathcal{H}^2 - \mathcal{K}) \in C^2(\mathbb{R}^5)$, for

$$
\mathcal{H}(p, q, r, s, t) := \frac{(1 + q^2)r - 2pq + (1 + p^2)t}{2(1 + p^2 + q^2)^{3/2}}, \quad \mathcal{K}(p, q, r, s, t) := \frac{rt - s^2}{(1 + p^2 + q^2)^2}.
$$

Here, the ellipticity of (2.6) is equivalent to the ellipticity condition (2.5) for g. In particular, if g verifies (2.5), the class \mathcal{W}_g of elliptic Weingarten surfaces in \mathbb{R}^3 given by (1.2) satisfies the maximum principle in its usual geometric version.

The number $\alpha := g(0)$ has a geometric meaning in the class of Weingarten surfaces \mathcal{W}_g, and is called the umbilical constant of the class \mathcal{W}_g, because umbilics of any surface in \mathcal{W}_g have principal curvatures equal to α. Note that by making, if necessary, the change $g(t) \rightarrow -g(t)$ in (1.2) while reversing the orientation of the surface, we may assume without loss of generality that $\alpha = g(0) \geq 0$. If $g(0) = 0$, planes belong to the Weingarten class \mathcal{W}_g, and the Weingarten equation (1.2) is said to be of minimal type. If $g(0) > 0$, spheres of radius $1/\alpha$ with their inner orientation are elements of \mathcal{W}_g.

When we write the Weingarten equation as (1.4), the umbilical constant α is given by the relation $f(\alpha) = \alpha$, and the equation is of minimal type if $f(0) = 0$. Moreover, if f is defined at $x = 0$ with $f(0) \neq 0$, the cylinders in \mathbb{R}^3 of principal curvatures $\{0, f(0)\}$ are elliptic Weingarten surfaces satisfying (1.4).

2.2. Weingarten multigraphs. Given an immersed oriented surface Σ in \mathbb{R}^3 with unit normal $N : \Sigma \rightarrow S^2$, we will refer to the set $N(\Sigma) \subset S^2$ as the Gauss map image of Σ.

Definition 2.1. A surface Σ in \mathbb{R}^3 is a multigraph if there is some plane P in \mathbb{R}^3 such that Σ can be seen locally around each point $p \in \Sigma$ as a graph over P. Equivalently, Σ is a multigraph if its Gauss map image is contained in an open hemisphere of S^2.

After a change of Euclidean coordinates, we can always assume without loss of generality for a multigraph Σ that $N(\Sigma)$ lies in the upper open hemisphere S^2_+, and so, that $\nu \geq 0$ where $\nu := \langle N, e_3 \rangle$ is the angle function of Σ. Obviously, any graph $z = u(x, y)$ is a multigraph.

Note that the surfaces with vanishing angle function, $\nu \equiv 0$, are open pieces of flat surfaces of the form $\Gamma \times \mathbb{R}$, where Γ is some immersed curve in \mathbb{R}^2.

Lemma 2.2. Let \(\Sigma \) be an elliptic Weingarten surface, and assume that its angle function satisfies \(\nu \geq 0 \). Then either \(\nu \equiv 0 \), or \(\nu > 0 \) on \(\Sigma \). If \(\nu \equiv 0 \), then \(\Sigma \) is a piece of a plane or a cylinder.

Proof. Let \(f \) be the smooth function defining the relation (1.4). If \(f \) is not defined at 0, then by properties (i)-(iv) of \(f \) it follows that \(\Sigma \) has positive curvature. In particular, its Gauss map \(N : \Sigma \to \mathbb{S}^2 \) is a local diffeomorphism, hence an open mapping. Thus, if \(\nu \geq 0 \), it must actually happen that \(\nu > 0 \), and Lemma 2.2 holds in this case.

Assume next that \(f \) is defined at 0, and let \(q_0 \in \Sigma \) satisfy \(\nu(q_0) = 0 \). Without loss of generality, we assume that \(q_0 \) is the origin and \(N(q_0) = (1,0,0) \). If \(f(0) = 0 \) (resp. \(f(0) \neq 0 \)), let \(C \) denote the vertical plane (resp. the vertical cylinder with principal curvatures \(0 \) and \(f(0) \)) that is tangent to \(\Sigma \) at \(q_0 \), with the same orientation. Note that both \(\Sigma \) and \(C \) satisfy the elliptic Weingarten relation (1.4). Thus, both \(\Sigma \) and \(C \) can be seen around the origin as graphs \(x = h_i(y,z) \), \(i = 1,2 \), over their common tangent plane, and \(h_1, h_2 \) are solutions to the same \(C^2 \) fully nonlinear elliptic PDE, associated to (1.4). In these conditions, it is well known that the difference \(h = h_1 - h_2 \) satisfies a second order, linear, homogeneous elliptic PDE \(L[h] = 0 \) with \(C^1 \) coefficients. Note that \(Dh(0,0) = (0,0) \), where \(Dh = (h_{qp}, h_{pz}) \). Also \(h_z = (h_1)_z \), since \(h_2(y,z) \) does not actually depend on \(z \), because it corresponds to the vertical plane (or cylinder) \(C \).

Assume that \(h \) is not identically zero. Then, it is a standard fact (see e.g. Bers [3]) that there exist coordinates \((u,v) \) obtained by a linear transformation of \((y,z) \) such that \(h \) has the local representation around the origin

\[
h(u,v) = w(u,v) + o(\sqrt{u^2 + v^2})^k
\]

where \(w(u,v) \) is a homogeneous harmonic polynomial of degree \(k \geq 2 \). In particular, the image of \(Dh \) cannot lie in a half-plane around the origin. Thus, there exist points arbitrarily close to the origin where \(h_z > 0 \). Hence, \(\nu < 0 \) at those points, what contradicts that \(\nu \geq 0 \) in \(\Sigma \). Therefore, \(h \) must be identically zero, and so \(\Sigma \) is a piece of the cylinder (or plane) \(C \). This concludes the proof. \(\square \)

2.3. The linearized Weingarten equation. Let \(\Sigma \) be an immersed oriented surface in \(\mathbb{R}^3 \) with unit normal \(N \). Given \(\phi \in C_0^{\infty}(\Sigma) \), consider the normal variation of \(\Sigma \) associated to \(\phi \),

\[
(p, \tau) \in \Sigma \times (-\varepsilon, \varepsilon) \mapsto p + \tau \phi(p)N(p),
\]

and denote by \(\mathcal{H}(\tau) \) and \(\mathcal{K}(\tau) \) the mean curvature and Gauss curvature of the corresponding surface \(\Sigma_\tau \) in (2.8). In [24] it is shown (see equation (1.1)) that

\[
2\mathcal{H}'(0) = \Delta \phi + (4H^2 - 2K)\phi, \quad \mathcal{K}'(0) = \text{div}(T_1 \nabla \phi) + 2HK\phi.
\]

Here, \(H, K \) denote the mean curvature and Gauss curvature of \(\Sigma \); \(\Delta, \text{div}, \nabla \) are the Laplacian, divergence and gradient operator on \(\Sigma \), and \(T_1 := 2H \text{Id} - S \), where \(S \) is the shape operator of \(\Sigma \).

Assume now that \(\Sigma \) satisfies an elliptic Weingarten equation (1.2). Let \(\{\Sigma_\tau\}_{\tau \in (-\varepsilon, \varepsilon)} \) be a normal variation of \(\Sigma \) associated to some function \(\phi \in C_0^{\infty}(\Sigma) \), and denote

\[
\mathcal{W}(\tau) := \mathcal{H}(\tau) - g(\mathcal{H}(\tau)^2 - \mathcal{K}(\tau)) : \Sigma \times (-\varepsilon, \varepsilon) \to \mathbb{R},
\]

with the previous notation, where \(g \) is the function in (1.2). Then, taking into account (2.9), the linearized operator of the Weingarten equation (1.2) satisfied by \(\Sigma \) is

\[
\mathcal{W}'(0) = \mathcal{L}_g[\phi] = \left(\frac{1-2g'(0)}{2} \right) \Delta \phi + g' \text{div}(T_1 \nabla \phi) + g\phi,
\]
Elliptic Weingarten surfaces

where \(g, g' \) are evaluated at \(H^2 - K \), and

\[
q := 2g^2(1 - 2gg') - (1 - 4gg')K.
\]

We remark that \(L_g \) in (2.11) is a linear elliptic operator, since (1.2) is elliptic.

3. Weingarten multigraphs with bounded second fundamental form

The present section is devoted to the proof of the following theorem:

Theorem 3.1. Planes are the only complete elliptic Weingarten multigraphs with bounded second fundamental form.

Proof. We will argue by contradiction. Let \(\Sigma \) be a complete elliptic Weingarten multigraph with bounded second fundamental form, and assume that \(\Sigma \) is not a plane. Let \(f \in C^2(I_f), I_f \subset \mathbb{R}, \) be the function that defines the Weingarten relation (1.4) satisfied by \(\Sigma \). We denote by \(\alpha \geq 0 \) the ellipticity constant of \(f \), given by \(f(\alpha) = \alpha \). Up to an Euclidean change of coordinates, we can assume that \(N(\Sigma) \) is a subset of \(S^2_+ \).

We will start by noting that \(f \) is defined at 0, i.e., that \(0 \in I_f \). Indeed, otherwise we have from \(\alpha \geq 0 \) that \(I_f \subset (0, \infty) \), and by the properties of \(f \) we deduce that \(I_f = (a, \infty) \) for some \(a \geq 0 \), and \(f(x) \to \infty \) (resp. \(f(x) \to a \)) as \(x \to a^+ \) (resp. \(x \to \infty \)). Thus, both principal curvatures of \(\Sigma \) are positive, by monotonicity of \(f \). Since \(\Sigma \) has bounded second fundamental form, we easily see from there that its Gaussian curvature satisfies \(K \geq c > 0 \) for some constant \(c \). Thus, \(\Sigma \) is compact, a contradiction with \(N(\Sigma) \subset S^2_+ \).

So, from now on we will assume that there exists \(f(0) \). In the rest of the proof, \(W_f \) will denote the class of all immersed oriented surfaces in \(\mathbb{R}^3 \) that satisfy (1.4) for our choice of \(f \). By ellipticity, surfaces in \(W_f \) satisfy the maximum principle. Note that if \(f(0) \neq 0 \), then \(f(0) > 0 \) (by monotonicity, since \(\alpha > 0 \) in this case).

We proceed with the proof. Since \(N(\Sigma) \subset S^2_+ \), the surface \(\Sigma \) can be locally seen as a graph \(z = u(x, y) \). Take from now on an arbitrary point \(p \in \Sigma \), and let \(R > 0 \) be the largest value for which an open neighborhood \(V \subset \Sigma \) of \(p \) can be seen as a graph \(z = u(x, y) \) over \(D = D(\hat{q}, R) \), where \(\hat{q} = \pi(p) \), with \(\pi(x, y, z) := (x, y) \). See Figure 3.1. That this radius \(R \) exists, i.e., that \(R \) is not infinite, is proved in Assertion 3.2 below:

Figure 3.1. Initial situation of the proof of Theorem 3.1.
Assertion 3.2. In the previous conditions, \(R < \infty \).

Proof. If \(\alpha > 0 \), any sphere \(S_\alpha \) of radius \(1/\alpha \) lies in the Weingarten class \(\mathcal{W}_f \) for its inner orientation. In case \(R > 1/\alpha \), we could place a sphere \(S_\alpha \) above the graph \(\mathcal{V} \), and then move it downwards until reaching a first contact at an interior point of both surfaces. This is a contradiction with the maximum principle for surfaces in \(\mathcal{W}_f \). Therefore, \(R \leq 1/\alpha \) if \(\alpha > 0 \).

Assume now that \(\alpha = 0 \), i.e., \(f(0) = 0 \), and so \(\Sigma \) is a Weingarten surface of minimal type. Let \(\kappa_1 \geq \kappa_2 \) denote the principal curvatures of \(\Sigma \). Since \(|\sigma|^2 := \kappa_1^2 + \kappa_2^2 \) is bounded, it is clear by monotonicity of \(f \) and the condition \(f(0) = 0 \) that the set \((\kappa_1(\Sigma), \kappa_2(\Sigma)) \subset \mathbb{R}^2 \) lies on a wedge region \(\mathcal{R} \) of the form

\[
(3.1) \quad \mathcal{R} = \{(x,y) : x \geq y, m_1x \leq y \leq m_2x\}, \quad m_1, m_2 < 0.
\]

This easily implies the inequality

\[
(3.2) \quad \kappa_1^2 + \kappa_2^2 \leq \gamma \kappa_1 \kappa_2,
\]

for some \(\gamma \in \mathbb{R} \) at every point of \(\Sigma \), a condition that is equivalent for any surface \(\Sigma \) in \(\mathbb{R}^3 \) to the property that its Gauss map \(N : \Sigma \to S^2 \) is quasiconformal; see Section 16.6 in [15].

So, assume \(R = \infty \). Then, \(\Sigma \) is an entire graph with quasiconformal Gauss map. By a theorem of L. Simon ([27, Theorem 4.1]), \(\Sigma \) must be a plane, a contradiction. This completes the proof of Assertion 3.2. \(\square \)

Remark 3.3. Recall that, by hypothesis, \(\Sigma \) has bounded second fundamental form, that is, we have \(|\sigma(p)| \leq \gamma < \infty \) for some constant \(\gamma \), for all \(p \in \Sigma \). This implies a well-known uniformicity property for \(\Sigma \) as a local graph, see e.g. Proposition 2.3 in [28]. In our conditions, this property implies that there exists some \(\delta = \delta(\gamma) > 0 \) for which the following holds:

Any \(p \in \Sigma \) has a neighborhood \(U_p \subset \Sigma \) that is a graph over the disk \(B_p(2\delta) \subset T_p\Sigma \) centered at the origin and of radius \(2\delta \) of its tangent plane at \(p \). Also, if \(u \) denotes the function that defines this graph in any such disk \(B_p(2\delta) \), it holds \(|Du| < 1 \) in \(B_p(2\delta) \), where \(Du \) denotes the Euclidean gradient of \(u \). Moreover, there exists \(\mu = \mu(\gamma) > 0 \), such that the \(C^2 \) norm of \(u \) is at most \(\mu/2 \) on any of the disks \(B_p(2\delta) \); that is, \(||u||_{C^2(B_p(2\delta))} < \mu/2 \).

We remark that \(\delta, \mu \) only depend on the bound \(\gamma \) for the second fundamental form of \(\Sigma \), and not on \(p \) or \(\Sigma \). These numbers \(\delta, \mu > 0 \) will be considered fixed from now on in the proof.

Let us fix next some notation for the rest of the proof of Theorem 3.1.

First, note that by Assertion 3.2 there exists some \(q \in \partial D \) for which \(u \) cannot be extended to a neighborhood of \(q \). We let \(C_1 := \Gamma_1 \times \mathbb{R} \), \(C_2 := \Gamma_2 \times \mathbb{R} \), denote the two vertical cylinders in \(\mathbb{R}^3 \) of radius \(1/f(0) \) that pass through \(q \), and whose unit normals at \(q \) are orthogonal to \(\partial D \); (if \(f(0) = 0 \), \(C_1, C_2 \) are actually the same vertical plane with opposite orientations). Note that \(C_i \in \mathcal{W}_f \), \(i = 1, 2 \), for their inner orientation. We will let \(\Gamma_i(s) \) be an arclength parametrization of the circle (or straight line) \(\Gamma_i \), with \(\Gamma_i(0) = q \).

Given \(s_0 \in \mathbb{R}, \varepsilon > 0 \), for each \(i = 1, 2 \) we let \(\mathcal{N}_i(s_0, \varepsilon) \) denote the open one-sided tubular set

\[
(3.3) \quad \mathcal{N}_i(s_0, \varepsilon) = \{\Gamma_i(s) + \tau \eta_i(s) : |s - s_0| < \delta, \tau \in (0, \varepsilon)\} \subset \mathbb{R}^2,
\]

where \(\eta_i(s) \) denotes the unit normal of \(\Gamma_i(s) \) that, at \(q \), points in the direction \(\hat{q} - q \), where \(\hat{q} \) is the center of \(D \). See Figure 3.2.

Assertion 3.4. In the above conditions, there exists \(\varepsilon > 0 \) such that \(u(x, y) \) extends smoothly to \(D \cup \mathcal{N}_i(0, \varepsilon) \), for some \(i = 1, 2 \). Moreover, this extension satisfies that \(u(x, y) \) diverges to either
Moreover \(u \) is a one-sided tubular neighborhood of \(\Gamma \) for \(f \).

The statement of Theorem 3.1 holds if \(f(0) \neq 0 \), call \(\Gamma := \Gamma_i \), and suppose, for definiteness, that \(u \to -\infty \).

Remark 3.5. We point out the following consequence of Assertion 3.4, for later use. Assume that we are in the conditions of Assertion 3.4 with \(f(0) \neq 0 \), call \(\Gamma := \Gamma_i \), and suppose, for definiteness, that \(u \to -\infty \).

Assertion 3.6. The statement of Theorem 3.1 holds if \(f(0) = 0 \).

Proof. We first prove that if \(f(0) = 0 \), then \(\Sigma \) is a graph. Note that since \(f(0) = 0 \), the cylinders \(C_i = \Gamma_i \times \mathbb{R} \) are vertical planes, and the one-sided tubular domains \(N_i(0, \varepsilon) \) of Assertion 3.4 are open rectangles in \(\mathbb{R}^2 \).

Using the notation of Assertion 3.4, take \(q' \in N_i(0, \varepsilon) \cap D \) given by \(q' = \Gamma_i(\delta/2) + \tau_0 \eta_1(\delta/2) \) for \(\tau_0 \in (0, \varepsilon) \) small enough, and let \(p' = (q', u(q')) \in \Sigma \). Then, we can apply again the extension process in Assertion 3.4, but this time starting with \(p' \) instead of \(p = (\hat{q}, u(\hat{q})) \). In this way, we see that \(u \) can also be extended to a one-sided tubular domain \(N_i(\delta/2, \varepsilon_1) \), i.e., to

\[
\{ \Gamma_i(s) + \tau \eta_1(s) : s \in [-\delta/2, 3\delta/2], \tau \in (0, \varepsilon_1) \} \subset \mathbb{R}^2
\]

for some \(\varepsilon_1 > 0 \), and in particular to the union \(N_i(0, \varepsilon) \cup N_i(\delta/2, \varepsilon_1) \). By repeating this process, we conclude that \(u \) can be extended to a union of domains \(N_i(k\delta/2, \varepsilon_k) \) for \(k \in \mathbb{Z} \), and so, to a one-sided tubular neighborhood \(N_{\Gamma} \) of the straight line \(\Gamma \subset \mathbb{R}^2 \) that is tangent to \(\partial D \) at \(q \).

Moreover \(u(x, y) \to \pm \infty \) as \((x, y) \to \Gamma \). See Figure 3.3, left.

We claim next that \(u \) can actually be extended to the slab \(S_{\Gamma} \) of \(\mathbb{R}^2 \) contained between \(\Gamma \) and the line parallel to \(\Gamma \) that passes through \(\hat{q} \). To see this, take for each \(\theta \in (-\pi/2, \pi/2) \) the open

Figure 3.2. The two circles \(\Gamma_i \), \(i = 1, 2 \), that are tangent to \(\partial D \) at \(q \), and their associated one-sided tubular domains \(N_i(0, \varepsilon) \) at \(q \).
segment σ_0 that joints \hat{q} with Γ and that makes an angle θ with the segment σ_0 that joints \hat{q} and q. Note that u is well defined on σ_0 for sufficiently small values of θ. Let $\theta_0 > 0$ be the supremum of the values for which u can be extended to the open triangular region (see Figure 3.3, left)

$$\Omega_0 := \{ \cup \sigma_0 : |\theta| < \theta_0 \}.$$

If $\theta_0 \neq \pi/2$, there exists $q_0 \in \sigma_{\theta_0} \subset \partial \Omega_0$ such that u cannot be extended around q_0. By the previous process, we see that $u \to \pm \infty$ along the whole segment σ_{θ_0}. But this is a contradiction, since the open segment σ_{θ_0} intersects the one-sided tubular set N_{Γ}, where u is well defined. Therefore, $\theta_0 = \pi/2$, and this means that u can be extended to the slab S_{Γ}.

Next, let P^+ denote the open half-plane of \mathbb{R}^2 with $\partial P^+ = \Gamma$ and $\hat{q} \in P^+$. Assume that u, which is at first defined on an open subset of P^+, cannot be globally extended to P^+. Then, there exists some $r_1 \geq R$ and some $q_1 \in P^+ \cap \partial D(\hat{q}, r_1)$ such that u is well defined on $P^+ \cap D(\hat{q}, r_1)$ but cannot be smoothly extended around q_1. Then, by repeating the previous argument, but this time with respect to q_1 (instead of q), we deduce that u is well defined in the slab S_{Γ_1} between the line Γ_1 that is tangent to $\partial D(\hat{q}, r_1)$ at q_1, and the line parallel to Γ_1 that passes through \hat{q}. Moreover $u \to \pm \infty$ as we approach Γ_1. See Figure 3.3, right.

Observe here that Γ_1 needs to be parallel to Γ. Indeed, otherwise the union of the slabs $S_{\Gamma} \cup S_{\Gamma_1}$ is a simply connected domain in \mathbb{R}^2 where u is globally well defined, but this is impossible since $u \to \pm \infty$ as we approach Γ_1, which actually intersects S_{Γ}.

Then, it clearly follows from this argument that u can be extended to a domain $\Omega \subset \mathbb{R}^2$ that is either a half-plane or a strip between two parallel lines, and so that $u(x, y) \to \pm \infty$ as $(x, y) \to \partial \Omega$. In particular, the complete multigraph Σ is actually the graph $z = u(x, y)$ over Ω.

Finally, let us recall that the Gauss map $N : \Sigma \to \mathbb{S}^2$ of Σ is quasiconformal; see the proof of Assertion 3.2. By Theorem 3.1 in [27] (see also equation (3.26) in [27]), and since Σ is a graph, there exist constants $c' > 0$ and $\alpha \in (0, 1)$ such that

$$||N(x) - N(\bar{x})|| \leq c' \left(\frac{||x - \bar{x}||}{\rho} \right)^{\alpha},$$

Figure 3.3. Left: the one-sided tubular neighborhood N_{Γ} of the line Γ, and the triangular region Ω_0. Right: the union of the two strips S_{Γ} and S_{Γ_1}.
for all \(x, \bar{x} \in \Sigma \) that are at an extrinsic distance at most \(\varrho/2 \) from some arbitrary point \(x_0 \in \Sigma \); here, \(\varrho > 0 \) and \(| \cdot | \) denotes the Euclidean distance in \(\mathbb{R}^3 \). Since \(u \to \pm \infty \) as \((x, y) \to \partial \Omega \), we deduce that \(\Sigma \) is proper; hence, by letting \(\varrho \to \infty \) in (3.5) we conclude that \(N \) must be constant, i.e., \(\Sigma \) must be a plane, a contradiction (recall that \(\Omega \) is not \(\mathbb{R}^2 \)). This completes the proof of Assertion 3.6.

Remark 3.7. For the purposes of the proof of Theorem 4.2, let us observe that the fact that \(\Sigma \) is an elliptic Weingarten surface is only used in the proof of Assertion 3.6 to ensure:

1. that \(\Sigma \) has quasiconformal Gauss map (this uses that \(|\sigma| \) is bounded), and
2. that Assertion 3.4 holds for \(\Sigma \).

In particular, the proof of Theorem 3.1 when \(f(0) = 0 \) makes no use of the maximum principle.

Assertion 3.8. The statement of Theorem 3.1 holds if \(f(0) \neq 0 \). That is, there are no complete elliptic Weingarten multigraphs with \(f(0) \neq 0 \) and bounded second fundamental form.

Proof. Let us recall that we are using the notation explained before Remark 3.3. Let \(\Gamma \) be the circle \(\Gamma_1 \) in Assertion 3.4 (i.e., either \(\Gamma_1 \) or \(\Gamma_2 \)); note that \(\Gamma \) has radius \(r_0 = 1/f(0) \).

To start, consider the graph \(U_0 \subset \Sigma \) given by \(z = u(x, y) \) in the small one-sided tubular set \(\mathcal{N}_\Gamma(0, \varepsilon) \), defined as in (3.3). Note that this time we cannot apply Assertion 3.4 recursively as we did in (3.4) to extend \(u(x, y) \) to a one-sided tubular neighborhood of \(\Gamma \), since now \(\Gamma \) is not simply connected. To avoid this difficulty, we will adapt to our situation a perturbation argument by Espinar and Rosenberg [10], originally developed for the case of CMC surfaces in Riemannian product spaces \(M^2 \times \mathbb{R} \).

First, we will suppose from now on, for definiteness, that \(\mathcal{N}_\Gamma(0, \varepsilon) \) lies in the exterior of \(\Gamma \) (the argument is basically the same if \(\mathcal{N}_\Gamma(0, \varepsilon) \) lies inside the circle \(\Gamma \)). That is, we assume that \(U_0 \) lies in the exterior of \(\Gamma \times \mathbb{R} \).

Let \(S_0 \) be the universal cover of the cylinder \(\Gamma \times \mathbb{R} \), parametrized by

\[
(s, t) \in \mathbb{R}^2 \mapsto (\Gamma(s), t) \in \Gamma \times \mathbb{R}.
\]

Consider the universal cover of \(\mathbb{R}^3 \) minus the axis of \(\Gamma \times \mathbb{R} \), and choose there the natural cylindrical coordinates \((s, t, \rho)\), so that \(\rho \) gives the distance to the axis of \(\Gamma \times \mathbb{R} \), and \((s, t)\) correspond to the parameters in (3.6). In particular, \(S_0 \) corresponds to the horizontal plane \(\rho = r_0 \).

Then, by Remark 3.5, the surface \(U_0 \subset \Sigma \) lifts to a graph \(\rho = v(s, t) \) over an open set of the plane \(S_0 \), of the form \(\{(s, t) : |s| < \delta, t < t_0(s)\} \) for \(t_0(s) : [-\delta, \delta] \to \mathbb{R} \) continuous. Moreover, this graph lies above \(S_0 \) and converges asymptotically to \(S_0 \) as \(t \to -\infty \). See Figure 3.4.

Once here, we can make an extension process similar to the one that we performed in (3.4), but this time with respect to the coordinates \((s, t, \rho)\). In this way, we obtain that a certain subset of \(\Sigma \) lifts to a graph \(\rho = w(s, t) \) over a domain \(\Omega \subset S_0 \) of the form \(\{(s, t) : s \in \mathbb{R}, t < t_0(s)\} \), for some continuous function \(t_0(s) \) on \(\mathbb{R} \). Call \(M \) to this graph. Note that \(M \) lies above \(S_0 \) and converges asymptotically to \(S_0 \) as \(t \to -\infty \). See Figure 3.4.

We now make a deformation argument on the universal cover \(S_0 \) of \(\Gamma \times \mathbb{R} \).

Let us parametrize \(S_0 \) as in (3.6). Then, its first and second fundamental forms are \(I = ds^2 + dt^2 \) and \(II = 2H_0 ds^2 \) and \(II = 2H_0 ds^2 \). Note that \(2H_0 = \kappa_1 = 1/r_0 \), a constant positive value, and \(K = 0 \). If we write the Weingarten equation satisfied by \(\Sigma \) (and by \(S_0 \)) as in (1.2), then a computation shows that the linearized operator \(L_\phi \) given by (2.11) is written on \(S_0 \) with respect to the flat parameters \((s, t)\) by

\[
L_\phi[\phi] = A\phi_{ss} + B\phi_{tt} + C\phi,
\]

\((3.7)\)
for any $\phi \in C^\infty_0(S_0)$, where A, B, C are the constants

$$A = \frac{1}{2} (1 - 2g (H_0^2) g' (H_0^2)), \quad B = A + 2H_0g' (H_0^2), \quad C = 4AH_0^2.$$

We remark that $A, B > 0$ (by ellipticity of (1.2) and thus of Lg), and so $C > 0$ as well.

Let $\Omega_0 \subset S_0$ be the compact domain parametrized by $(s, t) \in [-L, L] \times [-r, r]$ for some fixed arbitrary values $L, r > 0$. Define next the function

$$\phi(s, t) := \cos \left(\frac{\pi s}{2L} \right) \cos \left(\frac{\pi t}{2r} \right).$$

Then, ϕ satisfies the following properties:

1. $\phi > 0$ in the interior of Ω_0, and $\phi = 0$ on $\partial \Omega_0$.
2. If L, r are large enough, $Lg[\phi] > 0$ in the interior of Ω_0.

For the second property, simply note that, by (3.7) and (3.8), we have

$$Lg[\phi] = \left(-A \left(\frac{\pi}{2L} \right)^2 - B \left(\frac{\pi}{2r} \right)^2 + C \right) \phi,$$

and that A, B, C are constants with $C > 0$.

Let now $S_0(\tau)$ denote the normal variation of the compact domain $\Omega_0 \subset S_0$ given by (2.8) with respect to the function ϕ in (3.8). Note that, for L, r large enough, the operator $\mathcal{W}(\tau)$ in (2.10) associated to this variation satisfies $\mathcal{W}(0) > 0$, by (2.11) and $Lg[\phi] > 0$. It follows then that for $\tau \in (-\epsilon, \epsilon)$ small enough, we have the following properties when we view the surfaces in the (s, t, ρ) coordinates:

1. $S_0(\tau)$ is a compact immersed surface, with boundary $\partial S_0(\tau) = \partial \Omega_0 \subset S_0$.
2. If $\tau < 0$ (resp. $\tau > 0$), the interior of $S_0(\tau)$ lies above (resp. below) the plane S_0; note that this follows by (2.8), since $\phi > 0$ in the interior of Ω_0 and the unit normal of S_0 is vertical and points downwards.
3. If H_τ, K_τ denote the mean curvature and Gauss curvature of $S_0(\tau)$, and $\tau < 0$ (resp. $\tau > 0$), then it holds

$$H_\tau - g (H_\tau^2 - K_\tau) < 0, \quad (\text{resp.} > 0).$$

This follows since $\mathcal{W}(0) = 0$ and $\mathcal{W}(0) > 0$.

We next make a comparison argument between $S_0(\tau)$ and the graph M defined above, with respect to the coordinates (s, t, ρ). See Figure 3.4.

![Figure 3.4](image-url)
Note that the boundary \(\partial M \) is at a positive distance from the plane \(S_0 \) when we restrict to the strip of \(S_0 \) given by \(\{(s, t) : |s| \leq L\} \). Thus, taking \(\tau < 0 \) sufficiently close to 0, we may assume that the maximum height of \(S_0(\tau) \) over \(S_0 \) is smaller than this distance, and so all translations of \(S_0(\tau) \) in the \(t \)-direction are disjoint from \(\partial M \). Note that both \(M \) and the interior of \(S_0(\tau) \) lie above \(S_0 \). Then, we can slide \(S_0(\tau) \) horizontally by increasing the \(t \)-coordinate, until it is disjoint from \(M \), and then start sliding it again but in the opposite direction (i.e., making \(t \) decrease). Since \(M \) converges asymptotically to \(S_0 \) as \(t \to -\infty \) and we have avoided \(\partial M \) in this sliding process, it is clear that we will eventually find an interior first contact point between \(M \) and \(S_0(\tau) \). Around this first contact point, \(S_0(\tau) \) lies below \(M \). That is, \(S_0(\tau) \) lies on the side of \(M \) to which their common unit normal points at. But now, observe that \(H - g(H^2 - K) = 0 \) on \(M \) by (1.2), and that \(S_0(\tau) \) satisfies (3.9). Since the Weingarten equation (1.2) is elliptic and \(S_0(\tau) \) lies below \(M \) in the previous sense, this situation contradicts the comparison principle for fully nonlinear elliptic PDEs (see e.g. Theorem 17.1 in [15]).

This contradiction finishes the proof of Assertion 3.8. Let us point out that, in the situation where our initial graph \(\mathcal{U}_0 \subset \Sigma \) lies inside the cylinder \(\Gamma \times \mathbb{R} \), the same argument applies, but now we should take \(\tau > 0 \) so that the surfaces \(M \) and \(S_0(\tau) \) lie below \(S_0 \), and contradict again the comparison principle; for this, note the change of sign in (3.9). \(\square \)

Observe that Assertions 3.6 and 3.8 end up the proof of Theorem 3.1. \(\square \)

4. Bernstein-type theorem in the uniformly elliptic case

In this section we prove a curvature estimate (Theorem 4.2) that, together with Theorem 3.1, classify the complete, uniformly elliptic Weingarten multigraphs:

Theorem 4.1. Planes are the only complete, uniformly elliptic Weingarten multigraphs in \(\mathbb{R}^3 \).

Proof. Let \(\Sigma \) be a complete multigraph that satisfies a uniformly elliptic Weingarten equation. By Theorem 4.2 below, \(\Sigma \) has bounded second fundamental form. Thus, \(\Sigma \) is a plane, by Theorem 3.1. \(\square \)

So, it remains to prove the following curvature estimate.

Theorem 4.2. Let \(\Sigma \) be a complete surface in \(\mathbb{R}^3 \), possibly with boundary \(\partial \Sigma \), and whose Gauss map image \(N(\Sigma) \) is contained in an open hemisphere of \(\mathbb{S}^2 \). Assume that \(\Sigma \) satisfies a uniformly elliptic Weingarten equation (1.2) for some \(g : [0, \infty) \to \mathbb{R} \), and let \(\Lambda > 0 \) denote the ellipticity constant of \(g \) in (1.3).

Then, for every \(d > 0 \) there exists a constant \(C = C(\Lambda, g(0), d) \) such that for each \(p \in \Sigma \) with \(d_{\Sigma}(p, \partial \Sigma) \geq d \), it holds

\[
|\sigma(p)| \leq C.
\]

Here, \(d_{\Sigma} \) and \(|\sigma| \) denote, respectively, the distance function in \(\Sigma \) and the norm of the second fundamental form of \(\Sigma \).

Proof. The basic strategy of the argument is inspired by a general curvature estimate for stable CMC surfaces in Riemannian 3-manifolds by Rosenberg, Souam and Toubiana [28]. For other adaptations of the Rosenberg-Souam-Toubiana estimate to different geometric theories, see [5, 14].

To start, arguing by contradiction, assume that there is a sequence of complete immersed surfaces \(\psi_n : \Sigma_n \to \mathbb{R}^3 \), possibly with boundary, such that:
The Gauss map image of each Σ_n lies in the upper hemisphere S^2_+. Each Σ_n satisfies a uniformly elliptic Weingarten equation $H = g_n(H^2 - K)$, with ellipticity constant Λ and $g_n(0) = g(0)$. There exist points $p_n \in \Sigma_n$ such that $d_{\Sigma_n}(p_n, \partial \Sigma_n) \geq d$ and $|\sigma_{\Sigma_n}(p_n)| > n$.

Let us first of all explain the idea behind the proof, in the case of CMC surfaces. First, one makes a blow-up process to the immersions ψ_n after sending the points p_n to the origin, to obtain new immersions $\varphi_n = \lambda_n \psi_n$ with $\lambda_n \to \infty$, such that the second fundamental forms of the φ_n are uniformly bounded, and equal to 1 at the origin. Then, a standard compactness argument of CMC surface theory would prove that a subsequence of the φ_n converges uniformly on compact sets to a complete minimal surface Σ_0 in \mathbb{R}^3, that would have Gauss map image contained in a closed hemisphere, and non-zero Gauss curvature at the origin. This would contradict the classical Osserman theorem according to which the Gauss map image of a complete, non-planar minimal surface is dense in S^2, thus giving the desired curvature estimate.

To prove the above compactness property, a key point is to ensure that the bound of the second fundamental form implies local uniform $C^{2,\alpha}$ estimates for all the immersions φ_n. In the CMC case, this follows easily by Schauder theory (see Chapter 6 in [15]), because the CMC equation is quasilinear.

In order to extend these well-known CMC ideas to our general elliptic Weingarten setting, the two main sources of complication are, on the one hand, that the fully nonlinear nature of the Weingarten equation prevents the direct use of Schauder estimates in order to obtain local uniform $C^{2,\alpha}$ estimates for the sequence of surfaces φ_n; and, on the other hand, that even if the limit surface Σ_0 exists, it will not be minimal or satisfy an elliptic Weingarten equation (there is no C^1 convergence of the equations in this case).

Taking these considerations in mind, we split the proof of Theorem 4.2 into several steps:

Step 1: A blow-up process

Let $D_n = D_{\Sigma_n}(p_n, d/2)$ be the compact metric disk in Σ_n of center p_n and radius $d/2$, and let q_n be the maximum in D_n of the function

$$h_n(q) = |\sigma_{\Sigma_n}(q)| d_{\Sigma_n}(q, \partial D_n), \quad q \in D_n.$$

Obviously, q_n lies in the interior of D_n since h_n vanishes on ∂D_n. Define next $\lambda_n := |\sigma_{\Sigma_n}(q_n)|$ and $r_n := d_{\Sigma_n}(q_n, \partial D_n)$. Then,

$$\lambda_n r_n = |\sigma_{\Sigma_n}(q_n)| d_{\Sigma_n}(q_n, \partial D_n) = h_n(q_n) \geq h_n(p_n) > n \frac{d}{2}.$$ \hfill (4.1)

Thus, $\lim_n \lambda_n = \infty$. Also, observe that if we let $\hat{D}_n := D_{\Sigma_n}(q_n, r_n/2) \subset D_n$, then for any $w_n \in \hat{D}_n$ we have

$$d_{\Sigma_n}(q_n, \partial D_n) \leq 2 d_{\Sigma_n}(w_n, \partial D_n).$$ \hfill (4.2)

Consider next the immersions $\varphi_n := \lambda_n \psi_n : \hat{D}_n \subset \Sigma_n \rightarrow \mathbb{R}^3$. Then, by (4.2), we have for any $w_n \in \hat{D}_n$ that

$$d_{\Sigma_n}(w_n, \partial D_n) \leq \frac{|\sigma_{\Sigma_n}(w_n)|}{\lambda_n} = \frac{h_n(w_n)}{\lambda_n d_{\Sigma_n}(w_n, \partial D_n)} \leq \frac{h_n(q_n)}{\lambda_n d_{\Sigma_n}(w_n, \partial D_n)} \leq 2,$$ \hfill (4.3)

where $\tilde{\sigma}_n$ is the second fundamental form of φ_n. Thus, the norms of the $\tilde{\sigma}_n$ are uniformly bounded, and moreover, $|\tilde{\sigma}_n(q_n)| = 1$. Also, by (4.1), the radii of the disks \hat{D}_n with respect to the metric induced by φ_n diverge to infinity.
Finally, observe that since \(\psi_n \) satisfies the Weingarten equation \(H = g_n(H^2 - K) \), it follows that \(\varphi_n \) verifies the corresponding uniformly elliptic Weingarten equation

\[
H = \mathcal{G}_n(H^2 - K), \quad \mathcal{G}_n(t) := \frac{1}{\lambda_n} g_n(\lambda_n^2 t).
\]

Note that \(4t(\mathcal{G}'_n(t))^2 \leq \Lambda < 1 \), for all \(t \in [0, \infty) \). That is, the ellipticity constant associated to each \(\mathcal{G}_n \) is also \(\Lambda \). It is important to note here that the Weingarten equations (4.4) do not generally converge \(C^1 \) to an elliptic Weingarten equation as \(\lambda_n \to \infty \).

Step 2: *A local uniform \(C^{2,\alpha} \)-estimate for the blown-up immersions*

Assume after a translation of each \(\varphi_n \) that \(\varphi_n(q_n) = 0 \) for all \(n \). Consider a subsequence of the immersions \(\varphi_n \), so that the unit normals at \(\varphi_n(q_n) \) converge to some \(N_0 \in S^2_+ \), and choose, after a linear isometry of \(\mathbb{R}^3 \), new Euclidean coordinates \((x_1, x_2, x_3)\) such that \(N_0 = (0, 0, 1) \).

Recall that we have the bound \(|\hat{\sigma}_n| \leq 2 \) on \(\hat{D}_n \), and so we are in the conditions of Remark 3.3. Then, using this remark and the fact that the unit normals of the \(\varphi_n \) converge to \((0, 0, 1)\) at the origin, it follows that there exist positive constants \(\delta_0, \mu_0 \) (that correspond to \(\delta = \delta(\gamma) \), \(\mu = \mu(\gamma) \) for \(\gamma = 2 \) in Remark 3.3) such that for each \(n \) large enough, a neighborhood in \(\varphi_n(\hat{D}_n) \) of the origin is given by the graph \(x_3 = v_n(x_1, x_2) \) of a function \(v_n \) defined on the disk \(B_{\delta_0} \subset \mathbb{R}^2 \) centered at the origin and of radius \(\delta_0 \), and also:

- (i) \(|Dv_n| < 3/2 \) in \(B_{\delta_0} \).
- (ii) \(\|v_n\|_{C^2(B_{\delta_0})} \leq \mu_0 \).

Since \(\varphi_n \) satisfies (4.4), it follows that \(v_n(x_1, x_2) \) is a solution to the uniformly elliptic PDE

\[
F^n(v_{x_1}, v_{x_2}, v_{x_1x_1}, v_{x_1x_2}, v_{x_2x_2}) = 0,
\]

where \(F^n(p, q, r, s, t) \in C^\alpha(\mathbb{R}^5) \) is given by

\[
F^n(p, q, r, s, t) = \mathcal{H} - \mathcal{G}_n(\mathcal{H}^2 - \mathcal{K}),
\]

and \(\mathcal{H}, \mathcal{K} \) are defined in (2.7). Note that, by conditions (i), (ii) above, the images of the sets \((Dv_n(B_{\delta_0}), D^2v_n(B_{\delta_0}))\) lie in the fixed compact set \(\Theta \) of \(\mathbb{R}^5 \) given by

\[
\Theta := \{(p, q, r, s, t) : p^2 + q^2 \leq 9/4, \ |p| + |q| + |r| + |s| + |t| \leq \mu_0 \}.
\]

In order to ensure convergence of the immersions \(\varphi_n \), we will prove that there exists a uniform bound of the \(C^{2,\alpha} \) norm of \(v_n \) in \(B_{\delta'} \), for some fixed \(\delta' \in (0, \delta_0) \), some \(\alpha \in (0, 1) \), and for all \(n \). In order to do this, we will use Nirenberg’s a priori estimate for fully nonlinear elliptic equations in dimension two ([22, Theorem I]), applied to each elliptic equation (4.5). To apply Nirenberg’s theorem, it suffices to check the following two conditions for the compact set \(\Theta \) in (4.7):

- (a) All first derivatives of all \(F^n \) are uniformly bounded in \(\Theta \).
- (b) There exists a constant \(\lambda > 0 \) such that

\[
F^n_{p} \xi^2 + F^n_{q} \eta^2 + F^n_{t} \eta^2 \geq \lambda(\xi^2 + \eta^2)
\]

at every point of \(\Theta \), for any \((\xi, \eta) \in \mathbb{R}^2 \) and any \(n \).

Let us prove these two conditions. The expression \(\mathcal{H}^2 - \mathcal{K} \) is clearly homogeneous and quadratic in \((r, s, t)\), for each \((p, q)\) fixed. A computation shows that it has one zero eigenvalue, and two
positive eigenvalues λ_1^2, λ_2^2 given by

$$
(4.9) \quad \lambda_2^2 = \lambda_2^2(p, q) = \frac{6 + p^4 + 6q^2 + q^4 + p^2(6 + 4q^2) \pm \sqrt{Q_4(p^2, q^2)}}{8(1 + p^2 + q^2)} > 0,$$

where $Q_4(x, y)$ is the polynomial of degree 4

$$
Q_4(x, y) = x^4 + y^3(8y - 4) + 2x^2y(14 + 9y) + (y^2 - 2y - 2)^2 + 4x(2 + 10y + 7y^2 + 2y^3).
$$

Moreover, it is easy to check from (4.9) that both $\lambda_i(p, q)$ are bounded from below by a positive constant when we restrict to the compact set Θ. So, after an orthogonal change of coordinates $(r, s, t) \mapsto (\bar{r}, \bar{s}, \bar{t})$, where the related orthogonal matrix depends on (p, q), we can write

$$
(H^2 - \mathcal{K})(p, q, r, s, t) = \lambda_1^2 \bar{r}^2 + \lambda_2^2 \bar{t}^2,
$$

where here \bar{r}, \bar{t} depend on (p, q, r, s, t), the dependence on (r, s, t) being linear.

All these functions $\lambda_i, \bar{r}, \bar{s}, \bar{t}$ can be chosen to be real analytic in their arguments, except around the points (p, q, r, s, t) where $\lambda_1(p, q) = \lambda_2(p, q)$, i.e., around the points where the eigenvalue multiplicity changes. Call B to this set of points.

We claim that $B \cap \Theta$ is empty. To see this, first observe that, by (4.9), B is given by the expression $Q_4(p^2, q^2) = 0$. We can rewrite Q_4 as

$$
Q_4(x, y) = ((x + y)^2 - 2(x + y) - 2)^2 + 4xy(10 + x^2 + 10y + y^2 + x(10 + 3y)).
$$

So,

$$
Q_4(p^2, q^2) \geq ((p^2 + q^2) - 2(p^2 + q^2) - 2)^2,
$$

and the expression in the right hand side vanishes only when $p^2 + q^2 = 1 + \sqrt{3}$. By the definition of Θ in (4.7), it is clear then that $Q_4(p^2, q^2) > 0$ in Θ, since $p^2 + q^2 \leq 9/4$ in Θ. Thus, Θ does not intersect B. In particular, the functions $\lambda_i, \bar{r}, \bar{s}, \bar{t}$ are real analytic in Θ. Now, note that for any $w \in \{p, q, r, s, t\}$ we have in Θ

$$
\left| \frac{(H^2 - \mathcal{K})_w}{\sqrt{H^2 - \mathcal{K}}} \right| = \left| \frac{(\lambda_1^2)_w \bar{r}^2 + (\lambda_2^2)_w \bar{t}^2 + 2\lambda_1^2 \bar{r} \bar{w} + 2\lambda_2^2 \bar{t} \bar{w}}{\sqrt{\lambda_1^2 \bar{r}^2 + \lambda_2^2 \bar{t}^2}} \right|
$$

(4.10)

$$
\leq \frac{\left| (\lambda_1^2)_w \bar{r} \right|}{\lambda_1} + \frac{\left| (\lambda_2^2)_w \bar{t} \right|}{\lambda_2} + \left| 2\lambda_1 \bar{r} \bar{w} \right| + \left| 2\lambda_2 \bar{t} \bar{w} \right|
$$

$$
\leq C_1 = C_1(\Theta)
$$

for some positive constant C_1 depending on Θ. From here and (4.6), we have in Θ

$$
|F^n_w| = \left| \frac{H_w - \sqrt{H^2 - \mathcal{K}} G'_n(H^2 - \mathcal{K})}{\sqrt{H^2 - \mathcal{K}}} \right| \leq \max_{\Theta} |H_w| + \frac{1}{2} C_1(\Theta) \leq C_2(\Theta)
$$

(4.11)

where we have used that $\sqrt{\lambda(G'_n(t))} < 1/2$ by the ellipticity condition on $G(t)$. Thus, all the first derivatives of F^n with respect to any $w \in \{p, q, r, s, t\}$ are uniformly bounded in Θ. This proves property (a).

Once we know that (a) holds, the proof of (b) is a straightforward consequence of the fact that all the equations (4.5) are uniformly elliptic on Θ for the same ellipticity constant, since all the
Elliptic Weingarten surfaces

\(\mathcal{G}_n \) satisfy the uniform condition \(4t(G_n(t))^2 \leq \Lambda < 1 \) for the same \(\Lambda \). Thus, (4.8) holds for some \(\lambda = \lambda(\Lambda, \Theta) \).

With this, we are in the conditions of Theorem I in [22] (alternatively, see also Theorem 17.9 in [15]), which implies what follows in our situation. Fix \(\delta' \in (0, \delta_0) \) once and for all, from now on. Then, there exist constants \(C' > 0 \) and \(\alpha \in (0, 1) \) such that

\[
\|v_n\|_{C^{2, \alpha}(B_{\delta'})} \leq C'
\]

for all \(n \). Here \(C', \alpha \) depend only on \(\Lambda \), in the following sense: at first, these constants depend on \(\delta_0, \mu_0, \delta' \), the ellipticity constant \(\Lambda \) and the bounds on the derivatives of \(F^n \) in \(\Theta \). Nonetheless, \(\delta_0, \mu_0 \) are determined by the condition that \(|\tilde{\sigma}_n| \leq 2 \), and the bounds (4.11) obtained for \(F^n \) on \(\Theta \) are independent of the equation \(F^n \), i.e., they only depend on \(\delta_0 \). Since \(\delta' \) has been considered fixed, the numbers \(C', \alpha \) only depend on \(\Lambda \).

Step 3: Existence and properties of a limit surface of the blown-up immersions

It follows by the estimate (4.12) that the set \(\{v_n\}_n \) is bounded in the \(C^{2, \alpha}(B_{\delta', \beta'}) \)-norm, and therefore is precompact in the \(C^{2, \alpha}(B_{\delta', \beta'}) \)-norm, for any \(\beta \in (0, \alpha) \). Thus, by the Arzela-Ascoli theorem, a subsequence of the \(v_n \) converges uniformly in the \(C^{2, \beta}(B_{\delta', \beta'}) \)-norm to some function \(v^0 \in C^{2, \beta}(B_{\delta', \beta'}) \); here, \(\beta \) is any number in \((0, \alpha) \), that we also consider fixed from now on.

Once here, we can apply a typical diagonal extension process and deduce that the graph \(x_3 = v^0(x_1, x_2) \) can be extended to a complete immersion \(\psi^0 : \Sigma_0 \to \mathbb{R}^3 \) that, by construction, is a limit in the \(C^2 \)-topology on compact sets of a subsequence of the immersions \(\varphi_n \). We denote this limit surface simply by \(\Sigma_0 \). That \(\Sigma_0 \) is complete follows since the radii of the \(\bar{D}_n \) go to \(\infty \).

Note that \(\Sigma_0 \) is not, in general, an elliptic Weingarten surface, since as explained before, the elliptic Weingarten equations (4.4) do not necessarily converge \(C^1 \) to a Weingarten equation.

We single out the following list of properties of \(\Sigma_0 \), that will be proved below.

1. **P1** \(\Sigma_0 \) is complete.
2. **P2** \(\Sigma_0 \) has bounded second fundamental form.
3. **P3** The Gauss map image \(N(\Sigma_0) \) lies in the closed hemisphere \(\overline{S^2_+} \).
4. **P4** The Gauss map \(N : \Sigma_0 \to S^2 \) is quasiconformal.
5. **P5** \(\Sigma_0 \) has a local uniform \(C^{2, \beta} \)-estimate, in the following sense: there exist \(\delta', C', \beta \) such that \(\Sigma_0 \) can be locally seen around each \(p \in \Sigma_0 \) as a graph over the disk \(D(0, \delta') \subset T_p \Sigma_0 \), and so that the \(C^{2, \beta} \)-norm in \(D(0, \delta') \) of the corresponding graphing function is at most \(C' \).
6. **P6** \(\Sigma_0 \) is not a plane.

The fact that \(\Sigma_0 \) is a complete surface was explained above. The second fundamental form of \(\Sigma_0 \) is bounded since it is a \(C^2 \)-limit of the immersions \(\varphi_n(D_n) \), and \(|\tilde{\sigma}_n| \leq 2 \) on \(\bar{D}_n \). That \(N(\Sigma_0) \) lies in \(\overline{S^2_+} \) is also immediate, since all the \(\varphi_n \) are multigraphs (here \(S^2_+ \) denotes the upper hemisphere in the original \((x, y, z) \)-coordinates of \(\mathbb{R}^3 \)). The local uniform \(C^{2, \beta} \)-estimate for \(\Sigma_0 \) in (P5) follows directly from the previous arguments using Nirenberg’s theorem. Since the norm of the second fundamental form of \(\varphi_n(D_n) \) is equal to 1 at the origin for all \(n \), the same happens to \(\Sigma_0 \); thus, \(\Sigma_0 \) is not a plane.

So, the only property that remains to check is (P4), i.e., that \(\Sigma_0 \) has quasiconformal Gauss map. To start, let us rewrite the uniformly elliptic Weingarten equation (4.4) satisfied by \(\varphi_n \) in the form (1.4); that is, we rewrite (4.4) as \(\kappa_2 = f_n(\kappa_1) \), where \(f_n \in C^2(\mathbb{R}) \) satisfies \(f_n \circ f_n = \text{Id} \) and the
uniform ellipticity condition (1.5). Let $\kappa_1^n \geq \kappa_2^n$ denote the principal curvatures of φ_n. Then, by the bounds in (1.5), it is clear that there exist $m_1, m_2 < 0$ (independent of n) such that, for each n, the set

$$(\kappa_1^n(\hat{D}_n), \kappa_2^n(\hat{D}_n)) \subset \mathbb{R}^2$$

lies in the wedge region of the plane

$$\mathcal{R}_n := \{(x, y) : x \geq y, m_1(x - \alpha_n) \leq y - \alpha_n \leq m_2(x - \alpha_n)\} \subset \mathbb{R}^2,$$

where α_n is the umbilical constant of (4.4), given by $G_n(0) = \alpha_n$, or equivalently by $f_n(\alpha_n) = \alpha_n$. See Figure 4.1. Note that $\alpha_n = g(0)/\lambda_n \to 0$ as $n \to \infty$. Thus, the regions \mathcal{R}_n converge to the region \mathcal{R} in (3.1), and it follows that the (bounded) set $(\kappa_1(\Sigma_0), \kappa_2(\Sigma_0)) \subset \mathbb{R}^2$ lies inside this wedge region \mathcal{R}, where $\kappa_1 \geq \kappa_2$ are the principal curvatures of Σ_0. By the arguments explained after (3.1), we deduce that the Gauss map of Σ_0 is quasiconformal, as claimed.

Step 4: A surface Σ_0 with the properties (P1)-(P6) of Step 3 cannot exist.

To start, let us recall that in Section 3 we proved that if Σ satisfies properties (P1)-(P3), and additionally Σ is an elliptic Weingarten surface of minimal type (i.e., $f(0) = 0$ in (1.4)), then Σ must be a plane; see Assertion 3.6. However, by inspecting this proof (including the proof of Assertion 3.4 in the Appendix), we can realize that the Weingarten condition in the case $f(0) = 0$ is used quite mildly. Specifically, it is only used to prove the following facts (see Remarks 3.7 and 6.1 for this matter):

i) That, because $|\sigma|$ is bounded, we have by Nirenberg’s theorem a uniform local $C^{2,\beta}$-estimate on Σ in the sense of (P5) above. In particular, we can take limits (up to subsequence) of translations of Σ in the C^2 norm on compact sets.

ii) That Lemma 2.2 holds for any of the limit surfaces of Σ by translations.

iii) That Σ has quasiconformal Gauss map.

This indicates that we can reproduce the proof of Assertion 3.6 in our context, provided that we can check first that the properties i), ii), iii) above hold for the limit surface Σ_0. But this is clear in our situation. Indeed, since $N : \Sigma_0 \to \mathbb{S}^2$ is quasiconformal by (P4) and we have uniform local $C^{2,\beta}$-estimates on Σ_0 by (P5), we only need to check that Lemma 2.2 holds for Σ_0 and for its limits by translations. That it holds for Σ_0 is immediate, since quasiconformal maps are open.
In addition, note that Σ_0 satisfies the quasiconformal equation (3.2) for some constant γ. Thus, any of its limit surfaces also satisfies (3.2), what implies that its Gauss map is also quasiconformal (and hence, open). So, Lemma 2.2 holds for these limit surfaces. Let us point out that, for the case of surfaces with quasiconformal Gauss map, the situation $\nu \equiv 0$ in Lemma 2.2 implies that the surface is a plane, since cylinders do not have quasiconformal Gauss map.

Consequently, we can deduce that a surface Σ_0 satisfying properties (P1)-(P5) of Step 3 must be a plane. But since Σ_0 is not a plane in our situation by (P6), this proves Step 4. This gives the desired contradiction, and completes the proof of Theorem 4.2. \hfill \Box

5. A Bernstein-type theorem in the non-uniformly elliptic case

For this section, we recall that if we write an elliptic Weingarten equation as (1.4), i.e., as $\kappa_2 = f(\kappa_1)$, the notation I_f indicates the domain of the function f, which is an interval of \mathbb{R}. We stress that Theorem 5.1 below is new even for the case of entire graphs.

Theorem 5.1. Let Σ be a complete multigraph in \mathbb{R}^3 that satisfies an elliptic Weingarten equation $\kappa_2 = f(\kappa_1)$, with $I_f \neq \mathbb{R}$. Then Σ is a plane.

Proof. Since $I_f \neq \mathbb{R}$, we may take $t_0 \notin I_f$. It follows then by the symmetry property $f \circ f = \text{Id}$ of f that there exists $\varepsilon > 0$ such that

$$|\kappa_i(p) - t_0| \geq \varepsilon, \quad \forall p \in \Sigma, \quad i = 1, 2,$$

(5.1)

here κ_1, κ_2 are the principal curvatures of Σ. We may take $t_0 \neq 0$ without loss of generality.

Write $\psi : \Sigma \to \mathbb{R}^3$ for the immersion of Σ into \mathbb{R}^3, and consider for $\alpha := 1/t_0$ the parallel surface of Σ at a distance α, given by $\psi^\alpha := \psi + \alpha N : \Sigma \to \mathbb{R}^3$, where $N : \Sigma \to S^2$ is the Gauss map of Σ. In general, ψ^α may have singular points; indeed, its induced metric g^α can be expressed at any point in terms of an orthonormal basis of principal directions $\{e_1, e_2\}$ of Σ as

$$g^\alpha(e_i, e_j) = (1 - \alpha \kappa_i)\delta_{ij},$$

where κ_i is the principal curvature of Σ in the direction e_i. However, in our present situation, the condition (5.1) ensures that ψ^α is everywhere regular. Moreover, it also follows from (5.1) and the expression of g^α that $g^\alpha(e_i, e_j) \geq \alpha^2 \varepsilon^2 \delta_{ij}$, and so ψ^α is a complete surface.

In addition, the Gauss map of ψ^α is equal to N (thus ψ^α is also a multigraph), and $\{e_1, e_2\}$ are also principal directions for ψ^α. The principal curvatures of ψ^α are given then by

$$\kappa_i^\alpha = \frac{\kappa_i}{1 - \alpha \kappa_i}, \quad i = 1, 2.$$

(5.2)

From this expression and (5.1), it is clear that the κ_i^α are uniformly bounded, i.e., that ψ^α has bounded second fundamental form.

Finally, observe that the surface ψ^α is also an elliptic Weingarten surface, since from $\kappa_2 = f(\kappa_1)$ and (5.2) it holds $\kappa_2^\alpha = f(\kappa_1^\alpha)$ for the function

$$f^\alpha(t) := \frac{f(t/\alpha)}{1 - \alpha f(t/\alpha)}.$$

(5.3)

Note that, by a simple computation, $f^\alpha \circ f^\alpha = \text{Id}$ and $(f^\alpha)' < 0$, so this Weingarten equation is certainly elliptic.

To sum up, ψ^α is a complete elliptic Weingarten multigraph with bounded second fundamental form. By Theorem 3.1, it is a plane. Hence, Σ must also be a plane. \hfill \Box
It is interesting to point out that the condition that $I_f \neq \mathbb{R}$ was only used above to ensure the existence of a value $t_0 \in \mathbb{R}$ for which (5.1) holds. Thus, essentially the same proof above gives the following result, where we allow that $I_f = \mathbb{R}$:

Corollary 5.2. Let Σ be a complete elliptic Weingarten multigraph whose principal curvatures κ_1, κ_2 satisfy

$$|\kappa_i(p) - t_0| \geq \varepsilon, \quad \forall p \in \Sigma, \quad i = 1, 2,$$

for some $t_0 \in \mathbb{R}$ and some $\varepsilon > 0$. Then Σ is a plane.

For the sake of completeness, we reformulate Theorem 5.1 for the situation in which the Weingarten equation is written as (1.2), instead of (1.4):

Theorem 5.3. Let $g \in C^2([0, \infty))$ satisfy:

1. $4t(g'(t))^2 < 1$ for all t (ellipticity condition).
2. Either $t + g(t^2)$ or $t - g(t^2)$ is bounded in $[0, \infty)$.

Then, any complete multigraph (in particular, any entire graph) in \mathbb{R}^3 that satisfies the Weingarten equation $H = g(H^2 - K)$ is a plane.

Proof. By Theorem 5.1, we only need to check that the second condition on g in the statement is equivalent to the fact that $I_f \neq \mathbb{R}$, for the function f appearing when we rewrite (1.2) as (1.4). Denote $t := H^2 - K$, and note that $\{\kappa_1, \kappa_2\} = g(t) \pm \sqrt{t}$, because of (1.2). By the symmetry and monotonicity properties of f, the fact that f is not globally defined in \mathbb{R} is equivalent to the fact that one of $\{\kappa_1, \kappa_2\}$ is globally bounded from above or from below on the graph $\kappa_2 = f(\kappa_1)$. This easily gives the equivalence of $I_f \neq \mathbb{R}$ with the second condition above. \[\square\]

Conditions (1)-(2) in Theorem 5.3 have also appeared in previous works by Sa Earp and Toubiana [25, 26] in connection with the existence of catenoids and half-space theorems for elliptic Weingarten surfaces of minimal type. See also [9].

An *elliptic linear Weingarten surface* is one that satisfies the equation

$$2aH + bK = c, \quad a, b, c \in \mathbb{R},$$

where the ellipticity condition is $a^2 + bc > 0$. This family contains surfaces of constant mean curvature ($b = 0$) and of constant positive curvature ($a = 0$), and corresponds to the family of parallel surfaces of the class of CMC surfaces in \mathbb{R}^3. However, as the parallel surface procedure usually creates singularities, their global geometry is not equivalent to the class of CMC surfaces.

In terms of κ_1, κ_2, equation (5.3) is written as $\kappa_2 = f(\kappa_1)$, where

$$f(x) = \frac{c - ax}{a + bx},$$

which is not globally defined on \mathbb{R} unless $b = 0$. Thus, we have:

Corollary 5.4. Planes and cylinders are the only complete, elliptic linear Weingarten surfaces in \mathbb{R}^3 whose Gauss map image lies in a closed hemisphere of S^2.

Proof. If $b = 0$, this is the classical theorem of Hoffman, Osserman and Schoen for CMC surfaces, see [17]; note that it also follows from Theorem 4.1. Also, if $b \neq 0$, since f is not globally defined in \mathbb{R}, it follows from Theorem 5.1 that planes are the only complete multigraphs that satisfy (5.3). Finally, by Lemma 2.2, we see that if the surface is not a multigraph, it must be a cylinder. This completes the proof. \[\square\]
6. Appendix: proof of Assertion 3.4

Assume that we are in the conditions of Assertion 3.4, with the notations explained just before its statement. We give only a sketch of the proof, which is essentially identical to the original one by Hauswirth-Rosenberg-Spruck in [16] for CMC surfaces in $\mathbb{H}^2 \times \mathbb{R}$.

Let $\{q_n\} \subset D$ converge to $q \in \partial D$, and denote $p_n := (q_n, u(q_n)) \in V \subset \Sigma$. If $\nu(\geq 0)$ denotes the angle function of Σ, then we have $\nu(q_n) \to 0$, since u cannot be extended as a graph around q (one should have in mind here Remark 3.3). Therefore, the tangent planes $T_{p_n} V$ become vertical as $n \to \infty$. Up to a subsequence, assume that $\{N(p_n)\}_n$ converges to some $N_0 \in \partial \mathbb{H}^2_+$. Denote $V_n := \Phi_n(V)$, where Φ_n is the vertical translation of \mathbb{R}^3 sending p_n to $(q_n, 0)$. Note that all V_n have uniformly bounded second fundamental form, and satisfy the Weingarten equation (1.4). Then, by Nirenberg’s a priori $C^{2,\alpha}$-estimates for fully nonlinear elliptic equations in dimension two (see [22, Theorem I]), we can use a standard compactness argument using the Arzela-Ascoli theorem and prove that the surfaces V_n converge (up to subsequence) in the C^2-norm in compact sets to some limit surface that also satisfies (1.4). Since $\nu(q_n) \to 0$ and $\nu \geq 0$, it follows from Lemma 2.2 that this limit surface is a piece of the cylinder $\Gamma \times \mathbb{R}$, where Γ is the circle of radius $1/f(0)$ that passes through q with interior unit normal N_0. (If $f(0) = 0$, Γ is an oriented straight line with the same properties).

The circle Γ must be tangent to ∂D at q. Indeed, if Γ and ∂D were transversal at q, there would be points in $\Gamma \cap D$ near q around which the function u is well defined, but its gradient blows up when we approach the point (since the associated tangent planes become vertical), and this is not possible. Thus the cylinder $\Gamma \times \mathbb{R}$ is one of the cylinders $\Gamma_i \times \mathbb{R}$ defined before Assertion 3.4.

Take now a small segment γ contained in D, that ends at q. Since the tangent planes of V become vertical as we approach q through γ, it is clear that the restriction of u to γ is monotonic, for values sufficiently close to q. Thus, it has a limit, which cannot be a finite number, by completeness of Σ. In other words, the restriction of u to any such segment γ diverges to $+\infty$ or $-\infty$.

As a matter of fact, since Σ was oriented so that its angle function is positive it is easy to see, when $f(0) \neq 0$, that $u \to \infty$ (resp. $u \to -\infty$) if and only if the interior unit normal N_0 to $\Gamma = \Gamma_i$ at q points in the direction $\hat{q} - \hat{q}$ (resp. $\hat{q} - \hat{q}$).

For each $p \in V$, let $U_p \subset V$ denote the neighborhood of p that can be seen as a normal graph over $D(0, 2\delta) \subset T_p \Sigma$, where $\delta > 0$ is the one in Remark 3.3. Consider the normal segment in \mathbb{R}^2 given by $\gamma(t) := q \pm tN_0$, where the sign is chosen so that $\gamma(t)$ lies in D for $0 < t < t_0$ with t_0 small enough. Define the open set

$$\Sigma_{t_0} = \bigcup_{0 < t < t_0} U(\gamma(t), u(\gamma(t))) \subset \Sigma,$$

which is a connected neighborhood of the curve $\{(\gamma(t), u(\gamma(t))) : 0 < t < t_0\} \subset \Sigma$. By the convergence properties already proved, the projection of Σ_{t_0} into \mathbb{H}^2 contains a one-sided tubular domain $N_i(0, \varepsilon_0)$ as in (3.3), for the $i \in \{1, 2\}$ such that $\Gamma = \Gamma_i$. See Figure 6.1.

For each $s \in [-\delta, \delta]$, denote by $P(s)$ the vertical plane that is normal to Γ at the point $\Gamma(s)$. For t_0 small enough, $P(s)$ intersects Σ_{t_0} transversely for all $s \in [-\delta, \delta]$. Note that all points in $\Sigma_{t_0} \cap P(0)$ belong to the curve $(\gamma(t), u(\gamma(t)))$, and so $\Sigma_{t_0} \cap P(0)$ is a connected graphical curve that does not intersect the cylinder $\Gamma \times \mathbb{R}$. In the same way, by transversality and the definition of Σ_{t_0}, there is some $t_0 > 0$ and some $\varepsilon > 0$ such that for each $s \in [-\delta, \delta]$, $\Sigma_{t_0} \cap P(s)$ is exactly
one curve, which is a graph over a segment in \mathbb{R}^2 of the form $\Gamma(s) + t\eta(s)$. Here, $\eta(s)$ is the unit normal of $\Gamma(s)$ in (3.3) and t varies in an interval I_s that contains $(0, \varepsilon)$.

All these properties let us conclude that Σ_{t_0} is a graph when we restrict to the points of Σ_{t_0} that project onto the one-sided tubular domain $N_i(0, \varepsilon)$, for the value $\varepsilon > 0$ above. Thus, u can be extended as a graph to $D \cup N_i(0, \varepsilon)$, for some $i \in \{1, 2\}$.

Let us also point out that (for $t_0 > 0$ small enough) Σ_{t_0} does not intersect $\Gamma \times \mathbb{R}$. Indeed, otherwise there would exist a smallest (in absolute value) s_1 such that $\Sigma_{t_0} \cap P(s_1)$ intersects $\Gamma \times \mathbb{R}$. But $\Sigma_{t_0} \cap P(0)$ does not intersect $\Gamma \times \mathbb{R}$, as explained above, so $s_1 > 0$. By continuity we would have that $\Sigma_{t_0} \cap P(s_1)$ intersects $\Gamma \times \mathbb{R}$ but it does not cross it. Hence, there would exist a point in $\Sigma_{t_0} \cap P(s_1)$ where the tangent plane to Σ is vertical, and this is not possible since Σ is a multigraph.

The fact that Σ_{t_0} does not intersect $\Gamma \times \mathbb{R}$ together with the previously proved asymptotic convergence of the curves $\Sigma_{t_0} \cap P(s)$ to $\Gamma \times \mathbb{R}$ give the asymptotic behavior of the statement of Assertion 3.4. This completes the (sketch of) proof of Assertion 3.4.

Remark 6.1. For the purposes of the proof of Theorem 4.2, it is important to observe that the hypothesis that Σ is an elliptic Weingarten surface has been used very mildly in this proof of Assertion 3.4. Indeed, it has only been used for the following two purposes:

1. To obtain the a priori local $C^{2, \alpha}$-estimate on compact sets given by Nirenberg’s theorem. By this estimate, we can ensure convergence up to subsequence in the C^2 topology on compact sets of limits of translations of Σ in \mathbb{R}^3.

2. To ensure that any of the limit surfaces of Σ obtained by translations via the previous $C^{2, \alpha}$-estimate satisfies the statement of Lemma 2.2. In particular, these limits are either multigraphs, or vertical cylinders or planes.

References

[1] J.A. Aledo, J.M. Espinar, J.A. Gálvez, The Codazzi equation for surfaces, Adv. Math. 224 (2010), 2511–2530.

[2] A.D. Alexandrov, Uniqueness theorems for surfaces in the large, I, Vestnik Leningrad Univ. 11 (1956), 5–17. (English translation: Amer. Math. Soc. Transl. 21 (1962), 341–354).
Elliptic Weingarten surfaces

[3] L. Bers, Remark on an application of pseudoanalytic functions, *Amer. J. Math.* 78 (1956), 486–496.
[4] R. Bryant, Complex analysis and a class of Weingarten surfaces. preprint. arXiv:1105.5589.
[5] A. Bueno, J.A. Gálvez, P. Mira, The global geometry of surfaces with prescribed mean curvature in \mathbb{R}^3, *Trans. Amer. Math. Soc.* 373 (2020), 4437–4467.
[6] S.S. Chern, On special W-surfaces. *Proc. Amer. Math. Soc.* 6 (1955), 783–786.
[7] A.V. Corro, W. Ferreira, K. Tenenblat, Ribaucour transformations for constant mean curvature and linear Weingarten surfaces, *Pacific J. Math.* 212 (2003), 265–297.
[8] B. Daniel, L. Hauswirth, Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group. *Proc. Lond. Math. Soc. (3)*, 98 no.2 (2009), 445–470.
[9] J.M. Espinar, H. Mesa, Elliptic special Weingarten surfaces of minimal type in \mathbb{R}^3 of finite total curvature, preprint (2019), arXiv:1907.09122
[10] J.M. Espinar, H. Rosenberg, Complete constant mean curvature surfaces and Bernstein type theorems in $M^2 \times \mathbb{R}$. *J. Diff. Geom.* 82 (2009), 611–628.
[11] J.A. Gálvez, A. Martínez, F. Milán, Linear Weingarten surfaces in \mathbb{R}^3, *Monatsh. Math* 138 (2003), 133–144.
[12] J.A. Gálvez, P. Mira, Uniqueness of immersed spheres in three-manifolds, *J. Diff. Geom.*, to appear.
[13] J.A. Gálvez, P. Mira, Rotational symmetry of Weingarten spheres in homogeneous three-manifolds, preprint (2018), arXiv:1807.09654.
[14] J.A. Gálvez, P. Mira, M.P. Tassi, Complete surfaces of constant anisotropic mean curvature, preprint, (2019), arXiv:1912.0194.
[15] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, (Classics in mathematics) Springer (2001).
[16] L. Hauswirth, H. Rosenberg, J. Spruck, On complete mean curvature $\frac{1}{2}$ surfaces in $\mathbb{H}^2 \times \mathbb{R}$, *Comm. Anal. Geom.* 5 (2008) 989–1005.
[17] D. Hoffman, R. Osserman, R. Schoen, On the Gauss map of complete surfaces of constant mean curvature in \mathbb{R}^3 and \mathbb{R}^4, *Comment. Math. Helv.* 57 (1982), 519–531.
[18] P. Hartman, A. Wintner, Umbilical points and W-surfaces, *Amer. J. Math.* 76 (1954), 502–508.
[19] H. Hopf, Uber Flachen mit einer Relation zwischen den Hauptkrummungen, *Math. Nachr.* 4 (1951), 232–249.
[20] H. Hopf. Differential Geometry in the Large, volume 1000 of Lecture Notes in Math. Springer-Verlag, 1989.
[21] J.M. Manzano, M. Rodríguez, On complete constant mean curvature vertical multigraphs in $E(\kappa, \tau)$, *J. Geom. Anal.* 25 (2015), 336–346.
[22] L. Nirenberg, On Nonlinear Elliptic Partial Differential Equations and Holder Continuity, *Comm. Pure App. Math.* 6 (1953), 103–156.
[23] Th.M.Rassias, R.Sa Earp, Some problems in analysis and geometry. Complex Analysis in Several Variables, Hadronic Press, Florida 1999, pp. 111–122.
[24] H. Rosenberg, R. Sa Earp, The geometry of properly embedded special surfaces in \mathbb{R}^3; e.g. surfaces satisfying $aH + bK = 1$, where a and b are positive, *Duke Math. J.* 73 (1994), 291–306.
[25] R. Sa Earp, E. Toubiana, Classification des surfaces de type Delaunay, *Amer. J. Math.* 121 (1999), 671–700.
[26] R. Sa Earp, E. Toubiana, Sur les surfaces de Weingarten spéciales de type minimal, *Bull. Braz. Math. Soc.* 26 (1995), 129–148.
[27] L. Simon, A Hölder estimate for quasiconformal maps between surfaces in Euclidean space, *Acta Math.* 139 (1977), 19–51.
[28] H. Rosenberg, R. Souam, E. Toubiana, General curvature estimates for stable H-surfaces in 3-manifolds and applications. *J. Diff. Geom.* 84 (2010), 623–648.
[29] K. Tenenblat, Transformations on manifolds and applications to differential equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman, Harlow, 1998.

Isabel Fernández
Departamento de Matemática Aplicada I,
Instituto de Matemáticas IMUS
Universidad de Sevilla (Spain).
e-mail: isafer@us.es
José A. Gálvez
Departamento de Geometría y Topología, Universidad de Granada (Spain).

e-mail: jagalvez@ugr.es

Pablo Mira

Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena (Spain).

e-mail: pablo.mira@upct.es

Research partially supported by MINECO/FEDER Grant no. MTM2016-80313-P