LETTER TO THE EDITOR

Humoral responses to BNT162b2 SARS-CoV-2 and hepatitis B vaccines are associated in patients on maintenance hemodialysis: a single-centre experience in Belgium

Elliott Van Regemorter1, Anais Scohy2,3, Johann Morelle1,3, Michel Jadoul1,3 and Laura Labriola1,3

1Division of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium, 2Division of Microbiology, Cliniques universitaires Saint-Luc, Brussels, Belgium and 3Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium

Correspondence to: Laura Labriola; E-mail: Laura.Labriola@uclouvain.be

Maintenance hemodialysis (HD) patients are at high risk for life-threatening coronavirus disease 2019 (COVID-19) [1]. Recent studies have documented a strong humoral response after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in this population [2], even in older patients [3], in contrast to kidney transplant recipients [4]. Previous reports have also shown a poor humoral response after hepatitis B virus (HBV) vaccination in chronic kidney disease patients with comorbidities (e.g. older age, diabetes, immunosuppression) [5,6]. We therefore hypothesized that this weak response to the HBV vaccine could serve as a potential indicator of response to SARS-CoV-2 vaccination. However, data linking humoral responses to both vaccines remains scarce and contradictory [7,8].

We retrospectively studied the association between the humoral response to HBV and BNT162b2 spike mRNA vaccines in a cohort of adult patients on in-centre maintenance (>3 months) HD at Cliniques universitaires Saint-Luc and its satellite site. We excluded 58 patients who had a history or serologic evidence of HBV (n = 27) or SARS-CoV-2 infection (n = 15), refused vaccination (n = 11) or had an incomplete HBV vaccination (n = 5). Demographics, dialysis vintage, diabetes status, immunosuppressive treatment if applicable and time since last SARS-CoV-2 and HBV vaccine administrations were recorded. In each patient, a single sample was tested simultaneously with five electro-chemiluminescent immunoassays (Roche Elecsys): SARS-CoV-2 recombinant nucleocapsid antigen antibody (anti-SARS-CoV-2 N), SARS-CoV-2 spike protein receptor-binding domain antibody (anti-SARS-CoV-2 RBD), hepatitis B surface antigen and antibody (HBsAg and anti-HBs Ab), and hepatitis B core antibody (anti-HBc Ab). Patients were divided into groups depending on their HBV and SARS-CoV-2 vaccine response status. Patients with an anti-HBs Ab titer > 10 IU/mL after three doses of Engerix-B® or Fendrix® and an anti-SARS-CoV-2 RBD Ab titer > 0.8 U/mL after two doses of BNT162b2 SARS-CoV-2 vaccine were considered responders to the HBV and SARS-CoV-2 vaccines, respectively. Groups were compared using unpaired t-test, Mann–Whitney U test and Fisher’s exact test, as appropriate. All tests were two-tailed and a P-value < 0.05 was considered significant.

Fifty-four patients (median age 72 years, 56% men, 91% Caucasians, on dialysis for a median of 47.0 months, 39% diabetics, 19% on immunosuppressive treatment) were included (Table 1). Serum samples were collected 4.1 months [interquartile range (IQR) 4.1–5.0] after the second dose of the SARS-CoV-2 vaccine. Responders to the SARS-CoV-2 vaccine did not differ from non-responders regarding demographics, dialysis vintage and diabetes. However, patients were less likely to respond to the SARS-CoV-2 vaccine if treated with immunosuppressive medications and in case of non-response to the HBV vaccine (Table 1,
Table 1. Characteristics of the patients

Characteristics	All patients (N = 54)	SARS-CoV-2 vaccine responders (N = 49)	SARS-CoV-2 vaccine non-responders (N = 5)	P-value
Age, median (IQR), years	72 (62–81)	73 (63–81)	55 (55–67)	0.14
Gender: male, no. (%)	30 (56)	27 (55)	3 (60)	1.00
Race: Caucasian/African, no. (%)	49 (91)/5 (9)	45 (92)/4 (8)	4 (80)/1 (20)	0.40
Dialysis vintage, median (IQR), months	47.0 (23.6–78.8)	46.2 (23.7–76.6)	68.8 (20.6–110.1)	0.72
Diabetes, no. (%)	21 (39)	20 (41)	1 (20)	0.64
Immunosuppressive treatment, no. (%)	10 (19)	5 (10)	5 (100)	-0.001
HBV vaccine response, no. (%)	39 (72)	38 (78)	1 (20)	0.02

Figure 1: Level of anti-HBs Ab (A) and HBV vaccine response status (B) stratified for the presence vs absence of humoral response to SARS-CoV-2 vaccination.

Figure 1). Anti-HBs and anti-SARS-CoV-2 RBD Ab titers were correlated (Spearman, \(r = 0.34, P = 0.01 \)). Out of the five patients who did not respond to the SARS-CoV-2 vaccine, one was on tacrolimus and mycophenolate mofetil, two were on maintenance rituximab and low-dose methylprednisolone, and two were on tacrolimus alone. Out of the five patients on immunosuppressive therapy who responded to the SARS-CoV-2 vaccine, three were on low-dose methylprednisolone and two on tacrolimus alone.

Our study shows a significant association between humoral responses after HBV and SARS-CoV-2 vaccines in a small cohort of patients on maintenance HD. HBV vaccine non-responders may therefore benefit from a systematic SARS-CoV-2 serological follow-up and potential intensification of the vaccine schedule. Furthermore, this study highlights the poor vaccine response of immunosuppressed patients, including those treated with rituximab, as recently reported [9].

A definite strength of this study is its novelty in assessing and correlating immunization responses to both HBV and SARS-CoV-2 vaccines among maintenance HD patients with a subgroup of patients on immunosuppressive therapy. The small sample size is a clear limitation.

FUNDING

There was no support/funding for this work.

CONFLICT OF INTEREST STATEMENT

This paper has not been published previously in whole or part. L.L. reports lecture fees and travel support from Amgen, and travel support from Vifor Medical Care Pharma and Sanofi-Genzyme. J.M. reports lecture fees from Baxter Healthcare and Fresenius Medical Care, travel support from Sanofi-Genzyme, consulting fees from AstraZeneca, Bayer and Sanofi-Genzyme, and research grants from Baxter Healthcare and Alexion outside the submitted work. M.J. reports grants from AstraZeneca, consulting fees from Astellas, AstraZeneca, Bayer, Boeringher-Ingehelm, Merck, Mundipharma, Fresenius Medical Care Asia Pacific and Vifor Fresenius Medical Care, payments for expert testimony from Vifor Fresenius Medical Care renal Pharma and travel support from Sanofi-Genzyme, outside the submitted work; all grants and fees paid to institution. M.J. is co-chair of KDIGO.

REFERENCES

1. Williamson EJ, Walker AJ, Bhaskaran K et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020; 584: 430–436
2. Ikizler TA, Coates PT, Rovin BH, Ronco P. Immune response to SARS-CoV-2 infection and vaccination in patients
receiving kidney replacement therapy. Kidney Int 2021; 99: 1275–1279
3. Labriola L, Scohy A, Van Regemorter E et al. Immunogenicity of BNT162b2 SARS-CoV-2 vaccine in a multicenter cohort of nursing home residents receiving maintenance hemodialysis. Am J Kidney Dis 2021; 78: 766–768
4. Georgery H, Devresse A, Yombi JC et al. Disappointing immunization rate after 2 doses of the BNT162b2 vaccine in a Belgian cohort of kidney transplant recipients. Transplantation; doi: 10.1097/TP.0000000000003861 (online ahead of print)
5. Labriola L, Jadoul M. The decades-long fight against HBV transmission to dialysis patients: slow but definite progress. Nephrol Dial Transplant 2010; 25: 2047–2049
6. Jacobson IM, Jaffers G, Dienstag JL et al. Immunogenicity of hepatitis B vaccine in renal transplant recipients. Transplantation 1985; 39: 393–395
7. Simon B, Rubey H, Treipl A et al. Haemodialysis patients show a highly diminished antibody response after COVID-19 mRNA vaccination compared with healthy controls. Nephrol Dial Transplant 2021; 36: 1709–1716
8. Danthu C, Hantz S, Dahlem A et al. Humoral response after SARS-CoV-2 mRNA vaccination in a cohort of hemodialysis patients and kidney transplant recipients. J Am Soc Nephrol 2021; 32: 2153–2158
9. Demoulin N, Scohy A, Gillion V et al. (11 June 2021). Low rates of humoral response to BNT162b2 SARS-CoV-2 vaccination in patients with immune-mediated kidney diseases treated with rituximab. Clin Kidney J; 14: 2132–2133