Using mentimeter to enhance learning and teaching in a large class

Ma Mohin*,1, Leonine Kunzwa2 and Sagar Patel2

1School of Engineering, University of Bolton, Bolton, UK, BL3 5AB.
School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK, AL10 9AB.

*Corresponding Author’s Email: mohin_017@yahoo.com

INTRODUCTION

Teaching a large class in Higher Education (HE) is, both, a great challenge and an incredible opportunity. Student engagement in a large class is crucial for achieving the learning outcomes. Mentimeter is a web-based interaction tool, much like the other Audience Response System (ARS) or Clicker that can be used in a large class to engage students in active learning. In general, students answer the question such as multiple-choice question (MCQ) displayed on Mentimeter using their smartphone with the help of the Internet. They can also use other devices such as laptops and tablets with which they can access the Mentimeter website. By the means of Mentimeter, the teachers can assess the understanding of the students instantly and provide their feedback accordingly.

While writing about the good practice in HE, Chickering and Gamson (1987) came up with seven principles including “encourages active learning” and “gives prompt feedback”. These two principles can be implemented via Mentimeter by involving the students in structured exercises and co-operation, and letting them know what they have learnt and where they need to improve. Many lecturers such as Micheletto (2011) have attributed the lack of student engagement to the obstacle to achieving learning outcomes. However, this lack of student engagement can be eliminated by the proper use of Mentimeter (Hill and Fielden, 2017). It is possible to create interactions between learner-content, learner-instructor and learner-learner (Moore, 1993) through the use of Mentimeter. The histogram feedback for MCQs (Nicol and Macfarlane-Dick, 2006) created by Mentimeter can trigger a classroom discussion which is a challenge in a large class.

With the traditional method of teaching, to assess a
In order to enhance student engagement, the instructor takes the answer to the question by “show-of-hand” (Cline, 2006). However, this technique is of great limitations, particularly in a large class: only a few students tend to participate; mostly the confident ones; lack of anonymity; some students incline to copy; loss of data once the hands are down (Abrahamson, 2006) and is of relatively slow process. To avoid these issues, Clickers are introduced in the modern classes. Clickers provide a more effective teaching strategy than the traditional assessment (Duzhin and Gustafsson, 2018). Using the Clicker technology, students can answer the questions displayed on the classroom screen anonymously by using the hand-held device. At present, smartphone-based ARS like Mentimeter is replacing the Clickers, following the fact that it does not allow to write texts easily in the conventional device. In addition, the use of smartphone-based ARS relieves the extra burden on the lecturer to maintain the university-owned devices (Hwang et al., 2015).

It is well documented that ARS has a positive impact both for teachers and learners (Caldwell, 2007; Kay and LeSage, 2009). The key purpose of using this technology is to break the inefficient one-way communication embedded in the traditional lectures where teachers are the only speakers and students are the listeners. Additionally, it compensates for the difficulty that students face in maintaining concentration at those lectures by promoting participation of the students in the learning process. The other advantages of using ARS are: Improvement in student attendance (Greer and Heaney, 2004); students are more focused during the lecture (Bergtrom, 2006); keeping anonymity; student engagement (Simpson and Oliver, 2007) and inclusion (Hill and Fielder, 2017); students actively discuss their misconceptions with their peers and compare the results (Draper and Brown, 2004); enhancement in learning performance of the students; teachers can modify the instructions based on student's feedback and improve the quality of teaching through a better explanation (Elliott, 2003); formative assessment (Beatty, 2005); and regular feedback on learning (Cline, 2006).

Recently, Mentimeter has started paving the way to enhance the learning and the teaching in HE (Lock, 2015; Little, 2016; Rudolph, 2017; Nosek, 2017; Hill and Fielder, 2017). It has already been used to increase the student engagement and inclusion (Hill and Fielder, 2017). The features of Mentimeter are quite promising to use in HE (Little, 2016; Rudolph, 2017).

Lock (2015) emphasised on how the Imperial College London gains value from using Mentimeter system. In her article, she highlighted three types of learning activities which can be run using this system. These are: Formative assessment, pop quiz and exit pass. These three activities helped the learners access the understanding of the students about the concept, performance and understanding of the contents, respectively.

Little (2016) provided a technological review of Mentimeter as Student Response System (SRS). This study recommended that Mentimeter can be useful for the quiz, survey and student-led teaching where the session is driven by the answers of the students to the in-class questions. By investigating his students’ viewpoints, it was proposed that the Mentimeter activities can increase their engagement, focus and enjoyment.

Rudolph (2017) reported a short review of Mentimeter. According to this study, Mentimeter improves the student participation during MCQ compared to sessions without it. He identified the Mentimeter as an interactive tool to use for lecture and workshop. While giving a good review of the features of Mentimeter, he also pointed out the negative effect of world cloud feature: The fonts and words become very small if the number of answers is very large.

Nosek (2017) presented a comparative analysis between the Mentimeter and another web-based ARS called Poll Everywhere. This analysis reported that the Mentimeter is more user-friendly, intuitive and compatible with mobile device than Poll Everywhere. For example, the audience needs to input a URL into a web browser to connect to Poll Everywhere whereas only a simple code can be used for Mentimeter.

Hill and Fielder (2017) studied the positive effects of Mentimeter on the student engagement and inclusion. One of the aims of their work was to investigate the perceptions of the University students on the interactive online quizzes using Mentimeter and whether it improves the student engagement. In one case, Mentimeter was used for a level 4 biology module. When asked for a feedback to observe the students’ perceptions of Mentimeter quizzes, 13 out of the 17 participated and the responses of the students are shown below in Figure 1.

Figure 1 illustrates that more than 80% of the participants think that the interactive Mentimeter quizzes were fun. Some also support that the use of Mentimeter breaks up the lectures and reinforces the information which is necessary for quality learning. Beside these responses, all students mentioned that they would recommend using Mentimeter to the other lecturers.

From the studies mentioned above, it is evident that ARS has a great potential of improving teaching quality in a large class. As a result, many lecturers adopt Mentimeter as an ARS in their practice. However, very little research is available on how Mentimeter can promote the learning experience in a large class where student engagement is challenging to achieve.

This paper aims to help bridge this gap in the research work. The article will mainly deal with the beneficial effect of using Mentimeter for a large class in HE by evaluating Mentimeter’s features, its systematic use in the formative assessment for a large course and analysing the corresponding students’ responses.

Mechanism of Mentimeter and its Features

Mentimeter is a user-friendly web-based ARS system which is currently used by more than 8 million people (Mentimeter, 2017a). Lecturers, mainly, use it to ask questions to the students and take feedback from them anonymously through the Internet. The questions, answers,
and feedback from a session can be stored as data, e.g. excel file for further analysis. The schematic of this mechanism of Mentimeter in the lecture is further shown below in Figure 2.

The key features of Mentimeter (Mentimeter, 2017b) and their applications in a large class are explained below in Table 1.

An example of the Mentimeter MCQ used in the Materials and Electrical Science Module (level 4) at the University of Hertfordshire (UH) by the Authors has been presented in Figure 3. The histogram shows the response of the students to a question in percentage.

**A case study of using Mentimeter for formative assessment in the large class**

**Background**

Mentimeter was used for the formative assessment during the lecture under the level 4 Materials and Electrical Science Module at the University of Hertfordshire (UH). There were 262 engineering students in the class. Once the
Table 1. The features of Mentimeter and their applications

| Features                  | Applications                                                                 |
|---------------------------|-----------------------------------------------------------------------------|
| Multiple Choice           | Multiple choice questions with or without image; formative assessment; enhancement of student engagement, active learning and enjoyment. |
| Image choice              | Aid Visual learners according to the VARK model (Fleming, 2001).             |
| World cloud               | Emphasise the most common words submitted by the students in real-time.      |
| Quiz                      | Engage students in fun and learning-intense competition.                     |
| Scales                    | Evaluating the teaching activity with the learning environment.              |
| Questions from the audience | Evaluate the lecture.                                                          |
| Who will win?             | Test and develop knowledge of the students from an instructor, reinforce students’ learning. It promotes gamification (Pettit et al., 2015) in lecture, energises the students and motivates them. Additionally, it supports Behaviourist (Skinner, 1968) approach to learning (Naismith et al., 2004). |
| Quick slides              | Lecture presentation.                                                        |

Figure 3: Mentimeter MCQ used by the Authors for Material and Electrical Science Module (level 4).

module was over, a survey was carried out among 25 students (approximately 10 %) from that class including 20 males and 5 females who volunteered in this study. The survey was used to analyse perception of the students towards using Mentimeter in a large class.

Formative assessment

In education, what influences students the most is not the teaching but the assessment (Gibbs and Simpson, 2004). Both the summative and formative assessment are popular to monitor learning of students in HE. Formative assessment can be taken as a good practice in pedagogy because it generates a feedback information that can be used not only by students to enhance their learning and achievement, but also by teachers to re-align their teaching in response to need of the learners (Nicol and Macfarlane-Dick, 2006). As a result, formative assessment improves the quality of the teaching activities, and the related learning outcomes for students. To implement a formative assessment effectively, teachers need not only substantial knowledge but also the useful classroom materials that can help them make the inferences about what students know with respect to key domain competencies, and about what next to target for instruction (Bennett, 2011). Mentimeter can be adapted as one of these useful classroom materials for a formative assessment process as it is easy and quick to prepare, present and answer questions through Mentimeter.

In the present study, in order to implement formative assessment, Mentimeter was used to generate different types of questions including multiple choice and open-ended questions based on the lecture content. For example:

- Multiple choices (control questions), e.g., “Which of the following cannot be described as a mechanical property?”
- Word cloud (open-ended questions), e.g., “What are the applications of semiconductor?”

For a 60 mins of lecture, only five questions were prepared and the questions were presented at the last
fifteen minutes of the lecture as shown in Figure 4. It is a common practice to use around five questions for fifty minutes of class instructions (Elliot, 2003). Furthermore, five minutes of break was taken after the first twenty minutes of lecture so that the students can recover from the mental fatigue caused by the continuous lecture. Even the study by Burns (1985) has proven that the average human attention span lasts up to twenty minutes, within that period, the recall in memory considerably suffers after fifteen to twenty minutes. The model of the overall process to implement Mentimeter is illustrated in Figure 5.

To implement Mentimeter, all the questions should be
prepared before the lecture. It is better to start preparing all the questions well before the module starts so that the instructor can have enough time to train themselves on Mentimeter. It will further help them to produce the quality questions for formative assessment which is considered as a challenge (Caldwell, 2007). Mentimeter can be used in different stages of lecture (Hill and Fielden, 2017) depending on the Instructor’s teaching style, e.g., the Authors preferred using Mentimeter towards the end of the lecture.

The students should not need extra training to use the Mentimeter as it provides continuous instruction on their mobile device throughout the process. The change in the results can be shown in the form of live histogram feedback which makes the formative assessment process dynamic. The live histogram also allows to monitor the progress of the process and make it time effective. On the other hand, this histogram feedback helps in triggering the classroom discussion (Nicol and Macfarlane-Dick, 2006). It is important to spend enough time in the discussion before presenting the next Mentimeter question. This helps students and their peers to share the dialogue as well as improves their understanding about the learning topic. Finally, the results should be shared with the students to support in their further studies after the lecture. At the same time, This data is subject to analyse and check the students’ performance, and to design, and develop teaching style, and course materials.

### Students’ perceptions about using Mentimeter

A survey was carried out based on 24 questions among 25 students, which contained a scale/ranking from 1 (strongly disagree) to 5 (strongly agree) as shown in Table 2. The mean scores were consistently higher which favoured the use of Mentimeter. To model the survey questions, other survey studies on Mentimeter (e.g., Little, 2016; Hill and Fielder, 2017) were followed. The bar charts of the mean scores are also provided in Figure 5 for further discussions.

### Discussion of students’ perceptions linking pedagogic theories and benefits

From the results above in Table 2 and Figure 5, it is evident that the views of the students towards using Mentimeter was affirmative.

The students found Mentimeter formative assessment enjoyable (Figure 6 (1)). They also recognised that Mentimeter helped them to pay attention in the class. The Mentimeter quiz also engaged in another study (Hill and Fielder, 2017). Little (2016) also suggests that the Mentimeter activities can increase the focus and enjoyment of the students. Like other Clickers, it can increase student attendance (Greer and Heaney, 2004). Students also preferred Mentimeter over conventional technology in the present study, such as the Clickers. Bringing the Clickers and distributing them to all of the students in a large class

### Table 2. Survey results of students’ perceptions about Mentimeter.

| Main Themes | Survey Questions                                                                 | Mean Value(n=25) | Standard Deviation |
|-------------|----------------------------------------------------------------------------------|-------------------|--------------------|
| **Attitude**| I prefer Mentimeter over Clicker and raising hand                                 | 4.20              | 1.02               |
|             | I enjoyed using Mentimeter for formative assessment                             | 4.04              | 1.00               |
|             | Using Mentimeter encouraged me to attend the lecture                            | 3.20              | 0.98               |
|             | Mentimeter helped me pay attention in the class                                 | 4.00              | 1.06               |
|             | Using Mentimeter increased my interest about the subject                        | 3.48              | 0.98               |
|             | I recommend Mentimeter to other large class                                     | 4.24              | 1.18               |
| **Technical**| I liked Mentimeter features                                                     | 3.92              | 0.98               |
|             | I found no technical difficulty using Mentimeter                                | 4.52              | 0.70               |
|             | Mentimeter instructions are clear to understand                                 | 4.48              | 0.81               |
|             | Mentimeter was easy to access, powerful and flexible                            | 4.48              | 0.64               |
|             | Mentimeter was fast and interactive                                             | 4.24              | 0.99               |
|             | Mentimeter was user-friendly and convenient                                     | 4.64              | 0.56               |
| **Performance**| Using Mentimeter helped me understand the course content better                 | 3.52              | 0.82               |
|             | Using Mentimeter for formative assessment was challenging                        | 2.56              | 1.06               |
|             | Using Mentimeter helped me apply my knowledge                                   | 3.6               | 1.02               |
|             | Mentimeter helped me compare my responses with others                           | 4.12              | 0.86               |
|             | Mentimeter helped me to get a prompt feedback on my learning                    | 3.88              | 0.95               |
|             | Using Mentimeter helped me to perform well in the final test                    | 3.48              | 1.10               |
| **Learning environment**| Using Mentimeter encouraged class discussion                                | 3.36              | 1.20               |
|             | Using Mentimeter improved student engagement                                    | 3.92              | 1.13               |
|             | Using Mentimeter improved inclusion                                             | 3.72              | 1.11               |
|             | Using Mentimeter improved participation of the students                        | 4.12              | 0.86               |
|             | Using Mentimeter improved the classroom interaction                             | 3.88              | 0.99               |
|             | Using Mentimeter encouraged active learning                                     | 3.96              | 1.04               |

*Strongly Disagree=1, Disagree=2, Neither agree nor disagree=3, Agree=4 and Strongly Agree=5.*
has been a burden for some lecturers (Hwang et al., 2015). At the same time, raising hands is not out of concern as the data regarding the students’ answers get lost once their hands are down (Abrahamson, 2006). Some of the comments of the students are presented in Table 3.

According to the students, Mentimeter was technologically sound (Figure 6(2)). It was also user-friendly, as evidenced by the number of positive comments presented in Table 3, which agreed well with Nosek (2017). Mentimeter is considered an interactive tool (Rudolf, 2017), and students in this present study also identified it as interactive and fast. However, the main drawback of using web-based Clickers like Mentimeter is that they cannot be used without the internet. In the study of Hwang (2015), some students commented that the WiFi signal was not strong enough for all of the students in the classroom to use at the same time. In addition, technical comments in Table 3 also highlighted the necessity of better WiFi connections to improve the user experience. Therefore, universities should invest more in better WiFi connections to enhance their learning experience.

Mentimeter helped students perform well in their final test (Figure 6(3)). They understood the course content and applied their knowledge. Bloom’s taxonomy (Krathwohl, 2002) indicates that ‘understand’ and ‘apply’ are the cognitive processes by which thinkers encounter and work with knowledge (Figure 7). Mentimeter also helped prompt feedback, which is considered good practice.
Figure 6: Bar charts showing students' perceptions: (1) Attitude, (2) Technical, (3) Performance and (4) Learning Environment.

Figure 7: Creative Commons attribution on an image of the Bloom’s Taxonomy (Vanderbilt University, 2018).

(Chickering and Gamson, 1987). However, in this study, students did not find Mentimeter formative assessment challenging (Figure 6(3)). Therefore, ‘Quiz’ and “Who will win?” (Table 1) type questions can be added along with the MCQ to make it more challenging. Moreover, Imperial College London is currently benefiting from Mentimeter (Aronsson, 2017) by using it for formative assessment, including pop quizzes and exit passes.

Mentimeter has been proved to promote student engagement (Little, 2016), participation, classroom interaction and inclusion (Hill and Fielder, 2017) which are the key factors for an effective learning environment. In this present study, students’ perceptions have also supported these findings (Figure 6(4)) and complementary comments in Table 2. Using mobile phone-based ARS made classes more interactive and less boring (Tremlay, 2010).
classroom interaction can be of three types: learner-content, learner-instructor and learner-learner (Moore, 1993). Moreover, students felt that Mentimeter encouraged active learning which is considered as one of the seven principles of good practice in undergraduate education (Chickering and Gamson, 1987). Nicol and Macfarlane-Dick (2006) argued that one of the seven principles of good feedback practice is “encourage teacher and peer dialogue around learning” and the histogram feedback of ARS can be used as a trigger for peer discussion and teacher-managed discussion in large class. Again, deep learners tend to share a constructive attitude toward using clickers, especially when perceived advantages of using the Clickers in their learning (Kelvin, 2017). A very few students disliked the use of Mentimeter in a large class. They found it to be a poor substitution for traditional lecture material as explained in the critical comments of Table 3. However, this could be improved by experience through a timely structured lecture session which offers a balance between lecture material and Mentimeter use. Overall, the response has been hugely positive and students’ perceptions clearly suggest that it encouraged class discussion. Therefore, this present study established that the students are welcoming the use of Mentimeter in the large class as it promotes elements, such as interaction, inclusivity, engagement, and participation which are essential for the high standard learning experience.

**Conclusion**

Overall, Mentimeter is easy to access, a powerful and flexible tool which has the solution to improve learning and teaching in the large class. It can play a key role in changing the dynamics of the large classroom by promoting active learning, student participation, and enjoyment. Formative assessment can be more interactive and fun using Mentimeter. The formative assessment data can also be stored and analysed further to design and manage the course. Students also appreciate that the technology integrated learning through Mentimeter has the pedagogical benefits. Teachers, on the other hand, can benefit from using Mentimeter to assess students’ understanding and improve their own teaching style.

**Conflict of interests**

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

**REFERENCES**

Abrahamson L (2006). A brief history of networked classrooms: Effects, cases, pedagogy, and implications. Audience response systems in higher education: Applications and cases, IGI Global, pp. 1-25.

Beatty ID (2005). Transforming student learning with classroom communication systems. arXiv preprint physics/0508129.

Bennett RE (2011). Formative assessment: A critical review. Assessment in Education: Principles, Policy & Practice, 18(1): 5-25.

Bergstrom G (2006). Clicker sets as learning objects. Interdisciplinary J. E-Learning and Learning Objects, 2(1):105-110.

Burns RA (1985). Information Impact and Factors Affecting Recall. Annual National Conference on Teaching Excellence and Conference of Administrators, Austin, TX (ERIC Document No. ED 258 639).

Caldwell JE (2007). Clickers in the large classroom: Current research and best-practice tips. CBE-Life sciences education, 6(1):9-20.

Chickering AW, Gamson ZF (1987). Seven principles for good practice in undergraduate education. AAHE bulletin, pp. 3-7.

Cline KS (2006). Sharing teaching ideas: Classroom voting in Mathematics. Mathematics Teacher, 100(2):100-104.

Duzhin F, Gustafsson A (2018). Machine Learning-Based App for Self-Evaluation of Teacher-Specific Instructional Style and Tools. Education Sciences, 8(1):7.

Elliott C (2003). Using a personal response system in economics teaching. International Review of Economics Education, 1(1):80-86.

Fleming ND (2001). Teaching and learning styles: VARK strategies. IGI Global

Gibbs G, Simpson C (2004). Does your assessment support your students’ learning. J. Teaching and Learning in Higher Education, 1(1):1-30.

Greer L, Heaney PJ (2004). Real-time analysis of student comprehension: An assessment of electronic student response technology in an introductory earth science course. Journal of Geoscience Education, 52(4), pp. 345-351.

Hill DL, Fielden K (2017). Use of Mentimeter to promote student engagement and inclusion. Pedagogy in Practice seminar, Carlisle, UK. http://insight.cumbria.ac.uk/id/eprint/3473/.

Hwang I, Wong K, Lam SL, Lam P (2015). Student Response (Clicker) Systems: Preferences of Biomedical Physiology Students in Asian Classes. Electronic J. e-Learning, 13(5):319-330.

Kay RH, LeSage A (2009). Examining the benefits and challenges of using audience response systems: A review of the literature. Computers & Education, 53(3):819-827.

Krathwohl DR (2002). A revision of Bloom’s taxonomy: An overview. Theory into practice, 41(4):212-218.

Little C (2016). Technological Review: Mentimeter Smartphone Student Response System. http://blogs.cardiff.ac.uk/learning-technology/wp-content/uploads/sites/286/2017/04/mentimeter_article.pdf.

Lock S (2015). How Imperial College gets value from using Mentimeter. http://www.emergingedtech.com/2015/03/how-college-gets-value-from-mentimeter/.

Mentimeter (2017a). Create fun and interactive presentations. https://www.mentimeter.com/why.

Mentimeter (2017b). Mentimeter Features.
https://www.mentimeter.com/features.
Micheletto MJ (2011). Using audience response systems to encourage student engagement and reflection on ethical orientation and behavior. Contemporary Issues in Educ. Res., 4(10):9.

Moore MG (1993). Editorial: Three types of interaction. The American Journal of Distance Education, 3(2), pp. 1-7.

Naismith L, Sharples M, Vavoula G, Lonsdale P (2004). Literature review in mobile technologies and learning. A NESTA Futurelab Series - report 11.

Nicol DJ, Macfarlane-Dick D (2006). Formative assessment and self-regulated learning: A model and seven principles of good feedback practice. Studies in higher education, 31(2):199-218.

Nosek M (2017). Mentimeter and Poll Everywhere – Audience Response Systems Introduction. http://blogs.cardiff.ac.uk/learning-technology/2017/04/28/mentimeter-and-polleverywhere-audience-response-systems-introduction/.

Pettit RK, McCoy L, Kinney M, Schwartz FN (2015). Student perceptions of gamified audience response system interactions in large group lectures and via lecture capture technology. BMC medical education, 15(1):92.

Rudolph J (2017) A brief review of Mentimeter–a student response system. Journal of Applied Learning and Teaching, 1(1), pp. 22-30.

Simpson V, Oliver M (2007). Electronic voting systems for lectures then and now: A comparison of research and practice. Australasian J. Educ. Technol., 23(2):187-208.

Skinner BF (1968). The Technology of Teaching. New York: Appleton-Century-Crofts, 19(3):271.

Tremblay E (2010). Educating the Mobile Generation–using personal cell phones as audience response systems in post-secondary science teaching. J. Computers in Mathematics and Science Teaching, 29(2):217-227.

Vanderbilt University (2018). Bloom’s Taxonomy. Vanderbilt University Centre for Teaching. https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/.