LENGTH OF SETS UNDER RESTRICTED FAMILIES OF PROJECTIONS ONTO LINES

TERENCE L. J. HARRIS

Abstract. Let $\gamma : I \to S^2$ be a C^2 curve with $\det(\gamma, \gamma', \gamma'')$ nonvanishing, and for each $\theta \in I$ let ρ_θ be orthogonal projection onto the span of $\gamma(\theta)$. It is shown that if $A \subseteq \mathbb{R}^3$ is a Borel set of Hausdorff dimension strictly greater than 1, then $\rho_\theta(A)$ has positive length for a.e. $\theta \in I$. This answers a question raised by Käenmäki, Orponen and Venieri.

1. Introduction

Let S^2 be the unit sphere in \mathbb{R}^3, let $\gamma : I \to S^2$ be a C^2 curve with $\det(\gamma, \gamma', \gamma'')$ nonvanishing on an interval I, and let ρ_θ be orthogonal projection onto the span of $\gamma(\theta)$, given by $\rho_\theta(x) = \frac{\langle x, \gamma(\theta) \rangle \gamma(\theta)}{\|\gamma(\theta)\|}$, $x \in \mathbb{R}^3$.

In [2, Conjecture 1.6], Fässler and Orponen conjectured that for any analytic set $A \subseteq \mathbb{R}^3$ $\dim \rho_\theta(A) = \min\{\dim B, 1\}$, a.e. $\theta \in I$, where $\dim B$ means the Hausdorff dimension of B. For general C^2 curves this was resolved earlier by Käenmäki, Orponen and Venieri [7], who asked [7, p. 4] whether $\dim A > 1$ implies that $\rho_\theta(A)$ has positive length for a.e. $\theta \in I$. This had been shown previously by Fässler and Orponen [2, Theorem 1.9] in the special case where A is a self-similar set without rotations. The following theorem resolves the general case.

Theorem 1.1. If $A \subseteq \mathbb{R}^3$ is an analytic set with $\dim A > 1$, then $\dim \{\theta \in I : \mathcal{H}^1(\rho_\theta(A)) = 0\} \leq 4 - \frac{\dim A}{3}$.

Throughout, the symbol \mathcal{H}^s will be used for the s-dimensional Hausdorff measure on Euclidean space. By Frostman’s lemma, Theorem 1.1 will follow from Theorem 1.2 below. For the statement, some notation will be defined first. Given a Borel measure μ on \mathbb{R}^3 and $\alpha \geq 0$, define $c_\alpha(\mu) = \sup_{x \in \mathbb{R}^3, r > 0} \frac{\mu(B(x, r))}{r^\alpha}$. For each $\theta \in I$, the pushforward measure $\rho_\theta#\mu$ is defined by $(\rho_\theta#\mu)(E) = \mu(\rho_\theta^{-1}(E))$, for any Borel set E.

2020 Mathematics Subject Classification. 28A78; 28A80.
Key words and phrases. Hausdorff dimension, orthogonal projection.
Theorem 1.2. If μ is a Borel measure on \mathbb{R}^3 with $c_{\alpha}(\mu) < \infty$ for some $\alpha > 1$, then
\[
\dim \{ \theta \in \mathcal{I} : \rho_{\theta} \# \mu \not\ll \mathcal{H}^1 \} \leq \frac{4 - \alpha}{3}.
\]

The notation $\rho_{\theta} \# \mu \not\ll \mathcal{H}^1$ means that $\rho_{\theta} \# \mu$ is not absolutely continuous with respect to \mathcal{H}^1. The proof of Theorem 1.2 is similar to the proof of Theorem 8 in [4], which solved the analogous problem of projections onto planes. It uses a variant of the decomposition of a measure into “good” and “bad” parts, which originated in [6].

Given $s \geq 0$, a set $A \subseteq \mathbb{R}^3$ is called an s-set if A is \mathcal{H}^s-measurable with $0 < \mathcal{H}^s(A) < \infty$. Theorem 1.2 implies Theorem 1.1, but it also implies the following slightly stronger version for s-sets.

Theorem 1.3. Suppose that $s > 1$, and that $A \subseteq \mathbb{R}^3$ is an s-set. Let μ be the Borel measure defined by $\mu(F) = \mathcal{H}^s(F \cap A)$ for any Borel set $F \subseteq \mathbb{R}^3$, and let
\[
E = \{ \theta \in \mathcal{I} : \rho_{\theta} \# \mu \not\ll \mathcal{H}^1 \}.
\]
Then
\[
\dim E \leq \frac{4 - s}{3},
\]
and
\[
\mathcal{H}^1(\rho_{\theta}(B)) > 0, \quad \text{for all } \theta \in \mathcal{I} \setminus E.
\]
for any \mathcal{H}^s-measurable set $B \subseteq A$ with $\mathcal{H}^s(B) > 0$.

Theorem 1.3 is related to a lemma of Marstrand (see [9, Lemma 13]), which states that for $s > 1$, for any s-set A in the plane, there is a measure zero set of exceptional directions, such that any s-set $B \subseteq A$ projects onto a set of positive Lebesgue measure outside of this set of exceptional directions.

Theorem 1.3 also implies Theorem 1.1 since any analytic set of infinite \mathcal{H}^s measure contains a closed set of positive finite \mathcal{H}^s measure [1].

2. Proof of Theorem 1.2 and Theorem 1.3

Throughout this section, $\gamma : I \to S^2$ will be a fixed C^2 unit speed curve with $\det(\gamma, \gamma', \gamma'')$ nonvanishing on I, where I is a compact interval. For $A \subseteq \mathbb{R}^3$, $m(A)$ will denote the Lebesgue measure of A.

Definition 2.1. Let
\[
\Lambda = \bigcup_{j \geq 1} \Lambda_j,
\]
where each Λ_j is a collection of boxes τ of dimensions $1 \times 2^{j/2} \times 2^j$, forming a finitely overlapping cover of the ~ 1-neighbourhood of the truncated light cone Γ_j in the standard way, where
\[
\Gamma_j = \{ t\gamma(\theta) : 2^{j-1} \leq |t| \leq 2^j, \quad \theta \in I \}.
\]
Each $\tau \in \Lambda_j$ has an angle θ_{τ} such that the long axis of τ is parallel to $\gamma(\theta_{\tau})$, the medium axis of τ is parallel to $\gamma'(\theta_{\tau})$, and the short axis of τ is parallel to $(\gamma \times \gamma')(\theta_{\tau})$. Let $\{ \psi_{\tau} \}_{\tau \in \Lambda}$ be a smooth partition of unity subordinate to the cover
Lemma 2.2. There exists an $r > 0$, depending only on γ, such that the following holds. Let $j \geq 1$ and let $\tau \in \Lambda_j$. If $\theta \in I$ is such that $2^j(\delta - 1/2) \leq |\theta_\tau - \theta| \leq r$, then for any $T \in T_\tau$, for any positive integer N and for any $f \in L^1(\mathbb{R}^3)$,

\begin{equation}
\|\pi_{\theta\#} M_T f\|_{L^1(\mathbb{R}^3)} \leq C 2^{-j \delta N} \|f\|_{L^1(\mathbb{R}^3)},
\end{equation}

where $C = C \left(N, \gamma, \delta \right)$.

Proof. For any $x \in (\gamma \times \gamma')(\theta)^{\perp}$,

\begin{equation}
(\pi_{\theta\#} M_T f)(x) = \int_{\mathbb{R}^3} \int_{\mathbb{R}} f(y) \psi_T(\xi)e^{-2\pi i \langle \xi, x - y \rangle} \left[\int_{\mathbb{R}} \eta_T(x + t(\gamma \times \gamma')(\theta))e^{-2\pi i t \langle \xi, (\gamma \times \gamma')(\theta) \rangle} dt \right] d\xi dy.
\end{equation}

Let $\xi \in \tau$. By integrating by parts n times, and using (2.2),

\begin{equation}
\int_{\mathbb{R}} \eta_T(x + t(\gamma \times \gamma')(\theta))e^{-2\pi i t \langle \xi, (\gamma \times \gamma')(\theta) \rangle} dt \leq \int_{\mathbb{R}} \chi_T(x + t(\gamma \times \gamma')(\theta)) dt \times \frac{2^{j \delta}}{|((\gamma \times \gamma')(\theta), \xi)|^n} \left(2^{j(1 - \delta)} |(\gamma \times \gamma')(\theta), (\gamma(\theta_\tau))| + 2^{j(1/2 - \delta)} |(\gamma \times \gamma')(\theta), (\gamma'(\theta_\tau))|
+ 2^{-j \delta} |(\gamma \times \gamma')(\theta), (\gamma \times \gamma')(\theta_\tau)| \right)^n.
\end{equation}

For each $\theta \in I$, let π_θ be orthogonal projection onto the orthogonal complement of $(\gamma \times \gamma')(\theta)$. The following lemma is essentially a special case of Lemma 5 from [4], but the proof will be included here for completeness.

Lemma 2.2. There exists an $r > 0$, depending only on γ, such that the following holds. Let $j \geq 1$ and let $\tau \in \Lambda_j$. If $\theta \in I$ is such that $2^j(\delta - 1/2) \leq |\theta_\tau - \theta| \leq r$, then for any $T \in T_\tau$, for any positive integer N and for any $f \in L^1(\mathbb{R}^3)$,
By the definition of τ,
\[
\langle (\gamma \times \gamma')(\theta), \xi \rangle = \\
\xi_1 \langle (\gamma \times \gamma')(\theta), \gamma(\theta) \rangle + \xi_2 \langle (\gamma \times \gamma')(\theta), \gamma'(\theta) \rangle + \xi_3 \langle (\gamma \times \gamma')(\theta), (\gamma \times \gamma')(\theta) \rangle,
\]
where $2^{-2} \leq |\xi_1| \leq 2^{j+2}$, $|\xi_2| \leq 2^{j/2}$ and $|\xi_3| \leq 1$. Let $\varepsilon := |\theta - \hat{\theta}|$. By a second order Taylor approximation (using that γ is C^2) and the scalar triple product formula,
\[
|\xi_1 \langle (\gamma \times \gamma')(\theta), \gamma(\theta) \rangle| \sim \varepsilon^2 2^j,
\]
provided r is small enough. Moreover
\[
|\xi_2 \langle (\gamma \times \gamma')(\theta), \gamma'(\theta) \rangle| \sim 2^{j/2} \varepsilon, \quad |\xi_3 \langle (\gamma \times \gamma')(\theta), (\gamma \times \gamma')(\theta) \rangle| \sim \varepsilon.
\]
Since $\varepsilon \geq 2^{(j-1)/2}$, it follows that
\[
|\langle (\gamma \times \gamma')(\theta), \xi \rangle| \sim \varepsilon^2 2^j,
\]
provided that r is sufficiently small and j is sufficiently large. Using second order Taylor approximation in a similar way gives that
\[
2^{(1-\delta)} \left| \langle (\gamma \times \gamma')(\theta), \gamma(\theta) \rangle \right| \\
+ 2^{(1/2-\delta)} \left| \langle (\gamma \times \gamma')(\theta), \gamma'(\theta) \rangle \right| + 2^{-\delta} \left| \langle (\gamma \times \gamma')(\theta), (\gamma \times \gamma')(\theta) \rangle \right| \leq 2^{(1-\delta)} \varepsilon^2.
\]
It follows that
\[
2^{3j} \lesssim 2^{-j} 2^{(n-1)} \int R \chi_T(x + t(\gamma \times \gamma')(\theta)) \, dt.
\]
Substituting this into (2.1) gives that
\[
|\langle \pi_{\theta \#} M_T f(x) \rangle| \lesssim 2^{-j} 2^{(n-1)} \| f \|_{L^1(\mathbb{R}^3)} m(\tau) \int R \chi_T(x + t(\gamma \times \gamma')(\theta)) \, dt,
\]
for any $x \in (\gamma \times \gamma')(\theta)^\perp$. Integrating over $t \in \mathbb{R}$ and $x \in (\gamma \times \gamma')(\theta)^\perp$ gives (2.2).

The following lemma is essentially the same as Lemma 2 from [4], but again the proof is included for completeness.

Lemma 2.3. Let $j \geq 1$ and let $\tau \in \Lambda_j$. For any finite compactly supported Borel measure μ,
\[
\| M_T \mu \|_{L^1(\mathbb{R}^3)} \leq 2^{3j} \mu(2T) + C_N 2^{-j} \mu(\mathbb{R}^3),
\]
for any positive integer N.

Proof. By definition,
\[
\| M_T \mu \|_{L^1(\mathbb{R}^3)} = \int_{\mathbb{R}^3} \left| \int_{2T} \tilde{\psi}_\tau(x-y) \, d\mu(y) \right| \, dx \\
\leq \int_{2T} \int_{\mathbb{R}^3} \left| \tilde{\psi}_\tau(x-y) \right| \, d\mu(y) \, dx \\
+ \int_{2T} \int_{\mathbb{R}^3 \setminus 2T} \left| \tilde{\psi}_\tau(x-y) \right| \, d\mu(y) \, dx.
\]
(2.6)
The first integral satisfies
\[
\int_{2T} \int_{\mathbb{R}^3 \setminus 2T} \left| \tilde{\psi}_\tau(x-y) \right| \, d\mu(y) \, dx \leq 2^{3j} \mu(2T).
\]
(2.7)
The second integral satisfies
\[\int_T \int_{\mathbb{R}^3 \setminus 2T} |\tilde{\psi}_\tau(x-y)| \, d\mu(y) \, dx \leq \mu(\mathbb{R}^3) \int_{\mathbb{R}^3 \setminus T_0} |\tilde{\psi}_\tau|, \]
where \(T_0 \) is the translate of the plank \(T \) to the origin, parallel to \(T \). Integrating by parts, and using (2.4), gives that for any \(k \geq 0 \), for any \(x \in \mathbb{R}^3 \setminus 2^k T_0 \),
\[|\tilde{\psi}_\tau(x)| \lesssim_N 2^{-kN - \beta N} m(\tau). \]
Summing a geometric series over \(k \geq 0 \) gives (with relabelled \(N \))
\[\int_T \int_{\mathbb{R}^3 \setminus 2T} |\tilde{\psi}_\tau(x-y)| \, d\mu(y) \, dx \leq C_N \mu(\mathbb{R}^3) 2^{-\beta N}. \]
Putting (2.7) and (2.8) into (2.6) finishes the proof. \(\square \)

For a function \(f : X \to [0, +\infty] \) on a measure space \((X, \mathcal{A}, \mu)\), let \(\int f \, d\mu \) denote the lower integral of \(f \), defined by
\[\int f \, d\mu = \sup \left\{ \int g \, d\mu : g \text{ is simple and } \mathcal{A}\text{-measurable with } 0 \leq g \leq f \right\}, \]
where “simple” means that \(g \) takes finitely many values. In the application of Lemma 2.4 below, the integrand will be measurable, so the use of the lower integral is not important and is only a technical convenience to avoid measurability issues. The definition of the lower integral is standard; see e.g. [10, p. 13].

Lemma 2.4. Let \(\beta \in [0, 1] \), let \(\alpha = 4 - 3\beta \), and let \(\lambda \) be a Borel measure supported on \(I \) with \(c_\beta(\lambda) \leq 1 \). Then for any \(\epsilon > 0 \), there exists \(\delta > 0 \) such that
\[\int (\rho_{\theta\#}\mu) \left(\bigcup_{D \in \mathcal{D}_\theta} D \right) \, d\lambda(\theta) \leq C(\lambda, \delta, \epsilon, \gamma) R^{-\delta} \mu(\mathbb{R}^3), \]
for any \(R \geq 1 \), for any Borel measure \(\mu \) on \(B_3(0, 1) \) with \(c_\alpha(\mu) \leq 1 \), and for any family of sets \(\{\mathcal{D}_\theta\} \), where each \(\mathcal{D}_\theta \) is a disjoint set of intervals of diameter \(2R^{-1} \)
in the span of \(\gamma(\theta) \), each with cardinality \(|\mathcal{D}_\theta| \leq R^{1-\epsilon} \mu(\mathbb{R}^3) \).

Remark 1. Lemma 2.4 roughly says that the pushforward \(\rho_{\theta\#}\mu \) of a \((4 - 3\beta)\)-dimensional measure \(\mu \) satisfies a 1-dimensional Frostman condition on average. By taking \(\beta = 1 \) (for example), this is enough to conclude that projections of 1-dimensional sets are a.e. 1-dimensional, but the main application of Lemma 2.4 here will be to bound the \(L^1 \) norm of the “bad” part of the measure in the proof of Theorem 1.12. The “bad” part of the measure corresponds to intervals of large \(\rho_{\theta\#}\mu \)-mass, which will automatically satisfy the cardinality assumption of Lemma 2.4.

Proof of Lemma 2.4. It may be assumed that \(\alpha \leq 3 \), since otherwise the lemma is trivial. Since the constant is allowed to depend on \(\gamma \), it can be assumed that \(\gamma \) is localised to a smaller interval on which Lemma 2.2 holds.

Let \(\phi_R \) be a non-negative bump function supported in \(B(0, R^{-1}) \) which integrates to 1, defined by
\[\phi_R(x) = R^4 \phi(Rx), \]
for some fixed non-negative bump function \(\phi \) with support in \(B(0, 1) \) such that \(\int \phi = 1 \). For any \(\theta \) and any \(D \in \mathcal{D}_\theta \), the 1-Lipschitz property of orthogonal projections implies that
\[(\rho_{\theta\#}(\mu \ast \phi_R))(2D) \geq (\rho_{\theta\#}\mu)(D), \]
where $2D$ is the interval with the same centre as D, but twice the radius. Moreover,

$$c_\alpha(\mu * \phi_R) \lesssim c_\alpha(\mu),$$

so it suffices to prove (2.9) with $\mu * \phi_R$ in place of μ. To simplify notation the new measure will not be relabelled, but it will be assumed throughout that μ is a non-negative Schwartz function, and that

$$|\tilde{\mu}(\xi)| \leq C_N(R/\xi)^N, \quad \xi \in \mathbb{R}^3,$$

for any positive integer N, where C_N is a constant depending only on N.

Let ϵ_0 be any positive real number which is strictly larger than the infimum over all positive ϵ for which the conclusion of the lemma is true. It suffices to prove that the lemma holds for any $\epsilon > (2\epsilon_0)/3$, so let such an ϵ be given. Let $R \geq 1$ and choose a non-negative integer J such that $2^J \sim R^{\epsilon/1000}$. Let $\epsilon > 0$ be such that $\epsilon \ll \epsilon - 2^{\epsilon_0}$. Choose $\tilde{\delta} > 0$ such that $\tilde{\delta} \ll \min\{\delta_\epsilon, \epsilon\}$, where δ_ϵ is a δ corresponding to ϵ_0 that satisfies (2.9).

Define the “bad” part of μ by

$$\mu_b = \sum_{j \geq J} \sum_{\tau \in \Lambda_j} \sum_{T \in T_{\tau,b}} M_T \mu,$$

where, for each $\tau \in \Lambda_j$, the set of “bad” planks corresponding to τ is defined by

$$T_{\tau,b} = \left\{ T \in T_\tau : \mu(4T) \geq 2^{j(\epsilon_0 - 1)} \right\},$$

where $4T$ is a plank with the same centre as T, but scaled by a factor of 4. Define the “good” part of μ by

$$\mu_g = \mu - \mu_b.$$

The Schwartz decay of μ implies that the sum in (2.11) converges in the Schwartz space $S(\mathbb{R}^3)$. This implies that μ_b and μ_g are Schwartz functions, and in particular they are finite complex measures. Pushforwards of complex measures are defined just as for positive measures. By Cauchy-Schwarz,

$$\int \left(\rho_\theta \| \mu \|_1 \right) \left(\bigcup_{D \in \mathbb{D}_\theta} D \right) \ d\lambda(\theta) \leq \int \| \rho_\theta \| \| \mu_b \|_1 \ d\lambda(\theta),$$

where \mathbb{D}_θ is a δ corresponding to ϵ_0 that satisfies (2.9).

1The particular Cauchy-Schwarz technique used here is from [8].
The contribution from the “bad” part will be bounded first. By the triangle inequality,
\[
\int \|\rho_\theta \# \mu_b\|_{L^1(\mathcal{H}_1)} \, d\lambda(\theta) \leq \sum_{j \geq J} \int \sum_{\tau \in \Lambda_j} \sum_{T \in T_{\tau,b}} \|\rho_\theta \# M_T \mu\|_{L^1(\mathcal{H}_1)} \, d\lambda(\theta)
\]
(2.13)
\[
= \sum_{j \geq J} \int \sum_{\tau \in \Lambda_j: |\theta - \theta| \leq 2^{(\delta - 1/2)} \tau} \sum_{T \in T_{\tau,b}} \|\rho_\theta \# M_T \mu\|_{L^1(\mathcal{H}_1)} \, d\lambda(\theta)
\]
(2.14)
\[+ \sum_{j \geq J} \int \sum_{\tau \in \Lambda_j: |\theta - \theta| > 2^{(\delta - 1/2)} \tau} \sum_{T \in T_{\tau,b}} \|\rho_\theta \# M_T \mu\|_{L^1(\mathcal{H}_1)} \, d\lambda(\theta).
\]
Let \(\pi_\theta\) be orthogonal projection onto \((\gamma \times \gamma')(\theta)\). By the inequality
\[
\|\rho_\theta \# f\|_{L^1(\mathcal{H}_1)} \leq \|\pi_\theta \# f\|_{L^1(\mathcal{H}_1)}
\]
followed by Lemma 2.2,
\[
(2.14) \lesssim 2^{-J} \mu(\mathbb{R}^3) \sim R^{-1000} \mu(\mathbb{R}^3).
\]
By the inequality
\[
\|\rho_\theta \# f\|_{L^1(\mathcal{H}_1)} \leq \|f\|_{L^1(\mathbb{R}^3)},
\]
followed by Lemma 2.3,
\[
(2.13) \lesssim \sum_{j \geq J} \int \sum_{\tau \in \Lambda_j: |\theta - \theta| \leq 2^{(\delta - 1/2)} \tau} \sum_{T \in T_{\tau,b}} \|M_T \mu\|_{L^1(\mathbb{R}^3)} \, d\lambda(\theta)
\]
\[\lesssim 2^{-J} \mu(\mathbb{R}^3) + \sum_{j \geq J} 2^{3\delta J} \int \sum_{\tau \in \Lambda_j: |\theta - \theta| \leq 2^{(\delta - 1/2)} \tau} \sum_{T \in T_{\tau,b}} \mu(2T) \, d\lambda(\theta),
\]
The non-tail term satisfies
\[
(2.15) \sum_{j \geq J} 2^{3\delta J} \int \sum_{\tau \in \Lambda_j: |\theta - \theta| \leq 2^{(\delta - 1/2)} \tau} \sum_{T \in T_{\tau,b}} \mu(2T) \, d\lambda(\theta) \lesssim \sum_{j \geq J} 2^{10\delta J} \int \mu(B_j(\theta)) \, d\lambda(\theta),
\]
where, for each \(\theta \in I\) and each \(j\),
\[
B_j(\theta) = \bigcup_{\tau \in \Lambda_j: |\theta - \theta| \leq 2^{(\delta - 1/2)} \tau} \bigcup_{T \in T_{\tau,b}} 2T.
\]
The inequality (2.15) used that for each \(j\) and each \(\theta \in I\), there are \(\lesssim 2^{\delta J}\) sets \(\tau \in \Lambda_j\) with the property that \(|\theta - \theta| \leq 2^{(\delta - 1/2)} \tau\), which means each of the planks \(2T\) in the union defining \(B_j(\theta)\) intersects \(\lesssim 2^{\delta J}\) of the others. For each \(T\) in the union defining \(B_j(\theta)\), the set \((4T) \cap B(0,1)\) is contained in a plank \(T_\theta\) of dimensions
\[
\sim 2^{j(\delta - 1)} \times 2^{(\delta - 1/2)} \times 1,
\]
with short direction parallel to \(\gamma(\theta)\), medium direction parallel to \(\gamma'(\theta)\), and long direction parallel to \((\gamma \times \gamma')(\theta)\), where the implicit constant depends only on \(\gamma\); this
follows from the second order Taylor approximation for \(\gamma \). Therefore, the intervals in the set
\[
\left\{ \rho_\theta(T_\theta) : T \in \mathcal{T}_{\tau,b}, \quad \tau \in \Lambda_j, \quad |\theta_\tau - \theta| \leq 2^{(3\delta - 1/2)} \right\},
\]
all have length \(\sim 2^{j(\delta - 1)} \), and form a cover of \(\rho_\theta(B_j(\theta) \cap B(0,1)) \). By the Vitali covering lemma, there is a disjoint subcollection
\[
\{ \rho_\theta(T_\theta) : T \in \mathcal{B}_\theta \},
\]
indexed by some set \(\mathcal{B}_\theta \), such that
\[
\{ \rho_\theta(T_\theta) : T \in \mathcal{B}_\theta \},
\]
is a cover of \(\rho_\theta(B_j(\theta) \cap B(0,1)) \). The set \(\mathcal{B}_\theta \) has cardinality \(|\mathcal{B}_\theta| \leq \mu(\mathbb{R}^3)^{2^{j(1/2) - \epsilon_0}} \); by disjointness and the definition of the “bad” planks (see (2.12)). Since the conclusion of the lemma holds for \(\epsilon_0 \), it follows that for each \(j \geq J \),
\[
\int \mu(B_j(\theta)) \, d\lambda(\theta) \leq \int \left((\rho_\theta \# \mu) \left(\bigcup_{T \in \mathcal{B}_\theta} 3\rho_\theta(T_\theta) \right) \right) \, d\lambda(\theta) \lesssim 2^{2j(-\delta_\epsilon_0/2 + 10\tilde{\delta})} \mu(\mathbb{R}^3).
\]
The set \(B_j(\theta) \) is piecewise constant in \(\theta \) over a partition of \(I \) into Borel sets, so it may be assumed that the integrands above are Borel measurable. Since \(\tilde{\delta} \ll \delta_\epsilon_0 \), the inequality above yields
\[
\text{(2.13)} \lesssim \mu(\mathbb{R}^3)2^{-(J\delta_\epsilon_0)/100} \sim \mu(\mathbb{R}^3)R^{-(\epsilon_\delta_0)/100}.
\]
It remains to bound the contribution from \(\mu_g(\rho_\theta(\mathcal{B}_\theta)) \). By the assumptions in the lemma,
\[
\sup_{\theta \in I} \mathcal{H}^1 \left(\bigcup_{D \in \mathcal{B}_\theta} D \right) \lesssim R^{-\epsilon} \mu(\mathbb{R}^3).
\]
Since \(\epsilon \ll \epsilon - (2\epsilon_0)/3 \), it suffices to prove that
\[
\int \| \rho_\theta \# \mu_\theta \|^2_{L^2(\mathcal{H}^1)} \, d\lambda(\theta) \lesssim \max \left\{ R^{2\epsilon_0/3 + 100\epsilon}, R^{\epsilon/2} \right\} \mu(\mathbb{R}^3),
\]
By Plancherel’s theorem in 1 dimension,
\[
\int \| \rho_\theta \# \mu_\theta \|^2_{L^2(\mathcal{H}^1)} \, d\lambda(\theta) = \int \int_{\mathbb{R}} |\hat{\mu}_\theta(t\gamma)\rangle|^2 \, dt \, d\lambda(\theta).
\]
To formally prove this identity, one approach is to rotate \(\gamma(\theta) \) to \((1,0,0) \) (using that \(\mathcal{H}^1 \) is a rotation invariant measure on \(\mathbb{R}^3 \)), and apply Plancherel’s theorem on \(\mathbb{R} \). By symmetry, by summing a geometric series, and by the rapid decay of \(\hat{\mu} \) outside \(B(0,R) \) (see (2.10)), it will suffice to bound
\[
\int \int_{2^{j-1}}^{2^j} |\hat{\mu}_g(t\gamma(\theta))\rangle|^2 \, dt \, d\lambda(\theta),
\]
for any \(j \geq 2J \) with \(2^j \leq R^{1+\tilde{\delta}} \), the contribution from the small frequencies can be bounded trivially by the definition of \(J \). For each \(\tau \in \Lambda \), define the set of “good” planks corresponding to \(\tau \) by
\[
\mathcal{T}_{\tau,g} = \mathcal{T}_\tau \setminus \mathcal{T}_{\tau,b}.
\]
Then
\[\int \int_{2^{j-1}}^{2^j} |\hat{\mu}_g(t\gamma(\theta))|^2 \, dt \, d\lambda(\theta) \leq \int \int_{2^{j-1}}^{2^j} \left| \sum_{\tau \in \bigcup_{|j'-j| \leq 2} \Lambda_{j'}} \sum_{T \in \mathcal{T}_{\tau, g}} \hat{M}_T \mu(t\gamma(\theta)) \right|^2 \, dt \, d\lambda(\theta) + 2^{-j} \mu(\mathbb{R}^3). \]

Since the \(\tau \)'s are finitely overlapping,
\[(2.16) \int \int_{2^{j-1}}^{2^j} \left| \sum_{\tau \in \bigcup_{|j'-j| \leq 2} \Lambda_{j'}} \sum_{T \in \mathcal{T}_{\tau, g}} \hat{M}_T \mu(t\gamma(\theta)) \right|^2 \, dt \, d\lambda(\theta) \leq 2^{-j} \mu(\mathbb{R}^3) \]

The uncertainty principle implies that each of the integrals in the right-hand side of (2.16) is bounded by \(2^{-j\beta} \) times the integral of the same function over \(\mathbb{R}^3 \). More precisely, for each \(\tau \in \bigcup_{|j'-j| \leq 2} \Lambda_{j'} \), the contribution from the planks in the above sum with \(T \cap B\left(0, 2^{10^j\beta}\right) = \emptyset \) is negligible since \(\mu \) is supported in \(B(0, 1) \). The remaining sum
\[g_\tau = \sum_{T \in \mathcal{T}_{\tau, g} : T \cap B(0, 2^{10^j\beta}) \neq \emptyset} M_T \mu, \]

is equal to \(g_\tau \varphi \) where \(\varphi \) is a smooth bump function on \(B\left(0, 2^{1+10^j\beta}\right) \) obtained by rescaling a bump function on the unit ball, and therefore by the Cauchy-Schwarz inequality,
\[|g_\tau|^2 \lesssim |g_\tau|^2 \ast \zeta, \]
where
\[\zeta(\xi) = \frac{2^{30^j\beta}}{1 + |2^{10^j\beta} \xi|^{100}}, \quad \xi \in \mathbb{R}^3. \]

The function in the right-hand side of (2.17) is essentially constant on balls of radius \(2^{-10^j\beta} \) (as it inherits this property from \(\zeta \)), so by discretising the integral in (2.16) into balls of radius \(2^{-10^j\beta} \) and using the condition \(c_\beta(\lambda) \leq 1 \),
\[\int \int_{2^{j-1}}^{2^j} \left| \sum_{T \in \mathcal{T}_{\tau, g}} \hat{M}_T \mu(t\gamma(\theta)) \right|^2 \, dt \, d\lambda(\theta) \lesssim 2^{j(10^3 - 10^j\beta)} \int_{\mathbb{R}^3} \left| \sum_{T \in \mathcal{T}_{\tau, g} : T \cap B(0, 2^{10^j\beta}) \neq \emptyset} \hat{M}_T \mu \right|^2 \, d\xi + 2^{-j} \mu(\mathbb{R}^3), \]
for each $\tau \in \bigcup_{j' - j \leq 2} \Lambda_{j'}$. Let

$$T_{j,g} = \bigcup_{\tau \in \bigcup_{j' - j \leq 2} \Lambda_{j'}} \left\{ T \in T_{\tau,g} : T \cap B \left(0, 2^{10j} \right) \neq \emptyset \right\}.$$

By Plancherel’s theorem in \mathbb{R}^3 and the finite overlapping property of the T’s, it suffices to prove that for any $j \geq 2J$,

$$\sum_{T \in T_{j,g}} \int_{\mathbb{R}^3} |M_T \mu|^2 \, dx \lesssim 2^j (\beta + 2^{j_0} + 100 \varepsilon) \mu(\mathbb{R}^3). \tag{2.18}$$

From the definition $M_T \mu = \eta_T \left(\mu \ast \overline{\psi_{\tau(T)}} \right)$ and by Fubini, the left-hand side of the above is equal to

$$\int \sum_{T \in T_{j,g}} [\eta_T M_T \mu] \ast \overline{\psi_{\tau(T)}} \, d\mu.$$

If $f_T := [\eta_T M_T \mu] \ast \overline{\psi_{\tau(T)}}$, then by the Cauchy-Schwarz inequality with respect to the measure μ, the square of the above is bounded by

$$\int \left| \sum_{T \in T_{j,g}} f_T \right|^2 \, d\mu \cdot \mu(\mathbb{R}^3).$$

By the uncertainty principle,

$$\int \left| \sum_{T \in T_{j,g}} f_T \right|^2 \, d\mu \lesssim \int \sum_{T \in T_{j,g}} f_T^2 \, d\mu_j,$$

where $\mu_j = \mu \ast \phi_j$ and $\phi_j(x) = \frac{2^{3j}}{1 + \frac{x^2}{2^{2j}N}}$, where $N \sim 1000/\delta^2$. By dyadic pigeonholing, there exists a collection \mathcal{W} of planks $T \in T_{j,g}$ with $\|f_T\|_p$ constant over $T \in \mathcal{W}$ up to a factor of 2, and a union Y of disjoint 2^{-j}-balls Q such that each Q intersects $\sim M$ planks $2T \in \mathcal{W}$ for some dyadic number M, and such that

$$\int \left| \sum_{T \in T_{j,g}} f_T \right|^2 \, d\mu_j \lesssim j^{10} \int_Y \left| \sum_{T \in \mathcal{W}} f_T \right|^2 \, d\mu_j + 2^{-j} \mu(\mathbb{R}^3)^2.$$

Let $p = 6$. By Hölder’s inequality with respect to the Lebesgue measure,

$$\int_Y \left| \sum_{T \in \mathcal{W}} f_T \right|^2 \, d\mu_j \leq \left\| \sum_{T \in \mathcal{W}} f_T \right\|_{L^p(Y)}^2 \left(\int_Y \mu_j(x)^{\frac{p-2}{p}} \right)^{\frac{p-2}{p}}, \tag{2.19}$$
By the dimension condition \(c_\alpha(\mu) \leq 1 \) on \(\mu \), the definition of \(Y \), and the definition of the “good” planks,

\[
\left(2.20\right) \quad \int_Y \mu_j^\frac{n}{p-2} \lesssim 2^{\frac{2(n-\alpha)}{p-2}} \int_Y \mu_j
\]

\[
\leq 2^{\frac{2(n-\alpha)}{p-2}} \sum_{Q \subseteq Y} \int_Q \mu_j
\]

\[
\lesssim \left(\frac{1}{M} \right) \cdot 2^{\frac{2(n-\alpha)}{p-2}} \sum_{Q \subseteq Y} \sum_{T \in \mathbb{W}} \int_{Q \cap 3T} \mu_j
\]

\[
\lesssim \left(\frac{1}{M} \right) \cdot 2^{\frac{2(n-\alpha)}{p-2}} \sum_{T \in \mathbb{W}} \int_{3T} \mu_j
\]

\[
\lesssim \left(\frac{1}{M} \right) \cdot 2^{\frac{2(n-\alpha)}{p-2}} \sum_{T \in \mathbb{W}} \mu(4T) + 2^{-100j}
\]

\[
\lesssim 2^{\frac{2(n-\alpha)}{p-2} + j(\epsilon_0 - 1)} \left(\frac{\|W\|}{M} \right).
\]

This bounds the second factor in (2.19), so it remains to bound the first factor.

By rescaling by \(2^j \), applying the refined decoupling inequality (see Theorem A.1 of the appendix), and then rescaling back,

\[
\left\| \sum_{T \in \mathbb{W}} f_T \right\|_{L^p(Y)} \lesssim 2^{j\epsilon} \left(\frac{M}{\|W\|} \right)^{\frac{1}{2} - \frac{1}{p}} \left(\sum_{T \in \mathbb{W}} \|f_T\|_p^2 \right)^{1/2}.
\]

Recall that \(f_T = \widehat{\nu_T \mu} * \psi_{2^j T} \). By applying the Hausdorff-Young inequality, then Hölder’s inequality, and then Plancherel’s theorem,

\[
\|f_T\|_p \lesssim \|\nu_T \mu\|_2 2^{\frac{3p}{2} - \frac{3p}{2}} (\frac{M}{\|W\|})^{\frac{1}{2} - \frac{1}{p}} \left(\sum_{T \in \mathbb{W}} \|\nu_T \mu\|_2^2 \right)^{1/2}.
\]

Hence

\[
\left(2.21\right) \quad \left\| \sum_{T \in \mathbb{W}} f_T \right\|_{L^p(Y)} \lesssim 2^{j\epsilon} \left(\frac{M}{\|W\|} \right)^{\frac{1}{2} - \frac{1}{p}} \left(\sum_{T \in \mathbb{W}} \|\nu_T \mu\|_2^2 \right)^{1/2}.
\]

Putting (2.21) and (2.20) into (2.19) gives

\[
\sum_{T \in \mathbb{W}} \int_{\mathbb{R}^3} |\nu_T \mu|^2 \leq 2^{j \left(\frac{5 - 2\alpha}{2} + \frac{3p}{2} - \frac{3(n-p)}{2p} \right)} \left(\sum_{T \in \mathbb{W}} \int_{\mathbb{R}^3} |\nu_T \mu|^2 \right)^{1/2} \mu(\mathbb{R}^3)^{1/2}.
\]

By cancelling the common factor, this gives

\[
\sum_{T \in \mathbb{W}} \int_{\mathbb{R}^3} |\nu_T \mu|^2 \leq 2^{j \left(\frac{5 - 2\alpha}{2} + \frac{3p}{2} - \frac{3(n-p)}{2p} \right)} \mu(\mathbb{R}^3).
\]

Since \(p = 6 \) and \(\alpha = 4 - 3\beta \), this simplifies to

\[
\sum_{T \in \mathbb{W}} \int_{\mathbb{R}^3} |\nu_T \mu|^2 \leq 2^{j \left(\beta + \frac{2p}{5} + 3\epsilon \right)} \mu(\mathbb{R}^3),
\]

which verifies (2.18), and as explained above, this proves the lemma. \(\square \)
The proof of Theorem 1.2 will be similar to the proof of the lemma.

Proof of Theorem 1.2. It will first be shown that the set
\[\{ \theta \in I : \rho_{\theta \# \mu} \not\ll \mathcal{H}^1 \} \]
is Borel measurable. It may be assumed that \(\mu \) is compactly supported, since if \(\mu_k \) is the restriction of \(\mu \) to \(B(0, k) \), then
\[\{ \theta \in I : \rho_{\theta \# \mu} \not\ll \mathcal{H}^1 \} = \bigcup_{k=1}^{\infty} \{ \theta \in I : \rho_{\theta \# \mu_k} \not\ll \mathcal{H}^1 \} . \]

For any positive integer \(n \), the function
\[(\theta, t) \mapsto (\rho_{\theta \# \mu}) (B(t \gamma(\theta), 1/n)), \]
is lower semicontinuous on \(I \times \mathbb{R} \), and is therefore Borel measurable from \(I \times \mathbb{R} \) to \([0, +\infty)\) (here \(B(x, r) \) denotes the open ball or interval of radius \(r \) around \(x \)). It follows that the function
\[\theta \mapsto \limsup_{n \to \infty} n (\rho_{\theta \# \mu}) (B(t \gamma(\theta), 1/n)) \]
is Borel measurable from \(I \) to \([0, +\infty]\). It follows that the set
\[\{ \theta \in I : \int_{\mathbb{R}} \limsup_{n \to \infty} n (\rho_{\theta \# \mu}) (B(t \gamma(\theta), 1/n)) \, dt < \mu(R^3) \} , \]
is a Borel measurable subset of \(I \), and this set is equal to \(\{ \theta \in I : \rho_{\theta \# \mu} \not\ll \mathcal{H}^1 \} \) by the Lebesgue differentiation theorem (see e.g. [3, Theorem 3.22]).

As in the proof of the lemma, it may be assumed that \(\gamma \) is localised to a small interval on which Lemma 2.2 holds. It may also be assumed that \(\alpha \leq 3, c_\alpha(\mu) \leq 1 \) and (by countable stability of the Hausdorff dimension) that \(\mu \) has support in the unit ball. Let \(\beta \) be such that \(0 \leq \beta < (4 - \alpha)/3 \). Let \(\lambda \) be a Borel measure supported on \(I \) with \(c_\beta(\lambda) \leq 1 \). Let \(\epsilon > 0 \) be such that \(\epsilon \ll \frac{4 - \alpha}{3} - \beta \). Choose \(\delta > 0 \) such that \(\delta \ll \min \{ \epsilon, \delta_\varepsilon \} \), where \(\delta_\varepsilon \) is an exponent corresponding to \(\epsilon \) from Lemma 2.4.

Using Definition 2.1 define \(\mu_b \) by
\[(2.22) \quad \mu_b = \sum_{j \geq 1} \sum_{\tau \in \Lambda_j} \sum_{T \in \mathbb{T}_{\tau, b}} M_T \mu, \]
where, for each \(j \geq 1 \) and \(\tau \in \Lambda_j \), the set of “bad” planks corresponding to \(\tau \) is defined by
\[\mathbb{T}_{\tau, b} = \left\{ T \in \mathbb{T}_{\tau} : \mu(4T) \geq 2^j (4\epsilon - 1) \right\} . \]

Since the frequencies are no longer localised, the sum in (2.22) only converges a priori in the space of tempered distributions, but the individual functions \(M_T \mu \) are smooth and compactly supported. For \(\lambda \)-a.e. \(\theta \in I \),
\[(2.23) \quad \rho_{\theta \# \mu_b} := \sum_{j \geq 1} \sum_{\tau \in \Lambda_j} \sum_{T \in \mathbb{T}_{\tau, b}} \rho_{\theta \#} M_T \mu, \]
where, for λ-a.e. $\theta \in I$, the series will be shown to be absolutely convergent in $L^1(\mathcal{H}^1)$. Since L^1 is always a Banach space, any absolutely convergent series of L^1 functions is convergent in L^1, so the λ-a.e. absolute convergence of (2.23) in $L^1(\mathcal{H}^1)$ will imply that $\rho_{\theta\#}\mu_b \in L^1(\mathcal{H}^1)$ for λ-a.e. $\theta \in I$, and will imply that the series is well-defined as an $L^1(\mathcal{H}^1)$ limit. Define

$$\rho_{\theta\#}\mu_g = \rho_{\theta\#}\mu - \rho_{\theta\#}\mu_b,$$

for each $\lambda \in I$ such that the sum defining $\rho_{\theta\#}\mu_b$ converges in $L^1(\mathcal{H}^1)$ (which will include λ-a.e. $\theta \in I$). It will be shown that $\rho_{\theta\#}\mu_g \in L^2(\mathcal{H}^1)$, for λ-a.e. $\theta \in I$. Together with $\rho_{\theta\#}\mu_b \in L^1(\mathcal{H}^1)$, this will imply that $\rho_{\theta\#}\mu \in L^1(\mathcal{H}^1)$ (or equivalently $\rho_{\theta\#}\mu \ll \mathcal{H}^1$) for λ-a.e. $\theta \in I$.

It will first be shown that

$$\int \sum_{j \geq 1} \sum_{\tau \in \Lambda_j} \sum_{T \in T_{\tau,b}} \|\rho_{\theta\#} M T \mu\|_{L^1(\mathcal{H}^1)} \ d\lambda(\theta) < \infty. \quad (2.24)$$

The proof of this is similar to the proof of Lemma 2.4, but some of the details will be included for readability. The left-hand side of (2.24) can be written as

$$\sum_{j \geq 1} \int \sum_{\tau \in \Lambda_j} \sum_{T \in T_{\tau,b}} \|\rho_{\theta\#} M T \mu\|_{L^1(\mathcal{H}^1)} \ d\lambda(\theta)$$

(2.25)

$$= \sum_{j \geq 1} \int \sum_{\tau \in \Lambda_j: |\theta - \theta| \leq 2^{j(\delta - 1/2)}} \sum_{T \in T_{\tau,b}} \|\rho_{\theta\#} M T \mu\|_{L^1(\mathcal{H}^1)} \ d\lambda(\theta)$$

(2.26)

$$+ \sum_{j \geq 1} \int \sum_{\tau \in \Lambda_j: |\theta - \theta| > 2^{j(\delta - 1/2)}} \sum_{T \in T_{\tau,b}} \|\rho_{\theta\#} M T \mu\|_{L^1(\mathcal{H}^1)} \ d\lambda(\theta).$$

By Lemma 2.2

$$L \lesssim \mu(\mathbb{R}^3). \quad (2.20)$$

By Lemma 2.3

$$\leq \sum_{j \geq 1} \int \sum_{\tau \in \Lambda_j: |\theta - \theta| \leq 2^{j(\delta - 1/2)}} \sum_{T \in T_{\tau,b}} \|M T \mu\|_{L^1(\mathbb{R}^3)} \ d\lambda(\theta)$$

$$\lesssim \mu(\mathbb{R}^3) + \sum_{j \geq 1} 2^{3j\delta} \int \sum_{\tau \in \Lambda_j: |\theta - \theta| \leq 2^{j(\delta - 1/2)}} \sum_{T \in T_{\tau,b}} \mu(2T) \ d\lambda(\theta).$$

As in the proof of Lemma 2.4 the non-tail term satisfies

$$\sum_{j \geq 1} 2^{3j\delta} \int \sum_{\tau \in \Lambda_j: |\theta - \theta| \leq 2^{j(\delta - 1/2)}} \sum_{T \in T_{\tau,b}} \mu(2T) \ d\lambda(\theta) \lesssim \sum_{j \geq 1} 2^{10j\delta} \int \mu(B_j(\theta)) \ d\lambda(\theta),$$

where, for each $\theta \in I$ and each j,

$$B_j(\theta) = \bigcup_{\tau \in \Lambda_j: |\theta - \theta| \leq 2^{j(\delta - 1/2)}} T \cup 2T.$$
For each T in the union defining $B_j(\theta)$, the set $(4T) \cap B(0,1)$ is contained in a plank T_θ of dimensions
\[
\sim 2^{\left(2^j - 1\right)} \times 2^{\left(\beta - 1/2\right)} \times 1,
\]
with short direction parallel to \(\gamma(\theta)\), medium direction parallel to \(\gamma(\beta)\), and long direction parallel to \((\gamma \times \gamma')(\theta)\). The intervals in the set
\[
\left\{ \rho_\theta(T_\theta) : T \in \mathcal{T}_\tau, \quad \tau \in \Lambda_j, \quad |\theta_\tau - \theta| \leq 2^{\left(\beta - 1/2\right)} \right\},
\]
all have length \(\sim 2^{\left(2^j - 1\right)}\), and cover \(\rho_\theta(B_j(\theta) \cap B(0,1))\). By the Vitali covering lemma, there is a disjoint subcollection
\[
\{ \rho_\theta(T_\theta) : T \in B_\theta \},
\]
indexed by some set B_θ, such that
\[
\{3\rho_\theta(T_\theta) : T \in B_\theta\},
\]
is a cover of \(\rho_\theta(B_j(\theta) \cap B(0,1))\). The set B_θ has cardinality $|B_\theta| \leq \mu(\mathbb{R}^3)2^j(1 - \epsilon)$; by disjointness and the definition of the “bad” planks. By Lemma \[2.4\] for each $j \geq 1$,
\[
\int \mu(B_j(\theta)) \, d\lambda(\theta) \leq \int (\rho_\theta \mu)(\bigcup_{T_\theta \in B_\theta} 3\rho_\theta(T_\theta)) \, d\lambda(\theta) \lesssim 2^{\beta(-\epsilon/2 + 10\epsilon)} \mu(\mathbb{R}^3).
\]
Since $\delta \ll \delta_\epsilon$, summing the above inequality over j gives
\[
(2.20) \quad \mu(\mathbb{R}^3).
\]

It remains to show that $\rho_{\theta \# \mu_{\gamma}} \in L^2(\mathcal{H}^1)$ for λ-a.e. $\theta \in I$. To prove this, by Plancherel’s theorem in 1 dimension it suffices to show that
\[
\int \int_{\mathbb{R}} |\hat{\mu}_{\gamma}(t\gamma(\theta))|^2 \, dt \, d\lambda(\theta) < \infty.
\]
By symmetry and by summing a geometric series, it is enough to show that for any $j \geq 1$,
\[
\int \int_{2^{j-1}} |\hat{\mu}_{\gamma}(t\gamma(\theta))|^2 \, dt \, d\lambda(\theta) \lesssim 2^{-j\epsilon}.
\]
By similar reasoning to the proof of Lemma \[2.4\] it suffices to show that
\[
\sum_{T \in \mathcal{T}_{j,g}} \int_{\mathbb{R}^3} |M_T\mu|^2 \lesssim 2^{j(\beta - 10\epsilon)},
\]
where
\[
\mathcal{T}_{j,g} = \bigcup_{\tau \in \bigcup_{|\nu| = j} A_{\tau,\nu}} \left\{ T \in \mathcal{T}_\tau : T \cap B(0,2^{10j}) \neq \emptyset \right\}.
\]
By a similar argument to the proof of Lemma \[2.3\]
\[
\sum_{T \in \mathcal{T}_{j,g}} \int_{\mathbb{R}^3} |M_T\mu|^2 \lesssim 2^{j\left[\frac{\beta - 20}{p} + \frac{1}{2} + 10n\right]}.
\]
Since $\alpha > 4 - 3\beta$, $p = 6$ and $\epsilon \ll \frac{4 - 3\beta}{3} - \beta$, this implies that
\[
\sum_{T \in \mathcal{T}_{j,g}} \int_{\mathbb{R}^3} |M_T\mu|^2 \lesssim 2^{j(\beta - 10\epsilon)},
\]
which finishes the proof of the theorem. \[\square\]
Proof of Theorem 1.3. By the density theorem for Hausdorff measures ([10, Theorem 6.2]),
\[
\limsup_{r \to 0^+} \frac{\mathcal{H}^s(A \cap B(x,r))}{r^s} \leq 2^s \quad \text{H}^s\text{-a.e. } x \in A.
\]
It follows that if, for each positive integer \(n\),
\[
A_n := \left\{ x \in A : \sup_{0 < r < 1/n} \frac{\mathcal{H}^s(A \cap B(x,r))}{r^s} < 2^{s+1} \right\},
\]
and \(\mu_n\) is the Borel measure defined by
\[
\mu_n(F) = \mathcal{H}^s \left(F \cap A_n \setminus \bigcup_{k=1}^{n-1} A_k \right),
\]
for any Borel set \(F\), then
\[
(2.27) \quad \mu = \sum_{n=1}^{\infty} \mu_n,
\]
and for any \(n \geq 1\)
\[
c_s(\mu_n) \leq \max \left\{ 2^{2s+1}, (2n)^s \mathcal{H}^s(A) \right\}.
\]
By Theorem 1.2 for any \(n \geq 1\),
\[
\dim \left\{ \theta \in I : \rho_{\theta \#} \mu_n \ll \mathcal{H}^1 \right\} \leq \frac{4 - s}{3},
\]
By (2.27),
\[
\left\{ \theta \in I : \rho_{\theta \#} \mu \ll \mathcal{H}^1 \right\} = \bigcup_{n=1}^{\infty} \left\{ \theta \in I : \rho_{\theta \#} \mu_n \ll \mathcal{H}^1 \right\}.
\]
By countable stability of the Hausdorff dimension, it follows that
\[
\dim \left\{ \theta \in I : \rho_{\theta \#} \mu \ll \mathcal{H}^1 \right\} \leq \frac{4 - s}{3}.
\]
This proves the first half of the theorem. For the second half, let \(B \subseteq A\) be an \(\mathcal{H}^s\)-measurable set with \(\mathcal{H}^s(B) > 0\). Let \(\nu\) be the Borel measure
\[
\nu(F) = \mathcal{H}^s(F \cap B) \quad (= \mu(F \cap B)),
\]
for any Borel set \(F\). It will be shown that
\[
(2.28) \quad \left\{ \theta \in I : \rho_{\theta \#} \nu \ll \mathcal{H}^1 \right\} \subseteq \left\{ \theta \in I : \mathcal{H}^1(\rho_{\theta}(B)) > 0 \right\}.
\]
Let \(\theta \in I\) be such that \(\rho_{\theta \#} \nu \ll \mathcal{H}^1\). Suppose for a contradiction that \(\mathcal{H}^1(\rho_{\theta}(B)) = 0\). Let \(\delta > 0\) be such that
\[
(\rho_{\theta \#} \nu)(F) < \mathcal{H}^s(B),
\]
for any Borel set \(F\) with \(\mathcal{H}^1(F) < \delta\). Since \(\mathcal{H}^1(\rho_{\theta}(B)) = 0\), there exists a Borel set \(F\) containing \(\rho_{\theta}(B)\) with \(\mathcal{H}^1(F) < \delta\). Hence
\[
\mathcal{H}^s(B) = \mathcal{H}^s(\rho_{\theta}^{-1}(F) \cap B) = (\rho_{\theta \#} \nu)(F) < \mathcal{H}^s(B),
\]
and this contradiction proves (2.28). Thus
\[
\left\{ \theta \in I : \mathcal{H}^1(\rho_{\theta}(B)) = 0 \right\} \subseteq \left\{ \theta \in I : \rho_{\theta \#} \nu \ll \mathcal{H}^1 \right\}
\subseteq \left\{ \theta \in I : \rho_{\theta \#} \mu \ll \mathcal{H}^1 \right\}. \quad \Box
Appendix A. Refined decoupling

The following inequality is Theorem 9 from [4]; it is a refined version of the decoupling theorem for generalised cones.

Theorem A.1 (\([4, \text{Theorem 9}]\)). Let \(I\) be a compact interval, and let \(\gamma : I \to S^2\) be a \(C^2\) unit speed curve with \(\det(\gamma, \gamma', \gamma'')\) nonvanishing on \(I\). Then if \(c > 0\) is sufficiently small (depending only on \(\gamma_0\)) such that the following holds for all \(\gamma\), for each \(\Theta_{\gamma}\) be a maximal \(cR^{-1/2}\)-separated subset of \(I\), and for each \(\gamma \in \Theta_{\gamma}\), let

\[
\tau(\gamma) := \left\{ \lambda_1 \gamma(\theta) + \lambda_2 \gamma'(\theta) + \lambda_3 (\gamma \times \gamma')(\theta) : 1/2 \leq \lambda_1 \leq 1, |\lambda_2| \leq R^{-1/2}, |\lambda_3| \leq R^{-1} \right\}.
\]

For each \(\tau = (\tau(\gamma))\), let \(\mathcal{T}_\tau\) be a \(\sim 1\)-overlapping cover of \(\mathbb{R}^3\) by translates of

\[
\left\{ \lambda_1 \gamma(\theta) + \lambda_2 \gamma'(\theta) + \lambda_3 (\gamma \times \gamma')(\theta) : |\lambda_1| \leq R^3, |\lambda_2| \leq R^{1+\delta}, |\lambda_3| \leq R^{1+\delta} \right\}.
\]

If \(2 \leq p \leq 6\), and

\[
\mathbb{W} \subset \bigcup_{\gamma \in \Theta_{\gamma}} \mathcal{T}_{\tau(\gamma)},
\]

and

\[
\sum_{T \in \mathbb{W}} f_T
\]

is such that \(\|f_T\|_p\) is constant over \(T \in \mathbb{W}\) up to a factor of 2, with \(\text{supp} \hat{f}_T \subseteq \tau(T)\) and

\[
\|f_T\|_{L^\infty(B(0,R),T)} \leq AR^{-10000}\|f_T\|_p,
\]

and \(Y\) is a disjoint union of balls in \(B_3(0,R)\) of radius 1, such that each ball \(Q \subseteq Y\) intersects at most \(M\) planks \(2T\) with \(T \in \mathbb{W}\), then

\[
\left\| \sum_{T \in \mathbb{W}} f_T \right\|_{L^p(Y)} \leq C_{A,\gamma,c,\epsilon,\delta} R^c \left(\frac{M}{|\mathbb{W}|} \right)^{\frac{1}{2} - \frac{1}{2p}} \left(\sum_{T \in \mathbb{W}} \|f_T\|_p^2 \right)^{1/2}.
\]

References

[1] Davies, R. O.: Subsets of finite measure in analytic sets. Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14, 488–489 (1952)

[2] Fässler, K., Orponen, T.: On restricted families of projections in \(\mathbb{R}^3\). Proc. London Math. Soc. (3) 109, 353–381 (2014)

[3] Pollard, G. B.: Real analysis. Modern techniques and their applications. Second edition. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, (1999)

[4] Gan, S., Guo, S., Guth, L., Harris, T. L. J., Maldague, D., Wang, H.: On restricted projections to planes in \(\mathbb{R}^3\) \([\text{arXiv:2207.13844}]\) (2022)

[5] Gan, S., Guth, L., Maldague, D.: An exceptional set estimate for restricted projections to lines in \(\mathbb{R}^3\) \([\text{arXiv:2209.15152}]\) (2022)

[6] Guth, L., Iosevich, A., Ou, Y, Wang, H.: On Falconer’s distance set problem in the plane. Invent. Math. 219, 779–830 (2020)

[7] Kämäki, A., Orponen, T., Venieri, L.: A Marstrand-type restricted projection theorem in \(\mathbb{R}^3\). To appear in Amer. J. Math. \([\text{arXiv:1708.04859}]\) (2017)

[8] Liu, B.: Hausdorff dimension of pinned distance sets and the \(L^2\)-method. Proc. Amer. Math. Soc. 148, 333–341 (2020)

[9] Marstrand, J.: Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc. (3) 4, 257–302 (1954)
[10] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Cambridge University Press, Cambridge, United Kingdom (1995)
[11] Pramanik, M., Yang, T., Zahl, J.: A Furstenberg-type problem for circles, and a Kaufman-type restricted projection theorem in \(\mathbb{R}^3 \). arXiv:2207.02259v2 (2022)
[12] Tao, T.: An introduction to measure theory. Graduate Studies in Mathematics, 126. American Mathematical Society, Providence, RI, (2011)

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NY 14853, USA

Email address: tlh236@cornell.edu