In silico targeting of red complex bacteria virulence factors of periodontitis with β-defensin 1

Harini Venkata Subbiah1, Polani Ramesh Babu2 and Usha Subbiah1*

Abstract

Background: Periodontitis is a multi-factorial infection with red complex bacteria playing a crucial role in the pathogenesis. As bacteria are tending to develop resistance against conventional antibiotics, new treatment modalities need to be developed. Antimicrobial peptides (AMPs) are potential tools for drug development and are gaining widespread interest. β-defensin 1 is an important AMP and forms the first-line host defense mechanism. The present study analyzed the structure and molecular docking of β-defensin 1 with the virulence factors of red complex bacteria of periodontitis. The physico-chemical properties of β-defensin 1 were determined by various online tools such as ProtParam, ProteinPredict, ToxinPred, and BioPep web servers. The structure of β-defensin 1 was predicted by the SWISS-MODEL web server and the structure was evaluated by different web tools. The structure of lipopolysaccharide of Porphyromonas gingivalis was drawn using Chem3D ultra 11.0 software. The structure of important protein virulence factors of red complex bacteria of periodontitis was determined by the SWISS-MODEL web server. The interaction study between β-defensin 1 and virulence factors was carried out by molecular docking using Auto dock version 4.0 software and pyDock WEB server.

Results: Using online tools, β-defensin 1 was predicted to be stable and non-toxic. SWISS-MODEL web server predicted Ramachandran score as 94.12% and clash score 0.0 for β-defensin 1. Auto dock version 4.0 software and pyDock WEB server analyzed the interaction to have low binding energies and hydrogen bonds were formed between the peptide and virulence factors.

Conclusion: β-defensin 1 was found to have good binding interaction with the disease-causing factors of red complex bacteria of periodontitis and in turn could play a role in reducing the severity of infection. β-defensin 1 could be a potential candidate for drug development for periodontitis.

Keywords: Antimicrobial peptide, β-Defensin 1, Virulence, Docking

Background

Periodontitis is a polymicrobial chronic inflammatory infection with multi-factorial causation characterized by destruction of tissues supporting the teeth (gingiva, cementum, periodontal ligament, and alveolar bone) and eventually leading to the loosening of teeth. In 1998, Dr. Sigmund Socransky classified periodontal pathogens into different clusters as the red complex, orange complex, green complex, orange-associated complex, and an Aa complex. Bacteria in the green and orange-associated clusters are early colonizers and the more pathogenic red complex bacteria are the final bacteria that colonize and lead to the destruction of the periodontium [1]. Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola belong to the red cluster bacteria and play a critical role in the pathogenesis of periodontitis [2].

*Correspondence: ushat75@yahoo.com
1 Human Genetics Research Centre, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
Full list of author information is available at the end of the article

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
bacteria generally are not found alone, but together in the periodontal pockets, implicating that these bacteria work in a cooperative manner leading to the destruction of periodontal tissues. Red complex bacteria produce various virulence factors that cause the destruction of periodontal tissues and also disseminate into the bloodstream modulating host immune responses which help bacteria evade host immune responses [3]. Important virulence factors from each bacterium have been chosen for the study and explained below. *P. gingivalis* produces disease-causing factors, such as lipopolysaccharide (LPS), gingipains, fimbriae/pili, collagenase, lectins, capsule, protease, and superoxide dismutase [4]. LPS lipid A endotoxin structure produced by *P. gingivalis* can undergo acylation by two different modes- tetra-acylated lipid A designated LPS\textsubscript{1435/1449} based on its molecular weights of 1435 and 1449 Da and the penta-acylated LPS designated LPS\textsubscript{1690} with the molecular weight of 1690 Da [5]. Gingipains are arginine- and lysine-specific cysteine proteinases that cleave peptide and protein substrates after arginine (gingipain R) and lysine residues (gingipain K). There are two types of gingipain R, namely RgpA and RgpB and one type of gingipain K, Kgp. Gingipains degrade extracellular matrix components, including fibronectin and collagen, deregulate inflammatory responses by cleaving cytokine, immunoglobulin, and complement factors [6]. Some of the virulence factors identified in *T. forsythia* include trypsin-like proteases, sialidases SiaH, leucine-rich repeat cell-surface-associated and secreted bacteroides surface protein A (BspA), hemagglutinin, kariysin, and mirolysin. BspA by activating the Toll-like receptor-2 (TLR-2)-dependent pathway triggers the release of bone-resorbing proinflammatory cytokines and chemokines from monocytes and gingival epithelial cells [7]. Mirolysin and kariysin show synergistic inhibition on the complement pathway of the host system [8]. Dentilisin is one of the major virulence factors of *T. denticola* and plays a role in disease progression by degrading host cell-matrix proteins and modulate immune responses by degrading cytokines such as interleukin-1β (IL-1β) and IL-6 [9]. Cystalysin from *T. denticola* is an enzyme that is responsible for hemolytic activities and damage to the gingival and periodontal tissues [10]. Studying the mechanism of action of virulence factors of red complex bacteria and their inhibition is an important research area and would open new avenues for the treatment of periodontitis.

Antimicrobial peptides (AMPs) are important constituents of the innate immune system and have inhibitory effects against different microbes [11]. Due to the rise in resistance against conventional antibiotics, efforts are being made to bring AMPs to clinical use [12]. Defensins are small cationic AMPs that exhibit their antimicrobial activity mainly by disrupting membranes of pathogens via forming pores leading to osmotic imbalance [13]. Human β-defensin 1 is constitutively expressed in many epithelial tissues including kidney, gut, respiratory epithelium, and in the stratified epithelium of the oral cavity [14], and the present study analyzed the interaction between β-defensin 1 and virulence factors of red complex bacteria of periodontitis.

Methods

Computing physico-chemical properties of β-defensin 1

The FASTA sequence of β-defensin 1 was retrieved from the UniProt server (https://www.uniprot.org/uniprot/P60022) and the accession number is P60022. The amino acid sequence of β-defensin 1 was submitted to the ProtParam parameter analysis tool (https://web.expasy.org/protparam/) for the computation of various physical and chemical properties such as molecular weight, estimated half-life, instability index, and grand average of hydropathicity (GRAVY).

Other important properties of β-defensin 1 such as solvent accessibility, cell penetration, bioactivity, and toxicity were calculated using different web tools as given below. Solvent accessibility of the amino acid residues in terms of three-dimensional structure and sub-cellular localization were calculated using the ProteinPredict web server (https://predictprotein.org/). Penetration through the blood-brain barrier was also predicted using the BBPpred online server (http://bbppred.xialab.info/). The toxicity of β-defensin 1 was predicted using the ToxinPred web server (https://webs.iiitd.edu.in/raghava/toxinpred/protein.php). The antimicrobial activity was predicted by comparing the sequence of interest with the pre-existing antimicrobial peptide database AMPA (http://tcoffee.crg.cat/apps/ampa/da:ampa). The bioactivity of the peptide was predicted using the BioPep web server (http://www.uwm.edu.pl/biochemia/index.php/en/biopep).

Homology modeling of β-defensin 1

Homology modeling of β-defensin 1 was carried using the SWISS-MODEL web server (https://swissmodel.expasy.org/interactive). Sequence ID P60022 retrieved from the UniProt server was utilized for modeling. The quality of the model was assessed and evaluated using online servers such as ERRAT, Procheck, Verify3D, and PROVE (https://saves.mbi.ucla.edu/).

Three-dimensional structure prediction of virulence factors of red complex bacteria

Virulence factors LPS (LPS\textsubscript{1435/1449} and LPS\textsubscript{1690}), gingipain K (Kgp), gingipain R (RgpB) of *P. gingivalis*; BspA, kariysin, mirolysin of *T. forsythia*, and cystalysin, dentilisin of *T. denticola* were selected for the study. Since...
the LPS structure of *P. gingivalis* was not available in PDB, tetra (LPS 1435/1499), and penta-acylated (LPS 1690). LPS structures of *P. gingivalis* were drawn using Chem3D ultra 11.0 software and energy minimized and cleansed using AVOGADRO software.

Protein sequences of other virulence factors of red complex bacteria were downloaded from the UNIPROT webserver and subjected to protein blast. The UNIPROT accession numbers are Gingipain K (Kgp)-P72194, Gingipain R (RgpB)-P95493, BspA-O68831, Karilysin-OA1D3UH21, Mirolysin-A0A0F7IPS1, Cystalysin-Q56257, Dentilisin-P96091. The sequences with high similarity index were then taken into consideration and used for protein modeling. Protein modeling of different conformers was carried out using the SWISS-MODEL web server and the same were analyzed using structural assessment tool in the Swiss bioinformatics database. Conformers showing high Ramachandran plot value and low clash score were selected for further process. The Qmean value of the model was also estimated to analyze the integrity of the developed homology protein structures.

β‑Defensin 1 and virulence factors molecular docking study

β‑Defensin 1 and LPS interaction

Docking between β‑defensin 1 and LPS was carried out using Auto dock version 4.0 software. The auto grid, the component of the Auto dock, was used to compute the grid map. The best conformation search was done by adopting a genetic algorithm with the local search (GA-LS) method. The docking parameters were set to default values with 100 independent docking runs using the software Auto dock Tool Kit. Molecular graphics and visualization were performed with the UCSF Chimera package.

Results

Physico‑chemical properties of β‑defensin 1

The amino acid sequence of β‑defensin 1 was subjected to the ProtParam protein parameter analysis tool and the data obtained is given in Table 1.

Solvent accessibility of the amino acid residues was calculated using the ProteinPredict web server and the results are given below in Fig. 1. Out of 68 residues, 69.12% was found to have been exposed to solvent accessibility while 30.88% was found to be buried inside the core of the protein.

Subcellular localization of β‑defensin 1 peptide, i.e., distribution and sedimentation nature of the biomolecule was studied and the results are depicted in Fig. 2. In the archaea domain, the protein was able to sediment at the cell walls of the organism whereas in the bacterial domain the protein was able to penetrate through the membrane, and finally for higher eukaryotic cells the protein was not able to penetrate even the outer cell walls. Hence, β‑defensin 1 could be considered non‑toxic for eukaryotic cells. Similarly, penetration through the blood‑brain barrier was also predicted using the BBPpred online server and results are tabulated in Table 2.

Toxicity prediction of β‑defensin 1 was carried out using the ToxinPred web server which cuts the protein

Properties of β‑defensin 1	Results
Number of amino acids	68
Molecular weight	7419.71
Theoretical pl	8.96
Formula	C323H513N89O93S9
Total number of atoms	1027
The estimated half-life is	30 h (mammalian reticulocytes, in vitro). > 20 h (yeast, in vivo). > 10 h (Escherichia coli, in vivo).
The instability index (II) is computed to be	32.91. This classifies the protein as stable
Grand average of hydropathicity (GRAVY):	0.157
into small peptides of 10 residue lengths and the prediction was carried out. The tool confirmed the non-toxic nature of the peptide.

Antimicrobial activity was predicted by comparing the sequence of interest with the pre-existing antimicrobial peptide database and the results are shown below in Fig. 3.

Bioactivity of β-defensin 1 was predicted using the BioPep web server and predictions suggested that the peptide has excellent bioactivity toward a wide array of activity including angiotensin-converting enzyme (ACE) inhibitor, glucose uptake stimulating peptide, neuropeptide, antioxidative peptide, and anti-inflammatory peptide.

Structure prediction of β‑defensin 1 by homology modeling
The structure of β-defensin 1 was predicted by the SWISS-MODEL web server and the quality of the model was assessed and evaluated using different web tools. The results are depicted in Fig. 4 and Table 3.
Table 2 Probability of penetration of β-defensin 1 through blood-brain barrier

Uniprot Id	Probability	Class
P60022	0.376211	Non-BBP

Fig. 3 AMPA antimicrobial prediction of β-defensin 1

Fig. 4 Ramachandran plot and 3D structure of β-defensin 1
The quality of the model was assessed and evaluated using online servers such as ERRAT, Procheck, Verify3D, PROVE, and the results are tabulated in Table 4.

Three-dimensional structures of virulence factors of red complex bacteria

The structure of LPS of \(P. \) gingivalis is given in Fig. 5. The 3D structures of virulence factors are given below with their respective homology modeling scores in Fig. 6 and Table 5. Q Mean score represents quality of the protein structure predicted by SWISS-MODEL web server with a score of one being good.

Molecular docking of virulence factors with \(\beta \)-defensin 1

Docking of \(\beta \)-defensin 1 and LPS structure of \(P. \) gingivalis

The docking results of \(\beta \)-defensin 1 against LPS\(_{1435/1449} \) and LPS\(_{1690} \) of \(P. \) gingivalis are shown in Fig. 7 and Table 6. The binding energy (Kcal/mol), inhibition constant (Ki), and hydrogen bonds formed were used to evaluate the binding affinity of \(\beta \)-defensin 1 with LPS. The binding energies of LPS\(_{1435} \), LPS\(_{1449} \), and LPS\(_{1690} \) with \(\beta \)-defensin 1 were found to be \(-7.45 \text{ Kcal/mol}, -8.31 \text{ Kcal/mol}, \) and \(-8.67 \text{ Kcal/mol} \) respectively. LPS\(_{1690} \) had the best binding energy among the three LPS structures.

Docking of \(\beta \)-defensin 1 with gingipains of \(P. \) gingivalis

The docking results of \(\beta \)-defensin 1 against gingipains Kgp and RgpB of \(P. \) gingivalis are summarized below in Fig. 8 and Table 7. \(\beta \)-defensin 1 formed 3 hydrogen bonds with gingipain Kgp and 4 hydrogen bonds with gingipain RgpB. The binding energy (Kcal/mol), interacting residues, and hydrogen bonds formed were used to evaluate the binding affinity of \(\beta \)-defensin 1 with gingipains of \(P. \) gingivalis. The binding energies of gingipains Kgp and RgpB with \(\beta \)-defensin 1 were found to be \(-40.814 \text{ Kcal/mol} \) and \(-55.277 \text{ Kcal/mol} \). Gingipain RgpB had the best binding affinity with \(\beta \)-defensin 1.

Docking of \(\beta \)-defensin 1 with virulence factors of \(T. \) forsythia

The docking results of \(\beta \)-defensin 1 against BspA, kariyisin, and mirolysin of \(T. \) forsythia are summarized in Fig. 9 and Table 8. \(\beta \)-defensin 1 interacted by forming 1

Table 3 Homology modeling data of \(\beta \)-defensin 1

Isoform and model number	Ramachandran score	Q mean value	Clash score	Percent identity	Mol probability score
Model_1	94.12%	0.78	0.00	97.22%	0.90

Table 4 Evaluation of model quality

ERRAT quality score	Procheck	Verify 3D	PROVE
100	4 Passes/8 Test	61.11% of the residues have averaged 3D-1D score >= 0.2	Buried outlier protein atoms total from 1 model: 0.0% Result = Pass

Fig. 5 Structure of LPS of \(P. \) gingivalis
hydrogen bond with BspA, 1 hydrogen bond with kari-
lys in, and 3 hydrogen bonds with mirolys in. The binding
energies of BspA, kari lysin, and mirolys in were deter-
mined to be -40.146 Kcal/mol, -31.705 Kcal/mol, and
-30.602 Kcal/mol. Out of the three virulence factors
of *T. forsythia* studied, BspA showed the lowest bind-
ing energy and therefore had the best binding fit with
β-defensin 1.

Docking of β-defensin 1 with virulence factors of *T. denticola*

The docking results of β-defensin 1 against cystalysin and
dentilisin of *T. denticola* are summarized in Fig. 10 and
Table 9. β-defensin 1 interacted by forming 3 hydrogen
bonds with cystalysin and dentilisin. The binding ener-
gies of cystalysin and dentilisin with β-defensin 1 were
found to be -40.846 Kcal/mol and -41.028 Kcal/mol.
Table 5 Model evaluation and scoring

Protein	Isoforms	Ramachandran favored (%)	Q mean (± 0.05)	Cβ	All atom	Solvation	Torsion
Gingipain Kgp	1	95.83%	0.90	0.97	0.77	0.62	0.81
Gingipain RgpB	1	97.44%	0.90	1.26	0.55	0.29	0.05
BspA	1	96.37%	0.68	0.33	2.70	2.13	0.69
Karilysin	1	91.72%	0.61	1.51	2.94	1.04	3.17
Miroyisin	1	95.74%	0.87	0.81	1.15	1.68	0.22
Cystalysin	1	96.56%	0.94	0.97	1.33	0.72	0.28
Dentilisin	1	85.26%	0.53	4.15	4.12	1.95	5.10

Fig. 7 Interaction of β-defensin 1 with LPS of P. gingivalis: a With LPS1435, b LPS1449, and c LPS1690

Table 6 Interaction results of β-defensin 1 with LPS of P. gingivalis

Name of biomolecule	Binding energy (Kcal/mol)	Ki (μM)	Hydrogen bond interaction
LPS1435	- 7.45	452.1	LPS1435 Gln24 5.391
LPS1449	- 8.31	271.6	Lys22 LPS1449 2.945
LPS1690	- 8.67	321.7	Thr26 LPS1690 2.757

Fig. 8 Docking of β-defensin 1 against gingipains a Kgp and b RgpB of P. gingivalis
Both the virulence factors of *T. denticola* showed similar binding energies.

The binding energies of β-defensin 1 from the docking study indicated that it had good interaction with different virulence factors of red complex bacteria of periodontitis.

Discussion

Oral cavity provides a favorable environment for colonization by various microorganisms so oral flora requires myriad defense mechanisms in order to prevent infection. Since red complex bacteria are important periodontal
pathogens, numerous research works are being carried out to study the disease pathogenesis and strategies to inhibit their virulence mechanisms. AMPs show broad-spectrum antimicrobial activity and are important constituents in the host defense against microbial challenge. They are expressed constitutively or induced in response to microorganisms. β-defensin 1 in addition to its antibacterial role performs other immune-related activities such as chemoattractants and promotes angiogenesis [16]. Studies have shown that AMPS such as lactoferrin and histatin have antibacterial efficacy against P. gingivalis [17, 18]. Inhibition of virulence factors could prevent or slow down the progression of periodontitis and several inhibitors from natural sources are being developed [19].

Molecular modeling plays a pivotal role in computer-aided drug design and is one of the most important virtual screening methods to study drug-receptor interaction [20]. Docking is a computational process for finding a suitable ligand that fits the protein’s binding site energetically and geometrically [21]. The present study analyzed the interaction between the antimicrobial peptide β-defensin 1 and the virulence factors of red complex bacteria of periodontitis. Physico-chemical properties of β-defensin 1 were determined by the ProtParam web tool. The instability index computed by the tool predicted that the peptide was stable. The distribution nature of the peptide was studied by the ProteinPredict tool which predicted that the peptide was able to penetrate through the membrane of bacteria while it was not able to penetrate the higher eukaryotic membrane. β-defensin 1 can exert its antimicrobial effects without harming normal eukaryotic cells due to the positive charge on the peptide which can interact with negatively charged membranes of microbes, while the membrane composition of eukaryotic cells is mainly uncharged zwitterion (neutral) phospholipids, sphingomyelins, and cholesterol and hence cannot affect eukaryotic cells [22].

The structure of β-defensin 1 was predicted by the SWISS-MODEL web server which gave the Ramachandran score of 94.12% and clash score of 0.0. The 3D structures of virulence factors of red complex bacteria of periodontitis were predicted by the SWISS-MODEL server. The structure of LPS of P. gingivalis was drawn by Chem3D ultra 11.0 software.

Docking of β-defensin 1 with LPS of P. gingivalis was studied by Autodock version 4.0 software. Docking of β-defensin 1 with other virulence factors was carried out by pyDockWEB server. Docking studies with AutoDock software and pyDockWEB server revealed that β-defensin 1 was able to bind with low docking energies indicating their high affinity with the selected proteins of bacteria. β-defensin 1 showed significant interaction with the virulence factors and could play a role in the
inhibition of pathogenesis of periodontitis mediated by red complex bacteria.

Conclusion

β-defensin 1 is one of the important components of host’s natural innate immunity and in this study, through molecular docking, it has been found that β-defensin 1 interacted with various virulence factors of periodontitis which suggests that it could be used as an adjunct/alternative to antibiotics for the treatment of periodontitis. Through various online tools, β-defensin 1 was found to be non-toxic. It could be a promising candidate in the treatment of periodontitis and has a great potential application in the drug development process.

Abbreviations

ACE: Angiotensin-converting enzyme; AMP: Antimicrobial peptide; AMPA: Antimicrobial peptide database; BspA: Bacteroides surface protein A; GRAVY: Grand average of hydropathicity; IL-1β: Interleukin-1β; LPS: Lipopolysaccharide; TLR-2: Toll-like receptor-2.

Acknowledgements

We wish to thank the DST-FIST (Ref: No.SR/FST/College-23/2017), Government of India, New Delhi, India, for funding the research equipment facilities to See Balaji Dental College & Hospital, Chennai, Tamil Nadu, India. We also thank See Balaji Dental College & Hospital, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India for supporting the study. Our sincere thanks to SimBioen Labs and Scientific Services Private Limited, Chennai for providing the computational facility and guiding with the research output.

Authors’ contributions

All authors participated in the conception and design of the study. Manuscript preparation: HVS. Editing and review: US and PRB. All authors read and approved the final manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public or commercial sectors.

Availability of data and materials

All data analyzed during this study are included in this article.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author details

1Human Genetics Research Centre, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India. 2Center for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India.

Received: 5 November 2021 Accepted: 4 April 2022

References

1. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25(2):134–144
2. Alvea AIJ (2018) Anaerobic bacteria associated with periodontitis. In: Oral microbiology in periodontitis. IntechOpen
3. Hajishengallis G (2015) Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol 15(1):30–44
4. Jia L, Han N, Du J, Guo L, Luo Z, Liu Y (2019) Pathogenesis of important virulence factors of Porphyromonas gingivalis via toll-like receptors. Front Cell Infect Microbiol 9:262
5. Herath TDK, Darveau RP, Seneviratne CJ, Wang C-Y, Wang Y, Jin L (2013) Tetra- and penta-acylated lipid A structures of Porphyromonas gingivalis LPS differentially activate TLR4-mediated NF-κB signal transduction cascades and immuno-inflammatory response in human gingival fibroblasts. PLoS One 8(3):e84946
6. Hov KY, Song KP, Chan KG (2016) Porphyromonas gingivalis: a perspective on infection control. PLoS One 11(10):e0164907
7. Sharma A (2010) Virulence mechanisms of Tannerella forsythia. Periodontol 54(1):106
8. Jusko M, Potempa J, Muzalska D, Bielecka E, Ksiazeck M, Riesbeck K et al (2015) A metalloproteinase miolsyn of Tannerella forsythia inhibits all pathways of the complement system. J Immunol 195(5):2231–2240
9. Dashtip SG, Seers CA, Tan KH, Reynolds EC (2010) Virulence factors of the oral spirochete Treponema denticola. J Dent Res 90(6):691–703
10. Sypariski, Cellini B, Bruno S, Benetti G, Carosati E, Cruciani G et al (2014) Targeting cysteinylation, a virulence factor of treponema denticola-supported periodontitis. ChemMedChem 9(7):1501–1511
11. Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:2559
12. Mahlapuu M, Häkkanson J, Ringstad L, Bjørn Ø (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194
13. Jourdain M, Velard F, Pierrard L, Sergheraert J, Gangloff SC, Braux J (2019) Cationic antimicrobial peptides and periodontal physiopathology: a systematic review. J Periodontol Res 54(6):589–600
14. Dale BA, Krisanaprakornkit S (2001) Defense antimicrobial peptides in the oral cavity. J Oral Pathol Med Rev Artic 30(6):321–327
15. Jiménez-García B, Pons C, Fernández-Recio J (2013) pyDockWEB: a web server for rigid-body protein–protein docking using electrostatics and desolvation scoring. Bioinformatics. 29(13):1698–1699
16. Weinberg A, Jin G, Sieg S, McCormick TS (2012) The yin and yang of human Beta-defensins in health and disease. Front Immunol 3:294
17. Dashtip SG, Pan Y, Veith PD, Chen Y-Y, Toh ECY, Liu SW et al (2012) Lactoferrin inhibits Porphyromonas gingivalis proteinases and has sustained biofilm inhibitory activity. Antimicrob Agents Chemother 56(3):1548–1556
18. Wang HY, Liu JW, Li Q, Tan LS, Lin L, Pan YP (2018) A preliminary study on the effect of histatin 5 inhibiting Porphyromonas gingivalis and Fusobacterium nucleatum co-aggregation. Zhonghua kou Qiang yi xue za zhi = Chinese J Stomatol 53(3):150–156
19. Olsen L, Potempa J (2014) Strategies for the inhibition of gingipains for the potential treatment of periodontitis and associated systemic diseases. J Oral Microbiol 6(1):24800
20. Sethi A, Joshi K, Sasikala K, Alvala M (2019) Molecular docking studies for the identification of novel melanotropinergic inhibitors for acetylcholinesterase-O-methyltransferase using different docking routines. Theor Biol Med Model 10(1):1–16
21. Azam SS, Abbasi SW (2013) Molecular docking studies for the identification of novel melanotropinergic inhibitors for acetylcholinesterase-O-methyltransferase using different docking routines. Theor Biol Med Model 10(1):1–16
22. Lei J, Sun L, Huang S, Zhu C, Li P, He J et al (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11(7):3919

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.