Extracting structural information from charge-state distributions of intrinsically disordered proteins by non-denaturing electrospray-ionization mass spectrometry

Lorenzo Testa, Stefania Brocca, Carlo Santambrogio, Annalisa D’Urzo, Johnny Habchi, Sonia Longhi, Vladimir N Uversky and Rita Grandori

Intrinsically disordered proteins (IDPs) exert key biological functions but tend to escape identification and characterization due to their high structural dynamics and heterogeneity. The possibility to dissect conformational ensembles by electrospray-ionization mass spectrometry (ESI-MS) offers an attracting possibility to develop a signature for this class of proteins based on their peculiar ionization behavior. This review summarizes available data on charge-state distributions (CSDs) obtained for IDPs by non-denaturing ESI-MS, with reference to globular or chemically denatured proteins. The results illustrate the contributions that direct ESI-MS analysis can give to the identification of new putative IDPs and to their conformational investigation.

Introduction

Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure under physiological conditions of pH and salinity and in the absence of a partner or ligand. Some IDPs however fold, partially or completely, into ordered conformations upon binding to specific interactors. The extreme structural plasticity that characterizes these proteins allows for independent tuning of affinity and specificity, recognition of multiple targets, fast association kinetics and effective regulation by post-translational modifications. Probably due to these features, IDPs play key regulatory roles inside the cell. According to disorder-prediction algorithms, ~30% of the eukaryotic proteins are mostly disordered and ~40% possess disordered regions longer than 50 residues.

A big effort is being devoted to the investigation of IDP binding to their folded interactors. The structure of numerous complexes has been solved by X-ray crystallography, describing interaction surfaces and acquired ordered structure, although complexes where IDPs retain their flexibility have been reported, too. To understand the mechanism of molecular recognition, it is also important to characterize the structural properties of the pre-recognition state. The flat energy landscape of IDPs in solution implies that they exist as highly dynamic and heterogeneous conformational ensembles, which escape structural characterization by conventional biophysical methods. Nevertheless, progress has been made in conformational analysis of IDPs in their free state by different biophysical methods. The emerging picture is that IDPs in the absence of interactors populate metastable, partially folded states with preformed elements of secondary structure (intrinsically folded structural units, IFSU) and relatively compact tertiary structure. These partially folded conformers are thought to be functionally relevant, providing seeds for interaction surfaces and/or protecting IDPs from degradation and from non-specific interactions.

Mass spectrometry offers peculiar advantages in the analysis of complex mixtures, thanks to the possibility to detect not only distinct masses, but also different conformers endowed with variable degrees of compactness in the molecular ensemble. Direct assessment of species distributions, without averaging over the molecular population, offers a valuable tool in IDP analysis, complementary to other biophysical methods. This paper focuses on the contributions that charge-state distribution (CSD) analysis by non-denaturing electrospray-ionization mass spectrometry (ESI-MS) can give to IDP identification and characterization.
Intrinsically Disordered Proteins

Volume 1

Mild desolvation/ionization conditions allow for maintenance of native-like protein conformations during the electrospray process.37 Evidence for that has been obtained by experimental and computational studies. Experimental evidence is based on direct investigation of the structural properties of gas-phase protein ions by ion mobility,58-63 electron-capture dissociation,64,65 gas-phase hydrogen exchange66,67 and binding analysis.68-70 Computational studies suggest that attractive interactions inside the protein structure can compensate to a certain extent for repulsive forces introduced by protein ionization.71-83 This effect is mainly due to hydrogen bonds and zwitterionic states, although minor contributions could also derive from dispersion forces and cation-\textpi interactions. Altogether, intramolecular interactions of native protein structures provide a tremendous self-solvation potential that contribute to the stability of the gas-phase protein ions generated by electrospray. In particular, it has been shown that folded protein conformations tend to shrink upon desolvation, increasing the number of intramolecular hydrogen bonds and the exposure of hydrophobic residues on the protein surface.71,73

In order to prevent protein denaturation during electrospray, it is important to avoid the use of organic solvents and extreme pH values, and to apply mild temperature and voltage conditions to the sample source. Particularly well suited to this end are nano-electrospray devices, where a micrometer-scale capillary for sample infusion leads to smaller first-generation droplets and, consequently, more effective desolvation under soft conditions of temperature and voltage.84,85 Nano-ESI-MS is now routinely applied to conformational studies, also offering the advantages of low sample consumption, automation, and experimental scale-up.

Protein CSDs can deliver important structural information, thanks to the fact that protein compactness in the original solution has a strong influence on the extent of protein ionization under electrospray conditions. The higher the structural compactness, the lower the average net charge that will be observed for any given protein.54 However, CSDs can also be affected by several other factors, such as instrumental parameters and solvent properties.86-89 Therefore, it is important to keep the experimental conditions accurately controlled and to make sure that none of the applied instrumental settings becomes the limiting factor for CSD features. It should also be taken into account that measurements in negative-ion mode could be more exposed to the risk of electrospray-induced protein unfolding.90 By the application of the most adequate and controlled operative conditions, conformations dominate protein CSDs obtained by ESI-MS. Good agreement between ESI-MS and solution methods has been shown monitoring unfolding transitions of proteins induced by acids, organic solvents and heat.51,52,87,91-96 Nevertheless, it should also be reminded that the signal yields of folded and unfolded conformations of the same protein can differ substantially, particularly at

![Figure 1. Examples of CSDs obtained by nano-ESI-MS under non-denaturing conditions. The spectra were recorded on a hybrid, quadrupole time-of-flight mass spectrometer (QSTAR Elite, AB-Sciex). Samples were infused at room temperature, by metal-coated borosilicate capillaries with emitter tips of 1 μm internal diameter (Proxeon). The following instrumental settings were applied: declustering potential 60/80 V, ion spray voltage 1.1/1.2 kV, curtain-gas pressure 20 psi. (A) 12 μM β-lactoglobulin in 10 mM ammonium acetate, pH 7.0.100 (B) 12 μM α-synuclein in 10 mM ammonium acetate, pH 7.4 (negative-ion mode).101 (C) 15 μM Sic1 in 50 mM ammonium acetate, pH 6.5.102 (D) 10 μM Sic1215-284 in 50 mM ammonium acetate, pH 6.5.103](image)
high flow rates and high protein concentrations, rising the need of specific control experiments for quantitative analysis.97

Major structural heterogeneity in the molecular ensemble of a pure protein results in multimodal CSDs, where distinct peak envelopes can be resolved and quantified by deconvolution algorithms.36,39,99 The broadness of each peak envelope, in turn, is affected by structural dynamics, with narrow profiles associated to folded structures and broad profiles associated to disordered states. Examples of CSDs obtained for IDPs by non-denaturing ESI-MS are reported in Figure 1, in comparison to a natively folded globular protein.100-103 As it can be noticed, IDPs under non-denaturing conditions give rise to broad CSDs with high average charge, frequently present as distinct components of multimodal profiles. The different behavior of an IDP and a globular standard under identical conditions can be further highlighted by control experiments where the spectrum of a mixture of the 2 proteins is acquired, followed by identification of the distinct components by their specific masses.104 The peculiar response of IDPs to electrospray offers the possibility to develop a signature for this class of proteins by non-denaturing ESI-MS, as discussed in more detail below.

Charge-to-Mass and Charge-to-Surface Relation

Besides conformational properties, also protein size has an influence on protein ionization by electrospray. Folded globular proteins follow a well-known, mass-to-charge relation, with the average experimental charge growing approximately as the \(-0.57\) power of the protein mass expressed in Daltons.105-108 It has been shown that the behavior of folded and unfolded proteins can be distinguished by relating charge to protein mass, while it is unified by relating charge to solvent accessible surface area (SASA).109 In other words, SASA seems to dictate the extent of protein ionization, regardless of the conformational state. If we relate charge to protein mass, instead, disordered protein conformations stand as clear outliers in the plot of folded globular proteins. This is true for IDPs under non-denaturing conditions, as well as for chemically denatured proteins, indicating that solvent effects play a marginal role in this regard.109

The peculiar response of IDPs to electrospray offers the possibility to develop a signature for this class of proteins by non-denaturing ESI-MS, as discussed in more detail below.

High-Charge Component

As shown in Figure 2, the high-charge component is typically predominant in ESI-MS spectra of IDPs with bimodal distributions. As generally seen for chemically denatured proteins, it is also quite broad, reflecting further heterogeneity due to structure dynamics. Most importantly, when this component is analyzed as a function of mass, it follows the same power law as the denatured conformation of natively folded proteins. Furthermore, its intensity varies in response to solvent composition, typically accompanied by opposite changes in the low-charge component. These observations strongly suggest that the experimental CSDs reflect the dynamic conformational ensemble of IDPs in solution.

Altogether, this evidence supports identification of the high-charge component as a highly disordered conformational state of IDPs, characterized by low structural compactness. The presence of such a component under non-denaturing conditions can be considered as a signature of IDPs and could be used for fast identification of IDPs in complex systems.

Table 1. Proteins analyzed in this work

Protein name*	Species	MW	Reference
Sic1\(^{215-284}\)	Saccharomyces cerevisiae	9293.38	103
Prothymosin-α	Homo sapiens	12073.85	110
Sic1\(^{182-284}\)	Saccharomyces cerevisiae	12676	98
Ataxin-3\(^{312-201}\)	Homo sapiens	13089.7	111
α-synuclein	Homo sapiens	14460.16	112
NTAIL	Measles virus	14633	109, 113, 114
NTAIL	Nipah virus	14949	Unpublished data
NTAIL	Hendra virus	15241	Unpublished data
Sic1\(^{1-104}\)	Saccharomyces cerevisiae	21593.13	98
PNT	Measles virus	24821	115
Sic1(full-length)	Saccharomyces cerevisiae	33102.88	102

* Sic1, substrate/subunit inhibitor of cyclin-dependent protein kinase; NTAIL, C-terminal domain of the viral nucleoprotein N; PNT, N-terminal domain of measles virus phosphoprotein P.
is selectively lost by acidification whereas it accumulates in the low-charge component of Sic1 kinase inhibitory domain (KID) ties, and that this response is protein-specific. For instance, the low-charge component of Sic1-KID display IFSUs and compactness and higher propensity for metal binding. The relative amount of the compact form also increases upon copper addition, indicating that the protein undergoes a process of induced folding promoted by copper binding.

Furthermore, IDP’s compact conformers corresponding to the low-charge components have been isolated and identified in gas phase by ion-mobility methods.68-72 This technique adds a second dimension to the ion sorting mechanism of MS measurements, based on drift time through a buffer gas. Since ion mobility depends on collisional cross section, compact conformers will be faster and will be separated from elongated conformers inside the drift cell. Thus, thanks to the survival of non-covalent interactions responsible for protein compaction, the distinct physical properties of the desolvated ions can be highlighted by a criterion that is orthogonal to the m/z measurement of conventional MS analyses.

Another important evidence is given by the specific ligand-binding properties of these components. Such a behavior has been observed, for instance, in the case of copper binding by α-synuclein.80 Complexes with a 1:1 stoichiometry could be identified by ESI-MS upon metal binding. However, CSDs analysis revealed that the bound form is mainly detectable in the low-charge component of the protein spectrum. This result further supports the hypothesis that such a component corresponds to a distinct conformer of the protein ensemble, displaying higher compactness and higher propensity for metal binding. The relative amount of the compact form also increases upon copper addition, indicating that the protein undergoes a process of induced folding promoted by copper binding.

Finally, computational studies can provide further insight on compact conformers of IDPs in solution. Structural models have been developed by molecular-dynamics simulations for the compact states of Sic1-KID.117 Although these methods are not adequate to describe the actual equilibrium between compact and extended conformations, they effectively model the forces responsible for protein compaction and can, therefore, generate putative structures for IDP compact states. The most probable structures generated by simulations on Sic1-KID display IFSUs and considerable degree of compaction. The computational results find support in the available experimental data. For instance, intramolecular interactions in the computational models were found to be prevalently of electrostatic nature, with minor contributions of hydrophobic interactions.117 This result is in agreement with the observed strong effect of acids and negligible effect of organic solvents on the ESI-MS spectra of this protein.103,117 Furthermore, the SASA estimates based on the computational models (53-65 nm²) are in good agreement with those derived by the ESI-MS data for the low-charge component of the CSD (59.78 nm²).103,109

These studies strongly suggest that the low-charge components frequently detected in the ESI-MS spectra of IDPs under screening of putative new members of this conformational class. It is important to underscore that the anomalous ionization behavior of IDPs is evident also when the protein contains only a disordered tract, together with a normally folded domain, like in the case of Ataxin-3.104 Furthermore, it has been observed in either positive- or negative-ion mode.101,112

![Figure 2. Charge-to-mass plot for distinct components of some IDPs analyzed by non-denaturing ESI-MS. In the case of bimodal distributions, each component is represented by a circle, colored according to the relative abundance as specified in the inserted table. For unimodal distributions (unique case of full-length Sic1), the global average charge is considered and the symbol is colored in black. The gray small squares and triangles represent data for globular proteins, respectively under non-denaturing and denaturing conditions. The gray lines are interpolations by power-law functions.](image)

Low-Charge Component

In most of the considered IDPs, a sharply bimodal CSD suggests that a small fraction of the molecular population exists in a highly collapsed state. It is surprising that such a component approximates the ionization behavior expected for folded, globular proteins of the same size. Nevertheless, it is known by several other independent methods that IDPs in solution often populate partially structured states and can collapse into compact globular structures.116 These states are potentially relevant for protein function. The challenge in trying to characterize these states is that they are highly dynamic and poorly represented in the molecular ensemble, easily escaping characterization (and even detection) by biophysical methods. It is, therefore, extremely attractive to directly visualize minor, structured components, out from the background of the predominant conformers, thanks to the ion-sorting properties of MS measurements. At the same time, it is important to collect evidence supporting the interpretation of these spectral components in terms of protein conformation.

One of the most important evidence is that these components can be progressively depleted by varying the solvent properties, and that this response is protein-specific. For instance, the low-charge component of Sic1 kinase inhibitory domain (KID) is selectively lost by acidification whereas it accumulates in response to the same treatment in the case of α-synuclein.101,103,112 Furthermore, such a transition can be quite cooperative, as in the case of the pH-dependence of Sic1-KID compact form.103

Thus, it seems that IDPs compact states can be “denatured” by particular agents, in a way that is not so dissimilar from unfolding transitions of natively folded proteins. It is also important to point out that these transitions are characterized by changes in the relative amounts of the different components, as expected for an interconversion process, and not by progressive shift of a given peak envelope in the spectrum, as more typical for the effects of solvent composition or parameter setting on ESI-MS data.86
non-denaturing conditions correspond to metastable compact conformers with specific structural and functional properties.

Conclusions

The ionization properties of IDPs under electrospray conditions reveal significant and systematic deviations from the reference behavior of folded, globular proteins. These differences emerge by measurements under non-denaturing conditions and analysis of average charge by the charge-to-mass relation. Thus, CSD analysis offers an effective tool for high-throughput conformational screening aimed at the identification of putative new members of this structural class. Confident protein classification will then require further analysis by other techniques, such as CD, size-exclusion chromatography and NMR.

Non-denaturing ESI-MS is also a powerful tool for the identification of partially structured states of IDPs, even if highly dynamic and scarcely populated. The generally applicable charge-to-surface relation, which holds independently of the conformational state, allows extracting useful structural information by SASA calculation for each detectable component. This information can be used as a constraint for computational modeling, possibly integrating other kinds of experimental measurements.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.
37. Marsh JA, Teichmann SA, Forman-Kay JD. Probing the diverse landscape of protein flexibility and binding. Curr Opin Struct Biol 2012; 22:643-50; PMID:22999889; http://dx.doi.org/10.1016/j科比.2012.08.008
38. Uversky VN, Oldfield CJ, Dunker AK. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 2008; 37:215-46; PMID:18573080; http://dx.doi.org/10.1146/annurev.biophys.37.032807.125924
39. Fisher DK, Souts CM. Constructing ensembles for intrinsically disordered proteins. Curr Opin Struct Biol 2011; 21:426-31; PMID:21530254; http://dx.doi.org/10.1016/j科比.2011.04.001
40. Uversky VN, Longhi S. Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation, John Wiley & Sons, 2011.
41. Czizmok V, Bokor M, Banfi P, Klement E, Medzhiradszky KF, Friedrich P, et al. Primary contact sites in intrinsically unstructured proteins: the case of calpastatin and microtubule-associated protein 2. Biochemistry 2005; 44:3955-64; PMID:15751971; http://dx.doi.org/10.1016/bi487187
42. Tompa P. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 2005; 579:346-54; PMID:15943980; http://dx.doi.org/10.1016/j.f科比.2005.03.072
43. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, et al. Characterization of molecular recognition features, MoRs, and their binding partners. J Proteome Res 2007; 6:2351-66; PMID:17488107; http://dx.doi.org/10.1021/j0701411
44. DiFani FM, Hsu WL, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, et al. MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transition binding regions in proteins. Bioinformatics 2012; 28:875-83; PMID:22689782; http://dx.doi.org/10.1093/bioinformatisko/bts209
45. Fuxreiter M, Simon I, Friedrich P, Tompa P. A computational model for protein ionization by electrospray and matrix-assisted laser desorption ionization mass spectrometry. J Mass Spectrom (Chichester, Eng) 2012; 47:1233-41; PMID:24063784; http://dx.doi.org/10.1002/jms.2831
46. Kallash DE, Oldfield CJ, Allot AM, RR. Mass spectrometry-based methods to study protein architecture and dynamics. Protein Sci 2013; 22:530-44; PMID:23436701; http://dx.doi.org/10.1016/j.prots.2012.08.023
47. Beveridge R, Chappuis Q, Macphee C, Barzan P. Mass spectrometry methods for intrinsically disordered proteins. Analyst 2013; 138:32-42; PMID:23108160; http://dx.doi.org/10.1039/c3ana01618f
48. Hall Z, Robinson CV. Do charge state signatures guarantee protein conformations? J Am Soc Mass Spectrom 2012; 23:1611-8; PMID:22962594; http://dx.doi.org/10.1016/j.amasspe科比.2011.12.083
49. Smith DP, Knapman TW, Campuzano I, Malham RW, Berrymont JT, Radford SE, et al. Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur J Mass Spectrom (Chichester) 2009; 15:113-8; PMID:19423898; http://dx.doi.org/10.1016/j.ejms.2009.07.008
50. Uetrecht C, Rose RJ, Van Duijn E, Lorenzen K, Heck AJ. Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev 2010; 39:1633-45; PMID:20419213; http://dx.doi.org/10.1039/c科比.2009.0140f
51. Jurecic E, Cuckshink H, Porini M, Nikolova P, Campuzano ID, Morris M, et al. Intrinsically disordered proteins: a challenge for (un)structural biology met by ion mobility mass spectrometry. Biochem Soc Trans 2012; 40:1021-6; PMID:22988859; http://dx.doi.org/10.1042/BST201120152
52. Kaddis CS, Loneli SH, Yin S, Berhanie B, Apostol MI, Kickhofer VA, et al. Sizing large proteins and protein complexes by electrospray ionization mass spectrometry and ion mobility. J Am Soc Mass Spectrom 2007; 18:1206-15; PMID:17434766; http://dx.doi.org/10.1016/j.amasspe科比.2007.02.015
53. Konijnenberg A, Bouterer A, Sobort F. Native ion mobility-mass spectrometry and related methods in structural biology. Biochim Biophys Acta 2013; 1834:1239-56; PMID:23265628; http://dx.doi.org/10.1016/j.bbabio科比.2013.01.010
54. Hogan CJ Jr, de la Mora JF. Ion mobility measurements of noncovalent 12-150 kDa proteins and protein multimers by tandem differential mobility analysis-mass spectrometry (DMA-MS). J Am Soc Mass Spectrom 2011; 22:152-78; PMID:21472554; http://dx.doi.org/10.1016/j.amasspe科比.2011.01.004-17
55. Breuker K, McCafferty FW. Stepwise evolution of protein native structure with electric field into the gas phase, 10(-12) to 10(2) s. Proc Natl Acad Sci U S A 2008; 105:18145-52; PMID:19033746; http://dx.doi.org/10.1073/pnas.080705015
56. Patriksson A, Adams CM, Kjeldsen F, Zubarev RA, Vandermeers D, Kickhofer VA, et al. Characterization of primary contact sites in intrinsically unstructured proteins: the case of calpastatin and microtubule-associated protein 2. Biochemistry 2012; 51:12265-76; PMID:22737229; http://dx.doi.org/10.1021/b科比.20110301
57. Kang Y, terrier P, Stoning J, Douglas DJ. Solution and gas-phase ion mobility-mass spectrometry of intrinsically disordered proteins. J Am Soc Mass Spectrom 2012; 23:1903-10; PMID:22959304; http://dx.doi.org/10.1016/j.amasspe科比.2011.12.083
58. Kjeldsen F, Silvia OA, Zubarev RA, Zwietertici states in gas-phase polypeptide ions revealed by 157-nm ultra-violet photodissociation. Chemistry 2006; 12:7920-8; PMID:16871505; http://dx.doi.org/10.1002/chem.200600248
59. Steinberg MZ, Elber R, McCafferty FW, Gerber RB, Breuker K. Early structural evolution of native cytochrome c after solvent removal. Chembiochem 2008; 9:2417-23; PMID:18785672; http://dx.doi.org/10.1002/chem.200800080
60. Inverizzo G, Natariello A, Samalovka M, Grandori R. Protein-protein and protein-ligand interactions studied by electrospray-ionization mass spectrometry. Protein Pept Lett 2007; 14:894-902; PMID:17845532; http://dx.doi.org/10.1111/j.1671-7842.2007.00001.x
61. Liu X, Michelen K, Kirova EN, Schenir PD, Klassen JS. Energetics of lipid binding in a hydrophobic protein cavity. J Am Soc Mass Spectrom 2012; 134:3054-60; PMID:22280480; http://dx.doi.org/10.1016/j.j科比.2012.05.0909
62. Verkerk UH, Kebarde P. Ion-ion and ion-molecule reactions at the surface of proteins produced by nanoparticle inactivation. Information on the number of acetic acids and control of the number of ionized acetic and basic groups. J Am Soc Mass Spectrom 2010; 21:1532-41; PMID:19579926; http://dx.doi.org/10.1016/j.科比.2010.03.018
63. Douglas DA. The Carton–π Interaction. Acc Chem Res 2013; 46:885-93; PMID:23214924
64. Kumar S, Mukherjee A, Das A. Structure of indole–imidazole heterodimer in a supersonic jet. A gas-phase study on the interaction between the aromatic side chains of tryptophan and histidine residues in proteins. J Phys Chem A 2012; 116:11573-80; PMID:23134474; http://dx.doi.org/10.1021/J科比.201103167a
82. Cubrilovic D, Biela A, Siedaf F, Steinmetzer T, Klebe G, Zenobi R. Quantifying protein-ligand binding constants using electrospray ionization mass spectrometry: a systematic binding affinity study of a series of hydrophobically modified trypsin inhibitors. J Am Soc Mass Spectrom 2012; 23:1768-77; PMID:22860298; http://dx.doi.org/10.1021/jas013561-012-0451-6
83. Kehrbar F, Verkerk UH. Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev 2009; 28:898-917; PMID:19551695; http://dx.doi.org/10.1002/mas.20247
84. Kehrbar P, Ho Y. In: Cole RB, ed. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentations and Applications. New York: John Wiley & Sons Inc., 1997:3-63.
85. Wu X, Oleschuk RD, Cann NM. Characterization of microstructured fiber emitters: in pursuit of improved nano electrospray ionization performance. Analyst 2012; 137:4150-61; PMID:22706328; http://dx.doi.org.10.1039/c2an20524d
86. Hewavitharana AK, Herath HM, Shaw PN, Cabot PJJ. Kehrbar P. Effect of solvent and electrospray mass spectrometer parameters on the charge state distribution of peptides—a case study using liquid chromato-graphy/mass spectrometry method development for beta-endorphin assay. Rapid Commun Mass Spectrom 2010; 24:3510-4; PMID:21080501; http://dx.doi.org.10.1002/rcm.4806
87. Santambrogio C, Ricagno S, Sobott F, Colombo M, Bolognesi M, Grandori R. Characterization of coexisting protein conformers in electrospray mass spectrometry. Anal Chem 2007; 79:2499-506; PMID:17288464; http://dx.doi.org/10.1021/ac0602056
88. Testà L, Brocca S, Samalikova M, Santambrogio C, Alberghina L, Grandori R. Electrospray ionization-mass spectrometry conformational analysis of isolated domains of an intrinsically disordered protein. Biotechnol J 2011; 6:96-100; PMID:21053535; http://dx.doi.org/10.1002/biot.201000253
89. Borsyuk AJ, Radford SE, Ashcroft AE. Co-populated conformational ensembles of beta-2-microglobulin uncovered quantitatively by electrospray ionization mass spectrometry. J Biol Chem 2004; 279:27069-77; PMID:15100226; http://dx.doi.org/10.1074/jbc.M40147200
90. Invernizzi G, Samalikova M, Brocca S, Lotti M, Molinari H, Grandori R. Comparison of bovine and porcine beta-lactoglobulin: a mass spectrometric analysis. J Mass Spectrom 2006; 41:717-27; PMID:16770828; http://dx.doi.org/10.1002/jms.10109
91. Natalello A, Benetti F, Doglia SM, Legname G, Grandori R. Compact conformations of α-synuclein induced by alcohols and copper. Proteins 2011; 79:611-21; PMID:21120859; http://dx.doi.org/10.1002/pro.22299
92. Brocca S, Samalikova M, Uversky VN, Lotti M, Vanoni M, Alberghina L, et al. Order propensity of an intrinsically disordered protein, the cyclin-dependent-kinase inhibitor Sic1. Proteins 2009; 76:751-66; PMID:19280601; http://dx.doi.org/10.1002/1056-8715(200906)76:6<751::AID-PREB2299>3.0.CO;2-6
93. Brocca S, Testa L, Sobott F, Samalikova M, Natalello A, Papaleo E, et al. Compaction properties of an intrinsically disordered protein: Sic1 and its kinase-inhibitor domain. Biophys J 2011; 100:2243-52; PMID:21597973; http://dx.doi.org/10.1016/j.bpj.2011.02.055
94. Santambrogio C, Frana AM, Natalello A, Papaleo E, Regonesi ME, Doglia SM, et al. The role of the central flexible region on the aggregation and conformational properties of human ataxin-3. FASEB J 2012; 26:451-63; PMID:2219356; http://dx.doi.org/10.1098/rsbl.2011.08438
95. De la Mora JF. Electrospray ionization of large multiply charged species proceeds via Dole's charged residue elimination. Anal Chem 2005; 77:5370-9; PMID:16097782; http://dx.doi.org/10.1021/ac050511+
96. Testa L, Brocca S, Grandori R. Charge-surface correlation in electrospray ionization of folded and unfolded proteins. Anal Chem 2011; 83:6459-63; PMID:21808882; http://dx.doi.org/10.1021/ac20174dr
97. Testa L, Brocca S, Grandori R. Charge-surface correlation in electrospray ionization of folded and unfolded proteins. Mass Spectrom Rev 2004; 23:368-83; PMID:15264255; http://dx.doi.org/10.1021/mr0300820
98. Kaltashov IA, Mohimen A. Estimates of protein surface areas in solution by electrospray ionization mass spectrometry. Anal Chem 2005; 77:5370-9; PMID:16097782; http://dx.doi.org/10.1021/ac050511+
99. Gumenov DR, Kaltashov IA. Dynamics of ion release from transferin N-lobe studied by electrospray ioniza-tion mass spectrometry. Anal Chem 2001; 73:2565-70; PMID:11403501; http://dx.doi.org/10.1021/ac0101564
100. Dobo A, Kaltashov IA. Detection of multiple protein conformational ensembles in solution via deconvolu-tion of charge-state distributions in ESI MS. Anal Chem 2001; 73:4763-73; PMID:11681449; http://dx.doi.org/10.1021/ac010713f
101. Natalello A, Benetti F, Doglia SM, Legname G, Grandori R. Compact conformations of α-synuclein induced by alcohols and copper. Proteins 2011; 79:611-21; PMID:21120859; http://dx.doi.org/10.1002/pro.22299
102. Brocca S, Samalikova M, Uversky VN, Lotti M, Vanoni M, Alberghina L, et al. Order propensity of an intrinsically disordered protein, the cyclin-dependent-kinase inhibitor Sic1. Proteins 2009; 76:751-66; PMID:19280601; http://dx.doi.org/10.1002/1056-8715(200906)76:6<751::AID-PREB2299>3.0.CO;2-6
103. Santambrogio C, Frana AM, Natalello A, Papaleo E, Regonesi ME, Doglia SM, et al. The role of the central flexible region on the aggregation and conformational properties of human ataxin-3. FASEB J 2012; 26:451-63; PMID:2219356; http://dx.doi.org/10.1098/rsbl.2011.08438
104. Santambrogio C, Frana AM, Natalello A, Papaleo E, Regonesi ME, Doglia SM, et al. The role of the central flexible region on the aggregation and conformational properties of human ataxin-3. FASEB J 2012; 26:451-63; PMID:2219356; http://dx.doi.org/10.1098/rsbl.2011.08438
105. De la Mora JF. Electrospray ionization of large multiply charged species proceeds via Dole's charged residue elimination. Anal Chem 2005; 77:5370-9; PMID:16097782; http://dx.doi.org/10.1021/ac050511+
106. Nesatyy VJ, Suter MJ. On the conformation-depen-dent neutralization theory and charging of individual proteins and their non-covalent complexes in the gas phase. J Mass Spectrom 2004; 39:93-7; PMID:15100226; http://dx.doi.org/10.1002/jms.26
107. Heck AJ, Van Den Heuvel RH. Investigation of intact protein complexes by mass spectrometry. Mass Spectrom Rev 2004; 23:368-83; PMID:15264255; http://dx.doi.org/10.1021/mr0300820