Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
SARS-COV-2 AND CANCER

LBA8 Vaccination against SARS-CoV-2 in patients receiving chemotherapy, immunotherapy, or chemo-immunotherapy for solid tumors

S. Oosting1, A.A.M. Van der Veldt1, C.H. GeurtsvanKessel1, R.S.N. Fehrmann1, P . Openshaw6, J.K. Baillie7, M.M.G. Semple8

Background: Patients with cancer have an increased risk of complications from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Vaccination is recommended, but the impact of chemotherapy and immunotherapy on immunogenicity and safety is still unclear.

Methods: This prospective multicenter non-inferiority trial comprises four cohorts: individuals without cancer (A) and patients with solid tumors who were treated with immunotherapy (B), chemotherapy (C) or chemo-immunotherapy (D). Participants received two mRNA-1273 vaccinations 28 days apart. The primary endpoint was SARS-CoV-2 Spike S1-specific IgG serum antibody response, defined as >10 binding antibody units (BAU)/ml 28 days after the second vaccination. We also assessed the virus neutralizing capacity of these antibodies, SARS-CoV-2 Spike-specific interferon-gamma (IFN-γ) cell responses, and adverse events.

Results: Of the 791 participants enrolled, 743 were evaluable for the primary endpoint in cohort A (n=240), B (n=131), C (n=229) and D (n=143). A SARS-CoV-2-binding antibody response was found in 100%, 99.3%, 97.4%, and 100% of the participants in cohorts A, B, C, and D, respectively. To discriminate between suboptimal and adequate responders, we defined a cut-off level at 300 BAU/ml, based on neutralizing capacity. The antibody response was considered adequate after the first vaccination in 66.0%, 37.1%, 32.5%, and 33.3% of the participants in cohorts A, B, C, and D, respectively. This raised 28 days after the second vaccination to respectively 99.6%, 93.1%, 83.8%, and 88.8% in cohorts A, B, C, and D. Spike-specific T cell responses were detected in 46.7% of suboptimal and non-responders. No new safety signals were observed.

Conclusions: mRNA-1273 vaccination is safe in the patient populations studied. For each cohort, the proportion of patients with a SARS-CoV-2-binding antibody response after two vaccinations is non-inferior compared to individuals without cancer. However, a significant minority lacks an adequate response. Most patients have an antibody concentration increase after the second vaccination. Therefore, an additional booster may turn inadequate into adequate responders.

Clinical trial identification: NCT04715438.

Legal entity responsible for the study: University Medical Center Groningen, the Netherlands.

Funding: ZonMW, The Netherlands Organisation for Health Research and Development.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2021.08.2140