An Empirical Pixel-Based Correction for Imperfect CTE. I.

HST’s Advanced Camera for Surveys

JAY ANDERSON AND LUIGI R. BEDIN

Space Telescope Science Institute, Baltimore, MD 21218; jayander@stsci.edu, bedin@stsci.edu

Received 2010 March 23; accepted 2010 July 21; published 2010 August 25

ABSTRACT. We use an empirical approach to characterize the effect of charge-transfer efficiency (CTE) losses in images taken with the Wide-Field Channel of the Advanced Camera for Surveys (ACS). The study is based on profiles of warm pixels in 168 dark exposures taken between 2009 September and October. The dark exposures allow us to explore charge traps that affect electrons when the background is extremely low. We develop a model for the readout process that reproduces the observed trails out to 70 pixels. We then invert the model to convert the observed pixel values in an image into an estimate of the original pixel values. We find that when we apply this image-restoration process to science images with a variety of stars on a variety of background levels, it restores flux, position, and shape. This means that the observed trails contain essentially all of the flux lost to inefficient CTE. The Space Telescope Science Institute is currently evaluating this algorithm with the aim of optimizing it and eventually providing enhanced data products. The empirical procedure presented here should also work for other epochs (e.g., pre-SM4), though the parameters may have to be recomputed for the time when ACS was operated at a higher temperature than the current \(-81^\circ C\). Finally, this empirical approach may also hold promise for other instruments, such as WFPC2, STIS, the ACS’s HRC, and even WFC3/UVIS.

Online material: color figures

1. **INTRODUCTION**

It is well known that when energetic particles impact CCD detectors, they can displace silicon atoms and create vacancies (defects) in the silicon lattice. During the readout process, these defects can temporarily trap electrons, causing some of a pixel’s charge to arrive late at the readout register and thus to be associated with a different pixel. These transfer imperfections are generally referred to as charge-transfer efficiency (CTE) losses, or charge-transfer inefficiency (CTI), since some flux that was initially in one pixel gets delayed during the transfer process and shows up in a pixel that is read out later, sometimes much later. Detectors in the harsh radiation environment of space suffer this degradation much faster than detectors on the ground, making it a particularly serious problem for the aging instruments on board the *Hubble Space Telescope* (HST). The ubiquitous CTE-related trails stand out clearly in postrepair images taken with the Advanced Camera for Survey’s Wide Field Channel (ACS’s WFC). Figure 1 shows the upward-streaking trails in a recent short exposure.

Imperfect CTE can have two main impacts on science. First, it shifts charge from the core of a source to a trail that extends well outside of a normal photometric aperture, thus reducing the brightness measured in aperture photometry and point-spread function (PSF)-fitting. This has a significant impact on photometry, both for point sources and for extended sources. Second, imperfect CTE blurs out the profiles of objects, shifting their centroids and increasing their full width at half-maximum. This has a major impact on astrometric projects and on studies that involve galaxy morphology, such as weak lensing.

Because of the detrimental impact of imperfect CTE on science, much effort has been expended in order to understand what causes it and how to characterize it, both in the laboratory and by studying images taken with detectors that have suffered actual space-radiation damage. Janesick (2001) summarizes the recent laboratory-based research into what damage various kinds of radiation can inflict on CCDs. Although in the laboratory it is hard to simulate the exact radiation environment of space, it is possible to construct general models for how defects are generated and how they impact the transfer of charge from the pixels to the readout register. Laboratory testing has demonstrated that defects tend to capture electrons very quickly, but release them much more slowly, all with time constants that depend on temperature (see Hardy et al. 1998). The testing has also shown that charge packets with smaller numbers of electrons are exposed to a larger number of traps (per electron). These characteristics are generally consistent with our observational experience with *HST*, but, unfortunately, the laboratory...
tests are not yet sufficient to provide reliable quantitative predictions. This is partly because the laboratory tests cannot fully simulate realistic space environments and partly because the laboratory tests generally rely on a limited number of photon sources (such as X-rays from 55Fe) that generate fixed-size charge packets, and thus they are unable to probe the full parameter space of how charge packets of different sizes experience deferred charge. Until laboratory results are able to predict and describe the full spectrum of on-orbit CTE losses more quantitatively, we must develop empirical approaches to characterize the specific detectors currently operating in space. These approaches should be guided by the many insights gleaned in the laboratory.

Several attempts have been made over the years to empirically characterize the impact of imperfect CTE on WFC observations. A series of Instrument Science Reports (ISRs) (see Riess & Mack 2004, Chiaberge et al. 2009, and references therein) have developed empirical approaches to correcting aperture photometry. These corrections depend on the size of the aperture, the brightness of the source, the intensity of the background, and the time since exposure to the harsh environment. The losses are lower when the background is higher, which is consistent with the laboratory results that show that some of the charge traps can be filled by the background and are thus not seen by sources. These reports also demonstrate very clearly that the amplitude of CTE losses has been increasing linearly with time, also in accord with lab results (see Fig. 8 of Waczyński et al. 2001). Dolphin has made similar CTE characterizations for the WFPC2 detectors (see Dolphin 2000, 2009).

The empirical photometric-correction trends with magnitude are sufficient for many applications, but they have their limitations. In practice, the corrections are constructed only for a limited set of photometric apertures, which does not allow easy correction for stars in crowded fields or for faint stars near the background, where even a 3-pixel-radius aperture can lead to unacceptably large systematic or random errors. Furthermore, the corrections constitute average corrections and do not take into account the particular shadowing circumstances of each star (i.e., some stars may sit on higher backgrounds than others or may have well-placed neighbors that may shield them from CTE losses). In addition, the photometric trends tell us nothing about how astrometry or an object’s shape may have been impacted by imperfect CTE. For all these reasons, many attempts have been made over the years to come up with a pixel-based CTE-correction: a way to reconstruct the original image based on the observed image and a model for CTE.

Riess (2000) studied empirical galaxy profiles in WFPC2 images and constructed a model of the readout that reproduced the phenomenology he observed in images, but the algorithm was too slow to be used in practice (Riess 2010, private communication). For the Space Telescope Imaging Spectrograph (STIS), Bristow & Alexov (2002) and Bristow (2003a, 2003b) developed a theoretical model for how charge is read out from the detector, based on lab experiments and a theoretical charge-trapping and charge-emission model. They used experimental data such as trap densities, release time constants, and the design specs for a “notch” channel (which was intended to insulate the smallest charge packets from CTE losses) to construct a computer program that simulated the STIS readout. They used this routine to generate a realistic simulation model of lab data, then used the model to generate a pixel-by-pixel correction for science images that did a good job of qualitatively removing the CTE trails. Nevertheless, despite this aesthetic success, the algorithm was not able to restore all the flux to the rightful pixels and was too computationally slow to be practical, so the standard CTE-mitigation procedure for STIS to this day still involves measuring quantities on the uncorrected pixels and applying parametrized corrections based on background, source flux, and aperture size. This is similar to what is done for ACS and WFPC2. We note that, unlike ACS, STIS can be read out using the amplifiers at any of its four corners, which makes its CTE much easier to measure and evaluate (see Goudfrooij et al. 2006).

More recently, Massey et al. (2010) have constructed a pixel-based CTE correction for ACS’s WFC for their reductions of the COSMOS fields. They use power laws and exponentials to model the amplitude and profiles of the CTE-related trails behind warm pixels (hereafter, WPs). They find that their pixel-correcting procedure is able to remove the visible trails and reconstruct the images of their targets of interest (resolved galaxies), with the result that the galaxies near the top of the chips, which are farthest from the readout amplifiers and naturally
suffer more CTE losses, have shapes after correction that are similar to those at the bottom of the chips, which suffer less CTE losses. The Massey et al. correction was tailor-made for the particular characteristics of the COSMOS field: a flat background of about \(50 \text{ e}^-\) and relatively faint sources. They make no claims as to how well their algorithm would perform on the full range of backgrounds and source brightnesses of fields studied with the WFC. It is also not clear whether their corrections yield accurate photometry and astrometry, since they did not have access to true fluxes and positions against which they could compare their results. Nevertheless, the clear success of their algorithm at removing the trails and restoring flux to galaxy profiles is an extremely encouraging indication that a pixel-based correction for CTE is possible.

To that end, we decided to carry their study to the next level. Our aim is to characterize the impact of imperfect CTE over the full range of background intensity and source flux. Our plan will be as follows.

Although Massey et al. (2010) were able to successfully model the trails in terms of exponentials with experimentally motivated drop-offs, we will deal with the trails in a purely empirical, nonparametric way. We will constrain various aspects of our model by studying how CTE impacts WPs and cosmic rays (CRs). The WPs in dark frames serve as delta functions that allow us to calibrate the size and extent of CTE trails for pixels of various flux in images that have essentially no background. The CRs allow us to examine the effects of "shadowing" on CTE. It is well known that point sources suffer lower CTE-related losses when the background is higher, but it is unclear whether the whole-chip background or the very local background is more relevant to this trend. Laboratory experiments (see Hardy et al. 1998) suggest that this is related to the trap-capture time constants for the detector, which should be very fast and almost instantaneous relative to the parallel pixel clock time. We will use the trails from CRs to tell us whether the trap time is truly instantaneous.

Once the shadowing properties have been characterized, we will turn our attention to the warm pixels and construct an empirical model of the WFC pixel-readout process that reproduces the observed tails behind the delta-function warm pixels. With such a model in hand, it will be straightforward to construct an iterative forward-modeling procedure to restore the observed flux to its rightful pixel. Finally, the examination of stars will provide the ultimate test. By comparing corrected fluxes and positions for stars in short and deep exposures, we will demonstrate that this correction procedure works for all backgrounds and fluxes.

Note that we will refer here to all pixels with a discernible dark-current excess as warm, irrespective of whether the ACS Instrument Handbook would formally characterize them as hot (\(>0.08 \text{ e}^- \text{pixel}^{-1} \text{s}^{-1}\)), warm (0.04 to 0.08 \(\text{e}^- \text{pixel}^{-1} \text{s}^{-1}\)), or below these thresholds.

This paper is organized as follows. In § 2, we first analyze a set of 168 calibration images that were taken between 2009 September and October to measure the dark current. We produce a stacked dark image and maps of where the persistent warm pixels are located. The stacks provide a high signal-to-noise ratio profile of each charge trail, and we combine the many trails to examine trends in trail-profile shape and intensity as a function of WP intensity. In § 3, we develop an empirical model of the readout process, putting together everything we have learned thus far, from laboratory experiments, from previous ISRs, papers, and from our own qualitative analysis. The parameters of this model are optimized empirically by fitting the warm-pixel trails in the dark exposures. We test the efficacy of the algorithm for warm pixels in images with different backgrounds. In § 4, we present the stellar tests, demonstrating that the algorithm properly returns flux to the rightful pixels so that astrometry, photometry, and even shape are restored. Section 5 discusses some improvements that could be made to make the algorithm better. Finally, § 6 summarizes these results and considers the next logical steps to take.

2. DARK-CURRENT OBSERVATIONS

Most of HST’s orbits experience some occultation by the Earth. The observatory regularly takes advantage of this downtime to collect a rich assortment of bias frames, dark frames, and flats. As a result, the archive contains an enormous number of such calibration data sets. Over the 55 days between 2009 September 4 and 2009 October 28, there were 168 dark exposures taken. These dark exposures were between 1000 s and 1090 s in length, with an average exposure time of 1061.2 s. The darks were generally paired with bias exposures, making it easy to select a set of darks and biases for the same period of time.

2.1. The Dark-Current Data Set

We will begin our investigation using the _raw_ dark-current observations. These are 4144 × 4136 2 byte unsigned-integer images that contain the raw number of counts recorded by the analog-to-digital converter for each pixel. Figure 2 provides a useful schematic for these extended images. The physical prescan on the right and left corresponds to 24 actual pixels that are not exposed to the sky but are still read out like normal pixels. The prescan pixels are closest to the readout amplifier for each quadrant. The 20 pixels of virtual overscan (in the middle of the figure, farthest from the serial registers at the top and bottom) are not real pixels, but rather come from 20 extra parallel clockings of the rows. The charge packets corresponding to these pixels start with no charge, but can gain charge on account of electrons released from CTE traps or CRs that impact during readout. From Muchtcher & Sirianni (2005, p. 3), we find that the serial shift time is 22 \(\mu\text{s}\), and the parallel shift time is 3212 \(\mu\text{s}\), so that the entire array is read out in \((20 + 2048) \times (3212 + 22 \times (2048 + 24)) \mu\text{m}, or about 100 s.
In addition to trapping electrons during readout, defects caused by radiation damage also allow electrons to “hop” from the silicon valence band to the conduction band, thus increasing the dark current (Sirianni et al. 2007). The typical post-SM4 dark current in the WFC is 0.006 e− s−1 pixel−1, but after many years of exposure to radiation, every pixel has a different radiation history and a different dark-pixel intensity. About 10% of the pixels have more than 0.015 e− s−1, and 2% have more than 0.05 e− s−1. The plentiful dark exposures contain a wealth of data about the detector defects and about the cosmic-ray intensity and frequency. The left panel of Figure 3 shows a single dark exposure (jbanaan2q, the first one in our list). In general, WPs are the single-pixel events and cosmic rays are the multiple-pixel events, with the typical CR affecting about 8 pixels. The field shown covers a region near the top of WFC2 (the bottom chip) and is therefore about 2000 pixels from the bottom serial register. As such, this region suffers maximally from CTE losses, and the WP trails are quite obvious.

2.2. Image Analysis

We will use these 168 images in two ways. First, we will distill them into two useful composite images that will help us study the average behavior of the WPs. Then later, we will study them individually to understand what the transient component (namely, CRs) can tell us.

The first useful composite image we generated is a simple stack that shows the average dark frame. We construct this by normalizing the 168 raw images to the average exposure time of 1060 s, then for each of the 4144 × 4136 pixels, we list the 168 values and compute a robust average value by iteratively clipping the values beyond 4-σ. The result of this is the image shown in the middle panel of Figure 3. The CRs are gone, and the trails from the WPs are clear.

The second useful image is what we call a peak map. To construct this map, we go through each individual dark exposure and identify all the local maxima (any pixel greater than its eight surrounding neighbors). The peak map records how many of the 168 images have a peak in each of the 4144 × 4136 pixels. This map is shown in the right panel of Figure 3 and identifies the locations of the persistent warm pixels. There are \(3.3 \times 10^5\) WPs found in 150 or more out of 168 exposures, \(5.3 \times 10^5\) WPs found in 150 or more out of 168 exposures. The trails show up faintly in the peak map, as they are slightly more likely that other pixels in their row to be local maxima.
found in more than 125, and 7.2×10^5 found in more than 100. The WPs selected in this way typically have intensities of 15 DN$_2$ or more. Because of crowding and read noise, the WPs much fainter than this do not generate peaks in more than 100/168 exposures, making them hard to study this way.

We made an initial bias correction for each frame using the physical prescan pixels. Unfortunately, this does not remove all the bias, so we processed the contemporaneous bias _raw frames as noted previously for the darks and generated an average image of the bias. This average image contains a significant gradient, which increases in x and y away from the readout registers. According to Golimowski et al. (2010, in preparation), these x and y gradients are due to a bias drift in the readout voltage and are not indicative of actual electrons being transferred by the detector. Therefore, we simply subtracted this average bias from the dark frame before continuing with the analysis.

2.2.1. Quantitative Trails

We used the peak map to identify the consistently warm pixels (those that stood out in at least 100 out of 168 exposures). In order to maximize the CTE signature, we examined the pixels that were at least 1500 pixels from the serial registers: $j > 1500$ in the WFC2 (the bottom CCD) and $j < 500$ in the WFC1 (the top CCD).

The next step is to measure the CTE trails. The schematic in Figure 4 illustrates which pixels we used to extract the CTE-release profile upstream of each warm pixel. The profiles have been zero-pointed by subtracting a sky value for each pixel in the trail by taking a sigma-clipped average of the 10 surrounding pixels in its row (this conveniently mitigates the impact of the horizontal streaks caused by 1/f noise in the new signal-processing electronics; see Grogin et al. 2010, in preparation).

Figure 5 shows the trails quantitatively. The CTE correction we implement will be based directly on profiles like these and will be tested by its ability to remove them from images. The trails have been grouped in terms of the intensity of the warm pixel (labeled at the upper right in each panel). The pixel value for the trail is listed on the left. The percentage of WP flux in the first pixel in the trail is listed on the right. This percentage goes from 20% for low-intensity WPs to 1% for WPs that reach a good fraction of full well. The fraction in the second pixel is down by about a half from that in the first pixel.

In addition to the fraction of flux in the trail changing dramatically with WP intensity, the shape also appears to change with WP intensity. The dotted line corresponds to the curve for 10,000 DN$_2$, and it has been scaled to match the YU1 flux in the different profiles. While the trails do have the same general monotonic shape, the exact shape can differ by more than 10%. When we integrate this difference down the trail (note that the horizontal scale in Fig. 5 is logarithmic), we find that this could account for several tens of percent in trail flux.

The dashed curve in the bottom right panel fits the 10,000 DN$_2$ profile with dual exponentials; the inner exponential is constrained to fit the inner two points, and the outer exponential is constrained to fit the outer half of the points. It is clear that this does a very poor job of representing the trail in the middle region. Modeling the trails with simple dual exponentials could clearly introduce errors of several tens of percent in the total trail flux.

Finally, we note that the zero point for the faint-WP curves dips systematically below zero beyond where the trail can be measured. This is simply an artifact of the difficulty in defining a sky value to better than 0.2 DN$_2$ in the images. While the images are putatively empty, the interacting trails from all the warm pixels leave a vertically coherent background that does not correspond to a Gaussian distribution with a mean of zero. This makes it difficult to accurately measure flux far down the faint trails.
3. OUR EMPIRICAL MODEL

The previous pixel-based CTE analyses discussed in the Introduction have assumed a single trail shape for all pixel fluxes. Figure 5 shows that this does not appear to be the case: reality may be more complicated. Previous models have also treated the profiles as exponentials—or as a sum of two exponentials, since such a model is well motivated by theory and lab experiments (Massey et al. 2010). The curve in Figure 5 shows that a dual exponential does not satisfactorily follow all the signal in the trails. Some recent lab experiments (see p. 820 in Janesick 2001 or Table 6 in Sirianni et al. 2007) have shown evidence for more than two trap species, some of which have relatively long release times. It is possible that the observed trails might be well represented by three exponentials (with different scalings), but for simplicity here, we will model the profile empirically by tabulating what fraction of charge is retained and released as a function of the number of pixel transfers. While this approach may involve more parameters than are strictly necessary, such a model is still considerably overconstrained by the plentiful data. Irrespective of how they are fit, the curves in Figure 5 clearly demonstrate that CTE losses follow regular and predictable trends.

3.1. Basic Constraints

Our modeling strategy will also take into account several basic facts about CTE that we gather from the extensive number of reports and papers that have been written about it: (1) CTE losses are lower when the background is higher; (2) CTE losses are proportionally higher for fainter sources than for brighter sources; (3) CTE losses are directly proportional to the distance from the readout register; and (4) CTE losses are directly...
proportional to the amount of time the detector has spent in the space environment.

While our model is purely empirical and does not depend on any quantitative results of lab experiments, it does help to consider their qualitative results to motivate the model. It is clear that CTE losses are related to the presence of defects, or traps, in the silicon lattice of the CCD. These traps are generated when energetic photons, electrons, neutrons and ions impact the detector, thus naturally explaining the linear increase in CTE losses over time in the high-impact environment of space. When the electrons from a pixel in the array are shifted through a downstream pixel, a trap in the downstream pixel may capture an electron from the packet. This electron will be released some time later, after the packet of electrons with which it began its journey has already been transferred down several pixels. The trail profiles in Figure 5 give us a rough sense of how long (in terms of pixel-shift times) the typical trap holds the typical electron.

In general, the amount of charge in the trail tells us how many traps were encountered as the electron packet was shifted from the initial pixel to the readout register. Of course, the packet may have encountered many more faster-release traps that may give up the electrons before the charge is shifted. We can ignore these fast traps here: they will not affect the image and, furthermore, we cannot hope to measure them by studying the image. On the other hand, traps that retain electrons longer than the chip-readout time will not produce measurable electrons in the trails, though they will still reduce the flux of the stars. The presence of these traps can only be inferred by comparing photometry against some absolute standard. Biretta & Mutchler (1997) show that the WFPC2 detector appears to have some extremely long traps, as evidenced by charge that persists into the next exposure. While no such extreme-late-release charge has been observed in the WFC, we will certainly examine our photometry for losses not accounted for by the flux in the observed trails.

In general, the amount of charge in the trail tells us how many traps were encountered as the electron packet was shifted from the initial pixel to the readout register. Of course, the packet may have encountered many more faster-release traps that may give up the electrons before the charge is shifted. We can ignore these fast traps here: they will not affect the image and, furthermore, we cannot hope to measure them by studying the image. On the other hand, traps that retain electrons longer than the chip-readout time will not produce measurable electrons in the trails, though they will still reduce the flux of the stars. The presence of these traps can only be inferred by comparing photometry against some absolute standard. Biretta & Mutchler (1997) show that the WFPC2 detector appears to have some extremely long traps, as evidenced by charge that persists into the next exposure. While no such extreme-late-release charge has been observed in the WFC, we will certainly examine our photometry for losses not accounted for by the flux in the observed trails.

In Figure 6 we integrate up the flux in the trails for profiles similar to those shown in Figure 5 (but with more intermediate warm-pixel bins) and plot the total amount of flux in the trail as a function of WP intensity. The loss goes roughly as the square root of the WP intensity, but not exactly. We note that the model discussed in Bristow & Alexov (2002) for STIS predicts that CTE losses should go as the square root of the charge. This rough power law is also seen in the experiments shown in Figure 10 of Janesick et al. (1991). Hardy et al. (1998) simulate the distribution of charge set up within the pixel lattice between the electrodes and show that packets with more charge occupy a larger volume and, as such, are subject to more traps. The relation they find in their simulations is very similar to this power-law scaling, though the details of any relation will no doubt depend somewhat on the particular pixel geometry and voltage settings.

3.2. Instant or Gradual Shadowing?

Before we can correct images for imperfect CTE, we must construct a model for what the readout process does to the original pixel distribution. Modeling this process involves a detailed understanding of exactly when charge gets stuck in traps and when it gets released. Lab experiments and theoretical models (see Cawley et al. 2001) predict that the probability of filling a trap is related to the local density of charge, with small packets taking longer to fill traps. However, given the slow parallel clocking speed, even small packets are expected to fill all the open traps that they can access almost instantly. Since our aim is to model the readout process on a pixel-by-pixel basis, it will matter considerably to our model whether traps are filled instantly or whether it may take several traversing packets to fill them completely. In this section, we will use CRs in the individual dark images to evaluate the capture-time constant empirically.

If all the accessible traps do not get filled the instant a packet passes through, then we would expect that an object with two bright pixels would experience (and fill) more traps than one with only one bright pixel. To test this, we compare the profiles upstream of WPs and CRs. The warm pixels we studied previously tend to have single high pixels, surrounded by a large number of low pixels. By contrast, CRs tend to come in clumps of eight or so impacted pixels. We analyzed each of the 168 images individually and identified bright CRs in the region
at least 1500 pixels from the serial register, where CTE losses would be largest. We specifically selected CRs that had two bright pixels in the same column with nearly the same number of counts in each pixel to within 10%, with the brighter pixel being farther from the register. We further required that the CR be localized, such that the ±5 pixels upstream of each CR had less than 5% of the total of the flux in the two bright pixels. This way, the CR should not interfere too much with the trail.

This experiment should allow us to assess whether the trail observed is more due to the sum of the pixels in an object (which would indicate a partial filling of the traps by the first pixel) or whether all the accessible traps are filled completely the moment the first charge packet passes through (in which case the trail would reflect only the bright pixel that passed over).

Figure 7 compares the trails from WPs against those for the CRs, again for events that are at least 1500 pixels from the readout register. The filled-circle curves in the left and right panels show, respectively, the trail profiles for WPs with intensities between 2000 and 3000 DN_2 and between 4000 and 6000 DN_2. The open-circle curves show the trails for CRs where the brightest pixel falls within the same DN_2 range. The filled-square curves show the trails for CRs where the total of the two bright pixels falls within the same range as the WPs. We show the trails for $n \geq 3$ only, because even our selections could not guarantee that there would be no flux from the CR in neighboring pixels. (The closest few pixels to the CR maximum do tend to have the most contamination, but the contamination does not always go immediately to zero.)

![Figure 7](https://example.com/figure7.png)

Fig. 7.—Comparison of the CTE-related trails for CRs chosen to have two nearly equal salient pixels against the trails for warm pixels (which have one salient pixel). CRs and WPs in the left panel have about 2500 DN_2, and those shown in the right panel have about 5000 DN_2. The trail that is observed clearly is regulated by the flux in the brightest pixel, and not the total CR flux. See the electronic edition of the *PASP* for a color version of this figure.
It is clear that the open-circle profiles match the warm-pixel trail almost perfectly, while the filled-square profiles are markedly lower. This demonstrates that it is the flux in the brightest pixel, not the total flux, that regulates the profile of the trail. We thus conclude that each pixel completely fills all the traps that are accessible to its electron packet: a conclusion that is consistent with the fast-fill assumption in Bristow & Alexov (2002, p. 8). This means that while the time to release an electron from a trap can be several parallel-shift times (see Fig. 5), the time it takes to fill a trap is negligibly small. This characteristic should make the charge-transfer process much easier to model, as it means that we will not have to fold a difficult-to-constrain absorption probability into our readout model.

3.3. Statement of the Model

Before we can remove the CTE effects from the observed WFC images, we must come up with a way to simulate what charge-transfer inefficiency does to observations. The model we will construct next is similar in many respects to the one constructed in Bristow (2003a) and Massey et al. (2010). Many of the limitations of these models stemmed from insufficient constraints from theory and laboratory experimentation. In an effort to sidestep these limitations, we adopt a purely empirical formulation here. Massey et al. developed their model using COSMOS images with a background of $51 \pm 9 \text{ e}^{-1}$ ($\sim 25 \text{ DN}_2$). As such, they were unable to probe CTE losses below about 100 e$^{-}$. Since it is worthwhile to probe the trap density all the way down to zero background, we will do our analysis on the dark-exposure images. Only later will we make use of on-sky images to test the algorithm. We provide a more detailed comparison between the assumptions of our model and the recent Massey et al. model in § 3.10.

Our model is quite simple. When a packet of charge is transferred through pixel B from pixel A on its way to the serial register, four things happen. The first is that the untrapped flux in pixel B is transferred out, either to pixel C or to the serial-readout register. The second is that the traps in pixel B that were filled previously release some of their counts. Third, the packet of charge from pixel A is transferred into pixel B, and the recently released counts in the pixel are added to it. The fourth thing that happens is that once this new packet is present in the pixel, it fills all the traps that it has access to. At this point, the untrapped charge in the packet is ready to be shifted to the next pixel. The number of counts that get transferred to the next pixel is the number of counts in pixel A, plus the number of counts released by the traps in pixel B, minus the amount of charge that was newly retained by the traps in pixel B: $N_B = N_A + N_{\text{released}} - N_{\text{trapped}}$. The N_{trapped} counts will remain in pixel B until released later into a different packet, associated with a different readout pixel.

From our experiment in § 3.2, we determined that every electron that can occupy a trap, will occupy the trap instantly. This means that when a packet is in a pixel, it fills all the traps to which it has access. The number of traps available to a packet is clearly a function of how many electrons are in it. Figure 6 shows that the number of traps accessible to a packet increases roughly as the square root of the number of electrons in the packet. Although this $T(q)$ curve goes nearly as the 0.5 power, it is not exact, so we will represent this relationship empirically by tabulating its value at a set of node points (10, 30, 100, 300, 1000, 3000, 10000, and 30000), using interpolation in between. We note here that the charge q is in units of DN$_2$.

In practice, we will use the differential form of this curve: the number of traps per marginal electron, $\phi(q) = (dT/dq)(q)$. The quantity $T(q)$ plotted in Figure 6 corresponds to the total number of traps seen after about 1750 pixel shifts (we examined pixels between $j = 1500$ and $j = 2000$).

Calculating the number of counts released is more complicated, since charge is captured instantly, but it is released gradually. It appears from Figure 5 that the traps that affect smaller charge packets have somewhat steeper release profiles than the traps that affect only larger charge packets. This means that we may need to use a two-dimensional function to describe the release of charge. The function $\psi(n, q)$ represents the probability that a trap that affects the qth charge will release its charge after the nth pixel shift. The distributions from Figure 5 should give us a rough idea of the shape of $\psi(n, q)$ for various values of q.

The one aspect remaining is to remember that electrons are conserved. When an electron encounters a trap of a certain depth, there is a probability, based on the distribution of electron packets that have come before, that this trap will already be occupied. If we later transfer charge into this pixel that would like to fill the trap, we must remember that we can fill it only if it is empty. We can use the release-probability function $\psi(n, q)$ to tell us the probability that the trap will be empty and can then fill it with a partial election, reflecting the expectation probability of an empty trap. Hardy et al. (1998) suggest a similar algorithm.

This begs an interesting question: will the trap then release the electron according to when it was initially filled or according to when it was last filled (or “topped off”)? We will assume here that when we fill a partially empty trap, we “reset” its release-time constant, so the only thing that matters is when it was last topped off. This is the simplest possible assumption, and it appears to be consistent with the data.

Even though all of the trap-filling and trap-releasing is surely a quantum process involving one electron at a time, for simplicity here, we treat it as a continuum process, dealing with fractional traps and fractional charge. It is also true that each pixel has a different radiation-damage history and a different distribution of traps. However, since there is currently no way for us to determine which pixels may hold traps of which depth (the density of traps is too high for pocket-pumping to yield a definitive distribution), it is reasonable to treat all pixels as having the same distribution of fractional traps.
3.4. The Detailed Readout Algorithm

The readout simulator requires two functions that describe the nature of the traps: ϕ_q and ψ_{nq}. The ϕ_q array contains the number of traps from pixel $j = 2048$ to $j = 1$ that catch charge between $q - \frac{1}{2}$ and $q + \frac{1}{2}$. For example, if a pixel at the top of the chip ($j = 2048$) has 100 DN$_2$, then it will be subject to $\Sigma_{q=1}^{100} \phi_q$ traps. Integrating up our final ϕ_q array gives a value of 363 DN$_2$ of traps (see $T(q)$ in Fig. 6). This means that if the background is zero and a pixel near the top of the detector starts out with 100 DN$_2$, it will likely have 64 of them when it clocks out at the bottom. The trail will contain 36 DN$_2$. This model only treats the charge that either stays with the pixel or ends up in the observable trail. We will see in § 4 whether there are losses that do not show up in the observed trails.

The second function is ψ_{nq}. It gives the probability that the qth charge in a packet will be released n pixels downstream. The model we adopt is able to track charge trails out to 100 pixels ($n = 100$). As we mentioned previously, our model is not able to account for charge in the trails beyond this. It is possible that there are even fainter trails that extend much further, but if they are present, we will have to use a different formalism to represent them.

For each column that is read out, there are $2048 \times (2048/2) \sim 2 \times 10^6$ total pixel shifts involved. (The division by two comes from the fact that a pixel in the top row gets shifted 2048 times, and one in the bottom row gets shifted only once; the typical row is therefore shifted 1024 times.) It would be computationally prohibitive to simulate each of these shifts individually for each of the 4096 columns for each chip, so we recognized that many of the shifts are identical. If we consider pixels A and B in rows $j = 1001$ and $j = 1000$, respectively, pretty much the same charge transfer takes place 1000 times: electron packet B is shifted out of a pixel, and packet A is shifted in, and if CTE is close to unity, packets A and B will not change very much from the top to the bottom. For simplicity, we model this as incurring 1000 times the CTE loss as a single-pixel transfer. This simplification increases the algorithm’s speed by a factor of ~ 1000 and allows us to treat all pixels as having the same distribution of traps from $q = 0$ to saturation. Previous efforts (Massey et al. 2010 and Bristow et al. 2002) have assumed a specific realization of the distribution of traps throughout the chip in an effort to make the calculation computationally tractable.

This assumption breaks down when CTE losses begin to have a significant impact on the charge distribution, such that we might expect different transfer effects at the top of the column, where the intrinsic structure is coherent, and at the bottom of the column, where the true structure may be broadened by imperfect CTE. We recognize this potential limitation of our model, but such a situation should occur only in the more pathological situation where CTE cannot be considered a small perturbation. For computational speed in developing and converging upon our model, we will treat all pixel shifts the same, but we will be careful to identify situations where this simplified treatment may be inadequate (see § 6.2).

We simulate the column readout going from pixel $j = 1$ to pixel $j = 2048$ (or 2068 if we are including the virtual overscan). In order to monitor how long it has been since traps that affect different charge levels have been released, we maintain an internal array, n_q, which keeps track of how long it has been since the trap at each marginal charge level q was filled. At the beginning of the readout, the n_q array is set to 100 for all q, from 1 to 50,000. This corresponds to all the traps starting out completely empty. As far as the model is concerned, it means they were last filled more than 100 transfers ago.

We now have all the elements necessary to illustrate the algorithm. We start by shifting the first pixel into the serial register. At the beginning of the readout, this pixel has P_1 DN$_2$ in it. We use the following equation to determine how many electrons the traps in this pixel will hold back:

$$N_{\text{trapped}} = \sum_{q=1}^{P_1} \phi_q \times \left(1 - \sum_{j=\psi_{nq}}^{100} \phi_q \right) \times \left(j/2048 \right).$$

The first term within the main summation provides the number of traps present per 2048 pixels at each marginal charge level q. The second term (in parentheses) reports what fraction of the traps at this charge level are still unfilled. The final term scales N_{trapped} for the number of pixel shifts to the register (just j). The summation itself is over all the charge in the pixel, P_1.

Finally, we shift P_1 ($P_1 - N_{\text{trapped}}$) charges into the serial register, and this is what is read out by the amplifier (modulo losses from CTE in the serial direction, which we will discuss briefly in § 5.3). We then reset the n_q array to 0 for all $q \leq P_1$, since the traps were just filled all the traps up to this charge level.

The next step is to determine how much charge is released by traps in the pixel before the next charge packet arrives. We do this by simply summing over the released charge, trap by trap:

$$N_{\text{released}} = \sum_{q=1}^{50,000} \phi_q \times \psi_{n_q} \times \left(j/2048 \right).$$

The summation is over all charges, from the ground to saturation. The first term scales the release for the number of traps that affect electrons at this charge level. The second term corresponds to the fraction of the charge in the trap that gets released in the n_qth transfer since the trap was filled. The final scaling corresponds to the number of transfers that take place, with a pixel at the top of the column getting a factor of 1.00.

Once the appropriate amount of charge has been released from each trap, we increment the counter for the trap at each charge level by setting n_q to $n_q + 1$. We cap n_q at 100, since our model is unable to follow the trails beyond 100 pixels and assumes that after 100 shifts, the traps are empty.
Finally, we shift the packet of electrons from pixel $j = 2$ into this first pixel and end up with $(P_{O} + N_{\text{released}})$ charge in the pixel. At this point, the algorithm returns to the previous starting point, and we determine how many electrons get captured in traps and transfer the remainder into the serial register. This process continues for the pixels from $j = 1$ to 2048 (or 2068 in the raw frames).

All of the dark exposures we have used here were taken at about the same time (within a two-month period in late 2009), so each exposure should suffer about the same CTE losses. It is well established (see Riess & Mack 2004 and Chiaberge et al. 2009) that CTE losses have been increasing linearly over time since ACS was installed in space during Servicing Mission 3B in 2002. For times before or after 2009 October, we will need an additional multiplicative term to account for the overall scaling of trap density. This term can go after the $(j/2048)$ terms in the previous N_{trapped} and N_{released} equations:

$$\frac{(\text{JD}_{\text{OBS}} - \text{JD}_{\text{SM-3B}})}{\text{JD}_{2009-2001} - \text{JD}_{\text{SM-3B}}}.$$ \hspace{1cm} (3)

Since this model was developed for the 2009 October epoch, the correction factor is naturally 1.00 for the present epoch.

The adoption of the preceding simple scaling law implicitly assumes that nothing has changed in the detector’s CTE properties from installation to after SM4. It remains to be seen whether anneals or changes of CCD temperature have any effect on CTE trail profiles or scaling. Laboratory experimentation and theory suggest that raising the temperature should lower the release time and thus steepen the trails. There is no reason to think that the number of traps will change within the -77°C to -81°C operating-temperature range. All these issues should be thoroughly investigated before any general long-term implementation of the algorithm.

3.5. An Example

Figure 8 provides an example of the readout-simulating algorithm at work. On the left, we show the original pixel value \(P_{\text{ORIG}}\) for pixels between column index $j = 2001$ and $j = 2012$. We simulate here a star that has its y-center at 2007.5, with a background of 2 DN$_2$.

The next column in the table in Figure 8, N_{REL}, shows the amount of charge released due to previous charge-filling from downstream pixels, from equation (2). This charge is added to that in the previous column to get the third column, P_{TEMP}. This charge fills all the holes available, which we compute from equation (1). The trapped amount of charge is reported in the fourth column, N_{TRAP}. Finally, this is subtracted from the third column, to get $P_{\text{_OBS}}$, the charge that ultimately makes it to the serial register. The sixth column, Δ, reports the difference between the input and output charge, $P_{\text{ORIG}} - P_{\text{OBS}}$.

The raster on the right in Figure 8 reports the state of the charge traps. The horizontal dimension corresponds to the mar-

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Column & j & N_{REL} & N_{TRAP} & P_{OBS} & Δ \\
\hline
2012 & 2 & 3 & 1 & 6 & +3 \\
2013 & 3 & 4 & 2 & 3 & +2 \\
2010 & 5 & 6 & 1 & 1 & +1 \\
2009 & 7 & 0 & 2 & 0 & -2 \\
2007 & 3 & 0 & 1 & 0 & -1 \\
2006 & 8 & 0 & 0 & 0 & 0 \\
2005 & 5 & 0 & 0 & 0 & 0 \\
2004 & 2 & 0 & 0 & 0 & 0 \\
2003 & 4 & 0 & 0 & 0 & 0 \\
2002 & 6 & 0 & 0 & 0 & 0 \\
2001 & 8 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}
\caption{Schematic showing the inner workings of our pixel-transfer algorithm. See the text in § 3.5 for details. The asterisks in the trap monitor correspond to traps that are completely empty ($n_i \geq 100$). Numbers in the table are rounded to the nearest integer.}
\end{table}

3.6. Iterating to Find the Original Pixel Distribution

The preceding process tells us only what happens to an original distribution of charge in a column, P_j, as it is transferred down the column and read out as P'_j. It does not tell us how to reconstruct the original source pixel array, P_j, from the observed array. To do this, we must somehow invert the process. We do this in a manner similar to that in Bristow & Alexov (2002) and in Massey et al. (2010) (see their § 3.2).

We first adopt the actual observed pixel array P_{OBS} as an estimate of the original array, P_{ORIG}. We run this through the readout simulation and arrive at a simulated observed array, P_{OUT}. This array will be less sharp than the actual observed array, since the readout process introduces CTE trails. Our goal is to find the source array that, when run through the readout
process, will yield the observed array P_{OBS}. So we adjust the source array in such a way as to bring the output array to be closer to the observed array: we add to the current source array the difference between the observed array and the output array. The following pseudocode shows how the convergence proceeds:

\[
\begin{align*}
P_{\text{OUT}}^{[n]} &= \text{COL_READOUT} \left[P_{\text{OBS}}^{[n-1]} \right] \\
P_{\text{ORIG}}^{[n]} &= P_{\text{ORIG}}^{[n-1]} + \left(P_{\text{OBS}} - P_{\text{OUT}}^{[n]} \right)
\end{align*}
\]

The routine \text{COL_READOUT} takes in an array representing the original pixel values and simulates the charge-transfer process, returning the array that would be observed. In the end, $P_{\text{ORIG}}^{[5]}$ is our fifth-iteration estimate of the original pixel distribution. Most charge, even when the background is low, comes through the readout process without being shifted, so imperfect CTE can be thought of as a slight perturbation. As such, this process converges quite quickly. We generally do five iterations.

One slight concern about this iterative scheme is that the flux recorded in each image pixel P_{OBS} does not correspond exactly to the amount of charge in DN$_2$ that arrived at the register. The observed pixel value also contains a contribution from read noise (~4.5 e$^-$ for ACS’s WFC). If we operate the algorithm on P_{OBS}, then the process will end up amplifying the read noise, which is not desired. In § 5.1 we explore one way to minimize the influence of read-noise-level fluctuations on our algorithm. However, it should be safe to defer the read-noise-related issues until later, as our dark exposures have been combined into a stack that should have the noise reduced by $\sqrt{168}$.

3.7. Finding the Optimal Model Parameters

To keep our model as simple as possible, we wanted to use the minimum number of parameters. The full model as stated would have about 5 million degrees of freedom if we consider all the possible values of ϕ_q and $\psi_{n,q}$ for all q and n. Clearly, these functions will vary smoothly with their parameters and we can represent them interpolating an adequately spaced table. To this end, we tabulate the value for ϕ_q at an array of logarithmically spaced points in q: 1, 3, 10, 30, 100, 300, 1000, 3000, 10,000, 30,000, and 100,000 DN$_2$, and use log-linear interpolation to compute ϕ_q for any integer q. Similarly, we tabulate the two-dimensional function $\psi_{n,q}$ at values for n shifts of 1, 2, 3, 5, 8, 12, 16, 20, 25, 30, 40, 50, 60, 70, 80, 90, and 100 pixels and at values of q of 10, 100, 1000, and 10,000 DN$_2$. To get $\psi_{n,q}$ for any value of n and q, we interpolate linearly in the n dimension and logarithmically in the q dimension. This interpolation is done once for all, so that the program ends up working with arrays $\phi[1:100000]$ and $\psi[1:100, 1:100000]$. The condensed set of parameters can be conceptualized as having 79 nodes: $\Phi[1:11]$ and $\Psi[1:17, 1:4]$ (the capital letters denote the node parametrization).

Unfortunately, we cannot simply take the extracted values for these functions from Figures 5 and 6 to arrive at the final model. The trail for a bright pixel generates many lower-intensity pixels in its lee. The charge released in the trail pixels is subject to the same imperfect transfer as the original charge, so there is some interplay between the bright and faint trails.

We resolved this complication by iteration. We started with the arrays as extracted directly from Figures 5 and 6. We then ran the reconstruction routine on the dark stack to see how well the trails were removed. We again constructed a plot similar to Figure 5, only this time with the reconstructed image as the source image. The remaining trends showed us how to adjust Φ_Q and Ψ_{NQ} in such a way as to improve the fit.

It took several hands-on iterations for the model parameters to converge. We began the convergence with traps at all q levels having the same trail profile (i.e., $\psi_{n,q}$ being a function of n only). This worked well for all the preceding traps $q \sim 10$ DN$_2$, and it implies that the slightly different profiles seen in Figure 5 may be a result of some self-shielding within the trails. It also means that most traps, irrespective their location within the pixels, appear to have largely the same release-time profiles.

We were unable to fit the very lowest bin ($q \sim 10$ DN$_2$) with the same profile, so we gave this lowest bin a steeper profile. Even with a steeper profile, we had to use an extremely high trap density (0.8) to account for the amount of charge in these trails. This means that 80% of the electrons at this charge level are likely to encounter a trap when transported from the top of the chip to the bottom. This implies a significant level of CTE losses, and a more sophisticated, nonperturbative approach may be necessary to deal properly with CTE issues at this low flux level (see the discussions in §§ 3.4 and 6.2).

Once CTE losses reach a truly pathological level, it will no longer be possible to make any inference about the original charge distribution. This will happen when there are more traps than charge, such that most charge will be removed from its original pixel packet and can no longer be associated with its original pixel location. The deep dark images currently available may not be the best way to explore these issues, since in the 1000 s exposures, there are so many ~ 10 DN$_2$ WPs that it is hard to study them in isolation. Taking shorter darks should remedy this, but for the moment, we will simply adjust our model to deal with the low-q WPs as well as possible, and we will see how well the algorithm can work. Improvements can be made later (see § 6).

The converged-upon model parameters are shown in Figure 9. The trap density ϕ versus q is shown on the left. The trend largely follows $\phi_q \sim q^{-0.5}$, which is consistent with ϕ_q being the derivative of T_q (see Fig. 6). The release profiles are shown on the right, normalized to have a total probability of 1.00.
The steeper profile applies for $q \sim 10$, and the other applies for $q \geq 100$.

The first real test, of course, is how well the trails are modeled. Figure 10 shows the residuals of the trails, in the same format as Figure 5, though with twice as many warm-pixel bins. It is clear that the trails for all levels of charge are removed cleanly. The trails appear to be removed well even in the faintest WP bin, where our algorithm has to treat larger CTE losses than it is designed for.

Figure 11 shows the before and after images centered on the same region as in Figure 3. It is clear that we are removing a large fraction of the trails and restoring the flux to its rightful pixel—usually a single pixel in these dark, warm-pixel pocked images. Note that there is nothing in the reconstruction algorithm that would force flux back into one pixel, as opposed to two or three. The restored image is simply the one that is best able to predict the observed image. The fact that the flux was restored to a single pixel in most cases is an encouraging sign.

There are clearly some trails in Figure 11 that are oversubtracted and others that are undersubtracted. It is interesting to note that the oversubtracted trails often lie in the same rows, as do the undersubtracted trails. A significant WP of 1000 DN$_2$ loses about 150 DN$_2$ to the trail (see Fig. 6). If each trap impacts a single electron, this implies 300 traps (1 DN$_2 = 2$ e$^{-1}$). If these traps are distributed randomly, we should expect a column-by-column variation in CTE losses of $\sim 5\%$. This variation would be even larger if the traps are generated in clumps, many at a time. Waczyński et al. (2001) note that energetic photons and electrons tend to generate single traps, but neutrons and ions often generate multiple traps in the same pixel, such that the particular radiation environment could make CTE more variable from column to column than single-trap Poisson statistics would suggest. We can better study the statistics of trail subtraction in the individual exposures, using CRs or stars, as these (unlike the WPs) impact different places on the detector in different exposures.

3.8. Limitations of the Superdark Analysis

Since the dark frames have very low background and therefore suffer the largest CTE losses, it is extremely encouraging that our algorithm does so well here. Nevertheless, it will still be important to show that the parameters can work in “easier” (and more scientifically relevant) environments as well. Thus, we will have to test the algorithm on sky-exposed images that have a variety of background intensities.

As far as what to expect with the higher background situation, we note that the model as formulated does naturally predict lower CTE losses when the background is higher, since we empirically see more traps that affect small charge packets than those that affect only large packets. When the background is high, these small-packet traps are all filled and it is only the marginal larger-packet traps that come into play.

One additional inadequacy of developing the correction on the stacked dark frame is that there are not many high-signal warm pixels. This makes it difficult to calibrate the upper end of the ϕ_q curve. In the next section, we will examine the bright end more carefully using stars in short exposures.

3.9. Final Model

The parameters of the converged-upon final model shown in Figure 9 are listed in Tables 1 and 2. These parameters, fed into the algorithm discussed in § 3.4, result in a near-perfect removal.
of the CTE-related trails from the dark exposures. It remains to be seen whether this restorative fix is sufficient to account for all CTE losses. It is possible that the CTE trails could have a longer and fainter component than we can observe empirically. The final test will therefore be to run this pixel-based correction on images for which we know how the true scene should look. This will be the focus of the next sections.

3.10. Comparison with the Massey Model

Since there is already a pixel-based CTE correction for ACS’s WFC that has been presented in the literature and made available for users, it is worthwhile to note here the ways in which our approach is similar to and different from that of Massey et al. (2010).

Our approaches are similar in several respects. First, both approaches model the pixel-transfer process, keeping track of the number of electrons in each pixel’s packet and the number of electrons that get trapped and released in each transfer. We both assume that a trap will grab an electron the instant the trap is open and has an accessible electron to trap. We also both model the trap density as a function of packet intensity, finding that the cumulative number of relevant traps goes roughly as the square root of the amount of charge in the packet.

The first major difference between our models is in terms of the profile of the trails. Rather than fit the trails with hard-coded dual exponentials, our model uses a purely empirical drop-off, parametrizing the 100 pixel trail with 17 nodes, spaced every pixel at smaller offsets and every 10 pixels at larger offsets. This flexibility allows us to more accurately tailor the drop-off to the trails.

Fig. 10.—Similar to Figure 5. The original trails (open circles) and the residuals (filled circles) after model-fitting for the warm-pixel stack, binned for eight different warm-pixel intensity levels. See the electronic edition of the PASP for a color version of this figure.
also thresholded to affect electron packets at a specific charge level. Neither the placement of the traps nor their thresholds were empirically determined to match the detectors, but were simply one possible realization of the detailed detector based on their model. Our treatment, on the other hand, deals with traps in a continuum sense. Whereas they modeled about half the pixels as having a trap of one variety or another, we modeled all pixels as having an array of fractional traps that affect packets from $q = 1$ to 40,000 DN$_2$. Consistent with our continuous approach, we start with the 2-byte-integer pixel array, which has a quantized number of electrons, and derive a 4-byte-real source

\begin{table}
\begin{tabular}{ccc}
\hline
Node number & Marginal DN$_2$ & Traps per DN$_2$
\hline
1 & 1 & 0.8000 \\
2 & 3 & 0.8000 \\
3 & 10 & 0.8000 \\
4 & 30 & 0.5000 \\
5 & 100 & 0.2800 \\
6 & 300 & 0.1750 \\
7 & 1,000 & 0.0880 \\
8 & 3,000 & 0.0540 \\
9 & 10,000 & 0.0380 \\
10 & 30,000 & 0.0115 \\
11 & 100,000 & 0.0060 \\
\hline
\end{tabular}
\caption{Number of Traps per Marginal DN$_2$, ϕ_q, from the Optimized Model.}
\end{table}

\begin{table}
\begin{tabular}{ccc}
\hline
Node number & Shifts & Fractional release
\hline
1 & 1 & 0.3417 0.2061 \\
2 & 2 & 0.1709 0.0942 \\
3 & 3 & 0.1156 0.0718 \\
4 & 5 & 0.0603 0.0495 \\
5 & 8 & 0.0352 0.0330 \\
6 & 12 & 0.0101 0.0224 \\
7 & 16 & 0.0000 0.0165 \\
8 & 20 & 0.0000 0.0118 \\
9 & 25 & 0.0000 0.0082 \\
10 & 30 & 0.0000 0.0059 \\
11 & 40 & 0.0000 0.0029 \\
12 & 50 & 0.0000 0.0018 \\
13 & 60 & 0.0000 0.0012 \\
14 & 70 & 0.0000 0.0000 \\
15 & 80 & 0.0000 0.0000 \\
16 & 90 & 0.0000 0.0000 \\
17 & 100 & 0.0000 0.0000 \\
\hline
\end{tabular}
\caption{Measured Release Profile for Traps at Different q Levels (q is in DN$_2$).}
\end{table}

\[\phi_q = \begin{cases}
0.8000, & q = 1 \\
0.8000, & q = 2 \\
0.8000, & q = 3 \\
0.2800, & q = 4 \\
0.1750, & q = 5 \\
0.0880, & q = 6 \\
0.0540, & q = 7 \\
0.0380, & q = 8 \\
0.0115, & q = 9 \\
0.0060, & q = 10 \\
\end{cases} \]

Note.—Recall that 1 DN$_2$ = 2 electrons.

\section*{4 Observations}

The third major difference between our models concerns how traps are simulated. Massey et al. (2010) simulated placing explicit traps that affect single electrons at random locations within the pixel grid. While they experimented with making more traps that could affect partial electrons, or fewer traps that would each affect multiple electrons, their treatment was basically a quantized treatment of the traps. Each of their traps was made. (ACS technical lead, D. Golimowski 2010, private communication).

\[\psi_{Nn} = \begin{cases}
0.3417, & N = 1 \\
0.1709, & N = 2 \\
0.1156, & N = 3 \\
0.0603, & N = 4 \\
0.0352, & N = 5 \\
0.0101, & N = 6 \\
0.0000, & N = 7 \\
0.0000, & N = 8 \\
0.0000, & N = 9 \\
0.0000, & N = 10 \\
\end{cases} \]

Note.—The model allows release times up to 100, but we found no perceptible charge in the trails beyond $n = 70$ shifts.

\begin{thebibliography}
\end{thebibliography}
array that corresponds to the expectation value for how many electrons were most likely present before the charge-smearing readout process.

A final difference is that we found the need to iterate more than once, whereas they determined a single iteration to be sufficient. We found that only after three or so iterations did the modeled and observed pixel arrays converge. We generally iterate five times. Perhaps our need for more iteration is related to the more continuous way we modeled the traps. It could also be related to the fact that we are working with a stack of 168 images, and the noise threshold is much lower.

3.11. Examining WPs on Different Backgrounds

The low background in the dark exposures allowed us to detect the very faint trails behind very low warm pixels. We cannot, however, use these dark images to test the algorithm on more typical science images, which tend to have backgrounds between 20 and 150 electrons (10 and 75 DN.). The tests we ran with CRs (see Fig. 7) seem to validate the assumptions that our model makes in regard to shadowing: namely, that a trap will absorb an electron the instant it can. Electrons in the sky background should work in a similar way to the leading pixels in the cosmic rays we studied: they should prefill some traps, so that the upstream charge is subject only to the traps that are above the background level. However, this needs to be empirically verified.

We examined three different F606W images taken of the 47 Tuc calibration field with exposure times of 30 s, 150 s, and 350 s, and with backgrounds of 1.5, 8, and 16 DN. We applied our CTE-restoration scheme to each of the raw exposures to produce a corrected raw image and used the warm-pixel locations identified from the peak map of our previous study. We then examined the WP profiles in the original and corrected images. Since these results come from individual exposures, rather than the dark stack of 168 exposures, we would naturally expect things to be much noisier, even if the general trends are corrected.

Figure 12 shows the results in an array of panels, for warm pixels with intensities of 15, 50, and 100 DN. We could not cross-compare brighter WPs, since the short 15 s exposures allowed few warm pixels to get very bright. It is illustrative to compare the trends across panel rows. On the left, where the background is lower, the observed trails are clearly larger than the more continuous way we modeled the traps. It could also be related to the fact that we are working with a stack of 168 images, and the noise threshold is much lower.

3.11. Examining WPs on Different Backgrounds

The low background in the dark exposures allowed us to detect the very faint trails behind very low warm pixels. We cannot, however, use these dark images to test the algorithm on more typical science images, which tend to have backgrounds between 20 and 150 electrons (10 and 75 DN.). The tests we ran with CRs (see Fig. 7) seem to validate the assumptions that our model makes in regard to shadowing: namely, that a trap will absorb an electron the instant it can. Electrons in the sky background should work in a similar way to the leading pixels in the cosmic rays we studied: they should prefill some traps, so that the upstream charge is subject only to the traps that are above the background level. However, this needs to be empirically verified.

We examined three different F606W images taken of the 47 Tuc calibration field with exposure times of 30 s, 150 s, and 350 s, and with backgrounds of 1.5, 8, and 16 DN. We applied our CTE-restoration scheme to each of the raw exposures to produce a corrected raw image and used the warm-pixel locations identified from the peak map of our previous study. We then examined the WP profiles in the original and corrected images. Since these results come from individual exposures, rather than the dark stack of 168 exposures, we would naturally expect things to be much noisier, even if the general trends are corrected.

Figure 12 shows the results in an array of panels, for warm pixels with intensities of 15, 50, and 100 DN. We could not cross-compare brighter WPs, since the short 15 s exposures allowed few warm pixels to get very bright. It is illustrative to compare the trends across panel rows. On the left, where the background is lower, the observed trails are clearly larger than the more continuous way we modeled the traps. It could also be related to the fact that we are working with a stack of 168 images, and the noise threshold is much lower.

3.11. Examining WPs on Different Backgrounds

The low background in the dark exposures allowed us to detect the very faint trails behind very low warm pixels. We cannot, however, use these dark images to test the algorithm on more typical science images, which tend to have backgrounds between 20 and 150 electrons (10 and 75 DN.). The tests we ran with CRs (see Fig. 7) seem to validate the assumptions that our model makes in regard to shadowing: namely, that a trap will absorb an electron the instant it can. Electrons in the sky background should work in a similar way to the leading pixels in the cosmic rays we studied: they should prefill some traps, so that the upstream charge is subject only to the traps that are above the background level. However, this needs to be empirically verified.

We examined three different F606W images taken of the 47 Tuc calibration field with exposure times of 30 s, 150 s, and 350 s, and with backgrounds of 1.5, 8, and 16 DN. We applied our CTE-restoration scheme to each of the raw exposures to produce a corrected raw image and used the warm-pixel locations identified from the peak map of our previous study. We then examined the WP profiles in the original and corrected images. Since these results come from individual exposures, rather than the dark stack of 168 exposures, we would naturally expect things to be much noisier, even if the general trends are corrected.

Figure 12 shows the results in an array of panels, for warm pixels with intensities of 15, 50, and 100 DN. We could not cross-compare brighter WPs, since the short 15 s exposures allowed few warm pixels to get very bright. It is illustrative to compare the trends across panel rows. On the left, where the background is lower, the observed trails are clearly larger than the more continuous way we modeled the traps. It could also be related to the fact that we are working with a stack of 168 images, and the noise threshold is much lower.

3.11. Examining WPs on Different Backgrounds

The low background in the dark exposures allowed us to detect the very faint trails behind very low warm pixels. We cannot, however, use these dark images to test the algorithm on more typical science images, which tend to have backgrounds between 20 and 150 electrons (10 and 75 DN.). The tests we ran with CRs (see Fig. 7) seem to validate the assumptions that our model makes in regard to shadowing: namely, that a trap will absorb an electron the instant it can. Electrons in the sky background should work in a similar way to the leading pixels in the cosmic rays we studied: they should prefill some traps, so that the upstream charge is subject only to the traps that are above the background level. However, this needs to be empirically verified.

We examined three different F606W images taken of the 47 Tuc calibration field with exposure times of 30 s, 150 s, and 350 s, and with backgrounds of 1.5, 8, and 16 DN. We applied our CTE-restoration scheme to each of the raw exposures to produce a corrected raw image and used the warm-pixel locations identified from the peak map of our previous study. We then examined the WP profiles in the original and corrected images. Since these results come from individual exposures, rather than the dark stack of 168 exposures, we would naturally expect things to be much noisier, even if the general trends are corrected.

Figure 12 shows the results in an array of panels, for warm pixels with intensities of 15, 50, and 100 DN. We could not cross-compare brighter WPs, since the short 15 s exposures allowed few warm pixels to get very bright. It is illustrative to compare the trends across panel rows. On the left, where the background is lower, the observed trails are clearly larger than the more continuous way we modeled the traps. It could also be related to the fact that we are working with a stack of 168 images, and the noise threshold is much lower.
exposures thus spend more time getting read out than they spend exposing on sky. Consequently, it is more likely than not that an observed CR will have struck the detector during readout, rather than during the formal exposure time. As such, this late-hitting CR will not have been transferred across the entire array, but only part of it, and the correction, which assumes j pixel shifts for an object appearing in row j, will naturally over-correct.

The fact that the corrections developed to remove the CTE trails from warm pixels also appear to do a good job restoring flux to stars is a good sign that the algorithm has universal application. The real test, however, will involve a more quantitative analysis.

4.2. Testing the Algorithm on _flt_ Images

The corrections in the preceding sections were performed on the _raw_ images, which have not gone through the standard pipeline process of bias subtraction and flat-fielding. It is worth asking whether it would be safe to work with the _flt_ exposures instead. It would certainly be easier if the algorithm could operate on pipeline products, so that it would not be necessary to rerun the pipeline calibrations by hand afterward.\(^5\)

If, in the end, this correction is deemed to be valid, it may be worthwhile to revisit some of the pipeline files, such as biases and darks, to see how they may have been affected by imperfect CTE. However, we will defer that discussion until § 6.
To test this shortcut, we first divided the _flt images by two to account for the fact that the _flt images are in electrons, while the corrections were developed for the _raw images, which represent DN with a gain of 2. We then ran them through the same preceding procedure and multiplied the output by 2, to restore the scaling back to electrons.

The resulting images look extremely good; the trails appear to be removed nicely, just as well as in the raw images. This makes sense in that the flat-field process should not introduce much more than a 5% adjustment in the value of a pixel (the relative correction is typically less than 2%). While the CTE losses are not perfectly linear with pixel value, over a small range they are nearly linear, so it makes sense that operation on the _flt images would be nearly the same as on the _raw images. In the remainder of this section, we make use of the _flt-stage routines to evaluate the efficacy of our correction in terms of absolute flux, astrometry, and shape. As such, we will be reporting the results in electrons, not DN.

4.3. Shallow Versus Deep Tests

It is well known that imperfect CTE affects short exposures with low background more than long exposures with higher background, so to test our correction we compared photometry and astrometry we obtained from the short exposures against those obtained from the deep exposures. Cycle-17 Program GO-11677 (PI-Richer, Co-I Anderson) will spend a total of 121 orbits, starting with ACS at the outer calibration field in 47 Tuc, with the aim of detecting the end of the white-dwarf cooling sequence. As of this writing, 18 out of 24 visits have been successfully taken. The observations in hand were taken in F606W and F814W, with exposure times typically between 1200 and 1300 s, depending on the visibility. A single short exposure of 1 s, 10 s, or 100 s was taken at the beginning of each visit. Each of these short exposures was followed immediately by a very deep exposure at the same pointing through the same filter, which will allow us to compare the CTE impact on the shorts and deeps. The 1 s images did not have enough bright sources that could be seen unsaturated in the deep images to be useful, so we will focus on the 10 s and 100 s short exposures. For reference, the 10 s exposures have a background of about 2 e⁻, and the background in the 100 s exposure was about 15 e⁻.

We took the three 10 s and the three 100 s short F606W exposures and their deep counterparts and corrected them for CTE according to the algorithm described previously. We ran the routine img2xym_WFC.09x10, which is described in Anderson & King (2006), on the uncorrected and corrected _flt images. This software program measures fluxes and positions for stars in individual exposures by fitting an empirical library PSF to the central 5 x 5 pixels for each star. The photometry it produces is equivalent to aperture photometry over the fitting box, with a correction for the fraction of the PSF that should have landed in the box, given the measured position of the star within the central pixel of the box.

By comparing the 10 s and 100 s images against their deep counterparts, we can directly examine how well our correction mitigates CTE in both astrometry and photometry. Figure 14 shows the results from comparing the 10 s images against the ~1200 s images for before and after CTE correction. Figure 15 shows the same comparisons for the 100 s images.
The left column of panels of Figure 14 shows the photometric residuals for the 10 s versus deep comparison. The vertical scale covers ±0.75 magnitudes in flux. All the pre-correction comparisons show very significant CTE impact, with the familiar bow-shaped residuals indicating that stars at the center of the abutted two-chip system are farthest from the serial register and suffer more CTE loss in the short exposures than in the deep exposures. The upper-right panel shows that the brightest stars, with an instrumental magnitude\(^6\) of \(-8\), suffer a loss of about 0.2 magnitudes (20%). The lower-right panel shows that the faintest stars at \(m \sim -4\) suffer a loss of almost 50%. Yet, in both cases the algorithm restores the photometry nicely, with an error generally less than 10% of the correction itself.

\(^6\) Instrumental magnitude is defined as \(-2.5 \log_{10}(\text{flux})\).

FIG. 14.—Comparison of photometry and astrometry between 10 s and 1200 s images for uncorrected and corrected images. The photometric comparison is shown on the left, and the astrometric comparison on the right. Photometry from the deep exposure has been zero-pointed to correspond to the short exposure. The residuals are plotted against the raw \(y\) coordinate in a system that has the two chips abutted at \(y = 2048\). The different rows of panels show the residuals for stars with different short-exposure instrumental magnitudes. Stars brighter than \(-8.5\) in the 10 s exposures are saturated in the 1200 s exposures, so they could not be included. The central column lists the instrumental magnitude and the corresponding central-pixel intensity. The lines represent a linear fit for the trend against \(y\). See the electronic edition of the *PASP* for a color version of this figure.
The left panels of Figure 15 show the same for the 100 s exposures. Stars in these medium-length exposures exhibit about a factor of 2 less CTE than stars of a similar brightness in the short exposures.

The panels on the right of Figures 14 and 15 show the astrometric residuals along the readout direction (y). Since the images were taken immediately after one another with the same guide stars, they should be almost perfectly coregistered. The

Fig. 15.—Same as Figure 14, but this time comparing the 100 s and 1200 s exposures. Stars brighter than -10.5 in the 100 s exposures are saturated in the deep exposures. See the electronic edition of the PASP for a color version of this figure.
third column of plots exhibits the telltale sign of astrometric CTE (see Kozhurina-Platais et al. 2007): stars nearest the inter-chip gaps are farthest from the serial register and suffer CTE that shifts their position in the direction of the gaps. The fourth column shows the corrected residuals, which largely remove the CTE signature. Some of the intermediate-brightness objects in the 100 s exposures appear to be slightly overcorrected, but even there the correction is better than 75%.

It is worth noting that we originally made this comparison using the corrected short exposures and the uncorrected deep exposures, thinking naively that the deep exposures with their background of over 100 e\(^{-}\) essentially made them immune to CTE losses. We found that without correcting the deep exposures as well, the short versus deep residuals indicated that the algorithm appeared to be overcorrecting the short exposures. However, when we applied the correction to both exposures, the correction was seen to be accurate and clearly relevant for both short and deep exposures, as seen in Figures 14 and 15.

The fact that our correction restores photometry as well as astrometry is an indication that the flux we have associated with the trails is indeed almost all of the flux that is delayed by traps. This was not an assumption of our algorithm; the aim of the algorithm was simply to restore the perceptible flux. The fact that it appears to restore almost all the flux is satisfying. This result is in contrast to what has been seen with WFPC2, where trail-based CTE corrections were deemed inadequate because they clearly did not account for all of the flux (see Fig. 7 in Cawley et al. 2001). Of course, the trail shapes and time constants can be very different for ACS/WFC and WFPC2, with their different array sizes, dopings, temperatures, and parallel-readout cadence. It should not be surprising that they would have different trail profiles and that WFPC2, with its faster readout (13 s versus 90 s), might have longer trails in a pixel sense. We do note, though, that some investigations have shown that if the WFPC2 trails are modeled out to 90 pixels, the lost flux is, in fact, mostly accounted for (Biretta & Platais 2005).

Laboratory FPR (first-pixel response) and EPER (extended pixel-edge response) tests have suggested that the observable trails do not contain all the flux. However, such tests generally involve reading out only 20 or so virtual pixels, so they can measure the flux only in the inner part of the trail. Our trails have perceptible flux out to 60 pixels, so the conclusions from traditional EPER tests are not directly relevant. Waczyński et al. (2001) made the same point and found that when they extended their EPER test to 200 or 900 overscan pixels in their lab experiments, they recovered the flux implied by the FPR tests.

In Figure 16 we compare the amplitude of our corrections against those predicted by Chiaberge et al. (2009), plugging in the date and background of our exposures. The aperture we used is effectively 2.8 pixels in radius, slightly smaller than the 3-pixel-radius of the Chiaberge correction, but the results should not be particularly sensitive to this. The upper panels show our net correction and the Chiaberge correction for the 10 s and 100 s data sets, as well as the trend seen in our correction. The agreement is better than 20% everywhere and is additional encouragement that our correction restores essentially all of the flux. The error bars drawn on our points reflect the photometric spread about the mean, not the error in the correction. The bottom panels of the figure show the astrometric residuals, for which no Chiaberge-type empirical correction exists.

4.4. The Offset-Image Test

The ACS team regularly takes images to trend CTE losses. One such program involves imaging the 47 Tuc calibration field with one pointing, then shifting the field vertically by one WFC chip so that the stars on the top chip in one exposure will be on the bottom chip in the other. Such a strategy magnifies the impact of CTE, since stars farthest from the readout in one exposure will be closest in the other.

We have examined two such pairs of 30 s images taken in 2009 June soon after SM4: \textit{ja9702s}xq, \textit{ja9702szq}, \textit{ja9702t}5q, and \textit{ja9702t}7q. The images have a background of about 4 e\(^{-}\). We measured the stars in all the exposures (corrected and uncorrected) using the same photometry routine as previously discussed and compared the photometry for stars found in all four exposures as a function of where the star was found in the bottom-chip exposure.
The results of this test are shown in Figure 17. The size of the effect here should essentially be twice that seen in a single exposure. We see that before corrections, the relatively bright stars that are farthest from the amplifier in one exposure and closest to it in the other differ by 12.8% (i.e., 2×0.064). The fainter stars differ by more than 50%. After the corrections, there is very little discernible trend.

4.5. More Absolute Tests

We have also looked into more absolute tests and compared positions measured in individual exposures of the 47 Tuc calibration field against photometry and astrometry in a reference catalog that has been constructed from many pre-SM4 exposures taken at a variety of orientations and offsets. The photometric results were very encouraging, but not perfect, perhaps indicating that the reference catalog has been compromised more than anticipated by CTE. In an astrometric sense, the stars in the reference frame are all moving with internal motions of about 0.5 mas yr$^{-1}$ relative to each other, due to the cluster’s internal motion (McLaughlin et al. 2006), making the astrometric handle fuzzy.

Over the next few months, as this routine is evaluated for use before SM4 and before the temperature change, we will apply it to the archive exposures and construct a better catalog, which can provide a photometric truth against which observations can be compared directly. Also, the GO-11677 data set will be ideal...
for examining the CTE correction and its efficacy for faint sources on moderate backgrounds.

4.6. Comparing Shape

The fact that the astrometric bias is generally removed by the CTE correction encourages us to think that the correction might preserve shape as well. This aspect of the correction will be important for studies of lensing and galaxy morphology. We study this more quantitatively by examining the profiles of stars in the corrected and uncorrected deep and shallow images.

We began by mapping the star catalog from Anderson (2007) into the frames of j a9bw2y k q and j a9bw2y l q, which had exposure times of 30 s and 339 s and backgrounds of 3 and 35 e−, respectively, and were taken immediately one after the other with no dither offset. We analyze only the stars between y = 1500 and y = 2000 of the bottom chip in an effort to maximize our sensitivity to CTE-related issues.

The catalog was constructed in 2005. Using the exact 2005 positions in 2009 images would introduce proper-motion-displacement errors to our positions, so we used the catalog only to identify bone fide stars. We used the library PSFs described in Anderson & King (2006) to determine an improved position and flux for each star in the deep corrected image. We then extracted a 5 × 5 raster centered on each star from each of the four images (the corrected and uncorrected deep and shallow exposures). We also removed a sky from each raster, as measured from the annulus between 8 and 12 pixels. Finally, we examined these pixels to see how imperfect CTE had modified the stellar profiles and to determine whether our corrections had restored them.

Anderson & King (2000) showed how one can directly examine the PSF profiles of stars if we have an estimate of their fluxes and positions (see their Fig. 6 and Eq. 7). From the deep corrected exposures, we have estimates of the stars’ positions and fluxes, so we can examine their profiles. In Figure 18 we plot the vertical profile of the central part of the PSF for stars of different brightnesses in the different images. Specifically, we plot ψ(Δx, Δy) against Δy for |Δx| < 0.5.

The PSF as formulated here simply maps the fraction of light that falls in each pixel as a function of where the pixel is relative to the center of the star. For example, ψ(0, 0) represents the fraction of light that would fall in a pixel when the star is centered on that pixel. For the WFC PSF in F606W, between 19% and 25% of the light in the star falls in the central pixel (Anderson & King 2006).

All stars, bright and faint, should have the same PSF (leaving aside issues of minor position-dependent variations). The upper-left panel shows the profile for the brightest stars in the corrected deep image. This should be representative of the true PSF profile, so we trace it with a line and plot it for reference in all the other panels. Going down, we show that the stars from instrumental magnitude −12 to −8 in the corrected image all have the same profile, in that the points (each of which represents one pixel in one star image) all trace out the same curve.

The next column over in Figure 18 shows the profiles from the untouched deep exposure. By and large, this traces the same profile, but as the source gets fainter, it is clear that the leading edge (on the left) suffers some CTE losses. The third panel shows the difference between the two profiles, corresponding directly to the adjustment that the CTE algorithm has made to the original pixel values.

The fourth panel in Figure 18 shows the profiles from the stars in the corrected short exposures. The brightest stars here have 1250 e− in their central pixels, and the faintest have only about 30 e−. It is clear that the corrected pixels follow the profiles extremely closely—even for the faintest stars. Our correction restores not only the flux but also the shape of astronomical sources.

The second-to-last column in Figure 18 shows results for the untouched short exposure. It is easy to see here how imperfect CTE has shifted and modified the stellar profile: a larger and larger fraction of electrons from the leading edge of the star are lost as the star gets fainter. By contrast, there is a clear excess of flux in the CTE trail on the right.

The adjustment made by our algorithm is shown in the rightmost column in Figure 18. The faintest stars require an adjustment that corresponds to nearly 50% of the original flux.

Our CTE restoration algorithm was constructed entirely from the profiles of warm pixels in dark exposures, with no reference whatsoever to stars or their profiles. The fact that this algorithm restores the pixels of a stellar profile to their rightful values is a clear independent demonstration that the algorithm not only corrects stars’ fluxes, as we saw in § 4.4, but puts the flux in the right place as well. This gives us every reason to think that the same should be true for resolved galaxies, which are even less sharp than PSFs.

5. POSSIBLE IMPROVEMENTS TO THE ALGORITHM

The preceding sections have shown that our CTE-correction algorithm clearly works quite well. The process of restoring flux to the bright sources naturally lowers and improves the uniformity of the background as well. This can be seen from a simple inspection of the images. However, there are still some remaining issues, such as read-noise amplification, the speed of the algorithm, and CTE issues in the serial direction.

5.1. Read-Noise Amplification

The imperfect charge-transfer process tends to blur out the images. What is originally a delta-function warm pixel gets read out as a less intense delta function with a tail. In general, this blurring will be mild. If we have a single bright pixel with more than 15 DN on a negligible background, most of the electrons
will stay with the original pixel packet, and we can hope to reassociate the trail electrons with their original packet.

Nevertheless, the reconstruction process still constitutes a deconvolution, however mild, and as such it should be expected that a reconstructed image will end up being sharper than the image that was read out at the amplifier. Therefore, to the extent that the observed image has any variation from pixel to pixel, the reconstructed image will necessarily have more. As long as this ends up restoring true lost sharpness to stellar profiles or object morphology, this sharpening is appropriate. But there is one component of the observed image that did not participate in the charge-transfer process: the readout noise (RON).

The RON in ACS was $5.5 \, \text{e}^{-}$ before SM4 and has been 3.9 to $4.7 \, \text{e}^{-}$ since SM4 (Maybhate et al. 2010). This noise gets added to the image pixels as they are read out at the amplifier. It was not present during the pixel transfer, so if we invert the readout process on an image with RON, we will arrive at an image with a scaled-up version of the read noise, since this is the only way to arrive at the observed image after the blurring readout process. To estimate this amplification factor, we generated an image with a flat background of $5 \, \text{DN}$ and a read noise of $2.25 \, \text{DN}$, subjected this image to the readout-inversion process, and ended up with an image that had a pixel-to-pixel noise of $3.06 \, \text{DN}$, thus increasing the read noise by about 40%. This is not desirable,
but it would seem unavoidable, as we would like to neither remove the unavoidable noise arbitrarily, nor amplify it.

Although it is never possible to know precisely what pixel-to-pixel variation in an image is due to read noise, Poisson noise, or actual structure in the scene, it is possible to take a conservative approach: we will attribute as much of the pixel-to-pixel variation as possible to read noise and operate our procedure on the rest. To do this, we will separate the observed image \(I_{\text{OBS}} \) into two components: \(I_{\text{OBS}} = I_{\text{SM}} + I_{\text{RON}} \). The first component is a slightly smoother version of the observed image; the second component is an image that is consistent with being pure read noise. As such, it has no large-scale structure but has only high-frequency pixel-to-pixel variations with an amplitude of \(<5\) \(\text{DN}_2 \).

We effected this separation by first taking the original image and smoothing it with a 3 pixel boxcar in \(y \). We subtract this smooth image from the original to obtain the high-frequency component. Any pixels in this component less than \(5\) \(\text{DN}_2 \) are likely to be indicative of read noise. High frequency component pixels greater than \(10\) \(\text{DN}_2 \) are likely due to something other than RON (e.g., Poisson noise, real high-frequency structure in the astronomical scene, a WP, or a CR). So to get the best estimate of the pure RON component, we map this residual \(\delta(i, j) \) into \(\Delta(i, j) \), which is more reflective of something that is pure read noise:

\[
\Delta = \begin{cases}
0: & \text{if } \delta < -10 \\
-10 - \delta: & \text{if } -10 < \delta < -5 \\
\delta: & \text{if } -5 < \delta < +5 \\
10 - \delta: & \text{if } +5 < \delta < +10 \\
0: & \text{if } \delta > +10
\end{cases}
\]

If \(|\delta| < 5 \), then the high-frequency component for that pixel is consistent with being entirely read noise, so \(\Delta = \delta \). If \(|\delta| > 10 \), then it is determined to be something other than read noise and \(\Delta \) is set to zero. We taper \(\Delta \) between these two extremes. Finally, we associate the read-noise image with \(\Delta \), \(I_{\text{RON}} = \Delta \), and the smoothed image is then simply \(I_{\text{SM}} = I_{\text{OBS}} - \Delta \).

We then execute the pixel-restoration procedure on the smoothed image, \(I_{\text{SM}} \), to get the corrected-smooth image, \(I'_{\text{SM}} \). Once this is constructed, we add back in the read-noise component to get the best estimate of the corrected image, \(I'_{\text{ORIG}} \). In this way, we aim to operate the restoration algorithm only on the part of the image that is clearly not read noise, while at the same time, modifying the ultimate noise properties as little as possible.

To test this algorithm, we took a short 30 s exposure of the 47 Tuc calibration field (ja9bw2ykcq), which has a background of \(3\) e\(^-\) and reconstructed it two ways: (1) we applied the reconstruction routine on the original image, and (2) we applied the reconstruction routine on a smoothed version of the original image, then added in the unsmooth part: \(I'_{\text{ORIG}} = I'_{\text{SM}} + I_{\text{RON}} \).

Figure 19 shows a portion of the observed \(\text{flt} \) image and its smooth and unsmooth components. The unsmooth image has a total range of \(\pm 5 \), and is zero in regions of real structure (near the locations of stars).

Figure 20 shows the two reconstructions. The original image is shown on the left, with the direct reconstruction in the middle and the smooth-based reconstruction on the right. It is clear that the background is much noisier in the middle exposure than in the original or in the reconstruction on the right.

Figure 21 shows the actual difference between the original image and the two restored images. It is clear that the two have similar effects on the stars, WPs, and CRs, but the direct reconstruction clearly adjusts many more pixels in the background. Figure 22 shows this in histogram form. The restoration acting on the original image increases the pixel-to-pixel variation by about 30%, while the restoration based the smoothed image increases it only by 3%.

This multistep restoration will make a big difference for images where the background is low, but will make only a small difference in images where the noise is dominated by Poisson photon statistics, since this source of noise has participated in the CTE-impacted charge transfer. The algorithm presented here may not be the only way to address the read-noise-amplification issue; however, it does demonstrate that it should be possible to restore CTE trails without introducing additional unpleasant artifacts.
5.2. Improvements in Computational Speed

The prescription given for the algorithm in § 3.4 involves dealing with fractional charge traps at every marginal unit of \(\text{DN}_2 \). This means that we need to monitor the state of each of up to 40,000 traps, as the flux is transferred from one pixel to another. When operating on typical images with backgrounds of about \(25 \text{DN}_2 \), the routine takes about an hour on a 2.4 GHz machine to complete its five reconstruction iterations for all 4096 columns of both chips. This is not prohibitive, but if it could be sped up without any loss of accuracy, it would be a tangible benefit.

The function \(\phi_q \) tells us how much charge the trap at each \(\text{DN}_2 \) level (\(q \)) can affect. Adding \(\phi_q \) up from \(q = 1 \text{DN}_2 \) to \(q = 50,000 \text{DN}_2 \), we find that a full-well pixel is subject to about 1000 \(\text{DN}_2 \) worth of traps as it is transferred from the top to the bottom of the detector (see Fig 6). On average, then, the trap at each individual level of \(q \) affects only 0.02 \(\text{DN}_2 \) of charge. Since the read noise is about 2.5 \(\text{DN}_2 \), it does not make sense to track the charge traps at this resolution. We can instead afford to parametrize the traps more intelligently.

We modified our routine to step through the traps not by every \(\text{DN}_2 \) in pixel value, but rather by every block of marginal charge that amounts to one \(\text{DN}_2 \) of traps. As a result, we end up with a total of about 1000 traps: one at \(1 \text{DN}_2 \), one at \(2 \text{DN}_2 \), one at \(4 \text{DN}_2 \), then at \(5, 6, 8 \text{DN}_2 \), \(10, 11, 13, 14, 15, 17 \text{DN}_2 \), etc. The trap density is higher at lower charge levels, so at higher levels we skip, for instance, from 1000 to 1012. It is much quicker to keep track of only 1000 traps than 50,000. The difference in the model output is negligible, but the difference in execution time is enormous. We found that after this small change to the code, it ran about six times faster, doing five iterations on an entire \(4096 \times 4096 \) WFC image in about 10 minutes—a considerable improvement.

5.3. CTE in the Serial Direction

The possibility of imperfect CTE along the serial register (in the \(x \) direction) has been looked for in ACS images, but it has been found to be so low as to be unquantifiable (Riess & Mack 2004). A cursory look at the dark stacks that we generated in § 2.2 shows a curious \(x \)-hook in the direction away from the readout amplifier for the brighter warm pixels. Figure 23 shows a close-up of the region about \(i = 2072 \), which is the boundary where the serial readout changes from a right-to-left direction to a left-to-right direction in the full \(4144 \times 4136 \) images (see Fig. 2). Next, we apply the same methodology to examine X-CTE that we used previously for Y-CTE.

![CTE adjustment](image1)

Fig. 21.—CTE adjustment made to the original image for the direct reconstruction (left) and for the smooth-image-based reconstruction (right).

![Histograms](image2)

Fig. 22.—Histograms showing the pixel-to-pixel variation in the original image, the direct-restored image, and the smooth-image-based restoration. The residual is computed for each pixel and is simply the difference between the pixel and the average of its eight surrounding neighbors. See the electronic edition of the *PASP* for a color version of this figure.

![Region](image3)

Fig. 23.—Region of the dark stack centered on pixel (1860, 2172). The bright WPs show a clear \(x \)-hook toward the center of the image and away from the amplifier. Pixels are shifted leftward in the left half of the image and rightward in the right half of the image.
We return to the dark stack image from § 2.2. For each of the significant warm pixels (i.e., those with peak-map hits of 125 or greater), we recorded the array of pixels from 5 pixels to its left to 5 pixels to its right. The schematic in Figure 4 shows which pixels were used to measure the serial trails. We constructed the empirical trails by subtracting the downstream pixels from the corresponding upstream pixels to remove the background. The excess in the first pixel in the trail can be seen by looking at XU_1/C_0 and XD_1, etc.

Figure 24 shows the first and second pixels in the trail as a function of distance from the serial register. The three panels from left to right show the trend for three different warm-pixel intensities. Clearly, the brighter the warm pixel, the brighter its trail. It is clear that there is a simple linear correlation between the first-pixel intensity and the distance from the serial register—a clear telltale sign of CTE loss. Surprisingly, the intercept in the relation is not at $i = 0$, but somewhere around $i = -500$, which is likely due to an effect caused by the new application-specific integrated circuits called the “bias-shift” (see Golimowski et al. 2010, in preparation, for a discussion.)

Figure 25 shows the profile of the X-CTE trails for six different bins of WP intensity. The first-pixel intensity goes from about 1% of the WP at the faint end to about 0.4% at the bright end. There is very little noticeable flux in the second and subsequent pixels, so the serial-CTE trails are quite different in nature from the parallel trails. This makes sense, as the dwell time for charge packets in the parallel shifts is more than 2000 times longer than that for the serial shifts (22 μs). This result is also consistent with expectation from theory and laboratory experiments, which show that the trap-capture time is short compared to the parallel-shift time, but long compared to the serial-shift time (Cawley et al. 2001).

6. SUMMARY AND NEXT STEPS

It has not been the goal of this article to create the definitive black-box prescription for fixing CTE losses in ACS/WFC images. Rather, our aim has been simply to demonstrate a proof of concept. There are clearly many improvements that can be made, and we will anticipate some of them here.

6.1. Accomplishments of the Model

We have shown that it is indeed possible to simulate the readout mechanism for a CCD detector by means of a simple empirical model. This simulation can then be used to compute the probable initial distribution of charge among the pixels for a given readout image.
Our model addresses the two long-standing concerns about imperfect CTE: the removal of the trails downstream of bright sources and the restoration of flux to the pixels where it originated. The algorithm was tailored to remove the trails from warm pixels in dark exposures, but we have shown (§3.11) that it works equally well for backgrounds up to $\sim 35 \text{ e}^-$, with no reason to think it would not work for higher backgrounds, where the CTE impact is lower. We have shown that when it removes the trails from stars (§4.1), it puts all the flux back into the right place so that the star is measured to have the right brightness and the right position as well (§§4.3 and 4.4). We even showed in §4.6 that restored stars have the right shape as well.

One of the shortcomings of any deconvolution procedure is its sensitivity to noise. Readout noise, in particular, arises after the charge-transfer errors have been imprinted on the pixels, so we want to be certain that our algorithm does not overcorrect artifacts that are unrelated to CTE. Our simulations show that by applying our algorithm blindly, we could increase the effect of readout noise by almost 40%. We have devised a conservative mechanism whereby our procedure operates only on the structure in the image that is clearly consistent with not being read noise. This procedure reduces the impact of read-noise amplification to less than 3%.

We have used the same procedure to examine CTE in the serial direction. Traps in the serial register are extremely short-lived. They affect, at most, 1% of the charge in a pixel and release the charge within one transfer. This will have a negligible effect on photometry, but will have a small but nonnegligible effect on astrometry. It should be possible to correct for serial-CTE losses in a similar manner to our parallel correction.

The model we have developed clearly has the flexibility to address the observable aspects of CTE, even though it is silent on the unobservable aspects, such as what happens at each specific stage of the three-phase pixel shift or exactly how many trap species with different release profiles there are. These unobservable details may have a lot to do with what actually leads

Fig. 25.—Panels on the left show the first four pixels in the serial-CTE trails for six different warm-pixel intensity bins, labeled at the top of each panel. The arrow in each plot shows the 1% level relative to the WP intensity: the first-pixel intensity goes from 1% at $\sim 30 \text{ DN}_2$ to less than 0.4% at $\sim 10,000 \text{ DN}_2$. The right panel shows the intensity of the first pixel in the trail as a function of the warm-pixel intensity. The slopes for the power laws drawn in are indicated on the upper right. See the electronic edition of the PASP for a color version of this figure.
to charge-transfer errors, but it is possible to address CTE issues without answering these questions directly. Perhaps the clarity of our model will help experts develop a more detailed theoretical understanding of the phenomenon, and this improved understanding will surely yield even better corrections.

The model has been parametrized to allow a straightforward hand-fitting to the particulars of any detector. This approach can and should be attempted on other HST instruments, such as the HRC, WFPC2, STIS, and even WFC3. There may also be other non-HST detectors for which this model might prove useful.

6.2. Future Plans

There remain many avenues yet to pursue. This paper has focused exclusively on post-SM4 observations, where the CTE losses are as large as they have ever been. It should be straightforward to extend this analysis to earlier epochs by simply scaling down the amplitude of our parameters. While the WFC’s electronics board was replaced, the readout timing is unchanged and we expect our CTE model to work with essentially the same parameters for pre-SM4 data. This will need to be demonstrated, however. It will also be important to examine WP trails to study how CTE may or may not be impacted by anneals and temperature changes. Laboratory experiments (Janesick 2001) have shown that the trap-release time is faster for higher temperatures, so perhaps the trails will be even easier to model before the temperature was changed from -77°C to -81°C in 2006.

Our model has treated each pixel as being identical to all the others in terms of having the same distribution of electron-capturing traps. Since the traps are presumed to result from individual radiation-damage events, in actuality, the pixel array will have a finite number of traps, each of which affects a specific level of charge packet. On average, every other pixel will be impacted by a trap at one depth or another, such that we might expect $1000 \pm \sqrt{1000}$ traps in each 2048 pixel column. A variation of 3% would not seem important. However, if the trap-creating events generate multiple traps at once, as is expected for energetic neutron or ion impacts, then we might expect more variation than this from column to column, which might make our corrections less effective. We attempted to look into this by examining the corrections of CR trails, but did not see a significant and consistent column-by-column effect. Perhaps the best way to evaluate this would be to examine the efficacy of the photometric correction for stars of known brightness as a function of column number. With the many sets of short and deep exposures in the archive of fields with good numbers of stars, it should be possible to rack up hundreds of star observations in each column.

The model we constructed is based on a representation of the density of traps that affect electron packets with various amounts of charge. It was difficult to constrain the trap density at the charge extremes. There were very few warm pixels with more than 10,000 DN$_e$ in the ~1000 s integration. As such, we had relatively few constraints on the density of traps that affect the electron packets at the bright end. This node in the Φ_Q array might be better constrained by studying stars in combinations of short and deep images.

At the low-intensity extreme, it was hard to identify warm pixels with fewer than 10 DN$_e$ at the top of the register, since this is so close to the read-noise level and since these low WPs are so smeared out by CTE losses. These issues could be further investigated using warm pixels closer to the register, where the expected number of traps encountered per electron might be much less than one. It would be good to understand the low end of the density profile, even though there may still be nothing that can done to restore the image. It would also be good to take some shorter dark exposures, so that we can use our knowledge of the true intensity of the WPs from the deep darks to study how CTE impacts the smaller electron packets. Also, with shorter darks, the crowding of WPs at the low-DN$_e$ level would be significantly lessened. The ACS team is looking into taking darks with a variety of exposure times to explore these issues.

The model itself is designed to treat CTE losses as a perturbation. We adopted the simplification that it is possible to treat the transfer of flux from a pixel 2000 pixels from the register as having simply $2000 \times$ CTE losses of a single transfer. Essentially, we are assuming that $(\text{CTE})^3 \approx 1 - N \times (1 - \text{CTE}).$

This assumption should be revisited. While it would be prohibitive to treat individually each and every one of the 2048×1024 pixel-to-pixel shifts that take place in each column, it should be possible to find a happy medium where we can still safely treat imperfect CTE as a perturbation within each modeled transfer. One solution to this would be to run the algorithm three times in succession, using only one-third of the current-model scaling. This would ensure that CTE losses are indeed treated as a small perturbation within each iteration. We have begun experimenting with this, but are awaiting shorter dark exposures to provide more useful tests. One early result worth mentioning is that in this iterative scheme, where losses are kept at the perturbation level, the parameters of our model will naturally change somewhat, and we find that the trail profiles for the low-intensity WPs become more like those for the high-intensity trails, such that all WPs have the same trail profile. This result makes sense in light of the explanation in Hardy et al. (1998) about how the traps that impact low- and high-intensity packets differ only in terms of their location within the lattice relative to the pixel boundaries. As such, their release profiles should sensibly be the same. This will be pursued in future work (part II of this article), once the shorter darks are in hand.

Finally, the possibility of correcting for imperfect CTE at the source could have profound implications for how to best operate the ACS pipeline. Should a CTE algorithm such as this one be...
executed on images before they are pipeline-processed, or is this best done aftermarket, and only by those who really need it? Might the optimal approach depend on the science goals? To highlight these complications, we note that our entire analysis has been premised on the fact that the dark images that we downloaded do not really reflect just the raw dark current in each pixel. Rather, the dark-current image has clearly been smeared out by the CTE-afflicted readout process. Science images will suffer differing amounts of warm-pixel smearing, depending on their background and exposure time; as such, there is no single dark image that can be scaled up to estimate the impact of dark current and warm pixels on each pixel for an arbitrary integration time. Addressing this properly will require much thought, but there probably is not a single right way to deal with this. Bristow (2004) fleshes out some of the issues involved in considering such a CTE preprocessor for STIS.

An additional consideration that arises when dealing with this correction as a part of the pipeline is what should be done with the error image that is provided along with the calibrated science image. The CTE correction cannot be done perfectly, and the corrected image may have some systematic errors related to the imperfection of the algorithm and some random errors related to the fact that any deconvolution-type algorithm tends to amplify read noise. It will be important to run astrometric and photometric tests on standard fields to come up with an effective way to represent these errors.

We have provided the details of our algorithm in this article, but have not yet made public the actual code. This is because the algorithm is currently being evaluated by the Space Telescope Science Institute to determine whether and how to best implement it in the various data products. Some version of it should be available shortly.

We acknowledge Linda Smith, ACS Team Lead, and David Golimowski for helpful discussions and encouragement. We are also grateful for many invaluable discussions about CTE with Paul Goudreau, Andy Fruchter, Jennifer Mack, Adam Riess, Stefano Casertano, Marco Chiaberge, and many others. We are grateful to the anonymous referee for pointing us to several articles that discuss results of laboratory testing. Such articles often do not show up on astronomical search engines, and we were glad to be made aware of them. Finally, J. A. acknowledges Oleg Gnedin (PI of GO-10824 and GO-11589) for his patience in waiting for the hyper-velocity-star proper-motion measurements that this correction should make possible.

REFERENCES

Anderson, J. 2007, ACS Instrument Sci. Rep. 2007-08 (Baltimore: STScI)
Anderson, J., & King, I. R. 2000, PASP, 112, 1360
Anderson, J., & King, I. R. 2006, ACS Instrument Sci. Rep. 2006-01 (Baltimore: STScI)
Biretta, J., & Kozhurina-Platais, V. 2005, WFPC2 Instrument Sci. Rep. 05-01 (Baltimore: STScI)
Biretta, J., & Muchler, M. 1997, WFPC2 Instrument Sci. Rep. 97-05 (Baltimore: STScI)
Bristow, P. 2003a, preprint (CE-STIS-2003-001)
———. 2003b, preprint (CE-STIS-2003-002)
———. 2004, preprint (CE-STIS-2004-002)
Bristow, P., & Alexov, A. 2002, preprint (CE-STIS-2002-001)
Cawley, L., Goudfrooij, P., Whitmore, B., & Sivinelli, M., et al. 2001, WFPC2 Instrument Sci. Rep. 2001-05 (Baltimore: STScI)
Chiaberge, M., Lim, P.-L., Kozhurina-Platais, V., Sirianni, M., & Mack, J. 2009, ACS Instrument Sci. Rep. 2009-01 (Baltimore: STScI)
Dolphin, A. E. 2000, PASP, 112, 1397
———. 2009, PASP, 121, 655
Goudfrooij, P., Bohlin, R. C., Maiz-Appellaníz, J., & Kimble, R. A. 2006, PASP, 848, 1453
Hardy, T., Murowinski, R., & Deen, M. J. 1998, IEEE Trans. Nucl. Sci., 45, 154
Janesick, J. R. 2001, in SPIE Press Monogr., Scientific Charge-Coupled Devices (Bellingham: SPIE)
Janesick, J., Soli, G., Elliott, T., & Collins, S. 1991, in SPIE 1447, Charge-Coupled Devices and Solid State Optical Sensors II (Bellingham: SPIE), 87
Kozhurina-Platais, V., Goudfrooij, P., & Puzia, T. H. 2007, ACS Instrument Sci. Rep. 2007.04 (Baltimore: STScI)
Massey, R., Stoughton, C., Leauthaud, A., Rhodes, J., Koekemoer, A., Ellis, R., & Shaghahian, E. 2010, MNRAS, 401, 371
Maybhate, A., et al. 2010, ACS Instrument Handbook, Version 9.0 (Baltimore: STScI)
McLaughlin, D. E., Anderson, J., Meylan, G., Gebhardt, K., Pryor, C., Minniti, D., & Phinney, S. 2006, ApJS, 166, 249
Muchler, M., & Sirianni, M. 2005, ACS Instrument Sci. Rep. 2005-03 (Baltimore: STScI)
Riess, A. 2000, WFPC2 Instrument Sci. Rep. 2000-04 (Baltimore: STScI)
Riess, A., & Mack, J. 2004, ACS Instrument Sci. Rep. 2004-06 (Baltimore: STScI)
Sirianni, M., et al. 2007, Radiation Effects Data Workshop (New York: IEEE), 9
Waczyński, A., et al. 2001 IEEE Trans. Nucl. Sci., 48, 1807