Semi-stable fibrations of generic p-rank 0

Junmyeong Jang

email : jang3@math.purdue.edu

Mathematics Subject Classification : 11G25, 14J20

1 Introduction

Let k be an algebraically closed field and $\pi : X \to C$ be a semi-stable fibration of a connected proper smooth surface to a connected proper smooth curve over k. If the base field k is a subfield of \mathbb{C}, the filed of complex numbers, the following semi-positivity theorem holds.

Theorem. (Semi-Positivity Theorem, Xiao) If $\pi : X \to C$ is a fibration of a proper smooth surface to a proper smooth curve over \mathbb{C}, then all the quotient bundles of $\pi_*\omega_{X/C}$ are of non-negative degree. \cite{10}, p.1

In general the semi-positivity theorem is not valid over a field of positive characteristic. In \cite{7}, Moret-Bailly constructed a semi-stable fibration $\pi_M : X_M \to \mathbb{P}^1$ of fiber genus 2 such that $R^1\pi_M_*\mathcal{O}_{X_M} = \mathcal{O}(1) \oplus \mathcal{O}(-p)$ where p is the characteristic of the base filed. In the previous work, \cite{6} we have proved that for a semi-stable fibration $\pi : X \to C$, if the generic fiber is ordinary, then the semi-positivity theorem holds. Precisely, when the generic fiber of π is ordinary, all the Harder-Narasimhan slopes of $R^1\pi_*\mathcal{O}_X$ are non-positive. For Moret-Bailly’s example, the p-rank of the generic fiber is 0. In particular, every special fiber of π_M is a supersingular smooth curve of genus 2 or a union of two supersingular elliptic curves which intersect at a point transversally. In this paper we prove the following theorem which generalizes the failure of the semi-positivity theorem for Moret-Bailly’s example.

Theorem 1. Let $\pi : X \to C$ be a non-isotrivial semi-stable fibration of proper smooth surface to a proper smooth curve over a field of positive characteristic. If the generic p-rank of π is 0, then $F_C^n R^1\pi_*\mathcal{O}_X$ has a positive Harder-Narasimhan slope for a sufficiently large $n \in \mathbb{N}$. In particular, if the genus of C is 0 or 1, $R^1\pi_*\mathcal{O}_X$ has a positive Harder-Narasimhan slope.

As an application of the theorem, we obtain a result on a distribution of p-ranks of reductions of a certain non-closed point in the moduli space of curves over a number field.
Corollary 2.8. Suppose that $\pi : X \rightarrow C$ is a non-isotrivial semi-stable fibration of base genus 0 or 1 defined over a number field F, and that $U \subseteq C$ is the smooth locus of π. π defines a non-constant morphism $f : U \rightarrow \mathcal{M}_{g,F}$. Let P be the image of the generic point of U under f. Then the reduction P_ν is not contained in the p-rank 0 strata for almost all ν.

This result can be considered as a variation of Serre’s ordinary reduction conjecture. It is a weak statement since it is only about some non-closed points in the moduli space and 0 p-rank. But it is a somewhat interesting phenomenon that the semi-positivity theorem, which is concerned with a coherent module on a fiber of characteristic 0, encodes an information of p-ranks of the reductions.

2 Proof of Theorem 1.

We follow the terminology of [6]. Let us recall the definition of a semi-stable curve. Let k be an algebraically closed field and C be a projective curve over k.

Definition 2.1. C is (semi-)stable if

1. It is connected and reduced.
2. All the singular points are normal crossing.
3. An irreducible component, which is isomorphic to \mathbb{P}^1, meets other components in at least 3 (resp. 2) points.

For an arbitrary base scheme, we define a (semi-)stable curve as follows.

Definition 2.2. A proper flat morphism of relative dimension 1 of schemes $\pi : X \rightarrow S$ is a (semi-)stable curve if every geometric fiber of π is a (semi-)stable curve in the sense of definition 2.1.

In this paper, we assume $\pi : X \rightarrow C$ is a generically smooth semi-stable fibration of a proper smooth surface to a proper smooth curve over a field k unless it is stated otherwise.

Definition 2.3. For a generically smooth semi-stable fibration $\pi : X \rightarrow C$ defined over a field of positive characteristic, the generic p-rank of π is the p-rank of a geometric generic fiber of π.

2.1 Self duality of $B\omega^1$

Let k be a perfect field of positive characteristic and $\pi : X \rightarrow C$ be a generically smooth semi-stable curve. Let $\omega^1_{X/C}$ be the relative dualizing line bundle for π. There is the canonical inclusion $i : \Omega^1_{X/C} \hookrightarrow \omega^1_{X/C}$ at ν. At a relative smooth point for π, i is an
isomorphic. On the other hand, at a relative singular point, where étale locally \(\pi \) is given by

\[
\text{Spec } k[x, y, t]/(xy - t) \rightarrow \text{Spec } k[t],
\]

\(\omega^1_{X/C} \) is a free module of rank 1 generated by \(dx/x = -dy/y \) and \(\Omega^1_{X/C} \) is a submodule of \(\omega^1_{X/C} \) generated by \(dx \) and \(dy \) via \(i \). Composing with the inclusion \(i \), we have the differential morphism \(d: \mathcal{O}_X \rightarrow \omega^1_{X/C} \). When \(F_{X/C} \) is the relative Frobenius morphism for \(\pi \), \(\pi \)

\[
\begin{align*}
X & \xrightarrow{F_{X/C}} X^p & X \\
\downarrow & \downarrow \pi^p & \downarrow \pi \\
C & \xrightarrow{F_C} C,
\end{align*}
\]

\(d: F_{X/C}^* \mathcal{O}_X \rightarrow F_{X/C}^* \omega^1_{X/C} \) is \(\mathcal{O}_{X^p} \)-linear. The kernel of \(d \) is the image of \(F_{X/C}^* : \mathcal{O}_{X^p} \rightarrow F_{X/C}^* \mathcal{O}_X \) and the image of \(d \) is denoted by \(B^1 \omega_{X/C} \) or \(B \omega^1 \). \(B \omega^1 \) is flat over \(\mathcal{O}_C \). Let \(U \hookrightarrow X \) be the smooth locus for \(\pi \). The usual Cartier isomorphism

\[
C: \Omega^1_{U/C}/B^1 \Omega_{U/C} \rightarrow \Omega_{U^p/C}
\]

is extended to an isomorphism

\[
C: \omega^1_{X/C}/B^1 \omega \rightarrow \omega^1_{X^p/C}. \quad [5], \text{p.381}
\]

Using this Cartier morphism, we have an \(\mathcal{O}_{X^p} \)-linear paring

\[
F_{X/C}^* \mathcal{O}_X \otimes F_{X/C}^* \omega^1_{X/C} \rightarrow \omega^1_{X^p/C}, \quad (\alpha, \omega) \mapsto C(\alpha \omega).
\]

This pairing induces a pairing

\[
(F_{X/C}^* \mathcal{O}_X/\mathcal{O}_{X^p}) \otimes B^1 \omega \rightarrow \omega^1_{X^p/C}.
\]

On \(U \), this pairing gives a perfect self duality. In particular, we have

\[
B^1 \Omega_{U/C} \simeq \text{Hom}(B^1 \Omega_{U/C}, \Omega^1_{U^p/C}).
\]

Proposition 2.4. If \(X \) is a smooth surface over a perfect field \(k \) which admits a semi-stable fibration, \(\pi: X \rightarrow C \), to a smooth curve \(C \) over \(k \), then

\[
B^1 \omega_{X/C} \simeq \text{Hom}(B^1 \omega_{X/C}, \omega^1_{X^p/C}).
\]

Proof. It’s enough to check that the paring is perfect at the relative singular points in \(X \). Let \(x \in X \) be a relative singular point. Étale locally, we may assume \(X = \text{Spec } A \), \(C = \text{Spec } B \) where

\[
A = k[x, y, t]/(xy - t) \simeq k[x, y], \quad B = k[t]
\]

3
and π is the canonical morphism

$$k[t] \to k[x, y, t]/(xy - t).$$

Let $A^p = A \otimes_B (B, F_B)$. Then $A^p = k[X, Y, t]/(XY - t^p)$ and the relative Frobenius morphism is a k-algebra morphism $F_{A/B} : A^p \to A$ given by

$$X \mapsto x^p, \ Y \mapsto y^p \text{ and } t \mapsto xy.$$

We may regard A^p is a k-subalgebra of A generated by x^p, y^p, xy. As an A^p-module, $B^1\omega = A/A^p$ is generated by $x, x^2, \ldots, x^{p-1}, y, \ldots, y^{p-1}$.

$B^1\omega$ is a torsion free A^p-module and the Frac(A^p)-dimension of $B^1 \otimes_{A^p} \text{Frac}(A^p)$ is $p - 1$. Therefore there are only $p - 1$ obvious relations

$$t^{p-1}x = Xy^{p-1}, \ t^{p-2}x^2 = Xy^{p-2}, \ldots, tx^{p-1} = Xy$$

among the generators and we have an A^p-module decomposition

$$B^1\omega = \oplus_{i=1}^{p-1} < x^i, y^{p-i}>.$$

On the other hand, $\omega^1_{A/B}$ is a rank 1 free A-module generated by $dx/x = -dy/y$ and $\omega^1_{A^p/B}$ is a rank 1 free A^p-module generated by $dX/X = -dY/Y$. The Cartier morphism is the A^p-linear morphism satisfying

$$
\begin{align*}
\frac{dx}{x} &\mapsto dX/X, \\
\frac{xdx}{x} &\mapsto 0, \\
\vdots &\\
\frac{x^{p-1}dx}{x} &\mapsto 0, \\
\frac{ydx}{x} &\mapsto 0, \\
\vdots &\\
\frac{y^{p-1}dx}{x} &\mapsto 0.
\end{align*}
$$

In the above decomposition of $B^1\omega$, it’s easy to see that the dual of $< x^i, y^{p-i} >$ is $< x^{p-i}, y^i >$ and that the pairing $B^1\omega \otimes B^1\omega \to \omega^1_{X^p/C}$ gives a perfect duality of the dual components of both sides. This proves the claim.

Corollary 2.5. Let k be a perfect field of positive characteristic. Let $\pi : X \to C$ be a semi-stable fibration of a proper smooth surface to a proper smooth curve over k. Let M and T be the free part and the torsion part of $R^1\pi_*B^1\omega_{X^p/C}$ respectively and $N = R^1\pi_*\mathcal{O}_X$. Then there exists an exact sequence of coherent modules on C

$$0 \to M^* \to F^p_CN \to N \to M \oplus T \to 0.$$
Proof. The exact sequence of coherent \mathcal{O}_{X^p}-modules
\[0 \rightarrow \mathcal{O}_{X^p} \rightarrow F_{X/C}^* \mathcal{O}_X \rightarrow B^1 \omega_{X/C} \rightarrow 0 \]
gives a long exact sequence for the π^p_* functor
\[0 \rightarrow \mathcal{O}_C \cong \mathcal{O}_C \rightarrow \pi^p_* B^1 \omega_{X/C} \rightarrow R^1 \pi^p_* \mathcal{O}_{X^p} \rightarrow R^1 \pi^p_* F_{X/C}^* \mathcal{O}_X \rightarrow R^1 \pi^p_1 B^1 \omega_{X/C} \rightarrow 0. \]
Because the Frobenius morphism of C is finite flat, $R^1 \pi^p_* \mathcal{O}_{X^p} = F^*_C R^1 \mathcal{O}_X$. And the relative Frobenius morphism $F : X \rightarrow X^p$ is finite affine, so $R^1 \pi^p_* F_{X/C}^* \mathcal{O}_X = R^1 \pi_* \mathcal{O}_X$. By proposition 2.4, $B^1 \omega_{X/C} \cong H^0(B^1 \omega_{X/C}, \omega_{X^p/C})$. Since π is relative 1-dimensional, by the relative duality theorem
\[\pi^p_1 B^1 \omega_{X/C} = \text{Hom}(R^1 \pi^p_* B^1 \omega_{X/C}, \mathcal{O}_C). \]
Therefore the claim follows. \(\square \)

2.2 Proof of the theorem

Theorem 1. Let $\pi : X \rightarrow C$ be a non-isotrivial semi-stable fibration of proper smooth surface to a proper smooth curve over a field of positive characteristic. If the generic p-rank of π is 0, then $F^n_X/C \mathcal{O}_X$ has a positive Harder-Narasimhan slope for a sufficiently large $n \in \mathbb{N}$. In particular, if the genus of C is 0 or 1, $R^1 \pi_* \mathcal{O}_X$ has a positive Harder-Narasimhan slope.

Proof. The n-iterative relative Frobenius morphism in the diagram
\[
\begin{array}{ccc}
X & \xrightarrow{F^n_{X/C}} & X^n \\
\downarrow \pi^n & & \downarrow \pi^n \\
C & \xrightarrow{F^n_C} & C
\end{array}
\]
is the composition of relative Frobenius morphisms
\[X \xrightarrow{F^n_{X/C}} X^p \xrightarrow{F^n_{X^p/C}} \cdots \xrightarrow{F^n_{X^{p^n-1}/C}} X^{p^n}. \]
$F^n_{X/C}$ gives an exact sequence of coherent $\mathcal{O}_{X^{p^n}}$-modules
\[(*) \quad 0 \rightarrow \mathcal{O}_{X^{p^n}} \xrightarrow{F_{X/C}^{n*}} F_{X/C}^{n} \mathcal{O}_X \rightarrow E_n \rightarrow 0. \]
Here E_n is flat over \mathcal{O}_C and $E_1 = B^1 \omega_{X/C}$. If we denote $N = R^1 \pi_* \mathcal{O}_X$, $R^1 \pi^{p^n}_* \mathcal{O}_{X^{p^n}} = F^{n*}_C N$. Let $\lambda_n : F^{n*}_C N \rightarrow N$ be the morphism induced by $F^n_{X/C}$ in $(*)$. Because the relative Frobenius morphism commutes with a base change and the Frobenius morphism
of C is flat, λ_n is the composition of Frobenius pullbacks of $\lambda_1 : F^*_C N \to N$,

$$\lambda_n = \lambda_1 \circ \cdots \circ F^{(n-2)}_C \lambda_1 \circ F^{(n-1)}_C \lambda_1 : F^{(n-1)*}_C N \to F^{(n-1)*}_C N \to \cdots \to F^*_C N \to N.$$

On the other hand, the restriction of (\ast) to a special fiber X_s is

$$0 \to \mathcal{O}_{X_s^{p^n}} \to F^n_{X_s/k(s)} \mathcal{O}_{X_s} \to E_{n,s} \to 0.$$

Furthermore we have the long exact sequence

$$\cdots \to H^1(\mathcal{O}_{X_s^{p^n}}) \to H^1(\mathcal{O}_{X_s}) \to H^1(E_{n,s}) \to 0.$$

Since we have assumed that the generic p-rank of π is 0, by the Grothendieck specialization theorem, for all $s \in C$, the p-rank of X_s is 0. It follows that there exists $n \in \mathbb{N}$, such that $H^1(X_s, \mathcal{O}_{X_s^{p^n}}) \to H^1(X_s, \mathcal{O}_{X_s})$ is the zero morphism for all $s \in C$ such that X_s is smooth. Hence $\dim H^0(X_s, E_{n,s}) = \dim H^1(X_s, E_{n,s}) = \text{gen } X_s = g$ for such s. But by the semi-continuity theorem, $\pi^n_* E_n$ and $R^1 \pi^n_* E_n$ are vector bundles of rank g. Because N is also a vector bundle of rank g on C, considering the exact sequence

$$0 \to \pi^n_* E_n \to F^{n*}_C N \xrightarrow{\lambda_n} N \to R^1 \pi^n_* E_n \to 0,$$

$\lambda_n = 0$. Now assume all the Harder-Narasimhan slopes of $F^*_C N$ are non-positive for all i. Let M be the free part of $R^1 \pi^n_* B^1 \omega_{X/C}$. Then $\pi^n_* B^1 \omega_{X/C} = M^* = \text{Hom}_{\mathcal{O}_X}(M, \mathcal{O}_C)$.(Corollary 2.4) All the Harder-Narasimhan slopes of $F^i_* M^*$ are non-positive since $F^i_* M^*$ is a sub-bundle of $F^*_C N$, so all the Harder-Narasimhan slopes of $F^i_* M$ are non-negative. Let us consider an exact sequence

$$0 \to \text{Im } \lambda_{i-1}/ \text{Im } \lambda_i \to N/ \text{Im } \lambda_i \to N/ \text{Im } \lambda_{i-1} \to 0. \quad (i \geq 2)$$

We can also think of the free part of the above exact sequence

$$0 \to V'_i \to V_i \to V''_i \to 0.$$

Here V_i is the free part of $N/ \text{Im } \lambda_i$ and V''_i is the free part of $N/ \text{Im } \lambda_{i-1}$. V'_i is the saturation of the free part of $\text{Im } \lambda_{i-1}/ \text{Im } \lambda_i$ in V_i. We can see $V''_i = M$ is of non-negative degree by the assumption. On the other hand, since V'_i is a saturation of a quotient bundle of $F^{(i-1)*} M$, it is also of non-negative degree. Therefore, by induction V_i is of non-negative degree. Since $\lambda_n = 0$ for a sufficiently large n, the degree of $V_n = N$ is non-negative. But since π is non-isotrivial, $\deg N$ is strictly negative.\cite{9},p.173 It is contradiction, so $F^i_* N$ has a positive Harder-Narasimhan slope for some i. If the genus of the base C is 0 or 1, the Frobenius pull back F^*_C preserves the semi-stability of vector bundles, so $R^1 \pi_* \mathcal{O}_X$ has a positive Harder-Narasimhan slope. \[\square \]

Remark 2.6. The failure of the semi-positivity theorem for Moret-Bailly’s example in the introduction is a special case of Theorem 2. Using Theorem 2, we may construct a lot of counterexamples of the semi-positivity theorem. Assume k is algebraically
closed of positive characteristic. In \(M_{g,k} \), the moduli space of smooth proper curves of genus \(g \) over \(k \), the \(p \)-rank 0 strata is a closed subscheme which is purely \(2g - 3 \) dimensional. \[3\], p.120 Let \(P \) be a 1 dimensional point in the \(p \)-rank 0 strata. By the semi-stable reduction theorem, \[1\], p.3 there is a semi-stable fibration \(\pi : X \to C \) such that the morphism \(C \to M_{g,k} \) induced by \(\pi \) sends the generic point of \(C \) to \(P \). Since the generic \(p \)-rank of \(\pi \) is 0, for a suitable Frobenius base change \(\pi^{p^n} : X^{p^n} \to C \), \(R^1 \pi^{p^n}_* \mathcal{O}_{X^{p^n}} \) has a positive slope by Theorem 1. \(X^{p^n} \) may contain isolated singularities. But the composition of \(\pi^{p^n} \) and the desingularization \(X^{(n)} \to X^{p^n}, \pi^{(n)} : X^{(n)} \to C \) is a semi-stable fibration and \(R^1 \pi^{(n)}_* \mathcal{O}_{X^{(n)}} = R^1 \pi^{p^n}_* \mathcal{O}_{X^{p^n}} \). Hence \(\pi^{(n)} \) is a counterexample to the semi-positivity theorem.

Corollary 2.7. Let \(F \) be a number field and suppose a semi-stable fibration \(\pi : X \to C \) is defined over \(F \). There is an integral model of \(\pi, \pi_A : X_A \to C_A \) defined over \(\text{Spec} A \), an affine open set of \(\text{Spec} \mathcal{O}_F \). Let \(\pi_v : X_v \to C_v \) be the reduction of \(\pi_A \) at a place \(v \in \text{Spec} A \). If the genus of \(C \) is 0 or 1, then the generic \(p \)-rank of \(\pi_v \) is not 0 for all but finitely many places \(v \).

Proof. Since the harder-Narasimhan filtration of \(R^1 \pi_{A*} \mathcal{O}_{X_A} \) on the generic fiber of \(C_A \to \text{Spec} A \) extends to a non-empty open set of \(\text{Spec} A, R^1 \pi_{v*} \mathcal{O}_{X_v} \) has no positive Harder-Narasimhan slope for almost all \(v \in \text{Spec} A \). Therefore the generic \(p \)-rank of \(\pi_v \) is not 0 by Theorem 1.

Let \(M_{g,F} \) be the moduli space of proper smooth curves over \(\text{Spec} \mathcal{O}_F \). \(M_{g,F} \), the moduli space over \(F \), is the generic fiber of \(M_{g,\mathcal{O}_F} \to \text{Spec} \mathcal{O}_F \). When \(P \) is a geometrically irreducible point of \(M_{g,F} \), the closure of \(P \) in \(M_{g,\mathcal{O}_F} \) has a geometrically irreducible reduction at almost all places \(v \). Let us denote the generic point of the reduction at \(v \) by \(P_v \). \(P_v \) is contained in a \(p \)-rank strata in \(\mathcal{O}_{g,k_v} \), the moduli space over the residue field at \(v \). We may ask the distribution of the \(p \)-ranks of \(P_v \). Serre’s ordinary reduction conjecture is a problem for closed points in the moduli space. In the language of the moduli space, Corollary 2.7 can be stated as follow.

Corollary 2.8. Suppose that \(\pi : X \to C \) is a non-isotrivial semi-stable fibration of base genus 0 or 1 defined over a number field \(F \), and that \(U \subseteq C \) is the smooth locus of \(\pi, \pi \) defines a non-constant morphism \(f : U \to M_{g,F} \). Let \(P \) be the image of the generic point of \(U \) under \(f \). Then the reduction \(P_v \) is not contained in the \(p \)-rank 0 strata for almost all \(v \).

Remark 2.9. If the fiber genus of \(\pi : X \to C \) is 2, Corollary 2.7 holds for arbitrary base \(C \). Ekedahl showed that if \(\pi : X \to C \) is a generically super-singular semi-stable fibration of fiber genus 2, then there exist a finite étale cover \(f : D \to C \) and a morphism \(g : D \to \mathbb{P}^1 \) such that \(\pi_f : X \times_C D \to D \) is isomorphic to \(\pi_{M,g} : X_M \times_{\mathbb{P}^1} D \to D \) where \(\pi_M : X_M \to \mathbb{P}^1 \) is Moret-Bailly’s fibration. \[2\], p.173 Since a pullback by a finite separable morphism of curves preserves the semi-stability of vector bundles, \(R^1 \pi_* \mathcal{O}_X \) has a positive Harder-Narasimhan slope. Considering the construction of a semi-stable fibration from a 1-dimensional point in the moduli space(Remark 2.6) and the Grothendieck specialization theorem, Corollary 2.8 holds for an arbitrary non-closed point in \(M_{2,F} \).
It is natural to expect that Corollary 2.8 holds for an arbitrary non-closed point in $\mathcal{M}_{g,F}$ for any g, or equivalently that Corollary 2.7 holds for arbitrary base curve C. If the result of Proposition 2.12 in [6] is valid over a filed of characteristic 0, i.e. the slope 0 part of $R^1\pi_*O_X$ is potentially trivial, this expectation is valid. Indeed, in the situation of Corollary 2.7 without the assumption of the base genus, if the slope 0 part, $(R^1\pi_*O_X)_0$ is potentially trivial, $(R^1\pi_*O_{X_v})_0$ is strongly semi-stable for almost all $v \in \text{Spec } A$. On the other hand, by [8], p.660, the negative slope part, $F^n_v(R^1\pi_*O_{X_v})^-$ has only negative Harder-Narasimhan slopes for any n if the residue characteristic of v is sufficiently large. Therefore the claim follows.

Question 2.10. For an arbitrary geometrically irreducible non-closed point P in $\mathcal{M}_{g,F}$, is the p-rank of the reduction P_v nonzero for almost all $v \in \text{Spec } O_F$?

References

[1] Deschamps, M. Réduction Semi-Stable, Asterisque 86, 1981, 1-34.

[2] Ekedahl, T. On Supersingular Curves and Abelian Varieties, Math.Scand, 60, 1987, 151-178.

[3] Faber, C. and Van Der Geer, G. Complete subvarieties of moduli spaces and the Prym map, J.Reine Angew. Math. 573, 2004, 117-137.

[4] Fujita, T. On Kagler fiber spaces over curves, J.Math.Soc.Japan, 30, no.4, 1978, 779-794.

[5] Illusie, L. Ordinarite des intersections completes generales, The Grothendieck Festschrift vol.II, Progress in Mathematics 87, 1990, 375-405

[6] Jang, J. Generic ordinarity for semi-stable fibrations, preprint, 2008.

[7] Moret-Bailly, L. Familles de Courbes et de Varietes Abeliennes sur \mathbb{P}^1, Asterisque 86, 1981, 125-140.

[8] Shepherd-Barron, N. Semi-stability and Reduction mod p, Topology 37, 1998, 659-664.

[9] Szpiro, L. Sur Le Theoreme de rigidite de Parsin et Arakelov, Asterisque 64, 1979, 169-202.

[10] Xiao, G. Surfaces fibrees en courbes de genre deux, Lecture Notes in Mathematics 1137, 1980.