A DIRECT TEST OF PERTURBATIVE QCD AT SMALL x

Richard D. Ball* and Stefano Forte†

Theory Division, CERN,
CH-1211 Genève 23, Switzerland.

Abstract
We show that recent data from HERA on the proton structure function F_2 at small x and large Q^2 provide a direct confirmation of the double asymptotic scaling prediction of perturbative QCD. A linear rise of $\ln F_2$ with the scaling variable σ is observed throughout the kinematic region probed at HERA, and the measured slope is in excellent agreement with the QCD prediction. This provides a direct determination of the leading coefficient of the beta function. At large values of the scaling variable ρ the data display a small but statistically significant scaling violation.

Submitted to: Physics Letters B

CERN-TH.7331/94
June 1994

* On leave from a Royal Society University Research Fellowship.
† On leave from INFN, Sezione di Torino, Italy.
Perturbative QCD predicts that at sufficiently large \(t \equiv \ln Q^2/\Lambda^2 \) and small \(x \) the nucleon structure function \(F_2 \) should exhibit double scaling in the two variables

\[
\sigma \equiv \sqrt{\ln \frac{x_0}{x} \ln \frac{t}{t_0}}, \quad \rho \equiv \sqrt{\ln \frac{x_0}{x} / \ln \frac{t}{t_0}},
\]

provided only that the nonperturbative input to the perturbative evolution is sufficiently soft. We have shown [1] that this prediction is indeed confirmed by the first measurements of \(F_2^p \) performed at HERA [2,3]. In fact, it turns out that not only most of the HERA data, but even some of the older data from the NMC [4], lie well inside the asymptotic regime, suggesting that the starting scale \(t_0 \equiv \ln Q^2_0/\Lambda^2 \) for the perturbative evolution should be little more than \(Q_0^2 \sim 1 \text{ GeV}^2 \). A significantly enlarged set of measurements of \(F_2^p \) has now become available [5,6], which makes it possible to test double scaling more quantitatively. Specifically, the slope of the linear rise of \(\ln F_2 \) in the scaling variable \(\sigma \) can be reliably measured, and turns out to be in excellent agreement with the QCD prediction, thus giving a direct empirical determination of the leading coefficient \(\beta_0 \) of the QCD beta–function. We also find that there is now evidence for scaling violation at large \(\rho \).

Double asymptotic scaling follows from a computation [7] of the asymptotic form of the structure function \(F_2^p(x; t) \) at small \(x \) based on the use of the operator product expansion and renormalization group at leading perturbative order. It thus relies only on the assumption that any increase in \(F_2^p(x; t) \) at small \(x \) is generated by perturbative QCD evolution, rather than being due to some other (nonperturbative) mechanism manifested by an increase in the starting distribution \(F_2^p(x; t_0) \). The resulting asymptotic behaviour takes the form

\[
F_2^p(\sigma, \rho) \sim N f(\frac{2}{\rho} \sqrt{\frac{1}{\gamma} \exp \left[2\gamma \sigma - \delta \left(\frac{\sigma}{\rho} \right) \right]} \left[1 + O\left(\frac{1}{\sigma} \right) \right]),
\]

where \(\gamma \equiv 2\sqrt{N_c/\beta_0}, \beta_0 = \frac{11}{3} N_c - \frac{2}{3} n_f, \delta \equiv (1 + \frac{2n_f}{11N_c})/(1 - \frac{2n_f}{11N_c}) \), and the unknown function \(f \), which depends on the details of the starting distribution, tends to one for sufficiently small values of its argument. \(N \) is an a priori undetermined normalization factor.

In [1] we derived (2) by noting that at small-\(x \) the one loop QCD evolution equations reduce to wave equations, which propagate the parton distribution functions from their boundary values at \(t = t_0 \) and \(x = x_0 \) to larger values of \(t \) and smaller values of \(x \). Since the propagation is unstable, away from the boundaries an exponential increase with \(\sigma \) of the form (2) inevitably arises, provided only that the small-\(x \) behaviour of the starting
distributions at t_0 is sufficiently soft (which in practice means that if $f_s(x; t)$ is a singlet parton distribution function, $x^{1+\lambda}f_s(x; t_0) \to 0$ as $x \to 0$ for any $\lambda \leq 0.2$). The behaviour (2) is thus a rather clean prediction of perturbative QCD, in so far as it is independent of the details of the (soft) nonperturbative parton distributions which are input at t_0, provided that at small x these conform to expectations based on Regge theory. The asymptotic behaviour can be shown [1] to set in rather rapidly as σ increases in a region not too close to the boundaries, i.e. when ρ is neither too large nor too small.

In order to compare the data for F_2^p with the prediction (2) we rescale the measured values of F_2 by a factor

$$R'_F(\sigma, \rho) = R \exp \left(\delta(\sigma/\rho) + \frac{1}{2} \ln \sigma + \ln(\rho/\gamma) \right),$$

(3)

to remove the part of the leading subasymptotic behaviour which can be calculated in a model independent way. Then $\ln [R'_F F_2]$ is predicted to rise linearly with σ, independently of ρ (when ρ is large), with slope

$$2\gamma = 12/\sqrt{33 - 6n_f/N_c} = 2.4$$

(4)

if $n_f = 4$ as in the HERA kinematic range. The model-dependent subasymptotic behaviour due to the function f can be eliminated by cutting all points with subasymptotically small ρ; the scaling analysis of Ref.[1] (see fig. 2 below) suggests that we place the cut at $\rho^2 = 2$.

All the available experimental data [4,5,6] for F_2^p which pass this cut are plotted in fig. 1. The predicted linear rise in σ is spectacularly confirmed, providing clear evidence that in the region $\sigma^2 > 1$, $\rho^2 > 2$ the asymptotic behaviour (2) has set in. Indeed, the scaling actually sets in rather precociously: even the NMC data down to $\sigma \sim 0.7$ seem to be rising linearly, with possibly an indication of a systematic normalization mismatch of around 10% between the NMC and the HERA determinations of F_2.

Fitting a straight line to all 80 HERA points in the plot yields a χ^2 of 66, and a gradient $2\gamma_{exp} = 2.37 \pm 0.16$, in perfect agreement with the QCD prediction eq.(4). Turning this into a measurement of the leading coefficient of the beta–function gives (with $N_c = 3$) $\beta_0 = 8.6 \pm 1.1$ (to be compared with $25/3$ for $n_f = 4$). This is a direct, model independent, and highly nontrivial test of the perturbative dynamics of asymptotically free nonabelian gauge theory.

1 The constant rescaling factor R may of course be chosen arbitrarily; here we choose $R = 8.1$, so that the normalization of the figures is the same as in [1].
We next consider scaling violations, both in the subasymptotic region of small σ and small ρ, and in the post-asymptotic region of large ρ. This is best done by rescaling F_2^p by a factor

$$R_F(\sigma, \rho) = R \exp \left(-2\gamma \sigma + \delta(\sigma/\rho) + \frac{1}{2} \ln \sigma + \ln(\rho/\gamma) \right)$$

(5)

to remove all the leading behaviour in (2). The rescaled structure function should thus scale in both σ and ρ when both are sufficiently large to lie in the asymptotic region: $R_F F_2^p = N + O(1/\sigma) + O(1/\rho)$. This double asymptotic scaling behaviour is tested in the two scaling plots fig. 2, where we also display the predictions obtained [1] by applying the leading small-x form of the evolution equations to a typical soft starting gluon distribution. Specifically, fig. 2a) shows that the scaling in σ sets in very rapidly, as all the points on the plot lie in the asymptotic regime; fig. 2b) shows that the scaling in ρ only sets in for $\rho^2 \gtrsim 2$. However even if ρ is as low as $\rho \sim \frac{1}{2}$ the subasymptotic corrections due to $f(\gamma/\rho)$ seem fairly well accounted for by the scaling violation displayed by the curves of fig. 2.

More interestingly, at large ρ there now appears to be a statistically significant rise above the scaling prediction. To test the significance of this rise, we fitted to the data a linear combination of the behaviour discussed above and displayed by the curves of fig. 2, and a “hard pomeron” behaviour, which violates scaling by rising with ρ (see ref.[1] for a more detailed discussion). Including in the fit the 103 HERA points with both σ^2 and ρ^2 greater than one half gives the results displayed in the table. The data seem to prefer a $4 \pm 1\%$ admixture of the hard pomeron solution. One should be very cautious about taking this as evidence for the hard pomeron per se, however, since higher loop corrections should give a similar rise[8]. It should be possible to settle this issue decisively when a more detailed set of data and more accurate theoretical calculations become available.

Acknowledgement: We are very grateful to Dick Roberts for communicating to us the data of refs [5,6].

	N_s	N_h	χ^2
a)	0.341 ± 0.005	0	96
b)	0	0.156 ± 0.002	878
a)+b)	0.319 ± 0.012	0.012 ± 0.002	91

Table: The fitted normalizations N_s and N_h and the associated χ^2s (103 data points). The different cases considered are a) soft pomeron b) hard pomeron, and the linear combination a) + b).
References

[1] R.D. Ball and S. Forte, preprint CERN-TH.7265/94, [hep-ph/9405320].
[2] ZEUS Collab., Phys. Lett. B316 (1993) 412.
[3] H1 Collab., Nucl. Phys. B407 (1993) 515.
[4] NMC Collab., Phys. Lett. B295 (1992) 159.
[5] G. Wolf, talk at the International Workshop on Deep Inelastic Scattering. Eilat, Israel, February 1994; M. Roco, talk at the 29th Rencontre de Moriond, March 1994.
[6] K. Müller, talk at the 29th Rencontre de Moriond, March 1994.
[7] A. De Rujula, S.L. Glashow, H.D. Politzer, S.B. Treiman, F. Wilczek and A. Zee, Phys. Rev. D10 (1974) 1649; see also Yu.L. Dokshitzer, Sov. Phys. J.E.T.P. 46 (1977) 641.
[8] R.K. Ellis, Z. Kunszt, and E.M. Levin, Fermilab-PUB–93/350-T, ETH-TH/93–41, to be published in Nucl. Phys. B.
Figure Captions

Fig. 1. Values of $R'_F F_2^p$ plotted against σ: diamonds are ZEUS data [5], squares H1 data [6], and crosses are NMC data. The best fit straight line is also shown.

Fig. 2. $R'_F F_2^p$ plotted against a) σ and b) ρ. Included in the plots are all the HERA data with $\rho > 1.2$, $\sigma > 0.7$, respectively. The curves show the prediction obtained [1] evolving a typical soft starting gluon distribution: a) dot-dash curve, $\rho = 1.4$; solid curve, $\rho = 2.2$; dotted curve, $\rho = 3.2$. b) dot-dash curve, $\sigma = 1.1$; solid curve, $\sigma = 1.8$; dotted curve, $\sigma = 2.1$.
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9406385v3
This figure "fig1-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9406385v3
This figure "fig1-3.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9406385v3
