CHARACTERIZING THE YOUNGEST HERSCHEL-DETECTED PROTOSTARS. II. MOLECULAR OUTFLOWS FROM THE MILLIMETER AND THE FAR-INFRARED

JOHN J. TOBIN1,2, AMELIA M. STUTZ3, P. MANOF4, S. THOMAS MEGEATH5, AGATA KARSKA6, ZSOFIA NAGY5, FRIEDRICH WYROWSKI7, WILLIAM J. FISCHER5,8, DAN M. WATSON9, AND THOMAS STANKE10

1 Veni Fellow, Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden, The Netherlands
2 National Radio Astronomy Observatory, Charlottesville, VA 22903, USA; tobin@strw.leidenuniv.nl
3 Max-Planck-Institut für Astronomie, D-69117 Heidelberg, Germany
4 Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
5 Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
6 Centre for Astronomy, Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, Grudziądzka 5, PL-87100 Torun, Poland
7 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn, Germany
8 NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA
9 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
10 European Southern Observatory, D-85748 Garching bei München, Germany

Received 2016 April 6; revised 2016 June 28; accepted 2016 June 28; published 2016 October 25

ABSTRACT

We present Combined Array for Research in Millimeter-wave Astronomy (CARMA) CO ($J = 1 \rightarrow 0$) observations and Herschel PACS spectroscopy, characterizing the outflow properties toward extremely young and deeply embedded protostars in the Orion molecular clouds. The sample comprises a subset of the Orion protostars known as the PACS Bright Red Sources (PBRS; Stutz et al.). We observed 14 PBRS with CARMA and 8 of these 14 with Herschel, acquiring full spectral scans from 55 to 200 μm. Outflows are detected in CO ($J = 1 \rightarrow 0$) from 8 of 14 PBRS, with two additional tentative detections; outflows are also detected from the outbursting protostar HOPS 223 (V2775 Ori) and the Class I protostar HOPS 68. The outflows have a range of morphologies; some are spatially compact, <10,000 au in extent, while others extend beyond the primary beam. The outflow velocities and morphologies are consistent with being dominated by intermediate inclination angles ($80^\circ \geq i \geq 20^\circ$). This confirms the interpretation of the very red 24–70 μm colors of the PBRS as a signpost of high envelope densities, with only one (possibly two) cases of the red colors resulting from edge-on inclinations. We detect high-J ($J_{\text{up}} > 13$) CO lines and/or H$_2$O lines from 5 of 8 PBRS and only for those with detected CO outflows. The far-infrared CO rotation temperatures of the detected PBRS are marginally colder (\sim230 K) than those observed for most protostars (\sim300 K), and only one of these five PBRS has detected [O i] 63 μm emission. The high envelope densities could be obscuring some [O i] emission and cause a \sim20 K reduction to the CO rotation temperatures.

Key words: ISM: jets and outflows – ISM: molecules – methods: observational – stars: formation – stars: protostars – techniques: interferometric

1. INTRODUCTION

The earliest stage of the star formation process is characterized by a dense, infalling envelope of gas and dust surrounding a nascent protostar. This early phase, in particular, is known to be associated with powerful outflows (Arce et al. 2007; Frank et al. 2014). These outflows may ultimately play a role in halting the mass infall process and dispersing the envelope (Arce & Sargent 2006), thereby contributing to the overall low efficiency of the star formation process (Offner & Arce 2014). These outflows develop rapidly and with velocities of \sim10–100 km s$^{-1}$ the outflows may propagate by 0.1 pc in 10,000–1000 year timescales. Therefore, outflows are important to characterize at the youngest possible ages in order to understand their early evolution.

The youngest identified protostars are known as Class 0 sources (Andre et al. 1993); they are distinguished from more-advanced Class I sources by their cold bolometric temperatures ($T_{\text{bol}} < 70$ K; Myers & Ladd 1993) and/or ratio of submillimeter luminosity (L_{submm}) to bolometric luminosity (L_{bol}) being $>0.5\%$. These diagnostics indicate that Class 0 sources typically have denser and more massive infalling envelopes than Class I sources. In addition to the Class 0 sources, an earlier phase of the star formation process has been postulated, the first hydrostatic cores (FHSC; e.g., Larson 1969). A number of candidate FHSCs have been identified (Chen et al. 2010; Enoch et al. 2010; Pineda et al. 2011; Schnee et al. 2012); moreover, candidate FHSCs have quite low luminosities and bear some similarity to the Spitzer-identified very low-luminosity sources (VeLLOs Young et al. 2004; Dunham et al. 2006). The exact nature of the VeLLOs and candidate FHSCs remains unclear as it is difficult to distinguish bona fide FHSCs from sources that will go on to form very low mass stars (Dunham et al. 2014).

As part of the Herschel Orion Protostar Survey (HOPS) (e.g., Ali et al. 2010; Fischer et al. 2010; Stanke et al. 2010; Manoj et al. 2013; Furlan et al. 2016), a sample of 19 protostars with bright 70 and 160 μm emission and correspondingly faint or undetected (eight sources) 24 μm emission were detected in the Orion star-forming region (Stutz et al. 2013, hereafter ST13). We refer to these protostars as the PACS Bright Red Sources (PBRS); of the 19 PBRS, 12 were first identified as protostars by Herschel and 7 Spitzer-identified protostars also fulfilled the
The Astrophysical Journal, 831:36 (29pp), 2016 November 1

24–70 μm color criteria (ST13). The PBRS are not low-luminosity like the VeLLOs and candidate FHSCs; they have bolometric luminosities \(L_{\text{bol}} \) ranging between 0.65 \(L_\odot \) and 30.6 \(L_\odot \), with a median \(L_{\text{bol}} \) of \(\sim 3 L_\odot \). Thus, the PBRS are the largest sample of extremely young protostars with typical luminosities; the median luminosity of Class 0 protostars is 3.5 \(L_\odot \) in Orion and 1.4 \(L_\odot \) in the nearby clouds (Dunham et al. 2014, p. 195). While the PBRS have only been well-characterized in Orion, similar examples are present in more nearby clouds (e.g., VLA 1623, IRAS 16293-2422), and Sadavoy et al. (2014) identified several protostars in Perseus that were not classified as protostars in Spitzer or undetected at 24 μm (i.e., HH211-nms Rebull et al. 2007).

We further characterized the envelopes of 14 PBRS using observations of the 2.9 mm dust continuum (Tobin et al. 2015); that study, hereafter Paper I, focused specifically on the most deeply embedded and Herschel-identified sources. The observed PBRS were all detected and found to have among the largest 2.9 mm luminosities of known Class 0 protostars. We also found that 6 out of 14 have visibility amplitudes that are flat within increasing uv-distance. The flat visibility amplitudes indicate that the 2.9 mm emission is very concentrated, and this finding, together with the high 2.9 mm luminosities, confirms that most PBRS have dense envelopes. This corroborates the interpretation of the spectral energy distribution (SED) model comparisons in ST13. The characterization of the PBRS from both the SEDs and millimeter continuum have led us to conclude that the PBRS may be among the youngest Class 0 objects. If the PBRS represent a distinct portion of early Class 0 evolution, as suggested by ST13, then the relative numbers of PBRS to Class 0 sources in Orion indicates that a “PBRS phase” could last \(\sim 25,000 \) years. This estimate assumes that the Class 0 phase lasts \(\sim 150,000 \) years (Dunham et al. 2014).

A remaining source of uncertainty in the interpretation of the PBRS as the youngest Class 0 protostars is their unknown disk/envelope inclination angles with respect to the plane of the sky. There is a degeneracy between high envelope densities versus high (nearly edge-on) inclinations that could not be mitigated due to the lack of emission shortward of 10 μm toward most PBRS (e.g., Whitney et al. 2003; Furlan et al. 2016). Assuming that outflows are perpendicular to the disk or envelope midplanes, observations of outflows to constrain their orientations (e.g., in molecular lines) are an excellent way to estimate disk/envelope inclinations and further constrain the envelope properties. Furthermore, if the PBRS are among the youngest Class 0 protostars, then the sample as a whole represents an opportunity to examine the outflow properties of the youngest protostars.

The jets and outflows from protostars are detected with a variety of complementary methods and the types of outflows and the ways to detect them also vary with evolution. Collimated jets detected in optical or near-infrared line emission are typically associated with more evolved Class I or Class II sources (Reipurth et al. 1997, 2010, e.g., HH111), while Class 0 protostars typically have a molecular outflow observable in only millimeter lines of CO and other molecules (Arce et al. 2007; Frank et al. 2014). However, this does not mean there is no collimated jet emission, just that it may be undetectable due to high levels of extinction. The molecular outflow emission toward some low-mass protostars has an angular dependence of velocity, with low-velocity material at the edges of the outflow cavity and velocities as high as \(\sim 100 \) km s\(^{-1}\) along the main axis of the outflow (e.g., Santiago-García et al. 2009; Hirano et al. 2010). Jet-like features can also be seen in shock-tracing molecules such as SiO and SO (e.g., Lee et al. 2008, 2009). The velocity gradients along the outflow axis also offer crucial information of disk-protostar orientation (e.g., Cabrit & Bertout 1986; Lee et al. 2000).

Far-infrared spectroscopy with the Infrared Space Observatory and the Herschel Space Observatory has also been found to be an excellent probe of the physical conditions of outflows from young stars. The high-J CO \((J > 13) \) and \(\text{H}_2\text{O} \) transitions, in addition to \(\text{OH} \) and [O I] transitions, probe the warm and hot outflow conditions on scales very near the protostar and the jet driving source (e.g., van Kempen et al. 2010; Green et al. 2013; Karska et al. 2013; Manoj et al. 2013). The lines are thought to be excited primarily by shocks (e.g., Manoj et al. 2013), with UV radiation photo-dissociating \(\text{H}_2\text{O} \), causing lower abundances relative to non-irradiated shock models (Karska et al. 2014).

The initial development of the outflows and their subsequent breakout from their surrounding envelopes are still quite uncertain. Outflows have also been detected from VeLLOs and candidate FHSCs (Dunham et al. 2011; Pineda et al. 2011; Schnee et al. 2012; Tobin et al. 2015). Theory has predicted that such young objects can indeed produce the slow outflows (\(\sim 2–7 \) km s\(^{-1}\)) that have been observed (Price et al. 2012), and the outflows may develop prior to the formation of a rotationally supported accretion disk (e.g., Li et al. 2013, 2014). However, it is still uncertain how quickly more powerful outflows emerge in protostars; do the outflows have a steady growth in power as the source luminosity (from accretion) increases or do they only become powerful once a certain threshold in luminosity is reached?

In order to examine the outflow conditions from the youngest known Class 0 protostars, we have obtained interferometric observations of the CO \((J = 1 \rightarrow 0) \) molecular line and far-infrared spectroscopy with the Herschel Space Observatory toward the PBRS in the Orion A and B molecular clouds. The youth and number of PBRS sources in Orion offers an unique opportunity to examine the properties of outflows toward objects that are consistent with being among the youngest protostars. Furthermore, spectrally and spatially resolved observations of the molecular outflows toward these protostars will enable us to constrain the range of possible inclination angles of the protostellar sources, testing whether their characterization as the youngest protostars is strongly influenced by orientation.

We have observed 14 PBRS (from the full sample of 19 cataloged by Stutz et al. 2013 and Paper I) with the Combined Array for Research in Millimeter-wave Astronomy (CARMA), focusing on the Herschel-detected PBRS sample. We observed the protostars in both the dust continuum and spectral line emission to examine the envelope and outflow properties of these sources. We discuss the observations in Section 2, our outflow results from CO \((J = 1 \rightarrow 0) \) and Herschel spectroscopy are presented in Section 3, we discuss the results in Section 4, and summarize our main conclusions in Section 5.

2. OBSERVATIONS AND DATA REDUCTION

2.1. CARMA Observations

We conducted observations toward 14 out of 19 of the PBRS identified in ST13 with CARMA in the D-configuration (~5° resolution) during late 2012 and early 2014 and follow-up

Tobin et al.
observations in C-configuration (∼2″ resolution) for some in early 2014. The observations were conducted with the main CARMA array comprised of 6–10.4 m and 9–6.1 m antennas. We observed two or three sources per track and configured the correlator with four 500 MHz continuum windows, two 8 MHz windows to observe para-NH₃D (J = 1₁ → 1₀₁) and C¹⁰O (J = 1 → 0), and the two 31 MHz windows for observation of C¹³CO (J = 1 → 0) and C₁₂CO (J = 1 → 0). The C-configuration observations had five 500 MHz continuum windows because we did not observe para-NH₂D in that configuration. The continuum observations were presented in Tobin et al. (2015) and here we will present only the C¹³CO (J = 1 → 0) results because other lines did not yield strong detections. Our sensitivity is typically 0.15 Jy beam⁻¹ channel⁻¹ for the CO (J = 1 → 0) in 0.5 km s⁻¹ channels. We used standard procedures within the MIRIAD software package (Sault et al. 1995) to edit, reduce, and image the data; all maps were reconstructed with natural weighting. The images displayed in the figures have not been corrected for primary beam response. The CARMA observation log is given in Table 1. The absolute flux calibration uncertainty is ∼10%–20%. The largest angular scale that can be recovered from observations is ∼20″; we estimate this number to be twice the minimum baseline length.

2.2. Herschel PACS Spectroscopy Observations

We also observed eight PBRS sources with the Photodetector Array Camera and Spectrometer (PACS; Poglitsch et al. 2010) on the Herschel Space Observatory (Pilbratt et al. 2010) as part of program OT2_tobin_2; we also observed the Class I protostar HOPS 347. The PACS spectrometer is a far-infrared integral field spectrograph with a 5 × 5 spaxel (spatial pixel) footprint and spaxel sizes of 9″, for more information see Poglitsch et al. (2010).

We conducted full range scans of the entire spectral range from ∼55 to ∼200 μm in standard chop-nod mode. Table 2 lists the observations dates and observations ids for the observed sources. The PACS range scan spectra were reduced using HIPE 13.0 SPG v11.1.0, calibration tree version 56. The root-mean-squared absolute flux calibration uncertainty of the PACS spectra is ∼12%.

The line spectroscopy observations of the [O I] 63.18 μm transition were conducted in unchopped mode. The unchopped mode uses separately defined off positions away from the cloud to prevent corrupting the [O I] line with a contaminated off position in chop-nod mode. This mode was necessary because extended [O I] emission is very prevalent in the Orion molecular cloud. The use of unchopped mode will, however, result in foreground/background [O I] emission on the surrounding molecular cloud being preserved, in addition to that of the protostar itself. These observations were taken in bright line mode, which has less redundancy at each wavelength than faint line mode. The data used in this paper are the from the default archive reduction from science product generation version 12.1.0 and utilizing PACS calibration tree version 65.

In this paper, we are making use of the flux densities derived from the central spaxel, corrected for the point-spread function losses. For flat-fielding, we use the observed relative spectral response function rather than the telescope background method.

2.3. Magellan Near-infrared Observations

We observed the source HOPS 68 with the Magellan Baade telescope, located at Las Campanas in Chile on 2009 January 17. The observations were conducted with the Persson Auxiliary Nasmyth Infrared Camera (PANIc, Martini et al. 2004), which has 2′ × 2′ field of view on a 1024 × 1024 pixel detector. HOPS 68 was observed in Ks-band using a 3 × 3 dither pattern with 20 s integrations at each dither position and 15′ steps between dither positions. The sky image was constructed from a median combination of the on-source frames thereby losing some large-scale emission. The data were reduced using the Image Reduction and Analysis Facility using standard methods for near-infrared imaging observations; see Tobin et al. (2010) for a description of the methods used.

2.4. Sample and Sub-samples

The observations and results presented in this paper are based on sub-samples of the PBRS sample presented in ST13. ST13 identified 18 sources with [24 μm]–[70 μm] colors (in log (λFλ) space) redder than 1.65. Of this sample, 11 were first discovered with Herschel observations and 7 were previously known HOPS protostars from the Spitzer surveys of the region that met the redness criteria. Furthermore, an additional PBRS (135003) was not included in ST13, but was first presented in Paper I, bringing the total number of PBRS to 19. We list the full sample of PBRS in Table 3 and identify those that have been followed-up with CARMA and Herschel PACS Spectroscopy. The CARMA follow-up concentrated primarily on sources that had not been previously identified by Spitzer as protostars due to their deeply embedded nature, rendering them faint or undetected at 24 μm. The Herschel PACS spectroscopy then concentrated on the Herschel-identified PBRS that had been found in the HOPS data that had been analyzed prior to the Herschel Open Time 2 proposal deadline. Thus, our source follow-up is not homogeneous, but there is enough overlap to identify
characteristic trends within the sample and sub-samples which we will detail in the following sections.

3. RESULTS

We have compiled a significant amount of data to further characterize the PBRS and their outflow properties. We will first discuss the cold molecular outflows probed by CARMA CO ($J = 1 \rightarrow 0$) and probe scales beyond those examined by CARMA using Spitzer 4.5 μm emission. Lastly, we will discuss the results for the warm and hot components of the molecular outflows with Herschel PACS spectroscopy and place the properties of the PBRS outflows in the context of larger protostar samples observed with far-infrared spectroscopy. While the three

Table 2

Herschel Observation Log

Source	Date Obs. ID	UT
135003	2012 Sep 14	1342250990, 1342250991
HOPS 347	2012 Sep 24	1342251350, 1342251351
093005	2012 Sep 24	1342251352, 1342251353
019014	2012 Sep 24	1342251355, 1342251356
019015	2012 Sep 25	1342251357, 1342251358
019003	2012 Sep 25	1342251359, 1342251360
119019	2012 Sep 25	1342251361, 1342251361
HOPS 373	2012 Oct 02	1342252083, 1342252084
061012	2012 Oct 02	1342252085, 1342252086

| Table 3 |

PBRS Observational Summary

Source	HOPS ID	R.A. (J2000)	decl. (J2000)	CARMA Data	Herschel PACS Spectra
HOPS 354	354	05:54:24.1	01:44:20.2
097002	404	05:48:07.7	00:33:51.7	x	...
HOPS 359	359	05:47:24.8	00:20:58.2
HOPS 341	341	05:47:00.9	00:26:20.8
HOPS 373	373	05:46:30.9	−00:02:33.9	x	x
302002	407	05:46:28.28	00:19:28.1	x	...
093005	403	05:46:27.9	−00:00:52.1	x	x
091016	402	05:46:10.0	−00:12:17.3	x	x
091015	401	05:46:07.7	−00:12:21.3	x	x
HOPS 358	358	05:46:07.2	−00:13:30.9
061012	397	05:42:49.03	−08:16:11.8	x	...
090005	400	05:42:45.26	−01:16:13.9	x	...
082005	398	05:41:29.40	−02:21:16.5	x	...
HOPS 372	372	05:41:26.34	−02:18:21.6	x	...
082012	399	05:41:24.92	−02:18:07.0	x	...
119019	405	05:40:58.56	−08:05:35.0	x	x
HOPS 169	169	05:36:36.0	−06:38:54.0
019003 A	394	05:35:24.23	−05:07:53.9	x	x
135003	409	05:35:21.40	−05:13:17.5	x	x

Note. Summary of observational follow-up data for the PBRS. All PBRS have imaging data from Spitzer and Herschel. The PBRS 135003 was not included in ST13 because its full width at half-maximum was slightly larger than the cutoff value adopted by ST13 to filter out extended structures that were not protostellar sources. However, further examination revealed that it was a robustly detected PBRS and it was included in subsequent follow-up observations.
data sets do not cover the same samples (see Table 3) and the spatial scales examined are different, they all contribute to a deeper understanding of the PBRS than when considered on their own. We will attempt to concentrate on overarching trends in the following discussion of results, and the discussion of individual sources can be found in the Appendix.

3.1. Molecular Outflows

The 12CO ($J = 1 \rightarrow 0$) molecular line was observed to examine the outflow activity toward each source; this is the canonical tracer of outflowing gas toward protostellar objects (Snell et al. 1980). Outflows are generally characterized by distinct red and blueshifted emission located on either side of the protostellar source, *modulo* inclination effects. The pervasiveness of CO in the Orion molecular cloud complicates analysis of outflows. Emission at $\pm 2 \text{ km s}^{-1}$ around the systemic velocity cannot be analyzed due to the 12CO ($J = 1 \rightarrow 0$) emission being resolved-out due to confusion with the extended molecular cloud. Therefore, we are generally only able to detect outflow features that have velocities high enough to emit outside the $\pm 2 \text{ km s}^{-1}$ velocity range.

3.1.1. Detections and Morphologies

We detect clear CO outflows toward the seven PBRS sources 093005, 090003, 082012, 119019, 135003, HOPS 373 and 019004 (Figures 1–7), as well as for the Class I source HOPS 68 in the field of 019003 shown in Figure 8. Tentative detections are found toward three additional PBRS 302002, 061012, and HOPS 372 (Figures 3, 9, and 10). The HOPS 372 outflow is apparent in the low-velocity panel of Figure 3, but at higher velocities the outflow emission is dominated by 082012. We did not detect outflow emission toward the four PBRS 091015, 091016, 097002, and 082005; however, this does not mean that these sources do not have outflows, but that they were not detectable with our resolution and sensitivity.

The outflows have a variety of morphologies; there is not a typical CO outflow morphology toward the PBRS sources. The PBRS 093005 and 090003 have spatially compact outflows, with total lengths of the red and blueshifted lobes being less than 0.05 pc (Figures 1 and 2). The outflows toward 119019, 082012, 135003, and HOPS 373 all extend outside the CARMA primary beam, with total lengths greater than 0.1 pc (Figures 3–6). The outflows toward 082012 and 135003 also have emission extending to velocities $>\pm 10 \text{ km s}^{-1}$ from the systemic velocity with jet-like morphologies.

Toward 061012, there is evidence for an outflow, but this is unclear due to confusion with the wide-angle outflow of its neighbor HOPS 223 (Figure 10). HOPS 223 (also known as V2775 Ori) is an outbursting Class I source (Fischer et al. 2012) and this is the first clear detection of a CO outflow toward this source. However, the *Spitzer* imaging already showed strong evidence for outflow-associated features. Toward 302002 (Figure 9) there appears to be low-velocity 12CO emission in its vicinity that appears outflow-like, but its detection is not definitive.

The outflow toward 119019 is distinct from the other PBRS in that it has a large spatial extent, but at low velocities; the full velocity width is only 6 km s^{-1} for both the red and blue sides of the outflow. Moreover, the spatial overlap between the redshifted and blueshifted emission is strong evidence that this source is viewed close to edge-on.

The non-detections of outflows toward 091015, 091016, 097002, and 082005 could result from the outflows having low velocities and being confused with the emission from the molecular cloud. Also, there is a tentative trend between
detectable outflows and L_{bol}. The PBRS 119019 was the lowest luminosity source ($L_{\text{bol}} = 1.56 L_\odot$) with a clear outflow detection; the tentative outflow detections and non-detections have luminosities between 0.65 L_\odot and 1.56 L_\odot. The outflow properties of individual sources are described in more detail in the Appendix.

The outflow from HOPS 68 (Figure 8) is worth mentioning because it was also found to have quite high velocities, and the relative position angle of the red and blueshifted lobes changes from high to low-velocity. At low velocities the outflow is oriented northeast to southwest, but at high velocities the redshifted side is oriented northwest to southeast while the blue lobe still appears extended in the same direction as at low velocities. We overlaid the high-velocity CO contours on a Ks-band (2.15 μm) image from Magellan PANIC (Figure 8) and we see that there are two sets of bow-shock features that overlap with the blueshifted CO emission. One set of features is in the southeast direction and the other set is in the south west direction. Thus, the change in position angle of the CO emission from low to high velocities is likely indicative of two outflows from HOPS 68.

3.1.2. Outflow Parameters

We calculate the outflow mass, momentum, and energy following the procedure used by Plunkett et al. (2013) (based on Bally et al. 1999), and give these values in Table 4. The analysis by Plunkett et al. (2013) uses 13CO optical depths and excitation temperature derived from 12CO (assuming optically thick emission) in order to calculate column densities, from which the mass, momentum, and energy can be calculated. However, our observations did not have enough sensitivity to detect the 13CO ($J = 1 \rightarrow 0$) outflow emission; we therefore adopted a 12CO/13CO ratio of 62 (Langer & Penzias 1993) and divided the 12CO ($J = 1 \rightarrow 0$) intensities by this ratio, under the assumption that the 12CO emission is optically thin at all velocities. This assumption is not valid at all velocities, but probably most reasonable for the higher velocity ($>\pm10$ km s$^{-1}$) emission. The principal effect will be an underestimate of the CO column densities and cause all the outflow parameters to be lower limits. Dunham et al. (2014, p. 195) showed that opacity corrections to the outflow parameters can be up to an order of magnitude; missing flux will also affect the parameters but this is more difficult to quantify since the low-velocity emission with the highest opacity will be the most severely affected by spatial filtering. The 13CO abundance is taken to be $N(^{13}$CO) = N(H$_2$)/7 \times 105 (Ferking et al. 1982) and the excitation temperature is calculated using the 12CO brightness temperature and was between 15 and 40 K in our observations (see Equation (3) in Plunkett et al. 2013). We do not attempt to correct the outflow properties for the effects on inclination.

The observed outflow properties (mass, momenta, energy, and force; see Table 4) of the PBRS are generally consistent with results from Plunkett et al. (2013); however, there is a general tendency for lower values of mass, momentum, and energy for the PBRS, which could result from the lack of 13CO detections. We also computed the outflow force (F_{CO}) and dynamical time based on the apparent outflow size and the maximum velocity of observed CO. We examined the relationship between L_{bol} and F_{CO} in Figure 11. For the PBRS with a detected outflow, there is no clear correlation between F_{CO} and L_{bol} but more luminous sources tend to have greater values of F_{CO}. We have also plotted the relationships derived by Bontemps et al. (1996) and van der Marel et al. (2013) for comparison. The relationships were derived from samples primarily comprised of Class I protostars, and Class 0 protostars lie above the relationship and not below; the CO ($J = 6 \rightarrow 5$) measurements from Yildiz et al. (2015) for Class 0 sources are also above the Bontemps et al. (1996) relationship. The relations do go through our observed the points, but
four PBRS are found below the Bontemps et al. (1996) relationship. On the other hand we use interferometer data without zero-spacings, while the other studies used single-dish maps. We also did not have 13CO detections, making our values lower limits. We do not calculate upper limits for the sources with non-detections because the large amount of resolved emission near the source velocities results in these values having little physical meaning. However, their outflow parameters will (at a minimum) be lower than those measured for 090003/093005.

![Figure 3. PBRS 082012—Same as Figure 1, showing both 082012 (center cross) and HOPS 372 (southeast cross). The outflow from 082012 is a very strong, collimated outflow that is extended to a large distance away from the protostar. We show three plots at low (0–20 km s$^{-1}$), moderate (20–30 km s$^{-1}$; −10–0 km s$^{-1}$), and high (30–40 km s$^{-1}$; −20 to −10 km s$^{-1}$). The blueshifted side disappears at velocities higher than −10 km s$^{-1}$ and the outflow becomes more narrow and jet like at the higher velocities. The low velocity emission appears to trace the combination of an outflow from HOPS 372 and 082012, with 082012 being dominant. Then at higher velocities, the 082012 outflow is most apparent and HOPS 372 does not seem to contribute. The PV plot clearly shows the high and low velocity components of the outflow. The contours in the low velocity plot are [±6, 9, 12, 15, 20, 30, 40, 50, 60, 70] × σ for the blue and the red; $\sigma_{\text{red}} = 1.27$ K and $\sigma_{\text{blue}} = 1.27$ K. For the remaining plots the contours are [−6, −4, 4, 6, 8, ..., 24]σ; σ_{red} and $\sigma_{\text{blue}} = 1.56$ K. The PV plot contours are [−6, −3, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, 30, 35] × σ and σ = 0.35 K. The half-power point of the primary beam is plotted as the dashed circle.

3.1.3. Outflow Inclinations

The outflow inclinations are difficult to precisely measure; however, we qualitatively compared our data with the simulations by Cabrit & Bertout (1986), which show model PV plots and integrated intensity plots for accelerating outflows. Model outflows are shown for a fixed opening angle and outflow length at inclinations of 5°, 30°, 50°, and 80°. As such, the uncertainty in our estimates of the outflow inclination is likely ±20°. The outflows of 090003, 093005, HOPS 223, and 019003 are consistent with outflow inclinations near 30°,
given their compact extent and distribution of highest velocities near the source. The well-collimated outflows of 082012, 135003, and HOPS 68 appear most consistent with an inclination near 50°. Both the wide-angle outflow toward HOPS 373 and the tenuous outflow toward 302002 are consistent with having inclinations between 50° and 80°; based on their velocity distributions, HOPS 373 is likely closer to 50°, while 302002 is likely closer to 80°. The PBRS 061012...
appears to have an outflow, but the data do not lend themselves to a reasonable estimate of the inclination. Finally, 119019 is the only PBRS that is consistent with having a near edge-on inclination, as indicated by the CO emission only being detected at low velocities and the extended spatial overlap of the red and blueshifted emission toward 119019.

We can broadly conclude that for the PBRS with detected outflows, extreme edge-on orientations cannot be the cause of their extremely red 24–70 μm colors, except for 119019. The estimated inclinations for the PBRS are also given in Table 5. Furthermore, while there is a large degree in uncertainty in the outflow inclinations, it is most likely that the distribution of

Figure 6. PBRS HOPS 373—Same as Figure 1, the outflow toward HOPS 373 is wide and was known to have a large outflow from single-dish studies (Gibb & Little 2000). Very near the protostar there is compact blueshifted and redshifted emission in the opposite directions as compared to the larger outflow; this may be a second outflow from the binary source. The PV plot shows the blueshifted component on either side of the protostar and the redshifted component is evident at a large distance from the protostar; note that most of the redshifted lobe is outside the primary beam of CARMA. The contours in the line map start at ±10σ and increase in 5σ intervals for the blue and the redshifted contours start at ±20σ and increase in 10σ; σ_{red} = 0.93 K and σ_{blue} = 1.21 K. The PV plot contours are \([-6, -3, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, 30, 35, ..., 60]\) × σ and σ = 0.75 K. The half-power point of the primary beam is plotted as the dashed circle.

Figure 7. PBRS 019003—Same as Figure 1, with data from D-configuration only. HOPS 68 is located in the southern part of the map and is shown in more detail in Figure 8. The contours in the line map start at ±10σ and increase in 5σ intervals for the blue and the redshifted contours start at ±20σ and increase in 10σ; σ_{red} = 1.6 K and σ_{blue} = 1.56 K. The PV plot contours are \([-6, -3, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, 30, 35, ..., 60]\) × σ and σ = 0.75 K. The half-power point of the primary beam is plotted as the dashed circle.
inclination angles appears dominated by intermediate inclinations (80° ≥ i ≥ 20°). While our numbers are small, the distribution is likely consistent with a random distribution of inclinations (the average inclination for a random distribution is 60°), which is expected for a collection of sources whose selection criteria is not particularly biased toward a particular geometric orientation; a previous concern with respect to the PBRS was that they could have simply been edge-on sources and the outflow data show that this is clearly not the case. Given the uncertainty in the inclination angles, we have not corrected the derived outflow parameters in Table 4 for this effect.

3.2. Evidence for Extended Outflows

The CARMA 12CO observations are only sensitive to emission within the 30″ (12600 au) radius primary beam, hence other observations are needed to determine if the outflows extend to larger scales. We examined the Spitzer 4.5 μm
Table 4
CO ($J = 1 \rightarrow 0$) Outflow Properties

Source	PA (°)	Length (au)	δv_{max} (km s$^{-1}$)	Mass (M_\odot)	Momentum (M_\odot km s$^{-1}$)	Energy (10^{40} erg)	Energy (10^{40} erg)	Force (M_\odot km s$^{-1}$ yr$^{-1}$)	T_{dyn} (year)					
P2013 mina	...	5000	0.1	0.6	700	
P2013 max	...	9000	1.8	5.0	21800	
AS2006 minb	0.015	0.044	142				
AS2006 max	0.15	0.119	484				
082012c	151	\geq42000	70	0.08	0.7	11000	0.08	1.2	27000	0.16	2.0	38000	700×10^{-6}	2900
093005	238	4200	22	0.001	0.005	36.0	0.0008	0.005	34.0	0.0018	0.01	70.0	11.0 $\times 10^{-6}$	900
090003	86	7300	14	0.001	0.004	12.0	0.0004	0.001	3.6	0.005	0.005	15.6	2.0 $\times 10^{-6}$	2500
135003	21	\geq42000	40	0.003	0.015	87.0	0.003	0.016	91.0	0.006	0.031	178.0	6.2 $\times 10^{-6}$	5000
119019	114	\geq42000	8	0.02	0.4	61.0	0.01	0.02	29.0	0.03	0.06	90.0	2.4 $\times 10^{-6}$	25000
302002	122	\geq31000	4	0.004	0.007	14.8	0.002	0.002	1.9	0.006	0.01	16.7	0.3 $\times 10^{-6}$	37000
019003 A	230	\geq21000	16	0.003	0.02	121	0.002	0.01	61.0	0.005	0.03	82	4.8 $\times 10^{-6}$	6300
HOPS 68c	230, 166	\geq15000	70	0.01	0.06	380	0.006	0.03	199	0.04	0.09	579	88.0 $\times 10^{-6}$	1020
HOPS 223	90	\geq31000	20	0.001	0.03	120	0.005	0.02	90	0.006	0.05	210	5.8 $\times 10^{-6}$	8600
061012	58	\geq42000	\sim15											
HOPS 372d	141	\geq10000	\sim10											

Notes. These quantities are derived following the analysis in Plunkett et al. (2013) which is based on Bally et al. (1999). These quantities are at best lower limits given that substantial emission is resolved-out near line center and the outflows were not detected in our 13CO data, the inclusion of 13CO would enable us to more accurately calculate the optical depth of 12CO. The last column, T_{dyn} is derived from dividing the outflow length by δv_{max}.

a Range of parameters listed for all outflows identified in Plunkett et al. (2013).

b Range of parame ters listed for the Class 0 outflows listed in Arce & Sargent (2006).

c Source likely has two blended outflows, properties listed are for both outflows combined.

d Outflow extent, position angle, and velocity width uncertain due to blending with another outflow.
images of all the sources from Megeath et al. (2012). The emission at 4.5 μm can trace both scattered light in the outflow cavities near the protostars and shock-excited H2 emission along the outflows. Smooth 4.5 μm emission near the source is likely indicative of scattered light, and knotty or bow shock-like features along the outflow are likely H2 emission (e.g., Tobin et al. 2007). Images of the 4.5 μm emission are shown for all the sources in Figures 12(a) and (b).

Toward the sources HOPS 373, 093005, 302002, and 090003 there is 4.5 μm emission within 0.05 pc of the sources and no apparent evidence for emission out on larger scales that is likely to have originated from these systems. Thus, for 093005, 302002, and 090003 we are likely covering the full extent of the outflow with our CO observations; for HOPS 373, however, the outflow extends out of the primary beam, but perhaps not much further (Gibb & Little 2000). There are a few cases where the association of the 4.5 μm emission with the outflow is ambiguous. For 135003, there are some knotty features along the direction of the known outflow, extending ~0.15 pc and was identified as an outflow candidate (SMZ 1-38) by Stanke et al. (2002). Then in the case of 019003, we see a feature adjacent to the position of the protostellar source from the 2.9 mm continuum, and possibly an extended feature in the direction of the blueshifted outflow lobe. The crowding and number of imaging artifacts from bright sources make this field difficult to interpret.

We only find clear evidence for 4.5 μm emission extended >0.1 pc for three sources: 082012, 061012, and 119019. The bow-shock directions or trail of H2 knots indicate a likely origin from the PBRS source. The emission from 061012 and 119019 appears to extend ~0.3 pc and the emission from 082012 extends ~0.2 pc. If we assume an outflow propagation speed of 10–100 km s^{-1}, then the dynamical time is between 3000–30,000 years for 0.3 pc and 2000–20,000 years for 0.2 pc. Thus, even though there is evidence for outflows toward these sources extending relatively large distances, extreme youth is still likely.

Toward the sources without detected CO (J = 1 → 0) outflows, 091015, 091016, 082005, and 097002, there is also no evidence for 4.5 μm emission (or emission shortward of 70 μm) associated with the sources, as shown in Figures 12(a) and (b). Whereas, the sources with compact emission at 4.5 μm also had detections of CO outflows.

3.3. Warm/Hot Outflow Gas

We obtained Herschel PACS spectroscopy toward a subset of the PBRS (eight observed with PACS). This subset samples luminosities between 0.65 L☉ and 12 L☉ and a variety of 12CO molecular outflow emission properties; thus, this subsample should be reasonably representative of the PBRS as a whole. PACS spectroscopy offers a complementary view of the outflow emission from protostars; rather than the cold, entrained gas traced in the CO (J = 1 → 0) line, the PACS lines trace the warm/hot shock-heated portion of the outflow concentrated on scales <2000 au.

The continuum-subtracted PACS spectra for all observed sources, extracted from the central spaxel, are shown in Figure 13. The spectra have a wide variety of emission line strengths; detections in high-J CO and water are found toward 5 out of the 8 PBRS. The spectrum toward HOPS 373 is particularly strong and rich in line emission, detecting CO transitions with J_u > 30. Also, lines in the PACS spectrometer range are detected toward all sources that exhibit a clear outflow in the CO (J = 1 → 0) transition. We calculate the total high-J (J_u ≥ 13) CO luminosities and give their values in Table 6.

Figure 14 shows the non-continuum subtracted CO (J = 14 → 13) spectra for the all observed sources. The PBRS 061012 has a tentative detection (2.5σ) in the CO (J = 14 → 13) line, while its detection was not immediately apparent in the full spectrum shown in Figure 13. However, 061012 does not have detected emission in the 179.5 μm H2O 212-101 line which typically has a line flux greater than or equal to the CO (J = 14 → 13) line. Thus, the detection toward 061012 is considered tentative.

Table 5

Source	HOPS ID	M_{env}	L_{bol}	T_{bol}	Visibilities	CO (J = 1 → 0)	Inclination Outflow	4.5 μm	PACS Lines	[O i]
097002	404	2.8 ± 0.3	1.14	33.4	flat	no	...	no
HOPS 373	373	3.1 ± 0.4	5.2	36.0	decline	ext	~50°	comp	yes	yes
302002	407	2.9 ± 0.3	0.85	28.6	decline	ext (low S/N)	~80°	comp
093005	403	5.4 ± 0.6	1.7	30.8	flat	comp	~30°	comp	no	no
091016	402	2.8 ± 0.3	0.65	29.1	flat	no	...	no	no	no
091015	401	1.9 ± 0.3	0.81	30.9	flat	no	...	no	no	no
061012	397	1.0 ± 0.2	0.75	32.1	decline?	comp (low S/N)	...	ext	marginal	no
090003	400	7.0 ± 0.7	2.71	36.0	flat	comp	~30°	comp
082005	398	2.0 ± 0.3	1.02	29.3	flat	no	...	no
HOPS 372	372	2.2 ± 0.4	4.9	36.9	decline?	ext (blend)	...	ext
082012	399	9.4 ± 1.0	6.3	32.2	decline	ext	~50°	ext
119019	405	0.6 ± 0.1	1.56	34.4	decline	ext	~90°	ext	yes	no
019003 A	394	2.4 ± 0.3	3.16	33.6	decline	ext	~30°	comp	yes	no
135003	409	3.0 ± 0.4	12.0	30.0	decline	ext	~50°	ext	yes	no

Note. Summary table for PBRS properties. L_{bol} and T_{bol} are from ST13 and Tobin et al. (2015); the visibility amplitude profiles, envelope masses, and 2.9 mm flux densities are from Tobin et al. (2015). With regard to the CO outflows, “ext” refers to extended emission, while “comp” refers to compact emission; compact being less than 12′′ (3000 au) in extent. Also, the tentative CO outflows are denoted with either “low S/N” or “blend” in the table. The 4.5 μm emission is used to trace shocked H2 emission in the outflows, “comp” means there is emission located within 10′′ and a “ext” means that there are apparent H2 knots more than 10′′ from the source but in the outflow direction.
Observations were also obtained toward all the PBRS in unchopped line spectroscopy observations of the [O I] 63.18 μm transition. This emission line is thought to be an tracer of the protostellar jet, perhaps even before the molecular outflow is well-established (Hollenbach & McKee 1989). Since these observations were conducted in the unchopped mode, extended [O I] emission from the cloud is present in the spectral cubes. This extended [O I] emission from the cloud must be subtracted from the data in order to isolate [O I] emission from the protostar itself. To remove the extended [O I] (and continuum emission), we have calculated the median intensity at each wavelength in the spectral cube using the 18 edge spaxels. We also compute the standard deviation of the edge spaxel intensities at each wavelength, this is representative of the uncertainty in the background emission subtracted at each wavelength. We use the median intensity of the edge spaxels rather than the mean because some spaxels have very high intensities and the mean would be skewed toward a value larger than most of the edge spaxel intensities. The background subtracted [O I] spectra are shown toward each source in Figure 15 as the thick solid line and the standard deviation of the background at each wavelength is shown as the thin dashed line in Figure 15.

The only PBRS with a clear detection of the [O I] line is HOPS 373; 019003 at first glance appears to have a detection, but it is ~2σ above the uncertainty of the subtracted background [O I] emission, so this detection is tentative. Furthermore, 119019 and 061012 have apparent peaks at location of the [O I] line; however, both of these are only 2σ detections above the noise and other features are found in those spectral with the same significance, but do not correspond to an expected spectral feature. Therefore, neither of these sources are regarded as detections.

Nisini et al. (2015) showed a sample of protostellar sources with extended [O I] emission in their jets and outflows. This highlights the possibility that some of the PBRS may have extended emission along their outflows, and that our subtraction of background [O I] emission from the edge spaxels may remove [O I] emission from the source. However, we inspected the spectral cubes before and after subtraction of extended [O I] emission, and we do not detect any enhancement of [O I] emission along the outflow directions (for the PBRS with detected outflows), nor do the 8 spaxels adjacent to the central spaxel show emission after background subtraction toward HOPS 373. Therefore, we conclude that the well-detected emission toward HOPS 373 is only detected in the central spaxel and we are not missing extended flux at our sensitivity (σ_{[O I]} ~ 1 Jy channel^{-1}), and we are not subtracting off extended emission associated with the PBRS outflows.

We have examined the [O I] line luminosities with respect to larger protostar samples from Green et al. (2013) and Mottram et al. (2016). The ~2σ [O I] detections for 119019 and 061012 and 3σ upper limits for 093005, 091015, and 091016 have [O I] luminosities upper limits consistent with the detected range of [O I] luminosities for a given L_{bol} (L_{[O I]} = 10^{-5} - 10^{-2} L_{bol}; Green et al. 2013). Thus, the [O I] line is not found to be particularly strong toward the PBRS, but we cannot say that the [O I] emission anomalously weak toward the PBRS given that the upper limits do not indicate [O I] luminosities to be significantly lower than other protostars with a similar L_{bol}.

In addition to the [O I] 63.18 μm line, we examined the spectra for [O I] emission at 145.5 μm in the range scans. As shown in Figure 13, this line is only detected toward 019003. However, we do not think this is emission from the protostar itself, but extended emission that was not fully subtracted from the off position as some spaxels have a negative feature, while others have emission.

The [O I] 63 μm luminosity from post-J-shock gas can be used to calculate the mass flow rate through the shock (Hollenbach 1985; Hollenbach & McKee 1989): \(\dot{M} = L_{[O I]} \times 8.1 \times 10^{-5} M_\odot \text{yr}^{-1} L_{bol}^{-1} \). Since our observations encompass, in each case, all the regions in which the outflows from our targets drive shocks the result is the mass-loss rate from the protostar, averaged over the outflow dynamical time. The [O I] luminosities and outflow rates inferred from the line luminosities (and their upper limits) are given in Table 6.

3.3.1. Extended Emission

The high-J CO and water line emission is extended across multiple spaxels in some sources, the most obvious of which is 135003. We overlay the spectra in each spaxel on the CO (J = 1 → 0) map in Figure 16 for the longer and shorter wavelength ends of the PACS spectrometer red channel. H2O and CO emission is a detected in all spaxels that overlap with the blueshifted side of the CO (J = 1 → 0) outflow, and the line emission is actually brighter than that of the central spaxel.

Source	HOPS ID	L(CO) (10^{-3} L_{bol})	CO T_{rot} (K)	L([O I]) (10^{-3} L_{bol})	M_{out} ([O I]) (M_\odot \text{yr}^{-1})
HOPS 373	373	21.8 ± 0.3	282 ± 4	1.3 ± 0.05	1.1 × 10^{-4}
093005	403	2.5 ± 0.2	230 ± 20	<0.1	<2.8 × 10^{-9}
091016	402	<0.5	...	<0.11	<3.1 × 10^{-9}
091015	401	<0.5	...	<0.15	<4.7 × 10^{-9}
061012	397	0.2 ± 0.1	...	<0.12	<9.5 × 10^{-9}
119019	405	1.4 ± 0.2	217 ± 24	<0.15	<1.6 × 10^{-8}
019003 A	394	1.9 ± 0.25	252 ± 30	<1.6	<1.4 × 10^{-7}
135003	409	5.8 ± 0.25	226 ± 9	<3.5	<9.5 × 10^{-8}
HOPS 347	347	<0.5	...	<0.13	<3.6 × 10^{-9}

Note. The far-infrared CO luminosities are calculated by summing all the detected line flux densities and converted to luminosity, assuming a distance of 420 pc. The L([O I]) only considers emission from the 63.18 μm line and the M_{out} ([O I]) is calculated by multiplying L([O I]) by 8.1 × 10^{-5} M_\odot \text{yr}^{-1} L_{bol}^{-1} (Hollenbach 1985). The upper limits given for the line luminosities are 3σ upper limits.
However, there is not corresponding line emission extended along the redshifted side of the outflow, possibly indicating that the southern side of the outflow is being driven into a less-dense medium. Similarly, 019003 also has some extended H₂O and CO emission on the blueshifted side of the CO ($J = 1 \rightarrow 0$) and like 135003 the extended emission is also brighter than the central spaxel.

3.3.2. CO Luminosities and Rotation Temperatures

We have calculated the high-J CO luminosities and rotation temperatures for the five PBRS with multiple detected CO transitions. We calculate the column densities of each CO line and luminosity of each line following Manoj et al. (2013); however, instead of fitting Gaussian functions to the unresolved line profiles, we directly sum the spectral elements around the wavelength of a particular CO line and subtract the background emission estimated from line-free continuum regions adjacent to the emission line. We regard this method as more reliable than fitting Gaussians given the low spectral resolution of the data; similar results are obtained for the Gaussian method, however (Manoj et al. 2016 submitted).

We show the rotation diagrams for the 5 sources with robust CO detections in multiple lines in Figure 17. All sources show the characteristic warm component (≈300 K) of the CO rotation diagrams (e.g., van Kempen et al. 2010; Karska et al. 2013) and only HOPS 373 shows evidence of another temperature component in CO lines with $J_a \geq 25$; all other PBRS have non-detections for CO lines with $J_a \geq 25$. Thus, we fit a linear slope to the rotation diagrams for all detected CO lines with $J_a \leq 25$, finding T_{rot} between 216 and 282 K. HOPS 373 has the highest T_{rot} and 119019 has the lowest T_{rot}.

We plot the PACS CO luminosities ($L(\text{CO})$) versus L_{bol} and T_{bol} in Figure 18. The PBRS have CO luminosities that are consistent with the observations from the HOPS, WISH, WILL and DIGIT samples (Green et al. 2013; Karska et al. 2013, 2014; Manoj et al. 2013, Mottram et al. submitted; A. Karska et al. 2016, in preparation). However, HOPS 373 has nearly the highest CO line luminosity for all protostars in the samples considered here for protostars with $L_{\text{bol}} < 30 L_\odot$. Looking at $L(\text{CO})$ versus T_{bol}, also in Figure 18, the PBRS are comparable to other sources with low values of T_{bol}.

The comparison of CO T_{rot} to the HOPS/WISH/WILL/DIGIT samples is shown in Figure 19; these rotation temperatures are all measured using CO lines with $14 \leq J_a \leq 25$. The PBRS have T_{rot} values that are among the lowest observed for all protostars in the other sample at any luminosity. However, given the uncertainties in our own measurements and those in the literature, the PBRS are consistent with the observed distribution of T_{rot}, but on the low-side of the distribution. We discuss the possible causes for the PBRS to have lower T_{rot} values further in Section 4.4.

3.3.3. Far Infrared Line Ratios

We calculated diagnostic line ratios that have been used by Karska et al. (2014) to compare the WISH and WILL observations with various shock models (Kaufman & Neufeld 1996; Flower & Pineau Des Forêts 2010; Flower & Pineau des Forêts 2015) and list them in Table 7 for the sources with detected lines. For most ratios, the values calculated for the PBRS are either within the range observed in the WISH/WILL samples (Karska et al. 2014) or the values are within 1σ of the observed range. The primary line ratio that is systematically different from the WISH/WILL samples is the CO ($J = 16 \rightarrow 15$)/CO ($J = 21 \rightarrow 20$); the ratios are systematically larger for all the PBRS. This likely reflects the colder CO T_{rot} values that are derived for the PBRS, relative to the WISH/WILL sources. We also list ratios for CO ($J = 17 \rightarrow 16$)/CO ($J = 22 \rightarrow 21$), CO ($J = 16 \rightarrow 15$)/CO ($J = 17 \rightarrow 16$), and CO ($J = 21 \rightarrow 20$)/CO ($J = 22 \rightarrow 21$) because CO ($J = 17 \rightarrow 16$) and CO ($J = 22 \rightarrow 21$) are also accessible from SOFIA.

One source, HOPS 373, also had detections of OH transitions, enabling further comparison to the WISH/WILL results. Note that one of the OH 84 μm doublet lines is contaminated by CO ($J = 31 \rightarrow 30$) and to correct for this we measured the flux of the uncontaminated doublet line and multiplied its flux by two. The ratio of OH 84 μm to OH 79 μm is larger than in WISH/WILL, but within the uncertainties. H₂O (4$_{0}\rightarrow 3_1$)/OH 84 μm is consistent with WISH/WILL, and CO ($J = 16 \rightarrow 15$) to OH 84 μm is slightly in excess of the WISH/WILL results. Thus, for HOPS 373, the H₂O line emission relative to OH is weaker than predicted by the shock models, consistent with the suggested interpretation of Karska et al. (2014) that UV irradiation of the shocks is needed in order to explain the H₂O and OH line ratios as suggested by Karska et al. (2014).
Source	CO 16-15	CO 17-16	CO 16-15	CO 21-20	H$_2$O 2$_{12}$-1$_{01}$	H$_2$O 4$_{04}$-3$_{13}$	H$_2$O 4$_{04}$-3$_{13}$	OH 84	CO 16-15	H$_2$O 4$_{04}$-3$_{13}$
	/CO 21-20	/CO 22-21	/CO 17-16	/CO 22-21	/H$_2$O 4$_{04}$-3$_{13}$	/CO 16-15	/CO 21-20	/OH 79	/OH 84	/OH 84
WISH/WILL	1.2–2.5	1.3–6.3	0.1–0.5	0.2–0.9	1.1–2.4	0.4–2.8	0.08–0.9
019003	3.26 ± 1.63	15.36 ± 13.51	0.35 ± 0.13	1.67 ± 1.57	1.29 ± 0.63	0.30 ± 0.14	0.99 ± 0.57
093005	5.69 ± 2.72	11.60 ± 9.18	0.39 ± 0.10	0.80 ± 0.71	2.43 ± 2.64	0.12 ± 0.13	0.69 ± 0.79
119019	3.01 ± 1.80	...	0.27 ± 0.11
135003	5.12 ± 1.04	8.89 ± 3.43	0.47 ± 0.06	0.81 ± 0.34	4.29 ± 1.09	0.17 ± 0.04	0.85 ± 0.26
HOPS 373	3.59 ± 0.26	7.36 ± 0.56	0.39 ± 0.02	0.79 ± 0.08	3.11 ± 0.31	0.16 ± 0.02	0.59 ± 0.07	3.27 ± 1.20	3.34 ± 0.51	0.54 ± 0.10
edge-on, the envelope densities would still have to be $>2\times$ higher than typically found toward HOPS protostars; the median envelope density for Class 0 protostars in HOPS at a radius of 1000 au is found to be 5.9×10^{-18} g cm$^{-3}$ from SED modeling (Furlan et al. 2016).

For the sources with detected CO ($J = 1 \rightarrow 0$) outflows, the clear spatial separation of the blue and redshifted CO emission clearly shows that 093005, 090003, 08212, HOPS 372, HOPS 373, 135003, 019004 are not observed with edge-on orientation and must be observed at an intermediate viewing angle (neither edge-on nor face-on). The distribution of inclinations is consistent with being random; therefore, the extremely red colors of these protostars are not the result of extreme edge-on viewing angle, but are due to the high density of the infalling envelope itself. We are unable to make a definitive conclusion about 061012 since the outflow is not clearly detected, but there appear to be separated blue and red lobes.

However, for two sources, 119019 and 302002, only low-velocity CO emission is found for those outflows. The outflow toward 302002 (Figure 9) had a small velocity gradient from across the source, and we mentioned in Section 3.1.3 that the inclination is likely between 50$^\circ$ and 80$^\circ$, but closer to 80$^\circ$. In the more extreme case of 119019, this PBRS had no detectable velocity gradient and there is roughly equal amounts of emission at both blue and redshifted velocities (Figure 4). Thus, these two sources may only have been classified as PBRS because their of edge-on (or nearly edge-on) orientation.

In summary, we confirm that the extremely red colors of the PBRS are not the result of inclination for 7 out of 9 sources with detected CO ($J = 1 \rightarrow 0$) outflows. The sources without detections of CO ($J = 1 \rightarrow 0$) outflows may have low-velocity outflows that are confused with the cloud emission, or the outflows are still too small in spatial extent and are not bright enough to detect with the sensitivity of our current observations.

4.2. Outflow Properties

The outflows exhibit a range of masses, momenta, energies, and forces; HOPS 373 has outflow energy and momentum typical of those in Plunkett et al. (2013) and 082012 has outflow energy and momentum in excess (Table 4). In contrast, the two most compact outflows in the sample (090003 and 093005) have quite low outflow masses, momenta, energies, and forces. Since the Plunkett et al. (2013) sample includes single-dish data to measure the total flux, a comparison with Arce & Sargent (2006), using interferometer-only data, is more appropriate. The ranges for the observed outflow parameters from Arce & Sargent (2006) and Plunkett et al. (2013) are given in Table 4. We note, however, that neither of those studies computed F_{CO}. The sources 093005, 090003, and 302002 have values all less than the range from Arce & Sargent (2006), HOPS 223 is within the range, and HOPS 373 and 082012 have values in excess of these numbers.

The outflow toward 082012 is truly exceptional. Its high-velocity nature was first reported by Sandell et al. (1999); it is more energetic and has more momentum than the strongest outflows in the Plunkett et al. (2013) sample. The increased collimation and large velocity extent bears resemblance to NGC 1333 IRAS 4A, L1448C (Hirano et al. 2010), and IRAS 04166+2706 (Santiago-Garcia et al. 2009). This outflow has energies and momenta in excess of all the outflows observed by Arce & Sargent (2006) and Plunkett et al. (2013), but it is comparable to L1448C (Hirano et al. 2010). The outflow of 082012 is likely even more powerful than we measure it to be,
given that our properties are lower limits due to lack of 13CO observations to determine the optical depth, and because we do not cover the full extent of the outflow. The outflow of 082012 is also likely blended with that of HOPS 372 at low velocities, but at higher velocities it appears to only come from 082012. Even if we are measuring the combined outflow properties, it is very strong relative to those observed in the nearby star-forming regions.

The outflows from 090003 and 093005 represent the most compact (i.e., shortest) CO outflows found in our data. The outflows of 093005 and 090003 are not observed to extend further than their apparent envelope sizes observed at 870 μm. This and the compact 4.5 μm emission may indicate that the outflows are just beginning to break out from their dense, natal envelopes. These outflows are not particularly powerful either, the outflow forces plotted in Figure 11 are on the low-end for Class 0 sources and 090003 is lower than the linear relationship from Bontemps et al. (1996), above which all Class 0 s lie in current data (Yildiz et al. 2015, Mottram et al. 2016). Furthermore, the well-developed outflow from 135003 is also found to lie below the L_{bol} versus F_{CO} relationship. Alternatively, the outflows could be more powerful, but since their energies and momenta are calculated using entrained material, observed CO ($J = 1 \rightarrow 0$), the outflows only appear weak with these measures.

The deeply embedded sources without 4.5 μm emission or outflow detections (097002, 091015, 091016, and 082005) may have outflows that are too weak/faint to detect in our observations. However, the lack of outflow detections toward these most embedded sources and the lack of particularly powerful outflows from 093005 and 090003, could indicate that outflows may be weak during the early Class 0 phase, given the apparent youth of the sources and small spatial extent of the outflows. Thus, it is possible that the outflow momentum/energy/force may be initially small early-on and are rising early in the Class 0 phase such that the Class 0 outflows will be systematically more powerful than Class I outflows (e.g., Bontemps et al. 1996; Yildiz et al. 2015). Weak initial outflows from protostars are predicted from simulations of the FHSC phase (Price et al. 2012; Tomida et al. 2013) where the outflows are <15 km s$^{-1}$. If the PBRS have recently transitioned out of the FHSC phase, then they may not have reached their full outflow power yet. This will be further studied using single-dish data by A. M. Menechella et al. (2016, in preparation).

The absence of detected outflow activity in CO ($J = 1 \rightarrow 0$) toward the four sources mentioned above cannot be construed as evidence of outflow absence because of our finite resolution and sensitivity. For example, the outflow toward OMC MMS6N (also known as HOPS 87) was only detected when it was observed at the highest resolutions with the SMA (Takahashi et al. 2012), due to its very small spatial extent. Thus, the non-detected outflows could be very compact and in the process of breaking out from the envelopes, necessitating higher resolution data. On the other hand, OMC MMS6N did have strong H$_2$O and CO emission lines observed in the far-infrared spectrum from Herschel (Manoj et al. 2013) and 091015/091016 had no detected emission lines in their PACS spectra. In contrast, 091015/091016 are low-luminosity sources ($L = 0.65 L_\odot$ and 0.81 L_\odot) and OMC MMS6N is a higher-luminosity source ($L > 30 L_\odot$), making direct comparisons between the sources difficult.

4.3. Relationship of Outflows and 2.9 mm Continuum Properties

In Paper I, the 2.9 mm continuum luminosities and visibility amplitude profiles were analyzed. We found that most PBRS had 2.9 mm continuum luminosities (median of $1.0 \times 10^{-5} L_\odot$) and $L_{2.9 \text{ mm}}/L_{\text{bol}}$ ratios (median of 8.8×10^{-6}) greater than most nearby Class 0 protostars, which have a median $L_{2.9 \text{ mm}} = 3.2 \times 10^{-6} L_\odot$ and a median $L_{2.9 \text{ mm}}/L_{\text{bol}} = 8.5 \times 10^{-7}$. The nearby Class 0 continuum samples are drawn from Tobin et al. (2011), Looney et al. (2000), and Arce & Sargent (2006), which are sensitive to comparable spatial scales; $L_{2.9 \text{ mm}}$ is calculated assuming a 4 GHz bandwidth centered at 2.9 mm. The PBRS have a median $L_{2.9 \text{ mm}}$ that is $3 \times$ larger than typical Class 0 s and $L_{2.9 \text{ mm}}/L_{\text{bol}}$ that is $10 \times$ larger. This means that the more nearby Class 0 protostars with high $L_{2.9 \text{ mm}}$ also have a high L_{bol}, whereas the PBRS tend to have lower L_{bol}. Furthermore, the highest $L_{2.9 \text{ mm}}$ for nearby Class 0 protostars is $2.9 \times 10^{-5} L_\odot$ toward NGC 1333 IRAS 4A, in contrast to the highest $L_{2.9 \text{ mm}}$ of $3.4 \times 10^{-5} L_\odot$ for the PBRS 082012; see Figure 2 from Paper I. Finally, 6 out of 14 PBRS (093005, 090003, 091016, 091015, 097002, and 082005) had flat visibility amplitude profiles (and small 5 κ) to 30 κ visibility amplitude ratios), consistent with most emission being emitted from scales <2000 au (Figures 3 and 4 from Paper I). Thus, the PBRS tend to have more massive envelopes relative to their bolometric luminosities as compared to other Class 0 sources and the flat visibility amplitude ratios indicate high densities in the inner envelopes (Paper I).

Here we more closely examine the two PBRS that have apparent inclination angles that are close to edge-on: 119019, being almost exactly edge-on, and 302002 being near 80° (between 50° and 80°). The PBRS 119019 has $L_{2.9 \text{ mm}}/L_{\text{bol}}$ (1.47 \times 10$^{-6}$) and $L_{2.9 \text{ mm}}$ (2.3 \times 10$^{-6}$$L_\odot$) values consistent with typical Class 0 protostars from the literature. Thus, in addition to having an nearly edge-on outflow, the 2.9 mm continuum emission from 119019 is not consistent with it having a massive, dense envelope like the rest of the PBRS (Table 5). This points to 119019 perhaps being more evolved than the rest of the PBRS, and its very red colors can be attributed to an edge-on inclination. On the other hand, 302002 has values of $L_{2.9 \text{ mm}}/L_{\text{bol}}$ (1.2 \times 10$^{-5}$) and $L_{2.9 \text{ mm}}$ (1.0 \times 10$^{-5}$$L_\odot$) consistent with rest of the PBRS. Both of these sources also have declining visibility amplitudes (Paper I).

We also find a tendency for the PBRS with flat visibility amplitudes to show either a compact outflow or have no detectable outflow in the CO ($J = 1 \rightarrow 0$) line and Spitzer 4.5 μm emission. We suggested in Paper I that the PBRS with flat visibility amplitudes might be less-evolved than the PBRS with more rapidly declining visibility amplitudes. The sources with rapidly declining visibility amplitudes tend to have more extended, well-developed outflows (i.e., 082012, HOPS 373, and 119019) than sources with flat visibility amplitudes. Therefore we suggest that the flat visibility amplitude sources have outflows that are only beginning to break out of their envelopes. Thus, the PBRS with flat visibility amplitudes may indeed be the initial stages of the Class 0 protostellar phase.

The change in visibility amplitude profile could be related to the outflows carving out cavities and lowering the overall mass of the inner envelope. On the other hand, if the inner envelope mass is rapidly accreted onto the protostar, then the visibility amplitude profiles would also dramatically decline. Using the example from Paper I, the free-fall time of 2 M_\odot confined to a constant density sphere with $R = 1500$ au is only...
~10,000 years, quite short on the timescale of protostellar collapse. For the case of inside-out collapse (Shu 1977), the rarefaction wave would take ~36,000 years to propagate out 1500 au (assuming a sound speed of 0.2 km s\(^{-1}\)); the boundary of the rarefaction wave is where the density profile changes from \(r^{-2}\) to \(r^{-1.5}\), reflecting free-fall collapse. Moreover, in the case of strong rotation, a portion of the density profile inside of the rarefaction wave can have a density profile of \(r^{-0.5}\) (Cassen & Moosman 1981; Terebey et al. 1984). Thus, in either case, the density structure of the inner envelopes can be significantly altered on a timescale shorter than the Class 0 phase (~150,000 years, Dunham et al. 2014, p. 195). Thus, the outflow detection and extents may simply correlate with the decrease in the visibility amplitude profiles and not cause it.

Lastly, the only flat visibility amplitude source with detected far-infrared line emission is 093005; only continuum emission was detected toward 091015 and 091016. The remaining sources with line emission had declining or uncertain visibility amplitude profiles.

4.4. Far-infrared Diagnostics in the Context of the PBRS

A key finding of our study is that in the absence of other outflow indicators (CO \((J = 1 \rightarrow 0)\), Spitzer 4.5 \(\mu m\) scattered light/H\(_2\)), the PACS line emission (CO, H\(_2\)O, or \([O\,\text{I}]) does not independently show evidence for outflows in the form of shocks from the inner envelopes of the protostars. Thus, we only find far-infrared line emission toward sources that have detected CO \((J = 1 \rightarrow 0)\) outflows. This hints at a strong link between the mechanisms that produce the cold CO outflows and the warm/hot component observed in the far-infrared. Furthermore, the \([O\,\text{I}] 63 \mu m\) transition is only convincingly detected toward 1 PBRS (HOPS 373) out of the 6 PBRS for which we could reliably subtract the background \([O\,\text{I}]\) emission from the edge spaxels. We do not consider the detections and non-detections of 135003 and 019004 meaningful because of the strong, extended, and spatially variable \([O\,\text{I}]\) emission in the OMC2/3 region. HOPS 373 has one of the more well-developed outflows, has an H\(_2\)O maser (Haschick et al. 1983), and has the brightest line spectrum of all the PBRS.

Hollenbach & McKee (1989) predict strong far-infrared CO and \([O\,\text{I}] 63 \mu m\) emission for densities \(>10^4\) cm\(^{-3}\) for fast, dissociative J-shocks with velocities \(>30\) km s\(^{-1}\). The \([O\,\text{I}]\) luminosity detected toward HOPS 373 is comparable to other protostars with similar luminosity (Green et al. 2013). While the tentative detections and non-detections toward the remaining PBRS do not point to anomalously weak \([O\,\text{I}]\), we can confirm that the PBRS do not have exceptionally strong \([O\,\text{I}]\) emission. Thus, we conclude that the outflows from the PBRS that give rise to the \([O\,\text{I}]\) and high-J CO luminosities appear comparable in those tracers of other Class 0 protostars.

If PBRS are typical of the youngest protostars, early Class 0 protostars, then we posit that outflows may be very weak initially. At a minimum, the PACS \([O\,\text{I}]\) and CO observations, in addition to CO \((J = 1 \rightarrow 0)\), demonstrate that the PBRS are not accompanied by significantly stronger outflows than typical Class 0 protostars. While the PBRS are inconsistent with the expected properties of FHSC due to their luminosities and colors (ST13), the outflows predicted from FHSCs are quite weak <15 km s\(^{-1}\) (Price et al. 2012; Tomida et al. 2013). The outflows are expected to increase in velocity as the source evolves, though the simulations did not follow the longer term evolution. Such slow outflows from the PBRS would be consistent with them having recently transitioned out of a FHSC phase. If the outflow power is directly linked to the mass accretion rate, then the time in which protostars have very low outflow power is likely quite short <10000 years, consistent with the apparent youth of the PBRS.

Alternatively, at 63 \(\mu m\) the opacity from the infalling envelopes may be obscuring the \([O\,\text{I}]\) emission. Following Kenyon et al. (1993), the optical depth through an envelope with a density profile consistent with free-fall \((r^{-1.5})\) density profile (Ulrich 1976) is given by

\[
\tau_{\lambda} = \frac{\kappa_{\lambda} M}{2\pi(2GM_{\odot})^{1/2}} r^{-1/2}
\]

where \(\kappa_{\lambda}\) is the wavelength dependent dust opacity, \(G\) is the gravitational constant, \(M\) is the mass infall rate, \(M_*\) is the protostar mass, and \(r\) is the inner radius for which the optical depth is being calculated. \(M_*\) is taken to be 0.5 \(M_{\odot}\), which is adopted to set the envelope density for a given infall rate; the absolute value for the mass is not important, only the envelope density. Under the assumption of free-fall collapse, the infall rate is directly proportional to the envelope density

\[
\rho_{1000} = 2.378 \times 10^{-18} \left(\frac{M_{\text{env}}}{10^{-5} M_{\odot} \text{ yr}^{-1}}\right) \left(\frac{M_*}{0.5 M_{\odot}}\right)^{0.5} \text{ g cm}^{-3}
\]

which is the volume density at a radius of 1000 au, following the notation of Furlan et al. (2016). From SED model fitting to the Orion protostars (Furlan et al. 2016), the Class 0 protostars in Orion had median \(\rho_{1000}\) of \(5.9 \times 10^{-18}\) g cm\(^{-3}\) with upper and lower quartiles of \(1.8 \times 10^{-18}\) and \(1.8 \times 10^{-17}\) g cm\(^{-3}\). The PBRS considered here are modeled by Furlan et al. (2016) to have a median \(\rho_{1000}\) of \(1.8 \times 10^{-17}\) g cm\(^{-3}\), and the SED fits tend to prefer densities of \(3 \times\) to \(10 \times\) higher than the typical and lowest density Class 0 protostars, respectively.

This difference in density translates to significantly more opacity at 63 \(\mu m\) for the PBRS, a factor of \(4 \times\) to \(13 \times\) higher than the median Class 0 density and lower quartile; this results in a transmission of only 0.09 for a typical PBRS, versus 0.55 and 0.84 for the Class 0 median and lower Class 0 quartile, respectively. High opacity may be a particularly important consideration for 093005 which has a clear outflow in CO \((J = 1 \rightarrow 0)\), PACS CO, and H\(_2\)O emission but without \([O\,\text{I}]\) emission.

The high envelope opacities can also influence the CO rotation temperatures because the increasing optical depth at shorter wavelengths would cause the rotation temperatures to decrease due to flux attenuation of the line emission. To characterize the magnitude of this effect, we examined the difference in transmission for the PACS CO lines down to a radius of 1000 au (where much of the PACS CO emission appears to be emitted, Green et al. 2013; Manoj et al. 2013). For typical Class 0 envelope densities \((\rho_{1000} = 5.9 \times 10^{-18}\) g cm\(^{-3}\)), the typical density of the PBRS envelopes \((\rho_{1000} = 1.8 \times 10^{-17}\) g cm\(^{-3}\), and assuming dust opacities from Ossenkopf & Henning (1994, Table 1, column 5), we found that the \(3 \times\) higher envelope density could decrease the CO rotation temperatures by \(\sim 20\) K. Thus, the CO rotation temperatures of \(220–230\) K would be higher if corrected for optical depth, making them even more consistent with the WISH/WILL/DIGIT/HOPS samples...
5. SUMMARY AND CONCLUSIONS

We have presented an observational study of both the cold and warm/hot molecular gas in outflows from the youngest known protostars in the Orion molecular clouds, the PBRS. The cold gas was probed toward 14 out of 19 PBRS using observations of the CO ($J = 1\rightarrow 0$) transition from CARMA, and the warm/hot gas was examined for 8 out of the 19 PBRS using full spectral scans ($55-200$ μm) from the Herschel PACS far-infrared spectrometer. Finally, we also examined Spitzer 4.5 μm imaging to look for evidence of both compact and extended outflow activity from both scattered light and shocked H$_2$ emission. The results from the follow-up work done in this study and Paper I demonstrate the critical need for complementary data in the determining the nature of protostellar sources that are otherwise only characterized by their SEDs. Our main conclusions are as follows.

1. We detect clear outflows toward 8 out of 14 PBRS (119019, 090003, 093005, 135003, HOPS 373, 082012, and 019003) in the CO ($J = 1\rightarrow 0$) molecular transition. There is tentative evidence for outflows toward an additional three PBRS (HOPS 372, 302002, and 061012). We also detect outflows from two non-PBRS HOPS 223, a FU Ori-like outbursting protostar (Fischer et al. 2012) and HOPS 68 (Poteet et al. 2011); the HOPS 68 outflow also appears to be quadrupolar. No detectable outflow activity is found toward the PBRS 097002, 082005, 091015, and 091016 in CO ($J = 1\rightarrow 0$), 4.5 μm emission, or far-infrared spectroscopy (only 091015 and 091016).

2. The outflows toward 090003 and 093005 are the most compact, subtending less than $20''$ (8400 au) in total extent, having dynamical ages $\lesssim 2500$ years. These outflows are also found to have momenta, energies, and forces that are at the low end for Class 0 protostars. This observation, in addition to the lack of detectable outflows toward several other PBRS, leads us to suggest that outflows may start out weak in protostellar sources and become more energetic with time. These sources are also the only ones with flat visibility amplitudes to have detected outflows and we find a tentative tendency for the sources with flat visibility amplitudes in the 2.9 mm continuum (see Paper I) to either have no detected outflow activity or the most spatially compact outflows. This is further evidence for the sources with flat visibility amplitude being among the youngest protostars and the youngest PBRS.

3. The outflow from 082012 is extremely powerful, with redshifted emission detected out to $+40$ km s$^{-1}$ from line center and extent greater than the CARMA primary beam. Its total energy is in excess of any individual outflow in the NGC 1333 star-forming region (Plunkett et al. 2013) and comparable

Figure 10. PBRS 061012 and HOPS 223—Same as Figure 1, but for D-configuration data only. There is not a clear outflow detection from 061012; however, it is strongly confused with the outflow being driven by HOPS 223 and may need higher resolution to disentangle. The PV plot shows that there is a blueshifted feature that is along a possible outflow axis for 061012. The outflow of HOPS 223 looks quite complex in the PV diagram with multiple velocity components; note that spatial filtering may be causing this outflow to appear more complex that it truly is. The contours in the line map start at 10σ and increase in 5σ intervals for the blue and the redshifted contours start at 10σ and increase in 5σ; $\sigma_{\text{blue}} = 0.44$ K and $\sigma_{\text{blue}} = 0.46$ K. Negative contours are not drawn for clarity. The PV plot contours are $[-6, -3, 5, 7, 9, 12, 15, 18, 21, 24, 27, 30] \times \sigma$ and $\sigma = 0.65$ K. The half-power point of the primary beam is plotted as the dashed circle.

Figure 11. Measured outflow forces (F_{out}) vs. L_{bol} for all sources with detected outflows. There is no clear relationship between these two source properties in our data; however, there is a general tendency of high luminosity sources having greater outflow forces. We plot the relationships that have been found in the literature for larger samples of objects from van der Marel et al. (2013) (dotted line) and Bontemps et al. (1996) (dashed line). The literature relationships utilized single-dish data, while our data are interferometric; thus, missing flux could cause F_{CO} to be systematically underestimated. Furthermore, the Class 0 sources in the literature have F_{CO} and L_{bol} values that are above the Bontemps et al. (1996) relation and the plotted relationships are principally fit to the Class I protostars.
to some of the most powerful known outflows from Class 0 protostars (e.g., Hirano et al. 2010, L1448C).

4. We detect far-infrared CO emission lines toward 6 out of the 8 PBRS observed. H$_2$O lines are detected toward 5 out of 8 PBRS, and OH and [O I] lines are detected toward 1 PBRS. The far-infrared CO, H$_2$O, and [O I] lines do not reveal outflows in the absence of outflow detections from other diagnostics. The CO luminosities and [O I] detections/upper limits are consistent with the results from larger samples of Class 0 protostars. However, the CO rotation temperatures tend to be lower than the typically observed 300 K CO rotation temperature for protostars; however, given the uncertainties the PBRS are consistent with the larger samples. Nevertheless, with a simple calculation of envelope opacity to a radius of 1000 au, we find that the observed rotation temperatures of the PBRS could appear ~20 K lower due to envelope opacity, given that the PBRS seem to have denser envelopes than typical Class 0 protostars.

We wish to thank the anonymous referee for excellent suggestions, which have significantly improved the quality of the manuscript. The authors also wish to acknowledge fruitful discussions with M. Dunham, L. Kristensen, and J. Mottram regarding this work. J.J.T. is currently supported by grant 639.041.439 from the Netherlands Organisation for Scientific Research (NWO). J.J.T. acknowledges past support provided by NASA through Hubble Fellowship grant #HST-HF-51300.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. The

Figure 12. Spitzer 4.5 μm images of the PBRS sample also having CO (J = 1 → 0) observations. This particular Spitzer band has a bright H$_2$ feature commonly associated with shock-excited outflow emission but is also sensitive to scattered light in the outflow cavities. The protostars positions are marked with either white crosses or small circles and the outflow position angles are denoted by the red and blueshifted arrows. The PBRS 093005, 090003, HOPS 373, and 302002 have compact 4.5 μm emission near the location of the protostars and no extended H$_2$ knots. The PBRS 061012, HOPS 223, 082012, and 119019 have indications of H$_2$ emission extended \gtrsim0.1 pc from the protostars. Moreover, in the 061012 field the protostars HOPS 221 shows another apparent east–west outflow. The protostars 091015, 091016, 097002, and 082005 do not show evidence of any emission shortward of 70 μm. The source near the location of 097002 is another young star and not the PBRS (ST13).
Figure 12. (Continued.)
work of A.M.S. was supported by the Deutsche Forschungsgemeinschaft priority program 1573 (“Physics of the Interstellar Medium”). AK acknowledges support from the Foundation for Polish Science (FNP) and the Polish National Science Center grant 2013/11/N/ST9/00400. This work is based in part on observations made with Herschel, a European Space Agency Cornerstone Mission with significant participation by NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We are very grateful to have had the opportunity to conduct these follow-up observations with the CARMA array in California. The discontinuation of support for this productive facility is a loss that will continue to be felt into the future. Support for CARMA construction was derived from the states of Illinois, California, and Maryland, the James S. McDonnell Foundation, the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the University of Chicago, the Associates of the California Institute of Technology, and the National Science Foundation. Ongoing CARMA development and operations were supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities.

Facilities: CARMA, Herschel, Spitzer, Magellan.

APPENDIX

INDIVIDUAL SOURCES

A.1. HOPS 373

HOPS 373 is the close neighbor of 093005, located 110° to the south. The dust continuum emission observed in D-configuration only showed some asymmetry and the combined D and C configuration data resolved a second component, separated by 4″ (Paper I). An outflow was previously detected in CO ($J = 3 \rightarrow 2$) observations with the JCMT (Gibb & Little 2000) and an associated water maser by Haschick et al. (1983). Our observations of CO ($J = 1 \rightarrow 0$) in Figure 6 show that the outflow has quite a wide angle and is extended beyond the primary beam. We also tentatively detected an outflow originating from the secondary source that has blue and redshifted lobes opposite of the main outflow. The wide separation of the blue and redshifted lobes indicates that the source is viewed at an inclination angle between 50° and 80°. There is higher-velocity redshifted emission observed away from the continuum source toward the edge of the primary beam.

The far-infrared line emission from this source is quite intense, detecting [O I], OH, CO, and H$_2$O. The line emission from this source is the third brightest of all HOPS protostars and the only PBRS in our sample with confidently detected [O I] and OH emission.

A.2. 093005

The reddest PBRS, 093005, is located at the intersection of three filaments and ~110° north of HOPS 373 (ST13). At wavelengths shorter than 70 μm, 093005 was only detected in Spitzer 3.6 μm and 4.5 μm imaging (Figure 12(a)). The 4.5 μm emission could be indicative of shocked H$_2$ emission and/or scattered light in an outflow cavity. Thus, a detection at 4.5 μm is indicative of possible outflow activity toward this source. We clearly detect the CO outflow originating from 093005, as shown in Figure 1. The outflow appears compact with an offset between the red and blueshifted lobes of only ~3″. The position–velocity diagram of the outflow simply shows high-velocity emission offset from the protostar position, not the typical increasing velocity with distance as typical for many protostellar outflows (Arce et al. 2007, p. 245). The features could result from a compact bow shock component as the outflow begins to break out from its envelope. However, the resolution of our observations was only ~3″ (~1200 au), making clear determinations as to the nature of the high-velocity features difficult. The relative velocities of the red and blueshifted lobes and their close spatial location indicate that the source is not oriented edge-on and is at an inclination angle of ~30°. Compact bow shocks viewed at an intermediate inclination could show observed morphology (Arce et al. 2007, p. 245). Far-infrared CO and H$_2$O line emission is also clearly detected toward this source.

A.3. 090003

The PBRS 090003 (also called Orion B9 SMM 3; Miettinen et al. 2012) is located in a loose filamentary complex north of NGC 2024 with several protostars and starless cores over a 0.5 pc region (Miettinen et al. 2012). Much like 093005, the only detection shortward of 24 μm for this source is at 4.5 μm, where there is a small feature offset from the location of the protostar. This may be indicative of a knot of shocked H$_2$ emission (Miettinen et al. 2012; Stutz et al. 2013). The CO ($J = 1 \rightarrow 0$) outflow from this source appears similar to that of 093005 and is indicative of ~30° inclination, as shown in Figure 2; however, in contrast, there is a more spatially extended, low-velocity component. The high-velocities near the source and low velocities extended away from the source could be indicative of a wide-angle wind driving this outflow. Moreover, only ±1 km s$^{-1}$ around the systemic velocity is corrupted by 12CO emission from the cloud, so we are able to see lower-velocity features than in 093005. Miettinen et al. (2012) observed 13CO ($J = 2 \rightarrow 1$) with APEX (~30″ resolution) and did not detect any indication of outflow.
emission from 090003, suggesting that the outflow is quite compact.

A.4. 082012 and HOPS 372

The outflow from 082012 is the brightest and one of the two most spatially extended outflows in the sample. Moreover, the outflow is visible over the largest velocity range (aside from HOPS 68) as shown by the three panels integrated at low, moderate, and high velocities in Figure 3. Sandell et al. (1999) previously reported single-dish CO \((J = 3 \rightarrow 2)\) and continuum maps at 450 and 850 \(\mu m\) toward this region. They resolved the dust emission around both protostars, and found a high-velocity outflow, consistent with our data, but mapped over a larger region, ±150" from the source.

The clear separation of the blue and redshifted lobes indicates an intermediate orientation of the source(s). The driving source of the collimated, high-velocity emission seems to be 082012; however, at lower velocities the redshifted lobe extends back to HOPS 372 and there is blueshifted emission that appears associated with HOPS 372 as well. Thus, the two outflows are nearly parallel and are perhaps interacting, but at a minimum their emission is clearly overlapping at lower velocities.

The highest observed outflow velocities toward 082012 are in excess of ±40 km s\(^{-1}\), with multiple components being evident in the PV diagram; and we can see the characteristic “Hubble-flow” in the PV diagram. Furthermore, there are also red and blueshifted CO emission clumps nearly orthogonal to the main outflow of 082012 which could be yet another outflow in the region. There are extended H\(_2\) knots along the position angle of the outflow from 082012, as shown in Figure 12(a).

A.5. 135003

The PBRS 135003 is located in the OMC2/3 region of the Orion A cloud and located near OMC2-FIR6. The outflow...
from 135003 is well-collimated on the blueshifted side, another source with a characteristic “Hubble-flow” in the PV diagram, see Figure 5. The redshifted, however, side does not appear as well-collimated near the source, but there is another redshifted feature along the position angle, but outside the primary beam. An initial outflow detection was reported for this source by Shimajiri et al. (2009), consistent with our measured position angle. Moreover, their single-dish CO ($J = 3 \rightarrow 2$) data show that the outflow does extend outside our primary beam. The Spitzer 4.5 μm map in Figure 12(b) shows a few knots of emission extending along the blueshifted side of the outflow, H$_2$ imaging from Stanke et al. (2002) (SMZ 1-38) shows emission along both the northern (blueshifted) and southern (redshifted sides of the outflow). This source also shows bright far-infrared CO and H$_2$O features along its outflow, coinciding with the blueshifted side of the outflow as shown in Figure 16. We do not detect an outflow from its neighbor HOPS 59 within our sensitivity limits in low-J CO or PACS far-infrared lines.

A.6. 019003

The PBRS source 019003 is also located in the OMC 2/3 region, northward of 135003. In Paper I, we detected 2 continuum sources toward the location of 019003 that were separated by $\sim 10''$; the source associated with the PBRS is 019003-A and the other appears starless and is denoted 019003-B (Paper I). We detect an apparent outflow from 019003-A as shown in Figure 7 and the 4.5 μm emission is also offset from the main outflow axis, similar to 090003, HOPS 373, and 302002. The surface brightness of the outflow is low, thus its detection is not as definitive as some of the others due to the crowded, confused region. Finally, there was no complementary detection in H$_2$ from Stanke et al. (2002).

A.7. HOPS 68

The Class I protostar HOPS 68 is detected at the edge of the primary beam in the 019003 field. An outflow is well-detected from this source; the redshifted lobe falls within the half-power

Figure 14. PACS spectra centered on the CO ($J = 14 \rightarrow 13$) transition without continuum subtraction. The downward pointing arrow marks the wavelength of CO ($J = 14 \rightarrow 13$). We also note the peak line flux density, rms of the continuum, and continuum level in each plot; the peak line flux density is relative to the continuum level. PBRS 119019 only has a 2.9σ detection of the CO ($J = 14 \rightarrow 13$), but other CO transitions are detected with higher significance, thus we regard this as a robust detection. On the other hand the PBRS 061012 has only a tentative (2.5σ) detection of CO ($J = 14 \rightarrow 13$) and no other CO transitions detected; 091015 and 091016 do not have detections. HOPS 347 has a peak at the expected wavelength of CO ($J = 14 \rightarrow 13$) but it is not significant given the noise around the line. The peak line flux density, rms, and continuum level are denoted in each plot.
point of the primary beam, while the blueshifted lobe is located just outside the half-power point. The velocity distribution of the outflow indicates that it is located at an inclination angle of 50° from comparison to the models of Cabrit & Bertout (1986). An intermediate outflow inclination was necessary for a model by Poteet et al. (2011) to explain the relatively flat SED between 3.6 and 24 μm, deep silicate absorption feature, and crystalline silicate features observed with Spitzer; the crystalline dust is postulated to have been formed by shocks in the outflow cavity walls. Furthermore, there are apparently two outflows from this source, a lower velocity outflow that is more east–west in orientation (PA ≈ 230°), but at higher velocities there is an apparent shift and the outflow is more north–south in orientation (PA ≈ 160°). However, the blueshifted side has both components out to the highest velocities we can measure. We overlay the integrated intensity maps of the high-velocity emission on a Ks-band image in Figure 8, and there are apparent outflow features associated with both the northwest–southeast component and the northeast-southwest component. H2 imaging by Stanke et al. (2002) confirms that these knots are H2 emission (SMZ 1-28) and they also suggested that the driving source was FIR2 from Chini et al. (1997) (coincident with HOPS 68).

A.8. 302002

The PBRS 302002 is located at the end of an isolated filamentary structure in NGC 2068; it is located ~20'' to the south of a Class I source (HOPS 331). 302002 is undetected at 24 μm but does seem to have emission at 4.5 μm, indicative of an outflow cavity or shocked H2 emission in the outflow, see Figure 12(b). We show in Figure 9 that there appears to be outflow emission associated with this source; however, the blue and redshifted emission are not located on the same position angle from the source. The blueshifted emission is narrow and extends out to the edge of the primary beam. The redshifted emission on the other hand is quite compact and located in a single clump offset west of the protostar. The CO outflow direction is marginally consistent with the apparent orientation in the 4.5 μm imaging. The poorly detected outflow and low-

Figure 15. PACS spectra around the [O i] 63.18 μm transition. The solid-line is the foreground/background subtracted spectrum. The foreground/background is measured from the edge spaxels and the fine dashed line is the standard deviation of the foreground/background spectrum. This is a good representation of the noise level in the spectral band since the [O i] variations will dominate the noise. Only HOPS 373 has a convincing detection in the [O i] line, the detection of 019003 is tentative (2.2σ) given the large variations in the foreground/background spectrum. There are features at the expected wavelength of [O i] toward 061012 and 119019, but there are other features that have the same level of peak intensity that do not correspond to an expected spectral line. The foreground/background [O i] near 135003 is highly variable, resulting in the negative spectrum. The peak line flux density, spectrum rms, and the rms of the background (BG rms Peak) emission at the wavelength of the [O i] line are noted in each panel.
velocity of the emission may indicate that this source is close to edge-on. From the comparison to Cabrit & Bertout (1986), the outflow could be between 50° and 80° but likely closer to 80°.

A.9. 061012 and HOPS 223

The PBRS 061012 is located very near the outbursting protostar V2775 Ori (HOPS 223) in the L1641 region (Fischer et al. 2012). The outflow toward 061012 cannot be unambiguously disentangled from that of HOPS 223 in the integrated velocity map shown in Figure 10. However, looking at the PV diagram of the 12CO emission centered on the continuum source of 061012, we do see evidence of higher velocity emission near the protostar. The position angle of the outflow is estimated from the resolved 4.5 μm emission shown in ST13 and there are H2 emission knots at 4.5 μm extending almost 0.3 pc from the source (Figure 12(b)). Thus, we may be detecting an inner, compact outflow toward this protostar. The outflow from HOPS 223 appears quite wide, bright and clumpy in the integrated intensity map and PV diagram in Figure 10. The clumpiness could in part result from spatial filtering and that the source is toward the edge of the primary beam with increased noise. However, episodic mass ejection episodes could contribute to the clumpiness of the outflow emission, which has been seen in outflow data toward HH 46/47 (Arce et al. 2013).

A.10. 091015 and 091016

The PBRS 091015 and 091016 are close neighbors in NGC 2068, 091016 being ~40° east of 091015; these sources are completely undetected at wavelengths shortward of 70 μm. We do not detect evidence of outflow emission from these sources at any wavelength. Given that a substantial amount of cloud emission is resolved-out at line center, there could be low-velocity outflow emission associated with these sources that we simply cannot detect with the current data. Observations of higher-excitation CO transitions at higher resolution may better distinguish potential outflow emission from these sources. However, we also did not detect any far-infrared line emission from these sources, a further indication that any outflows from these sources may be weak, or completely buried within their the optically thick envelopes.

A.11. 082005

The PBRS 082005 is located about 4° south of 082012, and these sources are connected by a filamentary structure detected at 870 and 160 μm. This source is also undetected at wavelengths shorter than 70 μm. No CO outflow emission was detected in our CARMA observations toward this source and we see no evidence for outflow emission from the Spitzer 4.5 μm maps in Figure 12(c).

A.12. 097002

The PBRS 097002 is found near a bright 4.5 μm and 24 μm source as seen in Spitzer data shown by Stutz et al. (2013); however, this short wavelength emission is not from 097002, which is only detected at 70 μm and longer wavelengths. We do not detect an outflow from this source in our CO (J = 1 → 0) maps, but the continuum is quite bright (Paper I). However, there is some emission detected near line-center at the source position.
A.13. 119019

The outflow toward 119019 has complete spatial overlap between the red and blueshifted emission meaning that this source is viewed almost exactly edge-on. This source was also one of the fainter continuum sources detected in (Paper I). Therefore, unlike the rest of the sample, this source may only have been identified as a PBRS due to an edge-on orientation. The outflow extends outside the CARMA primary beam and the velocity width of the outflow is quite narrow, only $\pm 3 \text{ km s}^{-1}$; however, the outflow may have greater speeds given that we are viewing it in the plane of the sky. Some diffuse emission is detected at 4.5 μm near the protostar location and along the outflow in Figure 12(b); Davis et al. (2009) also detects H$_2$ knots that appear to be part of this outflow (DFS 136). This source also has the faintest far-infrared line emission for which we have a confident detection.

Figure 17. Rotation diagrams of PACS CO emission, assuming optically thin emission. The quantity plotted on the y-axis is the natural logarithm of the total number of CO molecules in the Jth state divided by the degeneracy of that state.
REFERENCES

Ali, B., Tobin, J. J., Fischer, W. J., et al. 2010, A&A, 518, L119
Andre, P., Ward-Thompson, D., & Barsony, M. 1993, ApJ, 406, 122
Arce, H. G., Mardones, D., Corder, S. A., et al. 2013, ApJ, 774, 59
Arce, H. G., & Sargent, A. I. 2006, ApJ, 646, 1070
Arce, H. G., Shepherd, D., Gueth, F., et al. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tuscon, AZ: Univ. Arizona Press), 245
Bally, J., Reipurth, B., Lada, C. J., & Billawala, Y. 1999, AJ, 117, 410
Bontemps, S., Andre, P., Terebey, S., & Cabrit, S. 1996, A&A, 311, 858
Cabrit, S., & Bertout, C. 1986, ApJ, 307, 313
Cassen, P., & Moosman, A. 1981, Icar, 48, 353
Chen, X., Arce, H. G., Zhang, Q., et al. 2010, ApJ, 715, 1344
Chini, R., Reipurth, B., Ward-Thompson, D., et al. 1997, ApJL, 474, L135
Davis, C. J., Froebrich, D., Stanke, T., et al. 2009, A&A, 496, 153
Dunham, M. M., Chen, X., Arce, H. G., et al. 2011, ApJ, 742, 1
Dunham, M. M., Evans, N. J., II, Bourke, T. L., et al. 2006, ApJ, 651, 945
Dunham, M. M., Stutz, A. M., Allen, L. E., et al. 2014, in Protostars and Planets VI, ed. H. Beuther, R. S. Klessen, C. P. Dullemond, & Th. Henning (Tucson, AZ: Univ. Arizona Press), 195
Enoch, M. L., Lee, J.-E., Harvey, P., Dunham, M. M., & Schnee, S. 2010, ApJL, 722, L33
Fischer, W. J., Megeath, S. T., Ali, B., et al. 2010, A&A, 518, L122
Fischer, W. J., Megeath, S. T., Tobin, J. J., et al. 2012, ApJ, 756, 99
Flower, D. R., & Pineau Des Forêts, G. 2010, MNRAS, 406, 1745
Flower, D. R., & Pineau des Forêts, G. 2015, A&A, 578, A63
Frank, A., Ray, T. P., Cabrit, S., et al. 2014, in Protostars and Planets VI, ed. H. Beuther, R. S. Klessen, C. P. Dullemond, & Th. Henning (Tucson, AZ: Univ. Arizona Press), 451
Friesking, M. A., Langer, W. D., & Wilson, R. W. 1982, ApJ, 262, 590
Furlan, E., Fischer, W. J., Ali, B., et al. 2016, ApJS, 224, 5
Gibb, A. G., & Little, L. T. 2000, MNRAS, 313, 663
Green, J. D., Evans, N. J., II, Jørgensen, J. K., et al. 2013, ApJ, 770, 123
Haschick, A. D., Moran, J. M., Rodríguez, L. F., & Ho, P. T. P. 1983, ApJ, 265, 281
Hirano, N., Ho, P. T. P., Liu, S.-Y., et al. 2010, ApJ, 717, 58
Hollenbach, D. 1985, Icar, 61, 36
Hollenbach, D., & McKee, C. F. 1989, ApJ, 342, 306
Karska, A., Herczeg, G. J., van Dishoeck, E. F., et al. 2013, A&A, 552, A141
Karska, A., Kristensen, L. E., van Dishoeck, E. F., et al. 2014, A&A, 572, A9
Kaufman, M. J., & Neufeld, D. A. 1996, ApJ, 467, 111
Kenyon, S. J., Calvet, N., & Hartmann, L. 1993, ApJ, 414, 676
Langer, W. D., & Penzias, A. A. 1993, ApJ, 408, 539
Larson, R. B. 1969, MNRAS, 145, 271
Lee, C., Hirano, N., Palau, A., et al. 2009, ApJ, 699, 1584
Lee, C.-F., Ho, P. T. P., Bourke, T. L., et al. 2008, ApJ, 685, 1026
Lee, C.-F., Mundy, L. G., Reipurth, B., Ostriker, E. C., & Stone, J. M. 2000, ApJ, 542, 925
Li, Z.-Y., Banerjee, R., Pudritz, R. E., et al. 2014, in Protostars and Planets VI, ed. H. Beuther, R. S. Klessen, C. P. Dullemond, & Th. Henning (Tucson, AZ: Univ. Arizona Press), 28
Li, Z.-Y., Krasnopolsky, R., & Shang, H. 2013, ApJ, 774, 82
Looney, L. W., Mundy, L. G., & Welch, W. J. 2000, ApJ, 529, 477

Figure 18. CO luminosity vs. L_{bol} (left) and T_{bol} (right) for the PBRS, and WISH/WILL/DIGIT/HOPS samples. The CO luminosity for the PBRS and HOPS sources is a summation of all detected CO lines in the PACS spectral range for the PBRS, and WISH/WILL/DIGIT/HOPS samples. The WISH and WILL CO luminosities are calculated by extrapolation of the CO ladder given that not all CO lines were observed.

Figure 19. CO rotation temperatures (T_{rot}) of the PBRS relative to the WISH/WILL/DIGIT/HOPS samples. The T_{rot} values for the PBRS are among the lowest measured for the luminosity range sampled and are lower that most protostars with similar T_{bol} measurements. The source with the lowest L_{bol} is IRAM 04191 from the DIGIT sample (Green et al. 2013).
