Eigenvalue bounds for a class of Schrödinger operators in a strip

Martin Karuhanga
Department of Mathematics,
Mbarara University of Science and Technology,
P.O BOX 1410, Mbarara, Uganda
E-mail: mkaruhanga@must.ac.ug

Abstract
This paper is concerned with the estimation of the number of negative eigenvalues (bound states) of Schrödinger operators in a strip subject to Neumann boundary conditions. The estimates involve weighted L^1 norms and $L \log L$ norms of the potential. Estimates involving the norms of the potential supported by a curve embedded in a strip are also presented.

Keywords: Eigenvalue bounds; Schrödinger operators; strip

Mathematics Subject Classification (2010): 35P05, 35P15

1 Introduction
This paper provides estimates for the number of negative eigenvalues of the Schrödinger operator $-\Delta - V$ on $L^2(S)$ subject to Neumann boundary conditions, where S is an infinite straight strip. We use the results of Shargorodsky [10] to obtain improved versions of the estimates by Grigor’yan and Nadirashvili [7]. This improvement is achieved by replacing $\|V\|_{L^p}, p > 1$ in the estimates of [7, Section 7] by the $L \log L$ norms of V. In addition, these estimates are extended to the case of strongly singular potentials (see Section 4). On \mathbb{R}^2, estimates of a similar nature have been presented in [8]. The precise description of the operator here studied is as follows:

Let $S := \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \in \mathbb{R}, 0 < x_2 < a\}, a > 0$ and $V : \mathbb{R}^2 \rightarrow \mathbb{R}$
be a function integrable on bounded subsets of S. Consider the following self-adjoint operator on $L^2(S)$

$$H_V = -\Delta - V, \quad V \geq 0,$$

with homogeneous Neumann boundary conditions both at $x_2 = 0$ and $x_2 = a$. The main objective of this paper is to obtain estimates for the number of negative eigenvalues of (1) in terms of the norms of V.

The strategy used here is as follows: The problem is split into two problems. The first one is defined by the restriction of the quadratic form associated with the operator (1) to the subspace of functions of the form $w(x_1)u_1(x_2)$, where u_1 is the first eigenfunction of the one-dimensional differential operator on $L^2((0,a))$ and hence, is reduced to a well studied one-dimensional Schrödinger operator with the potential equal to a weighted mean value \tilde{V} of V over $(0,a)$. The second problem is defined by a class of functions orthogonal to constant functions in the $L^2((0,a))$ inner product.

2 Preliminaries

Let (Ω, Σ, μ) be a measure space and let $\Psi : [0, +\infty) \to [0, +\infty)$ be a non-decreasing function. The Orlicz class $K_\Psi(\Omega)$ is the set of all of measurable functions $f : \Omega \to \mathbb{C}$ (or \mathbb{R}) such that

$$\int_{\Omega} \Psi(|f(x)|) d\mu(x) < \infty.$$

(2)

If $\Psi(t) = t^p$, $1 \leq p < \infty$, this is just the $L^p(\Omega)$ space. The Orlicz space $L_\Psi(\Omega)$ is the linear span of the Orlicz class $K_\Psi(\Omega)$, that is, the smallest vector space containing $K_\Psi(\Omega)$.

Definition 2.1. A continuous non-decreasing convex function $\Psi : [0, +\infty) \to [0, +\infty)$ is called an N-function if

$$\lim_{t \to 0^+} \frac{\Psi(t)}{t} = 0 \quad \text{and} \quad \lim_{t \to \infty} \frac{\Psi(t)}{t} = \infty.$$

The function $\Phi : [0, +\infty) \to [0, +\infty)$ defined by

$$\Phi(t) := \sup_{s \geq 0} (st - \Psi(s))$$

is called complementary to Ψ.

2
Definition 2.2. An N-function Ψ is said to satisfy a global Δ_2-condition if there exists a positive constant k such that for every $t \geq 0$,

$$\Psi(2t) \leq k\Psi(t).$$ (3)

Similarly Ψ is said to satisfy a Δ_2-condition near infinity if there exists $t_0 > 0$ such that (3) holds for all $t \geq t_0$.

Let Φ and Ψ be mutually complementary N-functions, and let $L_\Phi(\Omega), L_\Psi(\Omega)$ be the corresponding Orlicz spaces. We will use the following norms on $L_\Psi(\Omega)$

$$\|f\|_{\Psi,\Omega} = \|f\|_{\Psi,\Omega} = \sup \left\{ \int \Phi(|g|) d\mu \leq 1 \right\},$$ (4)

and

$$\|f\|_{(\Psi)} = \|f\|_{(\Psi,\Omega)} = \inf \left\{ \kappa > 0 : \int \Psi \left(\frac{|f|}{\kappa} \right) d\mu \leq 1 \right\}.$$ (5)

These two norms are equivalent

$$\|f\|_{(\Psi)} \leq \|f\|_{\Psi,\Omega} \leq 2\|f\|_{(\Psi)}, \quad \forall f \in L_\Psi(\Omega),$$ (6)

(see [1]).

Note that

$$\int \Omega \Psi \left(\frac{|f|}{\kappa_0} \right) d\mu \leq C_0, \quad C_0 \geq 1 \implies \|f\|_{(\Psi)} \leq C_0\kappa_0.$$ (7)

It follows from (7) with $\kappa_0 = 1$ that

$$\|f\|_{(\Psi)} \leq \max \left\{ 1, \int \Omega \Psi(|f|) d\mu \right\}.$$ (8)

We will need the following equivalent norm on $L_\Psi(\Omega)$ with $\mu(\Omega) < \infty$ which was introduced in [11]:

$$\|f\|_{(av)} = \|f\|_{(av),\Omega} = \sup \left\{ \int \Phi(|g|) d\mu \leq \mu(\Omega) \right\}.$$ (9)

We will use the following pair of pairwise complementary N-functions

$$A(s) = e^{|s|} - 1 - |s|, \quad B(s) = (1 + |s|) \ln(1 + |s|) - |s|, \quad s \in \mathbb{R}.$$ (10)

Let $I_1, I_2 \subseteq \mathbb{R}$ be nonempty open intervals. We denote by $L_1(I_1, L_B(I_2))$ the space of measurable functions $f : I_1 \times I_2 \rightarrow \mathbb{C}$ such that

$$\|f\|_{L_1(I_1, L_B(I_2))} := \int_{I_1} \|f(x, \cdot)\|_{B,I_2} \, dx < +\infty.$$ (11)
Let us recall that a sequence \(\{a_n\} \) belongs to the “weak \(l_1 \)-space” (Lorentz space) \(l_{1,w} \) if the following quasinorm

\[
\| \{a_n\} \|_{l_{1,w}} = \sup_{s>0} (s \text{ card}\{n : |a_n| > s\})
\] (12)

is finite. It is a quasinorm in the sense that it satisfies the weak version of the triangle inequality:

\[
\| \{a_n\} + \{b_n\} \|_{l_{1,w}} \leq 2 (\| \{a_n\} \|_{l_{1,w}} + \| \{b_n\} \|_{l_{1,w}}).
\]

The quasinorm (12) induces a topology on \(l_{1,w} \) in which this space is non-separable. The closure of the set of elements \(a_n \) with only finite number of non-zero terms is a separable subspace in \(l_{1,w} \). It is well known that \(l_1 \subset l_{1,w} \) (see, e.g., [3] for more details).

3 Estimating the number of negative eigenvalues in a strip

Define (11) via its quadratic form

\[
q_{V,S}[u] := \int_S |\nabla u(x)|^2 dx - \int_S V(x)|u(x)|^2 dx,
\]

\[\text{Dom}(q_{V,S}) = W_2^1(S) \cap L^2(S, Vdx).\]

We shall denote by \(N_-(q_{V,S}) \) the number of negative eigenvalues of (11) repeated according to their multiplicities. Then \(N_-(q_{V,S}) \) is given by

\[
N_-(q_{V,S}) = \sup_L \{\dim L : q_{V,S}[u] < 0, \forall u \in L \setminus \{0\}\},
\] (13)

where \(L \) denotes a linear subspace of \(\text{Dom}(q_{V,S}) \) (see, e.g., [3, Theorem 10.2.3]). Let

\[L_1 := \{u \in L^2(S) : u(x) = u(x_1)\}\]

and \(P : L^2(S) \to L_1 \) be a projection defined by

\[Pv(x) := \frac{1}{a} \int_0^a v(x) dx_2 = Pv(x_1).\]

Indeed, \(P \) is a projection since \(P^2 = P \). Let \(L_2 := (I-P)L^2(S) \), then one can show that \(L^2(S) = L_1 \oplus L_2 \). Here and below \(\oplus \) denotes a direct orthogonal
sum.

Indeed for all $v \in L^2$ we have,

\[
\int_0^a v(x) dx_2 = \int_0^a (I - P) v(x) dx_2 \\
= \int_0^a v(x) dx_2 - \int_0^a P v(x) dx_2 \\
= \int_0^a v(x) dx_2 - \int_0^a P v(x_1) dx_2 \\
= \int_0^a v(x) dx_2 - \int_0^a v(x) dx_2 \\
= 0.
\]

Now pick $w \in L^1$ and $v \in L^2$, then,

\[
\langle v, w \rangle_{L^2(S)} = \int_S v(x) \overline{w(x_1)} dx = \int_R \left(\int_0^a v(x) dx_2 \right) \overline{w(x_1)} dx_1 \\
= 0.
\]

Similarly, let

\[
\mathcal{H}_1 := \{ u \in W^1_2(S) : u(x) = u(x_1) \} \text{ and } \mathcal{H}_2 := (I - P)W^1_2(S), \quad (14)
\]

then

\[
W^1_2(S) = \mathcal{H}_1 \oplus \mathcal{H}_2.
\]

Indeed, for all $v \in \mathcal{H}_1$ and all $w \in \mathcal{H}_2$ we have

\[
\langle v, w \rangle_{W^1_2(S)} = \int_S \left(v(x_1) \overline{w(x)} + v_{x_1}(x_1) \overline{w_{x_1}(x)} + v_{x_2}(x_1) \overline{w_{x_2}(x)} \right) dx = 0.
\]

This is so because $v, v_{x_1} \in L^1, \overline{w}, \overline{w_{x_1}} \in L^2$ and $v_{x_2} = 0$. To see this note that $v(x_1)$ and $v_{x_1}(x_1)$ do not depend on x_2 implying that $v_{x_1} \in L^1$. Also, $w \in L^2 \Leftrightarrow \int_0^a w(x) dx_2 = 0$. So, $\int_0^a \overline{w_1(x)} dx_2 = 0 \Rightarrow \int_0^a \overline{w_{x_1}(x)} dx_2 = 0 \Rightarrow w_x \in L^2$. Hence $\int_S v_x(x) w_x(x, y) dx_1 dx_2 = 0$.

Now for all $u \in W^1_2(S)$, $u = v + w$, $v \in \mathcal{H}_1$, $w \in \mathcal{H}_2$ one has

\[
\int_S |\nabla u(x)|^2 dx = a \int_R |v'(x_1)|^2 dx_1 + \int_S |\nabla v(x)|^2 dx \\
+ \int_S \nabla v(x_1) \cdot \nabla w(x) dx + \int_S \nabla w(x) \cdot \nabla v(x_1) dx \\
= a \int_R |v'(x_1)|^2 dx_1 + \int_S |\nabla w(x)|^2 dx
\]
and

\[
\int_S V(x) | u(x) |^2 \, dx = \int_S V(x) | v(x_1) |^2 \, dx + \int_S V(x) | w(x) |^2 \, dx \\
+ \int_S 2V(x) \text{Re}(v.w) \, dx \\
\leq 2 \int_{\mathbb{R}} V(x_1) | v(x_1) |^2 \, dx_1 + 2 \int_S V(x) | w(x) |^2 \, dx
\]

where

\[
\tilde{V}(x_1) = \frac{1}{a} \int_0^a V(x) \, dx_2.
\]

So

\[
\int_S | \nabla u(x) |^2 \, dx - \int_S V(x) | u(x) |^2 \, dx \\
\geq \int_{\mathbb{R}} | v'(x_1) |^2 \, dx_1 - 2 \int_{\mathbb{R}} \tilde{V}(x_1) | v(x_1) |^2 \, dx_1 \\
+ \int_S | \nabla w(x) |^2 \, dx - 2 \int_S V(x) | w(x) |^2 \, dx.
\]

Hence

\[
N_-(q_{V,S}) \leq N_-(q_{1,2\tilde{V},\mathbb{R}}) + N_-(q_{2V,S}),
\]

where \(q_{1,2\tilde{V},\mathbb{R}}\) and \(q_{2V,S}\) denote the restrictions of the form \(q_{2V,S}\) to the spaces \(H_1\) and \(H_2\) respectively.

Let

\[
I_n := [2^{n-1}, 2^n], \ n > 0, \quad I_0 := [-1, 1], \quad I_n := [-2^n, -2^{n-1}], \ n < 0,
\]

\[
\mathcal{G}_n := \int_{I_n} |x_1| \tilde{V}(x_1) \, dx_1, \ n \neq 0, \quad \mathcal{G}_0 := \int_{I_0} \tilde{V}(x_1) \, dx_1.
\]

Then similarly to the estimate before (39) in [10] one has

\[
N_-(q_{1,2\tilde{V},\mathbb{R}}) \leq 1 + 7.61 \sum_{\{n \in \mathbb{Z}, \ \mathcal{G}_n > 0.046\}} \sqrt{\mathcal{G}_n}.
\]

In terms of the original potential \(V\)

\[
\mathcal{G}_n = \int_{I_n} |x_1| \tilde{V}(x_1) \, dx_1 = \int_{I_n} |x_1| \left(\int_0^a V(x) \, dx \right) \, dx_1 = \int_{I_n \times (0,a)} |x_1| V(x) \, dx
\]
\[G_0 = \int_{I_0} \tilde{V}(x_1) \, dx_1 = \int_{I_0} \left(\int_0^a V(x) \, dx \right) \, dx_1 = \int_{I_0 \times (0,a)} V(x) \, dx. \]

It now remains to find an estimate for \(N_-(q_{2,V,S}) \) in (15).

Let \(S_n := J_n \times I, \ n \in \mathbb{Z}, \) where \(J_n := (n, n+1) \) and \(I := (0, a). \) Then the variational principle (see, e.g., [5, Ch. 6, § 2.1, Theorem 4]) implies

\[N_-(q_{2,V,S}) \leq \sum_{n \in \mathbb{Z}} N_-(q_{2,V,S_n}), \quad (18) \]

where

\[q_{2,V,S_n}[w] := \int_{S_n} |\nabla w(x)|^2 \, dx - 2 \int_{S_n} V(x)|w(x)|^2 \, dx, \]

\[\text{Dom} \,(q_{2,V,S_n}) = \left\{ w \in W^1_2(S_n) \cap L^2 (S_n, V(x)dx) : \int_{S_n} w(x) \, dx = 0 \right\}. \]

Lemma 3.1. (cf. [10, Lemma 7.8]) There exists \(C_1 > 0 \) such that

\[N_-(q_{2,V,S}) \leq C_1 \| V \|_{L^1(J_n,L^B(I))}, \quad \forall V \geq 0 \quad (19) \]

(see [11]).

Proof. Let \(I = I, \) the unit interval. Then it follows from Lemma [10, Lemma 7.7] that there is a constant \(d_1 > 0 \) such that

\[N_-(q_{2,V,S_n}) \leq d_1 \| V \|_{L^1(J_n,L^B(I))} + 1, \quad \forall V \geq 0. \quad (20) \]

Similarly to (62) in [10], there is a constant \(d_2 > 0 \) such that

\[2 \int_{S_n} V(x)|w(x)|^2 \, dx \leq d_2 \| V \|_{L^1(J_n,L^B(I))} \int_{S_n} |\nabla w(x)|^2 \, dx \]

for all \(w \in W^1_2(S_n) \cap L^2 (S_n, V(x)dx) \) such that \(\int_{S_n} w(x) \, dx = 0. \) If \(\| V \|_{L^1(J_n,L^B(I))} \leq \frac{1}{d_2}, \) then \(N_-(q_{2,V,S_n}) = 0. \) Otherwise \((20) \) implies

\[N_-(q_{2,V,S_n}) \leq C_1 \| V \|_{L^1(J_n,L^B(I))}, \quad \forall V \geq 0, \]

where \(C_1 := d_1 + d_2. \) Hence (19) follows by the scaling \(x_2 \rightarrow ax_2. \)
Let $\mathcal{D}_n := \|V\|_{L^1(J_n, L^B(I))}$, $n \in \mathbb{Z}$.

Theorem 3.2. There exist a constant $c > 0$ such that

$$N_-(q_{V,S}) \leq 1 + 7.61 \sum_{\{n \in \mathbb{Z}, G_n > 0.46\}} \frac{\sqrt{G_n} + C_1}{c} \sum_{\{n \in \mathbb{Z}, \mathcal{D}_n > c\}} \mathcal{D}_n, \quad \forall V \geq 0. \quad (21)$$

Proof. If $\mathcal{D}_n < \frac{1}{c}$, then $N-(q_{2,2V,S_n}) = 0$ and one can drop this term from the sum (18). Hence for any $c < \frac{1}{C_1}$, (18) and Lemma 3.1 imply that

$$N_-(q_{2,2V,S}) \leq C_1 \sum_{\{n \in \mathbb{Z}, D_n > c\}} D_n, \quad \forall V \geq 0. \quad (22)$$

This together with (15) and (17) imply (21).

One can easily show that (21) is an improvement of the result by A. Grigor’yan and N. Nadirashvili [7, Theorem 7.9] with a different c and that (21) is strictly sharper. Indeed, let $B_n := \|V\|_{B,S_n}$, Then it follows from the embedding $L^p(S_n) \hookrightarrow L^B(S_n)$ that there is a constant $C(p)$, $p > 1$ such that

$$B_n = \|V\|_{B,S_n} \leq C(p) \left(\int_{S_n} V(x)^p dx \right)^{\frac{1}{p}} = C(p)b_n(V),$$

where $b_n(V) := \left(\int_{S_n} V(x)^p dx \right)^{\frac{1}{p}}$ (see [10, Remark 6.3]). Now it follows from the embedding of mixed-norm Orlicz spaces (see, e.g., [4, 6]) that

$$\mathcal{D}_n \leq C(p)b_n(V).$$

Hence

$$N_-(q_{2,2V,S_n}) \leq C_2 b_n(V), \quad \forall V \geq 0, \quad (22)$$

where $C_2 := C_1 C(p)$. The scaling $V \mapsto tV$, $t > 0$, allows one to extend the above inequality to an arbitrary $V \geq 0$. Thus for any $c < \frac{1}{C_2}$, (21) implies [7, Theorem 7.9].

Next we will discuss different forms of (21).

Remark 3.3. Note that

$$\sum_{\{n \in \mathbb{Z}, G_n > c\}} \sqrt{G_n} \leq \frac{2}{\sqrt{c}} \|G_n\|_{1,w} \quad (23)$$

(see (49) in [10]). Estimate (21) implies the following estimate

$$N_-(q_{V,S}) \leq 1 + C_3 \left(\|G_n\|_{1,w} + \|V\|_{L^1(R, L^B(I))} \right), \quad \forall V \geq 0. \quad (24)$$
This follows from (23) and
\[\sum_{\{n \in \mathbb{Z}, D_n > c\}} D_n \leq \sum_{n \in \mathbb{Z}} D_n = \int_{\mathbb{R}} \| V(x_1, \cdot) \|_{\mathcal{B}, I} \, dx_1 = \| V \|_{L_1(\mathbb{R}, L_B(I))}. \]

Equation (24) in turn implies the following
\[N_-(q_{V,S}) \leq 1 + C_4 \left(\left\| (G_n)_{n \in \mathbb{Z}} \right\|_{1, w} + \int_{\mathbb{R}} \left(\int_I |V(x)|^p \, dx_2 \right)^{\frac{1}{p}} \, dx_1 \right), \quad \forall V \geq 0, \]
which is equivalent to
\[N_-(q_{V,S}) \leq 1 + C_5 \left(\left\| (G_n)_{n \in \mathbb{Z}} \right\|_{1, w} + \int_{\mathbb{R}} \left(\int_I |V_*(x)|^p \, dx_2 \right)^{\frac{1}{p}} \, dx_1 \right), \quad \forall V \geq 0, \]
where \(V_*(x) = V(x) - \tilde{V}(x_1), \quad \tilde{V}(x_1) = \frac{1}{a} \int_0^a V(x) \, dx_2. \)

Indeed,
\[
\left| \int_{\mathbb{R}} \left(\int_I |V(x)|^p \, dx_2 \right)^{\frac{1}{p}} \, dx_1 - \int_{\mathbb{R}} \left(\int_I |V_*(x)|^p \, dx_2 \right)^{\frac{1}{p}} \, dx_1 \right| \\
\leq \int_{\mathbb{R}} \left(\int_I |\tilde{V}(x_1)|^p \, dx_2 \right)^{\frac{1}{p}} \, dx_1 = a^{\frac{1}{p}} \int_{\mathbb{R}} \tilde{V}(x_1) \, dx_1 \\
= a^{\frac{1}{p}} \sum_{n \in \mathbb{Z}} \int_{I_n \times (0, a)} V(x) \, dx \leq a^{\frac{1}{p}} \sum_{n \in \mathbb{Z}} 2^{-|n|+1} G_n \\
\leq \text{const sup}_{n \in \mathbb{Z}} G_n \leq \text{const} \| (G_n)_{n \in \mathbb{Z}} \|_{1, w}.
\]

Thus (25) and (26) are equivalent.

Similarly,
\[
\left| \| V \|_{L_1(\mathbb{R}, L_B(I))} - \| V_* \|_{L_1(\mathbb{R}, L_B(I))} \right| \\
= \left| \int_{\mathbb{R}} \| V(x_1, \cdot) \|_{\mathcal{B}, I} \, dx_1 - \int_{\mathbb{R}} \| V_*(x_1, \cdot) \|_{\mathcal{B}, I} \, dx_1 \right| \\
\leq \int_{\mathbb{R}} \| \tilde{V}(x_1) \|_{\mathcal{B}, I} \, dx_1 = \text{const} \int_{\mathbb{R}} |\tilde{V}(x_1)| \, dx_1 \\
\leq \text{const sup}_{n \in \mathbb{Z}} G_n \\
\leq \text{const} \| (G_n)_{n \in \mathbb{Z}} \|_{1, w}.
\]
Hence (24) is equivalent to the following estimate

\[N_-(q_{V,S}) \leq 1 + C_6 \left(\| (G_n)_{n \in \mathbb{Z}} \|_{1,w} + \| V_* \|_{L_1(\mathbb{R}, L_G(I))} \right), \quad \forall V \geq 0. \tag{27} \]

Note the last term in right hand side of (27) (and (26)) drops out if \(V \) does not depend on \(x_2 \).

Let \(\alpha > 0 \) be given. It is well known that the lowest possible (semi-classical) rate of growth of \(N_-(q_{\alpha V,S}) \) is

\[N_-(q_{\alpha V,S}) = O(\alpha) \text{ as } \alpha \to +\infty. \]

It turns out that the finiteness of the first term in (21) is necessary for \(N_-(q_{\alpha V,S}) = O(\alpha) \) as \(\alpha \to +\infty \) to hold (see next Theorem).

Theorem 3.4. Let \(V \geq 0 \). If \(N_-(q_{\alpha V,S}) = O(\alpha) \) as \(\alpha \to +\infty \), then \(\| G_n \|_{1,w} < \infty \).

Proof. Consider the function

\[w_n(x_1) := \begin{cases}
0, & x_1 \leq 2^{n-1} \text{ or } x_1 \geq 2^{n+2}, \\
4(x_1 - 2^{n-1}), & 2^{n-1} < x_1 < 2^n, \\
2^{n+1}, & 2^n \leq x_1 \leq 2^{n+1}, \\
2^{n+2} - x_1, & 2^{n+1} < x_1 < 2^{n+2},
\end{cases} \]

for \(n > 0 \). Let \(u_n(x) = w_n(x_1)u_1(x_2) \), where \(u_1 \) is the first eigenfunction of the one-dimensional second order differential operator on \(L^2((0,a)) \) which is identically equal to 1. Then we have

\[
\int_S |\nabla u_n(x)|^2 dx = a \int_{\mathbb{R}} |w_n(x_1)|^2 dx_1 = a \left(\int_{2^{n-1}}^{2^n} |w_n(x_1)|^2 dx_1 + \int_{2^n}^{2^{n+1}} |w_n'(x_1)|^2 dx_1 + \int_{2^{n+1}}^{2^{n+2}} |w_n'(x_1)|^2 dx_1 \right) = C_7 2^{n+1},
\]

where \(C_7 := 5a \).
Now
\[
\int_S V(x)|u_n(x)|^2 \, dx \geq \int_{2^n}^{2^{n+1}} 2^{2(n+1)} \, dx_1 \int_0^a V(x) \, dx_2 \geq \int_{2^n}^{2^{n+1}} 2^{n+1} \, dx_1 \int_0^a |x_1| V(x) \, dx_2 = \frac{1}{C_7} \left(\int_S |\nabla u_n(x)|^2 \, dx \right) \mathcal{G}_n.
\]
If \(\mathcal{G}_n > C_7 \), then \(q_{V,S}[u_n] < 0 \). The auxiliary functions \(w_n \) can be defined similarly for \(n \leq 0 \). Since \(u_n \) and \(u_k \) have disjoint supports for \(|n - k| \geq 3 \), then
\[
N_-(q_{V,S}) \geq \frac{1}{3} \text{card} \{ n \in \mathbb{Z} : \mathcal{G}_n > C_7 \}
\]
(see [10, Theorem 9.1]). If for some constant \(C_8 > 0 \), \(N_-(q_{aV,S}) \leq C_8 \alpha \), then
\[
\frac{1}{3} \text{card} \{ n \in \mathbb{Z} : \alpha \mathcal{G}_n > C_7 \} \leq C_8 \alpha,
\]
and so
\[
\text{card} \left\{ n \in \mathbb{Z} : \mathcal{G}_n > \frac{C_7}{\alpha} \right\} \leq 3C_8 \alpha.
\]
With \(s = \frac{C_7}{\alpha} \) we have
\[
\text{card} \{ n \in \mathbb{Z} : \mathcal{G}_n > s \} \leq C_9 s^{-1}, \; s > 0,
\]
where \(C_9 := 3C_7 C_8 \).

4 Estimates involving norms of the potential supported by a Lipschitz curve inside a strip

In this section we obtain estimates analogous to those in the previous section when the potential \(V \) is strongly singular, i.e., when \(V \) is supported by a Lipschitz curve \(\ell \) embedded in \(S \). When dealing with function spaces on \(\ell \), we will always assume that \(\ell \) is equipped with the arc length measure. Before we introduce the estimates, let us first look at the following operator that we shall need in the sequel:
Consider a one-dimensional Schrödinger operator $H_{X,\alpha}$, with point δ-interactions on a countable set $X = \{x_k\}_{k=1}^{\infty}$ of points, called points of interaction and intensities $\alpha = \{\alpha_k\}_{k=1}^{\infty}$, defined by the differential expression $-\frac{d^2}{dx^2}$ on functions $w(x)$ that belong to the Sobolev space $W^2_2(\mathbb{R} \setminus X)$ satisfying, in the points of the set X, the following conjugation conditions:

$$w(x_k + 0) = w(x_k - 0), \quad w'(x_k + 0) - w'(x_k - 0) = \alpha_k w(x_k).$$

Since for each k, (x_k, x_{k+1}) is an open interval, then any function in $W^2_2((x_k, x_{k+1}))$ and its derivative have well defined (one-sided) values at the end-points. The operator $H_{X,\alpha}$ has the following representation

$$H_{X,\alpha} := -\frac{d^2}{dx^2} + \sum_{k=1}^{\infty} \alpha_k \delta(x - x_k),$$

where δ is the Dirac’s delta function. We shall assume that $H_{X,\alpha}$ is self-adjoint (see, e.g., [2]) in case the set X is finite. One can also define the operator (29) via its quadratic form as follows

$$q[w] := \int_{\mathbb{R}} |w'(x)|^2 \, dx - \sum_{k=1}^{\infty} \alpha_k |w(x_k)|^2, \quad \forall w \in W^1_2(\mathbb{R}).$$

Lemma 4.1. Given an infinite sequence of positive numbers (α_k), there is a sequence of points (x_k) in X such that (29) has infinitely many negative eigenvalues.

Proof. Let $\psi \in C^\infty_0(\mathbb{R})$ such that

$$\psi(x) = \begin{cases} 1 & \text{if } |x| < \frac{1}{2}, \\ 0 & \text{if } |x| \geq 1. \end{cases}$$

Assume that $x_{k+1} - x_k > x_k - x_{k-1}$, for all $k = 1, 2, \ldots$ and let

$$\varphi_k(x) := \psi \left(\frac{2}{x_k - x_{k-1}} (x - x_k) \right).$$

Then

$$\varphi_k(x) = \begin{cases} 1 & \text{if } |x - x_k| < \frac{x_k - x_{k-1}}{4}, \\ 0 & \text{if } |x - x_k| \geq \frac{x_k - x_{k-1}}{2}. \end{cases}$$

Let \mathcal{L} be a linear subspace of $W^1_2(\mathbb{R})$ defined by

$$\mathcal{L} := \left\{ w \in W^1_2(\mathbb{R}) : w = \sum_{k=1}^{\infty} a_k \varphi_k, \ a_k \in \mathbb{C} \right\}.$$
Since \(\varphi_k \) and \(\varphi_j \) for \(k \neq j \) have disjoint supports, then \(\dim \mathcal{L} = \infty \). Thus for all \(w \in \mathcal{L} \setminus \{0\} \), it follows from (30) that

\[
q[w] = \sum_{k=1}^{\infty} |a_k|^2 \left(\int_{\mathbb{R}} |\varphi'_k(x)|^2 dx - \alpha_k \right)
\]

\[
= \sum_{k=1}^{\infty} |a_k|^2 \left(\frac{4}{|x_k - x_{k-1}|^2} \int_{\mathbb{R}} |\psi'(\frac{2}{x_k - x_{k-1}}(x - x_k))|^2 dx - \alpha_k \right)
\]

\[
= \sum_{k=1}^{\infty} |a_k|^2 \left(\frac{2}{|x_k - x_{k-1}|} \int_{\mathbb{R}} |\psi'(t)|^2 dt - \alpha_k \right),
\]

where \(t = \frac{2}{x_k - x_{k-1}}(x - x_k) \). Take \(x_k \) such that

\[
x_k - x_{k-1} > \frac{2}{\alpha_k} \int_{\mathbb{R}} |\psi'(t)|^2 dt,
\]

then \(q[w] < 0 \) and the operator (29) has infinitely many negative eigenvalues.

Let us now return to the operator (1) with \(V \) supported by and locally integrable on a Lipschitz curve \(\ell \). Let

\[
q_{V,\ell}[u] := \int_{S} |\nabla u(x)|^2 dx - \int_{\ell} V(x)|u(x)|^2 ds(x)
\]

\[
\text{Dom}(q_{V,\ell}) = W^1_2(S) \cap L^2(\ell, V ds).
\]

Let \(\{x_1^{(k)}\}, k \in \mathbb{N} \) be a sequence of points on \(\mathbb{R} \) satisfying conditions in (28). Define

\[
\gamma_k := \ell \cap \left(\{x_1^{(k)}\} \times (0,a) \right), \quad x_1 \in \mathbb{R}, \quad k \in \mathbb{N}
\]

and

\[
\Sigma := \left\{ x_1^{(k)} : |\gamma_k| > 0 \right\}.
\]

Then the set \(\Sigma \) is at most countable. Let \(I \) be an arbitrary interval in \(\mathbb{R} \) and let

\[
\nu(I) := \int_{\ell \cap (I \times (0,a))} V(x) \, ds(x).
\]

Furthermore, let

\[
\mathcal{F}_n := \int_{I_n} |x_1| \, d\nu(x_1), \quad n \neq 0, \quad F_0 := \int_{I_0} d\nu(x_1) \quad (\text{cf. } (10))
\]

\[
\ell_n := \ell \cap S_n, \quad S_n := (n, n+1) \times (0,a), \quad n \in \mathbb{N},
\]

\[
C_n := \|V\|^{(aw)}_{\mathcal{B},\ell_n}.
\]
Theorem 4.2. Suppose that \(N \) is the cardinality of \(\Sigma \). Then there exist constants \(c_1, c_2, C_{10}, C_{11} > 0 \) such that

\[
N_-(q_{V,\ell}) \leq 1 + N + C_9 \sum_{\{n \in \mathbb{Z}, F_n > c_1\}} \sqrt{F_n} + C_{10} \sum_{\{n \in \mathbb{Z}, C_n > c_2\}} C_n, \quad \forall V \geq 0. \tag{31}
\]

If \(\Sigma \) is infinite, then \(N_-(q_{V,\ell}) = \infty \).

Proof. Let \(q_{1,2V,\ell} \) and \(q_{2,2V,\ell} \) be the restrictions of the form \(q_{V,\ell} \) to the subspaces \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) respectively (see (14)), then

\[
N_-(q_{V,\ell}) \leq N_-(q_{1,2V,\ell}) + N_-(q_{2,2V,\ell}) \tag{32}
\]

(cf. (15)). Let us start by estimating the first term in the right-hand side of (32). On the complement of \(\Sigma \), \(\nu(\{x_1\}) = 0 \) for all \(x_1 \in \mathbb{R} \). This implies

\[
\int_\ell V(x)|u(x)|^2 ds(x) = \int_\mathbb{R} |w(x_1)|^2 \, d\nu(x_1) + |w(x_1)|^2 \sum_{k \in \mathbb{N}} \int_{\gamma_k} V(x_2) \, dx_2
\]

\[
= \int_\mathbb{R} |w(x_1)|^2 \, d\nu(x_1) + \sum_{k \in \mathbb{N}} c_k |w(x_1)|^2,
\]

where \(c_k := \int_{\gamma_k} V(x_2) \, dx_2 < \infty \). Hence

\[
q_{1,2V,\ell}[u] = \int_\mathcal{S} |\nabla u(x)|^2 \, dx - 2 \int_\ell V(x)|u(x)|^2 \, dx
\]

\[
= \int_\mathbb{R} |w'(x_1)|^2 \, dx_1 - 2 \int_\mathbb{R} |w(x_1)|^2 \, d\nu(x_1) - \sum_{k \in \mathbb{N}} c'_k |w(x_1)|^2,
\]

where \(c'_k := 2c_k \). Let

\[
q_{1,2V}[w] := \int_\mathbb{R} |w'(x_1)|^2 \, dx_1 - 2 \int_\mathbb{R} |w(x_1)|^2 \, d\nu(x_1),
\]

\[
\text{Dom}(q_{1,2V}) = W^1_2(\mathbb{R}) \cap L^2(\mathbb{R}, d\nu),
\]

\[
q_{2,2V}[w] := \int_\mathbb{R} |w'(x_1)|^2 \, dx_1 - \sum_{k \in \mathbb{N}} c'_k |w(x_1)|^2,
\]

\[
\text{Dom}(q_{2,2V}) = W^1_2(\mathbb{R}).
\]

Then, it follows from [7 Lemma 3.6] that

\[
N_-(q_{1,2V,\ell}) \leq N_-(q_{1,2V}) + N_-(q_{2,2V}). \tag{33}
\]
Similarly to (17) one has
\[N_-(q_{1,2}) \leq 1 + 7.16 \sum_{\{n \in \mathbb{Z}, F_n > 0.046\}} \sqrt{F_n}. \] (34)

If \(\Sigma \) is finite, then
\[N_-(q_{2,c_k'}) \leq N \] (35)
(see, e.g., [2]), otherwise, Lemma 4.1 implies
\[N_-(q_{2,c_k'}) = \infty. \] (36)

Now, it remains to estimate the second term in the right-hand side of (32). Let
\[q_{2,2V,\ell_n}[u] := \int_{S_n} |\nabla u(x)|^2 dx - \int_{\ell_n} V(x)|u(x)|^2 ds(x) \]
\[\text{Dom}(q_{2,2V,\ell_n}) = \{u \in W_2^1(S_n) \cap L^2(\ell_n, V ds) : \int_{S_n} u(x) dx = 0\}. \]

For any \(V \in L_B(\ell_n), V \geq 0 \) and any \(r \in \mathbb{N} \), following a similar argument in the proof of [10, Lemma 7.6], one can show that there exists a finite cover of \(\ell_n \) by rectangles \(S_{nk}, k = 1, \ldots, r_0 \) such that \(r_0 \leq r \) and
\[\int_{\ell_n} V(x)|u(x)|^2 ds(x) \leq C_{12}r^{-1}\|V\|_{B,\ell_n}^\text{(av)} \int_{S_n} |\nabla u(x)|^2 dx \] (37)
for all \(u \in W_2^1(S_n) \cap L^2(\ell_n, V ds) \) with \(\int_{S_{nk}} u(x) dx = 0 \), where \(C_{12} \) is a constant independent of \(V \). Now, using (37) instead of [10, Lemma 7.6] in the proof of [10, Lemma 7.7], one can easily show similarly to [10, Lemma 7.8] that there is a constant \(C_{11} > 0 \) such that
\[N_-(q_{2,2V,\ell_n}) \leq C_{11}\|V\|_{B,\ell_n}^\text{(av)}, \forall V \geq 0. \]

If \(\|V\|_{B,\ell_n}^\text{(av)} < \frac{1}{C_{11}} \), then \(N_-(q_{2,2V,\ell_n}) = 0 \). Thus, similarly to (38) one has that for any \(c_2 < \frac{1}{C_{11}} \) that
\[N_-(q_{2,2V,\ell_n}) \leq C_{11} \sum_{\{C_n > c_2, n \in \mathbb{Z}\}} C_n, \forall V \geq 0. \] (38)

Hence, the statement of the Theorem follows from (32), (33), (34), (35), (36) and (38).

\[\square \]
Competing interests

The author declares that he has no competing interests.

Acknowledgment

This research was supported by the Commonwealth Scholarship Commission in the United Kingdom, grant UGCA-2013-138.

References

[1] Adams, R. A.: Sobolev Spaces. Academic Press, New York, 1975.

[2] Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum mechanics. Springer-Verlag, New York, 1988.

[3] Birman, M. Sh., Solomyak, M. Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. Kluwer, Dordrecht etc., 1987.

[4] Boccuto, A., Bukhvalov, A. V., Sambucini, A. R.: Some inequalities in classical spaces with mixed norms, Positivity, 6, 393–411, 2002.

[5] Courant, R., Hilbert, D.: Methods in Mathematical Physics. Vol. 1, Interscience Publishers. Inc., New York, 1966.

[6] Firlej, B., Matuszewski, W.: Some remarks on spaces provided with mixed norm, Comment.Math.Prace Mat., 17, 347–357, 1093.

[7] Grigor'yan, A., Nadirashvili, N.: Negative eigenvalues of two-dimensional Schrödinger operators, Arch. Ration. Mech. Anal., 217, 975–1028, 2015.

[8] Karuhanga, M.: On estimates for the number of negative eigenvalues of two-dimensional Schrödinger operators with potentials supported by Lipschitz curves, J. Math. Anal. Appl., 456, 2, 1365–1379, 2017.

[9] Krasnosel’skii, M.A., Rutickii, Ya. B.: Convex Functions and Orlicz Spaces. P. Noordhoff, Groningen, 1961.

[10] Shargorodsky, E.: On negative eigenvalues of two-dimensional Schrödingers operators, Proc. London Math. Soc., 108, 2, 441–483, 2014.

[11] Solomyak, M.: Piecewise-polynomial approximation of functions from $H^l((0,1)^d)$, $2l = d$, and applications to the spectral theory of the Schrödinger operators, Isr. J. Math., 86, 1–3, 253–275, 1994.