Efficacy of *Acacia nilotica* aqueous extract in treating biofilm-forming and multidrug resistant uropathogens isolated from patients with UTI syndrome

Rokaia B. Elamary1, Fawziah M. Albarakaty2,3 & Wesam M. Salem1

Escherichia coli is the dominant bacterial cause of UTI among the uropathogens in both developed and developing countries. This study is to investigate the effect of *Acacia nilotica* aqueous extract on the survival and biofilm of isolated pathogens to reduce UTI diseases. A total of 170 urine samples were collected from Luxor general hospital and private medical analysis laboratories in Luxor providence, Egypt. Samples were screened for the incidence of uropathogens by biochemical tests, antibiotics susceptibility, detection of virulence, and antibiotic-resistant genes by multiplex PCR, biofilm formation, and time-killing assay. *Escherichia coli* is by far the most prevalent causative agent with the percentage of 73.7% followed by *Klebsiella pneumoniae*, *Proteus mirabilis*, *Pseudomonas aeruginosa*, and *Acinetobacter baumanii*. Isolates were multidrug-resistant containing \(\text{bla}_{\text{TEM}}, \text{bla}_{\text{SHV}}, \text{bla}_{\text{CTX}}, \text{qnr} \), and \(\text{aac}(3)-I \alpha \) resistant genes. All isolates were sensitive to 15–16.7 mg ml\(^{-1}\) of *Acacia nilotica* aqueous extract. Time killing assay confirmed the bactericidal effect of the extract over time (20–24 h). A high percentage of 3-Cyclohexane-1-Carboxaldehyde, 2,6,6-trimethyl (23.5%); á-Selinene (15.12%); Oleic Acid (14.52%); Globulol (11.35%) were detected among 19 bioactive phytochemical compounds in the aqueous extract of *A. nilotica* over the GC-mass spectra analysis. The plant extract reduced significantly the biofilm activity of *E. coli*, *K. pneumoniae*, *P. mirabilis*, and *P. aeruginosa* by 62.6, 59.03, 48.9 and 39.2%, respectively. The challenge to improve the production of *A. nilotica* phytochemicals is considered a very low price for the return.

Urinary tract infections (UTIs) are one of the most prevalent and predominant nosocomial human infections. It infects patients of all ages and both gender with the greatest occurrence in females\(^1\). Signs and symptoms may include fever, chills, dysuria, urinary urgency, frequency, and cloudy or malodorous urine\(^1\). UTIs are caused by a variety of bacteria such as *E. coli*, *K. pneumoniae*, *P. mirabilis*, *Pseudomonas sp.*, *S. aureus*, *Enterococcus faecalis*, *Streptococcus sp.*, and *Citrobacter sp*.\(^3\) Each organism has its virulence genes that contribute to its invasion and toxicity. The increasing prevalence of UTI and antibiotic-resistant bacteria have made empirical antibiotic treatment more and more difficult\(^4\). A urine culture and antibiotic susceptibility tests are important for diagnosing the disease, recommending suitable antibiotics, and reducing the number of antibiotic-resistant uropathogens\(^5\). On the other hand, the genus *Acacia* belongs to the Leguminosae family. It contains more than 1,350 species, distributed throughout tropical and warm areas\(^6\). Several species of *Acacia* have been proven as significant antibacterial and antifungal agents\(^5,7\). It also has a great effect against multidrug-resistant strains of bacteria initiating nosocomial and community-acquired infections\(^8\). The plant is a tree with yellow mimosa-like flowers and long grey pods\(^9\). The use of plants and herbs extract in the therapy of human disease is very ancient traditions and scientists in Africa and other developing countries are carrying research on local plants numerous in the continent for use in conventional medicine\(^10\). The current study was performed to determine the resistant

1Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt. 2Department of Biology, College of Applied Sciences, Umm Al Qura University, Makkah Al Moukarramah, Saudi Arabia. 3Department of Biology, College of Science, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia. *email: wesam.salem@svu.edu.eg*
patterns of uropathogens and to highlight the efficacy of phytochemical compounds in *Acacia nilotica* aqueous extract against the survival and biofilm of these pathogens to reduce urinary tract infection diseases.

Results

The incidence of uropathogenic bacteria among examined urine samples. The prevalence of the isolated uropathogens in urine samples were illustrated in Table 1. Among the 170 urine samples, only 133 (78.2%) sample was positive for urine culture. Positive samples comprise 32 (53.3%) samples from males and 101 (91.8%) from females. The most common prevalent organism (from each corresponding positive samples) was *E. coli* which isolated from 98 patient with a percentage of 73.7%, followed by *K. pneumoniae* 13.5% (18), *P. mirabilis* 6.7% (9), *P. aeruginosa* 4.5% (6) and *A. baumannii* 1.5% (2). The total bacterial count of all samples was ranged from 1.88 to 215 × 10^7 CFU/ml.

Antimicrobial susceptibility testing.

The rate of resistance to all isolated uropathogenic bacteria to a panel of antibiotics with different potency was illustrated in Table 2, the resistance rate of ampicillin-sulbactam, ampicillin, gentamicin, nalidixic acid, cefazidime, ciprofloxacin, piperacillin, and cefepime was observed in all isolated uropathogens except *P. aeruginosa* that was sensitive for this antibiotic. Interestingly, sensitivity level imipenem and meropenem were observed only against *E. coli* and *P. mirabilis*. So, antimicrobial susceptibility demonstrated that *K. pneumoniae* and *A. baumannii* were resistant to all tested antibiotics (100%). Followed by *P. aeruginosa* that was resistant to 91.6% of all tested antibiotics. Finally, *E. coli* and *P. mirabilis* were resistant to 83.3% of antibiotics.

Detection of virulence and antibiotic-resistant genes.

The multiplex PCR screening for virulence and antibiotic-resistant genes showed that *hly, papC*, and *fimH* virulence genes were present in all examined uropathogens. While resistance level of piperacillin-tazobactam was noticed in all isolated pathogens except *P. aeruginosa* that was sensitive for this antibiotic. Interestingly, sensitivity level imipenem and meropenem were observed only against *E. coli* and *P. mirabilis*. So, antimicrobial susceptibility demonstrated that *K. pneumoniae* and *A. baumannii* were resistant to all tested antibiotics (100%). Followed by *P. aeruginosa* that was resistant to 91.6% of all tested antibiotics. Finally, *E. coli* and *P. mirabilis* were resistant to 83.3% of antibiotics.

GC–MS analysis.

The analysis and extraction of plant material play a significant role in the progress, reconstruction, and quality control of herbal formulations. Hence one of the important aims in the present study was to find out the bioactive compounds present in the aqueous extract of *A. nilotica* by using Gas chromatography-Mass spectroscopy. This shows the presence of 19 bioactive phytochemical compounds in the aqueous extract of *A. nilotica*. The highest percentage content of the compounds are as follows: 3-Cyclohexane-1-Carboxaldehyde, 2,6,6-trimethyl (23.5%); á-Selinene (CAS) (15.12%); Oleic Acid (14.52%); Globulol (11.35%). Other active compounds with their peak number, concentration (peak area%), and retention time (RT) are presented in (Table 4; Fig. 3).

Efficacy of *A. nilotica* aqueous extract as an antimicrobial agent.

Antibacterial activity of *A. nilotica* aqueous extract against the isolated uropathogens was analyzed by minimal inhibitory concentrations (MIC) by determining the bacterial viability using a colorimetric INT-formazan assay. Thus, we additionally determined the minimal bactericidal concentrations (MBC) which confirmed the killing of the isolated uropathogens over time. The results showed a reproducible and effective antibacterial effect against all isolated uropathogens (Preventing INT color change). Where, the concentration of 11.7 mg ml⁻¹ was enough as MIC for all tested strains.

Table 1. Incidence of isolated uropathogenic bacteria in urine samples. Total number of examined urine samples was 170 sample, they were 110 sample from females and 60 samples from male. Number of positive samples was 133 samples comprised from 101 sample from females and 32 sample from males. Different isolated uropathogens from urine samples. a Number of positive isolates from total number of positive samples. b Percentage of positive isolates from total number of positive samples. c Colony forming unit per ml for each isolated bacterium.

Parameters	No. of positive isolates (%)	CFU/ml
Escherichia coli	98 (73.7)	215 × 10^7
Klebsiella pneumoniae	18 (13.5)	16.8 × 10^7
Proteus mirabilis	9 (6.7)	111 × 10^7
Pseudomonas aeruginosa	6 (4.5)	1.88 × 10^7
Acinetobacter baumannii	2 (1.5)	202 × 10^7
Total	133	
organisms except \textit{P. mirabilis} that required a higher concentration of 15 mg ml\(^{-1}\). Generally, the efficacy of the extract as bactericidal (MBC) natural product against \textit{E. coli} and \textit{K. pneumoniae} was 13.3 mg ml\(^{-1}\). \textit{Pseudomonas aeruginosa} and \textit{A. baumanii} recorded MBC value of 15 mg ml\(^{-1}\). Interestingly, \textit{P. mirabilis} verified the highest MBC value of 16.7 mg ml\(^{-1}\) as shown in Table 3.

Static biofilm assay. Quantitative determination of biofilm amount (OD\(_{595}\)) of the isolated uropathogens as control and after treatment with \textit{A. nilotica} extract (Fig. 4). According to mean values of OD\(_{595}\) nm, the results of control (isolated uropathogens) were interpreted as low, moderate, and high bacterial biofilm former when OD\(_{595}\) nm was <1; 1–2.9 and >2.9 respectively. Accordingly, \textit{A. baumanii} was a high biofilm former while, \textit{K. pneumoniae} and \textit{P. mirabilis} had a moderate ability. On the other hand, \textit{E. coli} and \textit{P. aeruginosa} were low biofilm

Isolates\(^a\)	\textit{E. coli}	\textit{K. pneumoniae}	\textit{P. mirabilis}	\textit{P. aeruginosa}	\textit{A. baumanii}
Antibiotics\(^b\)					
SAM	R	R	R	R	R
AM	R	R	R	R	R
GM	R	R	R	R	R
NA	R	R	R	R	R
AMK	R	R	R	R	R
CAZ	R	R	R	R	R
CIP	R	R	R	R	R
PIP	R	R	R	R	R
PTZ	R	R	R	R	R
CPE	R	R	R	R	R
MEM	S	R	S	R	R
IPM	S	R	S	R	R
Antibiotic resistant genes\(^c\)					
\textit{bla}\(_{SAM}\)	+	−	+	−	+
\textit{bla}\(_{SHV}\)	+	+	+	+	+
\textit{bla}\(_{CTX}\)	+	−	+	+	+
\textit{qnrS}	+	+	+	+	+
\textit{aac(3)-Ia}	+	+	+	+	+
\textit{mexR}\(^d\)	+	−	−	+	−

Table 2. Antimicrobial susceptibility and antibiotic resistant genes of multidrug resistant uropathogens isolated from urine. \(^a\) \textit{Escherichia coli}, \textit{Klebsiella pneumoniae}, \textit{Proteus mirabilis}, \textit{Pseudomonas aeruginosa}, \textit{Acinetobacter baumanii}. \(^b\) SAM (Ampicillin-sulbactam), AM (Ampicillin), GM (Gentamicin), NA (Nalidixic acid), AMK (Amikacin), CAZ (Ceftazidime), CIP (Ciprofloxacin), PIP (Piperacillin), PTZ (Piperacillin-tazobactam), CPE (Cefepime), MEM (Meropenem), IPM (Imipenem). R = Resistant; S = Sensitive. \(^c\) Antibiotic resistant genes, +: present; −: absent. \(^d\) \textit{mexR} gene: it is specific gene for \textit{Pseudomonas aeruginosa} only.

Isolates\(^a\)	Virulence genes\(^b\)	Antibacterial efficacy		
		MIC/MBC\(^c\) (mg ml\(^{-1}\))		
\textit{E. coli}	\textit{hly} fimH eaeA papC	11.7/13.3		
	+	+	+	+
\textit{K. pneumoniae}	\textit{rmpA} aerobactin fimH TraT	11.7/13.3		
	−	+	−	−
\textit{P. mirabilis}	\textit{fimH} \textit{stx} \textit{apfD}	15/16.7		
	−	+	−	−
\textit{P. aeruginosa}	\textit{lasB} toxA \textit{psl} \textit{fliC}	11.7/15		
	−	−	+	−
\textit{A. baumanii}	\textit{cnf} \textit{cvoC} \textit{iatA} fimH	11.7/15		
	−	−	−	−

Table 3. The relation between virulence genes and antibacterial activity of \textit{Acacia nilotica} extract for isolated uropathogens. \(^a\) Different isolated bacteria from urine samples; \textit{Escherichia coli}, \textit{Klebsiella pneumoniae}, \textit{Proteus mirabilis}, \textit{Pseudomonas aeruginosa}, \textit{Acinetobacter baumanii}. \(^b\) Present (+), absent (−). \(^c\) Minimal inhibitory concentration/ minimal bactericidal concentration of the extract against isolated uropathogens represented in mg ml\(^{-1}\).
former. Interestingly, after treatment with the MBC-values of *A. nilotica* aqueous extract, *E. coli*, *K. pneumoniae*, *P. mirabilis*, and *P. aeruginosa* significantly reduce biofilm by 62.6; 59; 49 and 39.2%, respectively (Fig. 4).

Figure 1. 1.5% agarose gel electrophoresis of multiplex PCR of virulence genes characterized for the isolated uropathogens. (A) *E. coli*; Lane 1, 4, 10, 13: negative control for detected genes; Lane 3, 6, 8, 11 positive control of DNA confirmed by reference laboratory for quality control; Lane 2 hly (1,177 bp), Lane 5 fimH (508 bp), Lane 9 negative eaeA (248), Lane 12 papC (501 bp); Lane 7 Gel Pilot 100 bp plus ladder (cat. no. 239045) supplied from QIAGEN (USA). (B) *Klebsiella pneumoniae*; Lane 1, 4, 10, 13: negative control for detected genes; Lane 3, 6, 8, 11 positive control of DNA; Lane 2 negative rmpA (535 bp), Lane 5 negative TraT (556 bp), Lane 9 negative fimH (508), Lane 12 aerobactin (307 bp); Lane 7, 100 bp ladder as molecular size DNA marker (cat. no. 239035) supplied from QIAGEN (USA). (C) *Pseudomonas aeruginosa*; Lane 1, 4, 8, 11: negative control for detected genes; Lane 3, 6, 10 and 13; positive control of DNA; Lane 2 negative lasB (1,220 bp); Lane 5 negative toxA (396); Lane 9 pslA (656 bp); Lane 12 negative flic (180 bp); Lane 7 Gel Pilot 100 bp plus ladder (cat. no. 239045) supplied from QIAGEN (USA). (D) *Acinetobacter baumanii*; Lane 1, 4, 7, 10: negative control for detected genes; Lane 3, 6, 9 and 12: positive control of DNA; Lane 2 negative cnf1 (620 bp); Lane 5 negative evaC (760); Lane 8 negative iutA (300 bp); Lane 11 negative fimH (508 bp); Lane 13 Gene ruler 100 bp DNA ladder (cat. no. SM0243) supplied from Fermentas. (E) *Proteus mirabilis*; Lane 1 and 4: negative control for detected genes; Lane 3, 6 and 12; positive control of DNA; Lane 2 negative fimH (508 bp); Lane 5 atpD (595 bp); Lane 7, 100 bp ladder as molecular size DNA marker (cat. no. 239035) supplied from QIAGEN (USA).
Survival curve of the isolated uropathogens in the presence of *Acacia nilotica* aqueous extract. The killing dynamic of *A. nilotica* aqueous extract against log-phase cultures of the isolated uropathogens was determined to compare with a positive control for each uropathogens (Fig. 5). The MBC-values for the *A. nilotica* aqueous extract were affected by different isolates’ growth. The results revealed that after 8 h there is a continuous decrease of all uropathogens cultures OD595 with no detectable growth after 20 h exposition for *E. coli* and *K. pneumoniae* (Fig. 5a, b). In the case of *P. mirabilis*, *P. aeruginosa* and *A. baumannii* killing curve were also recorded a steady decrease of OD595 over time starting after 8 h exposition with no viable microorganism in the initial inoculums could be observed after 24 h. Significant reduction starting at 16 h of treatment for all isolates. Positive control had a continuous increase to 24 h (Fig. 5c–e). Based on these results, Time-kill kinetic profile indicates that *A. nilotica* extracts exhibited bactericidal actions against all uropathogenic isolates (Fig. 5).

Discussion

UTIs are considered one of the most common groups on infections in humans worldwide that upset kidney, pyelonephritis, bladder, and cystitis\(^1\). As stated by the CDC, UTIs are the greatest common bacterial infection demanding medical care, resulting in 8.6 million ambulatory care visits in 2007\(^2\). It is an infection of the urinary tract with a pathogen causing inflammation and occasionally life-threatening\(^3\). In the current study, although all patients were showing some or all of UTIs symptoms like burning feeling during urination, frequent urge for
Urinary tract infections (UTIs) are a common cause of morbidity and mortality, especially in women. Several factors contribute to the virulence of bacteria, including adhesions, lipopolysaccharides, iron-scavenging systems, and toxins. The most common uropathogenic bacteria are Enterococcus coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and Proteus mirabilis (P. mirabilis). These organisms are associated with different types of UTIs, such as asymptomatic bacteriuria (ASB), acute uncomplicated cystitis or pyelonephritis, acute complicated cystitis or pyelonephritis, catheter-associated UTI, and asymptomatic bacteriuria (ASB), or prostatitis depending on identification of the causative organism for describing defective bladder function.

The principal step for effective treatment of UTIs is to classify the type of infection, which is based on the presence or absence of complicating factors. UTIs can be classified as uncomplicated or complicated. Complicated UTIs are associated with underlying conditions such as diabetes, urinary tract abnormalities, or immunocompromise.

Table 4. GC-mass spectra of *Acacia nilotica* showing different active compounds. RT: Retention time per minute; active compounds detected by GC mass; area (%): percentage of compound; M. formula: molecular formula; M. wt: molecular weight of the compound.

S. no.	RT (min)	Compound	Area (%)	M. formula	M. wt
1	11.26	Carane, 4,5-epoxy-, (E)-	0.86	C_{11}H_{16}O	152
2	13.18	3-Cyclohexane-1-Carboxaldehyde, 2,6,6-trimethyl-	23.5	C_{11}H_{20}O	152
3	14.33	Cyclopendene, 1-methyl-	0.76	C_{10}H_{22}	166
4	14.80	2,4-Decadienal, (E,E)-(CAS)	1.05	C_{10}H_{20}O	152
5	15.63	1-Decanol, 2-methyl-	0.47	C_{11}H_{24}O	172
6	16.18	Cyclohexane,1-ethyl-1-methyl-2,4-bis(1-methyl)-(CAS)	0.72	C_{12}H_{26}O	204
7	18.06	α-Chamigrene	0.52	C_{11}H_{22}O	204
8	18.21	α-Guaiane	0.59	C_{11}H_{22}O	204
9	18.57	α-Selene (CAS)	15.12	C_{11}H_{22}O	204
10	19.32	1,3-Benzodioxole, 4-methoxy-6-(2-propenyl)	1.05	C_{12}H_{24}O	192
11	19.52	Globulol	11.35	C_{12}H_{24}O	222
12	22.76	1,3-Benzodioxole, 4,7-dimethoxy-5-(2-propenyl)-(CAS)	5.54	C_{12}H_{24}O	222
13	23.02	α-acorenon	0.18	C_{12}H_{24}O	222
14	23.86	1,2-Epoxyequoc-3-ene, 5,5-dimetyl-8-methylene-	0.32	C_{12}H_{24}O	164
15	29.09	Hexadecanoic acid (CAS)	4.59	C_{12}H_{26}O	256
16	29.78	26,8a-(Dimethoxy)-3,5,7-trion tetracyclo [7.2.1.0(4,11).0(6,10)] dodecane	8.51	C_{12}H_{26}O	228
17	30.75	Isobergapten	1.09	C_{12}H_{24}O	216
18	32.66	Oleic acid	14.52	C_{12}H_{24}O	282
19	32.86	Isochiapin B	1.18	C_{12}H_{24}O	346

Urination, cloudy appearance of urine, and pain in the back or the lower abdomen. Only about 78.2% of 170 patients had UTIs in this study (Table 1). This is possible because UTI symptoms are not a dependable indicator of disease. Urinary tract infections are necessary for the diagnosis of UTI for confirming the presence of bacteriuria. The study also verified a lower UTI rate of 7.2% in males compared with 92.8% in females. In agreement with [19], who stated that UTIs are common in women than men with a ratio of 8:1. A low rate of infection in males may be due to the occurrence of antimicrobial substances in prostatic fluid. Also, maybe a long urethra (20 cm) that provides a distance barrier that eliminates microorganisms from the bladder.

The principal step for effective treatment of UTIs is to classify the type of infection, such as acute uncomplicated cystitis or pyelonephritis, acute complicated cystitis or pyelonephritis, catheter-associated UTI, asymptomatic bacteriuria (ASB), or prostatitis depending on identification of the causative organism for describing defective antibiotics. About 95% of uncomplicated UTIs are mono-bacterial and *E. coli* is the major causing agent of uncomplicated UTI, which accounts for up to 75–90% of cases. This study is in agreement with [20], who revealed that uropathogens are common in women than men with a ratio of 8:1. A low rate of infection in males may be due to the occurrence of antimicrobial substances in prostatic fluid. Also, maybe a long urethra (20 cm) that provides a distance barrier that eliminates microorganisms from the bladder.

Table 4. GC-mass spectra of *Acacia nilotica* showing different active compounds. RT: Retention time per minute; active compounds detected by GC mass; area (%): percentage of compound; M. formula: molecular formula; M. wt: molecular weight of the compound.
absence of lasB, toxA, and fliC genes. Some of the most significant virulence genes of A. baumannii are colicin V production, curi fibers (csg), siderophores like aerobactin (isuA), and cytoxic necrotizing factor (cnf)\(^{22,23}\). Acinetobacter baumannii in our study was free from these genes. However, there is always the possibility of mutation at the level of the corresponding gene, leading to the lack of its detection. Consequently, a positive PCR shows the occurrence of the virulence gene, but a negative PCR does not point to its absence\(^{24,25}\) (Table 3).

Biofilm is an accumulation of bacteria reserved within a microbial-derived matrix, which assists their persistence\(^7\). It contains water passages for transporting oxygen and essential nutrients for growth. Microcolony is the main structural unit of the biofilm it may be composed of 10–25% cells and 75–90% exopolysaccharide (EPS) matrix depending on the species complex\(^8\). They characterized by a high degree of resistance to antibiotics and host immune defense response substances\(^9,10\). It also plays an essential role in the pathogenicity of several chronic human infections\(^50\). In our study, all isolated uropathogens were biofilm former (Fig. 4). Interestingly, the detection of latent virulence genes in the clinical urine isolates also the ability for biofilm formation confirms the pathogenicity of these isolated uropathogens in the current study. Also has some great epidemiological outcomes to control the dissemination of infectious disease caused by these pathogens. Increasing rates of antibiotic resistance and high repetition rates impend to greatly enhance the problem that these common infections place on society\(^22\).

In a study by\(^{83}\), they revealed that antibiotics such as ciprofloxacin and ampicillin are the most commonly recommended therapeutics for UTIs. Interestingly, our study confirmed a great resistance for all isolated uropathogens to ampicillin and ciprofloxacin. In another study by Abuhandan et al.\(^52\), they reported that all of the isolated uropathogens were resistant to ampicillin-sulbactam, with, high resistance rates recorded for E. coli (64.1%) They also stated that the most effective antimicrobial agents were determined to be imipenem, quinolone, and aminoglycosides. It is worth saying that our study showed 100% resistance to ampicillin-sulbactam, 60% resistance to imipenem, 100% resistance to two members of aminoglycosides (Gentamicin and Amikacin) also 100% resistance was observed for one member of quinolones (ciprofloxacin). This confirms the seriousness of the wrong use of antibiotics over the years. In the current study, the presence of multidrug-resistant genes was determinant such as bla\(_{\text{CTX}},\) bla\(_{\text{TEM}},\) bla\(_{\text{SHV}},\) as it was determined earlier by\(^{93,94}\). These genes were detected in our isolates with a percentage of 100, 60, and 60%, respectively (Table 2; Fig. 2). Quinolone resistance is usually resulting from mutations in genes coding for chromosomally-encoded type II topoisomerases, efflux pumps, or porin-related proteins, it also can be plasmid-mediated\(^{55,56}\). The plasmid resistance determinants are qnrA, qnrB, and qnrS\(^{56,57}\). The qnrS gene was detected with percentages of 100% among all isolated uropathogens (Table 2; Fig. 2). Multidrug resistance in P. aeruginosa can be caused by regulatory mutations ndaB (mexB), ndfA or ndfC (mexT) leading to overexpression of three separate RND efflux systems which causing multiple antibiotic resistance profiles\(^8\). In our study mexR gene was detected with the percentage of 100% among P. aeruginosa isolates (Table 2; Fig. 2). Aminoglycosides resistant genes such as aac and ada\(^{16}\). An example of Gm resistance (Gmr) genes was aac(3)-Ia\(^{96}\). Our results confirmed a 100% resistance to aminoglycosides through the detection of aac(3)-Ia gene (Table 2; Fig. 2).

Antibiotic resistance is one of the biggest problems that face the world. Scientists have begun to search for new safe antibiotic alternatives. Medicinal plants are a good substitute for antibiotics\(^51-56\). The pods of A. nilotica extract was good antibacterial agent against different bacterial pathogens\(^8\). Our study confirmed the greatest efficacy of Acacia nilotica extract against all isolated uropathogens with MBC of 15–16.7 mg ml\(^{-1}\) with the greatest MBC value obtained by E. coli (Table 3). The analysis of time killing data confirmed that A. nilotica aqueous extract kills E. coli and K. pneumoniae (within 20 h) faster than other uropathogens (Fig. 5). Acacia nilotica extract also reduces the biofilm of the tested pathogens (Fig. 4). This is could be due to the presence of some active phytochemicals such as 3-Cyclohexane-1- Carboxaldehyde, 2,6,6-trimethyl; á-Selinene; Oleic Acid; Globulol and Isochiapin that were detected in the GC–MS analysis (Table 4; Fig. 3). The antibacterial activity of crude extracts and different fractions could be largely due to the effect of the phytochemicals detected\(^7\). In study by\(^{69}\), the phytochemical analysis of A. nilotica pod extracts by LCMS, HPLC/DAD, and FTIR was confirmed as antibacterial agents against antibiotic-resistant strains of E. coli and Salmonella sp. Cyclohexane, for example, is considered the most potent antibacterial agent that had a reduced ability to inhibit solute transport in comparison with other active analogs\(^69\). The oleic acid produced by marine spp. also could be valuable as a biocontrol against gram-negative bacteria including Vibrio parahaemolyticus and might denote an influence in the clinical use\(^70\).

Other important phytochemical components detected with a high percentage in A. nilotica aqueous extract such as á-Selinene; Globulol and Isochiapin were also recorded for their antibacterial activities\(^71-73\).

In conclusion, a new preventive measure against multidrug-resistant isolated uropathogens which confirmed by multiplex PCR, consists of the use of A. nilotica aqueous extract. Acacia nilotica considered a natural antimicrobial agent to prevent bacterial growth, biofilm formation, and decreases the dissemination of these multidrug-resistant strains. However, optimizing the production of the active organic products of A. nilotica extract is a challenge that must be considered to use this compound to contrast the pathogenic action of UTIs. Also, it is recommended to make purification of A. nilotica extract to test one or more of the larger concentration of some compounds like 3-Cyclohexane-1-Carboxaldehyde, 2,6,6-trimethyl; á-Selinene (CAS); Oleic Acid; Globulol in the composition of the extract against uropathogens and performing in vivo experiments.

Materials and methods

Ethical approval and informed consent. The study protocol was approved by the local Medical Ethics Committees of the Medical University of Assiut, Egypt, which has been approved by the Egyptian Ministry of Higher Education and Scientific Research on 11/2009. General hospital and private medical analysis laboratories in Luxor province, Egypt ethically approved urine sampling and informed consent was obtained from all participants during the study work. The methods were carried out in accordance with the relevant guidelines and regulations, and the subjects gave written informed consent.
Sampling; isolation and identification of uropathogens. A total of one hundred and seventy urine samples were collected between January to June (2019) from the general hospital and private medical analysis laboratories in Luxor province, Egypt. Patients were between 8 and 86 years old, they were 110 females and 60 males. Urine samples were collected by clean catch mid-stream urine collection method into the sterile container from patients who had not received antimicrobials within the previous one week. Guidelines for proper specimen collection were given to all patients on a printed card74. All samples were subjected to COMISCREEN 10 SL urine test strips for a rapid- semi-quantitative determination of leucocyte (pyuria) using a leucocyte esterase test (LET) and nitrite to detect bacteriuria. Samples were examined using a light microscope/high-power (HPF) (LEICA DMLF2, China) for the presence of 10 or more white blood cells75. For isolation of uropathogens, samples were streaked onto MacConkey (OXOID), Eosin methylene blue (BIOWORLD, USA), and Tryptic soy agar (OXOID) plates then incubated at 37°C for 24h. Isolates were picked up and identified by standard biochemical methods76–78. CFU/ml (colony forming units) were also determined.

Antimicrobial sensitivity testing. The antibiograms for all the recovered isolates were determined as described earlier according to the Kirby Bauer disk diffusion method79. The susceptibility of all isolates was tested for 12 antibiotics from different groups (BIOANALYZE). The used antibiotics were Imipenem (10 μg), Meropenem (10 μg), Ciprofloxacin (5 μg), Ceftazidime (30 μg), Amikacin (30 μg), Nalidixic acid (30 μg), Gentamicin (10 μg), Ampicillin (10 μg), Ampicillin-sulbactam (10/10 μg), Piperacillin (100 μg), Piperacillin-tazobactam (100/10 μg) and Ceftazidime (30 μg). Interpretation of the results was performed according to clinical and laboratory standard institute guidelines80 to determine if the isolate is resistant, intermediate, or susceptible to the tested antibiotics.

Detection of virulence and antibiotic-resistant genes of isolated uropathogens. Molecular characterization of the recovered uropathogens was carried out by multiplex PCR. The detected enterotoxins genes for E. coli were (fireH, papC, hly, and eaeA). For K. pneumonia (fireH, rmpA, TraT and aerobactin), for P. mirabilis (fireH and atpD), for P. aeruginosa (toxA, lasB, flic, and pslA), for A. baumannii (fireH, Csf1, iutA and cvuC). While the detected antibiotic-resistant genes for all isolates were blaTEM, blacTXE, blaCTX-M, aac(3)-Ia, and qnrS. Besides, the mexR gene was performed for P. aeruginosa only. The encoding enterotoxins and antibiotic-resistant genes (twenty-one) were performed using (forty-two) primers sets including forward and reverse. All primer sequences with corresponding references are listed in Table 5.81–97.

DNA amplification for the selected virulence and antibiotic resistance genes of isolates. The extraction of DNA was carried out according to QIAamp DNA mini kit instructions (QIAGEN, Germany, GmbH) as described earlier by Bisi-Johnson21 with modification from the manufacturer’s recommendations. Briefly, 200 μl of the sample suspension was inoculated with 10 μl of proteinase K and 200 μl of lysis buffer at 56 °C for 10 min. After incubation, 200 μl of 100% ethanol was added to the lysate. The sample was then washed and centrifuged following the manufacturer’s recommendations. Nucleic acid was eluted with 100 μl of elution buffer provided in the kit. PCR amplification was performed using oligonucleotide primer (METABION, Germany) that were utilized in a 25 μl reaction containing 12.5 μl of EMERALDAMP Max PCR Master Mix (TAKERA, Japan), 1 μl of each primer of 20 pmol concentration, 5.5 μl of dist. water and 6 μl of DNA template. The reaction was performed in an applied biosystem 2,720 thermal cycler. All primers amplicon sizes and cycling conditions are summarized in Table 5.81–97. The products of PCR were separated by electrophoresis on 1.5% agarose gel (APPLICHEM, Germany, GmbH) in 1×TBE buffer at room temperature using gradients of 5 V/cm. For gel analysis, 15 μl of the products were loaded in each gel slot. Gel pilot 100 bp and 100 bp plus ladders (QIAGEN, Germany, GmbH) and GeneRuler 100 bp ladder (FERMENTAS, THERMO) was used as a marker for electrophoresis to determine the fragment sizes. The gel was photographed by a gel documentation system (ALPHA INNOTECH, BIOMETRA) and the data was analyzed through computer software (AUTOMATIC IMAGE CAPTURE, USA).

Gas chromatography–mass spectrometer (GC–MS) analysis. GC–MS technique was used in this study as described earlier by Sadiq et al.96, to identify the Phyto-components present in the plant extract. For preparing A. nilotica aqueous extract, 20 gm of dry pods were ground into fine powder by using an electric grinder (SOGO, China). The powder was soaked in 100 ml of hot distilled water and then cooled down with continuous stirring at room temperature by using bigger bill shaker, USA, for extraction of active ingredients98. The mixture was filtered then sterilized using a syringe filter equipped with a 45μ membrane filter; then kept at 4 °C.

A. nilotica aqueous extract, 20 gm of dry pods were ground into fine powder by using an electric grinder (SOGO, China). The powder was soaked in 100 ml of hot distilled water and then cooled down with continuous stirring at room temperature by using bigger bill shaker, USA, for extraction of active ingredients98. The mixture was filtered then sterilized using a syringe filter equipped with a 45μ membrane filter; then kept at 4 °C. A. nilotica aqueous extract was subjected to gas chromatography-mass spectrometer technique (GC–MS) (THERMO SCIENTIFIC TECHNOLOGIES, TRACE 1,310) with capillary column TG-5 (30 m × 250 μm × 0.25 μm) system were used. The mass detector used in split mode and helium gas with a flow rate of 1.5 ml/min was used as a carrier. The injector was operated at 230 °C and the oven temperature for the initial setup was 60 °C for 2 min. ramp 10/min. to 300 °C for 8 min. Mass spectra were taken at 70 eV, total GC running time was 35 min.

Determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) by INT reduction assay. The determination of MIC and MBC were assayed as described by99. Where the freshly prepared culture of isolated uropathogens was adjusted to OD600 of 0.01. 100 μl of each bacterial fresh culture was put into sterilized 96-well plates. Then 20 μl of the original extract was added (serial dilutions of 10−1–10−6 were used, 8 replicates were made for each dilution into complete raw
Virulence genes used for *E. coli* isolates

Target gene	Sequence	Amplified segment (bp)	Primary denaturation	Secondary denaturation	Annealing	Extension	Final extension	References
fimH	TGCAGAAGGATAGTCGGGCGTGACCCCTTGGTA	508	94 °C/5 min	94 °C/30 s	50 °C/40 s	72 °C/45 s	72 °C/10 min	80
hly	AACAAGGATAAAGCACCTTCTGGGCCATTGCATACCTGCAGGCTTGGTA	1,177	94 °C/5 min	94 °C/30 s	60 °C/40 s	72 °C/1 min	72 °C/12 min	82
papC	TGATATCGACCTAGCTGGTAATTATCACA	501	94 °C/5 min	94 °C/30 s	58 °C/40 s	72 °C/40 s	72 °C/10 min	83
eaeA	ATGGCTTAGTGGTGTAGGCTCATCATTGGCTTTTC	248	94 °C/5 min	94 °C/30 s	51 °C/30 s	72 °C/30 s	72 °C/7 min	84

Virulence genes used for *Klebsiella pneumonia* isolates

Target gene	Sequence	Amplified segment (bp)	Primary denaturation	Secondary denaturation	Annealing	Extension	Final extension	References
rmpA	ACCTGGCTACCTCTGCTCACTGGAAGGATTTCACATTTCAGGCTTTTA	535	94 °C/5 min	94 °C/30 s	50 °C/40 s	72 °C/40 s	72 °C/10 min	80
TraT	GATGCGCTGAACCGTGGTGATTAGCACCCGCTGGTACCTGGTACCTGGTAC	307	94 °C/5 min	94 °C/30 s	55 °C/30 s	72 °C/30 s	72 °C/7 min	86
aerobactin	GCATAGGGGATAGGCAAAACATGGGATTATGCTCTGCTCTGCTTCTGCT	556	94 °C/5 min	94 °C/30 s	50 °C/40 s	72 °C/45 s	72 °C/10 min	80

Virulence genes used for *Proteus mirabilis* isolates

Target gene	Sequence	Amplified segment (bp)	Primary denaturation	Secondary denaturation	Annealing	Extension	Final extension	References
atpD	GTATCATGAAGGCTTTCGGAAGGATTTCACATTGGTACCTGACGGCTTTTA	595	94 °C/5 min	94 °C/30 s	58 °C/40 s	72 °C/45 s	72 °C/10 min	87

Virulence genes used for *Pseudomonas aeruginosa* isolates

Target gene	Sequence	Amplified segment (bp)	Primary denaturation	Secondary denaturation	Annealing	Extension	Final extension	References
toxA	GACAGGCGCCCTACAGTGGTGACCGCTGCCCTCAGGCTTTTA	396	94 °C/5 min	94 °C/30 s	55 °C/40 s	72 °C/40 s	72 °C/10 min	88
lasB	ACAGGTAGAAACGGGATCTGGAAGGATTTCACATTGGTACCTGACGGCTTTTA	1,220	94 °C/5 min	94 °C/30 s	54 °C/40 s	72 °C/1 min	72 °C/10 min	88
pslA	TCGCTACCTGACGGCAAGGATCTGGAAGGATTTCACATTGGTACCTGACGGCTTTTA	656	94 °C/5 min	94 °C/30 s	60 °C/40 s	72 °C/45 s	72 °C/10 min	88
fliC	TGAATGGTGCTACCAAGAAGGATCTGGAAGGATTTCACATTGGTACCTGACGGCTTTTA	180	94 °C/5 min	94 °C/30 s	56.2 °C/30 s	72 °C/30 s	72 °C/7 min	88

Virulence genes used for *Acinetobacter baumannii* isolates

Target gene	Sequence	Amplified segment (bp)	Primary denaturation	Secondary denaturation	Annealing	Extension	Final extension	References
cnf1	TATATGTCATGTCAGATGGAAACCATCAAGGATTTCACATTGGTACCTGACGGCTTTTA	620	94 °C/5 min	94 °C/30 s	63 °C/40 s	72 °C/30 s	72 °C/10 min	88
iutA	GGGCTGACATGGGAACTGAACTGGAAGGATTTCACATTGGTACCTGACGGCTTTTA	300	94 °C/5 min	94 °C/30 s	63 °C/30 s	72 °C/45 s	72 °C/7 min	88
cvaC	CAGCAACAAACGGGAAGGATCTGGAAGGATTTCACATTGGTACCTGACGGCTTTTA	760	94 °C/5 min	94 °C/30 s	63 °C/40 s	72 °C/45 s	72 °C/10 min	88

Antibiotics resistance genes for all isolates including *Pseudomonas aeruginosa*

Target gene	Sequence	Amplified segment (bp)	Primary denaturation	Secondary denaturation	Annealing	Extension	Final extension	References
blactM	ATTCGAAATTTACCCCGAAGGATTTTC	516	94 °C/5 min	94 °C/30 s	54 °C/40 s	72 °C/45 s	72 °C/10 min	88

Continued
of the 96-well plate). The plates incubated at 37 °C for 24 h. MIC was determined by the addition of 40 μl of
p-iodonitrotetrazolium violet chloride (INT) (0.2 mg/ml, SIGMA-ALDRICH) to the plates and re-incubated at
37 °C for 30 min., the lowest concentration which banned color change is the MIC100,101. MBC was determined
according to to99,102.

Static biofilm assay. The recovered uropathogenic isolates were assessed for their biofilm activity in a
microtiter plate according to to103 after modifications by104 as follows: Isolates were grown on TSA for 24 h at
37 °C, suspended in TSB, adjusted to an OD595 of 0.02. Then, 130 μl from each isolate culture were plated into a
96-well microtiter plate (U BOTTOM, STERILIN) for 24 h at 37 °C. Then for studying the antibiofilm activity
of the extract, 30 µl of the *A. nilotica* aqueous extract—(MBC) value for each isolate—was added After 24 h. The
addition of 30 µl of sterilized H2O to the original biofilm of the isolated uropathogens served as control. Wells
were consequently rinsed with H2O and the biofilm was stained with 0.1% crystal violet, solubilized in 96%

Target gene	Sequence	Amplified segment (bp)	Primary denaturation	Amplification (35 cycles)	Secondary denaturation	Annealing	Extension	Final extension	References
*bla*_{SHV}	AGGATTTGACGCTTTTTTGGATTTGCTATTGAGTTTCGCC	392	94 °C/5 min	94 °C/30 s	54 °C/40 s	72 °C/45 s	72 °C/10 min	82	
*bla*_{CTX}	ATGTCGAGYACACCTGGAAGTATGCTATGCTAGTACCTGAACTAAC	593	94 °C/5 min	94 °C/30 s	54 °C/40 s	72 °C/45 s	72 °C/10 min	84	
qnr	AGCAGCTTCTGCAACCTATTGGGACCCCTGTAAGGGC	417	94 °C/5 min	94 °C/30 s	55 °C/40 s	72 °C/45 s	72 °C/10 min	86	
aac(3)-Ia	TTGATCITTTGGGTGTAGGTAGTTGCGGAGCGCCAACA	150	94 °C/5 min	94 °C/30 s	55 °C/30 s	72 °C/30 s	72 °C/7 min	96	

Antibiotics resistance gene for *Pseudomonas aeruginosa* isolate

Target gene	Sequence	Amplified segment (bp)	Primary denaturation	Amplification (35 cycles)	Secondary denaturation	Annealing	Extension	Final extension	References
mexR	GGGCCATGGCCCTAA TTCAG GGGCCATTGGCCAGTAA GGGCC	637	94 °C/5 min	94 °C/30 s	55 °C/30 s	72 °C/30 s	72 °C/7 min	97	

Table 5. Primers sequences, target genes, amplicon sizes and cycling conditions. The specific sequences that
were amplified for each of the used primers (Metabion, Germany). *fimH* gene was also detected for these
isolates.

Figure 3. Gas chromatography spectra of biologically active compounds of *Acacia nilotica*.
ethanol, and the OD₅₉₅ was measured using INFINITE F50 ROBOTIC (Ostrich) Microplate Reader to quantify the amount of biofilm. Each treatment was added to three wells i.e. three replicates.

Survival curve of the isolated uropathogens in the presence of A. nilotica aqueous extract. An increase, both in total cell mass and cell number can readily be estimated by measuring the turbidity of a cell suspension using an instrument such as a spectrophotometer¹⁰⁵. So, the microbial population at the initial and completion of the experiment isolates were grown overnight on TSA plates, suspended in TSB to an OD₅₉₅ of 0.01 then incubated with the MBC value of A. nilotica aqueous extract for each isolate at 37 °C. Adjusted culture from each isolated uropathogens at OD₅₉₅ of 0.01 served as the positive control. Approximately, 1 ml aliquot was tested from the culture medium over time (0, 4, 8, 12, 16, 20, and 24 h) for monitoring the optical density of all bacterial treatments at OD₅₉₅ nm using the “SPECTRONIC GENESYS 2PC” Spectronic Instruments, USA. Readings were taken three times. Results were confirmed by taking 50 µl of each treatment at OD₅₉₅ of 0.0 (complete killing) onto fresh TSA and incubation at 37 °C for 24 h (Three plates were used for each isolate).
References

1. Al-Badr, A. & Al-Shaikh, G. Recurrent urinary tract infections management in women: a review. Sultan Qaboos Univ. Med. J. 13, 359 (2013).

2. Abbo, L. M. & Hooton, T. M. Antimicrobial stewardship and urinary tract infections. Antimicrob. Agents Chemother. 56, 491–492 (2012).

3. Mohammed, M. A., Alnour, T. M., Shakur, O. M. & Aburas, M. M. Prevalence and antimicrobial resistance pattern of bacterial strains isolated from patients with urinary tract infection in Messalata Central Hospital, Libya. Asian Pac. J. Trop. Med. 9, 771–776 (2016).

4. Rodrigues, W. F. et al. Antibiotic resistance of bacteria involved in urinary infections in Brazil: a cross-sectional and retrospective study. Int. J. Environ. Res. Public Health 13, 918 (2016).

5. Maslin, B. R., Miller, J. T. & Seigler, D. S. Overview of the generic status of Acacia. Molecules 19, 6238–6249 (2014).

6. Mahmood, A. & Qureshi, R. A. Antimicrobial activities of three species of family mimosaceae. Pak. J. Pharm. Sci. 25, 203–206 (2012).

7. Sharma, A. K., Kumar, A., Yadav, S. K. & Rahal, A. Studies on antimicrobial and immunomodulatory effects of hot aqueous extract of Acacia nilotica L. leaves against common veterinary pathogens. Veti. Med. Int. 2014, 1–9 (2014).

8. Khan, R. A. et al. Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules 14, 586–597 (2009).

9. Orchard, A. E. & Maslin, B. R. Proposal to conserve the name Acacia (Leguminosae: Mimosoideae) with a conserved type. Taxon 52, 362–363 (2003).

10. Wagate, C. G. et al. Screening of some Kenyan medicinal plants for antibacterial activity. Phyther. Res. 24, 150–153 (2010).

11. Thomson, C. & Armitage, A. Urinary tract infection. In Oxford Textbook of Medicine (eds Darrell, D. A. et al.) 4103–4122 (Oxford University Press, Oxford, 2010).

12. CDC. Vital and Health Statistics. Ambulatory Medical Care Utilization Estimates for 2007. Series 13, Number 159. Hyattsville, MD (2011).

13. Rashid, T. & Ebringer, A. Rheumatoid arthritis is caused by asymptomatic Proteus urinary tract infections. In Clinical Management of Complicated Urinary Tract Infection. (Intech, 2011).

14. Haman, T. J. et al. Host–pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol. Rev. 36, 616–648 (2012).

15. Singh, B., Tilak, R., Srivastava, R. K. & Katiyar, D. Urinary tract infection and its risk factors in women: an appraisal. J. Pure Appl. Microbiol. 8(5), Proof (2014).

16. Uno, G. A. et al. Identification and characterization of urinary tract infectious bacteria and the effect of different antibiotics. J. Nat. Sci. Res. 3, 150–158 (2013).

17. Angoti, G., Goudarzi, H., Hajizadeh, M. & Tabatabai, Z. Bacteria isolated from urinary tract infection among patients and determination of the antibiotic susceptibility patterns of the gram negative bacteria in Iran. Nov. Biomed. 4, 1–4 (2016).

18. Cortes-Penfield, N. W., Trautner, B. W. & Jump, R. L. P. Urinary tract infection and asymptomatic bacteriuria in older adults. Infect. Dis. Clin. N. Am. 31, 673–688 (2017).

19. Ronald, A. T. et al. Polymicrobial infection and the role of the gut in host defense. Annu. Rev. Immunol. 31, 457–483 (2013).

20. Sobel, D. J. & Kaye, D. Urinary tract infections. In Principles and Practice of Infectious Diseases 8th edn (eds Mandell, G. L. & Bennett, J. E.) 886–913 (Elsevier Saunders, Philadelphia, 2014).

21. Prakash, D. & Saxena, R. S. Antimicrobial susceptibility pattern of human pathogenic bacteria related to Enterobacteriaceae family causing urinary tract infection. Adv. Appl. Sci. Res. 4, 98–104 (2013).

22. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13(5), 269–284 (2015).

23. Ejrnæs, K. Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Dan. Med. Bull. 58, 4187 (2011).

24. Kudinha, T. et al. Multiplex PCR-based reverse line blot assay for simultaneous detection of 22 vulvovaginal genes in uropathogenic Escherichia coli. Appl. Environ. Microbiol. 78, 1198–1202 (2012).

25. Nicolle, L. E. Uncomplicated urinary tract infection in adults including uncomplicated pyelonephritis. Urol. Clin. N. Am. 35, 1–12 (2008).

26. Bien, J., Sokolova, O. & Bozko, P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int. J. Nephrol. (2012).

27. Jadhav, S. et al. Virulence characteristics and genetic affinities of multiple drug resistant uropathogenic Escherichia coli from a semi urban locality in India. PLoS ONE 6, e18063 (2011).

28. Firoozeh, S., Saffari, M., Neamat, F. & Zibaei, M. Detection of bacterial genes in Escherichia coli isolated from patients with cystitis and pyelonephritis. Int. J. Infect. Dis. 29, 219–222 (2014).

29. Frack, S. M., Bosworth, B. T. & Moon, H. W. Multiplex PCR for enterotoxigenic, attaching and effacing, and Shiga-toxin producing Escherichia coli strains from calves. J. Clin. Microbiol. 36, 1795–1797 (1998).

30. Gouni, S. G., Roos, G. & Bouckaert, J. Discovery and application of FimH antagonists. In Carbohydrates as Drugs. 123–168 (2014).

31. Fuurstet, K. et al. Virulence of a Klebsiella pneumoniae strain carrying the New Delhi metallo-beta-lactamase-1 (NDM-1) plasmid. Microbes Infect. 14, 135–158 (2012).

32. Sun, L. K., Fung, C. P., Chang, F. Y., Lee, N., Yeh, M., Koh, T. H. & Ip, M. Molecular typing and virulence analysis among serotype K1 Klebsiella pneumoniae isolated from liver abscess patients and stool carriage from non-infectious subjects in Hong Kong, Singapore and Taiwan. J. Clin. Microbiol. 49, 9077–9079 (2011).

33. Podschun, R., Fischer, A. & Ullmann, U. Characterization of Klebsiella terrigena strains from humans: haemagglutinin, serum resistance, siderophore synthesis, and serotypes. Epidemiol. Infect. 125, 71–78 (2000).

34. Yu, W. L. et al. Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn. Microbiol. Infect. Dis. 62, 1–6 (2008).
37. El Fertas-Aissani, R., Messai, Y., Alouache, S. & Bakour, R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol. Biol. 61, 208–216 (2013).
38. Al-Muhanna, A. S., Al-Rediany, R. S. & Alzuhaieri, M. A. Molecular characterization of aeroabsin gene among Klebsiella isolated from wound and burn infections. Int. J. Curr. Microbiol. App. Sci. 3, 26–31 (2014).
39. Pearson, M. M., Y eph, A., Smith, S. N. & Mobley, H. L. T. Transcriptome of Escherichia coli O157 from different uropathogenic Escherichia coli strains by polymerase chain reaction. J. Clin. Microbiol. 30, 1189–1193 (1992).
40. Khalifa, A. B. H., Moissenet, D., Thien, H. V. & Khedher, M. Les facteurs de virulence de Pseudomonas aeruginosa: mécanismes et modes de régulations. Ann. Biol. Clin. (Paris) 69, 393–403 (2011).
41. Hamood, A. N., Griswold, J. A. & Duhan, C. M. Production of extracellular virulence factors by Pseudomonas aeruginosa isolates obtained from tracheal, urinary tract, and wound infections. J. Surg. Res. 61, 425–432 (1996).
42. Eijkelkamp, B. A., Stroeher, U. H., Hassan, K. A., Paulsen, I. T. & Brown, M. H. Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics. 15, 1020 (2014).
43. Erac, B., Yilmaz, F. F., Hosgor Limoncu, M., Ozturk, I. & Aydemir, S. Investigation of the virulence factors of multidrug-resistant Acinetobacter baumannii isolates. Mikrobiol. Bul. 48, 70–81 (2014).
44. Le Bouguenec, C., Archambaud, M. & Labigne, A. Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in Acinetobacter baumannii. J. Clin. Microbiol. 39, 493–496 (2001).
45. Parsek, M. R. & Singh, P. K. Bacterial biofilms: an emerging link to disease pathogenesis. Future Med. Chem. 7, 493–512 (2015).
46. Abuhandan, M., Güzel, B., Oymak, Y. & Çiftçi, H. Antibiotic sensitivity and resistance in children with urinary tract infection and enterotoxic Vibrio cholerae O1 in uropathogenic Escherichia coli strains in acute pyelonephritis of children. Pathol. Biol. 51, 512–515 (2003).
47. Jia, X. & Bao, R. Antibiotic sensitivity and resistance in children with urinary tract infection. J. Cell Mol. Med. 5, 303–310 (2001).
48. Tenover, F. C. Mechanisms of antimicrobial resistance in bacteria. Annu. Rev. Microbiol. 59, 392–415 (2005).
49. Vieira, H. L. A., Freire, P. & Arraiano, C. M. Effect of phenolic compounds from soybean on the growth of Aeromonas hydrophila. J. Appl. Microbiol. 96, 662–671 (2004).
50. Salem, W. A. & Abdelaziz, M. A. Quinolone resistance from a transferable plasmid. Lancet 351, 797–799 (1998).
51. Wang, M. et al. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai. China. Antimicrob. Agents Chemother. 47, 2242–2248 (2003).
52. Hata, M. et al. Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob. Agents Chemother. 49, 801–803 (2005).
53. Germ, M., Yoshihara, E., Yoneyama, H. & Nakae, T. Interplay between the efflux pump and the resistance to ciprofloxacin and quinolones in Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 261, 452–455 (1999).
54. Jia, X. et al. Riboswitch control of aminoglycoside antibiotic resistance. Cell 152, 68–81 (2013).
55. Clemente, L. et al. Occurrence of extended-spectrum β-lactamases among isolates of Salmonella enterica subsp. enterica from food-producing animals and food products in Portugal. Int. J. Food Microbiol. 167, 221–228 (2013).
56. Liebana, E. et al. Public health risks of enterobacterial isolates producing extended-spectrum-lactamases or AmpC-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin. Infect. Dis. 56, 1030–1037 (2013).
57. Martinez-Martinez, L., Pascual, A. & Jacoby, G. A. Quinolone resistance from a transferable plasmid. Lancet 351, 797–799 (1998).
58. Singh, R. Phytochemical and antibacterial activity of Acacia nilotica (L.) leaves against pathogenic bacteria. Int. J. Green Pharm. 10, 104–110 (2016).
59. Sadiq, M. A., Hanipthakpong, W., Tarning, J. & Anal, A. K. Screening of phytochemicals and in vitro evaluation of antibacterial and antioxidant activities of leaves, pods and bark extracts of Acacia nilotica (L.) pods growing in Sudan against some bacterial pathogens. J. Appl. Pharm. Sci. 5, 87–93 (2015).
60. Jaafar, A. et al. Extraction of oleic acid produced by a marine Vibrio spp. acts as an anti-Vibrio parahaemolyticus agent. J. Appl. Pharm. Sci. 5, 33–49 (2015).
61. Forbes, B. A., Sahm, D. F. & Baron, E. J. The Principles and Practice of Medical Microbiology. 10–840 (Mosby, St. Louis, 2007).
62. Clinical and Laboratory Standards Institute (CLSI). Document M100: Performance standards for susceptibility testing. Clin. Lab. Stand. Inst. 37(1), 282 (2017).
81. Ghanbarpour, R. & Salehi, M. Determination of adhesin encoding genes in Escherichia coli isolates from omphalitis of chicks. Am. J. Anim. Vet. Sci. 5, 91–96 (2010).
82. Piva, I. C. et al. Virulence markers of enterotoxigenic Escherichia coli isolated from children and adults with diarrhea in Brasilia. Braz. J. Clin. Microbiol. 41, 1827–1832 (2003).
83. Jin, W. J. et al. Distribution of virulence-associated genes of avian pathogenic Escherichia coli isolates in China. Agric. Sci. China 7, 1511–1515 (2008).
84. Bisi-Johnson, M. A., Obi, C. L., Vasaikar, S. D., Baba, K. A. & Hattori, T. Molecular basis of virulence in clinical isolates of Escherichia coli and Salmonella species from a tertiary hospital in the Eastern Cape, South Africa. Gut Pathog. 3, 9 (2011).
85. Yeh, K. M. et al. Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. J. Clin. Microbiol. 45, 466–471 (2007).
86. Kaipainen, T. et al. Virulence factors of Escherichia coli isolated from bovine clinical mastitis. Vet. Microbiol. 85, 37–46 (2002).
87. Bi, S., Tang, S., Wu, X. & Chen, S. Quantitative detection of Proteus species by real-time polymerase chain reaction using SYBR Green I. Ann. Microbiol. 63, 1205–1208 (2013).
88. Matar, G. M., Ramlawi, F., Hijazi, I., Khneisser, I. & Abdelnoor, A. M. Transcription levels of Pseudomonas aeruginosa exotoxin A and severity of symptoms in patients with otitis externa. Curr. Microbiol. 45, 350–354 (2002).
89. Finnan, S., Morrissley, J. P., Ogara, F. & Boyd, E. F. Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J. Clin. Microbiol. 42, 57–83 (2004).
90. Ghasakhzaz, A., Fooladi, A. A. I., Hosseini, H. M. & Amin, M. The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. J. Appl. Microbiol. 13, 61–68 (2015).
91. Kadhum, H. J., Finlay, D., Rowe, M. T., Wilson, I. G. & Ball, H. J. Occurrence and characteristics of cytotoxic necrotizing factors, cytolethal distending toxins and other virulence factors in Escherichia coli from human blood and fecal samples. Epidemiol. Infect. 136, 752–760 (2008).
92. Yaguchi, K. et al. Virulence factors of avian pathogenic Escherichia coli strains isolated from chickens with coli septicaemia in Japan. Avian Dis. 51, 656–662 (2007).
93. Colom, K. et al. Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA–1 genes in enterobacteriaceae. FEMS Microbiol. Lett. 223, 147–151 (2003).
94. Archambault, M. et al. Molecular characterization and occurrence of extended-spectrum β-lactamase resistance genes among Salmonella enterica serovar Corvallis from Thailand, Bulgaria, and Denmark. Microb. Drug Resist. 12, 192–198 (2006).
95. Robicsek, A. et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12, 83 (2006).
96. Frana, T. S., Carlson, S. A. & Griffith, R. W. Relative distribution and conservation of genes encoding aminoglycoside-modifying enzymes in Salmonella enterica serotype Typhimurium phage type DT104. Appl. Environ. Microbiol. 67, 445–448 (2001).
97. Sánchez, P. et al. Fitness of in vitro selected Pseudomonas aeruginosa naldixic acid and multidrug resistant mutants. J. Antimicrob. Chemother. 50, 657–664 (2002).
98. Deen, S.A.R. Antibacterial effect of Acacia nilotica subspecies nilotica and Acacia nilotica subspecies adansonii (Sunt) pod extracts and their synergistic effect with antibiotics on selected bacteria, Ph.D. thesis university of Khartoum (2015).
99. Salem, W., Shibat El-hamed, D., Sayed, W. & Elamary, R. Alterations in virulence and antibiotic-resistant genes of multidrug-resistant Escherichia coli from human stool samples. Planta Med. 82, 183–186 (2016).
100. Piva, I. C. et al. Virulence factors of avian pathogenic Escherichia coli strains isolated from chickens with coli septicaemia in Japan. Avian Dis. 51, 656–662 (2007).
101. Dalgaard, P. & Koutsoumanis, K. Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. J. Microbiol. Methods 183, 183–196 (2001).

Author contributions
W.S. supervised the whole research. R.E. performed practical work, analyzed the data, and wrote the manuscript. F.A. gave some feedbacks about this research. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

(c) The Author(s) 2020