Analysis and evaluation of noise coupling between through-silicon-vias

Yuuki Araga1, a), Naoya Watanabe1, Haruo Shimamoto1, and Katsuya Kikuchi1, b)

Abstract Three-dimensional stacking of ICs with through-silicon-vias (TSVs) is one of the most expected way to integrate an enormous scale system in a small footprint. Shortened distance and expanded interconnect area are proofed to enable low-power, ultra-wide bandwidth communication among logic, memory, and analog component. In the 3-D integrated system with massive vertical interconnects, noise coupling among TSVs can be problem, by degrading signal integrity. We made a simple model to estimate noise coupling among TSVs and analyzed the coupling strength against parasitic capacitance of liner oxide. A test chip is fabricated, and the noise coupling strength is evaluated through on-chip waveform capturing circuitry. The analytical result and measured result show good consistency, and they indicate smaller size TSVs show better noise isolation characteristics as well as process simplicity.

Keywords: substrate noise, TSV, 3D-SIC, PDN, on-chip evaluation

Classification: Integrated circuits (memory, logic, analog, RF, sensor)

1. Introduction

Three-dimensional stacked ICs (3D-SICs) with through-silicon-vias are known as a solution to realize high-density multi chip module on a small footprint and has been started to be used in several high-performance electronics [1, 2, 3, 4, 5, 6, 7].

Through-silicon-vias (TSVs), the biggest feature of 3D-SICs, enable vertical signal transfer among stacked ICs which enhances performance and energy by optimized signal lines between stacked ICs [8, 9, 10, 11, 12, 13].

Although wider signal bus is required for enormous scale data transfer, densely manufactured signal bus needs to solve crosstalk among the channels [14, 15, 16, 17, 18, 19, 20] as well as power line noise [21, 22, 23, 24, 25, 26, 27]. To avoid bit error caused by such crosstalk, it requires frequency or voltage optimization that cause additional issues like lower data transfer speed or larger power consumption, respectively [28, 29]. As for 3D-SICs, dominant factor of the crosstalk is liner oxide of TSVs, because of minimized metal routing of CMOS process and relatively larger size of TSVs.

We analyze relationship between crosstalk strength and TSV capacitance of liner oxide, using simple model consists of lumped components, and evaluate actual crosstalk strength on test chip with TSVs.

2. Simple model to explain TSV-TSV noise coupling

To consider TSV-TSV noise coupling, we created a simple model as shown in Fig. 1, including a couple of TSVs and buffers to drive them on a single-tier substrate. The two TSVs in the model act as an aggressor and a victim, which electrical nodes are depicted as TSV_A and TSV_V, respectively. We also defined substrate node as SUB in the diagram, which is at the center of two TSVs.

To simplify the crosstalk analysis, we divided the TSV-TSV coupling model into a TSV-substrate and a substrate-TSV couplings models. The SUB node is connected to TSVs through R_SUB of substrate resistance and C_SUB of capacitance of liner oxide. The SUB node is also biased with ground through R_GND of resistance between SUB and stabilized ground. In the analysis, the aggressor TSV is act as a signal source, and the victim TSV has dumping component of C_PDN and R_DRIV, from parasitic capacitance to V_PD and V_DS and resistance of R_DN of driver CMOS, respectively. In the case of TSV-substrate coupling, noise propagation ratio is explained as Eq. (1).

\[
\frac{V_{SUB}}{V_{TSV}} = \frac{R_{GND} / (R_{SUB} + 1/2\pi f C_{TSV} + R_{DRIV} / (1/2\pi f C_{PDM}))}{R_{SUB} + 1/2\pi f C_{TSV}}
\]

(1)

The parallel component of R_GND and Substrate-TSV coupling part is dominated by R_GND, due to enough high impedance of C_TSV (for example, about 1.6k Ohm in case of 100 IF of C_TSV at 1 GHz).

Hence, noise propagation ratio can be approximated as Eq. (2) in the case of TSV-substrate coupling.

\[
\frac{V_{SUB}}{V_{TSV,A}} \cong \frac{R_{GND}}{R_{SUB} + 1/2\pi f C_{TSV}}
\]

(2)

The noise propagation ratio is explained with amplitude in TSVs, V_TSV,A and V_TSV,V, is modeled as voltage division between TSV_A to SUB and SUB to ground impedance. From the equation, we can see C_TSV and R_GND are dominant factor of noise propagation ratio from TSV to substrate. The substrate to TSV noise propagation ratio can be also explained with the simplified model, as Eq. (3).

\[
\frac{V_{TSV,V}}{V_{SUB}} = \frac{R_{DRIV} / (1/2\pi f C_{PDM})}{R_{SUB} + 1/2\pi f C_{TSV}}
\]

(3)
The noise propagation ratio consists of R_{DRIV} and C_{PDN}, in addition to R_{SUB} and C_{TSV}.

Figs. 2(a) and (b) shows analytical result of the noise coupling ratio of from aggressor TSV to substrate and from substrate to victim TSV, respectively. In this analysis, 800 fF of C_{PDN}, 3k Ohm of R_{DRIV}, 10 Ohm of R_{SUB}, and 100 Ohm of R_{GND} are set according to a test chip design that mentioned in next section. The red dot in the graph shows coupling ratio with 28 fF of C_{TSV} in the test chip, including capacitance of liner oxide around Cu plug with 5μm of diameter and 20 μm of length and capacitance of M1 pad connected to TSV. The frequency in the analysis is set to 400 MHz, according to measured fall time of the signal in the aggressor TSV. As these graphs show, the coupling strengths monotonically increase as C_{TSV} increases, because of large contribution of C_{TSV} in the Eq.(2) and (3) around this frequency bandwidth. Due to small size as a via-last TSV, our TSV shows 0.0070 and 0.034 of the aggressor TSV to Si substrate and the Si substrate to victim TSV noise propagation ratio, respectively. These propagation ratios suggest that -72 dBV noise suppression in the case of single couple of TSVs. From the Eq. (3), although larger C_{PDN} is alternative idea to suppress noise propagation, high power consumption and increased powerline noise may cause performance
degradation in total.

3. Measurement

Fig. 3 shows structure of our test chip to measure TSV-TSV noise propagation. The test chip is designed and manufactured by 0.18 μm CMOS process. After the CMOS process completion, the wafer is flipped and thinned down to 20 μm Si thickness for TSV formation. A diameter of conductor Cu is 5 μm and liner SiO2 thickness is 0.5 μm.

Fig. 3 (a) shows cross-sectional structure of the test chip, including thinned CMOS chip with TSVs mounted on support Si tier with die attach film. This test structure is same as the model structure depicted in Fig. 1. A photo after chip-on-board integration is shown in Fig. 3(b). Fig. 3(c) depicts physical layout design around evaluation circuitry. The evaluation circuitry consists of waveform capturing circuitry [30], evaluation area with two TSVs, and drivers for the aggressor and the victim TSV. The waveform capturing circuitry consists of sample-hold and output buffer, to capture pulse waveform in the aggressor TSV, noise on Si substrate between two TSVs, and noise in the victim TSV.

Fig. 4 shows captured waveforms from embedded waveform capturer. The timing resolution of the measurement is 0.05 ns, and the plot is average of 16 waveforms for minimizing environmental noise from off-chip. A red and blue lines in Fig. 4(a) shows signal voltage in the aggressor TSV, captured by two types of waveform capturer that targets V_{DD} level and V_{SS} level, respectively. The fall time of signal in the aggressor TSV is measured as the time from 90 to 10% of voltage swing between V_H and V_L. Figure 4(b) shows substrate noise of - 9 mV peak, exited by voltage swing in aggressor TSV. A red dotted line and a blue line in Fig. 4(c) show measured row waveform and filtered waveform in victim TSV. In this graph, simple moving average (SMA) filter is applied with $n=9$ as lowpass filter (LPF), to see small voltage swing without background noise. As for about 1 mV peak-peak voltage swing in victim TSV, it is considered to be noise induced to victim TSV driver from aggressor TSV driver through substrate between the drivers, due to opposite direction of substrate noise between TSVs and larger noise propagation ratio than expected ratio in analysis.

From these results and consideration, we can say measured noise in the victim TSV is enough small to be hidden with other noise. Absence of the noise propagation from aggressor TSV to victim TSV is consistent with expectation from analysis, as well as substrate noise in Fig. 4(b) with comparable voltage variation to $1.72 \text{ V} \times 0.007$ from analysis.

4. Conclusion

In 3D-SICs with dense interconnects through TSVs, crosstalk among TSVs may degrade signal integrity, due to large coupling factor consists of capacitance of liner oxide. This paper constructed simple lumped component model to explain TSV to TSV noise propagation, and fabricated test chip including TSVs on 0.18 μm CMOS. The analytical model focus on a couple of aggressor and victim TSVs, to simplify the target structure, and test chip is designed to measure noise propagation among TSVs with mitigated effect from structures without TSVs with on-chip measurement technology. The analytical and measured result suggests that smaller TSV capacitance suppresses both TSV to substrate and substrate to TSV coupling.

This consideration suggests that small TSVs are worth the risk of handling extremely thinned wafer, by noise suppres-
sion as well as shortened etching process and electroplating process of TSVs. The presented equations also suggest that reduction of substrate resistance to ground has large effect if TSV driver has small parasitic capacitance or large capacitance of liner oxide around TSVs.

The constructed model is extendable by multiplying values in the equations when number of TSVs increased, and further measurement with enormous number of TSVs for process and design co-optimization in high-performance stacked module. These are left for future studies.

References

[1] B. Baniamal, et al.: “Advanced reliability study of TSV interposers and interconnects for the 28nm technology FPGA,” 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) (2011) 285 (DOI: 10.1109/ECTC.2011.5898527).

[2] N. Kim, et al.: “Interposer design optimization for high frequency signal transmission in passive and active interposer using through silicon via (TSV),” 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) (2011) 1160 (DOI: 10.1109/ECTC.2011.5898657).

[3] M. Koyanagi: “Recent progress in 3D integration technology,” IEICE Electron. Express 12 (2015) 20152001 (DOI: 10.1587/eelex.12.20152001).

[4] C. Lee, et al.: “An overview of the development of a GPU with integrated HBM on silicon interposer,” 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) (2016) 1439 (DOI: 10.1109/ECTC.2016.348).

[5] J. Lee, et al.: “Micro bump system for 2nd generation silicon interposer with GPU and high bandwidth memory (HBM) concurrent integration,” 2018 IEEE 68th Electronic Components and Technology Conference (ECTC) (2018) 607 (DOI: 10.1109/ECTC.2018.00096).

[6] M.-S. Lin, et al.: “A 7nm 4GHz Arm®-core-based CoWoS®/chiplet design for high performance computing,” 2019 Symposium on VLSI Circuits (2019) C28 (DOI: 10.23919/VLSIC.2019.877816).

[7] C.H. Tsai, et al.: “Low temperature SolC™ bonding and stacking technology for 12/16-hi high bandwidth memory (HBM),” 2020 IEEE Symposium on VLSI Technology (2020) 1 (DOI: 10.1109/VLSITechnology18217.2020.926504).

[8] G. Van der Plas, et al.: “Design issues and considerations for low-cost 3-D TSV IC technology,” IEEE J. Solid-State Circuits 46 (2011) 293 (DOI: 10.1109/JSSC.2010.2074070).

[9] K. Hozawa, et al.: “Demonstration of inter-chip data transmission in a three-dimensional stacked chip fabricated by chip-level TSV integration,” 2012 Symposium on VLSI Technology (VLSIT) (2012) 175 (DOI: 10.1109/VLSIT.2012.6242518).

[10] J. Wang, et al.: “Cluster mesh: a topology for three-dimensional network-on-chip,” IEICE Electron. Express 9 (2012) 1254 (DOI: 10.1587/elex.9.1254).

[11] S. Takaya, et al.: “A 100Gbps Wide I/O with 4096b TSVs through an active silicon interposer with in-place waveform capturing,” ISSCC Dig. Tech. Papers (2013) 434 (DOI: 10.1109/ISSCC.2013.6487803).

[12] H. Sun, et al.: “H-cluster: a hybrid architecture for three-dimensional many-core chips,” IEICE Electron. Express 11 (2014) 20140876 (DOI: 10.1587/elex.11.20140876).

[13] P.-W. Liao, et al.: “A computer designed half Gb 16-channel 819Gb/s high-bandwidth and 10ns low-latency DRAM for 3D stacked memory devices using TSVs,” 2015 Symposium on VLSI Circuits (2015) C186 (DOI: 10.1109/VLSIC.2015.7231256).

[14] Z. Xu, et al.: “Crosstalk evaluation, suppression and modeling in 3D through-strata-via (TSV) network,” 2010 IEEE International 3D Systems Integration Conference (3DIC) (2010) 1 (DOI: 10.1109/3DIC.2010.5751477).

[15] Y. Zhao, et al.: “Modeling and optimization of noise coupling in TSV-based 3D ICs,” IEICE Electron. Express 11 (2014) 20140797 (DOI: 10.1587/elex.11.20140797).

[16] Y. Zhao, et al.: “Analysis and evaluation of coupling between adjacent TSVs with considering the discharging path,” IEICE Electron. Express 12 (2015) 20150089 (DOI: 10.1587/elex.12.20150089).

[17] S. Piersanti, et al.: “Through silicon via time domain crosstalk modeling considering hysteretic coupling capacitance,” 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC) (2015) 567 (DOI: 10.1109/EMCON.2015.7256225).

[18] F. Wang, et al.: “A novel guard method of through-silicon-via (TSV),” IEICE Electron. Express 15 (2018) 20180421 (DOI: 10.1587/elex.15.20180421).

[19] Y. Araga, et al.: “A study on substrate noise coupling among TSVs in 3D chip stack,” IEICE Electron. Express 15 (2018) 20180460 (DOI: 10.1587/elex.15.20180460).

[20] F. Wang, et al.: “Investigation on impact of substrate on low-pass filter based on coaxial TSV,” IEICE Electron. Express 16 (2019) 20180992 (DOI: 10.1587/elex.16.20180992).

[21] J.S. Pak, et al.: “On-chip PDN design effects on 3D stacked on-chip PDN impedance based on TSV interconnection,” 2010 IEEE Electrical Design of Advanced Package & Systems Symposium (2010) 1 (DOI: 10.1109/EDAPS.2010.5682994).

[22] Y. Araga, et al.: “EMI performance of power delivery networks in 3D TSV integration,” 2016 International Symposium on Electromagnetic Compatibility - EMC EUROPE (2016) 426 (DOI: 10.1109/EMCEurope.2016.7739267).

[23] S. Kim and Y. Kim: “Analysis and reduction of the voltage noise of multi-layer 3IC with multi-paired power delivery network,” IEICE Electron. Express 14 (2017) 20170792 (DOI: 10.1587/elex.14.20170792).

[24] Y. Araga, et al.: “Superior decoupling capacitor for three-dimensional LSI with ultrawide communication bus,” Japanese Journal of Applied Physics (JJAP) (2017) 434 (DOI: 10.7567/JJAP.56.04CC05).

[25] S.Y. Hou, et al.: “Integrated deep trench capacitor in Si interposer for CoWoS heterogeneous integration,” 2019 IEEE International Electron Devices Meeting (IEDM) (2019) 19.5.1 (DOI: 10.1109/IEDM19573.2019.893498).

[26] W.T. Chen, et al.: “Design and analysis of logic-HBM2E power delivery system on CoWoS® platform with deep trench capacitor,” 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) (2020) 380 (DOI: 10.1109/ECTC32862.2020.00068).

[27] Y. Lin, et al.: “Three-dimensional capacitor embedded in fully Cu-filled through-silicon via and its thermo-mechanical reliability for power delivery applications,” 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) (2020) 393 (DOI: 10.1109/ECTC32862.2020.00070).

[28] K. Chandrasekar, et al.: “Timing analysis for wide IO memory interface applications with silicon interposer,” 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC) (2014) 46 (DOI: 10.1109/EMCON.2014.6898941).

[29] S. Sudhakaran and R. Newcomb: “8B9B encoding for crosstalk reduction in high-speed parallel bus,” 2016 IEEE 75th Conference on Electrical Performance Of Electronic Packaging And Systems (EPEPS) (2016) 29 (DOI: 10.1109/EPEPS.2016.7835411).

[30] Y. Araga, et al.: “Evaluation of substrate noise suppression method to mitigate crosstalk among trough-silicon vias,” 2018 Japanese Journal of Applied Physics (JJAP) 57 (2018) 04FC07 (DOI: 10.7567/JJAP.57.04FC07).