WHITEHEAD MODULES OVER LARGE PRINCIPAL IDEAL DOMAINS

PAUL C. EKLOF AND SAHARON SHELAH

Abstract. We consider the Whitehead problem for principal ideal domains of large size. It is proved, in ZFC, that some p.i.d.'s of size $\geq \aleph_2$ have non-free Whitehead modules even though they are not complete discrete valuation rings.

A module M is a Whitehead module if $\text{Ext}^1_R(M, R) = 0$. The second author proved that the problem of whether every Whitehead \mathbb{Z}-module is free is independent of ZFC + GCH (cf. [5], [6], [7]). This was extended in [1] to modules over principal ideal domains of cardinality at most \aleph_1. Here we consider the Whitehead problem for modules over principal ideal domains (p.i.d.'s) of cardinality $> \aleph_1$.

If R is any p.i.d. which is not a complete discrete valuation ring, then an R-module of countable rank is Whitehead if and only if it is free (cf. [3]). On the other hand, if R is a complete discrete valuation ring, then it is cotorsion and hence every torsion-free R-module is a Whitehead module (cf. [2, XII.1.17]).

It will be convenient to decree that a field is not a p.i.d. and to use the term “slender” to designate a p.i.d. which is not a complete discrete valuation ring, or equivalently, is not cotorsion (cf. [3, III.2.9]). We will say that a module is κ-generated if it is generated by a subset of size $\leq \kappa$ and that it is κ-free if every submodule generated by $< \kappa$ elements is free. (Note that, by Pontryagin’s Criterion and induction on κ, every \aleph_1-free module which has rank $\leq \kappa$ is κ-generated.)

An argument due to the second author (cf. [3] or [4]) shows that it is consistent with ZFC + GCH that for any p.i.d. R (of arbitrary size), there are Whitehead R-modules of rank $\geq |R|$ which are not free.

If the p.i.d. R is slender and has cardinality at most \aleph_1, the Axiom of Constructibility ($V = L$) implies that every Whitehead R-module is free (cf. [2]). Our main result is that the story is different for p.i.d.'s of larger size. We will prove the following theorems in ZFC.

Theorem 1. There is a slender p.i.d. R of cardinality 2^{\aleph_1} such that every \aleph_1-free \aleph_1-generated R-module is a Whitehead module. Hence there are non-free Whitehead R-modules which are \aleph_1-generated.

Theorem 2. There is a p.i.d. R of cardinality \aleph_2 such that an \aleph_1-generated R-module is Whitehead only if it is free.

Assuming $V = L$ and using the existing theory (cf. [6]) one easily obtains the following:

Date: October 30, 2018.

*First author partially supported by NSF DMS 98-03126.

Second author supported by the German-Israeli Foundation for Scientific Research & Development. Publication 792.
Corollary 3. (V = L) There are principal ideal domains R_1 and R_2 each of cardinality \aleph_2 and non-slender such that:

1. an R_1-module M (of arbitrary cardinality) is Whitehead if and only if M is the union of a continuous chain, $M = \bigcup_{\alpha<\lambda} M_\alpha$ for some λ, such that for all $\alpha<\lambda$, $M_{\alpha+1}/M_\alpha$ is R_1-free and R_1-generated;

2. an R_2-module M (of arbitrary cardinality) is Whitehead if and only if M is free.

The theorems can be generalized to other cardinals: see Theorems 8 and 9 at the end of the sections.

1. Proof of Theorem 3

The ring R in Theorem 3 will be constructed by a transfinite induction so that for every module F/K (F free) which is \mathfrak{m}-free and \mathfrak{m}-generated, Ext$(F/K,R) = 0$, i.e., every homomorphism from K to R extends to a homomorphism from F to R. The following proposition provides the inductive step.

Proposition 4. Let R be a local slender p.i.d. with maximal ideal pR, and let $K \subseteq F$ be free R-modules of rank \aleph_1 such that F/K is \aleph_1-free. Let $\psi : K \to R$ be an R-homomorphism. Then there is a local slender p.i.d. R^+ containing R as subring, with maximal ideal pR^+ and of cardinality $|R| + \aleph_1$ such that the R^+-homomorphism $1_{R^+} \otimes_R \psi : R^+ \otimes_R K \to R^+ \otimes_R R$ extends to an R^+-homomorphism $\varphi : R^+ \otimes_R F \to R^+ \otimes_R R$.

Proof. Write $F = \bigcup_{\alpha<\omega_1} F_\alpha$ as a continuous union of submodules of countable rank with $F_0 = 0$. For each $\alpha < \omega_1$, $F_\alpha + K/K$ is free; let $\{b^i_\alpha : i \in I_\alpha\}$ be a linearly independent subset of F_α such that $\{b^i_\alpha + K : i \in I_\alpha\}$ is a basis of $F_\alpha + K/K$.

(1) $\varphi(b^i_\alpha + K) = x^i_\alpha$. Let $x^i_\alpha < \omega_1$.

We claim that there is a local slender p.i.d. R^+ of cardinality $|R| + \aleph_1$ containing R as subring and with maximal ideal pR^+ and elements $x^i_\alpha \in R^+$ ($\alpha < \omega_1$, $i \in I_\alpha$) such that $x^i_\alpha = \sum_{j \in I_\beta} r^{i,j}_\alpha x^j_\beta + s^{i,j}_\alpha$ for all $\alpha < \beta < \omega_1$ and $i \in I_\alpha$.

Supposing this for the moment, let us finish the proof. Clearly $\{b^i_\alpha : \alpha < \omega_1, i \in I_\alpha\}$ generates $R^+ \otimes_R F$ as R^+-module. Define φ extending $1_{R^+} \otimes_R \psi$ by $\varphi(1 \otimes b^i_\alpha) = x^i_\alpha \otimes 1$. We must check that this is well-defined. For this it suffices to prove that $\varphi(1 \otimes (1 \otimes b^i_\alpha)) = \sum_{j \in I_\beta} r^{i,j}_\alpha x^j_\beta + s^{i,j}_\alpha \varphi(1 \otimes b^j_\beta) + (1 \otimes \psi)(1 \otimes k^{i,j}_\alpha)$ for all $\alpha < \beta < \omega_1$ and $i \in I_\alpha$. But this is implied by the assumption that $x^i_\alpha = \sum_{j \in I_\beta} r^{i,j}_\alpha x^j_\beta + s^{i,j}_\alpha$.

So it remains to define R^+. Let $R^0 = R$ and for $0 < \alpha < \omega_1$, let $R^\alpha = R[\{x^i_\alpha : i \in I_\alpha\}]$, the polynomial ring over R in the commuting indeterminates x^i_α, $i \in I_\alpha$. Let $\pi^i_\alpha : R^\alpha \to R^\beta$ be the ring homomorphism which is the identity on R and takes x^i_α to $\sum_{j \in I_\beta} r^{i,j}_\alpha x^j_\beta + s^{i,j}_\alpha$. It is easy to check, using the fact that the $\{b^i_\alpha : i \in I_\alpha\}$ are linearly independent, that $\pi^i_\delta \circ \pi^i_\beta = \pi^i_\gamma$ whenever $\alpha < \beta < \gamma < \omega_1$.

Let R' with maps $\pi^i_\alpha : R^\alpha \to R'$ be the direct limit of this \aleph_1-directed system of homomorphisms. Clearly each R^α is a unique factorization domain such that p is prime in R^α. Since the system is directed, R' is an integral domain and p is prime in R'. Moreover, since the system is \aleph_1-directed, $\bigcap_{n \in \omega} R^p R' = 0$ since the same is true in each R^α. If $\{a_n : n \in \omega\}$ is a Cauchy sequence in R which does not have a
limit (in the p-adic topology), then \(\{ \pi^0(a_n) : n \in \omega \} \) does not have a limit in the p-adic topology on \(R^\alpha \) for all $t \in R^\alpha - pR^\alpha$. Hence, by the \aleph_1-directedness, the same holds for \(\{ \pi^0(a_n) : n \in \omega \} \) in \(R' \).

Finally, let R^+ be the localization of R' at the prime p. We appeal to the following elementary Lemma to finish.

Lemma 5. Suppose R' is an integral domain with a prime p such that $\bigcap_{n \in \omega} p^n R' = 0$. Then the localization $R'_*(p)$ of R' at p is a p.i.d.

Proof. Given a non-zero proper ideal I of $R'_*(p)$, let $I' = I \cap R'$ ($= \{ r \in R' : \frac{r}{p} \in I \}$). Let m be minimal such that $I' \cap (p^m R' - p^{m+1} R') \neq \emptyset$. Clearly m exists, by hypothesis and since I' is non-zero. We claim that $I = p^m R'_*(p)$. Let $a \in I' \cap (p^m R' - p^{m+1} R')$; then $a = p^m r$ for some $r \in R'$ and $r \notin pR'$; so r is a unit in $R'_*(p)$ and thus $p^m \in I$. Now for any non-zero $\frac{b}{p} \in I$, $b \in I' - \{ 0 \}$ so $b \in I' \cap (p^n R' - p^{n+1} R')$ for some $n \geq m$. Thus $b = p^m c$ for some $c \in R'$ and $n \geq m$. But then $\frac{b}{p} = p^{m-n} \frac{c}{p} \in p^m R'_*(p)$. Therefore $I = p^m R'_*(p)$.

Proof of Theorem 6. Let $\lambda = 2^{\aleph_1}$. We define a ring R on the set λ which is the union of a continuous chain of rings R_ν ($\nu < \lambda$) such that for each $\nu < \lambda$, $R_{\nu+1}$ is of the form $(R_\nu)^+$ for some quadruple $(R_\nu, K_\nu, F_\nu, \psi_\nu)$ satisfying the hypotheses of the Proposition. We begin, for example, with $R_0 = \mathbb{Z}_p$. It is easy to see that R is a local p.i.d. with prime p. Moreover, the proof of the Proposition shows that a witnessing Cauchy sequence to the incompleteness of R_0 is preserved at each stage and therefore also in R since ω_1 has cofinality $> \omega$. Because $\lambda^{\aleph_1} = \lambda$, we can choose the enumeration of quadruples $(R_\nu, K_\nu, F_\nu, \psi_\nu)$ such that for every \aleph_1-generated \aleph_1-free R-module F/K (where $K \subseteq F$ are free R-modules) and every R-homomorphism $\psi : K \to R$, there is a $\nu < \lambda$ such that $R \otimes_{R_\nu} F_\nu$ is isomorphic to F under an isomorphism which takes $R \otimes_{R_\nu} F_\nu$ to K and identifies $1_R \otimes_{R_\nu} \psi_\nu$ with ψ under the natural isomorphism of $R \otimes_{R_\nu} R_\nu$ with R. (Note that $K \subseteq F$ and ψ can each be completely described by a sequence of \aleph_1 elements of $R = \lambda$.)

By using a direct system indexed by the countable rank submodules of F/K in the proof of the Proposition, we can prove the following more general version of the theorem. Part (1) of Corollary 3 can be correspondingly generalized.

Theorem 6. For any cardinal $\kappa \geq \aleph_1$, there is a local slender p.i.d. R of cardinality 2^κ such that every \aleph_1-free κ-generated R-module is a Whitehead module.

2. Proof of Theorem 6

Let R be the polynomial ring $F[X]$ where $F = \mathbb{Q}((t_\nu : \nu < \omega_2))$ and $\{ t_\nu : \nu < \omega_2 \}$ is an algebraically independent set.

Let A be an \aleph_1-generated \aleph_1-free R-module which is not free and let $A = \bigcup_{\alpha < \omega_1} A_\alpha$ be an \aleph_1-filtration of A. Then there is a stationary set S of limit ordinals such that for $\gamma \in S$, $A_{\gamma+1}/A_\gamma$ is not free. Without loss of generality we can assume that there is a $d \in \omega$ such that for all $\gamma \in S$, $A_{\gamma+1}/A_\gamma$ is of rank $d+1$ and not free but every submodule of rank $\leq d$ is free. (Note that we allow A_α/A_γ to be non-free for $\alpha \notin S$.) Thus $A_{\gamma+1}/A_\gamma$ is isomorphic to F'/K', where F'_γ is free on \(\{ y_{\gamma,n} : n \in \omega \} \cup \{ x_{\gamma,\ell} : \ell < d \} \) and K'_γ has a basis $\{ w'_{\gamma,n} : n \in \omega \}$ where

$$w'_{\gamma,n} = p_{\gamma,n} y_{\gamma,n+1} - y_{\gamma,n} - \sum_{\ell < d} s_{\gamma,n,\ell} x_{\gamma,\ell}$$
for some $p_{\gamma,n}, s_{\gamma,n,\ell} \in R$ where the $p_{\gamma,n}$ are non-units of R (not necessarily prime).

(Compare, for example, Observation 3.1.)

Let $F = \bigoplus_{\beta < \omega} F^\beta$ and $K = \bigoplus_{\beta < \omega} K^\beta$ be as in Lemma XII.1.4; that is, for all $\alpha < \omega_1, \bigoplus_{\beta < \alpha} F^\beta / \bigoplus_{\beta < \alpha} K^\beta \cong A_\alpha$ and $\bigoplus_{\beta < \alpha} F^\beta / (\bigoplus_{\beta < \alpha} F^\beta + K^\alpha) \cong A_{\alpha+1}/A_\alpha$. Moreover, by the proof of Lemma XII.1.4, we can assume that for $\gamma \in S$, F^γ is a summand of F_γ and K_γ has a basis which includes $\{w_{\gamma,n} : n \in \omega\}$ where

$$w_{\gamma,n} = w^\gamma_{\gamma,n} - a_{\gamma,n},$$

for some $a_{\gamma,n} \in \bigoplus_{\beta < \gamma} F^\beta$ (and $\psi_\gamma(w^\gamma_{\gamma,n}) = \varphi_\gamma(a_{\gamma,n}) \in A_\gamma$). Fix a basis B of F which is the union of a basis B^β for each F^β and which includes $\bigcup_{y, n \in \omega} \{y_{\gamma,n} : n \in \omega\} \cup \{x_{\gamma,\ell} : \ell < d\}$. Also fix a basis of K which includes $\bigcup_{w \in S} \{w_{\gamma,n} : n \in \omega\}$. Given an element r of R, we will say $\mu \in \omega_2$ occurs in r if r does not belong to $Q(\{t_\nu : \nu \in \omega_2 - \{\mu\}\})[X]$. Given an element z of F we will say that μ occurs in z if it occurs in some coefficient of the unique linear combination of elements of B which equals z. There is a subset I of ω_2 of cardinality \aleph_1 such that all of the $p_{\gamma,n}$ and $s_{\gamma,n,\ell}$ ($\gamma \in S, n \in \omega, \ell < d$) belong to $Q(\{t_i : i \in I\})[X]$. Moreover, we can choose I such that it contains every μ which occurs in some coefficient of a linear combination of elements of B which equals some $a_{\gamma,n} (\gamma \in S, n \in \omega)$. Without loss of generality (by renumbering the t_ν), $I = \omega_1$.

Now we define $\psi : K \rightarrow R$ by defining

$$\psi(w_{\gamma,n}) = t_{\omega_1 + \omega_\gamma + n}$$

and letting ψ be arbitrary on the other basis elements of K. We will show that $\text{Ext}(A, R) \neq 0$ by showing that ψ cannot be extended to a homomorphism from F into R. Suppose to the contrary that there is a homomorphism $\varphi : F \rightarrow R$ extending ψ. For each $\alpha < \omega_1$, let T^α be the set of all $\mu \in \omega_2$ which occur in $\varphi(b)$ for some $b \in \bigcup\{B^\beta : \beta < \alpha\}$. Then the T^α ($\alpha \in \omega_1$) form a continuous chain of countable subsets of ω_2 and there is $\delta \in S$ such that $T^\delta \cap \{\omega_1 + \beta : \beta < \omega_1\} \subseteq \{\omega_1 + \beta : \beta < \delta\}$. There is a finite subset Y of ω_2 such that every μ which occurs in $\varphi(y_{\delta,0})$ or in $\varphi(x_{\delta,\ell})$ for some $\ell < d$ belongs to Z. Let $R^* = Q(\{t_\nu : \nu \in \omega_1 \cup T^\delta \cup Z\})[X]$, a subring of $R = F[X]$. Now for all $n \in \omega$ we have $\varphi(w_{\delta,n}) = \psi(w^\delta_{\delta,n}) = t_{\omega_1 + \omega_\delta + n} - p_{\delta,n} \varphi(y_{\delta,n+1}) - \varphi(y_{\delta,n}) - \sum_{\ell < d} s_{\delta,n,\ell} \varphi(x_{\delta,\ell}) - \varphi(a_{\delta,n})$.

If we can show that this implies that $t_{\omega_1 + \omega_\delta + n}$ belongs to R^* for all $n \in \omega$, we will have a contradiction of the choice of T^δ and the fact that Z is finite. We will show this by induction on n along with simultaneously proving that $\varphi(y_{\delta,n+1}) \in R^*$. We begin with $n = -1$: $\varphi(y_{\delta,0})$ belongs to R^* by definition of Z. Now suppose the inductive hypothesis is true for $n - 1$ and we prove it for n. By the last displayed formula, the inductive hypothesis and the choice of R^*, there is an element $r_n \in R^*$ such that $p_{\delta,n} \varphi(y_{\delta,n+1}) = r_n - t_{\omega_1 + \omega_\delta + n}$. If $t_{\omega_1 + \omega_\delta + n} \notin R^*$, there is an automorphism Θ of R which fixes R^* and takes $t_{\omega_1 + \omega_\delta + n}$ to t_τ for some $\tau \notin T^\delta$. Then $p_{\delta,n} \Theta(\varphi(y_{\delta,n+1})) = r_n - t_\tau$. (Remember that $p_{\delta,n} \in R^*$.) Therefore, subtracting, $p_{\delta,n}$ divides $t_{\omega_1 + \omega_\delta + n} - t_\tau$, which is impossible since $p_{\delta,n}$ is a non-unit. Thus $t_{\omega_1 + \omega_\delta + n}$ and hence $p_{\delta,n} \varphi(y_{\delta,n+1})$ belong to R^*. But then since $p_{\delta,n} \in R^*$ we can prove by induction on m that the coefficient of X^m in $\varphi(y_{\delta,n+1}) \in F[X]$, belongs to $Q(\{t_\nu : \nu \in \omega_1 \cup T^\delta \cup Z\})$, and hence that $\varphi(y_{\delta,n+1})$ belongs to R^*.

We can even find a principal ideal domain of cardinality \aleph_1 which satisfies the conclusion of Theorem 2. Namely, let $R = F_1[X]$ where $F_1 = Q(\{t_\nu : \nu < \omega_1\})$.

4 PAUL C. EKLOF AND SAHARON SHELAH
Define $\psi(w_{\delta,n})$ to be $t_{\omega\delta+\sigma_{\delta}+n}$ where $\omega\delta+\sigma_{\delta}$ is larger than any μ which occurs in any $p_{\delta,k}$ or $s_{\delta,k,\ell}$ for $k \in \omega$, $\ell < d$. Define T_{δ} as before and choose $\delta \in S$ such that $T_{\delta} \cap \omega_{1} \subseteq \omega_{\delta}$. Let $R^{*} = \mathbb{Q}(\{t_{\nu} : \nu \in \omega_{\delta} + \sigma_{\delta} \cup T_{\delta} \cup Z\})[X]$.

We can also localize without affecting the property of the ring that we desire. More generally, we have:

Theorem 7. For any $\kappa \geq \aleph_1$ there is a local p.i.d. R of cardinality κ such that an R-module of cardinality $\leq \kappa$ is Whitehead only if it is free.

References

[1] T. Becker, L. Fuchs and S. Shelah, *Whitehead modules over domains*. Forum Math. 1 (1989), 53–68.
[2] P. C. Eklof and A. H. Mekler, *Almost Free Modules*, North-Holland (1990).
[3] O. Gerstner, L. Kaup and H. G. Weidner, *Whitehead-Modul abzählbare Ranges über Hauptidealringen*, Arch. Math. (Basel) 20 (1969), 503–514.
[4] R. Göbel and S. Shelah, *Cotorsion theories and splitters*, Trans. Amer. Math. Soc, to appear.
[5] S. Shelah, *Infinite abelian groups, Whitehead problem and some constructions*, Israel J. Math 18 (1974), 243–256.
[6] S. Shelah, *A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals*, Israel J. Math. 21 (1975), 319–349.
[7] S. Shelah, *Whitehead groups may not be free even assuming CH, II*, Israel J. Math 35 (1980), 257–285.
[8] J. Trlifaj, *Non-perfect rings and a theorem of Eklof and Shelah*, Comment. Math. Univ. Carolinae 32 (1991), 27–32.

(Eklof) Math Dept, UCI, Irvine, CA 92697-3875

(Shelah) Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel