Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Invited Review

Covid-19 interface with drug misuse and substance use disorders

I.E. Cisneros a,b,c,d,e,*, K.A. Cunningham a,c,d

a Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
b Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
c Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
d Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
e Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA

* Corresponding author. University of Texas Medical Branch 301 University Blvd, Keiller 2D, Galveston, TX, 77550, United States
E-mail address: ircisner@utmb.edu (I.E. Cisneros).

https://doi.org/10.1016/j.neuropharm.2021.108766
Received 25 June 2021; Received in revised form 9 August 2021; Accepted 23 August 2021
Available online 26 August 2021
0028-3908/Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ARTICLE INFO

Keywords:
- Central nervous system
- Coronavirus disease 2019 (Covid-19)
- Host immune responses
- Inflammation
- SARS-CoV2
- Substance use disorders

ABSTRACT

The coronavirus disease 2019 (Covid-19) pandemic intensified the already catastrophic drug overdose and substance use disorder (SUD) epidemic, signaling a syndemic as social isolation, economic and mental health distress, and disrupted treatment services disproportionately impacted this vulnerable population. Along with these social and societal factors, biological factors triggered by intense stress intertwined with incipient overactivity of the immune system and the resulting inflammatory outcomes may impact the functional status of the central nervous system (CNS). We review the literature concerning SARS-CoV2 infiltration and infection in the CNS and the prospects of synergy between stress, inflammation, and kynurenine pathway function during illness and recovery from Covid-19. Taken together, inflammation and neuroimmune signaling, a consequence of Covid-19 infection, may dysregulate critical pathways and underlie maladaptive changes in the CNS, to exacerbate the development of neuropsychiatric symptoms and in the vulnerability to develop SUD.

This article is part of the special issue on ‘Vulnerabilities to Substance Abuse’.

1. Covid-19 and substance use disorder (SUD) syndemic

1.1. Introduction

Coronavirus disease 2019 (Covid-19) emerged as a world-historical pandemic which will change our lives for generations, and the end of this global crisis is not in sight. Covid-19 is the third coronavirus in the last 20 years to transmit from an animal reservoir to humans (Salajegheh Tazerji et al., 2020). The causative virus has been designated severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV2), a single-strand RNA virus. SARS-CoV2 is genetically close, but a distinct version of the viruses which caused the outbreak of SARS in 2003 and Middle East respiratory syndrome (MERS) in 2012 (Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, 2020).

The epidemiology and clinical findings to date suggest that Covid-19 presents with a wide spectrum of disease characteristics. The virus devastates host cell function in the lung, resulting in respiratory damage as a primary cause of death in some cases, despite mechanical ventilation to achieve lung recovery (Hanidziar and Bittner, 2020). Although the host risk factors are not yet completely clear, chronic comorbidities (e.g., diabetes, cardiovascular and pulmonary diseases) are thought to be key contributors to severe Covid-19 disease (Alhazzani et al., 2020; Qin et al., 2020; Zhao et al., 2020), potentially due in part to the exuberant inflammatory response to infection (“cytokine storm”) (Stebbing et al., 2020). Additionally, neurological indicators of Covid-19 disease (e.g., confusion, delirium, dysphoria) have surfaced, suggesting that the central nervous system (CNS) involvement may contribute to the sustained pathophysiology of Covid-19 (Baig et al., 2020; Wu et al., 2020).

The synergism between two or more health conditions within the context of both disease and societal factors has been used frequently to understand the morbidity and mortality associated with human immunodeficiency virus (HIV) transmission and substance use disorders (SUDs) (Cisneros and Ghorpade, 2012; Sil et al., 2021; Tyagi et al., 2016). The syndemic concept is now relevant to the overlapping crises associated with the Covid-19 pandemic and the epidemic of abused drug misuse, overdose, and the incidence of SUDs. The Center for Disease Control and Prevention (CDC) reports that more than 33 million people have contracted SARS-CoV2 and nearly 600,000 individuals in the U.S. have succumbed to Covid-19 ((NCHS), 2021; Statistics, 2021; System, 2021). In parallel, drug overdose deaths claimed a reported 91,862 people in the U.S. in the 12-month period ending in October of 2020; up by ~30% vs. the previous year (provisional data) (Ahmad et al., 2021;
For instance, infection-triggered alterations in host immunity may drive peripheral and CNS immunity, may increase the vulnerability to engage in viral-mediated immune activation, like that triggered by SARS-CoV2, factors triggered by intense stress, intertwined with incumbent overactivity of inflammatory events in the CNS and the potential for vulnerability to SUDs following recovery from Covid-19 (Schematic 1) and focuses on elucidating aspects of immune-related consequences associated with SUDs.

1.2. Drug abuse and SUDs during Covid-19

The drug overdose crisis has resulted in the death of nearly 500,000 individuals between 1999 and 2018, the majority related to the opioid class of drugs [e.g., prescription pain relievers, synthetic opioids (fentanyl derivatives), heroin] (Upp and Waljee, 2020). In addition to opioid overdoses, cocaine- and methamphetamine-related fatalities increased nearly 30%, by approximately 10 deaths daily, between 1999 and 2018 (Hedegaard et al., 2020). Alarming, the CDC reported that 30% of overdose deaths involved a combination of stimulants and opioids and 10% involved stimulants alone (O’Donnell et al., 2020). Unfortunately, an 18.6% increase in non-fatal overdoses and an 11.4% increase in fatal overdose deaths have been observed during the stay-at-home orders in 2020 (Alter and Yeager, 2020b; Niles et al., 2021). Drug urine tests performed four months before and after the initiation of pandemic stay-at-home orders indicated increased prevalence of methamphetamine and cocaine use during the Covid-19 pandemic (Wainwright et al., 2020). In fact, the CDC estimates that 13.3% of people began using or increased use of abused substances as of June 2020 (Czeisler et al., 2020) and a self-described 34% increase in binge drinking by U.S. adults was also observed during the social isolation conditions of the pandemic (Weller et al., 2021). About 40% of individuals increased tobacco use during the pandemic at a time that 71% of individuals indicated a heightened motivation to quit smoking tobacco and/or electronic cigarettes to reduce harms from Covid-19 (Kowitt et al., 2020). These indicators signal the potential for further elevations in drug overdoses and rises in the prevalence of SUDs.

Substance use disorders are diagnosed in the U.S. with the Diagnostic and Statistical Manual of Mental Disorders-5 which outlines major SUD indicators (e.g., risky drug use, social/interpersonal difficulties linked to use, withdrawal/tolerance, failed efforts to control use, etc.) on a scale from mild to severe (Hasin et al., 2013; this nosology also includes craving (a strong desire or urge to take a drug) which is often triggered from mild to severe (Hasin et al., 2013); this nosology also includes craving (a strong desire or urge to take a drug) which is often triggered.
be marked by a high recidivism rate and reversion to drug-using behavior which interrupts the progress of abstinence and rehabilitation. The magnifying disorder that advances from drug use to misuse to SUD is linked to CNS pathophysiology which engages an “expanding cycle of dysfunction” in cognition, learning, reward, and emotion (Koob, 2020; Koob and Volkow, 2016; Volkow et al., 2019). Malfunctional synaptic plasticity in the CNS is a key pathological element in SUDs, which is dependent on the operational conversation across neurons, astrocytes, brain-resident microglia, and oligodendrocytes and is influenced by the neurovascular “unit” of endothelia and blood-born cells (leukocytes, platelets, erythrocytes) which carry peripheral immune cells and released pro- and anti-inflammatory cytokines and chemokines (Boulanger, 2009; He and Crews, 2008; Mahajan et al., 2008; Malaplate-Armand et al., 2005; Niu et al., 2019). The status of CNS immunological function is impacted by exposure to life stressors, like those associated with Covid-19 during stay-at-home orders and risk for contracting SARs-CoV2 infection, which evoke adaptations further impacting the experience of drug abuse (Clay and Parker, 2018; Koob and Kreek, 2007; Kreek et al., 2005; Vida et al., 2014; Wang et al., 2021b). The accumulation of these components likely contributes to an increased risk for drug misuse, overdose, and escalation of SUDs during the pandemic and following recovery from Covid-19. Disturbingly, 20% of respondents diagnosed with SUDs reported a consequent increase in drug use (Hulsey et al., 2020), elevating the challenges in sustaining abstinence and recovery and complicating efforts to reduce drug overdoses.

Increased drug use and misuse during the Covid-19 pandemic is likely attributable to a multitude of stressors including the intense anxiety about the dangers of becoming infected, the trauma of deaths and disabilities in communities, and the socioeconomic impact of lost employment (Taylor et al., 2021; Volkow and Blanco, 2021). In addition, the probability of a synergistic interaction between the immunological and inflammatory aspects of Covid-19 and the pathophysiology of SUDs cannot be discounted (Tien et al., 2011), especially given evidence to suggest that stress and drug misuse cycles promote the development of SUDs through elevated inflammatory cytokines (Blednov et al., 2015; Fox et al., 2012; Hueston et al., 2011; Loftis et al., 2013; Mandrekar et al., 2002; Truitt et al., 2016). Neurological consequences of Covid-19 may contribute to these rises in drug use and misuse and are potentially uncaptured side effects of Covid-19 illness that impedes full recovery. Thus, activation of CNS resident immune cells and amplification of inflammation, have a reciprocal effect on stress and substance abuse, which may be additive during co-morbidity and neurological sequelae of Covid-19.

2. Covid-19 neurological sequelae

2.1. SARS-CoV2 neurotropism

The Coronaviridae family of pathogen viruses present a clinical profile characterized primarily by respiratory involvement. However, SARs-CoV2 has the potential to be neuroinvasive based upon clinical, translational, and basic research conducted with SARS-CoV and the MERS-CoV (Arabi et al., 2015; Ng Kee Kwong et al., 2020). Multiple studies demonstrate that, aside from SARS-CoV2 acute respiratory engagement, SARs-CoV2 is neuroinvasive with observed CNS manifestations of Covid-19 (Bullen et al., 2020; Cantuti-Castelvetri et al., 2020; Jacob et al., 2020; Puelles et al., 2020; Ramani et al., 2020; Solomon et al., 2020; Song et al., 2021; Yang et al., 2020a). The mRNA for SARs-CoV2 was detected in human brain (Puelles et al., 2020; Solomon et al., 2020) and cortical neurons in autopsied patients who died of Covid-19 (Song et al., 2021). Viral SARs-CoV2 proteins were also found in endothelial cells of the olfactory bulb in human Covid-19 autopsies (Cantuti-Castelvetri et al., 2020). Several in vitro studies report SARs-CoV2 infection of human pluripotent stem cell-derived neural cells, human neurons of three-dimensional brain organoids, neural-perivascular assembloids, and neurospheres (Bullen et al., 2020; Jacob et al., 2020; Ramani et al., 2020; Song et al., 2021; Wang et al., 2021a; Yang et al., 2020a); however, the definitive routes of CNS infiltration for SARs-CoV2 remain to be identified. Thus, the virus invades neurons, and can be detected in CNS regions with direct connection to the point of entry in the olfactory mucosa, but other mechanisms and entry routes may allow trans-endothelial migration into brain parenchyma.

![Schematic 1. Relationship between Covid-19, inflammation and SUDs.](image-url)
Neuroinvasive dissemination routes of SARS-CoV2 are proposed to include olfactory transmucosal invasion by retrograde transport along sensory and olfactory nerves, thereby bypassing the blood brain barrier (BBB) (Baig et al., 2020). Alternatively, the hematogenous route via the systemic circulatory system may allow SARS-CoV2 to disseminate into the CNS via transcellular/paracellular migration or the Trojan horse strategy through host phagocytes (Perrin et al., 2021). Moreover, SARS-CoV2 interacts with key human host factors including angiotensin-converting enzyme 2 (ACE2) receptor, transmembrane protease serine (TMPRSS) 2/4, cathepsin L (CTSL), two-pore channel subtype 2 (TPC2N2), and neuropilin-1 (NRP-1) to trigger target cell and organ invasion (Matschke et al., 2020). In silico analyses revealed the highest expression of ACE2 localizes to oligodendrocytes, NRP-1 and TPCN2 to astrocytes, CTSL to microglia, TMPRSS2/4 to neurons and NRP-1 to endothelial cells of the brain (Matschke et al., 2020). These host factors are implicated in viral tropism to the CNS. In brain tissue collected from postmortem Covid-19 patients, common neuropathological findings included astroglial in multiple brain regions, microglial activation, and infiltration of cytotoxic T-lymphocytes in the brainstem and cerebellum which point to clinical findings suggestive of viral and autoimmune encephalitis (Matschke et al., 2020). These authors also reported the detection of SARS-CoV2 RNA and viral proteins in the brains of 53% of the fatalities (Ludlow et al., 2016; Matschke et al., 2020). Therefore, detection of SARS-CoV2 RNA, protein, and CNS localized host proteins including ACE2, TMPRSS2/4, CTSL, TPCN2 and NRP-1, suggest that SARS-CoV2 can infiltrate the CNS, activating neuroimmune signaling through host proteins.

2.2. Host immunity and CNS immune signaling in Covid-19

Elevated levels of the circulating pro- and anti-inflammatory proteins (i.e. cytokines and chemokines), such as interleukin (IL)-1β, IL-4, IL-6, IL-10, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, chemokine (C-X-C) ligand (CXCL)10, and monocyte chemoattractant (MCP)-1 have been measured during the clinical course of Covid-19 (Bouadma et al., 2020; Bronte et al., 2020; Han et al., 2020; La Rosée et al., 2020). High concentrations of cytokines appear related to the more severe cases of Covid-19 based upon epidemiological evidence (Huang et al., 2020a; Ludlow et al., 2016). Despite the identification of SARS-CoV2 RNA and viral proteins in the brains of patients who died of Covid-19, little clinical data are available to firmly establish the nature and extent of inflammatory-specific events in the CNS. However, recent findings suggest SARS-CoV2-associated CNS inflammation given observations of a high degree of astroglialosis, microglial activation and localization of microglial nodules in the brainstem and cerebellum in postmortem Covid-19 patients (Matschke et al., 2020). Magnetic resonance imaging scans revealed reactive astrogliosis in postmortem brains (Coolen et al., 2020; Kanberg et al., 2020) and increased glial fibrillary acidic protein levels in plasma of patients who succumbed to Covid-19 (Coolen et al., 2020; Kanberg et al., 2020), indicating pathological events occurring in the CNS (Brommeland et al., 2007; Nylen et al., 2006; Quddusi and Shamim, 2019; Watanabe et al., 2019). Positive staining for Major Histocompatibility Complexes (MHC) or MHC class II cell surface receptor and the human leukocyte antigen-DR isotype (HLA-DR) in the CNS of patients who died from Covid-19 suggests activation of host immunity in the CNS (Aliseychik et al., 2018; Matschke et al., 2020). Lastly, release of multiple inflammatory cytokines and chemokines (IL-1β, IL-2, IL-6, IL-10, IL-12/20, IL-17 A, IL-18, IL-23, IL-33) were generated by SARS-CoV2 exposure of human brain microvascular endothelial cells (hBMVEC), an in vitro model of the BBB (Reynolds and Mahajan, 2021). Considering previous evidence of activated CNS immune signaling associated with SARS and MERS infection, this cross-section of recent findings illustrates that SARS-CoV2 profoundly impacts immunological function in the brain.

3. SARS-CoV2 host factors and immune-kynurenine pathways

3.1. SARS-CoV2 host factors and kynurenine pathway

The amino acid protein l-tryptophan is an essential amino acid precursor for the biosynthesis of the small endogenous molecules serotonin and melatonin as well as for numerous important CNS and immune system proteins. The kynurenine pathway is a major route of degradation of ingested l-tryptophan not used for protein synthesis which accounts for ~95% of the dietary tryptophan disposal (Yu et al., 1999). During tryptophan degradation, the bioactive compound kynurenic acid is produced and accounts for diverse biological functions, including regulation of the immune response and involvement in immune-mediated disorders (Huang et al., 2020a). Several viral infections, including human immunodeficiency virus (HIV) (Huengsberg et al., 1998), hepatitis C virus (HCV) (Larrea et al., 2007), and herpes simplex virus (HSV) (Atlas et al., 2013) increase activation of the kynurenine pathway, which interestingly is implicated in the neurological and cognitive impairments of HIV, HCV, and HSV patients (Atlas et al., 2013; Baran et al., 2012; Weinstein et al., 2019). Therefore, it is possible that the kynurenine pathway is a driving factor in the development of Covid-19 neurological sequelae given that the kynurenine pathway is activated in patients with Covid-19. In two separate metabolomic studies, Covid-19 patients had significantly reduced serum levels of tryptophan and serotonin and elevated serum levels of l-kynurenine (Shen et al., 2020; Thomas et al., 2020). In another study, severely ill Covid-19 patients showed significantly higher l-kynurenine levels compared to Covid-19 negative or control patients (Fraser et al., 2020). These studies did not evaluate CNS levels of kynurenine or kynurenic acid; however, transgenic mice devoid of ACE2, which binds the SARS-CoV2 spike protein, uptake less tryptophan from the gut compared to their wild-type controls (Schwarz, 2016; Singer et al., 2012) and exhibit significantly lower levels of serotonin in blood and brain (Klempin et al., 2018), implicating ACE2 as modulator in serotonin synthesis. The dopamine synthetic pathway also engages ACE2 mechanisms (Attademo and Bernardini, 2021). Employing a multi-experiment matrix web tool that utilizes microarray datasets to merge information from different datasets and mine for co-expression, dopa decarboxylase (DDC), an enzyme which converts l-3,4-dihydroxyphenylalanine (l-DOPA) into dopamine and l-5-hydroxytryptophan into serotonin, exhibits the highest statistically significant co-expression link with ACE2 (Nataf, 2020). These findings suggest an association between ACE2 function and dopamine/serotonin synthesis by DDC.

Kynurenic acid, a product of l-tryptophan metabolism, also inhibits dopamine release and reduces extracellular dopamine levels in the rat striatum (Borland and Michael, 2004; Wu et al., 2007). This is in part through kynurenic acid-induced antagonism of glutamate receptors and therefore kynurenic acid is also considered a major regulator of glutamatergic activity in the CNS strongly linking the kynurenine pathway to glutamate imbalance (Borland and Michael, 2004; Meier et al., 2016). Alleviating kynurenic acid accumulation in the CNS is thought to positively impact mental health (Wu et al., 2007). Although kynurenine, or its pathway metabolites have not been measured in the CNS of Covid-19 patients, cumulatively, these finding suggest the potential importance of ACE2-kynurenine interactions with serotonin, dopamine, and glutamate systems in normal brain function, and implicates kynurenine dysregulation in the neuropyschiatric and neurological consequences associated with Covid-19.

3.2. The immune-kynurenine pathway

The bidirectional relationship between innate immunity and the kynurenine pathway provides further evidence for the potential progression of neuropsychiatric disorders during and following recovery from Covid-19. For example, immune signaling, like that induced by Covid-19, impacts downstream metabolism of the kynurenine pathway,
including quinolinic and kynurenic acid and the neurotransmitters serotonin, dopamine, and glutamate (Bonaccorso et al., 2002; Capuron and Miller, 2011; Maes et al., 2002). Inflammation stimulates the activity and expression of the enzyme indoleamine dioxygenase (IDO) which metabolizes tryptophan to kynurenine rather than to serotonin (Badawy, 2017; Kiank et al., 2010; O’Connor et al., 2009; Yişireyili et al., 2018), decreasing the availability of the primary amino acid precursor for the synthesis of serotonin, setting the stage for the disorders mediated by the serotonin system, including the cascade into depression which is resistant to treatment with selective serotonin reuptake inhibitors (for review) (Roman and Irwin, 2020). Preclinical studies demonstrate that a lipopolysaccharide (LPS) challenge which activates the immune system, increases IDO activity and expression (Dobos et al., 2012) which likely activates the metabolism of L-tryptophan to kynurenine, initiating an excitotoxic imbalance, based on the strong link of kynurenine to glutamate dysregulation (Borland and Michael, 2004; Meier et al., 2016). Decreased levels of tryptophan and serotonin and increased levels of kynurenine were correlated to levels of IL-6 in Covid-19 patients and associated inflammation (Thomas et al., 2020). Similarly, several studies observed reduced levels of tryptophan and serotonin and elevated levels of L-kynurenine in serum collected from Covid-19 patients (Shen et al., 2020; Thomas et al., 2020), likely via increased IDO activity dictated by inflammatory cytokines and chemokines generated during infection with SARS-CoV2. In line with these studies, patients suffering from HCV-induced cognitive impairments, have increased IDO expression in liver and peripheral monocytes, and increased blood levels of kynurenine that correlate to cognitive dysfunction (Larrea et al., 2007; Schulz et al., 2015; Weinstein et al., 2019). Moreover, patients suffering from HIV-associated dementia had increased IDO activity when compared to HIV patients without dementia (Sardar and Reynolds, 1995). In preclinical studies, HIV significantly increase extracellular glutamate concentrations in an in vitro astrocyte model that corresponds to clinical studies demonstrating increased excitotoxicity in patients suffering from HIV-associated neurocognitive disorders (Cisneros and Ghorpade, 2014; Cisneros et al., 2020; Fields et al., 2013). Although, IDO levels and activity have not been measured in Covid-19 patients, it is likely that triggering of the immune system by SARS-CoV2 increases IDO activity and kynurenine levels thereby decreasing serotonin and dopamine levels and increasing glutamate excitotoxicity in Covid-19. Thus, dysregulation of the host

Schematic 2. SARS-CoV2 host factors and inflammation in the regulation serotonin, dopamine, and glutamate. We propose that SARS-CoV2 may activate host factors and increase peripheral levels of inflammatory cytokines and chemokines with the potential to reduce tryptophan and serotonin functionality while kynurenine is increased in Covid-19 patients. With increased IDO activity upon Covid-19-evoled inflammation, tryptophan metabolism may be diverted from maintaining serotonin function into increased levels of kynurenine and kynurenic acid. Given that kynurenic acid antagonizes glutamate receptors and increases glutamate concentrations, excitotoxicity may become a challenge. Kynurenic acid also inhibits dopamine release thereby reducing dopamine levels in the brain.
factor ACE2, inflammation, and altered synthesis and levels of serotonin, dopamine, and glutamate via the kynurenine pathway, during Covid-19 is strongly related to neurological sequelae (Schematic 2).

4. Inflammation in SUDs

Glutamate, dopamine, and serotonin crosstalk with the immune system and maladaptive changes induced by inflammation may certainly contribute to increased vulnerability to SUDs, although direct and clear experimental designs for definitive studies are difficult to develop. For instance, TNF-α and IL-1β, classical proinflammatory cytokines, inhibit glutamate uptake in astrocytes and increase ionotropic glutamate receptor expression at the synapse (Cisneros and Ghorpade, 2012, 2014; Cisneros et al., 2020; Olmos and Lladó, 2014; Pickering et al., 2005) and activating glutamate transporters in glial cells reduces cocaine and methamphetamine induced CPP and significantly decreases cocaine self-administration (Nakagawa et al., 2005; Northcutt et al., 2015). Reduced clearance and increased levels of synaptic glutamate is a central mechanism underlying SUD pathophysiology and associated cocaine- and heroin-seeking behaviors. In vitro, in vivo, and ex vivo studies demonstrate that proinflammatory cytokines, including IL-1β, TNF-α, and downstream signaling pathways that include p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) can modulate the functional activity of serotonin, which is involved in the transition to compulsive drug use behaviors (Bubar and Cunningham, 2006; Cunningham and Anastasio, 2014; Howell and Cunningham, 2015; Müller and Homberg, 2015; Nic Dhonnchadha and Cunningham, 2008; Schwamborn et al., 2016; Steiner et al., 2008; Walsh and Cunningham, 1997; Zhu et al., 2010). Chronic inflammation is characterized to decrease dopamine levels in the CNS which aligns with a similar observation for chronic drug use (Lacagnina et al., 2017; Treadway et al., 2019), supporting the interactive relationship between these system in control of SUD behaviors and implications for CNS mechanisms underlying drug reward (Di Chiara, 2002).

Substances of abuse additionally dysregulate immune signaling driving the complexity associated with understanding maladaptive changes that increase vulnerability to SUDs. Although both TNF-α and IL-1β, cytokines that modulate the activity of serotonin, dopamine, and glutamate, are canonically increased during viral infections, such as HIV (Chvero et al., 2017; Vartak-Sharma et al., 2014) and Covid-19 (McElvaney et al., 2020; Zhang et al., 2020), substances of abuse can also regulate activity of these cytokines. For instance, inflammatory cytokines and chemokines are increased and decreased following exposure to cocaine (Atluri et al., 2016; Kovalevich et al., 2015; Montesinos et al., 2020; Souza et al., 2021), methamphetamine (Karimi-Haghighi et al., 2020; Kays and Yamamoto, 2019; Wang et al., 2018; Yang et al., 2020b)
and/or alcohol (Barr et al., 2016; Crews et al., 2006) and dysregulated following opioid exposure (Cisneros and Cunningham, 2021; Ezeomah et al., 2020). For example, we demonstrated increased and decreased inflammation in the nucleus accumbens relative to the hippocampus in et al., 2020). For example, we demonstrated increased and decreased changes to perpetuate fentanyl self-administration; if this is the case, there may be the potential anti-inflammatory therapeutics to help mitigate continuing opioid abuse. For instance, opiate antagonists which are used to treat alcohol and opiate use disorders also block induction of innate immune cytokine and chemokine generation, and prevent LPS-induced immune responses (Liu et al., 2006a, 2006b). Perhaps, prevention of inflammatory cytokine and chemokine cascades could prevent alcohol and opiate use. Although statistical significance was not achieved, the TNF-α inhibitor pentoxifylline tended to decrease cocaine use in clinical studies conducted in cocaine-dependent individuals relative to placebo (Ciraulo et al., 2005). Further studies are also required to evaluate whether the immune-kynurenine pathway is directly involved in mediating inflammation evoked by cocaine or other abused drugs. Based on the evidence presented, we speculate that inflammation-induced dysregulation of serotonin, dopamine and glutamate may trigger interacting aspects of underlying the pathophysiology of SUDs and compulsive drug-seeking behaviors (Koob et al., 2014; Koob and Volkow, 2016). Taken together, inflammation and its relationship to this pathophysiology of SUD development and maintenance is undoubtedly complex and worthy of further investigation.

5. Conclusion: Covid-19 and SUD vulnerability

SARS-CoV-2, the virus that causes Covid-19, activates the host immune system, thereby impacting the onset of neurological sequelae. The severity of neuropsychiatric and neurocognitive symptoms of Covid-19 are directly associated with the levels of circulating inflammatory cytokines and chemokines (Huang et al., 2020a; Ludlow et al., 2016). Based on the evidence presented in this review, we suspect that inflammation in the CNS, initiated by host immune responses to SARS-CoV-2, results in dysregulation in tryptophan metabolism, dually triggered by IDO activity and ACE2 functionality. Increased levels of peripheral kynurenine and CNS kynurenic acid are predicted to destabilize normal serotonin, dopamine and glutamate function vital for normal brain functioning. Alterations in these neurotransmitters are strongly related to drug use and misuse and the vulnerability to develop SUD (Schematic 3). More research is needed to further dissect (1) the CNS inflammatory response to Covid-19; (2) the causal relationship of the immune-kynurenine pathway with Covid-19 neurological sequelae; (3) the impact of Covid-19-related inflammation on IDO activity and interruption of serotonin, dopamine and glutamate metabolism; (4) the role of Covid-19 CNS inflammation in the evolution of drug misuse and SUD; and (5) the regulation of CNS-expressed Covid-19 host factors (e.g., ACE2, TMPRSS2/3, CTSL, NRP-1, TPCN2) following exposure to drugs of abuse and how impaired host factors contribute to sustained clinical challenges during recovery. In summary, as the research field continues to explore these questions and the Covid-19 pandemic continues, we hope that gains in knowledge will frame the means through which we can mitigate suffering of those co-morbid for SUDs and the sequelae of Covid-19. The identification of specific targets related to SARS-CoV2-induced inflammation may help guide novel therapeutics approaches to alleviate the burden of the future SUD burdens.

Acknowledgements

This work was supported by the National Institute on Drug Abuse (DA050317-S1; KAC and R01 DA052263; IEC).

References

Ahmad, F., Rosen, L., Sutton, S. P., 2021. Provisional Drug Overdose Death Counts. National Center for Health Statistics (NCHS).
Alahzawani, W., Moller, M.H., Arabi, Y.M., Loeb, M., Gong, M.N., Fan, E., Ozokowski, S., Levy, M.M., Derde, L., Dzierna, A., Du, B., Aboudi, M., Wunsch, H., Cecconi, M., Koh, Y., Chertow, D.S., Maisland, K., Alshamsi, F., Kelley-Cote, E., Greco, M., Lauermann, M., Morgan, J.S., Kwenig, J., McGeer, M., Mermel, L., Mammel, U.L., Alexander, P.E., Arrington, A., Centofanti, J.E., Citerio, G., Baw, B., Memish, Z.A., Hammond, N., Hayden, F.G., Evans, L., Rhodes, A., 2020. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit. Care Med.
Aliseychik, M.P., Andreeva, T.V., Rogave, E.I., 2018. Immunogenetic factors of neurodegenerative diseases: the role of HLA class II. Biochemistry (Moscow). 83, 1104–1116.
Alter, A., Yeager, C., 2020a. Covid-19 impact on US national overdose crisis. Overdose Detection Mapping Application Program 1–5.
Alter, A., Yeager, C., 2020b. The consequences of Covid-19 on the overdose epidemic: overdoses are increasing. Overdose Detection Mapping Application Program.
Amruta, N., Chastain, W.H., Paz, M., Solch, R.J., Murray-Brown, I.C., Befder, J.B., Greissett, T.E., Longo, M.T., Engler-Chiarazzi, E.B., Bix, G., 2021. SARS-CoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders. Cytokine Growth Factor Rev. 58, 1–15.
Anastasio, N.C., Sholler, D.J., Fox, R.G., Stutz, S.J., Merritt, C.R., Bjork, J.M., Moeller, F. G., Cunningham, K.A., 2020. Suppression of cocaine relapse-like behaviors upon i.p. administration of iomeprol in cocaine-dependent rats withdrawn from chronic self-administration of the opioid fentanyl; if this is the case, there may be the potential anti-inflammatory therapeutics to help mitigate continuing opioid abuse. For instance, opiate antagonists which are used to treat alcohol and opiate use disorders also block induction of innate immune cytokine and chemokine generation, and prevent LPS-induced immune responses (Liu et al., 2006a, 2006b). Perhaps, prevention of inflammatory cytokine and chemokine cascades could prevent alcohol and opiate use. Although statistical significance was not achieved, the TNF-α inhibitor pentoxifylline tended to decrease cocaine use in clinical studies conducted in cocaine-dependent individuals relative to placebo (Ciraulo et al., 2005). Further studies are also required to evaluate whether the immune-kynurenine pathway is directly involved in mediating inflammation evoked by cocaine or other abused drugs. Based on the evidence presented, we speculate that inflammation-induced dysregulation of serotonin, dopamine and glutamate may trigger interacting aspects of underlying the pathophysiology of SUDs and compulsive drug-seeking behaviors (Koob et al., 2014; Koob and Volkow, 2016). Taken together, inflammation and its relationship to this pathophysiology of SUD development and maintenance is undoubtedly complex and worthy of further investigation.

5. Conclusion: Covid-19 and SUD vulnerability

SARS-CoV-2, the virus that causes Covid-19, activates the host immune system, thereby impacting the onset of neurological sequelae. The severity of neuropsychiatric and neurocognitive symptoms of Covid-19 are directly associated with the levels of circulating inflammatory cytokines and chemokines (Huang et al., 2020a; Ludlow et al., 2016). Based on the evidence presented in this review, we suspect that inflammation in the CNS, initiated by host immune responses to SARS-CoV-2, results in dysregulation in tryptophan metabolism, dually triggered by IDO activity and ACE2 functionality. Increased levels of peripheral kynurenine and CNS kynurenic acid are predicted to destabilize normal serotonin, dopamine and glutamate function vital for normal brain functioning. Alterations in these neurotransmitters are strongly related to drug use and misuse and the vulnerability to develop SUD (Schematic 3). More research is needed to further dissect (1) the CNS inflammatory response to Covid-19; (2) the causal relationship of the immune-kynurenine pathway with Covid-19 neurological sequelae; (3) the impact of Covid-19-related inflammation on IDO activity and interruption of serotonin, dopamine and glutamate metabolism; (4) the role of Covid-19 CNS inflammation in the evolution of drug misuse and SUD; and (5) the regulation of CNS-expressed Covid-19 host factors (e.g., ACE2, TMPRSS2/3, CTSL, NRP-1, TPCN2) following exposure to drugs of abuse and how impaired host factors contribute to sustained clinical challenges during recovery. In summary, as the research field continues to explore these questions and the Covid-19 pandemic continues, we hope that gains in knowledge will frame the means through which we can mitigate suffering of those co-morbid for SUDs and the sequelae of Covid-19. The identification of specific targets related to SARS-CoV2-induced inflammation may help guide novel therapeutics approaches to alleviate the burden of the future SUD burdens.

Acknowledgements

This work was supported by the National Institute on Drug Abuse (DA050317-S1; KAC and R01 DA052263; IEC).
Huttner, A., Seilhean, D., Renier, N., Bilguvar, K., Iwasaki, A., 2021. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218.

Souza, D., Rosario, B., Casagrande, B., Viana, M., Estefaela, D., Perez, R., Seabra Pereira, C.D., Ribeiro, D., 2021. Histopathological and inflammatory response in multiple organs of rats exposed to crack. Int. J. Environ. Health Res. 1–10.

Chen, H.J., Studer, L., Pan, F.C., Ho, D.D., tenOever, B.R., Schwartz, R.E., 2019. The role of astrocyte elevated gene-1 in murine neuroinflammation. Neuropharmacology 130, 41–58.

Wang, B., Chen, T., Wang, J., Jia, Y., Ren, H., Wu, F., Hu, M., Chen, Y., 2018. Methamphetamine modulates the production of interleukin-6 and tumor necrosis factor-alpha via the AMP/PKA/CREB signaling pathway in lipopolysaccharide-activated microglia. Int. Immunopharmac. 56, 168–176.

Wang, L., Sievert, D., Clark, A.E., Lee, S., Federman, H., Gastrfriend, B.D., Shusta, E.V., Palecek, S.P., Carlin, A.F., Gleeson, J.G., 2021a. A human three-dimensional neural-

perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nat. Med.

Wang, Q.Q., Kaelber, D.C., Xu, R., Volkow, N.D., 2021b. COVID-19 risk and outcomes in patients with substance use disorders: analyses from electronic health records in the United States. Mol. Psychiatry. 26, 30–39.

Watanabe, M., Nakamura, Y., Michalak, Z., Isobe, N., Barro, C., Leppert, D., Matsushita, T., Hayashi, F., Yamasaki, R., Kuble, J., Arai, J.I., 2019. Serum GAFP and neurofilament light as biomarkers of disease activity and disability in NMDOS. Neurology 93, e1299–e1311.

Weerakoon, S.M., Jetelina, K.K., Knell, G., 2021. Longer time spent at home during COVID-19 pandemic is associated with binge drinking among US adults. Am. J. Drug Alcohol Abuse 47, 98–106.

Weinstein, A.A., Estep, J.M., de Avila, L., Carry, M., Golabi, P., Escheik, C., Birerden, A., Stepanova, M., Price, J.K., Gerber, L., Younossi, Z.M., 2019. Relationships among neurotransmitters, cytokines and cognitive performance for individuals with hepatitis C achieving sustained virologic response: a pilot study. J. Neuroimmun. 335, 577022.

Wu, H.Q., Rassoulpour, A., Schwartz, R., 2007. Kynurenic acid leads, dopamine follows: a new case of volume transmission in the brain? J. Neural. Transm. 114, 33–41.

Wu, Y., Xu, C., Chen, Z., Duan, J., Hashimoto, K., Yang, L., Liu, C., Yang, C., 2020. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun. 87, 18–22.

Yang, L., Han, Y., Nilsson-Paynt, B.E., Gupta, V., Wang, P., Duan, X., Yang, Z., Zhu, J., Zhao, Z., Jaffre, F., Zhang, T., Kim, T.W., Harschitz, O., Redmond, D., Houghton, S., Liu, C., Naji, A., Cicieri, G., Gunlikonda, S., Brah, Y., Nguyen, D.T., Cioffi, M., Chandar, V., Hoogland, D.A., Huang, Y., Xiang, J., Wang, H., Lyden, D., Borcezuk, A., Chen, H.J., Studer, L., Pan, F.C., Ho, D.D., tenOever, B.R., Evans, T., Schwartz, R.E., Chen, S., 2020a. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell 27, 125–136 e127.

Yang, T., Zang, S., Wang, Y., Zhu, Y., Jiang, L., Chen, X., Zhang, X., Meng, J., Gao, R., Xiao, H., Wang, J., 2020b. Methamphetamine induced neuroinflammation in mouse brain and microglial cell line BV2: roles of the TRPA1/TRP7/TLR1 signal axis. Toxicol. Lett. 353, 150–158.

Yisireyili, U., Uchida, Y., Yamamoto, K., Nakayama, T., Cheng, X.W., Matsushita, T., Nakamura, S., Murohara, T., Takeshita, K., 2018. Angiotensin receptor blocker losartan reduces stress-induced intestinal inflammation via AT1A signaling and ACE2-dependent mechanism in mice. Brain Behav. Immun. 69, 157–167.

Yu, P.L., Fujimura, M., Okumya, K., Kishimoto, H., Hasegawa, H., Fujimiyama, M., 1999. Immunohistochemical localization of tryptophan hydroxylase in the human and rat gastrointestinal tracts. J. Comp. Neurol. 411, 654–665.

Zhang, F., Mears, J.R., Shakib, L., Beynor, J.I., Shanaj, S., Korsunsky, I., Donlin, L.T., Raychaudhuri, S., 2020. IPN- y and TNF- a drive a CXCL10 + CCL2 + macrophage phenotype expanded in severe COVID-19 and other diseases with tissue inflammation. In: Accelerating Medicines Partnership Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Consortium.

Zhu, C.B., Lindler, K.M., Owens, A.W., Daws, L.C., Travis, R.D., Savage, R.A., Hirtz, D.G., 2020. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 20, 415–429.

Zhao, S., Cao, P., Chong, M.K.C., Gao, D., Lou, Y., Ran, J., Wang, K., Wang, W., Yang, L., He, D., Wang, M.H., 2020. COVID-19 and gender-specific difference: analysis of public surveillance data in Hong Kong and Shenzhen, China, from January 10 to February 15, 2020. Infect. Control Hosp. Epidemiol. 1–2.

Zhu, C.B., Lindler, K.M., Owens, A.W., Daws, L.C., Blakely, R.D., Hewlett, W.A., 2010. Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 35, 2510–2520.