Gradient resummation for nonlinear chiral transport:
an insight from holography

Yanyan Bu

Department of Physics, Harbin Institute of Technology, Harbin 150001, China

Tuna Demircik and Michael Lublinsky

Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

(Dated: August 1, 2018)

Abstract

Nonlinear transport phenomena induced by chiral anomaly are explored within a 4D field theory defined holographically as $U(1)_V \times U(1)_A$ Maxwell-Chern-Simons theory in Schwarzschild-AdS_5. In presence of weak constant background electromagnetic fields, the constitutive relations for vector and axial currents, resummed to all orders in the gradients of charge densities, are encoded in nine momenta-dependent transport coefficient functions (TCFs). These TCFs are first calculated analytically up to third order in gradient expansion, and then evaluated numerically beyond the hydrodynamic limit. Fourier transformed, the TCFs become memory functions. The memory function of the chiral magnetic effect (CME) is found to differ dramatically from the instantaneous response form of the original CME. Beyond hydrodynamic limit and when external magnetic field is larger than some critical value, the chiral magnetic wave (CMW) is discovered to possess a discrete spectrum of non-dissipative modes.
I. Introduction

In this paper we continue exploring hydrodynamic regime of relativistic plasma with chiral asymmetries. We closely follow previous works [1, 2] focusing on massless fermion plasma with two Maxwell gauge fields, $U(1)_V \times U(1)_A$. Dynamics of hydrodynamic theories is governed by conservation equations (continuity equations) of the currents. As a result of chiral anomaly, which appears in relativistic QFTs with massless fermions, global $U(1)_A$ current coupled to external electromagnetic (e/m) fields is no longer conserved. The continuity equations turn into

$$\partial_\mu J^\mu = 0, \quad \partial_\mu J_5^\mu = 12\kappa \vec{E} \cdot \vec{B},$$ \hspace{1cm} (1)
where \(J^\mu, J_5^\mu \) are vector and axial currents and \(\kappa \) is an anomaly coefficient (\(\kappa = eN_c/(24\pi^2) \)) for \(SU(N_c) \) gauge theory with a massless Dirac fermion in fundamental representation and \(e \) is electric charge, which will be set to unit from now on). \(\vec{E} \) and \(\vec{B} \) are external vector electromagnetic fields.

The continuity equations could be regarded as time evolution equations for the charge densities \(\rho \) (\(\rho_5 \)) sourced by three-current \(\vec{J} \) (\(\vec{J}_5 \)). However, these equations cannot be solved as an initial value problem without additional input, the currents \(\vec{J} \) and \(\vec{J}_5 \). In hydrodynamics, the currents have to be expressed in terms of thermodynamical variables, such as the charge densities \(\rho \) and \(\rho_5 \) themselves, temperature \(T \), and the external \(\vec{E} \) and \(\vec{B} \) fields if present. These are known as constitutive relations, which generically take the form

\[
\vec{J} = \vec{J}[\rho, \rho_5, T, \vec{E}, \vec{B}]; \quad \vec{J}_5 = \vec{J}_5[\rho, \rho_5, T, \vec{E}, \vec{B}].
\]

The constitutive relations should be considered as “off-shell” relations, because they treat the charge density \(\rho \) (\(\rho_5 \)) as independent of \(\vec{J} \) (\(\vec{J}_5 \)). Once (1) is imposed, the currents’ constitutive relations (2) are put into “on-shell”.

In addition to the charge current sector discussed above, one has to simultaneously consider energy-momentum conservation. In general, these two dynamical sectors are coupled. However, in the discussion below, we will ignore back-reaction of the charge current sector on the energy-momentum conservation. This will be referred to as probe limit.

In the long wavelength limit, the constitutive relations are usually presented as a (truncated) gradient expansion. At any given order, the gradient expansion is fixed by thermodynamic considerations and symmetries, up to a finite number of transport coefficients (TCs). The latter should be either computed from the underlying microscopic theory or deduced experimentally. Diffusion constant, DC conductivity or shear viscosity are examples of the lowest order TCs.

It is well known, however, that in relativistic theory truncation of the gradient expansion at any fixed order leads to serious conceptual problems such as violation of causality. Beyond conceptual issues, causality violation results in numerical instabilities rendering the entire framework unreliable. Causality is restored when all order gradient terms are included, in a way providing a UV completion to the “old” hydrodynamic effective theory. Below we will refer to such case as all order resummed hydrodynamics [3–8]. The first completion of the type was originally proposed by Müller, Israel, and Stewart [9–12] who introduced
retardation effects in the constitutive relations for the currents. Formulation of [9–12] is
the most popular scheme employed in practical simulations. Essentially, all order resummed
hydrodynamics is equivalent to a non-local constitutive relation of the type (here we take
the charge diffusion current as an example):

\[\vec{J}_{\text{diff}}(t) = \int_{-\infty}^{+\infty} dt' \tilde{D}(t-t') \vec{\nabla} \rho(t'), \]

(3)

where \(\tilde{D} \) is the memory function of the diffusion function \(D(\omega, q^2) \) [13], which is generally
non-local both in time and space. Causality implies that \(\tilde{D}(t) \) has no support for \(t < 0 \).
In practice, the memory function is typically modelled: Müller-Israel-Stewart formulation
[9–12] models the memory functions with a simple exponential in time parametrised by a
relaxation time.

Chiral plasma plays a major role in a number of fundamental research areas, historically starting from primordial plasma in the early universe [14–18]. During the last decade, macroscopic effects induced by the chiral anomaly were found to be of relevance in relativistic heavy ion collisions [19–21], and have been searched intensively at RHIC and LHC [22–26]. Finally, (pseudo-)relativistic systems in condensed matter physics, such as Dirac and Weyl semimetals, display anomaly-induced phenomena, which were recently observed experimentally [27–33] and can be studied via similar theoretical methods [34–37].

The constitutive relations (2) are well known to receive contributions induced by the chiral
anomaly. The most familiar example is the chiral magnetic effect (CME) [38–40]: a vector
current is generated along an external magnetic field when a chiral imbalance between left-
and right-handed fermions is present (\(\vec{J} \sim \rho_5 \vec{B} \)). Another important transport phenomenon
induced by the chiral anomaly is the chiral separation effect (CSE) [41, 42]: left and right
charges get separated along an applied external magnetic field (\(\vec{J}_5 \sim \vec{B} \)). Combined, CME
and CSE lead to a new gapless excitation called chiral magnetic wave (CMW) [43]. This
is a propagating wave along the magnetic field. There is a vast literature on CME/CSE
and other chiral anomaly-induced transport phenomena, which we cannot review here in
full. We refer the reader to recent reviews [20, 21, 34, 44, 45] and references therein on the
subject of chiral anomaly-induced transport phenomena.

Beyond naive CME/CSE, there are (infinitely) many additional effects induced or affected
by chiral anomaly. Particularly, transport phenomena nonlinear in external fields were
realised recently [46] to be of critical importance in having a self-consistent evolution of
chiral plasma. This argument, together with the causality discussions mentioned earlier, would lead to the conclusion that the constitutive relations (2) should contain infinitely many “nonlinear” transport coefficients in order to guarantee applicability of the constitutive relations in a broad regime. Recently, this triggered strong interest in nonlinear chiral transport phenomena within chiral kinetic theory (CKT) [47–50]. Previous works on the subject of nonlinear chiral transport phenomena include [51] based on the notion of entropy current, and [52] based on the fluid-gravity correspondence [53].

The objective of present work is to explore all order gradient resummation for nonlinear transport effects induced by the chiral anomaly, further extending the results of Refs. [1, 2, 58].

Just like in Refs. [1, 2, 58], our playground will be a holographic model, that is $U(1)_V \times U(1)_A$ Maxwell-Chern-Simons theory in Schwarzschild-AdS_5 [59, 60] to be introduced in detail in Section III for which we know to compute a zoo of transport coefficients exactly. Hoping for some sort of universality, we could learn from this model both about general phenomena and relative strengths of the effects.

In our recent publication [58], we reviewed all different studies which were performed in [1, 2, 58]. Those studies and the present one are largely independent even though performed within the same holographic model. For brevity, we will not repeat this review here, but will make connection to these previous works whenever relevant.

Anomalous transport phenomenon is frequently discussed from the viewpoint of its dissipative nature and, equivalently, its contribution to entropy production [51, 61–64]. CME is well known to be non-dissipative [20, 34, 65]. What about the dissipative nature of other anomalous transport phenomena, say beyond CME? In [51] the transport coefficients that are odd in κ were identified as anomaly-induced and, based on space parity \mathcal{P} arguments, are claimed to be non-dissipative. This is to distinguish from anomaly-induced corrections to normal transports, which appear to be even in κ. While the \mathcal{P}-based arguments seem to work perfectly for the second order hydrodynamics [51], a more natural criterion of dissipation seems to be based on time-reversal symmetry \mathcal{T}. \mathcal{T}-odd transport coefficients describe dissipative currents, whereas \mathcal{T}-even ones are non-dissipative [51]. The anomaly-induced phenomena explored below will involve terms both dissipative and not.

The asymptotic nature of the gradient expansion and problems related to resummation of the series have been a hot topic over the last few years, see recent works [54–57]. In our approach, however, we never attempt to actually sum the series and thus these discussions are of no relevance to our formalism.
In the next Section, we will review our results including connections to the previous works [1, 2, 58]. The following Sections present details of the calculations.

II. SUMMARY OF THE RESULTS

The objective of [1, 2, 58] and of the present work is to systematically explore (2) under different approximations. Following [1, 2, 58], the charge densities are split into constant backgrounds and space-time dependent fluctuations

\[
\rho(x_\alpha) = \bar{\rho} + \epsilon \delta \rho(x_\alpha), \quad \rho_5(x_\alpha) = \bar{\rho}_5 + \epsilon \delta \rho_5(x_\alpha),
\]

\[
\bar{E}(x_\alpha) = \bar{\rho} + \epsilon \delta \bar{E}(x_\alpha), \quad \bar{B}(x_\alpha) = \bar{\rho} + \epsilon \delta \bar{B}(x_\alpha),
\]

where \(\bar{\rho}, \bar{\rho}_5, \bar{E}, \bar{B} \) are the backgrounds, while \(\delta \rho, \delta \rho_5, \delta \bar{E}, \delta \bar{B} \) stand for the fluctuations. Here \(\epsilon \) is a formal expansion parameter to be used below. Furthermore, being most of the time unable to perform calculations for arbitrary background fields, we introduce an expansion in the field strengths

\[
\bar{E} \rightarrow \alpha \bar{E}, \quad \bar{B} \rightarrow \alpha \bar{B},
\]

where \(\alpha \) is a corresponding expansion parameter. Below we will introduce yet another expansion parameter \(\lambda \), which will correspond to a gradient expansion. For the purpose of the gradient counting, e/m fields will be considered as \(O(\lambda^1) \).

Below, the e/m background fields \(\bar{E} \) and \(\bar{B} \) are treated as weak. The constitutive relations (2) for the vector and axial currents can be formally expanded both in \(\alpha \) and \(\epsilon \)

\[
J^1 = \rho, \quad \bar{J} = \bar{J}^{(0)(1)} + \bar{J}^{(1)(0)} + \bar{J}^{(1)(1)} + \ldots,
\]

\[
J^5 = \rho_5, \quad \bar{J}_5 = \bar{J}_5^{(0)(1)} + \bar{J}_5^{(1)(0)} + \bar{J}_5^{(1)(1)} + \ldots,
\]

where the first superscript denotes order in \(\epsilon \) and the second in \(\alpha \). \(\bar{J}^{(0)(1)}, \bar{J}^{(1)(0)}, \bar{J}_5^{(0)(1)} \) and \(\bar{J}_5^{(1)(0)} \) were derived in [1] and are partially summarised in Appendix A1. The results have the following form

\[
\bar{J}^{(0)(1)} + \bar{J}^{(1)(0)} = -D \nabla \rho + \sigma_e \bar{E} + \sigma_x \bar{B} + \sigma_m \nabla \times \bar{B},
\]

(7)

\[
\bar{J}_5^{(0)(1)} + \bar{J}_5^{(1)(0)} = -D \nabla \rho_5 + \sigma_x \bar{B} + \sigma_a \nabla \times \bar{B},
\]

(8)
where all the coefficients are scalar functionals of the derivative operator ∂_μ

$$
\mathcal{D}[\partial_t, \vec{\nabla}], \quad \sigma_{e/m}[\partial_t, \vec{\nabla}], \quad \sigma_{\chi/\kappa}[\partial_t, \vec{\nabla}], \quad \sigma_a[\partial_t, \vec{\nabla}].
$$

Taylor expanded, these coefficients contain information about infinitely many derivatives and associated TCs. Thanks to the linearisation, the constitutive relations could be conveniently expressed in Fourier space. Then the functionals of the derivatives are turned into functions of frequency and space momenta, $(\partial_t, \vec{\nabla}) \rightarrow (-i\omega, i\vec{q})$, which we refer to as transport coefficients functions (TCFs) [6]. TCFs contain information about infinitely many derivatives and associated transport coefficients. In practice, they are not computed as a series resummation of order-by-order hydrodynamic expansion, and are in fact exact to all orders. TCFs go beyond the hydrodynamic low frequency/momentum limit and they contain collective effects of non-hydrodynamic modes. Fourier transformed back into real space, TCFs correspond to memory functions. Below we set $\pi T = 1$ for convenience. The dimensionful frequency and momentum should be $\pi T \omega$ and $\pi T \vec{q}$.

In the hydrodynamic limit of $\omega, q \ll 1$, all the TCFs above were computed analytically in [1]. Here we only quote the results for the diffusion TCF \mathcal{D} and and CME TCF σ_χ

$$
\mathcal{D} = \frac{1}{2} + \frac{i\omega\pi}{8} - \frac{1}{48} \left[\pi^2 \omega^2 - q^2 (6 \log 2 - 3\pi) \right] + \cdots,
$$

$$
\sigma_\chi = 6\kappa \bar{\rho}_5 \left\{ 1 + i\omega \log 2 - \frac{1}{4} \omega^2 \log^2 2 - \frac{q^2}{24} \left[\pi^2 - 432\kappa^2 (\bar{\rho}_5 + 3\bar{\rho})^2 (\log 2 - 1)^2 \right] \right\} + \cdots,
$$

The first term in (9) is the usual charge diffusion constant \mathcal{D}_0 [66] while the second term corresponds to relaxation time. The first term in (10) is the usual CME conductivity. The following terms include relaxation effects.

Our goal here is to extend the work initiated in [1] and compute $\vec{J}^{(1)(1)}$ and $\vec{J}_5^{(1)(1)}$, ignoring the effects induced by the fluctuations of the external e/m fields $\delta \vec{E}, \delta \vec{B}$. At $\mathcal{O}(\epsilon^1 \alpha^1)$, the currents have the following forms

$$
\vec{J}^{(1)(1)} = \sigma_{\chi/\kappa} \bar{\rho} \vec{B} \delta \rho_5 - \frac{1}{4} \mathcal{D}_H (\bar{\rho} \vec{B} \times \vec{\nabla} \delta \rho) - \frac{1}{4} \mathcal{D}_H (\bar{\rho}_5 \vec{B} \times \vec{\nabla} \delta \rho_5) - \frac{1}{2} \sigma_{\alpha \chi H} (\vec{E} \times \vec{\nabla} \delta \rho)
$$

$$
- \frac{1}{2} \sigma_{\alpha \chi H} (\vec{E} \times \vec{\nabla} \delta \rho) + \sigma_1 \kappa \left[\vec{B} \times \vec{\nabla} \right] \delta \rho + \sigma_2 \kappa \left[\vec{B} \times \vec{\nabla} \right] \delta \rho_5
$$

$$
+ \sigma_3 \kappa \left[\vec{E} \times \vec{\nabla} \right] \delta \rho + \sigma_3 \kappa \left[\vec{E} \times \vec{\nabla} \right] \delta \rho_5,
$$

$$
\vec{J}_5^{(1)(1)} = \sigma_{\chi/\kappa} \bar{\rho} \vec{B} \delta \rho - \frac{1}{4} \mathcal{D}_H (\bar{\rho} \vec{B} \times \vec{\nabla} \delta \rho_5) - \frac{1}{4} \mathcal{D}_H (\bar{\rho}_5 \vec{B} \times \vec{\nabla} \delta \rho) - \frac{1}{2} \sigma_{\alpha \chi H} (\vec{E} \times \vec{\nabla} \delta \rho)
$$
\[-\frac{1}{2} \bar{\sigma}_{\alpha H} (\vec{E} \times \vec{\nabla}) \delta \rho_5 + \sigma_1 \kappa \left[(\vec{B} \times \vec{\nabla}) \times \vec{\nabla} \right] \delta \rho_5 + \sigma_2 \kappa \left[(\vec{B} \times \vec{\nabla}) \times \vec{\nabla} \right] \delta \rho \]
\[+ \sigma_3 \kappa \left[(\vec{E} \times \vec{\nabla}) \times \vec{\nabla} \right] \delta \rho_5 + \sigma_3 \kappa \left[(\vec{E} \times \vec{\nabla}) \times \vec{\nabla} \right] \delta \rho, \tag{12}\]

Except for the $\bar{\sigma}_{\alpha H}$-term, all the rest of the terms in (11,12) have already appeared in our previous publication [58] at a fixed order in the gradient expansion. The present study generalises many of the TCs obtained at a fixed order gradient expansion into TCFs.

To the best of our knowledge, the TCF σ_χ is introduced here for the first time and will play a major role below. It is important to stress the difference between σ_χ and σ_X of [11, 59, 67]. Both TCFs generalise CME/CSE. Yet, while the latter is induced by variation of the magnetic field, the former is due to inhomogeneity of the charge densities ρ, ρ_5. One might naively expect that both TCFs are equal. In fact they are not, as we demonstrate below. Particularly, the first gradient corrections to CME/CSE, the relaxation time corrections, are different depending on if it is the magnetic field or the charge density that varies with time.

Let us briefly comment on the remaining terms. \mathcal{D}_H generalises the Hall diffusion \mathcal{D}^0_H [47, 48, 58] into a TCF of ω, q^2; $\bar{\mathcal{D}}_H$ is just its axial analogue. So, we will refer to \mathcal{D}_H and $\bar{\mathcal{D}}_H$ as Hall diffusion functions. $\sigma_{\alpha H}$ is a TCF extending the anomalous chiral Hall conductivity $\sigma^0_{\alpha H}$ [47, 48, 58]. $\bar{\sigma}_{\alpha H}$ could be considered as an axial analogue of $\sigma_{\alpha H}$. However, as will be clear later, $\bar{\sigma}_{\alpha H}$ has an overall factor q^2 so that it will be non-vanishing starting from fourth order in the gradient expansion only.

$\sigma_{1,2,3}$ and $\bar{\sigma}_3$ are TCFs of the third order derivative operators (we remind the reader that the e/m fields are counted as of first order). σ_1, σ_2 corresponds to rotor of Hall diffusion [58], and $\sigma_3, \bar{\sigma}_3$ are rotors of anomalous chiral Hall effect [58].

The constitutive relations (11,12) could be re-written in a more compact way,

\[J_i^{(1)(1)} = \sigma_\chi \kappa \mathcal{B}_i \delta \rho_5 - \kappa \mathcal{B}_i \left(\sigma_1 \vec{\nabla}^2 \rho + \sigma_2 \vec{\nabla}^2 \rho_5 \right) - \kappa \mathcal{E}_i \left(\sigma_3 \vec{\nabla}^2 \rho + \bar{\sigma}_3 \vec{\nabla}^2 \rho_5 \right) - \mathcal{D}^1_{ij} \nabla_j \rho \]
\[-(\mathcal{D}_\chi)^1_{ij} \nabla_j \rho_5, \tag{13}\]

\[J_{5i}^{(1)(1)} = \sigma_\chi \kappa \mathcal{B}_i \delta \rho - \kappa \mathcal{B}_i \left(\sigma_1 \vec{\nabla}^2 \rho + \sigma_2 \vec{\nabla}^2 \rho_5 \right) - \kappa \mathcal{E}_i \left(\sigma_3 \vec{\nabla}^2 \rho + \bar{\sigma}_3 \vec{\nabla}^2 \rho_5 \right) - \mathcal{D}^1_{ij} \nabla_j \rho_5 \]
\[-(\mathcal{D}_\chi)^1_{ij} \nabla_j \rho, \tag{14}\]

where

\[\mathcal{D}^1_{ij} = -\delta_{ij} \kappa \left[(\vec{B} \cdot \vec{\nabla}) \sigma_1 + (\vec{E} \cdot \vec{\nabla}) \sigma_3 \right] + \frac{1}{4} \epsilon_{ijk} \left(\rho \bar{\mathcal{B}}_k \mathcal{D}_H + 2 \bar{\mathcal{E}}_k \bar{\sigma}_{\alpha H} \right), \]
\[(\mathcal{D}_\chi)^1_{ij} = -\delta_{ij} \kappa \left[(\vec{B} \cdot \vec{\nabla}) \sigma_2 + (\vec{E} \cdot \vec{\nabla}) \bar{\sigma}_3 \right] + \frac{1}{4} \epsilon_{ijk} \left(\rho \bar{\mathcal{B}}_k \mathcal{D}_H + 2 \bar{\mathcal{E}}_k \sigma_{\alpha H} \right). \tag{15}\]
$\sigma_{1,2,3}$ and $\bar{\sigma}_3$ constitute corrections to CME/CSE and, through spatial inhomogeneities of ρ, ρ_5, influence the Ohmic conductivity. The diffusion constant D_0 was initially promoted into scalar TCF D in [13] and now becomes a tensor TCF, linearly depending on \vec{E} and \vec{B} because of the weak background field approximation adopted in the present work. It is important to emphasise that the tensorial structure emerges solely due to the anomaly, as clear from the coefficient κ in front.

In the hydrodynamic limit $\omega, q \ll 1$, the TCFs in (11,12) are analytically computable

$$\sigma_\chi = \frac{6 + \frac{3}{2} i \omega (\pi + 2 \log 2)}{8} - \frac{1}{8} \left\{ \omega^2 \left[\pi^2 + 6 \left(4C + \log^2 2 \right) \right] + q^2 \left(12\pi - 24 \log 2 \right) \right\} + \cdots, \quad (16)$$

$$D_H = \kappa^2 \left\{ 72(3 \log 2 - 2) + i \omega 6 \left[\pi (2\pi + 3 \log 2 - 6) + (9 \log 2 - 12) \log 2 \right] \right\}, \quad (17)$$

$$D_H = D_H [\bar{\mu} \leftrightarrow \bar{\mu}_5], \quad (18)$$

$$\sigma_{\alpha\chi H} = \kappa \left\{ 6 \log 2 + i \omega \frac{1}{16} \left(48C + 5\pi^2 \right) + \cdots \right\}, \quad (19)$$

$$\sigma_1 = \frac{1}{8} (6\pi - \pi^2 - 12 \log 2) + 108\kappa^2 (\bar{\mu}^2 + \bar{\mu}_5^2) \left[6 + \log 2(5 \log 2 - 12) \right] + \cdots, \quad (21)$$

$$\sigma_2 = 9\kappa \bar{\mu} \log^2 2 + \cdots, \quad (23)$$

$$\bar{\sigma}_3 = \sigma_3 [\bar{\mu} \leftrightarrow \bar{\mu}_5], \quad (24)$$

where \cdots denotes higher powers in ω, q^2 and $C \approx 0.915966$ is the Catalan’s constant. Here, $\bar{\mu} = \bar{\rho}/2, \bar{\mu}_5 = \bar{\rho}_5/2$ are backgrounds for vector/axial chemical potentials.

These analytical results correspond to third order derivative expansion of $\vec{J}^{(1)(1)}$ and $\vec{J}^{(1)(1)}_5$. Beyond the hydrodynamic limit, the TCFs are computed numerically. The results are presented and discussed in subsection IV C. We observe that none of the TCFs survives at asymptotically large $\omega \gtrsim 5$.

The TCF σ_χ enters the dispersion relation of CMW:

$$\omega = \pm \sigma_\chi(\omega, q^2) \kappa \bar{q} \cdot \vec{B} - i D(\omega, q^2) q^2. \quad (25)$$

The dispersion relation (25) is exact to all orders in q^2. In the hydrodynamic limit, using [9,16], the dispersion relation can be solved analytically with the most comprehensive result reported in [58]. Yet, we have discovered a set of solutions with purely real ω. That is, for
some (continuum set of) values of magnetic field B, there is a discrete density wave mode (ω_B, q_B), which propagates without any dissipation. This is a quite intriguing result, which originates solely from the all order resummation procedure.

As mentioned in the Introduction, the TCFs could be Fourier transformed into memory functions, see an extensive discussion in e.g. [7, 13]. The CME current with retardation effects is

$$\tilde{J}_{\text{CME}}(t) = \kappa \vec{B} \int_{-\infty}^{\infty} dt' \tilde{\sigma}(t - t') \delta \rho_5(t')$$

(26)

Via inverse Fourier transform, the CME/CSE memory function is (we focus on the case $q = 0$),

$$\tilde{\sigma}(t) \equiv \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} d\omega e^{-i\omega t} \tilde{\sigma}(\omega, q = 0).$$

(27)

The memory function $\tilde{\sigma}(t)$ is displayed in figure 1. An important feature of this function is that it has no support at negative times, which is nothing but manifestation of causality. Another very interesting observation is that rather than having an instantaneous response picked at the origin, like in original CME, the actual response is significantly delayed and picked at a finite time of order temperature. This behaviour of $\tilde{\sigma}(t)$ is quite distinct from diffusion memory function $\tilde{D}(t)$ and shear viscosity memory functions computed previously in [7, 13], which are picked at the origin.

![FIG. 1. The memory function $\tilde{\sigma}(t)$ when $q = 0.$](image)

It is interesting to explore dependence of the TCFs on the chemical potentials. Of special interest is the case of zero background axial charge density, $\tilde{\rho}_5 = 0$, which is the most realistic scenario for any conceivable experiment. However, even in this case, μ_5 could be nonzero and would be proportional to $\vec{E} \cdot \vec{B}$ due to the chiral anomaly [1]. Because of the
linearisation approximation, the TCFs $\sigma_1, \bar{\sigma}_3$ vanish in the limit $\bar{\rho}_5 = 0$. We expect them to be nonzero beyond the current approximation.

The generalised CME/CSE conductivity σ_{χ} in fact does not depend on either of the chemical potentials. At $q = 0$, for the remaining TCFs we discover some universal dependence: $\bar{\sigma}_{a\chi H}$ vanishes; $\sigma_{a\chi H}, \mathcal{D}_H, \bar{\mathcal{D}}_H$ do not depend on the chemical potentials at all; σ_1 is linear in $\kappa^2 \bar{\mu} \bar{\mu}_5$; σ_3 is linear in $\kappa \bar{\mu}$; similarly, $\bar{\sigma}_3$ is linear in $\kappa \bar{\mu}_5$; σ_2 has a normal component independent of the chemical potentials and anomaly induced correction which is linear in $\kappa^2(\bar{\mu}^2 + \bar{\mu}_5^2)$. All these features can be derived from the underlying equations (see Appendix A 2 for relevant ODEs).

Each TCF can be split into real part (even powers of frequency) and imaginary part (odd powers of frequency). Based on the time reversal criterion, we conclude that the real parts of $\sigma_{\chi,1,2}, \mathcal{D}_H, \bar{\mathcal{D}}_H$ and imaginary parts of $\sigma_{a\chi H}, \bar{\sigma}_{a\chi H}, \sigma_3, \bar{\sigma}_3$ are non-dissipative; all the rest do lead to dissipation of the currents. It is interesting to notice that there are points in the (ω,q) phase space, where some of the dissipative terms vanish. Particularly, this happens to $\text{Re}[\mathcal{D}]$ and $\text{Im}[\sigma_{\chi}]$.

The rest of this paper is structured as follows. In Section III, we present the holographic model. This section is identical to that of [58] and presented here solely for self-consistency. Section IV contains the main part of the study: gradient resummation for nonlinear chiral transport. It is further split into four subsections. In subsection IV A, the constitutive relations (11,12) are derived from the dynamical components of the bulk anomalous Maxwell equations near the conformal boundary. In subsection IV B, the TCFs are analytically computed in the hydrodynamic limit. Subsection IV C numerically extends the results beyond this limit. Subsection IV D focuses on the CMW dispersion relation beyond hydrodynamic limit. Section V concludes our study. Appendix supplements calculational details for Section IV.

III. HOLOGRAPHIC SETUP: $U(1)_V \times U(1)_A$

The holographic model is Maxwell-Chern-Simons theory in the Schwarzschild-AdS_5. The bulk action is

$$S = \int d^5x \sqrt{-g} \mathcal{L} + S_{\text{c.t.}},$$

(28)
where
\[
\mathcal{L} = -\frac{1}{4} (F^V)_{MN} (F^V)^{MN} - \frac{1}{4} (F^a)_{MN} (F^a)^{MN} + \frac{\kappa \epsilon^{MNPQR}}{2\sqrt{-g}} \times [3A_M (F^V)_{NP} (F^V)_{QR} + A_M (F^a)_{NP} (F^a)_{QR}],
\]
(29)
and the counter-term action \(S_{\text{c.t.}} \) is
\[
S_{\text{c.t.}} = \frac{1}{4} \log r \int d^4 x \sqrt{-\gamma} \left[(F^V)_{\mu\nu} (F^V)^{\mu\nu} + (F^a)_{\mu\nu} (F^a)^{\mu\nu} \right].
\]
(30)
The gauge Chern-Simons terms (~\(\kappa \)) in the bulk action mimic the chiral anomaly of the boundary field theory. Note \(\epsilon^{MNPQR} \) is the Levi-Civita symbol with the convention \(\epsilon^{rtxyz} = +1 \), while the Levi-Civita tensor is \(\epsilon^{MNPQR}/\sqrt{-g} \). The counter-term action (30) is specified based on minimal subtraction, which excludes finite contribution to the boundary currents from the counter-term.

In the ingoing Eddington-Finkelstein coordinate, the Schwarzschild-AdS_5 is
\[
ds^2 = g_{MN} dx^M dx^N = 2dt dr - r^2 f(r) dt^2 + r^2 \delta_{ij} dx^i dx^j,
\]
(31)
where \(f(r) = 1 - 1/r^4 \). Thus, the Hawking temperature (identified as temperature of the boundary theory) is normalised to \(\pi T = 1 \). On the hypersurface \(\Sigma \) of constant \(r \), the induced metric \(\gamma_{\mu\nu} \) is
\[
ds^2|_{\Sigma} = \gamma_{\mu\nu} dx^\mu dx^\nu = -r^2 f(r) dt^2 + r^2 \delta_{ij} dx^i dx^j.
\]
(32)
It is convenient to split the bulk equations into dynamical and constraint components,
\[
\text{dynamical equations : } EV^\mu = EA^\mu = 0, \quad (33)
\]
\[
\text{constraint equations : } EV^r = EA^r = 0, \quad (34)
\]
where
\[
EV^M \equiv \nabla_N (F^V)^{NM} + \frac{3\kappa \epsilon^{MNPQR}}{\sqrt{-g}} (F^a)_{NP} (F^V)_{QR},
\]
(35)
\[
EA^M \equiv \nabla_N (F^a)^{NM} + \frac{3\kappa \epsilon^{MNPQR}}{2\sqrt{-g}} \left[(F^V)_{NP} (F^V)_{QR} + (F^a)_{NP} (F^a)_{QR} \right].
\]
(36)
The boundary currents are defined as
\[
J^\mu \equiv \lim_{r \to \infty} \frac{\delta S}{\delta V^\mu}, \quad J_5^\mu \equiv \lim_{r \to \infty} \frac{\delta S}{\delta A_\mu},
\]
(37)
which, in terms of the bulk fields, are

\[
J_\mu(r) = \lim_{r \to \infty} \sqrt{-\gamma} \left\{ (F^V)_{\mu M} n_M + \frac{6 \kappa M \mu NQR}{\sqrt{-g}} n_M A_N (F^V)_{QR} - \tilde{\nabla}_\nu (F^V)_{\mu \nu} \log r \right\},
\]

\[
J_5^\mu(r) = \lim_{r \to \infty} \sqrt{-\gamma} \left\{ (F^a)_{\mu M} n_M + \frac{2 \kappa M \mu NQR}{\sqrt{-g}} n_M A_N (F^a)_{QR} - \tilde{\nabla}_\nu (F^a)_{\mu \nu} \log r \right\},
\]

(38)

where \(n_M \) is the outpointing unit normal vector with respect to the slice \(\Sigma \), and \(\tilde{\nabla} \) is compatible with the induced metric \(\gamma_{\mu \nu} \).

The radial gauge \(V_r = A_r = 0 \) will be assumed throughout this work. As a result, in order to determine the boundary currents \(\text{(38)} \) it is sufficient to solve dynamical equations \(\text{(33)} \) only, leaving the constraints aside. Indeed, the constraint equations \(\text{(34)} \) give rise to continuity equations \(\text{(39)} \)

\[
\partial_\mu J^\mu = 0, \quad \partial_\mu J_5^\mu = 12 \kappa \vec{E} \cdot \vec{B}.
\]

Practically, it is more instructive to relate the currents \(\text{(38)} \) to the coefficients of near boundary asymptotic expansion of the bulk gauge fields. Near \(r = \infty \),

\[
V_\mu = V_\mu + \frac{V_\mu^{(1)}}{r} + \frac{V_\mu^{(2)}}{r^2} - \frac{2 V^L_\mu}{r^2} \log r + \mathcal{O} \left(\frac{\log r}{r^3} \right), \quad A_\mu = A_\mu^{(2)} + \mathcal{O} \left(\frac{\log r}{r^3} \right),
\]

(40)

where

\[
V_\mu^{(1)} = \mathcal{F}_{t\mu}, \quad 4 V^L_\mu = \partial^\nu \mathcal{F}^V_{\mu \nu}.
\]

(41)

A possible constant term for \(A_\mu \) in \(\text{(40)} \) has been set to zero, in accordance with the fact that no axial external fields is assumed to be present in the current study. \(V_\mu \) is the gauge potential of external electromagnetic fields \(\vec{E} \) and \(\vec{B} \),

\[
E_i = \mathcal{F}^V_{it} = \partial_t V_i - \partial_i V_t, \quad B_i = \frac{1}{2} \epsilon_{ijk} \mathcal{F}^V_{jk} = \epsilon_{ijk} \partial_j V_k.
\]

(42)

Dynamical equations \(\text{(33)} \) are sufficient to derive \(\text{(40,41)} \), where the near-boundary data \(V_\mu^{(2)} \) and \(A_\mu^{(2)} \) have to be determined by completely solving \(\text{(33)} \) from the horizon to the boundary. The currents \(\text{(38)} \) become

\[
J^\mu = \eta^{\mu \nu} (2 V_\nu^{(2)} + 2 V^L_\nu + \eta^{\sigma \rho} \partial_\sigma \mathcal{F}^V_{\rho \nu}), \quad J_5^\mu = \eta^{\mu \nu} 2 A^{(2)}_\nu.
\]

(43)

As the remainder of this section, we outline the strategy for deriving the constitutive relations for \(J^\mu \) and \(J_5^\mu \). To this end, we turn on finite vector/axial charge densities for the
dual field theory, which are also exposed to external electromagnetic fields. Holographically, the charge densities and external fields are encoded in asymptotic behaviors of the bulk gauge fields. In the bulk, we will solve the dynamical equations (33) assuming the charge densities and external fields as given, but without specifying them explicitly.

Following [13] we start with the most general static and homogeneous profiles for the bulk gauge fields satisfying the dynamical equations (33),

\[V_\mu = V_\mu - \frac{\rho}{2r^2} \delta_{\mu t}, \quad A_\mu = -\frac{\rho_5}{2r^2} \delta_{\mu t}, \] (44)

where \(V_\mu, \rho, \rho_5 \) are all constants for the moment. Regularity at \(r = 1 \) has been used to fix one integration constant for each \(V_i \) and \(A_i \). As explained below (41), the constant term in \(A_\mu \) is set to zero. Through (43), the boundary currents are

\[J^t = \rho, \quad J^i = 0; \quad J_5^t = \rho_5, \quad J_5^i = 0. \] (45)

Hence, \(\rho \) and \(\rho_5 \) are identified as the vector/axial charge densities.

Next, following the idea of fluid/gravity correspondence [53], we promote \(V_\mu, \rho, \rho_5 \) into arbitrary functions of the boundary coordinates

\[V_\mu \rightarrow V_\mu(x_\alpha), \quad \rho \rightarrow \rho(x_\alpha), \quad \rho_5 \rightarrow \rho_5(x_\alpha). \] (46)

As a result, (44) ceases to solve the dynamical equations (33). To have them satisfied, suitable corrections in \(V_\mu \) and \(A_\mu \) have to be introduced:

\[V_\mu(r, x_\alpha) = V_\mu(x_\alpha) - \frac{\rho(x_\alpha)}{2r^2} \delta_{\mu t} + \mathcal{V}_\mu(r, x_\alpha), \quad A_\mu(r, x_\alpha) = -\frac{\rho_5(x_\alpha)}{2r^2} \delta_{\mu t} + \mathcal{A}_\mu(r, x_\alpha), \] (47)

where \(\mathcal{V}_\mu, \mathcal{A}_\mu \) will be determined by solving (33). Appropriate boundary conditions are classified into three types. First, \(\mathcal{V}_\mu, \mathcal{A}_\mu \) are regular over the domain \(r \in [1, \infty) \). Second, at the conformal boundary \(r = \infty \), we require

\[\mathcal{V}_\mu \rightarrow 0, \quad \mathcal{A}_\mu \rightarrow 0 \quad \text{as} \quad r \rightarrow \infty, \] (48)

which amounts to fixing external gauge potentials to be \(\mathcal{V}_\mu \) and zero (for the axial fields). Additional integration constants will be fixed by the Landau frame convention for the currents,

\[J^t = \rho(x_\alpha), \quad J_5^t = \rho_5(x_\alpha). \] (49)
The Landau frame convention corresponds to a residual gauge fixing for the bulk fields.

The vector/axial chemical potentials are defined as

\[\mu = V_t(r = \infty) - V_t(r = 1) = \frac{1}{2} \rho - V_t(r = 1), \]
\[\mu_5 = A_t(r = \infty) - A_t(r = 1) = \frac{1}{2} \rho_5 - A_t(r = 1). \]

(50)

Generically, \(\mu, \mu_5\) are nonlinear functionals of densities and external fields.

In terms of \(V_\mu\) and \(A_\mu\), the dynamical equations (33) are

\[0 = r^3 \partial_t^2 V_t + 3r^2 \partial_r V_t + r \partial_r \partial_k V_k + 12 \kappa \epsilon^{ijk} \left[\partial_r A_i \left(\partial_j V_k + \partial_j V_k \right) + \partial_r V_i \partial_j A_k \right], \]

(51)

\[0 = (r^5 - r) \partial_t^2 \partial_i V_i + (3r^4 + 1) \partial_r V_i + 2r^3 \partial_i \partial_j V_i - r^3 \partial_r \partial_i V_t + r^2 \left(\partial_t V_i - \partial_i V_t \right) \]
\[+ r \left(\partial^2 V_i - \partial_i \partial_k V_k \right) - \frac{1}{2} \partial_i \mu + r^2 \left(\partial_i V_i - \partial_i V_t \right) + r \left(\partial^2 V_t - \partial_t \partial_k V_k \right) \]
\[+ 12 \kappa \epsilon^{ijk} \left(\frac{1}{r^3} \rho_3 \partial_j V_k + \frac{1}{r^2} \rho_5 \partial_j \partial_k V_k \right) \]
\[- 12 \kappa \epsilon^{ijk} \partial_r A_j \left(\partial_i V_k - \partial_k V_i \right) + \left(\partial_i V_k - \partial_i V_t \right) + \frac{1}{2r^2} \partial_k \mu \]
\[- 12 \kappa \epsilon^{ijk} \right] \left(\partial_i A_k - \partial_k A_i \right) + \frac{1}{2r^2} \partial_k \rho_5 \right] - \partial_j A_k \left(\partial_j V_t + \frac{1}{r^3} \rho \right) \right), \]

(52)

\[0 = r^3 \partial_t^2 \partial_i \partial_i A_i + 3r^2 \partial_r \partial_i A_i + r \partial_r \partial_k \partial_k A_k + 12 \kappa \epsilon^{ijk} \left[\partial_r V_i \left(\partial_j V_k + \partial_j V_k \right) + \partial_r V_i \partial_j A_k \right], \]

(53)

\[0 = (r^5 - r) \partial_t^2 \partial_i A_i + (3r^4 + 1) \partial_r A_i + 2r^3 \partial_i \partial_j A_i - r^3 \partial_r \partial_i A_t + r^2 \left(\partial_i A_i - \partial_i A_t \right) \]
\[+ r \left(\partial^2 A_i - \partial_i \partial_k A_k \right) - \frac{1}{2} \partial_i \mu_5 + 12 \kappa \epsilon^{ijk} \left(\partial_j V_k + \partial_j V_k \right) \left(\partial_t V_t + \frac{1}{r^3} \rho \right) \]
\[- 12 \kappa \epsilon^{ijk} \partial_r V_j \left(\partial_i V_k - \partial_k V_i \right) + \left(\partial_i V_k - \partial_i V_t \right) + \frac{1}{2r^2} \partial_k \mu_5 \right) \]
\[- 12 \kappa \epsilon^{ijk} \right] \right] \left(\partial_i A_k - \partial_k A_i \right) + \frac{1}{2r^2} \partial_k \rho_5 \right] - \partial_j A_k \left(\partial_r A_t + \frac{1}{r^3} \rho_5 \right) \right). \]

(54)

In subsequent two sections we will present solutions to (51, 54) under two approximation schemes discussed in the Introduction.

IV. NONLINEAR CHIRAL TRANSPORT AND GRADIENT RESUMMATION

In this section, we focus on all order gradient resummation. While the background \(\vec{E}\) and \(\vec{B}\) fields are assumed here as time independent and space homogeneous, the charge densities are allowed to weakly fluctuate around some constant values. In this way we will account
for the derivatives of the charge densities only. Following a more general ansatz (45), two expansion parameters are introduced:

\[\rho = \bar{\rho} + \epsilon \delta \rho(x), \quad \rho_5 = \bar{\rho}_5 + \epsilon \delta \rho_5(x), \]

\[E_i \to \alpha E_i, \quad B_i \to \alpha B_i. \]

The corrections \(V_\mu \) and \(A_\mu \) are first expanded in powers of \(\epsilon \),

\[V_\mu = V_\mu^{(0)}(r) + \epsilon V_\mu^{(1)}(r, x^\alpha) + \mathcal{O}(\epsilon^2), \quad A_\mu = A_\mu^{(0)}(r) + \epsilon A_\mu^{(1)}(r, x^\alpha) + \mathcal{O}(\epsilon^2), \]

and then each order in \(\epsilon \) is further expanded in powers of \(\alpha \):

\[V_\mu^{(0)} = \sum_{n=1}^{\infty} \alpha^n V_\mu^{(n)}, \quad A_\mu^{(0)} = \sum_{n=1}^{\infty} \alpha^n A_\mu^{(n)}, \]

\[V_\mu^{(1)} = \sum_{n=0}^{\infty} \alpha^n V_\mu^{(n)}, \quad A_\mu^{(1)} = \sum_{n=0}^{\infty} \alpha^n A_\mu^{(n)}. \]

The boundary currents are expanded accordingly

\[J^t = \rho(x^\alpha), \quad J^i = J_i^{(0)} + J_i^{(1)} + \mathcal{O}(\epsilon \alpha^1), \]

\[J_5^i = \rho_5(x^\alpha), \quad J_5^i = J_5^{(0)} + J_5^{(1)} + \mathcal{O}(\epsilon \alpha^1), \]

where \(J^t, J_5^i \) are fixed by the Landau frame convention (49). \(J_i^{(0)}, J_5^{(0)}, J_i^{(1)}, J_5^{(1)} \) which are at \(\mathcal{O}(\epsilon^0 \alpha^1) \), \(\mathcal{O}(\epsilon \alpha^0) \) were derived in [1] and are reviewed in Appendix-A 1. Our objective here is to extend the study of [1] and calculate \(J_i^{(1)} \) and \(J_5^{(1)} \), that is \(\mathcal{O}(\epsilon \alpha^1) \).

This section is split into four subsections. The first one [IV A] is devoted to derivation of the constitutive relations [11,12]. In the following subsections [IV B] and [IV C] the TCFs in [11,12] are evaluated, first analytically in the hydrodynamic limit, and then numerically for arbitrary momenta. The last subsection [IV D] is about non-dissipative modes in the CMW dispersion relations.

A. Constitutive relations at \(\mathcal{O}(\epsilon \alpha^1) \)

At \(\mathcal{O}(\epsilon \alpha^1) \), the dynamical equations (51-54) reduce to the following linear partial differential equations for the corrections \(V_\mu^{(1)} \) and \(A_\mu^{(1)} \)

\[0 = r^3 \partial_t^2 V_t^{(1)} + 3r^2 \partial_r V_t^{(1)} + r \partial_r \partial_k V_k^{(1)} + 12 \kappa \epsilon^{ijk} \left(\partial_i A_i^{(0)} \partial_j \overline{V}_k^{(0)} + \partial_r V_i^{(0)} \partial_r A_k^{(0)} \right), \]

where

\[J^t = \rho(x^\alpha), \quad J^i = J_i^{(0)} + J_i^{(1)} + \mathcal{O}(\epsilon \alpha^1), \]

\[J_5^i = \rho_5(x^\alpha), \quad J_5^i = J_5^{(0)} + J_5^{(1)} + \mathcal{O}(\epsilon \alpha^1), \]

and then each order in \(\epsilon \) is further expanded in powers of \(\alpha \):

\[V_\mu^{(0)} = \sum_{n=1}^{\infty} \alpha^n V_\mu^{(n)}, \quad A_\mu^{(0)} = \sum_{n=1}^{\infty} \alpha^n A_\mu^{(n)}, \]

\[V_\mu^{(1)} = \sum_{n=0}^{\infty} \alpha^n V_\mu^{(n)}, \quad A_\mu^{(1)} = \sum_{n=0}^{\infty} \alpha^n A_\mu^{(n)}. \]

The boundary currents are expanded accordingly

\[J^t = \rho(x^\alpha), \quad J^i = J_i^{(0)} + J_i^{(1)} + \mathcal{O}(\epsilon \alpha^1), \]

\[J_5^i = \rho_5(x^\alpha), \quad J_5^i = J_5^{(0)} + J_5^{(1)} + \mathcal{O}(\epsilon \alpha^1), \]

where \(J^t, J_5^i \) are fixed by the Landau frame convention (49). \(J_i^{(0)}, J_5^{(0)}, J_i^{(1)}, J_5^{(1)} \) which are at \(\mathcal{O}(\epsilon^0 \alpha^1) \), \(\mathcal{O}(\epsilon \alpha^0) \) were derived in [1] and are reviewed in Appendix-A 1. Our objective here is to extend the study of [1] and calculate \(J_i^{(1)} \) and \(J_5^{(1)} \), that is \(\mathcal{O}(\epsilon \alpha^1) \).

This section is split into four subsections. The first one [IV A] is devoted to derivation of the constitutive relations [11,12]. In the following subsections [IV B] and [IV C] the TCFs in [11,12] are evaluated, first analytically in the hydrodynamic limit, and then numerically for arbitrary momenta. The last subsection [IV D] is about non-dissipative modes in the CMW dispersion relations.

A. Constitutive relations at \(\mathcal{O}(\epsilon \alpha^1) \)

At \(\mathcal{O}(\epsilon \alpha^1) \), the dynamical equations (51-54) reduce to the following linear partial differential equations for the corrections \(V_\mu^{(1)} \) and \(A_\mu^{(1)} \)

\[0 = r^3 \partial_t^2 V_t^{(1)} + 3r^2 \partial_r V_t^{(1)} + r \partial_r \partial_k V_k^{(1)} + 12 \kappa \epsilon^{ijk} \left(\partial_i A_i^{(0)} \partial_j \overline{V}_k^{(0)} + \partial_r V_i^{(0)} \partial_r A_k^{(0)} \right), \]

where

\[J^t = \rho(x^\alpha), \quad J^i = J_i^{(0)} + J_i^{(1)} + \mathcal{O}(\epsilon \alpha^1), \]

\[J_5^i = \rho_5(x^\alpha), \quad J_5^i = J_5^{(0)} + J_5^{(1)} + \mathcal{O}(\epsilon \alpha^1), \]

and then each order in \(\epsilon \) is further expanded in powers of \(\alpha \):

\[V_\mu^{(0)} = \sum_{n=1}^{\infty} \alpha^n V_\mu^{(n)}, \quad A_\mu^{(0)} = \sum_{n=1}^{\infty} \alpha^n A_\mu^{(n)}, \]

\[V_\mu^{(1)} = \sum_{n=0}^{\infty} \alpha^n V_\mu^{(n)}, \quad A_\mu^{(1)} = \sum_{n=0}^{\infty} \alpha^n A_\mu^{(n)}. \]

The boundary currents are expanded accordingly

\[J^t = \rho(x^\alpha), \quad J^i = J_i^{(0)} + J_i^{(1)} + \mathcal{O}(\epsilon \alpha^1), \]

\[J_5^i = \rho_5(x^\alpha), \quad J_5^i = J_5^{(0)} + J_5^{(1)} + \mathcal{O}(\epsilon \alpha^1), \]

where \(J^t, J_5^i \) are fixed by the Landau frame convention (49). \(J_i^{(0)}, J_5^{(0)}, J_i^{(1)}, J_5^{(1)} \) which are at \(\mathcal{O}(\epsilon^0 \alpha^1) \), \(\mathcal{O}(\epsilon \alpha^0) \) were derived in [1] and are reviewed in Appendix-A 1. Our objective here is to extend the study of [1] and calculate \(J_i^{(1)} \) and \(J_5^{(1)} \), that is \(\mathcal{O}(\epsilon \alpha^1) \).

This section is split into four subsections. The first one [IV A] is devoted to derivation of the constitutive relations [11,12]. In the following subsections [IV B] and [IV C] the TCFs in [11,12] are evaluated, first analytically in the hydrodynamic limit, and then numerically for arbitrary momenta. The last subsection [IV D] is about non-dissipative modes in the CMW dispersion relations.
\[0 = (r^5 - r) \partial_t V_i^{(1)(1)} + (3r^4 + 1) \partial_t V_i^{(1)(1)} + 2r^3 \partial_t \partial_t V_i^{(1)(1)} - r^3 \partial_t \partial_t V_i^{(1)(1)} + 12kr^2 \varepsilon_{ijk} \]

\[\times \left(1 - \delta_{i3} \right) \partial_j V_k + \frac{1}{r^3} \delta_{i3} \partial_j V_k^{(1)} + \partial_t A_i^{(0)(1)} \partial_j \tilde{V}_k - 12kr^2 \varepsilon_{ijk} \]

\[\times \left\{ \partial_t A_j^{(0)(1)} \left[(\partial_t V_k^{(1)(0)} - \partial_k V_t^{(1)(0)}) + \frac{1}{2r^2} \partial_k \delta \rho \right] + \partial_t A_j^{(0)(0)} (\partial_t V_k - \partial_k V_t) \right\} \]

\[- 12kr^2 \varepsilon_{ijk} \left\{ \partial_t V_j^{(0)(1)} \left[(\partial_i A_k^{(0)(0)} - \partial_k A_i^{(0)(0)}) + \frac{1}{2r^2} \partial_k \delta \rho \right] - \frac{\bar{\rho}}{r^3} \partial_j A_k^{(1)(1)} \right\} , \]

where \(V_t^{(1)(1)}, V_i^{(1)(1)}, A_i^{(0)(1)}, A_i^{(1)(1)}, \tilde{V}_i^{(0)(1)}, \tilde{V}_i^{(1)(0)}, A_i^{(0)(1)}, A_i^{(1)(1)} \) were derived in [1] and are presented in Appendix A.1.

Following the formalism introduced in [5] [6], the corrections \(V_i^{(1)(1)} \) and \(A_i^{(1)(1)} \) are decomposed in terms of basic structures built from the external fields and inhomogeneous parts of the charge densities,

\[V_i^{(1)(1)} = S_1 \kappa B_k \partial_k \delta \rho + S_2 \kappa E_k \partial_k \delta \rho + S_3 \kappa B_k \partial_k \delta \rho_5 + S_4 \kappa E_k \partial_k \delta \rho_5, \quad (63) \]

\[V_i^{(1)(1)} = V_1 \kappa B_i \partial \delta \rho + V_2 \kappa B_i \partial_i \partial \delta \rho + V_3 \kappa \varepsilon_{ijk} B_j \partial_k \delta \rho + V_4 \kappa E_i \partial \delta \rho + V_5 \kappa E_i \partial_i \partial \delta \rho, \]

\[+ V_6 \kappa \varepsilon_{ijk} E_j \partial_i \partial \delta \rho + V_7 \kappa B_i \partial_i \partial \delta \rho_5 + V_8 \kappa B_i \partial_i \partial \delta \rho_5 + V_9 \kappa \varepsilon_{ijk} B_j \partial_k \delta \rho_5 + V_{10} \kappa E_i \partial \delta \rho_5 \quad (64) \]

\[+ V_{11} \kappa E_i \partial_i \partial \delta \rho_5 + V_{12} \kappa \varepsilon_{ijk} E_j \partial_k \delta \rho_5, \]

\[A_i^{(1)(1)} = \bar{S}_1 \kappa B_k \partial_k \delta \rho + \bar{S}_2 \kappa E_k \partial_k \delta \rho + \bar{S}_3 \kappa B_k \partial_k \delta \rho_5 + \bar{S}_4 \kappa E_k \partial_k \delta \rho_5, \quad (65) \]

\[A_i^{(1)(1)} = \bar{V}_1 \kappa B_i \partial \delta \rho + \bar{V}_2 \kappa B_i \partial_i \partial \delta \rho + \bar{V}_3 \kappa \varepsilon_{ijk} B_j \partial_k \delta \rho + \bar{V}_4 \kappa E_i \partial \delta \rho + \bar{V}_5 \kappa E_i \partial_i \partial \delta \rho, \]

\[+ \bar{V}_6 \kappa \varepsilon_{ijk} E_j \partial_i \partial \delta \rho + \bar{V}_7 \kappa B_i \partial_i \partial \delta \rho_5 + \bar{V}_8 \kappa B_i \partial_i \partial \delta \rho_5 + \bar{V}_9 \kappa \varepsilon_{ijk} B_j \partial_k \delta \rho_5 + \bar{V}_{10} \kappa E_i \partial \delta \rho_5 \quad (66) \]

\[+ \bar{V}_{11} \kappa E_i \partial_i \partial \delta \rho_5 + \bar{V}_{12} \kappa \varepsilon_{ijk} E_j \partial_k \delta \rho_5. \]
where S_i, \tilde{S}_i, V_i and \tilde{V}_i are functionals of the boundary derivative operator ∂_μ and functions of the radial coordinate r. They also depend on the constant values $\bar{\mu}$ and $\bar{\mu}_5$ of the chemical potentials. Fourier transforming $\delta \rho$ and $\delta \rho_5$ turns all the derivatives into momenta. Thus, in momentum space, these decomposition coefficients become functions of the radial coordinate, frequency ω and spatial momentum squared q^2:

$$S_i \left(r, \partial_r, \partial_r^2 \right) \to S_i \left(r, \omega, q^2 \right) \quad \tilde{S}_i \left(r, \partial_r, \partial_r^2 \right) \to \tilde{S}_i \left(r, \omega, q^2 \right), \quad (67)$$

$$V_i \left(r, \partial_r, \partial_r^2 \right) \to V_i \left(r, \omega, q^2 \right) \quad \tilde{V}_i \left(r, \partial_r, \partial_r^2 \right) \to \tilde{V}_i \left(r, \omega, q^2 \right), \quad (68)$$

which satisfy partially decoupled non-homogeneous ODEs listed in Appendix A2. The decomposition functions S_i, \tilde{S}_i, V_i and \tilde{V}_i are nothing else but elements of the inverse Green function matrix for the system of the ODE’s.

As discussed in Section III, the boundary conditions for the decomposition coefficients in (63)-(66) are

$$S_i \to 0, \quad \tilde{S}_i \to 0 \quad V_i \to 0, \quad \tilde{V}_i \to 0 \quad \text{as} \quad r \to \infty. \quad (69)$$

$$S_i, \quad \tilde{S}_i, \quad V_i, \quad \tilde{V}_i \quad \text{are regular over the whole integral of} \quad r \in [1, \infty). \quad (70)$$

Additional integration constants will be fixed by the Landau frame convention (49).

Solving the ODEs (A13-A28) near the boundary $r = \infty$ reveals the pre-asymptotic behaviour for the corrections, which can be summarised as

$$S_i \to \frac{s_i^{1}}{r} + \frac{s_i}{r^2} + \frac{s_i^L \log r}{r^2} + \cdots, \quad V_i \to \frac{v_i^{1}}{r} + \frac{v_i}{r^2} + \frac{v_i^L \log r}{r^2} + \cdots, \quad (71)$$

$$\tilde{S}_i \to \frac{\tilde{s}_i^{1}}{r} + \frac{\tilde{s}_i}{r^2} + \frac{s_i^L \log r}{r^2} + \cdots, \quad \tilde{V}_i \to \frac{\tilde{v}_i^{1}}{r} + \frac{\tilde{v}_i}{r^2} + \frac{\tilde{v}_i^L \log r}{r^2} + \cdots,$$

where s_i^{1L}, v_i^{1L}, \tilde{s}_i^{1L}, \tilde{v}_i^{1L} are fixed uniquely from the near-boundary analysis alone, while the coefficients s_i, v_i, \tilde{s}_i, \tilde{v}_i can be determined only when the ODEs are fully solved in the entire bulk, from the horizon to the AdS boundary.

Then, the $\mathcal{O}(\epsilon^4 \alpha^1)$ boundary currents (43) are

$$J^{(1)(1)} = -2\kappa \left(s_1 B_k \partial_k \delta \rho + s_2 E_k \partial_k \delta \rho + s_3 B_k \partial_k \delta \rho_5 + s_4 E_k \partial_k \delta \rho_5 \right), \quad (72)$$

$$J^{(1)(1)} = 2\kappa \left(v_1 B_i \delta \rho + v_2 B_i \delta \rho + v_3 \epsilon^{ijk} B_j \partial_k \delta \rho + v_4 E_i \delta \rho + v_5 E_k \partial_i \delta \rho \right) + \frac{\epsilon^{ijk} E_j \partial_k \delta \rho + v_7 B_i \delta \rho_5 + v_8 B_k \delta \rho_5 + v_9 \epsilon^{ijk} B_j \partial_k \delta \rho_5 + v_{10} E_i \delta \rho_5 + v_{11} E_k \partial_i \delta \rho_5 + v_{12} \epsilon^{ijk} E_j \partial_k \delta \rho_5 \right), \quad (73)$$
\[J^{(1)(1)}_5 = -2\kappa (\bar{s}_1 B_k \partial_k \delta \rho + \bar{s}_2 E_k \partial_k \delta \rho + \bar{s}_3 B_k \partial_k \delta \rho_5 + \bar{s}_4 E_k \partial_k \delta \rho_5), \]
\[J^{(1)(1)}_5 = 2\kappa (\bar{v}_1 B_i \partial_i \delta \rho + \bar{v}_2 B_k \partial_k \delta \rho + \bar{v}_3 \varepsilon^{ijk} B_j \partial_i \delta \rho + \bar{v}_4 E_i \partial_i \delta \rho + \bar{v}_5 E_k \partial_k \delta \rho \]
\[+ \bar{v}_6 \varepsilon^{ijk} E_j \partial_i \delta \rho + \bar{v}_7 E_k \delta \rho_5 + \bar{v}_8 E_k \partial_k \delta \rho_5 + \bar{v}_9 \varepsilon^{ijk} E_j \partial_k \delta \rho_5 + \bar{v}_{10} E_i \delta \rho_5 \]
\[+ \bar{v}_{11} E_k \partial_i \delta \rho_5 + \bar{v}_{12} \varepsilon^{ijk} E_j \partial_k \delta \rho_5). \]

The Landau frame convention (49) implies
\[s_i = \bar{s}_i = 0, \quad i = 1, 2, 3, 4. \]

Combined with the ODEs \((A13A28), (76)\) leads to constraints among the decomposition coefficients in \((63-66)\), see \((A29A30A31)\). Helped by these constraints, \((73,75)\) can be eventually put into compact form \((11,12)\). All the TCFs can be identified with the near boundary data \(v_i, \bar{v}_i:\)
\[\sigma_\chi = 2 \left(\bar{v}_1 - q^2 \bar{v}_2 \right), \quad -\frac{\bar{\rho}}{4\kappa} D_H = 2v_3 = 2\bar{v}_9, \quad -\frac{\bar{\rho}_5}{4\kappa} D_H = 2v_9 = 2\bar{v}_3, \]
\[-\frac{1}{2\kappa}{\sigma}_{a\chi H} = 2v_{12} = 2\bar{v}_6, \quad -\frac{1}{2\kappa}{\sigma}_{a\chi H} = 2v_6 = 2\bar{v}_{12}, \quad \sigma_1 = 2v_2 = 2\bar{v}_8, \]
\[\sigma_2 = 2v_8 = 2\bar{v}_2, \quad \sigma_3 = 2v_5 = 2\bar{v}_{11}, \quad \sigma_3 = 2v_{11} = 2\bar{v}_5. \]

The TCFs \(\sigma_\chi\) do not depend on \(\bar{\mu}, \bar{\mu}_5\) at all. The rest of the TCFs bear reminiscence of the axial symmetry. It get reflected in some mirror symmetries with respect to exchange of \(\bar{\rho}\) and \(\bar{\rho}_5\) (or equivalently of \(\bar{\mu} \leftrightarrow \bar{\mu}_5\)). We found some “symmetric relations” among the decomposition coefficients in \((63-66)\), see \((A32A33)\). Consequently, the TCFs satisfy
\[\sigma_{1,2}[\bar{\mu}, \bar{\mu}_5] = \sigma_{1,2}[\bar{\mu}_5, \bar{\mu}], \quad \sigma_{a\chi H}[\bar{\mu}, \bar{\mu}_5] = \sigma_{a\chi H}[\bar{\mu}_5, \bar{\mu}], \quad \sigma_{a\chi H}[\bar{\mu}, \bar{\mu}_5] = \sigma_{a\chi H}[\bar{\mu}_5, \bar{\mu}], \]
\[D_H[\bar{\mu}, \bar{\mu}_5] = D_H[\bar{\mu}_5, \bar{\mu}_5] |_{\bar{\mu} \leftrightarrow \bar{\mu}_5}, \quad \sigma_3[\bar{\mu}, \bar{\mu}_5] = \sigma_3[\bar{\mu}_5, \bar{\mu}_5] |_{\bar{\mu} \leftrightarrow \bar{\mu}_5}. \]

Instead of the charge densities \(\rho, \rho_5\), chemical potentials are frequently used as hydrodynamic variables to parameterise the currents’ constitutive relations. Up to \(O(\epsilon^1\alpha^1)\), the chemical potentials defined in \((50)\) are
\[\mu = \frac{1}{2} \rho(x_\alpha) - \left[g_3(r = 1) \delta \rho + \kappa \bar{S}_1(r = 1) B_k \partial_k \delta \rho_5 \right], \]
\[\mu_5 = \frac{1}{2} \rho_5(x_\alpha) - \left[g_3(r = 1) \delta \rho_5 + \kappa \bar{S}_1(r = 1) B_k \partial_k \delta \rho \right], \]
where \(g_3(r = 1)\) and \(\bar{S}_1(r = 1)\) denote horizon values of \(g_3\) (appearing in \((A5)\)) and \(\bar{S}_1\), respectively. Then, \((79)\) can be inverted
\[\rho = \frac{1}{2 - g_3(r = 1)} \mu + \frac{\kappa \bar{S}_1(r = 1) B_k \partial_k}{\left[\frac{1}{2} - g_3(r = 1) \right]^2} \mu_5, \quad \rho_5 = \frac{1}{2 - g_3(r = 1)} \mu_5 + \frac{\kappa \bar{S}_1(r = 1) B_k \partial_k}{\left[\frac{1}{2} - g_3(r = 1) \right]^2} \bar{\mu}. \]
A 3. The hydrodynamic expansions of \(v \).

Then at each order in \(\lambda \) in the gradient counting. After some manipulations, the currents \([11,12]\) turn into

\[
\tilde{J}^{(1)} = \sigma'_x \bar{\lambda} \delta \mu - \frac{1}{4} \mathcal{D}'_H (\bar{\rho} \bar{B} \times \bar{\nabla} \delta \mu) - \frac{1}{4} \mathcal{D}'_H (\bar{\rho}_5 \bar{B} \times \bar{\nabla} \delta \mu_5) - \frac{1}{2} \sigma'_{\chi \phi} (\tilde{E} \times \bar{\nabla} \delta \mu) \\
- \frac{1}{2} \sigma'_{\chi \phi} (\tilde{E} \times \bar{\nabla} \delta \mu) + \sigma'_1 [\bar{B} \times \bar{\nabla}] \delta \mu + \sigma'_2 [\bar{B} \times \bar{\nabla}] \delta \mu \\
+ \sigma'_3 [(\bar{E} \times \bar{\nabla}) \times \bar{\nabla}] \delta \mu + \sigma'_3 [(\bar{E} \times \bar{\nabla}) \times \bar{\nabla}] \delta \mu, \tag{81}
\]

where the TCFs with prime are related to those in \([11,12]\) by

\[
\sigma'_x = \frac{\sigma_x}{\frac{1}{2} - g_3 (r = 1)}, \tag{83}
\]

and similar equations for the rest.

B. Hydrodynamic expansion: analytical results

In the hydrodynamic limit \(\omega, q \ll 1 \), the ODEs \([A13,A28]\) can be solved perturbatively. We employ the expansion parameter \(\lambda \) via \((\omega, q) \to (\lambda \omega, \lambda q) \). Then, the decomposition coefficients are expanded in powers of \(\lambda \),

\[
S_i = \sum_{n=0}^{\infty} \lambda^n S_i^{(n)}, \quad \quad \quad V_i = \sum_{n=0}^{\infty} \lambda^n V_i^{(n)} , \tag{84}
\]

\[
\bar{S}_i = \sum_{n=0}^{\infty} \lambda^n \bar{S}_i^{(n)}, \quad \quad \quad \bar{V}_i = \sum_{n=0}^{\infty} \lambda^n \bar{V}_i^{(n)}.
\]

Then at each order in \(\lambda \), the solutions are expressed as double integrals over \(r \), see Appendix-A3. The hydrodynamic expansions of \(v_i \) and \(\bar{v}_i \) \([71]\) are

\[
v_1 = \bar{v}_7 = 27 q^2 \kappa^2 \bar{\rho} \bar{\rho}_5 [6 + (5 \log 2 - 12) \log 2] + \cdots , \tag{85}
\]

\[
\bar{v}_1 = \bar{v}_7 = 3 + \frac{3 \bar{\omega}}{4} (\pi + 2 \log 2) - \frac{1}{16} \bar{\omega}^2 [\pi^2 + 6 (4C + \log^2 2)] - \frac{1}{16} q^2 \\
\times \{ 6 \pi + \pi^2 - 12 \log 2 - 216 \kappa^2 (\bar{\rho}^2 + \bar{\rho}_5^2) [6 + (5 \log 2 - 12) \log 2] \} + \cdots , \tag{86}
\]
\[v_2 = \bar{v}_8 = 27\kappa^2 \bar{\rho} \bar{p}_5 [6 + (5 \log 2 - 12) \log 2] + \cdots, \quad (87) \]
\[\bar{v}_2 = v_8 = \frac{1}{16} (6\pi - \pi^2 - 12 \log 2) + \frac{27}{2} \kappa^2 (\bar{p}^2 + \bar{p}_5^2) [6 + (5 \log 2 - 12) \log 2] + \cdots, \quad (88) \]
\[v_3 = \bar{v}_9 = 9\kappa \bar{p}(2 - 3 \log 2) + \frac{3i\omega \kappa \bar{p}}{4} [\pi (6 - 2\pi - 3 \log 2) + (12 - 9 \log 2) \log 2] + \cdots, \quad (89) \]
\[\bar{v}_3 = v_9 = 9\kappa \bar{p}_5(2 - 3 \log 2) + \frac{3i\omega \kappa \bar{p}_5}{4} [\pi (6 - 2\pi - 3 \log 2) + (12 - 9 \log 2) \log 2] + \cdots, \quad (90) \]
\[v_4 = \bar{v}_{10} = \frac{9}{4} q^2 \kappa \bar{\rho} \log^2 2 + \cdots, \quad (91) \]
\[\bar{v}_4 = v_{10} = \frac{9}{4} q^2 \kappa \bar{p}_5 \log^2 2 + \cdots, \quad (92) \]
\[v_5 = \bar{v}_{11} = \frac{9}{4} \kappa \bar{\rho} \log^2 2 + \cdots, \quad (93) \]
\[\bar{v}_5 = v_{11} = \frac{9}{4} \kappa \bar{p}_5 \log^2 2 + \cdots, \quad (94) \]
\[v_6 = \bar{v}_{12} = 0 + \cdots, \quad (95) \]
\[\bar{v}_6 = v_{12} = -\frac{3 \log 2}{2} - \frac{i\omega}{64} (48C + 5\pi^2) + \cdots, \quad (96) \]

where \(C\) is the Catalan constant. Plugging the above results into (77) leads to the hydrodynamic expansion of all the TCFs in (11, 12), as presented in (16-19).

C. Beyond the hydrodynamic limit: numerical results

In this section, we present our results for the TCFs in (11, 12) for finite frequency/momentum via solving the ODEs (A13-A28) numerically. Pseudo-spectral collation method is employed, which essentially converts the continuous boundary value problem of linear ODEs into that of discrete linear algebra. For more details on the numerical method, we recommend the references [68-70]. Thanks to the symmetry relations (78), we plot the TCFs \(\sigma_{a\chi H}, \bar{\sigma}_{a\chi H}, \sigma_{1,2}\) for \(\kappa \bar{\mu} \geq \kappa \bar{\mu}_5\) only without loss of generality. For \(\bar{D}_H\) and \(\sigma_3\), this constraint is abandoned so that \(\bar{D}_H\) and \(\bar{\sigma}_3\) could be extracted from \(D_H\) and \(\sigma_3\) via the exchange \(\bar{\mu} \leftrightarrow \bar{\mu}_5\).

First, consider TCF \(\sigma_{\bar{\chi}}\), which generalises the original CME (CSE) and measures the response to inhomogeneity of charge density \(\rho \,(\rho_5)\). Note \(\sigma_{\bar{\chi}}\) does not depend on the vector/axial chemical potentials at all, as can be seen from the relevant ODEs (A14, A15, A18). In Figure 2 we show the 3D plot of \(\sigma_{\bar{\chi}}\). The plots in Figure 3 are 2D slices of Figure 2 when either \(\omega = 0\) or \(q = 0\). While \(\sigma_{\bar{\chi}}\) is different from the chiral magnetic conductivity \(\sigma_{\chi}\) of [1], it has roughly the same dependence on frequency/momentum as \(\sigma_{\chi}\) as is clear from
these plots. Namely, σ_χ shows a relatively weak dependence on q^2 while its dependence on ω is more profound: damped oscillations towards asymptotic regime around $\omega \simeq 5$ where σ_χ vanishes essentially. As will be clear later, this damped oscillating behavior is also observed in all other TCFs. This phenomenon can be related to quasi-normal modes in the presence of background fields, but here we are not pursuing this connection any further. When $q = 0$ we computed the inverse Fourier transform of σ_χ, that is the memory function $\tilde{\sigma}_\chi(t)$ of (27), as displayed in Figure 1.

![Re(σ_χ)](image)

FIG. 2. The generalised CME/CSE conductivity σ_χ as a function of ω and q^2.

![Im(σ_χ)](image)

Next we consider TCFs D_H, \tilde{D}_H, $\sigma_{\alpha H}$ and $\tilde{\sigma}_{\alpha H}$ multiplying second order derivative structures. These second order derivative structures are cross products between electric/magnetic

![Re(σ_χ) vs ω](image)

FIG. 3. ω-dependence of σ_χ when $q = 0$ (left); q^2-dependence of σ_χ when $\omega = 0$ (right).
fields and gradient of the densities. Via the crossing rule (78), the Hall diffusion functions D_H and \bar{D}_H satisfy $\bar{D}_H = D_H(\bar{\mu} \leftrightarrow \bar{\mu}_5)$. Thus, we will mainly focus on D_H. $\sigma_{a\chi H}$ is the anomalous chiral Hall TCF and $\bar{\sigma}_{a\chi H}$ is its axial analogue. Since $V_4 = q^2 V_5$ and $\bar{V}_4 = q^2 \bar{V}_5$ (see (A31)), from the ODE (A25) it is obvious that $\bar{\sigma}_{a\chi H}$ has an overall q^2 factor, so we will plot $\bar{\sigma}_{a\chi H}/q^2$ in order to see non-trivial behavior.

For representative values of $\bar{\mu}$, $\bar{\mu}_5$, the frequency/momentum-dependence of TCFs D_H, $\sigma_{a\chi H}$ and $\bar{\sigma}_{a\chi H}$ is displayed in Figures 4, 5, 7, 8, 10 and 11. These plots show similar behaviors as Figures 2 and 3. In contrast to $\sigma_{a\chi}$, the TCFs D_H, $\sigma_{a\chi H}$ and $\bar{\sigma}_{a\chi H}$ have non-trivial dependence on the chemical potentials for nonvanishing momentum values.

Figures 6, 9, 12 display 2D slices of 4, 5, 7, 8, 10 and 11 when either $\omega = 0$ or $q = 0$. Recall that when $q = 0$, D_H does not depend on chemical potentials, as can be checked from relevant ODEs (A15, A17, A18). Similarly, from ODEs (A23, A25, A26, A28) it is obvious that when $q = 0$, $\bar{\sigma}_{a\chi H}$ vanishes and $\sigma_{a\chi H}$ does not depend on chemical potentials. Once $q \neq 0$, TCFs D_H, $\sigma_{a\chi H}$ and $\bar{\sigma}_{a\chi H}$ depend on chemical potentials non-linearly.

\[Re(D_H/\kappa^2), \; \kappa \bar{\mu}_5 = 0.0625, \; \kappa \bar{\mu} = 0.0625 \]
\[Im(D_H/\kappa^2), \; \kappa \bar{\mu}_5 = 0.0625, \; \kappa \bar{\mu} = 0.0625 \]

FIG. 4. Hall diffusion TCF D_H/κ^2 as a function of ω and q^2 when $\kappa \bar{\mu} = \kappa \bar{\mu}_5 = 1/16$.

Finally, we turn to the remaining TCFs $\sigma_{1,2,3}$ and $\bar{\sigma}_3$ which multiply third order derivative structures. The σ_2 and $\bar{\sigma}_3$ could be thought of as the axial analogues of σ_1 and σ_3, respectively. While σ_2 still has nonzero value when both $\kappa \bar{\mu}$ and $\kappa \bar{\mu}_5$ vanish, σ_1 relies on that
\(\text{Re}(D_H / \kappa^2), \ \kappa \bar{\mu}_5 = 0, \ \kappa \bar{\mu} = 0.25 \)

\(\text{Im}(D_H / \kappa^2), \ \kappa \bar{\mu}_5 = 0, \ \kappa \bar{\mu} = 0.25 \)

FIG. 5. Hall diffusion TCF \(D_H / \kappa^2 \) as a function of \(\omega \) and \(q^2 \) when \(\kappa \bar{\mu} = 1/4, \ \kappa \bar{\mu}_5 = 0 \).

FIG. 6. \(\omega \)-dependence of \(D_H \) when \(q = 0 \). Here \(D_H^0 \) stands for DC limit of \(D_H \).

\(\kappa \bar{\mu}_5 \neq 0 \). Without loss of generality, we take \(\kappa \bar{\mu} \geq \kappa \bar{\mu}_5 \) when making plots for \(\sigma_{1,2} \). Note that given the crossing rule (78), \(\bar{\sigma}_3 \) can be extracted from \(\sigma_3 \) by \(\bar{\mu} \leftrightarrow \bar{\mu}_5 \). For representative choices of \(\bar{\mu}, \bar{\mu}_5 \), the 3D plots of these TCFs are summarised in Figures 13, 15, 16, 18 and 19. In Figures 14, 17 and 20 we depict 2D slices of Figures 13, 15, 16, 18 and 19 when either \(q = 0 \) or \(\omega = 0 \). As for \(D_H, \sigma_{a \chi H} \) and \(\bar{\sigma}_{a \chi H} \), for nonzero \(q, \sigma_{1,2,3} \) and \(\bar{\sigma}_3 \) depend on chemical potentials non-linearly.

The universal dependence on vector/axial potentials at \(q = 0 \) is revealed by considering the normalized quantities \(\sigma_1 / \sigma_1^0, \sigma_3 / \sigma_3^0, \delta \sigma_2 / \delta \sigma_2^0 \). Here \(\sigma_1^0, \sigma_3^0, \delta \sigma_2^0 \) stands for DC limit of the corresponding TCFs and \(\delta \sigma_2 = \sigma_2 - \sigma_2(\kappa \bar{\mu} = \kappa \bar{\mu}_5 = 0) \). As seen from (A16) and (A19), \(\sigma_1 / \sigma_1^0 \)
and $\delta \sigma_2/\delta \sigma_2^0$ are identical at $q = 0$. Thus, we will mainly focus on σ_1/σ_1^0. ω-dependence of σ_1/σ_1^0 and σ_3/σ_3^0 are displayed in Figures 14 and 20. We observe the universal dependence of vector/axial potentials at $q = 0$, that is to say these normalised quantities do not depend
FIG. 9. ω-dependence of $\sigma_{a\chi H}/\kappa$ when $q = 0$ (left); q^2-dependence of $\sigma_{a\chi H}$ when $\omega = 0$ (right).

$Re(\sigma_{a\chi H}/q^2)$, $\kappa\bar{\mu}_5 = 0.125$, $\kappa\bar{\mu} = 0.125$

$Im(\sigma_{a\chi H}/q^2)$, $\kappa\bar{\mu}_5 = 0.125$, $\kappa\bar{\mu} = 0.125$

FIG. 10. TCF $\bar{\sigma}_{a\chi H}/q^2$ as a function of ω and q^2 when $\kappa\bar{\mu} = \kappa\bar{\mu}_5 = 1/8$.

on chemical potentials. Explicitly, σ_1 is linear in $\kappa^2\bar{\mu}\bar{\mu}_5$. σ_3 is linear in $\kappa\bar{\mu}$. σ_2 has anomalous correction which is linear in $\kappa^2(\mu^2 + \bar{\mu}_5^2)$. All these features can also be realised from the corresponding ODEs. Note that by employing crossing rule (78), $\bar{\sigma}_3$ is linear in $\kappa\bar{\mu}_5$.

D. CMW dispersion relation to all orders: non-dissipative modes

The TCF $\bar{\sigma}_\chi$ enters the dispersion relation of CMW:

$$\omega = \sigma_\chi(\omega, q^2) \kappa \bar{q} \cdot \vec{B} - i\mathcal{D}(\omega, q^2)q^2.$$ (97)
The dispersion relation \([97]\) is exact to all orders in \(q^2\), provided \(\kappa B \ll 1\). General solutions of this equation are complex and cannot be studied with our present results. This is because \(\sigma_\chi(\omega, q^2)\) and \(D(\omega, q^2)\) have been computed for real values of \(\omega\) only. We believe that beyond the hydrodynamic limit, equation \([25]\) has infinitely many gapped modes. Exploring this point in general would require going into complex \(\omega\) plane for the TCFs, which is beyond the scope of the present work. Yet, quite intriguingly, there is a set of purely real non-dissipative solutions to \([97]\). In order to find these solutions we have devised the following procedure.

First, the equation is split into real and imaginary parts (assuming \(\vec{q}\) parallel to \(\vec{B}\)):

\[
\phi_1(\omega, q^2, \kappa B) = \text{Im}[\sigma_\chi(\omega, q^2)] \kappa q B - \text{Re}[D(\omega, q^2)] q^2,
\]
\[Re(\sigma_1), \kappa \bar{\mu}_5 = 0.125, \kappa \bar{\mu} = 0.125 \]

\[Im(\sigma_1), \kappa \bar{\mu}_5 = 0.125, \kappa \bar{\mu} = 0.125 \]

FIG. 13. TCF \(\sigma_1 \) as a function of \(\omega \) and \(q^2 \) when \(\kappa \bar{\mu} = \kappa \bar{\mu}_5 = 1/8 \).

\[\phi_R(\omega, q^2, \kappa B) \equiv -\omega + \text{Re}[\sigma_1(\omega, q^2)] \kappa q B + \text{Im}[D(\omega, q^2)] q^2 \]

(98)

For a fixed value of \(\kappa B \), say \(\kappa B = 0.33 \), the functions \(\phi_I \) and \(\phi_R \) are shown in Figure 21 (left) as contour plots in \((\omega, q^2) \) space (the function \(D(\omega, q^2) \) is taken from [13]). The dashed (blue) and solid (red) curves stand for \(\phi_I \) and \(\phi_R \) respectively. The numbers indicated on the curves correspond to the values of these functions along the curves. Our interest is when both functions vanish simultaneously, that is a crossing point of \(\phi_I = 0 \) and \(\phi_R = 0 \) curves. Such crossing is clearly seen in the region \(\omega < 0.5 \) and \(q^2 < 0.5 \). We denote this point by \((\omega_B, q_B) \). This is a discrete density wave mode propagating in the medium without any dissipation.
The procedure could be repeated for other values of κB. The result is a one dimensional curve in a 3d parameter space depicted in Fig. 21 (right). A few comments are in order. First, there is a minimal value of $\kappa B \simeq 0.33$ for which there exist a solution. Second, in fact there are multiple solutions corresponding to several disconnected branches in Figure
FIG. 17. ω-dependence of $\delta \sigma_2 / \delta \sigma_0^2$ when $q = 0$ (left); q^2-dependence of σ_2 when $\omega = 0$ (right).

FIG. 18. Conductivity σ_3 as a function of ω and q^2 when $\kappa \bar{\mu} = \kappa \bar{\mu}_5 = 1/16$.

which we do not display.

V. CONCLUSION

In this work, we have continued exploration of nonlinear chiral anomaly-induced transport phenomena based on a holographic model with two $U(1)$ fields interacting via gauge Chern-Simons terms. For a finite temperature system, we constructed off-shell constitutive relations for the vector/axial currents.

The constitutive relations contain nine terms which are linear simultaneously in the charge density fluctuations and constant background external fields. The nine terms summarised
FIG. 19. Conductivity σ_3 as a function of ω and q^2 when $\kappa\bar{\mu} = 1/4$, $\kappa\bar{\mu}_5 = 0$.

FIG. 20. ω-dependence of σ_3/σ_0^3 when $q = 0$ (left); q^2-dependence of σ_3 when $\omega = 0$ (right).

in \cite{11,12} correspond to all order resummation of gradients of the the charge density fluctuations parameterised by TCFs, first computed analytically in the hydrodynamic limit (section \ref{sec:IVB}) and then numerically for large frequency/momentum (section \ref{sec:IVC}). A common feature of all TCFs in \cite{11,12} is that they depend weakly on spatial momentum but display pronounced dependence on frequency in the form of damped oscillations vanishing asymptotically at $\omega \simeq 5$.

Most of our results are presented in Summary section. Among new results worth highlighting is the CME memory function computation $\tilde{\sigma}_x(t-t')$. The memory function is found to differ dramatically from a delta-function form of instantaneous response. In fact, $\tilde{\sigma}_x(t-t')$
vanishes at $t = t'$ and the CME response gets built only after a finite amount of time of order temperature.

Another result we find of interest is related to CMW dispersion relation, which for the first time was considered to all orders in momentum q. Beyond the perturbative hydrodynamic limit, we found a continuum set of discrete density wave modes, which can propagate in the medium without any dissipation. While the original CMW dissipates and that could be one of the problems for its detection, the new modes that we discover should be long lived and have some potential experimental signature\(^2\). It is important to remember that our calculation of the CMW dispersion relation is done for a weak magnetic field only. One can obviously question the validity of the results beyond this approximation. Both TCFs σ_χ and \mathcal{D} that enter the CMW dispersion relation are functions of \vec{E} and \vec{B}. In our previous work [58], we initiated this study, still in perturbative in \vec{E} and \vec{B} regions, but a full non-perturbative analysis will be reported elsewhere [71].

We have found a wealth of non-linear phenomena all induced entirely by the chiral anomaly. An important next step in deriving a full chiral MHD would be to abandon the probe limit adopted in this paper and include the dynamics of a neutral flow as well. This will bring into the picture additional effects such as thermoelectric conductivities, nor-

\(^2\) Obviously, if an experimentally accessible chiral plasma shares similar features as discovered within our holographic model.
mal Hall current, the chiral vortical effect \[72\] \[73\], and some nonlinear effects discussed in \[47\]. We plan to address these in the future.

Appendix A: Supplement for section IV

1. Review of the relevant results of \[1\]

In this Appendix we summarise the relevant results from \[1\] at the orders \(O(\epsilon^0 \alpha^1)\) and \(O(\epsilon^1 \alpha^0)\). At the order \(O(\epsilon^0 \alpha^1)\), we have

\[
V^{(0)(1)}_t(0) = A^{(0)(1)}_t = 0 \quad (A1)
\]
\[
V^{(0)(1)}_i = f_1 E_i + f_2 \kappa \bar{\rho} B_i, \quad A^{(0)(1)}_i = f_2 \kappa \bar{\rho} B_i, \quad (A2)
\]
\[
f_1 = -\frac{1}{4} \left[\log \left(\frac{(1 + r)^2}{1 + r^2} \right) - 2 \arctan(r) + \pi \right] \xrightarrow{r \to \infty} -\frac{1}{r} + \frac{1}{2r^2} + O \left(\frac{1}{r^3} \right), \quad (A3)
\]
\[
f_2 = 3 \log \frac{1 + r^2}{r^2} \xrightarrow{r \to \infty} -\frac{3}{r^2} + O \left(\frac{1}{r^3} \right). \quad (A4)
\]

At the order \(O(\epsilon^1 \alpha^0)\), the corrections are

\[
V^{(1)(0)}_t = g_3(r, \omega, \vec{q}) \delta \rho, \quad A^{(1)(0)}_t = g_3(r, \omega, \vec{q}) \delta \rho_5, \quad (A5)
\]
\[
V^{(1)(0)}_i = g_4(r, \omega, \vec{q}) \partial_i \delta \rho, \quad A^{(1)(0)}_i = g_4(r, \omega, \vec{q}) \partial_i \delta \rho_5.
\]

\(g_3\) and \(g_4\) satisfy coupled ordinary differential equations (ODEs),

\[
0 = r^2 \partial^2_r g_3 + 3 r \partial_r g_3 - q^2 \partial_r g_4, \quad (A6)
\]
\[
0 = (r^5 - r) \partial^2_r g_4 + (3r^4 + 1) \partial_r g_4 - 2i \omega r^3 \partial_r g_4 - i \omega r^2 g_4 - r^3 \partial_r g_3 - r^2 g_3 - \frac{1}{2},
\]

which were solved both analytically in the hydro limit \((\omega, q \ll 1)\) and numerically for generic values of \(\omega, q\). In the hydro limit, having introduced the expansion parameter \(\lambda\),

\[
\omega \to \lambda \omega, q \to \lambda q,
\]

\[
g_3 = \sum_{n=0}^{\infty} \lambda^n g_3^{(n)}, \quad g_4 = \sum_{n=0}^{\infty} \lambda^n g_4^{(n)}. \quad (A7)
\]

Up to \(O(\lambda^2)\), the results for \(g_3, g_4\) are

\[
g_3^{(0)} = g_3^{(1)} = 0, \quad (A8)
\]
\[
g_4^{(0)} = -\frac{1}{8} \left[\pi - 2 \arctan(r) - \log \left(\frac{(1 + r)^2}{1 + r^2} \right) \right] \xrightarrow{r \to \infty} -\frac{1}{4r^2} + O \left(\frac{1}{r^3} \right), \quad (A9)
\]
\[g_4^{(1)} = - \int_r^\infty \frac{xdx}{x^4 - 1} \int_1^x dy \left[2i\omega y \partial_y g_4^{(0)} + i\omega g_4^{(0)} \right] \xrightarrow{r \to \infty} -\frac{i\omega\pi}{16r^2} + O\left(\frac{1}{r^3}\right), \quad (A10) \]

\[g_3^{(2)} = \int_r^\infty \frac{dx}{x^3} \int_x^\infty q^2 y \partial_y g_4^{(0)} \xrightarrow{r \to \infty} O\left(\frac{1}{r^3}\right), \quad (A11) \]

\[g_4^{(2)} = - \int_r^\infty \frac{xdx}{x^4 - 1} \int_1^x dy \left[2i\omega y \partial_y g_4^{(1)} + i\omega g_4^{(1)} + y \partial_y g_3^{(2)} + g_3^{(2)} \right] \xrightarrow{r \to \infty} \frac{1}{96r^2} \left[\pi^2 \omega^2 - q^2(6\log 2 - 3\pi) \right] + O\left(\frac{1}{r^3}\right). \quad (A12) \]

The relevant boundary currents are presented in Section II.

2. ODEs and the constraints for the decomposition coefficients in \((63, 66)\)

We first collect the ODEs satisfied by the decomposition coefficients in \((63, 66)\) and then derive some constraint relations obeyed by these coefficients. Plugging \((63, 66)\) into \((51, 54)\) and performing Fourier transform \(\partial_\mu \to (-i\omega, iq)\), we obtained ODEs for the decomposition coefficients \(S_i, \bar{S}_i, V_i, \bar{V}_i\). These ODEs can be grouped into partially decoupled sub-sectors:

- sub-sector (i): \(\{ S_1, \bar{S}_1, V_1, \bar{V}_1, V_2, \bar{V}_2, V_3, \bar{V}_3 \}\)

\[0 = r^2 \partial_r^2 S_1 + 3r \partial_r S_1 + \partial_r (V_1 - q^2 V_2), \quad (A13) \]

\[0 = r^2 \partial_r^2 \bar{S}_1 + 3r \partial_r \bar{S}_1 + \partial_r (\bar{V}_1 - q^2 \bar{V}_2) + \frac{12}{r} \partial_r g_4, \quad (A14) \]

\[0 = (r^5 - r) \partial_r^2 V_1 + (3r^4 + 1 - 2i\omega r^3) \partial_r V_1 - (i\omega r^2 + q^2 r) V_1 - \frac{12q^2}{r} \kappa (\bar{\rho}_5 V_3 + \bar{\rho} \bar{V}_3), \quad (A15) \]

\[0 = (r^5 - r) \partial_r^2 V_2 + (3r^4 + 1 - 2i\omega r^3) \partial_r V_2 - i\omega r^2 V_2 - r V_1 - r^2 (S_1 + r \partial_r S_1) - \frac{12\kappa}{r} (\bar{\rho}_5 V_3 + \bar{\rho} \bar{V}_3), \quad (A16) \]

\[0 = (r^5 - r) \partial_r^2 V_3 + (3r^4 + 1 - 2i\omega r^3) \partial_r V_3 - (i\omega r^2 + q^2 r) V_3 - \frac{12\kappa}{r} (\bar{\rho}_5 V_1 + \bar{\rho} \bar{V}_1) + 12\kappa \bar{\rho} r^2 \partial_r f_2 (i\omega g_4 + g_3), \quad (A17) \]

\[0 = (r^5 - r) \partial_r^2 \bar{V}_1 + (3r^4 + 1 - 2i\omega r^3) \partial_r \bar{V}_1 - (i\omega r^2 + q^2 r) \bar{V}_1 - \frac{12q^2}{r} \kappa (\rho V_3 + \rho_5 \bar{V}_3) + \frac{12}{r} (1 + r^3 \partial_r g_3), \quad (A18) \]

\[0 = (r^5 - r) \partial_r^2 \bar{V}_2 + (3r^4 + 1 - 2i\omega r^3) \partial_r \bar{V}_2 - i\omega r^2 \bar{V}_2 - r \bar{V}_1 - r^2 (\bar{S}_1 + r \partial_r \bar{S}_1) - \frac{12\kappa}{r} (\rho V_3 + \rho_5 \bar{V}_3), \quad (A19) \]
0 = (r^5 - r) \partial_r^2 \bar{V}_3 + (3r^4 + 1 - 2i\omega r^3) \partial_r \bar{V}_3 - (i\omega r^2 + q^2 r) \bar{V}_3 - \frac{12\kappa}{r} (\bar{\rho}_V + \bar{\rho}_5 \bar{V}_1)
+ 12\kappa \bar{\rho}_5 r^2 \partial_r f_2(i\omega g_4 + g_3) - 6\kappa \bar{\rho}_5 \partial_r f_2.
\hspace{1cm} (A20)

sub-sector (ii): \(\{S_2, \bar{S}_2, V_4, \bar{V}_4, V_5, \bar{V}_5, V_6, \bar{V}_6\} \)

\[0 = r^2 \partial_r^2 S_2 + 3r \partial_r S_2 + \partial_r (V_4 - q^2 V_5), \] \hspace{1cm} (A21)

\[0 = r^2 \partial_r^2 \bar{S}_2 + 3r \partial_r \bar{S}_2 + \partial_r (\bar{V}_4 - q^2 \bar{V}_5), \] \hspace{1cm} (A22)

\[0 = (r^5 - r) \partial_r^2 V_4 + (3r^4 + 1 - 2i\omega r^3) \partial_r V_4 - (i\omega r^2 + q^2 r) V_4 - \frac{12q^2}{r} \kappa (\bar{\rho}_5 V_5 + \bar{\rho} \bar{V}_6), \] \hspace{1cm} (A23)

\[0 = (r^5 - r) \partial_r^2 V_5 + (3r^4 + 1 - 2i\omega r^3) \partial_r V_5 - i\omega r^2 V_5 - r V_4 - r^2 (S_2 + r \partial_r S_2) \]
\[- \frac{12\kappa}{r} (\bar{\rho}_5 V_6 + \bar{\rho} \bar{V}_6), \] \hspace{1cm} (A24)

\[0 = (r^5 - r) \partial_r^2 V_6 + (3r^4 + 1 - 2i\omega r^3) \partial_r V_6 - (i\omega r^2 + q^2 r) V_6 - \frac{12\kappa}{r} (\bar{\rho}_5 V_4 + \bar{\rho} \bar{V}_5), \] \hspace{1cm} (A25)

\[0 = (r^5 - r) \partial_r^2 \bar{V}_4 + (3r^4 + 1 - 2i\omega r^3) \partial_r \bar{V}_4 - (i\omega r^2 + q^2 r) \bar{V}_4 - \frac{12q^2}{r} \kappa (\bar{\rho}_V + \bar{\rho}_5 \bar{V}_6), \] \hspace{1cm} (A26)

\[0 = (r^5 - r) \partial_r^2 \bar{V}_5 + (3r^4 + 1 - 2i\omega r^3) \partial_r \bar{V}_5 - i\omega r^2 \bar{V}_5 - r \bar{V}_4 - r^2 (\bar{S}_2 + r \partial_r \bar{S}_2) \]
\[- \frac{12\kappa}{r} (\bar{\rho}_V + \bar{\rho}_5 \bar{V}_6), \] \hspace{1cm} (A27)

\[0 = (r^5 - r) \partial_r^2 \bar{V}_6 + (3r^4 + 1 - 2i\omega r^3) \partial_r \bar{V}_6 - (i\omega r^2 + q^2 r) \bar{V}_6 - \frac{12\kappa}{r} (\bar{\rho}_V + \bar{\rho}_5 \bar{V}_4) \]
\[- 12r^2 [\partial_r g_4 - \partial_r f_1(i\omega g_4 + g_3)] - 6\partial_r f_1. \] \hspace{1cm} (A28)

The remaining decomposition coefficients satisfy the same ODEs as above. More specifically, the sub-sector \(\{S_3, S_3, \bar{V}_7, V_7, \bar{V}_8, V_8, \bar{V}_9, V_9\} \) satisfies the same equations as the sub-sector (i): \(\{S_1, S_1, V_1, V_1, \bar{V}_2, V_2, \bar{V}_3, V_3\} \); the sub-sector \(\{S_4, S_4, \bar{V}_{10}, V_{10}, \bar{V}_{11}, V_{11}, \bar{V}_{12}, V_{12}\} \) obeys the same equations as sub-sector (ii): \(\{S_2, S_2, V_4, \bar{V}_4, V_5, \bar{V}_5, V_6, \bar{V}_6\} \).

In what follows, we explore some “mirror symmetry relations” among these decomposition coefficients, which are useful in simplifying the expressions for currents’ constitutive relations at the order \(O(\epsilon^1 \alpha^1) \). First, notice that

\[\{S_3, \bar{S}_3, V_7, \bar{V}_7, V_8, \bar{V}_8, V_9, \bar{V}_9\} = \{\bar{S}_1, S_1, \bar{V}_1, V_1, \bar{V}_2, V_2, \bar{V}_3, V_3\}, \] \hspace{1cm} (A29)

since these two sub-sectors satisfy identical system of ODEs and have the same boundary conditions. Following this reasoning,

\[\{S_4, \bar{S}_4, V_{10}, \bar{V}_{10}, V_{11}, \bar{V}_{11}, V_{12}, \bar{V}_{12}\} = \{\bar{S}_2, S_2, \bar{V}_4, V_4, \bar{V}_5, V_5, \bar{V}_6, V_6\}. \] \hspace{1cm} (A30)
When solving

The “equal sign” in \(\text{(A29-A30)}\) should be understood in the specific order as shown therein.

Certain relations can be established among the decomposition coefficients in \(\text{(63-66)}\). It follows from the Landau frame convention \(\text{(76)}\) and boundary conditions \(\text{(69,70)}\) that

\[
S_1 = 0, \quad V_1 - q^2 V_2 = 0, \quad S_2 = 0, \quad V_4 - q^2 V_5 = 0
\]

A nested structure in each sub-sector can be observed, which suggests the way to solve the system of ODEs: the ODEs belonging to each sub-sector will be solved following a certain sequence. Particularly, in the sub-sector \(\{S_1, S_1, V_1, V_2, V_2, V_3, \bar{V}_3\}\), the ODEs are solved in the following order:

\[
\text{step 1} : \quad V_1, V_3, \bar{V}_1, \bar{V}_3,
\]

\[
\text{step 2} : \quad S_1, V_2 \quad (\text{sourced by } V_1, V_3, \bar{V}_3); \quad \bar{S}_1, \bar{V}_2 \quad (\text{sourced by } \bar{V}_1, V_3, V_3).
\]

Similarly, in the sub-sector \(\{S_2, S_2, V_4, V_4, V_5, \bar{V}_5, V_6, \bar{V}_6\}\), the order is

\[
\text{step 1} : \quad V_4, V_6, \bar{V}_4, \bar{V}_6,
\]

\[
\text{step 2} : \quad S_2, V_5 \quad (\text{sourced by } V_4, V_6, \bar{V}_6); \quad \bar{S}_2, \bar{V}_5 \quad (\text{sourced by } \bar{V}_4, V_6, \bar{V}_6).
\]

Now let explore the mirror symmetry for the decomposition coefficients under exchange \(\bar{\rho} \leftrightarrow \bar{\rho}_5\). The decomposition coefficients in the sub-sector \(\{S_1, \bar{S}_1, V_1, V_2, V_2, V_3, \bar{V}_3\}\) are found symmetric with respect to \(\bar{\rho}, \bar{\rho}_5\):

\[
V_i(\bar{\rho}, \bar{\rho}_5) = V_i(\bar{\rho}_5, \bar{\rho}), \quad \bar{V}_i(\bar{\rho}, \bar{\rho}_5) = \bar{V}_i(\bar{\rho}_5, \bar{\rho}), \quad i = 1, 2, 3\]
\[
S_1(\bar{\rho}, \bar{\rho}_5) = S_1(\bar{\rho}_5, \bar{\rho}), \quad \bar{S}_1(\bar{\rho}, \bar{\rho}_5) = \bar{S}_1(\bar{\rho}_5, \bar{\rho}). \tag{A32}
\]

In the second sub-sector \(\{S_2, \bar{S}_2, V_4, V_4, V_5, \bar{V}_5, V_6, \bar{V}_6\}\),

\[
\bar{S}_2(\bar{\rho}, \bar{\rho}_5) = S_2(\bar{\rho}_5, \bar{\rho}), \quad \bar{V}_i(\bar{\rho}, \bar{\rho}_5) = V_i(\bar{\rho}_5, \bar{\rho}), \quad i = 4, 5\]
\[
V_6(\bar{\rho}, \bar{\rho}_5) = V_6(\bar{\rho}_5, \bar{\rho}), \quad \bar{V}_6(\bar{\rho}, \bar{\rho}_5) = \bar{V}_6(\bar{\rho}_5, \bar{\rho}). \tag{A33}
\]

The symmetry relations \(\text{(A32-A33)}\) guide the choice of values for \(\kappa \bar{\rho}\) and \(\kappa \bar{\rho}_5\) in numerical procedure for the ODEs. Given these relations, the choice \(\kappa \bar{\rho} \geq \kappa \bar{\rho}_5\) can be applied when solving \(\{V_1, \bar{V}_1, V_3, \bar{V}_3\}\), \(\{S_1, V_2, S_1, \bar{V}_2\}\) and \(\{V_4, \bar{V}_4, V_6, \bar{V}_6\}\) without losing generality. These relations also help to reduce the number of the ODEs to be solved.
3. Perturbative solutions

Here, we summarize the perturbative solutions of (A13–A28) in the hydrodynamic limit \(\omega, q \ll 1 \). Recall that the decomposition coefficients are formally expanded as (84). Then, at each order in the hydrodynamic expansion, solutions are expressed as double integrals over \(r \). The final results, up to third order in derivative expansion, are listed below sub-sector (i): \(\{ S_1, \tilde{S}_1, V_1, \bar{V}_1, V_2, \bar{V}_2, V_3, \bar{V}_3 \} \):

\[
S_1^{(0)} = V_1^{(0)} = 0, \quad (A34)
\]

\[
V_1^{(0)} = \int_r^\infty \frac{xdx}{x^4-1} \int_1^x dy \frac{12}{y^3} = 3 \log \frac{1 + r^2}{r^2} \to \infty \frac{3}{r^2} + \mathcal{O} \left(\frac{1}{r^3} \right), \quad (A35)
\]

\[
S_1^{(0)} = -\int_r^\infty \frac{dx}{x^3} \int_x^\infty dy \left[y\partial_y V_1^{(0)} + 12\partial_y g_4^{(0)} \right] \to \infty \mathcal{O} \left(\frac{1}{r^3} \right), \quad (A36)
\]

\[
V_3^{(0)} = -\int_r^\infty \frac{dx}{x^4-1} \int_1^x dy \frac{6\kappa}{y^3} \rho \left[2\tilde{V}_1^{(0)} + y\partial_y f_2 \right] \to \infty \frac{9\kappa \bar{\rho}}{r^2} (2 - 3 \log 2) + \mathcal{O} \left(\frac{1}{r^3} \right), \quad (A37)
\]

\[
\bar{V}_3^{(0)} = -\int_r^\infty \frac{dx}{x^4-1} \int_1^x dy \frac{6\kappa}{y^3} \bar{\rho}_5 \left[2\tilde{V}_1^{(0)} + y\partial_y f_2 \right] \to \infty \frac{9\kappa \bar{\rho}_5}{r^2} (2 - 3 \log 2) + \mathcal{O} \left(\frac{1}{r^3} \right), \quad (A38)
\]

\[
V_2^{(0)} = -\int_r^\infty \frac{xdx}{x^4-1} \int_x^1 dy \frac{12\kappa}{y^3} \left(\bar{\rho}_5 V_3^{(0)} + \bar{\rho} \bar{V}_3^{(0)} \right) \to \infty \frac{27\kappa^2 \bar{\rho} \bar{\rho}_5}{r^2} [6 + \log 2(5 \log 2 - 12)] + \mathcal{O} \left(\frac{1}{r^3} \right), \quad (A39)
\]

\[
\bar{V}_2^{(0)} = -\int_r^\infty \frac{xdx}{x^4-1} \int_x^1 dy \left[\bar{S}_1^{(0)} + y\partial_y \bar{S}_1^{(0)} + \frac{1}{y} \bar{V}_1^{(0)} + \frac{12\kappa}{y^3} \left(\bar{\rho}_5 \bar{V}_3^{(0)} + \bar{\rho} \bar{V}_3^{(0)} \right) \right] \to \infty \frac{1}{2r^2} \left\{ \frac{1}{8} (6\pi - \pi^2 - 12 \log 2) + 27\kappa^2 (\bar{\rho}^2 + \bar{\rho}_5^2) [6 + \log 2(5 \log 2 - 12)] \right\} + \mathcal{O} \left(\frac{1}{r^3} \right), \quad (A40)
\]

\[
S_1^{(1)} = V_1^{(1)} = 0, \quad (A41)
\]

\[
\bar{V}_1^{(1)} = \int_r^\infty \frac{xdx}{x^4-1} \int_1^x dy \left[i\omega \bar{V}_1^{(0)} + 2i\omega y\partial_y V_1^{(0)} \right] \to \infty \frac{3i\omega}{4r^2} (\pi + 2 \log 2) + \mathcal{O} \left(\frac{1}{r^3} \right), \quad (A42)
\]

\[
\bar{S}_1^{(1)} = -\int_r^\infty \frac{dx}{x^3} \int_x^\infty dy \left[y\partial_y \bar{V}_1^{(1)} + 12\partial_y g_4^{(1)} \right] \to \infty \mathcal{O} \left(\frac{1}{r^3} \right), \quad (A43)
\]

\[
V_3^{(1)} = -\int_r^\infty \frac{xdx}{x^4-1} \int_1^x dy \left[i\omega V_3^{(0)} + 2i\omega y\partial_y V_3^{(0)} + \frac{12\kappa}{y^3} \bar{\rho} \bar{V}_1^{(1)} - 12i\omega \kappa \bar{\rho} g_4^{(0)} \partial_y f_2 \right] \to \infty \frac{3i\omega \kappa \bar{\rho}}{4r^2} [\pi (6 - 2\pi - 3 \log 2) + \log 2(12 - 9 \log 2)] + \mathcal{O} \left(\frac{1}{r^3} \right), \quad (A44)
\]

37
\[\dot{V}_3^{(1)} = - \int_r^\infty \frac{xdx}{x^4-1} \int_1^x dy \left[i\omega \ddot{V}_3^{(0)} + 2i\omega y \partial_y \ddot{V}_3^{(0)} + \frac{12\kappa}{y^3} \ddot{V}_5 \dot{V}_1^{(1)} - 12i\omega \kappa \ddot{\rho}_5 \dot{g}_4(0) \partial_y f_1 \right] \]

\[\mathop{\longrightarrow}_{r \to \infty} \frac{3i\omega \kappa \ddot{\rho}_5}{4\nu^2} \left[\pi (6 - 2\pi - 3 \log 2) + \log 2 (12 - 9 \log 2) \right] + \mathcal{O} \left(\frac{1}{r^3} \right), \]

\[V_1^{(2)} = - \int_r^\infty \frac{xdx}{x^4-1} \int_1^x dy \left[\frac{12\kappa}{y^3} q^2 (\ddot{\rho}_5 V_3^{(0)} + \ddot{\rho} \ddot{V}_3^{(0)}) \right] \]

\[\mathop{\longrightarrow}_{r \to \infty} \frac{27q^2 \kappa^2 \ddot{\rho} \ddot{\rho}_5}{r^2} [6 + \log 2 (5 \log 2 - 12)] + \mathcal{O} \left(\frac{1}{r^3} \right), \]

\[\dot{V}_1^{(2)} = - \int_r^\infty \frac{xdx}{x^4-1} \int_1^x dy \left[2i\omega y \partial_y \ddot{V}_1^{(1)} + i\omega \ddot{V}_1^{(1)} + \frac{q^2}{y} \ddot{V}_1^{(0)} + \frac{12\kappa}{y^3} q^2 (\ddot{V}_3^{(0)} + \ddot{\rho}_5 \ddot{V}_3^{(0)}) - 12\partial_y g_3^{(2)} \right] \]

\[\mathop{\longrightarrow}_{r \to \infty} - \frac{1}{16\pi r^2} \left\{ \omega^2 \left[\pi^2 + 6(4\mathcal{C} + \log 2)^2 \right] + q^2 \left[6\pi + \pi^2 - 12 \log 2 - 216 \kappa^2 (\ddot{\rho}^2 + \ddot{\rho}_5^2) (6 + \log 2 (5 \log 2 - 12)) \right] \right\} + \mathcal{O} \left(\frac{1}{r^3} \right), \]

sub-sector (ii): \{ S_2, \bar{S}_2, V_4, \bar{V}_4, V_5, \bar{V}_5, V_6, \bar{V}_6 \}:

\[S_2^{(0)} = \bar{S}_2^{(0)} = V_4^{(0)} = \bar{V}_4^{(0)} = V_6^{(0)} = \bar{V}_6^{(0)} = 0, \]

\[\dot{V}_6^{(0)} = - \int_r^\infty \frac{xdx}{x^4-1} \int_1^x dy 6 \left[2\partial_y g_4^{(0)} + \frac{1}{y^2} \partial_y f_1 \right] \mathop{\longrightarrow}_{r \to \infty} - \frac{3 \log 2}{2\nu^2} + \mathcal{O} \left(\frac{1}{r^3} \right), \]

\[V_5^{(0)} = - \int_r^\infty \frac{xdx}{x^4-1} \int_1^x dy \frac{12\kappa}{y^3} \ddot{\rho}_5 \dot{V}_6^{(0)} \mathop{\longrightarrow}_{r \to \infty} \frac{9\kappa \ddot{\rho}_5 \left(\log 2 \right)^2}{4\nu^2} + \mathcal{O} \left(\frac{1}{r^3} \right), \]

\[\dot{V}_5^{(0)} = - \int_r^\infty \frac{xdx}{x^4-1} \int_1^x dy \frac{12\kappa}{y^3} \ddot{\rho}_5 \dot{V}_6^{(0)} \mathop{\longrightarrow}_{r \to \infty} \frac{9\kappa \ddot{\rho}_5 \left(\log 2 \right)^2}{4\nu^2} + \mathcal{O} \left(\frac{1}{r^3} \right), \]

\[S_2^{(1)} = S_2^{(1)} = V_4^{(1)} = \bar{V}_4^{(1)} = V_6^{(1)} = \bar{V}_6^{(1)} = 0, \]

\[V_6^{(1)} = - \int_r^\infty \frac{xdx}{x^4-1} \int_1^x dy 6 \left[i\omega \dot{V}_6^{(0)} + 2i\omega y \partial_y \dot{V}_6^{(0)} + 12\partial_y g_4^{(1)} - 12i\omega g_4^{(0)} \partial_y f_1 \right] \]

\[\mathop{\longrightarrow}_{r \to \infty} - \frac{i\omega}{64\pi^2} \left(48\mathcal{C} + 5\pi^2 \right) + \mathcal{O} \left(\frac{1}{r^3} \right), \]

\[V_4^{(2)} = - \int_r^\infty \frac{xdx}{x^4-1} \int_1^x dy \frac{12\kappa}{y^3} q^2 \ddot{\rho}_5 \dot{V}_6^{(0)} \mathop{\longrightarrow}_{r \to \infty} \frac{9q^2 \kappa \ddot{\rho}_5 \left(\log 2 \right)^2}{4\nu^2} + \mathcal{O} \left(\frac{1}{r^3} \right), \]

\[\dot{V}_4^{(2)} = - \int_r^\infty \frac{xdx}{x^4-1} \int_1^x dy \frac{12\kappa}{y^3} q^2 \ddot{\rho}_5 \dot{V}_6^{(0)} \mathop{\longrightarrow}_{r \to \infty} \frac{9q^2 \kappa \ddot{\rho}_5 \left(\log 2 \right)^2}{4\nu^2} + \mathcal{O} \left(\frac{1}{r^3} \right), \]

where \(\mathcal{C} \) is the Catalan constant. It is straightforward to read off the boundary data \(v_i \) and \(\bar{v}_i \) from the solutions presented above. The resultant hydrodynamic expansion of \(v_i \) and \(\bar{v}_i \) are summarised in (85-96).
ACKNOWLEDGEMENTS

YB would like to thank the hospitality of Department of Physics of Ben-Gurion University at the Negev where this work was initialised and finalised. YB was supported by the Fundamental Research Funds for the Central Universities under grant No.122050205032 and the Natural Science Foundation of China (NSFC) under the grant No.11705037. TD and ML were supported by the Israeli Science Foundation (ISF) grant #1635/16 and the BSF grants #2012124 and #2014707.

[1] Y. Bu, M. Lublinsky, and A. Sharon, “Anomalous transport from holography: Part I,” *JHEP* **11** (2016) 093, arXiv:1608.08595 [hep-th].

[2] Y. Bu, M. Lublinsky, and A. Sharon, “Anomalous transport from holography: Part II,” *Eur. Phys. J.* **C77** no. 3, (2017) 194, arXiv:1609.09054 [hep-th].

[3] M. Lublinsky and E. Shuryak, “How much entropy is produced in strongly coupled Quark-Gluon Plasma (sQGP) by dissipative effects?,” *Phys. Rev. C76* (2007) 021901, arXiv:0704.1647 [hep-ph].

[4] M. Lublinsky and E. Shuryak, “Improved Hydrodynamics from the AdS/CFT,” *Phys. Rev. D80* (2009) 065026, arXiv:0905.4069 [hep-ph].

[5] Y. Bu and M. Lublinsky, “All order linearized hydrodynamics from fluid-gravity correspondence,” *Phys. Rev. D90* no. 8, (2014) 086003, arXiv:1406.7222 [hep-th].

[6] Y. Bu and M. Lublinsky, “Linearized fluid/gravity correspondence: from shear viscosity to all order hydrodynamics,” *JHEP* **11** (2014) 064, arXiv:1409.3095 [hep-th].

[7] Y. Bu and M. Lublinsky, “Linearly resummed hydrodynamics in a weakly curved spacetime,” *JHEP* **04** (2015) 136, arXiv:1502.08044 [hep-th].

[8] Y. Bu, M. Lublinsky, and A. Sharon, “Hydrodynamics dual to Einstein-Gauss-Bonnet gravity: all-order gradient resummation,” *JHEP* **06** (2015) 162, arXiv:1504.01370 [hep-th].

[9] I. Müller, “Zum paradoxon der wärmeleitungstheorie,” *Zeitschrift für Physik* **198** no. 4, (1967) 329–344.
[10] W. Israel, “Nonstationary irreversible thermodynamics: A causal relativistic theory,” *Annals of Physics* **100** no. 1, (1976) 310 – 331.

[11] W. Israel and J. Stewart, “Thermodynamics of nonstationary and transient effects in a relativistic gas,” *Physics Letters A* **58** no. 4, (1976) 213 – 215.

[12] W. Israel and J. Stewart, “Transient relativistic thermodynamics and kinetic theory,” *Annals of Physics* **118** no. 2, (1979) 341 – 372.

[13] Y. Bu, M. Lublinsky, and A. Sharon, “$U(1)$ current from the AdS/CFT: diffusion, conductivity and causality,” *JHEP* **04** (2016) 136 [arXiv:1511.08789 [hep-th]].

[14] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, “On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe,” *Phys. Lett. B* **155B** (1985) 36.

[15] A. Vilenkin and D. A. Leahy, “Parity non-conservation and the origin of cosmic magnetic fields,” *Astrophys. J.* **254** (1982) 77–81.

[16] V. A. Rubakov and M. E. Shaposhnikov, “Electroweak baryon number nonconservation in the early universe and in high-energy collisions,” *Usp. Fiz. Nauk* **166** (1996) 493–537, [arXiv:hep-ph/9603208 [hep-ph]].

[17] D. Grasso and H. R. Rubinstein, “Magnetic fields in the early universe,” *Phys. Rept.* **348** (2001) 163–266 [arXiv:astro-ph/0009061 [astro-ph]].

[18] M. Giovannini, “The magnetized universe,” *International Journal of Modern Physics D* **13** no. 03, (2004) 391–502.

[19] D. E. Kharzeev, “Topology, magnetic field, and strongly interacting matter,” *Annual Review of Nuclear and Particle Science* **65** no. 1, (2015) 193–214.

[20] D. E. Kharzeev, “The Chiral Magnetic Effect and Anomaly-Induced Transport,” *Prog. Part. Nucl. Phys.* **75** (2014) 133–151 [arXiv:1312.3348 [hep-ph]].

[21] X.-G. Huang, “Electromagnetic fields and anomalous transports in heavy-ion collisions — A pedagogical review,” *Rept. Prog. Phys.* **79** no. 7, (2016) 076302 [arXiv:1509.04073 [nucl-th]].

[22] ALICE Collaboration, J. Adam et al., “Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV,” *Phys. Rev. C* **93** no. 4, (2016) 044903 [arXiv:1512.05739 [nucl-ex]].

[23] CMS Collaboration, V. Khachatryan et al., “Observation of charge-dependent azimuthal correlations in p-Pb collisions and its implication for the search for the chiral magnetic
effect,” *Phys. Rev. Lett.* **118** no. 12, (2017) 122301, arXiv:1610.00263 [nucl-ex].

[24] **CMS** Collaboration, A. M. Sirunyan *et al.*, “Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the LHC,” arXiv:1708.01602 [nucl-ex].

[25] **CMS** Collaboration, A. M. Sirunyan *et al.*, “Challenges to the chiral magnetic wave using charge-dependent azimuthal anisotropies in pPb and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV,” arXiv:1708.08901 [nucl-ex].

[26] V. Koch, S. Schlichting, V. Skokov, P. Sorensen, J. Thomas, S. Voloshin, G. Wang, and H.-U. Yee, “Status of the chiral magnetic effect and collisions of isobars,” *Chin. Phys.* **C41** no. 7, (2017) 072001, arXiv:1608.00982 [nucl-th].

[27] Z. K. Liu *et al.*, “Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi,” *Science* **343** (2015) 864–867.

[28] B. Q. Lv *et al.*, “Experimental discovery of Weyl semimetal TaAs,” *Phys. Rev.* **X5** no. 3, (2015) 031013, arXiv:1502.04684 [cond-mat.mtrl-sci].

[29] S. Y. Xu *et al.*, “Discovery of a Weyl Fermion semimetal and topological Fermi arcs,” *Science* **349** (2015) 613–617.

[30] O. Vafek and A. Vishwanath, “Dirac Fermions in Solids: From High-T_c Cuprates and Graphene to Topological Insulators and Weyl Semimetals,” *Annual Review of Condensed Matter Physics* **5** (Mar., 2014) 83–112, arXiv:1306.2272 [cond-mat.mes-hall].

[31] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, “Observation of the chiral magnetic effect in ZrTe5,” *Nature Phys.* **12** (2016) 550–554, arXiv:1412.6543 [cond-mat.str-el].

[32] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, L. Hui, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, “Observation of the chiral anomaly induced negative magneto-resistance in 3D Weyl semi-metal TaAs,” *Phys. Rev.* **X 5** (2015) 031023, arXiv:1503.01304 [cond-mat.mtrl-sci].

[33] H. Li, H. He, H. Lu, H. Zhang, H. Liu, R. Ma, Z. Fan, S.-Q. Shen, and J. Wang, “Negative Magnetoresistance in Dirac Semimetal Cd3As2,” *Nat. Commun.* **7** (2016) 10301, arXiv:1507.06470 [cond-mat.str-el].

[34] K. Landsteiner, E. Megias, and F. Pena-Benitez, “Anomalous Transport from Kubo Formulae,” *Lect. Notes Phys.* **871** (2013) 433–468, arXiv:1207.5808 [hep-th].
[35] K. Landsteiner, Y. Liu, and Y.-W. Sun, “Negative magnetoresistivity in chiral fluids and holography,” *JHEP* **03** (2015) 127, arXiv:1410.6399 [hep-th]

[36] A. Jimenez-Alba, K. Landsteiner, Y. Liu, and Y.-W. Sun, “Anomalous magnetoconductivity and relaxation times in holography,” *JHEP* **07** (2015) 117, arXiv:1504.06566 [hep-th]

[37] K. Landsteiner and Y. Liu, “The holographic Weyl semi-metal,” *Phys. Lett. B753* (2016) 453–457, arXiv:1505.04772 [hep-th]

[38] A. Vilenkin, “Equilibrium parity-violating current in a magnetic field,” *Phys. Rev. D* **22** (Dec, 1980) 3080–3084

[39] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “The Chiral Magnetic Effect,” *Phys. Rev. D* **78** (2008) 074033, arXiv:0808.3382 [hep-ph]

[40] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “Real-time dynamics of the Chiral Magnetic Effect,” *Phys. Rev. Lett.* **104** (2010) 212001, arXiv:1002.2495 [hep-ph]

[41] D. T. Son and A. R. Zhitnitsky, “Quantum anomalies in dense matter,” *Phys. Rev. D* **70** (2004) 074018, arXiv:hep-ph/0405216 [hep-ph]

[42] M. A. Metlitski and A. R. Zhitnitsky, “Anomalous axion interactions and topological currents in dense matter,” *Phys. Rev. D* **72** (2005) 045011, arXiv:hep-ph/0505072 [hep-ph]

[43] D. E. Kharzeev and H.-U. Yee, “Chiral Magnetic Wave,” *Phys. Rev. D* **83** (2011) 085007, arXiv:1012.6026 [hep-th]

[44] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, “Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report,” *Prog. Part. Nucl. Phys.* **88** (2016) 1–28, arXiv:1511.04050 [hep-ph]

[45] D. E. Kharzeev, “Topology, magnetic field, and strongly interacting matter,” *Ann. Rev. Nucl. Part. Sci.* **65** (2015) 193–214, arXiv:1501.01336 [hep-ph]

[46] A. Avdoshkin, V. P. Kirilin, A. V. Sadofyev, and V. I. Zakharov, “On consistency of hydrodynamic approximation for chiral media,” *Phys. Lett. B755* (2016) 1–7, arXiv:1402.3587 [hep-th]

[47] J.-W. Chen, T. Ishii, S. Pu, and N. Yamamoto, “Nonlinear Chiral Transport Phenomena,” *Phys. Rev. D* **93** no. 12, (2016) 125023, arXiv:1603.03620 [hep-th]

[48] E. V. Gorbar, I. A. Shovkovy, S. Vilchinskii, I. Rudenok, A. Boyarsky, and O. Ruchayskiy, “Anomalous Maxwell equations for inhomogeneous chiral plasma,” *Phys. Rev. D* **93** no. 10,
[49] O. F. Dayi and E. Kilincarslan, “Nonlinear Chiral Plasma Transport in Rotating Coordinates,” Phys. Rev. D96 no. 4, (2017) 043514 arXiv:1705.01267 [hep-th].

[50] Y. Hidaka, S. Pu, and D.-L. Yang, “Nonlinear Responses of Chiral Fluids from Kinetic Theory,” Phys. Rev. D97 no. 1, (2018) 016004 arXiv:1710.00278 [hep-th].

[51] D. E. Kharzeev and H.-U. Yee, “Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations,” Phys. Rev. D84 (2011) 045025 arXiv:1105.6360 [hep-th].

[52] E. Megias and F. Pena-Benitez, “Holographic Gravitational Anomaly in First and Second Order Hydrodynamics,” JHEP 05 (2013) 115 arXiv:1304.5529 [hep-th].

[53] S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, “Nonlinear Fluid Dynamics from Gravity,” JHEP 02 (2008) 045 arXiv:0712.2456 [hep-th].

[54] M. P. Heller, R. A. Janik, and P. Witaszczyk, “Hydrodynamic Gradient Expansion in Gauge Theory Plasmas,” Phys. Rev. Lett. 110 no. 21, (2013) 211602 arXiv:1302.0697 [hep-th].

[55] M. P. Heller and M. Spalinski, “Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation,” Phys. Rev. Lett. 115 no. 7, (2015) 072501 arXiv:1503.07514 [hep-th].

[56] G. Basar and G. V. Dunne, “Hydrodynamics, resurgence, and transasymptotics,” Phys. Rev. D92 no. 12, (2015) 125011 arXiv:1509.05046 [hep-th].

[57] W. Florkowski, M. P. Heller, and M. Spalinski, “New theories of relativistic hydrodynamics in the LHC era,” Rept. Prog. Phys. 81 no. 4, (2018) 046001 arXiv:1707.02282 [hep-ph].

[58] Y. Bu, T. Demircik, and M. Lublinsky, “Nonlinear chiral transport from holography,” arXiv:1807.08467 [hep-th].

[59] H.-U. Yee, “Holographic Chiral Magnetic Conductivity,” JHEP 11 (2009) 085 arXiv:0908.4189 [hep-th].

[60] A. Gynther, K. Landsteiner, F. Pena-Benitez, and A. Rebhan, “Holographic Anomalous Conductivities and the Chiral Magnetic Effect,” JHEP 02 (2011) 110 arXiv:1005.2587 [hep-th].

[61] D. T. Son and P. Surowka, “Hydrodynamics with Triangle Anomalies,” Phys. Rev. Lett. 103 (2009) 191601 arXiv:0906.5044 [hep-th].
[62] Y. Neiman and Y. Oz, “Relativistic Hydrodynamics with General Anomalous Charges,”

JHEP **03** (2011) 023, [arXiv:1011.5107 [hep-th]]

[63] S. Lin, “On the anomalous superfluid hydrodynamics,” _Nucl. Phys._ **A873** (2012) 28–46,

[arXiv:1104.5245 [hep-ph]].

[64] J. Bhattacharya, S. Bhattacharyya, and M. Rangamani, “Non-dissipative hydrodynamics:

 Effective actions versus entropy current,” _JHEP_ **02** (2013) 153, [arXiv:1211.1020 [hep-th]]

[65] N. Yamamoto, “Generalized Bloch theorem and chiral transport phenomena,” _Phys. Rev._

 D92 no. 8, (2015) 085011, [arXiv:1502.01547 [cond-mat.mes-hall]].

[66] G. Policastro, D. T. Son, and A. O. Starinets, “From AdS / CFT correspondence to

 hydrodynamics,” _JHEP_ **09** (2002) 043, [arXiv:hep-th/0205052 [hep-th]].

[67] K. Landsteiner, E. Megias, and F. Pena-Benitez, “Frequency dependence of the Chiral

 Vortical Effect,” _Phys. Rev._ **D90** no. 6, (2014) 065026 [arXiv:1312.1204 [hep-ph]].

[68] L. N. Trefethen, _Spectral Methods in MATLAB_. SIAM: Society for Industrial and Applied

 Mathematics, 2001.

[69] J. P. Boyd, _Chebyshev and Fourier Spectral Methods_. Dover Publications, 2001.

[70] T. A. Driscoll, N. Hale, and L. N. Trefethen, eds., _Chebfun Guide_. Pafnuty Publications,

 Oxford, 2014.

[71] Y. Bu, T. Demircik, and M. Lublinsky, “Nonlinear chiral transport from holography: strong

 field limit,” _in preparation_ (2018).

[72] J. Erdmenger, M. Haack, M. Kaminski, and A. Yarom, “Fluid dynamics of R-charged black

 holes,” _JHEP_ **01** (2009) 055, [arXiv:0809.2488 [hep-th]].

[73] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam, and

 P. Surowka, “Hydrodynamics from charged black branes,” _JHEP_ **01** (2011) 094,

 [arXiv:0809.2596 [hep-th]].