Sampling from Rough Energy Landscapes

Gideon Simpson

Department of Mathematics
Drexel University

September 18, 2018

Joint with P. Plechac (U. Delaware)
1 Motivation & Background
 - Motivating Example
 - Sampling Strategies
 - Tuning Algorithms
 - An Explicit Computation

2 Managing Roughness
 - Two Scale Potentials
 - Dissection of the Potential
 - Dissection on the Fly

3 Numerical Experiments
 - Rough Harmonic Potential
 - Rough Doublewell Potential
 - Local Entropy Smoothing

4 Summary & Acknowledgements
Motivation & Background

Motivating Example

Rough Energy Landscapes
and their Distributions

- (b) is potential from (a) + $A \cos(x/\epsilon)$
- Expect (b) to be more difficult to sample than (a) – Quantification?
- Can we modify algorithms to improve sampling on (b)?
- Inspired by superbasin/low energy barrier problems
Considerations

- **CAVEAT:** This is work in progress
- Focus on unbiased samplers (i.e., include MH step)
- Finite d vs. $d \to \infty$
- Stationary vs. nonstationary data
- May or may not have explicit scale separation

\[
V(x) = V_0(x) + V_1(x, x/\epsilon) \tag{1}
\]
Motivation & Background

Motivating Example

Metropolis Adjusted Langevin (MALA) Example

- $V(x) = \frac{1}{2}x^2 + \frac{1}{8}\cos(x/\epsilon)$
- Sample $e^{-\beta V}$ at $\beta = 5$ by MALA,

$$X_{n+1}^p = x_n - \nabla V(X_n)\Delta t + \sqrt{2\beta^{-1}\Delta t}\xi_{n+1}$$

$$X_{n+1} = \begin{cases} X_{n+1}^p & \text{with probability } 1 \wedge e^{R(X_n,X_{n+1}^p)} \\ X_n & \text{with probability } 1 - 1 \wedge e^{R(X_n,X_{n+1}^p)} \end{cases}$$

$$R(x,y) = \log \frac{e^{-\beta V(y)}q(y \rightarrow x)}{e^{-\beta V(x)}q(x \rightarrow y)}$$

- Use $\Delta t = 0.1$
Increasing stagnation (poorer sampling) as $\epsilon \to 0$
Sample of Sampling Methods

RWM \(X_{n+1}^p = X_n + \sqrt{2\Delta t} \xi_{n+1} \) – no information about \(V \) in proposal (cheap)

MALA \(X_{n+1}^p = X_n - \nabla V(X_n) + \sqrt{2\Delta t} \xi_{n+1} \)

Precond. MALA \(X_{n+1}^p = X_n - P \nabla V(X_n) + \sqrt{2\Delta t} P \xi_{n+1} \) – need a preconditioning matrix \(P \)

Metropolized Langevin \((X_{n+1}^p, P_{n+1}^p) \) from second order Langevin – marginalize out momentum

HMC \((X_{n+1}^p, P_{n+1}^p) \) from Hamiltonian flow – velocities are Gaussian, marginalize out momentum

Others Riemannian Manifold methods (MALA, Langevin), Irreversible & biased methods, ...

Focus on methods with accept/reject step, \(1 \wedge e^{R(x,x^p)} \),

\[
R(x, y) = V(x) - V(y) + \log \frac{q(y \rightarrow x)}{q(x \rightarrow y)}
\]

(5)
Choices of Parameters

RWM/MALA Need to choose step size Δt

Precond. MALA Need to choose Δt and preconditioning matrix

Langevin For a given splitting (there are many) need to choose Δt, damping, mass

HMC Δt, time of Hamiltonian trajectory, mass

Poor choice of parameter (Δt)?
Maximizing acceptance rate is the wrong objective
Sending $\Delta t \to 0$ always sends the mean acceptance rate to 1
For RWM

$$1 - a(x, y) = 1 - 1 \wedge e^R \leq R(x, y)^-$$

Mean Rejection Rate $\leq \sqrt{\mathbb{E}[|R(x, y)|^2]} \lesssim \sqrt{\Delta t}$

Try to maximize “mixing”
Proxy for mixing: One Step Mean Square Displacement (per d.o.f.):

$$MSD = \mathbb{E}[|X_1^{(1)} - X_0^{(1)}|^2]$$
Results on Tuning in Equilibrium

High Dimensional Product Measures – Roberts, Rosenthal ’97, Roberts, Gelman, Gilks ’98, Beskos, Roberts, Stuart ’09, Beskos et al. ’13, Bou-Rabee, Sanz-Serna,’18, ...

- Product measure ansatz:
 \[V_d(x) = \sum_{i=1}^{d} v(x_i), \quad v: \mathbb{R} \rightarrow \mathbb{R}, \quad e^{-V_d(x)} = \prod_{i=1}^{d} e^{-v(x_i)} \quad (7) \]

- d.o.f.’s only interact during accept/reject step
- As \(d \rightarrow \infty \), ensemble average acceptance and MSD can be predicted:
 \[A(\ell) = 2\Phi \left(-\frac{\ell^p}{2} \sqrt{K} \right), \quad \text{MSD} = \ell^2 d^{-q} \frac{A(\ell)}{\Delta t} = h(\ell) d^{-q} \quad (8) \]

 with \(K \) is a functional of \(v \) (independent of \(d \))
 - Maximize \(h \) over \(\ell \) (independent of \(d \))
 - In some cases \(h(\ell) \) appears in a \(d \rightarrow \infty \) limiting diffusion in one d.o.f.
 \[dy_t = -\frac{1}{2} h(\ell) v'(y_t) + \sqrt{h(\ell)} dw_t \quad (9) \]
Results on Tuning, Continued

- Optimal ℓ for RWM corresponds to $A = .234$ and $\Delta t \propto d^{-1}$
- Optimal ℓ for MALA corresponds to $A = .574$ and $\Delta t \propto d^{-1/3}$
- Optimal ℓ for HMC (with Verlet) corresponds to $A = .651$ and $\Delta t \propto d^{-1/4}$
Known Results on Tuning, Continued

- For RWM, $p = 1$, $q = -1$ and $K = \mathbb{E}[|v'|^2]$ – Optimal choice

 \[
 \Delta t^*_k = \frac{\ell^*_k}{d}, \quad \ell^*_k \sim \frac{1}{\sqrt{K}}
 \]

- Tends to zero as $d \to \infty$ or v becomes rough
- For $v = v(x, x/\epsilon)$, $K \sim \epsilon^{-2}$ so $\Delta t^*_k \sim \epsilon^2$:

 \[
 \text{MSD} = \ell^*_k d^{-1} A(\ell^*_k) = O(\epsilon^2)
 \]

- An optimal choice exists, but performance degrades with roughness
Out of Equilibrium and Non-Product Results
Jourdain, Lelièvre, Miasojedow ’14,’15, Beskos, Roberts, Stuart, ’09, Beskos, Roberts, Thiery, Pillai, ’15

- RWM with nonstationary data similar to stationary limit. MALA more complicated, with no single optimal choice.
- Perturbations of the product measure case
 \[d\mu \propto e^{-\Phi(x)}d\mu_0, \quad \mu_0 \text{ a product measure} \] (11)
- For multiscale \(V = V_0(x) + V_1(x, x/\epsilon) \) in finite \(d \) (ridged densities) limiting process is
 \[dX_t = D_{V,\sigma^2}(X_t)dt + \sigma(X_t)dW_t \] (12)
 \[\sigma^2(x) = \ell^2 a_0(x, \ell), \quad \text{Conditional Acceptance Rate} \] (13)
Harmonic Potential in 1D

Mathematica

\[V(x) = \frac{k}{2} x^2, \quad \delta = k \Delta t \] (14)

- For RWM

\[A(\delta) = \frac{2}{\pi} \arctan \sqrt{\frac{2}{\delta}} \] (15)
\[F(\delta) = 2\delta A(\delta) - \frac{4\sqrt{2}\delta^{3/2}}{\pi(2+\delta)} \] (16)

- For MALA

\[A(\delta) = \frac{2}{\pi} \arctan \sqrt{\frac{8}{\delta^3}} \] (17)
\[F(\delta) = \delta(2 + \delta)A(\delta) - \frac{4\sqrt{2}\delta^{5/2}}{\pi(4+\delta(-2+\delta))} \] (18)

- MSD = \(k^{-1}F \)
Harmonic Potential in 1D, Continued

RWM

MALA

- **Mean Acceptance Rate**
 - For different values of k: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

- **Mean Squared Displacement (MSD)**
 - For different values of k: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

- **Time (Δt)**: 0.0, 0.25, 0.50, 0.75, 1.00
Harmonic Potential in 1D, Continued

RWM

MALA

Mean Acceptance Rate

$\delta = k \Delta t$

$k \times MSD$

$10^{-7.5} \ 10^{-5.0} \ 10^{-2.5} \ 10^{0.0} \ 10^{2.5}$

$10^{-7.5} \ 10^{-5.0} \ 10^{-2.5} \ 10^{0.0} \ 10^{2.5}$
Optimal RWM $\Delta t > 2 \times$ Optimal MALA Δt (inside EM stability region)

Optimal MALA MSD $> 2 \times$ Optimal RWM MSD

Optimal acceptance rates deviate from $d \to \infty$ limit

RWM and MALA both have MSD $\to 0$ as $k = \epsilon^{-1} \to \infty$
1 Motivation & Background

2 Managing Roughness
 - Two Scale Potentials
 - Dissection of the Potential
 - Dissection on the Fly

3 Numerical Experiments

4 Summary & Acknowledgements
Assume

\[V(x) = V(x, x, \epsilon) = V_0(x) + V_1(x, x/\epsilon) \] \hspace{1cm} (19)

where

- \(V_0 \) is large scale, trapping contribution
- \(V_1 \) is bounded, rough contribution

In the case that \(V_1(x, y) \) is periodic in \(y \) in 1D, homogenization of overdamped Langevin leads to

\[dX_t = -\mathcal{M}(X_t)\nabla \log Z(X_t)dt + \nabla \cdot \mathcal{M}(X_t)dt + \sqrt{2\mathcal{M}(X_t)}dW_t \] \hspace{1cm} (20)

- Does not address sampling
- Suggests effective dynamics – position dependent proposals on a smoothed landscape
Naive Dissection in MC Methods

\[R(x, y) = V(x) - V(y) + \log \frac{q(y \rightarrow x)}{q(x \rightarrow y)} \]

\[= \left(V(x) - U(x) \right) - \left(V(y) - U(y) \right) \]

\[\Delta(x) \]

\[+ \log \left(\frac{e^{-U(y)} q(y \rightarrow x)}{e^{-U(x)} q(x \rightarrow y)} \right) \]

\[\tilde{R}(x, y) \]

Pick \(U \) and \(q \) such that:

1. \(U \) is captures the smooth, large scale features, and \(V - U \) is the bounded, rough contribution
2. \(q \) is a “good” proposal for \(e^{-U} \)

Smooth proposals on \(U \) and corrected by Metropolis for \(V \)
Naive Dissection in MC Methods

Lower Bound on Performance

- Lower bound on R

\[
R(x, y) = \Delta(x) - \Delta(y) + \tilde{R}(x, y) \\
\geq -\sup_{x'} \Delta(x') + \inf_{y'} \Delta(y') + \tilde{R}(x, y) = -\text{osc } \Delta + \tilde{R}(x, y)
\]

(22)

- Lower bounds on acceptance and MSD

\[
1 \land e^{R(x, y)} \geq e^{-\text{osc } \Delta} 1 \land e^{\tilde{R}(x, y)}
\]

(23)

\[
\text{MSD} = \mathbb{E}[(X_1 - X_0)^2] = \mathbb{E}[(y - x)^2 1 \land e^{R(x, y)}] \\
\geq e^{-\text{osc } \Delta} \mathbb{E}[(y - x)^2 1 \land e^{\tilde{R}(x, y)}]
\]

(24)

- In high d product case, $\Delta = d\delta$ – ineffective lower bound
Local Entropy Smoothing
Chaudhari et al., '16, Chaudhari et al. '17

- Unlikely to have $V(x) = V_0(x) + V_1(x, x/\epsilon)$
- Inspired by works in nonconvex, nonlinear optimization (machine learning)
- Use Local Entropy approximation of V
 \[V_\gamma(x) = -\beta^{-1} \log N(0, \gamma) * e^{-\beta V(x)} \]
 (25)
- $V = V_\gamma + (V - V_\gamma)$
- Need to estimate a fast scale $\sqrt{\gamma}$
- Need an efficient method for estimating V_γ
Proposed Sampling Strategy
Thermostatted version of Chaudhari et al., '16, Chaudhari et al. '17

- Run short minibatch of

\[
dY_t^{(k)} = -\nabla V(Y_t^{(k)})dt - \gamma^{-1}(Y_t^{(k)} - x)dt + \sqrt{2}dW_t^{(k)}, \quad (26)
\]

and use these to estimate

\[
\nabla V_\gamma(x) = \gamma^{-1} \int (x - y)\rho(y; x)dy
\]

\[
= \gamma^{-1} \int (x - y)Z(x, \gamma)^{-1}e^{-V(y)-\frac{1}{2\gamma}\|y-x\|^2}dy \quad (27)
\]

\[
\approx \frac{1}{M} \sum_k \gamma^{-1}(x - Y_t^{(k)})
\]

Then Metropolize against \(V \).
Motivation & Background

Managing Roughness

Numerical Experiments
- Rough Harmonic Potential
- Rough Doublewell Potential
- Local Entropy Smoothing

Summary & Acknowledgements
Problem Setup

- Additive oscillatory term:
 \[V(x) = \frac{1}{2} x^2 + \frac{1}{8} \cos(kx) \]

- Product measures
- Use \(V_0 = \frac{1}{2} x^2 \) for modified MALA proposals
- Compute over a range of \(\Delta t \) to empirically identify the optimal value for different \(d \) and \(k \)
- \(10^8 \) iterations per run.
Results

- As $k \to \infty$, Mod. MALA > RWM > MALA
- Even with low acceptance rates, larger time steps of Mod. MALA and RWM yield better performance
Results

- As $k \to \infty$, Mod. MALA $> \text{RWM} > \text{MALA}$
- Even with low acceptance rates, larger time steps of Mod. MALA and RWM yield better performance
As \(k \to \infty \), Mod. MALA > RWM > MALA

Even with low acceptance rates, larger time steps of Mod. MALA and RWM yield better performance
As $k \to \infty$, Mod. MALA $> \text{RWM} > \text{MALA}$

Even with low acceptance rates, larger time steps of Mod. MALA and RWM yield better performance
As $k \to \infty$, Mod. MALA $>\ RWM >\ MALA$

- Even with low acceptance rates, larger time steps of Mod. MALA and RWM yield better performance
Results

- As \(k \to \infty \), Mod. MALA \(\geq \) RWM \(\geq \) MALA
- Even with low acceptance rates, larger time steps of Mod. MALA and RWM yield better performance
As $k \to \infty$, Mod. MALA > RWM > MALA

Even with low acceptance rates, larger time steps of Mod. MALA and RWM yield better performance
As d increases, the Mod. MALA scheme continues to outperform RWM.
Problem Setup

- Additive oscillatory term:

 \[V(x) = (x^2 - 1)^2 + \frac{1}{8} \cos(kx) \]

- Product measures
- Use \(V_0 = (x^2 - 1)^2 \) for modified MALA proposals
- Compute over a range of \(\Delta t \) to empirically identify the optimal value for different \(d \) and \(k \)
- \(10^8 \) iterations per run.
Numerical Experiments

Rough Doublewell Potential

Results

- Mean Acceptance Rate
- MSD
- Optimal t

$\text{d} = 1$

k values: $10^0, 10^1, 10^2, 10^3$

Graphs show data for RWM, MALA, and Mod. MALA.
Results

- Mean Acceptance Rate
 - $d = 5$
 - RWM, $MALA$, $Mod. MALA$
 - $k = 1, 2, 3, 4, 5$

- MSD
 - $d = 5$
 - RWM, $MALA$, $Mod. MALA$
 - $k = 1, 2, 3, 4, 5$

- Optimal t
 - $d = 5$
 - RWM, $MALA$, $Mod. MALA$
 - $k = 1, 2, 3, 4, 5$
Results

Numerical Experiments

Rough Doublewell Potential

Mean Acceptance Rate

\(d = 10 \)

RWM
MALA
Mod. MALA

Optimal \(\Delta t \)

\(d = 10 \)

RWM
MALA
Mod. MALA

MSD

\(d = 10 \)

RWM
MALA
Mod. MALA

k

100 101 102 103

k

10 5
10 4
10 3
10 2
10 1

Simpson (Drexel)

Rough Landscapes–CIRM 2018

September 18, 2018 28 / 34
Numerical Experiments

Rough Doublewell Potential

Results

![Graphs showing numerical experiments results for Mean Acceptance Rate, MSD, and Optimal t](image-url)
Results
Results
Results

Numerical Experiments

Rough Doublewell Potential

Mean Acceptance Rate

\[d = 100 \]

\[k \]

RWM
MALA
Mod. MALA

Mean Absolute Deviation (MSD)

\[d = 100 \]

\[k \]

Optimal \(t \)

\[d = 100 \]

\[k \]
As d increases, the Mod. MALA scheme continues to outperform RWM
Problem Setup

- Multiplicative oscillatory term:

\[V(x) = \frac{1}{2}x^2 + \frac{1}{8}e^{-10x^2}\cos(100x) \]

(30)

- Product measures
- Precompute \(V_\gamma \) by quadrature with \(\gamma = 0.02 \)
Results

- Performance gain improves with d
Numerical Experiments

Local Entropy Smoothing

Results, Continued

- $d = 100$ case
Remarks & Open Problems

- Performance of MALA suffers on multiscale energy landscapes
- Conjecture: Similar challenges with other methods involving ∇V, with V a multiscale potential
- Certain limiting cases of MALA (1D Harmonic, and $d \to \infty$ product measure) show that roughness sends performance to zero – Is there a general result in finite d/non-product case?
- Can local entropy smoothing be made practical and exploited?
- Joint $\epsilon \to 0$ and $d \to \infty$ limit
- Restricted Observables
Acknowledgements

Collaborators P. Plechac (U. Delaware)

Funding NSF 1818716, US DOE DE-SC0012733

http://www.math.drexel.edu/~simpson/