SOME GENERALIZATIONS OF THE ALUTHGE TRANSFORM OF OPERATORS AND THEIR CONSEQUENCES

MOJTABA BAKHERAD and KHALID SHEBRAWI

Abstract. Let $A = U|A|$ be the polar decomposition of A. The Aluthge transform of the operator A, denoted by \tilde{A}, is defined as $\tilde{A} = |A|^1/2 U|A|^{1/2}$. In this paper, first we generalize the definition of Aluthge transform for non-negative continuous functions f,g such that $f(x)g(x) = x$ ($x \geq 0$). Then, by using of this definition, we get some numerical radius inequalities. Among other inequalities, it is shown that if A is bounded linear operator on a complex Hilbert space \mathcal{H}, then

$$h\left(w(A) \right) \leq \frac{1}{4} \left(h\left(g^2(|A|) \right) + h\left(f^2(|A|) \right) \right) + \frac{1}{2} h\left(w\left(\tilde{A}_{f,g} \right) \right),$$

where f,g are non-negative continuous functions such that $f(x)g(x) = x$ ($x \geq 0$), h is a non-negative non-decreasing convex function on $[0, \infty)$ and $\tilde{A}_{f,g} = f(|A|)Ug(|A|)$.

1. Introduction

Let $\mathbb{B}(\mathcal{H})$ denote the C^*-algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} with an inner product $\langle \cdot, \cdot \rangle$ and the corresponding norm $\| \cdot \|$. In the case when $\dim \mathcal{H} = n$, we identify $\mathbb{B}(\mathcal{H})$ with the matrix algebra M_n of all $n \times n$ matrices with entries in the complex field. For an operator $A \in \mathbb{B}(\mathcal{H})$, let $A = U|A|$ (U is a partial isometry with $\ker U = \text{rng}|A|^{1/2}$) be the polar decomposition of A. The Aluthge transform of the operator A, denoted by \tilde{A}, is defined as $\tilde{A} = |A|^{1/2} U|A|^{1/2}$. In [12], Okubo introduced a more general notion called t-Aluthge transform which has later been studied also in detail. This is defined for any $0 < t \leq 1$ by $\tilde{A}_t = |A|^{t/2} U|A|^{1-t}$. Clearly, for $t = \frac{1}{2}$ we obtain the usual Aluthge transform. As for the case $t = 1$, the operator $\tilde{A}_1 = |A|U$ is called the Duggal transform of $A \in \mathbb{B}(\mathcal{H})$. For $A \in \mathbb{B}(\mathcal{H})$, we generalize the Aluthge transform of the operator A to the form

$$\tilde{A}_{f,g} = f(|A|)Ug(|A|),$$

2010 Mathematics Subject Classification. Primary 47A12, Secondary 47A63, 47A30.

Key words and phrases. Aluthge transform, Numerical radius, Operator matrices, Polar decomposition.
in which \(f, g \) are non-negative continuous functions such that \(f(x)g(x) = x \ (x \geq 0) \).

The numerical radius of \(A \in \mathbb{B}(\mathcal{H}) \) is defined by

\[
w(A) := \sup\{|\langle Ax, x \rangle| : x \in \mathcal{H}, \|x\| = 1\}.
\]

It is well known that \(w(\cdot) \) defines a norm on \(\mathbb{B}(\mathcal{H}) \), which is equivalent to the usual operator norm \(\| \cdot \| \). In fact, for any \(A \in \mathbb{B}(\mathcal{H}) \), \(\frac{1}{2}\|A\| \leq w(A) \leq \|A\| \); see [6]. Let \(r(\cdot) \) denote to the spectral radius. It is well known that for every operator \(A \in \mathbb{B}(\mathcal{H}) \), we have \(r(A) \leq w(A) \). An important inequality for \(\omega(A) \) is the power inequality stating that \(\omega(A^n) \leq \omega(A)^n \ (n = 1, 2, \cdots) \). The quantity \(w(A) \) is useful in studying perturbation, convergence and approximation problems as well as integrative method, etc. For more information see [3, 7, 8, 9] and references therein.

Let \(A, B, C, D \in \mathbb{B}(\mathcal{H}) \). The operator matrices

\[
\begin{bmatrix}
A & 0 \\
0 & D
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
0 & B \\
C & 0
\end{bmatrix}
\]

are called the diagonal and off-diagonal parts of the operator matrix

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\]

respectively.

In [11], it has been shown that if \(A \) is an operator in \(\mathbb{B}(\mathcal{H}) \), then

\[
w(A) \leq \frac{1}{2} \left(\|A\| + \|A^2\|^{\frac{1}{2}} \right). \tag{1.1}
\]

Several refinements and generalizations of inequality (1.1) have been given; see [1, 4, 14, 15]. Yamazaki [15] showed that for \(A \in \mathbb{B}(\mathcal{H}) \) and \(t \in [0, 1] \) we have

\[
w(A) \leq \frac{1}{2} \left(\|A\| + w(\tilde{A}_t) \right). \tag{1.2}
\]

Davidson and Power [5] proved that if \(A \) and \(B \) are positive operators in \(\mathbb{B}(\mathcal{H}) \), then

\[
\|A + B\| \leq \max\{\|A\|, \|B\|\} + \|AB\|^{\frac{1}{2}}. \tag{1.3}
\]

Inequality (1.3) has been generalized in [2, 13]. In [13], the author extended this inequality to the form

\[
\|A + B^*\| \leq \max\{\|A\|, \|B\|\} + \frac{1}{2} \left(\|A\|\|B^*\|^{1-t} + \|A^*\|^{1-t}\|B\| \right), \tag{1.4}
\]

in which \(A, B \in \mathbb{B}(\mathcal{H}) \) and \(t \in [0, 1] \).

In this paper, by applying the generalized Aluthge transform of operators, we establish some inequalities involving the numerical radius. In particular, we extend inequality (1.2) and (1.4) for two non-negative continuous functions. We also show some upper bounds for the numerical radius of \(2 \times 2 \) operators matrices.
2. MAIN RESULTS

To prove our numerical radius inequalities, we need several known lemmas.

Lemma 2.1. [1, Theorem 2.2] Let $X, Y, S, T \in \mathcal{B}(\mathcal{H})$. Then

$$r(XY + ST) \leq \frac{1}{2} (w(YX) + w(TS)) + \frac{1}{2} \sqrt{(w(YX) - w(TS))^2 + 4\|YS\|\|TX\|}.$$

Lemma 2.2. [15, 11] Let $A \in \mathcal{B}(\mathcal{H})$. Then

(a) $w(A) = \max_{\theta \in \mathbb{R}} \|\text{Re} (e^{i\theta} A)\|$.

(b) $w \left(\begin{bmatrix} 0 & A \\ 0 & 0 \end{bmatrix} \right) = \frac{1}{2} \|A\|$.

Polarization identity: For all $x, y \in \mathcal{H}$, we have

$$\langle x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} \|x + i^k y\|^2 i^k.$$

Now, we are ready to present our first result. The following theorem shows a generalization of inequality (1.2).

Theorem 2.3. Let $A \in \mathcal{B}(\mathcal{H})$ and f, g be two non-negative continuous functions on $[0, \infty)$ such that $f(x)g(x) = x$ ($x \geq 0$). Then, for all non-negative non-decreasing convex function h on $[0, \infty)$, we have

$$h(w(A)) \leq \frac{1}{4} \|h \left(g^2 (|A|) \right) + h \left(f^2 (|A|) \right) \| + \frac{1}{2} h \left(w \left(\tilde{A}_{f,g} \right) \right).$$
Proof. Let x be any unit vector. Then

\[
\Re \langle e^{i\theta} Ax, x \rangle = \Re \langle e^{i\theta} U |A|x, x \rangle \\
= \Re \langle e^{i\theta} Ug (|A|) f (|A|) x, x \rangle \\
= \Re \langle e^{i\theta} f (|A|) x, g (|A|) U^* x \rangle \\
= \frac{1}{4} \left\| (e^{i\theta} f (|A|) + g (|A|) U^*) x \right\|^2 - \frac{1}{4} \left\| (e^{i\theta} f (|A|) - g (|A|) U^*) x \right\|^2 \\
\text{(by polarization identity)} \\
\leq \frac{1}{4} \left\| (e^{i\theta} f (|A|) + g (|A|) U^*) x \right\|^2 \\
\leq \frac{1}{4} \left\| (e^{i\theta} f (|A|) + g (|A|) U^*) \right\|^2 \\
= \frac{1}{4} \left\| (e^{i\theta} f (|A|) + g (|A|) U^*) (e^{-i\theta} f (|A|) + U g (|A|)) \right\| \\
= \frac{1}{4} \left\| g^2 (|A|) + f^2 (|A|) + e^{i\theta} \tilde{A}_{f,g} + e^{-i\theta} (\tilde{A}_{f,g})^* \right\| \\
\leq \frac{1}{4} \left\| g^2 (|A|) + f^2 (|A|) \right\| + \frac{1}{4} \left\| e^{i\theta} \tilde{A}_{f,g} + e^{-i\theta} (\tilde{A}_{f,g})^* \right\| \\
= \frac{1}{4} \left\| g^2 (|A|) + f^2 (|A|) \right\| + \frac{1}{2} \left\| \Re (e^{i\theta} \tilde{A}_{f,g}) \right\| \\
\leq \frac{1}{4} \left\| g^2 (|A|) + f^2 (|A|) \right\| + \frac{1}{2} \left(\tilde{A}_{f,g} \right).
\]

Now, taking the supremum over all unit vector $x \in \mathcal{H}$ and applying Lemma 2.2 in the above inequality produces

\[
w (A) \leq \frac{1}{4} \left\| g^2 (|A|) + f^2 (|A|) \right\| + \frac{1}{2} w \left(\tilde{A}_{f,g} \right).
\]
Therefore,
\[
\begin{align*}
 h(w(A)) & \leq h \left(\frac{1}{4} \left\| g^2(|A|) + f^2(|A|) \right\| + \frac{1}{2} w \left(\tilde{A}_{f,g} \right) \right) \\
 & = h \left(\frac{1}{2} \left\| g^2(|A|) + f^2(|A|) \right\| + \frac{1}{2} w \left(\tilde{A}_{f,g} \right) \right) \\
 & \leq \frac{1}{2} h \left(\frac{\left\| g^2(|A|) + f^2(|A|) \right\|}{2} \right) + \frac{1}{2} h \left(w \left(\tilde{A}_{f,g} \right) \right) \\
 & \leq \frac{1}{4} \left\| h \left(g^2(|A|) \right) + h \left(f^2(|A|) \right) \right\| + \frac{1}{2} h \left(w \left(\tilde{A}_{f,g} \right) \right) \\
 & \leq \frac{1}{4} \left\| h \left(g^2(|A|) \right) + h \left(f^2(|A|) \right) \right\| + \frac{1}{2} h \left(w \left(\tilde{A}_{f,g} \right) \right)
\end{align*}
\]
(by the convexity of \(h \))

Then, for all non-negative non-decreasing convex function \(h \) on \([0, \infty)\) and all \(t \in [0, 1] \), we have
\[
 h(w(A)) \leq \frac{1}{4} \left\| h \left(|A|^{2t} \right) + h \left(|A|^{2(1-t)} \right) \right\| + \frac{1}{2} h \left(w \left(\tilde{A}_t \right) \right).
\]
(2.1)

Corollary 2.5. Let \(A \in \mathbb{B}(\mathcal{H}) \). Then, for all \(t \in [0, 1] \) and \(r \geq 1 \), we have
\[
 w^r(A) \leq \frac{1}{4} \left\| |A|^{2r} + |A|^{2(1-t)r} \right\| + \frac{1}{2} w^r \left(\tilde{A}_t \right).
\]

In particular,
\[
 w^r(A) \leq \frac{1}{2} \left(\|A\|^r + w^r \left(\tilde{A} \right) \right).
\]

Proof. The first inequality follows from inequality (2.1) for the function \(h(x) = x^r \) (\(r \geq 1 \)). For the particular case, it is enough to put \(t = \frac{1}{2} \). \(\square \)

Theorem 2.6. Let \(A, B \in \mathbb{B}(\mathcal{H}) \), \(f, g \) be two non-negative continuous functions on \([0, \infty)\) such that \(f(x)g(x) = x \) (\(x \geq 0 \)) and \(r \geq 1 \). Then
\[
 w^r \left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \right) \leq \frac{1}{4} \max \left(\left\| g^{2r}(|A|) + f^{2r}(|A|) \right\|, \left\| g^{2r}(|B|) + f^{2r}(|B|) \right\| \right)
\]
\[
 + \frac{1}{4} \left(\left\| f(|B|)g(|A^*|) \right\|^r + \left\| f(|A|)g(|B^*|) \right\|^r \right).
\]
Proof. Let $A = U|A|$ and $B = V|B|$ be the polar decompositions of A and B, respectively and let $T = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$. It follows from the polar the composition of $T = \begin{bmatrix} 0 & U \\ V & 0 \end{bmatrix} \begin{bmatrix} |B| & 0 \\ 0 & |A| \end{bmatrix}$ that

$$\tilde{T}_{f,g} = f(|T|) \begin{bmatrix} 0 & U \\ V & 0 \end{bmatrix} g(|T|) = \begin{bmatrix} f(|B|) & 0 \\ 0 & f(|A|) \end{bmatrix} \begin{bmatrix} 0 & U \\ V & 0 \end{bmatrix} \begin{bmatrix} g(|B|) & 0 \\ 0 & g(|A|) \end{bmatrix} = \begin{bmatrix} 0 & f(|B|)Ug(|A|) \\ f(|A|)Vg(|B|) & 0 \end{bmatrix}. $$

Using $|A^*|^2 = AA^* = U|A|^2U^*$ and $|B^*|^2 = BB^* = V|B|^2V^*$ we have $g(|A|) = U^*g(|A^*|)U$ and $g(|B|) = V^*g(|B^*|)V$ for every non-negative continuous function g on $[0, \infty)$. Therefore,

$$w(\tilde{T}_{f,g}) = w\left(\begin{bmatrix} 0 & f(|B|)Ug(|A|) \\ f(|A|)Vg(|B|) & 0 \end{bmatrix} \right) \leq w\left(\begin{bmatrix} 0 & f(|B|)Ug(|A|) \\ 0 & 0 \end{bmatrix} \right) + w\left(\begin{bmatrix} 0 & 0 \\ f(|A|)Vg(|B|) & 0 \end{bmatrix} \right) = w\left(\begin{bmatrix} 0 & f(|B|)Ug(|A|) \\ 0 & 0 \end{bmatrix} \right) + w\left(\begin{bmatrix} 0 & f(|A|)Vg(|B|) \\ 0 & 0 \end{bmatrix} \right) = \frac{1}{2}\|f(|B|)Ug(|A|)\| + \frac{1}{2}\|f(|A|)Vg(|B|)\| \quad \text{(by Lemma 2.1(b))}$$

$$= \frac{1}{2}\|f(|B|)UU^*g(|A^*|)U\| + \frac{1}{2}\|f(|A|)VV^*g(|B^*|)V\| \leq \frac{1}{2}\|f(|B|)g(|A^*|)\| + \frac{1}{2}\|f(|A|)g(|B^*|)\|, \quad \text{(2.2)}$$
where $U = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$ is unitary. Applying Theorem 2.3 and inequality (2.2), we have

$$w^r(T) \leq \frac{1}{4} \left(\| g^{2r}(|T|) + f^{2r}(|T|) \| + \frac{1}{2} \left(w^r(\tilde{T}_{f,g}) \right) \right)$$

$$\leq \frac{1}{4} \max \left(\| g^{2r}(|A|) + f^{2r}(|A|) \| , \| g^{2r}(|B|) + f^{2r}(|B|) \| \right)$$

$$+ \frac{1}{2} \left(\| f(|B|)g(|A^*|) \| + \| f(|A|)g(|B^*|) \| \right)^{r}$$

$$\leq \frac{1}{4} \max \left(\| g^{2r}(|A|) + f^{2r}(|A|) \| , \| g^{2r}(|B|) + f^{2r}(|B|) \| \right)$$

$$+ \frac{1}{4} \| f(|B|)g(|A^*|) \|^{r} + \frac{1}{4} \| f(|A|)g(|B^*|) \|^{r}$$

(by the convexity $h(x) = x^r$).

\begin{proof}
Applying the power inequality of the numerical radius, we have

$$w^r(AB) \leq \frac{1}{4} \max \left(\left\| |A|^{2tr} + |A|^{2(1-t)r} \right\| , \left\| |B|^{2tr} + |B|^{2(1-t)r} \right\| \right)$$

$$+ \frac{1}{4} \left(\left\| |A|^t |B^*|^{1-t} \right\|^{r} + \left\| |B|^t |A^*|^{1-t} \right\|^{r} \right)$$

\end{proof}

Corollary 2.7. Let $A, B \in B(\mathcal{H})$. Then, for all $t \in [0, 1]$ and $r \geq 1$, we have

$$w^r(AB) \leq \frac{1}{4} \max \left(\left\| |A|^{2tr} + |A|^{2(1-t)r} \right\| , \left\| |B|^{2tr} + |B|^{2(1-t)r} \right\| \right)$$

$$+ \frac{1}{4} \left(\left\| |A|^t |B^*|^{1-t} \right\|^{r} + \left\| |B|^t |A^*|^{1-t} \right\|^{r} \right)$$

Proof. Applying the power inequality of the numerical radius, we have

$$w^r(AB) \leq \max \left(w^r(AB) , w^r(BA) \right)$$

$$= w^r \left(\begin{bmatrix} AB & 0 \\ 0 & BA \end{bmatrix} \right)$$

$$= w^r \left(\begin{bmatrix} A & 0 \\ B & 0 \end{bmatrix} \right)^2$$

$$\leq w^r \left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \right)$$

$$\leq \frac{1}{4} \max \left(\left\| |A|^{2tr} + |A|^{2(1-t)r} \right\| , \left\| |B|^{2tr} + |B|^{2(1-t)r} \right\| \right)$$

$$+ \frac{1}{4} \left(\left\| |A|^t |B^*|^{1-t} \right\|^{r} + \left\| |B|^t |A^*|^{1-t} \right\|^{r} \right)$$

(by Theorem 2.6).
Corollary 2.8. Let \(A, B \in \mathbb{B}(\mathcal{H}) \) be positive operators. Then, for all \(t \in [0, 1] \) and \(r \geq 1 \), we have

\[
\left\| A^{\frac{1}{2}}B^{\frac{1}{2}} \right\|^r \leq \frac{1}{4} \max \left(\left\| A^{tr} + A^{(1-t)r} \right\|, \left\| B^{tr} + B^{2(1-t)r} \right\| \right) \\
+ \frac{1}{4} \left(\left\| A^t B^{1-t} \right\|^r + \left\| B^t A^{1-t} \right\|^r \right).
\]

Proof. Since the spectral radius of any operator is dominated by its numerical radius, then \(r_{AB}^{\frac{1}{2}} \leq w_{AB}^{\frac{1}{2}} \). Applying a commutativity property of the spectral radius, we get

\[
r_{AB}^{\frac{1}{2}} = r_{A^{\frac{1}{2}}B^{\frac{1}{2}}B^{\frac{1}{2}}A^{\frac{1}{2}}}^{\frac{1}{2}}(AB) = \left(A^{\frac{1}{2}}B^{\frac{1}{2}}B^{\frac{1}{2}}A^{\frac{1}{2}} \right)^{\frac{1}{2}}(AB) = \left(A^{\frac{1}{2}}B^{\frac{1}{2}} \left(A^{\frac{1}{2}}B^{\frac{1}{2}} \right)^* \right)^{\frac{1}{2}} \\
= \left\| A^{\frac{1}{2}}B^{\frac{1}{2}} \left(A^{\frac{1}{2}}B^{\frac{1}{2}} \right)^* \right\|^{\frac{1}{2}} \\
= \left\| A^{\frac{1}{2}}B^{\frac{1}{2}} \right\|^r.
\]

(2.3)

Now, the result follows from Corollary 2.7.

An important special case of Theorem 2.6, which refines inequality (1.4) can be stated as follows.

Corollary 2.9. Let \(A, B \in \mathbb{B}(\mathcal{H}) \) and \(r \geq 1 \). Then

\[
\left\| A + B \right\|^r \leq \frac{1}{2^{2-r}} \max \left(\left\| A \right\|^{2tr} + \left\| A \right\|^{2(1-t)r}, \left\| B \right\|^{2tr} + \left\| B \right\|^{2(1-t)r} \right) \\
+ \frac{1}{2^{2-r}} \left(\left\| A^t \right\| \left\| B \right\|^{1-t} \right)^r + \left\| B^t \right\| \left\| A \right\|^{1-t} \right)^r.
\]

In particular, if \(A \) and \(B \) are normal, then

\[
\left\| A + B \right\|^r \leq \frac{1}{2^{1-r}} \max \left(\left\| A \right\|^r, \left\| B \right\|^r \right) + \frac{1}{2^{1-r}} \left\| AB \right\|^r.
\]
Proof. Applying Lemma 2.2 and Theorem 2.3, we have
\[
\| A + B^* \|^r = \| T + T^* \|^r
\]
\[
\leq 2^r \max_{\theta \in \mathbb{R}} \| \text{Re} (e^{i\theta} T) \|^r
\]
\[
= 2^r w^r (T)
\]
\[
\leq \frac{2^r}{4} \left(\| |A|^{2r} + |B|^{2(1-t)r} \|, \| |B|^{2r} + |B|^{2(1-t)r} \| \right)
\]
\[
+ \frac{2^r}{4} \left(\| |A|^t |B^*|^{1-t} \|^r + \| |B|^t |A^*|^{1-t} \|^r \right)
\]
(by Theorem 2.6),

where \(T = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \). Now, the desired result follows by replacing \(B \) by \(B^* \). For the particular case, since \(A \) and \(B \) are normal, then \(|B^*| = |B| \) and \(|A^*| = |A| \). Applying equality (2.3) for the operators \(|A|^\frac{1}{2}\) and \(|B|^\frac{1}{2}\), we have
\[
\| |A|^\frac{1}{2} |B|^\frac{1}{2} \|^r = r^\frac{r}{2} (|A| |B|)
\]
\[
\leq \| |A| |B| \| \frac{1}{2}
\]
\[
= \| U^* AB^* V \| \frac{1}{2}
\]
\[
= \| AB^* \| \frac{1}{2},
\]

where \(A = U|A| \) and \(B = V |B| \) are the polar decompositions of the operators \(A \) and \(B \). This completes the proof of the corollary. \(\square \)

In the next result, we show another generalization of inequality (1.2).

Theorem 2.10. Let \(A \in \mathbb{B}(\mathcal{H}) \) and \(f, g, h \) be non-negative non-decreasing continuous functions on \([0, \infty)\) such that \(f(x)g(x) = x \ (x \geq 0) \). Then
\[
h \left(w(A) \right) \leq \frac{1}{2} \left(h \left(\tilde{A}_{f,g} \right) + \| h(|A|) \| \right).
\]

Proof. Let \(A = U|A| \) be the polar decomposition of \(A \). Then for every \(\theta \in \mathbb{R} \), we have
\[
\| \text{Re} (e^{i\theta} A) \| = r \left(\text{Re} (e^{i\theta} A) \right)
\]
\[
= \frac{1}{2} r \left(e^{i\theta} A + e^{-i\theta} A^* \right)
\]
\[
= \frac{1}{2} r \left(e^{i\theta} U|A| + e^{-i\theta} |A| U^* \right)
\]
\[
= \frac{1}{2} r \left(e^{i\theta} U g(|A|) f(|A|) + e^{-i\theta} f(|A|) g(|A|) U^* \right).
\]

(2.4)
Now, if we put \(X = e^{i\theta} Ug(|A|), \ Y = f(|A|), \ S = e^{-i\theta} f(|A|) \) and \(T = g(|A|)U^* \) in Lemma 2.1, then we get

\[
\begin{align*}
& r(e^{i\theta} Ug(|A|)f(|A|) + e^{-i\theta} f(|A|)g(|A|)U^*) \\
\leq & \frac{1}{2} \left(w(f(|A|)Ug(|A|)) + w(g(|A|)U^*f(|A|)) \right) \\
& + \frac{1}{2} \sqrt{4\|e^{-i\theta} f(|A|)g(|A|)\|\|g(|A|)U^*e^{i\theta} U f(|A|)\|} \\
& \quad \text{(by Lemma 2.1)} \\
\leq & w(f(|A|)Ug(|A|)) + \sqrt{f(|A|)\|f(|A|)\||g(|A|)\|g(|A|)\|} \\
= & w(f(|A|)Ug(|A|)) + \sqrt{f(|A|)\|g(|A|)f(|A|)\|} \\
& \quad \text{(by the functional calculus)} \\
= & w(f(|A|)Ug(|A|)) + \sqrt{|A||A|} \\
= & w\left(\tilde{A}_{f,g} \right) + |A|. \tag{2.5}
\end{align*}
\]

Using inequalities (2.4), (2.5) and Lemma 2.2 we get

\[
\omega(A) = \max_{\theta \in \mathbb{R}} \| \text{Re} (e^{i\theta} A) \| \leq \frac{1}{2} \left(w\left(\tilde{A}_{f,g} \right) + |A| \right).
\]

Hence

\[
\begin{align*}
& h\left(w(A) \right) \leq h\left(\frac{1}{2} \left[w\left(\tilde{A}_{f,g} \right) + |A| \right] \right) \\
& \quad \text{(by the monotonicity of } h) \\
& \leq \frac{1}{2} h \left(w\left(\tilde{A}_{f,g} \right) \right) + \frac{1}{2} h \left(|A| \right) \\
& \quad \text{(by the convexity of } h) \\
& = \frac{1}{2} h \left(w\left(\tilde{A}_{f,g} \right) \right) + \frac{1}{2} \left| h(|A|) \right|,
\end{align*}
\]

as required. \(\Box \)

Another proof for Theorem 2.3: We can obtain Theorem 2.3 from Theorem 2.10. To see this, first note that by the hypotheses of Theorem 2.3 we have

\[
\begin{align*}
h(|A|) &= h(g(|A|)f(|A|)) \\
&\leq h\left(\frac{g^2(|A|) + f^2(|A|)}{2} \right) \quad \text{(by the arithmetic-geometric inequality)} \\
&\leq \frac{1}{2} \left(h\left(g^2(|A|) \right) + h\left(f^2(|A|) \right) \right) \quad \text{(by the convexity of } h). \tag{2.6}
\end{align*}
\]
Hence, using Theorem 2.10 and inequality (2.6) we get
\[
 h(w(A)) \leq \frac{1}{2} \left[h\left(w\left(\tilde{A}_{f,g}\right)\right) + \|h(|A|)\| \right] \\
 \leq \frac{1}{2} \left[h\left(w\left(\tilde{A}_{f,g}\right)\right) + \frac{1}{2} \left\| h\left(g^2(|A|)\right) + h\left(f^2(|A|)\right) \right\| \right] \\
 = \frac{1}{2} h\left(w\left(\tilde{A}_{f,g}\right)\right) + \frac{1}{4} \left\| h\left(g^2(|A|)\right) + h\left(f^2(|A|)\right) \right\| .
\]

Remark 2.11. For the special case \(f(x) = x^t \) and \(g = x^{1-t} \) (\(t \in [0,1] \)), we obtain the inequality (1.2)
\[
 w(A) \leq \frac{1}{2} \left(w\left(\tilde{A}_t\right) + \|A\| \right),
\]
where \(A \in B(\mathcal{H}) \) and \(t \in [0,1] \).

Using Theorem 2.10, we get the following result.

Corollary 2.12. Let \(A, B \in B(\mathcal{H}) \) and \(f, g \) be two non-negative non-decreasing continuous functions such that \(f(x)g(x) = x \) (\(x \geq 0 \)). Then
\[
 2w^r \left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \right) \leq \max\{\|A\|^r, \|B\|^r\} + \frac{1}{2} \left(\|f(|B|)g(|A^*|)\|^r + \|f(|A|)g(|B^*|)\|^r \right),
\]
where \(r \geq 1 \).

Proof. Using Theorem 2.10 and inequality (2.2), we have
\[
 2w^r \left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \right) \leq \left\| \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \right\|^r + w^r \left(\tilde{T}_{f,g} \right) \\
 = \max\{\|A\|^r, \|B\|^r\} + \left(\frac{1}{2} \left[\|f(|B|)g(|A^*|)\| + \|f(|A|)g(|B^*|)\| \right] \right)^r \\
 \leq \max\{\|A\|^r, \|B\|^r\} + \frac{1}{2} \left(\|f(|B|)g(|A^*|)\|^r + \|f(|A|)g(|B^*|)\|^r \right)
\]
and the proof is complete. \(\square \)

Corollary 2.13. Let \(A, B \in B(\mathcal{H}) \) and \(f, g \) be two non-negative non-decreasing continuous functions on \([0, \infty) \) such that \(f(x)g(x) = x \) (\(x \geq 0 \)). Then
\[
 \|A + B\| \leq \max\{\|A\|, \|B\|\} + \frac{1}{2} \left(\|f(|B|)g(|A|)\| + \|f(|A^*|)g(|B^*|)\| \right).
\]
Proof. Let \(T = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \). Then

\[
\|A + B^*\| = \|T + T^*\|
\leq 2\max_{\theta \in \mathbb{R}} \|\text{Re} (e^{i\theta}T)\|
= w(T) \quad \text{(by Lemma 2.2)}
\leq \max\{\|A\|, \|B\|\} + \frac{1}{2} \left(\|f(|B|)g(|A^*|)\| + \|f(|A|)g(|B^*|)\|\right) \quad \text{(by Theorem 2.10)}.
\]

If we replace \(B \) by \(B^* \), then we get the desired result. \(\square \)

In the last results, we present some upper bounds for operator matrices. For this purpose, we need the following lemma.

Lemma 2.14. \[10, \text{Theorem 1}\] Let \(A \in \mathbb{B}(\mathcal{H}) \) and \(x, y \in \mathcal{H} \) be any vectors. If \(f, g \) are non-negative continuous functions on \([0, \infty)\) which are satisfying the relation \(f(x)g(x) = x \) \((x \geq 0)\), then

\[
|\langle Ax, y \rangle|^2 \leq \langle f^2(|A|)x, x \rangle \langle g^2(|A^*|)y, y \rangle.
\]

Theorem 2.15. Let \(A, B, C, D \in \mathbb{B}(\mathcal{H}) \) and \(f_i, g_i \) \((1 \leq i \leq 4)\) be non-negative continuous functions such that \(f_i(x)g_i(x) = x \) \((1 \leq i \leq 4)\) for all \(x \in [0, \infty) \). Then

\[
\omega \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq \max \left\{ \|f_1^2(|A|) + g_2^2(|B^*|) + f_3^2(|C|)\|^{\frac{1}{2}}, \|g_4(|D^*|)\| \right\}
+ \max \left\{ \|g_1(|A^*|)\|, \|f_2^2(|B|) + g_3^2(|C^*|) + f_4^2(|D|)\|^{\frac{1}{2}} \right\}.
\]

Proof. Let \(T = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \) and \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \) be a unit vector \(\text{(i.e., } \|x_1\|^2 + \|x_2\|^2 = 1\). \) Then
Let

\[|\langle Tx, x \rangle| = \left| \left\langle \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\rangle \right| \]

\[= \left| \left\langle \begin{bmatrix} Ax_1 + Bx_2 \\ Cx_1 + Dx_2 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\rangle \right| \]

\[= |\langle Ax_1, x_1 \rangle + \langle Bx_2, x_1 \rangle + \langle Cx_1, x_2 \rangle + \langle Dx_2, x_2 \rangle| \]

\[\leq |\langle Ax_1, x_1 \rangle| + |\langle Bx_2, x_1 \rangle| + |\langle Cx_1, x_2 \rangle| + |\langle Dx_2, x_2 \rangle| \]

\[\left(f_2^2(|A|x_1, x_1) \right)^{\frac{1}{2}} \left(g_3^2(|A^*|)x_1, x_1 \right)^{\frac{1}{2}} + \left(f_2^2(|B|x_2, x_2) \right)^{\frac{1}{2}} \left(g_2^2(|B^*|)x_1, x_1 \right)^{\frac{1}{2}} \]

\[+ \left(f_2^2(|C|x_1, x_1) \right)^{\frac{1}{2}} \left(g_2^2(|C^*|)x_2, x_2 \right)^{\frac{1}{2}} + \left(f_2^2(|D|x_2, x_2) \right)^{\frac{1}{2}} \left(g_1^2(|D^*|)x_2, x_2 \right)^{\frac{1}{2}} \]

\[\leq \left((f_2^2(|A|x_1, x_1) + g_3^2(|B^*|)x_1, x_1) + \left(f_2^2(|C|x_1, x_1) + g_2^2(|C^*|)x_2, x_2 \right) \right)^{\frac{1}{2}} \]

(by the Cauchy-Schwarz inequality)

\[+ \left(g_2^2(|A^*|)x_1, x_1 \right) + \left(f_2^2(|B|)x_2, x_2 \right) + \left(g_3^2(|C^*|)x_2, x_2 \right) + \left(f_2^2(|D|)x_1, x_1 \right) \right)^{\frac{1}{2}} \]

\[= \left(\left(f_2^2(|A|) + g_3^2(|B^*|) + f_3^2(|C|) \right)x_1, x_1 \right) + \left(g_2^2(|B^*|) + f_2^2(|D|) \right)x_2, x_2 \right) \}

\[+ \left(g_2^2(|A^*|)x_1, x_1 \right) \right)^{\frac{1}{2}} \]

\[\leq \left(f_2^2(|A|) + g_2^2(|B^*|) + f_3^2(|C|) \right) \|x_1\|^2 + \left(g_2^2(|D^*|) \right) \|x_2\|^2 + \left(g_1^2(|A^*|) \right) \|x_1\|^2 \]

Let

\[\alpha = \|f_2^2(|A|) + g_2^2(|B^*|) + f_3^2(|C|) \|, \quad \beta = \|g_2^2(|D^*|) \|, \quad \mu = \|f_2^2(|B|) + g_3^2(|C^*|) + f_4^2(|D|) \| \]

and \(\lambda = \|g_1^2(|A^*|) \| \).

It follows from

\[\max_{\|x_1\|^2 + \|x_2\|^2 = 1} \left(\alpha \|x_1\|^2 + \beta \|x_2\|^2 \right) = \max_{\theta \in [0, 2\pi]} \left(\alpha \sin^2 \theta + \beta \cos^2 \theta \right) = \max \{\alpha, \beta\} \]

and

\[\max_{\|x_1\|^2 + \|x_2\|^2 = 1} \left(\lambda \|x_1\|^2 + \mu \|x_2\|^2 \right) = \max_{\theta \in [0, 2\pi]} \left(\lambda \sin^2 \theta + \mu \cos^2 \theta \right) = \max \{\lambda, \mu\} \]
that

\[|\langle Tx, x \rangle| \leq \left(\| f_1^2(|A|) + g_2^2(|B^*|) + f_2^2(|C|) \| \| x_1 \|^2 + \| g_2^2(|D^*|) \| \| x_2 \|^2 \right)^{\frac{1}{2}} \]

\[+ \left(\| f_3^2(|B|) + g_3^2(|C^*|) + f_4^2(|D|) \| \| x_2 \|^2 + \| g_2^2(|A^*|) \| \| x_1 \|^2 \right)^{\frac{1}{2}} \]

\[\leq \max \left\{ \| f_1^2(|A|) + g_2^2(|B^*|) + f_2^2(|C|) \|^\frac{1}{2}, \| g_2^2(|D^*|) \|^\frac{1}{2} \right\} \]

\[+ \max \left\{ \| g_2^2(|A^*|) \|^\frac{1}{2}, \| f_2^2(|B|) + g_3^2(|C^*|) + f_4^2(|D|) \|^\frac{1}{2} \right\} \]

\[= \max \left\{ \| f_1^2(|A|) + g_2^2(|B^*|) + f_2^2(|C|) \|^\frac{1}{2}, \| g_4(|D^*|) \| \right\} \]

\[+ \max \left\{ \| g_1(|A^*|) \|, \| f_2^2(|B|) + g_3^2(|C^*|) + f_4^2(|D|) \|^\frac{1}{2} \right\}. \]

Taking the supremum over all unit vectors \(x \) we get the desired result. \(\square \)

Corollary 2.16. Let \(A, B, C, D \in \mathbb{B}(\mathcal{H}) \). Then

\[
\omega \left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \right) \leq \max \left\{ \| |A|^{2\alpha} + |B^*|^{2\gamma} + |C|^{2\mu} \|^\frac{1}{2}, \| |D^*| \| \right\} \]

\[+ \max \left\{ \| |A^*|^{\beta} \|, \| |B|^{2\zeta} + |C^*|^{2\nu} + |D|^{\kappa} \| \right\}, \]

where \(\alpha + \beta = \gamma + \zeta = \mu + \nu = \omega + \kappa = 1 \). In particular,

\[
\omega \left(\begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \right) \leq \max \left\{ \| |A^*|^{\beta} \|, \| |B|^{\zeta} \| \right\} + \| |A|^{2\alpha} + |B^*|^{2\gamma} \|^\frac{1}{2}, \]

in which \(\alpha + \beta = \gamma + \zeta = 1 \).

References

1. A. Abu-Omar and F. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. **216** (2013), 69–75.
2. A. Abu-Omar and F. Kittaneh, Generalized spectral radius and norm inequalities for Hilbert space operators, International Journal of Mathematics Vol. **26**, No. 11 (2015) 1550097 (9 pages).
3. O. Axelsson, H. Lu and B. Polman, On the numerical radius of matrices and its application to iterative solution methods, Linear Multilinear Algebra. 37 (1994), 225–238.
4. M. Bakherad and M.S. Moslehian, Complementary and refined inequalities of Callebaut inequality for operators, Linear Multilinear Algebra 63 (2015), no. 8, 1678–1692.
5. K. Davidson and S.C. Power, Best approximation in \(C^* \)-algebras, J. Reine Angew. Math. **368** (1986) 43-62.
6. K.E. Gustafson and D.K.M. Rao, Numerical Range, The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
7. P.R. Halmos, A Hilbert Space Problem Book, 2nd ed., springer, New York, 1982.
8. O. Hirzallah, F. Kittaneh and K. Shebrawi, *Numerical radius inequalities for commutators of Hilbert space operators*, Numer. Funct. Anal. Optim. 32 (2011) 739–749.

9. O. Hirzallah, F. Kittaneh and K. Shebrawi, *Numerical radius inequalities for certain 2×2, operator matrices*, Integral Equations Operator Theory, 71 (2011) 129–147.

10. F. Kittaneh, *Notes on some inequalities for Hilbert space operators*, Publ. Res. Inst. Math. Sci. 24 (2) (1988), 283–293.

11. F. Kittaneh, *A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix*, Studia Math. 158 (2003), 11–17.

12. K. Okubo, *On weakly unitarily invariant norm and the Aluthge transformation*, Linear Algebra Appl. 371 (2003) 369–375.

13. K. Shebrawi, *Numerical radius inequalities for certain 2×2 operator matrices II*, Linear Algebra Appl. (2017), http://dx.doi.org/10.1016/j.laa.2017.02.019

14. K. Shebrawi and H. Albadawi, *Numerical radius and operator norm inequalities*, J. Math. Inequal. (2009) Article ID 492154, 11 pages.

15. T. Yamazaki, *On upper and lower bounds of the numerical radius and an equality condition*, Studia Math. 178 (2007), 83–89.

1Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, I.R.Iran.

E-mail address: mojtaba.bakherad@yahoo.com; bakherad@member.ams.org

2Department of Mathematics, Al-Balqa’ Applied University, Salt, Jordan.

E-mail address: khalid@bau.edu.jo; shebrawi@gmail.com