A new hypothesis: some metastases are the result of inflammatory processes by adapted cells, especially adapted immune cells at sites of inflammation [version 1; peer review: 3 approved]

Leili Shahriyari

Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA

Abstract
There is an old hypothesis that metastasis is the result of migration of tumor cells from the tumor to a distant site. In this article, we propose another mechanism for metastasis, for cancers that are initiated at the site of chronic inflammation. We suggest that cells at the site of chronic inflammation might become adapted to the inflammatory process, and these adaptations may lead to the initiation of an inflammatory tumor. For example, in an inflammatory tumor immune cells might be adapted to send signals of proliferation or angiogenesis, and epithelial cells might be adapted to proliferation (like inactivation of tumor suppressor genes). Therefore, we hypothesize that metastasis could be the result of an inflammatory process by adapted cells, especially adapted immune cells at the site of inflammation, as well as the migration of tumor cells with the help of activated platelets, which travel between sites of inflammation. If this hypothesis is correct, then any treatment causing necrotic cell death may not be a good solution. Because necrotic cells in the tumor micro-environment or anywhere in the body activate the immune system to initiate the inflammatory process, and the involvement of adapted immune cells in the inflammatory processes leads to the formation and progression of tumors. Adapted activated immune cells send more signals of proliferation and/or angiogenesis than normal cells. Moreover, if there were adapted epithelial cells, they would divide at a much higher rate in response to the proliferation signals than normal cells. Thus, not only would the tumor come back after the treatment, but it would also grow more aggressively.

Keywords
Metastasis, Cancer, Chronic inflammation, Adapted immune cells, Inflammatory processes, Immune system, Platelets, Wound healing process.
Many cancers arise from sites of chronic inflammation\(^1\). Immune cells inside the chronic inflammation site initiate tumor progression by releasing reactive oxygen or nitrogen species, which lead to DNA damage in epithelial cells\(^2\). Inflammation not only can cause mutation in epithelial cells\(^3\), but can also change their fitness\(^4\).

In chronic inflammation, T-cells might become adapted to send high levels of proliferation signals, and regulatory T-cells might have been changed to prevent their inhibition\(^5\). Effector T-cells also create an environment for tumor initiation and progression by releasing tumor-promoting cytokines IL-6\(^6\).

These findings suggest that cells at the site of chronic inflammation are adapted to the wound healing process. Immune cells are adapted to send signals of proliferation or angiogenesis, and tissue cells are adapted to proliferation (like inactivation of tumor suppressor genes). These adaptations lead to the initiation of a tumor.

If there are adapted immune cells, then we can look at metastasis from a new perspective. Any site of inflammation might recruit these adapted immune cells and serve as a new site for tumor initiation and progression by releasing tumor-promoting cytokines IL-6\(^6\).

There is evidence of metastasis to the site of injury. Two patients with squamous cell carcinoma of the lung developed distant localized metastatic disease at sites of physical injuries; one to the knee injured in an accidental fall six weeks earlier, and the other to portions of the liver injured in a mechanical fall two months earlier\(^7\). In a mice model of metastatic breast cancer, radiation-induced pulmonary injury lead to chronic inflammatory responses, and development of pre-metastatic niches\(^8\). In another mice model, hepatic ischemia-reperfusion injury increased the number of liver metastases of human pancreatic cancer (Capan-1) cells, which were injected into the mice spleen\(^9\). Several studies show that lung injury induced by the chemotherapy drug, bleomycin, increases lung metastases; they also observed tumor cell adherence to extracellular matrix and fibrin at injured areas\(^10\). Therefore we suggest that the sites of injuries are potential metastatic sites.

By querying published available data sets\(^11\), we calculate the probability of not detecting any CTCs in blood from patients with metastatic breast cancer, and the result is 0.6. That means there might be other phenomena, beside CTCs, that cause metastasis. Since, no CTCs were detected in the blood of 29% of metastatic breast cancer patients starting a first or new line of therapy, it is unlikely that treatments are responsible for not observing CTCs in blood\(^12\).

We hypothesize that chronic inflammation can cause adapted bone marrow derived cells (for example, adapted macrophages or T-cells) and/or adapted tissue cells (for instance, adapted epithelial cells or stromal fibroblasts) to lead tumor initiation and progression. If adapted immune cells are present, then the new site of inflammation might recruit these adapted immune cells and cause metastasis. Additionally, the new site of inflammation may recruit activated platelets. The activated platelets travel between sites of inflammation, including the site of inflammatory carcinoma. Tumor cells can link to adhesion receptors on platelets and travel to the new site of inflammation. The activated platelets start the wound healing process at the new site, which now includes some tumor cells. As the tumor cells respond to the wound healing signals more strongly than normal cells, new tumors would initiate in the site of inflammation (Figure 1).

\(^{1}\) Tran et al.

\(^{2}\) Henson et al.

\(^{3}\) Chakraborty et al.

\(^{4}\) Mulligan et al.

\(^{5}\) Schuster et al.

\(^{6}\) Khattra et al.

\(^{7}\) Komatsuzaki et al.

\(^{8}\) Poirier et al.

\(^{9}\) Hino et al.

\(^{10}\) Sánchez-Madrid et al.

\(^{11}\) Mulligan et al.

\(^{12}\) Schuster et al.

\(^{13}\) Tran et al.

\(^{14}\) Mulligan et al.

\(^{15}\) Khattra et al.

\(^{16}\) Tran et al.

\(^{17}\) Mulligan et al.

\(^{18}\) Schuster et al.

\(^{19}\) Tran et al.

\(^{20}\) Mulligan et al.

\(^{21}\) Schuster et al.

\(^{22}\) Tran et al.

\(^{23}\) Mulligan et al.

\(^{24}\) Schuster et al.

\(^{25}\) Tran et al.

\(^{26}\) Mulligan et al.

\(^{27}\) Schuster et al.

\(^{28}\) Tran et al.
Competing interests
No competing interests were disclosed.

Grant information
This research has been supported in part by the Mathematical Biosciences Institute and the National Science Foundation under grant DMS 0931642.

I confirm that the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References
1. Balkwill F, Charles KA, Mantovani A: Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005; 7(3): 211–217. PubMed Abstract | Publisher Full Text
2. Waldner MJ, Neurath MF: Colitis-associated cancer: the role of T cells in tumor development. Semin Immunopathol. 2009; 31(2): 249–256. PubMed Abstract | Publisher Full Text
3. Hussain SP, Amstad P, Raja K, et al.: Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res. 2000; 60(13): 3333–3337. PubMed Abstract
4. Vermeulen L, Morisset E, van der Heijden M, et al.: Defining Stem Cell Dynamics in Models of Intestinal Tumor Initiation. Science. 2013; 342(6161): 995–998. PubMed Abstract | Publisher Full Text
5. Erdman SE, Poutahidis T: Roles for inflammation and regulatory T cells in colon cancer. Toxicol Pathol. 2010; 38(1): 76–87. PubMed Abstract | Publisher Full Text
6. Chaffer CL, Weinberg RA: A perspective on cancer cell metastasis. Science. 2011; 331(6024): 1559–1564. PubMed Abstract | Publisher Full Text
7. Tazi JH, Yang J: Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013; 27(20): 2195–2208. PubMed Abstract | Publisher Full Text | Free Full Text
8. Tan WL, Weinberg RA: The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 2013; 19(11): 1438–1449. PubMed Abstract | Publisher Full Text | Free Full Text
9. Lu M, Jolly MK, Onuchic J, et al.: Toward decoding the principles of cancer metastasis circuits. Cancer Res. 2014; 74(17): 4574–4577. PubMed Abstract | Publisher Full Text
10. Cohen EN, Gao H, Anfossi S, et al.: Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells. PLoS One. 2015; 10(7): e0132710. PubMed Abstract | Publisher Full Text | Free Full Text
11. Pantel K, Denève E, Nocca D, et al.: Circulating epithelial cells in patients with benign colon diseases. Clin Chem. 2012; 58(9): 936–940. PubMed Abstract | Publisher Full Text
12. Zvaifler NJ: Relevance of the stroma and epithelial-mesenchymal transition (EMT) for the rheumatic diseases. Arthritis Res Ther. 2006; 8(3): 210. PubMed Abstract | Publisher Full Text | Free Full Text
13. Pierga JY, Bonneton C, Vincent-Salomon A, et al.: Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin Cancer Res. 2004; 10(4): 1392–1400. PubMed Abstract | Publisher Full Text
14. Reithdorf S, Fritsche H, Müller V, et al.: Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res. 2007; 13(3): 920–928. PubMed Abstract | Publisher Full Text
24. Nieswandt B, Budd GT, Ellis MJ, et al.: Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004; 351(8): 781–791.
PubMed Abstract | Publisher Full Text

25. Yu M, Barcia A, Wittner BS, et al.: Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013; 339(6119): 580–584.
PubMed Abstract | Publisher Full Text | Free Full Text

26. Labelle M, Begun S, Hynes RO: Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011; 20(5): 576–590.
PubMed Abstract | Publisher Full Text | Free Full Text

27. Pavlidis N, Fizazi K: Carcinoma of unknown primary (CUP). Crit Rev Oncol Hematol. 2009; 69(3): 271–278.
PubMed Abstract | Publisher Full Text | Free Full Text

28. Hainsworth JD, Greco FA: Cancer of Unknown Primary Origin. Goldman's Cecil Medicine: Twenty Fourth Edition. 2012: 1: 1334–1337.
PubMed Full Text

29. Peinado H, Lavotshkin S, Lyden D: The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol. 2011; 21(2): 139–146.
PubMed Abstract | Publisher Full Text

30. Kaplan RN, Ribas RD, Zacharoulis S, et al.: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005; 430(7009): 820–827.
PubMed Abstract | Publisher Full Text | Free Full Text

31. Walter ND, Rice PL, Redente EF, et al.: Wound healing after trauma may predispose to lung cancer metastasis: review of potential mechanisms. Am J Respir Cell Mol Biol. 2010; 43(5): 591–596.
PubMed Abstract | Publisher Full Text

32. Gog HU, Hu YW, Hu QY, et al.: Radiation-induced pulmonary injury accelerated pulmonary metastasis in a mouse model of breast cancer. Oncol Lett. 2015; 10(6): 3613–3618.
PubMed Abstract | Publisher Full Text | Free Full Text

33. Yoshimoto K, Tanaka H, Ohita T, et al.: Increased E-selectin in hepatic ischemia-reperfusion injury mediates liver metastasis of pancreatic cancer. Oncol Rep. 2012; 28(3): 711–716.
PubMed Abstract | Publisher Full Text | Free Full Text

34. On FW, Adamson IY, Young L: Promotion of pulmonary metastasis in mice by bleomycin-induced endothelial injury. Cancer Res. 1986; 46(2): 891–7.
PubMed Abstract

35. Adamson IY, On FW, Young L: Effects of injury and repair of the pulmonary endothelium on lung metastasis after bleomycin. J Pathol. 1986; 150(4): 273–87.
PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️ ✔️

Version 1

Reviewer Report 27 April 2016

https://doi.org/10.5256/f1000research.8666.r13490

© 2016 Borgeat A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Alain Borgeat
Orthopedic University Hospital Balgrist, Zurich, Switzerland

There is more and more evidence that cancer metastases and inflammation share a common pathway. Therefore this hypothesis has a relevant scientific background. Prospective clinical trials looking at this issue will be welcome.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 22 April 2016

https://doi.org/10.5256/f1000research.8666.r13492

© 2016 Forget P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Patrice Forget
Department of Anesthesiology, Université Catholique de Louvain, Brussels, Belgium

The inflammatory nature of cancer, and especially metastases development, becomes a paradigm shift. This text summarizes well some new hypotheses and future challenges. Next steps to translate this in clinical trials are then needed.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 18 April 2016

https://doi.org/10.5256/f1000research.8666.r13279

© 2016 Keshtkar Jahromi M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Maryam Keshtkar Jahromi
Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA

This hypothesis has a potential to make a positive impact in cancer research and drug discovery. For cancer patients, it might help to accelerate both the development of promising therapies and the potential of personalized medicine — treatments based on an individual's unique immune deficiency. This is a very interesting and unique idea which needs more research.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com