Protein kinase C βII and TGFβRII in ω-3 fatty acid-mediated inhibition of colon carcinogenesis

Nicole R. Murray,1,2 Capella Weems,1 Lu Chen,1,2 Jessica Leon,1 Wangsheng Yu,1 Laurie A. Davidson,4 Lee Jamieson,1 Robert S. Chapkin,1 E. Aubrey Thompson,1,2 and Alan P. Fields1,2,3

1Sealy Center for Cancer Cell Biology, 2Department of Human Biological Chemistry and Genetics, and 3Department of Pharmacology, University of Texas Medical Branch, Galveston, TX 77555
4Molecular and Cell Biology Section, Faculty of Nutrition, Texas A&M University, College Station, TX 77843

Increasing evidence demonstrates that protein kinase C βII (PKCβII) promotes colon carcinogenesis. We previously reported that colonic PKCβII is induced during colon carcinogenesis in rodents and humans, and that elevated expression of PKCβII in the colon of transgenic mice enhances colon carcinogenesis. Here, we demonstrate that PKCβII represses transforming growth factor β receptor type II (TGFβRII) expression and reduces sensitivity to TGF-β-mediated growth inhibition in intestinal epithelial cells. Transgenic PKCβII mice exhibit hyperproliferation, enhanced colon carcinogenesis, and marked repression of TGFβRII expression. Chemopreventive dietary ω-3 fatty acids inhibit colonic PKCβII activity in vivo and block PKCβII-mediated hyperproliferation, enhanced carcinogenesis, and repression of TGFβRII expression in the colonic epithelium of transgenic PKCβII mice. These data indicate that dietary ω-3 fatty acids prevent colon cancer, at least in part, through inhibition of colonic PKCβII signaling and restoration of TGF-β responsiveness.

Introduction

Epidemiological studies have shown a convincing link between dietary fat intake and colon cancer risk (for review see Bartsch et al., 1999). Consumption of fish oil, which contains a high level of ω-3 polyunsaturated fatty acids, particularly eicosapentaenoic acid (c20:5, n-3) and docosahexaenoic acid (c22:6, n-3), is associated with reduced colorectal cancer incidence (Bang et al., 1976; Caygill and Hill, 1995; Latham et al., 1999). Despite the compelling epidemiological and biochemical evidence demonstrating the efficacy of ω-3 fatty acids in colon cancer chemoprevention (Rose and Connolly, 1997; Latham et al., 1999), little is known about how these dietary lipids mediate their protective effects. ω-3 fatty acids can inhibit the colonic epithelial hyperproliferation observed during colon carcinogenesis, suggesting that proliferative signaling is an important target of their chemopreventive effects (Anti et al., 1994, 1997; Latham et al., 1999).

Elevated colonic protein kinase C βII (PKCβII)* expression and activity correlate with colon carcinogenesis in both rodents and humans (Murray et al., 1999; Gokmen-Polar et al., 2001). Elevated PKCβII expression in the colonic epithelium of transgenic mice induces hyperproliferation and enhances susceptibility to azoxymethane (AOM)-induced colon carcinogenesis (Murray et al., 1999), demonstrating a direct role for PKCβII in colon carcinogenesis. Based on these data, we hypothesized that ω-3 fatty acids block colon carcinogenesis by interfering with proliferation via inhibition of PKCβII signaling. To test this hypothesis, we evaluated the effect of a diet high in ω-3 fatty acids on colonic PKCβII activity and signaling. Dietary ω-3 fatty acids inhibited PKCβII activity and suppressed PKCβII-mediated hyperproliferation and colon carcinogenesis in vivo. In addition, our data demonstrate that PKCβII represses transforming growth factor β receptor type II (TGFβRII) expression in vitro and in vivo, and that this repression is reversed by dietary ω-3 fatty acids.

*Abbreviations used in this paper: ACF, aberrant crypt foci; AOM, azoxymethane; BrdU, bromodeoxyuridine; PKCβII, protein kinase C βII; RIE, rat intestinal epithelial; TGFβRII, transforming growth factor β receptor type II.

Address correspondence to Alan P. Fields, Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1048. Tel.: (409) 747-1935. Fax: (409) 747-1938.
E-mail: afields@utmb.edu
Key words: protein kinase C; colon carcinogenesis; ω-3 fatty acids; transforming growth factor β; hyperproliferation
Results and discussion

PKCβII is a lipid-dependent protein kinase whose activity can be modulated in vitro by ω-3 fatty acids (Holian and Nelson, 1992; Davidson et al., 2000; Seung Kim et al., 2001). Therefore, we assessed the relationship between colonic PKCβII activity and dietary ω-3 fatty acids during AOM-induced colon carcinogenesis in vivo. Cytosolic and membrane extracts from colonic epithelia of male Sprague-Dawley rats fed an ω-6 fatty acid diet (15% maize oil by weight) or ω-3 fatty acid diet (3.5% maize oil, 11.5% fish oil) were subjected to immunoblot analysis for PKCβII (Fig. 1). A significant decrease in the level of membrane-associated PKCβII was observed in the colonic epithelium of animals fed ω-3 fatty acids, whereas cytosolic PKCβII levels were similar in both diet groups. The membrane association of conventional PKC isozymes, including PKCα, PKCβI, PKCβII, PKCδ, and PKCε, were similar in both diet groups. The membrane association of conventional PKC isozymes, including PKCβII, is widely accepted as an indirect measure of PKC enzyme activation because it is not technically feasible to directly determine the activity of the enzyme in situ. Our results are consistent with the direct inhibition of PKCβII activity by ω-3 fatty acids in vitro (Holian and Nelson, 1992).

We previously characterized transgenic mice expressing elevated levels of PKCβII in the colonic epithelium similar to those observed in mouse colon tumors (Murray et al., 1999; Gokmen-Polar et al., 2001). Transgenic PKCβII mice exhibit a hyperproliferative phenotype and enhanced colon carcino-
genesis (Murray et al., 1999). Therefore, we assessed the effect of dietary ω-3 fatty acids on AOM-mediated carcino-
genesis in transgenic PKCβII mice. Transgenic PKCβII mice fed a diet rich in ω-6 fatty acids exhibited enhanced colon carcinogenesis, as evidenced by increased numbers of preneoplastic lesions, aberrant crypt foci (ACF) (Fig. 2 A). In contrast, a diet rich in ω-3 fatty acids inhibited the enhanced colon carcinogenesis characteristic of transgenic PKCβII mice. Thus, dietary ω-3 fatty acids block PKCβII activation and attenuate the precancerous effects of PKCβII in the colon in vivo.

Transgenic PKCβII mice exhibit hyperproliferation of the colonic epithelium (Murray et al., 1999), whereas di-

![Figure 1. Dietary ω-3 fatty acids block AOM-induced PKCβII activity. PKCβII expression was assessed in membrane and cytosolic fractions from colonic epithelial cell extracts from the distal colon of AOM-treated Sprague-Dawley rats fed either an ω-6 or an ω-3 fatty acid diet. Values represent means ± SEM, n = 5.](Image)

![Figure 2. Dietary ω-3 fatty acids block PKCβII-enhanced colon carcinogenesis and colonic hyperproliferation. (A) Effect of dietary fat intake on AOM-induced ACF formation in transgenic PKCβII mice. Mice were terminated 12 wk after the final AOM injection and the colon analyzed for ACF formation as described previously (McCellan et al., 1991; Murray et al., 1999). Values represent means ± SEM, n = 6–18 animals/experimental group. (B) Mice were fed an ω-6 or ω-3 diet for 18 d. 1 h before sacrifice, mice were injected with 50 mg/kg BrdU and distal colon was isolated, fixed in 4% paraformaldehyde, and analyzed for proliferation as determined by BrdU labeling (Chang et al., 1997). Results represent proliferative index relative to nontransgenic controls. Values represent means ± SEM, n = 4–5 animals/experimental group.](Image)
TGF-β responsiveness during colon carcinogenesis (Markowitz and Roberts, 1996), we assessed whether this change in TGFβRII expression leads to an alteration in the well-documented response of the RIE-1 cells to TGF-β (Ko et al., 1995). RIE-1 and RIE/PKCβII cells were transfected with a reporter plasmid containing a TGF-β-responsive element from the tissue plasminogen activator promoter linked to luciferase (Wrana et al., 1992). RIE-1 cells respond to TGF-β by activation of this TGF-β-dependent reporter construct (Fig. 3 B). However, RIE/PKCβII cells showed a diminished transcripational response to TGF-β consistent with repression of TGFβRII expression. Cotransfection of the TGF-β reporter plasmid with a plasmid containing R4TD202, a constitutively active mutant of TGFβRII (Feng and Derynck, 1996), resulted in comparable increases in transcriptional activity in both RIE-1 and RIE/PKCβII cells (Fig. 3 B), indicating that signaling downstream of the TGF-β receptor is intact in both RIE-1 and RIE/PKCβII cells. Consistent with the transcriptional response to TGF-β, RIE-1 cell proliferation was inhibited by TGF-β as determined by a reduction in the number of bromodeoxyuridine (BrdU)-labeled cells after addition of TGF-β1 to mid-log phase cultures (Fig. 3 C). RIE/PKCβII cells, however, were relatively insensitive to TGF-β inhibition of BrdU labeling (Fig. 3 C). Although there was no detectable growth phenotype associated with expression of PKCβII in the absence of added TGF-β (Fig. 3 D), RIE/PKCβII cells were much less sensitive to TGF-β–mediated inhibition of proliferation (Fig. 3 E). Thus, expression of PKCβII leads to repression of TGFβRII and loss of TGF-β responsiveness in RIE-1 cells.

To directly demonstrate that PKCβII activity is responsible for repression of TGFβRII protein expression in RIE/PKCβII cells, we determined the effect of the PKCβ-selective inhibitor LY379196 on TGFβRII expression. Treatment of RIE/PKCβII cells with increasing concentrations of LY379196 led to a dose-dependent increase in TGFβRII protein expression (Fig. 4 A). Quantitative analysis of these expression data (Fig. 4 B) indicate an apparent ED50 for reexpression of TGFβRII of ~40 nM LY379196, consistent with the reported IC50 of LY379196 for PKCβII of 30 nM (Jirousek et al., 1996). It should also be noted that re-expression of TGFβRII is accompanied by reduced electrophoretic mobility of TGFβRII upon SDS-PAGE. Because TGFβRII is highly glycosylated, it is possible that this shift reflects changes in posttranslational processing of the protein. The significance of this observation to TGF-β–mediated signaling is unclear. Nevertheless, these data provide direct evidence that PKCβII activity is responsible for repression of TGFβRII in these cells.

TGF-β is a potent growth inhibitor in epithelial cells (Lamprecht et al., 1989) and the loss of TGF-β responsiveness is a common feature of many human colon cancers, particularly those exhibiting the microsatellite instability phenotype (Markowitz et al., 1995). Loss of TGF-β responsiveness in hereditary nonpolyposis colon cancer syndrome is due to inactivating mutations within TGFβRII (Markowitz et al., 1995; Kim et al., 2000). Recent studies indicate that transcriptional repression of TGFβRII expression is a common mechanism for loss of TGF-β responsiveness in RIE/PKCβII cells, when compared with RIE-1 cells. These results were confirmed by Western blotting using a specific antibody to TGFβRII (Fig. 3 A). Given the importance of TGF-β signaling in colonic epithelial cell proliferation and differentiation, and the frequent loss of

![Figure 3](image-url)
Colonic epithelial cell extracts from transgenic PKCβII and nontransgenic mice fed an ω-6 fatty acid diet were subjected to immunoblot (Fig. 5 A) and immunofluorescence analysis (Fig. 5 B, 1 and 4) using a specific TGFβRII antibody. Extracts from nontransgenic mice contained little PKCβII, but abundant TGFβRII, whereas those from transgenic PKCβII mice contained elevated PKCβII and a reduced level of TGFβRII (Fig. 5 A). Immunofluorescence analysis for TGFβRII confirmed these immunoblotting results (Fig. 5 B). Colonic crypts from nontransgenic mice fed an ω-6 fatty acid diet (Fig. 5 B, 4) exhibited abundant staining for TGFβRII. Staining was strongest in the upper third and along the luminal surfaces of the colonic crypts, consistent with the reported distribution of TGFβRII in the colonic epithelium (Guda et al., 2001). In contrast, colonic crypts from transgenic PKCβII mice fed an ω-6 fatty acid diet (Fig. 5 B, 1) expressed much lower levels of TGFβRII, confirming that TGFβRII expression was repressed by PKCβII in the colonic epithelium in vivo.

Because PKCβII mediates repression of TGFβRII expression and dietary ω-3 fatty acids inhibit PKCβII signaling, we predicted that dietary ω-3 fatty acids would restore TGFβRII expression in transgenic PKCβII mice. Indeed, transgenic PKCβII mice fed an ω-3 fatty acid diet showed levels of TGFβRII comparable to those seen in nontransgenic mice (Fig. 5 B, 2). Therefore, TGFβRII is a critical gene target of PKCβII-mediated repression in RIE-1 cells in vitro and in the colonic epithelium in vivo. Our data are consistent with the conclusion that PKCβII down-regulates TGFβRII expression, thereby inducing a TGF-β-insensitive state. Because TGF-β inhibits proliferation and promotes differentiation of intestinal epithelial cells (Lamprecht et al., 1989), PKCβII-mediated repression of TGFβRII imposes a hyperproliferative state that increases sensitivity to carcinogens, such as AOM. Dietary ω-3 fatty acids inhibit PKCβII activity and restore TGFβRII expression in the colonic epithelium of transgenic PKCβII mice, resulting in reversal of the hyperproliferative phenotype and attenuation of the enhanced colon carcinogenesis characteristic of transgenic PKCβII mice.
Our results provide a plausible link between chemopreventive dietary ω-3 fatty acids, colon PKCβII activity, TGF-β signaling, cellular proliferation, and susceptibility to colon cancer. Therefore colonic PKCβII, which is induced early during colon carcinogenesis, represents a novel and potentially highly effective target for chemopreventive therapy in colon cancer. Given the strong association of dietary ω-3 fatty acids with the chemoprevention of other epithelial cancers, including breast and prostate cancer (Rose and Connolly, 1999), as well as neurological conditions such as bipolar disorder (Seung Kim et al., 2001), it is possible that selective PKCβII inhibition could prove to be an important therapeutic modality in the treatment and chemoprevention of multiple epithelial cancers and central nervous system disorders. Likewise, because repression of TGFβRII expression has been documented in many cancer cell types, including gastric cancer, colon cancer, small cell lung cancer, esophageal cancer, hepatocellular carcinoma, squamous cell carcinoma, breast cancer, endometrial cancer, bladder cancer, and osteosarcoma (for review see Kim et al., 2000), it is possible that PKCβII inhibition, either through dietary modulation or pharmacological intervention, may be of therapeutic value for a broad range of major cancer types by restoring TGF-β responsiveness in these tumors.

Materials and methods
Production and maintenance of transgenic mice
Transgenic PKCβII mice were generated and maintained essentially as described previously (Murray et al., 1999), except that the transgene construct used a modified version of the rat liver fatty acid binding protein promoter containing four copies of a heptad repeat enhancer region that directs enhanced and more sustained expression in the entire colonic epithelium (Simon et al., 1997).

Cell fractionation and PKCβII immunoblot analysis
3-wk-old Sprague-Dawley rats fed either an ω-6 fatty acid diet (15% maize oil by weight) or an ω-3 fatty acid diet (3.5% maize oil, 11.5% fish oil, by weight; Chang et al., 1997). After 1 wk on experimental diets, rats were injected with AOM (Chang et al., 1997). Animals were terminated at 16 wk after AOM injection. Colonic epithelial cell extracts from the distal colon were fractionated into membrane and cytosolic fractions and subjected to immunoblot analysis for PKCβII expression (Davidson et al., 2000). Band intensity was quantitated using the Bio-Rad Laboratories Fluor-s imaging system.

ACF analysis
6–8-wk-old transgenic PKCβII mice and nontransgenic littersmates were maintained on either an ω-3- or ω-6-containing diet ad libitum. After 18 d on the defined diets, the mice were killed. Distal colon was isolated, fixed in 4% paraformaldehyde, sectioned, and subjected to immunofluorescence analysis for TGFβRII expression. Images were captured using a CCD color digital camera and digital image capture software.

We thank Dr. Jeffrey Gordon (Washington University, St. Louis, MO) for the gift of the modified rat liver fatty acid binding promoter, Dr. Jeffrey Ceci (University of Texas Medical Branch) for generation of the founder transgenic mice, and Brian Bloodworth for excellent technical assistance. The National Cancer Institute for the gift of the modified rat liver fatty acid binding promoter, Dr. Jeffrey Ceci (University of Texas Medical Branch) for generation of the founder transgenic mice, and Brian Bloodworth for excellent technical assistance.

References
Anit, M., F. Armeleao, G. Marra, A. Percesepe, G.M. Bartoli, P. Palma, P. Parelle, C. Canetta, N. Gentiloni, I. De Virisi, and G. Gasharrini. 1994. Effects of different doses of fish oil on rectal cell proliferation in patients with sporadic colon adenomas. Gastroenterology. 107:1709–1718.
Anit, M., G. Marra, F. Armeleao, A. Percesepe, and N. Gentiloni. 1997. Modulating effect of omega-3 fatty acids on the proliferative pattern of human colorectal mucosa. Adv. Exp. Med. Biol. 408B:605–610.
Bang, H.O., J. Dysberg, and N. Hjorne. 1976. The composition of food consumed by Greenland Eskimos. Acta Med. Scand. 200:69–73.
Barnes, H., J. Nair, and R.W. Owen. 1999. Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: emerging evidence for their role as risk modifiers. Carcinogenesis. 20:2209–2218.
Cargill, C.P., J., and M.J. Hill. 1995. Fish, n-3 fatty acids and human colorectal and breast cancer mortality. Eur. J. Cancer Prev. 4:329–332.
Cargill, C.P., A.M. Charlett, and J. Hill. 1996. Fat, fish, fish oil and cancer. Br. J.
Chang, W.-C.L., R.S. Chapkin, and J.R. Lupton. 1997. Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. *Carcinogenesis.* 18:721–730.

Davidson, L.A., R.E. Brown, W.C.L. Chang, L.S. Morris, N. Wang, R.J. Carroll, N.D. Turner, J.R. Lupton, and R.S. Chapkin. 2000. Morphodensimetric analysis of protein kinase C βII expression in rat colon: modulation by diet and relation to in situ cell proliferation and apoptosis. *Carcinogenesis.* 21:1513–1519.

Deschner, E.E., J.S. Lytle, G. Wong, J.F. Ruperto, and H.L. Newmark. 1990. The effect of dietary omega-3 fatty acids (fish oil) on azoxymethanol-induced focal areas of dysplasia and colon tumor incidence. *Cancer.* 66:2350–2356.

Feng, X.H., and R. Derynck. 1996. Ligand-independent activation of transforming growth factor (TGF) beta signaling pathways by heteromeric cytoplasmic domains of TGF-beta receptors. *J. Biol. Chem.* 271:13123–13129.

Gokmen-Polar, Y., N.R. Murray, M.A. Velasco, Z. Gatalica, and A.P. Fields. 2001. Elevated protein kinase C βII is an early promotive event in colon carcinogenesis. *Cancer Res.* 61:1375–1381.

Guda, K., C. Giardina, P. Nambiar, H. Cui, and D.W. Rosenberg. 2001. Aberrant transforming growth factor-β signaling in azoxymethane-induced mouse colon tumors. *Med. Carcinog.* 31:204–213.

Holian, O., and R. Nelson. 1992. Action of long-chain fatty acids on protein kinase C activity: comparison of omega-6 and omega-3 fatty acids. *Anticancer Res.* 12:975–980.

Jirousek, M.R., J.R. Gillig, C.M. Gonzalez, W.F. Heath, J.H. McDonald III, D.A. Neel, C.J. Rito, U. Singh, L.E. Stramm, A. Melikian-Badalian, et al. 1996. (S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16,21-dimetheno-1H,13H-dibenzo[e,k]pyrrolo[3,4-b][1,4,6]oxadiazacyclohexadecene-1,3(2H)-dione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase CβII. *J. Med. Chem.* 39:2664–2671.

Kim, S.J., Y.H. Im, S.D. Markowitz, and Y.J. Bang. 2000. Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. *Cytokine Growth Factor Rev.* 11:159–168.

Latham, P., E.K. Lund, and I.T. Johnson. 1999. Dietary n-3 PUFA increases the apoptotic response to 1,2-dimethylhydrazine, reduces mitosis and suppresses the induction of carcinogenesis in the rat colon. *Carcinogenesis.* 20:645–650.

Markowitz, S., J. Wang, L. Myeroff, R. Parsons, L. Sun, J. Lutterbaugh, R.S. Fan, E. Zborowska, K.W. Kinzler, and B. Vogelstein. 1995. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. *Science.* 268:1336–1338.

Markowitz, S.D., and A.B. Roberts. 1996. Tumor suppressor activity of the TGF-beta pathway in human cancers. *Cytokine Growth Factor Rev.* 7:93–102.

McLellan, E.A., A. Medline, and R.P. Bird. 1991. Dose response and proliferative characteristics of aberrant crypt foci: putative preneoplastic lesions in rat colon. *Carcinogenesis.* 12:2093–2098.

Murray, N.R., L.A. Davidson, R.S. Chapkin, W.C. Gustafson, D.G. Schattenberg, and A.P. Fields. 1999. Overexpression of protein kinase C βII induces colonic hyperproliferation and increased sensitivity to colon carcinogenesis. *J. Cell Biol.* 145:699–711.

Reddy, B.S., C. Burill, and J. Rigority. 1991. Effect of diets high in omega-3 and omega-6 fatty acids on initiation and postinitiation stages of colon carcinogenesis. *Cancer Res.* 51:487–491.

Rose, D.P., and J.M. Connolly. 1999. Omega-3 fatty acids as cancer chemopreventive agents. *Pharmacol. Ther.* 83:217–244.

Seung Kim, H.F., E.J. Weeber, J.D. Sweatt, A.L. Stoll, and L.B. Marangell. 2001. Inhibitory effects of omega-3 fatty acids on protein kinase C activity in vitro. *Med. Psychiatry.* 6:246–248.

Simon, T.C., A. Cho, P. Tso, and J.I. Gordon. 1997. Suppressor and activator functions mediated by a repeated heptad sequence in the liver fatty acid-binding protein gene (Fabp1). *J. Biol. Chem.* 272:10652–10663.

Wrana, J.L., I. Attisano, J. Carcamo, A. Zentella, J. Doddy, M. Luiho, X.F. Wang, and J. Massague. 1992. TGF beta signals through a heteromeric protein kinase receptor complex. *Cell.* 71:1003–1014.