We consider the radial quantization of $\mathcal{N} = 4$ super Yang-Mills (SYM) in 4 dimensions, i.e., $\mathcal{N} = 4$ SYM on a cylinder $\mathbb{R} \times S^3$. We construct the generators of superconformal symmetry in the case of $U(N)$ gauge group, generalizing the earlier work by Nicolai et al. for $U(1)$ gauge group. We study how these generators contract to the symmetry of pp-wave when they act on a state with large R-charge.
1. Introduction

Recently, Berenstein, Maldacena and Nastase proposed that the type IIB string theory on a pp-wave background is dual to a sector of $\mathcal{N} = 4$ SYM with large R-charge [1]. On the bulk side, the pp-wave geometry is obtained from $AdS_5 \times S^5$ by focusing on a null geodesic rotating around the equator of S^5 [2]. The important fact here is that the Green-Schwarz string on this background is solvable in the lightcone gauge [3]. On the YM side, this limit corresponds to taking a double scaling limit $N, J \rightarrow \infty$, \[g_2 = \frac{J^2}{N}, \quad \lambda' = \frac{g_{YM} N}{J^2} : \text{fixed} \quad (1.1) \]

One of the evidence of this duality is that the free string spectrum is reproduced from the computation of anomalous dimensions of the so-called BMN operators in $\mathcal{N} = 4$ SYM [1, 4, 6, 7]. However, the precise mapping between these two sides is yet unknown.

Some proposals about the holography in the pp-wave background are addressed in [8, 9, 10, 11]. Before taking the Penrose limit, the boundary of AdS_5 in the global coordinate is $R \times S^3$. Since the pp-wave geometry is obtained as the limit of AdS_5 with global coordinate, it is natural to think that the dual theory is a limit of $\mathcal{N} = 4$ SYM on the cylinder $R \times S^3$. In [11], it was shown that the boundary of the pp-wave geometry is a one-dimensional null line and was proposed that the dual theory is a matrix quantum mechanics obtained by the KK reduction of $\mathcal{N} = 4$ SYM on S^3. Note that this matrix model appeared in [12, 13] in the context of giant gravitons (see also [14]). Matrix string theories with $U(J)$ gauge group are discussed in [15, 16, 17].

In this paper, we study $U(N) \mathcal{N} = 4$ SYM on $R \times S^3$ and some of its properties under the limit (1.1). We construct the generators of superconformal symmetry of this theory, by generalizing the earlier work for the $U(1)$ gauge group [18]. Since $R \times S^3$ is a curved manifold, the superconformal symmetry is realized in a nontrivial way.

We also study the contraction of the conformal symmetry to the symmetry of pp-wave background [19, 20] from the YM viewpoint. Recently, this problem was studied in the duality between a $D = 2$ CFT and a 6-dimensional pp-wave geometry [21]. The higher dimensional case is also mentioned in [21]. We explicitly perform this contraction in the free field limit of $\mathcal{N} = 4$ SYM.

This paper is organized as follows. In section 2, we construct the generators of conformal symmetry of $\mathcal{N} = 4$ SYM on $R \times S^3$. In section 3, we construct the conformal Killing spinor on $R \times S^3$ and the generators of superconformal symmetry. In section 4,
we summarize the KK spectrum of $\mathcal{N}=4$ SYM on S^3 and study its pp-wave limit. In section 5, we study the contraction of the conformal symmetry to the symmetry of pp-wave geometry. Section 6 is devoted to discussions. In Appendix A, we summarize our notation of Γ-matrices. Appendix B is the list of conformal Killing vectors on $\mathbb{R} \times S^3$.

2. Conformal Symmetry of $\mathcal{N}=4$ SYM on $\mathbb{R} \times S^3$

In this section, we construct the generators of conformal symmetry of $\mathcal{N}=4$ SYM on a cylinder. To make this paper self-contained, we review some basic facts about $\mathcal{N}=4$ SYM on $\mathbb{R} \times S^3$ \cite{18,22,23}.

2.1. Conformal Coupling to a Background Metric

$\mathcal{N}=4$ SYM can couple to a background metric in a Weyl invariant way, since this theory is conformally invariant. The action can be written as

$$
S[A_\mu, X_m, \lambda, g_{\mu\nu}] = -\frac{1}{g_{YM}^2} \int d^4x \sqrt{|g|} \text{Tr} \left(\frac{1}{2} g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} + g^{\mu\nu} D_\mu X_\nu X_m + \frac{R}{6} X_m^2
- i\tilde{\Gamma}^\mu D_\mu \lambda - \tilde{\Gamma}^m [X_m, \lambda] - \frac{1}{2} [X_m, X_n]^2 \right)
$$

(2.1)

where $\mu, \nu = 0, \cdots, 3$, $m, n = 4, \cdots, 9$, and D_μ is the covariant derivative including the gauge field

$$
D_\mu \lambda = \nabla_\mu \lambda - i[A_\mu, \lambda] = \partial_\mu \lambda + \tilde{A}_\mu \lambda - i[A_\mu, \lambda].
$$

(2.2)

\tilde{A}_μ is the spin connection written as $\tilde{A}_\mu = \frac{4}{4} \Omega_{\alpha\beta}^a \Gamma_{ab}$. Here Ω_{ab} is the connection 1-form defined by $d\omega^a + \Omega_{ab}^c \wedge \omega^b = 0$, and ω^a is the vierbein defined in the usual manner:

$$
g_{\mu\nu} = \eta_{ab} \omega^a_{\mu} \omega^b_{\nu}, \quad g^{\mu\nu} = \eta^{ab} e_a^\mu e_b^\nu, \quad \{\Gamma^\mu, \Gamma^\nu\} = 2g^{\mu\nu}, \quad \{\Gamma^a, \Gamma^b\} = 2\eta^{ab}. \quad (2.3)
$$

One can show that the action (2.1) is Weyl invariant

$$
S[A_\mu, X_m, \lambda, g_{\mu\nu}] = S[A_\mu, e^{-\alpha} X_m, e^{-4\alpha} \lambda, e^{2\alpha} g_{\mu\nu}], \quad (2.4)
$$

\footnote{For a generic background metric, there appears a Weyl anomaly written as a combination of Riemann tensor. However, this anomaly vanishes when the metric is $\mathbb{R} \times S^3$ which is relevant for our discussion of the radial quantization.}
by noting that the scalar curvature and the spin connection in \(n \)-dimension transform under the Weyl rescaling as

\[
e^{2\alpha} R(e^{2\alpha} g_{\mu\nu}) = R(g_{\mu\nu}) - 2(n-1)g^{\mu\nu}\nabla_{\mu}\alpha - (n-1)(n-2)g^{\mu\nu}\partial_{\mu}\alpha\partial_{\nu}\alpha
\]

\[
\tilde{A}_{\mu}(e^{2\alpha} g_{\mu\nu}) = \tilde{A}_{\mu}(g_{\mu\nu}) + \frac{1}{2}\gamma_{\mu\nu}\partial^\nu\alpha.
\] (2.5)

The metric on the plane \(\mathbb{R}^4 \) and the cylinder \(\mathbb{R} \times S^3 \) are related by a Weyl rescaling

\[
ds^2 = dr^2 + r^2 d\Omega_3^2 = e^{2\tau} (d\tau^2 + d\Omega_3^2)
\] (2.6)

where \(\tau \) and \(r \) are related by

\[
\tau = \log r.
\] (2.7)

Therefore, the dilatation on \(\mathbb{R}^4 \) corresponds to the time translation on \(\mathbb{R} \times S^3 \) after the Wick rotation \(\tau = it \), and the Hamiltonian \(H \) on the cylinder can be identified with the weight \(\Delta \) on the plane.

Now let us fix \(g_{\mu\nu} \) to be the metric on \(\mathbb{R} \times S^3 \)

\[
ds^2 = -dt^2 + d\Omega_3^2 = -dt^2 + d\theta^2 + \sin^2 \theta (d\psi^2 + \sin^2 \psi d\chi^2).
\] (2.8)

Since \(\mathbb{R} \times S^3 \) has the scalar curvature \(R = 6 \), the action (2.1) becomes

\[
S = \frac{2}{g^2_{YM}} \int d^4x \mathrm{Tr} \left\{ -\frac{1}{4} F_{\mu\nu}^2 + i\overline{\lambda} \Gamma^M D_M \lambda - \frac{1}{2} X^2_m \right\}
\]

\[
= \frac{2}{g^2_{YM}} \int d^4x \mathrm{Tr} \left\{ -\frac{1}{4} F_{\mu\nu}^2 - \frac{1}{2} (D_\mu X_m)^2 + \frac{1}{4} [X_m, X_n]^2 + i\overline{\lambda} \Gamma^m D_\mu \lambda + \frac{1}{2} \overline{\lambda} \Gamma^m [X_m, \lambda] - \frac{1}{2} X^2_m \right\}
\] (2.9)

where \(A_M = (A_\mu, X_m) \) with \(M, N = 0, \cdots, 9 \). In (2.1) and (2.9), \(\lambda \) is a 10-dimensional Majorana-Weyl spinor dimensionally reduced to 4 dimensions. Note that there is no Coulomb branch in this theory because of the mass term of the scalar fields \(X_m \).

In \(SU(4) \) symmetric notation, this action is written as

\[
S = \frac{2}{g^2_{YM}} \int d^4x \mathrm{Tr} \left\{ -\frac{1}{4} F_{\mu\nu}^2 - \frac{1}{2} D_\mu X_{AB} D^\mu X^{AB} + \frac{1}{4} [X_{AB}, X_{CD}] [X^{AB}, X^{CD}] + i\overline{\lambda}_+^A \mathcal{D} \lambda^A + i\overline{\lambda}_-^A [X_{AB}, \lambda^B] + \overline{\lambda}_+^A [X^{AB}, \lambda_-^B] - \frac{1}{2} X_{AB} X^{AB} \right\},
\] (2.10)

where the gaugino \(\lambda^A_+ \) is a \(D = 4 \) positive chirality Weyl spinor and transforms as \(4 \) of \(SU(4)_R \) symmetry, and the scalars \(X^{AB} = -X^{BA} \) are \(6 \) of \(SU(4)_R \). \(\mathcal{D} \) means \(\gamma^\mu D_\mu \). See Appendix A for our notations.
2.2. Conformal Killing Vector on $\mathbb{R} \times S^3$

After fixing the metric (2.8), the Weyl rescaling (2.4) is no longer a symmetry of the action. Instead, the conformal symmetry is generated by the conformal Killing vectors of this fixed metric (2.8). One easy way to find the conformal Killing vectors on $\mathbb{R} \times S^3$ is to take the limit of the Killing vectors on AdS_5. To write the Killing vectors on AdS_5, it is convenient to regard AdS_5 as a hyperboloid in $\mathbb{R}^{4,2}$:

$$\sum_{a,b=0}^5 \hat{\eta}_{ab} y^a y^b = y_0^2 - \sum_{a=1}^4 y_a^2 + y_5^2 = R^2$$

(2.11)

where $\hat{\eta}_{ab} = \text{diag}(+,(−)^4,+)$. In terms of the coordinate y^a, the Killing vectors on AdS_5 can be easily written as

$$L_{ab} = y_a \frac{\partial}{\partial y^b} - y_b \frac{\partial}{\partial y^a}. \quad (2.12)$$

To obtain the conformal Killing vectors on $\mathbb{R} \times S^3$, we have to rewrite L_{ab} in terms of the global coordinate (ρ, t, Ω_3), in which the metric of AdS_5 takes the form

$$ds^2 = R^2 (- \cosh^2 \rho \ dt^2 + d\rho^2 + \sinh^2 \rho \ d\Omega_3^2) .$$

(2.13)

This coordinate and the coordinate y^a in (2.11) are related by

$$y^0 + iy^5 = Re^{it}\cosh \rho, \quad y^a = Rn^a \sinh \rho \quad (a = 1, \cdots, 4) \quad (2.14)$$

where n^a is a unit vector on S^3. In our parameterization of S^3 (2.8), n^a is given by

$$n = (\cos \theta, \sin \theta \cos \psi, \sin \theta \sin \psi \cos \chi, \sin \theta \sin \psi \sin \chi). \quad (2.15)$$

Now the (conformal) Killing vectors ξ_{ab} on $\mathbb{R} \times S^3$ can be obtained as the value of L_{ab} on the boundary of AdS_5:

$$\lim_{\rho \to \infty} L_{ab} = \xi_{ab}. \quad (2.16)$$

They satisfy the $SO(4,2)$ algebra

$$[\xi_{ab}, \xi_{cd}] = \hat{\eta}_{ad} \xi_{bc} - \hat{\eta}_{bd} \xi_{ac} - \hat{\eta}_{ac} \xi_{bd} + \hat{\eta}_{bc} \xi_{ad}. \quad (2.17)$$

On $\mathbb{R} \times S^3$, there are seven Killing vectors which are the generators of the $\mathbb{R} \times SO(4)$ isometry of the metric (2.8):

$$\xi_{05} = \partial_t, \quad \xi_{ab} = -n^a \partial_b + n^b \partial_a \quad (a, b = 1, \cdots, 4). \quad (2.18)$$
Note that the corresponding L_{ab}'s are independent of ρ. In addition to these Killing vectors, there are eight conformal Killing vectors on $\mathbf{R} \times \mathbf{S}^3$. On AdS_5, they are written as

$$L_{0a} - iL_{5a} = e^{-it}[n^a(-i \tanh \rho \partial_t + 2\partial_\rho) + \coth \rho \partial_a] \quad (a = 1, \cdots, 4). \quad (2.19)$$

Taking the limit $\rho \to \infty$, we get

$$\xi_{0a} - i\xi_{5a} = e^{-it}(-in^a \partial_t + \partial_a). \quad (2.20)$$

∂_a in (2.18) and (2.20) is defined by

$$\partial_a = \frac{\partial n^a}{(\partial n)^2} \partial_\theta + \frac{\partial n^a}{(\partial n)^2} \partial_\psi + \frac{\partial n^a}{(\partial n)^2} \partial_\chi, \quad \partial_a n^b = \delta^{ab} - n^a n^b. \quad (2.21)$$

One can check that the vectors (2.20) satisfy the conformal Killing equation

$$\nabla_\mu \xi_{\nu ab} + \nabla_\nu \xi_{\mu ab} = 2\Omega_{ab} g_{\mu \nu} \quad (2.22)$$

with

$$\Omega_{0a} - i\Omega_{5a} = -e^{-it}n^a. \quad (2.23)$$

In Appendix B, we write down the explicit form of ξ_{ab}.

2.3. Generators of Conformal Symmetry

The action (2.10) is invariant under the $SO(4, 2)$ conformal transformation generated by the conformal Killing vectors ξ_{ab}

$$\delta_{\xi_{ab}} A_\mu = \xi_{\mu}^{\nu} \nabla_\nu A_\mu + \nabla_\mu \xi_{\nu ab} A_\nu$$

$$\delta_{\xi_{ab}} X^{AB} = \xi_{\mu ab} \partial_\mu X^{AB} + \Omega_{ab} X^{AB}$$

$$\delta_{\xi_{ab}} \lambda_+^A = \xi_{ab} \nabla_\mu \lambda_+^A + \frac{1}{4} \nabla_\mu \xi_{\nu ab} \gamma^{\mu \nu} \lambda_+^A + \frac{3}{2} \Omega_{ab} \lambda_+^A. \quad (2.24)$$

The terms including ξ_{ab} represent the Lie derivative along ξ_{ab} and the coefficient in front of Ω_{ab} is determined by the weight of the field. To check this invariance, we need an equation following from the definition of Ω_{ab} (2.22) \cite{24}

$$(n - 1)\nabla_\mu \partial_\mu \Omega_{ab} + R\Omega_{ab} + \frac{1}{2} \xi_{ab}^{\mu} \partial_\mu R = 0. \quad (2.25)$$

In the case of $\mathbf{R} \times \mathbf{S}^3$, this reads

$$\nabla_\mu \partial_\mu \Omega_{ab} + 2\Omega_{ab} = 0. \quad (2.26)$$
The Noether charges of this symmetry (2.24) are found to be

\[M_{ab} = \frac{2}{g_{YM}^2} \text{Tr} \int_{S^3} \left[\xi_{ab}^0 \left(\frac{1}{2} \partial_D X_{AB} D^\mu X^{AB} + \frac{1}{2} X_{AB} X^{AB} + \frac{1}{4} F_{\mu \nu}^2 - i \bar{\lambda}_+^A \partial A \lambda^A + \frac{1}{4} [X_{AB}, X_{CD}] [X^{AB}, X^{CD}] - \bar{\lambda}_+^A [X_{AB}, \lambda^B_-] - \bar{\lambda}_+^B [X^{AB}, \lambda_-^B] \right) \\
+ \xi_{ab}^\mu (D_0 X_{AB} D_\mu X^{AB} + F_{\mu \nu} F^{\nu \mu}) + i \bar{\lambda}_+^A \gamma_0 \delta \xi_{ab}^\lambda + \frac{1}{2} \Omega_{ab} \partial_0 (X_{AB} X^{AB}) \right]. \]

(2.27)

Note that the Hamiltonian \(H \) is given by \(M_{05} \).

2.4. \(SU(4)_R \) Symmetry

The action (2.10) is also invariant under the \(SU(4)_R \) symmetry

\[\delta \lambda^A_+ = iT^A_B \lambda^B_-, \quad \delta \bar{\lambda}_-^A = -iT^-B_A \bar{\lambda}^B_-, \quad \delta X^{AB} = iT^A_C X^{CB} + iT^B_C X^{AC}, \]

(2.28)

where \(T^A_B \) is a hermitian traceless matrix. The charge of this symmetry is

\[J^A_B = \frac{2}{g_{YM}^2} \text{Tr} \int_{S^3} \left(-2i X^{AC} D_0 X_{CB} - \bar{\lambda}^A_+ \gamma_0 \lambda^0_- \right). \]

(2.29)

In the \(SO(6) \) notation, this is written as

\[J^{mn} = \frac{i}{2} (\Gamma^{mn})^A_B J^A_B = \frac{2}{g_{YM}^2} \text{Tr} \int_{S^3} \left(X^m \partial_0 X^n - \frac{i}{4} \bar{\lambda}^0_+ \Gamma^{mn} \lambda_- \right). \]

(2.30)

3. Superconformal Symmetry of \(\mathcal{N} = 4 \) SYM on \(\mathbb{R} \times S^3 \)

3.1. Conformal Killing Spinor on \(\mathbb{R} \times S^3 \)

The superconformal symmetry is generated by the conformal Killing spinors on \(\mathbb{R} \times S^3 \). They can be obtained from the Killing spinors on \(AdS_5 \) defined by

\[\bar{\nabla}_\mu \epsilon = \left(\nabla_\mu - \frac{1}{2} \gamma_\mu \right) \epsilon = 0. \]

(3.1)

In the global coordinate (2.13), \(\bar{\nabla} \) is written as

\[\bar{\nabla}_0 = \partial_0 + \frac{1}{2} \sinh \rho \gamma_0 \gamma_+ - \frac{1}{2} \cosh \rho \gamma_0 = e^{-\frac{1}{2} \rho \gamma_0} \left(\partial_0 - \frac{1}{2} \gamma_0 \right) e^{\frac{1}{2} \rho \gamma_0}, \]

\[\bar{\nabla}_i = \nabla_i + \frac{1}{2} \cosh \rho \gamma_i \gamma_+ - \frac{1}{2} \sinh \rho \gamma_i = e^{-\frac{1}{2} \rho \gamma_0} \left(\nabla_i - \frac{1}{2} \gamma_i \gamma_5 \right) e^{\frac{1}{2} \rho \gamma_0}, \]

\[\bar{\nabla}_\rho = \partial_\rho - \frac{1}{2} \gamma_\rho = \partial_\rho + \frac{1}{2} \gamma_5, \]

(3.2)
where $i(= 1, 2, 3)$ denotes the direction of S^3 and we identified $\gamma_\mu = -\gamma_5$. Therefore, the Killing spinor on AdS_5 and the conformal Killing spinor on $R \times S^3$ are related by [22,25]

$$\epsilon_{AdS_5} = e^{-\frac{1}{2} \rho \gamma_5} \epsilon_{R \times S^3}, \quad (3.3)$$

where $\epsilon_{R \times S^3}$ obeys

$$\partial_0 \epsilon = \frac{1}{2} \gamma_0 \epsilon, \quad \nabla_i \epsilon = \frac{1}{2} \gamma_i \gamma_5 \epsilon. \quad (3.4)$$

Under the chiral decomposition $\gamma_5 \epsilon_\pm = \pm \epsilon_\pm$, (3.4) becomes

$$\nabla_\mu \epsilon_- = \frac{1}{2} \gamma_\mu \epsilon_+, \quad \nabla_\mu \epsilon_+ = \frac{1}{2} \tilde{\gamma}_\mu \epsilon_- \quad (3.5)$$

where $\tilde{\gamma}_\mu = (\gamma_0, -\gamma_i)$. Note that this equation is consistent with the curvature of $R \times S^3$.

By using the connection 1-form on S^3

$$\Omega^{12} = -\cos \theta d\psi, \quad \Omega^{23} = -\cos \psi d\chi, \quad \Omega^{31} = \cos \theta \sin \psi d\chi, \quad (3.6)$$

with respect to the dreibein $(\omega^1, \omega^2, \omega^3) = (d\theta, \sin \theta d\psi, \sin \theta \sin \psi d\chi)$, the solution to the conformal Killing spinor equation (3.4) is found to be

$$\epsilon = e^{\frac{\rho}{2} \gamma_0} e^{\frac{\rho}{2} \gamma_{15}} e^{\frac{\rho}{2} \gamma_{12}} e^{\frac{\rho}{2} \gamma_{23}} \epsilon_0, \quad (3.7)$$

where ϵ_0 is a constant spinor.

Note that the bilinear combination of two conformal Killing spinors $\xi_\mu = \overline{\epsilon}_- \gamma_\mu \epsilon_-$ is a conformal Killing vector [24]

$$\nabla_\mu \xi_\nu + \nabla_\nu \xi_\mu = \left(\overline{\epsilon}_- \overline{\epsilon}_+ - \overline{\epsilon}_+ \overline{\epsilon}_- \right) g_{\mu \nu}. \quad (3.8)$$

3.2. Superconformal Transformation

The superconformal symmetry is generated by the conformal Killing spinors. In $D = 10$ notation, the transformation law is written as

$$\delta_\epsilon A_M = -i \overline{\lambda} \Gamma_M \epsilon, \quad \delta_\epsilon \lambda = \frac{1}{2} F_{MN} \Gamma^{MN} \epsilon - \frac{1}{2} X_m \Gamma^m \Gamma^\mu \nabla_\mu \epsilon. \quad (3.9)$$

In $D = 4$ notation, this reads

$$\delta_\epsilon A_\mu = -i \overline{\lambda} \Gamma_\mu \epsilon, \quad \delta X_m = -i \overline{\lambda} \Gamma_m \epsilon$$

$$\delta_\epsilon \lambda = \left[\frac{1}{2} F_{\mu \nu} \Gamma^{\mu \nu} \epsilon - D_\mu X^m \Gamma^m \Gamma_\mu - \frac{1}{2} X_m \Gamma^m \Gamma^\mu \nabla_\mu - \frac{i}{2} [X^m, X^n] \Gamma^{mn} \right] \epsilon. \quad (3.10)$$
The commutator of two superconformal transformation is closed up to a gauge transformation:

\[[\delta_\epsilon, \delta_\eta] = \delta_{SO(4,2)}(\xi^\mu) + \delta_{SO(6)}(\Lambda^{mn}) + \delta_{\text{gauge}}(v) \]

(3.11)

where the transformation parameters are given by

\[\xi^\mu = 2i\bar{\Gamma}^\mu \eta, \quad \Lambda^{mn} = \frac{i}{2}(\bar{\Gamma}^{mn}\Gamma^\mu \nabla_\mu \eta - \bar{\eta}\Gamma^{mn}\Gamma^\mu \nabla_\mu \epsilon), \quad v = -2i\bar{\Gamma}^M \eta A_M. \]

(3.12)

In SU(4) symmetric notation, the transformation (3.9) is written as

\[
\begin{align*}
\delta_\epsilon A_\mu &= -i(\bar{\lambda}_{+A}\gamma_\mu \epsilon^A - \bar{\epsilon}_{+A}\gamma_\mu \lambda^A) \\
\delta_\epsilon X^{AB} &= -i(-\bar{\epsilon}_{+A}\lambda^B + \bar{\epsilon}_{+B}\lambda^A + \epsilon^{ABCD}\bar{\lambda}_{+C}\epsilon_{-D}) \\
\delta_\epsilon \lambda^A_+ &= \frac{1}{2}F_{\mu\nu}\gamma^{\mu\nu}\epsilon^A_+ + 2D_\mu X^{AB}\gamma^\mu \epsilon_{-B} + X^{AB}\nabla \epsilon_{-B} + 2i[X^{AC},X_{CB}\epsilon^B_+] \\
\delta_\epsilon \lambda^-_A &= \frac{1}{2}F_{\mu\nu}\gamma^{\mu\nu}\epsilon^-_A + 2D_\mu X_{AB}\gamma^\mu \epsilon^B_+ + X_{AB}\nabla \epsilon^B_+ + 2i[X_{AC},X^{CB}\epsilon^-_B],
\end{align*}
\]

(3.13)

and the Noether charge of this symmetry is found to be

\[Q_\epsilon = \frac{2}{g_{YM}^2} \text{Tr} \int_{S^3} \left(i\bar{\lambda}_{+A}\gamma^0 \delta_\epsilon \lambda^A_+ + i\bar{\lambda}^A_- \delta_\epsilon \lambda^-_A \right). \]

(3.14)

4. Hamiltonian Formalism of 𝑁 = 4 SYM

4.1. KK Reduction on S³

In this subsection, we summarize the KK reduction of 𝑁 = 4 SYM on S³. The mass spectrum in (0 + 1)-dimension is given by [26]

\[M_{\text{scalar}} = \ell + 1, \quad M_{\text{fermion}} = \ell + \frac{3}{2}, \quad M_{\text{vector}} = \ell + 2 \quad (\ell = 0, 1, \cdots). \]

(4.1)

The scalar harmonics on S³ with angular momentum ℓ is given by the traceless symmetric polynomial of \(n^a \) with degree ℓ. \(M_{\text{scalar}}^2 \) in (4.1) can be obtained by adding the curvature \(R/6 = 1 \) and the Laplacian \(-\Delta_{S^3} = \ell(\ell + 2) \). We normalize the spherical harmonics as

\[\frac{1}{2\pi^2} \int_{S^3} Y^a_{\ell} Y^{a'}_{\ell'} = \delta_{\ell \ell'} \delta^{a a'}. \]

(4.2)

where \(2\pi^2 \) is the volume of S³. For \(\ell = 1 \), we find

\[Y^{a}_{\ell=1} = 2n^a, \quad \frac{1}{2\pi^2} \int_{S^3} Y^{a}_{\ell=1} Y^{b}_{\ell=1} = \delta^{ab}. \]

(4.3)
Let us look at the free part of the Lagrangian for scalar fields (2.9). By rescaling \(X^m \) to the canonically normalized field \(\phi^m \) and expanding in terms of the spherical harmonics

\[
X^m(t, \Omega) = \frac{g_{\text{YM}}}{2\pi} \phi^m = \frac{g_{\text{YM}}}{2\pi} \sum_{\ell=0}^{\infty} \phi^m_\ell(t) Y_\ell(\Omega_3),
\]

the free Lagrangian turns out to be

\[
L = \text{Tr} \sum_{\ell=0}^{\infty} \left[\frac{1}{2} (\dot{\phi}^m_\ell)^2 - \frac{1}{2} (\ell + 1)^2 (\phi^m_\ell)^2 \right].
\]

Then the free Hamiltonian can be diagonalized as

\[
H = \text{Tr} \sum_{\ell=0}^{\infty} (\ell + 1) a^m_\ell a^m_\ell. \tag{4.6}
\]

Here we introduced the oscillators \(a^m_\ell \) by

\[
\dot{\phi}^m_\ell = \frac{1}{\sqrt{2(\ell + 1)}} (a^m_\ell + a^m_\ell^\dagger), \quad \ddot{\phi}^m_\ell = i \sqrt{\frac{\ell + 1}{2}} (a^m_\ell - a^m_\ell^\dagger).
\]

They are normalized as

\[
[(a^m_\ell)^i_j, (a^{m^\dagger}_\ell)^k_l] = \delta_{\ell\ell'} \delta^{mn} \delta^i_l \delta^k_j, \tag{4.8}
\]

where \(i, j, k, l \) are the \(U(N) \) color indices. In (4.6), we neglected the zero-point energy which is cancelled by supersymmetry. For notational simplicity, the magnetic quantum number \(I \) of \(Y^I_\ell \) is suppressed in the above equations.

To see the mass of the fermion and the vector (4.1), it is convenient to identify \(S^3 \) as the group manifold \(SU(2) \). Then, the metric of \(S^3 \) is written as

\[
ds^2 = -\frac{1}{2} \text{tr}(U^{-1}dU)^2 = -\frac{1}{2} \text{tr}(dUU^{-1})^2 = \sum_{i=1}^{3} (\omega^i_L)^2 = \sum_{i=1}^{3} (\omega^i_R)^2, \tag{4.9}
\]

where \(U \in SU(2) \), and \(\omega^i_L \) (\(\omega^i_R \)) are the left (right) invariant 1-forms

\[
U^{-1}dU = i \sum_{i=1}^{3} \omega^i_L \sigma_i, \quad dUU^{-1} = i \sum_{i=1}^{3} \omega^i_R \sigma_i. \tag{4.10}
\]

Let us first consider the mass of fermions with \(\ell = 0 \). From the Maurer-Cartan equation

\[
d\omega^i_{L,R} = \pm \varepsilon^{ijk} \omega^j_{L,R} \omega^k_{L,R},
\]

the spin connection on \(S^3 \) is found to be \(\Omega^i_k = \pm \varepsilon^{ijk} \). The mass term of fermion comes from the spin connection

\[
\gamma^\mu \tilde{A}_\mu = \frac{1}{4} \Omega_k^{ij} \gamma_{ijk} = \pm \frac{3}{2} \gamma_{123}. \tag{4.11}
\]
Next we consider the mass of vectors with $\ell = 0$. We can see that $\omega^i_{L,R}$ are co-closed and they are eigenvectors of the Laplacian on S^3 with eigenvalue -4. Therefore, in the Coulomb gauge the gauge field on S^3 can be expanded as

$$A(t, \Omega_3) = \sum_{i=1}^{3} \left[A^i_L(t) \omega^i_L + A^i_R(t) \omega^i_R \right] + \cdots. \quad (4.12)$$

Then the modes $A^i_{L,R}$ have mass = 2. Note that the KK modes of the gauge field carry $\Delta - J \geq 2$ and hence they might acquire a large anomalous dimension [1]. As for the time component of gauge field $A_{\mu = 0}$, it behaves as a Lagrange multiplier of the Gauss law constraint. In passing we note that under the identification $S^3 \simeq SU(2)$ the scalar harmonics $Y_\ell(\Omega_3)$ is given by the matrix element $\langle j, m | U | j', m' \rangle$ with spin $j = \ell/2$. The higher spinor/vector harmonics are given by the Wigner functions on the coset $SO(4)/SO(3)$ [27].

4.2. $U(1)_J$ and Rotating Variable

To define the pp-wave limit, we take $U(1)_J$ subgroup of $SU(4)_R$ as the rotation group of X^6-X^9 plane. In other words, the generator of $U(1)_J$ is given by

$$J \equiv J^{69} = \frac{1}{2}(J^1_1 + J^2_2 - J^3_3 - J^4_4). \quad (4.13)$$

Then the fields transform under $U(1)_J$ rotation as

$$\lambda^{1,2}_+ \rightarrow e^{4\theta} \lambda^{1,2}_+, \quad \lambda^{3,4}_+ \rightarrow e^{-4\theta} \lambda^{3,4}_+ \quad (\lambda \rightarrow e^{-4\theta i^{69}} \lambda)$$

$$X^{12} = \frac{1}{2}(X^6 + iX^9) \rightarrow e^{i\theta} X^{12}, \quad X^{34} = \frac{1}{2}(X^6 - iX^9) \rightarrow e^{-i\theta} X^{34}. \quad (4.14)$$

Therefore, the “Z” field with $J = 1$ [1] is given by

$$Z = \frac{1}{\sqrt{2}}(\phi^6 + i\phi^9) = \frac{2\sqrt{2}\pi}{g_{YM}} X^{12}. \quad (4.15)$$

From (4.14), the mode of Z with angular momentum ℓ is written as

$$Z_\ell = \frac{1}{\sqrt{2(\ell + 1)}}(A_\ell + B_\ell^\dagger) \quad (4.16)$$

where $A_\ell = (a^6_\ell + i a^{9\dagger}_\ell)/\sqrt{2}$ and $B_\ell = (a^6_\ell - i a^{9\dagger}_\ell)/\sqrt{2}$.

In terms of the oscillators A_ℓ and B_ℓ, J is written as

$$J = \text{Tr} \sum_{\ell=0}^{\infty} \left(B^\dagger_\ell B_\ell - A^\dagger_\ell A_\ell \right). \quad (4.17)$$
In the free YM limit, $H - J$ is given by

$$H - J = \text{Tr} \sum_{\ell=0}^{\infty} \left[(\ell + 1) a_\ell^s a_\ell^s + (\ell + 2) A_\ell A_\ell + \ell B_\ell^s B_\ell \right] \quad (4.18)$$

where $s = 4, 5, 7, 8$. Here we suppressed the contribution of fermions.

The lightcone Hamiltonian P^- on the bulk string side corresponds to the combination $H - J$, not to the YM Hamiltonian H. This sounds puzzling because in the “modified Penrose limit” [11] the lightcone time x^+ is equal to the global time t. However, this can be reconciled by introducing the “rotating variables” by performing the time-dependent $U(1)_J$ rotation

$$Z \to e^{it} Z, \quad \lambda \to e^{-\frac{1}{2} t \Gamma^6 \Gamma^9} \lambda. \quad (4.19)$$

For example, the free Lagrangian of this new Z is written as

$$L = \text{Tr} \sum_{\ell=0}^{\infty} \left[|\partial_\ell (e^{it} Z_\ell)|^2 - (\ell + 1)^2 |Z_\ell|^2 \right]. \quad (4.20)$$

One can see that the Hamiltonian H_{rot} with respect to these variables corresponds to P^-:

$$H_{\text{rot}} = H - J. \quad (4.21)$$

Note that the replacement (4.19) corresponds to focusing on the null geodesic $\theta = t$ from the bulk string viewpoint.

From (4.18), we can see that $H - J = 0$ states are generated by B_0^1, and the creation operators $B_1^{a\dagger}$ and $a_0^{s\dagger}$ raise $H - J$ by one. Here the superscript a of $B_1^{a\dagger}$ is the magnetic index of $Y_{\ell=1}^a$. If we define the real scalar $\tilde{\phi}_1^a$ by

$$\tilde{\phi}_1^a = \frac{1}{\sqrt{2}} (B_1^a + B_1^{a\dagger}), \quad (4.22)$$

then $(\tilde{\phi}_1^a, \phi_0^a)$ transforms as a vector under $SO(4) \times SO(4)$. Note that $\tilde{\phi}_1^a$ corresponds to the operator $D_\mu Z$ on the plane \mathbb{R}^4.

The general $H - J = 0$ state is written as

$$|J_1, \ldots, J_n \rangle = \prod_{i=1}^{n} \text{Tr}(B_0^{J_i}) |0\rangle. \quad (4.23)$$

The inner product of these states is given by the Gaussian matrix model [4,5]

$$\langle J'_1, \ldots, J'_n | J_1, \ldots, J_m \rangle = \int dZ d\overline{Z} e^{-\text{Tr}(Z \overline{Z})} \prod_{i=1}^{n} \text{Tr}(Z J_i') \prod_{k=1}^{m} \text{Tr}(Z J_k). \quad (4.24)$$
This can be shown by inserting the completeness relation of coherent state

\[1 = \int dZd\bar{Z} e^{-\text{Tr}(Z\bar{Z})} |Z\rangle\langle Z| \] \hspace{1cm} (4.25)

where the coherent state \(|Z\rangle\) is defined by

\[\langle Z| = \langle 0 | \exp \left[\text{Tr}(ZB_0) \right], \quad |Z\rangle = \exp \left[\text{Tr}(\bar{Z}B_0^\dagger) \right] |0\rangle. \] \hspace{1cm} (4.26)

For example, the inner product between the 1-trace state and the \(n\)-trace state can be evaluated as

\[\langle J|J_1, \cdots, J_n\rangle = \frac{1}{J+1} \sum_{\epsilon_1, \cdots, \epsilon_n = \pm 1} \frac{\Gamma \left(N + \frac{1}{2}J + \frac{1}{2} \sum_{i=1}^{n} \epsilon_i J_i + 1 \right)}{\Gamma \left(N - \frac{1}{2}J + \frac{1}{2} \sum_{i=1}^{n} \epsilon_i J_i \right)} \prod_{j=1}^{n} \epsilon_j. \] \hspace{1cm} (4.27)

In the double scaling limit (1.1), this amplitude reduces to

\[\langle J|J_1, \cdots, J_n\rangle_{PP} = \frac{JN^J}{g_2} \prod_{i=1}^{n} 2 \sinh \left(\frac{g_2}{2} \alpha_i \right), \] \hspace{1cm} (4.28)

where \(\alpha_i\) is defined by

\[\alpha_i = \frac{J_i}{J}, \quad \sum_{i=1}^{n} \alpha_i = 1. \] \hspace{1cm} (4.29)

Note that the large \(g_2\) behavior of \(\langle J|J_1, \cdots, J_n\rangle_{PP}\) is independent of \(n\)

\[\lim_{g_2 \to \infty} \langle J|J_1, \cdots, J_n\rangle_{PP} = \frac{JN^J}{g_2} e^{\frac{3}{2}g_2}. \] \hspace{1cm} (4.30)

For the general amplitude (4.24), the pp-wave limit is not so simple as (4.28).

5. Symmetry Breaking and PP-wave Algebra

In this section, we consider the symmetry breaking from the conformal symmetry to the symmetry of pp-wave background. On the state (4.23), the symmetry of \(\mathcal{N} = 4\) SYM is broken as

\[SO(4,2) \times SU(4)_R \to R_{\Delta-J} \times SO(4) \times SO(4). \] \hspace{1cm} (5.1)

\[^2\text{We only checked this relation up to } n = 3.\text{ For general } n,\text{ this was proved by C. Kristjansen [28].}\]
We will see how the broken generators form the Heisenberg algebra $h(4) \oplus h(4)$. For simplicity, we only consider the contribution of scalar fields in the free YM limit $g_{YM} = 0$. In the pp-wave limit (1.1), only the term which contains B_0 and B_0^\dagger survives, and other terms are sub-leading in J. This is the basic mechanism for the appearance of the Heisenberg algebra (see [21] for the general argument). Let us see this more explicitly.

The broken generator in the $SO(4,2)$ part is given by

$$M_{0a} - iM_{5a} = \frac{e^{-it}}{2\pi^2} \text{Tr} \int_{S^3} \left[-in^a \left\{ \frac{1}{2} (\partial_0 \phi^m)^2 + \frac{1}{2} (\nabla_i \phi^m)^2 + (\phi^m)^2 \right\}
+ \partial_0 \phi^m (\partial_a \phi^m - n^a \phi^m) \right]$$

$$= -i\sqrt{2}e^{-it}\text{Tr} (a_1^a m^a_0) + \cdots$$

$$= -i\sqrt{2}e^{-it}\text{Tr} (B_1^a B_0) + \cdots. \quad (5.2)$$

Here we kept only the term containing B_0. The hermitian conjugate of this operator is

$$M_{0a} + iM_{5a} = i\sqrt{2}e^{it}\text{Tr} (B_1^a B_0) + \cdots. \quad (5.3)$$

Therefore, the commutation relation of these operators becomes $h(4)$:

$$[M_{0a} + iM_{5a}, M_{0b} - iM_{5b}] \sim 2\delta^{ab}\text{Tr} (B_1^a B_0) \sim 2\delta^{ab} J. \quad (5.4)$$

Here ‘∼’ means ‘equal when they act on a state with large J charge’.

The structure in the $SU(4)_R$ part is similar. The broken generator in the $SU(4)_R$ part is given by

$$J^{6s} + iJ^{9s} = i\sqrt{2}\text{Tr} \sum_{\ell=0}^{\infty} (a_\ell^s B_\ell^\dagger + a_\ell^{s\dagger} A_\ell) = -i\sqrt{2}\text{Tr} (a_0^s B_0^\dagger) + \cdots, \quad (5.5)$$

and its conjugate is

$$J^{6s} - iJ^{9s} = i\sqrt{2}\text{Tr} (a_0^{s\dagger} B_0) + \cdots. \quad (5.6)$$

Therefore, their commutation relation also becomes the Heisenberg algebra $h(4)$

$$[J^{6s} + iJ^{9s}, J^{6t} - iJ^{9t}] \sim 2\delta^{st}\text{Tr} (B_0^\dagger B_0) \sim 2\delta^{st} J. \quad (5.7)$$

We can see that the broken generators are given by the oscillators of $\bar{\phi}_1^\dagger$ and ϕ_0^s dressed by B_0. When they act on the ground state $\text{Tr}(B_0^\dagger J)|0\rangle$, one of the B_0^\dagger is replaced by $a_0^{s\dagger}$ or B_1^\dagger. $H - J$ behaves as the number operator of these dressed oscillators since $H - J$ is independent of B_0. The states created by these broken generators are the Nambu–Goldstone modes with $H - J = 1$ [18], which correspond to the supergravity modes in the pp-wave background.
6. Discussions

In this paper, we constructed the generators of superconformal symmetry of $U(N)$ $\mathcal{N} = 4$ SYM by generalizing [18] for the $U(1)$ gauge group. We also studied the symmetry breaking by the large R-charge state and the appearance of the pp-wave algebra. Our analysis is limited to the bosonic part of the symmetry in the free YM limit. It is interesting to study the contraction of the whole superconformal symmetries at the interacting level.

The dual theory of the string theory on the pp-wave background will be related to the matrix model obtained by the KK reduction of $\mathcal{N} = 4$ SYM on S^3. However, the free string spectrum in the pp-wave background is not correctly reproduced if we only keep the lowest KK modes. Let us recall the argument in [1]. In the planar limit, the string of B_0^\dagger's in (4.23) can be regarded as a lattice, and the interaction $\text{Tr}[Z_0, \phi_0^s][\phi_0^s, Z_0]$ becomes the spatial derivative of the effective (1+1)-dimensional field $\phi_0^s(t, \sigma)$ in the limit (1.1). We can repeat the same argument for other light fields. Let us look at the $J = \frac{1}{2}$ component ψ of λ with angular momentum $\ell = 0$

$$\psi = \frac{2\pi}{g_{YM}} \cdot \frac{1}{2} (1 + i\Gamma^6\Gamma^9)\lambda_{\ell=0}. \quad (6.1)$$

The kinetic term of ψ comes from the Yukawa interaction

$$L_Y = \frac{g_{YM}}{4\pi} \text{Tr}\left(\bar{\psi} \Gamma^{12}[B_0, \psi] + \bar{\psi} \Gamma^{34}[B_0^\dagger, \psi]\right) = \frac{g_{YM}}{4\pi} \text{Tr}\left(\bar{\psi} i\Gamma^9[B_0, \psi]\right), \quad (6.2)$$

where we used the fact that $\Gamma^{34} = (\Gamma^6 - i\Gamma^9)/2 = 0$ on the $i\Gamma^6\Gamma^9 = 1$ subspace. On the large R-charge state $\text{Tr}(B_0^\dagger J)|0\rangle$, (6.2) can be replaced by

$$L_Y = \frac{g_{YM}\sqrt{N}}{4\pi} \sum_{j=1}^{J} \bar{\psi}_j i\Gamma^9(\psi_{j+1} - \psi_j). \quad (6.3)$$

By introducing the coordinate σ as

$$\sigma = \frac{1}{\sqrt{N}} \frac{2\pi}{J} \lambda \quad (6.4)$$

and taking the limit (1.1), the effective kinetic term of ψ is found to be

$$L_{\text{kin}} = \frac{i}{2} \int_0^{2\pi} d\sigma \sqrt{N} \bar{\psi}(\Gamma^0\partial_0 + \Gamma^9\partial_{\sigma})\psi. \quad (6.5)$$

Unfortunately, the structure of Γ-matrices in the mass term of ψ is different from the one in the worldsheet action of the pp-wave string. The Hamiltonian of $\bar{\phi}_L^q$ obtained from the
interaction $\text{Tr}[Z, \overline{Z}]^2$ is also different from the expected form, if we naively reduce this term to the KK modes with $H - J \leq 1$. It is interesting to study when the reduction to the lowest KK modes is meaningful.

Acknowledgments

I would like to thank Sumit Das, Moshe Rozali, Matthias Staudacher, and Li-Sheng Tseng for useful discussions.

Appendix A. $SO(6)$ and $SO(9,1)$ Gamma Matrices

In this appendix we summarize our notation of Γ-matrices. We follow the notation in [29] (with slight modification). The 10-dimensional Γ-matrices are defined by $\{\Gamma^M, \Gamma^N\} = 2\eta^{MN}$, where $\eta^{MN} = \text{diag}(-1, +9)$ and $M, N = 0, \cdots, 9$.

Under the dimensional reduction to 4 dimensions, the $D = 10$ Majorana-Weyl spinor is decomposed as

$$SO(9,1) \supset SO(3,1) \times SU(4)$$

where we identified $SO(6) \simeq SU(4)$. Due to the Majorana condition, $(2,4)$ and $(\overline{2}, \overline{4})$ are charge conjugate to each other in the 4-dimensional sense. Note that 6 of $SO(6)$ corresponds to the antisymmetric tensor of 4 in the $SU(4)$ picture. We use $\mu, \nu = 0, \cdots, 3$ and $m, n = 4, \cdots, 9$ as the $SO(3,1)$ and $SO(6)$ indices, and $A, B = 1, \cdots, 4$ as the indices of 4.

The $SO(9,1)$ gamma matrices can be decomposed as

$$\Gamma^\mu = \gamma^\mu \otimes 1_8, \quad \Gamma^{AB} = \gamma_5 \otimes \begin{pmatrix} 0 & -\tilde{\rho}^{AB} \\ \rho^{AB} & 0 \end{pmatrix} = -\Gamma^{BA}.$$

Here $\gamma_5 = i\gamma^{0123}$ and Γ^{AB} satisfies $\{\Gamma^{AB}, \Gamma^{CD}\} = \epsilon^{ABCD}$. ρ^{AB} and $\tilde{\rho}^{AB}$ are defined by

$$(\rho^{AB})_{CD} = \delta^A_C \delta^B_D - \delta^A_D \delta^B_C, \quad (\tilde{\rho}^{AB})_{CD} = \frac{1}{2} \epsilon^{CDEF} (\rho^{AB})_{EF} = \epsilon^{ABCD}.$$

SO(6) and SU(4) basis are related as

$$X^{AB} = \frac{1}{2} \epsilon^{ABCD} X_{CD}, \quad X^{AB} = -X^{BA} = X^\dagger_{AB}, \quad X_{i4} = \frac{1}{2} (X_{i+3} + iX_{i+6})$$

$$\Gamma^{i4} = \frac{1}{2} (\Gamma^{i+3} - i\Gamma^{i+6}), \quad X_{AB} \Gamma^{AB} = X_m \Gamma^m.$$

15
The charge conjugation matrix and the chirality matrix are given by

\[C_{10} = C_4 \otimes \begin{pmatrix} 0 & 1_4 \\ 1_4 & 0 \end{pmatrix}, \quad \Gamma^{11} = \Gamma^{0\ldots 9} = \gamma_5 \otimes \begin{pmatrix} 1_4 & 0 \\ 0 & -1_4 \end{pmatrix}, \]

(A.5)

where \((\Gamma^M)^T = -C_{10}^{-1} \Gamma^M C_{10}\) and \(C_4\) is the charge conjugation in \(D = 4\).

The Majorana-Weyl spinor in \(D = 10\) is now decomposed as

\[\Psi_{MW} = \Gamma^{11} \Psi_{MW} = \begin{pmatrix} \psi^A \\ \psi_-^A \end{pmatrix} \]

(A.6)

where \(\psi_-^A\) is the charge conjugation of \(\psi^A\)

\[\psi_-^A = (\psi^A)^c = C_4 (\overline{\psi^+}_A)^T, \quad \gamma_5 \psi_\pm = \pm \psi_\pm. \]

(A.7)

Appendix B. (Conformal) Killing Vectors on \(R \times S^3\)

The Killing vectors on \(R \times S^3\)

\[\xi_{31} + i \xi_{41} = e^{i\chi} \left[\sin \psi \partial_\theta + \cot \theta \left(\cos \psi \partial_\psi + \frac{1}{\sin \psi} \partial_\chi \right) \right] \]

\[\xi_{32} + i \xi_{42} = e^{i\chi} (\partial_\psi + i \cot \psi \partial_\chi) \]

\[\xi_{34} = -\partial_\chi, \quad \xi_{12} = - \cot \psi \partial_\theta + \cot \theta \sin \psi \partial_\psi, \quad \xi_{05} = \partial_t \]

(B.1)

The conformal Killing vectors on \(R \times S^3\)

\[\xi_{01} - i \xi_{51} = e^{-it} (-i \cos \theta \partial_t - \sin \theta \partial_\theta) \]

\[\xi_{02} - i \xi_{52} = e^{-it} \left(-i \sin \theta \cos \psi \partial_t + \cos \theta \cos \psi \partial_\theta - \frac{\sin \psi}{\sin \theta} \partial_\psi \right) \]

\[\xi_{03} - i \xi_{53} = e^{-it} \left(-i \sin \theta \sin \psi \cos \chi \partial_t + \cos \theta \sin \psi \cos \chi \partial_\theta + \cos \psi \sin \chi \partial_\psi + \frac{\cos \psi \sin \chi}{\sin \theta \sin \psi} \partial_\chi \right) \]

\[\xi_{04} - i \xi_{54} = e^{-it} \left(-i \sin \theta \sin \psi \sin \chi \partial_t + \cos \theta \sin \psi \sin \chi \partial_\theta + \cos \psi \sin \chi \partial_\psi + \frac{\cos \psi \sin \chi}{\sin \theta \sin \psi} \partial_\chi \right) \]

(B.2)
References

[1] D. Berenstein, J. M. Maldacena and H. Nastase, “Strings in flat space and pp waves from N = 4 super Yang Mills,” JHEP 0204, 013 (2002) [hep-th/0202021].

[2] M. Blau, J. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, “A new maximally supersymmetric background of IIB superstring theory,” JHEP 0201, 047 (2002) [hep-th/0110242];
M. Blau, J. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, Class. Quant. Grav. 19, L87 (2002) [hep-th/0201081].

[3] R. R. Metsaev, “Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond background,” Nucl. Phys. B 625, 70 (2002) [hep-th/0112044];
R. R. Metsaev and A. A. Tseytlin, “Exactly solvable model of superstring in plane wave Ramond-Ramond background,” Phys. Rev. D 65, 126004 (2002) [hep-th/0202109].

[4] C. Kristjansen, J. Plefka, G. W. Semenoff and M. Staudacher, “A new double-scaling limit of N = 4 super Yang-Mills theory and PP-wave strings,” [hep-th/0205033].

[5] N. R. Constable, D. Z. Freedman, M. Headrick, S. Minwalla, L. Motl, A. Postnikov and W. Skiba, “PP-wave string interactions from perturbative Yang-Mills theory,” [hep-th/0205089].

[6] D. J. Gross, A. Mikhailov and R. Roiban, “Operators with large R charge in N = 4 Yang-Mills theory,” [hep-th/0205060].

[7] A. Santambrogio and D. Zanon, “Exact anomalous dimensions of N = 4 Yang-Mills operators with large R charge,” [hep-th/0206079].

[8] S. R. Das, C. Gomez and S. J. Rey, “Penrose limit, spontaneous symmetry breaking and holography in pp-wave background,” [hep-th/0203164].

[9] E. Kiritsis and B. Pioline, “Strings in homogeneous gravitational waves and null holography,” [hep-th/0204004].

[10] R. G. Leigh, K. Okuyama and M. Rozali, “PP-waves and holography,” [hep-th/0204026].

[11] D. Berenstein and H. Nastase, “On lightcone string field theory from super Yang-Mills and holography,” [hep-th/0205048].

[12] A. Hashimoto, S. Hirano and N. Itzhaki, “Large branes in AdS and their field theory dual,” JHEP 0008, 051 (2000) [hep-th/0008016].

[13] S. Corley, A. Jevicki and S. Ramgoolam, “Exact correlators of giant gravitons from dual N = 4 SYM theory,” [hep-th/0111222].

[14] N. Seiberg and E. Witten, “The D1/D5 system and singular CFT,” JHEP 9904, 017 (1999) [hep-th/9903223].

[15] R. Gopakumar, “String interactions in PP-waves,” [hep-th/0205174].
[16] G. Bonelli, “Matrix strings in pp-wave backgrounds from deformed super Yang-Mills theory,” [hep-th/0205213].
[17] H. Verlinde, “Bits, matrices and 1/N,” [hep-th/0206059].
[18] H. Nicolai, E. Sezgin and Y. Tanii, “Conformally Invariant Supersymmetric Field Theories On $S^p \times S^1$ And Super P-Branes,” Nucl. Phys. B 305, 483 (1988).
[19] M. Hatsuda, K. Kamimura and M. Sakaguchi, “From super-$AdS_5 \times S^5$ algebra to super-pp-wave algebra,” Nucl. Phys. B 632, 114 (2002) [hep-th/0202190].
[20] G. Arutyunov and E. Sokatchev, “Conformal fields in the pp-wave limit,” [hep-th/0205270].
[21] S. R. Das and C. Gomez, “Realizations of conformal and Heisenberg algebras in pp-wave CFT correspondence,” [hep-th/0206062].
[22] P. Breitenlohner and D. Z. Freedman, “Stability In Gauged Extended Supergravity,” Annals Phys. 144, 249 (1982).
[23] E. Bergshoeff, A. Salam, E. Sezgin and Y. Tanii, “N=8 Supersingleton Quantum Field Theory,” Nucl. Phys. B 305, 497 (1988).
[24] E. Sezgin and Y. Tanii, “Superconformal sigma models in higher than two-dimensions,” Nucl. Phys. B 443, 70 (1995) [hep-th/9412163].
[25] E. Bergshoeff, M. J. Duff, C. N. Pope and E. Sezgin, “Supersymmetric Supermembrane Vacua And Singletons,” Phys. Lett. B 199, 69 (1987).
[26] P. Candelas and S. Weinberg, “Calculation Of Gauge Couplings And Compact Circumferences From Selfconsistent Dimensional Reduction,” Nucl. Phys. B 237, 397 (1984); A. Cappelli and A. Coste, “On The Stress Tensor Of Conformal Field Theories In Higher Dimensions,” Nucl. Phys. B 314, 707 (1989).
[27] A. Salam and J. Strathdee, “On Kaluza-Klein Theory,” Annals Phys. 141, 316 (1982).
[28] C. Kristjansen, unpublished.
[29] L. Brink, J. H. Schwarz and J. Scherk, “Supersymmetric Yang-Mills Theories,” Nucl. Phys. B 121, 77 (1977).