Elliptic functions and efficient control of Ising spin chains with unequal couplings

Haidong Yuan,1,† Robert Zeier,2,‡ and Navin Khaneja2,*

1Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
2Harvard School of Engineering and Applied Sciences, 33 Oxford Street, Cambridge, Massachusetts 02138, USA

(Dated: February 2, 2008)

In this article, we study optimal control of dynamics in a linear chain of three spin 1/2, weakly coupled with unequal Ising couplings. We address the problem of time-optimal synthesis of multiple spin quantum coherences. We derive time-optimal pulse sequence for creating a desired spin order by computing geodesics on a sphere under a special metric. The solution to the geodesic equation is related to the nonlinear oscillator equation and the minimum time to create multiple spin order can be expressed in terms of an elliptic integral. These techniques are used for efficient creation of multiple spin coherences in Ising spin-chains with unequal couplings.

PACS numbers: 03.67.–a, 82.56.–b

I. INTRODUCTION

In the absence of relaxation, experiments in coherent spectroscopy and quantum information processing consist of a sequence of unitary transformations on the quantum system of interest. Pulse sequences that create a desired unitary transformation in the minimum possible time are of particular interest in experimental realizations as they can reduce losses due to relaxation. This poses the problem of time optimal control of quantum systems, which is of both theoretical and practical interest in the broad area of coherent control of quantum systems.

Besides application in spectroscopy, synthesizing unitary transformations in a time-optimal way using available physical resources is also a problem in quantum information processing. It has received significant attention, and time-optimal control of two coupled qubits is now well understood. Recently, this problem has also been studied in the context of linearly coupled three-qubit topologies, where significant savings in the implementation time of trilinear Hamiltonians and logic gates between indirectly coupled qubits were demonstrated over conventional methods. Many of these ideas have found applications in efficient ways to propagate coherences along Ising spin chains. However, the complexity of the general problem of time-optimal control of multiple qubit topologies is only beginning to be appreciated.

In this article, we study the problem of finding the shortest pulse sequences for creating desired coherences in a linear chain of spins (of spin 1/2) weakly coupled with unequal Ising couplings. In particular, we start by considering the case of three linearly coupled spins and generalize our methods to linear spin chains. This study has immediate applications to multi-dimensional nuclear magnetic resonance (NMR) spectroscopy. In multidimensional NMR experiments, starting from the thermal state of the spins, a multiple quantum coherence between spins is synthesized, which helps to correlate the frequencies of various spins. Efficient pulse sequences for creating such coherences help to improve the sensitivity of the experiments.

One approach for solving these problems reduces the efficient synthesis of multiple spin order to the geometrical question of finding shortest paths on the sphere under a special metric. The metric enforces the constraints on the quantum dynamics that arise because only limited Hamiltonians can be realized. Such analogies between optimization problems related to steering dynamical systems with constraints and geometry have been well explored in areas of control theory and sub-Riemannian geometry. In this paper, we study in detail the metric and the geodesics that arise from the problem of efficient synthesis of multiple spin coherences between qubits (spin 1/2) that are indirectly coupled via unequal couplings to a third qubit.

II. OPTIMAL CONTROL OF A LINEAR THREE-SPIN SYSTEM WITH UNEQUAL COUPLINGS

We consider a linear chain of three spins placed in a static external magnetic field in the z direction with Ising type couplings between next neighbors. In a suitably chosen (multiple) rotating frame which rotates with each spin at its resonant frequency, the Hamiltonian that governs the free evolution of the spin system is given by the coupling Hamiltonian

\[H_c = 2J_{12}I_{1z}I_{2z} + 2J_{23}I_{2z}I_{3z}. \]

We use the notation \(I_{\ell \nu} = \otimes_j I_{\nu j} \), where \(a_j = \nu \) for \(j = \ell \) and \(a_j = 0 \) otherwise (see [13]). The matrices...
this transfer is given by the following stages

\[I_{x} := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad I_{y} := \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \quad \text{and} \quad I_{z} := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \]

are the Pauli spin matrices and \(I_{0} := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) is the 2 \times 2-dimensional identity matrix.

If the Larmor frequencies of the spins are well separated, each spin can be selectively excited by an appropriate choice of the amplitude and phase of the radio-frequency (RF) field at its resonance frequency. The goal of the pulse designer is to derive explicit controls for the variables comprising of the frequency, amplitude and phase of the external RF field to effect a net unitary evolution \(U(t) \) most efficiently.

We begin with the problem of finding the shortest pulse sequence that transform the initial polarization \(I_{x} \) on the first spin to a multiple quantum coherence, i.e.,

\[I_{1x} \rightarrow 4I_{1z}I_{2z}I_{3z}. \]

Example 1. The conventional strategy for achieving this transfer is given by the following stages

\[I_{1x} \rightarrow H_{c} \rightarrow 2I_{1y}I_{2z} \rightarrow 2I_{1y}I_{2x} \rightarrow 4I_{1y}I_{2y}I_{3z} \]

In the first stage of the transfer, operator \(I_{1x} \) evolves to \(2I_{1y}I_{2z} \), under the natural coupling Hamiltonian \(H_{c} \) in \(\tau_{1} = \pi/(2J_{12}) \) units of time. This operator is then rotated to \(2I_{1y}I_{2x} \) by applying a hard \((\pi/2)_{z}\) pulse on the second spin, which evolves to \(4I_{1y}I_{2y}I_{3z} \) under the natural coupling, in \(\tau_{2} = \pi/(2J_{13}) \) units of time. Finally, hard \((\pi/2)_{x}\) pulses on first and second spin prepare the desired final state. The total evolution time is then simply \(\tau_{1} + \tau_{2} = \pi/(2J_{12}) + \pi/(2J_{13}) \).

We now study time-optimal designs for achieving this (and more general) transfers. To simplify notation, we introduce the following symbols \((O) := \text{Tr}(O\rho) \), where \(\text{Tr} \) denotes the trace, for the expectation values of operators \(O \). Let \(x_{1} = \langle J_{1x} \rangle, \quad x_{2} = \langle 2I_{1y}I_{2z} \rangle, \quad x_{3} = \langle 2I_{1y}I_{2x} \rangle, \quad \text{and} \quad x_{4} = \langle 4I_{1y}I_{2y}I_{3z} \rangle \), and \(X = (x_{1}, x_{2}, x_{3}, x_{4})^{T} \). By expressing the time \(t \), in units of \(1/J_{12} \), the evolution of the vector \(X \) is given by

\[
\frac{dX}{dt} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & -u & 0 \\ 0 & u & 0 & -k \\ 0 & 0 & k & 0 \end{pmatrix} X = B(u, k)X,
\]

where \(k = J_{23}/J_{12} \) and \(u = u(t) \) is the control parameter representing the amplitude of the \(y \)-pulse on the second spin. Now, the problem of optimal transfer is to find the optimal \(u(t) \) for steering the system from \((1, 0, 0, 0)^{T}\) to \((0, 0, 0, 1)^{T}\) in minimal time. We consider also the more general case of transferring the system from \((\cos \alpha, \sin \alpha, 0, 0)^{T}\) to \((0, 0, \cos \beta, \sin \beta)^{T}\), where we consider different \(\alpha, \beta \in [0, \pi/2] \).

Example 1 (continued). In this picture, the conventional method to transfer \((1, 0, 0, 0)^{T}\) to \((0, 0, 0, 1)^{T}\) is described by setting \(u(t) = 0 \) for \(\tau_{1} \) units of time, transferring \((1, 0, 0, 0)^{T}\) to \((0, 1, 0, 0)^{T}\). Using the control \(u \), we rotate \((0, 1, 0, 0)^{T}\) to \((0, 0, 1, 0)^{T}\) in arbitrary small time, as the control can be performed much faster as compared to the evolution of couplings. Then, we set \(u(t) = 0 \) and evolve \(\tau_{2} \) units of time under the coupling Hamiltonian, transferring \((0, 0, 1, 0)^{T}\) to \((0, 0, 0, 1)^{T}\). The total time for the transfer is \(\tau_{1} + \tau_{2} \).

We now show how significantly shorter transfer times are achievable, if we relax the constraint that the selective rotations on second spin are only hard pulses. We show that if we let the selective operations be carried out by soft shaped pulses, along with evolution of the coupling Hamiltonian, then we can achieve shorter transfer times. The pulse shapes can be numerically computed by formulating the problem as a derivation of geodesics on a sphere under a special metric as detailed below.

We first make a change of variables (see Fig. 1). Let

\[
\begin{align*}
\tau_{1} &= x_{1}, \\
r_{2} &= \sqrt{x_{2}^{2} + x_{3}^{2}}, \\
r_{3} &= x_{4}, \quad \text{and} \quad \tan \theta = \frac{x_{3}}{x_{2}}.
\end{align*}
\]

Using \(u(t) \), we can control the angle \(\theta \), so we can think of \(\theta \) as a control variable. Expressing the time in units of \(1/J_{12} \), the evolution of the system w.r.t. the coordinates \(r_{i} \) is given by

\[
\frac{d}{dt} \begin{pmatrix} r_{1} \\ r_{2} \\ r_{3} \end{pmatrix} = \begin{pmatrix} 0 & -\cos \theta(t) & 0 \\ \cos \theta(t) & 0 & -k \sin \theta(t) \\ 0 & k \sin \theta(t) & 0 \end{pmatrix} \begin{pmatrix} r_{1} \\ r_{2} \\ r_{3} \end{pmatrix}.
\]

The problem of transferring the system in Eq. (1) from \((\cos \alpha, \sin \alpha, 0, 0)^{T}\) to \((0, 0, \cos \beta, \sin \beta)^{T}\), reduces to finding \(\theta(t) \), for steering the system from \((\cos \alpha, \sin \alpha, 0)^{T}\) to \((0, \cos \beta, \sin \beta)^{T}\) in minimal time in Eq. (2). We show that this is equivalent to finding the corresponding geodesic on the sphere, under the metric

\[
g = \frac{k^{2}dr_{1}^{2} + dr_{2}^{2}}{k^{2}r_{2}^{2}}.
\]

By substituting for \(\sin \theta(t) \) and \(\cos \theta(t) \) from Eq. (2), the transfer time \(\tau = \int_{0}^{\tau} \sqrt{[\sin \theta(t)]^{2} + [\cos \theta(t)]^{2}} \, dt \) reduces to

\[
\tau = \frac{1}{k} \int_{0}^{\tau} \sqrt{[k^{2}(\dot{r}_{1})^{2} + (\dot{r}_{3})^{2}]}/r_{2} \, dt = \frac{1}{k} \int_{0}^{\tau} L \, dt.
\]

Thus, minimizing \(\tau \), amounts to computing the geodesic under the metric \(g \). The Euler-Lagrange equations for the geodesic take the form

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}_{1}} \right) = \frac{\partial L}{\partial r_{1}} \quad \text{and} \quad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}_{3}} \right) = \frac{\partial L}{\partial r_{3}}.
\]
Note, $r_1^2 = 1 - r_1^2 - r_2^2$ and along the geodesic, $L = k$ is constant. We get,
\[\frac{d}{dt} \left(\frac{k^2 \dot{r}_1}{r_2^2} \right) = L^2 \frac{r_1}{r_2^2} \quad \text{and} \quad \frac{d}{dt} \left(\frac{r_3}{r_2} \right) = L^2 \frac{r_3}{r_2} \tag{4} \]
which implies that
\[\frac{d}{dt} \left(\frac{k^2 \dot{r}_1 r_3 - \dot{r}_3 r_1}{r_2^2} \right) = (k^2 - 1) \frac{\dot{r}_1 r_3}{r_2^2}. \tag{5} \]
Let $f = (k^2 \dot{r}_1 r_3 - \dot{r}_3 r_1)/r_2^2$. From Eq. (4), we get
\[\frac{d}{dt} \left(\frac{k^2 \dot{r}_1}{r_2^2} \right) = - \frac{\dot{r}_3}{r_2}. \]
Substitute with $\dot{r}_1/r_2 = - \cos \theta(t)$ and $\dot{r}_3/r_2 = k \sin \theta(t)$, and get
\[\frac{d}{dt} \left[- k^2 \cos \theta(t) \right] = -fk \sin \theta(t), \]
so $\dot{\theta} = -f/k$. Differentiating again, we obtain from Eq. (6), that
\[\ddot{\theta} = \frac{1}{k} \frac{d}{dt} f = - \frac{k^2 - 1}{k} \frac{\dot{r}_1 \dot{r}_3}{r_2^2} = (k^2 - 1) \cos \theta \sin \theta. \]
Using $a = k^2 - 1$, we rewrite this as,
\[\ddot{\theta} = \frac{a}{2} \sin 2 \theta(t). \tag{6} \]

The solution to Eq. (4), can be given in terms of an elliptic integral. Note that by multiplying both sides of Eq. (5), with θ, we get the equation of an ellipse in terms of the coordinates $(\theta, \cos \theta)^T$ as
\[c = \dot{\theta}^2(t) + a \cos^2 \theta(t), \tag{7} \]
where c is a constant. Thus, we obtain that $\dot{\theta} = \pm \sqrt{c - a \cos^2 \theta(t)}$ and
\[\int_{\theta(0)}^{\theta(t)} \frac{d\sigma}{\sqrt{c - a \cos^2 \sigma}} = \pm t. \tag{8} \]

The left hand side of Eq. (3) is an elliptic integral. Equation (8), can be integrated if $\theta(0)$ and $\dot{\theta}(0)$ are both known explicitly. In transfers considered subsequently, only $\theta(0)$ is known and therefore one has to numerically search over the possible values of $\dot{\theta}(0)$, such that the resulting trajectory $X(t)$ achieves the desired transfer. Note, guessing an initial value of $\dot{\theta}(0)$ is same as searching for the correct value of c in Eq. (7).

III. COMPUTATION OF OPTIMAL CONTROL LAWS

Now, consider the problem of steering the system of Eq. (2), from the initial state $(r_1, r_2, r_3)^T = (1, 0, 0)^T$ to the target state $(0, \cos \beta, \sin \beta)^T$. For $\beta = \pi/2$, we get the target state $(0, 0, 1)^T$. Recall that,
\[-k \dot{\theta} = -k^2 \cos \theta \frac{r_3}{r_2} - k \sin \theta \frac{r_1}{r_2}. \tag{9} \]

At $t = 0$, $r_1(0) = 1$ and $r_2(0) = r_3(0) = 0$. For f to be finite, at $t = 0$, we should have $\sin \theta(0) = 0$. Therefore, in Eq. (9), the initial condition is $\theta(0) = 0$. To solve Eq. (9), we only need to know the initial value of $\dot{\theta}(0)$, which is the same as knowing the constant c in Eq. (7).

Given $\theta(0) = 0$ and the value of $\dot{\theta}(0)$, we can numerically solve first Eq. (6) and then Eq. (2). Consequently, we can determine for each value of $\dot{\theta}(0)$, the smallest time s such that $r_1(s) = 0$ by using a one-dimensional search, e.g., using the bisection method (see pp. 46–51 of Ref. [27]). Thus, we can determine the value of $\theta(0)$ such that $r_2(s) = \cos(\beta)$, again by using a one-dimensional search. In summary, we have reduced the original optimization problem to (combined) one-dimensional search problems.

For different values of k, we plot the minimal time $T = T(k)$ to transfer $(r_1, r_2, r_3)^T = (1, 0, 0)^T$ to $(0, 0, 1)^T$ in Fig. 2(a) in units of $1/J_{12}$. For example, when $k = 1$, i.e., $J_{12} = J_{23} = J$, it takes $2.72/J$ amount of time, which is about 86.6% of π/J, the time needed using the conventional method. Figure 2(b), shows the ratio of the the minimal time $T(k)$ to the time $\pi/2 + \pi/(2k)$ obtained using the conventional strategy. We define this ratio $\eta(k)$. In both the plots $k \geq 1$ is considered, as the case for $k < 1$ can be derived from this. Figure 3 shows the optimal control $u(t)$ in Eq. (1) for different values of k.

Observe that $T(1/k) = kT(k)$. Let $u(t, k)$ be the time optimal control for steering the system of Eq. (1) from $(1, 0, 0, 0)^T$ to $(0, 0, 0, 1)^T$. Then the control $\nu(t) = u(T - t, k)$, will steer the same system from $(0, 0, 0, 1)^T$ to $(1, 0, 0, 0)^T$ in the same time, which is also minimal for this transfer. Let $Y = (x_4, x_3, x_2, x_1)^T$ and consider the control $\nu(t) = u(T - t, k)$. Then, we have
\[\frac{dY}{dt} = kB(1/k, \nu)Y. \]

But, we have just remarked that the minimal time to steer Y from $(1, 0, 0, 0)^T$ to $(0, 0, 0, 1)^T$ is $T(k)$, and it
follows that $T(1/k)/k = T(k)$. It also follows that the optimal control $u(t, 1/k) = u[T(k) - t/k, k]$, where $t \in [0, kT(k)]$. Note $\eta(k) = \eta(1/k)$.

Remark 1. In Fig. 4 we present the geodesics of the metric of Eq. (3) for $\beta = \pi/2$ and $k \in \{1/10, 1, 10\}$, where $\beta = \tan^{-1}[r_3(T)/r_2(T)]$, i.e., $r_1(T) = r_2(T) = 0$ and $r_3(T) = 1$. Observe that the geodesics for the case $k > 1$ bend more towards the point $(r_1, r_2, r_3) = (0, 1, 0)$, before approaching the final point $(0, 0, 1)$. In an intuitive way to understand this, consider first the limit $k \gg 1$. In this limit, the minimum time to steer Eq. (2) from $(1, 0, 0)$ to $(0, 0, 1)$ is essentially the time required to steer the system (of Eq. (2)) to the equator. This is achieved fastest by moving from $(1, 0, 0)$, directly to $(0, 1, 0)$ and keeping $\theta(0) = 0$. As k is decreased to 1, the geodesics gradually move away from $(0, 1, 0)$, implying $\hat{\theta}(0)$ for $k > 1$ is smaller than for the case $k = 1$. In the special case of $k = 1$, Eq. (4) reduces to $\hat{\theta} = C$, a constant. This case was been studied in detail in [12, 14]. Therefore, in the numerical computation of optimal control, the search for true $\hat{\theta}(0)$ can be restricted to the interval $[0, C]$.

In Fig. 5 we plot the minimal time $T = T(k, \beta)$ to transfer $(r_1, r_2, r_3)^T = (1, 0, 0)^T$ to $(0, \cos \beta, \sin \beta)^T$, for different values of k and $\beta = \tan^{-1}[r_3(T)/r_2(T)]$. Figure 6 shows the geodesics of the metric of Eq. (3) for $k = 2$, for two different values $\beta \in \{\pi/4, \pi/2\}$ of the terminal point $(0, \cos \beta, \sin \beta)^T$.

If we transfer the system from $(x_1, x_2, x_3, x_4)^T = (\cos \alpha, \sin \alpha, 0, 0)^T$ to $(0, 0, \cos \beta, \sin \beta)^T$, where $\alpha > 0$, we do not know the value of $\hat{\theta}(0)$. But from Eq. (3), we have the relationship $\hat{\theta}(0) = \sin[\theta(0)]\cot(\alpha)$ between $\hat{\theta}(0)$ and $\theta(0)$. Thus, we can apply similar search methods for the right initial conditions as in the case of

IV. EFFICIENT CREATION OF COHERENCES IN ISING SPIN CHAINS WITH UNEQUAL COUPLINGS

We now consider a generalization of the problem treated above. We consider a linear chain of n spins, placed in a static external magnetic field in the z-direction, with unequal Ising type couplings between next neighbors. In a suitably chosen (multiple) rotat-
the minimal time $T\to$ a multiple spin order represented by the operator $2^{n-1}\prod_{l=1}^{n-1}I_{lz}$.

The conventional strategy for achieving this transfer is achieved through the following stages

$$I_{1x} H_c \rightarrow 2I_{1y}I_{2z}, I_{2y} \rightarrow 2I_{1y}I_{2x}, H_c \rightarrow 4I_{1y}I_{2y}I_{3z}$$

$$\rightarrow 4I_{1y}I_{2y}I_{3x} \rightarrow \cdots \rightarrow 2^{n-1}\prod_{l=1}^{n-1}I_{ly}I_{lz}$$

where each evolution represents an appropriate evolution by rotation angle $\pi/2$. The final state $2^{n-1}\prod_{l=1}^{n-1}I_{ly}I_{lz}$ is locally equivalent to $2^{n-1}\prod_{l=1}^{n-1}I_{lz}$, so that we can selectively rotate each spin at β_0, β_π, and $\beta_{\pi/2}$ units of time, resulting in a total time of $\sum_{l=1}^{n-1} \pi/(2J_{l(l+1)})$. We now formulate the problem of this transfer as a problem of optimal control and derive time efficient strategies for achieving this transfer.

To simplify notation, we introduce the following symbol for the expectation values of operators that play a key part in the transfer:

$$x_1 = \langle I_{1x} \rangle, x_2 = \langle 2I_{1y}I_{2z} \rangle,$$

$$x_3 = \langle 2I_{1y}I_{2x} \rangle, x_4 = \langle 4I_{1y}I_{2y}I_{3z} \rangle, \ldots, x_{2n-3} = \langle 2^{n-1}I_{ly}I_{2y}I_{3y}\cdots I_{(n-1)z} \rangle,$$

and

$$x_{2n-2} = \langle 2^nI_{ly}I_{2y}I_{3y}\cdots I_{(n-1)y}I_{nx} \rangle.$$

Let $X = (x_1, x_2, x_3, \ldots, x_{2n-2})^T$. Expressing the time in units of $1/J_{12}$, the evolution of the system is given by

$$\frac{dX}{dt} = \begin{pmatrix}
0 & -k_1 & 0 & 0 & 0 & 0 & \cdots \\
-k_1 & 0 & -u_1 & 0 & 0 & 0 & \cdots \\
0 & -u_1 & 0 & -k_2 & 0 & 0 & \cdots \\
0 & 0 & k_2 & 0 & -u_2 & 0 & \cdots \\
0 & 0 & 0 & u_2 & 0 & -k_3 & \cdots \\
0 & 0 & 0 & 0 & k_3 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix} X, \quad (10)$$

where u_l are the control parameters representing the amplitude of the y pulse on spin $l+1$ and $k_l = J_{l(l+1)}/J_{12}$.

The problem now is to find the optimal $u_l(t)$, steering the system from $(1, 0, 0, \ldots, 0)^T$ to $(0, 0, \ldots, 0, 1)^T$ in the minimal time.

We divide the optimal transfer problem into multiple steps. Let $l = 1, \ldots, n - 1$. Consider the step that steers $(x_{2l-1}, x_{2l}, x_{2l+1}, x_{2l+2})^T$ from the initial state $(\cos \beta_0, \sin \beta_0, 0, 0)^T$ to the target state $(0, 0, \cos \beta_{l+1}, \sin \beta_{l+1})^T$, by optimal choice of u_l.

$$\frac{d}{dt} \begin{pmatrix} x_{2l-1} \\ x_{2l} \\ x_{2l+1} \\ x_{2l+2} \end{pmatrix} = \begin{pmatrix} 0 & -k_l & 0 & 0 \\ -k_l & 0 & -u_l & 0 \\ 0 & -u_l & 0 & -k_{l+1} \\ 0 & 0 & k_{l+1} & 0 \end{pmatrix} \begin{pmatrix} x_{2l-1} \\ x_{2l} \\ x_{2l+1} \\ x_{2l+2} \end{pmatrix}, \quad (11)$$

We denote the minimal time for this transfer as $T(\beta_1, \beta_{l+1}, k_l, k_{l+1})$, as it depends on the parameters, $(\beta_l, \beta_{l+1}, k_l, k_{l+1})$. Note that

$$k_lT(\beta_l, \beta_{l+1}, k_l, k_{l+1}) = T(\beta_l, \beta_{l+1}, 1, k_{l+1}/k_l).$$
The notation for J_l in Eq. (12) should be so chosen that the time for transfer β_l to β_{l+1} is minimized. Furthermore, the choice of intermediate β_l should be made to minimize the total time of transfer

$$J_1(0) = \sum_{l=1}^{n-2} T(\beta_l, \beta_{l+1}, k_l, k_{l+1}).$$

We can solve Eq. (12) iteratively starting from $l = n-2$ and proceeding backwards and remembering that

$$J_{n-2}(\beta_{n-2}) = T(\beta_{n-2}, \pi/2, k_{n-2}, k_{n-1}).$$

Note $T(\beta_l, \eta, k_l, k_{l+1})$ in Eq. (12) can be explicitly computed, as we showed in the previous section. Therefore Eq. (12) helps us to compute the optimal η and the corresponding optimal control u_l.

Now, the problem is reduced to a simple dynamic programming problem, which can be solved efficiently.

Example 2. We consider as an example, an Ising spin chain with four spins with $J_{12}/(2\pi) = 91$ Hz, $J_{23}/(2\pi) = 15$ Hz and $J_{34}/(2\pi) = 55$ Hz. This system represents the popular HNCAO experiment in multidimensional NMR, where first spin is the proton, the second one represent 13N, the third and fourth one are 13C. For the transfer in Eq. (10), the dynamic programming equations for the minimum time is in units of $1/J_{23}$, can be written as $\text{min}_\eta J(\gamma)$, where

$$J(\gamma) = \{T(0, \gamma, k_1, 1) + T(\gamma, \pi/2, 1, k_2)\}$$

where $k_1 = J_{12}/J_{23}$ and $k_2 = J_{34}/J_{23}$. Figure 8 shows the plot of $J(\gamma)$ and the minimum is achieved at $\gamma_{\text{opt}} \approx .193\pi$ and the corresponding minimum value of $J(\gamma_{\text{opt}})$ is ≈ 2.01. The conventional transfer strategy will take $\pi (1 + 1/k_1 + 1/k_2)/2 \approx 2.26$, units of time, which is $\approx 12.2\%$ longer than the proposed efficient methodology.

V. CONCLUSION

In this article, we studied the problem of efficient creation of multiple spin order in an Ising spin chain with unequal couplings. We first analyzed in detail the system of three linearly coupled spins. We showed that the time optimal pulse sequences for creating multiple spin order in this system can be obtained by computing geodesics on a sphere under a special metric and that the solution to the resulting Euler Lagrange equation is related to the solution of a nonlinear oscillator equation $\dot{\theta} = A \sin \theta$. We showed that the minimum times and optimal control laws for the studied problem can be explicitly computed and provide significant gains over conventional methods. The methods developed in the three spin case were then exploited to find efficient strategies for manipulating the dynamics of Ising spin chains with unequal couplings. It is expected that these methods will find immediate applications in coherent spectroscopy and quantum information processing.

[1] N. Khaneja, R. Brockett, and S. J. Glaser, Phys. Rev. A 63, 032308 (2001).
[2] C. H. Bennett, J. I. Cirac, M. S. Leifer, D. W. Leung, N. Linden, S. Popescu, and G. Vidal, Phys. Rev. A 66, 012305 (2002).
[3] G. Vidal, K. Hammerer, and J. I. Cirac, Phys. Rev. Lett. 88, 237902 (2002).
[4] K. Hammerer, G. Vidal, and J. I. Cirac, Phys. Rev. A 66, 062321 (2002).
[5] T. O. Reiss, N. Khaneja, and S. J. Glaser, J. Magn. Reson. 154, 192 (2002).
[6] R. Zeier, M. Grassl, and T. Beth, Phys. Rev. A 70, 032319 (2004).
[7] H. Yuan and N. Khaneja, Phys. Rev. A 72, 040301(R) (2005).
[8] H. Yuan, Ph.D. thesis, Harvard University (2006).
[9] R. M. Zeier, Lie-theoretischer Zugang zur Erzeugung unitärer Transformationen auf Quantenrechnern (Uni-
versitätsverlag Karlsruhe, Karlsruhe, 2006), Ph.D. thesis, Universität Karlsruhe, 2006.

[10] N. Khaneja, S. J. Glaser, and R. Brockett, Phys. Rev. A 65, 032301 (2002).

[11] T. O. Reiss, N. Khaneja, and S. J. Glaser, J. Magn. Reson. 165, 95 (2003).

[12] N. Khaneja, B. Heitmann, A. Spörl, H. Yuan, T. Schulte-Herbrüggen, and S. J. Glaser, Phys. Rev. A 75, 012322 (2007).

[13] N. Khaneja and S. J. Glaser, Phys. Rev. A 66, 060301(R) (2002).

[14] H. Yuan, S. J. Glaser, and N. Khaneja, Phys. Rev. A 76, 012316 (2007).

[15] R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, Oxford, 1997), reprinted with corrections.

[16] H. Yuan and N. Khaneja, in Proceedings of the 45th IEEE Conference on Decision and Control, 2006 (San Diego, USA, 2006), pp. 3117–3120.

[17] M. A. Nielsen, M. R. Dowling, M. Gu, and A. C. Doherty, Science 311, 1133 (2006).

[18] M. A. Nielsen, Quantum Inf. Comput. 6, 213 (2006).

[19] M. A. Nielsen, Quantum Inf. Comput. 6, 213 (2006).

[20] R. W. Brockett, in New Directions in Applied Mathematics, edited by P. J. Hilton and G. S. Young (Springer, New York, 1982), pp. 11–27.

[21] J. B. Baillieul, Ph.D. thesis, Harvard University (1975).

[22] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, no. 91 in Mathematical surveys and monographs (American Mathematical Society, Providence, 2002).

[23] E. Ising, Z. Physik 31, 253 (1925).

[24] W. J. Caspers, Spin systems (World Scientific, Singapore, 1989).

[25] R. W. Brockett and L. Dai, in Nonholonomic Motion Planning, edited by Z. Li and J. F. Canny (Kluwer Academic Publishers, 1993), pp. 1–21.

[26] E. T. Whittaker and G. N. Watson, A course of modern analysis (Cambridge University Press, Cambridge, 1963), 4th ed.

[27] R. L. Burden and J. D. Faires, Numerical Analysis (Thomson Brooks/Cole, Belmont, 2005), 8th ed.

[28] J. Cavanagh, W. J. Fairbrother, A. G. Palmer, and N. J. Skelton, Protein NMR Spectroscopy: Principles and Practice (Academic Press, San Diego, 1996).