Abstract

Background: Several biochemical markers in blood correlate with the magnitude of brain injury and may be used to predict neurological outcome after cardiac arrest. We present a protocol for the evaluation of prognostic accuracy of brain injury markers after cardiac arrest. The aim is to define the best predictive marker and to establish clinically useful cut-off levels for routine implementation.

Methods: Prospective international multicenter trial within the Targeted Hypothermia versus Targeted Normothermia after Out-of-Hospital Cardiac Arrest (TTM2) trial in collaboration with Roche Diagnostics International AG. Samples were collected 0, 24, 48, and 72 hours after randomisation (serum) and 0 and 48 hours after randomisation (plasma), and pre-analytically processed at each site before storage in a central biobank. Routine markers neuron-specific enolase (NSE) and S100B, and neurofilament light, total-tau and glial fibrillary acidic protein will be batch analysed using novel Elecsys® electrochemiluminescence immunoassays on a Cobas e601 instrument.

Results: Statistical analysis will be reported according to the Standards for Reporting Diagnostic accuracy studies (STARD) and will include comparisons for prediction of good versus poor functional outcome at six months post-arrest, by modified Rankin Scale (0–3 vs. 4–6), using logistic regression models and receiver operating characteristics curves, evaluation of mortality at six months according to biomarker levels and establishment of cut-off values for prediction of poor neurological outcome at 95–100% specificities.

Conclusions: This prospective trial may establish a standard methodology and clinically appropriate cut-off levels for the optimal biomarker of brain injury which predicts poor neurological outcome after cardiac arrest.

Keywords: Cardiac arrest, Brain injury markers, Neurofilament light, NFL, Total-tau, glial fibrillary acidic protein, GFAP, S100, Neuron specific enolase, NSE, Prognostication, outcome, biomarkers, Protocol
in patients with traumatic injury, but it is not ideal as a predictor of neurological outcome after OHCA.4,5

The novel brain injury markers total-tau, neurofilament light chain protein (NFL) and glial fibrillary acidic protein (GFAP) are more specific to the central nervous system than NSE and S100B.6 GFAP is an early marker of astrocytic injury and cell activation and is often used in combination with another neuronal marker after traumatic brain injury.7,8 The neuroaxonal markers total-tau and NFL have demonstrated excellent prognostic performance after OHCA when analysed with a highly sensitive methodology and could even differentiate between degrees of brain injury.9–11 Their predictive abilities seem higher than those of NSE, S100B and GFAP, but they have never been analysed head-to-head or in combinations.2,4,7,9,10,12 Currently, total-tau and NFL are only available on specific equipment using research grade assays. Several challenges remain to make these markers readily available on standard analytical instruments.6,13

Roche Diagnostics International AG has developed Elecsys9, an electrochemiluminescence immunoassay (ECLIA) for quantitative and standardised in-vitro detection of biomarkers utilising analytical platforms already commercially available.15 Below we describe the statistical analysis plan for our study on brain injury markers from the prospective international Targeted Hypothermia versus Targeted Normothermia after Out-of-Hospital Cardiac Arrest (TTM2) trial in collaboration with Roche Diagnostics International AG.15 Our study will include analysis of both clinically available and novel biochemical markers of neuronal and glial cells analysed on the same analytical platform.

The objectives of the TTM2 biobank brain injury markers are to 1) use a standardised analytical methodology to assess which routine and novel neuronal and glial brain injury marker is the best predictor of functional outcome after OHCA, and 2) establish clinically useful cut-off levels for neurological prognostication.

Material and methods

Patients

Between November 2017 and January 2020, the TTM2 trial prospectively randomised 1900 patients \(\geq 18 \) years with OHCA of a presumed cardiac or with an unknown cause of arrest to hypothermia (target temperature 33 °C) or to normothermia (target temperature \(\leq 37.8 \) °C) (clinicaltrials.gov NCT02908308).15,16 No significant differences between the groups were found in neurological outcome or survival at six-month follow-up.15 Criteria for neurological prognostication and withdrawal of life-sustaining therapy have been previously published.16 Co-enrolment in the Targeted Therapeutic Mild Hypercapnia after Resuscitated Cardiac Arrest (TAME) trial was encouraged.17

Ethics

The trial protocol was approved by the ethics committees in each participating country.15 Blood samples were pseudonymised before shipment and storage in the biobank. Analyses of the samples will be performed without any personal identifiers and published research results will only be on a group-level and not be traceable back to any individual participant.

Outcomes

The prognostic accuracy of biomarkers will be evaluated as the ability to predict neurological disability as functional outcome at six months post-arrest by a binary modified Rankin Scale (mRS), dichotomised into “good” (mRS 0–3) or “poor” (mRS 4–6) outcome as previously described.15,16

Biochemical analysis of brain injury markers

This protocol describes the analyses of brain injury markers from the twenty-five TTM2 sites participating in the biobank by Roche Diagnostics International AG.15,16 7/25 sites co-enrolled patients to the TAME trial.15 Blood was sampled prospectively and processed at each participating site, aliquoted, and frozen to –80 °C before shipment to the Integrated BioBank of Luxembourg. Serum was stored from the timepoint of randomisation (0 hours) and from 24, 48, and 72 hours after randomisation, whilst plasma was stored from 0 and 48 hours after randomisation. The biobank instructions for collection of samples are detailed in supplement 1. Samples will be analysed with research prototype [NSE, S100] and novel prototype [NFL, total-tau, GFAP] Elecsys9 electrochemiluminescence immunoassays (ECLIA) for quantitative in-vitro detection of biomarkers on a Cobas e601 System at the Roche Research Lab Facilities in Penzberg (Germany). Table 1 displays the limits of quantification. The presence of haemolysis will be determined in the serum and plasma aliquots used to measure biomarker concentrations with a Roche haemolysis index at 600 and 570 nm.19 NSE levels may be routinely available for neuroprognostication at some sites and results of the local analysis will be collected separately.

- The primary analysis of brain injury markers will utilize serum samples at 0, 24, 48, and 72 h post-randomisation for measurement of NSE, S100B, NFL and GFAP.
- In a second phase, plasma samples available at 0 and 48 h will be utilized for analyses of total-tau, GFAP and NFL.

Statistical analysis of brain injury markers

Results from the biochemical analyses will first become available to the TTM2 biobank working group after this statistical analysis plan has been submitted for publication. The statistical analysis will be performed parallel and independently by the TTM2 biobank working group and by the medical statisticians from Roche Diagnostics International AG. Results of the statistical analyses will be compared and added as supplements to any publication. All analyses will be published regardless of the results. Reporting will follow the Standards for Reporting Diagnostic accuracy studies (STARD) and Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD).20,21

We plan to perform our analyses as follows; i) description of the population, haemolysis, and effect of interventions on the prognostic performance of biomarkers; ii) main aims; prediction of functional outcome, determination of cut-off values, and mortality and III)
Table 1 – Limits of quantification for brain injury markers for Elecsys®.

Brain injury marker	Lower limit of quantification	Range
NSE	0.05 ng/mL	0.05–370 ng/mL
S100B	0.005 μg/L	0.005–39 μg/L
NFL	0.21 pg/mL	0.21–1959 pg/mL
GFAP	0.004 ng/mL	0.004–200 ng/mL
Total tau	0.18 pg/mL	0.18–3895 pg/mL

The lower limit of quantification and range. Samples with high concentrations will be diluted to determine exact concentrations.

Fig. 1 – Example of patient flow-chart. The flow-chart will be reported in accordance with the Standards for Reporting of Diagnostic Accuracy Studies (STARD) and the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD).20,21
exploratory analyses. Biomarker levels may be analysed transformed into a logarithmic scale if appropriate.

I) Description of the population, haemolysis, and effect of interventions on the prognostic performance of biomarkers

Population
Patients were consecutively included at participating sites. We will describe reasons for exclusion in a flowchart (Fig. 1) and the number of available samples at each time point (eTable 1). We will present baseline characteristics of included and excluded patients, since any differences might influence the interpretation of the results (eTable 2). The main analysis will include all patients with data available at each timepoint.

Correlation with clinical characteristics
Biomarkers will be examined for their association with the TTM2 trial design variables; age (continuous), sex (female/male), time to ROSC (continuous), shockable initial rhythm (shockable versus non-shockable) and circulatory shock on admission (present versus not present). The association between the design variables and biomarker levels will be described using Spearman’s rho for continuous variables, and by comparing the biomarker levels between binary variables using the Mann-Whitney-Wilcoxon-Test (eTable 3).

Haemolysis
If biomarker levels on a group level are significantly higher in samples > 500 mg/l haemolysis than in samples < 500 mg/l haemolysis, we will consider such samples pre-analytically confounded and exclude them from further analysis of that specific marker (eFig. 1). Only NSE is present in erythrocytes and has previously demonstrated elevated blood levels in haemolytic samples.2

Effect of interventions on the prognostic performance of biomarkers
We will describe and graphically inspect distributions of biomarker levels between the temperature groups for good and poor functional outcome (eFig. 2). In an interaction model we will examine if the effect of the biomarker is similar in the temperature groups (eTable 4A). If the interaction effect is not statistically significant, we will pool data when analysing prognostic accuracies as described in II). If required, we will present prognostic accuracies separately for each intervention group. Due to the co-enrolment with the TAME trial, we will also present interaction models for patients randomised to mild hypercapnia (PaCO2, 50–55 mmHg) or standard care (PaCO2, 35–45 mmHg) (eTable 4B).

II) Prediction of functional outcome, determination of cut-off values, and mortality

Prediction of functional outcome
Firstly, we will display concentrations of biomarkers in relation to functional outcome according to separate levels of the mRS at six months (Fig. 2).

Secondly, we will examine the prognostic accuracy for binary functional outcome (good versus poor). Using logistic regression models, we aim to analyse whether biomarkers are useful additions to the TTM2 design variables for prediction of functional outcome (Table 2). The overall precision of the biomarkers for prediction of functional outcome will also be presented as area under the receiver operating characteristics curve (AUROC) with 95% confidence intervals (Fig. 3). P-values will be calculated based on a test of difference in AUROC using the method of DeLong. For the main logistic regression models on overall AUROC for prediction of functional outcome, we aim to compare the prognostic accuracies of the two brain injury markers with the highest AUROC at each timepoint to each other. P-values will then be adjusted for multiplicity based on the number of timepoints of sample collection (n = 4 for serum and n = 2 for plasma), where p < 0.0125 and p < 0.025 will be considered statistically significant, respectively. We will also report partial AUROC at high (95–100%) specificities in all patients (eTable 5). In a subgroup analysis, we will examine overall prognostic accuracies in unconscious patients alive but not awake who would be eligible for neurological prognostication (eFig. 3). We will examine whether the AUROC of the Δ change in biomarker levels between timepoints can be used for prediction of functional outcome (eTable 6).

The conclusion on which brain injury marker is the optimal predictor of functional outcome marker will be based on the comparison of AUROC (overall and partial) for single biomarkers.

Cut-off values at high specificities
We will present cut-offs and sensitivities at high specificities (95–100%) and as the Youden-index for each timepoint for good versus poor functional outcome.

Fig. 2 – Example biomarker levels according to functional outcome (mRS). The boxplots with scatter will be made separately for each biomarker and timepoint and will include serum concentrations of all patients, irrespective of TTM allocation at each level of the modified Rankin Scale (mRS) at six months post cardiac arrest. Figure example based on data from the TTM trial.2,9,24
poor functional outcome at six months (eTable 7). Sensitivities and specificities at all cut-offs will be determined by an out-of-sample cross-validation procedure. In each iteration (suggested n = 10,000), 70% of participants will be chosen, as a training set and the remaining 30% of participants as a test set. Cut-offs will be determined in the training set and these cut-offs will then be evaluated for sensitivity and specificity in the test set as recommended for external validation studies.21 None of the sites and patients used to train the models will be used when testing the models. The reported sensitivities and specificities will be the mean results among the 10,000 test sets. The 95% confidence intervals will be calculated with Wilson’s method.22

Survival analysis

We will examine levels of brain injury markers according to the all-cause mortality and according to the presumed cause of death (neurological versus non-neurological according to treating physician) until 180 days post-arrest. Kaplan-Meier curves will be created for each time-point by splitting the biomarkers into three equally large groups (tertiles with low, intermediate, and high levels of biomarkers).

Table 2 – Example of logistic regression models adding biomarkers to clinical information for prediction of functional neurological outcome.

Timepoint	Model predictors	\(\beta \) biomarker (95% CI)	AIC	AUC
Randomisation	Clinical variables	NA		
24 h	Clinical variables	NA		
48 h	Clinical variables	NA		
72 h	Clinical variables	NA		

Examples of graphical presentation of results

Logistic regression models will be reported separately for each biomarker for prediction of good versus poor functional outcome at 6 months’ follow-up. “Clinical information” included age, sex, time to ROSC, TTM allocation, shock on admission and whether initial rhythm on ECG was shockable. For each model, we determine coefficients for the biomarkers (\(\beta = \) increase in log odds for poor functional outcome for each log10 unit increase in serum concentration with 95% confidence intervals), Akaike Information criterion (AIC, measure of model fit; smallest is preferable) and Area Under the Receiver Operating Characteristics curve (AUC). For biomarkers where a logarithmic-transformation of serum levels is not appropriate, other transformations or categorisation will be considered. We will calculate p-values for comparing if difference in AUC between the clinical information and the model including biomarker plus clinical information is statistically significant.

Fig. 3 – Example figure for ROC analysis for overall prognostic accuracies. This ROC analysis is the main analysis and will include all available data from patients with biomarker data and functional outcome (good versus poor) at six months. Using paired ROC curves (DeLong) we will examine whether the difference in AUROC between the two best markers at each time-point is statistically significant. We will correct for multiplicity of the time-points (n=4 comparisons for serum samples and n=2 for plasma), where p < 0.125 and p < 0.025 will be considered statistically significant. Figure example based on data from the TTM trial.2,4,7,10,12,24
and using these factorial variables as a predictor for age adjusted survival with 95% confidence intervals (Fig. 4). P-values will be calculated with a log-rank test.

III) Exploratory analyses

- Validation of the currently recommended NSE cut-off for prediction of poor functional outcome ≥ 60 ng/mL at 48 and/or 72 hours post-arrest using both results from local analysis and from the Elecsys®
- Examination of whether combinations of brain injury markers improve prediction of functional outcome
- Correlation of awakening at any time-point to brain injury marker levels
- Correlation of biomarker levels with other neuroprognostic methods (neurophysiology, neuroimaging and clinical neurological findings)
- Validation of prognostic accuracies for “normal concentrations” and twice normal concentrations in patients with “indeterminate outcome”
- Correlation of brain injury markers with cognitive function by the MoCA (Montreal Cognitive Assessment) and SDMT (Symbol Digit Modalities Test)

Publication

A first manuscript will include analyses of NSE, S100B, NFL and GFAP in serum. A second manuscript will include analyses of NFL, GFAP and total-tau in plasma. Additional exploratory analyses will be performed subsequently and may be presented in separate manuscripts.

Discussion

In a prospective international multicentre trial, we will use the Elecsys® methodology to compare the neuroprognostic ability of routine and novel brain injury markers after cardiac arrest. We aim to examine which neuronal and glial markers best predict brain injury and functional outcome and to establish clinically useful cut-off levels for neurological prognostication. The clinical use of novel brain injury markers are currently limited by a lack of validation, research grade assays and prolonged time for obtaining results from external laboratories. Biochemical analysis on platforms in clinical use could make novel markers more easily available.

Within the first TTM trial, both NFL and total-tau were examined using ultrasensitive novel assays, whilst NSE, S100B and GFAP were analysed with standard methods. Another novel neuronal marker, ubiquitin-carboxy hydrolase L1, was not as predictive of neurological outcome as the neuroaxonal markers and is therefore not included in the present study. It is unclear to which extent the analytical platform affects the prognostic accuracy. The current trial may help clarify this by using a standardised approach to analysis for all markers, both in serum and plasma.

We previously found that prognostic accuracies of biomarkers were not significantly influenced by target temperature and will therefore perform analyses on pooled data where we find no significant interaction effect between intervention groups. We do not
Strengths of the TTM2 trial include the prospective international multicenter design, randomisation to TTM stratified by site, a standardised level of sedation, conservative criteria for neurological prognostication and withdrawal of life-sustaining therapy following cardiac arrest. Our results may help establish a standard methodology and appropriate cut-off levels for prognostication of neurological outcome after cardiac arrest.

Conclusions

We present the design of a large prospective trial examining the prognostic accuracy of the most promising brain injury markers following cardiac arrest. Our results may help establish a standard methodology and appropriate cut-off levels for prognostication of neurological outcome after cardiac arrest.

Funding

The TTM2 trial is supported by independent research grants from nonprofit or governmental agencies (the Swedish Research Council [Vetenskapsrådet], Swedish Heart–Lung Foundation, Stig and Ragna Gorhon Foundation, Knutsson Foundation, Laerdal Foundation, Hans-Gabriel and Alice Trolle-Wachtmeister Foundation for Medical Research, and Regional Research Support in Region Skåne) and by governmental funding of clinical research within the Swedish National Health Service. Biochemical markers will be analysed free of charge by Roche Diagnostics International AG, Rotkreuz, Switzerland.

Role of the funders

Roche Diagnostics International AG, Rotkreuz, Switzerland will analyse the serum and plasma samples free of charge and a formal agreement has been settled between the TTM2 trial sponsor (Region Skåne, Helsingborg hospital, Sweden) and Roche Diagnostics. Prior to analysing samples, the current statistical analysis plan was defined in collaboration between the TTM2 trial investigators, medi...
Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.resplu.2022.100258.

Author details

1Department of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
2Department of Clinical Sciences Lund, Anaesthesiology and Intensive Care, Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
3Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
4Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Malmö, Sweden
5Clinical Studies Sweden – Forum South, Skåne University Hospital, Lund, Sweden
6Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
7UK Dementia Research Institute at UCL, London, United Kingdom
8Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
9Department of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
10The Copenhagen Trial Unit, Centre for Clinical Intervention Research, Denmark
11Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Denmark
12Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Lund University, Skåne University Hospital, Malmö, Sweden
13University College Dublin, Clinical Research Centre, St Vincent's University Hospital Dublin, Ireland
14The Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
15Intensive Care Unit, Alfred Hospital, Melbourne, Australia
16Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
17Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
18Adult Critical Care, University Hospital of Wales, Cardiff, United Kingdom
19Intensive Care Unit, University Hospitals, Bristol and Weston, England, United Kingdom
20Essex Cardiothoracic Centre, MSc, Basildon, Essex, United Kingdom
21MTRC, Anglia Ruskin School of Medicine, Chelmsford, Essex, United Kingdom
22Medical Intensive Care Unit, AP-HP, Cochin Hospital, Paris, France, Paris Cité University, Paris, France
23AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
24Anaesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
25Second Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
26Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
27Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
28Department of Clinical Sciences Lund, Anaesthesiology and Intensive Care, Lund University, Department of Cardiothoracic Surgery, Skåne University Hospital, Lund, Sweden
29Department of Clinical Sciences Malmö, Dept. Operation and Intensive Care, Lund University, Hallands Hospital Halmstad, Halmstad, Sweden
30Clinical Development Department, Roche Diagnostics International AG, Rotkreuz, Switzerland
31Biostatistical Department, Roche Diagnostics International AG, Rotkreuz, Switzerland
32Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Lund University, Helsingborg Hospital, Lund, Sweden

REferences

1. Nolan JP, Sandroni C, Bottiger BW, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation 2021;161:220–69.
2. Stammert P, Collignon O, Hassager C, et al. Neuron-Specific Enolase as a Predictor of Death or Poor Neurological Outcome After Out-of-Hospital Cardiac Arrest and Targeted Temperature Management at 33 degrees C and 36 degrees C. J Am Coll Cardiol 2015;65:2104–14.
3. Streitberger KJ, Leithner C, Wattenberg M, et al. Neuron-Specific Enolase Predicts Poor Outcome After Cardiac Arrest and Targeted Temperature Management: A Multicenter Study on 1,053 Patients. Crit Care Med 2017;45:1145–51.

4. Stammet P, Dankiewicz J, Nielsen N, et al. Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 degrees C and 36 degrees C. Crit Care 2017;21:153.

5. Unden J, Ingebrigtsen T, Romner B, Scandinavian Neurotrauma C. Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update. BMC Med 2013;11:50.

6. Moseby-Knappe M, Cronberg T. Blood biomarkers of brain injury after cardiac arrest - A dynamic field. Resuscitation 2020;156:273–6.

7. Ebner F, Moseby-Knappe M, Mattsson-Carlgren N, et al. Serum GFAP and UCH-L1 for the prediction of neurological outcome in comatose cardiac arrest patients. Resuscitation 2020;154:61–8.

8. Bazarian JJ, Biberthaler P, Welch RD, et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study. Lancet Neurol 2018;17:782–9.

9. Mattsson N, Zetterberg H, Nielsen N, et al. Serum tau and neurological outcome in cardiac arrest. Ann Neurol 2017;82:865–75.

10. Moseby-Knappe M, Mattsson N, Nielsen N, et al. Serum Neurofilament Light Chain for Prognosis of Outcome After Cardiac Arrest. JAMA neurology 2019;76:64–71.

11. Wiheraaari L, Ashton NJ, Reinikainen M, et al. Neurofilament light as an outcome predictor after cardiac arrest: a post hoc analysis of the COMACARE trial. Intensive Care Med 2021;47:39–48.

12. Agerskov M, Hansen MB, Nielsen AM, Moller TP, Wissenberg M, Rasmussen LS. Return of spontaneous circulation and long-term survival according to feedback provided by automated external defibrillators. Acta Anaesthesiol Scand 2017;61:1345–53.

13. Sandroni C, D’Arrigo S, Cacciola S, et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med 2020.

14. Roche Diagnostics International AG. Electro-chemiluminescence immunoassay (ECLIA) for the in vitro quantitative determination, https://diagnostics.roche.com/global/en/search.html?q=eletcsys&autoSuggest=true (Access date March 15th 2022).

15. Dankiewicz J, Cronberg T, Lilja G, et al. Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest. N Engl J Med 2021;384:2283–94.

16. Dankiewicz J, Cronberg T, Lilja G, et al. Targeted hypothermia versus targeted Normothermia after out-of-hospital cardiac arrest (TTM2): A randomized clinical trial-Rationale and design. Am Heart J 2019;217:23–31.

17. Parke RL, McGuinness S, Eastwood GM, et al. Co-enrolment for the TAME and TTM-2 trials: the cerebral option. Crit Care Resusc 2017;19:99–100.

18. Lilja G, Nielsen N, Ullen S, et al. Protocol for outcome reporting and follow-up in the Targeted Hypothermia versus Targeted Normothermia after Out-of-Hospital Cardiac Arrest trial (TTM2). Resuscitation 2020;150:104–12.

19. Lippi G, Cadamuro J, Danese E, et al. Internal quality assurance of HIL indices on Roche Cobas c702. PLoS One 2018;13 e0200088.

20. Cohen JF, Korevaar DA, Altman DG, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 2016;6 e012799.

21. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD). Ann Intern Med 2015;162:735–6.

22. Agresti, A, and Cough, BA. Approximate is better then ‘exact’ for interval estimation of binomial proportions, American Statistician 1998;52 119-126.

23. Moseby-Knappe M, Mattsson-Carlgren N, Stammet P, et al. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Med 2021;47:984–94.

24. Nielsen N, Weterslev J, Cronberg T, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med 2013;369:2197–206.