Characterization of virulence factors of *Salmonella* isolated from human stools and street food in urban areas of Burkina Faso

Marguerite E. M. Nikiema¹,²,³*, Solange Kakou-ngazoa², Absatou Ky/Ba⁴, Aboubacar Sylla², Evariste Bako¹, Ameyo Yayra Audrey Addablah², Jean Bienvenue Ouoba¹, Emmanuel Sampo¹,⁵, Kobo Gnada⁶, Oumarou Zongo⁷, Kuan Abdoulaye Traoré³, Adama Sanou⁶,⁸, Isidore Juste Ouindgueta Bonkoungou¹, Rasmata Ouédraogo⁹, Nicolas Barro¹ and Lassana Sangaré³

Abstract

Background: This study was undertaken to identify and functionally characterize virulence genes from *Salmonella* isolates in street food and stool cultures. From February 2017 to May 2018, clinical and food *Salmonella* strains were isolated in three regions in Burkina Faso. *Salmonella* was serotyped according to the White-Kauffmann-Le Minor method, and polymerase chain reaction (PCR) was used to detect *invA*, *spvR*, *spvC*, *fimA* and *stn* virulence genes commonly associated with salmonellosis in Sub-Saharan Africa.

Results: A total of 106 *Salmonella* isolates (77 human stools; 14 sandwiches) was analyzed using a serological identification with an O-group test reagent. The presence of *Salmonella* was confirmed in 86% (91/106) of the samples were reactive (OMA-positive/OMB-positive). *Salmonella* serogroup O:4,5 was the most common serogroup detected (40%; 36/91). *Salmonella* Enteritidis and Typhimurium represented 5.5% (5/91) and 3.3% (3/91), respectively and were identified only from clinical isolates. Furthermore, 14 serotypes of *Salmonella* (12/91 human strains and 2/15 sandwich strains) were evocative of Kentucky/Bargny serotype. For the genetic profile, 66% (70/106) of the *Salmonella* had *invA* and *stn* genes; 77.4% (82/106) had the *fimA* gene. The *spvR* gene was found in 36.8% (39/106) of the isolates while 48.1% (51/106) had the *spvC* gene. Among the identified *Salmonella* Enteritidis and *Salmonella* Typhimurium isolated from stools, the virulence genes detected were *invA* (3/5) versus (2/3), *fimA* (4/5) versus (3/3), *stn* (3/5) versus (2/3), *spvR* (4/5) versus (2/3) and *spvC* (3/5) versus (2/3), respectively.

Conclusion: This study reports the prevalence of *Salmonella* serotypes and virulence genes in clinical isolates and in street foods. It shows that food could be a significant source of *Salmonella* transmission to humans. Our results could help decision-making by the Burkina Faso health authority in the fight against street food-related diseases, in particular by training restaurateurs in food hygiene.

Keywords: *Salmonella*, Serotypes, Virulence genes, Gastroenteritis, Sandwiches, Burkina Faso

*Correspondence: edithnikiema26@gmail.com
³ Service de Bactériologie-Virologie, CHU-Yalgado OUEDRAOGO, 03 BP 7022, Ouagadougou, Burkina Faso
Full list of author information is available at the end of the article

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Salmonella virulence genes remain limited [2]. In spite of that Salmonella continue to be remains an important human pathogen and a serious public health concern worldwide [3]. Salmonellosis, caused by Salmonella, manifests mainly as mild diarrhea, also known as food poisoning [4].

In Europe, the number of non-typhoidal salmonellosis (NTS) is estimated at 690 cases per 100,000 inhabitants [5], and in the United States, 17.6 cases per 100,000 inhabitants per year [6]. In 2019, pathogens responsible for foodborne diseases, including Salmonella enterica (non-typhoid), caused 230,000 deaths in Africa [7]. In resource-limited countries, particularly in Sub-saharan Africa, NTS is endemic, with high rates in children under 3 years of age and immunocompromised individuals [8, 9]. These diseases have a significant negative economic impact in resource-limited countries amounting to $110 billion per year [10].

The pathogenicity of Salmonella is mediated by numerous genes comprising invA, fimA, stn, spvR, spvC, spiC and pipD [11]. The invasion gene (invA), located on the pathogenicity island 1 (SPI1), has been widely studied for its ability to promote virulence and also as a biomarker for the detection of Salmonella spp. [12]. The invA gene of Salmonella is also involved in invasion of host epithelial cells [13, 14]. The Salmonella stn gene encode for an enterotoxin stn and is associated with infection with the serotypes of Salmonella Typhi, Typhimurium and Enteritidis [15]. Salmonella enterotoxin (stn) gene is a clinical important biomarker which is use to differentiate Salmonella enterica strains (stn+), from in Salmonella bongori and other Enterobacteriaceae [15]. The fimbrae (fimA) are Salmonella filamentous surface structures that contribute to colonization of the epithelium cells [16]. Salmonella virulence plasmids have been considered as a characteristic of Salmonella serotypes implicated in systemic disease. The Salmonella virulence plasmid carry several key virulence factors, including the spvABCD system and its spvR regulator, which are essential for systemic virulence [17]. These genes are also sufficient to restore systemic virulence in plasmid hardened strains [18]. Although Salmonella is a major cause of foodborne illness in developing countries, there is a scarcity of data on street found intake and Salmonella related diseases which undermined the real impact of salmonellosis on population health [19]. Other non-typhoidal Salmonella (NTS) serovars can also cause systemic infections, also known as invasive NTS (iNTS) disease [19–21]. This is predominantly due to the emergence of invasive clones of Enteritidis [22] and Typhimurium [23] serotypes that have spread throughout Africa. Despite being a serious public health concern, there are very few studies on salmonellosis, associated with food-borne illness, similarly, data on Salmonella virulence genes remain limited in Burkina Faso [24]. On the other hand, studies have been reported on the resistance genes of these bacteria [25, 26]. Therefore, there is a need to improve our understanding on the pathogenicity of these bacteria in regards to virulence genes and their impact on human health in Burkina Faso. This work aimed to address this lack of data on salmonellosis through determination of the prevalence of virulence genes of Salmonella strains isolated from street food and human stools in Burkina Faso.

Methods
Site and period of the study
Samples were collected from February 2017 to May 2018 in Ouagadougou the capital, and Bobo-Dioulasso and Koudougou located in West and mid-western parts of Burkina Faso (Fig. 1).

Sample’s collection
Eighty-five (85) samples of ready-to-eat beef sandwiches were purchased in Ouagadougou and transported to the laboratory in a +4°C cooler for microbiological analysis. Analysis was carried out within 2 h after sampling. Ninety-one (91) Salmonella clinical strains, isolated from diarrheal stools samples from inpatients and out patients were collected from seven health care facilities in urban areas of three regions of Burkina Faso. Central region/ Ouagadougou (“Centre Hospitalier Universitaire Yalgado Ouédraogo (CHU-YO)”, “Centre Hospitalier Universitaire Pédiatrique Charles De Gaulle (CHU-PCDG)”, “Centre Hospitalier Universitaire Bogodogo (CHU-B)”, “Hôpital Protestant Schiphra” and “Laboratoire d’analyse médical du Centre”), Hauts-Bassins region/ Bobo-Dioulasso (“Centre MURAZ”) and center-west region/ Koudougou (“Centre Hospitalier Régional de Koudougou”).

Sandwich samples were analyzed at the “Laboratoire de Biologie Moléculaire d’Épidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTa, Université Joseph Ki-Zerbo)”.

Microbiological analyzes
Salmonella strains were isolated from eighty-five (85) samples of ready-to-eat beef sandwiches using ISO 6579-1:2017 standard - Horizontal method for Salmonella detection of Salmonella [27]. The Ninety-one (91) Salmonella clinical isolates collected from health facilities of three cities in Burkina Faso (83 in Ouagadougou, 2 in Koudougou and 6 in Bobo-Dioulasso) were submitted to API 20E identification system of Biomérieux France at the CHU-YO laboratory for verify that they are indeed Salmonella strains.
Fig. 1 Geographic map of sample collection sites (health facilities and food sites)

Legend

- Sandwiches sampling
- Medical laboratory
- Study area

Source: BNDT 2010/This study
Pre-enrichment in non-selective broth
Prior to enrichment, 25 g from each sandwich sample were suspended in a sterile flask containing 225 mL of non-selective buffered peptone water (Liofilchem®, Italy) and incubated at 37 °C for 16 to 20 h. This approach helps increase the number of bacterial cells of interest by enabling repair of lesions from damaged cells which regain their resistance to selective agents.

Selective enrichment in broth
Following the non-selective pre-enrichment stage, 1 mL and 0.1 mL of each sample suspension were transferred into 10 mL of Muller-Kauffmann Tetrathionate-Novobiocin Broth (MKTTn) (Liofilchem®, Srl, Italy) and into 10 mL of Rappaport Vassiliadis Soy broth (Difco laboratories), respectively. Brilliant green at 0.95% was added to the Tetrathionate broth in order to inhibit the growth of Gram-positive bacteria and then incubated for 18 to 20 h at 37 ± 1 °C. The Rappaport Vassiliadis inoculate were incubated for 18 to 20 h at 42 ± 1 °C.

Selective isolation
During the third stage, a loopful of culture suspension from each selective media was placed on two different agar plates to identify individual colonies. The media chosen were Xylose Lysine Deoxycholate agar (XLD, HiMedia Laboratories, India) and Salmonella-Shigella agar (SS, HiMedia Laboratories, India). Typical Salmonella colonies on XLD are colorless, very light, slightly shiny and transparent (colour of the medium) with a dark tinted centre, surrounded by a light red area and yellow edge, but they can also appear as pink to red coloured, with or without a black centre. On the Salmonella-Shigella agar, typical Salmonella colonies are colourless or very light pink, opaque or semi-transparent, usually with a black centre.

Biochemical identification of characteristic colonies
At least five colonies suspicious for Salmonella were picked per plate and purified by growth on nutrient agar for 24 h. Then, colonies were sowed onto triple sugar iron agar (Difco laboratories) to observe sugar utilization, MR-VP broth for Voges Proskauer reaction, Christensen agar for urea utilization and peptone water broth for indole production. S. enterica serotype Typhimurium strain ATCC 14028 and S. enterica serotype Enteritidis strain ATCC 13076 were used as positive controls. Suspected colonies were purified on nutrient agar and then submitted to an API 20E (BioMérieux, Marcy Etoile, France) test for biochemical identification. The main biochemical tests are glucose fermentation, ortho phenyl beta galactosidase negative reaction, urease negative, lysine decarboxylase, negative indole test, H2S production, and fermentation of dulcitol [28]. Isolates of Salmonella spp. were stored in brain heart broth (BioMérieux, France) supplemented with 30% glycerol, in cryotubes at −80 °C.

Serotyping
Serotyping and molecular characterization were performed at the Pasteur Institute in Côte d’Ivoire. All the strains were serotyped according to the White-Kauffmann-Le Minor scheme [29]. We purchased the anti-Salmonella agglutinating sera from Bio-Rad (Marnes-la-Coquette, France).

Molecular characterization of Salmonella strains
Genomic DNA extraction
The extraction of total genomic DNA was carried out by the phenol/chloroform method [30] using Salmonella fresh growths from Luria Bertani (LB) broth. The Salmonella strains were grown in LB 1X broth incubated at 37 °C for 24 h. We incubated the mixture of 100 μL of enriched sample added to 300 μL of lysis buffer at 56 °C for 1 h. A total volume of 400 μL of the phenol/chloroform/isoamyl alcohol mixture (25:24:1) was vortexed for 2 min and then centrifuged at 12500 rpm for 2 min. Then the supernatant was transferred in a new 1.5 mL Eppendorf tube and the pellet was discarded. The volume of the transferred supernatant was recorded and a double volume of absolute ethanol (100%) was added to the supernatant. The mixture was incubated for an hour at −20 °C and then centrifuged at 12500 rpm for 10 min. The supernatant was removed and the visible pellet was retained, washed with 200 μL of 70% of cold ethanol and centrifuged at 12500 rpm for 10 min. Finally, the pellet was dried for 20 min at room temperature and 60 μL of elution buffer was added to the pellet before storage at −20 °C for PCR.

Detection of virulence genes by PCR
Salmonella isolates were tested for different virulent genes (invA, fimA, stn, spvR and spvC) using PCR with sets of specific primer pairs (Table 1) as described by Chaudhary et al. [31]. The amplification of the genes was carried out according to the method described by Li et al. [12] with minor modifications. Initially, the amplification of the invA gene also served as a specific biomarker for the identification of the genus Salmonella [12]. The amplifications of the invA, spvC genes were performed following simplex PCR at a different hybridization temperature of 63°C using a thermocycler an Applied Biosystem GeneAmp PCR System 9700 type and GoTaq® G2 Flexi DNA Polymerase. The reaction mixture, with a final volume of 50 μL, consisted of 1X of 5X Green GoTaq® Flexi Buffer, 2 mM of MgCl2 Solution, 0.2 μM of
each primer and PCR Nucleotide Mix, 27.75 μL of sterile distilled water, 1.25 U of GoTaq® G2 Flexi DNA Polymerase (Promega) and 5μL of DNA extract. Gene amplification was performed as described by Kumar et al. [32] with minor modifications (volume of water and DNA). Then, the PCR conditions for amplification of virulence genes (invA, spvC) were as follows: 5 min of initial denaturation at 94 °C, followed by 35 cycles of denaturation at 94 °C for 30s, hybridization at 63 °C for 30 s, and extension at 72 °C for 30 s, ending with a final extension period of 72 °C for 10 min. Amplifications of the fimA, stn, spvR genes were performed in multiplex with slight variations in volume compared to the previous simplex PCR, using hybridization temperature of 56 °C. With a final volume of 50 μL, the reaction mixture has the same concentrations as described above for the kit GoTaq® G2 Flexi DNA Polymerase.

Electrophoresis and band visualization

The amplicons were separated by electrophoresis on a 2% agarose gel containing 8 μg/mL of the intercalant Sybr safe DNA gel Strain (10,000X, Invitrogen, Carlsbad, CA 92008 USA). A volume of 8 μL of each of the PCR products was loaded into each well. Five microliters (5 μL) of a 100bp DNA Ladder molecular weight marker (Promega, Madison, WI 53704 USA) was used to estimate the size of the amplicons. Electrophoresis was carried out at 110 V for 20 min using the Enduro gel XL electrophoresis system (Labnet, FL, USA). The bands were visualized using the GEL DOC EZ imaging system (Bio-Rad, USA).

Results

Salmonella strains isolated from food and clinical samples

Fifteen (15) Salmonella was isolated from sandwich samples and 91 from clinical samples. In total one hundred and six (106) Salmonella strains were involved in the analysis.

Serotyping of Salmonella strains

All 106 Salmonella isolates were agglutinated with antisera OMA and OMB. Ninety-one isolates (85.9%) gave a positive result (56 OMA+ and 35 OMB +) and the remaining 15 isolates were negative to OMA and OMB. Salmonella of the antigenic groups OMA+/O:4.5 [39.6% (36/91)] and the antigenic group OMB+/O:6,7,8 [25.3% (23/91)] were the most frequent. Three (3) Salmonella Typhimurium serotypes (OMA+/O:4.5; HMB+/H:i H2:gm) and five (5) Salmonella Enteritidis serotypes (OMA+/O:4.5; HMB+/H1:gm H2:gm) were found, only among clinical isolates. In addition, 14 strains of antigenic formulas (OMB+/O:6,7,8; HMA+/H:i) evocative of the Kentucky/Bargny serotype were isolated (2 from sandwiches and 12 from clinical isolates). These 14 Salmonella isolates were called suspected Kentucky serotypes because the serotyping was incomplete. All reported strains of Salmonella could not be completely serotyped by available sera as showed in Table 2.

Molecular characterization of Salmonella strains

Molecular identification of Salmonella strains

The molecular identification of Salmonella strain showed that among the 106 Salmonella isolates, 70 (66%) carried invA genes, from which 61 (87.1%) were clinical isolates, and 9 (12.9%) were isolated from sandwich samples (Table 2).

Molecular detection of Salmonella virulence genes

The most prevalent virulence genes were fimA, 82/106 (77.4%) followed by stn and invA 70/106 (66%), spvC 51/106 (48.1%) and spvR 39/106 (36.8%).

The distribution of amplified genes according to strain origin (Table 2), showed that 67% (61/91) of clinical strains carried invA gene, 76.9% (70/91) fimA gene, 65.9% (60/91) stn gene, 35.2% (32/91) spvR gene and 48.4% (44/91) spvC gene.

Table 1 The primer pairs used for the characterization of virulence genes from isolates of Salmonella [31]

Genes	Primer sequence (5′ → 3′)	TH (°C)	Size (bp)	Reference
invA	F: GTG AAA TTA TCG CCA CGT TCG GGC AA			
R: TCA TGG CAC CCT AAG AGG AAC C	63	284	[32]	
spvR	F: CAG GTT CCT TCA GTA TCG CA			
R: TTT GGC CGG AAA TGG TCA GT	57	310	[33]	
spvC	F: ACT CCT TGC ACA ACC AAA TGC GGA			
R: TGT CTT CTG CAT TTC GCC ACC ATC A	63	571	[34]	
fimA	F: CCT TTC TCC ATC GTC CTG AA			
R: TGG TGT TAT CTG CCT GAC CA	56	85	[35]	
stn	F: CTT TGG TCG TAA AAT AAG GCG			
R: TGG CCA AAG CAG AGA GAT TC | 55 | 260 | [36] |
Table 2 Prevalence of *Salmonella* serotypes and virulence genes

Origin strains	*Salmonella* serotypes (serogroups)	Number	Genetic markers				
			invA	fimA	stn	spvC	spvR
Clinical	Enteritidis [D (9)]	5	3	4	3	4	3
	Typhimurium [B (4)]	3	2	3	2	2	
	Kentucky/Bargnya[C (8)]	12	8	8	8	3	6
	Salmonella spp.	71	56	63	55	26	39
Total		91	61 (67%)	70 (76.9%)	60 (65.9%)	32 (35.2%)	44 (48.4%)
Food	Kentucky/Bargnya[C (8)]	2	1	2	1	1	
	Salmonella spp.	13	9	12	10	7	
Total		15	9 (60%)	12 (80%)	10 (66.7%)	7 (46.7%)	7 (46.7%)
Total (n = 106)		70 (66%)	82 (77.4%)	70 (66%)	39 (36.8%)	51 (48.1%)	

Salmonella isolated from food (sandwich) carried fimA genes at 80% (12/15), stn genes at 66.7% (10/15), invA genes at 60% (9/15), spvR and spvC genes at 46.7% (7/15).

The distribution of virulence genes according to the serotypes from clinical isolates showed that 80% (4/5) of *Salmonella* Enteritidis strains carried fimA and spvR genes, and 60% (3/5) carried invA, stn and spvC. 100% (3/3) of *Salmonella* Typhimurium carried fimA and spvC genes, and 66.7% (2/3) carried invA, stn, fimA and spvR genes.

The majority of the 106 *Salmonella* isolates harbored at least one of the five genes associated with virulence (Table 3, Table 4). According to the presence of virulence genes, we classified the 106 isolates in eleven (11) different profiles (P) from clinical isolates and named as follows: P1, P2, P3, P10 to P11. The foodborne *Salmonella* had five (5) genetic profiles (P1, P3, P10, P7 and P11). For all isolates combined (food and human), profile P1 (positive for all five genes tested) was the most prevalent 38 (35.8%), follow by P2 (spvR absent), 12 (11.3%), profile P3 (spvR and spvC absent), 16 (15.1%), P10 (unique presence of fimA), 10 (9.4%) and P11 (negative for all five genes tested), 22 (20.8%).

Table 3 Virulence genes and genetic profile of *Salmonella* spp. isolates from food in Burkina Faso

Salmonella Strain code	Year	City	Source	Serotypes	Antigenic formula positive	Identified genes	Genetic profile
93	2017	Ouagadougou	Food	ICS	OMA+ O:3,1,15; HMA	invA, fimA, stn, spvR, spvC	P1
94	2017	Ouagadougou	Food	ICS	OMA+ O:4,5; HMB	invA, fimA, stn, spvR, spvC	P1
96	2017	Ouagadougou	Food	ICS	OMA+ O:4,5; O:1,2, HMB Hgm	invA, fimA, stn, spvR, spvC	P1
97	2017	Ouagadougou	Food	ICS	OMB+ O:6,7,8	invA, fimA, stn, spvR, spvC	P1
98	2017	Ouagadougou	Food	ICS	OMA+ O:4,5, HMA	invA, fimA, stn, spvR, spvC	P1
100	2017	Ouagadougou	Food	ICS	OMB+	invA, fimA, stn, spvR, spvC	P1
104	2017	Ouagadougou	Food	ICS	OMB+ O:6,7,8, HMA Hi**	invA, fimA, stn, spvR, spvC	P1
92	2017	Ouagadougou	Food	ICS	OMA+ O:4,5, HMA	invA, fimA, stn, spvR, spvC	P1
95	2017	Ouagadougou	Food	ICS	OMA+ O:4,5, O:1,2, HMB	invA, fimA, stn, spvR, spvC	P1
103	2017	Ouagadougou	Food	ICS	OMA+ O:4,5, HMB Hg*	fimA, stn	P7
102	2017	Ouagadougou	Food	ICS	OMA+ O:4,5, HMB Hg*	fimA	P10
105	2017	Ouagadougou	Food	ICS	OMB+ O:6,7,8, HMA Hi*	fimA	P10
99	2017	Ouagadougou	Food	ICS	OMA+ O:4,5 O:1,2	...	P11
106	2017	Ouagadougou	Food	ICS	OMA-OMB-	...	P11

ICS Incomplete serotyping, OMA Antiserum O mixture of group A, OMB Antiserum O mixture of group B, HMA Antiserum H mixture of group A, HMB Antiserum H mixture of group B; *antigenic formula (OMB+:O:6,7,8; HMA Hi*) suggestive of *Salmonella* Kentucky/Bargny; P1: positive for all five genes tested; P3: spvR and spvC absent; P7: unique presence of fimA and stn; P10: unique presence of invA; P11: negative for all five genes test; a, b: overlapping serotypes/genetic profile
Table 4 Virulence genes and genetic profile of *Salmonella* spp. isolates from human stool in Burkina Faso

Salmonella Strain code	Year	City	Source	Serotypes	Antigenic formula positive	Identified genes	Genetic profile	
44	2018	Ouagadougou	Human	ICS	OMB+ O:6,7,8	invA, fimA, str, spvR, spvC	P1	
45	2018	Ouagadougou	Human	ICS	OMA-OMB-	invA, fimA, str, spvR, spvC	P1	
46	2018	Ouagadougou	Human	ICS	OMA+ O:4,5, HMB Hgm	invA, fimA, str, spvR, spvC	P1	
48	2018	Ouagadougou	Human	ICS	OMB+ O:6,7,8, HMA Hi	invA, fimA, str, spvR, spvC	P1	
50	2018	Ouagadougou	Human	ICS	OMB+ O:6,7,8, HMB Hg	invA, fimA, str, spvR, spvC	P1	
51	2018	Ouagadougou	Human	ICS	OMA+ O:4,5, HMB Hg	invA, fimA, str, spvR, spvC	P1	
53	2018	Ouagadougou	Human	ICS	Typhimurium	OMA+ O:4,5, HMA Hi; H1H2	invA, fimA, str, spvR, spvC	P1
59	2017	Ouagadougou	Human	ICS	OMA-OMB-	invA, fimA, str, spvR, spvC	P1	
68	2017	Ouagadougou	Human	ICS	OMA+ O:4,5; HMB Hg	invA, fimA, str, spvR, spvC	P1	
71	2018	Ouagadougou	Human	ICS	OMA-OMB-	invA, fimA, str, spvR, spvC	P1	
74	2017	Koudougou	Human	Enteritidis	OMA+ O:9, HMB Hgm	invA, fimA, str, spvR, spvC	P1	
75	2017	Koudougou	Human	Enteritidis	OMA+ O:9, HMB Hgm	invA, fimA, str, spvR, spvC	P1	
85	2017	Ouagadougou	Human	ICS	OMA+ O:4,5, HMB Hg	invA, fimA, str, spvR, spvC	P1	
86	2017	Ouagadougou	Human	ICS	OMA-OMB-	invA, fimA, str, spvR, spvC	P1	
3	2017	Bobo-Dioulasso	Human	Enteritidis	OMA+ O:9, HMB Hg	invA, fimA, str, spvR, spvC	P1	
17	2017	Ouagadougou	Human	ICS	OMA+ O:9	invA, fimA, str, spvR, spvC	P1	
18	2018	Ouagadougou	Human	ICS	OMB+ O:6,7,8	invA, fimA, str, spvR, spvC	P1	
19	2018	Ouagadougou	Human	ICS	OMA-OMB-	invA, fimA, str, spvR, spvC	P1	
27	2018	Ouagadougou	Human	ICS	OMA+ O:4,5, HMB Hg	invA, fimA, str, spvR, spvC	P1	
28	2018	Ouagadougou	Human	ICS	OMA-OMB-	invA, fimA, str, spvR, spvC	P1	
29	2018	Ouagadougou	Human	Typhimurium	OMA+ O:4,5, HMA Hi; H1H2	invA, fimA, str, spvR, spvC	P1	
30	2017	Ouagadougou	Human	ICS	OMA+ O:3,10,15; HMA Hi	invA, fimA, str, spvR, spvC	P1	
32	2017	Ouagadougou	Human	ICS	OMA+ O:4,5, HMB	invA, fimA, str, spvR, spvC	P1	
34	2017	Ouagadougou	Human	ICS	OMA+ O:9	invA, fimA, str, spvR, spvC	P1	
35	2017	Ouagadougou	Human	ICS	OMB+ O:6,7,8, HMA Hi*	invA, fimA, str, spvR, spvC	P1	
36	2017	Ouagadougou	Human	ICS	OMB+ O:6,7,8, HMA Hi*	invA, fimA, str, spvR, spvC	P1	
37	2017	Ouagadougou	Human	ICS	OMA-OMB-	invA, fimA, str, spvR, spvC	P1	
38	2017	Ouagadougou	Human	ICS	OMA-OMB-	invA, fimA, str, spvR, spvC	P1	
39	2017	Ouagadougou	Human	ICS	OMA+ O:9	invA, fimA, str, spvR, spvC	P1	
40	2017	Ouagadougou	Human	ICS	OMA+ O:4,5, HMA	invA, fimA, str, spvR, spvC	P1	
43	2017	Ouagadougou	Human	ICS	OMA+ O:4,5, HMB	invA, fimA, str, spvR, spvC	P1	
1	2017	Bobo-Dioulasso	Human	ICS	OMA+ O:4,5; HMB Hg	invA, fimA, str, spvC	P2	
4	2017	Bobo-Dioulasso	Human	ICS	OMA+ O:4,5; HMB Hgm	invA, fimA, str, spvC	P2	
20	2018	Ouagadougou	Human	ICS	OMB+	invA, fimA, str, spvC	P2	
21	2018	Ouagadougou	Human	ICS	OMB+	invA, fimA, str, spvC	P2	
22	2018	Ouagadougou	Human	ICS	OMA+ O:4,5, HMB	invA, fimA, str, spvC	P2	
23	2018	Ouagadougou	Human	ICS	OMA-OMB-	invA, fimA, str, spvC	P2	
24	2018	Ouagadougou	Human	ICS	OMA-OMB-	invA, fimA, str, spvC	P2	
25	2018	Ouagadougou	Human	ICS	OMA-OMB-	invA, fimA, str, spvC	P2	
26	2018	Ouagadougou	Human	ICS	OMB+ O:6,7,8	invA, fimA, str, spvC	P2	
80	2017	Ouagadougou	Human	ICS	OMB+ O:6,7,8, HMA Hi*	invA, fimA, str, spvC	P2	
81	2017	Ouagadougou	Human	ICS	OMB+ O:6,7,8, HMA Hi*	invA, fimA, str, spvC	P2	
84	2017	Ouagadougou	Human	ICS	OMB+ O:6,7,8, HMA Hi*	invA, fimA, str, spvC	P2	
2	2017	Bobo-Dioulasso	Human	ICS	OMB+ O:6,7,8	invA, fimA, str	P3	
5	2017	Bobo-Dioulasso	Human	ICS	OMB+	invA, fimA, str	P3	
6	2017	Bobo-Dioulasso	Human	ICS	OMB+ O:6,7,8, HMA Hi*	invA, fimA, str	P3	
7	2017	Ouagadougou	Human	ICS	OMA+ O:4,5; HMB Hgm	invA, fimA, str	P3	
8	2017	Ouagadougou	Human	ICS	OMB+ O:6,7,8, HMA	invA, fimA, str	P3	
9	2017	Ouagadougou	Human	ICS	OMB+ O:6,7,8, HMA, Hi*	invA, fimA, str	P3	
Discussion

The present study investigated the frequency of serotypes of *Salmonella*, the prevalence and genetic characteristics of *Salmonella* virulence genes from human diarrheal stools and street-vended sandwiches in Burkina Faso. This is the first study that reports the distribution of
Salmonella virulence factors isolated from ready-to-eat sandwiches sold in the street in Burkina Faso. Analyses showed that only 15 (17.7%) out of 85 samples from street-vended sandwiches in Ouagadougou were positive for Salmonella. Our result is different from those found by other researchers. Hassanin et al. [37] isolated Salmonella in 31.1% of shawarmas samples in Egypt, while Abd-El-Malek et al. [38] isolated 7% in kibdas. In Chad, Djibrine et al. [39] did not isolate any Salmonella from beef minced sandwiches vended in streets. These variation rates might be linked to the diversity of cooking process in these different countries.

Serotyping revealed the presence of Salmonella Enteritidis (5/91), Salmonella Typhimurium (3/91), and Salmonella Kentucky/Bargny (12/91) serotypes (Table 2). The remaining isolates that have not been identified completely were categorized as Salmonella spp. (71/91). Salmonella Typhimurium and Salmonella Enteritidis serotypes were from clinical strains. Indeed, Salmonella Typhimurium and Salmonella Enteritidis, are the most serotypes involved in human infections and frequently isolated from farm animals [40]. In Sub-saharan Africa, non-typhoid salmonellosis is endemic and the serogroups B (4), D (9) and C (8) have been identified from Salmonella isolated in this study (Table 2). An earlier study argued that more than 2500 serovars of Salmonella enterica were identified by using the White-Kauffmann-Le Minor scheme; about 20 serovars were found primarily in antigen groups B, C, D and E [41]. The serogroups B, D and C are the main causes of human infections, including gastroenteritis and bacteremia [42]. Also, they are widely distributed among farm animals and enter the food chain [40]. Our study reported suspected Kentucky serotypes. This ubiquitous serotype has been closely linked to poultry since 1937 and is now spread in several African countries [43]. In the current decade in West Africa, the finding of the expansion of Salmonella Kentucky in the poultry sector has also been reported by Igomu et al. [44] and Kagambéga et al. [45].

The virulence of Salmonella is linked to a combination of chromosomal and plasmid factors; the invA gene serves also as a specific biomarker for the identification of the genus Salmonella [12]. Elsewhere, published papers [31, 46–48] reveal that invA gene has already been detected in 100% of Salmonella strains. However, in our study we found a lower rate (66%) to 100%. Other authors like Mthembu et al. [49] reported lower rates of (54.4%; 106/195) and Somda et al. [24] reported the presence of the invA gene in 91% (52/57) of nontyphoidal Salmonella isolates from human diarrhea, environment and lettuce samples in Burkina Faso. In our study, 34% of Salmonella isolates do not have the invA gene and therefore would be unable to induce host cell invasion. Then, Salmonella may be in a virulent (invA) or non-virulent state [50]. In addition, asymptomatic animals’ carrying these virulent or non-virulent strains could be potential sources of their transmission to humans via the food chain, promiscuity between human and animals, and the poor management of animal effluents [49, 50]. In clinical isolates and in food (sandwich) isolates, the invA, fimA and strn genes found have approximately high percentages and the presence of one would predict the presence of the other. Several authors previously revealed the constant presence of invA, fimA and strn gene in all Salmonella isolates analyzed in their study [31, 47, 48]. As observed by Foley et al. [11, 49], the difference in frequency of the virulence genes observed in our study could be related to the topology of the gene in Salmonella; despite their different locations, they remain responsible for virulence in salmonellosis. The virulence plasmid gene spvR was present in 36.8% of strains, giving them the ability to cause systemic infections. This frequency of spvR is significantly higher than those reported by several authors [24, 31, 48]. The spvC gene was detected in 48.1% of all the isolates (106) tested, 44/106 were clinical isolates and 7/106 came from sandwiches (Table 2). Krzyzanowski et al. [51] found out a low rate of Salmonella strains with the spvC gene, suggesting its particularity in the virulence of Salmonella. Amini et al. [52] found out the presence of spvC in Salmonella strains isolated from humans and cattle and reported 100 and 90%, respectively.

Eight (08) Salmonella spp. isolated from the sandwiches indicated a simultaneous presence of spvC and spvR. Three of the Salmonella serotype Enteritidis and two of the Salmonella serotype Typhimurium identified from clinical isolates also harbored these two genes (spvC and spvR) (Table 2). Derakhshandeh et al. [53] also found out two human serotypes of Salmonella Enteritidis indicating a simultaneous presence of spvC and spvR. However, Chaudhary et al. [31] reported the complete absence of spvC gene in all their analyzed isolates. The spvR locus is strongly associated with strains that cause non-typhoid bacteremia, but are not present in typhoid strains [54]. However, in Senegal, none of Salmonella serotype Keurmassar investigated (human and poultry origin) harbored a virulence plasmid [46]. This gene is not commonly found in the genome of Salmonella, but is of paramount importance when present. In addition, most Salmonella Typhimurium strains contain a self-transmissible virulence plasmid (pSLT) such as the spv operon [18]. Salmonella's genetic variations could be derived from transfer of this organism between human-origin and animal/food-origin strains [55]. Whether this can transfer virulence plasmid from animal-origin strains to human-origin strains or vice versa remains to be investigated. These genes (spvR and spvC) are carried by mobile genetic
elements that are lost over the time: their distribution, which appears low, does not reflect the clinical reality [56]. Despite our study’s antigenic similarities among the *Salmonella* isolates, the genetic profile was different for all strains. Although all serotypes of *Salmonella* can be considered potentially pathogenic, there have some differences in their virulence [57]. *Salmonella* isolated from sandwiches share same type of virulence genes with clinical isolates. Six *Salmonella* (food and human) isolates overlapped (a,b,c) due to their partial antigenic formulas, genetic profiles and locality (Table 3, Table 4). We also found that these overlaps are in city of Ouagadougou, which may justify because food samples were collected in Ouagadougou only and in the vicinity of medical centers (Fig. 1). We could be led to verify the fact that clinical *Salmonella’s* derive from meal contaminations and vice versa. It was possible to characterize the isolates according to different genetic profiles [47]. The P1 profile (positive for all five genes tested) had the highest frequency necessary for a very successful infection, demonstrating that these genes are widely distributed in *Salmonella* population (Table 3, Table 4). Detection of several genetic profiles may suggest gene acquisitions or deletions in different clones, which could favor different levels of adaptation of strains to the host [58]. Then, genetic variations in *Salmonella* could be derived from the transfer of virulence plasmid from animal-origin strains to human-origin strains or vice versa, which remains to be investigated [55]. The P11 profile indicates that strains do not harbor any of the five virulence genes. Our study reported the P11 profile in 20.75% (22/106) of the *Salmonella* (Table 3, Table 4), even though these strains were confirmed by serotyping. Theoretically, in clinical *Salmonella*, the *invA* and *str* genes should be present. However, the acquisition of the lactose operon by *Salmonella* reduces its virulence potential [59]. The hypothesis would be that these isolates have lost their virulence genes during their evolution, or are avirulent and the low sensitivity of the PCR.

Conclusion

This study highlighted the most serotypes frequently involved salmonellosis in Burkina Faso. *Salmonella* Enteritidis and Typhimurium were mainly isolated in human stool. Additional analysis is needed to confirm the plausible presence of the Kentucky/Bargny serotype among the food and clinical isolates. The presence of *Salmonella* virulence genes was equally important in food and clinical isolates. The presence of virulence genes among isolates from sandwich samples alerted on the potential risk of contamination of the population and probably a possible community health crisis. In addition, the results of this study support that there is genetic differentiation between isolates of the same serotype in the distribution of virulent genes. This provides a basis for the criteria for determining possible variations in the virulence of different strains in vivo, as well as further studies in full serotyping and phylogenetic analysis. These results could enable Burkina Faso’s health authority to better orient their programs to fight diseases associated with street food, notably through the training of restaurateurs in food hygiene.

Acknowledgments

The authors are grateful the mobility grant of the "West African Research Association", and its corollary institution, the "West African Research Center" (WARA / WARC) and Department of Bacteriology, Molecular Biology Platform of Pasteur Institute from Côte d'Ivoire for their cooperation while carrying out this work. Special thanks are given to Dr. Solange KAKOU-NGAZOYA for welcoming me to his team and for his considerable support in this work.

Funding

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Ethics approval by the "Comité d'éthique pour la recherche en santé (CERS)" by decision No 2021–11–266. The Institutional Agreement of CHU-Yalgado Ouédraogo N°2017–2018/MS/SG/CHU-YO/DO and the collaboration of other health centers in Burkina Faso. This study is part of the surveillance and epidemiology of *Salmonella* in Burkina Faso. Consent for publication Not applicable.

Competing interests

The authors have not declared any conflict of interests.

Author details

1Laboratoire de Biologie Moléculaire d’Épidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA). Ecole Doctorale Sciences et Technologies, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso. 2Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire. 3Service de Bactériologie-Virologie, CHU-Yalgado Ouédraogo, 03 BP 7022, Ouagadougou, Burkina Faso. 4Hôpital Protestant Schipka, 07 BP 5346, Ouagadougou 07, Burkina Faso. 5Centre MURAZ, Bobo-Dioulasso, Burkina Faso. 6Laboratoire de Biochimie et Immunologie Appliquées (LABIA), Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso. 7Laboratoire de Bactériologie-Virologie, CHU-Bagodogo, Ouagadougou, Burkina Faso. 8Université Nazi Boni, 01 BP 1091,
References

1. Balasubramaniam R, Im J, Lee JS, Jeon HJ, Mogeni OD, Kim JH, et al. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum Vacc Immunother. 2019;15(6):1421–6. https://doi.org/10.1080/21654551.2018.1504717.

2. Chami B, Bao S. Salmonella: Invasion, Evasion & Persistence. In: Tech Published/books/Salmonella-Distribution, Adaptation, Control Measures and Molecular Technologies, 2012. p. chp16–p313. https://doi.org/10.5772/30043.

3. Hardy A. Salmonella: a continuing problem. Postgrad Med J. 2004;80(947):541–5. https://doi.org/10.1136/pgmj.2003.016584.

4. Hennekinne JA, Herbin S, Firmesse O, Auvray F. European food poisoning outbreaks involving meat and meat-based products. Procedia Food Sci. 2015;5:93–6. https://doi.org/10.1016/j.profo.2015.09.024.

5. Tran Dien A. Génomique épidémiologique de Salmonella (Doctoral dissertation, Paris, Institut agronomique, vétérinaire et forestier de France). 2018. p.22. https://tel.archives-ouvertes.fr/tel-00300664/document. Accessed date May 2020.

6. Mather A, Reid S, Maskell D, Parkhill J, Fookes M, Harris S, et al. Distinguishable epidemics of multidrug-resistant Salmonella typhimurium DT104 in different hosts. Science. 2013;341(6153):1514–7. https://doi.org/10.1126/ science.1240578.

7. Havelaar AH. Première Conférence internationale FAO/OMS/UA sur la sécurité sanitaire des aliments. Addis-Ababa. 12 et 13 février 2019. http://www.fao.org/3/CA0356FR/ca0356fr.pdf. Accessed date May 2020.

8. Dembébé R, Konaté A, Bonkoungou IIO, Kagambégé A, Konaté K, Bagné TS, et al. Serotyping and antimicrobial susceptibility of Salmonella isolated from children under five years of age with diarrhea in rural Burkina Faso. Afr J Microbiol Res. 2014;8(34):5157–63. https://doi.org/10.5897/AJMR2014.7002.

9. Langendorf C, Le Hello S, Moumouni A, Gouali M, Mamaty AA, Grais RF, et al. Enteric bacterial pathogens in children with diarrhea in Niger: diversity and antimicrobial resistance. Plos One. 2015;10(3):e0120275. https://doi.org/10.1371/journal.pone.0120275.

10. Jaffe S, Henson S, Unnevehr L, Grace O, Cassou E. The safe food imperative: Accelerating progress in low-and middle-income countries: The World Bank. 2018. https://doi.org/10.1596/978-1-4648-1345-0. Accessed date April 2021.

11. Foley SL, Johnson TJ, Ricke SC, Nayak R, Darzeneen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microb. Mol Biol Rev. 2013;77(4):582–607. https://doi.org/10.1128/MMBR.00015-13.

12. Li Q, Cheng W, Zhang D, Yu T, Yin Y, Ju H, et al. Rapid and sensitive strategy for Salmonella detection using an InvA gene-based electrochemical DNA sensor. Int J Electrochem Sci. 2012;7(1):844–56.

13. El-Sebay NA, Abu Shady H, El-Rashed El-zeedy S, Samy A. Rapid and sensitive analysis of spv virulence genes of the Salmonella typhimurium virulence plasmids. Mol Microbiol. 1993;7(6):825–30. https://doi.org/10.1111/j.1365-2958.1993.tb01172.x.

14. Marks F, Von Kalckreuth V, Aaby P, Adu-Sarkodie Y, El Tayeb MA, Ali M, et al. Incidence of invasive Salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. Lancet Glob Health. 2017;5(3):e131–20. https://doi.org/10.1016/S2214-109X(17)30022-0.

15. Langridge GC, Nair S, Wain J. Nontyphoidal Salmonella serovars cause different degrees of invasive disease globally. J Infect Dis. 2009;199:602–3.

16. Karuki S, Gordon MA, Feasey N, Parry CM. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine. 2013;33 Suppl 3(3):C21–9. https://doi.org/10.1016/j.vaccine.2013.03.102.

17. Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J, Deng X, et al. Distinct Salmonella Enteritidis lineages associated with enterococci in high-income settings and invasive disease in low-income settings. Nat Genet. 2016;48:1211–7. https://doi.org/10.1038/ng.3644.

18. Pulford CV, Perez-Sepulveda BM, Canals R, Bengtsson RJ, Wenner N, et al. Stepwise evolution of Salmonella typhimurium ST313 causing bloodstream infection in Africa. Nat Microbiol. 2021;6:327–38. https://doi.org/10.1038/s41467-020-00836-1.

19. Sondi NS, Bonkoungou IIO, Sambe-Ba R, Drabo MS, Wane A, Sawadogo-Lingani H, et al. Diversity and antimicrobial drug resistance of non-Salmonella serotypes isolated in lettuce, irrigation water and clinical samples in Burkina Faso. J Agr Food Res. 2021;100167. https://doi.org/10.1016/j.jafre.2021.100167.

20. Kagambéga A, Liennemann T, Frye JG, Barro N, Haukka K. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar typhimurium isolated from humans and poultry in Burkina Faso. Trop Med Health. 2018;46:44. https://doi.org/10.1186/s41182-018-00086-9.

21. Dembébé R, Konaté A, Traoré O, Baboré WA, Solaluma I, Kagambegé A, et al. Extended spectrum beta-lactamase and fluoroquinolone resistance genes among Escherichia coli and Salmonella isolates from children with diarrhoea. Burkina Faso BMC Pediatr. 2020;20(1):459. https://doi.org/10.1186/s12887-020-01234-z.

22. International Organization for Standardization (ISO) 6579–1: Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of Salmonella — Part 1: Detection of Salmonella spp. 2017.

23. Odumeru JA, Lein-velarde CG. Salmonella Detection Methods for Food and Food Ingredients. 2000.(Williams 1981):374–92. https://doi.org/10.1101/pdb.protein4555. Accessed date Jan 2021.

24. Sambrook J, Russell DW. Purification of nucleic acids by extraction with phenol-chloroform: CSH Protoc. 2006;2006(1):pdb.prot4455. https://doi.org/10.1101/pdb.prot4455.

25. Chaudhary J, Nayak R, Bramhambhatt M, Makwana P. Virulence genes detection of Salmonella serovars isolated from pork and slaughterhouse environment in Ahmedabad, Gujarat, India. Vet World. 2015;8(1):121–4. https://doi.org/10.14202/vetworld.2015.121-4.

26. Kumar R, Surendran PK, Thampuran N. Evaluation of culture, ELISA and PCR- assays for the detection of Salmonella in seafood. Lett Appl Microbiol. 2008;46(2):221–6. https://doi.org/10.1111/j.1472-765X.2007.02286.x.

27. Nosalen F, Shoulder FV, Heyndrickx M, Godard C, Wildemauwe C, Ducatelie R, et al. Host adaptation of pigeon isolates of Salmonella serovar enterica serovar typhimurium var. Copenhagen PTF99 is associated with macrophage cytotoxicity. Infect Immun. 2003;71(10):6068–74. https://doi.org/10.1128/IAI.71.10.6068-6074.2003.

28. Oliveira SD, Rodenbusch CR, Michaud GB, Cardoso MI, Canal CW, Brandelli A. Detection of virulence genes in Salmonella Enteritidis isolated from different sources. Braz J Microbiol. 2013;34(1):123–4.

29. Naravaneini R, Jamil K. Rapid detection of food-borne pathogens by using molecular techniques. J Med Microbiol. 2005;54(1):51–4. https://doi.org/10.1099/jmm.0.45687-0.

30. Makino S, Kurazono H, Chongsuamuan M, Hayashi H, Cheun H, Suzuki S, et al. Establishment of the PCR system specific to Salmonella typhimurium in mice. Infect Immun. 1998;66(6):2471–85. https://doi.org/10.1128/IAI.66.4.2471-2485.1998.
application for the inspection of food and fecal samples. J Vet Med Sci. 1999;61(11):1245–7. https://doi.org/10.1292/jvms.61.1245.

37. Hassanin F, Reham AA, Shawky N, Gomaa W. Incidence of Escherichia coli and Salmonella in ready-to-eat foods. Benha Vet Med J. 2014;27(1):84–91. https://bvmj.bu.edu.eg/issues/27-1-9.pdf.

38. Abd-El-Malek AM. Microbiological quality of ready-to-eat liver sandwiches (Kibda). Global Vet. 2014;13(6):1097–102. https://doi.org/10.5829/ido.v2014.13.06.91141.

39. Djibrine MA, Tidjani A, Ngandolo BN, Nadiaoua B, Barro N. Microbiological quality of some street foods in N’Djamena, Chad: case of sandwiches. Int J Biod Sci Chem. 2018;12(5):1113–22. https://doi.org/10.4314/ijbcs.v12i5.33.

40. Foley S, Lynne A, Nayak R. Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J Anim Sci. 2008;86(14 Suppl)E149–62. https://doi.org/10.2527/jas.2007-0464.

41. Jones TF, Ingram LA, Cieslak PR, Vugia DJ, Tobin-d’angelo M, Hurd S, et al. Salmonellosis outcomes differ substantially by serotype. J Infect Dis. 2008;198(1):109–14. https://doi.org/10.1086/588823.

42. Karuki S, Revathi G, Karuki N, Kiriu J, Mwituira I, Hart CA. Characterisation of community acquired non-typhoidal Salmonella from bacteraemia and diarrhoeal infections in children admitted to hospital in Nairobi, Kenya. BMC Microbiol. 2006;6:101. https://doi.org/10.1186/1471-2180-6-101.

43. Le Hello S, Hendriksen RS, Doublet B, Fisher I, Nielsen EM, Whachard JM, et al. International spread of an epidemic population of Salmonella enterica serotype Kentucky ST198 resistant to ciprofloxacin. J Infect Dis. 2011;204:675–84. https://doi.org/10.1093/infdis/jir409.

44. Igomu EE. Salmonella Kentucky: prevalence and challenges in Nigeria and the Africa continent. Afr J Clin Exper Microbiol. 2020;21(4):272–83. https://doi.org/10.4314/ajcem.v21i4.3.

45. Kagambêga A, Hiott LM, Boyle DS, McMillan EA, Sharma P, Gupta SK, et al. Serotyping of sub-Saharan Africa Salmonella strains isolated from poultry feces using multiplex PCR and whole genome sequencing. BMC Microbiol. 2021;21(1):1–9. https://doi.org/10.1186/s12866-021-02085-6.

46. Gassama-Sowa A, Waan AE, Canu NA, Uzzau S, Aidara-Kane A, Rubino S. Characterization of virulence factors in the newly described Salmonella enterica serotype Keurmassar emerging in Senegal (Sub-Saharan Africa). Epidemic Infect. 2006;134(4):741–3. https://doi.org/10.1053/epid.2007.0208907.

47. Borges KA, Furian TQ, Borsoli A, Moraes HL, Salle CT, Nascimento VP. Detection of virulence-associated genes in Salmonella Enteritidis isolates from chicken in south of Brazil. Pesq Vet Bras. 2013;33(12):1416–22.

48. Deguenon E, Dougnon V, Lozes E, Maman N, Agbankpe J, Abdel-Massih RM, et al. Resistance and virulence determinants of faecal Salmonella spp. isolated from slaughter animals in Benin. BMC Res Notes. 2019;12(1):317. https://doi.org/10.1186/s13104-019-4314-x.

49. Mtihembu TP, Zishiri OT, El Zowalaty ME. Detection and molecular identification of Salmonella enterica serovar typhimurium phage types DT102, DT104, and DT103 by multiplex PCR. J Clin Microbiol. 2009;47(3):777–80. https://doi.org/10.1128/JCM.01660-08.

50. Moussa IM, Aleslamboyl SY, Al-arjaf AA, Hassain AM, Gouda AS, Kamal RM. Molecular characterization of Salmonella virulence genes isolated from different sources relevant to human health. J Food Agic. Environ. 2011;12(2):197–201.

51. Eswarappa SM, Karnam G, Nagarajan AG, Chakraborty S, Chakravorty D. lac repressor is an antivirulence factor of Salmonella enterica: its role in the evolution of virulence in Salmonella. Plos One. 2009;4(6):e5789. https://doi.org/10.1371/journal.pone.0005789.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.