The public health impact of fetal alcohol spectrum disorders is underestimated

Fetal alcohol spectrum disorders (FASD) are characterized by a continuum of structural and neurodevelopmental anomalies following in utero alcohol exposure. Clinical diagnostic guidelines have been developed to aid accurate diagnosis [1-3] and to differentiate between fetal alcohol syndrome (FAS) at the most severe end of the spectrum, and partial fetal alcohol syndrome, alcohol-related birth defects and alcohol-related neurodevelopmental disorder. FAS manifests with a set of characteristics, including craniofacial dysmorphology (such as a thin upper lip, smooth philtrum and small eye openings), pre- and postnatal growth retardation, and abnormal growth and development of the central nervous system, resulting in lifelong mental, cognitive and behavioral disabilities. FASD is the commonest preventable cause of mental disability. In most countries the prevalence of FAS ranges between 0.5 and 2.0 per 1,000 live births [4], but it is strikingly higher in some communities. In South Africa, a prevalence as high as 65.2 per 1,000 children of school-going age was reported in a mixed ancestry community in the Western Cape [5] and 67.2 per 1,000 children in similar communities in the Northern Cape Province [6].

The global burden of alcohol-related disease accounted for 4% of all disability-adjusted life years as reported in 2004, with striking regional differences [7], up from 3.5% in 1990. Although it is estimated that only between 5% and 10% of offspring exposed in utero are likely to have alcohol-related deficits [8], this is probably an underestimate [9]. It is possible that many idiopathic neurodevelopmental disorders, including some cases of autism and attention deficit hyperactivity disorder (ADHD), may also be attributable to transgenerational effects of alcohol exposure. In the USA, it is estimated that FASD may affect up to 1% of the population [10] and incur considerable costs [11], but the prevalence, especially in...
middle to low income countries, may be considerably higher than reported estimates [12,13].

Lessons from early studies in humans and in animal models

The deleterious effects of parental alcohol use on their offspring have been recognized and documented for centuries, including observations during the 'gin epidemic' in England (1720 to 1750) and reports during the 19th and early 20th centuries (summarized by Warner and Rosett [14]). The term fetal alcohol syndrome (FAS) and the formal medical description is as recent as 1973 [15].

Many animal studies have shown that clinical severity following *in utero* ethanol exposure correlates with the developmental stage (timing), the dose and the frequency of exposure (chronic versus acute) [16,17]; it is the result of complex gene-environment interactions that alter gene expression patterns, especially during development. The first trimester is considered the most vulnerable period, but fetal damage occurs throughout gestation. Rodent models have been used most often (especially the mouse and rat) and various regimens of alcohol administration have resulted in remarkable phenotypic similarities with the features of FASD in humans, including distinctive craniofacial alterations, stunted growth and behavioral abnormalities. What has become clear, however, as demonstrated by crosses between inbred mouse strains that were similarly exposed to alcohol, is that the parental genomic contributions to the fetus are important in attributing risk.

The role of genetic variation in FASD remains poorly understood

There is no question that genetic variation has a role in susceptibility to adverse effects following *in utero* alcohol exposure. The question is, therefore, what is the nature and magnitude of the genetic effect and how does genetic variation interact with environmental factors (for example, nutrition and environmentally induced epigenetic remodeling) to cause teratogenic effects. Many studies in rodent models have indicated that genetic background is crucial in understanding risk, as there are recognized susceptible inbred mouse strains and other inbred strains that remain unaffected despite similar exposure to ethanol [18-20]. Differences among these strains relate to alcohol preference, alcohol metabolism and behavior. For example, mouse studies demonstrated an inverse relationship between maternal alcohol dehydrogenase activity and maternal blood alcohol levels and consequent fetal abnormalities, but suggested that other inherited factors from both the mother and the fetus were also important [19,21-23].

In contrast, relatively few studies have investigated the role of genetic variation in humans in determining predisposition and clinical severity. It has, however, been documented that siblings of FAS children have a dramatically increased risk for FAS (170 per 1,000 among older sibs and 771 per 1,000 in younger sibs compared with 1.9 per 1,000 in the population studied as a whole) and there is higher concordance between monozygotic twins than between dizygotic twins [24,25]. Genetic studies have primarily explored the role of alcohol-metabolizing enzymes, including alcohol dehydrogenases (ADH), aldehyde dehydrogenases (ALDH) and cytochrome P450 2E1 (CYP2E1), in the mothers and their FAS offspring; these studies have used relatively small sample sizes [26,27]. Functionally significant non-synonymous variants at the ADH1B locus (ADH1B*2 and ADH1B*3), which result in faster and more efficient ethanol clearance, have been associated with a mild protective effect in case-control and cohort studies in several populations, including African Americans [28,29] and South Africans of mixed ancestry [30], although in association with different alleles [26,27,31]. The mode of action is unclear but a recent study in a large European population demonstrated a strong association between one of these ADH1B non-synonymous variant alleles (ADH1B*2; rs1229984) and lower alcohol consumption before and during pregnancy [32]. Excessive alcohol exposure can induce CYP2E1 expression, another route for alcohol metabolism. Some CYP2E1 allelic variants are associated with enhanced metabolic capacity and may modulate the risk for FAS. Furthermore, CYP2E1 is expressed in the placenta, fetal liver and fetal brain during organogenesis, where the CYP2E1-catalyzed oxidation of ethanol may cause oxidative stress (reviewed in Gemma *et al.* [27]). No genome-wide association studies have been done for FAS or FASD, probably because of the recognition of multiple common environmental risk factors that are difficult to quantify and a paucity of large sample sizes and appropriate controls.

The impact of alcohol on biological pathways and the mechanisms of teratogenesis

Efforts to understand the effects of alcohol exposure on the adult and developing brain, as well as other physiological impacts, have led to a vast literature describing the effects of alcohol on cells, organs and organisms (reviewed in [33-35]). Genetic contributions to predisposition have been explored to a limited extent, but important insight has come from investigating gene expression, biochemical markers and physiological effects of pre- and postnatal alcohol exposure. These are mediated through pathogenic mechanisms that involve many pathways that have been extensively studied in the liver (the main site of ethanol metabolism and its toxic metabolites, including acetaldehyde) and the nervous system (including the brain). The origins and mechanisms
Table 1. Global gene expression studies after in utero alcohol exposure in mouse models

Alcohol exposure*	Tissue	Key upregulated genes/pathways	Key downregulated genes/pathways	Functional pathway	References
GD7-9 (daily intraperitoneal dose 2.9 g/kg)	Fetal brain	Tmpp4, Bmp13, Rni25, Tulip4 and Dnmt1	B6N: ribosomal proteins and proteasome; B6J: none detected	Cell proliferation, cell differentiation and apoptosis; affecting tissue growth and remodeling and neural growth and survival	[37]
GD8 (2 doses, 4 h apart, 2.9 g/kg)	Head fold, 3 h after alcohol exposure	B6N: glycolysis and pentose phosphate pathway; B6J and B6N: tight junction, focal adhesion, adherens junction and regulation of the actin cytoskeleton			
GD8.25	Whole embryo culture	All 3’ miRNA motifs showed upregulatory effects*	Most 5’ cis-acting regulatory motifs (transcription binding sites) showed down regulatory effects	Developmental deficit of growth, neuronal axis and neural patterning, hemopoiesis and apoptosis	[38]
GD8.25	Whole embryo culture	Decreased methylation: Ngln2, Elav2, Sox 21, Sim 1, Igf2r and Histh3d	Increased methylation: Cyp4f13	Metabolism (Cyp4f13); imprinting (Igf2r); chromatin (Histh3d); and development (other genes)	[39]
GD0.5-8.5	Liver from 28-day-old males	D14erd449e, Ly6e and Rrm2	Lim1a, Socs2, Cables1 and Vdir	Growth; nervous system development	[40]

*GD, gestational day. †C57BL/6 substrains: B6J embryos had a higher incidence of FASD features than B6N. ‡A possible interpretation is that many highly expressed genes were not appropriately downregulated because of delayed expression of miRNAs that would normally reduce expression.

of craniofacial dysmorphism following fetal exposure have been examined and compounds that exacerbate or ameliorate the teratogenic effects of alcohol have been shown to include antioxidants, sonic hedgehog protein and retinoids (summarized by Sulik [36]).

Common functional deficits following in utero alcohol exposure in mouse and rat models include cell proliferation, differentiation and apoptosis, affecting tissue growth and remodeling and specifically neuronal growth and survival. Preliminary global gene expression studies have corroborated some of these findings and have revealed the involvement of groups of genes related through function or common pathways. Each experimental design was different, making it difficult to compare the studies, but the main conclusions are summarized in Table 1 [37–41].

Bioinformatic analyses of gene expression microarray data from fetuses exposed and unexposed to alcohol have examined upstream regulatory regions for common transcription binding sites and 5’ untranslated regions for potential microRNA (miRNA) binding sites for differentially expressed genes. The results suggest that alterations in miRNA functions may have a role in alcohol-related teratogenicity [41]. In addition, fetal alcohol exposure was shown to alter common signaling pathways linking receptor activation to cytoskeletal reorganization, causing altered cell motility and mobility as well as metabolic capacity [40]. More focused rodent gene expression studies have explored central nervous system development and neuronal migration, glucocorticoid signaling, and nitric oxide, insulin and retinol levels following in utero alcohol exposure (for example, [42–44]).

Gene expression is known to be altered by DNA methylation status and by chromatin remodeling following histone modification, including methylation, acetylation and phosphorylation. Given that abnormal neuronal development and neurodegeneration are characteristics of FASD and alcoholism, it is important to understand how these molecular processes are altered in affected tissues. Particular emphasis has been placed on understanding the effect of alcohol on the methyl donor pathway, including S-adenosymethionine (a methyl donor) and the DNA methyltransferases [45,46]. One of the early studies demonstrated that acute alcohol exposure in pregnant mice (from gestation day 9 to 11) resulted in reduced methylation of fetal DNA and levels of DNA methyltransferase [47]. Another study in male rats showed significantly decreased cytosine methyltransferase (Dnmt1) mRNA levels in their sperm, suggesting that this may be one of the mechanisms leading to altered gene expression levels after conception [48]. Ethanol has also been demonstrated to be associated with post-translational histone modification in a rat model [49–51]. Significant changes in DNA methylation were observed during early embryonic development of the nervous system involving genes known to have a role in the cell cycle, growth and apoptosis, with increased
methylation in some genes and decreased methylation in others [38].

Epigenetic remodeling and vulnerability to the teratogenic effects of alcohol: preconception, early development and transgenerational effects

In 1920 Lord D’Abernon set the scene by writing in the preface to the second edition of Alcohol: Its Action on the Organism [52] a list of research questions that should receive priority, including: ‘Does parental alcoholism affect injuriously the health and development of offspring, and if so, are the resultant conditions transmissible to subsequent generations?’

The previous section provided some evidence supporting the involvement of epigenetic remodeling in alcohol teratogenesis, and this hypothesis is further summarized in a recent review supporting an epigenetic dimension as one of the key molecular mechanisms in FASD [53]. During development there are essentially three main stages of generalized global epigenetic remodeling: first, during gametogenesis, when there is a wave of demethylation followed by sex-specific genetic imprinting and generalized methylation; second, during preimplantation, which is characterized by generalized DNA demethylation in the zygote (with the exception of imprinted loci); and third, another wave of de novo methylation during gastrulation [54]. Each of these stages therefore characterizes a time of particular vulnerability for the disruption of normal epigenetic signals and the adverse effects of alcohol exposure. There is ample evidence to suggest that epigenetic perturbations are subtle and not all-or-nothing responses, resulting in shifts towards increased or decreased gene expression, a phenomenon that would be in line with the broad range of clinical manifestations reflecting a dynamic and individual response to alcohol exposure.

The consequences of epigenetic remodeling can be studied at a genomic level [55] but to thoroughly explore cause and effect would require additional biochemical and proteomic studies to understand the complex, interrelated molecular underpinnings of alcohol effects in FASD. Several reviews have documented the teratogenic effects of alcohol in animal models [56,57]. Below I summarize current knowledge regarding the effects of alcohol exposure from the preconception stage to preimplantation and gastrulation on fetal and postnatal development. The evidence for transgenerational effects of environmental alcohol exposure is briefly summarized.

Despite an emphasis on maternal alcohol consumption as the major driver of fetal alcohol effects, the role of alcohol in the preconception period in men and its effect on their offspring, even in the absence of gestational alcohol exposure, has long been recognized [58]. The deleterious effects of paternal preconception alcohol exposure have now been well documented in humans and include reduced birth weight and impaired cognitive functioning [59,60]; however, the mechanisms remain poorly understood. In an attempt to establish a link between alcohol consumption in men and epigenetic changes in sperm DNA, paternally imprinted loci were examined and compared between different alcohol-consuming groups. In a modest study [61], a trend toward CpG hypomethylation in moderate to heavy drinkers was observed and reached statistical significance for one differentially methylated region (DMR), but not for another. The effects of alcohol on sperm DNA methylation need further exploration, as do other epigenetic mechanisms, including histone modification and the transmission of RNA species that may affect gene expression in the gametes and early zygote.

It is not surprising that there have been a variety of outcomes in rodent studies exploring paternal preconception effects, as the experimental approaches have differed in design, including dosage (chronic or acute, the latter mimicking binge drinking behavior), administration regime (inhalation, intraperitoneal injection and gavage) and the length of exposure. However, and some exceptions aside, a definite trend is evident with increasing exposure that reflects reduced birth weight in the offspring [62-64], fewer offspring [64,65], and an increased number of malformations [64,66], including dysmorphic craniofacial features and behavioral or cognitive effects [67-70].

Preconception effects in women are more difficult to study as they are invariably influenced by alcoholic behavior that persists into pregnancy and by malnutrition and socioeconomic status [53,71]. The effect on female mice exposed chronically for 10 weeks before conception, but not during pregnancy, showed increased transcriptional silencing of the agouti yellow viable allele (A^y) in the offspring, in a similar trend to those exposed during pregnancy [39]. These effects are indirect because the transcriptional signaling comes from altered methylation of the A^y allele, which was paternally derived in this experimental model. In earlier mouse studies, fetuses and offspring of females exposed only in the preconception period had significantly retarded growth [72-74].

In humans the preimplantation period relates to the first 2 weeks following fertilization, and in mice up to the first 6 days; this is followed by implantation and gastrulation, which is characterized by the formation of the three primary germ layers (mesoderm, ectoderm and endoderm). Some studies have particularly addressed the effects of alcohol during these early stages and have demonstrated that it produces adverse outcomes on the placenta, the fetus, newborn and adult [75,76]. An imprinting mechanism was explored in two recent mouse studies. Preimplantation ethanol exposure resulted in
decreased placental and fetal weight, and it significantly decreased DNA methylation of the paternal allele of the $H19$ imprinting control region of the placenta of midgestation embryos, but not the embryos themselves [77]. Using the A^o allele as a reporter gene, gestational exposure during days 1 to 8 after fertilization was shown to result in a significant shift to an increased proportion of pseudoagouti offspring mediated through transcriptional silencing of the agouti locus [39]. Both studies investigated the methylation status of individual loci; the first [77] showed a shift towards hypomethylation and the other [39] to hypermethylation, indicating that there are locus-specific responses to the teratogenic effects of alcohol. Other studies have examined the post-implantation effects of alcohol teratogenesis during a period of rapid cell growth and differentiation, when one would expect extreme sensitivity to environmental insults, as reported in many studies (reviewed in [57]).

The first study to show a direct epigenetic effect of alcohol exposure in the fetus was by Garro et al. [47], in which the authors demonstrated reduced methylase activity and hypomethylation of fetal DNA. A later study [78] showed CpG hypomethylation associated with upregulation of NMDA receptor 2B ($NR2B$) gene expression in mouse fetal cortical neurons following chronic ethanol treatment. Many studies have demonstrated that maternal ethanol consumption during fetal development affects mouse and rat offspring, as reflected in phenotypic characteristics such as stunted growth and craniofacial anomalies analogous to the FASD clinical features. Exposure of mouse embryo cell cultures undergoing early neurulation (during the period of gastrulation) demonstrated DNA methylation mediated alterations in gene expression that are proposed to contribute to the FASD phenotype [38].

Transgenerational effects of alcohol (as well as of nutritional supplements and endocrine disruptors) must, of necessity, be mediated through the process of gametogenesis and can be modulated by the maternal environment during pregnancy. There is little evidence to explain the mechanisms involved, but the consequences are beginning to be documented. Studies from a region in northern Sweden, using meticulous birth, medical, lifestyle and mortality records and meteorological and agricultural records reflecting food availability, have demonstrated significant correlations between environmental exposures at critical periods and cross-generational outcomes [79,80]. These have been attributed in part to transgenerational epigenetic effects. Nutrition supplementation in pregnant mice is known to shift mouse coat color towards transcriptional silencing of the A^o allele, mediated through DNA methylation, as reflected by an increase in the proportion of pseudoagouti offspring [81,82]. In a rat model, exposure of pregnant dams to vinclozolin and methoxychlor (endocrine disruptors) during the period of gonadal sex differentiation in the fetus led to decreased spermatogenic capacity in the male offspring and an increased susceptibility to adult-onset diseases and hypercholesterolemia in the F1 to F4 generations [83,84]. Given that the phenotypic effects of the gestational environmental interventions (nutritional supplementation and exposure to endocrine disruptors) were shown to persist into unexposed subsequent generations, this could be mediated through epigenetic mechanisms.

Further indirect evidence for transgenerational effects, which could lead to an increased prevalence of FASD in communities, come from behavioral and epidemiological studies. Behavioral studies in humans, rats and mice suggest that in utero alcohol exposure may confer increased vulnerability to substance misuse (including alcohol misuse) or addiction in young offspring and adolescents, which sometimes persists into adulthood [85-90]. Studies in South Africa have documented a significant increase in FAS prevalence in a specific community studied at two different times, though not a generation apart. A minimal prevalence of 40.5 per 1,000 was reported in 2000, rising to 65.2 in a report from 2005, using the same diagnostic criteria [48,91].

The studies presented in this section are consistent with the transmission of environmentally acquired changes in epigenetic status, which persist to variable extents in subsequent generations and depend on both the stochastic deposition of epigenetic marks during development and a changing environment.

Implications for prevention and treatment

FASD results in lifelong disability and there is no cure. The complex molecular basis leading to the development of FASD and the mechanisms that induce the teratogenic effects remain poorly understood. There is compelling evidence that, in addition to the environmental trigger, genetic variation and epigenetic remodeling are important risk factors (Figure 1). There is no safe alcohol dose during pregnancy and, because susceptible genomic attributes in the mothers and their fetuses remain poorly understood, there is no sliding scale that can be administered to reassure pregnant women of their risks. It remains unclear to what extent the damage that occurs during fetal development and growth can be ameliorated through the process of early detection and educational, nutritional and physiological intervention, as has been suggested in some studies [2,92,93]. The burden of disease, the high prevalence of FASD and the vulnerability of affected individuals has led to the introduction of protective legislative guidelines in North American countries, but not yet in other parts of the world [94,95].
In high-risk communities and individual pregnancies, prevention strategies not only need to target the pregnant mother, but also need to focus on preconception alcohol use in both parents as well as attitudes surrounding a culture of drinking. To develop effective prevention strategies it is important to understand the molecular processes underlying FASD and the physiological and social consequences that lead to excessive alcohol consumption before and after conception. Preventative strategies for FASD will therefore need to include a long-term program, emphasizing abstention during the preconception period as well as during pregnancy, with an understanding that immediate benefits are likely to be subtle but will accrue over subsequent generations. However, in the absence of effective preventative strategies the prevalence of FASD would increase and the burden of disease in future generations would be magnified accordingly.

Abbreviations
ADH, alcohol dehydrogenase genes; CYP2E1, cytochrome P450 subfamily member 2E1; FAS, fetal alcohol syndrome; FASD, fetal alcohol spectrum disorders.

Competing interests
The author declares that she has no competing interests.

Acknowledgements
Grants related to FAS research are gratefully acknowledged and include funding from the March of Dimes (Grant # 6-FY04-70), the South African National Research Foundation and the NHLS Research Trust.
Published: 28 April 2010

References

1. Hoyne HE, May PA, Kalberg WG, Koidtuwaku P, Gossage JP, Trujillo PM, Buckley DG, Miller JH, Aragon AS, Khade N, Vlijmen DL, Jones KL, Robinson LX. A practical clinical approach to diagnosis of fetal alcohol spectrum disorders: clarification of the 1996 institute of medicine criteria. Pediatrics 2005, 115:39-47.

2. Manning MA, Eugene Huyne H. Fetal alcohol spectrum disorders: a practical clinical approach to diagnosis. Neurosci Biobehav Rev 2007, 31:230-238.

3. Stoler JM, Holmes LB. Recognition of facial features of fetal alcohol syndrome in the newborn. Am J Med Genet C Semin Med Genet 2004, 127C:21-27.

4. May PA, Gossage JP. Estimating the prevalence of fetal alcohol syndrome. A summary. Alcohol Res Health 2001, 25:159-167.

5. Vlijmen DL, Gossage JP, Brooke L, Adrians CM, Jones KL, Robinson LX, Hoyne HE, Snell C, Khade N, Koidtuwaku P, Asante KO, Findlay R, Quinton B, Marais AS, Kalberg WG, May PA. Fetal alcohol syndrome epidemiology in a South African community: a second study of a very high prevalence area. J Stud Alcohol 2005, 66:593-604.

6. Urban M, Chernich MF, Faurie LA, Cherly C, Oliver L, Vlijmen D. Fetal alcohol syndrome among grade 1 schoolchildren in Northern Cape Province: Prevalence and risk factors. J Afr Med J 2008, 98:677-882.

7. WHO. Global Status Report on Alcohol 2004. 2nd edition. Department of Mental Health and Substance Abuse, Geneva: WHO; 2004.

8. Abell EI. An update on incidence of FAS: FAS is not an equal opportunity birth defect. Neurotoxicology 1995, 17:437-443.

9. Stoler JM, Holmes LB. Under-recognition of prenatal alcohol effects in infants of known alcohol abusing women. J Pediatr 1999, 135:430-436.

10. Wettendorf DJ, Muenke M. Fetal alcohol spectrum disorders. Am Fam Physician 2005, 72:279-282, 285.

11. Lupton C, Burd L, Harwood R. Mental Health and Substance Abuse, Geneva: WHO; 2004.

12. Sampson PD, Streissguth AP, Bookstein FL, Little RE, Clarren SK, Dehaene P, Tannenbaum SR, Bookstein FL, Little RE, Lipton C, Burd L, Harwood R. Association of prenatal alcohol exposure with behavioral and learning problems in early adolescence. J Am Acad Child Adolesc Psychiatry 1997, 36:1187-1194.

13. Warner RH, Rosett HL. The effects of drinking on offspring: an historical survey of the American and British literature. J Stud Alcohol 1975, 36:1395-1420.

14. Jones KL, Smith DW. Recognition of the fetal alcohol syndrome in early infancy. Lancet 1973, 302:999-1001.

15. Sulik KK, Johnston MC, Daft PA, Russell WE, Dehart DB. Fetal alcohol syndrome and digeorge anomaly: critical ethanol exposure periods for craniofacial malformations as illustrated in an animal model. Am J Med Genet Suppt 1986, 2:97-112.

16. Daft PA, Johnston MC, Sulik KK. Abnormal heart and great vessel development following acute ethanol exposure in mice. Teratology 1986, 33:93-104.

17. Downing C, Balderrama-Durbin C, Broncucia H, Gilliam D, Johnson TE. Maternal genetic effects on ethanol teratogenesis and dominance of relative embryonic resistance to malformations. Alcohol Clin Exp Res 1990, 14:539-543.

18. Goodlett CR, Gilliam DM, Nichols JM, West JR. Genetic influences on brain growth restriction induced by development exposure to alcohol. Neurotoxicology 1989, 10:321-334.

19. Goodlett CR, Gilliam DM, Nichols JM, West JR. Genetic influences on brain growth restriction induced by development exposure to alcohol. Neurotoxicology 1989, 10:321-334.

20. Gilchrist DF. The fetal alcohol syndrome in mice: maternal variables. Teratology 1980, 22:71-75.

21. Gilliam DM, Stilman A, Dudek BC, Riley EP. Fetal alcohol effects in long- and short-sleep mice: activity, passive avoidance, and in utero ethanol levels. Neurotoxicol Teratol 1987, 9:493-537.

22. Goodlett CR, Gilliam DM, Nichols JM, West JR. Genetic influences on brain growth restriction induced by development exposure to alcohol. Neurotoxicology 1989, 10:321-334.

23. Gilliam DM, Kitch LE, Dudek BC, Riley EP. Ethanol teratogenesis in selectivity bred long-sleep and short-sleep mice: a comparison to inbred c57BL/6j mice. Alcohol Clin Exp Res 1989, 13:667-672.

24. Abel EL. Fetal alcohol syndrome in families. Neurotoxicol Teratol 1988, 10:1-2.

25. Streissguth AP, Dehaene P. Fetal alcohol syndrome in twins of alcoholic mothers: concordance of diagnosis and IQ. Am J Med Genet 1993, 47:857-861.

26. Warren KR, Li TK. Genetic polymorphisms: impact on the risk of fetal alcohol spectrum disorders. Birth Defects Res Clin Mol Teratol 2005, 73:195-203.

27. Gemma S, Vichi S, Testai E. Metabolic and genetic factors contributing to alcohol induced effects and fetal alcohol syndrome. Neurosci Biobehav Rev 2007, 31:221-229.

28. Jacobson SW, Carr LG, Croxford J, Sokol RJ, Li TK, Jacobson JL. Protective effects of the alcohol dehydrogenase–ADH1B allele in children exposed to alcohol during pregnancy. J Pediatr 2006, 148:30-37.

29. Afsrtan DP, Silbergeld EK, Loffredo CA. Fetal ADH2*3, maternal alcohol consumption, and fetal growth. J Toxicol 2004, 23:47-54.

30. Vlijmen DL, Carr LG, Foroud TM, Brooke L, Ramsay M, Li TK. Alcohol dehydrogenase-2*2 allele is associated with decreased prevalence of fetal alcohol syndrome in the mixed-ancestry population of the Western Cape province, South Africa. Alcohol Clin Exp Res 2001, 25:1719-1722.

31. Green RF, Stoler JM. Alcohol dehydrogenase 1B genotype and fetal alcohol syndrome: a HUGE minireview. Am J Obstet Gynecol 2007, 197:12-25.

32. Zuccolo L, Fitz-Simon N, Gray R, Ring SM, Sayal K, Smith GD, Lewis SJ. A non- synonymous variant in ADH1B is strongly associated with prenatal alcohol use in a European sample of pregnant women. Hum Mol Genet 2009, 18:4457-4466.

33. Shukla SD, Velazquez J, French SW, Lu SC, Ticku MK, Zahari S. Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res 2008, 32:1525-1534.

34. Guerci C, Bazinet A, Riley EP. Foetal alcohol spectrum disorders and alterations in brain and behaviour. Alcohol Alcohol 2009, 44:108-114.

35. Moonot S, Starkman BG, Sahakaran A, Pandey SC. Neuroscience of alcoholism: molecular and cellular mechanisms. Cell Mol Life Sci 2010, 67:73-88.

36. Sulik KK. Genetics of alcohol-induced craniofacial dysmorphism. Exp Biol Med (Maywood) 2005, 230:366-375.

37. Hard ML, Abodellie M, Robinson BH, Koren G. Gene-expression analysis after alcohol exposure in the developing mouse. J Lab Clin Med 2005, 145:47-54.

38. Liu Y, Balasaman Y, Wang G, Nephew KP, Zhou FC, Liu Y. Identification of transcription factor and microRNA binding sites in mouse embryos at early neuration. Epigenetics 2009, 4:500-511.

39. Kaminen-Ahola N, Ahola A, Marga M, Mallit A, Fahey P, Cox TC, Whitelaw E, Chong S. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PloS Genet 2010, 6:e1000811.

40. Green ML, Singh AV, Zhang Y, Nemeth KA, Sulik KK, Knudtson TDB. Reprogramming of genetic networks during initiation of the fetal alcohol syndrome. Dev Dyn 2007, 236:613-631.

41. Wang G, Wang X, Wang Y, Yang JY, Li L, Nephew KP, Edenberg HJ, Zhou FC, Liu Y. Gene expression changes of sonic hedgehog signaling cascade in a mouse embryonic model of fetal alcohol syndrome. J Craniofac Surg 2005, 16:1053-1061; discussion 1063-1065.

42. Izqul U, Brien JF, Baninlin S, Andrews MH, Matthews SG, Reynolds JN. Chronic prenatal ethanol exposure alters glucocorticoid signalling in the hippocampus of the postnatal guinea pig. J Neuroendocrinol 2005, 17:600-608.

43. Chen L, Zhang T, Nyombu BL. Insulin resistance of gluconeogenic pathways in neonatal rats after prenatal ethanol exposure. Am J Physiol Regul Integr Comp Physiol 2004, 286:R554-R559.

44. Tsukamoto H, Lu SC. Current concepts in the pathogenesis of alcoholic liver injury. FASEB J 2001, 15:1335-1349.

45. Lu SC, Marto JM. Role of methionine adenosyltransferase and S-adenosylmethionine in alcohol-associated liver cancer. Alcohol 2005, 347-351.

46. Gare B, McBeth DL, Lima V, Leiber CS. Ethanol consumption inhibits fetal DNA methylation in mice: implications for the fetal alcohol syndrome. Alcohol Clin Exp Res 1991, 15:395-398.

47. Bielawski DM, Zaher FM, Svinarich DM, Abel EL. Prenatal alcohol exposure affects sperm cytosine methytransferase messenger RNA levels. Alcohol Clin Exp Res 2002, 26:547-551.

48. Pal-Bhadra M, Bhadra U, Jackson DE, Mamatha L, Park PH, Shukla SD. Distinct...
methylation patterns in histone H3 at Lys-4 and Lys-9 correlate with up- and down-regulation of genes by ethanol in hepatocytes. Life Sci 2007, 81:979-987.

50. Kim JS, Shukla SD. Acute in vivo effect of ethanol (binge drinking) on histone H3 modifications in rat tissues. Alcohol Alcohol 2006, 41:126-132.

51. Lee YJ, Shukla SD. Histone H3 phosphorylation at serine 10 and serine 28 is mediated by p38 MAPK in rat hepatocytes exposed to ethanol and acetdehyde. Eur J Pharmacol 2007, 573:29-38.

52. Abernon LD. Alcohol: Its Action on the Human Organism. 2nd (Revised) edn. London: His Majesty's Stationery Office; 1923.

53. Haycock PC. Fetal alcohol spectrum disorders: the epigenetic perspective. Biol Reprod 2009, 81:657-617.

54. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001, 293:1089-1093.

55. Estacio MR, Issa JP. Tackling the methylome: recent methodological advances in genome-wide methylation profiling. Genome Med 2009, 1:106.

56. Cadil TA. Animal model systems for the study of alcohol teratology. Exp Biol Med (Maywood) 2005, 230:389-393.

57. Becker HC, Diaz-Granados JL, Randall CI. Teratogenic actions of ethanol in the mouse: a minireview. Pharmacol Biochem Behav 1996, 55:501-513.

58. Stockard CR. The effect on the offspring of intoxicating the male parent and the transmission of the defects to subsequent generations. Am Nat 1913, 47:641-682.

59. Little RE, Sing CF. Father's drinking and infant birth weight: report of an association. Teratology 1987, 36:59-63.

60. Ouko LA, Shantikumar K, Knezovich J, Haycock P, Schnugh DJ, Ramsay M. Paternal alcohol exposure affects offspring behavior but not body or organ weights in mice. Alcohol Clin Exp Res 1998, 22:349-355.

61. Ouko LA, Shantikumar K, Knezovich J, Haycock P, Schnugh DJ, Ramsay M. Paternal alcohol exposure impairs fertility and fetal outcome. Life Sci 1994, 53:PL33-PL36.

62. Bleakley DM, Abel EL. Acute treatment of paternal alcohol exposure produces malformations in offspring. Alcohol 1997, 14:397-401.

63. Abel EL, Blazitke P. Paternal alcohol exposure: paradoxical effect in mice and rats. Psychopharmacology (Berl) 1990, 100:159-164.

64. Abel EL, Berman RF. Long-term behavioral effects of prenatal alcohol exposure in rats. Neurotoxicol Teratol 1994, 16:467-470.

65. Abel EL, Lee JA. Paternal alcohol exposure affects offspring behavior but not body or organ weights in mice. Alcohol Clin Exp Res 1988, 12:349-355.

66. Abel EL, Tan SE. Effects of paternal alcohol consumption on pregnancy outcome in rats. Neurotoxicol Teratol 1988, 10:187-192.

67. Vlijoen D, Croxford J, Gossage JP, Kodituwakku PW, May PA. Characteristics of mothers of children with fetal alcohol syndrome in the Western Cape Province of South Africa: a case control study. J Stud Alcohol 2002, 63:6-17.

68. Little RE, Streegshag AP, Barr HM, Herman CS. Decreased birth weight in infants of alcoholic women who abstained during pregnancy. J Pediatr 1980, 96:974-977.

69. Livy DJ, Maier SE, West JR. Long-term alcohol exposure prior to conception results in lower fetal body weights. Birth Defects Res B Dev Reprod Toxicol 2004, 71:13-141.

70. Becker HC, Randall CI. Two generations of maternal alcohol consumption in mice: effect on pregnancy outcome. Alcohol Clin Exp Res 1987, 11:240-242.

71. Padmanabhan R, Hameed MS. Effects of acute doses of ethanol administered pre-implantation stages on fetal development in the mouse. Drug Alcohol Depend 1988, 2291-100.

72. Chechu M, Sandor S. The effect of ethanol upon early development in mice and rats. IX. Late effect of acute preimplantation intoxication in mice. Morphol Embryol (Bucur) 1986, 325:11.

73. Haycock PC, Ramsay M. Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the H19 imprinting control region. Biol Reprod 2009, 81:618-627.

74. Marutha Ravindran CR, Ticku MK. Changes in methylation pattern of NMDA receptor NR2B gene in cortical neurons after chronic ethanol treatment in mice. Brain Res Mol Brain Res 2004, 121:19-27.

75. Bygren LO, Kaati G, Edvinsson S. Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheor 2001, 49:53-59.

76. Pembridge ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjostrom M, Golding J. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 2006, 14:159-166.

77. Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 2002, 132:2393S-2400S.

78. Craypoe JE, Suter CM, Beckman KB, Martin DiL. Germ-line epigenetic modification of the murine A0 allele by nutritional supplementation. Proc Natl Acad Sci USA 2006, 103:17308-17312.

79. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disrupters and male fertility. Science 2005, 308:1466-1469.

80. Anway MD, Leathers C, Skinner MK. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 2006, 147:5515-5523.

81. Randall CL, Hughes SS, Williams CK, Antion RF. Effect of prenatal alcohol exposure on consumption of alcohol and alcohol-induced sleep time in mice. Pharmacol Biochem Behav 1983, 18:325-329.

82. Coles CD, Smith E, Falek A. Prenatal alcohol exposure and infant behavior: immediate effects and implications for later development. Adv Alcohol Subst Abuse 1987, 6:87-104.

83. Barbar E, Prieferiche O, Vaudry D, Vaudry H, Daoust M, Naassila M. Long-term alterations in vulnerability to addiction to drugs of abuse and in brain gene expression after early life ethanol exposure. Neuropharmacology 2005, 53:199-121.

84. Middleton FA, Carriferfenster K, Mooren SM, Youngentob SL. Gestational alcohol exposure alters the behavioral response to ethanol odor and the expression of neurotransmission genes in the olfactory bulb of adolescent rats. Brain Res 2009, 1252:105-116.

85. Chatto MG, Arias C, Laviola G. Increased ethanol intake after prenatal alcohol exposure: studies with animals. Neurosci Biobehav Rev 2007, 31:181-191.

86. Hill SY, Lowers L, Locke-Wellman J, Shen SA. Maternal smoking and drinking during pregnancy and the risk for child and adolescent psychiatric disorders. J Stud Alcohol 2000, 61:661-668.

87. May PA, Brooke L, Gossage JP, Croxford J, Adnams C, Jones KL, Robinson L, Vlijoen D. Epidemiology of fetal alcohol syndrome in a South African community in the Western Cape Province. Am J Public Health 2000, 90:1905-1912.

88. Gabriel Kl, Glavas MM, Ellis L, Weinberg J. Postnatal handling does not normalize hypothalamic corticotropin-releasing factor mRNA levels in animals prenatally exposed to ethanol. Brain Res Dev Brain Res 2005, 157:74-82.

89. Kelly SJ, Goodlett CR, Hannigqan HJ. Animal models of fetal alcohol spectrum disorders: impact of the social environment. Dev Disabil Res Rev 2009, 15:200-208.

90. Fast DK, Conry J. Fetal alcohol spectrum disorders and the criminal justice system. Dev Disabil Res Rev 2009, 15:250-257.

91. Lupton ML. Is the foetal alcohol syndrome child protected by South African law? Med Law 1994, 13:79-94.