Research on construction technology for orthotropic steel deck pavement of Haihe River Chunyi Bridge

Y C Xue, Z D Qian¹ and M Zhang

Intelligent Transportation System Research Center, Southeast University, Nanjing, Jiangsu, China

Email: xueyc@seu.edu.cn

Abstract. In order to ensure the good service quality of orthotropic steel deck pavement of Haihe River Chunyi Bridge in Tianjin, and to reduce the occurrence of pavement diseases like lateral and longitudinal cracks, the key working procedures such as steel deck cleaning, anticorrosive coating, bonding layer spraying, seam cutting, epoxy asphalt concrete’s mixing, transportation, paving and compaction were studied. The study was based on the main features of epoxy asphalt concrete which is the pavement materials of Haihe River Chunyi Bridge, and combined with the basic characteristics and construction conditions of Haihe River Chunyi Bridge. Furthermore, some processing measures like controlling time and temperature, continuous paving with two pavers, lateral feeding, and improving the compaction method were proposed. The project example shows that the processing measures can effectively solve the technical difficulties in the construction of orthotropic steel deck pavement of Haihe River Chunyi Bridge, can greatly improve the construction speed and quality, and can provide reference for the same kinds of orthotropic steel deck pavement construction.

1. Introduction

Epoxy asphalt concrete (EAC) is an excellent concrete with several decades of application as orthotropic steel deck pavement material. Generally, the aggregate used in EAC is highly processed basalt aggregate with a dense gradation. Epoxy asphalt is consisted of petroleum asphalt and thermosetting acid epoxy [1]. The epoxy asphalt is premixed before being combined with the heated aggregate through epoxy asphalt static mixer.

Previous studies [2-5] have clearly demonstrated that the EAC is a sustainable material with long service life, and has superior waterproofness, fatigue performance, moisture susceptibility and high temperature stability, can apply to serious service conditions in high-cold and high-latitude areas. EAC was first applied to pave the steel deck of the San Mateo–Hayward Bridge in the mid-1960s,
which has exhibited superior performance for many years [6]. From then on, EAC has been widely used as surface material on numerous orthotropic steel decks around the world [7, 8].

With the distinct advantage of superior performance, using EAC does have some downsides. The main one is the difficult in construction of EAC: Once the two separate components of epoxy asphalt are mixed, curing agent and epoxy resin begin an irreversible chemical reaction that increases the strength and stiffness of the EAC. If we don’t finish the paving and compaction of EAC in construction allowable time and specific temperature range, the EAC will become hard to compact and pave and its pavement performance will become very poor [9-11]. Therefore, the mixing temperature and the construction allowable time need to be carefully controlled.

Haihe River Chunyi Bridge using orthotropic steel deck lies in the southeast of Tianjin, China as shown in Figure 1. It is located between the Haijin Bridge and Jizhao Bridge. The span and width of the bridge are 663m and 40m, respectively. The pavement structure of orthotropic steel deck on main bridge is double-EAC. Besides, Haihe River Chunyi Bridge is the final bridge in the upstream of Haihe River since 2002 after overall development of Haihe River. It can cross the Haihe River and ease traffic pressure of Tianjin, and is very important to transportation planning and economic development of Tianjin. Hence the construction of Haihe River Chunyi Bridge got sufficient attention. This paper presents a research on the construction technology for orthotropic steel deck pavement of Haihe River Chunyi Bridge.

![Figure 1. Aerial view of Haihe River Chunyi Bridge.](image)

2. Materials

The technical specifications of the epoxy asphalt used in the paper are listed in Table 1, Table 2 and Table 3. The gradation of the basalt aggregate is presented in Table 4 and the nominal maximum size is 9.5 mm. The basalt aggregate has a compressive strength of 140 MPa and crushing value of 4.2%. The optimum binder content of EAC with was 6.5% determined based on the standard Marshall Mix design procedure.
Table 1. Technical specifications of epoxy resin (component A).

Technical specification	Test results	Criteria	Test Method
Viscosity (23°C, Pa·s)	13	11~15	ASTM D 445 [12]
Epoxide equivalent weight	188	185~292	ASTM D 1652 [13]
Color (Gardner)	3	≤4	ASTM D 1544 [14]
Moisture content (%)	0.03	≤0.05	ASTM D 1744 [15]
Flash point, Cleveland open cup (°C)	247	≥200	ASTM D 92 [16]
Specific gravity at 23°C	1.165	1.16~1.17	ASTM D 1475 [17]
Appearance	Transparent amber	Transparent amber	Visual

Table 2. Technical specifications of mixture of curing agent and petroleum asphalt (component B).

Technical specification	Test results	Criteria	Test Method
Viscosity at 100°C (Pa·s)	0.18	≥0.14	ASTM D 2983 [18]
Acid Value (mg, KOH/g)	52	40~60	ASTM D 664 [19]
Flash point, Cleveland open cup (°C)	255	≥200	ASTM D 92 [16]
Specific gravity at 23°C	1.00	0.98~1.02	ASTM D 1475 [17]
Color	Black	Black	Visual

Table 3. Technical specifications of epoxy asphalt (mixture of component A and component B).

Technical specification	Test results	Criteria	Test Method
Time (Viscosity from 0 to 1000 mPa·s, min)	51	≥50	ASTM D 4402 [20]
Tensile strength (23°C, MPa)	2.22	≥1.52	ASTM D 638 [21]
Fracture elongation (23°C, %)	462	≥190	ASTM D 638 [21]

Table 4. Grading limits and design value.

Sieve size (mm)	0.075	0.15	0.3	0.6	1.18	2.36	4.75	9.5	13.2
Percentage passing (%)									
Upper limit	14	23	32	40	55	70	85	100	100
Lower limit	7	14	21	28	39	50	65	95	100
Design value	10.8	16.7	23.8	35.9	48.4	59.7	75.2	96.9	100

3. Construction

3.1. Steel deck cleaning
The oil, salt and other dirt in the deck were cleaned through detergent. The appearance of the steel bridge deck was checked to ensure that there was not splash, pinhole and burr in the deck.

3.2. Anticorrosive coating
The deck was descaled through using a portable automatic dust-free sand machine, the grinding material in machine was steel shot and grit, and the mix ratio of steel shot and grit was 7:3. The roughness of deck must reach the requirement of 50-100μm before coating anticorrosive and the
relative air humidity must be less than 85% when coating anticorrosive. Epoxy zinc-rich paint widely used as an anticorrosive material was coated in the deck through high-pressure airless spraying method. The thickness of epoxy zinc-rich paint was 60-80μm.

3.3. Bonding layer spraying

As the middle layer in composite pavement structure, the bonding layer should play an important role in connecting EAC and orthotropic steel deck, that is to say, the bonding layer should have a great adhesive performance in maintaining the continuity of each layer under the action from the external load. Hence the procedure of spraying bonding layer is very important to the integral pavement performance of orthotropic steel deck. The bonding layer was sprayed through special spreader combined with artificial coating as shown in Figure 2. The spraying volume is about 0.5 L/m².

![Figure 2. Bonding layer spraying.](image)

3.4. EAC mixing

The procedures of EAC mixing were as follows: Firstly, the epoxy asphalt was prepared by mixing component A and component B at a fixed ratio of 1:2.45, when component A was heated to 87°C and component B to 133°C, then blended the epoxy asphalt with basalt aggregate when basalt aggregate was heated to 120-125°C. The final temperature of EAC should be controlled at 110-130°C. A faster chemical reaction of epoxy asphalt caused by a higher temperature would shorten the construction allowable time of EAC, while a lower temperature cannot ensure sufficient drying of aggregates. The properties of EAC are presented in Table 5.

Table 5. Properties of EAC.

Technical specification	Test results	Criteria	Test Method
Density (g/cm³)	2.566	-	JTG E20-2011 T0705
Air void (%)	2.0	1.5~3.0	JTG E20-2011 T0705
Voids in the mineral aggregate (%)	17.5	≥17	JTG E20-2011 T0705
To guarantee the favorableness and quality of construction, the method of controlling time and temperature was proposed as shown in Table 6. The construction allowable time was determined by marshall molding state and strength developing rule measured in a mass of Marshall Stability tests. The time from mixing epoxy asphalt to the beginning of paving EAC must be more than the shortest construction allowable time, while the time from mixing epoxy asphalt to the finish of compacting EAC must be less than the longest.

Table 6. Construction allowable time of EAC at different temperatures.

Temperature (°C)	Shortest Construction Allowable Time (min)	Longest Construction Allowable Time (min)	Construction Allowable Time Range (min)
110	45	96	51
111	43	91	48
112	41	86	45
113	39	82	43
114	38	79	41
115	37	77	40
116	36	74	38
117	35	71	36
118	35	69	34
119	35	70	35
120	34	69	35
121	34	68	34
122	34	67	33
123	34	66	32
124	34	66	32
125	33	64	31
126	33	63	30
127	33	63	30
128	33	62	29
129	33	62	29
130	33	61	28

3.5. EAC transportation
In order to reduce the time spent for transportation of EAC and guarantee the temperature, some measures were taken, including covering canvas and quilt on the top of lorry, formulating the shortest travel path, arranging dispatchers for lorries.

3.6. EAC paving
To prevent the pollution of lorries on bonding layer which had not paved, the lateral feeding machine
was used in paving EAC as shown in Figure 3. Continuous paving with two pavers could be adopted to avoid the longitudinal seam as shown in Figure 4. The distance and speed of two pavers was about 10 m and 2 m/min, respectively.

![Lateral feeding machine](image1)

Figure 3. Lateral feeding machine.

![Continuous paving with two pavers](image2)

Figure 4. Continuous paving with two pavers.

3.7. EAC compaction

The compaction method of EAC was improved as shown in Table 7. Vegetable oil was smeared constantly on the wheels of rollers when compacting. Moreover, Diversion, head back and emergency brake were forbidden. Artificial hammer and handheld vibration rammer were adopted to compact the pavement where the roller could not compact.
Table 7. Compaction method.

Compaction stages	Preliminary	Next	Final
Roller kinds	Oller	Oller	Steel wheel
Compaction times	4	4	4
Compaction temperature (°C)	≥82	≥72	≥65

3.8. Seam cutting
The lateral construction se am was cut at angle of 90°, its position should be the middle of adjacent diaphragm plates.

4. Conclusions
There were no any diseases like cracks occurred on the orthotropic steel deck pavement of Haihe River Chunyi Bridge after in service for three years. The excellent operations quality shows that the EAC with construction technology above has a long service life with superior low temperature crack resistance, high temperature stability, moisture susceptibility and fatigue performance.

The project example shows that the processing measures can effectively solve the technical difficulties in the construction of orthotropic steel deck pavement of Haihe River Chunyi Bridge, can greatly improve the construction speed and quality, and can provide reference for the same kinds of orthotropic steel deck pavement construction.

Acknowledgments
This study was sponsored by the National Natural Science Foundation of China (No. 51178114, 51378122). This funding is greatly appreciated.

References
[1] Li Y, Wu G and Shao L 2005 Application of epoxy asphalt concrete to pavement of long span steel bridge Central South Highway Engineering 3 046-050
[2] Hu J, Qian Z D and Xue Y C et al 2016 Investigation on fracture performance of lightweight epoxy asphalt concrete based on microstructure characteristics Journal of Materials in Civil Engineering 28 1-8
[3] Xue Y C and Qian Z D 2016 Development and performance evaluation of epoxy asphalt concrete modified with mineral fiber Construction and Building Materials 102 378-383
[4] Li Z and Chen S 2001 Research and development of steel deck pavement technology Highway 1 2-3
[5] Huang W and Qian Z D 2003 Epoxy asphalt concrete paving on the deck of long-span steel bridges Chinese Science Bulletin 48 2391-2394
[6] Gaul R 1996 Epoxy asphalt concrete: a polymer concrete with 25 years' experience American Concrete Institute Technical Session Conference (Minneapolis Minnesota: Traffic Institute Press) 166 233-252
[7] Cubuk M and Guru M 2009 Improvement of bitumen performance with epoxy resin Fuel 8 1324-1328
[8] Bocci E and Canestrari F 2012 Analysis of structural compatibility at interface between asphalt concrete pavements and orthotropic steel deck surfaces In Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies 2293 1-7
[9] Chen L L and Qian Z D 2010 Research on key construction technique of domestic epoxy asphalt concrete *Construction Technology* **39** 74-76

[10] Lu Q and Bors J 2015 Alternate uses of epoxy asphalt on bridge decks and roadways *Construction and Building Materials* **78** 18-25

[11] Wang J W and Shen J L 2009 Construction controlling research of domestic epoxy asphalt mixture *Journal of Southeast University (Natural Science Edition)* **39** 1226-1230

[12] ASTM D445-14a 2014 Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids and Calculation of Dynamic Viscosity

[13] ASTM D1652-04 2004 Standard Test Method for Epoxy Content of Epoxy Resins

[14] ASTM D1544-04 2010 Standard Test Method for Color of Transparent Liquids (Gardner Color Scale)

[15] ASTM D1744-13 2016 Standard Test Method for Determination of Water in Liquid Petroleum Products by Karl Fischer Reagent

[16] ASTM D 92-01 2001 Standard Test Method for Flash and Fire Points by Cleveland Open Cup

[17] ASTM D 1475-13 2013 Standard Test Method for Density of Liquid Coatings, Inks, and Related Products

[18] ASTM D 2983-15 2015 Standard Test Method for Low-Temperature Viscosity of Lubricants Measured by Brookfield Viscometer

[19] ASTM D 664-11 2011 Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration

[20] ASTM D 4402-06 2006 Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer

[21] ASTM D 638-10 2010 Standard Test Method for Tensile Properties of Plastics