On G-Drazin inverses of finite potent endomorphisms and arbitrary square matrices

Fernando Pablos Romo
Departamento de Matemáticas and Instituto Universitario de Física Fundamental y Matemáticas, Universidad de Salamanca, Salamanca, España

Abstract
The aim of this work is to extend to finite potent endomorphisms the notion of G-Drazin inverse of a finite square matrix. Accordingly, we determine the structure and the properties of a G-Drazin inverse of a finite potent endomorphism and, as an application, we offer an algorithm to compute the explicit expression of all G-Drazin inverses of a finite square matrix.

1. Introduction
For an arbitrary \((n \times n)\)-matrix \(A\) with entries in the complex numbers, the index of \(A\), \(i(A) \geq 0\), is the smallest integer such that \(\text{rk}(A^{i(A)}) = \text{rk}(A^{i(A) + 1})\). Given \(A \in \text{Mat}_{n \times n}(\mathbb{C})\) with \(i(A) = r\), H. Wang and X. Liu introduced in [1] the notion of ‘G-Drazin inverse’ of \(A\) as a solution \(X\) of the system

\[
AXA = A; \\
XA^{r+1} = A^r; \\
A^{r+1}X = A^r,
\]

where \(X\) is a \((n \times n)\)-matrix with entries in \(\mathbb{C}\).

Recently, C. Coll et al. have proved in [2] that a matrix \(X \in \text{Mat}_{n \times n}(\mathbb{C})\) is a solution of the system (1) if and only if \(X\) satisfies that

\[
AXA = A; \\
XA^r = A^rX.
\]
On the other hand, if k is a field, V is an arbitrary vector space over k and φ is an endomorphism of V, according to [3] we say that φ is ‘finite-potent’ if $\varphi^n V$ is finite dimensional for some n.

During recent years, the author has extended the notions of Drazin inverse, Core-Moore-Penrose inverse and Drazin-Moore-Penrose inverses of finite square matrices to finite potent endomorphisms, and has offered several properties of these extensions [4–6]. In particular, all the results obtained for finite potent endomorphisms are also valid for finite square matrices.

The aim of this work is to extend to finite potent endomorphisms the notion of G-Drazin inverse of a finite square matrix. Indeed, we determine the structure of a G-Drazin inverse of a finite potent endomorphism and, in particular, we offer the explicit expression of all G-Drazin inverses of a finite square matrix.

The paper is organized as follows. In Section 2 we briefly recall the basic definitions of this work: the definition of finite potent endomorphisms with the decomposition of the vector space given by Argerami et al. [7]; the Jordan bases of nilpotent endomorphisms of infinite-dimensional vector spaces; the Drazin inverse of an $(n \times n)$-matrix and a finite potent endomorphism; the core-nilpotent decomposition of a finite potent endomorphism; and the basic properties of the G-Drazin inverses of an square matrix.

Section 3 is devoted to proving the existence of G-Drazin inverses of finite potent endomorphisms (Proposition 3.4) and to offering the explicit structure of these linear maps on arbitrary k-vector spaces (Lemma 3.10 and Corollary 3.11). Moreover, an explicit example of G-Drazin inverses of a finite potent endomorphism is given.

Finally, the goal of Section 4 is to apply the results of Section 3 to study the set $A\{GD\}$ of G-Drazin inverses of a square matrix $A \in \text{Mat}_{n \times n}(k)$, where k is an arbitrary field. Accordingly, if the index of A is r and $\text{rk}(A^i)$ is the rank of A^i, we can write $v_i(A) = n - \text{rk}(A^i)$ for all $i \in \{1, \ldots, r\}$ and we check that there exists a bijection

$$k^{v_1(A) - v_r(A)} \times k^{[v_r(A) - v_1(A)]} \times k^{[v_1(A) - v_1(A)]} \sim A\{GD\},$$

from where we determine the explicit expression of all G-Drazin inverses of A.

2. Preliminaries

This section is added for the sake of completeness.

2.1. Finite potent endomorphisms

Let k be an arbitrary field, and let V be a k-vector space.

Let us now consider an endomorphism φ of V. We say that φ is ‘finite potent’ if $\varphi^n V$ is finite dimensional for some n. This definition was introduced by J. Tate in [3] as a basic tool for his elegant definition of Abstract Residues.

In 2007, M. Argerami et al. showed in [7] that an endomorphism φ is finite potent if and only if V admits a φ-invariant decomposition $V = U_\varphi \oplus W_\varphi$ such that $\varphi|_{U_\varphi}$ is nilpotent, W_φ is finite dimensional and $\varphi|_{W_\varphi} : W_\varphi \sim W_\varphi$ is an isomorphism.
Indeed, if \(k[x] \) is the algebra of polynomials in the variable \(x \) with coefficients in \(k \), we may view \(V \) as an \(k[x] \)-module via \(\varphi \), and the explicit definition of the above \(\varphi \)-invariant subspaces of \(V \) is:

- \(U_\varphi = \{ v \in V \text{ such that } x^m v = 0 \text{ for some } m \} \);
- \(W_\varphi = \{ v \in V \text{ such that } p(x)v = 0 \text{ for some } p(x) \in k[x] \text{ relative prime to } x \} \).

Note that if the annihilator polynomial of \(\varphi \) is \(x^m \cdot p(x) \) with \((x, p(x)) = 1 \), then \(U_\varphi = \text{Ker } \varphi^m \) and \(W_\varphi = \text{Ker } p(\varphi) \).

Hence, this decomposition is unique. In this paper we shall call this decomposition the \(\varphi \)-invariant AST-decomposition of \(V \).

For a finite potent endomorphism \(\varphi \), a trace \(\text{tr}_V(\varphi) \in k \) may be defined as \(\text{tr}_V(\varphi) = \text{tr}_{W_\varphi}(\varphi|_{W_\varphi}) \)

This trace has the following properties:

1. if \(V \) is finite dimensional, then \(\text{tr}_V(\varphi) \) is the ordinary trace;
2. if \(W \) is a subspace of \(V \) such that \(\varphi W \subset W \) then
 \[
 \text{tr}_V(\varphi) = \text{tr}_W(\varphi) + \text{tr}_{V/W}(\varphi);
 \]
3. if \(\varphi \) is nilpotent, then \(\text{tr}_V(\varphi) = 0 \).

Usually, \(\text{tr}_V \) is named ‘Tate’s trace’.

It is known that in general \(\text{tr}_V \) is not linear; that is, it is possible to find finite potent endomorphisms \(\theta_1, \theta_2 \in \text{End}_k(V) \) such that

\[
\text{tr}_V(\theta_1 + \theta_2) \neq \text{tr}_V(\theta_1) + \text{tr}_V(\theta_2).
\]

Moreover, with the previous notation, and using the AST-decomposition of \(V \), D. Hernández Serrano and the author of this paper have offered in [8] a definition of a determinant for finite potent endomorphisms as follows:

\[
\det^k_V(1 + \varphi) := \det^k_{W_\varphi}(1 + \varphi|_{W_\varphi}).
\]

This determinant satisfies the following properties:

- if \(V \) is finite dimensional, then \(\det^k_V(1 + \varphi) \) is the ordinary determinant;
- if \(W \) is a subspace of \(V \) such that \(\varphi W \subset W \), then
 \[
 \det^k_V(1 + \varphi) = \det^k_W(1 + \varphi) \cdot \det^k_{V/W}(1 + \varphi);
 \]
- if \(\varphi \) is nilpotent, then \(\det^k_V(1 + \varphi) = 1 \).

For details readers are referred to [3, 8–10].

2.2. Jordan bases of nilpotent endomorphisms of infinite-dimensional vector spaces

Let \(V \) be a vector space over an arbitrary field \(k \) and let \(f \in \text{End}_k(V) \) be a nilpotent endomorphism.
If n is the nilpotency index of f, according to the statements [11], setting $W_i^f = \Ker f^i / [\Ker f^{i-1} + f(\Ker f^{i+1})]$ with $i \in \{1, 2, \ldots, n\}$, $\alpha_i(V, f) = \dim_k W_i^f$ and $S_{\alpha_i}(V, f)$ a set such that $\# S_{\alpha_i}(V, f) = \alpha_i(V, f)$ with $S_{\alpha_i}(V, f) \cap S_{\alpha_j}(V, f) = \emptyset$ for all $i \neq j$, one has that there exists a family of vectors $\{v_{s_i}\}$ that determines a Jordan basis of f:

$$B = \bigcup_{s_i \in S_{\alpha_i}(V, f), 1 \leq i \leq n} \{v_{s_i}, f(v_{s_i}), \ldots, f^{i-1}(v_{s_i})\}. \quad (3)$$

Moreover, if we write $H_{s_i}^f = \langle v_{s_i}, f(v_{s_i}), \ldots, f^{i-1}(v_{s_i}) \rangle$, the basis B induces a decomposition

$$V = \bigoplus_{s_i \in S_{\alpha_i}(V, f), 1 \leq i \leq n} H_{s_i}^f. \quad (4)$$

For a different method to construct Jordan bases of nilpotent endomorphisms of infinite-dimensional vector spaces readers can see [12].

2.3. Drazin inverse of finite potent endomorphisms

2.3.1. Drazin inverse of $(n \times n)$-matrices

Let $A \in \text{Mat}_{n \times n}(\mathbb{C})$.

Definition 2.1: The ‘index of A’, $i(A) \geq 0$, is the smallest integer such that $\text{rk}(A^{i(A)}) = \text{rk}(A^{i(A)+1})$.

In 1958, given a matrix $A \in \text{Mat}_{n \times n}(\mathbb{C})$ with $i(A) = r$, M. P. Drazin [13] showed the existence of a unique $(n \times n)$-matrix A^D satisfying the equations:

- $A^{r+1}A^D = A^r$ for $r = i(A)$;
- $A^DAA^D = A^D$;
- $A^DA = AA^D$.

The Drazin inverse A^D also verifies that

- $(A^D)^D = A$ if and only if $i(A) \leq 1$;
- if $A^2 = A$, then $A^D = A$.

2.3.2. Drazin inverse of finite potent endomorphisms

Let V be an arbitrary k-vector space and let $\varphi \in \text{End}_k(V)$ be a finite potent endomorphism of V. Let us consider the AST-decomposition $V = U_\varphi \oplus W_\varphi$ induced by φ (Subsection 2.1).

Definition 2.2: We shall call ‘index of φ’, $i(\varphi)$, to the nilpotent order of $\varphi_{|U_\varphi}$.

In [6] (Lemma 3.2) is proved that for finite-dimensional vector spaces this definition of index coincides with Definition 2.1. Note that $i(\varphi) = 0$ if and only if V is a finite-dimensional vector space and φ is an automorphism.
For each finite potent endomorphism ϕ there exists a unique finite potent endomorphism ϕ^D that satisfies that:

1. $\phi^{r+1} \circ \phi^D = \phi^r$;
2. $\phi^D \circ \phi \circ \phi^D = \phi^D$;
3. $\phi^D \circ \phi = \phi \circ \phi^D$,

where r is the index of ϕ.

The map ϕ^D is the Drazin inverse of ϕ and is the unique linear map such that:

$$\phi^D(v) = \begin{cases} (\phi_{|W_\phi})^{-1} & \text{if } v \in W_\phi \\ 0 & \text{if } v \in U_\phi \end{cases}.$$

Moreover, ϕ^D satisfies the following properties:

- $(\phi^D)^D = \phi$ if and only if the $i(\phi) \leq 1$;
- $\phi = \phi^D$ if and only if $\phi_{|U_\phi} = 0$ and $(\phi_{|U_\phi})^2 = \text{Id}_{|W_\phi}$;
- $\text{tr}_V(\phi + \phi^D) = \text{tr}_V(\phi) + \text{tr}_V(\phi^D)$;
- if ψ is a projection finite potent endomorphism, then $\psi^D = \psi$.

2.4. CN decomposition of a finite potent endomorphism

Given a finite potent endomorphism $\phi \in \text{End}_k(V)$, there exists a unique decomposition $\phi = \phi_1 + \phi_2$, where $\phi_1, \phi_2 \in \text{End}_k(V)$ are finite potent endomorphisms satisfying that:

- $i(\phi_1) \leq 1$;
- ϕ_2 is nilpotent;
- $\phi_1 \circ \phi_2 = \phi_2 \circ \phi_1 = 0$.

According to [4, Theorem 3.2], one has that $\phi_1 = \phi \circ \phi^D \circ \phi$, which is the core part of ϕ. Also, ϕ_2 is named the nilpotent part of ϕ.

Moreover, one has that

$$\phi = \phi_1 \iff U_\phi = \text{Ker} \phi \iff W_\phi = \text{Im} \phi \iff (\phi^D)^D = \phi \iff i(\phi) \leq 1. \quad (5)$$

2.5. G-Drazin inverses of a square matrix

Given $A \in \text{Mat}_{n \times n}(\mathbb{C})$ with $i(A) = r$, H. Wang and X. Liu introduced in [1] the notion of ‘G-Drazin inverse’ of A as a solution X of the system

$$AXA = A;$$
$$XA^{r+1} = A';$$
$$A^{r+1}X = A',$$

where X is a $(n \times n)$-matrix with entries in \mathbb{C}.

Recently, C. Coll et al. have proved in [2] that a matrix \(X \in \text{Mat}_{n \times n}(\mathbb{C}) \) is a solution of the system (7) if and only if \(X \) satisfies that

\[
AXA = A; \\
XA^r = A^rX.
\]

Usually, the set of G-Drazin inverses of a matrix \(A \) is denoted by \(A\{GD\} \) and a G-matrix inverse of \(A \) is denoted by \(A^{GD} \). We should note that G-Drazin inverses are considered for bounded linear operators.

If \(J \) is the Jordan matrix associated with \(A \in \text{Mat}_{n \times n}(\mathbb{C}) \), such that \(A = B \cdot J \cdot B^{-1} \), with \(B \) being a non-singular matrix and

\[
J = \begin{pmatrix} J_1 & 0 \\ 0 & J_0 \end{pmatrix},
\]

\(J_0 \) and \(J_1 \) being the parts of \(J \) corresponding to zero and non-zero eigenvalues respectively, it is known that a G-Drazin inverse is

\[
A^{GD} = B \cdot \begin{pmatrix} J_1^{-1} & 0 \\ 0 & J_0^{-1} \end{pmatrix} : B^{-1},
\]

where is \(J_0^{-1} \) is a generalized inverse of \(J_0 \) (1-inverse).

3. G-Drazin inverses of finite potent endomorphisms

The aim of this section is to generalize the definition and the main properties of the G-Drazin inverses of a matrix \(A \) to finite potent endomorphisms.

Let \(k \) be a field and let \(V \) be an arbitrary \(k \)-vector space.

Definition 3.1: Given a finite potent endomorphism \(\varphi \in \text{End}_k(V) \), we say that an endomorphism \(\varphi^{GD} \in \text{End}_k(V) \) is a G-Drazin inverse of \(\varphi \) when it satisfies that

\[
\varphi \circ \varphi^{GD} \circ \varphi = \varphi; \\
\varphi^{GD} \circ \varphi^r = \varphi^r \circ \varphi^{GD},
\]

where \(i(\varphi) = r \).

Lemma 3.2: Let \(\varphi \in \text{End}_k(V) \) be a finite potent endomorphism with \(i(\varphi) = r \) and let \(V = W_\varphi \oplus U_\varphi \) be the AST-decomposition determined by \(\varphi \). If \(f \in \text{End}_k(V) \) is an endomorphism such that \(f \circ \varphi^r = \varphi^r \circ f \), then \(W_\varphi \) and \(U_\varphi \) are invariant under the action of \(f \).

Proof: Let \(\varphi = \varphi_1 + \varphi_2 \) be the CN-decomposition of \(\varphi \).

Since \(i(\varphi) = r \), bearing in mind that \(\varphi^r = \varphi_1^r \), \((\varphi_1^r)_{|W_\varphi} \in \text{Aut}_k(W_\varphi) \) and \(\text{Im} \varphi_1^r = W_\varphi \), if \(w \in W_\varphi \) and \(\varphi_1^r(w') = w \), then

\[
f(w) = (f \circ \varphi_1^r)(w') = (\varphi_1^r \circ f)(w') \in W_\varphi.
\]

Accordingly, \(W_\varphi \) is \(f \)-invariant.
Moreover, if \(u \in U_\varphi \), then
\[
0 = (f \circ \varphi^\dagger_1)(u) = (\varphi^\dagger_1 \circ f)(u)
\]
and we deduce that \(f(u) \in \text{Ker} \varphi^\dagger_1 = U_\varphi \). Hence, \(U_\varphi \) is also \(f \)-invariant.

Corollary 3.3: If \(\varphi^{GD} \in \text{End}_k(V) \) is a \(G \)-Drazin inverse of a finite potent endomorphism \(\varphi \in \text{End}_k(V) \), with \(i(\varphi) = r \) and \(\text{AST-decomposition} \ V = W_\varphi \oplus U_\varphi \), then \(W_\varphi \) and \(U_\varphi \) are invariant under the action of \(\varphi^{GD} \).

The structure of a \(G \)-Drazin inverse of a finite potent endomorphism is given by the following proposition:

Proposition 3.4: Given a finite potent endomorphism \(\varphi \in \text{End}_k(V) \) with \(i(\varphi) = r \) and \(\text{AST-decomposition} \ V = W_\varphi \oplus U_\varphi \), one has that \(\varphi^{GD} \in \text{End}_k(V) \) is a \(G \)-Drazin inverse of \(\varphi \) if and only if \(W_\varphi \) and \(U_\varphi \) are invariant under the action of \(\varphi^{GD} \). Also, since \(\varphi \circ \varphi^{GD} \circ \varphi = \varphi \), it is clear that \((\varphi^{GD})|_{W_\varphi} = (\varphi|_{W_\varphi})^{-1} \) and \((\varphi^{GD})|_{U_\varphi} = (\varphi|_{U_\varphi})^{-1} \), where \((\varphi|_{U_\varphi})^{-1} \) is a generalized inverse of \(\varphi|_{U_\varphi} \).

Proof: Let \(\varphi^{GD} \in \text{End}_k(V) \) be a \(G \)-Drazin inverse of \(\varphi \). It follows from Corollary 3.3 that \(W_\varphi \) and \(U_\varphi \) are invariant under the action of \(\varphi^{GD} \). Also, since \(\varphi \circ \varphi^{GD} \circ \varphi = \varphi \), it is easy to check that \(\varphi \circ \varphi^{GD} \circ \varphi = \varphi \). Moreover, since \((\varphi^r)|_{U_\varphi} = 0 \), then it follows from the properties of \(\psi \) that
\[
(\varphi \circ \varphi^r)|_{W_\varphi} = (\varphi^r)^{-1}|_{W_\varphi} = (\varphi \circ \psi)|_{W_\varphi}
\]
from where we deduce that
\[
\varphi \circ \varphi^r = \varphi^r \circ \varphi
\]
and the statement is proved.

Direct consequences of Proposition 3.4 are:

Corollary 3.5: Given a finite potent endomorphism \(\varphi \in \text{End}_k(V) \) with \(\text{CN-decomposition} \ \varphi = \varphi_1 + \varphi_2 \), if \(\varphi^{GD} \in \text{End}_k(V) \) is a \(G \)-Drazin inverse of \(\varphi \), one has that \(\varphi^{GD} = \varphi^{D} + \varphi_2^{GD} \), where \(\varphi^{D} \) is the Drazin inverse of \(\varphi \), and \(\varphi_2^{GD} \in \text{End}_k(V) \) is the unique linear map satisfying that
\[
\varphi_2^{GD}(v) = \begin{cases}
0 & \text{if } v \in W_\varphi \\
(\varphi^{GD})|_{U_\varphi} & \text{if } v \in U_\varphi
\end{cases}
\]
which is a \(G \)-Drazin inverse of \(\varphi_2 \).

Corollary 3.6: If \(\varphi = \varphi_1 + \varphi_2 \) is the \(\text{CN-decomposition} \) of a finite potent endomorphism \(\varphi \in \text{End}_k(V) \), then the Drazin inverse \(\varphi^{D} \) is a \(G \)-Drazin inverse of \(\varphi_1 \).
We shall now characterize all of the G-Drazin inverses of a finite potent endomorphism.

Lemma 3.7: Let E be a k-vector space of dimension n and let $f \in \text{End}_k(E)$ be an endomorphism with annihilating polynomial $a_f(x) = x^n$. If $e \in E$ is a vector such that $f^{n-1}(e) \neq 0$, then every generalized inverse $f^- \in \text{End}_k(E)$ is determined by the expressions

$$f^-(f^i(e)) = \begin{cases} f^{i-1}(e) + \lambda_if^{n-1}(e) & \text{if } i \geq 1 \\ \tilde{e}_i & \text{if } i = 0 \end{cases},$$

with $i \in \{0, 1, \ldots, n-1\}$, $\lambda_i \in k$ for every $i \in \{1, \ldots, n-1\}$ and $\tilde{e} \in E$ being an arbitrary vector.

Proof: Since $f \circ f^- \circ f = f$, we have that f^- is a generalized inverse of f if and only if $(f \circ f^-)|_{\text{Im}f} = \text{Id}|_{\text{Im}f}$. Hence, since $e \notin \text{Im}f$ we have that $f^-(e) = \tilde{e}$, where $\tilde{e} \in E$ is an arbitrary vector.

Moreover, bearing in mind that $(f \circ f^-)(f^i(e)) = f^i(e)$ for all $i \geq 1$, one has that

$$f^-(f^i(e)) \in f^{-1}(f^i(e)) + \text{Ker}f,$$

and we get that

$$f^-(f^i(e)) = f^{i-1}(e) + \lambda_if^{n-1}(e)$$

for all $i \in \{1, \ldots, n-1\}$.

Accordingly, since $\{e, f(e), \ldots, f^{n-1}(e)\}$ is a Jordan basis of E induced by f, the claim is deduced. \[\blacksquare\]

We can reformulate the statement of Lemma 3.9 as follows:

Corollary 3.8: Let E be a k-vector space of dimension n and let $f \in \text{End}_k(E)$ be an endomorphism with annihilating polynomial $a_f(x) = x^n$. If $e \in E$ is a vector such that $f^{n-1}(e) \neq 0$, then every generalized inverse $f^- \in \text{End}_k(E)$ is determined by the expressions

$$f^-(f^i(e)) = \begin{cases} f^{i-1}(e) + \lambda_if^{n-1}(e) & \text{if } i \geq 1 \\ \sum_{h=0}^{n-1} \alpha_hf^h(e) & \text{if } i = 0 \end{cases},$$

with $i \in \{0, \ldots, n-1\}$, $\lambda_i, \alpha_h \in k$ for every $i \in \{1, \ldots, n-1\}$ and $h \in \{0, \ldots, n-1\}$.

Furthermore, similar to Lemma 3.9 one can prove that
Lemma 3.9: If E is a finite-dimensional k-vector space, $f \in \text{End}_k(E)$ is an endomorphism with annihilating polynomial $a_f(x) = x^n$ and

$$\bigcup_{j=1}^{r}\{e_j, f(e_j), \ldots, f^{n_j-1}(e_j)\}$$

is a Jordan basis of E induced by f, then every generalized inverse $f^- \in \text{End}_k(E)$ is determined by the expressions

$$f^-(f^i(e_j)) = \begin{cases} f^{i-1}(e_j) + \sum_{s=1}^{r} \lambda_{j,s}^{i} f^{n_s-1}(e_s) & \text{if } i \geq 1 \\ \sum_{s=1}^{r} \left[\sum_{h=0}^{n_s-1} \alpha_{j,s}^{i,h} f^{h}(e_s) \right] & \text{if } i = 0 \end{cases},$$

with $\lambda_{j,s}^{i} \in k$ for each $j, s \in \{1, \ldots, r\}$, $i \in \{0, \ldots, n_j - 1\}$ and $h \in \{0, \ldots, n_s - 1\}$.

Let us again consider a finite potent endomorphism $\varphi \in \text{End}_k(V)$ of an arbitrary k-vector space V with $i(\varphi) = r$. If $V = W_\varphi \oplus U_\varphi$ is the AST-decomposition induced by φ, let

$$B_\varphi = \bigcup_{1 \leq h \leq r} \{v_{sh}, \varphi(v_{sh}), \ldots, \varphi^{h-1}(v_{sh})\}$$

be a Jordan basis of U_φ induced by $\varphi|_{U_\varphi}$ (see Subsection 2.2).

Let us now denote

$$\mathfrak{S}_{\alpha,\varphi} = S_{\alpha_1}(V,\varphi|_{U_\varphi}) \cup \ldots \cup S_{\alpha_r}(V,\varphi|_{U_\varphi})$$

and $\beta(V, \varphi) = \#\mathfrak{S}_{\alpha,\varphi}$.

Accordingly, similar to Lemma 3.9, it is easy to check that

Lemma 3.10: Given an arbitrary k-vector space V and a finite potent endomorphism $\varphi \in \text{End}_k(V)$ with $i(\varphi) = r$ and AST-decomposition $V = W_\varphi \oplus U_\varphi$, fixing a Jordan basis B_φ of U_φ as in (12), then every generalized inverse $(\varphi|_{U_\varphi})^- \in \text{End}_k(U_\varphi)$ is determined by the expressions

$$(\varphi|_{U_\varphi})^-(\varphi^i(v_{sh})) = \begin{cases} \varphi^{i-1}(v_{sh}) + \sum_{s,t \in \mathfrak{S}_{\alpha,\varphi}} \lambda_{s,t}^{i} \varphi^{t-1}(v_{st}) & \text{if } 1 \leq i \leq h - 1 \\ \varphi^i(v_{sh}) & \text{if } i = 0 \end{cases},$$

with $v \in U_\varphi$, $1 \leq h \leq r$, $i \in \{0, 1, \ldots, h - 1\}$, $\lambda_{s,t}^{i} \in k$ and $\lambda_{s,t}^{i} = 0$ for almost all $s, t \in \mathfrak{S}_{\alpha,\varphi}$ (for each $s_h \in S_{\alpha_h}(V,\varphi|_{U_\varphi})$).

Writing

$$(\varphi|_{U_\varphi})^-(v_{sh}) = \sum_{s,t \in \mathfrak{S}_{\alpha,\varphi}} \alpha_{s,t}^{i} \varphi^{i}(v_{st}) \in U_\varphi,$$

one has that
Corollary 3.11: Given an arbitrary k-vector space V and a finite potent endomorphism $\varphi \in \text{End}_k(V)$ with $i(\varphi) = r$ and AST-decomposition $V = W_\varphi \oplus U_\varphi$, fixing a Jordan basis B_φ of U_φ as in (12), then every generalized inverse $(\varphi |_{U_\varphi})^− \in \text{End}_k(U_\varphi)$ is determined by the expressions

$$(\varphi |_{U_\varphi})^−(\varphi^i(v_{sh})) = \begin{cases}
\varphi^{i−1}(v_{sh}) + \sum_{s_t \in \mathcal{S}_{\alpha,\varphi}} \lambda_{s_h,s_t}^i \varphi^{i−1}(v_{st}) & \text{if } 1 \leq i \leq h − 1 \\
\sum_{s_l \in \mathcal{S}_{\alpha,\varphi}} \alpha_{s_h,s_l}^j \varphi^j(v_{sl}) & \text{if } i = 0
\end{cases}$$

with $1 \leq h \leq r$, $i \in \{0, 1, \ldots, h − 1\}$, $\lambda_{s_h,s_t}^i, \alpha_{s_h,s_l}^j \in k$, and $\lambda_{s_h,s_t}^i = 0 = \alpha_{s_h,s_l}^j$ for almost all $s_t, s_l \in \mathcal{S}_{\alpha,\varphi}$ and $0 \leq j \leq l − 1$.

Corollary 3.12: With the notation of Corollary 3.5, $\varphi_2^{GD} = 0$ if and only if $i(\varphi) \leq 1$.

Proof: It follows from Lemma 3.10 that $\varphi_2^{GD} = 0$ if and only if $\text{Ker} \varphi = U_\varphi$, from where the claim is proved.

Corollary 3.13: Given a finite potent endomorphism $\varphi \in \text{End}_k(V)$, one has that the Drazin inverse $\varphi^D \in \text{End}_k(V)$ is a G-Drazin inverse of φ if and only if $i(\varphi) \leq 1$.

Proof: If $\varphi = \varphi_1 + \varphi_2$ is the CN-decomposition, then according to Corollary 3.5 one has that $\varphi^D \in \text{End}_k(V)$ is a G-Drazin inverse of φ if and only if 0 is a G-Drazin inverse of φ_2 and, bearing in mind Corollary 3.12, the statement is deduced.

Accordingly, from Proposition 3.4 and Lemma 3.10, we have characterized all the G-Drazin inverses of a finite potent endomorphism $\varphi \in \text{End}_k(V)$. Note that, in general, a G-Drazin inverse $\varphi^{GD} \in \text{End}_k(V)$ is not a finite potent endomorphism.

If we denote by $X_{\varphi}^{[GD]}$ the set of all G-Drazin inverses of a finite potent endomorphism $\varphi \in \text{End}_k(V)$, fixing a Jordan basis B_φ of U_φ as in (12), with the notation of Subsection 2.2, $i(\varphi) = r$ and we have a bijection

$$X_{\varphi}^{[GD]} \sim \prod_{h=1}^r \left(\prod_{s_t \in \mathcal{S}_{\alpha,\varphi}} \left[\left(U_\varphi \times \bigoplus_{i=1}^{h−1} \left(\bigoplus_{\beta(V,\varphi)} k \right) \right) \right] \right).$$

(13)

Example 3.1: Let k be an arbitrary ground field, let V be a k-vector space of countable dimension over k and let $\{v_1, v_2, v_3, \ldots\}$ be a basis of V indexed by the natural numbers.
Let $\varphi \in \text{End}_k(V)$ the finite potent endomorphism defined as follows:

\[
\varphi(v_i) = \begin{cases}
 v_2 + v_5 + v_7 & \text{if } i = 1 \\
 v_1 + 3v_2 & \text{if } i = 2 \\
 v_4 & \text{if } i = 3 \\
 v_1 - v_3 & \text{if } i = 4 \\
 -v_3 + 2v_5 + 2v_7 & \text{if } i = 5 \\
 3v_{i+1} & \text{if } i = 5h + 1 \\
 0 & \text{if } i = 5h + 2 \\
 -v_{i-2} + 2v_{i+1} & \text{if } i = 5h + 3 \\
 v_{i-2} + v_{i+1} & \text{if } i = 5h + 4 \\
 -v_{i-4} + 5v_{i-3} & \text{if } i = 5h + 5
\end{cases}
\]

for all $h \geq 1$.

We have that the AST-decomposition $V = U_\varphi \oplus W_\varphi$ is determined by the subspaces

\[
W_\varphi = \langle v_1, v_2, v_3, v_4, v_5 + v_7 \rangle \quad \text{and} \quad U_\varphi = \langle v_j \rangle_{j \geq 6}.
\]

In this basis of W_φ one has that

\[
\varphi|_{W_\varphi} \equiv A_{W_\varphi} = \begin{pmatrix}
 0 & 1 & 0 & 1 & 0 \\
 1 & 3 & 0 & 0 & 0 \\
 0 & 0 & 0 & -1 & -1 \\
 0 & 0 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0 & 2
\end{pmatrix},
\]

and, computing $A_{W_\varphi}^{-1}$, we obtain that the Drazin inverse of φ is

\[
\varphi^D(v_i) = \begin{cases}
 6v_1 - 2v_2 + 3v_4 - 3v_5 & \text{if } i = 1 \\
 -2v_1 + v_2 - v_4 + v_5 & \text{if } i = 2 \\
 6v_1 - 2v_2 + 2v_4 - 3v_5 & \text{if } i = 3 \\
 v_3 & \text{if } i = 4 \\
 3v_1 - v_2 + v_4 - v_5 & \text{if } i = 5 \\
 0 & \text{if } i \geq 6
\end{cases}.
\]

Moreover, we can write $U_\varphi = \bigoplus_{i \geq 2} H_i$ with $H_i = \langle v_{5i-4}, v_{5i-3}, v_{5i-2}, v_{5i-1}, v_{5i} \rangle$ for all $i \geq 2$, and in the same bases we have that

\[
\varphi|_{H_i} \equiv A_{H_i} = \begin{pmatrix}
 0 & 0 & -1 & 0 & -1 \\
 3 & 0 & 0 & 1 & 5 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 2 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0
\end{pmatrix}
\]

for all $i \geq 2$.
For every \(i \geq 2 \), one has that
\[
\{v_{5i-2}, -v_{5i-4} + 2v_{5i-1}, -v_{5i-3} + 2v_{5i}, -2v_{5i-4} + 10v_{5i-3}, -6v_{5i-3}\}
\]
is a Jordan basis of \(H_i \) induced by \(\varphi|_{H_i} \) and, therefore,
\[
\varphi|_{H_i} \equiv P \cdot \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix} \cdot P^{-1}
\]
with
\[
P = \begin{pmatrix}
0 & -1 & 0 & -2 & 0 \\
0 & 0 & -1 & 10 & -6 \\
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0
\end{pmatrix}.
\]
Accordingly, it follows from Corollaries 3.5 and 3.11, that \(\varphi^{GD}_2 \in \text{End}_k(V) \) is the unique linear map such that:

- \(\varphi^{GD}_2(v_i) = 0 \) for \(i \in \{1, 2, 3, 4\} \);
- \(\varphi^{GD}_2(v_5 + v_7) = 0 \);
- \(\varphi^{GD}_2(v_{5i-2}) = \sum_{j=6}^\infty \alpha_{ij} v_j \)
- \(\varphi^{GD}_2(-v_{5i-4} + 2v_{5i-1}) = v_{5i-2} + \sum_{h \geq 2} \lambda_{i,5h-3}^1 v_{5h-3} \)
- \(\varphi^{GD}_2(-v_{5i-3} + 2v_{5i}) = -v_{5i-4} + 2v_{5i-1} + \sum_{h \geq 2} \lambda_{i,5h-3}^2 v_{5h-3} \)
- \(\varphi^{GD}_2(-2v_{5i-4} + 10v_{5i-3}) = -v_{5i-3} + 2v_{5i} + \sum_{h \geq 2} \lambda_{i,5h-3}^3 v_{5h-3} \)
- \(\varphi^{GD}_2(-6v_{5i-3}) = -2v_{5i-4} + 10v_{5i-3} + \sum_{h \geq 2} \lambda_{i,5h-3}^4 v_{5h-3} \)

for every \(i \geq 2 \), and with \(\alpha_{ij} = 0 \) for almost all \(j \geq 6 \) (for each \(i \geq 2 \)) and \(\lambda_{5h-3,s}^i = 0 \) for almost all \(h \geq 2 \) (for every \(i \geq 2 \) and for every \(s \in \{2, 3, 4, 5\} \)).

Thus, a non-difficult computation shows that \(\varphi^{GD}_2 \in \text{End}_k(V) \) is the unique linear map such that:

- \(\varphi^{GD}_2(v_i) = 0 \) for \(i \in \{1, 2, 3, 4\} \);
- \(\varphi^{GD}_2(v_5) = -\frac{1}{3}v_6 + \frac{5}{3}v_7 + \frac{1}{6} \sum_{h \geq 2} \lambda_{5h-3,5}^2 v_{5h-3} \)
- \(\varphi^{GD}_2(v_{5i-4}) = -\frac{5}{3}v_{5i-4} - \frac{47}{6}v_{5i-3} - v_{5i} - \sum_{h \geq 2} \left(\frac{1}{2} \lambda_{i,5h-3}^3 + \frac{5}{6} \lambda_{i,5h-3}^4\right) v_{5h-3} \)
- \(\varphi^{GD}_2(v_{5i-3}) = \frac{1}{3}v_{5i-4} - \frac{5}{3}v_{5i-3} + \frac{1}{6} \sum_{h \geq 2} \lambda_{i,5h-3}^4 v_{5h-3} \)
- \(\varphi^{GD}_2(v_{5i-2}) = \sum_{j=6}^\infty \alpha_{ij} v_j \)
- \(\varphi^{GD}_2(v_{5i-1}) = \frac{5}{6}v_{5i-4} - \frac{47}{12}v_{5i-3} + \frac{1}{2}v_{5i-2} - \frac{1}{2}v_{5i} + \sum_{h \geq 2} \left(\frac{1}{2} \lambda_{i,5h-3}^2 - \frac{1}{4} \lambda_{i,5h-3}^3 v_{5h-3} - \frac{5}{12} \lambda_{i,5h-3}^4\right) \)
- \(\varphi^{GD}_2(v_{5i}) = -\frac{1}{3}v_{5i-4} - \frac{5}{6}v_{5i-3} + v_{5i-1} - \frac{5}{6}v_{5i} + \sum_{h \geq 2} \left(\frac{1}{2} \lambda_{i,5h-3}^2 - \frac{1}{4} \lambda_{i,5h-3}^3 v_{5h-3} \right) \)

for every \(i \geq 2 \), and with \(\alpha_{ij} = 0 \) for almost all \(j \geq 6 \) (for each \(i \geq 2 \)) and \(\lambda_{5h-3,s}^i = 0 \) for almost all \(h \geq 2 \) (for every \(i \geq 2 \) and for every \(s \in \{2, 3, 4, 5\} \)).
Hence, bearing in mind that $\varphi^{GD} = \varphi^D + \varphi_2^{GD}$ (Corollary 3.5), one has that a G-Drazin inverse φ^{GD} is determined by:

- $\varphi^{GD}(v_1) = 6v_1 - 2v_2 + 3v_4 - 3v_5$;
- $\varphi^{GD}(v_2) = -2v_1 + v_2 - v_4 + v_5$;
- $\varphi^{GD}(v_3) = 6v_1 - 2v_2 - 2v_4 - 3v_5$;
- $\varphi^{GD}(v_4) = v_3$;
- $\varphi^{GD}(v_5) = 3v_1 - v_2 + v_4 - v_5 - \frac{1}{3}v_6 + \frac{5}{3}v_7 + \frac{1}{6}\sum_{h \geq 2} \lambda_{5h-3,5}^2v_{5h-3}$;
- $\varphi^{GD}(v_{5i-4}) = -\frac{5}{6}v_{5i-4} - \frac{1}{2}v_{5i-2} - \frac{1}{2}v_{5i} + \sum_{h \geq 2} \left(\frac{1}{2}\lambda_{i,5h-3}^1 - \lambda_{i,5h-3}^3 \right)v_{5h-3}$;
- $\varphi^{GD}(v_{5i-3}) = \frac{1}{3}v_{5i-4} - \frac{1}{6}\sum_{h \geq 2} \lambda_{i,5h-3}^4v_{5h-3}$;
- $\varphi^{GD}(v_{5i-2}) = \sum_{j \geq 6} \alpha_{i,j}v_j$;
- $\varphi^{GD}(v_{5i-1}) = \frac{5}{6}v_{5i-4} - \frac{1}{2}v_{5i-3} - \frac{1}{2}v_{5i} + \sum_{h \geq 2} \left(\frac{1}{2}\lambda_{i,5h-3}^1 - \lambda_{i,5h-3}^3 \right)v_{5h-3}$;
- $\varphi^{GD}(v_{5i}) = -\frac{1}{3}v_{5i-4} - \frac{1}{6}v_{5i-3} + v_{5i-1} - \frac{1}{6}v_{5i} + \sum_{h \geq 2} \left(\frac{1}{2}\lambda_{i,5h-3}^2 - \lambda_{i,5h-3}^4 \right)v_{5h-3}$;

for every $i \geq 2$, and with $\alpha_{i,j} = 0$ for almost all $j \geq 6$ (for each $i \geq 2$) and $\lambda_{i,5h-3,s}^j = 0$ for almost all $h \geq 2$ (for every $i \geq 2$ and for every $s \in \{2, 3, 4, 5\}$).

Remark 3.14: Note that the explicit expression of the bijection (13) for the finite potent endomorphism φ of Example 3.1 is

$$X^{GD}_{\varphi} \sim \prod_{i \in \mathbb{N}} \left(U_{\varphi} \times \bigoplus_{j=1}^{4} \bigoplus_{h \in \mathbb{N}} k \right).$$

$$\varphi^{GD} \mapsto (\varphi^{GD}(v_{5i-2}), ((\lambda_{i,5h-3}^j)_{h \in \mathbb{N}})_{1 \leq j \leq 4})_{i \in \mathbb{N}}$$

To finish this section, we shall briefly study the G-Drazin inverses of a finite potent endomorphism that also are finite potent.

Let V be an arbitrary k-vector space and let $\varphi \in \text{End}_k(V)$ be a finite potent endomorphism.

With the above notation, if we denote by $(\varphi^{GD})_{\{\lambda_{i,j}, \alpha_{i,j}^h\}}$ to the unique linear map of V such that

$$(\varphi^{GD})_{\{\lambda_{i,j}, \alpha_{i,j}^h\}}(v) = \begin{cases} (\varphi|_W)^{-1}(v) & \text{if } v \in W_{\varphi} \\ (\varphi|_{U_{\varphi}})^{-1}(v) & \text{if } v \in U_{\varphi} \end{cases},$$

where $(\varphi|_{U_{\varphi}})^{-1}$ is the generalized inverse of $\varphi|_{U_{\varphi}} \in \text{End}_k(U_{\varphi})$ characterized in Corollary 3.11, it is clear that $(\varphi^{GD})_{\{\lambda_{i,j}, \alpha_{i,j}^h\}}$ is finite potent when

$$\lambda_{i,j}^{i,j} = 0 = \alpha_{i,j}^{i,j} \quad \text{for almost all } i, j \text{ and } s_h.$$ \hfill (14)

It is clear that the condition (14) is sufficient for determining that $(\varphi^{GD})_{\{\lambda_{i,j}, \alpha_{i,j}^h\}}$ is a finite potent endomorphism, but this condition is not necessary for this fact as it is immediately deduced from the following counter-example: given a countable k-vector space V
with a basis \(\{v_1, v_2, v_3, \ldots \} \) indexed by the natural numbers, if we consider the finite potent endomorphism \(\varphi \in \text{End}_k(V) \) defined as

\[
\varphi(v_i) = \begin{cases}
 v_1 + v_2 & \text{if } i = 1 \\
 v_1 + 2v_2 & \text{if } i = 2 \\
 v_{i+1} & \text{if } i = 2j + 1 \\
 0 & \text{if } i = 2j + 2
\end{cases}
\]

for every \(j \geq 1 \), then it is clear that

\[
\varphi^{GD}(v_i) = \begin{cases}
 2v_1 - v_2 & \text{if } i = 1 \\
 -v_1 + v_2 & \text{if } i = 2 \\
 -v_i - v_{i+1} & \text{if } i = 2j + 1 \\
 v_{i-1} + v_i & \text{if } i = 2j + 2
\end{cases}
\]

for every \(j \geq 1 \), is a G-Drazin inverse of \(\varphi \) that does not satisfy the condition (14).

Remark 3.15: A remaining problem is obtaining a computable method for determining when a G-Drazin inverse \(\varphi^{GD} \) of a finite potent endomorphism \(\varphi \) is also finite potent.

Remark 3.16: If \(\varphi^{GD} \) is a finite potent G-Drazin inverse of a finite potent endomorphism \(\varphi \) such that \(W_{\varphi^{GD}} = W_\varphi \), then

\[
\text{tr}_V\varphi^{GD} = \text{tr}_V\varphi^D \quad \text{and} \quad \det_k^k\varphi^{GD} = \det_k^k\varphi^D.
\]

Indeed, in this case, if \(\{\lambda_1, \ldots, \lambda_n\} \) are the eigenvalues of \(\varphi|_{W_\varphi} \) in the algebraic closure of \(k \) (with their multiplicity), one has that:

- \(\text{tr}_V(\varphi^{GD}) = \lambda_1^{-1} + \cdots + \lambda_n^{-1} \);
- \(\det_k^k(1 + \varphi^{GD}) = \prod_{i=1}^n (1 + \lambda_i^{-1}) \).

4. Explicit computation of the G-Drazin inverses of a square matrix

The final section of this work is devoted to offer a method for computing explicitly all the G-Drazin inverses of a square matrix.

If \(k \) is an arbitrary ground field, let us consider a square matrix \(A \in \text{Mat}_{n \times n}(k) \) with \(i(A) = r \).

Fixing a \(k \)-vector space \(E \) with dimension \(n \), a basis \(B = \{e_1, \ldots, e_n\} \) of \(E \) and an endomorphism \(\varphi \in \text{End}_k(E) \) associated with \(A \) in the basis \(B \), from the AST-decomposition \(E = W_\varphi \oplus U_\varphi \) one has that

\[
A = P \begin{pmatrix} A_W & 0 \\ 0 & J_U \end{pmatrix} P^{-1},
\]

where \(\varphi|_{W_\varphi} = A_W, J_U \) is the Jordan matrix determined by \(\varphi|_{U_\varphi} \) and \(P \) is the corresponding basis change matrix.
If $A \in \text{Mat}_{n \times n}(k)$ is again a square matrix with $i(A) = r$ and $\text{rk}(A^i)$ is the rank of A^i, we can write $v_i(A) = n - \text{rk}(A^i)$ for all $i \in \{1, \ldots, r\}$ and we can consider the non-negative integers $\{\delta_1(A), \ldots, \delta_r(A)\}$ defined from the equations:

\[
\delta_r(A) = v_r(A) - v_{r-1}(A) \\
2\delta_r(A) + \delta_{r-1}(A) = v_r(A) - v_{r-2}(A) \\
\vdots \\
(r-1)\delta_r(A) + \cdots + 2\delta_3(A) + \delta_2(A) = v_r(A) - v_1(A) \\
r\delta_r(A) + (r-1)\delta_{r-1}(A) + \cdots + 2\delta_2(A) + \delta_1(A) = v_r(A)
\]

From these relations it is clear that

\[
v_1(A) = \sum_{i=1}^{r} \delta_i(A) \quad \text{and} \quad \sum_{j=1}^{r} \delta_j(A)(v_r(A) - j) = [v_1(A) - 1]v_r(A).
\]

Accordingly, the explicit expression of the matrix J_U is

\[
J_U = \begin{pmatrix}
A_1^1 & 0 & \cdots & \cdots & \cdots & 0 & 0 \\
0 & \ddots & \ddots & \cdots & \cdots & \vdots & 0 \\
\vdots & \ddots & A_1^{\delta_1(A)} & \cdots & \cdots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & A_r^1 & 0 \\
0 & \cdots & \cdots & \cdots & \cdots & \vdots & A_r^{\delta_r(A)}
\end{pmatrix} \in \text{Mat}_{\nu_r \times \nu_r}(k),
\]

where

\[
A_j^s = \begin{pmatrix}
0 & 0 & \cdots & \cdots & \cdots & 0 \\
1 & 0 & \ddots & \cdots & \cdots & \vdots \\
0 & 1 & 0 & \ddots & \cdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & 0 & 0 \\
0 & \cdots & 0 & 1 & 0 & 0
\end{pmatrix} \in \text{Mat}_{j \times j}(k)
\]

for every $j \in \{1, \ldots, r\}$ and $1 \leq s \leq \delta_j(A)$.

With the above notation, if $A(GD)$ is the set of the G-Drazin inverses of A, it follows from Lemma 3.9 that there exists a bijection

\[
k^{v_1(A)-v_r(A)} \times k^{[v_r(A)-v_1(A)]} \times k^{[v_1(A)-1][v_r(A)-v_1(A)]} \rightarrow A(GD)
\]

\[
((\alpha_{j,h}^s, (\alpha_{j,j';z}^s)), (\lambda_{j,t}^s), (\lambda_{j';x}^s)) \mapsto (A^{GD})^{((\alpha_{j,h}^s, (\lambda_{j,t}^s)), (\alpha_{j,j';z}^s), (\lambda_{j';x}^s))},
\]

(16)
where \(j, j' \in \{1, \ldots, r\}; j \neq j' \); \(1 \leq h \leq j; \ z \in \{1, \ldots, f\}; t \in \{2, \ldots, j\}; x \in \{2, \ldots, f\} \); \(s \in \{1, \ldots, \delta_j(A)\} \) and

\[
(A^{GD})_{((\alpha_{j,h}^s, \lambda_{j,h}^z), (\alpha_{j,h}^x, \lambda_{j,h}^t))} = P \cdot \begin{pmatrix}
(A_W)^{-1} & 0 \\
0 & (J_U)^{((\alpha_{j,h}^x, \lambda_{j,h}^t), (\alpha_{j,h}^s, \lambda_{j,h}^z))}
\end{pmatrix} \cdot P^{-1}
\]

with

\[
(J_U)^{((\alpha_{j,h}^x, \lambda_{j,h}^t), (\alpha_{j,h}^s, \lambda_{j,h}^z))} = (J_U)^{((\alpha_{j,h}^0, \lambda_{j,h}^{0}), (\alpha_{j,h}^0, \lambda_{j,h}^{0}))}_{lm, 1 \leq l, m \leq v_1} \in \text{Mat}_{v_1 \times v_1}(k)
\]

such that

- if \(j \in \{1, \ldots, r\} \) and \(1 \leq s \leq \delta_j(A) \) are such that \(l = (\sum_{i=1}^{j-1} \delta_i) + s \), then \((J_U)_{ll} \in \text{Mat}_{j \times j}(k)\) with

\[
(J_U)^{((\alpha_{j,h}^x, \lambda_{j,h}^t), (\alpha_{j,h}^s, \lambda_{j,h}^z))}_{ll} = (A_{((\alpha_{j,h}^x, \lambda_{j,h}^t), (\alpha_{j,h}^s, \lambda_{j,h}^z))})_{ll}
\]

\[
= \begin{pmatrix}
\alpha_{j,1}^s & 1 & 0 & \ldots & \ldots & 0 \\
\alpha_{j,2}^s & 0 & 1 & 0 & \ldots & \ldots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\alpha_{j,j-2}^s & 0 & \ldots & \ddots & 1 & 0 \\
\alpha_{j,j-1}^s & 0 & \ldots & 0 & 1 & \alpha_{j,j}^s \\
\alpha_{j,j}^s & \lambda_{j,j}^z & 0 & \ldots & \lambda_{j,j}^z & \lambda_{j,j}^z
\end{pmatrix}
\]

for all \(\alpha_{j,h}^s, \lambda_{j,t}^z \in k, h \in \{1, \ldots, j\}, t \in \{2, \ldots, j\}, j \in \{1, \ldots, r\} \) and \(s \in \{1, \ldots, \delta_j(A)\} \);

- if \(j, j' \in \{1, \ldots, r\}, 1 \leq s \leq \delta_j(A) \) and \(1 \leq s' \leq \delta_j(A) \) are such that

\[
l = \left(\sum_{i=1}^{j-1} \delta_i \right) + s \quad \text{and} \quad m = \left(\sum_{i=1}^{j'-1} \delta_i \right) + s',
\]

with \(l \neq m \), then \((J_U)_{lm} \in \text{Mat}_{j \times j}(k)\) where

\[
(J_U)^{((\alpha_{j,h}^x, \lambda_{j,h}^t), (\alpha_{j,h}^s, \lambda_{j,h}^z))}_{lm} = (A_{((\alpha_{j,h}^x, \lambda_{j,h}^t), (\alpha_{j,h}^s, \lambda_{j,h}^z))})_{lm}
\]

\[
= \begin{pmatrix}
\alpha_{j,j'}^z & 0 & \ldots & \ldots & 0 \\
\alpha_{j,j'}^z & \ldots & \ldots & \ldots & \ldots \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\alpha_{j,j'}^z & 0 & \ldots & 0 & \alpha_{j,j'}^z \\
\alpha_{j,j'}^z & \lambda_{j,j'}^{x, s} & \ldots & \lambda_{j,j'}^{x, s} & \lambda_{j,j'}^{x, s}
\end{pmatrix}
\]

for every \(\alpha_{j,h}^s, \lambda_{j,t}^z \in k, j \neq j', 1 \leq j, j' \leq r, z \in \{1, \ldots, j\}, x \in \{2, \ldots, j'\} \) and \(s \in \{1, \ldots, \delta_j(A)\} \).
If \(\tilde{A} \in \text{Mat}_{n \times n}(k) \) with \(i(\tilde{A}) = 1 \), it follows from (16) that there exists a bijection \(\tilde{A}^{GD} \sim k^{[\nu_1(\tilde{A})^2]} \).

From the results of this work, we can finally offer the following algorithm for computing the G-Drazin inverses of \(A \in \text{Mat}_{n \times n}(k) \).

1. Fix a \(k \)-vector space \(E \) with dimension \(n \), a basis \(B = \{e_1, \ldots, e_n\} \) of \(E \) and an endomorphism \(\varphi \in \text{End}_k(E) \) associated with \(A \) in the basis \(B \), to facilitate the computations.
2. Compute the AST-decomposition \(E = W_\varphi \oplus U_\varphi \) and the matrix expression (15) for \(A \).
3. Calculate the non-negative integer numbers \(\{v_1(A), \ldots, v_r(A)\} \) and \(\{\delta_1(A), \ldots, \delta_r(A)\} \).
4. Construct the matrices \((J_U^{-1})^{((\alpha^i_j)_{j \neq s},(\lambda^i_j)_{j \neq t})} \) and compute \((A_W)^{-1} \).
5. Get all the G-Drazin inverses \(A^{GD} \) of \(A \).

Remark 4.1: We wish remark that is not necessary to compute the characteristic polynomial \(c_A(x) \) in the method offered in this paper for calculate all the G-Drazin polynomials of a square matrix \(A \) with \(i(A) = r \), because we can obtain the matrices \(A_W \) and \(A_U \) by computing \(R(A^t) \) and \(N(A^t) \), where \(R(B) \) and \(N(B) \) are the range and the nullspace of a matrix \(B \) respectively.

Example 4.1: Let us consider an arbitrary field \(k \) and the matrix

\[
A = \begin{pmatrix}
-9 & -7 & 11 & -3 & -6 & -4 & -2 \\
-3 & 1 & 2 & 1 & 1 & 0 & 1 \\
-13 & -8 & 15 & -3 & -7 & -5 & -2 \\
-4 & -3 & 5 & -1 & -3 & -2 & -1 \\
-13 & -12 & 17 & -6 & -11 & -7 & -4 \\
11 & 10 & -14 & 5 & 9 & 6 & 3 \\
8 & 6 & -10 & 3 & 6 & 4 & 2
\end{pmatrix} \in \text{Mat}_{7 \times 7}(k).
\]

We shall compute all the G-Drazin inverses \(A^{GD} \) of \(A \).

Let us now fix a \(k \) vector space \(E \) with basis \(\{e_1, e_2, e_3, e_4, e_5, e_6, e_7\} \) and an endomorphism \(\varphi \in \text{End}_k(E) \) such that \(\varphi \equiv A \) in this basis.

It is easy to check that \(i(A) = 3 \), \(\text{rk}(A) = 5 \), \(\text{rk}(A^2) = 3 \) and \(\text{rk}(A^3) = 2 \). Accordingly, \(v_1(A) = 2 \), \(v_2(A) = 4 \), \(v_3(A) = 5 \), \(\delta_1(A) = 0 \), \(\delta_2(A) = 1 \) and \(\delta_3(A) = 1 \).

Now, a non-difficult computation shows that \(W_\varphi = \langle e_1 + e_2 + 2e_3 + e_5 - e_7, e_4 - e_6 \rangle \), \(U_\varphi = \langle e_1 + e_3, e_2 - e_5, -e_5 + e_6, e_4 - e_7, e_1 + e_3 - e_7 \rangle \),

\[
A_W = \begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix}
\]
and

\[
A_U = \begin{pmatrix}
3 & -1 & 3 & -2 & 0 \\
-1 & 0 & -1 & 0 & 0 \\
-3 & 1 & -3 & 2 & 0 \\
1 & 0 & 1 & 0 & 0 \\
-1 & 0 & -1 & 1 & 0
\end{pmatrix}.
\]

Moreover, from the Jordan basis

\[
\{-e_1 + e_2 - e_3 - e_5 - e_7, -e_1 - e_3 - e_5 + e_6, e_1 + e_2 + e_3 + e_4 - e_5 - e_7, \\
-e_2 + e_4 + e_5 - e_7, -e_5 + e_6 + e_7\}
\]

of \(U_\phi\) induced by \(\varphi_{|_{U_\phi}}\), one gets that

\[
A = P \cdot \begin{pmatrix}
2 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} \cdot P^{-1},
\]

with

\[
P = \begin{pmatrix}
1 & 0 & -1 & -1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & -1 & 0 \\
2 & 0 & -1 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & -1 & -1 & -1 & 1 & -1 \\
0 & -1 & 0 & 1 & 0 & 0 & 1 \\
-1 & 0 & -1 & 0 & -1 & -1 & 1
\end{pmatrix},
\]

and

\[
P^{-1} = \begin{pmatrix}
-1 & 0 & 1 & 0 & 0 & 0 & 0 \\
-2 & -1 & 2 & 0 & -1 & -1 & 0 \\
5 & 6 & -7 & 3 & 5 & 3 & 2 \\
-8 & -8 & 10 & -4 & -7 & -4 & -3 \\
-1 & -2 & 2 & -1 & -2 & -1 & -1 \\
3 & 3 & -4 & 2 & 3 & 2 & 1 \\
6 & 7 & -8 & 4 & 6 & 4 & 3
\end{pmatrix}.
\]

Thus, it follows from the method described above that a G-Drazin inverse of \(A\) has the explicit expression

\[
\left(A^{GD}_G\right)_{((\gamma_{jk}, (\alpha_{jk}^1,\lambda_{jk}^1)))} = P \cdot \begin{pmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \alpha_{2,1}^1 & 1 & \alpha_{2,3,1}^1 & 0 & 0 \\
0 & 0 & \alpha_{2,2}^1 & \lambda_{2,2}^1 & \alpha_{2,3,2}^1 & \lambda_{2,3,2}^1 & \lambda_{2,3,3}^1 \\
0 & 0 & \alpha_{3,2,1}^1 & 0 & \alpha_{3,1}^1 & 1 & 0 \\
0 & 0 & \alpha_{3,2,2}^1 & 0 & \alpha_{3,2}^1 & 0 & 1 \\
0 & 0 & \alpha_{3,2,3}^1 & \lambda_{3,2,2}^1 & \alpha_{3,3}^1 & \lambda_{3,2}^1 & \lambda_{3,3}^1
\end{pmatrix} \cdot P^{-1},
\]
with \(\alpha_{j,h}, \lambda_{j,t}, \alpha_{j',z}, \lambda_{j',x} \in k \) for every \(j \neq j', 2 \leq j, j' \leq 3, h \in \{1, \ldots, j\}, t \in \{2, \ldots, j\}, z \in \{1, \ldots, j\} \) and \(x \in \{2, \ldots, j'\} \).

Hence, with the data of this example, we have the following bijection that determines all the G-Drazin inverses of \(A \):

\[
k^{10} \times k^3 \times k^3 \sim A\{GD\}
\]

\[
((\alpha_{j,h}^1), (\alpha_{j',z}^1))_{(j, j', h, z)}, (\lambda_{j,t}^1), (\lambda_{j',x}^1))_{(j, j', t, x)} \mapsto (A^{GD})_{(\alpha_{j,h}^1), (\lambda_{j,t}^1), (\alpha_{j',z}^1), (\lambda_{j',x}^1)}
\]

with \(j \neq j', 2 \leq j, j' \leq 3, h \in \{1, \ldots, j\}, t \in \{2, \ldots, j\}, z \in \{1, \ldots, j\} \) and \(x \in \{2, \ldots, j'\} \).

Finally, we shall study the relationships that exist between G-Drazin inverses and the core-nilpotent decomposition of a matrix \(A \).

Remark 4.2: If \(k \) is an arbitrary ground field, \(A \in \text{Mat}_{n \times n}(k) \), \(A = A_1 + A_2 \) is its core-nilpotent decomposition and \(A^{GD} \) is a G-Drazin inverse of \(A \) with core-nilpotent decomposition \(A^{GD} = (A^{GD})_1 + (A^{GD})_2 \), Example 4.1 shows that, in general, \((A^{GD})_1\) is not a G-Drazin inverse of \(A_1 \) and \((A^{GD})_2\) is not a G-Drazin inverse of \(A_2 \).

As a counterexample of this fact we offer the following: if \(A \) is the matrix studied in Example 4.1, an easy computation shows that its core-nilpotent decomposition is \(A = A_1 + A_2 \) with

\[
A_1 = \begin{pmatrix}
-4 & -1 & 4 & 0 & -1 & -1 & 0 \\
-4 & -1 & 4 & 0 & -1 & -1 & 0 \\
-8 & -2 & 8 & 0 & -2 & -2 & 0 \\
-3 & -1 & 3 & 0 & -1 & -1 & 0 \\
-4 & -1 & 4 & 0 & -1 & -1 & 0 \\
3 & 1 & -3 & 0 & 1 & 1 & 0 \\
4 & 1 & -4 & 0 & 1 & 1 & 0
\end{pmatrix}
\]

and

\[
A_2 = \begin{pmatrix}
-5 & -6 & 7 & -3 & -5 & -3 & -2 \\
1 & 2 & -2 & 1 & 2 & 1 & 1 \\
-5 & -6 & 7 & -3 & -5 & -3 & -2 \\
-1 & -2 & 2 & -1 & -2 & -1 & -1 \\
-9 & -11 & 13 & -6 & -10 & -6 & -4 \\
8 & 9 & -11 & 5 & 8 & 5 & 3 \\
4 & 5 & -6 & 3 & 5 & 3 & 2
\end{pmatrix}.
\]

If we now consider

\[
A^{GD} = \begin{pmatrix}
7 & 6 & -8 & 3 & 6 & 4 & 2 \\
-10 & -11 & 13 & -6 & -9 & -5 & -5 \\
8 & 7 & -9 & 3 & 7 & 5 & 2 \\
6 & 8 & -9 & 6 & 7 & 4 & 4 \\
8 & 9 & -10 & 4 & 8 & 5 & 4 \\
7 & 6 & -8 & 2 & 5 & 4 & 1 \\
-3 & -5 & 5 & -3 & -5 & -4 & 2
\end{pmatrix}
\]
which is the G-Drazin inverse of A determined by $\lambda_{2,1}^1 = \lambda_{3,1}^1 = 1$ and otherwise $a_{j,h}^1 = \lambda_{j,t}^1 = \gamma_{j',z}^1 = 0$, one has that $(A^{GD})_1 = (A^{GD})_1^{-1}$ and $(A^{GD})_2 = 0$, and we can immediately check that $(A^{GD})_1$ is not a G-Drazin inverse of A_1 and $(A^{GD})_2$ is not a G-Drazin inverse of A_2.

Furthermore, if (A_1^{GD}) is a G-Drazin inverse of A_1 and (A_2^{GD}) is a G-Drazin inverse of A_2, in general, one has that $\tilde{A}^{GD} = (A_1^{GD}) + (A_2^{GD})$ is not a G-Drazin inverse of A, as can be deduced from this counterexample: keeping again the data of Example 4.1, if we consider

$$
(A_1^{GD}) = P \cdot \begin{pmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \cdot P^{-1}
$$

and

$$
(A_2^{GD}) = P \cdot \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \cdot P^{-1},
$$

then it is clear that

$$
\tilde{A}^{GD} = P \cdot \begin{pmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \cdot P^{-1}
$$

is not a G-Drazin inverse of A.

Acknowledgements

The author would like to thank the anonymous reviewer for his/her valuable comments to improve the quality of the paper.

Disclosure statement

No potential conflict of interest was reported by the author(s).
Funding

This work is partially supported by the Ministerio de Ciencia e Innovación – Spanish Government research projects nos. MTM2015-66760-P and PGC2018-099599-B-I00 and the Consejería de Educación, Junta de Castilla y León – Regional Government of Castile and Leon research project no. J416/463AC03.

ORCID

Fernando Pablos Romo http://orcid.org/0000-0003-3444-1800

References

[1] Wang X, Liu H. Partial orders based on core-nilpotent decomposition. Linear Algebra Appl. 2016;488:235–248.

[2] Coll C, Lattanzi M, Thome N. Weighted G-Drazin inverses and a new pre-order on rectangular matrices. Appl Math Comput. 2018;317:12–24.

[3] Tate J. Residues of differentials on curves. Ann Sci École Norm Sup 4. 1968;1:149–159.

[4] Pablos Romo F. Core-Nilpotent decomposition and new generalized inverses of finite potent endomorphisms. Linear Multilinear Algebra. 2019. doi:10.1080/03081087.2019.1578332

[5] Pablos Romo F. On Drazin-Moore-Penrose inverses of finite potent endomorphisms. Linear Multilinear Algebra. 2019. doi:10.1080/03081087.2019.1612834

[6] Pablos Romo F. On the Drazin inverse of finite potent endomorphisms. Linear Multilinear Algebra. 2019;67(10):2135–2146.

[7] Argerami M, Szechtman F, Tifenbach R. On Tate’s trace. Linear Multilinear Algebra. 2007;55(6):515–520.

[8] Hernández Serrano D, Pablos Romo F. Determinants of finite potent endomorphisms, symbols and reciprocity laws. Linear Algebra Appl. 2013;439:239–261.

[9] Pablos Romo F. On the linearity property of Tate’s trace. Linear Multilinear Algebra. 2007;55(4):323–326.

[10] Ramos González J, Pablos Romo F. A negative answer to the question of the linearity of Tate’s trace for the sum of two endomorphisms. Linear Multilinear Algebra. 2014;62(4):548–552.

[11] Pablos Romo F. Classification of finite potent endomorphisms. Linear Algebra Appl. 2014;440:266–277.

[12] López-Pellicer M, Bru R. Jordan basis for an infinite-dimensional space. Port Math. 1985/86;43(1):153–156.

[13] Drazin MP. Pseudo-inverses in associative rings and semigroups. Amer Math Monthly. 1958;65(7):506–514.