Research Article

A Wi-Fi Indoor Localization Strategy Using Particle Swarm Optimization Based Artificial Neural Networks

Nan Li,1 Jiabin Chen,1 Yan Yuan,2 Xiaochun Tian,1 Yongqiang Han,1 and Mingzhe Xia1

1School of Automation, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
2School of Computer Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China

Correspondence should be addressed to Nan Li; linan_beijing@126.com

Received 17 December 2015; Accepted 22 February 2016

Academic Editor: Sangheon Pack

Copyright © 2016 Nan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wi-Fi based indoor localization system has attracted considerable attention due to the growing need for location based service (LBS) and the rapid development of mobile phones. However, most existing Wi-Fi based indoor positioning systems suffer from the low accuracy due to the dynamic variation of indoor environment and the time delay caused by the time consumption to provide the position. In this paper, we propose an indoor localization system using the affinity propagation (AP) clustering algorithm and the particle swarm optimization based artificial neural network (PSO-ANN). The clustering technique is adopted to reduce the maximum location error and enhance the prediction performance of PSO-ANN model. And the strong learning ability of PSO-ANN model enables the proposed system to adapt to the complicated indoor environment. Meanwhile, the fast learning and prediction speed of the PSO-ANN would greatly reduce the time consumption. Thus, with the combined strategy, we can reduce the positioning error and shorten the prediction time. We implement the proposed system on a mobile phone and the positioning results show that our algorithm can provide a higher localization accuracy and significantly improves the prediction speed.

1. Introduction

Indoor localization is a critical tool for fast developing location based service (LBS) [1]. An indoor localization system helps to obtain the positions of people, animals, and equipment, and these location information pieces play an important role in navigation, security, and healthcare industries [2, 3]. Although, in open areas, Global Positioning System (GPS) can provide precise positioning, it does not perform well in indoor environment due to the lack of GPS signals. Therefore, different kinds of indoor positioning systems have been developed for personal and commercial needs [4–7]. Among all of the indoor location methods, Wi-Fi based indoor location systems have drawn much attention because Wi-Fi has become a standard facility in most buildings, such as airports, commercial centers, and office buildings. And the smartphones, as a common kind of personal belongings, are now all able to receive the Wi-Fi signals. As such, Wi-Fi location is a widespread, low-cost, and easy obtained indoor location method [8–10].

The model-based method and fingerprinting-based method are two mainly used techniques in Wi-Fi indoor localization. The model-based positioning strategy aims to build an accurate model between the propagation distance of the signal and the received signal strengths (RSSs) value. However, it suffers from a low location precision due to the complexity of radio channels, such as reflection, shadowing, multipath, and device variation [11]. Thus, instead of using an inaccurate propagation model, many researchers turn to the fingerprinting-based technique in Wi-Fi indoor localization. The main idea of the fingerprinting-based technique is to compare the online measured RSS value with the offline premeasured RSS database. But the existing fingerprinting algorithms suffer from two major problems. One is that it requires a long time to match the RSS value with the whole database, especially when the database is very large [12]. The other one is that the fingerprinting algorithms cannot deal with the nonlinear RSS variance, which may lead to a low precision [9].

In this paper, we use the artificial neural network (ANN) trained by the particle swarm optimization (PSO) algorithm
to solve the above localization problem. The traditional backpropagation (BP) algorithm is wildly used in ANN training algorithm. The main idea of BP algorithm comprises a feed forward propagation of signals and a backpropagation of errors. However, it costs much time for training and is easily trapped in local minima. On the contrary, PSO is a powerful population-based stochastic approach to solve the global optimization problems. PSO generates a swarm of particles; each particle contains a set of network parameters. By simulating the group behavior of animals, both the swarm and the individual particle are able to evolve, and then the optimal solution is obtained to enhance the ANN performance. Therefore, the PSO-ANN can be used to build the fingerprint database. The fast training and prediction speed of the PSO-ANN would greatly reduce the time cost both in the offline training phase and in the online matching phase. Before training, we use the principal component analysis (PCA) to reduce the dimension of RSS values and an unsupervised affinity propagation (AP) algorithm to cluster RSS values. So the RSS values in each cluster share the similar character, and training the ANN for each cluster helps make the system achieve a higher localization accuracy.

The proposed positioning system was implemented on a mobile phone to evaluate the performance. The experiment was conducted in a general office building with no special constraints, so the experimental results are more typical and reliable.

The rest of the paper is organized as follows. Section 2 reviews some related works in indoor localization. Section 3 provides details of the proposed algorithm. Section 4 describes the experiments and the results to verify the proposed approach. Then we conclude our paper in Section 5.

2. Related Works

Model-based approach and fingerprinting-based approach are two main methods used in Wi-Fi indoor localization. Model-based approach obtains the range measurements between transmitter and receiver and uses the geometric constraints to estimate the unknown position [13]. Different kinds of range measurement approaches are taken into consideration, including the time of arrival (ToA) [14], the time difference of arrival (TDoA) [15], and the RSS. Among all, RSS is the most popular one because it can be easily obtained by most mobile devices. The prevalent log-distance path loss model builds a function between the propagation distance and the RSS value [16, 17]. However, due to the complicated indoor propagation environment, it is hard to build a precise propagation model. Thus, the distance estimations often suffer from a poor accuracy.

A large number of existing indoor localization systems adopt fingerprinting as the position estimation method [12, 18–20]. The fingerprinting-based method builds a fingerprint database by collecting RSS samples at some reference points (RPs). Then, the location of the user is estimated by matching the measured fingerprint with the database. Lots of researches on fingerprinting-based technic have been proposed during the past two decades. To reduce the calibration effort while maintaining the location accuracy during the database collecting phase, some unlabeled data, which can be easily obtained by measuring user’s casual movement traces, are used [21, 22]. Some propose to enhance the location accuracy by using motion constraints [23, 24]. With the combination of inertial sensors and pedestrian dead reckoning, researchers find a way to improve the efficiency of generating radio map and the positioning accuracy for indoor Wi-Fi localization system [25–27].

However, these approaches either require an extra hardware or have the weakness in dealing with the dynamic indoor environment changes. In this paper, our proposed PSO-ANN model is conducted in a continuous space, and the PSO algorithm has the strong ability to solve the complicated indoor environment problems.

3. Location Methods

3.1. PSO-ANN Based Indoor Location System. A typical fingerprinting-based indoor localization system contains two localization phases: the offline phase and the online phase. In the offline phase, the RSS values from the RPs are collected and stored in a database called fingerprint database. And, in the online phase, the RSS values collected by a mobile device are compared with the fingerprint database, and the location can be obtained by some comparison algorithms.

However, in order to acquire an acceptable positioning accuracy, we need to increase the density of RPs, and the size of the fingerprint database would be quite large. As a result, comparing the received RSS value with all fingerprints will be very time consuming. This also causes a time delay in real-time positioning tasks. Besides, the complicated indoor signal propagation environment, caused by signal reflection, shadowing, and multipath, makes the precise localization more difficult. And most existing systems cannot deal with these cases. To improve the efficiency and accuracy of localization, we utilize a new indoor positioning method.

As shown in Figure 1, the proposed PSO-ANN based solution consists of two phases: an offline phase and an online phase. During the offline phase, the raw RSS data are collected at some RPs in advance. Then, in order to reduce the size of the search space, the PCA algorithm is performed to reduce
the dimension of RSS fingerprints. After being transformed with PCA, the RSS fingerprints are divided into some clusters by the unsupervised AP clustering algorithm. The clustering algorithm achieves two aims: (i) by dividing all RPs into some clusters, it reduces the computational complexity during the ANN training phase; (ii) the RSS data in the same cluster share the similar character, which helps enhance the performance of ANN. After clustering, each cluster trains an ANN model with the PSO algorithm. During the online phase, after PCA transformation, the RSS value collected by a mobile device needs to be compared with the exemplars of each cluster to identify to which cluster it belongs. And the location coordinate can be obtained by using the corresponding ANN model.

3.2. Data Conditioning Process. During the offline phase, the RSS data is collected at some known RPs. Suppose all \(N_0 \) wireless routers (WRs) are randomly distributed in an indoor environment. The RSS data collected in the \(i \)th RP is denoted as

\[
\mathbf{r}_i(t) = [\text{RSS}_{i1}, \text{RSS}_{i2}, \ldots, \text{RSS}_{iN_0}], \quad t = 1, 2, \ldots, N_i, \tag{1}
\]

where \(N_i \) represents the total number of collected samples. The received RSS value ranges from \(-20 \text{ dBm} \) to \(-90 \text{ dBm} \) (may be various on different devices). Each fingerprint \(\mathbf{r}_i(t) \) is a vector of the RSS data given by each WR for all RPs. The principal components matrix is then obtained by first subtracting the mean RSS value of each WR from the \(i \)th RP

\[
\mathbf{x}_i = \mathbf{r}_i - \overline{\mathbf{r}} = \frac{1}{N_i} \sum_{t=1}^{N_i} \mathbf{r}_i(t) - \frac{1}{N_p} \frac{1}{N_i} \sum_{t=1}^{N_i} \frac{1}{N_p} \sum_{i=1}^{N_p} \mathbf{r}_i(t). \tag{2}
\]

\(N_p \) denotes the number of RPs, \(\mathbf{r}_i \) is the mean RSS value of each WR in the \(i \)th RP, and \(\overline{\mathbf{r}} \) is the mean RSS value of each WR for all RPs. The principle components matrix is then given by

\[
\mathbf{Z}_i = \mathbf{X}_i \times E_{N_0}, \tag{3}
\]

where \(E_{N_0} \) is the eigenvector matrix of \(\mathbf{r}_i \). The PCs are uncorrelated orthogonal to each other because they are the eigenvector of the covariance matrix. The PCs are sorted in decreasing order from 1 to \(N_0 \), which means that the first PC has the largest possible variance. To reduce the matrix dimension, only first \(k \) PCs are used to represent the original data, making sure that 95% of the data variance is preserved. The number \(k \) is less than or equal to the dimension of input RSS values \(N_0 \).

3.3. Affinity Propagation Clustering. The main difficulty in Wi-Fi based indoor positioning is dealing with the signal reflection and fading effects due to the wall and item-placement in indoor environment. To reduce the signal fluctuation caused by the environment effects, the AP algorithm is employed. AP divides the RPs into some clusters according to the RSS value collected from each RP. The clustering strategy makes the RPs in the same cluster experience the similar signal transmission environment and has the similar RSS values. Then, a unique ANN model will be trained for each cluster during the next step. Thus, compared with all RPs sharing the same ANN model, creating an appropriate ANN model for each cluster helps make the position prediction more accurate.

Unlike the traditional \(K \)-means clustering algorithms, AP algorithm does not require the initial information on the exemplars \([28]\). All RPs have the potential to become the exemplar. The matrix that quantifies the similarity between two RPs is defined as

\[
s(i, j) = -\left\| \mathbf{r}_i - \mathbf{r}_j \right\|, \quad \forall i \neq j. \tag{4}
\]

The self-similarity value \(s(i, i) \) means the possibility the \(i \)th RP becomes an exemplar. To acquire a suitable number of clusters, in our work, \(s(i, i) \) is set to

\[
s(i, i) = \min \{ s(i, i) \}, \quad \forall i \neq j. \tag{5}
\]

The main part of AP algorithm is conducted by iteratively updating two messages, the responsibility matrix \(R \) and the availability matrix \(A \), between each pair of RPs. Both matrices are initialized to zero and then updated as follows:

\[
R(i, j) = s(i, j) - \max_{j \neq j} \{ A(i, j') + s(i, j') \} \tag{6}
\]

for \(i \neq j \) and the availability matrix \(A(i, j) \) is updated by

\[
A(i, j) = \min \left\{ 0, R(j, j) + \sum_{i \neq j} \max_{i \neq j} \left[0, R(i', j) \right] \right\} \tag{7}
\]

for \(i \neq j \) and the self-availability is given by

\[
A(j, j) = \max_{i \neq j} \left\{ 0, R(i', j) \right\}. \tag{8}
\]

These two messages are passing between each pair of RPs until the exemplars stay fixed for some iterations. During the online phase, the obtained RSS value is first compared with all exemplars to identify which cluster it belongs to, and then the ANN of this cluster is used to localize the position. Consequently, the RPs are clustered by the AP algorithm to enhance the prediction accuracy of ANN model.
3.4. PSO-ANN Implementation on Indoor Location. After the RPs are clustered by the AP algorithm, we build a model, as a replacement of the traditional fingerprint map, to evaluate the relations between RSS value and position. ANN is a statistical learning model which can be used to approximate complicated nonlinear functions. Prior to making the prediction, the ANN model needs to be trained first. Different training algorithms can be used in ANN and they will lead to different prediction performance [29].

PSO is a powerful population-based stochastic approach to solve the nonlinear global optimization problems [30]. The particle swarm simulates the cooperative behavior of a group of social animals, like fish and birds swarm. A group of random particles were initialized and iterated to find the optimal solution. In each iteration, the particle keeps tracking the best position of itself, known as the personal best or “pbest” while the particle swarm also finds the best position in the whole group, called the global best or “gbest” [31]. Each particle can change its position in the search area according to its current velocity and the distance from pbest and gbest. In this way, the swarm is expected to move toward the optimal solutions. The iteration process follows these two equations:

\[
y_{k+1} = w \cdot v_k + r_1 c_1 \times (p_{best_k} - p_k) + r_2 c_2 \\
\times (g_{best_k} - p_k),
\]

(9)

\[
p_{k+1} = p_k + v_{k+1},
\]

where \(v_k\) is the velocity in the \(k\)th iteration, \(p_k\) is the particle position in the \(k\)th iteration, \(c_1\) and \(c_2\) are two acceleration coefficients, and \(p_{best_k}\) and \(g_{best_k}\) are personal best position and global best position in the \(k\)th iteration. \(r_1\) and \(r_2\) are two random constriction coefficients in the range \((0, 1)\) sampled from a uniform distribution. The implementation of constriction coefficients can prevent explosion and induce particles to converge on optima [32]. \(w\) is the inertia factor which helps control the search ability of particles. More specifically, it controls the ability of the particles to jump out of the local optimum and find the global optimum.

As we mentioned earlier, BP is a local minima search strategy and might lead to unsatisfied training results of the ANN model. In contrast, the PSO helps solve the global optimization problem. PSO is used to determine the weight and bias value of the ANN. Each particle contains all the parameters needed in an ANN model

\[
\text{particle}_i = [W_1, \ldots, W_m, B_1, \ldots, B_n],
\]

(10)

where \(W_i\) and \(B_i\) represent the weight and bias of the \(i\)th neuron.

The RSS training data, described in Section 3.2, are used to train the particles in the following step.

Step 1. Set the particle group size \(M\), the max iteration number \(n\), and the expected error \(e\). Give each particle a random initial position and a random initial velocity.

Step 2. For all RSS training sets \([q_i(t), P]\), put \([q_i(t)]\) in the ANN model and compute the ANN output \(\hat{P}\).

Step 3. Update the \(p_{best}\) and \(g_{best}\) according to the distance between the prediction position \(\hat{P}\) and the real position \(P\).

Step 4. Update the particle position and velocity according to (9).

Step 5. Repeat Steps 3 and 4 until the distance between \(\hat{P}\) and \(P\) is less than the expected error or the iteration number reaches the max iteration number \(n\).

4. Experiments and Analysis

4.1. System Overview. This section provides details of the experiments to evaluate the performance of the proposed PSO-ANN based indoor location system. Our experiments were carried out on the third floor of the building of the School of Automation, Beijing Institute of Technology. Specifically, the experiment area is about 45 m * 25 m including hallway and eight office rooms, as shown in Figure 2. Six D-Link 211 Wi-Fi routers were utilized as the regular wireless routers (WRs) in the test area. Each dot represents one RP, and RPs in different clusters are indicated in different colors. The exemplar for each cluster is indicated by a cross inside the dot.

Figure 2: Position of the offline reference points (RPs), Wi-Fi wireless routers (WRs) in the test area. Each dot represents one RP, and RPs in different clusters are indicated in different colors. The exemplar for each cluster is indicated by a cross inside the dot.

Step 3. Update the \(p_{best}\) and \(g_{best}\) according to the distance between the prediction position \(\hat{P}\) and the real position \(P\).

Step 4. Update the particle position and velocity according to (9).

Step 5. Repeat Steps 3 and 4 until the distance between \(\hat{P}\) and \(P\) is less than the expected error or the iteration number reaches the max iteration number \(n\).

4.1. System Overview. This section provides details of the experiments to evaluate the performance of the proposed PSO-ANN based indoor location system. Our experiments were carried out on the third floor of the building of the School of Automation, Beijing Institute of Technology. Specifically, the experiment area is about 45 m * 25 m including hallway and eight office rooms, as shown in Figure 2. Six D-Link 211 Wi-Fi routers were utilized as the regular wireless routers (WRs) in the test area. Each dot represents one RP, and RPs in different clusters are indicated in different colors. The exemplar for each cluster is indicated by a cross inside the dot.

Figure 2: Position of the offline reference points (RPs), Wi-Fi wireless routers (WRs) in the test area. Each dot represents one RP, and RPs in different clusters are indicated in different colors. The exemplar for each cluster is indicated by a cross inside the dot.

The positioning software is developed in Java and installed on a Samsung 9006 mobile phone. The software continuously scans the received signal and records the ID, mac address, and RSS value of each WR. The RSS value ranges from \(-20\) dBm to \(-90\) dBm. The scan rate of this mobile device is 2 times per second and the human moving speed is about 1-2 meters per second. So the scan rate can meet the general requirements in indoor location.

During the offline phase, a total of 188 RPs were selected, of which the interval was 2 m. The positions of the offline RPs are shown as the dots in Figure 2. Fifty Wi-Fi fingerprint data were collected at each RP, so we got 9400 fingerprints in total. During the online phase, another 200 Wi-Fi RSS test data pieces were collected from 100 test points, which were different from the RPs. In order to take the dynamic changes
of the signal transmission environment into consideration, we collected the test data in two different days.

The mean localization error e and the cumulative distribution of localization error F_X are used to evaluate the performance of the algorithms

$$e = \frac{1}{n} \sum_{i=1}^{n} e_i,$$

$$F_X(e) = P(X \leq e).$$

4.2. PCA Reduction Performance. The PCA algorithm is used to reduce the dimensions of the input vectors. During the experiment, the training data was collected at 188 different RPs from 16 WRs. Six of the WRs were randomly placed at the given location in advance, and the other 10 WRs were from the unknown position. So the received RSS value $\varphi_i(t)$ was a 16-dimensional vector. Then we got 16 orthogonal principal components (PCs) containing different variable variance. As shown in Figure 3, the combined variance increases with the increase of the number of PCs. And the first several PCs contribute more to the combined variance.

In general, we choose the first several PCs to make at least 95% of the variance preserved. In our work, the first 9 PCs were used and the combined variance reached 96.5%.

Figure 4 shows the mean reconstruction error with different number of PCs. The reconstruction error identifies the similarity between the origin data and the PCA reconstruction data.

For the training set φ_i, the PCA transformation set is

$$Z_i = (\varphi_i - \bar{\varphi}) \times E_{N_i},$$

where E_{N_i} denotes the translation matrix. And the reconstruction set is

$$\hat{\varphi}_i = E_{N_i} \cdot Z_i^T + \bar{\varphi}_n.$$

The mean reconstruction error is defined as the sum of the Euclidean distance between φ_i and its corresponding reconstruction data $\hat{\varphi}_i$, defined by

$$M = \sum \|\varphi_i - \hat{\varphi}_i\|^2.$$

From Figure 4 we can see that the reconstruction error M decreases rapidly from 1 to 8 PCs and stays relatively stable after the PCs number reaches 8.

The result above has shown the reasonability that the first 9 PCs were chosen to replace $\varphi_i(t)$. And, thus, we reduced the dimension of $\varphi_i(t)$ from 16 to 9.

4.3. AP Clustering Results. In order to reduce the diversity in RSS training set and improve the location efficiency, the AP algorithm was adopted to cluster all the 188 RPs according to their RSS values. The main task of the AP algorithm here is to divide the RPs into some parts, and in each part the RPs share the similar wireless transmission environment.

As shown in functions (4) and (5), the similarity value $s(i, j)$ was set to be the negative Euclidean distance between two RPs and the self-similarity $s(i, i)$, which indicated the preference that the ith RP was chosen as an exemplar and was set to the minimum of $s(i, j)$. In our experiment, the iteration of updates continued until the maximum number of iterations $M = 300$ was reached or the estimated exemplars stayed fixed for 50 iterations.

In the clustering results, as was shown in Figure 2, the RPs were divided into 5 clusters, each indicated by different colors. The dot with a cross inside it represents the exemplar for each cluster. As observed in Figure 2, most RPs in the same room were divided into the same cluster. That is because the wall is a major factor affecting the propagation of the WR signals. However, the RPs in the hallway are hard to cluster because of the strong effect of the noise and multipath effect.

The clustering process is conducted after the fingerprints were transformed by PCA during the offline phase. And, during the online phase, the RSS values we collected were used to compare with the exemplars. Several criterions used to identify to which cluster the RSS value belonged were discussed in [33]. And different cluster matching schemes did not affect the location prediction significantly in our experiments. So we used the negative Euclidean distances between the given RSS value and the exemplar to identify the cluster to which it belonged.

4.4. Training the PSO-ANN

4.4.1. Selection of the ANN Model. The RPs were classified into 5 clusters by AP algorithm. After that, we trained
the ANN for each cluster. The performance of the PSO-ANN model is affected by the selection of the ANN model parameters. So some analyses about the choice of model parameters were performed.

In our experiments, the network with two hidden layers was used as the ANN model because more hidden layers would greatly increase the training time while two hidden layers could satisfy both the training performance and the training efficiency. Both hidden layers had the same number of hidden nodes. The activation function of all neurons was the hyperbolic tangent. As shown in Figure 5, all ANNs shared the same structure, which had 9 inputs, each representing a PC of the RSS value, and 2 outputs, representing the geography coordinate of the current position.

4.4.2. Selection of the Number of Hidden Nodes. After the sizes of hidden layers and the activation function were determined, another important factor that affects the performance of the ANN is the number of hidden nodes. Figure 6 shows the training performance of different number of hidden nodes. The mean location error \(e \) is denoted as the criterion to judge the performance of different number of hidden nodes. \(e \) is defined as the mean of location errors in 10 repeated tests, because the same ANN structure and the same training set might draw a different result.

As indicated in Figure 6, 9 hidden nodes led to a best location accuracy of which the mean location error was 1.93 m. More hidden nodes would not continuously reduce the mean location error. So the ANN model we used had two hidden layers, each containing 9 hidden nodes.

4.4.3. Selection of the Number of Particles. The PSO algorithm was utilized to determine the weights and threshold of each hidden node. And the size of the particle swarm might affect the optimization results. A larger number of particles would perform better in finding the global optimization, but it would also lead to a longer training time. A series of tests were conducted to find the appropriate number of particles.

Due to the stochastic motion of particles, there exists a little difference between each training phase. To obtain a better training performance, the training phase was repeated 5 times, and the one with least training error was chosen as the prediction model. Figure 7 shows the mean location error with different number of particles. The mean location error decreased fast as the size of the swarm increased to 600. After that, keeping increasing the particle number did little help in improving the network performance.

On the other hand, as the particle number increased, the training time also increased rapidly. Figure 8 shows the training time with different number of particles. Therefore, 600 particles were an optimum swarm size in our PSO-ANN model.

4.5. Comparison between the PSO-ANN and Other Methods. In order to illustrate the superiority of our proposed method, we compared the prediction performance of our PSO-ANN
Table 1: Comparisons between PSO and other methods.

Methods	Training time (s)	Location time (s)	Mean error (m) 90% error (m)	Variance (m^2)	
KNN	—	9.997	2.969	4.670	1.821
BP	89.249	0.038	2.446	3.863	1.716
PSO	68.842	0.035	2.256	3.817	1.463
AP + KNN	—	1.953	2.393	3.902	1.854
AP + BP	487.270	0.047	2.214	3.494	1.569
AP + PSO	101.303	0.043	1.893	2.971	1.214

Figure 9: Cumulative error distribution for k-nearest neighbor (KNN), backpropagation (BP), and PSO.

Figure 10: Cumulative error distribution for affinity propagation (AP) + KNN, AP + BP, and AP + PSO method.

Table 1 demonstrates the details of KNN, BP-ANN, and PSO-ANN in terms of the training and localization time, the mean location error, the 90% accuracy, and the error variance. The training time is the time consumed in training the ANN model with all 9400 fingerprints. The offline training time of the PSO algorithm is mainly related to the particle number and iteration times. In our work, the maximum iteration time of the PSO algorithm was set to 700. Thus, the maximum time required to train the ANN model can be defined. As shown in Table 1, the offline training time of PSO-ANN is less than BP-ANN, especially when AP clustering was applied. During the online phase, the prediction time is the time consumed in locating all the 200 test points. Online time consuming is an important criterion for a real-time system; the prediction time of two ANN-based methods was much less than that of the KNN algorithm. That is because the KNN algorithm needed to compare the received RSS value with the whole fingerprint map every time. However, when the RPs were clustered, the prediction time of KNN reduced by 80.5%. And the two ANN-based algorithms kept faster. This seems more important when the algorithm is running on a mobile device.

In Table 1, we can also see that the use of PSO-ANN had reduced the mean location error by 24% and 8%, respectively, compared to KNN and BP-ANN. By combining the AP technique, the location accuracy of all methods improves, while the PSO-ANN performs better than that of KNN and
BP-ANN on mean location error by 21% and 15%. After clustering, the 90% accuracy of all three methods significantly decreased, because the AP clustering technique limits the maximum location error. The last column of the table shows that the PSO-ANN method has the minimum error variance, which means it performed best in dealing with the dynamic environment changes.

In summary, our proposed AP + PSO-ANN method can provide a higher localization accuracy with a faster speed than the mostly used KNN and BP-ANN algorithms.

5. Conclusions and Future Work

An indoor localization system adopting the PCA, AP clustering, and PSO-ANN algorithms was proposed in this paper. The PCA is used to reduce the dimension of the RSS data and decrease the computing load. With the AP clustering technique, we divide the location area into some subareas, each sharing the similar signal transmission environment, and it helps enhance the prediction performance of ANN models. The fast training and prediction speed of the PSO-ANN algorithm could greatly reduce the time consumption both in the offline training phase and in the online locating phase. The experiment results show that our PSO-ANN model performs much better than the traditional KNN algorithm and BP-ANN model. Besides, the simple PSO algorithm is easy to implement and adapted for different applications.

Our future work will mainly focus on fusing different kinds of indoor information, including Wi-Fi, vision sensors, inertia, and magnetism. Therefore, we can build a hybrid precise indoor location system that can meet different indoor localization needs.

Competing Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] I. F. Akyildiz, W. L. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” *IEEE Communications Magazine*, vol. 40, no. 8, pp. 102–114, 2002.

[2] T. L. Pan, C. C. Shen, J. C. Chang, and Y. F. Su, “A SVM and RSI model for in-hospital IBS technology,” in *Proceedings of the International Conference on Innovation, Communication and Engineering (ICICE ’13)*, pp. 137–139, Qingdao, China, October 2013.

[3] D. Drenjanac, S. Tomic, J. Aguera, and M. Perez-Ruiz, “Wi-fi and satellite-based location techniques for intelligent agricultural machinery controlled by a human operator,” *Sensors*, vol. 14, no. 10, pp. 19767–19784, 2014.

[4] P. Lin, Q. B. Li, Q. X. Fan, X. Y. Gao, and S. Y. Hu, “A real-time location-based services system using wifi fingerprinting algorithm for safety risk assessment of workers in tunnels,” *Mathematical Problems in Engineering*, vol. 2014, Article ID 371456, 10 pages, 2014.

[5] S. Y. Jeong, H. G. Jo, and S. J. Kang, “Fully distributed monitoringarchitecture supporting multiple trackees and trackers in indoor mobile asset management application,” *Sensors*, vol. 14, no. 3, pp. 5702–5724, 2014.

[6] X. W. Luo, W. J. O’Brien, and C. L. Julien, “Comparative evaluation of received signal-strength index (RSSI) based indoor localization techniques for construction jobsites,” *Advanced Engineering Informatics*, vol. 25, no. 2, pp. 355–363, 2011.

[7] V. Mghtadaiee and A. G. Dempster, “Indoor location fingerprinting using FM radio signals,” *IEEE Transactions on Broadcasting*, vol. 60, no. 2, pp. 336–346, 2014.

[8] P. S. Nagpal and R. Rashidzadeh, “Indoor positioning using magnetic compass and accelerometer of smartphones,” in *Proceedings of the International Conference on Selected Topics in Mobile and Wireless Networking (MOWNeT ’13)*, pp. 140–145, Montreal, Canada, August 2013.

[9] Y. Kim, H. Shin, Y. Chon, and H. Cha, “Smartphone-based Wi-Fi tracking system exploiting the RSS peak to overcome the RSS variance problem,” *Pervasive and Mobile Computing*, vol. 9, no. 3, pp. 406–420, 2013.

[10] W. Kang and Y. Han, “Smartpdr smartphone-based pedestrian dead reckoning for indoor localization,” *IEEE Sensors Journal*, vol. 15, no. 5, pp. 2906–2916, 2015.

[11] M. Zhou, Z. S. Tian, K. J. Xu, X. Yu, and H. B. Wu, “Error analysis for RADAR neighbor matching localization in linear logarithmic strength varying Wi-Fi environment,” *The Scientific World Journal*, vol. 2014, Article ID 647370, 15 pages, 2014.

[12] C. Zhou, H. Y. Xie, and J. Y. Shi, “Wi-Fi indoor location technology based on K-means algorithm,” in *LSS 2014*, pp. 765–770, Springer, Berlin, Germany, 2015.

[13] J. Yan, C. C. J. M. Tiberius, G. J. M. Janssen, P. J. G. Tenissen, and G. Bellucci, “Review of range-based positioning algorithms,” *IEEE Aerospace and Electronic Systems Magazine*, vol. 28, no. 8, pp. 2–27, 2013.

[14] G. L. Sun, J. Chen, W. Guo, and K. J. R. Liu, “Signal processing techniques in network-aided positioning—a survey of state-of-the-art positioning designs,” *IEEE Signal Processing Magazine*, vol. 22, no. 4, pp. 12–23, 2005.

[15] J. Yan, C. C. J. M. Tiberius, G. Bellucci, and G. J. M. Janssen, “A novel non-iterative localization solution,” in *Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM ’09)*, pp. 1655–1660, Honolulu, Hawaii, USA, December 2009.

[16] S.-P. Kuo and Y.-C. Tseng, “Discriminant minimization search for large-scale RF-based localization systems,” *IEEE Transactions on Mobile Computing*, vol. 10, no. 2, pp. 291–304, 2011.

[17] S. Mazuelas, A. Bahillo, R. M. Lorenzo et al., “Robust indoor positioning provided by real-time rss values in unmodified WLAN networks,” *IEEE Journal on Selected Topics in Signal Processing*, vol. 3, no. 5, pp. 821–831, 2009.

[18] M. Zhou, Z. S. Tian, K. J. Xu, X. Yu, X. Hong, and H. B. Wu, “Scanne: location tracking system in large-scale campus wi-fi environment using unlabeled mobility map,” *Expert Systems with Applications*, vol. 41, no. 7, pp. 3429–3443, 2014.

[19] Y. L. Sun, Y. B. Xu, C. Li, and L. Ma, “Kalman/map filtering-aided fast normalized cross correlation-based Wi-Fi fingerprinting location sensing,” *Sensors*, vol. 13, no. 11, pp. 15531–15531, 2013.

[20] L. N. Chen, B. H. Li, K. Zhao, C. Rizos, and Z. Q. Zheng, “An improved algorithm to generate a Wi-Fi fingerprint database for indoor positioning,” *Sensors*, vol. 13, no. 8, pp. 11085–11096, 2013.

[21] R. W. Ouyang, A. K.-S. Wong, C.-T. Lea, and M. Chiang, “Indoor location estimation with reduced calibration exploiting unlabeled data via hybrid generative/discriminative learning,”
[22] X. Y. Chai and Q. Yang, "Reducing the calibration effort for probabilistic indoor location estimation," *IEEE Transactions on Mobile Computing*, vol. 6, no. 6, pp. 649–662, 2007.

[23] A. M. Ladd, K. E. Bekris, A. Rudys, L. E. Kavraki, and D. S. Wallach, "Robotics-based location sensing using wireless ethernet," *Wireless Networks*, vol. 11, no. 1-2, pp. 189–204, 2005.

[24] C. Gentile and L. Klein-Berndt, "Robust location using system dynamics and motion constraints," in *Proceedings of the IEEE International Conference on Communications*, pp. 1360–1364, June 2004.

[25] Y. Liu, M. Dashti, and J. Zhang, "Indoor localization on mobile phone platforms using embedded inertial sensors," in *Proceedings of the 10th Workshop on Positioning Navigation and Communication (WPNC '13)*, pp. 1–5, Dresden, Germany, March 2013.

[26] L. Z. Li and X. K. Lin, "Apply pedestrian dead reckoning to indoor Wi-Fi positioning based on fingerprinting," in *Proceedings of the 15th IEEE International Conference on Communication Technology (ICCT '13)*, pp. 206–210, Guilin, China, November 2013.

[27] J. H. Lee, B. J. Shin, S. Lee et al., "A pedestrian indoor positioning system based on the wi-fi and walk pattering algorithm using mobile device," in *Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (Ion Gnss '11)*, pp. 1319–1327, September 2011.

[28] E. Gokcay and J. C. Principe, "Information theoretic clustering," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 24, no. 2, pp. 158–171, 2002.

[29] P. K. Simpson, "Artificial neural systems: foundations, paradigms, applications, and implementations," *International Journal of Neural Systems*, vol. 1, pp. 285–289, 1990.

[30] R. C. Eberhart and Y. Shi, "Evolving artificial neural networks," in *Proceedings of the International Conference on Neural Networks and Brain*, pp. 5–13, Beijing, China, 1998.

[31] J. Kennedy and R. Eberhart, "Particle swarm optimization," in *Proceedings of the IEEE International Conference on Neural Networks*, vol. 4, pp. 1942–1948, Perth, Australia, December 1995.

[32] M. Clerc and J. Kennedy, "The particle swarm—explosion, stability, and convergence in a multidimensional complex space," *IEEE Transactions on Evolutionary Computation*, vol. 6, no. 1, pp. 58–73, 2002.

[33] C. Feng, W. S. A. Au, S. Valaee, and Z. H. Tan, "Received-signal-strength-based indoor positioning using compressive sensing," *IEEE Transactions on Mobile Computing*, vol. 11, no. 12, pp. 1983–1993, 2012.
