Abstract

We present a method for learning bilingual translation dictionaries between English and Bantu languages. We show that exploiting the grammatical structure common to Bantu languages enables bilingual dictionary induction for languages where training data is unavailable.

1 Introduction

Bilingual dictionaries mostly exist for resource-rich language pairs, for example, English-German and English-Chinese (Koehn and Knight, 2002; Haghighi et al., 2008; Ammar et al., 2016; Faruqui and Dyer, 2014). Such dictionaries are useful for many natural language processing (NLP) tasks including statistical machine translation, cross-lingual information retrieval, and cross-lingual transfer of NLP models such as those for part-of-speech tagging and dependency parsing (Täckström et al., 2012; Guo et al., 2015; Gouws and Søgaard, 2015). In this paper, we consider the task of bilingual dictionary induction for English and Bantu languages. Bantu languages are a family of over 300[1] mutually intelligible languages spoken over much of central and southern Africa, see the map[2] in Figure 1 (Guthrie, 1948; Nurse and Philippson, 2003).

As with other low resource languages, labeled data for Bantu languages is scarce. We seek to exploit the Bantu grammar structure to mitigate lack of labeled data. More specifically, we ask the following question: given a small bilingual dictionary between English and one Bantu language, L_{bantu1}, can we 1) infer missing entries in the English $- L_{bantu1}$ dictionary 2) generate a new bilingual dictionary English $- L_{bantu2}$ for another Bantu language for which labeled data is unavailable. To answer this question we propose an approach based on distributed representations of words (Turney and Pantel, 2010; Mikolov et al., 2013a). The first step is to create a vector space for each language, derived from a text corpus for the language. Notice that these text corpora need not be aligned. The second step is to perform dictionary induction by learning a linear projection, in the form of a matrix, between language vector spaces (Mikolov et al., 2013b; Dinu and Baroni, 2014; Lazaridou et al., 2015). Our key insight for Bantu languages is that one can create a single vector space for them, obviating the need for learning a projection matrix for each Bantu language. This means we only need to learn a single projection matrix, for inducing multiple English to Bantu bilingual dictionaries, using the

[1] Between 300 and 600, depending on where the line is drawn between language and dialect.
[2] Image from http://getyours-it.nl/a-cultura/afrikaanse-stammen/bantu-stammen
[3] https://www.ethnologue.com

Figure 1: Bantu languages are spoken over much of central and southern Africa.
small bilingual dictionary $\textit{English} - L_{\text{bantu1}}$. Additionally, we modify the corpus corresponding to L_{bantu2} to have a greater vocabulary intersection with L_{bantu1}. This step is inspired by the extensive use of bases and affixes, common to Bantu languages. Words with the same meaning often differ only in the affixes with the base being similar or the same. We therefore use edit distance to replace some fraction of the words of L_{bantu2} with similar words in L_{bantu1}.

Contribution. 1). *Unsupervised Bantu language dictionary induction*: To the best of our knowledge, our work is the first effort to create bilingual dictionaries for Bantu languages using unsupervised machine learning methods. 2) *Data*: We collect corpora for seven Bantu languages. Having had access to a first language speaker of two Bantu languages, we obtained labeled which we make available along with the corpora, for further research into NLP for Bantu languages. 3) *Dictionary induction almost from scratch*: We propose a method for dictionary induction that only requires training data in one of the Bantu languages. Our experiments show the potential of our approach.

2 Approach

2.1 Distributed Representation

Distributed representations of words, in the form of real-valued vectors, encode word semantics based on collocation of words in text (Turney and Pantel, 2010; Mikolov et al., 2013a; Ammar et al., 2016). Such vector representations have been shown to improve performance of various NLP tasks including semantic role labeling, part-of-speech tagging, and named entity recognition (Collobert et al., 2011). In this work we use the skip-gram model with negative sampling to generate word vectors (Mikolov et al., 2013a). It is one of the most competitive methods for generating word vector representations, as demonstrated by results on a various semantic tasks (Baroni et al., 2014; Mikolov et al., 2013b).

2.2 Bilingual Dictionary Induction

To induce a bilingual dictionary for a pair of languages, we use the projection matrix approach (Mikolov et al., 2013b; Dinu and Baroni, 2014; Lazaridou et al., 2015). It takes as input a small bilingual dictionary containing pairs of transla-

tions from the source language to the target language. Training data is comprised of vector representations of word pairs $D^{tr} = \{x_i, y_i\}_{i=1}^m$, where $x_i \in \mathbb{R}^s$ is the vector for word i in the source language, and $y_i \in \mathbb{R}^t$ is the vector for its translation in the target language. At test time, we predict the target word translations for new source language words, $D^{te} = \{x_j\}_{j=1}^n$, where $x_j \in \mathbb{R}^s$. In our case, the source language is a Bantu language and the target language is English.

This approach assumes that there is linear relationship between the two vector spaces. Thus, the learning problem is to find a matrix W that maps a source language word vector x_j to the vector of its translation y_i in the target language. As in (Dinu and Baroni, 2014), we use an l2-regularized least squares error to learn the projection matrix W.

$$W = \arg \min_{W \in \mathbb{R}^{s \times t}} ||XW - Y||_F + \lambda ||W||_1$$

where X and Y are matrices representing the source and target vectors in the training data, respectively. For a new Bantu word whose vector representation is $x_j \in \mathbb{R}^s$, we map it to English by computing $\hat{y}_j = WX_j$, where $\hat{y}_j \in \mathbb{R}^t$, and then finding the English word whose vector representation is closest to \hat{y}_j, as measured by the cosine similarity distance metric.

2.3 Bantu Language Structure

The word “Bantu” is derived from the word for “people”, which has striking similarities in many Bantu languages (Guthrie, 1948; Nurse and Philippson, 2003). In Zulu (South Africa) “abantu” means *people*; in Swahili (Kenya, Uganda) “watu”; in Ndonga (Namibia) “aantu”; in Sesotho (Lesotho) “batho”; in Herero (Namibia) “ovandu”; and in Kwanyama (Namibia, Angola) “ovanhu”. It is often used in the philosophical sense “”. While Bantu languages may differ in vocabulary, in some cases quite substantially, they share the same

*Ubuntu is Zulu for humanity or the essence of being human.

*South African Nobel Laureate Archbishop Desmond Tutu describes Ubuntu as: “It is the essence of being human. It speaks of the fact that my humanity is caught up and is inextricably bound up in yours. “A person with Ubuntu is open and available to others, affirming of others, does not feel threatened that others are able and good, based from a proper self-assurance that comes from knowing that he or she belongs in a greater whole and is diminished when others are humiliated or diminished, when others are tortured or oppressed.”
grammatical structure. A prominent aspect of the grammar of Bantu languages is the extensive use of bases and affixes. For example, in the country of Botswana, from the base Tswana, the people of Botswana are the Batswana, one person is a Motswana, and the language is Setswana. We seek to exploit this property by performing edit distance corpus modifications before learning the projection matrix.

2.4 Single Projection Matrix

We hypothesize that we only need to learn one projection matrix, W in Equation 1. Our labeled data is a small bilingual dictionary $\text{English} - L_{\text{bantu}}$, between English and a Bantu language L_{bantu}. We would like to be able to infer missing entries in the $\text{English} - L_{\text{bantu}}$ dictionary, and to generate a new dictionary, $\text{English} - L_{\text{bantu}2}$, a language pair for which labeled data is unavailable. The core idea is to create only one vector space for the two Bantu languages. First we generate a lexicon, lex_{b2}, containing words that appear in the corpus of $L_{\text{bantu}2}$. Next, for each $w \in \text{lex}_{b2}$ we find all words in lex_{b1}, the lexicon of language $L_{\text{bantu}1}$, whose edit distance to w is a small value Φ. Thus, each word $w \in \text{lex}_{b2}$ has a list of words from lex_{b1}, $S_w = \{w1 \in L_{\text{bantu}1} : \text{editdistance}(w, w1) \leq \Phi\}$. We then go through corpus $L_{\text{bantu}2}$ and with probability Π we replace word $w \in \text{lex}_{b2}$ with one of its cross-lingually similar words in S_w. Random selection is used to pick the replacement word.

Table 1: Corpora crawled from Bible.com: seven Bantu and two Indo-European languages.

Language	Tokens	Vocabulary	KW vocab ∩
KW-Kwanyama	732,939	33,522	33,522
ND-Ndonga	732,939	33,522	3,769
SW-Swahili	694,511	49,356	173
KK-Kikuyu	718,320	53623	126
SH-Shona	570,778	64,073	222
CW-Chewa	669,352	53148	206
TS-Tswana	101,175	23,384	126

Table 2: Examples of English, Kwanyama, and Ndongo translations

	English -EN	**Kwanyama-KW**	**Ndongo-ND**
people	ovanhu	galuka	aantu
return	aluka	omonuna	galuka
child	okaana	inima	omakutsi
things	inima	omakutsi	aakiintu
ears	omakutwi	omakutsi	omakutsi
women	ovakainhu	elaka	elaka
tongue	elaka	omulaulu	oomilema
darkness	omulaulu	oomilema	oomilema
feet	eemhadi	omunona	oompadi
sins	omunona	omakutsi	oondjo

Table 3: Training and test data for dictionary induction.

	Target Vocabulary	**Training Dictionary**	**Test**
EN-KW	33,522	2,142	107
EN-IT	200,000	5,000	1,500
EN-ND	32,026	0	104

$C_{\text{bantu}} = C_{\text{bantu}1} \cup \hat{C}_{\text{bantu}2}$. Applying the skip-gram model to C_{bantu}, generates word vectors, every $w_i \in C_{\text{bantu}}$ has a vector $x_i \in \mathbb{R}^d$. For English, we use the 300-dimensional pre-trained vectors trained the Google News dataset5 so that every English word has a vector $y_i \in \mathbb{R}^d$. Finally, we W using the training data, $D_{tr} = \{x_i, y_i\}_{i=1}^m$. At test time, we predict the target word translations for unseen Bantu words, $D_{te} = \{x_i\}_{i=1}^n$, which can either be in language $L_{\text{bantu}1}$ or $L_{\text{bantu}2}$.

3 Experimental Evaluation

Data

We crawled Bible.com for bibles of 9 languages, 7 Bantu and 2 Indo-European, Italian and English. The latter were used for comparison. Corpora statistics are shown in Table 1. In our experiments, we focused on Kwanyama, spoken Namibia and Angola, as we had access to a first language speaker who could annotate data. The last column of Table 1 shows the vocabulary intersection between Kwanyama and other languages. The language with the most words in common with Kwanyama is Ndonga, spoken in Namibia, with an 11% vocabulary overlap.

5https://code.google.com/archive/p/word2vec
in common have different meanings. For example: The word “male” in English refers to gender, in Kwanyama “male” means “tall” or “deep”. Our Kwanyama first language speaker also has five years of formal training in Ndonga, which is a dialect of the same language as Kwanyama. We therefore focus on these two Bantu languages in our experiments. Table 2 shows some examples of English, Kwanyama and Ndonga translations. Details of the training and test data are shown in Table 3. For all languages, we used 300-dimensional word vectors.

Results

Table 4 shows the main results in terms of precision at top-k, the last column, $RD = 0.10$ shows precision at the value of k which yields random chance of 10% precision. The top two rows show the results of bilingual dictionary induction between English and Kwanyama. We compare the projection matrix approach, EN-KW, to random chance, EN-KW (RD). We can see that EN-KW far outperforms chance. This result is promising given that our annotator only generated about 2,142 labeled examples. In particular, English-Italian (EN-IT) with a larger dictionary of 5,000 word pairs, produced by (Dinu and Baroni, 2014), achieves similar numbers, however it is worth noting that the EN-IT test data set is also much larger. For the English-Ndonga, EN-ND, language pair, we have no labeled data. We consider three cases: 1) EN-ND (J-KW), for this case, we concatenate the Kwanyama and Ndonga corpora and use the EN-KW training data to induce the EN-ND dictionary. 2) EN-ND (J-IT), we concatenate the Italian and Ndonga corpora and use the EN-IT training data to induce EN-ND dictionary. 3) EN-ND (J-KW-R), this is our approach where we first modify the Ndonga corpus to look more like Kwanyama before combining the two corpora, and using the EN-KW training data. Among these three options, EN-ND (J-KW-R) performs best, especially at small values of k, ie, $k = 1, 5, 10$. Additionally, EN-ND (J-KW) outperforms EN-ND (J-IT), which is to be expected because ND, Ndonga, a Bantu language is much more similar to KW, Kwanyama than to the Indo-European language, IT, Italian.

Figure 2 shows the top-k precision trends for various values of k. For the EN-KW pair, left of Figure 2 there is a bigger gap between EN-KW and random chance EN-KW (RD). On the other hand, for the EN-ND pair, the right of Figure 2 the gap between our approach EN-ND (J-KW-R) and random choice, EN-ND (RD) is smaller. However, it is also clear that the precision at top-k trend is much better when we make use of training data from Kwanyama EN-ND (J-KW-R), instead of training data from Italian EN-ND (J-IT). This result is encouraging for future work towards inducing accurate bilingual dictionaries for Bantu languages without labeled data. Future directions include collecting more training data from popular Bantu languages such as Swahili and Zulu; proposing alternative methods to dictionary induction; and inducing dictionaries for more Bantu languages.

4 Conclusion

In prior work, bilingual dictionary induction has been studied mostly for resource rich languages. (Lazaridou et al., 2015; Upadhyay et al., 2016; Faruqui and Dyer, 2014; Mikolov et al., 2013b; Ammar et al., 2016; Haghighi et al., 2008). We have introduced an approach where we create one vector space for Bantu languages in order to ex-

Table 4: Precision at Top-K for various language pairs.

	P@1	P@5	P@10	RD
EN-KW	0.30	0.56	0.58	0.86
EN-KW (RD)	0.00	0.00	0.00	0.10
EN-IT	0.34	0.48	0.54	0.94
EN-IT (RD)	0.00	0.00	0.00	0.10
EN-ND (J-IT)	0.00	0.00	0.00	0.39
EN-ND (J-KW)	0.07	0.16	0.18	0.63
EN-ND (J-KW-R)	0.10	0.18	0.20	0.60
EN-ND (RD)	0.00	0.00	0.00	0.10

Figure 2: Trend for precision at top-k
ploit labeled data available for one language but not for another. Given that there are over 300 Bantu languages, and not all of them have training data, we believe approaches that rely on their shared grammar will be important for bringing NLP methods to this family of languages.
References

[Ammar et al.2016] Baleed Ammar, George Mulcaire, Yulia Tsvetkov, Guillaume Lample, Chris Dyer, and Noah A. Smith. 2016. Massively multilingual word embeddings. CoRR, abs/1602.01925.

[Baroni et al.2014] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In ACL (1), pages 238–247. The Association for Computer Linguistics.

[Chandar et al.2014] A. P. Sarath Chandar, Stanislas Lauly, Hugo Larochelle, Mitesh M. Khapra, Balaraman Ravindran, Vikas C. Raykar, and Amrita Saha. 2014. An autoencoder approach to learning bilingual word representations. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 1853–1861.

[Collobert et al.2011] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa. 2011. Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12:2493–2537.

[Dinu and Baroni2014] Georgiana Dinu and Marco Baroni. 2014. Improving zero-shot learning by mitigating the hubness problem. CoRR, abs/1412.6568.

[Faruqui and Dyer2014] Manaal Faruqui and Chris Dyer. 2014. Improving vector space word representations using multilingual correlation. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2014, April 26-30, 2014, Gothenburg, Sweden, pages 462–471.

[Gouws and Søgaard2015] Stephan Gouws and Anders Søgaard. 2015. Simple task-specific bilingual word embeddings. In NAACL HLT 2015, The 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 - June 5, 2015, pages 1386–1390.

[Gouws et al.2015] Stephan Gouws, Yoshua Bengio, and Greg Corrado. 2015. Bilbowa: Fast bilingual distributed representations without word alignments. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 748–756.

[Guo et al.2015] Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu. 2015. Cross-lingual dependency parsing based on distributed representations. In Proceedings of the 53nd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pages 1234–1244.

[Guo et al.2016] Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu. 2016. A representation learning framework for multi-source transfer parsing. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., pages 2734–2740.

[Guthrie1948] Malcolm Guthrie. 1948. The classification of the bantu languages.

[Haghighi et al.2008] Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick, and Dan Klein. 2008. Learning bilingual lexicons from monolingual corpora. In ACL, pages 771–779. The Association for Computer Linguistics.

[Klementiev et al.2012] Alexandre Klementiev, Ivan Titov, and Binod Bhattachari. 2012. Inducing cross-lingual distributed representations of words. In COLING 2012, 24th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, 8-15 December 2012, Mumbai, India, pages 1459–1474.

[Koehn and Knight2002] Philipp Koehn and Kevin Knight. 2002. Learning a translation lexicon from monolingual corpora. In ACL Workshop on Unsupervised Lexical Acquisition.

[Lazaridou et al.2015] Angeliki Lazaridou, Georgiana Dinu, and Marco Baroni. 2015. Hubness and pollution: Delving into cross-space mapping for zero-shot learning. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pages 270–280.

[Mikolov et al.2013a] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations in vector space. CoRR, abs/1301.3781.

[Mikolov et al.2013b] Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013b. Exploiting similarities among languages for machine translation. CoRR, abs/1309.4168.

[Mikolov et al.2013c] Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013c. Exploiting similarities among languages for machine translation. CoRR.

[Nakashole and Flauger] Ndapa Nakashole and Raphael Flauger. Knowledge distillation for bilingual dictionary induction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP).
[Nakashole and Flauger2018] Ndapa Nakashole and Raphael Flauger. 2018. Characterizing departures from linearity in word translation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL).

[Nakashole2018] Ndapa Nakashole. 2018. Norma: Neighborhood sensitive maps for multilingual word embeddings. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP).

[Nurse and Philippson2003] Derek Nurse and Gérard Philippson. 2003. Towards a historical classification of the bantu languages. The Bantu Languages, pages 164–181.

[Nurse and Tucker2001] Derek Nurse and Irene Tucker. 2001. A survey report for the Bantu languages.

[Rapp1999] Reinhard Rapp. 1999. Automatic identification of word translations from unrelated english and german corpora. In 27th Annual Meeting of the Association for Computational Linguistics, University of Maryland, College Park, Maryland, USA, 20-26 June 1999.

[Søgaard et al.2015] Anders Søgaard, Zeljko Agic, Héctor Martínez Alonso, Barbara Plank, Bernd Bohnet, and Anders Johannsen. 2015. Inverted indexing for cross-lingual NLP. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pages 1713–1722.

[Täckström et al.2012] Oscar Täckström, Ryan T. McDonald, and Jakob Uszkoreit. 2012. Cross-lingual word clusters for direct transfer of linguistic structure. In Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, Proceedings, June 3-8, 2012, Montréal, Canada, pages 477–487.

[Turney and Pantel2010] Peter D. Turney and Patrick Pantel. 2010. From frequency to meaning: Vector space models of semantics. J. Artif. Intell. Res. (JAIR), 37:141–188.

[Upadhyay et al.2016] Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and Dan Roth. 2016. Cross-lingual models of word embeddings: An empirical comparison. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.

[Vulic and Moens2015] Ivan Vulic and Marie-Francine Moens. 2015. Bilingual word embeddings from non-parallel document-aligned data applied to bilingual lexicon induction. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 2: Short Papers, pages 719–725.