Degree difference: A simple measure to characterize structural heterogeneity in complex networks

Amirhossein Farzam, Areejit Samal, and Jürgen Jost

Max Planck Institute for Mathematics in the Sciences, Leipzig 04103 Germany
The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai 600113 India
The Santa Fe Institute, Santa Fe, New Mexico 87501 USA

Despite the growing interest in characterizing the local geometry leading to the global topology of networks, our understanding of the local structure of complex networks, especially real-world networks, is still incomplete. Here, we present a simple, elegant yet unexplored measure, ‘degree difference’ (DD) between vertices of an edge, to quantify the local network geometry. We show that DD can reveal structural properties that are not obtained from other such measures in network science. Typically, edges with different DD play different structural roles and the DD distribution is an important network signature. Notably, DD is the atomic root of assortativity. We provide an explanation why DD can characterize structural heterogeneity in mixing patterns unlike global assortativity and local node assortativity. By analyzing model and real networks, we show that DD distribution can be used to distinguish between different types of networks including those networks that cannot be easily distinguished using degree sequence and global assortativity. Moreover, we show DD to be an indicator for topological robustness of scale-free networks. Overall, DD is a local measure that is simple to define, easy to evaluate, and that reveals structural properties of networks not readily seen from other measures.

INTRODUCTION

Since the dawn of network science, scientists have tried to capture the structure and dynamics of networks by measures that are simple to understand and easy to evaluate (see e.g. [4–6]). Early studies on the structure of complex networks focused primarily on the global topology of these discrete objects [7–9]. Global measures necessarily take some kind of average, and therefore, such measures do not capture much of the individual variability and heterogeneity in networks. To avoid this, it is important to investigate local measures and their distributions in complex networks. In spite of this growing interest in the network science community to investigate the local geometry of complex networks (see e.g. [10–14]), local structural properties of networks are still underappreciated. Local clustering coefficient [7], generalized degree, local assortativity [15], Ollivier-Ricci curvature [11, 12, 14, 16] and Forman-Ricci curvature [13, 14] are some of the notable measures characterizing the local structural properties of complex networks.

Moreover, with the recent exception of discrete Ricci type curvature measures, such local or global measures are typically evaluated on vertices, rather than on edges, although the edges are of course what really constitutes a network. In this work, we shall therefore systematically pursue an edge-based approach to characterize the local structure of complex networks. As mentioned, discrete Ricci type curvature measures are local and edge-based, and they are by now established as useful tools for the analysis of empirical networks [12, 14, 17, 18]. For instance, the Forman-Ricci curvature of an edge in an unweighted and undirected network essentially evaluates the sum of the degrees of its two vertices, and edges with a large such sum are important for the cohesion of the network in question and therefore deserve attention. However, when we want to understand the local heterogeneity in a network, Forman-Ricci curvature may not be so useful, because it does not distinguish between an edge that connects two vertices of intermediate but similar degrees, from an edge that connects a highly connected vertex with a sparsely connected one; in both cases, the sum of their degrees is large. Now, there is an important and well-established global concept for judging the homogeneity or heterogeneity of a network, its assortativity (see for instance [19]). A network is assortative if on average, the degrees of connected vertices are similar, and disassortative, if they tend to be rather different. For instance, many social networks, particularly those formed through group-to-group connections, are known to be assortative [20], i.e. agents of high degree seem to connect to other high-degree agents, and similarly, low-degree agents tend to connect to agents with lower rather than higher degree. Again, this property cannot be captured by node-based quantities, such as the degree sequence, because a simple rewiring can transform...
an assortative into a disassortative network or vice versa, without changing the degree sequence. This motivates us to systematically explore the ‘degree difference’ between two vertices of an edge in complex networks.

Curiously, so far there seems to have been no systematic analysis of degree difference in complex networks, although for the reasons explained above, this is a most natural local measure. It is simple to define, easy to evaluate, and captures the local picture underlying assortativity or disassortativity. Moreover, we shall show in this contribution that the measure provides novel insight into both model and real networks. For the model networks, we will derive explicit formulae, thereby laying the foundations for a theoretical investigation.

In fact, assortativity can be defined more generally to express how similar or dissimilar neighbouring vertices are with respect to some quantity α. In particular for social networks, this is important as it connects to homophily, that is, the tendency to associate with like-minded or otherwise similar people. Thus, for a graph $G(V,E)$, with vertex set V and edge set E, and an attribute $\alpha : V \rightarrow \mathbb{F}$, mapping the n vertices in V to elements in \mathbb{F}, assortativity captures heterogeneity in mixing patterns in G at a global scale. The global assortativity (GA) with respect to α is given by

$$r_\alpha = \frac{Tr(e) - \|e^2\|_{L_1}}{1 - \|e^2\|_{L_1}}$$ \hfill (1)

where e is the $n \times n$ matrix of joint probabilities with $e_{i,j} = P(\alpha(i), \alpha(j))$, $Tr(e)$ is the trace, and $\|e^2\|_{L_1}$ is the L_1 norm of e. When α maps the vertices to their degrees, we denote r_α by r, and Eq. 1 is equal to the Pearson correlation coefficient of the degrees of connected vertices. By convention, if the term assortativity is used without specifying the attribute, the attribute is assumed to be the degree.

There have been previous attempts to break assortativity down to its more local components. Piraveenan et al define a local point-wise measure of assortativity, local node assortativity (LNA), denoted by $\hat{\rho}_v$, quantifying the contribution of each vertex v to the GA in the network as follows

$$\hat{\rho}_v = \frac{j(j+1)(\bar{k}_v - \mu_q)}{2M\sigma_q^2}$$ \hfill (2)

where j is the excess degree of v, \bar{k}_v is the average excess degrees of the neighbours of v, μ_q is the global average excess degree, M is the number of edges in the network, and σ_q is the standard deviation of the excess degree distribution in the network.

GA can be obtained from LNA through the following identity

$$r = \sum_{j,k \in D(V)} \frac{jk(e_{j,k} - q_j q_k)}{\sigma_q^2} = \frac{1}{\sigma_q^2} \left(\sum_{j,k \in D(V)} jk e_{j,k} - \mu_q^2 \right)$$ \hfill (3)

$$= \frac{1}{\sigma_q^2} \sum_j \sum_{v \in V_j} \left(\left(j + 1 \right) \frac{j\bar{k}_v}{2M} + \left(j + 1 \right) \frac{j\mu_q}{2M} \right)$$ \hfill (4)

where $D(V)$ denotes the set of degrees of vertices in V, and V_j is the set of vertices in V with excess degree j. In Eq. 3 the term within the first braces is the contribution of vertex v to the first term in Eq. 2 and the term within the second braces is its contribution to μ_q^2.

While this represents a valuable step towards understanding local mixing patterns in networks, LNA appears somewhat complicated and is defined on the vertices. In fact, at first sight it seems most natural to come up with such a node-based measure. But recall that assortativity is evaluating similarities or differences between neighbouring vertices, and two neighbouring vertices are nothing but an edge. Therefore, it seems more natural to evaluate quantities directly on edges. That is, in fact, our starting point. Thus, we shall decompose assortativity into its basic atoms, the degree differences (DD) between the vertices forming an edge. Given an edge $e = \{v, u\}$ in an unweighted and undirected graph linking the vertices v and u with degrees $deg(v)$ and $deg(u)$, DD of e is given by

$$\nabla(e) = |deg(v) - deg(u)|$$ \hfill (5)

where $\nabla : E \rightarrow \mathbb{Z}^\geq$ is a function from the edge set of the graph to non-negative integers, mapping e to absolute value of its DD. Similarly, for directed graphs, we define directed DD (diDD) as follows

$$\nabla_{\rightarrow}(e) = deg^{out}(u) - deg^{in}(v)$$ \hfill (6)
where $e = (v, u)$ is the directed edge from v to u and $\tau \mapsto : E \to \mathbb{Z}$ has the entire set of integers as its codomain. After verifying that this simple and elegant network measure meaningfully captures structural similarities and differences, we here show that DD is independently informative and capable of characterizing network structure. Importantly, DD of edges, through (indirect) quantification of the contribution of individual edges to the GA, is the atomic root of assortativity as illustrated in Figure 1. Furthermore, we provide an explanation as to why DD can characterize structural heterogeneity in mixing patterns, a feature that is lost due to averaging when employing the measures GA or LNA. In Figure 2, we show three graphs with same degree sequence and same GA that have different DD distributions.

FIG. 1. Heterogeneity in mixing patterns in networks is quantified through global assortativity (GA) given by Eq. 1 at the global scale. At a more local scale, mixing pattern is quantified through local node assortativity (LNA) given by Eq. 2 which aggregates the heterogeneity in degrees of the vertices anchoring the edges incident on the vertex. Degree Difference (DD) is the atomic root of assortativity and captures heterogeneity in mixing patterns at the scale of individual edges.

FIG. 2. Graphs with same degree sequence and same global assortativity (GA) can have different degree difference (DD) distributions. The figure shows 3 graphs with 7 vertices and 9 edges with same degree sequence and GA of ≈ -0.358, but with different DD distributions. In the figure, the bar plot below each graph shows the DD distribution.

The remainder of this paper is organized as follows. In the next section, we derive the analytical formulae for DD distribution in Erdős-Rényi (ER) random graphs and Barabási-Albert (BA) scale-free graphs. We also show the connection between DD distribution and GA. Thereafter, in the Computational results section, we present our numerical results for the DD distribution in diverse model and real networks. We also report our computations.
showing the importance of DD for topological robustness in networks. Lastly, we conclude with a summary and future outlook.

ANALYTICAL RESULTS

Based on the definition of DD for an edge \(e = \{v, u\} \) in an undirected and unweighted network given by Eq. 5, the probability mass function \(P_{\gamma} \), where \(P_{\gamma}(d) = Pr(\gamma(e) = d) \), is given by

\[
P_{\gamma}(d) = Pr([\text{deg}(v) - \text{deg}(u)] = d \mid \{v, u\} \in E)
\]

\[
= \sum_{(v,u) \in E \; \text{s.t.} \; |k-l| = d} Pr(\text{deg}(v) = k, \; \text{deg}(u) = l \mid \{v, u\} \in E).
\]

We next derive the analytical formulae for the DD distribution in two widely-used network models. These formulae will express DD distribution as a sum for ER random graphs [23] and BA scale-free networks [8]. Thereafter, we present our analytical calculations unravelling the connection between DD, LNA and GA in undirected networks.

DD distribution for Erdös-Rényi model

In an ER random graph, \(G(n, p) \), where \(n \) is the number of vertices and \(p \) is the probability that an edge exists between any pair of vertices, the degrees of two neighboring vertices are uncorrelated except for the edge that is connecting them. Therefore, the relevant quantity is the excess degree between any pair of vertices, the degrees of two neighboring vertices are uncorrelated except for the edge that is present our analytical calculations unravelling the connection between DD, LNA and GA in undirected networks.

The above relation holds since conditional on the existence of an edge between two vertices their excess degree distributions are independent. For given degree and excess degree distributions in \(G(n, p) \) [21], Eqs. 7 and 8 imply

\[
P_{\gamma}(d) = \sum_{|k-l| = d} q_{k-1} q_{l-1}
\]

\[
= \sum_{|k-l| = d} B_{k-1}^{n-2} B_{l-1}^{n-2} p^{k+l-2} (1 - p)^{2n-2-(k+l)}
\]

\[
= (2 - \delta_{d,0}) p^{d-2} (1 - p)^{2(n-1)-d} \sum_{l=1}^{n-1-d} B_{d+l-1}^{n-2} B_{l-1}^{n-2} \left(\frac{p}{1-p} \right)^{2l}
\]

where \(B_{k}^{n} \) denotes the binomial coefficient \(\binom{n}{k} \) and \(\delta_{d,0} \) is the Kronecker delta, which we use to avoid double counting the same permutation of \((k, l) \) when \(d = 0 \).

As \(n \to +\infty \), the degree distribution for the graph ensemble \(G(n, p) \) with average degree \(\langle c \rangle = p(n - 1) \) becomes the Poisson distribution [21]

\[
p_{k} = e^{-c} \frac{c^{k}}{k!}.
\]

where \(p_{k} \) is the probability that a given vertex has degree \(k \). As \(q_{k} = \frac{(k+1)p_{k+1}}{c} \) for ER random graphs, the excess degree distribution is given by

\[
q_{l-1} = e^{-c} \frac{c^{l-1}}{(l-1)!}.
\]

Inserting this in Eq. 9 for sufficiently large ER random graphs, we can approximate DD distribution by

\[
P_{\gamma}(d) = \sum_{|k-l| = d} e^{-2c} \frac{c^{k-1}}{(k-1)!} \frac{c^{l-1}}{(l-1)!}
\]

\[
= (2 - \delta_{d,0}) e^{-2c} c^{d-2} \sum_{l=1}^{n-1-d} \frac{c^{2l}}{(d+l-1)! (l-1)!}.
\]
In Figure 3, we verify that the formulae given by Eqs. 9 and 12 match with the numerical computations for values of d where $P_\gamma(d)$ is sufficiently large considering the ensemble size.

FIG. 3. Concordance between analytical formula for DD distribution and numerical computations in Erdős-Rényi (ER) model. (a) Computations for ER graph with 200 vertices and average degree ~ 6. In this case, Eq. 9 is used to obtain the analytical result. (b) Computations for ER graph with 1000 vertices and average degree ~ 6. In this case, Eq. 12 is used to obtain the analytical result. In both cases, the numerical result is obtained via averaging the computed P_γ over an ensemble of 10000 ER networks with same size and average degree. Note that $P_\gamma(d)$ is of the order of 10^{-6} or smaller for $d > 18$, thus given our ensemble size, the comparison between the numerical and analytical computations is not valid, and thus not shown, for $d > 18$.

DD distribution for Barabási-Albert model

To derive the DD distribution in a BA network from Eq. 7, we use a result by Fotouhi & Rabbat [25] for the joint degree distribution of neighbouring vertices in a BA network with $n \to \infty$, and this result is

$$Pr(deg(v) = k, deg(u) = l \mid \{v, u\} \in E) = \frac{2 \beta (\beta + 1)}{k (k + 1) l (l + 1)} \left[1 - B_{\beta+1}^{2\beta+2} \frac{B_{l-\beta}^{k+l-2\beta}}{B_{l+1}^{k+l+2}} \right]$$

(13)

where β gives the number of edges attached to the new vertex added at each iteration of the BA model implementing a preferential attachment scheme. Thereafter, using Eq. 7, we can obtain the following analytical formula for the DD distribution in BA networks

$$P_\gamma(d) = \sum_{|k-l|=d} \frac{2 \beta (\beta + 1)}{k (k + 1) l (l + 1)} \left[1 - B_{\beta+1}^{2\beta+2} \frac{B_{l-\beta}^{k+l-2\beta}}{B_{l+1}^{k+l+2}} \right] .$$

(14)
Connection with global assortativity

The connection between DD and GA is clear once the identity in Eq. 4 is understood. For a graph $G(V,E)$, the following identities explain the connection between GA and DD distribution with LNA as an intermediate step.

$$\sigma^2 r = \sum_{j} \sum_{v \in V_j} \left(j (j+1) \frac{j K_v}{2M} + (j+1) \frac{j \mu_q}{2M} \right)$$

(15)

$$= \sum_{j} \sum_{v \in V_j} \left(j^2 (j+1) \frac{\sum |k-j|}{2M} + (j+1) \frac{j \mu_q}{2M} \right)$$

$$= \sum_{j} \sum_{v \in V_j} \left(j^2 (j+1) \frac{\sum |k-j|}{2M} + (j+1) \frac{j \mu_q}{2M} \right)$$

$$= \sum_{j} \left(Nq_j \frac{j^2(j+1)}{2M} + \sum_j \left(\sum_{|j-k|=d} \frac{|k-j|}{2M} + \sum_{|j-k|=d} \frac{(j-1)|k-j|}{2M} \right) \right)$$

$$= \left[\frac{1}{2} \sum_j (Nq_j j^2(j+1)) + \frac{1}{2M} \sum_j \left(\sum_{|j-k|=d} (d(j-1)) \right) \right]$$

(16)

where V_j denotes the set of vertices with excess degree j, N is the number of vertices in the network, d is the DD, P_γ is the probability mass function of DD distribution, and the remaining notation is as in Eq. 2. Note that the degree difference is the same as the excess degree difference of two neighboring vertices. In addition to explaining the connection between DD and GA, Eq. 16 further clarifies that we can compute GA and LNA from DD, while DD cannot be deduced from GA and LNA. We demonstrate this remark in supplementary information (SI) Figure S1 where we show DD distribution in an ensemble of BA networks as the network is rewired to increase its GA, and in SI Figure S2 where we set a constraint on GA of ensembles of ER and BA networks and show DD distribution after two random independent rewirings.

COMPUTATIONAL RESULTS

We computed the DD distribution for 4 model networks and 10 empirical or real networks. Of the 10 real networks analyzed here, 6 are undirected and 4 are directed networks. The full description of the network dataset is included in the Appendix. We also use the 4 model networks to analyze the relationship between DD and topological robustness and to investigate the possible correlation between DD and other edge-based measures.

DD distribution in undirected networks

We have computed the DD distribution of edges in 4 undirected model networks and 6 undirected real networks listed in Appendix (Figures 4 and 5). From these figures, we can observe qualitative differences between the DD distribution in different undirected networks. As the DD distributions in Figure 4 suggest, different types of model networks have distinct DD distributions. In particular, RG graphs are known to show degree assortativity [26] and the RG graphs in our dataset are highly assortative with assortativity ~ 0.55. However, ER graphs have degree assortativity close to 0. The similarity between the DD distributions in RG and ER graphs reveals a remarkable fact about these two model networks; while they differ significantly in GA, the mixing patterns are strikingly similar at the local scale.

DD distribution in directed networks

DD distribution can be computed in directed networks by considering the networks as undirected by ignoring the directions on edges. Such a computation of DD distribution in undirected simplifications of directed networks could still be informative of existing heterogeneity as demonstrated for the 4 directed real networks, namely, Citation,
FIG. 4. DD distributions in 4 different model networks. (a) Erdős-Rényi (ER). (b) Watts-Strogatz (WS). (c) Barabási-Albert (BA). (d) Random Geometric (RG). For each model, the parameters used are indicated besides it in parenthesis. For ER model, the parameters are number of vertices \(n \) and probability \(p \) of connecting an edge between any pair of vertices. For WS model, the parameters are number of vertices \(n \), the number of neighbours \(k \) to which each vertex is connected in the starting regular graph, and rewiring probability \(\beta \). For BA model, the parameters are number of vertices \(n \) and number of edges \(\beta \) that are attached to the new vertex at each iteration step. For RG model, the parameters are number of vertices \(n \) and radius \(\epsilon \). The reported correlation for each model and a given set of parameters is an average over a sample of 50 networks.

FIG. 5. DD distributions in 6 undirected real-world networks. (a) Actor. (b) Collaboration. (c) Internet. (d) Phone calls. (e) Power grid. (f) Protein.

Email, Metabolic, and WWW, in Figure 6. To better understand the details of this heterogeneity though, we can use a directed variation of DD that can highlight the specifics leading to such heterogeneity.

There are four possible ways to define the directed DD (diDD). The variation that is most consistent with the orientation on the edge and the direction of a potential flow is given in Eq. 6 which is the following

\[
\tau_{\rightarrow}(e) = \deg^\text{out}(u) - \deg^\text{in}(v)
\]

which captures the local homophily between in-degree of the tail vertex and out-degree of the head vertex of a directed edge.

The distributions of diDD shown in Figure 6 for example, enables us to make the following remarks about the 4 directed real networks in our dataset. Firstly, Citation and Metabolic network have a rather symmetric homophily in the direction of the citations or reactions. Secondly, Email addresses with similar Email traffic tend to communicate with each other more often. There are two other peaks corresponding to Emails sent from Email addresses receiving many Emails (e.g. organizational Email addresses) to those who do not send many Emails. Thirdly, within the domain of University of Notre Dame, there are many hyperlinks from webpages that many other webpages link (e.g. a department’s webpage) to those that do not contain many hyperlinks (e.g. a webpage corresponding to an
FIG. 6. DD distributions in 4 directed real-world networks. (a-d) Distributions $\mathcal{D}(e)$ computed using Eq. 5 by ignoring the directions of the edges. (e-h) Distributions $\mathcal{D}_{\to}(e)$ computed using the directed definition Eq. 6.

announcement) in WWW network. Despite the consistency that comes with the choice of this variation of diDD in Eq. 6, other permutations of in- and out-degree can reveal other information about the direction of mixing patterns.

FIG. 7. Correlation between degree difference (DD) and three established edge-based measures, namely, Forman-Ricci curvature (R_F), Ollivier-Ricci curvature (R_O), and edge betweenness centrality (Ebw) in model networks. We show in (a) the Pearson correlation coefficients and in (b) the Spearman correlation coefficients. For each model, the parameters used are indicated besides it in parenthesis. For ER model, the parameters are number of vertices n and probability p of connecting an edge between any pair of vertices. For WS model, the parameters are number of vertices n, the number of neighbours k to which each vertex is connected in the starting regular graph, and rewiring probability β. For BA model, the parameters are number of vertices n and number of edges β that are attached to the new vertex at each iteration step. For RG model, the parameters are number of vertices n and radius ϵ. The reported correlation for each model and a given set of parameters is an average over a sample of 50 networks.

Correlation with other edge-based measures

We explore the correlation between DD and three other established edge-based measures, namely edge betweenness centrality [27, 28], Forman-Ricci curvature (R_F) [13, 14] and Ollivier-Ricci curvature (R_O) [11, 12, 14, 16] for characterizing the local network geometry. These results are summarized in Figure 7. It is seen that DD is moderately correlated with edge betweenness and R_F in BA networks, and this correlation is positive with edge betweenness and negative with R_F. To avoid misinterpretation, however, it is important to note that the degree sum enters negatively into the definition of R_F in the case of unweighted and undirected graphs, due to the fact that this notion originated in Riemannian geometry and therefore carries over the normalizations natural in that field. In SI Figure S3, we show the distribution of R_F in the 4 classes of model networks analyzed here. By comparing with Figure 4, it is seen that DD provides insight into the structural heterogeneity of a network, which is not captured by Forman-Ricci curvature. In essence, we find that degree sum and degree difference are positively correlated in scale-free BA networks, which
seems of interest for further understanding of those networks. In general, however, one does not expect such a correlation, and indeed, the correlation of DD with R_O in all 4 classes of model networks analyzed here, and with R_F in all classes other than BA networks, seems to be negligible. Although edge betweenness seems to have a weakly positive correlation with DD across four classes of model networks, this correlation seems to be noticeable only for BA networks while being sufficiently small in RG graphs.

These observations further clarify that DD distribution, despite its connection with measures such as edge betweenness and discrete Ricci curvatures, is an independent measure. As explained in other subsections, DD distribution as a stand-alone measure can be informative for the local geometry of the edges in the network and heterogeneity in mixing patterns, and other edge-based measures considered here cannot be used as a canonical proxy for DD.

DD distribution and topological robustness

To test any potential relationship between DD value of edges and topological robustness of the network, we here compute the expected size of the largest connected component (LCC) in two ensembles of ER and BA networks during reverse edge percolation in increasing and decreasing order of DD. Through a comparative analysis, we also investigate the importance of DD for finding the minimum edge cut of the LCC.

Figure 8 shows the result of this reverse edge percolation analysis in ER and BA networks with respect to increasing and decreasing order of DD, increasing order of Forman-Ricci curvature (R_F), increasing order of Ollivier-Ricci curvature (R_O), and decreasing order of edge betweenness. In case of the BA network, this specific simulation shows a second-order phase transition when edges are removed in decreasing order of DD, a phenomenon observed for edge removal in increasing order of R_F. Moreover, in BA networks, the impact of failure of edges in decreasing order of DD on LCC size seems to be only negligibly different from when failure happens in decreasing order of edge betweenness. This similarity in BA networks is not simply due to the moderate positive correlation between these two measures, but has to do with the importance of local geometry for global connectivity in these networks. In other words, removing edges with large DD seems to be as detrimental to the LCC size as is removing edges with large edge betweenness, although the former, in contrast to the latter, depends only on the local geometry of the network. Thus, for purposes of robustness, the easily-computable and local DD can be a good proxy for the global edge betweenness. Therefore, edges with large DD play important roles for the global coherence in a network and they deserve systematic attention.

FIG. 8. Topological robustness of model networks with respect to deletion of edges based on DD, Forman-Ricci curvature (R_F), Ollivier-Ricci curvature (R_O), and edge betweenness centrality (Ebw). (a) Erdős-Rényi (ER) network with $n = 1000$ and $p = 0.01$. (b) Barabási-Albert (BA) network with $n = 1000$ and $\beta = 5$. In each case, we show the size of the largest connected component (LCC) normalized by the number of vertices in the graph as a function of the percentage of edges removed. Edges are deleted based on increasing and decreasing order of DD, increasing order of R_F, increasing order of R_O and decreasing order of Ebw. For each model, the plots show the mean and standard deviation of LCC size over an ensemble of 50 networks generated with the specified parameters.

The minimum cut [29] in a connected network is another factor that is an indicator of topological robustness. Minimum edge cut (MEC) is a set of edges of minimum size that, if removed, the initially connected network is no longer one connected component. In Figure 9, we compare the importance of each of the four edge-based measures – DD, edge betweenness, R_O and R_F – towards predicting the MEC in the network. We compute the MEC of the LCC in each of the 4 model networks analyzed here, and then, determine the percentile of each edge in the MEC with respect to the value of the measure on the edges in the LCC. Thereafter, we pool the percentiles of the edges
FIG. 9. Comparison of the importance of the four edge-based measures, DD, edge betweenness (Ebw), Forman-Ricci curvature (R_F), and Ollivier-Ricci curvature (R_O), towards predicting the minimum edge cut (MEC) in model networks. For the MEC of the LCC in each model network, we determine the percentile of each edge in the MEC with respect to the value of the four measures on the edges. Then, we pool the edge percentiles for MEC corresponding to each network in the ensemble. Each violin plot shows the distribution of these edge percentiles in the pool corresponding to 50 networks in the ensemble for the corresponding model network. For each model, the parameters used are indicated besides it in parenthesis as described in caption of Figure 4.

for MEC corresponding to each network in the ensemble. In Figure 9, each violin plot shows the distribution of these edge percentiles in the pool corresponding to 50 networks in the ensemble for each model network. This figure shows that MEC in BA networks seems to be rather uncorrelated with these edge-based measures. In RG graphs, while only edge betweenness and the two curvature measures show some potential for being used to infer MEC in sparser RG graphs, for denser RG graphs, where most edges in the MEC seem to be almost flat with respect to Forman Ricci curvature, DD appears as the second best predictor of MEC. These two best predictors of MEC in dense RG graphs are, however, the worst predictors of MEC in ER networks. Notably, DD seems to be the most important measure for inferring MEC in WS networks, especially when the network is highly regular. Thus, this simple measure seems to play an important role in keeping the LCC connected, or in other words, having a larger LCC, in a variety of network structures.

CONCLUSIONS

Unravelling the structure of complex networks is a key interest since the rise of network science. To better understand the structure of large networks, it is necessary to study both the global macro-scale properties and the local features from which the global network structure emerges. Heterogeneity and homogeneity in mixing patterns of vertices in complex networks is an important known characterizing feature of network structure, which reveals features beyond the degree sequence. Degree assortativity was famously introduced to quantify such heterogeneity at a global scale. In this contribution, we propose degree difference (DD) as the atomic component of assortativity and explain the significance of this local edge-based measure. We explain how this simple, elegant, computationally inexpensive, and yet unexplored measure can reveal valuable information about network structure. Furthermore, we show that DD can be used to characterize the local network geometry and shed light on an understudied source of similarities or differences between different classes of model and real networks. Notably, our numerical and analytical computations speak to independence and usefulness of this measure in its own right, as well as its importance for topological robustness of networks. In conclusion, we recommend the simple measure, degree difference, to be included in the standard toolkit of network science.

Moving forward, we expect this research will seed additional studies on local structural properties of complex networks in both theoretical and applied settings. As the transition from local to global mixing patterns in complex networks is yet to be systematically explored, we believe further theoretical and empirical studies on heterogeneity in mixing patterns at various scales of coarse-graining can help improve our understanding of the mesoscale network structure and how the global topology of complex networks emerges from its local geometry.
APPENDIX

In this paper, we studied the DD distribution in a number of model and real-world networks. Moreover, we have used this dataset for an empirical analysis of the properties of DD measure, its significance in revealing topological features of networks, and its correlation with other network measures.

The model networks considered in our analysis are as follows:

- **Erdös-Rényi (ER) random graphs [23]**: This model generates network with *n* vertices and between any given pair of vertices, there exists an edge with probability *p*.

- **Watts-Strogatz (WS) small-world graphs [7]**: This model generates network by starting with a *k*-regular (ring) lattice with *n* vertices, and then, each edge is randomly rewired with probability *β*. The model gives networks with small-world property, i.e., with small average path length and high clustering coefficient.

- **Barabási-Albert (BA) scale-free graphs [8]**: This model generates network via a preferential attachment scheme, wherein at each step, *β* new edges connect a new vertex to existing vertices *v* with probability proportional to \(\text{deg}(v) \). These networks display power-law degree distribution and scale-free property.

- **Random geometric (RG) graphs [30]**: This model generates network with *n* vertices, each taking a random position in a 2-dimensional Euclidean plane. Thereafter, by fixing a radius parameter *ε* for the network, each vertex *v* is connected to all other vertices that fall inside the ball \(B_{\epsilon}(v) \) centered at *v*.

We have also analyzed the following undirected real-world networks:

- **Actor [31]**: This is a co-stardom network with 702388 actors as its vertices and 29397908 edges connecting those actors who appeared in at least one movie together.

- **Collaboration [32]**: Condensed Matter Physics collaboration network with 23133 vertices corresponding to authors who authored papers posted on arXiv during the period from January 1993 to April 2003. This network has 93439 edges with each edge between two vertices (authors) signifying co-authorship in at least one paper.

- **Internet [33]**: This is network of 192244 routers (vertices) with 609066 connections (edges).

- **Phone calls [34]**: This network captures phone calls between a sample of active cell phone users. In this network, there are 36595 users represented as vertices with 56853 edges between them. Two vertices are connected with an undirected edge if the corresponding users have at least once made a phone call to each other over the observed time interval.

- **Power grid [7]**: This network represents the power grid in western states of USA. Vertices are power plants and edges represent direct connections between power plants via a cable. In this network, there are 4941 vertices and 6594 edges between them.

- **Protein [35]**: This network is a human protein-protein interaction network with 2018 proteins as vertices and 2930 edges which represent mutual engagement of a pair of proteins in an interaction.

In addition to the above-mentioned undirected real networks, we have also analyzed the following directed real networks:

- **Citation [36]**: This is a network of citations between 449673 papers (vertices) published in APS journals. A directed edge points from a vertex *v* to a vertex *u* if *v* cites *u*. There are 4685576 directed edges in this network.

- **Email [37]**: This network is based on Email communications at the University of Kiel, Germany over 112 days. There are 57194 vertices, which are the email addresses, and there is a directed link from vertex *i* to vertex *j* if *i* has sent at least one email to *j*. Overall, there are 93090 directed edges in this network.

- **Metabolic [38]**: This is a network of metabolic reactions in bacterium *E. coli* where vertices are metabolites and directed edges are reactions linking reactants to products of reactions. This network contains 1039 metabolites as vertices and 4741 reactions as directed edges.

- **WWW [39]**: This is a network of hyperlinks within nd.edu domain. In this network, vertices are webpages and there is a directed edge from a webpage *v* to a webpage *u* if *v* includes at least one hyperlink to *u*. This network contains 325729 vertices and 1117563 edges.
Acknowledgements

A.S. would like to acknowledge support from the Max Planck Society, Germany, through the award of a Max Planck Partner Group in Mathematical Biology. A.F. would like to thank Shirin Maleki for assistance with creating Figure 1.

Author contributions

A.F., A.S. and J.J. designed the study. A.F. performed the simulations. A.F., A.S. and J.J. analyzed results. A.F., A.S. and J.J. wrote the manuscript. All authors reviewed and approved the manuscript.

[1] J. L. Moreno, *Who shall survive?: A new approach to the problem of human interrelations*. (Nervous and mental disease publishing, 1934).
[2] J. L. Moreno, *Sociometry* 6, 299 (1943).
[3] M. H. A. Newman, *Mind* 37, 137 (1928).
[4] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Physics reports 424, 175 (2006).
[5] M. E. Newman, A.-L. Barabási, and D. J. Watts, *The structure and dynamics of networks*. (Princeton university press, 2006).
[6] G. Caldarelli, *Large scale structure and dynamics of complex networks: from information technology to finance and natural science*, Vol. 2 (World Scientific, 2007).
[7] D. J. Watts and S. H. Strogatz, *Nature* 393, 440 (1998).
[8] A. L. Barabási and R. Albert, *Science* 286, 509 (1999).
[9] R. Albert and A. L. Barabási, *Reviews of Modern Physics* 74, 47 (2002).
[10] F. Bauer, J. Jost, and S. Liu, Math. Res. Lett. 19, 1185 (2012).
[11] J. Jost and S. Liu, *Discrete & Computational Geometry* 51, 300 (2014).
[12] R. Sandhu, T. Georgiou, E. Reznik, L. Zhu, I. Kolesov, Y. Senbabaoglu, and A. Tannenbaum, *Scientific Reports* 5, 12323 (2015).
[13] R. Sreejith, K. Mohanraj, J. Jost, E. Saucan, and A. Samal, *Journal of Statistical Mechanics: Theory and Experiment*, P063206 (2016).
[14] A. Samal, R. P. Sreejith, J. Gu, S. Liu, E. Saucan, and J. Jost, *Scientific Reports* 8, 8650 (2018).
[15] M. Piraveenan, M. Prokopenko, and A. Y. Zomaya, *EPL* 84, 28002 (2008).
[16] C. Ni, Y. Lin, F. Luo, and J. Gao, *Scientific Reports* 9, 1 (2019).
[17] R. S. Sandhu, T. T. Georgiou, and A. R. Tannenbaum, *Science Advances* 2, e1501495 (2016).
[18] M. Jackson, *Social and Economic Networks* (Princeton Univ. Press, 2008).
[19] D. N. Fisher, M. J. Silk, and D. W. Franks, in *Trends in Social Network Analysis* (Springer, 2017) pp. 1–19.
[20] M. E. J. Newman, *Networks: An Introduction* (Oxford University Press, 2010).
[21] M. Piraveenan, M. Prokopenko, and A. Y. Zomaya, in *ALIFE* (2010) pp. 329–336.
[22] P. Erdös and A. Rényi, *Bull. Inst. Internat. Statist* 38, 343 (1961).
[23] M. E. J. Newman, *Physical Review Letters* 89, 208701 (2002).
[24] B. Fotouhi and M. G. Rabbat, *European Physical Journal B* 86, 510 (2013).
[25] A. Antonioni and M. Tomassini, *Physical Review E* 86, 037101 (2012).
[26] L. C. Freeman, *Sociometry* 40, 35 (1977).
[27] M. Girvan and M. Newman, *Proceedings of the National Academy of Sciences USA* 99, 7821 (2002).
[28] A. H. Esfahanian, in *Topics in structural graph theory* (Cambridge University Press, 2013) pp. 268–281.
[29] J. Dall and M. Christensen, *Physical Review E* 66, 016121 (2002).
[30] A. L. Barabási, *Network science* (Cambridge University Press, 2016).
[31] J. Leskovec, J. Kleinberg, and C. Faloutsos, ACM transactions on Knowledge Discovery from Data (TKDD) 1, 2 (2007).
[32] “Center for applied internet data analysis (caida),” Retrieved from http://www.caida.org/tools/measurement/skitter/router_topology/.
[33] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, *Science* 327, 1018 (2010).
[34] H. Yu, P. Braun, M. A. Yildirim, I. Lemmens, K. Venkatesan, J. Sahalie, T. Hirozane-Kishikawa, F. Gebreab, N. Li, N. Simonis, T. Hao, J.-F. Rual, A. Dricot, A. Vazquez, R. R. Murray, C. Simon, L. Tardivo, S. Tam, N. Svrzikapa, C. Fan, A.-S. de Smet, A. Motyl, M. E. Hudson, J. Park, X. Xin, M. E. Cusick, T. Moore, C. Boone, M. Snyder, F. P. Roth, A.-L. Barabási, J. Tavernier, D. E. Hill, and M. Vidal, *Science* 322, 1018 (2008).
[35] S. Redner, “Citation statistics from more than a century of physical review,” Preprint at https://arxiv.org/abs/physics/0407137 (2004).
[36] H. Ebel, L.-I. Mielsch, and S. Bornholdt, *Physical Review E* 66, 035103 (2002).
[37] J. Schellenberger, J. O. Park, T. M. Conrad, and B. Ø. Falsson, *BMC Bioinformatics* 11, 213 (2010).
[39] R. Albert, H. Jeong, and A.-L. Barabási, Nature \textbf{401}, 130 (1999).
FIG. S1. Forman-Ricci curvature (R_F) distributions in 4 different model networks. (a) Erdős-Rényi (ER), (b) Watts-Strogatz (WS), (c) Barabási-Albert (BA), (d) Random Geometric (RG). For each model, the parameters used are indicated besides it in parenthesis. For ER model, the parameters are number of vertices n and probability p of connecting an edge between any pair of vertices. For WS model, the parameters are number of vertices n, the number of neighbours k to which each vertex is connected in the starting regular graph and rewiring probability β. For BA model, the parameters are number of vertices n and number of edges β that are attached to the new vertex at each iteration step. For RG model, the parameters are number of vertices n and radius ϵ. The reported correlation for each model and a given set of parameters is an average over a sample of 50 networks.
FIG. S2. DD distributions for a given model network and two rewired networks with same degree sequence as the given network and with pairwise global assortativity difference of ≤ 0.025 with respect to the given (starting) network. (a) Erdős-Rényi (ER) networks with $n = 500$ and $p = 0.012$. (b) Barabási-Albert (BA) networks with $n = 500$ and $\beta = 5$. In each subfigure, we show the average and standard deviation of the DD values over an ensemble of 20 networks as dots and error bars, respectively. In each plot, the legend gives the average and standard deviation of the global assortativities for the ensemble of 20 networks. Interestingly, although the global assortativity of each rewired network is ≤ 0.025 different from the starting network, and the difference between global assortativities of the two rewirings is ≤ 0.05, difference in DD distribution is clearly visible.

FIG. S3. The evolution of DD distribution of Barabási-Albert (BA) networks created with $n = 100$ and $\beta = 5$ wherein the degree sequence is kept fixed while global assortativity differs. We start with a disassortative network and gradually increase the assortativity through a targeted rewiring scheme. Briefly, this heuristic to increase the assortativity of a given network is as follows. Given the graph at time step t, $G_t(V, E)$, we randomly pick two edges, $\{v, u\}$ and $\{w, z\}$ from E. We then remove the edges out of the network to obtain $\hat{G}(\hat{V}, \hat{E})$, and relabel v, u, w and z to v_1, v_2, v_3, and v_4 where the vertices are indexed in the decreasing order of their degree. We next add a pair of edges $\{v_1, v_2\}$ and $\{v_3, v_4\}$ to \hat{E}. If the assortativity of $\hat{G}(\hat{V}, \hat{E})$ is greater than that of G_t, we accept the change, and initialize G_{t+1} to $\hat{G}(\hat{V}, \hat{E})$, otherwise, we discard the change and initialize G_{t+1} to G_t. We continue this process for a fixed number of time steps to obtain a more assortative network in comparison to the starting network. In this figure, we show the evolution of DD distributions for an ensemble of 20 BA networks with $n = 100$ and $\beta = 5$ starting as disassortative networks in subfigure (a) and evolving to assortative networks in (h). In each subfigure, we show the average and standard deviation of the DD values over an ensemble of 20 networks as dots and error bars, respectively. The ensemble average of the assortativity values are specified in the legend of each plot from (a)-(h).