Mesenchymal stromal cells therapy in radiation oncology regenerative medicine

Osama Muhammad Maria1,4, Nicoletta Eliopoulos2,4 and Thierry Muanza1,3,5*
1Experimental Medicine Department, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
2Surgery Department, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
3Radiation Oncology Department, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
4Lady Davis Research Department, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
5Oncology Department, McGill University, Montreal, Quebec, Canada

Abstract

Mesenchymal stromal cells (MSCs) are multipotent somatic cells resident in many tissues and organs. They have specific characteristics that distinguish them from other cell types. They are self-renewing cells with multi-lineage differentiation potential. In addition, they possess anti-inflammatory and immunomodulatory properties. Studies have shown that they could be used as vehicles to deliver certain therapeutic gene products as well. These cells possess secretary capabilities of certain cytokines and growth factors that mediate various paracrine effects. They increase the secretion of the anti-inflammatory interleukin-10 (IL-10) together with lowering the availability of pro-inflammatory mediators and cytokines, e.g. tumor necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ), and interleukin-1-beta (IL-1β) by signaling to the immune system elements, e.g. dendritic cells, T-cells, B-cells, and natural Killer cells (NK cells). Recently, studies have investigated such anti-inflammatory properties of MSCs in the repair of radiation-induced normal tissue injury, also called radiation oncology regenerative medicine (RORM), supported by the recently known MSCs radiation resistance potential. In this review, we summarize MSCs radio-resistant mechanisms, anti-inflammatory properties, and their application in RORM with special attention to adipose tissue-derived MSCs (aMSCs).

Abbreviations: aMSCs: Adipose tissue-derived mesenchymal stromal cells, ATM: Ataxia telangiectasia mutated protein, b-FGF: Basic fibroblast growth factor, Chk: Check point cell cycle kinase, DSB: Double stranded DNA breaks, HGF: Hepatocyte growth factor, HR: Homologous recombination, HSCs: Hematopoietic stem cells, IL-10: Interleukine-10, IL-1β: Interleukine-1-beta, IDO: Indoleamine 2,3-dioxygenase, INF-γ: Interferon-gamma, MSCs: Mesenchymal stromal cells, NHEJ: Non-homologous end-joining, NK: Natural killer cells, NO: Nitric oxide, PGE2: Prostaglandin-E2, RORM: Radiation oncology regenerative medicine, TGF-β: Tumor growth factor-beta, TNF-α: Tumor necrosis factor-alpha

Introduction

Mesenchymal stromal/Stem cells (MSCs) are multipotent somatic progenitor cells that have been isolated from different tissues, such as bone marrow, adipose tissue, muscles and skin [1-3]. They can be expanded ex-vivo to hundreds of millions of cells, maintaining their phenotype and characteristics, and used as therapies in different diseases [1-3]. Another property of these cells is their homing to the site of tissue injury, an ability that widens the choices for their route of administration [2,4,5]. In addition to their multi-lineage differentiation potential [6], these cells possess anti-inflammatory and immunomodulatory properties and paracrine effects that qualified them for regenerative medicine applications (Figure 1) [7-11]. Furthermore, MSCs could be genetically engineered and used as vehicles for delivering therapeutic gene products [12-14]. Studies in radiotherapy have shown that MSCs can be recruited to the radiation injury site where they secrete many cytokines and growth factors, e.g. prostaglandin-E2 (PGE2), nitric oxide (NO), hepatocyte growth factor (HGF), interleukin-10 (IL-10), tumor growth factor-beta (TGF-β), and indoleamine 2,3-dioxygenase (IDO) [15]. These soluble mediators inhibit the major components of the immune system and inflammation, e.g. dendritic cells, T-cells, B-cells, and natural killer cells (NK cells) [15]. The final result will be an increase in the secretion of the anti-inflammatory interleukin-10 (IL-10) together with lowering the availability of pro-inflammatory mediators and cytokines, e.g. tumor necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ), and interleukin -1-beta (IL-1β) [15] (Figure 1).

Mesenchymal stromal cells (MSCs) clinical trials in various disorders

MSCs have been applied for various repairs, such as of arthritis [16], cardiac muscle [17,18], lung tissue [14], diabetes [19], skin [20-23], skeletal tissue [24], and digestive tract tissue [12,25,26]. Table 1 shows 92 recent clinical trials for MSCs therapies in various disorders.
MSCs radio-biological response

The exposure of MSCs to ionizing radiation (IR) induces direct and indirect double stranded DNA breaks (DSB) which are detected by Poly (ADP-ribose) polymerase (PARP) and heterodimeric Ku protein complex (Ku70/80) sensor proteins [27,28]. At the DSB location, PARP started the signal amplification upon formation of the Mre11, RAD50, and NBS-1 protein complex which leads to recruitment and auto-phosphorylation of Ataxia Telangectasia mutated protein (ATM). Phosphorylated ATM (p-ATM) is a main station that leads to multiple downstream signals. P-ATM enhances the phosphorylation of histone H2X (to γ-H2AX) and DNA-PK (to p-DNA-PK), phosphorylates P53 (a tumor suppressor regulatory protein), activates the cell cycle checkpoint effector protein kinases (Chk-1 and Chk-2), and prepares for cell cycle arrest (G2/M). In addition, the Chk1 activation is augmented by the replication stress-mediated ATR pathway (through replication protein A, RPA), while the Chk2 activation is enhanced directly through Ku70/80-mediated p-DNA-PK signaling [27,28]. Cell division cycle phosphatase (Cdc25) is crucial for removing the inhibitory phosphorylation on specific residues on the cyclin-dependent kinase (Cdk). Chk1 phosphorylates Cdc25 in the presence of DNA damage resulting in the inhibition of Cdc25 activity. Chk1 and Chk2 are main inhibitors of Cdc25A and Cdc25C resulting in Cdk/cyclin-mediated cell cycle arrest [29]. It has been suggested that DSB in MSCs are repaired by activation of both the homologous recombination (HR, during S and G2 phases) and the non-homologous end-joining (NHEJ, during all cell cycle phases) DNA repair pathways [27,28,30]. Our recent study showed the activation of HR and NHEJ repair pathways in irradiated aMSCs [31]. In addition, p-ATM enhances the stabilization of the tumor suppressor regulatory protein and transcription factor P53 which up-regulates the expression and enhances the stabilization of the transcription factor and inhibitory regulatory protein p21, which potently inhibits Cdk's which are needed for the G1/S transition leading to inhibition of the entry into S phase [27].

The application of MSCs in radiation oncology regenerative medicine (RORM) was enhanced by their efficient radiation-induced DNA repair machinery and their relative radiation resistance [30-34]. Such radiation resistance was mediated by many mechanisms, e.g. the ATM phosphorylation, activation of cell cycle check points (G2/M arrest), and activation of single and double stranded DNA repair by both homologous and non-homologous recombination mechanisms and other pathways [30,31] (Figure 2). DSB resulting from the direct and indirect radiation injury stimulate the phosphorylation of ATM which is the proximal step for cell cycle check point’s activation (G2/M arrest). In addition, the nuclear apoptotic factor P84 (P84/53E10 = the nuclear protein encoded by the N5 gene) is up regulated, which participates in the apoptotic response of the aMSCs. It has been documented that irradiated aMSCs showed p-ATM dependent and p-ATM independent (P84-mediated) G2/M arrest [31]. Phosphorylated histone-2AX (γ-H2AX) stimulated both the HR and the NHEJ of the dsDNA breaks and other repair mechanisms [35]. Rad-51 is considered one of the mandatory proteins for HR to occur. DNA-PK is the major protein in the NHEJ repair pathway. Studies have shown that both proteins (Rad-51 and DNA-PK) were up regulated in irradiated MSCs (Figure 2) [28,30,31].
Table 1. Mesenchymal Stromal cells (MSCs) clinical trials in various disorders as listed on www.ClinicalTrials.gov by the National Institute of Health (NIH) by Nov. 2015.

NCT #	Title	Conditions	Interventions	Last Verified																	
NCT01589549	Mesenchymal Stromal Cells for Acute Graft Versus Host Disease	Acute GVH Disease	Biological: Mesenchymal stromal cell therapy	Jun-15																	
NCT02057965	Mesenchymal Stromal Cell Therapy in Renal Recipients	Renal Transplant Rejection/Fibrosis	Drug: Mesenchymal Stromal Cells	Mar-15																	
NCT02032446	Umbilical Cord Derived Mesenchymal Stromal Cells For The Treatment of Severe Steroid-resistant Graft Versus Host Disease	Hematologic Malignancies	Biological: UMBILICAL CORD DERIVED MESENCHYMAL STROMAL CELLS (UC-MSC)	Apr-15																	
NCT02012153	Mesenchymal Stromal Cells in Kidney Transplant Recipients	Kidney Transplant Rejection	Biological: Mesenchymal Stromal Cells	Oct-15																	
NCT01090817	An Australian Study of Mesenchymal Stromal Cells for Crohn's Disease	Crohn Disease	Drug: Mesenchymal stromal cells (MSC) for infusion	Jun-15																	
NCT00644410	Autologous Mesenchymal Stromal Cell Therapy in Heart Failure	Congestive Heart Failure	Biological: Mesenchymal stromal cell	Biological: Saline	Mar-15																
NCT01061099	Repeated Inusions of Mesenchymal Stromal Cells in Children With Osteogenesis Imperfect	Osteogenesis Imperfecta Type II	Osteogenesis Imperfecta Type III	Biological: Mesenchymal Stromal Cells	Apr-15																
NCT02150551	Safety and Tolerability Of Allogeneic Mesenchymal Stromal Cells in Pediatric Inflammatory Bowel Disease	Inflammatory Bowel Diseases	Biological: Allogeneic bone marrow-derived mesenchymal stromal cells	Sep-15																	
NCT01522716	Mesenchymal Stromal Cells as Treatment of Chronic Graft-versus-host Disease	Graft-Versus-Host Disease	Biological: Mesenchymal stromal cells	Nov-15																	
NCT02232789	A Phase I/II Study Evaluating Allogeneic Mesenchymal Stromal Cells in Adults With Recessive Dystrophic Epidermolysis Bullosa	Recessive Dystrophic Epidermolysis Bullosa	Drug: Mesenchymal stromal cells	Dec-14																	
NCT02921770	Treatment of Chronic Graft-Versus-Host Disease With Mesenchymal Stromal Cells	Chronic Graft-Versus-Host Disease	Biological: Mesenchymal Stromal Cells	Nov-14																	
NCT01764100	Mesenchymal Stromal Cells (MSCs) for the Treatment of Graft Versus Host Disease (GVHD)	Graft vs Host Disease	Genetic: Mesenchymal stromal cells	Jan-13																	
NCT02230514	Mesenchymal Stromal Cells for the Treatment of Non-union Fractures of Long Bones	Atrophic Nonunion of Fracture	Drug: XCEL-MT-OSTEO-ALPHA	Other: autologous iliac crest	Procedure: Surgery	Jul-15															
NCT02215811	Treatment of Severe Acute Respiratory Distress Syndrome With Allogeneic Bone Marrow-derived Mesenchymal Stromal Cells	Acute Respiratory Distress Syndrome, Adult	Biological: Mesenchymal stromal cells	Aug-14																	
NCT01449032	Mesenchymal Stromal CELL Therapy in Patients With Chronic Myocardial Ischemia (My Stromal Cell Trial)	Chronic Ischemic Heart Disease	Biological: MSC	Biological: Saline	Jun-14																
NCT02580695	A Study to Assess Safety and Efficacy of Umbilical Cord-derived Mesenchymal Stromal Cells in Knees With Osteoarthritis	Ostearthritis	Biological: umbilical-cord mesenchymal stromal cells	Drug: Hyaluronic Acid	Oct-15																
NCT01038596	Mesenchymal Stromal Cells and Osteoarthritis	Ostearthritis	Biological: umbilical-cord mesenchymal stromal cells	Drug: Hyaluronic Acid	Dec-09																
NCT02495766	Autologous Mesenchymal Stromal Cells for Multiple Sclerosis	Relapsing-Remitting Multiple Sclerosis	Secondary Progressive Multiple Sclerosis	Drug: XCEL-MC-ALPHA	Drug: Placebo	Nov-15															
NCT02565459	MSC and Kidney Transplant Tolerance (Phase A)	Chronic Renal Failure	Biological: Mesenchymal Stromal Cells	Sep-15																	
NCT01849237	Russian Clinical Trial of Mesenchymal Cells in Patients With Septic Shock and Severe Neutropenia	Septic Shock	Nonchemotherapy	Drug: Neutropenia After Chemotherapy	Genetic: Mesenchymal stromal cells	Drug: Standard therapy of septic shock	May-13														
NCT02387151	Allogeneic Mesenchymal Stromal Cell Therapy in Renal Transplant Recipients	Rejection/Graft Loss	Procedure: mesenchymal stem cell infusion	Mar-15																	
NCT01175655	A Study to Evaluate the Potential of Mesenchymal Stromal Cells to Treat Obliterative Bronchiolitis After Lung Transplantation	Bronchiolitis Obliterans	Lung Transplantation	Other: MSC	Apr-15																
NCT00957931	Allo-HCT MUD for Non-malignant Red Blood Cell (RBC) Disorders: Sickle Cell, Thal, and DBA: Reduced Intensity Conditioning, Co-tx MSCs	Sickle Cell Disease	Thalassemia	Diamond-Blackfan Anemia	Procedure: Bone marrow transplantation	Biological: Mesenchymal Stromal Cells	Dec-12														
NCT01742260	Cranial Reconstruction Using Mesenchymal Stromal Cells and Resorbable Biomaterials	Surgically-Created Resection Cavity	Procedure: Repair of cranial defects by tissue engineering	Jun-15																	
NCT02260375	MSC Therapy in Liver Transplantation	Liver Transplant Rejection	Biological: Mesenchymal Stromal Cells	Sep-15																	
NCT01872624	Safety Study of Bone-marrow Derived Mesenchymal Stromal Cells Associated With Endobronchial Valves in Emphysema	Pulmonary Emphysema	Procedure: Bronchoscopy	Mar-15																	
NCT01586312	Treatment of Knee Osteoarthritis With Allogenic Mesenchymal Stem Cells	Ostearthritis, Knee	Athritis	Of Knee	Knee Osteoarthritis	Other: Allogeneic mesenchymal stromal cells	injection	Drug: Hyaluronic Acid	Sep-15												
NCT01860417	Treatment of Degenerative Disc Disease With Allogenic Mesenchymal Stem Cells (MSV) Combining Intervertebral Disc Disease	Low Back Pain	Degenerative Disc Disease	Intervertebral Disc Disease	Low Back Pain	Biological: Allogenic Mesenchymal Stromal Cells Drug: Mepivacaine	Sep-15														
NCT02384018	Mesenchymal Stem Cell and Islet Co-transplantation	Chronic Pancreatitis	Diabetes	Biological: autologous mesenchymal stromal cell	Dec-14																
NCT01306513	Safety and Feasibility Study of Administration of Mesenchymal Stem Cells for Treatment of Emphysema	Biological: autologous bone marrow derived mesenchymal stromal cells	Nov-12																		
NCT02359929	BMT Auto MSCs GvHD Ph1	Graft Versus Host Disease	Acute Graft Versus Host Disease	Chronic Graft Versus Host Disease	Biological: Autologous mesenchymal stromal cells (MSCs)	Aug-15															
NCT02585622	Novel Stromal Cell Therapy for Diabetic Kidney Disease	Biological: Mesenchymal Stromal Cells	Other: Placebo	Oct-15																	
NCT02033525	Mesenchymal Stromal Cells for Degenerative Musculoskeletal Injury	Chronic Meniscal Injury Drug: XCEL-M-ALPHA and standard rehabilitation Other: Rehabilitation	Jul-15																		
NCT02589119	Stem Cell Fistula Plug in Cryptoglandular Perianal Fistulas (MSC-AFP) Perianal Fistula	Biological: Human Mesenchymal Stem Cells (hMSCs)	Other: Standard of Care	Jun-15																	
NCT02421484	Cellular Immunotherapy for Septic Shock: A Phase I Trial	Septic Shock Biological: Allogeneic bone marrow derived mesenchymal stromal cells	Apr-15																		
NCT02055625	Mesenchymal Stem Cells as a Treatment for Oral Complications of Graft-versus-host Disease	Graft -Versus-host-disease Biological: Mesenchymal stromal cells	Mar-15																		
NCT02408432	Intravenous Administration of Allogeneic Bone Marrow Derived Multipotent Mesenchymal Stromal Cells (MSCs) in Patients With Recent Onset Myelofibrosis	Refractory Chronic Leukemia	Biological: Human Mesenchymal Stem Cells (hMSCs)	Other: Standard of Care	Jun-15																
NCT02181478	Intra-Osseous Co-Transplant of UCB and hMSC	Acute Lymphoblastic Leukemia	Acute Myelogenous Leukemia	Myelodysplastic Syndromes	Myelofibrosis	Relapsed Non-Hodgkin Lymphoma	Refractory Non-Hodgkin Lymphoma	Hodgkin Lymphoma	Refractory Hodgkin Lymphoma	Relapsed Chronic Lymphocytic Leukemia	Refractory Chronic Lymphocytic Leukemia	Lymphoid Malignancies	Chronic Myelogenous Leukemia	Drug: cyclophosphamide	Drug: fludarabine phosphate	Radiation: total-body irradiation	Drug: cyclophosphine	Drug: mycophenolate mofetil	Procedure: umbilical cord blood transplantation	Procedure: mesenchymal stem cell transplantation	Jul-15
NCT02351011	Human Autologous MSCs for the Treatment of Mid to Late Stage Knee OA Osteoarthritis of Knee	Biological: 1 x 10^6 MSCs	Biological: 10 x 10^6 MSCs	Feb-15																	
NCT02270707	MSC and Cyclophosphamide for Acute Graft-Versus-Host Disease (aGVHD) Prophylaxis	Leukemia	Multiple Myeloma Drug: Cyclophosphamide	Biological: Mesenchymal stromal cells	Oct-14																
NCT01922908	Mesenchymal Stromal Cells for Ischemic Stroke Ischemic Stroke	Biological: MSC Infusion	Biological: Placebo Comparator	May-15																	
NCT02145923	Effectiveness and Safety of MSCs for Enhancing Hematopoietic Recovery and Prophylaxis of Neutropenic Enterocolitis	NeutropenicEnterocolitis Myelosuppressive Chemotherapy Induced Bone Marrow Aplasia Procedure: Peripheral blood stem cell mobilisation and collection	Drug: High-dose chemotherapy	Drug: Bone marrow derived allogeneic MSCs infusion	Procedure: Autologous peripheral blood stem cells infusion	Jun-15															
NCT01275612	Mesenchymal Stem Cells In Cisplatin-Induced Acute Renal Failure In Patients With Solid Organ Cancers Solid Tumors	Acute Kidney Injury	Biological: Mesenchymal stromal cell infusion	Oct-15																	
NCT019909154	Safety Study of Local Administration of Autologous Bone Marrow Stromal Cells in Chronic Paraplegia	Spinalepio Divele	Biological: Mesenchymal stromal cell therapy	Nov-13																	
NCT00395200	Mesenchymal Stem Cells in Multiple Sclerosis (MSCMS)	Multiple Sclerosis	Procedure: MSC Treatment	Oct-11																	
NCT00260338	Stem Cell Therapy for Vasculogenesis in Patients With Severe Myocardial Ischemia	Myocardial Ischemia	Coronary Heart Disease	Biological: stem cell	Sep-15																
NCT01659762	A Phase I Study Evaluating Autologous Bone Marrow Derived Mesenchymal Stromal Stromal for Crohn's Disease	Crohn's Disease	Biological: autologous mesenchymal stromal cell	Jul-15																	
NCT02382874	Allotogenic AD-MSC Transplantation in Idiopathic Nephrotic Syndrome (Focal Segmental Glomerulosclerosis)	Focal Segmental Glomerulosclerosis	Biological: Intravenous injection	Mar-15																	
NCT02448849	Autologous BM-MSC Transplantation in Combination With Platelet Lysate (PL) for Nonunion Treatment	Bone Fracture	Biological: Percutaneous injection Other: Percutaneous injection	Sep-15																	
NCT01915927	Stem Cell Fistula Plug in Perianal Crohn's Disease	Perianal Crohn's Disease Drug: MSC-AFP	Jan-14																		
NCT01686139	Safety Study of Stem Cells Treatment in Diabetic Foot Ulcers	Type I Diabetes Mellitus With Ulcer Type II Diabetes Mellitus With Ulcer	Biological: ABMD-MSC	Jan-14																	
NCT02017912	Phase 2, Randomized, Double Blind, Placebo Controlled Multicenter Study of Autologous MSC-NTF Cells in Patients With ALS	Amyotrophic Lateral Sclerosis (ALS) Biological: Autologous MSC-NTF cells	Jul-15																		
MSCs applications in radiation oncology regenerative medicine (RORM)

Adding up all their beneficial characteristics, MSCs have been investigated in RORM preclinical and clinical studies (Table 2). Nevertheless, the few clinical data representing the therapeutic benefits of the application of MSCs in radiation-induced normal tissue injury are promising. Among these, in radiation-induced bone injury, MSCs therapy caused early hematopoietic recovery with improved osteonecrosis. In radiation-induced intestinal injury, MSCs therapy showed decreased oxidative stress of UVB radiation. MSCs have been applied for the repair of radiation-induced normal tissue injuries where they were administered systemically and led to decreased radiation-induced skin fibrosis through enhancing the secretion of IL-10 and increasing the infiltration of anti-inflammatory regulatory CD163(+) macrophages, in addition to decreasing the secretion of IL-1 beta and the number of infiltrated pro-inflammatory CD80(+) macrophages [36]. It was suggested that the autologous grafting of MSCs is more efficient than the allogenic grafting in cutaneous radiation syndrome [20]. MSCs secrete growth factors and anti-inflammatory mediators that can be combined with other external growth factors, e.g. basic fibroblast growth factor (b-FGF) in order to improve the healing of radiation-induced skin damage [37]. The improved migration of fibroblasts and collagen production will protect the fibroblasts from the oxidative stress of UVB radiation [37].

Intestinal repair application after radiation exposure

MSCs have been applied for the repair of radiation-induced intestinal injury [26,38]. When MSCs were given before irradiation, treated mice showed higher body weight, thicker intestinal submucosal and muscle layer, significant higher survival rates and stromal derived factor-1 (SDF-1) expression, and lower numbers of radiation-induced ulcers [25,38]. Another study reported that MSCs therapy showed better maintenance of epithelial homeostasis, neovascularization, high anti-inflammatory IL-10, increased expression of VEGF, b-FGF and EGF in irradiated intestine, and increased the homing of CD31-positive hematopoietic stem cells or hematopoietic progenitor cells to the irradiated intestine [39]. MSCs therapy showed decreased

Study ID	Title	Disease	Treatment Details	Timeframe
NCT01071577	Collection of Bone Marrow From Healthy Volunteers and Patients for the Production of Clinical Bone Marrow Stromal Cells (BMSC) Products	Bone Marrow	Bone Marrow Stromal Cells; Mesenchymal Stromal Cells; Blood Donors	Aug-15
NCT00186914	Stromal Therapy of Osteodysplasia After Allogeneic Bone Marrow Transplantization	Osteodysplasia	Biological: Marrow stromal cell infusion	Feb-08
NCT00781872	Mesenchymal Stem Cells for the Treatment of MS	Multiple Sclerosis	Biological: injection of autologous stem cells	Oct-08
NCT02467387	A Study to Assess the Effect of Intravenous Dose of (aMBMC) to Subjects With Non-ischemic Heart Failure	Non-Ischemic Heart Failure	Drug: Allogenic Mesenchymal Bone Marrow Cells (aMBMC); Drug: Lactated Ringer's Solution	Jun-15
NCT02428817	Linaagliptin and Mesenchymal Stem Cells: A Pilot Study	Schizophrenia	Drug: Linaagliptin	Apr-15
NCT02064062	Autologous Strom Cells in Achilles Tendinopathy	Achilles Tendinitis, Right Leg; Achilles Tendinitis Achilles Degeneration; Achilles Tendon Thickening; Tendinopathy; Achilles Tendinitis, Left Leg	Biological: Autologous Mesenchymal Stem Cells	Feb-14
NCT01840540	MSC for Oclusive Disease of the Kidney	Atherosclerotic Renal Artery Stenosis; Ischemic Nephropathy; Renovascular Hypertension	Drug: Arterial infusion of autologous mesenchymal stem cells	Oct-15
NCT01795950	Safety Study of PLX-PAD Cells to Treat Pulmonary Arterial Hypertension (PAH)	Pulmonary Arterial Hypertension	Drug: PLX-PAD	Sep-15
NCT01377870	Evaluation of Autologous Mesenchymal Stem Cell Transplantation (Effects and Side Effects) in Multiple Sclerosis	Multiple Sclerosis	Biological: intravenous injection of mesenchymal stem cells; Biological: injection of cell free media	Aug-10
NCT01557534	Stem Cell Injection to Treat Heart Damage During Open Heart Surgery	Heart Disease; Ischemic Heart Disease; Coronary Artery Disease; Coronary Artery Disease (CAD)	Other: Cell Therapy	Nov-15
NCT00919958	Safety of Intramuscular Injection of Allogeneic PLX-PAD Cells for the Treatment of Critical Limb Ischemia	Peripheral Artery Disease; Peripheral Vascular Disease; Critical Limb Ischemia	Biological: PLX-PAD IM injection	Jun-12
NCT00951210	Safety of Intramuscular Injections (IM) of Allogeneic PLX-PAD Cells for the Treatment of Critical Limb Ischemia (CLI)	Peripheral Artery Disease; Peripheral Vascular Disease; Critical Limb Ischemia	Biological: PLX-PAD	Nov-11
NCT02323477	Human Umbilical Cord Stroma MSC in Myocardial Infarction	Chronic Ischemic Cardiomyopathy; Coronary Artery Bypass Surgery	Biological: stem cell transplantation	May-15
NCT015849159	Clinical Study of the Efficacy and Safety of the Application of Allogeneic Mesenchymal (Stromal) Cells of Bone Marrow, Cultured Under the Hypoxia in the Treatment of Patients With Severe Pulmonary Emphysema	Pulmonary Emphysema	Biological: Mesenchymal stem cells; Other: Reference therapy: 400 mL of 0.9% NaCl solution	Oct-15
NCT00821470	Treatment of Osteonecrosis of the Femoral Head by Bone Marrow Transplantization	Necrosis	Procedure: core decompression; Procedure: Bone marrow implantation into the necrotic lesion	Jan-09
NCT01172548	Safety and Efficacy Evaluation of Two Year Imatinib Treatment in Adjacent Gastrointestinal Stromal Tumor (GIST)	Gastrointestinal Stromal Tumors	Drug: Imatinibmesylate	Mar-15
activation and proliferation of T-lymphocytes together with increased local corticosterone secretion at the intestinal mucosa that highlighted an immunosuppressive effect of MSCs mediated by glucocorticoid receptors [40]. It was found that MSCs reparative and paracrine effects in radiation-induced intestinal injury were enhanced by pretreating them with TNF-alpha, IL-1 beta, and nitric oxide [41].

Lung tissue repair application after radiation exposure

MSCs therapy was shown to reduce radiation-induced lung tissue injury. Administration of MSCs resulted in decreased radiation-induced inflammatory response in terms of reduced pro-inflammatory mediators (IL-1 beta, IL-6, TNF-alpha), increased anti-inflammatory mediators (IL-10), reduced expression of TGF-β, alpha-smooth muscle actin (Alpha-SMA) and type 1 collagen level, and control of the pro- and anti-apoptotic mediators (Bcl-2, Bax, and caspase-3) protecting the lung tissue from apoptosis [42]. Moreover, MSCs therapy reduced bronchial epithelium senescence and lowered the risk of metastatic spread in lung tissue [43]. In addition, MSCs therapy decreased the mortality rate in mice with radiation-induced lung injury [44]. These cells showed a proven beneficial therapeutic effect in radiation pneumonitis as well [45].

Hematopoietic system homeostasis radiation injury

MSCs therapy has been shown to reduce the radiation-induced bone marrow apoptosis, and enhancemegakaryopoiesis and platelet recovery [46]. Moreover, MSCs therapy resulted in improved recovery of the hematopoietic system through decreased apoptosis and radiation-induced oxidative stress [47,48].

Radiation-induced cardiac injuries

A case report of a patient suffering from late radiation cardiomyopathy and radiation exudative pericarditis after radiotherapy of Hodgkin lymphoma showed that systemically transplanted MSCs partially differentiated to cardiomyocytes [49].

Radiation-induced salivary gland injury

In irradiated mice, systemically transplanted MSCs resulted in improvement of the saliva flow rate, lower salivary gland damage and atrophic acini, and higher mucin and amylase production [50].

Radiation-induced oral mucositis

Bone marrow-derived mesenchymal stromal cells (bmMSCs) therapy have been applied in fractionated radiation-induced oral mucositis where the administration of a systemic single dose of 6 million MSCs resulted in a significant decrease in ED50 (the RT dose that produces ulcer in 50% of irradiated mice) [51]. The first MSCs therapy for RIOM was done in 2014 by Schmidt et al. and concluded that transplantation of bone marrow (BM) or bmMSCs could modulate RIOM in fractionated RT, depending on the time of plantation [52]. Nevertheless, in another study they also concluded that bmMSCs plantation had no therapeutic benefits on RIOM in single dose RT when compared to the therapeutic gain by the mobilization of endogenous BM stem cells [53]. Further studies are needed in this field since the initial studies showed significant clinically relevant therapeutic effects.

Liver tissue protection

MSCs therapy reduced the radiation-induced liver injury by anti-oxidative, vascular protection, hepatocyte differentiation, and...
Studies with gene-modified MSCs for RORM

Genetically modified MSCs have been applied in RORM studies. HGF-expressing MSCs have improved the radiation-induced intestinal injury where they increased the expression of anti-inflammatory mediators and improved the histopathological picture of irradiated intestine [12]. Hepatocyte growth factor gene-modified adipose-derived mesenchymal stem cells improved the radiation induced liver damage in a rat model [13]. A similar picture was noted with TGF-beta-expressing MSCs therapy in radiation-induced lung injury [14].

Summary

Although limited data are available for the clinical application of MSCs in radiation-induced normal tissue injury, promising therapeutic benefits have been shown in a small number of isolated clinical studies [29].

Isolated clinical case reports showed promising beneficial effects of MSCs therapy, e.g. regenerating hematopoiesis and osteoradionecrosis, improved breathing parameters and lung immune function, improved intestinal mucosal inflammation, hemorrhages, fistulization, pain and diarrhea, and regenerated skin ulceration, in ionizing radiation-induced injury of bone, lung, intestine, and skin, respectively [29,40,56,57]. Table 2 summarizes the recent preclinical and clinical studies conducted in RORM applying MSCs therapies.

Adipose tissue-derived MSCs (aMSCs)

Adipose tissue-derived mesenchymal stem/stromal cells (aMSCs) are multipotent progenitor cells located in the stromal vascular fraction (SVF) of adipose tissue [2]. They are characterized by expressing cell surface antigens Sca1, CD106, CD105, CD73, CD29, and CD44, and lacking the expression of hematopoietic stem cells (HSCs) surface antigens (e.g. CD11b and CD45) [2,3,58]. In addition to their multi-lineage differentiation potential, they have anti-inflammatory/immune-modulatory and paracrine effects [59-61]. In addition, MSCs can home to the site of tissue injury that is caused by irradiation and inflammation [2,5,62]. These advantages, in addition to their source abundance, ease of isolation and high cell count after expansion, render aMSCs promising for cellular therapies [63]. Table 3 lists 22 clinical trials using aMSCs therapy for various disorders, with no trial yet found for their application in RORM, following a search on the clinical trials website of the NIH, i.e. https://clinicaltrials.gov/, in Nov. 2015.
Table 3. Adipose Mesenchymal stromal cells (aMSCs) clinical trials www.ClinicalTrials.gov by the national Institute of Health in RORM.

NCT #	Title	Conditions	Interventions	Last Verified
NCT02603744	Autologous Adipose Derived Mesenchymal Stromal Cells (aMSCs) Transplantation in Women With Premature Ovarian Failure (POF)	Premature Ovarian Failure	Biological: Intravarian injection of aMSCs	Nov-15
NCT01449032	MSCs Therapy in Patients With Chronic Myocardial Ischemia (MyStromaCell Trial)	Chronic Ischemic Heart Disease	Biological: aMSCs (Biological: Saline)	Jun-14
NCT01585857	ADIPOA - Clinical Study	Osteoarthritis	Biological: Autologous aMSCs administered for intra-articular use	Dec-14
NCT02338827	Allogenic aMSCs Transplantation in Idiopathic Nephrotic Syndrome (Focal Segmental Glomerulosclerosis)	Focal Segmental Glomerulosclerosis	Biological: Intravenous injection	Mar-15
NCT02240823	Can Fat Derived Stem Cells (SVF) be Used in the Treatment of Erectile Dysfunction After Prostatectomy	Delayed Grat Function	Other: aMSCs	Oct-15
NCT02326935	Multi-Center Study Safety of aMSCs for the Treatment of Multiple Sclerosis	Multiple Sclerosis	Biological: Autologous aMSCs	Jan-15
NCT00913289	Liver Regeneration Therapy Using Autologous aMSCs	Liver Cirrhosis	Biological: aMSCs	Oct-12
NCT01062750	Liver Regeneration Therapy by Intrahepatic Arterial Administration of Autologous aMSCs	Liver Cirrhosis	Biological: aMSCs dosage	Sep-15
NCT02338271	Autologous aMSCs Therapy for Intervertebral Disc Degeneration	Low Back Pain	Other: autologous aMSCs	Jan-15
NCT01709279	Clinical Trial of Autologous aMSCs Therapy for Ischemic Heart Failure	Ischemic Heart Failure	Biological: aMSCs dosage	Oct-12
NCT01739504	Autologous aMSCs Delivered Intr-a-articularly in Patients With Osteoarthritis.	Osteoarthritis	Procedure: Autologous aMSCs harvesting	Oct-15
NCT02145897	To Evaluate the Safety and Efficacy of IM and IV Administration of Autologous aMSCs for Treatment of CLI	Critical Limb Ischemia (CLI)	Biological: Autologous Stromal Vascular Fraction (SVF)	May-14
NCT01840540	MSC for Occlusive Disease of the Kidney	Atherosclerotic Renal Artery Stenosis/Ischemic Nephropathy/Renovascular Hypertension	Drug: Arterial infusion of autologous mesenchymal stem cells	Oct-15
NCT02135380	Evaluate Safety and Efficacy of Intravenous Autologous aMSCs for Treatment of Idiopathic Pulmonary Fibrosis	Idiopathic Pulmonary Fibrosis	Biological: Autologous Stromal Vascular Fraction (SVF)	May-14
NCT01548092	Stromal Vascular Fraction (SVF) for Treatment of Recto-vaginal Fistula	Recto-vaginal Fistula	Drug: aMSCs without expanded	Mar-12
NCT01771913	Immunophenotyping of Fresh Stromal Vascular Fraction From aMSCs Enriched Fat Grafts	Breast Reconstruction/Contour Irregularities/Volume Insufficiency	Genetic: centrifuged fat graft	Jul-15
NCT01849159	Clinical Study of the Efficacy and Safety of the Application of Allogeneic Mesenchymal Stromal Cells of Bone Marrow, Cultured Under the Hypoxia in the Treatment of Patients With Severe Pulmonary Emphysema	Pulmonary Emphysema	Biological: Mesenchymal stem cells/Other: Reference therapy: 400 mL of 0.9% NaCl solution	Oct-15
NCT01532076	Effectiveness of aMSCs as Osteogenic Component in Composite Grafts	Osteoporotic Fractures	Procedure: Cellularized composite graft augmentation/Proceded: Acceller composite graft augmentation	Sep-14
NCT02387723	CSCC_ASC Therapy in Patients With Severe Heart Failure	Clinical Patient Safety of Allogeneic Stem Cell Therapy	Biological: Allogeneic aMSCs (CSCC_ASC)	Mar-15
NCT01730547	Mesenchymal Stem Cells for Multiple Sclerosis	Multiple Sclerosis	Biological: Autologous mesenchymal stem cells	Jan-15
NCT02492490	Effect of SVF-derived MSC in DCD Renal Transplantation	Uremia	Other: SVF-derived MSC transplantation/Drug: Basiliximab	Nov-14
NCT02492308	Induction With SVF Derived MSC in Living-related Kidney Transplantation	Living-related Kidney Transplantation	Procedure: SVF-MSC induction/Drug: Basiliximab induction	Jul-15

Challenges facing MSCs therapy

The fear of MSCs-mediated radioprotection of tumor tissues has been a raised concern after the availability of in-vitro data suggesting that breast cancer cells grow and proliferate more with MSCs-therapy owing to high insulin-like factor production [53]. Also, MSCs have some angiogenic properties evident by increased secretion of platelets derived growth factor (PDGF), VEGF and TGF-β at the tumor perivascular area and parenchyma in low dose irradiated mice owing to MSCs infiltration at the tumor site [53]. MSCs angiogenic properties might counteract the anti-angiogenic cancer therapies, a question that needs to be answered with solid in-vitro and in-vivo studies [28,29].

Another challenge appeared in MSCs therapies. MSCs have been found to have heterogeneous radiation resistant populations, both in human and mouse MSCs [53]. A finding that might interfere with the overall radio-protective and tissue regenerative properties of MSCs.
Nevertheless, studies may find molecular biomarkers for isolating homogeneous populations of MSCs with uniform high RT resistance profile [28,29].

A further challenge that has been found to be more frequent in mouse MSCs than in human MSCs, is MSCs in-vitro transformation (the tumorigenic potential of MSCs) [53]. Such challenge carries a significant worry for MSCs therapies, since MSCs are radio-resistant cells. Thus, their transformation may signify the generation of a severe form of radio-resistant tumor that is extremely hard to control. Tight and fine validation of MSCs before each single dose therapy is recommended for preventing the use of any potentially transformed cells [28,29,34].

Conclusion

MSCs have been widely used in preclinical studies of radiation oncology regenerative medicine. MSCs have been shown to be reliable candidates in radiation oncology regenerative medicine translational and clinical research. The strong potential of MSCs therapy in RIOM is supported by their relative radiation resistance and robust DNA repair mechanisms, multi-lineage differentiation potential, and anti-inflammatory/immunomodulatory properties. Nevertheless, few but considerable challenges in MSCs therapies are requiring more research in order to develop solid solutions. However, the overall data collected from preclinical and clinical studies with MSCs therapy promise with cell therapy choices competing the traditional therapies. Adipose-tissue derived mesenchymal stromal/stem cells are reliable candidates for radiation oncology regenerative medicine applications owing to the advantages they possess, e.g. source abundance, enhanced anti-inflammatory effects, robust IL-10 secretion, easy isolation, high expansion.

Authorship and contributions

Osama Maria: Conception and design, collection and/or assembly of data, review writing, final approval of the review.

Nicoletta Eliopoulos: Conception, design and final approval of the review.

Thierry Munanza: Conception and design, financial support and final approval of the review.

Acknowledgements

Osama Muhammad Maria is an awardee of the LDI/TD studentship, and Fonds de Recherche du Quebec - Santé (FRQS) doctoral fellowship. This study was supported partially by Ride to Conquer Cancer (RTCC, Jewish General Hospital Foundation) and FRQS grants. This work was partially supported by Canadian Institutes of Health Research (CIHR) Operating Grant MOP-15017 (N. Eliopoulos).

Disclosure of potential conflict of interest

None.

References

1. Spithkovsky D, Hesceler J (2008) Adult mesenchymal stromal stem cells for therapeutic applications. Minim Invasive Ther Allied Technol 17: 79-90. [Crossref]
2. Chamberlain, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25: 2739-2249. [Crossref]
3. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19: 180-192. [Crossref]
4. Mouiseddine M, François S, Semont A, Sache A, Alenert B, et al. (2007) Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetic/severe combined immunodeficiency mouse model. Br J Radiol 80 Spec No 1: S49-55. [Crossref]
5. Chapel A, Bertho JM, Besnidioum M, Fouilllard L, Young RG, et al. (2003) Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med 5: 1028-1038. [Crossref]
6. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, et al. (2005) Multipotent differentiation of adipose tissue-derived stem cells. Kew J Med 54: 132-141. [Crossref]
7. Yi T, Song SU (2012) Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res 35: 213-221. [Crossref]
8. Shi M, Liu ZW, Wang FS (2011) Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol 164: 1-8. [Crossref]
9. Marigo I, Dazzi F (2011) The immunomodulatory properties of mesenchymal stem cells. Semin Immunopathol 33: 593-602. [Crossref]
10. Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J (2012) Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev 18: 101-115. [Crossref]
11. Moura JF, Mota JM, Leite CA, Wong DV, Bezerra NP, et al. (2015) A novel model of megavoltage radiation-induced oral mucositis in hamsters: Role of inflammatory cytokines and nitric oxide. Int J Radiat Biol 91: 500-509. [Crossref]
12. Wang H, Sun RT, Li Y, Yang YF, Xiao FJ, et al. (2015) HGF Gene Modification in Mesenchymal Stem Cells Reduces Radiation-Induced Intestinal Injury by Modulating Immunity. PLoS One 10: e0124420. [Crossref]
13. Zhang J, Zhou S, Zhou Y, Feng F, Wang Q, et al. (2014) Hepatocyte growth factor gene-modified adipose-derived mesenchymal stem cells ameliorate radiation induced liver damage in a rat model. PLoS One 9: e114670. [Crossref]
14. Xue J, Li X, Lu Y, Gan L, Zhou L, et al. (2013) Gene-modified mesenchymal stem cells protect against radiation-induced lung injury. Mol Ther 21: 456-465. [Crossref]
15. Galindo LT, Semedo P, Ariza CB, Moreira CM, Camara NOS, et al. (2011) Mesenchymal Stem Cell Therapy:Modulates the Inflammatory Response in Experimental Traumatic Brain Injury. Neurol Res Int 2011: 1-9.
16. Bouffi C, Djour F, Mathieu M, Noël D, Jorgensen C (2009) Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit? Rheumatology (Oxford) 48: 1185-1189. [Crossref]
17. Mathur A, Martin JF (2004) Stem cells and repair of the heart. Lancet 364: 183-192. [Crossref]
18. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, et al. (2001) Mobilized bone marrow cells repair the injured heart, improving function and survival. Proc Natl Acad Sci U S A 98: 10344-10349. [Crossref]
19. Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yaher AJ, et al. (2008) Systemic administration of multipotent mesenchymal stromal cells reverses hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 14: 631-640. [Crossref]
20. Riccobono D, Agay D, Scherthan H, Forcheron F, Vivier M, et al. (2012) Application of adipocyte-derived stem cells in treatment of cutaneous radiation syndrome. Health Phys 103: 120-126. [Crossref]
21. Kotenko KB, Moroz BB, Nadezhina NM, Galstian IA, Onishchenko NA, et al. (2011) [Mesenchymal stem cells transplantation in the treatment of radiation skin lesions]. Patol Fiziol Eksp Ter 20: 20-25. [Crossref]
22. Bargues L, Prat M, Leclerc T, Bey E, Lataillade JJ (2011) Present and future of cell therapy in burns. Pathol Biol (Paris) 59: 459-462. [Crossref]
23. Jeong JH (2010) Adipose stem cells and skin repair. Curr Stem Cell Res Ther 5: 137-140. [Crossref]
24. Arthur A, Zannettino A, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218: 237-245. [Crossref]
25. Kudo K, Liu Y, Takahashi K, Tarusawa K, Osanai M, et al. (2010) Transplantation of mesenchymal stem cells to prevent radiation-induced intestinal injury in mice. J Radiat Res 51: 73-79. [Crossref]
26. Sémon A, François S, Mouiseddine M, François A, Saché A, et al. (2006) Mesenchymal stem cells increase self-renewal of small intestinal epithelium and accelerate structural...
recovery after radiation injury. *Adv Exp Med Biol* 585: 19-30. [Crossref]

27. Sugnre T, Lowndes NF, Ceredig R (2013) Mesenchymal stromal cells: radio-resistant members of the bone marrow. *Immunol Cell Biol* 91: 5-11. [Crossref]

28. Nicolay NH, Lopez Perez R, et al. (2015) Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. *Oncotarget* 6: 19336-193380. [Crossref]

29. Nicolay NH, Lopez Perez R, Debus J, Huber PE4 (2015) Mesenchymal stem cells. A new hope for radiotherapy-induced tissue damage? *Cancer Lett* 366: 133-140. [Crossref]

30. Chen MF, Lin CT, Chen WC, Yang CT, Chen CC, et al. (2006) The sensitivity of human mesenchymal stem cells to ionizing radiation. *Int J Radiat Oncol Biol Phys* 66: 244-253. [Crossref]

31. Maria OM, Kumala S, Heravi M, Syme A4, Eliopoulos N5, et al. (2016) Adipose mesenchymal stromal cells response to ionizing radiation. *Cytotherapy* 18: 384-401. [Crossref]

32. Oliver L, Hua E, Sery Q, Lafargue A, Pequeur C, et al. (2013) Differentiation-related response to DNA breaks in human mesenchymal stem cells. *Stem Cells* 31: 800-807. [Crossref]

33. Prendergast ÁM, Cruet-Hennequart S, Shaw G, Barry FP, Carty MP (2011) Activation of DNA damage response pathways in human mesenchymal stem cells exposed to cisplatin or gamma-irradiation. *Cell Cycle* 10: 3768-3777. [Crossref]

34. Frosina G (2010) The bright and the dark sides of DNA repair in stem cells. *J Biomed Biotechnol* 2010: 845396. [Crossref]

35. De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH (2013) The elephant and the mouse: making sense of PARP inhibitors in homologous recombination deficient tumor cells. *Front Oncol* 3: 228. [Crossref]

36. Horton JA, Hudak KE, Chung EJ, White AO, Scroggins BT, et al. (2013) Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. *Stem Cells* 31: 2231-2241. [Crossref]

37. Kim WS, Park BS, Sung JH (2009) Protective role of adipose-derived stem cells and their soluble factors in photoaging. *Arch Dermatol Res* 301: 329-336. [Crossref]

38. Zhang J, Gong JF, Zhang W, Zhu WM, Li JS (2008) Effects of transplanted bone marrow mesenchymal stem cells on the irradiated intestine of mice. *J Biomed Sci* 15: 585-594. [Crossref]

39. Chang P, Yu Q, Liu Y, Cai S, Zhu D, et al. (2013) Multi-therapeutic effects of human adipose-derived mesenchymal stromal cells on radiation-induced intestinal injury. *Cell Death Disc* 4: e685. [Crossref]

40. Bessout R, Sémonat A, Demarquay C, Carcassot A, Benderitter M, et al. (2014) Human mesenchymal stem cell therapy induces glucocorticoid synthesis in colonic mucosa and suppresses radiation-activated T cells: new insights into MSC immunomodulation. *Mucosal Immunol* 7: 656-669. [Crossref]

41. Chen H, Min XH, Wang QY, Leung FW, Shi L5, et al. (2015) Pre-activation of human mesenchymal stem cells with TNF-[alpha], IL-1[beta] and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. *Sci Rep* 5: 8718. [Crossref]

42. Jiang X, Jiang X, Qu C, Chang P, Zhang C, et al. (2015) Intravenous delivery of adipose-derived mesenchymal stromal cells attenuates acute radiation-induced lung injury in rats. *Cytotherapy* 17: 560-570. [Crossref]

43. Klein D, Schmetter A, Imsak R, Wirsdörfer F, Unger K, et al. (2015) Therapy with autologous stem cells of gliomas. *Strahlenther Onkol* 191: 147-152. [Crossref]

44. Gan J, Meng F, Zhou X, Li C, He Y, et al. (2015) Hematopoietic recovery of acute radiation syndrome by human superoxide dismutase-expressing umbilical cord mesenchymal stem cells. *Cytotherapy* 17: 403-417. [Crossref]

45. Kursova LV, Konoplyannikov AG, Kal'sina SS, Babayan SB (2014) Allogeneic cardiomyoblasts raised from human mesenchymal stem cells in the therapy of radiation cardiomyopathy and pericarditis: case report. *Bull Exp Biol Med* 157: 143-145. [Crossref]

46. Lim JY, Ra JC, Shin IS, Jang YH, An HY, et al. (2013) Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage. *PloS One* 8: e71167. [Crossref]

47. Schmidt M, Haagen J, Noack R, Siegemund A, Gabriel P, et al. (2013) Effects of bone marrow or mesenchymal stem cell transplantation on oral mucositis (mouse) induced by fractionated irradiation. *Strahlenther Onkol* 190: 289-300. [Crossref]

48. Schmidt M, Haagen J, Noack R, Siegemund A, Gabriel P, et al. (2014) Effects of bone marrow or mesenchymal stem cell transplantation on oral mucositis (mouse) induced by fractionated irradiation. *Strahlenther Onkol* 190: 399-404. [Crossref]

49. Schwerk A, Altschüler J, Roch M, Gossen M, Winter C, et al. (2015) Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatoctye differentiation, and trophic effects. *Biomed Res Int* 2015: 151679. [Crossref]

50. Chen YX, Zeng ZC, Sun J, Zeng HY, Huang Y, et al. (2015) Mesenchymal stem cell-conditional medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. *J Radiat Res* 56: 700-708. [Crossref]

51. Voswinckel J, Francois S, Gorin NC, Chapel A (2013) Gastro-intestinal autoimmunity: preclinical experiences and successful therapy of fistulizing bowel diseases and gut Graft versus host disease by mesenchymal stromal cells. *Immunol Res* 56: 241-248. [Crossref]

52. Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, et al. (2014) Stem cell therapies for the treatment of radiation-induced normal tissue side effects. *Antioxid Redox Signal* 21: 338-355. [Crossref]

53. Baer PC, Geiger H (2012) Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. *Stem Cells Int* 2012: 812693. [Crossref]

54. Schwark A, Altschüler J, Roch M, Gossen M, Winter C, et al. (2015) Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson's disease. *Regen Med* 10: 431-446. [Crossref]

55. Mont T, Kurt AH, Arslan M, Cilik A, Tugtug B, et al. (2013) Anti-inflammatory and Anti-nociceptive Actions of Systemically or Locally Treated Adipose-Derived Mesenchymal Stem Cells in Experimental Inflammatory Model. *Inflammation* 38: 1302-1310. [Crossref]

56. Kim Y, Jo SH, Kim HW, Kweon OK4 (2015) Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. *Stem Cell Res Ther* 6: 229. [Crossref]

57. Francois S, Bensidhoum M, Moussedine M, Mazuirer C, Allenet B, et al. (2006) Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. *Stem Cells* 24: 1020-1209. [Crossref]

58. Brooke G, Cook M, Blair C, Han R, Heazlewood C, et al. (2007) Therapeutic applications of mesenchymal stem cells. *Semin Cell Dev Biol* 18: 846-858. [Crossref]

Copyright: ©2016 Maria OM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.