NS-3 AND 5G-LENA EXTENSIONS TO SUPPORT DUAL-POLARIZED MIMO

22/06/2022, WORKSHOP ON NS-3

BILJANA BOJOVIC, ZORAZE ALI, SANDRA LAGÉN
OUTLINE

• Introduction and contribution
• DP-MIMO model
• Implementation in ns-3
 • ns-3-dev: antenna, spectrum
 • nr: PHY, MAC
• Results
• Conclusions
INTRODUCTION AND CONTRIBUTION

• MIMO spatial multiplexing is an essential feature to increase the communication data rates in current and future cellular systems.

• Currently, the ns-3 LTE module leverages an abstraction model for 2x2 MIMO with spatial multiplexing of two streams, while mmwave and nr modules lack the spatial multiplexing option until this work.

• In this paper, we propose, implement, and evaluate models for ns-3 and the nr module to enable DP-MIMO.

 • The proposed extension for the ns-3 supports multiple antennas for DP-MIMO with spatial multiplexing of two streams.
 • It can be used by any ns-3 module compatible with the ns-3 antenna array-based models, such as nr and mmWave modules.
 • We leverage this ns-3 extension to model DP-MIMO by exploiting dual-polarized antennas and their orthogonality under line-of-sight conditions, as it happens at high-frequency bands, to send the two data streams.
 • The proposed model does not rely on abstraction, as the MIMO model in the ns-3 LTE module and can thus model more realistically the propagation differences of the two streams, correlation, and inter-stream interference.
 • It allows the design and evaluation of the rank adaptation algorithms.
 • Additionally, we propose and evaluate an adaptive rank adaptation scheme and compare it with a fixed scheme.
DP-MIMO MODEL

- Cross-polarized antenna arrays in 3GPP

(a) Cross-polarized panel array antenna model in 3GPP, with $M=2$, $N=4$, $P=2$

(b) MIMO model for mmWave with cross-polarized antennas
DP-MIMO MODEL

- Subarray partition concept

(a) Subarray partition concept for the 3GPP panel antenna array

(b) MIMO model for mmWave with subarray partition concept
IMPLEMENTATION IN NS-3

• *ns-3-dev*

 • *ns-3 antenna*
 • *UniformPlanarArray* extended to consider the polarization slant angle (PolSlantAngle)

• *ns-3 spectrum*

 • *ThreeGppChannelModel* extended to be able to distinguish the channel parameters that are common for all the channels among the same pair of the transmit/receive (TX/RX) nodes and those that are specific for the TX/RX antenna subpartition array pair.

 • *GetNewChannel* split into *GetNewChannelParams* and *GetNewChannelMatrix*, which update the respective parameters

 • *ChannelParams* - per node pair and *ChannelMatrix* - per phased antenna array pair

 • Spectrum module extended to support multiple antenna arrays per device (and per Spectrum-Channel instance): new *PhasedArraySpectrumPropagationLossModel*
IMPLEMENTATION IN NS-3

- *ns-3-dev* spectrum
- Split of the Channel Matrix and the Channel Parameters into the Two Structures to Support DP-MIMO
IMPLEMENTATION IN NS-3

- ns-3-dev spectrum changes to support DP-MIMO
IMPLEMENTATION IN NS-3

• ns-3 nr module

 • PHY
 • Rank Indicator (RI) Computation and Rank Adaptation Algorithm:
 • Fixed RI scheme, set using UseFixedRi and FixedRankIndicator attributes
 • Adaptive RI scheme, adaptive algorithm based on two SINR thresholds to compute an RI value
 • CQI and RI Reporting:
 • CQI is reported per stream
 • DlCqiInfo structure extended
 • PHY TX/RX through Multiple Streams
 • NrPhy class extended to aggregate multiple NrSpectrumPhy instances; there is one PhasedArrayModel per each NrSpectrumPhy instance
 • Two NrSpectrumPhy instances are installed per NrGnbPhy and NrUePhy, with two UniformPlannarArray instances, and two antenna array subpartitions belonging to the same NrGnbPhy or NrUePhy are configured to be cross-polarized
IMPLEMENTATION IN NS-3

- *ns-3 nr* module
 - **PHY**
 - Beamforming per Antenna subpartition
 - There is a *BeamManager* per *NrSpectrumPhy*
 - BF framework extended to support multiple antenna arrays
 - HARQ and SINR Reporting for Multiple Streams
 - *nr PHY* model, including *NrSpectrumPhy* and *NrUePhy*, is extended to support HARQ and SINR reporting per stream
 - TX Power per Stream
 - Uniformly distributed among the number of active streams
 - Inter-Stream Interference
 - New *ThreeGppChannelModelParam*, based on *ThreeGppChannelModel*, with which we can parametrize the inter-stream interference correlation, based on the 3GPP cross-polarization correlation parameter
 - *InterStreamInterferenceRatio* can tune the level of inter-stream interference, depending on RX capability
 - Support for OFDMA Scheduling
 - *beamConfId* structure based on *BeamId*, which identifies uniquely the pair of beams (one for each stream)
IMPLEMENTATION IN NS-3

• *ns-3 nr* module

 • **PHY**
 • Changes in NR PHY to Support DP-MIMO: Multiple Antenna Arrays per PHY and the Beamforming Management
IMPLEMENTATION IN NS-3

- *ns-3 nr module*

 - **MAC**
 - CQI Management
 - `$DIWBCQIReported$` updated to read the new `$DICqiInfo$` structure and compute MCS per stream
 - DCI Creation
 - `$VarTtiAllocInfo$` extended to support multiple streams (`$DcInfoElementTdma$` and `$RlcPduInfo$` structures)
 - Scheduling (Retransmissions and Rank Adaptation)
 - Number of streams for scheduling set based on the RI
 - TB scheduled independently per stream until UE can decode both streams or the maximum number of retransmissions is reached
 - HARQ Feedback Processing
 - `$DlHarqInfo$` structure updated
 - `ProcessHarqFeedbacks` function extended to read the HARQ feedback of each stream
IMPLEMENTATION IN NS-3

• *ns-3 nr* module

 • MAC
 • Updated *VarTtiAllocInfo* Structure to Support MIMO spatial multiplexing
Results

- Example: cttc-nr-mimo-demo.cc

- Scenario:
 - Single gNB and single UE, at a fixed pre-configured distance
 - Downlink UDP CBR
 - UMi propagation conditions
 - gNB/UE antenna height: 10m/1.5m
 - gNB tx power: 30dBm
 - 3.5 GHz band with 15KHz SCS and 20MHz bandwidth
 - 2x2 dual-polarized antenna at gNB (8 elements), 1x1 dual-polarized antenna at the UE (2 elements)
 - MCS Table 2 (up to 256QAM)

- Evaluation varying the gNB-UE distance
 - Fixed RI scheme (RI=1 and RI=2)
 - Adaptive RI scheme: RiSinrThreshold1= 7 dB and RiSinrThreshold2= 12 dB
RESULTS

- Example: cttc-nr-mimo-demo.cc

- Throughput (Mbps) versus Distance (m) for the Fixed RI (1 and 2) and the Adaptive RI Algorithm
CONCLUSIONS

• In this paper, we presented an extension of the ns-3 simulator and the 5G-LENA module to support DP-MIMO with spatial multiplexing of two streams.
• The developed MIMO model in the 5G-LENA exploits dual-polarized antennas to send two streams.
• The extension has implied major implementation changes in PHY and MAC layers of the nr module and significant extensions in the ns-3 spectrum and antenna modules.
• We described the implementation changes and design choices in detail.
• Finally, we validated the developed DP-MIMO model in an Urban Micro scenario for various gNB-UE distances under a fixed rank (1 and 2) and the proposed rank adaptation algorithm.
