Non-pincer-type manganese complexes as efficient catalysts for the hydrogenation of esters

Citation for published version (APA):
van Putten, R., Us lamin, E., Garbe, M., Liu, C., Gonzalez-de-Castro, A., Lutz, M., Junge, K., Hensen, E. J. M., Beller, M., Lefort, L., & Pidko, E. A. (2017). Non-pincer-type manganese complexes as efficient catalysts for the hydrogenation of esters. Angewandte Chemie - International Edition, 56(26), 7531-7534. https://doi.org/10.1002/anie.201701365

DOI:
10.1002/anie.201701365

Document status and date:
Published: 19/06/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 03. Jan. 2025
Non-Pincer-Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters

Robbert van Putten, Evgeny A. Uslamin, Marcel Garbe, Chong Liu, Angela Gonzalez-de-Castro, Martin Lutz, Kathrin Junge, Emiel J. M. Hensen, Matthias Beller, Laurent Lefort, and Evgeny A.Pidko*

Abstract: Catalytic hydrogenation of carboxylic acid esters is essential for the green production of pharmaceuticals, fragrances, and fine chemicals. Herein, we report the efficient hydrogenation of esters with manganese catalysts based on simple bidentate aminophosphine ligands. Monoligated Mn PN complexes are particularly active for the conversion of esters into the corresponding alcohols at Mn concentrations as low as 0.2 mol% in the presence of sub-stoichiometric amounts of KOt-Bu base. The reduction of polar carbonyl moieties is a fundamental organic transformation important for the production of a wide variety of bulk- and fine chemicals, such as biofuels, fragrances, and pharmaceuticals. Catalytic processes employing H2 as the reductant represent an atom-efficient and sustainable alternative to conventional stoichiometric approaches. To date a wide range of versatile and highly active homogeneous ester hydrogenation catalysts based on Ru, Os, PNN-pincer catalysts have been described. Driven by economic and environmental considerations, recent efforts have focused on the replacement of the noble-metal component in such catalysts by cheaper, more abundant, and non-toxic metals. Among these, manganese can be regarded as one of the most desirable candidates in view of its low price, rich chemistry, and exceptional biocompatibility. Yet, most examples of non-noble metal homogeneous hydrogenation catalysts are based on Fe[7] and Co,[8] while the respective catalytic chemistry of Mn was not known until very recently. In early 2016 Milstein and co-workers described the first Mn-based catalyst A for the dehydrogenative coupling of alcohols and amines (Scheme 1).[9a] Later, Kirchner and co-workers showed that this reaction can also be catalyzed by a related Mn1 PNP pincer complex.[9b] Shortly afterwards, the groups of Beller[10] and Kempe[11] independently reported the hydrogenation of ketones with pincer catalysts B and C. Complex B is also active in the reduction of nitriles and aldehydes. Reduction of less-reactive ester substrates remains a challenge for Mn catalysts with only two examples reported to date. Beller and co-workers described aliphatic Mn1 PNP-pincer catalyst D that converts esters into alcohols under basic conditions at 2 mol% catalyst loading (110°C/30 bar H2 / 24 h).[12] Milstein and co-workers reported that lutidine-derived Mn1 PNN-pincer catalyst E is active at 1 mol%, but requires addition of KH as the base (100°C/20 bar H2/50 h).[13] Despite the impressive progress witnessed in recent years in catalytic hydrogenations with non-noble-metal complexes, even the most active examples are efficient only at relatively high catalyst loading of 1–3 mol%, significantly limiting their utility as practical alternatives to the more active Ru-based systems.[14] Herein we report the catalytic hydrogenation of esters with three novel non-pincer-type Mn PN complexes,
Based on simple and easily accessible bidentate aminophosphine ligands. They show good performance at an unprecedented loading of only 0.2 mol%, bringing Mn-catalyzed hydrogenation a step closer to practical implementation.

The use of PN ligands for Ru-catalyzed ester hydrogenation was first reported by Saudan et al.[13] We prepared complexes 1 to 3 by reaction of Mn(CO)₂Br with 1 or 2 equivalents of the corresponding PN ligand in toluene at 100 °C for 24 h. The isolated complexes were fully characterized by ³¹P NMR, revealing a single resonance for 1 at δ = 79.3 ppm. Complex 2 contains a single PN ligand. The amine and Br⁻ in 2 are bound in a cis fashion, providing a favorable environment for heterolytic H₂ activation across the Mn–N moiety.[16]

Complexes 1–3 are active catalysts for ester hydrogenation. Table 1 summarizes the results of the initial catalytic tests using methyl benzoate as a model substrate. Mono-ligated complex 2 was found to be considerably more active than 1 and 3 (Table 1, entries 1–3). This is remarkable as the related Ru-PN catalyst is biligated.[15] Reaction at 80–100 °C gave similar benzyl alcohol (BnOH) yields, while the yield equivalence was also detected in solution by ³¹P NMR, whereas these are typically more difficult to reduce than their aromatic analogues.[1] Aromatic benzoate esters with varied steric bulk or electronic properties were all hydrogenated to benzyl alcohol in high yield (B1–B4). Similar to aliphatic esters, the reduction of bulky tert-butyl benzoate was more efficient than the less-sterically hindered substrates.

Table 1: Hydrogenation of methyl benzoate with 1–3.[14]

Entry	Catalyst	KO'Bu [mol%]	THF, 80–120 °C	Conv. [%]	Y_BnOH [%][7]
1	1	10	100	43	24
2	2	10	100	75	66
3	3	10	100	13	3
4	2	10	80	74	65
5	2	10	120	57	43
6	2	10	100	86	80
7	2	10	100	96	91
8	2	10	100	99	98

[a] Conditions: 1 mmol methyl benzoate, 10–75 mol% KO‘Bu, 1.0 mol% Mn, 2 mL THF, 80–120 °C, 50 bar H₂, 20 h. Yield determined by GC.

Figure 1. ORTEP diagrams of 1 (left) and 2 (right). Thermal ellipsoids are set at 30% probability. Hydrogen atoms have been omitted for clarity.

Scheme 2. Hydrogenation of various esters with 2. Conditions: 1 mmol substrate, 75 mol% KO‘Bu, 0.2 mol % 2, 2 mL 1,4-dioxane, 100 °C, 50 bar H₂, 16 h. [a] 0.5 mol % 2, 6 h.
Hydrogenation of functionalized esters B5 and B6 gave high yields of the corresponding alcohols with the functional group being preserved and only trace amount of the methyl ether side products detected by GC-MS. Hydrogenation of unsaturated esters with 2 was fully chemoselective for substrates with the C=C bond distant from the ester moiety, such as fatty acid methyl esters C1 and C2. Methyl cinnamate (C3), however, was fully converted into hydrocinnamyl alcohol. No products associated with the Claisen condensation were observed for the enolizable substrates.

To get better insight into the effect of the base in catalysis with 2 we carried out additional catalytic tests using four different benzoate substrates at varied base concentration (Figure 2). For all substrates, the elevated base loading resulted in a higher product yield. The hydrogenation of methyl- and ethyl benzoates was more sensitive to changes in the base concentration than for the tert-butyl- and benzyl benzoate substrates. We attribute this to catalyst inhibition by the short-chain alcohols produced in the reaction. This effect is in line with the lower activity achieved with KOEt bases (Table S3). Product inhibition via metal-alkoxide formation is well-known for P,N-type complex catalysts and is consistent with both the lower observed rates for methyl- and ethyl benzoates as well as the increased TON at reduced catalyst loading.[19]

Dedicated kinetic experiments were next carried out to further study the role of the base (Figure 3).[21] Near-complete hydrogenation was achieved with 0.75 equiv. KO’Bu, while in the presence of 0.1 equiv. base the reaction progress was limited to around 20%. Remarkably, catalytic activity could be instantaneously restored upon addition of 0.65 equiv. KO’Bu. Regardless of the base loading sequence, nearly identical initial rates of about 1100 h⁻¹ were observed (see Figure S14). This is consistent with our hypothesis on Mn-alkoxide inhibition, which upon reaction with KO’Bu convert into the catalytically active manganese amide. A similar mechanism of in situ catalyst regeneration has been proposed previously for related Ru-based catalysts.[20]

Next, the reaction mechanism with 2 was studied by density functional theory (DFT) calculations at the PBE0/6-311G(d)/6-31G(d) level (Gaussian09 D.01).[22] Methyl acetate (MeOAc) was chosen as the model substrate. The proposed mechanism, along with the reaction and activation Gibbs free energies for elementary steps, ΔG°373K, are summarized in Figure 4. Prior to the catalytic reaction, 2 is activated via a base-assisted hydrogenolysis to produce hydrido complex I (see Supporting Information). The cycle starts with an exergonic complexation of MeOAc with I to give H-bonded intermediate II, which then converts into an activated gem-acetal III via a hydride attack with a free energy barrier of 97 kJ mol⁻¹. The addition of H₂ to III yields o-complex IV, which after hydrogenolysis produces CH₂OH and CH₂CHO. Methanol elimination gives VI, from which the final stage of the catalytic cycle, that is, aldehyde hydrogenation, proceeds. This step is significantly more favorable than the initial ester activation. The first hydride transfer is exergonic by –8 kJ mol⁻¹ and shows a free energy barrier of only 29 kJ mol⁻¹ (VI—VII). The resulting alkoxo anion is stabilized by a partial deprotonation of the NH₂-moiety of the ligand, thereby resulting in a trigonal bipyramidal configuration of Mn in VII. The interaction with the basic ethoxide facilitates complexation with H₂ to form VIII that is followed...
by a barrierless and highly exergonic heterolytic dissociation to produce \(\text{I} \). The overall free energy barrier for this alkoxide-assisted catalyst regeneration is 59 kJ mol\(^{-1}\), in which the major energy losses originate from the structural distortions upon the formation of \(\alpha\)-H\(_2\) complex \(\text{VIII} \). The alternative path via ethanol elimination from \(\text{VII} \) followed by the metal–ligand cooperative \(\text{H}_2 \) activation shows a free energy barrier of about 100 kJ mol\(^{-1}\).

DFT calculations also reveal a competing side-path for the decomposition of \(\text{III} \), resulting in \(\text{CH}_3\text{CHO} \) elimination and the formation of a stable Mn-alkoxide complex (see Supporting Information). From this point, the formation of \(\text{I} \) requires a base-assisted hydrolysis similar to that proposed for the activation of pre-catalyst \(\text{II} \). This provides additional support for our proposal on catalyst inhibition by stable Mn-alkoxide resting states. In line with the experimental results, the hydrogenolysis of the bulkier Mn-OtBu adduct shows a much lower energy barrier than Mn-OMe (89 vs. 106 kJ mol\(^{-1}\), respectively).

In summary, we have synthesized and fully characterized three novel Mn PN ligand complexes, of which monoligated complex \(\text{II} \) is a highly active catalyst for the hydrogenation of aliphatic and aromatic esters. Considering the high catalytic performance and the simple and straightforward preparation, complex \(\text{II} \) holds a great promise as a cheap and practical non-noble metal-based ester hydrogenation catalyst. Based on the complementary experimental and computational results, we provide a mechanistic proposal that points to a potential for further improvement of the Mn-based catalysts under study.

Acknowledgements

We acknowledge the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation program funded by the Ministry of Education, Culture and Science of the Netherlands. E.A.P. thanks the Government of the Russian Federation (Grant 074-U01) for support through the ITMO Fellowship and Professorship Program. Supercomputer resources were provided by NWO. We thank Dr. Anke Spannenberg for crystal-structure determination of I. The X-ray diffractometer at Utrecht University has been financed by NWO.

Conflict of interest

The authors declare no conflict of interest.

Keywords: alcohols · esters · homogeneous catalysis · hydrogenation · manganese

How to cite: Angew. Chem. Int. Ed. 2017, 56, 7531–7534
Angew. Chem. 2017, 129, 7639–7642

[1] a) S. Werkmeister, K. Junge, M. Beller, Org. Process Res. Dev. 2014, 18, 289 – 302; b) J. Pritchard, G. A. Filonenko, R. van Putten, E. J. M. Hensen, E. A.Pidko, Chem. Soc. Rev. 2015, 44, 3808 – 3833.

[2] a) W. Kuriyama, T. Matsumoto, O. Ogata, Y. Ino, K. Aoki, S. Tanaka, K. Ishida, T. Kobayashi, N. Sayo, T. Saito, Org. Process Res. Dev. 2012, 16, 166 – 171; b) D. Spaysuk, S. Smith, D. G. Gusev, Angew. Chem. Int. Ed. 2013, 52, 2538 – 2542; Angew. Chem. 2013, 125, 2598 – 2602; c) G. A. Filonenko, M. J. B. Aguila, E. N. Schulphen, R. van Putten, J. Viecko, C. Muller, L. Lefort, E. J. M. Hensen, E. A. Pidko, J. Am. Chem. Soc. 2015, 137, 7620 – 7623.

[3] D. Spaysuk, S. Smith, D. G. Gusev, Angew. Chem. Int. Ed. 2012, 51, 2772 – 2775; Angew. Chem. 2012, 124, 2826 – 2829.

[4] a) T. P. Brewster, N. M. Rezayee, Z. Cukalova, M. S. Sanford, K. I. Goldberg, ACS Catal. 2016, 6, 3113 – 3117; b) K. Junge, B. Wundt, H. Jiao, M. Beller, ChemCatChem 2014, 6, 2810 – 2814.

[5] R. M. Bullock, Science 2013, 342, 1054 – 1055.

[6] D. A. Valyavec, G. Lavigne, N. Lugen, Coord. Chem. Rev. 2016, 308(2), 191 – 235.

[7] a) T. Zell, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2014, 53, 4685 – 4689; Angew. Chem. 2014, 126, 4773 – 4777; b) S. Werkmeister, K. Junge, B. Wundt, E. Alberico, H. Jiao, W. Baumann, H. Junge, F. Gallou, M. Beller, Angew. Chem. Int. Ed. 2014, 53, 8722 – 8726; Angew. Chem. 2014, 126, 8867 – 8871; c) S. Chakraborty, H. Dai, P. Bhattacharya, N. T. Fairweather, M. S. Gibson, J. A. Krause, H. Guan, J. Am. Chem. Soc. 2014, 136, 7869 – 7872.

[8] a) D. Srimani, A. Mukherjee, A. F. G. Goldberg, G. Leitus, Y. Diskin-Posner, L. J. W. Shimon, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2015, 54, 12357 – 12360; Angew. Chem. 2015, 127, 12534 – 12537; b) T. J. Korstanje, J. I. van der Vlugt, C. J. Elsevier, B. de Bruin, Science 2015, 350, 298 – 302.

[9] a) A. Mukherjee, A. Nerush, G. Leitus, L. J. W. Shimon, Y. Ben David, N. A. Espinosa Jalapa, D. Milstein, J. Am. Chem. Soc. 2016, 138, 4298 – 4301; b) M. Mastalir, M. Glatz, N. Gorgas, B. Stoger, E. Pattenuer, G. Allmaier, L. F. Veirov, K. Kirchner, Chem. Eur. J. 2016, 22, 12316.

[10] S. Elangovan, C. Topf, S. Fischer, H. Jiao, A. Spannenberg, W. Baumann, R. Ludwig, K. Junge, M. Beller, J. Am. Chem. Soc. 2016, 138, 8809 – 8814.

[11] F. Kallmeier, T. Irgang, T. Dietel, R. Kempe, Angew. Chem. Int. Ed. 2016, 55, 11806 – 11809; Angew. Chem. 2016, 128, 11984 – 11988.

[12] S. Elangovan, M. Garbe, H. Jiao, A. Spannenberg, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2016, 55, 15364 – 15368; Angew. Chem. 2016, 128, 15590 – 15594.

[13] N. A. Espinosa Jalapa, A. Nerush, L. J. W. Shimon, G. Leitus, L. Avram, Y. Ben-David, D. Milstein, Chem. Eur. J. 2016, DOI: 10.1002/chem.201604991.

[14] P. Dupau, M. L. Tran Do, S. Guillard, J. L. Renaud, Angew. Chem. Int. Ed. 2014, 53, 13004 – 13006; Angew. Chem. 2014, 126, 13218 – 13220.

[15] L. A. Saudan, C. M. Saudan, C. Debieux, P. Wyss, Angew. Chem. Int. Ed. 2007, 46, 7473 – 7476; Angew. Chem. 2007, 119, 7617 – 7620.

[16] P. A. Dub, B. L. Scott, J. C. Gordon, J. Am. Chem. Soc. 2017, 139, 1245 – 1260.

[17] Bn- and BnO benzolate account for the residual mass balance.

[18] R. H. Crabtree, Chem. Rev. 2012, 112, 1536 – 1554.

[19] S. Takebayashi, S. H. Bergens, Organometallics 2009, 28, 2349 – 2351.

[20] a) R. J. Hamilton, S. H. Bergens, J. Am. Chem. Soc. 2006, 128, 13700 – 13701; b) K. Abdur-Rashid, S. E. Clapham, A. Hadzovic, J. N. Harvey, A. J. Lough, R. H. Morris, J. Am. Chem. Soc. 2002, 124, 15104 – 15118.

[21] A different (larger) autoclave was used for these experiments.

[22] M. J. Frish et al., Gaussian09, Revision D.01.

Manuscript received: February 7, 2017
Version of record online: April 21, 2017