6. \(\Phi\)-\(\Gamma\)-modules and Galois cohomology

Laurent Herr

6.0. Introduction

Let \(G\) be a profinite group and \(p\) a prime number.

Definition. A finitely generated \(\mathbb{Z}_p\)-module \(V\) endowed with a continuous \(G\)-action is called a \(\mathbb{Z}_p\)-adic representation of \(G\). Such representations form a category denoted by \(\text{Rep}_{\mathbb{Z}_p}(G)\); its subcategory \(\text{Rep}_{\mathbb{F}_p}(G)\) (respectively \(\text{Rep}_{p\text{-tor}}(G)\)) of mod \(p\) representations (respectively \(p\)-torsion representations) consists of the \(V\) annihilated by \(p\) (respectively a power of \(p\)).

Problem. To calculate in a simple explicit way the cohomology groups \(H^i(G, V)\) of the representation \(V\).

A method to solve it for \(G = G_K\) (\(K\) is a local field) is to use Fontaine’s theory of \(\Phi\)-\(\Gamma\)-modules and pass to a simpler Galois representation, paying the price of enlarging \(\mathbb{Z}_p\) to the ring of integers of a two-dimensional local field. In doing this we have to replace linear with semi-linear actions.

In this paper we give an overview of the applications of such techniques in different situations. We begin with a simple example.

6.1. The case of a field of positive characteristic

Let \(E\) be a field of characteristic \(p\), \(G = G_E\) and \(\sigma: E^{\text{sep}} \to E^{\text{sep}}, \sigma(x) = x^p\) the absolute Frobenius map.

Definition. For \(V \in \text{Rep}_{\mathbb{F}_p}(G_E)\) put \(D(V) := (E^{\text{sep}} \otimes_{\mathbb{F}_p} V)^{G_E}; \sigma\) acts on \(D(V)\) by acting on \(E^{\text{sep}}\).

Published 10 December 2000: \(\copyright\) Geometry & Topology Publications
Properties.

(1) \(\dim_E D(V) = \dim \mathfrak{g}_p V \);

(2) the “Frobenius” map \(\varphi: D(V) \to D(V) \) induced by \(\sigma \otimes \text{id}_V \) satisfies:
 a) \(\varphi(\lambda x) = \sigma(\lambda)\varphi(x) \) for all \(\lambda \in E, \ x \in D(V) \) (so \(\varphi \) is \(\sigma \)-semilinear);
 b) \(\varphi(D(V)) \) generates \(D(V) \) as an \(E \)-vector space.

Definition. A finite dimensional vector space \(M \) over \(E \) is called an \(\text{étale} \ \Phi\text{-module} \) over \(E \) if there is a \(\sigma \)-semilinear map \(\varphi: M \to M \) such that \(\varphi(M) \) generates \(M \) as an \(E \)-vector space.

\(\Phi\text{-modules} \) form an abelian category \(\Phi M_E^{et} \) (the morphisms are the linear maps commuting with the Frobenius \(\varphi \)).

Theorem 1 (Fontaine, [F]). The functor \(V \to D(V) \) is an equivalence of the categories \(\text{Rep}_{\mathbb{F}_p}(G_E) \) and \(\Phi M_E^{et} \).

We see immediately that \(H^0(G_E, V) = V^G_E \simeq D(V)\).

So in order to obtain an explicit description of the Galois cohomology of mod \(p \) representations of \(G_E \), we should try to derive in a simple manner the functor associating to an \(\text{étale} \ \Phi\text{-module} \) the group of points fixed under \(\varphi \). This is indeed a much simpler problem because there is only one operator acting.

For \((M, \varphi) \in \Phi M_E^{et} \) define the following complex of abelian groups:

\[
C_1(M) : \quad 0 \to M \xrightarrow{\varphi^{-1}} M \to 0
\]

(\(M \) stands at degree 0 and 1).

This is a functorial construction, so by taking the cohomology of the complex, we obtain a cohomological functor \((\mathcal{H}^i := H^i \circ C_1)_{i \in \mathbb{N}} \) from \(\Phi M_E^{et} \) to the category of abelian groups.

Theorem 2. The cohomological functor \((\mathcal{H}^i \circ D)_{i \in \mathbb{N}} \) can be identified with the Galois cohomology functor \((H^i(G_E, \cdot))_{i \in \mathbb{N}} \) for the category \(\text{Rep}_{\mathbb{F}_p}(G_E) \). So, if \(M = D(V) \) then \(\mathcal{H}^i(M) \) provides a simple explicit description of \(H^i(G_E, V) \).

Proof of Theorem 2. We need to check that the cohomological functor \((\mathcal{H}^i)_{i \in \mathbb{N}} \) is universal; therefore it suffices to verify that for every \(i \geq 1 \) the functor \(\mathcal{H}^i \) is effaceable: this means that for every \((M, \varphi_M) \in \Phi M_E^{et} \) and every \(x \in \mathcal{H}^i(M) \) there exists an embedding \(u \) of \((M, \varphi_M) \) in \((N, \varphi_N) \in \Phi M_E^{et} \) such that \(\mathcal{H}^i(u)(x) \) is zero in \(\mathcal{H}^i(N) \). But this is easy: it is trivial for \(i \geq 2 \); for \(i = 1 \) choose an element \(m \) belonging to the class \(x \in M/(\varphi - 1)(M) \), put \(N := M \oplus Et \) and extend \(\varphi_M \) to the \(\sigma \)-semi-linear map \(\varphi_N \) determined by \(\varphi_N(t) := t + m \).

\[\square \]
6.2. Φ-Γ-modules and \(\mathbb{Z}_p \)-adic representations

Definition. Recall that a Cohen ring is an absolutely unramified complete discrete valuation ring of mixed characteristic \((0, p > 0)\), so its maximal ideal is generated by \(p \).

We describe a general formalism, explained by Fontaine in [F], which lifts the equivalence of categories of Theorem 1 in characteristic 0 and relates the \(\mathbb{Z}_p \)-adic representations of \(G \) to a category of modules over a Cohen ring, endowed with a “Frobenius” map and a group action.

Let \(R \) be an algebraically closed complete valuation (of rank 1) field of characteristic \(p \) and let \(H \) be a normal closed subgroup of \(G \). Suppose that \(G \) acts continuously on \(R \) by ring automorphisms. Then \(F := R^H \) is a perfect closed subfield of \(R \).

For every integer \(n \geq 1 \), the ring \(W_n(R) \) of Witt vectors of length \(n \) is endowed with the product of the topology on \(R \) defined by the valuation and then \(W(R) \) with the inverse limit topology. Then the componentwise action of the group \(G \) is continuous and commutes with the natural Frobenius \(\sigma \) on \(W(R) \). We also have \(W(R)^H = W(F) \).

Let \(E \) be a closed subfield of \(F \) such that \(F \) is the completion of the \(p \)-radical closure of \(E \) in \(R \). Suppose there exists a Cohen subring \(\mathcal{O}_E \) of \(W(R) \) with residue field \(E \) and which is stable under the actions of \(\sigma \) and of \(G \). Denote by \(\mathcal{O}_E^{ur} \) the completion of the integral closure of \(\mathcal{O}_E \) in \(W(R) \): it is a Cohen ring which is stable by \(\sigma \) and \(G \), its residue field is the separable closure of \(E \) in \(R \) and \((\mathcal{O}_E^{ur})^H = \mathcal{O}_E \).

The natural map from \(H \) to \(G_E \) is an isomorphism if and only if the action of \(H \) on \(R \) induces an isomorphism from \(H \) to \(G_F \). We suppose that this is the case.

Definition. Let \(\Gamma \) be the quotient group \(G/H \). An étale \(\Phi \)-\(\Gamma \)-module over \(\mathcal{O}_E \) is a finitely generated \(\mathcal{O}_E \)-module endowed with a \(\sigma \)-semi-linear Frobenius map \(\phi: M \to M \) and a continuous \(\Gamma \)-semi-linear action of \(\Gamma \) commuting with \(\phi \) such that the image of \(\phi \) generates the module \(M \).

Étale \(\Phi \)-\(\Gamma \)-modules over \(\mathcal{O}_E \) form an abelian category \(\Phi \Gamma M_{\mathcal{O}_E}^{\text{ét}} \) (the morphisms are the linear maps commuting with \(\phi \)). There is a tensor product of \(\Phi \)-\(\Gamma \)-modules, the natural one. For two objects \(M \) and \(N \) of \(\Phi \Gamma M_{\mathcal{O}_E}^{\text{ét}} \), the \(\mathcal{O}_E \)-module \(\text{Hom}_{\mathcal{O}_E}(M, N) \) can be endowed with an étale \(\Phi \)-\(\Gamma \)-module structure (see [F]).

For every \(\mathbb{Z}_p \)-adic representation \(V \) of \(G \), let \(D_H(V) \) be the \(\mathcal{O}_E \)-module \((\mathcal{O}_E^{ur} \otimes \mathbb{Z}_p V)^H \). It is naturally an étale \(\Phi \)-\(\Gamma \)-module, with \(\phi \) induced by the map \(\sigma \otimes \text{id}_V \) and \(\Gamma \) acting on both sides of the tensor product. From Theorem 2 one deduces the following fundamental result:

Theorem 3 (Fontaine, [F]). The functor \(V \to D_H(V) \) is an equivalence of the categories \(\text{Rep}_{\mathbb{Z}_p}(G) \) and \(\Phi \Gamma M_{\mathcal{O}_E}^{\text{ét}} \).

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields
Remark. If E is a field of positive characteristic, \mathcal{O}_E is a Cohen ring with residue field E endowed with a Frobenius σ, then we can easily extend the results of the whole subsection 6.1 to \mathbb{Z}_p-adic representations of G by using Theorem 3 for $G = G_E$ and $H = \{1\}$.

6.3. A brief survey of the theory of the field of norms

For the details we refer to [W], [FV] or [F].

Let K be a complete discrete valuation field of characteristic 0 with perfect residue field k of characteristic p. Put $G = G_K = \text{Gal}(K^{\text{sep}}/K)$.

Let \mathbb{C} be the completion of K^{sep}, denote the extension of the discrete valuation v_K of K to \mathbb{C} by v_K. Let $R^* = \varprojlim \mathbb{C}_n^*$ where $\mathbb{C}_n = \mathbb{C}$ and the morphism from \mathbb{C}_{n+1} to \mathbb{C}_n is raising to the pth power. Put $R := R^* \cup \{0\}$ and define $v_R((x_n)) = v_K(x_0)$. For $(x_n), (y_n) \in R$ define

$$(x_n) + (y_n) = (z_n) \quad \text{where} \quad z_n = \lim_m (x_{n+m} + y_{n+m})^{p^m}.$$

Then R is an algebraically closed field of characteristic p complete with respect to v_R (cf. [W]). Its residue field is isomorphic to the algebraic closure of k and there is a natural continuous action of G on R. (Note that Fontaine described this field by $\text{Fr} R$ in [F]).

Let L be a Galois extension of K in K^{sep}. Recall that one can always define the ramification filtration on $\text{Gal}(L/K)$ in the upper numbering. Roughly speaking, L/K is an arithmetically profinite extension if one can define the lower ramification subgroups of G so that the classical relations between the two filtrations for finite extensions are preserved. This is in particular possible if $\text{Gal}(L/K)$ is a p-adic Lie group with finite residue field extension.

The field R contains in a natural way the field of norms $N(L/K)$ of every arithmetically profinite extension L of K and the restriction of v to $N(L/K)$ is a discrete valuation. The residue field of $N(L/K)$ is isomorphic to that of L and $N(L/K)$ is stable under the action of G. The construction is functorial: if L' is a finite extension of L contained in K^{sep}, then L'/K is still arithmetically profinite and $N(L'/K)$ is a separable extension of $N(L/K)$. The direct limit of the fields $N(L'/K)$ where L' goes through all the finite extensions of L contained in K^{sep} is the separable closure E^{sep} of $E = N(L/K)$. It is stable under the action of G and the subgroup G_L identifies with G_E. The field E^{sep} is dense in R.

Fontaine described how to lift these constructions in characteristic 0 when L is the cyclotomic \mathbb{Z}_p-extension K_∞ of K. Consider the ring of Witt vectors $W(R)$ endowed with the Frobenius map σ and the natural componentwise action of G. Define the topology of $W(R)$ as the product of the topology defined by the valuation on R. Then one can construct a Cohen ring $\mathcal{O}_{E^{\text{ur}}}$ with residue field E^{sep} ($E = N(L/K)$) such that:

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields
Part II. Section 6. Φ-Γ-modules and Galois cohomology

267

(i) $\mathcal{O}_{\hat{E}_{\text{ur}}}$ is stable by σ and the action of G,
(ii) for every finite extension L of K_∞ the ring $(\mathcal{O}_{\hat{E}_{\text{ur}}}^G)_L$ is a Cohen ring with residue field E.

Denote by $\mathcal{O}_{\hat{E}(K)}$ the ring $(\mathcal{O}_{\hat{E}_{\text{ur}}}^G)_K$. It is stable by σ and the quotient $\Gamma = G/G_{K_\infty}$ acts continuously on $\mathcal{O}_{\hat{E}(K)}$ with respect to the induced topology. Fix a topological generator γ of Γ: it is a continuous ring automorphism commuting with σ. The fraction field of $\mathcal{O}_{\hat{E}(K)}$ is a two-dimensional standard local field (as defined in section 1 of Part I). If π is a lifting of a prime element of $N(K_\infty/K)$ in $\mathcal{O}_{\hat{E}(K)}$ then the elements of $\mathcal{O}_{\hat{E}(K)}$ are the series $\sum_{i \in \mathbb{Z}} a_i \pi^i$, where the coefficients a_i are in $W(k_{K_\infty})$ and converge p-adically to 0 when $i \to -\infty$.

6.4. Application of \mathbb{Z}_p-adic representations of G to the Galois cohomology

If we put together Fontaine’s construction and the general formalism of subsection 6.2 we obtain the following important result:

Theorem 3' (Fontaine, [F]). The functor $V \to D(V) := (\mathcal{O}_{\hat{E}_{\text{ur}}} \otimes_{\mathbb{Z}_p} V)^{G_{K_\infty}}$ defines an equivalence of the categories $\text{Rep}_{\mathbb{Z}_p}(G)$ and $\Phi\Gamma M_{\text{ét}}^{\hat{\text{O}}_{\hat{E}(K)}}$.

Since for every \mathbb{Z}_p-adic representation of G we have $H^0(G, V) = V^G \simeq D(V)^\sigma$, we want now, as in paragraph 6.1, compute explicitly the cohomology of the representation using the Φ-Γ-module associated to V.

For every étale Φ-Γ-module (M, φ) define the following complex of abelian groups:

$C_2(M) : 0 \to M \xrightarrow{\alpha} M \oplus M \xrightarrow{\beta} M \to 0$

where M stands at degree 0 and 2,

$$\alpha(x) = ((\varphi - 1)x, (\gamma - 1)x), \quad \beta((y, z)) = (\gamma - 1)y - (\varphi - 1)z.$$

By functoriality, we obtain a cohomological functor $(\mathcal{H}^i := H^i \circ C_2)_{i \in \mathbb{N}}$ from $\Phi\Gamma M_{\text{ét}}^{\hat{\text{O}}_{\hat{E}(K)}}$ to the category of abelian groups.

Theorem 4 (Herr, [H]). The cohomological functor $(\mathcal{H}^i \circ D)_{i \in \mathbb{N}}$ can be identified with the Galois cohomology functor $(H^i(G, .))_{i \in \mathbb{N}}$ for the category $\text{Rep}_{\text{p-tors}}(G)$. So, if $M = D(V)$ then $\mathcal{H}^0(M)$ provides a simple explicit description of $H^0(G, V)$ in the p-torsion case.

Idea of the proof of Theorem 4. We have to check that for every $i \geq 1$ the functor \mathcal{H}^i is effaceable. For every p-torsion object $(M, \varphi_M) \in \Phi\Gamma M_{\text{ét}}^{\hat{\text{O}}_{\hat{E}(K)}}$ and every $x \in \mathcal{H}^i(M)$ we construct an explicit embedding u of (M, φ_M) in a certain $(N, \varphi_N) \in \Phi\Gamma M_{\text{ét}}^{\hat{\text{O}}_{\hat{E}(K)}}$.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields
such that $\mathcal{H}^i(u)(x)$ is zero in $\mathcal{H}^i(N)$. For details see [H]. The key point is of topological nature: we prove, following an idea of Fontaine in [F], that there exists an open neighbourhood of 0 in M on which $(\varphi - 1)$ is bijective and use then the continuity of the action of Γ.

As an application of theorem 4 we can prove the following result (due to Tate):

Theorem 5. Assume that k_K is finite and let V be in $\text{Rep}_p\text{-tor}(G)$. Without using class field theory the previous theorem implies that $H^i(G, V)$ are finite, $H^i(G, V) = 0$ for $i \geq 3$ and

$$\sum_{i=0}^{2} l(H^i(G, V)) = -|K: \mathbb{Q}_p| l(V),$$

where $l(\cdot)$ denotes the length over \mathbb{Z}_p.

See [H].

Remark. Because the finiteness results imply that the Mittag–Leffler conditions are satisfied, it is possible to generalize the explicit construction of the cohomology and to prove analogous results for \mathbb{Z}_p (or \mathbb{Q}_p)-adic representations by passing to the inverse limits.

6.5. A new approach to local class field theory

The results of the preceding paragraph allow us to prove without using class field theory the following:

Theorem 6 (Tate’s local duality). Let V be in $\text{Rep}_p\text{-tor}(G)$ and $n \in \mathbb{N}$ such that $p^nV = 0$. Put $V^*(1) := \text{Hom}(V, \mu_{p^n})$. Then there is a canonical isomorphism from $H^2(G, \mu_{p^n})$ to \mathbb{Z}/p^n and the cup product

$$H^i(G, V) \times H^{2-i}(G, V^*(1)) \xrightarrow{\cup} H^2(G, \mu_{p^n}) \simeq \mathbb{Z}/p^n$$

is a perfect pairing.

It is well known that a proof of the local duality theorem of Tate without using class field theory gives a construction of the reciprocity map. For every $n \geq 1$ we have by duality a functorial isomorphism between the finite groups $\text{Hom}(G, \mathbb{Z}/p^n) = H^1(G, \mathbb{Z}/p^n)$ and $H^1(G, \mu_{p^n})$ which is isomorphic to $K^*/(K^*)^p$ by Kummer theory. Taking the inverse limits gives us the p-part of the reciprocity map, the most difficult part.
Sketch of the proof of Theorem 6. ([H2]).

a) Introduction of differentials:

Let us denote by Ω^1 the $\mathcal{O}_{E(K)}$-module of continuous differential forms of \mathcal{O}_E over $W(k_{K_{\infty}})$. If π is a fixed lifting of a prime element of $E(K_{\infty}/K)$ in $\mathcal{O}_{E(K)}$, then this module is free and generated by $d\pi$. Define the residue map from Ω^1_c to $W(k_{K_{\infty}})$ by $\text{res} \ (\sum_{i \in \mathbb{Z}} a_i \pi^i d\pi) := a_{-1}$; it is independent of the choice of π.

b) Calculation of some Φ-Γ-modules:

The $\mathcal{O}_{E(K)}$-module Ω^1_c is endowed with an étale Φ-Γ-module structure by the following formulas: for every $\lambda \in \mathcal{O}_{E(K)}$ we put:

$$p \varphi(\lambda d\pi) = \sigma(\lambda) d(\sigma(\pi)) \quad \gamma(\lambda d\pi) = \gamma(\lambda) d(\gamma(\pi)).$$

The fundamental fact is that there is a natural isomorphism of Φ-Γ-modules over $\mathcal{O}_{E(K)}$ between $D(p^n)$ and the reduction $\Omega^1_{c,n}$ of Ω^1_c modulo p^n.

The étale Φ-Γ-module associated to the representation $V^r(1)$ is $\tilde{M} := \text{Hom}(M, \Omega^1_{c,n})$, where $M = D(V)$. By composing the residue with the trace we obtain a surjective and continuous map Tr_n from M to \mathbb{Z}/p^n. For every $f \in \tilde{M}$, the map $\text{Tr}_n \circ f$ is an element of the group M^\vee of continuous group homomorphisms from M to \mathbb{Z}/p^n. This gives in fact a group isomorphism from \tilde{M} to M^\vee and we can therefore transfer the Φ-Γ-module structure from \tilde{M} to M^\vee. But, since k is finite, M is locally compact and M^\vee is in fact the Pontryagin dual of M.

c) Pontryagin duality implies local duality:

We simply dualize the complex $C_2(M)$ using Pontryagin duality (all arrows are strict morphisms in the category of topological groups) and obtain a complex:

$$C_2(M)^\vee : \quad 0 \to M^\vee \xrightarrow{\beta^\vee} M^\vee \oplus M^\vee \xrightarrow{\alpha^\vee} M^\vee \to 0,$$

where the two M^\vee are in degrees 0 and 2. Since we can construct an explicit quasi-isomorphism between $C_2(M^\vee)$ and $C_2(M)^\vee$, we easily obtain a duality between $\mathcal{H}^i(M)$ and $\mathcal{H}^{2-i}(M^\vee)$ for every $i \in \{0, 1, 2\}$.

d) The canonical isomorphism from $\mathcal{H}^2(\Omega^1_{c,n})$ to \mathbb{Z}/p^n:

The map Tr_n from $\Omega^1_{c,n}$ to \mathbb{Z}/p^n factors through the group $\mathcal{H}^2(\Omega^1_{c,n})$ and this gives an isomorphism. But it is not canonical! In fact the construction of the complex $C_2(M)$ depends on the choice of γ. Fortunately, if we take another γ, we get a quasi-isomorphic complex and if we normalize the map Tr_n by multiplying it by the unit $\gamma = p^{v_p(\log \chi(\gamma))}/\log \chi(\gamma)$ of \mathbb{Z}_p, where γ is the p-adic logarithm, χ the cyclotomic character and $v_p = v_{Q_p}$, then everything is compatible with the change of γ.

e) The duality is given by the cup product:

We can construct explicit formulas for the cup product:

$$\mathcal{H}^i(M) \times \mathcal{H}^{2-i}(M^\vee) \xrightarrow{\cup} \mathcal{H}^2(\Omega^1_{c,n})$$
associated with the cohomological functor $(\mathcal{H}^i)_{i \in \mathbb{N}}$ and we compose them with the preceding normalized isomorphism from $\mathcal{H}^2(\Omega^1_{C,n})$ to \mathbb{Z}/p^n. Since everything is explicit, we can compare with the pairing obtained in c) and verify that it is the same up to a unit of \mathbb{Z}_p.

Remark. Benois, using the previous theorem, deduced an explicit formula of Coleman’s type for the Hilbert symbol and proved Perrin-Riou’s formula for crystalline representations ([B]).

6.6. Explicit formulas for the generalized Hilbert symbol on formal groups

Let K_0 be the fraction field of the ring W_0 of Witt vectors with coefficients in a finite field of characteristic $p > 2$ and \mathcal{F} a commutative formal group of finite height h defined over W_0.

For every integer $n \geq 1$, denote by $\mathcal{F}[p^n]$ the p^n-torsion points in $\mathcal{F}(\mathcal{M}_C)$, where \mathcal{M}_C is the maximal ideal of the completion C of an algebraic closure of K_0. The group $\mathcal{F}[p^n]$ is isomorphic to $(\mathbb{Z}/p^n \mathbb{Z})^h$.

Let K be a finite extension of K_0 contained in K^{sep} and assume that the points of $\mathcal{F}[p^n]$ are defined over K. We then have a bilinear pairing:

$$(\ ,)_{\mathcal{F},n} : G^{\text{ab}}_K \times \mathcal{F}(\mathcal{M}_K) \to \mathcal{F}[p^n]$$

(see section 8 of Part I).

When the field K contains a primitive p^nth root of unity ζ_{p^n}, Abrashkin gives an explicit description for this pairing generalizing the classical Brückner–Vostokov formula for the Hilbert symbol ([A]). In his paper he notices that the formula makes sense even if K does not contain ζ_{p^n} and he asks whether it holds without this assumption. In a recent unpublished work, Benois proves that this is true.

Suppose for simplicity that K contains only ζ_p. Abrashkin considers in his paper the extension $\widetilde{K} := K(\pi^{p^{-r}}, r \geq 1)$, where π is a fixed prime element of K. It is not a Galois extension of K but is arithmetically profinite, so by [W] one can consider the field of norms for it. In order not to loose information given by the roots of unity of order a power of p, Benois uses the composite Galois extension $L := K^{\infty} \widetilde{K}/K$ which is arithmetically profinite. There are several problems with the field of norms $N(L/K)$, especially it is not clear that one can lift it in characteristic 0 with its Galois action. So, Benois simply considers the completion F of the p-radical closure of $E = N(L/K)$ and its separable closure F^{sep} in R. If we apply what was explained in subsection 6.2 for $\Gamma = \text{Gal}(L/K)$, we get:

Theorem 7. The functor $V \to D(V) := (W(F^{\text{sep}}) \otimes_{\mathbb{Z}_p} V)^{G_L}$ defines an equivalence of the categories $\text{Rep}_{\mathbb{Z}_p}(G)$ and $\Phi \Gamma M_{W(F)}^{\text{et}}$.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields
Choose a topological generator γ' of $\text{Gal}(L/K_{\infty})$ and lift γ to an element of $\text{Gal}(L/\tilde{K})$. Then Γ is topologically generated by γ and γ', with the relation $\gamma \gamma' = (\gamma')^a \gamma$, where $a = \chi(\gamma)$ (χ is the cyclotomic character). For $(M, \varphi) \in \Phi \Gamma M_{\text{ét}}^\text{ét}(F)$, the continuous action of $\text{Gal}(L/K_{\infty})$ on M makes it a module over the Iwasawa algebra $\mathbb{Z}_p[[\gamma' - 1]]$. So we can define the following complex of abelian groups:

$C_3(M) : 0 \to M_0 \xrightarrow{\alpha_{A_0}} M_1 \xrightarrow{\alpha_{A_1}} M_2 \xrightarrow{\alpha_{A_2}} M_3 \to 0$

where M_0 is in degree 0, $M_0 = M_3 = M$, $M_1 = M_2 = M^3$,

$A_0 = \begin{pmatrix} \varphi - 1 \\ \gamma - 1 \\ \gamma' - 1 \end{pmatrix}$, $A_1 = \begin{pmatrix} \gamma - 1 & 1 - \varphi & 0 \\ \gamma' - 1 & 0 & 1 - \varphi \\ 0 & \gamma'^a - 1 & \delta - \gamma \end{pmatrix}$, $A_2 = ((\gamma')^a - 1 \delta - \gamma \varphi - 1)$

and $\delta = ((\gamma')^a - 1)(\gamma' - 1)^{-1} \in \mathbb{Z}_p[[\gamma' - 1]]$.

As usual, by taking the cohomology of this complex, one defines a cohomological functor $(\mathcal{H}^i)_i \in \mathbb{N}$ from $\Phi \Gamma M_{\text{ét}}^\text{ét}(F)$ in the category of abelian groups. Benois proves only that the cohomology of a p-torsion representation V of G injects in the groups $\mathcal{H}^i(D(V))$ which is enough to get the explicit formula. But in fact a stronger statement is true:

Theorem 8. The cohomological functor $(\mathcal{H}^i \circ D)_i \in \mathbb{N}$ can be identified with the Galois cohomology functor $(H^i(G,))_i \in \mathbb{N}$ for the category $\text{Rep}_{p\text{-tor}}(G)$.

Idea of the proof. Use the same method as in the proof of Theorem 4. It is only more technically complicated because of the structure of Γ.

Finally, one can explicitly construct the cup products in terms of the groups \mathcal{H}^i and, as in [B], Benois uses them to calculate the Hilbert symbol.

Remark. Analogous constructions (equivalence of category, explicit construction of the cohomology by a complex) seem to work for higher dimensional local fields. In particular, in the two-dimensional case, the formalism is similar to that of this paragraph; the group Γ acting on the $\Phi \Gamma$-modules has the same structure as here and thus the complex is of the same form. This work is still in progress.

References

[A] V. A. Abrashkin, Explicit formulae for the Hilbert symbol of a formal group over the Witt vectors, Izv. RAN Math. 61(1997), 463–515.

[B] D. Benois, On Iwasawa theory of crystalline representations, Duke Math. J. 104 (2) (2000), 211–267.

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields
[FV] I. Fesenko and S. Vostokov, Local Fields and Their Extensions, Trans. of Math. Monographs, 121, A.M.S., 1993.

[F] J.-M. Fontaine, Représentations p-adiques des corps locaux, The Grothendieck Festschrift 2, Birkhäuser, 1994, 59–111.

[H1] L. Herr, Sur la cohomologie galoisienne des corps p-adiques, Bull. de la Soc. Math. de France, 126(1998), 563–600.

[H2] L. Herr, Une approche nouvelle de la dualité locale de Tate, to appear in Math. Annalen.

[W] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann. Sci. E.N.S. 16(1983), 59–89.

Université Bordeaux 1, Laboratoire A2X, 351 Cours de la Libération, 33405 Talence, France
E-mail: herr@math.u-bordeaux.fr