Polyp detection rate and pathological features in patients undergoing a comprehensive colonoscopy screening

Hamid Asadzadeh Aghdaei, Ehsan Nazemalhosseini Mojarad, Sara Ashtari, Mohmad Amin Pourhoseingholi, Vahid Chaleshi, Fakhrosadat Anaraki, Mehrdad Haghazali, Mohammad Reza Zali

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Abstract

AIM
To identify the prevalence, and clinical and pathologic characteristic of colonic polyps among Iranian patients undergoing a comprehensive colonoscopy, and determine the polyp detection rate (PDR) and adenoma detection rate (ADR).
METHODS
In this cross-sectional study, demographics and epidemiologic characteristics of 531 persons who underwent colonoscopies between 2014 and 2015 at Mehrad gastrointestinal clinic were determined. Demographics, indication for colonoscopy, colonoscopy findings, number of polyps, and histopathological characteristics of the polyps were examined for each person.

RESULTS
Our sample included 295 (55.6%) women and 236 (44.4%) men, with a mean age of 50.25 ± 14.89 years. Overall PDR was 23.5% (125/531). ADR and colorectal cancer detection rate in this study were 12.8% and 1.5%, respectively. Polyps were detected more significantly frequently in men than in women (52.8% vs 47.2%, P < 0.05). Polyps can be seen in most patients after the age of 50. The average age of patients with cancer was significantly higher than that of patients with polyps (61.3 years vs 56.4 years, P < 0.05). The majority of the polyps were adenomatous. More than 50% of the polyps were found in the rectosigmoid part of the colon.

CONCLUSION
The prevalence of polyps and adenomas in this study is less than that reported in the Western populations. In our patients, distal colon is more susceptible to developing polyps and cancer than proximal colon.

Key words: Adenoma detection; Polyp detection; Iran; Colonoscopy; Screening

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: One of the major reasons for colonoscopy is detection of colon polyps, such as adenomas. Early diagnosis and endoscopic removal of adenomatous polyps is one of the main objectives for screening and prevention of colorectal cancer (CRC). Given that, only few studies are available in the national literature regarding the assessment of colorectal polyps, but none has explicitly noted the rate of polyp detection. Nevertheless, our study provides comprehensive information about clinical and epidemiological features of colorectal polyps. Therefore, the results of this study can provide a good infrastructure for the next preventive program and have clinical implications for CRC screening.

INTRODUCTION
Colorectal cancer (CRC) is the third most common malignant disease in both men and women worldwide, accounting for more than 8% of mortality in the world with approximately 1.4 million new cases a year[1-4].

CRC is also the third most common cancer in men and women in Asia[5,6]. In the Asia-Pacific region, the incidence varies between regions, with high incidence in Australia, and Eastern Asia, and low incidence in South-central Asia[7]. According to the International Agency for Research on Cancer, the incidence of CRC in many Asian countries is similar to that in many Western countries[8]. CRC is also the third most common cancer in Iranians, after excluding skin cancer; and it occurs at younger ages with an increasing trend similar to that in the Asia-Pacific countries[1,9]. These increasing rates may result from the young age structure and low rates of colon cancer in older people of these countries[6,10,11].

Almost all CRCs develop from colorectal polyps. Over a period of ten years, most of adenomatous polyps can be converted to colon carcinoma[12,13]. Given that the process of conversion of colorectal adenomas into adenocarcinoma is very long and slow[14], early detection and endoscopic removal of these precancerous lesions are very effective in reducing the incidence and mortality rate of CRC[15-17].

CRC is a suitable disease for screening[18]. However, due to a lack of comprehensive screening strategy and public acceptance, this program is not implemented in many countries. Nevertheless, access to the CRC screening is an important key to reducing the burden of CRC. Endoscopic screening is comprised of four techniques including sigmoidoscopy, colonoscopy, barium enema, and computed tomographic colonography[19]. Colonoscopy is a highly specific and the most effective screening tool for detecting colonic polyps and CRC[20].

Limited data are available in the national literature regarding the assessment of colorectal polyps[21-25]. Understanding of the prevalence of colorectal polyps especially adenomas in the general population would help clarify the efficacy of a CRC screening program. Therefore, updating the current knowledge in the scope of colorectal polyps and CRC is essential. Hence, identifying the features of colon polyps (e.g., distribution, location, and histology type) has great implications for developing national screening guidelines for CRC[26-27].

In this study, we aimed to determine the baseline polyp and adenoma prevalence in persons who underwent colonoscopies for various indications as well as opportunistic screening for CRC. We also assessed the polyp detection rate (PDR) and adenoma detection rate (ADR), and evaluated the clinical and histological
characteristics of colorectal polyps in Iranian patients and Iranian volunteers for CRC screening.

MATERIALS AND METHODS

Study design
In this cross-sectional study, all data were extracted from a colonoscopy database and pathology reports maintained by Mehrad gastrointestinal clinic in Iran. We included all persons aged 15 to 85 years, who underwent their first time colonoscopy during 2014-2015. Patients who had previously been identified with colon polyp or colorectal malignancies including CRC, colonic resection, active colitis, active diverticulitis and familial adenomatous polyposis were excluded from the study. We collected the data on demographic variables, indications for colonoscopy, and family history of colorectal malignancies. Family history was defined as having a first degree relative with CRC. For all colorectal lesions, data on clinical and pathological features (i.e., number, size, site, and grade of dysplasia) were obtained. The study was approved by the Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences.

Polyp classification
All polyps identified during colonoscopy were biopsied or removed endoscopically and submitted for histopathology. The overall PDR was defined as the proportion of procedures in which at least one polyp was detected over the total number of colonoscopies. ADR was defined as the number of colonoscopies in which one or more adenomas was detected, divided by the total number of colonoscopies performed by the endoscopist[28].

Pathological features of colorectal lesions were determined using the World Health Organization criteria[28]. Hyperplastic and adenomatous polyps were classified as non-neoplastic polyps and neoplastic polyps, respectively. Microscopically, adenomas were categorized architecturally as serrated, tubular, tubular-villous, and villous.

The locations of the polyps were defined as proximal colon including the transverse colon, hepatic flexure, ascending colon, and cecum, and distal colon including the rectum, sigmoid, descending colon, and splenic flexure.

The polyp size was classified as small (< 5 mm), medium (5-9 mm), or large (> 10 mm). Estimation of polyp size was performed by the endoscopist using the diameter of the open biopsy forceps, which is about 8 mm. In the event of multiple polyps, only the size of the largest was considered for the purposes of analysis. Degrees of dysplasia observed in the adenomas were graded as low (mild and moderate) or high grade (severe). Patients with no polyps were regarded as normal.

Statistical analysis
Categorical variables are expressed as numbers and percentages, χ^2 or Fisher’s exact test, where appropriate, was used for analysis of categorical variables. Continuous variables are expressed as medians, or as means and standard deviation, and 95%CI as appropriate. The Student’s t-test was used for comparisons of means. All analyses were performed using SPSS version 21.0 (SPSS INC, Chicago, IL, United States). A two-tailed $P < 0.05$ was considered statistically significant.

RESULTS

Demographic and historical data
During the period of study (2014-2015), 531 persons met the inclusion criteria. Our sample included 55.6% of women and 44.4% of men. The age range was 15-85 years with a mean of 50.3 ± 15.4 years and a median of 52 years. The patients were divided into two age-groups (≤ 50 and > 50 years). The majority of patients was over 50 years (52.9%). One hundred and fifty (28.2%) patients had a family history of polyps or CRC in our study.

The most common reasons for colonoscopy included screening (asymptomatic adults aged 50 years and older and with a family history of CRC) in 22.6%, and lower screening (asymptomatic adults aged 50 years and older) in 20.6%. The most common reasons for colonoscopy were constipation (15.4%), diarrhea (13.9%), abdominal pain (13.1%), inflammatory bowel disease (12.2%), and others (5.4%). Other referral indications included bloating, reflux, weight loss, anemia, fatty liver, and irritable bowel syndrome (Table 1).

Study outcomes and colonoscopy findings
Based on colonoscopy findings, the overall PDR was

Table 1 Patients’ characteristics and colonoscopy findings
Variable

Sex
Male, n (%)
Female, n (%)
Age
Mean years (SD)
Age groups
≤ 50 yr
> 50 yr
Family history
Yes
No
Indication, n (%)
Screening
Gastrointestinal bleeding
Constipation
Diarrhea
Abdominal pain
Inflammatory bowel disease
Others
Patients with at least 1 polyp, n (%)
Neoplastic polyps
Non-neoplastic polyps
Cancer, n (%)
Table 2 Detection rates of different histologic types of polyps and cancer by gender

Histologic type of polyps	Gender	Total
	Male (%)	Female (%)
Neoplastic		
Tubular	18 (53.0)	16 (47.0)
Tubulo-villous	13 (68.4)	6 (31.6)
Villous	4 (40.0)	6 (60.0)
Serrated	3 (60.0)	2 (40.0)
Adenomatous polyps	38 (55.9)	30 (44.1)
Non-neoplastic		
Hyperplastic	28 (40.6)	29 (45.3)
Total PDR	66 (52.8)	59 (47.2)
Cancer	5 (62.5)	3 (37.5)
Total	69 (51.9)	64 (48.1)

Table 3 Detection rates of different histologic types of polyps and cancer by age

Histologic type of polyps	Age-groups	Total
	≤ 50 yr	> 50 yr
Neoplastic		
Tubular	6 (17.6)	28 (82.4)
Tubulo-villous	7 (36.8)	12 (63.2)
Villous	3 (30.0)	7 (70.0)
Serrated	3 (60.0)	2 (40.0)
Adenomatous polyps	19 (28.0)	49 (72.0)
Non-neoplastic		
Hyperplastic	19 (33.3)	38 (66.7)
Total PDR	38 (30.4)	87 (69.6)
Cancer	1 (12.5)	7 (87.5)
Total	39 (29.3)	94 (70.7)

The prevalence of polyps in distal colon was higher than that in proximal colon (68.1% vs 31.9%, P < 0.05). Accordingly, most of cancers were located in the distal colon compared with the proximal colon (75% vs 25%, P < 0.05) (Table 5). Overall polyps were frequently detected in the rectum (32.0%), sigmoid (24.6%), transverse colon (16%), and ascending and descending colon (10.1%), and the others located in the cecum (5%), and splenic and hepatic flexure (2.1%) (Table 6).

Data about the size of polyps were available for only 75 polyps; 33.3% were smaller than 5 mm as small size, 40% were between 5-9 mm as medium size and 26.7% were more than 10 mm as large size (Table 7). According to the degree of dysplasia observed in the adenomas, most of patients (52.6%) had mild grade, 24.4% had moderate, and 23% had severe grade of dysplasia (Table 8).
DISCUSSION

The PDR and ADR rates obtained in this study are low, when compared to the figures from most Western and some Asian countries. In a large multicenter study from Italy, the median detection rate for polyps was 35%.[29] A large colonoscopy series from Spain reported a PDR of 45.8%.[30] Similar studies from Mayo Clinic in the United States and France reported PDR of 49% and 35.5%, and ADR of 31% and 17.7%, respectively.[31,32] In some Asian countries like Korea, China and Thailand, PDR and ADR were similar to those in Europeans and Americans.[33-36] However, our findings are similar to reports from Kuwait, Malaysia and Oman where PDR of 20% and ADR of 10%, 11.5% and 12.1% were reported, respectively.[37-39] In Africa, Nigeria for example, the prevalence of adenomas and cancer was significantly higher than that of patients with polyps (61.3 years vs 56.4 years, P < 0.05). Studies from the Middle East and the Western countries also mentioned a significant increase in the risk of CRC, in particular after the age of 50 years.[37-39]

Data available for only 75 polyps.

Based on increasing prevalence of CRC in the sixth decade of life, regular screening should begin at the age of 50. However, people at higher risk of developing CRC should begin screening at a younger age.[40,41] Older age is the most important predictor for the prevalence of adenomas and cancer. In our study, the PDR and cancer prevalence reached a peak in the 6th decade of life. Nonetheless, the average age of patients with cancer was significantly higher than that of patients with polyps (61.3 years vs 56.4 years, P < 0.05). Studies from the Middle East and the Western countries also mentioned a significant increase in the risk of CRC, in particular after the age of 50 years.[37-39]

Gender differences in the prevalence of colon polyps and cancer,[27,40,41] older age is the most important predictor for the prevalence of adenomas and cancer. In our study, the PDR and cancer prevalence reached a peak in the 6th decade of life. Nonetheless, the average age of patients with cancer was significantly higher than that of patients with polyps (61.3 years vs 56.4 years, P < 0.05). Studies from the Middle East and the Western countries also mentioned a significant increase in the risk of CRC, in particular after the age of 50 years.[37-39]

Based on increasing prevalence of CRC in the sixth decade of life, regular screening should begin at the age of 50. However, people at higher risk of developing CRC should begin screening at a younger age.[40,41] Older age is the most important predictor for the prevalence of adenomas and cancer. In our study, the PDR and cancer prevalence reached a peak in the 6th decade of life. Nonetheless, the average age of patients with cancer was significantly higher than that of patients with polyps (61.3 years vs 56.4 years, P < 0.05). Studies from the Middle East and the Western countries also mentioned a significant increase in the risk of CRC, in particular after the age of 50 years.[37-39]

The tubular type was the most common histological feature of adenomas in the present study, in accordance with the results of other reports.[21,27,45] Polyps were detected significantly in distal (left sided) colon, comparable with results from Asian and the Western countries.[46,47] Nonetheless, because of the significance of adenomatous polyps and hyperplastic polyps present in proximal colon, the location of polyps is not helpful for distinguishing between neoplastic and non-neoplastic polyps. So, complete colonoscopy is recommended in screening guidelines for colon cancer.[43,44] In addition, this study showed that only 56.6% of the polyps were found in the rectum and sigmoid region. Our study did not find any association between the age and location of polyps. This is in contrast with previous studies showing that the incidence of right sided polyps increased with increasing age.[44]

With regard to the size of polyps, we observed that the hyperplastic polyps and tubular adenoma were always smaller than 10 mm, while tubulo-villous and villous adenoma were always bigger than 10 mm. So,
removing the polyps which are larger than 10 mm is recommended\cite{36,49}.

The study faced some limitations. First, this study was not population-based, therefore, the selection bias of the study population must be kept in mind. Second, our sample included mostly symptomatic patients, in which the estimates may be different from screening studies with asymptomatic individuals. Nevertheless, the results of this study can provide a good infrastructure for the next preventive program and have clinical implications for CRC screening.

In conclusion, PDR, ADR and CRC detection rate in this study were 23.5%, 12.8% and 1.5%, respectively. Most of the polyps and CRC were identified in patients aged 50 years or older. The majority of the polyps were adenomatous. More than 50% of the polyps were found in the rectosigmoid part of the colon. Finally, our study did not find any association between the family history and PDR.

COMMENTS

Background

Colorectal cancer (CRC) is the third most common malignant disease in both men and women worldwide, accounting for more than 8% of cancer-related death in the world with approximately 1.4 million new cases a year. Almost all CRCs develop from colorectal polyps. CRC largely can be prevented by the detection and removal of adenomatous polyps, and survival is significantly better when CRC is diagnosed while still localized. When CRC is found at an early stage before it has spread, the 5-year relative survival rate is about 90%. But only about 4 out of 10 CRCs are found at this early stage. When cancer has spread outside the colon or rectum, survival rates are lower.

Research frontiers

Early diagnosis and endoscopic resection of adenomatous polyps is the main approach for screening and prevention of CRC. This study aimed at identifying the prevalence, and clinical and pathologic characteristic of colonic polyps among Iranian patients undergoing a comprehensive colonoscopy and determine the polyp detection rate (PDR) and adenoma detection rate (ADR).

Innovations and breakthroughs

Only few studies are available in the national literature regarding the assessment of colorectal polyps, but none has explicitly noted the rate of polyp detection. Nevertheless, the study provides comprehensive information about clinical and epidemiological features of colorectal polyps.

Applications

Older age is the most important predictor for the prevalence of adenomas and cancer. Based on the results of this study, the PDR and cancer prevalence reached a peak in the 6th decade of life. Given the increased prevalence of CRC in the sixth decade of life, regular screening beginning at the age of 50 is the key to preventing CRC.

Terminology

The overall PDR was defined as the proportion of procedures in which at least one polyp was detected over the total number of colonoscopies. ADR was defined as the number of colonoscopies in which one or more adenomas was detected, divided by the total number of colonoscopies performed by the endoscopist.

Peer-review

Authors report in this paper the detection rates by colonoscopy for cancer and adenoma in an Iranian population.

REFERENCES

1. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 2010; 19: 1893-1907 [PMID: 20664700 DOI: 10.1188/1055-9965.20664700]
2. Edwards BK, Ward E, Kohler BA, Eshem C, Zauber AG, Anderson RN, Jemal A, Schumura MJ, Lansdorp-Vogelaar I, Seiff LC, van Ballegooijen M, Goede SL, Ries LA. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 2010; 116: 544-573 [PMID: 19908273 DOI: 10.1002/cncr.24760]
3. Ferlay J, Autier P, Boniol M, Henne M, Colombet M, Boyle, P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 2007; 18: 581-592 [PMID: 17287242 DOI: 10.1093/annonc/mdi498]
4. Joseph DA, King JB, Miller JW, Richardson LC. Prevalence of colorectal cancer screening among adults—Behavioral Risk Factor Surveillance System, United States, 2010. MMWR Suppl 2011; 61: 51-56 [PMID: 22695460]
5. Pourhoseingholi MA. Increased burden of colorectal cancer in Asia. World J Gastrointest Oncol 2012; 4: 68-70 [PMID: 22532878 DOI: 10.4251/wjgo.v4.i4.68]
6. Yiu HY, Whittemore AS, Shibata A. Increasing colorectal cancer incidence rates in Japan. Int J Cancer 2004; 109: 777-781 [PMID: 14999789 DOI: 10.1002/jic.20030]
7. Pourhoseingholi MA. Epidemiology and burden of colorectal cancer in Asia-Pacific region: what shall we do now? Transl Gastrointest Cancer 2014; 3: 169-173 [DOI: 10.3978/j.issn.2224-4778.2014.08.10]
8. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359-E386 [PMID: 25220842 DOI: 10.1002/ijc.29210]
9. Hossein Soni M, Mirinezhad K, Farhang, S, Jazayeri E, Sani A, Seif-Farshadi M, Golzar M, Kashfi S, Sadeghi M. Gastrointestinal cancer occurrence in East Azarbaijan: a five year study from North Western Iran. Asian Pac J Cancer Prev 2006; 7: 309-312 [PMID: 16839228]
10. Moussavi SM, Gouya MM, Ramazani R, Davanloou M, Hajesadeghi N, Seddighi Z. Cancer incidence and mortality in Iran. Ann Oncol 2009; 20: 556-556 [PMID: 19073863 DOI: 10.1093/annonc/mdn642]
11. Ansari R, Mahdavinia M, Sadjadi A, Nouraie M, Kamanf G, Bisheharsi F, Fakheri H, Sermnani S, Arshi S, Zahedi MJ, Davish-Moghadam M, Mansour-Ghainaei F, Mosavi A, Malekzadeh R. Incidence and age distribution of colorectal cancer in Iran: results of a population-based cancer registry. Cancer Lett 2006; 240: 143-147 [PMID: 16288832 DOI: 10.1016/j.canlet.2005.09.004]
12. Noffsinger AE. Serrated polyps and colorectal cancer: new pathway to malignancy. Annu Rev Pathol 2009; 4: 343-364 [PMID: 19400693 DOI: 10.1146/annurev.pathol.4.110807.092317]
13. Levine JS, Ahnen DJ. Clinical practice. Adenomatous polyps of the colon. N Engl J Med 2006; 355: 2551-2557 [PMID: 17167138 DOI: 10.1056/NEJMcp063038]
14. Huang CS, Farraye FA, Yang S, O’Brien MJ. The clinical significance of serrated polyps. Am J Gastroenterol 2011; 106: 229-240; quiz 241 [PMID: 21045813 DOI: 10.1038/aig.2010.429]
15. García Sánchez J. [Colonic polyps: long-term prevention of colorectal cancer deaths]. Rev Clin Exp 2012; 212: 408 [PMID: 22937540 DOI: 10.1016/j.rec.2012.05.002]
16. Espey DK, Wu XC, Swan J, Wiggins C, Jim MA, Ward E, Wingo PA, Howe HL, Ries LA, Miller BA, Jemal A, Ahmed F, Cobb N, Kaur JS, Edwards BK. Annual report to the nation on the status of cancer, 1975-2004, featuring cancer in American Indians and Alaska Natives. Cancer 2007; 110: 2119-2152 [PMID: 17939129 DOI: 10.1002/cncr.23044]
Asadzadeh Aghdai et al. Prevalence and characteristics of colonic polyps. World J Gastroenterol 2015; 21: 9380-9386 [PMID: 26309364 DOI: 10.3748/wjg.v21.i31.9380]

48 Mehran A, Jaffe P, Efron J, Vernava A, Liberman A. Screening colonoscopy in the asymptomatic 50- to 59-year-old population. Surg Endosc 2003; 17: 1974-1977 [PMID: 14569451 DOI: 10.1007/s00464-003-8807-4]

49 Hassan C, Pickhardt PJ, Rex DK. A resect and discard strategy would improve cost-effectiveness of colorectal cancer screening. Clin Gastroenterol Hepatol 2010; 8: 865-869 [PMID: 20621680 DOI: 10.1016/j.cgh.2010.05.018]

P- Reviewer: Rey JF, Sali L S- Editor: Ji FF L- Editor: Wang TQ E- Editor: Li D
