Solving Optimal Reactive Power Dispatch Problem by Chaotic Based Brain Storm Optimization Algorithm

Kanagasabai Lenin

Department of EEE, Prasad V.Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh - 520007, India

Abstract

In this work Chaotic Predator-Prey Brain Storm Optimization (CPS) algorithm is proposed to solve optimal reactive power dispatch problem. Predator–Prey Brain Storm Optimization position cluster centers to execute as predators, accordingly it will progress towards enhanced positions, although the left over thoughts do as preys; consequently they move far from their neighboring predators. In the projected algorithm chaotic theory has been applied to enhance the quality of the exploration. Ergodicity and indiscretion are utilized in the CPS algorithm, such that projected algorithm will not get trapped in the local optimal solution. Chaotic predator-prey brain storm optimization (CPS) algorithm has been tested in standard IEEE 30 bus test system and results show the projected algorithm reduced the real power loss effectively.

© 2021 Author(s).

Keywords: optimal reactive power, Transmission loss, chaotic predator-prey brain storm optimization algorithm

1. Introduction

The main objective of optimal reactive power problem is to minimize the real power loss and bus voltage deviation. To till date various methodologies has been applied to solve the Optimal Reactive Power problem. The key aspect of solving Reactive Power problem is to reduce the real power loss. Previously many types of mathematical methodologies [1-6] have been utilized to solve the reactive power problem. Then evolutionary algorithms [7-16] have been applied to solve the reactive power problem. This paper proposes chaotic predator-prey brain storm optimization (CPS) algorithm to solve optimal reactive power dispatch problem. Predator–Prey Brain Storm Optimization position cluster centres to execute as predators, accordingly it will progress towards enhanced positions, although the left over thoughts do as preys; consequently they move far from their neighbouring predators. In the projected algorithm chaotic theory has been applied to enhance the quality of the exploration. All the way through crossover, y_i, z_i are engendered together both the preceding and recently produced one are calculated then the preceding one is exchanged by the most outstanding one. Ergodicity and indiscretion are utilized in the CPS algorithm, such that projected algorithm will not get trapped in the local optimal solution. Chaotic search will be introduced to the exploration in the
neighbourhood of the present best solution to prefer superior solution for subsequent generation. Chaotic predator-prey brain storm optimization (CPS) algorithm has been tested in standard IEEE 30 bus test system and results show the projected algorithm reduced the real power loss effectively.

2. Problem formulation

Objective function of the problem is mathematically defined in general mode by,

\[\text{Minimization } F(\bar{x},\bar{y}) \]

Subject to

\[E(\bar{x},\bar{y}) = 0 \]

\[I(\bar{x},\bar{y}) = 0 \]

\[x = [V_G_1, ..., V_G_N_G; Q_C_1, ..., Q_C_N_C; T_1, ..., T_N_T] \]

\[y = [P_{G_{\text{ slack}}}, V_L_1, ..., V_L_{N_{\text{load}}}; Q_G_1, ..., Q_G_{N_G}; S_L_1, ..., S_L_{N_L}] \]

\[OF_1 = P_{\text{ Min}} = \text{Min} \left[\sum_{m=1}^{\text{NT}} C_m \left[V_i^2 + V_j^2 - 2 \times V_i V_j \cos \Theta_{ij} \right] \right] \]

\[OF_2 = \text{Min} \left[\sum_{i=1}^{\text{NG}} \left| V_k - V_k^{\text{desired}} \right|^2 + \sum_{i=1}^{\text{NG}} \left| G_k - G_k^{\text{lim}} \right|^2 \right] \]

\[OF_3 = \text{Min} \ L_{\text{Max}} \]

\[L_{\text{Max}} = \text{Max} \left[L_j; j = 1:N_{\text{LB}} \right] \]

\[F_j = -\left[V_i \right] V_j \]

\[L_{\text{Max}} = \text{Max} \left[1 - \left[V_i \right] V_j \right] \]

\[0 = P_{G_i} - P_{D_i} - V_i \sum_{e \in \text{NG}} V_j \left[G_{ij} \cos \left(\Theta_i - \Theta_j \right) + B_{ij} \sin \left(\Theta_i - \Theta_j \right) \right] \]

\[0 = Q_{G_i} - Q_{D_i} - V_i \sum_{e \in \text{NG}} V_j \left[G_{ij} \sin \left(\Theta_i - \Theta_j \right) + B_{ij} \cos \left(\Theta_i - \Theta_j \right) \right] \]

\[P_{\text{ min}}^{\text{g slack}} \leq P_{\text{ g slack}} \leq P_{\text{ max}}^{\text{g slack}} \]

\[Q_{\text{ min}}^{\text{g}} \leq Q_{\text{ g}} \leq Q_{\text{ max}}^{\text{g}} , i \in \text{ NG} \]

\[V_{\text{L min}} \leq V_L_i \leq V_{\text{L max}} , i \in \text{ NG} \]

\[T_{\text{1 min}} \leq T_i \leq T_{\text{1 max}} , i \in \text{ NG} \]

\[Q_{\text{ min}}^{\text{c}} \leq Q_{\text{ c}} \leq Q_{\text{ max}}^{\text{c}} , i \in \text{ NC} \]

\[-S_{\text{L min}} \leq S_{L_i} \leq S_{L_{\text{ max}}} , i \in \text{ NTL} \]

\[V_{G_{\text{ min}}} \leq V_{G_i} \leq V_{G_{\text{ max}}} , i \in \text{ NG} \]

\[MOF = OF_1 + x_1 OF_2 + y OF_3 = \text{OF}_1 + \left[\sum_{i=1}^{\text{NG}} x_i \left[V_L_i - V_{\text{L min}} \right]^2 + \sum_{i=1}^{\text{NG}} x_i \left[Q_{G_i} - Q_{G_{\text{ min}}} \right]^2 \right] + x_1 OF_3 \]

\[V_{\text{L min}} \]

\[\left\{ \begin{array}{l} V_{\text{L max}} , V_L_i > V_{\text{L max}} \\ V_{\text{L min}} , V_L_i < V_{\text{L min}} \end{array} \right. \]
\[QG_i^{\text{min}} = \begin{cases} QG_i^{\text{max}}, & Q_i > QG_i^{\text{max}} \\ QG_i^{\text{min}}, & Q_i < QG_i^{\text{min}} \end{cases} \] (23)

3. Chaotic predator-prey brain storm optimization algorithm

Within the exploration space a set of ideas are randomly produced. Brain storm optimization algorithm population (BSO) population is defined as, \(Y = \{ y_i = [y_{i1}, \ldots, y_{in}] | y_i \in B, 1 \leq i \leq P_{\text{size}} \} \) in this \(y_i \) represent the \(i \)th idea of the population, \(B = \mathbb{R}^n \) point out the idea in solution space, \(P_{\text{size}} \) population size. Initial population \(Y(0) \) and the \(n \)th iteration population indicated as \(Y(n) \). For each evaluated idea Fitness value \(f(y_i) \) calculated. Brain storm optimization algorithm [17] generally uses assemblage, substitute, generate, cross, and choosing operators.

New-fangled idea is generated by:

\[y_{i,d} = z_d + \xi_d \times P(\mu, \sigma)_d \] (24)

\[z_d = \left\{ \begin{array}{ll} z_{i,d} & \text{"1" cluster} \\ \omega_1 z_{i1d} + \omega_2 z_{i2d} & \text{2 cluster} \end{array} \right. \] (25)

\[\xi = \log\tanh\left(\frac{0.5\times \text{iteration}_\text{maximum}}{n} - 1\right) \times \text{rand}(0,1) \] (26)

When there is formation of new idea, a crossover between novel one and the preceding one is conducted. Through crossover, preceding and recently created one are calculated and when the stop condition reached then Brain storm optimization algorithm will stop otherwise once again procedure will be repeated. In this work Predator–Prey Brain Storm Optimization position cluster centers to execute as predators, accordingly it will progress towards enhanced positions, although the left over thoughts do as preys; consequently they move far from their neighboring predators. In the projected algorithm chaotic theory has been applied to enhance the quality of the exploration.

\[y_{\text{predator},d} = z_d + \xi_d \times P(\mu, \sigma)_d + \omega_{\text{predator}} (z_{\text{best},d} - z_d) \] (27)

\[y_{\text{prey},d} = z_d + \xi_d \times P(\mu, \sigma)_d - P_{\varepsilon} \text{sgn}(z_{\text{center},d} - z_d) \exp[-|z_{\text{center},d} - z_d|] \] (28)

\[a = z_{\text{span}} \] (29)

\[b = \frac{100}{z_{\text{span}}} \] (30)

Ergodicity and indiscretion are utilized in the CPS algorithm, such that projected algorithm will not get trapped in the local optimal solution.

\[c_{\text{h}_n+1} = 4c_{\text{h}_n} (1 - c_{\text{h}_n}) \] (31)

At every generation end, chaotic exploration will be set up to search in the neighborhood current most excellent solution to choose better-quality solution for following generation. As soon as local most excellent is attained then there won’t be any stop in the procedure and also attaining the optimal solution time will be sequentially condensed.

Step a: initialization of parameters
Step b: appraisal of ideas,
Step c: Probabilistic comparison has been done to swap the cluster center
Step d: Probabilistic comparison has been done to choose one cluster; otherwise, two clusters will be chosen
Step e: Probabilistic comparison has been done to choose the center of the one selected otherwise, pick additional ideas and progress to Step g;
Step f: Through $y_{prey,d} = z_d + \xi_d \times P(\mu, \sigma)_d + \omega_{prey}(z_{best,d} - z_d)$ and best idea, update the cluster center(s), and afterward move to Step h;
Step g: Through $y_{prey,d} = z_d + \xi_d \times P(\mu, \sigma)_d - P_d \cdot sgn(z_{center,d} - z_d) \cdot e^{-bl_{center,d}^2 z_d^2}$ update the ideas with tendency of rousing away from the neighboring cluster centers.
Step h: freshly produce d ideas crossovers with the present idea to produce two more ideas. Then evaluate the ideas, and best one will be preserved and confirmed as the innovative individual.
Step i: Execute the chaotic exploration with reference to $c_n+1 = 4c_n(1 - c_n)$ succeeding to modify the parameters ranges into (0, 1). Along with the formed chain of ideas, prefer best one and utilize it to exchange the preceding supreme idea
Step j: once “ideas” have been rationalized, then go to Step k. Otherwise move to Step d;
Step k: subsequent to evaluation of ideas, update the cluster center;
Step l: once current number of iterations is smaller than maximum number of iterations, subsequently move to Step b. Otherwise algorithm will be terminated and best idea is determined as optimal solution.

4. Simulation results

Projected chaotic predator-prey brain storm optimization (CPS) algorithm has been tested in standard IEEE 30 bus system [18]. Comparison of losses is shown in Table 1.

variables	DE [19]	GSA[19]	APOPSO [19]	CPS
PR1	1.1	1.071	1.100	1.098
PR2	1.09	1.022	1.084	1.042
PR3	1.07	1.040	1.056	1.023
PR4	1.07	1.051	1.076	1.049
PR5	1.1	0.977	1.091	1.090
PR6	0.986	1.100	1.098	1.023
QC 10	5	1.653	5.000	4.980
QC 12	5	4.3722	5.000	5.000
QC 15	5	0.1199	4.879	4.792
QC 17	5	2.0876	4.976	4.976
QC 20	4.41	0.357	3.821	3.700
QC 21	5	0.2602	4.541	4.662
QC 23	2.8004	0.0000	2.354	2.409
QC 24	5	1.3839	4.654	4.509
QC 29	2.5979	0.0000	2.175	2.160
T11 (6-9)	1.04	1.0985	1.029	1.016
T12 (6-10)	0.9097	0.9824	0.911	0.909
T13 (4-12)	0.98	1.095	0.952	0.949
T36 (28-27)	0.9689	1.0593	0.958	0.947
PLoss (MW)	4.555	4.5143	4.398	4.264
5. Conclusion

In this work optimal reactive power dispatch problem has been successfully solved by chaotic predator-prey brain storm optimization (CPS) algorithm. In the projected algorithm chaotic theory has been applied to enhance the quality of the exploration. Ergodicity and indiscretion are utilized in the CPS algorithm, such that projected algorithm will not get trapped in the local optimal solution. Chaotic search will be introduced to the exploration in the neighbourhood of the present best solution to prefer superior solution for subsequent generation. In standard IEEE 30bus system chaotic predator-prey brain storm optimization (CPS) algorithm has been tested and power loss has been reduced efficiently.

References

[1] K. Y. Lee “Fuel-cost minimisation for both real and reactive-power dispatches,” Proceedings Generation, Transmission and Distribution Conference, vol/issue: 131(3), pp. 85-93, (1984).
[2] Aoki, K., A. Nishikori and R.T. Yokoyama. Constrained load flow using recursive quadratic programming.IEEE T. Power Syst., 2(1): 8-16,(1987)
[3] Kirsch, D.S. and H.P. Van Meeteren., MW/voltage control in a linear programming based optimal power flow. IEEE T. Power Syst., 3(2): 481-489.(1988)
[4] Liu, W.H.E., A.D. Papalexopoulos and W.F. Tinney. Discrete shunt controls in a Newton optimal power flow. IEEE T. Power Syst., 7(4): 1509-1518.(1992)
[5] V. H. Quintana and M. Santos-Nieto, “Reactive-power dispatch by successive quadratic programming,” IEEE Transactions on Energy Conversion, vol. 4, no. 3, pp. 425–435, 1989.
[6] V. de Sousa, E. Baptista, and G. da Costa, “Optimal reactive power flow via the modified barrier Lagrangian function approach,” Electric Power Systems Research, vol. 84, no. 1, pp. 159–164, 2012.
[7] Roy, Provas Kumar and Susanta Dutta (2019) "Economic Load Dispatch: Optimal Power Flow and Optimal Reactive Power Dispatch Concept." Optimal Power Flow Using Evolutionary Algorithms. IGI Global, 2019. 46-64. Web. 21 . doi:10.4018/978-1-5225-6971-8-ch002
[8] Christian Bingane, Miguel F. Anjos, Sébastien Le Digabel, (2019) “Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem”. IEEE Transactions on Power Systems, DOI:10.1109/TPWRS.2019.2912889.arXiv:1810.03040.
[9] Dharbir Prasad & Vivekananda Mukherjee (2018) “Solution of Optimal Reactive Power Dispatch by Symbiotic Organism Search Algorithm Incorporating FACTS Devices”, IETE Journal of Research, 64:1, 149-160, DOI: 10.1080/03772063.2017.1334600.
[10] TM Aljohani, AF Ebrahim, O Mohammed Single (2019) “Multiobjective Optimal Reactive Power Dispatch Based on Hybrid Artificial Physics–Particle Swarm Optimization". Energies, 12(12),2333. https://doi.org/10.3390/en1222333
[11] Ram Kishan Mahate, & Himmat Singh. (2019). Multi-Objective Optimal Reactive Power Dispatch Using Differential Evolution. International Journal of Engineering Technologies and Management Research, 6(2), 27–38. http://doi.org/10.5281/zenodo.2585477.
[12] Yalcin, E., Taplamicogl, M., Çam, E (2019) "The Adaptive Chaotic Symbiotic Organisms Search Algorithm Proposal for Optimal Reactive Power Dispatch Problem in Power Systems". Electrica 19, 37-47.
[13] Mouassa, S. and Bouktir, T. (2019), "Multi-objective ant lion optimization algorithm to solve large-scale multi-objective optimal reactive power dispatch problem", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 38 No. 1, pp. 304-324. https://doi.org/10.1108/COMPEL-05-2018-0208.
[14] Tawfiq M. Aljohani , Ahmed F. Ebrahim & Osama Mohammed (2019). “Single and Multiobjective Optimal Reactive Power Dispatch Based on Hybrid Artificial Physics–Particle Swarm Optimization," Energies, MDPI, Open Access Journal, vol. 12(12), pages 1-24.
[15] Ali Nasser Hussain, Ali Abdulabbas Abdullah and Omar Muhammed Neda, , "Modified Particle Swarm Optimization for Solution of Reactive Power Dispatch", Research Journal of Applied Sciences, Engineering and Technology 15(8): 316-327, (2018), DOI:10.19026/rjaeset.15.5917.
[16] S. Surender Reddy, “Optimal Reactive Power Scheduling Using Cuckoo Search Algorithm”, International Journal of Electrical and Computer Engineering , Vol. 7, No. 5, pp. 2349-2356, 2017.
[17] M. El-Abd, “Cooperative coevolution using the brain storm optimization algorithm,” in Proc. IEEE Symp. Ser. Comput. Intell., Athens, Greece, Dec. 6-9, 2016.,
[18] Illinois Center for a Smarter Electric Grid (ICSEG). Available online: https://icseg.iti.illinois.edu/ieee-30-busystem/ (accessed on 25 February 2019).

variables	Real Power Loss
VD (PU)	1.9589
L-index (PU)	0.5513
	0.87522
	1.047
	1.041
	0.14109
	0.1267
	0.1203
[19] Aljohani, T.M.; Ebrahim, A.F.; Mohammed, O. Single and Multiobjective Optimal Reactive Power Dispatch Based on Hybrid Artificial Physics–Particle Swarm Optimization. Energies 2019, 12, 2333.