fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses

Varunya Attasena
Université de Lyon (ERIC)
5 av. Pierre Mendès-France
69676 Bron Cedex – France
vattasena@eric.univ-lyon2.fr

Nouria Harbi
Université de Lyon (ERIC)
5 av. Pierre Mendès-France
69676 Bron Cedex – France
nouria.harbi@univ-lyon2.fr

Jérôme Darmont
Université de Lyon (ERIC)
5 av. Pierre Mendès-France
69676 Bron Cedex – France
jerome.darmont@univ-lyon2.fr

ABSTRACT
Cloud business intelligence is an increasingly popular choice to deliver decision support capabilities via elastic, pay-per-use resources. However, data security issues are one of the top concerns when dealing with sensitive data. In this paper, we propose a novel approach for securing cloud data warehouses by flexible verifiable secret sharing, fVSS. Secret sharing encrypts and distributes data over several cloud service providers, thus enforcing data privacy and availability. fVSS addresses four shortcomings in existing secret sharing-based approaches. First, it allows refreshing the data warehouse when some service providers fail. Second, it allows on-line analysis processing. Third, it enforces data integrity with the help of both inner and outer signatures. Fourth, it helps users control the cost of cloud warehousing by balancing the load among service providers with respect to their pricing policies. To illustrate fVSS’ efficiency, we thoroughly compare it with existing secret sharing-based approaches with respect to security features, querying power and data storage and computing costs.

Categories and Subject Descriptors
H. Information Systems [H.2. Data Management]: H.2.7. Database administration—Data Warehouse and Repository; Security, Integrity and Protection

Keywords
Data warehouses; OLAP; Cloud computing; Secret sharing; Data privacy; Data availability; Data integrity

1. INTRODUCTION
Cloud business intelligence (BI) is becoming increasingly popular, providing the benefits of both classical BI (efficient decision-support) and cloud computing (elasticity of resources and costs). However, one of the top concerns of cloud users and would-be users remains security. Some security issues are inherited from classical distributed architectures, e.g., authentication, network attacks and vulnerability exploitation, but some directly relate to the new framework of the cloud, e.g., cloud service provider (CSP) or subcontractor espionage, cost-effective defense of availability and uncontrolled mashups. In this paper, we focus on data security, which is of critical importance in a BI context where sensitive data are processed. Data security is usually managed by CSPs, but with the multiplication of CSPs and subcontractors in many different countries, intricate legal issues arise and trust in CSPs may be jeopardized.

In contrast, end-to-end security gives the control of both data security levels and costs back to users, through classical techniques such as data encryption, anonymization, replication and verification. However, updating and querying secured data in the cloud may turn inefficient and expensive. Thus, specific end-to-end security approaches were designed for distributed/cloud databases (DBs) and data warehouses (DWs). The MONOMI system notably encrypts both SQL queries and data with multiple cryptographic schemes. However, although MONOMI enforces data privacy, it addresses neither data availability nor integrity issues. In contrast, secret sharing simultaneously enforces data privacy, availability and integrity. Secret sharing transforms sensitive data into individually meaningless data pieces (called shares) that are distributed to n CSPs. Computations can then be performed onto shares, but yield meaningless individual results. The global result can only be reconstructed (decrypted) by the user.

All secret sharing-based approaches allow accessing shares from $t < n$ CSPs, i.e., shares are still available when up to $n - t$ CSPs fail, e.g., go bankruptcy, due to a technical problem or even by malice. However, no approach allows updating shares when even one single CSP fails, thus hindering cloud DWs’ refreshment capabilities. Moreover, although these approaches feature all basic DB querying operators, only one handles on-line analysis processing (OLAP) and it does not support lazy updates on cloud-stored cubes. In addition, few approaches actually enforce data integrity through verification of inner code (to verify whether CSPs are malicious) or outer code (to detect incorrect data before decryption), and only one features both inner and outer signatures for this sake. Finally, although some approaches bring in solutions to reduce overall storage volume so that it falls well under n times that of original data, and thus de-
crease monetary cost in the pay-as-you-go paradigm, there is still room for improvement.

To address all these issues, we propose a novel approach that relies on a flexible verifiable secret sharing scheme (fVSS). To the best of our knowledge, fVSS is the first approach allowing DW refreshment when one or several CSPs fail. Moreover, fVSS allows running OLAP operators on shared DWs or cubes without reconstructing all data first. fVSS also features both inner and outer signatures for data verification. Finally, fVSS allows users adjusting the volume of shared data at each CSP, which helps optimize cost with respect to various CFP pricing policies.

The remainder of this paper is organized as follows. Section 2 discusses previous research related to fVSS. Section 3 details our secret sharing and reconstruction mechanisms, the new outer signature we propose and how our approach applies to data warehouses and OLAP. Section 4 provides a comparative study of fVSS with state-of-the-art existing approaches. Finally, Section 5 concludes this paper and hints at future research perspectives.

2. RELATED WORKS

Among encryption techniques, only secret sharing [3] handles both data privacy and availability, which is why we focus on this family of approaches. The principle of secret sharing [10] is based on the fact that \(t \) points define a polynomial \(y = f(x) \) of degree \(t - 1 \). The secret is the polynomial’s constant term and the remaining terms are usually randomly selected. Each data piece is transformed into \(n \) shares \(f(x_i) \) corresponding to points of the polynomial. Reconstruction of the secret is achieved through Lagrange interpolation [6]: there is only one polynomial \(p(x) \) such that \(\text{degree}(p(x)) < t \) and \(p(x_i) = f(x_i) \). Then the secret is \(p(0) \).

Moreover, modern secret sharing schemes, such as multi-secret sharing [2] [14] [22], verifiable secret sharing [17], and verifiable multi-secret sharing [3] [10], also help reduce shared data volume, verify the honesty of CSPs, and both, respectively. We classify secret sharing-based approaches for securing DBs and DWs into two families.

In the first family of approaches [1] [2] [8] [9] [11], each table is encrypted into \(n \) shared tables, each of which is stored at one given CSP (Figure 1). Recall that only \(t \) of \(n \) shared tables are sufficient to reconstruct the original table. Most of these approaches assume that CSPs are not malicious and that connections between CSPs and users are secure. Only one [2] includes a data verification process that exploits hash-generated signatures: an inner signature (incorporated to the shares) to verify whether CSPs are malicious, and an outer signature that helps detect incorrect or erroneous (lost, damaged, alternative...) data before decryption and prevents useless data transfers. Both signatures are stored at CSPs.

In the second family of approaches [12] [13] [19] [21], one or more additional index servers, located at \(\{CSP_1,...,CSP_n\} \), store B++ tree indices and signatures (Figure 2). The index servers require higher security and computing power than that of other nodes, and a secure connection to the user’s. The index servers support data verification by various means, i.e., homomorphic encryption [13], a hash function [19] and checksums and a hash function [21]. However, data verification cannot take place if the index server fails.

Regarding accessing shares, classical secret sharing [16] and most of its above-cited extensions natively support some exact match and aggregation operators, i.e., equality and inequality, sum, average and count. Each approach handles operators needing sorted data, e.g., range operators, maximum and minimum, with various techniques: preaggregation before sharing [8], a B++ tree index [12] [13] or the rank coefficient used in classical secret sharing [1] [9] [11]. However, extra storage space is needed to store these data structures. Finally, almost all approaches allow updates on shares, since each piece of data is encrypted independently.

The features of all above-cited approaches are summarized in Table 1. We compare them with fVSS in Section 4.

3. FLEXIBLE VERIFIABLE SECRET SHARING

3.1 fVSS Principle

fVSS is a \((t, n)\) flexible verifiable secret sharing scheme belonging to the second family of approaches identified in Section 2. As all similar approaches, fVSS shares data over \(n \) CSPs, \(t \) of which are necessary to reconstruct original data. Table 1 lists fVSS’ parameters, which will be introduced throughout this section.

The main novelty in fVSS is that, to optimize shared data volume and thus cost, we share a piece of data fewer than \(n \) times. For example, in Figure 3, where \(n = 5 \), record \#124 of table PRODUCT is only shared at CSP1, CSP3 and CSP5, which presumably feature the lowest storage costs. To achieve this, we proceed as follows.

Suppose we want to share a piece of data \(d_{jkl} \), e.g., the category ID of product \#124 in Figure 3(a). We also need to share its inner signature \(s_{jkl,m}^{i_1} \) to enforce data integrity. To generate a polynomial of degree \(t \), we need \(t - 2 \) more values that we call pseudo shares. Usually, secret sharing
schemes use random polynomials. In contrast, we construct a polynomial by Lagrange interpolation using \(\text{d}_{ijkl} \), \(\text{s}_{ijkl} \), and the \(t - 2 \) pseudo shares. Then, we can share \(\text{d}_{ijkl} \) and \(\text{s}_{ijkl} \) at \(n - t + 2 \) CSPs. Figure 3 plots an example where \(t = 4 \). Shares \(e_{ijkl}, e_{jkl}, e_{jgl} \) and \(e_{jgl} \) are created from polynomial \(f_{ijkl}(x) \) of degree \(t - 1 = 3 \).

To reconstruct \(\text{d}_{ijkl} \), let us assume we select the following set of \(t \) CSPs: \(RG = \{\text{CSP}_1, \text{CSP}_2, \text{CSP}_3, \text{CSP}_4\} \). Then, if \(e_{ijkl} \) is stored at \(\text{CSP}_i \), it is used for reconstruction. Otherwise, the corresponding pseudo share is used instead. To ease this operation, bitmaps representing where shares are stored are maintained in the index server(s). For example, the bitmap corresponding to product \#124 in Figure 3 is 10101, with a 1 value at position \#i representing share storage at \(\text{CSP}_i \).

The remainder of this section details the sharing and reconstruction processes (Section 3.2.2), our novel outer signatures (Section 3.3.3) and the way we share data warehouses (Section 3.4), achieve loading, backup and recovery processes (Section 3.5) and perform OLAP operations (Section 3.6).

3.2 Data Sharing and Reconstruction

In IVSS, DB attribute values, except NULL values and primary or foreign keys, are encrypted and shared in relational DBs at CSPs'. Keys help match records in the data reconstruction process and perform join and grouping operations. Any sensitive primary key, such as a social security number, is replaced by an unencrypted sequential integer key.

Each value \(\text{d}_{ijkl} \) of attribute \(A_{ij} \) in record \(R_{ijk} \) stored at \(\text{CSP}_i \) is encrypted into \(n - t + 2 \) shares generated from a polynomial \(f_{ijkl}(x) \) of degree \(t - 1 \) created by Lagrange interpolation from \(\text{d}_{ijkl} \); its inner signature \(\text{s}_{ijkl} \), the identifier numbers \(ID_i \) of the CSPs selected to store the shares (this set of CSPs is denoted \(SG_{ijk} \)), and two generated keys \(K_d \) and \(K_e \) for data and signatures, respectively. The inner signature we use is very similar to that of [2]. It is created from \(\text{d}_{ijkl} \) by homomorphic encryption [7]. \(\text{s}_{ijkl} \) matches with \(\text{d}_{ijkl} \) in the reconstruction process only if CSPs in \(RG \) return correct shares.

3.2.1 Initialization Phase

1. Set values of \(p \) (a big prime number), \(n \) and \(t \).
2. Define one-variable hash function \(HF_1(a) \) where \(a \) is an integer and hash values \(HF_1(a) \) must be small integers.
3. Define one-variable homomorphic function \(HE_1(h) \) such that \(HE_1(h) \) and \(h \) are reals and \(HE_1(h_1) \pm HE_1(h_2) = HE_1(h_1 \pm h_2) \).
4. Define two-variable homomorphic function \(HE_2(a, b) \), where \(HE_2(a, b) \) and \(a, b \) are reals and \(HE_2(a_1, b_1) + HE_2(a_2, b_2) = HE_2(a_1 + a_2, b_1 + b_2) \).
5. Set values of CSP identifiers \(ID_i \), \(K_d \) and \(K_e \) such that their values range in \([0, p]\). All \(HF_1(ID_i) \) must be unique and different from \(HF_1(K_d) \) and \(HF_1(K_e) \).

3.2.2 Data Sharing Process

Any record \(R_{ijk} \) is encrypted independently as follows.

1. Determine the group of CSPs \(SG_{jk} \) that will store \(R_{ijk} \)'s \(n - t + 2 \) shares. Let \(UG_{jk} \) be the group of CSPs that do not store \(R_{ijk} \)'s shares, i.e., \(UG_{jk} = \{\text{CSP}_i\}_{i=1,n} - SG_{jk} \).
2. For each attribute A_{ij}:

(a) Compute d_{ijkl}’s inner signature:
\[s_{injkl} = HE_1(d_{ijkl}). \]

(b) Create polynomial $f_{ijkl}(x)$ of degree $t - 1$ by Lagrange interpolation (Equation 1):
\[f_{ijkl}(x) = \sum_{a=1}^{t} \prod_{1 \leq \beta, \alpha \neq a}^{t} x - x_{\beta} \times y_{\alpha} \]
where \(\{(x_1, y_1), \ldots, (x_t, y_t)\} = \{ (HF_1(K_d), d_{ijkl}), (HF_1(K_e), s_{injkl}), \text{CSP} \in SG_{jk} \} \cup \{(HF_1(ID_i), HE_2(pk_{ijkl}, ID_i)_{\text{CSP} \in UG_{jk}})\}. \)

(c) Compute the set of d_{ijkl}’s $n - t + 2$ shares \(\{e_{ijgkl}\}_{g=1}^{t} \) for each $\text{CSP} \in SG_{jk}$:
\[e_{ijgkl} = f_{ijkl}(HF_1(ID_i)), \]
where $p_{ijkl} = pk_{ijkl}$.

Following this routine, record R_{jk} is shared into $n - t + 2$ records ER_{ijg} at CSPs in SG_{jk}. The relationship between R_{jk} and ER_{ijg} is maintained through primary keys $p_{ijkl} = pk_{ijkl}$. Finally, the bitmap corresponding to R_{jk} is stored in the index server(s) at this time, knowing SG_{jk} and UG_{jk}.

Finally, since each data piece is shared independently, it is easy to handle the usual data types featured in DBs. Integers, dates and timestamps can be directly shared by VSS. Data of other types (i.e., reals, characters, strings and binary strings) are first transformed into integers before being shared [2].

3.2.3 Data Reconstruction Process

Any attribute value d_{ijkl} is reconstructed as follows.

1. Select t CSPs to form reconstruction group RG.

2. For each CSP, $\text{CSP} \in RG$, if outer data verification (Section 3.2.4) outputs an error, replace CSP by another CSP selected from $\{ \text{CSP} \}_{i=1..n} - RG$.

3. For each $\text{CSP} \in SG_{jk} \cap RG$, load share e_{ijgkl} into y_i, where $p_{ijkl} = pk_{ijkl}$.

4. For each $\text{CSP} \in UG_{jk} \cap RG$, compute pseudo share $y_i = HE_2(pk_{ijkl}, ID_i)$.

5. Create polynomial $f_{ijkl}(x)$ of degree $t - 1$ (Equation 1) with $x_i = HF_1(ID_i)$.

6. Compute value $d_{ijkl} = f_{ijkl}(HF_1(K_d))$.

7. Compute inner signature $s_{injkl} = f_{ijkl}(HF_1(K_e))$.

8. Verify d_{ijkl}’s correctness: if $s_{injkl} \neq HE_1(d_{ijkl})$, then restart reconstruction process at step #1 with a new RG.

3.2.4 Recapitulative Example

Let us refer back to Figure 4, where $n = 5$ and $t = 4$. The set of CSPs selected for sharing an attribute value d_{ijkl} is
\[SG_{jk} = \{ \text{CSP}_1, \text{CSP}_2, \ldots, \text{CSP}_5 \}. \]
Thus, $UG_{jk} = \{ \text{CSP}_1, \text{CSP}_2 \}$, from which pseudo shares are $HE_2(pk_{ijkl}, ID_i)_{i \in \{1, 4, 5\}}$, where p_{ijkl} is the primary key value of record R_{jk}, are computed. Polynomial $f_{ijkl}(x)$ is created by Lagrange interpolation from d_{ijkl}, its inner signature s_{injkl}, pseudo shares and keys K_e and K_a. Then shares of d_{ijkl} are:
\[e_{ijgkl} = f_{ijkl}(HF_1(ID_i))_{i \in \{1, 2, 3\}}. \]

Assuming the set of t CSPs selected for reconstruction is
\[RG = \{ \text{CSP}_1, \text{CSP}_2, \text{CSP}_3, \text{CSP}_4 \}, \]
d_{ijkl} is reconstructed from shares $e_{ijgkl} \in \{1, 2\}$ (since $\text{CSP}_1, \text{CSP}_2 \in SG_{jk}$) and pseudo shares $HE_2(pk_{ijkl}, ID_i)_{i \in \{4, 5\}}$ (since $\text{CSP}_3, \text{CSP}_4 \in UG_{jk}$).

3.3 Outer Signatures

Outer data verification helps determine whether data integrity is compromised by CSPs (willingly or not). For this sake, we propose two new types of outer signatures: record and table signatures (whereas [2] uses an attribute-value level signature).

Moreover, we also propose a tree data structure to efficiently exploit outer signatures (Figure 5). Signature trees are stored at CSPs'. The maximum number of child nodes in the signature tree at CS_{jkl} is denoted w. Each signature tree is constituted of two subtrees: a signature tree and record signature subtree. Leaf nodes of the record signature tree are record signatures. Higher-level nodes represent the signatures of record clusters, until the root, which is a table signature and thus a leaf of the table signature tree. Similarly, higher level nodes represent the signatures of table groups, until the root, which stores the whole DB's signature.

Figure 5: Outer signature tree at CS_{jkl}

Signatures are checked before reconstructing data (Section 3.2.3). Data integrity can also be verified on-demand. Outer record signatures are created with the help of user-defined one-way functions $HE_i(h)$. Shared record ER_{ijg} passes integrity check if $s_{\text{out}_{ijg}} = HE_i(ER_{ijg})$.

Similarly, shared record ET_{ij} passes integrity check if $s_{\text{out}_{ij}} = HE_i(\sum_{g=1}^{w} HE_j(s_{\text{out}_{ijg}}))$, where $HE_i(h)$ are homomorphic functions and er_{ij} is the number of records in ET_{ij}. Thanks to the homomorphism property [2], all tables are correct if a signature stored in a root node equals the sum of the signatures stored in all its child nodes. This allows directly checking a set of records or tables through one node only, and thus speeds up data integrity verification. Moreover, in case of error, we can also discover where the integrity breach is by testing whether each node respects $s_{\text{out}_{ijuv}} = HE_i(\sum_{x \in [w]\cup \{w\}} s_{\text{out}_{ijvu}} \cdot s_{\text{out}_{ijwu}} \cdot s_{\text{out}_{ijvu}})$, where $s_{\text{out}_{ijuv}}$ may either be a record or a table outer signature, $u > 0$ is a level number and v a node number in level u.

Finally, note that the signature tree’s root level is $u_r = \lfloor \log_{w+1} m \rfloor + \lfloor \log_{w} \max(\epsilon_r) \rfloor = 1 - 1$, the table signature
3.3.1 Setup
For each CSP, the following parameters must be user-defined.

1. Determine \(w_i \).
2. Define one-way function \(HE_{s_i}(ER_{ij}) \).
3. Define homomorphic function \(HE_{s_i}(h) \), where \(HE_{s_i}(h_1) \pm HE_{s_i}(h_2) = HE_{s_i}(h_1 \pm h_2) \).

3.3.2 Shared Table Creation
Whenever a new table \(ET_{ij} \) is created at CSP, the table signature tree is updated from leaf to root as follows.

1. Compute \(ET_{ij} \)'s table signature \(s_{\text{out}(0)} = HE_{s_i}(0) \) and store it in a new right-most leaf node of the table signature tree.
2. Recursively create new parent nodes \((u, v)\) up to the root of the table signature tree such that \(u = 1 \ldots \lfloor \log_{w_i} j \rfloor \) and \(v = \lfloor j/(w_i)^n \rfloor \).

 (a) If the right-most node at level \(u \) bears the maximum number of children, i.e., \(v = (j - 1) \mod (w_i)^n \), insert a new right-most parent node \((u, v)\) with value \(s_{\text{out}(0)} \).

 (b) If there is no node at level \(u \) such that \(j = (w_i)^{u-1} + 1 \), insert a new root node \((u, 1)\) with value \(s_{\text{out}(1)} = s_{\text{out}(u-1),1} \).

 (c) Otherwise, stop recursion.

3.3.3 Shared Record Insertion
Whenever a new record \(ER_{ij} \) is inserted into shared table \(ET_{ij} \), the outer signature tree is updated from leaf to root as follows.

1. Compute record signature \(s_{\text{out}(0)} = HE_{s_i}(ER_{ij}) \) and store it in a new right-most leaf node of \(ET_{ij} \)'s record signature tree.
2. Recursively insert or update parent nodes \((u, v)\) up to the root of \(ET_{ij} \)'s record signature tree such that \(u = 1 \ldots \lfloor \log_{w_i} g \rfloor \) and \(v = \lfloor g/(w_i)^n \rfloor \).

 (a) If the right-most node at level \(u \) bears the maximum number of children, i.e., \(v = (g - 1) \mod (w_i)^n \), insert a new right-most parent node \((u, v)\) with value \(s_{\text{out}(0)} \).

 (b) If there is no node in level \(u \) such that \(g = (w_i)^{u-1} + 1 \), insert a new root node \((u, 1)\) with value \(s_{\text{out}(1)} = s_{\text{out}(u-1),1} \), Compute signature change before and after insertion:

 \[\Delta = HE_{s_i}(s_{\text{out}(ij) + \Delta}) \]

3.3.4 Shared Record Update
Whenever a record \(ER_{ij} \) is updated in shared table \(ET_{ij} \), the outer signature tree is updated from leaf to root as follows.

1. Compute signature change before and after insertion:

 \[\Delta = HE_{s_i}(s_{\text{out}(ij) + \Delta}) \]

2. Recursively update nodes \((u, v)\) up to the root of \(ET_{ij} \)'s record signature tree such that \(u = 1 \ldots \lfloor \log_{w_i} m \rfloor \) and \(v = \lfloor j/(w_i)^n \rfloor \).

 (a) If the node \((u, v)\) bears the maximum number of children, i.e., \(v = (j - 1) \mod (w_i)^n \), insert a new right-most parent node \((u, v)\) with value \(s_{\text{out}(0)} \).

 (b) If there is no node in level \(u \) such that \(j = (w_i)^{u-1} + 1 \), insert a new root node \((u, 1)\) with value \(s_{\text{out}(1)} = s_{\text{out}(u-1),1} \).

 (c) Otherwise, stop recursion.

3.4 Sharing Data Warehouses
Since each table of a shared DW is stored in a relational database at a given CSP's and each attribute value in each record is encrypted independently, our approach straightforwardly helps implement any DW logical model, i.e., star, snowflake and constellation schemas. A shared DW bears the same schema as the original DW's. However, all encrypted attributes are transformed into reals by the sharing process (Section 3.2).

Finally, to improve query performance, computation and data transfer costs when performing Relational OLAP (ROLAP) operations, we use indices and cloud cubes, which are described below.

3.4.1 Indices
We exploit three types of indices, which are all created at data-sharing time. In addition to so-called Type I indices used in the reconstruction process (Section 3.2), Type II and III indices are specifically aimed at enhancing query performance and thus computation cost.

Type II indices are customarily used by the second family of secret sharing approaches (Section 3.1.1). They allow computing exact match, range and aggregation (e.g.,
3.4.2 Cloud Cubes

As in [2], our approach supports the storage of data cubes that optimize response time and bandwidth when performing ROLAP operations. In addition, in this work, cubes are directly created in the cloud and refreshed through shares and indices only.

Since cloud cubes are built from shares, they are physically stored into tables that must be shared at all n CSPs, because pseudo shares are not available. In addition to customary dimension references and aggregate measures, they can include additional attributes that actually are embedded Type III indices. For example, suppose we need to compute the average of measure M from a cube. Then \(\text{SUM}(M) \) and \(\text{COUNT}(M) \) must be stored in the cube too, to allow computations on shares without reconstruction.

Figure 7 features a cloud cube named Cube-I that sums total prices and numbers of sales by time period and by product. As is customary, NULL values are used to encode superaggregates. All aggregate measures can be queried directly from Cube-I without reconstruction.

3.5 Backup, Recovery and Load processes

In our approach, as in all secret sharing approaches, backups are unnecessary because each shared table \(ET_{ai} \) is actually a backup share of all other shared table \(ET_{ia} \), where \(a \in 1, \ldots, j−1, j+1, \ldots, n \). In case shared tables or shared records are detected as erroneous by outer signature verification (Section 5.3), their can be recovered from \(j \) other shared tables.

Loading new data into an existing shared DW does not require decrypting previous data first, because each attribute value in each record is encrypted independently. For instance, in Figure 8 data from Figure 6 are already shared and the last record (4) is new. After each new shared record is loaded, the outer signature tree must be updated (Section 5.3), and indices and possible cloud cubes refreshed.

Cloud cube refreshment requires further attention. When updating cubes, aggregates can be updated from shares and indices. There are three cases...

For aggregations by, e.g., MAX and MIN operators, the primary key of aggregates is discovered from a Type II index. Then, at each CSP’s, the share corresponding to the primary key is updated in the cloud cube. In case no corresponding share is found at that CSP’s, the share cube is updated from a pseudo share with the help of a Type I index.

For COUNTs, aggregates can be easily found from a Type II index and reconstructed. Then, the aggregates can be updated and shared back into the cloud cube [16].

For SUMs, thanks to the homomorphism property, aggregates can be updated from cloud cubes by summing shares and pseudo shares. For example, to update \(\text{SUM}(X) \) at CSP, the new aggregate is the sum of shares and pseudo shares (Equation 2 where \(\text{SUM}_{CSP}(X) \) is trivially computed at CSP, and \(\text{SUM}_{index}(PKi) \) is computed with the help of a Type I index).

\[
\text{SUM}(X) = \text{SUM}_{CSP}(X) + \text{HE}(\text{SUM}_{index}(PKi), ID_i)
\]

(2)

Finally, more complex aggregations require combining the above cases. For example, \(\text{SUM}(X \pm Y) \) is updated from shares and pseudo shares by Equation 3.

\[
\text{SUM}(X \pm Y) = \text{SUM}_{CSP}(X \pm Y) + 2 \times \text{HE}(\text{SUM}_{index}(PKi), ID_i)
\]

(3)
3.6 Querying a Shared Data Warehouse

Simple SELECT/FROM queries directly apply onto shares, as well as summing positive integer attributes. All join operators, when operating on unencrypted keys, also apply directly. When expressing conditions in a WHERE or HAVING clause, Type II indices must be used [11, 13, 21]. Almost all comparison operators (=, ≠, EXISTS, IN, >, ≥, <, ≤, BETWEEN…) can be evaluated against such B++ index trees.

Similarly, aggregation functions such as MAX, MIN and COUNT can directly apply on shares with the help of Type II indices [11, 13, 21]. In contrast, a SUM must combine relevant aggregates of shares and pseudo shares (as in Equation 2) with an external program before reconstruction.

Other aggregation functions must be computed by an external program after reconstructing relevant aggregates from shares and pseudo shares. Average, variance and standard deviation are computed as in Equations 4, 5 and 6, respectively, where X^2 is a Type III index.

$$AVG(X) = DC(SUM(X))/DC(COUNT(X))$$ (4)

$$VAR(X) = \frac{DC(SUM(X^2))}{DC(COUNT(X))} - \frac{(DC(SUM(X))^2)}{DC(COUNT(X))^2}$$ (5)

$$STDDEV(X) = \sqrt{\frac{DC(SUM(X^2))}{DC(COUNT(X))} - \frac{(DC(SUM(X))^2)}{DC(COUNT(X))^2}}$$ (6)

When aggregating calculated fields, multiplication and division can be performed directly from Type III indices. However, summation and subtraction between two attributes must combine relevant aggregates of shares and pseudo shares with an external program before reconstruction. Aggregates at CSP, compute as in Equation 3.

Finally, grouping queries using the GROUP BY or GROUP BY CUBE clauses can directly apply on shares if they target unencrypted key attributes. Again, grouping by other attribute(s) requires the use of a Type II index.

Consequently, executing some queries may require either transforming or splitting the query, depending on its clauses and operators, following the above guidelines. Figure 9 shows a sample query and the way it runs at the user’s, at one index server and at CSP, (query processing at other index servers and CSPs is similar). For clarity, the user, index server and CSP are denoted U, IS and CSP, respectively in Figure 9.

Finally, our approach directly supports all basic OLAP operations by directly querying cloud cubes and reconstructing the global result. For example, the total price and the number of products per year can be queried from Cube-I by query:

```
SELECT YearID, YearName, TotalPrice, Number FROM Cube-I, year
WHERE Cube-I.YearID = year.YearID AND MonthID IS NULL
 AND DateID IS NULL AND CategoryID IS NULL AND Prod-No IS NULL.
```

To drill down to total price and number of products per month in 2014, the previous query becomes:

```
SELECT YearID, YearName, Month, TotalPrice, Number FROM Cube-I, year, month
WHERE Cube-I.YearID = year.YearID AND Cube-I.MonthID = Month.MonthID AND Cube-I.YearID = 2014 AND DateID IS NULL AND CategoryID IS NULL AND Prod-No IS NULL.
```

Figure 9: Sample query rewriting

4. COMPARATIVE STUDY

In this section, we compare FVSS to the related approaches presented in Section 2 with respect to security and cost in the pay-as-you-go paradigm, global cost being customarily divided into storage, computing and data transfer costs. Table 2 synthesizes the features and complexities of all approaches, which we discuss below.

4.1 Data Security Features

By data security, we mean data privacy, availability and integrity. By design, all secret sharing-based approaches enforce privacy by guaranteeing shares cannot be decrypted by a single CSP or an intruder who would hack a CSP. Actually, a coalition or the compromise of at least t CSPs is necessary to break the secret. Privacy is further improved in FVSS, because data is not shared at all CSPs, but only $n - t + 2$. Hence, FVSS imposes a new constraint: no CSP group can hold enough shares to reconstruct the original data if $n < 2 \times t - 2$. Indeed, $n < 2 \times t - 2 \Leftrightarrow n - t + 2 < t$, i.e., the number of shares is lower than the number of shares necessary for reconstruction.

With respect to availability, all secret sharing-based approaches, still by design, allow reconstructing the secret, i.e., query shares, when $n - t$ CSPs fail. However, to the best of our knowledge, only FVSS allows updating shares in case
of CSP failure(s), simply by not selecting the failing CSP(s) for sharing new data. This is again possible because data is shared at \(n = t + 2 \) CSPs instead of \(n \).

Finally, to enforce integrity, only [2] and fVSS verify both the correctness of shares and the honesty of CSPs by inner and outer code verification, respectively. Only two other approaches use inner code verification alone. The novelty of fVSS is that outer signatures are computed at the record and table granularity, instead of the attribute value's, which allows faster verification, e.g., when checking one table signature instead all signatures of one or several attributes in said table.

4.2 Storage Cost

Storage cost directly depends on shared data volume, which in turn depends on parameters \(n \) and \(t \). Figure 11 plots the volume of shared data for all studied approaches, expressed as a multiple of original data volume \(V \), with respect to \(n \), with \(t = n \) in the upper graph and \(t = 3 \) in the lower graph. Figure 11 shows that fVSS help control shared data volume better than most existing approaches, and is close to the best approaches [2, 21] in this respect.

However, storage cost does not only depend on the global volume of shares. Since fVSS allows selecting the data volume shared at each CSP, it can be differentiated to benefit from different pricing policies. Let us illustrate this through an example. Let \(n = 5, t = 4 \) and \(V = 100 \) GB. CSP pricing policies for this range of data volume are depicted in Table 3. Prices are real prices from CSPs such as Amazon web services, Windows azure and Google compute engine. Finally, let us assume that each individual share is not bigger than the original data it encrypts, e.g., a shared integer is not bigger than the original unencrypted integer. We also disregard index and signature volume, which depends on user-defined parameters in all approaches, for the sake of simplicity.

Table 2: Comparison of database sharing approaches

Features and costs	[1]	[2]	[3]	[4]	[5, 6]	[7, 8]	[9]	[10]	[11]	[12, 13]	[14]	[15]	fVSS
Data privacy	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Data availability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ability in case CSPs fail to access data	Yes	No	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
- Query shares	No	No	No	No	No	No	No	Yes	No	Yes	Yes	Yes	Yes
- Update shares	No	No	No	No	No	No	No	Yes	No	Yes	Yes	Yes	Yes
Data integrity	No	No	No	No	No	No	No	Yes	No	Yes	Yes	Yes	Yes
- Inner code verifying	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
- Outer code verifying	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Target	DBs	DWS	DWS	DDB	DIB	DIB	DIB	DIB	DIB	DIB	DIB	DIB	DWS
Data sources	Single	Single	Multi	Multi	Single								
Data types	Positive integers,												
	Reals, Characters,	Reals, Characters,	Strings, Dates,										
	Dates, Booleans	Booleans	Reals, Strings, Dates,	Booleans									
Shared data access	No, Yes												
- Updates	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
- Exact match queries	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
- Range queries	No	No	No	No	No	No	No	Yes	No	Yes	Yes	Yes	Yes
- Aggregation queries on one attribute	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
- Aggregation queries on two attributes	No	No	No	No	No	No	No	Yes	No	Yes	Yes	Yes	Yes
- Grouping queries	No	No	No	No	No	No	No	Yes	No	Yes	Yes	Yes	Yes
Complexity	\(\frac{\sigma nt}{\gamma t} \)												
- Data storage w.r.t. original data volume	\(\frac{n}{n} \geq n \)												
- Sharing time	\(O(\frac{n^2}{\gamma t}) \)												
- Reconstruction time	\(O(\frac{n^2}{\gamma t^2}) \)												

Table 3: CSP pricing policies

Approach	CSP1	CSP2	CSP3	CSP4	CSP5
Storage ($/GB/month)	0.040	0.050	0.055	0.120	0.225
lVM CPU time ($/h)	0.015	0.020	0.025	0.125	0.225
mVM CPU time ($/h)	0.026	0.030	0.115	0.230	0.430
nVM CPU time ($/h)	0.034	0.230	0.240	0.280	

Table 4: Storage cost comparison

Approach	Unencrypted data	Share volume (GB)	Storage cost ($)
[1]	100	100	3 to 32.5
[2]	100	200	113.60
[3]	500	100	96.30
[4]	167	34	9.31
[5]	125	25	4.77
fVSS-I	300	50	0.05
fVSS-II	300	99.8 + 99.8 + 99.8 + 0.4 + 0.2	12.39
of records in the query response, γ (Table 2). All secret sharing approaches bear the same reconstruction complexity but [21]. However, this approach cannot compute aggregations on shares, implying all records involved in aggregations must be reconstructed at the user’s, which is more costly than computing the aggregation on shares and only reconstruct the result. Moreover, we expect IVSS to be more efficient than previous approaches because we can directly perform all query types on shared DWs and cubes, in parallel, whereas other approaches cannot and must reconstruct bigger datasets before processing them at the user’s.

Let us illustrate this through an example. Let $n = 5$, $t = 4$. Let us assume we run a query matched by 10% of records, i.e., $\gamma = 10^{14}$, and $RG = \{CSP_1, CSP_2, CSP_3, CSP_4\}$. CSP pricing policies and virtual machine power are the same as in Section 4.3.1. Table 6 features a data access cost comparison of all studied approaches but [21]. Response time is the number of processed records divided by the virtual machine’s computing power. CPU cost is the sum of response times at each CSP, times CSP’s computing price. Results show again that, even though response time is comparable for all approaches, IVSS allows much lower costs, especially when unbalancing the volume of shares at CSPs in IVSS-II, which helps decrease cost by a factor 4 with respect to state-of-the-art approaches in this example.

4.4 Data Transfer Cost

Data transfer cost directly relates to the size of query results when accessing the shared DW. Since all approaches allow different operations and vary in share volume, it is difficult to compare data transfer cost by proof. However, to reduce data transfer cost, IVSS allows several aggregation operators running on shares. Moreover, by creating shared data cubes, we allow straight computations on shares, and thus only target results are transferred to the user, i.e., with no additional data reconstruction, and thus no stored data transfer.

5. CONCLUSION AND PERSPECTIVES

In this paper, we propose a new approach for securing cloud DWs, which simultaneously supports data privacy,
availability, integrity and OLAP. Our approach builds upon fVSS, which is to the best of our knowledge the first flexible secret sharing that allows users adjusting share volume with respect to CSP pricing polices. Our experiments show that unbalancing share volume at CSPs allows significantly minimizing storage and computing costs in the pay-as-you-go paradigm. Privacy and availability are achieved by design with secret sharing, but fVSS achieves a higher security level and allows DW refreshing even when some CSPs fail. Finally, data integrity is reinforced with both inner and outer signature that help detect errors in query results and shares, respectively.

Future research shall run along three lines. First, we plan to further assess the cost of our solution in the cloud pay-as-you-go paradigm. We especially plan to balance the cost of our solution against the cost of risking data loss or theft. Moreover, since CSP pricing and servicing policies are likely to evolve quickly, we aim at designing a method for adding and removing CSPs to/from the CSP pool, with the lowest possible update costs and while preserving data integrity. Second, we aim at designing a tool that semi-automatically helps users adjust the volume of shares at each CSP's, with respect to cost, but also quality of service. Finally, we also work on share storage management, to optimize query performance and reduce both response time and computing cost.

6. REFERENCES

[1] D. Agrawal, A. E. Abbadi, F. Emekci, and A. Metwally. Database management as a service: challenges and opportunities. In 25th IEEE International Conference on Data Engineering (ICDE 2009), Shanghai, China, pages 1709–1716, 2009.

[2] V. Attasena, N. Harbi, and J. Darmont. A novel multi-secret sharing approach for secure data warehousing and on-line analysis processing in the cloud. International Journal of Data Warehousing and Mining, 2014. (To appear).

[3] A. Beimel. Secret-Sharing Schemes: A Survey. In 3rd International Conference on Coding and Cryptology (IWCC 2011), Qingdao, China, pages 11–46, 2011.

[4] S. Bu and R. Yang. Novel and Effective Multi-Secret Sharing Scheme. In 2nd International Conference on Information Engineering and Applications (IEA 2012), Dalian, China, pages 461–467, 2012.

[5] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Musauoka, and J. Molina. Controlling Data in the Cloud: Outsourcing Computation without Outsourcing Control. In 1st ACM Cloud Computing Security Workshop (CCSW 2009), Chicago, USA, pages 85–90, 2009.

[6] P. J. Davis. Interpolation and Approximation. Dover, 1975.

[7] D. E. R. Denning. Cryptography and data security. Addison-Wesley, 1982.

[8] F. Emekci, D. Agrawal, and A. E. Abbadi. ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing Across Private Data Warehouses. In 6th International Conference on Middleware (USENIX 2005), Grenoble, France, pages 21–41, 2005.

[9] F. Emekci, D. Agrawal, A. E. Abbadi, and A. Gulbeden. Privacy preserving query processing using third parties. In 22nd IEEE International Conference on Data Engineering (ICDE 2006), Atlanta, USA, pages 27–37, 2006.

[10] Z. Eslami and J. Z. Ahmadabadi. A Verifiable Multi-secret Sharing Scheme based on Cellular Automata. Information Sciences, 180(15):2889–2984, August 2010.

[11] M. A. Hadavi, E. Damiani, R. Jalili, S. Cimato, and Z. Ganjei. ASS: A secure searchable secret sharing scheme for privacy preserving database outsourcing. In ESORICS DPM/SETOP 2012 International Workshops, Pisa, Italy, pages 201–216, 2012.

[12] M. A. Hadavi and R. Jalili. Secure data outsourcing based on threshold secret sharing: towards a more practical solution. In VLDB 2010 PhD Workshop, Singapore, pages 54–59, 2010.

[13] M. A. Hadavi, M. Noferesti, R. Jalili, and E. Damiani. Database as a service: towards a unified solution for security requirements. In 36th IEEE Annual Conference on Computer Software and Applications Conference Workshops (COMPSACW 2012), Izmir, Turkey, pages 415–420, 2012.

[14] Y.-X. Liu, L. Harn, C.-N. Yang, and Y.-Q. Zhang. Efficient (n, t, n) secret sharing schemes. Journal of Systems and Software, 85(6):1325–1332, January 2012.

[15] R. R. Ravan, N. B. Idris, and Z. Mehrabani. A Survey on Querying Encrypted Data for Database as a Service. In 5th International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC 2013), Beijing, China, pages 14–18, 2013.

[16] A. Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–613, November 1979.

[17] B. ShanYue and Z. Hong. A Secret Sharing Scheme Based on NTRU Algorithm. In 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom 2009), Beijing, China, pages 1–4, 2009.

[18] R. Sion. Towards Secure Data Outsourcing, pages 137–161. Handbook of Database Security. Springer, 2008.

[19] B. Thompson, S. Haber, W. G. Horne, T. Sander, and D. Yao. Privacy-Preserving Computation and Verification of Aggregate Queries on Outsourced Databases. In 9th International Symposium on Privacy Enhancing Technologies (PETS 2009), Seattle, USA, pages 185–201, 2009.

[20] S. Tü, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing analytical queries over encrypted data. PVLDB, 6(5):289–300, March 2013.

[21] S. Wang, D. Agrawal, and A. E. Abbadi. A comprehensive framework for secure query processing on relational data in the cloud. In 8th VLDB International Conference on Secure Data Management (SDM 2011), Berlin, Germany, pages 52–69, 2011.

[22] A. Waseda and M. Soshi. Consideration for Multi-threshold Multi-secret Sharing Schemes. In 2012 International Symposium on Information Theory and its Applications (ISITA 2012), Honolulu, USA, pages 265–269, 2012.