Atomic-Scale Comparison Between \{\bar{1}101\} and \{\bar{1}102\} Twin Growth Mechanisms in Magnesium

L. Leclercqa, L. Capolungoa* and D. Rodneyb,c

aGeorge Woodruff School of Mechanical Engineering, Georgia Institute of Technology Lorraine, UMI 2958 Georgia Tech-CNRS, 57070 Metz, France; bLaboratoire de Science et Ingénierie des Matériaux et des Procédés, Grenoble Institute of Technology, CNRS, UJF, 38402 Saint Martin d’Hères, France; cInstitut Lumière Matière, Université Lyon 1, CNRS, UMR 5306, 69622 Villeurbanne, France

(Received 16 October 2013; final form 27 December 2013)

The two most frequently observed twins in hexagonal close-packed (HCP) Mg, \{\bar{1}101\} and \{\bar{1}102\} twins, have surprisingly different properties and morphologies, with \{\bar{1}101\} twins appearing under higher stresses and being much thinner than \{\bar{1}102\} twins. By considering the atomic-scale elementary properties of the twin interfaces and their disconnections, we show that (1) the transverse propagation of \{\bar{1}101\} twins is hindered by the absence of low-energy mobile interfaces, whereas \{\bar{1}102\} twins benefit from prismatic-basal interfaces and (2) the thickening of \{\bar{1}101\} twins is slowed by higher energy barriers against both the nucleation and propagation of disconnections along their interfaces.

Keywords: Pure Magnesium, Twinning, Disconnections, Molecular Statics

1. Introduction Twinning is a deformation mechanism particularly important in hexagonal close-packed (hcp) crystals, providing together with pyramidal slip, a means to accommodate deformation along the c-axis.

Amongst the three twinning modes experimentally reported in pure and alloyed magnesium, two are of particular interest: \{1102\} and \{\bar{1}101\} twins.[8,11–15] The former induces an extension of the c-axis while the latter leads to a compression of the c-axis. Provided loads are suitably oriented with respect to the texture, these two twin types are readily activated, yet present distinct characteristics. \{1102\} Tension twins, an example of which is shown from an atomistic simulation in Figure 1, are commonly observed in several hcp metals (i.e. Ti,Be,Zr,Hf), including pure Mg and Mg alloys AZ31 and ZK60A.[16–18] In the case of Mg, tensile twins are reported to be activated under low critical resolved shear stresses (CRSS) between 2 and 8 MPa.[19,20] These twins can consume close to the entire parent grains.[8,11,21] The twin morphology depends on the total accumulated shear strain in the twinning shear direction and results from multiple nucleation events followed by growth and coalescence of the twin domains.

On the contrary, \{\bar{1}101\} compression twins, which have been observed in pure Mg as well as in Mg AZ31,[16,17] are activated under relatively high CRSS, between 30 and 100 MPa,[19,23–25] comparable to that required to activate pyramidal slip (30–80 MPa [23,26–29]). Compressive twinning is thus in competition with pyramidal slip. Moreover, even if no quantification of the thickness of \{\bar{1}101\} twins is available in the literature, they typically appear to be narrow. For example, in extruded AZ31, following compressive loading up to 10% strain in the extrusion direction, \{\bar{1}101\} twins were observed to be 2.5 \textmu m thick.[14]

Interestingly, the rational for these marked differences remains unclear to this date. In the absence of spinoidal mechanisms, understanding the mechanism of twinning requires the study of three phenomena: nucleation, transverse propagation (i.e. propagation of the twin nucleus across the parent phase) and thickening. Twin nucleation has been described, theoretically, in

*Corresponding author. Email: laurent.capolungo@me.gatech.edu

© 2014 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.
The purpose of the present article is to rationalize the experimentally observed structural differences between \{1101\} and \{1102\} twins. To this end, molecular statics simulations were performed, using the embedded atom method interatomic potential developed by Liu et al.\[50\] First, twin transverse propagation is studied by extending the results of Xu et al.\[40\] to \{1101\} twins. In particular, we investigate whether a specific interface, analogous to the PB interface, exists for \{1101\} twins. The second part of this article focuses on thickening. Energies necessary to propagate two-layer and four-layer twinning disconnections are investigated on the two types of twin interfaces (i.e. \{1102\} and \{1101\}). Our work points to an extrinsic growth mechanism for \{1101\} twins mediated by plasticity, while the growth mechanism of \{1102\} twins is compatible with an intrinsic mechanism (i.e. not mediated by the interaction with other defects).

2. Transverse propagation As stated above, our investigations start from the results obtained by Xu et al.\[40\] Since the real nature of twin nuclei is still unknown, twin transverse propagation was studied from two hypothetical initial nuclei. In this part, we first recall the results found in \[40\] for \{1102\} and apply a similar methodology to \{1101\} twins.

The first method to generate a nucleus consists in introducing a dipole of partial dislocations in a perfect crystal and letting the system relax under an applied shear strain via energy minimization. The Burgers vector of the partials, \(+b_n\), matches the minimum of the \(\gamma\)-line calculated on the twinning plane along the [1101] direction, as suggested by Wang et al.\[38\] Upon imposing a sufficiently large shear strain parallel to the twin interface, growth of the nucleus can be activated. The resulting twinned structure is bounded by \{1102\} and \{1102\} planes and PB interfaces, as shown in Figure 1. The second type of nucleus created in \[40\] was inspired by Eshelby’s inclusion problem.\[51\] The nucleus is obtained by cutting a sub-domain, applying mirror symmetry to the atoms inside the sub-domain and placing the atoms back in the original space with an additional strain applied to recover the initial shape of the sub-domain. Such nucleus was also found to grow under sufficiently large shear strains parallel to the twin plane. These two methods revealed the importance of PB interfaces to transverse propagation of \{1102\} twins in \[40\]. One particularly important feature is that PB interfaces readily form regardless of the method used to build the initial nucleus.
In the present letter, the two above methods were applied to \{1101\} twins. We first calculated the \(\gamma\)-line on the twinning plane along the [1\(\overline{1}\)02] direction in order to apply the dipole method. The result is shown in Figure 2. The \(\gamma\)-line has three local minima, generically noted \(b_m\), located at 0.17\([1\overline{1}02]\), 0.5\([1\overline{1}02]\) and 0.75\([1\overline{1}02]\), resulting in five potential Burgers vectors: 0.17\([1\overline{1}02]\) \((0.17 - 1)\)[\(\overline{1}\)02], 0.5\([1\overline{1}02]\), 0.75\([1\overline{1}02]\) and \((0.75 - 1)\)[\(\overline{1}\)02]. For each minimum, we chose the lowest absolute value between \(b_m\) and \((b_m - 1)\) since the smaller \(b_m\) has a lower energy.

Referring to the unit cell in Figure 2, one can notice that all three minima correspond to displacements essentially positioning atoms at previously occupied sites, accordingly to the topological approach of Pond et al.\[49\] We then introduced the corresponding dipoles of partial dislocations into periodic cells of dimensions 58.8 × 24.4 × 0.32 nm\(^3\), containing approximately 20,000 atoms. Unlike \{1\(\overline{1}\)02\} twins where there is a minimal length for the dipole that results in the growth of a twin, all dipole lengths provide the same result for the \{1101\} twin. The 0.17\([1\overline{1}02]\) Burgers vector results in a stable stacking fault of low energy, given by the absolute minimum of the \(\gamma\)-line. This Burgers vector is represented by the blue arrow in the unit cell given in Figure 2. The 0.5\([1\overline{1}02]\) Burgers vector, represented by the red arrow, yields an unstable structure, relaxing into the previously identified stable stacking fault outside of the initial dipole. The \((0.75 - 1)\)[\(\overline{1}\)02] Burgers vector, represented by the green arrow, results in another stable configuration but with a higher stacking fault energy. No dipole of partial dislocations thus leads to the formation of an incipient twin, even under applied shear strains up to 10\%. It is consequently not possible to use the dipole method to make a \{1101\} twin grow.

One may also wonder if a mechanism similar to the propagation of PB interfaces in \{1\(\overline{1}\)02\} twins could result in \{1101\} twin propagation. In order to search for potential low-energy interfaces that would be comparable to PB interfaces, we computed the energy of the twin interface as a function of its orientation with respect to the \{1\(\overline{1}\)01\} mirror plane, as done in \[40\] for \{1\(\overline{1}\)02\} twins. To do so, the first step is to be able to produce a twinned domain of arbitrary shape. For that, we noticed that a twinned domain can be obtained starting from a perfect crystal by propagating a screw dislocation of Burgers vector [1\(\overline{1}\)20]/6 every other dense pyramidal plane and letting the system relax. This is equivalent to propagating two-layer disconnections on the twinning plane, since the latter have the same [1\(\overline{1}\)20]/6 screw component and the edge component (approximately 0.16\(\overline{a}\) in Mg \[46\]) that is necessary to recover the entire twinning dislocation forms during the energy minimization. We then created a cylindrical volume in which the interface between the matrix and the twin corresponds to a diameter of the cylinder (Figure 3). The energy of each interface was calculated by summing the energies of all atoms in the volume and subtracting their cohesive energy. Boundary effects were minimized by including the cylinder of interest (blue) in a larger one (red). The angle between the interface and the twinning plane is referred to as \(\theta\) and we chose to set \(\theta = 0\) when the interface coincides with the twinning plane. One obtains the energies of the interfaces as a function of their orientation with respect to the \{1\(\overline{1}\)01\} mirror plane by making \(\theta\) vary between 0\(^\circ\) and 180\(^\circ\) (Figure 3(a)).
Several low-index planes are identified in Figure 3(a) that are close to symmetrical with respect to the normal to the twinning plane and result in particular interfaces. Such relationship between symmetrical planes is purely geometrical since symmetry operations with respect to the twinning plane or with respect to its normal result in the same crystal reorientation. The (1101) mirror plane is the orientation of minimum energy. Three other pairs of particular conjugated planes were identified from Figure 3(a) and used as boundaries to build hexagonal twin nuclei with the method inspired from Eshelby’s inclusion problem. (1102)/(1103) interfaces were studied first since they are the second lowest energy interfaces. They are reminiscent of the PB interfaces for {1102} twins since they correspond to marked minima in the energy curve. Prismatic/(1103) interfaces were investigated because of their high energy that suggests that they may be unstable. Finally, (1101)/basal interfaces were considered since they are local minima and may present properties similar to PB interfaces.

Interestingly, regardless of the specific interfaces chosen to construct the twinned subdomain (i.e. high energy or low energy), the direction of the strain (i.e. shear strain or strain normal to the twinning plane or in the direction of the plane), the amount of strain (up to 10%) and the geometry of the nucleus (i.e. from 2-layers to more than 15-layers thick and from a ratio length/thickness from about 2 to about 10), none of these nuclei grew. The fact that we did not succeed in making a {1101} twin nucleus grow suggests that {1101} twin transverse propagation might not be driven by a particular interface, in contrast with {1102} twins.

3. Thickening

As stated above, twin thickening is mediated by the propagation of disconnections on the twin interfaces. The rate of twin growth is then a direct consequence of (1) the geometrical characteristic of the disconnections (e.g. their Burgers vector and step height), (2) the process of disconnection generation and (3) the mobility of the disconnections. To appreciate the potential difference in growth rate of tensile and compressive twins, these three points are addressed in what follows.

The following potential thickening defects were considered: two-layer steps, four-layer steps and finite size interfaces. For the latter case, the PB interface was chosen for the {1102} twin while the basal/(1101) interface—naturally forming as a result of energy minimization—was selected for the {1101} twin, with either 6- or 8-layer thickness.

To study the steps, we consider a bi-crystal geometry illustrated in Figure 4 with one half of the crystal twinned with respect to the other half. Figure 4 is given as an illustration, however the real simulation cells were
chosen large enough to avoid border effects and interaction between the steps. Due to the symmetry with respect to the twinning plane, periodic boundary conditions along the y-axis were removed. We introduced a pair of steps on the interface in order to maintain periodicity along the x-axis. The steps on the $\{\bar{1}01\}$ interfaces were created using the method described earlier in this letter. For $\{102\}$ twins, we repositioned the atoms as tracked by Wang et al. [37] during a nucleation event.

Following energy minimization, steps higher than two layers on $\{102\}$ twin interfaces systematically decompose into two-layer steps, even under an applied shear strain. This is particularly interesting as it shows that the stability of PB interfaces depends on the geometry of their extremities. Indeed, our calculations show that PB interfaces are not stable when they connect two parallel $\{102\}$ twin interfaces. However, they were found to be stable when they are connected with other PB interfaces or with $\{102\}$ conjugate planes, as seen in the nuclei of Figure 1. As a result, the PB interface cannot be regarded solely as a stack of two-layer disconnections. For the sake of the study on twin thickening though, in which case PB interfaces are unstable, the only defect pertaining to tensile twins considered in what follows is the two-layer step.

On $\{\bar{1}01\}$ twin interfaces, all steps reached stable configurations after relaxation. The four- and eight-layer steps were always stable, regardless of the amount and direction of the applied strain, while six-layer steps, depending on the initial configuration used before energy minimization—and in particular the initial position of the screw components of the disconnections—, may decompose into either a two-layer step and a four-layer step or into a two-layer step and an eight-layer step. Note that the later was found to be a stack of two four-layer steps.

The energies involved in disconnection generation were investigated using the nudged elastic band (NEB) method. [52] This method consists in minimizing the energy on intermediate configurations between an initial and a final state in order to identify the energy barrier to overcome when going from one state to the other. To study the nucleation of disconnections on both types of interfaces, we started from a perfectly flat twin interface and ended with two steps—to be consistent with the periodic conditions (Figure 4). The energies necessary to create these two steps are given in Figure 5(a). We found that the energy barrier is about three times higher for $\{\bar{1}01\}$ twins so that it is easier for steps to nucleate on $\{1102\}$ twin interfaces. The energies necessary to create these two steps are given in Figure 5(a). We found that the energy barrier is about three times higher for $\{\bar{1}01\}$ twins so that it is easier for steps to nucleate on $\{102\}$ twin interfaces. As a consequence, we infer that two-layer steps on $\{102\}$ twin interfaces may nucleate by an intrinsic process not requiring, for example, interaction of the interface with glide dislocations. The functional dependence of the step nucleation energy on stress will require further study to decipher the relative roles of stress and temperature on twin thickening. Note that such thermal effect may not exist for the generation of the twin nucleus. On the contrary, steps on $\{\bar{1}01\}$ twin interfaces are probably mediated by extrinsic defects, possibly the interaction and absorption of screw dislocations. [46,53,54]

Finally, we focused on the mobility of these disconnections by calculating the energies necessary for their propagation using the NEB method. These calculations, shown in Figure 5(b) and 5(c), revealed that the energy necessary to propagate four-layer steps on $\{\bar{1}01\}$ twin interfaces is about ten times higher than the energy necessary to propagate two-layer steps (Figure 5(b)), confirming the stability of four-layer steps. The different nature of the two kinds of steps is also underlined by a metastable configuration for four-layer steps that does not exist for two-layer steps. This type of curve is consistent with the results of Wang et al. [47] for two-layer steps. For four-layer steps, the order of magnitude differs and the metastable configuration is more pronounced in our case. We checked the accuracy of our calculations by running the simulations again using the potential developed by Sun et al. [55] and found a similar behaviour. The structure of the eight-layer step was identified to be equivalent to two superimposed four-layer steps of either the stable or the metastable configuration. The intermediate configurations computed by the NEB method reveal that the propagation of an eight-layer step is equivalent to the simultaneous propagation of two four-layer steps. The differences in energies involved in step propagation suggest that $\{\bar{1}01\}$ twin growth, which is already difficult to activate as discussed previously, is hindered by the stability of high steps. As a consequence, these twins appear to be thin.

The critical resolved shear stress associated with the propagation of two-layer steps on $\{\bar{1}01\}$ twin interfaces, directly measured by applying a shear stress to the simulation cell, was found to be 310 MPa with a positive stress and −400 MPa with a negative stress. The difference between these two values can be explained by the non-symmetric character of the step with respect to
the γ-axis. Incidentally, this asymmetry may be related to detwinning. However, it has to be kept in mind that our simulations are conducted at 0 K, such that we have no temperature effect and in particular no effect of thermal activation on step mobility. Also, our calculations were performed in two dimensions, forcing the steps to move as straight lines, while in three dimensions, a step may glide by a nucleation/propagation mechanism similar to the kink-pair mechanism of high Peierls stress dislocations.[56]

Regarding tensile twins, it was found that the energy barrier to be overcome to propagate two-layer steps on $\{1\bar{1}02\}$ twin interfaces is about 0.007 eV/nm (Figure 5(c)), which is about four times lower that for
{[101]} twins, hence its easy propagation. The associated critical resolved shear stress was found to be 190 MPa when we apply a positive stress and ~230 MPa when the stress is negative. These values stay below the CRSS of {[110]} twins, which is consistent with the lower energy involved in the propagation of this type of twins.

These energy considerations provide two more arguments in favour of the more frequent appearance of {[110]} twins since it is easier both to nucleate and to propagate two-layer steps on their interfaces. Moreover, while four-layer steps on {[110]} twin interfaces significantly hinders the growth process, four-layer steps on {[110]} twin interfaces decompose into mobile two-layer steps, which profits to twin growth.

4. Conclusion The different natures of {[110]} and {[110]} twins have been underlined, providing an explanation to their experimentally observed differences. The transverse propagation of {[102]} twins was found in [40] to be driven by the propagation of PB interfaces. By way of contrast, the new results presented earlier in the present article show that {[101]} twin transverse propagation may not be driven by such a process, which increases the singularity of {[110]} twins. Focusing on twin thickening, we found that the glide of two-layer steps is the main mechanism controlling growth in both cases. Energy considerations on step propagation revealed that it is much easier to nucleate and propagate steps on {[110]} twin interfaces, pointing towards an intrinsic mechanism involving thermal activation. On the contrary, the nucleation of {[110]} twins has to be mediated, possibly by the interaction with lattice dislocations or other twins.

Acknowledgements The authors acknowledge the support of the French National Research Agency under the project MAGTWIN and the Georgia Institute of Technology Lorraine.

References

[1] Christian JW, Mahajan S. Deformation twinning. Prog Mater Sci. 1995;39(1–2):1–157.
[2] Hirth JP, Lothe J. Theory of dislocations. Melbourne, FL: Krieger; 1992.
[3] Zhang J, Joshi SP. Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J Mech Phys Sol. 2012;60(5):945–972.
[4] Cahn RW. Plastic deformation of alpha-uranium; twinning and slip. Acta Metall. 1953;1(1):49–70.
[5] Bell RL, Cahn RW. The nucleation problem in deformation twinning. Acta Metall. 1953;10(6):752–753.
[6] Bell RL, Cahn RW. The dynamics of twinning and the interrelation of slip and twinning in zinc crystals. Proc R Soc Lond A. 1957;239(1219):494–521.
[7] Cáceres CH, Sumimoto T, Veidt M. Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading-unloading. Acta Mater. 2003;51(20):6211–6218.
[8] Mann GE, Sumimoto T, Cáceres CH, Griffiths JR. Reversible plastic strain during cyclic loading-unloading of Mg and Mg-Zn alloys. Mater Sci Eng A. 2007;456(1–2):138–146.
[9] Wang H, Wu PD, Wang J. Modeling inelastic behavior of magnesium alloys during cyclic loading-unloading. Int J Plast. 2013;47:49–64.
[10] Stanford N, Barnett MR. Solute strengthening of prismatic slip, basal slip and {[102]} twinning in Mg and Mg-Zn binary alloys. Int J Plast. 2013;47:165–181.
[11] Nave MD, Barnett MR. Microstructures and textures of pure magnesium deformed in plane-strain compression. Scr Mater. 2004;51(9):881–885.
[12] Syed B, Geng J, Mishra RK, Kumar KS. [0001] compression response at room temperature of single-crystal magnesium. Scr Mater. 2012;67(7–8):700–703.
[13] Barnett MR. Twinning and the ductility of magnesium alloys: part I: “tension” twins. Mater Sci Eng A. 2007;464(1–2):1–7.
[14] Barnett MR. Twinning and the ductility of magnesium alloys: part II: “contraction” twins. Mater Sci Eng A. 2007;464(1–2):8–16.
[15] Koike J, Sato Y, Ando D. Origin of the anomalous {[110]} twinning during tensile deformation of Mg alloy sheet. Mater Trans. 2008;49(12):2792–2800.
[16] Barnett MR, Keshavarz Z, Beer AG, Ma X. Non-schmid behaviour during secondary twinning in a polycrystalline magnesium alloy. Acta Mater. 2008;56(1):5–15.
[17] Dudamell NV, Ulacia I, Gálvez F, Yi S, Bohlen J, Letzig D, Hurtado J, Pérez-Prado MT. Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature. Acta Mater. 2011;59(18):6949–6962.
[18] Wu L, Jain A, Brown DW, Stoica GM, Agnew SR, Clausen B, Fielden DE, Liaw PK. Twinning-detwinning behaviour during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Mater. 2008;56(4):688–695.
[19] Kelley EW, Hofsord WF. Plane-strain compression of magnesium and magnesium alloy crystals. Trans Metall Soc AIME. 1968;242(1–2):5–13.
[20] Roberts C. Magnesium and its alloys. New York: Wiley; 1960.
[21] Knezevic M, Levinson A, Harris R, Mishra RK, Doherty RD, Kalidindi SR. Deformation twinning in AZ31: influence on strain hardening and texture evolution. Acta Mater. 2010;58(19):6230–6242.
[22] Li J. Atomeye: an efficient atomistic configuration viewer. Modell Simul Mater Sci Eng. 2003;11(2):173–177.
[23] Kitahara T, Ando S, Tsushida M, Kitahara H, Tonda H. Deformation behavior of magnesium single crystals in c-axis compression. Key Eng Mater. 2007;345–346(1–2):129–132.
[24] Wonsiewicz BC. Plasticity of magnesium crystals [dissertation]. Massachusetts Institute of Technology; 1966.
[25] Yoshinaga H, Horiiuchi R. Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis. Trans Jpn Inst Met. 1963;4:1–8.
[26] Lilloedden E. Microcompression study of Mg (0001) single crystal. Scr Mater. 2010;62(8):532–535.
[27] Obara T, Yoshina H, Morozumi S. {[112]} < [11] slip system in magnesium. Acta Metall. 1973;21(7):845–853.
[28] Byer CM, Li B, Cao B, Ramesh KT. Microcompression of single-crystal magnesium. Scr Mater. 2010;62(8):536–539.
[29] Ando S, Harada N, Tsushida M, Kitahara H, Tonda H. Temperature dependence of deformation behavior in...
magnesium and magnesium alloy single crystals. Key Eng Mater. 2007;345–346(1–2):101–104.

[30] Molnár P, Jäger A, Lejček P. Twin nucleation at grain boundaries in Mg-3 wt.% Al-1 wt.% Zn alloy processed by equal channel angular pressing. Scr Mater. 2012;67(5):467–470.

[31] Ghaderi A, Barnett MR. Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater. 2011;59(20):7824–7839.

[32] Thompson N, Millard DJ. Twin formation in cadmium. Philos Mag. 1952;43(339):422–440.

[33] Mendelson S. Zonal dislocations and twin lamellae in h.c.p. metals. Mater Sci Eng. 1969;4(4):231–242.

[34] Mendelson S. Dislocation dissociations in hcp metals. J Appl Phys. 1970;41(5):1893–1910.

[35] Ghazisaeidi M, Curtin WA. Analysis of dissociation of $<c>$ and $<c+a>$ dislocations to nucleate $\{10\bar{1}2\}$ twins in Mg. Modell Simul Mater Sci Eng. 2013;21:1–13.

[36] Capolungo L, Beyerlein IJ. Nucleation and stability of twins in hcp metals. Phys Rev B. 2008;78:024117.

[37] Wang J, Yadav SK, Hirth JP, Tomé CN, Beyerlein IJ. Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals. Mater Res Lett. 2013;1:1–7.

[38] Wang J, Hoagland RG, Hirth JP, Capolungo L, Beyerlein IJ, Tomé CN. Nucleation of a twin in hexagonal close-packed crystals. Scr Mater. 2009;61(9):903–906.

[39] Luque A, Ghazisaeidi M, Curtin WA. Deformation modes in magnesium (0001) and (011) single crystals: simulations versus experiments. Modell Simul Mater Sci Eng. 2013;21(4):045010.

[40] Xu B, Capolungo L, Rodney D. On the importance of prismatic/basal interfaces in the growth of twins in hexagonal close packed crystals. Scr Mater. 2013;68(11):901–904.

[41] Zhang XY, Li B, Wu XL, Zhu YT, Ma Q, Liu Q, Wang PT, Horstemeyer MF. Twin boundaries showing very large deviations from the twinning plane. Scr Mater. 2012;67(10):862–865.

[42] Westlake DG. On $\{10.1\}$ twinning in the hcp structure. Acta Metall. 1966;14:443–445.

[43] Kronberg ML. Atom movements and dislocation structures for plastic slip in single crystals of α-uranium. J Nucl Mater. 1959;1(1):85–95.

[44] Serra A, Bacon DJ, Pond RC. The crystallography and core structure of twinning dislocations in h.c.p. metals. Acta Metall. 1988;36(12):3183–3203.

[45] Serra A, Pond RC, Bacon DJ. Computer simulation of the structure and mobility of twinning dislocations in h.c.p. metals. Acta Metall Mater. 1991;39(7):1469–1480.

[46] Wang J, Beyerlein IJ, Hirth JP, Tomé CN. Twinning dislocations on $\{1101\}$ and $\{1103\}$ planes in hexagonal close-packed crystals. Acta Mater. 2011;59(10):3990–4001.

[47] Wang J, Beyerlein IJ, Hirth JP. Nucleation of elementary $\{1101\}$ and $\{1103\}$ twinning dislocations at a twin boundary in hexagonal close-packed crystals. Modell Simul Mater Sci Eng. 2012;20:024001.

[48] Pond RC, Bacon DJ, Serra A, Sutton AP. The crystallography and atomic structure of line defects in twin boundaries in hexagonal-close-packed metals. Metall Trans A. 1991;22(6):1185–1196.

[49] Liu XY, Adams JB, Ercolessi F, Moriarty JA. EAM potential for magnesium from quantum mechanical forces. Modell Simul Mater Sci Eng. 1996;4:293–303.

[50] Eschelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A. 1957;241:376–396.

[51] Henkelman G, Uberuaga BP, Jönsso H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113:9901–9904.

[52] Yuasa M, Masunaga K, Yoshida T, Mabuchi M, Chino Y. Interactions of a screw dislocation with a $\{10\bar{1}1\}−\{10\bar{1}2\}$ double twin in Mg. Acta Mater. 2013;61(13):4714–4725.

[53] Wang J, Beyerlein IJ. Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals. Simul Mater Sci Eng. 2012;20(2):024002.

[54] Sun DY, Mendelev MI, Becker CA, Kudin K, Haxhimali T, Asta M, Hoyt JJ, Karnau A, Srolovitz DJ. Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg. Phys Rev B. 2006;73:024116.

[55] Provillle L, Rodney D, Marinica MC. Quantum effect on thermally activated glide of dislocations. Nat Mater. 2012;11(10):845–849.