A FAMILY OF 4-BRANCH-POINT COVERS WITH MONODROMY GROUP $\text{PSL}_6(2)$

DOMINIK BARTH AND ANDREAS WENZ

ABSTRACT. We describe the explicit computation of a family of 4-branch-point rational functions of degree 63 with monodromy group $\text{PSL}_6(2)$. This, in particular, negatively answers a question by J. König whether there exists a such a function with rational coefficients. The computed family also gives rise to non-regular degree-126 realizations of $\text{Aut}(\text{PSL}_6(2))$ over $\mathbb{Q}(t)$.

1. Introduction

Let $C := (C_1, C_2, C_3)$ be the genus-0 class vector of $\text{PSL}_6(2)$ in its natural 2-transitive action on the 63 non-zero elements of \mathbb{F}_2^6, where C_1, C_2 and C_3 are the unique conjugacy classes of cycle structure $2^{28}.1^7$, $2^{16}.1^{31}$ and $3^{20}.1^3$, respectively. Then, using the theory of Hurwitz spaces J. König [9, p. 109] established the theoretical existence of a hyperelliptic genus-3 curve H defined over \mathbb{Q} and polynomials $p, q \in \mathbb{Q}(H)[X]$ satisfying the following:

- The family \mathcal{F} of normalized covers with ramification locus $(0, \infty, 1+\sqrt{\lambda}, 1-\sqrt{\lambda})$ where $\lambda \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ and ramification structure C can be parameterized by a rational function $F = \frac{p}{q} \in \mathbb{Q}(H)(X)$.
- $\text{Gal}(p - tq | \mathbb{Q}(H)(t)) \cong \text{PSL}_6(2)$.

In order to decide whether $\text{PSL}_6(2)$ occurs regularly as a Galois group over $\mathbb{Q}(t)$ with ramification structure C, one has to check the existence of \mathbb{Q}-rational points on H that lead to Galois group preserving specializations. König also mentions that without explicit computation of H there seems to be no way of finding an answer to this question.

Note that $\text{PSL}_6(2)$ and $\text{PSp}_6(2)$ of degree 63 are expected to be the largest (with respect to the permutation degree) almost simple primitive groups having a generating genus-0 tuple of length at least 4 with the socle being a simple group of Lie type. While multi-parameter families of polynomials with Galois group $\text{PSp}_6(2)$ of degree 28 and 36 were calculated in [2], the case $\text{PSL}_6(2)$ remained open. With the recent development in computing multi-branch-point covers in [2] we are able to give explicit defining equations for H and F. Alternative techniques
for such calculations are described by Couveignes [4], Hallouin [6], König [8, 9], Malle [10] and Müller [12].

This paper is structured as follows: Section 2 depicts the computation of \mathcal{H} and F. The computed results are verified in section 3 and we will show that \mathcal{H} does not have \mathbb{Q}-rational points that lead to Galois group preserving specializations. As a consequence we deduce that $\text{PSL}_6(2)$ does not occur as the monodromy group of a rational function with rational coefficients ramified over at least 4 points. Furthermore we obtain explicit polynomials of degree 126 over $\mathbb{Q}(t)$ with Galois groups isomorphic to $\text{Aut}(\text{PSL}_6(2))$ which are presented in section 4.

2. Computation

Let $C = (C_1, C_2, C_3, C_3)$ be the genus-0 class vector from the introduction and F the family of all $\text{PSL}_6(2)$-covers $f : \mathbb{P}^1 \to \mathbb{P}^1$ of degree 63 such that:

(i) f is a 4-branch-point cover ramified over $0, \infty, 1, \pm \sqrt{\lambda}$ for some $\lambda \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ with ramification structure:

branch point	0	∞	$1 + \sqrt{\lambda}$	$1 - \sqrt{\lambda}$
inertia class	C_1	C_2	C_3	C_3

(ii) f is normalized in the following sense: The sum of all simple roots of f is 0 and the sum of all double poles is 1. Furthermore, ∞ is the unique simple pole of f fixed under the action of the normalizer of the inertia group at ∞. Note that for any $g \in C_2$ exactly one length-1-cycle of g is fixed under $N_{\text{PSL}_6(2)}(\langle g \rangle)$.

2.1. Properties of F. The straight inner Nielsen class $\text{SNi}^\text{in}(C)$ of C is the set of quadruples $(\sigma_1, \sigma_2, \sigma_3, \sigma_4) \in C_1 \times C_2 \times C_3 \times C_3$ up to simultaneous conjugation satisfying both $\sigma_1 \sigma_2 \sigma_3 \sigma_4 = 1$ and $\langle \sigma_1, \sigma_2, \sigma_3, \sigma_4 \rangle = \text{PSL}_6(2)$. A computer computation with Magma [3] yields $|\text{SNi}^\text{in}(C)| = 48$.

Since F carries the structure of an algebraic variety, various properties of F can be studied via the branch-point reference map:

$$\Psi : \begin{cases} F \to \mathbb{P}^1_{\lambda} \\
\text{cover with ramification locus } \{0, \infty, 1, \pm \sqrt{\lambda_0}\} \mapsto \lambda
\end{cases}$$

By Riemann’s existence theorem for each $\lambda_0 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ and $\sigma \in \text{SNi}^\text{in}(C)$ there is a unique cover (up to inner Möbius transformation) with ramification locus $(0, \infty, 1, \pm \sqrt{\lambda_0})$ and ramification σ. The normalization conditions stated in (ii) guarantee that F contains exactly one such cover. As a consequence F is a curve and Ψ turns out to be a Belyi map of degree $|\text{SNi}^\text{in}(C)| = 48$ with ramification locus $(0, 1, \infty)$. The ramification of Ψ, denoted by $(x, y, z) \in \text{Sym}(\text{SNi}^\text{in}(C))^3$, is also well
studied and can be calculated explicitly using the formula in [11] Theorem III.7.8\] which arises from the action of the braid group on $\text{SNi}^\text{in}(C)$. This triple generates a transitive group and consists of cycle structures $(6^5, 4^4, 2^1, 7^4, 4^3, 3^2, 2^1, 9^{24})$. From this we can deduce that \mathcal{F} is connected of genus 3 (by the Riemann-Hurwitz formula). Furthermore note that \mathcal{F} can be defined over \mathbb{Q} since all classes of C are rational.

In the following the function field of \mathcal{F} will be denoted by $\mathbb{Q}(\mathcal{F})$. The family \mathcal{F} can be parameterized by a rational function

$$ F = \frac{p}{q} \in \mathbb{Q}(\mathcal{F})(X) $$

with $p, q \in \mathbb{Q}(\mathcal{F})[X]$ such that any element of \mathcal{F} is obtained via specializing F at some point in \mathcal{F}.

2.2. Defining equations for elements in \mathcal{F}. Fix $f_{\lambda_0} \in \mathcal{F}$ with $\Psi(f_{\lambda_0}) = \lambda_0$ for some $\lambda_0 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$. According to (i) and (ii) there exist a scalar c_0 and separable, monic and mutually coprime polynomials $p_7, p_{28}, q_{16}, q_{30}, r_3, r_{20}, s_3, s_{20}$ of respective degree denoted in the index such that

$$ f_{\lambda_0} = \frac{c_0 \cdot p_7 \cdot p_{28}^2}{q_{30} \cdot q_{16}^2} = 1 + \sqrt{\lambda_0} + \frac{c_0 \cdot r_3 \cdot r_{20}^3}{q_{30} \cdot q_{16}^2} = 1 - \sqrt{\lambda_0} + \frac{c_3 \cdot s_3 \cdot s_{20}^3}{q_{30} \cdot q_{16}^2} $$

where the traces of p_7 and q_{16} are 0 and 1, respectively.

By comparing coefficients (3) can be considered as a system of polynomial equations where c_0 and the coefficients of $p_7, p_{28}, \ldots, s_{20}$ are considered to be the unknowns. This system consists of 126 unknowns and 126 equations, hence it is expected to have at most finitely many solutions with f_{λ_0} being one of them.

2.3. Walking on \mathcal{F}. Assume we are given an explicit approximative equation for f_{λ_0}, then we are able to compute another approximative equation of a cover $\lambda_{\lambda_0 + \delta} \in \mathcal{F}$ with $\Psi(f_{\lambda_0 + \delta}) = \lambda_0 + \delta$ for some sufficiently small $\delta \in \mathbb{C}$. This can be achieved via Newton iteration by assembling the corresponding polynomial equations similar to (3) and using f_{λ_0} as the initial value.

Starting from an approximative equation of a cover $f_{\text{start}} \in \mathcal{F}$ we can find an approximative equation for another cover $f_{\text{end}} \in \mathcal{F}$ with prescribed $\lambda_{\text{end}} := \Psi(f_{\text{end}}) \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ and prescribed ramification $\sigma_{\text{end}} \in \text{SNi}^\text{in}(C)$.

Let $\lambda_{\text{start}} := \Psi(f_{\text{start}})$ and γ_1 be a path in $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ connecting λ_{start} to λ_{end}. Lift γ_1 via Ψ to \mathcal{F} from a path starting in f_{start} and ending in some element denoted by $f_{\text{end}} \in \mathcal{F}$, then $\Psi(f_{\text{end}}) = \lambda_{\text{end}}$. The ramification of f_{end} will be denoted by σ_{end}. According to the ramification of Ψ we can give a closed path γ_2 in $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ starting in λ_{end} with the property: The lifted path of γ_2 in \mathcal{F} via Ψ connects f_{end} to another element f_{end} with $\Psi(f_{\text{end}}) = \lambda_{\text{end}}$ and ramification σ_{end}. Using Newton
iteration as explained before we can slightly deform f_{start} at its ramification locus along $\gamma_2 \circ \gamma_1$ to obtain an approximate equation for f_{end} having the prescribed ramification data.

2.4. Splitting behaviour of Ψ. The monodromy group of Ψ, generated by x, y, z, turns out to be imprimitive acting on 24 blocks, each of size 2. The induced action of (x, y, z) on the set B of these blocks, denoted by $(x', y', z') \in \text{Sym}(B)^3$, consists of cycle structures $(4^2.3^5.11, 7^2.4^1.3^1.2^1.1^1, 2^{12})$. Since (x', y', z') describes a genus-0 triple the cover Ψ splits as follows:

\[
\Psi : \mathcal{F} \xrightarrow{\Psi_2} \mathbb{P}^1_{\mu} \xrightarrow{\Psi_{24}} \mathbb{P}^1_{\lambda}
\]

with a degree-2 subcover Ψ_2 and a degree-24 subcover Ψ_{24} with ramification (x', y', z') over $(0, 1, \infty)$. The latter cover can be computed explicitly (using for example the method explained in [2]):

\[
\lambda = \Psi_{24}(\mu) = \frac{p_{24}}{q_{24}} = 1 - \frac{r_{24}}{q_{24}}
\]

where

\[
p_{24} := \left(\mu - \frac{1}{4}\right) \left(\mu^2 - \frac{11}{16}\mu + \frac{1}{8}\right)^4 \left(\mu^5 - \frac{137}{4}\mu^4 + \frac{178}{3}\mu^3 - 34\mu^2 + 8\mu - \frac{2}{3}\right)^3,
\]

\[
r_{24} := 243 \left(\mu - \frac{1}{2}\right)^3 \left(\mu - \frac{1}{3}\right)^4 \left(\mu - \frac{5}{16}\right)^2 \left(\mu^2 + \frac{1}{3}\mu - \frac{1}{6}\right)^7,
\]

\[
q_{24} := p_{24} + r_{24}.
\]

Recall that the cycle structures of (x, y, z) and (x', y', z') are given by

$(6^5.4^4.2^1, 7^4.4^3.3^2.2^1, z^{24})$ and $(4^2.3^5.1^1, 7^2.4^1.3^1.2^1.1^1, 2^{12})$.

It is now easy to see, that these cycle structures in combination with p_{24}, q_{24} and r_{24} uniquely determine the ramification locus $R_{\Psi_2} \subseteq \mathbb{P}^1_{\mu}$ of the degree-2 subcover Ψ_2. We find $R_{\Psi_2} = R_0 \cup R_1 \cup R_\infty$ with

\[
R_0 := \Psi_2^{-1}(0) \cap R_{\Psi_2} = \left\{\frac{1}{4}\right\} \cup \left\{\text{roots of } \mu^5 - \frac{137}{4}\mu^4 + \frac{178}{3}\mu^3 - 34\mu^2 + 8\mu - \frac{2}{3}\right\},
\]

\[
R_1 := \Psi_2^{-1}(1) \cap R_{\Psi_2} = \left\{\frac{5}{16}, \infty\right\},
\]

\[
R_\infty := \Psi_2^{-1}(\infty) \cap R_{\Psi_2} = \emptyset.
\]
A model for \(\mathcal{F} \). Since \(z' \) has a unique fixed point and \(\mathcal{F} \) is defined over \(\mathbb{Q} \) the function field analogue of (4) can be stated as

\[
Q(\mathcal{F}) \geq Q(\mu) \geq Q(\lambda).
\]

where \(\mu \) is a root of \(p_{24} - \lambda q_{24} \in \mathbb{Q}(\lambda)[X] \) and \(Q(\mathcal{F}) \) being the degree-2 extension of \(\mathbb{Q}(\mu) \) corresponding to \(\Psi_2 \). The computation of \(R_{\Psi_2} \) guarantees the existence of a primitive element \(y \in \mathbb{Q}(F) \), i.e., \(\mathbb{Q}(F) = \mathbb{Q}(\mu, y) \), with defining equation

\[
y^2 = cP(\mu) := c\left(\mu^5 - \frac{137}{4}\mu^4 + \frac{178}{3}\mu^3 - 34\mu^2 + 8\mu - \frac{2}{3}\right)\left(\mu - \frac{1}{4}\right)\left(\mu - \frac{5}{16}\right)
\]

for some square-free \(c \in \mathbb{Q} \) which will be determined in 2.7. For this reason a hyperelliptic \(\mathbb{Q} \)-model for \(\mathcal{F} \) can be chosen to be

\[
\mathcal{H} := \{ (\mu, y) : y^2 = cP(\mu) \}.
\]

Using this particular model \(\Psi_2 \) is then given by \(\Psi_2(\mu, y) = \mu \) for all \((\mu, y) \in \mathcal{H} \).

Field of definition for elements in \(\mathcal{F} \). Since \(\mathcal{H} \) is a model for \(\mathcal{F} \), elements of \(\mathcal{F} \) are obtained via specializing \(F \) at points in \(\mathcal{H} \). The coefficients of a cover \(f_0 \in \mathcal{F} \) are therefore contained in

\[
\mathbb{Q} \left(\mu_0, \sqrt{cP(\mu_0)} \right)
\]

where \(\mu_0 := \Psi_2(f_0) \).

Obtaining elements in \(\mathcal{F} \). By Riemann’s existence theorem there exists a \(\text{PSL}_6(2) \)-cover \(h : \mathbb{P}^1 \to \mathbb{P}^1 \) ramified over \((0, \infty, -1, 1) \) with ramification structure \((C_3, C_3, C_1, C_2)\). Then \(h^2 \) turns out to be a Belyi map with ramification locus \((0, \infty, 1)\) and monodromy group contained in \(\text{PSL}_6(2) \cap C_2 \leq S_{126} \). Its ramification consists of cycle structures \((6^{20}, 2^3, 6^{20}, 2^3, 2^{14}, 1^{38})\). Using the method described in [2], this Belyi map of degree 126 can be computed explicitly. Clearly, this yields a defining (approximative) equation for \(h \).

After applying suitable Möbius transformations and slightly moving the ramification points of \(h \) using Newton iteration we obtain a complex approximation of a cover \(f_{\text{start}} \in \mathcal{F} \) with \(\Psi(f_{\text{start}}) = \lambda_0 := \Psi_{24}(\frac{1}{6}) \). The approach described
in 2.3 allows the computation of a complex approximation of a cover \(f_{\text{end}} \in \mathcal{F} \) with \(\Psi(f_{\text{end}}) = \lambda_0 \) and ramification contained in \(B \in \mathcal{B} \) such that \(\chi(B) = \frac{1}{6} \). In combination with (7) this implies \(\Psi_2(f_{\text{end}}) = \frac{1}{6} \in \mathbb{Q} \). Due to (8) the coefficients of \(f_{\text{end}} \) can be recognized in the quadratic number field \(\mathbb{Q}(\sqrt{cP(\Psi_2(f_{\text{end}}))}) = \mathbb{Q}(\sqrt{-c \cdot 3 \cdot 7 \cdot 457}) \). With the help of Magma we find \(c = 3 \). Note that \(\mathcal{H} \) from (7) is finally computed.

2.8. Computing the universal cover \(\mathcal{F} \). Any coefficient of \(\mathcal{F} \in \mathbb{Q}(\mathcal{F})(X) = \mathbb{Q}(\mu, y)(X) \) from (2) can be expressed as

\[
H_1(\mu) + yH_2(\mu)
\]

where \(H_1, H_2 \in \mathbb{Q}(\mu) \). By slightly moving the ramification points of \(f_{\text{end}} \) via Newton iteration as described in 2.3 we obtain many defining equations of covers \(f \in \mathcal{F} \) such that \(\Psi_2(f) \) is a rational number close to \(\Psi_2(f_{\text{end}}) \). Considering (8) the coefficients of \(f \) are then contained in \(\mathbb{Q}(\sqrt{3P(\Psi_2(f))}) \), allowing us to read off \(H_1(\Psi_2(f)) \) and \(H_2(\Psi_2(f)) \). Therefore, both \(H_1 \) and \(H_2 \) can be computed by interpolation. The resulting universal cover \(\mathcal{F} = \frac{p}{q} \) is presented in file 3.3A.

Remark. The standard approach of computing a hyperelliptic model \(\mathcal{H} \) for \(\mathcal{F} \) consists of finding a polynomial relation between \(\lambda \) and a fixed coefficient of \(\mathcal{F} \) which are usually expected to generate the entire function field \(\mathbb{Q}(\mathcal{F}) \) with \([\mathbb{Q}(\mathcal{F}) : \mathbb{Q}(\lambda)] = 48 \). This is achieved by interpolation via computing several elements \(f \in \mathcal{F} \) such that \(\Psi(f) \in \mathbb{Q} \) and recognizing the previously fixed coefficient as algebraic degree-48 numbers. A Riemann-Roch space computation then leads to the hyperelliptic model \(\mathcal{H} \).

Our approach takes advantage that the monodromy group of \(\Psi \) is imprimitive with an explicitly computable genus-0 subcover \(\Psi_{24} \). As explained in 2.5 and 2.7 this yields a defining equation for \(\mathcal{H} \) after recognizing only a degree-2 number.

3. Verification and Consequences

An essential tool for the upcoming verification process is the following criterion that guarantees the existence of subgroups of a Galois group having specific properties. Similar techniques have already been applied for example by Malle, see [10].

Lemma 3.1. Let \(K \) be an arbitrary field and \(f(t, X) \in K(t)[X] \) a separable and irreducible polynomial. Furthermore, let \(p, q \in K[X] \) be coprime polynomials such that \(p - tq \in K(t)[X] \) is separable and \(f(p(t), X) \in K(t)[X] \) splits nontrivially into irreducible factors of degree \(d_1, \ldots, d_r \). Then the following holds:

(a) The Galois group \(\text{Gal}(f \mid K(t)) \) has a subgroup of index dividing \(\text{deg}(p - tq) \) with orbit lengths \(d_1, \ldots, d_r \).
(b) If \(\text{Gal}(p - tq \mid K(t)) \) is primitive and both \(\text{Gal}(p - tq \mid K(t)) \) and \(\text{Gal}(f \mid K(t)) \) have the same order, then the splitting fields of \(p - tq \) and \(f \) over \(K(t) \) coincide.

Proof. (a) Let \(\Omega_f \) (resp. \(\Omega_{p-tq} \)) be the splitting field of \(f \) (resp. \(p - tq \)) over \(K(t) \) and \(s \) a root of the irreducible polynomial \(p - tq \in K(t)[X] \). Then \(t = \frac{p(s)}{q(s)} \) and, according to the assumption, \(f(t, X) = f\left(\frac{p(s)}{q(s)}, X\right) \) splits over \(K(s) \) into irreducible factors of degree \(d_1, \ldots, d_r \). This also holds if we factorize \(f \) over \(\Omega_f \cap K(s) \). Therefore, \(\text{Gal}(\Omega_f \mid \Omega_f \cap K(s)) \leq \text{Gal}(\Omega_f \mid K(t)) \) is of index dividing \([K(s) : K(t)] = \deg(p - tq)\) with orbit lengths \(d_1, \ldots, d_r \).

(b) Recall that \(f \) splits nontrivially over \(K(s) \), thus \(K(s) \cap \Omega_f \neq K(t) \). Since \(\text{Gal}(p - tq \mid K(t)) \) is primitive, the latter yields \(K(s) \cap \Omega_f = K(s) \), therefore \(K(s) \leq \Omega_f \). Of course, the normal closure of \(K(s) \) over \(K(t) \) is also contained in \(\Omega_f \), thus \(\Omega_{p-tq} \leq \Omega_f \). Due to \(|\text{Gal}(p - tq \mid K(t))| = |\text{Gal}(f \mid K(t))|\) we find \(\Omega_{p-tq} = \Omega_f \).

Lemma 3.2. Let \(G \) be a 2-transitive subgroup of \(S_{63} \) that contains a subgroup of index dividing 63 with orbit lengths 31 and 32. Then, \(G \) is isomorphic to \(\text{PSL}_6(2) \).

Proof. This follows immediately from the classification of finite 2-transitive groups which relies on the classification of finite simple groups. We indeed do not require such a strong result:

As explained by Dembowski [5, 2.4.3 and 2.4.5] we have \(G \leq \text{Aut} (\mathcal{D}) \) where \(\mathcal{D} \) is a symmetric 2-(63, 31, \(\lambda \))-design \(\mathcal{D} \) for some \(\lambda \in \mathbb{N} \). An easy combinatorial consideration yields \(\lambda = 15 \). Thus, by a result of Kantor [7], \(\mathcal{D} \) must be isomorphic to the projective space \(\text{PG}(5, 2) \). Since \(\text{Aut}(\text{PG}(5, 2)) = \text{PSL}_6(2) \) does not contain any proper 2-transitive subgroups, we conclude \(G \cong \text{PSL}_6(2) \).

Theorem 3.3. Let \(\mathcal{H} \) be the curve computed in [2.3 and 2.7] with defining equation

\[
y^2 = 3 \left(\mu^5 - \frac{137}{4} \mu^4 + \frac{178}{3} \mu^3 - 34 \mu^2 + 8 \mu - \frac{2}{3} \right) \left(\mu - \frac{1}{4} \right) \left(\mu - \frac{5}{16} \right).
\]

Furthermore, let

\[
F := \frac{p}{q} \in \mathbb{Q}(\mathcal{H})(X) = \mathbb{Q}(\mu, y)(X)
\]

be the rational function computed in [2.8] see ancillary file 3.3A, and \(\Psi_{24} = \frac{p_{24}}{q_{24}} \) the map from [5]. Then the following holds:

(a) The polynomial \(p - tq \) defines a regular \(\text{PSL}_6(2) \)-extension of \(\mathbb{Q}(\mu, y, t) \). The ramification locus with respect to \(t \) is given by \(\mathcal{R} := (0, \infty, 1 + \sqrt[5]{\Psi_{24}(\mu)}, 1 - \sqrt[2]{\Psi_{24}(\mu)}) \) with ramification structure \((2^{28}.1^7, 2^{16}.1^{31}, 3^{20}.1^3, 3^{20}.1^3) \).

(b) Every cover in \(\mathcal{F} \) is obtained in a unique way via specialization of \(F \) at some point in \(\mathcal{H} \).
Proof. (a) We firstly verify that \(f := p - tq \) is ramified over \(R \) with ramification structure \(C \) from the introduction. This can be done by studying the inseparability behaviour of \(f \) at the places \(t \mapsto t_0 \) for \(t_0 \in R \). The corresponding factorizations are given in the file 3.3B. In particular, the behaviour above \(1 \pm \sqrt{\Psi_{24}(\mu)} \) was obtained by interpolating the factorizations of several specialized polynomials. The ramification locus of \(f \) cannot be larger than \(R \), otherwise it would contradict the Riemann-Hurwitz formula.

Let \(\Omega \) be the splitting field of \(p - tq \) over \(\mathbb{Q}(\mu, y, t) \). Then, the geometric monodromy group \(G := \text{Gal}(\Omega | (\Omega \cap \mathbb{Q}(\mu, y))(t)) \) is normal in \(A := \text{Gal}(\Omega | \mathbb{Q}(\mu, y, t)) \). We now consider the specialization of \(f = p - tq \) at the point \((0, \frac{1}{8}\sqrt{-10}) \in H \), denoted by

\[
(10) \quad f_0 = p_0 - tq_0 \in \mathbb{Q}(\sqrt{-10}, t)[X].
\]

Note that \(f_0 \) is still ramified over 4 points. Write \(\Omega_0 \) for the splitting field of \(f_0 \) over \(\mathbb{Q}(\sqrt{-10}, t) \). Then, by [11] Theorem III.6.4 and its proof, we find \(G \cong G_0 := \text{Gal}(\Omega_0 | (\Omega_0 \cap \mathbb{Q}(\mu))(t)) \). Using the fact that \(f_0(\mathbb{Q}(\mu)(t), X) \) and \(f_0(\mathbb{Q}(\mu)(t), X) \) split over \(\mathbb{Q}(\sqrt{-10}, t) \) into irreducible factors of degree 1, 62 and 31, 32, see file 3.3C, Lemma 3.1(a) implies that \(A_0 := \text{Gal}(\Omega_0 | \mathbb{Q}(\sqrt{-10}, t)) \) must be a 2-transitive group that contains a subgroup of index dividing 63 with orbit lengths 31 and 32. According Lemma 3.2 the group \(A_0 \) turns out to be \(\text{PSL}_6(2) \). Since \(A_0 \) is simple and \(G_0 \) is normal in \(A \) we find \(G \cong G_0 \cong \text{PSL}_6(2) \). As \(\text{PSL}_6(2) \) is also self-normalizing in \(S_{63} \), we end up with \(A \cong \text{PSL}_6(2) \).

(b) We will use the following notation: For a rational function \(P \) over a field of characteristic 0 we denote by \(Q_P \) the field extension of \(Q \) generated by the coefficients of \(P \).

The normalized discriminant \(\delta \) of \(f = p - tq \) is a polynomial in \(Q_F[t] \). Since the roots of \(\delta \) are given by the ramification locus of \(f \) its factorization in \(Q_F[t] \) is either of the form \(\delta = t^k(t - (1 + \sqrt{\lambda}))^\ell(t - (1 - \sqrt{\lambda}))^h \) or \(\delta = t^k(t^2 - 2t + 1 - \lambda)^\ell \) for some \(k, \ell, h \in \mathbb{N} \) where \(\lambda := \Psi_{24}(\mu) \). Both cases yield \(\lambda \in Q_F \), therefore \(Q(\lambda) \subseteq Q_F \subseteq Q(\mu, y) \) with \([Q(\mu, y) : Q(\lambda)] = 48 \). Fix \((\mu_0, y_0) \in H \) such that \(\Psi_{24}(\mu_0) = \frac{1}{4} \). Then, for the specialization of \(F \) at \((\mu_0, y_0) \), denoted by \(F_{(\mu_0, y_0)} \), we compute \([Q_{F_{(\mu_0, y_0)}} : Q] = 48 \) using Magma. We end up with \(Q_F = Q(\mu, y) \). From the latter we see that \(\mu \) and \(y \) are rational functions in the coefficients of \(F \). Recall that for any \(\lambda_0 \in \mathbb{P}^1 \{0, 1, \infty\} \) we find distinct points \((\mu_1, y_1), \ldots, (\mu_{48}, y_{48}) \in H \) such that \(\Psi_{24}(\mu_k) = \lambda_0 \) for \(k = 1, \ldots, 48 \). If we specialize \(F \) at these points we obtain 48 distinct \(\text{PSL}_6(2) \)-covers \(F_{(\mu_1, y_1)}, \ldots, F_{(\mu_{48}, y_{48})} \) with ramification locus \((0, \infty, 1 \pm \sqrt{\lambda_0}) \) and ramification structure \(C \), which are all normalized with respect to inner Möbius transformations (in the sense of (ii)). Therefore, all covers \(F_{(\mu_1, y_1)}, \ldots, F_{(\mu_{48}, y_{48})} \) lie in \(F \) and correspond to all distinct 48 quadruples in \(\text{SNI}^0(C) \). As a consequence, each element in \(F \) can be obtained uniquely via specialization. \(\square \)
Remark. By looking at Theorem 3.3(b) and its proof we do not get any information about the specialization behaviour of F at a point $(\mu_0, y_0) \in \mathcal{H}$ with $\Psi_{24}(\mu_0) \in \{0, 1, \infty\}$. Assume, the specialization of F at (μ_0, y_0), denoted by $F(\mu_0, y_0)$, is a degree-63 cover, then one of the following cases occurs:

$\Psi_{24}(\mu_0)$	ramification locus of $F(\mu_0, y_0)$	ramification structure of $F(\mu_0, y_0)$
0	$\{0, 1, \infty\}$	contains C_1, C_2
1	$\{0, 2, \infty\}$	contains C_2, C_3
∞	$\{0, \infty\}$	only contains C_1

In none of these cases $\text{PSL}_6(2)$ is the monodromy group of $F(\mu_0, y_0)$. Using Magma we see that $\text{PSL}_6(2)$ does not contain generating tuples of length at most 3 satisfying the product 1 condition that correspond to the respective conjugacy classes.

With a little more effort we can deduce from Theorem 3.3 that $\text{PSL}_6(2)$ does not occur as the monodromy group of a rational function in $\mathbb{Q}(X)$ ramified over at least 4 points.

In order to achieve this result, we still have to study $\text{PSL}_6(2)$-covers with ramification structure C and ramification locus of type $(0, \infty, \pm \sqrt{c})$. These covers can be calculated explicitly by deforming the ramification locus of covers contained in \mathcal{F} via Newton iteration by assembling the defining equations explained in subsection 2.2.

Theorem 3.4. Let K be the degree-24 number field, $c \in K$ the non-square and $p, q \in K[X]$ the monic polynomials given in the ancillary file 3.4A. Then the Galois group $A := \text{Gal}(\mathbb{Q} - t q \mid K(t))$ is isomorphic to $\text{PSL}_6(2)$ in its natural 2-transitive action on 63 elements. The ramification structure is given by $(2^{28}.1^7, 2^{16}.1^{31}, 3^{20}.1^3, 3^{20}.1^3)$ and the ramification locus with respect to t is given by $(0, \infty, \sqrt{c}, -\sqrt{c})$.

Proof. In the same fashion as in the proof of Theorem 3.3(a) it can be calculated easily that the ramification locus of $p - tq$ is indeed given by $(0, \infty, \sqrt{c}, -\sqrt{c})$ with ramification structure $(2^{28}.1^7, 2^{16}.1^{31}, 3^{20}.1^3, 3^{20}.1^3)$, see file 3.4B.

Let Ω be the splitting field of $p - tq$ over $K(t)$. Recall that the geometric monodromy group $G := \text{Gal}(\Omega \mid (\Omega \cap K)(t))$ is normal in A. Let $p = (67, a + 7)$ and $q = (67, a + 42)$ be the unique prime ideals of norm 67 in the ring of integers \mathcal{O}_K of K where a denotes the primitive element of K used in file 3.4A. Write $p_\mathbb{Q}$ and $q_\mathbb{Q}$ for the reduction of p and q modulo \mathbb{p}. Accordingly, we define $A_p := \text{Gal}(\Omega_p \mid (\mathcal{O}_K/p)(t))$ and $G_p := \text{Gal}(\Omega_p \mid (\Omega_p \cap \mathcal{O}_K/p)(t))$ with Ω_p being the splitting field of $p_\mathbb{Q} - tq_\mathbb{Q}$ over $(\mathcal{O}_K/p)(t)$. Again, G_p is normal in A_p. Of course, we will use the same notation for the reduction modulo q.

Note that $p_q - p_q(t)q_p$ and $p_q - 16q(t)q_p$ split into irreducible factors of 1, 62 and 31, 32 over $(O_{\mathbb K}/p)(t) \cong \mathbb F_{67}(t)$. Therefore, by Lemma 3.1 and 3.2 the group A_p must be isomorphic to $\mathrm{PSL}_6(2)$. As A_p is simple, we see that A_p and G_p coincide. Since p is a prime of good reduction for $p - tq$, we have $G_p \cong G$ by a theorem of Beckmann, see [11] Proposition I.10.9. Due to the fact that $\mathrm{PSL}_6(2)$ is self-normalizing in S_{63} we end up with $A = \mathrm{PSL}_6(2)$.

\[\square\]

Corollary 3.5. The group $\mathrm{PSL}_6(2)$ does not occur as the monodromy group of a rational function in $\mathbb Q(X)$ ramified over at least 4 points.

Proof. Suppose, there exists a rational function f defined over $\mathbb Q$ ramified over at least 4 points and monodromy group $\mathrm{PSL}_6(2)$. As $\mathrm{PSL}_6(2)$ is simple any non-trivial decomposition $f = g \circ h$ implies $\mathrm{Mon}(h) \cong \mathrm{PSL}_6(2)$, therefore we may assume that f is indecomposable with primitive monodromy group. A Magma computation shows that C is the only genus-0 class vector of length at least 4 containing generating tuples for $\mathrm{PSL}_6(2)$ in a primitive permutation action, thus f has degree 63 with ramification structure $C = (C_1, C_2, C_3, C_4)$. The branch cycle lemma, see [14] Lemma 2.8, asserts that the ramification locus of f is of the form (a_1, a_2, a_3, a_4) where $a_1, a_2 \in \mathbb P^1(\mathbb Q)$ and a_3, a_4 fulfil a degree-2 relation over $\mathbb Q$. Hence, after applying a suitable outer Möbius transformation we may assume — without altering the field of definition — that f either has ramification locus $(0, \infty, 1 \pm \sqrt{\lambda_0})$ or $(0, \infty, \pm \sqrt{\lambda_0})$ for some $\lambda_0 \in \mathbb P^1(\mathbb Q) \setminus \{0, 1, \infty\}$. We will now study both cases:

1. case $(0, \infty, 1 \pm \sqrt{\lambda_0})$: Using the notation and result from Theorem 3.3(b) there exist 48 specialized covers $F(\mu_k, y_{k_1}), \ldots, F(\mu_k, y_{k_4}) \in \mathcal F$ with $\Psi(F(\mu_k, y_k)) = \lambda_0$ for $k \in \{1, \ldots, 48\}$. Up to inner Möbius transformations f has to coincide with $F(\mu_k, y_k)$ for some $k \in \{1, \ldots, 48\}$, therefore $F(\mu_k, y_k)$ also has to be defined over $\mathbb Q$, in particular (μ_k, y_k) must be a $\mathbb Q$-rational point on $\mathcal H$ with $\lambda_0 = \Psi_{24}(\mu_k) \notin \{0, 1, \infty\}$.

Since $\mathcal H$ is given by a hyperelliptic genus-3 model and its Jacobian is of Mordell-Weil rank 1, Chabauty’s algorithm (with the implementation in Sage [13] presented in [11]) gives us the complete list of $\mathbb Q$-rational points of $\mathcal H$. We find $\mu_k \in \{1, \frac{1}{3}, \frac{2}{3}, \frac{5}{9}, \infty\}$ and for all these values we see $\Psi_{24}(\mu_k) \in \{0, 1\}$, a contradiction.

2. case $(0, \infty, \pm \sqrt{\lambda_0})$: After a suitable scaling process Theorem 3.4 gives us 48 different $\mathrm{PSL}_6(2)$-covers f_1, \ldots, f_{48} that satisfy condition (ii) with ramification locus $(0, \infty, \pm 1)$. Each cover is defined over a degree-48 number field.

Since $\frac{f_1}{\sqrt{\lambda_0}}$ has ramification locus $(0, \infty, \pm 1)$ the cover $\frac{f_2}{\sqrt{\lambda_0}}$ defined over a quadratic number field has to coincide with f_k for some $k \in \{1, \ldots, 48\}$ up to inner Möbius transformations, a contradiction.
This shows that $\text{PSL}_6(2)$ cannot be the monodromy group of f. \hfill \square

4. Non-regular extensions of $\mathbb{Q}(t)$ with Galois group $\text{Aut}(\text{PSL}_6(2))$

Although our approach does not yield a $\text{PSL}_6(2)$-polynomial over $\mathbb{Q}(t)$ we at least get an explicit non-regular realization of $\text{Aut}(\text{PSL}_6(2))$ over $\mathbb{Q}(t)$.

Theorem 4.1. Let $f_0 \in \mathbb{Q}(\sqrt{-10}, t)[X]$ be the polynomial from (110), then the Galois group of f_0f_0 over $\mathbb{Q}(t)$ is isomorphic to $\text{Aut}(\text{PSL}_6(2))$ in its imprimitive action on 126 points.

Proof. The Galois groups of $f_0 = p_0 - tq_0$ and $\overline{f}_0 = \overline{p}_0 - t\overline{q}_0$ over $\mathbb{Q}(\sqrt{-10}, t)$ are isomorphic to the primitive group $\text{PSL}_6(2)$. According to Lemma 3.1(b) both f_0 and \overline{f}_0 have the same splitting field Ω over $\mathbb{Q}(\sqrt{-10}, t)$ since $f_0(\overline{p}(\overline{t}))X$ is reducible over $\mathbb{Q}(\sqrt{-10}, t)$. Let Ω' be the splitting field of $f_0\overline{f}_0$ over $\mathbb{Q}(t)$ and $G := \text{Gal}(\Omega' / \mathbb{Q}(t))$. Clearly, $\Omega' \leq \Omega$. Since $f_0\overline{f}_0$ is irreducible over $\mathbb{Q}(t)$ but obviously reducible over $\mathbb{Q}(\sqrt{-10}, t)$ we find $\sqrt{-10} \in \Omega'$, therefore $\Omega' = \Omega$ and $H := \text{Gal}(\Omega / \mathbb{Q}(\sqrt{-10}, t))$ is a subgroup of G with index $[G : H] = [\mathbb{Q}(\sqrt{-10}, t) : \mathbb{Q}(t)] = 2$.

Let $\varphi : G \to \text{Aut}(H)$ be the conjugation action of G on the normal subgroup H, x a root of f_0 and y a root of \overline{f}_0. The point stabilizers G_x and G_y are conjugate in G but not in H, because x and y have the same minimal polynomial over $\mathbb{Q}(t)$ but not over $\mathbb{Q}(\sqrt{-10}, t)$, therefore $\varphi(H) < \varphi(G)$ and $\text{Inn}(H) = \varphi(H) < \varphi(G) \leq \text{Aut}(H)$. Since $|\text{Out}(\text{PSL}_6(2))| = 2$ and $H \cong \text{PSL}_6(2)$ this implies $\varphi(G) = \text{Aut}(H)$. In combination with $|G| = 2 \cdot |H| = |\text{Aut}(H)|$ we see that φ is an isomorphism. \hfill \square

Coincidentally, $\text{PSL}_6(2)$ also happens to contain a rigid, $\mathbb{Q}(\sqrt{-10})$-rational genus-0 generating triple sharing similar properties, in particular leading to (another) non-regular $\text{Aut}(\text{PSL}_6(2))$-extension of $\mathbb{Q}(t)$. For the explicit realization we again apply the method explained in [4].

Theorem 4.2. Let $p, q \in \mathbb{Q}(\sqrt{-10}, t)[X]$ be the polynomials of degree 63 from the ancillary file 4.2A.

(a) The polynomial $p - tq$ has Galois group $\text{PSL}_6(2) \leq S_{63}$ over $\mathbb{Q}(\sqrt{-10}) / \mathbb{Q}(t)$ with ramification locus $(0, 1, \infty)$ and ramification structure $(21^3, 4^8, 2^{12}, 1^7, 2^{28}, 1^7)$.

(b) The product $(p - tq)(\overline{p} - \overline{tq})$ has Galois group $\text{Aut}(\text{PSL}_6(2)) \leq S_{126}$ over $\mathbb{Q}(t)$.

Proof. The ramification can be checked by inspecting the inseparability behaviour of p, q and $p - q$. A computation with Magma yields that $p - \frac{p(t)}{\overline{q}(t)}q$ and $p - \frac{p(t)}{\overline{q}(t)}q$ split in $\mathbb{Q}(\sqrt{-10}, t)[X]$ into irreducible factors of degree 1, 62 and 31, 32, see file 4.2B. By repeating the arguments from the previous proofs both assertions follow. \hfill \square
Acknowledgements

We would like to thank Joachim König for pointing out the open case $\text{PSL}_6(2)$ as well as suggesting to study $\text{Aut}(\text{PSL}_6(2))$ over $\mathbb{Q}(t)$. Thanks also to Stephan Elsenhans for valuable discussions about the verification process, and Peter Müller for pointing out a gap in the proof of Corollary 3.5 and suggesting the alternative proof of Lemma 3.2.

References

[1] J. S. Balakrishnan, F. Bianchi, V. Cantoral-Farfán, M. Ciperiani, and A. Etropolski. Chabauty–Coleman Experiments for Genus 3 Hyperelliptic Curves. In J. S. Balakrishnan, A. Folsom, M. Lalín, and M. Manes, editors, Research Directions in Number Theory, pages 67–90, Cham, 2019. Springer International Publishing.
[2] D. Barth, J. König, and A. Wenz. An approach for computing families of multi-branch-point covers and applications for symplectic Galois groups. Journal of Symbolic Computation, 2019.
[3] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).
[4] J.-M. Couveignes. Tools for the computation of families of coverings. In Aspects of Galois theory (Gainesville, FL, 1996), volume 256 of London Math. Soc. Lecture Note Ser., pages 38–65. Cambridge Univ. Press, Cambridge, 1999.
[5] P. Dembowski. Finite geometries., volume 44. Springer-Verlag, Berlin, 1968.
[6] E. Hallouin. Study and computation of a Hurwitz space and totally real $\text{PSL}_2(\mathbb{F}_8)$-extensions of \mathbb{Q}. Journal of Algebra, 292(1):259 – 281, 2005. Computational Algebra.
[7] W. M. Kantor. Note on symmetric designs and projective spaces. Math. Z., 122:61–62, 1971.
[8] J. König. Computation of Hurwitz spaces and new explicit polynomials for almost simple Galois groups. Math. Comp., 86(305):1473–1498, 2017.
[9] J. König. The inverse Galois problem and explicit computation of families of covers of $\mathbb{P}^1\mathbb{C}$ with prescribed ramification. PhD thesis, Würzburg, 2014.
[10] G. Malle. Multi-parameter polynomials with given Galois group. J. Symbolic Comput., 30(6):717–731, 2000. Algorithmic methods in Galois theory.
[11] G. Malle and B. H. Matzat. Inverse Galois theory. Berlin: Springer, 2nd edition, 2018.
[12] P. Müller. A one–parameter family of polynomials with Galois group M_{24} over $\mathbb{Q}(t)$, 2012, arXiv:1204.1328.
[13] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0), 2020. https://www.sagemath.org.
[14] H. Völlklein. Groups as Galois groups, volume 53 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1996. An introduction.

E-mail address: dominik.barth@mathematik.uni-wuerzburg.de

Institute of Mathematics, University of Würzburg, Emil-Fischer-Strasse 30, 97074 Würzburg, Germany

E-mail address: andreas.wenz@mathematik.uni-wuerzburg.de
Institute of Mathematics, University of Würzburg, Emil-Fischer-Strasse 30, 97074 Würzburg, Germany