Peer Collaborative Learning for Online Knowledge Distillation

Guile Wu and Shaogang Gong
Queen Mary University of London
2021 AAAI

Du Shangchen
2021/03/17
Knowledge Distillation (KD)[1]
Online KD

• self-distillation
• mutual/ collaborative learning
Online KD

- self-distillation / teacher-free distillation
 - self-distillation\(^2\)
 - born-again network\(^3\)

![Diagram](image.png)
Online KD

• self-distillation
• mutual/ collaborative learning
 • DML[4]
 • CL[5]
 • ONE[6]
 • OKDDip[7]
Problems

• collaborative learning and mutual learning fail to construct an online high-capacity teacher
• online ensembling ignores the collaboration among branches and its logit summation impedes the further optimisation of the ensemble teacher.
Methods

• a multi-branch network (each branch is a peer)
• assemble the features from peers with an additional classifier as the peer ensemble teacher
• employ the temporal mean model of each peer as the peer mean teacher
Peer Ensemble Teacher

	former work	innovation
augmentation	applying random augmentation only *once*	*m* times
ensemble	**logits**: logits from multiple networks / branches are usually summed	**features**: concatenate the features from peers and use an additional fully connected layer for classification
loss	fixed weight	weight ramp-up function to control the gradient magnitude.
Peer Mean Teacher

- use temporal mean models of each peer as the peer mean teacher for peer collaborative distillation.

\[
\begin{align*}
\theta_{l,g}^t &= \phi(g) \cdot \theta_{l,g}^{t-1} + (1 - \phi(g)) \cdot \theta_{l,g} \\
\theta_{h,j,g}^t &= \phi(g) \cdot \theta_{h,j,g}^{t-1} + (1 - \phi(g)) \cdot \theta_{h,j,g} \\
\phi(g) &= \min(1 - \frac{1}{g}, \beta)
\end{align*}
\]

- \(g\) – epoch
- \(l\) – low level
- \(h\) – high level
- \(j\) – \(j\)-th classifier
- \(\beta\) – smoothing coefficient function
Problems

• collaborative learning and mutual learning fail to construct an online high-capacity teacher

• online ensembling ignores the collaboration among branches and its logit summation impedes the further optimisation of the ensemble teacher.

Peer Ensemble Teacher

Peer Mean Teacher
Experiments

Table 1. Comparisons with the state-of-the-arts on CIFAR-10. Top-1 error rates (%).

Network	DML [28]	CL [21]	ONE [13]	FFL-S [10]	OKDDip [1]	Baseline	PCL(ours)
ResNet-32	6.06±0.07	5.98±0.28	5.80±0.12	5.99±0.11	5.83±0.15	6.74±0.15	5.67±0.12
ResNet-110	5.47±0.25	4.81±0.11	4.84±0.30	5.28±0.06	4.86±0.10	5.01±0.10	4.47±0.16
VGG-16	5.87±0.07	5.86±0.15	5.86±0.23	6.78±0.08	6.02±0.06	6.04±0.13	5.26±0.02
DenseNet-40-12	6.41±0.26	6.95±0.25	6.92±0.21	6.72±0.16	7.36±0.22	6.81±0.02	5.87±0.13
WRN-20-8	4.80±0.13	5.41±0.08	5.30±0.14	5.28±0.13	5.17±0.15	5.32±0.01	4.58±0.04
ResNeXt-29-2×64d	4.46±0.16	4.45±0.18	4.27±0.10	4.67±0.04	4.34±0.02	4.72±0.03	3.93±0.09

Table 2. Comparisons with the state-of-the-arts on CIFAR-100. Top-1 error rates (%).

Network	DML [28]	CL [21]	ONE [13]	FFL-S [10]	OKDDip [1]	Baseline	PCL(ours)
ResNet-32	26.32±0.14	27.67±0.46	26.21±0.41	27.82±0.11	26.75±0.38	28.72±0.19	25.86±0.16
ResNet-110	22.14±0.50	21.17±0.58	21.60±0.36	22.78±0.41	21.46±0.26	23.79±0.57	20.02±0.55
VGG-16	24.48±0.10	25.67±0.08	25.63±0.39	29.13±0.99	25.32±0.05	25.68±0.19	23.11±0.25
DenseNet-40-12	26.94±0.31	28.55±0.34	28.40±0.38	28.75±0.35	28.77±0.14	28.97±0.15	26.91±0.16
WRN-20-8	20.23±0.07	20.60±0.12	20.90±0.39	21.78±0.14	21.17±0.06	21.97±0.40	19.49±0.49
ResNeXt-29-2×64d	18.94±0.01	18.41±0.07	18.60±0.25	20.18±0.33	18.50±0.11	20.57±0.43	17.38±0.23
Ablation

• Comparison with Two-Stage Distillation

Dataset	Baseline	KD↑	PCL
CIFAR-10	6.74±0.15	5.82±0.12	5.67±0.12
CIFAR-100	28.72±0.19	26.23±0.21	25.86±0.16

• branch num

• augmentation
Reference

[1] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv preprint arXiv:1503.02531*, 2015.

[2] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be your own teacher: Improve the performance of convolutional neural networks via self distillation,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 3713–3722.

[3] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and A. Anandkumar, “Born again neural networks,” *ICML*, 2018.

[4] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4320–4328.

[5] Guocong Song and Wei Chai. Collaborative learning for deep neural networks. In Advances in Neural Information Processing Systems, pages 1832–1841, 2018.

[6] X. Lan, X. Zhu, and S. Gong, “Knowledge distillation by on-the-fly native ensemble,” in *Proceedings of the 32nd International Conference on Neural Information Processing Systems*. Curran Associates Inc., 2018, pp. 7528–7538.

[7] D. Chen, J.-P. Mei, C. Wang, Y. Feng, and C. Chen, “Online knowledge distillation with diverse peers,” Association for the Advancement of Artificial Intelligence, 2020.