A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors

Umut Toprak 1,*, Cansu Doğan 1 and Dwayne Hegedus 2,3

1 Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara 06110, Turkey; 7cansudogan@gmail.com
2 Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada; dwayne.hegedus@canada.ca
3 Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
* Correspondence: utoprak@agri.ankara.edu.tr

Abstract: Calcium (Ca$^{2+}$) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca$^{2+}$. The inositol 1,4,5-trisphosphate receptor (IP$_3$R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca$^{2+}$ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP$_3$R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca$^{2+}$ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP$_3$Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP$_3$Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.

Keywords: ryanodine receptor; inositol 1,4,5-trisphosphate receptor; calcium channel; endoplasmic reticulum; pest control; diamide

1. Introduction

Calcium (Ca$^{2+}$) is a key second messenger that plays important roles in numerous cellular and physiological processes, including cell motility, membrane transport processes, gene expression and regulation, nuclear pore regulation, vesicle fusion, neurotransmission, muscle contraction, hormone biosynthesis, and apoptosis [1]. Similar to other animals, Ca$^{2+}$ is also essential for insects [2] where it is involved in development and metamorphosis [3], reproduction [4], sex pheromone synthesis [5], cold sensing [6], neurotransmitter release [7], olfactory responses [8], carbohydrate [9] and lipid metabolism [10], and diapause [11]. Due to these essential roles, it is critical to maintain cellular Ca$^{2+}$ homeostasis [12].

In animal cells, Ca$^{2+}$ homeostasis is coordinated through channels, transporters and pumps located in the plasma membrane, the endoplasmic reticulum (ER) [13], as well as other organelles, such as the Golgi apparatus [14], mitochondria [15], and lysosomes [16]. Calcium binding proteins in the cytosol or organelles are also involved in the maintenance of Ca$^{2+}$ levels by functioning as calcium buffers [10,11]. Extracellular Ca$^{2+}$ concentrations are relatively high (1–2 mM), while the cytoplasm of most cells contains much lower resting Ca$^{2+}$ concentrations (in the 100 nM range) [17]. Calcium entry via the plasma membrane is a major route to supply Ca$^{2+}$ needed for the cell; however, cellular organelles,
in particular the ER (sarcoplasmic reticulum—SR for muscle cells) (100–500 µM), supply Ca\(^{2+}\) and trigger Ca\(^{2+}\) signals rapidly when the intracellular levels of Ca\(^{2+}\) are low [17]. This occurs through the activation of intracellular Ca\(^{2+}\) channels associated with the ER. The two major Ca\(^{2+}\) release channels are the inositol 1,4,5-trisphosphate receptor (IP\(_{3}\)R), activated by the secondary messenger inositol 1,4,5-trisphosphate (IP\(_{3}\)), Ca\(^{2+}\), and the ryanodine receptor (RyR), named after its high affinity for the plant alkaloid ryanodine, which is mainly activated by Ca\(^{2+}\) and possibly by other secondary messengers [18–22]. The IP\(_{3}\)R and RyR are both members of a family of tetrameric intracellular Ca\(^{2+}\)-release channels and are encoded by single genes in insects, whereas humans possess three IP\(_{3}\)R (IP\(_{3}\)R1–3) and RyR (RyR1–3) genes with distinct tissue expression patterns and subcellular localization. Both receptors activate Ca\(^{2+}\) release from the ER/SR to the cytosol or other organelles; therefore, they serve as major links between extra- and intracellular stimuli, leading to regulation of various cellular processes [13,21]. It is noteworthy that they can also be associated with mitochondria [23–25] or membrane contact sites [26,27].

It is an ongoing question as to why animals possess two similar biochemical tools (RyR and IP\(_{3}\)R) associated with the ER for the coordination of intracellular Ca\(^{2+}\) homeostasis [28]. Studies on the structure and localization of these channels together with expression, mutation, recombination, and functional genomic studies have provided important clues in distinguishing the functional attributes of RyR or IP\(_{3}\)R channels in mammalian models. The two receptors also share structural and functional features in insects. Studies on insect IP\(_{3}\)Rs and RyRs have been limited but have increased significantly in the last decade. Cloning of the genes encoding these receptors together with structural and functional analyses have provided important insights into our understanding of the role of these receptors in intracellular Ca\(^{2+}\) homeostasis, lipid metabolism, muscle function, neuronal signaling in relation to photoreceptors, olfaction, locomotor activities, and development in insects. The discovery of the diamide group of insecticides, which selectively target insect RyRs and affect Ca\(^{2+}\) homeostasis, has focused attention on these receptors and IP\(_{3}\)Rs. In the current review, we first introduce the RyRs and IP\(_{3}\)Rs from mammalian models that inspired the discovery of their insect counterparts (Section 2). We then present insect IP\(_{3}\)Rs and RyRs from a comparative perspective according to their structure (Section 3), their involvement in the Ca\(^{2+}\) metabolic pathways (Section 4), functions (Section 5), and their potential as targets in pest control (Section 6).

2. Discovery of RyRs and IP\(_{3}\)Rs

The first RyR gene (RyR1) was first isolated from rabbit skeletal muscle [29], followed by isolation of the rabbit cardiac muscle isoform (RyR2) [30]. A third isoform (RyR3), distinct from both the skeletal and cardiac muscle isoforms, was isolated from rabbit brain [31]. In contrast to mammals, insect genomes encode only one RyR. The first insect RyR was identified from Drosophila melanogaster (Diptera: Drosophilidae) [32,33]. The D. melanogaster RyR shows approximately 45%–47% amino acid identity with the three mammalian RyRs. RyRs have since been identified from the lepidopterans Heliothis virescens (Noctuidae) [34,35], Bombyx mori (Bombycidae) [36], Cnaphalocrocis medinalis (Crambidae) [37], Plutella xylostella (Plutellidae) [38,39], Ostrinia furnacalis (Crambidae) [40], Helicoverpa armigera (Noctuidae) [41], Pieris rapae (Pieridae) [42], Chilo suppressalis (Crambidae) [43,44], Spodoptera exigua (Noctuidae) [45], Grapholita molesta (Tortricidae) [46], Tuta absoluta (Gelechiidae) [47], and S. frugiperda [48], the dipteran Bactrocera dorsalis (Tephritidae) [49], the coleopterans Tribolium castaneum (Tenebrionidae) [50] and Leptinotarsa decemlineata (Chrysomelidae) [51], and the hemipterans Laodelphax striatellus (Delphacidae) [43], Bemisia tabaci (Aleyrodidae) [43], Nilaparvata lugens (Delphacidae) [52], Sogatella furcifera (Delphacidae) [53], Myzus persicae (Aphididae) [54], Toxoptera citricida (Aphididae) [55], Dialeurodes citri (Aleyrodidae) [56] (Table 1).

The IP\(_{3}\)R was first purified from rat cerebellum [57] and the gene encoding the first isoform (IP\(_{3}\)R1) cloned from mouse cerebellum tissues [58]. This was followed by cloning of the IP\(_{3}\)R2 isoform from rat brain [59] and IP\(_{3}\)R3 from a rat insulinoma cell line [60].
Not surprisingly, the first insect IP₃R was also identified from *D. melanogaster* [32,61]. The *D. melanogaster* IP₃R has approximately 60% amino acid identity with the three mammalian IP₃Rs, indicating a closer relatedness between mammalian and insect IP₃Rs than to RyRs [32,61]. Compared to insect RyRs, an only limited number of studies on the identification of insect IP₃Rs are available. IP₃Rs have been identified from the coleopterans *T. castaneum* [50] and *L. decemlineata* [Doğan and Toprak, unpublished], from the hemipterans *B. tabaci* [62] and *M. persicae* [63] and the hymenopteran *Bombus terrestris* (Apidae) [63] (Table 1).

Table 1. Insect ryanodine receptors (RyRs) and inositol triphosphate receptors (IP₃Rs) identified to date.

Receptor	Species	Amino Acid (residue)	cDNA Size (bp)	Molecular Weight (kDa)	Reference
RyRs	**Lepidoptera**				
	Bombyx mori (Bombycidae)	5084	15,255 *	575	[36]
	Cnaphalocrocis medinalis (Crambidae)	5087	15,773	574	[37]
	Plutella xylostella (Pluttellidae)	5123	15,748	579	[38]
	Ostrinia furnacalis (Crambidae)	5108	16,211	577	[40]
	Helicoverpa armigera (Noctuidae)	5142	16,083	581	[41]
	Pieris rapae (Pieridae)	5107	15,540	578	[42]
	Chilo suppressalis (Crambidae)	5133	16,102	581	[43]
	Spodoptera exigua (Noctuidae)	5128	15,402	580	[44]
	Grapholita molesta (Torticidae)	5133	15,910	579	[45]
	Tuta absoluta (Gelechiidae)	5121	15,431	579	[46]
	Spodoptera frugiperda	5109	15,330	578	[47]
	Diptera				
	Drosophila melanogaster (Drosophilidae)	5134	15,405 *	581	[65]
	Bactrocera dorsalis (Tephritidae)	5140	15,750	582	[49]
	Coleoptera				
	Tribolium castaneum (Tenebrionidae)	5094	15,308	577	[50]
	Leptinotarsa decemlineata (Chrysomelidae)	5128	15,792	582	[51]
	Hemiptera				
	Laodelphax striatellus (Delphacidae)	5115	15,910	579	[43]
	Bemisia tabaci (Aleyrodidae)	5139	15,763	581	[43]
	Nilaparvata lugens (Delphacidae)	5140	15,735	581	[52]
	Sogatella furcifera (Delphacidae)	5128	15,985	579	[53]
	Myzus persicae (Aphididae)	5101	15,306 *	580	[54]
	Toxoptera citricida (Aphididae)	5101	15,639	580	[55]
	Dialeurodes citri (Aleyrodidae)	5126	15,538	579	[56]
	IP₃Rs				
	Leptinotarsa decemlineata (Chrysomelidae)	2736	8211 *	312	[50]
	Diptera				
	Drosophila melanogaster (Drosophilidae)	2833	9558	319	[61]
	Coleoptera				
	Tribolium castaneum (Tenebrionidae)	2724	8175 *	309	[50]

* Translated region.
3. Structure of RyRs and IP$_3$Rs

Both RyRs and IP$_3$Rs are members of the voltage-sensitive ion channel (VIC) superfamily and form homomeric tetramers resembling a square mushroom. In mammalian RyRs, each monomer (~5000 amino acids) has a molecular weight of around 550–580 kDa, while each IP$_3$R monomer (~2700 amino acids) has a molecular weight of around 260 kDa [22,66,67]. Several high-resolution structures of mammalian RyR [68–73] and IP$_3$R domains [28,74–78] have been determined by X-ray crystallography, NMR, and cryogenic electron microscopy. RyRs and IP$_3$Rs share 30–35% homology at the amino acid level and primarily consist of a large, N-terminal, hydrophilic domain (a.k.a. the “foot structure”), a dissimilar central modulatory domain, and a small, conserved, C-terminal domain with 6 transmembrane regions forming the Ca$^{2+}$ conducting channel pore [73,79,80] (Table 2). Notably, the large N-terminal hydrophilic domain and the small C-terminal hydrophilic domains both face the cytoplasm. The N-terminal domain of IP$_3$R forms the binding pocket for the native ligand IP$_3$ and includes three subdomains, the IP$_3$-binding core β (IBC-β) and α (IBC-α) which interact with IP$_3$, and the suppressor (inhibitory) domain (SD) which reduces the affinity for IP$_3$ [81–85]. Notably, IP$_3$Rs without an SD bind IP$_3$ with high affinity, but do not release Ca$^{2+}$, suggesting the SD is essential for IP$_3$-induced channel gating [82,84,86]. RyRs, although N-terminal domain does not bind IP$_3$, have a similar arrangement as the N-terminal domain of IP$_3$R and includes three subdomains termed A, B and C corresponding to the SD, IBC-β and IBC-α, respectively [28,87]. These lead to modulation of the gating of the Ca$^{2+}$ pore that occurs between the fifth and sixth transmembrane segments in the carboxy-terminal domain [81,88]. The structural domains common to both RyRs and IP$_3$Rs in mammals are the MIR (Mannosyltransferase, IP$_3$R and RyR, pfam02815), RIH (RyR and IP$_3$R Homology, pfam01365), and RIH-associated (pfam08454) domains [89] (Table 2). However, repeats termed the “SPRY domain (pfam00622)”, originally identified from Dictyostelium discoideum tyrosine kinase spore lysis A and the mammalian RyRs, and the “RyR domain (pfam02026)” are unique to RyRs [71,90–92]. The MIR domain is proposed to have a ligand transferase function [93], while the RIH domain might form the IP$_3$ binding site together with the MIR domain in IP$_3$Rs [94]. On the other hand, SPRY domains are typically known to mediate protein-protein interactions [95,96], while the function of RyR domain is unknown. The ryanodine-binding site is also localized to the carboxy terminus of both proteins within or close to the pore region [97]. Notably, the primary Ca$^{2+}$ binding protein, calmodulin, interacts with RyRs in lipid bilayers [98] and binds to the RyR channel cytoplasmic assembly around 10 nm from the putative entrance to the transmembrane pore [99–101]. The N-terminal ligand-binding region of IP$_3$R1 contains a calmodulin-binding domain that binds calmodulin independently of Ca$^{2+}$ and mediates the inhibition of IP$_3$ binding to IP$_3$R1 [102].
Table 2. Comparison of structural and functional features of mammalian and insect RyR and IP$_3$Rs.

Receptor	Mammalians	Insects												
	# of Genes	Basic Structure	Primary Exp. Site	Phosphoryl. Status	CaM Binding	Alternative Splicing	Function	# of Genes	Basic Structure	Primary Exp. Site	Phosphoryl. Status	CaM Binding	Alternative Splicing	Function
RyRs	3	N-terminal domain including the A, B, and C subdomains, MIR, RIH, RIHA, SPRY, and RyR domains, C-terminal regions with transmembrane domains and EF-hands.	• Skeletal and cardiac muscles	• Primary exp. site	• CaMKII	+	Muscle contraction, Neuron transmitters release, Hormone secretion	1	N-terminal region including MIR, RIH, three SPRY, RyR repeat, RIHA domains, and a carboxy-terminal region including transmembrane domains and calcium-binding EF-hand domains.	• Body wall and visceral muscles, Central nervous system and neurons, Antenna, eye, and optic lobe, Legs	• Ala	• Muscarine canal		
IP$_3$Rs	3	N-terminal domain including the suppressor (inhibitory) domain (SD) and IP$_3$-binding core (IBC-α, -β) with MIR domain, central modulatory domain including RIH and RIHA domains, C-terminal region with transmembrane domains.	• Cerebellum, Brain, Insulinoma cells, Neurons, Endothelial, ovary, microvillous and contractile myosin cells	• Primary exp. site	• PKA, PKB	+	Gene expression, Development, Learning, Memory, Neuronal signaling, Sensory transduction	1	N-terminal domain including MIR, RIH, RIHA domains, and a carboxy-terminal region including transmembrane domains.	• Central nervous system and neurons, Fat body adipocytes, Ovaries, Appendages containing mainly legs, antennae, wings, and seta.	• PKA (-)	• Muscarine canal		

Primary exp. site: primary expression site; phosphoryl. status: phosphorylation status; CaM binding: calmodulin binding.
Insect RyRs are commonly composed of 5084–5164 residues with a molecular weight of 574–582 kDa. Crystal structures of the *P. xylostella* RyR N-terminal domain [103], Repeat34 domain [104] and SPRY2 domain [105], and the N-terminal domain of *Apis mellifera* RyR [106] are the only ones available. Therefore, the entire structural domain organization and key regions of insect RyRs are based on limited X-ray crystallography predictions and comparative modeling studies using the mammalian counterparts [107]. These studies revealed that the basic structure of insect RyRs is similar to their mammalian counterparts (Table 2). Insect RyRs are commonly composed of a large amino-terminal region including a MIR domain, two RIH domains, three SPRY domains, four RyR repeat domains, one RIH-associated domain, and a carboxy-terminal region including six transmembrane domains and two calcium-binding EF-hand domains [49,50,53,55,56] (Figure 1). Recently, Lin et al. [107] generated multiple structural models of *P. xylostella* RyR based on the rabbit RyR1 cryo-EM structure. This revealed that PxRyR is highly modular and consists of 20 individual domains, including 3 N-terminal domains, 3 SPRY domains, 3 insect divergent regions (IDR), 2 RyR repeat domains, 3 solenoid [SOL] domains, a shell-core linker peptide (SCLP) domain, an EF-hand domain (EF1&2), a thumb and forefinger (TaF) domain, a pseudo voltage-sensor domain (pVSD), a pore-forming (PF) domain and a C-terminal domain (CTD) with six transmembrane helices. There is evidence indicating the N-terminal cytoplasmic domain modulates the gating of the channel pore located in the C-terminus similar to that in mammalian RyRs [49,53,56,103,106]. The proposed pore (loop), including the characteristic “GXRXGGGXGD” motif [108], is located between the C-terminal helices 5 and 6 [37,39,41,109]. Notably, the loop is proposed to act as a selectivity filter for ions in both mammalian RyRs and IP3Rs, suggesting it also likely to enable the channels to discriminate between ions in insects. It is also worth noting that mutagenesis of residues in this region of both RyR and IP3R impairs channel conductance in mammalians [108,110,111].

Residues I5023, R5039, and D5043 (numbering based on *P. xylostella* RyR- GenBank accession number AE09964) [39] between TM5 and TM6 are conserved in insect RyRs [46,49,50,55,56] and the corresponding residues (I4897, R4913, and D4917) in rabbit RyR1 play role in the activity and conductance of the Ca2+ release channel [30,112]. A glutamate residue proposed to be involved in Ca2+ sensitivity in rabbit RyR1 (E4032) [113] and RyR3 (E4385) [114] is also conserved in insect RyRs (E4201) in PxRyR [46,50]. The lepidopteran RyRs show sequence divergence from other insect RyRs in the carboxy-terminal region, especially in the region proximal to the pore-forming segment [37]. Lepidopterans differ from the non-lepidopteran RyRs at 9 conserved positions: Q4594, I4790, N4999, N5001, N5012, L5027, L5058, N5090, and T5141 (numbering based on *P. xylostella* RyR) [37,39,41,115,116]. Four of these (N4999, N5001, N5012, L5027) are clustered near the pore-forming segment, while L5058 is located in transmembrane helix 6 [37,39,41] and corresponds to I4862 in the mouse RyR2, which plays a crucial role in RyR channel activation and gating [117]. Additionally, 8 of the 9 conserved residues (except Q4594 corresponding to K4536 in DmRyR, GenBank accession number NP_476991) corresponding to M4748, D4957, K4959, H4970, H4985, I5016, G5048, and Q5099, respectively, in *D. melanogaster* RyR are also conserved amongst non-lepidopteran or invertebrate RyRs [37]. Notably, Q4594 is located in the insect divergent region (IDR) with several different amino acids being found at this position, but mostly lysine in Coleoptera, Hymenoptera, and some Diptera [63]. These residues might be involved in differences in channel properties between lepidopteran and non-lepidopteran insect RyRs and in the species with selective toxicity of diamide insecticides [37,41,116]; for further discussion see Section 6. However, the divergence is similar to the two mammalian divergent regions, DR1 and DR2 [118]. The two regions in insect RyRs also exhibit lower similarities to each other and have been defined as insect divergent region 1 (IDR1, amino acids located at 1299–1522 in *L. dececlinatana* RyR) and 2 (IDR2, amino acids located at 4395–4721) [41,51,52]. These regions might also be involved in the distinct channel properties of insect RyR isoforms [51]. In contrast, the two EF-hand Ca2+ binding motifs originally reported in the lobster RyR [119] are conserved in the carboxy-terminus of insect RyRs (4250–4261 and 4285–4296 in *P. xylostella* RyR) [39].
However, the structural model of PxRyR by Lin et al. [107] revealed that the Ca$^{2+}$ is coordinated by the negatively charged side chains of E4062 and E4136 in the RIH-associated domain, and the backbone carbonyl of T5127 in the C-terminal domain. A relatively recent study on mammalian cardiac RyR2 revealed that the EF-hand domain was not necessary for cytosolic Ca$^{2+}$ activation but required for ER Ca$^{2+}$ [120]. Nevertheless, EF-hand motifs are required for regulation of RyRs by calmodulin [121]. Although this topic requires investigation in insects, binding sites of calmodulin in rabbit RyR1 have already been detected (amino acid positions 3614–3643) [122], and putative corresponding sites have been proposed for insect RyRs (e.g., amino acid positions 3756–3785 in LdRyR) [51].

![Figure 1](image_url)

Figure 1. The conserved domains for RyR are listed as following MIR (Mannosyltransferase, IP$_3$R, and RyR, pfam02815), RIH (RyR and IP$_3$R Homology, pfam01365), the SPRY (spIA and RyR domains, pfam00622), RyR domain (pfam02026) [71,90–92], RIH A domains (RIH-associated, pfam08454) [89], EF-hands, and putative transmembrane domain (TM1-TM6). IP$_3$R has three putative functional regions: ligand binding, central regulatory, and channel forming sites. Ligand binding region includes three subdomains, the IP$_3$-binding core β (IBC-β) and α (IBC-α) that interact with IP$_3$; and the suppressor domain (SD) reducing the affinity for IP$_3$ [81–85]. The conserved domains for IP$_3$R are listed as following MIR RIH, RIH A, and TM1-TM6. Arrow corresponding to TM5 and TM6 including the suppressor domain and ligand binding, which leads to modulation of the gating of the Ca$^{2+}$ pore in both channels.

Insect IP$_3$Rs are commonly composed of 2724–2833 residues with a molecular weight of 309–319 kDa (Table 1). No study has examined the crystal structures of insect IP$_3$Rs yet. Therefore, the entire structural domain organization and key regions of insect RyRs are based on the predictions of sequence features and comparisons with their mammalian counterparts. Nevertheless, predictions on the structural domain organization of IP$_3$Rs reveal differences and are limited to the IP$_3$Rs from *D. melanogaster* [61,83], *T. castaneum* [50], and *B. tabaci* [62] (Figure 1). The *D. melanogaster* IP$_3$R is composed of a middle-coupling domain (N651–W2359), a putative Ca$^{2+}$-sensor region (C1986–G2354), and a carboxy-terminal channel-forming domain (S2360–G2829) with six transmembrane domains (TM1-TM6) and a pore-forming region [83]. The *B. tabaci* IP$_3$R contains an inositol 1,4,5-trisphosphate/ryanodine receptor domain (residues 6–229), three MIR domains (residues 116–168, 298–333 and 237–420), two RIH domains (residues 460–664 and 1185–1366), a RIH-associated domain (residues 1918–2037), an oligosaccharide repeat unit polymerase domain (residues 2234–2450), an identity helices domain (residues 4925–5060), and a Sec2p domain (residues 2669–2708) [62]. Troczka et al. [63] conducted a pfam search of conserved domains from insect IP$_3$Rs which revealed the presence of six domains, including an IP$_3$ binding region,
a MIR domain, two RIH domains, a RIH-associated domain, and the transmembrane ion transport domain. The MIR, RIH, RIH-associated regulatory domains at the amino terminus, together with the six transmembrane helices including the GXRXGGGXD selectivity motif between TM5 and TM6 in the carboxy terminal region, appear to be common to both insect IP₃Rs and RyRs [50], similar to the mammalian RyRs and IP₃Rs [91] (Figure 1, Table 2). Notably, there are also functionally orthologous regions, such as the N-terminal regions including the suppressor and ligand binding domains, which lead to the modulation of the gating of the Ca²⁺ pore at the carboxy terminus. The 11 residues in the IBC core recognizing IP₃ in mouse IP₃R1 [67] are conserved in *T. castaneum* IP₃R (R²⁶⁷, T²⁶⁸, T²⁶⁹, C²⁷⁰, R²⁷¹, R³⁰⁶, K³⁰⁹, R³⁰⁹, Y³⁶⁰, R³⁶¹, K³⁶²) [50]. Additionally, seven residues in the amino-terminal suppression domain of the mouse IP₃R1 that were shown to be critical for inhibition of IP₃ binding [74], were also present in *TcIP₃* (L³¹, L³³, V³⁴, D³⁵, R³⁷, R⁵⁵, K¹²⁸). It is noteworthy that aphid IP₃Rs appear to create relatively larger channels (around 1000 residues with a molecular weight of 100 kDa) compared to other insect IP₃Rs (Table 1) [63]. Nevertheless, the overall structural domain organization of *M. persicae* IP₃R does not change other than the additional amino acids scattered across the entire length of the protein, including within the functionally important domains [63]. Larger IP₃R-like channels are also present in various protozoan species [123,124]. This raises the question whether such divergence is present in other families, which will require identification of more insect IP₃Rs.

Alternative splicing of RyR mRNA [125–128] and IP₃Rs [129] is common in mammals, leading to differences in Ca²⁺ releasing patterns. The expression of splicing variants of RyRs and IP₃Rs is regulated both in a tissue-specific and developmental manner. Alternative mRNA splicing was also detected for both insect RyR and IP₃Rs in many species, with several variants being specific to different tissues and/or developmental stages [33,37,39,149–52,55,56,130], suggesting a functional diversity for RyRs and IP₃Rs in insect physiology. For example, *B. dorsalis* RyR mRNA possesses four alternative splice variants (ASI-ASIV) [49], while *G. molesta* [46], *D. citri* [56], and *T. citricida* [55] RyRs were found to have five, three, and one alternative splicing variant, respectively. Amongst these sites, the splicing site located within the second SPRY domain in the N-terminal part of the channel (amino acids 1135–1167 of the *M. persicae* RyR) appears to be quite common in insects [37,40,52,54]. As the second SPRY domain is considered to be a protein–protein interaction domain involved in various biological functions [95,131], splicing variants generated at this location might have different protein–protein interactions [37,63]. *Toxoptera citricida* RyR alternate splicing has been shown to occur by intron retention, a rare splicing event in animals [55]. In contrast, *M. persicae* RyR mRNA lacks an alternative splicing variant [54]. On the other hand, at least one alternative splicing site was detected in *D. melanogaster* [91] and *T. castaneum* (located between amino acid residues 922–929) [50] RyR mRNA. This alternative splice site is also conserved in the human IP₃R1 [132]. The functional implications of alternative splicing in insect RyRs and IP₃R mRNA has not been studied and requires further investigation.

Phylogenetic analysis of RyRs and IP₃Rs from a variety of vertebrate and invertebrate species (Table S1) reveals two major clades, the RyR clade and the IP₃R clade (Figure 2). In each clade, invertebrate and vertebrate RyRs or IP₃Rs are clustered separately. In invertebrate isoforms of each clade, spider RyR or IP₃R forms a subclade, while the insect RyRs or IP₃Rs form another subclade. In the vertebrate isoforms of RyRs, RyR1, and RyR3 isoforms are clustered in one subclade, while RyR2 isoforms are clustered in another subclade. In the vertebrate isoforms of IP₃Rs, IP₃R2, and IP₃R3 isoforms are clustered in one subclade, while IP₃R1 isoforms are clustered in another subclade. Overall, one could say that each receptor is formed through a gene duplication in invertebrates, which leads to generation of vertebrate RyRs and IP₃Rs. The three isoforms of each receptor in vertebrates appear to derive via distinct gene duplication events.
4. Pathway

Although RyRs and IP$_3$Rs are closely related Ca$^{2+}$ release channels, their regulatory pathways are different [136]. Regardless, reduction in intracellular levels of Ca$^{2+}$ leads to activation of both channels and is primarily coordinated by a process called “Store-Operated Calcium Entry (SOCE)” [137]. Both IP$_3$R and RyR are the major biochemical components of the SOCE process and mediate release of Ca$^{2+}$ from the ER into the cytosol or other organelles, such as mitochondria [124,137,138], lysosomes [139–141], and the Golgi apparatus [142]. The other major component of this process is the Sarco/endoplasmic reticulum Ca$^{2+}$-ATPase [SERCA], which pumps Ca$^{2+}$ from the cytosol into the ER lumen. There are other players involved in SOCE, for example, the stromal interaction molecule (STIM)-Orai1 complex. STIM is normally located in the ER transmembrane and senses luminal Ca$^{2+}$ depletion, which leads to its translocation to junctions between the ER and plasma membrane where it couples with the plasma membrane Ca$^{2+}$ channel protein Orai1 [143]. This coupling activates Ca$^{2+}$ release-activated Ca$^{2+}$ (CRAC) channels in the plasma membrane, allowing Ca$^{2+}$ influx from the extracellular pools to the cytosol and then from the cytosol to the ER through SERCA [144]. Notably, SERCA might associate with IP$_3$R upon depletion of ER Ca$^{2+}$ resulting in enhanced SOCE activity [145–148]; however, this has not been shown.
in insect models. Elevation of cytosolic Ca$^{2+}$ to certain levels inactivates CRAC channels thereby terminating Ca$^{2+}$ influx into the cell, a process known as Ca$^{2+}$-dependent inactivation (CDI) [149]. It is noteworthy that the primary Ca$^{2+}$-binding protein, calmodulin, is involved in CDI by binding to STIM, leading to disruption of the STIM-Orai1 complex [150]. The activation of either RyR or IP$_3$R is initiated by various external (e.g., light, pheromones, allelochemicals, insecticides) or internal (e.g., neurotransmitters, hormones, growth factors, feeding status, developmental stage, flight) signals that are adjusted based on the biology of insects and associated physiological processes. Activation of the channels might be specific to an organ or cell requiring either the RyR or the IP$_3$R.

IP$_3$Rs are expressed in most cells, in particular in the ER of neurons [151], fat body adipocytes [Do˘gan et al., unpublished], and oocytes [152] (Table 2). IP$_3$R signaling pathway is integrated with several other signaling pathways, such as the insulin/target of rapamycin (TOR) pathway [153,154]. Low concentrations of cytoplasmic Ca$^{2+}$ activate IP$_3$Rs, while high concentrations (above 300 nM) inhibit channel activity [21,153]. Various receptors in the plasma membrane of the cell, such as G-protein-coupled receptors (GPCRs), stimulate phospholipase C (PLC) that hydrolyzes the phosphorylated plasma membrane glycolipid, phosphatidylinositol 4,5-bisphosphate (PIP$_2$), into secondary messengers diacylglycerol (DAG) and IP$_3$. IP$_3$ binds to IP$_3$-binding sites in the N-terminus of the tetrameric IP$_3$R to initiate conformational changes that are transmitted down to the transmembrane region leading to opening of the Ca$^{2+}$-permeable pore ~7 nm away from the IBC to release the Ca$^{2+}$ from the ER [155,156]. The IBC form a clam-shaped structure and residues in the IBC required for IP$_3$ binding are conserved in IP$_3$Rs, but not in RyRs [28,61]. Notably, studies on mammalian IP$_3$Rs revealed that IP$_3$ binding alone is not sufficient to activate IP$_3$Rs [153]. Indeed, IP$_3$ binding primes IP$_3$Rs to bind Ca$^{2+}$ and Ca$^{2+}$ binding triggers channel opening [157,158]. Insect IP$_3$Rs might also require binding of both IP$_3$ and Ca$^{2+}$ to open the channel; however, this has not been demonstrated. It is also noteworthy that IP$_3$ must bind to each of the four subunits of IP$_3$R; the 4- and 5-phosphates of IP$_3$ moieties are essential for binding, while the 1-phosphate enhances affinity [159]. Activation of IP$_3$R propagates regenerative Ca$^{2+}$ signals by Ca$^{2+}$-induced Ca$^{2+}$ release (CICR) leading to generation of cell-wide Ca$^{2+}$ spikes, oscillations or localized Ca$^{2+}$ “puffs” arising from simultaneous opening of a small cluster of IP$_3$Rs [160-162]. Calcium spikes through IP$_3$R are the main event leading to differential gene expression [153,163]; however, oscillations are also quite common and have been described in many insect cells, including those from salivary glands [164], neurons [165,166], and oocytes [152]. Activity of the IP$_3$Rs is also regulated through post-translational modifications, primarily by phosphorylation and dephosphorylation via protein kinases and phosphatases, respectively [167]. For example, the 3',5'-cyclic monophosphate (cyclic AMP:cAMP)-dependent protein kinase (PKA) phosphorylates IP$_3$R resulting in an increase in Ca$^{2+}$ release in mammals [168]. However, D. melanogaster IP$_3$R lacks PKA sites indicating that it is not regulated by PKA [61]. Other phosphorylation agents, such as the AKT kinase (PKB), protein kinase C (PKC), or Ca$^{2+}$/calmodulin-dependent protein kinase II (CaMKII), might be involved in the phosphorylation of insect IP$_3$Rs similar to that in mammals [83,167,169,170]. IP$_3$ is deactivated by phosphorylation to IP$_4$ or dephosphorylation to IP$_2$ thereby terminating the IP$_3$R signaling pathway [171]. Proteins that have EF-hand Ca$^{2+}$-binding motifs, such as calmodulin, can also regulate the activity of the IP$_3$Rs. Calmodulin has been shown to inhibit the binding of IP$_3$ to IP$_3$Rs in mammals in a dose-dependent manner [102,172]. Endogenous calmodulin is essential for the proper activation of the IP$_3$R [173]. The direct effect of calmodulin has not been experimentally shown for insect IP$_3$Rs; however, in D. melanogaster, IP$_3$R and calmodulin compete for binding to transient receptor potential (TRP) proteins, which are known to form plasma membrane channels [174]. RyRs have a more restricted distribution compared to IP$_3$Rs and are predominantly found in the SR of muscle cells and the ER of neurons (Table 2). RyR activation occurs through binding of Ca$^{2+}$ to high affinity binding sites [142,175]. RyR is normally closed at low cytosolic Ca$^{2+}$ (100–200 nM); submicromolar levels of Ca$^{2+}$ act on the RyR channel by...
increasing open channel probability \[92,176–178\]. A small amount of Ca\(^{2+}\) in the cytosol near the receptor causes it to release even more Ca\(^{2+}\); however, as the concentration of intracellular Ca\(^{2+}\) rises to millimolar concentrations, RyR channel activation becomes inhibited, preventing the total depletion of SR Ca\(^{2+}\) \[35,179–181\]. Like cytosolic Ca\(^{2+}\), adenine nucleotides also have a biphasic effect on (3H)ryanodine binding \[182\]; however, this has not been demonstrated for insect RyRs yet. Mammalian RyR activity is regulated by PKA, in particular via the residues in the Repeat34 domain of the channel \[69,183\]. This phosphorylation has been shown to increase the channel activity \[184\]. In \(P\). \(x\)ylostella RyR, PKA phosphorylation sites have been detected in the Repeat34 domain, which might regulate the interaction with the neighboring SPRY3 domain \[104\]. The phosphorylation pattern is temperature-dependent with a lower thermal stability compared to the analogous Repeat34 domain in mammalian RyR isoforms \[104\]. Notably, mammalian RyR function is known to be modulated also by CaMKII; however, this topic requires investigation in insects (Table 2). On the other hand, the primary Ca\(^{2+}\) binding protein, calmodulin has different effects depending on the Ca\(^{2+}\) levels and the type of the RyR in mammals. Calmodulin activates (at low Ca\(^{2+}\) levels) or inhibits (at high Ca\(^{2+}\) levels) the RyR1 and RyR3 channels, while only inhibitory effects were reported for RyR2 \[98,99,185,186\]. Although potential calmodulin binding sites have been detected in insect RyRs \[33,51\], the direct effect of calmodulin on RyR activity in insects has not been demonstrated; however, limited findings provide a hint to calmodulin–channel interaction. \(D\). \(m\)elanogaster calmodulin mutants with a single amino acid change (V91G) were found to possess abnormal Ca\(^{2+}\) release in response to depolarization of muscles, which was linked to failed regulation of the RyR \[187\]. Inhibition of calmodulin has been also shown to enhance the light-induced Ca\(^{2+}\) release from internal stores in photoreceptor neurons, indicating calmodulin is involved in the termination of the light response \[188–190\]. Calmodulin rescued the inactivated photoresponse in the presence of ryanodine, suggesting a link between RyR activation and calmodulin action \[188,189\]. As the activation of the \(D\). \(m\)elanogaster visual cascade also includes the cation influx channels transient receptor potential (TRP) protein, which also requires IP\(_3\)R signaling \[191\], the interaction of calmodulin with both channels in insects requires further investigation.

5. Functions

RyRs mediate many cellular and physiological activities, such as muscle contraction, neurotransmitter release, and hormone secretion \[17\] (Table 2). In accordance with these roles, RyRs are associated with the SR of muscles and the ER of neurons and many other cell types. The mammalian RyR1 and RyR2 are predominately found in skeletal and cardiac muscles, respectively, while RyR3 is relatively abundant in brain and certain skeletal tissues but is also expressed at low levels in multiple tissues \[192–194\]. Neuronal expression of RyR varies, but RyR2 is most abundant. Notably, RYR2 is the major cellular mediator of CICR in animal cells. In contrast to mammals, there is only one isoform of RyR in insects. The initial studies on insect RyRs have been conducted on \(D\). \(m\)elanogaster. These studies revealed \(RyR\) is expressed in muscles of the body wall, visceral muscles around the gut, central nervous systems, and optic lobe and retina in the embryonic, larval, and adult stages \[32,33,195\]. In \(D\). \(m\)elanogaster adults, RyR mRNA was detected in tubular muscles and at a lower level in neuronal tissues \[32,188\] but not ovaries \[196,197\]. Among head, eyes, antennae and legs, the highest expression was detected in legs \[32\]. Subsequent studies have examined the site-specific and developmental expression of insect RyR genes in insects other than \(D\). \(m\)elanogaster. For example, the highest expression level of \(RyR\) was detected in the thorax compared with the head and abdomen in adult \(B\). \(d\)orsalis \[49\] and \(P\). \(r\)apae \[42\], suggesting RyR is involved in the modulation of intracellular Ca\(^{2+}\) levels for locomotory activities. Similarly, \(RyR\) expression was higher in the adult thorax compared to the abdomen; however, the highest expression was detected in the head in \(D\). \(c\)itri \[56\]. Similar results were also found in \(H\). \(a\)rmigera larvae \[41\], \(P\). \(r\)apae adults \[42\], \(L\). \(d\)ecemlineata larvae \[51\], \(S\). \(f\)urcifera nymphs \[53\] and \(T\). \(c\)riticida adults \[55\] with higher expression in
the head and/or thorax than the abdomen. In contrast, no significant difference in RyR expression levels between the head, thorax, and abdomen were detected in the fourth instar larva of *P. xylostella* [39]. A more specific analysis of different tissues in the third instar *L. decemlineata* larvae indicated that RyR expression level was highest in foregut, at moderate levels in the hindgut and epidermis, and to a lower extent in the fat body, midgut, ventral ganglia, and Malpighian tubules [51]. In the the fourth instar larvae of *P. rapae*, RyR was primarily expressed in the epidermis, at moderate levels in nerve cords, hemocytes, the midgut, and least in the fat body and Malpighian tubules [42]. In the fifth instar larvae of *C. suppressalis*, RyR was primarily expressed in the head (including brain and muscle), at moderate levels in the integument and the haemolymph, and least in the fat body, Malpighian tubules, the midgut, and the silk gland [64]. Such distribution of RyR mRNAs is not unexpected considering that more muscles are distributed around the foregut, the hindgut, and attached to the epidermis [51]. Nevertheless, the commonly reported higher expression in the thorax and the head are in accordance with the lowest expression in eggs and highest expression in juvenile or adult stages, considering that the mobile stages, such as larvae or adults, require muscle activity. Thus, RyR expression was highest in larval or adult stages and lowest in eggs in *O. furnacalis* [40], *B. dorsalis* [49], *H. armigera* [41], *L. decemlineata* [51], and *T. castaneum* [50]. Similarly, RyR expression was lowest in eggs; however, it was higher in nymphs than adults in *D. citri* [56]. In another hemipteran, *S. furcifera*, RyR expression in the fifth instar nymph was significantly higher than in the eggs or female adults; however, no significant difference was detected between the eggs and female adults [53]. This trend is similar to that in *C. suppressalis* with the highest expression in the third instar larva, but with similar expression in eggs, pupae, and adults [64]. In *N. lugens*, RyR transcript levels in female adults were significantly higher than in first to fifth instar nymphs; however, the lowest expression was still in eggs [52]. The expression level of RyR in *T. citricida* adults were also found to be significantly higher than those in nymphs [55], while no significant difference in the expression levels of RyR was found between nymphs and adults [54]. In contrast to most studies, RyR expression levels in eggs, larvae, and adults were all found to be similar in the lepidopteran *P. xylostella* [39]. In brief, these studies, except that by Wang et al. [39], indicate that the expression of RyR is higher in adult or juvenile stages (larva or nymph) than in eggs, suggesting involvement of RyRs in locomotory activities. Notably, the immobile pupal stages can also have high expression of RyR [40,41,46]. Although most larval muscles are histolyzed during the early-mid phase of pupal development, new muscles are formed at the late pupal stage [198], suggesting that RyR expression might fluctuate during pupal transition and be elevated depending on the timing of sampling [51]. It is noteworthy that upregulation of RyR expression in pupae might be related to factors other than muscle formation. Notably, RyR expression patterns might also be different between sexes. For example, RyR expression was found to be significantly higher in males in *S. furcifera* [53], *N. lugens* [52], and *G. molesta* [46]. However, the reason for this sex-dependent variation in insect RyR genes is not currently known. Nevertheless, the higher RyR expression in the thorax compared to the abdomen is in accordance with the primary function of RyRs in the mediation of excitation-contraction coupling in muscles, which is primarily located in the thorax for mobility [198]. On the other hand, higher expression of RyR in the head is in accordance with the involvement of this body part in nerve conduction, hormone secretion and sensory activities, processes that are regulated by RyR activity. It is noteworthy that expression levels of different RyR mRNA splicing variants vary between different developmental stages and tissues [33,37,39–41,46,49,52,55,65]. In contrast, *M. persicae* RyR mRNA lacks an alternative splicing event, which might be related to its asexual reproduction phase [54]. Alternative splicing of RyR mRNAs is common in mammals with more than 12 distinct splice variants identified to date, leading to important differences in their channel functioning [125,126,199,200]. Some splice variants suppress Ca$^{2+}$ release, while some contribute to distinct Ca$^{2+}$ release patterns [126–128]. Interestingly, *T. citricida* RyR mRNA splicing occur by intron retention [55]. Such a splicing
event is rare in animals, leading to generation of an optional exon. However, the inclusion of this exon was shown to induce a premature stop codon in *T. citricida* RyR mRNA, encoding a truncated protein [55]. Nevertheless, alternative splicing might be critical in generating a diversity of RyRs, leading to subsequent phenotypic changes, in particular for insects which have a single *RyR* gene.

IP$_3$Rs are involved in the key events related to the gene expression, development, learning, memory, neuronal signaling, and sensory transduction [129,136] (Table 2). In accordance with these roles, genes encoding IP$_3$R are expressed in many cell types, but primarily associated with the ER of neurons. IP$_3$R1 is the predominant neuronal isoform and present in endothelial cells, while IP$_3$R2 is the predominant isoform in contractile myocardial cells and the sinoatrial node and IP$_3$R3 in the intestinal crypt, ovary cells, villus epithelial cells, and the microvillous cells in the olfactory system [201–204]. Insect genomes possess a single IP$_3$R gene. The first *D. melanogaster* IP$_3$R gene was reported by Yoshikawa et al. [61] and is expressed mainly in the central nervous system [151], but also other tissues, such as fat body [205] and ovaries [196,197]. A confocal microscopic investigation revealed that IP$_3$R is present in all tissues of adult *D. melanogaster* and at more homogeneous in levels than *RyR* [195]. However, the level of transcription in the appendages, containing mainly legs, antennae, wings, and seta, was the highest among all the parts of adult flies [61]. IP$_3$R mRNA was also abundant in the thorax. Among the head, eyes, antennae and legs, the highest expression was detected at antennae [32]. Developmental expression of IP$_3$R revealed that the gene is expressed at the highest levels in adults, at moderate levels in eggs, followed by early and mid stage pupa, and least in larvae [61]. Although many studies have been conducted on insect RyRs, the studies on non-Drosophila IP$_3$Rs are restricted to only a few insects. Liu et al. [50] reported that the highest and lowest expression levels of IP$_3$R were detected in 1-day-old larvae and 3-day-old eggs, respectively, in *T. castaneum*. In *B. tabaci*, IP$_3$R was primarily expressed in larvae, unlike *D. melanogaster*, while expression was moderate in pseudopupa and female adults, and least in eggs [62]. Nevertheless, the higher expression in adults or larvae compared to eggs is similar to those reported for insect *RyR* genes and is in accordance with the possible involvement of IP$_3$R in locomotor activities [61], sensory transduction [32] and muscle development [206]. Sex-dependent differential expression of IP$_3$R genes was reported from a single insect species. The trend was in favor of females, contrasting to those reported for RyR genes [62]; however, further studies are necessary to make a conclusion. As was reported for *RyR* mRNA, alternative splicing of *IP$_3$R* mRNA is also common in mammalians [129]. At least one of these splice sites appears to be conserved in *D. melanogaster* [91].

As we already introduced the site-specific and developmental expression patterns of both RyR and IP$_3$R genes, their involvement in insect life processes highlighting lipid metabolism, muscle excitation and contraction in locomotor activities, visualization and olfactory responses, and development are summarized below.

5.1. Lipid Metabolism

Various studies in mammals revealed the involvement of Ca$^{2+}$ in lipid metabolism [143,207–213]. These studies inspired those in insects, which confirmed the involvement of Ca$^{2+}$ in lipid metabolism in insects [214]. The center of the insect lipid metabolism is the fat body, which is primarily composed of the adipocytes that are able to store tremendous amounts of lipids in their cytosolic lipid droplets [214–216]. The data on the involvement of Ca$^{2+}$ in insect lipid metabolism is limited and derives mostly from the model insect *D. melanogaster* where increased levels of cytosolic Ca$^{2+}$ in adipocytes lead to fat reduction, whereas decreased cytosolic Ca$^{2+}$ levels induce fat accumulation [217–223]. Several other studies on non-Drosophila insects also demonstrated the involvement of Ca$^{2+}$ in lipid metabolism, which occurs via the primary Ca$^{2+}$ signaling molecules calmodulin, calcineurin and regulatory calcin [10]. These studies together indicate that cytosolic Ca$^{2+}$ levels correspond with the levels of triglycerides in lipid droplets. This raises the question as to where RyRs and IP$_3$Rs stand in this interaction as the two major intracellular Ca$^{2+}$ suppliers residing in the ER.
Most of the data on the involvement of insect ER Ca\(^{2+}\) channels in lipid metabolism are related to IP\(_3\)Rs, which induce lipolysis in insect adipocytes. The loss of IP\(_3\)R leads to elevated levels of triglycerides with enlarged lipid droplets in the fat body and hyperphagia in D. melanogaster adults [218]. In line with this, fat body-specific knockdown of IP\(_3\)R leads to an increase in lipid droplet size and triglyceride accumulation in adult flies [222]. The lipolysis is primarily under the control of the adipokinetic hormone (AKH) which binds to AKH-receptor in adipocytes, leading to generation of the secondary messenger cAMP and the PLC [224]. The cAMP induces PKA, leading to activation of the lipolytic transcription factor foxO acting on lipase genes [219]. In parallel, PLC hydrolyzesPIP\(_2\) to IP\(_3\), which binds to IP\(_3\)R, leading to activation of the channel and an elevation in cytosolic Ca\(^{2+}\) levels [214]. Therefore, AKH activity leads to lipolysis in parallel to the increase in cytosolic levels of Ca\(^{2+}\) in adipocytes [214]. While the increase in cytosolic levels of Ca\(^{2+}\) transmits the AKH signal, the exact mechanism is not known [219,220,225]. Subramanian et al. [218] reported that reduced insulin signaling in IP\(_3\)R-mutants might be one of the reasons for IP\(_3\)R deficiency-related obesity. It is also noteworthy that knockdown of IP\(_3\)R, either in all neurons or in peptidergic neurons alone, mimics the IP\(_3\)R mutant phenotype with elevated lipid stores and hyperphagia [217]. IP\(_3\)R-mediated Ca\(^{2+}\) release in neurons is significantly reduced in these mutants, while the level of short neuropeptide F (sNPF), which is involved in hyperphagia, is elevated [219,220,223] suggesting that IP\(_3\)R-mediated Ca\(^{2+}\) signals modulate neural circuits for feeding [218,226,227] and that sNPF is likely to be involved in the activation of IP\(_3\)Rs in neurons [228]. In brief, impaired lipid metabolism derives primarily from peptidergic neurons. These neurons are also associated with the stomatogastric nervous system. On the other hand, AKH-induced lipolysis has been reported only in adults of D. melanogaster as manipulation of cytosolic Ca\(^{2+}\) levels in the larval fat body does not have a significant effect on larval fat stores [219,229]. In contrast, insects, such as L. decemlineata, accumulate greater amounts of lipid at the larval stage, which show impaired lipid metabolism upon silencing Ca\(^{2+}\)-signaling genes [10,216]. Therefore, the dynamics of lipid metabolism in relation to Ca\(^{2+}\) might be different depending on the species.

Knowledge on the involvement of RyRs in insect lipid metabolism is restricted to a single study. In D. melanogaster adults, fat body-specific knockdown of RyR leads to an increase in lipid droplet size and triglyceride levels, suggesting a lipolytic role for RyRs [222]. On the other hand, loss of the fat body seipin gene in D. melanogaster adults leads to reduction in triglyceride storage and lipid droplet size, which is linked to impaired SERCA activity, suggesting seipin and SERCA function together to promote fat storage in adipose tissue [222,230]. Interestingly, adipose tissue-specific knockdown of RyR partially restores fat storage in seipin mutants, while IP\(_3\)R silencing did not rescue this phenotype [222]. These findings indicate a complex interaction between the receptors with other molecules involved in Ca\(^{2+}\) homeostasis in fat body adipocytes. It is noteworthy that opposite effects were reported on the levels and cellular sites of Ca\(^{2+}\) on fat storage in hepatocytes compared to adipocytes in mammals. Increased cytosolic and reduced ER calcium levels induce triglyceride accumulation leading to lipogenesis, whereas reduced cytosolic and increased ER calcium levels reduce triglyceride accumulation leading to lipolysis in hepatocytes and their orthologous cells in the insect fat body, oenocytes [214,222,231]. This suggests that IP\(_3\)R acts as an obesity gene in hepatocytes or oenocytes [222]. However, the data is restricted to D. melanogaster and, therefore, this topic requires further investigation in other insect species.

5.2. Muscle Excitation and Contraction in Locomotor Activities

Calcium is an essential element in the excitation and contraction of muscles [232,233]. ER-released Ca\(^{2+}\) is a major source for the stimulation of muscle cells in invertebrates from nematodes towards insects [234–237]. Insect muscle contraction is similar to that in vertebrate skeletal muscles as in both SR release Ca\(^{2+}\) that binds to troponin, a regulatory protein on the thin filament. Troponin activate another regulatory protein, tropomyosin,
which causes muscle contraction [238,239]. In contrast, relaxation occurs as the Ca\(^{2+}\) pump on the SR membrane transports Ca\(^{2+}\) ions back into the SR lumen. This raises the question as to whether RyR or IP\(_3\)R or both are involved in Ca\(^{2+}\)-related muscle excitation and contraction in insects.

RyRs play a central role in the excitation/contraction (EC) coupling of cardiac and skeletal muscles in mammals [17,240,241]. Studies in D. melanogaster indicated that RyR is mainly expressed in the muscles of the body wall, visceral muscles around the alimentary canal, as well as the central nervous system [33,65,242]. Similarly, high levels of RyR expression in muscles have been also reported from non-Drosophila insects, such as H. virescens [35] and L. decemlineata [51]. Partial loss of RyR led to impairment of hypodermal, visceral, and circulatory muscles, indicating RyR is essential for proper muscle function and EC coupling in larval body wall muscles [33,242]. Drosophila melanogaster RyR mutants also have a severe defect in the ingestion and passage of food into the gut, confirming that the head and visceral muscles are impaired [242]. On the other hand, mutation calmodulin leads to specific impairment in muscle Ca\(^{2+}\) flux, which was found to be related to failed regulation of RyR [187]. RyR activity is also necessary for the spontaneous rhythmic contractions of the lateral oviduct muscles in the cricket, Gryllus bimaculatus (Orthoptera: Gryllidae) [237]. Similarly, proctolin induced Ca\(^{2+}\) release from the SR, via RyR, plays a major role in hyperneural muscle contractions in Periplaneta americana (Blattidae), while IP\(_3\)R-induced Ca\(^{2+}\) release has little impact [243].

IP\(_3\)Rs also play a role in the EC and regulation of skeletal, cardiac, and smooth muscle cell functions in mammals [153,244]. Involvement of IP\(_3\)R in insect muscle activity has not been studied in detail. IP\(_3\)R is expressed in D. melanogaster adult muscles, particularly in legs which contain tubular muscles, but to a lesser extent in the thorax, which contains the fibrillary muscles [32,61]. However, it is not known whether IP\(_3\)R has a possible role in tubular or fibrillar muscle function regulation in D. melanogaster. In G. bimaculatus, IP\(_3\)R regulates the amplitude of rhythmic contractions of lateral oviduct muscles; however, the effect was considered minimal [237]. Notably, the inhibitor used in that study, 2-aminoethoxydiphenyl borate, might also inhibit other SOCE molecules, such as SERCA [245], or other volume-regulated anion channels independently from intracellular Ca\(^{2+}\) signaling modulation [246]. Further investigation, possibly with other select IP\(_3\)R inhibitors, is required. The involvement of Ca\(^{2+}\) in EC of lateral oviduct muscles via the action of several neurohormones was also reported in other studies. For example, octopamine, via the intracellular messenger cAMP, inhibits contraction of the oviducts, while proctolin, via the PLC/IP\(_3\)R, stimulates contraction [247–251]. In Schistocerca gregaria (Orthoptera: Acrididae), ryanodine had no effect on proctolin-stimulated foregut muscle contraction, instead, gut muscle contraction was dependent on proctolin receptor-specific activation of the PLC signaling cascade leading to generation of IP\(_3\) [252].

The authors proposed that the potentiation of contractions by proctolin is mediated by activation of IP\(_3\)-induced Ca\(^{2+}\) release from the SR, in contrast to the model of proctolin action on tonic muscle contractions of P. americana [243]. These findings support the notion that neurohormones act on the muscles, therefore, their activity is indeed controlled by neuronal signaling pathways [253]. There are various studies on the involvement of neuronal Ca\(^{2+}\) levels leading to muscle action, in particular related to locomotor activities such as flight, walking or climbing. For example, the mutations in IP\(_3\)R resulted in strong flight deficits in D. melanogaster [226,254]. Furthermore, pan-neuronal knockdown of the IP\(_3\)R leads to significant defects in wing posture in Drosophila, indicating IP\(_3\)R in neurons is necessary during pupal development for flight [227,255]. Examination of Ca\(^{2+}\) signals in cultured pupal neurons in D. melanogaster IP\(_3\)R mutants also revealed high spontaneous Ca\(^{2+}\) influx and reduced SOCE, which might lead to loss of flight [256]. These defects and deficits were indeed found to be related to impairment of the IP\(_3\)R signaling induced by neurohormones, primarily the amine-type, and their G-protein coupled receptors in the neurons (e.g., aminergic neurons) [227,254,255,257–259]. IP\(_3\)R in neurons can also be induced by other signaling molecules, such as neurotransmitters [256,259], nevertheless,
IP$_3$R-dependent Ca$^{2+}$ release is essential for neuronal activity. Thus, expression of IP$_3$R in aminergic neurons during pupal development was found to rescue the adult flight deficit in *D. melanogaster* IP$_3$R mutants, suggesting the involvement of IP$_3$R in flight is related to its role in development [227,254,256]. Other SOCE components, such as STIM-ORAI involved in the extracellular Ca$^{2+}$ influx, are also necessary for normal flight activity [226]. Insect leg muscles are also innervated by neuromodulatory octopaminergic DUM (dorsal unpaired median) neurons or motor neurons [166,260–263]. In *S. gregaria*, the Ca$^{2+}$ signal in such neurons is dependent on IP$_3$R and PLC activation, but not on RyR [264]. In brief, intracellular Ca$^{2+}$ stores in neurons are required for insect rhythmic motor functions which leads to muscle activity and IP$_3$R signaling plays a central role in this supply.

The contradictory results on RyR-induced muscle EC [237,243,265] or IP$_3$R- [248,252] still raises questions. The absence of functional genomic studies, such as RNAi, or sophisticated visualization techniques makes it difficult to make conclusive statements on this topic. Nevertheless, the maintenance of intracellular Ca$^{2+}$ levels in muscle cells is a requirement for muscle EC; this probably requires RyR and IP$_3$R acting on neuronal pathways.

5.3. Visual and Olfactory Sensory Transduction

Visualization and olfactory responses play a crucial role in insect survival as they are involved in accessing food sources, protecting insects from threats, and finding mates to reproduce [266]. This occurs primarily via sensory systems in the eye and antennae; each possesses a small region of tissue, called receptor cells, that are sensitive to a specific stimulus [267,268]. Receptor cells are neurons or other specialized cells and convert odor or light signals into an electrical response that is transmitted to the brain for the processing, a mechanism commonly known as signal transduction [268]. This might be named as “phototransduction” for visualization, and “olfactory sensory transduction” for odor recognition.

Phototransduction starts in ommatidia, units of the insect compound eye that contain sensory neurons known as retinal (visual) cells. The rhabdomere is the central photoreceptive region in each retinal cell and contains photopigment molecules, called rhodopsins [269,270]. Absorption of a photon by rhodopsin leads to activation of the heterotrimeric Gq protein complex, which in turn stimulates PLC to hydrolyze PIP$_2$ to a proton, and the secondary messengers hyrophilic IP$_3$ and hyrophobic DAG [267]. The released proton and the mechanical forces caused by PIP$_2$ hydrolysis results in opening of light-sensitive, relatively Ca$^{2+}$-selective, “transient receptor potential” (TRP) channels and TRP-like (TRPL) channels which mediate an ionic current responsible for generation of a quantum bump, known as the bump current [271–275]. Calcium is involved in phototransduction; however, studies on the involvement of IP$_3$R and RyR are limited. High expression of IP$_3$R in retina of adult *D. melanogaster* suggested a potential role for IP$_3$R in visual transduction [32,61]. However, studies on *D. melanogaster* IP$_3$R mutants revealed that Ca$^{2+}$ release via IP$_3$R does not contribute to phototransduction [276,277], instead, PLC activation leads to the opening of light-sensitive Ca$^{2+}$ channels in photoreceptors [278]. A subsequent study in *D. melanogaster* proposed that Ca$^{2+}$ release via IP$_3$R might have a critical role in light excitation. Silencing of IP$_3$R specifically in adult photoreceptor cells significantly reduced light-response amplitude in adult photoreceptor cells [279]. Kohn et al. [279] also reported that IP$_3$R silencing leads to a reduction in PLC catalytic activity, while elevation of intracellular Ca$^{2+}$ rescued the suppressed light responsiveness phenotype. These findings suggest that Ca$^{2+}$ release from internal stores is necessary to increase PLC activity required for bump current, and that functional cooperation between IP$_3$R and PLC is necessary for light responsiveness [279]. This study also posits that the reason for lack of connection between IP$_3$R and phototransduction in previous studies [276,277] was due to leakage of trace amounts of Ca$^{2+}$ from patchclamp recording electrodes, effectively replacing the Ca$^{2+}$ that would have been released from IP$_3$-sensitive stores. However, a more recent study using RNAi or IP$_3$R-null mutants [280] challenged the work by Kohn et al. [279] supports the the previous findings indicating that IP$_3$R does not have a role in
phototransduction. Bollepalli et al. [280] argues that phototransduction in D. melanogaster is compromised by the Gal4 transcription factor used to regulate dsRNA in these experiments, which is not the case for the IP$_3$R knockdown or mutation in the study by Kohn et al. [279]. These contradictory findings demand further examination on the possible role of IP$_3$R in phototransduction. The role of RyR in Ca$^{2+}$ regulation photoreceptor via RyR is equally ambiguous [188,189]. Localization of RyR close to the light-sensitive microvilli in compound eyes of D. melanogaster suggested a possible role for RyR in Ca$^{2+}$ dependent-phototransduction [281]. However, analysis of mutants in which RyR expression was selectively eliminated in the adult eye demonstrated that this channel does not play a role in phototransduction [242].

Calcium is also involved in olfactory sensory transduction [282–285]. Insects perceive odorants with sensory organs called sensilla which are mainly on their antennae. Olfactory sensilla possess tiny pores that project towards olfactory receptor neurons (ORNs) [268]. The dendrites of these bipolar cells extend into a sensillar lumen, while their axons lie in the second (antennal) lobe in the brain. Upon adsorption of an odorant molecule, such as a volatile or an insoluble odorant like a pheromone, in the sensilla, it diffuses into the sensillum via pores, binds to a specific odorant binding protein (OBP) or pheromone binding protein (PBP) in the sensillar lymph and is transferred to olfactory receptors (ORs) on the dendrites of OSNs [286–288]. ORs are both ligand-gated and cyclic-nucleotide-activated ion channels and function as heterodimers consisting of a variable odor-specific ligand binding receptor protein that defines their specificity, and a constant highly conserved co-receptor protein, Orco [289–292]. Orco itself can also act as a non-specific, spontaneously-opening ion channel permeable to Ca$^{2+}$. Other types of receptors are located in different types of sensilla (e.g., ionotropic glutamate-like receptors, gustatory receptors) [268,293,294]. Therefore, both metabotropic and ionotropic signaling mediates odor transduction at ORNs and binding of the odor molecules into ORs leads to cell depolarization and generation of action potentials, which transmit the olfactory signal to the antennal lobe [295]. The transduction mechanism in OSNs is mediated by cAMP relies on PKC instead of PKA, and/or the PLC-linked IP$_3$-signaling pathways [290,291,294,296–304]. Intracellular Ca$^{2+}$ stores were found to contribute to the ORN responses [285,303,305], raising the question whether IP$_3$R and/or RyR are involved in odor transduction pathways. High expression of IP$_3$R in antennae in adult D. melanogaster suggests a potential role for IP$_3$R in olfactory transduction [32,61]. Additionally, the IP$_3$R is present in the olfactory sensory neurons of a variety of species [306–308]. However, olfactory responses to a number of different odorants were found to be normal in hypomorphic combinations of D. melanogaster IP$_3$R mutant alleles [257,309]. On the other hand, a subset of these IP$_3$R alleles, including a null allele, were found to exhibit a faster recovery after a strong odor pulse, suggesting that IP$_3$R might be required for maintenance of olfactory adaptation in antennae [309]. In a subsequent study, the magnitude and duration of the odor-induced Ca$^{2+}$ response in ORNs was decreased upon targeting IP$_3$R and RyR by RNAi, as well as by specific blockers, such as thapsigargin or ryanodine [285]. Furthermore, flies expressing IP$_3$R or RyR dsRNA were defective in odor-adaptation [285,303,305]. The magnitude and duration of the Ca$^{2+}$-response was also found to be decreased in cAMP-defective flies based on silencing of the adenyl cyclase gene “rutabaga” and the phosphodiesterase gene “dunce” [303], in accordance with previous reports that demonstrated involvement of cAMP in olfactory reception [310–312]. Furthermore, simultaneous knock-down of RyR or IP$_3$R in combination with knock-down of rutabaga and/or dunce generated even stronger effects with smaller amplitudes and a shorter duration of Ca$^{2+}$ response to various odors [303]. It is worth noting that when only IP$_3$R or RyR expression is perturbed, perception of odorants (odor-acity) is not affected, but adaptation to odorants is defective [285]. When cAMP-level is disturbed, odor-perception is affected and the amplitude of the second phase (adaptation to odorants) is completely abolished [303]. Furthermore, in double mutant flies, simultaneous perturbation of both cAMP and IP$_3$-signaling severely affects both the first and the second phase and they are unable to detect or adapt to odorants [303].
Therefore, the first phase of olfactory response appears to be mediated by cAMP, which is important for olfactory perception, while the second phase mediated by the intracellular Ca\(^{2+}\)-signaling pathway is important for odor-adaptation. Due to the limited number of studies, the mechanisms of insect odor transduction are still controversial [298,304,313]. It is also noteworthy that induction of either secondary messenger (cAMP or IP\(_3\)) may be odor-specific [303,311,312,314].

In conclusion, evidence as to the role of IP\(_3\)R and RyR in phototransduction or olfactory responses is limited, and further research is required.

5.4. Development

Both RyR and IP\(_3\)R have essential roles in development. This is in accordance with the fact that expression of either RyR [39–41,49–51,53,56] or IP\(_3\)R [50,62] is up-regulated during development in many insect species. Studies in D. melanogaster indicated that both genes are also necessary for embryonal development, in particular for development of nervous system and muscles [32,188,189,206].

Loss of IP\(_3\)R in D. melanogaster leads to lethality in the second instar larvae accompanied by delays in molting from the first to the second instar and lower 20-hydroxyecdysone (20E) levels [205,276,315]. A lethal phenotype with a delayed molting is also observed in PKA mutants [205,316]. Disruption of either the IP\(_3\)R or CAMP pathway also delays second to third larval instar, third larval instar to pupal, and pupal to adult transitions [205]. Furthermore, PKA and IP\(_3\)R mutant alleles have a synergistic negative effect on larval molting, suggesting IP\(_3\)R signaling acts in parallel with the cAMP pathway to regulate molting [205]. Exogenous 20E rescues the molting delays caused by disruption of either pathway, suggesting both pathways control 20E levels during molting [205,315]. Indeed, 20E was shown to induce both extracellular and intracellular Ca\(^{2+}\) release, leading to activation of PKC and CaMKII that are both involved in 20E-directed gene expression [317–320].

Similar to that in D. melanogaster, silencing of IP\(_3\)R led to failures in molting and larval-pupal and pupal-adult metamorphosis in the beetle T. castaneum [50]. A relatively recent study investigated the larval to pupal switch under nutrient stress in D. melanogaster, which revealed that the larval-pupal transition requires IP\(_3\)R/Ca\(^{2+}\) signaling in glutamatergic interneurons of the mid-ventral ganglion [321]. The nutrient stress sensed by multidendritic cholinergic sensory neurons is conveyed first to glutamatergic interneurons via the acetylcholine receptor, then to medial neurosecretory cells, and finally to the ring gland, leading to stimulation of neuropeptides that induce ecdysteroid biosynthetic genes in the ring gland via IP\(_3\)R signaling to allow pupariation on a protein-deficient diet [321]. The authors suggested that activity in this circuit is an adaptation that provides a layer of regulation to help overcome nutritional stress upon protein deprivation during development. Other studies on neurodevelopment in D. melanogaster larvae indicated that IP\(_3\)R is essential in particular in aminergic cells for development and survival, and IP\(_3\)R-mediated Ca\(^{2+}\) release is required to facilitate release of amine type hormones from aminergic cells or serotoninergic and dopaminergic neurons [254,257–259,322,323]. Thus, expression of IP\(_3\)R in aminergic neurons during pupal development rescues the onset adult flight deficit in IP\(_3\)R− D. melanogaster mutants [227,254]. As IP\(_3\)R is also expressed in ovaries in contrast to RyR [196,197] and is likely to be involved in Ca\(^{2+}\) oscillations in ovaries [152], it may also be necessary for egg activation and ovary development. On the other hand, IP\(_3\)R-mediated Ca\(^{2+}\) oscillations also occur in wing imaginal discs that give rise to wings in adults, conferring another role of IP\(_3\)R signaling in development [324].

Several studies have examined the role of RyR in insect development. Mutation of D. melanogaster RyR leads to formation of normal embryos that give rise to larvae with growth defects that die four–seven days during their first instar [242]. Heterozygous individuals containing one copy of the RyR mutant allele rescue the calmodulin-lethal phenotypes, further indicating the vital role of RyR [187]. In T. castaneum, silencing of RyR does not cause any failure in molting or larval-pupal and pupal-adult metamorphosis, in contrast to IP\(_3\)R silencing in the same beetle; however, abnormalities in the folding of the
hind wings and crawling behavior in adults occur, which might be related to impairment of muscle EC-coupling [50].

Developmental physiology also includes topics such as autophagy and the autophagic programmed cell death that play key roles in development, morphogenesis, and regeneration [325,326]. Intracellular Ca$^{2+}$ levels are critical in this respect as lower Ca$^{2+}$ concentrations induce autophagy, while higher Ca$^{2+}$ concentrations switch autophagy to apoptosis [327]. The role of RyR and IP$_3$R in these processes is a topic for future investigation.

6. Potential of RyR and IP$_3$R as Target Sites in Pest Control

Due to their essential roles, insect Ca$^{2+}$ channels have great potential as target sites for the development of insecticides [328–331]. As the divergence between mammalian and insect RyRs are greater compared to IP$_3$Rs, RyRs might be considered safer targets for insecticidal molecules [332]. While the discovery of diamide insecticides has prompted studies on insect RyRs, no insecticidal compounds targeting IP$_3$Rs have been developed to date. The idea of targeting RyRs goes back to the discovery of the plant alkaloid ryanodine from the tropical American shrub, Ryania speciosa (Flacourtiaceae), which has high affinity to RyR and interferes with Ca$^{2+}$ signaling in muscles; these receptors are aptly named RyR [333]. Ryanodine keeps the RyR channel partially open leading to Ca$^{2+}$ depletion. The insecticidal activity of R. speciosa extracts were first described by Rogers and co-workers in 1946 on a range of lepidopteran and hemipteran pests [334,335]. High toxicity of ryanodine on mammals was an obstacle to its use as an insecticide; however, it inspired the development of more selective and safer insecticides targeting the operation of RyRs, currently comprised of ryanodine receptor modulators in the Insecticide Resistance Action Committee (IRAC) Group 28 [336]. Based on their common chemistry, these insecticides are generally referred to as diamides.

Diamides are derivatives of benzenedicarboxamide or phthalic acid (flubendiamide, Class I) and anthranilic acid (chlorantraniliprole, cyrantraniliprole, and cyclaniliprole, Class II), and selectively activate insect RyRs in the SR and ER in neuromuscular tissues. This causes Ca$^{2+}$ channels to remain partially open leading to an excessive and uncontrollable release of stored Ca$^{2+}$ ions from the ER into the cytosol of muscle cells [337–339] resulting in feeding cessation, uncoordinated muscle contraction, paralysis, and death [330,339]. The first diamide registered, flubendiamide, was co-developed by Nihon Nohyaku Co. Ltd. (NNC) and Bayer CropScience [181,332,340,341] and registered in 2006 [340,342]. This was followed by the introduction of chlorantraniliprole [177] developed by DuPont USA in 2007 and cyrantraniliprole [343,344] that were co-developed by DuPont and Syngenta in 2008. A fourth chemical, the cyclaniliprole developed by ISK [336], was registered and introduced into the market in 2017, while the most recent one, tetraniliprole developed by Bayer was approved in 2020 [345]. Both benzenedicarboxamide and anthranilic acid derivatives are active against a broad range of lepidopteran pests. The anthranilic acid derivatives are also active sucking hemipterans and coleopterans. Chlorantraniliprole has contact, systemic and translaminar activity and exhibits extremely high efficacy against lepidopterans and leaf beetles, as well several dipterans, such as leafminers (Liriomyza spp.), isopterans, such as sugar cane termite (Microtermes obesi, and Odontotermes obesus), and hemipterans, such as whiteflies (Bemisia spp.) [343,344,346]. Cyrantraniliprole is mainly active against sucking and piercing insects, such as aphids, whiteflies, leafhoppers, psyllids, and thrip due to its systemic properties [344,347-350]. Cyclaniliprole, is labeled for use against aphids, leaf-feeding caterpillars, mealybugs, thrips, and whiteflies and has contact and translaminar activity [336], while tetraniliprole is labeled for use against white grubs, annual bluegrass weevils, caterpillars, and billbugs (https://www.environmentalscience.bayer.us/turf-and-ornamentals-management/golf-course-management/portfolios-and-solutions/new-bayer-insecticide) (accessed on 4 April 2021).

Diamide insecticides have low mammalian toxicity and are considered safe for beneficial insects and mites, which make them environmentally friendly [343,344]. These
features, together with their efficacy, has led to extensive use. A survey on the global insecticide market in 2013 revealed that diamides accounted around 1.2 billion U.S. dollars of global insecticide sales, representing approx. 8% of the insecticide market [336]. The current annual market value is predicted to be around $2.3 billion [351]. This ranks diamides third in the market, accounting for 12% of the global market after neonicotinoids (Group 4A) and synthetic pyrethroids (Group 3A) which account for 24 and 15%, respectively [351]. Additionally, at least three more diamide insecticides (cyhalodiamide, and tetrachlorantraniliprole and unnamed); as well as a third class of diamides, “pyrrole-2 carboxamides” are currently under development, suggesting the use of diamides will continue to increase [345,351–353]. However, intensive and repetitive use of the diamides has led to the development of high levels of insecticide resistance in the field, which requires a better understanding of the mode of action of this class of insecticides.

Diamides act on RyR and induce Ca\(^{2+}\) release from intracellular Ca\(^{2+}\) stores in insect muscle cells [36,42,338], but also elicit intracellular Ca\(^{2+}\) release in isolated insect neurons [177,181,340,354]. Silencing RyR in S. furcifera [53] or L. decemlineata [51] greatly decreases chlorantraniliprole-induced mortality indicating that RyRs are targets of diamides. On the other hand, flubendiamide stimulates SERCA activity, which is attributed to a decrease in ER Ca\(^{2+}\) levels [341,355]. Efforts have focused on the binding sites of diamides on RyR. Diamides are incorporated directly into the transmembrane domain of the RyR; however, RyR activation also requires the N-terminus for flubendiamide sensitivity [36]. Deletion experiments on the carboxy-terminal region of the B. mori RyR revealed that the binding region of flubendiamide is located in the transmembrane domain of the RyR comprising amino acid residues 4111–5084, while the region in the N-terminal cytoplasmic domain correspond to residues at 183–290 [36]. HEK cells expressing either Δ183–290 mutants or a chimeric RyR in which amino acids 4111–5084 were replaced with the counterpart sequence in rabbit RyR2, exhibit failure in Ca\(^{2+}\) mobilization in response to flubendiamide, but not to caffeine [36]. A similar study based on the replacement of a 46 amino acid segment (S\(^{4610}\)-A\(^{4655}\)) in D. melanogaster RyR (GenBank accession number: D17389) C-terminal domain with that of a nematode RyR led to insensitivity to diamides [356]. Notably, this shorter region corresponds to A\(^{4699}\)-A\(^{4703}\) in PxRyR, which is within the larger region examined by Kato et al. [36]. However, this region does not overlap with the the highly conserved pore region in D. melanogaster RyR (aa 4973–4982), where ryanodine binds, or the TM10, which plays a crucial role in human RyR channel activation and gating [97,117,356,357]. A computational modeling approach based on rabbit RyR1 also indicated that \(r^{5790}\) and \(c^{4946}\) (in P. xylostella RyR) are likely to be involved in forming the diamide binding site [358]. On the other hand, radioligand displacement experiments using microsomal membrane preparations of H. virescens and P. americana muscles indicate that flubendiamide and chlorantraniliprole interact with a binding site that is distinct from the ryanodine binding site [177,178,181,338,359]. Furthermore, radioligand binding studies with house fly muscle membranes provided evidence that flubendiamide and chlorantraniliprole bind at different, allosterically-coupled RyR sites [360]. Recently, a high resolution (3.2 Å) cryo-electron microscopy structure of the rabbit RyR1 in complex with chlorantraniliprole, together with mutagenesis studies revealed that twelve amino acid residues (Y\(^{4697}\), K\(^{4700}\), Y\(^{4701}\), L\(^{4704}\), Y\(^{4790}\), Y\(^{4918}\), S\(^{4919}\), Y\(^{4922}\), D\(^{4942}\), V\(^{4943}\), C\(^{4946}\), and F\(^{4947}\) based on P. xylostella RyR) comprise the putative chlorantraniliprole binding pocket [361]. Furthermore, a radioligand binding study also suggested that the anthranil diamides share a common binding site with the pyrrole-2 carboxamides [345]. In brief, despite extensive structural and functional studies, there is not a consensus on the the exact binding site of diamide insecticides. It is also possible that the amino acids in the diamide binding sites of RyRs vary amongst species [56,107,115,116,360,362].

The main goal of identifying diamide binding sites in insect RyRs is related to the development of insecticide resistance and whether there are mutations in these regions that inhibit binding of diamides leading to resistance. Diamide resistance appears to have developed very rapidly as a result of their extensive use due to the lack of alter-
natives with similar efficacy [363,364]. The initial reports on the development of resistance from field-collected populations have come from Adoxophyes honmai (Lepidoptera: Tortricidae) against flubendiamide in Japan [365], Choristoneura rosaceana (Lepidoptera: Tortricidae) against chlorantraniliprole in the U.S.A. [366], and Aphis gossypii (Hemiptera: Aphididae) against cyantraniliprole in Italy [347], all collected from the field in 2007. This was followed by reports of resistance developed by P. xylostella against flubendiamide in Thailand [372], Plutella xylostella against clorantraniliprole in China [374], Aphis gossypii against cyantraniliprole in Italy [347], with field collection in 2008 and 2009 for all. In 2010, field-collected samples showed further cases of resistance by P. xylostella against flubendiamide and/or clorantraniliprole in Thailand [372] and China [373,374]. In the same year, resistance against clorantraniliprole was found in A. honmai in Japan [365] and C. suppressalis in China [375]. Field populations of at least six lepidopteran species (P. xylostella, C. suppressalis, T. absoluta, A. honmai, S. exigua, and S. frugiperda) and two hemipterans (A. gossypii and B. tabaci) from 11 countries including Brazil, China, Greece, Italy, Korea, Mexico, Philippines, Puerto Rico, Spain, and Thailand have developed moderate to significant levels of resistance (relative ratio ≥10) to diamides (Table 3) [44,47,130,347,358,365,368–370,372–396]. The highest resistance ratios (RRs) 519,157-fold for flubendiamide [387], 288,995-fold for clorantraniliprole [385], 18,423-fold for cyantraniliprole [385], and 11,250-fold for cyclaniliprole [390] (Table 3). The highest resistance levels against flubendiamide were recorded for P. xylostella populations in Brazil [387] and that against clorantraniliprole for S. exigua in Korea [375]. Resistance against clorantraniliprole and cyantraniliprole developed in T. absoluta in Brazil [385] (Table 3). On the other hand, lower levels of resistance (Relative Ratio ≤10) have also been reported from various pests, such as C. medinalis against chlorantraniliprole [397], Chrysodeixis includens against flubendiamide and chlorantraniliprole [398], or by non-lepidopteran species, such as B. dorsalis [399] or the aphids A. gossypii, and M. persicae [347] against cyantraniliprole or whitefly B. tabaci against chlorantraniliprole and cyantraniliprole [371]. It is noteworthy that cross-resistance within or between each class of diamides have been also reported [384,400–403]. This is problematic for new diamides. An investigation on a new diamide, tetraniliprole, in China, which has not been registered yet, revealed that RRs in Chinese field populations of S. exigua compared to a susceptible strain were found to be 8.6–128.1, in parallel to the RRs obtained for chlorantraniliprole [394]. This suggests that chlorantraniliprole has cross-resistance with tetraniliprole, as tetraniliprole has not been used in China. Overall, insecticide resistance management plans should avoid of rotation of anthranilic and phthalic acid diamides [336,404].

Table 3. Resistance developed by field-populations against diamides to date.

Insecticide	LC₅₀ (95%) mg/L or µg/mL	RR#	Year	Pest	Population	Country	Reference
Flubendiamide	0.16 (0.04–0.8)	1	2009	Plutella xylostella	Tub Berg (field susceptible)	Thailand	[372]
	770.8 (123.3–2633.8)	4817	2011	Plutella xylostella	Tha Muang	Thailand	[372]
	10.6 (3.8–22.8)	66	2010	Plutella xylostella	Sai Noi	Thailand	[372]
	65.1 (2.7–157.4)	407	2011	Plutella xylostella	Sai Noi	Thailand	[372]
	4256.6 (2690.1–9373.2)	26,603	2011	Plutella xylostella	Lat Lum Kaew	Thailand	[372]
	0.08 (0.06–0.11)	1	2011	Plutella xylostella	Chiang Mai (field susceptible)	Thailand	[376]
	>60	>750	2011	Plutella xylostella	Bang Bua Thong	Thailand	[376]
	>200	>1300	2011	Plutella xylostella	Suidlon, Cebu Island	Philippines	[376]
	0.11 (0.08–0.16)	15	2011	Plutella xylostella	Roth (lab susceptible)	China	[130]
	1.66 (1.14–2.35)	15	2011	Plutella xylostella	Fanyu, Guangdong F3	China	[130]
	1.92 (1.19–2.78)	17	2011	Plutella xylostella	Zhuhai, Guangdong	China	[130]
	88.5 (66.1–115)	805	2011	Plutella xylostella	Zengcheng, Guangdong	China	[130]
Table 3. Cont.

Insecticide	LC50 (95%) mg/L or µg/mL	RR	Year	Pest	Population	Country	Reference	
Flubendiamide	0.9 (0.4–1.4) ***	1	2007	Plutella xylostella	Susceptible strain	China	[381]	
	22.2 (9.3–35.4) ***	24	2007	Plutella xylostella	BY, BaiYun Int. Airport, Guangdong	China	[381]	
	1639 (1016–2227) ***	1779	2007	Plutella xylostella	ZC, ZengChengi Guangdong	China	[381]	
	0.029 (0.026–0.033)	1	2011	Plutella xylostella	BCS-S (lab susceptible)	Philippines	[358]	
	0.005 (0.03–0.10)	1	2009	Plutella xylostella	Susceptible strain	Philippines	[358]	
	0.008 (0.005–0.011)	1	1998	Plutella xylostella	RCF-Lab, Recife	Brazil	[387]	
	23.0 (7.2–270.1)	2893	2011	Plutella xylostella	BNV1, Boas Novas I	Brazil	[387]	
	86.1 (23.4–189.7)	1843	2011	Plutella xylostella	SPC, Sapucarana	Brazil	[387]	
	280.6 (12.9–1038.7)	35,316	2012	Plutella xylostella	CGD, Cha Grande	Brazil	[387]	
	4111 (2211–8780)	519,157	2012	Plutella xylostella	BZR, Bezerros	Brazil	[387]	
	0.09 (0.06–0.13)	1	2011	Chilo suppressalis	Pooled susceptible strains	China	[382]	
	1.09 (0.6–2.11)	12	2012	Chilo suppressalis	JH12, Jinhua, Zhejiang	China	[389]	
	1.08 (0.63–2.11)	12	2013	Chilo suppressalis	XS13, Xiangshan, Zhejiang	China	[389]	
	1.3 (0.76–2.87)	14	2014	Chilo suppressalis	XS14, Xiangshan, Zhejiang	China	[389]	
	3.92 (3.02–5.07)	43	2014	Chilo suppressalis	YY14, Yuyao, Zhejiang	China	[389]	
	0.98 (0.63–1.73)	11	2014	Chilo suppressalis	HG14, Huanggang, Hubei	China	[389]	
	0.98 (0.64–1.64)	11	2013	Chilo suppressalis	SG13, Shanggao, Jiangxi	China	[389]	
	0.038 (0.017–0.056)	1	2010	Tuta absoluta	GBN, Guaraciaba do Norte-CE	Brazil	[385]	
	0.41 (0.34–0.51)	11	2015	Tuta absoluta	BZR, Bezerros-PE	Brazil	[385]	
	202.8 (153.2–259.9)	5405	2014	Tuta absoluta	JDR1 João Dourado I-BA	Brazil	[385]	
	221.48 (146.6–312.2)	5901	2014	Tuta absoluta	JDR2, João Dourado II-BA	Brazil	[385]	
	673.4 (391.3–989.0)	17,943	2014	Tuta absoluta	LGD, Lagoa Grande-PE	Brazil	[385]	
	1045 (698–1525)	27,854	2014	Tuta absoluta	GML2 Gameleira I-BA	Brazil	[385]	
	1398 (773–2215)	37,254	2014	Tuta absoluta	PSQ Pesqueira-PE	Brazil	[385]	
	2178 (1422–3179)	58,044	2014	Tuta absoluta	AMD América Dourada-BA	Brazil	[385]	
	3018 (2226–3964)	80,413	2014	Tuta absoluta	GML1 Gameleira I-BA	Brazil	[385]	
	0.79 (0.3–1.5)	1	2014	Tuta absoluta	JDR1 João Dourado I-BA	Brazil	[385]	
	993 (384–1649)	1257	2014	Tuta absoluta	IT-PACH-14-1	Siracusa, Pachino	Italy	[383]
	1376 (792–2772)	1742	2014	Tuta absoluta	IT-PACH-14-2	Siracusa, Pachino	Italy	[383]
	1019 (500–2130)	1290	2014	Tuta absoluta	IT-GELA-14-1	Caltanissetta, Gela	Italy	[383]
	8.4 (3.6–17.0)	11	2014	Tuta absoluta	GR-IER-14-3	Ierapetra, Mavroudia	Greece	[383]
	1.75 (1.36–2.23)	1	2007	Adoxophyes honmai	Kanaya (susceptible strain)	Japan	[385]	
	35.5 (49.1–63.7)	32	2008	Adoxophyes honmai	Shimada-Yui	Japan	[385]	
	35.2 (30.1–42.0)	20	2009	Adoxophyes honmai	Shimada-Yui	Japan	[385]	
	1174 (454 > 10,000)	671	2011	Adoxophyes honmai	June	Shimada-Yui	Japan	[385]
Table 3. Cont.

Insecticide	LC₅₀ (95%) mg/L or µg/mL RR	Year	Pest	Population	Country	Reference
Clorantraniliprole						
265 (184–444)	2000	2011	Platella xylostella	Zengcheng, Guangdong	China	[374]
18.7 (10.9–28.6)	140	2011	Platella xylostella	Zhuhai, Guangdong	China	[374]
0.13 (0.09–0.19)	1	2011	Platella xylostella	Roth (lab susceptible)	China	[130]
2.3 (1.6–3.3)	18	2011	Platella xylostella	Panyu, Guangdong F3	China	[130]
4 (2.8–5.5)	30	2011	Platella xylostella	Zhuhai, Guangdong	China	[130]
150 (105–240)	800	2011	Platella xylostella	Zengcheng, Guangdong	China	[130]
0.30 (0.25–0.38)	1	2011	Platella xylostella	Chiang Mai (field susceptible)	Thailand	[376]
Flubendiamide						
161 (144–181)	105	2011	Adoxophyes honmai	Shimada-Yui	Japan	[365]
0.001 (0.0002–0.003)	1	2017	Spodoptera exigua	Susceptible strain	Korea	[390]
0.3 (0.2–0.5)	428	2019	Spodoptera exigua	Anseong	Korea	[395]
10.5 (7.0–14.4)	14,957	2019	Spodoptera exigua	Cheongju	Korea	[395]
9.6 (0.8–27.2)	9560	2017	Spodoptera exigua	Yeonggwang	Korea	[395]
8 (4.1–13.7)	35	2010	Plutella xylostella	Sai Noi	Thailand	[372]
34.4 (12.1–60.6)	152	2011	Plutella xylostella	Sai Noi	Thailand	[372]
174.4 (137.1–219.8)	775	2011	Platella xylostella	Lat Lum Kaew	Thailand	[372]
0.13 (0.01–0.18)	1	2010	Platella xylostella	Roth (lab susceptible)	China	[374]
8 (124–165)	2300	2011	Platella xylostella	Zengcheng, Guangdong	China	[374]
18.7 (10.9–28.6)	140	2011	Platella xylostella	Zhuhai, Guangdong	China	[374]
0.13 (0.09–0.19)	1	2011	Platella xylostella	Roth (lab susceptible)	China	[130]
2.3 (1.6–3.3)	18	2011	Platella xylostella	Panyu, Guangdong F3	China	[130]
4 (2.8–5.5)	30	2011	Platella xylostella	Zhuhai, Guangdong	China	[130]
2.3 (1.6–3.3)	18	2011	Platella xylostella	Panyu, Guangdong F3	China	[130]
10.7 (6.6–26.6)	81	2011	Platella xylostella	Zengcheng, Guangdong	China	[374]
0.225 (0.0535–0.587)	1	2009	Platella xylostella	Tub Berg (field susceptible)	Thailand	[372]
19.7 (7.3–92.4)	87	2011	Platella xylostella	Tha Muang	Thailand	[372]
0.001 (0.0002–0.003)	1	2017	Spodoptera exigua	Susceptible strain	Korea	[390]
6.5 (5–8.2)	6500	2017	Spodoptera exigua	GC, Geochang	Korea	[390]
0.007	1	2017	Spodoptera exigua	Susceptible strain	Korea	[390]
6.5 (5–8.2)	6500	2017	Spodoptera exigua	GD, Geochang	Korea	[390]
34.4 (12.1–60.6)	152	2011	Plutella xylostella	Sai Noi	Thailand	[372]
0.13 (0.01–0.18)	1	2010	Platella xylostella	Roth (lab susceptible)	China	[374]
8 (124–165)	2300	2011	Platella xylostella	Zengcheng, Guangdong	China	[374]
Table 3. Cont.

Insecticide	LC50 (95%) mg/L or µg/mL	RR#	Year	Pest	Population	Country	Reference	
Clorantraniliprole	0.007 (0.004–0.012)	1	2011	Plutella xylostella	BCS-S (lab susceptible)	Brazil	[380]	
	204 (176.9–236.4)	27,93	2011	Plutella xylostella	Camocim	Brazil	[380]	
	0.006 (0.004–0.008)	1	1998	Plutella xylostella	RCF-Lab, Recife	Brazil	[387]	
	43.3 (29.7–59.2)	7/492	2012	Plutella xylostella	BNV, Boas Novas II	Brazil	[387]	
	77.2 (63.6–93.6)	13,365	2012	Plutella xylostella	CGD, Cha Grande	Brazil	[387]	
	89.6 (75.3–105.9)	15,507	2011	Plutella xylostella	SPC, Sapucarana	Brazil	[387]	
	112.4 (96.4–130.9)	19,474	2011	Plutella xylostella	CSF1, Camocim I	Brazil	[387]	
	115.2 (96.3–137.8)	19,944	2011	Plutella xylostella	BNV1, Boas Novas I	Brazil	[387]	
	123.9 (97–157.3)	21,440	2011	Plutella xylostella	JPI, Jupi	Brazil	[387]	
	149.1 (113.4–197.7)	23.4 (18.3–31.3)	2128	2010	Plutella xylostella	JA (lab susceptible)	Japan	[373]
	162.6 (137.3–193.4)	2011	Plutella xylostella	BCS-S (lab susceptible)	Phillipines	Phillipines	[388]	
	0.011 (0.005–0.018)	1	2010	Plutella xylostella	JA (lab susceptible)	Japan	[372]	
	0.03 (0.02–0.05)	1	2017	Plutella xylostella	Susceptible strain	Korea	[390]	
	35.9 (21.1–57.4)	1196	2017	Plutella xylostella	FC, Pyeongchang	Korea	[390]	
	1.2 (0.4–3)	40	2017	Plutella xylostella	GN, Gangneung	Korea	[390]	
	0.49 (0.33–0.72)	16	2017	Plutella xylostella	SJ, Seongju	Korea	[390]	
	17.6 (12.5–22.9)	20	2007	Plutella xylostella	Susceptible strain	China	[378]	
	1954 (1415–2437)	2246	2017	Plutella xylostella	ZC, ZengChengi Guangdong	China	[378]	
	0.82 (0.36–1.5)	1	2011	Chilo suppressalis	Fushun11, Fushun, Sichuan (Field Sus.)	China	[375]	
	8.4 (5.7–12.2)	10	2010	Chilo suppressalis	Yizheng10, Yizheng, Jiangsu	China	[375]	
	8.9 (6–14.5)	11	2011	Chilo suppressalis	Xiangshan11,Xiangshan, Zhejiang	China	[375]	
	10.4 (6.8–15.7)	13	2010	Chilo suppressalis	Lujiang10, Lujiang, Anhui	China	[375]	
	11.2 (6–20.5)	14	2010	Chilo suppressalis	Longyou10, Longyou, Zhejiang	China	[375]	
	10.4 (5–23.7)	17	2011	Chilo suppressalis	Dong-An11, Dong-An, Hunan	China	[375]	
	17.7 (10.6–31.8)	22	2010	Chilo suppressalis	Wuxue10, Wuxue, Hubei	China	[375]	
	3 (1.4–4.5)	1	2012	Chilo suppressalis	RA12, Ruan, Zhejiang (Sus. Strain)	China	[379]	
	47 (28.4–103)	16	2012	Chilo suppressalis	ZJ12, Zhiji, Zhejiang	China	[379]	
	43.2 (20.1–107.6)	14	2013	Chilo suppressalis	ZJ13, Zhiji, Zhejiang	China	[379]	
	1.4 (1.1–1.7)	1	2011–2012	Chilo suppressalis	Pooled susceptible strains	China	[377]	
	16.2 (11–27.2)	11	2014	Chilo suppressalis	XS14, Xiangshan, Zhejiang	China	[387]	
	108.1 (79.5–178.5)	78	2014	Chilo suppressalis	YY14, Yuyao, Zhejiang	China	[389]	
	0.43 (0.37–0.5)	1	2016	Chilo suppressalis	CAAS (lab susceptible)	China	[44]	
	108.5 (86.2–136.4)	250	2016	Chilo suppressalis	Pooled susceptible strains	China	[44]	
	1.4 (1–1.7)	1	2011	Chilo suppressalis	Pooled susceptible strains	China	[377]	
	114.5 (71.7–162.1)	82	2016	Chilo suppressalis	XS, Xiaoshan, Zhejiang	China	[386]	
	199.9 (173.5–229.9)	143	2016	Chilo suppressalis	JH, Jinhua, Zhejiang	China	[386]	
	147.3 (62.8–280.8)	106	2016	Chilo suppressalis	QZ, Quzhou, Zhejiang	China	[386]	
	154.8 (103.8–222.1)	111	2016	Chilo suppressalis	LY, Longyou, Zhejiang	China	[386]	
Insecticide	LC50 (95%) mg/L or µg/mL	RR*	Year	Pest	Population	Country	Reference	
-------------	--------------------------	-----	------	------	------------	---------	-----------	
Clorantraniliprole	195.3 (164.2–232)	140	2016	Chilo suppressalis	YQ, Yueqing, Zhejiang	China	[386]	
	214 (183.2–250.8)	154	2016	Chilo suppressalis	WL, Wenling, Zhejiang	China	[386]	
	89.2 (73.9–107)	64	2016	Chilo suppressalis	HY, Hengyang, Hu’nan	China	[386]	
	109.6 (91.4–131.9)	79	2016	Chilo suppressalis	XY, Xinyang, He’nan	China	[386]	
	0.18 (0.13–0.30)	1	2014	Tuta absoluta	Lab (susceptible strain)	China	[383]	
	47.6 (30.8–77.1)	264	2014	Tuta absoluta	IT-PACH-14-1 Siracusa, Pachino	Italy	[388]	
	63.7 (42.1–128)	354	2014	Tuta absoluta	IT-PACH-14-2 Siracusa, Pachino	Italy	[383]	
	435 (165–1193)	2417	2014	Tuta absoluta	IT-ACAT-14-1 Ragusa, Acate	Italy	[383]	
	225 (135–343)	1250	2014	Tuta absoluta	IT-GELA-14-1 Caltanissetta, Gela	Italy	[383]	
	2.4 (1.2–17.0)	14	2014	Tuta absoluta	GR-IER-14-1 Ierapetra, Krenti	Greece	[383]	
	0.0044 (0.0024–0.0068)	1	2014	Tuta absoluta	BSL, Brasília-DF	Brazil	[385]	
	0.19 (0.12–0.28)	45	2015	Tuta absoluta	BZR, Bezerros-PE	Brazil	[385]	
	1.5 (1.2–2)	356	2014	Tuta absoluta	LGD, Lagoa Grande-PE	Brazil	[385]	
	2.3 (1.4–3.4)	525	2014	Tuta absoluta	JDR2, João Dourado II-BA	Brazil	[385]	
	2.9 (1.9–4.4)	658	2014	Tuta absoluta	JDR1 João Dourado I-BA	Brazil	[385]	
	4.6 (3.2–7)	1064	2014	Tuta absoluta	GML2 Gameleira II-BA	Brazil	[385]	
	92.4 (60–129.9)	21,155	2014	Tuta absoluta	GML1 Gameleira I-BA	Brazil	[385]	
	646 (423–917)	147,928	2014	Tuta absoluta	PSQ Pesqueira-PE	Brazil	[385]	
	1263 (946–1673)	288,995	2014	Tuta absoluta	AMD América Dourada-BA	Brazil	[385]	
	0.3 (0.22–0.45)	1	2010	Tuta absoluta	GR-Lab, Peloponnesus	Greece	[388]	
	161 (44.2–596)	20	2010	Tuta absoluta	GR-IndR, Ierapetra	Greece	[388]	
	17 (8.7–42)	57	2015	Tuta absoluta	BR-GML1, Gameleira	Brazil	[388]	
	56 (14–120)	360	2014	Tuta absoluta	BR-PSQ, Pesqueira, PE	Brazil	[388]	
	0.21 (0.15–0.29)	1	2005	Tuta absoluta	BCS-TA-S, Paulinia, SP	Brazil	[47]	
	92 (60–130)	438	2014	Tuta absoluta	BR-PSQ, Pesqueira, PE	Brazil	[47]	

Table 3. Cont.
Insecticide	LC50 (95%) mg/L or µg/mL	RR\#	Year	Pest Population	Country	Reference
Clorantraniliprole						
0.14 (0.11–0.17)	10	2010	Spodoptera exigua	SH10 Minhang, Shanghai	China	[369]
0.14 (0.12–0.16)	10	2008	Spodoptera exigua	TA08 Tai’an, Shandong	China	[369]
0.16 (0.14–0.18)	12	2010	Spodoptera exigua	HF10 Hefei, Anhui	China	[369]
0.21 (0.18–0.25)	15	2010	Spodoptera exigua	SZ10 Shengzhen, Guangdong	China	[369]
0.24 (0.2–0.28)	17	2010	Spodoptera exigua	DG10 Dongguang, Guangdong	China	[369]
0.21 (0.18–0.25)	15	2010	Spodoptera exigua	HZ10 Huizhou, Guangdong	China	[369]
0.16 (0.14–0.19)	12	2010	Spodoptera exigua	ZZ10 Zhangzhou, Fujian	China	[369]
0.37 (0.26–0.52)	1		Spodoptera exigua	WH-S (Lab. susceptible)	China	[370]
12.2 (5.8–35.4)	33	2010	Spodoptera exigua	JN, Jingning, Yunnan	China	[370]
4.7 (2.2–7.9)	13	2009	Spodoptera exigua	YL-1, Yanliang, Shanxi	China	[370]
16.5 (12.6–22)	44	2009	Spodoptera exigua	YX, Yongxiu, Jiangxi	China	[370]
5.3 (1.6–13.9)	14	2009	Spodoptera exigua	LG, Longhai, Fujian	China	[370]
7.5 (3–15.8)	20	2009	Spodoptera exigua	HA, Huaiian, Jiangsu	China	[370]
4 (2.6–5.7)	11	2009	Spodoptera exigua	LH-1, Luhe, Jiangsu	China	[370]
3.6 (2.3–6)	10	2010	Spodoptera exigua	LH-2, Luhe, Jiangsu	China	[370]
12.7 (5.1–27.4)	34	2009	Spodoptera exigua	FX-1, Fengxian, Shanghai	China	[370]
6 (3.1–10.8)	16	2010	Spodoptera exigua	FX-2, Fengxian, Shanghai	China	[370]
5.1 (2.4–8.2)	14	2011	Spodoptera exigua	WH-S (Lab. susceptible)	China	[370]
0.08 (0.06–0.1)	1		Spodoptera exigua	WH-S (Lab. susceptible)	China	[393]
2.2 (1.7–2.9)	27	2014	Spodoptera exigua	Baiyun, Guangzhou	China	[396]
60 (46.1–79.8)	750	2015	Spodoptera exigua	Baiyun, Guangzhou	China	[396]
64 (43.5–87)	800	2016	Spodoptera exigua	Baiyun, Guangzhou	China	[396]
54.5 (41.6–72.3)	682	2017	Spodoptera exigua	Baiyun, Guangzhou	China	[396]
140.7 (106.7–179.1)	1759	2018	Spodoptera exigua	Baiyun, Guangzhou	China	[396]
1.3 (0.97–1.74)	16	2014	Spodoptera exigua	Fengxian, Shanghai	China	[396]
1.9 (1.3–2.6)	24	2015	Spodoptera exigua	Fengxian, Shanghai	China	[396]
45.6 (35–60.7)	571	2016	Spodoptera exigua	Fengxian, Shanghai	China	[396]
159.6 (120.9–210.8)	1995	2017	Spodoptera exigua	Fengxian, Shanghai	China	[396]
207.8 (162.3–267.4)	2597	2018	Spodoptera exigua	Fengxian, Shanghai	China	[396]
0.97 (0.6–1.7)	12	2015	Spodoptera exigua	Huangpi, Wuhan	China	[396]
3.7 (2.6–4.9)	46	2016	Spodoptera exigua	Huangpi, Wuhan	China	[396]
10.3 (7.7–13.6)	129	2017	Spodoptera exigua	Huangpi, Wuhan	China	[396]
17.6 (13.8–22.2)	221	2018	Spodoptera exigua	Huangpi, Wuhan	China	[396]
0.01 (0.0002–0.07)	1	2017	Spodoptera exigua	Susceptible strain	Korea	[390]
>25	2500	2017	Spodoptera exigua	CJ, Cheongju	Korea	[390]
>25	2500	2017	Spodoptera exigua	JD, Jindo	Korea	[390]
>25	2500	2017	Spodoptera exigua	YG, Yeonggwang	Korea	[390]
1.8 (0.8–4.2)	177	2017	Spodoptera exigua	MR, Miryang	Korea	[390]
10.1 (6.5–16.3)	1006	2017	Spodoptera exigua	GC, Geochang	Korea	[390]
Table 3. Cont.

Insecticide	LC50 (95%) mg/L or µg/mL	RR#	Year	Pest Population	Country	Reference	
Clorantraniliprole	27 of 47						
	0.002	1	2019	Spodoptera exigua	Susceptible strain	Korea	[395]
	8 (5.3–12.5)	4000	2019	Spodoptera exigua	Anseong	Korea	[395]
	1.2 (0.3–2.7)	600	2019	Spodoptera exigua	Cheongju	Korea	[395]
	6.6 (5.3–8.2)	3300	2019	Spodoptera exigua	Gangneung	Korea	[395]
	4.6 (2.3–7.0)	2300	2019	Spodoptera exigua	Icheon	Korea	[395]
	13.4 (7.6–25.3)	6700	2019	Spodoptera exigua	Jindo	Korea	[395]
	21.2 (9.9–498.0)	12,500	2019	Spodoptera exigua	Yeju	Korea	[395]
	0.032 * (0.025–0.041)	1	Spodoptera exigua	WH-S strain, Hubei (Susceptible Str.)	China	[393]	
	4.9 * (3.9–6.6)	154	2018	Spodoptera exigua	WF strain, Weifang, Shandong	China	[393]
	0.055 (0.040–0.072)	1	Spodoptera exigua	SS	China	[394]	
	9.9 (4.9–19)	180	2018	Spodoptera exigua	CL18, Changle, Shandong	China	[394]
	4.1 (1.4–12.4)	74	2019	Spodoptera exigua	CL19, Changle, Shandong	China	[394]
	1.5 (1.2–2)	28	2018	Spodoptera exigua	AQ18, Anqiu, Shandong	China	[394]
	5.5 (1.8–11.6)	100	2018	Spodoptera exigua	NY18, Nanyang, Henan	China	[394]
	4.6 (3.2–6.4)	83	2019	Spodoptera exigua	NY19, Nanyang, Henan	China	[394]
	29.3 (17.6–50)	534	2019	Spodoptera exigua	AY19, Anyang, Henan	China	[394]
	16.7 (10.6–31.3)	304	2018	Spodoptera exigua	XZ18, Xuzhou, Jiangsu	China	[394]
	16.5 (8.7–31.8)	301	2018	Spodoptera exigua	XA18, Xian, Shanxi	China	[394]
	136.3 (83.2–229.3)	2477	2019	Spodoptera exigua	JX19, Jiaxing, Zhejiang	China	[394]
	4.20 (3.51–4.95)	1	Spodoptera litura	XW-Sus (Susceptible Str.)	China	[368]	
	47.2 (40.7–53.9)	11	2010	Spodoptera litura	SH10, Minhang, Shanghai	China	[368]
	71.6 (54.4–94.9)	17	2008	Spodoptera litura	HH08, Hefei, Anhui	China	[368]
	75.5 (61.7–89.8)	18	2010	Spodoptera litura	HF10, Hefei, Anhui	China	[368]
	100.3 (84.3–119.3)	24	2009	Spodoptera litura	HX09, Hexian, Anhui	China	[368]
	78.9 (64.3–93.5)	19	2010	Spodoptera litura	ZZ10, Zhangzhou, Fujian	China	[368]
	102.5 (84–121)	24	2010	Spodoptera litura	SZ10, Shenzhen, Guangdong	China	[368]
	80.4 (63.5–96.8)	19	2010	Spodoptera litura	HZ10, Huizhou, Guangdong	China	[368]
	98.8 (79.5–118)	23	2010	Spodoptera litura	DGG10, Dongguang, Guangdong	China	[368]
	0.083 (0.066–0.106)	1	Spodoptera litura	SS (Lab. susceptible)	China	[384]	
	0.83 (0.65–1.06)	10	2013	Spodoptera litura	HZ13, Huizhou, Guangdong	China	[384]
	1.2 (0.9–1.7)	15	2014	Spodoptera litura	ZC14, Zengcheng, Guangdong	China	[384]
	0.9 (0.7–1.24)	11	2014	Spodoptera litura	ND14, Ningde, Fujian	China	[384]
	1.2 (0.8–1.9)	14	2014	Spodoptera litura	HK14, Haikou, Hainan	China	[384]
	1.3 (0.9–1.9)	16	2014	Spodoptera litura	GL14, Guilin, Guangxi	China	[384]
	0.001 (0.0007–0.002) **	1	Spodoptera frugiperda	SUS, Monsanto Company	USA	[391]	
	0.16 (0.06–0.32) **	160	2016	Spodoptera frugiperda	PR2016, Ponce	Puerto Rico	[391]
Table 3. Cont.

Insecticide	LC50 (95%) mg/L or µg/mL	RR#	Year	Pest	Population	Country	Reference		
Cyantraniliprole	0.0068 (0.0039–0.012)	1	2011	Plutella xylostella	BCS-S (susceptible strain)	Philippines	[358]		
	18 (5.1–66)	2647	2011	Plutella xylostella		Sudan, Cebu Island	Philippines	[358]	
	0.009 (0.003–0.023)	1	2017	Plutella xylostella			Korea	[390]	
	0.95 (0.34–2.60)	106	2017	Plutella xylostella			PC, Pyeongchang	Korea	[390]
	0.88 (0.35–1.85)	98	2017	Plutella xylostella			GN, Gangneung	Korea	[390]
	0.43 (0.24–0.65)	48	2017	Plutella xylostella			SJ, Seongju	Korea	[390]
	0.029 (0.025–0.034)	1	1998	Plutella xylostella			RCF-Lab, Recife	Brazil	[387]
	0.0029 (0.025–0.034)	16	2012	Plutella xylostella			BNV2, Boas Novas II	Brazil	[387]
	1.3 (0.7–2.2)	39	2011	Plutella xylostella			BNV1, Boas Novas I	Brazil	[387]
	10.6 (5.8–18.8)	308	2011	Plutella xylostella			SPC, Sapucarana	Brazil	[387]
	33.1 (20.9–56.5)	962	2011	Plutella xylostella			CSF2, Camocim II	Brazil	[387]
	37 (31.2–44)	1075	2012	Plutella xylostella			PC, Pyeongchang	Korea	[387]
	64 (43.8–91.9)	1943	2011	Plutella xylostella			GN, Gangneung	Korea	[387]
	69.7 (55.4–87.4)	2024	2011	Plutella xylostella			SJ, Seongju	Korea	[387]
	0.08 (0.04–0.13)	1	2011	Spodoptera exigua				Korea	[390]
	1.8 (1.7–2.2)	23	2017	Spodoptera exigua			CJ, Cheongju	Korea	[390]
	>25	>312	2017	Spodoptera exigua			JD, Jindo	Korea	[390]
	1.7 (0.01–6.3)	21	2017	Spodoptera exigua			YG, Yeonggwang	Korea	[390]
	0.015 (0.011–0.020)	1	2014	Tuta absoluta			BSL, Brasilia-DF	Brazil	[385]
	1.2 (0.9–1.5)	78	2013	Tuta absoluta			BZR, Bezerros-PE	Brazil	[385]
	1.7 (1.2–2.2)	109	2014	Tuta absoluta			JDR1 Joao Dourado I-BA	Brazil	[385]
	2.2 (1.6–3)	147	2014	Tuta absoluta			GML2 Gameleira II-BA	Brazil	[385]
	8.5 (6.2–11.4)	556	2014	Tuta absoluta			JDR2, Joao Dourado II-BA	Brazil	[385]
	28.9 (17.3–41.9)	1895	2014	Tuta absoluta			LGD, Lagoa Grande-PE	Brazil	[385]
	90.6 (63.3–121.4)	5932	2014	Tuta absoluta			CSF1, Camocim I	Brazil	[385]
	152.9 (96.2–224.3)	10,010	2014	Tuta absoluta			GML1 Gameleira I-BA	Brazil	[385]
	281.3 (190.8–405)	18,423	2014	Tuta absoluta			PSQ Pesqueira-PE	Brazil	[385]
	0.17 (0.11–0.26)	1	2014	Aphis gossypii				Spain	[347]
	2.5 (1.5–3.9c)	14	2010	Aphis gossypii				Spain	[347]
	2.7 (1.4–1.9)	1	2009	Bemisia tabaci				Spain	[347]
	43.8 (37.4–51.3)	26	2010	Bemisia tabaci				Spain	[347]
	0.002 (0.0009–0.02)	1	2016	Bemisia tabaci				Spain	[347]
Cyclaniliprole	>22.5	>11,250	2017	Spodoptera exigua			CJ, Cheongju	Korea	[390]
	>22.5	>11,250	2017	Spodoptera exigua			JD, Jindo	Korea	[390]
	>22.5	>11,250	2017	Spodoptera exigua			YG, Yeonggwang	Korea	[390]
	10.7 (4.8–21.2)	5350	2017	Spodoptera exigua			MR, Miyang	Korea	[390]
	6.3 (4.9–8.1)	3150	2017	Spodoptera exigua			GC, Geochang	Korea	[390]
	0.04 (0.03–0.07)	1	2017	Spodoptera exigua			SS	China	[394]
	1.4 (1–1.9)	33	2018	Spodoptera exigua			XA18, Xian, Shanxi	China	[394]
	0.5 (0.3–0.7)	12	2018	Spodoptera exigua			NY18, Nanyang, Henan	China	[394]
	5.5 (4.1–7.6)	128	2019	Spodoptera exigua			AY19, Anyang, Henan	China	[394]

LC50 of the field populations/LC50 of the susceptible strain. Cases with resistance ratios greater than 10-fold are included. * LC50 is calculated as µg/cm², LD₅₀ values are calculated as µg/µL **, µg/g *** or ng/larva ****. RR stands for resistance ratio. The reference susceptible populations are highlighted.

Detailed examination of RyRs from field-collected or lab-selected resistant strains revealed mutations that affected residues located in the C-terminal transmembrane spanning domains [358,362,373,376], in accordance with this region being a binding site for
diamides. Most of these studies were conducted in *P. xylostella*, but to a lesser extent in *T. absoluta* and *C. suppressalis*, *S. exigua*, and *S. frugiperda*. Four mutations in insect RyRs are associated with diamide resistance; 1) G4946/E/V located at the interface between transmembrane domain 4 (TM4) and the TM4-TM5 linker (numbering is based on PxRyR), 2) I4790M/ /T within the upper TM2 or TM3, 3) E1338D at the N-terminus, and 4) Q4594L in a flexible loop located in DR1 before the pseudo voltage-sensor domain [47,48,107,109,358,362,373,376,378,381,389,393,405]. Ligand binding assays showed that the binding affinity of chlorantraniliprole to native microsomal membranes from field-resistant populations with the G4946E mutation was significantly lower than that in the susceptible strains [358,362]. In another study, binding and efficacy of both flubendiamide and chlorantraniliprole were dramatically impaired in recombinant *P. xylostella* RyR with the G4946E mutation, while affinity to other ligands, such as caffeine or ryanodine, did not change [109]. In a relatively recent study, CRISPR/Cas9 genome-modified *S. exigua* larvae with the G4946E mutation exhibited 223-, 336-, and >1000-fold increase in resistance to chlorantraniliprole, cyantraniliprole and flubendiamide, respectively [402]. Similarly, CRISPR/Cas9 modified *D. melanogaster* flies with the G4946V mutation were also found to exhibit high levels of resistance against flubendiamide (RR: 91.3) and chlorantraniliprole (RR:195), but less so against cyantraniliprole (RR:5.4) [405], further indicating the importance of this mutation for diamide resistance. Studies using a recombinant *D. melanogaster* RyR with G4946E mutation expressed in Sf9 cells revealed that this mutation confers a high degree of resistance also against pyrrole-2-carboxamides [345]. It is noteworthy that the glycine at position 4946 is conserved amongst insect species, except in the dipteran midge *Belgica antarctica*, the mite *Tetranychus urticae* and the hemipteran mealybug *Ferrisia virgata* [63]. The replacement of glycine with a glutamic acid or valine in the resistant strains is likely to have a major impact on the movement of the S5 and S6 helices, which control opening and closing of the RyR channel pore, leading to an inhibition or decrease in the binding of diamide insecticides to the channel [109,331]. On the other hand, *D. melanogaster* flies naturally wild-type for the I4790M mutation exhibit low to moderate resistance to diamides, while the M4790I mutation leads to higher levels of susceptibility to flubendiamide (RR: −15.3 fold), but less to chlorantraniliprole (RR: −7.5) and cyantraniliprole (RR: −2.3) [405]. As mentioned in Section 3. Structure, the isoleucine residue at position 4790 is specific to lepidopterans (in contrast to commonly conserved G4946 in insects) as is a methionine in *D. melanogaster* and all other insects and arachnids, suggesting 4790 might be responsible for the differential sensitivities of the *P. xylostella*, *T. absoluta*, and possibly beetles and other insects to diamides [63,115,116,358,363,373,405]. Homology models of the PxRyR based on rabbit RyR1 indicated that the I4790M mutation in TM2 is located directly opposite to the G4946E mutation (the distance between the two residues is only ~15 Å) in the pseudo voltage sensor domain, suggesting that these two regions might define the diamide binding sites on the receptor [107,109,331,358,362]. The model of PxRyR by Lin et al. [107] further indicated that G4946 is near the entrance to the pocket and that the mutation to glutamatic acid narrows the entrance to the pocket, whereas I4790 is located deep in the pocket and the mutation to methionine makes the pocket shallower. The study by Douris et al. [405] also indicates that G4946V mutations confer very high levels of resistance as the RR of the G4946V mutants to M4790I susceptible mutants is 1400 and 1465 for flubendiamide and chlorantraniliprole, respectively suggesting I4790 is lysine in *D. melanogaster* and coleopterans, hymentopterans and some other Dipterans; however, its involvement in diamide binding is not currently known, other than it being mutated in resistant populations [63,373]. The same is valid for E1338, which is located in the insect divergent region 2 (IDR2) between SPRY2 and SPRY3 domains and appears not to be conserved in insects [63,107]. A recent study on a Chinese field population of *C. suppressalis* resistant to chlorantraniliprole revealed a new mutation Y4667D/C (corresponding to Y4701 in PxRyR), which might confer to high levels of resistance [44]. However,
the functional importance of the Y4667D/C, the E1338D and the Q4594L mutations has not been demonstrated to date.

Other mechanisms might also confer to diamide resistance; this includes metabolic resistance and down-regulation of RyR. Metabolic resistance against insecticides develops through elevated levels of detoxification enzymes, such as cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST) and esterases. The synergistics, piperonyl butoxide (PBO) an inhibitor of P450, diethyl maleate (DEM) a depleter of glutathione, S,S,S-tributylphosphorothioate (DEF) an esterase inhibitor, and triphenyl phosphate (TPP) a carboxylesterase inhibitor, lowered the LC50/LD50 values of chlorantraniliprole in L. decemlineata [407], P. xylostella [130], C. suppressalis [44] and S. frugiperda [48]. Additionally, higher levels of cytochrome P450 enzyme and esterases were reported from laboratory strains selected with chlorantraniliprole [44,408,409]. Similarly, transcriptomic profile of chlorantraniliprole-resistant field populations of P. xylostella revealed that most of the metabolic detoxification enzyme genes were slightly up-regulated [410]. Up-regulation of cytochrome P450 genes by chlorantraniliprole or an increase in the chlorantraniliprole-linked mortality upon silencing of a cytochrome P450 gene have been also reported [411–413]. In contrast, synergism tests and biochemical assays showed no obvious correlations between diamide resistance and three detoxifying enzymes in C. suppressalis [389] and S. exigua [369]. It is noteworthy indicating that a detoxification mechanism via the ATP-binding cassette (ABC) transporters is also possible [345,414,415]. Down-regulation of RyR might also be a possible resistance mechanism to diamide insecticides, which was demonstrated via RNAi in S. furcifera [53] and L. decemlineata [51]. Down-regulation of RyR led to a decrease in the diamide efficacy. In another study, RyR was found to be slightly down-regulated in P. xylostella populations with lower to moderate levels of resistance (RR: 6–35 fold) against chlorantraniliprole, while the gene was significantly down-regulated in a population with high levels of resistance (RR:1750-fold) [410]. Similarly, RyR was down-regulated in C. suppressalis upon treatment with chlorantraniliprole [44]. Down-regulation of RyR might slow the release and depletion of intracellular Ca2+ stores from the SR in muscles and the ER of many cell types when induced by RyR activators, and consequently enhances resistance to diamide insecticides [53]. It is noteworthy that there are cases reporting over-expression of RyR genes in chlorantraniliprole-resistant populations or up-regulation induced by diamides [38,64,416].

As mentioned before, studies on IP3Rs as targets in pest control are limited due to their higher similarity with their mammalian counterparts. Nevertheless, a single study has examined the role of IP3R in diamide resistance. Interestingly, silencing IP3R in B. tabaci adults dramatically decreased susceptibility to cyantraniliprole [62], similar to the decreased chlorantraniliprole-induced mortality upon RyR silencing in S. furcifera [53] and L. decemlineata [51]. It is interesting that continuous administration of cyantraniliprole down-regulates IP3R expression during the entire period of the treatment in B. tabaci, which might be a strategy to adjust the RyR-linked increase in intracellular Ca2+ and decreased ER Ca2+ levels [62]. However, this topic requires further investigation.

There might be other pest control tools targeting cellular Ca2+ homeostasis and interfering with IP3R and RyR. Botanicals, entomopathogens, repellents, toxins, Ca2+ inhibitors or biomolecules such as dsRNA or miRNAs or peptide agonists or antagonists are promising in this regard. For example, Ma et al. [417] examined the effect of wilforine, a novel botanical insecticide from the root bark of thunder duke vine, Tripterium wufordii (Celastraceae) [418] on Mythimna separate (Lepidoptera: Noctuidae). This investigation revealed that wilforine acts on myocytes leading to an increase in cytosolic Ca2+ levels when applied at nanomolar levels and activates both RyR and IP3R based on use of specific inhibitors of both channel proteins [417]. Similarly, both IP3R and RyR in neurons are activated by the botanical insecticide Celangulin I, extracted from Chinese bittersweet Celastrus angulatus, another species from Celastraceae [419]. Other biological agents, such as entomopathogenic viruses, or repellents, such as DEET, or bacterial toxins, such as Bacillus thuringiensis Cry toxins might also interfere directly or indirectly with Ca2+ signaling and intracellular Ca2+
levels [420–429]. Development of dsRNA-based insecticides interfering with cellular Ca\(^{2+}\) homeostasis also has great potential in this manner [10,430–432]. Co-application of the agents above with diamides might also have a potential within a combined tactic, which also requires further investigation.

7. Conclusions

In conclusion, Ca\(^{2+}\) homeostasis is vital for insects, and the ER is one of the major intracellular sources for Ca\(^{2+}\). The RyR and IP\(_3\)R are the two channel proteins associated with the ER and are involved in the intracellular Ca\(^{2+}\) supply. Insects possess a single RyR and IP\(_3\)R gene, in contrast to mammalians which possess three for each. Both RyR and IP\(_3\)Rs cluster separately in phylogenetic analyses; however, they share common domains, such as the MIR, RIH, RIH-associated regulatory domains at the amino-terminus, and transmembrane helices at the carboxy-terminus. Alternative splicing, which is regulated in a tissue-specific and developmental manner, occurs for both genes and each receptor has its own, distinct, regulatory mechanism. IP\(_3\)R genes are expressed in most cells, in particular in the ER of neurons, adipocytes, and oocytes, while RyR gene expression has a more restricted distribution and is predominantly found in the SR of muscle cells and the ER of neurons. Both receptors have essential roles in insect physiology and development. RyRs mediate many cellular and physiological activities related to muscle contraction and hormone secretion, while IP\(_3\)Rs are involved in key events related to learning, memory, neuronal signaling, lipid metabolism, and sensory transduction. Efforts have concentrated on the development of pest control strategies targeting the operation of RyRs and IP\(_3\)Rs; however, RyRs appear to be safer targets due to their lower similarity with mammalian counterparts compared to IP\(_3\)Rs. Diamides are the best examples of a pest control chemistry targeting RyRs, although resistance developed by pests against diamides has become an increasing issue. Various pest control tactics based on use of botanicals, microbials and toxins, as well as biomolecules such as dsRNA and miRNAs, targeting cellular Ca\(^{2+}\) homeostasis and affecting the operation of RyRs and/or IP\(_3\)Rs directly or indirectly might be also promising.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.390/biom11071031/s1, Table S1: Proteins used in the phylogenetic analysis and alignments in the current review.

Author Contributions: Conceptualization, U.T.; investigation, U.T. and C.D.; writing—original draft preparation, U.T. and C.D.; writing—review and editing, U.T., C.D. and D.H.; visualization, U.T. and C.D.; supervision, U.T.; project administration, U.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to acknowledge Oyak Biyoteknoloji [Oyak Biotech Co.], Turkey for their support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21. [CrossRef]
2. Taylor, W.C. Calcium regulation in insects. Adv. Insect Physiol. 1987, 19, 155–186. [CrossRef]
3. Gu, S.H.; Chow, Y.S.; O’Reilly, D.R. Role of calcium in the stimulation of ecdysteroidogenesis by recombinant prothoracotrophic hormone in the prothoracic glands of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 1998, 28, 861–867. [CrossRef]
4. Takeo, S.; Tsuda, M.; Akahori, S.; Matsuo, T.; Aigaki, T. The calcineurin regulator sra plays an essential role in female meiosis in Drosophila. Curr. Biol. 2006, 16, 1435–1440. [CrossRef]
5. Yoshiga, T.; Yokoyama, N.; Imai, N.; Ohnishi, A.; Moto, K.; Matsumoto, S. cDNA cloning of calcineurin heterosubunits from the pheromone gland of the silkmoth, Bombyx mori. Insect Biochem. Mol. Biol. 2002, 32, 477–486. [CrossRef]

6. Teets, N.M.; Yi, S.X.; Lee, R.E.; Denlinger, D.L., Jr. Calcium signaling mediates cold sensing in insect tissues. Proc. Natl. Acad. Sci. USA 2013, 110, 9154–9159. [CrossRef][PubMed]

7. Bronk, P.; Kuklin, E.A.; Gorur-Shaendilya, S.; Liu, C.; Wiggin, T.D.; Reed, M.L.; Marder, E.; Griffith, L.C. Regulation of egg by Ca\(^{2+}\)/calmodulin controls presynaptic excitability in Drosophila. J. Neurophysiol. 2018, 119, 1665–1680. [CrossRef]

8. Bahk, S.; Jones, W.D. Insect odorant receptor trafficking requires calmodulin. BMC Biol. 2016, 14, 83. [CrossRef]

9. Pallen, C.; Steele, J.E. A putative role for calmodulin in corpus cardiacum stimulated trehalose synthesis in fat body of the american cockroach (Periplaneta americana). Insect Biochem. 1988, 18, 577–584. [CrossRef]

10. Doğan, C.; Hänniger, S.; Heckel, D.G.; Coutu, C.; Hagedus, D.D.; Crubaugh, L.; Groves, R.L.; Mutlu, D.A.; Suludere, Z.; Bayram, Ş.; et al. Characterization of calcium signaling proteins from the fat body of the Colorado Potato Beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae): Implications for diapause and lipid metabolism. Insect Biochem. Mol. Biol. 2021, 133, 103549. [CrossRef]

11. Doğan, C.; Hänniger, S.; Heckel, D.G.; Coutu, C.; Hagedus, D.D.; Crubaugh, L.; Groves, R.L.; Bayram, Ş.; Toprak, U. Two calcium-binding chaperones from the fat body of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) involved in diapause. Arch. Insect Biochem. Physiol. 2021, 106, e21755. [CrossRef]

12. Bootman, M.D.; Lipp, P.; Berridge, M.J. The organization and functions of local Ca\(^{2+}\) signals. J. Cell Sci. 2001, 114, 2213–2222. [CrossRef][PubMed]

13. Rossi, A.M.; Taylor, C.W. IP\(_3\) receptors—lessons from analyses ex cellula. J. Cell Sci. 2018, 132, jcs222463. [CrossRef]

14. Pizzolo, P.; Lissandron, V.; Capitanio, P.; Pozzan, T. Ca\(^{2+}\) signalling in the Golgi apparatus. Cell Calcium 2011, 50, 184–192. [CrossRef]

15. Glitsch, M.D.; Bakowski, D.; Parekh, A.B. Expression and function of the ryanodine receptor in cells. J. Cell Sci. 2012, 125, 157–165. [CrossRef]

16. Fill, M.; Copello, J.A. Ryanodine receptor calcium release channels. Physiol. Rev. 2002, 82, 893–922. [CrossRef]

17. Kobrinsky, E.; Ondrias, K.; Marks, A.R. Expressed ryanodine receptor can substitute for the inositol 1,4,5-trisphosphate receptor (IP\(_3\)). FEBS Lett. 1989, 248, 1948–1955. [CrossRef]

18. Haller, T.; Dietl, P.; Deetjen, P.; Vollk. H. The lysosomal compartment as intracellular calcium store in MDCK cells: A possible involvement in InsP3-mediated Ca\(^{2+}\) release. Cell Calcium 1996, 19, 157–165. [CrossRef]

19. Ryu, S.Y.; Beutner, G.; Dirksen, R.T.; Kinnally, K.W.; Sheu, S.S. Identification of a ryanodine receptor in rat heart mitochondria. J. Biol. Chem. 1996, 271, 21482–21488. [CrossRef]

20. Haller, T.; Dietl, P.; Deetjen, P.; Völkl, H. The lysosomal compartment as intracellular calcium store in MDCK cells: A possible involvement in InsP3-mediated Ca\(^{2+}\) release. Cell Calcium 1996, 19, 157–165. [CrossRef]

21. Fill, M.; Copello, J.A. Ryanodine receptor calcium release channels. Physiol. Rev. 2002, 82, 893–922. [CrossRef]

22. Beutner, G.; Sharma, V.K.; Giovannucci, D.R.; Yule, D.I.; Sheu, S.S. Identification of a ryanodine receptor in rat heart mitochondria. J. Biol. Chem. 2001, 276, 21482–21488. [CrossRef]

23. Ryu, S.Y.; Beutner, G.; Dirksen, R.T.; Kinnally, K.W.; Sheu, S.S. Mitochondrial ryanodine receptors-lessons from analyses ex cellula. J. Cell Sci. 2018, 133, jcs222463. [CrossRef]

24. Paknejad, N.; Hite, R.K. Structural basis for the regulation of inositol trisphosphate receptors by Ca\(^{2+}\). FEBS Lett. 2002, 508, 1948–1955. [CrossRef]

25. Seo, M.D.; Velamakanni, S.; Ishiyama, N.; Stathopulos, P.B.; Rossi, A.M.; Khan, S.A.; Dale, P.; Li, C.; Ames, J.B.; Ikura, M.; et al. Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 2012, 483, 108–112. [CrossRef]

26. Roest, G.; La Rovere, R.M.; Bulynck, G.; Parys, J.B. IP\(_3\) receptor properties and function at membrane contact sites. Adv. Exp. Med. Biol. 2017, 981, 149–178. [CrossRef][PubMed]

27. Cremer, T.; Neeffes, J.; Berlin, I. The journey of Ca\(^{2+}\) through the cell—Pulsing through the network of ER membrane contact sites. J. Cell Sci. 2020, 133, jcs249136. [CrossRef][PubMed]

28. Seo, M.D.; Velamakanni, S.; Ishiyama, N.; Stathopulos, P.B.; Rossi, A.M.; Khan, S.A.; Dale, P.; Li, C.; Ames, J.B.; Ikura, M.; et al. Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 2012, 483, 108–112. [CrossRef][PubMed]

29. Takeshima, H.; Nishimura, S.; Matsumoto, T.; Ishida, H.; Kangawa, K.; Minamino, N.; Matsuo, H.; Ueda, M.; Hanaoka, M.; Hirose, T. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 1989, 339, 439–445. [CrossRef][PubMed]

30. Takeshima, H.; Nishimura, S.; Matsumoto, T.; Ishida, H.; Kangawa, K.; Minamino, N.; Matsuo, H.; Ueda, M.; Hanaoka, M.; Hirose, T. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 1989, 339, 439–445. [CrossRef][PubMed]

31. Takeshima, H.; Ishida, H.; Kangawa, K.; Minamino, N.; Matsuo, H.; Ueda, M.; Hanaoka, M.; Hirose, T. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 1989, 339, 439–445. [CrossRef][PubMed]

32. Takeshima, H.; Nishimura, S.; Matsumoto, T.; Ishida, H.; Kangawa, K.; Minamino, N.; Matsuo, H.; Ueda, M.; Hanaoka, M.; Hirose, T. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 1989, 339, 439–445. [CrossRef][PubMed]
34. Puente, E.; Suner, M.; Evans, A.D.; McCaffery, A.R.; Windass, J.D. Identification of a polymorphic ryanodine receptor gene from Heliothis virescens (Lepidoptera: Noctuidae). Insect Biochem. Mol. Biol. 2000, 30, 335-347. [CrossRef]
35. Scott-Ward, T.S.; Dunbar, S.J.; Windass, J.D.; Williams, A.J. Characterization of the ryanodine receptor-Ca\(^{2+}\) release channel from the thoracic tissues of the lepidopteran insect Heliothis virescens. J. Membr. Biol. 2001, 179, 127–141. [CrossRef]
36. Kato, K.; Kiyonaka, S.; Sawaguchi, Y.; Tohnishi, M.; Masaki, T.; Yasokawa, N.; Mizuno, Y.; Mori, E.; Inoue, K.; Hamachi, L.; et al. Molecular characterization of flubendiamide sensitivity in the lepidopterous ryanodine receptor Ca\(^{2+}\)/ releases channel. Biochemistry 2009, 48, 10342–10352. [CrossRef]
37. Wang, J.; Li, Y.; Han, Z.; Zhu, Y.; Xie, Z.; Wang, J.; Liu, Y.; Li, X. Molecular characterization of a ryanodine receptor gene in the rice leafhopper, Chilopoda medialis (Gueneé). PLoS ONE 2012, 7, e36623. [CrossRef]
38. Sun, L.; Cui, L.; Rui, C.; Yan, X.; Yang, D.; Yuan, H. Modulation of the expression of ryanodine receptor mRNA from Plutella xylostella as a result of diame insecticide application. Gene 2012, 511, 265–273. [CrossRef]
39. Wang, X.; Wu, S.; Yang, Y.; Wu, Y. Molecular cloning, characterization and mRNA expression of a ryanodine receptor gene from diamondback moth, Plutella xylostella. Pestic. Biochem. Physiol. 2012, 102, 204–212. [CrossRef]
40. Cui, L.; Yang, D.; Yang, X.; Rui, C.; Wang, Z.; Yuan, H. Molecular cloning, characterization and expression profiling of a ryanodine receptor gene in the cotton bollworm, Helicoverpa armigera (Gueneé). PLoS ONE 2013, 8, e75825. [CrossRef]
41. Wang, J.; Liu, Y.; Gao, J.; Xie, Z.; Huang, L.; Wang, W.; Wang, J. Molecular cloning and mRNA expression of a ryanodine receptor gene in the cotton bollworm, Helicoverpa armigera (Gueneé). Pestic. Biochem. Physiol. 2013, 107, 327–333. [CrossRef]
42. Wu, S.; Wang, F.; Huang, J.; Fang, Q.; Shen, Z.; Ye, G. Molecular and cellular analyses of a ryanodine receptor from hemocytes of Pieris rapae. Dev. Comp. Immunol. 2013, 41, 1–10. [CrossRef]
43. Liu, Y.; Shahzad, M.F.; Zhang, L.; Li, F.; Lin, K. Amplifying long transcripts of ryanodine receptors of five agricultural pests by transcriptome analysis and gap filling. Genome 2013, 56, 651–658. [CrossRef]
44. Sun, Y.; Xu, L.; Chen, Q.; Qin, W.; Huang, S.; Jiang, Y.; Qin, H. Chlorantraniliprole resistance and its biochemical and new molecular target mechanisms in laboratory and field strains of Chilo suppressalis (Walker). Pest Manag. Sci. 2018, 74, 1416–1423. [CrossRef]
45. Sun, L.; Qiu, G.; Cui, L.; Ma, C.; Yuan, H. Molecular characterization of a ryanodine receptor gene from Spodoptera exigua and its upregulation by chlorantraniliprole. Bioorganic. Med. Chem. 2015, 123, 56–63. [CrossRef]
46. Sun, L.N.; Zhang, H.J.; Quan, L.F.; Yan, W.T.; Yue, Q.; Li, Y.Y.; Qiu, G.S. Characterization of the ryanodine receptor gene with a unique 3'-UTR and alternative splice site from the oriental fruit moth. J. Insect Sci. 2016, 16, 16. [CrossRef]
47. Roditakis, E.; Steinbach, D.; Moritz, G.; Vasakis, E.; Stavrokaki, M.; Ilias, A.; Garcia-Vidal, L. Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). Insect Biochem. Mol. Biol. 2017, 80, 11–20. [CrossRef]
48. Boaventura, D.; Bolzan, A.; Padovez, F.E.; Okuma, D.M.; Omoto, C.; Nauen, R. Detection of a ryanodine receptor target-site mutation in diame insecticide resistant fall armyworm, Spodoptera frugiperda. Pest Manag. Sci. 2020, 76, 47–54. [CrossRef]
49. Yuan, G.R.; Shi, W.Z.; Yang, W.J.; Jiang, X.Z.; Dou, W.; Wang, J.J. Molecular characteristics, mRNA expression, and alternative splicing of a ryanodine receptor gene in the oriental fruit fly, Bactrocera dorsalis (Hendel). PLoS ONE 2014, 9, e95199. [CrossRef]
50. Liu, Y.; Li, C.; Gao, J.; Wang, W.; Huang, L.; Guo, X.; Li, B.; Wang, J. Comparative characterization of two intracellular Ca\(^{2+}\)-release channels from the red flour beetle, Tribolium castaneum. Sci. Rep. 2014, 4, 6702. [CrossRef]
51. Wan, P.J.; Guo, W.Y.; Yang, Y.; Li, F.G.; Lu, W.P.; Li, Q.Q. RNAi suppression of the ryanodine receptor gene results in decreased susceptibility to chlorantraniliprole in Colorado potato beetle Leptinotarsa decemlineata. J. Insect Physiol. 2014, 63, 48–55. [CrossRef]
52. Wang, J.; Xie, Z.; Gao, J.; Liu, Y.; Wang, W.; Huang, L.; Wang, J. Molecular cloning and characterization of a ryanodine receptor gene in brown planthopper (BPH), Nilaparvata lugens (Stål). Pest Manag. Sci. 2014, 70, 790–797. [CrossRef]
53. Yang, Y.; Wan, P.J.; Hu, X.X.; Li, G.Q. RNAi mediated knockdown of the ryanodine receptor gene decreases chlorantraniliprole susceptibility in Sogatella furcifera. Pestic. Biochem. Physiol. 2014, 108, 58–65. [CrossRef]
54. Troczka, B.J.; Williams, A.J.; Bass, C.; Williamson, M.S.; Field, L.M.; Davies, T.G. Molecular cloning, characterisation and mRNA expression of the ryanodine receptor from the peach-potato aphid, Myzus persicae. Gene 2015, 556, 106–112. [CrossRef]
55. Wang, K.Y.; Jiang, X.Z.; Yuan, G.R.; Shang, F.; Wang, J.J. Molecular Characterization, mRNA expression and alternative splicing of ryanodine receptor gene in the brown citrus aphid, Toxoptera citricida (Kirkaldy). Int. J. Mol. Sci. 2015, 16, 15220–15234. [CrossRef]
56. Yuan, G.R.; Wang, K.Y.; Mou, X.; Luo, R.Y.; Dou, W.; Wang, J.J. Molecular cloning, mRNA expression and alternative splicing of a ryanodine receptor gene from the citrus whitefly, Dialeurodes citri (Ashmead). Pestic. Biochem. Physiol. 2017, 142, 59–66. [CrossRef]
57. Suppatapone, S.; Worley, P.F.; Baraban, J.M.; Snyder, S.H. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 1986, 263, 1530–1534. [CrossRef]
58. Furuichi, T.; Yoshikawa, S.; M iyawaki, A.; Wada, K.; Maeda, N.; Mikoshiba, K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 1989, 342, 32–38. [CrossRef] [PubMed]
59. Südhof, T.C.; Newton, C.L.; Archer, B.T., 3rd; Ushkaryov, Y.A.; Mignery, G.A. Structure of a novel InsP3 receptor. EMBO J. 1991, 10, 3199–3206. [CrossRef] [PubMed]
60. Blondel, O.; Takeda, J.; Janssen, H.; Seino, S.; Bell, G.I. Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J. Biol. Chem. 1993, 268, 11356–11363. [CrossRef]
89. Rossi, D.; Sorrentino, V. Molecular genetics of ryanodine receptors Ca\(^{2+}\)-release channels. *Cell Calcium* 2002, 32, 307–319. [CrossRef]

90. Ponting, C.; Schultz, J.; Bork, P. SPRY domains in ryanodine receptors (Ca\(^{2+}\)-release channels). *Trends Biochem. Sci.* 1997, 22, 193–194. [CrossRef]

91. Sorrentino, V.; Barone, V.; Rossi, D. Intracellular Ca\(^{2+}\) release channels in evolution. *Curr. Opin. Genet. Dev.* 2000, 10, 662–667. [CrossRef]

92. Santulli, G.; Nakashima, R.; Yuan, Q.; Marks, A.R. Intracellular calcium release channels: An update. *J. Physiol.* 2017, 595, 3041–3051. [CrossRef] [PubMed]

93. Ikenoue, T.; Inoki, K.; Yang, Q.; Zhou, X.; Guan, K.L. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. *EMBO J.* 2008, 27, 1919–1931. [CrossRef] [PubMed]

94. Ponting, C.P. Novel repeats in ryanodine and IP\(_3\) receptors and protein O-mannosyltransferases. *Trends Biochem. Sci.* 2000, 25, 48–50. [CrossRef]

95. Smith, J.S.; Rousseau, E.; Meissner, G. Calmodulin modulation of single sarcoplasmic reticulum Ca-release channels from cardiac and skeletal muscle. *Circ. Res.* 1989, 64, 352–359. [CrossRef]

96. Cui, Y.; Tae, H.S.; Norris, N.C.; Karunasekara, Y.; Pouliquin, P.; Board, P.G.; Dulhunty, A.F.; Casarotto, M.G. A dihydropyridine receptor a1l loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor. *Int. J. Biochem. Cell Biol.* 2009, 41, 677–686. [CrossRef]

97. Callaway, C.; Seryshev, A.; Wang, J.P.; Slavik, K.J.; Needleman, D.H.; Cantu, C.; Wu, Y.; 3rd; Jayaraman, T.; Marks, A.R.; Hamilton, S.L. Localization of the high and low affinity [3H]ryanodine binding sites on the skeletal muscle Ca\(^{2+}\)-release channel. *J. Biol. Chem.* 1994, 269, 15876–15884. [CrossRef]

98. Smith, J.S.; Rousseau, E.; Meissner, G. Calmodulin modulation of single sarco(plasmic reticulum Ca-release channels from cardiac and skeletal muscle. *Circ. Res.* 1989, 64, 352–359. [CrossRef]

99. Tripathy, A.; Xu, L.; Mann, G.; Meissner, G. Calmodulin activation and inhibition of skeletal muscle Ca\(^{2+}\) release channels (ryanodine receptor). *Biophys. J.* 1995, 69, 106–119. [CrossRef]

100. Wagenknecht, T.; Radermacher, M.; Grassucci, R.; Berkowitz, J.; Xin, H.B.; Fleischer, S. Locations of calmodulin and FK506-binding protein on the three-dimensional architecture of the skeletal muscle ryanodine receptor. *J. Biol. Chem.* 1997, 272, 32463–32471. [CrossRef] [PubMed]

101. Balshaw, D.M.; Xu, L.; Yamaguchi, N.; Pasek, D.A.; Meissner, G. Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). *J. Biol. Chem.* 2001, 276, 20144–20153. [CrossRef]

102. Sigum, H.; De Smet, P.; Sienaert, I.; Vanlingen, S.; Missiaen, L.; Parys, J.B.; De Smedt, H. Modulation of inositol 1,4,5-trisphosphate receptor pore-forming segment. *Biophys. J.* 1997, 73, 828–840. [CrossRef]

103. Zhou, Y.; Wang, W.; You, M.; Yuchi, Z. Crystal structure of ryanodine receptor N-terminal domain from *Plutella xylostella* reveals two potential species-specific insecticide-targeting sites. *Insect Biochem. Mol. Biol.* 2019, 125, 1919–1931. [CrossRef] [PubMed]

104. Xu, T.; Yuchi, Z. Crystal structure of diamondback moth ryanodine receptor Repeat34 domain reveals insect-specific phosphorylation sites. *BMC Biol.* 2019, 17, 77. [CrossRef]

105. Lin, L.; Liu, C.; Qin, J.; Wang, J.; Dong, S.; Chen, W.; He, W.; Gao, Q.; You, M.; Yuchi, Z. Crystal structure of ryanodine receptor N-terminal domain from *Plutella xylostella* reveals two potential species-specific insecticide-targeting sites. *Insect Biochem. Mol. Biol.* 2018, 92, 73–83. [CrossRef]

106. Zhou, Y.; Wang, W.; Salauddin, N.M.; Lin, L.; You, M.; You, S.; Yuchi, Z. Crystal structure of the N-terminal domain of ryanodine receptor from the honeybee, *Apis mellifera*. *Insect Biochem. Mol. Biol.* 2020, 125, 103545. [CrossRef]

107. Zhao, M.; Li, P.; Li, X.; Zhang, L.; Winkfein, R.J.; Chen, S.R. Molecular identification of the ryanodine receptor pore-forming segment. *J. Biol. Chem.* 1999, 274, 12157–12162. [CrossRef]

108. Zhou, Y.; Lin, L.; You, M.; Yuchi, Z. Crystal structure of ryanodine receptor N-terminal domain from *Plutella xylostella* reveals two potential species-specific insecticide-targeting sites. *J. Agric. Food Chem.* 2020, 68, 1731–1740. [CrossRef]

109. Balshaw, D.M.; Xu, L.; Yamaguchi, N.; Pasek, D.A.; Meissner, G. Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). *J. Biol. Chem.* 2001, 276, 20144–20153. [CrossRef]

110. Xie, T.; Yuchi, Z. Crystal structure of diamondback moth ryanodine receptor Repeat34 domain reveals insect-specific phosphorylation sites. *BMC Biol.* 2019, 17, 77. [CrossRef]

111. Zhou, Y.; Ma, D.; Lin, L.; You, M.; Yuchi, Z.; You, S. Crystal Structure of the ryanodine receptor SPRY2 domain from the diamondback moth provides insights into the development of novel insecticides. *J. Agric. Food Chem.* 2019, 67, 828–840. [CrossRef]

112. Schug, Z.T.; da Fonseca, P.C.; Bhanumathy, C.D.; Wagner, L., 2nd; Zhang, X.; Bailey, B.; Morris, E.P.; Yule, D.J.; Joseph, S.K. Molecular characterization of the inositol 1,4,5-trisphosphate receptor pore-forming segment. *J. Biol. Chem.* 2008, 283, 2939–2948. [CrossRef]

113. Gao, L.; Balshaw, D.; Xu, L.; Tripathy, A.; Xin, C.; Meissner, G. Evidence for a role of the luminal M3-M4 loop in skeletal muscle Ca\(^{2+}\) release channel (ryanodine receptor) activity and conductance. *Biophys. J.* 2000, 79, 828–840. [CrossRef]
Biomolecules 2021, 11, 1031

113. Du, G.G.; MacLennan, D.H. Functional consequences of mutations of conserved, polar amino acids in transmembrane sequences of the Ca$^{2+}$ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 1998, 273, 31867–31872. [CrossRef] [PubMed]

114. Chen, S.R.; Ebisawa, K.; Li, X.; Zhang, L. Molecular identification of the ryanodine receptor Ca$^{2+}$ sensor. J. Biol. Chem. 1998, 273, 14675–14678. [CrossRef] [PubMed]

115. Qi, S.; Casida, J.E. Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor. Pestic. Biochem. Physiol. 2013, 107, 321–326. [CrossRef] [PubMed]

116. Qi, S.; Lümmen, P.; Nauen, R.; Casida, J.E. Diamide insecticide target site specificity in the Heliothis and Musca ryanodine receptors relative to toxicity. J. Agric. Food Chem. 2014, 62, 4077–4082. [CrossRef]

117. Wang, R.; Bolstad, J.; Kong, H.; Zhang, L.; Brown, C.; Chen, S.R. The predicted TM10 transmembrane sequence of the cardiac Ca$^{2+}$ release channel (ryanodine receptor) is crucial for channel activation and gating. J. Biol. Chem. 2004, 279, 3635–3642. [CrossRef] [PubMed]

118. Sorrentino, V.; Volpe, P. Ryanodine receptors: How many, where and why? Trends Pharmacol. Sci. 1993, 14, 98–103. [CrossRef]

119. Xiong, H.; Feng, X.; Gao, L.; Xu, L.; Pasek, D.A.; Seok, J.H.; Meissner, G. Identification of a two EF-hand Ca$^{2+}$ binding domain in lobster skeletal muscle ryanodine receptor/Ca$^{2+}$ release channel. Biochemistry 1998, 37, 4804–4814. [CrossRef]

120. Guo, W.; Sun, B.; Xiao, Z.; Liu, Y.; Wang, Y.; Zhang, L.; Wang, R.; Chen, S.R. The EF-hand Ca$^{2+}$ binding domain is not required for cytosolic Ca$^{2+}$ activation of the cardiac ryanodine receptor. J. Biol. Chem. 2016, 291, 2150–2160. [CrossRef]

121. Xu, L.; Gomez, A.C.; Pasek, D.A.; Meissner, G.; Yamaguchi, N. Two EF-hand motifs in ryanodine receptor calcium release channels contribute to isoform-specific regulation by calmodulin. Cell Calcium 2017, 66, 62–70. [CrossRef]

122. Yamaguchi, N.; Xin, C.; Meissner, G. Identification of apocamuladin and Ca$^{2+}$-calmodulin regulatory domain in skeletal muscle Ca$^{2+}$ release channel, ryanodine receptor. J. Biol. Chem. 2001, 276, 22579–22585. [CrossRef] [PubMed]

123. Ladenburger, E.M.; Plattner, H. Calcium-release channels in paramecium. Genomic expansion, differential positioning and partial transcriptional elimination. PLoS ONE 2011, 6, e27111. [CrossRef] [PubMed]

124. Chiurillo, M.A.; Lader, N.; Vercesi, A.E.; Docampo, R. IP$_3$ receptor-mediated Ca$^{2+}$ release from acidocalcisomes regulates mitochondrial bioenergetics and prevents autophagy in Trypanosoma cruzi. Cell Calcium 2020, 92, 102284. [CrossRef] [PubMed]

125. Futatsugi, A.; Kuwajima, G.; Mikoshiba, K. Tissue-specific and developmentally regulated alternative splicing in mouse skeletal muscle ryanodine receptor mRNA. Biochem. J. 1995, 305, 373–378. [CrossRef]

126. George, C.H.; Rogers, S.A.; Bertrand, B.M.A.; Tunwell, R.E.A.; Thomas, N.L.; Steele, D.S.; Cox, E.V.; Pepper, C.; Hazeel, C.J.; Claycomb, W.C.; et al. Alternative splicing of ryanodine receptors modulates cardiomyocyte Ca$^{2+}$ signaling and susceptibility to apoptosis. Circ. Res. 2007, 100, 874–883. [CrossRef] [PubMed]

127. Kimura, T.; Luke, J.D.; Harvey, P.J.; Pace, S.M.; Ikemoto, N.; Casarotto, M.G.; Dirksen, R.T.; Dullhunty, A.F. Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium 2009, 45, 264–274. [CrossRef] [PubMed]

128. Takasawa, S.; Kuroki, M.; Nata, K.; Noguchi, N.; Ikeda, T.; Yamauchi, A.; Ota, H.; Itaya-Hironaka, A.; Sakuramoto-Tsuda, S.; Takahashi, I.; et al. A novel ryanodine receptor expressed in pancreatic islets by alternative splicing from type 2 ryanodine receptor gene. Biochem. Biophys. Res. Commun. 2010, 397, 140–145. [CrossRef]

129. Foskett, J.K.; White, C.; Cheung, K.H.; Mak, D.O. Inositol trisphosphate receptor Ca$^{2+}$ release channels. Physiol Rev. 2007, 87, 593–658. [CrossRef]

130. Wang, X.; Khakame, S.K.; Ye, C.; Yang, Y.; Wu, Y. Characterization of field evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Manag. Sci. 2013, 69, 661–665. [CrossRef]

131. D’Cruz, A.A.; Kershaw, N.J.; Chiang, J.J.; Wang, M.K.; Nicola, N.A.; Babon, J.J.; Gack, M.U.; Nicholson, S.E. Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: A key component of antiviral signalling. Biochem. J. 2013, 456, 231–240. [CrossRef] [PubMed]

132. Nucifora, F.C., Jr; Li, S.H.; Danoff, S.; Ullrich, A.; Ross, C.A. Molecular cloning of a cDNA for the human inositol 1,4,5-trisphosphate receptor type 1, and the identification of a third alternatively spliced variant. Brain Res. Mol. Brain Res. 1995, 32, 291–296. [CrossRef]

133. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. Mega X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [CrossRef]

134. Le, S.Q.; Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008, 25, 1307–1320. [CrossRef]

135. Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783. [CrossRef]

136. Meur, G.; Parker, A.K.; Gergely, F.V.; Taylor, C.W. Targeting and retention of type 1 ryanodine receptors to the endoplasmic reticulum. J. Biol. Chem. 2007, 282, 23906–23913. [CrossRef]

137. Cárdenas, C.; Miller, R.A.; Smith, I.; But, T.; Molgó, J.; Müller, M.; Vais, H.; Cheung, K.H.; Yang, J.; Parker, I.; et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca$^{2+}$ transfer to mitochondria. Cell 2010, 142, 270–283. [CrossRef] [PubMed]

138. Csordás, G.; Weaver, D.; Hajnóczky, G. Endoplasmic reticulum–mitochondrial contactalcyte: Structure and signaling functions. Trends Cell Biol. 2018, 28, 523–540. [CrossRef] [PubMed]

139. López-Sanjurjo, C.I.; Tovey, S.C.; Prole, D.L.; Taylor, C.W. Lysozymes shape Ins(1,4,5)P$_3$-evoked Ca$^{2+}$ signals by selectively sequestering Ca$^{2+}$ released from the endoplasmic reticulum. J. Cell Sci. 2013, 126 Pt 1, 289–300. [CrossRef]
140. Garrity, A.G.; Wang, W.; Collier, C.M.; Levey, S.A.; Gao, Q.; Xu, H. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. *Elife* 2016, 5, e15887. [CrossRef] [PubMed]

141. Atakpa, P.; Thillaiappan, N.B.; Mataraksa, S.; Prole, D.L.; Taylor, C.W. IP$_3$ receptors preferentially associate with ER-lysosome contact sites and selectively deliver Ca$^{2+}$ to lysosomes. *Cell Rep.* 2018, 25, 3180–3193.e7. [CrossRef]

142. Meissner, G. The structural basis of ryanodine receptor ion channel function. *J. Gen. Physiol.* 2017, 149, 1065–1089. [CrossRef] [PubMed]

143. Arruda, A.P.; Pers, B.M.; Parlakgul, G.; Güney, E.; Goh, T.; Cagampan, E.; Lee, G.Y.; Goncalves, R.L.; Hotamisligil, G.S. Defective STIM-mediated store operated Ca$^{2+}$ entry in hepatocytes leads to metabolic dysfunction in obesity. *Elife* 2017, 6, e29968. [CrossRef]

144. Parekh, A.B.; Putney, J.W., Jr. Store-operated calcium channels. *Physiol. Rev.* 2016, 58, 132–184. [CrossRef]

145. Thillaiappan, N.B.; Chavda, A.P.; Tovey, S.C.; Prole, D.L.; Taylor, C.W. Ca$^{2+}$ signals initiate at immobile IP$_3$ receptors adjacent to ER-plasma membrane junctions. *Nat. Commun.* 2017, 8, 1505. [CrossRef] [PubMed]

146. Béliveau, É.; Lessard, V.; Guillemette, G. STIM1 positively regulates the Ca$^{2+}$ release activity of the inositol 1,4,5-trisphosphate receptor in bovine aortic endothelial cells. *PLoS ONE* 2014, 9, e114718. [CrossRef] [PubMed]

147. Thillaiappan, N.B.; Chavda, A.P.; Tovey, S.C.; Prole, D.L.; Taylor, C.W. IP$_3$ receptors by sequential binding of IP$_3$ and STIM1 oligomers. *Nat. Commun.* 2017, 8, 1042. [CrossRef]

148. Qazi, S.; Trimmer, B.A. The role of inositol 1,4,5-trisphosphate 5-phosphatase in inositol signaling in the CNS of larval Manduca sexta. *Insect Biochem. Mol. Biol.* 1999, 29, 161–175. [CrossRef]

149. Prakriya, M.; Lewis, R.S. Store-operated calcium channels. *Physiol. Rev.* 2016, 15, 3115–3118. [CrossRef]

150. Sartain, C.V.; Wolfner, M.F. Calcium and egg activation in insects. *Cell Calcium* 2013, 53, 10–15. [CrossRef]

151. Berridge, M.J. The inositol trisphosphate/calcium signaling pathway in health and disease. *Physiol. Rev.* 2016, 96, 1261–1296. [CrossRef]

152. Adkins, C.E.; Prole, D.L.; Taylor, C.W. Inositol 1,4,5-trisphosphate receptor promoter-lacZ fusion genes in transgenic mice. *Biochem. Soc. Symp.* 1981, 45, 93–109. [PubMed]

153. Vanderheyden, V.; Armstrong, J.D.; Wang, Z.; Kaiser, K. Synchronized neural activity in the Drosophila memory centers and its modulation by amnesiac. *J. Neurochem.* 2005, 91, 1793–1801. [CrossRef]

154. Arruda, A.P.; Pers, B.M.; Parlagkul, G.; Güney, E.; Goh, T.; Cagampan, E.; Lee, G.Y.; Goncalves, R.L.; Hotamisligil, G.S. Defective STIM-mediated store operated Ca$^{2+}$ entry in hepatocytes leads to metabolic dysfunction in obesity. *Elife* 2017, 6, e29968. [CrossRef]

155. Alzayady, K.J.; Wang, L.; Chandrasekhar, R.; Wagner, L.E.; Van Petegem, F.; Yule, D.I. Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca$^{2+}$ release. *Sci. Signal.* 2016, 9, ra35. [CrossRef] [PubMed]

156. Chandrasekhar, R.; Alzayady, K.J.; Wagner, L.E.; Yule, D.I. Unique regulatory properties of heterotetrameric inositol 1,4,5-trisphosphate receptors revealed by studying concatenated receptor constructs. *J. Biol. Chem.* 2016, 291, 4846–4860. [CrossRef]

157. Marchant, J.S.; Taylor, C.W. Cooperative activation of IP$_3$ receptors by sequential binding of IP$_3$ and Ca$^{2+}$ safeguards against spontaneous activity. *Curr. Biol.* 1997, 7, 510–518. [CrossRef]

158. Adkins, C.E.; Taylor, C.W. Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca$^{2+}$. *Curr. Biol.* 1999, 9, 1115–1118. [CrossRef]

159. Furutama, D.; Shimoda, K.; Yoshikawa, S.; Miyawaki, A.; Furuichi, T.; Mikoshiba, K. Functional expression of the type 1 inositol 1,4,5-trisphosphate receptor promoter-lacZ fusion genes in transgenic mice. *Biochem. Soc. Symp.* 1981, 45, 93–109. [PubMed]

160. Garrity, A.G.; Wang, W.; Collier, C.M.; Levey, S.A.; Gao, Q.; Xu, H. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. *Elife* 2016, 5, e15887. [CrossRef] [PubMed]

161. Bootman, M.D.; Berridge, M.J.; Lipp, P. Cooking with calcium: The recipes for composing global signals from elementary events. *Biochem. Soc. Symp.* 1996, 66, 1793–1801. [CrossRef]

162. Marchant, J.S.; Parker, I. Role of elementary Ca$^{2+}$ puffs in generating repetitive Ca$^{2+}$ oscillations. *EMBO J.* 2001, 20, 65–76. [CrossRef]

163. Berridge, M.J. Inositol trisphosphate and calcium oscillations. *Biochem. Soc. Symp.* 2007, 74, 1–7. [CrossRef]

164. Rapp, P.E.; Berridge, M.J. The control of transepithelial potential oscillations in the salivary gland of Calliphora erythrocephala. *J. Exp. Biol.* 1981, 93, 119–132. [CrossRef]

165. Rosay, P.; Armstrong, J.D.; Wang, Z.; Kaiser, K. Synchronized neural activity in the Drosophila memory centers and its modulation by amnesiac. *Neuron* 2001, 30, 759–770. [CrossRef]

166. Rosay, P.; Armstrong, J.D.; Wang, Z.; Kaiser, K. Synchronized neural activity in the Drosophila memory centers and its modulation by amnesiac. *Neuron* 2001, 30, 759–770. [CrossRef]

167. Goldammer, J.; Mantziaris, C.; Büschges, A.; Schmidt, J. Calcium imaging of CPG-evoked activity in efferent neurons of the stick insect. *PLoS ONE* 2018, 13, e0202822. [CrossRef]

168. Vanderheyden, V.; Devogelaere, B.; Missiaen, L.; De Smedt, H.; Bultynck, G.; Parys, J.B. Regulation of inositol 1,4,5-trisphosphate-induced Ca$^{2+}$ release by reversible phosphorylation and dephosphorylation. *Biochim. Biophys. Acta* 2009, 1793, 959–970. [CrossRef]

169. DeSouza, N.; Reiken, S.; Ondrias, K.; Yang, Y.M.; Matkovich, S.; Marks, A.R. Protein kinase A and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex. *J. Biol. Chem.* 2002, 277, 39397–39400. [CrossRef]

170. Khan, M.T.; Wagner, L.; Bhanumathy, C.; Joseph, S.K. Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. *J. Biol. Chem.* 2006, 281, 3731–3737. [CrossRef]
170. Arguin, G.; Regimbal-Dumas, Y.; Fregeau, M.O.; Caron, A.Z.; Guillemette, G. Protein kinase C phosphorylates the inositol 1,4,5-trisphosphate receptor type 2 and decreases the mobilization of Ca\(^{2+}\) in pancreatoma AR4-2J cells. *J. Endocrinol.* 2007, 192, 659–668. [CrossRef] [PubMed]

171. Dean, D.M.; Maroja, L.S.; Cottrill, S.; Bomkamp, B.E.; Westervelt, K.A.; Deitcher, D.L. The wavy mutation maps to the inositol 1,4,5-trisphosphate 3-kinase 2 (IP\(_3\)K2) gene of *Drosophila* and interacts with IP\(_3\)R to affect wing development. *G3* 2016, 6, 299–310. [CrossRef]

172. Adkins, C.E.; Morris, S.A.; De Smedt, H.; Sienaert, I.; Török, K.; Taylor, C.W. Ca\(^{2+}\)-calmodulin inhibits Ca\(^{2+}\) release mediated by type-1, 2- and 3 inositol 1,4,5-trisphosphate receptors. *Biochem. J.* 2000, 345, 357–363. [CrossRef]

173. Kasri, N.N.; Török, K.; Gallione, A.; Garnham, C.; Callewaert, G.; Missiaen, L.; Parys, J.B.; De Smedt, H. Endogenously bound calmodulin is essential for the function of the inositol 1,4,5-trisphosphate receptor. *J. Biol. Chem.* 2006, 281, 8332–8338. [CrossRef]

174. Tang, J.; Lin, Y.; Zhang, Z.; Tikunova, S.; Birnbaumer, L.; Zhu, M.X. Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. *J. Biol. Chem.* 2001, 276, 21303–21310. [PubMed]

175. Meissner, G.; Rios, E.; Tripathy, A.; Pasek, D.A. Regulation of skeletal muscle Ca\(^{2+}\) release channel (ryanodine receptor) by Ca\(^{2+}\) and monovalent cations and anions. *J. Biol. Chem.* 1997, 272, 1628–1638. [CrossRef]

176. Gutteridge, S.; Caspar, T.; Cordova, D.; Tao, Y.; Wu, L.; Smith, R.M. Nucleic Acids Encoding Ryanodine Receptors. U.S. Patent 7,205,147, 2003.

177. Cordova, D.; Benner, E.A.; Sacher, M.D.; Rauh, J.J.; Sopa, J.S.; Lahm, G.P.; Selby, T.P.; Stevenson, T.M.; Flexner, L.; Gutteridge, S.; et al. Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. *Pestic. Biochem. Physiol.* 2006, 84, 196–214. [CrossRef]

178. Cordova, D.; Benner, E.A.; Sacher, M.D.; Rauh, J.J.; Sopa, J.S.; Lahm, G.P.; Selby, T.P.; Stevenson, T.M.; Flexner, L.; Gutteridge, S.; et al. The novel mode of action of anthranilic diamide insecticides: Ryanodine receptor activation. *ACS Symp. Ser.* 2007, 948, 223–234. [CrossRef]

179. Meissner, G. Ryanodine activation and inhibition of the Ca\(^{2+}\) release channel of sarcoplasmic reticulum. *J. Biol. Chem.* 1986, 261, 6300–6306. [CrossRef]

180. Schmitt, M.; Turberg, A.; Lundershausen, M.; Dorn, A. Binding sites for Ca\(^{2+}\) channel effectors and ryanodine in *Periplaneta americana*-possible targets for new insecticides. *Pestic. Sci.* 1996, 48, 375–385. [CrossRef]

181. Ebbinghaus-Kintscher, U.; Luemmen, P.; Lobitz, N.; Schulte, T.; Funke, C.; Fischer, R.; Masaki, T.; Yasokawa, N.; Tohnishi, M. Phthalic acid diamides activate ryanodine-sensitive Ca\(^{2+}\) release channels in insects. *Cell Calcium* 2006, 39, 21–33. [CrossRef]

182. Zimanyi, I.; Pessah, I.N. Pharmacological characterization of the specific binding of [3H]ryanodine to rat brain microsomal membranes. *Brain Res.* 1991, 561, 181–191. [CrossRef]

183. Sharma, P.; Ishiyama, N.; Nair, U.; Li, W.; Dong, A.; Miyake, T.; Wilson, A.; Ryan, T.; MacLennan, D.H.; Kislinger, T.; et al. Structural determination of the phosphorylation domain of the ryanodine receptor. *FEBS J.* 2012, 279, 3952–3964. [CrossRef]

184. Andersson, D.C.; Betzenhausener, M.J.; Reiken, S.; Umanskaya, A.; Shiomi, T.; Marks, A.R. Stress-induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor. *J. Physiol.* 2012, 590, 6381–6387. [CrossRef] [PubMed]

185. Chen, S.R.; Li, X.; Ebisawa, K.; Zhang, L. Functional characterization of the recombinant type 3 Ca\(^{2+}\) release channel (ryanodine receptor) expressed in HEK293 cells. *J. Biol. Chem.* 1997, 272, 24234–24246. [CrossRef]

186. Fruen, B.R.; Bardy, J.M.; Byrem, T.M.; Strasburg, G.M.; Louis, C.F. Differential Ca\(^{2+}\) sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. *Am. J. Physiol. Cell Physiol.* 2000, 279, C724–C733. [CrossRef] [PubMed]

187. Wang, B.; Sullivan, K.M.; Beckingham, K. *Drosophila* calmodulin mutants with specific defects in the musculature or in the nervous system. *Genetics* 2003, 165, 1255–1268. [CrossRef] [PubMed]

188. Arnon, A.; Cook, B.; Montell, C.; Selinger, Z.; Minke, B. Calmodulin regulation of calcium stores in phototransduction of *Drosophila*. *Science* 1997, 275, 1119–1121. [CrossRef] [PubMed]

189. Arnon, A.; Cook, B.; Gillo, B.; Montell, C.; Selinger, Z.; Minke, B. Calmodulin regulation of light adaptation and store-operated dark current in *Drosophila* photoreceptors. *Proc. Natl. Acad. Sci. USA* 1997, 94, 5894–5899. [CrossRef]

190. Scott, K.; Sun, Y.; Beckingham, K.; Zuker, C.S. Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo. *Cell* 1997, 91, 375–383. [CrossRef]

191. Karagas, N.E.; Venkatchalam, K. Roles for the endoplasmic reticulum in regulation of neuronal calcium homeostasis. *Cells* 2019, 8, 1232. [CrossRef] [PubMed]

192. Inui, M.; Saito, A.; Fleischer, S. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. *J. Biol. Chem.* 1987, 262, 15637–15642. [CrossRef]

193. Zorzato, F.; Fujii, J.; Otsu, K.; Phillips, M.; Green, N.M.; Lai, F.A.; Meissner, G.; MacLennan, D.H. Molecular cloning of cDNA encoding human and rabbit forms of the Ca\(^{2+}\) release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. *J. Biol. Chem.* 1990, 265, 2244–2256. [CrossRef]

194. Giannini, G.; Conti, A.; Mammarella, S.; Scrubagna, M.; Sorrentino, V. The ryanodine receptor calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. *J. Cell Biol.* 1995, 128, 893–904. [CrossRef] [PubMed]
Biomolecules 2021, 11, 1031

39 of 47

195. Vázquez-Martínez, O.; Cañedo-Merino, R.; Díaz-Muñoz, M.; Riesgo-Escovar, J.R. Biochemical characterization, distribution and phylogenetic analysis of Drosophila melanogaster ryanodine and IP3 receptors, and thapsigargin-sensitive Ca2+ ATPase. J. Cell Sci. 2003, 116, 2483–2494. [CrossRef]

196. Chintapalli, V.R.; Wang, J.; Dow, J.A. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet. 2007, 39, 715–720. [CrossRef] [PubMed]

197. McQuilton, P.; St Pierre, S.E.; Thurmond, J. FlyBase Consortium. FlyBase 101—the basics of navigating FlyBase. Nucleic Acids Res. 2012, 40, 706–714. [CrossRef]

198. Chapman, R.F. The Insects: Structure and Function, 4th ed.; Cambridge University Press: New York, NY, USA, 1998.

199. Miyatake, R.; Furukawa, A.; Matsushita, M.; Iwashii, K.; Nakamura, K.; Ichikawa, Y.; Suwaki, H. Tissue-specific alternative splicing of mouse brain type ryanodine receptor/calcium release channel mRNA. FEBS Lett. 1996, 395, 123–126. [CrossRef]

200. Jiang, D.; Xiao, B.; Li, X.; Chen, S.R. Smooth muscle tissues express a major dominant negative splice variant of the type 3 Ca2+ release channel (ryanodine receptor). J. Biol. Chem. 2003, 278, 4763–4769. [CrossRef]

201. Verma, A.; Hirsch, D.J.; Snyder, S.H. Calcium pools mobilized by calcium or inositol 1,4,5-trisphosphate are differentially localized in rat heart and brain. Mol. Biol. Cell 1992, 3, 621–631. [CrossRef]

202. Furuichi, T.; Simon-Chazottes, D.; Fujino, I.; Yamada, N.; Hasegawa, M.; Miyawaki, A.; Yoshikawa, S.; Guénet, J.L.; Mikoshiba, K. Widespread expression of inositol 1,4,5-trisphosphate receptor type 1 gene (Ins3r1) in the mouse central nervous system. Recept. Channels 1993, 1, 11–24.

203. Gorza, L.; Schiaffino, S.; Volpe, P. Inositol 1,4,5-trisphosphate receptor in heart: Evidence for its concentration in Purkinje myocytes of the conduction system. J. Cell Biol. 1993, 121, 345–353. [CrossRef] [PubMed]

204. Ferrari-Jacobia, M.; Mak, D.O.; Foskett, J.K. Translational mobility of the type 3 inositol 1,4,5-trisphosphate receptor Ca2+ release channel in endoplasmic reticulum membrane. J. Biol. Chem. 2005, 280, 3824–3831. [CrossRef] [PubMed]

205. Venkatesh, K.; Siddhartha, G.; Joshi, R.; Hasan, G. Interactions between the inositol 1,4,5-trisphosphate and cyclic AMP signaling pathways regulate larval molting in Drosophila. Genetics 2001, 158, 309–318. [CrossRef] [PubMed]

206. Raghu, P.; Hasan, G. The inositol 1,4,5-trisphosphate receptor expression in Drosophila suggests a role for IP3 signalling in muscle development and adult chemosensory functions. Dev. Biol. 1995, 171, 564–577. [CrossRef] [PubMed]

207. Allen, D.O.; Beck, R.R. Role of calcium ion in hormone-stimulated lipolysis. Biochem. Pharmacol. 1986, 35, 767–772. [CrossRef]

208. Shi, H.; Diriengo, D.; Zemel, M.B. Effects of dietary calcium on adipocyte lipid metabolism and body weight regulation in energy-restricted ap2-agouti transgenic mice. FASEB J. 2001, 15, 291–293. [CrossRef] [PubMed]

209. Zemel, M.B. Regulation of adiposity and obesity risk by dietary calcium: Mechanisms and implications. J. Am. Coll. Nutr. 2002, 21, 146S–151S. [CrossRef]

210. Jacqumin, M.; Doucet, E.; Després, J.P.; Bouchard, C.; Tremblay, A. Calcium intake, body composition, and lipoprotein-lipid concentrations in adults. Am. J. Clin. Nutr. 2003, 77, 1448–1452. [CrossRef]

211. Arruda, A.P.; Hotamisligil, G.S. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 2015, 22, 381–397. [CrossRef] [PubMed]

212. Maus, M.; Cuk, M.; Patel, B.; Lian, J.; Ouimet, M.; Kaufmann, U.; Yang, J.; Horvath, R.; Hornig-Do, H.T.; Chrzanowska-Lightowlers, Z.M.; et al. Store-operated Ca2+ entry controls induction of lipolysis and the transcriptional reprogramming to lipid metabolism. Cell Metab. 2017, 25, 698–712. [CrossRef] [PubMed]

213. Alomaim, H.; Griffin, P.; Swist, E.; Plouffe, L.J.; Vandelloo, M.; Demonty, I.; Kumar, A.; Bertinato, J. Dietary calcium affects body composition and lipid metabolism in rats. PLoS ONE 2019, 14, e0210760. [CrossRef] [PubMed]

214. Toprak, U.; Hegedus, D.; Dogan, C.; Güney, G. A journey into the world of insect lipid metabolism. Arch. Insect Biochem. Physiol. 2020, 104, e21682. [CrossRef] [PubMed]

215. Toprak, U.; Güüz, N.; Gürkan, M.O.; Hegedus, D.D. Identification and coordinated expression of peripolin genes in the biological cycle of surn pest, Eurygaster mauro (Hemiptera: Scutelleridae): Implications for lipolysis and lipogenesis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2014, 171, 1–11. [CrossRef] [PubMed]

216. Güney, G.; Toprak, U.; Hegedus, D.D.; Bayram, Ş.; Coutu, C.; Bekkauoi, D.; Baldwin, D.; Heckel, D.G.; Hänniger, S.; Ceddén, D.; et al. A look into Colorado potato beetle lipid metabolism through the lens of lipid storage droplet proteins. Insect Biochem. Mol. Biol. 2021, 133, 103473. [CrossRef] [PubMed]

217. Subramanian, M.; Jayakumar, S.; Richhariya, S.; Hasan, G. Loss of IP3 receptor function in neuropetide secreting neurons leads to obesity in adult Drosophila. BMC Neurosci. 2013, 14, 157. [CrossRef] [PubMed]

218. Subramanian, M.; Metya, S.K.; Sadaf, S.; Kumar, S.; Schwudke, D.; Hasan, G. Altered lipid homeostasis in Drosophila InsP3 receptor mutants leads to obesity and hyperphagia. Dis. Model Mech. 2013, 6, 734–744. [CrossRef] [PubMed]

219. Baumbach, J.; Hummel, P.; Bickmeyer, I.; Kowalczyk, K.M.; Frank, M.; Knorr, K.; Hildebrandt, A.; Riedel, D.; Jäckle, H.; Kühllein, R.P. A Drosophila in vivo screen identifies store-operated calcium entry as a key regulator of adiposity. Cell Metab. 2014, 19, 331–343. [CrossRef] [PubMed]

220. Baumbach, J.; Xu, Y.; Nehlert, P.; Kühllein, R.P. Goαq, Gγ1 and Plc21C control Drosophila body fat storage. J. Genet. Genom. 2014, 41, 283–292. [CrossRef] [PubMed]

221. Bi, J.; Xiang, Y.; Chen, H.; Liu, Z.; Grönke, S.; Kühllein, R.P.; Huang, X. Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. J. Cell Sci. 2012, 125, 3568–3577. [CrossRef] [PubMed]
222. Bi, J.; Wang, W.; Liu, Z.; Huang, X.; Jiang, Q.; Liu, G.; Wang, Y.; Huang, X. Seipin promotes adipose tissue fat storage through the ER Ca^{2+} -ATPase SERCA. *Cell Metab.* **2014**, *19*, 861–871. [CrossRef] [PubMed]

223. Xu, Y.; Borchering, A.F.; Heier, C.; Tian, G.; Roeder, T.; Kühnlein, R.P. Chronic dysfunction of stromal interaction molecule by pulsed RNAi induction in fat tissue impairs organismal energy homeostasis in *Drosophila*. *Sci. Rep.* **2019**, *9*, 6989. [CrossRef]

226. Venkiteswaran, G.; Hasan, G. Intracellular Ca

228. G

229. G

230. Tian, Y.; Bi, J.; Shui, G.; Liu, Z.; Xiang, Y.; Liu, Y.; Wenk, M.R.; Yang, H.; Huang, X. Tissue-autonomous function of Drosophila seipin in preventing ectopic lipid droplet formation. *PLoS Genet.* **2011**, *7*, e1001364. [CrossRef] [PubMed]

231. Fu, S.; Yang, L.; Li, P.; Hofmann, O.; Dicker, L.; Hide, W.; Lin, X.; Watkins, S.M.; Ivanov, A.R.; Hotamisligil, G.S. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. *Nature* **2011**, *473*, 528–531. [CrossRef]

232. Starling, R.C.; Hammer, D.F.; Altshuld, R.A. Human myocardial ATP content and in vivo contractile function. *Mol. Cell Biochem.* **1998**, *180*, 171–177. [CrossRef]

233. Cao, T.; Jin, J.P. Evolution of flight muscle contractility and energetic efficiency. *Front. Physiol.* **2020**, *11*, 1038. [CrossRef]

234. Palade, P.; Györke, S. Excitation-contraction coupling in crustacea: Do studies on these primitive creatures offer insights about EC coupling more generally? *J. Muscle Res. Cell Motil.* **1993**, *14*, 283–287. [CrossRef]

235. Maryon, E.B.; Coronado, R.; Anderson, P. unc-68 encodes a ryanodine receptor involved in regulating *unc-68* in *C. elegans* body-wall muscle contraction. *J. Cell Biol.* **1996**, *134*, 885–894. [CrossRef]

236. Devlin, C.L.; Amole, W.; Anderson, S.; Shea, K. Muscarinic acetylcholine receptor compounds alter net Ca^{2+} flux and contractility in an invertebrate smooth muscle. *Invert. Neurosci.* **2003**, *5*, 9–17. [CrossRef]

237. Tamashiro, H.; Yoshino, M. Involvement of plasma membrane Ca^{2+} channels, IP3 receptors, and ryanodine receptors in the generation of spontaneous rhythmic contractions of the cricket lateral oviduct. *J. Insect Physiol.* **2014**, *67*, 97–104. [CrossRef] [PubMed]

238. Ellington, C.P. Power and efficiency of insect flight muscle. *J. Exp. Biol.* **1985**, *115*, 293–304. [CrossRef] [PubMed]

239. Ishimoto, H. Structure, function and evolution of insect flight muscle. *Biophysics* **2011**, *7*, 21–28. [CrossRef] [PubMed]

240. Yamazawa, T.; Takeshima, H.; Shimuta, M.; Iino, M. A region of the ryanodine receptor critical for excitation-contraction coupling in skeletal muscle. *J. Biol. Chem.* **1997**, *272*, 8161–8164. [CrossRef]

241. Calder

242. Wegener, C.; Nässel, D.R. Peptide-induced Ca^{2+} movements in a tonic insect muscle: Effects of proctolin and periviscerin-2. *J. Neurophysiol.* **2000**, *84*, 3056–3066. [CrossRef] [PubMed]

243. Narayanan, D.; Adebiyi, A.; Jaggar, J.H. Inositol trisphosphate receptors in smooth muscle cells. *Am. J. Physiol. Heart Circ. Physiol.* **2012**, *302*, 2190–2210. [CrossRef] [PubMed]

244. Bootman, M.D.; Collins, T.J.; Mackenzie, L.; Roderick, H.L.; Berridge, M.J.; Peppiatt, C.M. 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca^{2+} entry but an inconsistent inhibitor of InsP3-induced Ca^{2+} release. *FASEB J.* **2002**, *16*, 1145–1150. [CrossRef] [PubMed]

245. Lemonnier, L.; Prevaskary, N.; Mazurier, J.; Shuba, Y.; Skryma, R. 2-APB inhibits volume-regulated anion channels independently from intracellular calcium signaling modulation. *FEBS Lett.* **2004**, *556*, 121–126. [CrossRef]

246. Lange, A.B. Inositol phospholipid hydrolysis may mediate the action of proctolin on insect visceral muscle. *Arch. Insect Biochem. Physiol.* **1985**, *9*, 201–209. [CrossRef]

247. Lange, A.B.; Nykamp, D.A. Signal transduction pathways regulating the contraction of an insect visceral muscle. *Arch. Insect Biochem. Physiol.* **1996**, *33*, 183–196. [CrossRef]

248. Lange, A.B.; Nykamp, D.A.; Lange, A.B. The effects of octopamine are mediated via a G protein in the oviducts of *Locusta migratoria*. *Biochim. Biophys. Acta* **1998**, *1417*, 219–226. [CrossRef]

249. Nykamp, D.A.; Lange, A.B. Interaction between proctolin and octopamine on the oviducts of *Locusta migratoria*. *J. Insect Physiol.* **2000**, *46*, 809–816. [CrossRef]
251. Lange, A.B. A review of the involvement of proctolin as a cotransmitter and local neurohormone in the oviposition of the locust, Locusta migratoria. Peptides 2002, 23, 2063–2070. [CrossRef]

252. Hinton, J.M.; Nejad, M.; Issberner, J.P.; Hancock, J.T.; Osborne, R.H. Muscarinic acetylcholine and proctolin receptors in the foregut of the locust Schistocerca gregaria: Role of inositol phosphates, protein kinase C and calcium in second messenger effects. Insect Biochem. Mol. Biol. 1998, 28, 331–343. [CrossRef]

253. Peron, S.; Zordan, M.A.; Magnabosco, A.; Reggiani, C.; Megighian, A. From action potential to contraction: Neural control and excitation-contraction coupling in larval muscles of Drosophila. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 154, 173–183. [CrossRef]

254. Brembs, B.; Christiansen, F.; Pflüger, H.J.; Duch, C. Flight initiation and maintenance deficits in flies with genetically altered IP3 receptor gene knockdown or mutation. J. Neurosci. 2000, 20, 11122–11131. [CrossRef]

255. Agrawal, T.; Sadaf, S.; Hasan, G.A. Genetic RNAi screen for IP3 receptor mutants of Drosophila. J. Neurosci. 2004, 24, 7869–7878. [CrossRef]

256. Bartan, T.; Sadaf, S.; Hasan, G.A. IP3 receptor deficiency in flies lacking an InsP3 receptor and phospholipase C secures the high sensitivity to light of Drosophila photoreceptors for vision in Drosophila. Neuron 2007, 56, 874–887. [CrossRef] [PubMed]

257. Ranganathan, S.; Sato, T.; Zender, E.; Gottschalk, H.; Fuchs, N.; Feldman, M.; Haring, C. IP3R activation in Drosophila photoreceptors lacking an InsP3 receptor. J. Neurosci. 1996, 16, 6267–6275. [CrossRef] [PubMed]

258. Baines, R.A.; Walther, C.; Hinton, J.M.; Osborne, R.H.; Konopinska, D. Selective activity of a proctolin analogue reveals the role of proctolin receptors in second messenger effects. J. Neurosci. 1997, 17, 881–887. [CrossRef] [PubMed]

259. Kohn, E.; Katz, B.; Yasmin, B.; Peters, M.; Rhodes, E.; Zaguri, R.; Weiss, S.; Minke, B. Functional cooperation between the IP3 receptor and phospholipase C secures the high sensitivity to light of Drosophila photoreceptors in vivo. J. Neurosci. 2015, 35, 2530–2546. [CrossRef]

260. Bollepalli, M.K.; Kuipers, M.E.; Liu, C.H.; Asteriti, S.; Hardie, R.C. Phototransduction in Drosophila is compromised by Gal4 expression but not by InsP3 receptor knockdown or mutation. eNeuro 2017, 4. [CrossRef]

261. Evans, P.D.; O’Shea, M. An octopaminergic neurone modulates neuromuscular transmission in the locust. Nature 1977, 270, 257–259. [CrossRef]

262. Evans, P.D.; O’Shea, M. An octopaminergic neurone modulates neuromuscular transmission in the locust. Nature 1977, 270, 257–259. [CrossRef]

263. Evans, P.D.; O’Shea, M. An octopaminergic neurone modulates neuromuscular transmission in the locust. Nature 1977, 270, 257–259. [CrossRef]

264. Evans, P.D.; O’Shea, M. An octopaminergic neurone modulates neuromuscular transmission in the locust. Nature 1977, 270, 257–259. [CrossRef]

265. Evans, P.D.; O’Shea, M. An octopaminergic neurone modulates neuromuscular transmission in the locust. Nature 1977, 270, 257–259. [CrossRef]

266. Honkanen, A.; Immonen, E.V.; Salmela, I.; Heimonen, K.; Weckström, M. Insect photoreceptor adaptations to night vision. J. Exp. Biol. 2017, 210, 111. [CrossRef]

267. Hoyle, G. Evidence that insect dorsal unpaired median (DUM) neurons are octopaminergic. J. Exp. Zool. 1975, 193, 425–431. [CrossRef]

268. Hoyle, G. Distributions of nerve and muscle fibre types in locust jumping muscle. J. Exp. Biol. 1978, 73, 205–233. [CrossRef]

269. Huang, J.; Liu, C.H.; Hughes, S.A.; Postma, M.; Schwiening, S.A.; Postma, M.; Schwiening, C.J.; Hardie, R.C. Activation of TRP channels by protons and Ca2+ influx in Drosophila pupal neurons is modulated by IP3-receptor function and influences maturation of the flight circuit. Front. Mol. Neurosci. 2017, 10, 111. [CrossRef]

270. Hardie, R.C.; Raghu, P. Visual transduction in Drosophila. Curr. Biol. 2001, 11, 81–91. [CrossRef] [PubMed]

271. Agrawal, T.; Sadaf, S.; Hasan, G.A. Genetic RNAi screen for IP3/Ca2+ coupled GPCRs in Drosophila identifies the PdFR as a regulator of insect flight. PLoS Genet. 2013, 9, e1003849. [CrossRef]

272. Agrawal, T.; Sadaf, S.; Hasan, G.A. Genetic RNAi screen for IP3/Ca2+ coupled GPCRs in Drosophila identifies the PdFR as a regulator of insect flight. PLoS Genet. 2013, 9, e1003849. [CrossRef]

273. Paulsen, R.; Schwemer, J. Studies on the insect visual pigment sensitive to ultraviolet light: Retinal as the chromophoric group. Biochim. Biophys. Acta 1972, 283, 520–529. [CrossRef]

274. Paulsen, R.; Schwemer, J. Studies on the insect visual pigment sensitive to ultraviolet light: Retinal as the chromophoric group. Biochim. Biophys. Acta 1972, 283, 520–529. [CrossRef]

275. Scott, K.; Zuber, C.; TRP, TRPL and trouble in photoreceptor cells. Curr. Opin. Neurobiol. 1998, 8, 383–388. [CrossRef]

276. Henderson, S.R.; Reuss, H.; Hardie, R.C. Single photon responses in Drosophila photoreceptors and their regulation by Ca2+. J. Physiol. 2000, 524, 179–194. [CrossRef]

277. Adjari, P.; Schwartz, S.; Astrid, H.; David, M.; Delphine, F.; Stephane, B.; Aquilina, G.; Paul, C.; Patricia, B.; Louis, F. Role of inositol phosphates, protein kinase C and calcium in second messenger effects. J. Neurosci. 2000, 20, 114–124. [CrossRef]

278. Huang, J.; Liu, C.H.; Hughes, S.A.; Postma, M.; Schwiening, C.J.; Hardie, R.C. Activation of TRP channels by protons and phosphoinositide depletion in Drosophila photoreceptors. Curr. Biol. 2010, 20, 189–197. [CrossRef]

279. Agrawal, T.; Sadaf, S.; Hasan, G.A. Genetic RNAi screen for IP3/Ca2+ coupled GPCRs in Drosophila identifies the PdFR as a regulator of insect flight. PLoS Genet. 2013, 9, e1003849. [CrossRef]

280. Agrawal, T.; Sadaf, S.; Hasan, G.A. Genetic RNAi screen for IP3/Ca2+ coupled GPCRs in Drosophila identifies the PdFR as a regulator of insect flight. PLoS Genet. 2013, 9, e1003849. [CrossRef]
| Page | Reference |
|------|-----------|
| 281 | Baumann, O. Distribution of ryanodine receptor Ca$^{2+}$ channels in insect photoreceptor cells. *J. Comp. Neurol.* 2000, 421, 347–361. [CrossRef] |
| 282 | Menini, A. Calcium signalling and regulation in olfactory neurons. *Curr. Opin. Neurobiol.* 1999, 9, 419–426. [CrossRef] |
| 283 | Matthews, H.R.; Reisert, J. Calcium, the two-faced messenger of olfactory transduction and adaptation. *Curr. Opin. Neurobiol.* 2003, 13, 469–475. [CrossRef] |
| 284 | Pézier, A.; Acquistapace, A.; Renou, M.; Rospars, J.P.; Lucas, P. Ca$^{2+}$ stabilizes the membrane potential of moth olfactory receptor neurons at rest and is essential for their fast repolarization. *Chem. Senses* 2007, 32, 305–317. [CrossRef] [PubMed] |
| 285 | Murmu, M.S.; Stinnakre, J.; Martin, J.R. Presynaptic Ca$^{2+}$ stores contribute to odor-induced responses in *Drosophila* olfactory receptor neurons. *J. Exp. Biol.* 2010, 21, 4163–4173. [CrossRef] |
| 286 | Clyne, P.J.; Certel, S.J.; de Bruyne, M.; Zaslavsky, L.; Johnson, W.A.; Carlson, J.R. The odor specificities of a subset of olfactory receptor neurons are governed by Acj6, a POU-domain transcription factor. *Neuron* 1999, 22, 339–347. [CrossRef] |
| 287 | Gao, Q.; Chess, A. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. *Genomics* 1999, 60, 31–39. [CrossRef] |
| 288 | Vosshall, L.B.; Amrein, H.; Morozov, P.S.; Rzhetsky, A.; Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. *Cell* 1999, 96, 725–736. [CrossRef] |
| 289 | Neuhaus, E.M.; Gisselmann, G.; Zhang, W.; Dooley, R.; Störtkühl, K.; Hatt, H. Odorant receptor heterodimerization in the olfactory system of *Drosophila melanogaster*. *Nat. Neurosci.* 2005, 8, 15–17. [CrossRef] |
| 290 | Sato, K.; Pellegrino, M.; Nakagawa, T.; Nakagawa, T.; Vosshall, L.B.; Touhara, K. Insect olfactory receptors are heteromeric ligand-gated ion channels. *Nature* 2008, 452, 1002–1006. [CrossRef] |
| 291 |icher, D.; Schäfer, R.; Bauernfeind, R.; Stensmyr, M.C.; Heller, R.; Heinemann, S.H.; Hansson, B.S. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. *Nature* 2008, 452, 1007–1011. [CrossRef] |
| 292 | Vosshall, L.B.; Hansson, B.S. A unified nomenclature system for the insect olfactory coreceptor. *Chem. Senses* 2011, 36, 497–498. [CrossRef] |
| 293 | Benton, R.; Vannice, K.S.; Gomez-Diaz, C.; Vosshall, L.B. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. *Cell* 2009, 136, 149–162. [CrossRef] |
| 294 | Gomez-Diaz, C.; Martin, F.; Garcia-Fernandez, J.M.; Alcorta, E. The two main olfactory receptor families in *Drosophila*. *J. Neurosci.* 2000, 20, 757–767. [CrossRef] |
| 295 | Boekhoff, I.; Seifert, E.; Göggerle, S.; Lindemann, M.; Krüger, B.W.; Breer, H. Pheromone-induced second-messenger signaling in *Drosophila* olfactory neurons. *Cell Mol. Life Sci.* 1993, 50, 757–762. [CrossRef] |
| 296 | Kain, P.; Chakraborty, T.S.; Sundaram, S.; Siddiqi, O.; Rodrigues, V.; Hasan, G. Reduced odor responses from antennal neurons of G(α)alpha, phospholipase Cbeta, and rdgA mutants in Drosophila support a role for a phospholipid intermediate in insect olfactory transduction. *J. Neurosci.* 2008, 28, 4745–4755. [CrossRef] |
| 297 | Smart, R.; Kiely, A.; Beale, M.; Vargas, E.; Carracher, C.; Kralicek, A.V.; Christie, D.L.; Chen, C.; Newcomb, R.D.; Warr, C.G. Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. *Insect Biochem. Mol. Biol.* 2008, 38, 770–780. [CrossRef] [PubMed] |
| 298 | Nakagawa, T.; Vosshall, L.B. Controversy and consensus: Noncanonical signaling mechanisms in the insect olfactory system. *Curr. Opin. Neurobiol.* 2009, 19, 284–292. [CrossRef] |
| 299 | Chatterjee, A.; Roman, G.; Hardin, P.E. Go contributes to olfactory reception in *Drosophila melanogaster*. *BMC Physiol.* 2009, 9, 22. [CrossRef] [PubMed] |
| 300 | Deng, Y.; Zhang, W.; Farhat, K.; Oberland, S.; Gisselmann, G.; Neuhaus, E.M. The stimulatory Gα(s) protein is involved in olfactory signal transduction in Drosophila. *PLoS ONE* 2011, 6, e18605. [CrossRef] |
| 301 | Sargsyan, V.; Getahun, M.N.; Llanos, S.L.; Olsson, S.B.; Hansson, B.S.; Wicher, D. Phosphorylation via PKC regulates the function of the Drosophila odorant co-receptor. *Front. Cell Neurosci.* 2011, 5, 5. [CrossRef] |
| 302 | Miazzi, F.; Hansson, B.S.; Wicher, D. Odor-induced cAMP production in *Drosophila melanogaster* olfactory sensory neurons. *J. Exp. Biol.* 2016, 219, 1798–1803. [CrossRef] |
| 303 | Murmu, M.S.; Martin, J.R. Interaction between cAMP and intracellular Ca$^{2+}$-signaling pathways during odor-perception and adaptation in *Drosophila*. *Biochim. Biophys. Acta.* 2016, 1863, 2156–2174. [CrossRef] |
| 304 | Fleischer, J.; Pregitzer, P.; Breer, H.; Krieger, J. Access to the odor world: Olfactory receptors and their role for signal transduction in insects. *Cell Mol. Life Sci.* 2018, 75, 485–508. [CrossRef] |
| 305 | Murmu, M.S.; Stinnakre, J.; Réal, E.; Martin, J.R. Calcium-stores mediate adaptation in axon terminals of olfactory receptor neurons in Drosophila. *MCB Neurosci.* 2011, 12, 105. [CrossRef] |
| 306 | Fadool, D.A.; Ache, B.W. Plasma membrane inositol 1,4,5-trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. *Neuron* 1992, 9, 907–918. [CrossRef] |
| 307 | Cunningham, A.M.; Ryugo, D.K.; Sharp, A.H.; Reed, R.R.; Snyder, S.H.; Ronnett, G.V. Neuronal inositol 1,4,5-trisphosphate receptor localized to the plasma membrane of olfactory cilia. *Neuroscience* 1993, 57, 339–352. [CrossRef] |
| 308 | Schild, D.; Restrepo, D. Transduction mechanisms in vertebrate olfactory receptor cells. *Physiol. Rev.* 1998, 78, 429–466. [CrossRef] |
| 309 | Deshpande, M.; Venkatesh, K.; Rodrigues, V.; Hasan, G. The inositol 1,4,5-trisphosphate receptor is required for maintenance of olfactory adaptation in *Drosophila* antennae. *J. Neurobiol.* 2000, 43, 282–288. [CrossRef] |
| 310 | Kurahashi, T.; Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. *Nature* 1997, 385, 725–729. [CrossRef] |
Biomolecules 2021, 11, 1031

311. Devaud, J.M.; Acebes, A.; Ferrús, A. Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila. J. Neurosci. 2001, 21, 6274–6282. [CrossRef] [PubMed]

312. Gómez-Díaz, C.; Martin, F.; Alcorba, E. The cAMP transduction cascade mediates olfactory reception in Drosophila melanogaster. Behav. Genet. 2004, 34, 395–406. [CrossRef] [PubMed]

313. Stengel, M. Pheromone transduction in moths. Front. Cell Neurosci. 2010, 4, 133. [CrossRef]

314. Sklar, P.B.; Anholt, R.R.; Snyder, S.H. The odorant-sensitive adenylylcyclase of olfactory receptor cells. Differential stimulation by distinct classes of odorants. J. Biol. Chem. 1986, 261, 15538–15543. [CrossRef]

315. Venkatesh, K.; Hasan, G. Disruption of the IP3 receptor gene of Drosophila affects larval metamorphosis and ecdysone release. Curr. Biol. 1997, 7, 500–509. [CrossRef]

316. Lane, M.E.; Kalderon, D. Genetic investigation of cAMP-dependent protein kinase function in Drosophila development. Genes Dev. 1993, 7, 1229–1243. [CrossRef]

317. Liu, P.C.; Wang, J.X.; Song, Q.S.; Zhao, X.F. The participation of calponin in the cross talk between 20-hydroxyecdysone and juvenile hormone signaling pathway by phosphorylation variation. PLoS ONE 2011, 6, e19776. [CrossRef]

318. Jing, Y.P.; Liu, W.; Wang, J.X.; Zhao, X.F. The steroid hormone 20-hydroxyecdysone via nongenomic pathway activates Ca²⁺/calmodulin-dependent protein kinase II to regulate gene expression. J. Biol. Chem. 2015, 290, 8469–8481. [CrossRef]

319. Wang, D.; Pei, X.Y.; Zhao, W.L.; Zhao, X.F. Steroid hormone 20-hydroxyecdysone promotes higher calcium mobilization to induce apoptosis. Cell Calcium 2016, 60, 1–12. [CrossRef] [PubMed]

320. Li, Y.B.; Pei, X.Y.; Wang, D.; Chen, C.H.; Cai, M.J.; Wang, J.X.; Zhao, X.F. The steroid hormone 20-hydroxyecdysone upregulates calcium release-activated calcium channel modulator 1 expression to induce apoptosis in the midgut of Helicoverpa armigera. Cell Calcium 2017, 68, 24–33. [CrossRef]

321. Jayakumar, S.; Richhariya, S.; Reddy, O.V.; Texada, M.J.; Hasan, G. Drosophila larval to pupal switch under nutrient stress requires IP₃R/Ca(²⁺) signalling in glutamatergic interneurons. Elife 2016, 5, e17495. [CrossRef] [PubMed]

322. Joshi, R.; Venkatesh, K.; Srinivas, R.; Nair, S.; Hasan, G. Genetic dissection of itpr gene function reveals a vital requirement in aminergic cells of Drosophila larvae. Genetics 2004, 166, 225–236. [CrossRef] [PubMed]

323. Vermassen, E.; Parys, J.B.; Mauger, J.P. Subcellular distribution of the inositol 1,4,5-trisphosphate receptors: Functional relevance and molecular determinants. Biol. Cell 2004, 96, 3–17. [CrossRef]

324. Restrepo, S.; Basler, K. Drosophila wing imaginal discs respond to mechanical injury via slow InsP₃R-mediated intercellular calcium waves. Nat. Commun. 2016, 7, 12450. [CrossRef]

325. Sass, M. Autophagy research on insects. Autophagy 2008, 4, 265–267. [CrossRef]

326. Tettamanti, G.; Saló, E.; González-Estévez, C.; Felix, D.A.; Grimaldi, A.; de Egüileor, M. Autophagy in invertebrates: Insights into development, regeneration and body remodeling. Curr. Pharm. Des. 2008, 14, 116–125. [CrossRef]

327. Li, Y.B.; Li, X.R.; Yang, T.; Wang, J.X.; Zhao, X.F. The steroid hormone 20-hydroxyecdysone promotes switching from autophagy to apoptosis by increasing intracellular calcium levels. Insect Biochem. Mol. Biol. 2016, 79, 73–86. [CrossRef] [PubMed]

328. Hall, L.M.; Ren, D.; Feng, G.; Eberl, D.F.; Dubald, M.; Yang, M.; Hannan, F.; Kousky, C.T.; Zheng, W. Calcium channel as a new potential target for insecticides. In Molecular Action of Insecticides on Ion Channels; Clark, J.M., Ed.; ACS Symposium Series; ACS Publications: Washington, DC, USA, 1995; pp. 162–172.

329. Bloomquist, J.R. Ion channels as targets for insecticides. Annu. Rev. Entomol. 1996, 41, 163–190. [CrossRef] [PubMed]

330. Lümmen, P. Calcium channels as molecular target sites of novel insecticides. Adv. Insect Physiol. 2013, 44, 287–347. [CrossRef]

331. Ffrench-Constant, R.H.; Williamson, M.S.; Davies, T.G.; Bass, C. Ion channels as insecticide targets. J. Neurogenet. 2016, 30, 163–177. [CrossRef] [PubMed]

332. Nauen, R. Insecticide mode of action: Return of the ryanodine receptor. Pest Manag. Sci. 2006, 62, 690–692. [CrossRef]

333. Jenden, D.J.; Fairhurst, A.S. The pharmacology of ryanodine. Pharmacol. Rev. 1969, 21, 1–25.

334. Frolik, K.; Rogers, E.F.; Koniuszy, F.R. Plant insecticides; ryanodine, a new alkaloid from Ryania Insecticides. U.S. Patent 2,400,295, 1946.

335. Rogers, E.F.; Koniuszy, F.R. Plant insecticides; ryanodine, a new alkaloid from Ryania speciosa Vahl. J. Am. Chem. Soc. 1948, 70, 3086–3088. [CrossRef]

336. Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [CrossRef] [PubMed]

337. Lahm, G.P.; Selby, T.P.; Freudenberger, J.H.; Stevenson, T.M.; Myers, B.J.; Seburyamo, G.; Smith, B.K.; Flexner, L.; Clark, C.E.; Cordova, D. Anthranilic diamides: A new class of potent ryanodine receptor activators. Bioorg. Med. Chem. Lett. 2005, 15, 4898–4906. [CrossRef] [PubMed]

338. Sattelle, D.B.; Cordova, D.; Cheek, T.R. Insect ryanodine receptors: Molecular targets for novel pest control chemicals. Invert. Neurosci. 2008, 8, 107–119. [CrossRef] [PubMed]

339. Jeanguenat, A. The story of a new insecticidal chemistry class: The diamides. Pest Manag. Sci. 2013, 69, 7–14. [CrossRef] [PubMed]

340. Tohnishi, M.; Nakao, H.; Furuya, T.; Seo, A.; Kodama, H.; Tsubata, K.; Fujiyama, S.; Kodama, H.; Hirooka, T.; Nishimatsu, T.; Flubendiamide, a novel insecticide highly active against lepidopterous insect pests. J. Pestic. Sci. 2005, 30, 354–360. [CrossRef] [PubMed]

341. Masaki, T.; Yasokawa, N.; Tohnishi, M.; Nishimatsu, T.; Tsubata, K.; Inoue, K.; Motoba, K.; Hirooka, T.; Flubendiamide, a novel Ca²⁺ channel modulator, reveals evidence for functional cooperation between Ca²⁺ pumps and Ca²⁺ release. Mol. Pharmacol. 2006, 69, 1733–1739. [CrossRef]
342. Hirooka, T.; Nishimatsu, T.; Kodama, H.; Reckmann, U.; Nauen, R. The biological profile of flubendiamide, a new benzenedicarboxamide insecticide. *Pflanzenschutz Nachrichten Bayer* 2007, 60, 183–202.

343. Lahm, G.P.; Stevenson, T.M.; Selby, T.P.; Freudenberger, J.H.; Dubas, C.M.; Smith, B.K.; Cordova, D.; Flexner, L.; Clark, C.E.; Bellin, C.A.; et al. RynaxypyrTM: A new anthranilic diamide insecticide activating the ryanodine receptor. In *Pesticide Chemistry: Crop Protection, Public Health, Environmental Safety*; Ohkawa, H., Miyagawa, H., Lee, P.W., Eds.; Wiley-VCH: Weinheim, Germany, 2007; pp. 111–120. [CrossRef]

344. Lahm, G.P.; Cordova, D.; Barry, J.D. New and selective ryanodine receptor activators for insect control. *Bioorg. Med. Chem.* 2009, 17, 4127–4133. [CrossRef]

345. Cordova, D.; Benner, E.A.; Clark, D.A.; Bolgusas, S.P.; Lahm, G.P.; Gutteridge, S.; Rhoades, D.F.; Wu, L.; Sopa, J.S.; Rauh, J.J.; et al. Pyrrole-2 carboxamides—A novel class of insect ryanodine receptor activators. *Pestic. Biochem. Physiol.* 2021, 174, 104798. [CrossRef]

346. Cameron, R.A.; Williams, C.J.; Portillo, H.E.; Marçon, P.C.; Teixeira, L.A. Systemic application of chlorantraniliprole to cabbage transplants for control of foliar-feeding lepidopteran pests. *Crop Prot.* 2015, 67, 13–19. [CrossRef]

347. Foster, S.P.; Denholm, I.; Rison, J.L.; Portillo, H.E.; Margaritopoulos, J.; Slater, R. Susceptibility of standard clones and European field populations of the green peach aphid, *Myzus persicae*, and the cotton aphid, *Aphis gossypii* (Homiptera: Aphididae), to the novel anthranilic diamide insecticide cyrantraniliprole. *Pest Manag. Sci.* 2012, 68, 629–633. [CrossRef]

348. Selby, T.P.; Lahm, G.P.; Stevenson, T.M.; Hughes, K.A.; Cordova, D.; Annn, I.B.; Barry, J.D.; Benner, E.A.; Currie, M.J.; Pahtutski, T.F. Discovery of cyrantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. *Bioorg. Med. Chem. Lett.* 2013, 23, 6341–6345. [CrossRef] [PubMed]

349. Barry, J.D.; Portillo, H.E.; Annn, I.B.; Cameron, R.A.; Clagg, D.G.; Dietrich, R.F.; Watson, L.J.; Leighty, R.M.; Ryan, D.L.; McMillan, J.A.; et al. Movement of cyrantraniliprole in plants after foliar applications and its impact on the control of sucking and chewing pests. *Pest Manag. Sci.* 2015, 71, 395–403. [CrossRef] [PubMed]

350. Grávalos, C.; Fernández, E.; Belando, A.; Moreno, I.; Ros, C.; Bielza, P. Cross-resistance and baseline susceptibility of Mediterranean strains of *Bemisia tabaci* to cyrantraniliprole. *Pest Manag. Sci.* 2015, 71, 1030–1036. [CrossRef]

351. Sparks, T.C.; Cressthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fujioka, S.; Hirao, A.; Karmon, D. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification—A tool for resistance management. *Pestic. Biochem. Physiol.* 2020, 167, 104587. [CrossRef]

352. Wang, Y.; Guo, L.; Qi, S.; Zhang, H.; Liu, K.; Liu, R.; Liang, P.; Casida, J.E.; Liu, S. Fluorescent probes for insect ryanodine receptors: Candidate anthranilic diamides. *Molecules* 2014, 19, 4105–4114. [CrossRef] [PubMed]

353. Samurkas, A.; Fan, X.; Ma, D.; Sundarraj, R.; Lin, L.; Yao, L.; Ma, R.; Jiang, H.; Cao, P.; Gao, Q.; et al. Discovery of potential species-specific green insecticides targeting the lepidopteran ryanodine receptor. *J. Agric. Food Chem.* 2020, 68, 4528–4537. [CrossRef] [PubMed]

354. Kadala, A.; Charrerona, M.; Colleta, C. Flubendiamide, the first phthalic acid diamide insecticide, impairs neuronal calcium signalling in the honey bee’s antennae. *J. Insect Physiol.* 2020, 125, 104086. [CrossRef]

355. Masaki, T.; Yasokawa, N.; Ebbinghaus-Kintscher, U.; Luemmen, P. Flubendiamide stimulates Ca$^{2+}$ pump activity coupled to RyR-mediated calcium release in lepidopterous insects. In *Pesticide Chemistry; Ohkawa, H., Miyagawa, H., Lee, P.W., Eds.; Wiley-VCH: Weinheim, Germany, 2007.* [CrossRef]

356. Tao, Y.; Gutteridge, S.; Benner, E.A.; Wu, L.; Rhoades, D.F.; Sacher, M.D.; Watson, L.J.; Rivera, M.A.; Desaejer, J.; Cordova, D. Identification of a critical region in the *Drosophila* ryanodine receptor that confers sensitivity to diamide insecticides. *Insect Biochem. Mol. Biol.* 2013, 43, 820–828. [CrossRef]

357. Chen, S.R.; Li, P.; Zhao, M.; Li, X.; Zhang, L. Role of the proposed pore-forming segment of the Ca$^{2+}$ release channel (ryanodine receptor) in ryanodine interaction. *Biophys. J.* 2002, 82, 2436–2447. [CrossRef]

358. Steinbach, D.; Gutbrod, O.; Lümmen, P; Matthiesen, S.; Schorn, C.; Nauen, R. Geographic spread, genetic diversity and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, *Plutella xylostella*. *Insect Biochem. Mol. Biol.* 2015, 63, 14–22. [CrossRef]

359. Casida, J.E. Radioligand recognition of insecticide targets. *J. Agric. Food. Chem.* 2018, 66, 3277–3290. [CrossRef]

360. Isaacs, A.K.; Qi, S.; Sarpong, R.; Casida, J.E. Insect ryanodine receptor: Distinct but coupled insecticide binding sites for [N-C(3)(H)(3)]chlorantraniliprole, flubendiamide, and [(3)H]ryanodine. *Chem. Res. Toxicol.* 2012, 25, 1571–1573. [CrossRef] [PubMed]

361. Ma, R.; Haji-ghassemi, O.; Ma, D.; Jiang, H.; Lin, L.; Yao, L.; Samurkas, A.; Li, Y.; Wang, Y.; Cao, P.; et al. Structural basis for diamide modulation of ryanodine receptor. *Nat. Chem. Biol.* 2020, 16, 1246–1254. [CrossRef] [PubMed]

362. Guo, L.; Wang, Y.; Zhou, X.; Li, Z.; Liu, S.; Pei, L.; Gao, X. Functional analysis of a point mutation in the ryanodine receptor of *Plutella xylostella* (L.) associated with resistance to chlorantraniliprole. *Pest Manag. Sci.* 2014, 70, 1083–1089. [CrossRef] [PubMed]

363. Nauen, R.; Steinbach, D. Resistance to Diamide Insecticides in Lepidopteran Pests. In *Advances in Insect Control and Resistance Management*; Horowitz, A.R., Ishaaya, I., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 219. [CrossRef]

364. Richardson, E.B.; Troczka, B.J.; Gutbrod, O.; Emyr Davies, T.G.; Nauen, R. Diamide resistance: 10 years of lessons from lepidopteran pests. *J. Pest Sci.* 2020, 93, 911–928. [CrossRef]

365. Uchiyama, T.; Ozawa, A. Rapid development of resistance to diamide insecticides in the smaller tea tortrix, *Adoxophyes honmii* (Lepidoptera: Tortricidae), in the tea fields of Shizuoka Prefecture, Japan. *Appl. Entomot. Zool.* 2014, 49, 529–534. [CrossRef]
Biomolecules 2021, 11, 1031

366. Sial, A.A.; Brunner, J.F.; Doerr, M.D. Susceptibility of Choristoneura rosacea (Lepidoptera: Tortricidae) to two new reduced-risk insecticides. J. Econ. Entomol. 2010, 103, 140–146. [CrossRef]

367. Wang, X.; Li, X.; Chen, A.; Wu, Y. Baseline susceptibility of the diamondback moth (Lepidoptera: Plutellidae) to chlorantraniliprole in China. J. Econ. Entomol. 2010, 103, 843–848. [CrossRef]

368. Su, J.; Lai, T.; Li, J. Susceptibility of field populations of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in China to chlorantraniliprole and the activities of detoxification enzymes. Crop Prot. 2012, 42, 217–222. [CrossRef]

369. Lai, T.C.; Li, J.; Su, J.Y. Monitoring of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) resistance to chlorantraniliprole in China. Pestic. Biochem. Physiol. 2011, 101, 198–205. [CrossRef]

370. Che, W.; Shi, T.; Wu, Y.; Yang, Y. Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. J. Econ. Entomol. 2013, 106, 1855–1862. [CrossRef]

371. Li, X.; Degain, B.A.; Harpold, V.S.; Marçon, P.G.; Nichols, R.L.; Fournier, A.J.; Naranjo, S.E.; Palumbo, J.C.; Ellsworth, P.C. Baseline susceptibilities of B- and Q-biotype Bemisia tabaci to anthranilic diamides in Arizona. Pest Manag. Sci. 2012, 68, 83–91. [CrossRef]

372. Sukonthabhirom, S.; Dumrongsk, D.; Junmore, S.; Saroch, T.; Chaweng, A.; Tanaka, T. Update on DBM diamide resistance from Thailand: Causal factors and learnings. In Proceedings of the Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests, Nakhon Pathom, Thailand, 21–25 March 2011; Srinivasan, R., Shelton, A.M., Collins, H.L., Eds.; AVRDC-The World Vegetable Center: Tailem, Taiwan, 2011; pp. 202–212.

373. Guo, L.; Liang, P.; Zhou, X.; Gao, X. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.). Sci. Rep. 2014, 4, 6924. [CrossRef]

374. Wang, X.; Wu, Y. High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella. J. Econ. Entomol. 2012, 105, 1019–1023. [CrossRef]

375. Su, J.; Zhang, Z.; Wu, M.; Gao, C. Geographic susceptibility of Chilo suppressalis Walker (Lepidoptera: Crambidae), to chlorantraniliprole in China. Pest Manag. Sci. 2014, 70, 989–995. [CrossRef] [PubMed]

376. Troczka, B.; Zimmer, C.T.; Elias, J.; Schorn, C.; Bass, C.; Davies, T.G.E.; Field, L.M.; Williamson, M.S.; Slater, R.; Nauen, R. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochem. Mol. Biol. 2012, 42, 873–880. [CrossRef] [PubMed]

377. Gao, C.; Yao, R.; Zhang, Z.; Wu, M.; Zhang, S.; Su, J. Susceptibility baseline and chlorantraniliprole resistance monitoring in Chilo suppressalis (Lepidoptera: Pyralidae). J. Econ. Entomol. 2013, 106, 2190–2194. [CrossRef] [PubMed]

378. Gong, W.; Yan, H.H.; Gao, L.; Guo, Y.Y.; Xue, C.B. Chlorantraniliprole resistance in the diamondback moth (Lepidoptera: Plutellidae) to cyantraniliprole in the south of China. Pest Manag. Sci. 2017, 73, 1041–1049. [CrossRef] [PubMed]

379. He, Y.; Zhang, J.; Chen, J. Effect of synergists on susceptibility to chlorantraniliprole in field populations of Chilo suppressalis (Lepidoptera: Pyralidae). J. Econ. Entomol. 2014, 107, 791–796. [CrossRef] [PubMed]

380. Ribeiro, L.M.; Wanderley-Teixeira, V.; Ferreira, H.N.; Teixeira, A.A.; Siqueira, H.A. Fitness costs associated with field-evolved resistance to chlorantraniliprole in Plutella xylostella (Lepidoptera: Plutellidae). Bull. Entomol. Res. 2014, 104, 84–96. [CrossRef] [PubMed]

381. Yan, H.H.; Xue, C.B.; Li, G.Y.; Zhao, X.L.; Che, X.Z.; Wang, L.L. Flubendiamide resistance and Bi-PASA detection of ryanodine receptor G4946E mutation in the diamondback moth (Plutella xylostella L.). Pestic. Biochem. Physiol. 2014, 115, 73–77. [CrossRef] [PubMed]

382. Wu, M.; Zhang, S.; Yao, R.; Wu, S.; Su, J.; Gao, C. Susceptibility of the rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae), to flubendiamide in China. J. Econ. Entomol. 2014, 107, 1250–1255. [CrossRef] [PubMed]

383. Roditakis, E.; Vasakis, E.; Grispou, M.; Stavrakaki, M.; Nauen, R.; Gravouil, M.; Bassi, A. First report of Tuta absoluta resistance to diamide insecticides. J. Pest Sci. 2015, 88, 9–16. [CrossRef]

384. Sang, S.; Shu, B.; Yi, X.; Liu, J.; Hu, M.; Zhong, G. Cross-resistance and baseline susceptibility of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole in the south of China. Pest Manag. Sci. 2016, 72, 922–928. [CrossRef]

385. Silva, J.E.; Assis, C.P.; Ribeiro, L.M.; Siqueira, H.A. Field-Evolved Resistance and Cross-resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae) populations to diamide insecticides. J. Econ. Entomol. 2016, 109, 2190–2195. [CrossRef]

386. Lu, Y.; Wang, G.; Zhong, L.; Zhang, F.; Bai, Q.; Zheng, X.; Lu, Z. Resistance monitoring of Chilo suppressalis (Walker) (Lepidoptera: Crambidae) to chlorantraniliprole in eight field populations from East and Central China. Crop Prot. 2017, 100, 196–202. [CrossRef]

387. Ribeiro, L.M.S.; Siqueira, H.A.A.; Wanderley-Teixeira, V.; Ferreira, H.N.; Silva, W.M.; Silva, J.E.; Teixeira, A.A.C. Field resistance of Brazilian Plutella xylostella to diamides is not metabolism-mediated. Crop Prot. 2017, 93, 82–88. [CrossRef]

388. Roditakis, E.; Mavridis, K.; Riga, M.; Vasakis, E.; Morou, E.; Rison, J.L.; Vontas, J. Identification and detection of indoxacarb resistance mutations in the para sodium channel of the tomato leafminer, Tuta absoluta. Pest Manag. Sci. 2017, 73, 1679–1688. [CrossRef]

389. Yao, R.; Zhao, D.D.; Zhang, S.; Zhou, L.Q.; Wang, X.; Gao, C.F.; Wu, S.F. Monitoring and mechanisms of insecticide resistance in Chilo suppressalis (Lepidoptera: Crambidae), with special reference to diamides. Pest Manag. Sci. 2017, 73, 1169–1178. [CrossRef]

390. Cho, S.R.; Kyung, Y.; Shin, S.; Kang, W.J.; Jung, D.H.; Lee, S.J.; Park, G.H.; Kim, S.I.I.; Cho, S.W.; Kim, H.K.; et al. Susceptibility of field populations of Plutella xylostella and Spodoptera exigua to four diamide insecticides. J. Appl. Entomol. 2018, 57, 43–50. [CrossRef]
391. Gutiérrez-Moreno, R.; Mota-Sanchez, D.; Blanco, C.A.; Whalon, M.E.; Terán-Santofimio, H.; Rodríguez-Maciel, J.C.; DiFonzo, C. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J. Econ. Entomol. 2019, 112, 792–802. [CrossRef] [PubMed]

392. Wang, R.; Wang, J.; Che, W.; Sun, Y.; Li, W.; Luo, C. Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China. J. Integr. Agric. 2019, 18, 2571–2578. [CrossRef]

393. Zuo, Y.Y.; Ma, H.H.; Lu, W.J.; Wang, X.L.; Wu, S.W.; Nauen, R.; Wu, Y.D.; Yang, Y.H. Identification of the ryanodine receptor mutation I4743M and its contribution to diamide insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae). Insect Sci. 2020, 4, 791–800. [CrossRef] [PubMed]

394. Huang, J.M.; Zhao, Y.X.; Sun, H.; Ni, H.; Liu, C.; Wang, X.; Gao, C.F.; Wu, S.F. Monitoring and mechanisms of insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae), with special reference to diamides. Pestic. Biochem. Physiol. 2021, 174, 104831. [CrossRef] [PubMed]

395. Kim, J.; Nam, H.Y.; Kwon, M.; Choi, J.H.; Cho, S.R.; Kim, G.H. Development of a diame resistance diagnostic method using LAMP based on a resistance-specific indel in ryanodine receptors for Spodoptera exigua (Lepidoptera: Noctuidae). bioRxiv 2020. [CrossRef]

396. Wang, P.; Yang, F.; Wang, Y.; Zhou, L.L.; Luo, H.B.; Zhang, S.; Si, S.Y. Monitoring the resistance of the beet armyworm (Lepidoptera: Noctuidae) to four insecticides in southern China from 2014 to 2018. J. Econ. Entomol. 2021, 114, 332–338. [CrossRef]

397. Zhang, S.K.; Ren, X.B.; Wang, Y.C.; Su, J. Resistance to Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) to new chemistry insecticides. J. Econ. Entomol. 2014, 107, 815–820. [CrossRef] [PubMed]

398. Owen, L.N.; Catchot, A.L.; Musser, F.R.; Gore, J.; Cook, D.C.; Jackson, R. Susceptibility of Spodoptera exigua (Lepidoptera: Noctuidae) to reduced-risk insecticides. Fla. Entomol. 2013, 96, 554–559. [CrossRef]

399. Zhang, R.; He, S.; Chen, J. Monitoring of Bactrocera dorsalis (Diptera: Tephritidae) resistance to cyantraniliprole in the south of China. J. Econ. Entomol. 2014, 107, 1233–1238. [CrossRef]

400. Liu, X.; Ning, Y.; Wang, H.; Wang, K. Cross-resistance, mode of inheritance, synergism, and fitness effects of cyantraniliprole resistance in Plutella xylostella. Entomol. Exp. Appl. 2015, 157, 271–278. [CrossRef]

401. Zhang, S.; Zhang, X.; Shen, J.; Mao, K.; You, H.; Li, J. Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China. Pestic. Biochem. Physiol. 2016, 132, 38–46. [CrossRef] [PubMed]

402. Zuo, Y.Y.; Wang, H.; Xu, Y.; Huang, J.; Wu, S.; Wu, Y.; Yang, Y. CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides. Insect Biochem. Mol. Biol. 2017, 89, 79–85. [CrossRef] [PubMed]

403. Bolzan, A.; Padovez, F.E.; Nascimento, A.R.; Kaiser, I.S.; Lira, E.C.; Amaral, F.S.; Kanno, R.H.; Malaquias, J.B.; Omoto, C. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Manag. Sci. 2019, 75, 2682–2689. [CrossRef]

404. Teixeira, L.A.; Andaloro, J.T. Diamide insecticides: Global efforts to address insect resistance stewardship challenges. Pestic. Biochem. Physiol. 2013, 106, 76–78. [CrossRef]

405. Douris, V.; Papapostolou, K.M.; Ilias, A.; Roditakis, E.; Kounadi, S.; Riga, M.; Nauen, R.; Vontas, J. Investigation of the contribution of Ryr target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in Drosophila. Insect Biochem. Mol. Biol. 2017, 87, 127–135. [CrossRef] [PubMed]

406. Douris, V.; Denecke, S.; Van Leeuwen, T.; Bass, C.; Nauen, R.; Vontas, J. Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: Drosophila and beyond. Pestic. Biochem. Physiol. 2020, 167, 104595. [CrossRef]

407. Jiang, W.H.; Lu, W.P.; Guo, W.; Xia, Z.H.; Fu, W.J.; Li, G.Q. Chlorantraniliprole susceptibility in the genetic basis of insecticide resistance: Drosophila and beyond. Pestic. Biochem. Physiol. 2020, 167, 104595. [CrossRef]

408. Sial, A.A.; Brunner, J.F.; Garczynski, S.F. Biochemical characterization of chlorantraniliprole and spinetoram resistance in laboratory-selected oblique-banded leafroller, Charistoneura rosaceana (Harris) (Lepidoptera: Tortricidae). Pestic. Biochem. Physiol. 2011, 99, 274–279. [CrossRef]

409. Liu, X.; Wang, H.Y.; Ning, Y.B.; Qiao, K.; Wang, K.Y. Resistance selection and characterization of chlorantraniliprole resistance in Plutella xylostella (Lepidoptera: Plutellidae). Bull. Entomol. Res. 2015, 108, 1978–1985. [CrossRef]

410. Lin, Q.; Jin, F.; Hu, Z.; Chen, H.; Yin, F.; Li, Z.; Dong, X.; Zhang, D.; Ren, S.; Feng, X. Transcriptome analysis of chlorantraniliprole resistance development in the diamondback moth Plutella xylostella. PLoS ONE 2013, 8, e72314. [CrossRef] [PubMed]

411. Hu, Z.; Lin, Q.; Chen, H.; Li, Z.; Yin, F.; Feng, X. Identification of a novel cytochrome P450 gene, CYP321E1 from the diamondback moth, Plutella xylostella (L.) and RNA interference to evaluate its role in chlorantraniliprole resistance. Bull. Entomol. Res. 2014, 104, 716–723. [CrossRef] [PubMed]

412. Li, X.; Li, R.; Zhu, B.; Gao, X.; Liang, P. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.). Pest Manag. Sci. 2018, 74, 1386–1393. [CrossRef]

413. Wang, J.D.; Chen, L.F.; Wang, Y.R.; Fu, H.Y.; Ali, A.; Xiao, D.; Wang, R.; Gao, S.J. Silence of ryanodine receptor gene decreases susceptibility to chlorantraniliprole in the oriental armyworm, Mythimna separata Walker. Pestic. Biochem. Physiol. 2018, 148, 34–41. [CrossRef] [PubMed]

414. Zuo, Y.Y.; Huang, J.L.; Wang, J.; Feng, Y.; Han, T.T.; Wu, Y.D.; Yang, Y.H. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua. Insect Mol. Biol. 2018, 27, 36–45. [CrossRef]
415. Meng, X.; Yang, X.; Wu, Z.; Shen, Q.; Miao, L.; Zheng, Y.; Qian, K.; Wang, J. Identification and transcriptional response of ATP-binding cassette transporters to chlorantraniliprole in the rice striped stem borer, Chilo suppressalis. Pest Manag. Sci. 2020, 76, 3626–3635. [CrossRef] [PubMed]

416. Li, X.; Guo, L.; Zhou, X.; Gao, X.; Liang, P. miRNAs regulated overexpression of ryanodine receptor is involved in chlorantraniliprole resistance in Plutella xylostella (L.). Sci. Rep. 2015, 5, 14095. [CrossRef]

417. Ma, Z.; Li, Y.; Wu, L.; Zhang, X. Isolation and insecticidal activity of sesquiterpenes alkaloids from Tripterygium wilfordii Hook f. Ind. Crops Prod. 2014, 52, 642–648. [CrossRef]

418. Li, Y.; Lian, X.; Wan, Y.; Wang, D.; Chen, W.; Di, F.; Wu, W.; Li, Z. Modulation of the Ca$^{2+}$ signaling pathway by celangulin I in the central neurons of Spodoptera exigua. Pestic. Biochem. Physiol. 2016, 127, 76–81. [CrossRef]

419. Lapied, B.; Pennetier, C.; Apaire-Marchais, V.; Licznar, P.; Corbel, V. Innovative applications for insect viruses: Towards insecticide sensitization. Trends Biotechnol. 2009, 27, 190–198. [CrossRef] [PubMed]

420. Abd-Ella, A.; Stankiewicz, M.; Mikulska, K.; Nowak, W.; Pennetier, C.; Goulu, M.; Fruchart-Gaillard, C.; Licznar, P.; Apaire-Marchais, V.; List, O.; et al. The Repellent DEET potentiates carbamate effects via insect muscarinic receptor interactions: An alternative strategy to control insect vector-borne diseases. PLoS ONE 2015, 10, e0126406. [CrossRef] [PubMed]

421. Deshayes, C.; Moreau, E.; Pitti-Caballero, J.; Froger, J.A.; Apaire-Marchais, V.; Lapied, B. Virus and calcium: An unexpected tandem to optimize insecticide efficacy. Environ. Microbiol. Rep. 2016, 8, 168–178. [CrossRef]

422. Güney, G.; Cedden, D.; Hänniger, S.; Heckel, D.G.; Coutu, C.; Hegedus, D.D.; Amutkan Mutlu, D.; Suludere, Z.; Sezen, K.; Güney, E.; et al. Silencing of an ABC transporter, but not a cadherin, decreases the susceptibility of Colorado potato beetle larvae to Bacillus thuringiensis ssp. tenebrionis Cry3Aa toxin. Arch. Insect Biochem. Physiol. 2021, in press. [CrossRef]

423. Wang, W.; Wan, P.; Lai, F.; Zhu, T.; Fu, Q. Double-stranded RNA targeting calmodulin reveals a potential target for pest management of Nilaparvata lugens. Pest Manag. Sci. 2018, 74, 1711–1719. [CrossRef] [PubMed]

424. Fletcher, S.J.; Reeves, P.T.; Hoang, B.T.; Mitter, N. A perspective on RNAi-based biopesticides. Front. Plant Sci. 2020, 11, 51. [CrossRef] [PubMed]