Abstract

Transfer learning eases the burden of training a well-performed model from scratch, especially when training data is scarce and computation power is limited. In deep learning, a typical strategy for transfer learning is to freeze the early layers of a pre-trained model and fine-tune the rest of its layers on the target domain. Previous work focuses on the accuracy of the transferred model but neglects the transfer of adversarial robustness. In this work, we first show that transfer learning improves the accuracy on the target domain but degrades the inherited robustness of the target model. To address such a problem, we propose a novel cooperative adversarially-robust transfer learning (CARTL) by pre-training the model via feature distance minimization and fine-tuning the pre-trained model with non-expansive fine-tuning for target domain tasks. Empirical results show that CARTL improves the inherited robustness by about 28% at most compared with the baseline with the same degree of accuracy. Furthermore, we study the relationship between the batch normalization (BN) layers and the robustness in the context of transfer learning, and we reveal that freezing BN layers can further boost the robustness transfer.

1. Introduction

The immense progress of deep neural networks (DNNs) leads interactions with machines to a new era. In many fields, DNNs achieve high performance, even better than humans. However, training such a model requires a well-designed network architecture, massive high-quality training data, and extensive computational resources. Obviously, it is impractical for small-scale scenarios due to limited GPUs or insufficient training datasets.

When further implementing DNNs, we are facing more problems. Numerous research efforts have revealed the brittle robustness of DNNs, which hinders their applications in many security-critical scenarios. Previous work on adversarial examples (Szegedy et al., 2014; Papernot et al., 2016a; Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017; Kurakin et al., 2017) demonstrated that DNNs can be deceived when given the input with a carefully-crafted perturbation. To solve this problem, adversarial training (Goodfellow et al., 2015; Madry et al., 2018; Kannan et al., 2018) has been considered as a promising defensive approach for improving the adversarial robustness of DNNs. The key idea of these approaches is to generate adversarial examples during model training and add them to training datasets. An extra computational burden, however, is introduced to the model training process.

Regarding the above prerequisites of model training, prior work (Pan & Yang, 2010; Bengio, 2012; Yosinski et al., 2014) proposed transfer learning to obtain high-performance DNN models with significantly reduced efforts. It can greatly ease the burden in the (adversarially) training process, especially for those with limited capabilities. Thus, it has been considered as a promising machine learning as a service (MLaaS) technique in the industry (Liakhovich & Mbemba, 2017; Li & Li, 2018). The idea of transfer learning is similar to the knowledge transfer in the human world, where the knowledge obtained from the source domain is applied to the target domain for improving model performance. For DNNs, the “knowledge” is included in the weights of models. We call the model trained on the source domain the source model and the one for the target domain the target model (Utrera et al., 2021).

So far, most research efforts have mainly been devoted to improving the accuracy of the target model (Kornblith et al., 2019; Utrera et al., 2021; Salman et al., 2020), but neglecting its robustness. The most recent work from Shafahi et al. (2020) discussed how the robustness transfers in transfer learning and pointed out that the target model can im-
We summarize our main contributions as follows:

- Through experimental analysis, we reveal that there is a trade-off between accuracy and robustness during transfer learning, which has been overlooked by prior work. Specifically, the target model obtains higher accuracy on the target domain as it fine-tunes more layers. However, as the number of fine-tuned layers increases, the target model’s robustness is greatly affected and eventually severely degraded.

- We propose a new transfer learning strategy, CARTL, for improving the accuracy-robustness trade-off of the target model. Our experimental evaluations on broadly-used datasets show that our design improves the target model’s inherited robustness while gaining competitive accuracy on the target domain.

- We also conduct extensive experiments on several transfer learning scenarios to demonstrate that selectively freezing the BN layers can further boost the robustness transfer.

2. Related Work

Various techniques focusing on defending adversarial examples have been proposed (Papernot et al., 2016b; Papernot & McDaniel, 2017; Xie et al., 2019; Song et al., 2018). However, many defenses were still proven to be vulnerable to stronger attacks (Carlini & Wagner, 2017; Athalye et al., 2018; Tramer et al., 2020). Despite the fails of many defenses, adversarial training (Szegedy et al., 2014; Kurakin et al., 2017; Madry et al., 2018; Kannan et al., 2018) is still widely regarded as a promising defense for protecting trained models from adversarial examples and has been extensively discussed (Tramèr et al., 2018; Schmidt et al., 2018; Tsipras et al., 2019; Tramer & Boneh, 2019; Zhang et al., 2019b).

Goodfellow et al. (Goodfellow et al., 2015) firstly observed that adding adversarial examples into the training datasets improves adversarial robustness, and the strategy is called adversarial training. Madry et al. (Madry et al., 2018) used a strong attack method to generate adversarial examples during training, which demonstrated that the trained model is
We consider DNN-based classification tasks and define an L-layer feed-forward DNN model:

\[f(\cdot; \theta) := \left(f_{L}^{\theta} \circ f_{L-1}^{\theta} \circ \cdots \circ f_{1}^{\theta} \right)(\cdot), \quad (1) \]

which is parameterized by \(\theta := \{ \theta_1, \ldots, \theta_L \} \). We use \(f^k \) to represent the \(k \)th layer of the model \(f \) and use \(f^{(k_1 \ldots k_2)} \) to represent layers ranging from \(k_1 \) to \(k_2 \), i.e., \(f^{(k_1 \ldots k_2)} := f^{k_2} \circ \cdots \circ f^{k_1} \). We also denote the first \(k \) layers as \(f^{(k)} \) for shorthand.

To train the model, given a proper loss function \(\mathcal{L} \), e.g., cross-entropy loss, we want to find the optimal parameters \(\theta^* \) that minimizes the risk:

\[\arg \min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\mathcal{L}(f(x; \theta), y) \right], \quad (2) \]

where \(\mathcal{D} \) is the data distribution of image-label pair \((x, y) \). We define data \(x \in [0,1]^d \), where \(d \) is the input dimension, and define label \(y \in \{0,1,\ldots,C-1\} \), where \(C \) is the number of class labels.

3. Adversarial Examples & Adversarial Training

Most adversarial example attacks consider an \(\ell_p \)-norm constrained optimization problem that can be generalized as:

\[\arg \max_{\delta} \mathcal{L}(f(x + \delta; \theta), y) \quad s.t. \| \delta \|_p \leq \epsilon. \quad (3) \]

The hyper-parameter \(\epsilon \) guarantees that the perturbation \(\delta \) is imperceptible. In our work, we consider \(\ell_\infty \)-norm-based attacks (Madry et al., 2018) and let \(\epsilon = 8/255 \).

We follow (Madry et al., 2018) defining the adversarial training as a saddle-point problem that aims to minimize a variant of the training risk:

\[\arg \min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\max_{\|\delta\|_p \leq \epsilon} \mathcal{L}(f(x + \delta; \theta), y) \right]. \quad (4) \]

The inner maximization problem can be approximated by an iterative version of Eq. (3), known as the projected gradient descent (PGD). The method can be summarized as:

\[\delta^{i+1} := \Pi \left(\delta^i + \alpha \cdot \text{sign} \left(\nabla_{\delta} \mathcal{L} \left(f(x + \delta^i), y \right) \right) \right), \quad (5) \]

where \(\alpha \) is the step size. For \(\ell_\infty \)-based perturbations, the projection \(\Pi \) clips the noise \(\delta \) to the interval \([-\epsilon, \epsilon]\). Compared with single-step attacks, PGD achieves higher error rates since it tends to find the global maxima of Eq. (3). In the following sections, we represent the \(N \)-step PGD attack as PGD-\(N \).

3.2. Lipschitz Constant

The Lipschitz constant defines an upper bound of the function’s slope. If we can find such an upper bound, we call the function Lipschitz continuous, and formally, it can be described as

\[\| f(x) - f(x') \|_2 \leq \Lambda \cdot \| x - x' \|_2, \quad (6) \]

where \(\Lambda \) is the Lipschitz constant. Specifically, we call a function non-expansive when \(\Lambda \leq 1 \). Intuitively, if a function is non-expansive, the deviation of its output is no more than the perturbation on its input. Recall Eq. (1), a
4. Problem Statement

The previous work of Shafahi et al. (2020) gave an empirical analysis of robustness transfer. However, their exploratory experiments put less attention on the accuracy. Besides, they mainly considered a strategy that all layers but the last fully-connected layer are frozen, which does not cover more general cases. In this work, we study how both the robustness and accuracy transfer while the last k layers are fine-tuned.

To see the effect of fine-tuning on the robustness and accuracy, we adversarially train a Wide-ResNet (WRN) 34-10 (Zagoruyko & Komodakis, 2017) on CIFAR-100 and a WRN 28-4 on CIFAR-10 as source models, then transfer them to CIFAR-10 and SVHN, respectively. The source models are trained with PGD-7, and the perturbation is constrained in an ℓ_∞ ball with a radius of $\epsilon = 8/255$. During transferring, we break the source models into blocks and fine-tune them in the unit of blocks (e.g., two layers at once for a WRN block). Then we report the adversarial robustness of the target models against the PGD-100 attack. We emphasize that our settings are different from the exploration in (Shafahi et al., 2020), where the last k blocks were instead fine-tuned on the source domain.

Figure 3 illustrates how both the accuracy and robustness are affected during transfer learning. As can be seen, only retraining the last fully-connected layer fails to guarantee high accuracy for target domain tasks. Besides, the insufficient accuracy also results in lower robustness. If we further fine-tune the last few layers, the model accuracy is increased together with the increased robustness. We attribute this phenomenon to the increment of the accuracy of natural inputs. The accuracy is continuously increased while we fine-tune more layers, but the robustness quickly drops and ends with negligible. The results demonstrate there is a trade-off between the target model’s accuracy on the target domain and its robustness inherited from the source model. Besides, simply fine-tuning the last few layers does help the target model inherit the accuracy and robustness in a low cost.

Furthermore, besides the above observations, it is natural to raise another question:

\[
\text{Can the target model obtain high accuracy while inheriting more robustness from the source model?}
\]

To answer with this question, we propose a novel strategy for transfer learning, which further improves the accuracy-robustness trade-off during transfer learning.

5. Our Design: CARTL

In this section, to cope with the question raised in Section 4, we propose a new approach, cooperative adversarially-
robust transfer learning (CARTL), to improve both the robustness and accuracy of the target model. We divide layers of a robust source model into two parts during transfer learning according to whether they will be retrained. We take the frozen part as a feature extractor like (Utrera et al., 2021), and we propose that it outputs similar features if given natural examples and corresponding adversarial examples. As for the trainable part fine-tuned on the target domain, we aim to reduce the classification error caused by the differences between the features extracted from natural and adversarial inputs. Without loss of generality, we assume that the target model fine-tunes the last \(k \) layers and freezes the first \(L - k \) layers during transfer learning. We introduce our scheme, starting with training the source model.

5.1. Feature Distance Minimization

Our intuition is that if a specific layer of a model extracts similar features from two inputs, the subsequent layers tend to classify the inputs into identical classes, even they have different labels (Wang et al., 2018). Hence, we consider making the frozen part of the source model a robust feature extractor that can output similar features given natural examples and the corresponding adversarial examples. To do so, we propose feature distance minimization (FDM) to reduce the dissimilarity of the extracted features. Specifically, for the first \(L - k \) layers that take as input \(x \) and output intermediate features \(f^{(L-k)}(x) \), FDM adds a penalty term to the training loss for two different inputs \(x \) and \(\tilde{x} \):

\[
\mathcal{L}_{AT} + \lambda \cdot D \left(f^{(L-k)}(x), f^{(L-k)}(\tilde{x}) \right). \tag{9}
\]

Here, \(\lambda \) is the hyper-parameter controlling the strength of the FDM penalty term, and \(D \) is a distance metric measuring the dissimilarity between two features. \(\mathcal{L}_{AT} \) is the loss function used during adversarial training, and \(\tilde{x} \) is the adversarial example corresponding to the natural example \(x \).

Intuitively, we can view extracted features as points in a subspace of \(\mathbb{R}^d \), where \(d \) is the feature’s dimension. For a source model that can extract similar intermediate features, features of natural examples and adversarial examples should be close enough. Thus, we propose to use the Euclidean distance between the natural feature and adversarial feature as the penalty term. Specifically, we adjust the original training loss Eq. (4) to

\[
\mathcal{L}_{AT} + \frac{\lambda}{\sqrt{d}} \sum \| f^{(L-k)}(x) - f^{(L-k)}(\tilde{x}) \|_2. \tag{10}
\]

5.2. Non-Expansive Fine-tuning

The source model trained with FDM outputs similar features if both natural and adversarial examples are given. However, considering the previous discussion in Eq. (7), the little dissimilarity between the features may be still amplified during propagation in the rest of the network, leading to misclassification. To improve the target model’s robustness, we propose to suppress such the amplification effect via controlling the network’s Lipschitz constant.

We start with the basic linear layer that can be expressed as \(x^{l+1} = W^l x^l + b^l \), where \(W^l \in \mathbb{R}^{d_{out} \times d_{in}} \) and \(b^l \in \mathbb{R}^{d_{out}} \). It is straightforward that the bias \(b^l \) does not affect the Lipschitz constant. Thus, the Lipschitz constant of the linear layer is determined by \(W^l \). Since the Lipschitz constant is upper bounded by the spectrum norm of \(W^l \), i.e., its maximum singular value (Szegedy et al., 2014), similar to the spectrum normalization (Miyato et al., 2018), we divide weights \(W^l \) of last \(k \) layers by their spectrum norm \(\sigma(W^l) \) as

\[
W^l_* := \beta \cdot \frac{W^l}{\sigma(W^l)}, \quad (l = L - k + 1, \ldots, L). \tag{11}
\]

We also emphasize that different from the naive spectrum normalization, we add a hyper-parameter \(\beta \in (0, 1] \) for
As for the aggregation layer in the residual network (He et al., 2016), we transform the weight matrix as

\[
 C_{\text{out}} \cdot \frac{1}{\text{out}} \cdot \frac{1}{\text{in}} \cdot \frac{1}{\text{K}} \cdot \text{K} \cdot \text{K} \cdot \text{K}
\]

with FDM tend to have a smaller (< 1) Lipschitz constant. The idea comes from the observation that parameters trained on the source model harms the accuracy of the target model, we can see that freezing affine parameters of the feature extractor improves transferred robustness. For example, the target model’s robustness is increased by 47% if we transfer a robust source model from CIFAR-100 to CIFAR-10. Unlike the analysis in Section 3.3, we consider four cases regarding the BN layers, including updating or freezing source model’s running statistics (i.e., \(\mu, \sigma\)) in the frozen feature extractor, and fine-tuning or freezing source model’s affine weights (i.e., \(W, b\)) in the sub-model. For other cases, we note that both \(W\) and \(b\) in the feature extractor are naturally frozen in transfer learning, and we also find that freezing running statistics \(\mu, \sigma\) in the fine-tunable layers makes the target model hard to converge.

We conduct experiments on several transfer learning scenarios, where robust models are naively transferred to target domains, and we present the results in Table 1 (more setups are presented in Appendix C). It is shown that though it slightly degrades accuracy, freezing all affine parameters (i.e., \(W\) and \(b\)) of BN layers can further improve the transferred robustness. For example, the target model’s robustness is increased from 14.36% to 17.41%, while the accuracy is decreased by 0.47% if we transfer a robust source model from CIFAR-100 to CIFAR-10. Unlike the analysis in Section 4, where we show that reducing the number of fine-tunable layers harms the accuracy of the target model, we can see

6. Rethinking Fine-tuning BN Layers

During our evaluation, we find a strong connection between the BN layer and the transferred robustness. Before presenting experimental evaluations of CARTL, we first investigate how the BN layer affects the target models’ robustness in this section. Specifically, we find that selectively freezing the BN layers of source models improves the transferred robustness of target models and generally brings little negative impact on their accuracy.

We first simply recap the basis of the BN layer. In current implementations of the BN layer, it usually consists of four parameters, including two running statistics \(\mu\) and \(\sigma\), and two affine parameters \(W\) and \(b\). Typically, a BN layer can be expressed as

\[
 BN(x) := \frac{W \cdot x - \text{mean}(x)}{\sqrt{\text{var}(x) + \epsilon}} + b. \quad (12)
\]

During training, both the running statistics \(\mu\) and \(\sigma\) are updated with a momentum based on batch’s statistics (i.e., \(\text{mean}\) and \(\text{var}\)), while \(W\) and \(b\) are updated via the gradient descent. During inference, BN layers normalize the activation with running statistics instead of batch’s statistics.

For the convolutional layer, we flatten each filter into a vector with \(C_{\text{in}} \cdot K \cdot K\) dimensions, where \(C_{\text{in}}\) is the number of input channels, and \(K\) is the size of the convolution kernel. We further stack the vectors forming a \(C_{\text{out}}\)-row matrix, where \(C_{\text{out}}\) is the number of output channels. Hence, we transform the weight matrix as \(W \in \mathbb{R}^{C_{\text{out}} \times (K^2 \cdot C_{\text{in}})}\). As for the aggregation layer in the residual network (He et al., 2016), which adds the predecessor layer’s output with the shortcut connection’s output, we instead modify it to a convex combination of its inputs (Cisse et al., 2017) and manually set the weights be \(1/n\), where \(n\) is the number of its inputs.

\(W, b\)	\(\mu, \sigma, W, b\)				
Acc.\%	Rob.\%	Acc.\%	Rob.\%		
CIFAR-100 → CIFAR-10 (k = 8)	-	91.17	14.36	90.86	14.89
CIFAR-10 → GTSRB (k = 6)	-	93.02	30.22	89.29	32.22
CIFAR-10 → SVHN (k = 6)	-	95.29	3.88	95.24	9.22
CIFAR-10 → SVHN (k = 5)	-	93.47	4.71	92.92	12.45

Further scaling the Lipschitz constant of the fine-tuned part.

Table 1: Effect of selectively freezing BN layers in various scenarios. The third and fourth columns are results of target models freezing affine parameters of the feature extractor. The fifth and sixth rows are results of target models freezing all parameters of the feature extractor. For each transfer learning scenario, the first rows are results of target models fine-tuning all parameters of the sub-model, and the second rows are those that freeze affine parameters.
Table 2: Accuracy and robustness of target models transferred to CIFAR-10 under different choices of hyper-parameters, including λ for FDM, β for NEFT and the number of fine-tuned layers.

Case	NEFT $\beta = 1.0$	NEFT $\beta = 0.6$	NEFT $\beta = 0.4$				
	Acc. (%)	Rob. (%)	Acc. (%)	Rob. (%)	Acc. (%)	Rob. (%)	
Case-4	$\lambda = 0.01$	86.09	25.73	86.08	27.17	85.64	28.40
	$\lambda = 0.005$	85.41	25.75	85.47	27.14	85.51	28.47
Case-6	$\lambda = 0.01$	87.78	25.58	87.92	27.27	87.96	29.60
	$\lambda = 0.005$	87.66	25.97	88.07	27.64	87.79	30.94
Case-8	$\lambda = 0.01$	91.85	16.36	91.63	19.22	91.55	27.47
	$\lambda = 0.005$	91.71	17.62	91.10	21.60	91.30	29.34

that merely freezing the BN layers’ affine parameters does not aggressively decrease the accuracy while improving the robustness. In addition, reusing the running statistics of the BN layers in the frozen feature extractor plays a crucial role in robustness transfer, e.g., transferring from CIFAR-10 to SVHN. However, it tends to bring more negative effects to the accuracy, especially when transferring from CIFAR-10 to GTSRB. We note that our findings corroborate the recent studies (Xie & Yuille, 2019; Xie et al., 2020), which argue that the BN layers highly relate to robustness.

7. CARTL Evaluation

In this section, we present the experimental results of CARTL compared with the vanilla method and Shafahi’s work (2020). We conduct a detailed experimental analysis for the scenario of transferring from CIFAR-100 to CIFAR-10. Besides, more scenarios are also tested to demonstrate the generality of CARTL. We report the robustness of target models under the PGD-100 attack. For more details about experiment settings, please refer to Appendix C, and our codes are available on GitHub2.

7.1. Improved Robustness-Accuracy Trade-off

Shafahi et al. (2020) noticed that merely retraining the last layer maintains the robustness of the source model but results in low accuracy on the target domain. To cope with this problem, they proposed an end-to-end fine-tuning method with learning without forgetting (LwF)3. In addition to LwF, we also consider the vanilla method, which refers to simply fine-tune the last few layers of a robust source model on the target domain without additional techniques. Source models for both LwF and the vanilla method are adversarially trained with (Madry et al., 2018).

Figure 4 qualitatively illustrates the robustness-accuracy trade-off achieved by CARTL in comparison with LwF and the vanilla method. It is shown that to obtain high accuracy, LwF significantly degrades the target model’s robustness (close to 0%). Moreover, LwF improves the robustness of the target model but aggressively harms its accuracy on the target domain. On the other hand, both the vanilla method and CARTL maintain higher robustness in the case of an equivalent level of accuracy, demonstrating a better robustness-accuracy trade-off. Moreover, our method CARTL further improves the accuracy-robustness trade-off on the target domain during transfer learning. Specifically, it improves the robustness by about 28% compared with LwF when the accuracy is about 90%.

We also notice that a peak point appears in both curves of CARTL and Vanilla. This phenomenon is in line with the observations in Section 4 that the target model’s robustness increases when the last few layers are fine-tuned. It implies that there may exist a potential optimal configuration of k for transfer learning, and we leave the corresponding searching strategies for our future work.

2https://github.com/NISP-official/CARTL
3We give detailed introduction of LwF in Appendix B.
7.2. Selections for Hyper-parameters

In this subsection, we evaluate how hyper-parameters of CARTL affect the accuracy and robustness of the target model.

First, we test the effect of increasing the number of retrained layers. We report both the target model's accuracy and robustness when fine-tuning the layers of the last 4, 6, and 8 blocks of WRN 34-10, which are denoted as Case-\(k\), and \(k = 4, 6, 8\). When we increase the number of retrained blocks, the accuracy generally rises from \(\approx 86\%\) to \(\approx 91\%\). As for the robustness, CARTL exhibits similar trends to the vanilla method, achieving higher robustness at Case-6.

We further investigate how the hyper-parameter \(\lambda\) affects both the accuracy and robustness of the target models. We observe that for all cases, a smaller \(\lambda\) helps robustness transfer, especially for the Case-8. On the other hand, we can see that reducing \(\lambda\) cast slight negative impacts to the accuracy of target models.

Finally, we evaluate the best choices for the hyper-parameter \(\beta\). Recall that in Eq. (11), we divide weights of fine-tuned layers by their largest singular value while multiplying a scalar \(\beta\) for further scaling their Lipschitz constants. For example, if we let \(\beta = 0.4\), the Lipschitz constants of all fine-tuned layers are reduced to about \(\beta^2 = 0.16\). We can see that reducing Lipschitz constants significantly improves the target models’ robustness from 17.62\% to 29.34\% but brings a negligible negative impact to the accuracy.

7.3. Ablation Studies

To test the effect of each component of CARTL on the accuracy and robustness of the target model, we replace part of the components of CARTL with the vanilla method while training the source models and fine-tuning the target models. In Table 3, the first row presents the results using the vanilla method, which is used as the baseline. Recall that the vanilla method is consisted of simply adversarially training the source model with (Madry et al., 2018), denoted as AT, and directly fine-tuning the source model on the target domain, denoted as TL. For the second row, we transfer an adversarially trained model with NEFT, and the last row presents the results achieved by CARTL.

We can see that fine-tuning the target model with NEFT significantly increases its robustness by observing the first and second rows. Besides, FDM further improves the robustness except for the Case-8. We attribute this to the reason that with the increasing number of fine-tuned layers, the effect of constraining the features’ distance (i.e., FDM) is reduced. On the other hand, the Lipschitz constraint (i.e., NEFT) plays a more important role when we fine-tune more layers. As can be seen from the last column, the robustness increases from 18.54\% to 29.97\%. Finally, we find that by using FDM, the target model’s accuracy slightly rises in all
cases.

7.4. Transfer to Smaller Dataset

In this subsection, we do additional experiments to test the effect of data size on the target model’s performance. For the target domain, CIFAR-10, we fine-tune target models on subsets with the sizes of 50%, 20%, and 10%. To mitigate bias, the number of training data for each label is equal. We summarize and plot the results in Figure 5. Fine-tuning the last six blocks with CARTL maintains better accuracy in all cases, and CARTL provides outstanding robustness except on the extremely small training set. However, CARTL still slightly outperforms the vanilla method in that case. In comparison, LwF relatively results in the lowest accuracy and robustness in all cases. Generally speaking, CARTL provides a better accuracy-robustness trade-off for small datasets.

7.5. Studies on Extra Scenarios

To demonstrate the generality of CARTL, we conduct experiments in scenarios including transferring from CIFAR-100 to SVHN, from CIFAR-100 to GTSRB, from CIFAR-10 to SVHN, and from GTSRB to SVHN. According to Table 4, we can see that the target model fine-tuned with CARTL inherits superior robustness from the source model. Besides, CARTL provides comparable accuracy against the vanilla method. Table 4 demonstrates that CARTL can universally improve the accuracy-robustness trade-off. As for LwF, it leads to lower accuracy on the natural inputs and fails to guarantee the robustness transfer. In all scenarios, LwF obtains the lowest robustness.

8. Conclusion & Future Work

In this work, we have revealed the trade-off between the robustness and the accuracy of the target model transferred from an adversarially-trained source model. From our observation, we have proposed CARTL, which consists of feature distance minimization and non-expansive fine-tuning, to help the target model inherit more robustness from the source model while maintaining high accuracy. We have also found that freezing all batch normalization layers’ affine parameters can further improve the transferred robustness. We hope our work brings insights to enable the following researchers to build a more robust and accurate model in the transfer learning scenario.

As our future work, we would like to solve the limitation that FDM requires pre-training the source model with an explicitly defined \(k \). Other interesting directions include improving the effect of robustness transfer further and considering more security threats against DNNs.

Acknowledgements

This work was partially supported by the National Key R&D Program of China (2020AAA0107701), the NSFC under Grants U20B2049, 61822207, 61822309, 61773310 and U1736205, RGC HK under GRF projects CityU 11217819 and 11217620, RIF project R6021-20, and BNRist under Grant BNR2020RC01013.

References

Athalye, A., Carlini, N., and Wagner, D. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples. In Proc. of ICML, pp. 274–283, July 2018.

Bengio, Y. Deep Learning of Representations for Unsupervised and Transfer Learning. In Proc. of ICML, pp. 17–36, June 2012.

Carlini, N. and Wagner, D. Towards Evaluating the Robustness of Neural Networks. In Proc. of IEEE S&P, pp. 39–57, May 2017.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier, N. Parseval networks: Improving robustness to adversarial examples. In Proc. of ICML, pp. 854–863, August 2017.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proc. of ICLR, March 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image Recognition. In Proc. of CVPR, pp. 770–778, 2016.

Kannan, H., Kurakin, A., and Goodfellow, I. Adversarial Logit Pairing. arXiv preprint arXiv:1803.06373, March 2018.

Kornblith, S., Shlens, J., and Le, Q. V. Do Better ImageNet Models Transfer Better? In Proc. of CVPR, pp. 2661–2671, 2019.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial Machine Learning at Scale. In Proc. of ICLR, February 2017.

Li, F. and Li, J. Cloud automl: Making ai accessible to every business. https://blog.google/products/google-cloud/cloud-automl-making-ai-accessible-every-business/, 2018.

Liakhovich, O. and Mbemba, C. Food classification with custom vision service. https://devblogs.microsoft.com/cse/2017/05/12/food-classification-custom-vision-service/, 2017.
Lin, J., Gan, C., and Han, S. Defensive Quantization: When Efficiency Meets Robustness. In Proc. of ICLR, April 2019.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks. In Proc. of ICLR, 2018.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral Normalization for Generative Adversarial Networks. In Proc. of ICLR, February 2018.

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In Proc. of CVPR, pp. 2574–2582, June 2016.

Pan, S. J. and Yang, Q. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345–1359, October 2010.

Papernot, N. and McDaniel, P. Extending Defensive Distillation. arXiv preprint arXiv:1705.0264, May 2017.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., and Swami, A. The Limitations of Deep Learning in Adversarial Settings. In Proc. of EuroS&P, pp. 372–387, March 2016a.

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A. Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks. In Proc. of IEEE S&P, pp. 582–597, May 2016b.

Qian, H. and Wegman, M. N. L2-Nonexpansive Neural Networks. In Proc. of ICLR, February 2019.

Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., and Madry, A. Do Adversarially Robust ImageNet Models Transfer Better? In Proc. of NeurIPS, volume 33, pp. 3533–3545, 2020.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and Madry, A. Adversarially Robust Generalization Requires More Data. In Proc. of NeurIPS, pp. 5014–5026, 2018.

Shafahi, A., Najibi, M., Ghiasi, M. A., Xu, Z., Dickerson, J., Studer, C., Davis, L. S., Taylor, G., and Goldstein, T. Adversarial training for free! In Proc. of NeurIPS, pp. 3358–3369, 2019.

Shafahi, A., Saadatpanah, P., Zhu, C., Ghiasi, A., Studer, C., Jacobs, D., and Goldstein, T. Adversarially robust transfer learning. In Proc. of ICLR, February 2020.

Shu, R., Bui, H. H., Narui, H., and Ermon, S. A DIRT-T Approach to Unsupervised Domain Adaptation. In Proc. of ICLR, 2018.

Song, Y., Kim, T., Nowozin, S., Ermon, S., and Kushman, N. PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples. In Proc. of ICLR, May 2018.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. Intriguing properties of neural networks. In Proc. of ICLR, February 2014.

Tramer, F. and Boneh, D. Adversarial Training and Robustness for Multiple Perturbations. In Proc. of NeurIPS, pp. 5866–5876, 2019.

Utrera, F., Kravitz, E., Erichson, N. B., Khanna, R., and Mahoney, M. W. Adversarially-Trained Deep Nets Transfer Better: Illustration on Image Classification. In Proc. of ICLR, 2021.

Wang, B., Yao, Y., Viswanath, B., Zheng, H., and Zhao, B. Y. With Great Training Comes Great Vulnerability: Practical Attacks against Transfer Learning. In Proc. of USENIX Security, pp. 1281–1297, 2018.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than free: Revisiting adversarial training. In Proc. of ICLR, January 2020.

Xie, C. and Yuille, A. Intriguing properties of adversarial training at scale. In Proc. of ICLR, December 2019.

Xie, C., Wu, Y., van der Maaten, L., Yuille, A. L., and He, K. Feature Denoising for Improving Adversarial Robustness. In Proc. of CVPR, pp. 501–509, 2019.

Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A. L., and Le, Q. V. Adversarial Examples Improve Image Recognition. In Proc. of CVPR, pp. 819–828, 2020.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How transferable are features in deep neural networks? In Proc. of NeurIPS, pp. 3320–3328, 2014.

Zagoruyko, S. and Komodakis, N. Wide Residual Networks. arXiv preprint arXiv:1605.07146, June 2017.
Zhang, D., Zhang, T., Lu, Y., Zhu, Z., and Dong, B. You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle. In *Proc. of NeurIPS*, pp. 227–238, 2019a.

Zhang, H., Yu, Y., Jiao, J., Xing, E., Ghaoui, L. E., and Jordan, M. Theoretically Principled Trade-off between Robustness and Accuracy. In *Proc. of ICML*, pp. 7472–7482, May 2019b.
A. Spectrum Normalization

In this section, we briefly recap spectrum normalization (Miyato et al., 2018) for NEFT.

Without loss of generality, we define a linear function $f(x) = Wx + b$, where $W \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m \times 1}$. The Lipschitz constant of f is upper bounded by its largest singular value $\sigma(W)$, i.e., the largest eigenvalue of $W^T W$. Because directly calculating $\sigma(W)$ is costly, we can use an iterative method to approximate it. To do so, we define two vectors, $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, and iteratively calculate $\sigma(W)$ by

$$\begin{align*}
\sigma(W) &= u^T W v, \\
v_{t+1} &= W^T u_t / \| W^T u_t \|_2, \\
u_{t+1} &= W v_{t+1} / \| W v_{t+1} \|_2.
\end{align*}$$

To constrain the Lipschitz constant of f to be one, we divide W by $\sigma(W)$.

B. Details of LwF (Shafahi et al., 2020)

This section introduces LwF (Shafahi et al., 2020), which is considered as one of our baselines. In LwF, Shafahi et al. (Shafahi et al., 2020) fine-tune all layers of the source model while reducing the difference between the penultimate layer outputs of the target model and the source model. The loss of LwF can be expressed as

$$L_{\text{LwF}} := L_{\text{CE}}(f(x; \theta), y) + \lambda_d \| f^{(L-1)}(x; \theta) - f^{(L-1)}(x; \theta_0) \|_2,$$

where θ_0 is the original parameters of the source model, and θ is the target models’ parameter. The hyper-parameter λ_d controls the trade-off between the target domain accuracy and the inherited robustness. In Figure 4, we follow the settings in (Shafahi et al., 2020) where $\lambda_d = 0.1$, 0.01, 0.005, and 0.001, and we provide detailed results in Table 5. For other results of LwF (i.e., Table 4, Figure 5), we let $\lambda_d = 0.1$, where it achieves best transferred robustness.

Table 5: Accuracy and robustness of target models transferred from CIFAR-100 to CIFAR-10 using LwF.

λ_d	Acc. (%)	Rob. (%)
0.1	74.87	17.59
0.01	81.45	16.67
0.005	84.86	8.59
0.001	89.87	0.22

C. Experiment Settings

In this section, we provide the experiment settings for our evaluations.

- We adopt SGD with a momentum of 0.9 as the optimizer for training all models. The learning rate is initialized as 0.1 and decays at epoch 40, 70, and 90 by a rate of 0.2. We train models with a batch size of 128 and set the training epoch as 100. Similar settings are also applied during transfer learning.

- For adversarial training, we utilize PGD-7 to generate adversarial examples during training source models. The ℓ_∞-norm constraint (i.e., ϵ) is $8/255$, and the step-size is $2/255$.

- We set the number of iterations for the spectrum normalization to be one to avoid introducing extra computational overhead, and the experimental results demonstrate a perfect approximation.

- In the model evaluation, we report both the accuracy and robustness of the trained model on the entire test set. Specifically, for the robustness evaluation, we adopt the PGD-100 attack implemented by Foolbox\(^4\), an adversarial attack framework, with the step-size of $2/255$ and $\epsilon = 8/255$.

- When we transfer robust source models to the target domain with CARTL and the vanilla method, we freeze all BN layers’ affine parameters, including the feature extractor and the sub-model.

- The network architectures used in Section 6 are detailed in Table 6.

Table 6: Network architecture configuration of experiments for investigating BN layers’ effect.

Source	Target	Arch.
CIFAR-100	CIFAR-10	WRN 34-10
CIFAR-10	GTSRB	WRN 28-4
CIFAR-10	SVHN	WRN 28-4

\(^4\)https://github.com/bethgelab/foolbox