Low catalytic activity is insufficient to induce disease pathology in triosephosphate isomerase (TPI) deficiency

Joanna Segal1, Michael Mülleder1,2, Antje Krüger2, Thure Adler3,4, Manuela Scholze-Wittler2, Lore Becker3,5, Julia Calzada-Wack3,6, Lillian Garrett5,7, Sabine M. Hölters5,7, Birgit Rathkolb3,8,9, Jan Rozman3,9,10, Ildiko Racz3,a, Ralf Fischer3, Dirk H. Busch4, Frauke Neff5,6, Martin Klingenspor10,11, Thomas Klopfstock12,13, Nana-Maria Gruning2, Steve Michel2, Beata Lukaszewska-McGreal2, Ingo Voigt2, Ludger Hartmann2, Bernd Timmermann2, Hans Lehrach2, Eckhard Wolf8, Wolfgang Wurst7,12,13,14, Valérie Gailus-Durner3, Helmut Fuchs3, Martin Hrabě de Angelis3,9,15, Heinrich Schreve2, Mariia Yuneva1, and Markus Ralser1,2,16,17,b

1The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
2Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
3German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg/Munich, Germany
4Institute for Medical Microbiology, Immunology, and Hygiene, Trogerstraße 30, TUM, 81675 Munich, Germany
5Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-Universität München, Ziemssenstraße 1a, 80336 Munich, Germany
6Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg/Munich, Germany
7Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg/Munich, Germany
8Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen-Straße 25, 81377 Munich, Germany
9Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg/Munich, Germany
10Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TUM, Gregor-Mendel-Straße 2, 85350 Freising-Weihenstephan, Germany
11ZIEL – Institute for Food and Health, Technical University Munich, Gregor-Mendel-Str. 2, 85350 Freising-Weihenstephan, Germany
12Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
13Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) Site Munich, Schillerstraße 44, 80336 Munich, Germany
14Chair of Developmental Genetics, TUM, Am Hochanger 8, 85350 Freising-Weihenstephan, Germany
15Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, TUM, 85350 Freising-Weihenstephan, Germany
16Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, 80 Tennis Court rd, Cambridge, UK, CB2 1GA
17Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
9Present address: Clinic of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
bTo whom correspondence should be addressed: Markus Ralser, markus.ralser@crick.ac.uk, Tel 0044 1223 761346

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jimid.12105

This article is protected by copyright. All rights reserved.
Abstract
Triosephosphate isomerase (TPI) deficiency is a fatal genetic disorder characterized by haemolytic anaemia and neurological dysfunction. Although the enzyme defect in TPI was discovered in the 1960s, the exact etiology of the disease is still debated. Some aspects indicate the disease could be caused by insufficient enzyme activity, whereas other observations indicate it could be a protein misfolding disease with tissue-specific differences in TPI activity. We generated a mouse model in which exchange of a conserved catalytic amino acid residue (isoleucine to valine, Ile170Val) reduces TPI specific activity without affecting the stability of the protein dimer. TPI^{Ile170Val/Ile170Val} mice exhibit an ~85% reduction in TPI activity consistently across all examined tissues, which is a stronger average activity decline than observed in patients or symptomatic mouse models that carry structural defect mutant alleles. While monitoring protein expression levels revealed no evidence for protein instability, metabolite quantification indicated that glycolysis is affected by the active site mutation. TPI^{Ile170Val/Ile170Val} mice develop normally and show none of the disease symptoms associated with TPI deficiency. Therefore, without the stability defect that penetrates in a tissue-specific manner, a strong decline in TPI catalytic activity is not sufficient to explain the pathological onset of TPI deficiency.

Synopsis
A new mouse model shows that reducing enzyme activity, without affecting the overall structure of triosephosphate isomerase (TPI), does not induce TPI deficiency-like symptoms in mice.

Details of the contributions of individual authors
Creation, design and maintenance of the mouse model: Joanna Segal, Antje Krüger, Manuela Scholze-Wittler, Nana-Maria Grüning; Steve Michel, Beata Lukaszewska-McGreal, Ingo Voigt, Ludger Hartmann, Heinrich Schrewe, Markus Ralser
Metabolic measurements and Clin Chem.: Michael Mülleder, Bernd Timmermann, Birgit Rathkolb, Eckhard Wolf, Jan Rozman, Martin Klingenspor

This article is protected by copyright. All rights reserved.
Conceptualisation and writing of the paper Valérie Gailus-Durner, Helmut Fuchs, Martin Hrabě de Angelis, Hans Lehrach, Mariia Yuneva, Markus Ralser

Immunology experiments: Thure Adler, Dirk H. Busch

Neurology experiments: Lore Becker, Thomas Klopstock

Pathology experiments: Julia Calzada-Wack, Frauke Neff

Behaviour experiments: Lillian Garrett, Sabine M. Hölter, Wolfgang Wurst

Nociception experiments: Ildiko Racz

Cardiovascular experiments: Ralf Fischer

Corresponding author
Markus Ralser, markus.ralser@crick.ac.uk, Tel 0044 1223 76134.

A competing interest statement
None.

Details of funding
This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001134), the UK Medical Research Council (FC001134), and the Wellcome Trust (FC001134); the German Federal Ministry of Education and Research; the German Center for Diabetes Research; the German Mouse Clinic (Infrafrontier grant 01KX1012); the Initiative and Networking Fund of the Helmholtz Association in the framework of the Helmholtz Alliance for Mental Research in an Ageing Society (HA-215); the Max Planck Institute for Molecular Genetics (Berlin, Germany).

Details of ethics approval
All institutional and national guidelines for the care and use of laboratory animals were approved by the responsible authority in the United Kingdom, as well as the district governments of Berlin and Upper Bavaria, Germany.

A patient consent statement
This manuscript does not contain studies with human subjects performed by any of the authors.

This article is protected by copyright. All rights reserved.
Key words
Triosephosphate isomerase deficiency, Glycolytic enzymopathy, Protein stability disorder, Haemolytic anaemia, Site-directed mutagenesis, Active site mutation.

Introduction

Triosephosphate isomerase (TPI) deficiency was among the first human genetic disorders discovered by systematic enzymological screens more than 60 years ago (Schneider et al. 1965). The syndrome is characterized by severe progressive neuromuscular degeneration (often manifesting as early as the first seven months of life), neurologic dysfunction that is associated with impaired synaptic vesicle dynamics, haemolytic anaemia and associated susceptibility to infections, and episodic hypotonia (Hollán et al. 1993; Schneider 2000; Roland et al. 2016). Typically, patients are severely and systemically affected and do not reach the age of five. Only two brothers of Hungarian origin had a milder form of the disease (caused by a unique compound-heterozygous genotype) (Hollán et al. 1993).

TPI deficiency is recessively inherited and caused by pathogenic genetic variants that alter the coding sequence of the TPI1 gene on chromosome 12q19 (Schneider and Cohen-Solal 1996; Schneider 2000). The native TPI enzyme is present as a 2x 27 kDa homodimer and fulfils an essential metabolic function by catalysing the interconversion of the three carbon sugar phosphates, glyceraldehyde 3-phosphate (Ga3P) and dihydroxyacetone phosphate (DHAP), in glycolysis (Wierenga et al. 2010). A substantial reduction of enzymatic activity is reported in all TPI deficient patients, as well as an accumulation of the TPI substrate, DHAP, indicating that glycolytic flux is affected (Schneider 2000). Reduced glycolytic flux and consequent energy disturbance, alterations in lipid metabolism, and the interconversion of DHAP to toxic methylglyoxal and consequent increase in oxidative stress have been discussed as biochemical causes for, or at least contributors to, TPI deficiency (Orosz et al. 1996; Schneider 2000; Oláh et al. 2002). Such features would be consistent with a typical metabolic enzymopathy, defined as the biochemical consequences of reduced enzymatic activity.
However, other observations are in conflict with the typical enzymopathy hypothesis and indicate that the TPI deficiency phenotype could be caused by a defect in protein stability. First, TPI is considered the ‘least rate limiting’ enzyme of glycolysis, with only a fraction of its in vitro activity required to enable sufficient glycolytic flux to sustain normal cellular function (Albery and Knowles 1976). Hence, it is not clear if the partial loss of TPI enzyme activity would phenotypically penetrate and explain the disease symptoms. In parallel, it was noted early on that the population frequency of heterozygous TPI deficient alleles is higher than the actual disease prevalence would predict (Mohrenweiser and Fielek 1982; Eber et al. 1984; Mohrenweiser et al. 1987; Neel et al. 1988; Watanabe et al. 1996). The literature proposed two hypotheses to explain this discrepancy. The first suggests an evolutionary advantage of being a heterozygous carrier, which would maintain a higher frequency of heterozygote carriers in a population (Sellis et al. 2011). The second possible explanation is that only a subset of the alleles that reduce TPI’s enzyme activity induce disease, while other allelic combinations, although reducing the activity to a similar extent, would not result in a clinical disease. Thus far, a heterozygote advantage of TPI deficient alleles could not be substantiated. For instance, in a large survey of centenarians, TPI deficient alleles were neither enriched nor diminished (Ralser et al. 2008). Instead, the TPI deficient patients discovered to date are consistent with the alternative hypothesis that only some of the deficient alleles cause TPI deficiency. Indeed, while many mutations could hypothetically affect TPI’s enzymatic activity, symptomatic penetrance in the homozygous state is only seen for a single allele, a G-C transversion in codon 104, which causes a conserved residue exchange from glutamic acid to aspartic acid (Daar et al. 1986; Schneider and Cohen-Solal 1996; Arya et al. 1997; Schneider 2000; Rodríguez-Almazán et al. 2008; Orosz et al. 2009).

The Glu104Asp amino acid substitution is located in the dimer interface and does not directly influence the catalytic capacity of TPI; transgenic yeast models expressing the allele show catalytic functionality but revealed altered affinities of the TPI dimer subunits in vivo (Ralser et al. 2006). A crystal structure revealed the reduced dimer stability caused by the Glu104Asp substitution is explained by the disruption of an elaborate conserved network of buried water molecules that bridge the two subunits (Rodríguez-Almazán et al. 2008).
A few years ago our research revealed interesting features of another allele, TPIIle170Val. This TPIIle170Val mutation was isolated from a human carrier. The TPIIle170Val allele is associated with TPI deficiency only in a compound-heterozygous context, i.e. disease-causing only in combination with the common pathological allele, TPIGlu104Asp, and hence, not of major clinical relevance (Arya et al. 1995). However, the TPIIle170Val allele results in a direct reduction in catalytic activity due to the exchange of a conserved catalytic residue. Purified TPIIle170Val shows ~5% activity compared to wild type TPI in vitro resulting from changes in the key enzyme parameters, with a reduced affinity for the substrate (K_m for wild type TPI: 1373μM, TPIIle170Val: 687μM; V_{max} for wild type TPI: 1995μM, TPIIle170Val: 104μM) (Grüning et al. 2014). However, this variant leaves the TPI dimer interface and secondary structure intact. The purified TPIIle170Val enzyme is fully folded and shows similar stability to wild type TPI alleles in vitro, according to CD spectroscopy (Grüning et al. 2014). Due to the difference between the TPIIle170Val allele and the common pathogenic allele, TPIGlu104Asp, in terms of catalytic activity and structural stability, the TPIIle170Val mutant allele allows for the design of experiments that can disentangle the consequences of protein stability from those of a catalytic defect.

When introduced into \textit{Drosophila} and paired with a TPI null allele, the human TPIIle170Val causes behavioural dysfunction in response to thermal and mechanical stress, symptoms that have been related to TPI deficiency (Roland et al. 2015). However, in other \textit{Drosophila} models, TPI deficiency-like phenotypes have also been induced by catalytically functional alleles in which reduced TPI deficiency is associated with dimer interface mutations or reduced protein stability. Two \textit{Drosophila} mutant lines discovered in parallel named \textit{sugar kill} and \textit{wasted away} (Gnerer et al. 2006; Celotto et al. 2006) carry the same recessive hypomorphic TPI allele: a methionine to threonine substitution at the dimer interface (residue 80). The allele affects the stability of the protein, resulting in reduced TPI activity and neurological symptoms reminiscent of the human disease. Roland et al. conducted an interesting experiment by expressing the \textit{sugar kill} allele in combination with a catalytically inactive TPI mutant allele, TPIMet11Lys (Roland et al. 2013). This compound heterozygous mutant was rescued from the behavioural and longevity phenotypes observed in the \textit{sugar kill} homozygotes without restoring the overall TPI activity. Hence, in this particular model, it is not TPI activity but the degradation of the protein that causes all symptoms. Because of these contrasting observations in the various \textit{Drosophila} models - a
similar set of phenotypes is observed dependent and independent of a reduction in TPI specific activity - the *Drosophila* models remained inconclusive about the main cause of TPI deficiency.

The answer to the disease etiology question is not provided by two mouse models either. One of these carries an aspartate to glycine substitution at codon 49, positioned in the dimer interface (Pretsch 2009), and a second has a phenylalanine to serine substitution at amino acid 57 (Conway et al. 2018), which affects the stability of the protein and leads to its degradation. Both mouse models recapitulate the key symptom of TPI deficiency, haemolytic anaemia, but, as they also both combine a stability defect with a decline in TPI activity that penetrates in a tissue-specific manner, they do not enable the distinguishing of the consequences of activity decline from structural defect.

Therefore, we created a complementary mouse model in which we introduced the TPIIle170Val allele by site-directed mutagenesis, reducing enzyme activity but leaving the dimer interface and protein stability unaffected. The C57BL/6J-based animals have a ~15\% residual TPI activity consistently in all examined tissues, which is a much stronger average activity decline than measured in human patients or the previous animal models of TPI deficiency. Despite this, TPIIle170Val/Ile170Val animals develop normally and show no signs of haemolytic anaemia, neurological dysfunction, no major immune deficiency, motor neuron symptoms nor signs of metabolic syndrome - the phenotypes associated with the human disorder. Hence, in the absence of the protein stability defect that produces tissue-specific TPI activity differences, a decline in TPI activity is not sufficient to cause symptoms of TPI deficiency.
Results

TPI^{lle170Val/lle170Val} mice show a strong reduction in TPI activity uniformly across all examined tissues

In order to introduce the *TPI*^{lle170Val} mutation to mice, we cloned the mouse *TPII* locus into an *E. coli* vector (pTREtight2, Addgene #19407), introduced the ATT to GTT transition by PCR mutagenesis and inserted a loxP-flanked neoR cassette into the *NheI* site into *TPII* intron 5 (Fig 1a). The vector was then used to generate *TPI*^{lle170Val/lle170Val} mice (Methods section, Fig. 1b-c for an exemplary genotyping of an F1 litter). The mice were backcrossed for nine generations to C57BL/6J wild type animals.

We measured the TPI activity of the *TPI*^{lle170Val/lle170Val} mouse. While total TPI activities differ greatly between tissues, the *TPI*^{lle170Val/lle170Val} allele penetrates similarly across tissues in relative terms. In kidney, liver, brain, heart, lung, spleen and blood, *TPI*^{lle170Val/lle170Val} mice exhibited about ~13% of total TPI activity compared to wild type animals (Fig. 1d). This differs to the dimer interface mutants that exhibit substantial tissue differences in the relative penetrance of the enzyme defect (Merkle and Pretsch 1989; Conway et al. 2018). In yeast, a partial compensation of TPI activity correlates with an upregulation of the enzyme protein level (Grüning et al. 2014). However, in mice, no significant upregulation of the protein level was observed (Fig. 1e). Consequently, the moderate increase of total TPI activity when comparing *in vitro* and *in vivo* experiments might be explained by post-translational or metabolic regulation of TPI activity.

Substrate accumulation in *TPI*^{lle170Val/lle170Val} mice

Using mass spectroscopy, we determined the concentrations of the TPI substrates, dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3 phosphate (Ga3P), in lysates of brain, liver and skeletal muscle of wild type and *TPI*^{lle170Val/lle170Val} mice. Glucose metabolism was altered in the *TPI*^{lle170Val/lle170Val} mice: we detected an increased level of the TPI substrate, DHAP, most strikingly in brain tissue (Fig. 1f-g). These findings are consistent with the human disease in which patients are found to have high blood levels of DHAP (Schneider 2000). Ga3P levels are also elevated in liver and skeletal muscle of *TPI*^{lle170Val/lle170Val} mice. (Ga3P levels in brain tissues of wild type and *TPI*^{lle170Val/lle170Val} mice were below the level of quantification.)

This article is protected by copyright. All rights reserved.
TPIle170Val/Ile170Val mice show no phenotypes associated with TPI deficiency

TPIle170Val/Ile170Val mice were analysed in a phenotypic screen. 60 animals (15 male and 15 female, both wild type C57BL/6J and TPIle170Val/Ile170Val), all born from heterozygous crosses within two weeks, underwent systematic phenotyping (Gailus-Durner et al. 2005, 2009; Fuchs et al. 2012). The systematic study revealed that, despite their substantial reduction in TPI activity, the animals display none of the phenotypes associated with TPI deficiency (summary of full screen can be found in supp. table 1).

First, since TPI deficiency in humans is associated with progressive neuromuscular impairment, we assessed muscle function by measuring grip strength (Fig. 2a). No significant differences were detected. Testing motor coordination with an accelerating rotarod also did not give any hints towards a neurological phenotype (Fig. 2b). Body composition analysis revealed no indication of muscle wasting (Fig. 2c-d). Because of muscle weakness, TPI deficient patients present with breathing and heart problems. However, we observed no significant difference in heart rate and respiration rate in TPIle170Val/Ile170Val male and female mice (fig. 2e-f).

Some TPI deficient patients develop additional neurological symptoms, including intellectual disability. We challenged the TPIle170Val/Ile170Val mice in behavioural tests sensitive to certain changes in central nervous system function (hot-plate, open field and prepulse inhibition) but found no differences of note (Figure 3).

Similar results were obtained for haematology. Although haemolytic anaemia is a main pathologic feature of TPI deficiency and the common characteristic of two mouse models that possess TPI alleles with structural defects (Pretsch 2009; Conway et al. 2018), there was no indication for such in the TPI active site mutant animals. In general, the data obtained did not provide evidence of any significant effect of the genotype on parameters measured (Fig. 4a-e). We examined the spleen and liver to detect any signs of haemolytic anaemia, which is characterized by splenomegaly and reticulocytosis (increased production and circulation of reticulocytes), and often an enlarged liver. We observed a slight decrease in spleen size in female TPIle170Val/Ile170Val mice, which is not consistent with haemolytic anaemia (for which an increase
in spleen size would be expected in most cases) and no difference in liver weight (Fig. 4d-e). For better visualization of reticulocytes, we performed H&E staining and TER-119 immunohistochemistry. The TER-119 antibody reacts with cells of the erythroid lineage from the early erythroblast through mature erythrocyte stages in the red pulp of spleen (Kina et al. 2000). However, we detected no histological differences between mutant and control mice and observed no signs of increased reticulocyte production in the red pulp (Fig. 4f-i).

TPI deficient patients reportedly have a severely increased risk of infection. Therefore, we studied immunological parameters in TPI^{Ile170Val/Ile170Val} mice. The analysis of the proportions of leukocyte subsets in TPI mutant mice and littermate controls did not give evidence for a TPI-related impaired leukocyte development (Figure 4j-m). In addition, the measurement of basal immunoglobulin levels revealed similar basal immunoglobulin concentrations and a similar isotype distribution in mutants compared to controls (Fig. 4n-o).
Discussion

We have presented a mouse model that clarifies key missing aspects about the biochemical etiology of TPI deficiency, a severe, genetic metabolic disease known since the 1960s. The active site mutation of the TPI gene reduces the catalytic activity of the enzyme to ~13% of \textit{in vivo} activity (Figure 1), which is a much more severe reduction in activity than observed in patients. Without affecting protein stability that penetrates in a tissue-specific manner, this strong reduction in activity does not induce any disease symptoms associated with human TPI deficiency, including haemolytic anaemia, neurological dysfunction or shortened lifespan (Schneider 2000; Ralser et al. 2006; Pretsch 2009). As disease symptoms amplify in humans with age, we also investigated 2-year old mice, but could not detect any notable phenotypes at this age either.

An important implication of our findings impacts drug development, which could focus on stabilising the TPI enzyme structure and may not necessarily need to restore TPI enzymatic activity. Developing a drug that would replicate the complicated chemistry of the TPI enzymatic reaction is challenging by nature. Conversely, designing drugs that increase protein stability is an easier task. The latter can be achieved with molecules that show affinity to the protein, without necessarily needing to be metabolised or affect the highly optimal catalytic site of TPI (Waldron and Murphy 2003; Cohen and Kelly 2003). We believe that aiming for the development of a TPI protein stabilising agent would increase the chance of finding a suitable disease therapy.

Furthermore, our results suggest that in the diagnosis of TPI deficiency, enzyme activity measurements alone could be a poor predictor of disease penetrance. Nevertheless, we would like to stress that our results should not be misinterpreted as a claim that reduced TPI enzymatic activity, in itself, can be excluded as a contributing factor to the disease symptoms, nor that the sole cause of the disease symptoms must be a result of loss of an unknown second function or a new cellular problem caused by the TPI mutations. For instance, one study suggested that TPI deficiency could be caused by aggregation of the TPI protein (Oláh et al. 2002). Per se, our mouse model does not contradict this hypothesis; however, it is also not confirmatory. Indeed, observations made with rare compound-heterozygous cases imply that, although reduced TPI
activity may not be sufficient to cause the disease symptoms, a reduced activity is required for penetrance: the rare compound-heterozygous cases carry one allele with the enzyme dimerisation defect (TPIGlu104Asp) and another allele that only reduces enzyme activity (e.g. TPIIle170Val) (Arya et al. 1997). In these cases, the allele with reduced TPI activity is not able to compensate for the Glu104Asp allele, whereas, a wild-type allele would. Conversely, when the Glu104Asp allele is heterozygous with a catalytically active pathological allele, the disease pathology does not penetrate to the same extent and results in a milder form of the disease (Hollán et al. 1993). Such patterns of penetrance cannot be explained by a protein aggregation problem.

Alternatively, we would like to speculate that tissue-specific factors may explain this complex penetrance. A previous mouse model of TPI deficiency, based on the dimer interface-located residue mutation (methionine to threonine at residue 80), showed an average of ~35% loss of TPI activity. However, the activity ranged from ~55% in kidney to ~13% in brain (Merkle and Pretsch 1989). Similarly, a second mouse model of TPI deficiency, based on a mutation that also affects TPI protein stability, showed a range of activities in the tissues tested, from 48% in skeletal muscle to 10% in red blood cells (Conway et al. 2018). Conversely, the active site mutation of the TPIIle170Val allele penetrate - in relative terms - similarly across all tissues examined (Figure 1d). Hence, an intuitive explanation is that TPIIle170Val/Ile170Val mice are symptomless, as in each tissue a critical amount of TPI activity is reached, while in the (pathological) dimer interface mutants, in some tissues, TPI activity falls below the pathological threshold. Indeed, in the related metabolic disorder, ribose-5-phosphate isomerase (RPI) deficiency, tissue-specific differences in the penetrance of the enzyme defect are considered to be the cause of the disease. Mutations that cause such tissue-specific activity differences are far less likely to occur compared to null alleles, and, as a result, RPI deficiency is among the rarest genetic diseases known (Wamelink et al. 2010; Brooks et al. 2018). Thus, structural and metabolic defects can interact in a tissue-specific manner, and a combination of both protein stability defects and lower catalytic activity may be required to explain the clinical outcome of these rare metabolic diseases, including TPI deficiency.
Materials and Methods

Generation of TPII^{le170Val/Ile170Val} mice

To create a vector for site-directed mutagenesis of mouse TPII, the wild type TPII locus composed from C57BL/6J genomic DNA was PCR amplified and subcloned into an *E. coli* backbone (pTretight2, Addgene 19407). PCR mutagenesis was used to mutate codon 170 (ATT, encoding for isoleucine) in exon 5 to GTT, encoding for valine. Then, a loxP-flanked PGK_{neo}B cassette was introduced into the NdeI site of TPII intron 4. The final vector was digested with SalI and NotI to separate the mouse TPI locus from the vector backbone, and transformed into the 129xC57BL/6J hybrid embryonic stem cell line G4. One neomycin-resistant cell line (2G5) was identified to have the integration on the TPII locus and used to create a chimeric mouse. In brief, the cell line was expanded, injected into blastocysts and transplanted. Obtained chimera were crossed with Cre-recombinase-expressing C57BL/6J mouse line to remove the neomycin selection cassette. F1 littermates were tested for correct excision of the NEO⁺ marker by PCR and re-sequenced to verify that only the mutation in exon 5, and one loxP site in intron 4 was retained. This line was then backcrossed to the C57BL/6J mouse line for nine generations.

TPI activity assays

TPI activity was determined using a spectrophotometric assay as previously described (Charles and Pretsch 1987; Merkle and Pretsch 1989). Measurements were performed at 2-3 different protein concentrations per tissue lysate and repeated independently three times with freshly dissected tissues from 20 week-old male mice. NADH loss was measured using a Tecan M1000 PRO plate reader. TPI activity was calculated at the point of maximal reaction rate and normalised to lysate-free background activity.

Western blotting

Protein lysates were prepared from dissected tissues from 20 week-old male mice and western blots were performed using a polyclonal TPI serum (1:5000, (Yamaji et al. 2004)).
Substrate measurements

Immediately following dissection, tissues from 20 week-old male mice were freeze clamped in liquid nitrogen and stored at -80°C. Tissues were ground to a fine powder over liquid nitrogen and extracted in a mix of chloroform, methanol and water in a ratio of 40:40:20 with 0.1M formic acid, as previously described (Lu et al. 2017).

The samples were analysed by tandem mass spectrometry on an Agilent 1290 liquid chromatography system coupled to an Agilent 6470 triple quadrupole mass spectrometer. The LC-MS/MS method used was based on the Agilent Metabolomics dMRM Database and Method with a shortened chromatography. The compounds were resolved on a C18 column (Zorbax RRHD Extend-C18, 2.1 x 100 mm, 1.8 µm, Agilent) with mobile buffer A1 (3% methanol, 10 mM tributylamine, 15 mM acetic acid), mobile buffer B1 (10 mM tributylamine, 15 mM acetic acid, 97% acetonitrile, 3% methanol) and mobile buffer B2 (acetonitrile) by gradient elution at a constant column temperature of 35°C. The gradient program started with 100% A and a flow rate of 0.35 ml/min. The organic fraction (B) was increased to 20% from 2 - 5 min and to 45% from 5 - 10 min. This was followed by a 2 min wash with 99% B1 and a 3 min wash of 99% B2 (1 ml/min) before returning to initial buffer conditions for equilibration at a flow rate of 0.6 ml/min for 1 min and at a flow rate of 0.35 ml/min for 2 min, resulting in a total runtime of 18 min. The metabolites were quantified by external calibration (Sigma-Aldrich 37442, G5251).

Phenotypic screen

A cohort of 60 mice were phenotypically analysed at the German Mouse Clinic (GMC) in two standardised pipelines for systematic primary phenotyping as previously described (Fuchs et al. 2011, 2012), with 15 mice per group utilized for each test (equal numbers of male and female, and mutant and wild type animals). All animals were age-matched within two weeks of each other and ranged from 63 to 131 days old at the time of testing. All tests performed were approved by the responsible authority in the United Kingdom, as well as the district governments of Berlin and Upper Bavaria, Germany, respectively.
Acknowledgements

This work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001134), the UK Medical Research Council (FC001134), and the Wellcome Trust (FC001134), the German Federal Ministry of Education and Research to the German Center for Diabetes Research (DZD e.V.) and to the GMC (Infrafrontier grant 01KX1012) and by the Initiative and Networking Fund of the Helmholtz Association in the framework of the Helmholtz Alliance for Mental Research in an Ageing Society (HA-215), as well as the Max Planck Institute for Molecular Genetics (Berlin, Germany). We would like to thank the technicians as well as animal caretaker teams at GMC, at the MPI-MG and the Crick for expert technical help.
References

Albery WJ, Knowles JR (1976) Free-energy profile of the reaction catalyzed by triosephosphate isomerase. Biochemistry 15:5627–5631

Arya R, Lalloz MRA, Bellingham AJ, Layton DM (1995) Molecular pathology of human triosephosphate isomerase. In: Blood. WB Sounders & Co, pp 2328–2328

Arya R, Lalloz MR, Bellingham AJ, Layton DM (1997) Evidence for founder effect of the Glu104Asp substitution and identification of new mutations in triosephosphate isomerase deficiency. Hum Mutat 10:290–294

Brooks SS, Anderson S, Bhise V, Botti C (2018) Further Delineation of Ribose-5-phosphate Isomerase Deficiency: Report of a Third Case. J Child Neurol 33:784–787

Celotto AM, Frank AC, Seigle JL, Palladino MJ (2006) Drosophila model of human inherited triosephosphate isomerase deficiency glycolytic enzymopathy. Genetics 174:1237–1246

Charles DJ, Pretsch W (1987) Linear dose-response relationship of erythrocyte enzyme-activity mutations in offspring of ethynitrosourea-treated mice. Mutat Res 176:81–91

Cohen FE, Kelly JW (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426:905–909

Conway AJ, Brown FC, Hortle EJ, et al (2018) Bone marrow transplantation corrects haemolytic anaemia in a novel ENU mutagenesis mouse model of TPI deficiency. Dis Model Mech 11.: doi: 10.1242/dmm.034678

Daar IO, Artyymiuk PJ, Phillips DC, Maquat LE (1986) Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme. Proc Natl Acad Sci U S A 83:7903–7907

Eber SW, Dünnewald M, Heinemann G, et al (1984) Prevalence of partial deficiency of red cell triosephosphate isomerase in Germany—A study of 3000 people. Hum Genet 67:336–339

Fuchs H, Gailus-Durner V, Adler T, et al (2011) Mouse phenotyping. Methods 53:120–135
Fuchs H, Gailus-Durner V, Neschen S, et al (2012) Innovations in phenotyping of mouse models in the German Mouse Clinic. Mamm Genome 23:611–622

Gailus-Durner V, Fuchs H, Adler T, et al (2009) Systemic first-line phenotyping. Methods Mol Biol 530:463–509

Gailus-Durner V, Fuchs H, Becker L, et al (2005) Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nat Methods 2:403

Gnerer JP, Kreber RA, Ganetzky B (2006) wasted away, a Drosophila mutation in triosephosphate isomerase, causes paralysis, neurodegeneration, and early death. Proc Natl Acad Sci U S A 103:14987–14993

Grüning N-M, Du D, Keller MA, et al (2014) Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis. Open Biol 4:130232

Hollán S, Fujii H, Hirono A, et al (1993) Hereditary triosephosphate isomerase (TPI) deficiency: two severely affected brothers one with and one without neurological symptoms. Hum Genet 92:486–490

Kina T, Ikuta K, Takayama E, et al (2000) The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br J Haematol 109:280–287

Lu W, Su X, Klein MS, et al (2017) Metabolite Measurement: Pitfalls to Avoid and Practices to Follow. Annu Rev Biochem 86:277–304

Merkle S, Pretsch W (1989) Characterization of triosephosphate isomerase mutants with reduced enzyme activity in Mus musculus. Genetics 123:837–844

Mohrenweiser HW, Fielek S (1982) Elevated frequency of carriers for triosephosphate isomerase deficiency in newborn infants. Pediatr Res 16:960–963

Mohrenweiser HW, Wurzinger KH, Neel JV (1987) Frequency and distribution of rare electrophoretic mobility variants in a population of human newborns in Ann Arbor, Michigan. Ann Hum Genet 51:303–316

Neel JV, Satoh C, Goriki K, et al (1988) Search for mutations altering protein charge and/or function in children of atomic bomb survivors: final report. Am J Hum Genet 42:663–676

Oláh J, Orosz F, Keserü GM, et al (2002) Triosephosphate isomerase deficiency: a neurodegenerative misfolding disease. Biochem Soc Trans 30:30–38

Orosz F, Oláh J, Ovádi J (2009) Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim Biophys Acta 1792:1168–1174

Orosz F, Vértessey BG, Hollán S, et al (1996) Triosephosphate isomerase deficiency: predictions and facts. J Theor Biol 182:437–447

This article is protected by copyright. All rights reserved.
Pretsch W (2009) Triosephosphate isomerase activity-deficient mice show haemolytic anaemia in homozygous condition. Genet Res 91:1–4

Ralser M, Heeren G, Breitenbach M, et al (2006) Triose phosphate isomerase deficiency is caused by altered dimerization--not catalytic inactivity--of the mutant enzymes. PLoS One 1:e30

Ralser M, Nebel A, Kleindorp R, et al (2008) Sequencing and genotypic analysis of the triosephosphate isomerase (TPI1) locus in a large sample of long-lived Germans. BMC Genet 9:38

Rodríguez-Almazán C, Arreola R, Rodríguez-Larrea D, et al (2008) Structural basis of human triosephosphate isomerase deficiency: mutation E104D is related to alterations of a conserved water network at the dimer interface. J Biol Chem 283:23254–23263

Roland BP, Amrich CG, Kammerer CJ, et al (2015) Triosephosphate isomerase I170V alters catalytic site, enhances stability and induces pathology in a Drosophila model of TPI deficiency. Biochim Biophys Acta 1852:61–69

Roland BP, Stuchul KA, Larsen SB, et al (2013) Evidence of a triosephosphate isomerase non-catalytic function crucial to behavior and longevity. J Cell Sci 126:3151–3158

Roland BP, Zecca AM, Larsen SB, et al (2016) Structural and Genetic Studies Demonstrate Neurologic Dysfunction in Triosephosphate Isomerase Deficiency Is Associated with Impaired Synaptic Vesicle Dynamics. PLoS Genet 12:e1005941

Schneider A, Cohen-Solal M (1996) Hematologically important mutations: triosephosphate isomerase. Blood Cells Mol Dis 22:82–84

Schneider AS (2000) Triosephosphate isomerase deficiency: historical perspectives and molecular aspects. Baillieres Best Pract Res Clin Haematol 13:119–140

Schneider AS, Valentine WN, Hattori M, Heins HL Jr (1965) Hereditary Hemolytic Anemia With Triosephosphate Isomerase Deficiency. N Engl J Med 272:229–235

Sellis D, Callahan BJ, Petrov DA, Messer PW (2011) Heterozygote advantage as a natural consequence of adaptation in diploids. Proc Natl Acad Sci U S A 108:20666–20671

Waldron TT, Murphy KP (2003) Stabilization of proteins by ligand binding: application to drug screening and determination of unfolding energetics. Biochemistry 42:5058–5064

Wamelink MMC, Grüning N-M, Jansen EEW, et al (2010) The difference between rare and exceptionally rare: molecular characterization of ribose 5-phosphate isomerase deficiency. J Mol Med 88:931–939

Watanabe M, Zingg BC, Mohrenweiser HW (1996) Molecular analysis of a series of alleles in humans with reduced activity at the triosephosphate isomerase locus. Am J Hum Genet 58:308–316

This article is protected by copyright. All rights reserved.
Fig. 1. TPI^{Ile170Val/Ile170Val} mutation causes a reduction in enzymatic activity and affects glycolysis in vivo. (A) Schematic diagram of the *E. coli* vector used for the generation of TPI deficient mouse, to introduce a mutation of residue 170 located in exon 5 of the *Tpi1* locus. (B) Example genotyping of heterozygous (lane 4, 6, 8 (“+/-”)) and wild type (lane 5, 7, 9, “+/+”) littermates. (C) Example sanger sequencing traces of the TPI locus of three heterozygous littermates. (D) TPI activity of tissue lysates of TPI^{Ile170Val/Ile170Val} animals shown as percentage of wild type activity. Data are represented as mean ± standard deviation of three independent experiments. (E) Western blot to assess TPI protein levels in lysates from wild type and TPI^{Ile170Val/Ile170Val} animals. Blots show representative example of three biological repeats. Membranes stained with Ponceau-S stain to show protein loading (F and G). Relative concentrations of the TPI substrates, DHAP and Ga3P, in extracts from wild type and TPI^{Ile170Val/Ile170Val} tissues determined by LC-MS/MS. Bars represent mean ± standard deviation. p values shown only for significant differences (p<0.05) between genotypes, calculated by Student’s t-test.
Fig. 2. TPI^{Ile170Val/Ile170Val} mice show no signs of neurological, muscular or cardiovascular alterations. Bars represent mean ± standard deviation. p values shown only for significant differences (p<0.05) between genotypes, calculated by Student’s t-test. (A) Grip strength measured by a force meter on a mounted grid. Values shown relative to body weight. (B) Balance measured using a rotarod. Mean latency to fall calculated over three trails. (C) Body weight of wild type and TPI^{Ile170Val/Ile170Val} mice. (D) Percentage lean mass calculated by qNMR. (E and F) Heart rate and respiration rate measured by echocardiogram.

Fig. 3. TPI^{Ile170Val/Ile170Val} mice display normal sensory and motor function. (A-B) Bars represent mean ± standard deviation. p values shown only for significant differences (p<0.05) between genotypes, calculated by Student’s t-test. (A) Mice tested on a hot plate and observed for the time taken to respond to heated surface of male and female mice pooled. (B) Locomotor activity (total distance travelled) in the open field test of male and female mice pooled. (C) Acoustic startle response measured over a series of increasing sound pressure stimulus volume. n=15, mean ± standard deviation.

Fig. 4. Clinical readouts of haemolytic anaemia and associate immunodeficiency did not indicate pathology in TPI^{Ile170Val/Ile170Val} mice. (A-E) Bars represent mean ± standard deviation. p values shown only for significant differences (p<0.05) between genotypes, calculated by Student’s t-test. (A-C) Red blood cells, mean corpuscular volume and mean corpuscular haemoglobin calculated by abc-Vet haematology analyser. (D-E) Liver and Spleen weight. (F-G) Representative images of spleens probed with TER119 antibody to stain the erythroid lineage. (H-I) H&E staining of representative spleens. (J-M) Example cell populations in peripheral blood measured by flow cytometry and shown as a proportion of leukocytes (CD45+). Bars represent mean ± standard deviation. p values shown for significant differences (p<0.05) between genotypes, calculated by Student’s t-test. (N-O) Immunoglobulin levels measured in plasma from male and female mice by multiplex analysis.
