Experimental realization of an ideal Floquet disordered system

Clément Hainaut1, Adam Rançon1, Jean-François Clément1, Isam Manai1, Pascal Szriftgiser1, Dominique Delande1, Jean Claude Garreau1,2 and Radu Chicireanu1,3

1 Université de Lille, CNRS, UMR 8523—PhLAM—Laboratoire de Physique des Lasers Atomes et Molécules, F-59000, Lille, France
2 Laboratoire Kasler Brosset, UPMC, CNRS, ENS, Collège de France; 4 Place Jussieu, F-75005, Paris, France
3 Author to whom any correspondence should be addressed.

E-mail: jean-claude.garreau@univ-lille.fr

Keywords: quantum transport, Floquet systems, quantum disorder, ultracold atoms, kicked rotor

Abstract

The atomic Quantum Kicked Rotor (QKR) is an outstanding ‘quantum simulator’ for the exploration of transport in disordered quantum systems. Here we study experimentally the \textit{phase-shifted QKR}, which we show to display properties close to an ideal disordered quantum system, opening new windows into the study of Anderson physics.

1. Introduction

Transport phenomena are omnipresent in physics. Hydrodynamics (i.e. matter transport), heat (i.e. energy transport) and electrical conductivity (i.e. charge transport) are among the most practically important examples. Less mundane microscopic examples are coherence or spin polarization transport. The common feature of the (macroscopic) classical approach to these phenomena is a coarse grain average leading to partial differential equations valid if the typical sizes of the system are much larger than those of its individual parts, an approach which tends to wane microscopic features. However, when one considers mesoscopic systems, at some scale the microscopic structure come into play, and quantum phenomena (notably quantum interferences) should be considered. This is the case when one treats e.g. superfluid helium, or electron transport in small enough structures (e.g. quantum dots) or motion of ultracold atoms in optical lattices. In such cases, quantum dynamics often becomes dominant and the classical transport equations break down, due to new phenomena like superconductivity, superfluidity, quantum phase transitions, etc.

A very important issue is quantum (or wave) transport in disordered systems, which has lead for more than 60 years to a wealth of theoretical and experimental studies, starting with the celebrated Anderson model[1] describing, in a relatively simple (and tractable) way, the ‘localization’ of the electron wave function in a disordered crystal. Recently, the concept of ‘quantum simulation’ of complicated quantum systems has been introduced[2–4]. The main idea, inspired from early insights by Feynman[5], is to engineer a (relatively) simple, controlled system able to reproduce (some of) the quantum features of a complex, less controllable one. A main conducting line in this field is to simulate condensed matter systems using ultracold atoms in optical lattices[6], which allowed for perfectly controlled realizations of the Hubbard hamiltonian, the observation of the Mott transition[7, 8], or the observation of Anderson localization in disordered systems[9–15]. A particularly useful quantum simulator for disordered transport is the so-called atomic quantum kicked rotor (QKR), first realized by Raizen \textit{et al}[9], and developed by our group[14–18].

While the QKR has proved to be an excellent quantum simulator of Anderson localization, it displays temporal correlations between the kicks, which are equivalent to a spatially correlated disorder in the Anderson model. In the present work we show that by engineering the kicked rotor’s Hamiltonian one can mimic a nearly-uncorrelated disordered system, allowing a much more precise comparison between theory and experiment. This is done by introducing periodical phase shifts to the kicking potential, giving rise to the \textit{periodically-shifted quantum kicked rotor} (PSQKR), which allows for a very efficient averaging over disorder realizations, able to erase the undesired effects of kicks correlations. An interesting study of the interplay between classical and quantum transport in the PSQKR can be found in[19]. We will benchmark our experimental PSQKR results by...
comparison with a numerical variant of the QKR, the Random Kicked Rotor (RKR), which mimics a perfectly uncorrelated disorder in the Anderson model, but which is not realizable experimentally. The power of the PSQKR is evidenced by measuring, with unprecedented precision, the universal transport properties predicted by the one-parameter scaling theory [20].

The article is organized as follows. In section 2, we briefly review the QKR and its transport properties, as well as its connection to the Anderson model. Section 3 describes the model and the experimental realization of the PSQKR. Section 4 compares the diffusion coefficient obtained in that way with the one extracted from numerical simulations of the RKR, demonstrating the ability of the PSQKR to average out the temporal correlations. Section 5 describes the experimental measurement of the universal scaling function $β(g)$, evidencing the excellent agreement between the PSQKR and the numerical predictions using the RKR, as well as with the weak-localization theoretical predictions. Section 6 concludes the work.

2. Quantum transport in the atomic kicked rotor

The atomic kicked rotor first demonstrated by Raizen’s group consists of a cloud of laser-cooled atoms submitted to a periodically-pulsed laser standing wave (SW) [9]. This first breakthrough led to an impressive corpus of experimental results in different fields as e.g. quantum transport [21–26] and quantum metrology [27]. In quite general conditions, for short enough times ($t ≪ b_{\text{loc}}$ where b_{loc} is the so-called ‘localization time’) the atoms diffuse in momentum space with a second moment increasing linearly with time,

\[\langle p^2(t) \rangle = \langle p^2 \rangle + 2Dt, \]

but for $t \gtrsim b_{\text{loc}}$, once quantum interferences build up in the system, the second moment saturates at a constant value $\langle p^2 \rangle + p_{\text{loc}}^2$. Here, p_{loc} is the localization length in momentum space, and $\langle p^2 \rangle$ is the momentum variance of the initial wavepacket. It turns out that this phenomenon, called ‘dynamical localization’ [28]—i.e. localization in momentum space—is, is an analog of the (spatial) Anderson localization [29] observed in disordered systems [1]. Without loss of generality, we will consider in the following only the case of narrow $\langle p_{\text{loc}}^2 \rangle$ initial wavepackets, localized around $\langle p \rangle = 0$ (see experimental details below), and put $\langle p_{\text{loc}}^2 \rangle = 0$, unless otherwise stated.

The kicked rotor’s Hamiltonian is given by

\[H_{\text{QKR}} = \frac{p^2}{2} + K \sum_{k=0}^{\infty} \cos x \delta(t - k), \]

where $K \cos x$ represents the sinusoidal potential created by the SW (formed by counter-propagating laser beams of wave number k_i), with the dimensionless spatial variable x measured in units of $(2k_i)^{-1}$ and the dimensionless time measured in units of the kick period T_k. With these definitions x and p obey the canonical commutation relation $[x, p] = i\hbar$ with $\hbar = 4\pi\hbar^2T_\Omega/M$ (M the mass of the atom) playing the role of a reduced Planck constant. The ‘stochasticity parameter’ K is given by $K = \hbar \Omega^2\tau/8\Delta$ where Ω is the single-beam resonant Rabi frequency, Δ the laser-atom detuning and τ the duration of the SW pulses. K and \hbar can be tuned in the experiment (see below). The fact that the potential is spatially periodic means that the quasi-momentum q is a constant of motion, i.e. a given momentum p_0 is coupled only to momenta of the form $p_0 + \ell k$ with $\ell \in \mathbb{Z}$; one can thus always reduce the concerned momenta to the form $(q + \ell)k$ with $\ell \in \mathbb{Z}$ and $q \in (-1/2, 1/2]$.

The Anderson model [1] is described by a tight-binding Hamiltonian of the form

\[H_A = \sum_i \epsilon_i |u_i\rangle \langle u_i| + \sum_{i,j=0} t_{ij} |u_i\rangle \langle u_{i+1}|, \]

where $|u_i\rangle$ are the Wannier states localized on the lattice site i. In the Anderson model, ϵ_i are random on-site energies distributed in a box $[-W/2, W/2]$, and t_{ij} are the hopping amplitudes. For the kicked rotor, one starts from the evolution operator over one period (Floquet operator)

\[U(1) = \exp\left(-i\frac{(\hat{\epsilon} + q)^2k}{2}\right) \exp\left(-i\frac{K}{\hbar} \cos \hat{x}\right), \]

where $\hat{\epsilon} = \epsilon |\ell\rangle \langle \ell|$ acts on the state space of the strictly periodic system. The leftmost operator in equation (3) corresponds to the free propagation between kicks and the rightmost corresponds to the kick. Fishman et al [29, 30] projected the eigenvalue equation $U(1)|\psi\rangle = \exp(-i\omega)|\psi\rangle$ defining the Floquet quasi-eigenstates on a quasimomentum family and, using algebraic operator identities, could show that this operator maps onto a tight-binding Hamiltonian of the form equation (2), with the ‘on-site energies’ $\epsilon_i \rightarrow \epsilon_\ell = (\omega/k - k(\ell + q)^2/4)$ and the ‘hoppings’ $t_{ij} \rightarrow t_\ell = (2\pi)^{-1} \int \,dx \, e^{i\pi s \tan k \cos x/2k}$. The on-site energies, in contrast to Anderson’s model, are perfectly deterministic, but if k is incommensurate with π they oscillate, creating a so-called ‘pseudo-disorder’. The fact that the kicked rotor indeed displays the same behavior as the Anderson model has been confirmed by a large number of experimental and numerical works (see [18, 31] and references therein).
This pseudo-disorder is however correlated, because the deterministic phase acquired during the free evolution following a given kick is correlated to the phase acquired before this kick. Although this effect tends to be averaged as the number of kicks increase, it leads to deterministic effects visible in the dynamics, for instance in oscillations in the diffusion coefficient as a function of K and of k \cite{32}. As well as in oscillations of $\langle p^2(t) \rangle$. This becomes particularly critical e.g. if one tries to reconstruct the function β describing the asymptotic behavior of the system \cite{20}, which is given, for the QKR, by

$$\beta \equiv \frac{\partial \ln g}{\partial \ln L} = \frac{\partial \ln (\langle p^2(t) \rangle^{1/2}/t)}{\partial \ln (\langle p^2(t) \rangle^{1/2}/L)},$$

(4)

with the appropriate definition of the ’dimensionless conductance’ being $g \equiv \langle p^2(t) \rangle^{1/2}/t$ and $L \equiv \langle p^2(t) \rangle^{1/2}$ a measure of the ’size’ of the system \cite{33}. Equation (4) expresses the behavior of the conductance with the size of the system, $g \sim L^\beta$ and is thus the kicked rotor’s analog of the β one-parameter scaling function introduced in \cite{20}. A crucial assumption of the scaling theory is that β can be expressed as a function of only g itself, so that $\beta(g)$ is a universal function which governs the transport properties of the system. Being a logarithmic derivative, this function is particularly sensitive to the oscillations of $\langle p^2(t) \rangle$, which might mask its universal behavior (i.e. independent of the systems’ microscopic details).

In order to obtain the equivalent of a perfectly uncorrelated disorder, as idealized in the Anderson model, the free propagation phases should be a completely random set of i.i.d. random variables ϕ_f in [0, 2π] that is, one replaces the free propagation operator in equation (3) by $\sum_r \exp(-i\phi_f)\mathcal{E}^r / \mathcal{L}^r$, the kicking part of the Hamiltonian being the same. This model is called the RKR, for which the correlations indeed vanish, but it is not easily feasible experimentally\(^4\).

We will show that the PSQKR can mimic a nearly-uncorrelated disordered system, thus allowing a precise comparison between theory and experiment. The SW phase-shifting leads to a very efficient averaging over disorder realizations, which allows canceling the effects of temporal correlations and reveals, with unprecedented accuracy, the universal transport properties predicted by the one-parameter scaling hypothesis.

3. The periodic PSQKR

3.1. Model

The PSQKR is a modified version of the standard QKR, equation (1), in which the spatial position of the kicking potential is periodically shifted, leading to the Hamiltonian

$$H_{\text{PSQKR}} = \frac{p^2}{2} + K \sum_{k=0}^{\infty} \sum_{j=1}^{N} \cos(x - a_j) \delta(t - kn - j),$$

(5)

where $\{a_j\}$ is an arbitrary sequence of N numbers in $[0, 2\pi)$, repeated each NT_1 periods of the kicking (period N in dimensionless units). If all $a_j \equiv 0$ we retrieve the standard QKR. The preservation of the time-periodicity means that it displays Floquet eigenstates and that essentially the same mapping to an Anderson-like Hamiltonian can be applied; dynamical localization is expected to appear with an enlarged time scale multiplied by N, which was indeed verified theoretically, numerically and experimentally, as shown in \cite{17} for a slightly more complex Hamiltonian with an additional periodic modulation of the kick intensity. Even more interestingly, one can show that the shape properties of the phase sequence $\{a_j\}$ control the parity (P) and time-reversal (T) symmetry of the Hamiltonian equation (5); if the sequence is antisymmetric around an arbitrary axis (e.g. $N = 3$ and $a_j = -a$, 0, a, with the anti-symmetry axis at kick $j = 2$) the PT symmetry is preserved and the system is in the so-called ’orthogonal’ universality class; otherwise this symmetry is broken and the system is in the ’unitary’ universality class \cite{17}. Symmetry breaking has a deep influence on the transport and localization properties of the system, which can be most clearly put into evidence by a measurement of the universal $\beta(g)$ function \cite{17}. The central point of our approach is that averaging many different realizations of the phase sequences $\{a_j\}$ (chosen so that they break or not the PT symmetry) is equivalent to a very efficient averaging over disorder realizations in the equivalent Anderson model.

3.2. Experimental setup

The atomic cloud of cesium atoms is produced in a standard Magneto-Optical Trap (MOT), loaded during 1 s in a room-temperature atomic vapor cell. We then perform an optimized 55 ms Sisyphus molasses phase which yields a few million atoms at a temperature of $\approx 2 \mu K$. The MOT is switched off and the atomic cloud is ’kicked’ by a far-detuned ($\Delta \approx -10$ GHz at the cesium D2 line, with wavelength $\lambda_c = 852$ nm) pulsed SW, with a typical pulse duration of $\tau = 300$ ns. The kick frequency $1/T_1$ can be varied between ≈ 35 and 104 kHz,

\(^4\) In the RKR, k is not defined, as the free propagation phases are random, the pertinent parameter that we call K for simplicity is equivalent to K/k for the standard QKR.
corresponding to k between 3 and 1. For our short values of τ, the atomic motion is negligible during the application of the SW pulses, which can be considered as Dirac delta functions. After the kick sequence the momentum distribution of the cloud is measured by time-of-flight after a free fall of ~ 16 cm from the MOT position.

3.2.1. The SW

The SW is formed by two independent counter-propagating beams along the vertical direction. The laser setup for the phase-modulated kicking potential is similar to that of [3-4], and is schematically shown in figure 1 (left). The beam of a commercial external-cavity laser diode (100 kHz linewidth) is separated into two parts which seed two Masters Oscillator Power Amplifiers which yield Watt-range, mutually coherent beams. The amplified beams are sent through two acousto-optic modulators (AOMs) acting as fast switches (typical rise time of 15 ns) which generate the pulses. An independent control of the phase and the amplitude of each beam is achieved using two separate, phase-locked radio-frequency (RF) driving signals, which are modulated by an arbitrary-wave-function generator. The two resulting beams are injected in single-mode optical fibers (8 m long each) which transport the light to the interaction region. To reduce the SW phase noise we adjusted the optical path difference from the splitting point up to the atoms to within 1 cm. The SW interacting with the atoms has a peak power of 300 mW per beam and a waist $w_0 = 0.8$ mm.

Since the SW is parallel to gravity, the atoms are free-falling during the application of the pulses. By applying a carefully-controlled linear chirp $(df_{RF}/dt = \text{const.},$ with f_{RF} the applied frequency) of opposite sign to each of the beam, one obtains a SW whose nodes follow the atoms during their free-fall. Thus, in the (non-inertial) reference frame of both the atoms and the SW we form a standard kicked rotor. Alternatively one can think that in the accelerated reference frame of the SW an inertial force exactly compensates gravity. This compensation is adjusted by minimizing the measured average quadratic momentum $\langle p^2 \rangle$ of the cloud at fixed number of kicks (typically 100 kicks, comparable to f_{RF}, our parameters) as a function of the relative frequency chirp. As a residual non-compensated acceleration breaks quasimomentum conservation and destroys dynamical localization, it causes a sharp increase of $\langle p^2 \rangle$, which displays a minimum around the optimal chirp value. This is shown in figure 1 (right).

3.2.2. Spatial filtering of the atomic cloud

The QKR Hamiltonian equation (1) has two parameters: the reduced Planck constant \hbar and the stochasticity parameter K. Both are well controlled experimentally on relatively large ranges (1–3 for \hbar, 0–17 for K). However, a real cold-atom system is much more complex, and depends on many other parameters. As an example, consider the fact that whereas the QKR model is 1D the real system is 3D. As the momentum exchanges between atoms and the SW are constrained along the SW direction the dynamics is effectively 1D (decoupled from the other directions). But the SW has a Gaussian transverse profile, which means that the value of K (depending on the beam intensity) varies along the transverse extension of the beams. The spatial overlap between the atomic density profile and the transverse intensity profile of the SW beams is thus an additional parameter. A small ratio between atomic cloud and SW beam sizes is desirable in order to reduce the K spatial inhomogeneity. In our experiment, at the end of the Sisyphus molasses phase, the atomic cloud e^{-2} radius
$w_{at} \sim 1$ mm and the SW beam waist is $w_0 = 0.8$ mm; this ratio is thus ~ 1. To avoid this problem, we implemented a spatial filtering of the atomic cloud in order to reduce its transverse extension (at the price of a large loss in the number of atoms), considerably reducing the inhomogeneity effects.

Our filtering method uses a vertical, tightly-focused (100μm waist) ‘repumper’ beam, carefully aligned with the axis of the SW. At the very beginning of the molasses (working on the $F_g = 4 \rightarrow F_e = 5$ hyperfine transition) phase, the MOT standard repumper beam, tuned to the $F_g = 3 \rightarrow F_e = 4$ transition, is switched off, and the ‘small’, focused repumper (on the same transition) is switched on. The atoms outside the volume delimited by this beam eventually escape the optical cycling by falling into the $F_g = 3$ level and are not affected anymore by the molasses beams. In order to remove these undesirable atoms, a horizontal pusher beam resonant with the $F_g = 3 \rightarrow F_e = 2$ transition is applied to the entire cloud but does not affect the ‘useful’ $F_g = 4$ atoms, with which it is not resonant. We found empirically that the best filtering efficiency is obtained with 50μW power and a 100 MHz detuning for the small repumper beam. The strong atom loss ($\sim 90\%$) induced by the filtering process can be mitigated by increasing the averaging over the number of experimental realizations. Additional advantages of the filtering are a reduction of the fluctuations in size and the position of the cloud, as well as a precise control of its size. Figure 2 shows the dependence of the transverse size of the cloud w_{at} versus the filtering beam power, as well as a few fluorescence images corresponding to different cloud sizes.

4. Diffusion coefficient for the PSQKR

The above-described experimental setup was used to investigate the short-time transport properties of our system. For that, we performed a quantitative study of the PSQKR compared to the standard QKR and the RKR, and we showed that the effects of the correlations between kicks can be suppressed by averaging over the PSQKR phase shifts α_j.

4.1. Effect of correlations on the diffusion coefficient

The diffusion coefficient is defined as $D_{mi} = \langle [p^2(t)] / 2t \rangle_{t<\tau_{k}}$. For perfectly uncorrelated kicks, as in the RKR case, the value of the diffusion coefficient is $D_0 = K^2 / 4$ [35] (where, for convenience, we express the momentum in units of the width of the Brillouin zone, $2\hbar k_F$, in the units of equation (1) it is $K^2 / 4$). In presence of correlations, it is well known that oscillations appear as the kick strength K is varied, both in the classical and quantum cases.

The oscillations of D_{mi} in the classical and QKR have been previously studied both theoretically [32, 35, 36] and experimentally [37]. In particular the dependence of the diffusion coefficient with K for the standard QKR has been calculated in [32] and is given by
Here also, the term proportional to \(J_n \), where \(J_n = (2K/k)\sin(k/2) \), with the choice of the phase-modulation sequence will strongly affect kick correlations in the simplest cases. The corrections to \(D_{\text{ini}} \) depend on the phases \(\alpha_j \), and the choice of the phase-modulation sequence will strongly affect kick correlations in the simplest case. A carefully tailored sequence \(\alpha_j \) might thus provide a method to control the dependence of diffusion coefficient on \(K_q \).

In order to test these predictions, we experimentally measured the initial diffusion coefficient \(D_{\text{ini}} \). This measurement is done by analyzing the time-of-flight atomic distribution after a small number of kicks (typically \(\sim 7 \)). In these conditions, we observe that the distributions preserve a Gaussian shape (confirming that the dynamics is still diffusive), and that the square of the fitted width of the momentum distribution, \(\langle p_t^2(t_0) \rangle \equiv \sigma_p^2(t_0) = \sigma_p^2(0) \), varies linearly with the kick number \(t \). From the measured width at a given number of kicks \(t_0 \sim 7 \) we extract \(\sigma_p^2(0) \) and this infer the diffusion coefficient \(D_{\text{ini}} = \langle p_t^2(t_0) \rangle / 2t_0 \).

Figure 3 displays the measured dependence of \(D_{\text{ini}} \) versus \(K \) for the standard QKR and compares it with equation (6), in the presence and in the absence of spatial filtering of the atomic cloud described in section 3. The effect of the filtering in reducing the transverse inhomogeneity appears to be very important. For an atomic cloud size \(w_{at} = 400 \ \mu \text{m} \) (blue rectangles), about the half of the SW waist (\(w_0 = 800 \ \mu \text{m} \)), the oscillations are severely smeared. When the filtering procedure is used to reduce the atom cloud size to \(w_{at} = 150 \ \mu \text{m} \), we clearly observe the oscillations induced by kick correlations (red circles), in good agreement with equation (6) (dashed black line). For \(w_{at} < 200 \ \mu \text{m} \) the curve becomes almost independent of \(w_{at} \), indicating that residual inhomogeneity is negligible.

Figure 4 shows the same measurement of \(D_{\text{ini}} \) versus \(K \) for the PSQKR in the simplest case, \(N = 2 \), with the phase-shift sequence \(\alpha_1 = a, \alpha_2 = -a \), with \(a = \pi/4 \) (blue rectangles). The solid lines correspond to...
4.2. Suppression of the correlation effects by the averaging over the phases

The above results suggest that one can use the effect of the PSQKR phase shifts on the kick correlations to suppress these undesirable effects. We will show that it is possible to average over randomly-chosen phase sequences in order to mimic the behavior of an ideal (correlation-free) disordered system, corresponding to the diffusion coefficient of the correlationless RKR, \(D_b = K^2/4 \). This can be achieved even for relatively low modulation periods, as the effect of higher-order correlations remains small, as one can see from equation (7).

With \(N = 2 \), one can eliminate the two-kick correlations \((<J_2(K_q)>)\), and part of the three-kick correlations \((<J_3(K_q)>)\). With \(N = 3 \), one can eliminate all terms in \(J^1_r \).

The experimental results are shown in figure 5 for \(N = 2 \), plot (a), and \(N = 3 \), plot (b). In both panels, the red circles correspond to experimental data and the red solid lines to equation (6) for the standard QKR (with \(k = 2 \)), where all the correlation terms are present. Blue symbols correspond to the PSQKR with the experimental results averaged over 100 different sets of phases \(\phi_0 \), while the lines correspond to the theoretical results, equation (7), averaged over the phases. The agreement between theory and experiment is very good, and one clearly observes a reduction of the oscillations due to the averaging. In the case \(N = 3 \) (plot (b)), the experimental is in good agreement with the uncorrelated RKR result \(D_b = K^2/4 \) (solid line), evidencing the efficiency of the averaging for suppressing the effect of correlations.

5. Measurement of the scaling function \(\beta(g) \)

In this section we show how the averaging over phase shifts allows for a clean measurement of the universal one-parameter scaling function \(\beta(g) \). We consider only the orthogonal symmetry class, to which the standard QKR belongs. In order to realize this case with the PSQKR, we have to constrain the phase shifts sequence by an anti-symmetry condition [17].

In figure 6(a) we show a numerical simulation of \(\langle p^2(t) \rangle \) for the RKR, for three different values of the kick amplitude, \(K = 10, 15 \) and 20. The curves are smooth and do not show, as expected, any correlation effects. The universal character of the dynamics (i.e. its independence of the ‘microscopic’ parameter \(K \)) is best evidenced by the collapse onto one curve of the \(\beta(g) \) function (computed using equation (11)), as shown in figure 6(b).

Figure 6(c) shows a numerical simulation of \(\langle p^2(t) \rangle \) for the standard QKR (blue circles), using typical parameter values accessible in experiments \((K = 5.8 \text{ and } k = 0.8)\). The dashed black line is an extrapolation of the initial diffusion, followed by the beginning of dynamical localization, common with the RKR behavior, but we clearly observe small oscillations due to temporal correlations. Figure 6(d) shows that the corresponding \(\beta(g) \) function is strongly affected by these non-universal oscillations, masking its universal character (indicated by the red solid line corresponding to the RKR behavior with the same parameters).

\[\beta(g) = \text{constant} \]

\[\langle p^2(t) \rangle = \text{universal function} \]

\[\text{RKR behavior} \]

\[\text{PSQKR behavior} \]

\[\text{Experimental results} \]

The realization of a PSQKR in the unitary symmetry class was demonstrated in [17].
Figure 7 shows the experimentally measured $p^2(t)$ for the PSQKR (plot (a)) and the corresponding $\beta(g)$ function (plot (b)). Three sets of experimental data were used, with parameters $N = 3$, $K = 4$ (blue circles); $N = 4$, $K = 4.5$ (green diamonds); $N = 5$, $K = 3.5$ (red squares); all with $k = 1$. The experimental momentum distributions were averaged over 100 randomly-generated sets of phase shifts (constrained by the anti-symmetry
condition). A careful analysis was used for extracting \(\langle p^2(t) \rangle = \int p^2 \Pi(p) \, dp \) from the time-of-flight momentum distributions \(\Pi(p) \). Since \(\langle p^2(t) \rangle \) is sensitive to the tails of the momentum distribution, we fit \(p^2 \Pi(p) \) (the integrand of the previous integral) rather than \(\Pi(p) \) itself, and we deduce \(\langle p^2(t) \rangle \) from the fitting curve. The fitting function is the Lobkis–Weaver self-consistent function \([39]\), which smoothly evolves from a Gaussian to an exponential shape. This method was tested and validated with numerical simulations over a wide range of parameters. Plot (a) shows that, although relatively low kick strengths were used, similar to the ones in figure 6(c), the resulting \(\langle p^2(t) \rangle \) is very smooth, with no visible oscillations (to improve the figure clarity we displayed only the curve corresponding to the first set of parameters). Figure 7(b) shows the corresponding \(\beta(g) \) functions, in good agreement with the RKR scaling (solid red line). The agreement among all sets of experimental points (to within experimental errors) is a clear experimental proof of the one-parameter scaling function universality, and evidences the efficiency of the phase-averaging method to suppress temporal correlations.

6. Conclusion

In conclusion, we described in this work powerful techniques, both experimental and for data analysis, allowing us to obtain high quality measurements of important parameters, like the initial diffusion coefficient. The most important of these techniques is the implementation of an engineered Hamiltonian, the PSQKR. We showed how these improved setup and data analysis techniques can suppress the effects of kick correlations, allowing us to perform the quite challenging task of measuring a central quantity characterizing quantum transport in disordered systems, the \(\beta(g) \) universal scaling function. This considerably enhances the potential of kicked cold-atom systems for quantum simulations of disordered systems, and in particular their transport properties, as put in evidence in our recent works \([17, 19, 40, 41]\).

Acknowledgments

This work was supported by Agence Nationale de la Recherche through Research Grants LAKRIDI No. ANR-11-BS04-0003-01, K-BEC No. ANR-13-BS04-0001-01 and MANYLOK No. ANR-18-CE30-0017, the Labex CEMPI (Grant No. ANR-11-LABX-0007-01), the I-SITE ULNE/ANR-16-IDEX-0004 ULNE (QUITOPS and QRITIC projects), the Programme Investissements d’Avenir ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT.
References

[1] Anderson P W 1958 Absence of diffusion in certain random lattices Phys. Rev. 109 1492–505
[2] Mazza I, Bermúdez A, Grallman N, Rizzi M, Martin-Delgado M A and Lewenstein M 2012 An optical-lattice-based quantum simulator for relativistic field theories and topological insulators New J. Phys. 14 1015007
[3] Bloch I, Dalibard J and Nascimbene S 2014 Quantum simulations with ultracold quantum gases Nat. Phys. 8 267–76
[4] Georgescu I M, Ashhab S and Nori F 2014 Quantum simulation Rev. Mod. Phys. 86 153–85
[5] Feynman R P 1982 Simulating physics with computers Int. J. Theor. Phys. 21 467–88
[6] Bloch I, Dalibard J and Zwerger W 2008 Many-body physics with ultracold gases Rev. Mod. Phys. 80 885–964
[7] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms Nature 415 39–44
[8] Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac J I, Shlyapnikov G V, Hänsch T W and Bloch I 2004 Tonks–Girardeau gas of ultracold atoms in an optical lattice Nature 429 277–81
[9] Moore F L, Robinson J C, Bharucha C F, Sundaram B and Raizen M G 1995 Atom optics realization of the quantum δ-kicked rotor Phys. Rev. Lett. 75 4598–601
[10] Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez–Palencia L, Bouyer P and Aspect A 2008 Direct observation of Anderson localization of matter–waves in a controlled disorder Nature 453 891–4
[11] Roati G, d’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Anderson localization of a non-interacting Bose–Einstein condensate Nature 453 895–9
[12] Kondratjevski F, Bernard A, Muller K, Cheinet P, Josse V, Piraud M, Pezzi L, Sanchez–Palencia L, Aspect A and Bouyer P 2012 Three-dimensional localization of ultracold atoms in an optical disordered potential Nat. Phys. 8 398–403
[13] Semeghini G, Landini M, Castillo P, Roy S, Spagnolli G, Trenkwalder A, Fattori M, Inguscio M and Modugno G 2015 Measurement of the mobility edge for 3D Anderson localization Nat. Phys. 11 554–9
[14] Chabé J, Lemarié G, Grémaud B, Delande D, Srzif tiger P and Garreau J C 2008 Experimental observation of the Anderson metal-insulator transition with atomic matter waves Phys. Rev. Lett. 101 255702
[15] Lopez M, Clément J F, Srzif tiger P, Garreau J C and Delande D 2012 Experimental test of universality of the Anderson transition Phys. Rev. Lett. 108 095701
[16] Manai I, Clément J F, Chici reau R, Hainaut N, Garreau J C, Srzif tiger P and Delande D 2015 Experimental observation of two-dimensional Anderson localization with the atomic kicked rotor Phys. Rev. Lett. 115 240603
[17] Hainaut C, Manai I, Clément J F, Garreau J C, Srzif tiger P, Lemarié G, Cher renot N, Delande D and Chicireau R 2018 Controlling symmetry and localization with an artificial gauge field in a disordered quantum system Nat. Commun. 9 1382
[18] Garreau J C 2017 Quantum simulation of disordered systems with cold atoms C. R. Phys. 18 31–46
[19] Hainaut C, Rançon A, Clément J F, Garreau J C, Srzif tiger P, Chicireau R and Delande D 2018 Ratchet effect in the quantum kicked rotor and its destruction by dynamical localization Phys. Rev. A 97 061601
[20] Abrahams E, Anderson P W, Lasciare llo D C and Ramakrishnan T V 1979 Scaling theory of localization: absence of quantum diffusion in two dimensions Phys. Rev. Lett. 42 673–6
[21] Deng L, Hagley E W, Denschlag J, Simsarian J E, Edwards M, Clark CW, Helmsen K, Rolston S L and Phillips W D 1999 Temporal, matter–wave–dispersion Talbot effect Phys. Rev. Lett. 83 S 5407–11
[22] Dana I, Ramareddy V, Talukdar I and Summy G S 2008 Experimental realization of quantum–resonance ratchets at arbitrary quasi-momenta Phys. Rev. Lett. 100 024103
[23] Hensinger WK et al 2001 Dynamical tunneling of ultracold atoms Nature 412 52–5
[24] Steck DA, Oskay W H and Raizen M G 2001 Observation of chaos–assisted tunneling between islands of stability Science 293 274–8
[25] Sadgrove M, Wimberger S, Parkins S and Leonhardt R 2005 Ballistic and localized transport for the atom optics kicked rotor in the limit of a vanishing kicking period Phys. Rev. Lett. 94 223401
[26] Wimberger S, Sadgrove M, Parkins S and Leonhardt R 2005 Experimental verification of a one-parameter scaling law for the quantum and ‘classical’ resonances of the atom–optics kicked rotor Phys. Rev. A 71 053404
[27] Ma Z Y, d’Arcy M B and Gardiner S A 2004 Gravity-sensitive quantum dynamics in cold atoms Phys. Rev. Lett. 93 164101
[28] Casati G, Chirikov B V, Ford J and Izrailev F M 1979 Stochastic behavior of a quantum pendulum under periodic perturbation Stochastic Behavior in Classical and Quantum Systems ed G Casati and J Ford vol 93 (Berlin: Springer) pp 334–52
[29] Grempler D R, Prange R E and Fishman S 1984 Quantum dynamics of a nonintegrable system Phys. Rev. A 29 1639–47
[30] Fishman S, Grempler D R and Prange R E 1982 Chaos, quantum recurrences, and Anderson localization Phys. Rev. Lett. 49 509–12
[31] Tian C, Alland A and Garst M 2011 Theory of the Anderson transition in the quasiperiodic kicked rotor Phys. Rev. Lett. 107 074101
[32] Shpeлейовский D I 1987 Localization of diffusive excitation in multi-level systems Physica D 28 103–14
[33] Cher renot N, Vermersch B, Garreau J C and Delande D 2014 How nonlinear interactions challenge the three–dimensional Anderson transition Phys. Rev. Lett. 112 170603
[34] White D H, Ruddell S K and Hoogerland M D 2013 Experimental realization of a quantum ratchet through phase modulation Phys. Rev. A 88 063603
[35] Rechester A B, Rosenbluth M N and White R B 1981 Fourier–space paths applied to the calculation of diffusion for the Chirikov–Taylor model Phys. Rev. A 23 2684–72
[36] Rechester A B and White R B 1980 Calculation of turbulent diffusion for the Chirikov–Taylor model Phys. Rev. Lett. 44 1586–9
[37] Klappaud B G, Oskay W H, Steck D A and Raizen M G 1998 Experimental study of quantum dynamics in a regime of classical anomalous diffusion Phys. Rev. Lett. 81 4044–7
[38] Tian C, Kamenev A and Larkin A 2005 Ehrenfest time in the weak dynamical localization Phys. Rev. B 72 045108
[39] Lobkis O I and Weaver R L 2005 Self-consistent transport dynamics for localized waves Phys. Rev. E 71 011112
[40] Hainaut C, Manai I, Chici reau R, Clément J F, Zemmouri S, Garreau J C, Srzif tiger P, Lemarié G, Cher renot N and Delande D 2017 Return to the origin as a probe of atomic phase coherence Phys. Rev. Lett. 118 184101
[41] Hainaut C, Fang P, Rancon A, Clément J F, Srzif tiger P, Garreau J C, Tian C and Chici reau R 2018 Experimental observation of a time–driven phase transition in quantum chaos Phys. Rev. Lett. 121 134104

the Ministry of Higher Education and Research, Hauts de France Council and European Regional Development Fund (ERDF) through the Contrat de Projets Etat-Region (CPER Photonics for Society, P4S).