ABSTRACT

Introduction: This study focuses on the differences of concomitant single forearm arterial (radial & ulnar) injuries. The ulnar artery has been being consented to be the dominant one of the hand for a long time despite more recent and controversial studies clinical observations might be supporting it.

Material and Method: We assessed 108 consecutive, minimum 1-year followed-up, concomitant single artery lacerated forearm injuries operated in our clinic retrospectively, and 38 cases attended. After attendees filled subjective questionnaires, we evaluated their hand circulation, hand sensation, handgrip, pinch-grip, and thermo-distribution.

Results: Most common injury type was glass cut (62%), followed by power saw injury (26%). Cases associated with the ulnar artery lacerations were referred to the hospital with significantly (p<0,05) more severe injuries, which appeared to be significantly (p<0,001) associated with the ulnar nerve lesion that appeared to be the most significant (p<0,05) parameter affecting clinical outcomes. Moreover, patency rates for artery repairs were 71% (27/38) similar to the literature and surprisingly, smoking didn’t affect arterial patency among our patients (n=22, 57.8% smoker).

Conclusion: The ulnar artery is at greater risk due to the most common injury mechanism, and the ulnar nerve associates nearly each ulnar artery laceration and eventuates in certain disability levels. Hence why we are encouraged to consider the medial side of the forearm as strategically valuable and the ulnar artery as the major troublemaker in forearm injuries functionality wise.

Key Words: Radial, Ulnar artery, Ulnar nerve, Forearm injury, Glass punch, Hand functionality
dominates the list of injured organs including craniofacial and torso, males lead 95% of this population and it takes them at least 3 months to recover.10

Despite the anatomical prominence of any given structure in the forearm regarding the hand, in some cases, a well-perfused hand becomes an excuse for ignoring a single arterial rupture which we think should not even be considered ligating if mangled extremity is not present.

MATERIAL AND METHODS

The study was approved by the local ethical committee under case no: 18-12.1T/35. The study is retrospective. The main objective was to assess the clinical outcomes of forearm injuries with a neurovascular component and assign the prominence of one major artery in hand perfusion.

Initially, 3908 individual case files with upper extremity trauma operated in our clinic, between September 2014 – March 2018 were revealed. Any single forearm artery laceration of any age and sex was included. Regarding homogeneity, patients with severe injuries requiring emergent revascularization such as total or subtotal amputation, with irregular or incomplete outpatient clinic visits, severely senile, immobilized, debilitated, also hardly cooperating pediatric ages under ten years old and any concomitant hand injuries were excluded. Eventually, 108 cases were registered and 38 people attended the further examination.

According to dossier research, all the cases were operated under a 4.3x magnifying loupe. Microsurgical procedures were done with non-absorbable 8/0 and 9/0 polypropylene sutures. All the cases were treated at least 5 days with the same regimen:

1. Full immobilization
2. Pentoxifylline added Dextran 40 solution infused throughout 72 hours
3. HMWH daily
4. Salicylate daily

Arterial patency was assessed via 8.0 MHz probe Mobile Doppler Ultrasonography (MDU)11-13. Meanwhile, minimal reverberations in perfusion were monitored via a portable pulse oximeter put on the third finger pulp.14,15

Each MDU examination was recorded and rendered via audio-analyzer (Figure 1).16 Non-directional MDU audios were designated as triphasic, biphasic and monophasic/non-patent.

Concomitant nerve damage was assessed via Semmes-Weinstein17,18,19 monofilaments and Weber’s20 two-point discrimination and tactile gnosis. Posttraumatic cold-related (cold intolerance) symptoms21 were also evaluated. Palmar grip and key-pinch forces were assessed. FLIR ONE® was used to establish warm-cool divergence values. Images were generated at standard 30cm apart with 0-30° angle, then analyzed via FLIR Tools App. and processed through ANOVA to distinguish temperature variance between healthy and pathologic specimens.

![Figure 1: Non-directional manual doppler ultrasound audio files. a-monophasic, b-biphasic, c-triphasic.](image)

A well-known scoring system MHISS (Managed Hand Injury Severity Score)1 designed especially for forearm lacerations was used to assess the severity of the injury. Also, a well-known patient-reported outcome QDASH (Quick – Disabilities of Arm, Shoulder, and Hand)22 scoring for clinical assessment was used.

STATISTICAL ANALYSIS

SPSS 25 was used for statistical analysis (CI=95%,p<,05). Comprehensively, Kolmogorov-Smirnoff, Shapiro-Wilk, Levene, Mann-Whitney U, Pearson Qi square, Student’s t, Goodman Kruskal Tau, Lambda, Kruskal Wallis, ANOVA and ROC tests were used.

RESULTS

Study population (n=38) distributed between 10-82 with 34,5 median age. 26 (68.4%) right and 12 (31.6%) left side injuries, also, 26 dominant side injuries and 12 non-dominant side injuries were registered. Overall, 95% of the whole population was right dominant by nature.

12 (31,6%) radial arteries and 26 (68,4%) ulnar arteries were registered.

Either median or ulnar nerve accompanied 76,3% of all cases and 13,1% of cases involved both. The ulnar nerve demonstrated significant concomitance (p<.001) with the ulnar artery due to the anatomical course.

MHISS scores distributed into the radial and the ulnar artery groups, where the ulnar artery group significantly (p<.05) altered, meaning the ulnar artery accompanied to more severe traumas, which by all means explains the strategic importance...
of the medial side of the forearm and the ulnar artery neighbourhood. Glass-punchers exhibited significantly higher (p<.05) arterial patency, possibly because of the minimal structural damage to the artery, likewise significantly better (p<.05) outcomes. According to age groups, radial artery demonstrated a significant concordance (p<.05) along with the senior ages, which hereby may explain the better outcomes of young glass killers.

The radial artery group showed significantly better (p<.05) results than the ulnar artery group in terms of key-pinch force due to the high concordance of the ulnar artery and the ulnar nerve. Moreover, nearly a quarter (23.6%) portion of QDASH variations could be explained by given forces, furthermore, a 1 kg increase in key-pinch, resulted in a 3.09 unit decrease in QDASH score. Key-pinch also resembled to have a significantly more prominent (p<.001) impact on QDASH variations.

Active smokers (57.8%) during and after the injury were identified as smokers. As expected, smoking significantly (p<.05) deteriorated QDASH clinical outcomes, in contrast, arterial patency didn’t correlate with smoking.

Finally, ANOVA applied to assess the correlation of cold intolerance with the coolest and the warmest spots evaluated via thermal distribution. The coolest temperature had a significant correlation (p<.001) with the cold intolerance, hypothetically ensuing the feeling of cold as not only a paresthetic sensation the hand could be unnaturally cold.

Triphasic ultrasound patterns exhibited a 71% (27/38) artery patency rate. Nevertheless, artery patency didn’t significantly correlate with outcomes.

DISCUSSION

QDASH score represents one of the most reliable patients reported outcomes in literature. Hence, we believe our research brought out confident evidence.

Standard Occupational Classification 2000 (SOC-2000) is widely used among occupational injury researchers, whereas our research wasn’t compatible because of the insufficient members falling into each group. We roughly determined ‘heavy worker’ and ‘not heavy worker’ groups, yet no significant difference concerning injury severity, clinical outcome, etc. achieved even in this custom.

Clinical example case no: 9 (Figure 2). This case was a glass-puncher with the ulnar artery laceration, monophasic non-patent doppler pattern, and symptomatic claudication. The little finger seemed dimmer than others, most probably because of the hypoperfusion in this particular finger which sits closer to the congested ulnar artery. Recall that, patients had no associated hand injuries whatsoever. Standalone this case supports our anti-ligation policy.

Figure 2: Congested ulnar artery and hypoperfused little finger.

The real-time surface thermal analysis opens an opportunity for a comprehensive approach to posttraumatic cold-related symptoms. Our study population involved only patients which attained a challenge establishing normative values. Thermal imaging advocates prospective value for early and late hand perfusion periods but needs more quantitative studies to establish a proper normative pitch for desired natural perfusion of the hand.

Single major nerve injury accompanies 58% of the forearm arterial lacerations according to Ballard et al. and 86% in Keleş et al. We noted 76.3% single and 13.1% dual major nerve injuries similarly in our study.

According to B agréable et al. Doppler US exhibited 93.7% arterial patency whereas the angiography (gold standard) did 69.2%, thus 14.6% a error assigned to Doppler US in forearm arterial lacerations. The sound wave pattern in non-directional MDU was described a couple of years later, so there’s a possibility that radiologists misinterpreted all mono and biphasic patterns as a patent. Nevertheless, 71% (27/38) arterial patency is a similar result with the literature.

During the strike, glass is shattered, yet we think not the punch itself causes the laceration, pulling it out does. More forceful the fist dives into pieces, the more deeply they cut the forearm. This behaviour is called impulsiveness in psychiatry, so it mentions the fail to struggle with stress factors, thus being compelled into self-destructive action. The aetiology is described as sparking with an impulsive energy blast, which therefore causes an urge for self-destruction by striking somewhere, usually the glass which vaguely reflects the image of one’s self.

CONCLUSION

The majority of the population were impulsive glass-puncher young males with the right dominant side and the injured ulnar artery. Ulnar artery lacerations demonstrated more severe injuries than the radial artery according to MHISS. Nearly every ulnar artery associated with the ulnar nerve.
Furthermore, both motor and sensory functions of the ulnar nerve had a significantly higher impact on clinical outcomes. We still believe ruddy hand perfusion develops due to the hefty usage of the hand, and each artery course improves by the nature of the labour if not the profession which is another subject for a novel study. It is clinically explicit that hand perfusion is singular and every disrupted anatomical structure needs the same medical care, and despite the radial artery being the major labourer for the hand, we are encouraged to establish the ulnar artery as the weightier concomitant trouble maker in forearm injuries functionality wise.

ETHical Committee Approval

The study protocol received institutional review board approval under Case No: 18-12.1T/35 on 26.12.2018 and all participants provided informed consent in the required format.

Conflict of Interest

Research contributors declare there has been no conflict of interest whatsoever.

ACKNOWLEDGEMENTS

I would like to express my very great appreciation to Professor Levent Kucuk for his valuable and constructive suggestions during the planning and development of this research work. His willingness to give his time so generously has been very much appreciated.

Funding Information

The study is self-funded and no additional reimbursement is a matter of concern.

Author’s Contribution

Mirzazada Java and Kucuk Levent conceived of the presented idea. Mirzazada J. developed the theory and performed the computations, verified the analytical methods. Kucuk L. encouraged Mirzazada J. to investigate hand perfusion after forearm trauma and supervised the findings of this work. Both authors discussed the results and contributed to the final manuscript.

REFERENCES

1. Urso-Baiarda F, Lyons RA, Brophy S, et al. prospective evaluative of the Modified Hand Injury Severity Score in predicting a return to work. *Int J Surg*. 2007;6(1):45-50. doi:10.1016/j.ijsu.2007.09.001

2. Ootes D, Lambers KT, Ring DC. The Epidemiology of Upper Extremity Injuries Presenting to the Emergency Department in the United States. *HAND*. 2012;7(1):18-22. doi:10.1007/s11552-011-9383-z

3. Sheppard J, Thai J, Massey B, et al. Evidence-based Comprehensive Approach to Forearm Arterial Laceration. *West J Emerg Med*. 2015;16(7):1127-1134. doi:10.5811/westjem.2015.10.28327

4. Bacakoğlu A, Çokunel O, Özdemir O, et al. Multifactorial effects on the patency rates of forearm arterial repairs. *Microsurgery*. 2002;21(2):37-42. doi:10.1002/micr.1006

5. Şahin F, Akkaya N, Kurban B, et al. Demographical, clinical, and psychological differences of patients who suffered hand injury accidentally and by punching glass. *Acta Orthop Traumatol Turc*. 2015;49(4):361-369. doi:10.3944/AOTT.2015.14.0255

6. Elliott D, O’Donouhue P, Phillips A, et al. Punching Glass. *Plast Reconstr Surg - Glob Open*. 2015;3(6):e436. doi:10.1097/ gox.0000000000000410

7. Judge C, Eley R, Miyakawa-Liu M, et al. Characteristics of accidental injuries from power tools treated at two emergency departments in Queensland. *EMA - Emerg Med Australas*. 2018;(October). doi:10.1111/1742-6723.13201

8. Barker M, Power C, Roberts I. Injuries and the risk of disability in teenagers and young adults. Arch Dis Child. 1996;75(2):156-158. doi:10.1136/adc.75.2.156

9. Trybus M, Tusinski M, Guzik P. Alcohol-related hand injuries. *Injury*. 2005;36(10):1237-1240. doi:10.1016/j.injury.2004.09.003

10. Judge C, Eley R, Miyakawa-Liu M, et al. Characteristics of accidental injuries from power tools treated at two emergency departments in Queensland. *EMA - Emerg Med Australas*. 2018;(October). doi:10.1111/1742-6723.13201

11. Alavi A, Sibbald RG, Nabavizadeh R et al. Audible handheld Doppler ultrasound determines reliable and inexpensive exclusion of significant peripheral arterial disease. *Vascular*. 2015;23(6):622-629. doi:10.1177/170853114568703

12. Vowden K, Vowden P. Hand-held Doppler Ultrasound: The assessment of lower limb arterial and venous disease. *Vascular*. 2002;1:1-8.

13. Davloouros P, Ziakas A, Tassi V, et al. Prevention of Radial Artery Occlusions Following Coronary Procedures: Forward and Backward Steps in Improving Radial Artery Patency Rates. *Anesthesiology*. 2018;69(9):755-762. doi:10.1017/bj.69.04.09.003

14. Al-Metwalli RR. Perfusion index as an objective alternative to the Allen test, with flow quantification and medico legal documentation. *Anaesthesia, Pain Intensive Care*. 2014;18(3):245-249.

15. Umutoglu T, Zengin SU, Bakan M, et al. Comparison of SpO2 values from different fingers of the hands. *Springerplus*. 2015;4(1):2-4. doi:10.1186/s40064-015-1360-5

16. https://twistedwave.com/online. online sound wave analyzer. https://twistedwave.com/online. 2019

17. Weinstein S. Tactile Sensitivity of the Phalanges. *Weinstein S. Fifty years of somatosensory research: from the Phalanges*. 1962;14(3):351-354. doi:10.2466/pms.1962.14.3.351

18. Weinstein S. Fifty years of somatosensory research: from the Semmes-Weinstein monofilaments to the Weinstein Enhanced Sensory Test. *J Hand Ther*. 6(1):11-22; discussion 50. http://www.ncbi.nlm.nih.gov/pubmed/8343870.

19. Levin S, Pearsall G, Ruderman RJ. Von Frey’s method of measuring pressure sensitivity in the hand: An engineering analysis of the Weinstein-Semmes pressure aesthesiometer. *J Hand Ther*. 1978;3(3):211-216. doi:10.1016/S0363-5023(78)80084-7

20. Carterette EC, Friedman MP. *Handbook of Perception, New York: ACADEMIC PRESS, INC; 1978. https://books.google.com.tr/books?id=PKBGBQAAQBAJ&pg=PA5&dq=vierordt%27s+law+1870&source=bl&ots=CshAE5Q4Bk&sig=ACfU3U3y4P2YdP7bgqEE_Xw2NjNbK7CPzGj&hl=trk&sa=X&ved=2ahUKEwien039a_iAhVFyqKQKhdcdDDIQ6AEWAXoECAkQAQtt=onepage&q=vierordt’s+law+1870&f=fals.
21. Roseen B, Lundborg G. A model instrument for the documentation of outcome after nerve repair. *J Hand Surg Am*. 2000;25(3):535-543. doi:10.1053/jhsu.2000.6458

22. QDASH. http://www.dash.iwh.on.ca/about-quickdash 2019

23. Dacombe PJ, Amirfeyz R, Davis T. Patient-Reported Outcome Measures for Hand and Wrist Trauma. *Hand*. 2016;11(1):11-21. doi:10.1177/1558944715614855

24. Beaton DE, Katz JN, Fossel AH, et al. Measuring the whole or the parts? Validity, reliability, and responsiveness of the Disabilities of the Arm, Shoulder and Hand outcome measure in different regions of the upper extremity. *J Hand Ther*. 14(2):128-146. http://www.ncbi.nlm.nih.gov/pubmed/11382253.

25. Beaton DE, Davis AM, Hudak P, et al. The DASH (Disabilities of the Arm, Shoulder and Hand) Outcome Measure: What do we know about it now? *Br J Hand Ther*. 2001;6(4):109-118. doi:10.1177/175899830100600401

26. Gummesson C, Atroshi I, Ekdahl C. The disabilities of the arm, shoulder and hand (DASH) outcome questionnaire: longitudinal construct validity and measuring self-rated health change after surgery. *BMC Musculoskelet Disord*. 2003;4:11. doi:10.1186/1471-2474-4-11

27. Office for National Statistics. Standard Occupational Classification 2000 (SOC2000) - Summary of structure. 2000;1(June):1-17. http://www.ons.gov.uk/ons/guide-method/classifications/archived-standard-classifications/standard-occupational-classification-2000/index.html.

28. Ballard JL, Bunt TJ, Malone JM. Management of small artery vascular trauma. *Am J Surg*. 1992;164(4):316-319. doi:10.1016/S0002-9610(05)80895-5

29. Keles MK. Evaluation of Forearm Arterial Repairs: Functional Outcomes Related to Arterial Repair. *Turkish J Trauma Emerg Surg*. 2016;23(2). doi:10.5505/tjtes.2016.36080

30. Scissons R. Characterizing Triphasic, Biphasic, and Monophasic Doppler Waveforms. *J Diagnostic Med Sonogr*. 2008;24(5):269-276. doi:10.1177/8756479308323128

31. Steinberg D, Gans I, Levin LS, Lin I, Bozentka D, Park MJ. Timing of Forearm Arterial Repair in the Well-perfused Limb. *Orthopaedics*. 2014;37(6):e582-e586. doi:10.3928/01477447-20140528-60

32. Eroğlu O, Koçak OM, Coşkun F, et al. Cama Yumruk Atan Hastaların Demografi Özellikleri Ve Hava Koşullarılıkısı. *Kirikkale Üniversitesi Tip Fakültesi Derg*. 2017;19(1):1-1. doi:10.24938/kutfd.289300