Comparison of ultracentrifugation and a commercial kit for isolation of exosomes derived from glioblastoma and breast cancer cells

Frøydis Sved Skottvoll*, Henriette Engen Berg*, Kamilla Bjørseth, Kaja Lund, Norbert Roos, Sara Bekhradnia, Bernd Thiede, Cecilie Sandberg, Einar Vik-Mo, Hanne Roberg-Larsen, Bo Nyström, Elsa Lundanes, Steven Ray Wilson*

a Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway
b Department of Microbiology, Unit Cell Signaling, Oslo University Hospital, Gaustadalleen 34, NO-0372 Oslo, Norway
c Department of Biosciences, University of Oslo, Post Box 1066, Blindern, NO-0316 Oslo, Norway
d Vilhelm Magnus Laboratory of Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, 4950 Nydalen, NO-0424 Oslo, Norway
e Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Post Box 1171, Blindern NO-0318 Oslo, Norway

* These authors have contributed equally to the work.
† Corresponding author: stevenw@kjemi.uio.no, +47 97010953

E-mail addresses: f.s.skottvoll@kjemi.uio.no; h.e.berg@kjemi.uio.no; milla@hotmail.com; kaja.lund@legemiddelverket.no; bernd.thiede@ibv.uio.no; cecilie.Sandberg@rr-research.no; einar.vik-mo@rr-research.no; hanne.roberg-larsen@kjemi.uio.no; b.o.g.nystrom@kjemi.uio.no; elsa.lundanes@kjemi.uio.no; norbert.roos@ibv.uio.no; bekhradnia.s@gmail.com

Running Title: Exosome isolation from glioblastoma and breast cancer cells

Key words: Exosomes; Ultracentrifugation; LC-MS/MS; Proteomics; Glioblastoma; Breast cancer

Declaration of interest: The authors declare that there is no conflict of interest.
Abbreviations

ABC, ammonium bicarbonate; AGC, automatic gain control; BC, breast cancer; BCA, bicinchoninic acid; dd, data-dependent; DLS, dynamic light scattering; DMEM/F12, Dulbecco's modified eagle medium with nutrient mixture F-12; ER, endoplasmic reticulum; EVs, extracellular vesicles; FA, formic acid; FBS, fetal bovine serum; FSG, fish serum gelatine; GBM, glioblastoma multiforme; GO, gene ontology; IAM, 2-iodoacetamide; ISEV, The International Society of Extracellular Vesicles; LC-MS/MS, liquid chromatography tandem MS; MP, mobile phase; MVBs, multivesicular bodies; NMR, nuclear magnetic resonance; RPMI, Rosewell Park Memorial Institute; RT, room temperature; S/N, signal to noise ratio; TEM, transmission electron microscopy; UC, ultracentrifugation; WB, Western blot
ABSTRACT

Exosomes are small extracellular vesicles around 30-100 nm in diameter that are secreted from cells and can be found in most body fluids. Exosomes can be a vital source of biomarkers as they contain various substances (e.g. lipids, RNAs, metabolites and proteins) that can reflect the cell of origin (e.g. cancer cells). For isolation of exosomes present in biological matrices, ultracentrifugation (UC)-based procedures are most common. Other approaches exist, including commercial kits developed for easy and low sample volume isolation. In this study, differential UC and an isolation kit from a major vendor (Total Exosome Isolation Reagent from Thermo Fisher Scientific) were compared. Exosomes were isolated from cell culture media of two different cell sources (patient derived cells from glioblastoma multiforme and the breast cancer cell line MDA-MB-231). For both isolation methods, transmission electron microscopy, dynamic light scattering and western blotting indicated the presence of exosomes. The kit- and UC isolates contained similar amounts of protein measured by the bicinchoninic acid (BCA) assay with absorbance at 562 nm. Using western blot, positive exosome markers were identified in all isolates, and additional exosome markers were identified using MS-based proteomics. For the glioblastoma exosome isolates, the number of proteins identified with liquid chromatography tandem MS (LC-MS/MS) was higher for the UC isolates than the kit isolates when injecting equal protein amounts, contrary to that for the breast cancer exosome isolates. However, negative exosome markers were also found in glioblastoma isolates using LC-MS/MS. Thus, we would not use the term “exosome isolation” as impurities may be present with both isolation methods. Notably, potential biomarkers for both diseases were identified in the isolates using LS-MS/MS. In our opinion, the two isolation methods had rather similar performance, although with some minor differences based on cell of origin.
1 Introduction

Exosomes are extracellular vesicles (EVs) with membrane-surrounded bodies of 30-100 nm sizes which are secreted from cells to the extracellular environment as a part of the endocytic pathway (1). Exosomes are formed by invagination of an endosome membrane to create intraluminal vesicles inside the endosome (i.e. multivesicular bodies (MVBs)) and are secreted when the endosomes fuse with the plasma membrane (2). Exosomes commonly contain proteins originating from the cellular cytosol and the plasma membrane, nucleic acids (e.g. DNA, mRNA, microRNA and non-coding RNA), lipids and metabolites (1, 3-8), and are believed to take part in e.g. cell-cell communication, transfer of proteins/nucleic acids, coagulation and antigen presentation (6, 9).

Cancer cells have been found to release more exosomes than stromal cells (10, 11) and exosomes are associated with metastasis and tumor progression (7, 12, 13). Hence, cancer exosomes may be a source of biomarkers for diagnosing cancers such as breast cancer (BC) and glioblastoma multiforme (GBM) when e.g. isolated from body fluids. BC is the predominant type of female cancer (14), with recurrent metastatic disease being responsible for the majority of BC-caused deaths (15). GBM is the most frequently and malignant form of brain cancer (16-18). The diagnosis of both BC and GBM rely on highly invasive patient tissue biopsies at relatively late stages (16, 19, 20). Thus, a non-invasive disease monitoring is desirable for both BC and GBM, and can be achieved by measuring biomarkers in accessible body fluids, such as blood (liquid biopsy), for early diagnosis and prognosis assessment (16, 21-23). Hence, the isolation of exosomes for cancer biomarker discovery has emerged as an alternative to invasive methodologies (23-31).
Isolation of exosomes is predominantly performed from body fluids (e.g. blood, urine, and saliva) or cell culture media by centrifugation-based methods (e.g. sucrose density gradient centrifugation or ultracentrifugation (UC)) (32, 33). In addition, other isolation protocols and principles have been developed to overcome the drawbacks of UC such as the large amounts of starting material needed, low yield, and poor reproducibility (8, 34-41). Moreover, there is a great need for exosome isolation protocols tailored towards smaller starting volumes (< µL) for e.g. miniaturized cell culture models like organoids and “organ on a chip” (42, 43). However, there is a lack of consensus as the methods for rigorous isolation are still largely empirical.

The protein content of exosomes has previously been characterized using western blot (WB) as standard method but also liquid chromatography tandem MS (LC-MS/MS) has been applied (41, 44). Tetraspanins (e.g. CD9, CD63 and CD81) are commonly used as positive exosome protein markers for targeted analysis as they are particularly known to be enriched in exosomes compared to cells (1, 45-48). Positive exosome markers generally take part in exosome biogenesis, and are hence expected to be present in, but are not specific to, exosomes (49). A broad range of positive and negative exosome markers for exosome characterization are provided by The International Society of Extracellular Vesicles (ISEV) (45). In addition, protein databases covering proteins occurring in exosomes and other extracellular vesicles are available (50-52). ISEV also recommends using supplementary characterization methods in addition to WB and LC-MS/MS (e.g. size distribution and imaging), to study the heterogeneity and morphology of vesicles present in the isolated samples.
In the present study, we have compared two exosome isolation methods (UC and a commercial kit for precipitation of exosomes) with a particular emphasis on the characterization methods used for identifying exosomes and evaluating the purity (the presence of positive exosome markers and absence of non-exosome proteins) of the isolated exosomes. The methods were evaluated using characterization techniques recommended by ISEV: WB, transmission electron microscopy (TEM), dynamic light scattering (DLS), quantitative total protein analysis using UV-Vis spectrophotometry and LC-MS/MS for untargeted proteomic analysis. Exosomes were isolated from cell culture media from free floating patient-derived primary cell cultures from GBM biopsies (T1018) and a traditionally serum cultivated, adherently growing BC cell line (MDA-MB-231). Comparison of exosome isolation techniques for these cell culturing conditions has not been performed, and studies on exosome presence and purity are also limited for such cell cultures.

2 Experimental Procedures

Unless otherwise stated, water (commonly type 1 water purified by a Direct-Q® water purification system from Millipore (Billerica, MA, USA)) was used as solvent. For detailed information about chemicals, solutions and experimental methods used, see Supplemental Methods.

2.1 MDA MB-231 cell culturing

The BC cell line was purchased from American Type Culture Collection (ATCC, Sesto San Giovanni, Milan, Italy) and is derived from a triple-negative human metastatic breast carcinoma. The cells were maintained in Rosewell Park Memorial Institute (RPMI) 1640 growth medium depleted of phenol red (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10 % exosome-
depleted fetal bovine serum (FBS) (System Biosciences, Palo Alto, CA, USA) and 1 %
penicillin/streptomycin (Sigma- Aldrich). The cells were incubated in a humidifying atmosphere
at 5 % CO₂ and at 37 °C. Prior to exosome isolation, 1-2.3 million cells (in T75-T175 culturing
flasks) were incubated for 6-7 days (always using a passage lower than 12). The incubated cell
culture medium was centrifuged at 906 × g (30 minutes at 23 °C).

2.2 Glioblastoma cell culturing
The GBM cells (T1018) were derived from biopsies from a primary GBM tumour, obtained after
informed consent through a biobank approved by the Regional Ethical Authorities operated at
Oslo University Hospital (2016/1791). The cells were maintained in Dulbecco's modified eagle
medium with nutrient mixture F-12 (DMEM/F12, Gibco, Thermo Fisher Scientific, Waltham,
MA, USA), supplemented with HEPES buffer (10 mM) and penicillin/streptomycin (100 U/mL)
from Lonza (Basel, Switzerland), B27 without vitamin A (1/50) from Thermo Fisher Scientific,
epidermal growth factor (20 ng/mL) and basic fibroblast growth factor (10 ng/ mL) from R&D
Systems (Minneapolis, MN, USA) and heparin (2.5 µg/mL) obtained from LEO Pharma AS
(Ballerup, Denmark). Under these culturing conditions cells express stem cell markers in vitro,
differentiate upon removal of growth factors and give rise to diffusely infiltrative tumors upon
xenografting (53). The cells were incubated in a humidifying atmosphere at 5 % CO₂ and 37 °C
in T25 flasks (Thermo Fisher Scientific). Prior to exosome isolation, the incubated cell culture
medium was centrifuged twice at 453 × g and 1811 × g for 5 minutes each. The cell pellets were
harvested for WB analysis.

2.3 Exosome isolation by ultracentrifugation
For the BC and GBM cells, 9-12 mL and 60 mL cell culture media were used for centrifugation, respectively. Cell culture media were first centrifuged at 1811 × g (5 minutes at 20 °C). The supernatants were then centrifuged at 20 000 × g (20 minutes at 20 °C) with an Allegra 25R centrifuge (with TA-14-50 rotor) from Beckman Coulter (Brea, CA, USA) and the supernatants were transferred to polycarbonate ultracentrifugation tubes (Beckman Coulter) and diluted with PBS until the tubes were full (~60 mL in each). The tubes were centrifuged twice at 100 000 × g (90 minutes at 4 °C) with an L-80 ultracentrifuge (45 Ti rotor) from Beckman Coulter. The supernatants were removed (leaving suspension 1 cm above the pellets) and the pellets were suspended with PBS between the centrifugations. Upon centrifugation, the supernatants were discarded and the exosome pellets (UC isolates) were suspended in either PBS (3 mL for DLS- and 50-100 µL for TEM analysis) or the preferred lysis buffer (Section 2.5).

2.4 Exosome isolation by isolation kit

The isolation of exosomes with kit was performed with the Total Exosome Isolation Reagent (from cell culture media) from Thermo Fisher Scientific (catalog nr. 4478359). The isolation was performed according to the protocol of the supplier (54). Starting volumes ranged from 0.5 mL to 9 mL cell culture medium for the BC cells and 5 mL to 6 mL for the GBM cells. The samples were centrifuged with the Allegra 25R centrifuge, and the exosome pellets (kit isolates) were suspended as with UC (Section 2.3).

2.5 Protein extraction

Cell and exosome protein extracts were made by lysis with RIPA- or Nonidet™ P40 (NP40) buffer (both from Thermo Fisher Scientific) containing protease inhibitors (Protease Inhibitor Coctail Tablets, Roche, Basel, Switzerland) and phosphatase inhibitors (PhosStop Tablets,
Sigma-Aldrich). For BC isolates, the NP40 buffer was prepared from NP40 detergent solution as described in Supplemental Methods (S-2.1), while “ready to use” NP40 buffer from the vendor was used for GBM isolates. For WB analysis, the BC isolates were lysed in 50 µL of the RIPA solution and the BC cells in 100 µL RIPA solution. The GBM isolates were lysed in 300 µL of the RIPA solution, and the GBM cells in 1 mL RIPA solution. For LC-MS/MS analysis, BC- and GBM isolates were lysed in 50 µL NP40 buffer. All extracts were incubated while rotating for 30 minutes (4 °C), and then snap frozen (at -80 °C). The extracted samples were thawed and centrifuged at 20 570 × g (30 minutes at 2°C) using a Heraeus Fresco 21 centrifuge or an Eppendorf 5424R centrifuge. The pellets were discarded.

2.6 UV-Vis spectrophotometry

The protein amount was measured using Pierce™ BCA protein Assay Kit (Thermo Fisher Scientific), by measuring the absorbance at 562 nm. The GBM protein measurements were performed on a Nanodrop 2000 Spectrophotometer (Thermo Fisher Scientific). The BC protein measurements were performed using a Wallac Victor2 1420 multilabel counter and Wallac 1420 Workstation software (version 3.00), both from Perkin Elmer (Waltham, MA, USA).

2.7 Western blotting

The protein extracts containing 3-15 µg protein were diluted with water giving equal protein concentrations before adding 5x loading buffer (see Supplemental Methods for solution preparation) to yield 1x. Prior to electrophoresis, the protein extracts were boiled for 3 minutes at 92 °C. The protein extracts together with PageRuler™ Prestained protein ladder (Thermo Fisher Scientific) were loaded on to 4-12 % Bis-Tris gels (Thermo Fisher Scientific) and run at 70-75 V for 1 hour. The voltage was increased to 110 V after the first hour if the bromophenol blue lane
was horizontally distributed. The SDS running buffers used were MOPS or MES, both purchased from Thermo Fisher Scientific. Proteins were transferred to a 45 µm nitrocellulose membrane (Thermo Fisher Scientific) by semi-dry electroblotting (1 W, at 4 °C overnight) with a transfer chamber from Bio-Rad (Hercules, CA, USA). The transferred proteins were blocked with a blocking solution consisting of non-fat dry milk (5/95, w/v) (PanReac AppliChem ITW reagents, Darmstadt, Germany) in 0.05 % Tween-20/TBS (0.05/99.95, v/v) (Medicago, Uppsala, Sweden) for 1 hour on a mixing plate. The proteins were subsequently stained with primary antibodies (at 4 °C overnight) in blocking solution and with secondary antibodies in blocking solution for 2 hours at room temperature (RT) with rocking. The antibodies CD9 (10626D), CD63 (two 10628D batches) and CD81 (MA5-13548 and 10630D) were purchased from Thermo Fisher Scientific. The antibody TSG101 (T5701) was purchased from Sigma-Aldrich, and anti-flotillin-1 (610821) and anti-calnexin (610523) antibodies were purchased from BD Biosciences (San Jose, CA, USA). The secondary antibodies (sc-2954 and sc-2955) were purchased from Santa Cruz (Dallas, TX, USA). Next, the membranes were further washed with 0.05 % Tween-20-TBS for 30 minutes on a mixing plate. Protein bands were visualized using an ECL-prime from GE Healthcare (Buckinghamshire, UK) and Transparency films from Nobo (integrated part of ACCO Brands Corporation, Lake Zurich, IL, USA). The bands were developed in a Chemidoc™ touch imaging system (Bio-Rad). The antibodies actin (A2066, from Sigma) and GAPDH (sc-32233, from Santa Cruz) were used as a positive control (results not shown).

2.8 Immunogold labelling and transmission electron microscopy

One drop of 5-50 µL of the isolates was placed on clean Parafilm, and the formvar coated copper grid (100 square mesh) was carefully placed to float on the drop with the coated side facing the suspension. The material was allowed to adsorb for 5-20 minutes, before rinsing on two large
drops of PBS for 5 minutes followed by incubation on a drop (8 μL) of the primary anti-CD9 (PA5-11559) from Thermo Fisher Scientific (diluted 1+ 9 with fish serum gelatine (FSG)/PBS (1/99, v/v)). Next the grids were again washed on two large drops of PBS for 5 minutes and incubated on a drop (5 μL) of rabbit anti-mouse antibody (Z0259, Dako Glostrup, Denmark) (diluted 1:200 with the FSG in PBS solution) for 25 minutes, before repeating the washing on two drops of PBS for 5 minutes. Prior to gold labelling, the grid was incubated for 20 minutes on one drop of the diluted protein A-gold solution (1:50 in the FSG in PBS solution) (10 nm gold particle size), from Cell Microscopy Core (CMC, University Medical Center Utrecht, Utrecht, The Netherlands). A final wash on 5 drops of PBS (2 minutes) followed by 5 drops of water (3 minutes) was performed before negative staining with uranyl acetate/water (4/96, w/v) for 2 minutes. Excess fluid was removed, and the grids were stored in a storage box at RT until use. The samples were visualized with a JEM-1400Plus transmission electron microscope from JEOL (Tokyo, Japan) and images were recorded at 80 kV.

2.9 Dynamic light scattering

The DLS experiments were conducted with the aid of an ALV/CGS-8F multi-detector version compact goniometer system, with 8 fiber-optical detection units, from ALV-GmbH, Langen, Germany. The beam from a Uniphase cylindrical 22 mW HeNe-laser, operating at a wavelength of 632.8 nm with vertically polarized light, was focused on the sample cell (10-mm NMR tubes, Wilmad Glass Co., of highest quality) through a temperature-controlled cylindrical quartz container (with 2 plane-parallel windows), vat (the temperature constancy being controlled to within ± 0.01 °C with a heating/cooling circulator), which is filled with a refractive index matching liquid (cis-decalin). The isolates were filtered in an atmosphere of filtered air through a
5 μm filter (Millipore) directly into precleaned NMR tubes. The measurements were carried out at 25 °C. The measurements revealed two relaxation modes, one fast and one slow mode. This suggests that there is a coexistence between single entities and aggregates in the solution. The analyses of the correlation function data are presented in Supplemental Methods (S-6 DLS).

2.10 Protein digestion

2.10.1 In-gel digestion

Prior to in-gel digestion, the isolates (from Section 2.5 and Section 2.6) were prepared and run using the same procedures as with the gel electrophoresis described in Section 2.7. The gel was covered by a fixation buffer (water/methanol/acetic acid, 40/50/10, v/v/v) overnight (18 hours at 4 °C), stained with Coomassie brilliant blue for 4 hours at RT and destained overnight with water. The gel was cut to yield four fractions from each gel lane; approximately 0-25 kDa, 25-70 kDa, 70-130 kDa (70-250 for BC samples) and 130-up kDa (250-up kDa for BC samples). Each fraction was transferred to Protein LoBind tubes. The fractions were further reduced, alkylated and digested using the protocol of Shevchenko et al. (55), with trypsin from Promega Biotech AB (Nacka, Sweden). The digested fractions were evaporated to dryness and dissolved in 15 µL 0.1% formic acid (FA) (water/FA, 99.9/0.1, v/v).

2.10.2 In-solution digestion with peptide desalting

The isolates (from Section 2.5 and Section 2.6) were evaporated to dryness and dissolved in 25 µL 6 M urea in 100 mM ammonium bicarbonate (ABC). Subsequently, the isolates were reduced with 9.5 mM DTT (30 minutes at 30 °C) and alkylated with 25 mM 2-iodoacetamide (IAM, 60 minutes, at RT and in the dark). The reduction with DTT was repeated for the BC isolates, with
282 28 mM DTT (30 minutes at 30 °C). The BC isolates were pre-digested by adding 0.1 µg Lys-C
283 (120 minutes at 37 °C), before the digests (both BC- and GBM isolates) were diluted to a final
284 concentration of 19 mM ABC. The trypsin digestion was performed with 1 µg trypsin (16 hours
285 at 37 °C) and the protease activity was terminated with water/FA (99/1, v/v). Desalting and
286 enrichment of the digests were performed using ZipTip® (silica particles with C_{18}) from
287 Millipore. For the BC digests, ZipTip was wetted with neat ACN and equilibrated with
288 TFA/water (0.1/99.9, v/v). The digests were desalted by pipetting through the ZipTip. Washing
289 the ZipTip was performed with water/methanol/TFA (94.9/5/0.1, v/v/v) and the peptides were
290 eluted with 5 µL water/ACN/TFA (29.9/70/0.1, v/v/v). For the GBM digests, the same procedure
291 was performed with FA replacing TFA. All desalted digests were evaporated to dryness at 30 °C
292 and dissolved in 10 µL 0.1 % FA.

294 2.11 LC-MS/MS analysis

295 Unless otherwise stated, the dilutions during sample preparations were performed using water
296 (HiPerSolv Chromanorm®) from VWR. Proteins digested in-gel were analysed in laboratory 1
297 and proteins digested in-solution were analysed by laboratory 2.

299 2.11.1 LC-MS/MS analysis at laboratory 1

300 The precolumn (50 µm ID x 20-50 mm) and analytical column (50 µm ID x 150 mm) were
301 packed with C_{18}-Accucore particles (2.6 µm beads, 80 Å pore size) from Thermo Fisher
302 Scientific, using the developed method as described in our previous study (56). An EASY-nLC
303 1000 pump (with autosampler) connected to a Q-Exactive™ Orbitrap MS equipped with a
304 nanoFlex nanospray ion source (Thermo Fisher Scientific) were applied throughout the
Mobile phase A (MP A) was made of 0.1 % FA, while mobile phase B (MP B) was made of ACN/FA (99.9/0.1, v/v) (mobile phase B, MP B). Trapping of the analytes in the pre-column was performed with 100 % MP A at a maximum flow rate restricted not to reach above 500 bar (12 μL). A 120-minute linear gradient elution from 3-15 % MP B with a flow rate of 130 nL/min was set, starting at 3 % MP B for 3 minutes before the percentage of MP B was increased to 15 % in 120 minutes. The MP B was increased to 50 % for 5 minutes before the percentage of MP B increased to 80 % for 2 minutes (flow rate was also increased to 173 nL/min) and kept at 80 % MP B for another 15 minutes. The injection volume was 10 µL for each fraction.

The eluting peptides were ionized at 1.8 kV at 250 °C for the BC isolates and at 275 °C for the GBM isolates. The MS was operated in data-dependent (dd) positive mode to automatically switch between MS and MS/MS acquisition. Survey full scan MS spectra (with a mass filter of m/z 350 to 1850) were acquired with a resolution of 70 000, automatic gain control (AGC) of 1x10⁶ and a maximum injection time of 120 ms. For dd/MS/MS, the resolving power was set to 17 500, the AGC to 1 x10⁵ and the maximum injection time to 60 ms. Charges of 1, 7 or ≥ 8 were excluded and dynamic exclusion was set to 70.0 seconds. The method allowed sequential isolation of up to the ten most intense ions depending on signal intensity (intensity threshold 2.0 x10⁴), with isolation window of m/z 1.8.

2.11.2 LC-MS/MS analysis at laboratory 2

The analytical column applied was an Acclaim PepMap 100 column (C₁₈, 3 μm beads, 100 Å, 75 μm ID x 500 mm), and an Ultimate 3000 nano ultra-HPLC system from Dionex (Sunnyvale, CA, USA) was used in combination with a Q-Exactive™ Orbitrap MS equipped with a nanoFlex
nanospray ion source from Thermo Fisher Scientific. The MP A was 0.1 % FA and the MP B was ACN/FA/water (90/0.1/9.9, v/v/v). A 207 minute linear gradient elution from 4-35 % MP B with a flow rate of 300 nL/min was set. The percentage of MP B was increased to 50 % in 20 minutes and 80 % MP B in 2 minutes. The injection volume was 5 µL.

The MS was operated in data-dependent (dd) positive mode. Survey full scan MS spectra (with a mass filter of \(m/z \) 400 to 1700) were acquired with a resolution of 70 000, AGC of 3\times10^6 and maximum injection time of 100 ms. In dd/MS/MS, the resolving power was set to 35 000 and the maximum injection time to 120 ms. The dynamic exclusion was set to 60 seconds. The method allowed sequential isolation of up to the ten most intense ions depending on signal intensity (intensity threshold 1.7\times10^4) and the isolation window was \(m/z \) 2 without offset.

2.11.3 Data processing and protein identification

Chromatograms and mass spectra were obtained by Xcalibur™ Software (version 2.1, Thermo Fisher Scientific), and the search engine Proteome Discoverer™ Software (version 1.4.0.228, Thermo Fisher Scientific) was used to identify the peptides and proteins. The proteins were identified using both SEQUEST and MASCOT algorithms searching the Swiss-Prot database (human taxonomy, April 2017 (20 198 entries) and June 2017 (20 205 entries) for BC- and GBM isolates, respectively). All searches were performed setting the digestion enzyme to trypsin with maximum two missed cleavages, fragment ion mass tolerance of 0.1 Da and a precursor mass tolerance of 10 ppm. Signal to noise (S/N) threshold was set to 1.5 and the minimum ion count to 1. An automatic decoy search was performed with a false discovery rate (FDR) threshold of 0.01 (strict) and 0.05 (relaxed). Carbamidomethylation of cysteine was specified as static
modification. Oxidation of methionine, acetylation of the protein N-terminus and deamidation of glutamine and asparagine were specified as dynamic modifications. The proteins were identified with high peptide confidence filter, and ≥1 signature peptide was required for all protein identifications. Proteins identified as keratin or trypsin were removed from the list, in addition to proteins found in the blank samples.

2.12 Experimental Design and Statistical Rationale

GBM procedures

For GBM samples, 3 kit- and UC isolation replicates were used for the UV-Vis spectrophotometry (one replicate excluded in Section 3.1 due to uncertainty in the isolation volume) and LC-MS/MS analysis in both laboratories (all isolates divided in two, no injection replicates due to low protein amounts). For TEM analysis, one isolation replicate from both isolation methods are presented. From the isolation replicate, 2 technical replicates were analysed with TEM. Three additional UC isolation replicates from a second batch were performed for verification, and SW480 isolates were used as a positive control (result not shown). For the DLS analysis, only one isolation replicate was performed since the particle sizes obtained in the DLS analysis were in correspondence with that seen by TEM analysis. For the WB analyses of exosome isolates, 1-2 replicates for each antibody are presented (Figure WB.7 in Supplemental Western Blots), and 3 replicates from a second batch of UC isolates were performed for confirmation and investigation of the repeatability (Figure WB.9 in Supplemental Western Blots). For WB analysis of GBM cells, 6 replicates were used (three replicates from two cell batches) with the antibodies for actin or GAPDH used as a loading control (result not shown). A
kit blank and UC blank were used as negative controls for all exosome analyses (except of no kit blank for the DLS analysis).

BC procedures

For BC samples, 3 kit- and 2 UC isolation replicates were used for the protein measurement by UV-Vis spectrophotometry. For the TEM, one isolation replicate and 2 technical replicates were analysed, in addition to a positive control (SW480 isolate, results not shown). DLS analyses were performed with the use of 2 isolation replicates (kit), 3 isolation replicates (UC) and one blank isolation replicate (isolated with both isolation methods). For the WB analyses, 3 kit- and 2 UC isolation replicates were used. WB analyses of BC cells were also performed, using 3 cell replicates (results not shown). The antibodies for actin or GAPDH were used as loading controls for the cells (results not shown) and anti-TSG101 was used as a loading control for the isolates. Prior to LC-MS/MS, 2 isolation replicates were analysed in laboratory 1 (digested in-gel) and one isolation replicate was analysed in laboratory 2 (in-solution digested) (no injection replicates due to low protein amount). One blank isolation replicate (isolated with both isolation methods) was used for analysis with LC-MS/MS in each of the two laboratories.

3 Results and Discussion

For comparison of the two exosome isolation methods (UC and Total Exosome Isolation Reagent (kit)) using GBM (T1018) and BC (MDA-MB-231) cell culture media, common characterization methods were used and evaluated for their ability to prove the presence of exosomes and/or determine the purity. The standard techniques TEM, for morphological analysis, and WB, for
exosome marker analysis, were used in addition to the measurement of total protein amount, DLS and LC-MS/MS. Comprehensive proteome analysis using LC-MS/MS was applied to complement WB for detecting exosome protein markers (hereafter referred to as exosome markers), and additional positive and negative markers were included.

3.1 Similar content of protein measured in kit- and UC isolates

The protein amount per million cells (hereafter referred to as protein amount) in the BC- (Figure 1A) and GBM (Figure 1B) isolates was measured using UV-Vis spectrophotometry (with absorbance at 562 nm). The total protein amount measured for kit isolates was 15-28 times higher than for UC isolates. A higher protein amount in exosomes isolated by the kit compared to that by UC were also observed in a study by Van Deun et al., who compared UC to the same isolation kit used in the present study for MCF7 derived exosomes (57). However, the measured absorbance in the kit blanks (i.e. cell culture medium grown without cells and isolated by kit) was high in comparison to UC blanks (i.e. cell culture medium grown without cells and isolated by UC), where the absorbance was below the limit of quantification. The high absorbance in the kit blanks could indicate protein contaminations. When correcting for the blank (subtracting the protein amount measured in blank samples from the protein amount in exosome isolates), the measured protein content for exosomes isolated by the kit and UC was similar.

3.2 TEM and DLS detected vesicles in the expected size range for exosomes

Morphological analysis of the exosome samples was performed using TEM and immunogold labelling of CD9. In addition, the hydrodynamic particle size distribution was measured using DLS analysis. Clusters of vesicles were observed in the micrographs of the samples isolated with both kit and UC (Figure 2). Vesicle structures similar to that described in literature were
observed (6, 58, 59). The DLS experiments disclosed the coexistence of two populations of moieties, single entities and clusters, both with a narrow size distribution.

3.2.1 GBM exosomes

No CD9-labelling was observed for the vesicle structures observed in the GBM isolates (Figure 2AI and 2AIII) and the presence of a membrane enclosing the vesicles could not be confirmed. Compared to the kit isolates, the UC isolates presented more distinct double membranes in the expected size range for exosomes. The blank samples for both isolation methods did not display membrane structures (Figure 2AII and 2AIV). The absence of vesicles was further confirmed by DLS analysis of the UC blank (Figure 2B). The DLS-analysis of the GBM isolates exhibited particles of similar sizes of 51 and 73 nm (mean) with both isolation methods (Figure 2B). Thus, both isolation methods gave rise to comparable exosome populations.

3.2.2 BC exosomes

Several of the BC vesicle structures were CD9-labelled (Figure 2CI and 2CIII). CD9-labelled vesicles have also been observed in a previous study of the same cell line (60). Notably, the blank isolates displayed contamination (Figure 2CII and 2CIV), e.g. exosome-resembling vesicles were found in the UC blank (red dashed circles). However, no contaminations were found in the UC blank using DLS, while the kit blank displayed 67 nm (mean) contaminations (Figure 2D). The DLS analysis also presented two distinct particle diameters in kit isolates (28 and 95 nm, mean values) while only one particle diameter was present in UC isolates (137 nm, mean value), indicating differences in the particle sizes isolated with the two isolation methods.
The sizes observed with DLS correlates well with that found in other studies (30–250 nm) (13, 57, 61-65). In conclusion, the isolates showed structures resembling those of EVs, but some blank were not entirely devoid of vesicles or particles. Observations made with TEM are not necessarily detectable with DLS because TEM analyses dry material, whereas DLS measures on solutions or suspensions of particles. In addition, the micrographs taken with TEM display a narrow section of the grid, which again represents only a small part of the isolate.

3.3 Western blot analyses indicated the presence of exosomes, but detected impurities exclusively in the GBM exosome isolates

According to ISEV, for characterization of exosomes at least three exosome markers should be included; transmembrane proteins (e.g. tetraspanins), cytosolic proteins (e.g. TSG101 or annexins) and negative markers (e.g. calnexin) (45). In the present study, WB was performed using antibodies for a selection of positive exosome markers (the tetraspanins CD81, CD9 and CD63, TSG101 and flotillin-1). Calnexin was selected as a negative marker for purity evaluation as recommended by ISEV. This protein is located at the endoplasmic reticulum (ER) and has been absent in exosome samples in some studies (45, 61). Hence, the presence of calnexin is assumed to signalize ER-contamination. Thus, contaminations from other cellular organelles cannot be excluded.

3.3.1 GBM exosomes

For the GBM cells and exosomes, positive and negative exosome markers were detected in isolates from both kit- and UC. The positive marker CD81 was only found in the UC isolate from the first batch (Figure 3). The WB-bands were also more apparent for most positive markers for
exosomes isolated by UC (lower protein amount loaded than for the kit isolates), and thus is in accordance with the study of Van Deun et al. (57). The kit isolate bands were also circular, which implies higher detection uncertainty.

3.3.2 BC exosomes

For the BC cells and exosomes, inconsistency on the presence of several positive exosome markers were observed between the kit and UC isolates (Figure 3). The positive marker CD63 was only detected in kit isolates, while CD81 was only detected in UC isolates (similar to GBM exosomes). The proteins TSG101, flotillin-1 and CD9 (barely visible in the UC isolates) were detected using both isolation methods. However, Harris et al. did not detect TSG101 using WB on BC exosomes isolated by UC (13). The proteins CD9, CD81 and flotillin-1 were detected in other WB-studies of UC isolates from the same cell line (24, 66, 67).

The reason for the variation in tetraspanin appearance in the BC kit- and UC isolates could be due to protein concentrations below detection limits or poor antibody quality (see Figure 3). Several antibodies for CD63 and CD81 (different batch number/catalog number) were tested for the BC isolates before a signal was obtained (signal obtained for CD81 using catalog number 10630D), and this could indicate poor antibody quality. On the other hand, the WB was performed under reducing conditions. When the epitope binds to cysteine-conserved protein domains (i.e. tetraspanins), performing WB under non-reducing conditions is more commonly selected. The stronger signals for the kit isolates from BC could be due to the higher loaded protein amount. Nevertheless, the presence of positive markers indicates the presence of exosomes in the isolates obtained using both methods. The absence of calnexin in BC exosomes from both isolation
methods indicates that the isolates are not contaminated with the ER. However, only one negative
marker is insufficient to exclude cell organelle impurities. Further investigation by implementing
more comprehensive methods like LC-MS/MS was therefore considered to be beneficial.

3.4 LC-MS/MS studies confirmed and complemented the WB study
LC-MS/MS was performed to confirm the WB observations, using in-house packed nano
separation columns (laboratory 1, (56)) and a commercial column (laboratory 2). One positive
marker (annexin A2) and one negative marker (serine/threonine-protein kinase 26) were added to
complement the WB study. The identification of the selected exosome markers using LC-MS/MS
is presented in Table 1, with chromatograms and MS/MS spectra of a CD9 signature peptide
(BC, Figure 4A) and calnexin signature peptide (GBM, Figure 4B). Similar to the WB analysis,
the same tetraspanins including calnexin observed in kit and UC isolates were identified in the
GBM exosomes using LC-MS/MS. However, the tetraspanins identified from kit isolates were
only found in one replicate, indicating low concentrations and high detection uncertainty.
Flotillin-1 was also identified with LC-MS/MS, but only for UC isolates. TSG101 was not
identified in neither kit nor in UC isolates with GBM exosomes using LC-MS/MS, in
contradiction to that found by WB.

For the BC exosomes, the findings by LC-MS/MS analysis was contradictory to the trend
observed in the WB analysis, where kit isolates provided higher intensity bands for positive
markers than the UC isolates. Using LC-MS/MS, several positive markers were not found in the
kit isolates when injecting similar amounts of protein as for UC isolates (Table 1). The reason for
the difference in the identified proteins between LC-MS/MS and WB could hence be partially
due to higher protein amount loaded onto the gel for kit isolates (see Figure 3). Calnexin was not found in the BC isolates using LC-MS/MS, similar to that observed by WB. Annexin A2 (positive marker) was found in all isolates and serine/threonine-protein kinase 26 (second negative marker) was not detected in any isolates.

Other negative markers from peroxisomes (PMP70), mitochondria (prohibitin-1, hexokinase-2 and mitochondrial phosphoenolpyruvate carboxykinase [GTP]), Golgi apparatus (GM130, translocation protein SEC62, translocation protein SEC63 and protein disulfide-isomerase TMX3), nucleus (Bcl-2-associated transcription factor 1 and c) and ER (calreticulin), as used in other studies (57, 68), were not detected in any BC isolates in our study (only translocation protein SEC63 and protein disulfide-isomerase TMX3 detected in the GBM isolates). In the BC isolates, the absence of the selected negative markers can imply low cell organelle contamination.

3.5 GO annotations revealed proteins annotated to cell organelles in BC exosomes

However, the possibility of protein contaminants being present in BC isolates cannot be excluded. Other general proteins related to e.g. the nucleus, Golgi apparatus, mitochondrion and ER were indeed identified in the BC exosomes using LC-MS/MS and gene ontology (GO) annotations (Figure 5). The proteins identified in BC isolates were classified based on their GO annotations to different cellular localizations, where one protein can be annotated to several cellular localizations. Out of the 668 proteins identified in the UC isolates and 814 in the kit isolates, 615 and 749 DAVID ID’s were annotated to selected cellular localizations. Both isolation methods generated isolates enriched in exosome related proteins. Several proteins were annotated to the cellular organelles mitochondria (11-13 %), ER (6-8 %) and Golgi apparatus (7...
Interestingly, 35-42 % of the proteins were also annotated to the nucleus (e.g. histones), which seems to imply impure exosome isolates (45). On the other hand, a high percentage (20-40 %) of other proteins related to the nucleus has also been found in isolates from other studies (69, 70). The presence of cell organelle annotated proteins could point toward cellular impurities in the isolates, which would not have been discovered by targeted protein characterization methods (e.g. WB). However, there is not sufficient knowledge on whether cell organelle proteins derive exclusively from cell impurities, or if they occur naturally in EVs. To summarize, from our point of view, complete information about exosome purity cannot be obtained by any of the common characterization techniques used today, and one can argue that the term “exosome isolation” can be misleading.

3.6 The number of cancer related proteins identified was dependent on the isolation method and cell source

The total number of proteins identified in the GBM and BC isolates using LC-MS/MS is presented in the Venn diagrams in Figure 6 (see Supplemental Proteins for a list of all identified proteins). For the GBM isolates, the number of identified proteins reflects the findings in both WB and LC-MS/MS exosome marker investigations. UC isolates provided more unique proteins than the kit isolates (75 % higher number of identified proteins). An increased number of potential biomarkers for GBM (e.g. heat shock proteins 70 kDa and 90 kDa (71-73), chondroitin sulfate proteoglycan 4 (71, 74), CD44 (71, 74, 75) and CD276 (76)) were also identified in the UC isolates compared to the kit isolates using LC-MS/MS. The identification of relevant biomarkers is of great interest for further studies on exosomes. However, the identified
biomarkers cannot exclusively be related to exosomes due to the presence of negative exosome markers indicating cellular contaminations with both isolation methods.

For the BC exosomes, the opposite was observed; kit isolates provided 12% higher number of identified proteins than UC isolates. However, there was no correlation between the injected protein amount or the starting volume used for isolation, and the number of identified proteins with kit or UC for the BC exosomes (result not shown). Thus, the reason for the variation in the number of identified proteins between the two cell sources and isolation methods is unknown.

The identification of biomarkers related to triple negative breast cancer (e.g., histone H4 (77), heat shock 90 kDa α and β protein (78), calmodulin and epithermal growth factor receptor (79)) was similar for both isolation methods (see Supplemental Proteins).

When comparing cell sources, the number of identified proteins was lower in GBM isolates than BC isolates, but the number of identified proteins for GBM isolates is comparable to another LC-MS/MS study on GBM exosomes (80).

3.7 Choosing the proper exosome isolation method is not straight forward

A complete comparison of the characteristics of the two exosome isolation methods is given in Table 2. For all isolates, the kit and UC isolates displayed similarities and differences.

3.7.1 GBM exosomes

For the GBM exosomes, one of the positive markers detected in the UC isolates (CD81) was not found in kit isolates by WB. In TEM, double membrane structures were more defined in the UC
isolates, but the existence of double membranes cannot be excluded by looking at the micrographs from the kit isolates. The largest differences between the two isolation methods for the GBM exosomes were found by the LC-MS/MS studies (positive markers and number of identified proteins). All tetraspanins investigated were identified in the UC isolates in several replicates. In the kit isolates, CD81 was not found, and the detected tetraspanins (CD63 and CD9) were only found in one replicate each. A larger number of proteins and biomarker candidates were also identified in the UC isolates compared to kit isolates. However, the negative marker calnexin was detected in more replicates for the UC than the kit using LC-MS/MS. In total, from Table 2, UC appear to be the method of choice for isolation of GBM cell culture exosomes.

3.7.2 BC exosomes

For the BC exosomes, there was a slight difference in favor of the kit method regarding the number of positive markers found by WB and the number of identified proteins (LC-MS/MS). However, using LC-MS/MS, more positive protein markers were found in the UC isolates in contrary to what was found by WB. For the UC isolates, TEM presented double membrane structures with more CD9-labelling. However, the micrograph displays an extremely small part of the whole sample. The isolation methods also performed similarly regarding biomarker identifications. Thus, for BC exosome isolation there is no obvious reason for choosing one method over the other, even though there were some differences in the characteristics (i.e. the identified protein content- and amount, CD9-labelled vesicles, particle sizes) of the isolated exosomes by kit and UC.
The sample volume (e.g. of cell culture medium) and number of samples should also be taken into consideration when choosing the proper isolation method. For the UC isolation, higher starting volumes can be used compared to isolation with kit, while the kit are more compatible with lower starting volumes (81). The high cost of ultracentrifuges has larger impact when a smaller number of samples are to be isolated with UC. On the other hand, larger sample numbers increase the cost for kit isolations due to reagent consumption.

4 Conclusions

The observations made in our study (summarized in Table 2) support the view that exosome isolation depends on the isolation protocol used, differences in the behavior of exosomes between cell sources, characterization methods and the conditions applied (82). Hence, we suggest that the application area (e.g. determine exosome purity or for biomarker discovery) and sample volumes available for the exosome isolation should be strong determining factors when selecting the proper isolation method. The characterization methods used in this study are not able to distinguish exosomes from cellular contaminations and other vesicles, but the untargeted proteome analyses using LC-MS/MS provided more extensive and versatile information on the protein content of the samples than targeted WB of a few proteins. Consequently, we suggest that LC-MS/MS should be implemented to a higher extent regarding exosome characterization. Considering our findings, it is important to state that the term “exosome enrichment” is more appropriate than “exosome isolation”.
5 Acknowledgements

This work was supported by the Department of Chemistry, University of Oslo, Norway. We would like to acknowledge DIATECH@UiO, since parts of this work have been carried out within this strategic research initiative at the Faculty of Mathematics and Natural Sciences, University of Oslo. This work has also been supported by the UiO:Life Science funded convergence environment “Organ on a chip and nano-devices”.

6 References

1. Théry, C., Zitvogel, L., and Amigorena, S. (2002) Exosomes: composition, biogenesis and function. *Nature Reviews Immunology* 2, 569
2. Lener, T., Gimona, M., Aigner, L., Borger, V., Buzas, E., Camussi, G., Chaput, N., Chatterjee, D., Court, F. A., del Portillo, H. A., O’Driscoll, L., Fais, S., Falcon-Perez, J. M., Felderhoff-Mueser, U., Fraile, L., Gho, Y. S., Gorgens, A., Gupta, R. C., Hendrix, A., Hermann, D., Hill, A. F., Hochberg, F., Horn, P. A., de Kleijn, D., Kordelas, L., Kramer, B. W., Kramer-Albers, M. E., Laner-Plambger, S., Laitinen, S., Leonardi, T., Lorenowicz, M. J., Lim, S. K., Lotvall, J., Maguire, C. A., Marcilla, A., Nazarenko, I., Ochiya, T., Patel, T., Pedersen, S., Pocsfalvi, G., Pluchino, S., Quesenberry, P., Reischl, I. G., Rivera, F. J., Sanzenbacher, R., Schallmoser, K., Slaper-Cortenbach, I., Strunk, D., Ton, T., Vader, P., van Balkom, B. W. M., Wauben, M., El Andaloussi, S., Thery, C., Rohde, E., and Giebel, B. (2015) Applying extracellular vesicles based therapeutics in clinical trials- an ISEV position paper. *J. Extracell. Vesicles* 4, 31
3. Zhao, H., Yang, L., Baddour, J., Achreja, A., Bernard, V., Moss, T., Marini, J. C., Tudawe, T., Seviour, E. G., San Lucas, F. A., Alvarez, H., Gupta, S., Maiti, S. N., Cooper, L., Peehl, D., Ram, P., T., Maitra, A., and Nagrath, D. (2016) Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. *eLife* 5, e10250
4. Skotland, T., Sandvig, K., and Llorente, A. (2017) Lipids in exosomes: Current knowledge and the way forward. *Progress in Lipid Research* 66, 30-41
5. Beach, A., Zhang, H. -G., Ratajczak, M. Z., and Kakar, S. S. (2014) Exosomes: an overview of biogenesis, composition and role in ovarian cancer. *Journal of Ovarian Research* 7, 14-14
6. Li, P., Kaslan, M., Lee, S. H., Yao, J., and Gao, Z. (2017) Progress in Exosome Isolation Techniques. *Theranostics* 7, 789-804
7. Becker, A., Thakur, B. K., Weiss, J. M., Kim, H. S., Peinado, H., and Lyden, D. (2016) Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. *Cancer Cell* 30, 836-848
8. Pocsfalvi, G., Stanley, C., Fiume, I., and Vekey, K. (2016) Chromatography and its
hyphenation to mass spectrometry for extracellular vesicle analysis. *J. Chromatogr. A* 1439, 26-41
9. Farahani, M., Rubbi, C., Liu, L., Slupsky, J. R., and Kalakonda, N. (2015) CLL exosomes
modulate the transcriptome and behaviour of recipient stromal cells and are selectively
enriched in miR-202-3p. *PLoS One* 10, e0141429
10. Logozzi, M., De Milito, A., Lugini, L., Borghi, M., Calabro, L., Spada, M., Perdicchio, M.,
Marino, M. L., Federici, C., Iessi, E., Brambilla, D., Venturi, G., Lozupone, F., Santinami, M.,
Huber, V., Maio, M., Rivoltini, L., and Fais, S. (2009) High Levels of Exosomes Expressing CD63
and Caveolin-1 in Plasma of Melanoma Patients. *PLoS One* 4, 10
11. Parolini, I., Federici, C., Raggi, C., Lugini, L., Palleschi, S., De Milito, A., Coscia, C., Iessi, E.,
Logozzi, M., Molinari, A., Colone, M., Tatti, M., Sargiacomo, M., and Fais, S. (2009) Microenvironmental pH Is a Key Factor for Exosome Traffic in Tumor Cells. *J. Biol. Chem.* 284, 34211-34222
12. Peinado, H., Alečković, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G.,
Hergueta-Redondo, M., Williams, C., Garcia-Santos, G., and Ghajar, C. M. (2012) Melanoma
exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through
MET. *Nature medicine* 18, 883-891
13. Harris, D. A., Patel, S. H., Gucek, M., Hendrix, A., Westbroek, W., and Taraska, J. W.
(2015) Exosomes released from breast cancer carcinomas stimulate cell movement. *PLoS One* 10,
e0117495
14. DeSantis, C. E., Lin, C. C., Mariotto, A. B., Siegel, R. L., Stein, K. D., Kramer, J. L., Alteri, R.,
Robbins, A. S., and Jemal, A. (2014) Cancer treatment and survivorship statistics, 2014. CA: A
Cancer Journal for Clinicians 64, 252-271
15. Redig, A. J., and McAllister, S. S. (2013) Breast cancer as a systemic disease: a view of
metastasis. *Journal of Internal Medicine* 274, 113-126
16. Touat, M., Duran-Pena, A., Alentorn, A., Lacroix, L., Massard, C., and Idbaih, A. (2015)
Emerging circulating biomarkers in glioblastoma: promises and challenges. *Expert Rev. Mol.
Diagn.* 15, 1311-1323
17. Molina, J. R., Hayashi, Y., Stephens, C., and Georgescu, M. M. (2010) Invasive
Glioblastoma Cells Acquire Stemness and Increased Akt Activation. *Neoplasia* 12, 453-U437
18. Preusser, M., de Ribaupierre, S., Wohrer, A., Erridge, S. C., Hegi, M., Weller, M., and
Stupp, R. (2011) Current Concepts and Management of Glioblastoma. *Ann. Neurol.* 70, 9-21
19. Jan Chrastina, Z. N., Milan Brazdil, Marketa Hermanova (2015) Glioblastoma multiforme
in a patient with isolated hemimegalencephaly. *Journal of Neurological Surgery Reports* 76, 160-
163
20. Shao, H. L., Chung, J., Lee, K., Balaj, L., Min, C., Carter, B. S., Hochberg, F. H., Breakefield,
X. O., Lee, H., and Weissleder, R. (2015) Chip-based analysis of exosomal mRNA mediating drug
resistance in glioblastoma. *Nat. Commun.* 6, 9
21. Best, M. G., Sol, N., Zijl, S., Reijnveld, J. C., Wesseling, P., and Wurdinger, T. (2015)
Liquid biopsies in patients with diffuse glioma. *Acta Neuropathol.* 129, 849-865
22. Cristofanilli, M., Budd, G. T., Ellis, M. J., Stopeck, A., Matera, J., Miller, M. C., Reuben, J.
M., Doyle, G. V., Allard, W. J., and Terstappen, L. W. (2004) Circulating tumor cells, disease
progression, and survival in metastatic breast cancer. *New England Journal of Medicine* 351, 781-791

23. He, M., and Zeng, Y. (2016) Microfluidic Exosome Analysis toward Liquid Biopsy for Cancer. *Journal of laboratory automation* 21, 599-608

24. Melo, S. A., Luecke, L. B., Kahlert, C., Fernandez, A. F., Gammon, S. T., Kaye, J., LeBleu, V. S., Mittendorf, E. A., Weitz, J., and Rahbari, N. (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. *Nature* 523, 177-182

25. Taylor, D. D., and Gercel-Taylor, C. (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. *Gynecologic Oncology* 110, 13-21

26. Roberg-Larsen, H., Lund, K., Seterdal, K. E., Solheim, S., Vehus, T., Solberg, N., Krauss, S., Lundanes, E., and Wilson, S. R. (2017) Mass spectrometric detection of 27-hydroxycholesterol in breast cancer exosomes. *The Journal of steroid biochemistry and molecular biology* 169, 22-28

27. Skog, J., Würdinger, T., Van Rijn, S., Meijer, D. H., Gainche, L., Curry, W. T., Carter, B. S., Mittendorf, E. A., Weitz, J., and Rahbari, N. (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. *Nature* 523, 177-182

28. Taylor, D. D., and Gercel-Taylor, C. (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. *Gynecologic Oncology* 110, 13-21

29. Saadatpour, L., Fadaee, E., Fadaei, S., Mansour, R. N., Mohammadi, M., Mousavi, S. M., Goodarzi, M., Verdi, J., and Mirzaei, H. (2016) Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. *Cancer Gene Ther.* 23, 415-418

30. Mondal, A., Singh, D. K., Panda, S., and Shiras, A. (2017) Extracellular Vesicles As Modulators of Tumor Microenvironment and Disease Progression in Glioma. *Front. Oncol.* 7, 8

31. Keller, S., Ridinger, J., Rupp, A.-K., Janssen, J. W., and Altevogt, P. (2011) Body fluid derived exosomes as a novel template for clinical diagnostics. *Journal of translational medicine* 9, 86

32. Théry, C., Amigorena, S., Raposo, G., and Clayton, A. (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. *Current Protocols in Cell Biology*, 3.22. 21-23.22. 29

33. Cantin, R., Diou, J., Bélanger, D., Tremblay, A. M., and Gilbert, C. (2008) Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. *Journal of Immunological Methods* 338, 21-30

34. Greening, D. W., Xu, R., Ji, H., Tauro, B. J., and Simpson, R. J. (2015) A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. *Proteomic Profiling: Methods and Protocols*, 179-209

35. Rider, M. A., Hurwitz, S. N., and Meckes Jr, D. G. (2016) ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. *Scientific reports* 6, 23978

36. Böing, A. N., Van Der Pol, E., Grootemaat, A. E., Coumans, F. A., Sturk, A., and Nieuwland, R. (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. *Journal of Extracellular Vesicles* 3, DOI: 10.3402/jev.v3403.23430
37. Gámez-Valero, A., Monguió-Tortajada, M., and Carreras-Planella, L. (2016) Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles’ characteristics compared to precipitating agents. *Scientific Reports* 6, DOI: 10.1038/srep33641

38. Grant, R., Ansa-Addo, E., Stratton, D., Antwi-Baffour, S., Jorfi, S., Kholia, S., Krige, L., Lange, S., and Inal, J. (2011) A filtration-based protocol to isolate human plasma membrane-derived vesicles and exosomes from blood plasma. *Journal of Immunological Methods* 371, 143-151

39. Clayton, A., Court, J., Navabi, H., Adams, M., Mason, M. D., Hobot, J. A., Newman, G. R., and Jasani, B. (2001) Analysis of antigen presenting cell derived exosomes, based on immunomagnetic isolation and flow cytometry. *Journal of Immunological Methods* 247, 163-174

40. Yang, J. S., Lee, J. C., Byeon, S. K., Rha, K. H., and Moon, M. H. (2017) Size dependent lipidomic analysis of urinary exosomes from patients with prostate cancer by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. *Analytical Chemistry* 89, 2488-2496

41. Abramowicz, A., Widlak, P., and Pietrowska, M. (2016) Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. *Mol Biosyst* 12, 1407-1419

42. Tauro, B. J., Greening, D. W., Mathias, R. A., Mathivanan, S., Ji, H., and Simpson, R. J. (2013) Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. *Molecular & Cellular Proteomics* 12, 587-598

43. Bhatia, S. N., and Ingber, D. E. (2014) Microfluidic organs-on-chips. *Nature Biotechnology* 32, 760-772

44. Kreimer, S., Belov, A. M., Ghiran, I., Murthy, S. K., Frank, D. A., and Ivanov, A. R. (2015) Mass-Spectrometry-Based Molecular Characterization of Extracellular Vesicles: Lipidomics and Proteomics. *Journal of Proteome Research* 14, 2367-2384

45. Lötvall, J., Hill, A. F., Hochberg, F., Buzás, E. I., Di Vizio, D., Gardiner, C., Gho, Y. S., Kurochkin, I. V., Mathivanan, S., Quesenberry, P., Sahoo, S., Tahara, H., Wauben, M. H., Witwer, K. W., and Théry, C. (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. *J. Extracell. Vesicles* 3, 10.3402/jev.v3403.26913

46. Andreu, Z., and Yáñez-Mó, M. (2014) Tetraspanins in Extracellular Vesicle Formation and Function. *Frontiers in Immunology* 5, 442

47. Escola, J. M., Kleijmeer, M. J., Stoorvogel, W., Griffith, J. M., Yoshie, O., and Geuze, H. J. (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. *J. Biol. Chem.* 273, 20121-20127

48. Kleijmeer, M. J., Stoorvogel, W., Griffith, J. M., Yoshie, O., and Geuze, H. J. (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. *The Journal of Biological Chemistry* 273, 20121-20127

49. Hessvik, N. P., and Llorente, A. (2018) Current knowledge on exosome biogenesis and release. *Cellular and Molecular Life Sciences* 75, 193-208

50. Mathivanan, S., Fahner, C. J., Reid, G. E., and Simpson, R. J. (2012) ExoCarta 2012: database of exosomal proteins, RNA and lipids. *Nucleic Acids Research* 40, D1241-D1244
51. Kalra, H., Simpson, R. J., Ji, H., Aikawa, E., Altevogt, P., Askenase, P., Bond, V. C., Borras, F. E., Breakefield, X., Budnik, V., Buzas, E., Camussi, G., Clayton, A., Cocucci, E., Falcon-Perez, J. M., Gabrielson, S., Gho, Y. S., Gupta, D., Harsha, H. C., Hendrix, A., Hill, A. F., Inal, J. M., Jenster, G., Kramer-Albers, E. M., Lim, S. K., Llorente, A., Lotvall, J., Marcilla, A., Mincheva-Nilsson, L., Nazarenko, I., Nieuwland, R., Hoen, E. N. M., Pandey, A., Patel, T., Piper, M. G., Pluchino, S., Prasad, T. K., Rajendran, L, Raposo, G., Record, M., Reid, G. E., Sanchez-Madrid, F., Schiefferes, R. M., Siljander, P., Stensballe, A., Stoorvogel, W., Taylor, D., Thery, C., Valadi, H., van Balkom, B. W. M., Vazquez, J., Vidal, M., Wauben, M. H. M., Yanez-Mo, M., Zoeller, M., and Mathivanan, S. (2012) Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS. Biol. 10, 5

52. Kim, D. K., Kang, B., Kim, O. Y., Choi, D. S., Lee, J., Kim, S. R., Go, G., Yoon, Y. J., Kim, J. H., Jang, S. C., Park, K. S., Choi, E. J., Kim, K. P., Desiderio, D. M., Kim, Y. K., Lotvall, J., Hwang, D., and Gho, Y. S. (2013) EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles 2

53. Vik-Mo, E. O., Sandberg, C., Olstorn, H., Varghese, M., Brandal, P., Ramm-Pettersen, J., Murrell, W., and Langmoen, I. A. (2010) Brain tumor stem cells maintain overall phenotype and tumorigenicity after in vitro culturing in serum-free conditions. Neuro-Oncology 12, 1220-1230

54. ThermoFisher Total Exosome Isolation Reagent (from cell culture media). Waltham, MA, USA

55. Shevchenko, A., Tomas, H., Havli, J., Olsen, J. V., and Mann, M. (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols 1, 2856

56. Berg, H. S., Seterdal, K. E., Smetop, T., Rozenvalds, R., Brandtzaeg, O. K., Vehus, T., Lundanes, E., and Wilson, S. R. (2017) Self-packed core shell nano liquid chromatography columns and silica-based monolithic trap columns for targeted proteomics. J. Chromatogr. A 1498, 111-119

57. Van Deun, J., Mestdagh, P., Sormunen, R., Coquyt, V., Vermaelen, K., Vandesompele, J., Bracke, M., De Wever, O., and Hendrix, A. (2014) The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J. Extracell. Vesicles 3, 24858

58. Pan, B.-T., Teng, K., Wu, C., Adam, M., and Johnstone, R. M. (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. The Journal of Cell Biology 101, 942-948

59. Pan, B.-T., and Johnstone, R. M. (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967-978

60. Melo, S. A., Sugimoto, H., O’Connell, J. T., Kato, N., Villanueva, A., Vidal, A., Qiu, L., Vitkin, E., Perelman, L. T., and Melo, C. A. (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26, 707-721

61. Lobb, R. J., Becker, M., Wen, S. W., Wong, C. S. F., Wiegmans, A. P., Leimgruber, A., and Moller, A. (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 4, 11

62. Jenjaroenpun, P., Kremenska, Y., Nair, V. M., Kremenskoy, M., Joseph, B., and Kurochkin, I. V. (2013) Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. PeerJ 1, e201
63. Palazzolo, G., Albanese, N. N., Di Cara, G., Gygax, D., Vittorelli, M. L., and Pucci-Minafra, I. (2012) Proteomic analysis of exosome-like vesicles derived from breast cancer cells. *Anticancer Research* 32, 847-860

64. ThermoFisherScientific (2016) Boldly go above and beyond. USA

65. Liu, F., Vermesh, O., Mani, V., Ge, T. J., Madsen, S. J., Sabour, A., Hsu, E.-C., Gowrishankar, G., Kanada, M., Jokerst, J. V., Sierra, R. G., Chang, E., Lau, K., Sridhar, K., Bermudez, A., Pitteri, S. J., Stoyanova, T., Sinclair, R., Nair, V. S., Gambhir, S. S., and Demirci, U. (2017) The Exosome Total Isolation Chip. *ACS Nano* 11, 10712-10723

66. Ciravolo, V., Huber, V., Ghedini, G. C., Venturelli, E., Bianchi, F., Campiglio, M., Morelli, D., Villa, A., Mina, P. D., and Menard, S. (2012) Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. *Journal of Cellular Physiology* 227, 658-667

67. Higginbotham, J. N., Beckler, M. D., Gephart, J. D., Franklin, J. L., Bogatcheva, G., Kremers, G.-J., Piston, D. W., Ayers, G. D., McConnell, R. E., and Tyska, M. J. (2011) Amphiregulin exosomes increase cancer cell invasion. *Current Biology* 21, 779-786

68. Clark, D. J., Fondrie, W. E., Liao, Z., Hanson, P. I., Fulton, A., Mao, L., and Yang, A. J. (2015) Redefining the breast cancer exosome proteome by tandem mass tag quantitative proteomics and multivariate cluster analysis. *Analytical Chemistry* 87, 10462-10469

69. Sandvig, K., and Llorente, A. (2012) Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3. *Molecular & Cellular Proteomics* 11, M111.012914

70. Mathivanan, S., Lim, J. T., Tauro, B. J., Ji, H., Moritz, R. L., and Simpson, R. J. (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. *Molecular & Cellular Proteomics* 9, 197-208

71. Redzic, J. S., Ung, T. H., and Graner, M. W. (2014) Glioblastoma extracellular vesicles: reservoirs of potential biomarkers. *Pharmacogenomics and personalized medicine* 7, 65-77

72. Thuringer, D., Hammann, A., Benikhlef, N., Fourmaux, E., Bouchot, A., Wettstein, G., Solary, E., and Garrido, C. (2011) Transactivation of the epidermal growth factor receptor by heat shock protein 90 via Toll-like receptor 4 contributes to the migration of glioblastoma cells. *The Journal of biological chemistry* 286, 3418-3428

73. Graner, M. W., Cumming, R. I., and Bigner, D. D. (2007) The Heat Shock Response and Chaperones/Heat Shock Proteins in Brain Tumors: Surface Expression, Release, and Possible Immune Consequences. *The Journal of Neuroscience* 27, 11214-11227

74. Wade, A., Robinson, A. E., Engler, J. R., Petritsch, C., James, C. D., and Phillips, J. J. (2013) Proteoglycans and their roles in brain cancer. *The FEBS journal* 280, 2399-2417

75. Mooney, K. L., Choy, W., Sidhu, S., Pelargos, P., Bui, T. T., Voth, B., Barnette, N., and Yang, I. (2016) The role of CD44 in glioblastoma multiforme. *Journal of Clinical Neuroscience* 34, 1-5

76. Kraan, J., van den Broek, P., Verhoef, C., Grunhagen, D. J., Taal, W., Gratama, J. W., and Sleijfer, S. (2014) Endothelial CD276 (B7-H3) expression is increased in human malignancies and distinguishes between normal and tumour-derived circulating endothelial cells. *British journal of cancer* 111, 149-156

77. Tryndyak, V. P., Kovalchuk, O., and Pogribny, I. P. (2006) Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant
expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-

binding proteins. Cancer Biology & Therapy 5, 65-70

78. Beliakoff, J., and Whitesell, L. (2004) Hsp90: an emerging target for breast cancer
therapy. Anti-Cancer Drugs 15, 651-662

79. Price, J. T., Tiganis, T., Agarwal, A., Djakiew, D., and Thompson, E. W. (1999) Epidermal

growth factor promotes MDA-MB-231 breast cancer cell migration through a

phosphatidylinositol 3-kinase and phospholipase C-dependent mechanism. Cancer Research

59, 5475-5478

80. de Vrij, J., Maas, S. L. N., Kwappenberg, K. M. C., Schnoor, R., Kleijn, A., Dekker, L., Luider,

T. M., de Witte, L. D., Litjens, M., van Strien, M. E., Hol, E. M., Kroonen, J., Robe, P. A., Lamfers,

M. L., Schilham, M. W., and Broekman, M. L. D. (2015) Glioblastoma-derived extracellular

vesicles modify the phenotype of monocytic cells. International Journal of Cancer 137, 1630-

1642

81. Helwa, I., Cai, J. W., Drewry, M. D., Zimmerman, A., Dinkins, M. B., Khaled, M. L.,

Seremwe, M., Dismuke, W. M., Bieberich, E., Stamer, W. D., Hamrick, M. W., and Liu, Y. T. (2017)

A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and

Three Commercial Reagents. Plos One 12, 22

82. Lötvall, J., Hill, A. F., Hochberg, F., Buzás, E. I., Di Vizio, D., Gardiner, C., Gho, Y. S.,

Kurochkin, I. V., Mathivanan, S., Quesenberry, P., Sahoo, S., Tahara, H., Wauben, M. H., Witwer,

K. W., and Théry, C. (2014) Minimal experimental requirements for definition of extracellular

vesicles and their functions: a position statement from the International Society for Extracellular

Vesicles. J. Extracell. Vesicles 3, 26913

Figure Legends

Figure 1: Measured relative protein amount pr. million cells in exosome samples from

GBM- and BC cells isolated by kit and UC (n ≥ 2). [page 18]

A) The measured relative protein amount (%) for the BC exosome isolates. B) The measured

relative protein amount (%) for the GBM exosome isolates. Each replicate is depicted as circles,

and the median depicted as a line. The X-mark shows the measured relative protein amount in the
blank sample (isolated cell culture medium). The protein amounts were measured by UV-Vis spectrophotometry (absorption at $\lambda = 562$ nm) after reaction with BCA kit reagents.

Figure 2: Transmission electron micrographs and hydrodynamic particle size (nm) distribution by DLS analysis of exosomes isolated by kit and UC from GBM- and BC cells. [page 18]

The TEM-samples were immunogold labelled with anti-CD9, with gold particles depicted as 10 nm black dots. Images were taken with a magnification of 400 000, and the dashed areas were additionally zoomed. A) Micrographs of CD9-labelled GBM exosome isolates. I depict the micrograph from a kit isolate, II the kit blank, III a UC isolate, and IV the UC blank. B) DLS analysis of GBM exosomes isolated by kit and UC (n = 1). No particles were detected in the UC blank (n = 1). DLS analysis of the kit blank was not performed. C) Micrographs of CD9-labelled BC exosome isolates. I depict the micrograph from a kit isolate, II the kit blank, III a UC isolate, and IV the UC blank. D) DLS analysis of BC exosomes isolated by kit (n = 2) and UC (n = 3), including the kit blank (n = 1). No particles were detected in the UC blank.

Figure 3: Western blot of common protein exosome markers. [page 20]

The protein markers CD81, CD9, CD63, TSG101, flotillin-1 (positive markers, +) and calnexin (negative marker, -) were targeted in cell lysates and exosomes isolated by kit and UC (n ≥ 2). Monoclonal mouse antibodies were used for CD81, CD9, CD63, flotillin-1 and calnexin, while a polyclonal rabbit antibody was used for TSG101. For the BC exosomes, 15 µg protein was loaded for kit isolates and 3 µg for UC isolates. For the GBM exosomes, ~14 µg was loaded for
kit isolates and ~8 µg for UC isolates. Uncropped western blots are presented in **Supplemental Western Blots**.

Figure 4: Chromatograms and MS/MS spectrums from LC-MS/MS analysis of GBM- and BC exosome peptides. [page 22]

A) Chromatogram with corresponding MS/MS spectrum for the CD9 signature peptide KDVLETFTVK \(m/z=393.89, \ z=3\) in BC exosomes isolated by UC. C) Chromatogram with corresponding MS/MS spectrum for the calnexin signature peptide AEEDEILNR \(m/z=544.77, \ z=2\) from GBM exosomes isolated by UC. An in-house packed 50 µm x 150 mm column with 80 Å Accucore particles with C\(_{18}\) stationary phase was used for separation. A 50 µm x ~3 mm in-house packed pre-column with the same column material was used for trapping. The elution was performed with a linear gradient of 3-15 % MP B in 120 minutes. See **Section 2.11.1** for more LC-MS/MS parameters.

Figure 5: GO annotation of proteins in BC exosomes to different cellular locations. [page 23]

The identified proteins classified by their cellular location (GO annotations) grouped based on their positive/ negative relevance towards exosomes. The annotated proteins (% of total proteins) and their cellular location, with proteins annotated from the kit isolates are shown in red (from
749 DAVID ID’s), while proteins annotated from the UC isolates are shown in blue (from 615 DAVID ID’s).

Figure 6: Venn diagram presenting the number of proteins identified by LC-MS/MS in exosomes isolated by kit and UC from GBM- and BC cell culture medium. [page 24]

The numbers are the total number of unique proteins identified when trypsin, keratin related proteins and the proteins identified in blank isolates were disregarded. One signature peptide was selected as requirement for positive identifications during database search. Equal amounts of protein were injected for both kit- and UC isolates (~ 1.5 µg protein for GBM isolates (n = 6) and ~2-5 µg protein for BC exosomes (n=3)). A list of all proteins identified is presented in Supplemental Proteins.

Tables

Table 1: A selection of common protein markers (from LC-MS/MS analyses) with a specific exosome related function. The exosome markers were identified in BC- and GBM exosome samples isolated by kit and UC. In addition, proteins identified in blank isolates are shown.
Protein marker	Exosome related function	GBM	BC					
	UC	UC blank	Kit	Kit blank	UC	UC blank	Kit	Kit blank
CD81 Membrane protein	x	-	-	-	x	-	-	-
CD9 Membrane protein	x	-	x	-	x	x	x	-
CD63 Membrane protein	x	-	x	-	x	-	-	-
TSG101 Exosome biogenesis	-	-	-	-	x	-	-	-
Annexin A2 Exosome biogenesis	x	-	x	-	x	-	x	-
Flotillin-1 Exosome biogenesis	-	-	-	-	x	-	-	-
Calnexin Negative	x	-	x	-	-	-	-	-
Serine/threonine-protein kinase 26 Negative	-	-	-	-	-	-	-	-
Actin General marker	x	x	x	x	x	-	x	x

Table 2: Comparison of characteristics of exosome isolated from GBM and BC cell culture medium. In the table, UC and kit were compared for their ability to isolate pure exosomes. The comparison is based on the characterization techniques used in the present study. Increasing
number of + signs indicate positive relation regarding indications of exosomes and/or high purity of exosomes.

Characterization method	GBM	BC		
	UC	Kit	UC	Kit
Protein amount (corrected for blank)	+	++	+	++
TEM	++	+	+++	++
DLS	+++	+++	+	++
WB (positive markers)	++	+	+	++
WB (negative markers)	+	+	+++	+++
LC-MS/MS (positive markers)	++	+	+++	+
LC-MS/MS (negative markers)	+	++	+++	+++
LC-MS/MS number of identified proteins	+++	+	+	++
LC-MS/MS biomarkers	++	+	++	++

Figures
Figure 1
Figure 2
Figure 3

Protein	BC Cell lysate	BC Kit	BC UC	GBM Cell lysate	GBM Kit	GBM UC
CD81 (+)	![Image]	![Image]	![Image]	![Image]	![Image]	![Image]
CD9 (+)	![Image]	![Image]	![Image]	![Image]	![Image]	![Image]
CD63 (+)	![Image]	![Image]	![Image]	![Image]	![Image]	![Image]
TSG101 (+)	![Image]	![Image]	![Image]	![Image]	![Image]	![Image]
Flotillin-1 (+)	![Image]	![Image]	![Image]	![Image]	![Image]	![Image]
Calnexin (-)	![Image]	![Image]	![Image]	![Image]	![Image]	![Image]
	24 kDa	24 kDa	30-60 kDa	47 kDa	47 kDa	90 kDa

Figure 4

- **A**
 - KDVLETFVK
 - Relative Abundance
 - Time (min)
 - MS/MS of KDVLETFVK (CD9)
 - ![Image]

- **B**
 - AEDEILNR
 - Relative Abundance
 - Time (min)
 - MS/MS of AEDEILNR (Calnexin)
 - ![Image]
Figure 5

Figure 6