The Lethal Phenotype of Cancer: The Molecular Basis of Death Due to Malignancy

Robert D. Loberg, PhD; Deborah A. Bradley, MD; Scott A. Tomlins; Arul M. Chinnaiyan, MD, PhD; Kenneth J. Pienta, MD

ABSTRACT The last decade has seen an explosion in knowledge of the molecular basis and treatment of cancer. The molecular events that define the lethal phenotype of various cancers—the genetic and cellular alterations that lead to a cancer with a poor or incurable prognosis—are being defined. While these studies describe the cellular events of the lethal phenotype of cancer in detail, how these events result in the common clinical syndromes that kill the majority of cancer patients is not well understood. It is clear that the central step that makes most cancers incurable is metastasis. Understanding the traits that a cancer acquires to successfully grow and metastasize to distant sites gives insight into how tumors produce multiple factors that result in multiple different clinical syndromes that are lethal for the patient. (CA Cancer J Clin 2007;57:225–241.) © American Cancer Society, Inc., 2007.

INTRODUCTION

In 2007, it is estimated that 559,650 people in the United States will die of cancer.1 The last decade has seen an explosion in the amount of knowledge in the molecular basis and treatment of cancer. Multiple studies have been published describing the molecular events that define the lethal phenotype of various cancers—the genetic and cellular alterations that lead to a cancer with a poor or incurable prognosis. While these studies describe the cellular events of the lethal phenotype of cancer in detail, how these events result in the common clinical syndromes that kill the majority of cancer patients is not well understood. The majority of solid-tumor malignancies kill patients because they escape the primary site and metastasize (Figure 1). The traits that a cancer acquires to successfully grow and metastasize to distant sites produce multiple factors that result in different clinical syndromes that are lethal for the patient.2–5 These syndromes can be broadly characterized into those related to cytokine overproduction and those related to organ failure. This paper describes how the molecular alterations of metastatic cancer result in the clinical lethal phenotype of cancer.

THE MOLECULAR BASIS OF CANCER

The process of carcinogenesis is the result of DNA damage that occurs in a normal cell and leads toward a growth and survival advantage (Figure 2).6–9 DNA damage is the result of gene–environment interactions on multiple levels, including the susceptibility for genetic damage inherited from parental genes.9,10 On their inherited genetic background, cells are assaulted by a variety of gene-damaging environmental agents, including radiation, viruses and other microbes, and chemical carcinogens, as well as the free radicals that are byproducts of normal cellular processes that accumulate with age. These DNA-damaging agents are modulated by host defenses and intrinsic organ- and extrinsic nonorgan–specific
risk modulators. Host defenses include the state of the patient’s immune system, nutritional status, and comorbid conditions. Intrinsic risk modulators are inherited traits that do not contribute directly to DNA damage, but modulate the environment that the cells are exposed to (ie, how well liver-metabolizing enzymes such as CYP3A function to modulate drug and hormone activity).
Extrinsic risk modulators are best characterized by chemoprevention agents (ie, antioxidants such as selenium and vitamin E that remove damaging oxygen radicals from the intracellular environment by facilitating their breakdown to water).

Regardless of how damage to the genome originates, cancers are the result of mutations that result in a group of common characteristics or “hallmarks” that define the minimum set of survival traits that a cancer cell must acquire to flourish (Figure 1). These hallmarks include the following: (1) genetic instability; (2) limitless replicative potential (immortality); (3) anchorage-independent growth; (4) stimulation of angiogenesis; (5) evasion of programmed cell death (apoptosis); and (6) ability to grow independently of stimulation by growth factors.

THE MOLECULAR BASIS OF METASTASIS

All of the above mutations, whether acquired by chance accumulation or through clonal expansion of a cell population through selective pressure in a continued hostile environment, result in successful growth of a cancer cell population at the primary site. Only a small subset of the billions of cells within a tumor accumulates the traits of tissue invasion, extravasation, survival in the circulation, and growth in secondary sites that characterize successful metastases. This subset of cells has characteristics heralded by a change in the cancer cell phenotype observed as an epithelial-mesenchymal shift and is the result of reactivation and the loss of regulation of cellular programs associated with wound healing and/or embryogenesis.

A cell that does not acquire the genetic alterations necessary for invasion and metastasis does not acquire a lethal phenotype and only rarely causes death. Several ongoing research efforts are aimed at differentiating/predicting which tumors have acquired the necessary signature that correlates with metastasis and/or poor prognosis. By comparing the genes that are expressed between primary cancers and metastases, Ramaswamy and colleagues identified a 17-gene expression signature that was able to distinguish primary tumors from metastases in several solid tumors and was associated with poor prognosis (Table 1).

Other investigators have identified unique gene sets that function as metastasis signatures in multiple solid tumors, including breast, renal, colon, oral, lung, and prostate cancers. Similarly, several disease-specific gene signatures that distinguish aggressive cancers (in general, those cancers that recurred, metastasized, or caused death) from nonaggressive cancers (those that did not recur or metastasize) have been
For example, Glinksy and colleagues published an 11-gene signature panel with which they demonstrated a significant association between the expression pattern of the 11-gene signature and poor prognosis of patients with a wide variety of cancers (Table 1).21

Hundreds of large-scale DNA microarray experiments have been performed that have generated quantitative profiles of gene expression in cancer, allowing types of cancer to be distinguished by their gene expression patterns and, more importantly, to discover novel molecular subtypes of cancer that are associated with a variety of tumor properties, including mechanism of transformation, propensity to metastasize, and sensitivity or resistance to particular therapies.35,36 OncomineTM is an online initiative that collects published cancer microarray data and allows researchers to easily compare genetic expression data across cancer types and subtypes (www.oncomine.com).37–39 We reviewed 14 cDNA microarray data sets of primary versus metastatic tumors within the Oncomine data set and found that no 2 cancers presented similar gene signatures and that the number of statistically significant ($P < 0.01$) genes that were differentially expressed varied from one study to another; thus, no consistent gene set has been identified that predicts the lethal phenotype of cancer (ie, metastatic disease) across multiple organ sites. It is likely that this is due to the fact that no investigators have compared gene signature sets to the clinical syndromes such as cachexia, thrombosis, and bone metastases that are ultimately responsible for the death of the patient.40 Although no direct research has been done to identify molecular signatures associated with these syndromes, when the different signatures are characterized by ontological process rather than specific function, we found that they fall into general categories that include RNA processing, cell proliferation, cell cycle and cell division, extracellular matrix alteration, and differentiation (Table 1). Increased RNA processing leads to the increased protein synthesis necessary for the more metabolically active cancer cells; increased cellular proliferation and cellular division lead to increased tumor burden; alterations in the extracellular matrix are important for the establishment of the proper “fertile bed” of the microenvironment that will support tumor growth; and loss of differentiation correlates with the activation of embryonic genes necessary for cell movement.2–5,13–15 These studies are further complicated by the fact that many of them analyze not only the cancer cells but also the supporting stromal tissues at the same time. Recent evidence suggests that the inherited genomic makeup of an individual may predict the frequency and future sites of metastasis by providing a favorable microenvironment for metastasizing cells to colonize.41–43 Many investigators are now concentrating on using laser-capture microdissection to characterize the individual cell populations of
TABLE 1 Gene Signatures from Three Independent Laboratories Defining Molecular Signatures of Metastasis, Poor Prognosis, and High-Versus Low-risk Patients

Glinsky GV, Berezovska O, Giinskii AB²¹	Poor Prognosis	
Gene	**Name**	**Function**
UP		
GBX2	Gastrulation brain homeobox 2	Development
K67	Antigen identified by monoclonal antibody KI-67	Nuclear antigen present in proliferating cells
CCNB1	Cyclin B1	Regulatory protein involved in mitosis
BUB1	BUB1 budding uninhibited by benzimidazoles 1 homolog	Kinase involved in spindle checkpoint function
KNTC2	Kinetochore associated 2	Spindle checkpoint signaling
USP22	Ubiquitin-specific peptidase 22	Cell-cycle control
HCF1C	Host cell factor C1 (VP16-accessory protein)	Regulation of cell cycle and transcriptional activity
RNF2	Ring finger protein 2	Polycomb group protein involved in transcriptional regulation
ANK3	Ankyrin 3, node of Ranvier (ankyrin G)	Integral membrane protein involved in motility, proliferation, and activation
FGFR2	Fibroblast growth factor receptor 2	Growth
CES1	Carboxylesterase 1	Hydrolize long-chain fatty acid esters

Varambally S, Yu J, Laxman B, et al²²	High Risk Versus Low Risk	
Gene	**Name**	**Function**
UP		
ITGA5	Integrin, α 5 (fibronectin receptor, α polypeptide)	Form a fibronectin receptor
CIAP	Baculoviral IAP repeat-containing 2	Inhibits apoptosis
DRB7P67	Interleukin enhancer binding factor 3, 90kDa	Transcription factor
KRIP-1	Tripartite motif-containing 28	Transcriptional control
AMACR	α-Methylacyl-CoA racemase	Conversion of pristanoyl-CoA and C27-bile acyl-CoAs to their (S)-stereoisomers
OCLN	Occludin	Integral membrane protein that is located at tight junctions
MCM2	MCM2 minichromosome maintenance deficient 2, mitotin	Initiation of eukaryotic genome replication
NUP62	Nucleoporin p62	Components of the nuclear pore complex in eukaryotic cells
LAP2	Thymopoietin	Regulation of nuclear architecture by binding lamin B1
the tumor microenvironment, including the cancer cells, endothelial cells, and fibroblasts. 44–46

THE BYPRODUCTS OF METASTATIC TUMOR CELLS AND THEIR INTERACTION WITH THE MICROENVIRONMENT

The multiple factors produced during the process of metastasis that contribute to the morbidity and mortality of patients come from 3 sources: the cancer cells themselves, normal cells that are trying to inhibit the growth and spread of the cancer, and the factors that are released by the local microenvironment of the tissue as these cells interact (Table 2).

A critical event occurs in a metastasis when the growth of the tumor cell mass reaches approximately 1 cubic millimeter in size. 47 At this point, cells in the center of the tumor are beyond the diffusion distance of oxygen and other nutrients necessary for survival. Hypoxia, through the induction of hypoxia-inducible factor-1α, causes the production of multiple cytokines and growth factors that increase the chance of cell survival and turn on the cellular programs that promote growth, angiogenesis, and metastasis. 2–5,9,13–15

These include autocrine motility factor, urokinase plasminogen activator (uPA), matrix metalloproteinases (MMPs), cathepsins, endothelin-1

TABLE 2 Common Cytokines and Factors That Play a Role in the Production of the Lethal Phenotype

Selected Cytokines and Factors	Role in Production of the “Lethal Phenotype” of Metastatic Disease
Chemokines	
CCL2/CCR2	Facilitates invasion and metastasis, promotes cancer cell growth by autocrine regulation, contributes to regulation of angiogenesis
CXCL12/CXCR4	Regulates stem cell homing and plays a crucial role in facilitating those tumors that metastasize to bone
Cytokines	
IL-1	Contributes to ability to metastasize; implicated as a tumor cell growth factor; stimulates angiogenic factors; implicated in thrombosis, cachexia, and bone metastases
IL-6	Promotes cancer growth; implicated as a tumor cell growth factor; stimulates angiogenic factors; implicated in thrombosis, cachexia, and bone metastases
NF-κB	Key mediator and regulator of the inflammatory process, participates in feedback loop of proinflammatory cytokines, suppresses apoptosis, promotes tumor invasion and metastasis, contributes to tumor proliferation by activating the expression of growth factor genes, contributes to genomic instability of the cancer cells
TNF-α	Induces DNA damage and inhibits DNA repair, promotes tumor growth, induces angiogenic factors, key in initiation of inflammatory cascade, regulates chemokines, contributes to ability for invasion, contributes to cachexia syndrome, implicated in thrombosis, contributes to bone metastases
TGF-β	Contributes to angiogenesis, implicated in thrombosis, contributes to bone metastases
VEGF	Induces tumor angiogenesis in solid tumors and promotes tumor growth and metastasis
Proteases	
MMP	Enzyme involved in degradation of extracellular matrix and is upregulated in most cancers, allowing tumor cell invasion and metastasis
uPA	uPA levels in both resected tumor tissue and plasma are of independent prognostic significance for patient survival in several types of human cancer
Coagulation cascade	
Thrombin	Thrombin generation is crucial for metastasis through fibrin and platelet deposition; thrombin receptor upregulation has been reported in a variety of malignant tissues
TF	Advanced cancer is associated with a hypercoagulable state that is triggered by TF; TF significantly participates in tumor-associated angiogenesis, and its expression levels have been correlated with the metastatic potential
Cell–cell interactions	Cell–cell, cell–platelet, and platelet–platelet interactions appear to enhance metastasis

CCL2/CCR2 = monocyte chemotactic protein-1 and its receptor.
CXCL12/CXCR4 = stromal-derived factor-1 and its receptor.
IL-1 = interleukin-1.
IL-6 = interleukin-6.
NF-κB = nuclear factor κB.
TNF-α = tumor necrosis factor-α.
TGF-β = transforming growth factor-β.
VEGF = vascular endothelial growth factor.
MMP = matrix metalloproteinase.
uPA = uroplasminogen activator.
TF = tissue factor.
The interaction of cancer cells with the normal cells of the patient also results in the production of multiple factors that may be detrimental to the host. A relationship between cancer and the inflammation associated with host response has been recognized since the 1860s, when Virchow observed leukocytes in neoplastic tissues. While some cancers are associated with an inflammatory response that is detrimental to the tumor, there are several malignancies that appear to be facilitated by chronic states of inflammation, including *Helicobacter pylori* and gastric cancer, acid reflux and esophageal cancer, and inflammatory bowel disease and colon cancer. These cancers are thought to be the result, in part, of the production of proinflammatory cytokines by the host immune cells as they try to destroy the cancer cells. Proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-11 (IL-11), and TGF-β, have been shown to induce DNA damage and inhibit repair; inhibit apoptosis; facilitate tumor growth, invasion, and metastasis; induce production of angiogenic factors; and contribute to maintaining a chronic state of inflammation by way of a self-activating feedback loop. These cytokines can cause morbidity and mortality in patients through activation of multiple signaling pathways leading to clinical syndromes such as cachexia and coagulopathy.

Similarly, the interaction of other host cells with cancer cells can lead to alterations in the microenvironment. Perhaps the best characterized example of this is metastases involving the bone. Prostate and breast cancer cells, for example, are attracted to the bone by high levels of stromal-derived factor-1 (SDF-1), a chemokine secreted by bone stromal cells that helps direct hematopoetic cell trafficking in and out of the bone marrow. Once there, they secrete several cytokines, including IL-6, IL-1, TNF-α, TGF-β, epidermal growth factor (EGF), and ET-1, that stimulate the maturation and proliferation of osteoblasts. Osteoblasts in turn build up disorganized bone, as well as secrete receptor activator of nuclear factor κB ligand (RANKL), which binds to receptor activator of nuclear factor κB (RANK) on osteoclast precursors, resulting in maturation and subsequent osteolysis of the bone matrix. This breakdown of the bone matrix in turn releases growth factors that stimulate the tumor cells to grow further, resulting in a vicious cycle of bone destruction and further tumor growth.
that need to be explored at both the molecular and clinical levels. These analyses suggest that multiple cytokines/combinations of cytokines cause morbidity and mortality for cancer patients and offer multiple avenues for therapeutic development that need to be addressed.

THE CLINICAL SYNDROMES RESULTING FROM THE GROWTH OF METASTATIC TUMOR CELLS

Clinically, the “lethal” phenotype of cancer is defined by what kills the patient. Data from autopsy series document where metastasis occurs, but rarely clearly document how cancer ends a patient’s life. We performed an extensive literature search through PubMed and Google Scholar to identify published autopsy series that documented sites of metastases in cancer patients at the time of death (Table 3). The majority of the published autopsy data on cancer patients was gathered between 1900 and the 1970s and is representative of deaths when little treatment was available beyond surgery and radiation. For
example, very few modern series are available that report metastases in patients receiving treatments such as chemotherapy that may alter the natural history of the disease. Similarly, while these series report anatomic distribution, actual cause of death is rarely delineated. The major sites of metastases in patients dying of cancer are the lymph nodes, the lungs, the liver, and the skeleton (Table 3). Although how patients die from cancer depends on metastatic patterns of specific tumor types, the clinical syndromes by which patients succumb to cancer can be roughly divided into 2 categories: death due to specific organ involvement with subsequent functional failure such as seen in many patients with metastases to the brain, or death due to poorly defined factors that lead to a complex cascade of biological responses eventually culminating in progressive weight loss, anorexia, anemia, metabolic alterations, asthenia, depletion of lipid stores, and severe loss of skeletal muscle protein (Figure 3).

Cachexia

The incidence of cachexia varies by tumor type, with the highest frequency (83% to 87%) in patients with pancreatic and gastric cancer; intermediate frequency (48% to 61%) in patients with colon, prostate, lung, and unfavorable non-Hodgkin lymphoma; and lowest frequency (31% to 40%) in patients with breast cancer, sarcomas, leukemia, and favorable subtypes of non-Hodgkin lymphoma. Approximately 20% of cancer deaths overall are attributable to cachexia, with death typically occurring when weight loss approaches 30%.

The inflammatory cascade set in place by host and tumor results in an imbalance between proinflammatory cytokines (including lipolytic factor zinc α-2 protein (ZAG), proteolysis-inducing factor (PIF), TNF-α, IL-1, IL-6, and interferon-γ) and anti-inflammatory cytokines (including interleukin-4, interleukin-12, and interleukin-15) (Figure 4). These cytokines act on multiple targets, including myocytes, adipocytes, hepatocytes, bone marrow, endothelial cells, and neurons, leading to a complex cascade of biological responses eventually culminating in progressive weight loss, anorexia, and reduced fat oxidation, and reduced lipogenesis as a result of activation of futile and energy-inefficient cycles. Tumors consume a large amount of glucose and convert it to lactate, leading to an anaerobic environment that does not provide a high enough oxygen tension for the Krebs cycle and mitochondrial oxidative phosphorylation to operate. As a result, the Cori cycle, a much less energy-efficient cycle, is used for gluconeogenesis.

In addition, patients often develop glucose intolerance, insulin resistance, increased glucose consumption, increased fat oxidation, and reduced lipogenesis as a result of activation of futile and energy-inefficient cycles. Tumors consume a large amount of glucose and convert it to lactate, leading to an anaerobic environment that does not provide a high enough oxygen tension for the Krebs cycle and mitochondrial oxidative phosphorylation to operate. As a result, the Cori cycle, a much less energy-efficient cycle, is used for gluconeogenesis.

There is an overall increase in lipolysis in patients with cancer, resulting in the utilization of lactate and fatty acids, which can be utilized for gluconeogenesis with inhibition of lipogenesis contributing to depletion of fat stores. The muscle hypercatabolism observed in cancer cachexia is thought to be dependent on hyperactivation of the calcium-dependent (calpains) and the ATP-ubiquitin-

Table 3: Frequent Sites of Metastases of Common Cancers

Primary Site	Total Cancer Deaths (%)	Frequency of Metastasis (%) (at Autopsy)	Lymph Node	Lung	Pleura	Liver	Bone	Brain
Lung	31†/26‡	92–93§	40	28	51–55	30–41	21–50¶	
Breast	15§	80–97	60–62	36–47	49–61	47–80	5–36	
Colon	10	25–77	12–54	14	36–81	1–18	1–8	
Prostate	9†	71–87	15–64	13–18	28–71	79–91	2–13	
Pancreas	6	50–88	25–49	18	75–78	16–18	2	
Ovary	6†	58–91	10–37	33	42–51	12–15	1–4	
All epithelial cancers	93†/91‡	87	48	22	41	32	8	

* Percent of estimated total cancer deaths in 2005 as reported by the American Cancer Society.† Male-specific percentage.‡ Female-specific percentage.§ Frequency range as reported from multiple autopsy series.57–70 Single-digit frequency as reported.59 ¶ Histologic-subtype dependent.
dependent proteolytic pathways by cytokines. The progressive loss of muscle mass observed in patients with cancer cachexia contributes significantly to overall functional impairments, respiratory muscle weakness, and decreased immunity, ultimately culminating in death of the patient. Treatment of cancer cachexia was initially aimed at nutritional intervention. However, aggressive nutritional therapy did not show significant improvement in weight, lean body mass, performance status, or quality of life. The understanding of the signal transduction and metabolic pathways associated with cancer cachexia has opened several areas of potential as well as active investigation to help patients suffering from this syndrome (Table 4). Current therapies focus on affecting the hunger pathways with goals of increasing appetite and inhibiting catabolic factors. One approach to increasing appetite is to modify hypothalamic-derived signals to suppress cachexia. The best-known agents of this type are megestrol and medroxyprogesterone acetate. Several randomized trials have shown these agents to increase appetite and caloric intake and stabilize weight; however, the weight gain has been attributed to water and fat and not lean muscle tissue. It is unclear how well these agents affect morbidity and mortality. Other agents that affect central nervous system signaling are under active development, including melatonin receptor antagonists and agouti-related protein, as well as neuropeptide Y mimetics.

In addition to central nervous system manipulations to treat cachexia, affecting hormones that act in periphery in muscle and fat cells also holds promise for cachexia treatment. Growth hormone, as well as growth hormone-releasing hormone, which stimulate increase in muscle mass, have not been studied to ameliorate cancer cachexia. Insulin resistance, although counterintuitive in a patient population with little adiposity, occurs due to activation of adipocytes with release of free fatty acids. Therefore, treatment of cancer cachexia with a class of drugs known to enhance tissue insulin sensitivity, such as the thiazolidinediones, may be of therapeutic benefit. These drugs function as high-affinity ligands for peroxisome proliferator-activated receptor-γ, which is the nuclear receptor in fat

FIGURE 4 The Cachexia Syndrome. The inflammatory cascade set in place by host and tumor result in an imbalance between proinflammatory cytokines that act on multiple targets, including myocytes, adipocytes, hepatocytes, bone marrow, endothelial cells, and neurons, leading to production of a complex cascade of biological responses eventually culminating in progressive weight loss, anorexia, anemia, and asthenia. TC = tumor cell; IL-1 = interleukin-1; IL-6 = interleukin-6; IL-11 = interleukin-11; LMF = lipid-mobilizing factor; IFNγ = interferon gamma; TNF-α = tumor necrosis factor-α; PIF = proteolysis-inducing factor.
cells that is thought to be associated with weight gain in type II diabetes.86 This class of drugs may also suppress the hyperinsulinemia seen with cachexia that activates the hypothalamic axis, resulting in decreased orexigenic signaling.

NF-\(\kappa\)B has also been implicated in playing a major role in cancer cachexia. By interaction with proinflammatory cytokines, NF-\(\kappa\)B activation leads to suppression of myogenesis. Therefore, inhibition of NF-\(\kappa\)B is postulated to stimulate recovery of lost muscle mass.86 Several agents interfere with the synthesis and release of these cytokines by interfering with NF-\(\kappa\)B, including eicosapentaenoic acid, dehydroepiandrosterone, pentoxifylline, curcumin, resveratrol, dehydroxymethylepoxyquinomicin, and sodium salicylate.86–88 Fearon et al recently reported a trial comparing eicosapentaenoic acid to placebo for treatment of cancer cachexia in a double-blind, placebo-controlled trial of 518 patients with advanced gastrointestinal and lung cancer that demonstrated no increase in survival. This trial may have been negative because these types of agents may need to be utilized earlier at the onset of cachexia.

The major proinflammatory cytokines associated with cancer cachexia, TNF-\(\alpha\), IL-1, and IL-6, all offer potential targets for therapy. Monoclonal antibodies that inhibit TNF-\(\alpha\) have been utilized in small trials to treat cancer-associated cachexia, but have not demonstrated much activity.89,90 This may be because TNF-\(\alpha\) levels vary in patients, and antibody therapy may need to be targeted to patients with high levels of particular cytokines. Other potential therapies include the recombinant interleukin-1 receptor (rIL-1r) antagonist anakinra and antibodies to IL-6, both of which are in clinical trials for rheumatoid diseases.96–98 It has become clear that cachexia is a multifactorial process that will likely need to be approached from different angles. Much like the disappointing results of single-agent therapy for treating cancer itself, we should not be disappointed from trials of single interventions, as ultimately a combination approach will be needed.

Thrombotic Syndromes

The association between venous thromboembolism, coagulopathy, and malignancy was first made by Trousseau in 1877, with his description of migratory thrombophlebitis and pancreatic cancer.91 Since that time, thrombosis has become recognized as a common complication of cancer associated with significant morbidity and reduced survival.92,93,99 Although coagulopathy is only directly related to death in approximately 10% of cases, it has been demonstrated to be present in as high as 50% of patients at the time of death.100–104

The characteristics that facilitate cancer cells’ ability to invade locally and metastasize also result in damage to endothelial cells and activation of the coagulation cascade, resulting in Virchow’s triad of hypercoagulation, stasis, and endothelial cell damage (Figure 5). The procoagulant,
fibrinolytic, and proaggregating activities of tumor cells set up the perfect local environment for thrombosis. To break down the surrounding microenvironment and allow the tumor mass to grow, the cancer cells to move, and growing blood vessels to reach the tumor mass, the cellular programs that are used in wound healing are activated, and cytokines and growth factors are released that have local and systemic effects. These factors include thrombin, VEGF, TNF-α, interleukin-1 β, uPA, MMPs, cathepsins, and tissue factor (TF).

TF, for example, is physiologically involved in initiating molecular events leading to hemostasis by formation of a Factor VII/TF complex. The hemostatic process leads to activation of thrombin and, therefore, conversion of fibrinogen to fibrin and formation of clot at the site of vascular injury. In addition, the formation of new blood vessels associated with tumor growth results in changes in vascular permeability, extravasation of plasma proteins, microhemorrhage, extravascular clotting, and fibrinolysis, which contributes to the formation of a scaffolding for new vessel development, but at the same time results in disruption of the normal homestatic balance between coagulation and anticoagulation. Constitutive or excessive production of TF by tumor cells, however, leads to pathologic thrombosis and angiogenesis.

The potential to inhibit coagulopathies and thrombosis in cancer patients is enhanced by the development of multiple agents for the treatment of cardiovascular conditions. Multiple studies have suggested that treatment with anticoagulation via warfarin or various heparins in addition to chemotherapy leads to increased survival in patients with a variety of cancers; however, the magnitude of the effect of anticoagulation on morbidity and mortality for cancer patients remains unclear.

Multiple new agents that inhibit the clotting pathway are available for clinical trials in cancer patients and include the direct thrombin inhibitors, recombinant thrombomodulin, and inhibitors of TF.

Factors secreted by the cancer cells, including MMPs, uPA, and cathepsins, break down...
the extracellular matrix of the tumor microenvironment and interrupt vascular integrity. Several small molecule inhibitors and antibodies to these molecules have been investigated as single agents and in combination with chemotherapies for the treatment of multiple types of cancer.117–123 These trials have focused on tumor progression and/or survival, and their activity regarding decreasing morbidity and mortality as related to decreasing thrombosis has not been investigated.

The rheumatoid diseases have provided the cancer community with a paradigm for the treatment of diseases based on the inhibition of proinflammatory cytokines. The prototypical agents are the monoclonal antibodies that inhibit TNF-\(\alpha \).89,90 As noted above, anti-TNF-\(\alpha \) strategies may have value in a subset of patients suffering from cachexia. TNF-\(\alpha \), however, also plays a role in inflammation associated with vascular injury. Similarly, IL-1 is a proinflammatory molecule that also has a role in thrombosis, and an inhibitor used in rheumatoid diseases, anakinra, is available for clinical trials.91 Small-molecule inhibitors and antibodies directed against other cytokines such as IL-6 and TGF-\(\beta \) are also in clinical development.92,93,124–126 Trials need to be designed with an eye to their effect on morbidity and mortality associated with coagulaopathy (Table 5).

Bone Involvement

Bone involvement is the main cause of direct cancer pain. Skeletal involvement is present in an average of 32\% of cancer patients at autopsy, with much higher prevalence in patients with lung, breast, kidney, and prostate cancers. In recent careful autopsy studies, 100\% of men who die of prostate cancer have bone involvement.51,62 As previously described, the activation of osteoblasts and osteoclasts by cancer cells results in a vicious cycle of bone destruction and increased tumor growth, resulting in pain, fractures, and spinal cord compression (Figure 6). In a significant proportion of patients, this pain requires narcotic analgesia. Patients require higher and higher doses of opioid analgesics, resulting in somnolence, sometimes with subsequent aspirations and/or coma. Review of the autopsy series literature did not reveal what percentage of cancer patients die with concurrent aspiration.56–70 In our current autopsy series of 48 patients who died of metastatic prostate cancer, concurrent aspiration pneumonia was documented in fewer than 10\% of cases.62

Contributor to Thrombosis	Examples of Potential Treatments
Thrombin	Warfarin, hirudin, argatroban, rThrombomodulin107–109,112,115
TF	Heparins, pentasaccharide, mAb (6A6)109,114–116
MMPs	Small molecules (BMS-27529, tanomastat)117–119
uPA	Small peptide (A6)120,121
Cathepsins	Small molecules (relacatib), AAE581122,123
Cytokines	mAbs (lerdelimumab, metelimumab), antisense (AP12009)124–126
TGF-\(\beta \)	mAbs (etanercept, infliximab, adalimumab)93,95
TNF-\(\alpha \)	rIL-1r antagonist (anakinra)91
IL-1	mAbs (tocilizumab, CNTO328)92,93
IL-6	Warfarin, heparins109,111

\(\text{TF} \) = tissue factor.
\(\text{MMPs} \) = matrix metalloproteinases.
\(\text{uPA} \) = uroplasminogen activator.
\(\text{TGF-}\beta \) = transforming growth factor-\(\beta \).
\(\text{TNF-}\alpha \) = tumor necrosis factor-\(\alpha \).
\(\text{IL-1} \) = interleukin-1.
\(\text{IL-6} \) = interleukin-6.
\(\text{mAb} \) = monoclonal antibody.
\(\text{rIL-1r} \) = recombinant interleukin-1 receptor.

The rheumatoid diseases have provided the cancer community with a paradigm for the treatment of diseases based on the inhibition of proinflammatory cytokines. The prototypical agents are the monoclonal antibodies that inhibit TNF-\(\alpha \).89,90 As noted above, anti-TNF-\(\alpha \) strategies may have value in a subset of patients suffering from cachexia. TNF-\(\alpha \), however, also plays a role in inflammation associated with vascular injury. Similarly, IL-1 is a proinflammatory molecule that also has a role in thrombosis, and an inhibitor used in rheumatoid diseases, anakinra, is available for

TABLE 5 Potential Treatments to Prevent Thrombotic Syndromes in Cancer Patients
Approximately one third of the patients were in an opioid-induced coma at the time of death and had no other discernible cause of death at autopsy.

The bone microenvironment presents several potential targets that mediate the effects of the vicious cycle of bone destruction. The endothelial cells, osteoblasts, and osteoclasts that interact with the tumor cells all present targets for modulation (Figure 6, Table 6). Clinical trials of the ET-1 receptor antagonist atrasentan to inhibit osteoblasts have been completed and are ongoing. Osteoclast destruction can be inhibited by Food and Drug Administration–approved bisphosphonates such as zoledronate and by radioactive isotopes that bind to hydroxyapatite (samarium, strontium). Osteoclast function can also be inhibited by the src tyrosine kinase inhibitors, as well as by targeting the osteoblast–osteoclast axis through the inhibition of RANKL. Multiple studies are utilizing inhibitors of VEGF to target tumor-related endothelial cell proliferation in bone metastases, both as single agents, as well as in combination with chemotherapy.

Soluble factors and cytokines secreted by the tumor cells, as well as cells in the bone microenvironment, also provide an array of targets. As noted previously, delineating potential targets for inhibiting thrombosis, MMPs, and cathepsins break down the extracellular matrix and promote tumor cell growth, invasion, and metastasis. Small-molecule and antibody inhibitors of these enzymes have demonstrated activity in a variety of cancers, including metastatic prostate cancer. EGF antibodies have demonstrated antitumor activity, but also may inhibit stimulation of endothelial cells and osteoblasts. Stromal–derived factor-1 is a cytokine that has been implicated in the homing of cancer cells to the bone. AMD3100 is a small-molecule inhibitor of stromal–derived factor-1 (SDF-1, CXCL12), first developed for HIV infection, that could potentially inhibit propagation of metastases to the bone microenvironment. Monocyte chemoattractant protein–1 (MCP-1, CCL2) is a cytokine that attracts cancer cells, as well as proinflammatory macrophages.
to the bone microenvironment. The inhibition of this cytokine by the antibody CNTO888 appears to have direct cytotoxic effects through inhibition of tumor cell proliferation, as well as inhibition of the infiltration of macrophages into the tumor microenvironment that promotes tumor growth and angiogenesis.141 As previously detailed, antagonists to the cytokines TGF-β, TNF-α, IL-1, and IL-6 may all be important in ameliorating the effects of the vicious cycle of tumor-microenvironment interactions that leads to pain caused by bone destruction.89–93,96–98,124–126

Dyspnea occurs in 20% to 80% of patients with cancer and is severe in 10% to 60% of patients, especially in the last 6 weeks of life.142–145 Breathing is controlled by the respiratory center (integrates all peripheral and central afferent input and generates efferent activity resulting in respiration), chemoreceptors (sense small changes in pH and pCO2), and mechanoreceptors (respond to irritants and stretching of airways). The cause of dyspnea in a given patient is usually multifactorial, stemming from direct lung involvement, local and systemic cytokine production, treatment-related causes, and underlying diseases such as congestive heart failure and chronic obstructive pulmonary disease (Table 7).

Table burden occupying the lung parenchyma, pulmonary lymphangitic spread of

TABLE 6 Potential Therapeutic Targets in the Bone Microenvironment

Target	Examples of Potential Treatments
Osteoblast	Endothelin receptor (atrasentan)
Osteoclast	Hydroxyapatite (zoledronate, samarium, strontium)
	src tyrosine kinase (dasatinib)
	RANKL (mAb denosumab)
Endothelial cells	VEGF (mAb bevzumab, VEGF Trap)
	VEGF r tyrosine kinase (BAY43–9008, PTK787, ZD6474)
MMPs	Small molecules (BMS-27529, tanomastat)
Cytokines	Small molecules (relacatib, AA581)
TGF-β	mAbs (lerdelimumab, metelimumab), antisense (AP12009)
TNF-α	mAbs (etanercept, infliximab, adalimumab)
IL-1	rIL-1r antagonist (anakinra)
IL-6	mAbs (tocilizumab, CNTO328)
CXCL12/CXCR4 (SDF1)	Small molecule (AMD3100)
CCL2/CCR2 (MCP1)	mAb (CNTO888)
Epidermal growth factor	EGFr mAbs (gefitiib, cetuximab, erlotinib, laputinib, trastuzumab)

MMPs = matrix metalloproteinases.
TGF-β = transforming growth factor-β.
TNF-α = tumor necrosis factor-α.
IL-1 = interleukin-1.
IL-6 = interleukin-6.
SDF1 = stromal-derived factor-1.
MCP1 = monocyte cheomatractant protein-1.
RANKL = receptor activator of nuclear factor κB ligand.
mAb = monoclonal antibody.
VEGF = vascular endothelial growth factor.
VEGFr = vascular endothelial growth factor receptor.
rIL-1r = recombinant interleukin-1 receptor.
EGFr = epidermal growth factor receptor.

TABLE 7 Causes of Dyspnea in Malignancy

Dyspnea directly related to cancer
Parenchymal tumor mass
Lymphangitic spread
Pleural effusion
Superior vena cava syndrome
Pericardial effusion
Ascites
Dyspnea indirectly related to cancer
Cachexia
Anemia
Infection
Emboli
Deconditioning
Dyspnea related to cancer treatment
Radiation/chemotherapy-induced pneumonitis
Radiation/chemotherapy-induced percarditis
Surgical resection of lung parenchyma
Dyspnea unrelated to cancer or cancer treatment
Pulmonary disease (chronic obstructive pulmonary disease, asthma)
Cardiac disease (coronary artery disease, congestive heart failure)
Anxiety
Obesity
disease, malignant pleural effusions, and pulmonary embolism are common, well-recognized causes of dyspnea. Treatment of cancer itself can contribute to the dyspnea experienced by patients through radiation-or chemotherapy-induced pneumonitis and drug-related pleural effusions, through pneumonia secondary to neutropenia, and through tachypnea due to anemia. Cachexia can result in respiratory muscle weakness. Inactivity can lead to deconditioning, and decreased consciousness from pain control can also lead to deconditioning, as well as aspiration pneumonia.

Cancer-related dyspnea is generally considered to be a late event in the disease course, and systematic approaches to treatment beyond targeting identifiable causes such as anemia have not been undertaken. It is speculative, but likely, that inhibition of the proinflammatory cytokines that have already been delineated above may have a role in decreasing the morbidity and mortality associated with dyspnea.

CONCLUSION AND IMPLICATIONS

The disease cancer is the result of a complex interplay between the growing tumor and local and systemic responses by the patient to the presence of malignancy. Traditionally, cancer therapy has focused on cytotoxic agents rather than therapies that ameliorate the effects of byproducts of the cancer cells or the proinflammatory host response to their presence. Insight into the molecular events underlying the lethal clinical syndromes that contribute to the morbidity and mortality of cancer patients suggests avenues of treatment, many of which have already been explored in other disease settings.

REFERENCES

1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007. CA Cancer J Clin 2007;57:43–66.
2. Pienta KJ, Loborg R. The “emigration, migration, and immigration” of prostate cancer. Clin Prostate Cancer 2005;4:24–30.
3. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003;3:453–458.
4. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889;1:571–573.
5. Ewing J. Metastasis, in Ewing J. Neoplastics. 3rd ed. Philadelphia, PA: Saunders; 1928:77–89.
6. Radman M, Matić I, Tadić F. Evolution of evolvability, Ann NY Acad Sci 1999;870:146–155.
7. Greaves M. Cancer causation: the Darwinian downside of past success? Lancet Oncol 2002;3:244–251.
8. Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:23–28.
9. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.
10. Nese RM, Williams GC. Evolution and the origins of disease. Sci Am 1998;279:86–93.
11. Coffey DS. Similarities of prostate and breast cancer: Evolution, diet, and estrogens. Urology 2003;63:244–251.
12. Farinati F, Cardin R, Della Libera G, et al. Multistep nature of metastatic inefficiency: downregulation of Notch and epithelial-mesenchyme transition in development and tumor progression: another turn of the screw. Cell Cycle 2004;3:718–721.
13. Sugarbaker PH. Metastatic inefficiency: the scientific basis for resection of liver metastases from colorectal cancer. J Surg Oncol 1993;3(suppl):158–160.
14. Glaves D, Huben RP, Weiss L. Haematogenous dissemination of cells from human renal adenocarcinomas. Br J Cancer 1988;57:32–35.
15. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004;117:927–939.
16. Grego-Bessa J, Diez J, Timmerman L, de la Pompa JL. Notch and epithelial-mesenchymal transition in the context of development and tumor progression: another turn of the screw. Cell Cycle 2004;3:718–721.
17. Liotta LA, Kohn EC. The microenvironment of the tumor-host interface. Nature 2001;411:375–379.
18. Bisessl MJ, Radisky D. Putting tumours in context. Nat Rev Cancer 2001;1:46–54.
19. Ramawatny S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003;33:49–54.
20. Glinsky GV, Berezovska O, Glinsky AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005;115:1503–1521.
21. Varambally S, Yu J, Laxman B, et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 2005;8:393–406.
22. Minn AJ, Kang Y, Sernagova I, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 2005;115:44–55.
23. D’Arrigo A, Belluco C, Ambrosi A, et al. Metastatic transcriptional pattern revealed by gene expression profiling in primary colorectal carcinoma. Int J Cancer 2005;115:256–262.
24. Buddhu AS, Zipser B, Forgues M, et al. The molecular signature of metastases of human hepatocellular carcinoma. Oncology 2005;69(suppl):23–27.
25. Jones J, Otu H, Spentzos D, et al. Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res 2005;11:5730–5739.
26. O’Donnell RK, Kupferman M, Wei SJ, et al. Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene 2005;24:1244–1251.
27. Wang W, Wyckoff JB, Frohlich VC, et al. Gene expression patterns of bone marrow micrometastases in breast cancer. J Biol Regul Homeost Agents 2004;18:120–125.
28. van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347:1999–2009.
29. Weigel H, Hu Z, He X, et al. Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 2005;65:9155–9158.
30. Singh D, Frebbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002;1:203–209.
31. Dhanasekaran SM, Barrett TE, Ghosh D, et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2001;412:822–826.
32. Woelfle U, Cloos J, Sauter G, et al. Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 2003;63:5679–5684.
33. Cancer Bioinformatics, Comprehensive Cancer Center, University of Michigan. Cancer Profiling Database: ONCOMINE™. Available at: www.oncomine.org. Accessed March 12, 2007.
34. Chung CH, Bernard PS, Perau CM. Molecular portraits and the family tree of cancer. Nat Genet 2002;32(suppl):535–540.
35. Rhodes DR, Yu J, Shanker K, et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic...
The Lethal Phenotype of Cancer: The Molecular Basis of Death Due to Malignancy

transformation and progression. Proc Natl Acad Sci USA 2004;101:9309–9314.
38. Rhodes DR, Kalyana-Sundaram S, Mahavino V, et al. Minig for regulatory programs in the cancer transcriptome. Nat Genet 2005;37:579–583.
39. Rhodes DR, Chinnaiyan AM. Integrative analysis of the cancer transcriptome. Nat Genet 2005;37(suppl):S31–S37.
40. Tomlins SA, Mehra R, Rhodes DR, et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet 2007;39:41–51.
41. Yang H, Crawford N, Lukes L, et al. Metastasis predictive signature profiles pre-exist in normal tissues. Clin Exp Metastasis 2005;22:593–603.
42. Hunter KW. Host genetics and tumour metastasis. Br J Cancer 2004;90:752–755.
43. Shen R, Ghosh D, Chinnaiyan AM. Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data. BMC Genomics 2004;5:94.
44. Li HR, Wang-Rodriguez J, Nair TM, et al. Two-dimensional transcriptome profiling: identification of messenger RNA isoforms signatures in prostate cancer from archived paraffin-embedded cancer specimens. Cancer Res 2006;66:4070–4088.
45. Hoang CD, Guillaume TJ, Engel SC, et al. Analysis of paired primary lung and lymph node tumor cells: a model of metastatic potential by multiple genetic programs. Cancer Detect Prev 2005;29:509–517.
46. Niklaus AL, Pollard JW. Mining the mouse transcriptome of receptive endometrium reveals distinct molecular signatures for the luminal and glandular epithelium. Endocrinology 2006;147:3375–3389.
47. Folkman J. Toward an understanding of angiogenesis: search and discovery. Perspect Biol Med 1981;24:201–207.
48. Giaccia A, Siim BG, Johnson RS. HIF-1 as a key event in cancer development. Mol Cancer Res 1996;4:107–111.
49. Kozlow W, Guise TA. Breast cancer metastasis: targeting the lethal phenotype. J Clin Oncol 2005;23:175–180.
50. Cox JD, Yesner RA. Causes of treatment failure and death in carcinoma of the lung. Yale J Biol Med 1981;54:201–207.
51. Cho SY, Chen HY. Causes of death and metastatic patterns in patients with mammary cancer. Ten-year autopsy study. Am J Pathol 1980;73:232–234.
52. Viadana E, Au K-L. Patterns of metastases in adenocarcinomas of the prostate. J Surg Oncol 1983;23:107–116.
53. Lee YT, Tatter D. Carcinoma of the pancreas and peripancreatic structures. Pattern of metastasis at autopsy. Arch Pathol Lab Med 1984;108:584–587.
54. Lee YT. Breast carcinoma: pattern of metastasis at autopsy. J Surg Oncol 1983;23:175–180.
55. Berk T, Lundberg S. Cancer in Malmö—systematic review of the effectiveness of adalimumab, a monoclonal antibody for rheumatoid arthritis in adults and an economic harm analysis of its use in Sweden. JAMA 2006;295:2275–2285.
56. Capra S, Ferguson M, Ried K. Cancer: impact of nutrition intervention outcomes—nutrition issues for patients. Nutrition 2005;21:754–772.
57. Evans WK, Nixon DW, Daly JM, et al. A randomized study of oral nutritional support versus ad lib nutritional intake during chemotherapy for advanced colorectal and non-small-cell lung cancer. J Clin Oncol 1987;5:113–124.
58. Roudier MP, Vesselle H, True DD, et al. Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of bisphosphonate therapy on bone scintigraphy results. Clin Exp Metastasis 2003;20:171–180.
59. Dudgeon DJ, Kristjanson L, Sloan JA, et al. Systematic review of megestrol acetate in the treatment of anorexia-cachexia syndrome. J Pain Symptom Manage 2004;27:360–369.
60. Pascual Lopez A, Roque i Figuuls M, Urrutia Cuchi G, et al. Eicosapentaenoic acid supplement versus megestrol acetate versus both for patients with cancer-associated weight loss: a North Central Cancer Treatment Group and National Cancer Institute of Canada collaborative effort. J Clin Oncol 2004;22:2469–2476.
61. Klein S, Kinney J, Jeejeebhoy K, et al. Nutrition support in clinical practice: review of published data and recommendations for future research directions. Summary of a conference sponsored by the National Institutes of Health, American Society for Parenteral and Enteral Nutrition, and American Society for Clinical Nutrition. Am J Clin Nutr 1997;66:683–706.
62. Cuchi G, et al. Systematic review of megestrol acetate versus megestrol acetate versus both for patients with cancer-associated weight loss: a North Central Cancer Treatment Group and National Cancer Institute of Canada collaborative effort. J Clin Oncol 2004;22:2469–2476.
63. Nagaya N, Kojima M, Kangawa K. Ghrelin, a novel growth hormone-releasing peptide, in the treatment of cardiopulmonary-associated cachexia. Intern Med 2006;45:127–134.
64. Nagaya N, Koht M, Murakami S, et al. Treatment of cachexia with ghrelin in patients with COPD. Chest 2005;128:1187–1193.
65. Hamerman D. Molecular-based therapeutic approaches in treatment of anorexia of aging and cancer cachexia. J Gerontol A Biol Sci Med Sci 2002;57:M511-M518.
66. Pascual Lopez A, Roque i Figuuls M, Urrutia Cuchi G, et al. Eicosapentaenoic acid supplement versus megestrol acetate versus both for patients with cancer-associated weight loss: a North Central Cancer Treatment Group and National Cancer Institute of Canada collaborative effort. J Clin Oncol 2004;22:2469–2476.
67. Loeb RJD, Logothetis CJ, Keller ET, Pienta KJ. Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype. J Clin Oncol 2005;23:8232–8241.
68. Kozlow W, Guise TA. Breast cancer metastasis to bone: mechanisms of osteolytic and implicational for therapy. J Mammary Gland Biol Neoplasia 2005;10:169–180.
69. Keso M, Mundy GR. Mechanisms of osteolytic metastases in breast carcinoma. Cancer 2003;97(suppl):834–839.
70. Cancer Biomarkers, Comprehensive Cancer Center, University of Michigan. Molecular Concept Map. Available at: http://www.molecularconcepts.org/main/mrcjon.jsp. Accessed March 12, 2007.
71. Willis RA. The Pathology of Tumours. 4th ed. London, UK: Butterworths; 1967.
92. Safat S, Wan JY, Nguyen NP. Venous thrombosis in patients with solid tumors: determination of frequency and characteristics. Thromb Haemost 2002;87:575–579.

93. Levitan N, Dowlati A, Rennick SC, et al. Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy: Rask analysis using Medicare claims data. Medicine (Baltimore) 1999;78:285–291.

94. Elamn EM, Glass M, Camporesi E. Pharmacologic approaches to amelioration of catabolic conditions. Curr Opin Clin Nutr Metab Care 2006;9:449–454.

95. DeBoer MD, Marks DL. Cachexia: lessons from melanocortin antagonism. Trends Endocrinol Metab 2006;17:199–204.

96. Lewis AM, Varghese S, Xu H, Alexander HR. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Trad Med 2006;4:48.

97. Nishimoto N, Kishimoto T. Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol 2006;2:619–626.

98. Wallner L, Dai J, Escara-Wilke J, et al. Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen–independent phenotype in orthotopic mice. Cancer Res 2006;66:3087–3095.

99. Sorensen HT, Mellemkjaer L, Olsen JH, Barón JA. Prognosis of cancers associated with venous thromboembolism. N Engl J Med 2003;349:146–153.

100. Moussa SA. Aristrat (fondaparinux sodium). Methods Mol Med 2004;99:239–246.

101. Ogren M, Bergqvist D, Wahlander K, et al. Thrombosis-related complications and mortality in cancer patients with central venous devices: an observational study on the effect of antithrombotic prophylaxis. Ann Oncol 2007;18:551–553.

102. Linenberger ML. Catheter-related thrombosis: risks, diagnosis, and management. J Natl Compr Canc Netw 2006;4:899–901.

103. Schwenker A. Direct thrombin inhibitors—a survey of recent developments. Cell Mol Life Sci 2006;63:2773–2791.

104. Lee AY, Levine MN, Baker RJ, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med 2003;349:146–153.

105. Moussa SA. Aristrat (fondaparinux sodium). Methods Mol Med 2004;99:239–246.

106. Eigenbroc C, Meng YG, Krishnamurthy R, et al. Structural insights into how an anti-idiotypic antibody against D3H44 (anti-tissue factor antibody) restores normal coagulation. J Mol Biol 2003;331:433–446.

107. Harte H, Vergote IB, Jeffrey JR, et al. A phase III randomized trial of BAY 12–9566 (tannosata) as maintenance therapy in patients with advanced ovarian cancer responsive to primary surgery and paclitaxel/platinum containing chemotherapy: a National Cancer Institute of Canada Clinical Trials Group Study. Gynecol Oncol 2006;102:300–308.

108. Lierman E, Lahortiga I, Van Miegroet H, et al. The ability of sorafenib to inhibit oncogenic tyrosine kinase inhibitor that selectively targets pathways critical for tumor growth and angiogenesis. Expert Opin Investig Drugs 2006;15:239–249.

109. Santini D, Fratto ME, Vincenzi B, et al. Dostinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or –intolerant chronic myeloid leukemia in blast crisis. Blood 2007;109:3207–3213.

110. Cloose P, Neuprez A, Reginster JY. Development in the pharmacotherapeutic management of osteoporosis. Expert Opin Pharmacother 2006;7:1603–1615.

111. Lewiecki EM. RANK ligand inhibition with denosumab for the management of osteoporosis. Expert Opin Biol Ther 2006;6:1041–1050.

112. Tenra JR, Hicklin DJ. Targeting the vascular endothelial growth factor pathway in the treatment of human malignancy. Immunol Invest 2007;36:3–23.

113. Baka S, Clamp AR, Jayson GC. A review of the latest clinical compounds to inhibit VEGF in pathological angiogenesis. Expert Opin Ther Targets 2006;10:867–876.

114. Lierman E, Lahortiga I, Van Miegroet H, et al. The ability of sorafenib to inhibit oncogenic tyrosine kinase inhibitor that selectively targets pathways critical for tumor growth and angiogenesis. Expert Opin Investig Drugs 2006;15:239–249.

115. Cashen AF, Nervi B, DiPersio J. AMD3100: CXCR4 antagonist and rapid stem cell-mobilizing agent. Future Oncol 2007;3:19–27.

116. Lobeg R, Day LL, Harwood J, et al. CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia 2008;10:378–386.

117. Reid A, Vidal L, Shaw H, de Bon J. Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/new). Eur J Cancer 2007;43:481–489.

118. Astutuon I, Cohen RB, Harazer PM. EGFR-targeting monoclonal antibodies in head and neck cancer. Curr Cancer Drug Targets 2006;6:91–110.

119. Ripamonti C. Management of dyspnea in advanced cancer patients. Support Care Cancer 1999;7:233–243.

120. Ripamonti C, Bruera E. Dyspnea: pathophysiology and assessment. J Pain Symptom Manage 1997;13:220–232.

121. Thomas JR, Von Gunten CF. Treatment of dyspnea in cancer patients. Oncology (Williston Park) 2002;16:748–750.

122. Redfern DB, Mor V. Dyspnea in terminally ill cancer patients. Chest 1980;80:234–236.