Note

Development of a Quantitative PCR Assay for Thermophilic Spore-Forming *Geobacillus stearothermophilus* in Canned Food

MIYO NAKANO *

Division of Food Science, Toyo Institute of Food Technology, 23-2, 4-chome, Minami-hanayashiki, Kawanishi, Hyogo 666-0026 Japan

Received 16 December, 2014/Accepted 28 April, 2015

The thermophilic spore forming bacteria *Geobacillus stearothermophilus* is recognized as a major cause of spoilage in canned food. A quantitative real-time PCR assay was developed to specifically detect and quantify the species *G. stearothermophilus* in samples from canned food. The selected primer pairs amplified a 163-bp fragment of the 16S rRNA gene in a specific PCR assay with a detection limit of 12.5 fg of pure culture DNA, corresponding to DNA extracted from approximately 0.7 CFU/mL of *G. stearothermophilus*. Analysis showed that the bacterial species *G. stearothermophilus* was not detected in any canned food sample. Our approach presented here will be useful for tracking or quantifying species *G. stearothermophilus* in canned food and ingredients.

Key words : *Geobacillus stearothermophilus* / Flat sour spoilage / Real-time PCR / Spore-forming thermophilic bacteria.

The spoilage control and production safety in the canning industries are based on the simple principles: a minimal heat-treatment for low-acid foods (F₀ = 3 min, the "botulinum cook") and an additional heat-treatment to guarantee microbiological stability. Microbial spoilage of canned food is often caused by thermophilic and highly heat-resistant spore-forming bacteria such as *Geobacillus stearothermophilus* in the food industry (Logan and De Vos, 2009; Burgess et al., 2010; Prevost et al., 2010). The canned food F₀ value observed in industry is strongly related to the heat resistance of the strains isolated. *G. stearothermophilus* has been regularly isolated from products treated at moderate or high heat levels (F₀ between 5 and 20 min and F₀ above 20 min) (Andre et al, 2013). It is speculated that spores in these products may come from the soil or may result from sporulation during the storage conditions and treatment of ingredients. In cooked food, a variety of ingredients are involved and may carry microbial contaminants (Membre and van Zuijlen, 2011). Despite a long history of description of these bacteria, the origin of spores in canned food is poorly understood.

Developments in molecular technique enable faster and more sensitive analysis than classical microbiological procedures. Real-time PCR based identification and quantification is a suitable alternative because it is a comparatively easy, rapid and simple method (Postollec et al., 2011) and it can be completed within several hours. Real-time PCR techniques have been developed with a wide variety of microorganisms, with emphasis on the main food-borne pathogens responsible for substantial medical and economic problems. In the last two decades, culture-independent techniques have greatly improved our understanding of the composition, activities, and dynamics of microbial communities. Nowadays, PCR-based methods, in particular quantitative PCR, are predominantly used to detect, identify and quantify both pathogens and beneficial microbial species, such as fermenting microbes or probiotics (Le Drean et al., 2010, Malorny et al., 2008). ISO standards have also been established, and provide guidelines to quantitatively detect food-borne pathogens by PCR (ISO 22174: 2005, ISO/TS 20836: 2005, ISO 20837: 2006, ISO 20838:2006).
PCR is a faster, more sensitive, and more specific method than traditional culture-based techniques, and enable detection of sub-dominant populations, even in the absence of a selective enrichment medium and in the presence of other dominant populations. Furthermore, combined with reverse transcription (RT), quantitative PCR can also estimate transcript amounts, therefore providing information on microbial gene activity (Postollec et al., 2011). In this study, we developed a real-time PCR assay for identification and quantification of G. stearothermophilus, and applied the direct detection of this species to the examination of samples from commercial canned food.

A total of 35 strains from 30 bacterial species, including four G. stearothermophilus strains, and other close and distant genera, listed in Table 1, were used for primer specificity studies. Geobacillus group strains were incubated at 55-60 °C in Nutrient Broth (EIKEN CHEMICAL Co., LTD. Tokyo, Japan). Both aerobic and anaerobic other thermophilic strains were incubated at 55-60°C according to the reference of growth information.

Genomic DNA was extracted using an Ultra clean DNA isolation kit (MO BIO Laboratories, Carlsbad, CA, USA) following the manufacturer’s instructions with minor modifications for the extraction of genomic DNA including spore DNA (Rose et al., 2011). Briefly, microbial cell pellets were collected from 1 ml of undiluted cell

TABLE 1. Microbial strains used in this study	Strains and sources	Species
Geobacillus stearothermophilus	NBRC 12550T (ATCC 12980)	Geobacillus stearothermophilus
Geobacillus stearothermophilus	NBRC 12983 (ATCC 12976)	Geobacillus stearothermophilus
Geobacillus stearothermophilus	NBRC 13737 (ATCC 7953)	Geobacillus stearothermophilus
Geobacillus stearothermophilus	NBRC 100862 (DSM 1550)	Geobacillus stearothermophilus
Geobacillus caldoxylosilicus	NBRC 107762T (ATCC 700356)	Geobacillus caldoxylosilicus
Geobacillus juranis	NBRC 107829T (DSM 15726)	Geobacillus juranis
Geobacillus kaustophillus	NBRC 102445T (ATCC 8005)	Geobacillus kaustophillus
Geobacillus thermoglucosidasius	NBRC 107763T (ATCC 43742)	Geobacillus thermoglucosidasius
Geobacillus toebii	NBRC 107807T (DSM 14590)	Geobacillus toebii
Geobacillus zahae	NBRC 101842T (DSM 18318)	Geobacillus zahae
Bacillus subtilis	NBRC 13719T (ATCC 6051)	Bacillus subtilis
Bacillus coagulans	ATCC 80078	Bacillus coagulans
Bacilluslicheniformis	NBRC 12200T (ATCC 14580)	Bacilluslicheniformis
Paenibacillus polymyx	NBRC 15309T (ATCC 842)	Paenibacillus polymyx
Staphylococcus aureus	NBRC 100910T (ATCC 12600)	Staphylococcus aureus
Escherichia coli	NBRC 102203T (ATCC 11775)	Escherichia coli
Clostridium acetylobutylicum	NBRC 13948T (ATCC 824)	Clostridium acetylobutylicum
Clostridium claritaeum	NBRC 101661T (DSM 19732)	Clostridium claritaeum
Clostridium kluveri	NBRC 12016T (DSM 555)	Clostridium kluveri
Clostridiumthermocellum	NBRC 103400T (ATCC 27405)	Clostridiumthermocellum
Moorella thermoacetica	JCM 9319T (ATCC 35608)	Moorella thermoacetica
Moorella thermoacetica	JCM 9320T (ATCC 39073)	Moorella thermoacetica
Moorella thermoacetica	24-1 (our collection)	Moorella thermoacetica
Moorella glycerini	DSM 11254T	Moorella glycerini
Moorella humifera	DSM 23265T	Moorella humifera
Moorella mulderi	DSM 14980T	Moorella mulderi
Moorella stamsii	DSM 26217T	Moorella stamsii
Moorella thermoautotrophica	DSM 1974T	Moorella thermoautotrophica
Moorella perchloratireducens	ATCC BAA-1531	Moorella perchloratireducens
Ammonifex sp.	NBRC 100904	Ammonifex sp.
Caldanaerobacter sybterraneus subsp. tengcongensis	NBRC 100824T	Caldanaerobacter sybterraneus subsp. tengcongensis
Carboxythermus pertyx	NBRC 107576T (DSM 23698)	Carboxythermus pertyx
Tepidanaerobacter syntrophicus	NBRC 100060T (DSM 15584)	Tepidanaerobacter syntrophicus
Thermaneromonas toyohensis	NBRC 101528T (DSM 14490)	Thermaneromonas toyohensis
Thermanaerobacter cellulosiyticus	NBRC 14436	Thermanaerobacter cellulosiyticus

*NBRC, NITE Biological Resource Center (Kisarazu, Chiba, Japan); T, type strain; references in parentheses indicate the corresponding reference number in an alternative collection, ATCC, American Type Culture Collection (Manassas, VA, USA), DSM, German Collection of Microorganisms and Cell Cultures (Braunschweig, Germany).
suspension and then resuspended in 300 µL of Microbead solution (without beads) and 50 µL of MD1 solution. Suspensions were heated at 95 °C for 20 min and then centrifuged at 10,000 × g for 2 min. Three hundred microliters of the supernatant were added to 100 µL of MD2 solution, and then tubes were inverted several times, incubated at 4 °C for 10 min, and centrifuged at 10,000 × g for 2 min. Three hundred microliters of the supernatant were then added to 900 µL of MD3 solution. Two 600 µL aliquots of supernatant/MD3 solution were sequentially added to the spin column and centrifuged at 10,000 × g for 30 s. Each flow-through was discarded. Three hundred microliters of solution MD4 were then added to the spin column, centrifuged as above, and the flow-through was discarded. One hundred microliters of solution MD5 were added to the spin column, which was then centrifuged at 10,000 × g for 1 min and the flow-through was retained for PCR and real-time PCR assays.

For all other reference strains, pure cultures were grown, and bacterial DNA was extracted using an Ultra clean DNA isolation kit following the manufacturer’s instructions (MO BIO). Finally, genomic DNA concentrations were determined using a spectrophotometer (µQuant, BioTek Instruments, Inc., USA) and diluted to the appropriate concentration prior to use.

The 16S rRNA gene of *G. stearothermophilus* NBRC 12550T was chosen as the target for amplification. Overall, sequences from 120 bacterial species including *Geobacillus* species, species belonging to a different genus from *Bacillaceae* such as *Bacillus*, *Listeria*, *Paenibacillus*, *Sporolactobacillus*, others belonging to *Clostridium*, and non-related taxa were obtained from the GenBank nucleotide database at the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/genbank/), and from the National Institute of Technology and Evaluation Biological Resource Center (http://www.nbrc.nite.go.jp/e/). Alignment of the 16S rRNA gene sequence from *G. stearothermophilus* and other related and nonrelated taxa was performed with ClustalX (Thompson et al., 1997).

Based on the alignment, four primer pairs were selected using Primer3Plus (http://www.bioinformatics.nl/)

TABLE 2. DNA sequence of primers used in this study

Primer name	Primer sequence (5’-3’)*1	Tm(°C)	Primer name	Primer sequence (5’-3’)*1	Tm(°C)
Gv 1F	GATTGGGGCTTGCCCTTGA	66.1	Gv3R	GCAAGTGACAGCCCAAAGG	65.8
Gv5R	GGCTTTCACATCAGACTTAAGAGAC	66	Gv6R	TCAGGTGCAGGCCAGAGA	66.2
Gv8R	ACCGAATGCTGGCAACCTAGAG	65.3			

*1 Primer design was carried out using Primer3Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi).
Quantitative PCR was performed using SYBR Green chemistry. The reactions were carried out in a 25 µL volume containing 12.5 µL of 2× SYBR Premix Ex Taq (Tli RNaseH Plus) (Takara Bio, Shiga, Japan), 0.2 µM of each primer, 1 µL of microbial genomic DNA template, and 5 to 10 µL of DNA samples from canned food samples, in a Thermal Cycler Dice Real Time System TP800 (Takara Bio). The optimum cycling parameters were: 95°C for 30 s, followed by 36 cycles of 95°C for 10 s, 62°C for 30 s, and 72°C for 1 min. A melting curve was generated after the last amplification cycle using a temperature range of 64–95°C, and a temperature transition rate of 0.5°C. The cycle threshold (Ct) and the melting temperature of amplification products were calculated automatically. The amplicon obtained from real-time PCR analysis was confirmed as a single DNA band that corresponded to the expected product size. Negative controls and all non-Geobacillus strains showed no peaks in the melting profiles. The absence of nonspecific products and primer dimers was confirmed by agarose gel electrophoresis.

Among the designed four primer sets, Gv1F (5'-GATTTGCGGCTTGCCTTGA-3') and Gv3R (5'-GCAAGTGACAGCCCCAAGG-3') were successfully used for species-specific detection of G. stearothermophilus by real-time PCR assay. Using 50 pg of template DNA from non-G. stearothermophilus strain (Table 1), no Ct reading was obtained within the 36 amplification cycles for any of the isolates (data not shown). The amplicon obtained from real-time PCR analysis was confirmed as a single band that corresponded to the expected product size (Fig. 2). Negative controls and all non-G. stearothermophilus strains also showed no peaks in the melting profiles. The reproducible distinct melting points (Tm) was 87.3°C (Fig. 2). The other primer pairs Gv1F/Gv5R and Gv1F/Gv6R demonstrated poorer results than Gv1F/Gv3R in terms of productivity. Consequently, the primer pair Gv1F/Gv3R was used for the specific detection and quantification of this species in this study.

The sensitivity and efficiency of the real-time PCR assays was determined using purified genomic DNA from the representative G. stearothermophilus NBRC 12550T strain. Genomic DNA was extracted in triplicate from undiluted cell suspension samples (OD600 = 0.2-0.3) and the DNA concentration quantified. As a result, three individual suspensions of G. stearothermophilus with optical densities of 0.254, 0.229, and 0.234 at 600 nm were prepared, and the corresponding cell counts were respectively determined to be 3.8 × 10⁷ CFU/mL, 2.6 × 10⁷ CFU/mL, and 7.1 × 10⁷ CFU/mL.

FIG. 2. (A) Standard curve (○) obtained by plotting log CFU/reaction against the Ct obtained from real-time PCR analysis of serially diluted solutions of DNA extracted from G. stearothermophilus NBRC 12550T. The linear regression equation was y=-1.48 (±0.1)ln(x)+33.356 (±0.302) with a coefficient of determination of R²=0.9954-0.9989. PCR efficiencies were 96.1% to 127.9%. Additionally shown are spiking experiment curves used to evaluate the efficiency of this method for detection of G. stearothermophilus from samples containing non-target species. (B) Spiking experiment curves from canned whole corn. The linear regression equation was y=-1.309 (±0.057)ln(x)+34.176 (±0.505) with a coefficient of determination of R²=0.9863-0.9917. (C) Spiking experiment curves from boiled azuki-beans. The linear regression equation was y=-0.893 (±0.011)ln(x)+28.85 (±0.049) with a coefficient of determination of R²=0.9879-0.9923. The symbols (▲), (●), and (■) indicated spiked 1, spiked 2, and spiked 3, respectively.
based on the plate counting of colonies. The genomic DNA concentrations of these individual samples were 14.5 ng/µL, 9.5 ng/µL, and 12.5 ng/µL, respectively. Consequently, a 10-fold serial dilution series with concentrations ranging from 12.5 ng to 1.25 fg was prepared using sterile distilled water. Standard curves using *G. stearothermophilus* were produced by plotting the Ct values from three replicate PCR assays against the bacterial count (Fig. 2A).

For the extraction of DNA from commercial canned food for detecting the species of *G. stearothermophilus*, sample preparation was conducted as follows. Five kinds of samples that included two different brands of canned whole corn, boiled-beans (azuki bean, *Vigna angularis*), boiled mushrooms, and boiled-shellfish (Manila clam, *Ruditapes philippinarum*) were used. In the first step, individual canned samples were treated by sonication for 5 min. Then, microbial pellets were collected from the submerged liquid samples (approximately 25 to 40 ml) by centrifugation at 7,800 × g for 40 min at 4 °C, and the pellets were washed three times with phosphate buffered saline (PBS, pH 7.4). Then, microbial DNA was extracted according to the manufacturer’s instructions, with minor modifications mentioned above.

Conventional PCR analysis was also carried out using Emerald Amp PCR Master Mix (Takara Bio) in an S1000 Thermal Cycler (Bio-Rad, Hercules, CA, USA). Thermal cycling conditions were as follows: 95°C for 4 min, 30 cycles of 95°C for 30 s, 62°C for 30 s, 72°C for 1.5 min, followed by 72°C for 7 min. Amplification products were separated on 1.5% (w/v) agarose gels and stained with ethidium bromide. For all of the primer pairs, the minimum detection sensitivity was 125 fg, which is equivalent to approximately 7.1 CFU/mL of *G. stearothermophilus*. Meanwhile, primer pairs Gv1F-Gv3R, and Gv1F-Gv8R amplified a secondary weak product in addition to the single amplicon of the expectation size. Therefore, Gv1F-Gv3R and Gv1F-Gv6R were suitable primer sets for the conventional PCR assay.

In the spiking experiments, the quantitative PCR assay was tested for its ability to detect *G. stearothermophilus* in canned food containing a diversity of non-pathogenic microorganisms. The microbial pellets were prepared from liquid samples of canned whole corn and boiled-beans (azuki beans, *Vigna angularis*), respectively. 1 ml of *G. stearothermophilus* microbial cell suspension (OD_600 = 0.291) was serially diluted and submerged into *Geobacillus*-free microbial pellets derived from canned food samples (whole corn and boiled azuki-beans). These pellets were prepared to confirm the negative results in the real-time PCR assay with a 40-cycle amplification. Microbial DNA was then extracted from the pellets as described above. Then, genomic DNA extracted from the spiked samples was subjected to real-time PCR, and the Ct values were plotted (Fig. 2B and 2C). The results for whole corn samples were y = -1.309 (± 0.057) ln(x) + 34.18 (± 0.505) and R^2 = 0.9863 to 0.9917, and for boiled azuki-beans were y = -0.893 (± 0.011) ln(x) + 28.85 (± 0.049), and R^2 = 0.9879 to 0.9923.

The results revealed Ct values ranging from 10^1 to 10^6 CFU/mL, and each curve was highly linear. The statistical analyses revealed no significance differences (P > 0.05) among the slopes, intercepts, and R^2 values between the spiked results from whole corn and the reference *G. stearothermophilus* strain (Fig. 2B). Meanwhile, there were significant differences (P < 0.05) among slopes, intercepts between the spiked results from boiled-beans and the reference *G. stearothermophilus* strain (Fig. 2C). We concluded that amplification efficiency and target gene detection were not affected by the presence of non-target microbial DNA, except for when target DNA was only present in low concentrations. Furthermore, this method may be affected by the genomic DNA extraction efficiency when only a small amount of target DNA was present together with non-target DNA, and different types of food samples were assayed.

To identify *G. stearothermophilus* from canned food, samples were prepared as described above, and subjected to the real-time PCR assay by using the primer pair Gv1F-Gv3R. The Ct values obtained from the assay were used to calculate the CFU/ml of *G. stearothermophilus* in each sample on the standard curve (Fig. 2A). As for the detection limit by using the primer pair Gv1F-Gv3R, the assay theoretically allowed the estimation of numbers of microorganisms to 0.65 CFU/mL. Quantitative real-time PCR results showed negative results for *G. stearothermophilus* in all samples. Meanwhile, a conventional PCR assay and a direct incubation produced negative results for all samples. It was suggested these organisms 1) may not be major inhabitants of the phylosphere environments of vegetable tissues and/or marine foods, or 2) may be inactive due to treatments during the processing of canned products.

In addition, in a one-step incubation, the pellets from canned food submerged samples were incubated at 55 °C for 10 days, and one hundred microliter samples were spread onto nutrient agar plates and incubated at 55°C for 3 days. The colony formation was observed (at least >10^3 CFU/ml) for boiled-beans. Two colonies were picked up randomly and subjected to genomic DNA extraction and sequence determination for the identification of microorganisms. Based on the phylogenetic analysis of 16S rRNA sequences, these strains
were found to be identical to that of G. stearothermophilus at 97 % and 95 %, respectively. It was suggested these spores may have been germinated through incubation at 55 °C. The discrepancy in the results between real-time PCR and incubation analyses from boiled-bean samples must to be explored in further analyses. Taken together, it suggests that measures such as additional heat treatment and the risk assessment of the storage environments might be needed to ensure the adequate handling of canned food.

Andre et al. (2013) investigated the bacterial species responsible for non-stability after prolonged incubation of low acid canned food at 55 °C by examining 455 samples collected from 122 French canneries over 10 years. These results showed three genera were responsible for more than 80 % of all non-stability cases: mostly Moorella (36 %) and GeoBacillus (35 %), and less frequently Thermoanaerobacterium (10 %). Among thermophilic bacteria, G. stearothermophilus is recognized as a major cause of spoilage in canned foods and is frequently detected after a 7-day incubation at 55°C (Andre et al., 2013). Recently, Prevost et al. (2010) reported that thermophilic bacteria including G. stearothermophilus, M. thermoacetica/M. thermoautotrophica, and Thermoanaerobacterium group were detected in canned food spoilage via cultivation methods. Thermophilic bacteria spores were counted in 13 ingredients such as spices, milk powder and aromas (Prevost et al., 2010). In the past, several studies pointed out that thermophilic bacteria spore contamination occasionally occurred, particular, in milk powder produced by a heating process (Cooper et al., 2006, Ruckert et al., 2004). The ingredients may be the entrance point for highly heat resistant bacteria in food (Oomes et al., 2007). Thus, spore contamination in canned food may be related to the inclusion of various kinds of ingredients susceptible to microbial contamination. In addition, spore contamination probably comes from the soil or may result from sporulation during food processing. Hence, control of the large diversity of spore-forming microorganisms in the food environment and adjustment of food retort settings should be based on data collection about spore contamination levels in ingredients and raw materials. In order to optimize sterilization processes, the heat resistance of contaminating spores must be considered.

In this study, a highly specific real-time PCR assay was established to detect and quantify G. stearothermophilus in canned food. This method is highly reliable, rapid and can be directly performed within several hours. The current approach could be useful for tracking and monitoring bacterial contaminants in various kinds of food and/or food ingredients. Screening for the spoilage-causing microorganisms in raw materials, ingredients and samples from processing lines could help identify points or sites of contamination in canned food industry for improve safety management and hygiene control.

ACKNOWLEDGEMENTS

The author thanks Yoshio Aoyama (principal investigator, division of food science, Toyo Institute of Food Technology) for his helpful advice and suggestions throughout the study.

REFERENCES

Andre, S., Zuver, F., and Remize, F. (2013) Thermophilic spore-forming bacteria isolated spoiled canned food and their heat resistance. Results of a French ten-year survey. Int. J. Food Microbiol. 165, 134-143.

Burgess, S. A., Lindsay, D., and Flint, S. H. (2010) Thermophilic bacilli and their importance in dairy processing. Int. J. Food Microbiol. 144, 215-225.

Cooper, R. M., and McKlip, J. L. (2006) Enterotoxigenic Bacillus spp. DNA fingerprint revealed in naturally contaminated nonfat dry milk powder using rep-PCR. J. Basic. Microbiol. 46, 358-364.

Le Drea, G., Mounier, J., Vasseur, V., Arzur, D., Habyryo, O., and Barbier, G. (2010) Quantification of Penicillium canariembertii and P. roqueforti mycelium by real-time PCR to assess their growth dynamics during ripening cheese. Int. J. Food Microbiol. 138, 100-107.

Logan, N. A., and De Vos, P. (2009) Genus Bacillus Cohn 1872. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 3, pp. 21-128. Edited by P. Vos, G. Garrett, D. Jhons, N. R. Kreig, W. Ludwig, F. A. Rainet, K.-H. Schleifer & W. B. Whitman. New York: Springer-Verlag.

Malorny, B., Lofstrom, C., Wagner, M., Kramer, N., and Hoofar, J. (2008) Enumeration of salmonella bacteria in food and feed samples by real-time PCR for quantitative microbial risk assessment. Appl. Environ. Microbiol. 74, 1299-1304.

Membre, J. M., and van Zuijlen, A. (2011) A probabilistic approach to determine thermal process setting parameters: application for commercial sterility of products. Int. J. Food Microbiol. 144, 413-420.

Oomes, S. J., van Zuijlen, A. C., Hehenkamp, J. O., Witsenboer, H., van der Vossen, J. M., and Brul, S. (2007) The characterization of Bacillus spores occurring in the manufacturing of (low acid) canned products. Int. J. Food Microbiol. 120, 85-94.

Postollec, F., Falentin, H., Pavan, S., Combrisson, J., and Sohier D. (2011) Recent advances in quantitative (qPCR) applications in food microbiology Food Microbiol. 1-14.

Prevost, S., Andre, S., and Remize, F., (2010) PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage. Curr. Microbiol. 61, 525-533.

Ruckert, A., Ronimus, R. S., and Morgan, H. W. (2004) A RAPD-based survey of thermophilic bacilli in milk powder from different countries. Int. J. Food Microbiol. 96, 263-272.

Rose, H. L., Dewey, C. A., Ely, M. S., Willoughby, S. L., Parsons, T. M., Cox, V., Spencer, P. M., and Weller, S. A. (2011) Comparison of eight methods for the extraction of Bacillus atrophaeus spore DNA from eleven common inter-
ferents and a common swab. *PLoS ONE*, 6; e22668.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res*. 25, 4876-4882.

Untergasser, A., Nijveen, H., Rao X-Y., Bisseling, T., Geurts, R., and Leunissen, J. A. M. (2007) Primer3Plus, an enhanced web interface to Primer3 *Nucleic Acids Research* 35, W71-W74; doi:10.1093/nar/gkm306