A comparative Analysis of PV Cell Mathematical Model

M. Rasheed¹, O. Y. Mohammed², S. Shihab¹, Aqeel Al-Adili⁴

¹,³,⁴ University of Technology, Applied Sciences Department, Iraq
² University of Anbar, College of Education for Pure Sciences, Al-Anbar, Iraq

*Corresponding author: rasheed.mohammed40@yahoo.com, 10606@uotechnology.edu.iq

Abstract: Several methods are currently used to calculate the values of voltage, current, and power of a solar cell. A new method is suggested to numerically find these values using the popular methods Newton Raphson method (NRM) and the three-step method (TSM) at different values of load resistance R. Equation based on the equivalent circuit of a solar cell, so all calculations is performed in a MATLAB at room temperature. The obtained results of this new method were presented and compared with NRM. Additionally, a single diode model of a solar cell was demonstrated.

Keywords: Three-Step method; newton-Raphson method; iterations; physical parameters; maximum voltage.

1. Introduction
The fame and growth of numerical analysis are currently testimony to other evidence that applications are still the main source of predicting mathematical innovation. When new mathematical ideas develop, it is customary for new applications to be paved. The computer is a very illustrative one, so it responds to the urgent need for a quick calculation. The emergence of such calculators has made it possible to meet the requirements of modern applications, by developing new numerical methods, in many cases. This is the origin of modern numerical analysis. It is the numerical interface of the broad field of applied analysis [1-10]. The main idea is to reproduction electrical energy by means of photovoltaic cells, which form solar cells [11-20]. Semiconductor materials are the main part to fabricate these cells such as silicon. Many kinds of solar cells are fabricated based on the material used and fabrication technique such as organic and inorganic solar cells [21-30].

A new method for determining the physical parameters of a single diode model of a solar cell is presented and discussed. The proposed method is used to determine the voltage, current, power, and absolute error of the solar cell device. The Three-Step method proposed was compared to the other Newton–Raphson method. Values obtained from the proposed method were found to be more accurate than other methods studied in all cases. It is organized as follows: section 2 characterizing the analytical model of a single-diode design of the solar cell; Section 3 establishing the root-finding Newton Raphson Method (NRM); section 4 three step method (TSM); section 5 results and discussion; section 6 conclusions of the obtained results.

2. Characteristics of Single-Diode Solar Cells Equation
The simple equivalent electric circuit of a solar cell is shown in Figure 1.
Using Kirchhoff’s current law for the current I, the equation of this equivalent circuit is given by

$$I = I_{ph} - I_D$$ \hspace{1cm} (1)

$$I_D = I_0 \left(e^{\frac{-V_{pv}}{nV_T}} - 1 \right)$$ \hspace{1cm} (2)

$$I = I_{ph} - I_0 \left(e^{\frac{-V_{pv}}{nV_T}} - 1 \right)$$ \hspace{1cm} (3)

where:

- I_{ph} is the photocurrent (A);
- I_0 is reverse saturation current of the diode (A);
- I and V_{pv} are the delivered current and voltage, respectively (V);
- $V_T = \frac{kT}{q} = 0.0259$ V is thermic voltage = 27.5 \pm 26 mV at $T = 25$ oC Air-Mass = 1.5;
- m is the recombination factor closeness to an ideal diode ($1 < m < 2$),
- k is Boltzmann constant = $1.38 \times 10^{-23} J/K$; T is $p-n$ junction temperature (K);
- q is the electron charge = 1.6×10^{-19} C.

$$I_{ph} = I_{source}$$ \hspace{1cm} (4)

$$I_D = I_s \left(e^{\frac{V}{nV_T}} - 1 \right)$$ \hspace{1cm} (5)

Merge Eq. 4 in Eq. 5 we get

$$\left(I_{source} \right) - 10^{-12} \left(e^{\frac{-V}{1.2 + 0.026}} - 1 \right) = \frac{V}{R_L}$$ \hspace{1cm} (6)

where I_s reverse saturation current = $10^{-12} A$. In parallel, $V_D = V_{pv} = V$

According to Eq. 6 one can calculate V of the cell numerically based on the first derivative of this equation.

3. Newton Raphson Method

The following algorithm suggestion for solving Eq. 5 by using NRM (see Figure 1)

INPUT initial approximate solution $x_0 = 1$, tolerance ϵ, the maximum number of iterations N

OUTPUT approximate solution x_{n+1}

Step 1: Set $x = 0$

Step 2: while $i \leq x_0$

Step 3: Calculate

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \text{ for } n = 0, 1, 2, ...$$

Step 4: if $|x_i - x_{i-1}| < \epsilon$; then OUTPUT x_{n+1} and stop.

Step 5: Set $n = n + 1$; $i = i + 1$ and go to Step 2.

Step 6: OUTPUT
4. Three Step Method (TSM)

Six-order convergences with three steps are investigated. Let \(f(x) = 0 \) is a nonlinear equation, suppose \(x_0 \) as an initial value, so the iteration results \(x_{n+1} \) can be calculated using the following scheme

\[
y_n = x_n - \frac{f(x_n)}{f'(x_n)}
\]

\[
z_n = x_n - \frac{f(x_n) + f'(x_n) - f(x_n)\times f'(x_n)}{f'(x_n)\times f'(x_n) - f(x_n)\times f'(x_n)}
\]

\[
x_{n+1} = z_n - \frac{f(x_n)\times f'(x_n) - f'(x_n)\times f(x_n)}{f(x_n)\times f'(x_n) - f'(x_n)\times f(x_n)}
\]

Eq. 7 has a six-order convergence called a three-step method (TSM); the proposed method.

5. Results and Discussion

Consider the Eq. 6 is modeled in the form single-diode solar cell has obtained the following approximate solutions and the TSM are applied with the first initial value (first value from NRM); while Newton-Raphson methods (NRM) with initial value \(x_0 = 1 \). In Table 1 the Newton Raphson method (NRM) and three step method (TSM) of the solution results (voltage \(V_{pv} \); current \(I_{pv} \) and power \(P_{pv} \) of the solar cell) and absolute error \(\varepsilon \) are given and listed in the last columns of this table when the load resistance \(R = 1 \).

Table 1. The \(V_{pv}, I_{pv}, P_{pv} \) and \(\varepsilon \) using NRM and TSM

Iterations	\(V_{pv}\)-NRM	\(V_{pv}\)-TSM	\(I_{pv}\)-NRM	\(I_{pv}\)-TSM	\(P_{pv}\)-NRM	\(P_{pv}\)-TSM
1	0.971416861	0.955060555	0.077576865	0.03263742		
2	0.934845183	0.922427705	0.012422048	4.5709E-06		
3	0.922076823	0.92242135	0.000283689	1.1102E-16		
4	0.922423135	0.922423135	3.36712E-10	0.000000000		
5	0.922423135	0.922423135	0.000000000	0.000000000		
6	0.922423135	0.922423135	0.000000000	0.000000000		

Figure 2 presents the obtained solutions of the study result.
Figure 2. The obtained solutions of the study result at the load resistance R=1.

In Table 2 the Newton Raphson method (NRM) and three step method (TSM) of the solution results (voltage V_{pv}, current I_{pv} and power P_{pv} of the solar cell) and absolute error ε are given and listed in the last columns of this table when the load resistance $R = 2$

Table 2. The obtained values using NRM and TSM

Iterations	V_{pv}-NRM	V_{pv}-TSM	ε-NRM	ε-TSM
1	0.971030472	0.923160241	0.082964618	0.037188279
2	0.932557944	0.917052987	0.015522562	1.7605E-05
3	0.917605401	0.917035382	0.000570019	1.55431E-15
4	0.917035387	0.917035382	5.03445E-09	0.000000000
5	0.917035382	0.000000000	0.000000000	
6	0.917035382	0.000000000		
7	0.917035382	0.000000000		

ε-NRM	ε-TSM
0.485515236	0.471450089
0.466278972	0.434832159
0.458802701	0.420999836
0.458517694	0.420476951
0.458517691	0.420476946
0.458517691	0.420476946

Figure 3 Presents the obtained solutions of the study result.
Figure 3. The obtained solutions of the study result at the load resistance $R = 2$.

In Table 3 the Newton Raphson method (NRM) and three-step method (TSM) of the solution results (voltage V_{pv}; current I_{pv} and power P_{pv} of the solar cell) and absolute error ε are given and listed in the last columns of this table when the load resistance $R = 3$.

Table 3. The obtained values using NRM and TSM

Iterations	V_{pv}-NRM	V_{pv}-TSM	ε-NRM	ε-TSM
1	1	0.953380693	0.08956626	0.042977319
2	0.970643792	0.919321269	0.060240418	0.008917895
3	0.930170085	0.91047401	0.019766711	7.06356E-05
4	0.911587131	0.910403374	0.001183757	4.4134E-13
5	0.910403456	0.910403374	8.19924E-08	0.00000000
6	0.910403374	1.11022E-16		
7	0.910403374	0.000000000		

Figure 4 Presents the obtained solutions of the study result.
Figure 4. The obtained solutions of the study result at the load resistance $R = 3$.

In Table 4 the Newton Raphson method (NRM) and three-step method (TSM) of the solution results (voltage V_{pv}; current I_{pv} and power P_{pv} of the solar cell) and absolute error ε are given and listed in the last columns of this table when the load resistance $R = 4$.

Table 4. The obtained values using NRM and TSM

Iterations	V_{pv}-NRM	V_{pv}-TSM	ε-NRM	ε-TSM
1	0.952531681	0.098259398	0.050791079	
2	0.970256822	0.915170632	0.06851622	0.01343003
3	0.927675607	0.902042574	0.025935005	0.000301972
4	0.904333309	0.901740602	0.002592707	1.54978E-10
5	0.901742128	0.901740602	1.52598E-06	0.000000000
6	0.901740602	0.000000000		
7	0.901740602	0.000000000		

I_{pv}-NRM	P_{pv}-NRM	I_{pv}-TSM	P_{pv}-TSM
0.25	0.25	0.23813292	0.226829151
0.242564205	0.235349575	0.228792658	0.209384321
0.231918902	0.215145508	0.225510644	0.203420201
0.226083327	0.204454683	0.225435151	0.203284028
0.225435532	0.203284716	0.22543515	0.203284028
0.22543515	0.203284028	0.22543515	0.203284028
0.22543515	0.203284028	0.22543515	0.203284028

Figure 5 Presents the obtained solutions of the study result.
Figure 5. The obtained solutions of the study result at the load resistance $R = 4$.

In Table 5 the Newton Raphson method (NRM) and three step method (TSM) of the solution results (voltage V_{pv}; current I_{pv} and power P_{pv} of the solar cell) and absolute error ε are given and listed in the last columns of this table when the load resistance $R = 5$.

Table 5. The obtained values using NRM and TSM

Iterations	V_{pv}-NRM	V_{pv}-TSM	ε-NRM	ε-TSM
1	0.9516766856	0.110907285	0.062583942	
2	0.96986956	0.910676781	0.080776845	0.021584067
3	0.925068092	0.890543397	0.035975378	0.001450682
4	0.895367304	0.889092803	0.006274589	8.81011E-08
5	0.889128976	0.889092715	3.62612E-05	0.000000000
6	0.889092715	0.889092715	1.36446E-13	
7	0.889092715	0.889092715	0.000000000	

I_{pv}-NRM	P_{pv}-NRM	I_{pv}-TSM	P_{pv}-TSM
0.2	0.2	0.190335331	0.181137692
0.193973912	0.188129393	0.182135356	0.16586644
0.185013618	0.171150195	0.178108679	0.158613508
0.179073461	0.160336522	0.177818561	0.158097202
0.177825795	0.158110067	0.177818543	0.158097171
0.177818543	0.158097171	0.177818543	0.158097171

Figure 6 Presents the obtained solutions of the study result.
Figure 6. The obtained solutions of the study result at the load resistance $R = 5$.

The obtained solution plot in the (no. of iteration)-ε-plane and the initial-output values proves that the proposed method (TSM) has six iterations indicated a fast behaviour. Parallel to this feature, it is noticed that the proposed method (TSM) has a behaviour of the solution in the initial value x_0, has the smallest error tolerance compared with (NRM) with initial value $x_0 = 1$.

A result of tables 1 to 5 is showing that the suggested method (TSM) has low absolute errors after relatively view iterations are computed and this in turn is demonstrating their efficiency.

6. Conclusion

This paper presents a new method to calculate the electrical parameter of the solar cell using two different methods; NRM and TSM. Values obtained from the proposed method (TSM) were found to be better compared to (NRM). Additionally, values for single diode solar cells were determined with fast convergence, more capable to determine these parameters, and establishing towards the final values.

References

[1] Rasheed M, Barille R. Development and characterization of single and multilayer thin films for optoelectronics application [PhD thesis]. France: University of Angers; 2017.
[2] Rasheed M, Barillé R. Room temperature deposition of ZnO and Al: ZnO ultrathin films on glass and PET substrates by DC sputtering technique. Optical and Quantum Electronics 2017; 49(5): 1-14. doi: 10.1007/s11082-017-1030-7.
[3] Rasheed M, Barillé R. Optical constants of DC sputtering derived ITO, TiO2 and TiO2: Nb thin films characterized by spectrophotometry and spectroscopic ellipsometry for optoelectronic devices. Journal of Non-Crystalline Solids 2017; 476: 1-14. doi: 10.1016/j.jnoncrysol.2017.04.027.
[4] Rasheed M, Barillé R. Comparison the optical properties for Bi2O3 and NiO ultrathin films deposited on different substrates by DC sputtering technique for transparent electronics. Journal of Alloys and Compounds 2017; 728: 1186-1198. doi: 10.1016/j.jallcom.2017.09.084.
[5] Rasheed M, Barillé R. Development and characterization of single and multilayer thin films for optoelectronics application [PhD thesis]. France: University of Angers; 2017.
[6] Abbas MM, Rasheed M. Solid state reaction synthesis and characterization of Al doped TiO2 nanomaterials. Journal of Southwest Jiaotong University 2020; 55(2).
[7] Azaza NB, Elleuch S, Rasheed M, et al. 3-(p-nitrophenyl) coumarin derivatives: Synthesis, linear and nonlinear optical properties. Optical Materials 2019; 96: 109328. doi: 10.1016/j.optmat.2019.109328.
[8] Enneffati M, Rasheed M, Louati B, et al. Morphology, UV–visible and ellipsometric studies of sodium lithium orthovanadate. Optical and Quantum Electronics 2019; 51(9): 299. doi: 10.1007/s11082-019-2015-5.
[9] Rasheed M, Sarhan MA. Solve and implement the main equations of photovoltaic cell parameters using visual studio program. Insight-Mathematics 2019; 1(1): 18-26.
[10] Shihab S N, Naif T N. On the orthonormal Bernstein polynomial of order eight. Open Science Journal of Mathematics and Application 2014; 2(2): 15-19.
[11] Delphi M, Shihab S. State parametrization basic spline functional for trajectory optimization. The Journal of Nature Life and Applied Sciences 2019; 3(4): 110-119.
[12] Al-Faour O, Shihab S N, Al-Saleni B F. Multistep methods for solving nonlinear integral equations. Journal of the College of Basic Education 2001; 12(2).
[13] Al-Faour O, Shihab S N, Al-Nasser RH. Expansion method for solving volterra equations. Journal of Babylon University 2000; 7(3): 1355-1362.

[14] Al-Faour O, Al-Ani FID, Al-Rawi S N. Numerical evaluation of fourier transformation using orthogonal functions. Engineering and Technology Journal 2000; 17(7).

[15] Al-Ani FID, Al-Faour O, Al-Rawi SN. Numerical solution of variational calculus using Chebyshev wavelet method. Journal of Al-rafidian University 1997; 2: 1-10.

[16] Shihab S, Dephi M. Direct iterative algorithm for solving optimal control problems using B-spline polynomials. Emirates Journal for Engineering Research 2019; 24(4): 1-9.

[17] Alrawy S S, Salih A A. Shifted modified chebyshev direct method for solving quadratic optimal control problem. Samarra Journal of Pure and Applied Science 2020; 2(1): 67-75.

[18] Shihab S, Ali H A, Kasheem B E. Legendre wavelets method for solving boundary value problems. Journal of the College of Basic Education 2012; 18(76): 73-85.

[19] Cuce E, Cuce P M, Bali T. 2013 Applied Energy, 111, 374-382.

[20] Khan F, Baek S H, Kim J H. 2014 Applied Energy, 133, 356-362.

[21] Khan, F., Baek, S. H., & Kim, J. H. (2016). Wide range temperature dependence of analytical photovoltaic cell parameters for silicon solar cells under high illumination conditions. Applied Energy, 183, 715-724.

[22] Chahid, E. H., Oumhand, M. I., Erritali, M., & Malouki, A. (2017). Effect of Measurement Factors on Photovoltaic Cell Parameters Extracting. International Journal of Electrical & Computer Engineering (2088-8708), 7(1).

[23] Xun, L. X. H. W. L. (2015). Experimental investigations of laser intensity and temperature dependence of single crystal silicon photovoltaic cell parameters. 中国激光, 42(8).

[24] Khan, M. F. N., Ali, G., & Khan, A. K. (2019, January). A Review of Estimating Solar Photovoltaic Cell Parameters. In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp. 1-6). IEEE.

[25] Khan, F., Lee, H. J., Oh, M., & Kim, J. H. (2014). Analysis of photovoltaic cell parameters of non-vacuum solution processed Cu (In, Ga) Se2 thin film based solar cells. Solar energy, 108, 189-198.

[26] Cuce, E., & Cuce, P. M. (2014). Improving thermodynamic performance parameters of silicon photovoltaic cells via air cooling. International Journal of Ambient Energy, 35(4), 193-199.

[27] Humada, A. M., Hojabri, M., Mekhilef, S., & Hamada, H. M. (2016). Solar cell parameters extraction based on single and double-diode models: A review. Renewable and Sustainable Energy Reviews, 56, 494-509.

[28] Cotfas, D. T., Cotfas, P. A., & Machidon, O. M. (2018). Study of temperature coefficients for parameters of photovoltaic cells. International Journal of Photoenergy, 2018.

[29] Cotfas, D. T., Deaconu, A. M., & Cotfas, P. A. (2019). Application of successive discretization algorithm for determining photovoltaic cells parameters. Energy conversion and management, 196, 545-556.

[30] Waly, H. M., Azazi, H. Z., Osheba, D. S., & El-Sabbe, A. E. (2019). Parameters extraction of photovoltaic sources based on experimental data. IET Renewable Power Generation, 13(9), 1466-1473.