Effect of Shade and Light Curing Mode on the Degree of Conversion of Silorane-Based and Methacrylate-Based Resin Composites

Mousavinasab SM, Atai M, Salehi N, Salehi A*

*Dental Materials Research Center and Department of Operative Dentistry, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran

**Department of Polymer Science, Iran Polymer and Petrochemical Institute, Tehran, Iran

†Department of Oral Medicine, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

‡Department of Operative Dentistry, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

ARTICLE INFO

Article History:
Received: 18 September 2016
Accepted: 27 November 2016

Key words:
Degree of Conversion
Methacrylate-Based Resin Composites
Silorane-Based Resin Composites
Soft-Start Curing

Corresponding Author:
Arman Salehi
Department of Operative Dentistry, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
Email: arman.salehi1984@gmail
Tel: +98-3434280031

Abstract

Statement of Problem: The degree of conversion depends on the material composition, light source properties, distance from light source, light intensity, curing time, and other factors such as shade and translucency.

Objectives: In the present study, we evaluated the effects of different light-curing modes and shades of methacrylate and silorane-based resin composites on the degree of conversion of resin composites (DC).

Materials and Methods: The methacrylate-based (Filtek Z250, 3M, ESPE) and low-shrinkage silorane-based (Filtek P90, 3M, ESPE) resin composites were used in three groups as follows: group 1-Filtek Z250 (shade A3), group 2-Filtek Z250 (shade B2), and group 3-Filtek P90 (shade A3). We used a light-emitting diode (LED) curing unit for photopolymerization. 10 samples were prepared in each group to evaluate the degree of conversion; 5 samples were cured using soft-start curing mode, and the other 5 were cured using standard curing mode. The DC of the resin composites was measured using Fourier Transform Infrared Spectroscopy (FTIR). The data were analyzed using Kruskal Wallis and one-way ANOVA statistical tests.

Results: The degree of conversion of silorane-based resin composite was 70 - 75.8% and that of methacrylate-based resin composites was 60.2 - 68.2% (p = 0.009). The degree of conversion of the composite with brighter colour (B2) was statistically more than the darker composite (A3). Higher degree of conversion was achieved applying the standard curing mode.

Conclusions: The results of the study showed that the colour and type of the resin composite and also the curing mode influence the degree of conversion of resin composites.

Cite this article as: Mousavinasab SM, Atai M, Salehi N, Salehi A. Effect of Shade and Light Curing Mode on the Degree of Conversion of Silorane-Based and Methacrylate-Based Resin Composites. J Dent Biomater, 2016;3(4):299-305.
Introduction

Direct resin composite restorations have been widely used in restorative dentistry procedures. However, it is desirable for a dental resin composite to convert all of its monomer units into a polymer, during the process of polymerization [1]. A well-known drawback of dental resin composites is incomplete monomer conversion, and the resulting monomer release could at least partially account for the failures observed clinically, including persistent post-operative sensitivity and/or the need for endodontic treatment, as well as secondary caries [2].

Moreover, unsuitable biological responses, like cytotoxicity or pulp progenitor/stem cellular differentiation disturbance even at non-toxic concentrations, were suggested to be caused by the release of non-reacted monomers [2,3]. Therefore, incomplete polymer conversion and the increased potential for monomer release can affect the pulp tissues [2]. Hence, the degree of conversion (DC) of dental resin composites is a key physical property of the polymer since functional material characteristics, such as mechanical properties, volumetric shrinkage, wear resistance, and monomer elution are significantly correlated [2].

Generally, a high DC is associated with higher shrinkage strain. However, polymerization shrinkage directly influences the compliance and results in the passage of bacterial fluids, molecules, or ions between the cavity wall and resin composite restoration which is called “Micro-leakage” [4,5]. Tooth sensitivity, secondary caries, and pulp problems are some complications of micro-leakage [6,7]. For this reason, researchers constantly aim to reduce the shrinkage of resin composite materials.

In the part of polymer network polymerization stage “Gel Point” exists, and before this point, the resin composite acts as a viscous fluid and can partially release tensions (“Pre-Gel” stage). After the “Gel Point”, however, the resin composite converts into a hard material lacking sufficient flow for releasing the tensions (“Post-Gel” stage) [8,9].

The assumption is that if further tension release is allowed by increasing the “Pre-Gel” duration, there will be a possibility to decrease the shrinkage stress caused by the polymerization; accordingly, the soft-start curing mode was introduced [10-12]. In this mode, first, the polymerization begins with low intensities of light-cure device energy, and after a certain period of time (5 second), this intensity increases and the rest of the polymerization continues with high energy [13].

On the other hand, silorane-based resin composites exhibit lower shrinkage strain due to the ring opening polymerization mechanism [14-16]. As derivatives of siloxane and oxirane monomers, silorane resins are composed of a hydrophobic siloxane backbone of oxirane rings. A reduced shrinkage of about 1 vol% is provided by the polymerization of these monomers with a cationic ring opening. [17]. The polymerization shrinkage in silorane systems is reduced as a result of a double ring-opening polymerization caused by an oxaspirocyclic core. It should be noted that this type of polymerization is required for volume expansion, which occurs through cationic intermediates [18,19].

The DC is also dependent on the material composition, light source properties, distance from light source, light intensity, curing time, and other factors such as shade and translucency [20,21]. Therefore, the present study was performed with the purpose of investigating the effect of the use of different resin composite colours and curing modes on the DC of resin composites. The null hypothesis was that there would be no difference in the DC between methacrylate- and silorane-based resin composites at different light curing modes and using different composite shades.

Materials and Methods

The materials in the present study consisted of methacrylate-based (Filtek Z250, 3M ESPE, St. Paul, MN, USA) and silorane-based (Filtek P90, 3M ESPE, St. Paul, MN, USA) resin composites, that were used in three groups as follows: group 1-Filtek Z250 (shade A3), group 2-Filtek Z250 (shade B2), and group 3-Filtek P90 (shade A3). 10 samples were prepared in each group to evaluate the DC; 5 samples were cured using soft-start curing mode, and the other 5 were cured using standard curing mode (Table 1).

A Bluephase LED light-curing unit (Ivoclar Vivadent, Schann, Liechtenstein) capable of applying three curing modes of low, soft start and standard was used for photopolymerization.
Table 1: Materials and their composition used in the study

Type	Material	Content	Manufacturer
Filtek Z250	Methacrylate-based composite	Matrix: Bis-GMA, Bis-EMA, UDMA, TEGDMA	3M ESPE, St. Paul, MN, USA
		Filler: zirconia, silica (0.01 - 3.5 μm), 78 wt%, 60 vol%	
Filtek P90	Silorane-based composite	Matrix: 3,4 Epoxycyclohexyl ethyl cyclopoly-methylsloxane, bis-3,4 epoxycyclohexyl-ethyl-phenyl-methyilsilane	3M ESPE, St. Paul, MN, USA
		Filler: silanized quartz, Yttrium fluoride (0.04 - 1.7 μm), 76 wt%, 55 vol%	

| Bis-GMA, Bisphenol A glycidyl dimethacrylate; Bis-EMA, Ethoxylated Bisphenol A dimethacrylate; UDMA, Urethane dimethacrylate; TEGDMA, Triethylene glycol dimethacrylate. |

The number of samples was determined according to similar studies [1,16,17]. Data were analyzed with SPSS 21 (SPSS Inc., Chicago, IL, USA).
Table 3: The DC of the study resin composites

Curing	Group 1:	Group 2:	Group 3:	p-value*
	Mean ± SD	Mean ± SD	Mean ± SD	
Standard	60.4 ± 2.0	68.2 ± 1.9	75.8 ± 1.7	.002
Soft start	60.2 ± 1.3	61.4 ± 1.6	70.0 ± 2.5	.006

: Kruskal-Wallis H test

USA). Statistical significance was set at \(p < 0.05 \). Kruskal Wallis H and Mann-Whitney U tests were used to compare the DC in different groups.

Results

The DCs of the study resin composites are given in Table 3 based on their group and curing mode. In the silorane-based resin composite (group 3) Filtek P90 (shade A3), the DC was higher than the methacrylate-based resin composite (group 1) Filtek Z250 with similar colour (shade A3) \((p = 0.009 \)). Standard curing mode in all the groups caused a higher DC increase compared to soft-start curing method \((p = 0.009 \)). Also, in group 2 Filtek Z250 (shade B2) with brighter colour compared to group 1 Filtek Z250 (shade A3), the DC was statistically higher \((p = 0.009 \)).

Discussion

In this study, the DC of the studied composites was investigated 40s after curing by standard and soft-start curing modes with the use of LED light-curing unit. The results showed that the silorane-based resin composite, the brighter colour and also in the standard curing mode, the DC is higher. In Xiong et al.’s study [23], which used a methodology similar to that of the current study to measure the DC of low-shrinkage silorane-based resin composites (maximum absorption 882 cm\(^{-1}\)), the DC of the silorane-based resin composites has been reported 62.3% to 69.1%. While in other studies in which the 1638 cm\(^{-1}\) maximum absorption has been considered to measure the DC [22,24], lower values (37.2% - 43.5%) was reported for the DC of silorane-based resin composite (Filtek P90, 3M, ESPE) which can be due to the use of a different methodology.

Base of Gao et al.’s study, it has been reported that Filtek P90 (3M, ESPE) takes the longest time to reach the gel points [25]. One hypothesis for this behavior is that siloranes are slowly polymerized, resulting in longer gel times so that siloranes have a polymerization reaction with a slow onset. Through slow polymerization, more time is allowed for increasing polymerization and higher DC [25]. On the contrary, the DC of methacrylate-based resin composites is in alignment with past studies [24,26]. In the study of Porto et al. [24], the DC with 44–71%

Figure 1: Infrared spectra of silorane-based (left) compared with methacrylate-based (right) resin composites.
for the Filtek Z250 (3M, ESPE) was obtained using (LED) standard curing mode.

The lower value of DC with the soft-start curing mode could be caused by the lower intensity of light at the beginning of this curing mode which results in the decrease in the polymerization rate. Al-Qudah et al. [27] also explained that the increase in resin composite viscosity in the early seconds of soft-start curing can cause rapid distribution of free radicals, and at the end, the polymerization degree would remain limited even after the increase of light intensity.

In Mousavinasab et al.’s study [21], the DC values of the methacrylate-based resin composites cured by the QTH and LED LCUs with different irradiation intensities were from 53 ± 0.11% to 60 ± 0.02%. Therefore, different light intensities can be a factor influencing the DC. However, Soares, et al. [10] reported that the soft-start curing mode produced the lowest DC at the bottom surface with a significant statistical difference from the normal protocol because the lower irradiance produced at the first 10s of polymerization reduced the total irradiance available to polymerization.

In our study, we classified resin composite shades from bright to dark based on the degree of brightness similar to what was proposed by Al-Qudah et al. [27]. However, due to limitations of availability of different shades in the market, and lack of similar shades between methacrylate and silorane based resin composites, we only used two shades across the spectrum of methacrylate based resin composites. Shade B2 was used as a lighter shade and shade A3 as a darker shade. The DC of Filtek Z250 (shade B2) was slightly higher than Filtek Z250 (shade A3).

The difference might be attributed to the type and amount of dark pigments which absorb more light; hence less free radical are available for polymerization resulting in lower DC [27]. In addition, it has been shown that darker shades need more irradiation, compared to lighter shades, to reach the same curing depth [28].

Aguiar et al.’s [29] study showed that shade is a factor that can alter the polymerization efficacy. In this study, lighter shade showed the highest DC. Due to the opacity of dark shades, light transmission is diminished when passing through them. The photopolymerization initiation rate depends on the incident light intensity, so the reduced intensity of light led to a decrease in DC.

Conclusions

1. The DC of silorane-based resin composite 40s after the LED curing is higher than methacrylate-based resin composite.
2. The DC of the resin composite in the standard curing method is higher than the soft-start curing method.
3. The DC of brighter colour resin composite (B2) is slightly higher than the darker resin composite (A3).

Acknowledgments

The authors gratefully acknowledge that this report is based on a part of thesis that was submitted to the School of Dentistry, Isfahan University of Medical Sciences, in partial fulfilment of the requirements for the MSc degree in Restorative Dentistry (#393392). This study was financially supported and approved by Isfahan University of Medical Sciences, Isfahan, Iran.

Conflict of Interest: None declared.

References

1. Yoon TH, Lee YK, Lim BS, et al. Degree of polymerization of resin composites by different light sources. J Oral Rehabil. 2002;29:1165-1173.
2. Randolph LD, Palin WM, Bebelman, et al. Ultra-fast light-curing resin composite with increased conversion and reduced monomer elution. Dent Mater. 2014;30:594-604.
3. Bakopoulou A, Leyhausen G, Voik J, et al. Effects of HEMA and TEDGMA on the in vitro odontogenic differentiation potential of human pulp stem/progenitor cells derived from deciduous teeth. Dent Mater. 2011;27:608-617.
4. Amiriouche-Korichi A, Mouzali M, Watts DC. Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Dent Mater. 2009;25:1411-1418.
5. Stansbury JW, Trujillo-Lemon M, Lu H, et al.
Conversion-dependent shrinkage stress and strain in dental resins and composites. Dent Mater. 2005;21:56-67.

6. Burke FJ, Cheung SW, Mjor IA, et al. Restoration longevity and analysis of reasons for the placement and replacement of restorations provided by vocational dental practitioners and their trainers in the United Kingdom. Quintessence Int. 1999;30:234-242.

7. Mjor IA. The reasons for replacement and the age of failed restorations in general dental practice. Acta Odontol Scand. 1997;55:58-63.

8. El-Korashy DI. Post-gel shrinkage strain and degree of conversion of preheated resin composite cured using different regimens. Oper Dent. 2010;35:172-179.

9. Sakaguchi RL, Berge HX. Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. J Dent. 1998;26:695-700.

10. Soares LE, Liporoni PC, Martin AA. The effect of soft-start polymerization by second generation LEDs on the degree of conversion of resin composite. Oper Dent. 2007;32:160-165.

11. Silikas N, Eliades G, Watts DC. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater. 2000;16:292-296.

12. Tarle Z, Meniga A, Knezevic A, et al. Composite conversion and temperature rise using a conventional, plasma arc, and an experimental blue LED curing unit. J Dent. 2002;29:662-667.

13. Oliveira KM, Lancellotti AC, Ccahuana-Vasquez RA, et al. Shrinkage stress and degree of conversion of a dental composite submitted to different photactivation protocols. Acta Odontol Latinoam. 2012;25:115-122.

14. Khosravi K, Mousavinasab SM, Samani MS. Comparison of microleakage in Class II cavities restored with silorane-based and methacrylate-based composite resins using different restorative techniques over time. Dent Res J. (Isfahan). 2015;12:150-156.

15. Giorgi MC, Hernandez NM, Sugii MM, et al. Influence of an intermediary base on the microleakage of simulated class II composite resin restorations. Oper Dent. 2014;39:301-307.

16. Boroujeni PM, Mousavinasab SM, Hasanli E. Effect of configuration factor on gap formation in hybrid composite resin, low-shrinkage composite resin and resin-modified glass ionomer. J Investig Clin Dent. 2015;6:156-160.

17. Eick JD, Kotha SP, Chappelow CC, et al. Properties of silorane-based dental resins and composites containing a stress-reducing monomer. Dent Mater. 2007;23:1011-1017.

18. Boaro LC, Goncalves F, Guimaraes TC, et al. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent Mater. 2010;26:1144-1150.

19. Karaman E, Ozgunalty G. Polymerization shrinkage of different types of composite resins and microleakage with and without liner in class II cavities. Oper Dent. 2014;39:325-331.

20. Knezevic A, Tarle Z, Meniga A, et al. Degree of conversion and temperature rise during polymerization of composite resin samples with blue diodes. J Oral Rehabil. 2001;28:586-591.

21. Mousavinasab SM, Khoroushi M, Moharreri M, et al. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units. Restor Dent Endod. 2014;39:155-163.

22. Randolph LD, Palin WM, Watts DC, et al. The effect of ultra-fast photopolymerisation of experimental composites on shrinkage stress, network formation and pulpal temperature rise. Dent Mater. 2014;30:1280-1289.

23. Xiong J, Sun X, Li Y, et al. Polymerization shrinkage, stress, and degree of conversion in silorane-and dimethacrylate-based dental composites. J Appl Polym Sci. 2011;122:1882-1888.

24. Porto IC, de Aguiar FH, Brandt WC, et al. Mechanical and physical properties of silorane and methacrylate-based composites. J Dent. 2013;41:732-739.

25. Gao BT, Lin H, Zheng G, et al. Comparison between a silorane-based composite and methacrylate-based composites: shrinkage characteristics, thermal properties, gel point and vitrification point. Dent Mater J. 2012;31:76-85.

26. Porto IC, Soares LE, Martin AA, et al. Influence of the photoinitiator system and light photoactivation units on the degree of conversion of dental composites. Braz Oral
27. Al-Qudah AA, Mitchell CA, Biagioni PA, et al. Effect of composite shade, increment thickness and curing light on temperature rise during photocuring. J Dent. 2007;35:238-245.
28. Swartz ML, Phillips RW, Rhodes B. Visible light-activated resins-depth of cure. J Am Dent Assoc. 1983;106:634-637.
29. Aguiar FH, Lazzari CR, Lima DA, et al. Effect of light curing tip distance and resin shade on microhardness of a hybrid resin composite. Braz Oral Res. 2005;19:302-306.
Surf and download all data from SID.ir: www.SID.ir

Translate via STRS.ir: www.STRS.ir

Follow our scientific posts via our Blog: www.sid.ir/blog

Use our educational service (Courses, Workshops, Videos and etc.) via Workshop: www.sid.ir/workshop