The Pagoda Sequence: a Ramble through Linear Complexity, Number Walls, D0L Sequences, Finite State Automata, and Aperiodic Tilings

Fred Lunnon
Fred.Lunnon@may.ie
National University of Ireland Maynooth, Co. Kildare, Ireland

We review the concept of the number wall as an alternative to the traditional linear complexity profile (LCP), and sketch the relationship to other topics such as linear feedback shift-register (LFSR) and context-free Lindenmayer (D0L) sequences. A remarkable ternary analogue of the Thue-Morse sequence is introduced having deficiency 2 modulo 3, and this property verified via the re-interpretation of the number wall as an aperiodic plane tiling.

1 Introduction

In the early 1970’s the availability of the Berlekamp-Massey algorithm led to the emergence of the Linear Complexity Profile (LCP), as a measure of how well a sequence of (say) binary digits could be approximated by a Linear Feedback Shift-Register (LFSR) — a topic of some practical importance in the design of cryptographic key-stream sequences.

A less established alternative, previously known to rational approximation specialists by the somewhat unimaginative term C-table, is the number wall — an array of Hankel determinants formed from consecutive intervals of the sequence — which lends itself better to geometrical interpretation than the traditional LCP.

An algorithm for number-wall computation, generalising the classical Jacobi recurrence to the previously intractable case of zero determinants, was later discovered by the author, who typically then failed to get around to actually publishing it for another 25 years. It is applicable to sequences over any integral domain, and with care can be implemented to cost constant time per entry computed.

A particular area of interest involves sequences whose complexity according to this model is in some way extreme, such as that proposed by Rueppel with a so-called ‘perfect’ LCP. Sequences with ‘perfect’ number-walls are harder to find, in fact over a finite domain they appear not to be possible: a probabilistic argument gives approximate bounds on the depth of such tables, confirmed by computer searches modulo 2 and 5.

Despite this in 1997 was discovered a remarkable sequence with modulo 3 deficiency 2, that is its ternary number-wall contains only isolated zeros — or in plainer language, no linear recurrence or LFSR of order \(m \) spans any \(2m + 2 \) consecutive terms, for any order at any point. More remarkably still, computational evidence suggests that the same sequence has deficiency 2 modulo other primes of the form \(p = 4k - 1 \).

The construction of this Pagoda sequence resembles that of the classical square-free Thue-Morse ternary sequence: an auxiliary sequence is generated via a D0L system, then mapped to the target sequence via a final extension morphism. Such D0LEC (D0L with extension and constant width) or ‘automatic’ sequences have some claim to form a natural complexity class immediately above the LFSR class, combining greater flexibility with accessible distribution properties.
The proof of the deficiency modulo 3 was finally accomplished two years later, involving the recasting of the number wall as a tiling of the plane — essentially a two-dimensional D0LEC — by a tessellation using 107 different varieties of tile. Proof for other primes remains elusive.

2 Linear Complexity

A sequence \([S_n]\) is a linear recurring or linear feedback shift register (LFSR) sequence of order \(r\), when there exists a nonzero vector \([J_i]\) (the relation) of length \(r + 1\) such that

\[
\sum_{i=0}^{r} J_i S_{n+i} = 0 \quad \text{for all integers } n.
\]

If the relation has been established only for \(a \leq n \leq b - r\) we say that the relation spans \(S_a, \ldots, S_b\), with \(a = -\infty\) and \(b = +\infty\) permitted.

Sequences may have as elements members of any integral domain: in applications the domain will usually be the integers or some prime (often binary) finite field. LFSR sequences over finite fields are discussed comprehensively in [5] §6.1–6.4. It must be emphasised that the same sequence may have very different linear complexity behaviour, according to the domain considered: this caveat will apply in particular to profiles and walls of integer sequences modulo a prime, often 2 or 3.

Of practical importance in the design of secure cryptographic key-stream sequences is the question of how well a binary sequence is approximated by (one or more) LFSR’s. Developed in the early 1970’s, the (Shifted) Linear Complexity Profile (LCP/SLCP) represented an attempt to establish a relevant quantitative formalism: given \([S_n]\), its LCP is an auxiliary sequence with \(m\)-th term the order of the minimal LFSR spanning segment \(S_0, \ldots, S_{m-1}\); the SLCP generalises this reluctantly into two dimensions by considering the order of \(S_n, \ldots, S_{n+m-1}\), where both \(m\) and \(n\) vary.

In recent years linear complexity has made little progress; and it is my contention that the major culprit is the accidental manner in which LCP’s were contrived. The Berlekamp-Massey algorithm had recently been developed, providing a means of computing the minimal relation spanning \(n\) terms of a sequence in time quadratic in \(n\). This seems then to have been seized upon by both coding and complexity communities — the latter simply discarding the components \([J_i]\) of the relation, retaining only the order \(r\).

To introduce a personal note at this point, I have to confess to having never felt comfortable with Berlekamp-Massey: its application is tricky — for instance, the intermediate vectors it generates cannot be relied upon to represent relations spanning a prefix of the segment — and its proof (see [5]) strikes me as both complicated and lacking obvious direction.

A more natural and elementary alternative considers instead the simultaneous linear equations for the relation components \([J_i]\) in terms of the sequence elements \([S_n]\). Easily, these have a solution just when the Toeplitz determinant [or with an extra reflection, Hankel or persymmetric]

\[
S_{mn} = \begin{vmatrix}
S_n & S_{n+1} & \cdots & S_{n+m} \\
S_{n-1} & S_n & \cdots & S_{n+m-1} \\
\vdots & \vdots & \ddots & \vdots \\
S_{n-m} & S_{n-m+1} & \cdots & S_n
\end{vmatrix}
\]

vanishes.

A zero entry \(S_{mn}\) indicates a relation of order \(r \leq m\) spanning the segment \([S_{n-m}, \ldots, S_{n+m}]\). If the sequence is in fact generated by a single LFSR of order \(r\), the table will be zero from row \(r\) onwards:
therefore this number-wall bears the same relation to an LFSR sequence as does the difference table to a polynomial sequence (where S_n is a polynomial function of n); in fact, one generalises the other, to the extent that every polynomial sequence of degree $r - 1$ is de facto LFSR of order r, with relation given by the vanishing of its r-th difference.

These determinants can also be computed in quadratic time, via an algorithm not only progressive [so the time becomes effectively linear for a table of many values], but beguilingly simple and symmetrical, and classical — being a special case of a well-known pivotal condensation rule or extensional identity credited variously to Sylvester, Jacobi, Desnanot, Dodgson, Frobenius:

$$S_{m,n}^2 = S_{m+1,n}S_{m-1,n} + S_{m,n+1}S_{m,n-1}.$$

Unfortunately, formulating a corresponding recursive algorithm, expressing each row in terms of the two previous,

$$S_{-2,n} = 0, \quad S_{-1,n} = 1, \quad S_{0,n} = S_n, \quad S_{m,n} = (S_{m-1,n}^2 - S_{m-1,n+1}S_{m-1,n-1})/S_{m-2,n} \quad \text{for } m > 0$$

reveals immediately a major flaw: once a zero has been encountered, computation is unable to proceed beyond the subsequent row, on account of division by $S_{m-2,n} = 0$.

One of the more elementary properties — already familiar in the guise of the Padé block theorem (see [4]) to Padé table specialists [who have incidentally been collectively responsible for a remarkable number of bogus proofs of it] is that zero entries occur only as continuous square regions, surrounded by an inner frame of nonzeros [easily seen by the Sylvester identity to comprise a geometric sequence along each edge].

Some time around 1975, I succeeded in generalising the recursion to bypass such zero entries. Ironically (given my original motivation) even the statement of these frame theorems demands sufficient preliminary background to necessitate relegation to appendix A; and their convoluted and technical proof required several attempts, finally involving a combination of methods from ring theory, analysis and algebraic geometry, and sustained over a period of more than a quarter of a century [7].

[John Conway, who took an early interest in this topic, christened the zero regions windows, and the table a wall of numbers, [2]. Apparently, on first encountering these results, he transcribed them for safe keeping onto his bathroom wall (the way one does); but having moved house by the time the book came to be written, was obliged to rely on memory, and as a result (to his evident embarrassment) committed two separate typographical errors in restating them.]

There is plainly a close relationship between SLCP’s and number walls — see [9] for example. However, the more symmetrical definition of the latter considerably facilitates the deployment of genuinely two-dimensional geometry in their investigation, as we shall see later; in contrast, the (diagonal, one-dimensional) generating function technique — encouraged by the LCP paradigm — is for example unable to probe the central diamond of a number wall at all.

3 D0L and D0LEC systems: Thue-Morse sequence

A deterministic context-free Lindenmayer (D0L) system is defined to be a substitution system where there is only one production for each symbol; all productions are applied simultaneously; and production is iterated, starting from some distinguished (stable) symbol, so generating an infinite sequence.
We further define D0LE to mean extended by a final (single-shot) substitution, usually to an alphabet distinct from that used by the generation stage; and D0LEC to mean that both morphisms (sets of production rules) have constant width on the right-hand side — for instance, no sneaky null symbols, mapping to the empty string! [Much the same idea appears elsewhere under the umbrella of ‘automatic sequences’ — see ‘image, under a coding, of a k-uniform morphism’ in sect. 6 of [1].]

Why should D0L (and particularly D0LEC) systems be worthy of study? LFSR systems arise naturally in a number of applications (signal-processing, cryptography), and the number wall is a natural tool with which to investigate them. When we come to study number walls in turn, their extremal behaviour is observed to occur for D0LEC sequences (which incidentally arise in other unrelated applications as well). So D0LEC sequences in some sense constitute a natural third layer in a complexity hierarchy commencing thus: polynomial sequences, LFSR sequences, D0LEC sequences, ...

The distribution properties of these sequences can easily be established, using classical Markov-process methods [3]. Another bonus is algorithmic: the D0LEC paradigm permits both the computation of a distant term S_n of a sequence, and furthermore the inversion of this process to recover n from S_n (where this is single-valued), in time of order $\log n$ by means of a finite-state automaton — see [1].

In illustration of these ideas, we turn now to consider the Thue-Morse sequence. [This is conventionally constructed as the fixed point of the morphism $0 \rightarrow 01$, $1 \rightarrow 10$; however, the following indirect construction proves more illuminating.] Recall that a sequence of symbols is square-free when no factor word (of consecutive symbols) is followed immediately by a copy of itself; similarly, a sequence may be cube-free, power-free.

Consider the D0L system on 4-symbols defined by the generating morphism

$$\Phi : A \rightarrow BC, B \rightarrow BD, C \rightarrow CA, D \rightarrow CB;$$

notice the symmetry of Φ under the permutation $(AD)(BC)$. Starting from B and applying Φ repeatedly gives what turns out to be a square-free right-infinite quaternary sequence:

$$[V_n] = BDCBCABD CABCBDCB CABCBDCB CABCBDCA BDCBCABD \ldots$$

[This could be made left- and right-infinite by starting with AB or CB and fixing the origin in the centre; but then Φ^2 rather than Φ would be required to obtain stability.]

The final morphism

$$A \rightarrow 0, B \rightarrow 0, C \rightarrow 1, D \rightarrow 1,$$

now yields the classical cube-free binary Thue-Morse sequence

$$[T_n] = 01101001 10010110 10010110 01101001 \ldots,$$

explicitly T_n equals the sum modulo 2 of the digits of n when expressed in binary. Alternatively, the final morphism

$$A \rightarrow 0, B \rightarrow 1, C \rightarrow 2, D \rightarrow 0,$$

yields the related ternary sequence

$$[U_n] = 10212010 2012021 2012020 10212012 \ldots,$$

which can be shown to be square-free. Proofs are given in appendix B; they bear comparison with rather complicated ad-hoc arguments available elsewhere, e.g. [6].
More significantly, other final morphisms may be tailored to produce new sequences, such as

\[A \rightarrow 11, \; B \rightarrow 01, \; C \rightarrow 10, \; D \rightarrow 00, \]

yielding a binary sequence which has no squared words of length exceeding 6:

\[01001001 \; 10110100 \; 10110110 \; 01001001 \; \ldots, \]

and

\[A \rightarrow 1101, \; B \rightarrow 0011, \; C \rightarrow 1000, \; D \rightarrow 0010, \]

with no squares exceeding length 4 (optimal):

\[01110010 \; 10000111 \; 10001101 \; 01110010 \; 10001101 \; 01111000 \; \ldots \]

4 Average versus Extremal Walls

We propose to illustrate the discussion using an interactive Java application which displays number walls of various special sequences modulo a given prime. Entries are encoded as coloured pixels: white for 0, black for 1, grey for 2; or red for 2, green for 3, blue for 4, etc. interactively; the sequence runs along two rows from the top edge. Program source ScrollWall.java is available from the author.

The implementation is based on the frame theorems (appendix A), incorporating an enhancement to obviate searching when circumnavigating a large window. [The binary case is particularly simple, to the extent that an exceptionally efficient implementation is feasible in the form of a 44-state cellular automaton based on the Firing-Squad Synchronisation Problem (FSSP) — see [5]; [7] sect.7.] The given finite segment must be extended into a periodic sequence, to avoid algorithmic complications resulting from the presence of a boundary: therefore in general, only the triangular north quarter of a (square) graphical display is significant; although in special cases, intelligent choice of segment length \(n \) may improve this situation. Since a sequence with period \(r \) is LFSR with order at most \(r \), the number of nonzero rows (including the initial row of empty determinants) for a segment of length \(n \) columns must be at most \(n + 1 \).

So as to have something for later comparison, we first take a look at a ‘typical’ number wall. When the domain is a finite field with \(q \) elements, it can be shown that for a random sequence, the asymptotic mean density of size-\(g \) (or \(g \times g \)) windows exists (in some suitably weak sense), and equals

\[(q-1)/(q+1)q^{-1}q^g; \]

for example, Fig[1], Fig[2] modulo \(q = 2, 3 \).

It is tempting to employ this result as a test for randomness: for example, counting the numbers of windows of each size in a suitably large portion of the wall, then applying the \(\chi^2 \) test to the frequencies. A discouraging counterexample is the sum of the Thue-Morse and Rook sequences modulo 2 (see Fig[5]), which passes this test with flying colours, despite being generated by the 8-symbol D0LEC system:

\[
\begin{align*}
A \rightarrow Ab, B \rightarrow Ad, C \rightarrow Cb, D \rightarrow Cd, a \rightarrow aB, b \rightarrow aD, c \rightarrow cB, d \rightarrow cD;
A \rightarrow 0, B \rightarrow 0, C \rightarrow 1, D \rightarrow 1, a \rightarrow 1, b \rightarrow 1, c \rightarrow 0, d \rightarrow 0.
\end{align*}
\]

Our major target in this essay is the investigation of extremal walls: by which is meant, the extent to which a number wall may deviate from typical window distribution. One pretext for this activity
Figure 1: Libran2
Figure 2: Libran3
Figure 3: ThueRook
is exposure of the limitations of the paradigm; but it might be more honest to prefer the serendipitous justification, that some of the graphic art so produced is simply rather striking [and might become more so, were the author’s casually primitive palette to be refined!]

The (not overly impressive) example of the Rueppel sequence makes a point about the limitations of the original LCP concept. Its definition is

\[S_n = \begin{cases} 1 & \text{if } n = 2^k - 1 \text{ for some } k; \\ 0 & \text{otherwise}. \end{cases} \]

It was proposed as an example of a binary sequence having ‘perfect’ LCP, which in number-wall terms implies a continuous nonzero diagonal staggering from one corner to the opposite. Elsewhere though, its wall is perfectly appalling, composed almost exclusively of windows increasing exponentially in size (see Fig[4]).

But it suggests an analogous though considerably tougher challenge, which we proceed to take up: to determine the extent to which a (binary, say) wall can avoid zero entries. A combinatorial argument based on the frame theorems shows easily that any extended region of the wall has local zero-density at least \(1/5\) — the minimal pattern has isolated zero entries occurring a knight’s move apart. Globally, this minimal pattern can occupy at best an infinite central diamond, the rest of the wall comprising a fractal-like pattern of increasing windows and finite minimal diamonds, see Fig[5].

To explicitly construct the sequence with this wall, first define the Rook sequence \([R_n]\) as the digit preceding the least-significant 1 in the binary expansion of \(n\), or 0 if \(n = 0\) — compare with Thue-Morse. E.g. if \(n = 104 = 1101000\) in binary, the final 1 is 3 digits along from the end, and the 4-th digit along is \(R_{104} = 0\). \([R_n]\) is a binary sequence, and a recursion for it is

\[R_{-n} = 1 - R_n \text{ for } n \neq 0; \quad R_{2n} = R_n; \quad R_{2n+1} = n \mod 2. \]
The first few values for \(n \geq 0 \) are

\[
[R_n] = 00010011 00011011 00010011 10011011 \ldots
\]

Finally, define the Knight sequence by

\[
K_n = R_{n+1} - R_{n-1} \pmod{2}.
\]

For ternary walls, the situation is rather similar: an essentially unique nonzero local pattern exists, composed of alternating zigzag stripes of \(+1\) and \(-1\) resp. Globally, this motif can be replicated only within a central diamond; the remainder of the wall is now rather sparse, not unlike the Rueppel wall, see Fig. \[\text{\ref{fig:ternary}}\]. An explicit expression for this sequence is clumsy, but it has the D0LEC definition:

\[
A \rightarrow ACB, B \rightarrow BCB, C \rightarrow EDF, D \rightarrow DDD, E \rightarrow EDD, F \rightarrow DDF;
\]

\[
A \rightarrow 1, B \rightarrow 0, C \rightarrow 1, D \rightarrow 0, E \rightarrow 2, F \rightarrow 2.
\]

Starting from \(A \), the first few terms of generated and final sequences are

\[
ACBEDFBCB EDDDDDDDF BCBEDFBCB \ldots;
\]

\[
[Z_n] = 110202010 200000002 010202010 200000000 000000000 \ldots
\]

Accepting that a total absence of zeros (on rows \(m \geq -1 \)) is not possible, we can instead attempt in various ways to circumscribe their occurrence. Rather than become involved in somewhat recondite questions regarding what exactly might be meant by the term density in this context, we shall consider the more concrete problem of bounding the size of the windows.
A simple probabilistic argument can be mounted suggesting that, when the domain is a finite field with \(q \) elements, the size of the maximum window occurring within the first \(m \) rows of a wall will be of the order of \(\log_q m \); and more strongly, that the probability of a sequence having no windows larger than this bound is zero. [This contrasts with the situation for square-free sequences, where the corresponding probability is nonzero for \(q > 2 \).]

With this in mind, we conducted a search for binary sequences with the greatest number of rows having no window of size \(d \) or greater, for small values of the [in LCP jargon] deficiency \(d \). This endeavour is highly speculative: first the critical depth \(m \) must be established such that no satisfactory sequence exists with greater depth; then a sufficiently long segment constructed for an evident period to become established.

The resulting handful of sequences is shown in the table: all are periodic with period \(t \), and the order \(r \) equals the final depth \(m \) satisfying the deficiency bound — that is, as soon as the bound fails, the entire wall vanishes — and \(m \) seems to increase exponentially with \(d \) as expected. Confidence in these results is encouraged by the presence of adventitious symmetries, such as the 0-1 alternating subsequence at odd positions of case \(d = 4 \). See Fig.7, Fig.8, Fig.9.

Now what about ternary walls? Deficiency \(d = 1 \) is disposed of trivially, by the period-4 sequence \([1122\ldots]\) with \(m = r = 2 \). But when our search program is let loose on \(d = 2 \), the first of a number of strange things happens — or in this case, fails to happen — the depth goes on increasing indefinitely, while (necessarily) no period ever properly quite stabilises. To cut quite a long story short, the object which eventually emerges is a remarkably simple D0LEC, has deficiency-2 to any depth we care to
Figure 8: Def3Mod2

Figure 9: Def4Mod2

d	m	r	t	period
1	1	1	1	[1]
2	5	5	6	[111010]
3	19	19	20	[1111010100 1111010010]
4	56	56	60	[0001100100 0110110011 0001101100 1110110001 1001001100 1110010011]
5	95+	?	?	(none detected in 800 terms)
The Pagoda Sequence

Figure 10: Pagoda

examine, and turns out to be essentially identical to the Knight \(K_n\) — seen earlier in an unrelated context!

To be precise, with \(R_n\) the Rook sequence as above, the Pagoda sequence is defined by

\[
P_n = R_{n+1} - R_{n-1} \pmod{3}.
\]

The ternary number wall is shown at Fig.10: the symmetrical, fractal-like filigree structures for which it was christened are more easily appreciated after rotation through a quarter-turn, the sequence running down the left side.

Examination of substantial portions of the number-walls of this sequence modulo

\[
p = 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79
\]

encourages the conjecture that its deficiency remains equal to 2 modulo any prime \(p = 4k - 1\); modulo \(p = 83\) however, this elegant simplicity is confounded by the presence of numerous windows of size 2, together with what appears to be a splendidly lone specimen of size 3 commencing at
entry $m = 105, n = 188$ [a specimen discovered only during protracted investigation of an apparent compiler bug causing ScrollWall to report spurious runtime errors].

The Pagoda was not the first, nor the last of its kind to be discovered: but all these, along with the Knight and Rook sequences, are closely intertwined, in a manner notably reminiscent of our earlier analysis of the Thue-Morse family. Consider the 4-symbol D0L system

$$A \rightarrow AB, \quad B \rightarrow AD, \quad C \rightarrow CB, \quad D \rightarrow CD;$$

applied to A this generates

$$[V_n] = ABADABCD ABADCBCD ABADABCD CBADCBCD \ldots$$

[which can be made infinite both ways by starting instead from DA and choosing the origin to be the first symbol of the (inflated) original A.] Applying the final morphism

$$A \rightarrow 2201, \quad B \rightarrow 0211, \quad C \rightarrow 0221, \quad D \rightarrow 1201$$

yields the Pagoda sequence $[P_n]$, for $n \geq 0$ [or all n];

$$A \rightarrow 1101, \quad B \rightarrow 0111, \quad C \rightarrow 0111, \quad D \rightarrow 1101$$

yields the Knight sequence $[K_n]$.

Other deficiency-2 variations on the Pagoda may be concocted by varying the final morphism. Also notice that the generator is not symmetric under either transposition (AC) or (BD): so these provide a set of 4 distinct generators, each of which could be used to yield an alternative quaternary sequence. Applying the final morphism

$$A \rightarrow 0, \quad B \rightarrow 0, \quad C \rightarrow 1, \quad D \rightarrow 1$$

to any of these alternatives yields the same binary sequence, the Rook $[R_n]$.

Modulo these variations, and the continuum of variants obtained by shifting the origin repeatedly during generation, it seems quite plausible that the Pagoda is the unique ternary sequence with this deficiency.

5 Pagoda Tiling Proof

At this point, we have some probabilistic arguments and experimental evidence to support the conjectures that:

- If $p \mod 4 = 1$ or $p = 2$, then the maximum depth m to which deficiency d can be maintained by any number wall modulo p is finite, bounded by order $\log p d$;
- If $p \mod 4 = -1$, then the number wall modulo p of the Pagoda sequence has bounded deficiency (dependent only on p) to any depth; in particular, for $p = 3$ we have $d = 2$ (only isolated zeros).

To actually prove any of these claims poses a considerable challenge. A conventional approach to the Pagoda conjecture might involve explicit algebraic evaluation of the Toeplitz determinants, modulo 3, modulo p, or over the integers: while there is some numerical structure visible here which might form a basis for an inductive construction, overall this prospect is not promising.

A more unexpected route proves at least partially successful: invoking a two-dimensional geometrical version of the D0LEC paradigm, extending the representation of the sequence via $[V_n]$ above, into
one of the entire wall as a plane quasi-crystallographic tiling. In part this is suggested by close visual inspection of the diagram, which reveals (at the cost of substantial hazard to eyesight) that the ‘pagodas’ recurring at various scales throughout the wall are embedded in repetitive diamonds, square regions rotated through a one-eighth turn.

Factors to be taken into account in the formalisation of this concept include:

- Interaction between faces, edges and vertices of tiles;
- Non-trivial point symmetries tiles may possess;
- Choice of an appropriate translation of tiling origin;
- Extent to which tiles are open or closed subsets of the plane;
- Determination of tile size, or D0L extension width;
- Determination of number of distinct tiles, or D0L symbol count.

All these factors, along with other details relevant to implementation only at a detailed level, need be taken into account in the design of a program to (as it were) tile a wall — to specify the precise spatial ‘inflation’ morphism generating it, along with the extension ‘pattern’ on each tile.

It is natural to align the vertices of a tile with entries of the number wall, so that an entry at a vertex is shared between 4 adjacent tiles, at an edge between 2. This presents a conflict between notational clarity and computational simplicity, resolved by including the entire boundary in tile morphism diagrams (appendix C); while to actually apply a morphism, the boundary must be shrunk and displaced by a half-unit along each axis, so that a tile comprises only complete entries.

In order to verify the frame relations between wall entries, as well as to keep track of inflation of vertices and edges along with faces of tiles, the search program actually operates a 4-fold covering of the plane by overlapping supertiles having twice the diameter of the faces. A post-processor extracts the individual inflations of faces etc, possibly resulting in tile extents becoming reducible to smaller diameter. At this stage also, point-group symmetries of ‘fixed’ tiles are extracted; the number of ‘free’ tiles remaining is then substantially reduced.

For the ternary Pagoda, the program successfully finds a tiling comprising:

- Generator inflation diameter 2 (4 subtiles per inflation);
- Point symmetry group of order 16;
- Tiling origin at $S_{-2,0}$;
- Extent diameter of face 4 (partially spanning 25 wall entries);
- Fixed face count 107, reducing to 13 free;
- Every free face occurring within distance 35 from the origin;
- Free vertex count 39, all within distance 165;

The full morphism will be found in appendix C. Point symmetries comprise products of vertical reflection, horizontal reflection, complementation of odd rows, complementation of odd columns.

Apart from two restricted to meeting the upper zero half-plane $m \leq -2$, every tile has only isolated zeros: this completes the proof that the deficiency of the ternary Pagoda equals 2.

But of course, the existence of this tiling permits us to investigate the wall in much greater detail. For instance, by selectively expanding the D0LEC, any given entry S_{mn} can now be computed in time of order logarithmic in the distance $|m| + |n|$ from the origin.

Again, the deficiency theorem may be considerably sharpened:
If \(S_{mn} = 0 \) in the ternary wall of the Pagoda sequence \(S_n = P_n \), then the power of 2 dividing \(m + 2 \) exceeds that dividing \(n \).

In particular, no zeros can occur on rows with \(m \) odd, nor on column \(n = 0 \) (for \(m \geq -1 \), that is).

Again, applying Markov process analysis to the D0LEC, a \(13 \times 13 \) matrix eigenvalue computation establishes that

Zero entries in this wall possess asymptotic density in a strong sense, and this density equals \(3/20 \).

While the tiling method has successfully been applied in other simple cases, such as the Knight (6 free faces), Rook (\(\leq 28 \)), and Thue-Morse, it has not so far succeeded in tiling the Pagoda modulo 7. Neither is it known whether or not the number wall of every D0LEC sequence can be so tiled: a noteworthy test-case in this respect is the ‘quasi-random’ binary Thue-Rook sum \(S_n = T_n + R_n \pmod{2} \) mentioned earlier, with window size bounded apparently by order \((\log m) \).

A **Statement of the Frame Theorems.**

A zero entry \(S_{m,n} = 0 \) in a number-wall can occur only within a window, that is a square \(g \times g \) zero region surrounded by a nonzero inner frame. The nullity of (the matrix corresponding to) a zero entry equals its distance \(h \) from the (nearest) inner frame edge.

The adjacent diagram illustrates a typical window, together with notation employed subsequently:

\[
\begin{array}{cccccccccc}
E_0 & E_1 & E_2 & \ldots & E_k & \ldots & E_g & E_{g+1} \\
F_0 & B_0 & A_0 & A_1 & A_2 & \ldots & A_k & \ldots & A_g & A, C_{g+1} & G_{g+1} \\
F_1 & B_1 & 0 & 0 & \ldots & 0 & \ldots & 0 & C_g & G_g \\
F_2 & B_2 & 0 & \ldots & (P) & \rightarrow & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & (Q) & \vdots & \uparrow & 0 & C_k & G_k \\
F_k & B_k & 0 & \downarrow & (R) & \vdots & \vdots & \vdots \\
F_g & B_g & 0 & \ldots & 0 & \ldots & 0 & 0 & C_1 & G_1 \\
F_{g+1} & B_g & D_{g+1} & D_g & \ldots & D_k & \ldots & D_2 & D_1 & D, C_0 & G_0 \\
H_{g+1} & H_g & \ldots & H_k & \ldots & H_2 & H_1 & H_0 \\
\end{array}
\]

The inner frame of a \(g \times g \) window comprises four geometric sequences, along North, West, East, South edges, with ratios \(P, Q, R, T \) resp., and origins at the NW and SE corners. The ratios satisfy

\[
PT/QR = (-)^k;
\]

and the corresponding inner frame sequences \(A_k, B_k, C_k, D_k \) satisfy

\[
A_kD_k/B_kC_k = (-)^k \quad \text{for } 0 \leq k \leq g + 1.
\]

The outer frame sequences \(E_k, F_k, G_k, H_k \) lie immediately outside the corresponding inner, and are aligned with them. They satisfy the relation: For \(g \geq 0, 0 \leq k \leq g + 1, \)

\[
QE_k/A_k + (-)^kPF_k/B_k = RH_k/D_k + (-)^kTG_k/C_k.
\]

Proofs are expounded in [7] sect. 3–4.
B Proofs that \([V_n], [T_n], [U_n]\) are power-free.

We sketch the proofs that these sequences are power-free as claimed. Suppose that \([V_n]\) is not square-free, and let the earliest occurrence of its shortest non-empty square start at \(V_n\) for \(n \geq 0\), with length \(2l > 0\). Suppose \(l\) is even: if \(n\) is odd, by inspection of \(\Phi\) there is only one possible value for \(V_{n+1} = V_n + l - 1\) given \(V_n = V_{n+i}\) and \(V_{n+i+1}\) has an even subscript, so by inspection must be \(B\) or \(C\). No new pairs are generated after \(\Phi^3B\), so all words of length 4 occur within \(\Phi^4B\); the longest composed of \(B\) and \(C\) only is seen to have length 3. So \(2l \leq 3\), and the square must be \(BB\) or \(CC\), which do not occur in \(\Phi^3B\). By contradiction, \([V_n]\) is square-free.

The inverse morphism from \([U_n]\) to \([V_{n-1}]\) is uniquely defined for \(n \geq 1\), given either of the symbols \(U_{n\pm 1}\) adjacent to \(U_n\): it is described by the schema

\[
(2)0(1) \rightarrow A, \quad 1 \rightarrow B, \quad 2 \rightarrow C, \quad (1)0(2) \rightarrow D,
\]

where \(U_{n\pm 1}\) is parenthesised. If \([U_n]\) had a square factor with \(l > 2\), its inverse image would also be a square in \([V_n]\), since \(A\) and \(D\) in corresponding positions necessarily have an adjacent \(B\) and \(C\); but \([V_n]\) is square-free. If \(l = 2\) the inverse image might be \(AD\) or \(DA\), but neither occurs in \([V_n]\).

The inverse morphism from \([T_n]\) to \([V_n]\) is uniquely defined for \(n \geq 2\), given \(T_{n+1}\); it is described by the schema

\[
0(0) \rightarrow A, \quad 0(1) \rightarrow B, \quad 1(0) \rightarrow C, \quad 1(1) \rightarrow D,
\]

where \(T_{n+1}\) is parenthesised. If \([T_n]\) had a cubic factor, its inverse image would also be a cube in \([V_n]\), except possibly for the final symbol; but \([V_n]\) is square-free.

C Pagoda Tiling Morphisms

Free tiles are numbered 1–13. The ‘gene’ field diagrams the \(2 \times 2\) diamond into which the tile inflates under the generator morphism, each entry comprising a tile number followed by a combined transformation code. The ‘extn’ field diagrams the \(4 \times 4\) ternary number-wall diamond into which the tile finally extends, including boundary shared with neighbouring tiles. The ‘symm’ field notes all transformations which are symmetries of the tile. Transformation encoding is as follows:

code	transform
A	identity
B	reflection along rows
C	reflection along cols
D	half-turn rotation
I	identity
J	complement odd rows
K	complement odd cols
L	complement odd rows & cols

\[
\begin{array}{rrr}
0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 \\
4 & 1 & 1 & 1 \\
\end{array}
\]

Tile 1: gene 1B 1 , \(\text{extn 0 0 0 0 0, symm AI,BI;}\)

1
Tile	Gene	Extn	Symm
2	2	0	full
3	5	1	AI
3B	5D	1	AI
10	9	1	AI, BK
6C	7BK	1	AI, BK
3CJ	12BL	1	AI, CI
6D	5D	1	AI, BK
4D	13BL	1	AI, CI
4B	13BL	1	AI, CI
Tile 10: gene 5B, extn 1 1 2 2 1, symm AI, BK;

Tile 11: gene 7J, extn 1 0 2 0 1, symm AI, BK;

Tile 12: gene 9BJ, extn 1 0 2 1 0, symm AI, CI;

Tile 13: gene 9BL, extn 1 0 2 1 0, symm AI, CI;

References

[1] Allouche, Jean-Paul & Shallit, Jeffrey *Automatic Sequences* Cambridge (2003).
[2] Conway, J. H. & Guy, R. K. *The Book of Numbers* Springer (1996).
[3] Feller, William *An Introduction to Probability Theory and its Applications* vol I Wiley (1957).
[4] Gragg, W. B. *The Padé Table and its Relation to Certain Algorithms of Numerical Analysis* SIAM Review *14* (1972) 1–62.
[5] Lidl, R. & Niederreiter, H. *Introduction to Finite Fields and their Applications* Cambridge (1997).
[6] Lothaire, M. *Combinatorics on Words* Addison-Wesley (1983).
[7] Lunnon, W. F. *The Number-Wall Algorithm: an LFSR Cookbook* Article 01.1.1 Journal of Integer Sequences *4* (2001).
[8] Minsky, M. *Computation: Finite and Infinite Machines* Prentice-Hall (1967).
[9] Stephens, N. M. *The Zero-square Algorithm for Computing Linear Complexity Profiles* in Mitchell, Chris (ed.) *Cryptography and Coding II* Clarendon press Oxford (1992) 259–272.